Technique des systèmes électriques, incl. bases technologiques

Dossier des expertes et experts

60	Minutes	15	Exercices	9	Pages	32	Points
----	---------	----	-----------	---	-------	----	--------

Moyens auxiliaires autorisés :

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (tablettes, smartphones, etc. ne sont pas autorisés)

Cotation – Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Le nombre de réponses demandé est déterminant.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

Barème

6	5,5	5	4,5	4	3,5	3	2,5	2	1,5	1
32,0-30,5	30,-27,5	27,0-24,0	23,5-21,0	20,5-18,0	17,5-14,5	14,0-11,5	11,0-8,0	7,5-5,0	4,5-2,0	1,5-0,0

Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2024.

Créé par:

Groupe de travail PQ d'EIT.swiss pour la profession d'électricienne de montage CFC / électricien de montage CFC

Editeur:

CSFO, département procédures de qualification, Berne

3

1

1

1

2

1. Puissance, rendement N° d'objectif d'évaluation 3.3.2

Système de pompage :

a) Calculez le rendement global ntot de l'ensemble du système.

$$\eta_{tot} = \frac{P_{uP}}{P_{absM}} = \frac{2,36 \ kW}{4,14 \ kW} = \underbrace{\frac{0,57 = 57 \%}{2000 \ model}}$$

b) Quel est le rendement du moteur η_M ?

$$P_{uM} = P_{absP} = \frac{P_{uP}}{\eta_P} = \frac{2,36 \ kW}{0,67} = \frac{3,522 \ kW}{0}$$

$$\eta_M = \frac{P_{uM}}{P_{absM}} = \frac{3,522 \ kW}{4,14 \ kW} = \underline{0,851 = 85,1 \%}$$

Ou

2. Système électrique N° d'objectif d'évaluation 3.2.1

Relier par une flèche les consommateurs à la forme d'énergie correspondante :

Consommateurs		Forme d'énergie	
Perceuse		Énergie calorifique	0,5
Lampadaire à LED	———	Énergie lumineuse	0,5
Chargeur de Smartphone		Énergie mécanique	0,5
Chauffe-eau (boiler)		Énergie électrique	0,5

2

3. Système triphasé N° d'objectif d'évaluation 5.3.4/5

Couplage résistif des corps de chauffe d'un chauffe-eau.

Calculez:

a) La puissance d'un corps de chauffe.

$$P_1 = \frac{{U_{ph}}^2}{R} = \frac{(230 \, V)^2}{10 \, \Omega} = \underline{\frac{5290 \, W}{100}}$$

b) La puissance triphasée totale.

$$I = \frac{U_{ph}}{R} = \frac{230V}{10 \Omega} = \frac{23A}{10 \Omega}$$

$$P_{tot} = U \cdot I \cdot \sqrt{3} = 400 \, V \cdot 23 \, A \cdot 1,73 = \underline{15916 \, W}$$

Ou

$$P_{tot} = P_1 \cdot 3 = 5290 \ W \cdot 3 = \underline{15870 \ W}$$

4. Energie N° d'objectif d'évaluation 3.2.2b

Quelle énergie consomme, en 24 heures, une pompe dont la puissance absorbée est de 9,84 kW ?

$$W = P \cdot t = 9,84 \ kW \cdot 24 \ h = \frac{236,16 \ kWh}{24 \ kW}$$

1

1

1

1

0,5

0,5

0,5

0,5

0,5

0,5

2

1

1

5. Grandeurs fondamentales N° d'objectif d'évaluation 3.2.3b

Remplissez la grille de mots croisés suivante :

- 1. Unité de la puissance électrique
- 2. Quel appareil permet de mesurer le courant électrique ?
- 3. Quelle grandeur est calculée avec la formule : l² R = ...
- 4. Différence de potentiel
- 5. Les distributeurs d'énergie vendent l'énergie à haut ou bas
- 6. Puissance multipliée par le temps

Mot caché: AMPERE

	1	W	Α	Т	Т							
	2	Α	M	Р	E	R	È	M	E	T	R	E
		3	Р	U	I	S	S	Α	N	С	E	
	4	T	E	N	S	I	0	N				•
5	Т	Α	R	I	F				•			
6	É	N	E	R	G	I	E					

6. Courant alternatif N° d'objectif d'évaluation 5.3.3

- a) Calculez la puissance apparente du relais.
- b) Nommez les côtés du triangle des puissances avec les grandeurs et les unités.

b)

a)
$$S = U \cdot I = 48 V \cdot 0, 8 A = 38,4 VA$$

3

7. Couplage mixte N° d'objectif d'évaluation 3.2.4

Calculez pour le circuit mixte suivant :

a) La résistance équivalente.

$$R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3} = \frac{8 \Omega \cdot 8 \Omega}{8 \Omega + 8 \Omega} = \underline{4 \Omega}$$

Ou

$$R_{23} = \frac{R_n}{n} = \frac{R_2}{2} ou \frac{R_3}{2} = \frac{8 \Omega}{2} = \underline{4 \Omega}$$

$$R_{tot} = R_1 + R_{23} = 4 \Omega + 4 \Omega = \underline{8 \Omega}$$

b) Le courant total I_{tot}.

$$I = \frac{U}{R_{tot}} = \frac{24V}{8\Omega} = \underline{\underline{3}}\underline{A}$$

c) Le courant l₂.

$$U_{R23} = R_{23} \cdot I_{tot} = 4 \Omega \cdot 3 A = \underline{12 V}$$

$$I_2 = \frac{U_{R23}}{R_2} = \frac{12 V}{8 \Omega} = \underline{\underline{1, 5 A}} ou I_2 = \frac{I_{tot}}{2} = \underline{\frac{3 A}{2}} = \underline{\underline{1, 5 A}}$$

0,5

0,5

1

3

8. Transfert de la chaleur N° d'objectif d'évaluation 3.3.4

Associez les lettres suivantes au schéma ci-dessous :

A = Rayonnement thermique

B = Convection thermique

C = Conduction thermique

1/ juste

1

9. Grandeurs fondamentales N° d'objectif d'évaluation 3.2.3b

Un fil de cuivre ($\rho=0.0175~\frac{\Omega\cdot\mathrm{mm}^2}{m}$) a une résistance de 0,4 Ω et une longueur de 40 m.

Calculez la section de ce fil.

$$A = \frac{\rho \cdot l}{R} = \frac{0.0175 \frac{\Omega \cdot mm^2}{m} \cdot 40 m}{0.4 \Omega} = \underline{\frac{1.75 mm^2}{m}}$$

3

1

10. Energie et puissance N° d'objectif d'évaluation 3.2.4b

a) Quel est le nom exact de cette image figurant sur un réfrigérateur ?

Label énergie ou étiquette d'efficacité énergétique ou label énergétique

b) Attribuez les bons chiffres aux termes suivants:

Volume total du réfrigérateur en litre
 Consommation annuelle en kWh
 Classe énergétique du produit
 Emission sonore ou classe d'émission

11. Courant N° d'objectif d'évaluation 3.2.4

Pourquoi un enrouleur électrique doit-il être complètement déroulé lorsqu'une charge importante y est raccordée ?

Pour éviter un échauffement excessif de l'enrouleur.

ou

La ligne est ainsi mieux refroidie et un échauffement dangereux de l'enrouleur de câble peut être évité.

0,5

0,5

2

0,5

0,5

1

2

0,5

0,5

0,5

0,5

12. Courant alternatif N° d'objectif d'évaluation 5.3.3

Pour chaque affirmation, cochez juste ou faux :

Affirmations	Juste	Faux
La puissance apparente est la somme vectorielle des puissances active et réactive. $S = \sqrt{P^2 + Q^2}$		
La puissance apparente est toujours la plus grande puissance.	\boxtimes	

13. Energie et puissance N° d'objectif d'évaluation 3.2.4b

Un sèche-cheveux d'une puissance de 2 kW et est enclenché pendant 12 minutes. Calculez le coût de l'énergie consommée sachant que son prix est de 20 $\frac{\text{centimes}}{\text{kWh}}$.

$$t = 12 \min \left| \frac{1 \text{ h}}{60 \min} \right| = 0.2 \text{ h}$$

$$W_{el} = P \cdot t = 2 kW \cdot 0, 2 h = 0,4 kWh$$

$$K = Ta \cdot W_{el} = 20 \frac{centimes}{kWh} \cdot 0.4 kWh = 8 \frac{8 centimes}{kWh}$$

14. Les états de la matière N° d'objectif d'évaluation 3.3.4

Changement d'état de la matière.

Pour chaque affirmation, cochez le changement d'état correspondant :

Affirmation	de liquide à vapeur	de liquide à solide	de solide à liquide
De l'eau chaude est placée dans le congélateur			
L'eau est portée à ébullition			
Un glaçon est placé au soleil			
Les mains sont frottées avec du désinfectant (alcool)			

2

0,5

0,5

0,5

0,5

15. Technique d'éclairage N° d'objectif d'évaluation 5.2.2b

Etiquette signalétique d'une lampe LED :

Pour chaque affirmation, cochez juste ou faux :

Affirmations	Juste	Faux	
Le flux lumineux de cette lampe LED est de 9 W.			
Cette lampe LED est variable (dimmable).		\boxtimes	
Cette lampe LED peut être utilisée pour remplacer une lampe à incandescence.	\boxtimes		
La température de couleur de cette lampe LED est réglable.			