Kubo technical assessment

Presents: Daniel Pérez

Sobre el EDA y limpieza/selección de

variables

Valores nulos en variables numéricas

- Un total de 9 filas se vieron afectadas por valores nulos en dos columnas. Se usó la mediana para rellenar los valores nulos en sus respectivas columnas
- Se removieron 3 variables: "hora_reg_norm", "dia_reg", "destino"
- Los datos ya se encontraban normalizados.

Variables categóricas

- Se removieron 2 variables: "medio_contacto_grupo", "tipo_mail_rango".
- Posteriormente se les aplicó one-hot encoding para transformarlos a datos numéricos.

Variable	Medio de contacto	Tipo de email	Sexo	Nivel estudios	Estado	Ocupación
count	14067	14067	14067	14067	14067	14067
unique	6	5	2	7	32	2
top	Otro_medio	gma	Hombre	Licenciatura	CDMX	Empleado
freq	4805	6202	7941	8042	3804	10962

La variable objetivo tiene clases desbalanceadas

 Se realizó un resampleo mediante la técnica SMOTE previo al entrenamiento para mejorar la capacidad predictiva de los modelos.

Modelos de ML usados y su rendimiento

Comparación de modelos usados

#2 #1 #3 #4

Modelo	Gradient Boosting	XG Boost	Random Forest	Logistic Regression
AUC-ROC	0.9088	0.9146	0.8405	0.8226
AUC-PR	0.9291	0.9379	0.8551	0.8340
Gini	0.8177	0.8293	0.6810	0.6452
K-S	0.7034	0.7198	0.5331	0.4979

- AUC: metric used to measure how well a classification model can distinguish between different classes
- Gini: coefficient that ranges from 0 to 1, with 0 representing perfect equality (no discrimination) and 1 representing perfect inequality (perfect discrimination).
- K-S: a measure of the degree of separation between the positive and negative distributions. A higher K-S statistic indicates better separation between classes, which means a better performing model.

Machine learning y su potencial en el mundo financiero

Estadística y algoritmos como valor agregado

Mayor capacidad para procesar y analizar datos.

Las herramientas de inteligencia artificial representan una oportunidad para cualquier organización.

Generación de predicciones y detección de tendencias.

Optimización de decisiones en todos los niveles.

La importancia de otorgar un crédito

IA para el manejo de riesgos

Dichos modelos determinan la probabilidad de incumpliente de un cliente. La gestión del riesgo puede llevarse a cabo mediante modelos de puntuación crediticia Controlarlo permite que una institución mantenga sustentabilidad y estabilidad financiera

"El uso de machine learning tiene el potencial de mejorar el rendimiento y eficiencia en modelos de puntuación crediticia"⁽¹⁾

Varios casos de éxito han sido los referentes a detección de fraude bancario y acciones contra el layado de dinero