But, by definition,
$$height((\varphi_1 \vee \varphi_2)) = 1 + max(height(\varphi_1), height(\varphi_2))$$
 and, as $max(a,b) \leq a+b$ (for any naturals $a,b \in \mathbb{N}$), we have that $height((\varphi_1 \vee \varphi_2)) \leq 1 + height(\varphi_1) + height(\varphi_2)$. But $height(\varphi_i) \leq size(\varphi_i)$ ($1 \leq i \leq 2$) by our hypothesis, and therefore $height((\varphi_1 \vee \varphi_2)) \leq 1 + size(\varphi_1) + size(\varphi_2)$. But, by definition, $size((\varphi_1 \vee \varphi_2)) = 1 + size(\varphi_1) + size(\varphi_2)$, and therefore $height((\varphi_1 \vee \varphi_2)) \leq size((\varphi_1 \vee \varphi_2))$, what we had to prove.

4. (Inductive Case iii) Similar to Inductive Case ii.

q.e.d.

4.4 Exercise Sheet

Exercise 19. Compute, using the function subf, the set of subformulae of the following formulae:

1.
$$((p \land \neg q) \land r);$$
 2. $((p \lor \neg q) \land r);$ 3. $\neg ((p \lor \neg q) \land r).$

Exercise 20. Compute the abstract syntax trees of the following formulae:

- 1. $((p \land \neg q) \land r);$
- 2. $((p \lor \neg q) \land r);$
- 3. $\neg((p \lor \neg q) \land r);$
- 4. $(\neg(p \lor \neg q) \land r)$.

Exercise 21. Recall the recursive definition of the function height: $\mathbb{PL} \to \mathbb{N}$, which computes, given a formula, the height of its abstract syntax tree. Compute the height of the formulae shown in Exercise 20.

Exercise 22. Recall the recursive definition of the function size: $\mathbb{PL} \to \mathbb{N}$, which computes the number of nodes in abstract syntax tree of a formula. Compute the size of the formulae shown in Exercise 20.

Exercise 23. Recall the recursive definition of the function prop: $\mathbb{PL} \to 2^A$, which computes, given a formula, the set of propositional variables occurring in the formula. Compute the set of propositional variables occurring in the formulae shown in Exercise 20.

Exercise 24. Show by structural induction that $height(\varphi) < size(\varphi) + 1$ for any formula $\varphi \in \mathbb{PL}$.