Національний Університет "Києво-Могилянська Академія"

На правах рукопису

Морозов Денис Іванович

УДК 512.54

Скінченностанова спряженість ізометрій простору 2-адичних чисел

01.01.06 – алгебра та теорія чисел

Дисертація на здобуття наукового ступеня доктора фізико-математичних наук

Зміст

П	ерелік умовних позначень	3
1	Ізометрії кільця Z_2	4
	1.1 Стискаючи функції кільця Z_2	5
	1.2 Ізометричні многочлени кільця Z_2	12
2	Централізатори шарово-транзитивних елементів в групі скінченно-	
	станових автоморфізмів $FAutT_2$	16
3	Загальні питання спряженності	22
	3.1 Спряженність кусково-лінійних шарово-транзитивних автоморфізмів .	25
4	Спряженість лінійних ізометрій у загальному випадку	25
5	Дифференційовні ізометрії	37
	5.1 Кусково-лінійні ізометрії	37
6	Спряженність транзитивно-стабільних автоморфізмів в $FAutT_2$	40
7	Зв'язка груп	44

Перелік умовних позначень

N_{+}	- напівгрупа натуральних чисел по додаванню
	;
$\bar{\mathbb{N}}^+ = \mathbb{N}^+ \cup \{0\}$	- напівгрупа натуральних чисел з нулем;
Z_p	-кільце цілих р-адичних чисел;
Z_T	-кільце розширених по дереву T цілих 2-
	адичних чисел;
$C_n^{(r)}$	-декартів добуток r копій циклічної групи C_n ;
$G \ltimes H$	- напівпрямий добуток груп , де $H-$ нормаль-
	ний дільник ;
$(G,X)\imath H$	-вінцевий добуток групи перетворень
	(G,X) (активний співмножник) та абстра-
	ктної групи H ;
$\langle M, g, \ldots \rangle$	- підгрупа породжена множиною M та елемен-
	тами $g, \ldots;$
K^+, K^*	- адитивна та мультиплікативна групи поля ;
0	-суперпозиція автоморфізмів, функцій.
T_n	- кореневе однорідне дерево валентності n ;
$AutT_n$	- група автоморфізмів кореневого однорідного
	дерева валентності n ;
$FAutT_n$	- підгрупа скінченностанових автоморфізмів
	групи $AutT_n$;
$STAutT_n$	- Множина шарово-транзитивних автоморфі-
	змів групи $AutT_n$;
$\zeta(a)$	- кількість різних станів автоморфізму а;
$C_G(a)$	- централізатор елемента a в групі G ;

1 Ізометрії кільця Z_2

Зручною для роботи з двійковими автоматами, особливо з нескінченно-становими, є техніка їх представлення у вигляді функцій кільця Z_2 .

Ототожнюючи кодування елементів простору Бера над двійковим алфавітом з двійковим кодуванням цілих 2-адичних чисел отримаємо представлення автоморфізма функцією на Z_2 . Кожен автоморфізм дерева α задає функцію f_{α} за правилом: якщо автоморфізм α переводить кінець х в кінець у, то $f_{\alpha}(x) = y$. Наприклад adding machine при такому представленні задається функцією f(x) = x + 1.

Але не кожна функція є автоморфізмом дерева. Для того, що б функція задавала автоморфізм необхідно, що б ця функція пару кінців з однаковим початком переводила в пару кінців з однаковим початком тієї ж самої довжини.

Приклад 1.0.1. Функція f(x) = 2x переводить пару ...1111 та ...0000 в пару ...1110 та ...0000 відповідно. Перша пара має спільний початок довжини 0, друга - довжини 1, тобто функція f(x) = 2x не є автоморфізмом дерева.

Приклад 1.0.2. Функція $f(x) = x^2$ не є автоморфізмом дерева.

Дійсно, оскільки має місце наступне співвідношення

$$(2^n \cdot t + x)^2 = 2^{2n} \cdot t^2 + 2 \cdot 2^n \cdot x \cdot t + x^2$$

тобто

$$(2^{n} \cdot t_{1} + x)^{2} - (2^{n} \cdot t_{2} + x)^{2} =$$

$$= (2^{2n} \cdot t_{1}^{2} + 2 \cdot 2^{n} \cdot x \cdot t_{1} + x^{2}) - (2^{2n} \cdot t_{2}^{2} + 2 \cdot 2^{n} \cdot x \cdot t_{2} + x^{2}) =$$

$$= 2^{n+1}(t_{2} - t_{1})(2^{n-1}(t_{2} + t_{1}) + 1)$$

то для пари 2-адичних чисел x_1, x_2 , що мають спільний початок ненульової довжини n, пара x_1^2, x_2^2 має спільний початок як найменше довжини n+1, отже відображення $f(x)=x^2$ є неперервним, але не є автоморфізмом.

Втім клас функцій, що є автоморфізмами дерева є досить широким. Далі наводиться індуктивна побудова класу функцій кільця Z_2 , що є стискаючими, тобто такими, що задовільняють умові Ліпшиця порядку 1 в ультраметриці:

$$\rho(f(x), f(y)) \le \rho(x, y)$$

В цьому класі виділяється підможина, що відповідає ізометріям, а отже груповим автоматам.

1.1 Стискаючи функції кільця Z_2

Означимо метрику ρ на кільці Z_2 . Кожен елемент $x \in Z_2$ можна єдиним чином представити у вигляді $x = u * 2^n$, де u - обертовний елемент кільця Z_2 .

Далі під фразою $a \in Z_2$ ділиться на $b \in Z_2$, будемо розуміти, що $\frac{a}{b}$ належить кільцю Z_2 .

Означення 1.1.1. Функція $ord_2(x)$ для $x \in Z_2$ означається наступним чином. Нехай $x = u * 2^n$, де u - обертовний елемент кільця Z_2 . Тоді $ord_2(x) = n$.

Означення 1.1.2. Означимо відстань $\rho(x,y)$ для $x,y \in Z_2$.

$$\rho(x,y) = \left(\frac{1}{2}\right)^{ord_2(x-y)}$$

Означення 1.1.3. Функція $f: Z_2 \to Z_2$ називається ізометрією, якщо

$$\rho(f(x), f(y)) = \rho(x, y)$$

Mножину ізометрій позначимо як $Aut Z_2$.

Означення 1.1.4. Ізометрія $f: Z_2 \to Z_2$ називається шарово-транзитивною, якщо $\forall n \in \mathbb{N}$ $f^k(0)$ має 2^n різних значень по модулю 2^n . Множину шаровотранзитивних ізометрій позначимо, як $STAutZ_2$

Лема 1.1.1. Функція f є ізометрією тоді, і тільки тоді, коли дріб $\frac{f(x)-f(y)}{x-y}$ належить групі одиниць кільця Z_2 для всіх $x,y\in Z_2$.

Доведення. Представимо f(x) - f(y) та x - y у вигляді: $f(x) - f(y) = u_1 * 2^{n_1}, x - y = u_2 * 2^{n_2}$, де - u_1, u_2 обертовні елементи кільця Z_2 . Оскільки f - ізометрія, то $n_1 = n_2$. Отже маємо:

$$\frac{f(x) - f(y)}{x - y} = \frac{u_1}{u_2} = u_1 * u_2^{-1}$$

тобто дріб належить групі одиниць кільця Z_2 .

З іншої сторони, якщо для всіх $x,y\in Z_2$ добуток $2^{n_1-n_2}*u_1*u_2^{-1}$ належить групі одиниць кільця Z_2 , то $n_1=n_2$, тому f - ізометрія.

Означення 1.1.5. Функція $f: Z_2 \to Z_2$ називається стискаючою, якщо

$$\rho(f(x),f(y))\leqslant\rho(x,y)$$

Mножину стискаючих функцій позначимо як $EndZ_2$.

Означення 1.1.6. Функція $f:Z_2 \to Z_2$ називається строго-стискаючою, якщо

$$\rho(f(x), f(y)) < \rho(x, y)$$

Mножину строго-стискаючих функцій позначимо як $CEndZ_2$.

Зауваження 1.1.1. *Нехай різниця* x-y *ділиться на* 2^n $(n \in \mathbb{N})$. *Тоді те що функція* f(x) ϵ

- а) ізометрією, рівносильно умові: f(x) f(y) ділиться на 2^n , але не ділиться на 2^{n+1} (дріб $\frac{f(x) f(y)}{x y}$ належить групі одиниць кільця Z_2)
- b) строго-стискаючою, рівносильно умові: f(x)-f(y) ділиться на 2^{n+1} (дріб $\frac{f(x)-f(y)}{x-y}$ належить $2*Z_2$)
- c) стискаючою, рівносильно умові: f(x)-f(y) ділиться на 2^n (дріб $\frac{f(x)-f(y)}{x-y}$ належить Z_2)

Зауваження 1.1.2. Легко бачити, що об'єднання множини ізометрій з множиною строго стискаючих функцій є власною підмножиною множини стискаючих функцій.

Теорема 1.1.1. Якщо f - cmucкaюча, g - cmuckaюча, mo <math>f+g - cmuckaюча.

Доведення. Нехай різниця x-y ділиться на 2^n , але не ділиться на 2^{n+1} . Розглянемо різницю

$$(f(x) + g(x)) - (f(y) + g(y)) =$$

$$= (f(x) - f(y)) + (g(x) - g(y))$$

Друга частина рівності складається з двох доданків. Перший доданок ділиться на 2^n , другий доданок також ділиться на 2^n , оскільки f та g - стискаючи функції. Отже вся сума ділиться на 2^n і звідси маємо, що f+g є стискаючою функцією.

Теорема 1.1.2. Якщо f - ізометрія, g - строго стискаюча, то f+g - ізометрія

Доведення. Нехай різниця x-y ділиться на 2^n , але не ділиться на 2^{n+1} . Розглянемо різницю

$$(f(x)+g(x))-(f(y)+g(y))=\\$$

$$= (f(x) - f(y)) + (g(x) - g(y))$$

Друга частина рівності складається з двох доданків. Перший доданок ділиться на 2^n , але не ділиться на 2^{n+1} , другий доданок ділиться на 2^{n+1} , оскільки f - ізометрія, а g - строго стискаюча функція. Отже вся сума ділиться на 2^n , але не ділиться на 2^{n+1} і звідси маємо, що f+g є ізометрією.

Теорема 1.1.3. Якщо f - строго стискаюча, g - строго стискаюча, то f+g - строго стискаюча

 \mathcal{A} оведення. Нехай різниця x-y ділиться на 2^n , але не ділиться на 2^{n+1} . Розглянемо різницю

$$(f(x) + g(x)) - (f(y) + g(y)) =$$

$$= (f(x) - f(y)) + (g(x) - g(y))$$

Друга частина рівності складається з двох доданків. Перший доданок ділиться на 2^{n+1} , другий доданок ділиться на 2^{n+1} , оскільки f та g - строго стискаючи функції. Отже вся сума ділиться на 2^{n+1} , і звідси маємо, що f+g є строго стискаючою функцією.

Теорема 1.1.4. Якщо f - ізометрія, g - ізометрія, то f+g - строго стискаюча Доведення.

$$\frac{(f(x)+g(x))-(f(y)+g(y))}{x-y} = \frac{f(x)-f(y)}{x-y} + \frac{g(x)-g(y)}{x-y} = a_1 + a_2$$
$$a_1 = \frac{f(x)-f(y)}{x-y}, \ a_2 = \frac{g(x)-g(y)}{x-y}$$

Оскільки f та g - ізометрії, то a_1 та a_2 належать множині обертовних елементів кільця Z_2 для всіх $x,y\in Z_2$. Отже a_1+a_2 ділиться на 2 для всіх $x,y\in Z_2$ і тому f+g - строго стискаюча функція.

Наслідок 1.1.1. Якщо f, g та h - ізометрії, то то f+g+h - ізометрія

Дійсно, оскільки за теоремою g+h - строго стискаюча, а f- ізометрія, то за теоремою f+(g+h) - ізометрія.

Теорема 1.1.5. Якщо f - cmucкaюча, то 2*f - cmporo cmuckaюча функція.

 \mathcal{A} оведення. Нехай різниця x-y ділиться на 2^n , але не ділиться на 2^{n+1} . Тоді f(x)-f(y) також ділиться на 2^n , оскільки f є стискаючою. Розглянемо різницю

$$2 * f(x) - 2 * f(y) = 2 * (f(x) - f(y))$$

Друга частина рівності ділиться на 2^{n+1} , отже маємо, що 2*f є строго стискаючою функцією.

Теорема 1.1.6. Якщо f - cmucкaючa, g - cmuckaючa, то f*g - cmuckaючa.

Доведення. Нехай різниця x-y ділиться на 2^n , але не ділиться на 2^{n+1} . Тоді різниці f(x)-f(y) та g(x)-g(y) обидві діляться на 2^n , оскільки f та g - стискаючи функції. Розглянемо різницю

$$f(x) * g(x) - f(y) * g(y) =$$

$$= f(x) * (q(x) - q(y)) + q(y)(f(x) - f(y))$$

Друга частина рівності складається з двох доданків. Обидві доданки діляться на 2^n . Отже вся сума ділиться на 2^n і звідси маємо, що f*g є стискаючою функцією. \square

Теорема 1.1.7. Якщо f - строго стискаюча, g - строго стискаюча, то f*g - строго стискаюча.

Доведення. Нехай різниця x-y ділиться на 2^n , але не ділиться на 2^{n+1} . Тоді різниці f(x)-f(y) та g(x)-g(y) обидві діляться на 2^{n+1} , оскільки f та g - строго стискаючи функції.

Розглянемо різницю

$$f(x) * g(x) - f(y) * g(y) =$$

$$= f(x) * (g(x) - g(y)) + g(y)(f(x) - f(y))$$

Друга частина рівності складається з двох доданків. Обидві доданки діляться на 2^{n+1} . Отже вся сума ділиться на 2^{n+1} і звідси маємо, що f*g є строго стискаючою функцією.

Теорема 1.1.8. *Нехай* f - *ізометрія*, a q - стискаюча функція.

$$To \partial i \ f*(2*g+1)$$
 - ізометрія

Доведення. Нехай різниця x-y ділиться на 2^n , але не ділиться на 2^{n+1} . Тоді різниці f(x)-f(y) та g(x)-g(y) обидві діляться на 2^n , але не діляться на 2^{n+1} , оскільки f та g - ізометрії.

Розглянемо різницю

$$f(x) * (2 * g(x) + 1) - f(y) * (2 * g(y) + 1) =$$

$$= 2 * f(x) * (g(x) - g(y)) + (2 * g(y) + 1) * (f(x) - f(y))$$

Друга частина рівності складається з двох доданків. Перший доданок ділиться на 2^{n+1} , другий доданок ділиться на 2^n , але не ділиться на 2^{n+1} . Отже вся сума ділиться на 2^n , але не ділиться на 2^{n+1} і звідси маємо, що f*(2*g+1) є ізометрією.

Наслідок 1.1.2. Нехай f - ізометрія, а g - ізометрія, або строго стискаюча. Тоді f*(2*g+1) - ізометрія

Дійсно, і ізометрія і строго стискаюча функція є стискаючими.

Теорема 1.1.9. *Нехай функції* f та g e cтискаючими.

 $To \partial i \ 2*f*g$ - строго стискаюча функція

Доведення. Розглянемо різницю:

$$\frac{2f(x) * g(x)}{x - y} - \frac{2f(y) * g(y)}{x - y} = \frac{2((f(x) - f(y))g(x) + f(y)(g(x) - g(y)))}{x - y} =$$

$$= 2g(x) * a_1 + 2f(y) * a_2$$

$$a_1 = \frac{f(x) - f(y)}{x - y}, \ a_2 = \frac{g(x) - g(y)}{x - y}$$

Оскільки f та g - стискаючи, то a_1 та a_2 належать Z_2 для всіх $x,y\in Z_2$. Отже $2g(x)*a_1+2f(y)*a_2$ ділиться на 2 для всіх $x,y\in Z_2$ і тому 2*f*g - строго стискаюча функція.

Наслідок 1.1.3. Нехай f - ізометрія, або строго стискаюча функція, g - ізометрія, або строго стискаюча функція. Тоді 2*f*g - строго стискаюча функція.

Теорема 1.1.10. Якщо f - ізометрія, a g - cтискаюча функція, то

$$\frac{f}{2*g+1}$$

- ізометрія.

Доведення. Розглянемо різницю:

$$\frac{f(x)}{2g(x)+1} - \frac{f(y)}{2g(y)+1} = \frac{2(f(x)g(y) - f(y)g(x)) + f(x) - f(y)}{(2g(x)+1)(2g(y)+1)}$$

Знаменник не впливає на парність дробу, оскільки є добутком обертовних елементів кільця Z_2 .

Розглянемо відношення:

$$\frac{2(f(x)g(y) - f(y)g(x)) + f(x) - f(y)}{x - y} =$$

$$= \frac{2((f(x) - f(y))g(y) - f(y)(g(x) - g(y))) + (f(x) - f(y))}{x - y} =$$

$$= \frac{2(f(x) - f(y))g(y)}{x - y} - \frac{2f(y)(g(x) - g(y))}{x - y} + \frac{f(x) - f(y)}{x - y} =$$

$$= (2g(y) + 1) * a_1 - 2f(y) * a_2$$

$$a_1 = \frac{f(x) - f(y)}{x - y}, \ a_2 = \frac{g(x) - g(y)}{x - y}$$

Оскільки f - ізометрія, а g - стискаюча функція, то a_1 належить множині обертовних елементів кільця Z_2 , а a_2 належить Z_2 для всіх $x,y\in Z_2$. Отже

$$(2g(y) + 1) * a_1 - 2f(y) * a_2$$

належить множині обертовних елементів кільця Z_2 , і тому $\frac{f}{2*g+1}$ - ізометрія. \square

Теорема 1.1.11. Якщо f - строго стискаюча функція, g - строго стискаюча функція, то суперпозиція $f \circ g = g(f(x))$ - строго стискаюча функція.

Доведення. Покажемо, що

$$\frac{g(f(x)) - g(f(y))}{x - y}$$

ділиться на 2 для всіх $x, y \in Z_2$.

$$\frac{g(f(x)) - g(f(y))}{x - y} = \frac{f(x) - f(y)}{x - y} * \frac{g(f(x)) - g(f(y))}{f(x) - f(y)}$$

Друга частина рівності складається з добутку двох дробів. Перший дріб ділиться на 2, оскільки f - строго стискаюча функція. Другий дріб також ділиться на 2, оскільки g - строго стискаюча функція. Отже, добуток ціх дробів теж належить групі одиниць кільця Z_2 , і тому суперпозиція $f \circ g = g(f(x))$ є строго стискаючою функцією. \square

Теорема 1.1.12. Якщо f - ізометрія, g - ізометрія, то суперпозиція $f \circ g = g(f(x))$ - ізометрія.

Доведення. Скористаємось лемою 1.1.1. Покажемо, що

$$\frac{g(f(x)) - g(f(y))}{x - y}$$

належить групі одиниць кільця Z_2 для всіх $x, y \in Z_2$.

$$\frac{g(f(x)) - g(f(y))}{x - y} = \frac{f(x) - f(y)}{x - y} * \frac{g(f(x)) - g(f(y))}{f(x) - f(y)}$$

Друга частина рівності складається з добутку двох дробів. Перший дріб належить групі одиниць кільця Z_2 , оскільки f - ізометрія. Другий дріб також належить групі одиниць кільця Z_2 , оскільки g - ізометрія. Отже, добуток ціх дробів теж належить групі одиниць кільця Z_2 , і тому суперпозиція $f \circ g = g(f(x))$ є ізометрією.

Наслідком попередніх теорем є наступні три теореми:

Теорема 1.1.13. Стискаючи функції на кільці Z_2 утворюють кільце з мультиплікативною одиницею f(x) = x відносно операцій поелементного додавання та
множення функцій. Множина стискаючих функцій з операцією додавання утворює
адитивну групу цього кільця.

Теорема 1.1.14. Строго стискаючи функції на кільці Z_2 утворюють кільце без одиниці відносно операцій поелементного додавання та множення функцій. Множина строго стискаючих функцій з операцією додавання утворює адитивну групу цього кільця.

Теорема 1.1.15. Множина ізометрій кільця Z_2 є класом суміжності по підгрупі строго стискаючих функцій відносно операції поелементного додавання в групі стискаючих функцій.

Наступна теорема потрібна для продовження натуральних функцій до 2адичних ізометрій.

Теорема 1.1.16. Ізометрія χ , визначена на всюди щільній в Z_2 підмножині M, единим чином продовжується до ізометрії $\overline{\chi}$ на Z_2 .

Доведення. Оскільки ізометрія є неперевною функцією, а множина M є всюду щільною в Z_2 , то для елемента $x \notin M$ значення $\overline{\chi}(x)$ визначено єдиним чином, як

$$\overline{\chi}(x) = \lim_{n \to \infty} \chi(x_n)$$

де $\{x_n\}$ послідовність елементів із M, збіжна к x в Z_2 .

На множині M функція $\overline{\chi}$ співпадає з χ .

Теорема 1.1.17. Шарово-транзитивна функція $f: Z_2 \to Z_2$ є ізометрією тоді і лише тоді, коли оператор примитивної рекурсії g(x) = I[f](x)(g(0) = 0, g(x+1) = f(g(x))) від функції $f(x): \mathbb{N} \to \mathbb{N}$ визначає функцію g, неперервне продовження якої на Z_2 є ізометрією кільця Z_2 .

Доведення. Якщо f -шарово-транзитивна ізометрія, то I[f](x) є 0-розв'язком(0-розв'язок - розв'язок, що переводить 0 в 0) рівняння спряженності $\varepsilon^{\chi} = f$. Дійсно, якщо $\chi(0) = 0$, то $\chi(n) = f^n(0)$ для $x \in \mathbb{N}$. Звідси $\chi(n+1) = f(f^n(0)) = f(\chi(n))$ і $\chi(x) = I[f](x)(x \in \mathbb{N})$. Оскільки \mathbb{N} всюди щільна в Z_2 , то, згідно з теоремою 1.1.16 існує єдине продовження ізометрії $\chi: \mathbb{N} \to \mathbb{N}$ до ізометрії $\chi: Z_2 \to Z_2$.

З іншого боку, якщо ізометрія f не є шарово-транзитивною, то замикання множини $M = \{x | x = f^n(0), n \in \mathbb{N}\}$ є власною підмножиною Z_2 , тобто χ не є сюр'єктивним відображеням з Z_2 на Z_2 , і тому не є ізометрією.

Приклад 1.1.1. Легко бачити, що, f(x) = x є ізометрією, а $g(x) = c, c \in Z_2$ строго стискаючою функцією. Тому, згідно з теоремою $f(x) + g(x) = x + c, c \in Z_2$ є ізометрією.

Приклад 1.1.2. Оскільки f(x) = x + c, $c \in Z_2$ е ізометрією, а для $c \in Z_2^*$ f(x) = x + c е шарово-транзитивною ізометрією і I[x + c](x) = c * x то, згідно з теоремою g(x) = c * x $(c \in Z_2^*)$ е ізометрією.

Приклад 1.1.3. Оскільки $f(x) = a * x \ (a \in Z_2^*)$ є ізометрією, а $g(x) = b, b \in Z_2$ строго стискаючою функцією, то, згідно з теоремою лінійна функція $f(x) + g(x) = a * x + b, \ c \in Z_2$ є ізометрією.

1.2 Ізометричні многочлени кільця \mathbb{Z}_2

Розглянемо многочлени кільця $Z_2[x]$. У цьому розділі буде сформульовано умови, при яких многочлен $f(x)=a_0+a_1x+a_2x^2+...+a_nx^n$ буде ізометрією кільця Z_2 . Означимо $S_n(x_1,x_2)$, як

$$S_n(x_1, x_2) = \sum_{k=0}^{n-1} x_1^{n-k-1} \cdot x_2^k$$

Приклад 1.2.1. $S_2(x_1,x_2)=x_1+x_2,\ S_3(x_1,x_2)=x_1^2+x_1\cdot x_2+x_2^2$ i m.d.

Означення 1.2.1. *Означимо функцію* $\mu(x) = \overline{x}$:

$$\mu(x) = \begin{cases} 0, x \in 2 \cdot Z_2 \\ 1, x \in Z_2^* \end{cases}$$

Теорема 1.2.1. $\overline{S_{2k}}(x_1, x_2) = \overline{x_1} \oplus \overline{x_2}$

Доведення. S_{2k} складається з с парної кількості доданків, кожен з яких буде непарним, якщо x_1 та x_2 непарні. Тому S_{2k} є парним, якщо x_1 та x_2 непарні. Очевидно, що S_{2k} є парним, якщо x_1 та x_2 є парними. Крім того $S_{2k} = x_1 + S_{2k-1} \cdot x_2 = S_{2k-1} \cdot x_1 + x_2$, тому S_{2k} є непарним, якщо x_1 та x_2 - різної парності. Отже таблиця значень для $\overline{S_{2k}}(x_1,x_2)$ співпадає з таблицею істинності для $\overline{x_1} \oplus \overline{x_2}$.

Теорема 1.2.2.
$$\overline{S_{2k+1}}(x_1, x_2) = \overline{x_1} \cup \overline{x_2}$$

Доведення. S_{2k+1} складається з с непарної кількості доданків, кожен з яких буде непарним, якщо x_1 та x_2 непарні. Тому S_{2k} є непарним, якщо x_1 та x_2 непарні. Очевидно, що S_{2k} є парним, якщо x_1 та x_2 є парними. Крім того $S_{2k} = x_1 + S_{2k-1} \cdot x_2 = S_{2k-1} \cdot x_1 + x_2$, тому S_{2k} є непарним, якщо x_1 та x_2 - різної парності. Отже таблиця значень для $\overline{S_{2k+1}}(x_1,x_2)$ співпадає з таблицею істинності для $\overline{x_1} \cup \overline{x_2}$.

Означення 1.2.2.

$$D_f(x_1, x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$$

Лема 1.2.1. Для многочлена $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ має місце рівність

$$D_f(x_1, x_2) = \sum_{k=1}^n S_k(x_1, x_2)$$

Теорема 1.2.3. Многочлен $f(x) \in Z_2[x]$ є ізометрією тоді, і тільки тоді, коли

$$\forall x_1, x_2 \in Z_2 \ \overline{D_f}(x_1, x_2) = 1$$

Означення 1.2.3. Для многочлена $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ означимо A_f та B_f :

$$A_f = \mu \left(\sum_{k=1}^{\left[\frac{n+1}{2} \right]} a_{2k} \right)$$

$$B_f = \mu \left(\sum_{k=2}^{\left[\frac{n+1}{2} \right]} a_{2k-1} \right)$$

Теорема 1.2.4. Має місце наступна рівність:

$$\overline{D_f}(x_1, x_2) = \overline{a_1} \oplus (A_f \cap (x_1 \oplus x_2)) \oplus (B_f \cap (x_1 \cup x_2))$$

Наслідок 1.2.1. Згідно з теоремами 1.2.3 та 1.2.4 многочлен $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ є ізометрією тоді, і тільки тоді, коли формула $\overline{a_1} \oplus (A_f \cap (x_1 \oplus x_2)) \oplus (B_f \cap (x_1 \cup x_2))$ є тотожньо-істиною.

Теорема 1.2.5. $\overline{a_1} \oplus (A_f \cap (x_1 \oplus x_2)) \oplus (B_f \cap (x_1 \cup x_2))$ е тотожньо-істиною тоді, і тільки тоді, коли $\overline{a_1} = 1$, $A_f = 0$, $B_f = 0$

Доведення. Побудуємо табличку вигляду формули $\overline{a_1} \oplus (A_f \cap (x_1 \oplus x_2)) \oplus (B_f \cap (x_1 \cup x_2))$ для різних значень $\overline{a_1}$, A_f , B_f .

$\overline{a_1} = 0, \ A_f = 0, \ B_f = 0$	0
$\overline{a_1} = 0, \ A = 0, \ B_f = 1$	$x_1 \cup x_2$
$\overline{a_1} = 0, \ A_f = 1, \ B_f = 0$	$x_1 \oplus x_2$
$\overline{a_1} = 0, \ A_f = 1, \ B_f = 1$	$(x_1 \oplus x_2) \oplus (x_1 \cup x_2)$
$\overline{a_1} = 1, \ A_f = 0, \ B_f = 0$	1
$\overline{a_1} = 1, \ A_f = 0, \ B_f = 1$	$\neg(x_1 \cup x_2)$
$\overline{a_1} = 1, \ A_f = 1, \ B_f = 0$	$\neg(x_1 \oplus x_2)$
$\overline{a_1} = 1, \ A_f = 1, \ B_f = 1$	$\neg((x_1 \oplus x_2) \oplus (x_1 \cup x_2))$

Таблиці істинності формул $x_1 \cup x_2$, $x_1 \oplus x_2$ та $(x_1 \oplus x_2) \oplus (x_1 \cup x_2)$ мають наступний вигляд:

x_1	x_2	$x_1 \oplus x_2$	$x_1 \cup x_2$	$(x_1 \oplus x_2) \oplus (x_1 \cup x_2)$
0	0	0	0	0
0	1	1	1	0
1	0	1	1	0
1	1	0	1	1

Отже формула є тотожньо-хибною для $\overline{a_1}=0,\ A_f=0,\ B_f=0,$ тотожньоістиною для $\overline{a_1}=1,\ A_f=0,\ B_f=0$ і виконливою у всіх інших випадках. \square

Наслідок 1.2.2. Згідно з наслідком 1.2.1 та теоремою 1.2.5 многочлен $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ є ізометрією тоді, і тільки тоді, коли коефіцієнт a_1 є непарним 2-адичним числом, сума коефіцієнтів з парними номерами більше 0 є парним 2-адичним числом та сума коефіцієнтів з непарними номерами більше 3 є парним 2-адичним числом

Приклад 1.2.2. Згідно з наслідком 1.2.2 наступні многочлени є ізометріями:

$$f(x) = 5x + 1$$
$$f(x) = x^4 + x^2 + x$$
$$f(x) = x^5 + 2x^4 + x^3 + 3x$$

а многочлени

$$f(x) = 4x + 1$$
$$f(x) = x^{3} + x^{2} + x$$
$$f(x) = x^{5} + x^{4} + x^{3} + 3x$$

 $He \ \epsilon \ iзометрiями$

П

2 Централізатори шарово-транзитивних елементів в групі скінченно-станових автоморфізмів $FAutT_2$

Відомо, що централізатори шарово-транзитивних елементів в $AutT_2$ описуються наступною теоремою:

Теорема 2.0.6. *Нехай* x - шарово-транзитивний автоморфізм. Тоді

$$C_{AutT_2}(x) = \{x^p | p \in Z_2\}$$

Метою даної роботи є дослідження централізаторів шарово-транзитивних елементів в $FAutT_2$, оскільки результату, аналогічного теоремі 2.0.6 для $FAutT_2$ немає.

Означення 2.0.4. Позначимо як:

x*a - ліву дію автоморфізма а на кінець x дерева T_2 ,

 $a \circ b$ - суперпозицію автоморфізмів а та b дерева T_2 ,

 Z_2 - кільце цілих 2-адичних чисел.

Лема 2.0.2. Для $p \in Z_2$ має місце рівність:

$$0 * \varepsilon^p = p$$

Доведення. Оскільки $t * \varepsilon^p = t + p$, то $0 * \varepsilon^p = 0 + p = p$.

Теорема 2.0.7. Нехай χ_x - 0-розв'язок рівняння спряженості $\varepsilon^t = x$ відносно автоморфізма t. Тоді має місце рівність:

$$0 * x^p = p * \chi_x$$

Доведення. Оскільки $\varepsilon^{\chi_x} = x$, то має місце співвідношення:

$$x^p = (\chi_x^{-1} \circ \varepsilon \circ \chi_x)^p = \chi_x^{-1} \circ \varepsilon^p \circ \chi_x$$

Отже за лемою 2.0.2 та рівністю $0 * \chi_x = 0$ отримуємо:

$$0 * x^p = 0 * (\chi_x^{-1} \circ \varepsilon^p \circ \chi_x) = ((0 * \chi_x^{-1}) * \varepsilon^p) * \chi_x) = (0 * \varepsilon^p) * \chi_x = p * \chi_x$$

ч.т.д.

Має місце наступна лема:

Лема 2.0.3. Hexaŭ x - шарово-транзитивний автоморфізм. Todi

$$0 * C_{AutT_2}(x) = Z_2$$

Доведення. За теоремою 2.0.6

$$C_{AutT_2}(x) = \{x^p | p \in Z_2\}$$

Далі, скориставшись теоремою 2.0.7, маємо:

$$0 * x^{Z_2} = Z_2 * \chi_x$$

де χ_x - 0-розв'язок рівняння спряженості $\varepsilon^t=x$ відносно автоморфізма t.

Оскільки χ_x - автоморфізм, то

$$Z_2 * \chi_x = Z_2$$

ч.т.д.

Означення 2.0.5. Означимо множину $F_p(p \in Z_2)$ наступним чином:

$$p \in F_p$$

якщо $2t + 1 \in F_p$, то $t \in F_p, t + 1 \in F_p$,

якщо $2t \in F_p$, то $t \in F_p$.

Будемо казати, що t_k належить k-му рівню в F_p , якщо отримано з p за k кроків.

Означення 2.0.6. Означимо множину $P_{m,n}(m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0)$ наступним чином:

 $m \in P_{m,n}$

якщо $2t+1 \in P_{m,n}$, то $t-n \in P_{m,n}$, $t+n+1 \in P_{m,n}$,

якщо $2t \in P_{m,n}$, то $t \in P_{m,n}$.

Будемо казати, що t_k належить k-му рівню в $P_{m,n}$, якщо отримано з m за k кроків.

Лема 2.0.4. Нехай 2-адичне квазіперіодичне число р дорівнює $\frac{m}{2n+1}$, де $m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0$. Тоді множини $P_{m,n}$ та F_p скінченні або нескінченні одночасно.

Доведення. Оскільки мають місце рівності:

$$\frac{2m+1}{2n+1} = 2\frac{m-n}{2n+1} + 1$$

$$\frac{2m}{2n+1} = 2\frac{m}{2n+1}$$

то в $F_p = \frac{2m+1}{2n+1}$ породжує $\frac{m-n}{2n+1}$ та $\frac{m+n+1}{2n+1}$, а $\frac{2m}{2n+1}$ породжує $\frac{m}{2n+1}$.

Отже, якщо t_k належить k-му рівню в F_p , то $t_k(2n+1)$ належить k-му рівню в $P_{m,n}$, і навпаки, якщо t_k' належить k-му рівню в $P_{m,n}$, то $\frac{t_k'}{2n+1}$ належить k-му рівню в F_p . Тому має місце рівність:

$$|P_{m,n}| = |F_p|$$

ч.т.д.

Лема 2.0.5. Множина $P_{m,n}(m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0)$ є скінченою.

Доведення. Згідно з означенням, якщо $t \in P_{m,n}$, то або $\frac{t}{2}$ або $\frac{t-1}{2}-n$ та $\frac{t-1}{2}+n+1$. Нехай t_k відноситься до k-го рівня в $P_{m,n}$, тоді має місце рівність:

$$t_k = \frac{t_{k-1} + a * (2n+1)}{2}, a = 0, 1, -1$$

Використавши цю рівність к разів, отримаємо:

$$t_k = \frac{m}{2^k} + (2n+1)(\frac{a_0}{2^k} + \dots + \frac{a_{k-1}}{2})$$

Оскільки $|a_i| \leq 1$, то маємо наступну оцінку:

$$|t_k| = \left| \frac{m}{2^k} + (2n+1)(\frac{a_0}{2^k} + \dots + \frac{a_{k-1}}{2}) \right| \le \left| \frac{m}{2^k} \right| + |2n+1| \le |m| + 2n + 1$$

Отже кількість елеметів в множині $P_{m,n}$ обмежено нерівністю:

$$|P_{m,n}| < 2(|m| + 2n + 1)$$

тому множина $P_{m,n}$ є скінченою, ч.т.д.

Лема 2.0.6. Множина F_p скінченна тоді, і тільки тоді, коли p - квазіперіодичне число.

 $\Leftarrow p$ - квазіперіодичне число тоді і лише тоді, коли $p = \frac{m}{2n+1} (m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0).$ Отже за лемами 2.0.4 та 2.0.5 множина F_p є скінченною.

Теорема 2.0.8. Hexaŭ ε - adding machine. Todi

$$C_{FAutT_2}(\varepsilon) = \{ \varepsilon^p | p \in Z_2 \cap \mathbb{Q} \}$$

Доведення. Оскільки має місце рівність

$$C_{FAutT_2}(\varepsilon) = C_{AutT_2}(\varepsilon) \cap FAutT_2$$

то, за теоремою 2.0.6, елементи централізатора $C_{FAutT_2}(\varepsilon)$ мають вигляд $\{\varepsilon^p|\varepsilon^p\in FAutT_2\}$. Легко бачити, якщо p - не квазіперіодичне число, то ε^p - нескінченностановий, оскільки переводить квазіперіодичне число 0 в не квазіперіодичне число p. Далі, нехай $p\in Z_2\cap \mathbb{Q}\}$, тобто квазіперіодичне. За лемою 2.0.6 множина F_p - скінченна. З іншої сторони, мають місце рівності:

$$\varepsilon^{2t+1} = (\varepsilon^t, \varepsilon^{t+1}) \circ \sigma$$

$$\varepsilon^{2t} = (\varepsilon^t, \varepsilon^t)$$

Отже стани автоморфізму ε^p вичерпуються автоморфізмами вигляду

$$\varepsilon^t, t \in F_p$$

Оскільки F_p - скінченна, то ε^p - скінченно-становий автоморфізм, ч.т.д. \qed

Теорема 2.0.9. Hexaŭ ε - adding machine. Todi

$$0 * C_{FAutT_2}(\varepsilon) = (Z_2 \cap \mathbb{Q})$$

Доведення. За теоремою 2.0.8

$$C_{FAutT_2}(\varepsilon) = \{ \varepsilon^p | p \in Z_2 \cap \mathbb{Q} \}$$

Далі, скориставшись лемою 2.0.2, маємо:

$$0 * \varepsilon^{Z_2 \cap \mathbb{Q}} = Z_2 \cap \mathbb{Q}$$

ч.т.д.

Теореми 2.0.8 та 2.0.9 можна застосувати для дослідження скінченно-станової спряженності з автоморфізмом ε - adding machine. Це показує наступна теорема:

Теорема 2.0.10. Якщо 0-розв'язок t_0 рівняння спряженності відносно t

$$\varepsilon^t = a$$

не є скінченно-становим, то це рівняння не має скінченно-станових розв'язків.

 \mathcal{A} оведення. Припустимо, що t_0 - нескінченно-становий, а рівняння $\varepsilon^t=a$ має скінченно-становий розв'язок $t':p\to 0$, де p - квазіперіодичне число. Оскільки кожен розв'язок єдиним чином можна представити у вигляді

$$t' = x \circ t_0, x \in C_{FAutT_2}(\varepsilon)$$

та $p*\varepsilon^{-p}=0$, то за теоремою 2.0.8 $t'=\varepsilon^{-p}\circ t_0$. Оскільки t_0 - нескінченно-становий, а ε^{-p} - скінченно-становий, то t' - нескінченно-становий. Отже маємо протиріччя. \square

Теорема 2.0.11. Нехай а - шарово-транзитивний автоморфізм. Тоді

$$C_{FAutT_2}(a) \subseteq \{a^{(p*\chi_a^{-1})}|p \in Z_2 \cap \mathbb{Q}\}$$

 $de \ \chi_a$ - 0-розв'язок рівняння спряженності $\varepsilon^t = a \ відносно \ t.$

Доведення. Має місце наступна рівність:

$$0 * a^{(p*\chi_a^{-1})} = p$$

Дійсно, за теоремою 2.0.7 отримаємо:

$$0 * a^{(p*\chi_a^{-1})} = (p * \chi_a^{-1}) * \chi_a = p * (\chi_a^{-1}) \circ \chi_a) = p$$

Отже $a^{(p*\chi_a^{-1})}$ може бути скінченно-становим тільки тоді, коли $p \in Z_2 \cap \mathbb{Q}$. З іншої сторони за теоремою 2.0.6 усі елементи централізатора $C_{AutT_2}(a)$ мають вигляд $a^{(p*\chi_a^{-1})}$, оскільки χ_a^{-1} - автоморфізм Z_2 . Приймаючи до уваги, що

$$C_{FAutT_2}(a) = C_{AutT_2}(a) \cap FAutT_2$$

отримуємо включення

$$C_{FAutT_2}(a) \subseteq \{a^{(p*\chi_a^{-1})}|p \in Z_2 \cap \mathbb{Q}\}$$

ч.т.д.

Означення 2.0.7. Означимо функцію h_x : $C_{AutZ_2}(x) \to Z_2$, де x - шаровотранзитивний скінченностановий автоморфізм, наступним чином:

$$h_x(u) = 0 * u$$

Зауважимо, що згідно з означенням

Теорема 2.0.12. Скінченностановий автоморфізм x e шарово-транзитивним тоді, i тільки тоді, коли $h_x: C_{AutT_2}(x) \to Z_2$ - бієкція.

Означення 2.0.8. Означимо функцію Log_x : $C_{AutZ_2}(x) \to Z_2$, де x - шаровотранзитивний скінченно-становий автоморфізм, наступним чином: $Log_x(u) = t$ для $u = x^t$.

Теорема 2.0.13. *Нехай x - шарово-транзитивний скінченностановий автомор-фізм. Тоді*

$$0 * C_{FAutT_2}(x) \subseteq (Z_2 \cap \mathbb{Q})$$

Доведення. Згідно з теоремою 2.0.11 маємо включення:

$$0 * C_{FAutT_2}(x) \subseteq \{0 * a^{(p * \chi_a^{-1})} | p \in Z_2 \cap \mathbb{Q}\} = Z_2 \cap \mathbb{Q}$$

Теорема 2.0.14. Нехай x - шарово-транзитивний скінченностановий автомор- фізм. Тоді $Log_x: C_{AutT_2}(x) \to Z_2$ - бієкція.

 Γ іпотеза 2.0.1. Hехай x - шарово-транзитивний скінченностановий автоморфізм. Tоді

$$0 * C_{FAutT_2}(x) = (Z_2 \cap \mathbb{Q})$$

3 Загальні питання спряженності

Означення 3.0.9. Означимо функцію $\varphi: STAutZ_2 \to STAutZ_2$ наступним чином $\varphi(x) = x_1 \circ x_2, \ de\ x_1, x_2\ визначаються співвідношеням <math>x = (x_1, x_2) \circ \sigma$

Функція визначена корректно, оскільки, якщо $x=(x_1,x_2)\circ\sigma$ є шаровотранзитивним автоморфізмом кільця Z_2 , то і $x_1\circ x_2$ є шаровотранзитивним автоморфізмом кільця Z_2 .

Означення 3.0.10. Означимо функцію $\pi_L: Aut Z_2 \to Aut Z_2$ наступним чином $\pi_L(x) = x_1$, де x_1 визначається співвідношеням $x = (x_1, x_2)$ або $x = (x_1, x_2) \circ \sigma$

Означення 3.0.11. Означимо функцію $\pi_R: Aut Z_2 \to Aut Z_2$ наступним чином $\pi_R(x) = x_2$, де x_2 визначається співвідношеням $x = (x_1, x_2)$ або $x = (x_1, x_2) \circ \sigma$

Очевидно, що для шарово-транзитивного автоморфізма a має місце рівність $a = (\pi_L(a), \pi_R(a)) \circ \sigma$ і значення $\pi_L(a), \pi_R(a)$ та $\varphi(a)$ зв'язані наступним співвідношенням:

$$\varphi(a) = \pi_L(a) \circ \pi_R(a)$$

Крім того, для автоморфізмів $a=(a_1,a_2),\ b=(b_1,b_2)\circ\sigma$ мають місце наступні співвідношення:

$$\pi_L(a^{-1}) = (\pi_L(a))^{-1}, \ \pi_R(a^{-1}) = (\pi_R(a))^{-1}$$

$$\pi_L(b^{-1}) = (\pi_R(b))^{-1}, \ \pi_R(b^{-1}) = (\pi_L(b))^{-1}$$

$$\pi_L(a \circ b) = \pi_L(a) \circ \pi_L(b), \ \pi_R(a \circ b) = \pi_R(a) \circ \pi_R(b)$$

$$\pi_L(b \circ a) = \pi_L(b) \circ \pi_R(a), \ \pi_R(b \circ a) = \pi_R(b) \circ \pi_L(a)$$

Теорема 3.0.15. Нехай a,b - шарово-транзитивні скінченно-станові ізометрії кільця Z_2 , а χ_0 - 0-розв'язок рівняння спряженності $a^{\chi_0}=b$. Тоді $\forall n\in\mathbb{N}$ має місце рівність

$$\varphi^n(a)^{\pi_L^n(\chi_0)} = \varphi^n(b)$$

 \mathcal{A} оведення. Дійсно, оскільки $a^{\chi_0}=b$, то $\varphi^n(a^{\chi_0})=\varphi^n(b)\ \forall n\in\mathbb{N}.$ Далі,

$$\pi_L(a^{\chi_0}) = \pi_L(\chi_0^{-1} \circ a \circ \chi_0) = \pi_L(\chi_0^{-1}) \circ \pi_L(a) \circ \pi_R(\chi_0) = (\pi_L(\chi_0))^{-1} \circ \pi_L(a) \circ \pi_R(\chi_0)$$

$$\pi_R(a^{\chi_0}) = \pi_R(\chi_0^{-1} \circ a \circ \chi_0) = \pi_R(\chi_0^{-1}) \circ \pi_R(a) \circ \pi_L(\chi_0) = (\pi_R(\chi_0))^{-1} \circ \pi_R(a) \circ \pi_L(\chi_0)$$

Скористаємось методом математичної індукції:

1) Для n=0 маємо рівність $a^{\chi_0}=b$ і тверження виконується. 2) Нехай для n=k твердження теореми виконується, тобто $\varphi^k(a)^{\pi_L^k(\chi_0)}=\varphi^k(b)$. Покажемо, що воно також має місце для n=k+1.

Оскільки $\varphi^{k+1}(b) = \varphi(\varphi^k(b))$, то, згідно з індуктивним припущенням,

$$\varphi^{k+1}(b) = \varphi(\varphi^k(a)^{\pi_L^k(\chi_0)}) = \pi_L(\varphi^k(a)^{\pi_L^k(\chi_0)}) \circ \pi_R(\varphi^k(a)^{\pi_L^k(\chi_0)})$$

і $\varphi(\varphi^k(a)^{\pi_L^k(\chi_0)}) = ((\pi_L(\pi_L^k(\chi_0)))^{-1} \circ \pi_L(\varphi^k(a)) \circ \pi_R(\pi_L^k(\chi_0))) \circ ((\pi_R(\pi_L^k(\chi_0)))^{-1} \circ \pi_R(\varphi^k(a)) \circ \pi_L(\pi_L^k(\chi_0))) = (\pi_L(\pi_L^k(\chi_0)))^{-1} \circ (\pi_L(\varphi^k(a)) \circ \pi_R(\varphi^k(a))) \circ \pi_L(\chi_0) = (\pi_L(\pi_L^k(\chi_0)))^{-1} \circ \varphi(\varphi^k(a)) \circ \pi_L(\pi_L^k(\chi_0)) = \varphi(\varphi^k(a))^{\pi_L(\pi_L^k(\chi_0))} = \varphi^{k+1}(a)^{\pi_L^{k+1}(\chi_0)},$ тому має місце рівність $\varphi^{k+1}(a)^{\pi_L^{k+1}(\chi_0)} = \varphi^{k+1}(b)$ і, згідно з методом математичної індукції, маємо твердження теореми.

Теорема 3.0.16. Нехай a,b - шарово-транзитивні скінченно-станові ізометрії кільця Z_2 . Тоді має місце твердження, що χ_0 - 0-розв'язок рівняння спряженності $a^{\chi_0} = b$ є скінченностановим тоді і тільки тоді, коли $\pi_L^n(\chi_0)$ є скінченностановим для деякого $n \in \mathbb{N}$.

Означення 3.0.12. Назвемо скінченно-станову ізометрію f 0-повною якщо образ 0 при дії на нього централізатором цього елементу співпадає з множиною квазіперіодичних елементів кільця Z_2

$$0 * C_{FAutT_2}(f) = Z_2 \cap \mathbb{Q}$$

Наслідок 3.0.3. Нехай a, b - шарово-транзитивні скінченно-станові 0-повні ізометрії кільця Z_2 . Тоді a та b спряженні b $FAutT_2$ тоді, i тільки тоді, коли $\varphi^n(a)$ та $\varphi^n(b)$ спряженні b $FAutT_2$ для деякого $n \in \mathbb{N}$.

Пема 3.0.7. Скінченно-станова кусково-лінійна шарово-транзитивна ізометрія ϵ θ -повною.

Теорема 3.0.17. Два скінчено-станові лінійні сферично-транзитивні автоморфізми спряжені в $FAutT_2$ тоді, і лише тоді, коли знайдеться рівень, для якого всі автоморфізми цього рівня є лінійними, та добутки всіх коефіцієнтів біля x рівні для обох автоморфізмів.

Доведення. За теоремою про скінченно-станову спряженність лінійних шаровотранзитивних автоморфізмів два таких автоморфізми ax+b та cx+d спряжені в $FAutT_2$ тоді, і лише тоді, коли a=c. Отже, за наслідком 3.0.3 та лемою 3.0.7 маємо твердження теореми.

Приклад 3.0.3. Кусочно-лінійні сферично-транзитивні автоморфізми

$$f(x) = (3x + 1, 3x) \circ \sigma$$

ma

$$g(x) = (9x + 2, x + 7) \circ \sigma$$

за теоремою 4.0.16 спряжені в $FAutT_2$, оскільки

$$3 \cdot 3 = 9 \cdot 1$$

3.1 Спряженність кусково-лінійних шарово-транзитивних автоморфізмів

Означення 3.1.1. Означимо фактор n-го рівня шарово-транзитивного автоморфізма $a=(b,c)\circ\sigma$ індуктивно. Фактором 1-го рівня для автоморфізму а называється автоморфізм $b\circ c$. Фактором n-го рівня автоморфізма а називається фактор 1-го рівня для фактора (n-1)-рівня автоморфізма a.

Означення 3.1.2. Фактор-послідовністью для автоморфізму $a \in Aut Z_2$ назвемо послідовність $\{a_n\}$ автоморфізмів, в якій a_n дорівнює фактору n-го рівня для автоморфізму a.

Лема 3.1.1. Для довільної кусково-лінійної функції існує n, для якого фактор n-го рівня ϵ лінійною функцією.

Теорема 3.1.1. Дві шарово-транзитивні скінченно-станові ізометрії 0-спряжені в $FAutT_2$ тоді, і тількі тоді, коли існує рівень, для якого спряжені в $FAutT_2$ їх фактори.

Теорема 3.1.2. Дві скінченно-станові шарово-транзитивні кусково лінійні функції спряжені в $FAutT_2$ тоді, і тількі тоді, коли вони 0-спряжені в $FAutT_2$.

Теорема 3.1.3. Дві скінченно-станові шарово-транзитивні кусково лінійні функції спряжені в $FAutT_2$ тоді, і тількі тоді, коли існує рівень, для якого спряжені в $FAutT_2$ лінійні функції їх факторів.

4 Спряженість лінійних ізометрій у загальному випадку

Означення 4.0.3. Означимо розмічене дерево типу D_f для автоморфізму $f \in AutZ_2$ наступним чином.

- Корінь дерева помітимо автоморфізмом f.
- Якщо вершина n-го рівня розміченого дерева типу помічена автоморфізмом $a=(b,c)\circ\sigma$, то з n+1-им рівнем цю вершину з'єднує тільки одне ребро. Іншу вершину цього ребра помітимо автоморфізмом $\pi_L(a)\circ\pi_R(a)$

• Якщо вершина n-го рівня розміченого дерева типу помічена автоморфізмом $a=(b,c),\ mo\ s\ n+1$ -им рівнем цю вершину з'єднує два ребра. Іншу вершину одного ребра помітимо автоморфізмом $\pi_L(a),\ другого$ ребра - $\pi_R(a)$.

Автоморфізм, що помічає вершину $t \in D_f$ дерева типу позначимо як $D_f(t)$. Множину вершин n-го рівня дерева D позначимо як $L_n(D)$.

Зауваження 4.0.1. За побудовою, піддерево розміченного дерева типу співпадає з розміченним деревом типу автоморфізму, що помічає корінь цього піддерева.

Приклад 4.0.1. Побудуемо розмічене дерево типу для автоморфізму f(x) = 3x + 2 (puc. 1)

Рис. 1: Розмічене дерево типу автоморфізму f(x) = 3x + 2.

Лема 4.0.2. *Hexaŭ*

$$a = (a_1, a_2) \circ \sigma, b = (b_1, b_2) \circ \sigma$$

 $a' = a_1 \circ a_2, b' = b_1 \circ b_2$

 $ma\ a'\ i\ b'\ cnpянсені\ в\ FAutT_2.$

 $To \partial i \ a \ i \ b \ maкож спряжені в <math>FAutT_2$.

Доведення. За умовою леми існує $x \in FAutT2$, такий, що $(a')^x = b'$.

Покажемо, що $\hat{x}=(x,a_2\circ x\circ b_2^{-1})$ є скінченно-становим розв'язком рівняння спряженності

$$a^{\chi} = b$$

Далі

$$(a_1 \circ a_2)^x = b_1 \circ b_2$$

і тому

$$a^{\hat{x}} = (x^{-1}, b_2 \circ x^{-1} \circ a_2^{-1}) \circ (a_1, a_2) \circ \sigma \circ (x, a_2 \circ x \circ b_2^{-1}) =$$

$$= (x^{-1} \circ a_1 \circ (a_2 \circ x \circ b_2^{-1}), (b_2 \circ x^{-1} \circ a_2^{-1}) \circ a_2 \circ x) \circ \sigma =$$

$$= ((x^{-1} \circ (a_1 \circ a_2) \circ x) \circ b_2^{-1}, b_2) \circ \sigma = ((b_1, b_2) \circ b_2^{-1}, b_2) \circ \sigma =$$

$$= (b_1, b_2) \circ \sigma = c$$

Оскільки автоморфізми x, a_2, b_2 - скінченно-станові, то і $a_2 \circ x \circ b_2^{-1}$ є скінченно-становим. Отже $\hat{x} \in FAutT_2$, щ.т.д.

Теорема 4.0.4. Автоморфізми а та в спряжені в $FAutT_2$ тоді, і лише тоді, коли існує ізоморфізм α їх розмічених дерев типу $(D_a * \alpha = D_b)$, для якого автоморфізми в відповідних вершинах попарно спряжені в $FAutT_2$

$$\forall t \in L_n(D_a), \exists x \in FAutT_2, \ D_a(t)^x = D_b(t * \alpha)$$

 \mathcal{A} оведення. \Rightarrow Дійсно, нехай $a=(a_1,a_2), b=(b_1,b_2), a^x=b$ Тоді, або $x=(x_1,x_2)$ і маємо

$$a^{x} = (x_{1}^{-1}, x_{2}^{-1}) \circ (a_{1}, a_{2}) \circ (x_{1}, x_{2}) = (a_{1}^{x_{1}}, a_{2}^{x_{2}}) = (b_{1}, b_{2})$$

і, отже

$$b_1 = a_1^{x_1} \quad b_2 = a_2^{x_2}$$

або $x = (x_1, x_2) \circ \sigma$ і маємо

$$a^x = \sigma \circ (x_1^{-1}, x_2^{-1}) \circ (a_1, a_2) \circ (x_1, x_2) \circ \sigma = \sigma \circ (a_1^{x_1}, a_2^{x_2}) \circ \sigma = (a_2^{x_2}, a_1^{x_1}) \circ \sigma \circ \sigma = (a_2^{x_2}, a_1^{x_1}) = (b_1, b_2)$$

і, отже

$$b_1 = a_2^{x_2} \quad b_2 = a_1^{x_1}$$

Далі, нехай $a=(a_1,a_2)\circ\sigma,b=(b_1,b_2)\circ\sigma,a^x=b$ Тоді, або $x=(x_1,x_2)$ і маємо

$$a^x = (x_1^{-1}, x_2^{-1}) \circ (a_1, a_2) \circ \sigma \circ (x_1, x_2) = (x_1^{-1} \circ a_1 \circ x_2, x_2^{-1} \circ a_2 \circ x_1) \circ \sigma = (b_1, b_2) \circ \sigma$$

і, отже

$$b_1 = x_1^{-1} \circ a_1 \circ x_2$$

$$b_2 = x_2^{-1} \circ a_2 \circ x_1$$

$$b_1 \circ b_2 = (a_1 \circ a_2)^{x_1}$$

$$b_2 \circ b_1 = (a_2 \circ a_1)^{x_2}$$

або $x = (x_1, x_2) \circ \sigma$ і маємо

$$a^{x} = \sigma \circ (x_{1}^{-1}, x_{2}^{-1}) \circ (a_{1}, a_{2}) \circ \sigma \circ (x_{1}, x_{2}) \circ \sigma =$$

$$= \sigma \circ (x_{1}^{-1} \circ a_{1} \circ x_{2}, x_{2}^{-1} \circ a_{2} \circ x_{1}) \circ \sigma \circ \sigma =$$

$$= \sigma \circ (x_{1}^{-1} \circ a_{1} \circ x_{2}, x_{2}^{-1} \circ a_{2} \circ x_{1}) =$$

$$= (x_{2}^{-1} \circ a_{2} \circ x_{1}, x_{1}^{-1} \circ a_{1} \circ x_{2}) \circ \sigma = (b_{1}, b_{2}) \circ \sigma$$

і, отже

$$b_1 = x_2^{-1} \circ a_2 \circ x_1$$

$$b_2 = x_1^{-1} \circ a_1 \circ x_2$$

$$b_1 \circ b_2 = (a_2 \circ a_1)^{x_2}$$

$$b_2 \circ b_1 = (a_1 \circ a_2)^{x_1}$$

Згідно з вищезазначеним, відповідні автоморфізми дерева типу спряжені станами автоморфізму x.

 \Leftarrow Якщо такий ізоморфізм розміченних дерев типу існує, то автоморфізми, якими помічаются корені цих дерев, спряжені, отже автоморфізми a та b спряжені в $FAutT_2$.

Зауважимо, що достатньо перевірити спряженність автоморфізмів хоча б одного рівня. Дійсно, згідно з лемою 4.0.2, зі спряженності відповідних автоморфізмів (n+1)-го рівня випливає спряженність автоморфізмів n-го рівня. Отже, згідно з теоремою 4.0.4, має місце наступна теорема:

Теорема 4.0.5. Автоморфізми а та в спряжені в $FAutT_2$ тоді і лише тоді, коли існує ізоморфізм їх розмічених дерев типу $(D_a * \alpha = D_b)$, для якого існує рівень, що всі автоморфізми в відповідних вершинах цього рівня попарно спряжені в $FAutT_2$

$$\exists n \in \mathbb{N}, \forall t \in L_n(D_a), \exists x \in FAutT_2 \ D_a(t)^x = D_b(t * \alpha)$$

Зауважимо, що оскільки у спряженних автоморфізмів їх дерева типу ізоморфні, то в умові теореми 4.0.5 достатньо ізоморфізму $(D_a)_n$ та $(D_b)_n$

Теорема 4.0.6. Дерево типу автоморфізму вигляду $f(x) = ax + b, f \in Aut Z_2$ в ланцюгом тоді, і лише тоді, коли a = 4k + 1, b = 2t + 1.

Доведення. \Rightarrow Якщо b=2t, то дерево типу для f не ϵ ланцюгом, оскільки

$$(ax+2t) = \left(ax+t, ax+t + \frac{a-1}{2}\right)$$

отже маємо розгалуження в дереві типу D_f на 0-му рівні.

Якщо
$$a = 4k + 3, b = 2t + 1$$
, то

$$(4k+3)x + (2t+1) = ((4k+3)x + t, (4k+3)x + t + 1 + 2k + 1) \circ \sigma$$

і 1-й рівень D_f складається з однієї вершини, яка помічена автоморфізмом

$$((4k+3)x+t) \circ ((4k+3)x+t+2k+1) = (4k+3)^2x+t(4k+3)+t+1+2k+1 =$$

$$= (4k+3)^2x+2(2t+1)(k+1) =$$

$$= ((4k+3)^2x+(2t+1)(k+1),(4k+3)^2x+((2t+1)+4(2k+1))(k+1))$$

отже маємо розгалуження в дереві типу D_f на 1-му рівні.

 \Leftarrow 1-й рівень дерева типу автоморфізму вигляду f(x) = (4k+1)x + (2t+1) складається з однієї вершини. Далі:

$$x * \pi_L(f) = (4k+1)x + t$$

$$x * \pi_R(f) = (4k+1)x + (t+1) + 2k$$

$$x * \pi_L(f) \circ \pi_R(f) = (4k+1)((4k+1)x + t) + (t+1) + 2k = t$$

$$= (4k+1)^2x + (4k+2)t + 2k + 1 = (4k'+1)x + (2t'+1),$$

$$k' = 4k^2 + 2k, t' = (2k+1)t + k$$

Отже кожний наступний рівень дерева для цього автоморфізму буде складатись з однієї вершини.

Лема 4.0.3. Автоморфізми $f(x) = ax + 2^n \ ma \ g(x) = ax + 2^n (2b' + 1)$ спряжені в $FAutT_2$.

Доведення. Дійсно, автоморфізми f та g спряжені за допомогою скінчено-станового автоморфізму $\chi(x) = (2b'+1)x$:

$$\left(\frac{1}{2b'+1}x\right) \circ (ax+2^n) \circ ((2b'+1)x) = \left(\frac{a}{2b'+1}x+2^n\right) \circ ((2b'+1)x) =$$
$$= (2b'+1)\left(\frac{a}{2b'+1}x+2^n\right) = ax+2^n(2b'+1)$$

Лема 4.0.4. Мають місце наступні співвідношення:

$$(2k+1)x + 2t = ((2k+1)x + t, (2k+1)x + k + t)$$
$$(2k+1)x + 2t + 1 = ((2k+1)x + t, (2k+1)x + k + t + 1) \circ \sigma$$

Доведення. Дійсно, для автоморфізму $f:Z_2 \to Z_2$ вигляду $f=(f_1,f_2)$ маємо

$$f_1 = \frac{f(2x)}{2}, \quad f_2 = \frac{f(2x+1)-1}{2}$$

а для автоморфізму $f:Z_2 \to Z_2$ вигляду $f=(f_1,f_2)\circ \sigma$ маємо

$$f_1 = \frac{f(2x) - 1}{2}, \quad f_2 = \frac{f(2x + 1)}{2}$$

Автоморфізм f(x) = (2k+1)x має вигляд

$$f = (f_1, f_2)$$

оскільки залишає першу цифру двійкового розкладу х без зміни. Отже

$$(2k+1)x = ((2k+1)x, (2k+1)x + k)$$

$$x + 2k + 1 = (x + k, x + k + 1) \circ \sigma$$

Оскільки f(x) = x + 2k, очевидно, залишає першу цифру двійкового розкладу х без зміни, то

$$\pi_L(x+2k) = \frac{2x+2k}{2} = x+k, \quad \pi_R(x+2k) = \frac{2x+1+2k-1}{2} = x+k$$

TOMY

$$x + 2k = (x + k, x + k)$$

Для f(x) = x + 2k + 1 маємо:

$$x + 2k + 1 = (x + 2k) \circ (x + 1) = (x + k, x + k) \circ (x, x + 1) \circ \sigma = (x + k, x + k + 1) \circ \sigma$$

Отже

$$(2k+1)x + 2t = (2k+1)x \circ (x+2t) =$$

$$= ((2k+1)x, (2k+1)x + k) \circ (x+t, x+t) =$$

$$= ((2k+1)x + t, (2k+1)x + k + t)$$

Аналогічно отримуємо:

$$(2k+1)x + 2t + 1 = (2k+1)x \circ (x+2t+1) =$$

$$= ((2k+1)x, (2k+1)x + k) \circ (x+t, x+t+1) \circ \sigma =$$

$$= ((2k+1)x + t, (2k+1)x + k + t + 1) \circ \sigma$$

щ.т.д.

Лема 4.0.5. Для довільного не тотожнього автоморфізму вигляду $f(x) = ax + b, f \in Aut Z_2$ знайдеться вершина його розміченого дерева типу, що помічена автоморфізмом вигляду g(x) = ax + (2b' + 1).

Доведення. Дійсно, за лемою 4.0.4

$$(2k+1)x + 2^n t = ((2k+1)x + 2^{n-1}t, (2k+1)x + 2^{n-1}t + k)$$

отже, якщо вершина розміченного дерева типу помічена автоморфізмом $(2k+1)x+2^n(2t+1)$, то з цієї вершини виходить дві гілки, і інші їх вершини помічені автоморфізмами $(2k+1)x+2^{n-1}(2t+1)$ та $(2k+1)x+2^{n-1}(2t+1)+k$. Отже, якщо $b\neq 0$, то рівно за n рівнів знайдеться вершина розміченного дерева типу помічена автоморфізмом (2k+1)x+(2t+1)

Якщо $b = 0, k \neq 0$, то

$$(2k+1)x = ((2k+1)x, (2k+1)x + k)$$

i до автоморфізму (2k+1)x+k можна застосувати попередні міркування.

Теорема 4.0.7. Для довільного не тотожнього автоморфізму вигляду $f(x) = ax + b, f \in Aut Z_2$ знайдеться вершина його розміченого дерева типу, що помічена автоморфізмом вигляду g(x) = (4k' + 1)x + (2t' + 1).

Доведення. Дійсно, за лемою 4.0.5 знайдеться вершина розміченого дерева типу, що помічена автоморфізмом вигляду ax + (2t + 1).

Оскільки ax+b - ізометрія кільця Z_2 , то a=2k+1. Далі, з вершини розміченного дерева типу, що помічена автоморфізмом (2k+1)x+(2t+1), виходить одна гілка, інша вершина якої, за лемою 4.0.4, помічена автоморфізмом

$$((2k+1)x+t) \circ ((2k+1)x+k+t+1) = (2k+1)((2k+1)x+t)+k+t+1 =$$

$$= (2k+1)^2x + (2k+1)t+k+t+1 = (4(k^2+k)+1)x+(k+1)(2t+1) =$$

$$= (4k'+1)x+t'$$

За лемою 4.0.5, в піддереві розміченого дерева типу з вершиною, поміченною автоморфізмом (4k'+1)x+t' знайдеться вершина, помічена автоморфізмом (4k'+1)x+(2t''+1), щ.т.д.

З теореми 4.0.6 та теореми 4.0.7 випливає:

Теорема 4.0.8. В дереві типу не тотожнього лінійного автоморфізму знайдеться хоча б один ланцюг

Означення 4.0.4. Співставимо кожній вершині дерева типу автоморфізму індекс, що дорівнює кількості розгалужень, починаючи з кореня на шляху до цієї вершини. Наприклад, якщо дерево типу є ланцюгом, то індекс кожної його вершини дорівнює θ .

Зауваження 4.0.2. Легко бачити, що для ізоморфізму $\phi: D_1 \to D_2$ двох дерев типу індекс образу вершини $\phi(x) \in D_2$ дорівнює індексу прообразу вершини $x \in D_1$.

Лема 4.0.6. Для автоморфізму f(x) = ax + b автоморфізм, що маркує вершину n-го рівня розміченного дерева типу має вигляд

$$a^{2^{n-k+1}}x + b'$$

де k - індекс цієї вершини.

Доведення. Дійсно, за лемою 4.0.4

$$(2k+1)x + t = ((2k+1)x + t, (2k+1)x + t + k)$$

отже, якщо вершина розміченного дерева типу помічена автоморфізмом (2k+1)x+(2t+1), то з цієї вершини виходить дві гілки, і інші їх вершини помічені автоморфізмами $(2k+1)x+2^{n-1}(2t+1)$ та $(2k+1)x+2^{n-1}(2t+1)+k$. Отже при розгалуженні автоморфізми, що маркують вершини наступного рівня мають такий же самий коефіцієнт біля х.

Далі, з вершини розміченного дерева типу, що помічена автоморфізмом (2k+1)x+(2t+1) виходить одна гілка, інша вершина якої, за лемою 4.0.4, помічена автоморфізмом

$$((2k+1)x+t) \circ ((2k+1)x+k+t+1) = (2k+1)^2x + (2k+1)t+k+t+1$$

Отже в цьому випадку автоморфізм, що маркує вершину наступного рівня має коефіцієнт біля x, що дорівнює квадрату попереднього коефіцієнту. Отже отримуємо твердження теореми.

Лема 4.0.7. Два не тотожніх лінійних автоморфізми f(x) = ax + b' та g(x) = -ax + b'' мають неізоморфні дерева типу.

Доведення. Якщо a має вигляд 4k'+1 то -a має вигляд 4k''+3 (-4k'-1=-4(k'+1)+3).

Припустимо, що автоморфізми f та q мають ізоморфні дерева типу :

$$D_f * \alpha = D_a$$

За лемою 4.0.6 для довільного $n \in \mathbb{N}$ всі вершини n-го рівня з індексом n в розміченому дереві типу $D_{(4k'+1)x+b}$ помічені автоморфізмами вигляду (4k'+1)x+b'.

Множина таких вершин не є порожньою, оскільки принаймні містить корінь дерева $D_{(4k'+1)x+b}$.

З іншого боку, оскільки автоморфізм (4k'+1)x+b не є тотожнім, то серед вершин n-го рівня з індексом n знайдеться вершина $v \in D_{(4k'+1)x+b}$, помічена автоморфізмом вигляду (4k'+1)x+(2t+1) (інакше в кожній вершині дерева типу маємо розгалуження, що відповідає тотожньому автоморфізму).

За теоремою 4.0.6 піддерево дерева типу $D_{(4k'+1)x+b}$ з коренем в вершині v є ланцюгом.

При ізоморфізмі α дерев $D_{(4k'+1)x+b}$ та $D_{(4k''+3)x+c}$ образ $v*\alpha \in D_{(4k''+3)x+c}$ цієї вершини має такий самий індекс, як і v, і, за лемою 4.0.6, автоморфізм, що помічає вершину $v*\alpha$, має вигляд (4k''+3)x+c'.

Але, за теоремою 4.0.6, дерево типу автоморфізму піддерево дерева типу $D_{(4k''+3)x+c}$ з коренем в вершині $v*\alpha$ не ϵ ланцюгом. Отже маємо протиріччя.

Теорема 4.0.9. Два лінійних автоморфізми $f(x) = ax + b \ ma \ g(x) = cx + d \ можуть бути спряжені лише тоді, коли <math>a = c$.

Доведення. Нехай автоморфізми f та g спряжені в $FAutT_2$.

За теоремою 4.0.8 в розміченому дереві типу D_f автоморфізму f знайдеться ланцюг. Нехай v - вершина в D_f , що належить цьому ланцюгу. За лемою 4.0.6 автоморфізм, що маркує цю вершину має вигляд $a^{2^{n-k+1}}x+b'$, де k - індекс вершини v, а n - номер рівня, якому вона належить.

Згідно з теоремою 4.0.4, при ізоморфізмі α дерев типу D_f та D_g автоморфізм $a^{2^{n-k+1}}x+b'$, що маркує вершину $v\in D_f$ спряжений в $FAutT_2$ з автоморфізмом, що маркує вершину $v*\alpha\in D_g$.

Згідно з зауваженням 4.0.2 та лемою 4.0.6 автоморфізм, що маркує вершину $v*\alpha \in D_g$ має вигляд $c^{2^{n-k+1}}x+b''.$

Згідно з зауваженням 4.0.1 дерева типу автоморфізмів $a^{2^{n-k+1}}x+b'$ та $c^{2^{n-k+1}}x+b''$ є ланцюгом, а отже є сферично-транзитивними.

За теоремою про спряженість сферично-транзитивних лінійних автоморфізмів в $FAutT_2$ маємо рівність

$$a^{2^{n-k+1}} = c^{2^{n-k+1}}$$

Отже $a=\pm c$, але, оскільки f та g спряжені в $FAutT_2$, то, за лемою 4.0.7, маємо рівність a=c, щ.т.д.

Теорема 4.0.10. Два лінійних автоморфізми $f(x) = ax + 2^r(2b+1)$ та $g(x) = cx + 2^r(2d+1)$ спряжені тоді, і лише тоді, коли a = c.

Доведення. \Rightarrow Нехай f та g - спряжені в $FAutT_2$. За теоремою 4.0.9 - a=c.

 \Leftarrow Нехай a=c. Тоді $f(x)=ax+2^r(2b+1)$ та $g(x)=cx+2^r(2d+1)$ спряжені скінчено-становим автоморфізмом

$$\chi_0(x) = \left(\frac{2d+1}{2b+1}\right)x$$

Дійсно

$$\chi_0^{-1} \circ f \circ \chi_0 = \left(\left(\frac{2b+1}{2d+1} \right) x \right) \circ (ax + 2^r (2b+1)) \circ \left(\left(\frac{2d+1}{2b+1} \right) x \right) =$$

$$= \left(a \left(\frac{2b+1}{2d+1} \right) x + 2^r (2b+1) \right) \circ \left(\left(\frac{2d+1}{2b+1} \right) x \right) =$$

$$= \left(\frac{2d+1}{2b+1} \right) \left(a \left(\frac{2b+1}{2d+1} \right) x + 2^r (2b+1) \right) = ax + 2^r (2d+1) =$$

$$= cx + 2^r (2d+1)$$

Зауваження 4.0.3. За теоремою 4.0.9 автоморфізми $f(x) = ax \ ma \ g(x) = cx \ cnps$ жені тоді, і лише тоді, коли a = c.

Теорема 4.0.11. Скінчено-станові автоморфізми $f(x) = (2^s(2k+1)+1)x + b_1$ та $g(x) = (2^s(2k+1)+1)x + b_2$, s > 0 спряжені в $FAutT_2$, якщо $b_1 \equiv b_2 \pmod{2^s}$.

Доведення. Оскільки $b_1 \equiv b_2 \pmod{2^s}$, то

$$\frac{b_1 - b_2}{2^s (2k+1)} \in Z_2$$

Автоморфізми f та g спряжені в $FAutT_2$ за допомогою скінчено-станового автоморфізму

$$\chi(x) = x + \frac{b_1 - b_2}{2^s(2k+1)}$$

Дійсно, має місце наступна рівність:

$$\chi^{-1} \circ f \circ \chi = \left(x - \frac{b_1 - b_2}{2^s (2k+1)}\right) \circ \left(\left(2^s (2k+1) + 1\right)x + b_1\right) \circ \left(x + \frac{b_1 - b_2}{2^s (2k+1)}\right) =$$

$$= \left(\left(2^s (2k+1) + 1\right)\left(x - \frac{b_1 - b_2}{2^s (2k+1)}\right) + b_1\right) \circ \left(x + \frac{b_1 - b_2}{2^s (2k+1)}\right) =$$

$$= \left(2^s (2k+1) + 1\right)x - \frac{\left(2^s (2k+1) + 1 - 1\right)\left(b_1 - b_2\right)}{2^s (2k+1)} + b_1 = \left(2^s (2k+1) + 1\right)x + b_2$$

Лема 4.0.8. Скінчено-станові автоморфізми $f(x) = (4k+3)x + 2b_1$ та $g(x) = (4k+3)x + 2b_2$ спряжені в $FAutT_2$

Доведення. Є наслідком теореми 4.0.11.

Теорема 4.0.12. Скінчено-станові автоморфізми $f(x) = (4k+3)x + b_1$ та $g(x) = (4k+3)x + b_2$ спряжені в $FAutT_2$ тоді, і лише тоді, коли $b_1 \equiv b_2 \pmod{2}$

Доведення. \Leftarrow Згідно з лемою 4.0.4, 1-й рівень дерева типу автоморфізму ax + (2t + 1) складається з однієї вершини, а 1-й рівень дерева типу автоморфізму ax + 2t складається з двох вершин. Отже автоморфізми $f(x) = (4k + 3)x + b_1$ та $g(x) = (4k + 3)x + b_2$ не спряжені в $AutT_2$, а отже і в $FAutT_2$, якщо $b_1 \not\equiv b_2 \pmod{2}$.

$$\Rightarrow$$
 За теоремою 4.0.10 та лемою 4.0.8.

Теорема 4.0.13. Автоморфізми $f(x) = x + 2^n \ ma \ g(x) = x + 2^m \ cnряжені в Aut<math>T_2$ тоді, і лише тоді, коли m = n.

Доведення. Дійсно, мають місце наступні співвідношення:

$$(x+2^n) = (x+2^{n-1}, x+2^{n-1})$$
$$(x+1) = (x, x+1) \circ \sigma$$

Отже дерево типу автоморфізму $f(x) = x + 2^n$ до n-го рівня ізоморфно $(T_2)_n$ і кожна вершина n-го рівня є коренем ланцюга в дереві типу D_{x+2^n} , звідси маємо тверження теореми.

Теорема 4.0.14. Автоморфізми $f(x) = (2^s(2k+1)+1)x + 2^n, n < s \ ma \ g(x) = (2^s(2k+1)+1)x + 2^m, m < s(s>1)$ спряжені в Aut T_2 тоді, і лише тоді, коли m=n.

Доведення. За теоремою 4.0.6, дерево типу автоморфізму $f(x) = (2^s(2k+1)+1)x + 1, s > 1$ є ланцюгом.

Далі, має місце співвідношення:

$$((2^{s}(2k+1)+1)x+2^{n}) = ((2^{s}(2k+1)+1)x+2^{n-1}, (2^{s}(2k+1)+1)x+2^{s-1}(2k+1)+2^{n-1}) =$$

$$= ((2^{s}(2k+1)+1)x+2^{n-1}, (2^{s}(2k+1)+1)x+2^{n-1}((2k+1)2^{s-n}+1))$$

Оскільки число $(2k+1)2^{s-n}+1$ - непарне при n < s, то, за лемою 4.0.3, автоморфізм $(2^s(2k+1)+1)x+2^{s-1}((2k+1)+2^{n-s})$ спряжен автоморфізму $(2^s(2k+1)+1)x+2^{n-1}$, і вони мають ізоморфні дерева типу.

Тому, згідно з зауваженням 4.0.1, автоморфізми

$$((2^{s}(2k+1)+1)x+2^{n-1},(2^{s}(2k+1)+1)x+2^{s-1}(2k+1)+2^{n-1})$$

та

$$((2^{s}(2k+1)+1)x+2^{n-1},(2^{s}(2k+1)+1)x+2^{n-1})$$

мають ізоморфні дерева типу.

Отже дерево типу автоморфізму $f(x) = (2^s(2k+1)+1)x+2^n, n < s, s > 1$ до n-го рівня ізоморфно $(T_2)_n$ і кожна вершина n-го рівня є коренем ланцюга в дереві типу $D_{(2^s(2k+1)+1)x+2^n}$, звідси маємо тверження теореми.

Лема 4.0.9. Скінчено-станові автоморфізми $f(x) = (2^s(2k+1)+1)x+2^n, n < s, s > 1$ та $g(x) = (2^s(2k+1)+1)x$ не спряжені в $AutT_2$.

Доведення. Оскільки має місце співвідношення

$$(2^{s}(2k+1)+1)x = ((2^{s}(2k+1)+1)x, (2^{s}(2k+1)+1)x + 2^{s-1}(2k+1)$$

то в дереві типу $D_{(2^s(2k+1)+1)x}$ для довільного п знайдеться вершина n-го рівня, що не є коренем ланцюга - це вершина, помічена автоморфізмом $(2^s(2k+1)+1)x$.

З іншого боку, кожна вершина n-го рівня є коренем ланцюга в дереві типу $D_{(2^s(2k+1)+1)x+2^n}$, тому дерева типу $D_{(2^s(2k+1)+1)x+2^n}$ та $D_{(2^s(2k+1)+1)x}$ не ізоморфні.

Отже автоморфізми $f(x) = (2^s(2k+1)+1)x+2^n, n < s, s > 1$ та $g(x) = (2^s(2k+1)+1)x$ не спряжені в $FAutT_2$.

Означення 4.0.5. Означимо функцію $\phi_a(x)$ наступним чином:

$$\phi_a(b) = \begin{cases} -n - 1, \ a = 1, \ b = 2^n(2t + 1); \\ 2^s, \ a = 2^s(2k + 1) + 1, s > 0, \ b = 0 \\ (2^n \mod 2^s) + 2^s, \ a = 2^s(2k + 1) + 1, s > 0 \ b = 2^n(2t + 1); \end{cases}$$

Теорема 4.0.15. Два лінійних автоморфізми f(x) = ax + b та g(x) = cx + d спряжені тоді, і лише тоді, коли $\phi_a(b) = \phi_c(d)$.

Означення 4.0.6. Назвемо автоморфізм кусково-лінійним, якщо існує $n \in \mathbb{N}$, для якого всі стани n-го рівня цього автоморфізму є лінійними.

Зауваження 4.0.4. Для перевірки спряженості в $FAutT_2$ кусково-лінійних автоморфізмів достатньо застосувати теорему 4.0.5 до рівня, на якому усі стани ціх автоморфізмів лінійні, та теорему 4.0.15 для попарної перевірки спряженості відповідних автоморфізмів, що маркують вершини цього рівня в деревах розміченого типу ціх автоморфізмів.

Наприклад, має місце наступна теорема:

Теорема 4.0.16. Два скінчено-станові лінійні сферично-транзитивні автоморфізми спряжені в $FAutT_2$ тоді, і лише тоді, коли знайдеться рівень, для якого всі автоморфізми цього рівня є лінійними, та добутки всіх коефіцієнтів біля x рівні для обох автоморфізмів.

Приклад 4.0.2. Кусочно-лінійні сферично-транзитивні автоморфізми

$$f(x) = (5x + 3, 9x + 2) \circ \sigma$$

ma

$$g(x) = (15x, 3x + 1) \circ \sigma$$

за теоремою 4.0.16 спряжені в $FAutT_2$, оскільки

$$5 \cdot 9 = 15 \cdot 3$$

5 Дифференційовні ізометрії

5.1 Кусково-лінійні ізометрії

Теорема 5.1.1. Скінчено-станова ізометрія кільця Z_2 є дифференційовною в раціональній точці тоді і лише тоді, коли вона є лінійною в певному околі цієї точки.

Доведення. Нехай x - кінець дерева T_2 . $x_{(n)}$ - початок довжини $n, x^{(n)}$ - хвіст кінця x.

$$x = x^{(n)} x_{(n)}.$$

a - скінчено-становий автоморфізм, що відповідає деякій скінчено-становій ізометрії. Означимо:

$$F_a(x,y) = \frac{a(x) - a(y)}{x - y}$$

Дифференційовність ізометріїї a в точці x рівносильно існуванню границі в ультраметриці:

$$\lim_{y \to x} F_a(x, y)$$

Нехай $b_0(a,x), b_1(a,x),...,b_n(a,x)...$ -послідовність станів вздовж кінця $x,b_n(x)=a_{x_{(n)}},$ а $y_0(x),y_1(x),...,y_n(x)...$ -послідовність кінців $y_n(x)=x^{(n)}$.

Оскільки a - скінчено-становий, а x раціональний, то послідовності $b_n(a,x)$ та $y_n(x)$ є квазіперіодичними. Отже послідовність пар $(b_n(a,x),y_n(x))$ є квазіперіодичною і існує пара, яка зустрічається нескінчену кількість разів. Позначимо її як (a_c,x_c) .

Далі B(x,r) - шар радіусу r з центром в кінці x. Означимо D(a,x,r) як множину значень $F_a(x,y)$, де x - фіксований кінець, а $y \in B(x,r)$:

$$D(a, x, r) = B(x, r) \circ F_a(x, *)$$

Оскільки має місце рівність

$$F_a(x^{(n)}x_{(n)}, y^{(n)}x_{(n)}) = F_{a_{\pi(n)}}(x, y)$$

ТО

$$\exists c \forall r D(a, x, r) \supseteq D(a_c, x_c, 1)$$
 (1)

Отже, згідно з (1) для існування границі

$$\lim_{y \to x} \frac{a(x) - a(y)}{x - y}$$

необхідно, щоб множина $D(a_c, x_c, 1)$ складалась з єдиного елемента, тому

$$\frac{a(x) - a(x_c)}{x - x_c} = const \Rightarrow a(x) = const * (x - x_c) + a(x_c).$$

Лема 5.1.1. Якщо скінченно-станова ізометрія кільця Z_2 є дифференційовною в раціональній точці, то вона є дифференційовною в кожній точці деякого її околу.

Доведення. Дійсно, функція, що є лінійною в певному околі є дифференційовною в кожній точці цього околу. \Box

Теорема 5.1.2. Скінченно-станова ізометрія f кільця Z_2 є дифференційовною тоді і лише тоді, коли вона є кусково-лінійною функцією.

Доведення. Оскільки ультраметричний простір Z_2 є компактним, а множина раціональних 2-адичних чисел є всюди щільною в Z_2 , то з покриття околами з теореми 5.1.1 можна виділити скінчене підпокриття. Оскільки простір є ультраметричним, то з

цього підпокриття можна виділити підпокриття, що складається з куль, що не п	ле-
ретинаються. На кожній такій кулі ізометрія f є лінійною, отже f - кусково-ліній	на
функція.	

6 Спряженність транзитивно-стабільних автоморфізмів в $FAutT_2$

Відсутність на даний момент необхідної та достатньої умови спряженності автоморфізмів в групі скінченно-автоматних підстановок примушує при дослідженні рівняння спряженності використовувати певні достатні умови (Наприклад, шаровотранзитивні автоморфізми a та b не спряжені, якщо фактор-послідовність для a періодична, а для b - не періодична, або - якщо a та b мають різний ріст). Стабільно-транзитивні автоморфізми дуже близьки по своїх властивостях один до одного, тому цілий клас достатніх умов є не еффективним при дослідженні питання спряженності таких автоморфізмів. В роботі пропонується підхід, що дозволяє побудувати перетин класу спряженності в групі скінченно-автоматних підстановок, що містить автоморфізмі adding machine, з множиною транзитивно стабільних автоморфізмів.

Означення 6.0.1. Означимо фактор n-го рівня шарово-транзитивного автоморфізма

$$a = (b, c) \circ \sigma$$

iндуктивно. Фактором 1-го рівня для автоморфізму а называється автоморфізм $b \circ c.$ Фактором n-го рівня автоморфізма а називається фактор 1-го рівня для фактора (n-1)-рівня автоморфізма a.

Означення 6.0.2. Фактор-послідовністью для автоморфізму $a \in Aut Z_2$ назвемо послідовність $\{a_n\}$ автоморфізмів, в якій a_n дорівнює фактору n-го рівня для автоморфізму a.

Означення 6.0.3. Назвемо автоморфізм $x \in AutT_2$ транзитивно-стабільним, якщо фактор-послідовність для цього автоморфізму є стаціонарною.

Рекурсивно означимо множини W_x та R_x для шарово-транзитивного автоморфізму $x \in AutT_2$.

Означення 6.0.4. Тотожній автоморфізм ід належить W_x . Нехай автоморфізм $t=(t_1,t_2)$ або автоморфізм $t=(t_1,t_2)\circ\sigma$ належить W_x . Тоді автоморфізм $x\circ t_2$ належить W_x .

Означення 6.0.5. Тотожній автоморфізм ід належить R_x . Нехай автоморфізм $t = (t_1, t_2)$ або автоморфізм $t = (t_1, t_2) \circ \sigma$ належить R_x . Тоді автоморфізми t_1 та $x \circ t_2$ належать R_x .

Легко бачити, що W_x належить R_x .

Приклад 6.0.1. Обчислимо множини W_{ε} та R_{ε} для автоморфізма adding machine, що задається співвідношенням $\varepsilon = (id, \varepsilon) \circ \sigma$.

Обчислимо W_{ε} . Згідно рекурсивної процедури разом з ід множині W_{ε} належить автоморфізм ε . Далі з ε отримаємо ε^2 , з ε^2 отримаємо ε^2 . Зрозуміло, що більше ніяких автоморфізмів в множині W_{ε} не має. Отже W_{ε} складається з автоморфізмів ід, ε та ε^2 .

Обчислимо R_{ε} . Згідно рекурсивної процедури разом з ід множині R_{ε} належать автоморфізми ід та ε . Далі з ε отримаємо ід та ε^2 , з ε^2 отримаємо ε та ε^2 . Зрозуміло, що більше ніяких автоморфізмів в множині R_{ε} не ма ε . Отже R_{ε} складається з автоморфізмів ід, ε та ε^2 .

Означення 6.0.6. Назвемо автоморфізм $x \in AutT_2$ регулярним, якщо множина R_x - скінченна.

Означення 6.0.7. Назвемо автоморфізм $x \in AutT_2$ слабко регулярним, якщо множина W_x - скінченна.

Оскільки W_x належить R_x , то регулярний автоморфізм є слабко регулярним. Згідно з прикладом 6.0.1 автоморфізм adding machine ε є регулярним.

Пема 6.0.2. Автоморфізм $b \in AutT_2$ є транзитивно-стабільним тоді, і тільки тоді, коли знайдеться $t \in AutT_2$, такий, що $b = (t, t^{-1} \circ b) \circ \sigma$

Доведення. \Rightarrow Нехай $b=(t,l)\circ\sigma$. Оскільки b - транзитивно-стабільний, то $b=t\circ l$, отже $l=t^{-1}\circ b$.

 $\Leftarrow b = (t, t^{-1} \circ b) \circ \sigma$. Оскільки $t \circ t^{-1} \circ b = b$, то b - транзитивно-стабільний. \square

Теорема 6.0.3. Нехай b - транзитивно-стабільний автоморфізм, що задається співвідношенням $b=(t,t^{-1}\circ b)\circ \sigma$. Тоді 0-розв'язком рівняння $\varepsilon^{\chi}=b$ є автоморфізм, що задається співвідношенням $a=(a,a\circ t)$

Доведення. Зауважимо, що для автоморфізму $a = (a, a \circ t)$

$$...000 * a = ...000$$

Дійсно,

$$x0 * (a, b) = (x * a)0$$

Далі маємо

$$\begin{split} a^{-1} \circ \varepsilon \circ a &= (a, a \circ t)^{-1} \circ \varepsilon \circ (a, a \circ t) = \\ &= (a^{-1}, t^{-1} \circ a^{-1}) \circ (id, \varepsilon) \circ \sigma \circ (a, a \circ t) = \\ &= (a^{-1}, t^{-1} \circ a^{-1}) \circ (id, \varepsilon) \circ (a \circ t, a) \circ \sigma = \\ &= (t, t^{-1} \circ (a^{-1} \circ \varepsilon \circ a)) \circ \sigma \end{split}$$

Оскільки для шарово-транзитивних, а отже і для стабільно-транзитивних автоморфізмів α та β , 0-розв'язок рівняння $\alpha^{\chi}=\beta$ існує і єдиний, то, згідно з зауваженням та отриманною рівністю, автоморфізм $a=(a,a\circ t)$ є 0- розв'язком рівняння $\varepsilon^{\chi}=b$.

Природнім є питання, при яких t автоморфізм $a=(a,a\circ t)$ є скінченно-становим. Умова скінченно-становості автоморфізму t є необхідною. Дійсно, оскільки автоморфізм a є скінченно-становим, то його права проекція $\pi_R(a)=a\circ t$ є скінченно-становим автоморфізмом, і тому автоморфізм

$$t = a^{-1} \circ (a \circ t) = a^{-1} \circ \pi_R(a)$$

також є скінченно-становим. Але ця умова не є достатньою. Це показують наступні теорема та приклад:

Теорема 6.0.4. Автоморфізм $a = (a, a \circ t)$ е скінченно-становим тоді, і тільки тоді, коли t - регулярний.

Доведення. Нехай $\pi_L(a)$ ліва, а $\pi_R(a)$ - права проекція автоморфізму $a=(a,a\circ t)$. Тоді мають місце рівності:

$$\pi_L(a \circ f) = a \circ \pi_L(f)$$

$$\pi_R(a \circ f) = a \circ (t \circ \pi_R(f))$$

Тобто станами автоморфізму a є автоморфізми вигляду $\{a \circ x | x \in R_t\}$. Тому a є скінченно-становим тоді, і тільки тоді, коли множина R_t є скінченною.

Приклад 6.0.2. *Автоморфізм* $a = (a, a \circ 3x)$ не є скінченно-становим.

Покажемо, що множина W_{3x} - нескінченна. Дійсно, вона містить нескінченну кількість автоморфізмів вигляду 3^nx+c_n . Отже автоморфізм x*t=3x є скінченностановим(зі станами 3x,3x+1,3x+2), але не є слабко-регулярним, тому не є і регулярним. За теоремою 6.0.4 автоморфізм $a=(a,a\circ 3x)$ - нескінченно-становий.

Наслідком теорем 6.0.3 та 6.0.4 є наступна теорема:

Теорема 6.0.5. Нехай b - транзитивно-стабільний автоморфізм, автоморфізм t - ліва проекція автоморфізма b. Автоморфізми ε та b спряженні в $FAutT_2$ тоді, і тільки тоді, коли t - регулярний.

Далі сформулюємо крітерій скінченно-становості для транзитивно-стабільних автоморфізмів.

Теорема 6.0.6. Нехай b - транзитивно-стабільний автоморфізм, автоморфізм t - ліва проекція автоморфізма b. Автоморфізм b є скінченно-становим тоді, і тільки тоді, коли t - слабко регулярний.

Доведення. Очевидно b та b^{-1} мають однакову кількість станів. Покладемо

$$b' = b^{-1} = (b^{-1} \circ t, t^{-1}) \circ \sigma$$

Кожен стан b^\prime з вершиною, що належить кінцю ...000 має вигляд

$$b' \circ x \mid x \in W_t$$

Якщо множина W_t - скінчена, то інші стани мають вигляд ,

$$t^{-1} \circ t_1 \circ \dots \circ t_N$$

(де t_i є підстанами автоморфізму t і кількість доданків обмежена деяким натуральним N, що залежить від $|W_t|$), або є підстанами таких станів.

Отже b є скінченно-становим тоді, і лише тоді, коли множина W_t є скінченою.

Як було зауважено регулярний автоморфізм є слабко регулярним. Цікаво отримати приклад слабко регулярного автоморфізму, який не є регулярним. Згідно з теоремами 6.0.5 та 6.0.6 такий автоморфізм дозволяє побудувати приклад скінченностанового стабільно-транзитивного автоморфізму, що не є спряженим з adding machine в $FAutT_2$. Побудувати слабко регулярний автоморфізм, який не є регулярним дозволяє наступна теорема.

П

Теорема 6.0.7. Скінченно-становий автоморфізм $t = (t_1, t_2)$ є слабко регулярним тоді і тільки тоді, коли автоморфізм t_2 є слабко регулярним.

Доведення. Достатньо звернути увагу на те, що:

$$W_t = \{id, t, t \circ t_2, ...\} = id \cup \{t \circ x | x \in W_{t_2}\}$$

Тобто множини W_t та W_{t_2} скінченні або нескінченні одночасно.

Приклад 6.0.3. Згідно з прикладом 6.0.2 автоморфізм $t': x \to 3x$ не є регулярним, автоморфізм ід є слабко регулярним. Тому автоморфізм t = (3x, id) є слабкорегулярним автоморфізмом, що не є регулярним.

Mаємо приклад двох транзитивно-стабільних скінченно-станових автоморфізмів не спряженних в FAut T_2 :

$$\varepsilon = (id, \varepsilon) \circ \sigma$$

$$b = ((3x, id), (\frac{1}{3}x, id) \circ b) \circ \sigma$$

Сформулюємо основний результат:

Перетин множини транзитивно-стабільних автоморфізмів з класом спряженності в групі скінченно-станових автоморфізмів, що містить adding machine, складається з транзитивно-стабільних автоморфізмів з регулярною лівою проекцією.

7 Зв'язка груп

Сформулюємо твердження, за допомогою яких буде побудована конструкція зв'язки двох груп.

A1.
$$a * b = f_b(a) \circ b$$

$$A2. (G, \circ)$$
 - група

$$A3. (G,*)$$
 - напівгрупа ($A3a. (G,*)$ - група)

A4.
$$f_a(f_b(c)) = f_{b*a}(c)$$

A5.
$$f_c(a \circ b) = f_c(a) \circ f_c(b)$$

Сформулюємо твердження

T1.
$$f_c(f_b(a) \circ b) = f_{b*c}(a) \circ f_c(b)$$

та

T1a.
$$f_c(f_b(a) \circ b) = f_{f_c(b) \circ c}(a) \circ f_c(b)$$

Теорема 7.0.8. $A1, A2, A3 \vdash T1$

Доведення.

1	(a*b)*c = a*(b*c)	A3
2	$f_c(f_b(a) \circ b) \circ c = f_{b*c}(a) \circ (f_c(b) \circ c)$	A1, 1
3	$f_c(f_b(a) \circ b) = f_{b*c}(a) \circ f_c(b)$	2, A2

Теорема 7.0.9. $A1, A2, T1 \vdash A3$

Доведення.

1	$f_c(f_b(a) \circ b) = f_{b*c}(a) \circ f_c(b)$	T1
2	$f_c(f_b(a) \circ b) \circ c = f_{b*c}(a) \circ (f_c(b) \circ c)$	A2, 1
3	(a*b)*c = a*(b*c)	A1, 2

Теорема 7.0.10. $A2, A5, T1 \vdash A4$

Доведення.

1	$f_c(f_b(a) \circ b) = f_{b*c}(a) \circ f_c(b)$	T1
2	$f_c(f_b(a)) \circ f_c(b) = f_{b*c}(a) \circ f_c(b)$	A5, 1
3	$f_a(f_b(c)) = f_{b*a}(c)$	A2, 2

Теорема 7.0.11. $A1, A2, A5, A3 \vdash A4$

Доведення.

1	$f_c(f_b(a) \circ b) = f_{b*c}(a) \circ f_c(b)$	T1
2	$f_c(f_b(a)) \circ f_c(b) = f_{b*c}(a) \circ f_c(b)$	$\overline{A5}, 1$
3	$f_a(f_b(c)) = f_{b*a}(c)$	A2, 2

Теорема 7.0.12. $A1, A2, A5, A4 \vdash A3$

Сформулюємо твердження $T2: \forall b \ f_b(x)$ — сюр'єкція.

Теорема 7.0.13. $A1, A2, A3, A4, T2 \vdash A5$

Приклад 7.0.4. $a \circ b = f_b(a) \hat{\circ} b$ - приклад зв'язки відомих конструкцій множення та антимноження

$$\circ_1 \sim \circ, \circ_2 \sim \circ$$
 $a \circ b$ - множення в групі $a \circ b = b \circ a$ - антимноження в групі $f_a(b) = a^{-1} \circ b \circ a$

Приклад 7.0.5. $a \hat{\circ} b = f_b(a) \oplus b$ - приклад визначення множення автоморфізмів на портретах за допомогою простої операції додавання портретів за модулем 2

$$\circ_1 \sim \oplus, \circ_2 \sim \hat{\circ}$$

 $a\oplus b$ - додавання по модулю 2 портретів автоморфізмів a та b

 $a \hat{\circ} b = b \circ a$ - антимноження в групі автоморфізмів

 $f_a(b)$ - перестановка кінців портрету автоморфізму а під дією автоморфізму b^{-1}

Приклад 7.0.6.
$$\boxed{a*b=f_b(a)\circ b}$$

$$\circ_1 \sim \circ, \circ_2 \sim *$$

 $a \circ b$ - множення в групі автоморфізмів

Означимо функцію g на множині автоморфізмів вигляду $a=(a,a\circ t)$ наступним чином $g(a)=a^{-1}\circ\pi_R(a)=t$

$$a * b = g(g^{-1}(a) \circ g^{-1}(b))$$

$$f_a(b) = (g^{-1}(a))^{-1} \circ b \circ g^{-1}(a) = b^{g^{-1}(a)}$$

Приклад 7.0.7.
$$a*b = (a+1) \cdot b + a = a \cdot b + a + b$$

$$\circ_1 \sim +, \circ_2 \sim *$$

a+b - додавання дійсних чисел

a*b - acoulamuвна onepaція на множині дійсних чисел

$$f_a(b) = (a+1) \cdot b$$

Література