PRACOVNÝ LIST – NUKLEOVÉ KYSELINY A GENETICKÁ INFORMÁCIA

- 1. Nukleové kyseliny sú bio-makromolekulové látky.
- 2. Typy nukleových kyselín: a) RNA = Ribonukleová kyslina

b) DNA = 2-deoxy-D-ribonukleová kyselina

- Nositeľkou genetickej informácie, s výnimkou niektorých vírusov je DNA.
- 4. Základnou stavebnou jednotkou nukleových kyselín je Nukleotid zložený z 3 zložiek:

Sacharidová zložka ____ Dusíkatá báza ____ Zvyšky H₃PO₄

- a) D-ribóza
- b) 2-deoxy-D-ribóza A, T, C, G, U
- 5. Základné rozdiely medzi NK sú:

RNA – jedno-vláknová, jedno-závitnica, D-ribóza, A, U, C, G

DNA – dvoj-vláknová, dvoj-závitnica, 2-deoxy-D-ribóza, A, T, C, G

- 6. Nukleozid vzniká odštiepením H₃PO₄ z nukleotidu a pozostáva z sacharidovej zložky a dusíkatej bázy.
- 7. Spájanie vláken DNA sa uskutočňuje na základe pravidla párovania báz, ktoré sa nazýva **Komplementarita.** Purínové bázy **A, G**

Pyrimidínové bázy T, U, C

- 8. Význam nukleotidov:
 - a)prenášače vodíka nikotínamid-adenín-dinukleotid-fosfát NADP+ (reduk.forma),ox.f NADPH2
 - flavín-adenín-dinukleotid FAD+ (red.f.), oxid.forma FADH2
 - b) biosyntéza lipidov, sacharidov a bielkovín.
- 9. Významným nukleotidom, ktorý je **univerzálnym zdrojom energie** (energet. konzerva) je **ATP** = **Adenozín-tri-fosfát**. Energia je obsiahnutá v makroergických = fosfátových väzbách s hodnotou energie 50 kJ.mol⁻¹, ktoré označujeme ________. ATP vzniká procesom zvaným **Fosforilácia** napr. **dýchanie**.

ATP ADP AMP

ATP + $H_2O \rightarrow ADP + H_3PO_4 + 50 \text{ kJ (energia)}$

reakcia je vratná= **reverzibilná** Energia, ktorá sa uvoľní z ATP (**hydrolytickým štiepením**) sa nazýva ako **voľná** energia (časť sa však vždy premení na teplo).

Doplňte komplementárne vlákno k vláknu DNA:

10. Doplňte komplementárne vlákno k vláknu DNA:

11. Proces zdvojenia DNA sa nazýva **Replikácia**. Jeho podstatou je rozpletenie **materského** vlákna a vznik dvoch identických **dcérskych** vláken dosyntetizovaných na základe **komplmentarity** = párovania dusíkatých báz.

12. Štruktúra NK

primárna – udáva poradie = sekvenciou <u>nukleotidov</u> v polynukleotidovom reťazci

sekundárna - DNA - 2 vláknová pravotočivá 2-závitnica - α-helix

- RNA - 1 vláknová závitnica.

terciárna - α-helix sa priestorovo stočí do superhelixu

13. Typy RNA:

mRNA – informačná, mediátorová RNA, obsahuje prepis informácie z DNA z primárnej štruktúry, obsahuje trojice mukleotidov za sebou - triplety = kodóny Slúži ako matrica pre syntézu bielkovín.

tRNA – transferová= prenosová RNA, prenáša AMK na ribozómy. Existuje 20 typov tRNA, každý typ pre jednu AMK.

rRNA – má funkciu enzýmu – katalyzuje tvorbu peptidovej väzby

14. DNA a genetická informácia je uložená v eukaryotickej bunke v jadre a v semiautonómnych organelách – mitochondrie a chloroplasty. V prokaryotickej bunke je DNA lokalizovaná v nukleoide a v plazmidoch – malé kruhové DNA. RNA sa vyskytuje u vírusu Covid a Totavírus. V prokaryotickej bunke je lokalizovaná v ribozóme. RNA v eukar. b. je v jadierku a v ribozóme.

15. a) Zakrúžkujte na obrázku jeden nukleotid.

b)označte názvy chemických väzieb, ktorými sa viažu zložky v nukleotide:

Význam DNA – nielen preto, že je tu informácia o tom, aká DNA sa má tvoriť, ale aj inf. k tvorbe bielkovín 😊 😊

DNA → mRNA (prepis______) → PORADIE AMK (preklad= ______ → proteín trojica nukleotidov za sebou v mRNA= ____ = ____. Proces tvorby bielkovín =

			druhý n	ukleotid			L
		u	C	Α	G		П
prvý nukleotid	u	UUU fenylalanín UU C UU A UU G	UCU UCC Serin UCA UCG	AU tyrozín A A koniec A G koniec	G C cystein G C koniec G G tryptofán	u	tretí nukleotid
	C	CUU CUC leucín CUA CUG	CCU CCC prolin CCA CCG	CAU CAC histidín CAA glutamín	CGU CGC arginín CGG	C	
	A	AUU isoleucín AUA AUG začiatok	ACU ACC treonin ACA ACG	AAU asparagín AAA lyzín AAG	AGU serín AGC AGA arginín AGG	A	
	G	GUU GUC GUA valín GUG	G CU G CC G CA G CG	GAUkys. GAC asparágová GAAkys GAG glutamová	GGA grycin	G	

Prepíšte informáciu z DNA vlákna do mRNA, následne do poradia AMK s využitím tabuľky:

DNA vlákno: CCT AGT GTG GTG TGT GAA CCA GTC...

mrna GGA UCA CAC CAC ACA CUU GGU CAG

AMK

gly – serín – his – his – his -tre – leu – gly - glu

antikodón na tRNA CCU CGU GUG GUG GUG UGU GAA CCA GUC

Pozn. antikodón je:

antikodón:

tRNA

AUG

uninokyselina

kodón v mRNA: UAC

Izolácia DNA
Vhodné druhy:
Pomôcky a chemikálie:
•
Princíp:
Krátky postup:
Kratky postap.
Izolovaná DNA vyzerá ako:

Porovnajte typy NK – uveďte spoločné aj rozdielne vlastnosti: