Optimization

MA17BTECH11002,MA17BTECH11007

Simplex Method

Problem 3

February 28,2019

Problem

Solve the linear programming problem using the Simplex Method.

Minimize
$$f = -40x_1 - 100x_2$$

Subject to:

$$10x_1 + 5x_2 \le 2500$$
,

$$4x_1 + 10x_2 \le 2000$$
,

$$2x_1 + 3x_2 \le 900$$
,

$$x_1 \ge 0, x_2 \ge 0$$

Solution

The Problem is converted to canonical form by adding slack, surplus and artificial variables as appropriate.

- \Rightarrow As the constraint 1 is of type ' \leq ' we should add slack variable \textit{S}_{1}
- \Rightarrow As the constraint 2 is of type ' \leq ' we should add slack variable S_2
- \Rightarrow As the constraint 3 is of type ' \leq ' we should add slack variable S_3

After introducing slack variables, we have

f =
$$40x_1 + 100x_2 + 0S_1 + 0S_2 + 0S_3$$

subject to: $10x_1 + 5x_2 + S_1 = 2500$
 $4x_1 + 10x_2 + S_2 = 2000$
 $2x_1 + 3x_2 + S_3 = 900$
and $x_1, x_2, S_1, S_2, S_3 > 0$

Table

Iteration-1		C _j 40	100	0	0	0	
В	X_B	<i>x</i> ₁	<i>x</i> ₂	S_1	S_2	S_3	Min Ratio= $\frac{X_B}{x_2}$
S_1	2500	10	5	1	0	0	2500
S_2	2000	4	(10)	0	1	0	$\frac{2000}{10} = 500$
S_3	900	2	3	0	0	1	$\frac{900}{3}$ = 300
Z = 0	Z_j	0	0	0	0	0	-
	$Z_j - C_j$	-40	-100	0	0	0	

The minimum $Z_j - C_j$ is -100 and its column index is 2.So, the entering variable is x_2 .

The minimum ratio is 200 and its row index is 2. So, the leaving basis variable is s_2 .

... The pivot element is 10.

Entering = x_2 , Departing = S_2 , Key Element = 10.

$$R_2(new) = R_2(old)/10$$

$$R_1(new) = R_1(old) - 5R_1(new)$$

$$R_3(new) = R_3(old) - 3R_2(new)$$

Table

Iteration-2		C _j 40	100	0	0	0	
В	X_B	x_1	<i>x</i> ₂	S_1	S_2	S_3	Min Ratio= $\frac{X_B}{x_2}$
S_1	1500	8	0	1	$-\frac{1}{2}$	0	
<i>x</i> ₂	200	$\frac{2}{5}$	1	0	$\frac{1}{10}$	0	
S_3	300	2 5 4 5	0	0	$-\frac{3}{10}$	1	
Z = 20000	Z_j	40	100	0	10	0	
	$Z_j - C_j$	0	0	0	10	0	

Since all $Z_j - C_j \ge 0$

Hence optimal solution arrived with value of variables as:

$$x_1 = 0, x_2 = 200$$

 $\mathsf{Max}\;\mathsf{Z}=20000$

Min - Z = -20000

Hence, the minimum of $f = -40x_1 - 100x_2$ subject to the given conditions is -20000

Python Code

Example

```
from scipy.optimize import linprog
C = [-40, -100] #cost function
A = [[10,5],[4,10],[2,3]] #Constraint matrix
B = [2500, 2000, 900] #RHS of constraints
x0_bounds = (0,None) #making sure x1 and x2 are >=0
x1_bounds = (0,None)
#call the lin prog function from the library we imported
res = linprog(C,A_ub=A,b_ub=B,bounds=(x0_bounds,x1_bounds)
,options={"disp":True})
```

The End Thank You!