How to compute the rank of an elliptic curve in polynomial time

Simon Spicer

PhD Thesis Defense University of Washington

mlungu@uw.edu

May 12, 2015

Definition

A Diophantine equation is an equation in n variables with integer coefficients.

Hilbert's 10th Problem

Does a general algorithm exist to determine if a given Diophantine equation has a solution in \mathbb{Z} ?

Definition

A Diophantine equation is an equation in n variables with integer coefficients.

Hilbert's 10th Problem

Does a general algorithm exist to determine if a given Diophantine equation has a solution in \mathbb{Z} ?

Theorem (Davis, Matiyasevich, Putnam, Robinson 1970)

No.

Slightly simpler question:

Does \exists an algorithm to determine if P(x, y) = 0 has a solution in \mathbb{Q} ?

Slightly simpler question:

Does \exists an algorithm to determine if P(x, y) = 0 has a solution in \mathbb{Q} ?

We don't know.

Slightly simpler question:

Does \exists an algorithm to determine if P(x, y) = 0 has a solution in \mathbb{Q} ?

We don't know.

If yes \Longrightarrow lots of mathematicians out of work!

Modern view: P(x, y) = 0 represents an algebraic curve.

Modern view: P(x,y) = 0 represents an algebraic curve. Classify curves by genus – "the number of holes in $C(\mathbb{C})$ ":

Modern view: P(x,y) = 0 represents an algebraic curve. Classify curves by genus – "the number of holes in $C(\mathbb{C})$ ":

g	$\#$ Solutions in $\mathbb Q$				
0	$<\infty$ or $\sim \mathbb{Z}$				
1	$<\infty$ or $\hookleftarrow \mathbb{Z}^r$ for $r\gg 0$				
≥ 2	$<\infty$ (Falting's Theorem 1983)				

Modern view: P(x,y) = 0 represents an algebraic curve. Classify curves by genus – "the number of holes in $C(\mathbb{C})$ ":

g	$\#$ Solutions in $\mathbb Q$			
0	$<\infty$ or $\sim \mathbb{Z}$			
1	$<\infty \text{ or } \leftarrow \mathbb{Z}^r \text{ for } r\gg 0$			
≥ 2	$<\infty$ (Falting's Theorem 1983)			

 \implies Genus 1 curves most interesting case!

Modern view: P(x,y) = 0 represents an algebraic curve. Classify curves by genus – "the number of holes in $C(\mathbb{C})$ ":

g	$\#$ Solutions in $\mathbb Q$
0	$<\infty$ or $\sim \mathbb{Z}$
1	$<\infty$ or $\leftarrow \mathbb{Z}^r$ for $r\gg 0$
≥ 2	$<\infty$ (Falting's Theorem 1983)

 \implies Genus 1 curves most interesting case!

This talk: how to compute that r.

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O} .

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O} .

For This Talk:

$$E/\mathbb{Q}:\ y^2=x^3{+}Ax{+}B,\quad A,B\in\mathbb{Z}$$

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O} .

For This Talk:

$$E/\mathbb{Q}: y^2 = x^3 + Ax + B, \quad A, B \in \mathbb{Z}$$

Example

$$E = 37a : y^2 = x^3 - 16x + 16$$

Figure: The Elliptic Curve 37a

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O} .

For This Talk:

$$E/\mathbb{Q}: y^2 = x^3 + Ax + B, \quad A, B \in \mathbb{Z}$$

Example

$$E = 37a : y^2 = x^3 - 16x + 16$$

Figure: The Elliptic Curve 37a

Theorem (Mordell 1922, Weil 1928)

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{TOR} \times \mathbb{Z}^r$$

where $E(\mathbb{Q})_{TOR}$ is a finite abelian group, and $r \in \mathbb{Z}_{\geq 0}$ is the algebraic rank of E/\mathbb{Q} .

Theorem (Mordell 1922, Weil 1928)

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{TOR} \times \mathbb{Z}^r$$

where $E(\mathbb{Q})_{TOR}$ is a finite abelian group, and $r \in \mathbb{Z}_{\geq 0}$ is the algebraic rank of E/\mathbb{Q} .

Example

For E=37a, we have $E(\mathbb{Q})\approx \mathbb{Z}^1$, generated by P=(0,4):

n	0	1	2	3	4	5	6
nΡ	0	(0,4)	(4,4)	(-4, -4)	(8, -20)	(1, -1)	(24, 116)

n	7	8	9
nΡ	$\left(-\frac{20}{9}, \frac{172}{27}\right)$	$\left(\frac{84}{25}, -\frac{52}{125}\right)$	$\left(-\frac{80}{49}, -\frac{2108}{343}\right)$

Theorem (Mordell 1922, Weil 1928)

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{TOR} \times \mathbb{Z}^r$$

Theorem (Mordell 1922, Weil 1928)

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{TOR} \times \mathbb{Z}^r$$

Torsion is well understood:

Theorem (Mazur 1978)

$$E(\mathbb{Q})_{TOR} \approx \mathbb{Z}/n\mathbb{Z}$$
 for $1 \leq n \leq 10$ or 12

or

$$E(\mathbb{Q})_{TOR} \approx \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z}$$
 for $1 \leq n \leq 4$

Theorem (Mordell 1922, Weil 1928)

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{TOR} \times \mathbb{Z}^r$$

Torsion is well understood:

Theorem (Mazur 1978)

$$E(\mathbb{Q})_{TOR} \approx \mathbb{Z}/n\mathbb{Z}$$
 for $1 \leq n \leq 10$ or 12

or

$$E(\mathbb{Q})_{TOR} \approx \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z}$$
 for $1 \leq n \leq 4$

The free part is less well understood.

Theorem (Mordell 1922, Weil 1928)

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{TOR} \times \mathbb{Z}^r$$

Torsion is well understood:

Theorem (Mazur 1978)

$$E(\mathbb{Q})_{TOR} \approx \mathbb{Z}/n\mathbb{Z}$$
 for $1 \le n \le 10$ or 12

or

$$E(\mathbb{Q})_{TOR} \approx \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z}$$
 for $1 \leq n \leq 4$

The free part is less well understood.

Open question: do there exist E/\mathbb{Q} with arbitrarily large r?

Does an algorithm exist to compute $\operatorname{rank}(E(\mathbb{Q}))$?

Does an algorithm exist to compute $rank(E(\mathbb{Q}))$?

• Unconditional answer is an open question.

- Unconditional answer is an open question.
- Manin (1970s): Assuming BSD Conjecture, yes:

- Unconditional answer is an open question.
- Manin (1970s): Assuming BSD Conjecture, yes:
 - By day, bound rank from above using analytic methods

- Unconditional answer is an open question.
- Manin (1970s): Assuming BSD Conjecture, yes:
 - By day, bound rank from above using analytic methods
 - By night, bound rank from below using algebraic methods

- Unconditional answer is an open question.
- Manin (1970s): Assuming BSD Conjecture, yes:
 - By day, bound rank from above using analytic methods
 - 2 By night, bound rank from below using algebraic methods
 - Seventually the two bounds match up, and you have computed rank

- Unconditional answer is an open question.
- Manin (1970s): Assuming BSD Conjecture, yes:
 - By day, bound rank from above using analytic methods
 - 2 By night, bound rank from below using algebraic methods
 - Seventually the two bounds match up, and you have computed rank
- Problem: how long does this method take? Can we quantify 'eventually'?

A better question would be:

A better question would be:

Motivating Question

Let $r = \operatorname{rank}(E(\mathbb{Q}))$. Does an algorithm exist to determine r whose runtime can be proven to scale in a quantifiable way with the arithmetic complexity of the E?

A better question would be:

Motivating Question

Let $r = \operatorname{rank}(E(\mathbb{Q}))$. Does an algorithm exist to determine r whose runtime can be proven to scale in a quantifiable way with the arithmetic complexity of the E?

• Want to show runtime = O(something)

A better question would be:

Motivating Question

Let $r = \operatorname{rank}(E(\mathbb{Q}))$. Does an algorithm exist to determine r whose runtime can be proven to scale in a quantifiable way with the arithmetic complexity of the E?

- Want to show runtime = O(something)
- What "something" measures arithmetic complexity?

The Main Theorem

Theorem (S.)

Let E/\mathbb{Q} have conductor N_E and rank r.

- Assuming the BSD and ABC conjectures, there exists an algorithm to compute r in $\tilde{O}\left(\sqrt{N_E}\right)$ time.
- The algorithm can be sped up by a constant factor if one further assumes the Generalized Riemann Hypothesis.

Theorem (S.)

Let E/\mathbb{Q} have conductor N_E and rank r. Assuming BSD, ABC and optionally GRH, there exists an algorithm to compute r in $\tilde{O}\left(\sqrt{N_E}\right)$ time.

Theorem (S.)

Let E/\mathbb{Q} have conductor N_E and rank r. Assuming BSD, ABC and optionally GRH, there exists an algorithm to compute r in $\tilde{O}\left(\sqrt{N_E}\right)$ time.

Algorithm: compute the rank of an elliptic curve

Given E/\mathbb{Q} (represented by a minimal Weierstrass equation) with conductor N_E :

Theorem (S.)

Let E/\mathbb{Q} have conductor N_E and rank r. Assuming BSD, ABC and optionally GRH, there exists an algorithm to compute r in $\tilde{O}\left(\sqrt{N_E}\right)$ time.

Algorithm: compute the rank of an elliptic curve

Given E/\mathbb{Q} (represented by a minimal Weierstrass equation) with conductor N_E :

① Compute the real period Ω_E of E.

Theorem (S.)

Let E/\mathbb{Q} have conductor N_E and rank r. Assuming BSD, ABC and optionally GRH, there exists an algorithm to compute r in $\tilde{O}\left(\sqrt{N_E}\right)$ time.

Algorithm: compute the rank of an elliptic curve

Given E/\mathbb{Q} (represented by a minimal Weierstrass equation) with conductor N_E :

- **①** Compute the real period Ω_E of E.
- ② Set $k = \lceil 36 + 3.8 \log_2 N_E \log_2 \Omega_E \rceil$, and set m = 0. (If GRH: set $k = \lceil 24 + 2.43 \log_2 N_E \log_2 \Omega_E \rceil$ instead)

Theorem (S.)

Let E/\mathbb{Q} have conductor N_E and rank r. Assuming BSD, ABC and optionally GRH, there exists an algorithm to compute r in $\tilde{O}\left(\sqrt{N_E}\right)$ time.

Algorithm: compute the rank of an elliptic curve

Given E/\mathbb{Q} (represented by a minimal Weierstrass equation) with conductor N_E :

- **1** Compute the real period Ω_E of E.
- ② Set $k = \lceil 36 + 3.8 \log_2 N_E \log_2 \Omega_E \rceil$, and set m = 0. (If GRH: set $k = \lceil 24 + 2.43 \log_2 N_E \log_2 \Omega_E \rceil$ instead)
- **3** Output $r = \text{index of the first Taylor coefficient of the } L_E(s)$ at s = 1 that isn't zero to k bits precision.

Algorithm: compute the rank of an elliptic curve (BSD, ABC, (GRH))

- **①** Compute the real period Ω_E of E.
- ② Set $k = \lceil 36 + 3.8 \log_2 N_E \log_2 \Omega_E \rceil$, and set m = 0. (If GRH: set $k = \lceil 24 + 2.43 \log_2 N_E \log_2 \Omega_E \rceil$ instead)
- **3** Output $r = \text{index of the first Taylor coefficient of the } L_E(s)$ at s = 1 that isn't zero to k bits precision.

Algorithm: compute the rank of an elliptic curve (BSD, ABC, (GRH))

- **①** Compute the real period Ω_E of E.
- ② Set $k = \lceil 36 + 3.8 \log_2 N_E \log_2 \Omega_E \rceil$, and set m = 0. (If GRH: set $k = \lceil 24 + 2.43 \log_2 N_E \log_2 \Omega_E \rceil$ instead)
- **3** Output $r = \text{index of the first Taylor coefficient of the } L_E(s)$ at s = 1 that isn't zero to k bits precision.
 - What is N_F ?

Algorithm: compute the rank of an elliptic curve (BSD, ABC, (GRH))

- **①** Compute the real period Ω_E of E.
- ② Set $k = \lceil 36 + 3.8 \log_2 N_E \log_2 \Omega_E \rceil$, and set m = 0. (If GRH: set $k = \lceil 24 + 2.43 \log_2 N_E \log_2 \Omega_E \rceil$ instead)
- **3** Output $r = \text{index of the first Taylor coefficient of the } L_E(s)$ at s = 1 that isn't zero to k bits precision.
 - What is N_F ?
 - What is the $L_E(s)$?

Algorithm: compute the rank of an elliptic curve (BSD, ABC, (GRH))

- **1** Compute the real period Ω_E of E.
- ② Set $k = \lceil 36 + 3.8 \log_2 N_E \log_2 \Omega_E \rceil$, and set m = 0. (If GRH: set $k = \lceil 24 + 2.43 \log_2 N_E \log_2 \Omega_E \rceil$ instead)
- **3** Output $r = \text{index of the first Taylor coefficient of the } L_E(s)$ at s = 1 that isn't zero to k bits precision.
 - What is N_F ?
 - What is the $L_E(s)$?
 - What are BSD, ABC and GRH?

Algorithm: compute the rank of an elliptic curve (BSD, ABC, (GRH))

- **1** Compute the real period Ω_E of E.
- ② Set $k = \lceil 36 + 3.8 \log_2 N_E \log_2 \Omega_E \rceil$, and set m = 0. (If GRH: set $k = \lceil 24 + 2.43 \log_2 N_E \log_2 \Omega_E \rceil$ instead)
- **3** Output $r = \text{index of the first Taylor coefficient of the } L_E(s)$ at s = 1 that isn't zero to k bits precision.
 - What is N_F ?
 - What is the $L_E(s)$?
 - What are BSD, ABC and GRH?
 - What is Ω_E ?

The Conductor N_E and L-function $L_E(s)$

Reducing a curve modulo p can produce a singular curve; happens only for finitely many p.

Reducing a curve modulo p can produce a singular curve; happens only for finitely many p.

Definition

The conductor of E is $N_E = \prod_p p^{f_p(E)}$, where

$$f_p(E) = \begin{cases} 0, & \text{good reduction at } p \\ 1, & \text{mult. reduction at } p \\ 2, & \text{add. reduction at } p, \end{cases}$$

for $p \neq 2, 3$ and possibly more for 2 and 3.

Reducing a curve modulo p can produce a singular curve; happens only for finitely many p.

Definition

The conductor of E is $N_E = \prod_p p^{f_p(E)}$, where

$$f_p(E) = egin{cases} 0, & ext{good reduction at } p \ 1, & ext{mult. reduction at } p \ 2, & ext{add. reduction at } p, \end{cases}$$

for $p \neq 2, 3$ and possibly more for 2 and 3.

Example

The conductor of 37a is $N_E = 37$, hence its name.

Definition

- For p prime with $p \nmid N_E$, $a_p(E) = a_p := p + 1 \#E(\mathbb{F}_p)$
- For $p \mid N_E$, $a_p := 0, 1$ or -1 depending on reduction type.

Definition

- For p prime with $p \nmid N_E$, $a_p(E) = a_p := p + 1 \#E(\mathbb{F}_p)$
- For $p \mid N_E$, $a_p := 0, 1$ or -1 depending on reduction type.

Definition

The L-function attached to E is

$$L_{E}(s) := \prod_{p \mid N_{E}} \frac{1}{1 - a_{p}p^{-s}} \prod_{p \nmid N_{E}} \frac{1}{1 - a_{p}p^{-s} + p^{1-2s}} = \sum_{n=1}^{\infty} a_{n}n^{-s}$$

for $\Re(s) > \frac{3}{2}$.

Definition

- For p prime with $p \nmid N_E$, $a_p(E) = a_p := p + 1 \#E(\mathbb{F}_p)$
- For $p \mid N_E$, $a_p := 0, 1$ or -1 depending on reduction type.

Definition

The L-function attached to E is

$$L_{E}(s) := \prod_{p \mid N_{E}} \frac{1}{1 - a_{p}p^{-s}} \prod_{p \nmid N_{E}} \frac{1}{1 - a_{p}p^{-s} + p^{1-2s}} = \sum_{n=1}^{\infty} a_{n}n^{-s}$$

for $\Re(s) > \frac{3}{2}$.

The a_n are defined by multiplying out the Euler product.

Modularity & Analytic Continuation of $L_E(s)$

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al., 1999,2001) $L_E(s)$ extends to an entire function on \mathbb{C} .

Modularity & Analytic Continuation of $L_E(s)$

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al., 1999,2001) $L_F(s)$ extends to an entire function on \mathbb{C} .

Theorem (Bradshaw 2010)

 $L_E(s)$ can be provably evaluated to k bits precision in $\tilde{O}(k \cdot \sqrt{N_E})$ time near s=1.

Modularity & Analytic Continuation of $L_E(s)$

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al., 1999,2001)

 $L_E(s)$ extends to an entire function on \mathbb{C} .

Theorem (Bradshaw 2010)

 $L_E(s)$ can be provably evaluated to k bits precision in $\tilde{O}(k \cdot \sqrt{N_E})$ time near s=1.

 $\tilde{O}(k \cdot \sqrt{N_E})$ time:

time taken to evaluate $L_E(s)$ near s=1 scales with (number of bits of precision) $\times \sqrt{N_E} \times (\text{some power of log } N_E)$.

The Zeros of $L_E(s)$

Three flavors:

- A simple zero at $0, -1, -2, -3, \dots$
- A zero of order r_{an} at s = 1; r_{an} is called the *analytic rank* of E
- Countably infinite zeros in the strip $0 < \Re(s) < 2$, symmetric about $\Re(s) = 1$ and x-axis.

The Zeros of $L_E(s)$

Three flavors:

- A simple zero at $0, -1, -2, -3, \dots$
- A zero of order r_{an} at s = 1; r_{an} is called the *analytic rank* of E
- Countably infinite zeros in the strip $0 < \Re(s) < 2$, symmetric about $\Re(s) = 1$ and x-axis.

Generalized Riemann Hypothesis for Elliptic Curves (GRH)

All nontrivial zeros of $L_E(s)$ lie on the line $\Re(s) = 1$.

The Zeros of $L_E(s)$

Three flavors:

- A simple zero at $0, -1, -2, -3, \dots$
- A zero of order r_{an} at s = 1; r_{an} is called the *analytic rank* of E
- Countably infinite zeros in the strip $0 < \Re(s) < 2$, symmetric about $\Re(s) = 1$ and x-axis.

Generalized Riemann Hypothesis for Elliptic Curves (GRH)

All nontrivial zeros of $L_E(s)$ lie on the line $\Re(s) = 1$.

Figure: The zeros of $L_E(s)$ for E=37a

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

• Algebraic rank = analytic rank

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

- Algebraic rank = analytic rank
- The leading Taylor coefficient of $L_E(s)$ at s=1 is

$$\frac{L_E^{(r)}(1)}{r!} = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{Tor}(\mathbb{Q}))^2}$$

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

- Algebraic rank = analytic rank
- The leading Taylor coefficient of $L_E(s)$ at s=1 is

$$\frac{L_E^{(r)}(1)}{r!} = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_{\rho} c_{\rho}}{(\# E_{Tor}(\mathbb{Q}))^2}$$

where

- Ω_E is the real period of E,
- Reg_E is the regulator of E,
- F # $E_{Tor}(\mathbb{Q})$ is the number of rational torsion points on E.

Let C_E be the leading Taylor coefficient of $L_E(s)$ at s=1.

$$\mathsf{BSD}: \quad C_E = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

Let C_E be the leading Taylor coefficient of $L_E(s)$ at s=1.

$$\mathsf{BSD}: \quad C_E = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

Corollary

$$C_E \geq \frac{\Omega_E \cdot \mathsf{Reg}_E}{256}$$

as $\# \coprod (E/\mathbb{Q}) \geq 1$, $\prod_p c_p \geq 1$ and by Mazur's Theorem, $\# E_{Tor}(\mathbb{Q}) \leq 16$

Let C_E be the leading Taylor coefficient of $L_E(s)$ at s=1.

$$\mathsf{BSD}: \quad C_E = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

Corollary

$$C_E \geq \frac{\Omega_E \cdot \mathsf{Reg}_E}{256}$$

as $\# \mathrm{III}(E/\mathbb{Q}) \geq 1$, $\prod_{p} c_{p} \geq 1$ and by Mazur's Theorem, $\# E_{Tor}(\mathbb{Q}) \leq 16$

Method for proof of main theorem:

Let C_E be the leading Taylor coefficient of $L_E(s)$ at s=1.

$$\mathsf{BSD}: \quad C_E = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

Corollary

$$C_E \geq \frac{\Omega_E \cdot \mathsf{Reg}_E}{256}$$

as $\# \mathrm{III}(E/\mathbb{Q}) \geq 1$, $\prod_{p} c_{p} \geq 1$ and by Mazur's Theorem, $\# E_{Tor}(\mathbb{Q}) \leq 16$

Method for proof of main theorem:

• Show that BSD+ABC \Rightarrow lower bounds exist for Ω_E and Reg_E

Let C_E be the leading Taylor coefficient of $L_E(s)$ at s=1.

$$\mathsf{BSD}: \quad \mathit{C}_{\mathit{E}} = \frac{\Omega_{\mathit{E}} \cdot \mathsf{Reg}_{\mathit{E}} \cdot \# \mathrm{III}(\mathit{E}/\mathbb{Q}) \cdot \prod_{\mathit{p}} \mathit{c}_{\mathit{p}}}{(\# \mathit{E}_{\mathsf{Tor}}(\mathbb{Q}))^{2}}$$

Corollary

$$C_E \geq \frac{\Omega_E \cdot \mathsf{Reg}_E}{256}$$

as $\# \coprod (E/\mathbb{Q}) \geq 1$, $\prod_p c_p \geq 1$ and by Mazur's Theorem, $\# E_{Tor}(\mathbb{Q}) \leq 16$

Method for proof of main theorem:

- Show that BSD+ABC \Rightarrow lower bounds exist for Ω_E and Reg_E
- Thus C_E cannot be too small in terms of N_E

Let C_E be the leading Taylor coefficient of $L_E(s)$ at s=1.

$$\mathsf{BSD}: \quad C_E = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

Corollary

$$C_E \geq \frac{\Omega_E \cdot \mathsf{Reg}_E}{256}$$

as $\# \coprod (E/\mathbb{Q}) \geq 1$, $\prod_{p} c_{p} \geq 1$ and by Mazur's Theorem, $\# E_{Tor}(\mathbb{Q}) \leq 16$

Method for proof of main theorem:

- Show that BSD+ABC \Rightarrow lower bounds exist for Ω_E and Reg_E
- Thus C_E cannot be too small in terms of N_E
- 'Walk along' Taylor expansion of $L_E(s)$ at central point, looking for first coefficient bigger than a certain bound.

The Leading Taylor Coefficient

Let C_E be the leading Taylor coefficient of $L_E(s)$ at s=1.

$$\mathsf{BSD}: \quad C_E = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

Corollary

$$C_E \geq \frac{\Omega_E \cdot \mathsf{Reg}_E}{256}$$

as $\# \coprod (E/\mathbb{Q}) \geq 1$, $\prod_{p} c_{p} \geq 1$ and by Mazur's Theorem, $\# E_{Tor}(\mathbb{Q}) \leq 16$

Method for proof of main theorem:

- Show that BSD+ABC \Rightarrow lower bounds exist for Ω_E and Reg_E
- Thus C_E cannot be too small in terms of N_E
- 'Walk along' Taylor expansion of $L_E(s)$ at central point, looking for first coefficient bigger than a certain bound.
- Show all this takes $\tilde{O}(\sqrt{N_E})$ time

Motivating Data

Figure: $\log N_E$ vs. $\log C_E$ for all curves up to conductor 350000 on a \log/\log scale, colored by rank.

To get lower bounds on Reg_E and Ω_E , must assume ABC conjecture:

To get lower bounds on Reg_E and Ω_E , must assume ABC conjecture:

Conjecture

Masser, Oesterle 1980s Let $a,b,c\in\mathbb{Z}_+$ s.t. a+b=c and $\gcd(a,b,c)=1$, and let $\operatorname{rad}(abc)=\prod_{p|abc}p$. Then $\forall\ \epsilon>0\ \exists\ K_\epsilon>0$ s.t.

$$c < K_{\epsilon} \cdot \mathsf{rad}(abc)^{1+\epsilon}$$

To get lower bounds on Reg_E and Ω_E , must assume ABC conjecture:

Conjecture

Masser, Oesterle 1980s Let $a,b,c\in\mathbb{Z}_+$ s.t. a+b=c and $\gcd(a,b,c)=1$, and let $\operatorname{rad}(abc)=\prod_{p|abc}p$. Then $\forall\ \epsilon>0\ \exists\ K_\epsilon>0$ s.t.

$$c < K_{\epsilon} \cdot \operatorname{rad}(abc)^{1+\epsilon}$$

Loosely, if a, b and c are coprime and a + b = c, then rad(abc) cannot be much smaller than c.

To get lower bounds on Reg_E and Ω_E , must assume ABC conjecture:

Conjecture

Masser, Oesterle 1980s Let $a,b,c\in\mathbb{Z}_+$ s.t. a+b=c and $\gcd(a,b,c)=1$, and let $\operatorname{rad}(abc)=\prod_{p|abc}p$. Then $\forall\;\epsilon>0\;\exists\;K_\epsilon>0\;s.t.$

$$c < K_{\epsilon} \cdot \operatorname{rad}(abc)^{1+\epsilon}$$

Loosely, if a, b and c are coprime and a + b = c, then rad(abc) cannot be much smaller than c.

"Numbers that are highly divisible by small primes don't often line up."

$$\frac{L_E^{(r)}(1)}{r!} \ge \frac{\Omega_E \cdot \mathsf{Reg}_E}{256}$$

The Regulator Reg_F

What is Reg_E ?

What is Reg_F?

Loosely, the regulator of E is an invariant that measures how many points there are on E with small coordinates.

- Reg_E small \Longrightarrow lots of 'small' rational points on E
- ullet Reg $_E$ big \Longrightarrow few 'small' rational points on E

What is Reg_F ?

Loosely, the regulator of E is an invariant that measures how many points there are on E with small coordinates.

- Reg_E small \Longrightarrow lots of 'small' rational points on E
- Reg_E big \Longrightarrow few 'small' rational points on E

Need a more formal definition of 'small' vs. 'large' w.r.t. points.

What is Reg_F ?

Loosely, the regulator of E is an invariant that measures how many points there are on E with small coordinates.

- Reg_E small \Longrightarrow lots of 'small' rational points on E
- Reg_E big \Longrightarrow few 'small' rational points on E

Need a more formal definition of 'small' vs. 'large' w.r.t. points.

 \Longrightarrow Néron-Tate canonical height

Naïve logarithmic height

Naïve logarithmic height

Definition

Let $P \in E(\mathbb{Q})$. We may write P = (x, y) with $x = \frac{a}{b}$, $a, b \in \mathbb{Z}$ and gcd(a, b) = 1. Then

$$h(P) := \max \{ \log |a|, \log |b| \}$$

Naïve logarithmic height

Definition

Let $P \in E(\mathbb{Q})$. We may write P = (x, y) with $x = \frac{a}{b}$, $a, b \in \mathbb{Z}$ and $\gcd(a, b) = 1$. Then

$$h(P) := \max \{ \log |a|, \log |b| \}$$

Naïve height is "almost a quadratic form" on $E(\mathbb{Q})$:

• $h(n \cdot P) \sim n^2 \cdot h(P)$

Definition

Let $P \in E(\mathbb{Q})$. Then the canonical height of P is

$$\hat{h}(P) := \lim_{n \to \infty} \frac{h(2^n P)}{(2^n)^2}$$

Definition

Let $P \in E(\mathbb{Q})$. Then the canonical height of P is

$$\hat{h}(P) := \lim_{n \to \infty} \frac{h(2^n P)}{(2^n)^2}$$

 \hat{h} defines a quadratic form on $E(\mathbb{Q})$ modulo torsion:

- $\hat{h}(P+Q) + \hat{h}(P-Q) = 2\left[\hat{h}(P) + \hat{h}(Q)\right] \text{parallelogram law}$
- $\hat{h}(nP) = n^2 \hat{h}(P)$
- $\hat{h}(P) = 0 \text{ iff } P \text{ is torsion;}$

Definition

Let $P \in E(\mathbb{Q})$. Then the canonical height of P is

$$\hat{h}(P) := \lim_{n \to \infty} \frac{h(2^n P)}{(2^n)^2}$$

 \hat{h} defines a quadratic form on $E(\mathbb{Q})$ modulo torsion:

- $\hat{h}(P+Q)+\hat{h}(P-Q)=2\left[\hat{h}(P)+\hat{h}(Q)
 ight]$ parallelogram law
- $\hat{h}(nP) = n^2 \hat{h}(P)$
- $\hat{h}(P) = 0 \text{ iff } P \text{ is torsion};$

Definition

The *Néron-Tate pairing* on E/\mathbb{Q} is the bilinear form

$$\langle \; , \; \rangle : E(\mathbb{Q}) \times E(\mathbb{Q}) \to \mathbb{R}$$
 by

$$\langle P, Q \rangle = \frac{1}{2} \left(\hat{h}(P+Q) - \hat{h}(P) - \hat{h}(Q) \right)$$

<,> acts like an inner product on $E(\mathbb{Q})$:

<,> acts like an inner product on $E(\mathbb{Q})$:

Proposition

Let E/\mathbb{Q} have rank r. Then $E(\mathbb{Q})/E_{tor}(\mathbb{Q}) \hookrightarrow \mathbb{R}^r$ as a rank r lattice via

$$Q \mapsto (\langle Q, P_1 \rangle, \dots, \langle Q, P_r \rangle)$$

where $\{P_1, \ldots, P_r\}$ is a basis for $E(\mathbb{Q})$ modulo torsion.

<,> acts like an inner product on $E(\mathbb{Q})$:

Proposition

Let E/\mathbb{Q} have rank r. Then $E(\mathbb{Q})/E_{tor}(\mathbb{Q}) \hookrightarrow \mathbb{R}^r$ as a rank r lattice via

$$Q \mapsto (\langle Q, P_1 \rangle, \dots, \langle Q, P_r \rangle)$$

where $\{P_1, \ldots, P_r\}$ is a basis for $E(\mathbb{Q})$ modulo torsion.

Definition

The regulator of E/\mathbb{Q} is

$$\operatorname{\mathsf{Reg}}_{\mathcal{E}} = \det \left(\langle P_i, P_j \rangle \right)_{1 \leq i, j \leq r}$$

i.e. the covolume of the lattice that is the image of $E(\mathbb{Q})$ under the above embedding map

Open question, but we do have the following conjecture:

Conjecture (Lang)

There exists an absolute constant $M_0>0$ s.t. for any E/\mathbb{Q} and any $P\in E(\mathbb{Q})$,

$$\hat{h}(P) \geq M_0 \log |D_E|$$

where D_E is the minimal discriminant of E.

Open question, but we do have the following conjecture:

Conjecture (Lang)

There exists an absolute constant $M_0>0$ s.t. for any E/\mathbb{Q} and any $P\in E(\mathbb{Q})$,

$$\hat{h}(P) \geq M_0 \log |D_E|$$

where D_F is the minimal discriminant of E.

Recall for
$$E: y^2 = x^3 + Ax + B$$
, $D_E = -16(4A^3 + 27B^2)$

Open question, but we do have the following conjecture:

Conjecture (Lang)

There exists an absolute constant $M_0>0$ s.t. for any E/\mathbb{Q} and any $P\in E(\mathbb{Q})$,

$$\hat{h}(P) \geq M_0 \log |D_E|$$

where D_E is the minimal discriminant of E.

Recall for
$$E: y^2 = x^3 + Ax + B$$
, $D_E = -16(4A^3 + 27B^2)$

Theorem (Hindry-Silverman 1988)

ABC \Longrightarrow Lang's conjecture, and $M_0 > 6 \times 10^{-11}$.

Open question, but we do have the following conjecture:

Conjecture (Lang)

There exists an absolute constant $M_0 > 0$ s.t. for any E/\mathbb{Q} and any $P \in E(\mathbb{Q})$,

$$\hat{h}(P) \geq M_0 \log |D_E|$$

where D_E is the minimal discriminant of E.

Recall for
$$E: y^2 = x^3 + Ax + B$$
, $D_E = -16(4A^3 + 27B^2)$

Theorem (Hindry-Silverman 1988)

 $ABC \Longrightarrow Lang's \ conjecture, \ and \ M_0 > 6 \times 10^{-11}$.

Theorem (Elkies 2002)

 $M_0 > 3.94 \times 10^{-5}$ (still contingent on ABC)

Proposition (S.)

Assuming BSD and ABC,

$$\text{Reg}_F \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80}$$

Proposition (S.)

Assuming BSD and ABC,

$$\text{Reg}_F \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80}$$

Further assuming GRH:

$$\text{Reg}_F \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

Proposition (S.)

BSD and ABC
$$\Rightarrow \text{Reg}_E \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + \text{GRH: } \text{Reg}_E \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

Proposition (S.)

BSD and ABC
$$\Rightarrow \text{Reg}_E \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + \text{GRH: } \text{Reg}_E \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

Proof.

• Verified manually for all curves with $N_E \leq 350000$

Proposition (S.)

BSD and ABC
$$\Rightarrow \text{Reg}_E \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + \text{GRH: } \text{Reg}_E \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

- Verified manually for all curves with $N_E \leq 350000$
- So *E* have $N_E > 350000$. Let $K = 3.94 \times 10^{-5} \cdot \log(350000)$. $\Rightarrow \hat{h}(P) \geq K$ for any $P \in E(\mathbb{Q})$

Proposition (S.)

BSD and ABC
$$\Rightarrow \text{Reg}_E \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + \text{GRH: } \text{Reg}_E \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

- Verified manually for all curves with $N_E \leq 350000$
- So *E* have $N_E > 350000$. Let $K = 3.94 \times 10^{-5} \cdot \log(350000)$. $\Rightarrow \hat{h}(P) \geq K$ for any $P \in E(\mathbb{Q})$
- $\Rightarrow \operatorname{Reg}_F \geq K^r$

Proposition (S.)

BSD and ABC
$$\Rightarrow \text{Reg}_E \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + \text{GRH: } \text{Reg}_E \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

- Verified manually for all curves with $N_E \leq 350000$
- So *E* have $N_E > 350000$. Let $K = 3.94 \times 10^{-5} \cdot \log(350000)$. $\Rightarrow \hat{h}(P) \ge K$ for any $P \in E(\mathbb{Q})$
- $\Rightarrow \text{Reg}_F \geq K^r$
- From logarithmic derivatives: $r_{an}(E) < \frac{1}{2} \log N_E + 1.6$. So

Proposition (S.)

BSD and ABC
$$\Rightarrow$$
 Reg_E $\geq 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + GRH$: Reg_E $\geq 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$

Proof.

- ullet Verified manually for all curves with $N_E \leq 350000$
- So *E* have $N_E > 350000$. Let $K = 3.94 \times 10^{-5} \cdot \log(350000)$. $\Rightarrow \hat{h}(P) \geq K$ for any $P \in E(\mathbb{Q})$
- $\Rightarrow \text{Reg}_F \geq K^r$
- From logarithmic derivatives: $r_{an}(E) < \frac{1}{2} \log N_E + 1.6$. So

$$\operatorname{\mathsf{Reg}}_{\mathit{E}} > K^{\frac{1}{2}\log N_{\mathit{E}} + 1.6} = K^{1.6} (N_{\mathit{E}})^{\frac{1}{2}\log K} = 5.29 \times 10^{-6} \cdot (N_{\mathit{E}})^{-3.80}$$

Proposition (S.)

BSD and ABC
$$\Rightarrow \text{Reg}_E \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + GRH: \text{Reg}_E \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

Proof.

- Verified manually for all curves with $N_E \leq 350000$
- So *E* have $N_E > 350000$. Let $K = 3.94 \times 10^{-5} \cdot \log(350000)$. $\Rightarrow \hat{h}(P) \geq K$ for any $P \in E(\mathbb{Q})$
- $\Rightarrow \operatorname{Reg}_F \geq K^r$
- From logarithmic derivatives: $r_{an}(E) < \frac{1}{2} \log N_E + 1.6$. So

$$\mathsf{Reg}_{E} > K^{\frac{1}{2}\log N_{E} + 1.6} = K^{1.6} (N_{E})^{\frac{1}{2}\log K} = 5.29 \times 10^{-6} \cdot (N_{E})^{-3.80}$$

With GRH, have $r_{an}(E) < 0.32 \log N_E + 0.5$; proceed as above.

Proposition (S.)

BSD and ABC
$$\Rightarrow \text{Reg}_E \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + \text{GRH: } \text{Reg}_E \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

Proposition (S.)

BSD and ABC
$$\Rightarrow \text{Reg}_E \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + GRH: \text{Reg}_E \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

Note: bound likely not optimal:

• Smallest known point height (Stein 2002): Cremona curve 3990v1 with equation $E: y^2 + xy + y = x^3 + x^2 - 125615 + 61201397$ has point P = (7107, -602054) with $\hat{h}(P) = 8.914 \times 10^{-3}$

Proposition (S.)

BSD and ABC
$$\Rightarrow \text{Reg}_E \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + GRH: \text{Reg}_E \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

Note: bound likely not optimal:

- Smallest known point height (Stein 2002): Cremona curve 3990v1 with equation $E: y^2 + xy + y = x^3 + x^2 125615 + 61201397$ has point P = (7107, -602054) with $\hat{h}(P) = 8.914 \times 10^{-3}$
- If so, $\Rightarrow \text{Reg}_E \geq 6.6064 \cdot (N_E)^{-2.36}$ without needing GRH

Proposition (S.)

BSD and ABC
$$\Rightarrow \text{Reg}_E \ge 5.29 \times 10^{-6} \cdot (N_E)^{-3.80} + GRH: \text{Reg}_E \ge 2.24 \times 10^{-2} \cdot (N_E)^{-2.43}$$

Note: bound likely not optimal:

- Smallest known point height (Stein 2002): Cremona curve 3990v1 with equation $E: y^2 + xy + y = x^3 + x^2 125615 + 61201397$ has point P = (7107, -602054) with $\hat{h}(P) = 8.914 \times 10^{-3}$
- If so, $\Rightarrow \text{Reg}_E \geq 6.6064 \cdot (N_E)^{-2.36}$ without needing GRH
- Nevertheless, bound is good enough

$$\frac{L_E^{(r)}(1)}{r!} \ge \frac{\Omega_E \cdot \mathsf{Reg}_E}{256}$$

The Real Period Ω_F

What is Ω_F ?

Loosely, the real period of ${\it E}$ is a measure of the size of the set of real points on ${\it E}$

- Ω_E small \Longrightarrow lots of real points on E
- Ω_E big \Longrightarrow few real points on E

What is Ω_F ?

Loosely, the real period of ${\it E}$ is a measure of the size of the set of real points on ${\it E}$

- Ω_E small \Longrightarrow lots of real points on E
- Ω_F big \Longrightarrow few real points on E

Again, need a more formal definition of what is meant by the size of $E(\mathbb{R})$.

Real period examples

Figure: A plot of E/\mathbb{R} for two elliptic curves with minimal discriminant \sim 300000. The top curve has a very small real period for its discriminant, the bottom very large.

Let $E(\mathbb{C})$ be the group of complex points on E. Recall:

Let $E(\mathbb{C})$ be the group of complex points on E. Recall:

• $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda$, $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ a lattice

Let $E(\mathbb{C})$ be the group of complex points on E. Recall:

- $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda$, $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ a lattice
- If E is defined over \mathbb{Q} , then may take $\omega_1 \in \mathbb{R}_+$, $\Im(\omega_2) > 0$ and $\Re(\omega_2) \in \left\{0, \frac{\omega_1}{2}\right\}$.

Let $E(\mathbb{C})$ be the group of complex points on E. Recall:

- $E(\mathbb{C})\simeq \mathbb{C}/\Lambda$, $\Lambda=\mathbb{Z}\omega_1+\mathbb{Z}\omega_2$ a lattice
- If E is defined over \mathbb{Q} , then may take $\omega_1 \in \mathbb{R}_+$, $\Im(\omega_2) > 0$ and $\Re(\omega_2) \in \{0, \frac{\omega_1}{2}\}$.

Definition

The real period Ω_E of E is defined to be

$$\Omega_E = egin{cases} 2\omega_1 & D_E > 0 \ \omega_1 & D_E < 0 \end{cases}$$

where D_F is the discriminant of E

Let $E(\mathbb{C})$ be the group of complex points on E. Recall:

- $E(\mathbb{C})\simeq \mathbb{C}/\Lambda$, $\Lambda=\mathbb{Z}\omega_1+\mathbb{Z}\omega_2$ a lattice
- If E is defined over \mathbb{Q} , then may take $\omega_1 \in \mathbb{R}_+$, $\Im(\omega_2) > 0$ and $\Re(\omega_2) \in \{0, \frac{\omega_1}{2}\}$.

Definition

The real period Ω_E of E is defined to be

$$\Omega_E = \begin{cases} 2\omega_1 & D_E > 0 \\ \omega_1 & D_E < 0 \end{cases}$$

where D_E is the discriminant of E

Recall for
$$E: y^2 = x^3 + Ax + B$$
, $D_E = -16(4A^3 + 27B^2)$

Theorem (S.)

Assuming ABC, $\forall \epsilon > 0 \exists K_{\epsilon} > 0$ s.t.

$$\Omega_E > \mathcal{K}_{\epsilon} \cdot (\mathcal{N}_E)^{-\frac{3}{2} - \epsilon}$$

Theorem (S.)

Assuming ABC, $\forall \epsilon > 0 \exists K_{\epsilon} > 0$ s.t.

$$\Omega_{\mathsf{E}} > \mathcal{K}_{\epsilon} \cdot (\mathcal{N}_{\mathsf{E}})^{-\frac{3}{2} - \epsilon}$$

Proof Sketch

• Ω_E can be computed via AGM and roots of cubic in model $y^2 = [\text{cubic}]$

Theorem (S.)

Assuming ABC, $\forall \epsilon > 0 \exists K_{\epsilon} > 0$ s.t.

$$\Omega_{\mathsf{E}} > \mathsf{K}_{\epsilon} \cdot (\mathsf{N}_{\mathsf{E}})^{-\frac{3}{2} - \epsilon}$$

Proof Sketch

- Ω_E can be computed via AGM and roots of cubic in model $y^2 = [\text{cubic}]$
- Analysis \Rightarrow get lower bound on Ω_E i.t.o. magnitude of cubic coeffs

Theorem (S.)

Assuming ABC, $\forall \epsilon > 0 \exists K_{\epsilon} > 0$ s.t.

$$\Omega_{\mathsf{E}} > \mathcal{K}_{\epsilon} \cdot (\mathcal{N}_{\mathsf{E}})^{-\frac{3}{2} - \epsilon}$$

Proof Sketch

- Ω_E can be computed via AGM and roots of cubic in model $y^2 = [\text{cubic}]$
- Analysis \Rightarrow get lower bound on Ω_E i.t.o. magnitude of cubic coeffs
- Szpiro's conjecture \Rightarrow lower bound i.t.o. power of N_E

Note that $N_E|D_E$ always (via Ogg's formula), $\Rightarrow N_E \leq |D_E|$

Note that $N_E|D_E$ always (via Ogg's formula), $\Rightarrow N_E \leq |D_E|$ Szpiro: conjectural bound in the other direction:

Note that $N_E|D_E$ always (via Ogg's formula), $\Rightarrow N_E \leq |D_E|$ Szpiro: conjectural bound in the other direction:

Conjecture (Szpiro 1980s)

$$\forall \ \epsilon > 0 \ \exists \ K_{\epsilon} > 0 \ s.t.$$

$$|D_E| < K_\epsilon \cdot (N_E)^{6+\epsilon}$$

Note that $N_E|D_E$ always (via Ogg's formula), $\Rightarrow N_E \leq |D_E|$ Szpiro: conjectural bound in the other direction:

Conjecture (Szpiro 1980s)

 $\forall \ \epsilon > 0 \ \exists \ K_{\epsilon} > 0 \ s.t.$

$$|D_E| < K_\epsilon \cdot (N_E)^{6+\epsilon}$$

Modified Szpiro conjecture

Let E/\mathbb{Q} have minimal short Weierstrass equation $y^2=x^3+Ax+B$. Then $\forall \ \epsilon>0 \ \exists \ K_\epsilon>0$ s.t.

$$\max\left\{|A|^3,|B|^2\right\}< {\it K}_{\epsilon}\cdot ({\it N}_{\it E})^{6+\epsilon}$$

Note that $N_E|D_E$ always (via Ogg's formula), $\Rightarrow N_E \leq |D_E|$ Szpiro: conjectural bound in the other direction:

Conjecture (Szpiro 1980s)

 $\forall \ \epsilon > 0 \ \exists \ K_{\epsilon} > 0 \ s.t.$

$$|D_E| < K_\epsilon \cdot (N_E)^{6+\epsilon}$$

Modified Szpiro conjecture

Let E/\mathbb{Q} have minimal short Weierstrass equation $y^2=x^3+Ax+B$. Then $\forall \ \epsilon>0 \ \exists \ K_\epsilon>0$ s.t.

$$\max\left\{|A|^3,|B|^2\right\}< {\it K}_{\epsilon}\cdot ({\it N}_{\it E})^{6+\epsilon}$$

• "A curve with a given conductor cannot have a (minimal) model with coefficients too large".

Note that $N_E|D_E$ always (via Ogg's formula), $\Rightarrow N_E \leq |D_E|$ Szpiro: conjectural bound in the other direction:

Conjecture (Szpiro 1980s)

 $\forall \ \epsilon > 0 \ \exists \ K_{\epsilon} > 0 \ s.t.$

$$|D_E| < K_\epsilon \cdot (N_E)^{6+\epsilon}$$

Modified Szpiro conjecture

Let E/\mathbb{Q} have minimal short Weierstrass equation $y^2 = x^3 + Ax + B$. Then $\forall \epsilon > 0 \; \exists \; K_{\epsilon} > 0 \; \text{s.t.}$

$$\max\left\{|A|^3,|B|^2\right\}< K_\epsilon\cdot (N_E)^{6+\epsilon}$$

- "A curve with a given conductor cannot have a (minimal) model with coefficients too large".
- ABC ⇒ Szpiro.

Supporting Data

Figure: $\log N_E$ vs. $\log \Omega_E$ for all curves up to conductor 350000. The upper red line is the proven upper bound $\Omega_E < 8.82921517...\cdot (N_E)^{-\frac{1}{12}}$; the lower red line corresponds to $\Omega_E > (N_E)^{-1}$.

Corollary

 Ω_E can be computed to a specified precision in polynomial time and space in the number of bits of the curve's conductor.

Corollary

 Ω_E can be computed to a specified precision in polynomial time and space in the number of bits of the curve's conductor.

Proof Sketch

• AGM converges quadratically (Gauss), so quick to compute

Corollary

 Ω_E can be computed to a specified precision in polynomial time and space in the number of bits of the curve's conductor.

Proof Sketch

- AGM converges quadratically (Gauss), so quick to compute
- ullet $\Rightarrow \Omega_E$ can be computed in polynomial time of number of bits of coefficients

Corollary

 Ω_E can be computed to a specified precision in polynomial time and space in the number of bits of the curve's conductor.

Proof Sketch

- AGM converges quadratically (Gauss), so quick to compute
- $\Rightarrow \Omega_E$ can be computed in polynomial time of number of bits of coefficients
- By Szpiro, coefficients can't be too large i.t.o. conductor.

Proof of the Main Theorem

How much precision do we need to compute analytic rank?

Assume BSD and ABC.

Precision Theorem (S.)

Let E have L-function $L_E(s)$, conductor N_E and real period Ω_E , and let

$$k = \lceil 36 + 3.8 \log_2 N_E - \log_2 \Omega_E \rceil$$

Then

- ② If $L_E^{(m)}(1) = 0$ for all $0 \le m < n$ and $\frac{L_E^{(n)}(1)}{n!}$ is zero to k bits precision, then $L_E^{(n)}(1)$ is identically zero.

Assume BSD and ABC.

Precision Theorem (S.)

Let E have L-function $L_E(s)$, conductor N_E and real period Ω_E , and let

$$k = \lceil 36 + 3.8 \log_2 N_E - \log_2 \Omega_E \rceil$$

Then

- ② If $L_E^{(m)}(1) = 0$ for all $0 \le m < n$ and $\frac{L_E^{(n)}(1)}{n!}$ is zero to k bits precision, then $L_E^{(n)}(1)$ is identically zero.

With GRH: let $k = \lceil 26 + 2.43 \log_2 N_E - \log_2 \Omega_E \rceil$.

Proof.

Proof.

 ${\color{red} \bullet}$ Follows immediately from negative power bound on $\Omega_{\textit{E}}$

Proof.

- lacktriangle Follows immediately from negative power bound on Ω_E
- ② Since $C_E > (\text{Reg}_E \cdot \Omega_E)/256$ and $\text{Reg}_E \geq 5.29 \times 10^{-6} \cdot (N_E)^{-3.80}$, we have

$$\begin{split} \log_2 C_E > -16 + \log_2 (5.29 \times 10^{-6}) + 3.8 \log_2 N_E + \log_2 \Omega_E \\ > -34 - 3.8 \log_2 N_E + \log_2 \Omega_E \end{split}$$

Proof.

- lacktriangle Follows immediately from negative power bound on Ω_E
- ② Since $C_E > (\text{Reg}_E \cdot \Omega_E)/256$ and $\text{Reg}_E \geq 5.29 \times 10^{-6} \cdot (N_E)^{-3.80}$, we have

$$\begin{split} \log_2 C_E > -16 + \log_2 (5.29 \times 10^{-6}) + 3.8 \log_2 N_E + \log_2 \Omega_E \\ > -34 - 3.8 \log_2 N_E + \log_2 \Omega_E \end{split}$$

So by BSD, rank is smallest n s.t. $\frac{L_E^{(n)}(1)}{n!} > 2^{-k}$.

Algorithm: compute the rank of an elliptic curve (BSD, ABC, (GRH))

Given E/\mathbb{Q} with conductor N_E :

- **①** Compute the real period Ω_E of E.
- ② Set $k = \lceil 36 + 3.8 \log_2 N_E \log_2 \Omega_E \rceil$, and set m = 0. (If GRH: set $k = \lceil 24 + 2.43 \log_2 N_E \log_2 \Omega_E \rceil$ instead)
- **3** Output $r = \text{index of the first Taylor coefficient of the } L_E(s)$ at s = 1 that isn't zero to k bits precision.

Algorithm: compute the rank of an elliptic curve (BSD, ABC, (GRH))

Given E/\mathbb{Q} with conductor N_E :

- **①** Compute the real period Ω_E of E.
- ② Set $k = \lceil 36 + 3.8 \log_2 N_E \log_2 \Omega_E \rceil$, and set m = 0. (If GRH: set $k = \lceil 24 + 2.43 \log_2 N_E \log_2 \Omega_E \rceil$ instead)
- **3** Output $r = \text{index of the first Taylor coefficient of the } L_E(s)$ at s = 1 that isn't zero to k bits precision.

Theorem (S.)

Assuming BSD, ABC and optionally GRH, the above algorithm correctly computes the rank of E in $\tilde{O}(\sqrt{N_E})$ time.

Proof.

All that remains is to show step 3. (walk along Taylor coefficients) takes $\tilde{O}\left(\sqrt{N_E}\right)$ time.

Proof.

All that remains is to show step 3. (walk along Taylor coefficients) takes $\tilde{O}\left(\sqrt{N_E}\right)$ time.

• (Bradshaw 2010): $L_E(s)$ can be provably evaluated to k bits precision in $\tilde{O}(k\cdot\sqrt{N_E})$ near s=1.

Proof.

All that remains is to show step 3. (walk along Taylor coefficients) takes $\tilde{O}\left(\sqrt{N_E}\right)$ time.

- (Bradshaw 2010): $L_E(s)$ can be provably evaluated to k bits precision in $\tilde{O}(k \cdot \sqrt{N_E})$ near s=1.
- $k = O(\log N_E)$ for some m from before

Proof.

All that remains is to show step 3. (walk along Taylor coefficients) takes $\tilde{O}\left(\sqrt{N_E}\right)$ time.

- (Bradshaw 2010): $L_E(s)$ can be provably evaluated to k bits precision in $\tilde{O}(k \cdot \sqrt{N_E})$ near s=1.
- $k = O(\log N_E)$ for some m from before
- BSD: $r < \frac{1}{2} \log N_E + 1.6$

Proof.

All that remains is to show step 3. (walk along Taylor coefficients) takes $\tilde{O}\left(\sqrt{N_E}\right)$ time.

- (Bradshaw 2010): $L_E(s)$ can be provably evaluated to k bits precision in $\tilde{O}(k \cdot \sqrt{N_E})$ near s=1.
- $k = O(\log N_E)$ for some m from before
- BSD: $r < \frac{1}{2} \log N_E + 1.6$
- So step 3 takes

$$O(\log N_E) \cdot \tilde{O}((\log N_E)^m \cdot \sqrt{N_E}) = \tilde{O}(\sqrt{N_E})$$

time

Supporting data

Figure: Conductor v.s time in seconds taken to compute rank using a Sage implementation of the rank algorithm (without assuming GRH), on a log/log scale, for 100 curves drawn randomly from the Cremona database.

Rank algorithm is not optimal in multiple ways:

• Should check for torsion first - if none then need 16 bits less precision

- Should check for torsion first if none then need 16 bits less precision
- Regulator bound could be improved fixed time point search + CPS bound

- Should check for torsion first if none then need 16 bits less precision
- Regulator bound could be improved fixed time point search + CPS bound
- GRH \Rightarrow rank grows slower than log $N_E \Rightarrow$ speedups

- Should check for torsion first if none then need 16 bits less precision
- Regulator bound could be improved fixed time point search + CPS bound
- GRH \Rightarrow rank grows slower than log $N_E \Rightarrow$ speedups
- Work on reducing ABC dependence

• $\tilde{O}(\sqrt{N_E})$ dependence in rank algorithm makes it impractical for curves of very large conductor

- $\tilde{O}(\sqrt{N_E})$ dependence in rank algorithm makes it impractical for curves of very large conductor
- ullet Elkies' rank 28 curve ($N_E \sim 10^{142})$ would take $\sim 10^{62}$ years

- $\tilde{O}(\sqrt{N_E})$ dependence in rank algorithm makes it impractical for curves of very large conductor
- ullet Elkies' rank 28 curve ($N_E \sim 10^{142}$) would take $\sim 10^{62}$ years
- Can resort to faster analytic techniques that bound rank from above

- $\tilde{O}(\sqrt{N_F})$ dependence in rank algorithm makes it impractical for curves of very large conductor
- Elkies' rank 28 curve ($N_F \sim 10^{142}$) would take $\sim 10^{62}$ years
- Can resort to faster analytic techniques that bound rank from above
- Technique is zero sum based, so results on location/density of nontrivial zeros for $L_F(s)$

Baie Dankie

(Afrikaans for Thank You)