Please see the back of this handout for set notations and equivalences. A printable document will be provided on Canvas as for our logical equivalences.

- 1. Consider $A = \{1, 3, 6, 8, 10\}$ and $B = \{2, 4, 6, 7, 10\}$.
 - (a) Determine the following sets: $A \cap B$, $A \cup B$, and A B.
 - (b) Compute the cardinalities: |A|, |B|, $|A \cap B|$, $|A \cup B|$, |A B|.
- 2. Let $U = \{x \in \mathbb{Z} \mid 1 \le x \le 100\}$. Consider $A = \{x \in U \mid x \text{ is divisible by 3}\}$ and $B = \{x \in U \mid x \text{ is divisible by 5}\}$.
 - (a) Describe the following sets in set-builder notation: $A \cap B$, $A \cup B$, and A B.
 - (b) Compute the cardinalities: |A|, |B|, $|A \cap B|$, $|A \cup B|$, |A B|.
- 3. Prove or disprove the following about any sets *A*, *B*, and *C*.
 - (a) $A \setminus B \subseteq A$
 - (b) $(A \cap C) \setminus (B \cap C) = (A \setminus B) \cap C$
 - (c) $(A \cup C) \setminus (B \cup C) = (A \setminus B) \cup C$

4. The *symmetric difference* of two sets A and B is denoted by $A\Delta B$ and defined as

$$A\Delta B = (A \setminus B) \cup (B \setminus A).$$

Prove the following:

- (a) $A\Delta B = (A \cup B) \setminus (A \cap B)$
- (b) $\overline{A \cup B}$ is disjoint from $A\Delta B$
- (c) $A \cap B$ is disjoint from $A \Delta B$

Set Notation

$$x \in A \Leftrightarrow x$$
 is an element of A
 $x \notin A \Leftrightarrow \neg(x \in A)$
 $\emptyset \Leftrightarrow \{\}$, the empty set
 $A \cup B = \{x \mid x \in A \cup B \Leftrightarrow x \in A \lor x \in B\}$
 $A \cap B = \{x \mid x \in A \cap B \Leftrightarrow x \in A \land x \in B\}$
 $\overline{A} = \{x \mid x \in \overline{A} \Leftrightarrow x \notin A\}$
 $A \setminus B = \{x \mid x \in A \setminus B \Leftrightarrow x \in A \land x \notin B\}$
 $A \subseteq B \Leftrightarrow \forall x. x \in A \to x \in B$

Set Equivalences

Set Theory

$$e.g., f_{1,2} = f_{2,1}$$

 $f_{1,2,2} = f_{1,2}$

* Let: an unordered collection of distitut objects {a,b,1,24

* Classical sets: Z.N.R.Q.C

Ssay, at

* Define Gots by properties: S= \(\xi \xi A \) P(x)

* Membership:

SElement & Luts: × EA, X&A -> 7(× EA)

Sets: $A \subseteq B$: $\forall x \in A \Rightarrow x \in B$ A = B: $A \subseteq B$ $\Rightarrow B \subseteq A$ $A \subseteq B$: $A \subseteq B$. $A \subseteq B$. $A \subseteq B$

* Set Operations:

(A)B=A-B= fx EU|XEA and X&B = ANB

Other useful facts:

Venn diagram:

Prove?

Also,
$$A_1 \cup A_2 \cup \cdots \cup A_n \iff \bigcup_{i=1}^n A_i$$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \iff \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \implies \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \implies \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \cap \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \cap \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \cap \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \cap \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \cap \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \cap \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \cdots \cap A_n \cap \bigcap_{i=1}^n A_i$
 $A_1 \cap A_2 \cap \bigcap_{i=1}^n A_i$
 A_1

(a)
$$A \setminus B \subseteq A$$

(b)
$$(A \cap C) \setminus (B \cap C) = (A \setminus B) \cap C$$

(c)
$$(A \cup C) \setminus (B \cup C) = (A \setminus B) \cup C$$

Pf: (a) By def. WTS:
$$\forall \times$$
, $\times \in A \setminus B \Rightarrow \times \in A$

Consider any $\times \in A \setminus B$.

By def of "\". $\times \in A$ and $\times \notin B \Rightarrow \times \in A$

Thus, $A \setminus B \subseteq A$

$$(A \cap C) \setminus (B \cap C)$$

$$= (A \cap C) \cap (\overline{B} \cap C)$$

$$= (A \cap C) \cap (\overline{B} \cup \overline{C})$$

$$= (A \cap C) \cap (\overline{B} \cup C)$$

$$= (A \cap C)$$

$$= (A \wedge C) \wedge \overline{B} \cup \phi$$

$$= (A \wedge C) \wedge \overline{B} \cup \phi$$

$$= (A \wedge C) \wedge \overline{B}$$

$$= A \wedge (C \wedge \overline{B})$$

(dM)(associationly of 1) $(X \cap \overline{X} = \phi)$ $(X \land \phi = \phi)$ $(XU\phi = X)$

(associativity of 1)

(subtraction in terms of 1)

$$= \hat{A} \wedge (\bar{B} \wedge c)$$

$$= (A \wedge \bar{B}) \wedge c$$

$$= (A \wedge B) \wedge c$$

(commutativity of 1)
(associativity of 1)
(subtraction in terms of 1)

(e)

A

Counter-example:

Suppose
$$A = \{a\}$$
, $B = \{b\}$, $C = \{c\}$
 $(A \setminus B) \cup C = \{a\} \cup \{c\} = \{a, c\}$
 $(A \cup C) \setminus (B \cup C) = \{a, c\} \cup \{b, c\} = \{a\}$
Thus, $(A \setminus B) \cup C \neq (A \cup C) \setminus (B \cup C)$

4. The *symmetric difference* of two sets A and B is denoted by $A\Delta B$ and defined as

$$A\Delta B = (A \setminus B) \cup (B \setminus A).$$

Prove the following:

(a)
$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

(b)
$$\overline{A \cup B}$$
 is disjoint from $A \triangle B$ \Rightarrow con also vel \Rightarrow by \Rightarrow .

(c)
$$A \cap B$$
 is disjoint from $A\Delta B$

Pf: (a)
$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$
 (def of \triangle)
$$= (A \cap \overline{B}) \cup (B \cap \overline{A}) \qquad (\text{subtraction in terms of } \Lambda)$$

$$= ((A \cap \overline{B}) \cup (B) \cap ((A \cap \overline{B}) \cup \overline{A}) \qquad (\text{distribution of } \cup \text{over} \Lambda)$$

$$= ((A \cup B) \cap (\overline{B} \cup B)) \cap ((A \cup \overline{A}) \cap (\overline{B} \cup \overline{A})) \qquad (\text{distribution of } \cup \text{over} \Lambda)$$

$$= ((A \cup B) \cap (U) \cap ((A \cup \overline{A}) \cap (\overline{B} \cup \overline{A})) \qquad (\text{down of complement})$$

$$= ((A \cup B) \cap (\overline{B} \cup \overline{A}) \qquad (\text{down of } \overline{A}) \qquad (\text{def of } \text{set difference})$$

$$= (A \cup B) \cap (B \cap A) \qquad (\text{def of } \text{set difference})$$

$$= (A \cup B) \cap (A \cap B) \qquad (\text{down otherwise}) \cap (A \cap B) \qquad (\text{def of } \text{set difference})$$

$$= (A \cup B) \cap (A \cap B) \qquad (\text{def of } \text{set difference})$$

$$= (A \cup B) \cap (A \cap B) \qquad (\text{def of } \text{set difference})$$

$$= (A \cup B) \cap (A \cap B) \qquad (\text{def of } \text{set difference})$$

(b) wTs:
$$(A \triangle B) \cap (\overline{A} \cup \overline{B}) = \phi$$

From (a), $A \triangle B = (A \cup B) \cap (\overline{B} \cap \overline{A})$
 $= (A \cup B) \cap (\overline{A} \cap \overline{B})$ commitativity of $(A \cap B)$
 $\Rightarrow (A \triangle B) \cap (\overline{A} \cup \overline{B})$

$$= ((A \cup B) \cap (\overline{A \cap B})) \cap (\overline{A \cup B}) \quad (def \text{ if } \Delta)$$

$$= ((\overline{A \cap B}) \cap (A \cup B)) \cap (\overline{A \cup B}) \quad (\text{committed virity of } \Lambda)$$

$$= (\overline{A \cap B}) \cap ((A \cup B) \cap (\overline{A \cup B})) \quad (\text{assoc. of } \Lambda)$$

$$= (\overline{A \cap B}) \cap (\Phi) \quad (\times \wedge \overline{\times} = \Phi)$$

$$= \Phi$$

$$Pry \text{ def. } A \Delta B \text{ and } A \overline{\cup} B \text{ are disjoint.}$$

$$(C) \quad WT5: (A \Delta B) \cap (A \cap B) = \Phi$$

$$Prom (a), \quad A \Delta B = (A \cup B) \cap (\overline{A \cap B}) \quad (\text{committed virity of } \Lambda)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{def of } \Delta)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (\overline{A \cap B}) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \cap (A \cap B) \quad (\text{assoc. of } \Lambda)$$

$$= (A \cup B) \cap (A \cap B)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \cap (A \cap B) \cap (A \cap B)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \cap (A \cap B) \cap (A \cap B)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \cap (A \cap B)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \cap (A \cap B)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap B) \cap (A \cap B)$$

$$= (A \cup B) \cap (A \cap B) \cap (A \cap$$