

United States Department of Agriculture

Natural Resources Conservation Service

United States Department of the Interior

National Park Service In cooperation with Yosemite National Park and the Regents of the University of California (Agricultural Experiment Station)

Soil Survey of Yosemite National Park, California

How To Use This Soil Survey

The detailed soil maps can be useful in planning the use and management of small areas.

To find information about your area of interest, locate that area on the **Index to Map Sheets**. Note the number of the map sheet and go to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Go to the **Contents**, which lists the map units by symbol and name and shows the page where each map unit is described.

The **Contents** shows which table has data on a specific land use for each detailed soil map unit. Also see the **Contents** for sections of this publication that may address your specific needs.

National Cooperative Soil Survey

This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey.

This survey was made cooperatively by the Natural Resources Conservation Service; the United States Department of the Interior, National Park Service, Yosemite National Park; and the Regents of the University of California (Agricultural Experiment Station). The Natural Resources Conservation Service had primary responsibility for conducting the survey. The survey is part of the technical assistance furnished to the Tuolumne County, Mariposa County, and Coarsegold Resource Conservation Districts; Central Sierra Resource Conservation and Development; and Yosemite/Sequoia Resource Conservation and Development.

Fieldwork for the Yosemite Valley portion of this soil survey was conducted in 1990 and 1991. Fieldwork for the remainder of the park was conducted between 1996 and 2001. Soil names and descriptions were approved in 2006. Unless otherwise indicated, statements in this publication refer to conditions in the survey area during the fieldwork period.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

The most current soil information and interpretations for this survey area are available either through the Soil Data Mart or in the Field Office Technical Guide (FOTG) at the local field office of the Natural Resources Conservation Service. The Soil Data Mart is the Natural Resources Conservation Service data storage site for the official soil survey information. The FOTG is linked to the Soil Data Mart; therefore, the same information is available from both sources. Soil survey maps and tabular data can be accessed through the Soil Data Mart at http://soildatamart.nrcs.usda.gov. The official soil survey information stored at the Soil Data Mart and this soil survey report are also available through Web Soil Survey at http://soils.usda.gov/survey.

Nondiscrimination Statement

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, or, where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, or political beliefs, as a means of reprisal, or the fact that all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print,

audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call 800-795-3272 (voice) or 202-720-6382 (TDD). USDA is an equal opportunity provider and employer.

Citation

The correct citation for this survey is as follows:

United States Department of Agriculture, Natural Resources Conservation Service. 2007. Soil survey of Yosemite National Park, California. Accessible online at: http://soils.usda.gov/surve/printed_survey/.

Cover: The south bank of the Merced River below Bridalveil Falls. The soil shown is a Mollic Xerofluvent that formed on an active flood plain of cobbly and stony channel deposits in an area of Oxyaquic Xerofluvents-Riverwash complex, 1 to 4 percent slopes, mesic.

Additional information about the Nation's natural resources is available online from the Natural Resources Conservation Service at http://www.nrcs.usda.gov.

Contents

Cover	i
How To Use This Soil Survey	
Contents	vii
Foreword	xv
Introduction	1
General Nature of the Survey Area	1
Soil Temperature Regimes	
How This Survey Was Made	5
Map Unit Delineation	7
Designing and Delineating Map Unit Landscapes	9
Relating Soils to Map Units	. 12
Detailed Soil Map Units	
101—Oxyaquic Xerofluvents-Riverwash-Fluvaquents association, 0 to 2	
percent slopes, mesic	. 14
101t—Lithnip-Rock outcrop-Fishsnooze complex, 30 to 75 percent slopes,	
mountains, cryic	. 17
102—Oxyaquic Xerofluvents-Riverwash complex, 1 to 4 percent slopes,	
mesic	. 20
102t—Lithnip-Rock outcrop-Fishsnooze complex, 8 to 30 percent slopes,	
mountains, cryic	. 24
104—Aquandic Humaquepts, 0 to 2 percent slopes, mesic	. 27
111t—Whittell-Jobsis-Rock outcrop complex, 30 to 75 percent slopes,	
mountains, cryic	. 29
151—Elcapitan fine sandy loam, 0 to 2 percent slopes, mesic	. 32
152—Vitrandic Haploxerolls, sandy, 0 to 3 percent slopes, mesic	. 33
201—Leidig fine sandy loam, 0 to 2 percent slopes, occasionally flooded,	
mesic	. 35
210—Rubble land-Typic Cryorthents-Rock outcrop-Xeric Dystrocryepts	
complex, 30 to 80 percent slopes, mountainflanks, metamorphic, mafic,	
cryic	. 37
211—Xeric Dystrocryepts-Canisrocks-Oxyaquic Dystrocryepts association,	
10 to 40 percent slopes, aprons, lateral moraines, cryic	. 40
213—Canisrocks-Glacierpoint-Vitrandic Dystrocryepts complex, bouldery, 20 to	
45 percent slopes, medial moraines, cryic	. 43
214—Marmotland-Oxyaquic Dystrocryepts-Xeric Dystrocryepts complex, 0 to	
15 percent slopes, mountain valley floors, cryic	. 46
215—Typic Cryorthents-Rock outcrop-Rubble land complex, 30 to 65 percent	
slopes, metamorphic, glacially scoured mountain slopes, cryic	. 51
219—Rock outcrop-Rubble land-Canisrocks association, 0 to 80 percent	
slopes, cirqued mountainflanks, cryic	. 53
221—Typic Cryorthents-Xeric Dystrocryepts-Oxyaquic Dystrocryepts complex,	
15 to 45 percent slopes, metamorphic, mountain slopes, lateral moraines,	
cryic	. 55
222—Canisrocks-Rubble land-Rock outcrop-Crazymule complex, 30 to 75	
percent slopes, mountainflanks, colluvial aprons, cryic	. 59

223—Rock outcrop-Rubble land-Canisrocks association, 10 to 65 percent	
slopes, mountain slopes, cryic	62
224—Rock outcrop-Crazymule-Vitrandic Cryorthents association, 0 to 45	
percent slopes, joints, fractures, scoured, cryic	64
225—Canisrocks-Rock outcrop-Rubble land-Vitrandic Dystrocryepts	
association, 2 to 30 percent slopes, glacially scoured mountain valleys,	
cryic	67
227—Canisrocks-Crazymule complex, 15 to 45 percent slopes, mountain	
slopes, lateral moraines, cryic	72
228—Xeric Dystrocryepts-Vitrandic Eutrocryepts complex, 0 to 15 percent	
slopes, wet/dry meadows, cryic	74
229—Marmotland-Oxyaquic Dystrocryepts association, 0 to 8 percent slopes,	/ ¬
mountain valleys, ground moraines, fluted, cryic	77
231—Canisrocks-Typic Cryaquents complex, 5 to 30 percent slopes, lateral	, ,
moraines, aprons, wet/dry, cryic	70
232—Canisrocks-Glacierpoint complex, 0 to 25 percent slopes, lateral	10
moraines, cryic	81
234—Rock outcrop-Rubble land association, 0 to 80 percent slopes,	01
metamorphic, cirques, mountainflanks, cryic	83
235—Canisrocks-Rock outcrop-Rubble land complex, 30 to 80 percent	00
slopes, mountainflanks, cryic	85
237—Canisrocks-Glacierpoint-Vitrandic Cryorthents complex, bouldery,	00
5 to 20 percent slopes, ground moraines, cryic	QΩ
238—Oxyaquic Cryorthents-Canisrocks complex, 0 to 15 percent slopes,	00
ground moraines, wet/dry, cryic	01
239—Crazymule-Canisrocks complex, 0 to 20 percent slopes, ground	91
moraines, cryic	03
241—Canisrocks, 5 to 35 percent slopes, mountain valleys, cryic	
242—Rock outcrop-Canisrocks-Xeric Dystrocryepts complex, 0 to 35 percent	93
slopes, mountain slopes, cryic	97
244—Typic Cryorthents-Rubble land-Rock outcrop complex, 15 to 40 percent	31
slopes, moraines, cryic	101
245—Rock outcrop-Canisrocks-Xeric Dystrocryepts association, 0 to 35	101
percent slopes, mountain valleys, scoured, filled, cryic	102
246—Rock outcrop, domes, cryic	
247—Canisrocks-Xeric Dystrocryepts association, 5 to 30 percent slopes,	100
mountain valleys, moraines, cryic	107
248—Canisrocks-Rock outcrop-Glacierpoint complex, 30 to 70 percent slopes,	107
	110
mountain slopes, cryic	110
249—Rock outcrop-Canisrocks complex, 30 to 70 percent slopes, mountain	110
slopes, cryic	113
250—Canisrocks-Xeric Dystrocryepts association, 5 to 40 percent slopes,	44-
mountain valleys, moraines, avalanches, cryic	115
251—Glacierpoint-Typic Cryorthents complex, 30 to 65 percent slopes,	44-
mountain slopes, lateral moraines, aprons, cryic	11/

252—Rock outcrop-Carilsrocks-Xeric Dystrocryepts complex, 5 to 45 percent	
slopes, moraines, mountain slopes, cryic	120
253—Canisrocks-Glacierpoint-Humic Dystrocryepts complex, 15 to 55 percent	
slopes, lateral moraines, cryic	126
256—Craneflat-Rock outcrop-Rubble land-Waterwheel association, 30 to 80	
percent slopes, mountainflanks, frigid	129
257—Badgerpass-Oxyaquic Dystroxerepts association, 0 to 15 percent	
slopes, mountain valley floors, frigid	131
258—Typic Dystroxerepts-Badgerpass-Dystric Xerorthents complex, 15 to 45	
percent slopes, mountain slopes, moraines, frigid	133
260—Rock outcrop-Craneflat-Dystric Xerorthents complex, 30 to 65 percent	
slopes, mountain slopes, frigid	137
261—Dystric Xeropsamments-Typic Dystroxerepts-Badgerpass-Rock outcrop	.07
association, 5 to 35 percent slopes, mountain valleys, mountain slopes,	
frigid	139
262—Humic Dystroxerepts-Dystric Xerorthents-Rock outcrop association,	100
	143
30 to 70 percent slopes, mountain slopes, frigid	143
264—Crazymule-Canisrocks association, 0 to 20 percent slopes, lateral	1 10
moraines, wet/dry meadows, cryic	146
267—Rock outcrop-Typic Cryorthents-Xeric Dystrocryepts complex, 0 to 35	4 40
percent slopes, mountain slopes, joints, cryic	149
268—Rock outcrop-Canisrocks-Glacierpoint complex, 30 to 80 percent	
slopes, mountain slopes, joints, cryic	152
269—Canisrocks-Rock outcrop-Glacierpoint complex, 0 to 35 percent slopes,	
mountain slopes, moraines, joints, cryic	155
270—Rock outcrop-Typic Cryorthents-Vitrandic Dystrocryepts complex, 0 to	
65 percent slopes, metamorphic, mountain slopes, cryic	158
271—Rock outcrop-Lithic Xerorthents-Waterwheel complex, 0 to 150 percent	
slopes, cliffs, ledges, frigid	161
273—Nevadafalls-Waterwheel association, 0 to 35 percent slopes, moraines,	
frigid	163
274—Rock outcrop, domes, frigid	165
275—Oxyaquic Dystroxerepts-Dystric Xerorthents-Vitrandic Xerorthents-	
Rubble land complex, stony, 0 to 20 percent slopes, mountain valleys,	
mesic	166
276—Happyisles-Typic Dystroxerepts association, 0 to 15 percent slopes,	
the state of the s	169
277—Tuolumne-Humic Dystroxerepts complex, 15 to 65 percent slopes,	
aprons, mesic	173
278—Rock outcrop-Tuolumne-Humic Dystroxerepts-Rubble land complex,	
30 to 100 percent slopes, mountainflanks, mesic	175
279—Canisrocks-Xeric Dystrocryepts complex, 15 to 45 percent slopes,	. , 0
mountain slopes, moraines, cryic	178
280—Typic Dystroxerepts-Humic Dystroxerepts-Rock outcrop association,	. , 0
15 to 45 percent slopes, mountain slopes, frigid	121
To to 40 persont slopes, mountain slopes, mgia	101

282—Clarkslodge-Craneflat-Nevadafalls complex, 0 to 30 percent slopes,	
mountain slopes, hummocky, frigid	183
283—Waterwheel-Nevadafalls-Rock outcrop complex, 15 to 45 percent	
slopes, mountain slopes, landslides, frigid	186
285—Waterwheel-Humic Dystroxerepts complex, 15 to 45 percent slopes,	
	188
286—Nevadafalls-Typic Dystroxerepts-Ultic Palexeralfs-Rock outcrop	.00
complex, 0 to 30 percent slopes, mountain slopes, landslides, moraines,	
frigidfrigid	101
287—Badgerpass-Waterwheel association, 0 to 15 percent slopes, ridge	191
	100
crests, frigid	193
288—Rock outcrop-Craneflat-Waterwheel association, 0 to 30 percent	405
	195
289—Waterwheel-Craneflat complex, 35 to 70 percent slopes, mountain	
slopes, frigid	198
290—Humic Dystroxerepts-Tuolumne-Typic Xerorthents-Ultic Haploxeralfs	
complex, 30 to 70 percent slopes, mountain slopes, mesic	200
291—Ultic Haploxeralfs-Typic Dystroxerepts complex, 5 to 25 percent slopes,	
mountain footslopes, frigid	203
292—Humic Dystroxerepts-Typic Haploxerults complex, 5 to 35 percent	
slopes, mountain footslopes, landslides, mesic	205
293—Xeric Dystrocryepts-Vitrandic Dystrocryepts association, 0 to 25	
percent slopes, mountain slopes, summits, cryic	207
294—Waterwheel-Typic Dystroxerepts complex, 30 to 70 percent slopes,	
landslides, mountain slopes, frigid	210
295—Craneflat-Typic Dystroxerepts complex, 15 to 45 percent slopes,	
landslides, mountain slopes, frigid	213
296—Ultic Palexeralfs-Humic Dystroxerepts complex, 10 to 35 percent slopes,	
mountain slopes, mesic	216
297—Typic Xerorthents-Rock outcrop-Typic Xeropsamments complex, 15 to	
45 percent slopes, mountain slopes, mesic	210
298—Tuolumne-Typic Dystroxerepts complex, 30 to 65 percent slopes,	210
mountain slopes, landslides, mesic	221
299—Humic Dystroxerepts-Ultic Haploxeralfs complex, 15 to 35 percent	44 I
slopes, mountain slopes, moraines, mesic	222
·	223
300—Typic Dystroxerepts-Ultic Haploxeralfs complex, 0 to 15 percent slopes,	005
mountain slopes, moraines, mesic	225
301—Vitrandic Haploxerolls, coarse-loamy, 0 to 2 percent slopes, somewhat	000
poorly drained, mesic	229
302—Typic Haploxerults-Ultic Haploxeralfs complex, 0 to 30 percent slopes,	
mountain slopes, hummocky, mesic	231
303—Rock outcrop-Dystric Xeropsamments-Humic Dystroxerepts-Tuolumne	_
complex, 30 to 65 percent slopes, mountain slopes, mesic	232
304—Clarkslodge-Rock outcrop complex, 0 to 30 percent slopes, mountain	
slopes, metavolcanic, frigid/mesic	235

305—Rock outcrop-Waterwheel-Dystric Xeropsamments association, 0 to 35	
percent slopes, mountain valleys, scoured, valley fill, frigid	237
306—Typic Cryopsamments-Humic Dystrocryepts complex, 0 to 20 percent	
slopes, mountain toeslopes, moraines, cryic	240
307—Rock outcrop-Dystric Xeropsamments-Dystric Xerorthents association,	
	242
309—Rock outcrop-Waterwheel-Typic Dystroxerepts association, 30 to 80	
percent slopes, mountain slopes, joints, frigid	244
310—Rock outcrop-Humic Dystroxerepts-Humic Lithic Haploxerepts	
association, 30 to 100 percent slopes, mountain slopes, mesic	246
311—Rock outcrop-Humic Dystroxerepts-Humic Lithic Haploxerepts	240
association, 0 to 30 percent slopes, joints, mountain slopes, mesic	2/0
	240
313—Nevadafalls-Oxyaquic Dystrudepts complex, 5 to 30 percent slopes,	250
mountain valleys, moraines, frigid	250
314—Badgerpass-Dystric Xeropsamments-Rock outcrop complex, 5 to 45	OEO
percent slopes, mountain slopes, moraines, frigid	253
315—Nevadafalls-Dystric Xeropsamments complex, 15 to 45 percent slopes,	055
lateral moraines, frigid	255
316—Dystric Xerorthents-Rock outcrop-Rubble land complex, 30 to 80	0==
percent slopes, mountainflanks, thermic	257
318—Typic Dystroxerepts-Humic Dystroxerepts complex, 0 to 20 percent	050
slopes, ridge crests, frigid/mesic	259
319—Humic Dystroxerepts-Typic Haploxerults-Inceptic Haploxeralfs complex,	
30 to 65 percent slopes, mountain slopes, metamorphic, frigid	261
320—Half Dome-Humic Dystroxerepts-Rock outcrop complex, 30 to 60	
percent slopes, mountain slopes, moraines, mesic	264
321—Dystric Xeropsamments-Dystric Xerorthents association, 0 to 20	
percent slopes, mountain valleys, thermic	
322—Typic Xerorthents, 45 to 100 percent slopes, mountain slopes, thermic	268
323—Ultic Haploxeralfs-Humic Dystroxerepts complex, bouldery, 10 to 35	
percent slopes, mountain footslopes, thermic	269
324—Humic Haploxerepts-Rock outcrop-Ultic Haploxeralfs association, 45 to	
100 percent slopes, metasedimentary, mountain slopes, thermic	
325—Urban land, 0 to 45 percent slopes	273
328—Clarkslodge-Ultic Palexeralfs complex, metasedimentary, 15 to 45	
percent slopes, mountain slopes, landslides, frigid	
401—Sentinel loam, 0 to 2 percent slopes, mesic	277
412—Water-Riverwash complex, 0 to 1 percent slopes, mesic	278
501—Happyisles complex, 1 to 5 percent slopes, mesic	279
502—Happyisles sandy loam, 0 to 3 percent slopes, somewhat poorly	
drained, mesic	282
504—Mollic Xerofluvents, 1 to 5 percent slopes, frequently flooded, mesic	283
510t—Rubble land-Lithnip-Rock outcrop association, 8 to 30 percent slopes,	
mountains, cryic	285
551—Happyisles-Half Dome complex, 5 to 15 percent slopes, mesic	

	552—Mollic Xerofluvents, 5 to 15 percent slopes, frequently flooded, mesic 590—Terric Haplosaprists, 0 to 3 percent slopes, mesic	292
	mesic	297
	630—Rubble land-Half Dome complex, warm, 25 to 60 percent slopes,	
	mesic	301
	701—Vitrandic Haploxerolls, coarse-loamy, 4 to 30 percent slopes, well	000
	drained, mesic	
	702—Vitrandic Dystroxerepts, 4 to 30 percent slopes, mesic	
	900—Rock outcrop, mesic	
	DAM—Dam	
	W—Water	
	se and Management of the Soils	
	Interpretive Ratings	
	Rating Class Terms	
	Numerical Ratings	
	Land Capability Classification	
	Major Land Resource Areas	
	Engineering	
	Recreation	
	Building Site Development	
	Construction Materials	
	Sanitary Facilities	
	Water Management	
Sc	il Properties	
	Engineering Index Properties	
	Physical Properties	
	Erosion Properties	
	Chemical Properties	
	Physical and Chemical Analyses of Selected Soils	
	Water Features	325
	Soil Features	327
CI	assification of the Soils	329
Sc	ils and Their Morphology	329
	Aquandic Humaquepts	330
	Badgerpass Series	331
	Canisrocks Series	333
	Clarkslodge Series	335
	Craneflat Series	337
	Crazymule Series	339
	Dystric Xeropsamments	
	Dystric Xerorthents	

Elcapitan Series	344
Fishsnooze Series	
Fluvaquents	347
Glacierpoint Series	
Half Dome Series	
Happyisles Series	352
Humic Dystroxerepts	
Humic Haploxerepts	
Humic Lithic Haploxerepts	
Inceptic Haploxeralfs	
Jobsis Series	
Leidig Series	
Lithic Xerorthents	
Lithnip Series	
Marmotland Series	
Mollic Xerofluvents	
Nevadafalls Series	
Oxyaquic Cryorthents	
Oxyaquic Dystrocryepts	
Oxyaquic Dystroxerepts	
Oxyaquic Xerofluvents	
Riverwash	
Rock Outcrop	
Rubble Land	
Sentinel Series	379
Terric Haplosaprists	380
Tuolumne Series	
Typic Cryaquents	384
Typic Cryopsamments	385
Typic Cryorthents	387
Typic Dystroxerepts	389
Typic Haploxerults	391
Typic Xerorthents	393
Ultic Haploxeralfs	394
Ultic Palexeralfs	396
Vitrandic Cryorthents	399
Vitrandic Dystrocryepts	400
Vitrandic Dystroxerepts	402
Vitrandic Haploxerolls, sandy	404
Vitrandic Haploxerolls, coarse-loamy, somewhat poorly drained	405
Vitrandic Haploxerolls, coarse-loamy, well drained	407
Vitrandic Xerorthents	409
Waterwheel Series	410
Whittell Series	413
Xeric Dystrocryepts	414

Formation of the Soils	417
References	427
Glossary	431
Tables	457
Table 1A.—Temperature and Precipitation	458
Table 1B.—Temperature and Precipitation	459
Table 2A.—Freeze Dates in Spring and Fall	460
Table 2B.—Freeze Dates in Spring and Fall	461
Table 3A.—Growing Season	462
Table 3B.—Growing Season	462
Table 4.—Acreage and Proportionate Extent of the Soils	463
Table 5.—Land Capability Classification	467
Table 6.—Recreational Development, Part I	479
Table 6.—Recreational Development, Part II	
Table 7.—Building Site Development, Part I	526
Table 7.—Building Site Development, Part II	551
Table 8.—Construction Materials, Part I	578
Table 8.—Construction Materials, Part II	603
Table 8.—Construction Materials, Part III	629
Table 9.—Sanitary Facilities, Part I	661
Table 9.—Sanitary Facilities, Part II	692
Table 10.—Water Management	
Table 11.—Engineering Index Properties	746
Table 12.—Physical Properties of the Soils	
Table 13.—Erosion Properties of the Soils	874
Table 14.—Chemical Properties of the Soils	906
Table 15.—Water Features	939
Table 16.—Soil Features	966
Table 17.—Taxonomic Classification of the Soils	981
Appendix I	983
Appendix II	993

Issued 2006

Foreword

This soil survey contains information that affects land use planning in this survey area. It contains predictions of soil behavior for selected land uses. The survey also highlights soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

This soil survey is designed for many different users of Yosemite National Park. Planners, community officials, engineers, and builders can use the survey to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the survey to help them understand, protect, and enhance the environment. Researchers and other scientists should find the soil and the landscape characterizations useful in developing hypotheses, conducting investigations, and interpreting results.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. Soils with a high water table are poorly suited to basements or underground installations.

These and many other soil properties that affect land use and interpretations are described in this soil survey. The location of each soil described is shown on the detailed soil maps. Information on specific uses is given for each soil. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

Lincoln E. Burton State Conservationist, California Natural Resources Conservation Service

Soil Survey of Yosemite National Park, California

By Ronald D. Taskey and Kerry D. Arroues, Natural Resources Conservation Service

Fieldwork by Ronald D. Taskey, Stephan Leimroth, Katie Banister, Seth Burgess, Foster Fell, Victoria Saylor, Paula McCarthy, and John Collins, Natural Resources Conservation Service

Fieldwork on the Yosemite Valley part by David Smith, Arlene Tugel, John C. Rule, Andrew Conlin, Jon Schlegal, and Eric Vinson, Natural Resources Conservation Service

Database entry and development by Bry Schmidt and Kerry D. Arroues, Natural Resources Conservation Service

Technical Review by Kit Paris, Natural Resources Conservation Service

Assistance with Geographical Information Systems by David Howell and Russell Almaraz, Natural Resources Conservation Service

United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with

United States Department of the Interior, National Park Service, Yosemite National Park; Tuolumne County, Mariposa County, and Coarsegold Resource Conservation Districts; Central Sierra Resource Conservation and Development; and Yosemite/Sequoia Resource Conservation and Development

This soil survey area includes all of Yosemite National Park, California (fig. 1). It encompasses an area of approximately 761,236 acres (308,072 hectares). It is bordered on the northeast by the Toiyabe National Forest, on the northwest and west by the Stanislaus National Forest, on the southwest, south, and southeast by the Sierra National Forest, and on the east by the Inyo National Forest.

The lowest elevation in the survey area is approximately 1,650 feet (504 meters), near El Portal in the western part of the soil survey area. The highest elevation is approximately 13,065 feet (3,982 meters), along the crest of the Sierra Nevada Mountains.

Previous soil survey work in Yosemite National Park includes "The Soil and Vegetation of the Yosemite Valley" (28). The current soil survey provides information for the entire park and includes additional information and interpretations not included in the prior survey of the Yosemite Valley.

General Nature of the Survey Area

The following paragraphs provide general information about Yosemite National Park. This section concentrates primarily on the Yosemite Valley area, although the Yosemite

Figure 1.—Location of Yosemite National Park in California.

National Park encompasses a highly diverse range in physiography, relief, and drainage; geology; and climate. Much of this diversity is illustrated by the soils and landscapes mapped in Yosemite National Park as part of this soil survey. "The Geological Story of Yosemite National Park," by N. King Huber, provides an overview of the geology and geomorphology of the park (7).

Physiography, Relief, and Drainage

The Yosemite Valley area occurs in a U-shaped canyon. This area was invaded by glaciers which retreated and left a canyon with a broad floor (8). The valley floor is now cut by the Merced River and its tributaries. Tenaya Creek flows into the Merced River in the eastern part of the survey area. Other streams flow from the canyon rim into the valley, resulting in spectacular waterfalls, such as Bridalveil Falls. The Merced River flows from east to west. The elevation at the east edge of the Yosemite Valley area ranges from about 4,200 feet (1,280 meters), where the Merced River meanders through the valley, to about 3,700 feet (1,128 meters) at the west edge. About 200 feet (61 meters) of this drop occurs in the lower one-third of the Yosemite Valley area. The middle reach of the Merced River in Yosemite Valley is fairly flat, with a change of about 50 feet (15 meters) in elevation. The river has numerous oxbow-shaped turns, suggesting little downcutting. In some places there are abandoned oxbow-shaped channels in the meadows. The distance from the valley floor to the canyon rim ranges from 600 feet (183 meters) to more than 3,000 feet (914 meters). The original landscape was an array of joint-controlled topography with fairly steep walls produced by weathering, erosion, and sheeting along vertical joints. These fairly steep walls were later vertically shaped by the action of glaciers. The central part of Yosemite

Valley has received sediment from deposition into a former lake that was created above terminal moraines after the retreat of the earlier glaciers. More recent glaciers have also added to the deposition. The resulting relatively flat valley floor with sheer walls make Yosemite Valley the spectacular valley that it is today.

Geology

The geology of Yosemite Valley is complex, with a long history (3, 7, 10, 11, 13, 26, 27). In 1865, John Muir recognized evidence of glacial activity. He believed ice was the chief agent of erosion in the Yosemite Valley. In 1930, Francois Matthes did a comprehensive study of the Yosemite Valley (10, 11). He concluded that glacial and stream erosion played equal roles in excavating the valley. In 1962, Wahrhaftig discussed the geomorphology of the Yosemite Valley (25). In 1985, a detailed bedrock geology map of the Yosemite Valley was published (4). This was the result of fieldwork by Calkins done during the period of 1913 through 1916. It shows the various kinds of granitoid rocks in the area. In 1986, Schaffer suggested that Tenaya Creek and not the Merced River was the primary stream cutting the pre-glacial Yosemite Valley (13). In 1987, Huber gave a less technical geological story of Yosemite National Park (7). In 1989, Huber, Bateman, and Wahrhaftig made a more recent geologic map of the whole Yosemite National Park (8). This map summarizes the distribution of the geologic units.

The Yosemite Valley area is part of the Sierra Nevada mountain range. The Sierra Nevada ranges from 50 to 80 miles (80 to 120 kilometers) in width and is more than 300 miles (483 kilometers) long. It has a gentle western slope and a steep eastern escarpment. The Yosemite Valley part of the Sierra Nevada is composed of plutonic granitoid rocks of Mesozoic age. The more recent development of the Sierra Nevada consists of uplift and tilting and faulting, which were preceded and accompanied by volcanic activity. During the Quaternary period, the area was glaciated several times. It is estimated that some glaciers attained thicknesses of almost 6,000 feet (1,829 meters). Most glaciations came to an end more than 9,500 years ago with the advent of a warmer postglacial climate. After and during the retreat of the last glacial ice from the valley, a lake formed behind moraines on the western side of the Yosemite Valley and the valley was filled. The lake existed not only because the moraines acted liked a natural dam but also because they occupied the basin that was scoured from the rock floor of the valley by the ancient Yosemite Glacier (12). With the accumulation of sediment in the valley, prehistoric Lake Yosemite was instrumental in turning Yosemite Valley into a meadow. Soils in the map unit Sentinel loam, 0 to 2 percent slopes, mesic, are an example of soils that formed in these glaciolacustrine deposits.

Climate

Tables 1A and 1B give data on temperature and precipitation for the soil survey area of Yosemite National Park as recorded at Yosemite National Park Headquarters and Cherry Valley Dam in the period 1961 to 1990. Tables 2A and 2B show probable dates of the first freeze in fall and the last freeze in spring. Tables 3A and 3B provide data on the length of the growing season.

In winter, the average temperature is 38.8 degrees F at Yosemite National Park Headquarters and 40.1 at Cherry Valley Dam. The average daily minimum temperature in winter is 27.0 degrees at Yosemite National Park Headquarters and 28.1 degrees at Cherry Valley Dam. The lowest temperatures on record were –1 degree at Yosemite National Park Headquarters, recorded on December 10, 1972, and –3 degrees at Cherry Valley Dam, recorded on December 9, 1972. In summer, the average temperature is 69.4 degrees at Yosemite National Park Headquarters and 68.1 degrees at Cherry Valley Dam. The average daily maximum temperature is 87.3

degrees at Yosemite National Park Headquarters and 83.7 degrees at Cherry Valley Dam. The highest temperatures ever recorded were 109 at Yosemite National Park Headquarters, recorded on August 2, 1977, and 105 degrees at Cherry Valley Dam, recorded on July 15, 1972. As a general rule, temperatures decrease with elevation, except on clear, calm nights or during inversion situations, such as during winter. The normal lapse rate is around 3.8 degrees F per 1,000 feet of elevation rise, occurring during most spring through autumn afternoons and in well mixed (somewhat windy) conditions.

Growing degree days are shown in tables 1A and 1B. They are equivalent to "heat units." During the month, growing degree days accumulate by the amount that the average temperature each day exceeds a base temperature (40 degrees F). The normal monthly accumulation is used to schedule single or successive plantings of a crop between the last freeze in spring and the first freeze in fall.

Average annual precipitation is highly variable across the park; the greatest amounts are at the highest elevations, especially along the northern border of the park. Average annual totals range from around 30 inches, in the lowest western valleys of the park, to nearly 60 inches, at the higher elevations in the north. Average annual total precipitation is 37.46 inches at Yosemite National Park Headquarters and 45.86 inches at Cherry Valley Dam. Of the approximately 37 inches at Yosemite National Park Headquarters, about 5.8 inches, or 15 percent, usually falls in May through October. The growing season for vegetation falls within this period. The heaviest 1-day rainfalls during the periods of record were 6.92 inches at Yosemite National Park Headquarters, recorded on December 23, 1955, and 12.87 inches at Cherry Valley Dam, recorded on February 17, 1986. Thunderstorms occur on about 5 to 10 days each year, and most occur in July and August.

Average seasonal snowfall also varies across the park. At Yosemite National Park Headquarters, the average is 55.0 inches per year; at Cherry Valley Dam, it is 115.7 inches per year. It is estimated that areas at the higher elevations, especially between 8,000 and 10,000 feet, receive an average of 150 to 200 inches of snowfall per year. The greatest snow depth at any one time during the period of record was 54 inches at Yosemite National Park Headquarters, recorded on February 7, 1949, and 64 inches at Cherry Valley Dam, recorded on March 3, 1969. On average, 34 days per year have at least 1 inch of snow on the ground at Yosemite National Park Headquarters, while an average of 60 days have at least 1 inch of snow on the ground at Cherry Valley Dam. The heaviest 1-day snowfalls on record were 28.0 inches at Yosemite National Park Headquarters, recorded on January 22, 1964, and 25.0 inches at Cherry Valley Dam, recorded on March 25, 1991.

The average relative humidity in mid-afternoon is about 40 percent. Humidity is higher at night, and the average at dawn is about 85 percent. The sun shines 92 percent of the time possible in summer and 55 percent in winter. The prevailing wind direction and speed are highly dependent on location and exposure. On average, winds are from the west or southwest, and average windspeeds are highest in the spring and early summer (averaging around 8 to 9 miles per hour at locations in the valley).

The procedure for determining mean annual precipitation and mean annual air temperature for each map unit in the Yosemite National Park Soil Survey utilized PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is a hybrid statistical-geographical approach to mapping climate. PRISM uses point measurements of climate data and a digital elevation model (DEM), which is a digital, gridded version of a topographic map, to generate estimates of annual, monthly, and event-based climatic elements (21). These estimates were derived for a horizontal grid and were used on Geographic Information Systems (GIS) as the foundation for precipitation and air temperature for each map unit in the survey area.

Soil Temperature Regimes

Soil temperature regimes characterize mean annual soil temperatures and seasonal fluctuations measured at a depth of 50 cm, or to the depth of a shallower root-restricting layer (termed a densic, lithic, or paralithic contact) if one is present. For this survey, temperature regimes were determined from two sets of measurements: (1) individual temperatures taken at standard depth (and at a depth of 20 cm in most cases) for each of the 450 pedon descriptions, and (2) accumulated measurements recorded at 8-hour intervals for 3 to 5 years by 42 sensors buried at a depth of 50 cm.

At the various pedon sites, the extra temperature reading at a depth of 20 cm was useful in judging whether the soil was in a warming or cooling trend at the time of measurement. If in spring or summer the temperature at a depth of 20 cm was warmer than that at a depth of 50 cm, the soil was judged to be warming. If in late summer or fall the temperature at a depth of 20 cm was cooler than that at a depth of 50 cm, the soil was judged to be cooling. Judgments of this type must consider recent rainfall and subsequent differences in soil moisture at the two depths because rainwater temperature can significantly influence soil temperature, especially if the soils are coarse textured.

The data on temperature differences according to depth are particularly useful in distinguishing frigid regime soils from cryic regime soils. Although mean annual temperatures are lower than 8 degrees C in both regimes, frigid mineral soils warm more in summer than cryic mineral soils. If, while continuing to warm, a soil had not yet exceeded the maximum mean summer (defined as June, July, and August) temperature for the cryic regime, the soil was classified as cryic. In these cases, a cryic soil can be judged with reasonable confidence from only a single measurement.

The 42 sites for automatic temperature recordings were chosen to cover a wide range of elevations (1,975 feet/602 meters to 10,870 feet/3,313 meters), aspects, steepness of slope, and vegetation types. Soil taxonomic criteria also were considered by selecting soils with and without an O horizon and by excluding shallow soils and soils saturated with water in summer.

Temperature data from automatic readings were plotted to reveal temperature fluctuations throughout the year. The data also were correlated with elevation, aspect, and slope steepness. These correlations were then used to construct simple models that relate soil temperature regimes to these three attributes. These models were entered as modifiers in the landscape hierarchy and incorporated into the overall soil-landscape model, thus impacting map unit design and delineation. See figures 2, 3, and 4.

How This Survey Was Made

This section explains how the soil survey in the Yosemite Valley part of Yosemite National Park was made.

This survey was made to provide information about the soils and miscellaneous areas in the survey area. The information includes a description of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specified uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of plants; and the kinds of bedrock. They dug many holes to study the soil pedon, which is the sequence of natural layers, or horizons, in a soil. The pedon extends from the surface down into the soil parent material, which originates from either unconsolidated deposits or bedrock. Parent materials have few roots and little biological activity in comparison to the soil above.

The pattern of soils and miscellaneous areas is related to the geology, landforms,

Soil Temperature Graph

Figure 2

relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept or model of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally

Soil Temperature Graph < 25% Slope North Facing South Facing 6700ft 6500ft 5400ft 5200ft Cryic Cryic 2500ft Frigid Frigid 2000ft Mesic Mesic Temperature Regimes in Steep-Sided Drainages Cryic Mesic >6500 ft2000 - 5400ft 5400 - 6500ft

Figure 3

are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in Yosemite Valley, they drew the boundaries of these bodies on aerial photographs at a 1:6,000 scale and identified each as a specific map unit. This soil mapping was then compiled at 1:12,000 and 1:24,000 scales. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Map Unit Delineation

R.D. Taskey helped prepare this section.

This section explains map production and how the landscape was modeled for this soil survey in the remainder of Yosemite National Park, exclusive of the Yosemite Valley part.

Map unit delineations (polygons) were hand drawn on stereo-pairs of color infrared aerial photographs at a scale of approximately 1:40,000. These photographs were then electronically scanned and orthorectified, and the resulting on-screen images were

Yosemite National Park Soil Temperature Regimes

Figure 4

used to hand-digitize the delineation boundaries. The digitized polygons were printed on 1:24,000-scale gray-tone orthophotographs, edited, and then redigitized as needed. The orthophotographs were produced by the United States Geological Survey (USGS) through the National Digital Orthophotograph Program (NDOP) and were joined together by the Natural Resources Conservation Service.

The final product is offered to the user in at least two forms: (1) a limited number of traditional, paper-copy 1:24,000-scale gray-tone orthophotographs with map unit delineations and symbols printed on them and (2) a digitized polygon layer which can be downloaded on a computer and overlain by a geographic information system (GIS) on a digitized landscape image of the user's choosing.

Map accuracy and precision are limited by the initial mapping scale of 1:40,000. Any transfer to a larger scale, such as the standardized 1:24,000 maps included with this document, does not produce maps of greater precision but rather produces images for which the accuracy and precision could be misleading.

Designing and Delineating Map Unit Landscapes

Criteria and procedures for designing and naming map units and for relating soils to map units are outlined in the "National Soil Survey Handbook" (NSSH), part 627, Legend Development and Data Collection, and part 631, Soil Survey Investigations. These guidelines were augmented as described below.

Map unit boundaries were hand drawn on stereographic pairs of color infrared aerial photographs at a scale of approximately 1:40,000. Interpretations of the photographs were aided by extensive field investigations and by reference to 7.5-minute series, 1:24,000-scale USGS topographic maps, and the 1:125,000-scale Geologic Map of Yosemite National Park and Vicinity, California (8). Additional documents consulted included published soil surveys of surrounding areas, vegetative maps, and numerous geological and ecological reports.

Decisions of where to draw lines on the photographs and, ultimately, how to design map units were guided by a landscape hierarchy designed by R.D. Taskey. See figure 5. This landscape hierarchy was developed in Yosemite National Park and other diverse areas during the time of this survey. The hierarchy provides a theoretical framework for designing map units deductively from observations of landscape features. Normally, it consists of four tiers—land type, component, element, and modifier. When needed for complex landscapes or increased detail, a fifth tier, the subcomponent, can be inserted between component and element.

The first three hierarchical tiers (or four tiers if a subcomponent is included) follow a geomorphic sequence of increasing specificity. The fourth level modifier may or may not be geomorphic, and it may be observed at a broader, equal, or more narrow scale than the element above. Divisions and features in the geomorphic tiers are based primarily on form and secondarily on process.

Tiers in the hierarchy are defined as follows:

Land type.—An extensive (greater than or equal to tens of km²) assemblage of related features having a characteristic morphology; a major geomorphic unit. The land types found in Yosemite National Park are mountain and river valley.

Component.—An intermediary, individually recognizable land feature (equal to or less than tens of hectares) consisting of multiple, closely related, contiguous land elements. A component name usually denotes process of formation as well as form. Components can be divided into subcomponents as needed and appropriate, as in the following example: mountain (land type)-landslide complex (component)-slump block (subcomponent)-riser (element). The term component as used in the landscape hierarchy is not the same as the component used to identify major and minor components in the map units described in this soil survey.

Land type components and subcomponents recognized in Yosemite National Park

Figure 5.—Landscape hierarchical tiers used for design of map units.

are mountain crest, mountainflank, mountain slope, apron, rock outcrop, dome, bedrock bench, cliff, ledge, rubble (talus and scree), joint, fracture, bedrock dimple, ridge, spur, glacier, rock glacier, cirque, nivational cirque, moraine, lateral moraine, medial moraine, recessional moraine, ground moraine, moraine remnant, glacial step, kettle, mound, structural bench, landslide complex, ancient landslide, debris avalanche, debris torrent, (snow) avalanche track, avalanche (deposit), mountain basin, mountain valley, fan, stream terrace, drainageway (ephemeral drainage), flood plain, valley fill, gravel bar, and erosion channel (gully).

Element.—The simplest geomorphic feature, which describes a portion of its component. An element is recognized by its form or position in the component, and normally does not denote geomorphic process (although process might be inferred from an element designation). Elements recognized in Yosemite National Park are shoulder, backslope, footslope, toeslope, tread, riser, floor, bottom, margin, and summit.

Modifier.—Modifiers might or might not denote a geomorphic refinement, and they are not necessary for naming geomorphic features. Nonetheless, they further distinguish the landscape and are important in predicting and understanding soil distributions. Modifiers can be assigned at any scale to clarify soil-landscape relationships and enhance interpretations. Rational modifier classes can be created to fit the needs of the work. Soil-forming factors and land use attributes can be included as modifiers. General examples include classes of elevation, aspect, slope shape, and slope steepness, as well as vegetation type, vegetative cover, rock type, and distinctive surface features.

Modifiers utilized in this survey are slope steepness class, scoured (glacially), scoured/filled, metamorphic, metasedimentary, mafic, metavolcanic, bouldery, stony, fluted, wet/dry, hummocky, meadow, and channery surface.

In addition to fitting landscape features into the hierarchy, features also were characterized as follows: (Note that the following categories could be inserted into the hierarchy as modifiers.)

Constructional components owe their form or character to upbuilding processes, such as volcanic extrusion or by glacial or erosional deposition. Constructional features may be reworked so that they have erosional, depositional, or transient surfaces within them.

Destructional components owe their form or character to degrading processes, such as erosional removal or weathering. Destructional features may have erosional, depositional, or transient surfaces within them.

Mountain (land type)

Figure 6.—Components may be superimposed on one another as in this mountain land type. Note that each component has its own set of elements and that no single element crosses a component boundary. In this case, the footslope of the mountain slope is buried beneath the colluvial apron.

Structurally controlled, or bedrock controlled, components or surfaces are those whose shape and orientation are strongly influenced by the attitude and relative position of the underlying rock mass.

Erosional surfaces are created by overland flow of water and exclude those that are formed by eolian, fluvial, and glaciofluvial processes.

Depositional surfaces are those that receive significant amounts of sediment that has eroded from positions at the higher elevations.

Transient means that sediments are alternately or simultaneously deposited and eroded at a frequency or rate that renders the land surface too unstable for the development of soils that might occur on more stable surrounding areas.

Convergent refers to a land surface with a concave shape that tends to concentrate surface (and in most cases, subsurface) water runoff.

Divergent refers to a land surface having a convex shape that tends to disperse surface (and in most cases, subsurface) water runoff.

Definitions of geomorphic terms used in the land type, component, and element levels follow the Glossary of Landform and Geologic Terms in the "National Soil Survey Handbook," part 629 (15). Additional explanations are given in map unit descriptions included in this survey.

Several rules and allowances govern the hierarchy's use:

- (1) Each lower tier defines the landscape more specifically than does the tier above.
- (2) A descriptor cannot be used in different tiers (except that a component term may become a subcomponent term when a fifth tier is needed).
- (3) Components may be, and often are, superimposed one on the other in the landscape. See figure 6.
- (4) While the tier's land type, component, (subcomponent), and element follow a graduated sequence of increasing geomorphic specificity (i.e., increasing scale), modifiers can be chosen for any readily recognizable characteristic and applied at any

Figure 7.—Map units and taxonomic units are separate and distinct products.

level, regardless of scale. Modifiers nonetheless add specificity in characterizing the landscape.

- (5) Multiple modifiers are allowed.
- (6) The sequence in which landscape features might be recognized does not determine their position in the hierarchy. For example, vegetation type and rock type might extend across multiple components and elements and they might be more readily recognized than the component or element with which they are associated. Nonetheless, they are modifiers, which are placed at the bottom of the hierarchy.

Relating Soils to Map Units

Sites for describing, classifying, and sampling soils were selected to represent a wide range of topographic conditions, vegetative types, and parent materials, while encompassing the dominant and most important soil-bearing landscape components. Limitations due to access and time deterred data collection for a few map units. In these cases, soil classifications were extrapolated from other, comparable units.

Soil types and properties, which were amassed from the point data, were classified into soil taxonomic units and matched with their respective spatially delineated map units, which had been generated through use of the landscape hierarchy. Additional correlations were established by entering all soil and site data into a computer spread sheet and plotting numerous correlative combinations. Working models in the form of dichotomous keys were developed to relate predicted taxonomic units with map units.

Although soil taxonomic unit names, which were generated from point data, are assigned to the spatially generated map units, the user should bear in mind that the two types of units are separate and distinct products. See figure 7.

Detailed Soil Map Units

The map units delineated on the detailed soil maps outline areas dominated by the soils or miscellaneous areas in the survey area. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. The contrasting components are mentioned in the map unit descriptions. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives the principal hazards and limitations to be considered in planning for specific uses.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Some of the areas shown

on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Happyisles sandy loam, 0 to 3 percent slopes, somewhat poorly drained, mesic, is a phase of the Happyisles series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes and associations.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Waterwheel-Humic Dystroxerepts complex, 15 to 45 percent slopes, mountain slopes, frigid, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Badgerpass-Oxyaquic Dystroxerepts association, 0 to 15 percent slopes, mountain valley floors, frigid, is an example.

This survey includes *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop, domes, cryic, is an example.

For information on management, see the section "Use and Management of the Soils." (See tables 12 and 14 for data on component horizons.) For additional component horizon data, see the section "Soil Properties." A typical soil description with range in characteristics is included, in alphabetical order, in the section "Classification of the Soils."

Appendix I provides accessory notes for components of various detailed soil map units.

Table 4 gives the acreage and proportionate extent of each map unit. Other tables give properties of the soils and the limitations, capabilities, and potentials for many uses. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

101—Oxyaquic Xerofluvents-Riverwash-Fluvaquents association, 0 to 2 percent slopes, mesic

Settina

General location: Adjacent to the Merced River in Yosemite Valley Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,940 to 3,995 feet (1,202 to 1,218 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Oxyaquic Xerofluvents—35 percent Riverwash—35 percent Fluvaquents—15 percent Minor components—15 percent

Description of Oxyaquic Xerofluvents

Slope: 0 to 2 percent

Landform: Convex highest bar, point bar, active flood plain, or mountain valley Parent material: Coarse textured stream alluvium derived from granitoid rock Typical vegetation: Main tree species—immature cottonwoods, cedar, alder and ponderosa pine; common understory plants—Artemesia species, carex species, Equisetum species, and grasses

Selected properties and qualities

General features: The low flood plain of this component is the youngest geomorphic surface in the valley and cuts the intermediate and high flood plains and terraces. It is characterized by floods, usually from high-intensity winter storms and spring runoff from snowmelt. It is parallel to the river. This component floods less often than the other components but may flood every year. It is less likely to be scoured than the other components in this map unit. It may receive fresh sediments after periods of high flow in the river.

Surface area covered by coarse fragments: 2 to 10 percent fine subangular gravel and 2 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.3 inches (low)

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None Surface runoff: Very low Current water table: Present

Natural drainage class: Somewhat poorly drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 4w Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A1—0 to 2 inches; fine sandy loam A2—2 to 4 inches; loamy coarse sand A3—4 to 10 inches; loamy sand

C1—10 to 17 inches; stratified gravelly sand to fine sandy loam C2—17 to 28 inches; stratified gravelly sand to fine sandy loam

C3—28 to 39 inches; stratified gravelly sand to fine sandy loam

C4—39 to 43 inches; stratified gravelly sand to fine sandy loam C5—43 to 57 inches; stratified gravelly sand to fine sandy loam

Ab—57 to 60 inches; stratified gravelly sand to fine sandy loam

Description of Riverwash

Slope: 0 to 2 percent

Landform: Channel, active flood plain, or mountain valley

Parent material: Coarse textured stream alluvium derived from granitoid rock Typical vegetation: Riverwash does not support vegetation because of frequent reworking by floodwaters

Selected properties and qualities

General features: The low flood plain of this component is the youngest geomorphic surface in the valley and cuts the intermediate and high flood plains and terraces. It is characterized by floods, usually from high-intensity winter storms and spring

runoff from snowmelt. Riverwash occurs as areas of unstabilized sand, gravel, cobbles, or stones that are along the periphery of stream and river channels. These areas are flooded, washed, scoured, and reworked frequently by the Merced River. This component may be scoured or overwashed with new deposits of sand and gravel in any year. In some areas the texture is stratified coarse sand to loamy fine sand with strata of gravel; in other areas the texture is freshly deposited gravel, cobbles, or stones.

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Poorly drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 4w Other vegetative classification: None assigned

Description of Fluvaquents

Slope: 0 to 2 percent

Landform: Bar and channel, active flood plain, or mountain valley

Parent material: Coarse textured stream alluvium derived from granitoid rock Typical vegetation: Main tree species—willow and alder; common understory plants—hydrophytic forbs; vegetation may be removed by floodwaters when

scouring occurs

Selected properties and qualities

General features: The low flood plain of this component is the youngest geomorphic surface in the valley and cuts the intermediate and high flood plains and terraces. It is characterized by floods, usually from high-intensity winter storms and spring runoff from snowmelt. It may be scoured or overwashed with new deposits of sand and gravel in any year. Redoximorphic features or gleying occurs throughout the

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel, 0 to 10 percent subangular cobbles, and 0 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.7 inches (moderate)

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None Surface runoff: Very high Current water table: Present

Natural drainage class: Very poorly drained

Hydrologic soil group: D

California land use interpretive groups

Land capability classification (nonirrigated): 6w Other vegetative classification: None assigned

Typical profile

A1—0 to 1 inch; stratified coarse sand to sandy loam
A2—1 to 4 inches; stratified coarse sand to sandy loam
C—4 to 6 inches; stratified coarse sand to sandy loam
Ab—6 to 10 inches; stratified coarse sand to sandy loam
C′—10 to 60 inches; stratified coarse sand to sandy loam

Minor Components

Unnamed soils

Composition: About 9 percent

Slope: 0 to 2 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Endoaquolls very poorly drained and similar soils

Composition: About 3 percent

Slope: 0 to 2 percent

Landform: Abandoned channel, mountain valley, or oxbow

Vegetative classification: None assigned

Riverwash cobbly

Composition: About 2 percent

Slope: 0 to 2 percent

Landform: Mountain valley or stream Vegetative classification: None assigned

Typic Xerofluvents recently overwashed and similar soils

Composition: About 1 percent

Slope: 0 to 2 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- All of the map unit components are subject to flooding and deposition.
- · Riverwash and Fluvaquents are subject to scouring.
- The undercutting of vertical banks is a concern in areas of the Oxyaquic Xerofluvents.
- The undercutting of minor components is a concern at the higher levels of the flood plain.
- Streambank erosion is a management concern in heavily used areas.
- The varied composition of plant species indicates an actively colonizing or frequently disturbed site.
- High water tables are a management concern.
- The coarse soil textures have high detachability.

101t—Lithnip-Rock outcrop-Fishsnooze complex, 30 to 75 percent slopes, mountains, cryic

Setting

General location: None noted

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Soil Survey of Yosemite National Park, California

Elevation: 9,000 to 12,000 feet (2,744 to 3,659 meters)

Mean annual precipitation: 35 to 55 inches (889 to 1,397 millimeters) Mean annual air temperature: 36 to 39 degrees F (2 to 4 degrees C)

Frost-free period: 15 to 60 days

Composition

Lithnip moist soil—40 percent Rock outcrop—25 percent Fishsnooze soil—20 percent Minor components—15 percent

Description of the Lithnip Moist Soil

Slope: 30 to 75 percent Landform: Mountain

Parent material: Colluvium derived from andesite or tuff breccia over residuum derived

from andesite or tuff breccia *Typical vegetation:* None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 2 percent stones and 50 to 70 percent

coarse gravel

Restrictive feature: Bedrock (lithic) at a depth of 4 to 10 inches

Available water capacity to a depth of 60 inches: About 0.3 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very high Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: D

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Typical profile

0 to 1 inch; extremely gravelly sandy loam 1 to 5 inches; very gravelly sandy loam

5 to 15 inches; bedrock

Description of Rock Outcrop

Slope: 15 to 99 percent Landform: Mountain

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Fishsnooze Soil

Slope: 30 to 50 percent Landform: Mountain

Parent material: Colluvium derived from andesite or tuff breccia over residuum derived

from andesite or tuff breccia Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 25 to 45 percent coarse gravel and 0 to 10

percent cobbles

Restrictive feature: Bedrock (lithic) at a depth of 20 to 40 inches

Available water capacity to a depth of 60 inches: About 2.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very high

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6s

Other vegetative classification: 022XY126NV_1, PIAL-PIFL WSG:0R3011

Typical profile

0 to 1 inch; very gravelly sandy loam

1 to 9 inches; very gravelly coarse sandy loam

9 to 13 inches; extremely gravelly coarse sandy loam 13 to 35 inches; extremely cobbly coarse sandy loam

35 to 45 inches; bedrock

Minor Components

Hawkinspeak and similar soils

Composition: About 3 percent Slope: 15 to 50 percent Landform: Mountain

Vegetative classification: None assigned

Lithnip and similar soils

Composition: About 3 percent Slope: 30 to 75 percent Landform: Mountain

Vegetative classification: 022XY012NV 2, BARREN SLOPE 30+" P.Z.

Hawkridge and similar soils

Composition: About 2 percent

Slope: 8 to 30 percent

Landform: Mountain

Vegetative classification: None assigned

Chutes

Composition: About 1 percent Slope: 75 to 150 percent Landform: Avalanche chute

Vegetative classification: None assigned

Fishsnooze cold and similar soils

Composition: About 2 percent

Slope: 8 to 50 percent Landform: Mountain

Vegetative classification: 022XYXXXNV_2, stunted pifl

Florand and similar soils

Composition: About 2 percent

Slope: 8 to 50 percent Landform: Mountain

Vegetative classification: None assigned

Glaciers

Composition: About 1 percent Slope: 15 to 99 percent Landform: Glacier

Vegetative classification: None assigned

Pachic Argicryolls and similar soils

Composition: About 1 percent Slope: 15 to 50 percent Landform: Mountain

Vegetative classification: 022XY020NV 2, Snow Pocket

Thiefridge and similar soils

Composition: About 1 percent

Slope: 8 to 50 percent Landform: Mountain

Vegetative classification: None assigned

102—Oxyaquic Xerofluvents-Riverwash complex, 1 to 4 percent slopes, mesic

Setting

General location: Adjacent to the Merced River in the downstream part of Yosemite

Valley (fig. 8)

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,855 to 3,910 feet (1,175 to 1,193 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Figure 8.—An area of Oxyaquic Xerofluvents-Riverwash complex, 1 to 4 percent slopes, mesic, on an active flood plain on the south bank of the Merced River below Bridalveil Falls. Cobbly and stony channel deposits are exposed.

Composition

Oxyaquic Xerofluvents—45 percent Riverwash—40 percent Minor components—15 percent

Description of Oxyaquic Xerofluvents

Slope: 1 to 4 percent

Landform: Bar, low and youngest active flood plain, or mountain valley Parent material: Coarse textured stream alluvium derived from granitoid rock Typical vegetation: Main tree species—immature cottonwoods, cedar, alder, and ponderosa pine; common understory plants—Artemesia species, carex species, Equisetum species, and grasses

Selected properties and qualities

General features: The low flood plain of this component is the youngest geomorphic surface in the valley and cuts the intermediate and high flood plains and terraces. It is characterized by floods, usually from high-intensity winter storms and spring runoff from snowmelt. It is parallel to the river. This component floods less often than the Riverwash, but may flood every year. It is less likely to be scoured than the Riverwash. It may receive fresh sediments after periods of high flow in the

Surface area covered by coarse fragments: 2 to 10 percent subrounded stones, 2 to 10 percent subrounded cobbles, 2 to 10 percent fine subangular gravel, and 2 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.7 inches (low)

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None Surface runoff: Very low Current water table: Present

Natural drainage class: Somewhat poorly drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 4w Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; stony slightly decomposed plant material

A1—0 to 2 inches; fine sandy loam A2—2 to 4 inches; loamy coarse sand A3—4 to 10 inches; loamy sand

C1—10 to 17 inches; stratified gravelly sand to fine sandy loam C2—17 to 28 inches; stratified gravelly sand to fine sandy loam C3—28 to 39 inches; stratified gravelly sand to fine sandy loam C4—39 to 43 inches; stratified gravelly sand to fine sandy loam

C5—43 to 57 inches; stratified gravelly sand to fine sandy loam

Ab—57 to 60 inches; stratified gravelly sand to fine sandy loam

Description of Riverwash

Slope: 1 to 4 percent

Landform: Channel, active flood plain, or mountain valley

Parent material: Coarse textured stream alluvium derived from granitoid rock Typical vegetation: Riverwash does not support vegetation because of frequent reworking by floodwaters

Selected properties and qualities

General features: The low flood plain of this component is the youngest geomorphic surface in the valley and cuts the intermediate and high flood plains and terraces. It is characterized by floods, usually from high-intensity winter storms and spring runoff from snowmelt. Riverwash occurs as areas of unstabilized sand, gravel, cobbles, or stones that are along the periphery of stream and river channels. These areas are flooded, washed, scoured, and reworked frequently by the Merced River. This component may be scoured or overwashed with new deposits of sand, gravel, cobbles, or stones in any year. In some areas the texture is stratified coarse sand to loamy fine sand with strata of gravel; in other areas the texture is freshly deposited gravel, cobbles, or stones

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Poorly drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 4w Other vegetative classification: None assigned

Minor Components

Unnamed soils

Composition: About 9 percent

Slope: 1 to 4 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Aquandic Humaquepts and similar soils

Composition: About 3 percent

Slope: 1 to 4 percent

Landform: Abandoned channel, mountain valley, or oxbow

Vegetative classification: None assigned

Riverwash noncobbly

Composition: About 3 percent

Slope: 1 to 4 percent

Landform: Flood plain or mountain valley
Other vegetative classification: None assigned

Use and Management Considerations

- All components are subject to flooding and deposition.
- Riverwash is subject to scouring.
- The undercutting of vertical banks is a concern in areas of the Oxyaquic Xerofluvents.
- The undercutting of minor components is a concern at the higher levels of the flood plain.

- Streambank erosion is a concern in heavily used areas.
- The varied composition of plant species indicates an actively colonizing or frequently disturbed site.
- High water tables are a management concern.
- The coarse soil textures have high detachability.

102t—Lithnip-Rock outcrop-Fishsnooze complex, 8 to 30 percent slopes, mountains, cryic

Setting

General location: None noted

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 9,000 to 12,000 feet (2,744 to 3,659 meters)

Mean annual precipitation: 35 to 55 inches (889 to 1,397 millimeters) Mean annual air temperature: 36 to 39 degrees F (2 to 4 degrees C)

Frost-free period: 15 to 60 days

Composition

Lithnip soil—40 percent Rock outcrop—25 percent Fishsnooze soil—20 percent Minor components—15 percent

Description of the Lithnip Soil

Slope: 8 to 30 percent Landform: Mountain

Parent material: Colluvium derived from andesite or tuff breccia over residuum derived

from andesite or tuff breccia Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 50 to 70 percent coarse gravel and 0 to 2

percent stones

Restrictive feature: Bedrock (lithic) at a depth of 4 to 10 inches

Available water capacity to a depth of 60 inches: About 0.3 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very high Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: D

California land use interpretive groups

Land capability classification (nonirrigated): 8

Other vegetative classification: 022XY012NV 2, BARREN SLOPE 30+" P.Z.

Typical profile

0 to 1 inch; extremely gravelly sandy loam 1 to 5 inches; very gravelly sandy loam

5 to 15 inches; bedrock

Description of Rock Outcrop

Slope: 15 to 99 percent Landform: Mountain

Typical vegetation: None assigned Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Fishsnooze Soil

Slope: 8 to 30 percent Landform: Mountain

Parent material: Colluvium derived from andesite or tuff breccia over residuum derived

from andesite or tuff breccia Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent cobbles and 25 to 45

percent coarse gravel

Restrictive feature: Bedrock (lithic) at a depth of 20 to 40 inches

Available water capacity to a depth of 60 inches: About 2.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very high Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6s

Other vegetative classification: 022XY126NV_1, PIAL-PIFL WSG:0R3011

Typical profile

0 to 1 inch; very gravelly sandy loam

1 to 9 inches; very gravelly coarse sandy loam

9 to 13 inches; extremely gravelly coarse sandy loam 13 to 35 inches; extremely cobbly coarse sandy loam

10 to 00 inches, extremely copply coarse sarity loar

35 to 45 inches; bedrock

Minor Components

Hawkinspeak and similar soils

Composition: About 3 percent

Slope: 8 to 30 percent Landform: Mountain

Vegetative classification: None assigned

Hawkridge and similar soils

Composition: About 2 percent Slope: 8 to 30 percent

Landform: Mountain

Vegetative classification: None assigned

Lithnip moist and similar soils

Composition: About 2 percent

Slope: 8 to 30 percent Landform: Mountain

Vegetative classification: None assigned

Rubble land

Composition: About 2 percent Slope: 15 to 99 percent Landform: Scree slope

Vegetative classification: None assigned

Thiefridge and similar soils

Composition: About 2 percent

Slope: 4 to 30 percent Landform: Mountain

Vegetative classification: None assigned

Aspocket and similar soils

Composition: About 1 percent

Slope: 8 to 30 percent Landform: Mountain

Vegetative classification: None assigned

Fishsnooze cold and similar soils

Composition: About 1 percent

Slope: 8 to 50 percent Landform: Mountain

Vegetative classification: 022XYXXXNV_2, stunted pifl

Florand and similar soils

Composition: About 1 percent

Slope: 8 to 30 percent Landform: Mountain

Vegetative classification: None assigned

Glaciers

Composition: About 1 percent

Landform: Glacier

Vegetative classification: None assigned

Figure 9.—An area of Aquandic Humaquepts, 0 to 2 percent slopes, mesic, in Stoneman Meadow is in the foreground. An area of Happlyisles sandy loam, 0 to 3 percent slopes, somewhat poorly drained, mesic, is in the middleground. An area of Leidig fine sandy loam, 0 to 2 percent slopes, occasionally flooded, mesic, is in the background.

104—Aquandic Humaquepts, 0 to 2 percent slopes, mesic

Setting

General location: Adjacent to the Merced River and Tenaya Creek in Yosemite Valley (fig. 9)

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,895 to 4,070 feet (1,187 to 1,241 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Aquandic Humaquepts—85 percent Minor components—15 percent

Description of Aquandic Humaquepts

Slope: 0 to 2 percent

Landform: Low active flood plain or mountain valley

Parent material: Stream alluvium derived from granitoid rock

Typical vegetation: Main tree species—willow and alder along the periphery; common

understory plants—hydrophytic grasses (carex species) and forbs

Selected properties and qualities

General features: The low flood plain of this component is the youngest geomorphic surface in Yosemite Valley and cuts the intermediate and high flood plains and terraces. It is characterized by floods, usually from high-intensity winter storms and spring runoff from snowmelt. Pools of stagnant water are often associated with this map unit along the Merced River throughout the growing season. This component is not likely to be scoured. It usually receives fresh sediments after periods of high flow in the river. Floodwater remains on the surface for extended periods. Woody floaters on the surface are common.

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 6.3 inches (moderate)

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None Surface runoff: Very high Current water table: Present

Natural drainage class: Poorly drained

Hydrologic soil group: C

California land use interpretive groups

Land capability classification (nonirrigated): 6w Other vegetative classification: None assigned

Typical profile

A1—0 to 8 inches; mucky very fine sandy loam

A2—8 to 18 inches; mucky silt loam A3—18 to 26 inches; fine sandy loam

C—26 to 68 inches; sand

Minor Components

Unnamed soils

Composition: About 10 percent

Slope: 0 to 2 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Histosols mesic, relict pools and similar soils

Composition: About 3 percent

Slope: 0 to 2 percent

Landform: Abandoned channel, mountain valley, or oxbow

Vegetative classification: None assigned

Stagnant water in pools and similar areas

Composition: About 2 percent

Slope: 0 to 2 percent

Landform: Abandoned channel or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

All components are subject to flooding and deposition.

- The varied composition of plant species indicates an actively colonizing or frequently disturbed site.
- High water tables are a management concern.
- Because of the year-round high water tables, pools of stagnant water in oxbows provide excellent breeding sites for mosquitoes.

111t—Whittell-Jobsis-Rock outcrop complex, 30 to 75 percent slopes, mountains, cryic

Setting

General location: None noted

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 8,995 to 12,000 feet (2,743 to 3,659 meters)

Mean annual precipitation: 35 to 55 inches (889 to 1,397 millimeters) Mean annual air temperature: 34 to 37 degrees F (1 to 3 degrees C)

Frost-free period: 25 to 45 days

Composition

Whittell soil—45 percent Jobsis soil—25 percent Rock outcrop—15 percent Minor components—15 percent

Description of the Whittell Soil

Slope: 30 to 75 percent Landform: Mountain

Parent material: Colluvium derived from granodiorite over residuum derived from

granodiorite

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 1 to 15 percent subrounded stones, 0 to 15 percent subrounded cobbles, 45 to 90 percent angular gravel, and 2 to 20 percent subrounded boulders

Restrictive feature: Bedrock (paralithic) at a depth of 20 to 39 inches

Available water capacity to a depth of 60 inches: About 1.1 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: C

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: None assigned

Typical profile

0 to 0 inches; slightly decomposed plant material

Soil Survey of Yosemite National Park, California

0 to 7 inches; very cobbly loamy coarse sand 7 to 20 inches; very stony loamy coarse sand 20 to 32 inches; extremely stony loamy coarse sand

32 to 42 inches; bedrock

Description of the Jobsis Soil

Slope: 30 to 75 percent Landform: Mountain

Parent material: Colluvium derived from granodiorite over residuum derived from

granodiorite

Typical vegetation: None assigned Selected properties and qualities

Surface area covered by coarse fragments: 2 to 8 percent stones, 10 to 20 percent fine gravel, 10 to 20 percent boulders, and 5 to 15 percent coarse gravel Restrictive feature: Bedrock (paralithic) at a depth of 10 to 20 inches

Available water capacity to a depth of 60 inches: About 0.8 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: D

California land use interpretive groups

Land capability classification (nonirrigated): 7s Other vegetative classification: None assigned

Typical profile

0 to 5 inches; very gravelly loamy coarse sand 5 to 9 inches; very gravelly loamy coarse sand 9 to 17 inches; very gravelly loamy coarse sand 17 to 20 inches; very gravelly coarse sand

20 to 30 inches; bedrock

Description of Rock Outcrop

Slope: 15 to 99 percent Landform: Mountain

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Typic Cryorthents and similar soils

Composition: About 3 percent Slope: 8 to 30 percent

Landform: Mountain

Vegetative classification: None assigned

Klauspeak and similar soils

Composition: About 2 percent Slope: 15 to 50 percent Landform: Mountain

Vegetative classification: None assigned

Shalgran and similar soils

Composition: About 2 percent Slope: 30 to 75 percent Landform: Mountain

Vegetative classification: None assigned

Buggin and similar soils

Composition: About 1 percent Slope: 30 to 75 percent Landform: Mountain

Vegetative classification: None assigned

Chutes

Composition: About 1 percent Slope: 75 to 150 percent Landform: Avalanche chute

Vegetative classification: None assigned

Glaciers

Composition: About 1 percent

Landform: Glacier

Vegetative classification: None assigned

Typic Cryorthents and similar soils

Composition: About 1 percent Slope: 15 to 50 percent Landform: Mountain

Vegetative classification: 022XYXXXNV_2, stunted pifl

Waterpeak and similar soils

Composition: About 1 percent Slope: 30 to 75 percent Landform: Mountain

Vegetative classification: None assigned

151—Elcapitan fine sandy loam, 0 to 2 percent slopes, mesic

Setting

General location: Adjacent to the Merced River and Tenaya Creek in Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,870 to 4,025 feet (1,180 to 1,228 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Elcapitan soil—80 percent Minor components—20 percent

Description of the Elcapitan Soil

Slope: 0 to 2 percent

Landform: Relict point bar, well defined bar and channel, scour channel, abandoned channel with year-round pools, intermediate flood plain, or mountain valley Parent material: Stream alluvium derived from granitoid rock and reworked lake sediments

Typical vegetation: This soil supports a wide range of vegetation, from woodland to hydrophytes; main tree species—ponderosa pine and incense cedar; common understory plants—grasses and forbs

Selected properties and qualities

General features: This component is characterized by floods, usually from high-intensity winter storms and spring runoff from snowmelt. It is likely to be scoured. It usually receives fresh sediments after periods of high flows in the river. Floodwater remains on the surface for extended periods. Woody floaters on the surface are common.

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 6.4 inches (moderate)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None Surface runoff: Very low Current water table: Present

Natural drainage class: Somewhat poorly drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 3w Other vegetative classification: None assigned

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material A—1 to 7 inches; stratified sandy loam to mucky loam 2Ab1—7 to 12 inches; stratified sandy loam to mucky loam 2Ab2—12 to 20 inches; stratified sandy loam to mucky loam

Soil Survey of Yosemite National Park, California

2Ab3—20 to 31 inches; stratified sandy loam to mucky loam 2Ab4—31 to 38 inches; stratified sandy loam to mucky loam

3C-38 to 44 inches; stratified sand to loam

3Ab—44 to 47 inches; stratified sandy loam to mucky loam

3C'-47 to 53 inches; stratified sand to loam

3A'b1—53 to 58 inches; stratified sandy loam to mucky loam 3A'b2—58 to 60 inches; stratified sandy loam to mucky loam

Minor Components

Unnamed soils

Composition: About 6 percent

Slope: 0 to 2 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Unnamed soils with sandy surface textures and high base saturation and similar soils

Composition: About 5 percent

Slope: 0 to 2 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Histosols mesic, relict pools and similar soils

Composition: About 3 percent

Slope: 0 to 2 percent

Landform: Mountain valley or oxbow Vegetative classification: None assigned

Unnamed frequently flooded and similar soils, unnamed gravelly and similar soils, and stagnant water in pools and similar areas

Composition: About 2 percent

Slope: 0 to 2 percent

Landform: Relict point bar, flood plain, or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- Flooding with deposition and scouring can occur simultaneously at different locations.
- The varied composition of plant species indicates an actively colonizing or frequently disturbed site.
- Because of the moderately high water table, year-round pools of stagnant water occur in abandoned channels and provide excellent breeding sites for mosquitoes.
- Sloughing and the undercutting of banks adjacent to the stream is particularly rapid in areas that have sandy substrata.
- Grass fires impede conifer encroachment by controlling the establishment of seedlings.

152—Vitrandic Haploxerolls, sandy, 0 to 3 percent slopes, mesic

Setting

General location: Adjacent to the Merced River in Yosemite Valley Major land resource area: Sierra Nevada Mountains (22A)

Soil Survey of Yosemite National Park, California

Landscape: Mountain valleys or canyons

Elevation: 3,955 to 3,995 feet (1,207 to 1,219 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Vitrandic Haploxerolls—80 percent Minor components—20 percent

Description of Vitrandic Haploxerolls

Slope: 0 to 3 percent

Landform: Hummocky and scoured point bar, intermediate flood plain, or mountain

valley

Parent material: Coarse textured stream alluvium derived from granitoid rock and

reworked lake sediments

Typical vegetation: Common understory plants—shrubs, grasses, and forbs

Selected properties and qualities

General features: This component is characterized by floods, usually from high-intensity winter storms and spring runoff from snowmelt. It is likely to have deposition on it and minor scouring. Floodwater remains on the surface for extended periods.

Surface area covered by coarse fragments: 0 to 3 percent coarse subangular gravel and 0 to 9 percent fine subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.4 inches (low)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None Surface runoff: Very low Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 3s Other vegetative classification: None assigned

Typical profile

A—0 to 2 inches; fine sandy loam

C-2 to 3 inches; stratified gravelly coarse sand to sand

A'1—3 to 5 inches; fine sandy loam A'2—5 to 13 inches; fine sandy loam A'3—13 to 18 inches; fine sandy loam

C´1—18 to 24 inches; stratified gravelly coarse sand to sand C´2—24 to 28 inches; stratified gravelly coarse sand to sand

C'3-28 to 32 inches; stratified gravelly coarse sand to sand

C'4—32 to 60 inches; stratified gravelly coarse sand to sand

Minor Components

Unnamed soils that are coarse-loamy over sandy/sandy-skeletal and similar soils

Composition: About 8 percent

Slope: 0 to 3 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Unnamed soils

Composition: About 4 percent

Slope: 0 to 3 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Aquandic Humaquepts and similar soils

Composition: About 3 percent

Slope: 0 to 3 percent

Landform: Lower-position flood plain or mountain valley

Vegetative classification: None assigned

Elcapitan fine sandy loam and similar soils

Composition: About 3 percent

Slope: 0 to 3 percent

Landform: Drainageway or mountain valley Vegetative classification: None assigned

Mollic Xerofluvents and similar soils

Composition: About 2 percent

Slope: 0 to 3 percent

Landform: Higher-position flood plain or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- Flooding with deposition and scouring are management concerns.
- The coarse soil textures have high detachability.
- The low water-holding capacity is a management concern.
- Soil disturbance and the subsequent loss of the organic surface layer are concerns.

201—Leidig fine sandy loam, 0 to 2 percent slopes, occasionally flooded, mesic

Setting

General location: None noted

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,905 to 4,030 feet (1,191 to 1,229 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Leidig soil—80 percent Minor components—20 percent

Description of the Leidig Soil

Slope: 0 to 2 percent

Landform: Relict point bar, distinct bar and channel, hung channel, high flood plain, meander scar, or mountain valley

Parent material: Alluvium derived from granitoid rock and reworked lake sediments Typical vegetation: This soil supports a wide range in vegetation, from woodland to facultative hydrophytes; main tree species—ponderosa pine and incense cedar; common understory plants—grasses and forbs

Selected properties and qualities

General features: This soil is characterized by floods, usually from high-intensity winter storms and spring runoff from snowmelt. It is not likely to be scoured. It usually receives fresh sediments after periods of high flow in the river. Floodwater remains on the surface for brief periods.

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 8.7 inches (high)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None Surface runoff: Very low Current water table: Present

Natural drainage class: Somewhat poorly drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6w Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A—0 to 7 inches; fine sandy loam 2Ab1—7 to 16 inches; loam 2Ab2—16 to 23 inches; loam

2Ab3—23 to 30 inches; very fine sandy loam 2Ab4—30 to 34 inches; fine sandy loam 2Ab5—34 to 42 inches; fine sandy loam 2Ab6—42 to 46 inches; fine sandy loam 3Ab1—46 to 52 inches; sandy loam 3Ab2—52 to 58 inches; fine sandy loam

C—58 to 60 inches; stratified loamy sand to fine sandy loam

Minor Components

Unnamed soils

Composition: About 6 percent

Slope: 0 to 2 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Vitrandic Haploxerolls randomly occurring and similar soils

Composition: About 5 percent

Slope: 0 to 2 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Happyisles overwash and similar soils

Composition: About 3 percent

Slope: 0 to 2 percent

Landform: Area adjacent to alluvial fan flood plain or mountain valley

Vegetative classification: None assigned

Unnamed meander scars, unnamed relict point bars, and stagnant water in pools

Composition: About 2 percent

Slope: 0 to 2 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- Flooding with deposition and scouring can occur simultaneously at different locations.
- The varied composition of plant species indicates an actively colonizing or frequently disturbed site.
- Because of the moderately high water tables, year-round pools of stagnant water occur in abandoned channels and provide excellent breeding sites for mosquitoes.
- Grass fires impede conifer encroachment by controlling the establishment of seedlings.

210—Rubble land-Typic Cryorthents-Rock outcrop-Xeric Dystrocryepts complex, 30 to 80 percent slopes, mountainflanks, metamorphic, mafic, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,535 to 13,045 feet (1,992 to 3,977 meters)

Mean annual precipitation: 31 to 63 inches (787 to 1,600 millimeters)
Mean annual air temperature: 37 to 38 degrees F (about 3 degrees C)

Frost-free period: 15 to 45 days

Composition

Rubble land—30 percent
Typic Cryorthents—25 percent
Rock outcrop—20 percent
Xeric Dystrocryepts—20 percent
Minor components—5 percent

Description of Rubble Land

Slope: 30 to 80 percent

Soil Survey of Yosemite National Park, California

Landform: Periglacial cirque, debris avalanche, colluvial fan apron, scree slope, or talus slope

Parent material: Colluvium derived from metavolcanic hornfels with lesser amounts of

mafic igneous intrusive rock *Typical vegetation:* None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Typic Cryorthents

Slope: 30 to 80 percent

Landform: Periglacial cirque, drainageway, colluvial fan apron, crests of mountain, or

mountainside

Parent material: Colluvium derived from metavolcanic, mafic, and a minor amount of

granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent coarse subangular gravel and 5 to 15 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.2 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 86120, Whitebark Pine Forest

Typical profile

A1—0 to 2 inches; gravelly sandy loam
A2—2 to 13 inches; very cobbly sandy loam
C1—13 to 19 inches; very cobbly fine sandy loam
C2—19 to 60 inches; extremely stony fine sandy loam

Description of Rock Outcrop

Slope: 30 to 80 percent

Landform: Cirque, cliff, or mountainside

Parent material: Metamorphic rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8
Other vegetative classification: None assigned

Description of Xeric Dystrocryepts

Slope: 30 to 80 percent Landform: Mountainside

Parent material: Colluvium derived from metavolcanic and mafic rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.2 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: None assigned

Typical profile

Oe—0 to 1 inch; moderately decomposed plant material

A1—1 to 5 inches; fine sandy loam

A2—5 to 13 inches; very cobbly fine sandy loam Bw—13 to 28 inches; very cobbly fine sandy loam

C-28 to 60 inches; gravelly sandy loam

Minor Components

Humic Dystrocryepts loamy-skeletal and similar soils

Composition: About 3 percent Slope: 30 to 80 percent Landform: Mountainside

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

- The types of rock in this map unit are dominantly metavolcanic hornfels with lesser amounts of mafic igneous intrusive rock, mostly south of Ireland Lake. Inclusions (about 10 percent) of granitoid rock occur, especially in the northern part of the park in the vicinity of Mary Lake and Dorothy Lake.
- Most rock rubble is derived from heavy frost shatter of hornfelsic bedrock, but some is derived from unconsolidated rock in debris avalanches, colluvial aprons, and periglacial cirques.
- Metamorphic rocks (hornfels) tend to be more susceptible than igneous rocks to frost shatter.
- This map unit has convergent to divergent drainage patterns.
- Mountain flanks that are steeper than 55 percent are prone to snow and debris avalanches.
- Slopes that are about or more than 30 percent occur on mountain shoulders and crests, periglacial cirques, and apron toes.
- Sheet erosion is common on soils that have slopes of more than 35 percent.
- Colluvial slopes that are steeper that about 35 percent are subject to creep.

211—Xeric Dystrocryepts-Canisrocks-Oxyaquic Dystrocryepts association, 10 to 40 percent slopes, aprons, lateral moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 8,870 to 10,650 feet (2,704 to 3,247 meters)

Mean annual precipitation: 37 to 45 inches (940 to 1,143 millimeters)
Mean annual air temperature: 34 to 34 degrees F (about 1 degree C)

Frost-free period: 15 to 45 days

Composition

Xeric Dystrocryepts—35 percent Canisrocks soil—30 percent Oxyaquic Dystrocryepts—15 percent Minor components—20 percent

Description of Xeric Dystrocryepts

Slope: 10 to 40 percent Landform: Lateral moraine

Soil Survey of Yosemite National Park, California

Parent material: Colluvium derived from mixed metamorphic hornfels and granitoid

rock and/or tioga till

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subangular cobbles, 0 to 5 percent subrounded stones, and 0 to 5 percent coarse subangular gravel

Restrictive feature: Dense material at a depth of 32 inches

Available water capacity to a depth of 60 inches: About 1.6 inches (very low)

Selected hydrologic properties

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

Oe—0 to 1 inch; moderately decomposed plant material

A—1 to 9 inches; very stony fine sandy loam

Bw1—9 to 19 inches; very stony sandy loam

Bw2—19 to 32 inches; extremely stony coarse sandy loam Cd—32 to 60 inches; extremely cobbly coarse sandy loam

Description of the Canisrocks Soil

Slope: 10 to 40 percent

Landform: Lateral moraine, colluvial aprons on mountain slope, or mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles, 2 to 10 percent subrounded stones, and 2 to 10 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material

Soil Survey of Yosemite National Park, California

Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Description of Oxyaquic Dystrocryepts

Slope: 10 to 40 percent

Landform: Avalanche chute or area below concave rock outcrop on mountain slope

Parent material: Nonbouldery colluvium derived from granitoid rock over till

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent coarse subangular gravel

and 0 to 5 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.0 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

A1—0 to 0 inches; sandy loam

A2—0 to 9 inches; gravelly sandy loam Bt1—9 to 16 inches; cobbly sandy loam Bt2—16 to 23 inches; sandy loam

Ct-23 to 60 inches; very gravelly sandy loam

Minor Components

Rubble land

Composition: About 10 percent

Slope: 10 to 40 percent Landform: Mountainside

Vegetative classification: None assigned

Rock outcrop

Composition: About 5 percent Slope: 10 to 40 percent Landform: Mountain slope

Vegetative classification: None assigned

Vitrandic Dystrocryepts loamy-skeletal and similar soils

Composition: About 3 percent Slope: 10 to 40 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Vitrandic Cryorthents coarse-loamy and similar soils

Composition: About 2 percent Slope: 10 to 40 percent Landform: Moraine

Vegetative classification: None assigned

Use and Management Considerations

- This map unit occurs at the base of mountain flanks and below areas of rock outcrop.
- Water flows over upslope bedrock surfaces and under rock rubble.
- Slope drainage patterns are mostly parallel to slightly convergent.
- Entisols tend to be more bouldery than Inceptisols.
- This map unit is susceptible to debris and snow avalanches from upslope areas.
- Rubble is concentrated on aprons and the lower mountain flanks.
- · Brush is concentrated in avalanche tracks.

213—Canisrocks-Glacierpoint-Vitrandic Dystrocryepts complex, bouldery, 20 to 45 percent slopes, medial moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 7,285 to 10,965 feet (2,221 to 3,343 meters)

Mean annual precipitation: 33 to 49 inches (838 to 1,245 millimeters) Mean annual air temperature: 45 to 47 degrees F (7 to 8 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—50 percent Glacierpoint soil—15 percent Vitrandic Dystrocryepts—15 percent Minor components—20 percent

Description of the Canisrocks Soil

Slope: 20 to 45 percent

Landform: Lateral moraine, summits on medial moraine, mountain slope, or

mountainside

Parent material: Till derived from granitoid rock and minor metamorphic rock and

colluvium over till with minor volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 10 percent subrounded stones, 15 to 25 percent coarse subrounded gravel, and 15 to 25 percent subangular cobbles Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.0 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6s

Other vegetative classification: 86200, Sierra Mixed Subalpine Coniferous Forest

Typical profile

Oi—0 to 0 inches; very stony slightly decomposed plant material

A—0 to 3 inches; cobbly loamy sand C1—3 to 12 inches; cobbly loamy sand C2—12 to 60 inches; very cobbly loamy sand

Description of Glacierpoint Soil

Slope: 20 to 45 percent Landform: Lower moraine

Parent material: Till derived from granitoid rock with minor amounts of volcanic ash in

some areas

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent coarse subangular gravel, 5 to 15 percent subangular cobbles, and 5 to 15 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.3 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; stony slightly decomposed plant material

Oe—0 to 1 inch; stony moderately decomposed plant material

A1—1 to 9 inches; very stony loamy sand

A2—9 to 15 inches; extremely stony loamy sand

Bw—15 to 20 inches; very cobbly loamy sand

C1—20 to 29 inches; very cobbly loamy sand

C2—29 to 37 inches; very cobbly loamy sand C3—37 to 60 inches; very cobbly loamy sand

Description of Vitrandic Dystrocryepts

Slope: 20 to 45 percent Landform: Moraine

Parent material: Till derived from granitoid rock and/or volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subrounded stones, 0 to 10 percent subrounded boulders, and 0 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.1 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; slightly decomposed plant material

A1—1 to 11 inches; loamy sand A2—11 to 17 inches; sandy loam Bw—17 to 25 inches; cobbly loamy sand

BC—25 to 37 inches; stony loamy coarse sand C—37 to 60 inches; cobbly loamy coarse sand

Minor Components

Vitrandic Cryorthents sandy-skeletal and similar soils

Composition: About 7 percent Slope: 20 to 45 percent

Landform: Moraine, mountain slope, or mountain valley

Vegetative classification: None assigned

Typic Cryorthents coarse-loamy, acid and similar soils

Composition: About 5 percent Slope: 20 to 45 percent

Landform: Lateral moraine, summits on medial moraine, mountain slope, or

mountainside

Vegetative classification: None assigned

Rock outcrop

Composition: About 3 percent Slope: 20 to 45 percent Landform: Mountain slope

Vegetative classification: None assigned

Xeric Dystrocryepts sandy and similar soils

Composition: About 3 percent Slope: 20 to 45 percent Landform: Lower moraine

Vegetative classification: None assigned

Xeric Dystrocryepts coarse-loamy and similar soils

Composition: About 2 percent Slope: 20 to 45 percent Landform: Lower moraine

Vegetative classification: None assigned

Use and Management Considerations

- This map unit occurs at and near the confluence of mountain valleys where tributary glaciers commonly coalesced with larger valley glaciers, forming valley steps in some areas.
- This map unit has generally well defined, sharply crested moraines of Tioga age.
- Morainal surfaces tend to be bouldery.
- The moraines commonly are deeply incised by streams.
- In some areas this map unit occurs below mountain slope-lateral moraine complexes (such as map unit 221).
- This map unit normally has greater tree cover and less brush than the higher map unit.

214—Marmotland-Oxyaquic Dystrocryepts-Xeric Dystrocryepts complex, 0 to 15 percent slopes, mountain valley floors, cryic

Settina

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park (fig. 10)

Major land resource area: Sierra Nevada Mountains (22A) Landscape: Mountain valleys, mountain canyons, or mountains

Elevation: 6,515 to 10,315 feet (1,986 to 3,146 meters)

Mean annual precipitation: 31 to 61 inches (787 to 1,549 millimeters)
Mean annual air temperature: 37 to 38 degrees F (about 3 degrees C)

Frost-free period: 15 to 45 days

Composition

Marmotland soil—25 percent
Oxyaquic Dystrocryepts—15 percent
Xeric Dystrocryepts—15 percent
Minor components—45 percent

Description of the Marmotland Soil

Slope: 0 to 15 percent

Landform: Moraine or area above normally active flood plain on valley floor

Parent material: Alluvium and/or minor till derived from granitoid rock and volcanic ash

Typical vegetation: Dry alpine and subalpine meadows

Figure 10.—An area of Marmotland-Oxyaquic Dystrocryepts-Xeric Dystrocryepts complex, 0 to 15 percent slopes, mountain valley floors, cryic, in a meadow near Badger Pass ski area off Glacier Point Road. This area shows the diversity of vegetation on flood plains.

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: Dense material at a depth of 31 inches

Available water capacity to a depth of 60 inches: About 4.6 inches (low)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None Surface runoff: Medium Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 45220, Dry Subalpine and Alpine Meadow

Typical profile

Oi-0 to 0 inches; slightly decomposed plant material

A1—0 to 11 inches; fine sandy loam A2—11 to 19 inches; fine sandy loam Bt1—19 to 36 inches; fine sandy loam Bt2—36 to 48 inches; sandy loam C—48 to 60 inches; ashy sandy loam

Description of Oxyaquic Dystrocryepts

Slope: 0 to 15 percent

Landform: Old and active flood plain or valley floor

Parent material: Alluvium, till derived from granitoid rock, and volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.4 inches (very low)

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: C

California land use interpretive groups

Land capability classification (nonirrigated): 6w

Other vegetative classification: 45110, Wet Montane Meadow

Typical profile

A1—0 to 2 inches; loamy coarse sand

A2-2 to 7 inches; coarse sand

A3—7 to 14 inches; loamy coarse sand

AB—14 to 20 inches; loamy coarse sand

Bw-20 to 31 inches; coarse sand

C1-31 to 40 inches; loamy coarse sand

C2-40 to 61 inches; extremely bouldery coarse sand

Description of Xeric Dystrocryepts

Slope: 0 to 15 percent

Landform: Raised, well drained ground moraine, toes on lateral moraine, colluvial

aprons on mountain slopes or mountain slope

Parent material: Alluvium derived from granitoid and metamorphic rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.4 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material

A—2 to 16 inches; sandy loam AB—16 to 23 inches; loamy sand

Bw—23 to 36 inches; gravelly loamy sand C1—36 to 63 inches; very cobbly loamy sand C2—63 to 69 inches; very cobbly sand

Minor Components

Vitrandic Cryofluvents coarse-loamy and similar soils

Composition: About 10 percent

Slope: 0 to 15 percent Landform: Valley floor

Vegetative classification: 45220, Dry Subalpine and Alpine Meadow

Aquandic Cryaquepts and similar soils

Composition: About 5 percent

Slope: 0 to 4 percent

Landform: Flood plain on slopes of less than 4 percent

Vegetative classification: None assigned

Cumulic Cryaquolls and similar soils

Composition: About 5 percent

Slope: 0 to 6 percent Landform: Valley floor

Vegetative classification: 45110, Wet Montane Meadow

Histosols cryic and similar soils

Composition: About 5 percent

Slope: 0 to 15 percent

Landform: Lakeshore or mountain valley Vegetative classification: None assigned

Humic Cryaquepts and similar soils

Composition: About 4 percent

Slope: 0 to 5 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Oxyaquic Dystrocryepts coarse-loamy and similar soils

Composition: About 4 percent

Slope: 0 to 15 percent

Landform: Fringes of flood plain or terrace

Vegetative classification: 45110, Wet Montane Meadow

Typic Cryaquands and similar soils

Composition: About 4 percent

Slope: 0 to 15 percent

Landform: Mountain or floors on mountain valley

Vegetative classification: 45220, Dry Subalpine and Alpine Meadow

Glacierpoint and similar soils

Composition: About 2 percent

Slope: 6 to 15 percent

Landform: Raised, well drained ground moraine, toes on lateral moraine, mountain

slope, or colluvial aprons on mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Typic Cryopsamments and similar soils

Composition: About 2 percent

Slope: 0 to 15 percent

Landform: Margins on mountain valley

Vegetative classification: 86110, Lodgepole Pine Forest

Typic Cryorthents coarse-loamy, nonacid and similar soils

Composition: About 2 percent

Slope: 0 to 15 percent Landform: Ground moraine

Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Xeric Dystrocryepts coarse-loamy and similar soils

Composition: About 1 percent

Slope: 6 to 15 percent

Landform: Raised, well drained ground moraine, toes on lateral moraine, mountain

slope, or colluvial aprons on mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Use and Management Considerations

- From a pedological perspective, this map unit is one of the most complex map units in Yosemite National Park.
- This map unit includes stream channels, flood plains, and small stream terraces.
- This map unit has dominantly dry to wet meadows and some areas with significant forest invasion of primarily lodgepole pine.
- · The steepest slopes are on risers of valley steps.

215—Typic Cryorthents-Rock outcrop-Rubble land complex, 30 to 65 percent slopes, metamorphic, glacially scoured mountain slopes, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 7,195 to 11,220 feet (2,194 to 3,420 meters)

Mean annual precipitation: 39 to 51 inches (991 to 1,295 millimeters)
Mean annual air temperature: 48 to 49 degrees F (about 9 degrees C)

Frost-free period: 15 to 45 days

Composition

Typic Cryorthents—40 percent Rock outcrop—20 percent Rubble land—20 percent Minor components—20 percent

Description of Typic Cryorthents

Slope: 30 to 65 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from metamorphic rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded stones, 2 to 10 percent subangular cobbles, and 10 to 20 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.4 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; stony slightly decomposed plant material Oe—0 to 1 inch; stony moderately decomposed plant material

A-1 to 3 inches; loamy fine sand

Bw1—3 to 12 inches; very gravelly loamy sand Bw2—12 to 18 inches; very gravelly loamy sand Bw3—18 to 22 inches; very gravelly loamy sand Cd—22 to 60 inches; very gravelly sandy loam

Description of Rock Outcrop

Slope: 30 to 65 percent

Landform: Avalanche track or cliff Parent material: Metamorphic rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Rubble Land

Slope: 30 to 65 percent

Landform: Avalanche track or talus slope

Parent material: Colluvium derived from metamorphic rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 10 percent

Slope: 0 to 10 percent

Landform: Narrow (few meters) fringes around rock outcrop on mountain slope

Vegetative classification: None assigned

Xeric Dystrocryepts sandy-skeletal and similar soils

Composition: About 10 percent Landform: Mountain slope

Vegetative classification: None assigned

Use and Management Considerations

- The types of rock in this map unit are metasedimentary with mafic plutonic rock, especially in the Ten Lakes area.
- Talus, avalanche tracks, and remnant moraines are superimposed on mountain slopes; rock outcrop is superimposed on mountain flanks.
- Mountain slopes have been glacially scoured.
- There is a hazard of snow or debris avalanches on slopes that are about or more than 55 percent.
- Mountain slopes grade to mountain flanks, typically upslope but also laterally.

219—Rock outcrop-Rubble land-Canisrocks association, 0 to 80 percent slopes, cirqued mountainflanks, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 7,795 to 13,025 feet (2,377 to 3,970 meters)

Mean annual precipitation: 35 to 65 inches (889 to 1,651 millimeters) Mean annual air temperature: 34 to 42 degrees F (1 to 6 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—40 percent Rubble land—25 percent Canisrocks soil—15 percent Minor components—20 percent

Description of Rock Outcrop

Slope: 0 to 80 percent
Landform: Mountain slope
Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8
Other vegetative classification: None assigned

Description of Rubble Land

Slope: 0 to 80 percent Landform: Mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Canisrocks Soil

Slope: 9 to 80 percent

Landform: Cirque, mountain, or mountain slope
Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 15 percent subrounded stones, 0 to 15 percent subangular cobbles, and 0 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Minor Components

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 10 percent

Slope: 0 to 10 percent

Landform: Narrow (few meters) fringes around rock outcrop on mountain slope

Vegetative classification: None assigned

Humic Lithic Dystrocryepts sandy and similar soils

Composition: About 7 percent Slope: 0 to 10 percent

Landform: Mountain, dimples in bedrock in mountain slope, or shallow fractures in

bedrock in mountain slope

Vegetative classification: None assigned

Water

Composition: About 2 percent

Landform: Lake

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Use and Management Considerations

- This map unit has been intensively scoured glacially.
- The mountain flanks are dominated by rock outcrop and rubble from frost shatter.
- Talus is superimposed on mountain flanks, cirques, and mountain slopes.
- Cirques dominantly are northeast-facing and dominated by rock outcrop and rubble.
- Volcanic ash commonly is mixed in soils on slopes that are about or more than 30 percent.
- Cirques provide good habitat for marmot.
- This map unit is prone to snow avalanches on slopes that are about or more than 55 percent.
- This map unit includes areas with slopes that are about or more than 35 percent on cirque floors, bedrock joints, ridge summits, and mountain slopes. These areas are too small to be mapped separately at the 1:40,000 scale.

221—Typic Cryorthents-Xeric Dystrocryepts-Oxyaquic Dystrocryepts complex, 15 to 45 percent slopes, metamorphic, mountain slopes, lateral moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 9,845 to 11,220 feet (3,001 to 3,420 meters)

Mean annual precipitation: 35 to 47 inches (889 to 1,194 millimeters) Mean annual air temperature: 38 to 40 degrees F (3 to 4 degrees C)

Frost-free period: 15 to 45 days

Composition

Typic Cryorthents—35 percent Xeric Dystrocryepts—20 percent Oxyaquic Dystrocryepts—15 percent Minor components—30 percent

Description of Typic Cryorthents

Slope: 15 to 45 percent

Landform: Lateral moraine, recessional moraine, or mountain slope

Parent material: Mixed granitoid rock colluvium and/or till derived from metamorphic

rock and volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 25 percent subangular cobbles and

5 to 25 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.5 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

A1—0 to 2 inches; gravelly sandy loam

A2—2 to 13 inches; very cobbly loam

C1—13 to 19 inches; very cobbly fine sandy loam C2—19 to 60 inches; extremely stony fine sandy loam

Description of Xeric Dystrocryepts

Slope: 15 to 45 percent

Landform: Ground moraine or lateral moraine

Parent material: Colluvium and/or till derived from metasedimentary rock and volcanic

ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded stones,

2 to 10 percent subangular cobbles, and 2 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 7.4 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

A—0 to 3 inches; stony sandy loam

Bw-3 to 19 inches; very stony sandy loam

Cd—19 to 60 inches; sandy loam

Description of Oxyaquic Dystrocryepts

Slope: 15 to 45 percent

Landform: Parallel ephemeral stream or subsurface water flow with ephemeral stream

Parent material: Colluvium and/or till derived from metamorphic rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded stones and

0 to 5 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.0 inches (low)

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6w Other vegetative classification: None assigned

Typical profile

A1—0 to 0 inches; sandy loam

A2—0 to 9 inches; gravelly sandy loam Bt1—9 to 16 inches; cobbly sandy loam Bt2—16 to 23 inches; sandy loam

Ct—23 to 60 inches; very gravelly sandy loam

Minor Components

Rock outcrop

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Eroded lateral moraine or mountain slope

Vegetative classification: None assigned

Vitrandic Dystrocryepts loamy-skeletal and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Histic Cryaquepts loamy-skeletal and similar soils

Composition: About 3 percent Slope: 15 to 45 percent

Landform: Eroded lateral moraine Vegetative classification: None assigned

Rubble land

Composition: About 2 percent Slope: 15 to 45 percent Landform: Mountain slope

Vegetative classification: None assigned

Water

Composition: About 2 percent

Landform: Lake

Vegetative classification: None assigned

Xeric Dystrocryepts loamy-skeletal and similar soils

Composition: About 2 percent Slope: 15 to 45 percent

Landform: Ground moraine or lateral moraine Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Use and Management Considerations

- The type of rock in this map unit is metasedimentary hornfels, schist, and lesser amounts of mixed granitoid in the colluvium and till.
- Except for the moraine in the upper Virginia Canyon, which is of Tioga age, geologic erosion of moraines suggests that they are older than Tioga age.
- Mountain slopes typically exhibit parallel drainage patterns.
- The soil moisture regime dominantly is xeric, but areas of udic and aquic moisture regimes occur in ephemeral drainages and near geomorphic contacts that concentrate subsurface water flow.
- In the wet areas, soils with a xeric moisture regime commonly occur on slightly raised drier "islands."
- This map unit includes till-covered slopes of more than 15 percent on spur summits in the upper Parker Pass Creek drainageway.

222—Canisrocks-Rubble land-Rock outcrop-Crazymule complex, 30 to 75 percent slopes, mountainflanks, colluvial aprons, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,215 to 12,535 feet (1,896 to 3,821 meters)

Mean annual precipitation: 39 to 55 inches (991 to 1,397 millimeters) Mean annual air temperature: 38 to 40 degrees F (3 to 4 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—30 percent Rubble land—30 percent Rock outcrop—20 percent Crazymule soil—15 percent Minor components—5 percent

Description of the Canisrocks Soil

Slope: 30 to 75 percent

Landform: Avalanche chute, crests on mountain, or backslope on mountainside

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: California red fir forest

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded stones, 2 to 10 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Surface furion. Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 2 inches; bouldery slightly decomposed plant material

A-2 to 7 inches; very cobbly loamy coarse sand

AC-7 to 14 inches; extremely cobbly sand

C—14 to 60 inches; extremely stony coarse sand

Description of Rubble Land

Slope: 30 to 75 percent

Landform: Avalanche tract on mountain slope or colluvial apron mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Rock Outcrop

Slope: 30 to 75 percent

Landform: Lateral moraine or mountain slope

Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8
Other vegetative classification: None assigned

Description of the Crazymule Soil

Slope: 30 to 35 percent

Landform: Colluvial fan apron or mountain

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 25 to 35 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Soil Survey of Yosemite National Park, California

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; gravelly slightly decomposed plant material

A-0 to 5 inches; gravelly loamy sand

Bw1—5 to 22 inches; very bouldery loamy sand Bw2—22 to 35 inches; very bouldery loamy sand

C-35 to 60 inches; cobbly loam

Minor Components

Craneflat and similar soils

Composition: About 3 percent Slope: 30 to 75 percent

Landform: Aprons on mountainside Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

- Although this map unit may extend from mountain summit to toeslope, it commonly
 is bordered above by outcrops of map units 223, 219, 210, and 235. This contributes
 to water runoff, snow avalanches, and rock rubble.
- Rubble (talus and scree) and avalanche tracks are superimposed on mountain flanks and aprons at footslopes and toeslopes.
- Most of the rock rubble is derived from avalanches, frost action, and erosional deposition from map units above map unit 222.
- This map unit is highly prone to snow avalanches and, to a lesser extent, debris avalanches.
- The soils are highly susceptible to creep.
- The proportion of rock outcrop varies from about 10 to 30 percent among map unit delineations.
- Compared to map unit 235, map unit 222 tends to have more concave surfaces, a
 greater tendency to form rubble (talus and scree), less rock outcrop, and greater
 vegetative cover (40 percent).
- Areas with a frigid soil temperature regime occur along the low elevation margin of the map unit.
- Morainal inclusions are indistinct.

223—Rock outcrop-Rubble land-Canisrocks association, 10 to 65 percent slopes, mountain slopes, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 9,020 to 12,320 feet (2,750 to 3,756 meters)

Mean annual precipitation: 39 to 45 inches (991 to 1,143 millimeters)
Mean annual air temperature: 36 to 36 degrees F (about 2 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—35 percent Rubble land—35 percent Canisrocks soil—20 percent Minor components—10 percent

Description of Rock Outcrop

Slope: 10 to 65 percent

Landform: Cirque, cliff, or mountain slope

Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Rubble Land

Slope: 10 to 65 percent

Landform: Cirque, mountain slope, or rock glacier Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8
Other vegetative classification: None assigned

Description of the Canisrocks Soil

Slope: 10 to 65 percent

Landform: Mountain slope, small areas in mountain valley, colluvial aprons on

mountainside, bedrock joints in mountainside, or mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 15 percent subangular cobbles, 0 to 15 percent coarse subangular gravel, and 0 to 15 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: 85310, Red Fir Forest

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Minor Components

Vitrandic Cryorthents sandy-skeletal and similar soils

Composition: About 5 percent Slope: 10 to 65 percent

Landform: Mountain slope or small mountain valley

Vegetative classification: None assigned

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 3 percent

Slope: 0 to 10 percent

Landform: Narrow (few meters) fringe around rock outcrop in mountainside

Vegetative classification: None assigned

Humic Lithic Dystrocryepts sandy and similar soils

Composition: About 2 percent

Slope: 0 to 10 percent

Landform: Bedrock dimples in mountain slope Vegetative classification: None assigned

Use and Management Considerations

- Rubble encompasses frost-shattered bedrock, including talus, scree, aprons, and rock glaciers.
- Mountain ridges and mountain flanks are dominated by rock outcrop and rubble, with less than 15 percent soil.

224—Rock outcrop-Crazymule-Vitrandic Cryorthents association, 0 to 45 percent slopes, joints, fractures, scoured, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,565 to 11,675 feet (2,002 to 3,560 meters)

Mean annual precipitation: 31 to 65 inches (787 to 1,651 millimeters)
Mean annual air temperature: 34 to 50 degrees F (1 to 10 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—40 percent Crazymule soil—20 percent Vitrandic Cryorthents—15 percent Minor components—25 percent

Description of Rock Outcrop

Slope: 0 to 45 percent Landform: Mountainside Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Crazymule Soil

Slope: 5 to 35 percent

Soil Survey of Yosemite National Park, California

Landform: Mountain slope, mountain valley, steps on mountainside, or bedrock joints

and fractures in mountainside

Parent material: Colluvium and/or residuum and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subrounded stones,

5 to 15 percent subangular cobbles, and 5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86800, Mountain Hemlock Forest; 86110, Lodgepole

Pine Forest

Typical profile

Oi—0 to 0 inches; stony slightly decomposed plant material

A—0 to 5 inches; gravelly loamy sand

Bw1—5 to 22 inches; very bouldery loamy sand Bw2—22 to 35 inches; very bouldery loamy sand

Cd-35 to 60 inches; cobbly loam

Description of Vitrandic Cryorthents

Slope: 0 to 45 percent

Landform: Mountain slope or bedrock joints and fractures in mountainside Parent material: Colluvium and/or residuum and/or till derived from granitoid rock

and/or surficial tephra

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subrounded stones and 0 to 10 percent subrounded boulders

Restrictive feature: Bedrock (lithic) at a depth of 24 to 26 inches

Available water capacity to a depth of 60 inches: About 1.3 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 2 inches; slightly decomposed plant material Oe—2 to 2 inches; slightly decomposed plant material

A—2 to 7 inches; loamy fine sand Bw—7 to 15 inches; loamy sand

C—15 to 24 inches; gravelly loamy sand

R—24 to 60 inches; bedrock

Minor Components

Xeric Dystrocryepts coarse-loamy, Xeric Dystrocryepts sandy-skeletal, and similar soils

Composition: About 4 percent

Slope: 0 to 45 percent

Landform: Mountain slope, mountain valley, steps on mountainside, or bedrock joints

and fractures in mountainside

Vegetative classification: 85310, Red Fir Forest; 86110, Lodgepole Pine Forest

Humic Dystrocryepts sandy and similar soils

Composition: About 3 percent

Slope: 0 to 45 percent

Landform: Floor on mountain valley

Vegetative classification: 81900, Aspen Forest

Humic Lithic Dystrocryepts sandy and similar soils

Composition: About 3 percent

Slope: 0 to 10 percent

Landform: Mountain slope, small benches on mountainside, or bedrock dimples in

mountainside

Vegetative classification: 85120, Western White Pine Forest; 85200, Upper Montane

Mixed Coniferous Forest

Badgerpass and similar soils

Composition: About 2 percent

Slope: 0 to 45 percent

Landform: Mountain slope or bedrock small benches and dimples on mountainside

Vegetative classification: 37500, Montane Chaparral

Oxyaquic Dystrocryepts coarse-loamy and similar soils

Composition: About 2 percent

Slope: 0 to 10 percent

Landform: Bedrock joints in mountainside Vegetative classification: 85310, Red Fir Forest

Typic Cryorthents sandy-skeletal and similar soils

Composition: About 2 percent

Slope: 0 to 9 percent

Landform: Bedrock joints in mountainside or mountainside

Vegetative classification: None assigned

Xeric Dystrocryepts sandy and similar soils

Composition: About 2 percent

Slope: 0 to 45 percent

Landform: Mountain slope, mountain valley, steps on mountainside, or bedrock joints

and fractures in mountainside

Vegetative classification: 85310, Red Fir Forest

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Lithic Cryopsamments and similar soils

Composition: About 1 percent

Slope: 0 to 45 percent

Landform: Backslope mountain slope Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

- Systematic and nonsystematic joint sets cut indurated rock masses.
- Till from remnant moraines occurs in about 20 percent of the joints, especially those that are more than 20 meters wide.
- A small amount of metasedimentary rock is included in this map unit southwest of the Glen Aulin High Sierra Camp.
- Mostly scattered rubble from adjacent upslope map units and from frost action occurs on about one-third of the slopes steeper than 35 percent.
- Tephra commonly occurs in joints.
- Small (less than 1 hectare) meadows are scattered throughout the map unit (1 to 2 percent) but are most common in mountain valley components.
- The mountain slope components are typically short (less than 100 meters).

225—Canisrocks-Rock outcrop-Rubble land-Vitrandic Dystrocryepts association, 2 to 30 percent slopes, glacially scoured mountain valleys, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,535 to 11,355 feet (1,993 to 3,461 meters)

Mean annual precipitation: 39 to 65 inches (991 to 1,651 millimeters) Mean annual air temperature: 38 to 41 degrees F (3 to 5 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—15 percent Rock outcrop—15 percent Rubble land—15 percent Vitrandic Dystrocryepts—15 percent Minor components—40 percent

Description of the Canisrocks Soil

Slope: 9 to 30 percent

Landform: Nivational cirques on mountain or colluvial aprons on mountainside

Parent material: Alluvium and/or colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded boulders, 2 to 10 percent subrounded stones, and 2 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Description of Rock Outcrop

Slope: 2 to 30 percent Landform: Mountain slope Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Rubble Land

Slope: 2 to 30 percent Landform: Mountain valley

Parent material: Colluvium derived from igneous rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Vitrandic Dystrocryepts

Slope: 2 to 30 percent

Landform: Moraine, mountain slope, floors on mountain valley, or bedrock joints in

mountainside

Parent material: Colluvium and/or till derived from granitoid and/or metamorphic rock

and volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subrounded stones, 0 to 10 percent subrounded boulders, and 0 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.6 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

Oi—0 to 1 inch; bouldery slightly decomposed plant material

Soil Survey of Yosemite National Park, California

Oe—1 to 2 inches; bouldery moderately decomposed plant material

A1-2 to 5 inches; loamy sand

A2-5 to 12 inches; very bouldery loamy sand

Bw1—12 to 26 inches; extremely bouldery sandy loam Bw2—26 to 30 inches; extremely bouldery sandy loam C—30 to 60 inches; extremely bouldery loamy sand

Minor Components

Vitrandic Cryorthents sandy-skeletal and similar soils

Composition: About 12 percent

Slope: 2 to 20 percent

Landform: Nivational cirque, mountain slope, flood plains in mountain valley, margins in

mountain valley, or colluvial aprons on mountainside

Vegetative classification: None assigned

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 6 percent

Slope: 0 to 10 percent

Landform: Narrow fringes along bedrock on mountainside

Vegetative classification: None assigned

Oxyaquic Cryorthents and similar soils

Composition: About 4 percent

Slope: 0 to 10 percent

Landform: Narrow riparian zones on glacial-valley floor or flood plains in mountain

valley

Vegetative classification: None assigned

Humic Cryaquepts and similar soils

Composition: About 2 percent

Slope: 2 to 10 percent Landform: Flood plain

Vegetative classification: None assigned

Water

Composition: About 2 percent

Landform: Lake

Vegetative classification: None assigned

Oxyaquic Cryopsamments and similar soils

Composition: About 2 percent

Slope: 2 to 8 percent

Landform: Kettles on glacial-valley floor or riparian zones on glacial-valley floor

Vegetative classification: None assigned

Oxyaquic Dystrocryepts loamy-skeletal and similar soils

Composition: About 2 percent

Slope: 0 to 10 percent

Landform: Moraine or bedrock kettles and joints in mountainside

Vegetative classification: None assigned

Typic Cryorthents sandy-skeletal and similar soils

Composition: About 2 percent

Slope: 2 to 8 percent

Soil Survey of Yosemite National Park, California

Landform: Flood plain, nivational cirques on mountain, or colluvial aprons on

mountainside

Vegetative classification: None assigned

Typic Vitricryands and similar soils

Composition: About 2 percent

Slope: 2 to 30 percent

Landform: Mountain slope or margins on mountain valley

Vegetative classification: None assigned

Ultic Vitricryands and similar soils

Composition: About 2 percent

Slope: 2 to 30 percent

Landform: Mountain slope or margins on mountain valley

Vegetative classification: None assigned

Vitrandic Dystrocryepts coarse-loamy and similar soils

Composition: About 2 percent

Slope: 2 to 30 percent

Landform: Moraine, mountain slope, floors in mountain valley, or bedrock joints in

mountainside

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent

Landform: Lakeshore or mountain valley Vegetative classification: None assigned

Typic Dystrocryepts sandy and similar soils

Composition: About 1 percent

Slope: 2 to 30 percent

Landform: Upslope to ephemeral stream or stable margins on mountain valley

Other vegetative classification: None assigned

Use and Management Considerations

- The types of rock in this map unit are dominantly granitoid, but metamorphic rock (quartzite and hornfels) occurs in upper Dana Fork.
- The valleys have been glacially scoured mostly to bedrock and then partially recovered with thin, mixed deposits of colluvium, till, alluvium, and volcanic ash.
- Alluvium occurs in narrow flood plains and behind obstacles and valley constraints.
- The till deposits do not have a distinct morainal form.
- Joints, aprons, and moraines are superimposed on or extend into mountain valleys.
- Volcanic ash occurs most commonly on gently sloping surfaces (more than about 20 percent).
- Drainage patterns are dominantly convergent.
- Above about 10,500 feet (3,200 meters) in elevation, vegetative development on valley margins is greater on south-facing aspects than on north-facing aspects.
- Cryoturbation is significant in soils above about 9,500 feet (2,896 meters) in elevation.

227—Canisrocks-Crazymule complex, 15 to 45 percent slopes, mountain slopes, lateral moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,485 to 11,460 feet (1,977 to 3,493 meters)

Mean annual precipitation: 35 to 53 inches (889 to 1,346 millimeters) Mean annual air temperature: 35 to 48 degrees F (1 to 9 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—45 percent Crazymule soil—40 percent Minor components—15 percent

Description of the Canisrocks Soil

Slope: 15 to 45 percent

Landform: Moraine, mountain slope, or bedrock small benches on mountainside

Parent material: Colluvium over till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 20 percent coarse subangular gravel, 0 to 20 percent subangular cobbles, and 0 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Modium

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86800, Mountain Hemlock Forest

Typical profile

Oi—0 to 0 inches; stony slightly decomposed plant material

A1—0 to 2 inches; cobbly sandy loam A2—2 to 6 inches; cobbly sandy loam

AB—6 to 17 inches; very stony loamy coarse sand Bw1—17 to 25 inches; very stony loamy coarse sand Bw2—25 to 34 inches; very stony loamy coarse sand C—34 to 60 inches; very stony loamy coarse sand

Description of the Crazymule Soil

Slope: 15 to 35 percent

Landform: Lateral moraine, mountain slope, or bedrock joints in mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded stones, 0 to 5 percent subangular cobbles, and 0 to 5 percent coarse subangular gravel

Restrictive feature: Dense material at a depth of 32 inches

Available water capacity to a depth of 60 inches: About 2.3 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: 85310, Red Fir Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material Oa—1 to 2 inches; highly decomposed plant material

A-2 to 12 inches; loamy fine sand

Bw1—12 to 22 inches; very stony fine sandy loam Bw2—22 to 34 inches; cobbly fine sandy loam C—34 to 60 inches; very cobbly loamy sand

Minor Components

Vitrandic Dystrocryepts loamy-skeletal and similar soils

Composition: About 5 percent Slope: 15 to 45 percent

Landform: Crests on moraine, moraine, or bedrock small benches on mountainside

Vegetative classification: 86800, Mountain Hemlock Forest

Rock outcrop

Composition: About 4 percent Slope: 15 to 45 percent Landform: Mountain slope

Vegetative classification: None assigned

Oxyaquic Cryorthents and similar soils

Composition: About 3 percent Slope: 0 to 10 percent

Landform: Wet, sloping meadows on moraine Vegetative classification: None assigned

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 1 percent

Slope: 0 to 10 percent

Landform: Rock outcrop along fringes of mountainside

Vegetative classification: None assigned

Oxyaquic Dystroxerepts sandy-skeletal and similar soils

Composition: About 1 percent Slope: 15 to 45 percent

Landform: Wet, sloping meadows on moraine Vegetative classification: None assigned

Xeric Haplocryalfs loamy-skeletal and similar soils

Composition: About 1 percent Slope: 15 to 45 percent Landform: Gentle moraine

Vegetative classification: 81900, Aspen Forest

Use and Management Considerations

- Mountain slope surfaces tend to be erosional; morainal surfaces tend to be depositional.
- Although moraines sometimes are broken and discontinuous, they typically have retained distinct morainal form, which is recognizable in the 1:40,000 scale aerial photograph used to delineate map units in this survey. In contrast, moraines in map unit 279 are of various types and are more highly eroded, showing little or no distinct form at the map scale.
- Moraines are superimposed on the lower mountain slopes.
- Stands of mountain hemlock in this map unit tend to be concentrated on northwestfacing morainal slopes (see the delineation about 2 kilometers northwest of Merced Lake for an example).
- The soil temperature regime grades to frigid at low elevations in the map unit (such as 6,600 feet, or 2,012 meters, in the delineation about 3 kilometers southwest of Mount Starr King).

228—Xeric Dystrocryepts-Vitrandic Eutrocryepts complex, 0 to 15 percent slopes, wet/dry meadows, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,955 to 11,350 feet (2,121 to 3,461 meters)

Mean annual precipitation: 37 to 49 inches (940 to 1,245 millimeters) Mean annual air temperature: 35 to 46 degrees F (2 to 8 degrees C)

Frost-free period: 15 to 45 days

Composition

Xeric Dystrocryepts—35 percent Vitrandic Eutrocryepts—25 percent Minor components—40 percent

Description of Xeric Dystrocryepts

Slope: 0 to 15 percent

Landform: Mounds on glacial-valley floor, dry moraine, or mountain slope

Parent material: Colluvium and/or till derived from metamorphic rock and granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subangular cobbles and 0

to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.5 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 45220, Dry Subalpine and Alpine Meadow

Typical profile

A-0 to 4 inches; sandy loam

Bw1—4 to 14 inches; very gravelly sandy loam Bw2—14 to 20 inches; very gravelly loamy sand C1—20 to 30 inches; very gravelly loamy coarse sand C2—30 to 60 inches; very cobbly loamy coarse sand

Description of Vitrandic Eutrocryepts

Slope: 0 to 15 percent

Landform: Avalanche chute, margins on mountain valley, wet alpine on valley floor, or

subalpine on valley floor

Parent material: Alluvium and/or colluvium derived from granitoid rock and/or till

derived from metasedimentary rock *Typical vegetation:* None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent coarse subangular gravel and 0 to 10 percent subangular cobbles

Restrictive feature: Dense material at a depth of 35 inches

Available water capacity to a depth of 60 inches: About 3.8 inches (low)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e
Other vegetative classification: 45220, Dry Subalpine and Alpine Meadow

Typical profile

A1—0 to 6 inches; very fine sandy loam

A2—6 to 14 inches; stony very fine sandy loam

Bt—14 to 21 inches; cobbly sandy loam CB—21 to 28 inches; cobbly sandy loam

C-28 to 60 inches; very cobbly coarse sandy loam

Minor Components

Marmotland and similar soils

Composition: About 10 percent

Slope: 0 to 15 percent

Landform: Ground moraine, mounds on valley floor, or valley floor

Vegetative classification: 45110, Wet Montane Meadow

Oxyaquic Cryofluvents coarse-loamy and similar soils

Composition: About 10 percent

Slope: 0 to 8 percent

Landform: Mountain valley floors on flood plain

Vegetative classification: 45210, Wet Subalpine and Alpine Meadow

Xeric Dystrocryepts coarse-loamy and similar soils

Composition: About 10 percent

Slope: 0 to 15 percent

Landform: Mounds on glacial-valley floor, dry moraine, or mountain slope

Vegetative classification: 91000, Alpine Boulder and Rock Field

Xeric Dystrocryepts sandy and similar soils

Composition: About 6 percent

Slope: 0 to 15 percent

Landform: Mounds on glacial-valley floor, dry moraine, or mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Water

Composition: About 3 percent

Landform: Lake

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent

Landform: Lakeshore or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- The types of rock in this map unit are dominantly granitoid with inclusions of metamorphic till in upper Parker Pass Creek valley.
- The present-day land surface was probably shaped as much by subglacial fluvial erosion as by ice itself. Ice crushes, plucks, and abrades to form new parent material.

 Areas with a frigid soil temperature regime are included along the low elevation margin of the map unit.

229—Marmotland-Oxyaquic Dystrocryepts association, 0 to 8 percent slopes, mountain valleys, ground moraines, fluted, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 9,040 to 10,020 feet (2,757 to 3,055 meters)

Mean annual precipitation: 35 to 39 inches (889 to 991 millimeters)
Mean annual air temperature: 36 to 44 degrees F (2 to 7 degrees C)

Frost-free period: 15 to 45 days

Composition

Marmotland soil—40 percent Oxyaquic Dystrocryepts—40 percent Minor components—20 percent

Description of the Marmotland Soil

Slope: 0 to 8 percent

Landform: Ground moraine or mountain valley

Parent material: Colluvium over till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded stones and

0 to 5 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.6 inches (low)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None

Surface runoff: Low

Current water table: Present

Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 45200, Subalpine and Alpine Meadow

Typical profile

A1—0 to 0 inches; sandy loam

A2—0 to 9 inches; cobbly sandy loam

Bt1—9 to 16 inches; cobbly sandy loam

Bt2—16 to 23 inches; sandy loam

Ct—23 to 60 inches; very gravelly sandy loam

Description of Oxyaquic Dystrocryepts

Slope: 0 to 8 percent

Landform: Kettles on glacial-valley floor or valley floor

Parent material: Alluvium and/or till and/or minor colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6w

Other vegetative classification: 86800, Mountain Hemlock Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oa—0 to 2 inches; highly decomposed plant material

A1—2 to 5 inches; sandy loam A2—5 to 12 inches; sandy loam

Bw—12 to 19 inches; cobbly sandy loam

C1—19 to 28 inches; gravelly coarse sandy loam C2—28 to 60 inches; very gravelly sandy loam

Minor Components

Vitrandic Dystrocryepts sandy-skeletal and similar soils

Composition: About 10 percent

Slope: 0 to 8 percent

Landform: Ground moraine or mountain valley Vegetative classification: None assigned

Vitrandic Cryorthents coarse-loamy and similar soils

Composition: About 5 percent

Slope: 0 to 8 percent Landform: Flood plain

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 5 percent Landform: Mountain valley

Vegetative classification: None assigned

Use and Management Considerations

 Ground moraines occupy mountain valleys and are fluted in the direction of ice movement.

- Flood plains support small (less than about 1 hectare) meadows.
- Mounds and kettles occur mostly in upper Dana Meadow, near Tioga Pass.
- Lateral moraines and crests of fluted ground moraines are well drained.

231—Canisrocks-Typic Cryaquents complex, 5 to 30 percent slopes, lateral moraines, aprons, wet/dry, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 9,520 to 10,040 feet (2,902 to 3,061 meters)

Mean annual precipitation: 35 to 39 inches (900 to 1,000 millimeters) Mean annual air temperature: 38 to 41 degrees F (3 to 5 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—40 percent Typic Cryaquents—21 percent Minor components—39 percent

Description of the Canisrocks Soil

Slope: 9 to 30 percent

Landform: Moraine or mountain slope

Parent material: Till with volcanic ash and colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles, 2 to 10 percent coarse subangular gravel, 10 to 20 percent subrounded stones, and 10 to 20 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.5 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6s

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 1 inch; very bouldery slightly decomposed plant material

Oe—1 to 1 inch; very bouldery moderately decomposed plant material

Oa—1 to 2 inches; very bouldery highly decomposed plant material

A1—2 to 6 inches; fine sand

Soil Survey of Yosemite National Park, California

A2—6 to 10 inches; gravelly loamy fine sand Bw—10 to 17 inches; cobbly loamy fine sand BC—17 to 26 inches; very cobbly fine sand C1—26 to 35 inches; very gravelly fine sand C2—35 to 60 inches; extremely stony fine sand

Description of Typic Cryaquents

Slope: 5 to 30 percent

Landform: Colluvial aprons on moraine or moraine

Parent material: Till with colluvium derived from granitoid rock and volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 15 percent subangular cobbles, 2 to 15 percent subrounded boulders, and 2 to 15 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very high Current water table: Present

Natural drainage class: Somewhat poorly drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 1 inch; bouldery moderately decomposed plant material

A1—1 to 3 inches; very fine sandy loam

A2-3 to 9 inches; very stony loamy very fine sand

C1—9 to 17 inches; very stony loamy sand C2—17 to 60 inches; very stony loamy sand

Minor Components

Xeric Dystrocryepts sandy-skeletal and similar soils

Composition: About 14 percent

Slope: 5 to 30 percent Landform: Moraine

Vegetative classification: None assigned

Oxyaquic Dystrocryepts sandy-skeletal and similar soils

Composition: About 10 percent

Slope: 0 to 10 percent

Landform: Colluvial fan apron or lateral moraine Vegetative classification: None assigned

Vitrandic Dystrocryepts sandy-skeletal and similar soils

Composition: About 10 percent

Slope: 5 to 30 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Typic Cryorthents sandy-skeletal and similar soils

Composition: About 5 percent

Slope: 5 to 9 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Use and Management Considerations

Delineations of this map unit lie below areas of rock outcrop and rubble, which
concentrate and shed water to this unit by subsurface and overland flow.

232—Canisrocks-Glacierpoint complex, 0 to 25 percent slopes, lateral moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,960 to 10,890 feet (2,122 to 3,320 meters)

Mean annual precipitation: 31 to 49 inches (787 to 1,245 millimeters) Mean annual air temperature: 38 to 41 degrees F (3 to 5 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—25 percent Glacierpoint soil—21 percent Minor components—54 percent

Description of the Canisrocks Soil

Slope: 9 to 25 percent

Landform: Lateral moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles, 5 to 20 percent subrounded stones, and 5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.9 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7s Other vegetative classification: 85310, Red Fir Forest

Typical profile

Oi—0 to 0 inches; very stony slightly decomposed plant material

A1—0 to 2 inches; loamy sand

A2—2 to 10 inches; stony loamy sand C1—10 to 24 inches; very stony sand

C2—24 to 60 inches; extremely gravelly sand

Description of the Glacierpoint Soil

Slope: 0 to 25 percent Landform: Lateral moraine

Parent material: Till with colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 3 to 10 percent subangular cobbles and 10

to 20 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; gravelly slightly decomposed plant material

A—0 to 6 inches; gravelly loamy sand Bw1—6 to 9 inches; cobbly loamy sand

Bw2—9 to 18 inches; very cobbly loamy fine sand C1—18 to 31 inches; very cobbly loamy fine sand C2—31 to 60 inches; very stony loamy fine sand

Minor Components

Vitrandic Dystrocryepts sandy-skeletal and similar soils

Composition: About 14 percent

Slope: 0 to 25 percent Landform: Lateral moraine

Vegetative classification: 86800, Mountain Hemlock Forest

Xeric Dystrocryepts sandy and similar soils

Composition: About 14 percent

Slope: 0 to 25 percent

Landform: Lateral moraine

Vegetative classification: 85310, Red Fir Forest

Typic Dystrocryepts caorse-loamy and similar soils

Composition: About 13 percent

Slope: 0 to 25 percent Landform: Lateral moraine

Vegetative classification: 85310, Red Fir Forest

Oxyaquic Dystrocryepts sandy and similar soils

Composition: About 7 percent

Slope: 0 to 10 percent

Landform: Lateral moraine or small mountain valley Vegetative classification: 86800, Mountain Hemlock Forest

Rock outcrop

Composition: About 3 percent

Slope: 0 to 25 percent

Landform: Lateral moraine or mountain slope Vegetative classification: None assigned

Typic Cryopsamments and similar soils

Composition: About 2 percent

Slope: 0 to 9 percent Landform: Moraine

Vegetative classification: 85210, Jeffrey Pine-Fir Forest

Mollic Cryofluvents and similar soils

Composition: About 1 percent Slope: 0 to 25 percent

Landform: Moraine, mountain slope, or small mountain valley Vegetative classification: 86800, Mountain Hemlock Forest

Use and Management Considerations

 In comparison with map unit 253, moraines in this map unit generally are either more gently sloping or exhibit a less distinctive morainal form. A few gently sloping moraines exhibit a distinctive form. A good example can be seen about 2 kilometers southeast of Clouds Rest.

234—Rock outcrop-Rubble land association, 0 to 80 percent slopes, metamorphic, cirques, mountainflanks, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 9,305 to 13,065 feet (2,837 to 3,982 meters)

Mean annual precipitation: 39 to 45 inches (991 to 1,143 millimeters)
Mean annual air temperature: 39 to 40 degrees F (about 4 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—35 percent Rubble land—35 percent Minor components—30 percent

Description of Rock Outcrop

Slope: 0 to 80 percent Landform: Cirque or ridge

Parent material: Metamorphic rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Rubble Land

Slope: 0 to 80 percent Landform: Cirque

Parent material: Colluvium derived from metamorphic rock and/or rockfall deposits

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Xeric Dystrocryepts sandy-skeletal and similar soils

Composition: About 14 percent

Slope: 0 to 80 percent

Landform: Mountain slope or bedrock joints in mountainside

Vegetative classification: None assigned

Typic Cryorthents sandy-skeletal and similar soils

Composition: About 11 percent

Soil Survey of Yosemite National Park, California

Slope: 0 to 80 percent

Landform: Cirque, mountain slope, small mountain valley, or mountainside

Vegetative classification: None assigned

Glaciers

Composition: About 2 percent

Slope: 0 to 80 percent

Landform: Glacier or mountain valley Vegetative classification: None assigned

Water

Composition: About 2 percent

Landform: Lake

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Use and Management Considerations

- The types of rock in this map unit are metamorphic with less than 5 percent granitoid rock.
- This map unit has been intensively scoured glacially.
- Mountain flanks are dominated by rock outcrop and frost-shattered rubble (talus and scree).
- Cirques dominantly are northeast-facing and dominated by outcrop and rubble.
- This map unit is prone to snow avalanches on slopes that are about or more than 55 percent.
- This map unit includes areas with slopes that are about or more than 35 percent on cirque floors, bedrock joints, ridge summits, mountain slopes, and small mountain valleys. These areas are too small to be mapped separately at the 1:40,000 scale.

235—Canisrocks-Rock outcrop-Rubble land complex, 30 to 80 percent slopes, mountainflanks, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,725 to 12,210 feet (1,441 to 3,723 meters)

Mean annual precipitation: 37 to 65 inches (940 to 1,651 millimeters) Mean annual air temperature: 36 to 42 degrees F (2 to 6 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—35 percent Rock outcrop—30 percent Rubble land—20 percent Minor components—15 percent

Description of the Canisrocks Soil

Slope: 30 to 80 percent

Landform: Avalanche chute, colluvial aprons on mountain slope, benches on mountain

slope, or backslope on mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: 85310, Red Fir Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 3 inches; moderately decomposed plant material

Oa—3 to 4 inches; highly decomposed plant material

A1—4 to 11 inches; loamy coarse sand A2—11 to 17 inches; loamy coarse sand C1—17 to 37 inches; loamy coarse sand

C2—37 to 53 inches; very stony loamy coarse sand C3—53 to 68 inches; cobbly loamy coarse sand

Description of Rock Outcrop

Slope: 30 to 80 percent Landform: Mountain slope Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Rubble Land

Slope: 30 to 80 percent

Landform: Colluvial aprons on mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Xeric Dystrocryepts loamy-skeletal and similar soils

Composition: About 10 percent Slope: 30 to 80 percent Landform: Mountainside

Vegetative classification: 85310, Red Fir Forest

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 3 percent

Slope: 0 to 10 percent Landform: Fan apron

Vegetative classification: 85310, Red Fir Forest

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

- Avalanche tracks, bedrock benches, joints, and fractures are superimposed on mountain flanks.
- Aprons and minor fans lie on the lower footslopes and toeslopes of mountain flanks.
- Mountain flank walls commonly are glacially scoured.
- Frost heave produces abundant rubble (talus and scree).
- This map unit sheds significant amounts of water and snow to lower-lying units.
- The mountain valleys, bedrock benches, and periglacial cirques include slopes that are less than 30 percent.

237—Canisrocks-Glacierpoint-Vitrandic Cryorthents complex, bouldery, 5 to 20 percent slopes, ground moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 7,190 to 10,585 feet (2,192 to 3,227 meters)

Mean annual precipitation: 35 to 51 inches (889 to 1,295 millimeters) Mean annual air temperature: 36 to 41 degrees F (2 to 5 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—25 percent Glacierpoint soil—15 percent Vitrandic Cryorthents—15 percent Minor components—45 percent

Description of the Canisrocks Soil

Slope: 9 to 20 percent

Landform: Ground moraine, lateral moraine, mountain slope, or recessional moraine

Parent material: Till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded boulders, 2 to

10 percent subrounded stones, and 2 to 10 percent subangular cobbles

Restrictive feature: Bedrock (densic) at a depth of 27 inches

Available water capacity to a depth of 60 inches: About 1.2 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: None assigned

Typical profile

Oi-0 to 0 inches; bouldery slightly decomposed plant material

A1—0 to 3 inches; sandy loam A2—3 to 8 inches; sandy loam

Bw—8 to 13 inches; very stony sandy loam C—13 to 27 inches; very cobbly sandy loam

Cd-27 to 60 inches; extremely gravelly sandy loam

Description of the Glacierpoint Soil

Slope: 5 to 20 percent Landform: Moraine

Parent material: Till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded boulders, 2 to 10 percent subrounded stones, 0 to 10 percent coarse subangular gravel,

and 0 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material

A1—0 to 4 inches; loamy sand A2—4 to 17 inches; sandy loam

Bw—17 to 27 inches; very stony loamy sand C—27 to 60 inches; very stony loamy sand

Description of Vitrandic Cryorthents

Slope: 5 to 20 percent

Landform: Interfluves on ground moraine Parent material: Till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 15 percent subrounded stones and

2 to 15 percent subrounded boulders

Restrictive feature: Bedrock (densic) at a depth of 12 inches

Available water capacity to a depth of 60 inches: About 0.7 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6s Other vegetative classification: None assigned

Typical profile

A-0 to 1 inch; loamy sand

Bw1—1 to 6 inches; loamy coarse sand Bw2—6 to 12 inches; loamy sand

Cd—12 to 60 inches; very gravelly sandy loam

Minor Components

Humic Dystrocryepts loamy-skeletal and similar soils

Composition: About 13 percent

Slope: 5 to 20 percent Landform: Moraine

Vegetative classification: None assigned

Oxyaquic Dystrocryepts sandy-skeletal and similar soils

Composition: About 12 percent

Slope: 0 to 10 percent

Landform: Depressional and small fluvial areas on ground moraine

Vegetative classification: None assigned

Xeric Dystrocryepts coarse-loamy over sandy and similar soils

Composition: About 11 percent

Slope: 5 to 20 percent Landform: Drainageway

Vegetative classification: None assigned

Rock outcrop

Composition: About 7 percent Slope: 5 to 20 percent Landform: Ground moraine

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

- Most moraines occupy broad mountain valleys.
- Surface stones and boulders occupy less than 10 percent of the ground surface, indicating that most moraines are young (of Tioga age).
- Small (less than about 0.5 hectare) elongated stringer meadows that extend in the direction of glacier movement occupy about 2 percent of this map unit.
- Few surface stones and boulders occur in areas where alluvium overlies till

(see map unit 237 in the Gaylor Lakes area for an example). Oxyaquic soil moisture conditions commonly exist in these areas.

238—Oxyaquic Cryorthents-Canisrocks complex, 0 to 15 percent slopes, ground moraines, wet/dry, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 9,605 to 10,965 feet (2,929 to 3,344 meters)

Mean annual precipitation: 39 to 43 inches (991 to 1,092 millimeters) Mean annual air temperature: 38 to 40 degrees F (3 to 4 degrees C)

Frost-free period: 15 to 45 days

Composition

Oxyaquic Cryorthents—25 percent Canisrocks soil—15 percent Minor components—60 percent

Description of the Oxyaquic Cryorthents

Slope: 0 to 8 percent

Landform: Drainageway or ground moraine

Parent material: Till derived from granitoid rock and volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles, 2 to 10 percent coarse subangular gravel, 2 to 10 percent subrounded stones,

and 2 to 10 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.7 inches (low)

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6w

Other vegetative classification: 45220, Dry Subalpine and Alpine Meadow

Typical profile

A1—0 to 3 inches; sandy loam

A2-3 to 13 inches; sandy loam

2C1—13 to 18 inches; sandy loam

2C2—18 to 30 inches; loamy coarse sand

2C3-30 to 60 inches; coarse sand

Description of the Canisrocks Soil

Slope: 9 to 15 percent Landform: Ground moraine

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel, 0 to 5 percent subrounded stones, and 0 to 5 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 45220, Dry Subalpine and Alpine Meadow

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Minor Components

Oxyaquic Dystrocryepts coarse-loamy over sandy and similar soils

Composition: About 14 percent

Slope: 0 to 15 percent Landform: Ground moraine

Vegetative classification: None assigned

Vitrandic Cryorthents sandy-skeletal and similar soils

Composition: About 14 percent

Slope: 0 to 15 percent Landform: Ground moraine

Vegetative classification: 45220, Dry Subalpine and Alpine Meadow

Typic Cryorthents sandy and similar soils

Composition: About 10 percent

Slope: 0 to 9 percent Landform: Ground moraine

Vegetative classification: 45220, Dry Subalpine and Alpine Meadow

Xeric Dystrocryepts sandy-skeletal and similar soils

Composition: About 10 percent

Slope: 0 to 15 percent Landform: Ground moraine

Vegetative classification: None assigned

Oxyaquic Cryopsamments and similar soils

Composition: About 7 percent

Slope: 0 to 20 percent

Landform: Drainageways in ground moraine Vegetative classification: None assigned

Water

Composition: About 4 percent

Landform: Lake

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Use and Management Considerations

- This map unit is characterized by complex surface and subsurface water drainage patterns, which result in a complex distribution of wet and dry areas, and contains xeric and udic moisture regimes.
- This map unit is dominated by riparian and nonriparian grasses, sedges, and forbs, with less than 10 percent tree cover.

239—Crazymule-Canisrocks complex, 0 to 20 percent slopes, ground moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,850 to 10,975 feet (2,089 to 3,346 meters)

Mean annual precipitation: 33 to 47 inches (838 to 1,194 millimeters)
Mean annual air temperature: 35 to 36 degrees F (about 2 degrees C)

Frost-free period: 15 to 45 days

Composition

Crazymule soil—45 percent Canisrocks soil—34 percent Minor components—21 percent

Description of the Crazymule Soil

Slope: 5 to 15 percent Landform: Moraine

Parent material: Till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subrounded stones, 0 to 10 percent subangular cobbles, and 0 to 10 percent coarse subangular gravel

Restrictive feature: Bedrock (densic) at a depth of 23 inches

Available water capacity to a depth of 60 inches: About 1.9 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A1—0 to 5 inches; sandy loam

A2—5 to 13 inches; gravelly sandy loam Bw—13 to 23 inches; cobbly sandy loam Cd—23 to 60 inches; very cobbly sandy loam

Description of the Canisrocks Soil

Slope: 9 to 15 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subangular cobbles, 0 to 10 percent coarse subangular gravel, and 0 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material

Soil Survey of Yosemite National Park, California

Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Minor Components

Oxyaquic Dystrocryepts loamy-skeletal and similar soils

Composition: About 14 percent

Slope: 0 to 15 percent

Landform: Ground moraine or small mountain valley Vegetative classification: 86110, Lodgepole Pine Forest

Vitrandic Cryofluvents sandy-skeletal and similar soils

Composition: About 5 percent

Slope: 0 to 15 percent

Landform: Moraine or small mountain valley

Vegetative classification: 86110, Lodgepole Pine Forest

Typic Cryorthents loamy-skeletal, nonacid and similar soils

Composition: About 2 percent

Slope: 0 to 9 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Use and Management Considerations

 This map unit includes as much as 15 percent small (less than 2 hectares) meadows.

241—Canisrocks, 5 to 35 percent slopes, mountain valleys, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,250 to 10,605 feet (1,905 to 3,233 meters)

Mean annual precipitation: 37 to 61 inches (940 to 1,549 millimeters)
Mean annual air temperature: 35 to 35 degrees F (about 2 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—75 percent Minor components—25 percent

Description of the Canisrocks Soil

Slope: 9 to 35 percent

Landform: Mountain slope or valley floor

Parent material: Alluvium and/or colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent coarse subangular gravel, 0 to 10 percent subrounded stones, and 0 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; stony slightly decomposed plant material Oe—0 to 1 inch; stony slightly decomposed plant material A—1 to 4 inches; loamy sand Bw1—4 to 18 inches; stony sand Bw2—18 to 28 inches; stony sand C1—28 to 34 inches; stony sand C2—34 to 60 inches; stony sand

Minor Components

Oxyaquic Cryorthents and similar soils

Composition: About 10 percent

Slope: 0 to 10 percent Landform: Drainageway

Vegetative classification: None assigned

Rock outcrop

Composition: About 8 percent Slope: 5 to 35 percent Landform: Mountain valley

Vegetative classification: None assigned

Water

Composition: About 2 percent

Landform: Lake

Vegetative classification: None assigned

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 2 percent Slope: 0 to 10 percent

Landform: Narrow (few meters) fringe around rock outcrop on mountainside

Vegetative classification: None assigned

Typic Cryorthents loamy-skeletal, nonacid and similar soils

Composition: About 2 percent

Slope: 5 to 9 percent Landform: Valley floor

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent

Landform: Lakeshore or mountain valley
Other vegetative classification: None assigned

Use and Management Considerations

- Compared with map unit 225, this map unit tends to have deeper and more
 extensive deposits of till, alluvium, and colluvium. Generally, this unit exhibits less
 glacial scouring and fewer rock outcrops. It also has somewhat more narrow
 canyons with steeper V-shaped sides; however, steep-sided, scoured canyons occur
 in map unit 225.
- Rock outcrop, alluvium, and thin till occur intermittently in valley bottoms. Till
 deposits do not have distinct morainal features.
- The soils tend to be cooler in the narrow, steep-sided canyons than in the more open valleys.
- Most valley sediments have been significantly reworked by fluvial activity. A good example is near Ireland Lake.

242—Rock outcrop-Canisrocks-Xeric Dystrocryepts complex, 0 to 35 percent slopes, mountain slopes, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park (fig. 11)

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,705 to 11,335 feet (2,045 to 3,456 meters)

Mean annual precipitation: 33 to 63 inches (838 to 1,600 millimeters)
Mean annual air temperature: 37 to 50 degrees F (3 to 10 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—30 percent Canisrocks soil—25 percent Xeric Dystrocryepts—16 percent Minor components—29 percent

Description of Rock Outcrop

Slope: 0 to 35 percent
Landform: Mountain slope
Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Figure 11.—Rock outcrop is typically scattered between areas of the Canisrocks soil and Xeric Dystrocryepts in map unit 242.

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Canisrocks Soil

Slope: 9 to 35 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 10 to 20 percent subangular cobbles, 3 to 10 percent coarse subangular gravel, and 10 to 20 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7s Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; very stony slightly decomposed plant material Oe—0 to 1 inch; very stony moderately decomposed plant material Oa—1 to 1 inch; very stony highly decomposed plant material

A-1 to 7 inches; very stony loamy sand

Bw1—7 to 23 inches; extremely stony loamy sand Bw2—23 to 32 inches; extremely cobbly loamy sand C—32 to 60 inches; extremely stony loamy sand

Description of Xeric Dystrocryepts

Slope: 0 to 35 percent

Landform: Moraine, mountain slope, bedrock, or joints in mountainside

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 3 to 10 percent subrounded stones,

5 to 15 percent subangular cobbles, and 5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.2 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 85210, Jeffrey Pine-Fir Forest; 85310, Red Fir Forest

Typical profile

Oi—0 to 0 inches; stony slightly decomposed plant material

A1—0 to 5 inches; loamy sand

A2—5 to 20 inches; bouldery loamy sand C1—20 to 35 inches; stony loamy sand C2—35 to 47 inches; loamy sand

C3—47 to 60 inches: sand

Minor Components

Glacierpoint and similar soils

Composition: About 14 percent Slope: 15 to 40 percent

Landform: Moraine, mountain slope, bedrock, or joints in mountainside

Vegetative classification: 85310, Red Fir Forest

Humic Dystrocryepts sandy-skeletal and similar soils

Composition: About 4 percent Slope: 0 to 35 percent Landform: Mountain slope

Vegetative classification: 85310, Red Fir Forest

Typic Cryorthents coarse-loamy, acid and similar soils

Composition: About 4 percent

Slope: 0 to 9 percent Landform: Mountain valley

Vegetative classification: None assigned

Vitrandic Cryorthents sandy-skeletal and similar soils

Composition: About 3 percent

Slope: 0 to 35 percent

Landform: Mountain slope or mountain valley Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Humic Lithic Dystroxerepts sandy and similar soils

Composition: About 1 percent

Slope: 0 to 10 percent

Landform: Backslope on mountain slope or narrow bands around rock outcrop in

mountainside

Vegetative classification: 86110, Lodgepole Pine Forest

Lithic Cryorthents fragmental and similar soils

Composition: About 1 percent

Slope: 0 to 10 percent

Landform: Mountain slope

Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

- Thin deposits of till, colluvium, and alluvium occur in mountain valleys and ephemeral drainages.
- Slopes in about 10 percent of the map unit are steeper than 35 percent.
- The soils classify as frigid in burn areas and grade to frigid along the low-elevation margin of the map unit.
- Shallow soils (less than 50 centimeters to a lithic contact) that are near the low-elevation margin of the unit tend to be frigid.

244—Typic Cryorthents-Rubble land-Rock outcrop complex, 15 to 40 percent slopes, moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys, mountain canyons, or mountains

Elevation: 9,760 to 11,520 feet (2,976 to 3,512 meters)

Mean annual precipitation: 41 to 43 inches (1,041 to 1,092 millimeters) Mean annual air temperature: 37 to 39 degrees F (3 to 4 degrees C)

Frost-free period: 15 to 45 days

Composition

Typic Cryorthents—45 percent Rubble land—25 percent Rock outcrop—16 percent Minor components—14 percent

Description of Typic Cryorthents

Slope: 15 to 40 percent Landform: Moraine

Parent material: Colluvium derived from granitoid and/or metamorphic rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles, 2 to 10 percent subrounded stones, and 2 to 10 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Description of Rubble Land

Slope: 15 to 40 percent

Landform: Glacially scoured valley floor Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Rock Outcrop

Slope: 15 to 40 percent

Landform: Glacially scoured valley floor

Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 7 percent

Slope: 0 to 10 percent

Landform: Bedrock dimples in moraine or narrow fringe around bedrock in moraine

Vegetative classification: None assigned

Water

Composition: About 6 percent

Landform: Lake

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Use and Management Considerations

- This map unit is small and sparsely vegetated. It fills the upper reaches of mountain valleys in the eastern part of the survey area, near the Sierra Crest.
- Rubble is entrained in moraines.
- The valley bottoms are generally bouldery, with little alluvium (about 5 percent).

245—Rock outcrop-Canisrocks-Xeric Dystrocryepts association, 0 to 35 percent slopes, mountain valleys, scoured, filled, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A) Landscape: Mountain valleys, mountain canyons, or mountains

Elevation: 6,135 to 10,780 feet (1,870 to 3,286 meters)

Mean annual precipitation: 39 to 63 inches (991 to 1,600 millimeters)
Mean annual air temperature: 39 to 40 degrees F (about 4 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—30 percent Canisrocks soil—22 percent Xeric Dystrocryepts—20 percent Minor components—28 percent

Description of Rock Outcrop

Slope: 0 to 35 percent

Landform: Scoured glacial-valley floor or toe of glacial-valley wall

Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Canisrocks Soil

Slope: 9 to 35 percent

Landform: Flood plain or mountain slope
Parent material: Colluvium from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles, 2 to 10 percent subrounded boulders, and 2 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Description of Xeric Dystrocryepts

Slope: 0 to 35 percent

Landform: Lake terrace, lateral moraine, or stream terrace

Parent material: Alluvium and/or till derived from granitoid rock with some

metasedimentary deposits

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 10 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.3 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

A—0 to 2 inches; sandy loam
BA—2 to 4 inches; sandy loam
Bw—4 to 11 inches; fine sandy loam
C—11 to 60 inches; very fine sandy loam

Minor Components

Humic Dystroxerepts sandy, frigid and similar soils

Composition: About 5 percent

Slope: 0 to 35 percent

Landform: Lake terrace, lateral moraine, or stream terrace

Vegetative classification: None assigned

Oxyaquic Cryofluvents sandy and similar soils

Composition: About 5 percent

Slope: 0 to 8 percent

Landform: Flood plain or wet meadows on mountain valley Vegetative classification: 45120, Dry Montane Meadow

Oxyaquic Cryofluvents coarse-loamy and similar soils

Composition: About 5 percent

Slope: 0 to 8 percent

Landform: Flood plain or wet meadows on mountain valley Vegetative classification: 45120, Dry Montane Meadow

Vitrandic Cryofluvents sandy over loamy and similar soils

Composition: About 4 percent

Slope: 0 to 35 percent

Landform: Flood plain or pond margins on mountain valley Vegetative classification: 86110, Lodgepole Pine Forest

Typic Cryorthents coarse-loamy, acid and similar soils

Composition: About 3 percent

Slope: 0 to 9 percent Landform: Flood plain

Vegetative classification: None assigned

Xeric Dystrocryepts loamy over sandy or sandy-skeletal and similar soils

Composition: About 3 percent

Slope: 0 to 35 percent

Landform: Lake terrace, lateral moraine, or stream terrace Vegetative classification: 86110, Lodgepole Pine Forest

Water

Composition: About 2 percent

Landform: Lake

Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent

Landform: Lakeshore or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- The types of rock in this map unit are granitoid with 5 percent metasedimentary.
- Most valley sides have been glacially scoured, exposing bedrock.
- Valley bottoms exhibit intermittent glacially scoured rock outcrop and accumulations
 of till and alluvium, with minor amounts of colluvium and eolian deposits, mainly on
 small flood plains.
- Ground moraines exhibit little or no distinct form.
- Except for small wet meadows (assumed to be alluvial), flood plains, stream terraces, lake terraces, and glacial deposits cannot be separated at the selected scale of mapping.
- The soil temperature regime merges into frigid at the low elevations (less than 7,200 feet/less than 2,195 meters).

246—Rock outcrop, domes, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,235 to 9,690 feet (1,901 to 2,954 meters)

Mean annual precipitation: 33 to 57 inches (838 to 1,448 millimeters)
Mean annual air temperature: 46 to 46 degrees F (about 8 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—90 percent Minor components—10 percent

Description of Rock Outcrop

Landform: Dome

Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Typic Cryorthents sandy-skeletal and similar soils

Composition: About 8 percent Slope: 5 to 30 percent

Landform: Feet of domes on mountain slope, bedrock fractures in mountain slope, or

bedrock joints in mountain slope Vegetative classification: None assigned

Lithic Dystrocryepts and similar soils

Composition: About 2 percent Slope: 0 to 10 percent

Landform: Bedrock joints and fractures in mountain slope or bedrock dimples in

mountain slope

Vegetative classification: None assigned

247—Canisrocks-Xeric Dystrocryepts association, 5 to 30 percent slopes, mountain valleys, moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,115 to 10,065 feet (1,864 to 3,069 meters)

Mean annual precipitation: 35 to 63 inches (889 to 1,600 millimeters)
Mean annual air temperature: 38 to 51 degrees F (3 to 10 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—20 percent Xeric Dystrocryepts—20 percent Minor components—60 percent

Description of the Canisrocks Soil

Slope: 9 to 30 percent

Landform: Moraine, mountainside, or stream terrace

Parent material: Alluvium and/or colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded boulders,

Soil Survey of Yosemite National Park, California

2 to 10 percent subrounded stones, 2 to 10 percent coarse subangular gravel, and 2 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.2 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: 85310, Red Fir Forest

Typical profile

Oi—0 to 2 inches; bouldery slightly decomposed plant material

A—2 to 8 inches; bouldery loamy coarse sand Bw1—8 to 36 inches; bouldery loamy coarse sand Bw2—36 to 45 inches; bouldery coarse sand C—45 to 60 inches; very bouldery coarse sand

Description of Xeric Dystrocryepts

Slope: 5 to 30 percent

Landform: Moraine, mountainside, or stream terrace

Parent material: Alluvium and/or colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: 85310, Red Fir Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material Oa—1 to 2 inches; highly decomposed plant material

A1—2 to 10 inches; loamy sand A2—10 to 21 inches; loamy sand A3—21 to 31 inches; loamy sand A4—31 to 42 inches; loamy sand

Soil Survey of Yosemite National Park, California

C1-42 to 58 inches; loamy sand

C2-58 to 60 inches; very gravelly loamy sand

Minor Components

Humic Dystrocryepts coarse-loamy and similar soils

Composition: About 11 percent

Slope: 5 to 30 percent

Landform: Moraine, mountain slope, or stream terrace

Vegetative classification: 86110, Lodgepole Pine Forest; 85310, Red Fir Forest

Oxyaquic Dystrocryepts sandy and similar soils

Composition: About 11 percent

Slope: 2 to 30 percent

Landform: Moraine, mountain slope, or valley floor Vegetative classification: 85310, Red Fir Forest

Rock outcrop

Composition: About 11 percent

Slope: 5 to 30 percent

Landform: Moraine or mountainside Vegetative classification: None assigned

Typic Cryorthents sandy and similar soils

Composition: About 11 percent

Slope: 5 to 9 percent

Landform: Floors on mountain valley

Vegetative classification: 86110, Lodgepole Pine Forest

Typic Dystrocryepts sandy and similar soils

Composition: About 3 percent

Slope: 5 to 30 percent

Landform: Floors on mountain valley

Vegetative classification: 86110, Lodgepole Pine Forest

Xeric Dystrocryepts sandy-skeletal and similar soils

Composition: About 3 percent

Slope: 5 to 30 percent

Landform: Moraine, mountainside, or stream terrace Vegetative classification: 86110, Lodgepole Pine Forest

Xeric Dystrocryepts coarse-loamy and similar soils

Composition: About 3 percent

Slope: 5 to 30 percent

Landform: Moraine, mountainside, or stream terrace Vegetative classification: 85310, Red Fir Forest

Histic Cryaquepts sandy and similar soils

Composition: About 2 percent

Slope: 2 to 10 percent Landform: Valley floor

Vegetative classification: 86110, Lodgepole Pine Forest

Typic Cryopsamments and similar soils

Composition: About 1 percent

Slope: 3 to 10 percent

Landform: Ground moraine or bottom on valley floor Vegetative classification: 86110, Lodgepole Pine Forest

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent

Landform: Lakeshore or mountain valley Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Lithic Cryopsamments and similar soils

Composition: About 1 percent

Slope: 5 to 30 percent

Landform: Moraine or area adjacent to rock outcrop on mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Vitrandic Dystrocryepts coarse-loamy and similar soils

Composition: About 1 percent

Slope: 5 to 30 percent

Landform: Moraine, mountainside, or stream terrace Vegetative classification: 85310, Red Fir Forest

Use and Management Considerations

- Lateral and ground moraines often are indistinguishable at the 1:40,000 scale, at which this survey was made.
- Moraines occupy about 40 percent of the area in mountain valleys.
- Outwash, till, and recent alluvium occupy most of mountain valleys, with only about 5 percent exposed bedrock overall.
- Mountain valleys generally are forested by a dense cover of lodgepole pine.
- Mountain valley floors support small meadows.

248—Canisrocks-Rock outcrop-Glacierpoint complex, 30 to 70 percent slopes, mountain slopes, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,515 to 10,850 feet (1,987 to 3,308 meters)

Mean annual precipitation: 37 to 63 inches (940 to 1,600 millimeters)
Mean annual air temperature: 38 to 51 degrees F (3 to 10 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—35 percent

Rock outcrop—30 percent Glacierpoint soil—15 percent Minor components—20 percent

Description of the Canisrocks Soil

Slope: 30 to 70 percent

Landform: Mountain slope or structural bench

Parent material: Colluvium and/or residuum derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 15 percent subangular cobbles, 2 to 15 percent coarse subangular gravel, 0 to 5 percent subrounded boulders, and 2 to 15 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7s

Other vegetative classification: 85310, Red Fir Forest; 86110, Lodgepole Pine Forest;

85120, Western White Pine Forest

Typical profile

Oi—0 to 1 inch; stony slightly decomposed plant material

Oe—1 to 2 inches; stony moderately decomposed plant material

Oa—2 to 2 inches; stony highly decomposed plant material

A1—2 to 5 inches; stony loamy coarse sand A2—5 to 13 inches; stony loamy coarse sand

C1—13 to 32 inches; very stony coarse sand

CO 20 to 60 inches were story scarce and

C2—32 to 60 inches; very stony coarse sand

Description of Rock Outcrop

Slope: 30 to 70 percent

Landform: North-facing mountain slope

Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Glacierpoint Soil

Slope: 30 to 70 percent

Landform: Mountain slope, bedrock joints in mountainside, or structural bench

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 20 percent coarse subangular gravel, 2 to 20 percent subrounded boulders, 5 to 20 percent subrounded stones, and

5 to 20 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.1 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7s

Other vegetative classification: 85210, Jeffrey Pine-Fir Forest

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material

Oe—0 to 1 inch; bouldery moderately decomposed plant material

A1—1 to 4 inches; stony loamy sand

A2-4 to 16 inches; very stony loamy sand

Bw—16 to 27 inches; very stony loamy sand

C1—27 to 46 inches; very stony sand

C2—46 to 64 inches; very stony sand

Minor Components

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 5 percent Slope: 0 to 10 percent

Landform: Mountain slope

Other vegetative classification: None assigned

Rubble land

Composition: About 5 percent Slope: 30 to 70 percent Landform: Mountain slope

Vegetative classification: None assigned

Xeric Dystrocryepts fragmental and similar soils

Composition: About 4 percent

Slope: 30 to 70 percent Landform: Mountain slope

Vegetative classification: None assigned

Dystric Xerorthents sandy, frigid and similar soils

Composition: About 3 percent Slope: 30 to 70 percent Landform: Mountain slope

Vegetative classification: None assigned

Typic Dystroxerepts coarse-loamy, frigid and similar soils

Composition: About 3 percent Slope: 30 to 70 percent Landform: Mountain slope

Vegetative classification: 85300, Upper Montane Fir Forest

Use and Management Considerations

- This map unit includes areas with slopes that are less than 30 percent, typically on structural benches.
- The soil temperature regime grades to frigid at the lowest elevations.
- Till deposits are common on structural benches.
- Map units of lateral moraine often lie at the foot of the mountain slopes.

249—Rock outcrop-Canisrocks complex, 30 to 70 percent slopes, mountain slopes, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,275 to 11,485 feet (1,914 to 3,502 meters)

Mean annual precipitation: 37 to 63 inches (940 to 1,600 millimeters)
Mean annual air temperature: 36 to 40 degrees F (2 to 4 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—45 percent Canisrocks soil—30 percent Minor components—25 percent

Description of Rock Outcrop

Slope: 30 to 70 percent Landform: Mountainside Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Canisrocks Soil

Slope: 30 to 70 percent

Landform: Nivational cirque, mountain slope, mountain valley, mountainside, or ridge

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: 85310, Red Fir Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 3 inches; moderately decomposed plant material

Oa—3 to 4 inches; highly decomposed plant material

A1—4 to 11 inches; loamy coarse sand A2—11 to 17 inches; loamy coarse sand C1—17 to 37 inches; loamy coarse sand

C2—37 to 53 inches; very stony loamy coarse sand

C3—53 to 68 inches; cobbly loamy coarse sand

Minor Components

Vitrandic Cryorthents sandy-skeletal and similar soils

Composition: About 10 percent

Slope: 30 to 70 percent

Landform: Mountain slope, narrow mountain valley, or bedrock joints in mountainside

Vegetative classification: 85310, Red Fir Forest

Glacierpoint and similar soils

Composition: About 5 percent Slope: 30 to 70 percent

Landform: Moraine, mountain slope, or bedrock joints in mountainside

Vegetative classification: None assigned

Humic Lithic Dystrocryepts sandy and similar soils

Composition: About 4 percent

Slope: 0 to 10 percent

Landform: Areas closely associated with rock outcrop on mountain slope Vegetative classification: 85120, Western White Pine Forest; 86800, Mountain

Hemlock Forest

Vitrandic Dystrocryepts sandy-skeletal and similar soils

Composition: About 4 percent Slope: 30 to 70 percent

Landform: Moraine, mountain slope, or bedrock joints in mountainside

Vegetative classification: 86800, Mountain Hemlock Forest

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

- The types of rock in this map unit are granitoid with minor (about 5 percent) amounts of metamorphic rock and mafic rock (most notably near Benson Lake).
- This map unit includes areas with slopes that are less than 30 percent (5 percent of map unit).
- Brush grows primarily in joints and on concave sites.
- Most of this map unit has been glacially scoured.
- Compared with map unit 268, bedrock in this unit is less strongly jointed and fractured.

250—Canisrocks-Xeric Dystrocryepts association, 5 to 40 percent slopes, mountain valleys, moraines, avalanches, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 8,510 to 10,285 feet (2,594 to 3,136 meters)

Mean annual precipitation: 31 to 45 inches (787 to 1,143 millimeters) Mean annual air temperature: 37 to 39 degrees F (3 to 4 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—47 percent Xeric Dystrocryepts—35 percent Minor components—18 percent

Description of the Canisrocks Soil

Slope: 9 to 40 percent

Landform: Avalanche chute, moraine, or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent coarse subangular gravel, 0 to 10 percent subangular cobbles, and 0 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Description of Xeric Dystrocryepts

Slope: 5 to 40 percent Landform: Ground moraine

Parent material: Till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subangular cobbles, 0 to 5 percent coarse subangular gravel, and 0 to 5 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e
Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material

A—1 to 9 inches; very stony fine sandy loam Bw1—9 to 19 inches; very stony sandy loam

Bw2—19 to 32 inches; extremely cobbly fine sandy loam Cd—32 to 60 inches; extremely cobbly loamy coarse sand

Minor Components

Rubble land

Composition: About 10 percent

Slope: 5 to 40 percent

Landform: Backslope on moraine Vegetative classification: None assigned

Oxyaquic Dystrocryepts loamy-skeletal and similar soils

Composition: About 4 percent

Slope: 5 to 40 percent

Landform: Ground moraine or bottom of mountain valley Vegetative classification: 86110, Lodgepole Pine Forest

Typic Cryorthents coarse-loamy, acid and similar soils

Composition: About 3 percent

Slope: 5 to 9 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent Landform: Mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- · Mountain valleys are dominated by glacial deposits.
- This map unit has significant amounts of colluvium from snow and debris avalanches.

251—Glacierpoint-Typic Cryorthents complex, 30 to 65 percent slopes, mountain slopes, lateral moraines, aprons, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,470 to 10,415 feet (1,974 to 3,176 meters)

Mean annual precipitation: 33 to 63 inches (838 to 1,600 millimeters) Mean annual air temperature: 35 to 43 degrees F (2 to 6 degrees C)

Frost-free period: 15 to 45 days

Composition

Glacierpoint soil—30 percent Typic Cryorthents—20 percent Minor components—50 percent

Description of the Glacierpoint Soil

Slope: 30 to 65 percent

Landform: Lateral moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded boulders, 2 to 10 percent coarse subangular gravel, 2 to 10 percent subangular cobbles, and 2 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.1 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84240, Sierra White Fir Forest; 85310, Red Fir Forest

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material

Oe—0 to 1 inch; bouldery moderately decomposed plant material

A1—1 to 4 inches; stony loamy sand

A2—4 to 16 inches; very stony loamy sand

Bw-16 to 27 inches; very stony loamy sand

C1—27 to 46 inches; very stony very fine sand

C2—46 to 64 inches; very stony very fine sand

Description of Typic Cryorthents

Slope: 30 to 65 percent

Landform: Backslope on ground moraine or backslope on mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded stones, 2 to 10 percent coarse subangular gravel, and 2 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.0 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84240, Sierra White Fir Forest; 85310, Red Fir Forest;

86110, Lodgepole Pine Forest

Typical profile

Oi-0 to 0 inches; stony slightly decomposed plant material

A—0 to 4 inches; very stony sandy loam
AC—4 to 10 inches; very stony sandy loam
C1—10 to 16 inches; very stony sandy loam
C2—16 to 30 inches; very stony sandy loam
C3—30 to 60 inches; very stony sandy loam

Minor Components

Rubble land

Composition: About 10 percent Slope: 30 to 65 percent

Landform: Lateral moraine or mountain slope Vegetative classification: None assigned

Vitrandic Dystrocryepts loamy-skeletal and similar soils

Composition: About 10 percent Slope: 30 to 65 percent

Landform: Backslope on ground moraine or backslope on mountain slope

Vegetative classification: 86800, Mountain Hemlock Forest; 86110, Lodgepole Pine

Forest

Humic Dystrocryepts sandy-skeletal and similar soils

Composition: About 5 percent Slope: 30 to 65 percent

Landform: Backslope on ground moraine or backslope on mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Oxyaquic Dystrocryepts sandy, Oxyaquic Dystrocryepts sandy-skeletal, and similar soils

Composition: About 5 percent Slope: 30 to 65 percent

Landform: Avalanche chute, periglacial cirque, drainageway, moraine, or mountain

slope

Vegetative classification: 86110, Lodgepole Pine Forest; 85310, Red Fir Forest

Humic Lithic Dystrocryepts coarse-loamy and similar soils

Composition: About 3 percent Slope: 0 to 10 percent

Landform: Morainal drainageway near rock outcrop on mountain slope

Vegetative classification: 76310, Riparian Woodland

Rock outcrop

Composition: About 3 percent Slope: 30 to 65 percent Landform: Mountain slope

Vegetative classification: None assigned

Typic Cryopsamments and similar soils

Composition: About 3 percent Slope: 30 to 65 percent

Landform: Backslope on moraine

Vegetative classification: 85300, Upper Montane Fir Forest

Vitrandic Cryorthents sandy-skeletal and similar soils

Composition: About 3 percent Slope: 30 to 65 percent

Landform: Fan apron or mountain slope

Vegetative classification: 86800, Mountain Hemlock Forest

Xeric Dystrocryepts avalanche tracks, sandy-skeletal and similar soils

Composition: About 3 percent Slope: 40 to 65 percent

Landform: Avalanche tracks on mountain slope Vegetative classification: None assigned

Use and Management Considerations

- Compared with map unit 211, map unit 251 is steeper, more dissected by fluvial processes, and more marked by avalanche tracks.
- This map unit has an inclusion (about 2 percent) with slopes of more than 30 percent.
- A frigid soil temperature regime occurs at the low-elevation margin of this map unit.
- This map unit is subject to avalanches, especially on slopes that are about or more than 55 percent. In Virginia Canyon, avalanche tracks can comprise one-third to nearly one-half of very steep map unit delineations.

252—Rock outcrop-Canisrocks-Xeric Dystrocryepts complex, 5 to 45 percent slopes, moraines, mountain slopes, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park (fig. 12)

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,955 to 10,740 feet (1,816 to 3,274 meters)

Mean annual precipitation: 33 to 65 inches (838 to 1,651 millimeters) Mean annual air temperature: 41 to 48 degrees F (5 to 9 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—20 percent

Figure 12.—A trail to McGurk Meadow winds through map unit 252.

Canisrocks soil—15 percent Xeric Dystrocryepts—15 percent Minor components—50 percent

Description of Rock Outcrop

Slope: 5 to 45 percent Landform: Mountain slope Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Canisrocks Soil

Slope: 9 to 45 percent

Landform: Avalanche chute, moraine, mountain slope, or crests on ridge

Soil Survey of Yosemite National Park, California

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles, 2 to 10 percent subrounded boulders, and 2 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Description of Xeric Dystrocryepts

Slope: 5 to 45 percent

Landform: Moraine, mountain slope, or bedrock joints in mountainside Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subrounded boulders, 2 to 10 percent subrounded stones, 2 to 10 percent subangular cobbles, and 2 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.0 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest; 84232, White Fir Mixed Coniferous Forest; 85310, Red Fir Forest

Typical profile

A1-0 to 3 inches; loamy sand

A2—3 to 15 inches; gravelly loamy sand A3—15 to 35 inches; gravelly loamy sand C1—35 to 47 inches; very stony loamy sand C2—47 to 61 inches; very stony loamy sand

Minor Components

Glacierpoint and similar soils

Composition: About 10 percent

Slope: 0 to 35 percent

Landform: Moraine, mountain slope, or bedrock joints in mountainside

Vegetative classification: 86110, Lodgepole Pine Forest; 84232, White Fir Mixed

Coniferous Forest; 85210, Jeffrey Pine-Fir Forest

Vitrandic Cryorthents sandy-skeletal and similar soils

Composition: About 5 percent

Slope: 0 to 35 percent

Landform: Moraine or mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Oxyaquic Dystrocryepts sandy-skeletal and similar soils

Composition: About 3 percent

Slope: 2 to 35 percent

Landform: Moraine or small mountain valley

Vegetative classification: 86110, Lodgepole Pine Forest; 85120, Western White Pine

Forest; 85310, Red Fir Forest

Vitrandic Dystrocryepts coarse-loamy and similar soils

Composition: About 3 percent

Slope: 9 to 35 percent

Landform: Moraine, mountain slope, or bedrock joints in mountainside

Vegetative classification: 86110, Lodgepole Pine Forest

Xeric Dystrocryepts loamy-skeletal and similar soils

Composition: About 3 percent

Slope: 0 to 35 percent

Landform: Moraine, mountain slope, or bedrock joints in mountainside

Vegetative classification: 85310, Red Fir Forest

Humic Lithic Dystrocryepts sandy and similar soils

Composition: About 2 percent

Slope: 0 to 10 percent

Landform: Mountain slope or bedrock dimples in mountainside

Vegetative classification: 86110, Lodgepole Pine Forest; 85120, Western White Pine

Forest; 85310, Red Fir Forest

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 2 percent

Slope: 0 to 10 percent

Landform: Mountain slope

Vegetative classification: None assigned

Typic Cryopsamments and similar soils

Composition: About 2 percent

Slope: 0 to 15 percent Landform: Mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Typic Cryorthents sandy and similar soils

Composition: About 2 percent

Slope: 0 to 35 percent

Landform: Avalanche chute, moraine, mountain slope, or crests on ridge

Vegetative classification: 86110, Lodgepole Pine Forest

Typic Cryorthents loamy-skeletal, nonacid and similar soils

Composition: About 2 percent

Slope: 0 to 35 percent

Landform: Avalanche chute, moraine, mountain slope, or crests on ridge

Vegetative classification: 85310, Red Fir Forest

Vitrandic Dystrocryepts sandy and similar soils

Composition: About 2 percent

Slope: 0 to 35 percent

Landform: Moraine, mountain slope, or bedrock joints in mountainside *Vegetative classification:* 45210, Wet Subalpine and Alpine Meadow

Waterwheel and similar soils

Composition: About 2 percent Slope: 10 to 35 percent Landform: Mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Xeric Dystrocryepts fragmental and similar soils

Composition: About 2 percent

Slope: 0 to 35 percent

Landform: Moraine, mountain slope, or bedrock joints in mountainside

Vegetative classification: 85310, Red Fir Forest

Xeric Haplocryalfs coarse-loamy and similar soils

Composition: About 2 percent

Slope: 0 to 35 percent Landform: Moraine

Vegetative classification: 85310, Red Fir Forest

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Lithic Cryopsamments and similar soils

Composition: About 1 percent

Slope: 0 to 35 percent

Landform: Mountain slope or crests on ridge

Vegetative classification: 86110, Lodgepole Pine Forest

Lithic Xeropsamments and similar soils

Composition: About 1 percent

Slope: 0 to 35 percent

Landform: Areas adjacent to rock outcrop on mountain slope Vegetative classification: 86110, Lodgepole Pine Forest

Lithic Xerorthents frigid and similar soils

Composition: About 1 percent

Slope: 0 to 35 percent

Landform: Areas adjacent to rock outcrop on mountain slope Vegetative classification: 86110, Lodgepole Pine Forest

Oxyaquic Dystrocryepts sandy and similar soils

Composition: About 1 percent

Slope: 0 to 35 percent

Landform: Moraine or small mountain valley

Vegetative classification: 45210, Wet Subalpine and Alpine Meadow

Oxyaquic Dystrocryepts coarse-loamy and similar soils

Composition: About 1 percent

Slope: 0 to 35 percent

Landform: Moraine or small mountain valley

Vegetative classification: 86200, Sierra Mixed Subalpine Coniferous Forest

Rubble land

Composition: About 1 percent

Slope: 0 to 35 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Use and Management Considerations

- Moraines in this map unit are mostly remnants of ground, lateral, and medial
 moraines that do not have readily distinguishable form because of long-term erosion.
 The remaining till commonly is thinner than that in more distinctive moraines (such
 as those in map unit 227), although thicknesses could not be measured for this
 survey. The moraines grade to mountain slopes, which are mantled with colluvium
 overlying residuum.
- Most areas of this map unit are covered in forests of lodgepole pine and red fir.
- This map unit includes soils with a frigid temperature regime at the low elevations.

253—Canisrocks-Glacierpoint-Humic Dystrocryepts complex, 15 to 55 percent slopes, lateral moraines, crvic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,895 to 10,130 feet (1,797 to 3,089 meters)

Mean annual precipitation: 31 to 61 inches (787 to 1,549 millimeters)
Mean annual air temperature: 44 to 44 degrees F (about 7 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—25 percent Glacierpoint soil—18 percent Humic Dystrocryepts—15 percent Minor components—42 percent

Description of the Canisrocks Soil

Slope: 15 to 55 percent

Landform: Avalanche chute, lateral moraine, or mountain slope Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 15 percent coarse subangular gravel,

2 to 15 percent subangular cobbles, 0 to 5 percent subrounded boulders, and

2 to 15 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.9 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 85310, Red Fir Forest; 86800, Mountain Hemlock Forest

Typical profile

Oi—0 to 1 inch; stony slightly decomposed plant material

Oe—1 to 2 inches; stony moderately decomposed plant material

A1—2 to 3 inches; sandy loam

A2—3 to 11 inches; very cobbly loamy sand A3—11 to 23 inches; very cobbly loamy sand

C1-23 to 35 inches; extremely bouldery loamy sand

C2-35 to 60 inches; extremely stony loamy sand

Description of the Glacierpoint Soil

Slope: 15 to 55 percent

Landform: Lateral moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 15 percent coarse subangular gravel, 2 to 15 percent subangular cobbles, 2 to 10 percent subrounded stones, and

0 to 10 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.1 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86800, Mountain Hemlock Forest; 86110, Lodgepole

Pine Forest

Typical profile

Oa—0 to 0 inches; bouldery highly decomposed plant material

A1—0 to 4 inches; very stony fine sandy loam A2—4 to 7 inches; very stony fine sandy loam BA—7 to 11 inches; very bouldery sandy loam

Bw—11 to 19 inches; extremely bouldery coarse sandy loam C—19 to 60 inches; extremely bouldery loamy coarse sand

Description of Humic Dystrocryepts

Slope: 15 to 55 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles,

2 to 10 percent subrounded stones, and 2 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.6 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 86800, Mountain Hemlock Forest; 85310, Red Fir Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material Oa—1 to 2 inches; highly decomposed plant material

A—2 to 16 inches; very stony sandy loam

Bdw—16 to 30 inches; extremely stony loamy sand Cd—30 to 60 inches; extremely stony loamy sand

Minor Components

Vitrandic Dystrocryepts loamy-skeletal and similar soils

Composition: About 10 percent

Slope: 15 to 55 percent

Landform: Lateral moraine or mountain slope

Vegetative classification: 86800, Mountain Hemlock Forest

Xeric Dystrocryepts sandy and similar soils

Composition: About 8 percent Slope: 15 to 55 percent

Landform: Lateral moraine, mountain slope, or small flood plains in mountain valley Vegetative classification: 85310, Red Fir Forest; 86110, Lodgepole Pine Forest

Xeric Dystrocryepts coarse-loamy and similar soils

Composition: About 7 percent Slope: 15 to 55 percent

Landform: Lateral moraine, mountain slope, or small flood plains on mountain valley

Vegetative classification: 84240, Sierra White Fir Forest

Oxyaquic Dystrocryepts loamy-skeletal and similar soils

Composition: About 5 percent Slope: 2 to 55 percent

Landform: Lateral moraine or small mountain valley Vegetative classification: 85210, Jeffrey Pine-Fir Forest

Vitrandic Cryorthents sandy-skeletal and similar soils

Composition: About 5 percent Slope: 15 to 55 percent

Landform: Lateral moraine or mountain slope

Vegetative classification: 86800, Mountain Hemlock Forest

Typic Cryopsamments and similar soils

Composition: About 3 percent

Slope: 2 to 9 percent Landform: Lateral moraine

Vegetative classification: 85310, Red Fir Forest

Craneflat and similar soils

Composition: About 2 percent Slope: 15 to 55 percent

Landform: Moraine or mountain slope

Vegetative classification: 85110, Jeffrey Pine Forest

Xeric Dystrocryepts sandy-skeletal and similar soils

Composition: About 2 percent Slope: 15 to 55 percent

Landform: Small flood plains on mountain valley

Vegetative classification: 86800, Mountain Hemlock Forest; 86110, Lodgepole Pine

Forest

Use and Management Considerations

 Lateral moraines in this map unit are more distinct and less eroded than those in map unit 232.

256—Craneflat-Rock outcrop-Rubble land-Waterwheel association, 30 to 80 percent slopes, mountainflanks, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,795 to 8,775 feet (1,157 to 2,675 meters)

Mean annual precipitation: 33 to 49 inches (838 to 1,245 millimeters)
Mean annual air temperature: 50 to 52 degrees F (10 to 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Craneflat soil—25 percent Rock outcrop—25 percent Rubble land—20 percent Waterwheel soil—20 percent Minor components—10 percent

Description of the Craneflat Soil

Slope: 30 to 75 percent

Landform: Fan, mountain slope, aprons on mountainside, or mountainside Parent material: Colluvium derived from granitoid rock with or without volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 3 to 10 percent subrounded stones,

3 to 10 percent subangular cobbles, and 3 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.0 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: 71120, Black Oak Woodland

Typical profile

Oi—0 to 1 inch; stony slightly decomposed plant material

Oe—1 to 2 inches; stony moderately decomposed plant material

A1—2 to 7 inches; stony loamy sand A2—7 to 13 inches; very stony loamy sand C—13 to 60 inches; very stony loamy sand

Description of Rock Outcrop

Slope: 30 to 80 percent Landform: Mountainside Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Rubble Land

Slope: 30 to 80 percent

Landform: Mountain slope or mountainside

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Waterwheel Soil

Slope: 30 to 60 percent

Landform: Fan, mountain slope, mountainside, or aprons on mountainside

Parent material: Colluvium derived from granitoid rock with or without volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 10 to 20 percent subrounded boulders, 10 to 25 percent subrounded stones, and 5 to 15 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 0.9 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7s

Other vegetative classification: 71120, Black Oak Woodland; 81320, Canyon Live Oak

Forest

Typical profile

Oi—0 to 1 inch; very bouldery slightly decomposed plant material

Oe—1 to 2 inches; very bouldery moderately decomposed plant material

Oa—2 to 2 inches; very bouldery highly decomposed plant material

A—2 to 6 inches; very stony loamy coarse sand Bw1—6 to 14 inches; very stony loamy sand Bw2—14 to 28 inches; very stony coarse sand C—28 to 60 inches; extremely bouldery coarse sand

Minor Components

Badgerpass and similar soils

Composition: About 5 percent Slope: 30 to 45 percent

Landform: Mountain slope, aprons on mountainside, or mountainside Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Humic Lithic Dystrocryepts loamy-skeletal and similar soils

Composition: About 5 percent

Slope: 0 to 10 percent

Landform: Bedrock benches on mountainside Vegetative classification: 85110, Jeffrey Pine Forest

Use and Management Considerations

- Rock falls and debris avalanches occur in the steepest areas of the map unit.
- Rubble occurs as frost shatter on mountain flanks and as talus on aprons, avalanches, and fans.
- The soils grade into the mesic temperature regime at the low elevations.

257—Badgerpass-Oxyaquic Dystroxerepts association, 0 to 15 percent slopes, mountain valley floors, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,535 to 7,050 feet (1,688 to 2,149 meters)

Mean annual precipitation: 39 to 43 inches (991 to 1,092 millimeters)
Mean annual air temperature: 49 to 51 degrees F (9 to 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Badgerpass soil—55 percent Oxyaquic Dystroxerepts—35 percent Minor components—10 percent

Description of the Badgerpass Soil

Slope: 2 to 15 percent

Landform: Floors on mountain valley or terrace

Parent material: Alluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.4 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 85110, Jeffrey Pine Forest; 84232, White Fir Mixed Coniferous Forest; 85200, Upper Montane Mixed Coniferous Forest

Typical profile

Oi-0 to 1 inch; slightly decomposed plant material

A1—1 to 6 inches; loamy sand A2—6 to 13 inches; loamy sand Bw1—13 to 21 inches; loamy sand

Bw2—21 to 32 inches; gravelly loamy sand

C1—32 to 50 inches; loamy sand C2—50 to 60 inches; cobbly loamy sand

Description of Oxyaquic Dystroxerepts

Slope: 0 to 15 percent

Landform: Floors on mountain valley or flood plains on mountain valley Parent material: Alluvium and/or colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 3 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 8.9 inches (high)

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 45100, Montane Meadow

Typical profile

A—0 to 11 inches; loam Bw1—11 to 19 inches; loam

Bw2—19 to 32 inches; gravelly clay loam

C1-32 to 43 inches; loam

C2—43 to 60 inches; sandy clay loam

Minor Components

Histosols frigid and similar soils

Composition: About 5 percent Landform: Mountain valley

Vegetative classification: None assigned

Oxyaquic Dystroxerepts coarse-loamy and similar soils

Composition: About 3 percent

Slope: 0 to 15 percent

Landform: Floors on mountain valley or flood plains on mountain valley

Vegetative classification: 45100, Montane Meadow

Rock outcrop

Composition: About 2 percent Slope: 0 to 15 percent Landform: Mountain valley

Vegetative classification: None assigned

Use and Management Considerations

• This map unit is dominated by mountain meadows but also supports mixed conifer forests, most notably in Little Yosemite Valley (fig. 13).

258—Typic Dystroxerepts-Badgerpass-Dystric Xerorthents complex, 15 to 45 percent slopes, mountain slopes, moraines, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Figure 13.—Soil on Crane Flat has a dark colored A horizon, which indicates a high content of organic matter.

Elevation: 4,475 to 8,195 feet (1,364 to 2,498 meters)

Mean annual precipitation: 37 to 49 inches (940 to 1,245 millimeters) Mean annual air temperature: 50 to 51 degrees F (about 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Typic Dystroxerepts—25 percent Badgerpass soil—20 percent Dystric Xerorthents—20 percent Minor components—35 percent

Description of Typic Dystroxerepts

Slope: 15 to 45 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 7.9 inches (high)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi-0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material

Oa—2 to 2 inches; highly decomposed plant material

A—2 to 3 inches; loamy coarse sand AB—3 to 11 inches; fine sandy loam Bw—11 to 26 inches; fine sandy loam C1—26 to 43 inches; fine sandy loam

C2—43 to 60 inches; very bouldery fine sandy loam

Description of the Badgerpass Soil

Slope: 15 to 45 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.0 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 85310, Red Fir Forest; 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 2 inches; slightly decomposed plant material

A—2 to 7 inches; loamy coarse sand AC—7 to 18 inches; loamy coarse sand

C1—18 to 37 inches; sand C2—37 to 55 inches; sand

C3—55 to 67 inches; gravelly coarse sand

Description of Dystric Xerorthents

Slope: 15 to 45 percent

Landform: Ephemeral drainageway, moraine, or mountain slope

Parent material: Colluvium and/or till and/or minor alluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.3 inches (very low)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; stony slightly decomposed plant material

Oe—1 to 2 inches; stony moderately decomposed plant material

Oa—2 to 3 inches; stony highly decomposed plant material

A-3 to 11 inches; stony loamy sand

Bw—11 to 24 inches; stony loamy fine sand

C1—24 to 38 inches; very stony loamy sand

C2—38 to 60 inches; very stony loamy fine sand

Minor Components

Dystric Xerorthents sandy and similar soils

Composition: About 11 percent

Slope: 15 to 45 percent

Landform: Ephemeral drainageway, moraine, or mountain slope Vegetative classification: 85300, Upper Montane Fir Forest

Dystric Xeropsamments frigid and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent Landform: Mountain slope

Vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typic Dystroxerepts loamy-skeletal, frigid and similar soils

Composition: About 5 percent Slope: 15 to 45 percent

Landform: Moraine or mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Humic Dystroxerepts coarse-loamy, mesic and similar soils

Composition: About 3 percent Slope: 15 to 45 percent

Landform: Moraine or mountain slope

Vegetative classification: 85110, Jeffrey Pine Forest

Nevadafalls and similar soils

Composition: About 3 percent Slope: 15 to 45 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Rock outcrop

Composition: About 3 percent Slope: 15 to 45 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Use and Management Considerations

- Moraines in this map unit do not have a definite form.
- This map unit includes soils with a mesic temperature regime at the low elevations.

260—Rock outcrop-Craneflat-Dystric Xerorthents complex, 30 to 65 percent slopes, mountain slopes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,600 to 7,790 feet (1,403 to 2,375 meters)

Mean annual precipitation: 35 to 53 inches (889 to 1,346 millimeters)
Mean annual air temperature: 48 to 48 degrees F (about 9 degrees C)

Frost-free period: 20 to 60 days

Composition

Rock outcrop—45 percent Craneflat soil—25 percent Dystric Xerorthents—20 percent Minor components—10 percent

Description of Rock Outcrop

Slope: 30 to 65 percent Landform: Mountain slope Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Craneflat Soil

Slope: 30 to 65 percent

Landform: Mountain slope, benches on mountainside, or bedrock joints on

mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 14 percent coarse subangular

gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.3 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

A1—1 to 2 inches; loamy sand

A2—2 to 4 inches; gravelly loamy sand AC—4 to 13 inches; gravelly loamy sand

C1—13 to 19 inches; very channery loamy sand

C2—19 to 60 inches; extremely channery loamy sand

Description of Dystric Xerorthents

Slope: 30 to 65 percent

Landform: Mountain slope or aprons on mountainside Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.1 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material Oe—1 to 1 inch; moderately decomposed plant material

A—1 to 5 inches; sandy loam AC—5 to 17 inches; sandy loam C—17 to 60 inches; sandy loam

Minor Components

Rubble land

Composition: About 5 percent Slope: 30 to 65 percent Landform: Mountain slope

Vegetative classification: None assigned

Typic Xeropsamments frigid and similar soils

Composition: About 3 percent Slope: 30 to 65 percent

Landform: Mountain slope, bedrock joints on mountainside, or bedrock benches on

mountainside

Vegetative classification: 84232, White Fir Mixed Coniferous Forest

Humic Lithic Dystroxerepts coarse-loamy and similar soils

Composition: About 2 percent Slope: 0 to 10 percent

Landform: Mountain slope or bedrock dimples on mountainside Vegetative classification: 10500, Cliffs and Rock Outcrop

Use and Management Considerations

• The slope on bedrock benches and dimples and in some bedrock joints is more than 30 percent.

261—Dystric Xeropsamments-Typic Dystroxerepts-Badgerpass-Rock outcrop association, 5 to 35 percent slopes, mountain valleys, mountain slopes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,235 to 8,180 feet (1,596 to 2,494 meters)

Mean annual precipitation: 39 to 47 inches (991 to 1,194 millimeters)
Mean annual air temperature: 48 to 51 degrees F (9 to 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Dystric Xeropsamments—25 percent Typic Dystroxerepts—25 percent Badgerpass soil—15 percent Rock outcrop—15 percent Minor components—20 percent

Description of Dystric Xeropsamments

Slope: 5 to 35 percent Landform: Mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular

gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.1 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 85210, Jeffrey Pine-Fir Forest

Typical profile

Oi-0 to 0 inches; slightly decomposed plant material

A—0 to 6 inches; loamy sand Bw1—6 to 18 inches; loamy sand Bw2—18 to 25 inches; loamy sand C1—25 to 41 inches; loamy sand C2—41 to 60 inches; loamy sand

Description of Typic Dystroxerepts

Slope: 5 to 35 percent

Landform: Moraine, mountain slope, or mountain valley

Parent material: Colluvium and/or till and/or minor alluvium derived from granitoid

rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent coarse subangular gravel

and 2 to 5 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.1 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oe—0 to 0 inches; slightly decomposed plant material Oa—0 to 1 inch; moderately decomposed plant material

A—1 to 3 inches; fine sandy loam Bw1—3 to 8 inches; fine sandy loam Bw2—8 to 20 inches; fine sandy loam

Bw3—20 to 31 inches; very cobbly fine sandy loam Bw4—31 to 60 inches; very cobbly fine sandy loam

Description of the Badgerpass Soil

Slope: 5 to 35 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned Selected properties and qualities

Surface area covered by coarse fragments: 5 to 14 percent coarse subangular

gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.5 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 85210, Jeffrey Pine-Fir Forest

Typical profile

A—0 to 7 inches; gravelly loamy sand Bw1—7 to 18 inches; gravelly loamy sand Bw2—18 to 60 inches; gravelly loamy sand

Description of Rock Outcrop

Slope: 5 to 35 percent

Landform: Mountain slope or mountain valley

Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Dystric Xerorthents sandy, frigid and similar soils

Composition: About 10 percent

Slope: 5 to 35 percent Landform: Mountain slope

Vegetative classification: 84240, Sierra White Fir Forest

Humic Lithic Dystroxerepts sandy and similar soils

Composition: About 5 percent Slope: 0 to 10 percent

Landform: Areas close to rock outcrop on mountain slope or close to bedrock dimples

in mountain slope

Vegetative classification: 84250, Big Tree Forest

Typic Dystroxerepts coarse-loamy, frigid and similar soils

Composition: About 4 percent Slope: 5 to 35 percent

Landform: Moraine, mountain slope, or mountain valley

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Histosols frigid and similar soils

Composition: About 1 percent Landform: Mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- Colluvium on mountain footslopes and toeslopes extends into mountain valleys.
 There is no clear distinction between mountain slopes and mountain valleys at the scale of mapping (approximately 1:40,000) used in this survey.
- The majority of the mountain valley areas are forested. Small meadows (less than about 2 hectares) make up about 3 percent of the map unit (fig. 14).
- The soils grade to the cryic soil temperature regime at the high-elevation margin of the map unit.
- This map unit includes areas with slopes that are less than 35 percent (about 10 percent of map unit).
- The extent of rock outcrop ranges to about 35 percent in a few delineations, while several other small delineations in the west-central portion of the survey area have no rock outcrop.

Figure 14.—Mariposa Grove's 1,800-year-old Grizzly Giant is in an area of Dystric Xeropsamments-Typic Dystroxerepts-Badgerpass-Rock outcrop association, 5 to 35 percent slopes, mountain valleys, mountain slopes, frigid.

262—Humic Dystroxerepts-Dystric Xerorthents-Rock outcrop association, 30 to 70 percent slopes, mountain slopes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,545 to 7,825 feet (1,386 to 2,385 meters)

Mean annual precipitation: 37 to 47 inches (940 to 1,194 millimeters)
Mean annual air temperature: 46 to 51 degrees F (8 to 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Humic Dystroxerepts—30 percent Dystric Xerorthents—25 percent Rock outcrop—20 percent Minor components—25 percent

Description of Humic Dystroxerepts

Slope: 30 to 70 percent

Landform: Moraine, summits on mountain, or mountain slope Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 10 to 20 percent coarse subangular gravel, 10 to 20 percent subangular cobbles, 10 to 20 percent subrounded stones, and 10 to 20 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.8 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7s

Other vegetative classification: 84210, Westside Ponderosa Pine Forest

Typical profile

Oi—0 to 0 inches; extremely bouldery slightly decomposed plant material Oe—0 to 1 inch; extremely bouldery moderately decomposed plant material

A1—1 to 2 inches; extremely bouldery sandy loam A2—2 to 5 inches; extremely bouldery sandy loam Bw1—5 to 18 inches; extremely bouldery sandy loam Bw2—18 to 60 inches; extremely bouldery sandy loam

Description of Dystric Xerorthents

Slope: 30 to 70 percent

Landform: Mountain slope, aprons on mountainside, or debris torrent tracks on

mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent coarse subangular gravel, 2 to 10 percent subrounded stones, and 2 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.3 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 85300, Upper Montane Fir Forest

Typical profile

Oi—0 to 1 inch; stony slightly decomposed plant material

Oe—1 to 2 inches; stony moderately decomposed plant material

Oa—2 to 3 inches; stony highly decomposed plant material

A-3 to 11 inches; stony loamy sand

Bw—11 to 24 inches; stony loamy fine sand C1—24 to 38 inches; very stony loamy sand C2—38 to 60 inches; very stony loamy fine sand

Description of Rock Outcrop

Slope: 30 to 70 percent

Landform: Moraine, mountain slope, or summits on mountainside

Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Craneflat and similar soils

Composition: About 10 percent

Slope: 30 to 70 percent

Landform: Moraine, summits on mountain, or mountain slope Vegetative classification: 84210, Westside Ponderosa Pine Forest

Humic Lithic Dystroxerepts loamy-skeletal and similar soils

Composition: About 10 percent

Slope: 0 to 10 percent

Landform: Summits on mountain, mountain slope, bedrock benches on mountainside,

or bedrock dimples on mountainside

Vegetative classification: 84233, Douglas-fir Mixed Coniferous Forest

Rubble land

Composition: About 5 percent Slope: 30 to 70 percent

Landform: Moraine, mountain, or mountain slope

Vegetative classification: None assigned

Use and Management Considerations

 This map unit includes areas with slopes of more than 30 percent (about 10 percent of map unit).

264—Crazymule-Canisrocks association, 0 to 20 percent slopes, lateral moraines, wet/dry meadows, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,665 to 9,315 feet (2,032 to 2,840 meters)

Mean annual precipitation: 33 to 49 inches (838 to 1,245 millimeters) Mean annual air temperature: 37 to 48 degrees F (3 to 9 degrees C)

Frost-free period: 15 to 45 days

Composition

Crazymule soil—35 percent Canisrocks soil—28 percent Minor components—37 percent

Description of the Crazymule Soil

Slope: 5 to 20 percent

Landform: Moraine or dry meadows on moraine Parent material: Till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 3 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest; 84232, White Fir Mixed

Coniferous Forest; 85210, Jeffrey Pine-Fir Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material Oa—1 to 2 inches; highly decomposed plant material

A-2 to 12 inches; loamy fine sand

Bw1—12 to 22 inches; extremely stony fine sandy loam

Bw2—22 to 34 inches; cobbly fine sandy loam C—34 to 60 inches; very gravelly loamy sand

Description of the Canisrocks Soil

Slope: 9 to 20 percent

Landform: Lateral moraine or dry meadows on moraine

Parent material: Till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded stones, 5 to 15 percent coarse subangular gravel, and 5 to 15 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.9 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 85210, Jeffrey Pine-Fir Forest; 85310, Red Fir Forest

Typical profile

Oi—0 to 1 inch; stony slightly decomposed plant material

Oe—1 to 2 inches; stony moderately decomposed plant material

A1—2 to 3 inches; sandy loam

A2—3 to 11 inches; cobbly sandy loam

A3-11 to 23 inches; very cobbly loamy sand

C1—23 to 35 inches; extremely bouldery loamy sand

C2-35 to 60 inches; extremely stony loamy sand

Minor Components

Humic Dystrocryepts sandy-skeletal and similar soils

Composition: About 10 percent

Slope: 0 to 20 percent

Landform: Moraine or dry meadows on moraine Vegetative classification: 85210, Jeffrey Pine-Fir Forest

Histosols cryic and similar soils

Composition: About 5 percent

Slope: 0 to 20 percent

Landform: Lakeshore or mountain valley Vegetative classification: None assigned

Oxyaquic Dystrocryepts sandy and similar soils

Composition: About 5 percent

Slope: 2 to 20 percent

Landform: Wet meadows on lateral moraine or lateral moraine Vegetative classification: 85210, Jeffrey Pine-Fir Forest

Oxyaquic Dystrocryepts loamy-skeletal and similar soils

Composition: About 4 percent

Slope: 0 to 20 percent

Landform: Wet meadows on lateral moraine or lateral moraine Vegetative classification: 85210, Jeffrey Pine-Fir Forest

Typic Cryaquents and similar soils

Composition: About 4 percent

Slope: 0 to 20 percent

Landform: Wet meadows on moraine or moraine Vegetative classification: 85210, Jeffrey Pine-Fir Forest

Vitrandic Cryofluvents sandy-skeletal and similar soils

Composition: About 3 percent

Slope: 0 to 20 percent

Landform: Moraine or meadows on moraine

Vegetative classification: 85110, Jeffrey Pine Forest

Xeric Dystrocryepts coarse-loamy and similar soils

Composition: About 3 percent

Slope: 0 to 20 percent

Landform: Dry meadows on moraine or moraine

Vegetative classification: 85210, Jeffrey Pine-Fir Forest; 84232, White Fir Mixed

Coniferous Forest; 86110, Lodgepole Pine Forest

Typic Cryorthents coarse-loamy, acid and similar soils

Composition: About 2 percent

Slope: 0 to 9 percent

Landform: Dry meadows on moraine Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

- The moraines have distinctive morainal form.
- The meadows in this map unit are elongated ("stringer") meadows and brush fields

within moraines. They extend in the direction of glacial flow and occasionally contain ponds. They range in size from about 1 hectare to 20 hectares.

 Delineations of this map unit commonly are bordered on one or more sides by apparently younger morainal crests.

267—Rock outcrop-Typic Cryorthents-Xeric Dystrocryepts complex, 0 to 35 percent slopes, mountain slopes, joints, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,630 to 10,945 feet (2,021 to 3,337 meters)

Mean annual precipitation: 39 to 67 inches (991 to 1,702 millimeters) Mean annual air temperature: 42 to 47 degrees F (5 to 8 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—40 percent Typic Cryorthents—30 percent Xeric Dystrocryepts—15 percent Minor components—15 percent

Description of Rock Outcrop

Slope: 0 to 35 percent

Landform: Lateral moraine, mountain slope, or mountainside

Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Typic Cryorthents

Slope: 0 to 35 percent

Landform: Lateral moraine, mountain slope, or bedrock joints and fractures in

mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent coarse subangular gravel, 5 to 15 percent subangular cobbles, and 25 to 35 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.7 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7s

Other vegetative classification: 38000, Montane and Alpine Scrub

Typical profile

A1—0 to 5 inches; gravelly coarse sand A2—5 to 13 inches; very stony coarse sand 2C1—13 to 28 inches; extremely stony sandy loam 2C2—28 to 60 inches; extremely stony sandy loam

Description of Xeric Dystrocryepts

Slope: 0 to 35 percent

Landform: Moraine, meadows on moraine, or bedrock joints and fractures in

mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: 85310, Red Fir Forest

Typical profile

Oi—0 to 2 inches; slightly decomposed plant material Oa—2 to 4 inches; moderately decomposed plant material

A1—4 to 13 inches; loamy coarse sand A2—13 to 20 inches; loamy coarse sand A3—20 to 30 inches; coarse sand

AB—30 to 42 inches; coarse sand Bw1—42 to 48 inches; loamy sand

Bw2—48 to 62 inches; loamy coarse sand C1—62 to 78 inches; loamy coarse sand C2—78 to 84 inches; cobbly coarse sandy loam

Minor Components

Glacierpoint and similar soils

Composition: About 5 percent Slope: 0 to 35 percent

Landform: Moraine, meadows on mountainside, or bedrock joints and fractures in

mountainside

Vegetative classification: 85310, Red Fir Forest

Humic Dystrocryepts sandy-skeletal and similar soils

Composition: About 3 percent

Slope: 0 to 35 percent

Landform: Bedrock joints and fractures on mountainside

Vegetative classification: 85310, Red Fir Forest

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 3 percent Slope: 0 to 10 percent Landform: Mountain slope

Vegetative classification: None assigned

Lithic Dystrocryepts and similar soils

Composition: About 2 percent

Slope: 0 to 10 percent

Landform: Bedrock dimples on mountainside Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

- The types of rocks in this map unit are intermediate granitoid with mafic delineations in the vicinity of Benson Lake, Tilden Lake, Twin Lakes, and Rancheria Mountain.
 Soils in areas of mafic rock are expected to have higher base saturation than soils in areas of igneous rock of intermediate composition.
- Mountain vallevs contain alluvium and till.
- This map unit includes areas with slopes of more than 35 percent (5 percent of map unit).
- Small meadows (typically less than 2 hectares) are scattered throughout the map unit on level or gently sloping mountain slopes and in mountain valleys.
- Overall, this map unit is less glacially scoured than map unit 224.

Figure 15.—An area of map unit 268 that has 40 percent rock outcrop is in the background. An area of map unit 295 is in the foreground, and an area of map unit 289 is on the other side of the drainage system.

268—Rock outcrop-Canisrocks-Glacierpoint complex, 30 to 80 percent slopes, mountain slopes, joints, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park (fig. 15)

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,405 to 11,890 feet (1,649 to 3,625 meters)

Mean annual precipitation: 33 to 63 inches (838 to 1,600 millimeters) Mean annual air temperature: 36 to 47 degrees F (2 to 9 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—40 percent Canisrocks soil—25 percent Glacierpoint soil—20 percent Minor components—15 percent

Description of Rock Outcrop

Slope: 30 to 80 percent

Landform: Joints and fractured bedrock in mountain slope

Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8
Other vegetative classification: None assigned

Description of the Canisrocks Soil

Slope: 30 to 80 percent

Landform: Mountain valley or bedrock fractures and joints in mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded stones, 2 to 10 percent subrounded boulders, and 2 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 86110, Lodgepole Pine Forest; 85110, Jeffrey Pine

Forest

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material

Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Description of the Glacierpoint Soil

Slope: 30 to 70 percent

Landform: Mountain slope, bedrock fractures and joints in mountainside, or bedrock

benches on mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 20 percent subrounded stones, 0 to 10 percent coarse subangular gravel, and 0 to 15 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.1 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 85110, Jeffrey Pine Forest; 86110, Lodgepole Pine

Forest

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material

Oe—0 to 1 inch; bouldery moderately decomposed plant material

A1—1 to 4 inches; stony loamy sand

A2—4 to 16 inches; very stony loamy sand

Bw—16 to 27 inches; very stony loamy sand

C1—27 to 46 inches; very stony very fine sand

C2-46 to 64 inches; very stony very fine sand

Minor Components

Lithic Cryorthents sandy-skeletal and similar soils

Composition: About 4 percent

Slope: 0 to 10 percent

Landform: Bedrock benches on mountainside or areas on narrow fringes around rock

outcrop on mountainside

Vegetative classification: None assigned

Oxyaquic Dystrocryepts coarse-loamy and similar soils

Composition: About 4 percent

Slope: 0 to 10 percent

Landform: Below springs on mountain slope or bedrock joints and fractures on

mountainside

Vegetative classification: 85110, Jeffrey Pine Forest

Vitrandic Cryorthents sandy-skeletal and similar soils

Composition: About 4 percent Slope: 30 to 80 percent

Landform: Mountain slope or bedrock joints and fractures on mountainside

Vegetative classification: None assigned

Lithic Dystrocryepts and similar soils

Composition: About 3 percent

Slope: 0 to 10 percent

Landform: Dimples and benches in bedrock on mountainside

Vegetative classification: None assigned

Use and Management Considerations

- This map unit includes areas with slopes that are less than 30 percent (5 percent of map unit).
- Joints in the northern portion of the survey area tend to be narrower and more closely spaced than those in the central portion of the survey area.
- Morainal remnants (10 percent of map unit) occur in wide joints (more than 20 meters) in the central portion of the survey area.
- The soils in the wider, less steep joints and fractures tend to be more strongly developed than those that formed in narrow, steep joints and fractures.
- Bedrock dimples are limited to the least steep bedrock surfaces.
- Compared to other map units that are marked by mountain flanks and that have comparable slopes (such as map unit 235), this map unit is less linear, has more topographic variation, and has more jointing. Because of these characteristics, this unit is less avalanche-prone, is more significant for ground-water recharge, and is more edaphically variable.

269—Canisrocks-Rock outcrop-Glacierpoint complex, 0 to 35 percent slopes, mountain slopes, moraines, joints, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,730 to 9,660 feet (2,052 to 2,946 meters)

Mean annual precipitation: 33 to 63 inches (838 to 1,600 millimeters) Mean annual air temperature: 35 to 48 degrees F (2 to 9 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—20 percent Rock outcrop—20 percent Glacierpoint soil—15 percent Minor components—45 percent

Description of the Canisrocks Soil

Slope: 9 to 35 percent

Landform: Moraine, bedrock joints on moraine, or mountain slope

Parent material: Colluvium and/or till and/or residuum derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 3 to 10 percent coarse gravel, 3 to 10 percent subrounded cobbles, and 3 to 15 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.5 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; stony slightly decomposed plant material

A1—0 to 2 inches; loamy coarse sand A2—2 to 7 inches; loamy coarse sand

A3—7 to 20 inches; very bouldery loamy coarse sand C—20 to 60 inches; extremely bouldery loamy sand

Description of Rock Outcrop

Slope: 0 to 35 percent

Landform: Moraine or mountain slope Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Glacierpoint Soil

Slope: 0 to 35 percent

Landform: Lateral moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded boulders, 2 to 10 percent coarse subangular gravel, 2 to 10 percent subangular cobbles, and 2 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.1 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84240, Sierra White Fir Forest; 85310, Red Fir Forest

Typical profile

Oi—0 to 0 inches; bouldery slightly decomposed plant material Oe—0 to 1 inch; bouldery moderately decomposed plant material

A1—1 to 4 inches; stony loamy sand A2—4 to 16 inches; very stony loamy sand Bw—16 to 27 inches; very stony loamy sand C1—27 to 46 inches; very stony very fine sand C2—46 to 64 inches; very stony very fine sand

Minor Components

Vitrandic Dystrocryepts coarse-loamy and similar soils

Composition: About 10 percent

Slope: 9 to 35 percent

Landform: Bedrock joints on moraine, moraine, or mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Crazymule and similar soils

Composition: About 5 percent

Slope: 5 to 35 percent

Landform: Moraine, bedrock joints in moraine, or mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Humic Dystrocryepts sandy and similar soils

Composition: About 5 percent

Slope: 0 to 35 percent

Landform: Bedrock joints on moraine or moraine Vegetative classification: 85310, Red Fir Forest

Humic Dystrocryepts sandy-skeletal and similar soils

Composition: About 5 percent

Slope: 0 to 35 percent

Landform: Moraine or bedrock joints on moraine Vegetative classification: 85310, Red Fir Forest

Typic Cryorthents sandy and similar soils

Composition: About 5 percent

Slope: 0 to 35 percent

Landform: Moraine, bedrock joints on moraine, or mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Typic Cryorthents coarse-loamy, acid and similar soils

Composition: About 5 percent

Slope: 0 to 35 percent

Landform: Moraine, bedrock joints on moraine, or mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Xeric Dystrocryepts coarse-loamy and similar soils

Composition: About 5 percent

Slope: 0 to 35 percent

Landform: Moraine, bedrock joints on moraine, or mountain slope

Vegetative classification: 86110, Lodgepole Pine Forest

Humic Lithic Dystrocryepts sandy and similar soils

Composition: About 3 percent

Slope: 0 to 10 percent

Landform: Bedrock dimples on mountainside Vegetative classification: None assigned

Oxyaquic Dystrocryepts sandy-skeletal and similar soils

Composition: About 2 percent

Slope: 0 to 35 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Use and Management Considerations

- Much of this map unit has been glacially scoured.
- Till and minor alluvial and colluvial sediments fill bedrock joints and depressions.
- Slopes range from 35 percent to 55 percent in about 10 percent of the map unit.

270—Rock outcrop-Typic Cryorthents-Vitrandic Dystrocryepts complex, 0 to 65 percent slopes, metamorphic, mountain slopes, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 7,075 to 11,340 feet (2,157 to 3,457 meters)

Mean annual precipitation: 39 to 59 inches (991 to 1,499 millimeters) Mean annual air temperature: 38 to 39 degrees F (3 to 4 degrees C)

Frost-free period: 15 to 45 days

Composition

Rock outcrop—35 percent
Typic Cryorthents—25 percent
Vitrandic Dystrocryepts—25 percent
Minor components—15 percent

Description of Rock Outcrop

Slope: 20 to 65 percent Landform: Mountain slope Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8
Other vegetative classification: None assigned

Description of Typic Cryorthents

Slope: 20 to 65 percent

Landform: Mountain slope or spur

Parent material: Colluvium derived from metamorphic rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 10 to 20 percent coarse subangular gravel, 10 to 20 percent subangular cobbles, and 10 to 20 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6s

Other vegetative classification: 86200, Sierra Mixed Subalpine Coniferous Forest

Typical profile

Oi—0 to 0 inches; stony slightly decomposed plant material Oe—0 to 1 inch; stony moderately decomposed plant material

A—1 to 4 inches; stony loamy sand

Bw1—4 to 18 inches; extremely stony loamy sand Bw2—18 to 28 inches; extremely stony loamy sand C1—28 to 34 inches; extremely stony loamy sand C2—34 to 60 inches; extremely stony loamy sand

Description of Vitrandic Dystrocryepts

Slope: 20 to 65 percent

Landform: Cirque floor or mountain slope

Parent material: Colluvium derived from granitoid and/or metamorphic rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent coarse subangular gravel, 0 to 10 percent subrounded stones, and 0 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.1 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 38110, Montane/Alpine Riparian Scrub

Typical profile

A1—0 to 3 inches; loamy sand A2—3 to 4 inches; fine sand

A3—4 to 8 inches; cobbly loamy sand

Bw—8 to 17 inches; extremely stony sandy loam C—17 to 60 inches; extremely stony loamy sand

Minor Components

Humic Lithic Dystrocryepts sandy and similar soils

Composition: About 4 percent Slope: 0 to 10 percent

Landform: Mountain slope, rock benches on mountainside, or dimples in bedrock on

mountainside

Vegetative classification: 86110, Lodgepole Pine Forest

Oxyaquic Cryorthents coarse-loamy over sandy and similar soils

Composition: About 4 percent Slope: 0 to 10 percent

Landform: Basin floor, cirque, small mountain valley, or wet meadows on mountain

valley

Vegetative classification: 45210, Wet Subalpine and Alpine Meadow

Rubble land

Composition: About 4 percent Landform: Cirque or mountain slope Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Lakeshore

Vegetative classification: None assigned

Inceptic Haplocryalfs and similar soils

Composition: About 1 percent Slope: 2 to 12 percent

Landform: Cirque, channery surfaces on mountain slope, or mountain slope

Vegetative classification: 86120, Whitebark Pine Forest

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

- The types of rock in this map unit are metamorphic, metasedimentary, and metavolcanic with lesser amounts of granitoid rock.
- Slopes in most of the map unit (about 75 percent) are steeper than 30 percent.
- Because of the wide range in slopes in this map unit, several small but distinct delineations with unusual conditions are combined into a single map unit.
- The slopes of cirque floors, small mountain valleys and basins, bench treads, and dimples are less than 20 percent.
- Foot and toe positions of cirque walls support about 10 percent rock rubble.
- This map unit has been glacially scoured.

271—Rock outcrop-Lithic Xerorthents-Waterwheel complex, 0 to 150 percent slopes, cliffs, ledges, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,080 to 7,660 feet (1,245 to 2,335 meters)

Mean annual precipitation: 35 to 45 inches (889 to 1,143 millimeters)
Mean annual air temperature: 49 to 51 degrees F (9 to 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Rock outcrop—60 percent Lithic Xerorthents—15 percent Waterwheel soil—15 percent Minor components—10 percent

Description of Rock Outcrop

Slope: 0 to 150 percent Landform: Mountainside Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Lithic Xerorthents

Slope: 0 to 150 percent

Landform: Rock ledges on mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 55 to 65 percent coarse subangular gravel

Restrictive feature: Bedrock (lithic) at a depth of 7 inches

Available water capacity to a depth of 60 inches: About 0.2 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very high

Current water table: None noted

Natural drainage class: Excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

A—0 to 3 inches; stony sand

C-3 to 7 inches; extremely paragravelly sand

R—7 to 60 inches; bedrock

Description of the Waterwheel Soil

Slope: 10 to 60 percent

Landform: Avalanche chute or rock ledges on mountainside Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles, 10 to 25 percent subrounded stones, and 10 to 20 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 0.9 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7s

Other vegetative classification: 71120, Black Oak Woodland; 81320, Canyon Live Oak

Forest

Typical profile

Oi—0 to 1 inch; very bouldery slightly decomposed plant material

Oe—1 to 2 inches; very bouldery moderately decomposed plant material

Oa—2 to 2 inches; very bouldery highly decomposed plant material

A-2 to 6 inches; very stony loamy coarse sand

Bw1—6 to 14 inches; very stony loamy sand

Bw2—14 to 28 inches; very stony coarse sand

C-28 to 60 inches; extremely bouldery coarse sand

Minor Components

Humic Dystroxerepts sandy-skeletal, frigid and similar soils

Composition: About 5 percent Slope: 0 to 150 percent

Landform: Rock ledges on mountainside Vegetative classification: None assigned

Rubble land

Composition: About 5 percent Slope: 0 to 150 percent Landform: Mountainside

Vegetative classification: None assigned

Use and Management Considerations

- This map unit borders Yosemite Valley.
- Rock cliffs are nearly vertical. Slopes of avalanche tracks with soil typically are between about 50 and 80 percent. Most soils occur on rock ledges that have variable steepness.
- The soil temperature regime grades to mesic at the lowest elevations.

273—Nevadafalls-Waterwheel association, 0 to 35 percent slopes, moraines, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,230 to 7,755 feet (1,595 to 2,364 meters)

Mean annual precipitation: 39 to 45 inches (991 to 1,143 millimeters)
Mean annual air temperature: 49 to 49 degrees F (about 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Nevadafalls soil—55 percent

Waterwheel soil—30 percent Minor components—15 percent

Description of the Nevadafalls Soil

Slope: 0 to 35 percent Landform: Moraine

Parent material: Till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest; 85110,

Jeffrey Pine Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A—0 to 6 inches; loamy coarse sand Bw—6 to 17 inches; loamy coarse sand

C1—17 to 31 inches; very cobbly loamy coarse sand C2—31 to 60 inches; very cobbly loamy coarse sand

Description of the Waterwheel Soil

Slope: 10 to 35 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent coarse subangular

gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.5 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material Oa—1 to 1 inch; highly decomposed plant material

A1—1 to 6 inches; cobbly loamy sand A2—6 to 11 inches; cobbly loamy sand C1—11 to 19 inches; very stony loamy sand C2—19 to 60 inches; very stony loamy sand

Minor Components

Dystric Xerorthents coarse-loamy, acid and similar soils

Composition: About 10 percent

Slope: 0 to 35 percent

Landform: Moraine or mountain slope

Vegetative classification: 84232, White Fir Mixed Coniferous Forest

Rock outcrop

Composition: About 5 percent

Slope: 0 to 35 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Use and Management Considerations

- Compared with map unit 315, moraines in this map unit tend to be less distinct and have more eroded backslopes and gently sloping crests of lateral moraines.
 Moraines in map unit 315 generally are steeper and more distinct.
- Small meadows (less than about 1 hectare) occupy about 2 percent of the map unit.

274—Rock outcrop, domes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,470 to 7,685 feet (1,668 to 2,343 meters)

Mean annual precipitation: 35 to 47 inches (889 to 1,194 millimeters)
Mean annual air temperature: 49 to 51 degrees F (9 to 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Rock outcrop—85 percent Minor components—15 percent

Description of Rock Outcrop

Landform: Dome

Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Dystric Xerorthents sandy-skeletal, frigid and similar soils

Composition: About 10 percent

Slope: 5 to 30 percent Landform: Mountain slope

Vegetative classification: None assigned

Humic Dystroxerepts sandy-skeletal, frigid and similar soils

Composition: About 5 percent

Slope: 5 to 30 percent

Landform: Mountain slope or bedrock joints on mountainside

Vegetative classification: None assigned

275—Oxyaquic Dystroxerepts-Dystric Xerorthents-Vitrandic Xerorthents-Rubble land complex, stony, 0 to 20 percent slopes, mountain valleys, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 2,120 to 6,015 feet (648 to 1,835 meters)

Mean annual precipitation: 33 to 45 inches (838 to 1,146 millimeters)
Mean annual air temperature: 41 to 53 degrees F (5 to 12 degrees C)

Frost-free period: 100 to 150 days

Composition

Oxyaquic Dystroxerepts—25 percent Dystric Xerorthents—25 percent Vitrandic Xerorthents—25 percent Rubble land—15 percent Minor components—10 percent

Description of Oxyaquic Dystroxerepts

Slope: 0 to 20 percent

Landform: Flood plain or terrace

Parent material: Alluvium derived from granitoid rock and minor volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.7 inches (low)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 4e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; bouldery slightly decomposed plant material

Oa—1 to 2 inches; bouldery highly decomposed plant material

A-2 to 9 inches; cobbly sandy loam

AB—9 to 19 inches; very gravelly sandy loam

Bw—19 to 34 inches; very gravelly coarse sandy loam

C1—34 to 46 inches; extremely cobbly coarse sandy loam

C2-46 to 60 inches; extremely stony coarse sandy loam

Description of Dystric Xerorthents

Slope: 0 to 20 percent

Landform: Mountainside or terrace

Parent material: Alluvium and/or colluvium derived from granitoid rock and volcanic

ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles, 2 to 5 percent subrounded boulders, and 10 to 20 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 0.9 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; stony slightly decomposed plant material

Soil Survey of Yosemite National Park, California

Oe—1 to 2 inches; stony slightly decomposed plant material Oa—2 to 2 inches; stony slightly decomposed plant material

A—2 to 6 inches; very stony loamy coarse sand Bw1—6 to 14 inches; very stony loamy coarse sand Bw2—14 to 28 inches; very stony loamy coarse sand C—28 to 60 inches; extremely stony loamy coarse sand

Description of Vitrandic Xerorthents

Slope: 0 to 20 percent

Landform: Flood plain, mountain valley, or terrace

Parent material: Alluvium derived from granitoid rock and minor volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 10 to 20 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.3 inches (moderate)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None Surface runoff: Very low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 4e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Typical profile

C-0 to 8 inches; fine sand

Ab—8 to 18 inches; fine sandy loam 2C—18 to 24 inches; fine sandy loam 3C1—24 to 35 inches; loamy sand 3C2—35 to 50 inches; loamy sand 3Ab—50 to 62 inches; loamy sand

Description of Rubble Land

Slope: 0 to 20 percent Landform: Flood plain

Parent material: Alluvium derived from igneous rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Vitrandic Dystrudepts and similar soils

Composition: About 5 percent

Slope: 0 to 5 percent

Landform: Flood plain or terrace

Vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Histosols mesic and similar soils

Composition: About 3 percent

Slope: 0 to 2 percent Landform: Mountain valley

Vegetative classification: None assigned

Riverwash

Composition: 2 percent Slope: 0 to 2 percent

Landform: Channel, flood plain, or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- This map unit generally has narrow delineations (less than 200 meters wide); the
 delineations extend to nearly 1 kilometer wide in the Wawona area. The map unit is
 characterized by stony, bouldery flood plains and stream terraces that support
 scattered mixed conifer-pine with black oak (figs. 16 and 17). A few delineations,
 such as along lower Tenaya Creek, support denser forests of similar species.
- Most of the map unit, except areas on the highest terraces, is subject to heavy stream flow and flooding.
- Soils with an udic moisture regime occur on the flood plains.
- Cold air drainage and cold subsurface water flow can maintain a frigid soil temperature regime at the lowest points in deep shaded canyons.

276—Happyisles-Typic Dystroxerepts association, 0 to 15 percent slopes, mountain valley floors, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park (fig. 18)

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,950 to 5,430 feet (1,205 to 1,655 meters)

Mean annual precipitation: 31 to 43 inches (787 to 1,092 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Happyisles soil—35 percent Typic Dystroxerepts—35 percent Minor components—30 percent

Figure 16.—A stony flood plain in an area of Oxyaquic Dystroxerepts-Dystric Xerorthents-Vitrandic Xerorthents-Rubble land complex, stony, 0 to 20 percent slopes, mountain valleys, mesic, along the South Fork of the Merced River.

Description of the Happyisles Soil

Slope: 0 to 9 percent

Landform: Flood plain or terrace

Parent material: Alluvium and/or colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 9 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.3 inches (moderate)

Selected hydrologic properties

Present annual flooding: Rare Present annual ponding: None

Surface runoff: Very low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 3e Other vegetative classification: None assigned

Typical profile

Oi—0 to 3 inches; slightly decomposed plant material

A1—3 to 7 inches; sandy loam

A2-7 to 13 inches; coarse sandy loam

A3—13 to 17 inches; sandy loam A4—17 to 33 inches; sandy loam

C-33 to 60 inches; stratified loamy coarse sand to loamy sand

Description of Typic Dystroxerepts

Slope: 0 to 15 percent

Landform: Basin floor, flood plain, or terrace

Parent material: Alluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subangular cobbles, 5 to 15 percent subrounded stones, and 0 to 5 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

Figure 17.—The flood plain (in map unit 275) and the mountain slope below the talus slope (in map unit 277) are reflected in Mirror Lake.

Figure 18.—A riparian flood plain in map unit 276 merges into an area of map unit 296 (in the background).

California land use interpretive groups

Land capability classification (nonirrigated): 4e Other vegetative classification: None assigned

Typical profile

Oe—0 to 1 inch; stony slightly decomposed plant material

A1—1 to 19 inches; very stony sandy loam

A2—19 to 28 inches; very stony sandy loam

Bw1—28 to 33 inches; extremely cobbly coarse sandy loam

Bw2—33 to 50 inches; extremely cobbly sandy loam

C-50 to 60 inches; extremely cobbly loamy sand

Minor Components

Aquandic Humaquepts and similar soils

Composition: About 10 percent

Slope: 0 to 2 percent Landform: Flood plain

Vegetative classification: None assigned

Oxyaquic Eutrudepts and similar soils

Composition: About 8 percent

Slope: 0 to 15 percent

Landform: Basin floor or valley floor on flood plain Vegetative classification: 45110, Wet Montane Meadow

Cumulic Humaquepts mesic and similar soils

Composition: About 7 percent

Slope: 0 to 3 percent Landform: Flood plain

Vegetative classification: None assigned

Histosols mesic and similar soils

Composition: About 5 percent

Slope: 0 to 3 percent Landform: Mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- Compared to map unit 275, valleys in this map unit tend to be broader (typically
 more than 0.5 kilometer) and flatter. They are occupied by mountain meadows or by
 forest-meadow associations. A few meadows that are less than 5 hectares in size
 are included in this map unit.
- This map unit has fewer surface stones and boulders, which indicates that flooding is less violent than in map unit 275; although areas positioned below mountain flanks can accumulate boulders from upslope rock falls and avalanches.

277—Tuolumne-Humic Dystroxerepts complex, 15 to 65 percent slopes, aprons, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 2,885 to 6,035 feet (881 to 1,841 meters)

Mean annual precipitation: 33 to 49 inches (838 to 1,245 millimeters)
Mean annual air temperature: 41 to 53 degrees F (5 to 12 degrees C)

Frost-free period: 100 to 150 days

Composition

Tuolumne soil—45 percent Humic Dystroxerepts—35 percent Minor components—20 percent

Description of the Tuolumne Soil

Slope: 15 to 65 percent

Landform: Fan, mountain slope, or talus slope

Parent material: Alluvium and/or colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 15 to 25 percent subrounded boulders and

15 to 25 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.2 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6s

Other vegetative classification: 71120, Black Oak Woodland

Typical profile

Oi—0 to 1 inch; very bouldery slightly decomposed plant material Oe—1 to 2 inches; very bouldery slightly decomposed plant material

A-2 to 5 inches; coarse sand

C-5 to 32 inches; very gravelly coarse sand

Ab-32 to 60 inches; extremely cobbly loamy coarse sand

Description of Humic Dystroxerepts

Slope: 15 to 65 percent

Landform: Fan or mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subrounded stones, 2 to 10 percent subangular cobbles, and 5 to 15 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 0.9 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 71120, Black Oak Woodland

Typical profile

Oi—0 to 1 inch; bouldery slightly decomposed plant material

Oe—1 to 1 inch; bouldery moderately decomposed plant material

Oa—1 to 2 inches; bouldery highly decomposed plant material

A-2 to 15 inches; very cobbly loamy sand

C1—15 to 25 inches; extremely bouldery loamy sand

C2-25 to 60 inches; extremely cobbly loamy sand

Minor Components

Vitrandic Xerorthents sandy-skeletal and similar soils

Composition: About 14 percent

Slope: 15 to 65 percent

Landform: Fan, aprons on mountain, or mountain slope Vegetative classification: 81500, Mixed, North Slope Forest

Rubble land

Composition: About 6 percent Slope: 15 to 65 percent

Landform: Fan, mountain slope, or talus slope Vegetative classification: None assigned

278—Rock outcrop-Tuolumne-Humic Dystroxerepts-Rubble land complex, 30 to 100 percent slopes, mountainflanks, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 2,145 to 6,525 feet (654 to 1,989 meters)

Mean annual precipitation: 33 to 49 inches (838 to 1,245 millimeters)
Mean annual air temperature: 44 to 45 degrees F (about 7 degrees C)

Frost-free period: 100 to 150 days

Composition

Rock outcrop—25 percent Tuolumne soil—25 percent Humic Dystroxerepts—20 percent Rubble land—15 percent Minor components—15 percent

Description of Rock Outcrop

Slope: 30 to 100 percent

Landform: Flanks on mountain slope Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Tuolumne Soil

Slope: 30 to 70 percent

Landform: Mountain slope, mountainside, or aprons on mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles, 5 to 15 percent coarse subangular gravel, 5 to 15 percent subrounded boulders, and 25 to 35 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.8 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7s

Other vegetative classification: 71150, Interior Live Oak Woodland

Typical profile

A-0 to 2 inches; cobbly loamy coarse sand

AC—2 to 10 inches; very gravelly coarse sandy loam C1—10 to 35 inches; very bouldery loamy coarse sand

C2-35 to 60 inches; gravelly coarse sand

Description of Humic Dystroxerepts

Slope: 30 to 100 percent

Landform: Mountain slope, bedrock joints in mountainside, aprons on mountainside, or

mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 25 to 35 percent subrounded stones, 5 to 15 percent subrounded boulders, 5 to 15 percent subangular cobbles, and

5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Soil Survey of Yosemite National Park, California

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7s

Other vegetative classification: 711,00, Oak Woodland; 81320, Canyon Live Oak

Forest

Typical profile

Oi—0 to 1 inch; extremely gravelly slightly decomposed plant material Oe—1 to 1 inch; extremely gravelly slightly decomposed plant material

A—1 to 10 inches; very gravelly loamy coarse sand Bw—10 to 21 inches; very stony loamy coarse sand

C-21 to 60 inches; extremely bouldery loamy coarse sand

Description of Rubble Land

Slope: 30 to 100 percent

Landform: Avalanche chute or area below cliff

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Vitrandic Xerorthents sandy-skeletal and similar soils

Composition: About 10 percent Slope: 30 to 100 percent

Landform: Mountain slope, aprons on mountainside, or mountainside

Vegetative classification: 81340, Black Oak Forest

Typic Xerorthents sandy-skeletal, mesic and similar soils

Composition: About 5 percent Slope: 30 to 100 percent

Landform: Mountain slope, mountainside, or aprons on mountainside

Vegetative classification: 71100, Oak Woodland

Use and Management Considerations

- Mountain flanks are about 60 percent rock outcrop and rubble and about 40 percent soil-covered areas.
- Slopes that are more than about 55 percent are subject to debris avalanches and debris torrents.
- Rock falls can issue from cliffs and nearly vertical rock outcrop.

Figure 19.—A flood plain on a mountain valley floor in McGurk Meadow in an area of Canisrocks-Xeric Dystrocryepts complex, 15 to 45 percent slopes, mountain slopes, moraines, cryic.

279—Canisrocks-Xeric Dystrocryepts complex, 15 to 45 percent slopes, mountain slopes, moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park (fig. 19)

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,400 to 10,000 feet (1,952 to 3,050 meters)

Mean annual precipitation: 35 to 51 inches (889 to 1,295 millimeters)
Mean annual air temperature: 42 to 49 degrees F (6 to 10 degrees C)

Frost-free period: 15 to 45 days

Composition

Canisrocks soil—40 percent Xeric Dystrocryepts—15 percent Minor components—45 percent

Description of the Canisrocks Soil

Slope: 15 to 40 percent

Landform: Moraine, mountain slope, or ephemeral draws on mountainside Parent material: Alluvium and/or colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded boulders, 2 to 10 percent subangular cobbles, and 2 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.3 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 85210, Jeffrey Pine-Fir Forest; 85310, Red Fir Forest

Typical profile

Oi—0 to 2 inches; bouldery slightly decomposed plant material Oa—2 to 2 inches; bouldery highly decomposed plant material

A—2 to 11 inches; loamy sand

Bw—11 to 21 inches; very stony loamy sand C1—21 to 29 inches; very stony loamy sand C2—29 to 36 inches; very stony loamy sand C3—36 to 60 inches; extremely stony loamy sand

Description of Xeric Dystrocryepts

Slope: 15 to 40 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded stones, 0 to 5 percent subangular cobbles, and 0 to 5 percent coarse subangular gravel

Restrictive feature: Dense material at a depth of 32 inches

Available water capacity to a depth of 60 inches: About 1.6 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi-0 to 0 inches; bouldery slightly decomposed plant material

Oe—0 to 1 inch; bouldery moderately decomposed plant material

A—1 to 4 inches; bouldery loamy sand Bw1—4 to 18 inches; very bouldery sand Bw2—18 to 28 inches; very bouldery sand C1—28 to 34 inches; very bouldery sand C2—34 to 60 inches; extremely bouldery sand

Minor Components

Humic Dystrocryepts loamy-skeletal and similar soils

Composition: About 14 percent

Slope: 15 to 40 percent

Landform: Moraine or mountain slope

Vegetative classification: 85310, Red Fir Forest

Xeric Dystrocryepts coarse-loamy and similar soils

Composition: About 6 percent Slope: 15 to 40 percent

Landform: Moraine or mountain slope

Vegetative classification: 85310, Red Fir Forest

Oxyaquic Dystrocryepts loamy-skeletal and similar soils

Composition: About 5 percent Slope: 15 to 40 percent Landform: Moraine

Vegetative classification: None assigned

Rock outcrop

Composition: About 5 percent Slope: 15 to 40 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Typic Cryopsamments and similar soils

Composition: About 5 percent Slope: 15 to 40 percent

Landform: Ephemeral stream or moraine

Vegetative classification: 84232, White Fir Mixed Coniferous Forest

Xeric Dystrocryepts sandy and similar soils

Composition: About 5 percent Slope: 15 to 40 percent

Landform: Moraine or mountain slope

Vegetative classification: 85310, Red Fir Forest

Vitrandic Dystrocryepts sandy-skeletal and similar soils

Composition: About 4 percent Slope: 15 to 40 percent

Landform: Moraine or mountain slope Vegetative classification: None assigned

Histosols cryic and similar soils

Composition: About 1 percent

Slope: 0 to 3 percent

Landform: Marsh

Vegetative classification: None assigned

Use and Management Considerations

- The moraines in this map unit are remnant lateral and ground moraines that have
 little or no distinct form, probably because of long-term geologic erosion. The
 remaining till commonly is thinner than that in more distinctive moraines (such as
 those in map unit 227), although thicknesses could not be measured for this survey.
 The moraines grade to mountain slopes, which are mantled with colluvium overlying
 residuum.
- Meadows that are less than about 2 hectares in size occur in concave positions.
- Soils with a frigid temperature regime occur at the lowest elevations in the map unit.

280—Typic Dystroxerepts-Humic Dystroxerepts-Rock outcrop association, 15 to 45 percent slopes, mountain slopes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,790 to 8,050 feet (1,461 to 2,454 meters)

Mean annual precipitation: 35 to 47 inches (889 to 1,194 millimeters)
Mean annual air temperature: 50 to 50 degrees F (about 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Typic Dystroxerepts—35 percent Humic Dystroxerepts—30 percent Rock outcrop—25 percent Minor components—10 percent

Description of Typic Dystroxerepts

Slope: 15 to 45 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.5 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 85110, Jeffrey Pine Forest; 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material

A—2 to 4 inches; sandy loam AB—4 to 8 inches; sandy loam Bw1—8 to 15 inches; sandy loam Bw2—15 to 24 inches; sandy loam C1—24 to 36 inches; sandy loam C2—36 to 60 inches; sandy loam

Description of Humic Dystroxerepts

Slope: 15 to 45 percent

Landform: Deposits ancient landslide, moraine, mountain slope, or bedrock joints on

mountainside

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subangular cobbles and

5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 85110, Jeffrey Pine Forest

Typical profile

Oi—0 to 2 inches; cobbly slightly decomposed plant material

Oe—2 to 2 inches; cobbly moderately decomposed plant material

Oa—2 to 3 inches; cobbly highly decomposed plant material

A1—3 to 8 inches; gravelly loamy sand

A2—8 to 16 inches; gravelly loamy coarse sand Bw—16 to 30 inches; very stony sandy loam

C-30 to 60 inches; very stony loamy sand

Description of Rock Outcrop

Slope: 15 to 45 percent

Landform: Moraine or mountain slope Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Humic Lithic Dystroxerepts sandy and similar soils

Composition: About 10 percent

Slope: 0 to 10 percent

Landform: Mountain slope or summits on ridge Vegetative classification: 85110, Jeffrey Pine Forest

282—Clarkslodge-Craneflat-Nevadafalls complex, 0 to 30 percent slopes, mountain slopes, hummocky, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,680 to 6,965 feet (1,427 to 2,124 meters)

Mean annual precipitation: 35 to 39 inches (889 to 991 millimeters)
Mean annual air temperature: 42 to 52 degrees F (6 to 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Clarkslodge soil—50 percent Craneflat soil—25 percent Nevadafalls soil—25 percent

Description of the Clarkslodge Soil

Slope: 0 to 25 percent

Landform: Bench, landslide complex, or mountain slope

Parent material: Colluvium and/or residuum derived from granitoid and

metasedimentary rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subrounded stones and

0 to 10 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 6.8 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material

A—2 to 6 inches; sandy loam

Bt1—6 to 19 inches; cobbly sandy loam Bt2—19 to 34 inches; cobbly sandy loam

Cdt—34 to 60 inches; cobbly loam

Description of the Craneflat Soil

Slope: 15 to 30 percent

Landform: Ephemeral stream, landslide complex, or mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel,

0 to 5 percent subangular cobbles, and 0 to 5 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 1 inch; moderately decomposed plant material

Oa—1 to 2 inches; highly decomposed plant material

A—2 to 4 inches; very stony sandy loam

Bw1—4 to 11 inches; very stony loamy sand

Bw2—11 to 22 inches; very stony loamy coarse sand

Bw3—22 to 30 inches; very stony loamy sand

Bw4—30 to 60 inches; very cobbly loamy coarse sand

Description of the Nevadafalls Soil

Slope: 15 to 45 percent

Landform: Ephemeral stream, landslide complex, or mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A—0 to 6 inches; loamy sand Bw—6 to 17 inches; loamy sand

C1—17 to 31 inches; very cobbly loamy sand C2—31 to 60 inches; very cobbly loamy sand

Use and Management Considerations

- The types of rock in this map unit are intermediate to mafic granitoid with lesser amounts of metasedimentary rock near Hodgdon.
- Mountain slopes in this map unit are mantled by hummocky, deeply weathered
 deposits of ancient landslide debris. The landslides appear to have been of various
 types, including avalanches and structural bedrock failures as well as slump-earth
 flows in cohesive soils.
- This map unit is mapped near the southwestern border of the survey area, in the vicinities of Wawona and Hodgdon.
- The map unit delineations occur near contacts of contrasting types of granitoid bedrock, which generally are situated at different elevations downslope and upslope from each other. The downslope rock types on which this map unit occurs consist of more mafic biotite and hornblende diorite and granodiorite; the neighboring upslope rock masses are dominated by more felsic granitoid, quartz monzonite, and biotite granodiorite. Accordingly, the downslope rock types contain less silica and potassium feldspar and more magnesium, iron, and calcium-rich plagioclase feldspar, which render them more easily weathered and less stable. The upslope rock masses are richer in the resistant minerals quartz (silica) and potassium feldspar and poorer in easily weathered hornblende and plagioclase. These relationships favor the development of more mature soils, including Alfisols and Ultisols, from materials derived from the more weatherable rock and the development of less mature soils, including Entisols and Inceptisols, from products of the more resistant rock. Although the impact of bedrock relationships on soil development is significant, it is neither perfect nor readily apparent because of

complications caused by glaciations and erosion, as well as by differing geologic ages, uplift rates, and exposure durations.

- Bouldery ridges and drainages extend downslope through much of the map unit.
- Flat to gently sloping areas (about 0 to 15 percent slopes) occur dominantly on crests of debris blocks and bench treads.
- Mixed conifer forest covers most (about 80 percent) of the map unit; brush fields are concentrated on the steepest convex positions.
- Mixed conifer-pine forests in areas of this map unit were harvested before the establishment of the national park. Some evidence (such as erosion gullies from skid trails) of logging disturbance remains.

283—Waterwheel-Nevadafalls-Rock outcrop complex, 15 to 45 percent slopes, mountain slopes, landslides, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,130 to 7,220 feet (1,564 to 2,201 meters)

Mean annual precipitation: 37 to 39 inches (940 to 991 millimeters)
Mean annual air temperature: 50 to 50 degrees F (about 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Waterwheel soil—35 percent Nevadafalls soil—30 percent Rock outcrop—21 percent Minor components—14 percent

Description of the Waterwheel Soil

Slope: 15 to 45 percent

Landform: Mountain slope or mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles and

5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.2 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

A1—0 to 1 inch; very gravelly loamy sand A2—1 to 7 inches; cobbly loamy sand Bw—7 to 26 inches; very stony loamy sand C—26 to 60 inches; very stony coarse sand

Description of the Nevadafalls Soil

Slope: 15 to 45 percent

Landform: Bench, landslide, or mountain slope
Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84240, Sierra White Fir Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material

A—2 to 6 inches; sandy loam AB—6 to 11 inches; sandy loam Bw—11 to 21 inches; sandy loam C—21 to 60 inches; loamy sand

Description of Rock Outcrop

Slope: 15 to 45 percent Landform: Mountain slope Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Typic Haploxeralfs and similar soils

Composition: About 14 percent Slope: 15 to 45 percent

Landform: Bench, landslide, or mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Use and Management Considerations

• This map unit is a complex of relatively stable mountain slopes and landslide complexes interspersed with rock outcrop. The landslides dominantly are relatively shallow erosional sections of ancient debris flows and torrents that channel to a common point, leaving an erosional surface that is wedge shaped when viewed from above. These slopes are subject to further attritional erosion. Although local depositions are included, surfaces in this map unit are more erosional and less depositional than those in map unit 282.

285—Waterwheel-Humic Dystroxerepts complex, 15 to 45 percent slopes, mountain slopes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,730 to 7,880 feet (1,442 to 2,403 meters)

Mean annual precipitation: 35 to 47 inches (889 to 1,194 millimeters)
Mean annual air temperature: 47 to 52 degrees F (8 to 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Waterwheel soil—30 percent Humic Dystroxerepts—16 percent Minor components—54 percent

Description of the Waterwheel Soil

Slope: 15 to 45 percent

Landform: Ancient landslide or mountain slope
Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded stones, 0 to 5 percent coarse subangular gravel, 0 to 5 percent subrounded boulders, and 0 to 5 percent subangular cobbles

Soil Survey of Yosemite National Park, California

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.2 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 37500, Montane Chaparral; 84232, White Fir Mixed

Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A1—0 to 4 inches; coarse sandy loam

A2—4 to 8 inches; gravelly coarse sandy loam C1—8 to 16 inches; very cobbly loamy sand

C2—16 to 60 inches; extremely bouldery sandy loam

Description of Humic Dystroxerepts

Slope: 15 to 45 percent

Landform: Ancient landslide, moraine, or mountain slope

Parent material: Colluvium and minor amounts of till from granitoid rock and minor

amounts of metasedamentary rock *Typical vegetation:* None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subangular cobbles, 0 to 5 percent coarse subangular gravel, and 0 to 5 percent subangular stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest; 84240, Sierra White Fir Forest; 84230, Sierra Mixed Coniferous Forest; 85310, Red Fir Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

A1—1 to 6 inches; loamy sand A2—6 to 13 inches; loamy sand

Soil Survey of Yosemite National Park, California

AC—13 to 24 inches; loamy sand

C1-24 to 42 inches; sand

C2—42 to 55 inches; cobbly sand

C3—55 to 60 inches; sand

Minor Components

Humic Dystroxerepts sandy-skeletal, frigid and similar soils

Composition: About 14 percent

Slope: 15 to 45 percent

Landform: Ancient landslide, moraine, or mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest; 84232, White Fir

Mixed Coniferous Forest

Humic Dystrudepts and similar soils

Composition: About 14 percent

Slope: 15 to 45 percent

Landform: Drainageway or mountain slope

Vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typic Dystroxerepts coarse-loamy, frigid and similar soils

Composition: About 14 percent

Slope: 15 to 45 percent

Landform: Moraine or mountain slope

Vegetative classification: 84240, Sierra White Fir Forest

Humic Dystroxerepts coarse-loamy, frigid and similar soils

Composition: About 7 percent Slope: 15 to 45 percent

Landform: Ancient landslide, moraine, or mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest; 84231, Ponderosa

Pine Mixed Coniferous Forest

Clarkslodge and similar soils

Composition: About 3 percent Slope: 15 to 45 percent Landform: Mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Cumulic Humaquepts frigid and similar soils

Composition: About 2 percent

Slope: 0 to 15 percent

Landform: Ephemeral stream or mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Use and Management Considerations

- The types of rock in this map unit are granitoid with minor inclusions (about 5 percent) of metasedimentary rock.
- Ancient landslides occur most notably in map unit delineations near the southwestern border of the survey area.
- The moraines are degraded and indistinct.
- The soils grade into the cryic temperature regime at the high elevations in the map unit and to the mesic temperature regime at the low elevations.
- The slope is greater than 45 percent or less than 15 percent in a few small areas.

286—Nevadafalls-Typic Dystroxerepts-Ultic Palexeralfs-Rock outcrop complex, 0 to 30 percent slopes, mountain slopes, landslides, moraines, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,995 to 6,995 feet (1,828 to 2,133 meters)

Mean annual precipitation: 39 to 41 inches (991 to 1,041 millimeters)
Mean annual air temperature: 49 to 49 degrees F (9 to 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Nevadafalls soil—26 percent Typic Dystroxerepts—25 percent Ultic Palexeralfs—20 percent Rock outcrop—15 percent Minor components—14 percent

Description of the Nevadafalls Soil

Slope: 0 to 30 percent

Landform: Landslide complex or mountain slope Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.2 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Current water table. None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 85300, Upper Montane Fir Forest

Typical profile

A—0 to 8 inches; gravelly loamy sand Bw1—8 to 21 inches; sandy loam Bw2—21 to 28 inches; sandy loam C—28 to 60 inches; loamy sand

Description of Typic Dystroxerepts

Slope: 0 to 30 percent

Landform: Ancient landslide or mountain slope

Soil Survey of Yosemite National Park, California

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material Oa—2 to 3 inches; highly decomposed plant material

A—3 to 16 inches; loamy sand Bw1—16 to 25 inches; loamy sand Bw2—25 to 35 inches; sandy loam

C-35 to 60 inches; loamy sand

Description of Ultic Palexeralfs

Slope: 0 to 30 percent

Landform: Deposits ancient landslide, moraine, or mountain slope

Parent material: Colluvium derived from granitoid rock and/or till derived from

metamorphic rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 5 percent subrounded boulders and

2 to 5 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 7.6 inches (high)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material

A—2 to 9 inches; sandy loam Bw—9 to 14 inches; sandy loam Bt1—14 to 22 inches; loam Bt2—22 to 32 inches; loam Crt—32 to 60 inches; clay

Description of Rock Outcrop

Slope: 0 to 30 percent

Landform: Moraine, mountain slope, or mountainside

Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Badgerpass and similar soils

Composition: About 14 percent

Slope: 0 to 30 percent

Landform: Landslide complex, moraine, or mountain slope

Vegetative classification: 84233, Douglas-fir Mixed Coniferous Forest

Use and Management Considerations

• The morainal deposits do not have distinct geomorphic form.

287—Badgerpass-Waterwheel association, 0 to 15 percent slopes, ridge crests, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 6,035 to 7,770 feet (1,840 to 2,369 meters)

Mean annual precipitation: 37 to 45 inches (940 to 1,143 millimeters)
Mean annual air temperature: 50 to 50 degrees F (about 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Badgerpass soil—55 percent Waterwheel soil—40 percent Minor components—5 percent

Description of the Badgerpass Soil

Slope: 0 to 15 percent Landform: Crests on ridge

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84240, Sierra White Fir Forest

Typical profile

Oi—0 to 2 inches; slightly decomposed plant material Oe—2 to 2 inches; moderately decomposed plant material Oa—2 to 3 inches; highly decomposed plant material

A—3 to 11 inches; loamy sand AC—11 to 25 inches; loamy sand C—25 to 60 inches; cobbly loamy sand

Description of the Waterwheel Soil

Slope: 10 to 15 percent

Landform: Ridge or crests on ridge

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded boulders, 0 to 5 percent subrounded stones, 0 to 5 percent subangular cobbles, and

0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.8 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Soil Survey of Yosemite National Park, California

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material

A—1 to 4 inches; loamy coarse sand Bw1—4 to 11 inches; loamy coarse sand Bw2—11 to 22 inches; loamy coarse sand

C1—22 to 29 inches; very stony loamy coarse sand

C2-29 to 60 inches; very stony coarse sand

Minor Components

Rock outcrop

Composition: About 5 percent Slope: 0 to 15 percent

Landform: Ridge or crests on ridge Vegetative classification: None assigned

288—Rock outcrop-Craneflat-Waterwheel association, 0 to 30 percent slopes, mountain slopes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,075 to 7,605 feet (1,548 to 2,319 meters)

Mean annual precipitation: 37 to 51 inches (940 to 1,295 millimeters)
Mean annual air temperature: 50 to 51 degrees F (10 to 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Rock outcrop—35 percent Craneflat soil—20 percent Waterwheel soil—20 percent Minor components—25 percent

Description of Rock Outcrop

Slope: 0 to 30 percent Landform: Mountainside Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Description of the Craneflat Soil

Slope: 0 to 30 percent

Landform: Moraine, mountain slope, bedrock joints on mountainside, or bedrock

dimples in mountainside

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84240, Sierra White Fir Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 1 inch; moderately decomposed plant material

Oa—1 to 2 inches; highly decomposed plant material

A—2 to 4 inches; very stony sandy loam

Bw1-4 to 11 inches; very stony loamy sand

Bw2—11 to 22 inches; very stony loamy coarse sand

Bw3—22 to 30 inches; very stony loamy sand

Bw4—30 to 60 inches; cobbly loamy coarse sand

Description of the Waterwheel Soil

Slope: 10 to 30 percent

Landform: Drainageway or mountain slope

Parent material: Colluvium and/or alluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel,

0 to 5 percent subrounded boulders, 0 to 5 percent subangular cobbles, and

0 to 5 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.8 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material

A—1 to 4 inches; loamy coarse sand Bw1—4 to 11 inches; loamy coarse sand Bw2—11 to 22 inches; loamy coarse sand

C1—22 to 29 inches; very stony loamy coarse sand

C2-29 to 60 inches; very stony coarse sand

Minor Components

Lithic Xerorthents mesic and similar soils

Composition: About 10 percent

Slope: 0 to 30 percent Landform: Mountain slope

Vegetative classification: None assigned

Dystric Xeropsamments frigid and similar soils

Composition: About 5 percent Slope: 0 to 30 percent Landform: Mountain slope

Vegetative classification: None assigned

Oxyaquic Dystrudepts sandy-skeletal and similar soils

Composition: About 4 percent Slope: 0 to 10 percent

Landform: Bedrock joints and dimples in mountainside

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Oxyaquic Dystrudepts coarse-loamy and similar soils

Composition: About 4 percent

Slope: 0 to 30 percent

Landform: Bedrock joints and dimples in mountainside

Vegetative classification: 86110, Lodgepole Pine Forest; 84230, Sierra Mixed

Coniferous Forest

Histosols frigid and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent

Landform: Lakeshore or marsh

Vegetative classification: None assigned

Water

Composition: About 1 percent

Landform: Lake

Vegetative classification: None assigned

Use and Management Considerations

· Most of this map unit has been glacially scoured.

289—Waterwheel-Craneflat complex, 35 to 70 percent slopes, mountain slopes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,930 to 8,170 feet (1,503 to 2,490 meters)

Mean annual precipitation: 33 to 47 inches (838 to 1,194 millimeters)
Mean annual air temperature: 45 to 50 degrees F (7 to 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Waterwheel soil—50 percent Craneflat soil—30 percent Minor components—20 percent

Description of the Waterwheel Soil

Slope: 35 to 60 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 10 to 20 percent coarse subangular gravel, 2 to 10 percent subangular stones, and 2 to 10 percent subrounded cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest; 84240, Sierra White Fir Forest; 81320, Canyon Live Oak Forest; 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; gravelly slightly decomposed plant material

A1—1 to 6 inches; cobbly loamy coarse sand A2—6 to 15 inches; cobbly loamy coarse sand Bw1—15 to 25 inches; very cobbly loamy sand Bw2—25 to 36 inches; very stony loamy sand C—36 to 60 inches; very stony loamy coarse sand

Description of the Craneflat Soil

Slope: 35 to 70 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded stones and

2 to 10 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.7 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 2 inches; slightly decomposed plant material

Oe—2 to 4 inches; moderately decomposed plant material

Oa—4 to 4 inches; highly decomposed plant material

A1-4 to 12 inches; very stony loamy sand

A2—12 to 23 inches; extremely stony loamy sand Bw—23 to 28 inches; extremely stony loamy sand

C-28 to 60 inches; extremely stony sandy loam

Minor Components

Typic Dystroxerepts loamy-skeletal, frigid and similar soils

Composition: About 10 percent Slope: 35 to 75 percent Landform: Mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Humic Dystroxerepts coarse-loamy, mesic and similar soils

Composition: About 4 percent Slope: 35 to 75 percent Landform: Mountain slope

Vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Xeric Dystrocryepts sandy and similar soils

Composition: About 4 percent Slope: 35 to 75 percent Landform: Mountain slope

Vegetative classification: 84232, White Fir Mixed Coniferous Forest

Rock outcrop

Composition: About 2 percent Slope: 35 to 75 percent Landform: Mountainside

Vegetative classification: None assigned

Use and Management Considerations

- Slope surfaces are colluvial active and are subject to significant sheet erosion.
- This map unit includes areas with a mesic soil temperature regime at the low elevations and areas with a cryic temperature regime at the high elevations.
- Moraines in this map unit do not have definite form.
- Ancient, indistinct landslides (perhaps slump-earth flow) of uncertain origin, type, and extent may occur in this map unit, especially in delineations in the southwest part of the survey area.

290—Humic Dystroxerepts-Tuolumne-Typic Xerorthents-Ultic Haploxeralfs complex, 30 to 70 percent slopes, mountain slopes, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,710 to 6,050 feet (1,132 to 1,846 meters)

Mean annual precipitation: 33 to 41 inches (838 to 1,041 millimeters)
Mean annual air temperature: 49 to 50 degrees F (9 to 10 degrees C)

Frost-free period: 100 to 150 days

Composition

Humic Dystroxerepts—40 percent Tuolumne soil—30 percent Typic Xerorthents—15 percent Ultic Haploxeralfs—15 percent

Description of Humic Dystroxerepts

Slope: 30 to 70 percent

Landform: Ancient landslide, remnant moraine, or mountain slope Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.0 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 71120, Black Oak Woodland; 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi-0 to 0 inches; slightly decomposed plant material

A—0 to 9 inches; gravelly sandy loam AC—9 to 20 inches; very stony sandy loam C—20 to 60 inches; very stony sandy loam

Description of the Tuolumne Soil

Slope: 30 to 70 percent

Landform: Remnant moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded cobbles, 0 to 4 percent subrounded boulders, 2 to 10 percent coarse subangular gravel, and 2 to 10 percent subangular stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.7 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Typical profile

A—0 to 3 inches; very cobbly loamy coarse sand

Bw1—3 to 7 inches; very cobbly loamy coarse sand

Bw2—7 to 12 inches; very cobbly loamy coarse sand

Bw3—12 to 24 inches; very cobbly loamy sand

Bw4—24 to 39 inches; extremely cobbly loamy sand

C1-39 to 46 inches; extremely stony loamy coarse sand

C2-46 to 60 inches; extremely stony loamy coarse sand

Description of Typic Xerorthents

Slope: 30 to 70 percent

Landform: Remnant moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.3 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Typical profile

A-0 to 4 inches; sandy loam

AC—4 to 15 inches; parastony sandy loam C—15 to 33 inches; extremely stony sandy loam Cr—33 to 60 inches; soft weathered bedrock

Description of Ultic Haploxeralfs

Slope: 30 to 70 percent

Landform: Ancient landslide, remnant moraine, or mountain slope Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles, 2 to 80 percent subrounded boulders, and 2 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 8.4 inches (high)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84210, Westside Ponderosa Pine Forest

Typical profile

Oi—0 to 1 inch; bouldery slightly decomposed plant material

Oe—1 to 2 inches; bouldery slightly decomposed plant material

Oa—2 to 2 inches; bouldery slightly decomposed plant material

A1—2 to 6 inches; bouldery sandy loam

A2-6 to 12 inches; bouldery sandy loam

Bt1—12 to 30 inches; bouldery sandy clay loam

Bt2—30 to 41 inches; sandy clay loam

Ct—41 to 60 inches; sandy clay loam

Use and Management Considerations

- The drainage patterns are dominantly linear to divergent.
- Moraines in this map unit have little or no distinctive form because of long-term geologic erosion.

291—Ultic Haploxeralfs-Typic Dystroxerepts complex, 5 to 25 percent slopes, mountain footslopes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,225 to 6,900 feet (1,593 to 2,104 meters)

Mean annual precipitation: 35 to 45 inches (889 to 1,143 millimeters)
Mean annual air temperature: 49 to 49 degrees F (about 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Ultic Haploxeralfs—41 percent Typic Dystroxerepts—31 percent Minor components—28 percent

Description of Ultic Haploxeralfs

Slope: 5 to 25 percent

Landform: Ancient landslide, mountain slope, or stream terrace

Parent material: Colluvium with minor alluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.5 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest; 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material

Oa—2 to 3 inches; highly decomposed plant material

A1—3 to 5 inches; coarse sandy loam A2—5 to 12 inches; coarse sandy loam BA—12 to 19 inches; coarse sandy loam

Bt1—19 to 22 inches; sandy loam Bt2—22 to 41 inches; sandy loam Bt3—41 to 57 inches; sandy loam Bt4—57 to 61 inches; sandy loam

Description of Typic Dystroxerepts

Slope: 5 to 25 percent Landform: Mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel and 0 to 5 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material

A—2 to 7 inches; sandy loam

AB—7 to 16 inches; cobbly sandy loam Bw1—16 to 29 inches; cobbly sandy loam Bw2—29 to 39 inches; cobbly sandy loam C—39 to 60 inches; cobbly sandy loam

Minor Components

Clarkslodge and similar soils

Composition: About 14 percent

Slope: 5 to 25 percent

Landform: Ancient landslide or mountain slope

Vegetative classification: 84232, White Fir Mixed Coniferous Forest

Dystric Xeropsamments frigid and similar soils

Composition: About 14 percent

Slope: 5 to 25 percent Landform: Mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Use and Management Considerations

- Mountain footslopes extend upslope into lower backslopes and downslope into toeslopes.
- The majority of surfaces in this map unit are depositional.
- Ancient landslides occur in the southwestern portion of the survey area.
- Small (about less than 2 hectares) meadows make up about 1 percent of the map unit.
- Minor amounts of intermittent till occur under colluvial deposits.

292—Humic Dystroxerepts-Typic Haploxerults complex, 5 to 35 percent slopes, mountain footslopes, landslides, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,840 to 5,790 feet (1,171 to 1,765 meters)

Mean annual precipitation: 33 to 45 inches (838 to 1,143 millimeters)
Mean annual air temperature: 51 to 52 degrees F (10 to 11 degrees C)

Frost-free period: 100 to 150 days

Composition

Humic Dystroxerepts—35 percent Typic Haploxerults—30 percent Minor components—35 percent

Description of Humic Dystroxerepts

Slope: 5 to 35 percent

Landform: Ancient landslide or mountain slope
Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest; 84233, Douglas-fir Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 1 inch; moderately decomposed plant material

A1—1 to 3 inches; gravelly loamy sand

A2—3 to 4 inches; loamy sand Bw1—4 to 7 inches; loamy sand

Bw2—7 to 11 inches; gravelly loamy sand Bw3—11 to 19 inches; cobbly loamy sand

Bw4—19 to 31 inches; extremely stony loamy sand C—31 to 60 inches; extremely stony loamy sand

Description of Typic Haploxerults

Slope: 5 to 35 percent

Landform: Ancient deposits landslide or mountain slope Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel, 0 to 5 percent subangular cobbles, and 0 to 5 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 8.4 inches (high)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84210, Westside Ponderosa Pine Forest; 84232, White

Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 2 inches; slightly decomposed plant material

Oe—2 to 4 inches; moderately decomposed plant material

A1—4 to 7 inches; gravelly coarse sandy loam

A2—7 to 9 inches; cobbly sandy loam Bt1—9 to 15 inches; sandy clay loam Bt2—15 to 22 inches; cobbly clay loam

Bt3-22 to 60 inches; stony clay loam

Minor Components

Humic Haploxerepts sandy-skeletal, mesic and similar soils

Composition: About 10 percent

Slope: 5 to 35 percent Landform: Mountain slope

Vegetative classification: 84233, Douglas-fir Mixed Coniferous Forest

Typic Xerorthents sandy-skeletal, mesic and similar soils

Composition: About 10 percent

Slope: 5 to 35 percent

Landform: Drainageway or mountain slope

Vegetative classification: 84233, Douglas-fir Mixed Coniferous Forest

Ultic Haploxeralfs coarse-loamy, mesic and similar soils

Composition: About 10 percent

Slope: 5 to 35 percent

Landform: Ancient deposits landslide or mountain slope

Vegetative classification: 84250, Big Tree Forest

Dystric Xeropsamments mesic and similar soils

Composition: About 5 percent Slope: 5 to 35 percent Landform: Mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Use and Management Considerations

- The types of rock in this map unit are granitoid in the more southerly delineations and metasedimentary in the more northerly delineations.
- See map unit 282 for information regarding landslides.
- Mountain footslopes extend upslope into lower backslopes and downslope into toeslopes.
- In delineations generally south of the South Fork of the Tuolumne River, where
 granitoid rock dominates, numerous parallel ephemeral drainageways dissect
 ancient landslide deposits and footslopes into a complex, closely repeating system
 of concave channels and convex interfluves. North (as well as a bit south) of the
 South Fork of the Tuolumne River, where metasedimentary rock dominates,
 mountain slopes and ancient landslide deposits are smoother overall.
- This map unit includes short reaches of slopes that are steeper than 35 percent.
- Ultisols favor lower elevations, lower slope positions, and flatter slopes. Alfisols
 typically are upslope from Ultisols. Inceptisols and Entisols favor higher and steeper
 slope positions and drainageways.
- Minor amounts of volcanic ash occur intermittently in the Inceptisols and Entisols throughout much of the map unit.

293—Xeric Dystrocryepts-Vitrandic Dystrocryepts association, 0 to 25 percent slopes, mountain slopes, summits, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park (fig. 20)

Major land resource area: Sierra Nevada Mountains (22A)

Figure 20.—An area of Xeric Dystrocryepts-Vitrandic Dystrocryepts association, 0 to 25 percent slopes, mountain slopes, summits, cryic, west of Badger Pass ski area off the Glacier Point Road.

Landscape: Mountains

Elevation: 6,065 to 8,960 feet (1,850 to 2,732 meters)

Mean annual precipitation: 37 to 51 inches (940 to 1,295 millimeters)
Mean annual air temperature: 50 to 50 degrees F (about 10 degrees C)

Frost-free period: 15 to 45 days

Composition

Xeric Dystrocryepts—70 percent

Vitrandic Dystrocryepts—18 percent Minor components—12 percent

Description of Xeric Dystrocryepts

Slope: 0 to 25 percent

Landform: Remnant moraine or mountain slope

Parent material: Colluvium and/or residuum and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: 85310, Red Fir Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A1—0 to 4 inches; loamy fine sand A2—4 to 20 inches; loamy fine sand A3—20 to 34 inches; loamy sand C1—34 to 47 inches; stony loamy sand C2—47 to 60 inches; stony loamy sand

Description of Vitrandic Dystrocryepts

Slope: 9 to 25 percent

Landform: Mountain slope or mountainside

Parent material: Colluvium and/or residuum weathered from granitoid rock and

volcanic ash

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.5 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e
Other vegetative classification: 84240, Sierra White Fir Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A1—0 to 2 inches; sandy loam A2—2 to 5 inches; sandy loam Bw1—5 to 18 inches; sandy loam Bw2—18 to 25 inches; sandy loam

C1—25 to 36 inches; very cobbly sandy loam C2—36 to 60 inches; cobbly sandy loam

Minor Components

Humic Dystroxerepts sandy, frigid and similar soils

Composition: About 12 percent

Slope: 0 to 25 percent

Landform: Moraine or mountain slope

Vegetative classification: 84240, Sierra White Fir Forest

Use and Management Considerations

- The types of rock in this map unit are granitoid with metavolcanic rock on Rancheria Mountain and, in a few small delineations, easterly to the crests above Rogers Canyon.
- Soils grade into the frigid temperature regime at the low elevations in the map unit.
- Slopes and summits are capped intermittently by till of remnant moraines.
- Small (less than 2 hectares) meadows occupy about 2 percent of the map unit.

294—Waterwheel-Typic Dystroxerepts complex, 30 to 70 percent slopes, landslides, mountain slopes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park (fig. 21)

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,830 to 6,940 feet (1,169 to 2,116 meters)

Mean annual precipitation: 35 to 43 inches (889 to 1,092 millimeters)
Mean annual air temperature: 49 to 51 degrees F (9 to 11 degrees C)

Frost-free period: 100 to 150 days

Composition

Waterwheel soil—65 percent Typic Dystroxerepts—35 percent

Description of the Waterwheel Soil

Slope: 30 to 60 percent

Landform: Ancient landslide or mountain slope
Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Figure 21.—An area of Waterwheel-Typic Dystroxerepts complex, 30 to 70 percent slopes, landslides, mountain slopes, frigid, along the Wawona-Mariposa Grove Trail.

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded stones, 0 to 5 percent subrounded boulders, 0 to 5 percent subangular cobbles, and 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest; 84232, White

Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material Oa—1 to 2 inches; highly decomposed plant material

A1—2 to 6 inches; loamy coarse sand

A2—6 to 11 inches; stony loamy coarse sand C1—11 to 26 inches; extremely stony loamy sand C2—26 to 60 inches; extremely stony loamy sand

Description of Typic Dystroxerepts

Slope: 30 to 70 percent

Landform: Ephemeral stream, ancient deposits landslide, or mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded boulders, 0 to 5 percent subrounded stones, 0 to 5 percent subangular cobbles, and

0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.7 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; stony slightly decomposed plant material

A1—1 to 5 inches; coarse sandy loam A2—5 to 12 inches; coarse sandy loam

Bw—12 to 20 inches; cobbly coarse sandy loam C1—20 to 28 inches; very stony coarse sandy loam C2—28 to 49 inches; cobbly coarse sandy loam Cr—49 to 60 inches; soft weathered bedrock

Use and Management Considerations

- The types of rock in this map unit are mainly granitoid; metasedimentary rock occurs between Hodgdon and Crane Flat.
- Ancient landslides dominantly occur as concave erosional scarps and upper backslopes and as smaller areas with somewhat convex depositions below.
- Mountain slopes and landslide scarps and backslopes commonly are dissected by a roughly covering pattern of concave channels and convex interfluves.
- The soil temperature regime grades to mesic at the low elevations in the map unit (especially on southerly aspects).

295—Craneflat-Typic Dystroxerepts complex, 15 to 45 percent slopes, landslides, mountain slopes, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park (fig. 22)

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,645 to 6,935 feet (1,416 to 2,114 meters)

Mean annual precipitation: 35 to 43 inches (889 to 1,092 millimeters)
Mean annual air temperature: 51 to 51 degrees F (about 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Craneflat soil—25 percent
Typic Dystroxerepts—25 percent
Minor components—50 percent

Description of the Craneflat Soil

Slope: 15 to 45 percent

Landform: Landslide or mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent coarse subangular gravel, 2 to 10 percent subangular cobbles, and 2 to 10 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Jurrent water table. None noted

Figure 22.—An area of Craneflat-Typic Dystroxerepts complex, 15 to 45 percent slopes, landslides, mountain slopes, frigid, near Glacier Point Road.

Natural drainage class: Somewhat excessively drained Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e
Other vegetative classification: 84230, Sierra Mixed Coniferous Forest; 84240, Sierra White Fir Forest; 84231, Ponderosa Pine Mixed Coniferous Forest

Typical profile

A—0 to 5 inches; gravelly coarse sandy loam Bw—5 to 19 inches; stony coarse sandy loam C—19 to 60 inches; very stony coarse sandy loam

Description of Typic Dystroxerepts

Slope: 15 to 45 percent

Landform: Lower landslide or mountain slope

Parent material: Colluvium and minor residuum weathered from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel, 0 to 5 percent subangular cobbles, and 0 to 5 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

A—1 to 9 inches; sandy loam

Bw1—9 to 18 inches; cobbly sandy loam Bw2—18 to 31 inches; cobbly sandy loam

C-31 to 60 inches; sandy loam

Minor Components

Badgerpass and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Landslide or mountain slope

Vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Nevadafalls and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Landslide or mountain slope

Vegetative classification: 84240, Sierra White Fir Forest

Ultic Haploxeralfs fine-loamy, frigid and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Landslide

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Vitrandic Dystroxerepts frigid and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Landslide or mountain slope

Vegetative classification: 84240, Sierra White Fir Forest

Humic Dystroxerepts sandy, mesic and similar soils

Composition: About 8 percent Slope: 15 to 45 percent

Landform: Landslide or mountain slope Vegetative classification: None assigned

Rock outcrop

Composition: About 2 percent Slope: 15 to 45 percent

Landform: Landslide or mountain slope Vegetative classification: None assigned

Use and Management Considerations

- See map unit 282 for information regarding landslides.
- Ancient landslides are overall concave erosional backslopes with depositions below.
 Compared with slopes in map unit 294, which are steeper and more erosional, slopes in this map unit are less steep and more depositional.
- Map unit 295 often lies upslope from map unit 292.
- The soil temperature regime grades to mesic at the low elevations in the map unit.

296—Ultic Palexeralfs-Humic Dystroxerepts complex, 10 to 35 percent slopes, mountain slopes, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,585 to 5,455 feet (1,094 to 1,663 meters)

Mean annual precipitation: 31 to 45 inches (787 to 1,143 millimeters)
Mean annual air temperature: 53 to 53 degrees F (11 to 12 degrees C)

Frost-free period: 100 to 150 days

Composition

Ultic Palexeralfs—20 percent Humic Dystroxerepts—15 percent Minor components—65 percent

Description of Ultic Palexeralfs

Slope: 10 to 35 percent

Landform: Ancient landslide or mountain slope

Parent material: Colluvim and/or residuum and/or till derived from metamorphic rock

and/or granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 10.0 inches (high)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 4e

Other vegetative classification: 84210, Westside Ponderosa Pine Forest; 84232, White

Fir Mixed Coniferous Forest; 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 2 inches; slightly decomposed plant material

Oe—2 to 3 inches; moderately decomposed plant material

A1—3 to 6 inches; loam A2—6 to 12 inches; loam Bt1—12 to 23 inches; clay loam Bt2—23 to 32 inches; silty clay loam

CBt-32 to 41 inches; silty clay loam

Ct—41 to 60 inches; clay loam

Description of Humic Dystroxerepts

Slope: 10 to 35 percent

Landform: Ancient landslide, moraine, or mountain slope

Parent material: Colluvium with minor till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.5 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 4e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest; 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi-0 to 1 inch; slightly decomposed plant material

Oe—1 to 3 inches; moderately decomposed plant material

A—3 to 6 inches; sandy loam AB—6 to 17 inches; sandy loam Bw1—17 to 22 inches; sandy loam Bw2—22 to 28 inches; sandy loam

C1—28 to 37 inches; paracobbly fine sandy loam

C2—37 to 48 inches; sandy loam

C3—48 to 70 inches; loamy coarse sand C4—70 to 86 inches; loamy sand C5—86 to 106 inches; loamy fine sand

Minor Components

Dystric Xerorthents sandy-skeletal, mesic and similar soils

Composition: About 10 percent Slope: 10 to 35 percent

Landform: Mountain slope

Vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Humic Dystroxerepts loamy-skeletal, mesic and similar soils

Composition: About 10 percent

Slope: 10 to 35 percent

Landform: Ancient landslide, moraine, or mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest; 84231, Ponderosa

Pine Mixed Coniferous Forest

Ultic Haploxeralfs loamy-skeletal, mesic and similar soils

Composition: About 10 percent

Slope: 10 to 35 percent

Landform: Ancient landslide or mountain slope

Vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Ultic Palexeralfs coarse-loamy, mesic and similar soils

Composition: About 10 percent

Slope: 10 to 35 percent

Landform: Ancient landslide or mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Vitrandic Haploxerepts and similar soils

Composition: About 10 percent

Slope: 10 to 35 percent

Landform: Ancient landslide or mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Dystric Xeropsamments mesic and similar soils

Composition: About 5 percent Slope: 10 to 35 percent Landform: Mountain slope

Vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Rock outcrop

Composition: About 5 percent Slope: 10 to 35 percent

Landform: Ancient landslide or mountain slope Vegetative classification: None assigned

Typic Palexerults and similar soils

Composition: About 5 percent Slope: 10 to 35 percent

Landform: Ancient landslide or mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Use and Management Considerations

- Mountain slopes comprise mid to upper backslopes, footslopes, and toeslopes.
- The glacial deposits have little or no morainal form.
- Compared to map unit 297, slopes in this map unit tend to be more heavily forested.

297—Typic Xerorthents-Rock outcrop-Typic Xeropsamments complex, 15 to 45 percent slopes, mountain slopes, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,935 to 6,255 feet (1,200 to 1,908 meters)

Mean annual precipitation: 33 to 43 inches (838 to 1,092 millimeters)
Mean annual air temperature: 51 to 51 degrees F (10 to 11 degrees C)

Frost-free period: 100 to 150 days

Composition

Typic Xerorthents—30 percent Rock outcrop—25 percent Typic Xeropsamments—25 percent Minor components—20 percent

Description of Typic Xerorthents

Slope: 15 to 45 percent Landform: Mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.5 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest; 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material Oe—1 to 1 inch; moderately decomposed plant material

A1—1 to 3 inches; loamy sand A2—3 to 6 inches; loamy sand

Bw1—6 to 9 inches; cobbly loamy sand Bw2—9 to 16 inches; gravelly loamy sand Bw3—16 to 28 inches; cobbly loamy sand Bw4—28 to 60 inches; very stony loamy sand

Description of Rock Outcrop

Slope: 15 to 45 percent
Landform: Mountain slope
Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Description of Typic Xeropsamments

Slope: 15 to 45 percent

Landform: Mountain slope or narrow mountain valley

Parent material: Alluvium and/or colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.7 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material Oa—1 to 1 inch; highly decomposed plant material

A1—1 to 3 inches; loamy sand A2—3 to 7 inches; loamy sand Bw1—7 to 12 inches; loamy sand Bw2—12 to 17 inches; loamy sand

C1—17 to 21 inches; sand

C2—21 to 30 inches; paragravelly sand C3—30 to 38 inches; gravelly sand

Cr—38 to 60 inches; soft weathered bedrock

Minor Components

Humic Dystroxerepts sandy-skeletal, mesic and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Ancient landslide or mountain slope Vegetative classification: None assigned

Lithic Xerorthents mesic and similar soils

Composition: About 10 percent Slope: 15 to 35 percent Landform: Mountain slope

Vegetative classification: None assigned

Use and Management Considerations

The soil temperature regime grades to frigid at the high elevations in the map unit.

298—Tuolumne-Typic Dystroxerepts complex, 30 to 65 percent slopes, mountain slopes, landslides, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,355 to 5,680 feet (1,023 to 1,732 meters)

Mean annual precipitation: 33 to 41 inches (838 to 1,041 millimeters)
Mean annual air temperature: 51 to 52 degrees F (about 11 degrees C)

Frost-free period: 100 to 150 days

Composition

Tuolumne soil—41 percent
Typic Dystroxerepts—31 percent
Minor components—28 percent

Description of the Tuolumne Soil

Slope: 30 to 65 percent

Landform: Ephemeral stream, ancient landslide, or mountain slope Parent material: Colluvium with minor alluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded stones, 0 to 5 percent subangular cobbles, 0 to 5 percent subrounded boulders, and 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest; 84232, White

Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material Oa—1 to 2 inches; highly decomposed plant material

A1-2 to 6 inches; loamy coarse sand

A2—6 to 11 inches; stony loamy coarse sand C1—11 to 26 inches; extremely stony loamy sand C2—26 to 60 inches; extremely stony loamy sand

Description of Typic Dystroxerepts

Slope: 30 to 65 percent

Landform: Ephemeral stream, ancient deposits landslide, or mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subangular cobbles, 0 to 5 percent subrounded stones, 0 to 5 percent subrounded boulders, and 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.7 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; stony slightly decomposed plant material

A1—1 to 5 inches; coarse sandy loam A2—5 to 12 inches; coarse sandy loam

Bw—12 to 20 inches; cobbly coarse sandy loam C1—20 to 28 inches; very stony coarse sandy loam C2—28 to 49 inches; cobbly coarse sandy loam Cr—49 to 60 inches; soft weathered bedrock

Minor Components

Humults fine-loamy, mesic and similar soils

Composition: About 14 percent Slope: 30 to 65 percent

Landform: Ancient deposits landslide or lower mountain slope Vegetative classification: 84232, White Fir Mixed Coniferous Forest

Ultic Haploxeralfs fine-loamy, mesic and similar soils

Composition: About 14 percent

Slope: 30 to 65 percent

Landform: Ancient deposits landslide or lower backslopes on mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Use and Management Considerations

- The types of rock in this map unit are mainly granitoid; metasedimentary rock occurs in the northwestern delineations.
- This map unit is similar to other map units containing significant ancient landslides. It
 occurs most commonly near the contacts of contrasting types of bedrock along the
 southwestern edge of the survey area. See map unit 282 for more information.
- This map unit has landscapes that are similar to those in map unit 294, which is in the frigid soil temperature regime. Ancient landslides dominantly are concave erosional scarps and upper backslopes of debris avalanches and debris torrents, with a few poorly defined slumps. Smaller areas of somewhat convex, more gently sloping depositions occur downslope from the erosional surfaces.
- Mountain slopes and landslide scarps and backslopes commonly are dissected by a roughly converging pattern of concave channels and convex interfluves.

299—Humic Dystroxerepts-Ultic Haploxeralfs complex, 15 to 35 percent slopes, mountain slopes, moraines, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,055 to 5,890 feet (1,236 to 1,796 meters)

Mean annual precipitation: 37 to 45 inches (940 to 1,143 millimeters)
Mean annual air temperature: 53 to 53 degrees F (about 12 degrees C)

Frost-free period: 100 to 150 days

Composition

Humic Dystroxerepts—46 percent

Ultic Haploxeralfs—35 percent Minor components—19 percent

Description of Humic Dystroxerepts

Slope: 15 to 35 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned Selected properties and qualities

Surface area covered by coarse fragments: 10 to 35 percent subrounded stones, 0 to 5 percent subangular cobbles, and 0 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.8 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7s

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; very stony slightly decomposed plant material

Oe—1 to 1 inch; very stony moderately decomposed plant material

Oa—1 to 2 inches; very stony highly decomposed plant material

A—2 to 4 inches; very stony coarse sand

Bw1—4 to 11 inches; very stony coarse sand

Bw2—11 to 22 inches; very stony coarse sand

Bw3—22 to 30 inches; very stony loamy sand

Bw4—30 to 60 inches; cobbly coarse sand

Description of Ultic Haploxeralfs

Slope: 15 to 35 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or residuum and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subangular cobbles, 0 to 5 percent coarse subangular gravel, and 0 to 5 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material

A—1 to 8 inches; stony sandy loam Bw—8 to 17 inches; sandy loam

Bt1—17 to 28 inches; gravelly sandy loam

Bt2—28 to 47 inches; sandy loam C—47 to 60 inches; sandy loam

Minor Components

Typic Dystroxerepts coarse-loamy, mesic and similar soils

Composition: About 14 percent Slope: 15 to 35 percent Landform: Mountain slope

Vegetative classification: None assigned

Rock outcrop

Composition: About 5 percent Slope: 15 to 35 percent

Landform: Avalanche track or mountain slope Vegetative classification: None assigned

Use and Management Considerations

• Morainal forms vary from distinct lateral moraines to indistinct drift deposits.

300—Typic Dystroxerepts-Ultic Haploxeralfs complex, 0 to 15 percent slopes, mountain slopes, moraines, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park (figs. 23 and 24)

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,985 to 5,655 feet (1,215 to 1,724 meters)

Mean annual precipitation: 35 to 41 inches (889 to 1,041 millimeters)
Mean annual air temperature: 49 to 51 degrees F (9 to 11 degrees C)

Frost-free period: 100 to 150 days

Composition

Typic Dystroxerepts—35 percent Ultic Haploxeralfs—25 percent Minor components—40 percent

Description of Typic Dystroxerepts

Slope: 0 to 15 percent

Figure 23.—Fire is used to reduce understory brush and downed trees in areas of Typic Dystroxerepts-Ultic Haploxeralfs complex, 0 to 15 percent slopes, mountain slopes, moraines, mesic, near Wawona.

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.6 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Figure 24.—An area of Typic Dystroxerepts-Ultic Haploxeralfs complex, 0 to 15 percent slopes, mountain slopes, moraines, mesic, that has not had recent fire, near the junction of the Wawona Trail.

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84210, Westside Ponderosa Pine Forest; 84231,

Ponderosa Pine Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material Oe—1 to 2 inches; slightly decomposed plant material

A—2 to 2 inches; sandy loam

Bw—2 to 5 inches; gravelly sandy loam

Bt1—5 to 9 inches; sandy loam

Bt2—9 to 15 inches; gravelly sandy loam

Bt3—15 to 20 inches; sandy loam

Cr—20 to 30 inches; soft weathered bedrock

Description of Ultic Haploxeralfs

Slope: 0 to 15 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 6.5 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 4e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material

Oa—2 to 2 inches; highly decomposed plant material

A—2 to 10 inches; cobbly sandy loam Bw—10 to 19 inches; cobbly sandy loam

Bt—19 to 60 inches; cobbly sandy clay loam

Minor Components

Humic Dystroxerepts loamy-skeletal, mesic and similar soils

Composition: About 14 percent

Slope: 0 to 15 percent

Landform: Moraine or mountain slope

Vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Ultic Palexeralfs coarse-loamy, mesic and similar soils

Composition: About 14 percent

Slope: 0 to 15 percent

Landform: Moraine or mountain slope

Vegetative classification: 84210, Westside Ponderosa Pine Forest

Humults fine-loamy, mesic and similar soils

Composition: About 11 percent

Slope: 0 to 15 percent

Landform: Moraine or mountain slope

Vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Histosols mesic and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent Landform: Marsh

Vegetative classification: None assigned

Use and Management Considerations

 Moraines dominantly consist of ancient till (pre-Tahoe), which commonly appears compacted (with increased density and penetration resistance) at a depth of about 30 to 100 centimeters.

301—Vitrandic Haploxerolls, coarse-loamy, 0 to 2 percent slopes, somewhat poorly drained, mesic

Settina

General location: El Capitan and Sentinel Meadows in Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,950 to 3,960 feet (1,205 to 1,207 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Vitrandic Haploxerolls—90 percent Minor components—10 percent

Description of Vitrandic Haploxerolls

Slope: 0 to 2 percent

Landform: Mountain valley or stable low stream terrace Parent material: Alluvium derived from granitoid rock

Typical vegetation: Main tree species—ponderosa pine, incense cedar, and black oak

Selected properties and qualities

General features: This component is in very subtle, higher geomorphic positions that are just above the flood plain.

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 7.8 inches (high)

Selected hydrologic properties

Present annual flooding: Rare Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Somewhat poorly drained

Hydrologic soil group: C

California land use interpretive groups

Land capability classification (nonirrigated): 4w Other vegetative classification: None assigned

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

A1—1 to 4 inches; loam A2—4 to 7 inches: loam

AB—7 to 11 inches; fine sandy loam Bw—11 to 19 inches; fine sandy loam C1—19 to 34 inches; sandy loam C2—34 to 57 inches; fine sandy loam C3—57 to 63 inches; fine sandy loam C4—63 to 69 inches; coarse sand

Minor Components

Sentinel loam and similar soils

Composition: About 5 percent

Slope: 0 to 2 percent

Landform: Slightly higher positions on lake terrace or mountain valley

Vegetative classification: None assigned

Leidig fine sandy loam and similar soils

Composition: About 3 percent

Slope: 0 to 2 percent

Landform: Slightly lower positions on high flood plain or mountain valley

Vegetative classification: None assigned

Unnamed soils with sandy subsoils that occur randomly and similar soils

Composition: About 2 percent

Slope: 0 to 2 percent

Landform: Mountain valley or stream terrace Vegetative classification: None assigned

Use and Management Considerations

- The high water table is a management concern.
- Flooding and deposition are management concerns.
- Soil disturbance and the subsequent loss of the organic surface layer are management concerns.

302—Typic Haploxerults-Ultic Haploxeralfs complex, 0 to 30 percent slopes, mountain slopes, hummocky, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,155 to 5,465 feet (1,267 to 1,667 meters)

Mean annual precipitation: 33 to 43 inches (838 to 1,092 millimeters)
Mean annual air temperature: 50 to 51 degrees F (10 to 11 degrees C)

Frost-free period: 100 to 150 days

Composition

Typic Haploxerults—45 percent Ultic Haploxeralfs—41 percent Minor components—14 percent

Description of Typic Haploxerults

Slope: 0 to 30 percent

Landform: Ancient landslide complex or mountain slope Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 9.6 inches (high)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 2 inches; slightly decomposed plant material Oe—2 to 2 inches; moderately decomposed plant material Oa—2 to 3 inches; highly decomposed plant material

A—3 to 5 inches; loam
AB—5 to 12 inches; loam
Bt1—12 to 22 inches; clay loam
Bt2—22 to 60 inches; sandy clay loam

Description of Ultic Haploxeralfs

Slope: 0 to 30 percent

Landform: Landslide complex or mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 6.5 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

Oe—1 to 2 inches; moderately decomposed plant material

Oa—2 to 2 inches; highly decomposed plant material

A—2 to 10 inches; cobbly sandy loam
Bw—10 to 19 inches; cobbly sandy loam
Bt—19 to 60 inches; cobbly sandy clay loam

Minor Components

Happyisles and similar soils

Composition: About 14 percent

Slope: 0 to 9 percent

Landform: Ephemeral stream or mountain slope

Vegetative classification: None assigned

Use and Management Considerations

- Mountain slopes in this map unit are mantled by hummocky, deeply weathered deposits of ancient landslide debris.
- See map unit 282, which has soils in the frigid soil temperature regime, for more information.

303—Rock outcrop-Dystric Xeropsamments-Humic Dystroxerepts-Tuolumne complex, 30 to 65 percent slopes, mountain slopes, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,525 to 6,005 feet (1,075 to 1,831 meters)

Mean annual precipitation: 33 to 45 inches (838 to 1,143 millimeters)

Mean annual air temperature: 50 to 51 degrees F (about 10 degrees C)

Frost-free period: 100 to 150 days

Composition

Rock outcrop—30 percent Dystric Xeropsamments—20 percent Humic Dystroxerepts—20 percent Tuolumne soil—20 percent Minor components—10 percent

Description of Rock Outcrop

Slope: 30 to 65 percent Landform: Mountain slope Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Dystric Xeropsamments

Slope: 30 to 65 percent

Landform: Mountain slope, bedrock joints on mountainside, or benches on

mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 15 percent subrounded stones, 0 to 15 percent subrounded boulders, 2 to 10 percent coarse subangular gravel, and 2 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.1 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84210, Westside Ponderosa Pine Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material

A1—1 to 3 inches; gravelly loamy sand

A2—3 to 5 inches; loamy sand CA—5 to 14 inches; loamy sand C1—14 to 28 inches; loamy sand C2—28 to 37 inches; cobbly loamy sand Cr—37 to 60 inches; soft weathered bedrock

Description of Humic Dystroxerepts

Slope: 30 to 65 percent

Landform: Remnant moraine, mountain slope, or bedrock joints and benches on

mountainside

Parent material: Colluvium with minor till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles, 2 to 10 percent coarse subangular gravel, and 5 to 15 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.5 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 81320, Canyon Live Oak Forest; 84231, Ponderosa

Pine Mixed Coniferous Forest

Typical profile

Oe—0 to 1 inch; stony slightly decomposed plant material

A1-1 to 2 inches; cobbly loamy sand

A2-2 to 7 inches; very cobbly loamy sand

C1—7 to 13 inches; very cobbly loamy sand

C2—13 to 33 inches; extremely stony loamy sand

C3—33 to 60 inches; extremely stony loamy sand

Description of the Tuolumne Soil

Slope: 30 to 65 percent

Landform: Avalanche chute, ephemeral stream, mountain slope, or benches on

mountainside

Parent material: Colluvium with minor alluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subrounded boulders,

5 to 15 percent subrounded stones, 2 to 10 percent subangular cobbles, and 2 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.1 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84210, Westside Ponderosa Pine Forest; 81500,

Mixed, North Slope Forest

Typical profile

Oi—0 to 1 inch; bouldery slightly decomposed plant material

A—1 to 9 inches; very cobbly coarse sandy loam Bw—9 to 21 inches; very cobbly loamy coarse sand C1—21 to 29 inches; very stony loamy coarse sand C2—29 to 44 inches; very cobbly loamy coarse sand

C3—44 to 60 inches; very cobbly loamy coarse sand

Minor Components

Dystric Xerorthents and similar soils

Composition: About 5 percent Slope: 30 to 65 percent

Landform: Avalanche chute, ephemeral stream, mountain slope, or benches on

mountainside

Vegetative classification: 81500, Mixed, North Slope Forest

Ultic Palexeralfs fine-loamy, mesic and similar soils

Composition: About 5 percent Slope: 30 to 65 percent

Landform: Remnant moraine or mountain slope

Vegetative classification: 84210, Westside Ponderosa Pine Forest

304—Clarkslodge-Rock outcrop complex, 0 to 30 percent slopes, mountain slopes, metavolcanic, frigid/mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,885 to 6,755 feet (1,489 to 2,060 meters)

Mean annual precipitation: 35 to 45 inches (889 to 1,143 millimeters)
Mean annual air temperature: 49 to 50 degrees F (about 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Clarkslodge soil—60 percent Rock outcrop—15 percent Minor components—25 percent

Description of the Clarkslodge Soil

Slope: 0 to 30 percent

Landform: Remnant moraine or mountain slope

Parent material: Residuum and colluvium derived from granitoid and metamorphic rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.7 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84250, Big Tree Forest; 84230, Sierra Mixed Coniferous

Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material Oa—1 to 1 inch; highly decomposed plant material

A—1 to 3 inches; coarse sandy loam
Bw—3 to 6 inches; coarse sandy loam
Bt1—6 to 12 inches; coarse sandy loam
Bt2—12 to 27 inches; coarse sandy loam
Bt3—27 to 35 inches; gravelly sandy loam

Ct—35 to 60 inches; gravelly sandy loam

Description of Rock Outcrop

Slope: 0 to 30 percent Landform: Mountainside

Parent material: Metamorphic rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 12 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Humults coarse-loamy, frigid and similar soils

Composition: About 14 percent

Slope: 0 to 30 percent

Landform: Remnant moraine or mountain slope Vegetative classification: 84250, Big Tree Forest

Typic Haploxerepts mesic and similar soils

Composition: About 11 percent

Slope: 0 to 30 percent Landform: Mountain slope

Vegetative classification: 84210, Westside Ponderosa Pine Forest; 81500, Mixed,

North Slope Forest

Use and Management Considerations

- The types of rock in this map unit are metavolcanic andesite and hornfels with minor amounts of intermediate granitoid rock.
- The soils in this map unit extend from mesic to frigid soil temperature regimes. Soils in the mesic temperature regime, which are inferred to be Entisols and Inceptisols, are associated with the andesitic lahars of the Relief Peak Formation (Trp) as mapped by Huber et al. (8). Soils in the frigid temperature regime, which were described as Alfisols and Utisols, are associated with "metavolcanic rock, undivided" (Kmv) as mapped by Huber et al (8). These relationships seem to suggest that soil development in this map unit is related more closely to parent material than to temperature regime. (Alfisols and Ultisols, which are more developed than Entisols and Inceptisols, occur on the cooler sites.)

305—Rock outcrop-Waterwheel-Dystric Xeropsamments association, 0 to 35 percent slopes, mountain valleys, scoured, valley fill, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A) Landscape: Mountain valleys, mountain canyons, or mountains

Elevation: 4,935 to 6,640 feet (1,505 to 2,025 meters)

Mean annual precipitation: 39 to 51 inches (991 to 1,295 millimeters) Mean annual air temperature: 49 to 49 degrees F (9 to 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Rock outcrop—50 percent Waterwheel soil—18 percent Dystric Xeropsamments—15 percent Minor components—17 percent

Description of Rock Outcrop

Slope: 0 to 35 percent

Landform: Scoured glacial-valley floor or toe of glacial-valley wall

Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent coarse subangular gravel

and 2 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Waterwheel Soil

Slope: 10 to 35 percent

Landform: Mountain slope or aprons on mountainside

Parent material: Alluvium and/or colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent coarse subangular gravel

and 5 to 15 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 0.8 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

A—0 to 3 inches; very gravelly sand C—3 to 9 inches; extremely gravelly sand Bw—9 to 11 inches; very gravelly sand C´1—11 to 21 inches; extremely gravelly sand C´2—21 to 60 inches; extremely gravelly sand

Description of Dystric Xeropsamments

Slope: 0 to 35 percent

Landform: Flood plain or terrace

Parent material: Alluvium and/or colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.1 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 85210, Jeffrey Pine-Fir Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A—0 to 6 inches; loamy sand Bw1—6 to 18 inches; loamy sand Bw2—18 to 25 inches; loamy sand C1—25 to 41 inches; loamy sand C2—41 to 60 inches; loamy sand

Minor Components

Water

Composition: About 6 percent

Landform: Lake

Vegetative classification: None assigned

Lithic Xerorthents frigid and similar soils

Composition: About 5 percent

Slope: 0 to 35 percent

Landform: Adjacent to rock outcrop valley floor Vegetative classification: None assigned

Typic Haploxerepts frigid and similar soils

Composition: About 3 percent

Slope: 0 to 35 percent

Landform: Mountain slope, aprons on mountainside, or stream terrace

Vegetative classification: None assigned

Dystric Xerorthents sandy-skeletal, frigid and similar soils

Composition: About 2 percent

Slope: 0 to 10 percent

Landform: Gravel bar, flood plain, or terrace

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Histosols frigid and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent

Landform: Lakeshore or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- Most of this map unit has been glacially or fluvically scoured, leaving rock outcrop with intermittent deposits of alluvium, colluvium, and remnant till.
- The soils in this map unit were inferred by extrapolation from comparable components in other map units.

306—Typic Cryopsamments-Humic Dystrocryepts complex, 0 to 20 percent slopes, mountain toeslopes, moraines, cryic

Setting

General location: High-altitude alpine mountains in the eastern part of Yosemite

National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 7,380 to 8,680 feet (2,251 to 2,646 meters)

Mean annual precipitation: 45 to 49 inches (1,143 to 1,245 millimeters) Mean annual air temperature: 39 to 40 degrees F (about 4 degrees C)

Frost-free period: 15 to 45 days

Composition

Typic Cryopsamments—50 percent Humic Dystrocryepts—30 percent Minor components—20 percent

Description of Typic Cryopsamments

Slope: 5 to 20 percent

Landform: Ephemeral stream, moraine, or mountainside

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material

A1—1 to 4 inches; loamy coarse sand A2—4 to 15 inches; loamy coarse sand Bw—15 to 32 inches; loamy coarse sand C1—32 to 43 inches; loamy coarse sand

C2-43 to 60 inches; gravelly loamy coarse sand

Description of Humic Dystrocryepts

Slope: 0 to 20 percent

Landform: Moraine or mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles and

2 to 4 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.7 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Modium

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 86110, Lodgepole Pine Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A1—0 to 5 inches; loamy sand A2—5 to 13 inches; loamy sand Bw—13 to 23 inches; loamy sand Cd—23 to 60 inches; cobbly loam

Minor Components

Oxyaquic Cryopsamments and similar soils

Composition: About 10 percent

Slope: 0 to 20 percent

Landform: Ephemeral stream, moraine, or mountain slope

Vegetative classification: 85310, Red Fir Forest

Rock outcrop

Composition: About 10 percent

Slope: 0 to 20 percent

Landform: Rock outcrop on mountainside Vegetative classification: None assigned

Use and Management Considerations

- Mountain toes in this map unit include footslopes and lower backslopes.
- The soils commonly are mantled with 1 to 2 centimeters of sandy slope wash.

307—Rock outcrop-Dystric Xeropsamments-Dystric Xerorthents association, 0 to 35 percent slopes, mountain valleys, scoured, valley fill, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A) Landscape: Mountain valleys, mountain canyons, or mountains

Elevation: 2,820 to 5,730 feet (860 to 1,748 meters)

Mean annual precipitation: 33 to 49 inches (838 to 1,245 millimeters)
Mean annual air temperature: 48 to 54 degrees F (9 to 12 degrees C)

Frost-free period: 20 to 150 days

Composition

Rock outcrop—40 percent
Dystric Xeropsamments—20 percent
Dystric Xerorthents—20 percent
Minor components—20 percent

Description of Rock Outcrop

Slope: 0 to 35 percent

Landform: Scoured glacial-valley floor or toe of glacial-valley wall

Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles and

2 to 10 percent subangular gravel Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Dystric Xeropsamments

Slope: 0 to 35 percent

Landform: Flood plain or terrace

Parent material: Colluvium and/or minor alluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles,

2 to 10 percent coarse subangular gravel, 0 to 15 percent subrounded boulders, and 0 to 15 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.1 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84210, Westside Ponderosa Pine Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material

A1—1 to 3 inches; gravelly loamy sand

A2—3 to 5 inches; loamy sand CA—5 to 14 inches; loamy sand C1—14 to 28 inches; loamy sand C2—28 to 37 inches; cobbly loamy sand

Cr—37 to 60 inches; soft weathered bedrock

Description of Dystric Xerorthents

Slope: 10 to 35 percent

Landform: Gravel bar, flood plain, mountain slope, aprons on mountainside, or terrace

Parent material: Alluvium and/or colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent coarse subangular gravel and 5 to 15 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 0.8 inch (very low)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

A—0 to 3 inches; very gravelly sand

C-3 to 9 inches; extremely gravelly sand

Bw—9 to 11 inches; very gravelly sand C1—11 to 21 inches; extremely gravelly sand C2—21 to 60 inches; extremely gravelly sand

Minor Components

Lithic Xerorthents mesic and similar soils

Composition: About 10 percent

Slope: 0 to 35 percent

Landform: Adjacent to rock outcrop valley floor Vegetative classification: None assigned

Typic Haploxerepts mesic and similar soils

Composition: About 9 percent

Slope: 0 to 35 percent

Landform: Mountain slope, aprons on mountainside, or stream terrace

Vegetative classification: None assigned

Histosols mesic and similar soils

Composition: About 1 percent

Slope: 0 to 2 percent Landform: Mountain valley

Vegetative classification: None assigned

Use and Management Considerations

 Most of this map unit has been scoured, leaving rock outcrop with intermittent deposits of alluvium, colluvium, and remnant till.

309—Rock outcrop-Waterwheel-Typic Dystroxerepts association, 30 to 80 percent slopes, mountain slopes, joints, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,985 to 8,020 feet (1,520 to 2,445 meters)

Mean annual precipitation: 37 to 51 inches (940 to 1,295 millimeters)
Mean annual air temperature: 46 to 50 degrees F (8 to 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Rock outcrop—50 percent Waterwheel soil—25 percent Typic Dystroxerepts—20 percent Minor components—5 percent

Description of Rock Outcrop

Slope: 30 to 80 percent

Landform: Mountain slope or mountainside

Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: None assigned

Description of the Waterwheel Soil

Slope: 30 to 60 percent

Landform: Mountain slope or bedrock joints and fractures in mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles and

5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted

Natural drainage class: Excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84240, Sierra White Fir Forest

Typical profile

Oi-0 to 2 inches; cobbly slightly decomposed plant material

A1—2 to 7 inches; very cobbly sandy loam A2—7 to 17 inches; very cobbly sandy loam AC—17 to 31 inches; very cobbly sandy loam C—31 to 60 inches; very cobbly sandy loam

Description of Typic Dystroxerepts

Slope: 35 to 75 percent

Landform: Mountain slope or joints on mountainside Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles and 5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.3 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; cobbly slightly decomposed plant material

Oe—1 to 2 inches; cobbly moderately decomposed plant material

Oa—2 to 2 inches; cobbly highly decomposed plant material

A—2 to 3 inches; very cobbly sandy loam Bw1—3 to 7 inches; very cobbly sandy loam

Bw2—7 to 27 inches; extremely stony sandy loam

Bw3-27 to 41 inches; extremely stony sandy loam

C-41 to 60 inches; extremely stony sandy loam

Minor Components

Oxyaquic Dystroxerepts sandy-skeletal and similar soils

Composition: About 5 percent Slope: 30 to 80 percent

Landform: Joints on mountainside

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Use and Management Considerations

- The slope in joints is commonly more than 30 percent.
- The soils in this map unit were inferred by extrapolation from comparable components in other map units.

310—Rock outcrop-Humic Dystroxerepts-Humic Lithic Haploxerepts association, 30 to 100 percent slopes, mountain slopes, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,300 to 6,925 feet (1,006 to 2,111 meters)

Mean annual precipitation: 33 to 45 inches (838 to 1,143 millimeters)
Mean annual air temperature: 49 to 52 degrees F (10 to 11 degrees C)

Frost-free period: 100 to 150 days

Composition

Rock outcrop—55 percent

Humic Dystroxerepts—25 percent Humic Lithic Haploxerepts—20 percent

Description of Rock Outcrop

Slope: 30 to 100 percent

Landform: Mountain slope or mountainside

Parent material: Granitoid rock
Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Humic Dystroxerepts

Slope: 30 to 100 percent

Landform: Mountain slope or bedrock joints in mountainside Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles and

5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.7 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 71120, Black Oak Woodland

Typical profile

Oe—0 to 0 inches; cobbly slightly decomposed plant material Oa—0 to 1 inch; cobbly highly decomposed plant material

A1—1 to 4 inches; cobbly loamy sand A2—4 to 8 inches; very cobbly loamy sand

C1—8 to 30 inches; very stony loamy sand

C2—30 to 39 inches; very stony loamy sand

C3—39 to 60 inches; extremely bouldery loamy sand

Description of Humic Lithic Haploxerepts

Slope: 30 to 40 percent

Landform: Areas adjacent to outcrop mountain slope, bedrock benches on

mountainside, or bedrock dimples on mountainside *Parent material:* Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 5 percent subrounded stones and

2 to 5 percent subrounded boulders

Restrictive feature: Bedrock (lithic) at a depth of 10 to 20 inches

Available water capacity to a depth of 60 inches: About 0.7 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: Occasional

Surface runoff: Very high Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 71150, Interior Live Oak Woodland

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

Oe—0 to 2 inches; moderately decomposed plant material

Oa—2 to 2 inches; highly decomposed plant material

A1-2 to 10 inches; very gravelly loamy coarse sand

A2—10 to 20 inches; very bouldery fine sandy loam

R-20 to 60 inches: bedrock

Use and Management Considerations

- Bedrock benches, joints, and dimples may have slopes of more than 30 percent.
- Compared to other map units that are marked by mountain flanks and that have comparable slopes (such as map unit 278), this map unit is less linear, has greater topographic variation, and has more jointing. Because of these characteristics, this unit is less avalanche-prone, is more significant for ground-water recharge, and is more edaphically variable.

311—Rock outcrop-Humic Dystroxerepts-Humic Lithic Haploxerepts association, 0 to 30 percent slopes, joints, mountain slopes, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,480 to 5,875 feet (1,062 to 1,792 meters)

Mean annual precipitation: 33 to 43 inches (838 to 1,092 millimeters)

Mean annual air temperature: 49 to 52 degrees F (10 to 11 degrees C)

Frost-free period: 100 to 150 days

Composition

Rock outcrop—45 percent Humic Dystroxerepts—35 percent Humic Lithic Haploxerepts—19 percent Minor components—1 percent

Description of Rock Outcrop

Slope: 0 to 30 percent

Landform: Mountain slope or mountainside

Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8
Other vegetative classification: None assigned

Description of Humic Dystroxerepts

Slope: 0 to 30 percent

Landform: Mountain slope, bedrock joints in mountainside, or benches on

mountainside

Parent material: Colluvium and/or residuum derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 15 to 25 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.4 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Typical profile

A1—0 to 1 inch; very cobbly loamy sand

A2—1 to 11 inches; very cobbly loamy sand C1—11 to 30 inches; very stony loamy sand C2—30 to 60 inches; very cobbly loamy sand

Description of Humic Lithic Haploxerepts

Slope: 0 to 30 percent

Landform: Areas adjacent to outcrop mountain slope, bedrock benches on

mountainside, or bedrock dimples on mountainside *Parent material:* Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 5 percent subrounded boulders and

2 to 5 percent subrounded stones

Restrictive feature: Bedrock (lithic) at a depth of 10 to 20 inches

Available water capacity to a depth of 60 inches: About 0.9 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: Occasional

Surface runoff: Very high Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 71150, Interior Live Oak Woodland

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

Oe—0 to 2 inches; moderately decomposed plant material

Oa—2 to 2 inches; highly decomposed plant material

A1—2 to 10 inches; very gravelly sandy loam

A2—10 to 20 inches; extremely bouldery sandy loam

R—20 to 60 inches; bedrock

Minor Components

Histosols mesic and similar soils

Composition: About 1 percent

Slope: 0 to 2 percent

Landform: Marsh or mountain valley Vegetative classification: None assigned

313—Nevadafalls-Oxyaquic Dystrudepts complex, 5 to 30 percent slopes, mountain valleys, moraines, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,430 to 7,350 feet (1,350 to 2,241 meters)

Mean annual precipitation: 37 to 45 inches (940 to 1,143 millimeters)
Mean annual air temperature: 49 to 52 degrees F (10 to 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Nevadafalls soil—40 percent Oxyaquic Dystrudepts—40 percent Minor components—20 percent

Description of the Nevadafalls Soil

Slope: 5 to 30 percent

Landform: Moraine or stream terrace

Parent material: Till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest; 85110,

Jeffrey Pine Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A—0 to 6 inches; loamy sand Bw—6 to 17 inches; loamy sand

C1—17 to 31 inches; very cobbly loamy sand C2—31 to 60 inches; very cobbly loamy sand

Description of Oxyaquic Dystrudepts

Slope: 5 to 30 percent

Landform: Flood plain or ground moraine

Parent material: Alluvium and/or colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.4 inches (moderate)

Selected hydrologic properties

Present annual flooding: Occasional

Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Moderately well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 81600, Mixed Riparian/Conifer Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A1—0 to 10 inches; sandy loam A2—10 to 35 inches; sandy loam A3—35 to 48 inches; sandy loam C—48 to 61 inches; loamy coarse sand

Minor Components

Rock outcrop

Composition: About 8 percent

Slope: 5 to 30 percent

Landform: Flood plain or ground moraine Vegetative classification: None assigned

Humic Dystroxerepts sandy, frigid and similar soils

Composition: About 5 percent

Slope: 5 to 30 percent

Landform: Moraine or stream terrace

Vegetative classification: 84232, White Fir Mixed Coniferous Forest; 85110, Jeffrey

Pine Forest

Humic Lithic Dystroxerepts sandy and similar soils

Composition: About 4 percent

Slope: 0 to 10 percent

Landform: Adjacent to rock outcrop mountain valley Vegetative classification: 84250, Big Tree Forest

Water

Composition: About 2 percent

Landform: Lake

Vegetative classification: None assigned

Histosols frigid and similar soils

Composition: About 1 percent

Slope: 0 to 8 percent

Landform: Lakeshore or mountain valley Vegetative classification: None assigned

Use and Management Considerations

 Mountain valleys in this map unit are occupied by moraines, flood plains, stream terraces, rock outcrop, and apron toes that extend into the valleys. The moraines dominantly are ground moraines (about 80 percent); a much smaller amount is lateral moraine toeslopes (about 20 percent).

- The map unit is dominated by dense to open mixed conifer forest interspersed with meadows and brush fields (about 15 percent of map unit).
- This map unit extends into the mesic soil temperature regime at the low elevations.

314—Badgerpass-Dystric Xeropsamments-Rock outcrop complex, 5 to 45 percent slopes, mountain slopes, moraines, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,955 to 7,405 feet (1,510 to 2,258 meters)

Mean annual precipitation: 35 to 47 inches (889 to 1,194 millimeters)
Mean annual air temperature: 49 to 50 degrees F (about 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Badgerpass soil—45 percent
Dystric Xeropsamments—35 percent
Rock outcrop—15 percent
Minor components—5 percent

Description of the Badgerpass Soil

Slope: 5 to 45 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.1 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

A1—1 to 6 inches; loamy sand A2—6 to 13 inches; loamy sand AC—13 to 24 inches; loamy sand

C1—24 to 42 inches; sand

C2—42 to 55 inches; cobbly sand C3—55 to 60 inches; sand

Description of Dystric Xeropsamments

Slope: 5 to 45 percent

Landform: Mountain slope, mountain valley, or ridge Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.4 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 2 inches; slightly decomposed plant material Oe—2 to 4 inches; moderately decomposed plant material Oa—4 to 4 inches; highly decomposed plant material

A1—4 to 9 inches; loamy sand A2—9 to 25 inches; loamy sand C1—25 to 30 inches; loamy sand C2—30 to 60 inches; loamy fine sand

Description of Rock Outcrop

Slope: 5 to 45 percent

Landform: Moraine or mountain slope Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Humic Lithic Dystroxerepts sandy and similar soils

Composition: About 5 percent Slope: 0 to 10 percent

Landform: Areas adjacent to rock outcrop mountain slope or bedrock dimples in

mountainside

Vegetative classification: None assigned

Use and Management Considerations

- Moraines in this map unit are remnants of ground and lateral moraines that do
 not have readily distinguishable forms because of long-term geologic erosion.
 The remaining till commonly is thinner than that of the more distinctive
 moraines, although thicknesses could not be measured for this survey. The
 moraines grade to mountain slopes, which are mantled with colluvium overlying
 residuum.
- Soils in this map unit are about 60 percent covered with mixed conifer forests.
- Meadows and brush fields make up about 5 percent of this map unit.
- The slopes of land surfaces in the delineation southeast of Half Dome are more than 45 percent.

315—Nevadafalls-Dystric Xeropsamments complex, 15 to 45 percent slopes, lateral moraines, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,975 to 7,610 feet (1,518 to 2,320 meters)

Mean annual precipitation: 37 to 45 inches (940 to 1,143 millimeters)
Mean annual air temperature: 50 to 51 degrees F (about 10 degrees C)

Frost-free period: 20 to 60 days

Composition

Nevadafalls soil—60 percent Dystric Xeropsamments—40 percent

Description of the Nevadafalls Soil

Slope: 15 to 45 percent

Landform: Ground moraine, lateral moraine, or mountain slope Parent material: Colluvium with minor till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.3 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oe—0 to 1 inch; moderately decomposed plant material

A—1 to 2 inches; gravelly sandy loam

BA—2 to 14 inches; very bouldery sandy loam Bw—14 to 35 inches; very bouldery sandy loam C—35 to 60 inches; very bouldery sandy loam

Description of Dystric Xeropsamments

Slope: 15 to 45 percent

Landform: Moraine or crests on moraine Parent material: Till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.5 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84232, White Fir Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A—0 to 7 inches; loamy sand Bw1—7 to 16 inches; loamy sand Bw2—16 to 26 inches; loamy sand C—26 to 60 inches; cobbly loamy sand

Use and Management Considerations

 Moraines in this map unit exhibit a distinctive well defined form. This unit has sharper crests and somewhat steeper, less eroded backslopes than those in map unit 273.

316—Dystric Xerorthents-Rock outcrop-Rubble land complex, 30 to 80 percent slopes, mountainflanks, thermic

Setting

General location: None noted

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 2,035 to 4,890 feet (621 to 1,491 meters)

Mean annual precipitation: 33 to 47 inches (838 to 1,194 millimeters)
Mean annual air temperature: 47 to 55 degrees F (8 to 13 degrees C)

Frost-free period: 275 to 310 days

Composition

Dystric Xerorthents—40 percent Rock outcrop—40 percent Rubble land—20 percent

Description of Dystric Xerorthents

Slope: 30 to 80 percent

Landform: Mantled mountain slope or joints and aprons on mountainside

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 2 to 10 percent subangular cobbles and

2 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.3 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 37110, Northern Mixed Chaparral

Typical profile

A—0 to 4 inches; cobbly loamy coarse sand Bw—4 to 13 inches; cobbly loamy coarse sand BC—13 to 23 inches; very stony loamy coarse sand

C—23 to 35 inches; very stony loamy coarse sand

R-35 to 39 inches; bedrock

Description of Rock Outcrop

Slope: 30 to 80 percent

Landform: Mountain slope or mountainside

Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of Rubble Land

Slope: 30 to 80 percent

Landform: Mountain slope or mountainside

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Use and Management Considerations

- Mountain flanks include cliffs and somewhat more gently sloping scoured rock outcrop, debris torrents and avalanches, and aprons.
- Rubble extends from aprons to the upper backslopes.
- Delineations in the Tuolumne River canyon below the Hetch Hetchy Reservoir
 are dominated (about 65 percent) by sparsely jointed, scoured rock outcrop. In
 contrast, delineations in the Merced River canyon near El Portal are characterized
 (about 20 percent) by rock outcrop, talus, landslides, and cliffs superimposed on
 mountain flanks, with aprons scattered intermittently along the toes. These
 mountain flanks commonly are dissected by closely spaced, roughly parallel
 downslope channels which were formed by fluvial-colluvial processes, including
 debris flowage.
- The major landscape components are mountain flanks (90 percent), rock outcrop (40 percent), and rubble in landslides (debris torrents and avalanches), talus below cliffs, and aprons (20 percent).

318—Typic Dystroxerepts-Humic Dystroxerepts complex, 0 to 20 percent slopes, ridge crests, frigid/mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,645 to 7,180 feet (1,416 to 2,189 meters)

Mean annual precipitation: 33 to 45 inches (838 to 1,143 millimeters)
Mean annual air temperature: 50 to 51 degrees F (10 to 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Typic Dystroxerepts—40 percent Humic Dystroxerepts—36 percent Minor components—24 percent

Description of the Typic Dystroxerepts

Slope: 0 to 20 percent Landform: Ridge

Parent material: Colluvium and/or residuum derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 4e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

A—0 to 4 inches; sandy loam Bw1—4 to 12 inches; sandy loam Bw2—12 to 27 inches; sandy loam Bw3—27 to 39 inches; sandy loam

Cr—39 to 57 inches; soft weathered bedrock

Description of Humic Dystroxerepts

Slope: 0 to 20 percent Landform: Ridge

Parent material: Colluvium and/or residuum with minor till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 6.2 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 4e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oa—0 to 1 inch; highly decomposed plant material

A1—1 to 2 inches; loamy sand
A2—2 to 5 inches; sandy loam
Bw1—5 to 14 inches; sandy loam
Bw2—14 to 33 inches; sandy loam
CB—33 to 46 inches; sandy loam
Ct1—46 to 48 inches; sandy loam
Ct2—48 to 54 inches; fine sandy loam
Ct3—54 to 60 inches; fine sandy loam

Minor Components

Humults coarse-loamy, frigid and similar soils

Composition: About 14 percent

Slope: 0 to 20 percent Landform: Ridge

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Humic Dystroxerepts sandy, frigid and similar soils

Composition: About 5 percent

Slope: 0 to 20 percent Landform: Ridge

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Rock outcrop

Composition: About 5 percent

Slope: 0 to 20 percent Landform: Ridge

Vegetative classification: None assigned

Use and Management Considerations

- The types of rock in this map unit are granitoid with minor amounts of metasedimentary parent materials in the vicinity of Crane Flat, near the western edge of the survey area.
- Because of their small areal extent, ridge crests in the frigid and mesic soil

temperature regimes are combined in this map unit; the frigid regime makes up 80 percent of the unit and the mesic regime makes up 20 percent. Soils in the mesic regime occur in two neighboring delineations: one slightly north of Hodgdon Meadow and the other along the divide between North Crane Creek and the South Fork of the Tuolumne River. Soils in the two temperature regimes are morphologically comparable.

Most of this map unit has dense forest cover.

319—Humic Dystroxerepts-Typic Haploxerults-Inceptic Haploxeralfs complex, 30 to 65 percent slopes, mountain slopes, metamorphic, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 5,100 to 6,820 feet (1,555 to 2,080 meters)

Mean annual precipitation: 35 to 39 inches (889 to 991 millimeters)
Mean annual air temperature: 52 to 54 degrees F (11 to 12 degrees C)

Frost-free period: 20 to 60 days

Composition

Humic Dystroxerepts—30 percent Typic Haploxerults—30 percent Inceptic Haploxeralfs—25 percent Minor components—15 percent

Description of Humic Dystroxerepts

Slope: 30 to 65 percent

Landform: Ancient scarps landslide or mountain slope

Parent material: Colluvium derived from metasedimentary rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent coarse subangular gravel, 10 to 20 percent subangular cobbles, and 5 to 15 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 1.3 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6s

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; very cobbly slightly decomposed plant material

Oe—0 to 1 inch; very cobbly moderately decomposed plant material

A1—1 to 5 inches; very cobbly loamy sand

A2—5 to 13 inches; extremely cobbly loamy sand

C1—13 to 20 inches; extremely stony loamy sand

C2-20 to 35 inches; extremely stony loamy sand

C3-35 to 60 inches; extremely stony loamy sand

Description of Typic Haploxerults

Slope: 30 to 65 percent

Landform: Ancient deposits landslide or mountain slope

Parent material: Colluvium and/or residuum derived from metasedimentary rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.6 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

Oe—0 to 1 inch; moderately decomposed plant material

Oa—1 to 2 inches; highly decomposed plant material

A1—2 to 5 inches; loamy coarse sand

A2-5 to 7 inches; loamy coarse sand

Bt1—7 to 12 inches; sandy loam

Bt2—12 to 20 inches; sandy loam

Bt3-20 to 31 inches; sandy loam

Bt4-31 to 46 inches; gravelly sandy loam

C1—46 to 53 inches; sand

C2-53 to 71 inches: sand

Description of Inceptic Haploxeralfs

Slope: 30 to 65 percent

Landform: Ancient deposits landslide or mountain slope

Parent material: Colluvium and/or residuum derived from metasedimentary rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subrounded stones,

10 to 20 percent subangular cobbles, and 10 to 20 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.2 inches (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6s

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

Oi—0 to 0 inches; very stony slightly decomposed plant material

Oe—0 to 1 inch; very stony moderately decomposed plant material

A1—1 to 4 inches; very cobbly fine sandy loam

A2—4 to 12 inches; very cobbly fine sandy loam

Bt—12 to 22 inches; very cobbly fine sandy loam

C1—22 to 30 inches; extremely cobbly fine sandy loam

C2—30 to 60 inches; extremely stony fine sandy loam

Minor Components

Humults coarse-loamy, frigid and similar soils

Composition: About 10 percent

Slope: 30 to 65 percent

Landform: Mountain slope or mountainside

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Humic Dystroxerepts loamy-skeletal, frigid and similar soils

Composition: About 5 percent Slope: 30 to 65 percent

Landform: Ancient scarps landslide or mountain slope

Vegetative classification: None assigned

Use and Management Considerations

- This map unit occurs near the western edge of the survey area, north of Crane Flat.
- Compared with map unit 328, slopes in this map unit are overall somewhat steeper, have more erosional than depositional surfaces, and have a greater tendency for attritional erosion.
- Nearly one-fourth of the map unit is dissected by ancient, stabilized erosion gullies that are covered by mixed conifer forests and dense manzanita stands.
- Soils in skeletal particle-size classes tend to occur on slopes that are steeper than those of soils not in skeletal particle-size classes.
- Forest cover increases significantly from the upper to the lower slopes in the map unit.

320—Half Dome-Humic Dystroxerepts-Rock outcrop complex, 30 to 60 percent slopes, mountain slopes, moraines, mesic

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 3,990 to 5,840 feet (1,216 to 1,782 meters)

Mean annual precipitation: 35 to 43 inches (889 to 1,092 millimeters)
Mean annual air temperature: 53 to 53 degrees F (about 12 degrees C)

Frost-free period: 100 to 150 days

Composition

Half Dome soil—40 percent Humic Dystroxerepts—20 percent Rock outcrop—20 percent Minor components—20 percent

Description of the Half Dome Soil

Slope: 30 to 60 percent

Landform: Moraine, mountain slope, or joints and benches on mountainside

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 15 percent coarse subangular gravel, 2 to 20 percent subrounded stones, 0 to 30 percent subrounded boulders, and

0 to 5 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.1 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

A—1 to 4 inches; gravelly loamy sand

BA—4 to 10 inches; gravelly loamy sand

Bw—10 to 20 inches; very gravelly sandy loam

BC-20 to 47 inches; very gravelly sandy loam

C-47 to 61 inches; loamy coarse sand

Description of Humic Dystroxerepts

Slope: 30 to 60 percent

Landform: Moraine or mountain slope

Parent material: Colluvium and/or till derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 20 percent subrounded boulders, 2 to 10 percent coarse subangular gravel, 0 to 20 percent subangular cobbles,

and 0 to 20 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.8 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Typical profile

Oe—0 to 0 inches; moderately decomposed plant material

A1—0 to 3 inches; gravelly loamy sand A2—3 to 7 inches; gravelly loamy sand Bw1—7 to 16 inches; gravelly loamy sand Bw2—16 to 22 inches; very stony loamy sand

C1—22 to 35 inches; extremely stony coarse sandy loam C2—35 to 60 inches; very gravelly coarse sandy loam

Description of Rock Outcrop

Slope: 30 to 60 percent

Landform: Rock outcrop on mountainside

Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Tuolumne and similar soils

Composition: About 9 percent Slope: 30 to 60 percent

Landform: Mountain slope or bedrock joints in mountainside

Vegetative classification: None assigned

Humic Dystroxerepts loamy-skeletal, mesic and similar soils

Composition: About 6 percent Slope: 30 to 60 percent

Landform: Moraine or mountain slope

Vegetative classification: 84231, Ponderosa Pine Mixed Coniferous Forest

Humic Lithic Haploxerepts and similar soils

Composition: About 5 percent Slope: 0 to 10 percent

Landform: Areas adjacent to rock outcrop mountain slope, bedrock dimples, or

benches on mountainside

Vegetative classification: None assigned

Use and Management Considerations

- Overall drainage patterns are dominantly convergent.
- Moraines do not have any distinctive form. They consist of remnant till (possibly pre-Tahoe) smeared intermittently on mountain slopes throughout the map unit.
- Slopes greater than 30 percent occur in joints, on benches, on shoulders, and on summits.

321—Dystric Xeropsamments-Dystric Xerorthents association, 0 to 20 percent slopes, mountain valleys, thermic

Setting

General location: Lower elevations in the western part of Yosemite National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Valleys

Elevation: 1,650 to 2,140 feet (504 to 653 meters)

Mean annual precipitation: 31 to 33 inches (787 to 838 millimeters)
Mean annual air temperature: 53 to 56 degrees F (12 to 13 degrees C)

Frost-free period: 275 to 310 days

Composition

Dystric Xeropsamments—50 percent Dystric Xerorthents—40 percent Minor components—10 percent

Description of Dystric Xeropsamments

Slope: 0 to 20 percent

Landform: Flood plain or river terrace

Parent material: Alluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent subangular cobbles and

0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.7 inches (low)

Selected hydrologic properties

Present annual flooding: Rare Present annual ponding: None Surface runoff: Very low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 4e Other vegetative classification: 71100, Oak Woodland

Typical profile

Oi-0 to 0 inches; slightly decomposed plant material

A-0 to 8 inches; sand

C-8 to 21 inches; coarse sand

Ab-21 to 61 inches; stony loamy fine sand

Description of Dystric Xerorthents

Slope: 0 to 20 percent

Landform: Flood plain, aprons on mountain valley, or terrace

Parent material: Alluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles and

5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 0.8 inch (very low)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typical profile

A—0 to 3 inches; very gravelly sand

C-3 to 9 inches; extremely gravelly sand

Bw-9 to 11 inches; very gravelly sand

C'1—11 to 21 inches; extremely gravelly sand

C'2-21 to 60 inches; extremely gravelly sand

Minor Components

Riverwash

Composition: About 10 percent

Slope: 0 to 5 percent

Landform: Flood plain or river

Vegetative classification: None assigned

General features: Riverwash occurs as areas of unstabilized sand, gravel, cobbles, or stones that are along the periphery of stream and river channels. These areas are flooded, washed, scoured, and reworked frequently by the Merced River. This component may be scoured or overwashed with new deposits of sand, gravel, cobbles, or stones in any year. In some areas the texture is stratified coarse sand to loamy fine sand with strata of gravel; in other areas the texture is freshly deposited gravel, cobbles, or stones.

Use and Management Considerations

- This map unit occurs along the Merced River in the vicinity of El Portal.
- The soil temperature regime of this map unit grades to a mesic soil temperature regime on the flood plain near the river.
- Colluvial aprons and alluvial fans spill into the valley from adjacent mountain slopes and tributary drainageways, respectively.

322—Typic Xerorthents, 45 to 100 percent slopes, mountain slopes, thermic

Setting

General location: Lower elevations in the western part of Yosemite National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 1,790 to 4,350 feet (546 to 1,327 meters)

Mean annual precipitation: 31 to 33 inches (787 to 838 millimeters)
Mean annual air temperature: 49 to 58 degrees F (9 to 14 degrees C)

Frost-free period: 275 to 310 days

Composition

Typic Xerorthents—90 percent Minor components—10 percent

Description of Typic Xerorthents

Slope: 45 to 100 percent Landform: Mountain slope

Parent material: Colluvium derived from granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 3 to 15 percent subrounded boulders, 3 to 10 percent subrounded stones, and 3 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 2.7 inches (low)

Selected hydrologic properties

Present annual flooding: None

Present annual ponding: None Surface runoff: Medium

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6s

Other vegetative classification: 37110, Northern Mixed Chaparral

Typical profile

Oe—0 to 0 inches; bouldery slightly decomposed plant material

A—0 to 7 inches; gravelly sandy loam Bw1—7 to 24 inches; cobbly loamy sand

Bw2—24 to 42 inches; extremely stony loamy coarse sand

C-42 to 60 inches; extremely stony coarse sand

Minor Components

Rock outcrop

Composition: About 10 percent Slope: 45 to 100 percent Landform: Mountain slope

Vegetative classification: None assigned

Use and Management Considerations

- The types of rock in this map unit are granitoid with some metasedimentary.
- Slopes dominantly are north-facing, linear to convex, lower backslopes, footslopes, and toeslopes that support brush foothill pine and canyon live oak.
- Slope surfaces dominantly are erosional to transitional and are highly susceptible to soil creep.

323—Ultic Haploxeralfs-Humic Dystroxerepts complex, bouldery, 10 to 35 percent slopes, mountain footslopes, thermic

Setting

General location: Lower elevations in the western part of Yosemite National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 1,855 to 2,430 feet (566 to 742 meters)

Mean annual precipitation: 31 to 33 inches (800 to 838 millimeters)

Mean annual air temperature: 51 to 52 degrees F (about 11 degrees C)

Frost-free period: 275 to 310 days

Composition

Ultic Haploxeralfs—55 percent Humic Dystroxerepts—45 percent

Description of Ultic Haploxeralfs

Slope: 10 to 35 percent Landform: Mountain slope

Parent material: Colluvium and/or residuum derived from granitoid and/or

metasedimentary rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subrounded boulders, 0 to 10 percent coarse subangular gravel, 0 to 10 percent subrounded stones, and 0 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.5 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 37110, Northern Mixed Chaparral

Typical profile

A—0 to 3 inches; sandy loam Bt1—3 to 5 inches; sandy loam Bt2—5 to 10 inches; sandy loam Bt3—10 to 21 inches; sandy loam

Bt4—21 to 37 inches; very gravelly sandy loam Bt5—37 to 60 inches; very cobbly sandy clay loam

Description of Humic Dystroxerepts

Slope: 10 to 35 percent

Landform: Ephemeral stream or mountain slope

Parent material: Colluvium derived from metasedimentary and/or granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent subrounded boulders, 0 to 10 percent coarse subangular gravel, 0 to 10 percent subrounded stones, and 0 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.3 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e
Other vegetative classification: 37110, Northern Mixed Chaparral

Typical profile

Oi—0 to 1 inch; bouldery slightly decomposed plant material

Oe—1 to 2 inches; bouldery moderately decomposed plant material Oa—2 to 2 inches; bouldery highly decomposed plant material

A—2 to 7 inches; gravelly sandy loam Bw—7 to 15 inches; sandy loam Cdt1—15 to 29 inches; sandy loam Cdt2—29 to 60 inches; sandy loam

Use and Management Considerations

- The types of rock in this map unit are granitoid with metasedimentary.
- Slopes dominantly are south-facing, linear to concave (with some convex) lower backslopes, footslopes, and toeslopes that support intermingled open forest, grass, and brush communities.
- Slope surfaces dominantly are transitional to depositional. About half have received unsorted colluvium from upslope debris avalanches, which leave boulders scattered on the ground surface. The most stable sites, which tend to be convex with somewhat better sorted colluvium, have the most developed soils in the map unit.

324—Humic Haploxerepts-Rock outcrop-Ultic Haploxeralfs association, 45 to 100 percent slopes, metasedimentary, mountain slopes, thermic

Setting

General location: Lower elevations in the western part of Yosemite National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 1,720 to 2,970 feet (524 to 907 meters)

Mean annual precipitation: 31 to 33 inches (787 to 838 millimeters)
Mean annual air temperature: 53 to 56 degrees F (12 to 13 degrees C)

Frost-free period: 275 to 310 days

Composition

Humic Haploxerepts—40 percent Rock outcrop—35 percent Ultic Haploxeralfs—25 percent

Description of Humic Haploxerepts

Slope: 45 to 100 percent

Landform: Mountain slope or aprons on mountainside

Parent material: Colluvium derived from metasedimentary rock and minor amounts of

granitoid rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 10 percent coarse subangular gravel and 0 to 10 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.3 inches (low)

Selected hydrologic properties

Present annual flooding: Very rare Present annual ponding: None

Surface runoff: High

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: 71100, Oak Woodland

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material

A—0 to 4 inches; very gravelly loam Bw1-4 to 8 inches; very gravelly loam

Bw2—8 to 20 inches; extremely gravelly sandy loam

Bw3—20 to 30 inches; very gravelly loam

Bw4—30 to 60 inches; extremely gravelly fine sandy loam

Description of Rock Outcrop

Slope: 45 to 100 percent

Landform: Mountain slope or mountainside

Parent material: Exposed bedrock derived from metasedimentary rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 7e Other vegetative classification: None assigned

Description of Ultic Haploxeralfs

Slope: 45 to 100 percent

Landform: Interfluve (ridge) position on mountain slope

Parent material: Colluvium and residuum derived from metasedimentary and granitoid

rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 5 to 15 percent coarse subangular gravel

and 10 to 20 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.1 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 7e

Other vegetative classification: 71410, Grey Pine-Oak Woodland

Typical profile

Oi—0 to 0 inches; cobbly slightly decomposed plant material

A—0 to 6 inches; very cobbly loam Bt1—6 to 16 inches; very cobbly loam

Bt2—16 to 29 inches; very cobbly fine sandy loam Bt3—29 to 60 inches; extremely cobbly loam

Use and Management Considerations

 The types of rock in this map unit are metasedimentary with minor amounts of intermediate and mafic granitoid.

325—Urban land, 0 to 45 percent slopes

Setting

General location: Lower elevations in the western part of Yosemite National Park

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 1,775 to 2,060 feet (542 to 628 meters)

Mean annual precipitation: 31 to 33 inches (787 to 838 millimeters)
Mean annual air temperature: 55 to 58 degrees F (13 to 14 degrees C)

Frost-free period: 275 to 310 days

Composition

Urban land—80 percent Minor components—20 percent

Description of Urban Land

Slope: 0 to 45 percent Landform: Urban areas

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Humic Haploxerepts loamy-skeletal, thermic and similar soils

Composition: About 10 percent

Slope: 0 to 45 percent

Landform: Ephemeral stream, fan apron, or mountain slope

Vegetative classification: 71100, Oak Woodland

Ultic Haploxeralfs loamy-skeletal, thermic and similar soils

Composition: About 10 percent

Slope: 0 to 45 percent

Landform: Ephemeral stream, fan apron, or mountain slope Vegetative classification: 71410, Grey Pine-Oak Woodland

Use and Management Considerations

 Because this map unit is a National Park Service administrative area, no soils are described.

328—Clarkslodge-Ultic Palexeralfs complex, metasedimentary, 15 to 45 percent slopes, mountain slopes, landslides, frigid

Setting

General location: Mid-elevation areas in Yosemite National Park Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 4,985 to 7,030 feet (1,520 to 2,143 meters)

Mean annual precipitation: 35 to 41 inches (889 to 1,041 millimeters)
Mean annual air temperature: 51 to 52 degrees F (about 11 degrees C)

Frost-free period: 20 to 60 days

Composition

Clarkslodge soil—30 percent Ultic Palexeralfs—15 percent Minor components—55 percent

Description of the Clarkslodge Soil

Slope: 15 to 45 percent

Landform: Ancient landslide, mountain slope, or crests on ridge

Parent material: Colluvium and/or residuum derived from metasedimentary rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.4 inches (moderate)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: High

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84250, Big Tree Forest

Typical profile

Oi—0 to 0 inches; slightly decomposed plant material Oe—0 to 1 inch; moderately decomposed plant material

A—1 to 5 inches; fine sandy loam

Bt1—5 to 11 inches; cobbly fine sandy loam Bt2—11 to 20 inches; cobbly fine sandy loam Bt3—20 to 37 inches; very cobbly fine sandy loam

C-37 to 60 inches; very cobbly sandy loam

Description of Ultic Palexeralfs

Slope: 15 to 45 percent

Landform: Ancient landslide or mountain slope

Parent material: Colluvium derived from metasedimentary rock and/or residuum

weathered from metasedimentary rock

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 8.1 inches (high)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Modium

Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 6e

Other vegetative classification: 84250, Big Tree Forest

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

A—1 to 4 inches: loam

Bt1—4 to 13 inches; cobbly loam

Bt2—13 to 31 inches; loam BCt—31 to 49 inches; loam

C-49 to 60 inches; loam

Minor Components

Humic Dystroxerepts loamy-skeletal, frigid and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Ephemeral stream, lower mountain slope, or small mountain valley

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Inceptic Haploxeralfs and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Nose slope on ridge

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Typic Haploxerults coarse-loamy and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Ancient landslide or lower mountain slope

Vegetative classification: 84230, Sierra Mixed Coniferous Forest

Ultic Palexeralfs coarse-loamy, frigid and similar soils

Composition: About 10 percent

Slope: 15 to 45 percent

Landform: Ancient landslide or mountain slope Vegetative classification: 84250, Big Tree Forest

Andic Dystrudepts and similar soils

Composition: About 5 percent

Slope: 9 to 20 percent

Landform: Drainageway; minor extent on flood plains in small mountain valleys

Vegetative classification: 84250, Big Tree Forest

Humults loamy-skeletal, frigid and similar soils

Composition: About 5 percent

Slope: 15 to 45 percent

Landform: Ancient landslide or mountain slope Vegetative classification: 84250, Big Tree Forest

Ultic Haploxeralfs fine-loamy, frigid and similar soils

Composition: About 5 percent Slope: 15 to 45 percent

Landform: Ancient landslide, mountain slope, or crests on ridge

Vegetative classification: 85310, Red Fir Forest; 84250, Big Tree Forest

Use and Management Considerations

- The types of rock in this map unit are metasedimentary.
- Landslides do not have distinct form but are interpreted to be mostly ancient slump-earth flow failures.
- This map unit supports nearly closed-canopy forest throughout its delineations.

401—Sentinel loam, 0 to 2 percent slopes, mesic

Setting

General location: Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,950 to 3,995 feet (1,205 to 1,218 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Sentinel soil—90 percent Minor components—10 percent

Description of the Sentinel Soil

Slope: 0 to 2 percent

Landform: Lake terrace or mountain valley

Parent material: Glaciolacustrine deposits derived from granitoid rock and some

volcanic ash

Typical vegetation: Main tree species—ponderosa pine, incense cedar, black oak, Douglas-fir, and sugar pine; common understory plants—annual grasses and forbs

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 5 percent fine subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 6.0 inches (moderate)

Selected hydrologic properties

Present annual flooding: Rare Present annual ponding: None Surface runoff: Very low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 3e Other vegetative classification: None assigned

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

A1—1 to 5 inches; sandy loam A2—5 to 20 inches; sandy loam A3—20 to 27 inches; loam

Bw—27 to 41 inches; fine sandy loam C1—41 to 56 inches; sandy loam C2—56 to 66 inches; loamy sand

Minor Components

Unnamed soils

Composition: About 5 percent

Slope: 0 to 2 percent

Landform: Lake terrace or mountain valley Vegetative classification: None assigned

Vitrandic Haploxerolls sandy and similar soils

Composition: About 5 percent

Slope: 0 to 2 percent

Landform: Subtle depressional drainageway, lake terrace, or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

 Soil disturbance and the subsequent loss of the organic surface layer are management concerns.

412—Water-Riverwash complex, 0 to 1 percent slopes, mesic

Setting

General location: Merced River and Tenaya Creek in Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,815 to 4,205 feet (1,163 to 1,282 meters)

Mean annual precipitation: 35 to 41 inches (889 to 1,041 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Water—85 percent Riverwash—15 percent

Description of Water

Slope: 0 to 1 percent

Landform: Mountain valley or river Typical vegetation: None assigned

Selected properties and qualities

General features: This component is a perennial water body that includes natural or manmade streams, rivers, lakes, ponds, and estuaries that in most years are covered with water at least during the period warm enough for plants to grow. Many areas, such as the Merced River, are covered with water throughout the year. The map unit polygon of this map unit is delineated according to the aerial imagery used during the compilation of maps. Water bodies that are very small or narrow are not delineated on the maps.

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): Not calculated

Vegetative classification: None assigned

Description of Riverwash

Slope: 0 to 1 percent

Landform: Mountain valley or river Typical vegetation: None assigned

Selected properties and qualities

General features: Riverwash occurs as areas of unstabilized sand, gravel, cobbles, or stones that are along the periphery of stream and river channels. These areas are flooded, washed, scoured, and reworked frequently by the Merced River. This component may be scoured or overwashed with new deposits of sand, gravel, cobbles, or stones in any year. In some areas the texture is stratified coarse sand to loamy fine sand with strata of gravel; in other areas the texture is freshly deposited gravel, cobbles, or stones.

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None Surface runoff: Medium Current water table: Present Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

501—Happyisles complex, 1 to 5 percent slopes, mesic

Setting

General location: Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,880 to 4,095 feet (1,184 to 1,250 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Happyisles sandy loam—65 percent Happyisles loamy fine sand, overwash—20 percent Minor components—15 percent

Description of Happyisles sandy loam

Slope: 1 to 5 percent

Landform: Metastable alluvial fan or mountain valley Parent material: Fan alluvium derived from granitoid rock

Typical vegetation: The dominant vegetation is mixed conifers; main tree species—ponderosa pine, incense cedar, and black oak; common understory plants—grasses, shrubs, and ferns

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 17 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.8 inches (low)

Selected hydrologic properties

Present annual flooding: Rare Present annual ponding: None Surface runoff: Very low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 2e Other vegetative classification: None assigned

Typical profile

Oi-0 to 3 inches; slightly decomposed plant material

A1—3 to 7 inches; sandy loam A2—7 to 13 inches; sandy loam A3—13 to 17 inches; sandy loam A4—17 to 33 inches; sandy loam

C-33 to 60 inches; stratified gravelly sand to fine sandy loam

Description of Happyisles loamy fine sand, overwash

Slope: 1 to 5 percent

Landform: Areas encroaching on soils from active alluvial fan or mountain valley Parent material: Fan alluvium derived from granitoid rock

Typical vegetation: The dominant vegetation is mixed conifers; main tree species—ponderosa pine, incense cedar, and black oak; common understory plants—grasses, shrubs, and ferns; there is less understory because of disturbance and droughtiness from the recent overwash

Selected properties and qualities

General features: Flooding is from upland runoff moving laterally into the Yosemite Valley after high-intensity winter storms or snowmelt. The deposition of clean, angular, granitic sandy overwash occurs during periods of flooding.

Surface area covered by coarse fragments: 0 to 9 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.3 inches (moderate)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None Surface runoff: Very low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 2e Other vegetative classification: None assigned

Typical profile

Oi—0 to 3 inches; slightly decomposed plant material

A1—3 to 7 inches; loamy fine sand A2—7 to 13 inches; coarse sandy loam A3—13 to 17 inches; sandy loam A4—17 to 33 inches; sandy loam

C1—33 to 41 inches; stratified loamy coarse sand to loamy sand

C2-41 to 62 inches; loamy sand

Minor Components

Mollic Xerofluvents and similar soils

Composition: About 6 percent

Slope: 1 to 5 percent

Landform: Alluvial fan, channel, or mountain valley

Vegetative classification: None assigned

Leidig fine sandy loam, occasionally flooded and similar soils

Composition: About 3 percent

Slope: 0 to 2 percent

Landform: Lower part of alluvial fan, high flood plain, or mountain valley

Vegetative classification: None assigned

Aquandic Humaquepts and similar soils

Composition: About 2 percent

Slope: 0 to 3 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Half Dome extremely stony sandy loam and similar soils

Composition: About 2 percent

Slope: 5 to 7 percent

Landform: Upper part of alluvial fan, mountain slope, or mountain valley

Vegetative classification: None assigned

Happyisles sandy loam, somewhat poorly drained and similar soils

Composition: About 2 percent

Slope: 0 to 3 percent

Landform: Lower part of alluvial fan or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- Both major components are subject to flooding and deposition.
- Sloughing and the undercutting in areas of both major components occur where the map unit adjoins the river.
- There is an increase in flow intensity and channel cutting near some culverts and diverted drainage courses.

502—Happyisles sandy loam, 0 to 3 percent slopes, somewhat poorly drained, mesic

Setting

General location: Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,865 to 4,090 feet (1,180 to 1,247 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Happyisles soil—88 percent Minor components—12 percent

Description of the Happyisles Soil

Slope: 0 to 3 percent

Landform: Distal apron of alluvial fan or mountain valley Parent material: Fan alluvium derived from granitoid rock

Typical vegetation: The dominant vegetation is mixed conifers; main tree species—ponderosa pine, incense cedar, and black oak; common understory plants—grasses and ferns

Selected properties and qualities

General features: The flooding is from very high flood levels from the Merced River or upland runoff moving laterally into the Yosemite Valley after high-intensity winter storms or snowmelt where alluvial fans onlap flood plains.

Surface area covered by coarse fragments: 0 to 9 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.3 inches (moderate)

Selected hydrologic properties

Present annual flooding: Rare Present annual ponding: None Surface runoff: Very low Current water table: Present

Natural drainage class: Somewhat poorly drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 3w Other vegetative classification: None assigned

Typical profile

Oi—0 to 3 inches; slightly decomposed plant material

A1—3 to 7 inches; sandy loam

A2—7 to 13 inches; coarse sandy loam

A3—13 to 17 inches; sandy loam A4—17 to 33 inches; sandy loam

C1—33 to 41 inches; stratified gravelly sand to fine sandy loam

C2-41 to 62 inches; loamy sand

Minor Components

Happyisles sandy loam and similar soils

Composition: About 5 percent

Slope: 0 to 3 percent

Landform: Higher position on alluvial fan or mountain valley

Vegetative classification: None assigned

Leidig and similar soils

Composition: About 5 percent

Slope: 0 to 3 percent

Landform: Lower position on flood plain or mountain valley

Vegetative classification: None assigned

Aquandic Humaquepts and similar soils

Composition: About 2 percent

Slope: 0 to 3 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- Flooding and deposition are management concerns.
- Sloughing and undercutting are concerns where this soil adjoins the river.
- Altering the natural drainage course with the use and placement of culverts increases flow intensity and channel cutting.

504—Mollic Xerofluvents, 1 to 5 percent slopes, frequently flooded, mesic

Setting

General location: Yosemite Vallev

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,950 to 4,130 feet (1,205 to 1,259 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Mollic Xerofluvents—85 percent Minor components—15 percent

Description of Mollic Xerofluvents

Slope: 1 to 5 percent

Landform: Active areas of alluvial fan, recent sediment bar and channel, or mountain

vallev

Parent material: Fan alluvium derived from granitoid rock

Typical vegetation: The dominant vegetation is mixed conifers; main tree species—ponderosa pine, incense cedar, and black oak; common understory plants—grasses and forbs; the understory is sparse because of soil disturbance and droughtiness

Selected properties and qualities

General features: The flooding is from upland runoff moving laterally into the Yosemite Valley after high-intensity winter storms or snowmelt. The deposition of clean, angular, granitic sandy overwash occurs during periods of flooding.

Surface area covered by coarse fragments: 0 to 12 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.8 inches (moderate)

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None

Surface runoff: Low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 3w Other vegetative classification: None assigned

Typical profile

Oi—0 to 2 inches; slightly decomposed plant material A—2 to 6 inches; stratified gravelly sand to loam C1—6 to 8 inches; stratified gravelly sand to loam C2—8 to 12 inches; stratified gravelly sand to loam C3—12 to 23 inches; stratified gravelly sand to loam C4—23 to 29 inches; stratified gravelly sand to loam C5—29 to 49 inches; stratified gravelly sand to loam Ab1—49 to 54 inches; stratified gravelly sand to loam Ab2—54 to 68 inches; stratified gravelly sand to loam

Minor Components

Happyisles loamy fine sand, overwash and similar soils

Composition: About 4 percent

Slope: 1 to 5 percent

Landform: Encroaching alluvial fan or mountain valley

Vegetative classification: None assigned

Half Dome extremely stony sandy loam and similar soils

Composition: About 3 percent

Slope: 5 to 7 percent

Landform: Higher position on alluvial fan, mountain slope, or mountain valley

Vegetative classification: None assigned

Happyisles sandy loam and similar soils

Composition: About 3 percent

Slope: 1 to 5 percent

Landform: Metastable alluvial fan or mountain valley

Vegetative classification: None assigned

Elcapitan fine sandy loam and similar soils

Composition: About 2 percent

Slope: 1 to 5 percent

Soil Survey of Yosemite National Park, California

Landform: Lower position of alluvial fan, intermediate flood plain, or mountain valley

Vegetative classification: None assigned

Mollic Xerofluvents coarse-loamy or sandy-skeletal and similar soils

Composition: About 2 percent

Slope: 1 to 5 percent

Landform: Alluvial fan or mountain valley Vegetative classification: None assigned

Aquandic Humaquepts and similar soils

Composition: About 1 percent

Slope: 0 to 3 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- · Flooding and deposition are management concerns.
- Sloughing and undercutting are concerns where this soil adjoins the river.
- Altering the natural drainage course with the use and placement of culverts increases flow intensity and channel cutting.
- High amounts of sediment are deposited directly into the river where drainage has been altered and intensified.

510t—Rubble land-Lithnip-Rock outcrop association, 8 to 30 percent slopes, mountains, cryic

Setting

General location: None noted

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountains

Elevation: 8,995 to 12,000 feet (2,743 to 3,659 meters)

Mean annual precipitation: 35 to 55 inches (889 to 1,397 millimeters) Mean annual air temperature: 36 to 39 degrees F (2 to 4 degrees C)

Frost-free period: 30 to 60 days

Composition

Rubble land—40 percent Lithnip soil—20 percent Rock outcrop—15 percent Minor components—25 percent

Description of Rubble Land

Slope: 15 to 150 percent Landform: Scree slope

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Lithnip Soil

Slope: 8 to 30 percent Landform: Mountain

Parent material: Colluvium derived from andesite or tuff breccia over residuum derived

from andesite or tuff breccia Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 2 percent stones and 50 to 70 percent

coarse gravel

Restrictive feature: Bedrock (lithic) at a depth of 4 to 10 inches

Available water capacity to a depth of 60 inches: About 0.3 inch (very low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Very high Current water table: None noted

Natural drainage class: Somewhat excessively drained

Hydrologic soil group: D

California land use interpretive groups

Land capability classification (nonirrigated): 8

Other vegetative classification: 022XY012NV_2, BARREN SLOPE 30+" P.Z.

Typical profile

0 to 1 inch; extremely gravelly sandy loam 1 to 5 inches; very gravelly sandy loam

5 to 15 inches; bedrock

Description of Rock Outcrop

Slope: 15 to 150 percent Landform: Mountain

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): Not calculated Other vegetative classification: None assigned

Minor Components

Fishnooze cold and similar soils

Composition: About 10 percent

Slope: 8 to 50 percent Landform: Mountain

Vegetative classification: None assigned

Typic Cryorthents and similar soils

Composition: About 4 percent Slope: 15 to 50 percent Landform: Mountain

Vegetative classification: None assigned

Dunderberg and similar soils

Composition: About 2 percent Slope: 15 to 50 percent Landform: Moraine

Vegetative classification: None assigned

Fishsnooze cool and similar soils

Composition: About 2 percent Slope: 30 to 75 percent Landform: Mountain

Vegetative classification: 022XY126NV_1, PIAL-PIFL WSG:0R3011

Thiefridge and similar soils

Composition: About 2 percent

Slope: 8 to 50 percent Landform: Mountain

Vegetative classification: None assigned

Aspocket and similar soils

Composition: About 1 percent Slope: 15 to 50 percent Landform: Mountain

Vegetative classification: None assigned

Chutes

Composition: About 1 percent Slope: 75 to 150 percent Landform: Avalanche chute

Vegetative classification: None assigned

Glaciers

Composition: About 1 percent Slope: 15 to 99 percent Landform: Glacier

Vegetative classification: None assigned

Hopeval and similar soils

Composition: About 1 percent

Slope: 4 to 15 percent Landform: Flood plain

Vegetative classification: None assigned

Typic Cryaquolls and similar soils

Composition: About 1 percent

Slope: 2 to 8 percent Landform: Flood plain

Vegetative classification: None assigned

551—Happyisles-Half Dome complex, 5 to 15 percent slopes, mesic

Setting

General location: Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,870 to 4,365 feet (1,180 to 1,331 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Happyisles soil—50 percent Half Dome soil—45 percent Minor components—5 percent

Description of the Happyisles Soil

Slope: 5 to 9 percent

Landform: Seasonal drainageway, upper fan apron, or mountain valley

Parent material: Alluvium derived from granitoid rock

Typical vegetation: Main tree species—ponderosa pine, incense cedar, and black oak with maples in scattered groves; common understory plants—grasses, shrubs, and ferns

Selected properties and qualities

Surface area covered by coarse fragments: 0 to 25 percent subrounded stones, 0 to 10 percent coarse subangular gravel, 0 to 10 percent subangular cobbles, and 0 to 25 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.3 inches (moderate)

Selected hydrologic properties

Present annual flooding: Rare Present annual ponding: None

Surface runoff: Low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 3e Other vegetative classification: None assigned

Typical profile

Oi—0 to 3 inches; slightly decomposed plant material

A1—3 to 7 inches; sandy loam

A2—7 to 13 inches; coarse sandy loam A3—13 to 17 inches; sandy loam A4—17 to 33 inches; sandy loam

C1—33 to 41 inches; stratified gravelly sand to fine sandy loam

C2-41 to 62 inches; loamy sand

Description of the Half Dome Soil

Slope: 5 to 15 percent

Landform: Seasonal drainageway, mountain slope, or mountain valley

Parent material: Colluvium derived from granitoid rock

Typical vegetation: Main tree species—ponderosa pine, Douglas-fir, incense cedar, and black oak with maples in scattered groves; common understory plants—mosses and ferns

Selected properties and qualities

General features: Boulders are transported onto this component primarily along seasonal drainageways or during avalanches or rockslides at the base of colluvial slopes.

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles, 5 to 15 percent subrounded boulders, and 40 to 60 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6s Other vegetative classification: None assigned

Typical profile

A1—0 to 1 inch; extremely stony sandy loam A2—1 to 19 inches; very cobbly sandy loam AB—19 to 28 inches; very cobbly sandy loam

Bw1—28 to 33 inches; very cobbly coarse sandy loam Bw2—33 to 50 inches; very cobbly loamy coarse sand

DW2—33 to 30 inches, very cobbly loanly coarse

C—50 to 60 inches; very cobbly loamy sand

Minor Components

Mollic Xerofluvents at lower edge of map unit and similar soils

Composition: About 3 percent

Slope: 5 to 9 percent

Landform: Upper fan apron or mountain valley Vegetative classification: None assigned

Aquandic Humaquepts and similar soils

Composition: About 1 percent

Slope: 0 to 3 percent

Landform: Flood plain or mountain valley Vegetative classification: None assigned

Unnamed frequently flooded soils and similar soils

Composition: About 1 percent

Slope: 5 to 9 percent

Landform: Dissected drainageway, upper fan apron, or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- The coarse soil textures have high detachability.
- Soil disturbance and the subsequent loss of the organic surface layer are management concerns.
- The low water-holding capacity and compaction are management concerns.
- This map unit has active colluvial deposition of large rocks and stony surface textures.

552—Mollic Xerofluvents, 5 to 15 percent slopes, frequently flooded, mesic

Setting

General location: Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,920 to 4,230 feet (1,195 to 1,290 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Mollic Xerofluvents—85 percent Minor components—15 percent

Description of Mollic Xerofluvents

Slope: 5 to 15 percent

Landform: Active alluvial fan, recent sediment bar and channel, or mountain valley

Parent material: Fan alluvium derived from granitoid rock

Typical vegetation: The dominant vegetation is mixed conifers; main tree species—ponderosa pine, incense cedar, and black oak; common understory plants—grasses and forbs; the understory is sparse because of soil disturbance and droughtiness

Selected properties and qualities

General features: The flooding is from runoff moving laterally into the Yosemite Valley

Soil Survey of Yosemite National Park, California

after high-intensity winter storms or snowmelt. The deposition of clean, angular, granitoid sandy overwash occurs during periods of flooding.

Surface area covered by coarse fragments: 0 to 9 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 5.8 inches (moderate)

Selected hydrologic properties

Present annual flooding: Frequent Present annual ponding: None

Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 4w Other vegetative classification: None assigned

Typical profile

Oi-0 to 2 inches; slightly decomposed plant material

A—2 to 6 inches; stratified gravelly sand to loam

C1—6 to 8 inches; stratified gravelly sand to loam

C2—8 to 12 inches; stratified gravelly sand to loam

C3—12 to 23 inches; stratified gravelly sand to loam

C4—23 to 29 inches; stratified gravelly sand to loam

C5—29 to 49 inches; stratified gravelly sand to loam

Ab1—49 to 54 inches; stratified gravelly sand to loam

Ab2—54 to 68 inches; stratified gravelly sand to loam

Minor Components

Mollic Xerofluvents in downslope areas of the map unit and similar soils

Composition: About 5 percent

Slope: 1 to 5 percent

Landform: Alluvial fan or mountain valley Vegetative classification: None assigned

Rubble land

Composition: About 5 percent Slope: 15 to 25 percent

Landform: Adjacent to steep cliff or mountain valley

Vegetative classification: None assigned

Half Dome in upslope areas of the map unit and similar soils

Composition: About 3 percent

Slope: 5 to 15 percent

Landform: Mountain slope or mountain valley Vegetative classification: None assigned

Mollic Xerofluvents coarse-loamy or sandy-skeletal and similar soils

Composition: About 2 percent

Slope: 5 to 15 percent

Landform: Active alluvial fan that occurs randomly or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- Flooding and deposition are management concerns.
- Areas of this map unit may have boulders on the surface.
- Where drainage has been altered and intensified, sediment deposition is increased.

590—Terric Haplosaprists, 0 to 3 percent slopes, mesic

Setting

General location: Adjacent to the Merced River in Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,880 to 3,895 feet (1,184 to 1,188 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Terric Haplosaprists—85 percent Minor components—15 percent

Description of Terric Haplosaprists

Slope: 0 to 3 percent

Landform: Low alluvial fan or mountain valley

Parent material: Organic material over fan alluvium derived from granitoid rock

Typical vegetation: Common understory plants—hydrophytic forbs

Selected properties and qualities

General features: Lateral drainageways carrying runoff from valley side slopes drain into areas of this map unit. The flooding is usually from high-intensity winter storms and spring runoff from snowmelt. Mineral strata overlie the soil with a high organic matter content.

Surface area covered by coarse fragments: 0 to 10 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 10.9 inches (very high)

Selected hydrologic properties

Present annual flooding: Occasional Present annual ponding: None

Surface runoff: High

Current water table: Present

Natural drainage class: Very poorly drained

Hydrologic soil group: D

California land use interpretive groups

Land capability classification (nonirrigated): 6w Other vegetative classification: None assigned

Typical profile

A—0 to 3 inches; mucky loam C1—3 to 8 inches; gravelly sand C2—8 to 12 inches; loamy fine sand

Oa—12 to 31 inches; muck

Soil Survey of Yosemite National Park, California

Ab1—31 to 35 inches; loam

Ab2—35 to 38 inches; sandy loam

Bgb—38 to 46 inches; loam O'a—46 to 52 inches; muck A'b—52 to 58 inches; sandy loam B'gb—58 to 60 inches; loam

Minor Components

Aquandic Humaquepts and similar soils

Composition: About 10 percent

Slope: 0 to 3 percent

Landform: Alluvial fan in slightly higher position or mountain valley

Vegetative classification: None assigned

Happyisles sandy loam, somewhat poorly drained and similar soils

Composition: About 5 percent

Slope: 2 to 3 percent

Landform: Alluvial fan in upslope position or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- The soil acts like a mineral soil at the surface due to the overwash of mineral material, but it is highly organic in the subsoil.
- Channeling road drainage is a management concern.
- The undercutting of vertical streambanks is a management concern.
- The high water table is a management concern.

601—Half Dome complex, 25 to 60 percent slopes, mesic

Setting

General location: Base of the southern canyon wall in Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,915 to 5,830 feet (1,194 to 1,778 meters)

Mean annual precipitation: 35 to 43 inches (889 to 1,092 millimeters)
Mean annual air temperature: 48 to 53 degrees F (9 to 12 degrees C)

Frost-free period: 100 to 150 days

Composition

Half Dome very bouldery—50 percent Half Dome cobbly—45 percent Minor components—5 percent

Description of Half Dome very bouldery

Slope: 25 to 45 percent

Landform: Unstable mountain slope or mountain valley Parent material: Colluvium derived from granitoid rock

Typical vegetation: Main tree species—ponderosa pine, Douglas-fir, incense cedar, and black oak with maples in scattered groves; common understory plants—mosses and ferns

Selected properties and qualities

General features: This component is the oldest geomorphic surface on the side slopes.

Steep vertical debris slopes cross some areas of this map unit. Small channels are scoured throughout this unit during periods of high rainfall or snowmelt.

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles,

5 to 15 percent subrounded stones, and 20 to 35 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.5 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6s Other vegetative classification: None assigned

Typical profile

Oi—0 to 3 inches; very bouldery slightly decomposed plant material

A1—3 to 5 inches; very bouldery sandy loam

A2—5 to 8 inches; gravelly sandy loam

Bw1-8 to 15 inches; cobbly sandy loam

Bw2—15 to 39 inches; very cobbly sandy loam

C-39 to 63 inches; very cobbly sandy loam

Description of Half Dome cobbly

Slope: 45 to 60 percent

Landform: Unstable mountain slope or mountain valley Parent material: Colluvium derived from granitoid rock

Typical vegetation: Main tree species—ponderosa pine, Douglas-fir, and incense cedar

Selected properties and qualities

General features: This component is the oldest geomorphic surface on the side slopes. Steep vertical debris slopes cross some areas of this map unit. Small channels are scoured throughout this unit during periods of high rainfall or snowmelt.

Surface area covered by coarse fragments: 0 to 10 percent subrounded stones and 20 to 35 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.7 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6s Other vegetative classification: None assigned

Typical profile

Oi—0 to 1 inch; stony slightly decomposed plant material Oe—1 to 2 inches; stony slightly decomposed plant material

A1—2 to 10 inches; very cobbly sandy loam A2—10 to 17 inches; very stony sandy loam A3—17 to 29 inches; very stony sandy loam Bw—29 to 60 inches; very stony sandy loam

Minor Components

Rubble land

Composition: About 5 percent Slope: 25 to 60 percent

Landform: Adjacent to cliff or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- · The coarse soil textures have high detachability.
- Soil disturbance and the subsequent loss of the organic surface layer are management concerns.
- The low water-holding capacity is a management concern.
- This map unit includes unstable debris chutes.
- This map unit has active colluvial deposition of large rocks and bouldery surface textures.

602—Half Dome extremely stony sandy loam, 10 to 25 percent slopes, mesic

Setting

General location: Base of the southern and northern canyon walls in Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,790 to 4,270 feet (1,156 to 1,302 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 54 degrees F (10 to 12 degrees C)

Frost-free period: 100 to 150 days

Composition

Half Dome soil—85 percent Minor components—15 percent

Description of the Half Dome Soil

Slope: 10 to 25 percent

Landform: Unstable mountain slope or mountain valley Parent material: Colluvium derived from granitoid rock

Typical vegetation: Main tree species—ponderosa pine, Douglas-fir, incense cedar, and black oak with maples in scattered groves; common understory plants—

mosses and ferns

Selected properties and qualities

General features: This component is the oldest geomorphic surface on the side slopes.

Soil Survey of Yosemite National Park, California

Small channels are scoured throughout this map unit during periods of high rainfall or snowmelt.

Surface area covered by coarse fragments: 5 to 15 percent subangular cobbles, 25 to 35 percent subrounded stones, 5 to 15 percent subrounded boulders, and 5 to 15 percent coarse subangular gravel

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 4s Other vegetative classification: None assigned

Typical profile

A1—0 to 1 inch; extremely stony sandy loam A2—1 to 19 inches; very cobbly sandy loam AB—19 to 28 inches; very cobbly sandy loam

Bw1—28 to 33 inches; very cobbly coarse sandy loam Bw2—33 to 50 inches; very cobbly loamy coarse sand

C-50 to 60 inches; very cobbly loamy sand

Minor Components

Happyisles sandy loam and similar soils

Composition: About 8 percent

Slope: 7 to 9 percent

Landform: Alluvial fan or mountain valley Vegetative classification: None assigned

Mollic Xerofluvents and similar soils

Composition: About 5 percent

Slope: 3 to 5 percent

Landform: Alluvial fan or mountain valley Vegetative classification: None assigned

Rubble land

Composition: About 2 percent Slope: 10 to 25 percent

Landform: Adjacent to cliff or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- The coarse soil textures have high detachability.
- Soil disturbance and the subsequent loss of the organic surface layer are management concerns.
- The very low water-holding capacity is a management concern.
- This map unit has unstable debris chutes.

 This map unit has active colluvial deposition of large rocks and bouldery surface textures.

610—Rubble land-Half Dome complex, 25 to 60 percent slopes, mesic

Setting

General location: Base of the southern canyon wall in Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,850 to 6,290 feet (1,174 to 1,918 meters)

Mean annual precipitation: 35 to 41 inches (889 to 1,041 millimeters)
Mean annual air temperature: 48 to 53 degrees F (9 to 12 degrees C)

Frost-free period: 100 to 150 days

Composition

Rubble land—65 percent Half Dome soil—30 percent Minor components—5 percent

Description of Rubble Land

Slope: 25 to 60 percent

Landform: Adjacent to cliff or mountain valley

Parent material: Colluvium derived from granitoid rock

Typical vegetation: Little or no vegetation

Selected properties and qualities

General features: Rubble land consists of cobbles, stones, and boulders. Channels are scoured throughout this map unit during periods of high rainfall or snowmelt.

Surface area covered by coarse fragments: 25 to 100 percent subrounded stones,

15 to 100 percent subrounded boulders, and 20 to 100 percent subrounder.

15 to 100 percent subrounded boulders, and 20 to 100 percent subangular cobbles

Restrictive feature: Bedrock (lithic) at a depth of 40 inches Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Low

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Half Dome Soil

Slope: 25 to 60 percent

Landform: Very unstable mountain slope or mountain valley Parent material: Colluvium derived from granitoid rock

Typical vegetation: This soil is colder than the Half Dome soil occurring on south-facing slopes; the cooler temperature affects the vegetation; main tree species—black

oak, ponderosa pine, and incense cedar; common understory plants—mosses and ferns

Selected properties and qualities

General features: The colluvial mountain slopes are very active, and the soils on them are young and very bouldery. Channels are scoured throughout this map unit during periods of high rainfall or snowmelt.

Surface area covered by coarse fragments: 15 to 100 percent subrounded boulders, 20 to 100 percent subangular cobbles, and 25 to 100 percent subrounded stones

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.7 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 4s Other vegetative classification: None assigned

Typical profile

Oi—0 to 1 inch; extremely bouldery slightly decomposed plant material Oe—1 to 2 inches; extremely bouldery slightly decomposed plant material

A1—2 to 10 inches; very bouldery sandy loam A2—10 to 17 inches; very cobbly sandy loam A3—17 to 29 inches; very cobbly sandy loam Bw—29 to 60 inches; very cobbly sandy loam

Minor Components

Unnamed soil that fills space between rock fragments and similar soils

Composition: About 3 percent Slope: 25 to 60 percent

Landform: Very unstable mountain slope or mountain valley

Vegetative classification: None assigned

Rock outcrop

Composition: About 2 percent Slope: 25 to 60 percent

Landform: Very unstable mountain slope or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- This map unit has active colluvial deposition of large boulders.
- · The coarse soil textures have high detachability.
- The low water-holding capacity is a management concern.
- This map unit has unstable debris chutes and bouldery surface textures.

620—Half Dome complex, warm, 25 to 60 percent slopes, mesic

Setting

General location: Base of the northern canyon wall in Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,880 to 5,870 feet (1,184 to 1,790 meters)

Mean annual precipitation: 35 to 43 inches (889 to 1,092 millimeters)
Mean annual air temperature: 52 to 55 degrees F (11 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Half Dome extremely stony sandy loam, warm—50 percent Half Dome very cobbly sandy loam, warm—43 percent Minor components—7 percent

Description of Half Dome extremely stony sandy loam, warm

Slope: 25 to 40 percent

Landform: Unstable mountain slope or mountain valley Parent material: Colluvium derived from granitoid rock

Typical vegetation: This soil is warmer than the Half Dome soil occurring on north-facing slopes, and the warmer temperature affects the vegetation; main tree species—canyon live oak, ponderosa pine, incense cedar, and black oak; common understory plants—mosses and ferns

Selected properties and qualities

General features: This component is the oldest geomorphic surface on the side slopes. Steep vertical debris slopes cross some areas of this map unit. Small channels are scoured throughout this unit during periods of high rainfall or snowmelt.

Surface area covered by coarse fragments: 5 to 15 percent subrounded boulders, 10 to 40 percent subrounded stones, and 20 to 35 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.9 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

A1—0 to 1 inch; extremely stony sandy loam

A2—1 to 19 inches; extremely stony sandy loam

AB—19 to 28 inches; very cobbly coarse sandy loam

Bw1—28 to 33 inches; very cobbly coarse sandy loam

Bw2—33 to 50 inches; very cobbly coarse sandy loam C—50 to 60 inches; very cobbly loamy coarse sand

Description of Half Dome very cobbly sandy loam, warm

Slope: 45 to 60 percent

Landform: Unstable mountain slope or mountain valley Parent material: Colluvium derived from granitoid rock

Typical vegetation: This soil is warmer than the Half Dome soil occurring on north-facing slopes, and the warmer temperature affects the vegetation; main tree species—canyon live oak, ponderosa pine, and incense cedar

Selected properties and qualities

General features: This component is the oldest geomorphic surface on the side slopes. Steep vertical debris slopes cross some areas of this map unit. Small channels are scoured throughout this unit during periods of high rainfall or snowmelt. Surface area covered by coarse fragments: 0 to 25 percent subrounded boulders,

5 to 35 percent subrounded stones, and 5 to 15 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 3.7 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Typical profile

Oi—0 to 1 inch; very stony slightly decomposed plant material Oe—1 to 2 inches; very stony slightly decomposed plant material

A1—2 to 10 inches; very cobbly sandy loam A2—10 to 17 inches; extremely stony sandy loam A3—17 to 29 inches; extremely stony sandy loam Bw—29 to 60 inches; extremely stony sandy loam

Minor Components

Rubble land

Composition: About 5 percent Slope: 25 to 60 percent

Landform: Base of cliff or mountain valley Vegetative classification: None assigned

Aquandic Humaquepts and similar soils

Composition: About 2 percent

Slope: 0 to 3 percent

Landform: Alluvial fan in slightly higher positions or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- · The coarse soil textures have high detachability.
- Soil disturbance and the subsequent loss of the organic surface layer are management concerns.
- The low water-holding capacity is a management concern.
- This map unit has unstable debris chutes.
- This map unit has active colluvial deposition of large rocks and stony surface textures.

630—Rubble land-Half Dome complex, warm, 25 to 60 percent slopes, mesic

Setting

General location: Base of the northern canyon wall in Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,860 to 6,525 feet (1,177 to 1,989 meters)

Mean annual precipitation: 35 to 43 inches (889 to 1,092 millimeters)
Mean annual air temperature: 52 to 55 degrees F (11 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Rubble land—65 percent Half Dome soil—30 percent Minor components—5 percent

Description of Rubble Land

Slope: 25 to 60 percent

Landform: Base of cliff or mountain valley

Parent material: Colluvium derived from granitoid rock

Typical vegetation: Little or no vegetation

Selected properties and qualities

General features: Rubble land consists of cobbles, stones, and large boulders.

Channels are scoured throughout this map unit during periods of high rainfall or snowmelt.

Surface area covered by coarse fragments: 20 to 100 percent subrounded stones, 15 to 100 percent subrounded boulders, and 5 to 100 percent subangular cobbles

Restrictive feature: Bedrock (lithic) at a depth of 40 inches Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Description of the Half Dome Soil

Slope: 25 to 60 percent

Landform: Very unstable mountain slope or mountain valley

Parent material: Colluvium derived from granitoid rock

Typical vegetation: This soil is warmer than the Half Dome soil occurring on northfacing slopes, and the warmer temperature affects the vegetation; main tree species—canyon live oak, ponderosa pine, and incense cedar

Selected properties and qualities

General features: This soil is very active and young.

Surface area covered by coarse fragments: 10 to 100 percent subrounded boulders, 20 to 100 percent subrounded stones, and 5 to 100 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.4 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Medium

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: A

California land use interpretive groups

Land capability classification (nonirrigated): 6e Other vegetative classification: None assigned

Typical profile

A1—0 to 1 inch; very bouldery sandy loam

A2—1 to 19 inches; very bouldery sandy loam

AB—19 to 28 inches; very cobbly coarse sandy loam

Bw1—28 to 33 inches; very cobbly coarse sandy loam Bw2—33 to 50 inches; very cobbly loamy coarse sand

C-50 to 60 inches; very cobbly loamy sand

Minor Components

Unnamed soil that fills space between rock fragments and similar soils

Composition: About 3 percent Slope: 25 to 60 percent

Landform: Very unstable mountain slope or mountain valley

Vegetative classification: None assigned

Rock outcrop

Composition: About 2 percent Slope: 25 to 60 percent

Landform: Mountain slope or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- This map unit has active colluvial deposition of large boulders.
- The coarse soil textures have high detachability.
- Soil disturbance and the subsequent loss of the organic surface layer are management concerns.
- The low water-holding capacity is a management concern.
- This map unit has unstable debris chutes and bouldery surface textures.

701—Vitrandic Haploxerolls, coarse-loamy, 4 to 30 percent slopes, well drained, mesic

Setting

General location: Adjacent to the Merced River in Yosemite Valley Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,885 to 4,045 feet (1,185 to 1,234 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Vitrandic Haploxerolls—90 percent Minor components—10 percent

Description of Vitrandic Haploxerolls

Slope: 4 to 30 percent

Landform: Terminal or lateral moraine or mountain valley

Parent material: Till derived from granitoid rock

Typical vegetation: Main tree species—ponderosa pine, Douglas-fir, incense cedar,

canyon live oak, and black oak

Selected properties and qualities

General features: This component is among the oldest in the Yosemite Valley. The soil has little stratification and is fairly homogeneous, reflecting direct ice deposition and no water sorting.

Surface area covered by coarse fragments: 0 to 3 percent subrounded stones and 0 to 2 percent subrounded boulders

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 8.1 inches (high)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 4e Other vegetative classification: None assigned

Typical profile

Oi—0 to 1 inch; slightly decomposed plant material

A—1 to 3 inches; fine sandy loam Bw1—3 to 12 inches; fine sandy loam

Bw2—12 to 16 inches; fine sandy loam

D. O. d.O. to O. d. to be a first and be an

Bw3—16 to 24 inches; fine sandy loam

Bw4—24 to 36 inches; fine sandy loam

C1—36 to 50 inches; fine sandy loam

C2—50 to 60 inches; fine sandy loam

Minor Components

Happyisles sandy loam and similar soils

Composition: About 4 percent

Slope: 1 to 5 percent

Landform: Alluvial fan or mountain valley Vegetative classification: None assigned

Happyisles sandy loam, moderately sloping and similar soils

Composition: About 2 percent

Slope: 5 to 9 percent

Landform: Alluvial fan or mountain valley Vegetative classification: None assigned

Vitrandic Dystroxerepts mesic and similar soils

Composition: About 2 percent

Slope: 4 to 30 percent

Landform: Terminal or lateral moraine or mountain valley

Vegetative classification: None assigned

Half Dome extremely stony sandy loam and similar soils

Composition: About 1 percent

Slope: 5 to 15 percent

Landform: Mountain slope or mountain valley Vegetative classification: None assigned

Happyisles loamy fine sand, overwash and similar soils

Composition: About 1 percent

Slope: 1 to 5 percent

Landform: Alluvial fan or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- Soil disturbance and the subsequent loss of the organic surface layer are management concerns.
- Because the soil profile has uniform texture, water movement is good.

702—Vitrandic Dystroxerepts, 4 to 30 percent slopes, mesic

Setting

General location: Adjacent to the Merced River in the Yosemite Valley

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 3,885 to 3,985 feet (1,184 to 1,215 meters)

Mean annual precipitation: 35 to 40 inches (889 to 1,016 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Vitrandic Dystroxerepts—90 percent Minor components—10 percent

Description of Vitrandic Dystroxerepts

Slope: 4 to 30 percent

Landform: Deposits on moraine or mountain valley Parent material: Stratified till derived from granitoid rock

Typical vegetation: Main tree species—ponderosa pine, Douglas-fir, and black oak

Selected properties and qualities

General features: This component is one of the older geomorphic surfaces in Yosemite

Valley. The soil is highly stratified due to sorting by water.

Surface area covered by coarse fragments: 0 to 10 percent coarse subangular gravel

and 14 to 25 percent subangular cobbles

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: About 4.7 inches (low)

Selected hydrologic properties

Present annual flooding: None Present annual ponding: None

Surface runoff: Low

Current water table: None noted Natural drainage class: Well drained

Hydrologic soil group: B

California land use interpretive groups

Land capability classification (nonirrigated): 4e Other vegetative classification: None assigned

Typical profile

A—0 to 8 inches; cobbly coarse sandy loam
Bw1—8 to 30 inches; very cobbly coarse sandy loam
Bw2—30 to 50 inches; very cobbly coarse sandy loam
C—50 to 60 inches; very stony loamy coarse sand

Minor Components

Vitrandic Haploxerolls with a dark surface horizon more than 25 centimeters thick and similar soils

Composition: About 5 percent Slope: 4 to 30 percent

Landform: Deposits on moraine or mountain valley

Vegetative classification: None assigned

Typic Dystroxerepts coarse-loamy, mesic and similar soils

Composition: About 3 percent

Slope: 4 to 30 percent

Landform: Deposits on moraine or mountain valley

Vegetative classification: None assigned

Unnamed soils

Composition: About 2 percent

Slope: 4 to 30 percent

Landform: Deposits on moraine or mountain valley

Vegetative classification: None assigned

Use and Management Considerations

- This map unit includes areas of fill material and building sites.
- Soil disturbance and the subsequent loss of the organic surface layer are management concerns.

900—Rock outcrop, mesic

Setting

General location: None noted

Major land resource area: Sierra Nevada Mountains (22A)

Landscape: Mountain valleys or canyons

Elevation: 4,190 to 7,735 feet (1,278 to 2,359 meters)

Mean annual precipitation: 37 to 43 inches (940 to 1,092 millimeters)
Mean annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)

Frost-free period: 100 to 150 days

Composition

Rock outcrop—95 percent Minor components—5 percent

Description of Rock Outcrop

Slope: 50 to 100 percent

Landform: Nearly vertical escarpment Parent material: Granitoid rock Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Surface runoff: Very high

Current water table: None noted

Hydrologic soil group: D

California land use interpretive groups

Land capability classification (nonirrigated): 8 Other vegetative classification: None assigned

Minor Components

Rubble land

Composition: About 5 percent Slope: 50 to 100 percent

Landform: Base of cliff or mountain valley Vegetative classification: None assigned

Use and Management Considerations

- This map unit has excessive runoff downslope.
- This map unit has extremely steep escarpment walls.

DAM—Dam

Setting

General location: None noted

Major land resource area: Sierra Nevada Mountains (22A)

Composition

Dam—100 percent

Description of Dam

Slope: 0 to 100 percent Landform: Floodway

Typical vegetation: None assigned Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): Not calculated

Other vegetative classification: None assigned

W—Water

Setting

General location: None noted

Major land resource area: Sierra Nevada Mountains (22A)

Composition

Water—100 percent

Description of Water

Landform: None assigned

Typical vegetation: None assigned

Selected properties and qualities

Surface area covered by coarse fragments: None noted

Restrictive feature: None noted

Available water capacity to a depth of 60 inches: Very low

Selected hydrologic properties

Current water table: None noted Hydrologic soil group: None noted

California land use interpretive groups

Land capability classification (nonirrigated): Not calculated

Other vegetative classification: None assigned

Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils in the survey area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soil-related failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils as forestland; as sites for buildings, sanitary facilities, highways and other transportation systems, and parks and other recreational facilities; and as wildlife habitat. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, lawns, and trees and shrubs.

Interpretive Ratings

The interpretive tables in this survey rate the soils in the survey area for various uses. Many of the tables identify the limitations that affect specified uses and indicate the severity of those limitations. The ratings in these tables are both verbal and numerical.

Rating Class Terms

Rating classes are expressed in the tables in terms that indicate the extent to which the soils are limited by all of the soil features that affect a specified use or in terms that indicate the suitability of the soils for the use. Thus, the tables may show limitation classes or suitability classes. Terms for the limitation classes are *not limited*, *somewhat limited*, and *very limited*. The suitability ratings are expressed as *well suited*, *moderately suited*, *poorly suited*, and *unsuited* or as *good*, *fair*, and *poor*.

Numerical Ratings

Numerical ratings in the tables indicate the relative severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use and the point at which the soil feature is not a limitation. The limitations appear in order from the most limiting to the least limiting. Thus, if more than one

limitation is identified, the most severe limitation is listed first and the least severe one is listed last.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for plants (23). The soils are grouped according to their limitations for plants and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for forestland or for engineering purposes.

In the capability system, soils are generally grouped at three levels—capability class, subclass, and unit. Only class and subclass are used in this survey.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class 1 soils have slight limitations that restrict their use.

Class 2 soils have moderate limitations that restrict the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that restrict the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that restrict the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, forestland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, forestland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, 2e. The letter e shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by *w*, *s*, or *c* because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use to pasture, forestland, wildlife habitat, or recreation.

The capability classification of map units in this survey area is given in the section "Detailed Soil Map Units" and in table 5.

Major Land Resource Areas

The land capability classification system is further refined by designating the major land resource area (MLRA) of the soils. A major land resource area is a broad geographic area that has a distinct combination of climate, topography, vegetation, land use, and general type of farming (20). All of the soil survey of Yosemite National

Park occurs in MLRA 22A—Sierra Nevada Mountains—which is one of these nationally designated areas.

MLRA 22A, Sierra Nevada Mountains.—This area consists of the higher elevations of the Sierra Nevada Mountains. It occurs a strongly asymmetric mountain range with a long, gentle western slope and a steep eastern escarpment. It is characterized by hilly to very steep mountain relief and occasional mountain valleys. It is 50 to 80 miles (80 to 130 kilometers) wide and runs in an approximately north-south direction for more than 400 miles (645 kilometers). The survey area ranges from approximately 1,654 to 13,066 feet (504 to 3,982 meters) in elevation, which almost covers the entire range of elevation in MLRA 22A.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, sanitary facilities, construction materials, and water management. The ratings are based on observed performance of the soils and on the data in the tables described under the heading "Soil Properties."

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about particle-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 to 7 feet of the surface, soil wetness, depth to a water table, ponding, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, industrial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; evaluate alternative sites for sanitary landfills, septic tank absorption fields, and sewage lagoons; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Recreation

The soils of the survey area are rated in table 6, parts I and II, according to limitations that affect their suitability for recreation. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect the recreational uses.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The ratings in the table are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the season when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

The information in table 6 can be supplemented by other information in this survey, for example, interpretations for building site development, construction materials, sanitary facilities, and water management.

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The ratings are based on the soil properties that affect the ease of developing camp areas and the performance of the areas after development. Slope, stoniness, and depth to bedrock or a cemented pan are the main concerns affecting the development of camp areas. The soil properties that affect the performance of the areas after development are those that influence trafficability and promote the growth of vegetation, especially in heavily used areas. For good trafficability, the surface of camp areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The ratings are based on the soil properties that affect the ease of developing picnic areas and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of picnic areas. For good trafficability, the surface of picnic areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Playgrounds require soils that are nearly level, are free of stones, and can withstand intensive foot traffic. The ratings are based on the soil properties that affect the ease of developing playgrounds and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of playgrounds. For good trafficability, the surface of the playgrounds

Figure 25.—The Chilnualna Falls Trail meanders through map unit 292.

should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Paths and trails for hiking and horseback riding should require little or no slope modification through cutting and filling (fig. 25). The ratings are based on the soil

Figure 26.—A golf course at Wawona in an area of map unit 276. An area of map unit 296 is on the mountain slope in the background.

properties that affect trafficability and erodibility. These properties are stoniness, depth to a water table, ponding, flooding, slope, and texture of the surface layer.

For *lawns, landscaping, and golf fairways,* the lawns and landscaping require soils on which turf and ornamental trees and shrubs can be established and maintained. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer.

Golf fairways are subject to heavy foot traffic and some light vehicular traffic (fig. 26). Cutting or filling may be required. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer. The suitability of the soil for traps, tees, roughs, and greens is not considered in the ratings.

Building Site Development

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Table 7, parts I and II, show the degree and kind of soil limitations that affect dwellings with and without basements, small commercial buildings, local roads and streets, and shallow excavations.

The ratings in the table are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings without basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include depth to a water table, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Small commercial buildings are structures that are less than three stories high and do not have basements. The foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. The ratings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility (which is inferred from the Unified classification). The properties that affect the ease and amount of excavation include flooding, depth to a water table, ponding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, depth to a water table, ponding, flooding, the amount of large stones, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred from the AASHTO group index number), subsidence, linear extensibility (shrink-swell potential), the potential for frost action, depth to a water table, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the

amount of large stones, and dense layers influence the ease of digging, filling, and compacting. Depth to the seasonal high water table, flooding, and ponding may restrict the period when excavations can be made. Slope influences the ease of using machinery. Soil texture, depth to the water table, and linear extensibility (shrink-swell potential) influence the resistance to sloughing.

Construction Materials

Table 8, parts I, II, and III, give information about the soils as potential sources of gravel, sand, topsoil, reclamation material, and roadfill. Normal compaction, minor processing, and other standard construction practices are assumed.

Sand and gravel are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. In table 8, only the likelihood of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material. The properties used to evaluate the soil as a source of sand or gravel are gradation of grain sizes (as indicated by the Unified classification of the soil), the thickness of suitable material, and the content of rock fragments. If the bottom layer of the soil contains sand or gravel, the soil is considered a likely source regardless of thickness. The assumption is that the sand or gravel layer below the depth of observation exceeds the minimum thickness.

The soils are rated *good*, *fair*, or *poor* as potential sources of sand and gravel. A rating of *good* or *fair* means that the source material is likely to be in or below the soil. The bottom layer and the thickest layer of the soils are assigned numerical ratings. These ratings indicate the likelihood that the layer is a source of sand or gravel. The numbers 0.00 to 0.07 indicate that the layer is a poor source. The numbers 0.75 to 1.00 indicate that the layer is a good source. The numbers 0.08 to 0.74 indicate the degree to which the layer is a likely source.

The soils are rated *good, fair,* or *poor* as potential sources of topsoil, reclamation material, and roadfill. The features that limit the soils as sources of these materials are specified in the tables. The numerical ratings given after the specified features indicate the degree to which the features limit the soils as sources of topsoil, reclamation material, or roadfill. The lower the number, the greater the limitation.

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area. The ratings are based on the soil properties that affect plant growth; the ease of excavating, loading, and spreading the material; and reclamation of the borrow area. Toxic substances, soil reaction, and the properties that are inferred from soil texture, such as available water capacity and fertility, affect plant growth. The ease of excavating, loading, and spreading is affected by rock fragments, slope, depth to a water table, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, depth to a water table, rock fragments, depth to bedrock or a cemented pan, and toxic material.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Reclamation material is used in areas that have been drastically disturbed by surface mining or similar activities. When these areas are reclaimed, layers of soil material or unconsolidated geological material, or both, are replaced in a vertical sequence. The reconstructed soil favors plant growth. The ratings in the table do not apply to quarries and other mined areas that require an offsite source of reconstruction material. The ratings are based on the soil properties that affect erosion and stability of the surface and the productive potential of the reconstructed soil. These properties include the content of sodium, salts, and calcium carbonate; reaction;

available water capacity; erodibility; texture; content of rock fragments; and content of organic matter and other features that affect fertility.

Roadfill is soil material that is excavated in one place and used in road embankments in another place. In this table, the soils are rated as a source of roadfill for low embankments, generally less than 6 feet high and less exacting in design than higher embankments.

The ratings are for the whole soil, from the surface to a depth of about 5 feet. It is assumed that soil layers will be mixed when the soil material is excavated and spread.

The ratings are based on the amount of suitable material and on soil properties that affect the ease of excavation and the performance of the material after it is in place. The thickness of the suitable material is a major consideration. The ease of excavation is affected by large stones, depth to a water table, and slope. How well the soil performs in place after it has been compacted and drained is determined by its strength (as inferred from the AASHTO classification of the soil) and linear extensibility (shrink-swell potential).

Sanitary Facilities

Table 9, parts I and II, show the degree and kind of soil limitations that affect septic tank absorption fields, sewage lagoons, sanitary landfills, and daily cover for landfill. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Septic tank absorption fields are areas in which effluent from a septic tank is distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 60 inches is evaluated. The ratings are based on the soil properties that affect absorption of the effluent, construction and maintenance of the system, and public health. Permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, and flooding affect absorption of the effluent. Stones and boulders, ice, and bedrock or a cemented pan interfere with installation. Subsidence interferes with installation and maintenance. Excessive slope may cause lateral seepage and surfacing of the effluent in downslope areas.

Some soils are underlain by loose sand and gravel or fractured bedrock at a depth of less than 4 feet below the distribution lines. In these soils the absorption field may not adequately filter the effluent, particularly when the system is new. As a result, the ground water may become contaminated.

Sewage lagoons are shallow ponds constructed to hold sewage while aerobic bacteria decompose the solid and liquid wastes. Lagoons should have a nearly level floor surrounded by cut slopes or embankments of compacted soil. Nearly impervious soil material for the lagoon floor and sides is required to minimize seepage and contamination of ground water. Considered in the ratings are slope, permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, flooding, large stones, and content of organic matter.

Soil permeability is a critical property affecting the suitability for sewage lagoons. Most porous soils eventually become sealed when they are used as sites for sewage lagoons. Until sealing occurs, however, the hazard of pollution is severe. Soils that have a permeability rate of more than 2 inches per hour are too porous for the proper functioning of sewage lagoons. In these soils, seepage of the effluent can result in contamination of the ground water. Ground-water contamination is also a hazard if fractured bedrock is within a depth of 40 inches, if the water table is high enough to raise the level of sewage in the lagoon, or if floodwater overtops the lagoon.

A high content of organic matter is detrimental to proper functioning of the lagoon

because it inhibits aerobic activity. Slope, bedrock, and cemented pans can cause construction problems, and large stones can hinder compaction of the lagoon floor. If the lagoon is to be uniformly deep throughout, the slope must be gentle enough and the soil material must be thick enough over bedrock or a cemented pan to make land smoothing practical.

A trench sanitary landfill is an area where solid waste is placed in successive layers in an excavated trench. The waste is spread, compacted, and covered daily with a thin layer of soil excavated at the site. When the trench is full, a final cover of soil material at least 2 feet thick is placed over the landfill. The ratings in the table are based on the soil properties that affect the risk of pollution, the ease of excavation, trafficability, and revegetation. These properties include permeability, depth to bedrock or a cemented pan, depth to a water table, ponding, slope, flooding, texture, stones and boulders, highly organic layers, soil reaction, and content of salts and sodium. Unless otherwise stated, the ratings apply only to that part of the soil within a depth of about 6 feet. For deeper trenches, onsite investigation may be needed.

Hard, nonrippable bedrock, creviced bedrock, or highly permeable strata in or directly below the proposed trench bottom can affect the ease of excavation and the hazard of ground-water pollution. Slope affects construction of the trenches and the movement of surface water around the landfill. It also affects the construction and performance of roads in areas of the landfill.

Soil texture and consistence affect the ease with which the trench is dug and the ease with which the soil can be used as daily or final cover. They determine the workability of the soil when dry and when wet. Soils that are plastic and sticky when wet are difficult to excavate, grade, or compact and are difficult to place as a uniformly thick cover over a layer of refuse.

The soil material used as the final cover for a trench landfill should be suitable for plants. It should not have excess sodium or salts and should not be too acid. The surface layer generally has the best workability, the highest content of organic matter, and the best potential for plants. Material from the surface layer should be stockpiled for use as the final cover.

In an *area sanitary landfill*, solid waste is placed in successive layers on the surface of the soil. The waste is spread, compacted, and covered daily with a thin layer of soil from a source away from the site. A final cover of soil material at least 2 feet thick is placed over the completed landfill. The ratings in the table are based on the soil properties that affect trafficability and the risk of pollution. These properties include flooding, permeability, depth to a water table, ponding, slope, and depth to bedrock or a cemented pan.

Flooding is a serious problem because it can result in pollution in areas downstream from the landfill. If permeability is too rapid or if fractured bedrock, a fractured cemented pan, or the water table is close to the surface, the leachate can contaminate the water supply. Slope is a consideration because of the extra grading required to maintain roads in the steeper areas of the landfill. Also, leachate may flow along the surface of the soils in the steeper areas and cause difficult seepage problems.

Daily cover for landfill is the soil material that is used to cover compacted solid waste in an area sanitary landfill. The soil material is obtained offsite, transported to the landfill, and spread over the waste. The ratings in the table also apply to the final cover for a landfill. They are based on the soil properties that affect workability, the ease of digging, and the ease of moving and spreading the material over the refuse daily during wet and dry periods. These properties include soil texture, depth to a water table, ponding, rock fragments, slope, depth to bedrock or a cemented pan, reaction, and content of salts, sodium, or lime.

Loamy or silty soils that are free of large stones and excess gravel are the best

cover for a landfill. Clayey soils may be sticky and difficult to spread; sandy soils are subject to wind erosion.

Slope affects the ease of excavation and of moving the cover material. Also, it can influence runoff, erosion, and reclamation of the borrow area.

After soil material has been removed, the soil material remaining in the borrow area must be thick enough over bedrock, a cemented pan, or the water table to permit revegetation. The soil material used as the final cover for a landfill should be suitable for plants. It should not have excess sodium, salts, or lime and should not be too acid.

Water Management

Table 10 provides information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas and for embankments, dikes, and levees. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. *No limitations* indicate that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. *Limitations* with ratings between 0 and 1 can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. *Limitations* with a rating value of 1 indicate that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. Embankments that have zoned construction (core and shell) are not considered. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A high water table affects the amount of usable material. It also affects trafficability.

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the permeability of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Soil Properties

Data relating to soil properties are collected during the course of the soil survey. Soil properties are ascertained by field examination of the soils and by laboratory index testing of some benchmark soils. Established standard procedures are followed. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps. Samples are taken from some typical profiles and tested in the laboratory to determine particle-size distribution, plasticity, and compaction characteristics.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas. Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties are shown in tables. They include engineering index properties, physical and chemical properties, and pertinent soil and water features.

Engineering Index Properties

Table 11 gives the engineering classifications and the range of index properties for the layers of each soil in the survey area.

Depth to the upper and lower boundaries of each layer is indicated.

Texture is given as a texture code for the standard terms used by the United States Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam" (texture code L), for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly" (texture code G). Textural terms are defined in the Glossary. Texture codes are:

ASHY	Ashy
BR	Bedrock
BY	Bouldery
BY	Boulders
BYV	Very bouldery
BYX	Extremely bouldery
С	Clay
СВ	Cobbly
СВ	Cobbles
CBV	Very cobbly
CBX	Extremely cobbly
CEM	Cemented
CL	Clay loam
CN	Channery
CN	Channers
CNV	Very channery
CNX	Extremely channery
COP	Coprogenous

Soil Survey of Yosemite National Park, California

PCN Parachanners
PCNV Very parachannery
PCNX Extremely parachannery

PEAT Peat

PF Permanently frozen

PFL Paraflaggy
PFL Paraflagstones
PFLV Very paraflaggy
PFLX Extremely paraflaggy

PG Paragravel
PGR Paragravelly
PGRV Very paragravelly
PGRX Extremely paragravelly

PST Parastony
PST Parastones
PSTV Very parastony
PSTX Extremely parastony

PT Peaty
S Sand
SC Sandy clay
SCL Sandy clay loam

SI Silt
SIC Silty clay
SICL Silty clay loam
SIL Silt loam
SL Sandy loam

SPM Slightly decomposed plant material

ST Stony
ST Stones
STV Very stony
STX Extremely stony
VFS Very fine sand
VFSL Very fine sandy loam

W Water WD Woodv

Classification of the soils is determined according to the Unified soil classification system (2) and the system adopted by the American Association of State Highway and Transportation Officials (1).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified

as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of particle-size distribution, liquid limit, and plasticity index are generally rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is generally omitted in the table.

Physical Properties

Table 12 shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrinkswell potential, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In table 12, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at ¹/₃- or ¹/₁₀-bar (33kPa or 10kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on

soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Saturated hydraulic conductivity refers to the ability of a soil to transmit water or air. The term "permeability," as used in soil surveys, indicates saturated hydraulic conductivity (K_{sat}). The estimates in the table indicate the rate of water movement, in micrometers per second (um/sec), when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at $^{1}/_{3}$ - or $^{1}/_{10}$ -bar tension (33kPa or 10kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. Volume change is influenced by the amount and type of clay minerals in the soil.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3, shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In table 12, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for plants and soil organisms.

Erosion Properties

Erosion factors are shown in table 13 as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of several factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and permeability. Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion

by wind or water that can occur without affecting plant productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible.

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Chemical Properties

Table 14 shows estimates of some chemical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Cation-exchange capacity is the total amount of extractable bases that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. Soils having a low cation-exchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cation-exchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

Effective cation-exchange capacity refers to the sum of extractable bases plus aluminum expressed in terms of milliequivalents per 100 grams of soil. It is determined for soils that have pH of less than 5.5.

Soil reaction is a measure of acidity or alkalinity. The pH of each soil horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Physical and Chemical Analyses of Selected Soils

Soil samples for 114 pedons were analyzed by the Soil Survey Laboratory, United States Department of Agriculture, Natural Resources Conservation Service, Lincoln, Nebraska (19). A list of laboratory sample pedon IDs, laboratory data pedon numbers, and site/pedon IDs referenced by map unit symbol is available in Appendix II. This list also indicates whether the pedon is typical for the official series or an example pedon for soils mapped at the family level or higher level as described in the section "Soil Series and Their Morphology." This data is available as characterization data (22). The data is also available online at http://ssldata.nrcs.usda.gov/.

Water Features

Table 15 gives estimates of various water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. (See figure 27.)

The four hydrologic soil groups are:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly

Figure 27

wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained

soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

The *months* in the table indicate the portion of the year in which the feature is most likely to be a concern.

Water table refers to a saturated zone in the soil. Table 15 indicates, by month, depth to the top (upper limit) and base (lower limit) of the saturated zone in most years. Estimates of the upper and lower limits are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors or mottles (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation. Table 15 indicates surface water depth and the duration and frequency of ponding. Duration is expressed as very brief if less than 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, rare, occasional, and frequent. None means that ponding is not probable; rare that it is unlikely but possible under unusual weather conditions (the chance of ponding is nearly 0 percent to 5 percent in any year); occasional that it occurs, on the average, once or less in 2 years (the chance of ponding is 5 to 50 percent in any year); and frequent that it occurs, on the average, more than once in 2 years (the chance of ponding is more than 50 percent in any year).

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Duration and frequency are estimated. Duration is expressed as extremely brief if 0.1 hour to 4 hours, very brief if 4 hours to 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent. None means that flooding is not probable; very rare that it is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year); rare that it is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year); occasional that it occurs infrequently under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); frequent that it is likely to occur often under normal weather conditions (the chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year); and very frequent that it is likely to occur very often under normal weather conditions (the chance of flooding is more than 50 percent in all months of any year).

The information is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and levels of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

Soil Features

Table 16 gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A *restrictive layer* is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. The table indicates the hardness of the restrictive layer, which significantly affects the ease of excavation. *Depth to top* is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as *low, moderate,* or *high,* is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as *low, moderate,* or *high*. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.

Classification of the Soils

The system of soil classification used by the National Cooperative Soil Survey has six categories (16, 18). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. Table 17 shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.

ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in *sol*. An example is Entisol.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Orthent (*Orth*, meaning true or common, plus *ent*, from Entisol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Cryorthents [*Cry*, meaning cold (cryic soil temperature regime), plus *orthent*, the suborder of the Entisols that commonly occurs].

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. The adjective *Typic* identifies the subgroup that typifies the great group. An example is Typic Cryorthents.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is sandy-skeletal, isotic Typic Cryorthents.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile.

Soils and Their Morphology

In this section, each soil series, family, or taxon above the family level recognized in the survey area is described. Characteristics of the soil and the material in which it formed are identified for each. A pedon, a small three-dimensional area of soil, that is typical of the series, family, or taxon above the family level in the survey area is described. The detailed description of each soil horizon follows standards in the "Soil

Survey Manual" (24). Many of the technical terms used in the descriptions are defined in "Soil Taxonomy" (16) and in "Keys to Soil Taxonomy" (18). Unless otherwise indicated, colors in the descriptions are for dry soil. Following the pedon description is the range of important characteristics of the soils in the series, family, or taxon above the family level.

Aquandic Humaquepts

Aquandic Humaquepts in the survey area consist of very deep, poorly drained and very poorly drained soils that formed in coarse textured stream alluvium from granitoid rock. These soils formed in abandoned river channels and oxbows of low flood plains. Slope is 0 to 2 percent. The soils are classified as coarse-silty over sandy or sandy-skeletal, isotic, nonacid, mesic Aquandic Humaquepts.

Typical Pedon

Aquandic Humaquepts, 0 to 2 percent slopes, mesic; Mariposa County, California; north side of Leidig Meadow, Yosemite Valley, Yosemite National Park; lat. 37 degrees 44 minutes 18.70 seconds N. and long. 119 degrees 36 minutes 7.45 seconds W.; UTM Zone 11, easting 270716.44 and northing 4179992.79; USGS Half Dome, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Aquandic Humaquepts in this survey area because of the highly variable nature of these soils.)

- A1—0 to 8 inches (0 to 20 cm); grayish brown (2.5Y 5/2) mucky very fine sandy loam, 50 percent very dark grayish brown (2.5Y 3/2) and 50 percent very dark gray (5Y 3/1) moist; strong medium granular structure; soft, very friable, non-sticky, non-plastic; common very fine interstitial pores; many very fine and fine roots; few (1 percent) fine and medium distinct dark yellowish brown (10YR 4/6, moist) redoximorphic accumulations of iron; extremely acid (pH 4.1); clear smooth boundary. (Lab sample # 91P2327)
- A2—8 to 18 inches (20 to 46 cm); dark grayish brown (2.5Y 4/2) mucky silt loam, 60 percent very dark gray (5Y 3/1) and 40 percent dark olive gray (5Y 3/2) moist; strong medium granular structure; common very fine and fine roots; common very fine interstitial pores; common (11 percent) fine distinct olive (5Y 4/4, moist) redoximorphic accumulations of iron; strongly acid (pH 4.5); clear smooth boundary. (Lab sample # 91P2328)
- A3—18 to 26 inches (46 to 66 cm); gray (10YR 5/1) fine sandy loam, 90 percent very dark gray (5Y 3/1) and 10 percent olive (5Y 4/3) moist; massive; slightly hard, friable, non-sticky, non-plastic; common very fine and fine roots; common very fine interstitial pores; moderately acid (pH 5.3); clear smooth boundary.
- C—26 to 68 inches (66 to 173 cm); 50 percent white (5Y 8/1) and 50 percent light gray (5Y 7/1) sand, 40 percent gray (5Y 5/1) and 40 percent greenish gray (5GY 6/1) moist; single grain; loose, non-sticky, non-plastic; many very fine interstitial pores; 10 percent dark greenish gray (5GY 4/1), 8 percent light gray (5Y 7/1), and 2 percent light olive brown (2.5Y 5/6, moist) redoximorphic accumulations of iron; moderately acid (pH 5.8).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

The mucky surface horizon has a base saturation (ammonium acetate) that is less than 20 percent. This horizon also contains 10 to 20 percent glass and aluminum plus one-half iron percent (ammonium oxalate) of 0.6 to 1.6. Sodium fluoride reaction is 8.5 to 10.5. Redoximorphic accumulations of iron occur in most horizons.

A horizon (upper part):

Hue—10YR, 2.5Y, or 5Y (dry and moist)

Value—4 or 5 (dry) and 2 to 4 (moist)

Chroma—1 or 2 (dry) and 1 to 6 (moist)

Texture—mucky fine sandy loam, mucky very fine sandy loam, or mucky silt loam

Clay content—2 to 9 percent

Rock fragment content—0 to 6 percent

Organic matter content—10 to 20 percent

Reaction—extremely acid to strongly acid

A horizon (lower part):

Hue—10YR, 5Y, or neutral (dry and moist)

Value—4 (dry) and 3 or 4 (moist)

Chroma—1 or 2 (dry) and 1 to 4 (moist)

Texture—fine sandy loam, very fine sandy loam, or silt loam

Clay content—2 to 6 percent

Organic matter content—3 to 7 percent

Reaction—extremely acid to strongly acid

C horizon:

Hue—2.5Y, 5Y, or 5GY (dry and moist)

Value—7 or 8 (dry) and 4 to 7 (moist)

Chroma—1 (dry) and 1 to 6 (moist)

Texture—coarse sand, sand, or loamy sand that has less than 15 percent fine sand or coarser material

Clay content—2 to 5 percent

Organic matter content—0 to 0.5 percent

Gravel content—0 to 10 percent

Reaction—moderately acid

Additional characterization data for this Aquandic Humaquepts example pedon, National Soil Survey Laboratory lab data pedon number 91P0404 (Pedon ID: 90CA043013), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Badgerpass Series

The Badgerpass series consists of very deep, somewhat excessively drained soils that formed in colluvium, alluvium, and/or till from granitoid rock. These soils are on mountain slopes, on moraines, in mountain valleys, and on ridges. Slope is 0 to 45 percent. The soils are classified as sandy, isotic, frigid Humic Dystroxerepts.

Typical Pedon

Typic Dystroxerepts-Badgerpass-Dystric Xerorthents complex, 15 to 45 percent slopes, mountain slopes, moraines, frigid; Mariposa County, California; Tamarack Creek/Merced River, 2 miles east of Gin Flat on Tioga Road Burn Area, 200 feet east and 100 feet north of the southwest corner of section 2, T. 2 S., R. 20 E., Mount Diablo Base and Meridian; lat. 37 degrees 46 minutes 54.4 seconds N. and long. 119 degrees 44 minutes 27.4 seconds W.; USGS Tamarack Flat, California Quadrangle, NAD 83:

- Oi—0 to 2 inches, (0 to 4 cm); slightly decomposed plant material; 1 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size. (0 to 4 cm thick)
- A—2 to 7 inches, (4 to 18 cm); very dark grayish brown (10YR 3/2) loamy coarse sand, very dark brown (10YR 2/2) moist; weak medium subangular blocky and weak medium granular structure; soft, very friable, non-sticky, non-plastic;

- common fine and very fine and few coarse and medium roots; 5 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; neutral (pH 6.6); abrupt irregular boundary. (Lab sample # 97P00881)
- AC—7 to 18 inches, (18 to 46 cm); brown (10YR 5/3) loamy coarse sand, dark brown (10YR 3/3) moist; weak medium granular and subangular blocky structure; soft, very friable, non-sticky, non-plastic; common medium, fine, and very fine and few coarse roots; 8 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; slightly acid (pH 6.3); clear smooth boundary. (Lab sample # 97P00882)
- C1—18 to 37 inches, (46 to 95 cm); light olive brown (2.5Y 5/3) coarse sand, dark olive brown (2.5Y 3/3) moist; weak coarse subangular blocky structure; loose, non-sticky, non-plastic; common fine and very fine and few medium and coarse roots; 8 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; moderately acid (pH 6.0); gradual smooth boundary. (Lab sample # 97P00883)
- C2—37 to 55 inches, (95 to 139 cm); light yellowish brown (2.5Y 6/3) coarse sand, olive brown (2.5Y 4/3) moist; weak coarse subangular blocky structure; loose, non-sticky, non-plastic; few fine, medium, and very fine roots; 8 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5); abrupt irregular boundary.
- C3—55 to 67 inches, (139 to 169 cm); light gray (2.5Y 7/2) gravelly coarse sand, grayish brown (2.5Y 5/2) moist; weak coarse subangular blocky structure; loose, non-sticky, non-plastic; few fine, medium, and very fine roots; 25 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5).

Range in Characteristics

The mean annual soil temperature is less than 8.0 degrees C (46.4 degrees F). The particle-size control section has 0.4 to 4 percent clay and 75 to 98 percent sand. Rock fragment content is 0 to 40 percent, by volume. The particle-size control section, by weighted average, has less than 35 percent fragments. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 14 percent. The soil has an umbric epipedon.

A horizon:

Hue—10YR (dry and moist)

Value—3 to 6 (dry) and 2 to 4 (moist)

Chroma—3 to 5 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, or loamy sand

Clay content—0.5 to 4 percent

Rock fragment content—0 to 25 percent

Organic matter content—2 to 10 percent

Reaction—very strongly acid to moderately acid

AC horizon:

Hue—10YR (dry and moist)

Value—4 or 5 (dry) and 3 or 4 (moist)

Chroma—3 to 5 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—coarse sand, sand, loamy coarse sand, or loamy sand

Clay content—0.5 to 4 percent

Rock fragment content—0 to 15 percent

Organic matter content—3 to 5 percent

Reaction—strongly acid or moderately acid

Other characteristics—some pedons do not have an AC horizon; a Bw horizon occurs in some pedons

C horizon:

Hue—10YR, 5Y, or 2.5Y (dry and moist)

Value—5 to 7 (dry) and 3 to 5 (moist)

Chroma—2 to 4 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—coarse sand, sand, loamy coarse sand, or loamy sand

Clay content—0.4 to 4 percent

Rock fragment content—0 to 40 percent

Organic matter content—0.2 to 5 percent

Reaction—very strongly acid to slightly acid

Additional characterization data for this Badgerpass typical pedon, National Soil Survey Laboratory lab data pedon number 97P0131 (Pedon ID: 96CA043002), and for pedon numbers 01N0151 (01CA109014) and 02N0612 (01CA043001) are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Canisrocks Series

The Canisrocks series consists of very deep, somewhat excessively drained soils that formed in colluvium from granitoid rock. These soils are on mountain slopes, on mountainsides, on moraines, on cirques, in avalanche chutes, in small mountain valleys, on small mountain benches, and on colluvial aprons. Slope is 9 to 80 percent. The soils are classified as sandy-skeletal, isotic Typic Cryorthents.

Typical Pedon

Rock outcrop-Canisrocks-Xeric Dystrocryepts complex, 5 to 45 percent slopes, moraines, mountain slopes, cryic; Tuolumne County, California; Middle Tuolumne River Drainage, approximately 700 feet (213.4 meters) southwest of Lukens Lake in Yosemite National Park, approximately 925 feet (281.9 meters) east and 3,700 feet (1,127.8 meters) north of the southwest corner of section 13, T. 1 S., R. 21 E., Mount Diablo Base and Meridian; lat. 37 degrees 51 minutes 30.5 seconds N. and long. 119 degrees 37 minutes 12.2 seconds W.; USGS Hetch Hetchy Reservoir, California Quadrangle, NAD 83:

- Oi—0 to 0 inches, (0 to 1 cm); bouldery slightly decomposed plant material; 5 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size, 5 percent subrounded very strongly cemented granodiorite fragments 250 to 600 mm in size, and 5 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size.
- Oe—0 to 1 inch, (1 to 2 cm); bouldery moderately decomposed plant material; 5 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 5 percent subrounded very strongly cemented granodiorite fragments 250 to 600 mm in size, and 5 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size.
- A—1 to 4 inches, (2 to 10 cm); grayish brown (10YR 5/2) bouldery loamy sand, very dark gray (10YR 3/1) moist; single grain and weak very fine granular structure; soft, very friable, non-sticky, non-plastic; few fine and many very fine roots; 4 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size and 20 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size; strongly acid (pH 5.2); abrupt smooth boundary. (Lab sample # 97P00872)

- Bw1—4 to 18 inches, (10 to 45 cm); light yellowish brown (2.5Y 6/3) very bouldery sand, brown (10YR 4/3) moist; single grain and weak very fine granular structure; soft, very friable, non-sticky, non-plastic; common fine and medium, few coarse and very coarse, and many very fine roots; 5 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size, 5 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size, 10 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, and 20 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size; strongly acid (pH 5.1); abrupt smooth boundary. (Lab sample # 97P00873)
- Bw2—18 to 28 inches, (45 to 71 cm); light yellowish brown (2.5Y 6/4) very bouldery sand, dark yellowish brown (10YR 4/4) moist; weak very fine granular structure; soft, very friable, non-sticky, non-plastic; few fine, common medium, few coarse and very coarse, and many very fine roots; 7 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size, 10 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size, 20 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, and 20 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size; strongly acid (pH 5.1); clear smooth boundary. (Lab sample # 97P00874)
- BC—28 to 34 inches, (71 to 87 cm); light yellowish brown (2.5Y 6/4) very bouldery sand, olive brown (2.5Y 4/4) moist; single grain and weak very fine granular structure; soft, very friable, non-sticky, non-plastic; few fine, medium, and coarse and common very fine roots; 7 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size, 20 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size, and 20 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size; strongly acid (pH 5.4); clear smooth boundary. (Lab sample # 97P00875)
- C—34 to 60 inches, (87 to 152 cm); light gray (2.5Y 7/2) extremely bouldery sand, olive brown (2.5Y 4/3) moist; single grain and weak very fine granular structure; loose, non-sticky, non-plastic; few fine and medium and common very fine roots; 12 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size, 15 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 15 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size, and 20 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size; strongly acid (pH 5.2). (Lab sample # 97P00876)

Range in Characteristics

The mean annual soil temperature is about 4.5 degrees C. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 85 percent.

A horizon:

Hue-10YR or 2.5Y

Value—5 to 7 (dry) and 2 to 4 (moist)

Chroma—1 to 6 (dry) and 1 to 4 (moist)

Texture of the fine-earth fraction—coarse sand, sand, fine sand, loamy coarse sand, loamy sand, loamy fine sand, or sandy loam

Clay content—0.2 to 6 percent

Rock fragment content—2 to 70 percent

Organic matter content—1 to 10 percent

Reaction—extremely acid to moderately acid

Other characteristics—some pedons have an AC horizon

Bw and BC horizons:

Hue—10YR or 2.5Y (dry) and 7.5YR or 10YR (moist)

Value—5 or 6 (dry) and 3 or 4 (moist)

Chroma—3 to 6 (dry) and 3 or 4 (moist)

Texture of the fine-earth fraction—coarse sand, sand, loamy coarse sand, loamy sand, or loamy fine sand

Clay content—0.5 to 6.0 percent

Rock fragment content—8 to 80 percent

Organic matter content—0.5 to 6 percent

Reaction—very strongly acid to moderately acid

Other characteristics—some pedons do not have a Bw or BC horizon

C horizon:

Hue—10YR or 2.5Y

Value—5 to 7 (dry) and 3 to 6 (moist)

Chroma—2 to 6 (dry) and 1 to 5 (moist)

Texture of the fine-earth fraction—coarse sand, sand, fine sand, loamy coarse sand, loamy sand, or loamy fine sand

Clay content—0.2 to 6 percent

Rock fragment content—8 to 85 percent

Organic matter content—0.2 to 4 percent

Reaction—extremely acid to moderately acid

Other characteristics—some pedons have a Cd horizon

Additional characterization data for this Canisrocks typical pedon, National Soil Survey Laboratory lab data pedon number 97P0129 (Pedon ID: 96CA109013), and for pedon number 97P0121 (Pedon ID: 96CA109005) are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Clarkslodge Series

The Clarkslodge series consists of very deep, well drained soils that formed in colluvium and/or residuum from granitoid and metamorphic rock. These soils are on ancient landslides, moraines, and mountain slopes. Slope is 0 to 45 percent. The soils are classified as coarse-loamy, isotic, frigid Ultic Haploxeralfs.

Typical Pedon

Clarkslodge-Typic Haploxerepts-Rock outcrop complex, 0 to 30 percent slopes, mountain slopes, metavolcanic, frigid/mesic; Mariposa County, California; inside Mariposa Grove of Giant Sequoias, approximately 1,000 feet (304.8 meters) west of the Clothespin Tree and 250 feet (76.2 meters) south of the Mariposa Grove Road in Yosemite National Park; Public Land Survey System, with sections unavailable, T. 5 S., R. 22 E.; lat. 37 degrees 30 minutes 38.9 seconds N. and long. 119 degrees 36 minutes 21.8 seconds W.; USGS Mariposa Grove, California Quadrangle, NAD 83:

- Oi—0 to 0 inches, (0 to 1 cm); slightly decomposed plant material; 2 percent subangular very strongly cemented granitoid and/or metamorphic rock fragments 2 to 75 mm in size.
- Oe—0 to 1 inch, (1 to 2 cm); moderately decomposed plant material; 2 percent subangular very strongly cemented granitoid and/or metamorphic rock fragments 2 to 75 mm in size.
- Oa—1 to 1 inch, (2 to 3 cm); highly decomposed plant material; 2 percent subangular very strongly cemented granitoid and/or metamorphic rock fragments 2 to 75 mm in size.
- A—1 to 3 inches, (3 to 8 cm); brown (10YR 4/3) coarse sandy loam, black (10YR 2/1)

- moist; strong very coarse granular, moderate coarse granular, and weak fine granular structure; slightly hard, very friable, non-sticky, non-plastic; common fine and very fine roots; 13 percent subangular very strongly cemented granitoid and/or metamorphic rock fragments 2 to 75 mm in size; neutral (pH 7.1); clear smooth boundary. (Lab sample # 98P01167)
- Bw—3 to 6 inches, (8 to 15 cm); brown (10YR 4/3) coarse sandy loam, very dark brown (7.5YR 2/2) moist; weak coarse, very fine, and fine granular structure; slightly hard, very friable, slightly sticky, non-plastic; common fine and many very fine roots; 14 percent subangular very strongly cemented granitoid and/or metamorphic rock fragments 2 to 75 mm in size; neutral (pH 7.0); distinct wavy boundary. (Lab sample # 98P01168)
- Bt1—6 to 12 inches, (15 to 31 cm); brown (7.5YR 5/4) coarse sandy loam, brown (7.5YR 4/3) moist; moderate medium and weak fine subangular blocky structure; slightly hard, very friable, slightly sticky, non-plastic; common fine, medium, and very coarse and many very fine roots; 7 percent subangular very strongly cemented granitoid and/or metamorphic rock fragments 2 to 75 mm in size; slightly acid (pH 6.4); gradual wavy boundary. (Lab sample # 98P01169)
- Bt2—12 to 27 inches, (31 to 69 cm); brown (7.5YR 5/4) coarse sandy loam, brown (7.5YR 4/4) moist; moderate medium subangular blocky and weak fine subangular blocky structure; slightly hard, very friable, slightly sticky, non-plastic; common fine, medium, coarse, and very fine roots; 13 percent subangular very strongly cemented granitoid and/or metamorphic rock fragments 2 to 75 mm in size; slightly acid (pH 6.2); gradual wavy boundary. (Lab sample # 98P01170)
- Bt3—27 to 35 inches, (69 to 89 cm); reddish yellow (7.5YR 6/6) gravelly sandy loam, brown (7.5YR 4/4) moist; moderate fine and weak very fine subangular blocky structure; slightly hard, very friable, slightly sticky, non-plastic; few fine, common medium, and few very fine roots; 17 percent subangular very strongly cemented granitoid and/or metamorphic rock fragments 2 to 75 mm in size; slightly acid (pH 6.3); gradual wavy boundary. (Lab sample # 98P01171)
- C—35 to 60 inches, (89 to 152 cm); light yellowish brown (10YR 6/4) gravelly sandy loam, yellowish brown (10YR 5/4) moist; massive; moderately hard, friable, slightly sticky, non-plastic; few coarse and very fine roots; 5 percent subangular very strongly cemented granitoid and/or metamorphic fragments 75 to 250 mm in size and 13 percent subangular very strongly cemented granitoid and/or metamorphic rock fragments 2 to 75 mm in size; slightly acid (pH 6.2). (Lab sample # 98P01172)

Range in Characteristics

The mean annual soil temperature is less than 8.0 degrees C (46.4 degrees F). The particle-size control section has 8 to 27 percent clay and 35 to 75 percent sand. Rock fragment content is 0 to 65 percent, by volume. The particle-size control section, by weighted average, has less than 35 percent rock fragments. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 10 percent.

A horizon:

Hue—10YR (dry and moist)

Value—4 to 6 (dry) and 2 or 3 (moist)

Chroma—2 to 4 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—loamy sand, coarse sandy loam, sandy loam, fine sandy loam, loam, or silt loam

Clay content—4 to 18 percent

Rock fragment content—0 to 20 percent

Organic matter content—5 to 35 percent

Reaction—very strongly acid to neutral

Bw horizon:

Hue—10YR (dry and moist)

Value—4 to 6 (dry) and 2 to 4 (moist)

Chroma—3 to 6 (dry) and 3 or 4 (moist)

Texture of the fine-earth fraction—loamy sand, coarse sandy loam, or sandy loam

Clay content—4 to 18 percent

Rock fragment content—10 to 20 percent

Organic matter content—2 to 5 percent

Reaction—slightly acid or neutral

Other characteristics—some pedons do not have a Bw horizon

Bt horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—4 to 7 (dry) and 3 to 6 (moist)

Chroma—3 to 6 (dry) and 2 to 6 (moist)

Texture of the fine-earth fraction—coarse sandy loam, sandy loam, fine sandy

loam, loam, or silt loam

Clay content—5 to 27 percent

Rock fragment content—5 to 65 percent

Organic matter content—0.2 to 5 percent

Reaction—very strongly acid to slightly acid

Other characteristics—some pedons have a BC horizon

C horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—6 to 8 (dry) and 5 or 6 (moist)

Chroma—3 to 6

Texture of the fine-earth fraction—sandy loam, fine sandy loam, or loam

Clay content—8 to 27 percent

Rock fragment content—25 to 45 percent

Organic matter content—0.1 to 0.75 percent

Reaction—moderately acid or slightly acid

Additional characterization data for this Clarkslodge typical pedon, National Soil Survey Laboratory lab data pedon number 98O0134 (Pedon ID: 97CA043002), and for pedon number 98P0192 (Pedon ID: 97CA043010) are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Craneflat Series

The Craneflat series consists of very deep, somewhat excessively drained soils that formed in colluvium or till from granitoid rock. These soils are on mountainsides, mountain slopes, mountain summits, moraines, landslides, and aprons. Slope is 0 to 75 percent. The soils are classified as sandy-skeletal, isotic, frigid Humic Dystroxerepts.

Typical Pedon

Clarkslodge-Craneflat-Nevadafalls complex, 0 to 30 percent slopes, mountain slopes, hummocky, frigid; Mariposa County, California; approximately 1,000 feet (304.9 meters) east of Wawona Road on a slope above Bishop Creek, approximately 790 feet (240.9 meters) east and 2,450 feet (747.0 meters) south of the northwest corner of section 4, T. 4 S., R. 21 E., Mount Diablo Base and Meridian; lat. 37 degrees 36 minutes 55.3 seconds N. and long. 119 degrees 41 minutes 5.6 seconds W.; USGS Wawona, California Quadrangle, NAD 83:

- Oi—0 to 1 inch, (0 to 2 cm); slightly decomposed plant material; 1 percent subangular very strongly cemented granitoid rock fragments 2 to 76 mm in size.
- Oe—1 to 1 inch, (2 to 3 cm); moderately decomposed plant material; 1 percent subangular very strongly cemented granitoid rock fragments 2 to 76 mm in size.
- Oa—1 to 2 inches, (3 to 5 cm); highly decomposed plant material; 1 percent subangular very strongly cemented granitoid rock fragments 2 to 76 mm in size.
- A—2 to 4 inches, (5 to 11 cm); brown (10YR 5/3) very stony sandy loam, dark brown (10YR 3/3) moist; moderate fine granular structure; loose, non-sticky, non-plastic; few fine and many very fine roots; 3 percent subangular very strongly cemented granitic rock fragments 75 to 250 mm in size, 7 percent subangular very strongly cemented granitic rock fragments 2 to 75 mm in size, and 30 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size; slightly acid (pH 6.3); clear smooth boundary. (Lab sample # 98P01196)
- Bw1—4 to 11 inches, (11 to 28 cm); brown (10YR 4/3) very stony loamy sand, dark brown (10YR 3/3) moist; weak medium granular and weak fine granular structure; soft, very friable, non-sticky, non-plastic; few fine and common very fine roots; 3 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 35 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size; slightly acid (pH 6.4); gradual wavy boundary. (Lab sample # 98P01197)
- Bw2—11 to 22 inches, (28 to 57 cm); brown (10YR 4/3) very stony loamy coarse sand, dark brown (10YR 3/3) moist; moderate coarse granular, weak fine granular, and weak very fine granular structure; soft, very friable, non-sticky, non-plastic; few fine and common medium coarse and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 25 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size; slightly acid (pH 6.1); gradual wavy boundary. (Lab sample # 98P01198)
- Bw3—22 to 30 inches, (57 to 75 cm); yellowish brown (10YR 5/4) very stony loamy sand, brown (10YR 4/3) moist; weak medium subangular blocky, weak fine subangular blocky, and weak very fine subangular blocky structure; soft, very friable, non-sticky, non-plastic; few fine and common medium coarse, very coarse, and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 25 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size; very moderately acid (pH 5.8); gradual wavy boundary. (Lab sample # 98P01199)
- Bw4—30 to 60 inches, (75 to 152 cm); yellowish brown (10YR 5/4) very cobbly loamy coarse sand, brown (10YR 4/3) moist; single grain and weak medium subangular blocky, weak fine subangular blocky, and weak very fine granular structure; slightly hard, friable, non-sticky, non-plastic; few fine and common medium roots; 15 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size and 20 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; moderately acid (pH 5.8). (Lab sample # 98P01200)

Range in Characteristics

The mean annual soil temperature is less than 8.0 degrees C (46.4 degrees F). The particle-size control section has 0.5 to 7 percent clay and 70 to 85 percent sand. Rock fragment content is 0 to 60 percent, by volume. The particle-size control section, by weighted average, has 35 percent or more rock fragments. The soil has an umbric epipedon and/or cambic horizon. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 85 percent.

A horizon:

Hue—10YR (dry) and 10YR or 2.5Y (moist)

Value—3 to 5 (dry) and 2 or 3 (moist)

Chroma—2 to 4

Texture of the fine-earth fraction—loamy sand, loamy fine sand, coarse sandy loam, or sandy loam

Clay content—0.5 to 7 percent

Rock fragment content—5 to 75 percent

Organic matter content—2 to 30 percent

Reaction—extremely acid to slightly acid

Other characteristics—some pedons have an AC horizon

Bw horizon:

Hue—10YR (dry and moist)

Value—3 or 4 (dry) and 4 to 6 (moist)

Chroma—2 to 6

Texture of the fine-earth fraction—sand, loamy coarse sand, loamy sand, coarse sandy loam, or sandy loam

Clay content—0.5 to 7 percent

Rock fragment content—15 to 85 percent

Organic matter content—0.2 to 6 percent

Reaction—very strongly acid to slightly acid

Other characteristics—some pedons have a BC horizon and/or a C horizon

Additional characterization data for this Craneflat typical pedon, National Soil Survey Laboratory lab data pedon number 98P0190 (Pedon ID: 97CA043008), and for pedon number 01N0152 (Pedon ID: 00CA109015) are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Crazymule Series

The Crazymule series consists of soils that are moderately deep to a dense physical, root-restricting horizon. These soils are somewhat excessively drained and formed in colluvium, residuum, and/or till from granitoid rock. They are on moraines, mountain slopes, colluvial aprons, and joints and/or fractures in bedrock. Slope is 5 to 35 percent. The soils are classified as loamy-skeletal, isotic Xeric Dystrocryepts.

Typical Pedon

Rock outcrop-Crazymule-Vitrandic Cryorthents association, 0 to 45 percent slopes, joints, fractures, scoured, cryic; Mariposa County, California; approximately 4,800 feet east of the summit of Moraine Mountain, section 15, T. 4 S., R. 23 E., Mount Diablo Base and Meridian; lat. 37 degrees 35 minutes 36.5 seconds N. and long. 119 degrees 26 minutes 17.5 seconds W.; USGS Sing Peak, California Quadrangle, NAD 83:

- Oi—0 to 0 inch, (0 to 1 cm); gravelly slightly decomposed plant material; 30 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size.
- A—0 to 5 inches, (1 to 13 cm); dark grayish brown (2.5Y 4/2) gravelly sandy loam, very dark brown (10YR 2/2) moist; weak fine granular structure; very friable, non-sticky, non-plastic; few coarse, common medium, and many fine and very fine roots. 15 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.2); clear smooth boundary.
- Bw1—5 to 22 inches, (13 to 55 cm); light olive brown (2.5Y 5/3) very bouldery sandy loam, dark brown (10YR 3/3) moist; weak fine granular structure; very friable, non-sticky, non-plastic; few coarse and medium and common fine and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to

250 mm in size, 15 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 20 percent subrounded very strongly cemented granitoid rock fragments 600 to 3000 mm in size; strongly acid (pH 5.2); clear smooth boundary.

- Bw2—22 to 35 inches, (55 to 90 cm); yellowish brown (10YR 5/6) very bouldery sandy loam, dark yellowish brown (10YR 3/4) moist; weak fine granular structure; very friable, non-sticky, non-plastic; few medium, many fine, and common very fine roots; 10 percent subrounded very strongly cemented granitoid rock fragments 600 to 3000 mm in size, 15 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 20 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size; strongly acid (pH 5.2); gradual wavy boundary.
- Cd—35 to 60 inches, (90 to 152 cm); pale brown (10YR 6/3) cobbly fine sandy loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; slightly rigid, non-sticky, non-plastic; few medium and common fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size and 10 percent subangular very strongly cemented granitoid rock fragments 2 to 76 mm in size; very strongly acid (pH 5.0).

Range in Characteristics

Depth to a densic horizon that is a physical root-restricting layer ranges from 21 inches (53 centimeters) to 35 inches (89 centimeters). The mean annual soil temperature is about 4.5 degrees C (40 degrees F). The particle-size control section has 2 to 8 percent clay and 60 to 90 percent sand. Rock fragment content is 0 to 90 percent, by volume. The particle-size control section, by weighted average, has 35 percent or more rock fragments. The soil has an umbric epipedon and/or cambic horizon. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 40 percent.

A horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—4 to 7 (dry) and 2 or 3 (moist)

Chroma—1 to 3

Texture of the fine-earth fraction—loamy sand, loamy fine sand, sandy loam, or fine sandy loam

Clay content—1 to 6 percent

Rock fragment content—0 to 40 percent

Organic matter content—2 to 12 percent

Reaction—very strongly acid to slightly acid

Bw horizon (if it occurs):

Hue—10YR (dry and moist)

Value—5 to 7 (dry) and 3 to 5 (moist)

Chroma—3 to 6 (dry) and 3 to 5 (moist)

Texture of the fine-earth fraction—loamy sand, loamy fine sand, coarse sandy loam, sandy loam, or fine sandy loam

Clay content—2 to 8 percent

Rock fragment content—0 to 90 percent

Organic matter content—0.75 to 7 percent

Reaction—very strongly acid to slightly acid

Cd horizon:

Hue—10YR or 2.5YR (dry and moist)

Value—5 to 7 (dry) and 3 to 5 (moist)

Chroma-1 to 6

Texture of the fine-earth fraction—loamy fine sand, coarse sandy loam, sandy loam, or loam

Clay content—2 to 16 percent

Rock fragment content—5 to 70 percent

Organic matter content—0.20 to 1 percent

Reaction—very strongly acid to moderately acid

Other characteristics—some pedons have a C horizon above the Cd horizon

Dystric Xeropsamments

Dystric Xeropsamments in the survey area consist of very deep somewhat excessively drained soils on moraines, mountain slopes, mountainsides, terraces, and flood plains and in mountain valleys. These soils formed in colluvium, alluvium, and/or till derived from granitoid rock. Slope is 0 to 65 percent. The soils are classified as isotic, frigid Dystric Xeropsamments.

Typical Pedon

Dystric Xeropsamments-Typic Dystroxerepts-Badgerpass-Rock outcrop association, 5 to 35 percent slopes, mountain valleys, mountain slopes, frigid; Mariposa County, California; near Illilouette Creek, approximately 7,800 feet (2,377.4 meters) east-northeast of Mono Meadows, approximately 1,000 feet (304.8 meters) north and 1,100 feet (335.3 meters) east of the southwest corner of section 10, T. 3 S., R 22 E., Mount Diablo Base and Meridian; lat. 37 degrees 41 minutes 03.1 seconds N. and long. 119 degrees 33 minutes 07.7 seconds W.; USGS Half Dome, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Dystric Xeropsamments in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 0 inch, (0 to 1 cm); slightly decomposed plant material; 2 percent subangular very strongly cemented granitic rock fragments 2 to 75 mm in size.
- A—0 to 6 inches, (1 to 14 cm); dark yellowish brown (10YR 4/4) loamy sand, dark brown (7.5YR 3/2) moist; weak coarse subangular blocky structure; very friable, non-sticky, non-plastic; common medium and fine and many very fine roots; 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.1); abrupt smooth boundary.
- Bw1—6 to 18 inches, (14 to 45 cm); brown (7.5YR 5/4) loamy sand, dark brown (7.5YR 3/3) moist; weak fine subangular blocky and weak medium subangular blocky structure; very friable, non-sticky, non-plastic; common coarse, medium, and fine and few very coarse and very fine roots; 7 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.1); clear smooth boundary.
- Bw2—18 to 25 inches, (45 to 63 cm); yellowish brown (10YR 5/6) loamy sand, brown (7.5YR 4/4) moist; single grain; very friable, non-sticky, non-plastic; few very coarse, coarse, medium, fine, and very fine roots; 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.1); gradual smooth boundary.
- C1—25 to 41 inches, (63 to 105 cm); brownish yellow (10YR 6/6) loamy sand, dark yellowish brown (10YR 4/4) moist; single grain; loose, non-sticky, non-plastic; few coarse, medium, fine, and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.1); gradual smooth boundary.
- C2—41 to 60 inches, (105 to 152 cm); light yellowish brown (10YR 6/4) loamy fine sand, dark yellowish brown (10YR 4/4) moist; single grain; loose, non-sticky, non-plastic; few very coarse, coarse, medium, fine, and very fine roots; 10 percent

subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.1).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Several similar family level categories are therefore included with the concept of this component, such as isotic, thermic Dystric Xeropsamments and isotic, mesic Dystric Xeropsamments.

The particle-size control section has less than 35 percent weighted average rock fragments, by volume, and 0.5 to 6 percent clay. This soil does not have an umbric epipedon or a cambic horizon. Rock fragment content is 0 to 35 percent in the mineral soil and 0 to 50 percent in the O horizons. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 50 percent. Pedons with a Cr horizon are moderately deep.

A horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—3 to 6 (dry) and 2 or 3 (moist)

Chroma—2 to 4 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—sand, loamy sand, loamy fine sand, or sandy loam

Rock fragment content—0 to 25 percent

Organic matter content—2 to 10 percent

Reaction—very strongly acid to slightly acid

Other characteristics—some pedons have an Ab horizon

Bw horizon (if it occurs):

Hue—7.5YR or 10YR (dry and moist)

Value—5 or 6 (dry) and 3 or 4 (moist)

Chroma—4 to 6 (dry) and 3 or 4 (moist)

Texture of the fine-earth fraction—loamy sand

Rock fragment content—0 to 20 percent

Organic matter content—1 to 5 percent

Reaction—strongly acid or moderately acid

C horizon:

Hue—10YR (dry and moist)

Value—6 (dry) and 4 (moist)

Chroma—3 to 6 (dry) and 3 or 4 (moist)

Texture of the fine-earth fraction—coarse sand, sand, loamy sand, loamy fine sand, or sandy loam

Rock fragment content—0 to 35 percent

Organic matter content—0.2 to 4 percent

Reaction—very strongly acid to slightly acid

Other characteristics—some pedons have a CA or Cr horizon

Dystric Xerorthents

Dystric Xerorthents in the survey area consist of very deep, somewhat excessively drained soils that formed in colluvium, alluvium, and/or till from granitoid and/or metamorphic rock. These soils are on mountain slopes, on moraines, in drainageways, on terraces, and in mountain valleys. Slope is 0 to 80 percent. The soils are classified as sandy-skeletal, isotic, frigid Dystric Xerorthents.

Typical Pedon

Typic Dystroxerepts-Badgerpass-Dystric Xerorthents complex, 15 to 45 percent slopes, mountain slopes, moraines, frigid; Tuolumne County, California; in the Grand Canyon of the Tuolumne River, approximately 2,000 feet (609.6 meters) east of the footbridges in Pate Valley; complete Public Land Survey System unavailable; T. 1 N., R. 22 E., Mount Diablo Base and Meridian; lat. 37 degrees 55 minutes 54.7 seconds N. and long. 119 degrees 35 minutes 12.0 seconds N.; USGS Ten Lakes, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Dystric Xerorthents in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 1 inch, (0 to 2 cm); stony slightly decomposed plant material; 5 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size.
- Oe—1 to 2 inches, (2 to 5 cm); stony moderately decomposed plant material; 5 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size.
- Oa—2 to 3 inches, (5 to 7 cm); stony highly decomposed plant material; 5 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size.
- A—3 to 11 inches, (7 to 27 cm); yellowish brown (10YR 5/4) stony loamy sand, dark brown (7.5YR 3/3) moist; weak medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; many fine, medium, and very fine roots; 5 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 15 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; very strongly acid (pH 5.0); clear smooth boundary.
- Bw—11 to 24 inches, (27 to 62 cm); yellowish brown (10YR 5/4) stony loamy fine sand, dark brown (7.5YR 3/3) moist; weak fine subangular blocky, weak medium subangular blocky, and moderate coarse subangular blocky structure; soft, friable, non-sticky, non-plastic; common very coarse, coarse, and very fine and many fine and medium roots; 5 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 5 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size, and 15 percent subangular very strongly cemented granodiorite fragments 2 to 76 mm in size; very strongly acid (pH 5.0); abrupt wavy boundary.
- C1—24 to 38 inches, (62 to 97 cm); light yellowish brown (10YR 6/4) very stony loamy sand, dark yellowish brown (10YR 4/4) moist; massive; soft, very friable, non-sticky, non-plastic; few coarse and common medium and fine roots; 10 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 15 percent subangular very strongly cemented granodiorite fragments 2 to 76 mm in size, and 15 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size; very strongly acid (pH 5.0); clear wavy boundary.
- C2—38 to 60 inches, (97 to 152 cm); light yellowish brown (10YR 6/4) very stony loamy fine sand, yellowish brown (10YR 5/4) moist; massive; soft, very friable, non-sticky, non-plastic; few fine and common medium roots; 10 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size, 10 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, and 15 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; very strongly acid (pH 5.0).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level categories are therefore included with the concept of this component, such as coarse-loamy, isotic, nonacid, frigid Dystric Xerorthents; sandy, isotic, frigid Dystric

Xerorthents; sandy-skeletal, isotic, mesic Dystric Xerorthents; and sandy-skeletal, isotic, thermic Dystric Xerorthents.

Dystric Xerorthents do not have a cambic horizon or an umbric epipedon. The clay content of the particle-size control section is 0.5 to 8 percent. Base saturation (by ammonium acetate) is less than 60 percent in all horizons at a depth between 25 and 75 centimeters. Rock fragment content is 0 to 80 percent, by volume. Some pedons have one or more O horizons. The content of surface rock fragments is 0 to 80 percent.

A horizon:

Hue—10YR or 2.5Y (dry) and 10YR or 7.5YR (moist)

Value—3 to 5 (dry) and 2 to 4 (moist)

Chroma—2 to 4 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, loamy sand, or sandy loam

Rock fragment content—0 to 60 percent

Organic matter content—2 to 12 percent

Reaction—very strongly acid to slightly acid

Other characteristics—some pedons have an AC horizon

Bw horizon (if it occurs):

Hue—10YR or 2.5Y (dry) and 7.5YR, 10YR, or 2.5Y (moist)

Value—5 to 7 (dry) and 4 to 6 (moist)

Chroma—3 or 4 (dry) and 3 to 6 (moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, or loamy fine sand

Rock fragment content—14 to 60 percent

Organic matter content—0.5 to 6 percent

Reaction—very strongly acid to slightly acid

Other characteristics—some pedons have a BC horizon

C horizon:

Hue—10YR (dry and moist)

Value—5 to 7 (dry) and 3 to 6 (moist)

Chroma—3 or 4 (dry) and 2 to 6 (moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, loamy sand, loamy fine sand, or sandy loam

Rock fragment content—0 to 80 percent

Organic matter content—0.2 to 3 percent

Reaction—very strongly acid to slightly acid

Other characteristics—some pedons have a C´horizon

Elcapitan Series

The Elcapitan series consists of very deep, somewhat poorly drained soils on intermediate flood plains. These soils formed in alluvium weathered from granitoid rock. Slope is 0 to 2 percent. The soils are classified as coarse-loamy, isotic, mesic Vitrandic Dystroxerepts.

Typical Pedon

Elcapitan fine sandy loam, 0 to 2 percent slopes, mesic; Mariposa County, California; 900 feet (274.3 meters) northwest of Sentinel Chapel, Sentinel Meadow, Yosemite National Park, Yosemite Valley; lat. 37 degrees 44 minutes 29 seconds N. and long. 119 degrees 35 minutes 37 seconds W.; UTM Zone 11, easting 271479.64 and northing 4180284.21; USGS Half Dome, California Quadrangle, NAD 83:

Oi—0 to 1 inch, (0 to 3 cm); slightly decomposed organic material.

- A—1 to 7 inches, (3 to 18 cm); stratified grayish brown (10YR 5/2), light brownish gray (10YR 6/2), and brown (10YR 5/3) fine sandy loam, very dark grayish brown (10YR 3/2), brown (10YR 4/3), and dark brown (10YR 3/3) moist; weak fine granular structure; soft, very friable, non-sticky, non-plastic; many very fine roots; moderately acid (pH 5.8); abrupt smooth boundary.
- 2Ab1—7 to 12 inches, (18 to 31 cm); dark grayish brown (10YR 4/2) fine sandy loam, very dark grayish brown (10YR 3/2) moist; moderate medium and coarse subangular blocky structure; slightly hard, friable, slightly sticky, non-plastic; weakly smeary; many very fine roots; moderately acid (pH 5.8); clear smooth boundary.
- 2Ab2—12 to 20 inches, (31 to 51 cm); dark grayish brown (10YR 4/2) fine sandy loam, very dark grayish brown (10YR 3/2) moist; very dark brown (10YR 2/2) coatings on faces of peds; moderate coarse subangular blocky structure; slightly hard, friable, slightly sticky, non-plastic; weakly smeary; common very fine roots; moderately acid (pH 5.8); clear smooth boundary.
- 2Ab3—20 to 31 inches, (51 to 79 cm); brown (10YR 5/3) fine sandy loam, dark brown (10YR 3/3) moist; massive; slightly hard, friable, slightly sticky, non-plastic; weakly smeary; few very fine roots; moderately acid (pH 5.8); clear smooth boundary.
- 2Ab4—31 to 38 inches, (79 to 97 cm); grayish brown (10YR 5/2) fine sandy loam, very dark grayish brown (10YR 3/2) moist; massive; soft, very friable, non-sticky, non-plastic; few very fine roots; charcoal; moderately acid (pH 5.8); abrupt smooth boundary.
- 3C—38 to 44 inches, (97 to 112 cm); stratified light brownish gray (10YR 6/2) loamy sand and very pale brown (10YR 8/1) sand, very dark grayish brown (10YR 3/2) and light brownish gray (10YR 6/2) moist; common medium distinct strong brown (7.5YR 4/6, moist) masses of iron accumulation; massive; soft, very friable, non-sticky, non-plastic and loose, non-sticky, non-plastic; moderately acid (pH 5.8); abrupt smooth boundary.
- 3A'b—44 to 47 inches, (112 to 120 cm); brown (10YR 5/3) loamy sand, dark brown (10YR 3/3) moist; massive; loose, non-sticky, non-plastic; moderately acid (pH 5.8); abrupt smooth boundary.
- 3C´—47 to 53 inches, (120 to 135 cm); very pale brown (10YR 8/1), light gray (10YR 7/2), and black (10YR 2/1) coarse sand, 45 percent light brownish gray (10YR 6/2), 45 percent grayish brown (10YR 5/2) and 10 percent black (10YR 2/1) moist; massive; loose, non-sticky, non-plastic; moderately acid (pH 5.8); abrupt smooth boundary.
- 3A´´b1—53 to 58 inches, (135 to 148 cm); grayish brown (10YR 5/2) loamy coarse sand, very dark grayish brown (10YR 3/2) moist; massive; soft, very friable, non-sticky, non-plastic; moderately acid (pH 5.8); abrupt smooth boundary.
- 3A´´b2—58 to 60 inches, (148 to 152 cm); white (10YR 8/2) and very pale brown (10YR 7/3) loamy sand, 85 percent light gray (10YR 7/2) and 15 percent grayish brown (10YR 5/2) moist; massive; soft, very friable, non-sticky, non-plastic; moderately acid (pH 5.8).

Range in Characteristics

Depth of the solum is more than 60 inches. The mean annual soil temperature is 52 degrees F (11.1 degrees C) to 56 degrees F (13.3 degrees C). The soil temperature exceeds 41 degrees F (5 degrees C) from March through November and exceeds 47 degrees F (8.3 degrees C) from mid April through October. The difference between mean winter and mean summer soil temperatures is about 28 degrees F. The soil moisture control section is dry in all parts from early July to early November (140-160 days) and is moist in all parts from December to mid May. Base saturation is less than 50 percent. Rock fragment content is 0 to 3 percent.

A horizon:

Hue—10YR (dry and moist)

Value—5 or 6 (dry) and 3 or 4 (moist)

Chroma—2 or 3 (dry and moist)

Texture—stratified sandy loamy to mucky loam

Clay content—2 to 18 percent

Organic matter content—1 to 5 percent

Reaction—moderately acid

2Ab horizon:

Hue—10YR (dry and moist)

Value—4 to 8 (dry) and 2 to 7 (moist)

Chroma—2 to 3 (dry) and 2 (moist)

Texture—stratified sandy loam to mucky loam

Clay content—2 to 18 percent

Organic matter content—1.5 to 5 percent

Reaction—moderately acid

3C horizon:

Hue—10YR or 7.5Y (dry and moist)

Value—2 to 8 (dry) and 2 to 6 (moist)

Chroma—1 to 2 (dry) and 1 to 6 (moist)

Texture—stratified sand to loam

Clay content—2 to 18 percent

Organic matter content—1 to 5 percent

Reaction—moderately acid

Fishsnooze Series

The Fishsnooze series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from andesite, tuff, and tuff-breccia. These soils are on mountains. Slope is 8 to 50 percent. The soils are classified as loamy-skeletal, isotic Xeric Dystrocryepts.

Typical Pedon

Fishsnooze very gravelly peaty coarse sandy loam; Alpine County, California; in the Toiyabe National Forest, about 1.5 miles northwest of Lost Lakes, about 2,250 feet south and 150 feet east of the northwest corner of section 36, T. 10 N., R. 18 E.; lat. 38 degrees 40 minutes 11.7 seconds N. and long. 119 degrees 57 minutes 39.0 seconds W.; USGS Carson Pass, California Quadrangle, NAD 27:

- A1—0 to 1 inch, (0 to 3 cm); dark grayish brown (10YR 4/2) very gravelly peaty coarse sandy loam, very dark brown (10YR 2/2) moist; moderate medium platy structure; soft, very friable, slightly sticky, non-plastic; common fine interstitial pores; 35 percent gravel and 5 percent cobbles; common very fine and fine roots; very strongly acid (pH 5.0); abrupt wavy boundary.
- A2—1 to 9 inches, (3 to 23 cm); brown (10YR 5/3) very gravelly coarse sandy loam, dark brown (10YR 3/3) moist; weak fine and medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; common very fine and fine and many medium and coarse roots; common very fine interstitial and tubular pores; 45 percent gravel; very strongly acid (pH 5.0); clear wavy boundary.
- A3—9 to 13 inches, (23 to 33 cm); brown (10YR 5/3) extremely gravelly coarse sandy loam, dark brown (10YR 3/3) moist; weak fine and medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; common very fine and many medium and coarse roots; common very fine interstitial and tubular pores; 50

percent gravel and 15 percent cobbles; very strongly acid (pH 5.0); clear wavy boundary.

Bw—13 to 35 inches, (33 to 89 cm); brown (10YR 5/3) extremely cobbly coarse sandy loam, dark yellowish brown (10YR 4/4) moist; weak fine and medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; common very fine and many fine to coarse roots; common very fine interstitial and tubular pores; 45 percent gravel and 40 percent cobbles; very strongly acid (pH 5.0); clear wavy boundary.

R-35 inches; hard andesite.

Range in Characteristics

This soil is usually moist in the moisture control section in fall, winter, and spring. It is usually dry from July through early October. The moisture regime is xeric. The mean annual soil temperature is 40 to 44 degrees F; the mean summer soil temperature is 44 to 47 degrees F. The thickness of the umbric epipedon is 7 to 16 inches. Depth to a lithic content is 20 to 40 inches. Sodium fluoride pH is 10.0 to 11.5.

In the particle-size control section, the clay content averages 12 to 18 percent and the content of rock fragments (dominantly gravel and cobbles) averages 60 to 80 percent. Lithology of fragments is andesite, tuff, or tuff-breccia.

The soil surface is covered with 2 inches (5 centimeters) of undecomposed forest duff along with 35 percent gravel and 5 percent cobbles.

A1 horizon:

Organic matter content—10 to 18 percent

Reaction—very strongly acid or strongly acid

Other features—some pedons have an A1 horizon with less than 10 percent organic matter and do not have the peaty texture modifier

A2 and A3 horizons:

Hue—10YR or 7.5YR (dry and moist)

Value—4 or 5 (dry) and (2 or 3 moist)

Chroma—2 or 3 (dry and moist)

Texture—extremely gravelly coarse sandy loam, extremely gravelly sandy loam, or very gravelly coarse sandy loam.

Organic matter content—2 to 10 percent

Reaction—very strongly acid or strongly acid

Bw horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—5 or 6 (dry) and 3 or 4 (moist)

Chroma—3 or 4 (dry and moist)

Texture—extremely cobbly coarse sandy loam or extremely gravelly sandy loam

Clay content—12 to 18 percent

Rock fragment content—60 to 85 percent

Reaction—very strongly acid or strongly acid

Fluvaquents

Fluvaquents in the survey area consist of very poorly drained soils in channel bar deposits of low flood plains. These soils are very deep. They formed in coarse textured alluvium derived from granitoid rocks. Slope is 0 to 2 percent. The soils are classified as isotic, mesic Fluvaquents.

Typical Pedon

Oxyaquic Xerofluvents-Riverwash-Fluvaquents association, 0 to 2 percent slopes,

mesic; Mariposa County, California; south of the Merced River, Yosemite National Park, Yosemite Valley; lat. 37 degrees 43 minutes 25 seconds N. and long. 119 degrees 37 minutes 31 seconds W.; UTM Zone 11, easting 268566.68 and northing 4178393.85; USGS Half Dome, California Quadrangle, NAD 83. (This pedon is not completely representative of the Fluvaquents in this survey area because of the highly variable nature of these soils.)

- A1—0 to 1 inch, (0 to 3 cm); gray (10YR 6/1) sandy loam, very dark gray (10YR 3/1) moist; weak very fine granular structure; soft, very friable, non-sticky, non-plastic; common very fine roots; many very fine interstitial pores; moderately acid (pH 5.8); abrupt smooth boundary.
- A2—1 to 4 inches, (3 to 10 cm); gray (10YR 5/1) fine sandy loam, black (10YR 2/1) moist; weak very fine subangular blocky structure; soft, very friable, non-sticky, non-plastic; common very fine roots; common very fine interstitial pores; common fine distinct dark brown (7.5YR 4/4, moist) redoximorphic accumulations of iron; moderately acid (pH 5.8); clear smooth boundary.
- C—4 to 6 inches, (10 to 15 cm); very pale brown (10YR 7/3) loamy fine sand, pale brown (10YR 6/3) moist; massive; loose, non-sticky, non-plastic; few very fine roots; many very fine interstitial pores; common fine distinct dark brown (7.5YR 4/4, moist) redoximorphic accumulations of iron; moderately acid (pH 5.8); abrupt smooth boundary.
- Ab—6 to 10 inches, (15 to 25 cm); gray (10YR 6/1) fine sandy loam, very dark gray (10YR 3/1) moist; massive; soft, very friable, non-sticky, non-plastic; common very fine interstitial pores; common fine distinct dark brown (7.5YR 4/4, moist) redoximorphic accumulations of iron; moderately acid (pH 5.8); clear smooth boundary.
- C´—10 to 60 inches, (25 to 152.4 cm); light gray (10YR 7/1) stratified coarse sand to fine sandy loam with mottled or gleyed colors; moderately acid (pH 5.8).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

Textures and colors are highly variable. The soil is highly stratified with thin strata of coarse sand, loamy coarse sand, fine sandy loam, or sandy loam. A water table occurs within 20 inches (50.8 centimeters) of the surface throughout the year. Rock fragment content is 0 to 14 percent. Redoximorphic accumulations of iron typically occur below the upper part of the A horizon.

A horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—5 or 6 (dry) and 2 to 4 (moist)

Chroma—2 (dry and moist)

Texture—stratified coarse sand to sandy loam

Clay content—2 to 6 percent

Organic matter content—4 to 9 percent

Reaction—moderately acid

C horizon:

Hue—10YR or 7.5Y (dry and moist)

Value—7 (dry) and 4 to 6 (moist)

Chroma—3 (dry) and 3 to 4 (moist)

Texture—stratified coarse sand to sandy loam

Clay content—2 to 5 percent

Organic matter content—0.25 to 4 percent

Reaction—moderately acid

Ab horizon:

Hue—10YR or 7.5 (dry and moist)
Value—7 (dry and moist)
Chroma—1 (dry and moist)
Texture—stratified coarse sand to sandy loam
Clay content—2 to 5 percent
Organic matter content—0.5 to 1.5 percent
Reaction—moderately acid

Glacierpoint Series

The Glacierpoint series consists of very deep, somewhat excessively drained soils that formed in colluvium and/or till derived from granitoid rock. These soils are on the slopes of mountains and moraines, on bedrock benches, and on joints and fractures in bedrock. Slope is 0 to 70 percent. The soils are classified as sandy-skeletal, isotic Xeric Dystrocryepts.

Typical Pedon

Glacierpoint-Typic Cryorthents complex, 30 to 65 percent slopes, mountain slopes, lateral moraines, aprons, cryic; Mariposa County, California; about 0.75 mile southwest of Ostrander Rocks, north of Mono Meadow off Glacier Point Road; approximately 3,200 feet (975.4 meters) east and 1,000 feet (305.0 meters) north of the southwest corner of section 7, T. 3 S., R. 22 E., Mount Diablo Base and Meridian; lat. 37 degrees 41 minutes 0.1 second north and long. 119 degrees 36 minutes 1.3 seconds W.; USGS Half Dome, California Quadrangle, NAD 83:

- Oi—0 to 1 inch, (0 to 2 cm); stony slightly decomposed plant material; 2 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, 3 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 13 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size.
- Oe—1 to 1 inch, (2 to 3 cm); stony moderately decomposed plant material; 2 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, 3 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 13 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size.
- A1—1 to 4 inches, (3 to 11 cm); grayish brown (10YR 5/2) stony loamy sand, very dark brown (10YR 2/2) moist; weak very fine granular and weak medium subangular blocky structure; soft, loose, non-sticky, non-plastic; many very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, 8 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 20 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size; moderately acid (pH 5.8); clear wavy boundary.
- A2—4 to 16 inches, (11 to 41 cm); brown (10YR 5/3) very stony loamy sand, very dark grayish brown (10YR 3/2) moist; weak medium subangular blocky, weak very fine granular, and weak coarse subangular blocky structure; soft, very friable, non-sticky, non-plastic; few fine, common medium, and many very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 25 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size; strongly acid (pH 5.5); gradual wavy boundary.

Bw—16 to 27 inches, (41 to 69 cm); brown (10YR 5/3) very stony loamy sand, dark

brown (10YR 3/3) moist; weak coarse subangular blocky, weak very fine granular, and weak medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; common fine, few medium, coarse, and very coarse and common very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 25 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size; strongly acid (pH 5.5); abrupt irregular boundary.

- C1—27 to 46 inches, (69 to 118 cm); light yellowish brown (2.5Y 6/3) very stony very fine sand, dark grayish brown (2.5Y 4/2) moist; weak very fine granular and weak medium granular structure; soft, loose, non-sticky, non-plastic; few medium coarse and common very fine, fine, and very coarse roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, and 20 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0); gradual smooth boundary.
- C2—46 to 64 inches, (118 to 163 cm); light yellowish brown (2.5Y 6/3) gravelly very fine sand, dark grayish brown (2.5Y 4/2) moist; single grain and weak very fine granular structure; loose, non-sticky, non-plastic; few medium, very coarse, and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, 7 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, and 15 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0).

Range in Characteristics

The mean annual soil temperature is about 4.5 degress C (40 degrees F). The particle-size control section has 0.5 to 6 percent clay and 65 to 90 percent sand. Rock fragment content is 0 to 80 percent, by volume. The particle-size control section, by weighted average, has 35 percent or more rock fragments. The content of surface rock fragments is 0 to 80 percent. The soil has an umbric epipedon and/or a cambic horizon. Some pedons may have one or all of the Oi, Oe, and Oa horizons.

A horizon:

Hue—10YR or 2.5Y (dry) and 10YR (moist)

Value—4 or 5 (dry) and 2 or 3 (moist)

Chroma—1 to 3

Texture of the fine-earth fraction—sand, loamy sand, loamy fine sand, sandy loam, or fine sandy loam

Clay content—0.5 to 6 percent

Rock fragment content—0 to 80 percent

Organic matter content—6 to 10 percent

Reaction—very strongly acid to slightly acid

Other characteristics—some pedons have an AC horizon

Bw horizon:

Hue-10YR

Value—2 to 4 (moist) and 4 to 6 (dry)

Chroma—2 to 4 (moist) and 3 to 6 (dry)

Texture of the fine-earth fraction—sand, loamy sand, loamy fine sand, coarse sandy loam, or sandy loam

Clay content—0.5 to 6 percent

Rock fragment content—20 to 75 percent

Organic matter content—0.75 to 4 percent

Reaction—very strongly acid to slightly acid Other characteristics—some pedons have a BA or BC horizon

C horizon:

Hue-10YR or 2.5Y

Value—3 to 5 (moist) and 5 to 7 (dry)

Chroma—2 to 4 (moist) and 3 to 4 (dry)

Texture of the fine-earth fraction—sand, fine sand, very fine sand, loamy coarse sand, or loamy sand

Clay content—0.5 to 6 percent

Rock fragment content—15 to 90 percent

Organic matter content—0.2 to 3 percent

Reaction—very strongly acid to slightly acid

Additional characterization data for this Glacierpoint series, National Soil Survey Laboratory lab data pedon number 97P0120 (Pedon ID: 96CA109004), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Half Dome Series

The Half Dome series consists of very deep, well drained soils on mountain side slopes. These soils formed in colluvium weathered from granitoid rock. Slope is 5 to 60 percent. The soils are classified as loamy-skeletal, isotic, mesic Typic Dystroxerepts.

Typical Pedon

Half Dome complex, 25 to 60 percent slopes, mesic; Mariposa County, California; directly northeast of Sentinel Creek, up Four Mile Trail, Yosemite National Park; lat. 37 degrees 43 minutes 49 seconds N. and long. 119 degrees 35 minutes 56 seconds W.; USGS, Half Dome, California Quadrangle, NAD 83. (The soil surface is partially covered with 30 percent boulders and 10 percent stones and cobbles.)

- Oi—0 to 3 inches, (0 to 8 cm); litter of leaves, needles, and twigs.
- A1—3 to 5 inches, (8 to 13 cm); grayish brown (10YR 5/2) very bouldery sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure parting to weak medium granular; soft, very friable, non-sticky, slightly plastic; few medium and common very fine and fine roots; 5 percent gravel; slightly acid (pH 6.5); clear wavy boundary.
- A2—5 to 8 inches, (13 to 21 cm); brown (10YR 5/3) gravelly sandy loam, dark brown (10YR 3/3) and very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure parting to weak medium granular; soft, very friable, non-sticky, slightly plastic; few medium and common very fine and fine roots; 15 percent gravel; slightly acid (pH 6.2); gradual wavy boundary.
- Bw1—8 to 15 inches, (21 to 38 cm); variegated yellowish brown (10YR 5/4) and light yellowish brown (10YR 6/4) cobbly sandy loam, dark brown (10YR 3/3) and dark yellowish brown (10YR 3/4) moist; weak medium and coarse subangular blocky structure; soft, very friable, non-sticky, slightly plastic; common very fine, fine, medium, and coarse roots; 15 percent gravel and 10 percent cobbles; moderately acid (pH 5.9); gradual wavy boundary.
- Bw2—15 to 31 inches, (38 to 99 cm); light yellowish brown (2.5Y 6/4) very cobbly sandy loam, variegated dark yellowish brown (10YR 4/4) and brown (10YR 4/3) moist; weak coarse subangular blocky structure; soft, very friable, non-sticky, slightly plastic; common very fine, fine, medium, and coarse roots; 15 percent gravel, 20 percent cobbles, and 5 percent stones; moderately acid (pH 5.9); gradual boundary.

C—31 to 63 inches, (99 to 160 cm); pale yellow (2.5Y 7/4) very cobbly sandy loam, olive brown (2.5Y 4/4) moist; single grain; soft, very friable, non-sticky, non-plastic; 15 percent gravel, 20 percent cobbles, and 5 percent stones; moderately acid (pH 6.0).

Range in Characteristics

Depth of the solum ranges from 15 inches (38 centimeters) to 35 inches (89 centimeters). The mean annual soil temperature is 52 to 56 degrees F (11.1 to 13.3 degrees C). North-facing slopes have cooler soil temperatures, and south-facing slopes have warmer temperatures. The soil temperature exceeds 41 degrees F (5 degrees C) from March through November and exceeds 47 degrees F (8.3 degrees C) from mid April through October. The difference between mean winter and mean summer soil temperatures is about 28 degrees F. The soil moisture control section is dry in all parts from early July to early November (140-160 days) and is moist in all parts from December to mid May. Base saturation is less than 60 percent.

A horizon:

Hue—10YR (dry and moist)

Value—5 (dry) and 3 (moist)

Chroma—2 or 3 (dry and moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, coarse sandy loam, or sandy loam

Clay content—2 to 12 percent

Rock fragment content—10 to 100 percent

Organic matter content—0 to 10 percent in the upper 6 inches (15 cm); commonly 1 to 3 percent

Reaction—moderately acid to neutral

Other characteristics—some pedons have an AB or BA horizon

Bw horizon:

Hue—10YR (dry and moist)

Value—5 or 6 (dry) and 2 or 3 (moist)

Chroma—3 or 4 (dry and moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, or coarse sandy loam

Clay content-2 to 12 percent

Rock fragment content—10 to 95 percent

Organic matter content—0 to 4 percent

Reaction—moderately acid to neutral

C horizon:

Hue—10YR (dry and moist)

Value—5 (dry) and 3 (moist)

Chroma—4 to 6 (dry) and 3 or 4 (moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, or sandy loam

Clay content—1 to 12 percent

Rock fragment content—5 to 85 percent

Organic matter content—less than 1 percent

Reaction—moderately acid to neutral

Happyisles Series

The Happyisles series consists of well drained to somewhat poorly drained soils on alluvial fans formed from granitoid rock. Slope is 0 to 9 percent. These soils are classified as coarse-loamy, isotic, mesic Humic Dystroxerepts.

Typical Pedon

Happyisles complex, 1 to 5 percent slopes, mesic; Mariposa County, California; at the lower edge of Eagle Creek, about 100 feet (30.5 meters) southeast of Northside Drive, Yosemite National Park, Yosemite Valley; lat. 37 degrees 43 minutes 48 seconds N. and long. 119 degrees 36 minutes 43 seconds W.; UTM Zone 11, easting 269819.29 and northing 4179061.66; USGS Half Dome, California Quadrangle, NAD 83:

Oi—0 to 3 inches, (0 to 8 cm); slightly decomposed organic material.

- A1—3 to 7 inches, (8 to 18 cm); dark grayish brown (2.5Y 4/2) sandy loam, variegated black (10YR 2/1) and very dark gray (10YR 3/1) moist; moderate medium subangular blocky and weak fine granular structure; soft, very friable, non-sticky, non-plastic; common fine roots; common very fine interstitial pores; 5 percent gravel; moderately acid (pH 6.7); clear smooth boundary.
- A2—7 to 13 inches, (18 to 33 cm); variegated black (2.5Y 2/2) and dark grayish brown (2.5Y 4/2) sandy loam, variegated black (10YR 2/1) and very dark gray (10YR 3/1) moist; strong fine and medium subangular blocky structure; soft, friable, non-sticky, non-plastic; common fine roots; common very fine interstitial pores; 8 percent gravel; slightly acid (pH 6.1); clear smooth boundary.
- A3—13 to 17 inches, (33 to 43 cm); variegated light olive brown (2.5Y 5/3) and dark grayish brown (2.5Y 4/2) sandy loam, variegated very dark grayish brown (2.5Y 3/2) and very dark grayish brown (10YR 3/2) moist; weak medium subangular blocky structure; loose, very friable, non-sticky, non-plastic; common fine roots; common very fine interstitial pores; less than 5 percent gravel; slightly acid (pH 6.1); clear wavy boundary.
- A4—17 to 33 inches, (43 to 84 cm); variegated light olive brown (2.5Y 5/3) sandy loam, very dark grayish brown (2.5Y 3/2) moist; single grain; loose, very friable, non-sticky, non-plastic; few fine roots; common very fine interstitial pores; 5 percent gravel; slightly acid (pH 6.1); gradual wavy boundary.
- C—33 to 58 inches, (84 to 152 cm); light olive brown (2.5Y 5/3) stratified loamy sand and loamy coarse sand, variegated very dark grayish brown (2.5Y 3/2) and dark yellowish brown (10YR 3/4) moist; single grain; loose, non-sticky, non-plastic; no roots; many very fine and fine interstitial pores; 10 percent gravel; slightly acid (pH 6.1).

Range in Characteristics

A horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—2 to 7 (dry) and 2 to 5 (moist)

Chroma—1 or 2 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—sand, loamy fine sand, coarse sandy loam, sandy loam, or fine sandy loam

Rock fragment content—0 to 17 percent

Clay content—3 to 17 percent

Organic matter content—0.5 to 4 percent

Reaction—moderately acid to neutral

C horizon:

Hue—10YR, 2.5Y, or 7.5R (dry and moist)

Value—2 to 4 (dry) and 2 to 5 (moist)

Chroma—2 to 4 (dry) and 1 to 4 (moist)

Texture—stratified sand to fine sandy loam

Rock fragment content—0 to 20 percent

Clay content—3 to 12 percent

Organic matter content—0.25 to 0.75 percent

Reaction—moderately acid or slightly acid

Humic Dystroxerepts

Humic Dystroxerepts in the survey area consist of very deep, well drained to excessively well drained soils that formed in colluvium, residuum, and/or till from metamorphic and granitoid rock. These soils are on mountain slopes, moraines, mountainsides, landslides, and ridges. Slope is 0 to 100 percent. The soils are classified as sandy-skeletal, isotic, frigid Humic Dystroxerepts.

Typical Pedon

Humic Dystroxerepts-Typic Haploxerults-Inceptic Haploxeralfs complex, 30 to 65 percent slopes, mountain slopes, metamorphic, frigid; Mariposa County, California; approximately 4,000 feet (1,219.2 meters) northwest of Crane Flat Lookout and 1,000 feet (304.8 meters) north of Big Oak Flat Road on a slope above Moss Creek, about 650 feet (198.1 meters) east and 1,000 feet (304.8 meters) south of the northwest corner of section 13, T. 2 S., R. 19 E., Mount Diablo Base and Meridian; lat. 37 degrees 45 minutes 56.6 seconds N. and long. 119 degrees 49 minutes 54.6 seconds W.; USGS Ackerson Mountain, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Humic Dystroxerepts in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 0 inches, (0 to 1 cm); very stony slightly decomposed plant material; 10 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size, 10 percent very strongly cemented subangular metamorphic rock fragments 75 to 250 mm in size, and 15 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size.
- Oe—0 to 1 inch, (1 to 2 cm); very stony moderately decomposed plant material; 10 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size, and 15 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size.
- A1—1 to 5 inches, (2 to 12 cm); dark grayish brown (10YR 4/2) very cobbly loamy sand, very dark brown (10YR 2/2) moist; weak very fine granular structure; few medium and fine and many very fine roots; 10 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size, 15 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size, and 25 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in size; moderately acid (pH 5.6); clear irregular boundary. (Lab sample # 98P01242)
- A2—5 to 13 inches, (12 to 32 cm); brown (10YR 4/3) very cobbly loamy sand, very dark brown (10YR 2/2) moist; weak very fine granular structure; loose, non-sticky, non-plastic; common medium and many very fine roots; 10 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size, 25 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in size, and 25 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size; moderately acid (pH 5.6); clear irregular boundary. (Lab sample # 98P01243)
- C1—13 to 20 inches, (32 to 52 cm); light olive brown (2.5Y 5/4) extremely stony loamy sand, dark brown (10YR 3/3) moist; single grain; loose, non-sticky, non-plastic; few fine, common medium, and many very fine roots; 10 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in size, 20 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size, and 30 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size; strongly acid (pH 5.4); gradual irregular boundary. (Lab sample # 98P01244)
- C2—20 to 35 inches, (52 to 89 cm); light yellowish brown (10YR 6/4) extremely stony

loamy sand, dark yellowish brown (10YR 4/4) moist; single grain; loose, non-sticky, non-plastic; few coarse and fine, common medium, and many very fine roots; 10 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size, and 45 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size; strongly acid (pH 5.1); clear irregular boundary. (Lab sample # 98P01245)

C3—35 to 60 inches, (89 to 152 cm); light yellowish brown (2.5Y 6/4) extremely stony loamy sand, dark yellowish brown (10YR 4/4) moist; single grain; loose, non-sticky, non-plastic; few very coarse, coarse, medium, and very fine roots; 5 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size, 5 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in size, and 70 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size; strongly acid (pH 5.2). (Lab sample # 98P01246)

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level categories are therefore included with the concept of this component, such as loamy-skeletal, isotic Humic Dystrocryepts; sandy-skeletal, isotic Humic Dystrocryepts; coarse-loamy, isotic, frigid Humic Dystroxerepts; coarse-loamy, isotic, thermic Humic Dystroxerepts; loamy-skeletal, isotic, frigid Humic Dystroxerepts; and sandy-skeletal, isotic, mesic Humic Dystroxerepts.

The soil has an umbric epipedon and/or a cambic horizon. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 80 percent.

A horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—3 to 5 (dry) and 2 or 3 (moist)

Chroma—1 to 5 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—coarse sand, fine sand, loamy coarse sand, loamy sand, sandy loam, or fine sandy loam

Clay content—0.5 to 10 percent

Rock fragment content—0 to 80 percent

Organic matter content—2 to 12 percent

Reaction—very strongly acid to neutral

Other characteristics—some pedons have an AB and/or AC horizon

Bw horizon (if it occurs):

Hue—10YR or 2.5Y (dry and moist)

Value—4 to 7 (dry) and 3 to 5 (moist)

Chroma—2 to 4 (dry and moist)

Texture of the fine-earth fraction—coarse sand, loamy coarse sand, loamy sand, sandy loam, or fine sandy loam

Clay content—0.5 to 14 percent

Rock fragment content—0 to 90 percent

Organic matter content—0.2 to 8 percent

Reaction—very strongly acid or neutral

C horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—3 to 7 (dry) and 2 to 6 (moist)

Chroma—2 to 6 (dry) and 2 to 4 (moist)

Texture of the fine-earth fraction—coarse sand, sand, loamy coarse sand, loamy sand, loamy fine sand, coarse sandy loam, sandy loam, or fine sandy loam

Clay content—0.5 to 14 percent

Rock fragment content—0 to 90 percent

Organic matter content—0.20 to 5 percent

Reaction—very strongly acid to neutral

Other characteristics—some pedons have a moderately deep Cd or a Ct horizon

Additional characterization data for this Humic Dystroxerepts example pedon, National Soil Survey Laboratory lab data pedon number 98P0199 (Pedon ID: 97CA043017), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Humic Haploxerepts

Humic Haploxerepts in the survey area consist of very deep, well drained soils that formed in colluvium from metamorphic and small amounts of granodiorite rock. These soils are on mountain slopes. Slope is 45 to 100 percent. The soils are classified as loamy-skeletal, isotic, thermic Humic Haploxerepts.

Typical Pedon

Humic Haploxerepts-Rock outcrop-Ultic Haploxeralfs association, 45 to 100 percent slopes, metasedimentary, mountain slopes, thermic; Mariposa County, California; El Portal, Rancheria Flat, approximately 150 feet (45.7 meters) east and 2,800 feet (853.4 meters) north from the southwest corner of section 16, T. 3 S., R. 20 E., Mount Diablo Base and Meridian; lat. 37 degrees 40 minutes 14.0 seconds N. and long. 119 degrees 48 minutes 35.1 seconds W.; USGS El Portal, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Humic Haploxerepts in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 0 inches, (0 to 1 cm); slightly decomposed plant material; 1 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size.
- A—0 to 4 inches, (1 to 9 cm); dark grayish brown (10YR 4/2) very gravelly loam, very dark gray (10YR 3/1) moist; moderate coarse subangular blocky and weak very fine granular structure; slightly hard, loose, slightly sticky, slightly plastic; many very fine roots; 10 percent subangular very strongly cemented gneiss fragments 75 to 250 mm in size and 25 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size; moderately acid (pH 6.0); abrupt smooth boundary. (Lab sample # 02N03120)
- Bw1—4 to 8 inches, (9 to 20 cm); brown (10YR 4/3) very gravelly loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; moderately hard, very friable, moderately sticky, moderately plastic; few fine and many very fine roots; 15 percent subangular very strongly cemented gneiss fragments 75 to 250 mm in size and 35 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size; slightly acid (pH 6.1); gradual wavy boundary. (Lab sample # 02N03121)
- Bw2—8 to 20 inches, (20 to 52 cm); brown (10YR 4/3) extremely gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; moderate medium granular and moderate coarse subangular blocky structure; slightly hard, very friable, moderately sticky, moderately plastic; few coarse, medium, and fine and many very fine roots; 20 percent subangular very strongly cemented gneiss fragments 75 to 250 mm in size and 45 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size; slightly acid (pH 6.2); gradual wavy boundary. (Lab sample # 02N03122)

Bw3—20 to 30 inches, (52 to 77 cm); brown (10YR 4/3) very gravelly loam, very dark

grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; slightly hard, very friable, moderately sticky, moderately plastic; few fine, few medium, few coarse, medium, and fine, and many very fine roots; 15 percent subangular very strongly cemented gneiss fragments 75 to 250 mm in size and 40 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size; slightly acid (pH 6.2); gradual wavy boundary. (Lab sample # 02N03123)

Bw4—30 to 60 inches, (77 to 152 cm); 50 percent dark grayish brown (2.5Y 4/2) and 50 percent dark grayish brown (10YR 4/2) extremely gravelly fine sandy loam, 50 percent very dark grayish brown (10YR 3/2) and 50 percent dark olive brown (2.5Y 2.5/2) moist; moderate medium subangular blocky and moderate very fine granular structure; soft, loose, moderately sticky, moderately plastic; few fine and common very fine roots; 10 percent subangular very strongly cemented gneiss fragments 250 to 600 mm in size, 15 percent subangular very strongly cemented gneiss fragments 75 to 250 mm in size, and 41 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size; slightly acid (pH 6.1). (Lab sample # 02N03124)

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 40 percent.

A horizon:

Hue—10YR (dry and moist)

Value—4 (dry) and 3 (moist)

Chroma—2 (dry) and 1 (moist)

Texture of the fine-earth fraction—sandy loam or loam

Clay content—6 to 12 percent

Rock fragment content—25 to 45 percent

Organic matter content—5 to 9 percent

Reaction—moderately acid or slightly acid

Bw horizon:

Hue—10YR (dry and moist)

Value—4 (dry) and 3 (moist)

Chroma—2 or 3 (dry) and 2 (moist)

Texture of the fine-earth fraction—sandy loam, loam, sandy clay loam, or fine sandy loam

Clay content—6 to 12 percent

Rock fragment content—40 to 80 percent

Organic matter content—0.2 to 4 percent

Reaction—moderately acid or slightly acid

Additional characterization data for this Humic Haploxerepts example pedon, National Soil Survey Laboratory lab data pedon number 02N0621 (Pedon ID: 01CA043010), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Humic Lithic Haploxerepts

Humic Lithic Haploxerepts in the survey area consist of shallow, moderately well drained soils that formed in colluvium from granitoid rock. These soils are on mountainsides and mountain slopes. Slope is 0 to 40 percent. The soils are classified as loamy-skeletal, isotic, mesic Humic Lithic Haploxerepts.

Typical Pedon

Rock outcrop-Humic Dystroxerepts-Humic Lithic Dystroxerepts association, 30 to 100 percent slopes, mountain slopes, mesic; Tuolumne County, California; Yosemite National Park, approximately 10,560 feet (3,218.7 meters) south on the road from O'Shaughnessy Dam and 1,320 feet (402.3 meters) south-southeast to the site, approximately 650 feet (198.1 meters) north and 1,500 feet (457.2 meters) west of the southeast corner of section 20, T. 1 N., R. 20 E., Mount Diablo Base and Meridian; lat. 37 degrees 55 minutes 29 seconds N. and long. 119 degrees 47 minutes 53.8 seconds W.; USGS Lake Eleanor, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Humic Lithic Haploxerepts in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 0 inches, (0 to 1 cm); cobbly slightly decomposed plant material; 5 percent subrounded very strongly cemented 600- to 3000-mm-in-size and 5 percent subrounded very strongly cemented 250- to 600-mm-in-size granodiorite fragments.
- Oa—0 to 2 inches, (1 to 4 cm); cobbly highly decomposed plant material; 5 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size and 5 percent subrounded very strongly cemented granodiorite fragments 250 to 600 mm in size.
- Oe—2 to 2 inches, (4 to 6 cm); cobbly moderately decomposed plant material; 5 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size and 5 percent subrounded very strongly cemented granodiorite fragments 250 to 600 mm in size.
- A1—2 to 10 inches, (6 to 26 cm); dark grayish brown (10YR 4/2) very gravelly loamy coarse sand, black (10YR 2/1) moist; weak very fine granular and weak medium granular structure; soft, very friable, non-sticky, non-plastic; common fine and many very fine roots; 5 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 7 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size, 8 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size, and 20 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; slightly acid (pH 6.1); abrupt smooth boundary. (Lab sample # 99P01620)
- A2—10 to 22 inches, (26 to 56 cm); brown (10YR 4/3) very bouldery fine sandy loam, very dark brown (10YR 2/2) moist; weak very fine granular and weak medium granular structure; soft, very friable, non-sticky, non-plastic; few fine, common medium and fine, and many coarse roots; 10 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size, 20 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size, and 20 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; slightly acid (pH 6.5). (Lab sample # 99P01621)
- R—22 to 60 inches, (56 to 152 cm); granitoid bedrock.

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

Humic Lithic Haploxerepts have an umbric epipedon and a lithic contact. The content of surface rock fragments is 2 to 5 percent. Organic matter content increases in the A2 horizon.

A horizon:

Hue—10YR (dry and moist)
Value—3 or 4 (dry) and 2 (moist)
Chroma—2 or 3 (dry) and 1 or 2 (moist)

Texture of the fine-earth fraction—loamy coarse sand, sandy loam, or fine sandy loam

Clay content—2 to 20 percent

Rock fragment content—27 to 80 percent

Organic matter content—5 to 14 percent

Reaction—very strongly acid to slightly acid

Additional characterization data for this Humic Lithic Haploxerepts example pedon, National Soil Survey Laboratory lab data pedon number 99P0319 (Pedon ID: 99CA109007), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Inceptic Haploxeralfs

Inceptic Haploxeralfs in the survey area consist of very deep, well drained to somewhat excessively drained soils that formed in colluvium from mixed metamorphic rock. These soils are on ancient landslides and mountain slopes. Slope is 30 to 65 percent. The soils are classified as loamy-skeletal, isotic, frigid Inceptic Haploxeralfs.

Typical Pedon

Humic Dystroxerepts-Typic Haploxerults-Inceptic Haploxeralfs complex, 30 to 65 percent slopes, mountain slopes, metamorphic, frigid; Tuolumne County, California; approximately 7,000 feet (2,133.6 meters) west of Tuolumne Grove, approximately 1,250 feet (381.0 meters) north and 600 feet (182.9 meters) east the southwest corner of section 12, T. 2 S., R. 19 E., Mount Diablo Base and Meridian; lat. 37 degrees 46 minutes 8.8 seconds N. and long. 119 degrees 48 minutes 24.1 seconds W.; USGS Ackerson Mountain, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Inceptic Haploxeralfs in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 0 inches, (0 to 1 cm); very stony slightly decomposed plant material; 20 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size and 20 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size.
- Oe—0 to 1 inch, (1 to 3 cm); very stony slightly decomposed plant material; 20 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size and 20 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size.
- A1—1 to 4 inches, (3 to 9 cm); brown (10YR 4/3) very cobbly fine sandy loam, very dark brown (7.5YR 2/2) moist; weak very fine granular structure; loose, non-sticky, non-plastic; few fine and many very fine roots; 20 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size and 20 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in sizes; strongly acid (pH 5.5); clear irregular boundary.
- A2—4 to 12 inches, (9 to 31 cm); dark yellowish brown (10YR 4/4) very cobbly fine sandy loam, dark brown (7.5YR 3/3) moist; weak very fine granular and moderate fine subangular blocky structure; soft, very friable, non-sticky, non-plastic; common fine and medium, few coarse, and many very fine roots; 5 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size, 20 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size, and 20 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in size; strongly acid (pH 5.5); clear wavy boundary.
- Bt—12 to 22 inches, (31 to 55 cm); strong brown (7.5YR 4/6) very cobbly fine sandy loam, reddish brown (5YR 4/4) moist; weak very fine granular and moderate fine subangular blocky structure; slightly hard, friable, slightly sticky, non-plastic;

common fine and very fine and few medium and very coarse roots; 5 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size, 20 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size, and 25 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in size; very strongly acid (pH 5.0); clear irregular boundary.

- C1—22 to 30 inches, (55 to 76 cm); yellowish brown (10YR 5/6) extremely cobbly fine sandy loam, strong brown (7.5YR 4/6) moist; weak very fine granular and weak fine subangular blocky structure; soft, very friable, slightly sticky, non-plastic; common very coarse and fine and few coarse and very fine roots; 10 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size, 25 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in size, and 30 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0); gradual irregular boundary.
- C2—30 to 60 inches, (76 to 152 cm); yellowish brown (10YR 5/6) extremely stony fine sandy loam, strong brown (7.5YR 4/6) moist; weak very fine granular structure; loose, slightly sticky, non-plastic; few fine roots; 25 percent subangular very strongly cemented metamorphic rock fragments 250 to 600 mm in size, 30 percent subangular very strongly cemented metamorphic rock fragments 75 to 250 mm in size, and 35 percent subangular very strongly cemented metamorphic rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

Inceptic Haploxeralfs have an argillic horizon that is less than 35 centimeters thick. Total rock fragment content, by volume, is 0 to 95 percent. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 40 percent.

A horizon:

Hue—10YR (dry) and 7.5YR (moist) Value—4 (dry) and 2 or 3 (moist)

Chroma—2 to 4 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—fine sandy loam

Clay content—1 to 6 percent

Rock fragment content—30 to 60 percent

Organic matter content—3 to 9 percent

Reaction—strongly acid or moderately acid

Bt horizon:

Hue—7.5YR (dry) and 5YR (moist)

Value—4 (dry and moist)

Chroma—6 (dry) and 4 to 6 (moist)

Texture of the fine-earth fraction—fine sandy loam

Clay content—1 to 6 percent

Rock fragment content—40 to 65 percent

Organic matter content—2 to 4 percent

Reaction—very strongly acid or moderately acid

C horizon:

Hue—10YR (dry) and 7.5YR (moist)

Value—5 (dry) and 4 (moist)

Chroma—6 (dry and moist)

Texture of the fine-earth fraction—fine sandy loam

Clay content—1 to 6 percent

Rock fragment content—50 to 95 percent Organic matter content—0.2 to 3 percent Reaction—very strongly acid or moderately acid

Jobsis Series

The Jobsis series consists of shallow, somewhat excessively drained soils that formed in colluvium and residuum derived from granitoid rock. These soils are on mountains. Slope is 8 to 75 percent. The soils are classified as sandy-skeletal, mixed, shallow Typic Cryorthents.

Typical Pedon

Jobsis very gravelly loamy coarse sand; Alpine County, California; in the Toiyabe National Forest, about 1 mile southeast of Hawkins Peak, about 2,200 feet north and 1,825 feet east of the southwest corner of section 11, T. 10 N., R. 19 E.; lat. 38 degrees 43 minutes 34.9 seconds N. and long. 119 degrees 51 minutes 42.0 seconds W.; Markleeville, California Quadrangle, NAD 27:

- A1—0 to 1 inch, (0 to 3 cm); dark grayish brown (10YR 4/2) very gravelly loamy coarse sand, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure; soft, very friable, non-sticky, non-plastic; few very fine roots; many very fine interstitial pores; 50 percent gravel and 5 percent boulders; strongly acid (pH 5.0); clear wavy boundary.
- A2—1 to 5 inches, (3 to 13 cm); grayish brown (10YR 5/2) very gravelly loamy coarse sand, very dark grayish brown (10YR 3/2) moist; moderate fine and medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; many very fine, common fine, common medium, and common coarse roots; many very fine interstitial pores; 50 percent gravel and 5 percent boulders; strongly acid (pH 5.0); clear wavy boundary.
- Bw1—5 to 9 inches, (13 to 23 cm); pale brown (10YR 6/3) very gravelly loamy coarse sand, brown (10YR 4/3) moist; weak fine and medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; many very fine, common fine, common medium, and common coarse roots; many very fine interstitial pores; 55 percent gravel; strongly acid (pH 5.0); clear wavy boundary.
- Bw2—9 to 12 inches, (23 to 30 cm); pale brown (10YR 6/3) very gravelly loamy coarse sand, brown (10YR 4/3) moist; weak fine and medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; common very fine, common fine, common medium, and common coarse roots; many very fine interstitial pores; 50 percent gravel; strongly acid (pH 5.0); clear wavy boundary.
- Bw3—12 to 17 inches, (30 to 43 cm); pale brown (10YR 6/3) very gravelly loamy coarse sand, brown (10YR 4/3) moist; weak fine and medium subangular blocky structure; slightly hard, very friable, non-sticky, non-plastic; common very fine and few fine roots; many very fine interstitial and tubular pores; 45 percent gravel; strongly acid (pH 5.0); clear wavy boundary.
- 2C—17 to 20 inches, (43 to 50 cm); pale brown (10YR 6/3) very gravelly coarse sand, brown (10YR 4/3) moist; massive; slightly hard, very friable, non-sticky, non-plastic; few very fine and few fine roots; many very fine interstitial pores; 50 percent gravel; strongly acid (pH 5.0); clear wavy boundary.
- 2Cr—20 to 30 inches, (50 to 76 cm); soft weathered granodiorite.

Range in Characteristics

The soil is usually moist in the moisture control section in fall, winter, and spring. It is usually dry from July through early October. The moisture regime is xeric. The mean annual soil temperature is 35 to 40 degrees F; and the mean summer soil temperature

is 44 to 47 degrees F. The thickness of the ochric epipedon is 3 to 9 inches. Depth to a paralithic content is 10 to 20 inches. The paralithic materials below the contact are weathered granitoid rock such as granodiorite.

In the particle-size control section, the clay content averages less than 10 percent and the content of rock fragments (mainly fine gravel) averages 35 to 60 percent. Lithology of fragments are granitoid rocks such as granodiorite.

The soil surface is covered with 25 percent gravel, 5 percent stones, and 15 percent boulders.

A horizon:

Value—5 or 6 (dry) and 3 or 4 (moist)
Chroma—2 or 3 (dry and moist)
Organic matter content—1 to 3 percent
Reaction—very strongly acid or strongly acid

Bw and 2C horizons:

Chroma—3 or 4 (dry and moist)

Texture—very gravelly loamy coarse sand or very gravelly coarse sand Clay content—4 to 10 percent

Rock fragment content—35 to 60 percent, mainly fine (2 to 5 mm diameter) gravel Reaction—very strongly acid or strongly acid

Leidig Series

The Leidig series consists of very deep, somewhat poorly drained soils on high flood plains. These soils formed in alluvium weathered from granitoid rock. Slope is 0 to 2 percent. The soils are classified as coarse-loamy, isotic, mesic Vitrandic Dystroxerepts.

Typical Pedon

Leidig fine sandy loam, 0 to 2 percent slopes, occasionally flooded, mesic; Mariposa County, California; half way between a microhigh bar position and a microlow channel position on a 4 to 6 percent slope (downstream gradient slopes are 0 to 2 percent), 550 feet (167.6 meters) northwest of Sentinel Chapel, Sentinel Meadow, Yosemite National Park; lat. 37 degrees 44 minutes 28 seconds N. and long. 119 degrees 35 minutes 35 seconds W.; UTM Zone 11, easting 271528.00 and northing 4180256.77; USGS Half Dome, California Quadrangle, NAD 83:

Oi—0 to 1 inch, (0 to 3 cm); slightly decomposed organic material.

- A—1 to 7 inches, (3 to 18 cm); dark grayish brown (10YR 4/2) fine sandy loam, very dark brown (10YR 2/2) moist; strong fine granular structure; soft, very friable, non-sticky, non-plastic; many very fine roots; common very fine interstitial pores; strongly acid (pH 5.5); clear smooth boundary.
- 2Ab1—7 to 16 inches, (18 to 41 cm); dark grayish brown (10YR 4/2) loam, very dark brown (10YR 2/2) moist; strong medium granular structure; slightly hard, friable, slightly sticky, slightly plastic; weakly smeary; few fine roots; common very fine interstitial pores; strongly acid (pH 5.5); clear smooth boundary.
- 2Ab2—16 to 23 inches, (41 to 58 cm); grayish brown (10YR 5/2) loam, very dark grayish brown (10YR 3/2) moist; moderate coarse and medium angular blocky structure; slightly hard, friable, slightly sticky, slightly plastic; weakly smeary; common very fine roots; common very fine interstitial pores; moderately acid (pH 5.8); clear smooth boundary.
- 2Ab3—23 to 30 inches, (58 to 76 cm); brown (10YR 5/3) and dark grayish brown (10YR 4/2) very fine sandy loam, 90 percent dark brown (10YR 3/3) and 10 percent very dark brown (10YR 2/2) moist; moderate coarse angular blocky

- structure; slightly hard, friable, slightly sticky, non-plastic; weakly smeary; few very fine roots; common very fine interstitial pores; strongly acid (pH 5.5); clear smooth boundary.
- 2Ab4—30 to 34 inches, (76 to 86 cm); brown (10YR 5/3) and dark grayish brown (10YR 4/2) very fine sandy loam, 90 percent dark brown (10YR 3/3) and 10 percent very dark brown (10YR 2/2) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky, non-plastic; weakly smeary; few very fine roots; common very fine interstitial pores; strongly acid (pH 5.3); clear smooth boundary.
- 2Ab5—34 to 42 inches, (86 to 107 cm); brown (10YR 5/3) fine sandy loam, dark brown (10YR 3/3) moist; weak medium angular blocky structure; soft, friable, non-sticky, non-plastic; weakly smeary; common very fine interstitial pores; common fine faint dark brown (7.5YR 3/4, moist) redoximorphic iron accumulations; strongly acid (pH 5.3); gradual smooth boundary.
- 2Ab6—42 to 46 inches, (107 to 117 cm); light brownish gray (10YR 6/2) and grayish brown (10YR 5/2) fine sandy loam, 60 percent dark grayish brown (10YR 4/2) and 10 percent very dark grayish brown (10YR 3/2) moist; weak medium angular blocky structure; soft, friable, non-sticky, non-plastic; weakly smeary; common very fine interstitial pores; 30 percent common fine and medium faint dark brown (7.5YR 3/4, moist) redoximorphic iron accumulations; strongly acid (pH 5.3); clear smooth boundary.
- 3Ab1—46 to 52 inches, (117 to 132 cm); pale brown (10YR 6/3), light brownish gray (10YR 6/2), and grayish brown (10YR 5/2) sandy loam, 60 percent dark grayish brown (10YR 4/2), 10 percent dark gray (10YR 4/1), and 10 percent very dark grayish brown (10YR 3/2) moist; weak medium subangular blocky structure; soft, friable, non-sticky, non-plastic; common very fine interstitial pores; 20 percent common fine and medium faint dark drown (7.5YR 3/4, moist) redoximorphic iron accumulations; strongly acid (pH 5.3); clear smooth boundary.
- 3Ab2—52 to 58 inches, (132 to 148 cm); light brownish gray (10YR 6/2) and pale brown (10YR 6/3) fine sandy loam, 40 percent dark gray (10YR 4/1) and 40 percent dark grayish brown (10YR 4/2) moist; weak medium subangular blocky structure; soft, friable, non-sticky, non-plastic; common very fine interstitial pores; 20 percent common fine and medium faint dark brown (7.5YR 3/4, moist) redoximorphic iron accumulations; strongly acid (pH 5.3); abrupt smooth boundary.
- C—58 to 60 inches, (148 to 152 cm); light gray (10YR 7/2) and pale brown (10YR 6/3) loamy sand, 60 percent grayish brown (10YR 5/2) and 20 percent brown (10YR 4/3) moist; massive; soft, very friable, non-sticky, non-plastic; many very fine interstitial pores; 20 percent few medium distinct dark brown (7.5YR 4/4, moist) redoximorphic iron accumulations; strongly acid (pH 5.3).

Range in Characteristics

Depth of the solum is more than 50 inches (127 centimeters). The mean annual soil temperature is 52 to 56 degrees F (11.1 to 13.3 degrees C). The soil temperature exceeds 41 degrees F (5 degrees C) from March through November and exceeds 47 degrees F (8.3 degrees C) from mid April through October. The difference between mean winter and mean summer soil temperatures is about 28 degrees F. The soil moisture control section is dry in all parts from early July to early November (140-160 days) and is moist in all parts from December to mid May. Base saturation is less than 50 percent. Clay content is 0 to 18 percent.

Overwash horizon (if it occurs):
Hue—10YR (dry and moist)
Value—4 or 5 (dry) and 2 or 3 (moist)
Chroma—2 (dry and moist)

Texture—sandy loam or fine sandy loam Organic matter content—0 to 5 percent Reaction—moderately acid or strongly acid Base saturation—less than 50 percent

A horizon:

Hue—10YR or 7.5R

Value—4 (dry) and 2 (moist)

Chroma—2 (dry and moist)

Texture—sandy loam, fine sandy loam, very fine sandy loam, or loam

Organic matter content—2 to 8 percent

Reaction—moderately acid or strongly acid

2Ab horizon:

Hue-10YR

Value—4 to 6 (dry) and 2 to 4 (moist)

Chroma—2 or 3 (dry) and 2 to 4 (moist)

Texture—sandy loam, fine sandy loam, very fine sandy loam, or loam

Organic matter content—0 to 8 percent; at least 1 percent above the 2Ab5 horizon

Reaction—moderately acid or strongly acid

3Ab horizon:

Hue-10YR

Value—6 (dry) and 3 or 4 (moist)

Chroma—2 or 3 (dry) and 1 to 4 (moist)

Texture—loamy sand, sandy loam, fine sandy loam, or very fine sandy loam

Organic matter content—0 to 1 percent

Reaction—moderately acid or strongly acid

C horizon:

Hue—10YR or 7.5Y

Value—6 or 7 (dry) and 4 or 5 (moist)

Chroma—2 or 3 (dry) and 2 to 4 (moist)

Texture—very fine sandy loam, loam, sandy loam, or fine sandy loam

Organic matter content—0 to 4 percent

Reaction—strongly acid

Lithic Xerorthents

Lithic Xerorthents in the survey area consist of shallow, moderately well drained soils that formed in colluvium from granitoid rock. These soils are on mountainsides. Slope is 0 to 150 percent. The soils are classified as sandy-skeletal, isotic, frigid Lithic Xerorthents.

Typical Pedon

Rock outcrop-Lithic Xerorthents-Waterwheel, complex, 0 to 150 percent slopes, cliffs, ledges, frigid; Mariposa County, California; along the road to Tamarack Creek Campground, Upper Merced Watershed, approximately 1,400 feet (426.7 meters) west and 1,000 feet (304.8 meters) south of the northeast corner of section 23, T. 1 S., R. 21 E., Mount Diablo Base and Meridian; lat. 37 degrees 50 minutes 44.4 seconds N. and long. 119 degrees 37 minutes 39.4 seconds W.; USGS Tamarack Flat, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Lithic Xerorthents is this survey area because of the highly variable nature of these soils.)

A—0 to 3 inches, (0 to 8 cm); light olive brown (2.5Y 5/3) very gravelly sand, very dark grayish brown (2.5Y 3/2) moist; single grain; soft, loose, non-sticky, non-plastic;

- few medium and fine and many very fine roots; 50 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; very strongly acid (pH 5.0); abrupt smooth boundary.
- C—3 to 7 inches, (8 to 17 cm); light olive brown (2.5Y 5/3) extremely gravelly sand, very dark grayish brown (2.5Y 3/2) moist; single grain; non-sticky, non-plastic; few medium and fine and common very fine roots; 75 percent subangular very weakly cemented granodiorite rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0); abrupt smooth boundary.
- R—7 inches, (17 cm); very strongly cemented granodiorite bedrock.

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

Lithic Xerorthents have an ochric epipedon. The particle-size control section has 0.5 to 2.0 percent clay and at least 90 percent sand. The content of surface rock fragments is 55 to 65 percent.

A horizon:

Hue—2.5Y (dry and moist)

Value—5 (dry) and 3 (moist)

Chroma—3 (dry) and 2 (moist)

Texture of the fine-earth fraction—sand

Clay content—0.5 to 2 percent

Rock fragment content—45 to 55 percent

Organic matter content—3 to 7 percent

Reaction—very strongly acid or strongly acid

C horizon:

Hue—2.5Y (dry and moist)

Value—5 (dry) and 3 (moist)

Chroma—3 (dry) and 2 (moist)

Texture of the fine-earth fraction—sand

Clay content—0.5 to 2 percent

Rock fragment content—50 to 90 percent

Organic matter content—0.2 to 3 percent

Reaction—very strongly acid or strongly acid

Lithnip Series

The Lithnip series consists of very shallow, well drained soils that formed in residuum and colluvium derived from tuff, tuff-breccia, and andesite. Lithnip soils are on mountains. Slope is 8 to 75 percent. The soils are classified as loamy-skeletal, isotic, nonacid Lithic Cryorthents.

Typical Pedon

Lithnip extremely gravelly sandy loam; Alpine County, California; in the Toiyabe National Forest about 0.9 mile northeast of The Nipple peak, about 750 feet south and 1,250 feet west of the northeast corner of section 7, T. 9 N., R. 19 E.; lat. 38 degrees 39 minutes 10.0 seconds N. and long. 119 degrees 55 minutes 41.6 seconds W.; Carson Pass, California Quadrangle, NAD 27:

A—0 to 2 inches, (0 to 5 cm); light yellowish brown (10YR 6/4) extremely gravelly sandy loam, dark yellowish brown (10YR 3/4) moist; weak fine subangular blocky structure; soft, very friable, non-sticky, non-plastic; few very fine roots; common

very fine interstitial pores; 70 percent gravel; neutral (pH 6.7); clear wavy boundary.

C—2 to 5 inches, (5 to 13 cm); light yellowish brown (10YR 6/4) very gravelly sandy loam, dark yellowish brown (10YR 3/4) moist; massive; slightly hard, very friable, non-sticky, non-plastic; few very fine roots; common very fine interstitial pores; 55 percent gravel; neutral (pH 6.7); abrupt wavy boundary.

R—5 to 15 inches, (13 to 38 cm); hard tuff.

Range in Characteristics

The soil is usually moist in the moisture control section in fall, winter, and spring. It is usually dry from July through early October. The moisture regime is xeric. The mean annual soil temperature is 44 to 47 degrees F, and the mean summer soil temperature is 54 to 59 degrees F. The depth to a lithic contact is 4 to 10 inches. Sodium fluoride pH is 8.5 to 10.0.

In the control section, the clay content averages 12 to 18 percent and the content of rock fragments (dominantly gravel) averages 60 to 80 percent. Lithology of fragments is volcanic rocks such as tuff, tuff-breccia, and andesite.

The soil surface is covered with 60 percent gravel and less than 1 percent stones.

A horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—5 or 6 (dry) and 3 or 4 (moist)

Chroma—2 to 4 (dry and moist)

Organic matter content—1 or 2 percent

Clay content—10 to 18 percent

Rock fragment content—60 to 80 percent, dominantly gravel

Reaction—slightly acid or neutral

C horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—5 or 6 (dry) and 3 or 4 (moist)

Chroma—3 or 4 (dry and moist)

Texture—very gravelly sandy loam or extremely gravelly sandy loam

Clay content—12 to 18 percent

Rock fragment content—50 to 80 percent

Reaction—slightly acid or neutral

Marmotland Series

The Marmotland series consists of very deep, moderately well drained or well drained soils that formed in alluvium and/or till from granitoid rock. These soils are on ground moraines and mountain valley floors. Slope is 0 to 15 percent. The soils are classified as coarse-loamy, isotic, Vitrandic Dystrocryepts.

Typical Pedon

Marmotland-Oxyaquic Dystrocryepts-Xeric Dystrocryepts complex, 0 to 15 percent slopes, mountain valley floors, cryic; Tuolumne County, California; Tuolumne Meadows, 200 feet (61.0 meters) northwest of Puppy Dome, approximately 1,000 feet (304.8 meters) north and 1,400 feet (426.7 meters) east of the southwest corner of section 4, T. 1 S., R. 24 E., Mount Diablo Base and Meridian; lat. 37 degrees 52 minutes 28.5 seconds N. and long. 119 degrees 20 minutes 38.8 seconds W.; USGS Tioga Pass, California Quadrangle, NAD 83:

Oi—0 to 0 inches, (0 to 1 cm); slightly decomposed plant material.

A1—0 to 11 inches, (1 to 29 cm); brown (10YR 5/3) fine sandy loam, very dark grayish

brown (10YR 3/2) moist; weak fine granular and weak medium subangular blocky structure; very friable, slightly sticky, slightly plastic; common fine and very fine and few medium roots; 5 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.1); clear smooth boundary. (Lab sample # 01N01007)

- A2—11 to 19 inches, (29 to 47 cm); brown (10YR 5/3) fine sandy loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; very friable, slightly sticky, slightly plastic; common fine and very fine and few medium, coarse, and very coarse roots; 5 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.2); clear smooth boundary. (Lab sample # 01N01008)
- Bt1—19 to 36 inches, (47 to 91 cm); light yellowish brown (10YR 6/4) fine sandy loam, dark yellowish brown (10YR 3/4) moist; weak coarse subangular blocky structure; very friable, slightly sticky, slightly plastic; few fine and common very fine roots; 3 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; moderately acid (pH 5.7); abrupt irregular boundary. (Lab sample # 01N01009)
- Bt2—36 to 48 inches, (91 to 121 cm); very pale brown (10YR 7/4) sandy loam, dark yellowish brown (10YR 4/6) moist; weak coarse subangular blocky structure; very friable, slightly sticky, slightly plastic; few fine roots; 3 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; moderately acid (pH 5.9); abrupt irregular boundary. (Lab sample # 01N01010)
- C—48 to 60 inches, (121 to 153 cm); 60 percent gray (2.5Y 6/1) ashy sandy loam, moist; massive; very friable, slightly sticky, slightly plastic; 40 percent yellowish red (5YR 4/6), strong brown (7.5YR 5/8), and dark red (2.5YR 3/6) redoximorphic features; 3 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; moderately acid (pH 5.9).

Range in Characteristics

The mean annual soil temperature is about 4.5 degrees C (40 degrees F). The particle-size control section has 2 to 9 percent clay and 50 to 70 percent sand. It has less than 35 percent rock fragments and 15 percent or more, by weight, particles with a diameter of 0.1 to 75 millimeters (fine sand or coarser, including rock fragments as much as 7.5 centimeters in diameter). This soil has an umbric epipedon and/or a cambic horizon. Some pedons may not have volcanic ash. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 5 percent.

A horizon:

Hue—10YR

Value—4 or 5 (dry) and 2 or 3 (moist)

Chroma—3 or 4 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—sandy loam, fine sandy loam, or loam

Clay content—2 to 6 percent

Rock fragment content—0 to 20 percent

Organic matter content—2 to 11 percent

Reaction—very strongly acid or strongly acid

Bt horizon:

Hue—10YR or 2.5Y (dry) and 7.5YR or 10YR (moist)

Value—5 or 6 (dry) and 3 or 4 (moist)

Chroma—3 to 6 (dry) and 3 or 4 (moist)

Texture of the fine-earth fraction—sandy loam, fine sandy loam, or loam

Clay content—3 to 9 percent

Rock fragment content—0 to 25 percent

Organic matter content—0.5 to 6 percent Reaction—very strongly acid to moderately acid

C or Ct horizon:

Hue—10YR or 2.5YR (dry and moist)

Value—5 to 7 (dry) and 3 to 6 (moist)

Chroma—2 to 6 (dry) and 1 to 5 (moist)

Redoximorphic features—hue of 5YR, 2.5YR, or 7.5YR, value of 3 to 6, and chroma of 6 to 8

Texture of the fine-earth fraction—ashy sandy loam or sandy loam

Clay content—3 to 9 percent

Rock fragment content—0 to 45 percent

Organic matter content—0.2 to 1 percent

Reaction—very strongly acid to moderately acid

Additional characterization data for this Marmotland typical pedon, National Soil Survey Laboratory lab data pedon number 01N0148 (Pedon ID: 00CA109012), and for pedon numbers 98P0214 (Pedon ID: 97CA109013) and 98P0202 (Pedon ID: 97CA109001) are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Mollic Xerofluvents

Mollic Xerofluvents in the survey area consist of very deep, well drained soils on alluvial fans. These soils formed from granitoid rocks. Slope is 1 to 5 percent. The soils are classified as isotic, mesic Mollic Xerofluvents.

Typical Pedon

Mollic Xerofluvents, 1 to 5 percent slopes, frequently flooded, mesic; Mariposa County, California; about 600 feet north-northwest from the intersection of Northside Drive and the El Capitan picnic area road, Yosemite National Park, Yosemite Valley; lat. 37 degrees 43 minutes 39 seconds N. and long. 119 degrees 37 minutes 12 seconds W.; UTM Zone11, easting 269099.22 and northing 4178825.12; USGS Half Dome, California Quadrangle, NAD 83. (This pedon is not completely representative of the Mollic Xerofluvents in this survey area because of the highly variable nature of these soils.)

Oi—0 to 2 inches, (0 to 5 cm); slightly decomposed leaf litter.

- A1—2 to 6 inches, (5 to 15 cm); grayish brown (10YR 5/2) loam, very dark gray (10YR 3/1) moist; moderate medium subangular blocky structure parting to moderate medium granular; hard, very friable, slightly sticky, slightly plastic; common very fine roots; many very fine interstitial and few fine tubular pores; strongly acid (pH 5.3); abrupt wavy boundary.
- C1—6 to 8 inches, (15 to 20 cm); white (10YR 8/1) and very pale brown (10YR 8/3) sand, grayish brown (10YR 5/2) moist; single grain; loose, non-sticky, non-plastic; common fine and few coarse roots; many very fine interstitial pores; strongly acid (pH 5.6); abrupt wavy boundary.
- C2—8 to 12 inches, (20 to 30 cm); 60 percent light gray (2.5Y 7/2) and 40 percent pale yellow (2.5Y 7/4) loam, 60 percent dark grayish brown (2.5Y 4/2) and 40 percent olive brown (2.5Y 4/4) moist; massive; slightly hard, friable, slightly sticky, slightly plastic; common very fine, medium, and coarse roots; common very fine interstitial and tubular pores; strongly acid (pH 5.3); abrupt wavy boundary.
- C3—12 to 23 inches, (30 to 58 cm); 60 percent white (10YR 8/1) and 40 percent black (10YR 2/1) gravelly sand, 60 percent dark gray (10YR 4/1) and 40 percent black (10YR 2/1) moist; single grain; loose, non-sticky, non-plastic; few fine, medium,

- and coarse roots; common very fine interstitial pores; platy strata with weak iron cementation; 15 percent angular pebbles; moderately acid (pH 5.3); abrupt wavy boundary.
- C4—23 to 29 inches, (58 to 73 cm); 50 percent light gray (10YR 7/1), 40 percent light yellowish brown (2.5Y 6/4), and 10 percent light olive brown (2.5Y 5/6) loamy fine sand, 50 percent dark gray (10YR 4/1), 40 percent olive brown (2.5Y 4/4), and 10 percent light olive brown (2.5Y 5/6) moist; strong medium platy structure; slightly hard, friable, non-sticky, non-plastic; few medium and coarse roots; common very fine interstitial pores; platy strata that are weakly iron cemented; strongly acid (pH 5.3); abrupt wavy boundary.
- C5—29 to 49 inches, (73 to 124 cm); 50 percent white (10YR 8/1) and 50 percent black (10YR 2/1) gravelly sand, 60 percent dark gray (10YR 4/1) and 40 percent black (10YR 2/1) moist; strong thin and medium platy structure; slightly hard, very friable, non-sticky, non-plastic; platy strata that are weakly iron cemented; 15 percent angular pebbles; strongly acid (pH 5.3); abrupt wavy boundary.
- Ab1—49 to 54 inches, (124 to 137 cm); dark gray (10YR 4/1) sandy loam, black (10YR 2/1) moist; massive; soft, friable, non-sticky, non-plastic; common very fine interstitial pores; strongly acid (pH 5.3); clear wavy boundary.
- Ab2—54 to 68 inches, (137 to 173 cm); grayish brown (10YR 5/2) gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; massive; soft, friable, non-sticky, non-plastic; common very fine interstitial pores; 20 percent angular pebbles; strongly acid (pH 5.3).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

Textures and colors are highly variable. The soil is highly stratified. The weighted average of the 10-inch- to 100-inch-zone (25-centimeter- to 39-centimeter-zone) is 3 to 10 percent clay and more than 80 percent sand. The surface soil has a thin dark layer due to additional organic matter.

A horizon:

Hue—10YR (dry and moist)
Value—5 (dry) and 3 (moist)
Chroma—2 (dry) and 1 (moist)
Texture—stratified gravelly sand to loam
Clay content—3 to 18 percent
Rock fragment content—0 to 12 percent
Organic matter content—5 to 9 percent
Reaction—strongly acid

C horizon:

Hue—10YR or 2.5Y (dry and moist)
Value—2 to 8 (dry) and 2 to 5 (moist)
Chroma—1 to 6 (dry and moist)
Texture—stratified gravelly sand to loam
Clay content—3 to 18 percent
Rock fragment content—0 to 29 percent
Organic matter content—0 to 3 percent
Reaction—strongly acid or moderately acid

Ab horizon:

Hue—10YR (dry and moist)
Value—4 or 5 (dry) and 2 or 3 (moist)
Chroma—1 or 2 (dry and moist)

Texture—stratified gravelly sand to loam Clay content—6 to 12 percent Rock fragment content—7 to 28 percent Organic matter content—1 to 5 percent Reaction—strongly acid

Nevadafalls Series

The Nevadafalls series consists of very deep, somewhat excessively drained soils that formed in colluvium or till derived from granitoid rock. These soils are on moraines, mountain slopes, landslides, bedrock benches, and stream terraces. Slope is 0 to 45 percent. The soils are classified as coarse-loamy, isotic, frigid Humic Dystroxerepts.

Typical Pedon

Nevadafalls-Waterwheel association, 0 to 35 percent slopes, moraines, frigid; Tuolumne County, California; approximately 650 feet (198.1 meters) northwest of Cottonwood Creek, 2,700 feet (823.0 meters) north of Cottonwood Meadow, approximately 2,000 feet (609.6 meters) east and 1,600 feet (487.7 meters) south of the northwest corner of section 33, T. 1 N., R. 20 E., Mount Diablo Base and Meridian; lat. 37 degrees 54 minutes 8.0 seconds N. and long. 119 degrees 47 minutes 02.2 seconds W.; USGS Lake Eleanor, California Quadrangle, NAD 83:

- Oi—0 to 0 inches, (0 to 1 cm); slightly decomposed plant material; 1 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size.
- A—0 to 6 inches, (1 to 14 cm); brown (10YR 4/3) loamy coarse sand, very dark grayish brown (10YR 3/2) moist; moderate coarse and medium subangular blocky structure; very friable, non-sticky, non-plastic; few medium and fine and many very fine roots; 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; slightly acid (pH 6.1); abrupt smooth boundary. (Lab sample # 01N00988)
- Bw—6 to 17 inches, (14 to 43 cm); brown (10YR 5/3) loamy coarse sand, dark brown (10YR 3/3) moist; weak fine, medium, and coarse subangular blocky structure; very friable, non-sticky, non-plastic; few medium, common coarse and fine, and many very fine roots; 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; moderately acid (pH 5.8); gradual smooth boundary. (Lab sample # 01N00989)
- C1—17 to 31 inches, (43 to 79 cm); yellowish brown (10YR 5/4) very cobbly loamy coarse sand, brown (10YR 4/3) moist; weak very fine granular structure; very friable, non-sticky, non-plastic; few very coarse and very fine and common coarse medium roots; 5 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, 15 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 15 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size; moderately acid (pH 5.6); gradual smooth boundary. (Lab sample # 01N00990)
- C2—31 to 60 inches, (79 to 152 cm); light yellowish brown (10YR 6/4) very cobbly loamy coarse sand, dark yellowish brown (10YR 4/4) moist; single grain; very friable, non-sticky, non-plastic; common coarse and medium and few very coarse, fine, and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, 15 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, and 20 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5). (Lab sample # 01N00991)

Range in Characteristics

The mean annual soil temperature is less than 8.0 degrees C (46.4 degrees F). The particle-size control section has 1 to 12 percent clay and 60 to 85 percent sand. Rock fragment content is 2 to 70 percent, by volume. The soil has an umbric epipedon and/or a cambic horizon. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 5 percent.

A horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—3 to 5 (dry) and 2 or 3 (moist)

Chroma—2 to 4 (dry) and 1 or 2 (moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, loamy fine sand, or sandy loam

Clay content—1 to 6 percent

Rock fragment content—2 to 25 percent

Organic matter content—3 to 10 percent

Reaction—strongly acid to slightly acid

Other characteristics—some pedons have an AB or a BA horizon

Bw horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—3 to 5 (dry) and 3 or 4 (moist)

Chroma—3 or 4 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, loamy fine sand, or sandy loam

Clay content—1 to 12 percent

Rock fragment content—2 to 60 percent

Organic matter content—1 to 6 percent

Reaction—strongly acid to slightly acid

C horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—5 or 6 (dry) and 3 or 4 (moist)

Chroma—3 or 4 (dry) and 2 to 4 (moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, or sandy loam

Clay content—1 to 6 percent

Rock fragment content—2 to 70 percent

Organic matter content—0.20 to 1.5 percent

Reaction—strongly acid to slightly acid

Other characteristics—some pedons do not have a C horizon

Additional characterization data for this Nevadafalls typical pedon, National Soil Survey Laboratory lab data pedon number 01N0143 (Pedon ID: 00CA109008), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Oxyaquic Cryorthents

Oxyaquic Cryorthents in the survey area consist of very deep, moderately well drained soils that formed in till from granitoid rock. These soils are in drainageways and on ground moraines. Slope is 0 to 8 percent. The soils are classified as coarse-loamy, isotic, nonacid Oxyaquic Cryorthents.

Typical Pedon

Oxyaquic Cryorthents-Canisrock complex, 0 to 15 percent slopes, ground moraines, wet/dry, cryic; Tuolumne County, California; approximately 2,900 feet (883.9 meters)

northeast of Gaylor Peak, approximately 1,100 feet (335.3 meters) north and 1,500 feet (457.2 meters) west of the southeast corner of section 25, T. 1 N., R. 24 E., Mount Diablo Base and Meridian; lat. 37 degrees 54 minutes 54.2 seconds N. and long. 119 degrees 36 minutes 23 seconds W.; USGS Tioga Pass, California Quadrangle NAD 83. (This pedon is representative but not completely typical of the Oxyaquic Cryorthents in this survey area because of the highly variable nature of these soils.)

- A1—0 to 3 inches, (0 to 8 cm); light yellowish brown (2.5Y 6/3) sandy loam, dark brown (10YR 3/3) moist; massive; very friable, non-sticky, non-plastic; many fine and very fine and common medium roots; 2 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; moderately acid (pH 5.8); clear smooth boundary.
- A2—3 to 13 inches, (8 to 32 cm); light yellowish brown (2.5Y 6/3) sandy loam, brown (10YR 4/3) moist; massive; very friable, non-sticky, non-plastic; common medium, fine, and very fine roots; 2 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; moderately acid (pH 6.0); abrupt smooth boundary.
- 2C1—13 to 18 inches, (32 to 46 cm); pale yellow (2.5Y 7/4) sandy loam, dark yellowish brown (10YR 4/6) moist; massive; very friable, non-sticky, non-plastic; common fine, medium, and very fine roots; 5 percent subangular very strongly cemented granodiorite fragments 76 to 250 mm in size and 5 percent subangular very strongly cemented granodiorite fragments 2 to 76 mm in size; moderately acid (pH 6.0); clear wavy boundary.
- 2C2—18 to 30 inches, (46 to 75 cm); pale yellow (2.5Y 7/3) loamy coarse sand, light olive brown (2.5Y 5/3) moist; massive; very friable, non-sticky, non-plastic; few fine and common very fine roots; 1 percent reddish yellow (7.5YR 6/8) and 30 percent yellowish brown (10YR 5/4) redoximorphic accumulations of iron; 2 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 7 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; moderately acid (pH 6.0); abrupt wavy boundary.
- 2C3—30 to 43 inches, (75 to 110 cm); light gray (2.5Y 7/2) coarse sand, light olive brown (2.5Y 5/3) moist; massive; loose, non-sticky, non-plastic; 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; moderately acid (pH 6.0).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

Oxyaquic Cryorthents are saturated with water in one or more layers within 100 centimeters of the mineral soil surface in normal years for either or both 20 or more consecutive days or 30 or more cumulative days. The particle-size control section has less than 35 percent, by weighted average, rock fragments. The content of surface rock fragments is 0 to 30 percent. Redoximorphic accumulation of iron commonly occurs in the lower part of the 2C horizon.

A horizon:

Hue—2.5Y (dry) and 10YR (moist)
Value—6 (dry) and 3 or 4 (moist)
Chroma—3 (dry and moist)
Texture of the fine-earth fraction—sandy loam
Clay content—2 to 6 percent
Rock fragment content—0 to 35 percent
Organic matter content—3 to 9 percent
Reaction—moderately acid or slightly acid

2C horizon:

Hue—2.5Y (dry) or 10YR (moist)

Value—7 (dry) and 4 or 5 (moist)
Chroma—2 to 4 (dry) and 3 to 6 (moist)
Texture of the fine-earth fraction—coarse sand, loamy coarse sand, or sandy loam
Clay content—0.2 to 8 percent
Rock fragment content—0 to 40 percent
Organic matter content—0.2 to 3 percent
Reaction—moderately acid or slightly acid

Oxyaquic Dystrocryepts

Oxyaquic Dystrocryepts in the survey area consist of very deep, moderately well drained soils that formed in colluvium, till, and/or alluvium from granitoid and a small percentage of metamorphic rock. These soils are on mountain slopes, in avalanche chutes, on mountain valleys, on flood plains, and in mountain canyons. Slope is 0 to 45 percent. The soils are classified as coarse-loamy, isotic, Oxyaquic Dystrocryepts.

Typical Pedon

Marmotland-Oxyaquic Dystrocryepts association, 0 to 8 percent slopes, mountain valleys, ground moraines, fluted, cryic; Tuolumne County, California; approximately 700 feet (213.4 meters) south of the John Muir Trail and 1,100 feet (335.3 meters) east of the Unicorn Creek Trail, approximately 450 feet (137.2 meters) west and 2,150 feet (655.3 meters) south of the northeast corner of section 8, T. 1 S., R. 24 E., Mount Diablo Base and Meridian; lat. 37 degrees 52 minutes 2.7 seconds N. and long. 119 degrees 21 minutes 4.8 seconds W.; USGS Vogelsang Peak, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Oxyaquic Dystrocryepts in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 0 inches, (0 to 1 cm); slightly decomposed plant material; 1 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size.
- Oa—0 to 2 inches, (1 to 4 cm); highly decomposed plant material; 1 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size.
- A1—2 to 5 inches, (4 to 13 cm); brown (10YR 5/3) sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine granular and moderate coarse granular structure; very friable, non-sticky, non-plastic; few very coarse, coarse, and medium and common very fine roots; 7 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; very strongly acid (pH 4.8); clear wavy boundary. (Lab sample # 98P01846)
- A2—5 to 12 inches, (13 to 30 cm); brown (7.5YR 5/4) sandy loam, dark brown (7.5YR 3/3) moist; weak medium granular and weak coarse granular structure; friable, non-sticky, non-plastic; few coarse and medium and common fine, very coarse, and very fine roots; 4 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size and 5 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size; extremely acid (pH 4.4); gradual irregular boundary. (Lab sample # 98P01847)
- Bw—12 to 19 inches, (30 to 48 cm); strong brown (7.5YR 4/6) cobbly sandy loam, dark brown (7.5YR 3/4) moist; weak medium subangular blocky and weak coarse granular structure; friable, non-sticky, non-plastic; few fine and medium and common very fine roots; 5 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size and 20 percent subangular very strongly cemented 75 to 250 mm in size; strongly acid (pH 5.3); gradual irregular boundary. (Lab sample # 98P01848)
- C1—19 to 28 inches, (48 to 70 cm); 5 percent light gray (2.5Y 7/1) and 95 percent yellowish brown (10YR 5/4) gravelly coarse sandy loam, 5 percent gray (10YR 6/1) and 95 percent dark yellowish brown (10YR 4/4) moist; weak medium

subangular blocky and weak coarse granular structure; very friable, non-sticky, non-plastic; few fine and very fine roots; 30 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.4); gradual wavy boundary. (Lab sample # 98P01849)

C2—28 to 60 inches, (70 to 152 cm); light gray (2.5Y 7/1) very gravelly sandy loam, gray (10YR 6/1) moist; massive; friable, non-sticky, non-plastic; few very fine roots; 35 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.1). (Lab sample # 98P01850)

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level categories are therefore included with the concept of this component, such as loamy-skeletal, isotic Oxyaquic Dystrocryepts and sandy, isotic Oxyaquic Dystrocryepts.

Oxyaquic Dystrocryepts are saturated with water in one or more layers within 100 centimeters of the mineral soil surface in normal years for either or both 20 or more consecutive days or 30 or more cumulative days. They have an umbric epipedon and/or a cambic horizon. The mean annual soil temperature is about 4.5 degrees C. The mean summer soil temperature is about 8.5 degrees C. The mean winter soil temperature is about 1.5 degrees C. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 15 percent.

A horizon:

Hue—7.5YR or 10YR (dry and moist)

Value—4 or 5 (dry) and 2 or 3 (moist)

Chroma—2 to 4 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—coarse sand, loamy coarse sand, loamy sand, or sandy loam

Rock fragment content—0 to 30 percent

Clay content—0.5 to 10 percent

Organic matter content—1 to 10 percent

Reaction—extremely acid to moderately acid

Other characteristics—some pedons have an AB horizon

Bw horizon:

Hue—2.5YR, 5YR, 7.5YR, or 10YR (dry and moist)

Value—4 to 6 (dry) and 3 or 4 (moist)

Chroma—4 to 6 (dry and moist)

Texture of the fine-earth fraction—coarse sand, loamy coarse sand, loamy fine sand, or sandy loam

Rock fragment content—3 to 35 percent

Clay content—0.5 to 6 percent

Organic matter content—0.5 to 6 percent

Reaction—extremely acid to moderately acid

Bt horizon (if it occurs):

Hue—10YR (dry and moist)

Value—6 (dry) and 3 (moist)

Chroma—3 or 4 (dry) and 2 to 4 (moist)

Texture of the fine-earth fraction—sandy loam

Rock fragment content—0 to 34 percent

Clay content—2 to 10 percent

Organic matter content—2 to 7 percent

Reaction—extremely acid to strongly acid

C horizon:

Hue—2.5YR, 5YR, 7.5YR, 10YR, or 2.5Y (dry and moist)

Value—4 to 7 (dry) and 3 to 6 (moist)

Chroma—1 to 6 (dry) and 3 to 6 (moist)

Texture of the fine-earth fraction—coarse sand, loamy coarse sand, loamy sand, coarse sandy loam, or sandy loam

Rock fragment content—5 to 80 percent

Clay content—0.5 to 6 percent

Organic matter content—0.20 to 2.5 percent

Reaction—extremely acid to moderately acid

Other characteristics—some pedons have a Ct horizon

Additional characterization data for this Oxyaquic Dystrocryepts example pedon, National Soil Survey Laboratory lab data pedon number 98P0303 (Pedon ID: 97CA109017), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Oxyaquic Dystroxerepts

Oxyaquic Dystroxerepts in the survey area consist of very deep, moderately well drained soils that formed in colluvium and/or alluvium from granitoid rock and volcanic ash. These soils are on mountain valleys, ground moraines, flood plains, and terraces. Slope is 0 to 30 percent. The soils are classified as fine-loamy, isotic, frigid Oxyaquic Dystroxerepts.

Typical Pedon

Badgerpass-Oxyaquic Dystroxerepts association, 0 to 15 percent slopes, mountain valley floors, frigid; Mariposa County, California; approximately 6,600 feet (2,011.7 meters) east of Elevenmile Meadow and 1,300 feet south of Strawberry Creek, approximately 1,450 feet (442.0 meters) south and 2,650 feet (807.7 meters) west of the northeast corner of section 33., T. 3 S., R. 21 E., Mount Diablo Base and Meridian; lat. 37 degrees 37 minutes 58.1 seconds N. and long. 119 degrees 40 minutes 33.6 seconds W.; USGS El Capitan, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Oxyaquic Dystroxerepts in this survey area because of the highly variable nature of these soils.)

- A—0 to 11 inches, (0 to 28 cm); grayish brown (10YR 5/2) loam, very dark brown (10YR 2/2) moist; moderate medium granular structure; slightly sticky, slightly plastic; common fine, few medium, and many very fine roots; 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.5); gradual wavy boundary.
- Bw1—11 to 19 inches, (28 to 47 cm); light gray (10YR 7/2) loam, 10 percent reddish brown (5YR 4/4) and 90 percent dark grayish brown (10YR 4/2) moist; massive; friable, moderately sticky, moderately plastic; few fine and very fine roots; 10 percent fine distinct dark grayish brown (10YR 4/2, moist) redoximorphic accumulations of iron; 7 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.5); clear wavy boundary.
- Bw2—19 to 32 inches, (47 to 81 cm); pale yellow (2.5Y 7/3) gravelly clay loam, 30 percent strong brown (7.5YR 4/6) and 70 percent dark gray (5Y 4/1) moist; massive; friable, slightly sticky, moderately plastic; few very fine roots; 30 percent fine distinct strong brown (7.5YR 4/6, moist) redoximorphic accumulations of iron; 18 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.5); clear wavy boundary.

- C1—32 to 43 inches, (81 to 108 cm); light gray (5Y 7/1) loam, 2 percent strong brown (7.5YR 5/8), 15 percent strong brown (7.5YR 4/6), and 83 percent gray (5Y 6/1) moist; massive; friable, slightly sticky, moderately plastic; 2 percent fine distinct strong brown (7.5YR 5/8) and 15 percent fine distinct strong brown (7.5YR 4/6, moist) redoximorphic accumulations of iron; strongly acid (pH 5.5); clear wavy boundary.
- C2—43 to 60 inches, (108 to 152 cm); light gray (5Y 7/2) sandy clay loam, gray (5Y 6/1) moist; massive; friable, slightly sticky, moderately plastic; strongly acid (pH 5.5).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level categories are therefore included with the concept of this component, such as coarse-loamy, isotic, frigid Oxyaquic Dystrudepts and loamy-skeletal, isotic, mesic Oxyaquic Dystroxerepts.

Oxyaquic Dystroxerepts are saturated with water in one or more layers within 100 centimeters of the mineral soil surface in normal years for either or both 20 or more consecutive days or 30 or more cumulative days. They have an umbric epipedon and/or a cambic horizon. Some pedons have one or more O horizons. The content of surface rock fragments is 0 to 10 percent.

A horizon:

Hue—10YR and 7.5YR (dry and moist)

Value—5 (dry) and 2 or 3 (moist)

Chroma—2 to 4 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—loamy sand, sandy loam, or loam

Clay content—2 to 18 percent

Rock fragment content—0 to 35 percent

Organic matter content—2 to 10 percent

Reaction—strongly acid or moderately acid

Bw horizon:

Hue—10YR or 2.5Y (dry) and 5YR, 7.5YR, 10YR, or 5Y (moist)

Value—6 or 7 (dry) and 3 or 4 (moist)

Chroma—2 or 4 (dry) and 1 to 6 (moist)

Texture of the fine-earth fraction—loamy sand, coarse sandy loam, sandy loam, loam, or clay loam

Clay content—1 to 35 percent

Rock fragment content—5 to 60 percent

Organic matter content—2 to 7 percent

Reaction—strongly acid or moderately acid

C horizon:

Hue—2.5Y or 5Y (dry) and 2.5Y, 5Y, 7.5YR, or 10YR (moist)

Value—6 or 7 (dry) and 4 to 6 (moist)

Chroma—1 to 6 (dry) and 1 to 8 (moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, coarse sandy loam, sandy loam, sandy clay loam, or loam

Clay content—1 to 30 percent

Rock fragment content—0 to 85 percent

Organic matter content—0.20 to 1.5 percent

Reaction—strongly acid or moderately acid

Oxyaquic Xerofluvents

Oxyaquic Xerofluvents in the survey area consist of very deep, somewhat poorly drained soils in the channel bar or natural levee position of low flood plains. These soils formed in coarse textured alluvium from granitoid rock. Slope is 0 to 4 percent. The soils are classified as isotic, mesic Oxyaquic Xerofluvents.

Typical Pedon

Oxyaquic Xerofluvents-Riverwash-Fluvaquents association, 0 to 2 percent slopes, mesic; Mariposa County, California; 75 feet (22.9 meters) east of the Merced River, Yosemite National Park, Yosemite Valley; lat. 37 degrees 44 minutes 27 seconds N. and long. 119 degrees 35 minutes 38 seconds W.; UTM Zone 11, easting 271440.44 and northing 4180298.59; USGS Half Dome, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Oxyaquic Xerofluvents in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 0.5 inch, (0 to 1 cm); slightly decomposed lodgepole pine needles.
- A1—0.5 inch to 2 inches, (1 to 4 cm); brown (10YR 5/3) fine sandy loam, very dark grayish brown (10YR 3/2) moist; massive; soft, very friable, non-sticky, non-plastic; common very fine roots; many very fine interstitial pores; moderately acid (pH 5.8); abrupt broken boundary.
- A2—2 to 4 inches, (4 to 11 cm); brown (10YR 5/3) loamy coarse sand, dark brown (10YR 3/3) moist; weak fine granular structure; soft, very friable, non-sticky, non-plastic; many very fine and common fine roots; many very fine interstitial pores; moderately acid (pH 5.8); clear irregular boundary.
- A3—4 to 10 inches, (11 to 26 cm); brown (10YR 5/3) loamy sand, dark brown (10YR 3/3) moist; massive; soft, very friable, non-sticky, non-plastic; many very fine and few fine roots; many very fine interstitial pores; moderately acid (pH 5.8); clear wavy boundary.
- C1—10 to 17 inches, (26 to 44 cm); pale brown (10YR 6/3) coarse sand, dark yellowish brown (10YR 3/4) moist; single grain; loose, non-sticky, non-plastic; common coarse roots; many fine and common fine interstitial pores; moderately acid (pH 5.8); clear smooth boundary.
- C2—17 to 28 inches, (44 to 72 cm); pale brown (10YR 6/3) sand, dark yellowish brown (10YR 3/4) moist; single grain; loose, non-sticky, non-plastic; many coarse roots; many very fine interstitial pores; moderately acid (pH 5.8); clear smooth boundary.
- C3—28 to 39 inches, (72 to 100 cm); pale brown (10YR 6/3) sand and loamy fine sand, dark yellowish brown (10YR 3/4) moist; single grain; loose, non-sticky, non-plastic; few coarse roots; many very fine interstitial pores; few fine faint redoximorphic accumulations of iron, dark yellowish brown (10YR 4/4) moist; moderately acid (pH 5.8); clear smooth boundary.
- C4—39 to 43 inches, (100 to 110 cm); light gray (10YR 7/2) sand, brown (10YR 4/3) and yellowish brown (10YR 5/6) moist; single grain; loose, non-sticky, non-plastic; many very fine and few fine interstitial pores; moderately acid (pH 5.8); clear smooth boundary.
- C5—43 to 57 inches, (110 to 145 cm); light gray (10YR 7/2) coarse sand, brown (10YR 4/3) and yellowish brown (10YR 5/6) moist; single grain; loose, non-sticky, non-plastic; many very fine and few fine interstitial pores; moderately acid (pH 5.8); clear smooth boundary.
- Ab—57 to 60 inches, (145 to 153 cm); brown (10YR 5/3) sand, very dark grayish brown (10YR 3/2) moist; common medium distinct strong brown (7.5YR 5/6, moist) mottles; single grain; loose, non-sticky, non-plastic; many very fine interstitial

pores; redoximorphic accumulations of iron at upper boundary; moderately acid (pH 5.8).

Range in Characteristics

This map unit component is represented at a taxonomic level higher that series because of the variability of the landscape at the scale of mapping.

Textures and colors are highly variable. The soil is highly stratified with thin strata. Redoximorphic accumulations of iron occur in some part of the C and Ab horizons.

A horizon:

Hue—10YR (dry and moist)

Value—5 (dry) and 3 (moist)

Chroma—3 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—coarse sand, sand, loamy coarse sand, loamy sand, loamy fine sand, or fine sandy loam

Rock fragment content—0 to 15 percent

Clay content—1 to 10 percent

Organic matter content—2 to 9 percent

Reaction—moderately acid

C horizon:

Hue—10YR (dry and moist)

Value—6 or 7 (dry) and 3 to 5 (moist)

Chroma—2 or 3 (dry) and 3 or 4 (moist)

Texture—stratified gravelly sand to fine sandy loam

Rock fragment content—0 to 15 percent

Clay content—1 to 10 percent

Organic matter content—0.25 to 3 percent

Reaction—moderately acid

Ab horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—5 (dry) and 3 (moist)

Chroma—3 (dry) and 2 to 6 (moist)

Texture—stratified gravelly sand to fine sandy loam

Rock fragment content—0 to 15 percent

Clay content—1 to 10 percent

Organic matter content—5 to 9 percent

Reaction—moderately acid

Riverwash

Riverwash consists of very deep, frequently flooded areas that are reworked by stream flow. Vegetation does not have time to become established because of the erosion and deposition. The material is gravelly, cobbly, or stony and commonly is very stratified sand to loamy fine sand primarily from granitoid rock sources. The areas are unstable.

Rock Outcrop

Rock outcrop consists of barren or nearly barren areas of exposed bedrock dominantly from granitoid rock. Vegetation is sparse. A few conifer trees grow in fractures of rock outcrop in some areas.

Rubble Land

Rubble land consists of small barren areas of colluvium below canyon walls at the edge of mountain valleys and moraines. The colluvium is 90 percent or more loose cobbles, stones, and boulders. The rocks are typically from granitoid sources.

Sentinel Series

The Sentinel series consists of very deep, well drained soils that formed in glaciolacustrine sediments weathered from granitoid rock and some volcanic ash. Slope is 0 to 2 percent. These soils are classified as coarse-loamy, isotic, mesic Vitrandic Dystroxerepts.

Typical Pedon

Sentinel loam, 0 to 2 percent slopes, mesic; Mariposa County, California; Yosemite Valley, about 200 yards northeast of the intersection of Southside Drive and the road north to El Capitan Bridge; lat. 37 degrees 43 minutes 18 seconds N. and long. 119 degrees 37 minutes 40 seconds W.; UTM Zone 11, easting 268392.21 and northing 4178194.56; USGS El Capitan, California Quadrangle, NAD 83:

- Oi—0 to 1 inch, (0 to 3 cm); decomposing litter layer.
- A1—1 to 5 inches, (3 to 13 cm); grayish brown (2.5Y 5/2) loam, dark brown (10YR 3/3) moist; strong fine granular structure; slightly hard, very friable, non-sticky, slightly plastic; moderately smeary; slightly acid (pH 6.5); clear smooth boundary.
- A2—5 to 20 inches, (13 to 51 cm); brown (10YR 5/3) loam, very dark grayish brown (10YR 3/2) moist; moderate fine granular structure; slightly hard, very friable, non-sticky, slightly plastic; moderately smeary; moderately acid (pH 5.8); clear smooth boundary.
- A3—20 to 27 inches, (51 to 69 cm); brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, very friable, non-sticky, slightly plastic; moderately smeary; moderately acid (pH 5.9); clear smooth boundary.
- Bw—27 to 41 inches, (69 to 105 cm); light yellowish brown (10YR 6/4) loam, dark brown (10YR 3/3) moist; weak coarse subangular blocky structure; slightly hard, very friable, slightly sticky, slightly plastic; moderately smeary; few very fine sand or silt coatings on ped surfaces; moderately acid (pH 5.9); clear smooth boundary.
- C1—41 to 56 inches, (105 to 143 cm); light yellowish brown (2.5Y 6/4) sandy loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, very friable, non-sticky, slightly plastic; moderately smeary; slightly acid (pH 6.2); clear smooth boundary.
- C2—55 to 66 inches, (143 to 168 cm); pale yellow (2.5Y 7/4) loamy sand, olive brown (2.5Y 4/4) moist; single grain; loose, non-sticky, non-plastic; slightly acid (pH 6.2).

Range in Characteristics

Thickness of the solum is 25 to 45 inches (63 to 114 centimeters). The mean annual soil temperature is 52 to 56 degrees F (11.1 to 13.3 degrees C). The soil temperature exceeds 41 degrees F (5 degrees C) from March through November and exceeds 47 degrees F (8.3 degrees C) from mid April through October. The difference between mean winter and mean summer soil temperatures is about 28 degrees F. The soil moisture control section is dry in all parts from early July to early November (140-160 days) and is moist in all parts from December to mid May. Fine gravel content is 0 to 5 percent. The sand fraction contains 5 to 20 percent volcanic glass and has other vitrandic properties. Reaction by sodium fluoride is 9.3 to 10.5. Base saturation by ammonium acetate is 50 to 70 percent in the upper part of the A horizon and decreases to 40 to 50 percent in the lower part of the A horizon. It is 35 to 45 percent in the Bw and C horizons.

A horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—8 (dry) and 3 (moist)

Chroma—2 or 6 (dry and moist)

Texture—sandy loam, fine sandy loam, or loam

Clay content—3 to 12 percent

Organic matter content—1 to 8 percent

Reaction—moderately acid or slightly acid

Bw horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—6 (dry) and 3 or 4 (moist)

Chroma—3 or 4 (dry and moist)

Texture—sandy loam, fine sandy loam, or loam

Clay content—3 to 10 percent

Organic matter content—0.5 to 2 percent

Reaction—moderately acid or slightly acid

C horizon:

Hue—2.5Y (dry and moist)

Value—6 or 7 (dry) and 4 (moist)

Chroma—4 (dry and moist)

Texture—sandy loam or loamy sand

Clay content—3 to 10 percent

Organic matter content—0 to 1.5 percent

Reaction—moderately acid or slightly acid

Terric Haplosaprists

Terric Haplosaprists in the survey area consist of deep, very poorly drained soils on low alluvial fans. These soils formed in mineral soils with thick layers of organic materials above the mineral soil. Slope is 0 to 3 percent. The soils are classified as isotic, euic, mesic Terric Haplosaprists.

Typical Pedon

Terric Haplosaprists, 0 to 3 percent slopes, mesic; Mariposa County, California; Bridalveil Meadow, Yosemite National Park, Yosemite Valley; lat. 37 degrees 43 minutes 2 seconds N. and long. 119 degrees 39 minutes 37 seconds W.; UTM Zone 11, easting 265520.41 and northing 4177757.42; USGS El Capitan, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Terric Haplosaprists in this survey area because of the highly variable nature of these soils.)

- A—0 to 3 inches, (0 to 8 cm); very dark gray (10YR 3/1) mucky loam, black (10YR 2/1) moist; moderate fine and medium granular structure; soft, very friable, slightly sticky, slightly plastic; strongly acid (pH 5.3); abrupt smooth boundary.
- C1—3 to 8 inches, (8 to 20 cm); very pale brown (10YR 7/3) gravelly sand, pale brown (10YR 6/3) moist; single grain; loose, non-sticky, non-plastic; strongly acid (pH 5.3); abrupt smooth boundary.
- C2—8 to 12 inches, (20 to 30 cm); light gray (10YR 7/2) loamy fine sand, light brownish gray (10YR 6/2) and black (10YR 2/1) moist; massive; soft, very friable, non-sticky, non-plastic; strongly acid (pH 5.3) abrupt smooth boundary.
- Oa—12 to 31 inches, (30 to 79 cm); very dark gray (N 3/0) muck, black (N 2/0) moist; 15 percent unrubbed fibers and 2 percent rubbed fibers; massive; soft; strongly acid (pH 5.3); clear smooth boundary.

- Ab1—31 to 35 inches, (79 to 89 cm); gray (10YR 5/1) loam, very dark gray (10YR 3/1) moist; massive; slightly hard, friable, slightly sticky, slightly plastic; strongly acid (pH 5.3); abrupt smooth boundary.
- Ab2—35 to 38 inches, (89 to 97 cm); gray (10YR 5/1) sandy loam, very dark gray (10YR 3/1) moist; massive; soft, friable, slightly sticky, slightly plastic; strongly acid (pH 5.3); abrupt smooth boundary.
- Bgb—38 to 46 inches, (97 to 117 cm); 40 percent light gray (5Y 6/1), 30 percent greenish gray (5GY 6/1), 30 percent gray (N 5/0), and 5 percent light greenish gray (5GY 7/1) loam, 40 percent gray (5Y 5/1), 30 percent greenish gray (5GY 5/1), 20 percent dark gray (N 4/0), and 5 percent greenish gray (5GY 6/1) moist; massive; soft, friable, slightly sticky, slightly plastic; strongly acid (pH 5.3); abrupt smooth boundary.
- O'a—46 to 52 inches, (117 to 132 cm); very dark gray (N 3/0) muck, black (N 2/0) moist; 20 percent unrubbed fibers and 3 percent rubbed fibers; massive; soft; strongly acid (pH 5.3); clear smooth boundary.
- A'b—52 to 58 inches, (132 to 147 cm); dark gray (N 4/0) sandy loam, very dark gray (N 3/0) moist; massive; soft, friable, slightly sticky, non-plastic; strongly acid (pH 5.3); clear smooth boundary.
- B'gb—58 to 62 inches, (147 to 152 cm); 80 percent dark gray (10YR 4/1) and 20 percent gray (5Y 6/1) sandy loam, 80 percent very dark gray (10YR 3/1) and 20 percent dark gray (5Y 4/1) moist; massive; soft, friable, slightly sticky, non-plastic; strongly acid (pH 5.3).

Range in Characteristics

The overwash layer is less than 16 inches thick. Organic matter content of the O horizons is 35 to 55 percent. The rubbed fiber content is 2 to 10 percent. The O horizon is at least 16 inches (41 centimeters) thick. Thin mineral horizons occur. Mineral soil material that is 12 inches (30.5 centimeters) or more thick occurs between a depth of 16 to 53 inches (41 to 135 centimeters).

A horizon:

Hue—10YR (dry and moist)
Value—3 (dry) and 2 (moist)
Chroma—1 (dry and moist)
Texture—sandy loam, mucky loam, or loam
Clay content—12 to 18 percent
Rock fragment content—0 to 9 percent
Organic matter content—8 to 14 percent
Reaction—strongly acid

C horizon:

Hue—10YR (dry and moist)
Value—7 (dry) and 2 to 6 (moist)
Chroma—2 or 3 (dry) and 1 to 3 (moist)
Texture of the fine-earth fraction—sand or loamy fine sand
Clay content—3 to 6 percent
Rock fragment content—0 to 23 percent
Organic matter content—1 to 7 percent
Reaction—strongly acid

Oa and O'a horizons:

Hue—neutral (dry and moist) Value—3 (dry) and 2 (moist) Chroma—0 (dry and moist) Texture—muck Clay content—0 to 7 percent Rock fragment content—0 to 3 percent Organic matter content—35 to 55 percent Reaction—strongly acid

Ab and A b horizons:

Hue—neutral or 10YR (dry and moist)
Value—4 or 5 (dry) and 3 (moist)
Chroma—0 or 1 (dry and moist)
Texture—sandy loam, mucky loam, or loam
Clay content—10 to 20 percent
Rock fragment content—0 to 9 percent
Organic matter content—3 to 9 percent
Reaction—strongly acid

Bgb and B 'gb horizons:

Hue—10YR, 5Y, or 5GY or neutral Value—4 to 7 (dry) and 3 to 6 (moist) Chroma—0 or 1 (dry and moist) Texture—sandy loam or loam Clay content—7 to 20 percent Rock fragment content—0 to 3 percent Organic matter content—2 to 7 percent Reaction—strongly acid

Tuolumne Series

The Tuolumne series consists of very deep, somewhat excessively drained soils that formed in colluvium, alluvium, and/or till from granitoid rock. These soils are on alluvial fans, mountain slopes, mountainsides, talus slopes, colluvial aprons, moraines, ancient landslides, avalanche chutes, bedrock benches, and bedrock joints. Slope is 15 to 70 percent. The soils are classified as sandy-skeletal, isotic, mesic Dystric Xerorthents.

Typical Pedon

Rock outcrop-Tuolumne-Humic Dystroxerepts-Rubble land complex, 30 to 100 percent slopes, mountainflanks, mesic; Tuolumne County, California; about 3,960 feet (1,207.0 meters) south-southeast of O'Shaughnessy Dam, approximately 2,590 feet (789.4 meters) east and 1,040 feet (317.0 meters) north of the southwest corner of section 16, T. 1 N., R. 20 E., Mount Diablo Base and Meridian; lat. 37 degrees 56 minutes 27.7 seconds N. and long. 119 degrees 46 minutes 56.5 seconds W.; USGS Lake Eleanor, California Quadrangle, NAD 83:

- A—0 to 2 inches, (0 to 6 cm); dark grayish brown (2.5Y 4/2) cobbly loamy coarse sand, black (10YR 2/1) moist; weak very fine granular structure; soft, friable, non-sticky, non-plastic; common very coarse, coarse, medium, and fine and many very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, 10 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, and 17 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; slightly alkaline (pH 7.4); abrupt smooth boundary. (Lab sample # 99P01595)
- AC—2 to 10 inches, (6 to 25 cm); light yellowish brown (2.5Y 6/3) very gravelly coarse sandy loam, dark grayish brown (10YR 4/2) moist; weak very fine granular structure; soft, friable, non-sticky, non-plastic; many very coarse, coarse, and very fine and common medium and fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, 7 percent subangular

- very strongly cemented granitoid rock fragments 75 to 250 mm in size, and 30 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; neutral (pH 6.7); clear smooth boundary. (Lab sample # 99P01596)
- C1—10 to 35 inches, (25 to 90 cm); light yellowish brown (2.5Y 6/3) very bouldery loamy coarse sand, brown (10YR 4/3) moist; weak very fine granular structure; soft, friable, non-sticky, non-plastic; many very coarse, coarse, and very fine and common fine and medium roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, 7 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, 15 percent subrounded very strongly cemented granitoid rock fragments 600 to 3000 mm in size, and 30 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; moderately acid (pH 6.0); gradual smooth boundary. (Lab sample # 99P01597)
- C2—35 to 60 inches, (90 to 152 cm); light yellowish brown (2.5Y 6/4) gravelly coarse sand, brown (10YR 4/3) moist; single grain; soft, very friable, non-sticky, non-plastic; common coarse, medium, fine, and very fine roots; 5 percent subrounded very strongly cemented granitoid rock fragments 600 to 3000 mm in size, 5 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, 5 percent subangular very strongly cemented granitoid rock fragments 76 to 250 mm in size, and 17 percent subangular very strongly cemented granitoid rock fragments 2 to 76 mm in size; very strongly acid (pH 5.0). (Lab sample # 99P01598)

Range in Characteristics

The mean annual soil temperature is about 12 degrees C (54 degrees F). The particle-size control section has 0.5 to 6.0 percent clay and 65 to 95 percent sand. Rock fragment content is 0 to 85 percent, by volume. The particle-size control section, by weighted average, has 35 percent or more rock fragments. Some pedons have one or more O horizons. Surface rock fragments are 0 to 80 percent.

A horizon:

Hue—10YR (dry and moist)

Value—3 to 6 (dry) and 1 to 4 (moist)

Chroma—2 to 4 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—coarse sand, loamy coarse sand, loamy sand, coarse sandy loam, or sandy loam

Clay content—0.5 to 6 percent

Rock fragment content—7 to 50 percent

Organic matter content—0.5 to 10 percent

Reaction—very strongly acid to slightly alkaline

Other characteristics—some pedons have an Ab horizon

AC horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—6 or 7 (dry) and 4 or 5 (moist)

Chroma—3 or 4 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—coarse sandy loam or sandy loam

Clay content—2 to 4 percent

Rock fragment content—32 to 60 percent

Organic matter content—1 to 3 percent

Reaction—slightly acid or neutral

Bw horizon (if it occurs):

Hue—10YR or 2.5Y (dry and moist)

Value—6 or 7 (dry) and 4 or 5 (moist)

Chroma—3 or 4 (dry) and 2 or 3 (moist)

Soil Survey of Yosemite National Park, California

Texture of the fine-earth fraction—loamy coarse sand or loamy sand

Clay content—0.5 to 5 percent

Rock fragment content—22 to 75 percent

Organic matter content—1 to 8 percent

Reaction—very strongly acid to moderately acid

C horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—5 to 7 (dry) and 4 to 6 (moist)

Chroma—2 to 6 (dry) and 2 to 4 (moist)

Texture of the fine-earth fraction—coarse sand, loamy coarse sand, or loamy sand

Clay content—0.1 to 5 percent

Rock fragment content—25 to 90 percent

Organic matter content—0.2 to 3 percent

Reaction—very strongly acid to neutral

Additional characterization data for this Tuolumne typical pedon, National Soil Survey Laboratory lab data pedon number 99P0314 (Pedon ID: 99CA109006), and for pedon numbers 00P0789 (Pedon ID: 00CA043003), 00P0786 (Pedon ID: 00CA109007), and 02N0615 (Pedon ID: 01CA043004) are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Typic Cryaquents

Typic Cryaquents in the survey area consist of very deep, somewhat poorly drained soils that formed in till and/or colluvium from granitoid rock. These soils are on moraines and colluvial aprons. Slope is 5 to 30 percent. The soils are classified as sandy-skeletal, isotic, Typic Cryaquents.

Typical Pedon

Canisrocks-Typic Cryaquents complex, 5 to 30 percent slopes, lateral moraines, aprons, wet/dry, cryic; Tuolumne County, California; approximately 6,550 feet (1,996.4 meters) north-northwest of Mammoth Peak; complete Public Land Survey System unavailable; T. 1 S., R. 24 E., Mount Diablo Base and Meridian; lat. 37 degrees 52 minutes 16.4 seconds N. and long. 119 degrees 16 minutes 29.3 seconds W.; USGS Vogelsang Peak, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Typic Cryaquents in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 0 inches, (0 to 1 cm); bouldery slightly decomposed plant material; 7 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size and 8 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size.
- Oe—0 to 1 inch, (1 to 2 cm); bouldery moderately decomposed plant material; 7 percent subrounded very strongly cemented granodiorite fragments 600 to 3000 mm in size and 8 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size.
- A1—1 to 3 inches, (2 to 7 cm); gray (2.5Y 5/1) very fine sandy loam, very dark gray (10YR 3/1) moist; weak very fine subangular blocky structure; soft, very friable, non-sticky, non-plastic; common coarse, medium, and fine and many very fine roots; 2 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size and 8 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size; strongly acid (pH 5.5); abrupt smooth boundary.
- A2—3 to 9 inches, (7 to 24 cm); light gray (2.5Y 7/1) very stony loamy very fine sand, very dark grayish brown (2.5Y 3/2) moist; weak medium subangular blocky structure; slightly hard, very friable, non-sticky, non-plastic; few very coarse,

medium, and fine and common coarse and very fine roots; 2 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granodiorite fragments 2 to 76 mm in size, and 30 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size; strongly acid (pH 5.5); clear wavy boundary.

- C1—9 to 17 inches, (24 to 44 cm); light olive brown (2.5Y 5/3) very stony loamy sand, very dark grayish brown (10YR 3/2) moist; massive; loose, non-sticky, non-plastic; few coarse and fine and common very fine roots; 3 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 13 percent subangular very strongly cemented granodiorite fragments 2 to 76 mm in size, and 30 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size; strongly acid (pH 5.5); clear wavy boundary.
- C2—17 to 60 inches, (44 to 152 cm); light yellowish brown (2.5Y 6/3) very stony loamy sand, dark grayish brown (10YR 4/2) moist; massive; loose, non-sticky, non-plastic; few very fine roots; 5 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size, and 30 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size; strongly acid (pH 5.5).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

The content of surface rock fragments is 2 to 45 percent.

A horizon

Hue—2.5Y (dry) and 2.5Y or 10YR (moist)

Value—5 to 7 (dry) and 3 (moist)

Chroma—1 (dry) and 1 or 2 (moist)

Texture of the fine-earth fraction—loamy very fine sand, sandy loam, or very fine sandy loam

Clay content—1 to 5 percent

Rock fragment content—5 to 65 percent

Organic matter content—6 to 15 percent

Reaction—strongly acid or moderately acid

C horizon:

Hue—2.5Y (dry) and 10YR (moist)

Value—5 or 6 (dry) and 3 or 4 (moist)

Chroma—3 (dry) and 2 (moist)

Texture of the fine-earth fraction—sand or loamy sand

Clay content—1 to 7 percent

Rock fragment content—5 to 65 percent

Organic matter content—0.1 to 2.0 percent

Reaction—strongly acid or moderately acid

Typic Cryopsamments

Typic Cryopsamments in the survey area consists of very deep somewhat excessively drained soils that formed in till and/or colluvium from granitoid rock. These soils are on moraines and colluvial aprons. Slope is 5 to 30 percent. The soils are classified as isotic Typic Cryopsamments.

Typical Pedon

Typic Cryopsamments-Humic Dystrocryepts complex, 0 to 20 percent slopes,

mountain toeslopes, moraines, cryic; Mariposa County, California; Porcupine Creek Drainage, near the Merced River, approximately 3,960 feet north of the Porcupine Flat Campground, approximately 700 feet west and 300 feet north of the southwest corner of section 28, T. 1 S., R. 22 E., Mount Diablo Base and Meridian; lat. 37 degrees 49 minutes 10.3 seconds N. and long. 119 degrees 33 minutes 55.7 seconds W.; USGS Yosemite Falls, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Typic Cryopsamments in this survey area because of the highly variable nature of these soils.)

Oi—0 to 0 inches, (0 to 1 cm); slightly decomposed plant material.

Oe—0 to 1 inch, (1 to 2 cm); moderately decomposed plant material.

- A1—1 to 4 inches, (2 to 11 cm); dark yellowish brown (10YR 4/4) loamy coarse sand, dark brown (10YR 3/3) moist; weak medium granular structure; soft, very friable, non-sticky, non-plastic; few coarse, medium, and fine and many very fine roots; 8 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; very stongly acid (pH 4.8); abrupt smooth boundary. (Lab sample # 97P00877)
- A2—4 to 15 inches, (11 to 37 cm); brown (10YR 5/3) loamy coarse sand, dark yellowish brown (10YR 3/4) moist; weak fine granular structure; soft, very friable, non-sticky, non-plastic; few very coarse and coarse, common medium and fine, and many very fine roots; 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; very strongly acid (pH 5.0); clear smooth boundary. (Lab sample # 97P00878)
- Bw—15 to 32 inches, (37 to 82 cm); light yellowish brown (10YR 6/4) loamy coarse sand, dark yellowish brown (10YR 4/4) moist; moderate fine granular and moderate medium granular structure; soft, very friable, non-sticky, non-plastic; few very coarse, coarse, medium, and fine and common very fine roots; 6 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.3); clear smooth boundary. (Lab sample # 97P00879)
- C1—32 to 43 inches, (82 to 109 cm); light brown (7.5YR 6/4) loamy coarse sand, light yellowish brown (10YR 6/4) moist; weak fine granular structure; soft, very friable, non-sticky, non-plastic; few fine and few very fine roots; 5 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 7 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.4); clear smooth boundary. (Lab sample # 97P00880)
- C2—43 to 60 inches, (109 to 152 cm); pale yellow (2.5Y 7/4) gravelly loamy coarse sand, light olive brown (2.5Y 5/3) moist; weak fine granular structure; soft, very friable, non-sticky, non-plastic; few fine roots; 5 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 20 percent subangular very strongly cemented granodiorite fragments 2 to 76 mm in size; strongly acid (pH 5.4).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level categories are therefore included with the concept of this component, such as isotic, mesic Typic Xeropsamments.

The particle-size control section has less than 35 percent rock fragments (by volume), a texture coarser than loamy fine sand in all layers, and 0.5 to 6.0 percent clay. The content of surface rock fragments is 0 to 5 percent.

A horizon:

Hue—2.5Y or 10YR (dry) and 10YR (moist) Value—4 or 5 (dry) and 3 (moist) Chroma—2 to 4 (dry and moist)

Soil Survey of Yosemite National Park, California

Texture of the fine-earth fraction—loamy coarse sand or loamy sand

Rock fragment content—2 to 20 percent

Organic matter content—2 to 10 percent

Reaction—very strongly acid to moderately acid

Bw horizon:

Hue—10YR (dry and moist)

Value—5 or 6 (dry) and 3 or 4 (moist)

Chroma—4 (dry and moist)

Texture of the fine-earth fraction—loamy coarse sand or loamy sand

Rock fragment content—0 to 10 percent

Organic matter content—0.75 to 5 percent

Reaction—very strongly acid to moderately acid

C horizon:

Hue—7.5YR, 10YR, or 2.5Y (dry and moist)

Value—6 or 7 (dry) and 4 to 6 (moist)

Chroma—2 to 4 (dry and moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, or loamy sand

Rock fragment content—5 to 35 percent

Organic matter content—0.2 to 3 percent

Reaction—very strongly acid to moderately acid

Additional characterization data for this Typic Cryopsamments example pedon, National Soil Survey Laboratory lab data pedon number 97P0130 (Pedon ID: 96CA043001), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Typic Cryorthents

Typic Cryorthents in the survey area consist of very deep, somewhat excessively drained soils on periglacial cirques, fan aprons, mountain crests, mountain slopes, moraines, flood plains, and mountainsides and in small mountain valleys. These soils formed in colluvium, alluvium, and or/till derived from granitoid and/or metamorphic rock. Slope is 0 to 80 percent. The soils are classified as loamy-skeletal, isotic, acid Typic Cryorthents.

Typical Pedon

Glacierpoint-Typic Cryorthents complex, 30 to 65 percent slopes, mountain slopes, lateral moraines, aprons, cryic; Mariposa County, California; approximately 5,000 feet (1,524 meters) north-northwest of the summit of Tuolumne Peak, approximately 700 feet (213.4 meters) east of the South Fork of Cathedral Creek, approximately 900 feet (274.3 meters) south and 700 feet (213.4 meters) west of the northeast corner of section 1, T. 1 S., R. 22 E., Mount Diablo Base and Meridian; lat. 37 degrees 53 minutes 11.4 seconds N. and long. 119 degrees 29 minutes 40.6 seconds W.; USGS Falls Ridge, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Typic Cryorthents in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 0 inches, (0 to 1 cm); stony slightly decomposed plant material; 5 percent subangular very strongly cemented granitic rock fragments 75 to 250 mm and 250 to 600 mm in size and 7 percent very strongly cemented granitic rock fragments 2 to 75 mm in size; abrupt smooth boundary.
- A—0 to 4 inches, (1 to 9 cm); light olive brown (2.5Y 5/3) very stony sandy loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; very friable, non-sticky, non-plastic; few fine, medium, and coarse and

- many very fine roots; 10 percent subangular very strongly cemented granitic rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granitic rock fragments 250 to 600 mm in size, and 15 percent subangular very strongly cemented granitic rock fragments 2 to 75 mm in size; strongly acid (pH 5.3); clear smooth boundary.
- AC—4 to 10 inches, (9 to 25 cm); yellowish brown (10YR 5/4) very stony sandy loam, dark brown (10YR 3/3) moist; weak very fine granular structure; very friable, slightly sticky, non-plastic; few fine and coarse, common medium and very coarse, and many very fine roots; 10 percent subangular very strongly cemented granitic rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granitic rock fragments 250 to 600 mm in size, and 15 percent subangular very strongly cemented granitic rock fragments 2 to 75 mm in size; strongly acid (pH 5.3); clear wavy boundary.
- C1—10 to 16 inches, (25 to 41 cm); light yellowish brown (10YR 6/4) very stony sandy loam, brown (10YR 4/3) moist; weak very fine granular structure; very friable, slightly sticky, non-plastic; few fine and coarse, common medium and very coarse, and many very fine roots; 10 percent subangular very strongly cemented granitic rock fragments 250 to 600 mm in size, 15 percent subangular very strongly cemented granitic rock fragments 2 to 75 mm in size, and 15 percent subangular very strongly cemented granitic rock fragments 75 to 250 mm in size; strongly acid (pH 5.3); clear wavy boundary.
- C2—16 to 30 inches, (41 to 76 cm); light yellowish brown (2.5Y 6/4) very stony sandy loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky and moderate medium granular structure; very friable, slightly sticky, non-plastic; few very fine, fine, medium, coarse, and very coarse roots; 10 percent subangular very strongly cemented granitic rock fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granitic rock fragments 250 to 600 mm in size, and 15 percent subangular very strongly cemented granitic rock fragments 2 to 75 mm in size; strongly acid (pH 5.3); clear wavy boundary.
- C3—30 to 60 inches, (76 to 152 cm); light yellowish brown (2.5Y 6/4) very stony sandy loam, dark yellowish brown (10YR 4/4) moist; massive; very friable, non-sticky, non-plastic; few fine and coarse roots; 5 percent subangular very strongly cemented granitic rock fragments 250 to 600 mm in size, 10 percent subangular very strongly cemented granitic rock fragments 75 to 250 mm in size, and 20 percent subangular very strongly cemented granitic rock fragments 2 to 75 mm in size; strongly acid (pH 5.3).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Several similar family level categories are therefore included with the concept of this component, such as loamy-skeletal, isotic, nonacid Typic Cryorthents and sandy-skeletal, isotic Typic Cryorthents.

The mean annual soil temperature is about 4.5 degrees C. The mean summer soil temperature is about 8.5 degrees C. The mean winter soil temperature is about 1.5 degrees C. Typic Cryorthents do not have a cambic horizon and/or an umbric epipedon. The particle-size control section has 0.5 to 10.0 percent clay. Rock fragment content is 0 to 85 percent, by volume. The particle-size control section, by weighted average, has 35 percent or more rock fragments. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 90 percent. Pedons with a Bw horizon have textures that are coarser than loamy fine sand.

A horizon:

Hue—10YR or 2.5Y (dry and moist) Value—5 to 7 (dry) and 2 to 4 (moist) Chroma—1 to 6 (dry) and 1 to 4 (moist)

Texture of the fine-earth fraction—coarse sand, sand, loamy coarse sand, loamy fine sand, loamy sand, sandy loam, fine sandy loam, or loam

Organic matter content—1 to 9 percent

Reaction—very strongly acid or strongly acid

Other characteristics—some pedons have an AC horizon

Bw horizon (if it occurs):

Hue—10YR or 2.5Y (dry and moist)

Value—5 to 7 (dry) and 3 or 4 (moist)

Chroma—1 to 6 (dry) and 2 to 4 (moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, or loamy sand

Organic matter content—0.5 to 7 percent

Reaction—very strongly acid or strongly acid

C horizon:

Hue—10YR or 2.5YR (dry and moist)

Value—5 to 7 (dry) and 3 to 6 (moist)

Chroma—2 to 6 (dry) and 1 to 5 (moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, loamy sand, sandy loam, or fine sandy loam

Organic matter content—0.2 to 2 percent

Reaction—very strongly acid or strongly acid

Other characteristics—some pedons have a moderately deep Cd horizon

Typic Dystroxerepts

Typic Dystroxerepts in the survey area consist of very deep, well drained to somewhat excessively drained soils that formed in colluvium, alluvium, and/or till from granitoid and/or metamorphic rock. These soils are on mountain slopes, moraines, flood plains, landslides, and terraces and in mountain valleys. Slope is 0 to 70 percent. The soils are classified as coarse-loamy, isotic, frigid Typic Dystroxerepts.

Typical Pedon

Typic Dystroxerepts-Humic Dystroxerepts-Rock outcrop association, 15 to 45 percent slopes, mountain slopes, frigid; Mariposa County, California; approximately 500 feet (152.4 meters) west of Rail Creek and 400 feet (121.9 meters) north of Wawona Road, approximately 2,150 feet (655.3 meters) north and 250 feet (76.2 meters) west of the southeast corner of section 29, T. 3 S., R. 21 E., Mount Diablo Base and Meridian; lat. 37 degrees 38 minutes 34.5 seconds N. and long. 119 degrees 47 minutes 2.2 seconds N.; USGS El Capitan, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Typic Dystroxerepts in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 1 inch, (0 to 2 cm); slightly decomposed plant material; 1 percent subrounded very strongly cemented granitoid rock fragments 250 to 600 mm in size.
- Oe—1 to 2 inches, (2 to 4 cm); moderately decomposed plant material; 1 percent subrounded very strongly cemented granitoid rock fragments 250 to 600 mm in size.
- A—2 to 4 inches, (4 to 10 cm); grayish brown (10YR 5/2) sandy loam, dark grayish brown (10YR 4/2) moist; strong coarse granular and strong fine subangular blocky structure; slightly hard, very friable, non-sticky, non-plastic; few fine and many very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5); abrupt wavy boundary.
- AB—4 to 8 inches, (10 to 20 cm); brown (10YR 5/3) sandy loam, brown (10YR 4/3) moist; moderate coarse angular blocky and moderate coarse subangular blocky

structure; slightly hard, very friable, non-sticky, slightly plastic; few coarse, fine, and very fine, common fine and medium, and many very fine roots; 2 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size and 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size; strongly acid (pH 5.5); abrupt wavy boundary.

- Bw1—8 to 15 inches, (20 to 37 cm); yellowish brown (10YR 5/4) sandy loam, brown (10YR 4/3) moist; moderate medium subangular blocky and moderate coarse subangular blocky structure; slightly hard, friable, non-sticky, slightly plastic; common very coarse and many coarse, medium, fine, and very fine roots; 3 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5); abrupt wavy boundary.
- Bw2—15 to 24 inches, (37 to 60 cm); yellowish brown (10YR 5/4) sandy loam, brown (10YR 5/3) moist; moderate coarse, moderate medium, and moderate fine subangular blocky structure; soft, very friable, non-sticky, slightly plastic; many very coarse, medium, fine, and very fine and common fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5); abrupt wavy boundary.
- C1—24 to 36 inches, (60 to 92 cm); pale brown (10YR 6/3) sandy loam, yellowish brown (10YR 5/4) moist; strong medium subangular blocky structure; slightly hard, very friable, non-sticky, slightly plastic; few very coarse, coarse, medium, fine, and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5); gradual smooth boundary.
- C2—36 to 60 inches, (92 to 152 cm); pale brown (10YR 6/3) sandy loam, yellowish brown (10YR 5/4) moist; soft, very friable, non-sticky, slightly plastic; few fine and medium roots; 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level and levels above family categories are therefore included with the concept of this component, such as coarse-loamy, isotic, mesic Typic Dystroxerepts; loamy-skeletal, isotic, frigid Typic Dystroxerepts; loamy-skeletal, isotic, mesic Typic Dystroxerepts; sandy, isotic, frigid Typic Dystroxerepts; and sandy-skeletal, isotic, frigid Typic Dystroxerepts.

Typic Dystroxerepts have an umbric epipedon and/or a cambic horizon. Some pedons do not have one or more O horizons. The content of surface rock fragments is 0 to 30 percent.

A horizon:

Hue—7.5YR or 10YR (dry and moist)

Value—4 or 5 (dry) and 2 to 4 (moist)

Chroma—2 or 3 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, coarse sandy loam, sandy loam, or fine sandy loam

Clay content—1 to 12 percent

Rock fragment content—0 to 55 percent

Organic matter content—2 to 18 percent

Reaction—very strongly acid to neutral

Other characteristics—some pedons do not have an AB horizon

AB and Bw horizons (if they occur):

Hue—7.5YR or 10YR (dry and moist)

Value—4 to 6 (dry) and 4 or 5 (moist)

Chroma—3 or 4 (dry) and 2 to 5 (moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, coarse sandy loam, sandy loam, or fine sandy loam

Clay content—2 to 14 percent

Rock fragment content—0 to 85 percent

Organic matter content—0.2 to 9 percent

Reaction—very strongly acid to neutral

Other characteristics—some pedons have a Bt horizon

C horizon:

Hue-7.5YR or 10YR

Value—5 to 7 (dry) and 4 to 6 (moist)

Chroma—2 to 6 (dry and moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, coarse sandy loam, sandy loam, or fine sandy loam

Clay content—1 to 12 percent

Rock fragment content—0 to 85 percent

Organic matter content—0.2 to 1.75 percent

Reaction—strongly acid to neutral

Other characteristics—some pedons have a moderately deep Cr horizon

Typic Haploxerults

Typic Haploxerults in the survey area consist of very deep, well drained soils that formed in colluvium and/or residuum from granitoid and/or metamorphic rock. These soils are on mountain slopes and ancient landslides. Slope is 0 to 65 percent. The soils are classified as fine-loamy, isotic, mesic Typic Haploxerults.

Typical Pedon

Humic Dystroxerepts-Typic Haploxerults complex, 5 to 35 percent slopes, mountain footslopes, landslides, mesic; Tuolumne County, California; midway between Hodgdon Meadow and Tuolumne Grove on the road to the Sequoia Grove, approximately 800 feet (243.8 meters) south and 2,700 feet (823.0 meters) east of the northwest corner of section 12, T. 2 S., R. 19 E., Mount Diablo Base and Meridian; lat. 37 degrees 46 minutes 50.1 seconds N. and long. 119 degrees 49 minutes 25.3 seconds W.; USGS Ackerson Mountain, California Quadrangle NAD 83. (This pedon is representative but not completely typical of the Typic Haploxerults in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 2 inches, (0 to 5 cm); slightly decomposed plant material; 1 percent subangular very strongly cemented granitoid fragments 2 to 75 mm in size.
- Oe—2 to 4 inches, (5 to 9 cm); moderately decomposed plant material; 1 percent subangular very strongly cemented granitoid fragments 2 to 75 mm in size.
- A1—4 to 7 inches, (9 to 17 cm); yellowish brown (10YR 5/4) gravelly coarse sandy loam, dark brown (7.5YR 3/2) moist; moderate medium granular and moderate fine granular structure; loose, non-sticky, non-plastic; few fine and many very fine roots; 2 percent subangular very strongly cemented granitoid fragments 250 to 600 mm in size, 5 percent subangular very strongly cemented granitoid fragments 75 to 250 mm in size, and 15 percent subangular very strongly cemented granitoid fragments 2 to 75 mm in size; strongly acid (pH 5.5); clear wavy boundary.
- A2—7 to 10 inches, (17 to 24 cm); yellowish brown (10YR 5/4) cobbly sandy loam, dark brown (7.5YR 3/3) moist; moderate very fine subangular blocky structure; slightly hard, friable, slightly sticky, non-plastic; few fine and common very fine roots; 2 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, and 10 percent subangular very strongly

- cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5); clear wavy boundary.
- Bt1—10 to 16 inches, (24 to 40 cm); brown (7.5YR 5/4) sandy clay loam, brown (7.5YR 4/4) moist; massive; moderately hard, firm, moderately sticky, moderately plastic; few medium, fine, and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5); clear smooth boundary.
- Bt2—16 to 23 inches, (40 to 56 cm); strong brown (7.5YR 4/6) cobbly clay loam, yellowish red (5YR 4/6) moist; massive; hard, firm, moderately sticky, moderately plastic; few medium and very fine roots; 3 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, 4 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, and 10 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size; strongly acid (pH 5.5); gradual smooth boundary.
- Bt3—23 to 60 inches, (56 to 152 cm); yellowish red (5YR 5/6) stony clay loam, yellowish red (5YR 4/6) moist; massive; hard, firm, moderately sticky, moderately plastic; 2 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, and 10 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size; strongly acid (pH 5.5).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level categories are therefore included with the concept of this component, such as coarse-loamy, isotic, frigid Typic Haploxerults.

Typic Haploxerults have less than 35 percent base saturation (by sum of cations) at 125 centimeters below the upper boundary of the argillic horizon. The particle-size control section averages less than 35 percent clay. The content of surface rock fragments is 0 to 5 percent.

A horizon:

Hue—10YR or 2.5Y (dry) and 10YR or 7.5YR (moist)

Value—4 or 5 (dry) and 3 or 4 (moist)

Chroma—3 or 4 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—loamy coarse sand, coarse sandy loam, sandy loam, or loam

Clay content—0.5 to 18 percent

Rock fragment content—0 to 35 percent

Organic matter content—6 to 10 percent

Reaction—extremely acid to slightly acid

Other characteristics—some pedons have an AB horizon

Bt horizon:

Hue—5YR, 7.5YR, or 10YR (dry and moist)

Value—4 to 7 (dry) and 4 to 6 (moist)

Chroma—4 to 8 (dry) and 3 to 8 (moist)

Texture of the fine-earth fraction—sandy loam, loam, sandy clay loam, or clay loam

Clay content—6 to 40 percent

Rock fragment content—0 to 35 percent

Organic matter content—0.2 to 4 percent

Reaction—extremely acid to moderately acid

Other characteristics—some pedons have a C horizon

Typic Xerorthents

Typic Xerorthents in the survey area consist of moderately deep or very deep, somewhat excessively drained soils on moraines and mountain slopes. These soils formed in colluvium from granitoid rock. Slope is 0 to 100 percent. The soils are classified as sandy-skeletal, isotic, thermic Typic Xerorthents.

Typical Pedon

Typic Xerorthents, 45 to 100 percent slopes, mountain slopes, thermic; Mariposa County, California; on a steep slope south of the Highway 140 bridge over the Merced River, 1,500 feet (457.2 meters) north and 1,000 feet (304.8 meters) east of the southwest corner of section 17, T. 3 S., R. 20 E., Mount Diablo Base and Meridian; lat. 37 degrees 40 minutes 16.9 seconds N. and long. 119 degrees 46 minutes 37.1 seconds W.; USGS El Portal, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Typic Xerorthents in this survey area because of the highly variable nature of these soils.)

- Oe—0 to 0 inches, (0 to 1 cm); bouldery moderately decomposed plant material.

 A—0 to 7 inches, (1 to 18 cm); brown (10YR 5/3) gravelly sandy loam, brown (10YR 4/3) moist; weak fine and medium subangular blocky and moderate medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; common fine and many very fine roots; 15 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; neutral (pH 6.6); clear irregular boundary. (Lab sample # 99P01599)
- Bw1—7 to 24 inches, (18 to 61 cm); brown (10YR 5/3) cobbly loamy sand, light yellowish brown (10YR 6/4) moist; moderate fine and medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; common coarse, medium, fine, and very fine roots; 10 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 11 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; moderately acid (pH 5.9); gradual wavy boundary. (Lab sample # 99P01600)
- Bw2—24 to 42 inches, (61 to 106 cm); yellowish brown (10YR 5/4) extremely stony loamy coarse sand, dark yellowish brown (10YR 4/6) moist; moderate fine and medium subangular blocky structure; soft, very friable, non-sticky, non-plastic; common very coarse, coarse, medium, fine, and very fine roots; 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size, 10 percent subangular very strongly cemented granodiorite fragments 76 to 250 mm in size, and 50 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size; moderately acid (pH 6.0); gradual wavy boundary. (Lab sample # 99P01601)
- C—42 inches, (106 cm); yellowish brown (10YR 5/4) extremely stony coarse sand, dark yellowish brown (10YR 4/6) moist; massive; very friable, non-sticky, non-plastic; few coarse, fine, and very fine roots; 10 percent very strongly cemented granodiorite fragments 2 to 75 mm in size and 50 percent very strongly cemented granodiorite fragments 75 to 250 mm in size; moderately acid (pH 6.0). (Lab sample # 99P01602)

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Several similar family level categories are therefore included with the concept of this component, such as loamy-skeletal, isotic, nonacid, mesic Typic Xerorthents and sandy-skeletal, isotic, mesic Typic Xerorthents.

Typic Xerorthents do not have a cambic horizon and/or an umbric epipedon. Some pedons do not have one or more O horizons. The content of surface rock fragments is

0 to 40 percent. Pedons with a Bw horizon have textures that are coarser than loamy fine sand.

A horizon:

Hue—10YR (dry and moist)

Value—4 to 6 (dry) and 3 or 4 (moist)

Chroma—2 or 3 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—loamy coarse sand, loamy sand, coarse sandy loam, or sandy loam

Clay content—2 to 9 percent

Rock fragment content—5 to 20 percent

Organic matter content—5 to 9 percent

Reaction—very strongly acid to neutral

Bw horizon (if it occurs):

Hue—10YR (dry and moist)

Value—4 to 6 (dry) and 3 to 6 (moist)

Chroma—2 to 4 (dry) and 4 to 6 (moist)

Texture of the fine-earth fraction—loamy coarse sand or loamy sand

Clay content—2 to 9 percent

Rock fragment content—7 to 65 percent

Organic matter content—0.2 to 4 percent

Reaction—very strongly acid to neutral

C horizon:

Hue—10YR (dry and moist)

Value—6 or 7 (dry) and 4 or 5 (moist)

Chroma—3 to 5 (dry) and 3 to 6 (moist)

Texture of the fine-earth fraction—sand or sandy loam

Rock fragment content—50 to 85 percent

Organic matter content—0.1 to 0.75 percent

Reaction—strongly acid to neutral

Other characteristics—some pedons have a moderately deep Cr horizon

Additional characterization data for this Typic Xerorthents example pedon, National Soil Survey Laboratory lab data pedon number 99P0315 (Pedon ID: 99CA043001), and for pedon numbers 98P0196 (Pedon ID: 97CA043014) and 99P0321 (Pedon ID: 99CA043002) are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Ultic Haploxeralfs

Ultic Haploxeralfs in the survey area consist of very deep, well drained or somewhat excessively drained soils that formed in colluvium, till, and/or residuum dominantly from granitoid and/or metamorphic rock. These soils are on mountain slopes, moraines, and ancient landslides. Slope is 0 to 100 percent. The soils are classified as coarse-loamy, isotic, mesic Ultic Haploxeralfs.

Typical Pedon

Humic Dystroxerepts-Ultic Haploxeralfs complex, 15 to 35 percent slopes, mountain slopes, moraines, mesic; Mariposa County, California; approximately 1,320 feet (402.3 meters) south of the Wawona River, above the South Fork of the Merced River, approximately 2,000 feet (609.6 meters) north and 1,200 feet (365.8 meters) west of the southeast corner of section 35, T. 4 S., R. 21 E., Mount Diablo Base and Meridian; lat. 37 degrees 32 minutes 32.4 seconds N. and long. 119 degrees 38 minutes 8.0 seconds W.; USGS Wawona, California Quadrangle, NAD 83. (This pedon is

representative but not completely typical of the Ultic Haploxeralfs in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 0 inches, (0 to 1 cm); slightly decomposed plant material; 1 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 2 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size.
- Oe—0 to 1 inch, (1 to 2 cm); moderately decomposed plant material; 1 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 2 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size.
- A—1 to 8 inches, (2 to 20 cm); yellowish brown (10YR 5/4) stony sandy loam, dark brown (10YR 3/3) moist; moderate fine granular and moderate medium subangular blocky structure; friable, non-sticky, slightly plastic; few coarse, common medium, and many fine and very fine roots; 3 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 5 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size, and 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.5); clear wavy boundary.
- Bw—8 to 17 inches, (20 to 42 cm); yellowish brown (10YR 5/4) sandy loam, brown (10YR 4/3) moist; moderate fine and medium subangular blocky structure; friable, slightly sticky, slightly plastic; few very coarse, coarse, and very fine and common fine and medium roots; 4 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.5); clear wavy boundary.
- Bt1—17 to 28 inches, (42 to 70 cm); yellowish brown (10YR 5/4) gravelly sandy loam, dark yellowish brown (10YR 4/4) moist; moderate fine and medium subangular blocky structure; friable, slightly sticky, slightly plastic; few very coarse and coarse medium and fine roots; 1 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 5 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size, and 15 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.5); gradual wavy boundary.
- Bt2—28 to 48 inches, (70 to 122 cm); yellowish brown (10YR 5/4) sandy loam, dark yellowish brown (10YR 4/4) moist, moderate medium subangular blocky structure; friable, slightly sticky, slightly plastic; few coarse fine and common medium roots; 2 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.5); gradual wavy boundary.
- C—48 to 60 inches, (122 to 152 cm); light yellowish brown (10YR 6/4) sandy loam, yellowish brown (10YR 5/4) moist; massive; friable, slightly sticky, slightly plastic; 7 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.5).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Several similar family level categories are therefore included with the concept of this component, such as coarse-loamy, isotic, frigid Ultic Haploxeralfs; coarse-loamy, isotic, thermic Ultic Haploxeralfs; fine-loamy, isotic, mesic Ultic Haploxeralfs; and loamy-skeletal, isotic, thermic Ultic Haploxeralfs.

Some pedons have one or more O horizons. The content of surface rock fragments is 0 to 100 percent.

A horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—4 or 5 (dry) and 2 to 4 (moist)

Chroma—3 or 4 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—sandy loam, loam, or sandy clay loam

Clay content—3 to 20 percent

Rock fragment content—0 to 60 percent

Organic matter content—2 to 10 percent

Reaction—strongly acid to neutral

Bw horizon (if it occurs):

Hue—10YR or 7.5YR (dry and moist)

Value—5 or 6 (dry) and 3 to 5 (moist)

Chroma—3 to 6 (dry) and 3 or 4 (moist)

Texture of the fine-earth fraction—sandy loam, loam, or sandy clay loam

Clay content—3 to 20 percent

Rock fragment content—4 to 40 percent

Organic matter content—1 to 5 percent

Reaction—strongly acid to slightly acid

Bt horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—4 to 6 (dry) and 3 to 5 (moist)

Chroma—3 to 6 (dry) and 3 or 4 (moist)

Texture of the fine-earth fraction—sandy loam, fine sandy loam, loam, or sandy clay loam

Clay content—5 to 27 percent

Rock fragment content—0 to 70 percent

Organic matter content—0.2 to 7 percent

Reaction—strongly acid to neutral

C horizon:

Hue—10YR or 2.5YR (dry and moist)

Value—4 to 8 (dry) and 3 to 6 (moist)

Chroma—4 to 8 (dry) and 2 to 6 (moist)

Texture of the fine-earth fraction—sandy loam, loam, or sandy clay loam

Clay content—3 to 20 percent

Rock fragment content—2 to 15 percent

Organic matter content—0.20 to 0.75 percent

Reaction—strongly acid or moderately acid

Other characteristics—some pedons have a Ct horizon that is very bouldery sandy clay loam

Additional characterization data for Ultic Haploxeralfs example pedons, National Soil Survey Laboratory lab data pedon number 98P0193 (Pedon ID: 97CA043011) and lab data pedon number 99P0316 (Pedon ID: 99CA109002), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Ultic Palexeralfs

Ultic Palexeralfs in the survey area consist of very deep, well drained soils that formed in colluvium and/or residuum from metamorphic rock. These soils are on

mountain slopes and ancient landslides. Slope is 0 to 45 percent. The soils are classified as fine-loamy, isotic, frigid Ultic Palexeralfs.

Typical Pedon

Clarkslodge-Ultic Palexeralfs complex, metasedimentary, 15 to 45 percent slopes, mountain slopes, landslides, frigid; Tuolumne County, California; in the upper Tuolumne Grove of Giant Sequoias, approximately 400 feet (121.9 meters) northwest of the Tunnel Tree, approximately 2,320 feet (707.1 meters) east and 600 feet (182.9 meters) north of the southwest corner of section 7, T. 2 S., R. 20 E., Mount Diablo Base and Meridian; lat. 37 degrees 46 minutes 8.8 seconds N. and long. 119 degrees 49 minutes 54.6 seconds W.; USGS Ackerson Mountain, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Ultic Palexeralfs in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 1 inch, (0 to 2 cm); slightly decomposed plant material; 3 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size.
- A—1 to 4 inches, (2 to 9 cm); dark grayish brown (10YR 4/2) loam, dark brown (7.5YR 3/2) moist; moderate medium granular and moderate very coarse platy structure; very friable, non-sticky, non-plastic; few very coarse, medium, and fine and common very fine roots; 5 percent subangular very strongly cemented gneiss fragments 75 to 250 mm in size and 5 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size; slightly acid (pH 6.2); clear smooth boundary. (Lab sample # 98P01267)
- Bt1—4 to 13 inches, (9 to 34 cm); yellowish brown (10YR 5/4) cobbly loam, brown (7.5YR 4/4) moist; moderate medium subangular blocky structure; friable, slightly sticky, slightly plastic; few very coarse, coarse, medium, and fine and common very fine roots; 35 percent distinct clay films on faces of peds and in pores; 5 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size and 10 percent subangular very strongly cemented gneiss fragments 75 to 250 mm in size; slightly acid (pH 6.1); gradual wavy boundary. (Lab sample # 98P02168)
- Bt2—13 to 31 inches, (34 to 80 cm); light yellowish brown (2.5Y 6/4) loam, light olive brown (2.5Y 5/3) moist; moderate medium and coarse subangular blocky structure; very friable, slightly sticky, slightly plastic; many very coarse, common coarse and medium, and few very fine and fine roots; 5 percent distinct clay bridges between sand grains and 40 percent prominent clay films on faces of peds and in pores; 2 percent subangular very strongly cemented gneiss fragments 75 to 250 mm in size, 4 percent subangular very strongly cemented gneiss fragments 250 to 600 mm in size, and 5 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size; strongly acid (pH 5.3); gradual wavy boundary. (Lab sample # 98P02169)
- BCt—31 to 49 inches, (80 to 125 cm); 50 percent light yellowish brown (2.5Y 6/4) and 50 percent reddish yellow (7.5YR 6/8) loam, 50 percent yellowish brown (10YR 5/4) and 50 percent strong brown (7.5YR 5/6) moist; moderate coarse subangular blocky structure; very friable, slightly sticky, slightly plastic; few coarse, medium, fine, and very fine roots; 5 percent faint clay bridges between sand grains and 30 percent distinct clay films on faces of peds and in pores; 2 percent subangular very strongly cemented gneiss fragments 75 to 250 mm in size and 5 percent subangular very strongly cemented gneiss fragments 2 to 75 mm in size; strongly acid (pH 5.2); clear smooth boundary. (Lab sample # 98P02170)
- C—49 to 63 inches, (125 to 159 cm); 50 percent brownish yellow (10YR 6/6) and 50 percent reddish yellow (7.5YR 6/8) loam, 50 percent strong brown (7.5YR 5/6) and 50 percent yellowish brown (10YR 5/4) moist; moderate fine subangular blocky structure; very friable, slightly sticky, slightly plastic; few fine roots; 2 percent subangular very strongly cemented gneiss fragments 76 to 250 mm in size and 5

percent subangular very strongly cemented gneiss fragments 2 to 76 mm in size; strongly acid (pH 5.3). (Lab sample # 98P02171)

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level categories are therefore included with the concept of this component, such as fine-loamy, isotic, mesic Ultic Palexeralfs.

Some pedons have one or more O horizons. The content of surface rock fragments is 0 to 5 percent.

A horizon:

Hue—10YR or 7.5YR (dry and moist)

Value—4 or 5 and 3 or 4 (moist)

Chroma—2 to 4 (dry and moist)

Texture of the fine-earth fraction—loamy fine sand, sandy loam, fine sandy loam, or loam

Clay content—4 to 25 percent

Rock fragment content—0 to 16 percent

Organic matter content—6 to 34 percent

Reaction—strongly acid to neutral

Bt horizon:

Hue—5YR, 10YR, 7.5YR, or 2.5Y (dry and moist)

Value—4 to 8 (dry) and 3 to 6 (moist)

Chroma—4 to 6 (dry) and 2 to 6 (moist)

Texture of the fine-earth fraction—fine sandy loam, loam, sandy clay loam, clay loam, or silty clay loam

Clay content—12 to 40 percent

Average clay content—18 to 35 percent

Rock fragment content—0 to 26 percent

Organic matter content—0.5 to 5 percent

Reaction—strongly acid to neutral

Other characteristics—some pedons have a Bw horizon

BCt or CBt horizon:

Hue—7.5YR, 10YR or 2.5Y (dry and moist)

Value—3 to 8 (dry) and 4 to 6 (moist)

Chroma—3 to 8 (dry) and 4 to 6 (moist)

Texture of the fine-earth fraction—fine sandy loam, loam, clay loam, or silty clay loam

Clay content—12 to 40 percent

Rock fragment content—0 to 15

Organic matter content—0 to 3 percent

Reaction—strongly acid to neutral

C horizon:

Hue—7.5YR, 10YR or 2.5Y (dry and moist)

Value—3 to 8 (dry) and 4 to 6 (moist)

Chroma—3 to 8 (dry) and 4 to 6 (moist)

Texture of the fine-earth fraction—fine sandy loam or loam

Clay content—12 to 25 percent

Rock fragment content—0 to 15 percent

Organic matter content—0 to 0.2 percent

Reaction—strongly acid to neutral

Other characteristics—some pedons have a moderately deep Crt or a Ct horizon

Additional characterization data for this Ultic Palexeralfs example pedon, National Soil Survey Laboratory lab data pedon number 98P0204 (Pedon ID: 97CA109003), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Vitrandic Cryorthents

Vitrandic Cryorthents in the survey area consist of shallow or moderately deep, somewhat excessively drained soils that formed in colluvium, residuum, and/or till from granitoid rock. These soils are on moraines and mountain slopes. Slope is 0 to 45 percent. The soils are classified as sandy-skeletal, isotic, shallow Vitrandic Cryorthents.

Typical Pedon

Canisrocks-Glacierpoint-Vitrandic Cryorthents complex, bouldery, 5 to 20 percent slopes, ground moraines, cryic; Tuolumne County, California; moraine flat; complete Public Land Survey System unavailable; T. 1 N., R. 24 E., Mount Diablo Base and Meridian; lat. 37 degrees 54 minutes 27.2 seconds N. and long. 119 degrees 18 minutes 29.1 seconds W.; USGS Tioga Pass, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Vitrandic Cryorthents in this area because of the highly variable nature of these soils.)

- A—0 to 1 inch, (0 to 2 cm); grayish brown (2.5Y 5/2) loamy sand, very dark grayish brown (2.5Y 3/2) moist; single grain; loose, non-sticky, non-plastic; 2 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; very strongly acid (pH 4.5); abrupt wavy boundary. (Lab sample # 00P04900)
- Bw1—1 to 6 inches, (2 to 15 cm); yellowish brown (10YR 5/4) loamy coarse sand, brown (10YR 4/3) moist; weak very fine granular structure; loose, non-sticky, non-plastic; many very fine roots; 1 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; very strongly acid (pH 5.0); gradual wavy boundary. (Lab sample # 00P04901)
- Bw2—6 to 12 inches, (15 to 30 cm); light yellowish brown (10YR 6/4) loamy sand, dark yellowish brown (10YR 4/4) moist; weak very fine granular structure; loose, non-sticky, non-plastic; few fine and common very fine roots; 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.2); abrupt wavy boundary. (Lab sample # 00P04902)
- Cd—12 to 60 inches, (30 to 152 cm); light gray (2.5Y 7/2) very gravelly sandy loam, light olive brown (2.5Y 5/3) moist; massive; firm, non-sticky, non-plastic; few very fine roots around fragments; 1 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 40 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.2). (Lab sample # 00P04903)

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level categories are therefore included with the concept of this component, such as sandy, isotic Vitrandic Cryorthents.

The content of surface rock fragments is 0 to 40 percent.

A horizon:

Hue—10YR or 2.5Y (dry and moist) Value—4 or 5 (dry) and 2 to 5 (moist) Chroma—1 to 3 (dry) and 1 or 2 (moist) Texture of the fine-earth fraction—loamy sand, loamy fine sand, or loamy very fine sand

Clay content—0.5 to 5 percent

Rock fragment content—0 to 10 percent

Organic matter content—3 to 9 percent

Reaction—extremely acid to strongly acid

Bw horizon:

Hue—10YR (dry and moist)

Value—5 or 6 and 3 or 4 (moist)

Chroma—4 (dry) and 3 or 4 (moist)

Texture of the fine-earth fraction—loamy coarse sand or loamy sand

Clay content—0.5 to 5 percent

Rock fragment content—5 to 25 percent

Organic matter content—1 to 7 percent

Reaction—very strongly acid or strongly acid

Cd horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—5 to 8 (dry) and 2 to 6 (moist)

Chroma—1 to 6 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—loamy sand to sandy loam

Clay content—0.2 to 5 percent

Rock fragment content—23 to 60 percent

Organic matter content—0.2 to 1.5 percent

Reaction—very strongly acid or strongly acid

Other characteristics—some moderately deep pedons have a C horizon over an R horizon

Additional characterization data for this Vitrandic Cryorthents example pedon, National Soil Survey Laboratory lab data pedon number 00P0780 (Pedon ID: 00CA109001), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Vitrandic Dystrocryepts

Vitrandic Dystrocryepts in the survey area consist of very deep, somewhat excessively drained soils that formed in colluvium, residuum, and/or till from granitoid and/or metamorphic rock. These soils are on moraines, on mountain slopes, in mountain valleys, and on cirque floors. Slope is 2 to 65 percent. The soils are classified as sandy, isotic Vitrandic Dystrocryepts.

Typical Pedon

Canisrocks-Glacierpoint-Vitrandic Dystrocryepts complex, bouldery, 20 to 45 percent slopes, medial moraines, cryic; Tuolumne County, California; approximately 2,000 feet (609.6 meters) south of Tioga Road and 3,000 feet (914.4 meters) south-southwest of the borrow pit, 3,800 feet (1,158.2 meters) west and 400 feet (121.9 meters) north of the southeast corner of section 2, T. 1 S., R. 24 E., Mount Diablo Base and Meridian; lat. 37 degrees 52 minutes 29 seconds N. and long. 119 degrees 18 minutes 28.9 seconds E.; USGS Tioga Pass, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Vitrandic Dystrocryepts in this survey area because of the highly variable nature of these soils.)

Oi—0 to 0 inches, (0 to 1 cm); slightly decomposed plant material; 3 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size.

- Oe—0 to 1 inch, (1 to 2 cm); moderately decomposed plant material; 3 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size.
- A1—1 to 11 inches, (2 to 29 cm); grayish brown (10YR 5/2) loamy sand, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; very friable, non-sticky, non-plastic; few very coarse, coarse, medium, and fine and common very fine roots; 5 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.2); gradual wavy boundary. (Lab sample # 98P01325)
- A2—11 to 17 inches, (29 to 44 cm); light olive brown (2.5Y 5/3) sandy loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; very friable, non-sticky, non-plastic; few coarse, medium, fine, and very fine roots; 7 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.3); clear irregular boundary. (Lab sample # 98P01326)
- Bw—17 to 25 inches, (44 to 63 cm); light yellowish brown (2.5Y 6/3) cobbly loamy sand, dark yellowish brown (10YR 3/4) moist; moderate medium and moderate fine subangular blocky structure; friable, non-sticky, non-plastic; few fine and very fine roots; 7 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size and 8 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size; strongly acid (pH 5.4); clear smooth boundary. (Lab sample # 98P01327)
- BC—25 to 37 inches, (63 to 93 cm); light yellowish brown (2.5Y 6/4) stony loamy coarse sand, light olive brown (2.5Y 5/4) moist; moderate medium subangular blocky structure; very friable, non-sticky, non-plastic; few fine and very fine roots; 5 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size, 10 percent subangular very strongly cemented granodiorite fragments 250 to 600 mm in size, and 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; moderately acid (pH 5.6); abrupt wavy boundary. (Lab sample # 98P01238)
- C—37 to 60 inches, (93 to 152 cm); light gray (10YR 7/1) cobbly loamy coarse sand, grayish brown (2.5Y 5/2) moist; single grain; loose, non-sticky, non-plastic; 7 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 15 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.4). (Lab sample # 09P03129)

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level categories are therefore included with the concept of this component, such as loamy-skeletal, isotic Vitrandic Dystrocryepts; coarse-loamy, isotic Vitrandic Dystrocryepts; and coarse-loamy, isotic Vitrandic Eutrocryepts.

Vitrandic Dystrocryepts have an umbric epipedon and/or a cambic horizon. The content of surface rock fragments is 0 to 30 percent.

The Vitrandic Eutrocryepts included with the concept of this component have a higher base saturation than Vitrandic Dystrocryepts. The base saturation is 60 percent or more in one or more horizons at a depth between 25 and 75 centimeters from the mineral soil surface or directly above a root-limiting layer if at a shallower depth.

A horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—3 to 7 (dry) and 2 to 6 (moist)

Chroma—1 to 4 (dry) and 1 or 6 (moist)

Texture of the fine-earth fraction—loamy sand, fine sand, sandy loam, fine sandy loam, or very fine sandy loam

Clay content—0.5 to 9 percent

Rock fragment content—0 to 70 percent

Organic matter content—3 to 16 percent Reaction—very strongly acid to slightly acid

Bw horizon:

Hue—10YR (dry and moist)

Value—4 to 6 (dry) and 3 to 5 (moist)

Chroma—3 to 6 (dry and moist)

Texture of the fine-earth fraction—loamy sand, fine sand, sandy loam, or fine sandy loam

Clay content—0.2 to 9 percent

Rock fragment content—0 to 90 percent

Organic matter content—0.5 to 5 percent

Reaction—very strongly acid to slightly acid

Other characteristics—some pedons have a Bt horizon

BC horizon (if it occurs):

Hue—2.5Y (dry and moist)

Value—6 (dry) and 5 (moist)

Chroma—4 (dry and moist)

Texture of the fine-earth fraction—loamy coarse sand or loamy sand

Clay content—0.5 to 4 percent

Rock fragment content—10 to 40 percent

Organic matter content—0.5 to 1.0 percent

Reaction—very strongly acid to slightly acid

Other characteristics—some pedons have a CB horizon

C horizon:

Hue—10YR (dry) and 10YR or 2.5Y (moist)

Value—6 or 7 (dry) and 4 or 5 (moist)

Chroma—6 or 7 (dry) and 2 to 4 (moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, loamy sand, fine sand, coarse sandy loam, sandy loam, or fine sandy loam

Clay content—0.5 to 12 percent

Rock fragment content—5 to 90 percent

Organic matter content—0.1 to 1.25 percent

Reaction—very strongly acid to neutral

Additional characterization data for this Vitrandic Dystrocryepts example pedon, National Soil Survey Laboratory lab data pedon number 98P0216 (Pedon ID: 97CA109015), and for Vitrandic Eutrocryepts, National Soil Survey Laboratory lab data pedon number 98P0206 (Pedon ID: 97CA109005), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Vitrandic Dystroxerepts

Vitrandic Dystroxerepts in the survey area consist of very deep, well drained soils on ground moraine deposits of coarse and moderately coarse stratified glacial till from granitoid rock. Slope is 4 to 30 percent. These soils are classified as loamy-skeletal, isotic, mesic Vitrandic Dystroxerepts

Typical Pedon

Vitrandic Dystroxerepts, 4 to 30 percent slopes, mesic; Mariposa County, California; about half way between Bridalveil Meadow and El Capitan Meadow, Yosemite National Park, Yosemite Valley; lat. 37 degrees 43 minutes 18 seconds N. and long. 119 degrees 38 minutes 55 seconds W.; UTM Zone 11, easting 266555.43 and northing 4178224.62; USGS El Capitan, California Quadrangle, NAD 83. (This pedon is

representative but not completely typical of the Vitrandic Dystroxerepts in this survey area because of the highly variable nature of these soils.)

- A—0 to 8 inches, (0 to 20 cm); grayish brown (10YR 5/2) cobbly coarse sandy loam, very dark brown (10YR 2/2) moist; weak fine subangular blocky structure; moderately acid (pH 5.8); abrupt smooth boundary.
- Bw1—8 to 30 inches, (20 to 76 cm); light yellowish brown (10YR 6/4) very cobbly coarse sandy loam, dark brown (10YR 3/3) and brown (10YR 4/3) moist; weak medium subangular blocky structure; common thin clay films bridging mineral grains and lining pores; slightly acid (pH 6.1); abrupt smooth boundary.
- Bw2—30 to 50 inches, (76 to 127 cm); light yellowish brown (2.5Y 6/4) very stony loamy coarse sand, dark yellowish brown (10YR 4/4 and 4/6) moist; weak fine granular structure; common thin clay films bridging mineral grains and lining pores; slightly acid (pH 6.1); clear smooth boundary.
- C—50 to 60 inches, (127 to 152 cm); pale yellow (2.5Y 7/3) very stony loamy coarse sand, light olive brown (2.5Y 5/4) and yellowish brown (10YR 5/8) moist; massive; slightly acid (pH 6.3).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

The surface horizon has a base saturation (ammonium acetate) of 50 to 75 percent. The upper 30 inches of the soil (76 centimeters) has 5 to 10 percent glass and has other vitrandic properties. Sodium fluoride reaction is 8.5 to 10.5. The soil is highly stratified.

A horizon:

Hue—10YR (dry and moist)

Value—5 (dry) and 2 (moist)

Chroma—2 (dry and moist)

Texture of the fine-earth fraction—coarse sandy loam

Clay content—5 to 10 percent

Rock fragment content—14 to 35 percent

Organic matter content—5 to 9 percent

Reaction—moderately acid

Bw horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—6 (dry) and 4 (moist)

Chroma—4 (dry) and 4 to 6 (moist)

Texture of the fine-earth fraction—loamy coarse sand or coarse sandy loam

Clay content—5 to 10 percent

Rock fragment content—34 to 57 percent

Organic matter content—0.5 to 3 percent

Reaction—moderately acid

C horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—7 (dry) and 5 (moist)

Chroma—3 (dry) and 4 to 8 (moist)

Texture of the fine-earth fraction—loamy coarse sand

Clay content—5 to 10 percent

Rock fragment content—34 to 55 percent

Organic matter content—0.5 to 3 percent

Reaction—slightly acid

Vitrandic Haploxerolls, sandy

Vitrandic Haploxerolls, sandy, in the survey area consist of very deep, moderately well drained soils on point bars of intermediate flood plains that formed in coarse textured stream alluvium from granitoid rock. Slope is 0 to 3 percent. These soils are classified as sandy, isotic, mesic Vitrandic Haploxerolls.

Typical Pedon

Vitrandic Haploxerolls, sandy, 0 to 3 percent slopes, mesic; Mariposa County, California; Leidig Meadow, Yosemite National Park, Yosemite Valley; lat. 37 degrees 44 minutes 17 seconds N. and long. 119 degrees 36 minutes 8 seconds W.; UTM Zone 11, easting 270701.41 and northing 4179948.35; USGS Half Dome, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Vitrandic Haploxerolls, sandy, in this survey area because of the highly variable nature of these soils.)

- A—0 to 2 inches, (0 to 5 cm); brown (10YR 5/3) fine sandy loam, very dark grayish brown (10YR 3/2) moist; weak medium granular structure; soft, very friable, non-sticky, non-plastic; weekly smeary; few very fine roots; common very fine interstitial pores; moderately acid (pH 5.8); abrupt broken boundary.
- C—2 to 3 inches, (5 to 8 cm); 70 percent pale brown (10YR 6/3) and 30 percent grayish brown (10YR 5/2) sand, very dark grayish brown (10YR 3/2) moist; single grain; loose, non-sticky, non-plastic; common very fine roots; common very fine interstitial pores; moderately acid (pH 5.8); abrupt broken boundary.
- A´1—3 to 5 inches, (8 to 13 cm); brown (10YR 5/3) fine sandy loam, dark brown (10YR 3/3) moist; massive; soft, very friable, non-sticky, non-plastic; common very fine roots; common very fine interstitial pores; moderately acid (pH 5.8); abrupt smooth boundary.
- A'2—5 to 13 inches, (13 to 33 cm); brown (10YR 5/3) fine sandy loam, very dark grayish brown (10YR 3/2) moist; massive; soft, very friable, non-sticky, non-plastic; weakly smeary; few very fine roots; common very fine interstitial pores; moderately acid (pH 5.8); abrupt irregular boundary.
- A'3—13 to 18 inches, (33 to 46 cm); pale brown (10YR 6/3) loamy sand, dark brown (10YR 3/3) moist; massive; soft, very friable, non-sticky, non-plastic; no roots; many very fine interstitial pores; moderately acid (pH 5.8); abrupt smooth boundary.
- C´1—18 to 24 inches, (46 to 61 cm); 60 percent very pale brown (10YR 8/2), 39 percent pale brown (10YR 6/3), and 1 percent dark yellowish brown (10Y 5/6) gravelly coarse sand, 60 percent pale brown (10YR 6/3), 39 percent yellowish brown (10YR 5/4), and 1 percent dark yellowish brown (10YR 4/6) moist; single grain; loose, non-sticky, non-plastic; no roots; many very fine interstitial pores; moderately acid (pH 5.8); abrupt smooth boundary.
- C´2—24 to 28 inches, (61 to 71 cm); 60 percent very pale brown (10YR 8/2), 39 percent pale brown (10YR 6/3), and 1 percent yellowish brown (10YR 5/6) sand, 60 percent pale brown (10YR 6/3) and 40 percent dark yellowish brown (10YR 4/6) moist; single grain; loose, non-sticky, non-plastic; no roots; many very fine interstitial pores; moderately acid (pH 5.8); abrupt smooth boundary.
- C´3—28 to 32 inches, (71 to 81 cm); 80 percent very pale brown (10YR 8/2), 10 percent very pale brown (10YR 7/3), 9 percent black (N 2/0), and 1 percent yellowish brown (10YR 5/6) gravelly coarse sand, 80 percent pale brown (10YR 6/3), 10 percent brown (10YR 5/3), 9 percent black (N 2/0), and 1 percent dark yellowish brown (10YR 4/6) moist; single grain; loose, non-sticky, non-plastic; no roots; many very fine interstitial pores; moderately acid (pH 5.8); abrupt smooth boundary.
- C'4-32 to 60 inches, (81 to 152 cm); very pale brown (10YR 8/2) sand, pale brown

(10YR 6/3) moist; single grain; loose, non-sticky, non-plastic; no roots; many very fine interstitial pores; moderately acid (pH 5.8).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

The upper 10 inches (25 centimeters) has a base saturation (ammonium acetate) that is 50 to 75 percent.

A horizon:

Hue—10YR (dry and moist)

Value—5 (dry) and 3 (moist)

Chroma—3 (dry) and 2 (moist)

Texture—fine sandy loam or loamy fine sand

Clay content—3 to 7 percent

Organic matter content—2 to 8 percent

Reaction—moderately acid

C horizon:

Hue—10YR (dry and moist)

Value—5 or 6 (dry) and 3 (moist)

Chroma—2 or 3 (dry) and 2 (moist)

Texture—stratified gravelly coarse sand to sand

Clay content—1 to 5 percent

Rock fragment content—0 to 20 percent

Organic matter content—0.5 to 1.5 percent

Reaction—moderately acid

A´horizon:

Hue—10YR (dry and moist)

Value—5 or 6 (dry) and 3 (moist)

Chroma—3 (dry and moist)

Texture—fine sandy loam or loamy fine sand

Clay content—2 to 7 percent

Rock fragment content—0 to 12 percent

Organic matter content—1 to 8 percent

Reaction—moderately acid

C´horizon:

Hue—10YR or neutral (dry and moist)

Value—2 to 8 (dry) and 2 to 6 (moist)

Chroma—0 or 6 (dry and moist)

Texture—stratified gravelly coarse sand to sand

Clay content—1 to 5 percent

Rock fragment content—0 to 20 percent

Organic matter content—0.2 to 1.5 percent

Reaction—moderately acid

Vitrandic Haploxerolls, coarse-loamy, somewhat poorly drained

Vitrandic Haploxerolls, coarse-loamy, somewhat poorly drained, in the survey area consist of very deep, somewhat poorly drained soils that formed in coarse textured stream alluvium from granitoid rock. Slope is 0 to 2 percent. The soils are classified as coarse-loamy, isotic, mesic Vitrandic Haploxerolls.

Typical Pedon

Vitrandic Haploxerolls, coarse-loamy, 0 to 2 percent slopes, somewhat poorly drained, mesic; Mariposa County, California; El Capitan Meadow, Yosemite National Park, Yosemite Valley; lat. 37 degrees 43 minutes 24 seconds N. and long. 119 degrees 38 minutes 8 seconds W.; UTM Zone 11, easting 267719.18 and northing 4178372.95; USGS El Capitan, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Vitrandic Haploxerolls, coarse-loamy, somewhat poorly drained, in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 1 inch, (0 to 3 cm); slightly decomposed leaf litter.
- A1—1 to 4 inches, (3 to 11 cm); dark grayish brown (10YR 4/2) loam, black (10YR 2/1) moist; strongly very fine granular structure; slightly hard, friable, slightly sticky, slightly plastic; weakly smeary; common very fine, fine, and medium roots; common fine, medium, and coarse interstitial pores; moderately acid (pH 6.0); clear smooth boundary.
- A2—4 to 7 inches, (11 to 18 cm); dark grayish brown (10YR 4/2) loam, very dark gray (10YR 3/1) moist; strong very fine granular structure; slightly hard, friable, slightly sticky, slightly plastic; weakly smeary; common very fine roots; common fine, medium, and coarse interstitial pores; moderately acid (pH 6.0); clear smooth boundary.
- AB—7 to 11 inches, (18 to 28 cm); brown (10YR 5/3) fine sandy loam, very dark grayish brown (10YR 3/2) moist; weak medium subangular blocky structure parting to strong fine and medium granular; slightly hard, friable, non-sticky, non-plastic; weakly smeary; common very fine, fine, and medium roots; common fine, medium, and coarse interstitial pores; moderately acid (pH 6.0); clear smooth boundary.
- Bw—11 to 19 inches, (28 to 49 cm); light yellowish brown (10YR 6/4) fine sandy loam, very dark grayish brown (10YR 3/2) moist; common fine structure parting to moderate fine and medium granular; soft, very friable, non-sticky, non-plastic; weakly smeary; common very fine, fine, and medium roots; common very fine and fine interstitial and few very fine tubular pores; slightly acid (pH 6.3); clear smooth boundary.
- C1—19 to 34 inches, (49 to 87 cm); light yellowish brown (10YR 6/4) fine sandy loam, brown (10YR 4/3) moist; massive; soft, very friable, slightly sticky, slightly plastic; common very fine, fine, and medium roots; common very fine and fine interstitial and few fine tubular pores; common fine distinct dark yellowish brown (10YR 3/6) and yellowish brown (10YR 5/6) moist redoximorphic accumulations of iron; slightly acid (pH 6.4); clear smooth boundary.
- C2—34 to 57 inches, (87 to 145 cm); light yellowish brown (10YR 6/4) fine sandy loam, 60 percent brown (10YR 5/3) and 40 percent pale brown (10YR 6/3) moist; massive; soft, very friable, non-sticky, non-plastic; common very fine interstitial pores; many medium distinct dark yellowish brown (10YR 3/4) and yellowish brown (10YR 5/6) moist redoximorphic accumulations of iron; slightly acid (pH 6.3); clear smooth boundary.
- C3—57 to 63 inches, (145 to 160 cm); light yellowish brown (10YR 6/4) fine sandy loam, yellowish brown (10YR 5/4) moist; massive; soft, very friable, non-sticky, non-plastic; common very interstitial pores; common medium faint dark yellowish brown (10YR 3/4) moist redoximorphic accumulations of iron; slightly acid (pH 6.4); clear smooth boundary.
- C4—63 to 69 inches, (160 to 176 cm); 80 percent light yellowish brown (10YR 6/4) and 20 percent pale brown (10YR 6/3) coarse sand, 80 percent brown (10YR 4/3) and 20 percent dark brown (10YR 3/3) moist; single grain; loose, non-sticky, non-plastic; many very fine interstitial pores; common fine distinct dark yellowish brown

(10YR 3/4) and yellowish brown (10YR 5/6) moist redoximorphic accumulations of iron; slightly acid (pH 6.4).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

A horizon:

Hue—10YR (dry and moist)

Value—3 or 4 (dry) and 2 or 3 (moist)

Chroma—2 (dry) and 1 (moist)

Texture—loam

Clay content—5 to 18 percent

Organic matter content—6 to 11 percent

Reaction—moderately acid or slightly acid

Other characteristics—some pedons do not have an AB horizon

AB and Bw horizons:

Hue—10YR (dry and moist)

Value—5 or 6 (dry) and 3 (moist)

Chroma—4 (dry) and 2 (moist)

Texture—sandy loam, fine sandy loam, or loam

Clay content—5 to 18 percent

Organic matter content—1 to 3 percent

Reaction—moderately acid or slightly acid

C horizon:

Hue—10YR (dry and moist)

Value—6 (dry) and 3 to 5 (moist)

Chroma—4 (dry) and 3 to 6 (moist)

Texture—coarse sand, sandy loam, fine sandy loam, or loam

Clay content—2 to 18 percent

Organic matter content—0 to 0.75 percent

Reaction—moderately acid or slightly acid

Vitrandic Haploxerolls, coarse-loamy, well drained

Vitrandic Haploxerolls, coarse-loamy, well drained, in the survey area consist of very deep, well drained soils in till from terminal or lateral moraine deposits. These soils formed in moderately coarse, unstratified till from granitoid rock. Slope is 4 to 30 percent. The soils are classified as coarse-loamy, isotic, mesic Vitrandic Haploxerolls.

Typical Pedon

Vitrandic Haploxerolls, coarse-loamy, 4 to 30 percent slopes, well drained, mesic; Mariposa County, California; Bridalveil Moraine, Yosemite National Park, Yosemite Valley; lat. 37 degrees 43 minutes 4 seconds N. and long. 119 degrees 39 minutes 26 seconds W.; UTM Zone 11, easting 265788.31 and northing 4177816.23; USGS El Capitan, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Vitrandic Haploxerolls, coarse-loamy, well drained, in this survey area because of the highly variable nature of these soils.)

Oi—0 to 1 inch, (0 to 3 cm); undecomposed leaf litter from conifer and oaks.

A—1 to 3 inches, (3 to 8 cm); grayish brown (10YR 5/2) fine sandy loam, very dark

-1 to 3 inches, (3 to 8 cm); grayish brown (10YR 5/2) fine sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure; moderately acid (pH 5.8); abrupt smooth boundary.

- Bw1—3 to 9 inches, (8 to 30 cm); brown (10YR 5/3) fine sandy loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; moderately acid (pH 5.8); clear smooth boundary.
- Bw2—9 to 16 inches, (30 to 41 cm); 80 percent light yellowish brown (10YR 6/4) and 20 percent brownish yellow (10YR 6/6) fine sandy loam, 70 percent dark yellowish brown (10YR 4/4) and 30 percent dark yellowish brown (10YR 4/6) moist; weak fine subangular blocky structure; slightly acid (pH 6.2); clear smooth boundary.
- Bw3—16 to 24 inches, (41 to 61 cm); 80 percent light yellowish brown (10YR 6/4) and 20 percent brownish yellow (10YR 6/8) fine sandy loam, 80 percent dark yellowish brown (10YR 4/4) and 20 percent dark yellowish brown (10YR 4/6) moist; massive; moderately acid (pH 5.8); clear smooth boundary.
- Bw4—24 to 36 inches, (61 to 91 cm); 80 percent light yellowish brown (10YR 6/4) and 20 percent olive yellow (2.5Y 6/8) fine sandy loam, 80 percent dark yellowish brown (10YR 4/4) and 20 percent yellowish brown (10YR 5/8) moist; massive; moderately acid (pH 5.8); clear wavy boundary.
- C1—36 to 50 inches, (91 to 127 cm); light yellowish brown (2.5Y 6/4) fine sandy loam, olive brown (2.5R 4/4) moist; massive; moderately acid (pH 5.8); clear wavy boundary.
- C2—50 to 60 inches, (127 to 152 cm); pale yellow (2.5Y 7/4) fine sandy loam, light olive brown (2.5Y 5/4) moist; massive; moderately acid (pH 5.8).

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

The upper 10 inches (25 centimeters) of the soil has a base saturation (ammonium acetate) of 50 to 75 percent. The upper 30 inches (76 centimeters) contains 5 to 10 percent glass and has other vitrandic properties. Sodium fluoride reaction is 8.5 to 10 percent. The soil has very little stratification.

A horizon:

Hue—10YR (dry and moist)

Value—5 (dry) and 3 (moist)

Chroma—2 (dry and moist)

Texture—fine sandy loam

Clay content—5 to 15 percent

Rock fragment content—0 to 12 percent

Organic matter content—2 to 8 percent

Reaction—moderately acid

Bw horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—5 or 6 (dry) and 3 to 5 (moist)

Chroma—3 to 8 (dry and moist)

Texture—coarse sandy loam, sandy loam, or fine sandy loam

Clay content—5 to 15 percent

Rock fragment content—0 to 5 percent

Organic matter content—0.5 to 4 percent

Reaction—moderately acid or slightly acid

C horizon:

Hue—2.5Y or 2.5R (dry and moist)

Value—6 or 7 (dry) and 4 or 5 (moist)

Chroma—4 (dry and moist)

Texture—loam or fine sandy loam

Clay content—5 to 15 percent

Rock fragment content—0 to 5 percent

Organic matter content—0.1 to 0.75 percent Reaction—moderately acid

Vitrandic Xerorthents

Vitrandic Xerorthents in the survey area consist of very deep, somewhat excessively drained soils that formed in alluvium from granitoid and minor volcanic ash. These soils are on flood plains and terraces in mountain valleys. Slope is 0 to 20 percent. The soils are classified as coarse-loamy, isotic, nonacid, mesic Vitrandic Xerorthents.

Typical Pedon

Oxyaquic Xerorthents-Dystric Xerorthents-Vitrandic Xerorthents-Rubble land complex, stony, 0 to 20 percent slopes, mountain valleys, mesic; Tuolumne County, California; Tuolumne Canyon, Pate Valley; complete Public Land Survey System unavailable; T. 1 N., R. 22 E., Mount Diablo Base and Meridian; lat. 37 degrees 55 minutes 42.8 seconds N. and long. 119 degrees 36 minutes 06.6 seconds W.; USGS Ten Lakes, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Vitrandic Xerorthents is this survey area because of the highly variable nature of these soils.)

- C—0 to 8 inches, (0 to 20 cm); light brownish gray (2.5Y 6/2) fine sand, dark grayish brown (2.5Y 4/2) moist; single grain; loose, very friable, non-sticky, non-plastic; many very fine roots; very strongly acid (pH 5.0); abrupt smooth boundary. (Lab sample # 00P04923)
- Ab—8 to 18 inches, (20 to 45 cm); dark grayish brown (2.5Y 4/2) fine sandy loam, very dark gray (10YR 3/1) moist; single grain; loose, very friable, non-sticky, non-plastic; many very fine roots; very strongly acid (pH 4.7); abrupt smooth boundary. (Lab sample # 00P04923)
- 2C—18 to 31 inches, (45 to 61 cm); grayish brown (10YR 5/2) fine sandy loam, very dark grayish brown (10YR 3/2) moist; single grain; loose, very friable, non-sticky, non-plastic; few coarse, medium, and fine and many very fine roots; very strongly acid (pH 5.0); abrupt smooth boundary. (Lab sample # 00P04923)
- 3C1—31 to 35 inches, (61 to 88 cm); dark grayish brown (2.5Y 4/2) loamy sand, very dark gray (10YR 3/1) moist; massive; loose, friable, non-sticky, non-plastic; common coarse, medium, fine, and very fine and few very coarse roots; 2 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; very strongly acid (pH 4.9); clear wavy boundary. (Lab sample # 00P04924)
- 3C2—35 to 50 inches, (88 to 128 cm); light gray (10YR 7/2) and grayish brown (2.5Y 5/2) loamy sand, light brownish gray (10YR 6/2) and very dark grayish brown (2.5Y 3/2) moist; massive; loose, friable, non-sticky, non-plastic; few coarse, medium, and fine and common very fine roots; 1 percent subangular very strongly cemented granodiorite rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0); abrupt smooth boundary. (Lab sample # 00P04925)
- 3Ab—50 to 62 inches, (128 to 158 cm); pale brown (10YR 6/3) loamy sand, very dark grayish brown (10YR 3/2) moist; massive; loose, very friable, non-sticky, non-plastic; 2 percent subangular very strongly cemented granodiorite rock fragments 2 to 75 mm in size; very strongly acid (pH 5.1). (Lab sample # 00P04928)

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping.

The content of surface rock fragments is 10 to 20 percent. Clay content is 0 to 4 percent.

C horizon:

Hue—2.5Y (dry and moist)

Value—6 (dry) and 4 (moist)

Chroma—2 (dry and moist)

Texture of the fine-earth fraction—sand or fine sand

Rock fragment content—0 to 20 percent

Organic matter content—3 to 7 percent

Reaction—very strongly acid to moderately acid

Ab horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—4 to 6 (dry) and 3 (moist)

Chroma—2 or 3 (dry) and 1 or 2 (moist)

Texture of the fine-earth fraction—fine sandy loam or very fine sandy loam

Rock fragment content—0 to 20 percent

Organic matter content—2 to 6 percent

Reaction—very strongly acid to moderately acid

2C horizon:

Hue—10YR or 2.5Y (dry and moist)

Value—5 to 7 (dry) and 3 to 6 (moist)

Chroma—2 (dry and moist)

Texture of the fine-earth fraction—fine sand or fine sandy loam

Rock fragment content—0 to 5 percent

Organic matter content—1 to 3 percent

Reaction—very strongly acid to moderately acid

3C horizon:

Hue—10YR (dry and moist)

Value—5 (dry) and 3 (moist)

Chroma—3 or 4 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—fine sand, loamy sand, or fine sandy loam

Rock fragment content—0 to 5 percent

Organic matter content—1 to 3 percent

Reaction—very strongly acid to moderately acid

3Ab horizon:

Hue—10YR (dry and moist)

Value—6 (dry) and 3 (moist)

Chroma—3 or 4 (dry) and 2 or 3 (moist)

Texture of the fine-earth fraction—fine sand, loamy sand, or fine sandy loam

Rock fragment content—0 to 5 percent

Organic matter content—1 to 3 percent

Reaction—very strongly acid to moderately acid

Additional characterization data for this Vitrandic Xerorthents example pedon, National Soil Survey Laboratory lab data pedon number 00P0785 (Pedon ID: 00CA109006), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Waterwheel Series

The Waterwheel series consists of very deep, somewhat excessively drained or excessively drained soils that formed in alluvium, colluvium, and/or till from granitoid rock. These soils are on alluvial fans, on mountain slopes, on colluvial aprons, on moraines, on ancient landslides, in drainageways, on gravel bars, on terraces, on flood

plains, and in joints and fractures in bedrock. Slope is 10 to 60 percent. The soils are classified as sandy-skeletal, isotic, frigid Dystric Xerorthents.

Typical Pedon

Craneflat-Rock outcrop-Rubble land-Waterwheel association, 30 to 80 percent slopes, mountainflanks, frigid; Tuolumne County, California; about 0.5 mile west of Return Creek in the Grand Canyon of the Tuolumne River; section 17, T. 1 N., R. 23 E., Mount Diablo Base and Meridian; lat. 37 degrees 56 minutes 5 seconds N. and long. 119 degrees 28 minutes 22 seconds W.; USGS Falls Ridge, California Quadrangle, NAD 83:

- Oi—0 to 1 inch, (0 to 2 cm); very bouldery slightly decomposed plant material; 15 percent subrounded very strongly cemented granitoid rock fragments 600 to 3000 mm in size and 20 percent subrounded very strongly cemented granitoid rock fragments 250 to 600 mm in size.
- Oe—1 to 2 inches, (2 to 4 cm); very bouldery moderately decomposed plant material; 15 percent subrounded very strongly cemented granitoid rock fragments 600 to 3000 mm in size and 20 percent subrounded very strongly cemented granitoid rock fragments 250 to 600 mm in size.
- Oa—2 to 2 inches, (4 to 6 cm); very bouldery highly decomposed plant material; 15 percent subrounded very strongly cemented granitoid rock fragments 600 to 3000 mm in size and 20 percent subrounded very strongly cemented granitoid rock fragments 250 to 600 mm in size.
- A—2 to 6 inches, (6 to 15 cm); very dark grayish brown (10YR 3/2) cobbly loamy coarse sand, very dark brown (10YR 2/2) moist; weak medium subangular blocky structure; very friable, non-sticky, non-plastic; few coarse and medium, common fine, and many very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size and 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; moderately acid (pH 6.0); abrupt wavy boundary. (Lab sample # 01N01011)
- Bw1—6 to 14 inches, (15 to 36 cm); pale brown (10YR 6/3) very stony loamy sand, brown (10YR 4/3) moist; moderate coarse and moderate medium subangular blocky structure; slightly hard, very friable, non-sticky, non-plastic; few very coarse and coarse and common medium, fine, and very fine roots; 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, 15 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, and 20 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size; moderately acid (pH 5.9); abrupt wavy boundary. (Lab sample # 01N01012)
- Bw2—14 to 28 inches, (36 to 71 cm); brown (10YR 5/3) extremely stony coarse sand, dark grayish brown (10YR 4/2) moist; weak fine subangular blocky structure; loose, very friable, non-sticky, non-plastic; few coarse, medium, fine, and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 600 to 3000 mm in size, 15 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size, 15 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, and 20 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size; moderately acid (pH 5.9); clear wavy boundary. (Lab sample # 01N01013)
- C—28 to 60 inches, (71 to 152 cm); light yellowish brown (10YR 6/4) extremely bouldery coarse sand, dark grayish brown (10YR 4/2) moist; massive; loose, non-sticky, non-plastic; few fine roots; 10 percent subrounded very strongly cemented granitoid rock fragments 600 to 3000 mm in size, 15 percent subangular very strongly cemented granitoid rock fragments 250 to 600 mm in size, 25

percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size, and 30 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; slightly acid (pH 6.1). (Lab sample # 01N01014)

Range in Characteristics

The mean annual soil temperature is less than 8.0 degrees C (46.4 degrees F). The particle-size control section has 0.5 to 10.0 percent clay and 65 to 97 percent sand. Rock fragment content is 0 to 90 percent, by volume. The particle-size control section, by weighted average, has 35 percent or more rock fragments. Some pedons do not have one or more O horizons. The content of surface rock fragments is 2 to 60 percent.

A horizon:

Hue—10YR (dry and moist)

Value—3 to 6 (dry) and 1 to 4 (moist)

Chroma—1 to 4 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, loamy sand, coarse sandy loam, or sandy loam

Clay content—0.5 to 10 percent

Rock fragment content—0 to 60 percent

Organic matter content—2 to 12 percent

Reaction—very strongly acid to neutral

Other characteristics—some pedons have an AC horizon

Bw horizon (if it occurs):

Hue—10YR (dry and moist)

Value—3 or 4 (dry) and 3 or 4 (moist)

Chroma—3 to 6 (dry) and 2 to 4 (moist)

Texture of the fine-earth fraction—coarse sand, sand, loamy coarse sand, or loamy sand

Clay content—0.5 to 6 percent

Rock fragment content—0 to 75 percent

Organic matter content—0.5 to 6 percent

Reaction—very strongly acid to neutral

Other characteristics—some pedons have a BC horizon

C horizon:

Hue—10YR (dry and moist)

Value—5 to 8 (dry) and 3 to 5 (moist)

Chroma—3 or 4 (dry) and 2 to 4 (moist)

Texture of the fine-earth fraction—coarse sand, sand, loamy coarse sand, loamy sand, or sandy loam

Clay content—0.5 to 10 percent

Rock fragment content—0 to 90 percent

Organic matter content—generally 0.2 to 3.0 percent; 0.2 to 8.0 percent for soil having a C horizon above a Bw horizon

Reaction—very strongly acid to neutral

Additional characterization data for this Waterwheel typical pedon, National Soil Survey Laboratory lab data pedon number 01N0149 (Pedon ID: 00CA109013), and for pedon numbers 99P0317 (Pedon ID: 99CA109004) and 00P078 (Pedon ID: 00CA043002) are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Whittell Series

The Whittell series consists of moderately deep, excessively drained soils that formed in colluvium over residuum derived from granodiorite. The Whittell soils are on the upper third of mountainflanks. Slope is 8 to 75 percent. The soils are classified as sandy-skeletal, mixed Typic Cryorthents.

Typical Pedon

Whittell very cobbly loamy coarse sand; Mono County, California; in the Toiyabe National Forest, about 3 miles north of Twin Lakes; about 100 feet north and 350 feet west of the southeast corner of section 18, T. 4 N., R. 24 E.; lat. 38 degrees 11 minutes 49.6 seconds N. and long. 119 degrees 21 minutes 37.2 seconds W.; Twin Lakes, California Quadrangle, NAD 27:

Oi—0 to 1 inch, (0 to 1 cm); slightly decomposed plant material.

- A—1 to 7 inches, (1 to 18 cm); dark grayish brown (10YR 4/2) very cobbly loamy coarse sand, very dark brown (10YR 2/2) moist; weak fine subangular blocky structure; soft, very friable, non-sticky, non-plastic; many very fine, fine, medium, coarse, and very coarse roots throughout; 25 percent gravel, 25 percent cobbles, and 5 percent stones; strongly acid (pH 5.4); clear smooth boundary.
- Bw1—7 to 25 inches, (18 to 64 cm); pale brown (10YR 6/3) very stony loamy coarse sand, dark brown (10YR 4/3) moist; weak fine subangular blocky structure; soft, very friable, non-sticky, non-plastic; common very fine and fine and many medium, coarse, and very coarse roots throughout; 25 percent gravel, 15 percent cobbles, and 15 percent stones; strongly acid (pH 5.4); clear smooth boundary.
- Bw2—25 to 39 inches, (64 to 99 cm); pale brown (10YR 6/3) extremely stony loamy coarse sand, dark brown (10YR 4/3) moist; single grain; loose, non-sticky, non-plastic; few very fine and common fine, medium, and coarse roots throughout; 25 percent gravel, 15 percent cobbles, and 25 percent stones; strongly acid (pH 5.4); clear wavy boundary.
- Cr—39 to 42 inches, (99 to 107 cm); moderately cemented granodiorite bedrock.

Range in Characteristics

The soil is usually moist in the moisture control section in fall, winter, and spring. It is usually dry from July through early October. The moisture regime is xeric. The mean annual soil temperature is 35 to 41 degrees F, and the mean summer soil temperature is 44 to 47 degrees F. The thickness of the ochric epipedon is 3 to 9 inches. Depth to a paralithic contact is 20 to 40 inches. The paralithic materials below the contact are weathered granitoid rock such as granodiorite.

In the particle-size control section, the clay content averages 1 to 8 percent and the content of rock fragments averages 35 to 85 percent. Lithology of the fragments is granitoid rocks such as granodiorite.

The surface is covered with 15 percent gravel, 10 percent cobbles, 15 percent stones, and 10 percent boulders.

A horizon:

Value—4 to 5 (dry) and 2 or 3 (moist) Chroma—2 or 3 (dry and moist) Organic matter content—1 to 4 percent Reaction—Strongly acid to slightly acid

Bw horizon:

Value—4 to 6 (dry) and 3 to 5 (moist) Chroma—3 or 4 (dry and moist) Texture—loamy coarse sand
Clay content—1 to 8 percent
Rock fragment content—35 to 85 percent
Reaction—strongly acid to slightly acid

C horizon:

Hue—2.5Y or 10YR (dry and moist)
Value—5 or 6 (dry) and 3 or 4 (moist)
Chroma—3 to 6 (dry and moist)
Texture—loamy coarse sand
Clay content—1 to 8 percent
Rock fragment content—35 to 85 percent
Reaction—strongly acid to slightly acid

Xeric Dystrocryepts

Xeric Dystrocryepts in the survey area consist of very deep, somewhat excessively drained soils that formed in colluvium, till, and/or alluvium from granitoid or metamorphic rock. These soils are on mountain slopes, moraines, glacial valley floors, and stream terraces. Slope is 0 to 80 percent. The soils are classified as sandy, isotic, Xeric Dystrocryepts.

Typical Pedon

Rock outcrop-Typic Cryorthents-Xeric Dystrocryepts complex, 0 to 35 percent slopes, mountain slopes, joints, cryic; Tuolumne County, California; approximately 2,900 feet (883.9 meters) north-northwest of USGS Benchmark 7609, next to Tioga Road, approximately 2,000 feet (609.6 meters) north and 1,200 feet (365.8 meters) west of the southeast corner of section 19, T. 1 S., R. 21 E., Mount Diablo Base and Meridian; lat. 37 degrees 50 minutes 23.3 seconds N. and long. 119 degrees 42 minutes 6.1 seconds W.; USGS Tamarack Flat, California Quadrangle, NAD 83. (This pedon is representative but not completely typical of the Xeric Dystrocryepts in this survey area because of the highly variable nature of these soils.)

- Oi—0 to 2 inches, (0 to 6 cm); slightly decomposed plant material; abrupt smooth boundary.
- Oe—2 to 4 inches, (6 to 11 cm); moderately decomposed plant material; abrupt smooth boundary.
- A1—4 to 13 inches, (11 to 33 cm); grayish brown (2.5Y 5/2) loamy coarse sand, very dark grayish brown (10YR 3/2) moist; weak very fine granular structure; loose, very friable, non-sticky, non-plastic; few medium, coarse, and very coarse, common fine, and many very fine roots; 7 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0); abrupt smooth boundary. (Lab sample # 97P00856)
- A2—13 to 20 inches, (33 to 52 cm); light olive brown (2.5Y 5/3) loamy coarse sand, very dark grayish brown (10YR 3/2) moist; weak very fine granular structure; loose, very friable, non-sticky, non-plastic; few coarse and very coarse, common medium, and many fine and very fine roots; 7 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0); clear smooth boundary. (Lab sample # 97P00857)
- A3—20 to 30 inches, (52 to 77 cm); light olive brown (2.5Y 5/4) coarse sand, brown (10YR 4/3) moist; weak very fine granular structure; loose, very friable, non-sticky, non-plastic; few very coarse, common coarse, and many medium, fine, and very fine roots; 7 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0); clear smooth boundary. (Lab sample # 97P00858)

- AB—30 to 42 inches, (77 to 106 cm); brown (10YR 5/3) coarse sand, dark brown (10YR 3/3) moist; weak very fine granular structure; loose, very friable, non-sticky, non-plastic; few very coarse and common very fine, medium, and coarse roots; 5 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0); clear smooth boundary. (Lab sample # 97P00859)
- Bw1—42 to 48 inches, (106 to 122 cm); yellowish brown (10YR 5/4) loamy sand, dark brown (7.5YR 3/3) moist; moderate very fine granular and moderate medium granular structure; soft, very friable, non-sticky, non-plastic; common very coarse, coarse, medium, fine, and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; very strongly acid (pH 5.0); clear smooth boundary. (Lab sample # 97P00860)
- Bw2—48 to 62 inches, (122 to 157 cm); brownish yellow (10YR 6/6) loamy coarse sand, brown (7.5YR 4/4) moist; moderate medium and moderate very fine granular structure; soft, very friable, non-sticky, non-plastic; common very coarse, coarse, medium, and very fine and few fine roots; 10 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5); clear smooth boundary. (Lab sample # 97P00861)
- C1—62 to 78 inches, (157 to 199 cm); yellow (10YR 7/6) loamy coarse sand, dark yellowish brown (10YR 4/6) moist; moderate fine granular structure; soft, very friable, non-sticky, non-plastic; common fine and medium and few coarse and very fine roots; 5 percent subangular very strongly cemented granitoid rock fragments 75 to 250 mm in size and 7 percent subangular very strongly cemented granitoid rock fragments 2 to 75 mm in size; strongly acid (pH 5.5); abrupt smooth boundary. (Lab sample # 97P00862)
- C2—78 to 84 inches, (199 to 213 cm); pale yellow (2.5Y 8/4) cobbly coarse sandy loam, brownish yellow (10YR 6/6) moist; moderate fine granular structure; soft, friable, slightly sticky, non-plastic; few fine and medium roots; 10 percent subangular very strongly cemented granodiorite fragments 75 to 250 mm in size and 10 percent subangular very strongly cemented granodiorite fragments 2 to 75 mm in size; strongly acid (pH 5.5). (Lab sample # 97P00863)

Range in Characteristics

This map unit component is represented at a taxonomic level higher than series because of the variability of the landscape at the scale of mapping. Similar family level categories are therefore included with the concept of this component, such as coarse-loamy, isotic Xeric Dystrocryepts; loamy-skeletal, isotic Xeric Dystrocryepts; and sandy-skeletal, isotic Xeric Dystrocryepts.

The mean annual soil temperature is about 4.5 degrees C. The mean summer soil temperature is about 8.5 degrees C. The mean winter soil temperature is about 1.5 degrees C. Xeric Dystrocryepts have an umbric epipedon and/or a cambic horizon. Some pedons do not have one or more O horizons.

A and AB horizons:

Hue—10YR or 2.5Y (dry and moist)

Value—4 or 5 (dry) and 2 to 4 (moist)

Chroma—2 to 4 (dry) and 1 to 3 (moist)

Texture of the fine-earth fraction—sand, coarse sand, loamy coarse sand, loamy sand, loamy fine sand, sandy loam, fine sandy loam, or very fine sandy loam

Clay content—0.5 to 12 percent

Organic matter content—0.5 to 12 percent

Rock fragment content—0 to 60 percent

Reaction—very strongly acid to moderately acid

Other characteristics—some pedons have an AB or a BA horizon

Soil Survey of Yosemite National Park, California

Bw horizon (if it occurs):

Hue—10YR or 7.5YR (dry and moist)

Value—3 to 6 (dry) and 2 to 4 (moist)

Chroma—3 to 6 (dry) and 3 or 4 (moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, loamy sand, loamy fine sand, sandy loam, fine sandy loam, or very fine sandy loam

Clay content—0.5 to 12 percent

Organic matter content—0.5 to 6 percent

Reaction—very strongly acid to moderately acid

C horizon:

Hue—10YR or 2.5YR (dry and moist)

Value—4 to 8 (dry) and 3 to 6 (moist)

Chroma—4 to 8 (dry) and 2 to 6 (moist)

Texture of the fine-earth fraction—sand, loamy coarse sand, loamy sand, loamy fine sand, coarse sandy loam, or sandy loam

Clay content—0.5 to 8 percent

Organic matter content—0.1 to 2 percent

Reaction—extremely acid to moderately acid

Other characteristics—some pedons have a moderately deep Cd horizon

Additional characterization data for this Xeric Dystrocryepts example pedon, National Soil Survey Laboratory lab data pedon number 97P0126 (Pedon ID: 96CA109010), are available from the National Soil Survey Laboratory at the National Soil Survey Center in Lincoln, Nebraska.

Formation of the Soils

The following discussion should help users of this survey understand and appreciate the key conditions and processes that created the soils of Yosemite National Park. It can help to make the maps, descriptions, and interpretations more meaningful and to give the reader an improved understanding and appreciation of soil complexities and relationships.

Soil is a dynamic three-dimensional body consisting of mineral material, living organisms and decomposing organic matter, air, and water, which contains a myriad of suspended and dissolved substances. Soil forms from parent material which is acted upon by various processes, namely, additions, losses, transfers, and transformations of matter and energy (14).

Common additions include water and entrained nutrients from rainfall, snowmelt, or subsurface flow; gases, including oxygen, from the above-ground atmosphere; organic matter from plants and animals; soil eroded from higher elevations or blown in by the wind; volcanic ash from local or distant eruptions; energy from the sun and fire; and contaminants primarily from human activity.

Losses include water lost to the atmosphere (as a result of evaporation and transpiration) and to deep in the soil (as a result of percolation); gases, notably carbon dioxide and methane, lost to the above-ground atmosphere; organic matter lost as a result of decomposition, fire, or harvesting; soil lost through erosion; and energy that escapes primarily by convection and radiation.

Transfers, initiated primarily by biological activity, gravity, and energy gradients, redistribute soil solutions, nutrients and contaminants, gases, organic matter, fine mineral material (especially clay), and energy vertically and laterally throughout the soil.

Transformations can be physical, chemical, or biological. They include rock and mineral weathering, which disintegrates rocks into smaller fragments (fig. 28) and decomposes primary minerals into clay minerals. Transformation also include organic matter decomposition and other biogeochemical processes that are vital for cycling nutrients and maintaining ecosystems. In the western North American forests, fire is an important agent of transformation.

Factors of Soil Formation

Soil is created by the interaction of the soil processes with the five soil-forming factors—climate, parent material, topography, living organisms, and time. Fire is an additional factor that contributes to soil formation as well as to its degradation in much of the western United States, including Yosemite National Park.

Climate

Climate affects soil formation through the impact of temperature and precipitation on soil parent materials and on existing soil. Generally, cool climates having significant temperature fluctuations promote physical disintegration of rocks but retard chemical decomposition of constituent minerals. In contrast, warm climates promote less physical disintegration but enhance chemical decomposition. In either case, little

Figure 28.—Exfoliation, an example of physical weathering, affects the formation of Half Dome soils.

weathering takes place without water. High precipitation contributes to faster weathering overall than low precipitation. As a result, weathering tends to be the least intense under cool, dry climates and the most intense under warm, moist climates.

Overall, Yosemite National Park has a Mediterranean climate, which is characterized by warm, dry summers and cool to cold, moist winters. Although the Park lies within this climatic zone, its high elevations in a midlatitude position result in significant climatic variation. The variation is reflected in soil temperature regimes, which range from thermic to cryic, and in the degree of soil development, which is exemplified by soils ranging from Entisols to Ultisols.

Within the narrow zone of low elevation, thermic regions, where precipitation is relatively low, weathering and soil development increase as elevation and effective precipitation increase. Above this zone, where precipitation increases but temperatures decrease from mesic to cryic regimes, weathering and soil development decrease as elevation increases. Thus, the most intensely developed soils, Ultisols and Alfisols, occur in the region of optimum temperature and precipitation, where the amount of biological productivity also is high. This region extends approximately from the upper thermic to upper mesic zones, although Alfisols can extend into the lower frigid zone. (This trend is exacerbated by variations in rock type and soil parent materials. See the following section on soil parent materials for further discussion.)

As elevation increases, temperature generally decreases and precipitation generally increases, although these trends can be counteracted by variations in local relief, slope aspect, and slope steepness. Fluctuations in temperature and moisture affect the rate of organic matter accumulation and decomposition as well as mineral weathering.

A typical sequence of temperature and moisture in the frigid and cryic zones above

about 6,000 feet elevation, where snow normally remains for the full winter season, is as follows:

- 1. Autumn rains begin to wet the soil, abruptly and dramatically decreasing soil temperatures.
- 2. Atmospheric and soil temperatures become too cold for plant growth, and snow falls before the ground can freeze to a significant depth.
- 3. Precipitation is stored in the form of snow, and under the snow soil temperatures gradually cool to within a few degrees above freezing.
- 4. As snow begins to melt in spring, soil temperatures reach their minimum. Water from melting snow combines with spring rains to produce a period of maximum soil moisture recharge, leaching, ground-water recharge, and stream flow. In some years, spring rains and elevated atmospheric temperatures result in rapid snowmelt and high rates of surface runoff.
- 5. When the last snow melts on a site, soil temperatures rise rapidly and plant growth begins to surge.
- 6. As surface and subsurface runoff continues and plants increasingly draw stored soil moisture, soil moisture stores are depleted. Starting at the surface, soils become increasingly water repellent (i.e., hydrophobic).
- 7. As stored soil moisture is depleted, plant growth declines, reaching a minimum in mid-summer. Unprotected, coarse textured soils become highly susceptible to sheet and rill erosion by occasional summer rains as soil hydrophobicity reaches its maximum. Optimum conditions are created for erratic wildfires that further warm and dry the soil while rapidly oxidizing organic materials.
 - 8. These conditions persist until the next autumn rains.

Parent Material

Parent material is the stuff from which soil forms. Although parent material can be organic or inorganic, less than 1 percent of the soils (classified as Histosols) in Yosemite National Park formed from organic deposits. These occur mostly in Yosemite Valley and in a few scattered willow bogs and wet meadows where organic matter accumulation significantly exceeds decomposition.

Inorganic parent materials can be either residual material the soil formed by the direct weathering of bedrock in place) or transported material (the soil formed in an unconsolidated deposit laid down by gravity, ice, flowing water, still water, or wind). Respectively, these transported material deposits are called colluvium, till, alluvium, lacustrine, and aeolian deposits. By far, most soils in the park—probably 90 percent or more—formed from transported parent materials, either as distinct deposits or in various combinations. Where these deposits thinly overlie bedrock, the weathered residuum can significantly influence the resulting soil, especially where weathering is most intense at elevations below about 4,500 feet.

Geologically, the park is dominated by various types of granitoid rocks, which were uplifted through older expanses of metamorphic rock. The metamorphic bodies, dominated by low-grade schist, hornfels, and gneiss, occur most extensively along the westerly low-elevation and easterly high-elevation fringes of the park. In addition, volcanic rock types occur in a few small isolated bodies.

The granitoid rock masses are divided by an extensive system of bedrock joints. At the broadest scale these joints establish the orientation of major geologic features, including the face of Half Dome. At a smaller scale they create deep, nearly vertical gaps in rock outcrops (6). These gaps promote weathering of the rock, and they collect water and eroded soil from upslope, as well as dust, pollen, and seeds. As a result, bedrock joints typically are filled with deep soils, and they serve important ecologic and hydrologic functions. Figure 29 illustrates a pattern of ecosystems developed in

Figure 29.—Bedrock joints establish a pattern of ecosystem and soil development.

bedrock joints, and figure 30 shows the distribution of map units having significant bedrock joints.

Although purely residual soils are rare, rock type still significantly influences the distribution and properties of inorganic soils because of the presence of rock detritus in transported parent materials. These influences are best exemplified by the granitoid rock types, which underlie most of the survey area. These rocks range from more felsic, quartz-rich granite and quartz monzonite, to quartz diorite and granodiorite to more mafic (i.e., magnesium- and iron-rich), quartz-poor diorite. These rock types occur in an indistinct but significant elevational arrangement; the less dense, felsic rock types generally occur at the higher elevations, and the denser, mafic rock types occur at the lower elevations.

The above trends significantly affect soil formation for several reasons. Felsic minerals tend to be far more resistant to chemical weathering than mafic minerals, and felsic minerals tend to be poorer in potential plant nutrients than mafic minerals. Although all granitoid rocks in the park produce coarse textured soils in the early stages of weathering, soils from felsic rocks typically contain the highest gravel content as well as the coarsest textures. These coarse textures result in a high rate of permeability, a low surface area, and low nutrient retention in the soils.

Good examples of contrasting soils formed from contrasting granitoid parent materials and at contrasting elevations are those of the Canisrocks series. These soils include sandy-skeletal, isotic Typic Cryorthents that extend across several map units at the high elevations and fine-loamy, isotic, mesic Typic Haploxerults in map unit 302, at low elevations.

Other examples that occur within a narrow elevational range and are too intricately distributed to be mapped separately at the 1:40,000 scale occur near the southwestern border of the survey area, in the vicinities of Wawona and Hodgdon.

Yosemite National Park Selected Research Topics Bedrock Joints and Ancient Landslides

Figure 30.—Bedrock joints and ancient landslides affect soil development.

Delineations of map unit 282 (Clarkslodge-Craneflat-Nevadafalls complex, 0 to 30 percent slopes, mountain slopes, hummocky, frigid) occur near contacts of contrasting granitoid bedrocks that generally are situated downslope and upslope from each other. The downslope rock types consist of more mafic biotite and hornblende diorite and granodiorite. The neighboring upslope rock masses are dominated by more felsic quartz monzonite and biotite granodiorite. Accordingly, the downslope rock types contain less silica and potassium feldspar and more magnesium, iron, and calciumrich plagioclase, which render them more easily weathered and less stable on the landscape. The upslope rock masses are richer in the resistant minerals quartz and potassium feldspar and poorer in the easily weathered hornblende and plagioclase. These relationships favor the development of more mature soils, including Alfisols (e.g., Clarkslodge series) and Ultisols from materials derived from the more weatherable rock. Less mature soils, including Inceptisols (e.g., Nevadafalls and Craneflat series) and Entisols develop from products of the more resistant rock.

The most widespread parent materials in the park are colluvium and till derived from granitoid rock. Colluvium occurs primarily on mountain flanks and mountain slopes and in colluvial aprons but it also commonly occurs as a mantle overlying till. Some of the most significant colluvial deposits occur in a roughly northwest- to southeast-trending arrangement of large, apparently ancient landslides in the southwestern portion of the survey area. (See figure 30.) Many of these landslides are a mix of materials derived from granitoid and metamorphic rock types.

Till deposits dominantly fall into one of three broad age classes: pre-Tahoe, Tahoe, and Tioga (8). Younger deposits sometimes overlap older deposits, and identification often is uncertain. Pre-Tahoe glaciation, which climaxed about 1 million years ago, extends to the lowest elevations. Its till is characterized by few surface boulders, the least distinct morainal features, and the greatest soil development. These glacially deposited forms are the most difficult to recognize in remotely sensed images and on the ground. Tahoe glaciation peaked about 100,000 years before ago. Its till tends to occur at mid-elevations and is characterized by less weathering and the disappearance of surface boulders, more distinct morainal features, and perhaps less soil development than the pre-Tahoe till. Tioga glaciation, which culminated about 20,000 years ago, left mostly high-elevation moraines that remain distinct and are characterized by somewhat sharp features, numerous surface boulders, and weak soil development. Soil compaction, presumably caused by the overlying ice, is notable a few tens of centimeters below the surface in many ground moraines.

Alluvium, throughout most of the park, is limited to narrow, thin deposits along streams and to somewhat wider, thicker accumulations in a dozen or so small mountain basins. Notable exceptions where considerable alluvium has accumulated include Yosemite Valley, Tuolumne Meadow, and sections of the Grand Canyon of the Tuolumne. These larger valleys and basins also have collected the most recognizable deposits of glaciolacustrine sediments and volcanic ash.

Some of the most dramatic effects of combined landscape-shaping forces can be seen in Yosemite Valley. Huge valley glaciers scoured the mountain flanks, leaving behind sheer cliffs; freezing and thawing loosened rock masses, some the size of school buses, and earthquakes sent them crashing to the valley floor; and floodwaters of the Merced River have alternately gouged channels, tumbled boulders, and dumped sediment. All of these forces, whether released in ferocity or relative serenity, have shaped the land and prepared it for soil development.

Topography

At a position on the landscape, topography is expressed by slope steepness, aspect, and shape; across a sector of the landscape, it is characterized by variations in these attributes as well as by variation in elevation (i.e., relief). Each of these spatial

attributes can vary over short distances. The degree of variation contributes to localized differences in soil formation and properties.

Topography affects soil development and morphology through its influence on water runoff, erosion, internal drainage and aeration, exposure to sun and wind and the attendant energy fluxes, and biological activity, including vegetative development (9).

If the other soil-forming factors are similar, soil development and depth are greater on horizontal to gently sloping sites, where water and sediments collect, than on steep mountain slopes, where water runoff and soil erosion typically are greater. Soil textures and particle-size classes also can vary. For example, soils on flatter alluvial deposits, where the energy of flowing water has dissipated, tend to have fewer and smaller coarse fragments than soils in steeper areas of alluvium. This trend can be seen in Yosemite Valley where the coarse-loamy Happyisles soils are downslope from the skeletal Half Dome soils.

Slope aspect can significantly influence soil formation through its effect on the amount of solar insolation received at a site. Compared to northerly facing slopes, southerly facing slopes receive more direct sunlight, making them warmer and generally drier at the surface (but not necessarily at depth) than northerly facing slopes. In most cases, northerly facing slopes experience greater soil development than southerly slopes because of more effective water utilization by plants and lower organisms and by more intense chemical reactions such as weathering. These relationships are well demonstrated by the elevational differences of the various soil temperature regimes; cooler soils extend to lower elevations on north-facing slopes than on south-facing slopes. These tendencies sometimes are reversed at high elevations where temperature rather than moisture is the limiting factor. In these cases, southerly aspects can support greater soil and plant development.

Slope shape can be significant because convex slopes tend to be more erosional in comparison to concave slopes which are commonly depositional. Although water and soil accumulation and soil development are more favorable on concave slopes, natural convex surfaces can be more stable and less disturbed than concave surfaces and thus more mature soils may form on convex surfaces.

Topographic variations typically create mesoclimates and microclimates that can override broader climatic and geomorphic trends. These variations largely account for the high number of map unit complexes in this survey.

Living Organisms

The activities of living organisms—macroflora, soil macrofauna, microorganisms, and, to a lesser extent, humans—contribute to soil development, morphology, functioning, and degradation.

Higher plants enhance soil formation in many ways, most notably by adding organic matter, promoting rock and mineral weathering, influencing environmental energy exchanges, and protecting the ground surface. Soils, in turn, strongly influence the distribution and vigor of plant communities as well as the individuals within a community. In this soil survey, vegetation types were recorded during field mapping and classified according to criteria in "Preliminary Description of Terrestrial Natural Communities of California" (5). The database PLANTS (available online at http://plants.usda.gov) was used for additional plant identification (17).

The organic matter added to soil from plant roots and shoots serves as a carbon, energy, and nutrient source for heterotrophic soil organisms, including mammals, mollusks, arthropods, fungi, and heterotrophic bacteria. These organisms, in turn, conduct processes necessary for continued ecosystem functioning. The organic matter decomposes to humus, which increases the soil's water and nutrient-holding capacity, and gently glues small inorganic particles into structural aggregates, thus improving erosion resistance and enhancing gas exchange with the above-ground

atmosphere. Field and laboratory data gathered during this survey clearly demonstrate the vital importance of soil humus to ecosystem functioning and resilience. Especially at mid to high elevations in the survey area, soil humus far exceeds the soil's solid inorganic fraction in sustaining chemical and biological functioning of the ecosystems.

Growing roots contribute to physical and chemical weathering by prying apart rocks and releasing carbon dioxide, which reacts with water to form carbonic acid, a weak but common acid in soils and an important contributor to mineral weathering. Roots capture nutrients released by mineral weathering, thus feeding the plant and preventing the nutrients from leaching to ground water and surface water. Carbon dioxide from roots also feeds the autotrophic bacteria that maintain nutrient cycling.

When large roots die, channels of new life are created in their stead. Primary and secondary decomposers colonize the old roots, creating humus and cycling nutrients. The old root channels become conduits for water movement, gas exchange, and biological commerce. Eventually, soil from surrounding areas is mixed in, and new features called krotovinas are created. Young rootlets nudge their way into the krotovinas and life of the soil goes on.

Above ground, plant cover moderates soil temperatures by shading warm sites and insulating cool sites. A good example of the effect of forest cover removal on soil temperature can be seen in an area that was burned on southwesterly facing slopes above Big Oak Flat Road. A comparison of data collected from this area and from comparable unburned sites suggests that the soil temperature regime warmed from frigid to mesic, apparently as a result of canopy removal by the fire. By the completion of this survey, the change had persisted for 15 years.

Under ordinary conditions, trees and other plants protect soil from disturbance by water and wind erosion; but when trees fall, as during strong winds, the dislodgement of root masses throws soil into the air, creating a small crater and mixing soil. During the natural life of a forest, this process can lead to considerable soil diversity.

Soil macrofauna, including insects, slugs and snails, worms, rodents, and other burrowing animals, are important primary decomposers of organic matter. In addition, their activities aerate the soil and promote water infiltration and percolation. Channels excavated by burrowing creatures, ranging from small to large, fill in with soil, feces, and organic matter from above, creating new nutrient-rich krotovinas. Observations made during this survey suggest that the greatest biological activity in subsoils takes place in krotovinas. Clearly, the properties and full contribution of these features to ecosystem functioning deserves concentrated scientific research.

Unlike macroorganisms, microorganisms and their activities cannot be observed during the normal course of a soil survey; nonetheless they are known to contribute to soil formation and ecosystem functioning in an untold number of ways. Bacteria are vital to biogeochemical processes, including the cycling of carbon, nitrogen, and other nutrients. Autotrophic bacteria, for example, absorb carbon dioxide, ammonia, methane, and other gases released by heterotrophs during decomposition.

Nitrogen-fixing bacteria and other microbial nitrogen fixers convert gaseous nitrogen (N₂) from the soil atmosphere into ammonia (NH₃), which can be used to make amino acids, proteins, and other nitrogenous compounds. A portion of the ammonia converts to ammonium ions (NH₄+), which can be utilized by plants to make their own proteins. When organisms die, the decay process called ammonification releases ammonia and ammonium back into the soil where it can be cycled to other organisms, including a different group of bacteria called nitrifiers. Nitrifiers convert ammonia to nitrate (NO₃-), which is highly soluble and mobile in the soil. Nitrate can be cycled back into plants, or in some cases leached to greater depth. Ammonification and nitrification operate on animal and human wastes deposited on and in the soil.

When fire strikes, organic materials, including proteins, are rapidly oxidized and nitrogen goes up in the smoke. On intensively burned, nitrogen-depleted sites, plants

that support symbiotic nitrogen-fixing organisms on their roots are among the first to recolonize and begin nature's refertilization process.

These microbial processes, which are at the core of the nitrogen cycle, are some of the most important in nature and contribute greatly to soil formation. They are particularly vital because the atmosphere is the ultimate source of nitrogen; no nitrogen is derived from the weathering of minerals and rocks.

People have greatly altered some soils in the developed areas of the park. Evidence of human activity is readily observable along trails and around campsites in the backcountry. The damaging impacts range from soil obliteration through the construction of roads and buildings to mild erosion and compaction by foot traffic. In contrast, some park-initiated rehabilitation and restoration projects have enhanced soil development. These types of corrective efforts normally require significant inputs of labor and resources, most of which must be obtained from other areas.

Apart from these localized impacts, people have had little intensive influence on either development or destruction of the park soils. Nonetheless, on an extensive scale, the use of fire by Native Americans and later attempts at fire exclusion by Euroamericans have had an unmeasurable influence on soils throughout most of the park. Although charcoal and other evidence of past fires were observed in many soils, this survey did not properly judge the specific consequences of these practices.

Human activities outside the park that contribute to air pollution, acid precipitation, and atmospheric warming are expected to have insidious effects on the park soils. Although these effects were not properly evaluated or predicted in this survey, most soils in the park probably are susceptible because of the weak buffering capacity of the coarse textures.

Time

Like all living things, soils go through stages of growth and decline from infancy to old age and some soils "age" faster than others. As a soil advances in its degree of development, or maturity, the conditions and processes that control the rate of aging have a greater effect than the simple passage of time. As a soil grows older, it can pass through a peak of productivity and eventually reach a degenerated state from which it might recycle back to infancy. This progression is uncommon among living things.

Time as a soil-forming factor is determined not only by centuries or millennia since parent materials were exposed to pedogenic processes but also by the other soil-forming factors and their interactions. Thus, a soil formed in resistant parent material or in an unfavorable climate might be old in years but immature in development. Another soil in the same region that is younger in chronological age may be more developed if it formed from an easily weathered parent material or under more favorable climatic conditions.

Influences of time as a soil-forming factor are well demonstrated in the park. Beginning in Yosemite Valley, one can identify Entisols, which have only weakly developed pedogenic horizons, on recently deposited alluvium of low flood plains. Somewhat more developed Inceptisols and Mollisols occur on the alluvium of older, higher flood plains and terraces.

The valley also contains examples of neighboring soils having similar chronological ages but different degrees of development because of contrasting parent materials and topography. For example, some soils on sloping, coarse textured alluvial fans and colluvial aprons are less developed than nearby soils on flatter, finer textured flood plains of comparable chronological age.

Outside the valley, other contrasts can be made with Entisols and some Inceptisols that formed on younger, Tioga till and Inceptisols and occasional Alfisols that formed

on older, pre-Tahoe till. Many soils at the high elevations show only weak horizonation, even after 10,000 years or more of development. In addition, time-elevation-parent material interactions are well illustrated at low elevations near the contact zone of granitoid and metamorphic rock types in the southwestern portion of the park.

As suggested above, a soil's "age" can be reflected in its taxonomic classification, which might fall somewhere in the following sequence of increasingly mature soil orders: Entisol, Inceptisol, Mollisol, Alfisol, Ultisol, and Oxisol. The majority of soils in the park are Entisols and Inceptisols, and a few have matured to Ultisol. None approach the degenerative stage common in Oxisols, which form in warm, humid climates.

Fire

Although forest fires occur throughout the country's western forestlands, including Yosemite National Park, fire is not commonly regarded as a soil-forming factor. Nonetheless, fires function as a soil-forming factor by significantly altering the soil's physical, chemical, and biological properties. The heat from fires cracks and exfoliates rocks by rapidly expanding trapped water vapor. The exfoliation process increases the amount of rock surface exposed to other weathering agents.

Fires also cause a rapid and dramatic pH increase in topsoil. This increased alkalinity, or decreased acidity, can be three pH units in surface and near-surface soils, which means that the alkalinity increases 1,000-fold. This increase generates significant solubility changes in metallic elements, rendering some more available to plants and microbes and others less available.

Fire also increases the solubility of silica and alumina, which stimulates the weathering of silicate minerals. Basic ions gradually leach to greater depths in the years following fire, and residual effects can persist for a decade or more.

References

- American Association of State Highway and Transportation Officials (AASHTO).
 2000. Standard specifications for transportation materials and methods of sampling and testing. 20th ed., 2 vols.
- (2) American Society for Testing and Materials (ASTM). 2001. Standard classification of soils for engineering purposes. ASTM Standard D 2487-00.
- (3) Bateman, P.C., and C. Wahrhaftig. 1966. Geology of the Sierra Nevada in geology of northern California. Cal. Div. of Mines and Geol. Bull. 190, pp. 107-172.
- (4) Calkins, F.C., et al. 1985. Bedrock geologic map of Yosemite Valley, Yosemite National Park, California. (With accompaning pamphlet by N.K. Huber and J.A. Roller, Bedrock geology or the Yosemite Valley Area, Yosemite National Park, California). U.S. Dep. of the Interior, Geol. Surv. Misc. Inves. Ser. Map I-1639, 1:24,000.
- (5) Holland, R.F. 1986. Preliminary description of terrestrial natural communities of California.
- (6) Huber, N.K. The geologic story of Yosemite Valley; In the footsteps of Francois E. Matthes. (Available online at http://www2.nature.nps.gov/geology/usgsnps/yos/topobk.html)
- (7) Huber, N.K. 1987. The geological story of Yosemite National Park. U.S. Dep. of the Interior, Geol. Surv. Bull. 1595, p. 64.
- (8) Huber, N.K., P.C. Bateman, and C. Wahrhaftig. 1989. Geologic map of Yosemite National Park and vicinity, California. U.S. Dep. of the Interior, Geol. Surv. Misc. Invest. Ser. Map I-1874, 1:125,000.
- (9) Jenny, Hans. 1941. Factors of soil formation.
- (10) Matthes, F.E. 1938. Geologic history of the Yosemite Valley. U.S. Dep. of the Interior., Geol. Surv. Prof. Pap. 160, p. 137.
- (11) Matthes, F.E. 1938. The story of the Yosemite Valley. (Includes map of Yosemite Valley)
- (12) Matthes, F.E. 1950. The incomparable valley; a geologic interpretation of the Yosemite.

- (13) Schaffer, J.P. 1986. A geologic history of Yosemite Valley. (With a topographic map of Yosemite Valley)
- (14) Simonson, R.W. 1959. Outline of a generalized theory of soil genesis. Soil Sci. Soc. of Amer. Proceed. 23:152-156.
- (15) United States Department of Agriculture, Natural Resources Conservation Service. 1998 (revised in 2005). National soil survey handbook. Title 430-VI. (Available online at http://soils.usda.gov/technical/handbook/)
- (16) United States Department of Agriculture, Natural Resources Conservation Service. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd ed. Soil Surv. Staff. U.S. Dep. Agric. Handb. 436.
- (17) United States Department of Agriculture, Natural Resources Conservation Service. 2002. PLANTS database. Ver. 3.5. National Plant Data Center. (Available online at http://plants.usda.gov)
- (18) United States Department of Agriculture, Natural Resources Conservation Service. 2003. Keys to soil taxonomy. 9th ed. Soil Surv. Staff.
- (19) United States Department of Agriculture, Natural Resources Conservation Service. 2004. Soil survey laboratory methods manual. Ver. 42. Soil Surv. Invest. Rep. 42.
- (20) United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Dep. Agric. Handb. 296.
- (21) United States Department of Agriculture, Natural Resources Conservation Service. 2006. NRCS PRISM climate map. (Available online at http://www.ncgc.nrcs.usda.gov/products/datasets/climate/docs/fact-sheet.html)
- (22) United States Department of Agriculture, Natural Resources Conservation Service. 2006. Soil characterization database. Soil Surv. Lab., Soil Surv. Staff. (Available online at http://ssldata.nrcs.usda.gov).
- (23) United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Dep. Agric. Handb. 210.
- (24) United States Department of Agriculture, Soil Conservation Service. 1993. Soil survey manual. Soil Surv. Staff. U.S. Dep. Agric. Handb. 18. (Available online at http://soils.usda.gov/technical/manual/)
- (25) Wahrhaftig, C. 1962. Geomorphology of the Yosemite Valley Region, California. Geologic guide to the Merced Canyon and Yosemite Valley, California. Calif. Div. of Mines and Geol. Bull. 182, pp. 33-46.
- (26) Wahrhaftig, C., and J.H. Birman. 1965. The quaternary of the Pacific mountain system in California. Geology: Western United States. pp. 299-339.

Soil Survey of Yosemite National Park, California

- (27) Wieczorek, G.F., J.B. Snyder, C.S. Alger, and K.A. Isaacson. 1992. Rock falls in Yosemite Valley, California. U.S. Dep. of the Interior, Geol. Surv. Open-File Rep. 92-387, p. 136.
- (28) Zinke, P.J., and E. Alexander. 1963. The soil and vegetation of the Yosemite Valley. p. 86.

Glossary

- **AASHTO classification.** A system for classifying soils specifically for geotechnical engineering purposes that is related to highway and airfield construction. It is based on particle-size distribution and Atterberg limits.
- **AASHTO group index (GI) number.** An empirical index number used to evaluate clayey and silty clay material.
- **ABC soil.** A soil having an A, a B, and a C horizon.
- **Ablation till.** A general term for loose, relatively permeable material deposited during the downwasting of nearly static glacial ice. The material is either contained within the glacier or accumulated on the surface of the glacier.
- **AC soil.** A soil having only an A and a C horizon. Commonly, such soil formed in recent alluvium or on steep, rocky slopes.
- **Aeration, soil.** The exchange of air in soil with air from the atmosphere. The air in a well aerated soil is similar to that in the atmosphere; the air in a poorly aerated soil is considerably higher in carbon dioxide and lower in oxygen.
- **Aggregate, soil.** Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.
- **Alluvial fan.** A low, outspread mass of loose material and/or rock material washed down the sides of mountains and hills. It commonly has gentle slopes and is shaped like an open fan or a segment of a cone. It is deposited by a stream at the place where the stream issues from a narrow mountain valley or where a tributary stream is near or at its junction with the main stream. An alluvial fan is steepest near its apex that points upstream, and it slopes gently and convexly outward with a gradual decrease in gradient.
- Alluvium. Material, such as sand, silt, or clay, deposited on land by streams.
- **Alpha,alpha-dipyridyl.** A dye that when dissolved in 1N ammonium acetate is used to detect the presence of reduced iron (Fe II) in the soil. A positive reaction indicates a type of redoximorphic feature.
- **Apron.** An extensive blanket-like deposit of unconsolidated material at the base of a mountain or in front of a glacier, such as a bajada or an outwash plain.
- **Aquic conditions.** Current soil wetness characterized by saturation, reduction, and redoximorphic features.
- Argillic horizon. A subsoil horizon characterized by an accumulation of illuvial clay.
 Aridic moisture regime. Soils that have an aridic moisture regime are dry for at least one-half of the year. They commonly occur in areas that have an aridic climate. A few are in areas that have a semiarid climate, but they either have physical properties that keep them dry, such as a crusty surface that virtually precludes the infiltration of water, or have steep slopes with a high rate of runoff. Little, if any, leaching occurs in the soils in this moisture regime, and soluble salts accumulate in the soils if there is a source of salts.
- **Aspect.** The direction in which a slope faces.
- **Association**, **soil**. A group of soils or miscellaneous areas geographically associated in a characteristic repeating pattern and defined and delineated as a single map unit.
- Available water capacity (AWC). Also available moisture capacity. The volume of

water that should be available to plants if the soil, inclusive of fragments, were at field capacity. It is commonly estimated as the difference between the amount of water at field capacity and the amount at wilting point with adjustments for salinity, fragments, and rooting depth. It is commonly expressed as inches of water per inch of soil. The capacity, in inches, in a 60-inch profile or to a limiting layer is expressed as:

Very low	0 to 2.5
Low	2.5 to 5.0
Moderate	5.0 to 7.5
High	7.5 to 10.0
Very high	more than 10.0

- **Avalanche.** A large mass of snow, ice, soil, or rock, or mixtures of these materials, falling, sliding, or flowing very rapidly under the force of gravity. Velocities may sometimes exceed 500 km/hr.
- **Avalanche chute.** The central, channel-like corridor, scar, or depression along which an avalanche has moved. An eroded surface marked by pits, scratches, and grooves.
- **Avalanche track.** The path formed by an avalanche. It may take the form of an open path in a forest, with bent and broken trees, or an eroded surface marked by pits, scratches, and grooves. Compare to Avalanche chute.
- AWC. See Available water capacity.
- **Backslope.** The hillslope profile position that forms the steepest and generally linear, middle portion of the slope. In profile, backslopes commonly are bounded by a convex shoulder above and a concave footslope below. They may or may not include cliff segments, or free faces. Backslopes are commonly erosional forms produced by mass movement, colluvial action, and running water.
- **Bajada.** A broad, gently inclined piedmont slope extending from the base of a mountain range out into a basin. It is formed by the lateral coalescence of a series of alluvial fans. Typically, it has a broadly undulating transverse profile parallel to the mountain front, resulting from the convexness of the component fans. The term generally refers to the constructional slopes of intermontane basins.
- **Bar** (streams). A general term for a ridge-like accumulation of sand, gravel, or other alluvial material in the channel, along the banks, or at the mouth of a stream where a decrease in velocity induces deposition. Examples are channel bars and meander bars.
- **Bar** (microfeature). A small, sinuous or arcuate, ridge-like lineation separated from others similar to it by small channels. It is caused by fluvial processes and is common on flood plains and young alluvial terraces. It is a constituent of bar and channel topography.
- Bar and channel topography. A local topography of recurring, small, sinuous or arcuate ridges separated by shallow troughs irregularly spaced across low-relief flood plains (slopes generally are 2 to 6 percent). The effect is a subdued, sinuously undulating surface that is common on active flood plains. Microelevational differences generally range from less than 1 meter to less than 2 meters. The elevational differences between the bars and channels are largely controlled by the competency of the stream. The ridge-like bars commonly consist of sediment that is coarser than the finer textured sediment of the low-lying areas.
- Basal till. Compact glacial till deposited beneath the ice.
- **Base saturation.** The degree to which material having cation-exchange properties is saturated with exchangeable bases (sum of Ca, Mg, Na, and K), expressed as a percentage of the total cation-exchange capacity.
- **Base slope.** A geomorphic component of hills consisting of the concave to linear (perpendicular to the contour) slope that, regardless of the lateral shape, forms an

- apron or wedge at the bottom of a hillside dominated by colluvium and slopewash sediments (for example, slope alluvium).
- **Basin.** The nearly level or gently sloping bottom surface of a wide structural depression between mountain ranges.
- **Basin floor.** A general term for the nearly level, lowermost part of intermontane basins, or bolsons and semibolsons. The floor includes all of the alluvial, eolian, and erosional landforms below the piedmont slope.
- **Batholith.** A large body of igneous intrusive (plutonic) rock, commonly regional in extent, such as the Sierra Nevada batholith.
- **Beach terrace.** A landform that consists of a wave-cut scarp and wave-built terrace of well sorted marine and lacustrine sand and gravel. Colloquially, in the western United States, relict shoreline from pluvial lakes, generally restricted to valley sides.
- **Bedding planes.** Fine strata, less than 5 millimeters thick, in unconsolidated alluvial, eolian, lacustrine, or marine sediment.
- **Bedrock.** A general term for the solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.
- **Bedrock-controlled topography.** A landscape where the configuration and relief of the landforms are determined or strongly influenced by the underlying bedrock.
- **Bisequum.** Two sequences of soil horizons, each of which consists of an illuvial horizon and the overlying eluvial horizons.
- **Bolson.** An internally drained (closed) intermontane basin into which drainageways from surrounding mountains converge inward toward a central depression.
- **Bottom land.** The normal flood plain of a stream, subject to flooding.
- Boulders. Rock fragments larger than 2 feet (60 centimeters) in diameter.
- **Breaks.** The steep and very steep broken land at the border of an upland summit that is dissected by ravines.
- **Bulk density.** A measurement of the ovendry weight of the soil material that is less than 2 millimeters in diameter per unit volume. Common measurements are taken at ¹/₃-, ¹/₁₀-, or 15-bar moisture tension. Bulk density influences plant growth and engineering applications. It is used to convert measurements from a weight basis to a volume basis. Within a family particle-size class, bulk density is an indicator of how well plant roots are able to extend into the soil. Bulk density is used to calculate porosity.
- **Butte.** An isolated, generally flat-topped hill or mountain with relatively steep slopes and talus or precipitous cliffs. It is characterized by a summit width that is less than the height of bounding escarpments, is commonly topped by a cap of resistant rock, and represents an erosional remnant carved from flat-lying rock.
- **Calcareous soil.** A soil containing enough calcium carbonate (commonly combined with magnesium carbonate) to effervesce visibly when treated with cold, dilute hydrochloric acid.
- **Calcic horizon.** A mineral soil horizon of secondary carbonate enrichment that is more than 15 centimeters thick, has a calcium carbonate equivalent of more than 15 percent, and has a calcium carbonate equivalent at least 5 percent higher than the underlying horizon.
- **Calcium carbonate equivalent.** The amount of calcium carbonate in a soil measured by treating the soil sample with hydrochloric acid (HCL). The evolved carbon dioxide (CO₂) is measured, and the amount of carbonate is then calculated as calcium carbonate (CaCO₃).
- California bearing ratio (CBR). The load-supporting capacity of a soil as compared to that of standard crushed limestone, expressed as a ratio. First standardized in California. A soil having a CBR of 16 supports 16 percent of the load that would be supported by standard crushed limestone, per unit area, with the same degree of distortion.

- **Cambic horizon.** A mineral soil horizon that has the texture of loamy very fine sand or finer texture, has soil structure rather than rock structure, and contains some weatherable minerals. It is characterized by the alteration or removal of mineral material as indicated by mottling or gray color, stronger chroma or redder hue than the underlying horizons, or the removal of carbonates. The cambic horizon lacks cementation or induration and does not have enough evidences of illuviation to meet the requirements for an argillic horizon.
- Canopy. The leafy crown of trees or shrubs. (See Crown.)
- **Canyon.** A long, deep, narrow, very steep-sided valley with high, precipitous walls in an area of high local relief.
- **Capillary water.** Water held as a film around soil particles and in tiny spaces between particles. Surface tension is the adhesive force that holds capillary water in the soil.
- **Catena.** A sequence of soils on a landscape that are about the same age and formed in similar kinds of parent material under similar climatic conditions but have different characteristics as a result of differences in relief and drainage.
- **Cathodic protection.** Control of the electrolytic corrosion of an underground or underwater metallic structure, such as a pipeline, by the application of an electrical current in such a way that the structure acts as the cathode rather than the anode of an electrolytic cell. (See Coatings for pipelines.)
- **Cation.** An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.
- Cation-exchange capacity (CEC). The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.
- **CEC.** See Cation-exchange capacity.
- **Cement rock.** Shaly limestone used in the manufacture of cement.
- **Channery soil material.** Soil material that has, by volume, 15 to 35 percent thin, flat fragments of sandstone, shale, slate, limestone, or schist as much as 6 inches (15 centimeters) along the longest axis. A single piece is called a channer.
- **Cinders.** Uncemented vitric, vesicular, pyroclastic material more than 2 millimeters in at least one dimension with apparent specific gravity (including vesicles) of more than 1 and less than 2.
- **Cirque.** A semicircular, concave, bowl-like area that has steep faces primarily resulting from the erosiveness of a mountain glacier.
- **Clay.** As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.
- **Clay depletions.** Low-chroma zones having a low content of iron, manganese, and clay because of the chemical reduction of iron and manganese and the removal of iron, manganese, and clay. A type of redoximorphic depletion.
- **Clay film.** A thin coating of oriented clay on the surface of a soil aggregate or lining pores or root channels. Synonyms: clay coating, clay skin.
- Clayey. Sandy clay, silty clay, and clay soil textures.
- **Claypan.** A dense, compact, slowly permeable layer in the subsoil that has a much higher content of clay than the overlying material. A claypan commonly is hard when dry and plastic or sticky when wet.
- **Cliff.** Any high, very steep to perpendicular or overhanging face of rock or earth; a precipice.
- **Climax plant community.** The stabilized plant community on a particular site. The plant cover reproduces itself and does not change so long as the environment remains the same.
- Coarse fragments. See Rock fragments.

- Coarse textured soil. Sand or loamy sand.
- **Coatings for pipelines.** Coatings used as a barrier to the flow of electricity and moisture, thereby preventing the formation of corrosion cells.
- **Cobble (or cobblestone).** A rounded or partly rounded fragment of rock 3 to 10 inches (7.6 to 25 centimeters) in diameter.
- **Cobbly soil material.** Material that has 15 to 35 percent, by volume, rounded or partially rounded rock fragments 3 to 10 inches (7.6 to 25 centimeters) in diameter. Very cobbly soil material has 35 to 60 percent of these rock fragments, and extremely cobbly soil material has more than 60 percent.
- **COLE** (coefficient of linear extensibility). See Linear extensibility percent.
- **Colluvium.** Unconsolidated, unsorted earth material transported or deposited on side slopes and/or at the base of slopes by mass movement, or direct gravitational action, and by local unconcentrated runoff.
- **Compaction.** The process by which the soil grains are rearranged to decrease void space and bring them into closer contact with one another, thereby increasing bulk density.
- Complex landslide (mass movement). A category of mass movement processes, associated sediments (complex landslide deposit), or resultant landforms characterized by a composite of several mass movement processes, none of which dominates or leaves a prevailing landform. Numerous types of complex landslides can be specified by naming the constituent processes evident (e.g., a complex earth spread-earth flow landslide). Compare to Fall, Topple, Slide, Lateral spread, Flow, and Landslide.
- **Complex slope.** Irregular or variable slope. Planning or establishing terraces, diversions, and other water-control structures on a complex slope is difficult.
- **Complex, soil.** A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
- **Concretions.** Cemented bodies with crude internal symmetry organized around a point, a line, or a plane. They typically take the form of concentric layers visible to the naked eye. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up concretions. If formed in place, concretions of iron oxide or manganese oxide are generally considered a type of redoximorphic concentration.
- Congeliturbate. See Cryoturbation.
- **Conglomerate.** A coarse-grained, clastic sedimentary rock composed of rounded or subangular rock fragments more than 2 millimeters in diameter, commonly with a matrix of sand and finer textured material. Cementing agents include silica, calcium carbonate, and iron oxide. Conglomerate is the consolidated equivalent of gravel.
- Consistence, soil. Refers to the degree of cohesion and adhesion of soil material and its resistance to deformation when ruptured. Consistence includes resistance of soil material to rupture and to penetration; plasticity, toughness, and stickiness of puddled soil material; and the manner in which the soil material behaves when subject to compression. Terms describing consistence are defined in the "Soil Survey Manual."
- **Control section.** The part of the soil on which classification is based. The thickness varies among different kinds of soil, but for many it is that part of the soil profile between depths of 10 inches and 40 or 80 inches.
- **Corrosion.** Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.
- **Crown.** The upper part of a tree or shrub, including the living branches and their foliage.
- Cryoturbation. A collective term used to describe all soil movement as a result of

- frost action, including the folding, breaking, and dislocating of beds and lenses of unconsolidated material.
- Cuesta. An asymmetric, homoclinal ridge capped by resistant rock layers of slight or moderate dip (less than 10 degrees, or 16 percent). It is produced by differential erosion of interbedded resistant and weak rocks. A long, gently sloping to sloping face (dip slope), roughly paralleling the inclined beds, opposes a relatively short, steep face (scarp) cut across the tilted rocks.
- **Debris avalanche (mass movement).** The process, associated sediments (debris avalanche deposit) or resultant landform characterized by a very rapid or extremely rapid type of flow dominated by the sudden downslope movement of incoherent, unsorted mixtures of soil and weathered bedrock which, although comparatively dry, behave much as a viscous fluid when moving. Compare to Debris flow, Rock fragment flow, Earthflow, and Landslide.
- **Debris flow (mass movement).** The process, associated sediment (debris flow deposit), or resultant landform characterized by a very rapid type of flow dominated by sudden downslope movement of a mass of rock, soil, and mud (more than 50 percent particles that are more than 2 millimeters in size) that behaves much like viscous fluid whether it is saturated or relatively dry.

Deep soil. See Depth, soil.

- **Depth, soil.** Generally, the thickness of the soil over bedrock. Very deep soils are more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep soils, 20 to 40 inches; shallow soils, 10 to 20 inches; and very shallow soils, less than 10 inches.
- **Depth to bedrock** (in tables). Bedrock is too near the surface for the specified use. **Dip slope.** A slope of the land surface, roughly determined by and approximately conforming to the dip of the underlying bedded rock (for example, the long, gently inclined surface of a cuesta).
- **Diversion (or diversion terrace).** A ridge of earth, generally a terrace, built to protect downslope areas by diverting runoff from its natural course.
- Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized—excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
- **Drainage**, **surface**. Runoff, or surface flow of water, from an area.
- **Drainageway.** A general term for a course or channel along which water moves in draining an area.
- **Draw.** A small stream channel that generally is more open and has a broader floor than a ravine or gulch.
- **Drift.** Pulverized and other rock material transported by glacial ice and then deposited. Also, the sorted and unsorted material deposited by streams flowing from glaciers.
- **Drumlin.** A low, smooth, elongated oval hill, mound, or ridge of compact glacial till that may or may not have a core of bedrock or stratified drift. The longer axis is parallel to the general direction of the glacial flow. It is the product of the streamline (laminar) flow of glaciers, which molded the subglacial floor through a combination of erosion and deposition.
- **Duff.** A generally firm organic layer on the surface of mineral soils. It consists of fallen plant material that is in the process of decomposition and includes everything from the litter on the surface to underlying pure humus.
- Duripan. A subsurface soil horizon that is cemented with illuvial silica, commonly opal

- or microcrystalline forms, to the degree that less than 50 percent of the volume of air-dry fragments will slake in water or hydrochloric acid.
- **Earthflow (mass movement).** The process, associated sediments (earthflow deposit), or resultant landforms characterized by slow to rapid types of flow dominated by downslope movement of soil, rock, and mud (more than 50 percent of the particles are less than 2 mm) and, whether saturated or comparatively dry, behaves as a viscouos fluid when moving. Compare to Debris flow (coarser, less fluid) and Mudflow (finer, more fluid).
- EC. See Electrical conductivity.
- **Ecological site.** An area where climate, soil, and relief are sufficiently uniform to produce a distinct natural plant community. An ecological site is the product of all the environmental factors responsible for its development. It is typified by an association of species that differ from those on other ecological sites in kind and/or proportion of species or in total production.
- **Electrical conductivity** (EC). The electrolytic conductivity of an extract from saturated soil paste.
- **Eluviation.** The movement of material in true solution or colloidal suspension from one place to another within the soil. Soil horizons that have lost material through eluviation are eluvial; those that have received material are illuvial.
- **End moraine.** A ridge-like accumulation that is being or was produced at the outer margin of an actively flowing glacier at any given time; a moraine that has been deposited at the outer or lower end of a valley glacier. Compare to Terminal moraine, Recessional moraine, and Ground moraine.
- **Endosaturation.** A type of saturation of the soil in which all horizons between the upper boundary of saturation and a depth of 2 meters are saturated.
- **Eolian material.** Material transported and deposited by wind, including earth material such as dune sand, sand sheets, loess, and clay.
- **Ephemeral stream.** A stream, or reach of a stream, that flows only in direct response to precipitation. It receives no long-continued supply from melting snow or other source, and its channel is above the water table at all times.
- **Episaturation.** A type of saturation indicating a perched water table in a soil in which saturated layers are underlain by one or more unsaturated layers within 2 meters of the surface.
- **Erosion.** The wearing away of the land surface by water, wind, ice, or other geologic agents and by such processes as gravitational creep.
 - *Erosion* (geologic). Erosion caused by geologic processes acting over long geologic periods and resulting in the wearing away of mountains and the building up of such landscape features as flood plains and coastal plains. Synonym: natural erosion.
 - *Erosion* (accelerated). Erosion much more rapid than geologic erosion, mainly as a result of human or animal activities or of a catastrophe in nature, such as a fire, that exposes the surface.
- **Erosion pavement.** A concentration of gravel or coarser fragments that remains on the soil surface after finer particles have been removed by running water or wind.
- **Escarpment.** A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. The term is most commonly applied to cliffs produced by differential erosion. Synonym: scarp.
- **Esker.** A long, narrow, sinuous, steep-sided ridge of irregularly stratified sand and gravel deposited by a subglacial or supraglacial stream flowing between ice walls or in an ice tunnel of a retreating glacier. Eskers are less than 1 kilometer to more than 160 kilometers long and 3 to 30 meters high.
- Extrusive. Pertaining to igneous rock and sediment derived from deep-seated molten

- matter (magma) deposited and cooled on the earth's surface, including lava flows and tephra deposits.
- Fall (mass movement). (a) A category of mass movement processes, associated sediments (fall deposit), or resultant landforms (e.g., rockfall, debris fall, soil fall) characterized by very rapid movement of a mass of rock or earth that travels mostly through the air by free fall, leaping, bounding, or rolling, with little or no interaction between one moving unit and another. Compare to Topple, Slide, Lateral spread, Flow, Complex landslide, and Landslide. (b) The mass of material moved by a fall.
- Family, soil. The most specific hierarchical category in soil taxonomy.
- **Fan (geomorphology).** A gently sloping, fan-shaped mass of detritus forming a section of a low-angle cone commonly at a place where there is a notable decrease in gradient; specifically an alluvial fan. Compare to Alluvial fan.
- **Fan piedmont.** The most extensive landform on piedmont slopes that is formed either by the lateral downslope coalescence of mountain-front alluvial fans into one generally smooth slope with or without the transverse undulations of the semiconical alluvial fans or by the accretion of fan aprons.
- Fan remnant. A general term for landforms that are the remaining parts of older fan landforms, such as alluvial fans, fan aprons, inset fans, and fan skirts, that either have been dissected (erosional fan remnants) or partially buried (nonburied fan remnants). An erosional fan remnant has a relatively flat summit that is a relict fan surface. A nonburied fan remnant is a relict surface in its entirety.
- Fan terrace. See Fan remnant.
- **Fertility, soil.** The quality that enables a soil to provide plant nutrients, in adequate amounts and in proper balance, for the growth of specified plants when light, moisture, temperature, tilth, and other growth factors are favorable.
- **Fibric soil material (peat).** The least decomposed of all organic soil material. Peat contains a large amount of well preserved fiber that is readily identifiable according to botanical origin. Peat has the lowest bulk density and the highest water content at saturation of all organic soil material.
- **Field moisture capacity.** The moisture content of a soil, expressed as a percentage of the ovendry weight, after the gravitational, or free, water has drained away; the field moisture content 2 or 3 days after a soaking rain; also called *normal field capacity*, *normal moisture capacity*, or *capillary capacity*.
- **Fill slope.** A sloping surface consisting of excavated soil material from a road cut. It commonly is on the downhill side of the road.
- Fine textured soil. Sandy clay, silty clay, or clay.
- **Firebreak.** An area cleared of flammable material to stop or help control creeping or running fires. It also serves as a line from which to work and to facilitate the movement of firefighters and equipment. Designated roads also serve as firebreaks.
- **First bottom.** The normal flood plain of a stream, subject to frequent or occasional flooding.
- **Flaggy soil material.** Material that has, by volume, 15 to 35 percent flagstones. Very flaggy soil material has 35 to 60 percent flagstones, and extremely flaggy soil material has more than 60 percent flagstones.
- **Flagstone.** A thin fragment of sandstone, limestone, slate, shale, or (rarely) schist 6 to 15 inches (15 to 38 centimeters) long.
- **Flood plain.** The nearly level plain that borders a stream and is subject to inundation under floodstage conditions unless protected artificially. It is commonly a constructional landform consisting of sediment deposited during overflow and lateral migration of a stream.
- Floor (geomorphology). (a) A general term for the nearly level, lower part of a basin

or valley; refer to basin floor and valley floor. (b) The bed of any body of water; e.g., the nearly level surface beneath the water of a stream, lake, or ocean.

Flow (mass movement). A category of mass movement processes, associated sediments (flow deposit), and landforms characterized by slow to very rapid downslope movement of unconsolidated material which, whether saturated or comparatively dry, behaves much as a viscous fluid as it moves. Types of flows can be specified based on the dominant particle size of sediments, such as debris flow (lahar), earth flow (creep, mudflow), rock fragment flow (rockfall avalanche), and debris avalanche. Compare to Fall, Topple, Slide, Lateral spread, Complex landslide, and Landslide.

Fluting. (a) Differential weathering and erosion by which an exposed well-jointed coarse-grained rock, such as granite, develops a corrugated surface of flutes. (b) The formation by glacial action of smooth gutter-like channels or furrows on the face of a rock mass obstructing glacial advance. Also grooves and ridges in till, parallel to the direction of ice movement. (c) The process of forming a flute by the scouring action of a current of water on a muddy surface.

Fluvial. Of or pertaining to rivers; produced by river action.

Foothill. A steeply sloping upland that has relief of as much as 1,000 feet (300 meters) and fringes a mountain range or high-plateau escarpment.

Footslope. The position that forms the inner, gently inclined surface at the base of a hillslope. In profile, footslopes are commonly concave. A footslope is a transition zone between upslope sites of erosion and transport (shoulders and backslopes) and downslope sites of deposition (toeslopes).

Forb. Any herbaceous plant not a grass or a sedge.

Forest cover. All trees and other woody plants (underbrush) covering the ground in a forest.

Forest type. A stand of trees similar in composition and development because of given physical and biological factors by which it may be differentiated from other stands.

Fracture. A crack, joint, fault, or other break in rocks.

Fragipan. A loamy, brittle subsurface horizon low in porosity and content of organic matter and low or moderate in clay but high in silt or very fine sand. A fragipan appears cemented and restricts roots. When dry, it is hard or very hard and has a higher bulk density than the horizon or horizons above. When moist, it tends to rupture suddenly under pressure rather than to deform slowly.

Fragments. Unattached cemented pieces of bedrock, bedrock-like material, durinodes, concretions, and nodules 2 millimeters in diameter or larger in mineral soils; woody material 20 millimeters in diameter or larger in organic soils.

Genesis, soil. The mode of origin of the soil. Refers especially to the processes or soil-forming factors responsible for the formation of the solum, or true soil, from the unconsolidated parent material.

Glacial. Of or pertaining to the presence and activity of ice and glaciers, such as glacial erosion; pertaining to distinctive features and material produced by or derived from glaciers and ice sheets, such as glacial lakes; or pertaining to an ice age or region of glaciation.

Glacial drift. See Drift.

Glacial outwash. See Outwash.

Glacial till. See Till.

Glacier. (a) A large mass of ice that formed, at least in part, on land by the compaction and recrystallization of snow, moving slowly by creep downslope or outward in all directions due to the stree of its own weight and surviving from year to year. Included are small mountain glaciers, ice sheets continental in size, and ice shelves which float on the ocean but are fed in part by ice formed on land. (b) A

- stream-like landform having the appearance of, or moving, like a glacier; e.g., a rock glacier. Compare to Rock glacier.
- **Glaciofluvial deposits.** Material moved by glaciers and subsequently sorted and deposited by streams flowing from the melting ice. The deposits are stratified and occur as outwash plains, valley trains, deltas, kames, eskers, and kame terraces.
- **Glaciolacustrine deposits.** Material ranging from fine clay to sand derived from glaciers and deposited in glacial lakes mainly by glacial meltwater. Many deposits are interbedded or laminated with varves or rhythmites.
- **Gleyed soil.** Soil that formed under poor drainage, resulting in the reduction of iron and other elements in the profile and in gray colors.
- **Granitic.** A textural term commonly pertaining to an igneous intrusive rock of felsic to intermediate composition. Referring to granite-like rock, but not necessarily true granite. Commonly applied to granite, quartz monzonite, granodiorite, and diorite.
- **Granite.** A felsic igneous intrusive rock containing quartz and orthoclase with smaller amounts of sodic plagioclase and commonly muscovite.
- **Granitoid.** In the IUGS classification, a preliminary field use term for a plutonic rock with 20 to 40 percent quartz. A general term for all phaneritic igneous rocks (mineral crystals visible unaided and all about the same size) dominated by quartz and feldspars.
- **Granodiorite.** An igneous intrusive rock that is intermediate between felsic and mafic in composition and contains quartz and somewhat more plagioclase than orthoclase.
- **Gravel.** Rounded or angular fragments of rock as much as 3 inches (2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.
- **Gravelly soil material.** Material that has 15 to 35 percent, by volume, rounded or angular rock fragments, not prominently flattened, as much as 3 inches (7.6 centimeters) in diameter.
- **Green manure crop** (agronomy). A soil-improving crop grown to be plowed under in an early stage of maturity or soon after maturity.
- **Ground moraine.** (a) Commonly an extensive, low relief area of till having an uneven or undulating surface and commonly bounded on the distal end by a recessional or end moraine. (b) A layer of poorly sorted rock and mineral debris (till) dragged along, in, on, or beneath a glacier and deposited by processes including basal lodgement and release from downwasting stagnant ice by ablation. Compare to End moraine, Recessional moraine, and Terminal moraine.
- **Ground water.** Water filling all the unblocked pores of the material below the water table.
- **Gully.** A small channel with steep sides cut by the concentrated, but intermittent, flow of water commonly during and immediately following heavy rainfall or following icemelt or snowmelt. A gully generally is an obstacle to wheeled vehicles and is too deep to be obliterated by ordinary tillage; a rill is of lesser depth and can be smoothed over by ordinary tillage.
- **Gypsum content.** The percent, by weight, of hydrated calcium sulfates in the fraction of the soil less than 20 millimeters in size.
- Halophytic. Pertaining to vegetation that is adapted to salty soils.
- **Hard bedrock.** Bedrock that cannot be excavated except by blasting or by the use of special equipment that is not commonly used in construction.
- **Hardpan.** A hardened or cemented soil horizon, or layer. The soil material is sandy, loamy, or clayey and is cemented by iron oxide, silica, calcium carbonate, or other substance.
- **Hemic soil material (mucky peat).** Organic soil material intermediate in degree of decomposition between the less decomposed fibric material and the more decomposed sapric material.
- Hill. A generic term for an area of the land surface that rises as much as 1,000 feet

(300 meters) above surrounding lowlands, commonly has restricted summit area relative to surrounding surfaces, and has a well defined outline; hillsides generally have slopes of more than 15 percent. The distinction between a hill and a mountain is arbitrary and commonly is dependent on local usage.

Holocene. The epoch of the Quaternary period of geologic time that extends from the end of the Pleistocene (about 10 to 12 thousand years ago) to the present.

Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the "Soil Survey Manual." The major horizons of mineral soil are as follows:

O horizon.—An organic layer of fresh and decaying plant residue.

A horizon.—The mineral horizon at or near the surface in which an accumulation of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon.

E horizon.—The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.

B horizon.—The mineral horizon below an A horizon. The B horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these.

C horizon.—The mineral horizon or layer, excluding indurated bedrock, that is little affected by soil-forming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2, precedes the letter C.

Cr horizon.—Soft, consolidated bedrock beneath the soil.

R layer.—Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an A or a B horizon.

Hummock. Rounded or conical mound or other small rise.

Humus. The well decomposed, more or less stable part of the organic matter in mineral soils.

Hydrologic soil groups. Refers to soils grouped according to their runoff potential. The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.

Igneous rock. Rock formed by solidification from a molten or partially molten state. Major varieties include plutonic and volcanic rock. Examples are andesite, basalt, and granite.

Illuviation. The movement of soil material from one horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.

Impervious soil. A soil through which water, air, or roots penetrate slowly or not at all. No soil is absolutely impervious to air and water all the time.

Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.

Infiltration capacity. The maximum rate at which water can infiltrate into a soil under a given set of conditions.

- **Infiltration rate.** The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.
- **Inset fan.** Specific name for the flood plain of an ephemeral stream that is confined between fan remnants, ballenas, basin floor remnants, or closely opposed fan toeslopes of a basin.
- Intake rate. The average rate of water entering the soil under irrigation. Most soils have a fast initial rate; the rate decreases with application time. Therefore, intake rate for design purposes is not a constant but is a variable depending on the net irrigation application. The rate of water intake, in inches per hour, is expressed as follows:

Less than 0.2	very low
0.2 to 0.4	low
0.4 to 0.75	moderately low
0.75 to 1.25	moderate
1.25 to 1.75	moderately high
1.75 to 2.5	high
More than 2.5	very high

- Intermittent stream. A stream, or reach of a stream, that does not flow year-round (commonly is dry for 3 months or more annually) and that has a channel that is generally below the local water table. It flows only when it receives baseflow during wet periods or when it receives ground-water discharge or long, continued contributions from melting snow or other surface and shallow subsurface sources.
- **Intrusive.** Pertaining to igneous rock derived from molten matter (magma) that invaded pre-existing rock and cooled below the surface of the earth.
- **Iron depletions.** Low-chroma zones having a low content of iron and manganese oxide because of chemical reduction and removal, but having a clay content similar to that of the adjacent matrix. A type of redoximorphic depletion.
- **Joint (geology).** A surface of actual or potential fracture or parting in a rock, without displacement; the surface is typically planar and commonly occurs with parallel joints to form part of a joint set.
- **K factor.** A measurement of potential soil erodibility caused by detachment of soil particles by water.
- **Kame.** A low mound, knob, hummock, or short irregular ridge of stratified sand and gravel deposited by a subglacial stream as a fan or delta at the margin of a melting glacier, by a supraglacial stream in a low place or hole on the surface of a glacier, or by a ponded area, some of which is at the margin of stagnant ice.
- **Karst** (topography). The relief of an area formed by the dissolution of limestone, gypsum, or other soluble rock and characterized by sinkholes and caves and underground drainage.
- **Kettle.** A steep-sided, bowl-shaped depression commonly without surface drainage (closed depression) in drift deposits, commonly containing a lake or swamp, and formed by the melting of a large, detached block of stagnant ice that had been wholly or partly buried in the drift. Kettles range in depth from one to tens of meters and has a diameter of as much as 13 km. Compare to Pothole.
- **Knoll.** A small, low, rounded hill rising above adjacent landforms.
- Lacustrine deposit. Clastic sediment and chemical precipitates deposited in lakes.
- **Landscape (soils).** An assemblage, group, or family of spatially related, natural landforms over a relatively large area; the land surface which the eye can comprehend in a single view.
- **Landslide (mass movement).** A general, encompassing term for most types of mass movement landforms and processes involving the downslope transport and

- outward deposition of soil and rock materials caused by gravitational forces and which may or may not involve saturated materials. Names of landslide types generally reflect the dominant process and/or the resultant landform. The main operational categories of mass movement are fall (rockfall, soil fall, topple), slide (rotational landslide, block glide, debris slide, lateral spread), flow (rock fragment flow, (especially rockfall avalanche), debris avalanche, debris flow (lahar), earthflow (creep, mudflow), and complex landslides. Compare to solifluction.
- **Lateral moraine.** A ridge-like moraine carried on and deposited at the side margin of a valley glacier. It is composed chiefly of rock fragments derived from valley walls by glacial abrasion and plucking or colluvial accumulation from adjacent slopes.
- **Leaching.** The removal of soluble material from soil or other material by percolating water.
- **Ledge.** (a) A narrow shelf or projection of rock, much longer than wide, formed on a rock wall or cliff face, as along a coast by differential wave action on softer rocks; erosion is by combined biological and chemical weathering. (b) A rocky outcrop; solid rock. (c) A shelf-like quarry exposure or natural rock outcrop. Compare to Structural bench.
- **LEP.** See Linear extensibility percent.
- **Limestone.** A sedimentary rock consisting mainly of calcium carbonate (more than 50 percent) dominantly in the form of calcite. Limestone is commonly formed by a combination of organic and inorganic processes and includes chemical and clastic (soluble and insoluble) constituents. Fossils are common in limestone.
- **Linear extensibility percent** (LEP). The linear expression of the volume difference between the water content of the natural soil fabric at ¹/₃-bar or ¹/₁₀-bar and oven dryness. The volume change is reported as a percent for the whole soil.
- **Liquid limit** (LL). The moisture content at which the soil passes from a plastic to a liquid state.
- **LL.** See Liquid limit.
- **Loam.** Soil material that is 7 to 27 percent clay particles, 28 to 50 percent silt particles, and less than 52 percent sand particles.
- **Loamy.** Coarse sandy loam, sandy loam, fine sandy loam, very fine sandy loam, loam, silt loam, silt, clay loam, sandy clay loam, and silty clay loam soil textures.
- **Loess.** Material transported and deposited by wind that consists dominantly of silt-sized clastics.
- **Low strength.** The soil is not strong enough to support loads.
- **Magma.** Molten rock material that originates deep in the earth and solidifies to form igneous rock.
- **Marl.** An earthy, unconsolidated deposit consisting mainly of calcium carbonate mixed with clay in approximately equal amounts (35 to 65 percent of each). It is formed primarily under freshwater lacustrine conditions, but some is associated with a more saline environment.
- **Masses.** Concentrations of substances in the soil matrix that do not have a clearly defined boundary with the surrounding soil material and cannot be removed as a discrete unit. Common compounds making up masses are calcium carbonate, gypsum or other soluble salts, iron oxide, and manganese oxide. Masses consisting of iron oxide or manganese oxide generally are considered a type of redoximorphic concentration.
- **Mechanical treatment.** Use of mechanical equipment for seeding, brush management, and other management practices.
- **Medial moraine.** (a) An elongate moraine carried in or upon the middle of a glacier and parallel to its sides, usually formed by the merging of adjacent and inner lateral moraines below the junction of two coalescing valley glaciers. (b) A moraine formed by glacial abrasion of a rocky protuberance near the middle of a glacier

- and whose debris appears at the glacier surface in the ablation area. (c) The irregular ridge left behind in the middle of a glacial valley when the glacier on which it was formed has disappeared.
- Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.
- **Mesa.** A broad, nearly flat-topped and commonly isolated land mass that is bounded by steep slopes or precipitous cliffs and has a nearly horizontal summit that consists of layers of resistant rock and is wider than the height of bounding escarpments. Also used to designate broad structural benches and alluvial terraces at intermediate levels in stepped sequences of platforms bordering canyons and valleys.
- **Metamorphic rock.** Rock of any origin altered in mineralogical composition, chemical composition, or structure by heat, pressure, and movement in the earth's crust. Nearly all such rocks are crystalline. Examples are schist, gneiss, quartzite, slate, and marble.
- **Metasediment.** A sediment or sedimentary rock that shows evidence of having been subjected to metamorphism.
- **Metavolcanic.** A volcanic rock that shows evidence of metamorphism but has not been fully metamorphosed into metamorphic rock.
- **Mineral soil.** Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.
- **Miscellaneous area.** An area that has little or no natural soil and supports little or no vegetation.
- **Moderately coarse textured soil.** Coarse sandy loam, sandy loam, or fine sandy loam.
- Moderately deep soil. See Depth, soil.
- Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.
- **Mollic epipedon.** A thick, dark, humus-rich surface horizon (or horizons) that has high base saturation and pedogenic soil structure. It may include the upper part of the subsoil.
- **Moraine** (material). A mound, ridge, or other distinct accumulation of unsorted, unstratified glacial drift, dominantly till, primarily from glacial ice.
- **Moraine** (landform). A general term for a landform composed mainly of till deposited by either an active or extinct glacier. Some types are disintegration, end, lateral, recessional, and terminal.
- **Morphology, soil.** The physical makeup of the soil, including the texture, structure, porosity, consistence, color, and other physical, mineral, and biological properties of the various horizons, and the thickness and arrangement of those horizons in the soil profile.
- Mottling, soil. Irregular spots of different colors that vary in number and size.

 Descriptive terms are as follows: abundance—few, common, and many; size—fine, medium, and coarse; and contrast—faint, distinct, and prominent. The size measurements are of the diameter along the greatest dimension. Fine indicates less than 5 millimeters (about 0.2 inch); medium, from 5 to 15 millimeters (about 0.2 to 0.6 inch); and coarse, more than 15 millimeters (about 0.6 inch).
- **Mound.** (a) A low, rounded natural hill of unspecified origin, generally less than 3 meters high and composed of earthy material. (b) A small, human-made hill composed either of debris accumulated during successive occupations of the site (e.g., tell) or of earth heaped up to mark a burial site (e.g., burial mound). (c) A structure built by colonial organisms (e.g., termite mound).
- **Mountain.** A natural elevation of the land surface that rises more than 1,000 feet (300 meters) above surrounding lowlands, commonly has limited summit area relative to surrounding surfaces, and generally has steep sides (slopes of more than 25 percent) with or without considerable bare-rock surface. A mountain can occur as

- a single, isolated mass or in a group forming a chain or range. Mountains are formed primarily by tectonic and/or volcanic activity and by differential erosion.
- **Mountain crest.** The highest point on a mountain, or the highest line along a ridge or range.
- **Mountainflank.** A geomorphic component of mountains consisting of the side area of mountains, characterized by very long, complex backslopes with comparatively high slope gradients and composed of highly diverse, colluvial sediment mantles, complex near-surface hydrology, mass movement processes and features (e.g., creep, landslides). Rock outcrops or structural benches may be present. The mountainflank can be subdivided by the general location along the mountainside (ie., upper third, middle third, or lower third mountainflank).
- **Mountain slope.** A part of a mountain between the summit and the foot. Compare to Mountainflank.
- Mountain valley. (a) Any small, externally drained V-shaped depression (in cross-section) cut or deepened by a stream and floored with alluvium or a broader, U-shaped depression modified by an alpine glacier and floored with either till or alluvium that occurs on a mountain or within mountains. Several types of mountain valleys can be recognized on their form and valley floor sediments (i.e., V-shaped valley, U-shaped valley). Compare to Valley. (b) Colloquially Basin and Range. A relatively small, structural depression within a mountain range that is partly filled with alluvium and commonly drains externally to an intermontane basin, bolson, or semi-bolson. Compare to Valley flat.
- **Muck.** Unconsolidated soil material consisting primarily of highly decomposed organic material in which the original plants are not recognizable. It generally contains more mineral material and is darker in color than peat. (See Sapric soil material.)
- **Mudstone.** A blocky or massive, fine-grained sedimentary rock indurated by clay and silt in approximately equal amounts. Also, a general term for clay, silt, claystone, siltstone, shale, and argillite that is used only when the amounts of clay and silt are not known or cannot be precisely determined.
- **Munsell notation.** A designation of color by degrees of three simple variables—hue, value, and chroma. For example, a notation of 10YR 6/4 is a color with hue of 10YR, value of 6, and chroma of 4.
- **Natric horizon.** A special kind of argillic horizon that contains enough exchangeable sodium to have an adverse effect on the physical condition of the subsoil.
- **Neutral soil.** A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)
- **Nivation.** The process of excavation of a shallow depression or nivation hollow on a mountain side by removal of fine material around the edge of a shrinking snow patch or snow bank, chiefly through sheetwash, rivulet flow, and solution in meltwater. Freeze-thaw action is apparently insignificant.
- **Nodules.** Cemented bodies lacking visible internal structure. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up nodules. If formed in place, nodules of iron oxide or manganese oxide are considered types of redoximorphic concentrations.
- **Nose slope.** A geomorphic component of hills consisting of the projecting end (laterally convex area) of a hillside. The overland waterflow is predominantly divergent.
- **Nutrient, plant.** Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.
- OM. See Organic matter.
- **Organic matter** (OM). Plant and animal residue in the soil in various stages of decomposition. The content of organic matter in the surface layer is described as follows:

Soil Survey of Yosemite National Park, California

Very low	less than 0.5 percent
Low	0.5 to 1.0 percent
Moderately low	1.0 to 2.0 percent
Moderate	2.0 to 4.0 percent
High	4.0 to 8.0 percent
Very high	more than 8.0 percent

Outwash. Gravel, sand, and silt, commonly stratified, deposited by glacial meltwater.

Outwash plain. An extensive lowland area of coarse textured glaciofluvial material. An outwash plain commonly is smooth; where pitted as a result of the meltout of incorporated ice masses, it generally has low relief.

Paleosol. A soil that formed in a particular area with distinctive morphological features resulting from a soil-forming environment that no longer exists in the area. The pedogenic process was either altered as a result of external environmental changes or interrupted by burial. A Paleosol (or component horizon) is classified as relict if it has persisted without major alteration of morphology by the prevailing pedogenic environment. An exhumed Paleosol is one that was buried and has been re-exposed by erosion of the mantle. Most Paleosols have been affected by some subsequent modification of the morphology of diagnostic horizons and truncation of the profile.

Pan. A compact, dense layer in a soil that impedes the movement of water and the growth of roots. For example, *hardpan*, *fragipan*, *claypan*, and *traffic pan*.

Parent material. The unconsolidated and chemically weathered mineral and organic material in which the solum of a soil is formed as a result of pedogenic processes.

Peat. Unconsolidated soil material consisting largely of undecomposed or slightly decomposed organic matter that has accumulated under excessive moisture conditions. (See Fibric soil material.)

Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.
Pediment. A gently sloping erosional surface at the foot of a receding hill or mountain slope. The surface may be essentially bare, exposing earth material that extends beneath adjacent uplands, or it may have a thin mantle of alluvium and colluvium, ultimately in transit from the upland front to the basin or valley lowland. On hill footslope terrain, the mantle is designated "pedisediment." The term pediment is used in several geomorphic contexts: (1) landscape positions, for example, intermontane basin piedmont or valley border footslope surfaces, or respectively, apron and terrace pediments; (2) type of material eroded, either bedrock or regolith; or (3) a combination of these.

Pedisediment. A layer of sediment eroded from the shoulder and backslope of an erosional slope that is being transported or was transported across a pediment.

Pedon. The smallest volume that can be called "a soil." A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet (1 square meter to 10 square meters), depending on the variability of the soil.

Perched water table. The upper surface of unconfined ground water separated from an underlying main body of ground water by an unsaturated zone.

Percolation. The downward movement of water through the soil.

Permafrost. Soil or rock that has remained at or below 0 degrees C for at least 2 years. It is defined on the basis of temperature and is not necessarily frozen.

Permeability. The quality of the soil that enables water or air to move downward through the profile. The rate at which a saturated soil transmits water is accepted as a measure of this quality. In soil physics, the rate is referred to as "saturated hydraulic conductivity," which is defined in the "Soil Survey Manual." In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as

"permeability." Terms describing permeability, measured in inches per hour, are as follows:

Extremely slow	0.0 to 0.01 inch
Very slow	0.01 to 0.06 inch
Slow	0.06 to 0.2 inch
Moderately slow	0.2 to 0.6 inch
Moderate	0.6 inch to 2.0 inches
Moderately rapid	2.0 to 6.0 inches
Rapid	6.0 to 20 inches
Very rapid	more than 20 inches

Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.

pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.) **PI.** See Plasticity index.

Piedmont (as adjective). Lying or formed at the base of a mountain or mountain range; for example, a piedmont terrace or a piedmont pediment.

Piedmont (as noun). An area, plain, slope, glacier, or other feature at the base of a mountain; for example, a foothill or bajada. In the United States, the Piedmont is a low plateau that extends from New Jersey to Alabama and lies east of the Appalachian Mountains.

Plasticity index (PI). The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.

Plastic limit. The moisture content at which a soil changes from semisolid to plastic.

Plateau. A comparatively flat area of great extent and elevation. Specifically, an extensive land region considerably elevated (more than 100 meters) above adjacent lower-lying terrain that is commonly limited on at least one side by an abrupt descent and has a flat or nearly level surface. A relatively large part of a plateau surface is near summit level.

Pleistocene. The epoch of the Quaternary period of geologic time following the Pliocene and preceding the Holocene (approximately 2 million to 10 thousand years ago). Also refers to the corresponding (time-stratigraphic) "series" of earth material.

Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration.

Poorly graded. Refers to a coarse-grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.

Potential native plant community. See Climax plant community.

Potential rooting depth (effective rooting depth). Depth to which roots could penetrate if the content of moisture in the soil were adequate. The soil has no properties restricting the penetration of roots to this depth.

Pothole (glacial geology). A type of small pit or closed depression (1 to 15 meters deep), generally circular or elliptical, occurring in an outwash plain, a recessional moraine, or a till plain.

Prescribed burning. Deliberately burning an area for specific management purposes, under the appropriate conditions of weather and soil moisture and at the proper time of day.

Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.

Profile, **soil**. A vertical section of the soil extending through all its horizons and into the parent material.

Pyroclastic. Pertaining to fragmental material produced by commonly explosive aerial

- ejection of clastic particles from a volcanic vent. Such material may accumulate on land or under water.
- **Reaction, soil.** A measure of acidity or alkalinity of a soil, expressed in pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is neither acid nor alkaline. The degrees of acidity or alkalinity, expressed as pH values, are:

Ultra acid	less than 3.5
Extremely acid	3.5 to 4.4
Very strongly acid	4.5 to 5.0
Strongly acid	5.1 to 5.5
Moderately acid	5.6 to 6.0
Slightly acid	6.1 to 6.5
Neutral	6.6 to 7.3
Slightly alkaline	7.4 to 7.8
Moderately alkaline	7.9 to 8.4
Strongly alkaline	8.5 to 9.0
Very strongly alkaline	9.1 and higher

- **Recessional moraine.** An end or lateral moraine, built during a temporary but significant halt in the final retreat of a glacier. Also, a moraine built during a minor readvance of the ice front during a period of general recession. Compare to End moraine, Ground moraine, and Terminal moraine.
- **Redoximorphic concentrations.** Nodules, concretions, soft masses, pore linings, and other features resulting from the accumulation of iron or manganese oxide. An indication of chemical reduction and oxidation resulting from saturation.
- **Redoximorphic depletions.** Low-chroma zones from which iron and manganese oxide or a combination of iron and manganese oxide and clay has been removed. These zones are indications of the chemical reduction of iron resulting from saturation.
- **Redoximorphic features.** Redoximorphic concentrations, redoximorphic depletions, reduced matrices, a positive reaction to alpha, alpha-dipyridyl, and other features indicating the chemical reduction and oxidation of iron and manganese compounds resulting from saturation.
- **Reduced matrix.** A soil matrix that has low chroma in situ because of chemically reduced iron (Fe II). The chemical reduction results from nearly continuous wetness. The matrix undergoes a change in hue or chroma within 30 minutes after exposure to air as the iron is oxidized (Fe III). A type of redoximorphic feature.
- **Regolith.** All unconsolidated earth material above the solid bedrock. It includes material weathered in place from all kinds of bedrock and alluvial, glacial, eolian, lacustrine, and pyroclastic deposits. Soil scientists regard as soil only that part of the regolith that has been modified by organisms and soil-forming processes. Most engineers describe the entire regolith, even to a great depth, as "soil."
- **Relief.** The elevations or inequalities of a land surface, considered collectively. **Remnant.** The remaining part of a larger landform or land surface that has been dissected or partially buried.
- **Residuum (residual soil material).** Unconsolidated, weathered or partly weathered mineral material that accumulated as consolidated rock disintegrated in place.
- **Rhyolite.** Extrusive igneous rock, generally porphyritic and exhibiting flow texture, with phenocrysts of quartz and alkali feldspar in a glassy cryptocrystalline ground mass. The extrusive equivalent of granite.
- **Ridge.** A long, narrow elevation of the land surface, typically sharp crested with steep sides and forming an extended upland between valleys. The term is used in areas of both hill and mountain relief.
- Rill. A small steep-sided channel resulting from erosion. It is cut by a concentrated,

but intermittent, flow of water, usually during and immediately following moderate rains or following icemelt or snowmelt. Generally, a rill is not an obstacle to wheeled vehicles and is shallow enough to be obliterated by ordinary tillage.

Riser (geomorphology). A geomorphic component of terraces, flood-plain steps, and other stepped landforms consisting of the vertical or steep side slope (e.g., escarpment) typically of minimal aerial extent. Commonly a recurring part of a series of natural, step-like landforms such as successive stream terraces. Its characteristic shape and alluvial sediment composition are derived from the cut and fill processes of a fluvial system. Compare to Tread.

River valley. An elongate depression of the earth's surface; carved by a river during the course of its development.

Riverwash. Barren alluvial areas of unstabilized sand, silt, clay, or gravel reworked frequently by stream activity.

Road cut. A sloping surface produced by mechanical means during road construction. It is commonly on the uphill side of the road.

Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, pebbles, cobbles, stones, and boulders.

Rock outcrop. Exposures of bedrock, excluding lava and rock-lined pits.

Rock glacier. A mass of poorly sorted angular boulders and fine material, with interstitial ice a meter or so below the surface (ice-cemented) or containing a buried ice glacier (ice-cored). It occurs in a permafrost area and is derived from a cirque wall or other steep cliff. Rock glaciers have the general appearance and slow movement of small valley glaciers, ranging from a few hundred meters to several kilometers in length, and having a distal area marked by a series of transverse, arcuate ridges.

Root zone. The part of the soil that can be penetrated by plant roots.

Rubble. An accumulation of loose angular rock fragments, commonly overlying outcropping rock; the unconsolidated equivalent of a breccia. Compare to Scree and Talus.

Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface runoff. Water that enters the soil before reaching surface streams is called groundwater runoff or seepage flow from ground water.

SAR. See Sodium adsorption ratio.

Saline soil. A soil containing soluble salts in an amount that impairs growth of plants. A saline soil does not contain excess exchangeable sodium. Salinity is expressed as the electrical conductivity of a saturation extract at 25 degrees C. Salinity classes, expressed in millimhos per centimeter, are as follows:

Nonsaline	0 to 2
Very slightly saline	2 to 4
Slightly saline	4 to 8
Moderately saline	8 to 16
Strongly saline more	e than 16

Saline-sodic soil. A soil that contains sufficient exchangeable sodium to interfere with the growth of most crops and appreciable quantities of soluble salts. The exchangeable sodium ratio is greater than 0.15; the conductivity of the soil solution, when saturated, is greater than 4 decisiemens per meter (at 25 degrees C); and the pH is commonly 8.5 or less when the soil is saturated.

Sand. As a soil separate, individual rock or mineral fragments ranging from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.

Sandstone. Sedimentary rock containing dominantly sand-sized particles.

- Sandy. Sand and loamy sand soil textures.
- **Sapric soil material (muck).** The most highly decomposed of all organic soil material. Muck has the least amount of plant fiber, the highest bulk density, and the lowest water content at saturation of all organic soil material.
- **Saprolite.** Soft, friable, isovolumetrically weathered bedrock that retains the fabric and structure of the parent rock and exhibits extensive intercrystal and intracrystal weathering. In pedology, saprolite has been used to refer to any unconsolidated residual material that underlies the soil and grades to hard bedrock below.
- SAR. See Sodium adsorption ratio.
- **Saturation.** Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.
- **Scarification.** The act of abrading, scratching, loosening, crushing, or modifying the surface to increase water absorption or to provide a more tillable soil.
- **Scree.** A collective term for an accumulation of coarse rock debris or a sheet of coarse debris mantling a slope. Scree is not a synonym of talus because it includes loose, coarse fragment material on slopes without cliffs. Compare to Talus, Colluvium, and Mass movement.
- **Second bottom.** The first terrace above the normal flood plain (or first bottom) of a river.
- Sedimentary rock. A consolidated deposit of clastic particles, chemical precipitates, or organic matter accumulated at or near the surface of the earth under "normal" low temperature and pressure conditions. Sedimentary rock includes the consolidated equivalents of alluvial, colluvial, drift, eolian, lacustrine, and marine deposits. Examples are sandstone, siltstone, mudstone, claystone, shale, conglomerate, limestone, dolomite, and coal.
- **Sequum.** A sequence consisting of an illuvial horizon and the overlying eluvial horizon. (See Eluviation.)
- **Series, soil.** A group of soils that have profiles that are almost alike, except for differences in texture of the surface layer. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.
- **Shale.** Sedimentary rock that formed as a result of the induration of a clay, silty clay, or silty clay loam deposit and has the tendency to split into thin layers (fissility).
- Shallow soil. See Depth, soil.
- **Sheet erosion.** The removal of a fairly uniform layer of soil material from the land surface by the action of rainfall and surface runoff.
- **Shoulder.** The position that forms the uppermost inclined surface near the top of a hillslope. It is a transition from backslope to summit. The surface is dominantly convex in profile and erosional in origin.
- **Side slope.** A geomorphic component of hills consisting of a laterally planar area of a hillside. The overland waterflow is predominantly parallel.
- **Silica.** A combination of silicon and oxygen. The mineral form is called guartz.
- **Silt.** As a soil separate, individual mineral particles that range in diameter from the upper limit of clay (0.002 millimeter) to the lower limit of very fine sand (0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.
- **Siltstone.** Sedimentary rock made up of dominantly silt-sized particles.
- **Similar soils.** Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or management requirements for the major land uses in the survey area.
- Slide (mass movement). (a) A category of mass movement processes, associated sediments (slide deposit), or resultant landforms (rotational slide, translational slide, and snowslide) characterized by a failure of earth, snow, or rock under shear stress along one or several surfaces that are either visible or may reasonably be

inferred. The moving mass may or may not be greatly deformed, and movement may be rotational (rotational slide) or planar (translational slide). A slide can result from lateral erosion, lateral pressure, the weight of overlying material, accumulation of moisture, earthquakes, expansion owing to the freezing and thawing of water in cracks, regional tilting, undermining, fire, and human agencies. Compare to Fall, Topple, Lateral spread, Flow, and Complex landslide. (b) The track of bare rock or furrowed earth left by a slide. (c) The mass of material moved in or deposited by a slide. Compare to Fall, Flow, Complex landslide, and Landslide.

Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100. Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance. In this survey, classes for simple slopes are as follows:

Level	0 percent
Nearly level	0 to 2 percent
Gently sloping	2 to 5 percent
Moderately sloping	5 to 9 percent
Strongly sloping	9 to 15 percent
Moderately steep	15 to 30 percent
Steep	30 to 50 percent
Very steep	50 percent and higher

Classes for complex slopes are as follows:

Level	0 percent
Nearly level	0 to 2 percent
Undulating	2 to 5 percent
Gently rolling	5 to 9 percent
Rolling	9 to 15 percent
Hilly	15 to 30 percent
Steep	30 to 50 percent
Very steep	50 percent and higher

- **Sloughed till.** Water-saturated till that has flowed slowly downhill from its original place of deposit by glacial ice. It may rest on other till, on glacial outwash, or on a glaciolacustrine deposit.
- **Slump block.** A mass of material torn away as a coherent unit during a landslide; a largely intact but displaced and commonly reoriented body of rock or soil.
- **Sodic (alkali) soil.** A soil having so high a degree of alkalinity (pH 8.5 or higher) or so high a percentage of exchangeable sodium (15 percent or more of the total exchangeable bases), or both, that plant growth is restricted.
- **Sodicity.** The degree to which a soil is affected by exchangeable sodium. Sodicity is expressed as a sodium adsorption ratio (SAR) of a saturation extract, or the ratio of Na⁺ to Ca⁺⁺ + Mg⁺⁺. The degrees of sodicity and their respective ratios are:

Nonsodic	0-5:1
Very slightly sodic	5-13:1
Slightly sodic	13-30:1
Moderately sodic	30-45:1
Strongly sodic	45-90:1
Very strongly sodic	more than 90:1

Sodium adsorption ratio (SAR). A measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of one-half of the Ca + Mg concentration.

- **Soft bedrock.** Bedrock that can be excavated with trenching machines, backhoes, small rippers, and other equipment commonly used in construction.
- **Soil.** A natural, three-dimensional body at the earth's surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief over periods of time.
- **Soil erodibility factors.** The Kw and Kf factors quantify the susceptibility of soil to detachment by water. These erodibility factors predict the long-term average soil loss that results from sheet and rill erosion when various cropping systems and conservation techniques are used. The whole soil is considered in the Kw factor, but only the fine-earth fraction, which is the material less than 2 millimeters in diameter, is considered in the Kf factor.
- **Soil separates.** Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and sizes, in millimeters, of separates recognized in the United States are as follows:

Very coarse sand	2.0 to 1.0
Coarse sand	1.0 to 0.5
Medium sand	0.5 to 0.25
Fine sand	0.25 to 0.10
Very fine sand	0.10 to 0.05
Silt	0.05 to 0.002
Clay	less than 0.002

- **Solum.** The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the A, E, and B horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.
- **Spur (geomorphology).** A subordinate ridge or lesser elevation that projects sharply from the crest or side of a hill, mountain, or other prominent range of hills or mountains.
- Stone line. A sheet-like lag concentration of coarse fragments in surficial sediment. In cross section, the line may be marked only by scattered fragments or it may be a discrete layer of fragments. The fragments are more commonly pebbles or cobbles than stones. A stone line generally overlies material that was subject to weathering, soil formation, and erosion before deposition of the overlying material. Many stone lines appear to be buried erosion pavement originally formed by running water on the land surface and concurrently covered by surficial sediment.
- **Stones.** Rock fragments 10 to 24 inches (25 to 60 centimeters) in diameter if rounded or 15 to 24 inches (38 to 60 centimeters) in length if flat.
- **Stony.** Refers to a soil containing stones in numbers that interfere with or prevent tillage.
- **Stratified.** Referring to geologic deposits that were formed, arranged, or laid down in layers. Layers in soils that are a result of the processes of soil formation are called horizons; those inherited from the parent material are called strata.
- **Stream terrace.** One of a series of platforms in a stream valley that flanks and is more or less parallel to the stream channel, originally formed near the level of the stream, and represents the dissected remnants of an abandoned flood plain, streambed, or valley floor produced during an earlier period of erosion or deposition.
- **Structural bench.** A platform-like, nearly level or gently inclined erosional surface developed on resistant strata in areas where valleys are cut in alternating strong and weak layers with an essentially horizontal attitude. Structural benches are bedrock controlled and, in contrast to stream terraces, have no geomorphic

- implication of former, partial erosion cycles and base-level controls, nor do they represent a stage of flood plain development following an episode of valley trenching. Compare to Pediment and Ledge.
- Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are—platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grain (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).

Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth. **Substratum.** The part of the soil below the solum.

Subsurface layer. Any surface soil horizon (A, E, AB, or EB) below the surface layer. **Summit.** The topographically highest position of a hillslope. It has a nearly level (planar or only slightly convex) surface.

- **Surface layer.** The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches (10 to 25 centimeters). Frequently designated as the "plow layer," or the "Ap horizon."
- **Surface soil.** The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.
- T factor. The soil loss tolerance, which is defined as the maximum amount of erosion at which the quality of a soil as a medium for plant growth can be maintained. Maintaining the quality of the soil includes maintaining the surface soil as a seedbed for plants, maintaining the atmosphere-soil interface to allow the entry of air and water into the soil and still protect the underlying soil from wind and water erosion, and maintaining the total soil volume as a reservoir for water and plant nutrients, which is preserved by minimizing soil loss.
- **Talus.** Rock fragments of any size or shape (commonly coarse and angular) at the base of a cliff or very steep rock slope; the accumulated mass of such loose, broken rock formed mainly by falling, rolling, or sliding.
- **Temperature regime, soil.** A system that categorizes for taxonomic purposes general, long-term soil temperature conditions at the standard depth of 20 inches or at the surface of the bedrock, whichever is at a shallower depth. The various regimes are defined according to the freezing point of water or to the high and low extremes for significant biological activity. The regimes, which are defined in "Keys to Soil Taxonomy," are as follows:

Pergellic.—Soils that have a mean annual temperature of less than 32 degrees F and have permafrost.

Cryic.—Soils that have a mean annual temperature of 32 to 47 degrees F and remain cold in summer.

Frigid.—Soils that have a mean annual temperature similar to that of the cryic regime but have a mean summer temperature at least 9 degrees warmer.

Mesic.—Soils that have a mean annual temperature of 47 to 59 degrees F. The difference between the mean summer and mean winter temperature is more than 9 degrees.

Thermic.—Soils that have a mean annual temperature of 59 to 72 degrees F. The difference between the mean summer and mean winter temperature is more than 9 degrees.

Hyperthermic.—Soils that have a mean annual temperature of more than 72 degrees F. The difference between the mean summer and mean winter temperature is more than 9 degrees.

Terminal moraine. An end moraine that marks the farthest advance of a glacier and commonly has the form of a massive arcuate or concentric ridge, or complex of ridges, underlain by till and other types of drift.

Terrace. An embankment, or ridge, constructed across sloping soils on the contour or

- at a slight angle to the contour. The terrace intercepts surface runoff so that water soaks into the soil or flows slowly to a prepared outlet. A terrace in a field generally is built so that the field can be farmed. A terrace intended mainly for drainage has a deep channel that is maintained in permanent sod.
- **Terrace** (geomorphologic). A step-like surface bordering a valley floor or shoreline that represents the former position of a flood plain, lake, or seashore. The term is commonly applied to both the relatively flat summit surface (tread) that has been cut or builtup by stream or wave action and the steeper descending slope (scarp or riser) that grades to a lower base level of erosion. Practically, terraces are considered to be generally flat alluvial areas above the 100-year flood stage.
- **Terrace** (geologic). An old alluvial plain, ordinarily flat or undulating, bordering a river, a lake, or the sea.
- **Texture, soil.** The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine."
- Thermic temperature regime. See Temperature regime, soil.
- **Till.** Unsorted, nonstratified glacial drift consisting of clay, silt, sand, and boulders transported and deposited by glacial ice.
- **Till plain.** An extensive area of nearly level to undulating soils underlain by glacial till. **Tilth, soil.** The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.
- **Toeslope.** The outermost inclined surface at the base of a hill; part of a footslope.
- **Topsoil.** The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.
- Torric moisture regime. See Aridic moisture regime.
- **Trace elements.** Chemical elements, for example, zinc, cobalt, manganese, copper, and iron, in soils in extremely small amounts. They are essential to plant growth.
- **Tread (geomorphology).** A geomorphic component of terraces, flood-plain steps, and other stepped landforms consisting of the flat to gently sloping, topmost and laterally extensive slope. Commonly a recurring part of a series of natural, step-like landforms such as successive stream terraces. Its characteristic shape and alluvial sediment composition are derived from the cut and fill processes of a fluvial system. Compare to Riser.
- **Tuff.** A generic term for any consolidated or cemented deposit that is 50 percent volcanic ash (less than 2 millimeters in size). Various types of tuff can be recognized by their composition; acidic tuff is dominantly acidic particles and basic tuff is dominantly basic particles.
- **Unified soil classification.** A system for classifying mineral and organic soils for engineering purposes based on particle-size characteristics, liquid limit, and plasticity index.
- **Upland (geomorphologic).** A general term for the higher land of a region in contrast to the low-lying, adjacent land, such as a valley or plain; land at a higher elevation than the flood plain or low stream terrace; or land above the footslope zone of the hillslope continuum.
- **Valley fill.** The unconsolidated sediment deposited by any agent (water, wind, ice, or mass wasting) that fills or partly fills a valley.
- **Variegation.** Refers to patterns of contrasting colors assumed to be inherited from the parent material rather than to be the result of poor drainage.
- **Varve.** A sedimentary layer or a lamina or sequence of laminae deposited in a body of still water within a year. Specifically, a thin pair of graded glaciolacustrine layers

seasonally deposited, usually by meltwater streams, in a glacial lake or other body of still water in front of a glacier.

Vegetative cover. The crown cover of all live plants in relation to the ground surface. **Vernal pool.** A shallow surficial depression that is temporarily filled with water during periods of rain in winter and spring and is desiccated during the dry summer months. It occurs as a small poorly drained depression perched above an impermeable or very slowly permeable soil horizon or bedrock.

Very deep soil. See Depth, soil.

Very shallow soil. See Depth, soil.

Volcanic (as adjective). Pertaining to (a) the deep seated (igneous) processes by which magma and associated gases rise through the crust and are extruded onto the earth's surface and into the atmosphere, and (b) the structure, rocks, and landforms produced. Compare to Extrusive.

Water bars. Smooth, shallow ditches or depressional areas that are excavated at an angle across a sloping road. They are used to reduce the downward velocity of water and divert it off and away from the road surface. Water bars can easily be driven over if constructed properly.

Water table. The upper surface of ground water or the level below which the soil is saturated by water. Also, the top of an aquifer.

Weathering. All physical and chemical changes produced in rocks or other deposits at or near the earth's surface by atmospheric agents. These changes result in disintegration and decomposition of the material.

WEG. See Wind erodibility group.

Well graded. Refers to soil material consisting of coarse-grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily increased in density and bearing properties by compaction. Contrasts with poorly graded soil.

Wilting point (or permanent wilting point). The moisture content of soil, on an ovendry basis, at which a plant (specifically a sunflower) wilts so much that it does not recover when placed in a humid, dark chamber.

Wind erodibility group (WEG). A grouping of soils that have similar properties affecting their resistance to wind erosion in cultivated areas.

Windthrow. The uprooting and tipping over of trees by the wind.

Xeric moisture regime. The typical moisture regime in areas of Mediterranean climates, where it is moist and cool in winter and warm and dry in summer. When potential evapotranspiration is at a minimum, the moisture, which falls in winter, is particularly effective in leaching. The mean annual soil temperature is less than 22 degrees C, and the difference between the mean summer and mean winter soil temperature is 6 degrees.

Xerophytic. Pertaining to vegetation that is adapted to dry areas.

Tables

Table 1A.—Temperature and Precipitation

(Recorded in the period 1961-1990 at Yosemite National Park Headquarters, California)

		Temperature						Precipitation				
				·	rs in l have	Average	 Average 	2 years in 10 will have		 Average		
Month	daily	Average daily minimum			1	degree days*		Less	 More than	number of days with 0.10 inch or more	Average snow- fall 	
	°F	°F	°F	° _F	°F	Units	In	In	In		In	
January	 48.9	26.2	 37.5	 65	 12	 38	 6.16	 1.71	 9.74	 6	 11.7	
February-	55.0	28.5	41.8	74	15	102	6.17	1.52	9.85	6	12.0	
March	58.7	30.9	44.8	79	19	181	5.23	1.72	8.11	8	12.3	
April	65.4	35.4	50.4	84	22	323	2.95	0.93	4.59	5	6.5	
May	73.8	41.8	57.8	90 	29 	550	1.18	0.52	1.91	2	0.1	
June	81.9	48.3	65.1	97	34	749 	0.74	0.27	1.37	1	0.0	
July	90.0	53.5	71.8 	101 	42	975 	0.41	0.15 	1.00	0	0.0	
August	90.1	52.7 	71.4 	102 	40	967 	0.32	0.09 	0.71 	1 	0.0	
September	84.5	47.0 	65.7 	99 	34 	758 	0.96 	0.19 	1.62 	2	0.0	
October	73.8	39.0 	56.4 	93 	26 	509 	2.18	0.41	3.84	3 	0.0	
November-	57.8 	30.9	44.4 	80 	20	159 	5.51 	1.86 	8.52	6 	2.6	
December-	48.1	26.4	37.2	62	11 	33	5.65	1.75	9.17	6	9.9 	
Yearly: Average	 69.0	 38.4	 53.7	 	 	 	 	 	 	 	 	
Extreme	109	-1	 	103	8	 	 	 		 	 	
Total				 		5,344	37.46	25.67	46.00	46	55.0	

^{*} A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2, and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 1B.—Temperature and Precipitation (Recorded in the period 1961-1990 at Cherry Valley Dam, California)

		Temperature						Precipitation				
	 			·	rs in l have	Average	j j	2 years in 10 will have		 Average		
Month	daily	Average daily minimum			1	degree days*		Less	 More than 	number of days with 0.10 inch or more	Average snow- fall 	
	° _F	° _F	° _F	° _F	° _F	Units	In	In	In		In	
January	 46.9	27.7	 38.7	 70	 5 	 70	 7.94	2.25	12.54	 6	23.0	
February-	52.0	28.3	40.1	70	11	 83 	7.22	1.94	11.44	 6	20.6	
March	53.4	29.3	41.4	72	12	112	6.61	2.65	9.94	 8 	27.1	
April	60.0	33.7	46.8	81	18	234	3.86	1.50	5.85	6	14.2	
May	68.6	41.0	54.8	88	25	448	1.37	0.41	2.33	2	1.6	
June	78.2	48.5	63.4	95	32	684	0.66	0.24	1.20	1	0.1	
July	86.7	54.7	70.7	99	43	932	0.11	0.02	0.39	0	0.0	
August	86.1	54.4	70.3	99	43	928	0.33	0.07	0.85	0	0.0	
September	78.9	48.8	63.8	94	34	677	1.02	0.20	2.08	1	0.0	
October	69.0	41.3	55.2	88	26	457	2.47	0.68	4.21] 	0.3	
November-	55.7	33.2	44.4	76	16 	162	7.07	2.31	10.98	6 	8.1	
December-	49.2	28.3	38.7	65	j 9 	79 	7.19	2.42	11.58	6 	20.8	
Yearly: Average	 65.6	39.1	 52.4	 	 	 	 	 	 	 	 	
Extreme	105	-3	 	100	 5		 	 	 	 		
Total	 		 	 	 	4,866	45.86	29.14	58.10	45	115.7	

^{*} A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2, and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 2A.-Freeze Dates in Spring and Fall

(Recorded in the period 1961-1990 at Yosemite National Park
Headquarters, California)

	 Temperature							
Probability	24 or 1	o _F	 28 or lo	o _F	32 ^O F			
Last freezing temperature in spring:								
1 year in 10 later than	Apr.	21	 May	6	May	28		
2 years in 10 later than	Apr.	10	Apr.	28	May	21		
5 years in 10 later than	Mar.	22	Apr.	11	May	7		
First freezing temperature in fall:			 					
1 year in 10 earlier than	 Oct.	30	Oct.	17	 Sept.	24		
2 years in 10 earlier than	Nov.	7	Oct.	24	Oct.	2		
5 years in 10 earlier than-	Nov.	23	Nov.	5	 Oct.	19		

Table 2B.-Freeze Dates in Spring and Fall (Recorded in the period 1961-1990 at Cherry Valley Dam, California)

	 		Tempe	rature		
Probability		o _F		o _F	32 ^O F	
Last freezing temperature in spring:						
1 year in 10 later than	 May	3	 May	20	 June	6
2 years in 10 later than	 Apr.	25	 May	12	 May	30
5 years in 10 later than	 Apr.	10	 Apr.	28	 May	18
First freezing temperature in fall:	 		 		 	
1 year in 10 earlier than	 Oct.	27	 Oct.	15	 Sept.	28
2 years in 10 earlier than	Nov.	5	 Oct.	23	 Oct.	5
5 years in 10 earlier than-	Nov.	23	 Nov.	6	 Oct. 	19

Table 3A.—Growing Season

(Recorded in the period 1961-1990 at Yosemite National Park Headquarters, California)

	Daily minimum temperature during growing season						
Probability							
	Higher	Higher	Higher				
	than	than	than				
	24 °F	28 °F	32 ^O F				
	Days	Days	Days				
9 years in 10	201	176	132				
8 years in 10	216	187	144				
5 years in 10	246	208	167				
2 years in 10	275	 229	190				
l year in 10	290	239	201				

Table 3B.—Growing Season

(Recorded in the period 1961-1990 at Cherry Valley Dam, California)

Daily minimum temperature during growing season						
Probability 	Higher than 24 ^O F	Higher than 28 ^O F	Higher than 32 ^O F			
	Days	Days	Days			
9 years in 10	186	163	129			
8 years in 10	200	173	138			
5 years in 10	228	192	156			
2 years in 10	255	211	173			
1 year in 10	270	221	182			

Table 4.—Acreage and Proportionate Extent of the Soils

Map symbol	Soil name	Acres	Percent
101	Oxyaquic Xerofluvents-Riverwash-Fluvaquents association, 0 to 2 percent		
101t	slopes, mesic Lithnip-Rock outcrop-Fishsnooze complex, 30 to 75 percent slopes,	65	*
	mountains, cryic	303	*
102 102t	Oxyaquic Xerofluvents-Riverwash complex, 1 to 4 percent slopes, mesic Lithnip-Rock outcrop-Fishsnooze complex, 8 to 30 percent slopes, mountains, cryic	15 163	*
104	Aquandic Humaquepts, 0 to 2 percent slopes, mesic	74	*
L11t	Whittell-Jobsis-Rock outcrop complex, 30 to 75 percent slopes, mountains,	360	*
151	Elcapitan fine sandy loam, 0 to 2 percent slopes, mesic	274	*
152	Vitrandic Haploxerolls, sandy, 0 to 3 percent slopes, mesic	4	*
201	Leidig fine sandy loam, 0 to 2 percent slopes, occasionally flooded,	267	*
210	Rubble land-Typic Cryorthents-Rock outcrop-Xeric Dystrocryepts complex,		i
211	30 to 80 percent slopes, mountainflanks, metamorphic, mafic, cryic	13,553	1.8
213	40 percent slopes, aprons, lateral moraines, cryic	1,587	0.2
214	45 percent slopes, medial moraines, cryic Marmotland-Oxyaquic Dystrocryepts-Xeric Dystrocryepts complex, 0 to 15	6,143	0.8
215	percent slopes, mountain valley floors, cryic	4,596	0.6
219	slopes, metamorphic, glacially scoured mountain slopes, cryic	1,535	0.2
221	cirqued mountainflanks, cryic	34,176	4.5
222	cryic	981	0.1
223	slopes, mountainflanks, colluvial aprons, cryic	10,030	1.3
224	mountain slopes, cryic	5,840	0.8
225	slopes, joints, fractures, scoured, cryic	62,321	8.2
227	2 to 30 percent slopes, glacially scoured mountain valleys, cryic	19,118	2.5
228	Xeric Dystrocryepts-Vitrandic Eutrocryepts complex, 0 to 15 percent slopes, wet/dry meadows, cryic	11,559 5,118	0.7
229	Marmotland-Oxyaquic Dystrocryepts association, 0 to 8 percent slopes, mountain valleys, ground moraines, fluted, cryic	1,846	0.7
231	Canisrocks-Typic Cryaquents complex, 5 to 30 percent slopes, lateral moraines, aprons, wet/dry, cryic	460	*
232	Canisrocks-Glacierpoint complex, 0 to 25 percent slopes, lateral moraines, cryic	11,311	1.5
234	Rock outcrop-Rubble land association, 0 to 80 percent slopes, metamorphic, cirques, mountainflanks, cryic	9,039	1.2
235	Canisrocks-Rock outcrop-Rubble land complex, 30 to 80 percent slopes, mountainflanks, cryic	31,553	4.1
237	Canisrocks-Glacierpoint-Vitrandic Cryorthents complex, bouldery, 5 to 20 percent slopes, ground moraines, cryic	6,704	0.9
238	Oxyaquic Cryorthents-Canisrocks complex, 0 to 15 percent slopes, ground moraines, wet/dry, cryic	1,755	0.2
239	Crazymule-Canisrocks complex, 0 to 20 percent slopes, ground moraines,		
	cryic	6,215	0.8
241 242	Canisrocks, 5 to 35 percent slopes, mountain valleys, cryic Rock outcrop-Canisrocks-Xeric Dystrocryepts complex, 0 to 35 percent	3,311	0.4
	slopes, mountain slopes, cryic	38,187	5.0

See footnote at end of table.

Table 4.-Acreage and Proportionate Extent of the Soils-Continued

Map symbol	Soil name	Acres	Percent
244	Typic Cryorthents-Rubble land-Rock outcrop complex, 15 to 40 percent slopes, moraines, cryic	1,272	0.2
245	Rock outcrop-Canisrocks-Xeric Dystrocryepts association, 0 to 35 percent slopes, mountain valleys, scoured, filled, cryic	9.953	1.3
246	Rock outcrop, domes, cryic	1,713	0.2
247	Canisrocks-Xeric Dystrocryepts association, 5 to 30 percent slopes, mountain valleys, moraines, cryic	16,712	2.2
248	Canisrocks-Rock outcrop-Glacierpoint complex, 30 to 70 percent slopes, mountain slopes, cryic	27,386	3.6
249	Rock outcrop-Canisrocks complex, 30 to 70 percent slopes, mountain	43,070	5.7
250	Canisrocks-Xeric Dystrocryepts association, 5 to 40 percent slopes, mountain valleys, moraines, avalanches, cryic	1,013	0.1
251	Glacierpoint-Typic Cryorthents complex, 30 to 65 percent slopes, mountain slopes, lateral moraines, aprons, cryic	11,525	1.5
252	Rock outcrop-Canisrocks-Xeric Dystrocryepts complex, 5 to 45 percent slopes, moraines, mountain slopes, cryic	32,810	4.3
253	Canisrocks-Glacierpoint-Humic Dystrocryepts complex, 15 to 55 percent slopes, lateral moraines, cryic	16,133	2.1
256	Craneflat-Rock outcrop-Rubble land-Waterwheel association, 30 to 80 percent slopes, mountainflanks, frigid	14,940	2.0
257	Badgerpass-Oxyaquic Dystroxerepts association, 0 to 15 percent slopes, mountain valley floors, frigid	1,127	0.1
258	Typic Dystroxerepts-Badgerpass-Dystric Xerorthents complex, 15 to 45 percent slopes, mountain slopes, moraines, frigid	11,044	1.5
260	Rock outcrop-Craneflat-Dystric Xerorthents complex, 30 to 65 percent slopes, mountain slopes, frigid	6,909	0.9
261	Dystric Xeropsamments-Typic Dystroxerepts-Badgerpass-Rock outcrop association, 5 to 35 percent slopes, mountain valleys, mountain slopes,	0,303	
262	frigid	7,218	0.9
264	70 percent slopes, mountain slopes, frigid	5,177	0.7
267	moraines, wet/dry meadows, cryic	2,639	0.3
268	percent slopes, mountain slopes, joints, cryic Rock outcrop-Canisrocks-Glacierpoint complex, 30 to 80 percent slopes,	29,722	3.9
269	mountain slopes, joints, cryic	28,419	3.7
270	mountain slopes, moraines, joints, cryic	14,457	1.9
271	percent slopes, metamorphic, mountain slopes, cryic	1,786	0.2
273	slopes, cliffs, ledges, frigid	1,049	0.1
	frigid	3,547	0.5
274	Rock outcrop, domes, frigid	878	0.1
275	Oxyaquic Dystroxerepts-Dystric Xerorthents-Vitrandic Xerorthents-Rubble land complex, stony, 0 to 20 percent slopes, mountain valleys, mesic	2,378	0.3
276	Happyisles-Typic Dystroxerepts association, 0 to 15 percent slopes, mountain valley floors, mesic	672	*
277	Tuolumne-Humic Dystroxerepts complex, 15 to 65 percent slopes, aprons, mesic	1,312	0.2
278	Rock outcrop-Tuolumne-Humic Dystroxerepts-Rubble land complex, 30 to 100 percent slopes, mountainflanks, mesic	9,580	1.3
279	Canisrocks-Xeric Dystrocryepts complex, 15 to 45 percent slopes, mountain slopes, moraines, cryic	15,413	2.0
280	Typic Dystroxerepts-Humic Dystroxerepts-Rock outcrop association, 15 to 45 percent slopes, mountain slopes, frigid	6,778	0.9
282	Clarkslodge-Craneflat-Nevadafalls complex, 0 to 30 percent slopes, mountain slopes, hummocky, frigid	1,747	0.2

See footnote at end of table.

Table .-Acreage and Proportionate Extent of the Soils-Continued

Map symbol	Soil name	Acres	Percent
283			
285	mountain slopes, landslides, frigid	1,665	0.2
286	slopes, frigid Nevadafalls-Typic Dystroxerepts-Ultic Palexeralfs-Rock outcrop complex, 0	14,709	1.9
287	to 30 percent slopes, mountain slopes, landslides, moraines, frigid Badgerpass-Waterwheel association, 0 to 15 percent slopes, ridge crests,	1,054	0.1
288	frigid Rock outcrop-Craneflat-Waterwheel association, 0 to 30 percent slopes,	693	*
289	mountain slopes, frigid	13,363	1.8
290	frigid	4,982	0.7
291	complex, 30 to 70 percent slopes, mountain slopes, mesic	3,614	0.5
292	mountain footslopes, frigid	2,813	0.4
293	mountain footslopes, landslides, mesic	8,335	1.1
294	slopes, mountain slopes, summits, cryic	3,274	0.4
295	landslides, mountain slopes, frigid	4,023	0.5
296	landslides, mountain slopes, frigid	5,946	0.8
297	mountain slopes, mesic	4,541	0.6
298	percent slopes, mountain slopes, mesic	2,518	0.3
299	slopes, landslides, mesic	2,798	0.4
300	mountain slopes, moraines, mesic Typic Dystroxerepts-Ultic Haploxeralfs complex, 0 to 15 percent slopes,	2,506	0.3
301	mountain slopes, moraines, mesic	1,494	0.2
	Vitrandic Haploxerolls, coarse-loamy, 0 to 2 percent slopes, somewhat poorly drained, mesic	18	* *
302	Typic Haploxerults-Ultic Haploxeralfs complex, 0 to 30 percent slopes, mountain slopes, hummocky, mesic	1,406	0.2
303	Rock outcrop-Dystric Xeropsamments-Humic Dystroxerepts-Tuolumne complex, 30 to 65 percent slopes, mountain slopes, mesic	6,210	0.8
304	Clarkslodge-Rock outcrop complex, 0 to 30 percent slopes, mountain slopes, metavolcanic, frigid/mesic	701	*
305	Rock outcrop-Waterwheel-Dystric Xeropsamments association, 0 to 35 percent slopes, mountain valleys, scoured, valley fill, frigid	1,376	0.2
306	Typic Cryopsamments-Humic Dystrocryepts complex, 0 to 20 percent slopes, mountain toeslopes, moraines, cryic	1,704	0.2
307	Rock outcrop-Dystric Xeropsamments-Dystric Xerorthents association, 0 to 35 percent slopes, mountain valleys, scoured, valley fill, mesic	2,026	0.3
309	Rock outcrop-Waterwheel-Typic Dystroxerepts association, 30 to 80 percent slopes, mountain slopes, joints, frigid	6,203	0.8
310	Rock outcrop-Humic Dystroxerepts-Humic Lithic Haploxerepts association, 30 to 100 percent slopes, mountain slopes, mesic	5,507	0.7
311	Rock outcrop-Humic Dystroxerepts-Humic Lithic Haploxerepts association, 0 to 30 percent slopes, joints, mountain slopes, mesic	3,884	0.5
313	Nevadafalls-Oxyaquic Dystrudepts complex, 5 to 30 percent slopes, mountain valleys, moraines, frigid	3,432	0.5
314	Badgerpass-Dystric Xeropsamments-Rock outcrop complex, 5 to 45 percent slopes, mountain slopes, moraines, frigid	5,722	0.8
315	Nevadafalls-Dystric Xeropsamments complex, 15 to 45 percent slopes, lateral moraines, frigid	4,014	0.5

See footnote at end of table.

Table .-Acreage and Proportionate Extent of the Soils-Continued

Map symbol	Soil name	Acres	Percent
316	Dystric Xerorthents-Rock outcrop-Rubble land complex, 30 to 80 percent		
	slopes, mountainflanks, thermic	1,857	0.2
318	Typic Dystroxerepts-Humic Dystroxerepts complex, 0 to 20 percent slopes,	_,	
	ridge crests, frigid/mesic	1,967	0.3
319	Humic Dystroxerepts-Typic Haploxerults-Inceptic Haploxeralfs complex, 30	_,,,,	
	to 65 percent slopes, mountain slopes, metamorphic, frigid	1,544	0.2
320	Half Dome-Humic Dystroxerepts-Rock outcrop complex, 30 to 60 percent	_,	
	slopes, mountain slopes, moraines, mesic	2,362	0.3
321	Dystric Xeropsamments-Dystric Xerorthents association, 0 to 20 percent	-,	
	slopes, mountain valleys, thermic	239	*
322	Typic Xerorthents, 45 to 100 percent slopes, mountain slopes, thermic	292	*
323	Ultic Haploxeralfs-Humic Dystroxerepts complex, bouldery, 10 to 35	232	
323	percent slopes, mountain footslopes, thermic	190	*
324	Humic Haploxerepts-Rock outcrop-Ultic Haploxeralfs association, 45 to 100	250	
J21	percent slopes, metasedimentary, mountain slopes, thermic	387	*
325	Urban land, 0 to 45 percent slopes	46	*
328	Clarkslodge-Ultic Palexeralfs complex, metasedimentary, 15 to 45 percent	40	"
320	slopes, mountain slopes, landslides, frigid	4,378	0.6
401	Sentinel loam, 0 to 2 percent slopes, mesic	64	*
412	Water-Riverwash complex, 0 to 1 percent slopes, mesic	146	· *
501	Happyisles complex, 1 to 5 percent slopes, mesic	745	,
502	Happyisles sandy loam, 0 to 3 percent slopes, mesic	745	- "
502	mesic	33	+
504	Mollic Xerofluvents, 1 to 5 percent slopes, frequently flooded, mesic	97	1 -
504 510t	Rubble land-Lithnip-Rock outcrop association, 8 to 30 percent slopes,	31	
2105	mountains, cryic	4	*
C C 1		4	*
551 552	Happyisles-Half Dome complex, 5 to 15 percent slopes, mesic	325	
	Mollic Xerofluvents, 5 to 15 percent slopes, frequently flooded, mesic	64	*
590	Terric Haplosaprists, 0 to 3 percent slopes, mesic	5	
601	Half Dome complex, 25 to 60 percent slopes, mesic	1,208	0.2
602	Half Dome extremely stony sandy loam, 10 to 25 percent slopes, mesic	425	*
610	Rubble land-Half Dome complex, 25 to 60 percent slopes, mesic	490	
620	Half Dome complex, warm, 25 to 60 percent slopes, mesic	606	*
630	Rubble land-Half Dome complex, warm, 25 to 60 percent slopes, mesic	679	*
701	Vitrandic Haploxerolls, coarse-loamy, 4 to 30 percent slopes, well		
	drained, mesic	40	*
702	Vitrandic Dystroxerepts, 4 to 30 percent slopes, mesic	19	*
900	Rock outcrop, mesic	540	*
DAM	Dam	7	*
M	Water	5,204	0.7
	Total	761,236	100.0

^{*} Less than 0.1 percent.

Table 5.-Land Capability Classification

(Land capability is a system of grouping soils primarily on the basis of their capability to produce common cultivated crops and pasture plants without deteriorating over a long period of time. The land capability is given for nonirrigated areas)

Map symbol and soil name	Land capability
101: Oxyaquic Xerofluvents	 4w
Riverwash	 4w
Fluvaquents	 6w
101t: Lithnip	 8
Rock outcrop.	
Fishsnooze	 6s
102: Oxyaquic Xerofluvents	 4w
Riverwash	 4w
102t: Lithnip	 8
Rock outcrop	 8
Fishsnooze	 6s
104: Aquandic Humaquepts	 6w
111t: Whittell	 7e
Jobsis	 7s
Rock outcrop	 8
151: Elcapitan	 3w
152: Vitrandic Haploxerolls	 3s
201: Leidig	 6w
210: Rubble land	 8
Typic Cryorthents	7e
Rock outcrop	 8
Xeric Dystrocryepts	 7e

Table 5.-Land Capability Classification-Continued

Xeric Dystrocryepts 6e Canisrocks 7e Oxyaquic Dystrocryepts 6e 213: 6s Glacierpoint 6e Vitrandic Dystrocryepts 6e 214: 6e Marmotland 6e Oxyaquic Dystrocryepts 6e 315: 6e Typic Cryorthents 6e Rock outcrop 8 Rubble land 8 Canisrocks 6e Xeric Dystrocryepts 6e Xeric Dystrocryepts 6e Canisrocks 6e Xeric Dystrocryepts 6e Xeric Dystrocryepts 6e Xeric Dystrocryepts 6e Canisrocks 7e Rubble land 8 Rock outcrop 8 Rubble land 8 Crazymule 7e 223: Rock outcrop 8 Rubble land 8 Canisrocks 6e	Map symbol and soil name	Land capability
Canisrocks 7e Oxyaquic Dystrocryepts 6e 213: 6s Canisrocks 6s Glacierpoint 6e Vitrandic Dystrocryepts 6e 214: 6e Marmotland 6e Oxyaquic Dystrocryepts 6e 215: 7ypic Cryorthents 6e Rock outcrop 8 Rubble land 8 219: 8 Rubble land 8 Canisrocks 6e 221: 7ypic Cryorthents 6e 222: 8 Canisrocks 7e Rubble land 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 223: 8 Rubble land 8	211:	
Oxyaquic Dystrocryepts 6e 213: 6s Glacierpoint 6e Vitrandic Dystrocryepts 6e 214: 6e Marmotland 6e Oxyaquic Dystrocryepts 6e 215: 7ypic Cryorthents 6e Rock outcrop 8 Rubble land 8 219: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e Oxyaquic Dystrocryepts 6e Oxyaquic Dystrocryepts 6e Oxyaquic Dystrocryepts 6e Canisrocks 7e Rubble land 8 Rock outcrop 8 Crazymule 7e 223: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 224: 8 Canisrocks 6e	Xeric Dystrocryepts	6e
Canisrocks 68 Glacierpoint 66 Vitrandic Dystrocryepts 66 214: Marmotland 66 Oxyaquic Dystrocryepts 66 215: Typic Cryorthents 66 Rock outcrop 8 Rubble land 8 219: Rock outcrop 8 Rubble land 66 Canisrocks 66 Canisrocks 66 Canisrocks 66 Canisrocks 76 Rubble land 8 Rock outcrop 8 Rock outcrop 8 Rock outcrop 8 Crazymule 76 Crazymule 76 Crazymule 76 Crazymule 76 Crazymule 76 Canisrocks 66	Canisrocks	7e
Canisrocks	Oxyaquic Dystrocryepts	 6e
Vitrandic Dystrocryepts 6e 214: Marmotland 6e Oxyaquic Dystrocryepts 6w Xeric Dystrocryepts 6e 215: Typic Cryorthents 6e Rock outcrop 8 Rubble land 8 219: 8 Rubble land 8 Canisrocks 6e 221: Typic Cryorthents 6e Xeric Dystrocryepts 6e Oxyaquic Dystrocryepts 6w 222: 7e Canisrocks 7e Rubble land 8 Rock outcrop 8 Rubble land 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 223: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e	213: Canisrocks	 6s
214: Marmotland 6e Oxyaquic Dystrocryepts 6w Xeric Dystrocryepts 6e 215: Typic Cryorthents 6e Rock outcrop 8 Rubble land 8 2219: 8 Rubble land 8 Canisrocks 6e Xeric Dystrocryepts 6e Oxyaquic Dystrocryepts 6w 222: 7e Rubble land 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 224: 8 Rubble land 8 Canisrocks 6e	Glacierpoint	 6e
Marmotland 6e Oxyaquic Dystrocryepts 6w Xeric Dystrocryepts 6e 215: Typic Cryorthents 6e Rock outcrop 8 Rubble land 8 219: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 221: Typic Cryorthents 6e Xeric Dystrocryepts 6e Oxyaquic Dystrocryepts 6w 222: Canisrocks 7e Rubble land 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 223: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e	Vitrandic Dystrocryepts	6e
Xeric Dystrocryepts 6e 215: Typic Cryorthents 6e Rock outcrop 8 Rubble land 8 219: 8 Rubble land 8 Canisrocks 6e 221: Typic Cryorthents 6e Xeric Dystrocryepts 6e Oxyaquic Dystrocryepts 6w 222: Canisrocks 7e Rubble land 8 Rock outcrop 8 Rubble land 8 Rubble land 8 Rubble land 8 Canisrocks 6e 224: 8 Rock outcrop 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e	214: Marmotland	 6e
Typic Cryorthents	Oxyaquic Dystrocryepts	 6w
Typic Cryorthents	Xeric Dystrocryepts	 6e
Typic Cryorthents 6e Rock outcrop 8 Rubble land 8 Rubble land 8 Rubble land 8 Canisrocks 6e 221: Typic Cryorthents 6e Xeric Dystrocryepts 6e Oxyaquic Dystrocryepts 6w 222: 7e Rubble land 8 Rock outcrop 8 Crazymule 7e 223: Rock outcrop 8 Rubble land 8 Canisrocks 6e 224: 8 Rock outcrop 8 Rock outcrop 8 Rock outcrop 8	215:	
Rubble land 8 219: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 221: 6e Xeric Dystrocryepts 6e Oxyaquic Dystrocryepts 6w 222: 7e Rubble land 8 Rock outcrop 8 Crazymule 7e 223: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 224: 8 Rock outcrop 8	Typic Cryorthents	6e
219: 8 Rubble land 8 Canisrocks 6e 221: 6e Typic Cryorthents 6e Oxyaquic Dystrocryepts 6w Canisrocks 7e Rubble land 8 Rock outcrop 8 Crazymule 7e 223: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 224: 8 Rock outcrop 8	Rock outcrop	8
Rock outcrop	Rubble land	 8
Canisrocks	219: Rock outcrop	 8
221: Typic Cryorthents 6e Xeric Dystrocryepts 6e 0xyaquic Dystrocryepts 6w 222: 7e Rubble land 8 Rock outcrop 8 Crazymule 7e 223: Rock outcrop Rubble land 8 Canisrocks 6e 224: Rock outcrop Rock outcrop 8	Rubble land	 8
Typic Cryorthents 6e Xeric Dystrocryepts 6e Oxyaquic Dystrocryepts 6w 222: 7e Rubble land 8 Rock outcrop 8 Crazymule 7e 223: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 224: 8 Rock outcrop 8	Canisrocks	 6e
Xeric Dystrocryepts 6e Oxyaquic Dystrocryepts 6w 222: 7e Rubble land 8 Rock outcrop 8 Crazymule 7e 223: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 224: 8 Rock outcrop 8	221:	
Oxyaquic Dystrocryepts	Typic Cryorthents	6e
222: 7e Rubble land	Xeric Dystrocryepts	6e
Canisrocks 7e Rubble land 8 Rock outcrop 8 Crazymule 7e 223: Rock outcrop Rubble land 8 Canisrocks 6e 224: Rock outcrop Rock outcrop 8	Oxyaquic Dystrocryepts	6 w
Rock outcrop 8 Crazymule 7e 223: 8 Rock outcrop 8 Rubble land 8 Canisrocks 6e 224: 8 Rock outcrop 8	222: Canisrocks	 7e
Crazymule	Rubble land	 8
223: Rock outcrop	Rock outcrop	8
Rock outcrop	Crazymule	 7e
Canisrocks 6e 224: Rock outcrop 8	223: Rock outcrop	 8
224: Rock outcrop 8	Rubble land	 8
Rock outcrop 8	Canisrocks	 6e
	224:	 8
CLa2ymu1e 66		
Vitrandic Cryorthents 7e		

Table 5.-Land Capability Classification-Continued

225: 6e Rock outcrop 8 Rubble land 8 Vitrandic Dystrocryepts 6e 227: 6e Canisrocks 6e Crazymule 6e 228: 6e Xeric Dystrocryepts 6e Vitrandic Eutrocryepts 6e 229: Marmotland 6e 0xyaquic Dystrocryepts 6w 231: 6s Typic Cryaquents 6e 232: 6e Canisrocks 7s Glacierpoint 6e 234: 8 Rock outcrop 8 Rubble land 8 235: 7e Canisrocks 7e Glacierpoint 6e Vitrandic Cryorthents 6e Vitrandic Cryorthents 6e 238: 6x Canisrocks 6e 239: 7e Canisrocks 6e	Map symbol and soil name	Land capability
Canisrocks 6e Rock outcrop 8 Rubble land 8 Vitrandic Dystrocryepts 6e 227: 6e Canisrocks 6e Crazymule 6e 228: Keric Dystrocryepts 6e Vitrandic Eutrocryepts 6e 6e 6e 0xyaquic Dystrocryepts 6w 231: 6e 231: 6e 232: 7s Glacierpoint 6e 232: 7s Glacierpoint 6e 234: 8 Rock outcrop 8 Rubble land 8 235: 7e Rock outcrop 8 Rubble land 8 237: 7e Glacierpoint 6e Vitrandic Cryorthents 6e 238: 0xyaquic Cryorthents 6e 239: 7e Canisrocks 6e	225•	
Rubble land		6e
Vitrandic Dystrocryepts 6e 227: 6e Crazymule 6e 228: Keric Dystrocryepts 6e Vitrandic Eutrocryepts 6e 229: Marmotland 6e Cxyaquic Dystrocryepts 6w 231: 6s Typic Cryaquents 6e 232: 7s Glacierpoint 6e 234: 8 Rock outcrop 8 Rubble land 8 235: 7e Canisrocks 7e Rock outcrop 8 Rubble land 8 237: 7e Glacierpoint 6e Vitrandic Cryorthents 6e Vitrandic Cryorthents 6e Canisrocks 6e Canisrocks 6e Canisrocks 6e Canisrocks 6e Canisrocks 6e Canisrocks 6e	Rock outcrop	 8
227: 6e Crazymule	Rubble land	 8
Canisrocks 6e Crazymule 6e 228: Karic Dystrocryepts 6e Vitrandic Eutrocryepts 6e 229: Marmotland 6e Oxyaquic Dystrocryepts 6w 231: Canisrocks 6s Typic Cryaquents 6e 232: 7s Glacierpoint 6e 234: Rock outcrop 8 Rubble land 8 8 235: Canisrocks 7e Rock outcrop 8 8 Rubble land 8 8 237: Canisrocks 7e Glacierpoint 6e 9 Vitrandic Cryorthents 6e 9 Canisrocks 6e 9 Canisrocks 6e 9 Canisrocks 6e 9 Canisrocks 7e 6e Canisrocks 7e 6e Canisrocks 7e 7e	Vitrandic Dystrocryepts	 6e
2228: 6e Vitrandic Eutrocryepts 6e 229: 6e Marmotland 6e Oxyaquic Dystrocryepts 6w 231: 6s Canisrocks 6s Typic Cryaquents 6e 232: 7s Glacierpoint 6e 234: 8ck outcrop Rubble land 8 235: 7e Rock outcrop 8 Rubble land 8 237: 7e Glacierpoint 6e Vitrandic Cryorthents 6s 238: 0xyaquic Cryorthents 6w Canisrocks 6e 239: 7e Crazymule 7e		 6e
Xeric Dystrocryepts	Crazymule	 6e
229: Marmotland		 6e
Marmotland	Vitrandic Eutrocryepts	 6e
Oxyaquic Dystrocryepts 6w 231: 6s Canisrocks 6e 232: 7s Canisrocks 7s Glacierpoint 6e 234: 8 Rock outcrop 8 Rubble land 8 235: 7e Rock outcrop 8 Rubble land 8 237: 7e Glacierpoint 6e Vitrandic Cryorthents 6e Vitrandic Cryorthents 6m Canisrocks 6e 238: 0xyaquic Cryorthents 6m Canisrocks 6e 239: 7e Crazymule 7e	=== -	
231: Canisrocks		
Canisrocks 6s Typic Cryaquents 6e 232: 7s Canisrocks 7s Glacierpoint 6e 234: 8 Rock outcrop 8 Rubble land 8 235: 7e Rock outcrop 8 Rubble land 8 237: 7e Glacierpoint 6e Vitrandic Cryorthents 6s 238: 0xyaquic Cryorthents 6w Canisrocks 6e 239: 7e Crazymule 7e		6w
232: 7s Glacierpoint 6e 234: 8 Rock outcrop 8 Rubble land 8 235: 7e Rock outcrop 8 Rubble land 8 237: 7e Glacierpoint 6e Vitrandic Cryorthents 6s 238: 0xyaquic Cryorthents 6w Canisrocks 6e 239: 7e Crazymule 7e		 6s
Canisrocks	Typic Cryaquents	 6e
234: 8 Rubble land	===:	 7s
Rock outcrop	Glacierpoint	 6e
235: 7e Rock outcrop		 8
Canisrocks	Rubble land	 8
Rubble land		 7e
237: 7e Canisrocks	Rock outcrop	 8
Canisrocks	Rubble land	 8
Vitrandic Cryorthents		 7e
238:	Glacierpoint	 6e
Oxyaquic Cryorthents 6w Canisrocks 6e 239: Crazymule 7e	Vitrandic Cryorthents	 6s
239: Crazymule 7e		 6w
Crazymule 7e	Canisrocks	 6e
Canisrocks 6e		 7e
	Canisrocks	 6e

Table 5.-Land Capability Classification-Continued

Map symbol and soil name	Land capability
241: Canisrocks	 6e
242: Rock outcrop	 8
Canisrocks	 7s
Xeric Dystrocryepts	 6e
244: Typic Cryorthents	 6e
Rubble land	8
Rock outcrop	 8
245: Rock outcrop	8
Canisrocks	 6e
Xeric Dystrocryepts	 6e
246: Rock outcrop, domes	8
247: Canisrocks	 6e
Xeric Dystrocryepts	 6e
248: Canisrocks	 7s
Rock outcrop	8
Glacierpoint	 7s
249: Rock outcrop	8
Canisrocks	 7e
250: Canisrocks	 6e
Xeric Dystrocryepts	 6e
251: Glacierpoint	 6e
Typic Cryorthents	 6e
252: Rock outcrop	
Canisrocks	 6e
Xeric Dystrocryepts	 6e

Table 5.-Land Capability Classification-Continued

Map symbol and soil name	 Land capability
253:	
Canisrocks	7e
Glacierpoint	6e
Humic Dystrocryepts	7e
256: Craneflat	 7e
Rock outcrop	8
Rubble land	8
Waterwheel	 7s
257: Badgerpass	 6e
Oxyaquic Dystroxerepts	6e
258: Typic Dystroxerepts	 6e
Badgerpass	6e
Dystric Xerorthents	 6e
260: Rock outcrop	8
Craneflat	7e
Dystric Xerorthents	 6e
261: Dystric Xeropsamments	 6e
Typic Dystroxerepts	6e
Badgerpass	6e
Rock outcrop	 8
262: Humic Dystroxerepts	 7s
Dystric Xerorthents	7e
Rock outcrop	8
264: Crazymule	 6e
Canisrocks	7e
267: Rock outcrop	
Typic Cryorthents	 7s
Xeric Dystrocryepts	 6e

Table 5.-Land Capability Classification-Continued

Rock outcrop	Map symbol and soil name	Land capability
Glacierpoint 7e 269: 7e Rock outcrop 8 Glacierpoint 6e 270: 8 Rock outcrop 8 Typic Cryorthents 6s Vitrandic Dystrocryepts 6e 271: 8 Rock outcrop 8 Lithic Xerorthents 7e Waterwheel 7s 273: Nevadafalls Nevadafalls 6e Waterwheel 6e 274: 8 Rock outcrop, domes 8 275: Oxyaquic Dystroxerepts 4e Dystric Xerorthents 6e Vitrandic Xerorthents 4e Rubble land 8 276: Happyisles 3e Typic Dystroxerepts 4e 277: Tuolumne 6s Rumic Dystroxerepts 7e 278: Rock outcrop 8 Tuolumne 7e	268: Rock outcrop	 8
269: 7e Canisrocks	Canisrocks	7e
Canisrocks	Glacierpoint	 7e
Glacierpoint 6e 270: Rock outcrop 8 Typic Cryorthents 6s Vitrandic Dystrocryepts 6e 271: Rock outcrop 8 Lithic Xerorthents 7e Waterwheel 7s 273: Nevadafalls 6e Waterwheel 6e 274: Rock outcrop, domes 8 275: Oxyaquic Dystroxerepts 4e Dystric Xerorthents 6e Vitrandic Xerorthents 4e Rubble land 8 276: Happyisles 3e Typic Dystroxerepts 4e 277: Tuolumne 6s Humic Dystroxerepts 7e 278: Rock outcrop 8 Tuolumne 8	269: Canisrocks	 7e
2700: 8 Rock outcrop	Rock outcrop	8
Rock outcrop	Glacierpoint	6e
Vitrandic Dystrocryepts 6e 271: 8 Rock outcrop 8 Lithic Xerorthents 7e Waterwheel 7s 273: Nevadafalls 6e Waterwheel 6e 274: Rock outcrop, domes 8 2275: Oxyaquic Dystroxerepts 4e Dystric Xerorthents 6e Vitrandic Xerorthents 4e Rubble land 8 276: Happyisles 3e Typic Dystroxerepts 4e 277: Tuolumne 6s Humic Dystroxerepts 7e 278: Rock outcrop 8 Tuolumne 7s	270: Rock outcrop	 8
271: Rock outcrop	Typic Cryorthents	 6s
Rock outcrop	Vitrandic Dystrocryepts	 6e
Waterwheel	271: Rock outcrop	 8
273: 6e Waterwheel	Lithic Xerorthents	7e
Nevadafalls 6e Waterwheel 6e 274: 8 Rock outcrop, domes 8 275: 4e Dystric Dystroxerepts 6e Vitrandic Xerorthents 4e Rubble land 8 276: 3e Happyisles 3e Typic Dystroxerepts 4e 277: 5e Tuolumne 6s Humic Dystroxerepts 7e 278: 8 Rock outcrop 8 Tuolumne 7s	Waterwheel	 7s
274: Rock outcrop, domes	273: Nevadafalls	 6e
Rock outcrop, domes 8 275: 4e Oxyaquic Dystroxerepts 4e Dystric Xerorthents 6e Vitrandic Xerorthents 4e Rubble land 8 276: 3e Happyisles 3e Typic Dystroxerepts 4e 277: 5 Tuolumne 6s Humic Dystroxerepts 7e 278: 7e Rock outcrop 8 Tuolumne 7s	Waterwheel	 6e
Oxyaquic Dystroxerepts	274: Rock outcrop, domes	 8
Vitrandic Xerorthents 4e Rubble land 8 276: 3e Happyisles 4e 277: 4e Tuolumne 6s Humic Dystroxerepts 7e 278: 8 Rock outcrop 8 Tuolumne 7s	275: Oxyaquic Dystroxerepts	 4e
Rubble land	Dystric Xerorthents	6e
276: 3e Happyisles	Vitrandic Xerorthents	4e
Happyisles 3e Typic Dystroxerepts 4e 277: 6s Humic Dystroxerepts 7e 278: 8 Rock outcrop 8 Tuolumne 7s	Rubble land	8
277: Tuolumne	276: Happyisles	 3e
Tuolumne	Typic Dystroxerepts	4e
278: Rock outcrop 8 Tuolumne 7s	277: Tuolumne	 6s
Rock outcrop 8 Tuolumne 7s	Humic Dystroxerepts	 7e
į	278: Rock outcrop	 8
Humic Dystroxerepts 7s	Tuolumne	 7s
	Humic Dystroxerepts	 7s

Table 5.-Land Capability Classification-Continued

Map symbol and soil name	Land
	capability
278: Rubble land	
279: Canisrocks	 6e
Xeric Dystrocryepts	7e
280: Typic Dystroxerepts	 6e
Humic Dystroxerepts	 6e
Rock outcrop	 8
282: Clarkslodge	 6e
Craneflat	 6e
Nevadafalls	 6e
283: Waterwheel	 6e
Nevadafalls	 6e
Rock outcrop	 8
285: Waterwheel	 6e
Humic Dystroxerepts	 6e
286: Nevadafalls	 6e
Typic Dystroxerepts	 6e
Ultic Palexeralfs	 6e
Rock outcrop	 8
287: Badgerpass	 6e
Waterwheel	7e
288: Rock outcrop	 6e
Craneflat	 6e
Waterwheel	 6e
289: Waterwheel	 6e
Craneflat	 7e
290: Humic Dystroxerepts	 7e

Table 5.-Land Capability Classification-Continued

Map symbol and soil name	Land capability
290:	
Tuolumne	7e
Typic Xerorthents	7e
Ultic Haploxeralfs	7e
291:	
Ultic Haploxeralfs	6e
Typic Dystroxerepts	6e
292: Humic Dystroxerepts	 6e
-	
Typic Haploxerults	6e
293: Xeric Dystrocryepts	 6e
Vitrandic Dystrocryepts	 6e
294: Waterwheel	7e
Typic Dystroxerepts	 7e
295:	
Craneflat	6e
Typic Dystroxerepts	6e
296:	
Ultic Palexeralfs	4e
Humic Dystroxerepts	4e
297: Typic Xerorthents	 6e
Rock outcrop	6e
Typic Xeropsamments	6e
298:	
Tuolumne	İ
Typic Dystroxerepts	6e
299: Humic Dystroxerepts	 7s
Ultic Haploxeralfs	 6e
300:	
Typic Dystroxerepts	7e
Ultic Haploxeralfs	4e
301:	
Vitrandic Haploxerolls	4w

Table 5.-Land Capability Classification-Continued

Map symbol and soil name	Land
	capability
302: Typic Haploxerults	 6e
Ultic Haploxeralfs	6e
303: Rock outcrop	8
Dystric Xeropsamments	 6e
Humic Dystroxerepts	6e
Tuolumne	 6e
304: Clarkslodge	 6e
Rock outcrop	 8
305: Rock outcrop	8
Waterwheel	 7e
Dystric Xeropsamments	 6e
306: Typic Cryopsamments	 6e
Humic Dystrocryepts	 6e
307: Rock outcrop	8
Dystric Xeropsamments	 6e
Dystric Xerorthents	 6e
309: Rock outcrop	 7e
Waterwheel	 7e
Typic Dystroxerepts	 7e
310: Rock outcrop	8
Humic Dystroxerepts	 7e
Humic Lithic Haploxerepts	 7e
311: Rock outcrop	 8
Humic Dystroxerepts	 6e
Humic Lithic Haploxerepts	 7e
313: Nevadafalls	 6e
Oxyaquic Dystrudepts	 6e

Table 5.-Land Capability Classification-Continued

Map symbol and soil name	Land capability
314:	
Badgerpass	6e
Dystric Xeropsamments	 6e
Rock outcrop	 8
315: Nevadafalls	 6e
Dystric Xeropsamments	 6e
316: Dystric Xerorthents	 7e
Rock outcrop	8
Rubble land	 8
318: Typic Dystroxerepts	 4e
Humic Dystroxerepts	 4e
319: Humic Dystroxerepts	 6s
Typic Haploxerults	 6e
Inceptic Haploxeralfs	 6s
320: Half Dome	 6e
Humic Dystroxerepts	 6e
Rock outcrop	8
321: Dystric Xeropsamments	 4e
Dystric Xerorthents	 7e
322: Typic Xerorthents	 6s
323: Ultic Haploxeralfs	 6e
Humic Dystroxerepts	 6e
324: Humic Haploxerepts	 7e
Rock outcrop	 7e
Ultic Haploxeralfs	 7e
325: Urban land	 8

Table 5.-Land Capability Classification-Continued

328: Clarkslodge Ultic Palexeralfs 401: Sentinel 412: Water. Riverwash	
401: Sentinel 412: Water. Riverwash	
Sentinel	- 3e
Water. Riverwash	
501:	- 8
Happyisles, sandy loam	- 2e
Happyisles, loamy fine sand, overwash	- 2e
502: Happyisles	- 3w
504: Mollic Xerofluvents	- 3w
510t: Rubble land	 - 8
Lithnip	- 8
Rock outcrop	- 8
551: Happyisles	 - 3e
Half Dome	- 6s
552: Mollic Xerofluvents	- 4w
590: Terric Haplosaprists	- 6w
601: Half Dome, very bouldery	 - 6s
Half Dome, cobbly	- 6s
602: Half Dome	- 4s
610: Rubble land	- 8
Half Dome	- 4s
620: Half Dome, extremely stony sandy loam, warm	- 6e
Half Dome, very cobbly sandy loam, warm	 -

Table 5.-Land Capability Classification-Continued

Map symbol and soil name	Land capability
630: Rubble land	 8
Half Dome	 6e
701: Vitrandic Haploxerolls	 4e
702: Vitrandic Dystroxerepts	 4e
900: Rock outcrop	 8
DAM. Dam	
W. Water	

Table 6.-Recreational Development, Part I

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation.

The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only three highest value limitations are listed. There may be more limitations. Fine-earth fractions and coarse fragments are reported on a weight basis. Brief summaries of rating criteria and abbreviations are listed on the last page of this report)

Map symbol and soil name	Pct. of	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
101: Oxyaquic Xerofluvents	35	Limitations Flooding > rare	1.00	Limitations Frequent flooding	0.50	Limitations Flooding > occasional	1.00
Riverwash	35	Not rated		Not rated		Not rated	
Fluvaquents	15	Limitations Saturation < 18" depth Flooding > rare Fragments >10" >3%	1.00	Limitations Saturation < 12" depth Fragments >10" >3% Frequent flooding	1.00	Limitations Saturation < 18" depth Flooding > occasional Fragments >10" >3%	1.00
101t: Lithnip	40	Limitations Slopes > 15% Fragments (<3") > 50% Bedrock depth < 20"	1.00	Limitations Slopes > 15% Fragments (<3") > 50% Bedrock depth < 20"	1.00	Limitations Slopes > 6% Surface fragments (<3") >25% Bedrock depth < 20"	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
Fishsnooze	70	Limitations Slopes > 15% Fragments (<3") > 50%	1.00	Limitations Slopes > 15% Fragments (<3") > 50%	1.00	Limitations Slopes > 6% Surface fragments (<3") >25% Bedrock 20-40" and slope > 2%	1.00
102: Oxyaquic Xerofluvents	45	Limitations Flooding > rare Fragments >10" >3%	1.00	Limitations Fragments >10" >3% Frequent flooding	1.00	Limitations Flooding > occasional Fragments >10" >3% Slopes 2 to 6%	1.00 1.00 0.26
Riverwash	40	Not rated		Not rated		Not rated	
102t: Lithnip	0 4	Limitations Fragments (<3") > 50% Bedrock depth < 20" Slopes > 15%	1.00	Limitations Fragments (<3") > 50% Bedrock depth < 20" Slopes > 15%	1.00	Limitations Slopes > 6% Surface fragments (<3") >25% Bedrock depth < 20"	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol	Pct.	Camp areas		Picnic areas		Playgrounds	
מונים מרוב וומיווים	unit	Limitation	Value	Limitation	Value	Limitation	Value
102t: Rock outcrop		Not rated		Not rated		Not rated	
Fishsnooze	7 0	Limitations Fragments (<3") > 50% Slopes > 15%	1.00	Limitations Fragments (<3") > 50% Slopes > 15%	1.00	Limitations Slopes > 6% Surface fragments (<3") >25%	1.00
						Bedrock 20-40" and slope > 2%	0.50
104: Aquandic Humaquepts	8 —————	Limitations Saturation < 18" depth Flooding > rare Very dusty	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Limitations Saturation < 12" depth Very dusty Organic surface layer > 4"	1.00	Limitations Saturation < 18" depth Flooding > occasional Very dusty	1.00
4				thick			
Whittell	45	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Jobsis	25	Limitations Slopes > 15% Fragments >10" >3% Fragments (<3") 25-50%	1.00 1.00 0.74	Limitations Slopes > 15% Fragments > 10" > 3% Fragments (<3") 25-50%	1.00	s% ragment	1.00
Rock outcrop	15	Not rated		Not rated		Fragments >10" >3% Not rated	1.00
151: Elcapitan	8	Limitations Flooding > rare Very dusty	1.00	Limitations Very dusty	1.00	Limitations Very dusty Occasional flooding	1.00
152: Vitrandic Haploxerolls	 8	Limitations Flooding > rare Very dusty	1.00	Limitations Very dusty	1.00	Limitations Very dusty Occasional flooding Surface fragments (<3")	1.00
201: Leidig	08	Limitations Flooding > rare Very dusty	1.00	Limitations Very dusty	1.00	Limitations Very dusty Occasional flooding	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
210; Rubble land	30	Not rated		Not rated		Not rated	
Typic Cryorthents	72	Limitatioins Slopes > 15% Fragments (<3") 25-50%	1.00	Limitations Slopes > 15% Fragments (<3") 25-50%	0.46	Limitations Slopes > 6% Surface fragments (<3") >25%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
Xeric Dystrocryepts	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
211: Xeric Dystrocryepts	35	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Canisrocks	30	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Oxyaquic Dystrocryepts	15	Limitations Slopes > 15% Saturation from 18 to 30" depth	1.00	Limitations Slopes > 15% Saturation from 12 to 30" depth	1.00	Limitations Slopes > 6% Saturation from 18 to 30" depth	1.00
213: Canisrocks	20	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00 1.00
Glacierpoint	15	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Vitrandic Dystrocryepts-	15	Limitations Slopes > 15% Very dusty Fragments >10" >3%	1.00	Limitations Slopes > 15% Very dusty Fragments >10" >3%	1.00	Limitations Slopes > 6% Very dusty Fragments >10" >3%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
214: Marmotland	25	Limitations Flooding > rare Very dusty Slopes 8 to 15%	1.00	Limitations Very dusty Slopes 8 to 15%	1.00	Limitations Very dusty Slopes > 6% Occasional flooding	1.00
Oxyaquic Dystrocryepts	12	Limitations Flooding > rare Surface sand fractions 70 - 90% by wt. Saturation from 18 to 30" depth	1.00 0.66 0.56	Limitations Surface sand fractions 70 - 90% by wt. Frequent flooding Saturation from 12 to 30" depth	0.66	Limitations Flooding > occasional Surface sand fractions 70 - 90% by wt. Saturation from 18 to 30" depth	1.00
Xeric Dystrocryepts	15	No limitations		No limitations		Limitations Slopes 2 to 6%	0.50
215: Typic Cryorthents	4	Limitations Slopes > 15% Fragments >3" >75% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >3" >75% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments > 3" > 30% Fragments > 10" > 3%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
Rubble land	20	Not rated		Not rated		Not rated	
219: Rock outcrop	40	Not rated		Not rated		Not rated	
Rubble land	25	Not rated		Not rated		Not rated	
Canisrocks	15	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
221: Typic Cryorthents	35	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6% Surface fragments (<3") 10-25%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
221: Xeric Dystrocryepts	50	Limitations Slopes > 15% Fragments >10" >3% Surface sand fractions 70 - 90% by wt.	1.00	Limitations Slopes > 15% Fragments >10" >3% Surface sand fractions 70 - 90% by wt.	1.00	Limitations Slopes > 6% Fragments >10" >3% Surface fragments (<3") 10-25%	1.00 1.00 0.32
Oxyaquic Dystrocryepts	12	Limitations Slopes > 15% Flooding > rare Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3% Frequent flooding	1.00	Limitations Slopes > 6% Flooding > occasional Fragments >10" >3%	1.00
222: Canisrocks	30	Limitations Slopes > 15% Fragments >10" >3% Fragments >3" >75%	1.00	Limitations Slopes > 15% Fragments >10" >3% Fragments >3" >75%	1.00	Limitations Slopes > 6% Fragments > 3" > 30% Fragments > 10" > 3%	1.00
Rubble land	30	Not rated		Not rated		Not rated	
Rock outcrop	20	Not rated		Not rated		Not rated	
Crazymule	15	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
223: Rock outcrop	35	Not rated		Not rated		Not rated	
Rubble land	35	Not rated		Not rated		Not rated	
Canisrocks	50	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
224: Rock outcrop	4 0	Not rated		Not rated		Not rated	
Crazymule	70	Limitations Fragments >10" >3% Fragments >3" >75% Slopes > 15%	1.00	Limitations Fragments >10" >3% Fragments >3" >75% Slopes > 15%	1.00 1.00 0.00	Limitations Fragments > 3" > 30% Fragments > 10" > 3% Slopes > 6%	1.00
Vitrandic Cryorthents	12	Limitations Very dusty Slopes > 15% Fragments >10" >3%	1.00	Limitations Very dusty Slopes > 15% Fragments >10" >3%	1.00	Limitations Very dusty Slopes > 6% Fragments > 3" > 30%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pat.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
225: Canisrocks	12	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
Rubble land	15	Not rated		Not rated		Not rated	
Vitrandic Dystrocryepts-	15	Limitations Very dusty Slopes > 15% Fragments >10" >3%	1.00	Limitations Very dusty Slopes > 15% Fragments >10" >3%	1.00	Limitations Very dusty Slopes > 6% Fragments > 10" > 3%	1.00
227: Canisrocks	4.	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Crazymule	0 4	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
228: Xeric Dystrocryepts	35	Limitations Surface sand fractions 70 - 90% by wt.	0.76	Limitations Surface sand fractions 70 - 90% by wt.	0.76	Limitations Surface sand fractions 70 - 90% by wt. Slopes 2 to 6% Surface fragments (<3")	0.76
Vitrandic Eutrocryepts	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Limitations Flooding > rare Very dusty Organic surface layer > 4" thick	1.00	<pre>Limitations Very dusty Organic surface layer > 4" thick Saturation from 12 to 30" depth</pre>	1.00	Lordons Limitations Very dusty Organic surface layer > 4" thick Slopes 2 to 6%	1.00
229: Marmotland	40	Limitations Flooding > rare Very dusty Fragments >10" >3%	1.00	Limitations Very dusty Fragments >10" >3%	1.00	Limitations Very dusty Fragments >10" >3% Slopes 2 to 6%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
229; Oxyaquic Dystrocryepts	0 4 0	Limitations Saturation from 18 to 30" depth	0.56	Limitations Saturation from 12 to 30" depth	0.28	Limitations Saturation from 18 to 30" depth Slopes 2 to 6%	0.56
231: Canisrocks	0 4	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Typic Cryaquents	21	Limitations Saturation < 18" depth Fragments >10" >3% Fragments >3" >75%	1.00	Limitations Saturation < 12" depth Fragments >10" >3% Fragments >3" >75%	1.00	Limitations Saturation < 18" depth Fragments > 3" > 30% Fragments > 10" > 3%	1.00
232: Canisrocks	25	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Glacierpoint	21	No limitations		No limitations		Limitations Slopes 2 to 6%	0.74
234: Rock outcrop	35	Not rated		Not rated		Not rated	
Rubble land	35	Not rated		Not rated		Not rated	
235: Canisrocks	35	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Rock outcrop	30	Not rated		Not rated		Not rated	
Rubble land	20	Not rated		Not rated		Not rated	
237: Canisrocks	25	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Glacierpoint	15	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Fragments >10" >3% Slopes > 6%	1.00
Vitrandic Cryothents	15	Limitations Bedrock depth < 20" Very dusty Fragments >10" >3%	1.00	Limitations Bedrock depth < 20" Very dusty Fragments >10" >3%	1.00	Limitations Bedrock depth < 20" Very dusty Fragments >10" >3%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
238: Oxyaquic Cryorthents	 2 5	Limitations Flooding > rare Fragments >10" >3% Saturation from 18 to 30" depth	1.00 1.00 0.56	Limitations Fragments >10" >3% Frequent flooding Saturation from 12 to 30" depth	1.00	Limitations Flooding > occasional Fragments >10" >3% Saturation from 18 to 30" depth	1.00 1.00 0.56
Canisrocks	15	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
239: Crazymule	4 5	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Canisrocks		Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
241: Canisrocks	75	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
242: Rock outcrop	30	Not rated		Not rated		Not rated	
Canisrocks	25	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Xeric Dystrocryepts	16	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 6%	1.00
244: Typic Cryorthents	 4 5	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Rubble land	25	Not rated		Not rated		Not rated	
Rock outcrop	16	Not rated		Not rated		Not rated	

Table 6.-Recreational Development, Part I-Continued

	4						
Map symbol	na de	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
245: Rock outcrop	30	Not rated		Not rated		Not rated	
Canisrocks	75	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Xeric Dystrocryepts	7 0	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6% Surface fragments (<3") 10-25%	1.00
246: Rock outcrop, domes	06	Not rated		Not rated		Not rated	
247: Canisrocks	70	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Xeric Dystrocryepts	70	No limitations		No limitations		Limitations Slopes 2 to 6%	0.74
248: Canisrocks	35	Limitations Slopes > 15% Fragments >10" >3% Fragments >3" >75%	1.00	Limitations Slopes > 15% Fragments >10" >3% Fragments >3" >75%	1.00	Limitations Slopes > 6% Fragments > 3" > 30% Fragments >10" >3%	1.00
Rock outcrop	30	Not rated		Not rated		Not rated	
Glacierpoint	15	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
249: Rock outcrop	45	Not rated		Not rated		Not rated	
Canisrocks	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
250: Canisrocks	47	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Xeric Dystrocryepts	35	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
251: Glacierpoint	30	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Typic Cryorthents	70	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
252: Rock outcrop	20	Not rated		Not rated		Not rated	
Canisrocks	15	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Xeric Dystrocryepts	15	Limitations Fragments >10" >3% Surface sand fractions 70 - 90% by wt. Slopes 8 to 15%	1.00	Limitations Fragments >10" >3% Surface sand fractions 70 - 90% by wt. Slopes 8 to 15%	1.00	Limitations Fragments >10" >3% Slopes > 6% Surface sand fractions 70 - 90% by wt.	1.00
253: Canisrocks	25	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Glacierpoint	18	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Humic Dystrocryepts	15	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
256: Craneflat	25	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
Rubble land	20	Not rated		Not rated		Not rated	
Waterwheel	70	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
257: Badgerpass	55	No limitations		No limitations		Limitations Slopes 2 to 6%	0.26
Oxyaquic Dystroxerepts	35	Limitations Flooding > rare Saturation from 18 to 30" depth Dusty	1.00	Limitations Frequent flooding Dusty Saturation from 12 to 30" depth	0.50	Limitations Flooding > occasional Slopes > 6% Saturation from 18 to 30" depth	1.00
258: Typic Dystroxerepts	72	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Badgerpass	70	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Dystric Xerorthents	70	Limitations Slopes > 15% Flooding > rare	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6% Occasional flooding	1.00
260: Rock outcrop	45	Not rated		Not rated		Not rated	
Craneflat	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Dystric Xerorthents	50	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
261: Dystric Xeropsamments	72	No limitations		No limitations		Limitations Slopes > 6%	1.00
Typic Dystroxerepts	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Badgerpass	15	Limitations Slopes > 15% Surface sand fractions 70- 90% by wt. Fragments (<3") 25-50%	1.00	Limitations Slopes > 15% Surface sand fractions 70 - 90% by wt. Fragments (<3") 25-50%	0.888	Limitations Slopes > 6% Surface fragments (<3") >25% Surface sand fractions 70 - 90% by wt.	1.00
Rock outcrop	15	Not rated		Not rated		Not rated	

Table 6.-Recreational Development, Part I-Continued

Map symbol	Pct.	Camp areas		Picnic areas		Playgrounds	
and soil name	map unit		Value	Limitation	Value	Limitation	Value
262: Humic Dystroxerepts	30	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Dystric Xerorthents	25	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
264: Crazymule	35	Limitations Slopes 8 to 15%	0.63	Limitations Slopes 8 to 15%	0.63	Limitations Slopes > 6%	1.00
Canisrocks	28	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
267: Rock outcrop	4 0	Not rated		Not rated		Not rated	
Typic Cryorthents	30	Limitations Fragments >10" >3% Surface sand fractions 70 - 90% by wt. Fragments (<3") 25-50%	0.95	Limitations Fragments >10" >3% Surface sand fractions 70 - 90% by wt. Fragments (<3") 25-50%	1.00 0.95 0.01	Limitations Fragments >10" >3% Surface fragments (<3") >25% Surface sand fractions 70 - 90% by wt.	1.00
Xeric Dystrocryepts	15	Limitations Slopes 8 to 15%	0.63	Limitations Slopes 8 to 15%	0.63	Limitations Slopes > 6%	1.00
268: Rock outcrop	4 0	Not rated		Not rated		Not rated	
Canisrocks	25	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Glacierpoint	70	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
269: Canisrocks	20	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	

Table 6.-Recreational Development, Part I-Continued

	1						
Map symbol	of nan	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
269: Glacierpoint	15	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 6%	1.00
270: Rock outcrop	35	Not rated		Not rated		Not rated	
Typic Cryorthents	25	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Vitrandic Dystrocryepts-	25	Limitations Slopes > 15% Very dusty Fragments >10" >3%	1.00	Limitations Slopes > 15% Very dusty Fragments >10" >3%	1.00	Limitations Slopes > 6% Very dusty Fragments >10" >3%	1.00
271: Rock outcrop	09	Not rated		Not rated		Not rated	
Lithic Xerorthents	15	Limitations Surface sand fractions > 90% by wt. Bedrock depth < 20" Slopes > 15%	1.00	Limitations Bedrock depth < 20" Surface sand fractions > 90% by wt. Slopes > 15%	1.00	Limitations Bedrock depth < 20" Surface sand fractions > 90% by wt. Slopes > 6%	1.00
Waterwheel	15	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
273: Nevadafalls	55	No limitations		No limitations		Limitations Slopes 2 to 6%	0.50
Waterwheel	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
274: Rock outcrop, domes	8 2	Not rated		Not rated		Not rated	
275: Oxyaquic Dystroxerepts	25	Limitations Flooding > rare Saturation from 18 to 30 "depth	1.00 0.56	Limitations Saturation from 12 to 30" depth	0 .2 8	Limitations Slopes 2 to 6% Saturation from 18 to 30" depth Occasional flooding	0.56

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
275: Dystric Xerorthents	5	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 15%	1.00	Limitations Fragments >10" >3% Slopes > 6%	1.00
Vitrandic Xerorthents	2	Limitations Flooding > rare Surface sand fractions > 90% by wt. Very dusty	1.00	Limitations Surface sand fractions > 90% by wt. Very dusty Fragments >10" >3%	1.00	Limitations Surface sand fractions > 90% by wt. Very dusty Fragments >10" >3%	1.00
Rubble land	15	Not rated		Not rated		Not rated	
276: Happyisles	35	Limitations Flooding > rare	1.00	No limitations		Limitations Slopes 2 to 6%	0.26
Typic Dystroxerepts	35	Limitations Fragments >10" >3% Slopes 8 to 15% Fragments >3" 25 to 75%	1.00 0.16 0.01	Limitations Fragments >10" >3% Slopes 8 to 15% Fragments >3" 25 to 75%	1.00	Limitations Fragments >10" >3% Slopes > 6% Fragments >3" 5 to 30%	1.00
277: Tuolumne	4 5	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Humic Dystroxerepts	35	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
278: Rock outcrop	25	Not rated		Not rated		Not rated	
Tuolumne	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Limitations Slopes > 15% Fragments >10" >3% Surface sand fractions 70 - 90% by wt.	1.00	Limitations Slopes > 15% Fragments >10" >3% Surface sand fractions 70 - 90% by wt.	1.00	Limitations Slopes > 6% Fragments >10" >3% Surface fragments (<3") 10-25%	1.00
Humic Dystroxerepts	5	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Rubble land	12	Not rated		Not rated		Not rated	

Table 6.-Recreational Development, Part I-Continued

Map symbol	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
279: Canisrocks	0 4	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Xeric Dystrocryepts	15	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
280: Typic Dystroxerepts	35	Limitations Slopes > 15% Fragments >10" .1 to 3%	1.00	Limitations Slopes > 15% Fragments >10" .1 to 3%	1.00	Limitations Slopes > 6% Fragments >10" .1 to 3%	1.00
Humic Dystroxerepts	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
282: Clarkslodge	20	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Craneflat	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Nevadafalls	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
283: Waterwheel	3 5	Limitations Slopes > 15% Fragments (<3") 25-50% Surface sand fraction 70 - 90% by wt.	1.00 0.99 0.59	Limitations Slopes > 15% Fragments (<3") 25-50% Surface sand fraction 70 - 90% by wt.	0.00 0.00 0.00 0.00 0.00	Limitations Slopes > 6% Surface fragments (<3") >25% Surface sand fractions 70 - 90% by wt.	1.00
Nevadafalls	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Rock outcrop	21	Not rated		Not rated		Not rated	
285: Waterwheel	30	Limitations Slopes > 15% Fragments >10" .1 - 3%	1.00	Limitations Slopes > 15% Fragments >10" .1 - 3%	1.00	Limitations Slopes > 6% Fragments >10" .1 - 3%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
285; Humic Dystroxerepts	16	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
286: Nevadafalls		Limitations Slopes > 15% Surface sand fractions 70 - 90% by wt.	1.00	Limitations Slopes > 15% Surface sand fractions 70 - 90% by wt	1.00	Limitations Slopes > 6% Surface fragments (<3") 10-25% Surface sand fractions 70 - 90% by wt.	1.00
Typic Dystroxerepts	25	No limitations		No limitations		Limitations Slopes 2 to 6%	0.74
Ultic Palexeralfs	0 0	Limitations Organic surface layer > 4" thick Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Organic surface layer > 4" thick Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Organic surface layer > 4" thick Fragments > 10" > 3% Slopes > 6%	1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
287: Badgerpass	55	No limitations		No limitations		Limitations Slopes > 6%	1.00
Waterwheel	4 0	Limitations Fragments >10" .1 to 3% Slopes 8 to 15%	0.76	Limitations Fragments >10" .1 to 3% Slopes 8 to 15%	0.76	Limitations Slopes > 6% Fragments >10" .1 to 3%	1.00
288: Rock outcrop	35	Not rated		Not rated		Not rated	
Craneflat	50	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Waterwheel	70	Limitations Slopes > 15% Fragments >10" .1	1.00	Limitations Slopes > 15% Fragments >10" .1 to 3%	1.00	Limitations Slopes > 6% Fragments >10" .1 to 3%	1.00
289: Waterwheel	5	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
289: Craneflat	30	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
290: Humic Dystroxerepts	40	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Tuolumne	30	Limitations Slopes > 15% Fragments >10" >3% Surface sand fractions 70- 90% by wt.	1.00 1.00 0.59	Limitations Slopes > 15% Fragments >10" >3% Surface sand fractions 70 - 90% by wt.	1.00	Limitations Slopes > 6% Fragments > 3" > 30% Fragments > 10" > 3%	1.00
Typic Xerorthents	15	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Ultic Haploxeralfs	15	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
291: Ultic Haploxeralfs	41	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Typic Dystroxerepts	31	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
292: Humic Dystroxerepts	35	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Typic Haploxerults	30	Limitations Slopes 8 to 15%	0.63	Limitations Slopes 8 to 15%	0.63	Limitations Slopes > 6%	1.00
293: Xeric Dystrocryepts	70	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Vitrandic Dystrocryepts-	18	Limitations Very dusty Slopes > 15%	1.00	Limitations Very dusty Slopes > 15%	1.00	Limitations Slopes > 6% Very dusty	1.00
294: Waterwheel	9	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol	Pct.	Camp areas		Picnic areas		Playgrounds	
מווס מסדד וומווופ	unit	Limitation	Value	Limitation	Value	Limitation	Value
294: Typic Dystroxerepts	35	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
295: Craneflat	7 2 2	Limitations Slopes > 15% Fragments >10" >3% Surface sand fraction 70- 90% by wt.	1.00	Limitations Slopes > 15% Fragments >10" >3% Surface sand fractions 70 - 90% by wt.	1.00	Limitations Slopes > 6% Fragments >10" >3% Surface fragments (<3") 10-25%	1.00 0.96
Typic Dystroxerepts	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
296: Ultic Palexeralfs	2 0	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Humic Dystroxerepts	12	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
297: Typic Xerorthents	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
Typic Xeropsamments	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
298: Tuolumne	4 11	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Typic Dystroxerepts	31	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
299: Humic Dystroxerepts		Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Ultic Haploxeralfs	35	Limitations Slopes > 15% Fragments >10" .1 to 3%	1.00	Limitations Slopes > 15% Fragments >10" .1 to 3%	1.00	Limitations Slopes > 6% Fragments >10" .1 to 3%	1.00
	_	_	_	_			_

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
300: Typic Dystroxerepts	35	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Ultic Haploxeralfs	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
301: Vitrandic Haploxerolls	0 6	Limitations Flooding > rare Very dusty Saturation from 18 to 30" depth	1.00 1.00 0.39	Limitations Very dusty Saturation from 12 to 30" depth	1.00	Limitations Very dusty Saturation from 18 to 30" depth	1.00
302: Typic Haploxerults	4 5	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Ultic Haploxeralfs	41	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
303: Rock outcrop	30	Not rated		Not rated		Not rated	
Dystric Xeropsamments	70	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Humic Dystroxerepts	70	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Tuolumne	70	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
304: Clarkslodge	09	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
305; Rock outcrop	20	Not rated		Not rated		Not rated	
Waterwheel	 1 8	Limitations Surface sand fractions > 90% by wt. Fragments (<3") > 50% Slopes > 15%	1.00	Limitations Surface sand fractions > 90% by wt. Fragments (<3") > 50% Slopes > 15%	1.00	Limitations Slopes > 6% Surface fragments (<3") >25% Surface sand fractions > 90% by wt.	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pct. of	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
305: Dystric Xeropsamments	15	No limitations		No limitations		Limitations Slopes > 6%	1.00
306: Typic Cryopsamments	20	Limitations Slopes 8 to 15%	0.16	Limitations Slopes 8 to 15%	0.16	Limitations Slopes > 6%	1.00
Humic Dystrocryepts	30	Limitations Slopes > 15% Fragments >3" 25 to 75%	1.00	Limitations Slopes > 15% Fragments >3" 25 to 75%	1.00	Limitations Fragments > 3" > 30% Slopes > 6%	1.00
307: Rock outcrop	40	Not rated		Not rated		Not rated	
Dystric Xeropsamments	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Dystric Xerorthents	70	Limitations Flooding > rare Surface sand fractions > 90% by wt. Fragments (<3") > 50%	1.00	Limitations Surface sand fractions > 90% by wt. Fragments (<3") > 50% Slopes > 15%	1.00	Limitations Slopes > 6% Surface fragments (<3") >25% Surface sand fractions > 90% by wt.	1.00
309: Rock outcrop	20	Not rated		Not rated		Not rated	
Waterwheel	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Typic Dystroxerepts	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
310: Rock outcrop	55	Not rated		Not rated		Not rated	
Humic Dystroxerepts	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Humic Lithic Haploxerepts	20	Limitations Slopes > 15% Saturation < 18" depth Ponded (any duration)	1.00	Limitations Slopes > 15% Ponded (any duration) Fragments >10" >3%	1.00	Limitations Slopes > 6% Saturation < 18" depth Bedrock depth < 20"	1.00

Table 6.-Recreational Development, Part I-Continued

symbol .	Pct.	Camp areas		Picnic areas		Playgrounds	
and soll name	map	Limitation	Value	Limitation	Value	Limitation	Value
311: Rock outcrop	4 5	Not rated		Not rated		Not rated	
Humic Dystroxerepts		Limitations Slopes > 15% Surface sand fractions 70 - 90% by wt. Fragments >3" 25 to 75%	1.00 0.52 0.03	Limitations Slopes > 15% Surface sand fractions 70 - 90% by wt. Fragments >3" 25 to 75%	1.00	Limitations Fragments > 3" > 30% Slopes > 6% Surface fragments (<3") >25%	1.00 1.00 0.99 0.99
Humic Lithic Haploxerepts	H 6	Limitations Saturation < 18" depth Ponded (any duration) Fragments >10" >3%	1.00 1.00	Limitations Ponded (any duration) Fragments >10" >3% Slopes > 15%	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Limitations Saturation < 18" depth Ponded (any duration) Fragments >10" >3%	1.00 1.00
313: Nevadafalls	4 0	No limitations		No limitations		Limitations Slopes 2 to 6%	0.74
Oxyaquic Dystrudepts	4 0	Limitations Flooding > rare Saturation from 18 to 30" depth	1.00	Limitations Saturation from 12 to 30" depth	0.28	Limitations Slopes 2 to 6% Saturation from 18 to 30" depth Occasional flooding	0.74
314: Badgerpass	45	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Dystric Xeropsamments	35	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
315: Nevadafalls	09	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Dystric Xeropsamments	40	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
316: Dystric Xerorthents	0 4	Limitations Slopes > 15% Fragments >3" 25 to 75% Permeability is 0.66"/hr	1.00	Limitations Slopes > 15% Fragments >3" 25 to 75% Permeability is .066"/hr	0.100	Limitations Slopes > 6% Fragments > 3" > 30% Permeability is .066"/hr	1.00 1.00 0.50

Table 6.-Recreational Development, Part I-Continued

Map symbol	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
316: Rock outcrop	40	Not rated		Not rated		Not rated	
Rubble land	20	Not rated		Not rated		Not rated	
318: Typic Dystroxerepts	40	No limitations		No limitations		Limitations Slopes 2 to 6%	0.74
Humic Dystroxerepts	36	Limitations Fragments >10" .1 to > 3%	0.19	Limitations Fragments >10" .1 to 3%	0.19	Limitations Slopes 2 to 6% Fragments >10" .1 to 3%	0.50
319: Humic Dystroxerepts	30	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Typic Haploxerults	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Inceptic Haploxeralfs	25	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
320: Half Dome	4 0	Limitations Slopes > 15% Fragments >10" .1 to 3%	1.00	Limitations Slopes > 15% Fragments >10" .1 to 3%	1.00	Limitations Slopes > 6% Fragments >10" .1 to 3%	1.00
Humic Dystroxerepts	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
321: Dystric Xeropsamments	20	Limitations Flooding > rare	1.00	No limitations		No limitations	
Dystric Xerorthents	4 0	Limitations Flooding > rare Surface sand fractions > 90% by wt. Fragments (<3") > 50%	1.00	Limitations Surface sand fractions > 90% by wt. Fragments (<3") > 50% Slopes > 15%	1.00	Limitations Surface fragments (<3") >25% Surface sand fractions > 90% by wt. Slopes > 6%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol and soil name	Pat.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
322: Typic Xerorthents	06	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
323: Ultic Haploxeralfs	5 5	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3% Surface fragments (<3") 10-25%	1.00 1.00 0.14
Humic Dystroxerepts	45	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Fragments >10" >3% Slopes 8 to 15%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
324: Humic Haploxerepts	 0 4	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Rock outcrop	35	Not rated		Not rated		Not rated	
Ultic Haploxeralfs	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
325: Urban land	80	Not rated		Not rated		Not rated	
328: Clarkslodge	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
Ultic Palexerealfs	15	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 6%	1.00
401: Sentinel	06	Limitations Flooding > rare Very dusty	1.00	Limitations Very dusty	1.00	Limitations Very dusty	1.00
412: Water	85	Not rated		Not rated		Not rated	
Riverwash	15	Not rated		Not rated		Not rated	
501: Happyisles, sandy loam		Limitations Flooding > rare	1.00	No limitations		Limitations Slopes 2 to 6%	0.26

Table 6.-Recreational Development, Part I-Continued

Map symbol	Pct.	Camp areas		Picnic areas		Playgrounds	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
501: Happyisles, loamy fine sand, overwash	70	Limitations Flooding > rare	1.00	No limitations		Limitations Occasional flooding Slopes 2 to 6%	0.50
502: Happlyisles	88	Limitations Flooding > rare	1.00	No limitations		Limitations Slopes 2 to 6%	0.02
504: Mollic Xerofluvents	8 51	Limitations Flooding > rare	1.00	Limitations Frequent flooding	0.50	Limitations Flooding > occasional Slopes 2 to 6%	1.00
510t: Rubble land	40	Not rated		Not rated		Not rated	
Lithnip	70	Limitations Fragments (<3") > 50% Bedrock depth < 20" Slopes > 15%	1.00	Limitations Fragments (<3") > 50% Bedrock depth < 20" Slopes > 15%	1.00	Limitations Slopes > 6% Surface fragments (<3") >25% Bedrock depth < 20"	1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
551: Happyisles	20	Limitations Flooding > rare Fragments >10" >3%	1.00	Limitations Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Half Dome	45	Limitations Fragments >10" >3% Fragments >3" 25 to 75% Slopes 8 to 15%	1.00 0.88 0.16	Limitations Fragments >10" >3% Fragments >3" 25 to 75% Slopes 8 to 15%	1.00 0.88 0.16	Limitations Fragments > 3" > 30% Fragments > 10" > 3% Slopes > 6%	1.00
552: Mollic Xerofluvents	ω Ω	Limitations Flooding > rare Slopes 8 to 15%	1.00	Limitations Frequent flooding Slopes 8 to 15%	0.50	Limitations Flooding > occasional Slopes > 6%	1.00
590: Terric Haplosaprists	80 12	Limitations Flooding > rare	1.00	No limitations		Limitations Surface fragments (<3") 10-25% Occasional flooding Slopes 2 to 6%	0.92

Table 6.-Recreational Development, Part I-Continued

	Pat.	Camp areas		Picnic areas		Playgrounds	
and soll name	map	Limitation	Value	Limitation	Value	Limitation	Value
601: Half Dome, very bouldery	20	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
Half Dome, cobbly	4 5	Limitations Slopes > 15% Fragments >3" >75% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >3" >75% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments > 3" > 30% Fragments > 10" > 3%	1.00
602: Half Dome	8 	Limitations Fragments >10" >3% Slopes > 15% Fragments >3" 25 to 75%	1.00	Limitations Fragments >10" >3% Slopes > 15% Fragments >3" 25 to 75%	1.00 1.00 0.88	Limitations Slopes > 6% Fragments > 3" > 30% Fragments > 10" > 3%	1.00
610: Rubble land	65	Not rated		Not rated		Not rated	
Half Dome	30	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
620: Half Dome, extremely stony sandy loam, warm-	20	Limitations Slopes > 15% Fragments >10" >3% Fragments >3" 25 to 75%	1.00	Limitations Slopes > 15% Fragments >10" >3% Fragments >3" 25 to 75%	1.00 1.00 0.88	Limitations Slopes > 6% Fragments > 3" > 30% Fragments > 10" > 3%	1.00
Half Dome, very cobbly sandy loam, warm	4.3	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 15% Fragments >10" >3%	1.00	Limitations Slopes > 6% Fragments >10" >3%	1.00
630: Rubble land	65	Not rated		Not rated		Not rated	
Half Dome	30	Limitations Slopes > 15% Fragments >10" >3% Fragments >3" 25 to 75%	1.00	Limitations Slopes > 15% Fragments >10" >3% Fragments >3" 25 to 75%	1.00	Limitations Slopes > 6% Fragments >10" >3% Fragments > 3" > 30%	1.00

Table 6.-Recreational Development, Part I-Continued

Map symbol	of -	Camp areas		Picnic areas		Playgrounds	
and soil name	map						
	unit	Limitation	Value	Limitation	Value	Limitation	Value
701: Vitrandic Haploxerolls	06	Limitations		Limitations		Limitations	
•		Very dusty	1.00	Very dusty	1.00	Very dusty	1.00
		Slopes > 15% Fragments >10" >3%	1.00	Slopes > 15% Fragments >10" >3%	1.00	Slopes > 6% Fragments > 3" > 30%	1.00
702:							
Vitrandic Dystroxerepts-	90	Limitations		Limitations	_	Limitations	.—
		T)	1.00	Very dusty	1.00	Very dusty	1.00
	_	Slopes > 15%	1.00	Slopes > 15%	1.00	Slopes > 6%	1.00
		Fragments >3" 25 to 75%	0.01	Fragments >3" 25 to 75%	0.01	Fragments >3" 5 to 30%	66.0
:006							
Rock outcrop	95	Not rated		Not rated		Not rated	
DAM:							
Dam	100	Not rated		Not rated		Not rated	
W:							
Water	100	Not rated		Not rated		Not rated	

wetness; slope; depth to bedrock; depth to cemented pans; fragments less than or equal to or greater than 3 inches in size; sodium The interpretation for camp areas evaluates the following soil properties at variable depths in the soil: flooding; ponding; content (SAR); salinity (EC); clayey surface textures; Unified classes for high organic matter (PT, OL, OH); soil dustiness; and permeability (Ksat) that is too high, allowing seepage in some climates.

wetness, slope, depth to bedrock, depth to cemented pan, salinity (EC), pH, soil dustiness, fragments greater than 3 inches in size, fragments greater than 10 inches in size on the surface, the amount of sand or clay in the surface, Unified classes for high organic The interpretation for picnic areas evaluates the following soil properties at variable depths in the soil: flooding, ponding, matter (PT, OL, OH) and permeability (Ksat) that is too high, allowing seepage in some climates.

wetness, slope, depth to bedrock, depth to cemented pans, fragments greater than 10 inches in size on the surface, fragments equal to or less than 3 inches in size, Unified class for high organic matter (PT, OL, OH), soil dustiness, sand or clay surface content, soil pH, salinity (EC), and permeability that is too high, allowing seepage in some climates. The interpretation for playgrounds evaluates the following soil properties at variable depths in the soil: flooding, ponding,

Table 6.-Recreational Development, Part II

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only three highest value limitations are listed. There may be more limitations. Fine-earth fractions and coarse fragments are reported on a weight basis. Brief summaries of rating criteria and abbreviations are listed on the last page of this report)

Map symbol and soil name	Pct. of . map	 Paths and trails 		 Lawns, landscaping, and gol 	f fairway:
	unit	Limitation	Value	Limitation	Value
101: Oxyaquic Xerofluvents	 35 	 Limitations Frequent flooding	0.50	Limitations Frequent flooding AWC 2-4" to 40" depth	0.90
Riverwash	35	 Not rated		 Not rated	
Fluvaquents	 15 	Limitations Saturation < 12" depth Fragments >10" >3% Frequent flooding	 1.00 1.00 0.50	Limitations Saturation < 12" depth Frequent flooding Fragments >3" 5 to 30%	1.00
101t: Lithnip	 40 	Limitations Slopes > 25% Surface fragments <3" >65% Fragments >10" .1 to 3%	 1.00 1.00 0.19	Limitations Bedrock depth < 20" Slopes > 15% Fragments (gravel size) >50%	1.00 1.00 1.00
Rock outcrop	25	 Not rated		 Not rated	
Fishsnooze	 20 	Limitations Slopes > 25%	1.00	Limitations Slopes > 15% Fragments (gravel size) >50% AWC 2-4" to 40" depth	1.00
102: Oxyaquic Xerofluvents	 45 	 Limitations Fragments >10" >3% Frequent flooding	1.00	Limitations Frequent flooding AWC 2-4" to 40" depth	0.90
Riverwash	40	 Not rated		 Not rated	
102t: Lithnip	40	 Limitations Surface fragments <3" >65% Slopes 15 - 25% Fragments >10" .1 to 3%	1.00	Limitations Bedrock depth < 20" Fragments (gravel size) >50% AWC < 2" to 40" depth	1.00
Rock outcrop	25	 Not rated		 Not rated	
Fishsnooze	 20 	 Limitations Slopes 15 - 25% 	0.32	Limitations Fragments (gravel size) >50% Slopes > 15% AWC 2-4" to 40" depth	1.00

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	of .	Paths and trails		 Lawns, landscaping, and golf 	fairways
	unit	Limitation	Value	Limitation	Value
104: Aquandic Humaquepts	 85 	Limitations Saturation < 12" depth Organic surface layer > 4" thick Very dusty	 1.00 1.00 1.00	Limitations Saturation < 12" depth Organic surface layer > 4" thick Frequent flooding	 1.00 1.00 0.90
111t: Whittell	 45 	 Limitations Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth Bedrock depth 20 to 40"	1.00 1.00 0.26
Jobsis	 25 	Limitations Slopes > 25% Fragments >10" >3% Surface sand fractions 70-90% by wt.	 1.00 1.00 0.70	Slopes > 15%	1.00 1.00 1.00
Rock outcrop	15	 Not rated		 Not rated	
151: Elcapitan	 80 	 Limitations Very dusty	1.00	 Limitations Occasional flooding	0.80
152: Vitrandic Haploxerolls	 80 	 Limitations Very dusty	1.00	 Limitations Occasional flooding AWC 2-4" to 40" depth	0.80
201: Leidig	 80 	 Limitations Very dusty 	1.00	 Limitations Occasional flooding	0.80
210: Rubble land	30	 Not rated		Not rated	
Typic Cryorthents	 25 	 Limitations Slopes > 25% 	1.00	Limitations Slopes > 15% Fragments (gravel size) 25 - 50% AWC 2-4" to 40" depth	1.00
Rock outcrop	20	 Not rated		 Not rated	
Xeric Dystrocryepts	20	 Limitations Slopes > 25% 	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
211: Xeric Dystrocryepts	 35 	 Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00
Canisrocks	30	Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of . map	Paths and trails		 Lawns, landscaping, and golf	fairways
	unit	Limitation	Value	Limitation	Value
211: Oxyaquic Dystrocryepts	 15 	 Limitations Slopes > 25% Saturation from 12 to 24" depth	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth Saturation from 12 to 24" depth	 1.00 0.49 0.01
213: Canisrocks	 50 	 Limitations Fragments >10" >3% Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Glacierpoint	 15 	Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Vitrandic Dystrocryepts-	 15 	Limitations Very dusty Fragments >10" >3% Slopes 15 - 25%	 1.00 1.00 0.50	Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
214: Marmotland	 25 	 Limitations Very dusty	1.00	Limitations Occasional flooding Slopes 8 to 15%	0.80
Oxyaquic Dystrocryepts	 15 	Limitations Surface sand fractions 70 - 90% by wt. Frequent flooding Saturation from 12 to 24" depth	0.66	Limitations AWC < 2" to 40" depth Frequent flooding Loamy coarse sand surface	 1.00 0.90 0.50
Xeric Dystrocryepts	 15 	 No limitations 		 Limitations AWC 2-4" to 40" depth	0.48
215: Typic Cryorthents	 40 	Limitations Slopes > 25% Fragments >3" >75% Fragments >10" >3%	 1.00 1.00 1.00	Fragments >3" > 30%	 1.00 1.00 0.76
Rock outcrop	20	 Not rated 		 Not rated 	
Rubble land	20	 Not rated		 Not rated	
219: Rock outcrop	40	Not rated		Not rated	
Rubble land	25	Not rated		Not rated	
Canisrocks	 15 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
221: Typic Cryorthents	 35 	 Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of . map	!		Lawns, landscaping, and go	lf fairway
	unit	Limitation	Value	Limitation	Value
221: Xeric Dystrocryepts	 20 	 Limitations Fragments >10" >3% Surface sand fractions 70-90% by wt.	1.00	Limitations Slopes > 15%	1.00
Oxyaquic Dystrocryepts	 15 	Limitations Fragments >10" >3% Frequent flooding Saturation from 12 to 24" depth	 1.00 0.50 0.01	!	 1.00 0.90 0.49
222: Canisrocks	 30 	Limitations Slopes > 25% Fragments >10" >3% Fragments >3" >75%	 1.00 1.00 1.00	Fragments >3" > 30%	 1.00 1.00 1.00
Rubble land	30	Not rated		Not rated	
Rock outcrop	20	 Not rated		Not rated	
Crazymule	 15 	 Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
223: Rock outcrop	 35	 Not rated		 Not rated	
Rubble land	35	Not rated		 Not rated	
Canisrocks	 20 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	! -	1.00
224:				 	
Rock outcrop	İ	Not rated 		Not rated 	
Crazymule	20 	Limitations Fragments >10" >3% Fragments >3" >75% Slopes 15 - 25%	 1.00 1.00 0.50	Slopes > 15%	1.00 1.00 0.99
Vitrandic Cryorthents	 15 	Limitations Very dusty Fragments >10" >3% Slopes 15 - 25%	 1.00 1.00 0.92	Limitations AWC < 2" to 40" depth Slopes > 15% Fragments >3" > 30%	1.00 1.00 1.00
225: Canisrocks	 15 	 Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Rock outcrop	15	 Not rated		 Not rated	
Rubble land	15	 Not rated		Not rated	
Vitrandic Dystrocryepts-	 15 	 Limitations Very dusty Fragments >10" >3%	1.00	 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of . map	!		 Lawns, landscaping, and golf	fairways
	unit	Limitation	Value	Limitation	Value
227: Canisrocks Crazymule		 Limitations Slopes > 25% Fragments >10" >3% Limitations	1.00	! -	 1.00 1.00
Crazymure	40 	Slopes > 25% Fragments >10" >3%	1.00	Slopes > 15%	1.00
228: Xeric Dystrocryepts	 35 	 Limitations Surface sand fractions 70 - 90% by wt.	0.76	Limitations AWC < 2" to 40" depth	1.00
Vitrandic Eutrocryepts	25 	Limitations Organic surface layer > 4" thick Very dusty Saturation from 12 to 24" depth	1.00	Limitations Organic surface layer > 4" thick Occasional flooding AWC 2-4" to 40" depth	 1.00 0.80 0.01
229: Marmotland	 40 	 Limitations Very dusty Fragments >10" >3%	1.00	Limitations Occasional flooding AWC 2-4" to 40" depth	0.80
Oxyaquic Dystrocryepts	40 	Limitations Saturation from 12 to 24" depth	0.01	Limitations AWC 2-4" to 40" depth Saturation from 12 to 24" depth	0.70
231: Canisrocks	 40 	 Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations AWC < 2" to 40" Slopes > 15%	1.00
Typic Cryaquents	 21 	 Limitations Saturation < 12" depth Fragments >10" >3% Fragments >3" >75%	 1.00 1.00 1.00	Saturation < 12" depth	 1.00 1.00 1.00
232: Canisrocks	 25 	Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00
Glacierpoint	21	No limitations		Limitations AWC < 2" to 40" depth	1.00
234: Rock outcrop	35	 Not rated 	j 	 Not rated 	
Rubble land	35	Not rated		Not rated	
235: Canisrocks	 35 	 Limitations Slopes > 25% 	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of . map	!		 Lawns, landscaping, and golf 	fairways
	unit	Limitation	Value	Limitation	Value
235: Rock outcrop	 30	 Not rated		 Not rated	
Rubble land	20	Not rated		Not rated	
005					į
237: Canisrocks	 25 	Limitations Fragments >10" >3%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth Bedrock depth 20 to 40"	 1.00 1.00 0.71
Glacierpoint	 15 	 Limitations Fragments >10" >3%	1.00	 Limitations AWC < 2" to 40" depth Slopes 8 to 15%	0.99
Vitrandic Cryorthents	 15 	Limitations Very dusty Fragments >10" >3% Surface sand fractions 70-90% by wt.	 1.00 1.00 0.08	Limitations Bedrock depth < 20" AWC < 2" to 40" depth Slopes 8 to 15%	 1.00 1.00 0.01
238: Oxyaquic Cryorthents	 25 	 Limitations Fragments >10" >3% Frequent flooding Saturation from 12 to 24" depth	 1.00 0.50 0.01	1 11 11 11 11 11	 0.90 0.53 0.01
Canisrocks	 15 	 Limitations Fragments >10" >3%	1.00	 Limitations AWC < 2" to 40" depth Slopes 8 to 15%	1.00
239: Crazymule	 45 	 Limitations Fragments >10" >3% 	1.00	 Limitations AWC < 2" to 40" depth Bedrock depth 20 to 40" Slopes 8 to 15%	 1.00 0.95 0.16
Canisrocks	 34 	 Limitations Fragments >10" >3% 	1.00	 Limitations AWC < 2" to 40" depth Slopes 8 to 15%	1.00
241: Canisrocks	 75 	 Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	 1.00 1.00
242: Rock outcrop	30	 Not rated		 Not rated	
Canisrocks	25	 Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00
Xeric Dystrocryepts	 16 	 Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
244: Typic Cryorthents	 45 	 Limitations Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	 1.00 1.00

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	of .	Paths and trails		 Lawns, landscaping, and gol 	f fairways
	unit	Limitation	Value	Limitation	Value
244: Rubble land	 25	 Not rated 		 Not rated 	
Rock outcrop	16	Not rated		Not rated	į
245: Rock outcrop	30	 Not rated		 Not rated	
Canisrocks	 22 	 Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Xeric Dystrocryepts	 20 	 Limitations Slopes 15 - 25% 	0.18	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
246: Rock outcrop, domes	90	Not rated		 Not rated	
247: Canisrocks	 20 	 Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00
Xeric Dystrocryepts	20	 No limitations		 Limitations AWC 2-4" to 40" depth	0.77
248: Canisrocks	 35 	 Limitations Slopes > 25% Fragments >10" >3% Fragments >3" >75%	 1.00 1.00 1.00	 Limitations Slopes > 15% Fragments >3" > 30% AWC < 2" to 40" depth	 1.00 1.00 1.00
Rock outcrop	30	Not rated		Not rated	
Glacierpoint	 15 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
249: Rock outcrop	45	 Not rated		 Not rated	
Canisrocks	30	Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
250: Canisrocks	 4 7 	Limitations Slopes > 25% Fragments >10" >3%	 1.00 1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Xeric Dystrocryepts	35 	 Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00
251: Glacierpoint	 30 	 Limitations Slopes > 25% Fragments >10" >3%	 1.00 1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	of .	!		 Lawns, landscaping, and golf	fairways
	unit	Limitation	Value	Limitation	Value
251: Typic Cryorthents	 20 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	1	1.00
252: Rock outcrop	20	 Not rated		 Not rated	
Canisrocks	 15 	 Limitations Fragments >10" >3% Slopes > 25%	1.00	1	1.00
Xeric Dystrocryepts	 15 	Limitations Fragments >10" >3% Surface sand fractions 70-90% by wt.	1.00	 Limitations AWC 2-4" to 40" depth Slopes 8 to 15%	0.98
253: Canisrocks	 25 	 Limitations Fragments >10" >3% Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Glacierpoint	 18 	 Limitations Fragments >10" >3% Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Humic Dystrocryepts	 15 	 Limitations Fragments >10" >3% Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
256: Craneflat	 25 	Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Rock outcrop	25	 Not rated		 Not rated	
Rubble land	20	 Not rated		 Not rated	
Waterwheel	 20 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
257: Badgerpass	 55 	 No limitations 	 	 Limitations AWC 2-4" to 40" depth	0.94
Oxyaquic Dystroxerpts	 35 	Limitations Frequent flooding Dusty Saturation from 12 to 24" depth	0.50	 Limitations Frequent flooding Slopes 8 to 15% Saturation from 12 to 24" depth	 0.90 0.16 0.01
258: Typic Dystroxerepts	 25 	 No limitations		 Limitations Slopes > 15%	1.00
Badgerpass	 20 	 Limitations Slopes > 25% 	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	of .	!		 Lawns, landscaping, and golf	Lawns, landscaping, and golf fairways		
	unit	Limitation	Value	Limitation	Value		
258: Dystric Xerorthents	20	 Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth Occasional flooding	 1.00 1.00 0.80		
260: Rock outcrop	45	 Not rated		 Not rated			
Craneflat	25	 Limitations Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	 1.00 1.00		
Dystric Xerorthents	20	 Limitations Slopes > 25% 	1.00	Limitations Slopes > 15% AWC 2-4" to 40" depth	 1.00 0.55		
261: Dystric Xeropsamments	25	 No limitations		 Limitations AWC 2-4" to 40" depth	0.71		
Typic Dystroxerepts	25	 Limitations Slopes > 25%	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	 1.00 0.01		
Badgerpass	 15 	Limitations Surface sand fractions 70 - 90% by wt. Slopes 15 - 25%	0.88	Limitations Slopes > 15% AWC 2-4" to 40" depth Fragments (gravel size) 25-50%	 1.00 0.92 0.08		
Rock outcrop	15	 Not rated		 Not rated			
262: Humic Dystroxerepts	30	Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	 1.00 1.00		
Dystric Xerorthents	25	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	 1.00 1.00		
Rock outcrop	20	 Not rated 		 Not rated 			
264: Crazymule	35	 No limitations 		 Limitations Slopes 8 to 15% AWC 2-4" to 40" depth	 0.63 0.59		
Canisrocks	28	 Limitations Fragments >10" >3%	1.00	Limitations AWC < 2" to 40" depth Slopes > 15%	 1.00 1.00		
267: Rock outcrop	40	 Not rated 		 Not rated 	 		
Typic Cryorthents	30	Limitations Fragments >10" >3% Surface sand fractions 70-90% by wt.	1.00	Limitations Coarse sand or sand surface AWC < 2" to 40" depth Fragments >3" 5 to 30%	 1.00 1.00 0.26		

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of . Paths and trails I map		 Lawns, landscaping, and gol 	Lawns, landscaping, and golf fairways		
	unit	Limitation	Value	Limitation	Value	
267: Xeric Dystrocryepts	 15 	 No limitations 		 Limitations AWC < 2" to 40" depth Slopes 8 to 15%	1.00	
268: Rock outcrop	40	 Not rated		 Not rated		
Canisrocks	 25 	Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	
Glacierpoint	 20 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	
269: Canisrocks	 20 	 Limitations Fragments >10" >3% Slopes 15 - 25%	1.00	: -	1.00	
Rock outcrop	20	 Not rated		 Not rated		
Glacierpoint	 15 	 Limitations Fragments >10" >3% Slopes > 25%	1.00	Limitations AWC < 2" to 40" depth Slopes > 15%	1.00	
270: Rock outcrop	35	 Not rated		 Not rated		
Typic Cryorthents	 25 	 Limitations Fragments >10" >3% Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	
Vitrandic Dystrocryepts-	 25 	 Very dusty Slopes > 25% Fragments >10" >3%	 1.00 1.00 1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	
271: Rock outcrop	60	 Not rated		 Not rated		
Lithic Xerorthents	 15 	 Limitations Surface sand fractions > 90% by wt. Slopes 15 - 25%	1.00	Limitations Bedrock depth < 20" AWC <2" to 40" depth Slopes > 15%	1.00 1.00 1.00	
Waterwheel	 15 	 Limitations Fragments >10" >3% Slopes > 25%	1.00	 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00	
273: Nevadafalls	 55 	 No limitations		 Limitations AWC < 2" to 40" depth	0.99	
Waterwheel	 30 	 Limitations Slopes 15 - 25%	0.82	Limitations AWC < 2" to 40" depth Slopes > 15%	1.00	
274: Rock outcrop, domes	 85 	 Not rated 	 	 Not rated 		

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of . Paths and trails map		 Lawns, landscaping, and golf 	fairways	
	unit	Limitation	Value	Limitation	Value
275: Oxyaquic Dystroxerepts	 25 	 Limitations Saturation from 12 to 24" depth 	0.01	 Limitations AWC 2-4" to 40" depth Occasional flooding Saturation from 12 to 24" depth	0.98
Dystric Xerorthents	25	 Limitations Fragments >10" >3%	1.00	 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00
Vitrandic Xerorthents	 25 	Limitations Very dusty Surface sand fractions > 90% by wt. Fragments >10" >3%	1.00	Limitations Occasional flooding Fragments >3" 5 to 30% AWC 2-4" to 40" depth	 0.80 0.79 0.01
Rubble land	15	 Not rated 		 Not rated 	
276: Happyisles	35	 No limitations	 	 Limitations AWC 2-4" to 40" depth	0.08
Typic Dystroxerepts	 35 	 Limitations Fragments >10" >3% Fragments >3" 25 to 75%	1.00	Limitations Fragments >3" 5 to 30% AWC 2-4" to 40" depth Slopes 8 to 15%	 0.99 0.75 0.16
277: Tuolumne	 45 	 Limitations Fragments >10" >3% Slopes > 25%	1.00	! -	1.00
Humic Dystroxerepts	35	 Limitations Fragments >10" >3% Slopes > 25%	1.00	! -	1.00
278: Rock outcrop	25	 Not rated		 Not rated	
Tuolumne	 25 	Limitations Slopes > 25% Fragments >10" >3% Surface sand fractions 70 - 90% by wt.	 1.00 1.00 0.34	Limitations Slopes > 15% AWC < 2" to 40" depth Fragments >3" 5 to 30%	 1.00 1.00 0.79
Humic Dystroxerepts	20	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Rubble land	15	 Not rated		 Not rated	
279: Canisrocks	40	 Limitations Fragments >10" >3% Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Xeric Dystrocryepts	 15 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	of .	!		 Lawns, landscaping, and golf fairways 		
	unit	Limitation	Value	Limitation	Value	
280: Typic Dystroxerepts	 35 	 Limitations Slopes > 25% Fragments >10" .1 to 3%	1.00		 1.00 0.03	
Humic Dystroxerepts	30	 Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	
Rock outcrop	25	 Not rated 	 	 Not rated 		
282: Clarkslodge	 50 	 Limitations Fragments >10" >3%	1.00	Limitations Slopes 8 to 15% AWC 2-4" to 40" depth	 0.63 0.12	
Craneflat	 25 	 Limitations Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	
Nevadafalls	 25 	 Limitations Slopes > 25% 	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	
283: Waterwheel	 35 	Limitations Slopes > 25% Surface sand fractions 70 - 90% by wt.	1.00		 1.00 1.00 0.99	
Nevadafalls	 30 	 Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00	
Rock outcrop	21	 Not rated 	 	 Not rated 		
285: Waterwheel	 30 	 Limitations Slopes > 25% Fragments >10" .1 to 3%	1.00		 1.00 1.00	
Humic Dystroxerepts	 16 	 Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC 2-4" to 40" depth	 1.00 0.73	
286: Nevadafalls	 26 	 Limitations Slopes 15 - 25% Surface sand fractions 70 - 90% by wt.	0.50	 Limitations Slopes > 15% AWC 2-4" to 40" depth	 1.00 0.49	
Typic Dystroxerepts	25	No limitations		Limitations AWC 2-4" to 40" depth	0.87	
Ultic Palexeralfs	 20 	Limitations Organic surface layer > 4" thick Fragments >10" >3%	1.00	 Limitations Organic surface layer > 4" thick Slopes 8 to 15%	 1.00 0.63	
Rock outcrop	 15			 Not rated		

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	of .	Paths and trails		 Lawns, landscaping, and go: 	Lawns, landscaping, and golf fairways		
	unit	Limitation	Value	Limitation	Value		
287: Badgerpass	 55 	 No limitations		 Limitations AWC 2-4" to 40" depth	0.90		
Waterwheel	 40 	Limitations Fragments >10" .1 to 3%	0.76	Limitations AWC < 2" to 40" depth Slopes 8 to 15%	1.00		
288: Rock outcrop	35	 Not rated		 Not rated			
Craneflat	20	No limitations		 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00		
Waterwheel	 20 	 Limitations Fragments >10" .1 to 3% Slopes 15 - 25%	0.76	 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00		
289: Waterwheel	 50 	Limitations Slopes > 25% Fragments >10" >3%	1.00	! -	1.00		
Craneflat	30	 Limitations Slopes > 25% Fragments >10" >3%	1.00	! -	1.00		
290: Humic Dystroxerepts	 40 	 Limitations Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00		
Tuolumne	 30 	Limitations Slopes > 25% Fragments >10" >3% Surface sand fractions 70 - 90% by wt.	 1.00 1.00 0.59	Fragments >3" > 30%	 1.00 1.00 1.00		
Typic Xerorthents	 15 	Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00		
Ultic Haploxeralfs	 15 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% 	1.00		
291: Ultic Haploxeralfs	 41 	 Limitations Slopes 15 - 25%	0.18	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00		
Typic Dystroxerepts	 31 	 Limitations Slopes > 25% 	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00		
292: Humic Dystroxerepts	 35 	Limitations Slopes > 25%	1.00	 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00		

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of . map	 		Lawns, landscaping, and golf fairways		
	unit	Limitation	Value	Limitation	Value	
292: Typic Haploxerults	 30	 No limitations		Limitations Slopes 8 to 15%	0.63	
293: Xeric Dystrocryepts	 70 	 No limitations 		 Limitations Slopes > 15% AWC 2-4" to 40" depth	 1.00 0.71	
Vitrandic Dystrocryepts-	 18 	 Limitations Very dusty Slopes > 25%	1.00	 Limitations Slopes > 15%	1.00	
294: Waterwheel	 65 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	
Typic Dystroxerepts	 35 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00	
295: Craneflat	 25 	Limitations Fragments >10" >3% Slopes > 25% Surface sand fractions 70 - 90% by wt.	 1.00 1.00 0.59	Limitations Slopes > 15% AWC < 2" to 40" depth Fragments >3" 5 to 30%	1.00 1.00 0.03	
Typic Dystroxerepts	 25 	 Limitations Slopes 15 - 25% 	0.82	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00	
296: Ultic Palexeralfs	 20 	 No limitations		 Limitations Slopes > 15%	1.00	
Humic Dystroxerepts	 15 	 Limitations Slopes 15 - 25%	0.50	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00	
297: Typic Xerorthents	 30 	 Limitations Slopes 15 - 25%	0.50	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	
Rock outcrop	25	 Not rated		 Not rated		
Typic Xeropsamments	 25 	 Limitations Slopes > 25%	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00	
298: Tuolumne	 41 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	
Typic Dystroxerepts	 31 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00	

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	of .	!		$oxed{Lawns}$ Lawns, landscaping, and gol	f fairway
	unit	Limitation	Value	Limitation	Value
299: Humic Dystroxerepts	 46 	 Limitations Fragments >10" >3% Slopes > 25%	1.00	! -	1.00
Ultic Haploxeralfs	 35 	 Limitations Slopes > 25% Fragments >10" .1 to 3%	1.00	! -	1.00
300: Typic Dystroxerepts	 35 	 No limitations 		 Limitations AWC < 2" to 40" depth Slopes > 15%	1.00
Ultic Haploxeralfs	 25 	 No limitations 		 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
301: Vitrandic Haploxerolls	 90 	 Limitations Very dusty	1.00	No limitations	
302: Typic Haploxerults	 45 	 No limitations 		 Limitations Slopes > 15%	1.00
Ultic Haploxeralfs	 41 	 Limitations Slopes > 25% 	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
303: Rock outcrop	30	 Not rated		Not rated	
Dystric Xeropsamments	20	Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Humic Dystroxerepts	 20 	Limitations Slopes > 25% Fragments >10" >3%	1.00	! -	1.00
Tuolumne	 20 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
304: Clarkslodge	 60 	 No limitations		 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
Rock outcrop	15	 Not rated 		 Not rated 	
305: Rock outcrop	 50	 Not rated	İ	Not rated	
Waterwheel	18 18 	Limitations Surface sand fractions >90% by wt. Slopes 15 - 25%	0.82	Limitations AWC < 2" to 40" depth Fragments (gravel size) >50% Slopes > 15%	1.00

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	of .	Paths and trails		$oxed{oxed{oxed}{oxed{oxed}{oxed{oxed}{oxed}}}}$ Lawns, landscaping, and gol	Lawns, landscaping, and golf fairways		
	unit	Limitation	Value	Limitation	Value		
305: Dystric Xeropsamments	 15 	 No limitations 		 Limitations AWC 2-4" to 40" depth	0.71		
306: Typic Cryopsamments	 50 	 No limitations 		 Limitations AWC < 2" to 40" depth Slopes 8 to 15%	 1.00 0.16		
Humic Dystrocryepts	 30 	 Limitations Slopes 15 - 25% Fragments >3" 25 to 75%	0.50	! 5	 1.00 1.00 0.35		
307: Rock outcrop	40	 Not rated		Not rated			
Dystric Xeropsamments	20	 Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00		
Dystric Xerorthents	 20 	Limitations Surface sand fractions > 90% by wt. Slopes 15 - 25%	1.00	Limitations AWC < 2" to 40" depth Fragments (gravel size) >50% Slopes > 15%	1.00 1.00 1.00 1.00		
309: Rock outcrop	50	 Not rated		Not rated			
Waterwheel	25	Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00		
Typic Dystroxerepts	 20 	 Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00		
310: Rock outcrop	55	 Not rated		Not rated			
Humic Dystroxerepts	 25 	 Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC < 2" to 40" depth	1.00		
Humic Lithic Haploxerepts	 20 	 Limitations Slopes > 25% Ponded (any duration) Fragments >10" >3%	1.00 1.00 1.00	Limitations Bedrock depth < 20" Ponded (any duration) Slopes > 15%	1.00 1.00 1.00		
311: Rock outcrop	45	 Not rated		Not rated			
Humic Dystroxerepts	 35 	Limitations Slopes > 25% Surface sand fractions 70 - 90% by wt. Fragments >3" 25 to 75%	1.00	Limitations AWC < 2" to 40" depth Fragments >3" > 30% Slopes > 15%	 1.00 1.00 1.00		

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of . map	Paths and trails		Lawns, landscaping, and golf fairways		
	unit	Limitation	Value	Limitation	Value	
311: Humic Lithic Haploxerepts	 19 	Limitations Ponded (any duration) Fragments >10" >3% Saturation from 12 to 24" depth	 1.00 1.00 0.98	Limitations Bedrock depth < 20" Ponded (any duration) AWC < 2" to 40" depth	1.00	
313: Nevadafalls	40	 No limitations 		 Limitations AWC < 2" to 40" depth	0.99	
Oxyaquic Dystrudepts	 40 	 Limitations Saturation from 12 to 24" depth	0.01	Limitations Occasional flooding Saturation from 12 to 24" depth AWC 2-4" to 40" depth	0.80	
314:						
Badgerpass	45	Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00	
Dystric Xeropsamments	 35 	 No limitations 		Limitations Slopes > 15% AWC 2-4" to 40" depth	 1.00 0.75	
Rock outcrop	15	 Not rated		Not rated		
315: Nevadafalls	 60 	 Limitations Slopes 15 - 25%	0.02	Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00	
Dystric Xeropsamments	 40 	 Limitations Slopes 15 - 25% 	0.82	Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00	
316: Dystric Xerorthents	 40 	Limitations Slopes > 25% Fragments >3" 25 to 75% Surface sand fractions 70 - 90% by wt.	 1.00 0.99 0.47	Limitations Slopes > 15% Fragments >3" > 30% AWC < 2" to 40" depth	 1.00 1.00 1.00	
Rock outcrop	40	 Not rated		Not rated		
Rubble land	20	 Not rated		Not rated		
318: Typic Dystroxerepts	 40 	 No limitations 		 Limitations AWC 2-4" to 40" depth	0.01	
Humic Dystroxerepts	36	Limitations Fragments >10" .1 to 3%	0.19	Limitations AWC 2-4" to 40" depth	0.02	
319: Humic Dystroxerepts	 30 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00	

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct.		Lawns, landscaping, and golf fairways		
	unit	Limitation	Value	Limitation	Value
319: Typic Haploxerults	 30 	 Limitations Slopes > 25%	1.00	Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
Inceptic Haploxeralfs	 25 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
320: Half Dome	 40 	 Limitations Slopes > 25% Fragments >10" .1 to 3%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Humic Dystroxerepts	 20 	 Limitations Slopes > 25%	1.00	 Limitations Slopes > 15% AWC < 2" to 40" depth	1.00
Rock outcrop	20	 Not rated 		 Not rated 	
321: Dystric Xeropsamments	 50 	 No limitations 		Limitations AWC 2-4" to 40" depth	0.93
Dystric Xerorthents	40 	 Limitations Surface sand fractions > 90% by wt. Slopes 15 - 25%	1.00	Limitations AWC < 2" to 40" depth Fragments (gravel size) >50% Slopes > 15%	1.00
322: Typic Xerorthents	 90 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
323: Ultic Haploxeralfs	 55 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
Humic Dysroxerepts	 45 	 Limitations Fragments >10" >3% 	1.00	 Limitations Slopes 8 to 15% AWC 2-4" to 40" depth	0.16
324: Humic Haploxerepts	 40 	 Limitations Slopes > 25%	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
Rock outcrop	35	 Not rated		 Not rated	
Ultic Haploxeralfs	 25 	 Limitations Slopes > 25% 	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00
325: Urban land	 80 	 Not rated 		 Not rated 	

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of . map			Lawns, landscaping, and golf fairways		
	unit	Limitation	Value	Limitation	Value	
328: Clarkslodge	 30 	 	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	 1.00 0.12	
Ultic Palexeralfs	 15 	 No limitations		Limitations Slopes > 15%	1.00	
401: Sentinel	 90 	 Limitations Very dusty 	1.00	 No limitations 		
412: Water	 85 	 Not rated 		 Not rated		
Riverwash	15	Not rated	ļ	Not rated	į	
501: Happyisles, sandy loam	 65 	 No limitations		 Limitations AWC 2-4" to 40" depth	0.15	
Happyisles, loamy fine sand, overwash	 20 	 No limitations 		 Limitations Occasional flooding AWC 2-4" to 40" depth	0.80	
502: Happyisles	 88 	 No limitations 		 Limitations AWC 2-4" to 40" depth	0.08	
504: Mollic Xerofluvents	 85 	 Limitations Frequent flooding	0.50	 Limitations Frequent flooding	0.90	
510t: Rubble land	40	 Not rated		 Not rated		
Lithnip	20 	Limitations Surface fragments <3" >65% Slopes 15 - 25% Fragments >10" .1 to 3%	 1.00 0.32 0.19	Limitations Bedrock depth < 20" Fragments (gravel size) >50% AWC < 2" to 40" depth	 1.00 1.00 1.00	
Rock outcrop	15	 Not rated		 Not rated		
551: Happyisles	 50	 Limitations Fragments >10" >3%	1.00	Limitations AWC 2-4" to 40" depth	0.08	
Half Dome	 45 	Limitations Fragments >10" >3% Fragments >3" 25 to 75%	 1.00 0.88	Limitations Fragments >3" > 30% AWC 2-4" to 40" depth Slopes 8 to 15%	 1.00 0.75 0.16	
552: Mollic Xerofluvents	 85 	 Limitations K-factor >.35 and slopes > 8% Frequent flooding	 1.00 0.50	 Limitations Frequent flooding Slopes 8 to 15%	0.90	

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of .			 Lawns, landscaping, and go: 	Lawns, landscaping, and golf fairways		
	unit	Limitation	Value	Limitation	Value		
590: Terric Haplosaprists	 85 	 No limitations 		 Limitations Occasional flooding	0.80		
601: Half Dome, very bouldery	 50 	Limitations Slopes > 25% Fragments >10" >3%	 1.00 1.00	! -	1.00		
Half Dome, cobbly	 45 	Limitations Slopes > 25% Fragments >3" >75% Fragments >10" >3%	 1.00 1.00 1.00	Limitations Slopes > 15% Fragments >3" > 30% AWC 2-4" to 40" depth	 1.00 1.00 0.75		
602: Half Dome	 85 	Limitations Fragments >10" >3% Fragments >3" 25 to 75% Slopes 15 - 25%	1.00 0.88 0.18	Limitations Fragments >3" > 30% Slopes > 15% AWC 2-4" to 40" depth	1.00 1.00 0.75		
610: Rubble land	65	 Not rated		Not rated			
Half Dome	 30 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	 1.00 0.75		
620: Half Dome, extremely stony sandy loam, warm-	 50 	 Limitations Slopes > 25% Fragments >10" >3% Fragments >3" 25 to 75%	 1.00 1.00 0.88	 Limitations Slopes > 15% Fragments >3" > 30% AWC 2-4" to 40" depth	 1.00 1.00 0.75		
Half Dome, very cobbly sandy loam, warm	 43 	 Limitations Slopes > 25% Fragments >10" >3%	1.00	 Limitations Slopes > 15% AWC 2-4" to 40" depth	1.00		
630: Rubble land	65	 Not rated		Not rated			
Half Dome	 30 	Limitations Slopes > 25% Fragments >10" >3% Fragments >3" 25 to 75%	 1.00 1.00 0.82	Limitations Slopes > 15% Fragments >3" > 30% AWC 2-4" to 40" depth	 1.00 1.00 0.75		
701: Vitrandic Haploxerolls	90	 Limitations Very dusty Fragments >10" >3% Slopes 15 - 25%	 1.00 1.00 0.08	 Limitations Slopes > 15% Fragments >3" > 30%	1.00		
702: Vitrandic Dystroxerepts-	90	 Limitations Very dusty Slopes 15 - 25% Fragments >3" 25 to 75%	 1.00 0.08 0.01	 Limitations Slopes > 15% Fragments >3" 5 to 30% AWC 2-4" to 40" depth	 1.00 0.99 0.02		
900: Rock outcrop	 95 	 Not rated		Not rated			

Soil Survey of Yosemite National Park, California

Table 6.-Recreational Development, Part II-Continued

Map symbol and soil name	Pct. of . map	Paths and trails		 Lawns, landscaping, and golf	fairways
	unit	Limitation	Value	Limitation	Value
DAM: Dam	 100	 Not rated	 	 Not rated	
W: Water	 100 	 Not rated	 	 Not rated 	

The interpretation for paths and trails evaluates the following soil properties at variable depths in the soil: flooding; ponding; wetness; slope; fragments less than, equal to, or greater than 3 inches in size; clay and sand content in the surface layer; fragments on the surface that are more than or equal to 10 inches in size; Unified classes for high organic matter (PT, OL, OH); soil dustiness; and the potential of the soil to erosion by water.

The interpretation for lawns, landscaping, and golf fairways evaluates the following soil properties at variable depths in the soil: flooding; ponding; wetness; slope; depth to bedrock; depth to a cemented pan; fragments greater than, equal to, or less than 3 inches in size; Unified class for high organic matter (PT, OL, OH); soil dustiness; sand or clay surface content; fragments on the surface greater than or equal to 10 inches in size; soil pH; salinity (EC); sodium content (SAR); calcium carbonates; and sulfur content.

Table 7.-Building Site Development, Part I

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only three highest value limitations are listed. There may be more limitations. Fine-earth fractions and coarse fragments are reported on a weight basis. Brief summaries of rating criteria and abbreviations are listed on the last page of this report)

Map symbol and soil name	Pct. of map	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
101: Oxyaquic Xerofluvents	3 5	Limitations Flooding > rare	1.00	Limitations Flooding > rare Saturation from 2.5' to 6' depth	1.00	Limitations Flooding > rare	1.00
Riverwash	35	Limitations Flooding > rare Saturation < 18" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation < 18" depth	1.00
Fluvaquents	15	Limitations Flooding > rare Saturation < 18" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation < 18" depth	1.00
101t: Lithnip	0 4	Limitations Slopes > 15% Bedrock (hard) < 20" depth	1.00	Limitations Slopes > 15% Bedrock (hard) < 40" depth	1.00	Limitations Slopes > 8% Bedrock (hard) < 20" depth	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
Fishsnooze	70	Limitations Slopes > 15% Fragments (>3") 25 to 50% Bedrock (hard) from 20 to 40"	1.00 0.89 0.10	Limitations Slopes > 15% Bedrock (hard) < 40" depth Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50% Bedrock (hard) from 20 to 40"	0.89
102: Oxyaquic Xerofluvents	4 5	Limitations Flooding > rare	1.00	Limitations Flooding > rare Saturation from 2.5' to 6' depth	1.00	Limitations Flooding > rare	1.00
Riverwash	0 4	Limitations Flooding > rare Saturation < 18" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation < 18" depth	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	nap	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Lim	Value	Limitation	Value	Limitation	Value
102t: Lithnip	4 0	Limitations Bedrock (hard) < 20" depth Slopes > 15%	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 15%	1.00	Limitations Slopes > 8% Bedrock (hard) < 20" depth	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
Fishsnooze	70	Limitations Slopes > 15% Fragments (>3") 25 to 50% Bedrock (hard) from 20 to 40"	1.00 0.89 0.10	Limitations Bedrock (hard) < 40" depth Slopes > 15% Fragments (>3") 25 to 50%	1.00 1.00 0.89	Limitations Slopes > 8% Fragments (>3") 25 to 50% Bedrock (hard) from 20 to 40"	1.00 0.89 0.10
104: Aquandic Humaquepts	8 22	Limitations Flooding > rare Saturation < 18" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation < 18" depth	1.00
111t: Whittell	4 5	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50% Bedrock (soft) from 20 to 40"	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Jobsis	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15% Bedrock (soft) < 20" depth	1.00	Limitations Slopes > 8%	1.00
Rock outcrop	12	Not rated		Not rated		Not rated	
151; Elcapitan	8 80	Limitations Flooding > rare	1.00	Limitations Flooding > rare Saturation from 2.5' to 6' depth	1.00	Limitations Flooding > rare	1.00
152: Vitrandic Haploxerolls	8	Limitations Flooding > rare	1.00	Limitations Flooding > rare Saturation from 2.5' to 6' depth	1.00	Limitations Flooding > rare	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of map	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
201: Leidig	0 8	Limitations Flooding > rare	1.00	Limitations Flooding > rare Saturation from 2.5' to 6' depth	1.00	Limitations Flooding > rare	1.00
210: Rubble land	30	Not rated		Not rated		Not rated	
Typic Cryorthents	25	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
Xeric Dystrocryepts	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
211: Xeric Dystrocryepts	3.5	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Canisrocks	30	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Oxyaquic Dystrocryepts	15	Limitations Slopes > 15% Saturation from 18 to 30" depth	1.00	Limitations Saturation < 2.5' depth Slopes > 15%	1.00	Limitations Slopes > 8% Saturation from 18 to 30" depth	1.00
213: Canisrocks	20	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Glacierpoint	15	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Vitrandic Dystrocryepts-	15	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00

Table 7.-Building Site Development, Part I-Continued

<u> </u>	Pct. of map	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limi	Value	Limitation	Value
	25	Limitations Flooding > rare Slopes 8 to 15%	0.01	Limitations Flooding > rare Saturation from 2.5' to 6' depth Slopes 8 to 15%	0.03	Limitations Flooding > rare Slopes > 8%	1.00 0.98
	15	Limitations Flooding > rare Saturation from 18 to 30" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation from 18 to 30" depth	1.00
	15	No limitations		No limitations		Limitations Slopes are from 4 to 8%	0.02
	40	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
	20	Not rated		Not rated		Not rated	
	20	Not rated		Not rated		Not rated	
	40	Not rated		Not rated		Not rated	
	25	Not rated		Not rated		Not rated	
	15	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
	3 2	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to to 50%	1.00
	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
	15	Limitations Slopes > 15% Flooding > rare Saturation from 18 to 30" depth	1.00	Limitations Slopes > 15% Flooding > rare Saturation < 2.5' depth	1.00	Limitations Slopes > 8% Flooding > rare Saturation from 18 to 30" depth	1.00 1.00 0.56
		_		_	_		

Table 7.-Building Site Development, Part I-Continued

Map symbol	Pct.	Dwellings without		Dwellings with hasements		Small commercial	
	unit	Limi	Value	Limitation	Value	Limitation	Value
222: Canisrocks	30	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Rubble land	30	Not rated		Not rated		Not rated	
Rock outcrop	20	Not rated		Not rated		Not rated	
Crazymule	15	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
223: Rock outcrop	35	Not rated		Not rated		Not rated	
Rubble land	35	Not rated		Not rated		Not rated	
Canisrocks	70	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
224: Rock outcrop	40	Not rated		Not rated		Not rated	
Crazymule	70	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Vitrandic Cryorthents	15	Limitations Slopes > 15% Bedrock (hard) from 20 to 40"	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 15%	1.00	Limitations Slopes > 8% Bedrock (hard) from 20 to 40"	1.00
225: Canisrocks	15	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Rock outcrop	12	Not rated		Not rated		Not rated	
Rubble land	12	Not rated		Not rated		Not rated	
Vitrandic Dystrocryepts-	12	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Lim	Value	Limitation	Value	Limitation	Value
227: Canisrocks	45	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Crazymule	40	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to to 50%	1.00
228: Xeric Dystrocryepts	35	No limitations		No limitations		Limitations Slopes are from 4 to 8%	0.26
Vitrandic Eutrocryepts	2 5	Limitations Flooding > rare Saturation from 18 to 30" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation from 18 to 30" depth Slopes are from 4 to 8%	1.00
229: Marmotland	0 4	Limitations Flooding > rare	1.00	Limitations Flooding > rare Saturation from 2.5' to 6' depth	1.00	Limitations Flooding > rare Slopes are from 4 to 8%	1.00
Oxyaquic Dystrocryepts	40	Limitations Saturation from 18 to 30" depth	0.56	Limitations Saturation < 2.5' depth	1.00	Limitations Saturation from 18 to 30" depth Slopes are from 4 to 8%	0.56
231: Canisrocks	0 4	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Typic Cryaquents	21	Limitations Saturation < 18" depth Fragments (>3") 25 to 50% Slopes 8 to 15%	1.00 0.99 0.37	Limitations Saturation < 2.5' depth Fragments (>3") 25 to 50% Slopes 8 to 15%	1.00 0.99 0.37	Limitations Slopes > 8% Saturation < 18" depth Fragments (>3") 25 to 50%	1.00 1.00 0.99
232: Canisrocks	25	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of map	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limitation	Value	Limi	Value
232: Glacierpoint	21	Limitations Fragments (>3") 25 to 50%	0.19	Limitations Fragments (>3") 25 to 50%	0.19	Limitations Slopes are from 4 to 8% Fragments (>3") 25 to 50%	0.26
234: Rock outcrop	35	Not rated		Not rated		Not rated	
Rubble land	35	Not rated		Not rated		Not rated	
235: Canisrocks	35	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Rock outcrop	30	Not rated		Not rated		Not rated	
Rubble land	20	Not rated		Not rated		Not rated	
237; Canisrocks	2 5	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Bedrock (soft) from 20 to 40" Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Glacierpoint	15	Limitations Slopes 8 to 15% Fragments (>3") 25 to 50%	0.63	Limitations Slopes 8 to 15% Fragments (>3") 25 to 50%	0.63	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Vitrandic Cryorthents	15	Limitations Bedrock (soft) < 20" depth Slopes 8 to 15%	1.00	Limitations Bedrock (soft) < 20" depth Slopes 8 to 15%	0.01	Limitations Bedrock (soft) < 20" depth Slopes > 8%	1.00
238: Oxyaquic Cryorthents	2 5	Limitations Flooding > rare Saturation from 18 to 30" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation from 18 to 30" depth	1.00
Canisrocks	15	Limitations Fragments (>3") >50% Slopes 8 to 15%	1.00	Limitations Fragments (>3") >50% Slopes 8 to 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
-		_		-	-		_

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct.	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limi	Value	Limitation	Value	Limitation	Value
239: Crazymule	4 5	Limitations Slopes 8 to 15%	0.16	Limitations Bedrock (soft) from 20 to 40" Slopes 8 to 15%	0.95	Limitations Slopes > 8%	1.00
Canisrocks	3 4	Limitations Fragments (>3") >50% Slopes 8 to 15%	1.00	Limitations Fragments (>3") >50% Slopes 8 to 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
241: Canisrocks	7 5	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
242: Rock outcrop	30	Not rated		Not rated		Not rated	
Canisrocks	25	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Xeric Dystrocryepts	16	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
244: Typic Cryorthents	4 5	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Rubble land	25	Not rated		Not rated		Not rated	
Rock outcrop	16	Not rated		Not rated		Not rated	
245: Rock outcrop	30	Not rated		Not rated		Not rated	
Canisrocks		Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Xeric Dystrocryepts	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
246: Rock outcrop, domes	06	Not rated		Not rated		Not rated	

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Lim	Value	Limi	Value	Limitation	Value
247: Canisrocks	70	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Xeric Dystrocryepts	20	No limitations		No limitations		Limitations Slopes are from 4 to 8%	0.26
248: Canisrocks	35	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Rock outcrop	30	Not rated		Not rated		Not rated	
Glacierpoint	15	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to to 50%	1.00
249: Rock outcrop	45	Not rated		Not rated		Not rated	
Canisrocks	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
250: Canisrocks	47	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Xeric Dystrocryepts	35	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
251: Glacierpoint	30	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Typic Cryorthents	20	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	0.11	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
252; Rock outcrop	20	Not rated		Not rated		Not rated	

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of map	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
252: Canisrocks	15	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Xeric Dystrocryepts	15	Limitations Slopes 8 to 15%	0.63	Limitations Slopes 8 to 15%	0.63	Limitations Slopes > 8%	1.00
253; Canisrocks	25	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Glacierpoint	18	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Humic Dystrocryepts	15	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
256: Craneflat	25	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
Rubble land	20	Not rated		Not rated		Not rated	
Waterwheel	20	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
257: Badgerpass	55	No limitations		No limitations		No limitations	
Oxyaquic Dystroxerepts	3.5	Limitations Flooding > rare Saturation from 18 to 30" depth Slopes 8 to 15%	1.00 0.56 0.16	Limitations Flooding > rare Saturation < 2.5' depth Slopes 8 to 15%	1.00 1.00 0.16	Limitations Slopes > 8% Flooding > rare Saturation from 18 to 30" depth	1.00 1.00 0.56
258: Typic Dystroxerepts	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Badgerpass	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limi	Value	Limitation	Value	Limitation	Value
258: Dystric Xerorthents	50	Limitations Slopes > 15% Flooding > rare Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Flooding > rare Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Flooding > rare Fragments (>3") 25 to 50%	1.00
260: Rock outcrop	45	Not rated		Not rated		Not rated	
Craneflat	72	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Dystric Xerorthents	70	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
261: Dystric Xeropsamments	25	No limitations		No limitations		Limitations Slopes are from 4 to 8%	0.74
Typic Dystroxerepts	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Badgerpass	15	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
262: Humic Dystroxerepts	30	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Dystric Xerorothents	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
264: Crazymule	s 5	Limitations Slopes 8 to 15% Fragments (>3") 25 to 50%	0.63	Limitations Slopes 8 to 15% Fragments (>3") 25 to 50%	0.63	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Canisrocks	 23 8	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol	Pct.	Dwellings without		Dwellings with hasements		Small commercial	
	unit	Lim	Value	Limitation	Value	Limitation	Value
267: Rock outcrop	4 0	Not rated		Not rated		Not rated	
Typic Cryorthents	30	Limitations Fragments (>3") >50%	1.00	Limitations Fragments (>3") >50%	1.00	Limitations Fragments (>3") >50% Slopes are from 4 to 8%	1.00
Xeric Dystrocrepts	12	Limitations Slopes 8 to 15%	0.63	Limitations Slopes 8 to 15%	0.63	Limitations Slopes > 8%	1.00
268; Rock outcrop	40	Not rated		Not rated		Not rated	
Canisrocks	72	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Glacierpoint	50	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
269: Canisrocks	5	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
Glacierpoint	15	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
270: Rock outcrop	35	Not rated		Not rated		Not rated	
Typic Cryorthents	72	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Vitrandic Dystrocryepts-	25	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
271: Rock outcrop	09	Not rated		Not rated		Not rated	

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of map	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
271; Lithic Xerorthents	15	Limitations Bedrock (hard) < 20" depth Slopes > 15%	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 15%	1.00	Limitations Slopes > 8% Bedrock (hard) < 20" depth	1.00
Waterwheel	12	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
273: Nevadafalls	55	No limitations		No limitations		Limitations Slopes are from 4 to 8%	0.02
Waterwheel	30	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
274: Rock outcrop, domes	82	Not rated		Not rated		Not rated	
275: Oxyaquic Dystroxerepts	2 55	Limitations Flooding > rare Saturation from 18 to 30" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation from 18 to 30" depth Slopes are from 4 to 8%	1.00
Dystric Xerorothents	72	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Vitrandic Xerorothents	2	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00
Rubble land	12	Not rated		Not rated		Not rated	
276: Happyisles	35	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00
Typic Dystroxerepts	3 2	Limitations Slopes 8 to 15% Fragments (>3") 25 to 50%	0.16	Limitations Slopes 8 to 15% Fragments (>3") 25 to 50%	0.16	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
	_	_	_				_

Table 7.-Building Site Development, Part I-Continued

	Pct.	Dwellings without		Dwellings with		Small commercial	
oil name	map	basements		basements		buildings	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
277; Tuolumne	4 5	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Humic Dystroxerepts	32	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
278: Rock outcrop	25	Not rated		Not rated		Not rated	
Tuolumne	2 2	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	
Humic Dystroxerepts	70	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Rubble land	15	Not rated		Not rated		Not rated	
279: Canisrocks	4 0	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Xeric Dystrocryepts	15	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	<pre>Limitations Slopes > 8% Fragments (>3") >50%</pre>	1.00
280: Typic Dystroxerepts	35	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Humic Dystroxerepts	30	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
282: Clarkslodge	20	Limitations Slopes 8 to 15% Fragments (>3") 25 to 50% Shrink-swell (LEP 3-6)	0.63 0.11 0.01	Limitations Slopes 8 to 15% Shrink-swell (LEP 3-6) Fragments (>3") 25 to 50%	0.63	Limitations Slopes > 8% Fragments (>3") 25 to 50% Shrink-swell (LEP 3-6)	1.00 0.11 0.01

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct.	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limi	Value	Limitation	Value
282; Craneflat		Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Nevadafalls	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
283: Waterwheel	35	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Nevadafalls	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Rock outcrop	21	Not rated		Not rated		Not rated	
285: Waterwheel	30	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Humic Dystroxerepts	16	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
286: Nevadafalls	7 2 9	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Typic Dystroxerepts	25	No limitations		No limitations		Limitations Slopes are from 4 to 8%	0.26
Ultic Palexeralfs	70	Limitations Shrink-swell (LEP >6) Slopes 8 to 15%	0.99	Limitations Shrink-swell (LEP >6) Slopes 8 to 15%	1.00	Limitations Slopes > 8% Shrink-swell (LEP >6)	1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
287: Badgerpass	52	No limitations		No limitations		Limitations Slopes are from 4 to 8%	0.74
Waterwheel	4	Limitations Slopes 8 to 15% Fragments (>3") 25 to 50%	0.63	Limitations Slopes 8 to 15% Fragments (>3") 25 to 50%	0.63	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limi	Value	Limi	Value	Limitation	Value
288: Rock outcrop	35	Not rated		Not rated		Not rated	
Craneflat	70	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Waterwheel	70	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
289: Waterwheel	20	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Craneflat	30	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
290: Humic Dystroxerepts	4 0	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Tuolumne	30	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Typic Xerorthents	15	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Ultic Haploxeralfs	15	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
291: Ultic Haploxeralfs	4 1	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Typic Dystroxerepts	31	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00

Table 7.-Building Site Development, Part I-Continued

	Pct.	Dwellings without		Dwellings with		Small commercial	
and soil name	map	basements Limitation	Value	basements Limitation	Value	buildings	Value
292: Humic Dystroxerepts	3.5	Limitatio Slopes Fragmen	1.00	Limitatio Slopes Fragmen	1.00	Limitations Slopes > 8% Fragments (>3") 25	1.00
Typic Haploxerults	30	Limitations Shrink-swell (LEP 3-6) Slopes 8 to 15%	0.78	Limitations Shrink-swell (LEP 3-6) Slopes 8 to 15%	0.78	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
293: Xeric Dystrocryepts	70	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Vitrandic Dystrocryepts-	18	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
294: Waterwheel	9	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Typic Dystroxerepts	35	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
295: Craneflat	25	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Typic Dystroxerepts	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
296: Ultic Palexeralfs	70	Limitations Slopes > 15% Shrink-swell (LEP >6)	1.00	Limitations Shrink-swell (LEP >6) Slopes > 15%	1.00	Limitations Slopes > 8% Shrink-swell (LEP >6)	1.00
Humic Dystroxerepts	15	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
297: Typic Xerorthents	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
Typic Xeropsamments	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
298: Tuolumne	4 T	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Typic Dystroxerepts	31	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
299: Humic Dystroxerepts	9 4 9	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to to 50%	1.00
Ultic Haploxeralfs	35	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
300: Typic Dystroxerepts	3.5	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
Ultic Haploxeralfs	25	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
301: Vitrandic Haploxerolls	06	Limitations Flooding > rare Saturation from 18 to 30" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation from 18 to 30" depth	1.00
302: Typic Haploxerults	45	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
Ultic Haploxeralfs	41	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
303; Rock outcrop	30	Not rated		Not rated		Not rated	
Dystric Xeropsamments	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limitation	Value	Limi	Value
303: Humic Dystroxerepts	70	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Tuolumne	20	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to to 50%	1.00
304: Clarkslodge	09	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
305: Rock outcrop	20	Not rated		Not rated		Not rated	
Waterwheel	18	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Dystric Xeropsamments	15	No limitations		No limitations		Limitations Slopes are from 4 to 8%	6 0.74
306: Typic Cryopsamments	20	Limitations Slopes 8 to 15%	0.16	Limitations Slopes 8 to 15%	0.16	Limitations Slopes > 8%	1.00
Humic Dystrocryepts	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
307: Rock outcrop	40	Not rated		Not rated		Not rated	
Dystric Xeropsamments	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Dystric Xerorthents	70	Limitations Flooding > rare Slopes > 15%	1.00	Limitations Flooding > rare Slopes > 15%	1.00	Limitations Slopes > 8% Flooding > rare	1.00
309; Rock outcrop	20	Not rated		Not rated		Not rated	
Waterwheel	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of map	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
309; Typic Dystroxerepts	50	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
310: Rock outcrop	55	Not rated		Not rated		Not rated	
Humic Dystroxerepts	72	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Humic Lithic Haploxerepts	50	Limitations Slopes > 15% Ponded (any duration) Saturation < 18" depth	1.00	Limitations Slopes > 15% Ponded (any duration) Saturation < 2.5' depth	1.00	Limitations Slopes > 8% Ponded (any duration) Saturation < 18" depth	1.00
311: Rock outcrop	45	Not rated		Not rated		Not rated	
Humic Dystroxerepts	3 5	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Humic Lithic Haploxerepts	19	Limitations Ponded (any duration) Saturation < 18" depth Slopes > 15%	1.00	Limitations Ponded (any duration) Saturation < 2.5' depth Bedrock (hard) < 40" depth	1.00	Limitations Slopes > 8% Ponded (any duration) Saturation < 18" depth	1.00
313: Nevadafalls	4 0	No limitations		No limitations		Limitations Slopes are from 4 to 8%	0.26
Oxyaquic Dystrudepts	4	Limitations Flooding > rare Saturation from 18 to 30" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation from 18 to 30" depth Slopes are from 4 to 8%	1.00 0.56 0.26
314: Badgerpass	4 5	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Dystric Xeropsamments	35	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of map	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
314: Rock outcrop	15	Not rated		Not rated		Not rated	
315; Nevadafalls	09	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Dystric Xeropsamments	40	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
316: Dystric Xerorthents	0 4 0	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Rock outcrop	40	Not rated		Not rated		Not rated	
Rubble land	20	Not rated		Not rated		Not rated	
318: Typic Dystroxerepts	40	No limitations		No limitations		Limitations Slopes are from 4 to 8%	0.26
Humic Dystroxerepts	36	No limitations		No limitations		Limitations Slopes are from 4 to 8%	0.02
319: Humic Dystroxerepts	30	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Typic Haploxerults	30	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
Inceptic Haploxeralfs	25	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
320: Half Dome	4 0	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limi	Value	Limitation	Value	Limi	Value
320; Humic Dystroxerepts	70	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
321: Dystric Xeropsamments	20	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00
Dystric Xerorthents	40	Limitations Flooding > rare Slopes > 15%	1.00	Limitations Flooding > rare Slopes > 15%	1.00	Limitations Slopes > 8% Flooding > rare	1.00
322: Typic Xerorothents	0 6	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
323: Ultic Haploxeralfs	55	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
Humic Dystroxerepts	45	Limitations Slopes 8 to 15% Shrink-swell (LEP 3-6)	0.16	Limitations Slopes 8 to 15%	0.16	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
324: Humic Haploxerepts	4	Limitations Slopes > 15% Shrink-swell (LEP 3-6) Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Shrink-swell (LEP 3-6) Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6) Fragments (>3") 25 to 50%	1.00
Rock outcrop	35	Not rated		Not rated		Not rated	
Ultic Haploxeralfs	2 5	Limitations Slopes > 15% Shrink-swell (LEP 3-6) Fragments (>3") 25 to 50%	1.00 0.78 0.63	Limitations Slopes > 15% Fragments (>3") 25 to 50% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6) Fragments (>3") 25 to 50%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol	Pct.	Dwellings without		Dwellings with		Small commercial	
	unit	Limitation	Value	Limi	Value	Limitation	Value
125: Urban land	80	Not rated		Not rated		Not rated	
Clarkslodge	30	Limitations Slopes > 15% Fragments (>3") 25 to 50% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50% Shrink-swell (LEP 3-6)	1.00 0.79 0.22	Limitations Slopes > 8% Fragments (>3") 25 to 50% Shrink-swell (LEP 3-6)	1.00
Ultic Palexeralfs	15	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 8% Shrink-swell (LEP 3-6)	1.00
801: Sentinel	06	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00
112: Water	85	Not rated		Not rated		Not rated	
Riverwash	15	Limitations Flooding > rare Saturation < 18" depth	1.00	Limitations Flooding > rare Saturation < 2.5' depth	1.00	Limitations Flooding > rare Saturation < 18" depth	1.00
001: Happyisles, sandy loam	65	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00
Happyisles, loamy fine sand, overwash	20	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00
002: Happyisles	& &	Limitations Flooding > rare	1.00	Limitations Flooding > rare Saturation from 2.5' to 6' depth	1.00	Limitations Flooding > rare	1.00
Mollic Xerofluvents	8 21	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00
510t: Rubble land	40	Not rated		Not rated		Not rated	
Lithnip	70	Limitations Bedrock (hard) < 20" depth Slopes > 15%	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 15%	1.00	Limitations Slopes > 8% Bedrock (hard) < 20" depth	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol	Pat.	Dwellings without basements		Dwellings with hasements		Small commercial	
	unit	Limi	Value	Limitation	Value	Limitation	Value
510t; Rock outcrop	15	Not rated		Not rated		Not rated	
551: Happyisles	20	Limitations Flooding > rare	1.00	Limitations Flooding > rare	1.00	Limitations Flooding > rare Slopes are from 4 to 8%	1.00
Half Dome	4 5	Limitations Fragments (>3") 25 to 50% Slopes 8 to 15%	0.92	Limitations Fragments (>3") 25 to 50% Slopes 8 to 15%	0.92	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
552: Mollic Xerofluvents	85	Limitations Flooding > rare Slopes 8 to 15%	1.00	Limitations Flooding > rare Slopes 8 to 15%	1.00	Limitations Slopes > 8% Flooding > rare	1.00
590: Terric Haplosaprists	& 12	Limitations Flooding > rare Organic matter (PT, OL, or OH)	1.00	Limitations Flooding > rare Organic matter (PT, OL, or OH) Saturation from 2.5' to 6' depth	1.00	Limitations Flooding > rare Organic matter (PT, OL, or OH)	1.00
601: Half Dome, very bouldery	20	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00 0.88	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00
Half Dome, cobbly	4 5	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
602: Half Dome	8 22	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to to 50%	1.00
610: Rubble land	65	Not rated		Not rated		Not rated	
Half Dome	30	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") 25 to 50%	1.00

Table 7.-Building Site Development, Part I-Continued

Map symbol and soil name	Pct.	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
620: Half Dome, extremely stony sandy loam, warm-	20	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
Half Dome, very cobbly sandy loam, warm	44 8	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
630: Rubble land	65	Not rated		Not rated		Not rated	
Half Dome	30	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
701: Vitrandic Haploxerolls	06	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
702: Vitrandic Dystroxerepts-	06	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") >50%	1.00
900: Rock outcrop	95	Not rated		Not rated		Not rated	
DAM: Dam	100	Not rated		Not rated		Not rated	
W: Water	100	Not rated		Not rated		Not rated	

slope, subsidence of organic soils, shrink-swell expressed as linear extensibility percent (LEP), organic The interpretation for dwellings without basements evaluates the following soil properties, some at variable depths in the soil: Unified classes for low soil strength (PT, OL, OH), depth to hard or soft bedrock, depth to thick or thin cemented pans, and flooding, ponding, wetness,

fragments greater than 3 inches in size.

The interpretation for dwellings with basements evaluates the following soil properties, some at variable depths in the soil: flooding, ponding, wetness, slope, subsidence of organic soils, shrink-swell potential expressed as linear extensibility percent (LEP), organic Unified classes for low strength (PT, OL, OH), depth to hard or soft bedrock, depth to thick or thin cemented pans, and fragments greater than 3 inches in size.

The interpretation for small commercial buildings evaluates the following soil properties, some at variable depths in the soil: flooding, ponding, wetness, slope, subsidence of organic soils, shrink-swell potential expressed as linear extensibility percent (LEP), depth to hard or soft bedrock, depth to thick or thin cemented pans, and fragments greater than 3 inches in size.

Table 7.-Building Site Development, Part II

information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. Brief summaries of The rating is based on the limitation with the highest value. Only three highest value limitations are listed. There may be more limitations. Fine-earth fractions and coarse fragments are reported on a weight basis. rating criteria and abbreviations are listed on the last page of this report) (The

	Pct.	Local roads and		Shallow excavations	
and soil name	map	streets	Value	Limitation	Value
101: Oxyaquic Xerofluvents	35	Limitations Flooding > occasional Frost action possible	1.00	Limitations Caving potential Saturation from 2.5' to 6' depth	1.00
Riverwash	35	Limitations Saturation < 12" depth Flooding > occasional	1.00	Frequent or occasional ilouding Limitations Saturation < 2.5' depth Frequent or occasional flooding Caving potential is low	0.50
Fluvaquents	15	Limitations Saturation < 12" depth Flooding > occasional Frost action possible	1.00	Limitations Saturation < 2.5' depth Caving potential Frequent or occasional flooding	1.00
lolt: Lithnip	40	Limitations Bedrock (hard) < 20" depth Slopes > 15% Frost action possible	1.00 1.00 0.50	Limitations Bedrock (hard) < 40" depth Slopes > 15% Caving potential is low	1.00
Rock outcrop	25	Not rated		Not rated	
Fishsnooze	20	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 15% Fragments (>3") 25 to 50%	1.00
102: Oxyaquic Xerofluvents	45	Limitations Flooding > occasional Frost action possible	1.00	Limitations Caving potential Saturation from 2.5' to 6' depth Frequent or occasional flooding	1.00
Riverwash	40	Limitations Saturation < 12" depth Flooding > occasional	1.00	Limitations Saturation < 2.5' depth Frequent or occasional flooding Caving potential is low	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol	Pct.	Local roads and		Shallow excavations	
and soll name	map unit	Streets Limitation	Value	Limitation	Value
102t: Lithnip	40	Limitations Bedrock (hard) < 20" depth Slopes > 15% Frost action possible	1.00 1.00 0.50	Limitations Bedrock (hard) < 40" depth Slopes > 15% Caving potential is low	1.00
Rock outcrop	25	Not rated		Not rated	
Fishsnooze	70	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 15% Fragments (>3") 25 to 50%	1.00
104: Aquandic Humaquepts	82	Limitations Saturation < 12" depth Flooding > occasional Frost action possible	1.00	Limitations Saturation < 2.5' depth Caving potential Frequent or occasional flooding	1.00
111t: Whittell	45	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Jobsis	72	Limitations Slopes > 15%	1.00	Limitations Slopes > 15% Bedrock (soft) < 20" depth Caving potential is low	1.00
Rock outcrop	12	Not rated		Not rated	
151; Elcapitan	80	Limitations Flooding > occasional Frost action possible	1.00	Limitations Caving potential Saturation from 2.5' to 6' depth Frequent or occasional flooding	1.00
152: Vitrandic Haploxerolls	80	Limitations Flooding > occasional	1.00	Limitations Caving potential Frequent or occasional flooding Saturation from 2.5' to 6' depth	1.00
			_		-

Table 7.-Building Site Development, Part II-Continued

	Pct.				
Map symbol and soil name	map	Local roads and streets		Shallow excavations	
	unit	Limi	Value	Limitation	Value
201: Leidig	80	Limitations Flooding > occasional Frost action possible	1.00	Limitations Caving potential Saturation from 2.5' to 6' depth Frequent or occasional flooding	1.00
210: Rubble land	30	Not rated		Not rated	
Typic Cryorthents	72	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Fragments (>3") >50% Caving potential is low	1.00
Rock outcrop	20	Not rated		Not rated	
Xeric Dystrocryepts	50	Limitaitions Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
211: Xeric Dystrocryepts	35	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50% Caving potential is low	1.00
Canisrocks	30	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") >50%	1.00
Oxyaquic Dystrocryepts	15	Limitations Slopes > 15% Frost action possible Saturation from 12 to 30" depth	1.00	Limitations Saturation < 2.5' depth Caving potential Slopes > 15%	1.00
213: Canisrocks	20	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Glacierpoint	12	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00

Table 7.-Building Site Development, Part II-Continued

	Pct.				
Map symbol and soil name	or	LOCAL FOAGS and streets		Shallow excavations	
	unit	Limitation	Value	Limitation	Value
213: Vitrandic Dystrocryepts	15	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
214: Marmotland	25	Limitations Flooding > occasional Frost action possible Slopes 8 to 15%	1.00	Limitations Frequent or occasional flooding Caving potential is low Saturation from 2.5' to 6' depth	0.50
Oxyaquic Dystrocryepts	15	Limitations Flooding > occasional Frost action possible Saturation from 12 to 30" depth	1.00	Limitations Saturation < 2.5' depth Caving potential Frequent or occasional flooding	1.00
Xeric Dystrocryepts	15	Limitations Frost action possible	0.50	Limitations Caving potential	1.00
115: Typic Cryorthents	40	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
Rock outcrop	20	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
219: Rock outcrop	40	Not rated		Not rated	
Rubble land	25	Not rated		Not rated	
Canisrocks	15	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Caving potential Fragments (>3") >50% Slopes > 15%	1.00
221: Typic Cryorthents	35	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50% Caving potential is low	1.00
Xeric Dystrocryepts	70	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol and soil name	Pct.	Local roads and streets		Shallow excavations	
	unit	Limi	Value	Limitation	Value
221: Oxyaquic Dystrocryepts	12	Limitations Slopes > 15% Flooding > occasional Frost action possible	1.00	Limitations Slopes > 15% Saturation < 2.5' depth Caving potential	1.00
222: Canisrocks	30	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Fragments (>3") >50% Slopes > 15% Caving potential	1.00
Rubble land	30	Not rated		Not rated	
Rock outcrop	20	Not rated		Not rated	
Crazymule	15	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
223: Rock outcrop	35	Not rated		Not rated	
Rubble land	35	Not rated		Not rated	
Canisrocks	70	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") >50%	1.00
224: Rock outcrop	40	Not rated		Not rated	
Crazymule	70	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00
Vitrandic Cryorthents	15	Limitations Slopes > 15% Bedrock (hard) from 20 to 40" Frost action possible	1.00	Limitations Bedrock (hard) < 40" depth Caving potential Slopes > 15%	1.00
225: Canisrocks	15	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Caving potential Fragments (>3") >50% Slopes > 15%	1.00

Table 7.-Building Site Development, Part II-Continued

	ţ				
Map symbol and soil name	of map	Local roads and streets		Shallow excavations	
	unit	Limi	Value	Limitation	Value
225: Rock outcrop	15	Not rated		Not rated	
Rubble land	15	Not rated		Not rated	
Vitrandic Dystrocryepts	15	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Caving potential Fragments (>3") >50% Slopes > 15%	1.00
227: Canisrocks	45	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
Crazymule	40	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
228: Xeric Dystrocryepts	35	Limitations Frost action possible	0.50	Limitations Caving potential	1.00
Vitrandic Eutrocryepts	25	Limitations Flooding > occasional Frost action possible Saturation from 12 to 30" depth	1.00	Limitations Saturation < 2.5' depth Frequent or occasional flooding Caving potential is low	1.00
229; Marmotland	40	Limitations Flooding > occasional Frost action possible	1.00	Limitations Caving potential Frequent or occasional flooding	1.00
Oxyaquic Dystrocryepts	40	Limitations Frost action possible Saturation from 12 to 30" depth	0.50	Limitations Saturation < 2.5' depth Caving potential	1.00
231: Canisrocks	40	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00
Typic Cryaquents	21	Limitations Saturation < 12" depth Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Saturation < 2.5' depth Caving potential Fragments (>3") 25 to 50%	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol	Pct.	Local roads and		Shallow excavations	
	unit	Limitation	Value	Limitation	Value
232: Canisrocks	5	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00 0.96 0.50	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00
Glacierpoint		Limitations Frost action possible Fragments (>3") 25 to 50%	0.50	Limitations Caving potential Fragments (>3") 25 to 50%	1.00
234: Rock outcrop	35	Not rated		Not rated	
Rubble land	35	Not rated		Not rated	
235: Canisrocks	35	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
Rock outcrop	30	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
237: Canisrocks		Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00 0.50 0.42	Limitations Caving potential Slopes > 15% Bedrock (soft) from 20 to 40"	1.00
Glacierpoint	15	Limitations Slopes 8 to 15% Frost action possible Fragments (>3") 25 to 50%	0.63 0.50 0.16	Limitations Caving potential Slopes 8 to 15% Fragments (>3") 25 to 50%	1.00
Vitrandic Cryorthents	15	Limitations Bedrock (soft) < 20" depth Frost action possible Slopes 8 to 15%	1.00	Limitations Bedrock (soft) < 20" depth Caving potential Slopes 8 to 15%	1.00
238: Oxyaquic Cryorthents	5	Limitations Flooding > occasional Frost action possible Saturation from 12 to 30" depth	1.00 0.50 0.28	Limitations Saturation < 2.5' depth Caving potential Frequent or occasional flooding	1.00
Canisrocks	12	Limitations Fragments (>3") >50% Slopes 8 to 15% Frost action possible	1.00	Limitations Caving potential Fragments (>3") >50% Slopes 8 to 15%	1.00

Table 7.-Building Site Development, Part II-Continued

	Pct.				
Map symbol and soil name	of	Local roads and streets		Shallow excavations	
	unit	Limi	Value	Limitation	Value
239; Crazymule	45	Limitations Frost action possible Slopes 8 to 15%	0.50	Limitations Bedrock (soft) from 20 to 40" Slopes 8 to 15% Caving potential is low	0.95
Canisrocks	34	Limitations Fragments (>3") >50% Slopes 8 to 15% Frost action possible	1.00	Limitations Caving potential Fragments (>3") >50% Slopes 8 to 15%	1.00
241: Canisrocks	75	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00
242; Rock outcrop	30	Not rated		Not rated	
Canisrocks	72	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Caving potential Fragments (>3") >50% Slopes > 15%	1.00
Xeric Dystrocryepts	16	Limitations Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15%	1.00
244: Typic Cryorthents	45	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Rubble land	25	Not rated		Not rated	
Rock outcrop	16	Not rated		Not rated	
245: Rock outcrop	30	Not rated		Not rated	
Canisrocks	72	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Caving potential Fragments (>3") >50% Slopes > 15%	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol	Pct.	Local roads and		Shallow excavations	
and soil name	map				
	unit	Limitation	Value	Limitation	Value
245: Xeric Dystrocryepts	50	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00
246: Rock outcrop, domes	06	Not rated		Not rated	
247: Canisrocks	50	Limitations Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15%	1.00
Xeric Dystrocryepts	50	Limitations Frost action possible	0.50	Limitations Caving potential	1.00
248: Canisrocks	35	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00 1.00 0.50	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00 1.00
Rock outgrop	30	Not rated		Not rated	
Glacierpoint	12	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00 1.00 0.34
249: Rock outcrop	45	Not rated		Not rated	
Canisrocks	30	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
250: Canisrocks	47	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00 1.00 0.50	Limitations Caving potential Fragments (>3") >50% Slopes > 15%	1.00 1.00
Xeric Dystrocryepts	32	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00 1.00 0.71

Table 7.-Building Site Development, Part II-Continued

Map symbol and soil name	Pct. of map	Local roads and streets		Shallow excavations	
	unit	Limitation	Value	Limitation	Value
251; Glacierpoint	30	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Typic Cryorthents	20	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50% Caving potential is low	1.00
252: Rock outcrop	20	Not rated		Not rated	
Canisrocks	15	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Caving potential Fragments (>3") >50% Slopes > 15%	1.00
Xeric Dystrocryepts	15	Limitations Slopes 8 to 15% Frost action possible	0.63	Limitations Caving potential Slopes 8 to 15%	1.00
253; Canisrocks	25	Limitations Slopes > 15% Fragments (>3") >50% Trost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Glacierpoint	18	Limitations Slopes > 15% Tragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Humic Dystrocryepts	15	Limitations Slopes > 15% Tragments (>3") >50% Trost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
256: Craneflat	25	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Rock outcrop	25	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	

Table 7.-Building Site Development, Part II-Continued

	Pct.				
Map symbol and soil name	of	Local roads and streets		Shallow excavations	
	unit	Limi	Value	Limitation	Value
256: Waterwheel	70	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
257: BadgerpassBadgerpass	25	Limitations Frost action possible	0.50	Limitations Caving potential	1.00
Oxyaquic Dystroxerepts	35	Limitations Flooding > occasional Frost action possible Saturation from 12 to 30" depth	1.00	Limitations Saturation < 2.5' depth Caving potential Frequent or occasional flooding	1.00
258; Typic Dystroxerepts	72	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00
Badgerpass	70	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
Dystric Xerorthents	7 0 0	Limitations Slopes > 15% Flooding > occasional Frost action possible	1.00	Limitations Slopes > 15% Caving potential Frequent or occasional flooding	1.00
260: Rock outcrop	45	Not rated		Not rated	
Craneflat	72	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Dystric Xerorthents	50	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00
261: Dystric Xeropsamments	72	Limitations Frost action possible	0.50	Limitations Caving potential	1.00
Typic Dystroxerepts	72	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00

Table 7.-Building Site Development, Part II-Continued

	τ 1				
Map symbol and soil name	of	Local roads and streets		Shallow excavations	
	unit	Limitation	Value	Limitation	Value
261; Badgerpass	15	Limitations Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15%	1.00
Rock outcrop	15	Not rated		Not rated	
262: Humic Dystroxerepts	30	Limitations Slopes > 15% Fragments (>3") >50% Trost action possible	1.00	Limitations Slopes > 15% Fragments (>3") >50% Caving potential is low	1.00
Dystric Xerorthents	25	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
Rock outcrop	20	Not rated		Not rated	
264: Crazymule	35	Limitations Slopes 8 to 15% Frost action possible Fragments (>3") 25 to 50%	0.63	Limitations Caving potential Slopes 8 to 15% Fragments (>3") 25 to 50%	1.00 0.63 0.22
Canisrocks	70	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Caving potential Fragments (>3") >50% Slopes > 15%	1.00
267: Rock outcrop	40	Not rated		Not rated	
Typic Cryorthents	30	Limitations Fragments (>3") >50% Frost action possible	1.00	Limitations Fragments (>3") >50% Caving potential is low	1.00
Xeric Dystrocryepts	15	Limitations Slopes 8 to 15% Frost action possible	0.63	Limitations Caving potential Slopes 8 to 15%	1.00
268: Rock outcrop	40	Not rated		Not rated	
Canisrocks	25	Limitations Slopes > 15% Tragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol and soil name	Pct.	Local roads and		Shallow excavations	
	unit	Limi	Value	Limitation	Value
268: Glacierpoint	50	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
269: Canisrocks	50	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Fragments (>3") >50% Caving potential Slopes > 15%	1.00
Rock outcrop	20	Not rated		Not rated	
Glacierpoint	15	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00
270: Rock outcrop	35	Not rated		Not rated	
Typic Cryorthents	72	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Vitrandic Dystrocryepts	72	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
271: Rock outcrop	09	Not rated		Not rated	
Lithic Xerorthents	12	Limitations Bedrock (hard) < 20" depth Slopes > 15% Frost action possible	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 15% Caving potential is low	1.00
Waterwheel	12	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Caving potential Fragments (>3") >50% Slopes > 15%	1.00
273: Nevadafalls	22	Limitations Frost action possible	0.50	Limitations Caving potential	1.00

Table 7.-Building Site Development, Part II-Continued

	Pct.	Local roads and		Shallow excavations	
and soil name	map	Timitetion	01.100	Timit	or Lev
	UIII	חדוווורמרוסוו	2 T C	חדוווודרמרדוסוו	אם דם א
273: Waterwheel	30	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00
274: Rock outcrop, domes	82	Not rated		Not rated	
275: Oxyaquic Dystroxerepts	25	Limitations Flooding > occasional Frost action possible Saturation from 12 to 30" depth	1.00	Limitations Saturation < 2.5' depth Caving potential Frequent or occasional flooding	1.00
Dystric Xerorthents	25	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") >50%	1.00
Vitrandic Xerorthents	25	Limitations Flooding > occasional Frost action possible	1.00	Limitations Caving potential Frequent or occasional flooding	1.00
Rubble land	15	Not rated		Not rated	
276: Happyisles	35	Limitations Frost action possible Flooding = rare	0.50	Limitations Caving potential	1.00
Typic Dystroxerepts	35	Limitations Frost action possible Slopes 8 to 15% Fragments (>3") 25 to 50%	0.50	Limitations Caving potential Slopes 8 to 15% Fragments (>3") 25 to 50%	1.00
277: Tuolumne	45	Limitations Slopes > 15%	1.00	Limitations Slopes > 15% Caving potential	1.00
Humic Dystroxerepts	35	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
278: Rock outcrop	25	Not rated		Not rated	

Table 7.-Building Site Development, Part II-Continued

	Pct.	•			
Map symbol and soil name	map	Local roads and streets		Shallow excavations	
	unit	Limitation	Value	Limitation	Value
278; Tuolumme	72	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Humic Dystroxerepts	70	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Rubble land	15	Not rated		Not rated	
279; Canisrocks	40	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Xeric Dystrocryepts	15	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
280: Typic Dystroxerepts	35	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00
Humic Dystroxerepts	30	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Rock outcrop	25	Not rated		Not rated	
282: Clarkslodge	20	Limitations Slopes 8 to 15% Frost action possible Fragments (>3") 25 to 50%	0.63	Limitations Slopes 8 to 15% Fragments (>3") 25 to 50% Caving potential is low	0.63
Craneflat	72	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Nevadafalls	72	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00

Table 7.-Building Site Development, Part II-Continued

symbol	Pct.	Local roads and		Shallow excavations	
and Soll name	map unit	Streets Limitation	Value	Limitation	Value
283; Waterwheel	35	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Nevadafalls	30	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
Rock outcrop	21	Not rated		Not rated	
285; Waterwheel	30	Limitations Slopes > 15% Fragments (>3") >50% Trost action possible	1.00	Limitations Slopes > 15% Fragments (>3") >50% Caving potential is low	1.00
Humic Dystroxerepts	16	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
286; Nevadafalls	7	Limitations Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15%	1.00
Typic Dystroxerepts	25	Limitations Frost action possible	0.50	Limitations Caving potential	1.00
Ultic Palexeralfs	50	Limitations Shrink-swell (LEP >6) Slopes 8 to 15% Frost action possible	0.99	Limitations Slopes 8 to 15% Clay from 40 to 60% Caving potential is low	0.63
Rock outcrop	15	Not rated		Not rated	
287; Badgerpass	55	Limitations Frost action possible	0.50	Limitations Caving potential	1.00
Waterwheel	40	Limitations Slopes 8 to 15% Frost action possible Fragments (>3") 25 to 50%	0.63	Limitations Caving potential Slopes 8 to 15% Fragments (>3") 25 to 50%	1.00
288; Rock outcrop	35	Not rated		Not rated	

Table 7.-Building Site Development, Part II-Continued

Map symbol and soil name	Pct.	Local roads and		Shallow excavations	
	unit	Limi	Value	Limitation	Value
288: Craneflat	70	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00
Waterwheel	70	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00
289: Waterwheel	50	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Craneflat	30	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
290: Humic Dystroxerepts	40	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00
Tuolumne	30	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Typic Xerorthents	15	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50% Caving potential is low	1.00
Ultic Haploxeralfs	15	Limitations Slopes > 15% Frost action possible Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Caving potential is low	1.00
291: Ultic Haploxeralfs	41	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00
Typic Dystroxerepts	31	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol and soil name	Pct. of	Local roads and streets		Shallow excavations	
	unit	Limi	Value	Limitation	Value
292; Humic Dystroxerepts	32	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00
Typic Haploxerults	30	Limitations Shrink-swell (LEP 3-6) Slopes 8 to 15% Frost action possible	0.78 0.63 0.50	Limitations Slopes 8 to 15% Caving potential is low	0.63
293; Xeric Dystrocryepts	70	Limitations Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15%	1.00
Vitrandic Dystrocryepts	18	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00
294: Waterwheel	9	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15% Caving potential	1.00
Typic Dystroxerepts	35	Limitations Slopes > 15%	1.00	Limitations Slopes > 15% Caving potential is low	1.00
295; Craneflat	52	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00 0.50 0.21	Limitations Slopes > 15% Fragments (>3") 25 to 50% Caving potential is low	1.00 0.21 0.10
Typic Dystroxerepts	72	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00
296: Ultic Palexeralfs	70	Limitations AASHTO GI >8 (low soil strength) Slopes > 15% Shrink-swell (LEP >6)	1.00 1.00 0.99	Limitations Slopes > 15% Caving potential is low	1.00
Humic Dystroxerepts	15	Limitations Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15%	1.00

Table 7.-Building Site Development, Part II-Continued

Codming reW	Pat.	ביני ד ביני ד		מייי י י י י י י י י י י י י י י י י י	
soil name	map	treets			
	unit	Limitation	Value	Limitation	Value
297; Typic Xerorthents	30	Limitations Slopes > 15%	1.00	Limitations Slopes > 15% Caving potential	1.00
Rock outcrop	25	Not rated		Not rated	
Typic Xeropsamments	72	Limitations Slopes > 15%	1.00	Limitations Slopes > 15% Caving potential	1.00
298; Tuolumne	4 1	Limitations Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") >50% Slopes > 15% Caving potential	1.00
Typic Dystroxerepts	31	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00
299; Humic Dystroxerepts	46	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Ultic Haploxeralfs	3 2	Limitations Slopes > 15% Frost action possible Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Caving potential	1.00
300; Typic Dystroxerepts	35	Limitations Slopes > 15% Frost action possible Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Caving potential is low	1.00
Ultic Haploxeralfs	72	Limitations Slopes > 15% Frost action possible Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Caving potential is low	1.00
301: Vitrandic Haploxerolls	06	Limitations Frost action possible Flooding = rare Saturation from 12 to 30" depth	0.50	Limitations Saturation < 2.5' depth Caving potential	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol	Pct.	Local roads and		Shallow excavations	
	unit	Limitation	Value	Limitation	Value
302: Typic Haploxerults	45	Limitations Slopes > 15% Frost action possible Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Caving potential is low	1.00
Ultic Haploxeralfs	41	Limitations Slopes > 15% Frost action possible Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Caving potential is low	1.00
303; Rock outcrop	30	Not rated		Not rated	
Dystric Xeropsamments	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15% Caving potential	1.00
Humic Dystroxerepts	20	Limitations Fragments (>3") >50% 1. Slopes > 15% 1.	1.00	Limitations Fragments (>3") >50% Slopes > 15% Caving potential	1.00
Tuolumne	20	Limitations Slopes > 15% Fragments (>3") 25 to 50% 0.	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
304: Clarkslodge	09	Limitations Slopes > 15% Frost action possible Shrink-swell (LEP 3-6)	1.00	Limitations Caving potential Slopes > 15%	1.00
Rock outcrop	15	Not rated		Not rated	
305: Rock outcrop	50	Not rated		Not rated	
Waterwheel	18	Limitations Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15%	1.00
Dystric Xeropsamments	15	Limitations Frost action possible	0.50	Limitations Caving potential	1.00
306: Typic Cryopsamments	50	Limitations Frost action possible 0.	0.50	Limitations Caving potential Slopes 8 to 15%	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol	Pat.	Local roads and		Shallow excavations	
me	map				
	unit	Limitation	Value	Limitation	Value
306: Humic Dystrocryepts	30	Limitations Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15%	1.00
307: Rock outcrop	40	Not rated		Not rated	
Dystric Xeropsamments	70	Limitations Slopes > 15%	1.00	Limitations Caving potential Slopes > 15%	1.00
Dystric Xerorothents	50	Limitations Flooding > occasional Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15% Frequent or occasional flooding	1.00
309: Rock outcrop	20	Not rated		Not rated	
Waterwheel	72	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential is low	1.00
Typic Dystroxerepts	50	Limitations Slopes > 15% Frost action possible Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50% Caving potential is low	1.00
310: Rock outcrop	55	Not rated		Not rated	
Humic Dystroxerepts	72	Limitations Slopes > 15% Fragments (>3") >50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Humic Lithic Haploxerepts	70	Limitations Ponded (any duration) Slopes > 15% Bedrock (hard) < 20" depth	1.00 1.00 0.99	Limitations Bedrock (hard) < 40" depth Ponded (any duration) Slopes > 15%	1.00
311: Rock outcrop	45	Not rated		Not rated	

Table 7.-Building Site Development, Part II-Continued

Map symbol and soil name	Pct.	Local roads and streets		Shallow excavations	
	unit	Limi	Value	Limitation	Value
311; Humic Dystroxerepts	35	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00
Humic Lithic Haploxerepts	19	Limitations Ponded (any duration) Slopes > 15% Bedrock (hard) < 20" depth	1.00	Limitations Bedrock (hard) < 40" depth Ponded (any duration) Saturation < 2.5' depth	1.00
313; Nevadafalls	40	Limitations Frost action possible	0.50	Limitations Caving potential	1.00
Oxyaquic Dystrudepts	4 0	Limitations Flooding > occasional Frost action possible Saturation from 12 to 30" depth	1.00	Limitations Saturation < 2.5' depth Caving potential Frequent or occasional flooding	1.00
314; Badgerpass	45	Limitations Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15%	1.00
Dystric Xeropsamments	35	Limitations Slopes > 15% Frost action possible	1.00	Limitations Caving potential Slopes > 15%	1.00
Rock outcrop	15	Not rated		Not rated	
Nevadafalls	09	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50% Caving potential is low	1.00
Dystric Xeropsamments	40	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
316: Dystric Xerorthents	 4 0	Limitations Slopes > 15% Fragments (>3") 25 to 50%	0.81	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol	Pct.	Local roads and		Shallow excavations	
and soil name	map				
	unit	Limitation	Value	Limitation	Value
316: Rock outcrop	40	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
318: Typic Dystroxerepts	40	Limitations Frost action possible	0.50	Limitations Caving potential is low	0.10
Humic Dystroxerepts	36	Limitations Frost action possible	0.50	Limitations Caving potential is low	0.10
319; Humic Dystroxerepts	30	Limitations Fragments (>3") >50% Slopes > 15% Frost action possible	1.00	Limitations Fragments (>3") >50% Slopes > 15% Caving potential	1.00
Typic Haploxerults	30	Limitations Slopes > 15% Frost action possible Shrink-swell (LEP 3-6)	1.00 0.50 0.01	Limitations Slopes > 15% Caving potential	1.00
Inceptic Haploxeralfs	72	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Fragments (>3") >50% Caving potential is low	1.00
320: Half Dome	4 0	Limitations Slopes > 15% Frost action possible	1.00	Limitations Slopes > 15% Caving potential	1.00
Humic Dystroxerepts	70	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Rock outcrop	20	Not rated		Not rated	
321; Dystric Xeropsamments	20	Limitations Flooding = rare	0.50	Limitations Caving potential	1.00
Dystric Xerorthents	4 0	Limitations Flooding > occasional Slopes > 15%	1.00	Limitations Caving potential Slopes > 15% Frequent or occasional flooding	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol	Pct.	Local roads and		Shallow excavations	
	unit	Limi	Value	Limitation	Value
322: Typic Xerorthents	06	Limitations Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00 1.00 0.45
323; Ultic Haploxeralfs	55	Limitations Slopes > 15% Shrink-swell (LEP 3-6)	1.00	Limitations Caving potential Slopes > 15%	1.00
Humic Dystroxerepts	45	Limitations Slopes 8 to 15% Shrink-swell (LEP 3-6)	0.16	Limitations Slopes 8 to 15% Caving potential is low	0.16
324: Humic Haploxerepts	40	Limitations Slopes > 15% Shrink-swell (LEP 3-6) Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Caving potential Fragments (>3") 25 to 50%	1.00
Rock outcrop	35	Not rated		Not rated	
Ultic Haploxeralfs	25	Limitations Slopes > 15% Shrink-swell (LEP 3-6) Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50% Caving potential is low	1.00
325; Urban land	80	Not rated		Not rated	
328; Clarkslodge	30	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50% Caving potential is low	1.00
Ultic Palexeralfs	15	Limitations Slopes > 15% Frost action possible Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 15% Caving potential is low	1.00
401: Sentinel	06	Limitations Frost action possible Flooding = rare	0.50	Limitations Caving potential	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol and soil name	Pct.	Local roads and streets		Shallow excavations	
	unit	Limi	Value	Limitation	Value
412; Water	82	Not rated		Not rated	
Riverwash	12	Not rated		Limitations Saturation < 2.5' depth Frequent or occasional flooding Caving potential is low	1.00
501: Happyisles, sandy loam	65	Limitations Frost action possible Flooding = rare	0.50	Limitations Caving potential	1.00
Happyisles, loamy fine sand, overwash	50	Limitations Flooding > occasional Frost action possible	1.00	Limitations Caving potential Frequent or occasional flooding	1.00
502: Happyisles	88	Limitations Frost action possible Flooding = rare	0.50	Limitations Caving potential Saturation from 2.5' to 6' depth	1.00
504: Mollic Xerofluvents	8 21	Limitations Flooding > occasional Frost action possible	1.00	Limitations Caving potential Frequent or occasional flooding	1.00
510t: Rubble land	40	Not rated		Not rated	
Lithnip	70	Limitations Bedrock (hard) < 20" depth Slopes > 15% Frost action possible	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 15% Caving potential is low	1.00
Rock outcrop	12	Not rated		Not rated	
Happyisles	20	Limitations Frost action possible Flooding = rare	0.50	Limitations Caving potential	1.00
Half Dome	45	Limitations Fragments (>3") 25 to 50% Frost action possible Slopes 8 to 15%	0.92	Limitations Caving potential Fragments (>3") 25 to 50% Slopes 8 to 15%	1.00

Table 7.-Building Site Development, Part II-Continued

Map symbol	Pct.	Local roads and		Shallow excavations	
and soil name	map unit	Streets	Value	Limitation	Value
552: Mollic Xerofluvents	82	Limitations Flooding > occasional Frost action possible Slopes 8 to 15%	1.00	Limitations Caving potential Frequent or occasional flooding Slopes 8 to 15%	1.00
590; Terric Haplosaprists	8	Limitations Flooding > occasional Frost action possible	1.00	Limitations Organic matter (PT, OH, OL) below 20" Saturation from 2.5' to 6' depth Frequent or occasional flooding	1.00
601: Half Dome, very bouldery	20	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00 0.88 0.50	15% (>3") 25 to 5 tential is lov	1.00
Half Dome, cobbly	45	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Fragments (>3") >50% Caving potential is low	1.00 1.00 0.10
602: Half Dome	89	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Caving potential Slopes > 15% Fragments (>3") 25 to 50%	1.00 1.00 0.92
610: Rubble land	65	Not rated		Not rated	
Half Dome	30	Limitations Slopes > 15% Fragments (>3") 25 to 50% Frost action possible	1.00	Limitations Slopes > 15% Fragments (>3") 25 to 50% Caving potential is low	1.00 0.97 0.10
620: Half Dome, extremely stony sandy loam, warm	50	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00 1.00 0.50	Limitations Slopes > 15% Caving potential Fragments (>3") >50%	1.00
Half Dome, very cobbly sandy loam,	43	Limitations Slopes > 15% Fragments (>3") >50% Frost action possible	1.00	Limitations Slopes > 15% Fragments (>3") >50% Caving potential is low	1.00 1.00 0.10

Table 7.-Building Site Development, Part II-Continued

	Pct.				
Map symbol and soil name	of	Local roads and streets		Shallow excavations	
	unit		Value	Limitation	Value
630: Rubble land	65	Not rated		Not rated	
Half Dome	30	Limitations Slopes > 15% 1.	1.00	Limitations Slopes > 15% Carding notential	1.00
		ď)	0.50	Fragments (>3") >50%	1.00
701: Vitrandic Haploxerolls	06	Limitations Slopes > 15% Frost action possible [0.0]	1.00	Limitations Slopes > 15% Caving potential is low	1.00
702: Vitrandic Dystroxerepts	06	Limitations Fragments (>3") >50% 1. Slopes > 15% 1. Frost action possible 0.	1.00	Limitations Caving potential Fragments (>3") >50% Slopes > 15%	1.00 1.00
900: Rock outcrop	95	Not rated		Not rated	
DAM: Dam	100	Not rated		Not rated	
W: Water	100	Not rated	=_	Not rated	

The interpretation for local roads and streets evaluates the following soil properties at variable depths in the soil: hard or soft bedrock, depth to thick or thin cemented pans, fragments greater than 3 inches in size, soil bulk density and flooding, ponding, wetness, slope, organic Unified classes for low soil strength (PT, OL or OH), amount of clay, depth to the potential of the soil to cave.

The interpretation for shallow excavations evaluates the following soil properties at variable depths in the soil: flooding, ponding, wetness, slope, subsidence of organic soils, shrink-swell potential expressed as linear extensibility percent (LEP), potential frost action, depth to hard or soft bedrock, depth to thick or thin cemented pans, fragments greater than 3 inches in size, and soil strength expressed as the AASHTO group index number (AASHTO GI).

Table 8.-Construction Materials, Part I

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99. The closer the value is to 0, the greater the potential limitation. Values of 0 are absolute limitations based on the soil property criteria used to develop the interpretation. Values closer to 1.0 have less of a limitation. Limiting features with values of 1 have absolutely no limitation and are not shown in this report. Rating classes are determined by the most limiting value. Fine-earth fractions and fragment limiting features are reported on a weight basis. Brief summaries of rating criteria and abbreviations used in the ratings are listed on the last page of this report)

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
and boll name		<u> </u>	Value	Rating class and	Value
	map unit	Rating class and limiting features	value	limiting features	varue
101: Oxyaquic Xerofluvents	 35 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.07
Riverwash	35	 Not rated		 Not rated	
Fluvaquents	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
101t: Lithnip	 40 	 Fair source Thickest layer not a source due to fines or thin layer Bottom layer possible source	!	Fair source Thickest layer not a source Bottom layer is a possible source	0.00
Rock outcrop	25	 Not rated		 Not rated	
Fishsnooze	 20 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
102:	 	 	 	 	1
Oxyaquic Xerofluvents	45 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.07
Riverwash	40	 Not rated		 Not rated	
102t: Lithnip	 40 	 Fair source Thickest layer not a source due to fines or thin layer Bottom layer possible source	1	 Fair source Thickest layer not a source Bottom layer is a possible source	0.00
Rock outcrop	25	 Not rated		Not rated	

Soil Survey of Yosemite National Park, California

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
102t: Fishsnooze	 20 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	 Poor source Bottom layer not a source Thickest layer not a source	 0.00 0.00
104: Aquandic Humaquepts	 85 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Fair source Thickest layer not a source Bottom layer is a possible source	0.00
111t: Whittell	 45 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.03
Jobsis	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer not a source Bottom layer is a possible source	0.00
Rock outcrop	15	 Not rated	 	 Not rated 	
151: Elcapitan	 80 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer not a source Bottom layer is a possible source	0.00
152: Vitrandic Haploxerolls	 80 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.00
201: Leidig	 80 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	Fair source Thickest layer not a source Bottom layer is a possible source	0.00
210: Rubble land	30	 Not rated	 	 Not rated	
Typic Cryorthents	 25 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Rock outcrop	20	 Not rated 	 	 Not rated 	

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
210: Xeric Dystrocryepts	 20 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	 Fair source Thickest layer possible source Bottom layer is a possible source	0.01
211: Xeric Dystrocryepts	 35 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	!	 Poor source Thickest layer not a source Bottom layer not a source	0.00
Canisrocks	30	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	!	Poor source Thickest layer not a source Bottom layer not a source	0.00
Oxyaquic Dystrocryepts	 15 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	!	Fair source Thickest layer possible source Bottom layer is a possible source	0.03
213: Canisrocks	 50 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer		Poor source Bottom layer not a source Thickest layer not a source	0.00
Glacierpoint	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer		Fair source Bottom layer is a possible source Thickest layer possible source	0.09
Vitrandic Dystrocryepts-	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer		Fair source Thickest layer possible source Bottom layer is a possible source	0.06
214: Marmotland	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Oxyaquic Dystrocryepts	 15 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	Poor source Bottom layer not a source Thickest layer not a source	0.00
Xeric Dystrocryepts	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00

Soil Survey of Yosemite National Park, California

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
215: Typic Cryorthents	40	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	 Fair source Bottom layer is a possible source Thickest layer possible source	0.06
Rock outcrop	20	 Not rated		 Not rated	
Rubble land	20	 Not rated		 Not rated	
219: Rock outcrop	40	 Not rated		 Not rated	
Rubble land	25	 Not rated		 Not rated	
Canisrocks	15	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	1	Poor source Thickest layer not a source Bottom layer not a source	0.00
221: Typic Cryorthents	35	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	Poor source Bottom layer not a source Thickest layer not a source	0.00
Xeric Dystrocryepts	20	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	Poor source Bottom layer not a source Thickest layer not a source	 0.00 0.00
Oxyaquic Dystrocryepts	15	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	Fair source Thickest layer possible source Bottom layer is a possible source	0.03
222: Canisrocks	30	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	!	 Poor source Bottom layer not a source Thickest layer not a source	0.00
Rubble land	30	 Not rated		 Not rated	
Rock outcrop	20	 Not rated		 Not rated	
Crazymule	15	 Fair source Bottom layer not a source Thickest layer possible source	0.00	 Fair source Bottom layer not a source Thickest layer possible source	0.00
223: Rock outcrop	35	 Not rated		 Not rated	
Rubble land	35	 Not rated		 Not rated	

Table 8.-Construction Materials, Part I-Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
223: Canisrocks	20	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	 Poor source Thickest layer not a source Bottom layer not a source	0.00
224: Rock outcrop	40	 Not rated	 	 Not rated	
Crazymule	 20 	 Fair source Bottom layer not a source Thickest layer possible source	0.00	 Fair source Bottom layer not a source Thickest layer possible source	0.00
Vitrandic Cryorthents	15	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer not a source Bottom layer is a possible source	0.00
225: Canisrocks	 15 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	1	 Poor source Thickest layer not a source Bottom layer not a source	0.00
Rock outcrop	15	Not rated		Not rated	
Rubble land	15	Not rated		 Not rated	
Vitrandic Dystrocryepts-	15	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
227: Canisrocks	 45 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Fair source Bottom layer is a possible source Thickest layer possible source	0.10
Crazymule	 40 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
228: Xeric Dystrocryepts	 35 	 Fair source Thickest layer not a source due to fines or thin layer Bottom layer possible source	 0.00 0.10	 Fair source Bottom layer is a possible source Thickest layer possible source	0.12
Vitrandic Eutrocryepts	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Poor source Bottom layer not a source Thickest layer not a source	0.00

Table 8.-Construction Materials, Part I-Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
229: Marmotland	 40 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	 Fair source Thickest layer possible source Bottom layer is a possible	0.02
Oxyaquic Dystrocryepts	 40 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	 0.00 0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.01
231: Canisrocks	 40 	 Fair source Thickest layer not a source due to fines or thin layer Bottom layer possible source	 0.00 0.10	Fair source Bottom layer is a possible source Thickest layer possible source	0.13
Typic Cryaquents	21	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
232: Canisrocks	 25 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	 Fair source Thickest layer possible source Bottom layer is a possible source	0.03
Glacierpoint	 21 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.04
234: Rock outcrop	35	Not rated	 	Not rated	
Rubble land	35	 Not rated 	 	 Not rated 	
235: Canisrocks	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.10
Rock outcrop	30	 Not rated	 	 Not rated	
Rubble land	20	 Not rated 	 	 Not rated 	
237: Canisrocks	 25 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00

Table 8.-Construction Materials, Part I-Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
237: Glacierpoint	 15 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	 Poor source Thickest layer not a source Bottom layer not a source	0.00
Vitrandic Cryorthents	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer not a source Bottom layer is a possible source	0.00
238: Oxyaquic Cryorthents	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.11
Canisrocks	 15 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	!	Poor source Thickest layer not a source Bottom layer not a source	0.00
239: Crazymule	 45 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	Poor source Bottom layer not a source Thickest layer not a source	0.00
Canisrocks	 34 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	 0.00 0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
241: Canisrocks	 75 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.18
242: Rock outcrop	30	 Not rated	 	 Not rated	
Canisrocks	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Xeric Dystrocryepts	 16 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.09
244: Typic Cryorthents	 45 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	 Poor source Thickest layer not a source Bottom layer not a source	0.00

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct of			Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
244: Rubble land	25	 Not rated	 	Not rated	
Rock outcrop	16	 Not rated	 	 Not rated	
245: Rock outcrop	30	 Not rated	 	Not rated	
Canisrocks	22	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	Poor source Thickest layer not a source Bottom layer not a source	0.00
Xeric Dystrocryepts	20	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
246: Rock outcrop, domes	90	 Not rated	 	Not rated	
247: Canisrocks	 20 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	 0.14 0.14
Xeric Dystrocryepts	 20 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	Fair source Thickest layer possible source Bottom layer is a possible source	0.09
248: Canisrocks	 35 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	 Poor source Thickest layer not a source Bottom layer not a source	0.00
Rock outcrop	30	 Not rated	 	 Not rated	
Glacierpoint	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.27
249: Rock outcrop	45	 Not rated	 	 Not rated	
Canisrocks	 30 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Fair source Thickest layer possible source Bottom layer is a possible source	0.10

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct Potential source of		Potential source of sand		
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
250: Canisrocks	 47 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	 Poor source Thickest layer not a source Bottom layer not a source	0.00
Xeric Dystrocryepts	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
251: Glacierpoint	 30 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00
Typic Cryorthents	 20 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.06
252: Rock outcrop	 20	 Not rated	 	Not rated	
Canisrocks	 15 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
Xeric Dystrocryepts	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer not a source Thickest layer possible source	0.00
253: Canisrocks	 25 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	Poor source Bottom layer not a source Thickest layer not a source	0.00
Glacierpoint	 18 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
Humic Dystrocryepts	 15 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
256: Craneflat	 25 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.08

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct Potential source of		Potential source of sand		
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
256: Rock outcrop	 25	 Not rated	 	 Not rated	
Rubble land	į	 Not rated	j I	 Not rated	
Waterwheel	 20 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	!	Poor source Bottom layer not a source Thickest layer not a source	0.00
257: Badgerpass	 55 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.08
Oxyaquic Dystroxerepts	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
258: Typic Dystroxerepts	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
Badgerpass	 20 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Fair source Thickest layer possible source Bottom layer is a possible source	0.27
Dystric Xerorthents	 20 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.04
260: Rock outcrop	45	 Not rated	 	 Not rated	
Craneflat	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Dystric Xerorothents	 20 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.02
261: Dystric Xeropsamments	 25 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Fair source Bottom layer is a possible source Thickest layer possible source	0.10

Table 8.-Construction Materials, Part I-Continued

Map symbol and soil name	Pct	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
261: Typic Dystroxerepts	 25 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	 Poor source Thickest layer not a source Bottom layer not a source	 0.00 0.00
Badgerpass	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	Fair source Bottom layer is a possible source Thickest layer possible source	0.10
Rock outcrop	15	 Not rated 	 	 Not rated 	
262: Humic Dystroxerepts	 30 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Bottom layer not a source Thickest layer not a source	 0.00 0.00
Dystric Xerorthents	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	 0.04 0.08
Rock outcrop	20	 Not rated	 	 Not rated	
264: Crazymule	 35 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Fair source Thickest layer not a source Bottom layer is a possible source	0.00
Canisrocks	 28 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
267: Rock outcrop	40	 Not rated		 Not rated	
Typic Cryorthents	 30 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	 0.00 0.00
Xeric Dystrocryepts	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Fair source Bottom layer is a possible source Thickest layer possible source	 0.09 0.11
268: Rock outcrop	40	 Not rated		Not rated	
Canisrocks	 25 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	 0.00 0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct Potential source of			Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
268: Glacierpoint	 20 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00
269: Canisrocks	 20 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00
Rock outcrop	20	Not rated		 Not rated	
Glacierpoint	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
270: Rock outcrop	35	 Not rated	 	 Not rated	
Typic Cryorthents	 25 	 Fair source Thickest layer possible source Bottom layer possible source	0.03	Fair source Bottom layer is a possible source Thickest layer possible source	0.03
Vitrandic Dystrocryepts-	 25 	Fair source Thickest layer possible source Bottom layer possible source	 0.07 0.07	Fair source Thickest layer possible source Bottom layer is a possible source	0.02
271: Rock outcrop	60	 Not rated	 	 Not rated	
Lithic Xerorthents	 15 	Fair source Thickest layer not a source due to fines or thin layer Bottom layer possible source	:	Fair source Thickest layer not a source Bottom layer is a possible source	0.00
Waterwheel	 15 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	Poor source Bottom layer not a source Thickest layer not a source	0.00
273: Nevadafalls	 55 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.10
Waterwheel	30	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.08

Table 8.-Construction Materials, Part I-Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand		
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value	
274: Rock outcrop, domes	 85	Not rated	 	Not rated		
275: Oxyaquic Dystroxerepts	 25 	 Fair source Thickest layer possible source Bottom layer possible source	 0.07 0.14	 Fair source Thickest layer possible source Bottom layer is a possible source	0.02	
Dystric Xerorthents	 25 	Fair source Thickest layer not a source due to fines or thin layer Bottom layer possible source	 0.00 0.03	Fair source Thickest layer possible source Bottom layer is a possible source	0.03	
Vitrandic Xerorthents	 25 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Fair source Bottom layer is a possible source Thickest layer possible source	0.08	
Rubble land	15	 Not rated	 	 Not rated 		
276: Happyisles	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.03	
Typic Dystroxerepts	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer not a source Thickest layer possible source	0.00	
277: Tuolumne	 45 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00	
Humic Dystroxerepts	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00	
278: Rock outcrop	25	Not rated	<u> </u> 	Not rated	ļ	
Tuolumne	 25 	 Fair source Bottom layer not a source Thickest layer possible source	 0.00 0.03	 Fair source Thickest layer possible source Bottom layer is a possible source	0.06	
Humic Dystroxerepts	 20 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00	

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
278: Rubble land	 15	Not rated	 	Not rated	
279: Canisrocks	 40 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Xeric Dystrocryepts	 15 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	 0.00 0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
280: Typic Dystroxerepts	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Fair source Bottom layer is a possible source Thickest layer possible source	0.03
Humic Dystroxerepts	30 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	 0.02 0.08
Rock outcrop	 25 	 Not rated 	 	 Not rated 	
282: Clarkslodge	 50 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer not a source Thickest layer possible source	0.00
Craneflat	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	 0.09 0.10
Nevadafalls	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	 0.10 0.11
283: Waterwheel	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Poor source Bottom layer not a source Thickest layer not a source	 0.00 0.00
Nevadafalls	 30 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00		0.03
Rock outcrop	21	Not rated	 	Not rated	

Table 8.-Construction Materials, Part I-Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
285: Waterwheel	30	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00
Humic Dystroxerepts	 16 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.21
286: Nevadafalls	 26 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.04
Typic Dystroxerepts	25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.08
Ultic Palexeralfs	20	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Rock outcrop	15	 Not rated 	 	 Not rated 	
287: Badgerpass	 55 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Fair source Bottom layer is a possible source Thickest layer possible source	0.08
Waterwheel	 40 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	Poor source Thickest layer not a source Bottom layer not a source	 0.00 0.00
288: Rock outcrop	35	 Not rated	 	 Not rated	
Craneflat	 20 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	 0.09 0.10
Waterwheel	20	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	 0.00 0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
289: Waterwheel	 50 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	 Fair source Thickest layer possible source Bottom layer is a possible source	0.08
Craneflat	30	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	Poor source Bottom layer not a source Thickest layer not a source	0.00
290: Humic Dystroxerepts	 40 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	!	Fair source Bottom layer is a possible source Thickest layer possible source	0.02
Tuolumne	30	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	Poor source Bottom layer not a source Thickest layer not a source	0.00
Typic Xerorthents	15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	Fair source Bottom layer not a source Thickest layer possible source	0.00
Ultic Haploxeralfs	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	Poor source Bottom layer not a source Thickest layer not a source	0.00
291: Ultic Haplxoeralfs	 41 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	 Fair source Thickest layer possible source Bottom layer is a possible source	0.02
Typic Dystroxerepts	 31 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	Fair source Bottom layer is a possible source Thickest layer possible source	0.02
292: Humic Dystroxerepts	35	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Typic Haploxerults	 30 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	1	Poor source Bottom layer not a source Thickest layer not a source	0.00

Table 8.-Construction Materials, Part I-Continued

Map symbol and soil name	Pct	Potential source of gravel		Potential source of sand	
	map unit	Rating class and	Value	Rating class and limiting features	Value
293: Xeric Dystrocryepts	 70 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.03
Vitrandic Dystrocryepts-	 18 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Fair source Thickest layer possible source Bottom layer is a possible source	 0.05 0.07
294: Waterwheel	 65 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Typic Dystroxerepts	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer not a source Thickest layer possible source	0.00
295: Craneflat	 25 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Fair source Thickest layer possible source Bottom layer is a possible source	 0.10 0.10
Typic Dystroxerepts	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer is a possible source Thickest layer possible source	 0.02 0.04
296: Ultic Palexeralfs	 20 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Humic Dystroxerepts	 15 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.03
297: Typic Xerorthents	 30 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	 0.00 0.00
Rock outcrop	25	 Not rated 	 	 Not rated 	

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct Potential source of		Potential source of sand		
	map unit	Rating class and	Value	Rating class and limiting features	Value
297: Typic Xeropsamments	 25 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer not a source Thickest layer possible source	0.00
298: Tuolumne	 41 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00
Typic Dystroxerepts	31	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer not a source Thickest layer possible source	0.00
299: Humic Dystroxerepts	 46 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.40
Ultic Haploxeralfs	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.02
300: Typic Dystroxerepts	 35 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00
Ultic Haploxeralfs	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	Fair source Thickest layer possible source Bottom layer is a possible source	0.03
301: Vitrandic Haploxerolls	90	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Fair source Thickest layer not a source Bottom layer is a possible source	0.00
302: Typic Haploxerults	 45 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Ultic Haploxeralfs	41	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.03

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
	map unit	Rating class and	Value	Rating class and limiting features	Value
303: Rock outcrop	30	 Not rated		Not rated	
Dystric Xeropsamments	 20 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer not a source Thickest layer possible source	0.00
Humic Dystroxerepts	 20 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Tuolumne	 20 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
304: Clarkslodge	 60 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Fair source Bottom layer is a possible source Thickest layer possible source	0.03
Rock outcrop	15	 Not rated 	 	 Not rated 	
305: Rock outcrop	50	Not rated	<u> </u> 	Not rated	İ
Waterwheel	 18 	Fair source Bottom layer possible source Thickest layer possible source	 0.32 0.38	Fair source Bottom layer is a possible source Thickest layer possible source	0.60
Dystric Xeropsamments	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Fair source Bottom layer is a possible source Thickest layer possible source	0.10
306: Typic Cryopsamments	 50 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.10
Humic Dystrocryepts	 30 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer not a source Thickest layer possible source	0.00
307: Rock outcrop	40	 Not rated	 	 Not rated	
Dystric Xeropsamments	 20 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	 Fair source Bottom layer not a source Thickest layer possible source	0.00

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct of	Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
307: Dystric Xerorthents	 20 	 Fair source Bottom layer possible source Thickest layer possible source	 0.32 0.38	 Fair source Bottom layer is a possible source Thickest layer possible source	0.60
309: Rock outcrop	50	 Not rated	 	 Not rated	
Waterwheel	25 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	 Fair source Bottom layer is a possible source Thickest layer possible source	0.04
Typic Dystroxerepts	20	Fair source Thickest layer possible source Bottom layer possible source	 0.29 0.34	Fair source Bottom layer is a possible source Thickest layer possible source	0.02
310: Rock outcrop	55	 Not rated	 	 Not rated	
Humic Dystroxerepts	 25 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	 Poor source Bottom layer not a source Thickest layer not a source	0.00
Humic Lithic Haploxerepts	20	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:	 Poor source Bottom layer not a source Thickest layer not a source	0.00
311: Rock outcrop	45	 Not rated	 	 Not rated	
Humic Dystroxerepts	 35 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	:		0.08
Humic Lithic Haploxerepts	 19 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	!	 Poor source Thickest layer not a source Bottom layer not a source	0.00
313: Nevadafalls	 40 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	 0.10 0.11

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct of	Potential source of gravel	Potential source of sand			
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value	
313: Oxyaquic Dystrudepts	 40 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Fair source Thickest layer possible source Bottom layer is a possible source	0.04	
314:			 			
Badgerpass	45 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.23	
Dystric Xeropsamments	 35 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.03	
Rock outcrop	15	 Not rated		 Not rated		
315: Nevadafalls	 60 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00	
Dystric Xeropsamments	 40 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.08	
316: Dystric Xerorthents	 40 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Fair source Bottom layer not a source Thickest layer possible source	0.00	
Rock outcrop	40	Not rated		Not rated		
Rubble land	20	 Not rated		 Not rated		
318: Typic Dystroxerepts	 40 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Fair source Bottom layer not a source Thickest layer possible source	0.00	
Humic Dystroxerepts	 36 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Bottom layer not a source Thickest layer possible source	 0.00 0.06	
319: Humic Dystroxerepts	 30 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00	

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct of	Potential source of gravel	Potential source of sand		
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
319: Typic Haploxerults	30	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.03
Inceptic Haploxeralfs	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
320: Half Dome	 40 	 Fair source Bottom layer not a source Thickest layer possible source	 0.00 0.40	Fair source Thickest layer possible source Bottom layer is a possible source	0.04
Humic Dystroxerepts	 20 	Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.04
Rock outcrop	20	 Not rated		 Not rated	
321: Dystric Xeropsamments	 50 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Fair source Bottom layer is a possible source Thickest layer possible source	0.02
Dystric Xerorthents	 40 	Fair source Bottom layer possible source Thickest layer possible source	 0.32 0.38	Fair source Bottom layer is a possible source Thickest layer possible source	0.60
322: Typic Xerorthents	 90 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00
323: Ultic Haploxeralfs	 55 	 Poor source Thickest layer not a source due to fines or thin layer Bottom layer not a source	!	Fair source Bottom layer not a source Thickest layer possible source	0.00
Humic Dystroxerepts	 45 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.03

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name		Potential source of gravel		Potential source of sand	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
324: Humic Haploxerepts	 40 	 Fair source Bottom layer possible source Thickest layer possible source	0.32	 Poor source Bottom layer not a source Thickest layer not a source	0.00
Rock outcrop	35	 Not rated	 	 Not rated	
Ultic Haploxeralfs	 25 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
325: Urban land	80	 Not rated	 	Not rated	
328: Clarkslodge	 30 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
Ultic Palexeralfs	 15 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
401: Sentinel	 90 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Thickest layer not a source Bottom layer is a possible source	0.00
412: Water	85	 Not rated	 	 Not rated	
Riverwash	15	 Not rated	 	 Not rated	
501: Happyisles, sandy loam	 65 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	!	Fair source Thickest layer possible source Bottom layer is a possible source	0.02
Happyisles, loamy fine sand, overwash	 20 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Fair source Thickest layer possible source Bottom layer is a possible source	0.03
502: Happyisles	 88 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Fair source Thickest layer possible source Bottom layer is a possible source	0.03

Table 8.—Construction Materials, Part I—Continued

Map symbol and soil name	Pct of	Potential source of gravel	Potential source of sand		
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
504: Mollic Xerofluvents	 85 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	 Fair source Bottom layer is a possible source Thickest layer possible source	0.04
510t: Rubble land	40	Not rated		Not rated	
Lithnip	20	Fair source Thickest layer not a source due to fines or thin layer Bottom layer possible source	:	Fair source Thickest layer not a source Bottom layer is a possible source	0.00
Rock outcrop	15	 Not rated 	 	 Not rated 	
551: Happyisles	 50 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00 	Fair source Thickest layer possible source Bottom layer is a possible source	0.03
Half Dome	45 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
552: Mollic Xerofluvents	 85 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.04
590: Terric Haplosaprists	 85 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	:	Poor source Bottom layer not a source Thickest layer not a source	0.00
601: Half Dome, very bouldery	50	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
Half Dome, cobbly	 45 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.04
602: Half Dome	 85 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00

Table 8.-Construction Materials, Part I-Continued

Map symbol and soil name	Pct	Potential source of gravel		Potential source of sand	
and soll name	map	Rating class and	Value	Rating class and	Value
	unit	:	value	limiting features	Value
610:	 		 		
Rubble land	65	Not rated	į į	Not rated	ļ
Half Dome	30 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.04
620: Half Dome, extremely			İ		ļ
stony sandy loam, warm-	 50 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
Half Dome, very cobbly sandy loam, warm	 43 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Bottom layer not a source Thickest layer not a source	0.00
630:					
Rubble land	65 	Not rated	 	Not rated 	
Half Dome	30 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Poor source Thickest layer not a source Bottom layer not a source	0.00
701: Vitrandic Haploxerolls	 90 	Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	0.00	Fair source Bottom layer is a possible source Thickest layer possible source	0.01
702: Vitrandic Dystroxerepts-	 90 	 Poor source Bottom layer not a source Thickest layer not a source due to fines or thin layer	 0.00 0.00	 Poor source Bottom layer not a source Thickest layer not a source	0.00
900: Rock outcrop	 95	 Not rated	 	Not rated	
DAM: Dam	100	 Not rated	 	Not rated	
W: Water	100	Not rated	 	Not rated	

The interpretation for gravel source evaluates coarse fragments greater than 0.2 inch in size in the bottom layer or in the thickest layer of the soil.

The interpretation for sand source evaluates the amount of sand and fine gravel in the thickest layer or in the bottom layer of the soil. Organic soil layers with a Unified engineering class for peat (PT) are also evaluated.

Table 8.-Construction Materials, Part II

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value column range from 0.00 to 0.99. The closer the value is to 0, the greater the potential limitation. Values of 0 are absolute limitations based on the soil property criteria used to develop the interpretation. Values closer to 1.0 have less of a limitation. Limiting features with values of 1 have absolutely no limitation and are not shown in this report. Rating classes are determined by the most limiting value. Fine-earth fractions and fragment limiting features are reported on a weight basis. A brief summary of rating criteria and abbreviations used in the ratings is listed on the last page of this report)

Map symbol and soil name	Pct. of	Potential source of topsoil		
	map	Rating class and	Value	
	unit	limiting features		
101:	 			
Oxyaquic Xerofluvents	35	Poor source	ļ	
		Sand fractions > 85%	0.00	
	 	Rock fragment content	0.88	
Riverwash	35	Not rated		
Fluvaquents	15	Poor source		
		Saturation < 1' depth	0.00	
101t:				
Lithnip	40	Poor source		
		Slope > 15%	0.00	
		Rock fragment content Depth to bedrock < 20"	0.00	
		Depth to Dedict \ 20		
Rock outcrop	25	Not rated		
Fishsnooze	20	Poor source		
	ļ	Slope > 15%	0.00	
		Rock fragment content	0.00	
	 	Depth to bedrock 20 to 40" pH between 4.5 and 6.5	0.78	
102:	 			
Oxyaquic Xerofluvents	45	Poor source	İ	
		Sand fractions > 85%	0.00	
		Rock fragment content	0.95	
Riverwash	40	 Not rated		
102t:				
Lithnip	40	Poor source	İ	
		Rock fragment content	0.00	
		Depth to bedrock < 20"	0.00	
	 	Slope > 15% 	0.00	
Rock outcrop	25	Not rated		
Fishsnooze	20	 Poor source		
	ĺ	Rock fragment content	0.00	
		Slope > 15%	0.00	
		Depth to bedrock 20 to 40"	0.78	
		pH between 4.5 and 6.5	0.88	

Table 8.—Construction Materials, Part II—Continued

Map symbol and soil name	Pct.	Potential source of topsoil	
	map unit	Rating class and limiting features	Value
104: Aquandic Humaquepts	 85 	 Poor source Sand fractions > 85% Saturation < 1' depth	0.00
111t: Whittell	 45 	Poor source Slope > 15% Sand fractions > 85% Rock fragment content Depth to bedrock 20 to 40" pH > 6.5 or is NULL	0.00 0.00 0.00 0.64 1.00
Jobsis	 25 	Poor source Slope > 15% Rock fragment content Depth to bedrock 20 to 40" Sand fractions 75-85% pH between 4.5 and 6.5	0.00 0.00 0.00 0.06 0.88
Rock outcrop	15	 Not rated 	
151: Elcapitan	80	 Good source	
152: Vitrandic Haploxerolls	80	 Good source	
201: Leidig	80	Good source	
210: Rubble land	30	 Not rated	
Typic Cryorthents	 25 	Poor source Slope > 15% Rock fragment content Hard to reclaim pH between 4.5 and 6.5	0.00 0.00 0.00 0.98
Rock outcrop	20	 Not rated	
Xeric Dystrocryepts	20 	Poor source Slope > 15% Rock fragment content Sand fractions < 75% or is NULL Not hard to reclaim	0.00
211: Xeric Dystrocryepts	 35 	Poor source Rock fragment content Slope > 15% pH between 4.5 and 6.5	0.00
Canisrocks	 30 	Poor source Sand fractions > 85% Slope > 15% Hard to reclaim Rock fragment content pH between 4.5 and 6.5	 0.00 0.00 0.02 0.41 0.92

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct.	Potential source of topsoil	
and Soll name	map unit	Rating class and	Value
211: Oxyaquic Dystrocryepts	 15 	Poor source Slope > 15% Rock fragment content Hard to reclaim Saturation from 1 to 3' pH between 4.5 and 6.5	0.00 0.00 0.01 0.44 0.50
213: Canisrocks	 50 	Poor source Slope > 15% Hard to reclaim Rock fragment content Sand fractions 75-85%	 0.00 0.00 0.00 0.10
Glacierpoint	 15 	Poor source Slope > 15% Rock fragment content Hard to reclaim Sand fractions 75-85%	 0.00 0.00 0.05 0.10
Vitrandic Dystrocryepts-	 15 	Poor source Slope > 15% Hard to reclaim Rock fragment content Sand fractions 75-85%	0.00 0.50 0.68 0.90
214: Marmotland	25	Good source	
Oxyaquic Dystrocryepts	 15 	Poor source Sand fractions > 85% Saturation from 1 to 3' Hard to reclaim	 0.00 0.44 0.54
Xeric Dystrocryepts	 15 	 Poor source Hard to reclaim pH between 4.5 and 6.5	0.00
215: Typic Cryorthents	 40 	Poor source Slope > 15% Rock fragment content Hard to reclaim pH between 4.5 and 6.5 Sand fractions 75-85%	0.00 0.00 0.16 0.68 0.78
Rock outcrop	20	 Not rated 	
Rubble land	20	 Not rated 	
219: Rock outcrop Rubble land	į	 Not rated Not rated	

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct. of	Potential source of topsoil	
	map unit	Rating class and limiting features	Value
219: Canisrocks	 15 	Poor source Sand fractions > 85% Slope > 15% Hard to reclaim Rock fragment content pH between 4.5 and 6.5	 0.00 0.00 0.02 0.41 0.92
221: Typic Cryorthents	 35 	Poor source Slope > 15% Hard to reclaim Rock fragment content pH between 4.5 and 6.5	0.00
Xeric Dystrocryepts	 20 	Poor source Slope > 15% Rock fragment content pH between 4.5 and 6.5 Hard to reclaim	0.00 0.50 0.88 0.95
Oxyaquic Dystrocryepts	 15 	Poor source Slope > 15% Rock fragment content Hard to reclaim Saturation from 1 to 3' pH between 4.5 and 6.5	 0.00 0.00 0.01 0.44 0.50
222: Canisrocks	 30 	Poor source Slope > 15% Sand fractions > 85% Hard to reclaim Rock fragment content pH between 4.5 and 6.5	0.00 0.00 0.00 0.00 0.88
Rubble land	30	 Not rated	
Rock outcrop	20	 Not rated	
Crazymule	 15 	Poor source Slope > 15% Rock fragment content Sand fractions 75-85% pH between 4.5 and 6.5 Hard to reclaim	0.00 0.00 0.22 0.95
223: Rock outcrop	 35	 Not rated	
Rubble land	35	 Not rated	
Canisrocks	 20 	Poor source Sand fractions > 85% Slope > 15% Hard to reclaim Rock fragment content pH between 4.5 and 6.5	 0.00 0.00 0.02 0.41 0.92

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct.	Potential source of topsoil	
	map unit	Rating class and	Value
224: Rock outcrop	 40	 Not rated	
Crazymule	 20 	Poor source Rock fragment content Slope > 15% Sand fractions 75-85% pH between 4.5 and 6.5 Hard to reclaim	0.00 0.00 0.22 0.95
Vitrandic Cryorthents	15 	Poor source Sand fractions > 85% Rock fragment content Slope > 15% Depth to bedrock 20 to 40" pH between 4.5 and 6.5	0.00 0.00 0.00 0.24 0.88
225: Canisrocks	 15 	Poor source Sand fractions > 85% Slope > 15% Hard to reclaim Rock fragment content pH between 4.5 and 6.5	0.00 0.00 0.02 0.41 0.92
Rock outcrop	15	 Not rated	
Rubble land	15	 Not rated	
Vitrandic Dystrocryepts-	 15 	Poor source Hard to reclaim Rock fragment content Slope > 15% pH between 4.5 and 6.5	0.00
227: Canisrocks	 45 	Poor source Slope > 15% Rock fragment content Sand fractions 75-85% Hard to reclaim	 0.00 0.00 0.22 0.39
Crazymule	40 	Poor source Slope > 15% Rock fragment content pH between 4.5 and 6.5	0.00
228: Xeric Dystrocryepts	 35 	Poor source Sand fractions > 85% Rock fragment content Hard to reclaim pH between 4.5 and 6.5	0.00
Vitrandic Eutrocryepts	 25 	Fair source Saturation from 1 to 3' Rock fragment content pH between 4.5 and 6.5	0.44

Table 8.—Construction Materials, Part II—Continued

Map symbol and soil name	Pct.	Potential source of topsoil		
and boll name	map	Rating class and Va		
	unit	:		
229:				
Marmotland	40	Poor source	İ	
		Rock fragment content	0.00	
	ļ	Hard to reclaim	0.00	
	 	pH between 4.5 and 6.5	0.88	
Oxyaquic Dystrocryepts	40	Poor source	İ	
		Rock fragment content	0.00	
		Hard to reclaim	0.01	
		Saturation from 1 to 3' pH between 4.5 and 6.5	0.44	
0.21	į	_	į	
231: Canisrocks	40	 Poor source		
	İ	Sand fractions > 85%	0.00	
		Rock fragment content	0.00	
		Hard to reclaim	0.00	
	ļ	Slope > 15%	0.00	
	l I	pH between 4.5 and 6.5	0.92	
Typic Cryaquents	21	Poor source		
		Saturation < 1' depth	0.00	
		Rock fragment content	0.18	
		Sand fractions 75-85% Slope 8 to 12%	0.38	
		Hard to reclaim	0.95	
232:				
Canisrocks	25	 Poor source		
	İ	Sand fractions > 85%	0.00	
		Rock fragment content	0.00	
	ļ	Hard to reclaim	0.00	
		Slope > 15%	0.00	
		pH > 6.5 or is NULL 	1.00	
Glacierpoint	21	Poor source		
		Sand fractions > 85%	0.00	
		Rock fragment content Hard to reclaim	0.00	
		pH between 4.5 and 6.5	0.88	
234:				
Rock outcrop	35	 Not rated		
Rubble land	35	 Not rated		
235: Canisrocks	35	 Poor source		
	33	Slope > 15%	0.00	
		Sand fractions 75-85%	0.17	
	İ	Hard to reclaim	0.50	
	İ	Rock fragment content	0.88	
Rock outcrop	30	 Not rated		
Rubble land	20	 Not rated		
	20			

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct.	Potential source of topsoil	e of	
2011	map	Rating class and	Value	
	unit	!	Varue	
237:				
Canisrocks	25	 Poor source		
041122200112		Sand fractions > 85%	0.00	
	İ	Rock fragment content	0.00	
	İ	Slope > 15%	0.00	
	İ	Depth to bedrock 20 to 40"	0.38	
	İ	pH between 4.5 and 6.5	0.92	
Glacierpoint	15	 Fair source		
		Hard to reclaim	0.05	
		Slope 12 to 15%	0.37	
	ļ	Sand fractions 75-85%	0.78	
		Rock fragment content	0.98	
Vitrandic Cryorthents	15	Poor source		
		Depth to bedrock < 20"	0.00	
		Rock fragment content	0.82	
		pH between 4.5 and 6.5 Sand fractions < 75% or is	0.95	
		NULL		
238:				
Oxyaquic Cryorthents	25	Fair source	İ	
		Sand fractions 75-85%	0.04	
		Saturation from 1 to 3'	0.44	
Canisrocks	15	 Poor source		
		Sand fractions > 85%	0.00	
		Hard to reclaim	0.02	
	ļ	Slope 12 to 15%	0.37	
		Rock fragment content	0.41	
		pH between 4.5 and 6.5	0.92	
239: Crazymule	45	Poor source		
crazymare	13	Rock fragment content	0.00	
		Depth to bedrock 20 to 40"	0.16	
	İ	Slope 8 to 12%	0.84	
Canisrocks	34	 Poor source		
		Sand fractions > 85%	0.00	
		Hard to reclaim	0.02	
	ļ	Slope 12 to 15%	0.37	
		Rock fragment content	0.41	
		pH between 4.5 and 6.5	0.92	
241: Canisrocks	 75	 Poor source	İ	
Cantalogya	13	Sand fractions > 85%	0.00	
		Slope > 15%	0.00	
		Rock fragment content	0.50	
		Hard to reclaim	0.59	
	į	pH between 4.5 and 6.5	0.92	
242:				
Rock outcrop	30	Not rated		
	1	I .	1	

Table 8.—Construction Materials, Part II—Continued

Map symbol	Pct.	Potential source of	
and soil name	of	topsoil	
	map	Rating class and	Value
	unit		<u> </u>
242:	l I		
Canisrocks	25	 Poor source	1
		Hard to reclaim	0.00
	İ	Rock fragment content	0.00
	İ	Slope > 15%	0.00
	İ	Sand fractions 75-85%	0.30
		pH between 4.5 and 6.5	0.92
Xeric Dystrocryepts	16	 Poor source	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Slope > 15%	0.00
	İ	Sand fractions 75-85%	0.10
	į	No rock fragment limitation	0.99
244:			
Typic Cryorthents	45	Poor source	İ
		Slope > 15%	0.00
		Sand fractions > 85%	0.00
		Hard to reclaim	0.02
		Rock fragment content pH between 4.5 and 6.5	0.41
		ph between 4.3 and 6.3	0.92
Rubble land	25	Not rated	
Rock outcrop	16	Not rated	
245:			
Rock outcrop	30	Not rated	
Canisrocks	22	Poor source	
		Sand fractions > 85%	0.00
	ļ	Slope > 15%	0.00
		Hard to reclaim	0.02
		Rock fragment content	0.41
		pH between 4.5 and 6.5	0.92
Xeric Dystrocryepts	20	Poor source	İ
	ļ	Slope > 15%	0.00
		Rock fragment content	0.98
		pH between 4.5 and 6.5	0.98
246:	ļ		
Rock outcrop, domes	90	Not rated	
247:			
Canisrocks	20	Poor source	
		Sand fractions > 85%	0.00
		Slope > 15%	0.00
	 	Hard to reclaim	0.08
		Rock fragment content pH > 6.5 or is NULL	0.98 1.00
		PH > 0.5 OI IS NOUL	
Xeric Dystrocryepts	20	Fair source	
		Sand fractions 75-85%	0.10
		pH between 4.5 and 6.5	0.50
		•	

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct.	Potential source of topsoil		
	map unit	Rating class and	Value	
248: Canisrocks	 35 	Poor source Slope > 15% Sand fractions > 85% Rock fragment content Hard to reclaim pH between 4.5 and 6.5	 0.00 0.00 0.00 0.26 0.88	
Rock outcrop	30	 Not rated		
Glacierpoint	 15 	Poor source Slope > 15% Sand fractions > 85% Rock fragment content Hard to reclaim pH between 4.5 and 6.5	 0.00 0.00 0.00 0.74 0.88	
249: Rock outcrop	45	 Not rated		
Canisrocks	 30 	Poor source Slope > 15% Sand fractions 75-85% Hard to reclaim Rock fragment content	 0.00 0.17 0.50 0.88	
250: Canisrocks	 47 	Poor source Sand fractions > 85% Slope > 15% Hard to reclaim Rock fragment content pH between 4.5 and 6.5	 0.00 0.00 0.02 0.41 0.92	
Xeric Dystrocryepts	 35 	Poor source Hard to reclaim Rock fragment content Slope > 15% pH between 4.5 and 6.5	 0.00 0.00 0.00 0.95	
251: Glacierpoint	 30 	Poor source Slope > 15% Sand fractions > 85% Rock fragment content Hard to reclaim pH between 4.5 and 6.5	 0.00 0.00 0.00 0.74 0.88	
Typic Cryorthents	 20 	Poor source Slope > 15% Rock fragment content Hard to reclaim Sand fractions 75-85% pH between 4.5 and 6.5	 0.00 0.01 0.41 0.78 0.98	
252: Rock outcrop	 20	 Not rated 		

Table 8.—Construction Materials, Part II—Continued

Map symbol	Pct.	!	
and soil name	of	topsoil	177-7
	map unit	Rating class and limiting features	Value
252:			
Canisrocks	15	 Poor source	
04112200112		Sand fractions > 85%	0.00
	İ	Slope > 15%	0.00
	İ	Hard to reclaim	0.02
		Rock fragment content	0.41
		pH between 4.5 and 6.5	0.92
Xeric Dystrocryepts	15	 Poor source	
	İ	Rock fragment content	0.00
		Sand fractions 75-85%	0.15
	ļ	Slope 12 to 15%	0.37
		Hard to reclaim	0.50
	 	pH between 4.5 and 6.5	0.50
253:	İ	_	ļ
Canisrocks	25	Poor source	0.00
		Slope > 15% Hard to reclaim	0.00
		Rock fragment content	0.00
		Sand fractions 75-85%	0.08
		pH between 4.5 and 6.5	0.50
	10	 Decay Course	
Glacierpoint	18	Poor source Slope > 15%	0.00
		Rock fragment content	0.00
	i	Hard to reclaim	0.00
	İ	Sand fractions 75-85%	0.22
	į	pH between 4.5 and 6.5	0.98
Humic Dystrocryepts	15	 Poor source	
	İ	Slope > 15%	0.00
		Hard to reclaim	0.00
	l	Rock fragment content	0.01
256:			
Craneflat	25	Poor source	ļ
		Slope > 15%	0.00
		Rock fragment content	0.00
		Sand fractions 75-85% pH between 4.5 and 6.5	0.20
		Hard to reclaim	0.59
Rock outcrop	25	 Not rated	
Rubble land	20	 Not rated	
Waterwheel	20		
Marel Mileel	20	Poor source Slope > 15%	0.00
		Sand fractions > 85%	0.00
	İ	Hard to reclaim	0.00
	į	Rock fragment content	0.00
257:			
Badgerpass	55	Fair source	į
		Sand fractions 75-85%	0.15
		Rock fragment content	0.24
	1	I	1

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct.	!	
	map unit	Rating class and limiting features	Value
257: Oxyaquic Dystroxerepts	 35 	Poor source Rock fragment content Saturation from 1 to 3' Slope 8 to 12% Clay 27 to 40%	 0.00 0.44 0.84 0.98
258: Typic Dystroxerepts	 25 	 Poor source Slope > 15%	0.00
Badgerpass	 20 	Poor source Slope > 15% Sand fractions > 85% Rock fragment content	0.00
Dystric Xerorthents	 20 	Poor source Slope > 15% Rock fragment content Sand fractions 75-85% Hard to reclaim pH between 4.5 and 6.5	0.00 0.04 0.22 0.50 0.88
260: Rock outcrop	45	 Not rated	
Craneflat	 25 	Poor source Slope > 15% Sand fractions > 85% Rock fragment content Hard to reclaim	0.00
Dystric Xerorthents	 20 	 Poor source Slope > 15% 	0.00
261: Dystric Xeropsamments	 25 	Poor source Sand fractions > 85% pH between 4.5 and 6.5	0.00
Typic Dystroxerepts	 25 	Poor source Hard to reclaim Slope > 15% Rock fragment content pH between 4.5 and 6.5	0.00 0.00 0.59 0.68
Badgerpass	 15 	Poor source Sand fractions > 85% Slope > 15% Rock fragment content pH between 4.5 and 6.5	0.00 0.00 0.24 0.88
Rock outcrop	15	 Not rated 	
262: Humic Dystroxerepts	 30 	Poor source Slope > 15% Rock fragment content Hard to reclaim	0.00

Table 8.—Construction Materials, Part II—Continued

Map symbol and soil name	Pct. of	Potential source of topsoil		
	map unit	Rating class and limiting features	Value	
262: Dystric Xerorthents	 25 	Poor source Slope > 15% Rock fragment content Sand fractions 75-85% Hard to reclaim pH between 4.5 and 6.5		
Rock outcrop	20	 Not rated		
264: Crazymule	 35 	Fair source Rock fragment content Hard to reclaim Slope 12 to 15%	 0.02 0.32 0.37	
Canisrocks	 28 	Poor source Hard to reclaim Rock fragment content Slope > 15% Sand fractions 75-85% pH between 4.5 and 6.5	 0.00 0.00 0.00 0.08 0.50	
267: Rock outcrop	40	Not rated		
Typic Cryorthents	 30 	Poor source Hard to reclaim Rock fragment content pH between 4.5 and 6.5	 0.00 0.00 0.98	
Xeric Dystrocryepts	 15 	Poor source Sand fractions > 85% Slope 12 to 15% No rock fragment limitation	 0.00 0.37 0.99	
268: Rock outcrop	40	 Not rated	 	
Canisrocks	 25 	Poor source Slope > 15% Sand fractions > 85% Hard to reclaim Rock fragment content pH between 4.5 and 6.5	 0.00 0.00 0.02 0.41 0.92	
Glacierpoint	 20 	Poor source Slope > 15% Sand fractions > 85% Rock fragment content Hard to reclaim pH between 4.5 and 6.5	 0.00 0.00 0.00 0.74 0.88	
269: Canisrocks	 20 	Poor source Rock fragment content Slope > 15% Sand fractions 75-85% Hard to reclaim pH between 4.5 and 6.5	 0.00 0.00 0.10 0.32 0.88	

Soil Survey of Yosemite National Park, California

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct. of	Potential source of topsoil	
and boll name	map	Rating class and	Value
	unit		
269:	 		
Rock outcrop	20	Not rated	
Clasionnoint	 15	Poor source	
Glacierpoint	13	Sand fractions > 85%	0.00
	İ	Rock fragment content	0.00
	į	Slope > 15%	0.00
		Hard to reclaim	0.74
	 	pH between 4.5 and 6.5	0.88
270:			j
Rock outcrop	35	Not rated	
Typic Cryorthents	25	 Poor source	
	ĺ	Slope > 15%	0.00
	ļ	Sand fractions > 85%	0.00
		Rock fragment content	0.00
	 	Hard to reclaim pH between 4.5 and 6.5	0.00 0.92
		ph between 4.5 and 0.5	
Vitrandic Dystrocryepts-	25	Poor source	
		Slope > 15%	0.00
		Sand fractions > 85% Hard to reclaim	0.00
	 	Rock fragment content	0.00
271:			
Rock outcrop	60	 Not rated	
Lithic Xerorthents	 15	Poor source	
LICHIC Xerorchencs	13	Sand fractions > 85%	0.00
	İ	Rock fragment content	0.00
	j	Depth to bedrock < 20"	0.00
	[Slope > 15%	0.00
	 	pH between 4.5 and 6.5	0.88
Waterwheel	15	Poor source	
	[Sand fractions > 85%	0.00
		Hard to reclaim	0.00
	 	Slope > 15% Rock fragment content	0.00 0.59
		Rock Fragment Content	
273:		 Roim gounge	
Nevadafalls	55	Fair source Rock fragment content	0.02
	İ	Hard to reclaim	0.02
	į	Sand fractions 75-85%	0.05
Waterwheel	 30	 Poor source	
		Hard to reclaim	0.00
	İ	Rock fragment content	0.00
		Slope > 15%	0.00
	 	Sand fractions 75-85%	0.10
274:			
Rock outcrop, domes	i -	Not rated	i

Table 8.—Construction Materials, Part II—Continued

	Ī		
Map symbol and soil name	Pct.		
	map unit	·	Value
275:			
Oxyaquic Dystroxerepts	25	 Poor source Hard to reclaim Rock fragment content	0.00
		Saturation from 1 to 3' pH > 6.5 or is NULL	0.44
Dystric Xerorothents	25 	Poor source Hard to reclaim Rock fragment content Slope > 15% Sand fractions 75-85%	0.00 0.00 0.00 0.78
Vitrandic Xerorthents	 25 	 Fair source Sand fractions 75-85% pH between 4.5 and 6.5	0.53
Rubble land	15	 Not rated 	
276: Happyisles	35	 Good source	į į
Typic Dystroxerepts	35 	Poor source Hard to reclaim Rock fragment content Slope 8 to 12%	0.00
277: Tuolumne	 45 	Poor source Slope > 15% Sand fractions > 85% Hard to reclaim Rock fragment content	0.00
Humic Dystroxerepts	 35 	Poor source Slope > 15% Hard to reclaim Rock fragment content Sand fractions 75-85%	0.00 0.00 0.00 0.15
278: Rock outcrop	25	 Not rated	
Tuolumne	 25 	Poor source Slope > 15% Sand fractions > 85% Rock fragment content Hard to reclaim	0.00 0.00 0.00 0.97
Humic Dystroxerepts	 20 	Poor source Slope > 15% Hard to reclaim Rock fragment content Sand fractions 75-85%	0.00 0.00 0.00 0.25
Rubble land	15	 Not rated 	

Soil Survey of Yosemite National Park, California

Table 8.—Construction Materials, Part II—Continued

Map symbol	Pct.	Potential source of	
and soil name	of	topsoil	
	map unit	!	Value
0.00			
279: Canisrocks	40	 Poor source	
Canibiocks	1 40	Slope > 15%	0.00
	1	Sand fractions > 85%	0.00
	i	Hard to reclaim	0.00
	i	Rock fragment content	0.00
		pH between 4.5 and 6.5	0.92
Xeric Dystrocryepts	15	 Poor source	
	ĺ	Slope > 15%	0.00
	ĺ	Sand fractions > 85%	0.00
		Rock fragment content	0.50
		pH between 4.5 and 6.5	0.92
280:			ļ
Typic Dystroxerepts	35	Poor source	
	 	Slope > 15% 	0.00
Humic Dystroxerepts	30	Poor source	İ
	ĺ	Slope > 15%	0.00
		Rock fragment content	0.00
		Hard to reclaim	0.02
Rock outcrop	25	 Not rated 	
282:			
Clarkslodge	50	Poor source	
		Rock fragment content	0.00
	 	Slope 12 to 15%	0.37
Craneflat	25	Poor source	İ
	ļ	Slope > 15%	0.00
	ļ	Hard to reclaim	0.05
		Sand fractions 75-85%	0.40
	 	Rock fragment content	0.88
Nevadafalls	25	Poor source	į
		Slope > 15%	0.00
		Rock fragment content	0.02
	ļ	Hard to reclaim	0.02
	 	Sand fractions 75-85%	0.05
283:		_	į
Waterwheel	35	Poor source	0.00
		Slope > 15%	0.00
		Hard to reclaim	0.00
		Rock fragment content Sand fractions 75-85%	0.00
Nevadafalls	30	Poor source	0.00
		Slope > 15%	0.00
		Sand fractions 75-85%	0.15
Rock outcrop	21	Not rated	į

Table 8.—Construction Materials, Part II—Continued

Map symbol and soil name	Pct. of	Potential source of topsoil	
	map unit	Rating class and limiting features	Value
285:	30	Poor source	
Waterwheel	30	Slope > 15%	0.00
		Hard to reclaim	0.00
		Rock fragment content	0.00
		Sand fractions 75-85% pH between 4.5 and 6.5	0.77
Humic Dystroxerepts	16	Poor source	
		Slope > 15% Sand fractions > 85%	0.00
		Hard to reclaim	0.05
		pH between 4.5 and 6.5	0.88
286: Nevadafalls	26	 Poor source	
		Slope > 15%	0.00
	j I	Rock fragment content	0.82
Typic Dystroxerepts	25	Fair source	j
		Sand fractions 75-85%	0.30
		Rock fragment content	0.82
Ultic Palexeralfs	20	Fair source	
		Slope 12 to 15%	0.37
Rock outcrop	15 	Not rated 	
287: Badgerpass	 55	 Fair source	
	İ	Hard to reclaim	0.02
		Sand fractions 75-85%	0.15
		Rock fragment content	0.95
Waterwheel	40	Fair source	0.27
	 	Slope 12 to 15% Sand fractions 75-85%	0.37
		Rock fragment content	0.95
288: Rock outcrop	35	 Not rated	
Craneflat	į	 	İ
Clanellat	20	Slope > 15%	0.00
		Hard to reclaim	0.05
	ļ	Sand fractions 75-85%	0.40
		Rock fragment content	0.88
Waterwheel	20	Poor source Slope > 15%	0.00
	İ	Sand fractions 75-85%	0.40
		Rock fragment content	0.95
289: Waterwheel	 50	 Poor source	
		Slope > 15%	0.00
		Rock fragment content	0.00
		Hard to reclaim	0.00
	 	Sand fractions 75-85% pH between 4.5 and 6.5	0.30

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct.	Potential source of topsoil	
	map unit	Rating class and	Value
289: Craneflat	 30	 Poor source Slope > 15%	0.00
	 	Hard to reclaim Rock fragment content pH between 4.5 and 6.5	0.00
290: Humic Dystroxerepts	 40 	Poor source Slope > 15% Hard to reclaim Rock fragment content pH between 4.5 and 6.5	 0.00 0.00 0.00 0.88
Tuolumne	30	Poor source Slope > 15% Hard to reclaim Rock fragment content Sand fractions 75-85% pH between 4.5 and 6.5	 0.00 0.00 0.00 0.08 0.88
Typic Xerorthents	 15 	Poor source Slope > 15% Rock fragment content pH between 4.5 and 6.5	 0.00 0.08 0.98
Ultic Haploxeralfs	 15 	Poor source Slope > 15% Rock fragment content	0.00
291: Ultic Haploxeralfs	 41 	Poor source Slope > 15%	0.00
Typic Dystroxerepts	 31 	Poor source Slope > 15% Rock fragment content Hard to reclaim	 0.00 0.12 0.95
292: Humic Dystroxerepts	 35 	Poor source Rock fragment content Slope > 15% Sand fractions 75-85% Hard to reclaim	0.00
Typic Haploxerults	30	Fair source Slope 12 to 15% Clay 27 to 40% Hard to reclaim Rock fragment content	 0.37 0.50 0.95 0.95
293: Xeric Dystrocryepts	 70 	Poor source Slope > 15% Sand fractions 75-85% Hard to reclaim pH between 4.5 and 6.5 No rock fragment limitation	 0.00 0.06 0.50 0.50 0.99

Table 8.—Construction Materials, Part II—Continued

Map symbol and soil name		Potential source of topsoil		
	map unit	Rating class and limiting features	Value	
293: Vitrandic Dystrocryepts-	 18 	Poor source Slope > 15% Hard to reclaim Sand fractions 75-85%	0.00	
294: Waterwheel	 65 	Poor source Slope > 15% Hard to reclaim Sand fractions 75-85% Rock fragment content	0.00	
Typic Dystroxerepts	 35 	Poor source Slope > 15% Rock fragment content Sand fractions 75-85% pH between 4.5 and 6.5	 0.00 0.41 0.98 0.98	
295: Craneflat	 25 	Poor source Slope > 15% Hard to reclaim Rock fragment content Sand fractions 75-85%	 0.00 0.00 0.00 0.10	
Typic Dystroxerepts	 25 	 Poor source Slope > 15% Rock fragment content	0.00	
296: Ultic Palexeralfs	 20 	 Poor source Slope > 15%	0.00	
Humic Dystroxerepts	15	 Poor source Slope > 15%	0.00	
297: Typic Xerorthents	 30 	Poor source Slope > 15% Sand fractions 75-85% Rock fragment content Hard to reclaim	 0.00 0.56 0.76 0.95	
Rock outcrop	25	 Not rated		
Typic Xeropsamments	 25 	 Poor source Slope > 15% Sand fractions > 85%	0.00	
298: Tuolumne	 41 	Poor source Slope > 15% Hard to reclaim Sand fractions 75-85% Rock fragment content	0.00	

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct.	Potential source of topsoil	
	map	Rating class and	Value
	unit	limiting features	1
298:	 		
Typic Dystroxerepts	31	Poor source	į
		Slope > 15%	0.00
	 	Rock fragment content Sand fractions 75-85%	0.41
		pH between 4.5 and 6.5	0.98
299:			
Humic Dystroxerepts	46	 Poor source	
		Slope > 15%	0.00
		Sand fractions > 85% Hard to reclaim	0.00
		pH between 4.5 and 6.5	0.76
	ļ	Rock fragment content	0.88
Ultic Haploxeralfs	35	 Poor source	
-	İ	Slope > 15%	0.00
		Rock fragment content	0.76
300:			
Typic Dystroxerepts	35	Poor source	
		Slope > 15% Rock fragment content	0.00
		ROCK Tragment content	
Ultic Haploxeralfs	25	Poor source	
		Slope > 15% Rock fragment content	0.00
		Hard to reclaim	0.95
301:	 		
Vitrandic Haploxerolls	90	Fair source	İ
		Saturation from 1 to 3'	0.53
302:			
Typic Haploxerults	45	Poor source	
		Slope > 15% 	0.00
Ultic Haploxeralfs	41	Poor source	
		Slope > 15%	0.00
	 	Rock fragment content Hard to reclaim	0.41
	į		
303: Rock outcrop	30	 Not rated	
_	į		į
Dystric Xeropsamments	20	Poor source Slope > 15%	0.00
		Sand fractions 75-85%	0.10
		Rock fragment content	0.68
Humic Dystroxerepts	20	 Poor source	
-	İ	Slope > 15%	0.00
		Hard to reclaim	0.02
		Rock fragment content Sand fractions 75-85%	0.02
		pH between 4.5 and 6.5	0.88
	İ		1

Table 8.—Construction Materials, Part II—Continued

Map symbol and soil name	Pct.	Potential source of topsoil	
	map unit	Rating class and	Value
303: Tuolumne	 20 	Poor source Slope > 15% Hard to reclaim Rock fragment content Sand fractions 75-85% pH between 4.5 and 6.5	 0.00 0.00 0.00 0.32 0.76
304: Clarkslodge	 60 	Poor source Slope > 15% Rock fragment content Hard to reclaim	 0.00 0.50 0.95
Rock outcrop	15	 Not rated	
305: Rock outcrop	 50	 Not rated	
Waterwheel	18 	Poor source Sand fractions > 85% Hard to reclaim Rock fragment content Slope > 15%	0.00
Dystric Xeropsamments	 15 	Poor source Sand fractions > 85% pH between 4.5 and 6.5	0.00
306: Typic Cryopsamments	 50 	 Fair source Sand fractions 75-85% Slope 8 to 12% Hard to reclaim pH between 4.5 and 6.5	 0.20 0.84 0.88 0.98
Humic Dystrocryepts	 30 	Poor source Slope > 15% Rock fragment content pH between 4.5 and 6.5	 0.00 0.68 0.88 0.95
307: Rock outcrop	 40	 Not rated	
Dystric Xeropsamments	 20 	Poor source Slope > 15% Sand fractions 75-85% Rock fragment content	0.00
Dystric Xerorthents	 20 	Poor source Sand fractions > 85% Hard to reclaim Rock fragment content Slope > 15%	0.00

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct.	Potential source of topsoil	
	map unit	Rating class and	Value
309: Rock outcrop	 50	 Not rated	
Waterwheel	 25 	Poor source Slope > 15% Rock fragment content Hard to reclaim	0.00
Typic Dystroxerepts	 20 	 Poor source Slope > 15% Hard to reclaim Rock fragment content	0.00
310: Rock outcrop	55	 Not rated	
Humic Dystroxerepts	 25 	Poor source Slope > 15% Hard to reclaim Rock fragment content Sand fractions 75-85%	0.00 0.00 0.00 0.38
Humic Lithic Haploxerepts	 20 	Poor source Slope > 15% Rock fragment content Depth to bedrock 20 to 40" Saturation from 1 to 3'	0.00 0.00 0.00 0.01
311: Rock outcrop	45	 Not rated	
Humic Dystroxerepts	 35 	Poor source Rock fragment content Hard to reclaim Slope > 15% Sand fractions 75-85%	0.00 0.00 0.00 0.20
Humic Lithic Haploxerepts	 19 	Poor source Rock fragment content Slope > 15% Depth to bedrock 20 to 40" Saturation from 1 to 3'	0.00
313: Nevadafalls	 40 	 Fair source Rock fragment content Hard to reclaim Sand fractions 75-85%	0.02 0.02 0.05
Oxyaquic Dystrudepts	40	 Fair source Saturation from 1 to 3'	0.44
314: Badgerpass	 45 	 Poor source Sand fractions > 85% Slope > 15% Hard to reclaim	0.00

Table 8.—Construction Materials, Part II—Continued

Map symbol and soil name	Pct. of	Potential source of topsoil	
	map unit	Rating class and limiting features	Value
314: Dystric Xeropsamments	 35 	 Poor source Slope > 15% Sand fractions 75-85%	0.00
Rock outcrop	15	 Not rated	
315: Nevadafalls	 60 	 Poor source Slope > 15% Rock fragment content Hard to reclaim	0.00
Dystric Xeropsamments	 40 	Poor source Slope > 15% Hard to reclaim Rock fragment content Sand fractions 75-85%	 0.00 0.02 0.02 0.15
316: Dystric Xerorthents	 40 	Poor source Slope > 15% Rock fragment content Sand fractions 75-85%	0.00
Rock outcrop	40	 Not rated	
Rubble land	20	 Not rated 	
318: Typic Dystroxerepts	40	Good source	
Humic Dystroxerepts	 36 	 Fair source Sand fractions 75-85% Rock fragment content	0.84
319: Humic Dystroxerepts	 30 	Poor source Slope > 15% Rock fragment content Sand fractions 75-85% pH between 4.5 and 6.5 Hard to reclaim	0.00 0.00 0.06 0.92 0.95
Typic Haploxerults	 30 	Poor source Slope > 15% Rock fragment content pH between 4.5 and 6.5	0.00
Inceptic Haploxeralfs	 25 	Poor source Slope > 15% Hard to reclaim Rock fragment content pH between 4.5 and 6.5	0.00
320: Half Dome	 40 	 Poor source Slope > 15% Rock fragment content	0.00

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct. of	Potential source of topsoil	
	map unit	Rating class and	Value
320: Humic Dystroxerepts	 20 	Poor source Slope > 15% Rock fragment content Hard to reclaim	0.00
Rock outcrop	20	 Not rated	
321: Dystric Xeropsamments	 50 	Fair source Sand fractions 75-85% Hard to reclaim Rock fragment content	0.28
Dystric Xerorothents	 40 	Poor source Sand fractions > 85% Hard to reclaim Rock fragment content Slope > 15%	0.00
322: Typic Xerorthents	 90 	Poor source Slope > 15% Rock fragment content Hard to reclaim Sand fractions 75-85%	0.00 0.08 0.59 0.92
323: Ultic Haploxeralfs	 55 	 Poor source Rock fragment content Hard to reclaim Slope > 15%	0.00
Humic Dystroxerepts	 45 	 Fair source Slope 8 to 12%	0.84
324: Humic Haploxerepts	 40 	Poor source Slope > 15% Hard to reclaim Rock fragment content	0.00
Rock outcrop	35	 Not rated	
Ultic Haploxeralfs	 25 	Poor source Slope > 15% Hard to reclaim Rock fragment content	0.00
325: Urban land	 80	 Not rated	
328: Clarkslodge	 30 	 Poor source Slope > 15% Hard to reclaim Rock fragment content	0.00

Table 8.—Construction Materials, Part II—Continued

Map symbol and soil name	Pct.	Potential source of topsoil	
	map unit	Rating class and	Value
328: Ultic Palexeralfs	 15 	 Poor source Slope > 15% Rock fragment content pH between 4.5 and 6.5	0.00
401: Sentinel	90	Good source	
412: Water	85	 Not rated	
Riverwash	15	 Not rated	
501: Happyisles, sandy loam	 65 	 Fair source Rock fragment content	0.50
Happyisles, loamy fine sand, overwash	20	Good source	
502: Happyisles	 88	Good source	
504: Mollic Xerofluvents	 85 	 Fair source Rock fragment content Hard to reclaim pH between 4.5 and 6.5	0.01
510t: Rubble land	40	Not rated	
Lithnip	 20 	Poor source Rock fragment content Depth to bedrock < 20" Slope > 15%	0.00
Rock outcrop	15	 Not rated	
551: Happyisles	50	 Good source	
Half Dome	 45 	Poor source Hard to reclaim Rock fragment content Slope 8 to 12%	0.00
552: Mollic Xerofluvents	 85 	Fair source Rock fragment content Slope 8 to 12% Hard to reclaim pH between 4.5 and 6.5	 0.01 0.84 0.97 0.98
590: Terric Haplosaprists	 85 	Poor source OM > 30% Hard to reclaim pH between 4.5 and 6.5	0.00

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct.	Potential source of topsoil	
	map unit	Rating class and limiting features	Value
601: Half Dome, very bouldery	50	 Poor source Slope > 15% Hard to reclaim Rock fragment content	0.00
Half Dome, cobbly	45	Poor source Slope > 15% Hard to reclaim Rock fragment content	0.00
602: Half Dome	85	 Poor source Hard to reclaim Rock fragment content Slope > 15%	0.00
610: Rubble land	65	Not rated	
Half Dome	30	Poor source Slope > 15% Hard to reclaim Rock fragment content	0.00
620: Half Dome, extremely stony sandy loam, warm-	50	 Poor source Slope > 15% Rock fragment content Hard to reclaim	0.00
Half Dome, very cobbly sandy loam, warm	43	Poor source Slope > 15% Rock fragment content Hard to reclaim	0.00
630: Rubble land	65	Not rated	
Half Dome	30	 Poor source Slope > 15% Hard to reclaim Rock fragment content	0.00
701: Vitrandic Haploxerolls	90	Poor source Slope > 15%	0.00
702: Vitrandic Dystroxerepts-	90	Poor source Rock fragment content Slope > 15% Hard to reclaim	0.00
900: Rock outcrop	95	 Not rated	

Soil Survey of Yosemite National Park, California

Table 8.-Construction Materials, Part II-Continued

Map symbol and soil name	Pct.	Potential source of topsoil	
	map unit	Rating class and limiting features	Value
DAM: Dam	 100	 Not rated	
W: Water	100	Not rated	

The interpretation for topsoil source evaluates the following soil properties at various depths: calcium carbonates, clay amount, soil bulk density, sand amount, soil wetness, coarse fragments 0.2 inch to 3 inches in size, fragments greater than 3 inches in size, organic matter content (OM), sodium content expressed as the sodium adsorption ratio (SAR), salinity expressed as dS/m of electrical conductivity (EC), depth to bedrock, slope, and soil pH.

Table 8.—Construction Materials, Part III

Values closer to 1.0 have less of a limitation. Limiting features with values of 1 have absolutely no limitation and are not shown in this report. Rating classes are determined by the most limiting value. Fine-earth fractions and fragment limiting features are reported on a weight basis. Brief summaries of rating criteria and abbreviations are listed on the Values of 0 are absolute limitations based on the soil property criteria used to develop the interpretation. condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99. The closer the value is to 0, the greater the potential soil information in this table indicates the dominant last page of this report) limitation. (The

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
101: Oxyaquic Xerofluvents	35	Poor source Sand fractions > 85% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00	Good source	
Riverwash	35	Not rated		Not rated	
Fluvaquents	15	Poor source OM < .5% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00	Poor source Saturation < 1' depth	00.0
101t: Lithnip	40	Poor source AWC < 3" to 60" depth OM is .5 to 1%	0.00	Poor source Depth to bedrock < 40" Slopes > 25%	00.0
Rock outcrop	25	Not rated		Not rated	
Fishsnooze	20	Poor source AWC < 3" to 60" depth Fragments 3-10" are 25 to 50% pH is between 4 and 6.5 above 40" OM is .5 to 1%	0.00	Poor source Depth to bedrock < 40" Slopes > 25% Fragments >3" are 25 to 50%	0.00
102: Oxyaquic Xerofluvents	45	Poor source Sand fractions > 85% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Good source	
Riverwash	40	Not rated		Not rated	
102t: Lithnip	40	Poor source AWC < 3" to 60" depth OM is .5 to 1%	0.00	Poor source Depth to bedrock < 40" Slopes 15 to 25%	0.00
Rock outcrop	25	Not rated		Not rated	

Table 8.—Construction Materials, Part III—Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map	Rating class and limiting features	Value	Rating limiting	Value
102t: Fishsnooze	50	Poor source AWC < 3" to 60" depth Fragments 3-10" are 25 to 50% pH is between 4 and 6.5 above 40" OM is .5 to 1%	0.00 0.37 0.40	Poor source Depth to bedrock < 40" Slopes 15 to 25% Fragments >3" are 25 to 50%	0.00
104: Aquandic Humaquepts	80 10	Poor source Sand fractions > 85% OM < .5% pH is between 4 and 6.5 above 40"	0.00	Poor source Saturation < 1' depth	00.0
111t: Whittell	4 7	source d fractions > 85% = 1 or 2 < 3" to 60" depth gments >10° are > 15%	00000	Poor source Depth to bedrock < 40" Slopes > 25%	0.00
Jobsis		pH is between 4 and 6.5 above 40" OM is .5 to 1% Fragments 3-10" are 25 to 50% Poor source AWC < 3" to 60" depth OM < .5% Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments >10" are 5-15%	0.00 0.00 0.00 0.15 0.40	Poor source Depth to bedrock < 40" Slopes > 25%	000
Rock outcrop	15	Not rated		Not rated	
151: Elcapitan	80	Fair source pH is between 4 and 6.5 above 40"	0.72	Good source	
152: Vitrandic Haploxerolls	8	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.48	Good source	
201: Leidig	8	Fair source pH is between 4 and 6.5 above 40"	0.52	Good source	

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
210: Rubble land	30	Not rated		Not rated	
Typic Cryorthents	72	Poor source Fragments >10" are > 15% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth Fragments 3-10" are 25 to 50%	0.00	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
Rock outcrop	20	Not rated		Not rated	
Xeric Dystrocryepts	50	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.37	Poor source Slopes > 25%	00.0
211: Xeric Dystrocryepts	35	Poor source AWC < 3" to 60" depth Fragments >10" are 5-15% pH is between 4 and 6.5 above 40" Fragments 3-10" < 25% or NULL data	0.00 0.44 1.00	Fair source Slopes 15 to 25% Fragments >3" are 25 to 50%	0.50
Canisrocks	30	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Fair source Slopes 15 to 25%	0.50
Oxyaquic Dystrocryepts	15	Poor source OM < .5% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00	Poor source Slopes > 25% Saturation from 1 to 3'	0.00
213: Canisrocks	20	Poor source AWC < 3" to 60" depth OM < .5% Fragments 3-10" are 25 to 50% Sand fractions 75 to 85% PH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0 8
Glacierpoint	12	Poor source AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments >10" are 5-15% Fragments 3-10" are 25 to 50%	0.00 0.22 0.40 0.57 0.91	Fair source Slopes 15 to 25% Fragments >3" are 25 to 50%	0.50

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
213: Vitrandic Dystrocryepts	15	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40" 0. OM is .5 to 1%	0.32	Fair source Slopes 15 to 25%	0.50
214: Marmotland	25	Fair source pH is between 4 and 6.5 above 40" 0. AWC 3 - 6" to 60" depth	0.44	Good source	
Oxyaquic Dystrocryepts	15	Poor source Sand fractions > 85% AWC < 3" to 60" depth Fragments >10" are 5-15% PH is between 4 and 6.5 above 40"	0.00	Fair source Saturation from 1 to 3'	0.44
Xeric Dystrocryepts	15	Fair source pH is between 4 and 6.5 above 40" 0. AWC 3 - 6" to 60" depth	0.20	Good source	
115: Typic Cryorthents	40	Poor source OM < .5% pH is between 4 and 6.5 above 40" 0. AWC 3 - 6" to 60" depth 0.	0.00	Poor source Slopes > 25%	0.00
Rock outcrop	20	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
219: Rock outcrop	40	Not rated		Not rated	
Rubble land	25	Not rated		Not rated	
Canisrocks	15	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" 0	0.00	Poor source Slopes > 25%	00.0
221: Typic Cryorthents	35	Poor source OM < .5% AWC < 3" to 60" depth Fragments >10" are > 15% DH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50% 0	0.00 0.00 0.00 0.52	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	R	Value	Rating class and limiting features	Value
221: Xeric Dystrocryepts	70	Poor source OM < .5% pH is between 4 and 6.5 above 40"	0.00	Good source	
Oxyaquic Dystrocryepts	12	Poor source OM < .5% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00	Fair source Saturation from 1 to 3'	0 .44
222: Canisrocks	30	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00 0.00 0.00 0.40	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
Rubble land	30	Not rated		Not rated	
Rock outcrop	20	Not rated		Not rated	
Crazymule	12	Fair source Fragments >10" are 5-15% pH is between 4 and 6.5 above 40" Sand fractions 75 to 85% AWC 3 - 6" to 60" depth	0.25 0.40 0.50	Poor source Slopes > 25%	00.0
223: Rock outcrop	35	Not rated		Not rated	
Rubble land	35	Not rated		Not rated	
Canisrocks	50	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
224: Rock outcrop	40	Not rated		Not rated	
Crazymule	50	Fair source Fragments >10" are 5-15% pH is between 4 and 6.5 above 40" Sand fractions 75 to 85% AWC 3 - 6" to 60" depth	0.20 0.40 0.50 0.65	Fair source Slopes 15 to 25%	0.50

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
224: Vitrandic Cryorthents	15	Poor source Sand fractions > 85% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Depth to bedrock < 40" Slopes 15 to 25%	0.00
225: Canisrocks	15	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth PH is between 4 and 6.5 above 40"	0.00	Fair source Slopes 15 to 25%	0.50
Rock outcrop	15	Not rated		Not rated	
Rubble land	15	Not rated		Not rated	
Vitrandic Dystrocryepts	15	Poor source AWC < 3" to 60" depth Fragments >10" are > 15% PH is between 4 and 6.5 above 40" Fragments 3-10" < 25% or NULL data	0.00	Good source	
227: Canisrocks	45	Poor source AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" (Sand fractions 75 to 85% Fragments >10" are 5-15%	0.00	Poor source Slopes > 25%	0.00
Crazymule	40	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth PH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
228: Xeric Dystrocryepts	35	Poor source Sand fractions > 85% AWC < 3" to 60" depth OM < .5% PH is between 4 and 6.5 above 40"	0.00	Good source	
Vitrandic Eutrocryepts	25	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.36	Fair source Saturation from 1 to 3'	0 .44

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map	R	Value	Rating class and limiting features	Value
229; Marmotland	 4	Poor source OM < .5% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00	Good source	
Oxyaquic Dystrocryepts	4 0	Fair source pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.16	Fair source Saturation from 1 to 3'	0.44
231; Canisrocks	4	Poor source Sand fractions > 85% AWC < 3" to 60" depth Fragments >10" are > 15% pH is between 4 and 6.5 above 40"	0.00	Fair source Slopes 15 to 25%	0.50
Typic Cryaquents	21	Poor source AWC < 3" to 60" depth OM < .5% Fragments >10" are > 15% pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.00	Poor source Saturation < 1' depth	000
232: Canisrocks	25	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Fair source Slopes 15 to 25%	0.92
Glacierpoint	21	Poor source Sand fractions > 85% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" OM is .5 to 1% Fragments >10" are 5-15% Fragments 3-10" are 25 to 50%	00 00 00 0.50 0.89	Fair source Fragments >3" are 25 to 50%	0 4
234: Rock outcrop	35	Not rated		Not rated	
Rubble land	35	Not rated		Not rated	

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit		Value	Rating class and limiting features	Value
235: Canisrocks	35	Poor source AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments >10" are 5-15%	0.00	Poor source Slopes > 25%	00.0
Rock outcrop	30	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
237; Canisrocks	25	Poor source Sand fractions > 85% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments >10" are 5-15% Fragments 3-10" < 25% or NULL data 0	0.00 0.00 0.44 0.53	Poor source Depth to bedrock < 40" Fragments >3" < 25% or NULL data	0.00
Glacierpoint	15	Poor source AWC < 3" to 60" depth Fragments >10" are > 15% PH is between 4 and 6.5 above 40"	0.00	Good source	
Vitrandic Cryorthents	15	Poor source WEG = 1 or 2 AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Depth to bedrock < 40"	00.0
238: Oxyaquic Cryorthents	25	Fair source Sand fractions 75 to 85% AWC 3 - 6" to 60" depth OM is .5 to 1% PH is between 4 and 6.5 above 40"	0.08 0.15 0.50	Fair source Saturation from 1 to 3'	0.44
Canisrocks	15	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Good source	
239: Crazymule	45	Poor source AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" 0	0.00	Poor source Depth to bedrock < 40"	00.0

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
239; Canisrocks	34	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Good source	
241: Canisrocks	75	Poor source Sand fractions > 85% AWC < 3" to 60" depth Fragments >10" are 5-15% pH is between 4 and 6.5 above 40"	0.00 0.00 0.12 0.44	Fair source Slopes 15 to 25%	0.18
242: Rock outcrop	30	Not rated		Not rated	
Canisrocks	25	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" 0 Sand fractions 75 to 85% Fragments 3-10" are 25 to 50%	0.00	Fair source Slopes 15 to 25% Fragments >3" are 25 to 50%	0.18
Xeric Dystrocryepts	16	Fair source AWC 3 - 6" to 60" depth Fragments >10" are 5-15% Sand fractions 75 to 85% DH is between 4 and 6.5 above 40"	0.02	Fair source Slopes 15 to 25%	0.82
244: Typic Cryorthents	45	Poor source Sand fractions > 85% 0 Fragments >10" are > 15% 0 AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Good source	
Rubble land	25	Not rated		Not rated	
Rock outcrop	16	Not rated		Not rated	
245; Rock outcrop	30	Not rated		Not rated	
Canisrocks	52	Poor source Sand fractions > 85% 0 Fragments > 10" are > 15% 0 AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" 0	0.00	Fair source Slopes 15 to 25%	0.18

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	R T	Value	Rating class and limiting features	Value
245: Xeric Dystrocryepts	50	Poor source OM < .5% K-factor .1035 pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00 0.06 0.52 0.94	Fair source Slopes 15 to 25%	0.82
246: Rock outcrop, domes	06	Not rated		Not rated	
247: Canisrocks	50	Poor source Sand fractions > 85% AWC < 3" to 60" depth Fragments >10" are > 15% pH is between 4 and 6.5 above 40"	0.00	Fair source Slopes 15 to 25%	0.50
Xeric Dystrocryepts	70	Fair source pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth Sand fractions 75 to 85%	0.20	Good source	
248: Canisrocks	35	Poor source Sand fractions > 85% AWC < 3" to 60" depth Fragments >10" are > 15% pH is between 4 and 6.5 above 40"	0.00 0.00 0.00 0.00	Poor source Slopes > 25%	0.00
Rock outcrop	30	Not rated		Not rated	
Glacierpoint	15	Poor source Sand fractions > 85% Fragments >10" are > 15% OM < .5% AWC 3 - 6" to 60" depth PH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	0.00
249: Rock outcrop	45	Not rated		Not rated	
Canisrocks	30	Poor source AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments >10" are 5-15%	0.00 0.39 0.44 0.95	Poor source Slopes > 25%	00.00

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	R	Value	Rating class and limiting features	Value
250: Canisrocks	 4	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00 0.00 0.44	Poor source Slopes > 25%	0.00
Xeric Dystrocryepts		Poor source AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments >10" are 5-15% Fragments 3-10" are 25 to 50%	0.00	Fair source Slopes 15 to 25% Fragments >3" are 25 to 50%	0.50
251: Glacierpoint	30	Poor source Sand fractions > 85% Fragments >10" are > 15% OM < .5% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00 0.00 0.00 0.05 0.4.0	Poor source Slopes > 25%	0.00
Typic Cryorthents	70	Fair source Fragments >10" are 5-15% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.19	Poor source Slopes > 25%	00.00
252: Rock outcrop	20	Not rated		Not rated	
Canisrocks	15	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	0.00
Xeric Dystrocryepts		Poor source WEG = 1 or 2 Fragments >10" are > 15% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.00 0.00 0.20 0.34	Good source	
253; Canisrocks	25	Poor source AWC < 3" to 60" depth Fragments >10" are > 15% Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00 0.18 0.20	Poor source Slopes > 25% Fragments >3" are 25 to 50%	00.0

Table 8.-Construction Materials, Part III-Continued

Map symbol	Pat.	Potential source of		Potential source of	
	map	Rating class and limiting features	Value	Rating class and limiting features	Value
253: Glacierpoint	18	are > 15% " depth	0000	Poor source Slopes > 25%	00.00
Humic Dystrocryepts	15	Sand iractions /5 to 85% pH is between 4 and 6.5 above 40" Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
256: Craneflat	25	Poor source AWC < 3" to 60" depth Fragments >10" are 5-15% pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.00 0.00 44.0	Poor source Slopes > 25%	00.0
Rock outcrop	25	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
Waterwheel	50	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00 0.00 0.00 0.76	Poor source Slopes > 25%	0.00
257: Badgerpass	55	Fair source AWC 3 - 6" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40"	0.05 0.34 0.60	Good source	
Oxyaquic Dystroxerepts	35	Fair source pH is between 4 and 6.5 above 40" Clay 27 to 40% K-factor < .10 or is NULL	0.08	Fair source Saturation from 1 to 3' AASHTO GIN 5 to 8 (soil strength)	0.44
258; Typic Dystroxerepts	25	Poor source Fragments >10" are > 15% pH is between 4 and 6.5 above 40" OM is .5 to 1%	0.00	Good source	

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
258: Badgerpass	20	Poor source Sand fractions > 85% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.00
Dystric Xerorthents	70	Poor source AWC < 3" to 60" depth Fragments >10" are > 15% pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.00	Poor source Slopes > 25%	00.0
260: Rock outcrop	45	Not rated		Not rated	
Craneflat	25	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth OM < .5% pH is between 4 and 6.5 above 40"	000000	Poor source Slopes > 25%	0.00
Dystric Xerorthents	70	Poor source OM < .5% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
261: Dystric Xeropsamments	25	Poor source Sand fractions > 85% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Good source	
Typic Dystroxerepts	72	Fair source pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50% AWC 3 - 6" to 60" depth	0.28 0.75 0.89	Poor source Slopes > 25%	00.0
Badgerpass	15	Poor source Sand fractions > 85% WEG = 1 or 2 OM < .5% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00 0.00 0.00 0.09	Fair source Slopes 15 to 25%	0.18
Rock outcrop	15	Not rated		Not rated	

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
262: Humic Dystroxerepts	30	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
Dystric Xerorthents	25	Poor source AWC < 3" to 60" depth Fragments >10" are 5-15% pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.00	Poor source Slopes > 25%	00.
Rock outcrop	20	Not rated		Not rated	
264: Crazymule	35	Fair source Fragments >10" are 5-15% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.18 0.20 0.80	Good source	
Canisrocks	8	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00 0.18 0.20	Fair source Fragments >3" are 25 to 50%	8
267: Rock outcrop	40	Not rated		Not rated	
Typic Cryorthents	30	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth Fragments 3-10" are 25 to 50% pH is between 4 and 6.5 above 40"	0.00	Fair source Fragments >3" are 25 to 50%	0.40
Xeric Dystrocryepts	15	Poor source Sand fractions > 85% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Good source	
268: Rock outcrop	40	Not rated		Not rated	

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pat.	Potential source of reclamation material		Potential source of roadfill	
	map unit	R	Value	Rating class and limiting features	Value
268: Canisrocks	52	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
Glacierpoint	50	Poor source Sand fractions > 85% Fragments >10" are > 15% OM < .5% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	
269: Canisrocks	5	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth OM < .5% pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	00000	Fair source Slopes 15 to 25%	86.0
Rock outcrop	70	Not rated		Not rated	
Glacierpoint	15	Poor source Sand fractions > 85% Fragments >10" are > 15% OM < .5% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
270: Rock outcrop	35	Not rated		Not rated	
Typic Cryorthents	72	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00 0.00 0.44 0.83	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
Vitrandic Dystrocryepts	72	Poor source Sand fractions > 85% WEG = 1 or 2 AWC < 3" to 60" depth Fragments >10" are > 15% OM < .5% PH is between 4 and 6.5 above 40" Fragments 3-10" < 25% or NULL data	000000000000000000000000000000000000000	Poor source Slopes > 25%	00.0

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pat.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating limiting	Value
271: Rock outcrop	09	Not rated		Not rated	
Lithic Xerorthents	15	Poor source Sand fractions > 85% WEG = 1 or 2 AWC < 3" to 60" depth DH is between 4 and 6.5 above 40"	00.00	Poor source Depth to bedrock < 40" Slopes 15 to 25%	0.00
Waterwheel	15	> 85% are > 15% depth and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
273: Nevadafalls	55	Poor source AWC < 3" to 60" depth Sand fractions 75 to 85% PH is between 4 and 6.5 above 40" (Fragments >10" are 5-15%	0.00 0.12 0.60	Good source	
Waterwheel	30	Poor source AWC < 3" to 60" depth OM < .5% Eragments >10" are 5-15% Sand fractions 75 to 85% PH is between 4 and 6.5 above 40" Fragments 3-10" < 25% or NULL data	000000000000000000000000000000000000000	Fair source Slopes 15 to 25%	0.18
274: Rock outcrop, domes	82	Not rated		Not rated	
275: Oxyaquic Dystroxerepts	72	Poor source AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" C Fragments >10" are 5-15%	0.00	Fair source Saturation from 1 to 3'	0 44 44
Dystric Xerorthents	25	Poor source AWC < 3" to 60" depth Fragments >10" are > 15% PH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00 0.00 0.76	Good source	

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map uni t	R 11:	Value	Rating class and limiting features	Value
Vitrandic Xerorthents	25	Fair source pH is between 4 and 6.5 above 40" Sand fractions 75 to 85% K-factor .1035 AWC 3 - 6" to 60" depth Fragments >10" are 5-15%	0.28 0.90 0.96 0.96	Good source	
Rubble land	15	Not rated		Not rated	
776: Happyisles	35	Fair source pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.84	Good source	
Typic Dystroxerepts	35	Poor source Fragments >10" are > 15% AWC 3 - 6" to 60" depth	0.00	Good source	
77: Tuolumme	45	Poor source Sand fractions > 85% AWC < 3" to 60" depth OM < .5% pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00 0.00 0.00 0.48	Poor source Slopes > 25%	0.00
Humic Dystroxerepts	3	Poor source AWC < 3" to 60" depth Fragments >10" are > 15% OM < .5% Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00 0.00 0.00 0.34 0.60	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
78: Rock outcrop	25	Not rated		Not rated	
Tuolumne	2 2	Poor source Sand fractions > 85% WEG = 1 or 2 AWC < 3" to 60" depth Fragments >10" are > 15% OM is .5 to 1% PH is between 4 and 6.5 above 40"	0.00 0.00 0.00 0.00 0.58	Poor source Slopes > 25%	0

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	R	Value	Rating class and limiting features	Value
278: Humic Dystroxerepts	70	Poor source WEG = 1 or 2 Fragments >10" are > 15% AWC < 3" to 60" depth OM < .5% Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00 0.00 0.00 0.56	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
Rubble land	15	Not rated		Not rated	
279: Canisrocks	40	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	0.00
Xeric Dystrocryepts	15	Poor source Sand fractions > 85% Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
280: Typic Dystroxerepts	35	Fair source pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.60	Poor source Slopes > 25%	00.0
Humic Dystroxerepts	30	Poor source AWC < 3" to 60" depth Fragments >10" are 5-15% pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
Rock outcrop	25	Not rated		Not rated	
282: Clarkslodge	20	Fair source pH is between 4 and 6.5 above 40"	09.0	Fair source LEP 3 to 9	0.98
Craneflat	2	Poor source AWC < 3" to 60" depth Fragments >10" are > 15% pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.00 0.00 0.72 0.78	Poor source Slopes > 25%	00.0

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pat.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
282: Nevadafalls	72	Poor source AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments >10" are 5-15%	0.00 0.12 0.60	Poor source Slopes > 25%	00.0
283: Waterwheel	35	Poor source WEG = 1 or 2 AWC < 3" to 60" depth Fragments >10" are 5-15% Fragments 3-10" are 25 to 50% PH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.00	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
Nevadafalls	30	Poor source OM < .5% Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00	Poor source Slopes > 25%	00.0
Rock outcrop	21	Not rated		Not rated	
285: Waterwheel	30	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments 3-10" < 25% or NULL data Sand fractions < 75% or is NULL	0.00 0.36 0.99	Poor source Slopes > 25%	00.0
Humic Dystroxerepts	16	Poor source Sand fractions > 85% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.00
286; Nevadafalls		Poor source WEG = 1 or 2 AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Fair source Slopes 15 to 25%	0.50
Typic Dystroxerepts	72	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.13 0.60 0.65	Good source	

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
286: Ultic Palexeralfs	20	Fair source pH is between 4 and 6.5 above 40"	09.0	Fair source LEP 3 to 9	0.46
Rock outcrop	15	Not rated		Not rated	
287: Badgerpass	55	Fair source AWC 3 - 6" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40"	0.11	Good source	
Waterwheel	40	Poor source AWC < 3" to 60" depth Fragments >10" are > 15% Sand fractions 75 to 85% pH is between 4 and 6.5 above 40"	0.00	Good source	
288: Rock outcrop	35	Not rated		Not rated	
Craneflat	20	Poor source AWC < 3" to 60" depth Fragments >10" are > 15% pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.00	Good source	
Waterwheel	20	Poor source AWC < 3" to 60" depth Fragments >10" are > 15% Sand fractions 75 to 85% pH is between 4 and 6.5 above 40"	0.00	Fair source Slopes 15 to 25%	0.50
289: Waterwheel	20	Poor source AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Sand fractions 75 to 85% Fragments >10" are 5-15% Fragments 3-10" are 25 to 50%	0.00 0.40 0.65 0.73	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
Craneflat	30	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth OM < .5% pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%		Poor source Slopes > 25% Fragments >3" < 25% or NULL data	0.00

Table 8.-Construction Materials, Part III-Continued

Map symbol I	Pct.	Potential source of reclamation material		Potential source of roadfill	
- 1 - 1	map unit	R 11:	Value	Rating class and limiting features	Value
	40	Poor source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	0.00
	30	Poor source WEG = 1 or 2 AWC < 3" to 60" depth Fragments 3-10" are 25 to 50% Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments >10" are 5-15%	0.00 0.12 0.18 0.40	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
	15	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth OM < .5% PH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
	15	Poor source Fragments >10" are > 15% PH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
	41	Poor source OM < .5% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00	Fair source Slopes 15 to 25%	0.82
	31	Fair source pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.60	Poor source Slopes > 25%	00.0
92: Humic Dystroxerepts	35	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth Sand fractions 75 to 85% PH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
	30	Fair source Fragments >10" are 5-15% Clay 27 to 40% OM is .5 to 1% PH is between 4 and 6.5 above 40"	0.23	Fair source LEP 3 to 9	0.69

Table 8.—Construction Materials, Part III—Continued

Map symbol	Pat.			Potential source of	
	map	Rating class and limiting features	Value	Rating limiting	Value
293: Xeric Dystrocryepts		Fair source Sand fractions 75 to 85% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.15 0.17 0.20	Good source	
Vitrandic Dystrocryepts	18	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.61	Poor source Slopes > 25%	00.0
294: Waterwheel	0 22	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.00
Typic Dystroxerepts	35	source < .5% is bet	0.00	Poor source Slopes > 25%	000
295; Craneflat		are 5-15%	000000	Poor source Slopes > 25%	0000
Typic Dystroxerepts	72	Fair source PH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.60	Fair source Slopes 15 to 25%	0.18
296: Ultic Palexeralfs	50	Fair source pH is between 4 and 6.5 above 40"	09.0	Poor source AASHTO GIN > 8 (low soil strength) LEP 3 to 9	0.00
Humic Dystroxerepts	15	Fair source pH is between 4 and 6.5 above 40"	09.0	Fair source Slopes 15 to 25%	0.50

Table 8.-Construction Materials, Part III-Continued

Map symbol	Pat.	Potential source of		Potential source of	
מזות מסדד וומזונפ	map	R 11	Value	Rating limiting	Value
297: Typic Xerorthents	30	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" OM is .5 to 1% Sand fractions 75 to 85%	0.00 0.00 0.92 0.92	Fair source Slopes 15 to 25%	0.50
Rock outcrop	25	Not rated		Not rated	
Typic Keropsamments	5	Poor source Sand fractions > 85% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
298; Tuolumne		Poor source Fragments >10" are > 15% AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" OM is .5 to 1%	0.00 0.00 0.18 0.40	Poor source Slopes > 25%	0.00
Typic Dystroxerepts	31	Poor source OM < .5% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40" Fragments >10" are 5-15%	0.00	Poor source Slopes > 25%	00.0
299; Humic Dystroxerepts	 4 9	Poor source Sand fractions > 85% AWC < 3" to 60" depth Fragments >10" are > 15% pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	0.00
Ultic Haploxeralfs	35	Fair source OM is .5 to 1% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.50	Poor source Slopes > 25%	00.0
300: Typic Dystroxerepts	35	Poor source AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Good source	
Ultic Haploxeralfs		Poor source OM < .5% pH is between 4 and 6.5 above 40"	0.00	Fair source LEP 3 to 9	06.0

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pat.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating limiting	Value
301: Vitrandic Haploxerolls	06	Fair source pH is between 4 and 6.5 above 40"	0.40	Fair source Saturation from 1 to 3'	0.53
302: Typic Haploxerults	45	Poor source OM < .5% pH is between 4 and 6.5 above 40"	0.00	Fair source LEP 3 to 9	0.85
Ultic Haploxeralfs	41	Poor source OM < .5% pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25% LEP 3 to 9	00.0
303: Rock outcrop	30	Not rated		Not rated	
Dystric Xeropsamments	50	Poor source AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
Humic Dystroxerepts	50	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.00	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
Tuolumne	50	Poor source AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50% Sand fractions 75 to 85% Fragments >10" are 5-15%	0.00	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
304: Clarkslodge	09	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.70	Good source	
Rock outcrop	15	Not rated		Not rated	
305; Rock outcrop	20	Not rated		Not rated	

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	R	Value	Rating class and limiting features	Value
305: Waterwheel	18	Poor source Sand fractions > 85% WEG = 1 or 2 AWC < 3" to 60" depth OM < .5% PH is between 4 and 6.5 above 40"	000000	Fair source Slopes 15 to 25%	0.18
Dystric Xeropsamments	15	Poor source Sand fractions > 85% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Good source	
306: Typic Cryopsamments	20	Poor source WEG = 1 or 2 AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	0.00	Good source	
Humic Dystrocryepts	30	Poor source OM < .5% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00	Fair source Slopes 15 to 25%	0.50
307: Rock outcrop	40	Not rated		Not rated	
Dystric Xeropsamments	70	Poor source AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
Dystric Xerorthents	50	Poor source Sand fractions > 85% WEG = 1 or 2 AWC < 3" to 60" depth OM < .5% PH is between 4 and 6.5 above 40"	00000	Fair source Slopes 15 to 25%	0.18
309: Rock outcrop	20	Not rated		Not rated	
Waterwheel	25	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.11	Poor source Slopes > 25%	00.0

Table 8.-Construction Materials, Part III-Continued

Map symbol	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
309; Typic Dystroxerepts	50	Poor source AWC < 3" to 60" depth Fragments >10" are 5-15% pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
310: Rock outcrop	55	Not rated		Not rated	
Humic Dystroxerepts	25	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50% Sand fractions 75 to 85%	0.00 0.00 0.60 0.75	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
Humic Lithic Haploxerepts	70	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Depth to bedrock < 40" Slopes > 25% Saturation from 1 to 3'	0.00
311: Rock outcrop	45	Not rated		Not rated	
Humic Dystroxerepts	35	Poor source WEG = 1 or 2 AWC < 3" to 60" depth Fragments >10" are 5-15% Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	00.00 0.4.0 0.4.5 0.00 0.00	Poor source Slopes > 25% Fragments >3" are 25 to 50%	00.0
Humic Lithic Haploxerepts	19	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Poor source Depth to bedrock < 40" Saturation from 1 to 3' Slopes 15 to 25%	0.00 0.01 0.92
313; Nevadafalls	4 0	Poor source AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40" Fragments >10" are 5-15%	0.00 0.12 0.60	Good source	
Oxyaquic Dystrudepts	40	Fair source pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.60	Fair source Saturation from 1 to 3'	0.44

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map	Rating class and limiting features	Value	Rating class and limiting features	Value
314: Badgerpass		Poor source Sand fractions > 85% AWC 3 - 6" to 60" depth PH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	00.0
Dystric Xeropsamments	35	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40" C Sand fractions 75 to 85%	0.56 0.60 0.76	Good source	
Rock outcrop	15	Not rated		Not rated	
315: Nevadafalls	09	Poor source Fragments >10" are > 15% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00	Fair source Slopes 15 to 25%	86.0
Dystric Xeropsamments	4 0	Poor source OM < .5% AWC 3 - 6" to 60" depth Sand fractions 75 to 85% PH is between 4 and 6.5 above 40"	0.00	Fair source Slopes 15 to 25%	0.18
316: Dystric Xerorthents	 4 0	Poor source WEG = 1 or 2 AWC < 3" to 60" depth OM < .5% PH is between 4 and 6.5 above 40" Sand fractions 75 to 85%	000 000 0.60 0.78	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
Rock outcrop	40	Not rated		Not rated	
Rubble land	70	Not rated		Not rated	
318; Typic Dystroxerepts	4 0	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40" (0.22	Good source	
Humic Dystroxerepts	9 	Fair source pH is between 4 and 6.5 above 40" (0.56	Good source	

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
19: Humic Dystroxerepts	30	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40"	0.0 0.00 0.12 4.4	Poor source Slopes > 25%	00.0
Typic Haploxerults	30	Fair source pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.20	Poor source Slopes > 25%	00.0
Inceptic Haploxeralfs	25	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth pH is between 4 and 6.5 above 40" Fragments 3-10" are 25 to 50%	0.00 0.00 0.40 0.54	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
120: Half Dome	40	Fair source AWC 3 - 6" to 60" depth	0.01	Poor source Slopes > 25%	0.00
Humic Dystroxerepts	20	Poor source AWC < 3" to 60" depth Fragments >10" are 5-15%	0.00	Poor source Slopes > 25%	00.00
Rock outcrop	20	Not rated		Not rated	
21: Dystric Xeropsamments	20	Poor source OM < .5% Fragments >10" are > 15% AWC 3 - 6" to 60" depth Sand fractions 75 to 85% pH is between 4 and 6.5 above 40"	0.00 0.00 0.17 0.61	Good source	
Dystric Xerorthents	40	Poor source Sand fractions > 85% WEG = 1 or 2 AWC < 3" to 60" depth OM < .5% pH is between 4 and 6.5 above 40"	00000	Fair source Slopes 15 to 25%	
22: Typic Xerorthents	06	Poor source Fragments >10" are > 15% AWC < 3" to 60" depth OM < .5% pH is between 4 and 6.5 above 40"	0.00	Poor source Slopes > 25%	0.00

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map	Rating class and limiting features	Value	Rating limiting	Value
323: Ultic Haploxeralfs	55	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.56	Poor source Slopes > 25% LEP 3 to 9	0.00
Humic Dystroxerepts	45	Fair source AWC 3 - 6" to 60" depth	0.93	Good source	
324; Humic Haploxerepts	4 0	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40" Fragments >10" are 5-15%	0.03	Poor source Slopes > 25% LEP 3 to 9	0.00
Rock outcrop	35	Not rated		Not rated	
Ultic Haploxeralfs	72	Poor source OM < .5% Fragments 3-10" are 25 to 50% AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.00 0.19 0.86	Poor source Slopes > 25% Fragments >3" are 25 to 50% LEP 3 to 9	0.00
325: Urban land	80	Not rated		Not rated	
328: Clarkslodge	30	Poor source OM < .5% Fragments 3-10" are 25 to 50% pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00 0.46 0.60	Poor source Slopes > 25% Fragments >3" are 25 to 50% LEP 3 to 9	0.00
Ultic Palexeralfs	15	Fair source OM is .5 to 1% pH is between 4 and 6.5 above 40"	0.32	Fair source LEP 3 to 9	0.83
401: Sentinel	06	Fair source pH is between 4 and 6.5 above 40"	0.76	Good source	
412: Water	82	Not rated		Not rated	
Riverwash	15	Not rated		Not rated	

Table 8.—Construction Materials, Part III—Continued

Map symbol and soil name	Pat.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
501: Happyisles, sandy loam	65	Fair source AWC 3 - 6" to 60" depth pH is between 4 and 6.5 above 40"	0.75	Good source	
Happyisles, loamy fine sand, overwash	50	Poor source WEG = 1 or 2 pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.00 0.84 0.98	Good source	
502; Happyisles	88	Fair source pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.98	Good source	
504: Mollic Xerofluvents	82	Poor source OM < .5% pH is between 4 and 6.5 above 40"	0.00	Good source	
510t: Rubble land	40	Not rated		Not rated	
Lithnip	70	Poor source AWC < 3" to 60" depth OM is .5 to 1%	0.00	Poor source Depth to bedrock < 40" Slopes 15 to 25%	0.00
Rock outcrop	15	Not rated		Not rated	
551: Happyisles	20	Fair source pH is between 4 and 6.5 above 40" AWC 3 - 6" to 60" depth	0.84	Good source	
Half Dome	45	Fair source Fragments >10" are 5-15% AWC 3 - 6" to 60" depth Fragments 3-10" are 25 to 50%	0.16	Fair source Fragments >3" are 25 to 50%	0.69
552: Mollic Xerofluvents	8	Poor source OM < .5% pH is between 4 and 6.5 above 40"	0.00	Good source	
590: Terric Haplosaprists	8 22	Fair source pH is between 4 and 6.5 above 40"	0.52	Good source	

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pat.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
601: Half Dome, very bouldery	20	Poor source Fragments >10" are > 15% OM < .5% AWC 3 - 6" to 60" depth	0.00	Poor source Slopes > 25%	00.0
Half Dome, cobbly	45	Poor source OM < .5% Fragments >10" are > 15% AWC 3 - 6" to 60" depth Fragments 3-10" are 25 to 50%	0.00 0.00 0.13 0.99	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
602: Half Dome	8 	Fair source Fragments >10" are 5-15% AWC 3 - 6" to 60" depth Fragments 3-10" are 25 to 50%	0.16	Fair source Fragments >3" are 25 to 50% Slopes 15 to 25%	0.69
610: Rubble land		Not rated		Not rated	
Half Dome	30	Poor source OM < .5% Fragments >10" are > 15% AWC 3 - 6" to 60" depth Fragments 3-10" < 25% or NULL data	0.00	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.00
620: Half Dome, extremely stony sandy loam, warm	20	Fair source Fragments 3-10" are 25 to 50% AWC 3 - 6" to 60" depth Fragments >10" are 5-15%	0.14 0.21 0.94	Poor source Slopes > 25% Fragments >3" are 25 to 50%	0.03
Half Dome, very cobbly sandy loam,	4 8	Poor source OM < .5% Fragments >10" are > 15% AWC 3 - 6" to 60" depth Fragments 3-10" < 25% or NULL data	0.00 0.00 0.13 1.00	Poor source Slopes > 25% Fragments >3" are 25 to 50%	00.0
630: Rubble land		Not rated		Not rated	
Half Dome	30	Poor source Fragments >10" are > 15% AWC 3 - 6" to 60" depth	0.00	Poor source Slopes > 25%	00.0

Table 8.-Construction Materials, Part III-Continued

Map symbol and soil name	Pct.	Potential source of reclamation material		Potential source of roadfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value
701: Vitrandic Haploxerolls	06	Poor source OM < .5% pH is between 4 and 6.5 above 40" Fragments >10" are < 5% or NIII.	0.00	Fair source Slopes 15 to 25%	0.92
702: Vitrandic Dystroxerepts	0 6 		0.00	Fair source Fragments >3" are 25 to 50% Slopes 15 to 25%	0.65
900: Rock outcrop	95	Not rated		Not rated	
рам: Dam	100	Not rated		Not rated	
W: Water	100	Not rated		Not rated	

pH, salinity (EC), amount of sodium (SAR), carbonates, and susceptibility of the soil to erosion by water (K-factor).

The interpretation for roadfill source evaluates the following soil properties at variable depths in the soil: shrink-swell potential expressed as linear extensibility percent (LEP), depth to rock or cemented pans, wetness, slope, soil strength expressed as an AASHTO Group Index Number (AASHTO GIN), and fragment content. The interpretation for reclamation material evaluates the following soil properties at variable depths in the soil: the amount of sand, clay, fragments, organic matter content (OM), the wind erodibility group (WEG), available water (AWC), soil

Table 9.-Sanitary Facilities, Part I

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only three highest value limitations are listed. There may be more limitations. Fine-earth fractions and coarse fragments are reported on a weight basis. Brief summaries of rating criteria and abbreviations are listed on the last page of this report)

	Pct.				
Map symbol and soil name	map	septic tank absorption fields		Sewage Lagoons	
	unit		Value	Limitation	Value
101: Oxyaquic Xerofluvents	35	Limitations Flooding Permeability > 6"/hr in 24-60" (seepage and poor filter) Seenage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage)	1.00
Riverwash	35	Limitations Flooding Saturation < 4' depth	1.000	Limitations Flooding > occasional Saturation at < 3.5' depth	1.00
Fluvaquents	15	Limitations Flooding Saturation < 4' depth Permeability > 6"/hr in 24-60" (seepage and poor filter)	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage)	1.00
101t; Lithnip	4 0	Limitations Depth to bedrock < 40" Slopes > 15% Restricted permeability due to bedrock or hardpan	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 8%	1.00
Rock outcrop	25	Not rated		Not rated	
Fishsnooze	70	Limitations Depth to bedrock < 40" Slopes > 15% Seepage in bottom layer	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 8% Permeability > 2"/hr (seepage)	1.00
102: Oxyaquic Xerofluvents	4 5	Limitations Flooding Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
Riverwash	40	Limitations Flooding Saturation < 4' depth	1.00	Limitations Flooding > occasional Saturation at < 3.5' depth Slopes 2 to 8%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol	Pct.	Septic t		Sewage lagoons	
and soil name	map			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	unit	Limitation	Value	Limitation	Value
102t: Lithnip		Limitations Depth to bedrock < 40" Restricted permeability due to bedrock or hardpan Slopes > 15%	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 8%	1.00
Rock outcrop	25	Not rated		Not rated	
Fishsnooze	7 0	Limitations Depth to bedrock < 40" Slopes > 15% Seepage in bottom layer	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 8% Permeability > 2"/hr (seepage)	1.00
104: Aquandic Humaquepts		Limitations Flooding Saturation < 4' depth Seepage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage)	1.00
111t: Whittell	4. 2	Limitations Depth to bedrock < 40" Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15%	1.00	Limitations Bedrock (soft) < 40" depth Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Jobsis	2 2	Limitations Depth to bedrock < 40" Slopes > 15% Restricted permeability due to bedrock or hardpan	1.00	Limitations Bedrock (soft) < 40" depth Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	15	Not rated		Not rated	
151: Elcapitan	8	Limitations Flooding Seepage in bottom layer Saturation < 4' depth	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Saturation from 3.5 to 5' depth	1.00
152: Vitrandic Haploxerolls	8	Limitations Flooding Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage)	1.00
_					

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct. of map	Septic tank absorption fields		Sewage lagoons	
	unit	Limitation	Value	Limitation	Value
201: Leidig	0 8	Limitations Flooding Seepage in bottom layer Saturation < 4' depth	1.00 1.00 0.99	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Saturation from 3.5 to 5' depth	1.00 1.00 0.48
210: Rubble land	30	Not rated		Not rated	
Typic Cryorthents	25	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00 1.00 0.89
Rock outcrop	20	Not rated		Not rated	
Xeric Dystrocryepts	70	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
211: Xeric Dystrocryepts	3.5	Limitations Seepage in bottom layer Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00 1.00 0.99
Canisrocks	30	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Oxyaquic Dystrocryepts	15	Limitations Saturation < 4' depth Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Saturation from 3.5 to 5' depth	1.00
213: Canisrocks	20	<pre>Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer</pre>	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Glacierpoint	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability > 2"/hr (seepage)	1.00

Table 9.-Sanitary Facilities, Part I-Continued

	Pct.	Septic tank		Sewage lagoons	
and soil name	map	absorption fields		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	unit	Limitation	Value	Limitation	Value
213: Vitrandic Dystrocryepts	15	09-	1.00	1, 20	1.00
		(seepage and poor iller) Slopes > 15% Seepage in bottom layer	1.00	Fermeability > 2"/nr (seepage)	00.
Marmotland	2 5	is in bottom layer on from 4 to 6' depth	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Slopes > 8%	1.00 1.00
Oxyaquic Dystrocryepts	15	09-:	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage)	1.00
Xeric Dystrocryepts	15	<pre>(seepage and poor filter) Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer</pre>	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
215: Typic Cryorthents	4 0	24-60" er)	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	20	Seepage in Dottom Layer Not rated	 00: 1	Not rated	
Rubble land	20	Not rated		Not rated	
219: Rock outgrop	40	Not rated		Not rated	
Rubble land	25	Not rated		Not rated	
Canisrocks	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct.	Septic tank absorption fields		Sewage lagoons	
	unit	Limitation	Value	Limitation	Value
221: Typic Cryorthents	3 22	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00 1.00 0.99	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
Xeric Dystrocryepts	70	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Oxyaquic Dystrocryepts	12	Limitations Flooding Saturation < 4' depth Slopes > 15%	1.00	Limitations Flooding > occasional Slopes > 8% Permeability > 2"/hr (seepage)	1.00
222: Canisrocks	30	Limitations Fragments (>3") >50% Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability > 2"/hr (seepage)	1.00
Rubble land	30	Not rated		Not rated	
Rock outcrop	20	Not rated		Not rated	
Crazymule	12	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc) Fragments (>3") 25 to 50%	1.00 0.46 0.15	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
223; Rock outcrop	35	Not rated		Not rated	
Rubble land	35	Not rated		Not rated	
Canisrocks	50	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
224: Rock outcrop	4 0	Not rated		Not rated	

Table 9.-Sanitary Facilities, Part I-Continued

	Pct.	Septic tank		Sewage lagoons	
and soll name	map	absorption ileids Limitation	Value	Limitation	Value
224: Crazymule	50	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc) Fragments (>3") 25 to 50%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8% Fragments (>3") 20-35%	1.00 1.00 0.76
Vitrandic Cryorthents	12	Limitations Depth to bedrock < 40" Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Bedrock (hard) < 40" depth Permeability > 2"/hr (seepage) Slopes > 8%	1.00
225: Canisrocks	12	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Rock outcrop	15	Not rated		Not rated	
Rubble land	15	Not rated		Not rated	
Vitrandic Dystrocryepts	12	Limitations Seepage in bottom layer Fragments (>3") >50% Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8% Fragments (>3") > 35%	1.00
227: Canisrocks	4 5	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
Crazymule	0 4	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
228: Xeric Dystrocryepts	35	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol	Pct.	Septic tank		Sewage lagoons	
	unit		Value	Limitation	Value
228; Vitrandic Eutrocryepts	72	Limitations Flooding Saturation < 4' depth Seepage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
229: Marmotland	 4	Limitations Flooding Seepage in bottom layer Saturation from 4 to 6' depth	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
Oxyaquic Dystrocryepts		Limitations Saturation < 4' depth Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
231: Canisrocks	 6	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
Typic Cryaquents	21	Limitations Saturation < 4' depth Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8% Fragments (>3") > 35%	1.00
232: Canisrocks	2 2 2	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Glacierpoint	21	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
234; Rock outcrop	35	Not rated		Not rated	
Rubble land	35	Not rated		Not rated	

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol	Pat.	Septic tank		Sewage lagoons	
	unit		Value	Limitation	Value
235; Canisrocks	3 5	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	30	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
237; Canisrocks	2 5	Limitations Depth to bedrock < 40" Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Bedrock (soft) < 40" depth Slopes > 8% Permeability > 2"/hr (seepage)	1.00 1.00
Glacierpoint	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Vitrandic Cryorthents	15	Limitations Depth to bedrock < 40" Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Bedrock (soft) < 40" depth Permeability > 2"/hr (seepage) Slopes > 8%	1.00
238; Oxyaquic Cryorthents	25	Limitations Flooding Saturation < 4' depth Permeability > 6"/hr in 24-60" (seepage and poor filter)	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage)	1.00
Canisrocks	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00 1.00 1.00
239; Crazymule	24	Limitations Depth to bedrock < 40" Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Bedrock (soft) < 40" depth Permeability > 2"/hr (seepage) Slopes > 8%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

	Pct.				
	of	Septic t		Sewage lagoons	
and soil name	map				
	unit	Limitation	Value	Limitation	Value
239: Canisrocks	34	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
241: Canisrocks	75	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-25%	1.00
242: Rock outcrop	30	Not rated		Not rated	
Canisrocks	72	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") >50%	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Xeric Dystrocryepts	16	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8% Fragments (>3") 20-35%	1.00
244: Typic Cryorthents	45	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Rubble land	25	Not rated		Not rated	
Rock outgrop	16	Not rated		Not rated	
245: Rock outcrop	30	Not rated		Not rated	
Canisrocks	75	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol	Pat.	Septic tank		Sewade ladoons	
and soil name	map				
	unit	Limitation	Value	Limitation	Value
245; Xeric Dystrocryepts	5	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Slopes > 8% Permeability .6-2"/hr (some seepage)	1.00
246: Rock outcrop, domes	06	Not rated		Not rated	
247: Canisrocks	50	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Xeric Dystrocryepts	7 0	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
248: Canisrocks	a	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Rock outcrop	30	Not rated		Not rated	
Glacierpoint	1	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
249: Rock outcrop	45	Not rated		Not rated	
Canisrocks	30	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct. of	Septic tank absorption fields		Sewage lagoons	
	unit		Value	Limitation	Value
250: Canisrocks	47	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Xeric Dystrocryepts	35	Limitations Seepage in bottom layer Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8% Fragments (>3") > 35%	1.00
251: Glacierpoint	30	Limitations Permability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Typic Cryorthents	70	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00 1.00 0.98
252: Rock outcrop	20	Not rated		Not rated	
Canisrocks	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Xeric Dystrocryepts	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
253: Canisrocks	2 25	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1 1 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct. of	Septic tank absorption fields		Sewage lagoons	
	unit		Value	Limitation	Value
253: Glacierpoint	 	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Humic Dystrocryepts	15	Seepage in bottom layer Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
256: Craneflat		Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
Rock outcrop	25	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
Waterwheel	50	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
257: Badgerpass		Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
Oxyaquic Dystroxerepts	35	Limitations Flodding Saturation < 4' depth Permeability < .6"/hr in 24-60" (slow perc)	1 H H 000	Limitations Flooding > occasional Saturation at < 3.5' depth Slopes > 8%	1.00
258: Typic Dystroxerepts	52	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol	Pat.	Septic tank		Sewage lagoons	
	unit		Value	Limitation	Value
258: Badgerpass	7 0	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Dystric Xerorthents	70	Limitations Flooding Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15%	1.00	Limitations Flooding > occasional Slopes > 8% Permeability > 2"/hr (seepage)	1.00
260: Rock outcrop	45	Not rated		Not rated	
Craneflat	2 22	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-25%	1.00
Dystric Xerorthents	70	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
261: Dystric Xeropsamments	22	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
Typic Dystroxerepts	72	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Badgerpass	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Rock outcrop	15	Not rated		Not rated	
262: Humic Dystroxerepts	30	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability > 2"/hr (seepage)	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol	Pat.	Septic tank		Sewage lagoons	
	unit		Value	Limitation	Value
262: Dystric Xerorthents	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	20	Not rated		Not rated	
264: Crazymule	32	Limitations Seepage in bottom layer Slopes 8 to 15% Fragments (>3") 25 to 50%	1.00 0.63 0.22	Limitations Permeability > 2"/hr (seepage) Fragments (>3") > 35% Slopes > 8%	1.00
Canisrocks	 8	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
267: Rock outcrop	40	Not rated		Not rated	
Typic Cryorthents	30	Limitations Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Permeability > 2"/hr (seepage) Fragments (>3") > 35% Slopes 2 to 8%	1.00
Xeric Dystrocryepts	12	Limitations Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
268: Rock outcrop	40	Not rated		Not rated	
Canisrocks	25	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Glacierpoint	0	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

	Pct.				
Map symbol	o f	Septic tank		Sewage lagoons	
	unit	Limitation	Value	Limitation	Value
269: Canisrocks	50	Limitations Fragments (>3") >50% Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Rock outcrop	20	Not rated		Not rated	
Glacierpoint	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8% Fragments (>3") > 35%	1.00
270: Rock outcrop	35	Not rated		Not rated	
Typic Cryorthents	25	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Vitrandic Dystrocryepts	72	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
271: Rock outcrop	09	Not rated		Not rated	
Lithic Xerorthents	12	Limitations Depth to bedrock < 40" Seepage in bottom layer Slopes > 15%	1.00 1.00 1.00	Limitations Bedrock (hard) < 40" depth Slopes > 8%	1.00
Waterwheel	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
273: Nevadafalls	5	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

	1				
Map Symbol	, 40 10 10 10 10 10 10 10 10 10 10 10 10 10	Septic tank		Sewage lagoons	
oil name	map	absorption fields			
	unit	Limitation	Value	Limitation	Value
273: Waterwheel	30	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00 1.00 0.91
274: Rock outcrop, domes	8	Not rated		Not rated	
275: Oxyaquic Dystroxerepts	2	Limitations Flooding Saturation < 4' depth Seepage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00 1.00 0.50
Dystric Xerorthents	72	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Fragments (>3") > 35% Slopes > 8%	1.00 1.00 1.00
Vitrandic Xerorthents	72	Limitations Flooding Seepage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
Rubble land	15	Not rated		Not rated	
276: Happyisles	35	Limitations Seepage in bottom layer Rare flooding	1.00	Limitations Permeability > 2"/hr (seepage) Flooding = rare Slopes 2 to 8%	1.00 0.50 0.17
Typic Dystroxerepts	3 5	Limitations Seepage in bottom layer Slopes 8 to 15% Fragments (>3") 25 to 50%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct. of	Septic tank absorption fields		Sewage lagoons	
	unit		Value	Limitation	Value
277: Tuolumne	74	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Humic Dystroxerepts	3.5	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
278: Rock outcrop	25	Not rated		Not rated	
Tuolumne	25	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
Humic Dystroxerepts	0 7	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Rubble land	15	Not rated		Not rated	
279: Canisrocks	4 0	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Xeric Dystrocryepts	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
280: Typic Dystroxerepts	35	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct.	Septic tank absorbtion fields		Sewage lagoons	
	unit		Value	Limitation	Value
280; Humic Dystroxerepts	30	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	25	Not rated		Not rated	
282: Clarkslodge	20	Limitations Slopes 8 to 15% Permeability ranges .6 - 2"/hr (slow perc) Fragments (>3") 25 to 50%	0.63	Limitations Permeability > 2"/hr (seepage) Slopes > 8% Fragments (>3") 20-35%	1.00
Craneflat	2 22	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Nevadafalls	2 22	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
283: Waterwheel	35	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability > 2"/hr (seepage)	1.00
Nevadafalls	30	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	21	Not rated		Not rated	
285: Waterwheel	30	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct. of map	Septic tank absorption fields		Sewage lagoons	
	unit		Value	Limitation	Value
285: Humic Dystroxerepts	16	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00 1.00 1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
286: Nevadafalls	7 2 9	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Typic Dystroxerepts	72	Limitations Seepage in bottom layer	1.00	<pre>Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%</pre>	1.00
Ultic Palexeralfs	7 0	Limitations Permeability < .6"/hr in 24-60" (slow perc) Slopes 8 to 15%	1.00	<pre>Limitations Permeability > 2"/hr (seepage) Slopes > 8%</pre>	1.00
Rock outcrop	15	Not rated		Not rated	
287: Badgerpass	 	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
Waterwheel	4 0	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
288: Rock outcrop	35	Not rated		Not rated	
Craneflat	50	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	<pre>Limitations Permeability > 2"/hr (seepage) Fragments (>3") > 35% Slopes > 8%</pre>	1.00
Waterwheel	70	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct.	Septic tank absorption fields		Sewage lagoons	
	unit	Limitation	Value	Limitation	Value
289: Waterwheel	20	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-25%	1.00
Craneflat	30	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
290: Humic Dystroxerepts	0 4	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Tuolumne	30	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability > 2"/hr (seepage)	1.00
Typic Xerorthents	15	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	<pre>Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%</pre>	1.00
Ultic Haploxeralfs	12	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Slopes > 8% Permeability .6-2"/hr (some seepage) Fragments (>3") 20-35%	1.00
291: Ultic Haploxeralfs	41	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Typic Dystroxerepts	31	Limitations Seepage in bottom layer Slopes > 15%	1.00	<pre>Limitations Permeability > 2"/hr (seepage) Slopes > 8%</pre>	1.00
292: Humic Dystroxerepts	3 21	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

	Pct.	Septic tank		Sewage lagoons	
and soll name	map	absorption ileids Limitation	Value	Limitation	Value
292: Typic Haploxerults	30	Limitations Permeability < .6"/hr in 24-60" (slow perc) Slopes 8 to 15%	1.00	Limitations Slopes > 8% Permeability .6-2"/hr (some seepage)	1.00
293: Xeric Dystrocryepts	70	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Vitrandic Dystrocryepts	18	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
294: Waterwheel	65	Limitations Fragments (>3") >50% Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Typic Dystroxerepts	3	Limitations Permeability < .6"/hr in 24-60" (slow perc) Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
295; Craneflat	72	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
Typic Dystroxerepts	25	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
296; Ultic Palexeralfs	70	Limitations Permeability < .6"/hr in 24-60" (slow perc) Slopes > 15%	1.00	Limitations Slopes > 8%	1.00
Humic Dystroxerepts	12	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol	Pat.	Septic tank		Sewage lagoons	
	unit	Limitation	Value	Limitation	Value
297: Typic Xerorthents	30	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	25	Not rated		Not rated	
Typic Keropsamments	22	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
298: Tuolumme	41	Limitations Fragments (>3") >50% Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Typic Dystroxerepts	31	Limitations Permeability < .6"/hr in 24-60" (slow perc) Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
299; Humic Dystroxerepts	4 6	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Ultic Haploxeralfs	35	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
300: Typic Dystroxerepts	32	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Ultic Haploxeralfs	72	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct.	Septic tank absorption fields		Sewage lagoons	
	unit		Value	Limitation	Value
301; Vitrandic Haploxerolls	06	Limitations Saturation < 4' depth Seepage in bottom layer Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Permeability > 2"/hr (seepage) Saturation at < 3.5' depth Flooding = rare	1.00 1.00 0.50
302: Typic Haploxerults	45	Limitations Permeability < .6"/hr in 24-60" (slow perc) Slopes > 15%	1.00	Limitations Slopes > 8% Permeability .6-2"/hr (some seepage)	1.00
Ultic Haploxeralfs	4 1	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
303: Rock outcrop	30	Not rated		Not rated	
Dystric Xeropsamments	70	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Slopes > 8% Permeability .6-2"/hr (some seepage)	1.00
Humic Dystroxerepts	50	Limitations Fragments (>3") >50% Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability .6-2"/hr (some seepage)	1.00
Tuolumne	50	Limitations Slopes > 15% Fragments (>3") 25 to 50% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability .6-2"/hr (some seepage)	1.00
304: Clarkslodge	09	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Slopes > 8% Permeability .6-2"/hr (some seepage)	1.00
Rock outcrop	15	Not rated		Not rated	

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol	Pat.	Septic tank		Sewage lagoons	
	unit		Value	Limitation	Value
305; Rock outcrop	20	Not rated		Not rated	
Waterwheel	18	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Dystric Xeropsamments	15	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
306; Typic Cryopsamments	20	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Humic Dystrocryepts	30	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
307: Rock outcrop	40	Not rated		Not rated	
Dystric Xeropsamments	20	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc)	1.00	<pre>Limitations Slopes > 8% Permeability .6-2"/hr (some seepage)</pre>	1.00
Dystric Xerorthents	7	Limitations Flooding Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	<pre>Limitations Flooding > occasional Slopes > 8% Permeability > 2"/hr (seepage)</pre>	1.00
309: Rock outcrop	20	Not rated		Not rated	
Waterwheel	5	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct.	Septic tank absorption fields		Sewage lagoons	
	unit	Limitation	Value	Limitation	Value
309: Typic Dystroxerepts	20	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00 1.00 0.64
310: Rock outcrop	55	Not rated		Not rated	
Humic Dystroxerepts	25	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability > 2"/hr (seepage)	1.00 1.00
Humic Lithic Haploxerepts	70	Limitations Depth to bedrock < 40" Ponded (any duration) Saturation < 4' depth	1.00	Limitations Bedrock (hard) < 40" depth Ponded (any duration) Slopes > 8%	1.00
311: Rock outcrop	45	Not rated		Not rated	
Humic Dystroxerepts	3.5	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Fragments (>3") > 35% Slopes > 8%	1.00 1.00
Humic Lithic Haploxerepts	19	Limitations Depth to bedrock < 40" Ponded (any duration) Saturation < 4' depth	1.00	Limitations Bedrock (hard) < 40" depth Ponded (any duration) Permeability > 2"/hr (seepage)	1.00
313: Nevadafalls	40	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
Oxyaquic Dystrudepts	40	Limitations Flooding Saturation < 4' depth Seepage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00 1.00 0.50

Table 9.-Sanitary Facilities, Part I-Continued

	Pct.	Septic tank		Sewage lagoons	
oil name	map	absorption fields			
	unit	Limitation	Value	Limitation	Value
314: Badgerpass		Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Dystric Xeropsamments	 	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Rock outcrop	15	Not rated		Not rated	
315: Nevadafalls	09	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Dystric Xeropsamments	40	Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
316: Dystric Xerorthents	4 0	Limitations Permeability < .6"/hr in 24-60" (slow perc) Slopes > 15% Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
Rock outgrop	40	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
318: Typic Dystroxerepts	4 0	Limitations Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
Humic Dystroxerepts	36	Limitations Seepage in bottom layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct. of	Septic tank absorption fields		Sewage lagoons	
	unit	Limitation	Value	Limitation	Value
319: Humic Dystroxerepts	30	Limitations Fragments (>3") >50% Permeability > 6"/hr in 24-60" (seepage and poor filter) Slopes > 15%	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability > 2"/hr (seepage)	1.00
Typic Haploxerults	30	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Inceptic Haploxeralfs	25	<pre>Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") >50%</pre>	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
320: Half Dome	4 0	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Humic Dystroxerepts	70	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	20	Not rated		Not rated	
321: Dystric Keropsamments	20	<pre>Limitations Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer Rare flooding</pre>	1.00	Limitations Permeability > 2"/hr (seepage) Flooding = rare	1.00
Dystric Xerorthents	40	<pre>Limitations Flooding Permeability > 6"/hr in 24-60" (seepage and poor filter) Seepage in bottom layer</pre>	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Slopes > 8%	1.00
Typic Xerorthents	06	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00

Table 9.-Sanitary Facilities, Part I-Continued

	Pct.			Sewage lagoons	
and soil name	map unit	absorption fields Limitation	Value	Limitation	Value
323: Ultic Haploxeralfs	55	6 - 2"/hr	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
Humic Dystroxerepts	45	ottom layer 15%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
324: Humic Haploxerepts	4 0	Limitations Slopes > 15% Seepage in bottom layer Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
Rock outcrop	35	Not rated		Not rated	
Ultic Haploxeralfs	25	Limitations Slopes > 15% Permeability < .6"/hr in 24-60" (slow perc) Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability .6-2"/hr (some seepage)	1.00
325: Urban land	80	Not rated		Not rated	
328: Clarkslodge	30	Limitations Slopes > 15% Fragments (>3") 25 to 50% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Slopes > 8% Fragments (>3") 20-35% Permeability .6-2"/hr (some seepage)	1.00
Ultic Palexeralfs	15	Limitations Slopes > 15% Permeability ranges .6 - 2"/hr (slow perc)	1.00	Limitations Slopes > 8% Permeability .6-2"/hr (some seepage)	1.00
401: Sentinel	06	Limitations Seepage in bottom layer Rare flooding	1.00	Limitations Permeability > 2"/hr (seepage) Flooding = rare	1.00
412; Water	8 2	Not rated		Not rated	

Table 9.-Sanitary Facilities, Part I-Continued

Map symbol and soil name	Pct. of	Septic tank absorption fields		Sewage lagoons	
	unit	Limitation	Value	Limitation	Value
412: Riverwash	15	Limitations Flooding Saturation < 4' depth	1.00	Limitations Flooding > occasional Saturation at < 3.5' depth	1.00
Happyisles, sandy loam	65	Limitations Seepage in bottom layer Rare flooding	1.00	Limitations Permeability > 2"/hr (seepage) Flooding = rare Slopes 2 to 8%	1.00
Happyisles, loamy fine sand,	20	Limitations Flooding Seepage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
502: Happyisles	& &	Limitations Seepage in bottom layer Saturation < 4' depth Rare flooding	1.00 0.99 0.40	Limitations Permeability > 2"/hr (seepage) Flooding = rare	1.00
504: Mollic Xerofluvents	8 21	Limitations Flooding Seepage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Slopes 2 to 8%	1.00
510t: Rubble land	40	Not rated		Not rated	
Lithnip	20	Limitations Depth to bedrock < 40" Restricted permeability due to bedrock or hardpan Slopes > 15%	1.00	Limitations Bedrock (hard) < 40" depth Slopes > 8%	1.00
Rock outcrop	15	Not rated		Not rated	
Happyisles	20	Limitations Seepage in bottom layer Rare flooding	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 8% Flooding = rare	1.00
Half Dome	45	Limitations Seepage in bottom layer Fragments (>3") 25 to 50% Slopes 8 to 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8% Fragments (>3") > 35%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

	Pct.				
Map symbol and soil name	map	Septic tank absorption fields		Sewage lagoons	
	unit	Limitation	Value	Limitation	Value
552: Mollic Xerofluvents	8 5	Limitations Flooding Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) Slopes > 8%	1.00
590: Terric Haplosaprists	8 55	Limitations Flooding Saturation < 4' depth Seepage in bottom layer	1.00	Limitations Flooding > occasional Permeability > 2"/hr (seepage) High organic matter (PT) in 50-150 cm	1.00
601: Half Dome, very bouldery	20	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") 20-35%	1.00
Half Dome, cobbly	4 5	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability > 2"/hr (seepage)	1.00
602: Half Dome	8 5	Limitations Seepage in bottom layer Slopes > 15% Fragments (>3") 25 to 50%	1.00 1.00 0.92	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
610: Rubble land	65	Not rated		Not rated	
Half Dome	30	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") 25 to 50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00
620: Half Dome, extremely stony sandy loam, warm	20	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Fragments (>3") > 35% Permeability > 2"/hr (seepage)	1.00
Half Dome, very cobbly sandy loam,	4.3	Limitations Slopes > 15% Seepage in bottom layer Fragments (>3") >50%	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage) Fragments (>3") > 35%	1.00

Table 9.-Sanitary Facilities, Part I-Continued

	Pct.				
Map symbol	of	Septic tank		Sewage lagoons	
and soil name	map	absorption fields			
	unit	Limitation	Value	Limitation	Value
630: Rubble land		Not rated		Not rated	
Half Dome	30	Limitations Slopes > 15% Seepage in bottom laver	1.00	Limitations Slopes > 8% Permeability > 2"/hr (seepage)	1.00
		Fragments (>3") >50%	1.00	Fragments (>3") > 35%	1.00
701: Vitrandic Haploxerolls	o 0	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 8%	1.00
702: Vitrandic Dystroxerepts	06	Limitations Seepage in bottom layer Fragments (>3") >50% Slopes > 15%	1.00	Limitations Fragments (>3") > 35% Permeability > 2"/hr (seepage) Slopes > 8%	1.00
900; Rock outcrop	95	Not rated		Not rated	
DAM: Dam	100	Not rated		Not rated	
W: Water	100	Not rated		Not rated	

The interpretation for septic tanks absorption fields evaluates the following soil properties at variable depths in the soil: flooding; pending; wetness; slope; subsidence of organic soils; depth to hard or soft bedrock; depth to cemented pans; permeability that is too fast, allowing seepage; permeability that is too slow; and an impermeable layer at a shallow depth. The interpretation for sewage lagoons evaluates the following soil properties at variable depths in the soil: flooding, ponding, wetness, slope, organic Unified classes for low strength (PT, OL, OH), depth to hard or soft bedrock, depth to cemented pans, fragments greater than 3 inches in size, and permeability that is too fast, allowing seepage.

Table 9.-Sanitary Facilities, Part II

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only three highest value limitations are listed. There may be more limitations. Fine-earth fractions and coarse fragments are reported on a weight basis. Brief summaries of rating criteria and abbreviations are listed on the last page of this report)

Colomics	Pct.						
me	map	trench type		area type			
	unit	Limitation	Value	Limitation	Value	Limitation	Value
101: Oxyaquic Xerofluvents	3 2	Limitations Flooding > occasional Saturation < 6' depth Seepage in bottom layer	1.00	Limitations Saturation < 5' depth 1 Seepage in 20-40" depth 1 Frequent flooding 0	1.00	Not suited Permeability > 2.0 in/hr	1.00
Riverwash	35	Not rated		Not rated		Not rated	
Fluvaquents	15	Limitations Flooding > occasional Saturation < 6' depth Sandy textures (cos, s, fs, lcos, or vfs	1.00	Limitations Saturation < 5' depth 1 Seepage in 20-40" depth 1 Frequent flooding	1.00	Not suited Saturation < 18" depth Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00
101t: Lithnip	4 0	Limitations Slopes > 15% Lithic or paralithic bedrock < 72" Seepage in bottom layer	1.00	Limitations Slopes > 15% Bedrock depth < 40"	1.00	Not suited Fragments (<75mm) > 50% Depth to bedrock < 40" Slopes > 15%	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
Fishsnooze	50	Limitations Slopes > 15% Lithic or paralithic bedrock < 72" Seepage in bottom layer	1.00	Limitations Slopes > 15% Bedrock depth < 40" Seepage in 20-40' depth	1.00	Not suited Depth to bedrock < 40" Slopes > 15% Fragments (>3") 25-50%	1.00
102: Oxyaquic Xerofluvents	4 5	Limitations Flooding > occasional Saturation < 6' depth Seepage in bottom layer	1	Limitations Saturation < 5' depth 1 Seepage in 20-40" depth 1 Frequent flooding	1.00	Not suited Permeability > 2.0 in/hr	1.00
Riverwash	40	Not rated		Not rated		Not rated	

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Lin	Value	Limitation	Value	Limitation	Value
102t: Lithnip	4 0	Limitations Lithic or paralithic bedrock < 72" Slopes > 15% Seepage in bottom layer	1.00	Limitations Bedrock depth < 40" Slopes > 15%	1.00	Not suited Fragments (<75mm) > 50% Depth to bedrock < 40" Slopes > 15%	1.00 1.00 1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
Fishsnooze	20	Limitations Lithic or paralithic bedrock < 72" Slopes > 15% Seepage in bottom layer	1.00	Limitations Bedrock depth < 40" Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Depth to bedrock < 40" Slopes > 15% Fragments (>3") 25-50%	1.00 1.00 0.89
104: Aquandic Humaquepts	80	Limitations Flooding > occasional Saturation < 6' depth Sandy textures (cos, s, fs,	1.00	Limitations Saturation < 5' depth 1 Seepage in 20-40" depth 1 Frequent flooding	1.00	Not suited Saturation < 18" depth Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00 1.00 1.00
111t: Whittell	4.	Limitations Slopes > 15% Lithic or paralithic bedrock < 72" Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1 Bedrock depth < 40"	1.00	Not suited Depth to bedrock < 40" Slopes > 15% Permeability > 2.0 in/hr	1.00
Jobsis	25	Limitations Slopes > 15% Lithic or paralithic bedrock < 72" Seepage in bottom layer	1.00	Limitations Slopes > 15% Bedrock depth < 40"	1.00	Not suited Depth to bedrock < 40" Slopes > 15% Permeability > 2.0 in/hr	1.00 1.00 1.00
Rock outcrop	12	Not rated		Not rated		Not rated	
151: Elcapitan	08	Limitations Flooding > occasional Saturation < 6' depth Seepage in bottom layer	1.00	Limitations Saturation < 5' depth Seepage in 20-40" depth Occasional flooding	1.00	Suited Permeability > 2.0 in/hr	0.52
152: Vitrandic Haploxerolls	80	Limitations Flooding > occasional Saturation < 6' depth Sandy textures (cos, s, fs, lcos, or vfs	1.00	Limitations Seepage in 20-40" depth Occasional flooding	0.60	Limitations Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Limitation	Value		Value	Limitation	Value
201; Leidig	0 8	Limitations Flooding > occasional Saturation < 6' depth Seepage in bottom layer	1.00	Limitations Saturation < 5' depth Seepage in 20-40" depth Occasional flooding	1.00	Suited Permeability > 2.0 in/hr	0.52
210: Rubble land	30	Not rated		Not rated		Not rated	
Typic Cryorthents	25	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Fragments (>3") > 50% Permeability > 2.0 in/hr	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
Xeric Dystrocryepts	70	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
211: Xeric Dystrocryepts	3 5	Limitations Seepage in bottom layer Slopes > 15% Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Slopes > 15% Fragments (>3") 25-50% Permeability > 2.0 in/hr	1.00
Canisrocks	30	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Slopes > 15%	1.00
Oxyaquic Dystrocryepts	15	Limitations Saturation < 6' depth Seepage in bottom layer Slopes > 15%	1.00	Limitations Saturation < 5' depth Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Slopes > 15% Saturation from 18 to 40" depth Permeability > 2.0 in/hr	1.00 0.91 0.52
213: Canisrocks	20	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") > 35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") 25-50%	1.00 1.00 0.98
Glacierpoint	15	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") 25-50%	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of map	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Lin	Value	Limitation	Value	Limitation	Value
213: Vitrandic Dystrocryepts-	15	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is loos, ls, lfs, or vfs	1.00
214: Marmotland	25	Limitations Flooding > occasional Saturation < 6' depth Seepage in bottom layer	1.00	Limitations Occasional flooding Slopes 8 to 15%	0.60	Suited Slopes 8 to 15%	0.01
Oxyaquic Dystrocryepts	15	Limitations Flooding > occasional Saturation < 6' depth Sandy textures (cos, s, fs, lcos, or vfs)	1.00	Limitations Saturation < 5' depth Seepage in 20-40" depth Frequent flooding	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Saturation from 18 to 40" depth	1.00
Xeric Dystrocryepts	15	Limitations Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs) Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth 1.00	1.00	Not suited Permeability > 2.0 in/hr Texture is los, ls, lfs, or vfs Fragments (>3") 25-50%	1.00
115: Typic Cryorthents	40	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (<75mm) 25-50%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
Rubble land	20	Not rated		Not rated		Not rated	
219: Rock outcrop	40	Not rated		Not rated		Not rated	
Rubble land	25	Not rated		Not rated		Not rated	
Canisrocks	15	Limitations Sandy textures (cos, s, fs, 1cos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct.	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for	
	unit	Limitation	Value	uc	Value	Limitation	Value
221: Typic Cryorthents	35	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1	1.00	Not suited Slopes > 15% Fragments (>3") > 50% Permeability > 2.0 in/hr	1.00
Xeric Dystrocryepts	70	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
Oxyaquic Dystrocryepts	15	Limitations Flooding > occasional Saturation < 6' depth Slopes > 15%	1.00	Limitations Slopes > 15% Saturation < 5' depth 1 Seepage in 20-40" depth 1	1.00	Not suited Slopes > 15% Saturation from 18 to 40" depth Permeability > 2.0 in/hr	1.00
222: Canisrocks	30	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% 1.00 Seepage in 20-40" depth 1.00	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00
Rubble land	30	Not rated		Not rated		Not rated	
Rock outcrop	20	Not rated		Not rated		Not rated	
Crazymule	12	Limitations Slopes > 15%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1	1.00	Not suited Slopes > 15%	1.00
223; Rock outcrop	35	Not rated		Not rated		Not rated	
Rubble land	35	Not rated		Not rated		Not rated	
Canisrocks	7	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1 Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Slopes > 15%	1.00
224: Rock outcrop	40	Not rated		Not rated		Not rated	
Crazymule	70	Limitations Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1 Slopes > 15%	1.00	Not suited Slopes > 15%	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Lin	Value		Value	Limitation	Value
224: Vitrandic Cryorthents	15	Limitations Lithic or paralithic bedrock < 72" Seepage in bottom layer Slopes > 15%	1 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Limitations Seepage in 20-40" depth Bedrock depth < 40" Slopes > 15%	1.00	Not suited Depth to bedrock < 40" Permeability > 2.0 in/hr Slopes > 15%	1.00 1.00 1.00
225: Canisrocks	15	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00 1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
Rubble land	15	Not rated		Not rated		Not rated	
Vitrandic Dystrocryepts-	15	Limitations Seepage in bottom layer Slopes > 15% Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Fragments (>3") > 50%	1.00
227: Canisrocks	4.5	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, ls,	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Crazymule	0 4	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") 25-50%	1.00
228: Xeric Dystrocryepts	3	Limitations Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs) Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs Fragments (<75mm) 25-50%	1.00
Vitrandic Eutrocryepts	25	Limitations Flooding > occasional Saturation < 6' depth Seepage in bottom layer	1.00	Limitations Saturation < 5' depth 1.00 Seepage in 10-40" depth 1.00 Occasional flooding 0.60	1.00	Suited Saturation from 18 to 40" depth Permeability > 2.0 in/hr	0.91

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct.	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Lin	Value		Value	Limitation	Value
229; Marmotland	4 0	Limitations Flooding > occasional Saturation < 6' depth Seepage in bottom layer	1.00	Limitations Seepage in 20-40" depth 1. Occasional flooding 0.	1.00	Suited Permeability > 2.0 in/hr Fragments (<75mm) 25-50%	0.52
Oxyaquic Dystrocryepts	4	Limitations Saturation < 6' depth Seepage in bottom layer	1.00	Limitations Saturation < 5' depth 1. Seepage in 20-40" depth 1.	1.00	Not suited Permeability > 2.0 in/hr Saturation from 18 to 40" depth Fragments (<75mm) 25-50%	1.00
231: Canisrocks	4 0	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1. Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Slopes > 15%	1.00
Typic Cryaquents	21	Limitations Saturation < 6' depth Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Saturation < 5' depth 1. Seepage in 20-40" depth 1. Slopes 8 to 15% 0.	1.00	Not suited Saturation < 18" depth Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
232: Canisrocks	72	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1. Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
Glacierpoint	21	Limitations Seepage in bottom layer Fragments (3-10") 15-35% Sandy textures (cosl, ls, lfs, or lyfs)	1.00	Limitations Seepage in 20-40" depth 1.	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs Fragments (>3") 25-50%	1.00
234: Rock outcrop	35	Not rated		Not rated		Not rated	
Rubble land	35	Not rated		Not rated		Not rated	
235; Canisrocks	3 5	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, ls,	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, vfs	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol	Pct.	Sanitary landfill		Sanitary landfill		Daily cover for	
	unit	Limitation	Value	on	Value	Limitation	Value
235: Rock outcrop	30	Not rated		Not rated		Not rated	
Rubble land	20	Not rated		Not rated		Not rated	
237: Canisrocks	22	Limitations Lithic or paralithic bedrock < 72" Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Bedrock depth < 40" Slopes > 15%	1.00	Not suited Depth to bedrock < 40" Permeability > 2.0 in/hr Slopes > 15%	1.00 1.00
Glacierpoint	15	Limitations Seepage in bottom layer Slopes 8 to 15% Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Slopes 8 to 15%	1.00	Not suited Permeability > 2.0 in/hr Fragments (>3") 25-50% Slopes 8 to 15%	1.00 0.72 0.63
Vitrandic Cryorthents	15	Limitations Lithic or paralithic bedrock < 72" Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Bedrock depth < 40" Slopes 8 to 15%	1.00 0.01 0.01	Not suited Depth to bedrock < 40" Permeability > 2.0 in/hr Testure is lcos, ls, lfs, or vfs	1.00 1.00 0.50
238: Oxyaquic Cryorthents	22	<pre>Limitations Flooding > occasional Saturation < 6' depth Sandy textures (cos, s, fs, lcos, or vfs)</pre>	1.00	Limitations Saturation < 5' depth Seepage in 20-40" depth Frequent flooding	1.00 0.80	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Saturation from 18 to 40" depth	1.00 1.00 0.91
Canisrocks	15	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Seepage in 20-40" depth Slopes 8 to 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
239: Crazymule		Limitations Lithic or paralithic bedrock < 72" Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Seepage in 20-40" depth Bedrock depth < 40" Slopes 8 to 15%	1.00 0.16	Not suited Depth to bedrock < 40" Permeability > 2.0 in/hr Slopes 8 to 15%	1.00 0.52 0.16
Canisrocks		Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Seepage in 20-40" depth Slopes 8 to 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of map	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Limitation	Value		Value	Limitation	Value
241: Canisrocks	75	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Slopes > 15%	1.00 1.00 1.00
242: Rock outcrop	30	Not rated		Not rated		Not rated	
Canisrocks	25	Limitations Seepage in bottom layer Slopes > 15% Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Fragments (>3") > 50% Slopes > 15%	1.00
Xeric Dystrocryepts	16	Limitations Seepage in bottom layer Slopes > 15% Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Texture is lcos, ls, lfs, or vfs	1.00 1.00 0.50
244: Typic Cryorthents	4.5	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00 1.00 1.00
Rubble land	25	Not rated		Not rated		Not rated	
Rock outcrop	16	Not rated		Not rated		Not rated	
245: Rock outcrop	30	Not rated		Not rated		Not rated	
Canisrocks	22	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1 Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
Xeric Dystrocryepts	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15%	1.00
246: Rock outcrop, domes	06	Not rated		Not rated		Not rated	

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Lim	Value		Value		Value
247: Canisrocks	70	Limitations Seepage in bottom layer Slopes > 15% Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Seepage in 20-40" depth 1 Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Texture is lcos, ls, lfs, or vfs	1.00 1.00 0.50
Xeric Dystrocryepts	70	Limitations Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth 1	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
248: Canisrocks	3 5	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00
Rock outcrop	30	Not rated		Not rated		Not rated	
Glacierpoint	15	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00
249: Rock outcrop	45	Not rated		Not rated		Not rated	
Canisrocks	30	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, of vfs	1.00 1.00 0.50
250: Canisrocks	47	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1 Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
Xeric Dystrocryepts	3 5	Limitations Seepage in bottom layer Slopes > 15% Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth 1 Slopes > 15%	1.00	Not suited Slopes > 15% Fragments (>3") 25-50% Permeability > 2.0 in/hr	1.00 0.61 0.52

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol	Pct.	Sanitary landfill				Daily cover for	
	unit	Limitation	Value	Limitation V	Value	Limitation	Value
251: Glacierpoint	30	Limitations Slopes > 15% Sandy textures (cos, s, fs, 1cos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Typic Cryorthents	20	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") 25-50%	1.00
252: Rock outcrop	20	Not rated		Not rated		Not rated	
Canisrocks	15	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
Xeric Dystrocryepts	15	Limitations Seepage in bottom layer Slopes 8 to 15% Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00 0.63 0.50	Limitations Seepage in 20-40" depth 1 Slopes 8 to 15% 0	1.00	Not suited Permeability > 2.0 in/hr Slopes 8 to 15% Texture is lcos, 1s, 1fs, or vfs	1.00
253: Canisrocks	2 5	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
Glacierpoint	18	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
Humic Dystrocryepts	15	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
256: Craneflat	2 5	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, ls,	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of map	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Limitation	Value		Value	Limitation	Value
256: Rock outcrop	25	Not rated		Not rated		Not rated	
Rubble land	20	Not rated		Not rated		Not rated	
Waterwheel	70	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00
257 : Badgerpass	55	Limitations Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth 1.	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Oxyaquic Dystroxerepts	35	Limitations Flooding > occasional Saturation < 6' depth Slopes 8 to 15%	1.00	Limitations Saturation < 5' depth 1. Frequent flooding 0. Slopes 8 to 15% 0	1.00	Suited Saturation from 18 to 40" depth Slopes 8 to 15%	0.91
258: Typic Dystroxerepts	25	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
Badgerpass	70	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00 1.00
Dystric Xerorthents	70	Limitations Flooding > occasional Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1. Occasional flooding	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00 1.00 0.50
260: Rock outcrop	45	Not rated		Not rated		Not rated	
Craneflat	25	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.00	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00 1.00 1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct.	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Lim	Value	uo	Value	Limitation	Value
260: Dystric Xerorthents	70	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
261: Dystric Xeropsamments	25	Limitations Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Typic Dystroxerepts	72	Limitations Seepage in bottom layer Slopes > 15% Fragments (3-10") > 35%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") 25-50%	1.00
Badgerpass	12	Limitations Seepage in bottom layer Slopes > 15% Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Texture is lcos, ls, lfs, or vfs	1.00
Rock outcrop	12	Not rated		Not rated		Not rated	
262: Humic Dystroxerepts	30	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Fragments (>3") > 50% Permeability > 2.0 in/hr	1.00
Dystric Xerorthents	25	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, vfs	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
264: Crazymule	35	Limitations Seepage in bottom layer Slopes 8 to 15% Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Slopes 8 to 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes 8 to 15% Texture is lcos, 1s, 1fs, or vfs	1.00
Canisrocks	7 8	Limitations Seepage in bottom layer Slopes > 15% Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Fragments (>3") > 50% Slopes > 15%	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct.	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for	
	unit	Limitation	Value	on	Value	Limitation	Value
267: Rock outcrop	4 0	Not rated		Not rated		Not rated	
Typic Cryorthents	30	Limitations Seepage in bottom layer Fragments (3-10") > 35%	1.00	Limitations Seepage in 20-40" depth 1.	1.00	Not suited Fragments (>3") > 50% Permeability > 2.0 in/hr	1.00
Xeric Dystrocryepts	15	Limitations Seepage in bottom layer Slopes 8 to 15% Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00 0.63 0.50	Limitations Seepage in 20-40" depth 1. Slopes 8 to 15% 0.	1.00	Not suited Permeability > 2.0 in/hr Slopes 8 to 15% Texture is loos, 1s, 1fs, or vfs	1.00
268: Rock outcrop	40	Not rated		Not rated		Not rated	
Canisrocks	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00
Glacierpoint	70	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
269: canisrocks		Limitations Seepage in bottom layer Slopes > 15% Sandy textures (cosl, ls, lfs, or lvfs)	1.00 1.00 0.50	Limitations Seepage in 20-40" depth 1. Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Fragments (>3") > 50% Slopes > 15%	1.00
Rock outcrop	20	Not rated		Not rated		Not rated	
Glacierpoint	1	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1. Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Texture is lcos, ls, lfs, or vfs	1.00
270: Rock outcrop	35	Not rated		Not rated		Not rated	
Typic Cryorthents	7 22	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00 1.00 0.96	Limitations Slopes > 15% Seepage in 20-40" depth 1.00		Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol	Pct.	Sanitary landfill		1		Daily cover for	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
270: Vitrandic Dystrocryepts-	25	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
271: Rock outcrop	09	Not rated		Not rated		Not rated	
Lithic Xerorthents	15	Limitations Lithic or paralithic bedrock < 72" Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Bedrock depth < 40" Slopes > 15%	1.00	Not suited Fragments (<75mm) > 50% Depth to bedrock < 40" Texture is s, fs, cos, sg	1.00
Waterwheel	15	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
273; Nevadafalls	5	Limitations Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs) Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Waterwheel	30	Limitations Seepage in bottom layer Slopes > 15% Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Fragments (>3") 25-50%	1.00
274: Rock outcrop, domes	8	Not rated		Not rated		Not rated	
275: Oxyaquic Dystroxerepts	25	Limitations Flooding > occasional Saturation < 6" depth Seepage in bottom layer	1.00	Limitations Saturation < 5' depth Seepage in 20-40" depth Occasional flooding	1.00	Suited Saturation from 18 to 40" depth Permeability > 2.0 in/hr Fragments (<75mm) 25-50%	0.91
Dystric Xerorthents	25	Limitations Seepage in bottom layer Slopes > 15% Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Fragments (>3") > 50% Slopes > 15%	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Lim	Value		Value	Limitation	Value
275: Vitrandic Xerorthents	25	Limitations Flooding > occasional Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Occasional flooding	0.60	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Rubble land	15	Not rated		Not rated		Not rated	
276: Happyisles	3 2	Limitations Seepage in bottom layer Flooding = rare Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Rare flooding	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Typic Dystroxerepts	32	Limitations Seepage in bottom layer Slopes 8 to 15% Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth 3 Slopes 8 to 15%	1.00	Not suited Permeability > 2.0 in/hr Fragments (>3") 25-50% Slopes 8 to 15%	1.00 0.35 0.16
277: Tuolumne		Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00 1.00 0.50
Humic Dystroxerepts	32	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") > 35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
278: Rock outcrop	25	Not rated		Not rated		Not rated	
Tuolumne	7 22	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00 0.52 0.50
Humic Dystroxerepts	7 0	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") > 35%	1.00	Limitations Slopes > 15% 1.00 Seepage in 20-40" depth 1.00	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00 1.00
Rubble land	15	Not rated		Not rated	_	Not rated	

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct.	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Limitation	Value		Value	Limitation	Value
279: Canisrocks	4 0	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth $\left 1. \right $	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") 25-50%	1.00 1.00 0.95
Xeric Dystrocryepts	15	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00
280: Typic Dystroxerepts	3.5	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
Humic Dystroxerepts	30	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
282: Clarkslodge	20	Limitations Slopes 8 to 15% Fragments (3-10") 15-35%	0.63	Limitations Seepage in 20-40" depth 1. Slopes 8 to 15% 0.	1.00	Suited Slopes 8 to 15%	0.63
Craneflat	25	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Nevadafalls	25	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00 1.00 0.50
283: Waterwheel	3 5	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of	Sanitary landfill trench type		Sanitary landfill area type	Daily cover for landfill	
	unit	Limitation	Value		Limi	Value
283: Nevadafalls	30	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Rock outcrop	21	Not rated		Not rated	Not rated	
285: Waterwheel	30	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.00	Not suited Slopes > 15% Fragments (>3") > 50% Permeability > 2.0 in/hr	1.00
Humic Dystroxerepts	16	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth 1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00 1.00 1.00
286: Nevadafalls	7 6	Limitations Seepage in bottom layer Slopes > 15% Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Seepage in 20-40" depth 1.00 Slopes > 15%	Not suited Permeability > 2.0 in/hr Slopes > 15% Texture is lcos, ls, lfs, or vfs	1.00
Typic Dystroxerepts	25	Limitations Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth 1.00	Not suited Permeability > 2.0 in/hr Texture is loos, ls, lfs, or vfs	1.00
Ultic Palexeralfs	70	Limitations Clay or silty clay Slopes 8 to 15%	1.00	Limitations Slopes 8 to 15% 0.63	Not suited Silty clay or clay 10-60" Packing (OL, OH, CH, or MH) Clay or silty clay	" 1.00 MH) 1.00
Rock outcrop	15	Not rated		Not rated	Not rated	
287: Badgerpass	55	Limitations Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs) Fragments (3-10") 15-35%	0.50	Limitations Seepage in 20-40" depth 1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00

Table 9.-Sanitary Facilities, Part II-Continued

	Pat.	Sanitary landfill		Sanitary landfill		Daily cover for	
and soil name	map	trench type		area type		landfill	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
287: Waterwheel	40	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Seepage in 20-40" depth : Slopes 8 to 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Slopes 8 to 15%	1.00 1.00 0.63
288; Rock outcrop	35	Not rated		Not rated		Not rated	
Craneflat	7	Limitations Seepage in bottom layer Slopes > 15% Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Texture is lcos, ls, lfs, or vfs	1.00 1.00 0.50
Waterwheel	7	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Slopes > 15%	1.00 1.00 1.00
289: Waterwheel	50	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00 1.00 0.83	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") 25-50%	1.00 1.00 0.53
Craneflat	30	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00 1.00 0.66	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Fragments (>3") > 50% Permeability > 2.0 in/hr	1.00 1.00 0.52
290: Humic Dystroxerepts	4 0	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
Tuolumne	30	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") > 35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00 1.00
Typic Xerorthents	12	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") 25-50%	1.00 1.00 0.05

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Lin	Value		Value	Limitation	Value
290: Ultic Haploxeralfs	15	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15%	1.00
291: Ultic Haploxeralfs	41	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1 Slopes > 15%	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
Typic Dystroxerepts	31	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1 Slopes > 15%	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
292: Humic Dystroxerepts	35	Limitations Seepage in bottom layer Slopes > 15% Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth 1 Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Fragments (>3") > 50%	1.00 1.00 0.99
Typic Haploxerults	30	Limitations Slopes 8 to 15% Clay loam, silty clay, or silty clay loam	0.63	Limitations Slopes 8 to 15%	0.63	Suited Slopes 8 to 15% Silt or clay textures from 10-60" Clay loam, silty clay, or silty clay loam	0.63 0.50 0.50
293: Xeric Dystrocryepts	70	Limitations Seepage in bottom layer Slopes > 15% Sandy textures (cosl, ls,	1.00 0.50	Limitations Seepage in 20-40" depth 1.00 Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Texture is lcos, ls, lfs, or vfs	1.00 1.00 0.50
Vitrandic Dystrocryepts-	18	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1.00 Slopes > 15% 1.00	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
294: Waterwheel	65	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00 1.00
Typic Dystroxerepts	9 2	Limitations Slopes > 15%	1.00	Limitations Slopes > 15% 1.00 Seepage in 20-40" depth 1.00		Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol	Pct.	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for	
	unit	Lim	Value	Limitation	Value	Limitation	Value
295: Craneflat	25	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00 1.00 0.31	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") 25-50%	1.00
Typic Dystroxerepts	25	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
296: Ultic Palexeralfs	70	Limitations Slopes > 15% Clay loam, silty clay, or silty clay loam	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15% Silt or clay textures from 10-60" Clay loam, silty clay, or silty clay loam	1.00
Humic Dystroxerepts	15	Limitations Seepage in bottom layer Slopes > 15% Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00 0.50	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Texture is lcos, ls, lfs, or vfs	1.00
297: Typic Xerorthents	30	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Rock outcrop	25	Not rated		Not rated		Not rated	
Typic Keropsamments	25	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
298; Tuolumne	41	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, 1s, 1fs, or lyfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
Typic Dystroxerepts	31	Limitations Slopes > 15%	1.00	Limitations Slopes > 15% 1.00 Seepage in 20-40" depth 1.00	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct.	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Limitation	Value		Value	Limitation	Value
299; Humic Dystroxerepts	46	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00 1.00
Ultic Haploxeralfs	35	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
300: Typic Dystroxerepts	35	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
Ultic Haploxeralfs	25	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15%	1.00
301: Vitrandic Haploxerolls	06	Limitations Saturation < 6' depth Seepage in bottom layer Flooding = rare	1.00	Limitations Saturation < 5' depth Seepage in 20-40" depth Rare flooding	1.00	Suited Saturation from 18 to 40" depth	98.0
302: Typic Haploxerults	4.5	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15%	1.00
Ultic Haploxeralfs	41	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15%	1.00
303: Rock outcrop	30	Not rated		Not rated		Not rated	
Dystric Xeropsamments	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15%	1.00
Humic Dystroxerepts	50	Limitations Slopes > 15% Sandy textures (cosl, ls, lfs, or lvfs) Fragments (3-10") 15-35%	0.50	Limitations Slopes > 15%	1.00	Not suited Slopes > 15% Fragments (>3") > 50% Texture is lcos, ls, lfs, or vfs	1.00 1.00 0.50
Tuolumne	70	Limitations Slopes > 15% Fragments (3-10") > 35% Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15% Fragments (>3") 25-50% Texture is lcos, ls, lfs, or vfs	1.00 0.80 0.50

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pot.	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Limitatio	Value	Limitation	Value	Limitation	Value
304: Clarkslodge	09	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15%	1.00
Rock outcrop	12	Not rated		Not rated		Not rated	
305: Rock outcrop	20	Not rated		Not rated		Not rated	
Waterwheel	18	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Fragments (<75mm) > 50% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00
Dystric Xeropsamments	15	Limitations Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
306: Typic Cryopsamments	20	Limitations Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs) Slopes 8 to 15%	1.00 0.50 0.16	Limitations Seepage in 20-40" depth Slopes 8 to 15%	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs Slopes 8 to 15%	1.00
Humic Dystrocryepts	30	Limitations Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Slopes > 15%	1.00
307: Rock outcrop	4 0	Not rated		Not rated		Not rated	
Dystric Xeropsamments	20	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15%	1.00
Dystric Xerorthents	50	Limitations Flooding > occasional Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Seepage in 20-40" depth Slopes > 15% Occasional flooding	1.00	Not suited Fragments (<75mm) > 50% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00
309; Rock outcrop	20	Not rated		Not rated		Not rated	
Waterwheel	72	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00 1.00 0.13	Limitations Slopes > 15% 1.00 Seepage in 20-40" depth 1.00	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (<75mm) 25-50%	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Limitation	Value	Limitation	Value	Limitation	Value
309: Typic Dystroxerepts	20	Limitations Slopes > 15% Seepage in bottom laver	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Fragments (<75mm) 25-50%	1.00
310: Rock outcrop	55	, , , , , , , , , , , , , , , , , , ,		4	 :		
Humic Dystroxerepts	25	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") > 35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00
Humic Lithic Haploxerepts	70	Limitations Saturation < 6' depth Ponded (any duration) Slopes > 15%	1.00	Limitations Ponded (any duration) Slopes > 15% Saturation < 5' depth	1.00	Not suited Depth to bedrock < 40" Ponded (any duration) Slopes > 15%	1.00 1.00
311: Rock outcrop	45	Not rated		Not rated		Not rated	
Humic Dystroxerepts	35	Limitations Seepage in bottom layer Slopes > 15% Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Fragments (>3") 25-50%	1.00 1.00 0.55
Humic Lithic Haploxerepts	19	Limitations Saturation < 6' depth Ponded (any duration) Lithic or paralithic bedrock < 72"	1.00	Limitations Ponded (any duration) Saturation < 5' depth Bedrock depth < 40"	1.00	Not suited Depth to bedrock < 40" Ponded (any duration) Saturation < 18" depth	1.00 1.00
313: Nevadafalls	0 4	Limitations Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs) Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth 1.00	1.00	Not suited Permeability > 2.0 in/hr Texture is loos, ls, lfs, or vfs	1.00
Oxyaquic Dystrudepts	0 44	Limitations Flooding > occasional Saturation < 6' depth Seepage in bottom layer	1.00	Limitations Saturation < 5' depth Seepage in 20-40" depth Occasional flooding	1.00	Suited Saturation from 18 to 40" depth Permeability > 2.0 in/hr	0.91

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Lim	Value	uc	Value	Limitation	Value
314: Badgerpass	4 45	Limitations Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Texture is s, fs, cos, sg Permeability > 2.0 in/hr Slopes > 15%	1.00
Dystric Xeropsamments		Limitations Seepage in bottom layer Slopes > 15% Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Permeability > 2.0 in/hr Slopes > 15% Texture is lcos, ls, lfs, or vfs	1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
315: Nevadafalls	09	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Fragments (>3") 25-50% Permeability > 2.0 in/hr	1.00
Dystric Xeropsamments	 4 0	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
316: Dystric Xerorthents	4 0	Limitations Slopes > 15% Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15%	1.00
Rock outcrop	40	Not rated		Not rated		Not rated	
Rubble land	70	Not rated		Not rated		Not rated	
318; Typic Dystroxerepts	4 0	Limitations Seepage in bottom layer	1.00	Limitations Seepage in 20-40" depth	1.00	Suited Permeability > 2.0 in/hr	0.52
Humic Dystroxerepts	36	Limitations Seepage in bottom layer	1.00	Limitations Seepage in 20-40" depth	1.00	Suited Permeability > 2.0 in/hr	0.52
319; Humic Dystroxerepts	30	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, ls,	1.00 0.50	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of map	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Limitation	Value		Value	Limitation	Value
319; Typic Haploxerults	30	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00 1.00
Inceptic Haploxeralfs	25	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") > 35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Fragments (>3") > 50% Permeability > 2.0 in/hr	1.00 1.00 0.52
320: Half Dome	0 4	Limitations Slopes > 15% Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Fragments (<75mm) 25-50% Permeability > 2.0 in/hr	1.00 0.98 0.52
Humic Dystroxerepts	70	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") 25-50%	1.00 0.52 0.09
Rock outcrop	20	Not rated		Not rated		Not rated	
321: Dystric Xeropsamments	20	Limitations Seepage in bottom layer Flooding = rare Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Rare flooding	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Dystric Xerorthents	4	Limitations Flooding > occasional Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Seepage in 20-40" depth Slopes > 15% Occasional flooding	1.00	Not suited Fragments (<75mm) > 50% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00 1.00
322: Typic Xerorthents	0 6	Limitations Slopes > 15% Sandy textures (cos, s, fs, lcos, or vfs) Seepage in bottom layer	1.00	Limitations Slopes > 15% Seepage in 20-40" depth	1.00	Not suited Slopes > 15% Texture is s, fs, cos, sg Permeability > 2.0 in/hr	1.00 1.00
323; Ultic Haploxeralfs	55	Limitations Slopes > 15% Fragments (3-10") 15-35%	0.01	Limitations Seepage in 20-40" depth Slopes > 15%	1.00	Not suited Slopes > 15% Fragments (<75mm) 25-50%	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct.	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Limitation	Value		Value	Limitation	Value
323: Humic Dystroxerepts	4 5	Limitations Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Seepage in 20-40" depth : Slopes 8 to 15%	1.00	Suited Permeability > 2.0 in/hr Slopes 8 to 15%	0.52
324: Humic Haploxerepts	4 0	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	1.00 1.00 0.38	Limitations Slopes > 15% Seepage in 20-40" depth Very rare flooding	1.00	Not suited Slopes > 15% Fragments (<75mm) 25-50% Permeability > 2.0 in/hr	1.00 0.85 0.52
Rock outcrop	35	Not rated		Not rated		Not rated	
Ultic Haploxeralfs	72	Limitations Slopes > 15% Fragments (3-10") > 35%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15% Fragments (>3") 25-50% Fragments (<75mm) 25-50%	1.00 0.81 0.01
325: Urban land	80	Not rated		Not rated		Not rated	
328: Clarkslodge	30	Limitations Slopes > 15% Fragments (3-10") > 35%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15% Fragments (>3") 25-50%	1.00
Ultic Palexeralfs	15	Limitations Slopes > 15%	1.00	Limitations Slopes > 15%	1.00	Not suited Slopes > 15%	1.00
401: Sentinel	06	Limitations Seepage in bottom layer Flooding = rare	1.00	Limitations Seepage in 20-40" depth Rare flooding	1.00	Suited Permeability > 2.0 in/hr	0.52
412: Water	8	Not rated		Not rated		Not rated	
Riverwash	15	Not rated		Not rated		Not rated	
501: Happyisles, sandy loam		Limitations Seepage in bottom layer Flooding = rare	1.00	Limitations Seepage in 20-40" depth : Rare flooding	1.00	Not suited Permeability > 2.0 in/hr	1.00
Happyisles, loamy fine sand, overwash	50	Limitations Flooding > occasional Seepage in bottom layer Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Occasional flooding	0.60	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol and soil name	Pct. of	Sanitary landfill trench type		Sanitary landfill area type		Daily cover for landfill	
	unit	Lin	Value	uc	Value	Limitation	Value
502; Happyisles	ω ω	Limitations Saturation < 6' depth Seepage in bottom layer Flooding = rare	1.00	Limitations Saturation < 5' depth Seepage in 20-40" depth Rare flooding	1.00 1.00 0.40	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
504: Mollic Xerofluvents	8 22	Limitations Flooding > occasional Seepage in bottom layer	1.00	Limitations Seepage in 20-40" depth Frequent flooding	1.00	Not suited Permeability $> 2.0~{ m in/hr}$	1.00
510t: Rubble land	4 0	Not rated		Not rated		Not rated	
Li thnip	70	Limitations Lithic or paralithic bedrock < 72" Slopes > 15% Seepage in bottom layer	1.00	Limitations Bedrock depth < 40" Slopes > 15%	1.00	Not suited Fragments (<75mm) > 50% Depth to bedrock < 40" Slopes > 15%	1.00 1.00 1.00
Rock outcrop	15	Not rated		Not rated		Not rated	
551; Happyisles	20	Limitations Seepage in bottom layer Flooding = rare Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth 1.00 Rare flooding 0.40	1.00	Not suited Permeability > 2.0 in/hr Texture is lcos, ls, lfs, or vfs	1.00
Half Dome	4 5	Limitations Seepage in bottom layer Fragments (3-10") > 35% Sandy textures (cosl, ls, lfs, or lvfs)	1.00	Limitations Seepage in 20-40" depth Slopes 8 to 15%	1.00	Not suited Permeability > 2.0 in/hr Fragments (>3") 25-50% Texture is lcos, ls, lfs, or vfs	1.00 0.98 0.50
552: Mollic Xerofluvents	80	Limitations Flooding > occasional Seepage in bottom layer Slopes 8 to 15%	1.00	Limitations Seepage in 20-40" depth Frequent flooding Slopes 8 to 15%	1.00 0.80 0.16	Not suited Permeability > 2.0 in/hr Slopes 8 to 15%	1.00
590: Terric Haplosaprists	80	Limitations Flooding > occasional Saturation < 6' depth Seepage in bottom layer	1.00	Limitations Saturation < 5' depth Seepage in 20-40" depth Occasional flooding	1.00 0.60	Not suited Organic matter (PT) Permeability > 2.0 in/hr Saturation from 18 to 40" depth	1.00 0.16 0.11
	_	_					

Table 9.-Sanitary Facilities, Part II-Continued

	Value	1.00	1.00	1.00 1.00 0.98		1.00	1.00	1.00		1.00
Daily cover for landfill	Limi	Not suited Slopes > 15% Fragments (>3") > 50% Permeability > 2.0 in/hr	Not suited Slopes > 15% Fragments (>3") > 50% Permeability > 2.0 in/hr	Not suited Permeability > 2.0 in/hr Slopes > 15% Fragments (>3") 25-50%	Not rated	Not suited Slopes > 15% Fragments (>3") > 50% Permeability > 2.0 in/hr	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%	Not suited Slopes > 15% Fragments (>3") > 50% Permeability > 2.0 in/hr	Not rated	Not suited Slopes > 15% Permeability > 2.0 in/hr Fragments (>3") > 50%
	Value	1.00	1.00	1.00		1.00	1.00	1.00		1.00
Sanitary landfill area type	Limitation	Limitations Slopes > 15% Seepage in 20-40" depth	Limitations Slopes > 15% Seepage in 20-40" depth	Limitations Seepage in 20-40" depth Slopes > 15%	Not rated	Limitations Slopes > 15% Seepage in 20-40" depth	Limitations Slopes > 15% Seepage in 20-40" depth	Limitations Slopes > 15% Seepage in 20-40" depth	Not rated	Limitations Slopes > 15% Seepage in 20-40" depth
	Value	1.00	1.00	1.00		1.00	1.00	1.00 1.00 0.54		1.00
Sanitary landfill trench type	Limitation	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	Limitations Seepage in bottom layer Fragments (3-10") > 35% Slopes > 15%	Not rated	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") > 35%	Limitations Slopes > 15% Seepage in bottom layer Fragments (3-10") 15-35%	Not rated	Limitations Slopes > 15% Seepage in bottom layer Sandy textures (cosl, ls,
Pct. of	unit	20	45	8 5	65	30	50	44 3	65	30
Map symbol and soil name		601: Half Dome, very bouldery	Half Dome, cobbly	602: Half Dome	610: Rubble land	Half Dome	620: Half Dome, extremely stony sandy loam, warm-	Half Dome, very cobbly sandy loam, warm	630: Rubble land	Half Dome

Table 9.-Sanitary Facilities, Part II-Continued

Map symbol	Pct.	Sanitary landfill				Daily cover for	
מזוק מסדד וומזווע	unit	Limitation	Value	Limitation	Value	Limitation	Value
701: Vitrandic Haploxerolls	06	Limitations Seepage in bottom layer Slopes > 15%	1.00	Limitations Seepage in 20-40" depth 1.00 Slopes > 15% 1.00	1.00	Not suited Slopes > 15% Permeability > 2.0 in/hr	1.00
702: Vitrandic Dystroxerepts-	06	Limitations Seepage in bottom layer Slopes > 15% Fragments (3-10") 15-35%	1.00	Limitations Seepage in 20-40" depth 1.00 Slopes > 15%	1.00	Not suited Fragments (>3") > 50% Slopes > 15% Permeability > 2.0 in/hr	1.00 1.00 0.52
900: Rock outcrop	95	Not rated		Not rated		Not rated	
рам: Dam	100	Not rated		Not rated		Not rated	
W: Water 100	100	Not rated		Not rated		Not rated	

The interpretation for sanitary landfill (area) evaluates the following soil properties at variable depths in the soil: flooding ponding, wetness, slope, depth to bedrock, depth to cemented pans, and permeability that is too high, allowing seepage in some size, sodium content (SAR), soil pH, clayey or sandy textures, and permeability that is too high, allowing seepage in some climates. The interpretation for sanitary landfill (area) evaluates the following soil properties at variable depths in the soil: floodin flooding, ponding, wetness, slope, depth to hard or soft bedrock, depth to thick or thin cemented pans, fragments 3 to 10 inches in The interpretation for sanitary landfill (trench) evaluates the following soil properties at variable depths in the soil: climates.

The interpretation for daily cover for landfill evaluates the following soil properties at variable depths in the soil: ponding, wetness, slope, depth to bedrock, depth to cemented pans, fragments greater than or less than 3 inches in size, Unified class for peat (PT), Unified classes for packing (OL, OH, CH, MH), sandy or clayey textures, soil pH, carbonates, sodium content (SAR), salinity (EC), soil climate, kaolinitic mineralogy, and permeability that is too high, allowing seepage.

Table 10.-Water Management

information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. The rating is based on the limitation with the highest value. Only three highest value limitations are lisited. There may be more limitations. Fine-earth fractions and coarse fragments are reported on a weight basis. Brief summaries of rating criteria and abbreviations are listed on the last page of this report) (The

Map symbol and soil name	Pct. of	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
101: Oxyaquic Xerofluvents	35	Limitations Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage)	1.00
Riverwash	35	Not rated		Not rated	
Fluvaquents	15	Limitations Saturation < 2' depth Slight seepage problem	1.00	Limitations Permeability > 2"/hr (seepage)	1.00
101t: Lithnip	40	Limitations Thin layer	1.00	Limitations Slopes > 7% Depth to bedrock < 20"	1.00
Rock outcrop	25	Not rated		Not rated	
Fishsnooze	70	Limitations Fragments (>3") > 35% Thin layer	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage) Depth to bedrock from 20-60"	1.00
102: Oxyaquic Xerofluvents	4.5	Limitations Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Riverwash	40	Not rated		Not rated	
102t: Lithnip	40	Limitations Thin layer	1.00	Limitations Depth to bedrock < 20" Slopes > 7%	1.00
Rock outcrop	25	Not rated		Not rated	
Fishsnooze	70	Limitations Fragments (>3") > 35% Thin layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7% Depth to bedrock from 20-60"	1.00

Table 10.-Water Management-Continued

Map symbol and soil name	Pct. of	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
104: Aquandic Humaquepts	85	Limitations Saturation < 2' depth Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage)	1.00
111t: Whittell	45	Limitations Fragments (>3") > 35% Seepage problem Thin layer	1.00 1.00 0.79	Limitations Slopes > 7% Permeability > 2"/hr (seepage) Depth to bedrock from 20-60"	1.00
Jobsis	25	Limitations Thin layer Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage) Depth to bedrock < 20"	1.00
Rock outcrop	15	Not rated		Not rated	
151: Blcapitan	80	No limitations		Limitations Permeability > 2"/hr (seepage)	1.00
152: Vitrandic Haploxerolls	80	Limitations Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage)	1.00
201: Leidig	80	No limitations		Limitations Permeability > 2"/hr (seepage)	1.00
210: Rubble land	30	Not rated		Not rated	
Typic Cryorthents	25	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	20	Not rated		Not rated	
Xeric Dystrocryepts	70	Limitations Fragments (>3") 15-35%	0.03	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
211: Xeric Dystrocryepts	35	Limitations Fragments (>3") > 35% Thin layer	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00

Table 10.-Water Management-Continued

	Pat.	Embankments, dikes, and levees		Pond reservoir areas	
and soil name	map unit	Limitation Value	er.	Limitation	Value
211: Canisrocks	30	Limitations Seepage problem Fragments (>3") > 35% 1.00		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Oxyaquic Dystrocryepts	15	Limitations Saturation < 2' depth 1.00	_=	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
213: Canisrocks	20	Limitations Fragments (>3") > 35% 1.00 Seepage problem 1.00		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Glacierpoint	15	Limitations Fragments (>3") > 35% 1.00 Seepage problem 1.00	<u> </u>	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Vitrandic Dystrocryepts	15	Limitations Possible seepage problem 0.50		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
214: Marmotland	25	Limitations Thin layer 0.82	급	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Oxyaquic Dystrocryepts	15	Limitations Saturation < 2' depth 1.00 Seepage problem 1.00		Limitations Permeability > 2"/hr (seepage)	1.00
Xeric Dystrocryepts	15	Limitations Possible seepage problem 0.50	_=	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
215: Typic Cryorthents	0 4	Limitations Seepage problem 1.00	<u>:</u>	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	20	Not rated	Not	rated	
Rubble land	20	Not rated	Not	rated	
219: Rock outcrop	4 0	Not rated	Not r	rated	
Rubble land	25	Not rated	Not	rated	

Table 10.-Water Management-Continued

Map symbol and soil name	Pct. of	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
219: Canisrocks	15	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
221: Typic Cryorthents	35	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Xeric Dystrocryepts	20	Limitations Very high piping potential	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Oxyaquic Dystrocryepts	15	Limitations Saturation < 2' depth	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
222: Canisrocks	30	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rubble land	30	Not rated		Not rated	
Rock outcrop	20	Not rated		Not rated	
Crazymule	15	Limitations Fragments (>3") 15-35%	0.95	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
223: Rock outcrop	35	Not rated		Not rated	
Rubble land	35	Not rated		Not rated	
Canisrocks	70	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
224: Rock outcrop	40	Not rated		Not rated	
Crazymule	70	Limitations Fragments (>3") 15-35%	86.0	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00

Table 10.-Water Management-Continued

Map symbol	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
and soil name	map		-		1
	unit	Limitation	Value	Limitation	Value
224; Vitrandic Cryorthents	15	Limitations Seepage problem Thin layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7% Depth to bedrock from 20-60"	1.00
225; Canisrocks	15	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	15	Not rated		Not rated	
Rubble land	15	Not rated		Not rated	
Vitrandic Dystrocryepts	15	Limitations Fragments (>3") > 35% Possible seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
227: Canisrocks	4 5	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Crazymule	4 0	Limitations Fragments (>3") > 35% Thin layer	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
228: Xeric Dystrocryepts	3 5	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Vitrandic Eutrocryepts	25	Limitations Saturation < 2' depth Thin layer	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
229: Marmotland	0 4	No limitations		Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Oxyaquic Dystrocryepts	0 4	Limitations Saturation < 2' depth Possible seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00

Table 10.-Water Management-Continued

Map symbol	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
and soil name	map	T.imit	ou Lev	T.imit	or Ley
	1		3 4 5	חדווור כמכדכוו	3
231: Canisrocks	4 0	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Typic Cryaquents	21	Limitations Saturation < 2' depth Fragments (>3") > 35% Possible seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
232: Canisrocks	2 5	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Glacierpoint	21	Limitations Fragments (>3") 15-35% Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
234: Rock outcrop	35	Not rated		Not rated	
Rubble land	35	Not rated		Not rated	
235: Canisrocks	35	Limitations Possible seepage problem	0.50	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	30	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
237; Canisrocks	25	Limitations Fragments (>3") > 35% Thin layer Possible seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage) Depth to bedrock from 20-60"	1.00
Glacierpoint	15	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Vitrandic Cryorthents	15	Limitations Thin layer Slight seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Depth to bedrock < 20" Slopes > 7%	1.00

Table 10.-Water Management-Continued

Map symbol and soil name	Pat.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
238; Oxyaquic Cryorthents	25	Limitations Saturation < 2' depth Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage)	1.00
Canisrocks	15	Limitations Seepage problem Fragments (>3") > 35% 1.	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
239; Crazymule	45	Limitations Thin layer	66.0	Limitations Permeability > 2"/hr (seepage) Slopes > 7% Depth to bedrock from 20-60"	1.00 1.00 0.99
Canisrocks	34	Limitations Seepage problem Fragments (>3") > 35% 1.	1.00	Limitations Slopes > 7% Permeability > 2 "/hr (seepage)	1.00
241: Canisrocks	75	Limitations Seepage problem Tragments (>3") 15-35% 0.	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
242: Rock outcrop	30	Not rated		Not rated	
Canisrocks	72	Limitations Fragments (>3") > 35% 1. Seepage problem 1.	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Xeric Dystrocryepts	16	Limitations Possible seepage problem Fragments (>3") 15-35% 0.	0.50	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
244: Typic Cryorthents	4 5	Limitations Seepage problem Tragments (>3") > 35% 1.	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rubble land	25	Not rated		Not rated	
Rock outcrop	16	Not rated		Not rated	
245; Rock outcrop	30	Not rated		Not rated	
Canisrocks	2 2	Limitations Seepage problem 1. Fragments (>3") > 35% 1.	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00

Table 10.-Water Management-Continued

Map symbol and soil name	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
245: Xeric Dystrocryepts	20	Limitations Very high piping potential	1.00	Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
246: Rock outcrop, domes	06	Not rated		Not rated	
247: Canisrocks	20	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Xeric Dystrocryepts	20	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
248: Canisrocks	35	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	30	Not rated		Not rated	
Glacierpoint	15	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
249: Rock outcrop	45	Not rated		Not rated	
Canisrocks	30	Limitations Possible seepage problem	0.50	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
250: Canisrocks	47	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Xeric Dystrocryepts	35	Limitations Fragments (>3") > 35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
251: Glacierpoint	30	Limitations Fragments (>3") > 35% Possible seepage problem	1.00	Limitations Slopes > 7% Permeability > $2"/hr$ (seepage)	1.00

Table 10.-Water Management-Continued

Map symbol	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
251: Typic Cryorthents	70	Limitations Fragments (>3") 15-35%	0.91	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
252: Rock outcrop	20	Not rated		Not rated	
Canisrocks	12	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Xeric Dystrocryepts	15	Limitations Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
253: Canisrocks	25	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Glacierpoint	18	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Humic Dystrocryepts	15	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
256: Craneflat	25	Limitations Fragments (>3") 15-35% Possible seepage problem	0.77	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	25	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
Waterwheel	20	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
257: Badgerpass	N N	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Oxyaquic Dystroxerepts	35	Limitations Saturation < 2' depth High piping potential	1.00	Limitations Slopes > 7% 1.00 Permeability .6-2"/hr (some seepage) 0.53	1.00

Table 10.-Water Management-Continued

Codumin	Pct.	no no not be not not not not not not not not not not		\$	
me	map				
	unit	Limitation	Value	Limitation	Value
258: Typic Dystroxerepts	72	No limitations		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Badgerpass	70	Limitations Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Dystric Xerorthents	70	Limitations Fragments (>3") 15-35% Possible seepage problem	0.54	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
260: Rock outcrop	4 5	Not rated		Not rated	
Craneflat	72	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Dystric Xerorthents	50	No limitations		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
261: Dystric Xeropsamments	25	Limitations Possible seepage problem	0.50	Limitations Permeability > 2 "/hr (seepage) Slopes 2 to 7%	1.00
Typic Dystroxerepts	25	Limitations Fragments (>3") 15-35%	0.42	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Badgerpass	15	Limitations Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Rock outcrop	15	Not rated		Not rated	
262: Humic Dystroxerepts	30	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Dystric Xerorthents	72	Limitations Possible seepage problem Fragments (>3") 15-35%	0.50	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	20	Not rated		Not rated	

Table 10.-Water Management-Continued

Map symbol and soil name	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
264: Crazymule	35	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Canisrocks	28	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
267: Rock outcrop	4 0	Not rated		Not rated	
Typic Cryorthents	30	Limitations Fragments (>3") > 35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Xeric Dystrocryepts	15	Limitations Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
268: Rock outcrop	40	Not rated		Not rated	
Canisrocks	72	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Glacierpoint	50	Limitations Fragments (>3") > 35% Possible seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
269: Canisrocks	20	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	20	Not rated		Not rated	
Glacierpoint	15	Limitations Fragments (>3") > 35% Possible seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
270; Rock outcrop	35	Not rated		Not rated	
Typic Cryorthents	2 2	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00

Table 10.-Water Management-Continued

	+ 50				
Map symbol and soil name	of.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
270: Vitrandic Dsytrocryepts	25	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
271: Rock outcrop	09	Not rated		Not rated	
Lithic Xerorthents	15	Limitations Thin layer Seepage problem	1.00	Limitations Depth to bedrock < 20" Slopes > 7%	1.00
Waterwheel	15	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
273: Nevadafalls	55	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Waterwheel	30	Limitations Fragments (>3") > 35% Possible seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
274: Rock outcrop, domes	8 22	Not rated		Not rated	
275: Oxyaquic Dystroxerepts	25	Limitations Saturation < 2' depth Fragments (>3") 15-35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Dystric Xerorthents	25	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Vitrandic Xerorthents	25	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage)	1.00
Rubble land	15	Not rated		Not rated	
276; Happyisles	35	Limitations Slight seepage problem	0.10	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Typic Dystroxerepts	35	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00

Table 10.-Water Management-Continued

Map symbol and soil name	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
277: Tuolumne	4 5	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Humic Dystroxerepts	35	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
278: Rock outcrop	25	Not rated		Not rated	
Tuolumne	72	Limitations Fragments (>3") 15-35%	86.0	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Humic Dystroxerepts	50	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rubble land	15	Not rated		Not rated	
279: Canisrocks	4 0	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Xeric Dystrocryepts	12	Limitations Seepage problem Fragments (>3") > 35% Thin layer	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
280: Typic Dystroxerepts	35	No limitations		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Humic Dystroxerepts	30	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	25	Not rated		Not rated	
282: Clarkslodge	50	Limitations Fragments (>3") 15-35% Shrink-swell (LEP 3-6)	0.91	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00

Table 10.-Water Management-Continued

Map symbol e and soil name m	Pct. of	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
282: Craneflat	25	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Nevadafalls	2 5	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
283: Waterwheel	35	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Nevadafalls	30	Limitations Possible seepage problem	0.50	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	21	Not rated		Not rated	
285: Waterwheel	30	Not rated		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Humic Dystroxerepts	16	Limitations Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
286: Nevadafalls	26	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Typic Dystroxerepts	2 2	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Ultic Palexeralfs	70	Limitations Shrink-swell (LEP >6) MH or CH Unified and PI <40%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Rock outcrop	15	Not rated		Not rated	
287: Badgerpass	55	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00

Table 10.-Water Management-Continued

Map symbol	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
287; Waterwheel	4 0	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
288: Rock outcrop	35	Not rated		Not rated	
Craneflat	70	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Waterwheel	70	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
289; Waterwheel	20	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Craneflat	30	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
290: Humic Dystroxerepts	4 0	Limitations Fragments (>3") 15-35%	0.25	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Tuolumne	30	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Typic Xerorthents	15	Limitations Fragments (>3") > 35% Very high piping potential Slight seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Ultic Haploxeralfs	12	Limitations Fragments (>3") 15-35%	0.39	Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
291; Ultic Haploxeralfs	4 1	No limitations		Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00

Table 10.-Water Management-Continued

Map symbol and soil name	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
291: Typic Dystroxerepts	31	No limitations		Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
292: Humic Dystroxerepts	35	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Typic Haploxerults	30	Limitations Shrink-swell (LEP 3-6) Fragments (>3") 15-35%	0.78	Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
293: Xeric Dystrocryepts	70	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Vitrandic Dystrocryepts	18	No limitations		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
294: Waterwheel	65	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Typic Dystroxerepts	35	Limitations Fragments (>3") 15-35%	0.03	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
295: Craneflat	25	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Typic Dystroxerepts	25	No limitations		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
296: Ultic Palxeralfs	20	Limitations Shrink-swell (LEP >6)	1.00	Limitations Slopes > 7%	1.00
Humic Dystroxerepts	15	Limitations Slight seepage problem	0.10	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00

Table 10.-Water Management-Continued

Map symbol and soil name	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
297: Typic Xerorthents	30	Limitations Possible seepage problem Fragments (>3") 15-35%	0.50	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	25	Not rated		Not rated	
Typic Xeropsamments	25	Limitations Slight seepage problem	0.10	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
298; Tuolumne	4.1	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Typic Dystroxerepts	31	Limitations Fragments (>3") 15-35%	0.03	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
299; Humic Dystroxerepts	4 6	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Ultic Haploxeralfs	35	No limitations		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
300; Typic Dystroxerepts	35	No limitations		Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Ultic Haploxeralfs	72	Limitations Shrink-swell (LEP 3-6)	0.22	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
301: Vitrandic Haploxerolls	06	Limitations Very high piping potential Saturation < 2' depth	0.00	Limitations Permeability > 2 "/hr (seepage)	1.00
302: Typic Haploxerults	4 5	Limitations High piping potential Shrink-swell (LEP 3-6)	0.39	Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00

Table 10.-Water Management-Continued

Map symbol and soil name r	Pct. of	Embankments, dikes, and levees		Pond reservoir areas	
ı	unit	Limitation	Value	Limitation	Value
302: Ultic Haploxeralfs	14	Limitations Shrink-swell (LEP 3-6)	0.22	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
303: Rock outcrop	30	Not rated		Not rated	
Dystric Xeropsamments	20	No limitations		Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
Humic Dystroxerepts	20	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
Tuolumne	20	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
304: Clarkslodge	09	No limitations		Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
Rock outcrop	15	Not rated		Not rated	
305: Rock outcrop	50	Not rated		Not rated	
Waterwheel	18	Limitations Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Dystric Xeropsamments	15	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
306: Typic Cryopsamments	20	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Humic Dystrocryepts	30	No limitations		Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00

Table 10.-Water Management-Continued

Map symbol and soil name	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
307; Rock outcrop	4 0	Not rated		Not rated	
Dystric Xeropsamments	70	No limitations		Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
Dystric Xerorthents	70	Limitations Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
309: Rock outcrop	20	Not rated		Not rated	
Waterwheel	72	Limitations Fragments (>3") 15-35%	90.0	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Typic Dystroxerepts	70	Limitations Fragments (>3") > 35%	66.0	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
310: Rock outcrop	52	Not rated		Not rated	
Humic Dystroxerepts	72	Limitations Fragments (>3") > 35% Possible seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Humic Lithic Haploxerepts	70	Limitations Ponded (any duration) Thin layer Saturation < 2' depth	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage) Depth to bedrock < 20"	1.00
311: Rock outcrop	45	Not rated		Not rated	
Humic Dystroxerepts	35	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Humic Lithic Haploxerepts	п 6	Limitations Ponded (any duration) Thin layer Saturation < 2' depth	1.00	Limitations Permeability > 2"/hr (seepage) Depth to bedrock < 20" Slopes > 7%	1.00
313; Nevadafalls	4 0	Limitations Seepage problem Fragments (>3") 15-35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00

Table 10.-Water Management-Continued

Map symbol	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
313; Oxyaquic Dystrudepts	4 0	Limitations Saturation < 2' depth	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
314: Badgerpass	45	Limitations Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Dystric Xeropsamments	35	Limitations Slight seepage problem	0.10	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
Rock outcrop	15	Not rated		Not rated	
315: Nevadafalls	0 9	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Dystric Xeropsamments	4 0	Limitations Possible seepage problem	0.50	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
316: Dystric Xerorthents	0 4	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	40	Not rated		Not rated	
Rubble land	20	Not rated		Not rated	
318: Typic Dystroxerepts	0 4	No limitations		Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Humic Dystroxerepts	36	No limitations		Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
319: Humic Dystroxerepts	30	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00

Table 10.-Water Management-Continued

Map symbol and soil name	Pct. of	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
319: Typic Haploxerults	30	Limitations Slight seepage problem	0.10	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Inceptic Haploxeralfs	25	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
320: Half Dome	40	No limitations		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Humic Dystroxerepts	70	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	20	Not rated		Not rated	
321: Dystric Xeropsamments	50	Limitations Slight seepage problem Fragments (>3") 15-35%	0.10	Limitations Permeability > 2 "/hr (seepage)	1.00
Dystric Xerorthents	40	Limitations Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
322: Typic Xerorthents	0 6	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
323: Ultic Haploxeralfs	55	Limitations Shrink-swell (LEP 3-6)	0.78	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Humic Dystroxerepts	45	No limitations		Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
324: Humic Haploxerepts	0 4	Limitations Shrink-swell (LEP 3-6) Fragments (>3") 15-35%	0.78	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Rock outcrop	35	Not rated		Not rated	

Table 10.-Water Management-Continued

Map symbol and soil name	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
324: Ultic Haploxeralfs	25	Limitations Fragments (>3") > 35% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
325: Urban land	80	Not rated		Not rated	
328: Clarkslodge	30	Limitations Fragments (>3") > 35% Shrink-swell (LEP 3-6)	1.00	Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
Ultic Palexeralfs	15	Limitations High piping potential Shrink-swell (LEP 3-6)	0.93	Limitations Slopes > 7% Permeability .6-2"/hr (some seepage)	1.00
401: Sentinel	06	No limitations		Limitations Permeability > 2"/hr (seepage)	1.00
412: Water	8	Not rated		Not rated	
Riverwash	15	Not rated		Not rated	
501: Happyisles, sandy loam	6 5	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Happyisles, loamy fine sand, overwash	70	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
502: Happyisles	88	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage)	1.00
504: Mollic Xerofluvents	8 2	Limitations Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00

Table 10.-Water Management-Continued

Map symbol	Pct.	Embankments, dikes, and levees		Pond reservoir areas	
	unit	Limitation	Value	Limitation	Value
510t: Rubble land	4 0	Not rated		Not rated	
Lithnip	50	Limitations Thin layer	1.00	Limitations Depth to bedrock < 20" Slopes > 7%	1.00
Rock outcrop	15	Not rated		Not rated	
Happyisles	20	Limitations Possible seepage problem	0.50	Limitations Permeability > 2"/hr (seepage) Slopes 2 to 7%	1.00
Half Dome	45	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
552: Mollic Xerofluvents	8 51	Limitations Seepage problem	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
590: Terric Haplosaprists	8 51	Limitations Organic matter (PT, OL, OH) Saturation between 2-4'	1.00	Limitations Permeability > 2"/hr (seepage)	1.00
601: Half Dome, very bouldery	20	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Half Dome, cobbly	45	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
602; Half Dome	8 22	Limitations Seepage problem Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
610: Rubble land	65	Not rated		Not rated	
Half Dome	30	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00

Table 10.-Water Management-Continued

	Pct.			-	
Map symbol and soil name	map	Embankments, dikes, and levees		Fond reservoir areas	
	unit	Limitation	Value	Limitation	Value
620: Half Dome, extremely stony sandy loam, warm	20	Limitations Fragments (>3") > 35% Possible seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
Half Dome, very cobbly sandy loam, warm	43	Limitations Fragments (>3") > 35%	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
630: Rubble land	65	Not rated		Not rated	
Half Dome	30	Limitations Fragments (>3") > 35% Seepage problem	1.00	Limitations Slopes > 7% Permeability > 2"/hr (seepage)	1.00
701: Vitrandic Haploxerolls	06	No limitations		Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
702: Vitrandic Dystroxerepts	06	Limitations Fragments (>3") > 35%	1.00	Limitations Permeability > 2"/hr (seepage) Slopes > 7%	1.00
900; Rock outcrop	95	Not rated		Not rated	
рам:	100	Not rated		Not rated	
W: Water	100	Not rated		Not rated	

The interpretation for pond reservoir areas evaluates the following soil properties at variable depths in the soil: slope, depth to hard or soft bedrock, depth to cemented pans, marly textures, gypsum content, and permeability that is too high, allowing seepage.

The interpretation for embankments evaluates the following soil properties at variable depths in the soil: ponding; wetness; depth to a restrictive layer; fragments greater than 3 inches in diameter; salinity (EC); Unified classes for high organic content (PT, OL, OH); Unified classes that are hard to pack (MH, CH); permeability that is too high, allowing seepage; and piping as determined by Atterberg limits of liquid limit (LL) and plasticity index (PI); sodium content (SAR); and gypsum content.

Table 11.—Engineering Index Properties (Absence of an entry indicates that data were not estimated)

Map symbol	Depth	USDA texture	Classification	ation	Fragments	lents	Per	Percentage passis	passing	19	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pct	Pct					Pct	
101: Oxvaquic Xerofluvents	0-0	MGR-SP.	Ŀd	80 	!		!					!
	0-2		SM	A-2-4,			- 1	77-93	- 1	30-42	0-39	NP-3
		Ω į		A-4			,		-	- 1		,
	2-4	LFS, LCOS, S,	SC-SM, SM	A-1-b	0	0	86-97	79-94	44-58	15-24	0-32	NP - 4
	4-10	FSL, I	SC-SM, SM	A-2-4	0	0	85-97	77-93	58-76	18-27	0-28	NP-4
		GR-S, COS, S, LS										
	10-17	SR- GR-S FSL	SC-SM, SW-SM,	A-1-b	0	0	86-97	79-94	36-49	9-17	0-25	NP-4
	7	р Б	NS GO WO GO	, ,			0 0	10	100	0	c	Z CE
	7	145		F - 7 - G -	>	>)	H 0		0 1 0	1 0	F . 45
	28-39	GR-S	O1	A-2-4	0	0	85-97	78-94	72-93	20-29	0-22	NP-4
	39-43		SP-SM, SC-SM,	A-2-4	0	0	5-	78-94	80-18	10-18	0-20	NP-4
	43-57	SR- GR-S FSL	SC-SM, SW-SM,	A-1-b	0	0	86-97	79-94	36-49	9-17	0-20	NP-4
	57-60	SR- GR-S FSL	SM, SC-SM	A-2-4,	0	0	85-97	78-94	65-84	29-41	0-39	NP-3
				A-4								
Riverwash.												
Fluvaquents	0-1	SR- COS SL	SM	A-2-4,	9-0	8-0	91-100	91-100	68-79	35-42	0-39	NP-3
	1-4	SR- COS SL	SM	A-4 A-4	9-0	8-0	91-100	91-100	78-90	39-47	0-32	NP-3
	4 - 6		SM	A-2-4,	9-0	8-0	91-100	91-100	85-96	30-36	0-27	NP-2
	6-10	88- COS ST.	W	A-4 A-4	9-0	α-	91-100	91-100	α	0	0-21	ND-2
	10-60	000	W.S.	A-4	0 0	0 0	91-100	91-100	78-89	39-46	0 1 1 0	NP-2
)) 		i	· •)))) 	1		1	ì	1
101t: Lithnip	0-1	GRX-SL	GP-GM	A-1	8-0	5-15	40-55	15-25	10-20	5-15	20-30	NP-5
	1-5	GRV-SL, GRX-SL	GW-GM	A-1	0-5	5-15	25-45	15-35	5-25	0-20	20-30	NP-5
	5-15	BR			!	!	1	1	!	:	:	!
Rock outcrop.												

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Per	Percentage passi sieve number	passing	19	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	u I				Pat	Pct					Pct	
101t:		;		, 					:	- 1		
Fishsnooze	0-1	GRV-SI	Mg dg	A-1	0-10	0-10	45-60	35-50	25-40	15-30	20-30	NP-5
	۱ ا		M5 - 45	T-&	CT-0	CT - O	0 4 0		C7-0T	CT - C		0 1 1
	9-13	GRX-COSL, GRV-	GP-GM	A-1	0-15	10-30	35-55	15-35	10-25	5-15	20-30	NP-5
		COSL, GRX-SL		_	_		_	_				
	13-35	CBX-COSL, GRX-	GP-GM	A-1	0-15	20-60	25-65	10-45	10-25	5-15	20-30	NP-5
	L .	SI										
	35-45	자 보			!	:	!	!	!	!	!	!!!
102:												
Oxyaquic Xerofluvents	0-0	ЬM	PT	A-8	:	-	1	-	-	-		1
	0-2	FSL, LFS, GR-S,	PT	A-2-4,	0	0	90-100	78-100	64-91	22-37	0-41	NP-6
		COS, S		A-4								
	2-4	S, LCOS, COS,	SC-SM, SM	A-2-4,	0	0	91-100	80-100	40-59	12-24	0-35	NP - 6
	7	Ω		A-1-D		•	7	-	0	Ų		, cr
	4 - TO	COS, S, LCOS,	SC-SM, SM	A-2-4	>	>	00T-T6	00T-8/	20-10	T0-29	0 - 3 0	N - N
		U)										
	10-17		SC-SM, SW-SM,	A-1-b,	0	0	91-100	80-100	37-55	10-21	0-28	NP - 6
				A-2-4	_		_					
	17-28	SR- GR-S FSL	UΣ	A-2-4	0	0	91-100	79-100	61-86	10-22	0-24	NP-6
	28-39	SR- GR-S FST.	SW-SM, SM	A-2-4	c	c	91-100	79-100	61-86	10-22	0-24	ND - 6
	0	i i		! !	,	,	1	9)	1	1	
	39-43	SR- GR-S FSL	U)	A-2-4	0	0	91-100	79-100	98-19	10-22	0-23	NP-6
		t t		7	-	•	7	0	L	0	0	
) C = C #	מאיים פאיים	SM SM	A-2-4	>	>	001-16	001	00-70	T 7 - O T	0 1 2	0 1 4
	57-60	SR- GR-S FSL	SM, SC-SM	A-2-4,	0	0	91-100	79-100	63-90	27-43	0-41	NP - 6
				A-4								
Riverwash.												
102+:												
Lithnip		SL	GP-GM	A-1	8-0	5-15	0-55	15-25	10-20	5-15	20-30	NP-5
	1-5	GRV-SL, GRX-SL BR	GW-GM	A-1	9 - 2	5-15			5-25	0-20		NP-5
Rock outgrop.												
4)												

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Per	rcentage pas	Percentage passing sieve number	19	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pct	Pat					Pat	
102t: Fishsnooze	0-1	GRV-SL	GM	A -1	0-10	0-10			25-40	-30		NP - 5
	1-9	GRV-COSL, GRX-	GP-GM	A-1	0-15	0-15	25-45	15-35	10-25	5-15	20-30	NP-5
	9-13	GRX-COSL, GRV-	GP-GM	A-1	0-15	10-30	35-55	15-35	10-25	5-15	20-30	NP-5
	13-35	COSL, GRX-SL CBX-COSL, GRX-	GP-GM	A-1	0-15	20-60	25-65	10-45	10-25	5-15	20-30	NP-5
	35-45	BR			:	!	:	:	!	!	!	;
104: Aquandic Humaquepts	8 - 0	MK-VFSL, MK-	он, мг, мн	A-5, A-4	0	0	92-100	83-100	81-100	55-70	0-63	NP-3
	8-18	SIL, MK-FSL MK-SIL, MK-	OH, ML, MH	A-5, A-4	0	0	100	91-100	85-100	75-90	0-65	NP-5
	18-26	VFSL, MK-FSL FSL, VFSL, SIL LS, S, COS	SM, ML	A-4 A-2-4	0 0	00	95-100	85-100 85-100	72-88	44-55	0-34	NP-3 NP-2
111t: Whittell		жая			0	0	!			!		1 1 1
	0-7	CBV-LCOS STV-	SM SP-SM	A-1-b A-1-a	15-30	20-40	70-90	55-75 35-70	35-55 20-50	10-30	0-23	NP-2 NP-2
	20-32	LCOS, GRV-COS GRV-COS, CBV- LCOS, STV-	GP-GM	A-1-a	15-40	15-35	45-80	30-65	15-45	5-20	0-28	NP-2
	32-42	LCOS, STX- LCOS, GRV-LCOS BR			:	1 1 1	1	1 1	1 1	! ! !	:	:
Jobsis	0 - 5	GRV-LCOS GRV-LCOS, GRV-	SM, SP-SM SM, SW-SM	A-1	5-15	5-10	65-85	40-60	25-40 15-30	5-20		N G
	9-17	GRV-LCOS, GRV-	SM, SW-SM	A-1	0-10	0-10	55-75	25-50	15-30	5-15	!	NP
	17-20	GRV-LCOS, GRV-	SM, SW-SM	A-1	0-10	0-10	55-75	25-50	15-30	5-15	!	МР
	20-30	BR S			!	:	!	!	!	:	!	!
Rock outcrop.						_ _						

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Per	Percentage sieve num	age passing number	מ	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	ដ				Pct	Pct					Pct	
151: Elfanttan	0	Σ Q	E-C	α α	!	 	 	 	!			!
	1-7	SR- SL MK-L	SC-SM, SM	A-4,		0	100	-100	00	35-53	0-40	NP-12
	7-12	SR- SL MK-L	SM	A-2-4 A-4,	0	0	100	95-100	80-100	35-53	0-40	NP-12
	12-20	SR- SL MK-L	SM	A-2-4 A-4,	0	0	100	95-100	80-100	35-53	0-40	NP-12
	20-31	SR- SL MK-L	SM	A-2-4 A-4	0	0	100	95-100	81-100	40-58	0-37	NP-12
	31-38		SM	A-4	0	0	_	95-100	81-100	40-58	0-35	NP-12
	38-44	SR-SI	SM, SC-SM	A-2-4	00	00	100	95-100	70-89	16-33	0-40	NP-12
	+ + +		wc _	A-4	>	>		000		OF 1	ה ה ה	1 1 1 4 4
	47-53	SR-SI	SM	A-1-b,	0	0	100	96-100	45-63	13-30	0-40	NP-12
	53-58	SR- SL MK-L	SM	A-2-4 A-2-4	0	0	100	95-100	80-100	29-46	0-40	NP-12
	2 2 2	GD GT. MK-T.	2	A-4 A-2-4				02100	73_03	26-44	36	ND-11
	9			A-4	·	,))	1))	•))	
152:												
Vitrandic Haploxerolls	0-2	FSL, LFS	SM	A-2-4, A-4	0	0	95-100	81-100	70-91	35-47	0-37	NP - 4
	2-3	SR- GR-COS S	SP-SM, SM	A-2-4	0	0	7-100	70-100	54-81	9-16	0-24	NP-2
	3-5	FSL, LFS	SM	A-4, A-2-4	0	0		81-100	70-91	35-47	0-37	NP - 4
	5-13	FSL, LFS	SM	A-2-4,	0	0	95-100	82-100	70-88	32-42	0-27	NP-2
	13-18	FSL, LFS	SM	A-4,	0	0	95-100	82-100	71-90	35-46	0-24	NP-2
	18-24	SR- GR-COS S	SW-SM, SC-SM,	A-1-b	0	0	88-100	73-100	33-50	8-15	0-21	NP-2
	24-28	SR- GR-COS S	SP-SM, SC-SM	A-3, A-2-4	0	0	87-100	71-100	54-80	5-11	0-20	NP-2
	28-32	SR- GR-COS S	SW-SM, SM	A-1-b	0	0	-100	73-100	33-49	8-15	0-19	NP-2
	32-60	- GR-COS	SP-SM, SC-SM	A-3, A-2-4	0	0	87-100	71-100	54-80	5-11	0-19	NP-2
					_							

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Per	Percentage passing sieve number	passin	19	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	ul I				Pat	Pct					Pct	
201:												
Leidig	0-0	SPM	LA L	8 - 8	0 0	0 0	1 0	1 0	1 7	1 1		
	\ - 0	FSI L' SL'	SM, CL-ML,	A-2-4, A-4,	>	>	001	001	00T-70	06-26	0 4 0	1 1 4 2
			ML, CL	A-7-5								
	7-16	SL, FSL, VFSL,	CL-ML, ML, CL	IQ;	0	0	100	100	78-96	52-70	0-46	NP-11
		4		A-6, A-7-5								
	16-23	FSL, VFSL, L,	CL, CL-ML, ML	ru,	0	0	100	100	78-96	52-70	0-46	NP-11
		SL —		A-4, A-7-5								
_	23-30	FSL, SL, L,	SC, SC-SM,	A-4, A-6	0	0	100	100	89-100	48-66	0-35	NP-12
		VFSL	CL, CL-ML,									
	20.00	1001	MI	K	c		0	0	100	75	2	1.07
	# 0 0	Ì	CL-ML, ML		>	>	9	9	1	1	0	71 - 11
	34-42	VFSL, L, SL,	SC, SM, SC-SM	A-4, A-6	0	0	100	100	82-100	32-50	0-35	NP-12
		FSL										
	42-46	FSL, L, SL,	CL-ML, SC,	A-4, A-6	0	0	100	100	88-100	45-63	0-30	NP-12
		ė,	SM, SC-SM									
	46-52	FSL, SL, L,	SC, SM, SC-SM	A-4, A-6	0	0	100	100	98-89	30-48	0-30	NP-12
	52-58	FST. T.S. VEST.	- A - A - A - A - A - A - A - A - A - A	A-4 A-6	c	c	100	100	82-100	32-50	0-30	NP-12
	1				,	·))	9	1	1)	
	28-60	SR- LS FSL	SC, SM, SC-SM A-2	A-2-4	0	0	100	100	86-08	21-39	0-37	NP-12
210:												
Rubble land.												
Typic Cryorthents	0-2	GR-SL	SM	A-1-b, A-2-4	0	0	59-71	57-70	43-54	22-29	0-33	NP-2
	2-13	CBV-SL	GM, SM	A-2-4			47-66		42-60	-39		1-3
	13-19	CBX-FSL, CBV-		A-1-b,	0	30-42	45-65	43-63	38-56		0-22	NP-2
	_	FSL		A-2-4	_	_				_		
	19-60	STV-FSL, STX-	SM, GM	A-1-b, A-2-4	30-42	23-36	34-67	31-66	27-58	13-29	0-20	NP-1
Rock outerop.												
) 						_						

Table 11.-Engineering Index Properties-Continued

	:		Classification	ation	Fragments	ents	Per	Percentage passing	e passi:	ng		
Map symbol	Depth	USDA texture					uı	sieve number	rmper		Liquid	Plas-
and soil name					>10	3-10		,			limit	ticity
			Unified	AASHTO	inches inches	inches	4	10	40	200		index
	In			_	Pct	Pct					Pct	
210:												
Xeric Dystrocryepts	0-1	MPM	PT	A-8	0	0	:	1	:		:	:
	1-5	FSL, GR-FSL	SM	A-2-4,	0	0	78-92	77-92	67-83	35-43	30-41	2-3
				A-4								
	5-13	CBV-FSL, CB-	SM, GM	A-1-b,	0	8-42	47-84	43-83	38-74	19-38	0-28	NP-2
		FSL, CBX-FSL		A-2-4								
	13-28	CB-FSL, CBX-	SM, SC-SM, GM	GM A-2-4,	0	8-42	47-84	43-83	39-76	17-34	19-25	3 - 4
		FSL, CBV-FSL		A-1-b								
	28-60	GR-SL, SL	SC-SM, GM	A-2-4,	0	0	57-84	57-84	43-65	21-33	18-22	3-5
				A-1-b								
.11.												
Xeric Dystrocryepts	0-0	SPM, ST-SPM	PT	A-8	:		:	1	:	:	-	:
1	0-1	ST-MPM, MPM	PT	A-8	:	-	-	1	-	-	-	-
	1-9	STV-LFS, ST-	SM	A-2-4	8-23	8-23	61-83	59-82	48-70	27-41	0-45	NP-3
		LFS, STV-FSL,		-								
		ST-FSL										
	9-19	STX-SL, STX-	SM	A-1-b,	8-23	15-29	50-74	48-73	36-57	22-37	0-31	NP-3
	_	LFS, ST-LFS,		A-2-4	_							
		ST-SL, STV-SL,										
	_	STV-LFS		_	_							
	19-32	STV-FSL, STV-	В	A-1-b,	8-23	29-42	28-56	25-54	17-39	13-29	0-22	NP-3
		COSI, STX-		A-1-a								
		COSL, STX-FSL		_								
	32-60	CBX-LFS, CBX-	GM	A-1-b,	0	29-42	28-45	25-43	16-31	11-21	0-20	NP-3
		COSI, CBV-		A-1-a								
		COSL, CBV-LFS										

Table 11.-Engineering Index Properties-Continued

211: Canisarcocka	Map symbol	Depth	USDA texture	Classification	ation	Fragn	Fragments	Per	rcentage passi sieve number	Percentage passing sieve number	19	Liquid	Plas-
## Procession	and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200		ticity index
## STATE CONTRIBUTION Part No. 1 Part No		指				Pat	Pct					Pct	
18-28 BY-LCOS, BY-RALES BY-LCOS, BY-S, S. BY-LCOS, BY-S, S.	isrocks		BY-SPM		A-8	!	:	!	:	!	!	!!!	;
1-1 BYT-5, STATUCOS, BYT-15, A-1-b, A-		0-1	BY-MPM		A - 8 - 4	1 0	! (1 0	1011	1 4	1 1 1		. Ę
1.00 1.00		# - -	BYV-S, S, BYV-	HQ.	A-1-D, A-2-4	7# - 67	>	0010	000	n n n n n n n n n n n n n n n n n n n	77-01		
4-18 BYX-LGS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYY-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LCOS, BY- BYX-LS, BY- BYX-LCOS, BY-			LCOS, BYV-LS,										
RYA-LOOK, BYA- BYX-LOOK, BYA- BYY-LOOK, BYA- BYY-LOOK, BYA- BYY-LOOK, BYA- BYY-LOOK, BYA- BYY-LOOK, BYA- BYY-LOOK, BYA- BYX-		4-18	BYX-LS, BY-	SM	A-1-b,	14-57	8-38	78-97	77-97	48-62	14-20	0-14	NP
18-28 EX-LOGS EX-LOG			LCOS, BYX-S,		A-2-4								
18-28 BYY-LCOS BXY-LCOS B			BYV-S,										
18-28 BY-LCOS, BYX-5, SAM			'										
BYV-LCOS, BYV-S, BYV-LCOS, BYV-LCOS, BYV-LCOS, BYV-COS, BYV-LC		18-28	BY-LCOS, BYX-	SM	A-1-b,	27-67	16-38	62-94	60-94	38-62	10-18	0-14	NP
BXY-LCOS, BXY-LS, BXY-LS, BXY-LCOS, BXY-LS, BXY-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-LCOS, BX-S, BX-S, BX-LCOS, BX-S, BX-S, BX-LCOS, BX-S			LS, BYX-S,		A-2-4								
BYY-S, BY-LCOS, BY-LCOS,			FIV-LCOS, BIV-					_			_		
BYX-LCOS BYY-LCOS, BY- I.S., BYY-COS, BY- I.S., BYY-COS, BY- I.S., BYY-COS, BY- I.S., BYY-COS, BY- I.S., BYY-COS, BY- I.S., BYY-COS, BY- I.S., BYY-COS, BY- I.S., BYY-COS, BY- I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BYY-COS, BY- I.COS I.S., BY- I.COS I.S., BY- I.COS I.S., BY- I.COS I.S., BY- I.COS I.S., BY- I.COS I.S., BY- I.S.,			BYV-S, BY-S,										
28-34 BYX-LS, BYY-LS, SM			BYX-LCOS										
BYY-LCOS, BY- S, BY-LCOS, BY- S, BY-LCOS, BY- BYX-LCOS, BY-S, BY-S,		28-34	BYX-LS, BYV-LS,	SM	A-1-b,	19-67	9-38	62-95	60-95	34-55	9-12	0-14	ΝΡ
S, BY-LCOS, BYS- BYX-LCOS, BYS-S, SM, SP-SM			BYV-LCOS, BY- LS, BYV-S, BY-		A-2-4								
34-60 BY-LCOS, BY-S, BY-S, BY-S, BY-S, BY-LS, B			S, BY-LCOS, BYX-LCOS, BYX-										
BYX-LS, BYX-S, BY-LS, BYA-LS,		34-60	BYX-LCOS, BY-S,	SM,	A-2-4,	24-65	8-29	33-90	31-90	20-60	5-15	0-14	NP
- 0-0 SL			BY-LS, BYX-S, BYX-LS, BY-		A-1-b								
- 0-0 SL SL SK A-2-4, 0 0 0-29 R5-100 64-84 33-47 0-43 - 0-9 CB-SL, GR-SL, SK A-4, 0 0-29 R1-100 80-100 61-84 31-47 0-43 - SL A-2-4 - 16-23 GR-SL, CB-SL, SK, SC-SK A-4, 0 0-29 R1-100 80-100 60-83 31-46 0-37 - 16-23 GR-SL, CBV-SL, SK, GK, GC-GK A-4, 0 0-29 30-100 19-79 9-41 0-30 - 23-60 CB-SL, CRV-SL, SK, GK, GK-CK, A-2-4 - SL A-2-4 - SL A-2-4 - SL A-2-4 - SL A-1-b, - A-1-b, - A-1-b, - A-1-a			LCOS										
CB-SL, GR-SL, SM A-4, 0 0-29 81-100 61-84 31-47 0-43 SL GR-SL, CB-SL, SM A-4, 0 0-29 81-100 80-100 61-84 31-47 0-43 SL SL, CB-SL, SM, SC-SM A-4, 0 0-29 81-100 80-100 60-83 31-46 0-37 SL SL, CB-SL, SL, CB-SL, SM, GM, GC-GM A-4, 0 0-29 74-100 73-100 52-79 24-41 0-30 SL SL, CBV-SL, SM, GM, GC-GM A-4, 0 0-29 30-100 27-100 19-79 9-41 0-23 GR-SL, GRV-SL, SL, SL, CR, SL, SL, SL, SL, SL, SL, SL, SL, SL, SL	Oxyaquic Dystrocryepts		SL	SM	A-2-4,	0	0	85-100	84-100	64-84	33-47		NP-6
SL GR-SL, CB-SL, CB-SL, SM, SC-SM A-4, 0 0-29 81-100 80-100 60-83 31-46 0-37 SL GR-SL, SL, CB-SL, SM, GM, GC-GM A-4, 0 0-29 74-100 73-100 52-79 24-41 0-30 SL CB-SL, CBV-SL, SM, GM, GC-GM A-4, 0 0-29 30-100 27-100 19-79 9-41 0-23 SL SL GR-SL, GRV-SL, SM, GM, GC-GM A-4, 0 0-29 30-100 27-100 19-79 9-41 0-23 SL A-2-4, A-1-b, A-1-a		6-0		SM	A-4,	0	0-29		80-100	61-84	31-47		NP - 6
GR-SL, CB-SL, SM, SC-SM					A-2-4		0			0	-		
GR-SL, SL, CB- SM, SC-SM A-4, 0 0-29 74-100 73-100 52-79 24-41 0-30 SL SL, CBV-SL, CBV-SL, GRV-SL, GRV-SL, GRV-SL, SL A-1-a		9T-6			A-4, A-2-4	0	0-29		80-100	60-83	31-46		NP - 6
SL CBV-SL, CRV-SL, SM, GM, GC-GM A-4, 0 0-29 30-100 27-100 19-79 9-41 0-23 GR-SL, GRV-SL, A-2-4, SL A-1-b, A-1-a		16-23			A-4,	0	0-29		73-100	52-79	24-41		NP-6
GR-SL, GRV-SL, A-1-a		23-60		NO NO	A-2-4	c		20-100	27-100	10.70	0 41		AD. A
		0	GR-SL, GRV-SL,	20' 10' 10' 10' 10' 10' 10' 10' 10' 10' 1	A-2-4,	>				-	1		
©-T-₹			SL		A-1-b,								
					A-1-a								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Per	Percentage passing sieve number	ige passir number	gu	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pct	Pct					Pct	
213: Canisrocks	0-0	-SPN	PT	A-8	!	:	:	:	:	:	:	:
	0 - 3	SPM, STX-SPM CBV-LS, CB-S,	NS.	A-2-4	0	15-29	73-91	72-91	55-74	19-28	0-37	NP-2
		CBV-S, CB-LS										
	3-12	CB-S, CBV-S,	SM	A-2-4	0	23-36	71-91	70-90	54-74	19-28	0-24	NP-2
	12-60		SM	A-2-4, A-1-b	0	47-58	53-77	51-76	39-62	13-24	0-19	NP-2
		1	E	0								
gracierpoinc	0	ST-SPM	<u>.</u>	ν - 4	!	! !	!	! !	! !	! ! !	! !	! ! !
	0-1	MPM, STV-MPM,	PT	A-8	!	:	-	:	:	:	!	:
	1 9	STV-S STX-S	N.	A-2-4	36-47	23-36	65-95	64-94	49-77	17-29	0-37	ND-2
	\ I	STX-LS, STV-LS		A-1-b))	1	1	i i))	:
	9-15	STX-LS, STX-S,	GM, SM	A-1-b,	36-47	23-36	40-65	37-64	28-52	10-20	0-28	NP-2
				A-2-4								
	15-20	CBV-S, CBV-LS,	SM	A-2-4	0	29-42	70-90	06-89	53-73	18-28	0-26	NP-2
-	20-29	V-LS,	SM	A-1-b,	0	36-47	59-80	57-79	44 - 64	15-25	0-24	NP-2
				A-2-4								
	29-37	CBV-S, CBV-LS	SM	A-1-b, A-2-4	0	36-47	29-80	57-79	44 - 64	15-25	0-19	NP-2
	37-60	CBV-LS, CBV-S,	SM	A-1-b,	0	15-29	59-76	57-75	44-61	15-23	0-18	NP-2
		CB-LS, CB-S		A-2-4								
Vitrandic Dystrocryepts		SPM	PT	A-8	:	:	-	:	:	!	!	1
1	0-1	SPM	PT	A-8	1	;	-	-	1	:	1	:
	1-11	LS	SM	A-4,	0	0	85-100	85-100	60-74	28-37	0-36	NP-1
	7			A-2-4	•		L	L	0	0	i.	
	/1-11	15, SL	ws	A-4, A-2-4	> 		85-100	00T-68	59-73	29 - 38	0-75	1 - 4 - 1
	17-25	LS, CB-LS	SM	A-2-4,	0	0-15	84-100	83-100	62-79	28-37	0-21	NP-1
	25-37	STV-LS, STV-	SM	A-2-4	7-22	0-15	72-92	71-92	49-66	23-33	0-18	NP-1
		O2										
	37-60	CBV-S, CBV- LCOS, CB-LCOS,	SM	A-2-4	0	0-22	68-92	66-92	46-67	20-31	0-17	NP-1
		CB-S		.——								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ıtion	Fragments	ents	Per	Percentage pas	passing mber	63	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200		ticity index
	티				Pct	Pct					Pat	
214: Marmotland	0-0	SPM	H	A-8	!	:	!	!	:	!	!	;
	0-11	SL, FSL	SM	A-5,	0	0	-100	84-100	74-93		- i	2-6
				A-2-4, A-4								
	11-19	FSL, L	CL-ML, SM	A-4	0	0		83-100	71-89	49-63	n ا	4 - 7
	19-36	FSL, L		A-4	0	0	84-100	83-100	71-91	99-05	23-33	6-10
	36-48	FSL, SL		A-4	0	0		83-100	06-04	49-64	2	6-12
	48-60	ASHY-SL	SC-SM, SM	A-4	0	0	91-100	91-100	78-88	52-59	0-14	ΝĐ
		;		•		•						
Oxyaquic Dystrocryepts	0-2	SL, COS, LCOS	NS NS	A-2-4	0 0	0 0	92-100	92-100	59-68	19-24	0-36	NP-1
	7-14			A-2-4	0 0	0		85-95	53-63	16-22		NP-1
	14-20	•		A-2-4	0	0	5-95	85-95	49-59	15-20		NP-1
	20-31			A-2-4	0	0		85-95	54-63	15-20		NP-1
	31-40	COS, GR-LCOS,	SM	A-2-4,	0	0	~-	78-92	48-60	15-21		NP-1
		LCOS SI		A-I-D								
	40-61	BYX-LCOS, BYX-	SM, GM, SP-SM	A-1-a,	31-48	6-16	42-80	39-80	25-53	7-18	0-20	NP-1
		SL, BYV-COS,		A-1-b								
		LCOS, BYX-COS										
					-							
Aeric Dystrocryepts	1 C	M P M	Τ.Δ.	% - A	- c	o c	: :			: :	: :	: :
	2-16	S, SI	T NO	A-2-4,	0 0	0	100	-100	40-75		98	NP-1
) 	\ <u>`</u>		A-4)	,		- —))		! !
	16-23	Ø	SM	A-2-4	0	0	0-100		40-75	2	0-29	NP-1
	23-36	`, ;	SM	A-2-4	0	0-7	0-100		40-75	ק ו		NP-1
	36-63	CBV-S, CBV-LS	MS C	A-2-4	0-6	0-45	70-100	60-100	40-75	15-30	0-18	NP-1
			4	A-1-b	1					 H		1
Typic Cryorthents	0-0	SPM, STV-SPM,	PT	A-8	51-85	51-85	!	1	-	!	!	!
	0-1	ST-MPM, STV-	ЪТ	A-8	73-93	73-93	!	!	!	!	:	:
	1-3	LFS, GR-LFS	SM	A-2-4,	0	0	79-92	78-92	73-92	25-38	0-42	NP-6
	3-12	GRV-T.S. GR-T.S	Z.	A-4 A-1-b	c	4-15	51-65	49-63	37-53	12-20	0-37	ND - 6
	7		i	A-2-4	>	1))		1		
	12-18	GR-LS, GRV-LS	GC-GM, GM, SM	A-1-b,	4-15	4-15	46-64	44-62	33-53	10-20	0-31	NP - 6
	18-22	ij,	GM, SM	A-1-b	0	5-15	50-64	48-63	32-47	12-21	0-25	NP - 6
	22-60	GRV-SL, GR-SL	GM, SM	A-1-b	0	4-15		-63	34-50	14-23		NP - 6
			_		_		_	_	_	_	_	

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragn	Fragments	Per	Percentage passing sieve number	passir	DG.	Liquid	Plas-
and soil name	ı 		Unified	AASHTO	>10 inches	>10 3-10	4	10	40	200	limit	ticity
	티				Pct	Pct					Pct	
215: Rock outcrop.												
Rubble land.												
219: Rock outcrop.												
Rubble land.												
Canisrocks		BY-SPM	PT	A-8	-	!	1	-	!	!	!	!
	0-1	BY-MPM	PT	A-8	<u> </u>	:	:	-	:	:	_	!
	1-4	BY-S, BYV-S,	SM	A-1-b,	23-42	0	96-64	78-96	44-61	14-22	0-37	NP-1
		LS,		A-2-4								
		S, LS, BY- LCOS, BYV-LCOS										
	4-18	BVV-LG BVV-	No.	4-1-4 4-1-4	14-57	0.0	70-07	77-07	45.63	13_21	0-14	Q.N.
	0 H I	LCOS, BYX-S,	E C	A-2-4) 	0	0101	16-11	n 0 1	1 2 1	# 	i i
		BY-LCOS, BYX-										
	_	LS, BY-S, BYX-										
		LCOS, BY-LS, BYV-S										
	18-28	BYX-LCOS, BY-S,	SM	A-1-b,	27-67	16-38	62-94	60-94	35-63	9-18	0-14	ΝĐ
		BYV-S, BY-LS,		A-2-4		_				_		
		BYV-LS, BYV-										
		LCOS, BYX-LS,										
		BY-LCOS, BYX-S									,	
	28-34	BYX-LCOS, BY-S,	SM	A-1-b,	19-67	9-38	62-95	66-09	32-58	8-T6	0-14	NP
		BYV-S, BY-LS,		A-2-4								
		BYV-LS, BYV-										
		LCOS, BYX-S,										
		BYX-LS, BY-										
		1		,	,	((,	!
	34-60	BY-LCOS, BYX-	SP-SM, SM	A-2-4, A-1-b	24-65	8-29	33-90	31-90	19-62	4-17	0-14	d N
		LS, BY-S, BYX-			_							
		rcos				_				_		
						_				_	_	

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	PP	Percentage passing sieve number	passi:		Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	>10 3-10 inches	4	10	40	200	limit	ticity index
,	티				Pct	Pct					Pct	
ZZI: Typic Cryorthents	0 - 2	GR-L, CB-FSL, CB-SL, GR-SL, GR-FSL, CR-L	SM	A-2-4, A-4	0	0	72-92	70-92	53-74	27-41	0-42	NP-4
	2-13	CBV-SL, CBV- FSL, CB-FSL, CB-L, CBV-L,	SM, GM	A-4, A-2-4, A-1-b	0	16-48	35-83	33 - 82	27-72	18-51	0-29	NP - 4
	13-19	SIX-SL, STV-SL, SIX-FSL, STV- FSL, CBV-FSL, CBV-SL	GM, SM	A-2-4, A-1-b, A-1-a	0	28-47	36-73	33-72	29-66	14-35	0-23	NP - 4
	19-60	CBV-FSL, STX-FSL, FSL, STX-FSL, STX-SL, STV- SL, CBV-SL	GM, SM	A-4, A-2-4, A-1-a, A-1-b	15-47	15-47	18-81	14-80	12-75	6 E - 9	0-21	NP-4
Xeric Dystrocryepts	е - 0	VFSL, FSL, ST- SL, SL, STV- SL, CB-SL, CBV-SL, CBV-VFSL, STV-VFSL, ST- FSL, CB-FSL, CBV-FSL, ST- VFSL, VFSL	SM, Mī.	4 4	o 	0	71-92	70-92	70-92	39-57	0 - 4 6	NP - 3
	3-19	CB-VFSL, ST- VFSL, CBV-FSL, CB-FSL, FSL, STV-VFSL, VFSL, ST, SL, CB-SL, CBV-SL, ST- FSL, ST-SL, CBV-VFSL	MI, SM, GM	4 4	3-15	3-23	71-97	70-96	70-96	49-71	0-37	NP - 3
	19-60	CBV-SL, ST-FSL, STV-SL, CB- VFSL, STV- VFSL, CB-FSL, ST-VFSL, CBV- FSL, VFSL, CB- SL, FSL, CBV- VFSL, SL, ST- SL, SL, ST- SL	CL-ML, SC-SM	4 ተ	0-15	3-15	73-92	72-92	65-87	41-56	19-25	7 - 4

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Per	Percentage pass sieve number-	passing	- J	Liquid	Plas-
and soil name		. — —	Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pat	Pat					Pct	
221: Oxyaquic Dystrocryepts	0-0	SI	WS.	A-2-4,	0	0	85-100	84-100	64 - 84	33-47	0-43	NP - 6
		;		A-4		, ,				: !	:	, ,
	ຄ - ວ	SL, CB-SL, GR-	ws	A-4, A-2-4	o 	0-29	81-100	00T-08	61-84	31-47	0-43	NP - 6
	9-16	CB-SL, GR-SL,	SM	A-4,	0	0-29	81-100	80-100	60-83	31-46	0-37	NP-6
	16.03	SL	No.	A-2-4		0	100	72 100	7.0	177	0	A. O.M.
	T0-73	SL,		A-4, A-2-4	>	0 - 2 9	/4-100	/3-T00	7 - 7 2	74-4T	0-30	N 1 0
	23-60	SL, GRV	SM, GM, GC-GM A-4,	A-4,	0	0-29	30-100	27-100	19-79	9-41	0-23	NP-6
		SI SI CB-		A-2-4, A-1-b, A-1-a								
222:												
Canisrocks	0-0	SPM, BY-SPM	PT	A-8	45-100		-	!	-	-	-	:
	0-2	SPM, BY-SPM	PT	A-8	45-100	_	-	-	1	-	-	:
	2-7	STX-COS, CBV-	GM, SM	A-1-b,	4-15	15-29	47-68	45-67	27-43	13-21	0-30	NP-1
		COS, CB-COS,		A-1-a								
		TOOS CB-TOOS										
		CBV-LS, CB-LS,										
	· ·			1		_ :						,
	7-14	CBX-COS, CBX-	GP-GM, GC-GM	A-1-a	4-15	29-41	26-51	23-49	17-37	ω - κ	0-25	NP-1
		LCOS, CBX-S,										
	14-60	SIX-COS, SIV-	SP-SM, SM,	GM A-1-b.	34-45	27-39	35-75	33-74	16-39	5-15	0-20	NP-1
		COS, STX-LCOS,		A-1-a		· <u></u> -						
		S, STX-S										
Rubble land.												
Rock outcrop.												
Crazymule	0-0	GR-SPM	PT	A-8	0	0	-		-	:	-	:
•	0 - 5	GR-LS	SM	A-2-4,	0	0	60-100	58-100	45-81	16-31	0-40	NP-3
	5-22	BYV-LS	SC-SM, GC-GM,	A-2-4,	0-42	0-15	26-100	23-100	17-80	6-30	0-29	NP-3
				A-1-b								
	22-35	BYV-LS	SC-SM, GC-GM,	A-2-4,	0-29	0-42	31-100	28-100	21-80	7-30	0-25	NP-3
	35-60	CB-L	CL-ML, SC-SM	A-4	0	0-16	67-100	67-100 66-100 61-100 44-75	61-100	44-75	21-30	6-12
						_	_	_				

Table 11.-Engineering Index Properties-Continued

The color of the	Map symbol	Depth	USDA texture	Classification	ation	Fragn	Fragments	Pe	rcentage passi sieve number	Percentage passing sieve number	J.G	Liquid	Plas-
coutcrop. 10.0 BY SPM 10.1 BY LOOK 125, S	and soil name			Unified	AASHTO	>10 inches		4	10	40	200	limit	ticity index
Secondaria Sec		uI				Pat	Pat					Pat	
Second S	u												
1-4 BY-LOOS, BY-SPM PT A-8 1-4 BY-LOOS, BY	Rubble land.												
1-4 BY-LOOS LS, SY A-2-4 14-57 15-36 14-61 14-22 14-22 15-26 14-61 14-22 14-22 15-26 14-61 14-61		0-0	BY-SPM	T-G	8-8	:	:	-	-	-	-	:	:
1-4 BY-LCOS, BY-Y- BY-LCOS, BY-Y- BY-Y-LCOS, BY-S, SM A-1-b, 14-57 8-38 78-96 44-61 14-22 BY-Y-LCOS, BY-S, BY-S, SM BY-Y-LCOS, BY-LCOS, BY-S, SM BY-Y-LCOS, BY-LCOS,		0-1	BY-MPM	E.G.	A-8	-	:	1	:	:	:	:	:
## STATE BYT-LGS BYT-S ## STATE BYT-LGS BYT-S ## STATE BYT-LGS BYT-S ## STATE BYT-LGS ## STATE BYT-LGS ## STATE BYT-LGS ## STATE BYT-LGG		1-4	LS,	SM	A-1-b, A-2-4	23-42	0	96-64	78-96	44-61	14-22	0-37	NP-1
## SPY-LGS, BY			LS, BY-LS, BYV-S, BY-S		' ' !								
STATE STAT		4-18	BYV-LS, BY-S,	SM	A-1-b,	14-57	8-38	78-97	77-97	45-63	13-21	0-14	NP
S. BYX-LOGS BY-LOGS BY-LOGS BY-LOGS BY-LOGS BY-LOGS BY-LOGS BY-LOGS BY-LOGS BY-LOGS BY-LOGS BY-LOGS BY-S BY			BYV-S, BY-LS,		A-2-4								
18-28 BY-LCOS, BNY-LCOS A-1-b, 16-38 62-94 60-94 35-63 9-18 18-28 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY- 15-38 BY-LCOS, BNY-LCOS, BNY- 15-38 BY-LCOS, BNY-LCOS, BNY- 15-38 BY-LCOS, BNY-LCOS,			S, BYX-LS, BY-										
18-28 BY-LCOS, BYA. SM A-1-b, 27-67 16-38 62-94 60-94 35-63 9-18			LCOS, BYV-LCOS										
LS, BXV-LCOS, BV- LS, BXV-LCOS, BV- LS, BXV-LCOS, BV- BXX-LCOS, BX-S, SM		18-28	BY-LCOS, BYX-	SM	A-1-b,	27-67	16-38	62-94	60-94	35-63	9-18	0-14	NP
ENY-S, BYY-S, BY-S, BY-S, BY-S, BY-S, BY-S, BY-S, BY-S, BY-S, BY-LOSS, BY-S, B			LS, BYX-LCOS,		A-2-4								
EBYV-S, BY-S, BY-S, BY-S, SM A-1-b, 19-67 9-38 62-95 60-95 32-58 8-16 BYX-LOGS, BYY- SPY-S, SW BY-LOGS, BY-S, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-S, LS, BY-LS, BY-S, LS, BY-S, LS, BY-S, LS, BY-S, LS, BY-S, LS, BY-S, LS, BY-S, LS, BY-S, LS, BY-S, LS, BY-S, LS, BY-S, LS, BY-S, BY-S, LS, BY-S, BY-S, LS, BY-S, BY			LS, BY-LS,										
ESPACES, BYV-LCOS, BYV-ROS			BYV-S, BY-S,										
Samule			BYX-S		,		0	L	L C		7	,	;
S, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LS, BY-LCOS, BY-LCOS, BY-LCOS, BY-LS, BY-LS, BY-LS, BY-LCOS, BY-S c outcrop. c outcrop. c outcrop. 22-35 BYV-LS, BX-LS, BY-LS		28 - 34	BYX-LCOS, BY-S, BYX-LCOS, BYV-	ਲ ਨ	A-1-b, A-2-4	19-67	ν ι χ	62 - 95 c	0 o o	32-58	9T-8	0 - 14	Zi Zi
FYN-LS, BY- LCOS 34-60 BY-LCOS, BY-SM, SM A-2-4, 24-65 8-29 33-90 31-90 19-62 4-17 EVILOS, BY-SM, SM A-1-b COULCIOP. COU			S, BY-LS, BYV-										
coutcrop. coutcrop. Eyz, BYZ-LS, BYZ-LS, BYX-LS, BYX-LS, BYX-LS, BYZ			BYX-LS, BY-										
coutcrop. coutcrop. 2ymule		34-60	BY-LCOS, BYX-		A-2-4,	24-65	8-29	33-90	31-90	19-62	4-17	0-14	ΝΡ
coutcrop. 2ymule			LS, BY-LS, BYX-S, BYX- LCOS, BY-S		A-1-b								
	224: Rock outcrop.												
0-5 GR-LS SM A-2-4 0 0 72-85 70-84 54-67 19-25 5-22 BYV-LS, BYX-LS, GM, SM A-1-b 23-36 0-15 36-60 34-59 25-47 9-17 22-35 BYV-LS, BYX-LS, GM, SM A-1-b 23-36 56-81 54-80 41-64 14-24 BY-LS A-1-b A-1-b 35-60 CR-L A-4 0 0-16 74-92 73-91 63-82 44-59		0-0			A-8	42-71	42-71	:	-	!	:	:	;
BYV-LS, BYX-LS, GM, SM A-1-b 23-36 0-15 36-60 34-59 25-47 9-17 BYV-LS, BYX-LS, GM, SM A-2-4, 8-23 23-36 56-81 54-80 41-64 14-24 BY-LS A-1-b A-1-b GC, SC, CL A-4 0 0-16 74-92 73-91 63-82 44-59	•	0 - 5		SM	A-2-4	0	0	72-85	70-84	54-67	19-25		NP-2
BY-LS GC, SC, CL A-4 0 0-16 74-92 73-91 63-82 44-59		5-22			A-1-b A-2-4,	23-36	0-15	36-60 56-81	34-59	25-47	9-17	0-29	NP-3 NP-3
CB-L					A-1-b								
		35-60	CB-L	GC, SC, CL	A-4	0	0-16	74-92	73-91	63-82	44-59	23-29	7-10

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Peı	Percentage passing sieve number	passin	Бu	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	>10 3-10 inches	4	10	40	200	limit	ticity index
	ដ				Pct	Pct					Pct	
224:			!									
Vitrandic Cryorthents		CB-SPM, SPM	T.A.	& & &	o c	0-61 0-61	: :	: :	: :		: :	: :
	2-7		SM	A-4,	0	000	85-92	84-92	79-88	31-36	0-37	NP-2
				A-2-4	-		0		1			
	15-24	GB-LS, LS	ZW.	A-2-4	o c	4-15	76-97	26-67	58-74 41-54	73-3T	0 - 7 0	NP-2
	1 1		<u>.</u>	A-2-4	·	1	H		1	À		1
	24-60	ВВ			!	!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	!!!	1	:	!
225:												
Canisrocks		BY-SPM	PT	A-8	:	:	-	:	-	:	-	:
	0-1	BY-MPM	PT	A-8	!	:	- - -	:	!	!		:
	1-4	BYV-S, BY-S,	SM	A-1-b,	23-42	0	96-64	78-96	44-61	14-22	0-37	NP-1
		BYV-LS, BYV-		A-2-4								
		BY-LS, BY-LCOS										
	4-18	BY-LCOS, BYX-	SM	A-1-b,	14-57	8-38	78-97	77-97	45-63	13-21	0-14	NP
		LS, BYX-S,		A-2-4								
		LS, BY-LS,										
		BYV-S, BY-S,										
	(BYX-LCOS				((1		,	!
	18-28	BY-LS, BYV-S,	ws	A-1-b, A-2-4	27-67	Te-38	62-94	60-94	35-63	8T-6	0-14	d N
		LCOS, BYV-LS,										
		BYX-LCOS, BY-										
		BYX-LS										
	28-34	BY-LS, BYV-LS,	SM	A-1-b,	19-61	9-38	62-95	60-95	32-58	8-16	0-14	NP
		S. BYX-LS.		A-2-4								
		BYX-LCOS, BY-										
		S, BYV-S, BY-										
	34-60	BYX-LCOS, BY-S,	SP-SM, SM	A-2-4,	24-65	8-29	33-90	31-90	19-62	4-17	0-14	NP
		BY-LS, BYX-S,		A-1-b								
		BYX-LS, BY-										
Rock outcrop.												
Rubble land.												

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragn	Fragments	Pel	Percentage pas	passing	bu	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	指				Pct	Pct					Pat	
225:												
Vitrandic Dystrocryepts		BY-SPM	T-T-	8 - 8	!	!	!	:	!	!	!	:
	2-5	BY-LS, LS, BY-	SM	A-2-4	0-15	0-15	82-100	81-100	62-79	22-29	38	NP-1
	5-12	BYV-LS, BYX-LS, BYX-SL, BYV-	WS	A-2-4, A-1-b	16-58	8-22	57-91	55-91	42-71	15-26	0-36	NP-1
		LS LS LS LS LS LS LS LS LS LS LS LS LS L										
	12-26	BYX-SL, BY-LS, BY-SL	SM	A-4	16-84	8-42	100	100	75-77	38-40	0-24	NP-1
	26-30	BYX-SL, BY-LS, BY-SL	SM	A-4	16-95	8-42	100	100	75-77	38-40	0-18	NP-1
	30-60	BYX-LS, BYX-S, BY-LS, BY-S	SM	A-2-4	16-94	8-41	100	100	74-76	19-21	0-17	NP-1
227:												
Canisrocks	0-0	ST-SPM, STV-	PT	A-8	:	:	!	!	:	!	:	:
	0-2	CB-SL, SL	SM	A-2-4,	0	5-16	68-84	67-83	99-09	27-36	0-40	NP-3
	2-6	CB-SL, SL	SM	A-4,	0	5-16	68-84	67-83	99-09	27-36	0-27	NP-3
	6-17	ST-LCOS, STV-	GM, SM	A-1-b,	7-21	7-34	42-70	39-69	22-42	9-18	0-24	NP-2
	17-25	ST-LCOS, SIX-LCOS	SM, GM	A-1-a	7-21	7-21	48-70	46-69	26-42	11-18	0-22	NP-2
	25.34	LCOS, STX-LCOS	N	A-1-b	10-4	7-21	48-71	46-70	25-40	10-17	0-00	ND. 3
	H 1 1 1 1 1 1	LCOS, ST-LCOS		A-1-b	H 1	1 7 1	1 0		0 1 0 1	À		0
	34-60	ST-LCOS, STX- LCOS, STV-LCOS	SM, GM	A-1-a, A-1-b	4-21	7-21	48-71	46-70	27 - 42	11-18	0-18	NP - 1
Crazymule	0-1	SPM, ST-SPM	PT	A-8	:	1	! !	!	!	!	1	!
	1-2		PT	A-8	:	:	:	:	:	:	:	:
	2-12	FSL, LFS, CB- LFS, CB-FSL	SM	A-4, A-5	0	4-15	83-92	82-92	78-91	41-49	0-45	NP-3
	12-22	SIX-LFS, SIV-	SM, GM	A-1-a,	57-82	8-23	30-86	28-85	23-75	13-45	22-35	1-4
		STX-FSL		A-4-6-4								
	22-34	CB-FSL, CBV-	GM, SM, ML	A-4	0	16-30	72-91	71-91	59-79	39-53	18-26	1-4
		FEL, CB-COSL, CBV-COSL										
	34-60	CBV-LS, CBV- COSL, CB-COSL, CR-LS	SM	A-2-4	0	8-23	54-70	52-69	43-59	24-33	0-20	NP-1

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Pe	Percentage passing sieve number	passir mber	ba	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	>10 3-10 inches inches	4	10	40	200	limit	ticity index
	티				Pat	Pat					Pat	
228: Xeric Dystrocryepts	0 - 4	GR-LFS, LFS,	SM	A-2-4	0	0	78-92	77-92	53-67	18-25	0-40	NP - 3
	4-14	14 .	SM	A-1-b	0	8-23	53-69	51-68	36-50	12-19	0-27	NP - 4
	14-20	CBV-LFS, CBV-LS, GRV-LS,	SM, GM	A-1-b	0	15-29	45-62	43-60	33-48	10-16	0-22	NP-1
	20-30	GRV-LCOS, CBV-LFS, CBV-LCOS,	GP-GM, SM, GM	GM A-1-b, A-1-a	0	15-29	45-62	43-60	24-35	8 - 14	0-18	NP - 1
	30-60	CBX-LFS, CBX- LCOS, CBV- LCOS, CBV-LFS	GP-GM, GW-GM	A-1-b, A-1-a	0	22-35	37-55	35-53	19-30	7-11	0-14	N P
Vitrandic Eutrocryepts	9-0	VFSL, GR-SL,	ML, OL, SM,	A-5, A-4	0	0	78-92	77-92	75-92	46-61	0-55	NP-4
	6-14	GK-VFSL, SL VFSL, ST-SL, VFSL, ST-SL, STV-VFSL, STV-	- SМ,	SM A-4	5-15	5-15	73-92	72-91	70-91	43 - 59	24-37	1-4
	14-21	CB-FSL, CBV- FSL, CBV-SL, CB-SL	SC-SM, SM	A-4, A-2-4	0	8-23	67-84	66-83	58-79	35-50	24-38	3 - 7
	21-28	CBV-FSL, GR-FSL, GR-SL, CBV-SL, CB-SL, CR-SL, CB-SL,	GM, SC-SM, SM	SM A-4, A-2-4	0	8-23	59-76	58-75	52-74	35-51	17-25	2 - 7
	28-60	CBV-FSL, CBV- COSL, CB-FSL, CB-COSL	GM, SC-SM, SM	SM A-4, A-2-4	0	15-29	51-69	49-67	33 - 48	25-37	16-21	1-4
Marmotland	0-0 0-9 9-16	SL SL, CB-SL SL, CB-SL	SM SM SM	A-4 A-4 A-2-4, A-4	000	16-23 8-23	92-100 91-100 82-91	92-100 90-100 81-91	70-79 69-79 60-71	37 - 44 37 - 44 29 - 37	0 - 42 0 - 35 0 - 32	NP-2 NP-2 NP-4
	16-23	GR-SL, SL	WS W	A-2-4, A-4	0 0	ω α η η	76-92	75-91	56-72	27-36	18-27	2 2 2 5
	0	, ם	5	7		0	0)) 	# # 0	77	24) N

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Per	rcentage pass sieve number-	Percentage passing sieve number	19	Liquid	Plas-
and soil name	· ——		Unified	AASHTO	>10 inches	3-10 inches	4	10	04	200	limit	ticity index
	티				Pat	Pat					Pat	
		i i	E									
Oxyaquic Dystrocryepts	0 0 0	N P M	T E	0 80 V = V	: :	: :	 		: :	!!!	: :	: :
	2 - 2	SI, IS	SM	A-4,			85-92	84-92	62-72	31-38	31	NP-3
				A-2-4								
	5-12	Sr, rs	SM	A-4, A-2-4	0	3-16	83-97	82-96	61-76	29-39	0-31	NP-3
	12-19	SL, CB-LFS,	SM	A-4,	0	23-36	96-08	96-62	59-76	29-39	0-31	NP-3
	0	LFS, CB-SL		A-2-4						0		9
	α 	GRV-COSL, GRV- LS, GR-COSL, GR-LS	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A-2-4, A-1-b	>	>	04-06	53 - 64 4	4.4.2.4. 4.4.2.4.		T 7 - 0	ለ ተ ነ
	28-60	_	GM	A-2-4,	0	0	49-59	46-57	38-49	19-27	0-29	NP-3
		GR-LS, GRV-SL		A-1-b								
Z3I: Canisrocks	0-1	BYV-SPM. BYX-	Ŀα	80		!	!	!	!	!	!	!
	ı ,	SPM	I I) <u> </u>								
	1-1	BYV-MPM, BYX-	PT	A-8	!	!	!	!	!	!	!	!
		MPM										
	1-2	BYX-HPM, BYV-	PT	A-8		!	!		!	!	!	:
		HPM										
	2-6	FS, ST-LS, LS, ST-FS	SP-SM, SC-SM	A-3, A-2-4	3-15	3-15	82-97	81-97	76-94	8-12	0-39	NP-1
	6-10	GR-FS, STV-FS,	SM	A-2-4	3-15	3-15	73-92	72-91	06-89	23-32	0-34	NP-1
		GR-LFS, STV- LFS										
	10-17	CB-FS, CBV-FS, CB-LFS, CBV-	SM	A-2-4	11-21	24-38	87-95	86-94	81-92	26-32	0-25	NP-1
		N. H. I.										
	17-26	CB-FS, CB-LFS, CBV-LFS, STX-FS, CBV-FS, STX-LFS	WS	A-2-4	15-35	T0-33	981	0 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	61-84	13-20	0-21	NP-1
	26-35	GRV-FS, GRX-FS, GRV-LFS, GRX- LFS	GP-GM, SM	A-1-b, A-2-4	7-22	7-22	40-63	38-61	36-60	7-13	0-20	NP-1
	35-60	STV-FS, STX-FS, STV-LFS, STX- LFS	GP-GM, GM, SM	SM A-1-a, A-1-b	11-44	15-29	24-60	21-58	20-57	4-13	0-18	NP-1

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	tion	Fragments	ents	Per	Percentage passing sieve number	passir	p p	Liquid	Plas-
and soil name					>10	3-10					limit	ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	#				Pct	Pct					Pct	
231:												
Typic Cryaquents	0-0	BYV-SPM, BY-SPM	PT	A-8	45-100	22-71	-	-	-	:	1	1
	0-1	BYV-MPM, BY-MPM	PT		45-100	22-71	-	-	:	:	:	-
		VFSL, SL, ST-	MI, SM	A-4	8-16	0-16	80-100	79-100	77-100	45-61	0-39	NP-2
		VFSL, ST-SL	-									
	ი - ღ	SL, LVFS, STV-	SM, ML	A-4,	8-53	0-16	29-100	59-100 57-100 57-100 35-65	57-100	35-65	0-35	NP-2
		SL, STX-SL,		A-2-4								
		STX-LVFS, STV-										
	9-17	STX-LS, STX-S,	SM	A-1-b,	8-53	0-15	60-100	58-100	44-81	15-32	0-23	NP-4
		SIV-S, SIV-LS,		A-2-4								
		LS, S										
	17-60	н	SM	A-2-4,	8-53	0-15	001-09	58-100	44-81	15-32	0-20	NP-4
		STX-LS, STX-S,		A-1-b								
		STV-S										
232:												
Canisrocks		STV-SPM, ST-SPM	PT	A-8	:	:	!	!	!	:	!	!
	0-2	S, LCOS, LS,	SM	A-1-b,	0	3-15	16-97	75-97	42-57	16-24	0-39	NP-1
		CB-LCOS, CB-		A-2-4								
		0.2										
	2-10	S, ST-S, ST-LS,	SM	A-2-4	7-23	2-18	84-96	83-95	63-76	20-26	0-23	NP-1
		ST-LCOS, LS,										
		LCOS, STV-										
		STV-LS										
	10-24	STX-LCOS, STX-	SP-SM, SM	A-1-b,	17-35	18-32	61-81	59-80	46-66	10-16	0-21	NP-1
		LS, STV-LCOS,		A-2-4								
		STV-LS, STX-S,										
	24-60	GRX-S. GRV-S.	GP-GM. GC-GM.	A-1-a.	23-41	20-34	38-65	35-64	28-52	5-11	0-21	NP-1
	; :	GRV-LS, GRV-		A-1-b,))		 		! !	ı !
		LCOS, GRX-		A-2-4								
		LCOS, GRX-LS										
		_	_	_	_	_	_	_	_	_		

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	cation	Fragi	Fragments	P P P	rcentage passi sieve number	Percentage passing sieve number	bu	Liquid	Plas-
and soil name		. — —	Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pat	Pct					Pct	
232:												
Glacierpoint	0-0	GR-SPM, SPM	PT.	8 0	: °	T	1 6			1 0	1 6	
	9 1	GR-LFS, LFS, LS, GR-LS	W	A-2-4	o 	4-T2	69-84	67-84	99-TC	T6-23		NP-Z
	6-9	ij,	SM	A-2-4	0	8-23	60-77	59-76	44-60	14-21	0-26	NP-2
	6	CB-LS, CBV-LS	SW GW	A-1-4	c	15-29	45-62	43-60	40-58	12-20	0-24	NP-2
) 		1	A-2-4	·	1			9	1		
	18-31	CBX-LFS, CBV- LFS, CBX-FS,	GM, SM	A-1-b, A-2-4	0	42-53	47-70	45-68	42-66	13-22	0-19	NP-2
	31-60	CBV-FS STX-FS, ST-LFS, STV-LFS, STX- LFS, ST-FS,	SM SM	A-2-4	8 - 23	8-36	56-91	54-91	51-89	16-30	0-19	NP - 2
		STV-FS										
234: Rock outcrop.												
Rubble land.												
235: Cani arocka	0-1	NA DA	<u>Б</u>	α 	c 	c	! !	! ! !	! ! !	! !	!	! ! !
	1 -3 1	MPM	I E	A-8	0	0		:		-	-	1
	3-4	нъм	PT	A-8	0	0	:	1	:	-		:
	4-11		SM	A-1-b,	0	0	79-97	78-97	45-59	19-26	0-38	NP-1
	11-17	LS, GR-LCOS	SM	A-2-4 A-2-4	0	0	85-97	85-97	49-59	20-26	0-29	NP-1
				A-1-b								
	17-37	LCOS, GR-LS,	WS.	A-2-4,	0	0	79-97	78-97	45-59	19-26	0-24	NP-1
	37-53	SI-LS, SI-LCOS,	S, SM	A-2-4,	22-35	4-15	68-91	06-19	39-55	16-24	0-19	NP-1
		STV-LS, STV- LCOS		A-1-b								
	53 - 68	GR-LS, CBV-LS, CB-LCOS, CBV- LCOS, GR-LCOS, CB-LS	SM	A-1-b	0	7-22	61-77	59-76	34-46	14-20	0-14	Ч
Rock outcrop.												
Rubble land.												
	_	_	_	_	_				_	_	_	

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Pe	Percentage passing sieve number	passir mber	bu	Liquid	Plas-
and soil name					>10	3-10					limit	ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	티				Pat	Pat					Pat	
237:												
Canisrocks	0-0	Ø	PT	A-8	:	:	:	:	!	_ :	_	:
	0-3	LS, SL	В	A-1-a,	0	0	41-79	39-78	29-61	15-32	0-37	NP-1
	3 - 8	ST-LCOS, ST-SL,	SM	A-2-4	3-15	0	84-97	83-97	57-71	20-27	0-29	NP - 3
		LCOS, SL								_		
	8-13	GR-S, STV-S,	SM	A-1-b,	7-22	22-35	06-99	65-90	44-65	12-21	0-25	NP-3
		GR-LS, STV-SL,		A-2-4								
	13-27	CBV-SL, CBV-LS,	SM	A-2-4	10-22	35-48	78-94	77-94	52-68	15-23	0-21	NP-3
		LS, CBX-LCOS										
	27-60	GRX-S, BY-LCOS,	GP-GM, SW-SM, A-1-b,	A-1-b,	21-24	14-29	36-54	34-52	22-37	6-11	0-20	NP-3
	_		GW-GM	A-1-a	_					_		
	_			_						_		
		GRV-S										
בייייייי די היייייי לא הייסה לי משר מ	0	BVV-SPM BV-SPM	Ŀα	α .	: 		!	:	!			;
					,	•			(1		
	0 -4	ST-LS, S, ST-S, LS	WS	A-2-4	0-15	0	84-100	83-100	68-87	25-35	0-40	NP-3
	4-17	LS. ST-LS. ST-	WS	A-2-4	3-15	3-15	82-97	81-97	61-78	24-34	0-26	NP-3
	ì •	SI, SI		· •))) H	1		1	1	9	,
	17-27	ST-LS, STV-SL,	SM	A-1-b,	15-35	7-22	66-91	65-91	47-71	13-23	0-24	NP-3
		ST-SI, STV-LS		A-2-4								
	27-60		SM	A-2-4,	15-41	15-35	45-90	43-90	34-76	10-26	0-20	NP-3
		ST-S, STV-LS, STX-S, STX-LS		A-1-b								
Vitrandic Cryorthents	0-1	LVFS, LS	SM	A-2-4,	0	0	85-100	84-100	70-88	33-43	0-33	NP-2
	,	1		A-4		1						,
	J-6	LCOS, LS, CB-	W.S.	A-4, A-2-4	0	0-15	76-92	75-92	52-68	26-36	0-33	NP-2
	6-12	U	N.	- 4 - 4	c	c	78-92	77-92	56-71	28-20	0-22	ND-2
	1 0	LCOS, LS		A-2-4	·	>	100	70.1	1	000	N N	7 4 4 4 4
	12-60	GRV-LS, GR-SL,	SM, GM	A-2-4,	0	0-16	34-65	31-63	23-49	13-30	0-19	NP-2
		GR-LS, GRV-SL,		A-1-a,						_		
		GRX-LS, GRX-SL		A-1-b								
								_		_	_	

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragn	Fragments	Per	Percentage passing sieve number	passir mber	19	Liquid	Plas-
and soil name	! 				>10	3-10						ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	指				Pat	Pct					Pat	
238: Oxyaquic Cryorthents	0-3	BYV-SL, SL	SM	A-2-4,	0-24	0-16	80-100	79-100	58-77	35-48	0-38	NP-3
	3-13	BYV-SL, SL	SM	A-4 A-4,	0-24	0-16	80-100	79-100	58-77	35-48	0-29	NP-3
				A-2-4								
	13-18	BYV-SL, SL	SC-SM, SM	A-4,	0-24	0-16	80-100	79-100	55-76	31-46	0-26	NP-4
	18-30	BYV-LCOS, LCOS	SM	A-2-4,	0-23	0-15	81-100	80-100	46-59	18-24	0-14	ΝΡ
	30-60	BYV-COS, COS	SW-SM, SP-SM	A-1-b	0-22	0-14	73-100	72-100	32-47	7-12	0-14	ΝΡ
Canisrocks	0-0	BY-SPM	PT	A-8		1	1		 	1	1	1
	0-1	BY-MPM	PT	A-8			1 1	-		1 1		
	1-4	BY-LCOS, LS, S,	SM	A-1-b,	23-42	0	96-64	78-96	44-61	14-22	0-37	NP-1
		BYV-LCOS, BYV- LS, BY-LS,		A-2-4								
	7	מיום למיטון		7	7	0	0	1	27		7	į
	0 -1 -1	LS, BYV-LCOS, BYX-LCOS, BYX-	WG	A-1-5, A-2-4	7 7 7	0	0	16-11	า 0 1 0	T7 - CT	# H I O	ч З
		S, BYV-LS, BY-										
		LS, BYV-S, BY-										
_	18-28	BYX-LCOS, BYV-	SM	A-1-b,	27-67	16-38	62-94	60-94	35-63	9-18	0-14	NP
		LS, BY-S, BYV-S, BY-LS, BY-		A-2-4								
		LCOS, BYV- LCOS, BYX-S, BYX-LS										
	28-34	BYV-S, BY-S,	SM	A-1-b,	19-67	9-38	62-95	60-95	32-58	8-16	0-14	ΝP
		BYX-LCOS, BYV-		A-2-4								
		LCOS, BYX-LS,										
		BYX-S, BYV- LCOS										
	34-60	BYX-LCOS, BY-S, BY-LS, BYX-S,	SP-SM, SM	A-2-4, A-1-b	24-65	8-29	33-90	31-90	19-62	4-17	0-14	A N
		LCOS										

Table 11.-Engineering Index Properties-Continued

			Classification	ation	Fragi	Fragments	Peı	centage	Percentage passing			
Map symbol	Depth	USDA texture					U1	sieve number	mper		Liquid	Plas-
and soil name					>10	3-10					limit ticity	ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	#				Pct	Pct					Pct	
239:												
Crazymule	0-0	SPM, ST-SPM	PT	A-8	:	!	-	:	-	!	!	!
	0-5	ST-FSL, SL, ST-	SM	A-2-4,	0-16	0-16	81-100	81-100 80-100 59-77	59-77	29-39	0-39	NP-1
		SL, FSL		A-4								
	5-13	STV-SL, GR-SL,	SM	A-2-4	3-16	3-16	65-84	63-83	47-65	25-35	0-24	NP-1
		GR-FSL, STV-										
		FSL										
	13-23	STV-SL, CB-SL,	SM, GM	A-2-4,	0-16	8-23	48-84	46-83	34-64	20-40	0-24	NP-3
		STV-COSL, CB-		A-4								
		COSL, STV-LFS,		. —								
		STV-FSL, CB-										
		FSL, CB-LFS										
	23-60	GRV-COSL, CBX-	SM, GM	A-2-4,	0	16-36	30-68	28-67	21-53	11-29	0-20	NP-3
		FSL, CBV-LFS,		A-1-b								
	_	CBV-FSL, CB-										
	_	LFS, CB-SL,										
		GRV-FSL, GRV-										
		LFS, CB-COSL,										
		CBV-COSL, CBX-										
		COSI, CBX-SI,		. —								
	_	CBV-SL, CBX-										
	_	LFS, GRV-SL,										
		CB-FSL			_							

Table 11.-Engineering Index Properties-Continued

May a com	Too too th	TRUE TANK	Classification	ation	Fragments	ents	Peı	centage	Percentage passing	gr.	1.1	- α - α - α
Map Symbor	הקים היים	ביתובה ביתום					-	בו מא מ	- Tagrim		7	ו מ מ
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity
	ul I				Pat	Pat					Pat	
239:						_						
Canisrocks	0-0	BY-SPM	PT	A-8	:	:	!	;	!	-	:	!
	0-1	BY-MPM	PT	A-8		:	!	:	:	:	:	:
	1-4	S, BY-LCOS, LS,	SM	A-1-b,	23-42	0	96-64	78-96	44-61	14-22	0-37	NP-1
		BYV-LCOS, BYV-		A-2-4								
		LS, BY-LS,			_							
	_	BYV-S, BY-S			_	_						
	4-18	BY-LCOS, BY-S,	SM	A-1-b,	14-57	8-38	78-97	77-97	45-63	13-21	0-14	NP
		BYX-LCOS, BYX-		A-2-4								
		LS, BYV-S, BY-										
		LS, BYV-LS,				-						
		BYV-LCOS, BYX-										
		Ø										
	18-28	BY-LS, BYV-LS,	SM	A-1-b,	27-67	16-38	62-94	60-94	35-63	9-18	0-14	NP
		BYV-LCOS, BYX-		A-2-4								
		S, BYX-LS, BY-										
	_	LCOS, BYX-			_							
	_	LCOS, BY-S,			_							
	_	BYV-S			_							
	28-34	BYX-LCOS, BY-S,	SM	A-1-b,	19-67	9-38	62-95	60-95	32-58	8-16	0-14	NP
	_	BYV-S, BY-LS,		A-2-4	_							
		BYV-LS, BYV-										
		LCOS, BYX-S,										
		BYX-LS, BY-										
		LCOS										
	34-60	BY-S, BYX-LCOS,	SP-SM, SM	A-2-4,	24-65	8-29	33-90	31-90	19-62	4-17	0-14	NP
		BY-LS, BYX-S,		A-1-b								
		BYX-LS, BY-										
		rcos										

Table 11.-Engineering Index Properties-Continued

	Depth	USDA texture	Classification	ation	Fragi	Fragments	Бе	rcentage passi sieve number	Percentage passing sieve number	p.	Liquid	Plas-
and soll name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pat	Pct					Pat	
241:												
Canisrocks	0 -0	ST-SPM, SPM	EL EL	∞ o	:	:	!	-	-	!	!	-
	1 - 1	н	SM	A-2-4	0	0-15	84-97	83-97	58-77	17-27	9 6	NP-1
	4-18	STV-S, ST-S, ST-LS, ST-	SM	A-2-4	4-15	7-35	78-95	77-95	53-75	11-18	0-22	NP-1
		LCOS, STV- LCOS, STV-LS										
	18-28	TV.	SM	A-2-4	10-29	15-36	79-95	79-95	55-77	12-18	0-20	NP-1
	28-34	ST-LCOS, ST-LS STV-S, ST-LCOS, ST-LS, ST-S,	SM	A-2-4	10-29	8-36	96-64	79-95	55-76	11-16	0-14	NP
		STV-LCOS, STV- LS										
	34-60	ST-S, ST-LS, ST-LCOS, STV-	SP-SM, SM	A-2-4, A-1-b	7-27	7-27	58-92	56-92	39-74	8-17	0-14	N P
		LCOS, STV-LS, STV-S										
242:												
Rock outcrop.												
Canisrocks	0-0	STV-SPM, ST-	PT	A-8	:	! ! !	!	!	-	!	 	!
	0-1	SPM, STX-SPM ST-SPM, STV-	PT	A-8	:	:	:	:	:	!	:	:
	,	MPM, STX-MPM										
	1-1	STX-HPM, STV-	PT	8-8 	!	:	<u> </u>	:	-	1	1	-
	1-7	STX-S, STX-	SM	A-1-b,	22-35	15-29	53-81	51-80	39-64	14-25	0-39	NP-2
		STV-LCOS, STV-		A-2-4								
	7-23	SIX-LCOS, SIV-	SM, GC-GM,	A-1-b,	14-27	21-34	38-65	35-64	26-51	9-19	0-28	NP-2
		S, STX-LS,		A-2-4								
		STV-LCOS, STX- S, STV-LS		A-1-a								
	23-32	CBX-S, CBX-	SM, SC-SM,	A-1-b,	7-21	34-45	42-71	39-70	30-56	10-21	0-20	NP-2
		CBX-LS, CBV-	mb (mb - 25	A-1-a								
	32-60	LCOS, CBV-LS STV-S, STX-S,	SM, GM	A-2-4,	33-51	26-41	45-75	43-74	32-59	10-20	0-19	NP-2
		BYV-LCOS, STV-		A-1-b								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Pei	rcentage passi sieve number	Percentage passing sieve number	J.G	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pct	Pct					Pct	
242: Xeric Dystrocryepts	0-0	MGS-TS WGS	E-d	α α								!
)) 	STV-SPM) <u> </u>								
	0-2	LS, GR-LS	SM	A-2-4	0	0	78-92	77-92	59-74	20-28	0-36	NP-1
	5-20	BY-LS, BYV-LS		A-2-4	13-31	4-23	68-91 00-100	16-99		18-27		NP-1
	20-35	STV-LS, ST-LS	NS.	A-2-4	23-36			88-100		23-30		NP-1
	35-47	CB-LS, LS	SP-SM, SC-SM	A-2-4 A-3,	0 0	8 O	84-95	78-95	59-73	22-28	0-18	NP-1 NP-1
	} : 			A-2-4	·			1) 		ı
244:												
Typic Cryorthents	0-0	BY-SPM	PT	A-8	<u>-</u>	<u>-</u>	!	:	:	:	:	1 1
	0-1	BY-MPM	PT	A-8	<u>-</u>	<u>-</u>	!	:	:	:	_	1 1
	1-4	LS, S, BYV-	SM	A-1-b,	23-42	0	96-62	78-96	44-61	14-22	0-37	NP-1
		LCOS, BYV-LS,		A-2-4							_	
		BY-S, BY-LCOS										
	4-18	BYV-S, BYV-LS,	SM	A-1-b,	14-57	8-38	78-97	77-97	45-63	13-21	0-14	NP
		BYX-LCOS, BYV-		A-2-4								
		LCOS, BYX-LS,								_		
		BY-LCOS, BYX-									_	
	0	מו-בס' מיים לי		- -	1	,				7	7	į
	78-78 T8-78	BY-LS, BYA-	Mar.	A-I-D,	79-17	T0-38	0 Z - V 4	00 - V 4	30-03	۲ ۱ ۲	0 - L4	A A
		BYV-LS, BYV-		۲ ا ا								
		LCOS, BYX-S,									_	
		BYX-LS, BY-									-	
	20.07	LCOS, BYV-S	200	د د ت	10.67	000	30 03	9	0.0	91	7	Q.
	F 0 1 0 7	BVX-I,COS BV-	# G	A-2-4	0 1 6 7	0	0 0 0	000	000	D H I O	# H I O	4
		S, BYV-S, BY-		1							_	
		LS, BYV-LS,									_	
		BYV-LCOS, BY-										
		rcos										
	34-60	BYX-LCOS, BY-	SP-SM, SM	A-2-4,	24-65	8-29	33-90	31-90	19-62	4-17	0-14	МР
		BYX-S, BY-LS,		Q							_	
		BY-S										
Rubble land.												
Rock outcrop.												
						_				_		

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Pe	rcentage passi sieve number	Percentage passing sieve number		Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200		ticity index
	티				Pct	Pat					Pat	
245: Rock outcrop.												
Canisrocks		BY-SPM	PT	A-8	!	-	!	!	:	:		:
	0-1	BY-MPM	PT	A-8	!!!	!!!	:	:	:	!!!	_	!!!
	1-4	LS, BY-LCOS, S,	SM	A-1-b,	23-42	0	96-62	78-96	44-61	14-22	0-37	NP-1
		BYV-LCOS, BYV- LS, BY-LS, BYV-S, BY-S		A-2-4								
	4-18	BYV-LS, BY-	SM	A-1-b,	14-57	8-38	78-97	77-97	45-63	13-21	0-14	NP
		LCOS, BYX- LCOS, BY-S,		A-2-4								
		BYV-S, BY-LS,										
		BYV-LCOS, BYX- S, BYX-LS										
	18-28	BYX-S, BY-LCOS,	SM	A-1-b,	27-67	16-38	62-94	60-94	35-63	9-18	0-14	NP
		BYX-LCOS, BYX-		A-2-4								
		LS, BY-S, BYV-										
		BY-LS, BYV-S										
	28-34	BYX-LCOS, BY-S,	SM	A-1-b,	19-61	9-38	62-95	60-95	32-58	8-16	0-14	ΝΡ
		BYV-S, BY-LS, BYV-LS, BYV-		A-2-4								
		LCOS, BYX-S,										
		BYX-LS, BY-										
	34-60	BY-LS, BY-S,	SP-SM, SM	A-2-4,	24-65	8-29	33-90	31-90	19-62	4-17	0-14	ΝÞ
		BYX-LCOS, BY- LCOS, BYX-LS, BYX-S		A-1-b								
Xeric Dystrocryepts		SL, GR-SL	SM	A-2-4,	0		78-92	77-92	26-69	34-43		NP-1
	2 - 4		SM	A-4,	0	0	78-92	77-92	26-69	34-43	0-25	NP-1
	4-11		SM	A-4	0	0	78-92	77-92	63-80	38-50	0-22	NP-3
	11-60	VFSL, GR-VFSL	MI	A-4	0		77-92	76-91		49-62		NP-1
246.												
Rock outcrop, domes												

Table 11.-Engineering Index Properties-Continued

Codmin		T & COL	Classification	ation	Fragn	Fragments	Peı	Percentage passing	passir	ng		0 0
and soil name	15 d 5 d				>10	3-10		0.00	100		limit	ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	#I				Pct	Pct					Pct	
247:												
Canisrocks	0-2	BYV-SPM, BY-SPM	PT	A-8	:	:	-	:	-	:	:	!!!
	2-8	BY-LS, BY-COS,		A-2-4,	6-30	3-15	79-97	78-97	46-59	14-20	0-24	NP-1
		BY-LCOS, BYV-		A-1-b	_	_	_					
		S, LS,										
		LS, LCOS, COS,										
	2 0	TOOK BY-TOOK	No.	د د ا	08-3	2 1	70-07	70-07	47-60	15.20	0-0	ND-1
)	BYV-I,COS. I.S.	i	A-2-4)))) H	1	1
		BYV-LS, BY-LS,		ı !								
		COS, BYV-COS,										
		BY-COS										
	36-45	LCOS, BY-COS,	SM	A-1-b,	6-29	7-14	63-85	62-84	40-56	11-17	0-19	NP-1
		BYV-COS, COS,		A-2-4								
	_	BY-LCOS, BY-			_	_						
		LS, BYV-LS,			_		_					
		LS, BYV-LCOS										
	45-60	BY-LCOS, BYV-	SM	A-1-b,	15-43	7-27	51-92	49-91	33-62	9-18	0-18	NP-1
		LCOS, LS, BYV-		A-2-4								
		LS, LCOS, BYX-										
		COS, BY-LS,										
		COS, BYV-COS,										
		BY-COS, BYX-					_	_				
		LCOS, BYX-LS										
Xeric Dystrocryepts		SPM	T-d	8-8	:	:	:	-	-	:	:	;
	1-2	нРм	PT	A-8	:	:	:	1	!	:	!	1
	2-10	SI, IS	SM	A-2-4	0	0	85-100	84-100	62-19	22-29	0-36	NP-1
	10-21		SM	A-2-4	0	0	85-100		62-19	22-29	0-29	NP-1
	21-31		SM	A-2-4	0	0	85-100	84-100	62-19	22-29	0-24	NP-1
	31-42	LS, SL	SM	A-2-4	0	0	85-100		62-19	22-29	0-22	NP-1
	42-58	SL, LS, GR-LS,	SM	A-2-4	0	0	78-100	77-100	59-79	21-29	0-18	NP-1
		SL										
	28-60	GR-LS, GRV-LS,	SM, GM	A-1-b,	0	0	47-80	44-79	34-62	12-22	0-14	ΝΡ
		GR-SL, GRV-SL		A-2-4								
	_	_										

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Pe	rcentage passisisieve number	Percentage passing sieve number	ng.	Liquid	Plas-
and soil name	. ——	- <u></u>	Unified	AASHTO	>10 3-10 inches	3-10 inches	4	10	40	200	limit	ticity index
	ri l				Pct	Pct					Pct	
248:												
Canisrocks	0-1	ST-SPM, STV-SPM	PT	A-8	22-100	22-71	:	1	:	:	<u> </u>	1
	1-2	STV-MPM, ST-MPM	PT	A-8	22-100	22-71	1	1	1		-	-
	2-2	STV-HPM, ST-HPM	PT	A-8	22-100	22-71	1	1	1	1	1	:
	2-5	STV-COS, ST-	SM	A-2-4,	3-30	3-22	68-97	26-19	41-61	19-30	0-29	NP-1
	_	COS, LCOS,		A-1-b								
	_	STV-LCOS, LS,										
		ST-LS, STV-LS,										
		COS, ST-LCOS										
	5-13	STV-COS, COS,	SM	A-1-b,	3-30	3-35	63-97	62-97	36-59	15-26	0-24	NP-1
		STV-LCOS, ST-		A-2-4								
		LCOS, ST-COS,										
		LS, LCOS, STV-		_								
		LS, ST-LS										
	13-32	STV-LCOS, ST-	SP-SM, SM,	A-1-b,	14-47	7-27	27-84	24-83	12-43	4-16	0-19	NP-1
		LS, STX-LS,	GM, GP, GW	A-1-a								
	_	STV-COS, STX-		_								
	_	COS, STV-LS,		_	_							
	_	SIX-LCOS, SI-		_	_							
	_	ICOS, SI-COS		_								
	32-60	STX-LS, STV-LS,	SP-SM, GP, GW A-1-b,	A-1-b,	14-54	14-27	21-83	18-82	8-40	2-11	0-17	NP-1
		STX-LCOS, ST-		A-1-a								
		LCOS, STV-										
		LCOS, STX-COS,										
		STV-COS, ST-										
		LS, ST-COS										
Rock outgrop.												
•												

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	ents	Per	rcentage pas sieve number	Percentage passing sieve number	D.	Liquid	Plas-
and soil name	· ———		7 4 1 1	OF#50 & &	>10	3-10	4	-	0.4	000		ticity
	티		3		Pct	Pat		2			Pct	
448: Glacierpoint	0 - 0	SPM, BYV-SPM,	_PT	A-8	!	!	1	!	!	!	:	!
	0-1	BYV-MPM, BY- MPM, MPM	PT	A-8	!	!	!	!	!	!	!	!
	1-4	ST-LS, LS, STV-LS, S, SY, STT-S	SM	A-2-4, A-1-b	8 - 42	4-15	65-95	64-95	49-73	16-25	0-14	МР
	4-16	STX-S, STX-LS, ST-LS, ST-S,	SM	A-1-b, A-2-4	8-42	8-23	53-91	51-91	39-70	13-24	0-14	NP
	16-27	STV-S, STX-S, STX-LS, ST-LS, ST-S, STV-LS	SM	A-1-b, A-2-4	15-42	8-23	63-91	61-90	47-70	15-23	0-14	NP
	27 - 46	ST-LS, STV-S, STV-LS, STX- LS, STX-S, ST-	SP-SM, SM	A-2-4, A-1-b	7-29	7-22	51-92	49-91	39-72	7-13	0-14	QN G
	46-64	STX-S, STX-LS, ST-LS, ST-S, STV-S, STV-LS	SP-SM, SM	A-2-4, A-1-b	7-29	7-22	51-92	49-91	39-72	7-13	0-14	ď.
249: Rock outcrop.												
Canisrocks	0-1	SPM	PT	A-8	0	0	:	1	-	1 1	 	!
	3-4	МРМ	II II	8 00 - 1	0 0	0 0	! !			: :		
	4-11	GR-LCOS, GR-LS,	SM	A-1-b,	0	0	79-97	78-97	45-59	19-26	ω	NP-1
	11-17	LCOS, LS	WS	A-2-4 A-2-4,	0	0	85-97	85-97	49-59	20-26	0-29	NP-1
	17-37	LCOS, LS, GR-	NS	A-1-D A-2-4, A-1-b	0	0	79-97	78-97	45-59	19-26	0-24	NP-1
	37-53	ᆸᅄᇃ	SM	A-2-4, A-1-b	22-35	4-15	68-91	67-90	39-55	16-24	0-19	NP-1
	53 - 68	CB-LCOS, CBV- LCOS, GR-LS, GR-LCOS, CB- LS, CBV-LS	SM	A-1-b	0	7-22	61-77	59-76	34-46	14-20	0-14	Ā.

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragn	Fragments	Per	Percentage passing sieve number	passir mber		Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	ul ul				Pct	Pct					Pct	
250:												
Canisrocks	0-0	BY-SPM BY-MPM	T L	& & - &								: :
	1-4	BY-S, BY-LCOS,	SM	A-1-b,	23-42	0	96-64	78-96	44-61	14-22	37	NP-1
		BYV-S, BY-LS,		A-2-4								
		LCOS, S, LS										
	4-18	BY-LCOS, BYX-	SM	A-1-b,	14-57	8-38	78-97	79-77	45-63	13-21	0-14	NP
		LS, BYX-S,		A-2-4								
		BYV-LCOS, BYV-										
		BYV-S, BY-S,										
	-	BYX-LCOS			1							!
	18-28	BY-S, BY-LCOS,	NS.	A-1-b,	27-67	16-38	62-94	60-94	35-63	9-18	0-14	МР
		DIA-LCOS, BIV-		#-7-W								
		LCOS, BYX-LS,									_	
		BYV-LS, BY-LS										
	28-34	BYV-S, BY-LS,	SM	A-1-b,	19-61	9-38	62-95	60-95	32-58	8-16	0-14	NP
		BYV-LS, BYV-		A-2-4								
		LCOS, BYX-S,										
		BYX-LS, BY-										
		LCOS, BY-S										
_	34-60	BY-S, BYX-S,	SP-SM, SM	A-2-4,	24-65	8-29	33-90	31-90	19-62	4-17	0-14	NP
		$\overline{}$		A-1-b								
		LS, BY-LS, BYX-LCOS										
Xeric Dustrocryents	0	ST-SPM SPM	<u>-</u>	α - 4		1						!
	0 0	MON MON ES	· F	0								
	1 6 - 1	SIV-LES, SI-	I W	A-2-4	8-23	8-23	60-83	59-82	49-71	27-42		NP-3
		LFS, STV-FSL,										
	9-19	STX-LFS, STX-	SM, GM	A-1-b,	8-23	16-30	50-74	48-73	35-57	22-37	0-31	NP-3
		SL, STV-LFS,		A-2-4,								
		ST-LFS, STV-		A-4								
	19-32	CBV-FSL, CBV-	ЖБ	A-1-b,	8-23	30-42	28-55	25-53	20-46	13-31	0-22	NP-3
		COSI, CBX-		A-1-a								
		COSI, CBX-FSI										
	32-60	CBX-COSL, CBX-	GM, GC-GM	A-1-b, A-1-a	0	30-42	27-45	24-42	17-31	10-20	0-20	NP-3
		LCOS, CBV-COSL		 								
				_		_					_	

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Pe	Percentage passing sieve number	passir mber	gr.	Lignid	Plas-
and soil name	ı - — —		Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	[태]			ļ 	Pat	Pat					Pat	
251: Glacierpoint	0 - 0	BYV-SPM, SPM,	ЪТ	A-8	1 1	!	!	!!!!	! !	1 1 1	! !	!
	0-1	BYV-MPM, BY-	PT	A-8	!	!	:	!	!	!	!	!
	1-4	LFS, ST-LS, LS, ST-LFS, STV-	SM	A-2-4, A-1-b	8-42	4-15	65-95	64-95	49-73	16-25	0-14	NP
	4-16	LFS, STV-LS STV-LS, STV- LFS, ST-LFS,	SM	A-1-b, A-2-4	8-42	8-23	53-91	51-91	39-70	13-24	0-14	Ä
	1) ,	ST-LS, STX-LS, STX-LFS		, , ,	L	((Ç.	1	C C	7	;
	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	LS, ST-LS, STA- LS, ST-LS, ST- LFS, STV-LFS,	ξ. 	A-1-b, A-2-4	15-47	2 1 2 1	٦ ٢ ٢	0 h - T o	0/-/4	77-CT	0 T - L	ો ડ
	27-46	ST-LS, STV-LS, STV-VFS, ST- VFS, STX-LS, STX-VFS	MS	A-2-4, A-1-b	7-29	7-22	51-92	49-91	49-91	22-42	0-14	ď
	46 - 64	SIX-VES, SIX- IS, ST-LS, SIV-LS, SIV- VFS, ST-VFS	ЖS	A-2-4, A-1-b	7-29	7-22	51-92	49-91	49-91	22 - 42	0-14	NP
Typic Cryorthents	0 - 0	ST-SPM, SPM ST-LS, STV-LS,	PT SM	A-8 A-2-4,	8 - 23	8-23		59-82	41-64	17-30	0-43	 NP-6
	4-10	ST-SL, ST-SL ST-SL, STV-LS,	SM	A-1-b A-2-4,	8-23	8-23	60-83	59-82	40-63	17-30	0-39	NP - 6
	10-16	STV-LS, ST-LS, ST-ST.	SC-SM, SM	A-2-4,	8-23	16-30	58-82	56-81	38-61	15-28	0-30	NP - 6
	16-30	ST-LS, ST-SL, STV-SL, STV-LS	SC-SM, SM	A-2-4,	8-23	8-23	60-83	59-82	40-62	15-27	0-25	NP - 6
	30-60	STV-LS, ST-LS, STV-SL, ST-SL	SM	A-2-4, A-1-b	3-16	8-23	55-76	53-75	38 - 59	16-28	0-23	NP - 6

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	ents	Per	Percentage passing sieve number	passir mber			Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	ul				Pat	Pct					Pat	
252: Rock outcrop.												
2 C C T T T T T T T T T T T T T T T T T	0	MV. GDW	Fa	α 1					!			
	0-1	BY-MPM	. E	0 80 - 4 4	:	-	-	-	-	-	-	-
	1-4	BYV-LS, BY-LS,	SM	A-1-b,	23-42	0	79-96	78-96	44-61	14-22	37	NP-1
	-	BYV-S, BY-S,		A-2-4								
	4-18	BYV-LS, BYV-	SM	A-1-b,	14-57	8-38	78-97	79-77	45-63	13-21	0-14	ΝÞ
		LCOS, BYV-S,		A-2-4								
		BYX-LS, BY-										
		LCOS, BY-LS,										
		BYX-LCOS										
	18-28	BY-S, BYV-S,	SM	A-1-b,	27-67	16-38	62-94	60-94	35-63	9-18	0-14	МР
		LS BY-LCOS		¥-7-¥								
		BY-LS, BYV-										
	-	LCOS						-	;		-	
	28-34	BYV-S, BY-LS,	SM	A-1-b,	19-61	9-38	62-95	60-95	32-58	8-16	0-14	N P
		T.COS BYX-S		A-2-4								
		BY-S. BY-LOS										
		BYX-LS, BYX-										
	34-60	BYX-LCOS, BY-S,	SP-SM, SM	A-2-4,	24-65	8-29	33-90	31-90	19-62	4-17	0-14	ΝΡ
		BYX-S, BY-		A-1-b								
		LCOS, BYX-LS, BY-LS										
Xeric Dystrocryepts	0 - 3	ST-SL, ST-LS,	SM	A-2-4	0-15	0-15	81-92	80-92	62-73	21-27	0-38	NP-1
	3-15	STV-SL, GR-SL,	SM	A-2-4,	0-15	0-15	65-92	64-92	49-73	17-27	0-33	NP-1
		LS, STV-LS,		A-1-b								
	L 1	GR-LS, SL	3 6 6		,	L	i.		L	7		,
	T5-35	GR-SL, GRV-LS,	GC-GM, SC-SM	A-2-4, A-1-b	3-T5	0-T2	45-71	43-70	33-55	11-20	0-22	1 - 4 N
	35-47		01	A-2-4	8-29	8-36	74-98	73-98	55-77	19-28	0-18	NP-1
	1	NT.V-NL			(0				,		Ţ
	47-61	ST-LS, STX-LS,	WS _	A-1-b,	8-53	8-23	76-91	54-91 	41-72	14-26	9T-0	NP-1
				F - 7 - G								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	ents	Per	Percentage passing sieve number	passin	gr.	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	指				Pat	Pat					Pct	
Canisrocks	0-1	SPM, ST-SPM, STV-SPM	Еd	A-8	!	!	!	:	!	!	:	:
	1-2	MPM, ST-MPM, STV-MPM	PT	A-8	!	-	!	-	!	:	:	-
	2-3	SL, ST-SL, LS	SM	A-4, A-2-4	0-16	3-16	81-97	96-08	60-75	30-39	0-14	NP-1
	3-11	CB-S, CBV-S, BYX-S, BYX-LS, CBV-LS, CB-LS	SM, GM	A-2-4, A-1-b	0 - 32	16-42	48 - 83	46-82	35-65	12-24	0-14	NP-1
	11-23	CB-LS, CBV-LS, BYX-LS, CB-S, CRV-S RYX-S	SM	A-1-b, A-2-4	3-31	8 - 42	60-92	58-91	45-73	16-27	0-14	NP
	23-35		GM, SM, SC-SM, GC-GM	A-1-b, A-2-4,	16-71	8-23	33-91	31-90	24-72	8-26	0-14	NP
	35-60	ST-LS, STX-LS, STX-, ST-S	GM, SM, SC-SM, GC-GM	A-1-a A-1-a, A-1-b, A-2-4	15-63	15-36	22-81	19-80	15-64	5-24	0-17	NP-1
Glacierpoint	0 - 0	BYV-HPM, BY-HPM BYX-FSL, ST-	FPT	A-8 A-2-4,	8 - 39	8-23	55-83	53-82	45-72	27-44	0 - 4 0	 NP-3
	4-7	FSL, SIV-FSL SIV-FSL, BYX- FSL, SI-FSL	SM	A-4 A-2-4, A-1-b,	8 - 39	8-23	55-83	53-82	44-71	24-41	0-38	NP - 3
	7-11	BYX-SL, BY-SL,	SM, GM	A-4 A-2-4, A-1-b	16-47	8-30	48-82	46-81	34-64	18-35	0-31	NP-3
	11-19	BYX-COSL, BYV- COSL, BY-COSL	SM, GM	A-2-4, A-1-b,	16-47	8-23	35-82	32-81	20-54	12-34	0-27	NP-3
	19-60	BYX-LCOS, BYV- LCOS	GW-GM, GM, SM	A.	23-51	7-22	17-66	13-65	8-39	3-17	0-17	NP-1
Humic Dystrocryepts	0-0	ST-SPM, SPM	F4	8 - 8 8 - 8								
	1-2		DT.	A-8 A-1-b, A-2-4,	8 - 23	8 .	60-91	59-91	42-69	25-43	9 .	NP-3
	16-30	STV-LS, STX-LS, ST-LS	GP-GM	A-4 A-1-a, A-1-b,	15-42	15-36	35-81	32-80	24 - 63	8-21	0-24	NP - 1
	30-60	STX-LS, STV-LS	GW-GM	A-1-b, A-2-4, A-1-a	23-36	23-47	18-70	14-68	11-54	3-18	0-17	NP-1

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	ents	Per	Percentage passing sieve number	passir mber	91	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	[[[[Pct	Pat					Pct	
256: Granoflat	C	Mdo -	E _P	00	 	1		 	! !	 	!	1
	1 2	- MPM.	1 1	0 00								
	2-7	LS, ST-LFS,	SM	A-2-4,	3-15	8-15	65-84	64-83	49-67	17-25	!	;
		STV-LFS, STV-		A-1-b								
	7-13	STV-LFS. CBV-	W.S.	A-2-4	3-29	23-29	65-82	64-81	49-65	17-25	0-28	NP-2
		LFS, CB-LFS,		A-1-b)) 1	0	1)	1)	1
		CB-LS, CBV-LS, STV-LS										
	13-60	STX-LFS, STV-	SM	A-1-b,	14-27	7-21	53-84	51-83	39-66	13-25	0-20	NP-2
		SIX-LS		F 17 17								
Rock outcrop.												
Rubble land.												
Waterwheel	0-1	BYX-SPM, BYV-	PT	A-8	-	1		!	1	1	-	;
		SPM, BY-SPM										
	1-2	BYX-MPM, BYV-	PT	A-8	-	-	-	-	-	-	-	1
	2 - 2	MPM, BY-MPM BYX-HPM, BY-	T-d	8-8-	!	!	!			!	1	!
	ı ı	HPM, BYV-HPM	1	1		_						
	2-6	STV-LCOS, BYX-	SM	A-2-4,	15-29	15-35	63-90	62-90	38-58	15-24	0-42	NP-1
		LCOS, STX-LS, STV-LS, ST-LS,		A-1-b								
		ST-LCOS										
	6-14	STX-LS, BYX-	SM	A-1-b,	15-36	15-29	63-90	61-90	44-67	20-31	0-21	NP-1
		LCOS, STV-LS, ST-LS, ST-		A-2-4								
		LCOS, STV-LCOS										
	14-28	STX-LS, STV-LS, ST-LS, BYX-	SM, GM, GP-GM	GP-GM A-1-b, A-1-a	17-48	14-27	47-91	45-90	21-46	6 - 14	0-19	NP-1
		SIV-COS										
	28-60	ST-LS, BYX-COS, ST-COS, BYX-LS	GP-GM, GP, SM, GM	A-1-a, A-1-b,	17-42	14-39	21-91	18-90	10-54	2-15	0-17	NP-1
				A-2-4								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	ents	Per	Percentage passieve number	passing	1g	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	ri				Pct	Pct					Pct	
257:												
Badgerpass	0-1		PT	A-8	1	1 1	1 1		! !	1		:
	1-6	LS, GR-LS	NS	A-2-4	0	3-15	83-97	82-97	63-77	22-29		NP-1
	6-13	CB-LS, LS	W S	A-2-4	0 0	3-15	83-97	82-97	63-77	22-29	0-27	NP-1
	13-21	LIS, CB-LS	E SE	A-2-4		> 0	100 T - 00 /	00T-//	י אר די טאר די	70-30		NF-1
	21-32		MS.	A-2-4	- ·	> 0	12-100	10-T00	υ4-α υσ-1	12 - 30		NP-I
	32-50		SM	A-2-4	0 0		72-100	70-100	54-80	19-30	0-21	NP-1
	90-06	CB-LS, CBV-LS,	WS	A-2-4, A-1-b	 >	8-23	00T-09	00T-69	45-80	T5-30		T-AN
Oxyaquic Dystroxerepts	0-11	GR-L, L	MI	A-7-5,	0	0	77-92	76-91	65-85	46-62	38-50	5-11
				A-6,								
	-	ŧ		A-5, A-4	•	c	•	(0	c	c	,
	6T-TT	Tr, Ch, GR-Ch,	CL, ML	A-4, A-3,	>	>	76-11	T & - 0 /	000	47-00	32-31	6 - T
		קאַ-		A-6,								
	19-32	GR-L, CL, L,	GC, ML, SM	A-7-6	0	0	63-84	62-83	46-79	34-62	30-52	10-24
		υ										
	32-43	SCL, L		A-4, A-6	0	0	100	100	81-91	28-68	27-37	9-17
	43-60	L, SCL	SC, CL, SC-SM	<u>~</u> .	0	0	100	100	ω I		5	9-21
				A-7-6								
258:												
Typic Dystroxerepts	0-1	SPM	PT	A-8	0	0	:	-	:	!	:	:
1	1-2	MPM	PT	A-8	0	0	:	:	!	:	:	1
	2-2	нъм	PT	A-8	0	0	:	-	:	!	:	:
	2-3	rcos, sr	SM	A-2-4	0	0	95-100	95-100	53-59	16-20		NP-1
	3-11		SM	A-4	0	0	95-100	95-100	84-91	41-45	0-23	NP-1
	11-26	FSL, SL	SM	A-4	0	0	95-100	95-100	84-90	43-47	0-18	NP-1
	26-43	FSL, SL	SM	A-4	0	0	2	95-100	82-92	40-47	_	NP-4
	43-60	BYV-SL, BYV-	SM, SC-SM	A-4,	32-73	0	001-06	90-100	72-87	34-44	17-24	2-7
		FSL, BY-FSL, BY-SL		A-2-4								
	·	200	E F	C F								
badgerpass	1 7	200 H	.T. 2	φ r	1 0	ı (1 6	1 6	1 6	1 (· · ·
	/-7	LCOS, LS	WS.	A-2-4,	>	0	מאומ	80 - 40 - 40	47 - V4	70-79		1 - 4 N
	7-18	LS, GR-LCOS,	SM	A-2-4,	0	0	79-92	78-92	45-56	19-25	0-27	NP - 1
		GR-LS, LCOS		A-1-b	,							
	18-37	GR-S, LCOS, S,	SC-SM	A-3,	0	0	79-92	78-92	58-72	5-9	0-25	NP-1
	ı	GR-LCOS		A-Z-4	-	•			0			
	37-55	GR-LCOS, S,	SC-SM	A-3,	0	0	79-92	78-92	58-72	5-9	0-20	NP-1
	55-67	GR-LCOS, GR-COS	SP-SM, SC-SM	A-1-b	0	0	62-73	60-72	27-35	6-10	0-18	NP-1

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Pe	Percentage passing sieve number	passin	פֿר	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pct	Pot					Pat	
				·								
Dystric Aerorthents	0-T	MPM, ST-MPM	T.A.	00 00 - 4 4 4	! ! ! !	: :	: :	: :	: :	: :	!!!	: :
	2 -3		I LA	0 8 - 4-	- 1	:	- 1	-	;	:	:	;
	3-11	Ø	SM	A-2-4	3-15	3-15	81-97	80-97	ω	19-29		NP-4
	11-24	LFS, ST-LFS,	SM	A-2-4	8-23	3-15	63-84	62-83	57-83	17-29	0-33	NP-4
	24-38	ST-LS, STV-LS,	SM	A-2-4,	15-29	15-23	59-81	57-80	42-65	14-25	0-26	NP-4
	38-60	LFS, ST-LFS, STV-LFS	SM	A-1-b A-2-4	8-23	8-23	61-83	60-82	55-81	17-30	0-21	NP - 4
260: Rock outcrop.												
Craneflat	0-1	SPM	PT	A-8	!	!	!	!	:	!	!	:
	1-2	LS	SM	A-2-4	0	0	6-6	79-92	- 7	25-31	38	NP-1
	2 - 4	SL, LS, GR-SL, GR-LS	WS	A-2-4	0	0	72-92	70-92	54 - 73	20-29		NP-1
	4-13	GR-SL, LS, SL, GR-LS	SM	A-2-4	0	3-15	62-92	60-92	46-73	16-27	0-27	NP-1
	13-19	CN-SL, CN-LS,	SM	A-2-4	15-36	15-36	100	100	75-78	23-25	0-22	NP-1
	19-60	CNX-LS, CNX-SL	SM, GM	A-2-4, A-1-b, A-1-a	62-87	0	31-85	28-84	21-65	6-21	0-17	NP - 1
Dystric Xerorthents	0-1	SPM	FA	A-8	0	0	:	!	;	!		:
-	1-1	MPM	PT	A-8	0	0	1	-	1	-	_	1
	1-5	SL	SM	A-2-4, A-4	0	0	90-100	90-100	67-80	35-44	0-29	NP-4
	5-17	SL	SM	A-4, A-2-4	0	0	90-100	90-100	67-80	35-44	0-22	NP-4
	17-60	SL	SM	A-4, A-2-4	0	0	90-100	90-100	67-80	35-44	0-21	NP-4
			Į.									
Dystric Xeropsamments	0 0	Z -	T. A.	ν c	. c		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	101	:	:
	6-18	2 E2	WS.	A-2-4	0 0	0 0	79-100	79-100	59-79	18-26	0-14	ı A
	18-25	LS	SM	A-2-4	0	0	79-100	79-100	59-79	18-26	0-16	NP-1
	25-41	LS	SM	A-2-4	0	0	79-100		59-79	18-26		NP-1
	41-60	LS 	WS	A-2-4	0	0	79-100	79-100	59-79	18-26		NP-1

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Pe	Percentage passing sieve number	age passin number	pa	Liquid	Plas-
and soil name		. ——	Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200		ticity index
	#				Pct	Pat					Pct	
261:												
Typic Dystroxerepts	0-0	SPM	PT	A-8	:	-	!	:	:	!	!	:
	0-1	MPM	T-d	8 - K	! ((1 1	1 1 1	1 0	1 0	1 7 6	! 6
	7 - T	7 2 4	<u>ша</u>	A-4, A-2-4	>	0	00T-0/	00T-C/	96 - 94 4	7 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.4-0.0	7 - T
	3 - 8	FSL	SM	A-2-4,	0	9-0	76-100	75-100	66-93	28-43	34-45	1-3
	8-20	FSL	SM	A-4 A-2-4,	0	9-0	76-100	75-100	66-93	28-43	25-35	1-4
	20-31	GBV-FSL, CB-FSL	SM, SC-SM	A-4 A-2-4,	0	23-48	67-91	06-99	57-84	24-39	18-35	1-5
	31-60	GB-FSL, CBV-	SM, GM	A-4 A-2-4,	0-16	23-58	34-82	31-81	27 - 74	12-36	17-35	1-6
		FSL, CBX-FSL		A-4, A-1-a,								
				A-1-b								
Badgerpass	0-7	LS, GR-LS	SM	A-2-4,	0	0	100	64-84	48-66	15-22	0-36	NP - 1
	7-18	GR-LS, LS	SM	A-1-b,	0	0	100	64-84	48-66	14-21	0-27	NP - 1
	18-60	LS, GR-LS	SM	A-1-b, A-1-b, A-2-4	0	0	100	64-84	48-66	14-22	0-18	NP-1
Rock outcrop.												
262:												
Humic Dystroxerepts	0-0	BYX-SPM, BYV-	PT	A-8	!	:	:	-	:	:	:	:
	0-1	BYX-MPM, BYV-	ЪТ	A-8	!	:	!	!	!	! ! !	!	!
	1-2	BYX-SL, BYV-SL	SM, GM	A-2-4,	32-60	16-30	39-78	36-77	27-62	14-34	0-42	NP - 4
		į		A-1-a, A-1-b	0	((1	1			,
	7 - 2	BIX-SL, BIV-SL	мз , мъ 	A-1-a, A-1-b,	32-60	T9-30	39-18	36-77	79-17	14 - 34	0 4 2	지 건 - 4
	5-18	BYX-SL, BYV-SL	GM, SM	A-2-4 A-1-a, A-1-b,	32-67	16-36	25-78	22-77	17-62	9-34	0-33	NP - 4
	18-60	BYX-SL, BYV-SL	GM, SM	A-2-4 A-1-a,	32-67	16-36	25-78	22-77	17-62	9-34	0-26	NP - 4
				A-1-b, A-2-4								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragn	Fragments	Per	Percentage passing sieve number	passin	1g	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pat	Pct					Pct	
262: Dvstrig Xerorthents	0-1	ST-SPM, SPM	Ed	8-8	:	!	!	:	!	:	;	;
	1-2	- MPM,	PT	8-8	:	!	!	- 1	;	:	;	:
	2-3		PT	A-8	-	-	:	!	1	:	1	1
	3-11	SI, ST-LS	SM	A-2-4	3-15	3-15	81-97	80-97	61-80	19-29	0-42	NP-4
	11-24	STV-LFS, ST-	SM	A-2-4	3-15	3-15	65-84	64-83	59-83	18-29	0-33	NP-4
	24-38	LS, ST-LS, STV-	SM	A-2-4,	15-29	15-23	59-81	57-80	42-65	14-25	0-26	NP - 4
		LS		A-1-b								
	38-60	LFS, ST-LFS, STV-LFS	SM	A-2-4	8-23	8-23	61-83	60-82	55-81	17-30	0-21	NP - 4
Rock outcrop.												
264:												
Crazymule	0-1	SPM	PT	A-8	:	-	:	:	1	!	:	:
	1-2	HPM	PT	A-8	!	!!!	!	!	:	!	:	:
	2-12	LFS, CB-LFS		A-2-4		ᅼ	83-92	6	77-88	27-32	3	NP-1
	12-22	STV-FSL, STX-	SM, GM	A-2-4,	57-82	8-23	30-86	28-85	24-77	12-41	0-29	NP-4
	22-34	CBV-FSL, CB-FSL	SM	A-2-4,	0	16-30	72-91	71-91	61-83	31-44	16-24	1-4
	34-60	GR-LS, GRV-LS	SM	A-2-4, A-1-b	0	8-23	54-70	52-69	40-55	14-21	0-19	NP-2
Canisrocks	0-1	SPM, ST-SPM,	PT	A-8	!	-	:	!	-	!	-	1
	1-2	ST-MPM, STV-	PT	A-8	!	1	:		;	1	;	;
		PM, 1										
	2-3	-SL,	SM	A-2-4	0	സ	84-97	83-96	63-75	31-39	0-33	NP-1
	3-11	CB-SL, CBV-SL	SM	A-1-b,	0	30-42	60-81	29-80	44 - 62	22-32	0-22	NP-1
	11-23	CBV-LS, CB-LS	SM	A-1-b,	3-15	29-42	65-90	64-90	49-71	17-26	0-20	NP-1
	23-35	BYV-LS, BYX-LS	SM, GM,	A-2-4 A-1-b,	51-82	10-26	48-87	46-86	35-68	12-25	0-20	NP-1
			SC-SM, GW-GM	_								
	35-60	STX-LS, STV-LS	SM, GM, SC-SM, GC-GM	A-2-4, A-1-b	44-60	25-40	43-78	40-77	31-61	11-23	0-18	NP-1

Table 11.-Engineering Index Properties-Continued

	1		Classification	ication	Frag	Fragments	Pe	Percentage passing	passi	ng	7 7	į į
map symbol	Depcii	חמתש ופצוחום			017	3-10		ב דפמווות וויים בדב	Tagnin		1 imit	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			Unified	AASHTO	inches	-H	4,	10	40	200		index
	티				Pct	Pat					Pat	
.67: Rock outcrop.												
Typic Cryorthents	0 - 5	COS, GRV-COS, GR-COS	SM, SW-SM,	GM A-1-b, A-3, A-2-4	0-14	0-14	54-100	52-100	25-51	8-18	0-36	NP-1
	5-13	STX-COS, STV-	SM, SP-SM,	GM A-1-b,	7-27	21-39	25-75	22-74	11-37	3-13	0-24	NP-1
	13-28	STV-SL, STX-SL	SM, GM, GW-	GW-GM A-2-4,	23-42	36-58	30-92	28-92	21-73	11-40	0-25	NP-4
				A-1-a,								
	28-60	STV-SL, STX-SL	SM, GM, GW-	GW-GM A-1-a, A-1-b, A-4, A-2-4	23 - 23 - 42	36-58	30-92	28 - 92	21-73	11-40	0-20	NP - 4
	(
Xeric Dystrocryepts	0 - 2	SPM	H.	χ- Υ	o :	o :	! ! !	! ! !	!		!	
	2 - 4	MPM	LA.	8-₩ 6-8-	0 0	0 0	1 0	1 0	1 1 1 1	1 0	1 0	
	13-20	LS. LCOS	E MS	A-2-4	o c	o c	85.97	84-97	50-61	15-21	0-27	NP-3
	20-30	LS, COS	SM	A-1-b,	0	0	85-97	84-97	47-57	14-20	0-25	NP-3
	2	7		A-2-4			1 0 0	1 0	1		C C	
	7 # - 00		ш <u>с</u>	A-1-D,	> 	>	ט ו	76-00	001/#	07 - #	0 1 0	0 1 4
	42-48	LCOS, LS	SM	A-2-4	0	0	85-97	85-97	61-74	24-31	0-25	NP-3
	48-62	GR-LCOS, GR-LS,	SM	A-2-4	0	0	78-97	77-97	51-67	16-24	0-22	NP-3
	62-78	LS, LCOS LS, GR-LCOS,	SM	A-2-4	0	0	78-97	77-97	52-69	16-24	0-21	NP-3
	0	LCOS, GR-LS		-	-	6	7	2		0		
	78 - 87	SE, COSE	W	A-2-4	o 	8-73	74-91	T 6 - 8 /	4.7 - 64	18-28 1-81	0-2T	NP-4
				_			_					

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragn	Fragments	Pe	rcentage passisieve number	Percentage passing sieve number	bu	Liquid	Plas-
and soil name	· — —		Unified	AASHTO	>10 3-10 inches	3-10 inches	4	10	40	200	limit ticity index	ticity index
	H				Pct	Pat					Pct	
268: Rock outcrop.												
Canisrocks	0-0	BY-SPM	PT	A-8	:	;	:	! !	1	-	1	;
	0-1	BY-MPM	PT	A-8	:	;	:	:	:	:	!	;
	1-4	BY-LCOS, LS, S,		A-1-b,	23-42	0	96-64	78-96	46-59	15-22	0-37	NP-1
		BYV-LCOS, BYV-		A-2-4								
	4-18	BYX-S, BYV-	NS.	A-1-b.	14-57	8-38	78-97	77-97	48-62	14-20	0-14	NP
) 	LCOS, BYV-LS,	<u> </u>	A-2-4)	· ·) 	 	
		BY-LS, BYV-S, BY-S, BYX-										
		LCOS, BYX-LS,										
		BY-LCOS										
	18-28	BYV-LS, BYX-	SM	A-1-b,	27-67	16-38	62-94	60-94	38-62	10-18	0-14	NP
		LCOS, BY-LS, BYV-S, BY-S,		A-2-4								
		BYX-LS, BYX-S,										
		BYV-LCOS, BY-										
	28-34	BYX-LS, BYX-S,	SM	A-1-b,	19-67	9-38	62-95	60-95	34-55	9-15	0-14	NP
_		BYV-LCOS, BYV-		A-2-4								
		LS, BY-LS,										
-		BYV-S, BY-S,										
		BYX-LCOS, BY-										
	34.60	DV-1708	אט מט	K	24.65	000	22 00	21_00	00	7	71	Q.N
) - -	LS, BYX-S, BY-	wo 'wo -	A-1-b) 	0) - -	1	0	1	H H	Ä
		LS, BYX-LCOS,										
		BY-S			_							
								_		_		

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Per	rcentage pass sieve number-	Percentage passing sieve number		ס	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit 	ticity index
	[태]				Pct	Pct					Pct	
268: Glacierpoint	0 - 0		PT	A-8	!	1 1 1	1	1 1 1	1 1 1	1 1 1	! ! !	! !
	0-1	BYV-SPM MPM, BY-MPM,	PT	A-8	!	!	:	!	:	!	:	:
	1-4	SYV-MPM ST-LS, LFS, ST-	SM	A-2-4,	8-42	4-15	65-95	64-95	49-73	16-25	0-14	NP
		LES, LS, SIV-		Q-T-W								
	4-16	STX-LS, STX- LFS, ST-LFS,	SM	A-1-b, A-2-4	8-42	8-23	53-91	51-91	39-70	13-24	0-14	ΝĐ
		ST-LS, STV- LFS, STV-LS										
	16-27	STX-LFS, STX-	SM	A-1-b,	15-42	8-23	63-91	61-90	47-70	15-23	0-14	NP
		LS, STV-LS,		A-2-4								
		LFS, ST-LFS										
-	27-46	STV-LS, STV-	SM	A-2-4,	7-29	7-22	51-92	49-91	49-91	22-42	0-14	NP
		VFS, ST-VFS,		A-1-b								
		VFS, ST.X-										
	46-64	ST-LS, ST-VFS,	SM	A-2-4,	7-29	7-22	51-92	49-91	49-91	22-42	0-14	NP
		SIV-VES, SIV- LS, SIX-VES,		A-1-b								
		STX-LS										
269:	-	MGD - THE MGD - TYTHE	E-	α - κ			1	 	1	 		1
	0 0			A-2-4	0-22	0-15	64-95				3.7	NP-2
-	ı •	LCOS, STV-	<u>.</u>	A-1-b)	1)))	i i		1
		LCOS, STV-SL,										
	2-7	STV-LS, LS,	SM	A-2-4	0-22	0-15	72-95	71-95	41-60	17-27	0-26	NP-2
		STV-LCOS, STV-										
	7	BYN TOOK BYY	2	, k	27 63	7 7	0	00	90	16.05	c	C GIA
		LS, BYX-SL,		A-1-b	3	1			0	0		7
		BYV-SL, BYX-										
	20-60	BYX-LS, BYX-	SM, GM	A-1-b,	71-89	8-23	31-83	28-82	22-67	7-26	0-19	NP-2
		LCOS, BYX-SL		A-2-4								
Rock outcrop.												
								_		_	_	

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragn	Fragments	Per	rcentage passi: sieve number	Percentage passing sieve number	DT.	Liquid	Plas-
and soil name	·	-			>10	3-10					limit ticity	ticity
			Unified	AASHTO	inches		4	10	40	200		index
	티				Pct	Pct					Pat	
. 690												
Glacierpoint	0-0	BYV-SPM, SPM,	PT	A-8	:	-	:	-	-	-	:	!
		BY-SPM			_							
	0-1	MPM, BY-MPM,	PT	A-8		:	!	:	-	:	:	-
	_	BYV-MPM			_							
	1-4	ST-LFS, LS,	SM	A-2-4,	8-42	4-15	65-95	64-95	49-73	16-25	0-14	NP
		LFS, ST-LS,		A-1-b								
		STV-LFS, STV-										
		LS										
	4-16	STX-LFS, STX-	SM	A-1-b,	8-42	8-23	53-91	51-91	39-70	13-24	0-14	NP
		LS, ST-LS, ST-		A-2-4							-	
	_	LFS, STV-LFS,			_	_						
	_	STV-LS										
	16-27	STV-LS, STV-	SM	A-1-b,	15-42	8-23	63-91	61-90	47-70	15-23	0-14	NP
	_	LFS, ST-LFS,		A-2-4	_	_						
	_	ST-LS, STX-			_	_						
	_	LFS, STX-LS										
	27-46	STV-LS, STV-	SM	A-2-4,	7-29	7-22	51-92	49-91	49-91	22-42	0-14	NP
	_	VFS, ST-VFS,		A-1-b								
		ST-LS, STX-			_							
		VFS, STX-LS									-	
	46-64	ST-LS, STX-VFS,	SM	A-2-4,	7-29	7-22	51-92	49-91	49-91	22-42	0-14	NP
	_	ST-VFS, STV-		A-1-b								
	_	VFS, STV-LS,										
	_	STX-LS			_							
	_											

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragn	Fragments	Per	Percentage passing sieve number	passir mber	J. J. J. J. J. J. J. J. J. J. J. J. J. J	Liquid	Plas-
and soil name		. — —	Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	ui				Pat	Pct					Pct	
70: Rock outcrop.												
Typic Cryorthents	0 - 0	ST-SPM, SPM	Ed_ Ed_	8 8							: :	
	1-4	LS, STV-LS,	SM	A-1-b,	0-15	0-15	59-100	59-100 57-100	4	12-28	0-39	NP-1
		STV-LCOS, ST-LS, ST-LCOS,		A-2-4								
	4-18	SIV-S, SIX-	GP-GM, SM, GM A-1-a,	A-1-a,	15-41	15-41	20-82	17-81	12-64	3-21	0-22	NP-1
		LCOS, STX-S,		A-1-b,								
		LCOS, STV-LS,		:								
		STV-LCOS, STX-										
	0	LS, ST-S			7	7	,	0	,	ć	0	
	78-28 T8-28	STATES, STATES	GP-GM, GM, SM	SM A-I-a,	14-39	14-39	ZT-83	78-8T	T3-68	3-24	07-0	NP-T
		LCOS, ST-S,		A-2-4								
		STX-LS, STV-										
		LCOS, ST-LS,										
	28-34	ST-S, STX-LCOS,	GP-GM, GM, SM	SM A-1-a,	14-39	14-39	21-83	18-82	13-69	3-24	0-14	NP
		SIX-S, SIX-LS,		A-1-b,								
		.'		A-2-4								
		LCOS, ST-LS										
	34-60	ST-LS, ST-LCOS,	GP-GM, GM,	SM A-1-a,	14-39	14-39	21-83	18-82	13-69	3-23	0-14	NP
		STV-S, STV-LS,	_	A-1-b,								
		SIV-LCOS, SIX-		A-2-4	_							
		LS, STX-S,										
		STX-LCOS, ST-S										

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Б.	Percentage passing sieve number	passir mber	1g	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	>10 3-10 inches	4	10	40	200	limit ticity index	ticity index
	티				Pat	Pat					Pat	
270: Vitrandic Dystrocryepts	0-3	LS, ST-LS, ST-	×S	A-2-4	0-15	0-15	82-100	82-100 81-100 61-78	61-78	18-25	0-36	NP-1
1		SL, SL	S	A-2-4	0-15	0-15	82-100	82-100 81-100 77-98	77-98	14-21	0-36	NP-1
	ı ı	SL, SL, FS,	1	! !	 		 			 		! !
	Α- Α	ST-FS	No	A - C - A	7	0-23	71-100	71_100 70_100 53_78	53.78	16.25	0-27	ND-1
	, ,	CB-ES, CB-LS,	<u> </u>	r 1	-	0	1	0		0	1	1 4
		STV-LS, STV-SL										
	8-17	SI-LS, SIV-LS,	SM, GM	A-2-4,	16-36	16-36	30-81	28-80	21-64	11-35	0-30	NP-4
	_	STV-SL, ST-SL,		A-1-b								
	_	STV-FS, STX-		_								
-		SL, STX-FS,										
		ST-FS, STX-LS										
-	17-60	STX-LS, STV-FS,	GM, SM	A-1-b,	15-42	15-42	20-81	16-80	12-63	4-21	0-18	NP-1
		.'.		A-2-4								
		SL, ST-FS, ST-										
		SI, ST-LS,										
		STV-LS, STV-SL										
271:												
Rock outcrop.												
Lithic Xerorthents	0-3	STV-S, S, ST-S	SP-SM, SM	A-2-4	0-15	~	72-92	71-92	55-73	10-14	0-14	NP
	3-7	PGRX-S	GW-GM, GP	A-1-a	0		10-41	6-38	5-30	1-5	0-14	NP
	7-60	BR					1	1	-		:	
					_		_					

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Peı	Percentage passing sieve number	passir	1g	Liquid	Plas-
and soil name	. — —		Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200		ticity index
	티				Pat	Pat					Pct	
Z/l: Waterwheel	0-1	BYX-SPM, BYV-	_PT	A-8	:	:	!	!	:	!	:	-
	1-2	BY-MPM, BYV- MPM, BYX-MPM	PT	A-8	!	1	! !	!	:	!	!	!
	2-2	BYX-HPM, BY- HPM, BYV-HPM	PT	A-8	! !	 	 	1	!	!	!	!
	2 - 6	STX-LS, STV- LCOS, ST-LCOS,	SM	A-2-4	30-64	7-22	100	100	62 - 64	24-26	0-42	NP - 1
	6-14	LS, STV-LS, ST-LS, STV-LS, STX-LS, BXX- LCOS, ST-LCOS, STV-LCOS,	SM	A-2-4	31-65	8-23	100	100	73-75	32 - 34	0-21	NP-1
	14-28	STX-LS, BYX- COS, ST-COS, STV-LS, ST-LS,	SM	A-1-b, A-2-4	29-62	7-21	100	100	48-51	13-16	0-19	NP - 1
	28-60	BYX-LS, ST-COS, BYX-COS, ST-LS	GP-GM, GP, SM, GM	A-1-a, A-1-b, A-2-4	17-42	14-39	21-91	18-90	10-54	2-15	0-17	NP - 1
273; Nevadafalls	0-0 0-6 6-17 17-31	SPM LS, LCOS LCOS, LS CBV-LS, CB-LS, STV-LS, STV-	PT SM SM SM	A-8 A-2-4 A-1-b, A-2-4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 15-29	78-92 78-92 61-83	77-92	49-60 51-63 40-58	18-23 20-25 14-21	0 - 2 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NP-2 NP-2 NP-2
	31-60	LCOS, CBV- LCOS, CB-LCOS STV-LCOS, STV- LS, CBV-LCOS, CB-LCOS, CBV- LS, CB-LS	SM	A-1-b,	0-15	15-29	53-83	51-82	35-57	11-20	0-20	NP-2
Waterwheel	0 - 0 1 - 1 1 - 6	SPM, GR-SPM MPM, GR-MPM HPM, GR-HPM LS, CB-LS, CBV-	TA SM SM SM SM	A-8 A-8 A-8 A-2-4	1 1 1 8	8	73-97	72-96		22 - 1 - 1 - 2 - 3 - 3 - 3	3 0 1 1 1	 NP - 1
	6-11	LS, CB-LS, CBV-	WS	A-2-4	3-15	8-29	70-97	96-89	48-72	21-33		NP-1
	11-19	STV-LS, STX-LS, ST-LS STV-LS, ST-LS	SM SM	A-2-4 A-2-4	15-29	15-29	56-81	54-80	41-64	14-24	0-18	NP-1 NP-1

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Per	rcentage pass sieve number-	Percentage passing sieve number	19	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	[티				Pct	Pct					Pct	
274. Rock outcrop, domes												
275:	·											
Oxyaquic Dystroxerepts	0-1	BY-SPM, MPM, BYV-SPM	<u>ъ</u> т	A-8	1	!	!	:	!	:	:	:
	1-2	BYV-HPM, BY- HPM, HPM	PT	A-8	:	:	!	!	!	!	!	:
	2 - 9	CBV-LS, CBV-SL,	SM	A-2-4	0	8-23	66-84	65-83	47-64	21-30	0-38	NP-3
	9-19	GR-LS, GR-SL,	SM, GM	A-1-b	0	8-23	47-63	45-61	32-46	13-21	0-29	NP-3
	19-34	GRV-SL, GRV-LS GRV-COSL, GRV-	GM, SM	A-1-b,	0	16-30	39-61	36-60	24-42	15-28	0-27	NP-3
		SL, CBX-SL,		A-2-4								
	34-46	CBV-COSL, CBV-	GM	A-1-a	0	23-36	30-47	28-45	16-28	8-15	0-25	NP-3
		LS, CBX-LS,										
	46-60	STX-COSL, STX-	GP-GM	A-1-a	23-36	16-30	14-36	10-33	6-23	3-11	0-25	NP-3
Dystric Xerorthents	0-1			A-8	:	-		-	-	-	-	1
	1-2	ST-SPM, STV-SPM		A-8	<u> </u>	-	:	-	:	-	:	1
-	2-2	ST-SPM, STV-SPM	PT	A-8	:	!	!	!	!	!	:	:
	2-6	SIV-LCOS, SI-	SM	A-2-4,	15-29	15-35	63-90	62-90	35-54	14-23	0-42	NP-1
		LCOS, STX- LCOS, ST-LS, STV-LS, STX-LS		A-1-b								
	6-14	STV-LCOS, ST-	SM	A-1-b,	15-36	15-29	63-90	61-90	37-56	18-28	0-21	NP-1
		LCOS, STX- LCOS, ST-LS, STV-LS		A-2-4								
-	14-28	ST-LCOS, STX-	SM	A-1-b	14-34	14-27	55-91	53-91	35-62	15-28	0-19	NP-1
		LS, STV-LCOS, STX-LCOS, ST-										
	00	LS, STV-LS		- NO.	14.07	14.20	22.01	10.05	20.62	000	7	L GW
	001	STX-LS, SI-LS, STX-LCOS, ST-	, MC	A-1-a, A-1-b	7 - T	1. 1. 2.	T & - C C	1 % - O C	70-07	07-) 	- - - -
		LCOS										

Table 11.-Engineering Index Properties-Continued

			Classification	ation	Fragn	Fragments	Per	Percentage passing	passir	ng.		
Map symbol	Depth	USDA texture			_		- 01	sieve number	mber		Liquid	Plas-
and soil name					>10	3-10					limit	ticity
			Unified	AASHTO	inches	inches inches	4	10	40	200		index
	ű				Pct	Pct					Pat	
275:												
Vitrandic Xerorthents	8-0	ST-S, FS, ST-FS	SM	A-2-4	15-29	0	100	100	94-97	17-21	0-32	NP-1
	8-18	ST-FSL, ST-	PT	A-8	16-30	0	100	100	93-96	46-49	0-30	NP-1
		VFSL, VFSL,			_							
	_	FSL		_	_							
	18-24	FSL, FS	SM	A-4	0		93-100	92-100	90-100	45-53	0-23	NP-1
	24-35	LS, FSL	SM	A-2-4	0			92-100	78-88	28-34	0-22	NP-1
	35-50	LS	SM	A-2-4	0	0	93-100	92-100	66-75	22-28	0-20	NP-1
	50-62	LS	SM	A-2-4	0	0	93-100	92-100	68-77	24-30	0-18	NP-1
Rubble land.												
. 312												
Happvisles	0-3	SPM	E d.	8-8	0	0	:	:	-	:	;	;
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3-7	S, COSL, FSL,	SC-SM, SM	A-2-4,	0	0	95-100	86-100	63-80	30-42	18-32	2-7
		SL		A-4								
	7-13	COSL, SL, FSL,	SC-SM, SM	A-2-4,	0	0	95-100	86-100	53-68	30-42	0-31	NP-6
				A-4								
	13-17	Sr, COSL, S,	SC-SM, SM	A-2-4,	0	0	95-100	85-100	63-80	30-42	18-32	2-7
		FSL		A-4								
	17-33	COSL, FSL, SL,	SC-SM, SM	A-2-4,	0	0	95-100	85-100	63-80	30-42	17-26	2-7
				A-4								
	33-60	SR- LCOS LS	SC-SM, SM	A-2-4,	0	0	95-100	95-100 86-100 63-80	63-80	30-42	0-22	NP-4
				A-4								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Peı	rcentage passi sieve number	Percentage passing sieve number	bu	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	[태]				Pat	Pct					Pat	
276: Typic Dystroxerepts	0-1	ST-SPM, STV-SPM	SM, SC-SM	A-8	8-32	0-16	!	:	:		17-30	1-7
	1-19	ST-LS, SL, GR-	SM, SC-SM	A-1-b,	8-23	0	70-91	39-83	28-67	10	17-30	1-7
		SL, CB-SL, GR- LCOS, CBX-SL,		A-1-a								
		ST-SL, BYV-SL,										
		GR-COSL, STV-										
	19-28	GR-SL, CBX-SL,	SM, SC-SM	A-2-4,	8-23	0	70-91	39-83	28-67	13-35	15-25	1-7
		SL, ST-LS, GR-		A-1-b,								
		CR-ST. ST-ST.		В-Т-Ч								
		BYV-SL, GR-										
											_	
	28-33	STX-LS, CBV-	SM, SC-SM	A-2-4,	8-23	23-48	24-90	20-80	11-53	6-32	15-25	1-7
		LCOS, GR-SL,		A-1-b,								
		BY-SL, STX-SL,		A-1-a								
		CEX-SL, CEX-SL,										
		CBX-COSL, CBV-										
		COSI										
	33-50	ST-SL, BY-SL,	SW-SC, SM,	A-2-4,	8-23	23-48	54-90	20-80	10-45	3-17	15-25	1-7
		SIX-SL, CBX-	SC-SM	A-1-b,								
		SL, CBV-SL,		A-1-a								
		CB-SL, CBV-										
		STX-IS GRUEL,										
		rcos										
	20-60	CBV-LCOS, CBV-	SC-SM, SM	A-1-a,	8-23	23-48	54-90	20-80	15-64	5-24	0-19	NP-2
		LS, STX-SL,		A-1-b,								
				:								
277:		Mdp Vd Mdp 11Vd	E A	O.								
		DIV-DEM, DI-DEM		Q - W -	!	!	!	!	!!!	!		!
	1-2	щ.	PT	8 - 8	!	! (1 0	1 0		1 1		
	2-2	COS, GR-COS	WS.	A-2-4,	>	0	80-93	7.9-93	43-54	8-13	0-27	NP-1
	7	* A D D C C - M D D	אַנּי - בַּי	A-1-b	_	7.07	26. 54	22 52	17_20	0	20	ND. 1
	n I	GOS GRA-		A-1-2,	>	/ 7 - /	n I D	70-00	07-/1	ı	0 - 4.5	- I
	32-60	CBX-LCOS, CBV-	GM, SM	A-1-b,	0	47-57	44-68	42-67	24-40	9-16	0-23	NP-1
		rcos		A-1-a				:				l
		_		_	_	_				_	_	

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Pel	rcentage pass sieve number-	Percentage passing sieve number	19	Liquid	Plas-
and soil name	·		Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200		ticity index
	티				Pct	Pat					Pct	
277: Humic Dystroxerents	0-1	MYZ-YA MGS-WAR	F	α .	!					! !	 !	!
		PM,	Ld	A-8	!	!	!	!	!	!	!	:
	1-2	BYV-HPM, BY-HPM	PT	A-8	!	:	-	-	:	!	:	:
	2-15	STX-LS, CBV-LS	SM, GM	A-1-a, A-1-b	4-15	15-29	40-61	37-59	28-47	10-18	0-36	NP-1
	15-25	BYX-LS, STX-LS,		- PG	16-46	29-42	18-53	14-51	11-41	4-15	0-25	NP-1
	25-60	BYX-LS, STX-LS, CBX-LS	GM, GP-GM	A-1-b A-1-a, A-1-b	18-38	35-47	18-50	15-48	11-38	4-14	0-18	NP - 1
278: Rock outcrop.												
Tuolumme	0 - 2	GR-SL, CB-SL, GR-LCOS, CB-	SM	A-1-b	3-15	7-22	57-77	55-76	33 - 48	14-22	0-35	NP-2
	2-10	GRV-SL, GRV-	SM, GM	A-1-a, A-1-b	3-15	8-23	43-63	40-62	27-42	14-22	0-23	NP-1
	10-35	GRV-LCOS, BYV- LS, BYV-LCOS, GRV-LS	GP-GM, SM, GM	14	23-51	3-22	24-60	21-58	13-38	4-13	0-19	NP-2
	35-60	GR-COS, GRX- COS, GR-LS, GRX-LS	GM, SM	A-1-a, A-1-b	7-36	7-14	38-84	36-84	19-47	5-15	0-18	NP-1
Humic Dystroxerepts	0-1	GRX-SPM, GRV- SPM	PŢ	A-8	!	:	!	!	:	!	!	! !
	1-1	GRV-SPM, GRX-SPM	PT	A-8	!	!	!	!	!	!	!	!
	1-10	GR-COS, GRV- COS, GR-LCOS, GRV-LCOS	SM	A-1-b	0	15-29	59-76	57-75	33-45	14-20	0-36	NP-1
	10-21	STV-LCOS, STX- LCOS, STX-COS, STV-COS	SM	A-1-b	15-29	22-35	53-81	51-80	30-48	12-21	0-24	NP-1
	21-60	BYX-COS, BYX- LCOS	GC-GM	A-1-a	30-45	35-41	20-44	17-42	10-25	4-11	0-17	NP-1
Rubble land.												

Table 11.-Engineering Index Properties-Continued

			Classification	ation	Fragi	Fragments	Peı	ccentage	Percentage passing	ng.		
Map symbol	Depth	USDA texture					34	sieve number	nmber		Liquid	Plas-
and soil name	_				>10	3-10					limit	ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	ដ្ឋ				Pct	Pct					Pct	
27												
Canisrocks	0-2	BY-SPM, SPM		A-8	:	:	!	!	!	:	!	;
	2-2	BY-HPM, HPM	PT	A-8	:	:	:	:	:	-	!	1
		GR-LS, LS,	_	A-2-4	0	0	78-92	77-92	54-73	16-26	0-38	NP-1
		LCOS, GR-LCOS										
	11-21	STV-LS, STV-	SM	A-1-b,	8-23	8-15	96-76	54-75	37-59	10-20	0-24	NP-1
		LCOS, STV-S,		A-2-4								
		GR-LCOS, GR-										
		LS, GR-S										
	21-29	STX-LS, STX-	SM	A-1-b,	18-38	11-28	62-81	08-09	42-64	11-21	0-20	NP-1
		LCOS, STV-LS,		A-2-4								
		STX-S, STV-										
		LCOS, GR-LS,										
		GR-LCOS, STV-										
		S, GR-S								_		
	29-36	GR-LCOS, GR-LS,	SM	A-1-b,	18-38	11-28	62-81	08-09	43-65	11-20	0-20	NP-1
		STV-LCOS, STX-		A-2-4								
	_	S, STV-LS,			_	_				_		
		SIX-LCOS, SIV-								_		
		S, GR-S, STX-										
		LS										
	36-60	STX-LS, STV-S,	SM, GM	A-2-4,	33-51	26-41	45-75	43-74	30-60	8-19	0-18	NP-1
		STX-S, BYV-		A-1-b								
		LCOS, STV-LS,										
		SIX-LCOS			_	_				_		
							_					

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Per	Percentage passing sieve number	passin mber	pu	Liquid	Plas-
and soil name		. —	Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	ដ				Pat	Pot					Pat	
279:												
Xeric Dystroxerepts			E I	A-8	!	!	:	!	!	:	0-0	ď.
	0-1	ST-MPM, BY-MPM	PT	8-8	1 1	-		1	: :		0-0	d N
	1-4	BYV-LCOS, BY- LCOS, BY-LS,	ws	A-1-b, A-2-4	22-41	0	96-64	78-96	44-61	15-22	0-37	NP-1
		BYV-LS										
	4-18	BY-LCOS, BYV-S, BYX-LS, BYX-	SM	A-1-b, A-2-4	12-50	7-35	66-95	65-94	36-59	9-18	0-14	М
		LCOS, BY-LS,										
		BYV-LCOS, BYX-										
	18-28	BY-LCOS, BYV-S,	SM	A-1-b,	24-63	15-36	64-95	62-94	37-63	9-18	0-14	ΝP
		BYX-LS, BYX-		A-2-4	_							
		LCOS, BYV-LS,										
		BY-LS, BYV-										
		BYX-S		·								
	28-34	BY-LCOS, BYV-S,	SP-SM, SM	A-1-b,	17-63	8-36	64-95	62-95	33-58	8-16	0-14	ΝP
		BYV-LS, BYX-		A-2-4								
		LCOS, BYX-LS,										
		BY-LS, BYV-										
		BYX-S										
	34-60	BYV-LS, BYX-	SP-SM, SM	A-2-4,	22-62	7-27	35-91	33-91	20-63	5-17	0-14	ΝÞ
		LCOS, BYX-LS,		A-1-b								
		BYV-S, BY-								_		
		LCOS, BY-LS,										
		BYV-LCOS, BY-										
C												
Tvoic Dystroxerepts	0-1	SPM	Ed.	8-8	:	-	!		:	:	:	;
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-2	MPM	PT	8-K	:	:	:	;	:	:	:	;
	2-4	FSL, SL, LS	SM	A-2-4,	0	0	84-92	84-92	62-74	30-39	30-41	2-7
			_	A-4	_							
	4-8	SL, LS, FSL	SM	A-4,	0	3-16	91-100	91-100	08-99	32-42	27-38	2-7
	0	100	2	A-2-4	_	c	100	100	00 22	22 12	10	1
	15-24		אמי-רמ מתי-מת	A-2-4	o c	0 0	84-97	84-97	61-77	24-26	18-26	2-7
	24-36			A-2-4	0	0	84-97	84-97	61-77	29-41	18-26	2-7
	36-60	LS,	SC-SM, SM	A-2-4	0	0	79-92	78-92	57-73	27-38	17-25	2-7

Table 11.-Engineering Index Properties-Continued

Depth		USDA texture	Classification	cation	Fragments	lents	Per	Percentage passing sieve number	passir mber	ıg	Liquid	Plas-
			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
n l					Pat	Pct					Pct	
0-2 SPM, CB-SPM	CB-SPM		Τď	A-8	!	:	!	!	:	:	:	;
CB-MPM, MPM			PT	A-8	!	!	!	!	:	!	!!!	!
2-3 HPM, CB-HPM			PT	A-8	:	-	-	:	:	:	:	:
GR-LCOS, CB-			SM	A-2-4	0	4-15	69-84	67-84	51-67	18-25	0-36	NP-1
LCOS, LCOS, LS, GR-LS, CB-	S, LCOS, GR-LS,											
3.1 A L 20 A L 2	ַ מַטַּ		P	- K	c	7_23	61-77	76	34-47	14-21	0-07	ND. 1
) H	OS, CB-LS,			1	· · ·	1	1		1	1	, i	1
16-30 STV-LS, ST-LS,	01		SM	A-1-b,	8-23	16-30	50-74	48-73	36-57	18-31	0-25	NP-3
STX-LS, ST-SL, STV-SL, STV-SL	X-LS, ST-SL, V-SL, STX-SL			A-2-4								
30-60 ST-LS, STV-LS,	LS, STV-LS,		SM	A-1-b,	8-23	15-29	51-74	48-73	37-59	13-22	0-18	NP-1
STX-LS, ST- LCOS, STV- LCOS, STX-LCOS	X-LS, ST- OS, STV- OS, STX-LCOS			A-2-4								
	-											
			PT	A-8	!	-		:	1	:	:	1
BY-MPM, MPM			PT	8 0 4 1	1 (1 1	1 1	1 1	1 1		1 9	1
SIL, SL, CB-			We	A-2-4, A-4, A-5	o	9T-0	00T-88	87-T00	67-09	78 - 4T	33-43	9 - T
IL, CBV-	CBV-		SM	A-4,	3-16	23-36	96-11	96-94	55-75	26-39	29-39	1-6
SIL, CB-L, CBV-L, CB-SL, CBV-SL	L, CB-L, V-L, CB-SL, V-SL			A-2-4								
19-34 CBV-SIL, CB- SIL, CB-L, CBV-L, CB-SI, CBV-SI	.———	01	SM, SC	A-6, A-4	3-16	30-42	75-96	74-96	55-82	28-47	28-43	10-19
CB-SL, CB-L, L, CB-			SC, CL	A-6, A-4	0	0	84-97	83-96	67-89	48-67	27-39	10-19
SIL	н.											

Table 11.-Engineering Index Properties-Continued

	-		-							-		
Map symbol	Depth	USDA texture	Classification	cation	Fragi	Fragments	Per P	Percentage passing sieve number	passii mber	pa	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	[태]				Pat	Pat					Pct	
282: Craneflat	0-1	SPM, ST-SPM	PT	8-8	1	;	:	!	!	!	!	!
	1-1		L L	A-8	!	;	:	1	- 1	!	!	!
	1-2	HPM, ST-HPM	PT	A-8	!	;	:	;	:	!	!	!
	2-4	STV-SL, STV-LS	SM	A-2-5,	36-48	3-8	75-95	74-95	52-71	21-31	0-64	NP-3
	4-11	STV-S, STV-LS	SM	A-2-4	42-53	3-8	6	73-93	51-70	21-31		NP-4
	11-22	LCOS, STV-LCOS,	NS.	A-2-4	15-41	3-15	76-95	75-95	51-69	20-29	0-26	NP-4
	22-30		SM	A-2-4	15-42	3-15	76-95	75-94	53-72	21-31	0-26	NP-4
	30-60	CBV-LCOS, CBV-	SM	A-2-4,	0	15-29	59-84	57-83	36-56	12-22	0-23	NP-4
				G H H								
Nevadafalls	0-0	SPM	PT	A-8	!	:	!	!	:	!		-
	0-6		SM	A-2-4	0 0	0 0	78-92	77-92	49-60	18-23	0-28	NP-2
	17-31	CB-LS, CBV-LS,	SM	A-2-4 A-1-b,	0-15	15-29	61-83	60-82	40-58	14-21		NF-Z NP-2
	 	-LS	<u> </u>	A-2-4								
	31-60	CBV-LS, CB-LS,	SM	A-1-b, A-2-4	0-15	15-29	53-83	51-82	35-57	11-20	0-20	NP-2
283:												
Waterwheel	0-1	GR-LS, GRV-LS, GR-LCOS, GRV-	SM, GM	A-1-b	0	0	49-60	47-58	36-47	13-18	0-40	NP-3
	1-7	CB-LS, CBV-LS, CB-LCOS, CBV-	MS.	A-2-4	0	8-23	67-84	66-83	50-68	17-26	0-38	NP-3
	7-26	LCOS STX-	 ⊠	A-1-b.	8-23	42-53	198	54-88	41-71	14-28	0-21	NP - 3
		LS, STV-LS,	<u> </u>	A-2-4	} 	})		! !			
	26-60	ST-COS, STV- COS, ST-LS, STV-LS	SC-SM, SM	A-1-b	7-21	39-50	58-89	56-89	27-46	6 - 14	0-20	NP-3
אסעסע Nevada f	0-1	W DW	<u> </u>	α 	c	c						;
	1-2		PT	8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	0	0	-	1	- 1	!		1
	2-6	SI, LFS	SM	A-2-4, A-4	0	0	84-97	84-97	63-75	32-39	0-36	NP-1
	6-11	LFS, SL	SM	A-4,	0	0	84-97	84-97	63-75	32-39	0-27	NP-1
	11-21	LFS, SL	SM	A-4,	0	0	84-97	84-97	63-75	32-39	0-23	NP-1
	21-60	LS, SL	SM	A-2-4 A-2-4	0	0	85-97	84-97	65-77	23-29	0-18	NP-1
Rock outcrop.												

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Per	Percentage passing sieve number	passir mber	19	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pct	Pct					Pct	
285: Waterwheel		20 00 00	E A	0								
	0 - 0 - 4 - 0	LS, GR-LS,	SM	A-2-4		0	78-92	77-92	52-67	21-31	22-32	1-6
		SL, GI			,	,			;			,
	4. 8 - 4.	GR-COSL, COSL,	WS.	A-2-4,	0	2-I6	75-92	74-9T	49-66	22-32	20-30	T-6
	8-16		SM	A-2-4,	3-15	23-36	68-91	06-99	46-68	19-31	18-28	1-6
	16-60	BYV-SL, BYX-SL,	GM, SC-SM,	A-1-b SM A-1-b, a-1-a	39-67	23-36	39-87	36-86	25-64	10-29	16-25	1-6
				5 								
Humic Dystroxerepts	0-1	SPM, ST-SPM	₽.T.	A-8	1 1	1 1	001100	0 1 1 1	10.0	2 E = 1	3 2	1 6
	0 I H	LS. ST-LCOS	MG	* · · · · · · · · · · · · · · · · · · ·)		001-76	001-16	00101	0.01		0 1 4
	6-13	03	SM	A-2-4	0-7	0-7	84-100	83-100	64-83	23-33	0-29	NP-3
	13-24	ST-LCOS, LS	SM	A-2-4	0-7	0-7	84-100	83-100	64-83	23-33	0-27	NP-3
		ST-LS, LS										
	24-42	ST-LS, LS, S,	SM	A-2-4	0-7	0-7	84-100	83-100	65-84	14-23	0-25	NP-3
	42-55	STV-S, STV-LS,	SM	A-2-4	0-15	15-29	79-95	78-95	62-80	13-21	0-25	NP-3
		ď										
	55-60		SM	A-2-4	0-15	0-15	82-100	81-100	64 - 84	14-23	0-20	NP-3
286:												
Nevadafalls	8-0	LS, GR-SL, GR-	SM	A-2-4	0	0	72-92	70-92	53-73	19-28	0-40	NP-3
	8-21	SI, IS	SM	A-2-4,	0	0	78-92	77-92	56-74	26-39	25-37	1-7
	21-28	SI, IS	SC-SM, SM	A-4	0	0	78-92	77-92	55-73	26-38	18-30	1-7
	28-60	SI, IS	NS	A-2-4 A-2-4	0	0	78-92	77-92	58-73	21-28	0-20	NP-3
Typic Dystroxerepts		SPM, GR-SPM	PT	A-8	!	:	:	1	-	:	-	:
	1-2	PM,	PT	A-8	:	1	-	-	-	-	-	1
	2-3	GR-HPM, HPM	PT	A - 8	!	!	1 0	1 1	1 1		1 0	
	0 I C	SI, IS	WC	* · · · · · · · · · · · · · · · · · · ·	>	>	76:07	76-11	# / - 60	67-17	o n	0 1 4
	16-25	GR-LS, LS, GR-	SM	A-2-4	0	0	78-92	77-92	59-74	21-29	0-29	NP-3
	25-35	SL, LS, GR-LS,	SM	A-2-4,	0	0	78-92	77-92	57-72	29-39	0-25	NP-3
	35-60	യയ്	SM	A-4 A-2-4	0	0	78-92	77-92	59-74	21-29	0-20	NP-3
		Sr, Sr										

Table 11.-Engineering Index Properties-Continued

 Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Per	Percentage passing sieve number	passir	J.G	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pct	Pct					Pct	
286: III+in Daloveralfe		MG	E-	α .	c	c	 		 			
	H (10 H	4	0 (> (> (I I
	1-2		T.A.	A-8	0	0	 	1	 	! !	!!!	!!!
	2-9	LFS, SL, FSL	PT	A-8	0	0	92-100	92-100	66-99	31-40	:	!!!
	9-14	LFS, FSL, SL	SM	A-2-4,	0	0	92-100	92-100	86-78	31-40	33-43	1-6
				A-4								
	14-22	-	MĽ,	A-7-6	0	0	92-100	91-100	76-100	56-78	22	12-25
	22-32	L, CL, SCL	CH, ML, CL	A-7-6	0	0-8		91-100	60-95	43-76	2-56	12-29
	32-60	SCI, CL, C	CH, ML, CL	A-7-6	0	6-0	91-100	90-100	61-100	46-83		12-36
Rock outcrop.												
287:												
Badgerpass	0-2	SPM		8-8	:	-	:	-	:	:	-	;
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2-2	MPM	LA	A-8	!	-	!	-	-	!	!	:
	,	No.		0								
	7 0			0 (C		1 7	1 7	1 0	1 7		1 1
	3-TT	Z C C C		A-2-4	>	>	92-100	92-100	08-0/	24-30	ا ا ا	T-AN
	11-25	LS, LCOS, CB-	WS.	A-2-4	0	0-15	91-16	91-16	08-69	24-30		NP-1
	L C	מים מים וויי		, ,	•	0	7	7	0			,
	72-60	CB-LCOS, CB-LS, LCOS, LS	E S	A-2-4	>	0 - N V	00 T - 0 0	0 0 T = 0 &	ور ا ا ا	24-30	8 T - 0	T - 4
Waterwheel	0-0	SPM	PT	A-8	:	-	-	-	!		-	!
	0-1	MPM	PT	A-8		:	:	1	:		!	1 1
	1-4	LCOS, LS, ST-	SM	A-1-b,	0-20	0-7	74-100	73-100	42-61	18-27	0-36	NP-1
		IS, ST-LCOS	_	A-2-4	_						_	
	4-11	SI-LS, LS, SI-	SM	A-2-4,	0-20	0-7	74-100	73-100	42-61	18-27	0-30	NP-1
	_	rcos, rcos	_	A-1-b	_						_	
	11-22	LS, ST-LS,	SM	A-2-4,	0-20	0-7	74-100	73-100	42-60	17-27	0-25	NP-1
	_	LCOS, ST-LCOS		A-1-b	_							
	22-29	SIV-LS, SIX-	SM	A-1-b,	0-74	0-7	47-100	45-100	26-61	11-27	0-18	NP-1
	_	LCOS, STV-	_	A-1-a,	_							
	_	LCOS, STX-LS	_	A-2-4	_							
	29-60	STX-LS, STX-	GW-GM, SM, GM	Æ	0-73	0-7	48-100	46-100	21-48	5-15	0-18	NP-1
		COS, STV-LS,		A-1-b								
		ST.V-COS										

Table 11.-Engineering Index Properties-Continued

				-						-	-	
Map symbol	Depth	USDA texture	Classification	ation	Fragments	ents	Fe i	rcentage pass sieve number-	Percentage passing sieve number		Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	[태]				Pct	Pct					Pct	
288:												
Rock outgrop.												
Craneflat	0-1		PT	A-8	!	:	-	:	!	:	:	:
	1-1		T I	8-8	!!!!	!	1 1	!	!!!!	!	_	!
	1-2		PT	₩-8		! (1 (: !			(
	2 - 4	STV-SL, STV-LS	WS	A-2-4, A-2-5	36-48	8 - E	75-95	74-95	52-71	21-31	0-64	NP-3
	4-11	SIV-S, SIV-LS	SM		42-53		74-93	73-93	51-70	21-31		NP-4
	11-22	STV-LS, LCOS,	SM	A-2-4	15-41	3-15	76-95	75-95	51-69	20-29	0-26	NP - 4
	22-30	LS, SIV-LCOS	SM	A-2-4	15-42	3-15	76-95	75-94	53-72	21-31	0-26	NP - 4
	6			, . 7		L		1		0		
	30-90	CBV-S, CBV-	된 20	A-1-D, A-2-4	>	T2-29	υ υ ε π			77-71	5 2 3	N P - 4
		P										
Waterwheel	0-0	SPM	PT	A-8	:	!	-	:	:	-	-	:
	0-1		PT	A-8	:	!	-	:	:	-	_	
	1-4	LS, ST-LCOS,	SM	A-1-b,	0-20	0-7	74-100	73-100	42-61	18-27	0-36	NP-1
	,			A-2-4	0		7	7		0		,
	4-11	LS, ST-LCOS,	WS.	A-2-4, A-1-b	0-20	0-7	74-100	73-100	42-61	18-27	0-34	NP-1
-	11-22	ST-LS, LCOS,	SM	A-2-4,	0-20	0-7	74-100	73-100	42-60	17-27	0-25	NP-1
				A-1-b						—		
	22-29	STV-LCOS, STX-	SM	A-2-4,	0-74	0-7	47-100	45-100	26-61	11-27	0-18	NP-1
		'		A-1-a						_	_	
	29-60	STX-LS, STX-	GW-GM, GM	A-1-a,	0-73	2-0	48-100	48-100 46-100 21-48	21-48	5-15	0-17	NP-1
		COS, STV-COS,		A-1-b								
		STV-LS										
289:												
Waterwheel	0-1	GR-SPM, STV-	PT 	A-8	1	!	1	:	1		 ! !	!
	1-6	CB-LS, CBV-LS,	SM	A-1-b,	0	15-29	74-92	72-91	42-56	17-26	0-39	NP-2
		CB-LCOS		A-2-4								
	6-15	CB-LS, CB-LCOS,	SM	A-2-4,	0	22-35	72-91	71-91	41-56	17-26	0-35	NP-2
	15-25	CB-ICOS, CBV-	SM	A-2-4	0	29-42	70-90	06-89	52-72	18-27	0-28	NP-2
		LS, CB-LS										
	25-36	STV-LS, ST-	SM	A-1-b,	8-23	23-36	65-90	64-90	48-72	17-27	0-24	NP-2
	36-60	CBV-LS, CBV-	SM	A-1-b,	7-22	22-35	48-74	46-72	27-45	11-21	0-19	NP-2
		LCOS, STV-		A-1-a								
		LCOS, STV-LS,									-	
		STX-LCOS, STX-										
-	_	ב ד	_	_	_	_	_	_	_	_	_	

Table 11.-Engineering Index Properties-Continued

			Clas	Classification	Fr	Fragments	Ā	Percentage passing	e passi	ng		1
Map symbol	Depth	USDA texture						sieve n	sieve number		Liquid	Plas-
and soil name			Unified	ed AASHTO	>10 inches	3-10	- R	10	40	200	limit	ticity index
	티				Pat	Pat					Pat	
289:												
Craneflat	0-2	BY-SPM, SPM	PT	A-8	1	:	:	:	:	:	:	:
	2-4	BY-MPM, MPM	PT	A-8		:	-	!	:	1	1 1	!
	4-4	BY-HPM, HPM	PT	A-8	-	!	!	:	:	!	:	:
	4-12	STX-LS, STV-LS,	, SM, GM	A-1-b,	8-23	3 15-29	43-67	41-66	31-53	11-20	0-39	NP-2
		STX-SL, STV-SL		A-2-4	_		-					
	12-23	SIV-LS, SIX-LS,	, GM, SM	A-1-b,	15-29	9 23-36	5 36-63	33-62	25-50	9-19	0-28	NP-2
	_	SIX-SL, SIV-SL	_	A-1-a	_		_	_				
	23-28	STV-LS, STX-LS,	, GM, SM	A-1-a,	31-59	3 23-36	33-77	31-76	24-62	8-24	0-24	NP-2
		STV-SL, STX-SL		A-1-b,			-					
				A-2-4	_		-					
	28-60	STX-LS, STV-LS,	, GM, SM	A-1-a,	32-60	23-36	33-77	30-76	22-59	11-31	0-19	NP-2
		STX-SL, STV-SL		A-1-b,	·							
				A-2-4								
290:												
Humic Dystroxerepts		SPM	PT	A-8	-	!	:	-	:	:	:	;
	6-0	GR-FSL, LS, GR-	- SM	A-2-4,	0	0	72-85	70-84	53-67	28-36	0-42	NP-4
	_	LS, SL, FSL,	_	A-4		_						
	_	GR-SL	_	_	_			_				
	9-20	SIV-LS, SI-SL,	SM	A-2-4	0	23-36	63-82	62-82	47-65	24-35	0-35	NP-4
	_	SI-LS, SIV-	_		_							
	_	FSL, ST-FSL,	_		_							
		STV-SL										
-	20-60	ST-LS, STV-FSL	, SM	A-2-4	0	23-36	5 71-82	70-82	53-65	28-35	15-24	1-4
		ST-FSL, STV-					_					
		SI, SI-SI,					_	_		_	_	
		STV-LS					_	_				
	_								_	_	_	

Table 11.-Engineering Index Properties-Continued

			Classification	cation	Fragi	Fragments	Pe	Percentage passing	e passi	bu		
Map symbol	Depth	USDA texture					-	sieve number	umber		Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pct	Pct					Pat	
290:												
Tuolumne	0-3	CB-LS, CBV-LS,	SM	A-2-4,	0	35-47	78-90	17-89	45-55	19-25	0-39	NP-1
		CB-LCOS, CBV-		A-1-b								
	3-7	CBV-I.S CRV-	×	4-1-4	c	47-57	74-88	73-88	42-54	18-24	0-34	ND-1
			i	A-2-4	•				1	i i)	
	7-12	CBV-LS, CBV-	SM	A-1-b,	0	47-57	74-88	73-88	43-54	18-24	0-32	NP-1
	-	rcos		A-2-4								
	12-24	CBV-LCOS, CBX-	SM	A-1-b,	0	47-58	63-88	61-88	47-70	16-26	0-25	NP-1
	-	LCOS, CBV-LS,		A-2-4								
	-	CBX-LS										
	24-39	CBX-LS, CBV-LS,	SM, GM	A-1-b,	8-23	29-42	36-63	33-62	25-50	9-19	0-23	NP-1
		CBX-LCOS, CBV-		A-1-a	_							
		rcos		. —	_							
	39-46	SIX-LS, CBV-LS,	GM, SM	A-1-b,	7-22	35-47	40-70	38-69	22-42	9-19	0-18	NP-1
	_	SIX-LCOS, CBV-		A-1-a	_	_				_		
	_	rcos				_				_		
	46-60	SIX-LCOS, CBV-	SM	A-1-b	7-22	35-47	40-70	38-69	22-42	9-19	0-18	NP-1
		LS, STX-LS, CBV-LCOS										
					_	_						
Typic Xerorthents	0 - 4	SL	SM, ML	A-2-4,	o 	0	85-95	84-95	06-09	20-60	!	-
	4-15	PST-SL	SM	A-2-4,	16-30	0	81-95	80-94	!	!	!	-
	_			A-4		_				_		
	15-33	STX-SL	SM	A-2-4,	76-84	0	48-86	46-86	35-71	18-39	0-22	NP-5
	33-60	WB		' 	!	!	!	!	!	!	:	;
		_						_	_			

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	cation	Fragments	nents	Per	Percentage passing sieve number	passin mber	DT.	Liquid	P1as-
and soil name			Thified	ОТНЗФФ	>10	3-10	4	0	04	200		ticity
	티					Pct)	Pat	
			E									
oreic maproxeraris	- -	SPM, SPM	<u> </u>	ο - ¥	 ! !	!	! !	!!!!	!	! !	1	! !
	1-2	SPM, BY-SPM, BYX-SPM	PT	A-8	:	:	1	!	!	!	:	:
	2 - 2	BY-SPM, SPM, BYX-SPM	PT	A-8	!	!	1	:	!	!	!	:
	2-6	SL, BY-SL	SM	A-4, A-5,	8-23	0	82-91	81-91	59-74	29-39	36-48	5-11
				A-6, A-7-5,								
	6-12	BY-SL, SL, BYV-	SM	A-2, A-4,	8-23	5-16	80-95	79-94	56-75	27-40	34-46	5-11
		SL		A-5,								
				A-6, A-7-5								
	12-30	BY-SCL, SCL,	SC, SM, CL,	A-7-6,	8-24	5-24	78-94	77-94	65-94	35-57	34-52	13-24
		.1		A-2, A-6								
	30-41	SCL, BYV-SCL	SC, CH, CL,	A-7-6,	8-24	1-16	79-98	78-98	64-95	35-58	32-50	13-24
	41 - 60	מתו. שע-מתו.		A-0, A-2	20-24	c	20 .	α σ ι	20-25	36.58	30-46	13-25
) 			A-6	# N D	>))	1	5	D 1	1
Ultic Haploxeralfs		SPM	PT	A-8	0	0	!	!	:	:	-	:
	1-2	MPM	PT	A-8	0	0	:	-	-	-	:	:
	2-3		PT	A-8	0	0	!	:	:	!		!!!
	3-5	SI,	SM	A-4	0	0	92-100	_		37-46	0-39	NP-5
	5-12		SM	A-4	0	0	92-100	_	64-76	36-46		NP-5
	12-19	COSL, SL, VFSL	SM	A-4,	0	0	92-100	92-100	59-71	34-43	0-28	NP-5
				A-2-4								
	19-22			A-4	0	0	92-100	92-100	22-29	38-44	18-23	3-5
	22-41	SI,	SC-SM, SM	A-4	0		92-100	92-100	92-19	36-42	18-23	3-5
	41-57	VFSL, SL, COSL	SC-SM, SM	A-4,	0		92-100	92-100	92-29	34-40	18-23	3-5
	57_61	GT. VEGT. COGT.	No.	A-2-4	_	_	001-00	001-00	37-73	34-40	17_22	П
	5	10.1		A-2-4	>	>	1 1 1		2) - - - -	77	ה ה
					-			-				

Table 11.-Engineering Index Properties-Continued

Column		4 40011	Classification	ation	Fragi	Fragments	Pe	Percentage passing	e passi:	ng		ם כי
and soil name	בה הקים היים היים היים היים היים היים היים הי	באיתופים באיתופים ב			>10	3-10		מאר ש	i i i		limit limit	ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	ri I				Pct	Pct			_		Pct	
Tunia Dystroxerents	0-1	MdS	Еd	8	:	:	;	;	:	: 	:	;
		MDM	- E-Ω	ο α	 	:	:	-	-	: 	:	:
	2-7	SL, FSL	SM	A-2-4,	0	3-8	84-92	83-91	62-73	32-40	0-37	NP - 4
				A-4								
	7-16	SL, CB-SL, CB-	SM	A-4,	0	8-23	74-91	73-91	54-72	28-39	0-35	NP-4
	_	FSL, FSL		A-2-4	_				_			
	16-29	CB-SL, CB-FSL,	SM, SC-SM	A-4,	0	3-16	68-84	67-83	48-68	23-36	21-34	2-9
		FSL, SL		A-2-4				_	_			
	29-39	CB-SL, CB-FSL,	SC-SM, SM	A-2-4	0	3-16	68-84	67-83	46-65	21-33	19-32	2-9
		FSL, SL										
	39-60	CB-SL, CB-FSL,	SC-SM, SM	A-2-4,	0	3-16	68-84	67-83	20-66	25-36	0-21	NP-4
		FSL, SL		A-4								
4		i i	E	C								
Humic Dystroxerepts		Z	. T.	Α-α	!	!	!	!	!	! ! !	!	!
	1-1		PT	A-8							1	
	1-3	GR-LS, LS, GR-	SM	A-2-4	0	0	100	70-84	54-68	19-26	0-39	NP-1
	_	rcos, rcos			_							
	3-4	GR-LCOS, LCOS,	SM	A-2-4	0	0	100	70-84	54-68	19-26	0-36	NP-1
		GR-LS, LS			_							
-	4-7	LS, GR-LS,	SM	A-2-4	0	0	100	70-84	54-68	19-26	0-34	NP-1
		LCOS, GR-LCOS										
	7-11	LS, GR-LCOS,	SM	A-2-4	0	3-15	100	67-84	52-67	18-25	0-32	NP-1
		LCOS, GR-LS										
	11-19	CB-LS, CBV-LS,	SM	A-2-4	0	8-23	94-97	66-83	51-67	18-25	0-25	NP-1
		CB-LCOS, CBV-										
	_	rcos			_							
	19-31	SIX-LS, SIX-	SM	A-2-4,	47-58	8-23	96-06	37-75	29-60	10-23	0-21	NP-1
		LCOS, STV-		A-1-b,								
		rcos, srv-rs		A-1-a				_	_			
	31-60	STX-LS, STV-LS,	SM	A-1-a,	47-58	8-23	96-06	37-75	29-60	10-23	0-18	NP-1
		STV-LCOS, STX-		A-1-b,								
		LCOS		A-2-4								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Pel	Percentage passing sieve number	e passir umber	ng	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pct	Pct					Pat	
292:												
Typic Haploxerults	0 - 2	SPM	H H	& o	!	1	1	!	!	1	!	!
	4-7	COSL, STV-SL,	SM. SC-SM	A-2-5,		0-15	67-85	66-84	39-57	22-34	33-44	1 & 1 1 1 C
		GR-SL, SL, GR- L, STV-L, GR- COSL, L, STV-		A-2-4	,							1
	7-9	ST-COSL, L, CB- L, ST-SL, CB- COSL, COSL, CB-SL, SL, ST- T.	SC-SM, SM	A-2-4, A-2-5, A-4	8 - 0	0-16	74-92	73-92	51-75	23-40	31-46	3-12
	9-15	L, ST-SL, SL,	SC-SM, SC,	A-2-4,	8 - 0	0-16	73-97	72-96	58-96	30-59	31-53	10-25
		ST-I ST-I	#5 	A-Z-5, A-4, A-5, A-6, A-5-6								
	15-22	CB-CL, SCL, GR-SCL, CB-SCL, CL, GR-CL, CB-T. T. CB-T.	CH, CL, SC, SC-SM	A-4, A-5, A-6, A-7-6	8 - 0	8 - 2 4	96-08	79-96	60-93	45-74	29-51	10-25
	22-60	CI, SCI, CB-	CH, CL, SC,	A-6,	0-24	0-17	96-62	78-96	59-93	45-75	32-51	14-29
		SCL, ST-CL, STV-CL, STV-L, STV-SCL, L, CB-L	SM.	A-7-6								
293:												
Xeric Dystrocryepts		SPM	PT	& . 8 .	! (1 (I G	1 5	1 0	1 1	1 0	: ·
	4 - 4	1.5 1.45 1.5 1.45	W.S.	A-2-4	o c	0 0	20 I I I I	24-72	000	27 - 33		NP-1
	20-34	GR-LFS, LS,	WS	A-2-4	0	0	78-92	77-92	60-74	21-28	0-25	NP-1
	34-47	STV-LS, STV- LFS, ST-LS,	SM	A-2-4	3-15	3-15	73-92	72-91	55-74	19-28	0-20	NP-1
		ST-LFS, LS, LFS										
	47-60	ST-LFS, ST-LS, STV-LS, STV- LFS		A-2-4	8-23	8-23	70-91	68-91	53-73	18-28	0-18	NP-1

Table 11.-Engineering Index Properties-Continued

Man gymhol	T to C	ACPIT	Classification	ation	Fragments	ents	Per	Percentage passing	passi	ng	1.4	ם מ נ
and soil name	1 1 1				>10	3-10					limit	ticity
			Unified	AASHTO	Ø	inches	4	10	40	200		index
	ul				Pat	Pct					Pct	
293:												
Vitrandic Dystroxerepts	0-0	SPM	PT	A-8	- - -	:	-	-	:	<u> </u>	:	:
	0-2	SL, FSL	SM	A-2-4, A-4, A-5	0	0	92-100	92-100 71-83	71-83	33-41	34-50	1-5
	2-5	SL, FSL	SM		0	0	92-100	92-100	71-83	32-40	25-34	1-5
	5-18	SL, FSL	SM, SC-SM	A-4, A-2-4	0	0	85-100	84-100	65-83	28-39	20-32	1-5
	18-25	CB-FSL, CB-SL,	SM, SC-SM	A-2-4	1-8	1-8	91-98	91-98	62-69	28-35	17-24	1-5
	25-36	CB-SL, CB-FSL, CBV-FSL, CBV-SL	SM, SC-SM	A-2-4	0	23-36	63-82	62-82	50-70	20-30	17-24	1-5
	36-60	CB-SL, CB-FSL, CBV-SL, CBV- FSL	SM, SC-SM	A-1-b, A-2-4	0	8-23	59-76	58-75	43-62	15-25	16-25	1-7
294:												
Waterwheel	0-0	SPM	PT	A-8	0	0	-	:	!	<u> </u>	:	:
_	0-1	MPM	PT	A-8	0	0	-	-	1	- - -	-	:
	1-2	ньм	PT	A-8	0	0	:	-	1		:	1
	2-6	CB-LCOS, LCOS, CB-LS, LS	SW	A-2-4	0	3-15	84-92	83-92	48-56	20-25	0-38	NP-1
	6-11	SIV-LCOS, SI-	SM	A-2-4	7-22	3-22	79-92	78-91	46-56	19-24	0-24	NP-1
		LCOS, LCOS, ST-LS, STV-LS,										
		LS										
	11-26	STV-LS, STX-LS, LCOS, STX-LS, STV-LCOS	NS	A-2-4	58-67	3-15	61-86	60-85	46-68	16-25	0-18	NP - 1
	26-60	STX-LCOS, STX-	В	A-1-b	83-100	0	40-76	38-75	29-60	10-22	0-17	NP-1
		LS, STV-LS, STV-LCOS										

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Per	Percentage passing sieve number	passin		Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	u				Pct	Pct					Pct	
294:		MUD HO MUD	E	0								
17pic Dyscionerepes	1 0	0	SM, SC-SM	A-2-5,	0-16	0-16	81-100	80-100	45-65	20-35	0-63	NP-7
) 	LCOS, ST-LCOS		A-2-4 A-1-b						\ \ \		
	5-12	ST-LCOS, LCOS,	SC-SM, SM	A-1-b,	0-16	0-16	81-100	80-100	49-69	21-35	0-37	NP-7
	12-20	GUSE, ST-COSE	מק- מאר מאר	A-2-4	91-0	3-16	73-92	72-92	42-62	19-32	0-30	ND-7
) 	STV-LCOS, CB- COSL, COSL,		A-2-4) 1	1	1	1	1		
	20-28	STX-LCOS, STX-	SC-SM, SM	A-1-b,	48-58	3-16	68-95	67-95	36-60	16-32	16-28	1-7
		COSL, STV- LCOS, STV-COSL		A-2-4								
	28-49	STV-COSL, STV-	SC-SM, SM	A-1-b,	0-16	8-23	80-92	79-91	47-62	20-32	15-25	1-7
		LCOS, CB-COSI,		A-2-4								
		COSI										
	49-60	WB			!	!!!!	!	!	1 1	!	!	!
295:												
Craneflat	0-5		SM	A-1-b	0	3-16	68-84	67-83	36-50	16-24	0-40	NP-3
	·	CB-LS, COSL, CB-COSL, GR-SL										
	5-19	SIV-COSL, SIV- SL, ST-COSL,	SM	A-1-b	8-23	3-16	63-83	61-83	33-50	14-24	0-31	NP-3
	0	מיים מיים מיים מיים מיים מיים מיים מיים	70	ام د	0	70 00	200	000	7 1 2	76 31	0	c dr
	00 61	SIV-COSL, SIV-	E C	A-1-5,	0	000	0 0 0	0 0	# 0 0 0	07 - CT		0 1 1
Tvoic Dystroxerepts		ST-SPM, SPM	E d	88	:	:	:	:	!		:	!
1	1-9	COSI, ST-SL,	SM, SC-SM	A-2-4,	8-0	8-0	83-100	82-100	62-82	32-45	0-43	NP-5
		SI-COSI, SI		A-4, A-5		_				_		
	9-18	, ST-SL	SC-SM, SM		8-0	3-16	74-92	73-91	53-72	24-36	0-32	NP-5
		COSL, ST-COSL		A-2-4								
	18-31	O	SC-SM, SM	A-4,	8-0	23-36	78-91	17-90	56-71	26-36	0-27	NP-5
	·	SL, CB-COSL, CB-SL		A-2-4								
	31-60	SL, ST-COSL, ST-SL, COSL	SC-SM, SM	A-4, A-2-4	8 - 0	8-0	91-100	91-100	68-81	35-45	0-22	NP-5
				_					_			

Table 11.-Engineering Index Properties-Continued

Most control	4	1	Classification	ation	Fragments	ents	Per	Percentage passing	passin	ש		-
and soil name	Debcii	Dana reardie			>10	3-10	α	ביי שמוווו שאשומ	Taggi		limit	11011
			Unified	AASHTO	inches	inches	4	10	40	200		index
	티				Pct	Pct					Pat	
296:												
Ultic Palexeralfs	0-2	SPM	PT	A-8	0	0	!	!	!	!	!	:
	2-3	MPM	PT	A-8	0	0	!	!	!	!	!	:
	3-6	L, SL	ML	A-4, A-6,	0	0	92-100	91-100	74-96	20-70	38-56	9-16
		_		A-5,	_		_		_		_	
		_		A-7-5	_			$\overline{}$	_		_	
	6-12	Sr, r	ML, SM	A-5,	0	0	92-100	91-100	71-93	48-67	34-52	6-17
				A-7-5,			_		_			
				A-6, A-4								
	12-23	G.	CL, CH, ML	A-7-6	0		92-100 9	1-100		_	40-59	17-29
	23-32	ï, Cī,		A-7-6	0	0	92-100	1-100	_	_	41-59	17-29
	32-41	L, SICL, CL	ML, CH	A-7-6,	0		92-100	1-100	78-100	06-89	39-57	18-29
				A-6					_			
	41-60	L, CL, SICL	CH, CL	A-7-6,	0	0	91-100	91-100	74-97	62-83	37-53	18-29
				A -6								
Humic Dystroxerepts	0-1	SPM	PT	A-8	!	!	1	1	-	-	1	:
	1-3	-	PT	A-8	1 1	1	-	_		:		1 1 1
	3-6	SI, FSL	SM	A-2-4,	0	0	85-100	84-100	62-83	30-45	34-47	2-9
				A-4				_	_			
	6-17	FSL, SL	SM	A-4,	0	0	85-100	84-100	64-86	34-50	32-45	2-9
				A-2-4,								
	17.00	1001	2	0-4-6	c	c	100	100	60 63	30.45	25.20	0
	1			A-2-4	>	>					ו ו	
	22-28	PCB-FSL, PCB-	SM	A-2-4	0	0	85-100	84-100	62-83	30-44	21-34	2-9
		SL, FSL, SL					_					
	28-37	SL, FSL, PCB-	SM, SC-SM	A-4	0	0	100	100	88-97	38-47	19-32	2-9
		SL, PCB-FSL						_				
	37-48	SI, FSI	SM, SC-SM	A-2-4,	0	0	100	100	82-69	31-40	17-27	2-9
				A-4				_				
	48-70		SM	A-2-4	0	0	100			25-29		NP-3
	70-86	LCOS, LS,	SM	A-2-4	0	0	100		77-81	28-32	0-20	NP-3
	86-106	LCOS, LFS, LS,	SM	A-2-4	0	0	100	100		33-37		NP-3
		COS										

Table 11.-Engineering Index Properties-Continued

[odmis rew			Classification	cation	Fragi	Fragments	P P	rcentage passi	Percentage passing	bu	- E	Д с г
and soil name	1 1 1			_	>10	3-10					limit	ticity
			Unified	AASHTO	inches		4	10	40	200		index
	[태]				Pct	Pct					Pct	
297:												
Typic Xerorthents	0-1	SPM	PT	A-8	:	:	:	:	:	-	:	:
	1-1	MPM	PT	A-8	1		1 1	1				
	1-3	LCOS, LS	SM	A-2-4	0	0	85-92	84-92	56-67	20-28	0-40	NP-5
	3-6	LCOS, LS	SM	A-2-4	0	0	85-92	84-92	56-67	20-28	0-40	NP-5
	6-9	LCOS, CB-LS,	SM	A-2-4	0	3-15	76-92	75-92	54-73	21-32	0-29	NP-5
		CB-LCOS, LS		-								
	9-16	LS, LCOS, GR-	SM	A-2-4	0	3-15	69-84	67-84	51-69	19-29	0-27	NP-5
	_				_	_	_		_			
	16-28	CB-LS, CB-LCOS,	SM	A-2-4	0	3-15	83-92	82-92	57-70	21-30	0-23	NP-5
	_	LCOS, LS				_						
	28-60	SIV-LS, SIX-	SM	A-2-4,	47-58	3-15	88-69	67-87	47-66	17-28	0-22	NP-5
		LCOS, STX-LS,		A-1-b								
		STV-LCOS										
Rock outcrop.												
Typic Xeropsamments	0-1	SPM	P.	A-8	-	-	-	-	-		:	:
1	1-1	HPM	PT	A-8	:	1	1	1	1	-	1	;
	1-3	GR-LS, GR-LCOS,	_	A-2-4	0	0	72-91	70-90	54-73	19-27	0-36	NP-1
	_	LCOS, LS			_	_	_		_		_	
	3-7	LCOS, LS	SM	A-2-4	0	0	85-97	84-97	65-78	23-29	0-34	NP-1
	7-12	LCOS, LS	SM	A-2-4	0	0	85-97	84-97		22-29	0-27	NP-1
	12-17	LS, LCOS	SM	A-2-4	0	0	92-100	92-100		24-30	0-25	NP-1
	17-21	LCOS, LS, S	SP-SM	A-3,	0	0	85-92	84-92	64-73	5-9	0-23	NP-1
		. ——	-	A-2-4								
	21-30	PGR-S, PGR-	SP-SM	A-3,	0	0	100	100	76-80	6-10	0-20	NP-1
		LCOS, PGR-LS,		A-2-4								
	0	S, LCOS, LS		-	•	•	0	L			,	
	30-38	LS, LCOS, GR-	Ma Na Na Na Na Na Na Na Na Na Na Na Na Na	A-3,	o	o	72-85	7 T - 8 5	54 - 68	4t 0	8 T - O	T - AN
		GR-S, S										
	38-60	WB			0	0	100	100	1	1	0-18	NP-1
					_							

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Pe	Percentage passing sieve number	passir	pa .	Liquid	Plas-
and soil name					>10	3-10						ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	占				Pct	Pat					Pct	
298:												
Tuolumne	0-0	SPM	PT	A-8	0	0	:	;	:	:	-	;
	0-1	MPM	PT	A-8	0	0	:	;	:	:	:	!!!
	1-2	HPM	SM	A-8	0	0	:	;	:	:	:	!!!
	2-6	CB-LCOS, LCOS,	SM	A-2-4	0	3-15	84-92	83-92	48-56	20-25	0-38	NP-1
		CB-LS, LS			_	_						
	6-11	ST-LS, LS,	SM	A-2-4	7-22	3-22	79-92	78-91	46-56	19-24	0-24	NP-1
		STV-LS STV-										
		LCOS		·								
	11-26	STV-LCOS, STV-	SM	A-2-4	58-67	3-15	61-86	60-85	46-68	16-25	0-18	NP-1
		LS, STX-LS,										
		SIA-LCOS										
	26-60	STX-LS, STV- LCOS, STV-LS,	В	A-1-b	83-100	0	40-76	38-75	29-60	10-22	0-17	NP-1
		STX-LCOS										
Typic Dystroxerepts		ST-SPM, SPM	PT	A-8		:	:		:	:	!	:
	1-5	LCOS, ST-LCOS,	SM, SC-SM	A-2-5,	0-16	0-16	81-100	80-100	45-65	20-35	0-63	NP-7
		COSL, ST-COSL		A-2-4, A-1-b								
	5-12	LCOS, ST-LCOS,	SC-SM, SM	A-1-b,	0-16	0-16	81-100	80-100	49-69	21-35	0-37	NP-7
		COSI, ST-COSI		A-2-4								
	12-20	STV-COSL, STV-	SC-SM, SM	A-1-b,	0-16	3-16	73-92	72-92	42-62	19-32	0-32	NP-7
		LCOS, CB-COSE,		A-2-4								
		LCOS CB-LCOS,		-								
	20-28	STX-LCOS, STV-	SC-SM, SM	A-1-b,	48-58	3-16	68-95	67-95	36-60	16-32	16-28	1-7
	_	COSL, STV-		A-2-4								
		LCOS, SIX-COSL										
	28-49		SC-SM, SM	A-1-b,	0-16	8-23	80-92	79-91	47-62	20-32	15-25	1-7
		CB-LCOS, COSL,		A-2-4								
		LCOS STV =										
	49-60	WB				1	:	;	:	:	-	;

Table 11.-Engineering Index Properties-Continued

Map grampol	Denth	USDA texture	Classification	ation	Fragi	Fragments	Pe	Percentage passing	passir	bu Bu	Limid	Б В В
and soil name	 				>10	3-10					limit	ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	티				Pct	Pct					Pct	
299:												
Humic Dystroxerepts		STV-SPM, SPM	PT	A-8	:	:	-	-	:	:	:	
	1-1	~	PT	A-8	 - -	:	:	:	:			
	1-2	HPM, STV-HPM	PT	A-8	!!!	!	:	:	!	!	 	
	2-4	ST-COS, STV-	SM	A-1-b	34-45	3-7	96-11	96-94	32-44	7-13	0-37	NP-2
		COS, ST-LS,										
	4-11	ST-LS, STV-COS,	SM	A-1-b	39-50	3-7	75-96	74-96	31-44	7-13	0-33	NP-2
	11 - 22	GH COS, STV-LS	MD MD	ر د	200	2 1 7	77 07	76.07	21 13	1.0	0	C C
	77-11	SIV-COS, SI-LS		7 - 1	0 0 1 1 1	# 	16-11	600	0 H	1 0		7 4 4 4
_	22-30	STV-LS, ST-LS,	SM	A-2-4	15-42	3-15	96-91	75-96	26-77	17-26	0-20	NP-2
		STV-COS, ST-										
	30-60	CBV-LS, CB-LS,	SW-SM	A-1-b	0	14-27	60-84	59-84	24-39	6-12	0-19	NP-2
		CBV-COS, CB-										
Ultic Haplxoeralfs		SPM, ST-SPM	PT	A-8	:	:	-	-	1	:	-	:
	0-1	MPM, ST-MPM		A-8	:	<u> </u>	:	-	:	- - -	-	!!!
	1-8	ST-SL, ST-SCL,	SM, ML, SC-SM A-4,	A-4,	3-16	8-8	74-97	73-96	26-90	29-55	31-50	1-13
		SI, SCL, L, SI-L		A-2-4, A-5, A-7-5								
	8-17	CB-SCL, CB-SL,	ML, SC-SM, SM	A-2-4,	0	3-8	76-97	75-96	57-89	30-54	22-42	1-13
		SCL, SL, L, CB-L		A-4, A-5								
_	17-28	GR-SL, STV-SL,	SC, SC-SM, SM	SM A-2-4,	8-0	3-16	66-84	65-83	47-74	22-42	18-38	1-13
		GR-SCL, STV- SCL, GR-L, STV-L		A-4								
	28-47	GR-SL, L, GR-L, GR-SCL, SCL, SL	sc, sc-sm,	SM A-2-4, A-4	0	8 - 8	76-97	75-96	54 - 85	25-49	16-33	1-14
	47-60	L, GR-SCL, SCL,	CI, CI-MI,	A-2-4,	0	0	78-97	77-97	58-90	30-54	16-33	1-14
		GR-L, GR-SL,	MI, SC, SC-SM, SM	A-4								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	ents	Per	Percentage pass sieve number-	passing	19	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	티				Pct	Pct					Pct	
300:												
Typic Dystroxerepts	0-1	SPM	PT	A-8	0	0	:	;	:	:	:	:
	1-2		PT	A-8	0	0	-	1	:	:	:	:
	2-2	SI, GR-SI, IS,	SM, SC-SM	A-2-4,	0	0	100	70-84	21-68	24-36	34-46	1-7
				A-4, A-5								
	2-5	GR-LS, LS, GR-	SC-SM, SM	A-2-4,	0	0	100	70-84	51-68	24-36	32-44	1-7
				A-5, A-4		-	0	0	C			
	ა - ა	GR-LS, LS, GR-	SC-SM, SM	A-2-4,	0	-	00T	06-07	50-73	24-38	ZI-33	1-7
	6	מייתה טייתה	200	A-4		0		0	7	1	c	6
	CT-A	קים מין פוער - וואי,	GC-GM, SC-SM,	A-I-D,	>	0 1 0	- CQ-TC	44 - 63	1	/7-/T	T8-78	χ - Τ
	15-20	ישט פינו פינו פינו	SC-SW GW	A-2-4	α ι	c	76-92	75.92	54-73	36-36	17-26	ά
		SI, SI		A-4	0	>	1000	1	7	•	0	o H
	20-30	WB			!	:	!	!	:	!	:	!
	,											
Ultic Haploxeralfs	0-1	SPM	PT	A-8	0	0	 	1	1	 	!	!
	1-2	MPM	PT	A-8	0	0	-	1	:	:	:	:
	2-2	M	PT	A-8	0	0	-	1	1	1	:	1 1 1
	2-10	SI, CBV-SI, CB-	SM	A-2-4,	0	8-23	68-89	65-88	49-71	25-39	0-42	NP-4
		ū		A-4								
	10-19	CBV-SL, CB-SL	SM, SC-SM	A-2-4,	0	16-30	62-29	63-87	47-71	23-38	20-32	3-9
	0			A-4		•	-	0			(1
	T8-60	CB-SCL, SCL	SC, SC-SM	A-2-4,	0	9T-8	68-69	/8-99	48-72	23-40	27-38	TO-T.
				A-4,								
				A-2-6								
Vitrandic Haploxerolls	0-1	SPM	PT	A-8	0	0	:	-	:	!	:	:
•	1-4	ы	MH, ML	A-7-5,	0	0	100	100	95-100	71-84	32-52	2-11
				A-6, A-4								
	4-7	ы	ML	A-4, A-6,	0	0	100	100	92-100	67-80	30-48	2-11
	7	į		A-7-			0	0	7		C C	
	11-/	T. CT. FRCT.	CL, ML, CL-ML	ML A-4, A-6	o c	> C	0 O	0 C	78-100 95-100	70-83	18-35	2-12
		COS ST. FST. T.	į		o c	o c	0 0	1 1	96-100		17-31	2-12
	34-57	L. FSL, SL, COS	j	A-4, A-6	0	0	100	100	96-100	70-83	17-30	2-12
		FSL, COS, SL, L	CL-ML, CL,	ML A-4, A-6	0	0	100	100	96-100		17-29	2-12
	69-	FSL, COS, L, SL	SM	A-2-4,	0	0	100	100	53-100	27-43	0-29	NP-12
				A-4, A-6								
				_								

Table 11.-Engineering Index Properties-Continued

Lodmin reM	1 4 4	מאניילאפּל בּרוצוו		Classification	ation	Fragi	Fragments	Pe	Percentage passing	passi:	ng	1.1	ם ב
and soil name	; ,					>10					_	limit	ticity
			_	Unified	AASHTO	inches	inches	4	10	40	200		index
	盾					Pct	Pat					Pat	
02:													
Typic Haploxerults	0-2	SPM	PT		A-8	0	0	!	:	:	:	:	:
	2-2	MPM	PT		A-8	0	0	! !	:	:	-	:	1 1
	2-3	HPM	PT		A-8	0	0		_	:		:	1 1
	3-5	п	MH,	ML	A-5,	0	0	92-100	91-100	77-91	54-67	41-52	8-13
	г С		1777	15	C-/-W		-	000	7	c	100	7 2 2 6	7
	21-6	<u>-1</u>	MH.	TW.	A-5, A-7-5	> 	o 	92-100	001-16	c6-c/	23-70	36-54	/T-8
	12-22	CI.	ML,	CL	A-7-6	0	0	91-100	91-100	76-94	58-73	L)	13-21
	22-60	SCL	CI,		A-7-6,	0	0-8	91-100	91-100	74-92	40-55	31-42	13-21
					A-6								
Ultic Haploxeralfs	0-1	SPM	PT		A-8	0	0	!	1	!	:	:	!
•	1-2	MPM	T.		8-8	0	0	!	!	:	-	!	!
	2-2	HPM	L A		8 - 8	0	0	:	:	:	:	:	;
	2-10	CBV-SL, SL, CB-			A-2-4,	0	8-23	68-89	65-88	49-71	25-39	0-42	NP-4
					A-4								
	10-19	CB-SL, CBV-SL	SM,	SC-SM	A-2-4,	0	16-30	62-89	63-87	47-71	23-38	20-32	3 - 9
	19-60	CB-SCL, SCL	SG,	SC-SM	A-2-4,	0	8-16	69-89	66-87	48-72	23-40	27-38	10-17
					A-4, A-6, A-2-6								
03: Rock outcrop.													
Dystric Xeropsamments	0-0	SPM, BYV-SPM	PT		A-8	!	!	!	!	!	-	!	!
	0-1	MPM, BYV-MPM	PT		A-8	-	:	:	:	:	1	:	
	1-3	SL, GR-SL, LS,	SM		A-2-4	0	3-8	69-84	68-83	52-67	18-26	0-40	NP-3
	3 - 5	LS, SL, GR-SL,	SM		A-2-4	0	3-8	69-84	68-83	52-68	18-27	0-38	NP-3
	5-14	GR-LS SL, LS, GR-SL,	SM		A-2-4	0	3-8	69-84	68-83	52-68	18-27	0-29	NP-3
		ES L						,					
	14-28	SI, IS, GR-SI,	SM —		A-2-4	0	ω - - -	69-84	68-83	53-69	18-27	0-25	NP-3
	28-37	CBV-LS, CB-SL,	SM		A-2-4	0	8-23	66-84	65-83	20-68	18-27	0-20	NP-3
	37-60					1	!	!	!	!	!	:	!
			_					_			_		

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	cation	Frag	Fragments	Ъ	Percentage passing	e passin	ng	Limid	0 0
and soil name	! ! !				>10	3-10					limit	ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	u I				Pct	Pct					Pct	
303:												
Humic Dystroxerepts	0-1	STV-SPM, ST-SPM	PT	A-8	-		-	1	1	1 1	1	
	1-2	CB-SL, CBV-SL,	SM	A-2-4	1-8	3-23	72-97	71-96	55-79	20-31	0-39	NP-3
		CBV-LS, CB-LS			_	_	_	_		_		
	2-7	CB-LS, CBX-LS,	SM	A-2-4	3-16	30-42	55-80	53-79	41-65	15-26	0-37	NP-3
	_	CBX-SL, CBV-			_	_				_		
	_	SI, CB-SI,			_							
	-	CBV-LS										
	7-13	CBX-SL, CB-LS,	SM	A-2-4	3-16	30-42	65-90	63-89	48-73	17-29	0-28	NP-4
		CBV-LS, CBV-SL										
	13-33		SM, GM	A-2-4	48-58	16-30	33-86	30-85	23-70	8-28	0-25	NP-4
	33-60	SIX-SI, SIX-LS,	GM, SM	A-1-b,	48-58	16-30	33-73	30-72	23-60	8-24	0-20	NP-4
		SIV-SL, SIV-LS		A-2-4								
	0-1	BY-SPM RVV-SPM	FG.	α 1	:		-	: 	- -	-	-	;
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, c		70 00	00	00	0 0 0	70	0	,
	T - 3	CBV-LB, SIV-LB,		A-2-4,	0T - C	72-20	0 0 -	00-00-	40-04	24-30	0	NF - 5
		CB-LS, STV-		A-4,								
		COSL, CB-COSL,		A-1-b								
		CBV-COSL	_									
	9-21	CB-LS, CB-LCOS,	SM	A-2-4,	3-16	23-36	67-90	06-99	38-55	16-25	0-26	NP-2
		SIV-LCOS, CBV-		A-1-b								
		LCOS, CBV-LS,										
		STV-LS										
	21-29	SIV-LCOS, CB-	SM	A-2-4,	8-23	23-36	65-90	63-80	37-55	16-25	0-24	NP-2
	_	LCOS, STV-LS,		A-1-b	_	_				_		
	_	CB-LS			_	_				_		
	29-44	CBX-LCOS, CBV-	SM	A-1-b	3-16	36-48	52-79	50-78	30-49	13-22	0-19	NP-2
		LCOS, CBX-LS,										
		CBV-LS										
	44-60	CBX-LCOS, CBV-	SM	A-1-b	3-16	36-48	52-79	20-78	30-49	13-22	0-19	NP-2
		LCOS, CBX-LS,										
		CBV-LS										

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	cation	Fragments	ents	Pel	Percentage passing sieve number	e passi	ng	Liquid	P.1 as -
and soil name	 - -		Unified	AASHTO	>10 inches	3-10	4	10	40	200	limit	ticity
	티		-		Pat	Pct					Pct	
304:												
Clarkslodge	0-0	SPM	PT	A-8	:	:	-	1	-	:	:	:
	0-1	MPM	PT	A-8	1 1	:	:	;	-	1 1		
	1-1	HPM	SM	A-8	!	!	!	!	:	:	:	:
	1-3	GR-SL, GR-COSL,	SM	A-4,	0	0	79-85	78-85	53-69	27-42	27-49	1-12
		COSI, LS		A-2-4								
	3-6	COSL, LS, GR-		A-2-4	0	0	72-85	71-85	45-66	23-39	21-40	1-12
		COSL, GR-SL										
	6-12	COSI, SI	SM	A-4,	0	0	85-92	85-92	56-74	27-42	19-35	1-12
	0	1		A-2-4	-	-	L C					7
	17-71	SL, COSL, GR-	SC-SM, SM	A-2-4	>	Э	77-85	7 T - 8 2	μ ο υ	73-40	T8-33	71-17
	27-35	SI, GR-SI	SC-SM, SM	A-2-4	0	0	65-78	64-77	43-63	20-35	17-32	1-12
	35-60	GR-SL, SL	SC, SC-SM	A-2-4,	0	5-15	9-8	67-84	47-70	22-39	17-30	1-12
				A-4, A-6								
Rock outcrop.												
11												
305: Rock outerop.												
Waterwheel	0-3	GRV-S, GRX-S	GP, GP-GM	A-1-a,	0	7-22	38-53	35-51	27-40	2-5	0-39	NP-1
	6	2 240	_ {	A-I-D		1	0	70	7,	,	7	r cr
	0 0	סנ	45			1 1	101	0 7 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	י ו ו ו		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 6 1 T	פונים מיינים			> 0	1 - TO	0 T - 0 C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00-75	0 s	0 0	1.4.1
	17-11	GKA-S, GKV-S	4.5	A-I-D,	>	77-/	28-43	75-40	19-32	- 7 - 4		1 - 4 KI
	21-60	GRV-S, GRX-S	GP	A-1-b,	0	7-21	29-44	26-42	20-33	2-4	0-18	NP-1
				A-1-a								
Dystric Xeropsamments		SPM	PT	A-8	!	!	!	:	!	 	:	!
	9-0	LS	SM	A-2-4	0	0	79-100			18-26		!!!
	6-18	LS	SM	A-2-4	0	0	79-100			18-26		ΝÞ
	18-25	IS	SM	A-2-4	0	0	79-100		59-79	18-26	0-16	NP-1
	25-41	LS	SM	A-2-4	0	0	79-100		59-79	18-26		NP-1
	41-60	LS	SM	A-2-4	0	0	79-100		59-79	18-26		NP-1
										_		

Table 11.-Engineering Index Properties-Continued

									-			
Map symbol	Depth	USDA texture	Classification	ation	Fragments	ients		Percentage pass sieve number-	g passing imber	p D	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	ul I				Pct	Pat					Pat	
306:												
Typic Cryopsamments	0-0	SPM	FT	A -8	!	!	:	:	!	!	!	!
	0-1	MPM	ᇤ	A-8	1 1	:	1	1.	! !	1		1
	1-4	LCOS	SM	A-2-4	0	0	85-92	2	50-59	20-26	0-40	NP-3
	4-15	GR-LCOS, LCOS,	SM	A-2-4	0	0	79-92	78-92	44-57	17-25		NP-3
	1 1 2 2 2 2	GR-LS, LS	70	·	•	c		0		2		ć.
	15-52	LS, LCOS	N S W	A-2-4	> 0) t	80-92	00-92	ρl	7707	0-2T	NF-3
	32-43	CB-LS, LCOS,	MS.	A-Z-4	o	3-T2	84-92	83-92	49 - 59	19-26 19-26	0 7 - 0	N P - 3
	43-60	GR-LCOS, GR-LS.	SM	A-1-b	0	3-15	63-78	61-77	36-49	14-21	0-20	NP-3
	¦ ¦	GRV-LCOS, GRV- LS		l I	,							
Humic Dystroxerepts	0-0	SPM	PT	A-8	0	22-61		-	1	-	!	:
	0-5	LS, GR-LS	SM, GM	A-1-b,	0	0	60-100	58-100	50-70	15-30	0-39	NP-2
				A-2-4								
	5-13	CB-LS, LS	SM	A-2-4	0	4-15	83-95	82-95	62-76	21-28	0-29	NP-3
	13-23		i	A-2-4	0	4-15	83-95	82-95	62-76	21-28	0-25	NP-3
	23-60	CB-L	GC, SC, CL	A-4	0	2-16	74-91	73-91	63-82	44-58	23-29	7-10
307:												
Rock outcrop.												
Dystric Xeropsamments	0-0	BYV-SPM, SPM	PT	A-8	:	:	:	-	1	:	!	:
	0-1	MPM, BYV-MPM	PT	A-8	!	:	:	-	!	:	:	:
	1-3	GR-LS, GR-SL,	SM	A-2-4	0	3-8	69-84	68-83	52-67	18-26	0-40	NP-3
		SI			•		((,	(
	3-5	SL, GR-LS, GR-	WS.	A-2-4	0		69-84	£8-83	22-68	18-27	0-38	NP-3
	5-14	SL, LS, GR-SL,	SM	A-2-4	0	3-8	69-84	68-83	52-68	18-27	0-29	NP-3
	14_20	GR-LS	×	K	c	0	70 0 9	60.03	23.60	10.07	C C	ND 3
	1	ì	i	: :	• •)))	•))	0	,
	28-37	ü	SM	A-2-4	0	8-23	66-84	65-83	20-68	18-27	0-20	NP-3
		CBV-SL, CBV-LS										
	37-60	WB			!	!	!	1	!	!	1	!
Dystric Xerorthents	0-3	GRV-S, GRX-S	GP, GP-GM	A-1-a,	0	7-22	38-53	5-5	27-40	2-5	0-39	NP-1
	ტ - წ				0	7-15	18-29	15-26	11-21	1-3	0-34	NP-1
	9-11		SP, GP-GM, GP		0	7-15	51-64	49-63	37-50	3-6	0-25	NP-1
	11-21	GRX-S, GRV-S	g p	A-1-b,	0	7-22	28-43	25-40	19-32	2-4	0-23	NP-1
	21-60	GRV-S, GRX-S	GP	A-1-d A-1-b,	0	7-21	29-44	26-42	20-33	2-4	0-18	NP-1
				A-1-a								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	cation	Fragn	Fragments	Per	rcentage pas	Percentage passing sieve number	ıg	Liquid	Plas-
and soil name	· 		Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	ri I				Pat	Pat					Pat	
309: Rock outerop.												
Waterwheel	0-2	SPM, CB-SPM	PT	A-8	:	:	:	1	-	!	!	;
	2-7	CB-SL, CBV-SL	GM, SM	A-1-b,	0	8-23	53-69	51-68	39-55	20-31	16-21	1-5
	7-17	CB-SL, CBV-SL	GC-GM, SM, GM	- 174	0	16-30	45-61	42-60	31-47	15-24	16-21	1-5
	17-31	SI,		A-2-4	0	8-23	53-69	51-68	37-53	18-27	16-21	1-5
	31-60	CBV-SL, CB-SL	GC-GM, GM, SM	M A-1-b	0	16-30	45-61	42-60	31-46	14-23	16-21	1-5
Typic Dystroxerepts		CB-SPM, SPM	PT	A-8	:	:	:	:	-	!	!	:
	1-2		PT	A-8	:	:	:	:	-	:	:	:
	2-2	CB-HPM, HPM	PT	A-8	!!!	:	:	-	-	!	:	:
	2-3	CBV-SL	GM	A-1-a,	0	8-23	42-57	39-55	29-44	15-24	0-42	NP - 4
	3-7	CBV-SL	W.B	A-1-b A-1-b,	0	8-23	36-51	34-49	24-38	11-19	0-40	NP - 4
			<u> </u>	A-1-a	,							
	7-27	STX-SL, STV-SL	GC-GM, GM	A-1-a,	8-23	16-30	23-47	20-45	15-35	7-17	0-29	NP-4
	7.	10 NEO	70	A-1-b	0	000	7.7		7 1	1	7	Ę
	T#-/7	, DE,		A-1-a, A-1-b	ı	0	n	# -	n 1	1 - 1	7	# ' '
	41-60	STX-SL, STV-SL	GM	A-1-a,	8-23	16-30	23-47	20-45	15-36	8-20	15-22	1-4
				A-1-D								
310: Rock outcrop.												
Humic Dystroxerepts	0-0	CB-SPM, SPM	PT	A-8	!	:	-	-	-	1	!	;
	0-1	CB-HPM, HPM	PT	A-8	:	:	:	!	-	:	:	:
	1-4	CBV-LS, CB-LS	SM	A-2-4	0	8-23	67-84	66-83	51-68	18-27	0-41	NP-3
	4 - 8	CBV-LS, CB-LS	SM	A-1-b,	3-15	23-36	59-82	57-81	44-66	16-26		NP-3
				A-1-4								
	8-30	STV-LS, STX-LS	SM	A-1-b,	23-36	29-42	26-88	54-88	42-71	15-28	0-28	NP - 4
	30-39	STV-LS, STX-LS	SM, GM	A-1-b,	26-52	29-42	46-88	44-87	34-71	12-28	0-25	NP - 4
				A-2-4								
	39-60	BYX-LS, BYV-LS	SM, GM	A-1-b, A-2-4	31-59	29-42	40-87	37-87	29-70	10-28	0-20	NP-4
				! !								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Class	Classification	Frag	Fragments	Pe	Percentage passing sieve number	passin	p d	Liquid	Plas-
and soil name			Unified	d AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	fi				Pct	Pct					Pct	
310:												
Humic Lithic Haploxerepts	0-0	SPM	PT.	8 0	!	-	-	-	-	:	!	:
	7 0	MPM	H E	ο ο Υ -	:	:	!	!	:	:	!	!!!!
	7 - 7	### ###	NO NO	A -	1 7	1 7	77 7	77.77	20.42	1 1 0	0 7	
) 	LCOS, GRV- LCOS, GRV- LCOS, GR-SL,	<u> </u>	1 1 1)) i			,	?))	1
	10-20	BYV-SL, BYV-	SM, GM	A-1-b,	32-60	8-23	34-71	31-70	27-62	14-32	0-49	NP-2
		FSL, BYX-FSL, BYX-SL		A-1-a								
	20-60	BR			 	 - -	!	!	!	!	I I I	!
311: Rock outcrop.												
Humic Dystroxerepts	0-1	CBV-LS, CB-LS	SM	A-2-4,	3-15	15-29	53-75	51-74	40-59	14-23	0-39	NP-2
	1-11	CBV-LS, CB-LS	SM	A-1-b A-1-b,	3-15	15-29	53-75	51-74	40-59	14-23	0-37	NP-2
	11-30	STX-LS, STV-LS,	SM, GM	A-1-b,	8-23	23-36	47-73	45-72	35-58	12-22	0-28	NP-2
	30-60	CBX-LS, CBV-LS	SM, GM	A-1-4 A-1-b, A-2-4	3-15	23-36	43-66	41-65	31-52	11-20	0-19	NP-2
Humic Lithic Haploxerepts	0-0	M S D M	Ld.	80 - 4	! !	! !	!	!	1	1	!	!
) 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-2	MPM	I L	8 - 8	1	-	-	-	-	-	!	;
	2-2			A-8	!	!	1	1	!	-	!	!
	2-10	GR-SL, GRX-SL, GRV-SL	GM, SM	A-2-4, A-1-b	16-32	3-16	53-75	51-73	37-58	18-30	34-44	2-6
	10-20	BYV-SL, BYX-SL	SM, GM	A-1-b,	32-60	8-23	34-71	31-70	24-57	13-32	32-42	2 - 6
	20-60	BR		5 - 	:	:	:	-	:	:	!	
313: Nevadafalla	0	 MG.	Ε	α 			1	1			!	!
	9-0	I S	SM	A-2-4			78-92	- 1	- 1	- 1	0-28	NP-2
	6-17	LS	SM	A-2-4	0	0	78-92	77-92	52-63	20-25		NP-2
	17-31	CB-LS, CBV-LS,	SM	A-1-b,	0-15	15-29	61-83	60-82	40-58	14-21		NP-2
	31-60	STV-LS	WS.	A-2-4	0-15	15-29	53 - 83	51-82	35-57	11-20	0-20	NP-2
			<u> </u>	A-2-4	 	 						
	_	_	_	_	_	_				_	_	

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Per	Percentage pass sieve number-	passing mber	gr.	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200		ticity index
	[대				Pct	Pct					Pct	
313:	0	≥	Ε·	α	c	c						;
	0-10	S. I.	WS _	A-2-4,	o o	0	- 1	92-100	Ĩ.	- 1	32-40	2 - 5
	10-35	SL	SC-SM, SM	A-4,	0	0	92-100	92-100	68-79	33-41	21-31	2-6
	35-48	SL	SC-SM, SM	A-2-4 A-4,	0	0	92-100	92-100	68-79	33-41	19-29	2-6
	48-61	rcos	SM	A-2-4 A-2-4	0	0	92-100	92-100	54-62	23-28	0-19	NP-2
314:												
Badgerpass	0-1		PT	 8 - 8	(!	1 1	1 1		- 1		! !
	1-6 6-13	LS, S	SM SM	A-2-4 A-2-4	o o	0 0	92-100 85-100	92-100 84-100	71-80	24-30	0-39	NP-1 NP-1
	13-24		SM	A-2-4	0	0	85-100	84-100	65-80	22-30	27	NP-1
	24-42	LS, S	SC-SM	A-3,	0	0	85-100	85-100	64-79	2-10	0-23	NP-1
	42-55	CB-S, S, CB-LS,	SP-SM, SC-SM	A-3,	9-0	15-29	81-100	80-100	61-19	5-10	0-18	NP-1
	55-60	S, IS	SP-SM, SC-SM	A-3,	0	3-15	84-92	83-92	63-73	5-9	0-18	NP-1
				A-2-4								
Dystric Xeropsamments	0-2	SPM	PT	A-8	0	0	!	1	-	-	-	1
	2-4	MPM	PT	A-8	0	0	-	-	-	:	_	:
	4-4		PT	A-8	0	0 (1 1	1 1		1 0		
	4-9 0-40	S, LFS, LS	WS.	A-2-4	0 0	0 0	92-100	92-100	71-81	25-31		NP-3
	25-30	ŭ Ē	E WS	A-2-4		0	92-100	92-100	70-80	25-31	0-25	N 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	30-60	חזו	SM	A-2-4,	0	0	92-100	92-100	87-99			NP-3
				A-4								
Rock outcrop.												
			Ē	· ·								
Nevadaralis	T 0		- L- L-	φ · Ψ ·	! (: 0	1 (1 (\ 	1 (! (!
	1-2	SL, GR-SL	ws	A-2-4, A-1-b	o 	0	- R - R - C 9	63-84	45-63	20-30	0-41	NP-3
	2-14	BY-SL, BYV-SL,	SM	A-2-4,	23-36	3-16	50-81	48-81	35-63	17-33	22-31	3-6
	14-35	BYX-ST. BV-ST.	M.	A-1-D	23-36	3-16	20.2	18-81	34-60	15.29	24-33	3
) 1			A-1-b)	1		0	•))))
	35-60	BYX-SL, BYV-SL	SC-SM, SM	A-2-4,	48-58	3-16	55-87	53-87	38-65	17-32	18-24	3 - 6
				Q-T-W								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ıtion	Fragi	Fragments	Pe	Percentage passing sieve number	passin	- Bu	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	<u>"</u>				Pct	Pct					Pct	
315:												
Dystric Xeropsamments		SPM	PT	A-8	0	0 (1 6		1 1	1		! !
	7-0	GR-LS, LS		A-2-4	o c	o c	78-87	26-77	59-74 59-74	21-28 21-28	0-37	NP-Z
	16-26	LS, GR-LS		A-2-4	0	0-8	77-92	76-92	58-74	20-28		NP-2
	26-60			A-2-4	0	15-29	73-91	72-91	55-73	19-28		NP-2
316:												
Dystric Xerorthents	0 - 4	CB-LCOS, CBV-	C-SM,	A-1-a,	0	61-78	26-56	23-54	14-34	6-16	0-40	NP-3
		LCOS	SM, GM,	A-1-b							Ī	
	4-13	CBV-LCOS, CB-	SM	A-1-b,	0	22-35	64-83	63-82	36-52	15-24	0-34	NP-3
		LCOS		A-2-4							_	
	13-23	STX-LCOS, STV-	SM, GM	A-1-b	7-22	29-41	53-81	51-80	29-49	12-23	0-25	NP-3
	23-35	STV-LCOS, STX-	GM, SM	A-1-b,	7-22	35-47	50-79	48-78	27-49	11-23	0-20	NP-3
		rcos		A-1-a								
	35-393				!	!	!	!	!	:	!	!!!!
Rock outcrop.												
Rubble land.												
(1)												
318: Typic Dystroxerepts	0 - 4	SI	SM	A-2-4, A-4	0	0	92-100	92-100	67-79	32-41	34-44	1-6
	4-12	SL	-SM	A-4	0	0	92-100	92-100		36-46	25-35	1-6
	12-27	SI	SM	A-4	0	0	92-100	92-100		36-46	20-31	1-6
	27-39	SL		A-4	0 (1	1	69-82	1	18-29	1-6
	39-57	M.B.	SC-SM, SM		>	!	!	1	:	!	!	!
Humic Dystroxerepts		SPM		A-8	-	1	-	!	1	-	-	!
	0-1	HPM	PT	A-8	:	!	:	!	!	:	!	:
	1-2	LS, SL	SM	A-2-5,	0	0	85-92	84-92	29-69	23-30	0-45	1-4
				A-2-4		,						
	2-5	LS, SL	SM	A-2-4	0	0	85-92	84-92	59-70	25-32	0-30	1-4
	5-14			A-2-4	0 (0 (85-92	84-92	62-72	25-32	0-30	1-4
	14-33			A-2-4	> 0	> 0	85-92	24-92	63-73	26-33	0 - 0 0 - 0 0 - 0	T - 4
	33-40	מו, ומ	WO CO	A-2-4	o c	>	80-18 18 18 18 18 18 18 18 18 18 18 18 18 1	24-42	63-73	20-23	0 0 0	T - T
	0 # 1 0 #		WG.	A-2-4	>	>	76-00	761 # 0	07-00	001	0 10	# ! -1
	48-54	FSL, SL	, SC-SM	A-4	0	0	100	100	79-87	38-46	18-26	3-9
	54-60	FSL, SL	SC-SM, SM	A-4	0	0	100	100	81-89	41-49	18-26	3-9
			_					_		_	_	

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Pel	rcentage pass sieve number-	Percentage passing sieve number		Liquid	Plas-
and soil name	· 		Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200		ticity index
	ul ul				Pat	Pat					Pct	
319:												
Humic Dystroxerepts	0-0	CBV-SPM, CB-SPM	다.	8 - 8	: :	: :	: :	: :	: :	: :		: :
	1-5	-		A-2-4,		29-41	53-81	51-80	39-63	12-21	40	NP-3
		FSL, STX-LS,		A-1-b								
	5-13	STX-LS, STX-FS,	SC-SM, SM	A-1-b,	8-22	29-41	36-64	33-62	27-53	8-17	0-29	NP-3
		CBV-FS, CBX- LS, CBX-FS,		A-1-a								
	13-20		SC-SM, SM	A-1-b,	35-47	8-22	40-70	38-69	31-60	9-19	0-22	NP-3
	20-35	STV-S, STX-S	SC-SM. SM	A-2-4 A-1-b,	52-62	8-22	47-86	45-86	36-73	10-22	0-21	NP-3
	; ; 	STX-LS, STV-LS		A-2-4	 				· —	 		
	35-60	STX-S, STX-LS	SC-SM, SM	A-2-4,	75-83	4-15	40-86	38-85	30-72	8-22	0-21	NP-3
				A-1-a								
Typic Haploxerults		SPM	PT	A-8	-	:	1	:	!	!	!	:
	0-1	MPM	PT	A-8	:	:	-	:	-	-	:	:
	1-2	нРм	PT	A-8		!	1 1		1 1	1 1		:
	2-5	LCOS	SM	A-2-4,	0	0	85-97	85-97	49-59	20-26	0-14	d N
	5-7	LCOS	SM	A-1-D	0	3-7	92-97	92-97	53-59	22-26	0-14	NP
	7-12	GR-SL, SL	SM	A-4,	0	0	78-92	77-92	26-77	27-42	23-36	3-10
	12-20	SL, GR-SL	SC, SM	A-2-4 A-4,	0	0	78-92	77-92	52-72	24-38	21-34	3-10
	20-31	ST. GR-ST.	SC.	A-2-4			78-92	77-92	53-73	24-38	19-32	3-10
	i)			A-2-4	· 	·		1)	0	1	1
	31-46			A-2-4	0 0	0	71-85	70-84	48-66	22-34	18-30	3-10
	53-71	GR-S, S	SP-SM, SC-SM	A-3	o o		79-100	78-100	59-78	ט ט ט ט	0-14 0-14	N P
Inceptic Haploxeralfs	0-0	MdS-VIS	T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-	₽ -8	!	!	1	!	1	!	!	!
1	0-1	STV-MPM	PT	A-8	:	:		:	-	-	:	;
	1-4	CBV-FSL, CB-FSL	SM	A-2-4	0	23-36		54-73	9 -	- 1	0-37	NP-2
	4-12	CBX-FSL, CBV-	SM	A-2-4	8-15	23-36	50-73	48-72	42-65	20-34		NP-3
	12-22	CBV-FSL, CBX-	SM, GM	A-2-4,	8-15	29-42	47-71	45-70	38-63	19-32	0-26	NP-3
				A-1-b								
	22-30	CBV-FSL, CBX-	GM, SM	A-1-b,	8-23	29-42	28-56	25-54	21-49	10-25	0-23	NP-3
	30-60	STX-FSL	GP-GM, GM	A-1-a	29-42	36-42	16-35	13-33	11-30	5-15	0-18	NP-3
				_					_			

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	ents	Per	Percentage passing	passir mber	1g	Lionid	Plas-
and soil name	 		Unified	AASHTO	>10 inches	3-10 inches	4	10	4 0	200	limit	ticity index
	[타]				Pct	Pct					Pct	
320: Half Dome	0-1	BYX-SPM, SPM	PT	A-8	!	:	!	!	!	!	!	!
	1-4	GR-LS, BYX-LS	SM, GM	A-1-b,	0-71	8-0	18-65	14-64	11-53	4-22	0-43	NP-5
	- A	מיז-מט	No.	A-2-4	7.	α	Α α π	42-84	33-70	12-29	0-34	70
	P			A-1-b	1	0	 	H 0 1	2	74	# 0	0
	10-20	BYX-SL, GRV-SL	GM	A-1-a,	09-0	8-0	14-48	10-46	7-36	3-18	0-30	NP-5
	20-47	GRV-SL, GRX-SL		A-1-a	0-47	8 1	12-39	9-36	6-28	3-14	0-28	NP - 5
	47-61	LCOS, BYX-LCOS	GM, SM	A-2-4, A-1-b	0 - 10		57-92	55-92	32-60	14-30	0-23	NP-5
Humic Dystroxerepts	0-0	BYX-MPM, MPM	PT	A-8		-	1	-	!	:	!	!
1	0-3	BYX-LS, GR-LS	SM, GM	A-1-a,	0-59	0-29	40-85	- 1	29-67	10-26	0-39	NP-2
				A-2-4, A-1-b								
	3-7	BYX-LS, GR-LS	GM, SM	A-1-a,	0-59	0-29	40-85	37-84	29-67	10-26	0-37	NP-2
				A-1-D,								
	7-16	GR-LS, BYX-LS	GM, SM	A-1-a,	0-59	0-29	40-85	37-84	29-67	10-26	0-28	NP-2
				A-1-b, A-2-4								
	16-22	STV-LS, BYX-LS	GM, SM	A-1-a, A-1-b,	23-65	36-47	31-87	28-87	22-70	8-26	0-26	NP-2
				A-2-4		,		,			,	
	22-35	STX-COSI	GM, SM	A-1-a, A-1-b,	30-59	48-58	39-83	36-82	23-55	13-34	0-26	NP - 4
	L	į		A-2-4	1	0		L		0	Č	
	35-60	GRX-COSL, GRV-	GM, SM	A-1-a, A-1-b,	0 - 47	0-23	28-92	25-92	T9-6T	9-38	0-21	NP - 4
				A-2-4								
Rock outcrop.												
321:												
Dystric Xeropsamments	0-0	SPM		A-8	-	1	1	1	 	1	!	1
	8- 0	<u></u>	SP-SM, SC-SM	A-3,	0	0	92-100	92-100	70-80	6-11	0-37	NP-2
	8-21	ST-COS, COS	SW-SM, SM,	A-1-b	7-0	0-7	92-100	92-100	41-49	10-15	0-26	NP-2
	21-61	STV-LFS, ST-	SM SM	A-2-4,	15-29	0-15	89-100	88-100	83-97	30-37	0-20	NP-3
		LFS, LFS		A-4								

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classif	Classification	Fragi	Fragments	Pe	Percentage passing sieve number	e passir	Бu	Liquid	Plas-
and soil name	· ———			E E	×10	3-10		5		000	limit	ticity
	H			OTUCAA	Pot		_	2	P	0	Pat	Y TITOLEY
321:	 											
Dystric Xerorthents	0-3	GRX-S, GRV-S	GP, GP-GM	A-1-a, A-1-b	o —–	7-22	38-53	35-51	27-40	2-5	0-39	NP-1
	3-9	GRV-S, GRX-S			0	7-15	18-29	15-26	11-21	1-3	0-34	NP-1
	9-11	Ω t	SP, GP-GM,	GP A-1-b	0	7-15	1-6	49-63	37-50	9-0		NP-1
	17-11	GKV-8, GKX-8	45	A-1-b, A-1-a	> 	1-22	78-43	75-40	19-32	4-		1 - 4 Z
	21-60	GRV-S, GRX-S	GP	A-1-b,	0	7-21	29-44	26-42	20-33	2-4	0-18	NP-1
322.				3 1 5								
Typic Xerorthents	0-0	SPM, BYV-SPM, BY-SPM	T-d	₽-8	:	!	:	:	!	:	!	!
	0-7	COSL, GR-SL,	SM	A-2-4	0	0	71-84	70-84	50-64	24-32	0-30	NP - 4
-		SL, GR-COSL										
	7-24			A-2-4	0	8-23	66-84	65-83	51-68	21-30	0-23	NP-4
	24-42	STX-LS, STX-	Οĵ	A-1-b,	27-66	7-22	26-72	23-71	13-42	5-17	0-19	NP-2
	42-60	SIV-COS, SIX-S,	GM, GC-GM	В-Т-В	55-65	7-21	100	100	53-57	17-21	0-18	NP-2
		Οĵ								<u> </u>		
323:												
Ultic Haploxeralfs	0-3	BYV-SL, SL	SM	A-2-4, A-2-5	0 - 24	8-0	73-100	72-100	54-79	27-42	36-45	4 - 8
	3 - 5	SL, BYV-SL	SM	A-2-5,	0-24	8-0	73-100	72-100	52-80	25-43	34-46	6-12
	5-10	BYV-SL, SL	SM, SC, SC-SM	A-2-4 SM A-2-5,	0-24	8-0	73-100	72-100	52-80	25-43	29-41	6-12
		10 110	70	A-2-4		0	7	7	70	76.43	000	0
	T 7 - 0 T	, DE,			# N I D	0	00T-6/	<u> </u>	6/-00	0	י ט	7 T - 0
	21-37	GRX-SL, GR-SL,	GC, GC-GM,	A-2-6,	0-16	8-23	42-64	40-62	28-51	13-28	26-42	8-17
	37-60	CBX-SCL, CBV-	GC-GM,	- -	0-17	23-37	35-59	33-58	26-51	13-29	27-37	10-17
		RCF.		A-2-4								

Table 11.-Engineering Index Properties-Continued

and soil name 1n						2	TACIIITIE AVATS	- TEGIN		Liquid	Plas-
ic Dystroxerepts 0-1 1-2 2-2 2-7 7-15 15-29 ic Haploxerepts 0-0		Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
ic Dystroxerepts 0-1 1-2 2-2 2-7 2-7 15-29				Pct	Pct					Pct	
ic Dystroxerepts 0-1 1-2 2-2 2-2 2-7 7-15 15-29 ic Haploxerepts 0-0											
1-2 2-2 2-7 7-15 15-29 ic Haploxerepts 0-0	SPM, BY-SPM	PT	A-8	1	:	!	:	:	!	:	:
2-2 2-7 2-7 7-15 15-29 ic Haploxerepts 0-0	MPM, BY-MPM	T. I.	8-8	!	:	:	:	:	:	:	:
15-29 15-29 ic Haploxerepts 0-0	HPM,	T.d.	8 - K	1 6	1 6	1 7	1 7	. L	1 7	1 7	
7-15 15-29 10 Haploxerepts 0-0	עא-אבי, פּא-אב	N. W.	A-2-4,	0-3T	0 1 0	00T-89	001-79	45-19	7 T - 4 T	32-42	9 - T
7-15 15-29 15 - 29 - 60 1c Haploxerepts 0-0			A-5, A-4								
15-29 29-60 ic Haploxerepts 0-0	BYV-SL, SL	SM	A-2-4,	0-31	8-0	71-100	70-100	50-82	24-44	21-35	1-9
29-60 ic Haploxerepts 0-0	L. BYV-SL	SC-SM. SM	A-4 A-2-4	0-31	8-0	80-100	79-100	57-82	27 - 44	18-33	1-9
29-60 ic Haploxerepts 0-0			A-4	1)	9	1		i	0	1
ic Haploxerepts 0-0	BYV-SL, SL	SM, SC-SM	A-1-b, A-2-4	0-31	8 - 0	71-100	70-100	49-78	22-40	18-28	3-9
ic Haploxerepts 0-0											
4-0	CB-SPM, SPM	PT	A-8	-	;	:	:	1	:	:	;
_		, SM	A-2-4,	0	8-23	53-69	51-68	38-54	26-39	30-45	3-8
_	GRV-L, GR-SL		A-2-5								
4-8 CB2	CBX-L, CBX-SCL,	GC-GM, GM	A-1-b,	0	16-30	39-55	36-53	27-43	19-31	24-34	3-8
'	GRV-SCL, GRV-L		A-2-4	-				(1	1	(
8-20 CB3	CBX-SCL, GRX-SCL, CBX-SL,	GC-GM, GC, GM	A-1-b, A-2-4	0	23-36	26-42	23-40	16-31	11-22	21-31	χ Υ
IB	GRX-SL, GRV-										
	SCL, GRV-SL	į		•				0	1	1	(
20-30 GRZ	GRX-SCL, GRV- SCL, GRX-L,	GC-GM, GM, GC	GC A-1-b, A-2-4	0	16-30	33-49	31-47	23 - 38	16-27	21-31	ω Γ Μ
30-60 GR	GRV-FSL, GRX-	GC-GM, GC	A-1-b,	8-23	15-29	24-48	21-46	15-37	11-26	20-31	3-8
	SCL, GRV-SCL, GRX-FSL		A-2-4								
Rock outgrop.											
	CBV-SPM, CB-SPM	PT	A-8	-	-	:		-	-	-	-
9-0	L, CBX-L	GC-GM, CL-ML, ML, SC-SM,	A-2-4, A-4	0	43-54	55-89	53 - 88	45-81	33-60	24-38	4 - 9
6-16 CB	CBV-L	GC-GM, SC-SM,	A-2-4,	0	31-43	52-72	50-70	43-70	30-57	20-32	4 - 9
			A-4								
16-29 CBr	CBV-L, CB-L, CBV-FSL, CB-	GC-GM, SC-SM,	A-2-4, A-4	0	24-37	54-73	52-72	42-72	26-50	20-27	4 - 8
29-60 CBV	CBV-L, CBX-L	GC-GM	A-2-4,	0	43-54	39-60	36-59	30-52	21-36	20-26	4 - 8
			A-4								

Table 11.-Engineering Index Properties-Continued

Lodania weM			Classification	cation	Frag	Fragments	Per	Percentage passing	passir	D.		6
and soil name	; h)		-		>10	3-10				0	limit	ticity
			Unitied	AASHTO	ınches	ınches	4	TO	40	200		ındex
	범 				Pct	Pct					Pat	
325. Urban land												
200												
Clarkslodge	0-0	SPM	PT	A-8	!	:	!	-	-	!	!	;
1	0-1	MPM	PT	A-8	:	:	:	:	-	:	i	;
	1-5	CB-FSL, FSL, SL, CB-SL, L,	SM	A-8, A-5, A-7-5	0	0-16	91-100	90-100	81-99	36-50	65-75	4 - 14
	5-11	0	SM, SC-SM	A-4,	0	30-43	06-69	62-89	58-86	23-39	25-41	4-12
		CBV-L, CBV-SL,		A-2-4,								
		FSL FSL		A-7-6								
	11-20	CBV-FSL, CB-	SC, SC-SM	A-2-4,	0	30-43	06-69	62-89	58-86	23-39	21-33	4-12
		FSL, CBV-SL, CB-SL, CBV-L, CB-L		A-4								
	20-37	CBV-FSL, CBV-	SC, SC-SM	A-2-4,	0-16	43-54	58-88	57-88	49-84	19-38	21-32	4-12
	; ! 			A-4								
	37-60	CRV-FGI.	אַט ־טַט	4-C-4	c	30-43	00-09	08-29	49-74	23.30	20-32	4-12
) 	3L, 3B-L		A-4))))	1	1
Ultic Palexeralfs	0-1	SPM	PT	A-8	!	:	:	1	:	:	:	:
	1-4	CB-FSL, FSL,	МН	A-5, A-7-5	0	0-16	89-100	89-100	77-100	26-76	36-85	7-14
	4-13	CB-FSL, CB-L,	CL, CL-ML, ML	A-6,	0	8-23	89-100	88-100	16-99	57-77	28-47	7-17
		L, FSL		A-7-6, A-4								
	13-31	L, FSL, ST-FSL, ST-L	CI, CI-MI	A-4, A-6	0-16	0-16	88-100	87-100	16-99	55-76	25-38	7-17
	31-49	GR-L, L, FSL, GR-FSL	CI, CI-MI	A-4, A-6	0	8-0	83-100	83-100	68-95	46-69	24-36	7-17
	49-60	L, GR-L, FSL, GR-FSL	CI, CI-MI	A-4, A-6	0	8-0	83-100	83-100	96-69	46-68	24-36	7-17
401:												
Sentinel	0-1	SPM	PT	A-8	0	0		-	-	- 1		
	1-5	ŗ,		A-5, A-4	0	0		91-100	67-82	40-53		NP-7
	5-20	14		A-4	0	0		91-100	69-83	45-56	18-35	2-7
	20-27	FSL, L, SL	ML, SM	A-4	0 0	0 0	100	91-100	69-82	45-56	18-30	2-7
	41-56			4 - 4 4 - 4	0	0	100	91-100	83-98	52-63		NP-6
	26-66	SI, LS	SM	A-2-4	0	0	100	92-100	70-82	26-33		NP-4
	_			_		_					_	

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	P. P. P. S.	Percentage passing sieve number	e passir umber	bu	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	ticity index
	指				Pat	Pct					Pct	
412. Water-Riverwash												
501:												
Happyisles, sandy loam		GR-SPM, SPM	PT	A-8	-	-	1	1	1	-	1	-
	3-7	FSL, GR-S, GR-	SC-SM, SM	A-2-4,	0	0	89-97	74-92	57-81	30-48	0-37	NP-11
		GR-SL, GR-FSL,		A-4								
		SI, S		·								
	7-13	S, FSL, SL, GR-	SC-SM, SM	A-2-4,	0	0	89-97	74-92	55-81	29-48	0-37	NP-11
		SI, GR-COSI,		A-4			_					
		GR-FSL										
	13-17	GR-S, GR-COSL,	SC-SM, SM	A-2-4,	0	0	89-97	74-92	57-81	30-48	0-37	NP-11
		GR-FSL, SL,		A-4			_					
		FSL, COSL, S,										
		GR-SL										
	17-33	GR-FSL, GR-SL,	SC-SM, SM	A-2-4,	0	0	89-97	74-92	57-81	30-48	0-31	NP-11
		SL, FSL, COSL,		A-4								
		GR-S GR-COSE,										
	33-60	SR- GR-S FSL	SC-SM, SM	A-2-4	0	0	85-100	71-100	55-82	20-32	0-21	NP-4
Happyisles, loamy fine												
sand, overwash	0-3	SPM	PT	A-8	0	0	:	:	:	:	!	
	3-7	SL, FSL, LFS,	SC-SM, SM	A-2-4,	0	0	95-100	86-100	79-99	34-46	18-32	2-7
	_	COSI	_	A-4	_		_			_		
	7-13	SL, FSL, COSL,	SC-SM, SM	A-2-4,	0	0	95-100	86-100	23-68	30-42	0-31	NP-6
	13-17	ST. FST. COST.	SC-SM.	A-4 A-2-4	c	c	95-100	85-100	63-80	30-42	18-32	2-7
	i i			A-4	,	•) 	1			1))	
	17-33	SL, FSL, COSL,	SC-SM, SM	A-2-4,	0	0	95-100	85-100	63-80	30-42	17-26	2-7
	33-41	מסק קיים	M	A-4	c	c	05.100	001-98	0 8 - 8 9	30-40	0-0	MD-4
	1 00			A-4	>	>	000		0) 	1 0	۲ ا ا
	41-62	LS	SC-SM, SM	A-2-4	0	0	95-100	86-100 66-84	66-84	18-28	16-25	2-7
					_	_	_			_		

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Per	Percentage passing sieve number	passir mber	J.G	Liquid	Plas-
and soil name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200		ticity index
	指				Pct	Pat					Pct	
502: Happyisles	0-3	SPM	PT	A-8	0	0	:	:	!	!	:	;
	3-7	SL, COSL, FSL,	SM, SC-SM	A-2-4,	0	0	95-100	86-100	63-80	30-42	18-32	2-7
	7-13	SL, S, COSL,	SM, SC-SM	A-2-4,	0	0	95-100	86-100	53-68	30-42	0-31	NP-6
	13-17	S, COSE, FSE,	SM, SC-SM	A-4 A-2-4,	0	0	95-100	85-100	63-80	30-42	18-32	2-7
	17-33	SL S, COSL, SL,	SM, SC-SM	A-4 A-4,	0	0	95-100	85-100	63-80	30-42	17-26	2-7
	33-41	FSL SR- GR-S FSL	SM, SC-SM	A-2-4 A-2-4,	0	0	95-100	86-100	-	:	0-22	NP-4
	41-62	LS	SC-SM, SM	A-4 A-2-4	0	0	95-100	86-100	66-84	18-28	16-25	2-7
504:												
Mollic Xerofluvents	0-2	SPM SR-GR-S L	PT SM, ML	A-8 A-6, A-5,	0 0	00	95-100	81-100	67-92	47-66	31-48	5-11
	8 - 9	SR- GR-S L	SP-SM	A-4 A-3,	0	0	95-100	82-100	62-78	7-10	0-23	NP-2
	8-12	SR- GR-S L	SC, SC-SM	A-2-4 A-6,	0	0	85-95	69-95	53-80	26-43	20-30	6-12
	12-23	SR- GR-S L	SM, SC-SM	A-2-4, A-4 A-2-4,	0	0	72-100	60-100	49-85	21-37	0-19	NP-2
	23 - 29	SR- GR-S	SC-SM, SM	A-4, A-1-b A-2-4,	0	0	84 - 93	06-69	65-87	30-42	15-20	1 - 3
				A-4				1 0		! .	1 0) (
	29 - 49	SK- GK-S L	전 전 2 -	A-3, A-2-4	0	0	85-81	/8-T9	40 - 04 80	ט ו	/T-0	NP-Z
	49-54	SR-GR-S L	SC-SM	A-4,	0	0	84-92	69-89	51-71	25-37	21-33	3-7
	54-68	SR- GR-S L	SC-SM	A-4, A-2-4	0	0	85-91	61-87	45-70	22-37	19-28	3-7
510t: Rubble land.			. — — — -									
Lithnip	0-1 1-5 5-15	GRX-SL GRV-SL, GRX-SL BR	GP-GM GW-GM	A-1	0 0 1	5-15	40-55	15-25	10-20 5-25	5-15	20-30	NP - 5
Rock outcrop.												

Table 11.-Engineering Index Properties-Continued

			Classification	ation	Fragments	ents	Per	Percentage passing	passi	bu		
Map symbol	Depth	USDA texture					01	sieve number	mber		Liquid Plas-	Plas-
and soil name	_				>10	3-10					limit ticity	ticity
			Unified	AASHTO	inches	inches inches	4	10	40	200		index
	[대]				Pct	Pct					Pct	
551:												
Happyisles	0-3	SPM	PT	A-8	0	0	!	!	!	:	:	:
	3-7	SI, FSI, COSI,	SC-SM, SM	A-2-4,	0	0	95-100	95-100 86-100 63-80	63-80	30-42	18-32	2-7
		Ø		A-4								
	7-13	S, COSL, FSL,	SC-SM, SM	A-2-4,	0	0	95-100	95-100 86-100 53-68	53-68	30-42	0-31	NP-6
		SL		A-4								
	13-17	COSI, SI, S,	SC-SM, SM	A-2-4,	0	0	95-100	95-100 85-100 63-80	63-80	30-42	18-32	2-7
	_	FSL		A-4						_		
	17-33	S, COSL, FSL,	SC-SM, SM	A-2-4,	0	0	95-100	95-100 85-100 63-80	63-80	30-42	17-26	2-7
	_	SL		A-4						_		
	33-41	SR- GR-S FSL	SC-SM, SM	A-2-4,	0	0	95-100	95-100 86-100 63-80		30-42	0-22	NP-4
				A-4								
	41-62	LS	SC-SM, SM	A-2-4	0	0	95-100	95-100 86-100 66-84	66-84	18-28	16-25	2-7

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Peı	Percentage passing sieve number	passir	g	Liquid	Plas-
and soil name	· - —				>10	3-10					limit	ticity
			Unified	AASHTO	inches	inches inches	4	10	40	200		index
	념 				Pct	Pct					Pct	
Half Dome	0-1	CBV-SL, GR-	SP-SC, SM,	A-1-b,	53-72	0	56-87	12-74	09-6	4-31	17-30	1-7
		COSL, BYV-SL, STV-SL, STX-	SC-SM	A-1-a, A-2-4								
		SI, CBX-SI,										
		SL, ST-SL, ST-										
		LS, GR-LCOS,										
	7	GR-SL, CB-SL	7	,	•			,	L	7	1	
	h H H	ייים מקדי	שפ-ספישפ	A-1-D,	>	04-07	T 6 - 70	T0-00	00147	# C - T T	00-11	/ _ T
		ST. GR-ST. CB-		A-1-2								
		SI, CBX-SI,		; !								
		ST-ST BVV-ST										
		GR-COST, STV-										
		SL										
	19-28	SL. GR-SL. CB-	SM. SC-SM	A-2-4	8-23	23-48	54-90	20-80	14 - 64	7-34	15-25	1-7
		ST. ST-TS GR-		A-1-h		0	9	2	1))	
		LCOS, ST-SL,		A-1-a								
		BYV-SL, GR-		 								
		COSL, SIV-SL,										
		CBV-SL, CBX-SL										
	28-33	BY-SL, ST-SL,	SM, SC-SM	A-2-4,	8-23	23-48	54-90	20-80	11-53	6-32	15-25	1-7
		CBV-LCOS, STX-		A-1-b,								
		LS, CBV-COSL,		A-1-a								
		GR-SL, STX-SL,										
		CB-SI, CBX-SI,										
	_	CBV-SL		_				_	_			
	33-50	CBV-LCOS, CB-	SW-SC, SM,	A-2-4,	8-23	23-48	24-90	20-80	10-45	3-17	15-25	1-7
	_	SI, BY-SI,	SC-SM	A-1-b,				_	_			
	_	STX-LS, CBV-		A-1-a				_	_			
	_	COSL, GR-SL,		_				_	_			
	_	CBV-SL, STX-		_				_	_			
		SL, CBX-SL,										
		ST-SI										
	20-60	CBV-LS, CBV-SL,	SC-SM, SM	A-1-a,	8-23	23-48	24-90	20-80	15-64	5-24	0-17	NP-2
		T.COS		A-I-D,								
		0		:								

Table 11.-Engineering Index Properties-Continued

Lodmin reW	, 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Classification	ation	Fragments	nents	Per	Percentage passing	passir	βτ		- C
and soil name					>10	3-10		0.01	100		limit	ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	[]				Pct	Pct	_				Pct	
552:												
Mollic Xerofluvents	_	SPM	PT	A-8	0	0	:	-	1	:	1	1
	2-6	SR- GR-S L	SM, ML	A-6, A-5,	0	0	95-100	81-100	67-92	47-66	31-48	5-11
				A-4			_				_	
	8-9	SR- GR-S L	SP-SM	A-3,	0	0	95-100	82-100	62-78	7-10	0-23	NP-2
-				A-2-4								
	8-12	SR-GR-S L	SC, SC-SM	A-6,	0	0	85-95	69-95	53-80	26-43	20-30	6-12
	_			A-2-4								
				A-4	_		_					
	12-23	SR-GR-S L	SM, SC-SM	A-2-4,	0	0	72-100	001-09	49-85	21-37	0-19	NP-2
	_			A-4,		_	_				_	
		_		A-1-b	_	_	_					
	23-29	SR-GR-S I	SC-SM, SM	A-2-4,	0	0	84-93	06-69	65-87	30-42	15-20	1-3
	_			A-4	_		_					
	29-49	SR- GR-S L	SP-SM	A-3,	0	0	85-91	61-87	46-68	5-9	0-17	NP-2
	_			A-2-4		_	_				_	
-	49-54	SR- GR-S L	SC-SM	A-4,	0	0	84-92	68-69	51-71	25-37	21-33	3-7
				A-2-4								
	54-68	SR-GR-S L	SC-SM	A-4,	0	0	85-91	61-87	45-70	22-37	19-28	3-7
				A-2-4								
590:												
Terric Haplosaprists	0-3	MK-L, SL, L	SM, ML	A-5	0	0	89-100	001-99	56-91	39-66	39-59	7-11
	3-8	GR-S, LFS	SP-SM	A-2-4	0	0	93-100	68-100	51-78	6-11	0-34	NP-3
	8-12	GR-S, LFS	SM	A-2-4,	0	0		75-100	96-04	25-36	0-30	NP-3
	_			A-4								
	12-31	MUCK	PT	A-8	0	0			:	:		1 1
	31-35	SL, MK-L, L	ML	A-4	0	0	95-100	85-100	70-93	49-68	31-50	5-13
	35-38	MK-L, L, SL	SM	A-2-4,	0	0	100	100	73-81	35-43	27-44	6-12
	_			A-4		_	_	_				
	38-46	Sr, r	CL, ML	A-6, A-4	0	0	100	86-100	73-90	52-66	29-43	9-13
	46-52	X	PT	A-8	0	0	1 1		1	:	:	1
	52-58		SM	A-4	0	0	95-100	00	62-81	30-43	31-48	5-11
	28-60	L, SL	SM	A-4	0	0	100	100	78-86	40-48	27-44	6-12
		_		_		_					_	

Table 11.-Engineering Index Properties-Continued

Liquid Plas-	ᅲᅲ	Pct		17-30 1-7							17-30 1-7		-					16-26 1-7					—	16-26 1-7					-	16-26 1-7		
<u>i</u>		Ă 			_	_				_	_		_			_		_	_	_	_		_	_		_		-		_		
ing -	200			16-42	_	_			_		22-42		_		_	_		22-42	_	_	_		_	22-42					_	26-49		
e pass	40		:	33-81							46-81							46-81		_			_	46-81						48-85		
Percentage passing sieve number	10		;	73-100 46-100 33-81							63-100							63-100 46-81						63-100 46-81						63-100		
Per	4		!	73-100							82-100							82-100						82-100						82-100 63-100 48-85		
ents	3-10 inches	Pat	0	0							0							0						8-30						23-42		
Fragments	>10 3-10 inches	Pat	!	16-73							16-85							16-85		_			_	8-59						16-46		
ation	AASHTO		A-8	A-4,	A-2-4						A-4,	A-1-b,	A-2-4					A-1-b,	A-4,	A-2-4				A-2-4,	A-4,	A-1-b				A-2-4,	A-4	
Classification	Unified		Еd	SM, SC-SM							SC-SM, SM							SC-SM, SM						SC-SM, SM						SM, SC-SM		
USDA texture			BYV-SPM	CBX-SL, GR-	LCOS, STV-SL,	O	LS, STX-SL, ST-SL, ST-SL, SL,	CBV-SL, BYV-	SL, GR-SL, CB-		STX-SL, ST-SL,	GR-SL, CBV-SL,	GR-LCOS, STV-	SI, ST-LS,	CBX-SL, GR-	COSI, CB-SI,	BYV-SL, SL	CBX-SI, CBV-SI,	CB-SI, CBV-	COSI, BY-SI,	STX-SL, ST-SL,	GR-SL, STX-LS,	CBV-LCOS	CBV-SL, CBV-	COSI, BY-SI,	STX-SL, ST-SL,	CBX-SI, CB-SI,	GR-SL, CBV-	LCOS, STX-LS	CBV-LCOS, STX-	SL, CBV-SL,	٠.'
Depth	4	티	0-3	3-5							2-8							8-15						15-39						39-63		
Map symbol	and soil name		601: Half Dome, very bouldery-																													

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Pe	Percentage passing sieve number	e passi umber	ng.	Liquid	Plas-
and soil name					>10	3-10					limit	limit ticity
			Unified	AASHTO	inches	inches inches	4	10	40	200		index
	指				Pct	Pct					Pat	
601:												
Half Dome, cobbly		ST-SPM	PT	8-18	T9-0	78-88	!	1	:	! ! !	<u> </u>	-
	1-2	ST-SPM	PT	A-8	0-61	78-88	1			-	!	
	2-10	SL, GR-SL, STX-	SM, SC-SM	A-1-b,	8-23	30-42	62-96	60-95	44-77	21-40	17-30	1-7
		GB-COST. ST-		A-2-4								
		T.S. GR-1,00S.		:								
		CBV-SL, CB-SL,										
		BYV-SL, ST-SL,										
		CBX-SI										
	10-17	SIV-SL, SIX-SL,	SM, GC-GM,	A-1-b,	8-46	16-30	48-91	46-90	33-73	16-38	17-30	1-7
		GR-COSL, SL,	GM, SC-SM	A-4,								
	_	ST-LS, GR-		A-2-4				_				
		LCOS, CBV-SL,										
	_	CB-SL, GR-SL,						_				
	_	BYV-SL, ST-SL,						_				
		CBX-SI						_			_	
	17-29	STX-SL, STV-SL,	SM, GM,	A-1-b,	8-46	16-30	48-91	46-90	33-73	16-38	15-25	1-7
		GR-COSL, SL,	SC-SM, GC-GM									
		ST-LS, GR-		A-2-4								
_	_	LCOS, CBV-SL,										
	_	CB-SL, GR-SL,				_						
		BYV-SL, ST-SL,						_				
		CBX-SI										
	29-60	STX-LS, ST-SL,	GM, GC-GM,	A-1-b,	8-46	16-30	48-91	46-90	33-73	16-38	15-25	1-7
		CBV-COSL, STV-	_	A-2-4,						_	_	
		SL, BY-SL,		A-4								
		STX-SL, CBX-										
		SL, CBV-SL,										
		CB-SL, GR-SL,								_	_	
		CBV-LCOS									_	
								_		_		

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Pe	rcentage passi sieve number	Percentage passing sieve number	19	Liquid	Plas-
and soil name					>10							ticity
			Unified	AASHTO	inches		4	10	40	200		index
	盾 				Pat	Pat					Pat	
Half Dome	0-1	ST-LS, STX-SL,	SP-SC, SM,	A-1-b,	53-72	0	56-87	12-74	09-6	4-31	17-30	1-7
		STV-SL, GR-		A-1-a,								
		COSI, GR-LCOS,		A-2-4								
		CBV-SL, CB-SL,										
		GR-SL, BYV-SL,										
		ST-SL, CBX-SL,										
	1 0 1 1 0	CBV-ST. GP-	MG - CG MG	- 4 - 1	c	23-48	62-91	33_81	24-65	11-34	17-30	1-7
	1	1.008 87-1.8		A - 2 - 4	>	0	1	1	1	1	2	1
		מו מי מי מי מי		A-1-4								
		SI. STV-SI.		5 1								
		GR-COST, BYV-										
		SI, ST-SI,										
	19-28	CBX-SL, CBV-SL,	SM, SC-SM	A-2-4,	8-23	23-48	54-90	20-80	14-64	7-34	15-25	1-7
		GR-COSL, GR-		A-1-b,								
		SL, SL, ST-LS,		A-1-a								
		ST-SL, BYV-SL,										
		GR-LCOS, STV-										
	_	SI, CB-SL				_						
	28-33	CBV-LCOS, STX-	SM, SC-SM	A-2-4,	8-23	23-48	54-90	20-80	11-53	6-32	15-25	1-7
	_	LS, CBV-COSL,		A-1-b,								
	_	CB-SL, CBV-SL,		A-1-a								
	_	ST-SL, STX-SL,										
		BY-SL, GR-SL,										
	(CBX-SL			(1	1	,
	33-50	CBV-LCOS, STX-	SW-SC, SM,	A-2-4,	8-23	23-48	54-90	08-07	T0-45	3-T/	T2-72	/-T
		LES, CBV-COSE,	SC-SM	A-I-D,								
		קטיים, (פייטבי,		р. Т. К								
		SI, ST-SI,										
		'.										
	20-60	CBV-LS, CBV-	SC-SM, SM	A-1-a,	8-23	23-48	54-90	20-80	15-64	5-24	0-19	NP-2
		LCOS, CBV-SL,		A-1-b,								
		STX-SI		A-2-4								
610:												
Rubble land.												
	_	_										

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	Pel	rcentage passi sieve number	Percentage passing sieve number	pu	Liquid	Plas-
and soil name					>10	3-10					limit ticity	ticity
			Unified	AASHTO	inches	inches	4	10	40	200		index
	[]				Pct	Pct					Pct	
610:												
Half Dome		BYX-SPM	PT	A-8	!	78-99	!	:	:	-	-	1
	1-2	BYX-SPM	PT	A-8	:	78-99	!	:	:	:	:	:
		BYV-SL, CBX-SL,	SM, SC-SM	A-1-b,	8-23	16-42	62-91	06-09	44-73	21-38	17-30	1-7
		CB-SI, CBV-SI,	-	A-4,								
		GR-LCOS, ST-		A-2-4								
		LS, SL, STX-	-	-								
		SI, ST-SL,										
	_	STV-SL, GR-SL,		_								
	_	GR-COSL		_	_	_						
	10-17	STV-SL, CBX-SL,	SM, GC-GM,	A-1-b,	8-46	16-30	48-91	46-90	33-73	16-38	17-30	1-7
		CBV-SL, CB-SL,	GM, SC-SM	A-4,								
		GR-SL, BYV-SL,		A-2-4								
		ST-SL, GR-	-									
		LCOS, ST-LS,										
		SL, STX-SL,										
		GR-COSL				_						
	17-29	ST-SL, STX-SL,	SM, GM,	A-1-b,	8-46	16-30	48-91	46-90	33-73	16-38	15-25	1-7
		ST-LS, CBX-SL,	SC-SM, GC-GM	[A-4,								
	_	BYV-SL, GR-SL,		A-2-4	_	_						
	_	CB-SI, CBV-SI,		_	_	_					_	
		GR-LCOS, STV-										
		SL, SL, GR-				_						
		COSI			_							
	29-60	CB-SL, CBV-SL,	(r)	A-1-b,	8-46	16-30	48-91	46-90	33-73	16-38	15-25	1-7
	_	CBV-COSL, CBX-	SC-SM, SM	A-2-4,	_						_	
		SL, ST-SL,		A-4								
		STX-SL, BY-SL,			_							
		STV-SL, CBV-										
		LCOS, STX-LS,			_							
	_	GR-SL		_	_	_						
	_	_						_		_		

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragi	Fragments	P P	Percentage passing sieve number	passir mber	J.G	Liquid	Plas-
and soil name	· - — –		τ 	C E	×10	3-10	4	-	0.4	000	limit	ticity
	ri				Pat	Pat	·			0	Pat	
620: Half Dome, extremely												
stony sandy loam, warm	0-1	GR-COSL, STX-	SP-SC, SM,	A-1-b,	53-72	0	56-87	12-74	09-6	4-31	17-30	1-7
		SL, STV-SL, CBX-SL, ST-SL,	SC-SM	A-1-a, A-2-4								
		BYV-SL, SL,										
		ST-LS, GR-										
		CB-SL, GR-SL										
	1-19	BYV-SL, GR-	SP-SC, SM,	A-1-b,	0	53-72	56-87	12-74	09-6	4-31	17-30	1-7
		COSL, STV-SL,	SC-SM	A-2-4,								
		STX-SL, GR-SL,		A-1-a								
		CB-SL, ST-SL,										
		٠.										
		LCOS. ST-LS										
	19-28	BYV-SL, CBV-SL,	SM, SC-SM	A-2-4,	8-23	8-48	54-96	20-92	14-75	7-39	15-25	1-7
		CB-SL, GR-		A-1-b,								
		COSI, CBX-SI,		A-1-a								
	_											
		SL, GR-SL, SL,										
		SI-LS, GR-LCOS										
	28-33	CBV-LCOS, CBX-	SM, SC-SM	A-2-4,	8-23	8-48	54-96	20-92	14-75	7-39	15-25	1-7
		SI, BY-SI,		A-1-b,								
		STX-SL, ST-SL,		A-1-a								
		STX-LS, CBV-										
		CB-SL, CBY-COST, GD-										
		SI SI										
	33-50	CBV-COSL, BY-	SM, SC-SM	A-2-4,	8-23	8-48	54-96	20-92	17-87	7-42	15-25	1-7
		SI, CB-SI,		A-1-b,								
		CBV-SL, GR-SL,		A-1-a								
		ST-SL, CBX-SL,										
		STX-LS, CBV-										
	50-60	CBV-LCOS, CBV-	SC-SM. SM	A-1-a.	8-23	8-48	54-96	20-92	14-68	5-28	0-19	NP-2
		LS, STX-SL,		A-1-b,								
		CBV-SL		A-2-4								
											_	

Table 11.-Engineering Index Properties-Continued

			Classification	tion	Fragi	Fragments	Pe	Percentage passing	e passi	ng		
Map symbol	Depth	USDA texture					•	sieve number	umber		Liquid	Plas-
and soil name					>10		,			0	limit	ticity
	Ę		Unitied	AASHTO	inches	inches	41	PT	0 44	000	+ 70	ındex
.000	i											
Half Dome, very cobbly												
sandy loam, warm	0-1	STV-SPM	PT	A-8	42-100	42-71	-	1	-	1	:	1
	1-2	STV-SPM	SC-SM, PT	A-8	42-100		1	1	1	1	:	;
	2-10	CBX-SL, CBV-SL,	SC-SM, PT	A-1-b,	8-23	16-42	62-91	06-09	44-73	21-38	17-30	1-7
		STV-SL, STX-		A-4,								
		SL, BYV-SL,	_	A-2-4								
		ST-SL, GR-SL,						_	_			
_		CB-SL, GR-	_									
		COSL, GR-LCOS,										
_		SI-LS, SL	_									
	10-17	GR-SL, GR-COSL,	SM, GC-GM,	A-1-b,	8-70	16-30	25-91	22-90	16-73	8-38	17-30	1-7
		CB-SL, CBX-SL,	GM, SC-SM	A-4,								
		CBV-SL, GR-		A-2-4				_	_			
		LCOS, SI-LS,						_	_			
_		ST-SL, BYV-SL,										
		SL, STX-SL,										
		SIV-SL						_	_			
	17-29	ST-SL, BYV-SL,	SM, GM,	A-1-b,	8-70	16-30	25-91	22-90	16-73	8-38	15-25	1-7
		GR-SL, CB-SL,	SC-SM, GC-GM	A-4,								
		CBV-SL, GR-		A-2-4								
		LCOS, SI-LS,						_	_			
		SL, GR-COSL,	_									
		SIX-SI, CBX-						_	_			
		SL, STV-SL										
_	29-60	STV-SL, BY-SL,	GM, GC-GM,	A-1-b,	8-70	16-30	25-91	22-90	16-73	8-38	15-25	1-7
		SIX-SL, SI-SL,	SC-SM, SM	A-2-4				_	_			
		CBX-SI, CBV-		A-4				_	_			
		SI, CBV-COSI,										
		GR-SL, STX-LS,										
		CBV-LCOS, CB-						_	_			
		SI										

Table 11.-Engineering Index Properties-Continued

Map symbol	Depth	USDA texture	Classification	ation	Fragments	nents	Per	rcentage pass sieve number-	Percentage passing sieve number	p d	Liquid	Plas-
and soil name	ı		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		>10	3-10				0	limit	ticity
	ŀ		Unitied	AASHTO	inches	inches	4	TO	04	700	1	ındex
	터				PG T	Fat					Par	
30: Rubble land.												
Half Dome	0-1	STX-SL, STV-SL,	SM, SC-SM	A-1-b,	16-85	0	96-89	36-92	26-75	12-39	17-30	1-7
		GR-COSL, SL,		A-1-a,								
		ST-LS, GR-		A-2-4,								
		LCOS, CBV-SL,		A-4								
		BVV-ST. ST-ST.										
		CBX-SI										
	1-19	CBV-SL, GR-	SC-SM, SM	A-1-b,	16-85	0	96-89	36-92	26-75	12-39	17-30	1-7
		LCOS, ST-LS,		A-2,4								
		SI, GR-SI, CB-		A-1-a,								
		SI, CBX-SI,		A-4						_		
		BYV-SL, GR-										
		COSL, ST-SL,										
		מוא-מר									1	,
	19-28	STV-SL, GR-	SC-SM, SM	A-2-4,	3-23	8-48	54-96	20-93	11-62	6-37	15-25	1-7
		COSI, BYV-SI,		A-1-b,								
		ST-SL, CBX-SL,		A-1-a,								
		CBV-COSL, CB-		A-4								
		SL, ST-LS, GR-										
		LCOS, CBV-SL,										
	28-33	GR-SL, SL	AC-SW GW	A-2-4	3-23	4 4 8	54-9K	20-03	11-62	6-37	15-25	1-7
	0	TSO CBV-COST		A-1-b	2	2	2		1	5	1	
		GR-SL, CB-SL,		A-1-a,								
		CBV-SL, CBX-		A-4								
		SI, ST-SL,										
		STX-SL, BY-SL		-								
	33-50	BY-SL, CB-SL,	SC-SM, SM	A-2-4,	3-23	8-48	24-96	20-93	10-53	3-20	15-25	1-7
		CBV-LCOS, STX-		A-1-b,								
		LS, CBV-COSL,		A-1-a								
		GR-SL, STX-SL,										
		.'										
	0	מבי מדי מדי במדים	310	, ,	c	0		0	71	C L	7	c d
	00-00	STX-SL, CBV-LS,	SC-SM, SM	A-1-a,	2-63	0 4	04-40	20-93	9C-TT	07-0		N - 4
		LCOS		A-2-4								
					_					_		

Table 11.-Engineering Index Properties-Continued

Man gamhol	Teo T	4 &G211	Classification	ation	Fragi	Fragments	Per	Percentage passing	passir	ρι		ם מ ני
and soil name	; } }		Unified	AASHTO	>10 3-10 inches	3-10 inches	4.	01	4 0	200		ticity
	됩				Pct	Pat					Pat	
701:												
Vitrandic Haploxerolls	0-1	SPM	PT		0-52	0			:			
	1-3	FSL	SM		0-8	0	100	100	88-98	38-48	34-47	2-9
	3-12	FSL, SL, COSL	SM, SC-SM	A-5, A-4	8-0	0	100	100	88-98	38-48	30-43	2-9
	12-16	SI, FSI, COSI	SM, SC-SM	A-4	8-0	0	100		88-98	38-48	23-37	2-9
	16-24	COSL, SL, FSL	SC-SM, SM	A-4	8-0	0	100		88-98	38-48	18-30	2-10
	24-36	COSI, SI, FSI	SC-SM, SM	A-4	8-0	0	100		88-98	38-48	17-28	2-10
	36-50	FSL	SC-SM, SM	A-4	8-0	0	100	100	88-98	38-48	17-27	2-10
	20-60	FSL	SC-SM, SM	A-4	8-0	0	100	100	88-98	38-48	16-27	2-10
702:												
Vitrandic Dystroxerepts	8-0	CB-COSI	SM, SC-SM	A-2-4, A-4	0	21-35	92-100	92-100 79-100 47-64	47 - 64	26-37	27-42	2 - 6
	8-30	STV-LCOS, CBV-	SC-SM, SM	A-4,	9-17	39-54	97-100	97-100 87-100 51-64	51-64	28-37	18-29	2-6
		COSL, GRV-COSL		A-2-4								
	30-50	GRV-COSL, CBV- COSL, STV-LCOS	SM, SC-SM	A-2-4, A-4	39-54	9-17	97-100	97-100 87-100 51-64 	51-64	28-37	17-23	2-6
	50-60	STV-LCOS	SM, SC-SM	A-2-4, A-1-b	38-51	9-16	97-100	97-100 88-100	46-58	17-25	17-23	2 - 6
.006												
Rock outcrop												
DAM.												
Dam												
w.												
Water												

Table 12.—Physical Properties of the Soils

Map symbol and soil name	Depth	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
101: Oxyaquic Xerofluvents	0-0		 	 42.34-141.14	0.00-0.00	 	 70-90
Oxyaquic keloliuvencs	0-0	1		42.34-141.14	0.12-0.14		5.0-9.0
	2-4	1-7	1	141.14-423.30		1	4.0-6.0
	4-10			42.34-141.14	0.12-0.14	1	2.0-4.0
	10-17	1-7	1.70-1.80	141.14-423.30	0.03-0.14	1.0-2.0	1.0-3.0
	17-28			42.34-141.14			0.5-1.2
	28-39			42.34-141.14	0.03-0.14		0.5-1.2
	39-43			1	0.03-0.14	1	0.2-0.8
	43-57 57-60	1-7 1-7		141.14-423.30 42.34-141.14	0.03-0.14	!	0.2-0.8 5.0-9.0
	37-00	1-/		12.31-111.11		1.0-2.0	3.0-9.0
Riverwash.		İ	į i	i I		j I	
Fluvaquents	0-1	2-6	1.50-1.60	42.34-141.14	0.10-0.13	0.0-2.9	5.0-9.0
	1-4	1	1	42.34-141.14	0.10-0.15	1	4.0-6.0
	4 - 6		1	42.34-141.14	0.08-0.11	1	2.0-4.0
	6-10	1		42.34-141.14	0.13-0.15	1	0.5-1.5
	10-60	2-5	1.50-1.70	141.14-423.30	0.03-0.15	0.0-2.9	0.2-0.8
L01t:			 	 	[]	 	
Lithnip	0-1	10-18	1.25-1.35	14.00-42.00	0.03-0.06	0.0-2.9	1.0-2.0
	1-5	12-18	1.25-1.35	14.00-42.00	0.04-0.08	0.0-2.9	0.5-1.0
	5-15			0.00-0.01			
Rock outcrop.			 	 		 	
Fishsnooze	0-1	10-18	1.20-1.25	14.00-42.00	0.09-0.13	0.0-2.9	5.0-10
	1-9	10-18	1.20-1.30	14.00-42.00	0.09-0.13	0.0-2.9	5.0-10
	9-13	10-18	1.25-1.35	14.00-42.00	0.09-0.13	0.0-2.9	2.0-4.0
	13-35	!	!	14.00-42.00	0.05-0.07	!	0.5-1.0
	35-45			0.00-0.01	 	 	
102:				 		 	
Oxyaquic Xerofluvents	0 - 0		j	42.34-141.14	0.00-0.00	j	70-90
	0-2	1	1	14.11-42.34	0.13-0.15	1	5.0-9.0
	2-4		1	42.34-141.14	0.05-0.07	1	4.0-6.0
	4-10			42.34-141.14	0.06-0.08	1	2.0-4.0
	10-17			141.14-423.30	!	!	1.0-3.0
	17-28 28-39			42.34-141.14 42.34-141.14	0.06-0.08	!	0.5-1.2 0.5-1.2
	39-43			42.34-141.14	0.06-0.08	!	0.3-1.2
	43-57			141.14-423.30		1.0-2.0	0.2-0.8
	57-60	!	!	42.34-141.14	!	!	5.0-9.0
Riverwash.			 				
LO2t:	0-1	10-10	 1 25_1 25	 14.00-42.00	 0.03-0.06	 0 0-2 0	 1.0-2.0
	1-5	1		14.00-42.00	0.04-0.08	1	0.5-1.0
	5-15			0.00-0.01			
Rock outcrop.			 			 	
-	_						
Fishsnooze	0-1	1	1	14.00-42.00	0.09-0.13	!	5.0-10
	1-9			14.00-42.00	0.09-0.13	!	5.0-10
	9-13	1	1	14.00-42.00	0.09-0.13	!	2.0-4.0
	13-35	12-18 	1.30-1.50	14.00-42.00	0.05-0.07	0.0-2.9	0.5-1.0
	35-45			0.00-0.01			

Table 12.—Physical Properties of the Soils—Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
İ	In	Pct	g/cc	um/sec	In/in	Pct	Pct
104: Aquandic Humaquepts	0 - 8	 2-6	0 70 1 00	 14.11-42.34	 0.13-0.15	 1.0-4.0	 10-20
Aquandic Humaquepus	8-18	2-6	!	4.23-14.11	0.15-0.15	!	10-20
i	18-26	2-6	!	4.23-14.11	0.15-0.17	!	3.0-7.0
İ	26-68	2-5	!	141.14-423.30	!	!	0.0-0.5
111t: Whittell	0 - 0	 	 0 03-0 09	 141.00-250.00	 0 55-0 65	 	 70-90
MIIICCCII	0-7	4-8		42.34-141.14	0.02-0.04	!	1.0-3.0
	7-20	1-8		42.34-141.14	0.02-0.03	!	0.5-1.0
İ	20-32	1-8	!	42.34-141.14	0.02-0.02		0.0-5.0
	32-42			0.10-10.00		0.0-1.0	
Jobsis	0-5	 4-10	 1.45-1.65	 42.00-141.00	 0.03-0.05	 0.0-2.9	 1.0-3.0
	5-9	!	!	42.00-141.00	0.03-0.05	!	0.5-1.0
İ	9-17			42.00-141.00	0.03-0.05	!	0.0-0.5
İ	17-20	4-8	1.45-1.65	42.00-141.00	0.03-0.05	!	0.0-0.5
	20-30		ļ	0.10-10.00			
Rock outcrop.		 	 	 	 	 	
 151:		 	 	 		 	
Elcapitan	0-1	i	0.02-0.19	42.34-141.14	0.00-0.00		70-90
	1-7	2-18	1.50-1.60	14.11-42.34	0.13-0.15	0.0-2.9	1.0-5.0
	7-12	2-18	1.50-1.60	14.11-42.34	0.13-0.15	0.0-2.9	3.0-5.0
	12-20	!	!	14.11-42.34	0.13-0.15	!	3.0-5.0
	20-31	!	!	14.11-42.34	0.13-0.15	!	2.0-4.0
	31-38	!	!	14.11-42.34	0.13-0.15	!	1.5-3.0
	38-44	!	!	42.34-141.14	0.06-0.08	!	1.0-5.0
	44-47 47-53	!	!	42.34-141.14	0.06-0.08	!	3.0-5.0
	53-58	!	!	141.14-423.30 42.34-141.14	0.05-0.06	!	1.0-5.0 3.0-5.0
	58-60	!	!	42.34-141.14	0.06-0.08	!	2.0-4.0
152:				l I			
Vitrandic Haploxerolls	0-2	3-7	1.50-1.60	42.34-141.14	0.12-0.14	0.0-2.9	2.0-8.0
	2-3	1-5	1.50-1.60	42.34-141.14	0.12-0.14	0.0-2.9	0.5-1.5
	3 - 5	3 - 7	1.50-1.60	42.34-141.14	0.12-0.14	1	2.0-8.0
	5-13	3-5	!	42.34-141.14	0.12-0.14	!	2.0-4.0
	13-18	2-5	!	42.34-141.14	0.07-0.09	!	1.0-3.0
	18-24	1-5	!	141.14-423.30	!	!	0.8-1.5
	24-28	1-5	!	42.34-141.14	0.05-0.07	!	0.5-1.0
	28-32 32-60	1-5 1-5		141.14-423.30 42.34-141.14	0.03-0.05	1	0.2-0.8
	32-00	1-3		12.51-111.11		0.0-2.9	0.2-0.6
201:	_					į	
Leidig	0-0	!	!	42.34-141.14	!	1	70-90
	0-7 7-16			14.11-42.34 14.11-42.34	0.13-0.15	!	2.0-8.0
	16-23	1	1	14.11-42.34	0.14-0.16	!	2.0-8.0
	23-30			!	0.14-0.16	!	2.0-3.0
	30-34			14.11-42.34	0.14-0.16	!	2.0-3.0
j	34-42	!	!	!	0.13-0.15	!	1.0-3.0
İ	42-46			!	0.13-0.15	!	0.0-1.0
j	46-52			!	0.09-0.11	!	0.0-1.0
i	52-58	0-18	1.50-1.60	14.11-42.34	0.13-0.15	0.0-2.0	0.0-1.0
l l							

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
					<u> </u>		
210: Rubble land.		 		 	 	 	
Typic Cryorthents	0-2	2-5	1.50-1.60	 14.11-42.34	0.04-0.04	0.5-2.0	4.0-7.0
	2-13	4-6	1.45-1.55	4.23-14.11	0.08-0.10	0.5-2.0	1.0-3.0
	13-19	3-5	1.50-1.60	14.11-42.34	0.09-0.10	0.5-2.0	0.5-2.0
	19-60	1-4	1.50-1.60	14.11-42.34	0.09-0.10	0.5-2.0	0.5-1.5
Rock outcrop.		 		 		 	
Xeric Dystrocryepts	0-1	 0-0	 0.05=0.30	 42.34-141.14	0.00-0.00	0.0-0.0	 65-85
11	1-5	!		14.11-42.34	0.10-0.11	!	6.0-10
j	5-13	!		14.11-42.34	0.07-0.08	!	2.0-5.0
	13-28	6-8	1.50-1.60	14.11-42.34	0.07-0.08	0.5-2.0	1.0-2.5
j	28-60	7-9	1.50-1.60	14.11-42.34	0.07-0.08	0.5-2.0	0.2-0.8
211:							
Xeric Dystrocryepts	0 - 0	 	 0.05-0.30	 42.34-141.14	0.00-0.00	0.0-0.0	 70-90
Merre Dyberoeryepes	0-1			42.34-141.14	0.00-0.00	!	65-85
	1-9	!		14.11-42.34	0.09-0.10	0.5-2.0	8.0-12
	9-19			14.11-42.34	0.05-0.06	!	3.0-6.0
	19-32	2-6	1.55-1.60	14.11-42.34	0.03-0.04	0.5-2.0	0.5-2.0
	32-60	1-6	1.55-1.60	14.11-42.34	0.03-0.04	0.5-2.0	0.2-1.0
Canisrocks	0 - 0	 	 1.55-1.65	 42.34-141.14		 	 70-90
	0-1	j	1.55-1.65	42.34-141.14	j	i	65-85
	1-4	1-4	1.55-1.65	42.34-141.14	0.03-0.70	i	6.0-10
	4-18	0-3	1.55-1.65	42.34-141.14	0.03-0.07		1.0-3.0
	18-28	!		42.34-141.14	0.03-0.06		1.0-2.0
	28-34	!		42.34-141.14	0.03-0.06		1.0-2.0
	34-60	0-1	1.55-1.65	42.34-141.14	0.03-0.06	 	0.5-1.0
Oxyaquic Dystrocryepts	0 - 0	2-10	1.50-1.60	14.11-42.34	0.09-0.11	0.5-2.0	7.0-10
	0 - 9	2-10	1.50-1.60	14.11-42.34	0.09-0.11	0.5-2.0	7.0-10
	9-16	2-10	1.50-1.60	14.11-42.34	0.08-0.10	0.5-2.0	5.0-7.0
	16-23	2-10	1.50-1.60	14.11-42.34	0.09-0.10	0.5-2.0	2.0-4.0
	23-60	2-10	1.55-1.65	14.11-42.34	0.05-0.06	0.5-2.0	0.2-0.8
213:		 		 		 	
Canisrocks	0 - 0		0.05-0.30	42.34-141.14	0.00-0.00		70-90
	0-3	1	l .	42.34-141.14	0.05-0.06	!	7.0-9.0
	3-12			42.34-141.14	0.05-0.06	0.5-2.0	1.0-3.0
	12-60	0-5	1.55-1.65	42.34-141.14	0.03-0.04	0.5-2.0	0.2-1.0
Glacierpoint	0 - 0	 		 42.34-141.14	0.00-0.00	 0.0-0.0	 70-90
Giacierpoine	0-1			42.34-141.14	0.00-0.00	!	65-85
	1-9	!		42.34-141.14	0.03-0.04	!	7.0-9.0
j	9-15	!		42.34-141.14	0.02-0.03	0.5-2.0	3.0-5.0
j	15-20			42.34-141.14	0.04-0.05	!	2.0-4.0
j	20-29		1.55-1.65	42.34-141.14	0.03-0.04	!	1.0-3.0
	29-37	0-5	1.55-1.65	42.34-141.14	0.03-0.04	0.5-2.0	0.5-1.0
	37-60	0-5		42.34-141.14	0.04-0.05	0.5-2.0	0.2-0.8

Table 12.—Physical Properties of the Soils—Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
		ļ					
213: Vitrandic Dystrocryepts	0-0	 	 0.05-0.30	 42.34-141.14	 0.00-0.00	 0.5-2.0	70-90
Viciandic Dystrocryepts	0-1			42.34-141.14	0.00-0.00	!!!	65-85
	1-11	0-4		42.34-141.14	0.06-0.08	!!!	5.0-9.0
	11-17	0-4		42.34-141.14	0.06-0.08		2.0-4.0
	17-25	0-4		42.34-141.14	0.06-0.08	!!!	1.0-2.0
	25-37	0-4	1	42.34-141.14	0.06-0.08	!!!	0.5-1.0
	37-60	0-4	1.60-1.70	42.34-141.14	0.06-0.08	0.5-2.0	0.1-0.5
214:		ľ		 	 		
Marmotland	0 - 0		0.05-0.30	42.34-141.14	0.00-0.00		70-90
	0-11	3-6	1.50-1.60	14.11-42.34	0.13-0.15	0.5-2.0	8.0-10
	11-19	3-6		4.23-14.11	0.14-0.16	!!!	2.0-4.0
	19-36	3-6	!	4.23-14.11	0.14-0.16	!!!	1.0-3.0
	36-48 48-60	3-6 3-6	!	4.23-14.11	0.14-0.16 0.00-0.05		0.5-1.0 0.2-0.8
	48-60	3-6	1.20-1.60	42.34-141.14	0.00-0.05	0.5-2.0	0.2-0.8
Oxyaquic Dystrocryepts	0-2	0-4	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	5.0-9.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2-7	0-4		141.14-423.30			2.0-4.0
	7-14	0-4	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	2.0-5.0
	14-20	0-4	1	42.34-141.14	0.05-0.07		1.0-3.0
	20-31	0-4	!	141.14-423.30		: :	0.5-2.5
	31-40	0-4	1	42.34-141.14	0.05-0.06		0.5-2.5
	40-61	0-4	1.70-1.80	141.14-423.30	0.01-0.02	0.5-2.0	0.2-1.5
Xeric Dystrocryepts	0-1		0.05-0.30	42.34-141.14	0.00-0.00	0.5-2.0	70-90
	1-2	i		42.34-141.14	0.00-0.00	!!!	65-85
	2-16	0-3	1.50-1.60	14.11-42.34	0.09-0.11	0.5-2.0	7.0-9.0
	16-23	0-3	1	42.34-141.14	0.06-0.08	!!!	4.0-6.0
	23-36	0-3	!	42.34-141.14	0.06-0.08	!!!	1.0-3.0
	36-63	0-3		42.34-141.14	0.06-0.08	!!!	0.5-1.0
	63-69	0-3	1.60-1.70	42.34-141.14	0.06-0.08	0.5-2.0	0.2-0.8
215:		l I	 	 	 	 	
Typic Cryorthents	0 - 0	0-0	0.02-0.09	42.34-141.14	0.00-0.00	1.0-1.0	70-90
	0-1	0-0	0.02-0.02	42.34-141.14	0.00-0.00	: :	70-90
	1-3			42.34-141.14	0.07-0.09	1.0-2.5	5.0-9.0
	3-12		1	42.34-141.14	0.04-0.05	!!!	3.0-7.0
	12-18	!	!	42.34-141.14	0.03-0.04		1.0-4.0
	18-22 22-60			14.11-42.34 42.34-141.14	0.09-0.10	1.0-2.5 1.0-2.5	0.5-1.5 0.0-1.0
	22 00	2 10				1.0 2.5	0.0 1.0
Rock outcrop.		ļ					
Rubble land.		 	 		 		
219:		 	 	 	 	 	
Rock outcrop.		į					
Rubble land.		 	 		 		
Canisrocks	0-0	 	 1.55-1.65	 42.34-141.14	 	 	
Camilli Octo	0-0	!	!	42.34-141.14	 	 	
	1-4		1	42.34-141.14	I		6.0-10
	4-18	!		42.34-141.14	0.03-0.07		1.0-3.0
	18-28		1	42.34-141.14	0.03-0.06	j j	1.0-2.0
			14 55 4 65	40 04 444 44	10 00 00	ı i	1 0 0 0
	28-34 34-60			42.34-141.14 42.34-141.14	0.03-0.06 0.03-0.06	!!!	1.0-2.0 0.5-1.0

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	 Depth 	 Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
004							
221: Typic Cryorthents	 0-2 2-13			 14.11-42.34 4.23-14.11	 0.08-0.09 0.08-0.09	!	8.0-10 2.0-4.0
	13-19 19-60	!	!	14.11-42.34 14.11-42.34	0.05-0.06	!	1.0-1.5
Xeric Dystrocryepts	 0-3 3-19		1	 14.11-42.34 14.11-42.34	 0.10-0.12 0.08-0.09	!	8.0-10 3.0-6.0
	19-60	8-12	1.50-1.60	14.11-42.34	0.14-0.15	0.5-2.0	0.2-0.8
Oxyaquic Dystrocryepts	 0-0 0-9			 14.11-42.34 14.11-42.34	 0.09-0.11 0.09-0.11	!	 7.0-10 7.0-10
	9-16 16-23	2-10	1.50-1.60	14.11-42.34 14.11-42.34	0.08-0.10	0.5-2.0	5.0-7.0 2.0-4.0
	23-60	2-10	1.55-1.65	14.11-42.34	0.05-0.06	0.5-2.0	0.2-0.8
222: Canisrocks	0-0	0-0	 0.05-0.30	 42.34-141.14	 0.00-0.00	 	70-90
	0-2	!	!	42.34-141.14	0.00-0.00	!	65-85 4.0-6.0
	7-14 14-60	0-4	1.60-1.70	42.34-141.14 42.34-141.14 141.14-423.30	0.03-0.05	0.5-2.0	2.0-4.0
Rubble land.		 	 		 	 	
Rock outcrop.	 				 	 	
Crazymule	0-0		1	42.34-141.14	0.00-0.00	1	70-90
	0-5 5-22	!	!	42.34-141.14 42.34-141.14	0.05-0.07 0.04-0.05	!	6.0-10 2.0-5.0
	22-35 35-60	!	!	42.34-141.14 4.23-14.11	0.04-0.05	!	1.0-3.0
223: Rock outcrop.		 	 		 	 	
Rubble land.		 	 	 	 	 	
Canisrocks	 0-0 0-1	!	!	 42.34-141.14 42.34-141.14	 	 	
	1-4	!	!	42.34-141.14	0.03-0.70		6.0-10
	4-18	!	!	42.34-141.14	0.03-0.07	 	1.0-3.0
	18-28 28-34	!	!	42.34-141.14 42.34-141.14	0.03-0.06 0.03-0.06	!	1.0-2.0
	34-60	!	!	!	0.03-0.06	!	0.5-1.0
224: Rock outcrop.		 	 	 	 	 -	
Crazymule	 0-0	0-0	0.05-0.30	 42.34-141.14	0.00-0.00	 	 70-90
-	0-5	2-5	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	6.0-10
	5-22 22-35			42.34-141.14 42.34-141.14	0.04-0.05	!	2.0-5.0
	35-60	!	!	4.23-14.11	0.12-0.14	!	0.2-1.0
		İ	ĺ	İ	ĺ	ĺ	İ

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth 	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
			ļ		ļ		
224: Vitrandic Cryorthents	 0-2	 0-0	05 0 30	 42.34-141.14	0.00-0.00	 	 70-90
Vittandic Cryorthents	2-2	0-0	1	42.34-141.14	0.00-0.00	 	65-85
	2-7	2-5	!	42.34-141.14	0.07-0.09	!	5.0-9.0
	7-15	2-5	!	42.34-141.14	0.05-0.07	0.5-2.0	2.0-4.0
	15-24	1-3	1.55-1.65	42.34-141.14	0.04-0.06	0.5-2.0	0.5-1.5
	24-60			0.01-0.07			
225.	l I						
225: Canisrocks	 0-0	 	 1 55_1 65	 42.34-141.14		 	
Canibiocks	0-1		1	42.34-141.14			
	1-4	1-4	!	42.34-141.14	0.03-0.70		6.0-10
	4-18	0-3	1	42.34-141.14	0.03-0.07		1.0-3.0
	18-28	0-3	1.55-1.65	42.34-141.14	0.03-0.06	i	1.0-2.0
	28-34	0-1	1.55-1.65	42.34-141.14	0.03-0.06		1.0-2.0
	34-60	0-1	1.55-1.65	42.34-141.14	0.03-0.06		0.5-1.0
Rock outcrop.	 	 					
Rubble land.		 				 	<u> </u>
Witnesdie Deeter							70.00
Vitrandic Dystrocryepts	0-1 1-2			42.34-141.14	0.00-0.00	 	70-90 65-85
	2-5	 1-3	!	42.34-141.14 42.34-141.14	0.06-0.08	I	8.0-10
	5-12	1-3	1	42.34-141.14	0.04-0.05		7.0-9.0
	12-26	1-3	1	14.11-42.34	0.03-0.04	!	2.0-4.0
	26-30	1-3	!	14.11-42.34	0.02-0.02	0.5-2.0	0.5-1.0
	30-60	1-3	1.55-1.65	42.34-141.14	0.02-0.02	0.5-2.0	0.2-0.8
			ļ		ļ		ļ
227:							
Canisrocks	0-0 0-2	 3-6	1	42.34-141.14 14.11-42.34	0.00-0.00		70-90 6.0-10
	2-6	3-6	1	14.11-42.34	0.07-0.09	!	2.0-10
	6-17	2-5	!	42.34-141.14	0.07-0.03	!	1.0-3.0
	17-25	2-5	!	42.34-141.14	0.03-0.04	!	1.0-3.0
	25-34	3-6	!	42.34-141.14	0.03-0.04	0.5-2.0	0.5-2.0
	34-60	2-4	!	42.34-141.14	0.03-0.04	!	0.2-0.8
	İ	ĺ	İ	İ	İ	ĺ	İ
Crazymule	0-1			42.34-141.14	0.00-0.00		70-90
	1-2		1	42.34-141.14	0.00-0.00		65-85
	2-12	2-6		42.34-141.14	0.07-0.09	1	8.0-12
	12-22 22-34	4-8 4-8	1	14.11-42.34 14.11-42.34	0.04-0.05	0.5-2.0	3.0-7.0 1.0-3.0
	34-60	1-4	!	42.34-141.14	0.10-0.11	!	0.5-1.0
	34 00					0.3 2.0	0.3 1.0
228:	İ	İ	i	İ	İ	İ	
Xeric Dystrocryepts	0-4	2-6	1.50-1.60	14.11-42.34	0.08-0.10	0.5-2.0	6.0-10
	4-14	!	!	14.11-42.34	0.06-0.07	!	2.0-3.5
	14-20	!	!	42.34-141.14	0.03-0.04	!	1.0-2.5
	20-30	!	1	42.34-141.14	0.03-0.04	!	0.2-1.0
	30-60	0-2	1.60-1.70	42.34-141.14	0.02-0.03	0.5-2.0	0.2-0.8
Vitrandic Eutrocryepts	 0-6	2-8	1.50-1.60	114.11-42.34	0.12-0.14	0.5-2.0	 10-16
	6-14	!	!	14.11-42.34	0.10-0.12	!	4.0-8.0
	14-21	!	!	14.11-42.34	0.10-0.11	!	3.0-7.0
	21-28	!	!	4.23-14.11	0.11-0.12	!	0.5-1.0
	28-60		1	14.11-42.34	0.09-0.10	1	0.2-0.5
	İ	İ	İ	İ	İ	ĺ	

Table 12.—Physical Properties of the Soils—Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
		ļ ——					
229: Marmotland	 0-0	 2-5	1 50-1 60	 14.11-42.34	 0.09-0.11	0.5-2.0	 9.0-11
Mailiociand	0-0	2-5	!	14.11-42.34	0.03-0.11	!	6.0-8.0
	9-16	3-7	!	14.11-42.34	0.08-0.09	!	4.0-6.0
	16-23	5-9	1.50-1.60	14.11-42.34	0.08-0.10	!	1.0-3.0
	23-60	5-9	1.50-1.60	14.11-42.34	0.06-0.07	0.5-2.0	0.2-1.0
O		ļ	05.000				
Oxyaquic Dystrocryepts	0-0 0-2	 	1	42.34-141.14 42.34-141.14	0.00-0.00	!	70-90 60-80
	2-5	2-6	1	42.34-141.14	0.00-0.00	!	1.0-6.0
	5-12	2-6	!	42.34-141.14	0.09-0.11	!	1.0-6.0
	12-19	2-6	1	42.34-141.14	0.06-0.08	!	1.0-6.0
	19-28	2-6	1	42.34-141.14	0.05-0.06	!	0.5-1.5
	28-60	2-6	1.50-1.60	42.34-141.14	0.05-0.07	0.5-2.0	1.5-5.0
							ļ
231: Canisrocks	 0-1	 	0 05-0 20	 42.34-141.14	0.00-0.00	 	 70-90
Canisiocks	1-1		1	42.34-141.14	0.00-0.00		65-85
	1-2		1	42.34-141.14	0.00-0.00		60-80
	2-6	0-4	1	42.34-141.14	0.05-0.07	1	8.0-10
	6-10	0-4	1.55-1.65	42.34-141.14	0.07-0.09		6.0-8.0
	10-17	0-4	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	2.0-4.0
	17-26	0-4	1.60-1.70	42.34-141.14	0.04-0.05	0.5-2.0	1.0-2.0
	26-35	0-4	1	42.34-141.14	0.03-0.04	0.5-2.0	0.8-1.5
	35-60	0-4	1.60-1.70	42.34-141.14	0.02-0.04	0.5-2.0	0.2-1.0
Typic Cryaquents	 0-0	 0-0	0.05-0.30	 42.34-141.14	0.00-0.00	 	 70-90
Typic Cryaquencs	0-0	0-0	1	42.34-141.14	0.00-0.00	!	65-80
	1-3	1-5	1	4.23-14.11	0.13-0.14	!	8.0-15
	3-9	1-5	!	14.11-42.34	0.05-0.07	!	7.0-12
	9-17	1-7	!	42.34-141.14	0.03-0.04	!	1.0-2.0
	17-60	1-7	1.55-1.65	42.34-141.14	0.03-0.04	0.5-2.0	0.1-0.5
		ļ					
232: Canisrocks	 0-0	 	0 05 0 30	 42.34-141.14	0.00-0.00	 	 70-90
Callistocks	0-0	0-4		42.34-141.14	0.05-0.07		6.0-10
	2-10	0-4	1	42.34-141.14	0.05-0.06	!	1.0-3.0
	10-24	0-4	1	141.14-423.30	1	1	1.0-2.0
	24-60	0-4		141.14-423.30			1.0-2.0
		ļ					ļ
Glacierpoint	0-0			42.34-141.14	0.00-0.00		70-90
	0-6	1-5	!	42.34-141.14	0.05-0.06		6.0-10
	6-9 9-18	1-5	!	42.34-141.14	0.04-0.06	!	2.0-4.0
	18-31	!	!	42.34-141.14 42.34-141.14	0.04-0.06	!	1.0-3.0
	31-60			42.34-141.14	0.04-0.06	!	0.3-1.0
		İ					
234. Rock outcrop-Rubble land		 	 		 		
235:		I I		 	 	 	
Canisrocks	0-1	0-0	0.05-0.30	42.34-141.14	0.00-0.00		70-90
	1-3	!	!	!	0.00-0.00	!	65-85
	3-4	0-0	0.05-0.30	42.34-141.14	0.00-0.00	0.5-2.0	60-80
	4-11			42.34-141.14	0.05-0.06		7.0-10
	11-17	!	!	42.34-141.14	0.05-0.07	!	3.0-6.0
	17-37				0.05-0.07	!	2.0-4.0
	37-53 53-68			42.34-141.14 42.34-141.14	0.03-0.05	!	0.5-1.5

Table 12.—Physical Properties of the Soils—Continued

Map symbol and soil name	Depth	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
235:		 	 	 		 	
Rock outcrop.		į					
Rubble land.		 				 	
237:		 	 	 	 	 	
Canisrocks	0 - 0		0.05-0.30	42.34-141.14	0.00-0.00	0.0-0.0	70-90
	0-3	1-4	0.05-0.30	42.34-141.14	0.00-0.00	0.0-0.0	6.0-10
	3 - 8	2-6		42.34-141.14	0.03-0.70	0.5-2.0	3.0-5.0
	8-13	2-6	1.60-1.70	42.34-141.14	0.03-0.07	0.5-2.0	1.0-3.0
	13-27	2-6	1	141.14-423.30		1	0.5-1.5
	27-60	2-6	1.70-1.80	141.14-423.30	0.03-0.06	0.5-2.0	0.2-0.8
Glacierpoint	0 - 0		0.05-0.30	42.34-141.14	0.00-0.00	0.0-0.0	70-90
	0 - 4	1-6	1	42.34-141.14	0.06-0.08	0.5-2.0	6.0-10
	4-17	1-6	1	42.34-141.14	0.05-0.07	0.5-2.0	2.0-3.5
	17-27	1-6		42.34-141.14	0.04-0.05	!	1.0-2.5
	27-60	1-6	1.60-1.70	42.34-141.14	0.03-0.04	0.5-2.0	0.2-1.0
Vitrandic Cryorthents	0-1	0-5	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	 3.0-7.0
	1-6	0-5	1.60-1.70	42.34-141.14	0.05-0.06	0.5-2.0	3.0-7.0
	6-12	0-5	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	1.0-2.0
	12-60	0-5	1.50-1.60	14.11-42.34	0.05-0.07	0.5-2.0	0.2-0.7
238:		 		 		 	
Oxyaquic Cryorthents	0-3	2-6	1.50-1.60	14.11-42.34	0.09-0.11	0.5-2.0	5.0-9.0
	3-13	2-6	1.50-1.60	14.11-42.34	0.09-0.11	0.5-2.0	3.0-5.0
	13-18	2-8		14.11-42.34	0.10-0.11	0.5-2.0	1.0-3.0
	18-30	0-2	1	42.34-141.14	0.05-0.07	1	0.5-1.0
	30-60	0-2	1.70-1.80	141.14-423.30	0.03-0.06	0.5-2.0	0.2-0.8
Canisrocks	0 - 0		1.55-1.65	42.34-141.14	 	 	
	0-1		1.55-1.65	42.34-141.14			
	1-4	1-4	1.55-1.65	42.34-141.14	0.03-0.70		6.0-10
	4-18	0-3	!	42.34-141.14	0.03-0.07		1.0-3.0
	18-28	0-3	!	42.34-141.14	0.03-0.06		1.0-2.0
	28-34	0-1	1	42.34-141.14	0.03-0.06		1.0-2.0
	34-60	0-1 	1.55-1.65	42.34-141.14	0.03-0.06	 	0.5-1.0
239:		į					
Crazymule	0 - 0		!	42.34-141.14	0.00-0.00	!	70-90
	0-5	1-4	1	14.11-42.34	0.09-0.11	!	6.0-10
	5-13	1-4	!	14.11-42.34	0.07-0.09	!	2.0-3.5
·	13-23 23-60	2-6 2-6	!	14.11-42.34 14.11-42.34	0.07-0.09	!	1.0-2.5 0.2-1.0
	25-00					1.0-2.0	0.2-1.0
Canisrocks	0 - 0	j	!	42.34-141.14		ļ	
	0-1		1	42.34-141.14			
	1-4		1	42.34-141.14	!		6.0-10
	4-18			42.34-141.14	0.03-0.07		1.0-3.0
	18-28			42.34-141.14	!	!	1.0-2.0
	28-34	!	1	42.34-141.14	0.03-0.06	:	1.0-2.0
	34-60	0-1	11.55-1.65	42.34-141.14	0.03-0.06		0.5-1.0

Table 12.—Physical Properties of the Soils—Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
j		i	j	i	i ———	j	j
241:							ļ
Canisrocks	0-0		!	42.34-141.14	!	!	70-90
	0-1	1 1 4	!	42.34-141.14	!	!	65-85
·	1-4 4-18	1-4	!	42.34-141.14 141.14-423.30	!	!	6.0-10 1.0-3.0
	18-28		1	141.14-423.30		1	1.0-3.0
	28-34	!	!	141.14-423.30	!	!	1.0-2.0
	34-60		1	141.14-423.30		1	0.5-1.0
		į				ĺ	ĺ
242: Rock outcrop.		 			 	 	
Canisrocks	0-0		0.05-0.30	 42.34-141.14	 0 . 00 - 0 . 00	 	 70-90
	0-1	!	!	42.34-141.14	0.00-0.00	!	65-85
j	1-1	!	!	42.34-141.14	!	!	60-80
	1-7	!	!	42.34-141.14	0.03-0.07	0.5-2.0	6.0-10
	7-23	!	1	141.14-423.30		1	3.0-5.0
	23-32	0-5	1	141.14-423.30	!	!	0.8-1.5
	32-60	0-5	1.55-1.65	42.34-141.14	0.02-0.03	0.5-2.0	0.5-1.0
Xeric Dystrocryepts	0 - 0		0 05-0 30	 42.34-141.14	0.00-0.00	 	 70-90
Meric Dystrocryepts	0-5	0-4	!	42.34-141.14	0.05-0.07	1	7.0-9.0
j	5-20	1	1	42.34-141.14	0.05-0.06		2.0-4.0
	20-35	0-4	1.55-1.65	42.34-141.14	0.05-0.06	0.5-2.0	1.0-3.0
	35-47	0-4	1	42.34-141.14	0.05-0.07	0.5-2.0	0.5-1.0
	47-60	0-4	1.60-1.70	42.34-141.14	0.06-0.07	0.5-2.0	0.2-0.8
244:				l I	 		l i
Typic Cryorthents	0-0		1.55-1.65	 42.34-141.14	 	l 	
-7F-0 0-70-0-0-0-0	0-1	!	!	42.34-141.14		i	i
	1-4	!	!	42.34-141.14	0.03-0.70	i	6.0-10
	4-18	0-3	1.55-1.65	42.34-141.14	0.03-0.07	j	1.0-3.0
	18-28	!	!	42.34-141.14	0.03-0.06	!	1.0-2.0
	28-34	!	!	42.34-141.14	0.03-0.06	!	1.0-2.0
	34-60	0-1	1.55-1.65	42.34-141.14	0.03-0.06		0.5-1.0
Rubble land.		 		 		 	
Rock outcrop.		 		 	 	 	
245: Rock outcrop.		 		 		 	
Canisrocks	0-0	!	!	42.34-141.14			
·	0-1 1-4		•	42.34-141.14 42.34-141.14	 0.03-0.70	 	 6.0-10
	4-18		•	42.34-141.14	0.03-0.70	!	1.0-3.0
	18-28	!	!	42.34-141.14	0.03-0.06	!	1.0-2.0
	28-34	!	!	42.34-141.14	0.03-0.06	!	1.0-2.0
j	34-60	0-1	1.55-1.65	42.34-141.14	0.03-0.06	ļ	0.5-1.0
Wand a Breat and a	0.0						
Xeric Dystrocryepts	0-2	!	!	14.11-42.34	0.08-0.10	!	5.0-9.0
	2-4 4-11	!	!	14.11-42.34 14.11-42.32	0.08-0.10	!	2.0-4.0
	11-60		•	4.23-14.11	0.08-0.10	!	0.3-2.0
						i	
246.		[
Rock outcrop, domes						ļ	ļ

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	 Depth 	 Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
	_	i	j <u> </u>				
247:		ļ	[
Canisrocks	0-2		1	43.34-141.14	0.00-0.00	!	70-90
	2-8	1-3		43.34-141.14	0.04-0.06	1	2.0-4.0
	8-36	1-3		43.34-141.14	0.04-0.06	!	1.0-3.0
	36-45 45-60	1-3 1-3	1	43.34-141.14 43.34-141.14	0.02-0.03	0.5-2.0	0.5-1.5
	45-60 	1-3	1.70-1.80	43.34-141.14	0.02-0.03	0.5-2.0	0.5-1.0
Xeric Dystrocryepts	0-1		0.05-0.30	42.34-141.14	0.00-0.00		70-90
	1-2		1	42.34-141.14	0.00-0.00	i	65-85
	2-10	0-3	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	5.0-9.0
	10-21	0-3	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	3.0-6.0
	21-31	0-3	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	2.0-4.0
	31-42	0-3	1	42.34-141.14	0.06-0.08	1	1.0-3.0
	42-58	0-3	1	42.34-141.14	0.05-0.07	!	0.5-1.2
	58-60	0-2	1.70-1.80	141.14-423.30	0.04-0.05	0.5-2.0	0.2-0.8
248:	 			 	l I	l I	l I
Canisrocks	0-1	0-0	05 0 30	42.34-141.14	0.00-0.00	 	 70-90
Canibiocks	1-2	0-0	1	42.34-141.14	0.00-0.00		65-85
	2-2	0-0		42.34-141.14	0.00-0.00		60-80
	2-5	0-3		42.34-141.14	0.03-0.05	!	4.0-6.0
	5-13	0-3		42.34-141.14	0.03-0.05	!	2.0-4.0
	13-32	0-3	!	141.14-423.30	!	!	1.0-1.5
	32-60	0-3	1.70-1.80	141.14-423.30	0.01-0.03	0.5-2.0	0.2-0.8
Rock outcrop.		 				 	
Glacierpoint	0-0	 		42.34-141.14 42.34-141.14	0.00-0.00	1	70-90 65-85
	0-1 1-4	1-2	I	42.34-141.14	0.00-0.00	!	6.0-10
	4-16	1-2	!	42.34-141.14	0.04-0.05	!	2.0-3.5
	16-27	1-2	1	42.34-141.14	0.04-0.05	!	1.0-2.5
	27-46	0-2	1	42.34-141.14	0.05-0.07	!	0.2-1.0
	46-64	0-2	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	0.2-1.0
249: Rock outcrop.		 	 				
Canisrocks	 0-1	0 0	0 05 0 30	 42.34-141.14	 0.00-0.00	l I	 70-90
Callisiours	0-1 1-3	0-0		42.34-141.14	0.00-0.00	!	70-90 65-85
	3-4	0-0		42.34-141.14	0.00-0.00	!	60-80
	4-11	0-3	!	42.34-141.14	0.05-0.06	!	7.0-10
	11-17	0-3	1	42.34-141.14	0.05-0.07	!	3.0-6.0
	17-37		!	42.34-141.14	0.05-0.07	!	2.0-4.0
	37-53	0-3	!	!	0.03-0.05	!	0.5-1.5
	53-68	0-2	1.60-1.70	42.34-141.14	0.03-0.05	0.5-2.0	0.2-0.8
		ļ	ļ				
250:		ļ					
Canisrocks	0-0	:	!	42.34-141.14			
	0-1			42.34-141.14			
	1-4			42.34-141.14 42.34-141.14	0.03-0.70		6.0-10 1.0-3.0
	4-18 18-28	0-3	1	42.34-141.14	0.03-0.07	 	1.0-3.0
	28-34	!	!	42.34-141.14	0.03-0.06	 	1.0-2.0
	34-60	0-1	!	!	0.03-0.06		0.5-1.0
		İ	İ	İ		İ	İ

Table 12.-Physical Properties of the Soils-Continued

and soil name	Depth 	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
250:							70.00
Xeric Dystrocryepts	0-0 0-1	 	!	42.34-141.14 42.34-141.14	0.00-0.00	0.0-0.0	70-90 65-85
	1-9	!	!	14.11-42.34	0.00-0.00	0.5-2.0	8.0-12
	9-19	!	!	14.11-42.34	0.05-0.06	!	3.0-6.0
	19-32	2-6	1.55-1.60	14.11-42.34	0.03-0.04	0.5-2.0	0.5-2.0
	32-60	1-6	1.55-1.60	14.11-42.34	0.03-0.04	0.5-2.0	0.2-1.0
251:	 						
Glacierpoint	 0-0	 	 	 42.34-141.14	0.00-0.00	0.0-0.0	 70-90
oluciol poline	0-1	 	!	42.34-141.14	0.00-0.00	!	65-85
	1-4	1-2	!	42.34-141.14	0.04-0.06	!	6.0-10
	4-16	1-2	1.55-1.65	42.34-141.14	0.04-0.05	0.5-2.0	2.0-3.5
	16-27	!	!	42.34-141.14	0.04-0.05	!	1.0-2.5
	27-46	!		42.34-141.14	0.05-0.07	1	0.2-1.0
	46-64	0-2	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	0.2-1.0
Typic Cryorthents	0-0	 	 0.05-0.30	 42.34-141.14	0.00-0.00	 	 70-90
7,5-1 7-1	0-4	1	1	14.11-42.34	0.06-0.07	!	8.0-10
	4-10	2-10	1.50-1.60	14.11-42.34	0.06-0.07	!	6.0-8.0
	10-16	2-10	1.50-1.60	14.11-42.34	0.05-0.07	0.5-2.0	2.0-4.0
	16-30		1	14.11-42.34	0.06-0.07	0.5-2.0	1.0-1.8
	30-60	2-10	1.50-1.60	14.11-42.34	0.06-0.07	0.5-2.0	0.2-0.8
252: Rock outcrop.		 	 		 		
Canisrocks	 0-0	 	 1 55-1 65	 42.34-141.14		 	
Camilli Cont	0-1	!	!	42.34-141.14			
	1-4	!	!	42.34-141.14	0.03-0.70		6.0-10
	4-18	0-3	1.55-1.65	42.34-141.14	0.03-0.07	i	1.0-3.0
	18-28	0-3	1.55-1.65	42.34-141.14	0.03-0.06		1.0-2.0
	28-34	!	1	42.34-141.14	0.03-0.06		1.0-2.0
	34-60	0-1	1.55-1.65	42.34-141.14	0.03-0.06		0.5-1.0
Xeric Dystrocryepts	0-3	0-3	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	8.0-10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3-15	1	1	42.34-141.14	0.05-0.07	!	6.0-8.0
	15-35	0-3	1.55-1.65	42.34-141.14	0.04-0.06	0.5-2.0	1.0-3.0
	35-47	!	1	42.34-141.14	0.04-0.05	!	0.5-1.0
	47-61	0-3	1.55-1.65	42.34-141.14	0.03-0.05	0.5-2.0	0.1-0.5
253:	 	 	 	 		 	
Canisrocks	0-1	 	0.05-0.30	42.34-141.14	0.00-0.00		70-90
	1-2		!	42.34-141.14	0.00-0.00		65-85
	2-3	0-3	1.50-1.60	14.11-42.34	0.09-0.11	0.5-2.0	7.0-9.0
	3-11	!		14.11-42.34	0.06-0.08	!	6.0-8.0
	11-23	!	!	42.34-141.14	0.04-0.05	!	3.0-5.0
	23-35	!	1	42.34-141.14	0.02-0.03	!	1.0-2.0
	35-60 	0-3	1 1.55-1.65	42.34-141.14	0.02-0.02	0.5-2.0	0.2-0.8
Glacierpoint	0-0	 	0.05-0.30	42.34-141.14	0.00-0.00	0.5-2.0	 60-80
-	0-4	!	!	14.11-42.34	0.09-0.11	!	8.0-10
	4-7		1	14.11-42.34	0.09-0.11		2.0-5.0
	7-11		1	14.11-42.34	0.08-0.09	!	1.0-3.0
	11-19	2-6	1.50-1.60	14.11-42.34	0.02-0.03		0.8-1.5
	19-60	0-3		42.34-141.14	0.01-0.02	0.5-2.0	0.2-0.8

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth 	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
253: Humic Dystrocryepts	 0-0	 	 0.05-0.30	 42.34-141.14	 0.00-0.00	 	 70-90
namic Dybelociyepes	0-1	 	1	42.34-141.14	0.00-0.00		65-85
	1-2	i	1	42.34-141.14	0.00-0.00		60-80
	2-16	2-6	1	14.11-42.32	0.06-0.07	1	6.0-8.0
	16-30 30-60	0-3 0-3	1	42.34-141.14 42.34-141.14	0.02-0.03	1	2.0-4.0
	30-60	U-3 	1.55-1.65	42.34-141.14	0.01-0.02	0.5-2.0	0.2-0.6
256:			į	į	İ	į	
Craneflat	0-1		1	42.34-141.14	0.00-0.00	1	70-90
	1-2 2-7	 1-5	1	42.34-141.14 42.34-141.14	0.00-0.00	!	65-85 8.0-30
	2-7 7-13	1-5	1	42.34-141.14	0.03-0.04	!	2.0-5.0
	13-60	1-5	1	141.14-423.30	1	0.5-2.0	0.2-1.5
Rock outcrop.		 	 			 	
Dubble land					 		
Rubble land.	 	 	 	 	[
Waterwheel	0-1	i	0.05-0.30	42.34-141.14	0.00-0.00		70-90
	1-2		1	42.34-141.14	0.00-0.00		65-85
	2-2		1	42.34-141.14	0.00-0.00	!	60-80
	2-6 6-14	0-3 0-3		42.34-141.14 42.34-141.14	0.04-0.06	!	9.0-12 1.0-2.5
	14-28	0-3		141.14-423.30	ı	1	0.5-1.5
	28-60	0-3		141.14-423.30		0.5-2.0	0.5-0.8
257:		l		l I			
Badgerpass	0-1	 	0.05-0.30	42.34-141.14	0.00-0.00	 	 70-90
	1-6	0-4	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	3.0-8.0
	6-13	1	1	42.34-141.14	0.05-0.07	1	2.0-5.0
	13-21	!	1	42.34-141.14	0.05-0.07	!	1.5-4.0
	21-32	0-4	1	42.34-141.14	0.05-0.07	1	1.0-3.0
	32-50 50-60	0-4 0-4	1	42.34-141.14 42.34-141.14	0.05-0.07	!	0.8-2.0
		İ	j	į	İ	į	
Oxyaquic Dystroxerepts	0-11	!	1.45-1.55	1	0.13-0.14	1	8.0-10
	11-19 19-32	!	1.45-1.55 1.40-1.50	!	0.13-0.14	!	5.0-7.0
	32-43	!	1.45-1.55	!	0.13-0.14	!	1.0-1.5
	43-60	!	1.45-1.55	!	0.16-0.18	1.0-3.0	0.2-0.8
258:		 	 	l I		 	
Typic Dystroxerepts	0-1	 	0.05-0.30	42.34-141.14	0.00-0.00	 	70-90
-7F7#	1-2	i	1	42.34-141.14	0.00-0.00		65-85
	2-2	j	0.05-0.30	42.34-141.14	0.00-0.00	j	60-80
	2-3		1	42.34-141.14	0.05-0.07		6.0-8.0
	3-11		1	14.11-42.34	0.13-0.15	0.5-2.0	5.0-7.0
	11-26 26-43			14.11-42.34 14.11-42.34	0.13-0.15	0.5-2.0	0.5-1.0
	43-60	ı	1	14.11-42.34	0.13-0.15	0.5-2.0	0.2-0.5
Poderous and							
Badgerpass	0-2 2-7	 0-4	1	42.34-141.14 42.34-141.14	0.00-0.00	 0.5-2.0	70-90 7.0-9.0
	7-18			42.34-141.14	0.05-0.07	!	3.0-5.0
	18-37	1	1	42.34-141.14	0.04-0.06	!	2.0-4.0
	37-55	0-4	1	42.34-141.14	0.04-0.06	0.5-2.0	0.8-1.5
	55-67	0-4	1 7 7 7 00	141.14-423.30		0.5-2.0	0.2-0.8

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth 	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
	i —	i	<u> </u>	<u> </u>	<u> </u>	i —	<u> </u>
258:							
Dystric Xerorthents	0-1			42.34-141.14	0.00-0.00		70-90
	1-2			42.34-141.14	0.00-0.00		65-85
	2-3 3-11	1-8	!	42.34-141.14 42.34-141.14	0.00-0.00	0.5-2.0	60-80 8.0-10
	11-24	1-8	!	42.34-141.14	0.05-0.07	0.5-2.0	4.0-10
	24-38	1	1	42.34-141.14	0.03-0.04	!	1.0-3.0
	38-60	1-8	1.55-1.65	42.34-141.14	0.03-0.04	0.5-2.0	0.2-0.8
260:	 	 	 	 		 	
Rock outcrop.	 	İ	 			 	
Craneflat	0-1		1	42.34-141.14	0.00-0.00		70-90
	1-2	0-3	!	42.34-141.14	0.05-0.07	0.5-2.0	8.0-10
	2-4		1	42.34-141.14	0.05-0.07	!	7.0-9.0
	4-13 13-19	!	!	42.34-141.14 42.34-141.14	0.05-0.06	0.5-2.0	3.0-5.0 1.0-3.0
	19-60	0-3	!	42.34-141.14	0.01-0.01	0.5-2.0	0.2-0.8
			į	į	į		j
Dystric Xerorthents	0-1		1	42.34-141.14	0.00-0.00		70-90
	1-1		1	42.34-141.14	0.00-0.00		65-85
	1-5 5-17	3-8	!	14.11-42.34 14.11-42.34	0.09-0.11	0.5-2.0	2.0-4.0 0.5-1.2
	17-60	3-8	!	14.11-42.34	0.05-0.07	0.5-2.0	0.2-0.8
261:	 			 		 	
Dystric Xeropsamments	0-0		 0.05-0.30	 42.34-141.14	0.00-0.00	 	
-	0-6	0-4	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	i
	6-18	!	!	42.34-141.14	0.06-0.08	!	
	18-25	!	!	42.34-141.14	0.06-0.08	!	
	25-41 41-60	!	!	42.34-141.14 42.34-141.14	0.06-0.08	0.5-2.0	
	11 00	01				0.3 2.0	
Typic Dystroxerepts	0-0	!	!	42.34-141.14	0.00-0.00		70-90
	0-1 1-3	!	!	42.34-141.14 14.11-42.34	0.00-0.00	 1.0-2.0	75-95 6.0-8.0
	3-8	!	!	14.11-42.34	0.12-0.14	!	5.0-7.0
	8-20	!	!	14.11-42.34	0.12-0.14	1.0-2.0	1.0-2.0
	20-31	!	!	14.11-42.34	0.09-0.10	1.0-2.0	0.8-1.2
	31-60	4-10	1.50-1.60	14.11-42.34	0.05-0.06	1.0-2.0	0.2-0.8
Badgerpass	 0-7	0-4	 1.55-1.65	 42.34-141.14	0.05-0.06	0.5-2.0	 7.0-9.0
	7-18	0-4	1.55-1.65	42.34-141.14	0.05-0.06	0.5-2.0	3.0-5.0
	18-60	0-4	1.55-1.65	42.34-141.14	0.05-0.06	0.5-2.0	0.2-0.8
Rock outcrop.	 	i i	 	 		 	
262:	! 		! 	 		! 	!
Humic Dystroxerepts	0-0	!	!	42.34-141.14	0.00-0.00	!	70-90
	0-1	!	!	42.34-141.14	0.00-0.00	!	65-85
	1-2	!	!	14.11-42.34	0.04-0.04	!	8.0-10
	2-5 5-18		1	14.11-42.34 14.11-42.34	0.04-0.04	!	8.0-10 4.0-6.0
	18-60	!	!	14.11-42.34	0.03-0.03	!	0.2-3.0
		, ,			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.5 2.0	

Table 12.—Physical Properties of the Soils—Continued

In 0-1 1-2 2-3 3-11 11-24	<u>Pct</u>	g/cc	um/sec	In/in	Pct	Pct
1-2 2-3 3-11					I	
1-2 2-3 3-11				I		
1-2 2-3 3-11		1	42.34-141.14	0.00-0.00	 	 70-90
2-3 3-11	!	j	42.34-141.14	0.00-0.00		65-85
		1.55-1.65	42.34-141.14	0.00-0.00		60-80
111 24	1-8	1.55-1.65	42.34-141.14	0.03-0.04	0.5-2.0	8.0-10
1	1-8	!	42.34-141.14	0.05-0.07	!	4.0-6.0
24-38	1-8	!	!	0.03-0.04	!	1.0-3.0
38-60	1-8	1.55-1.65	42.34-141.14 	0.03-0.04	0.5-2.0	0.2-0.8
0-1		0.05-0.30	42.34-141.14	0.00-0.00		70-90
1-2	i	0.05-0.30	42.34-141.14	0.00-0.00	j	65-85
2-12	2-4	1	1	!	!	8.0-10
1		!	!	!	!	2.0-4.0
1	!			!	1	0.8-1.5
34-60	1-4	1.33-1.63	42.34-141.14 	0.04-0.05	1.0-3.0	0.2-0.8
0-1		0.05-0.30	42.34-141.14	0.00-0.00	0.0-0.0	70-90
1-2	i	0.05-0.30	42.34-141.14	!	!	65-85
2-3	0-3	1.50-1.60	14.11-42.34	0.09-0.11	0.5-2.0	4.0-8.0
3-11	0-3	!	!	0.05-0.07	1	1.0-3.0
1	!	1	1	!	!	1.0-2.0
!	!	!	!	!	!	1.0-2.0 0.5-1.0
33 00					0.3 2.0	0.5 1.0
<u> </u> 	<u> </u> 					
0-5	 1_3	1 70-1 80	 141 14_423 30	 0 02-0 04	 0 5-2 0	 5.0-9.0
1						2.0-4.0
13-28	2-7	!	!	0.03-0.04	0.5-2.0	1.0-3.0
28-60	2-7	1.50-1.60	14.11-42.34	0.03-0.04	0.5-2.0	0.2-0.8
!	!			!	!	70-90 65-85
1	!		!	!	!	3.0-8.0
!		1			!	2.0-4.0
20-30	2-6	1.55-1.65	141.14-423.30	1	0.5-2.0	1.5-3.0
30-42	2-6	1.60-1.70	141.14-423.30	0.03-0.05	0.5-2.0	1.2-3.0
42-48	2-6	!	!	0.05-0.07	0.5-2.0	1.2-3.0
!		!	!	!	!	1.0-2.0
!	!	1		!	!	0.5-1.5 0.2-0.5
70-04	2-0				0.5-2.0	0.2-0.5
	į i		 -	 	j !	
	İ			! 	 	!
0-0	j	1.55-1.65	42.34-141.14			70-90
0-1	ļ	!	!			65-85
1-4		1	1			6.0-10
!		1	1	!		1.0-3.0
!	!	1	1	1	!	1.0-2.0 1.0-2.0
!	!	1	1		!	0.5-1.0
	0-1 1-2 2-12 12-22 22-34 34-60 0-1 1-2 2-3 3-11 11-23 23-35 35-60 0-5 5-13 13-28 28-60 0-2 2-4 4-13 13-20 20-30 30-42 42-48 48-62 62-78 78-84	0-1	0-1	0-1	0-1	38-60

Table 12.—Physical Properties of the Soils—Continued

Map symbol and soil name	Depth	 Clay 	Moist bulk density	Saturated hydraulic conductivity	 Available water capacity	 Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
	_ _						
268:							70.00
Glacierpoint	0-0 0-1	 		42.34-141.14 42.34-141.14	0.00-0.00	1	70-90 65-85
	1-4	ı	1	42.34-141.14	0.04-0.06	!	6.0-10
	4-16	1-2	1	42.34-141.14	0.04-0.05	!	2.0-3.5
	16-27	1-2	1.55-1.65	42.34-141.14	0.04-0.05	!	1.0-2.5
	27-46	0-2	1	42.34-141.14	0.05-0.07		0.2-1.0
	46-64	0-2	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	0.2-1.0
0.60							
269: Canisrocks	 0-0	 	0 05 0 30	 42.34-141.14	0.00-0.00	 	 70-90
Callistocks	0-0	0-5	1	42.34-141.14	0.05-0.06		7.0-9.0
	2-7		1	42.34-141.14	0.05-0.06	!	2.0-4.0
	7-20	!	!	42.34-141.14	0.03-0.04	!	1.0-3.0
	20-60	0-5	1.55-1.65	42.34-141.14	0.02-0.02	0.5-2.0	0.2-0.8
			[ļ	
Rock outcrop.							
Glasiannaint		 					70.00
Glacierpoint	0-0 0-1	 		42.34-141.14 42.34-141.14	0.00-0.00	1	70-90 65-85
	1-4	1-2	I	42.34-141.14	0.04-0.06		6.0-10
	4-16	1-2	!	42.34-141.14	0.04-0.05	!	2.0-3.5
	16-27	1-2	1	42.34-141.14	0.04-0.05	!	1.0-2.5
	27-46	0-2	1.60-1.70	42.34-141.14	0.05-0.07		0.2-1.0
	46-64	0-2	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	0.2-1.0
270:		 			 	 	
Rock outcrop.							
Timia Comenthenta	 0-0	 	0 05 0 30	 42.34-141.14	 0.00-0.00	0.0-0.0	 70-90
Typic Cryorthents	0-0	 	1	42.34-141.14	0.00-0.00	1	70-90 65-85
	1-4	ı	1	42.34-141.14	0.03-0.70	!	6.0-10
	4-18	ı	1	42.34-141.14	0.03-0.07	!	1.0-3.0
	18-28	0-3	1	141.14-423.30	0.03-0.06		1.0-2.0
	28-34	0-1	1.70-1.80	141.14-423.30	0.03-0.06	0.5-2.0	1.0-2.0
	34-60	0-1	1.70-1.80	141.14-423.30	0.03-0.06	0.5-2.0	0.5-1.0
Vitrandic Dystrocryepts	0-3	 1-4	 1.60-1.70	 42.34-141.14	 0.06-0.08	0.5-2.0	 7.0-9.0
	3-4	1-4	1	42.34-141.14	0.06-0.08	!	6.0-9.0
	4-8	1-4	1	42.34-141.14	0.05-0.06	!	3.0-5.0
	8-17	3-7	1.50-1.60	14.11-42.34	0.03-0.04	0.5-2.0	3.0-5.0
	17-60	1-4	1.55-1.65	42.34-141.14	0.02-0.03	0.5-2.0	0.2-0.8
271:					 	 	
Rock outcrop.	 	 		 	I I	I I	
Lithic Xerorthents	0-3	0-2	1.60-1.70	1141.14-423.30	0.05-0.06	0.5-2.0	3.0-7.0
	3-7		1	141.14-423.30	1	1	0.2-3.0
	7-60			0.00-0.01			
Wetersheel			0.05.0.00		0 00 0 00		70.00
Waterwheel	0-1		1	42.34-141.14	!	!	70-90 65-85
	1-2 2-2			42.34-141.14 42.34-141.14	0.00-0.00	1	65-85
	2-2	!	!	42.34-141.14	!	!	9.0-12
	6-14			42.34-141.14			1.0-2.5
	14-28			141.14-423.30	1	1	0.5-1.5
	28-60		1	141.14-423.30	1		0.5-0.8

Table 12.—Physical Properties of the Soils—Continued

273: Nevadafalls	0-0 0-6 6-17 17-31 31-60	Pct 3-5 3-5 3-5 3-5	1.55-1.65	um/sec 42.34-141.14 42.34-141.14 42.34-141.14 42.34-141.14	In/in 0.00-0.00 0.05-0.07 0.05-0.07	bility Pct 0.5-2.0	Pct
	0-6 6-17 17-31 31-60	3-5 3-5 3-5 3-5	1.55-1.65 1.55-1.65 1.55-1.65	42.34-141.14 42.34-141.14	0.05-0.07	I	I
	0-6 6-17 17-31 31-60	3-5 3-5 3-5 3-5	1.55-1.65 1.55-1.65 1.55-1.65	42.34-141.14 42.34-141.14	0.05-0.07	I	I
Nevadafalls	0-6 6-17 17-31 31-60	3-5 3-5 3-5 3-5	1.55-1.65 1.55-1.65 1.55-1.65	42.34-141.14 42.34-141.14	0.05-0.07	I	I
	6-17 17-31 31-60	3-5 3-5 3-5	1.55-1.65 1.55-1.65	42.34-141.14		0.5-2.0	
	17-31 31-60 0-0	3-5 3-5	1.55-1.65	ı	0.05-0.07		3.0-5.0
	31-60 0-0	3-5	1		0 04 0 05	0.5-2.0	2.0-3.5
	0 - 0		1.33-1.63	ı	0.04-0.05	0.5-2.0	0.8-1.5
				42.34-141.14	0.04-0.05	0.5-2.0	0.2-1.2
Waterwheel	0-1		0.05-0.30	42.34-141.14	0.00-0.00		70-90
İ			0.05-0.30	42.34-141.14	0.00-0.00		65-85
į	1-1		0.05-0.30	42.34-141.14	0.00-0.00		60-80
	1-6	0-4	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	7.0-9.0
	6-11	0-4	1	42.34-141.14	0.04-0.06	0.5-2.0	3.0-5.0
	11-19	0-4	1	42.34-141.14	0.03-0.04	0.5-2.0	0.5-1.0
	19-60	0-4	1.60-1.70	42.34-141.14	0.04-0.05	0.5-2.0	0.2-0.8
274. Rock outcrop, domes			 			 	
ROCK Outclop, domes				 		 	
275:			İ				
Oxyaquic Dystroxerepts	0-1		0.05-0.30	42.34-141.14		i	70-90
	1-2		0.05-0.30	42.34-141.14			65-85
	2 - 9	2-6	!	14.11-42.34	0.07-0.08	0.5-2.0	7.0-9.0
	9-19	1-6	!	14.11-42.34	0.05-0.07	0.5-2.0	3.0-5.0
	19-34	1-6	1	14.11-42.34	0.04-0.06	0.5-2.0	2.0-4.0
	34-46	1-6		14.11-42.43	0.03-0.04	0.5-2.0	0.5-3.0
	46-60	1-6 	1.55-1.60	14.11-42.43	0.02-0.03	0.5-2.0	0.2-3.0
Dystric Xerorthents	0-1		0.05-0.30	42.34-141.14	0.00-0.00		70-90
<u>-</u>	1-2		0.05-0.30	42.34-141.14	0.00-0.00		65-85
j	2-2		0.05-0.30	42.34-141.14	0.00-0.00	i	60-80
	2-6	0-3	1.60-1.70	42.34-141.14	0.04-0.06	0.5-2.0	9.0-12
	6-14	0-3	1	42.34-141.14	0.03-0.04	0.5-2.0	1.0-2.5
	14-28	0-3	1	141.14-423.30		0.5-2.0	0.5-1.5
	28-60	0-3	1.70-1.80	141.14-423.30	0.01-0.02	0.5-2.0	0.5-0.8
Vitrandic Xerorthents	0-8	0-4	 1.60-1.70	 42.34-141.14	0.06-0.08	0.5-2.0	3.0-7.0
vicianaio neioionenes	8-18	0-4	1	14.11-42.34	0.13-0.15	0.5-2.0	2.0-6.0
	18-24	0-4	!	14.11-42.34	0.13-0.15	0.5-2.0	1.0-3.0
	24-35	0-4	!	42.34-141.14	0.06-0.08		1.0-2.5
į	35-50	0-4	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	0.5-1.5
İ	50-62	0-4	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	0.2-1.0
Rubble land.			 				
0.00							
276: Happyisles	0-3		0 02 0 00	 42.34-141.14	0.00-0.00	 	 70-90
uabbatates	0-3 3-7		1	14.11-42.34	0.00-0.00	!	1.0-4.0
	7-13		1	42.34-141.14	0.10-0.13	!	1.0-4.0
i	13-17		1	14.11-42.34	0.10-0.13	0.0-2.9	1.0-4.0
j	17-33		1	14.11-42.34	0.07-0.11	0.0-2.9	0.5-1.2
j	33-60	3-8	1	42.34-141.14	0.07-0.11	0.0-2.9	0.2-0.8

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
	_		<u> </u>				
276:		ĺ	ĺ				
Typic Dystroxerepts	0-1		1	14.11-42.34	0.07-0.12		65-85
	1-19		1	14.11-42.34	0.04-0.09		6.0-8.0
	19-28 28-33		1	14.11-42.34 14.11-42.34	0.04-0.09	!	5.0-7.0 1.0-3.0
	33-50			42.34-141.14	0.05-0.06	!	0.8-1.2
	50-60	1	1	42.34-141.14	0.05-0.06	0.0-2.9	0.2-0.8
		İ	İ				
277:		ĺ	ĺ				
Tuolumne	0-1		1	ı	0.00-0.00		70-90
	1-2		1	42.34-141.14	0.00-0.00		65-85
	2-5		1	141.14-423.30			0.5-5.0
	5-32 32-60		1	141.14-423.30 42.34-141.14	0.02-0.03	0.5-2.0	0.2-3.0
	32-60 	U-4±	1.60-1.70	42.34-141.14	0.02-0.03	0.5-2.0	0.2-3.0
Humic Dystroxerepts	0-1	 	0.05-0.30	42.34-141.14	0.00-0.00		70-90
	1-1		1	42.34-141.14	0.00-0.00		65-85
	1-2	i	0.05-0.30	42.34-141.14	0.00-0.00	!	60-80
	2-15	1		42.34-141.14	0.03-0.04	0.5-2.0	7.0-9.0
	15-25			42.34-141.14	0.02-0.02	0.5-2.0	2.0-4.0
	25-60	0-4	1.60-1.70	42.34-141.14	0.01-0.01	0.5-2.0	0.2-0.8
278: Rock outcrop.		 	 				
Tuolumne	0-2	2-5	1.60-1.70	42.34-141.14	0.04-0.05	0.5-2.0	5.0-8.0
	2-10		1	14.11-42.34	0.05-0.07		1.0-3.0
	10-35	2-5	1.60-1.70	14.11-42.34	0.02-0.03	0.5-2.0	0.5-1.0
	35-60	1-4	1.70-1.80	141.14-423.30	0.02-0.04	0.5-2.0	0.2-0.8
Humic Dystroxerepts	0-1		1	42.34-141.14	0.00-0.00		70-90
	1-1 1-10	!	!	42.34-141.14 42.34-141.14	0.00-0.00	0.5-2.0	65-85 7.0-9.0
	10-21	!	!	42.34-141.14	0.03-0.03	!	2.0-4.0
	21-60	!	!	42.34-141.14	0.01-0.03	0.5-2.0	0.2-0.8
Rubble land.		<u> </u> 	 				
279: Canisrocks	00	 -			0 00 0 00		 70-90
Canislocks	0-2 2-2		1	42.34-141.14 42.34-141.14	0.00-0.00		65-85
	2-11	!	!	42.34-141.14	0.05-0.07	!	6.0-10
	11-21	ı		42.34-141.14	0.04-0.05	0.5-2.0	2.0-4.0
	21-29			42.34-141.14		0.5-2.0	1.0-2.0
	29-36	0-3	1.55-1.65	42.34-141.14	0.03-0.04		1.0-2.0
	36-60	0-3	1.55-1.65	42.34-141.14	0.02-0.03	0.5-2.0	0.5-1.0
							=0
Xeric Dystroxerepts	0-0	1	1	42.34-141.14		1	70-90
	0-1 1-4		1	42.34-141.14 42.34-141.14			65-85 6.0-10
	1-4 4-18		1	42.34-141.14			1.0-3.0
	18-28			141.14-423.30			1.0-3.0
	28-34	1	1	141.14-423.30		1	1.0-2.0
	34-60		1	141.14-423.30			0.5-1.0
		İ	İ	İ	İ	İ	İ

Table 12.—Physical Properties of the Soils—Continued

In	Map symbol and soil name	Depth	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
Typic Dystroxerepts		In	Pct	<u> </u>	um/sec	<u> </u>	! 	Pct
Typic Dystroxerepts								
1-2								
2-4	Typic Dystroxerepts					!	!	70-90
4-8			!	!	!	!	!	65-85 6.0-8.0
8-15 5-12 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 1 24-36 5-12 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 1 24-36 5-12 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 0 0.5-2.0 1 36-60 5-12 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 0.5-2.0 0 0.5-2.0 0 0.5-2.0 0 0.5-2.0 0 0.5-2.0 0 0.5-2.0 0 0.5-2.0 0 0.5-2.0 0 0.5-2.0 0 0.5	·				1	!	!	5.0-7.0
15-24 5-12 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 0.24-36 5-12 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 0.36-60 5-12 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 0.36-60 5-12 1.50-1.60 14.11-42.34 0.09-0.10 0.5-2.0 0.36-60 0.5-2.0 0.36-60 0.5-2.0 0.36-60 0.5-2.0 0.36-60 0.5-2.0 0.36-60 0.5-2.0 0.36-60 0.5-2.0 0.36-60 0.5-2.0 0.36-60 0.5-2.0 0.36-60 0.4 1.55-1.65 42.34-141.14 0.00-0.00 6.36-60 0.4 1.50-1.60 14.11-42.34 0.05-0.06 0.5-2.0 0.36-60 0.4 1.55-1.65 42.34-141.14 0.05-0.06 0.5-2.0 0.36-60 0.4 1.55-1.65 42.34-141.14 0.03-0.04 0.5-2.0 0.36-60 0.5-2.0 0.36-60 0.4 1.55-1.65 42.34-141.14 0.00-0.00 0.5-2.0 0.36-6			!	!	!	!	!	1.2-2.0
Rumic Dystroxerepts					1	!	!	1.0-1.5
Humic Dystroxerepts	j		!	!	!	!	!	0.8-1.2
2-2		36-60	5-12	1.50-1.60	14.11-42.34	0.09-0.10	0.5-2.0	0.2-0.8
2-3	Humic Dystroxerepts	0-2		0.05-0.30	 42.34-141.14	0.00-0.00	 	 70-90
3-8		2-2		1	1	0.00-0.00		65-85
R = 16			!	!	!	!	1	60-80
16-30				!	!	!	!	7.0-9.0
Rock outcrop. 30-60			!	!	!	!	!	3.0-5.0
Rock outcrop. 282: Clarkslodge			!		1	1	1	1.0-3.0
282: Clarkslodge		30-60	0-4		42.34-141.14	0.03-0.04	0.5-2.0	0.2-0.6
Clarkslodge	Rock outcrop.		į į	İ	į I	İ	j I	İ
1-2	282:		İ					
2-6	Clarkslodge		!	!	!	!	!	70-90
6-19			!	!	!	!	!	65-85
19-34 15-27 1.50-1.60 14.11-42.34 0.07-0.09 2.0-4.0 1.34-60 15-27 1.45-1.55 4.23-14.11 0.16-0.18 3.0-5.0 0.00			!	!	!	!	!	8.0-10
Craneflat			!	!	!	1	1	6.0-8.0
1-1			!	!	!			1.0-3.0
1-1	Cranoflat	0_1	İ	0.05-0.30	 		 	 70-90
1-2	Craneriac		!			!	!	65-85
2-4			!	!	!	!	!	60-80
11-22 2-7 1.60-1.70 42.34-141.14 0.03-0.04 1.0-3.0 1			!		1	!	!	10-20
Nevadafalls		4-11	2-7	1.55-1.65	42.34-141.14	!	!	2.0-5.0
Nevadafalls		11-22	2-7	1.60-1.70	42.34-141.14	0.03-0.04	1.0-3.0	1.0-3.0
Nevadafalls		22-30	1		1	0.04-0.05	1.0-3.0	1.0-3.0
0-6 3-5 1.55-1.65 42.34-141.14 0.05-0.07 0.5-2.0 3. 6-17 3-5 1.55-1.65 42.34-141.14 0.05-0.07 0.5-2.0 2. 17-31 3-5 1.55-1.65 42.34-141.14 0.04-0.05 0.5-2.0 0. 31-60 3-5 1.55-1.65 42.34-141.14 0.04-0.05 0.5-2.0 0. 31-60 1-6 1.55-1.65 42.34-141.14 0.04-0.05 0.5-2.0 0. 1-7 1-6 1.55-1.65 42.34-141.14 0.04-0.05 0.5-2.0 0. 1-7 1-6 1.55-1.65 42.34-141.14 0.05-0.06 0.5-2.0 7. 7-26 1-6 1.55-1.65 42.34-141.14 0.03-0.04 0.5-2.0 0. 26-60 1-6 1.70-1.80 141.14-423.30 0.01-0.02 0.5-2.0 0. Nevadafalls		30-60	2-7	1.60-1.70	42.34-141.14	0.03-0.05	1.0-3.0	0.2-1.5
83: Waterwheel	Nevadafalls	0 - 0			42.34-141.14	0.00-0.00		
17-31			!	1	1	!	!	3.0-5.0
31-60 3-5 1.55-1.65 42.34-141.14 0.04-0.05 0.5-2.0 0.5 83: Waterwheel 0-1 1-6 1.55-1.65 42.34-141.14 0.04-0.05 0.5-2.0 8.1-7 1-6 1.55-1.65 42.34-141.14 0.05-0.06 0.5-2.0 7.7-26 1-6 1.55-1.65 42.34-141.14 0.03-0.04 0.5-2.0 0.26-60 1-6 1.70-1.80 141.14-423.30 0.01-0.02 0.5-2.0 0.26-60 1-6 1.70-1.80 141.14-423.30 0.01-0.02 0.5-2.0 0.26-60 1-6 1.70-1.80 141.14-423.30 0.01-0.02 0.5-2.0 0.26-61 1-4 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 7.66-11 1-4 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 3.11-21 1-4 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 1.50 14.11-42.34 0.09-0.11 0.5-2.0 14.			!	!	!	1	!	2.0-3.5
283: Waterwheel			!	!	!			0.8-1.5
Waterwheel		31-60	3-5	1.55-1.65	42.34-141.14	0.04-0.05	0.5-2.0 	0.2-1.2
1-7			İ					İ
Nevadafalls	Waterwheel				1	!	!	8.0-10
Nevadafalls			!	!	!	!	!	7.0-9.0
Nevadafalls			!		1	1	!	0.5-1.2
	j		İ	İ	j	į		į
	Nevadafalls		:			!	!	75-95
$egin{array}{c ccccccccccccccccccccccccccccccccccc$!			!	!	65-85
11-21 1-4 1.50-1.60 14.11-42.34 0.09-0.11 0.5-2.0 1.			!	!	!	!	!	7.0-9.0 3.0-5.0
			:		1	!	!	1.0-3.0
			!		1	!	!	0.2-0.8
Rock outcrop.	Pock outgrop						 	

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
285:				l I		l I	
Waterwheel	0 - 0	 	 0.05-0.30	 42.32-141.14		l l	 70-90
	0-4			14.11-42.34	0.05-0.07	I	3.0-5.0
j	4-8	!	!	14.11-42.34	0.05-0.07	!	2.0-4.0
	8-16	!	!	42.32-141.14	0.05-0.07		1.0-3.0
	16-60	4-10	1.50-1.60	14.11-42.34	0.03-0.04	0.5-2.0	0.2-1.5
Humic Dystroxerepts	0-1	 	 0.05-0.30	 42.34-141.14	0.00-0.00	 	 70-90
	1-6	1		42.34-141.14	0.06-0.08	!	4.0-8.0
	6-13	!	!	42.34-141.14	0.06-0.08	!	2.0-5.0
	13-24	!	!	42.34-141.14	0.06-0.08	!	1.0-4.0
	24-42	0-6	1.60-1.70	42.34-141.14	0.06-0.08	0.5-2.0	0.8-3.0
	42-55	0-6	1.60-1.70	42.34-141.14	0.05-0.06	0.5-2.0	0.5-3.0
	55-60	0-6	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	0.2-0.8
286:		l İ	 	 			
Nevadafalls	0 - 8	2-6	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	8.0-10
	8-21	4-12	1.50-1.60	14.11-42.34	0.08-0.10	1.0-3.0	4.0-6.0
	21-28	4-12	1.50-1.65	14.11-42.34	0.08-0.10	1.0-3.0	1.0-3.0
	28-60	2-6	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	0.2-0.8
Typic Dystroxerepts	0-1	 	0.05-0.30	 42.34-141.14	0.00-0.00	 	 70-90
	1-2	j	0.05-0.30	42.34-141.14	0.00-0.00	i	65-85
	2-3	j	0.05-0.30	42.34-141.14	0.00-0.00		60-80
	3-16	2-6	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	6.0-8.0
	16-25	2-6	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	4.0-6.0
	25-35		1	14.11-42.34	0.08-0.10		1.0-3.0
	35-60	2-6	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	0.2-0.8
Ultic Palexeralfs	0-1	0-0	0.05-0.30	42.34-141.14	0.00-0.00		70-90
	1-2	0-0	0.05-0.30	42.34-141.14	0.00-0.00		65-85
	2-9	4-10	1.50-1.60	14.11-42.34	0.08-0.10	3.0-5.0	6.0-34
	9-14	!	!	14.11-42.34	0.09-0.11	!	7.0-9.0
	14-22	!	!	4.23-14.11	0.13-0.15	!	3.0-5.0
	22-32	!	1.40-1.50	!	0.17-0.19	!	1.0-3.0
i	32-60	18-50 	1.35-1.50	0.07-0.42	0.13-0.14	6.0-8.0 	0.2-0.8
Rock outcrop.		į					
287:		l İ	 	 			
Badgerpass	0-2	i	0.05-0.30	42.34-141.14	0.00-0.00		i
i	2-2	j	0.05-0.30	42.34-141.14	0.00-0.00		i
	2-3	j	0.05-0.30	42.34-141.14	0.00-0.00		
	3-11	0-4	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	8.0-10
	11-25		1	42.34-141.14	0.06-0.08	0.5-2.0	3.0-5.0
	25-60	0-4	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	0.2-1.0
Waterwheel	0 - 0		0.05-0.30	 42.32-141.14			 70-90
j	0-1		0.05-0.30	42.32-141.14	j		65-85
	1-4	1-4	1.60-1.70	42.32-141.14	0.05-0.07	0.5-2.0	7.0-9.0
	4-11	!	!	42.32-141.14	0.05-0.07	!	4.0-6.0
	11-22	!	!	42.32-141.14	0.05-0.07	!	2.0-4.0
	22-29	!	!	!	0.03-0.04	!	0.2-0.8
	29-60			141.14-423.30		0.5-2.0	0.5-0.8

Table 12.—Physical Properties of the Soils—Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
İ	In	Pct	g/cc	um/sec	In/in	Pct	Pct
288: Rock outcrop.		 	 	 	 	 	
Craneflat	0-1	 	0.05-0.30	 42.34-141.14	0.00-0.00	 	 70-90
į	1-1	i	0.05-0.30	42.34-141.14	0.00-0.00	i	65-85
İ	1-2	i	0.05-0.30	42.34-141.14	0.00-0.00	j	60-80
İ	2 - 4	2-7	1.50-1.80	14.11-42.34	0.05-0.07	1.0-3.0	10-20
İ	4-11	2-7	1.55-1.65	42.34-141.14	0.04-0.05	1.0-3.0	2.0-5.0
į	11-22	2-7	1.60-1.70	42.34-141.14	0.03-0.04	1.0-3.0	1.0-3.0
į	22-30	2-7	1.55-1.65	42.34-141.14	0.04-0.05	1.0-3.0	1.0-3.0
ļ	30-60	2-7	1.60-1.70	42.34-141.14	0.03-0.05	1.0-3.0	0.2-1.5
Waterwheel	0 - 0			42.32-141.14			70-90
	0-1			42.32-141.14			65-85
	1-4	1-4	1	42.32-141.14	0.05-0.07	!	7.0-9.0
	4-11	1-4		42.32-141.14	0.05-0.07	!	4.0-6.0
	11-22	1-4		42.32-141.14	0.05-0.07	!	2.0-4.0
	22-29	1-4	!	42.32-141.14	0.03-0.04	!	0.2-0.8
	29-60	1-4 	1.70-1.80	141.14-423.30	0.01-0.02	0.5-2.0	0.5-0.8
289:							
Waterwheel	0-1			42.34-141.14	0.00-0.00		70-90
	1-6	1-5	1	42.34-141.14	0.04-0.05	!	8.0-10
	6-15	1-5	1	42.34-141.14	0.04-0.05	!	6.0-8.0
	15-25	1-5	!	42.34-141.14	0.04-0.05	!	3.0-5.0
	25-36	1-5	!	42.34-141.14	0.04-0.05	!	1.0-3.0
	36-60	1-5 	1.60-1.70 	42.34-141.14 	0.03-0.04	0.5-2.0	0.2-0.8
Craneflat	0-2			42.34-141.14	0.00-0.00	!	70-90
	2-4			42.34-141.14	0.00-0.00		65-85
	4 - 4		!	42.34-141.14	0.00-0.00	!	60-80
	4-12	1-5	!	42.34-141.14	0.03-0.04	!	8.0-10
	12-23	1-5	!	42.34-141.14	0.02-0.03	!	3.0-5.0
	23-28	1-5	!	42.34-141.14	0.02-0.03	!	1.0-3.0
	28-60	1-5 	1.50-1.60	14.11-42.34 	0.03-0.04	0.5-2.0	0.2-0.8
290:	0.0	 	1 55 1 65			 	 70-90
Humic Dystroxerepts	0 - 0 0 - 9	3-7		42.34-141.14 14.11-42.34	0.00-0.00	!	8.0-10
	9-20	3-7	!	14.11-42.34	0.05-0.07	1	5.0-10
	20-60	3-7		14.11-42.34	0.04-0.06	!	0.2-2.0
Tuolumne	0-3	0-4	 1.60-1.70	 42.34-141.14	 0.03-0.04	0.5-2.0	 7.0-9.0
	3-7		!	42.34-141.14	0.03-0.04	!	6.0-8.0
	7-12	0-4	!	42.34-141.14	0.03-0.04	!	5.0-7.0
	12-24	0-4		42.34-141.14	0.03-0.04	!	2.0-4.0
	24-39	0-4	1	42.34-141.14	0.02-0.03	!	1.0-3.0
	39-46	0-4	!	42.34-141.14	0.02-0.03	!	0.2-0.8
	46-60	0-4		42.34-141.14	0.02-0.03	!	0.2-0.8
Typic Xerorthents	0 - 4	2-9	 1.50-1.60	 14.11-42.34	 0.09-0.11	0.5-2.0	 7.0-9.0
	4-15	2-9	!	14.11-42.34	0.07-0.09	!	1.0-3.0
					1	!	
İ	15-33	2-9	1.50-1.60	14.11-42.34	0.03-0.03	0.5-2.0	0.2-0.8

Table 12.—Physical Properties of the Soils—Continued

Map symbol and soil name	Depth	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
290:							
Ultic Haploxeralfs	0-1	!	!	42.34-141.14	0.00-0.00	 	70-90
	1-2 2-2	1	!	42.34-141.14 42.34-141.14	0.00-0.00	 	65-80 60-80
	2-6	1	!	4.23-14.11	0.08-0.10	!	7.0-9.0
	6-12		1	4.23-14.11	0.08-0.10	0.5-2.0	6.0-8.0
	12-30	!	!	4.23-14.11	0.14-0.15	!	2.0-4.0
	30-41		1	4.23-14.11	0.16-0.18	2.0-4.0	1.0-3.0
	41-60	20-27	1.45-1.55	4.23-14.11	0.16-0.18	2.0-4.0	0.2-0.8
291:							
Ultic Haploxeralfs	0-1 1-2		!	42.34-141.14 42.34-141.14	0.00-0.00	 	70-90 65-85
	2-3		!	42.34-141.14	0.00-0.00	 	60-80
	3-5	!	!	14.11-42.34	0.08-0.11	!	4.0-8.0
	5-12	1	!	14.11-42.34	0.08-0.11	1.0-3.0	1.0-3.0
	12-19	!	!	14.11-42.34	0.08-0.11	!	1.0-3.0
	19-22	1	!	14.11-42.34	0.09-0.11		0.2-1.0
	22-41	6-9	1.50-1.60	14.11-42.34	0.09-0.11	1.0-3.0	0.1-1.0
	41-57	6-9	1.50-1.60	14.11-42.34	0.09-0.11	1.0-3.0	0.1-1.0
	57-61	6-9	1.50-1.60	14.11-42.34	0.09-0.11	1.0-3.0	0.1-0.5
Maria Dantananana	0 1						70.00
Typic Dystroxerepts	0-1 1-2	1	!	42.34-141.14 42.34-141.14	0.00-0.00	 	70-90 65-85
	2-7	1	!	14.11-42.34	0.08-0.09	!	5.0-7.0
	7-16	1	!	14.11-42.34	0.07-0.09	1.0-3.0	4.0-6.0
	16-29	1	!	14.11-42.34	0.08-0.09	!	1.5-2.0
	29-39	1	!	14.11-42.34	0.08-0.09	1.0-3.0	1.0-3.0
	39-60	1	!	14.11-42.34	0.08-0.09	!	0.2-0.8
		İ	ĺ				
192:							
Humic Dystroxerepts	0-1	1	!	42.34-141.14			70-90
	1-1		!	42.34-141.14			65-85
	1-3 3-4	1	!	42.34-141.14 42.34-141.14	0.05-0.07	!	8.0-10 7.0-9.0
	3-4	1	!	42.34-141.14	0.05-0.07	0.5-2.0	6.0-8.0
	7-11	!	!	42.34-141.14	0.05-0.07	!	5.0-7.0
	11-19	1	!	42.34-141.14	0.05-0.06	0.5-2.0	2.0-4.0
	19-31	1	!	42.34-141.14	0.04-0.05	!	1.0-2.0
	31-60	0-4	1.55-1.65	42.34-141.14	0.04-0.05	0.5-2.0	0.2-0.8
Typic Haploxerults	0-2	1	!	42.34-141.14	0.00-0.00		70-90
	2-4		!	42.34-141.14	0.00-0.00		65-85
	4-7 7-9		1	14.11-42.34 14.11-42.34	0.06-0.09	!	7.0-9.0 6.0-8.0
	9-15		1	4.23-14.11	0.15-0.17		2.0-4.0
	15-22	1	!	1.41-4.23	0.15-0.17	!	1.0-3.0
	22-60		1.40-1.50		0.15-0.17	!	0.5-1.0
		İ					
293:							
Xeric Dystrocryepts	0-0		1	42.34-141.14	!		70-90
	0-4	1	1	42.34-141.14	0.07-0.09	!	7.0-9.0
	4-20	1	1	42.34-141.14	0.07-0.09	!	4.0-6.0
	20-34			42.34-141.14	0.05-0.07	!	2.0-4.0
	34-47 47-60		1	42.34-141.14 42.34-141.14	!	!	0.8-1.5
	4/-00	U-4	T.OO-T.05	~~.>~-141.14	0.04-0.06	0.5-2.0	0.2-0.8

Table 12.—Physical Properties of the Soils—Continued

Map symbol	Depth	Clay	Moist	Saturated	Available		Organic
and soil name			bulk	hydraulic	water	extensi-	matter
	<u> </u>	<u> </u>	density	conductivity	capacity	bility	<u> </u>
	<u>In</u>	Pct	g/cc	um/sec	In/in	Pct	Pct
293:	 	l I		 			
Vitrandic Dystrocryepts	0-0	i	0.05-0.30	42.34-141.14	0.00-0.00		70-90
	0-2	4-9	1.50-1.60	14.11-42.34	0.09-0.11	1.0-3.0	8.0-13
	2-5	4-9	1.50-1.60	14.11-42.34	0.09-0.11	1.0-3.0	4.0-6.0
	5-18	4-9	1.50-1.60	14.11-42.34	0.09-0.11	1.0-3.0	2.0-5.0
	18-25	4-9	1.50-1.60	14.11-42.34	0.08-0.10	1.0-3.0	0.8-1.5
	25-36	4-9	1.55-1.65	42.34-141.14	0.04-0.05	1.0-3.0	0.5-1.2
	36-60	4-12	1.50-1.60	14.11-42.34	0.06-0.07	1.0-3.0	0.2-0.8
294:	 	l I	 	 	 	 	
Waterwheel	0-0		0.05-0.30	42.34-141.14	0.00-0.00		70-90
	0-1			42.34-141.14	0.00-0.00	1	65-85
	1-2	j	0.05-0.30	42.34-141.14	0.00-0.00		60-80
	2-6	0-3	1.60-1.70	42.34-141.14	0.04-0.06	0.5-2.0	8.0-10
	6-11	0-3	1.60-1.70	42.34-141.14	0.04-0.05	0.5-2.0	2.0-4.0
	11-26			42.34-141.14	0.04-0.05	0.5-2.0	0.5-1.0
	26-60	0-3	1.60-1.70	42.34-141.14	0.01-0.02	0.5-2.0	0.2-0.8
Typic Dystroxerepts	 0-1	 	0.05-0.30	 42.34-141.14	0.00-0.00		 70-90
-75	1-5		1	14.11-42.34	0.08-0.11	1	12-18
	5-12		1	14.11-42.34	0.08-0.11	!	2.0-6.0
	12-20		1	14.11-42.34	0.07-0.09	!	1.0-4.0
	20-28		1	14.11-42.34	0.04-0.06	!	0.5-1.8
	28-49	3-12	1.55-1.60	14.11-42.34	0.07-0.09	!	0.2-0.8
	49-60	ļ	1.55-1.60	0.01-0.42	ļ	ļ	
295:	 	 	 		 	 	
Craneflat	0-5	0-6	1.50-1.60	42.34-141.14	0.05-0.06	0.5-2.0	8.0-10
	5-19		1	42.34-141.14	0.04-0.06	1	3.0-6.0
	19-60			42.34-141.14	0.04-0.05	1	0.2-0.8
Typic Dystrocryepts	 0-1	 	 0.05-0.30	 42.34-141.14	0.00-0.00		 70-90
-79-0 -720-00-70900	1-9	1	1	14.11-42.34	0.08-0.10	!	8.0-10
	9-18			14.11-42.34	0.07-0.09	1	3.0-5.0
	18-31	3-9	1	14.11-42.34	0.06-0.07	1	1.0-3.0
	31-60	3-9	1	14.11-42.34	0.08-0.10	!	0.2-0.8
296:	 	 	 		 	 	
Ultic Palexeralfs	0-2	 	0.05-0.30	42.34-141.14	0.00-0.00		 70-90
	2-3		1	42.34-141.14	0.00-0.00	1	65-85
	3-6	!	!	4.23-14.11	0.14-0.16	!	8.0-10
	6-12	!	!	4.23-14.11	0.14-0.16	!	6.0-8.0
	12-23		1	1.41-4.23	0.18-0.19	!	2.0-4.0
	23-32		1	1.41-4.23	0.18-0.19	!	2.0-4.0
	32-41	!	1.45-1.55	!	0.18-0.19	!	1.0-3.0
	41-60		1	1.41-4.23	0.18-0.20	!	0.2-0.8
	İ	İ	İ	İ	İ	İ	İ

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	 Saturated hydraulic conductivity	 Available water capacity	extensi-	Organic matter
	<u>In</u>	Pct	g/cc	um/sec	In/in	Pct	Pct
296:			l I	 	l I	 	
Humic Dystroxerepts	0-1		0.05-0.30	42.34-141.14	0.09-0.11		70-90
	1-3		1	42.34-141.14	0.09-0.11		65-85
	3-6		!	14.11-42.34	0.09-0.11		8.0-10
	6-17		!	14.11-42.34	0.09-0.11	!	7.0-9.0
	17-22		1	14.11-42.34	0.09-0.11		4.0-6.0
	22-28 28-37		1	14.11-42.34 14.11-42.34	0.09-0.11		2.0-4.0 1.0-3.0
	37-48		!	14.11-42.34	0.09-0.11	!	0.2-0.8
	48-70		1	42.34-141.14	0.05-0.07	!	0.2-0.8
	70-86		!	42.34-141.14	0.06-0.08		0.2-0.8
	86-106	2-6	1.55-1.65	42.34-141.14	0.08-0.10	0.5-2.0	0.2-0.8
297:					 		
Typic Xerorthents	0-1		1	42.34-141.14	0.00-0.00		70-90
	1-1		!	42.34-141.14	0.00-0.00	!	65-85
	1-3		!	42.34-141.14	0.05-0.07		5.0-9.0
	3-6 6-9		1	42.34-141.14 42.34-141.14	0.05-0.07		5.0-9.0 2.0-4.0
	9-16		1	42.34-141.14	0.05-0.07		1.0-3.0
	16-28		!	42.34-141.14	0.05-0.07	!	0.5-1.0
	28-60		!	42.34-141.14	0.03-0.04		0.2-0.8
Rock outcrop.			[[[[
_		İ	j	j	İ	İ	
Typic Xeropsamments	0-1		1	1	0.00-0.00		70-90
	1-1		1	42.34-141.14	0.00-0.00		60-80
	1-3 3-7		!	42.34-141.14 42.34-141.14	0.05-0.07		7.0-9.0 6.0-8.0
	7-12		1	42.34-141.14	0.06-0.08		3.0-5.0
	12-17		1	42.34-141.14	0.05-0.07		2.0-4.0
	17-21		1	42.34-141.14	0.06-0.08		1.0-3.0
	21-30	0-4	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	0.8-1.5
	30-38		!	42.34-141.14	0.10-0.12		0.5-1.0
	38-60	0-4	1.60-1.70	42.34-141.14		0.5-2.0	0.2-0.8
200.			l I	l I	ļ I	İ	
298: Tuolumne	0-0	 	 0.05=0.30	 42.34-141.14	0.00-0.00	 	 70-90
140141110	0-1		1	42.34-141.14	0.00-0.00		65-85
	1-2		1	42.34-141.14	0.00-0.00		60-80
	2-6	0-3	1.60-1.70	42.34-141.14	0.04-0.06	0.5-2.0	8.0-10
	6-11		1	42.34-141.14	0.04-0.05	0.5-2.0	2.0-4.0
	11-26		1	42.34-141.14	0.04-0.05	1	0.5-1.0
	26-60	0-3	1.60-1.70	42.34-141.14	0.01-0.02	0.5-2.0	0.2-0.8
Typic Dystroxerepts	0-1	 _	 0_05_0_30	 42.34-141.14	0.00-0.00	 	 70-90
TABLE DARCTOVELEDER	1-5		!	14.11-42.34	0.00-0.00		12-18
	5-12		1	14.11-42.34	0.08-0.11	:	2.0-6.0
	12-20		1	14.11-42.34	0.07-0.09		1.0-4.0
	20-28		1	14.11-42.34	0.04-0.06	1.0-3.0	0.5-1.8
	28-49		1	14.11-42.34	0.07-0.09	1.0-3.0	0.2-0.8
	49-60		1.55-1.60	0.01-0.42			
			l		I		

Table 12.—Physical Properties of the Soils—Continued

Map symbol and soil name	Depth	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
į	_	i —	i <u></u>	<u> </u>		j	i —
299:							
Humic Dystroxerepts	0-1		1	42.34-141.14	0.00-0.00		70-90
	1-1		!	42.34-141.14	0.00-0.00		65-85
	1-2		1	42.34-141.14	0.00-0.00		60-80
	2-4	0-5	!	141.14-423.30	!	!	5.0-9.0
	4-11 11-22	0-5 0-5	!	141.14-423.30 141.14-423.30	!	!	4.0-7.0 2.0-4.0
	22-30	0-5	1	42.34-141.14	0.02-0.04	!	0.8-1.5
	30-60	0-5	!	141.14-423.30	!	!	0.2-0.8
Ultic Haplxoeralfs	0 - 0	i	0.05-0.30	42.34-141.14	0.00-0.00	i	70-90
_	0-1	i	0.05-0.30	42.34-141.14	0.00-0.00	j	65-85
	1-8	3-20	1.50-1.60	14.11-42.34	0.07-0.09	2.0-4.0	7.0-9.0
	8-17	!	!	14.11-42.34	0.08-0.09	!	3.0-5.0
	17-28	!	!	14.11-42.34	0.07-0.09	!	1.0-3.0
	28-47		1	14.11-42.34	0.08-0.09	!	0.5-1.0
	47-60	3-20	1.50-1.60	14.11-42.34	0.08-0.10	2.0-4.0	0.2-0.8
300:		 	 	 	 	 	
Typic Dystroxerepts	0-1	 	 0.05-0.30	42.34-141.14	0.00-0.00		 70-90
Typic Dyberonerepeb	1-2	 	1	42.34-141.14	0.00-0.00	!	65-85
	2-2	!	!	14.11-42.34	0.09-0.11		8.0-10
	2-5		1	14.11-42.34	0.08-0.09	!	7.0-9.0
İ	5-9	4-12	1.50-1.60	14.11-42.34	0.08-0.09	2.0-4.0	2.0-4.0
İ	9-15	4-12	1.50-1.60	14.11-42.34	0.06-0.08	2.0-4.0	0.8-1.5
	15-20	4-12	1.50-1.60	14.11-42.34	0.08-0.10	2.0-4.0	0.2-0.8
	20-30		1.50-1.60	14.11-42.34		2.0-4.0	
Ultic Haploxeralfs	0-1		!	42.34-141.14	0.00-0.00	!	70-90
	1-2		!	42.34-141.14	0.00-0.00		65-85
	2-2 2-10	 3-8	!	42.34-141.14 14.11-42.34	0.00-0.00	!	60-80 8.0-10
	10-19	!	!	14.11-42.34	0.07-0.09	!	1.0-3.0
	19-60	!	!	4.23-14.11	0.13-0.14	!	0.2-0.8
	15 00	13 13				3.0 3.0	0.2 0.0
301:		İ	İ			İ	
Vitrandic Haploxerolls	0-1	i	0.05-0.30	43.34-141.14	0.00-0.00	j	70-90
	1-4	5-18	1.45-1.55	4.23-14.11	0.15-0.17	0.5-2.0	7.0-11
	4-7	5-18	1.45-1.55	4.23-14.11	0.14-0.16	0.5-2.0	6.0-9.0
	7-11		1	4.23-14.11	0.13-0.15	!	1.0-3.0
	11-19	1	1	4.23-14.11	0.15-0.17	!	1.0-3.0
	19-34	!	!	14.11-42.34	0.09-0.11	!	0.5-1.5
	34-57	!	!	4.23-14.11	0.13-0.15	!	0.2-0.8
	57-63	:	!	4.23-14.11	0.13-0.15	!	0.2-0.5
	63-69	2-18	1.70-1.80	141.14-423.30	0.03-0.06	0.5-2.0	0.0-0.2
302:		 	I I	 	 		
Typic Haploxerults	0-2		0.05-0.30	42.34-141.14	0.00-0.00		 70-90
	2-2		1	42.34-141.14	0.00-0.00	!	65-85
	2-3	!	!	42.34-141.14	0.00-0.00	!	60-80
İ	3 - 5		1	4.23-14.11	0.14-0.16	!	8.0-10
İ	5-12	13-25	1.45-1.55	4.23-14.11	0.14-0.16	1.0-3.0	6.0-9.0
i	12-22	20-30	1.40-1.50	1.41-4.23	0.18-0.20	3.0-5.0	2.0-4.0
	12-22	1	1	1.41-4.23		3.0-5.0	

Table 12.—Physical Properties of the Soils—Continued

Map symbol and soil name	Depth 	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
302:							l I
JUL: Ultic Haploxeralfs	0-1	 	 0.05-0.30	 42.34-141.14	0.00-0.00	l 	 70-90
01010	1-2	!	!	42.34-141.14	0.00-0.00	!	65-85
	2-2	!	!	42.34-141.14	0.00-0.00	!	60-80
	2-10	3-8	1.50-1.60	14.11-42.34	0.07-0.09		8.0-10
	10-19	!	!	14.11-42.34	0.07-0.09	!	1.0-3.0
	19-60	15-25	1.45-1.55	4.23-14.11	0.13-0.14	3.0-5.0	0.2-0.8
303: Rock outcrop.	 	 	 	 			
Dystric Xeropsamments	0-0	i	1.50-1.60	4.23-14.11	0.00-0.00		70-90
	0-1	j	1.50-1.60	4.23-14.11	0.00-0.00		65-85
	1-3	!	1.50-1.60	!	0.05-0.07	!	8.0-10
	3-5	!	1.50-1.60	!	0.05-0.07	!	7.0-9.0
	5-14	!	1.50-1.60	!	0.05-0.07	!	3.0-5.0
	14-28 28-37	!	1.50-1.60 1.50-1.60	!	0.05-0.07	!	1.0-3.0
	37-60	!	1.50-1.60	!		0.5-2.0	0.2-0.0
		İ					İ
Humic Dystroxerepts	0-1	j	1.50-1.60	4.23-14.11	0.00-0.00		70-90
	1-2	!	1.50-1.60	!	0.05-0.06	!	7.0-9.0
	2-7	!	1.50-1.60	!	0.04-0.05	!	6.0-8.0
	7-13 13-33		1.50-1.60 1.50-1.60	!	0.04-0.05	!	2.0-4.0
	33-60	2-7	1.50-1.60	!	0.02-0.02	!	1.0-3.0
	33 00	/				0.3 2.0	
Tuolumne	0-1	i	1.50-1.60	4.23-14.11	0.00-0.00		70-90
	1-9	2-6	1.50-1.60	4.23-14.11	0.05-0.07	0.5-2.0	7.0-9.0
	9-21	!	1.50-1.60	!	0.03-0.05	!	2.0-4.0
	21-29	!	1.50-1.60	!	0.03-0.04	!	1.0-3.0
	29-44 44-60	2-5	1.50-1.60 1.50-1.60	!	0.03-0.04	!	0.8-1.5
		i					
304:		ļ					
Clarkslodge	0-0		1	42.34-141.14	0.00-0.00	!	70-90
	0-1 1-1	!	!	42.34-141.14	0.00-0.00	!	65-85
	1-1	!	!	42.34-141.14 4.23-14.11	0.00-0.00	!	60-80 5.0-9.0
	3-6		1	4.23-14.11	0.07-0.10		2.0-5.0
	6-12	!	!	4.23-14.11	0.08-0.10	!	1.2-2.5
	12-27	5-18	1.55-1.60	4.23-14.11	0.07-0.10	2.0-4.0	1.0-1.5
	27-35	!	!	4.23-14.11	0.07-0.09	!	0.5-1.0
	35-60	4-18	1.50-1.60	4.23-14.11	0.07-0.09	2.0-4.0	0.2-0.5
Rock outcrop.	 	 	 	 		 	
305: Rock outcrop.	 	 	 				
Waterwheel	 0-3	1-4	 1.60-1.70	 42.34-141.14	0.03-0.04	0.5-2.0	8.0-10
	3-9	!	!	42.34-141.14	!	!	6.0-8.0
	9-11	!	!	42.34-141.14	!	!	2.0-4.0
	11-21	1	1	42.34-141.14	1	ı	1.0-3.0
	21-60	1 - 4	1.70-1.80	141.14-423.30	10.01-0.02	0.5-2.0	0.2-0.8

Table 12.—Physical Properties of the Soils-Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
j	i —	i	i	i ——	i	j	j —
305:							
Dystric Xeropsamments	0-0 0-6	0-4		42.34-141.14 42.34-141.14	0.00-0.00	!	
·	6-18	0-4	!	42.34-141.14	0.06-0.08	!	
	18-25	0-4	!	42.34-141.14	0.06-0.08		i
	25-41	0-4	1	42.34-141.14	0.06-0.08		
	41-60	0-4	1.55-1.65	42.34-141.14	0.06-0.08	!	i
			ļ				
306:							70.00
Typic Cryopsamments	0-0 0-1		1	42.34-141.14 42.34-141.14	0.00-0.00	!	70-90 65-85
i	1-4	1-6	!	42.34-141.14	0.05-0.06	!	6.0-10
	4-15	1-6	1	42.34-141.14	0.05-0.06	!	2.0-4.0
i	15-32	1-6	1	42.34-141.14	0.05-0.06	!	0.8-1.5
	32-43	1-6	!	42.34-141.14	0.04-0.06	!	0.5-1.0
	43-60	1-6	!	42.34-141.14	0.04-0.05	!	0.2-0.8
		[[ļ	ļ
Humic Dystrocryepts	0-0		!	42.34-141.14	0.00-0.00	!	70-90
	0-5	2-5	!	42.34-141.14	0.05-0.07	!	6.0-10
	5-13	2-6	!	42.34-141.14	0.04-0.05	!	2.0-5.0
	13-23 23-60	2-6	!	42.34-141.14 4.23-14.11	0.04-0.05	!	1.0-3.0
	23-00	12-10		4.25-14.11		0.3-2.0	0.2-1.0
307: Rock outcrop.					 	 	
Dystric Xeropsamments	0-0		1.50-1.60	4.23-14.11	0.00-0.00		70-90
2/20220 H020p20mm0H02	0-1		1.50-1.60	!	0.00-0.00	!	65-85
	1-3	1-6	1.50-1.60	!	0.05-0.07	!	8.0-10
	3-5	1-6	1.50-1.60	!	0.05-0.07	!	7.0-9.0
	5-14	1-6	1.50-1.60	4.23-14.11	0.05-0.07	0.5-2.0	3.0-5.0
	14-28	1-6	1.50-1.60	4.23-14.11	0.05-0.07	0.5-2.0	1.0-3.0
	28-37	1-6	1.50-1.60	!	0.05-0.06	1	0.2-0.8
	37-60		1.50-1.60	4.23-14.11		0.5-2.0	
Dystric Xerorthents	0-3	 1-4	1 60 1 70	 42.34-141.14		0.5-2.0	 8.0-10
Dystric Aerorthents	0-3 3-9	1-4	1	42.34-141.14	0.03-0.04	!	6.0-8.0
	9-11	1-4	!	42.34-141.14	0.04-0.05	!	2.0-4.0
	11-21	1-4	1	42.34-141.14	0.01-0.02		1.0-3.0
	21-60	1-4	!	141.14-423.30	!	!	0.2-0.8
309: Rock outcrop.		 	 	 	 	 - 	
Watawahaal	000				0 00 0 00		70.00
Waterwheel	0-2		1	42.34-141.14	0.00-0.00	!	70-90
	2-7 7-17	4-9 4-9	1	14.11-42.34 14.11-42.34	0.06-0.07 0.05-0.06	!	8.0-10 3.0-5.0
i	17-31	4-9	1	14.11-42.34	0.06-0.07	!	1.0-3.0
	31-60	4-9	1	14.11-42.34	0.05-0.06	!	0.2-0.8
İ		İ	j	į	İ	į	j
Typic Dystroxerepts	0-1		1	42.34-141.14	0.00-0.00	!	70-90
	1-2		!	42.34-141.14	0.00-0.00	!	65-85
	2-2		1	42.34-141.14	0.00-0.00	!	60-80
	2-3	3-8	1	14.11-42.34	0.05-0.06	!	8.0-10
	3-7	3-8	1	14.11-42.34 14.11-42.34	0.05-0.06 0.03-0.04	!	7.0-9.0
	7-27 27-41	3-8	!	14.11-42.34	0.03-0.04	!	2.0-4.0
	41-60	3-8	!	14.11-42.34	0.03-0.04	!	0.2-0.8
	00						

Table 12.-Physical Properties of the Soils-Continued

310: Rock outcrop. Humic Dystroxerepts	0-0 0-1 1-4 4-8 8-30		g/cc 0.05-0.30	um/sec	In/in	Pct	Pct
Rock outcrop.	0-1 1-4 4-8		0.05-0.30				
Rock outcrop.	0-1 1-4 4-8		0.05-0.30				
Humic Dystroxerepts	0-1 1-4 4-8		0.05-0.30				
	1-4 4-8			42.34-141.14	0.00-0.00	 	70-90
	4-8	2 17	0.05-0.30	42.34-141.14	0.00-0.00	i	60-80
		3 - 7	1.55-1.65	42.34-141.14	0.05-0.06	0.5-2.0	8.0-10
	8-30	3 - 7	1.55-1.65	42.34-141.14	0.04-0.05	0.5-2.0	7.0-9.0
				42.34-141.14	0.03-0.04	!	2.0-4.0
	30-39			42.34-141.14	0.02-0.03	!	1.0-3.0
	39-60	3-7	1.55-1.65	42.34-141.14 	0.02-0.03	0.5-2.0	0.2-0.8
Humic Lithic Haploxerepts	0 - 0		0.05-0.30	42.34-141.14	0.00-0.00	j	
	0-2		0.05-0.30	42.34-141.14	0.00-0.00		
	2-2			42.34-141.14	0.00-0.00		
ļ	2-10			42.34-141.14	0.02-0.02	!	5.0-10
	10-20	2-5		14.11-42.34	0.05-0.06	1.0-3.0	10-14
+	20-60			0.01-0.01	0.00-0.00	 	
311: Rock outcrop.							
Humic Dystroxerepts	0-1	2-5	1.55-1.65	42.34-141.14	0.04-0.05	0.5-2.0	8.0-10
i	1-11	2-5	1.55-1.65	42.34-141.14	0.04-0.05		7.0-9.0
į	11-30	2-5	1.55-1.65	42.34-141.14	0.03-0.04	0.5-2.0	1.0-5.0
į	30-60	2-5	1.55-1.65	42.34-141.14	0.03-0.04	0.5-2.0	0.2-0.8
Humic Lithic Haploxerepts	0 - 0		 0.05-0.30	 42.34-141.14	0.00-0.00	 	
	0-2			42.34-141.14	0.00-0.00	i	
į	2-2			42.34-141.14	0.00-0.00		
į	2-10	5-10	1.50-1.60	14.11-42.34	0.05-0.07	1.0-3.0	5.0-10
į	10-20	5-10	1.50-1.60	14.11-42.34	0.04-0.04	1.0-3.0	10-14
ļ	20-60			0.00-0.01	0.00-0.00		
313:							
Nevadafalls	0 - 0			42.34-141.14	0.00-0.00		
	0-6			42.34-141.14	0.05-0.07	!	3.0-5.0
	6-17			42.34-141.14	0.05-0.07	!	2.0-3.5
	17-31			42.34-141.14	0.04-0.05	!	0.8-1.5
	31-60	3-5	1.55-1.65	42.34-141.14 	0.04-0.05	0.5-2.0	0.2-1.2
Oxyaquic Dystrudepts	0 - 0		0.05-0.30	42.34-141.14	0.00-0.00		70-90
	0-10	5-10	1.50-1.60	14.11-42.34	0.09-0.11	1.0-3.0	7.0-9.0
	10-35	5-10	1.50-1.60	14.11-42.34	0.09-0.11	1.0-3.0	2.0-4.0
Į	35-48			14.11-42.34	0.09-0.11	1	1.0-3.0
	48-61	2-5	1.60-1.70	42.34-141.14	0.05-0.07	1.0-3.0	0.2-0.8
314:				[[
Badgerpass	0-1		0.05-0.30	42.34-141.14	0.00-0.00		70-90
į	1-6			42.34-141.14	0.06-0.08	0.5-2.0	8.0-10
į	6-13	0-4	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	6.0-8.0
į	13-24				0.06-0.08		3.0-5.0
ĺ	24-42			42.34-141.14	0.06-0.08		1.0-3.0
Į.	42-55			!	0.06-0.08	!	0.5-1.0
ļ	55-60	0-4	1.60-1.70	42.34-141.14	0.06-0.08	0.5-2.0	0.2-0.8

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
314:							
Dystric Xeropsamments	0-2 2-4			42.34-141.14	0.00-0.00	1	70-90 65-85
	4-4			42.34-141.14 42.34-141.14	0.00-0.00	!	60-80
	4-9	2-6		42.34-141.14	0.06-0.08	!	7.0-9.0
	9-25	2-6		42.34-141.14	0.06-0.08	!	2.0-4.0
	25-30	2-6	1.55-1.65	42.34-141.14	0.06-0.08	0.5-2.0	1.0-3.0
	30-60	2-6	1.55-1.65	42.34-141.14	0.08-0.10	0.5-2.0	0.2-0.8
Rock outcrop.			 	 	 	 	
315:				 	İ	İ	!
Nevadafalls	0-1		ı	42.34-141.14	0.00-0.00	1	70-90
	1-2	2-6	!	14.11-42.34	0.07-0.09	!	8.0-10
	2-14		!	14.11-42.34	0.05-0.07	1	2.0-4.0
	14-35	2-6	ı	14.11-42.34	0.05-0.07	!	3.0-5.0
	35-60	2-6	1.50-1.60	14.11-42.34	0.04-0.05	1.0-3.0	0.2-0.8
Dystric Xeropsamments	0-0		0.05-0.30	42.34-141.14	0.00-0.00		65-85
-	0-7	1-5	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	7.0-9.0
	7-16	1-5	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	3.0-5.0
	16-26	1-5		42.34-141.14	0.05-0.07	1	1.0-3.0
	26-60	1-5	1.55-1.65	42.34-141.14	0.05-0.07	0.5-2.0	0.2-0.8
316:				 			!
Dystric Xerorthents	0-4	1-6	0.05-0.30	42.34-141.14	0.04-0.05	0.5-2.0	8.0-10
	4-13	1-6		42.34-141.14	0.04-0.05	1	5.0-7.0
	13-23	1-6	!	42.34-141.14	0.03-0.04	!	1.0-3.0
	23-35	1-6	!	42.34-141.14	0.03-0.04	1	0.2-0.8
	35-393		1.60-1.70	0.00-0.04	 	0.5-2.0	
Rock outcrop.	į		 	 	į I	į I	į I
Rubble land.					 	 	
318:	i						
Typic Dystroxerepts	0 - 4		ı	14.11-42.34	0.09-0.11		8.0-10
	4-12		!	14.11-42.34	0.09-0.11	!	4.0-6.0
	12-27			14.11-42.34	0.09-0.11	1	2.0-4.0
	27-39 39-57	4-10		14.11-42.34 14.11-42.34	0.09-0.11	1.0-3.0	1.0-3.0
Humia Duatrovorenta	0-0		0 05 0 30			 	 70-90
Humic Dystroxerepts	0-0		!	42.34-141.14 42.34-141.14	0.00-0.00	!	60-80
	1-2		!	14.11-42.34	0.06-0.00	!	8.0-12
	2-5			14.11-42.34	0.09-0.11	!	2.0-5.0
	5-14			14.11-42.34	0.09-0.11	!	2.0-5.0
	14-33			14.11-42.34	0.09-0.11	!	1.5-2.0
	33-46			14.11-42.34	0.09-0.11		0.0-0.5
	46-48			14.11-42.34	0.09-0.11	!	0.0-0.5
	48-54			14.11-42.34	0.13-0.15	1	0.0-0.5
	54-60	6-14	1.50-1.60	14.11-42.34	0.13-0.15	2.0-4.0	0.0-0.5

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth	Clay	 Moist	Saturated	Available	!	Organic
and soil name	 		bulk	hydraulic	water capacity	extensi-	matter
	 -	D - t-	!	conductivity		bility	<u> </u>
	<u>In</u>	Pct	g/cc	um/sec	In/in	Pct	Pct Pct
319:	 	l	l I	l I	l I	l I	
Humic Dystroxerepts	 0-0		05 0 30	 42.34-141.14	0.00-0.00		 70-90
Humic Dysciokerepts	0-0		!	42.34-141.14	0.00-0.00	!	65-85
	1-5	2-6	!	42.34-141.14	0.03-0.04	!	7.0-10
	5-13	!	!	42.34-141.14	0.02-0.03	!	2.0-5.0
	13-20			42.34-141.14	0.02-0.03	!	1.0-2.0
	20-35	!	!	42.34-141.14	0.02-0.03	!	0.8-1.5
	35-60	2-6	!	42.34-141.14	0.01-0.02	0.5-2.0	1.0-1.2
		- "					
Typic Haploxerults	0-0		i	42.34-141.14	0.00-0.00	i	70-90
	0-1		j	42.34-141.14	0.00-0.00	j	65-80
	1-2	i	j	42.34-141.14	0.00-0.00	j	60-80
	2-5	0-3	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	7.0-9.0
	5-7	0-3	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	6.0-8.0
	7-12	6-16	1.50-1.60	14.11-42.34	0.08-0.10	2.0-4.0	3.0-5.0
	12-20	6-16	1.50-1.60	14.11-42.34	0.08-0.10	2.0-4.0	2.0-4.0
	20-31			14.11-42.34	0.08-0.10		1.0-3.0
	31-46	6-16	1.50-1.60	14.11-42.34	0.08-0.10	2.0-4.0	0.8-2.0
	46-53	0-3		42.34-141.14	0.05-0.07	0.5-2.0	0.2-1.0
	53-71	0-3	1.60-1.70	42.34-141.14	0.05-0.07	0.5-2.0	0.2-1.0
Inceptic Haploxeralfs	00		 1 EO 1 60				70.00
inceptic Hapioxeralis	0-0 0-1			42.34-141.14 42.34-141.14	0.00-0.00		70-90 65-85
	0-1 1-4	!	!	14.11-42.34	0.00-0.00	!	7.0-9.0
	4-12			14.11-42.34	0.08-0.09	!	3.0-5.0
	12-22	!	!	14.11-42.34	0.07-0.08	!	2.0-4.0
	22-30	1	!	14.11-42.34	0.05-0.05		1.0-3.0
	30-60	1-6	!	14.11-42.34	0.01-0.02	0.5-2.0	0.2-0.8
320:		İ	į	İ	į	į	İ
Half Dome	0-1	i	0.05-0.30	42.34-141.14	0.00-0.00	j	70-90
	1-4	2-9	1.55-1.65	42.34-141.14	0.04-0.05	1.0-3.0	8.0-10
	4-10	2-9	1.55-1.65	42.34-141.14	0.05-0.07	1.0-3.0	4.0-6.0
	10-20	2-9	1.50-1.60	14.11-42.34	0.05-0.06	1.0-3.0	2.0-4.0
	20-47	2-9	1.50-1.60	14.11-42.34	0.04-0.05	1.0-3.0	1.0-3.0
	47-61	2-9	1.60-1.70	42.34-141.14	0.05-0.06	1.0-3.0	0.2-0.8
Total - Books							65.05
Humic Dystroxerepts	0-0		!	42.34-141.14	0.00-0.00	!	65-85
	0-3	2-5	!	42.34-141.14	0.05-0.07	!	8.0-10
	3-7 7-16	2-5	!	42.34-141.14	0.05-0.07	!	7.0-9.0
	16-22	2-5	!	42.34-141.14 42.34-141.14	0.05-0.07		3.0-5.0
	22-35	2-5	!	14.11-42.34	0.02-0.03	!	2.0-4.0
	35-60	2-7	!	14.11-42.34	0.02-0.03	!	0.2-0.8
	33-00					1.0-3.0	0.2-0.6
Rock outcrop.				İ			
			ļ		ļ	ļ	
321:			05 0 00		0.000000	0.500	
Dystric Xeropsamments	0-0	1	!	42.34-141.14	!	!	60-80
	0-8	1	!	42.34-141.14	0.06-0.08	!	7.0-9.0
	8-21	1	!	141.14-423.30	!	!	2.0-4.0
	21-61	J 3-6	1	42.34-141.14	0.06-0.08	0.5-2.0	0.2-0.8
	I	1	I	I	I	I	I

Table 12.-Physical Properties of the Soils-Continued

321: Dystric Xerorthents	Map symbol and soil name	Depth	Clay	Moist bulk density	Saturated hydraulic conductivity	 Available water capacity	Linear extensi- bility	Organic matter
Dystric Xerorthents		In	Pct	g/cc	um/sec	In/in	Pct	Pct
Dystric Xerorthents								
3-9	~							
9-11	Dystric Xerorthents		1	1	1			8.0-10
322: Typic Xerorthents				1	1		1	6.0-8.0
322: Typic Xerorthents								2.0-4.0
322: Typic Xerorthents				1	1		1	0.2-0.8
Typic Xerorthents		**	i					
0-7	322:		İ	į	İ		İ	
T-24	Typic Xerorthents	0-0	j	0.05-0.30	42.34-141.14	0.00-0.00	j	70-90
323: Ultic Haploxeralfs			1	1	1	0.08-0.09	1	1.0-5.0
323: Ultic Haploxeralfs				1	1	!	1	0.2-2.0
323: Ultic Haploxeralfs								0.2-0.8
Ultic Haploxeralfs		42-60	1-5	1.70-1.80	141.14-423.30	0.01-0.02	0.5-2.0	0.1-0.5
Ultic Haploxeralfs	222.			l I	l I	 	l I	
3-5		 0-3	 8-12	 1 50-1 60	 14 11-42 34	 0 08-0 10	 4 0-6 0	7.0-9.0
S-10	ordic naproxeraris			1	1	!	1	5.0-7.0
Humic Dystroxerepts					1			3.0-5.0
Humic Dystroxerepts		10-21	12-18	1.50-1.60	14.11-42.34	0.08-0.10	4.0-6.0	2.0-4.0
Humic Dystroxerepts		21-37	12-24	1.50-1.60	14.11-42.34	0.05-0.06	4.0-6.0	1.0-3.0
1-2		37-60	15-24	1.45-1.55	4.23-14.11	0.07-0.08	4.0-6.0	0.2-0.8
1-2								
2-2	Humic Dystroxerepts		1	1	1		1	70-90
2-7			1		1	!	!	65-85 60-80
T-15					1			7.0-9.0
15-29				1	1		1	2.0-4.0
324: Humic Haploxerepts 0-0 0.05-0.30 42.34-141.14 0.00-0.00 70 0-4 6-12 1.45-1.55 4.23-14.11 0.09-0.10 4.0-6.0 5.0 4-8 6-12 1.45-1.55 4.23-14.11 0.07-0.08 4.0-6.0 2.0 8-20 6-12 1.50-1.60 14.11-42.34 0.03-0.04 4.0-6.0 1.0 20-30 6-12 1.45-1.55 4.23-14.11 0.06-0.07 4.0-6.0 1.0 30-60 6-12 1.50-1.60 14.11-42.34 0.05-0.05 4.0-6.0 0.2 Rock outcrop. Ultic Haploxeralfs 0-0 0.05-0.30 42.34-141.14 0.00-0.00 70 0-6 7-14 1.45-1.55 4.23-14.11 0.08-0.09 3.0-5.0 2.0 6-16 8-27 1.40-1.50 1.41-4.23 0.10-0.11 4.0-6.0 0.2 16-29 8-27 1.40-1.50 1.41-4.23 0.11-0.12 4.0-6.0 0.2 29-60 8-12 1.45-1.55 4.23-14.11 0.06-0.07 3.0-5.0 0.2		15-29	!	!	!	!	!	1.0-3.0
Humic Haploxerepts		29-60	6-14	1.50-1.60	14.11-42.34	0.08-0.10	2.0-4.0	0.2-0.8
Humic Haploxerepts								
0-4			ļ					
## A	Humic Haploxerepts			1	1		1	70-90
8-20					1			5.0-9.0
20-30 6-12 1.45-1.55 4.23-14.11 0.06-0.07 4.0-6.0 1.0 30-60 6-12 1.50-1.60 14.11-42.34 0.05-0.05 4.0-6.0 0.2 Rock outcrop.			1	1	1	!	1	1.0-2.5
Rock outcrop. Ultic Haploxeralfs 0-0 0.05-0.30 42.34-141.14 0.00-0.00 7.0 0-6 7-14 1.45-1.55 4.23-14.11 0.08-0.09 3.0-5.0 2.0 6-16 8-27 1.40-1.50 1.41-4.23 0.10-0.11 4.0-6.0 0.2 16-29 8-27 1.40-1.50 1.41-4.23 0.11-0.12 4.0-6.0 0.2 29-60 8-12 1.45-1.55 4.23-14.11 0.06-0.07 3.0-5.0 0.2 325.			!	!	!	!	1	1.0-2.5
Rock outcrop. Ultic Haploxeralfs 0-0 0.05-0.30 42.34-141.14 0.00-0.00 7.0 0-6 7-14 1.45-1.55 4.23-14.11 0.08-0.09 3.0-5.0 2.0 6-16 8-27 1.40-1.50 1.41-4.23 0.10-0.11 4.0-6.0 0.2 16-29 8-27 1.40-1.50 1.41-4.23 0.11-0.12 4.0-6.0 0.2 29-60 8-12 1.45-1.55 4.23-14.11 0.06-0.07 3.0-5.0 0.2 325.				1	1	!	1	0.2-2.5
Ultic Haploxeralfs 0-0 0.05-0.30 42.34-141.14 0.00-0.00 7.00 0-6 7-14 1.45-1.55 4.23-14.11 0.08-0.09 3.0-5.0 2.00 0.16-29 8-27 1.40-1.50 1.41-4.23 0.10-0.11 4.0-6.0 0.20			i					
0-6 7-14 1.45-1.55 4.23-14.11 0.08-0.09 3.0-5.0 2.0 6-16 8-27 1.40-1.50 1.41-4.23 0.10-0.11 4.0-6.0 0.2 16-29 8-27 1.40-1.50 1.41-4.23 0.11-0.12 4.0-6.0 0.2 29-60 8-12 1.45-1.55 4.23-14.11 0.06-0.07 3.0-5.0 0.2 325.	Rock outcrop.		j	į	į	İ	į	İ
0-6 7-14 1.45-1.55 4.23-14.11 0.08-0.09 3.0-5.0 2.0 6-16 8-27 1.40-1.50 1.41-4.23 0.10-0.11 4.0-6.0 0.2 16-29 8-27 1.40-1.50 1.41-4.23 0.11-0.12 4.0-6.0 0.2 29-60 8-12 1.45-1.55 4.23-14.11 0.06-0.07 3.0-5.0 0.2 325.			ļ	ļ			ļ	
6-16	Ultic Haploxeralfs				1		1	70-90
16-29				1	1	!	1	2.0-5.0
29-60 8-12 1.45-1.55 4.23-14.11 0.06-0.07 3.0-5.0 0.2 325.			!	!	!	!	!	0.2-2.0
325.				1	1		1	0.2-0.5
		<u>2</u> 9-00	0-12	1	4.23-14.11		3.0-3.0	0.2-0.5
Urban land	325.		İ	İ			İ	İ
i j j i i i i i i	Urban land		j	İ	j	İ	İ	İ

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth	Clay	 Moist bulk	Saturated hydraulic	Available water	 Linear extensi-	Organic matter
İ		İ	density	conductivity	capacity	bility	İ
İ	In	Pct	g/cc	um/sec	In/in	Pct	Pct
ĺ	_	i —	i —	i	i	i —	i —
328:		j	j	İ	į	į	İ
Clarkslodge	0 - 0	j	0.05-0.30	42.34-141.14	0.00-0.00	j	70-90
	0-1		0.05-0.20	42.34-141.14	0.00-0.00		65-85
	1-5	8-18	1.50-1.60	4.23-14.11	0.12-0.14	3.0-5.0	20-34
	5-11		1.50-1.60		0.09-0.10	1	2.0-5.0
	11-20		1	4.23-14.11	0.09-0.10	3.0-5.0	0.5-1.5
	20-37		1.50-1.60		0.07-0.10	3.0-5.0	0.2-1.0
	37-60	8-18	1.50-1.60	4.23-14.11	0.10-0.11	3.0-5.0	0.1-0.8
Title Delements	0 1						70.00
Ultic Palexeralfs	0-1	!	!	42.34-141.14	0.00-0.00		70-90
	1-4 4-13		1.45-1.55	4.23-14.11 4.23-14.11	0.13-0.14	!	6.0-34
	13-31	!	1.45-1.55	!	0.12-0.14	!	0.5-1.0
	31-49	!	1.45-1.55	!	0.13-0.14	3.0-5.0	0.0-0.2
	49-60	!	1.45-1.55	!	0.13-0.15	3.0-5.0	0.0-0.2
	15 00	12 23		1.25 11.11		3.0 3.0	0.0 0.2
401:		i	İ	 	İ	İ	
Sentinel	0-1	0-0	0.02-0.09	42.34-141.14	0.00-0.00	0.0-0.0	70-90
	1-5	!	!	14.11-42.34	0.11-0.14	!	4.0-8.0
	5-20	5-12	1.45-1.55	14.11-42.34	0.10-0.13	0.0-2.9	1.0-5.0
İ	20-27	5-12	1.45-1.55	14.11-42.34	0.10-0.13	0.0-2.9	1.0-3.0
İ	27-41	3-10	1.45-1.55	14.11-42.34	0.07-0.10	0.0-2.9	0.5-2.0
	41-56	3-10	1.45-1.55	14.11-42.34	0.07-0.10	0.0-1.5	0.5-1.5
	56-66	3-8	1.55-1.65	42.34-141.14	0.07-0.10	0.0-1.5	0.0-0.8
412. Water-Riverwash		 	 	 	 	 	
F01.				 			
501: Happyisles, sandy loam	0-3		 0 05 0 30	 42.34-141.14	0.00-0.00	 	 70-90
happyisies, sandy loam	3-7			14.11-42.34	0.00-0.00	!	1.0-4.0
	7-13		1	14.11-42.34	0.09-0.11	!	1.0-4.0
	13-17		1	14.11-42.34	0.09-0.11	!	1.0-4.0
	17-33		1	14.11-42.34	0.09-0.11	0.0-2.9	0.5-1.2
	33-60	!	!	42.34-141.14	0.06-0.08	0.0-2.9	0.2-0.8
İ		j	j	İ	į	į	İ
Happyisles, loamy fine sand,							
overwash	0 - 3		1	42.34-141.14	0.00-0.00		70-90
	3 - 7	!	!	14.11-42.34	0.08-0.10	!	1.0-4.0
	7-13	!	!	42.34-141.14	0.10-0.13	!	1.0-4.0
	13-17	!	!	14.11-42.34	0.10-0.13	0.0-2.9	1.0-4.0
	17-33		1	14.11-42.34	0.07-0.11	0.0-2.9	0.5-1.2
	33-41	!	!	42.34-141.14	0.07-0.11	!	0.2-0.8
	41-62	5-12	1.55-1.65	42.34-141.14	0.07-0.11	0.0-2.9	0.2-0.8
502:		I I	I I	 			
Happyisles	0-3	i	0.02-0.09	42.34-141.14	0.00-0.00		 70-90
	3-7	!	!	14.11-42.34	0.08-0.10	!	1.0-4.0
	7-13		1	!	0.10-0.13	!	1.0-4.0
	13-17		1	14.11-42.34	0.10-0.13		1.0-4.0
I	·			14.11-42.34	0.07-0.11	!	0.5-1.2
	17-33	5-12	1.50-1.60	14.11-42.34	0.0/-0.11		
	17-33 33-41		1	42.34-141.14			0.2-0.8
		3-8	1.60-1.70	1		0.0-2.9	

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	extensi-	Organio matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
504:		ļ					
Mollic Xerofluvents	0-2		1	42.34-141.14	0.02-0.07	1	70-90
	2-6 6-8	!	!	4.23-14.11 42.34-141.14	0.14-0.18	!	5.0-9.0 1.0-3.0
·	8-12	!	!	4.23-14.11	0.08-0.11	!	0.0-0.5
i	12-23		1	42.34-141.14	0.10-0.13	1	0.0-0.5
	23-29			42.34-141.14	0.08-0.11		0.0-0.5
	29-49			42.34-141.14	0.03-0.13		0.0-0.5
	49-54			14.11-42.34	0.08-0.11		2.0-5.0
	54-68		1	14.11-42.34	0.08-0.11	1	1.0-3.0
510t: Rubble land.		 	 		 	 	
Lithnip	0-1	10-18	1.25-1.35	14.00-42.00	0.03-0.06	0.0-2.9	1.0-2.0
	1-5	12-18	1.25-1.35	14.00-42.00	0.04-0.08	0.0-2.9	0.5-1.0
	5-15	ļ	j	0.00-0.01		j	j
Rock outcrop.		 	 	 		 	
551:		i	 	 		 	
Happyisles	0-3	i	0.02-0.09	42.34-141.14	0.00-0.00		70-90
	3 - 7	5-12	1.55-1.65	14.11-42.34	0.08-0.10	0.0-2.9	1.0-4.0
	7-13	3-10	1.55-1.65	42.34-141.14	0.10-0.13	0.0-2.9	1.0-4.
	13-17	5-12	1.50-1.60	14.11-42.34	0.10-0.13	0.0-2.9	1.0-4.0
	17-33	5-12	1.50-1.60	14.11-42.34	0.07-0.11	0.0-2.9	0.5-1.2
	33-41			42.34-141.14	0.07-0.11	1	0.2-0.8
	41-62	5-12	1.55-1.65	42.34-141.14	0.07-0.11	0.0-2.9	0.2-0.8
Half Dome	0-1			14.11-42.34	0.07-0.12	1	1.0-3.0
	1-19			14.11-42.34	0.04-0.09	1	1.0-3.0
	19-28			14.11-42.34	0.04-0.09	1	0.0-0.5
	28-33		1	14.11-42.34	0.03-0.09	1	0.0-0.5
	33-50		1	42.34-141.14	0.05-0.06	1	0.0-0.5
	50-60	1-5 	1.50-1.60 	42.34-141.14 	0.05-0.06	0.0-2.9	0.0-0.!
552:							=====================================
Mollic Xerofluvents	0-2	!	!	42.34-141.14	!	!	70-90
	2-6	!	!	4.23-14.11	0.14-0.18	!	5.0-9.0
	6-8		1	42.34-141.14	0.08-0.11	1	1.0-3.0
	8-12		1	4.23-14.11	0.03-0.13	1	0.0-0.
	12-23 23-29		1	42.34-141.14	0.10-0.13		0.0-0.5
	23-29			42.34-141.14 42.34-141.14	0.08-0.11	1	0.0-0.5
ł	49-49		1	14.11-42.34	0.03-0.13	1	2.0-5.0
	54-68		1	14.11-42.34	0.08-0.11	!	1.0-3.0
	34-00	0-12	1		0.00-0.11	1 0.0-2.9	1 1.0-3.0

Table 12.—Physical Properties of the Soils—Continued

		I			Ī		1
Map symbol and soil name	Depth 	Clay 	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organic matter
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
	i —		<u> </u>		<u> </u>	i	
590:		İ	į	İ	İ	İ	
Terric Haplosaprists	0-3	12-18	0.20-0.80	1.41-42.34	0.16-0.20	0.0-2.9	8.0-14
	3-8	3-6	1.60-1.70	42.34-141.14	0.04-0.11	0.0-2.9	3.0-7.0
	8-12	3-6	1.60-1.70	42.34-141.14	0.04-0.11	0.0-2.9	1.0-5.0
	12-31	0-7	0.20-0.80	1.41-42.34	0.20-0.30	0.0-2.9	35-55
	31-35	!	!	4.23-14.11	0.10-0.16	!	5.0-9.0
	35-38	!	!	4.23-14.11	0.10-0.16	!	3.0-7.0
	38-46	!	!	4.23-14.11	0.20-0.30	!	2.0-6.0
	46-52			1.41-42.34	0.16-0.20		35-55
	52-58	!	!	14.11-42.34	0.10-0.13	!	5.0-9.0
	58-60	7-18	1.50-1.60	14.11-42.34	0.10-0.13	0.0-2.9	3.0-7.0
601:	 		 	 		 	
Half Dome, very bouldery	 0-3	0-0	0.05-0.30	 14.11-141.14			 70-90
Dome, tory bourdery	3-5	!	!	14.11-42.34	0.07-0.12	1	1.0-3.0
	5-8			14.11-42.34	0.04-0.09	!	1.0-3.0
	8-15	!	!	14.11-42.34	0.04-0.09	!	0.2-1.0
	15-39			14.11-42.34	0.03-0.09	!	0.2-1.0
	39-63	!	!	14.11-42.34	0.05-0.06	!	0.2-1.0
Half Dome, cobbly	0-1		0.05-0.30	42.34-141.14	0.00-0.00	j	70-90
_	1-2	j	0.05-0.30	42.34-141.14	0.00-0.00	j	65-85
	2-10	4-12	1.50-1.60	14.11-42.34	0.07-0.12	0.0-2.9	1.0-3.0
	10-17	4-12	1.50-1.60	14.11-42.34	0.05-0.09	0.0-2.9	1.0-3.0
	17-29	4-12	1.50-1.60	14.11-42.34	0.04-0.09	0.0-2.9	0.0-0.5
	29-60	4-12	1.50-1.60	14.11-42.34	0.03-0.07	0.0-2.9	0.0-0.5
602:		4 10					
Half Dome	0-1	!	!	14.11-42.34	0.07-0.12	!	1.0-3.0
	1-19	!	!	14.11-42.34	0.04-0.09	!	1.0-3.0
	19-28	!	!	14.11-42.34	0.04-0.09	!	0.0-0.5
	28-33	!	!	14.11-42.34	0.03-0.09	!	0.0-0.5
	33-50 50-60	!	!	42.34-141.14 42.34-141.14	0.05-0.06	!	0.0-0.5
	30-00	1-5	1.50-1.60	12.31-111.11	0.03-0.06	0.0-2.9	0.0-0.5
610: Rubble land.			 		 	 	
Half Dome	0-1		0 05-0 30	 42.34-141.14	0.00-0.00		 70-90
IIGII DOME	1-2	!	!	42.34-141.14	0.00-0.00	!	65-85
	2-10			14.11-42.34	0.00-0.00	!	1.0-3.0
	10-17	!	!	14.11-42.34	0.05-0.09	!	1.0-3.0
	17-29	!	!	14.11-42.34	0.04-0.09	!	0.0-0.5
	29-60	:		14.11-42.34	0.03-0.07	!	0.0-0.5
		İ	İ			İ	
620: Half Dome, extremely stony	<u> </u>	į į	<u> </u>		j I	j 	<u> </u>
sandy loam, warm	0-1	4-12	1.50-1.60	14.11-42.34	0.07-0.12	0.0-2.9	1.0-3.0
-	1-19	1	1	14.11-42.34	0.04-0.09		1.0-3.0
	19-28			14.11-42.34	0.04-0.09	!	0.0-0.5
	28-33	4-12	1.50-1.60	14.11-42.34	0.03-0.09	0.0-2.9	0.0-0.5
	33-50	4-12	1.50-1.60	42.34-141.14	0.05-0.06		0.0-0.5
	50-60	1-5	1.50-1.60	42.34-141.14	0.05-0.06	0.0-2.9	0.0-0.5

Table 12.-Physical Properties of the Soils-Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensi- bility	Organio
	In	Pct	g/cc	um/sec	In/in	Pct	Pct
620:		 	 	 		 	
Half Dome, very cobbly sandy		İ	İ	İ	İ	İ	İ
loam, warm	0-1	i	0.05-0.30	42.34-141.14	0.00-0.00	i	70-90
	1-2	i	0.05-0.30	42.34-141.14	0.00-0.00		65-85
	2-10	4-12	1.50-1.60	14.11-42.34	0.07-0.12	0.0-2.9	1.0-3.0
	10-17	4-12	1.50-1.60	14.11-42.34	0.05-0.09	1	1.0-3.0
	17-29	4-12	1.50-1.60	14.11-42.34	0.04-0.09	0.0-2.9	0.0-0.5
	29-60	4-12	1.50-1.60	14.11-42.34	0.03-0.07	0.0-2.9	0.0-0.5
630:		 	 	 		 	
Rubble land.			į		ļ	į	į
Half Dome	0-1	 4-12	 1.50-1.60	 14.11-42.34	0.07-0.12	0.0-2.9	1.0-3.0
	1-19			14.11-42.34	0.04-0.09	1	1.0-3.0
i	19-28		1	14.11-42.34	0.04-0.09	0.0-2.9	0.0-0.5
	28-33	4-12	1.50-1.60	14.11-42.34	0.03-0.09	0.0-2.9	0.0-0.5
	33-50	4-12	1.50-1.60	42.34-141.14	0.05-0.06		0.0-0.5
	50-60	1-5	1.50-1.60	42.34-141.14	0.05-0.06	0.0-2.9	0.0-0.5
701:		 	 	 		 	
Vitrandic Haploxerolls	0-1	0-0	0.05-0.30	42.34-141.14	0.00-0.00		70-90
-	1-3	5-15	1.50-1.60	14.11-42.34	0.13-0.15	0.5-2.0	6.0-8.0
i	3-12	5-15	1.50-1.60	14.11-42.34	0.13-0.15	0.5-2.0	2.0-4.0
i	12-16	5-15	1.50-1.60	14.11-42.34	0.13-0.15	0.5-2.0	1.0-3.0
	16-24	5-15	1.50-1.60	14.11-42.34	0.13-0.15	0.5-2.0	1.0-2.0
	24-36	5-15	1.50-1.60	14.11-42.34	0.13-0.15	0.5-2.0	0.5-1.0
	36-50	5-15	1.50-1.60	14.11-42.34	0.13-0.15	0.5-2.0	0.2-0.8
	50-60	5-15	1.50-1.60	14.11-42.34	0.13-0.15	0.5-2.0	0.1-0.5
702:		 	 	 		 	
Vitrandic Dystroxerepts	0 - 8	5-10	1.55-1.60	14.11-42.34	0.09-0.12	0.0-2.9	5.0-9.0
	8-30	5-10	1.55-1.60	14.11-42.34	0.09-0.12	0.0-2.9	1.0-3.0
	30-50	5-10	1.55-1.60	14.11-42.34	0.04-0.06	0.0-2.9	0.5-0.5
	50-60	5-10	1.60-1.70	42.34-141.14	0.03-0.05	0.0-2.9	0.5-0.5
900.		 	 	[
Rock outcrop			İ	İ		İ	İ
DAM.		 	 	 	 	 	
Dam							į
w.		 	 	 		 	
Water		İ	İ	į	İ	İ	İ

Table 13.—Erosion Properties of the Soils

(Entries under "Erosion factors" apply to the entire profile. Entries under "Wind erodibility group" and "Wind erodibility index" apply only to the surface layer)

		Erosion factors			Wind	Wind
Map symbol	Depth				erodi- bility	erodi- bility
and soil name	(inches)	Kw	Kf	T		
			<u> </u>		group	index
101:		 				
Oxyaquic Xerofluvents	0 - 0			2	7	38
	0-2	.20	.28	İ	İ	į
İ	2-4	.10	.10	İ	İ	Ì
İ	4-10	.15	.17	İ	İ	Ì
	10-17	.10	.10	İ	İ	İ
	17-28	.10	.10			
	28-39	.24	.32			
	39-43	.10	.10			
	43-57	.10	.10			
	57-60	.02	.02			
Riverwash		 		5	1	180
Fluvaquents	0-1	.10	.15	5	3	 86
-	1-4	.20	.28	İ	İ	İ
İ	4-6	.17	.24	İ	İ	Ì
İ	6-10	.28	.37	İ	İ	Ì
	10-60	.28	.37	į		İ
 101t:				 		
Lithnip	0-1	.05	.28	1	8	0
	1-5	.10	.32	İ	İ	İ
	5-15			ļ		ļ
Rock outcrop.		 		 		
Fishsnooze	0-1	.10	.24	2	6	48
	1-9	.10	.24	İ	İ	İ
	9-13	.10	.24	İ	İ	İ
	13-35	.05	.24			
	35-45					
102:						l I
Oxyaquic Xerofluvents	0 - 0	j	j	2	3	86
	0 - 2	.17	.24	İ	İ	İ
	2-4	.10	.10			
	4-10	.15	.17			
	10-17	.10	.10			
	17-28	.10	.15			
	28-39	.10	.15			
	39-43	.10	.15			
	43-57	.10	.15			
	57-60	.02	.02			
Riverwash		 		 5 	1	 180
102t:						_
Lithnip	0-1	.05	.28	1	8	0
	1-5 5-15	10	.32	 		
Rock outcrop.		 		į į		İ

Table 13.-Erosion Properties of the Soils-Continued

		Erosion factors			Wind	Wind
Map symbol and soil name	Depth (inches)	 Kw 	Kf	T	erodi- bility group	erodi- bility index
			į į			ļ
102t:	0-1	.10	 .24	2	6	 48
r isiisiiooze	1-9	1 .10	.24	2	0	40
ł	9-13	.10	.24			}
İ	13-35	.05	.24		I	
	35-45					
104:			 			
Aquandic Humaquepts	0 - 8	.02	.02	3	3	86
i	8-18	.02	.02		İ	İ
į	18-26	.28	.32		İ	İ
	26-68	.10	.10			į
 111t:						
Whittell	0 - 0	j	j j	3	2	134
İ	0 - 7	.05	.20			
	7-20	.05	.24			
	20-32	.05	.24			
	32-42					
Jobsis	0 - 5	.05	.17	1	3	86
İ	5 - 9	.05	.17			
İ	9-17	.05	.17			
į	17-20	.05	.17			
	20-30					
Rock outcrop.		 				
151:		ļ	į į	_		
Elcapitan	0-1			3	7	38
!	1-7	.28	.28			
!	7-12	.24	.24			
!	12-20	.24	.24			
	20-31	.28	.28			
	31-38	.32	.32			
	38-44	.20	.20			
}	44-47	.20	.20			
}	47-53	.10	.10			
	53-58 58-60	.20	.20 .20			
152:						
Vitrandic Haploxerolls	0-2	.20	.24	5	3	86
	2-3	.10	.10	-		
	3-5	.24	.28			i
	5-13	.24	.28			i
	13-18	.28	.32			i
	18-24	.05	.10			i
i	24-28	.02	.02			1
i	28-32	.02	.05			1
						i
	32-60	.05	.05			

Table 13.-Erosion Properties of the Soils-Continued

Map symbol and soil name	Depth (inches)	Erosion factors			Wind	Wind	
		 Kw	 Kf	 T 	erodi- bility group	erodi- bility index	
201: Leidig	0-0 0-7 7-16 16-23 23-30 30-34 34-42 42-46 46-52 52-58 58-60	.17 .28 .32 .43 .28 .28 .49 .28		5	7	38	
210: Rubble land.	30-00	•2 • 	.24	 	 	 	
Typic Cryorthents	0-2 2-13 13-19 19-60	 .10 .15 .15	.17 .37 .43	 4 	3	 86 	
Rock outcrop.						 	
Xeric Dystrocryepts	0-1 1-5 5-13 13-28 28-60	.17 .10 .10 .20	.24 .28 .28 .28	 4 	7 	38 	
211: Xeric Dystrocryepts	0-1 1-9 9-19 19-32 32-60	.10 .05 .05	.20 .20 .20 .28	 4 	7	 38 	
Canisrocks	0-0 0-1 1-4 4-18 18-28 28-34 34-60	.02 .02 .02 .02 .02	.02 .05 .05 .05	 4 	7	 38 	
Oxyaquic Dystrocryepts	0-0 0-9 9-16 16-23 23-60	 .15 .15 .15 .17	.17 .20 .24 .24	 4 	 7 	 38 	
213: Canisrocks	0-0 0-3 3-12 12-60	.05 .10	 .10 .15 .17	 4 	 7 	 38 	

Table 13.-Erosion Properties of the Soils-Continued

		Ero	sion facto	Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	 Kf	 T 	erodi- bility group	erodi- bility index
213:				 		
Glacierpoint	0 - 0			4	7	38
	0-1			İ	İ	
	1-9	.02	.10			
	9-15	.02	.10			
	15-20	.10	.20			
	20-29	.05	.17			
	29-37 37-60	.10	.24	 		
			j			
Vitrandic Dystrocryepts	0-0 0-1			4	7	38
	1-11	.17	.20	 		
	11-17	.20	.24	 		
	17-25	.20	.28			
	25-37	.15	.28		i	
	37-60	.15	.28	į		
214:				 		
Marmotland	0-0			4	7	38
	0-11	.24	.28	İ	İ	
	11-19	.37	.43	İ	j	İ
	19-36	.37	.43	İ	j	İ
	36-48	.43	.49	j	İ	İ
	48-60	.43	.49	į	İ	
Oxyaquic Dystrocryepts	0-2	.10	.10	 4	3	86
	2-7	.10	.10	j	İ	İ
	7-14	.15	.15			
	14-20	.15	.15			
	20-31	.15	.15			
	31-40	.10	.15	ļ		
	40-61	.05	.17	 		
Xeric Dystrocryepts	0-1			4	7	38
	1-2					
	2-16	.15	.17		ļ	
	16-23	.10	.10			
	23-36	.10	.15			
	36-63 63-69	.10	.28			
	03-09	.02	.10			
215:					_	
Typic Cryorthents	0-0			4	7	38
	0-1 1-3	.15				
	3-12	.05	.20	 		
	12-18	.05	.10	 		
	18-22	.05	.15	 		
	22-60	.10	.28			
Rock outcrop.				 		
Rubble land.						
219:						
Rock outcrop.						
Rubble land.						
Auddie land.						

Table 13.-Erosion Properties of the Soils-Continued

	Depth (inches)	Erosion factors			Wind	Wind
Map symbol and soil name		 Kw	Kf	 T 	erodi- bility group	erodi- bility index
219: Canisrocks	0-0 0-1 1-4 4-18 18-28 28-34 34-60	 .02 .02 .02 .02	 .02 .05 .05 .02	 4 	 7 	38
221: Typic Cryorthents	0-2 2-13 13-19 19-60	.10 .10 .10 .15 .10	.17 .32 .43	 4 	3	86
Xeric Dystrocryepts	0-3 3-19 19-60	.28 .20 .28	.37 .43 .43	 4 	3	 86
Oxyaquic Dystrocryepts	0-0 0-9 9-16 16-23 23-60	.15 .15 .15 .17 .10	.17 .20 .24 .24	 4 	 7 	 38
222: Canisrocks	0-0 0-2 2-7 7-14 14-60	.05	 .17 .10	 4 	 7 	38 38
Rubble land.				 		
Rock outcrop.		 		 		
Crazymule	0-0 0-5 5-22 22-35 35-60	.10 .05 .05 .32	.15 .17 .20	4 	7	38
223: Rock outcrop.		 		 		
Rubble land.		 		 		
Canisrocks	0-0 0-1 1-4 4-18 18-28 28-34 34-60	 .02 .02 .02 .02 .02	 .02 .05 .05 .02 .05	4 	7 	86
224: Rock outcrop.		 	 			

Table 13.-Erosion Properties of the Soils-Continued

		Erosion factors			Wind	Wind
Map symbol and soil name	Depth (inches)	 Kw	Kf	 T 	erodi- bility group	erodi- bility index
224: Crazymule	0-0 0-5 5-22 22-35 35-60	.10 .05 .05 .28	.15 .17 .20	 4 	 7 	 38
Vitrandic Cryorthents	0-2 2-2 2-7 7-15 15-24 24-60	.32 .20 .15	.37 .32 .32	4 	7	38
225: Canisrocks	0-0 0-1 1-4 4-18 18-28 28-34 34-60	.02 .02 .02 .02 .02	.02 .05 .05 .05	 4 	7 7 	38
Rock outcrop.			ļ	 	ļ	
Rubble land.			ļ ļ	 		
Vitrandic Dystrocryepts	0-1 1-2 2-5 5-12 12-26 26-30 30-60	.17 .05 .05 .05 .05	.20 .15 .28 .37	4 4 	7 7 	38
227: Canisrocks	0-0 0-2 2-6 6-17 17-25 25-34 34-60	.15 .17 .05 .05 .05	.24 .28 .20 .20 .17	 4 	 7 	38
Crazymule	0-1 1-2 2-12 12-22 22-34 34-60	 .20 .05 .17	 .28 .24 .32 .43	 4 	 7 	 38
228: Xeric Dystrocryepts	0-4 4-14 14-20 20-30 30-60	.10 .05 .05 .02	.10 .10 .15 .10	 4 	7 7 	 86

Table 13.-Erosion Properties of the Soils-Continued

Depth (inches) 0-6 6-14 14-21	.20	Kf	Т	erodi- bility group	erodi- bility index
6-14	.20	 		bility	bility
6-14	.20				
		.24	4	3	 86
14-21	.20	.24		İ	İ
	.17	.32		İ	
21-28	.28	.55		İ	
28-60	.17	.43			
0 - 0	.17	.20	4	3	86
0 - 9	.10	.17		İ	
9-16	.15	.24		İ	
16-23	.17			İ	
23-60	.10	.24		İ	
0 - 0		 	4	3	 86
0-2				İ	
2-5	.24	.28		İ	İ
5-12	.15	.20		İ	İ
12-19	.15	.24		İ	
19-28	.15	.32		İ	
28-60	.10	.28			
0 - 1		l 	4	7	 86
-			_	,	
					!
		!			İ
		1			İ
		1			İ
					İ
		1			İ
35-60	.02	.10			
0 - 0		 	4	7	 86
			_	,	
		!			!
					!
17-60	.10	.28			
0 - 0			4	7	 86
0-2	.10	!	_	İ	İ
2-10	.10			İ	İ
		:			İ
24-60	.02	.10			
0 - 0		 	4	7	86
		1	-	i .	
				İ	İ
					İ
					İ
31-60	.10	.32			
	0-0 0-9 9-16 16-23 23-60 0-0 0-2 2-5 5-12 12-19 19-28 28-60 0-1 1-1 1-2 2-6 6-10 10-17 17-26 26-35 35-60 0-0 0-1 1-3 3-9 9-17 17-60 0-0 0-2 2-10 10-24 24-60 0-0 0-6 6-9 9-18 18-31	0-0	0-0 .17 .20 0-9 .10 .17 9-16 .15 .24 16-23 .17 .24 23-60 .10 .24 0-0 0-2 2-5 .24 .28 5-12 .15 .20 12-19 .15 .24 19-28 .15 .32 28-60 .10 .28 0-1 1-1 1-2 2-6 .10 .10 .15 10-17 .10 .28 17-26 .05 .17 26-35 .02 .10 35-60 .02 .10 0-0 0-1 1-3 .32 .43 3-9 .24 .55 9-17 .10 .28 17-60 .10 .28 <	0-0 .17 .20 4 0-9 .10 .17 9-16 .15 .24 16-23 .17 .24 23-60 .10 .24 0-0 4 .24 .24 0-0 4 .24 .28 .25 .24 .28 .25 .24 .28 .25 .24 .28 .29 .24 .28 .29 .24 .28 .29 .24 .28 .29 .24 .28 .29 .24 .28 .29 .28 .28 .29 .28 .28 .29 .28 .28 .29 .28 .28 .29 .28 .28 .29 .28 .29 .28 .29 .28 .29 .28 .29 .28 .29 .2	0-0 .17 .20 4 3 0-9 .10 .17 9-16 .15 .24 16-23 .17 .24 .28 .24 .28 23-60 .10 .24 .24 .28 .24 .28 .24 .28 .24 .28 .28 .29 .24 .28 .29 .24 .28 .29

Table 13.-Erosion Properties of the Soils-Continued

Map symbol and soil name		Erosion factors			Wind	Wind
	Depth (inches)	Kw	Kf	 T 	erodi- bility group	erodi- bility index
235:				 		
Canisrocks	0-1			4	7	38
	1-3					
	3-4					
	4-11 11-17	.10 .10	10			
	17-37	.05	.05			
	37-53	.05	.10			
į	53-68	.05	.10			ļ
Rock outcrop.				 		
Rubble land.			 	 		
137:						
Canisrocks	0 - 0			4	7	38
	0-3 3-8	.17 .05	.20			
	3-8 8-13	.03	.05			
	13-27	.05	.10			
	27-60	.02	.05			
Clacierpoint	0 - 0			4	7	38
2	0 - 4	.17	.20	İ	İ	
	4-17	.05	.10	į	j	İ
	17-27	.05	.10			
	27-60	.05	.17			[[
Vitrandic Cryorthents	0-1	.32	.32	4	2	134
	1-6	.10	.15			!
	6-12 12-60	.17 .15	.24	 		
38:			į	į	İ	į
Oxyaquic Cryorthents	0 - 3	.28	.28	4	3	 86
	3-13	.28	.28			
	13-18	.24	.32			
	18-30	.20	.24			
	30-60	.10	.10	 		
Canisrocks	0 – 0			4	7	86
	0-1					
	1-4	.02	.02			
	4-18 18-28	.02	.05			
	28-34	.02	.02			
į	34-60	.02	.05			ļ
239:						
Crazymule	0 - 0			4	7	86
į	0 - 5	.20	.24			[
Į.	5-13	.15	.28			
	13-23 23-60	.17 .10	.37			l I
Canisrocks	0 - 0			4	7	38
Canisiocks	0-0 0-1	 		4	'	38
	1-4	.02	.02			
	4-18	.02	.05		İ	İ
į	18-28	.02	.05	į	İ	j
	28-34	.02	.02	İ	İ	İ
	34-60	.02	.05			

Table 13.-Erosion Properties of the Soils-Continued

		Erosion factors			Wind	Wind
Map symbol and soil name	Depth (inches)	 Kw 	Kf	 T 	erodi- bility group	erodi- bility index
241:				 		
Canisrocks	0 - 0	j	j	4	7	38
	0-1					
	1-4	.05	.05			
	4-18	.02	.02			
	18-28	.02	.02			
	28-34	.02	.02	İ	İ	İ
	34-60	.02	.02	į		
242: Rock outcrop.		 		 		
Canisrocks	0 - 0			4	7	38
	0-1					
j	1-1	i	i			
	1-7	.02	.10			
j	7-23	.02	.10			
j	23-32	.05	.20			
	32-60	.02	.15	į		
Xeric Dystrocryepts	0 - 0	 		 4	7	38
	0 - 5	.10	.10	į	İ	İ
	5-20	.10	.20	į	İ	İ
	20-35	.10	.15	į	İ	İ
	35-47	.20	.24	į	İ	İ
	47-60	.05	.05	į		İ
244:				 		
Typic Cryorthents	0 - 0	j		4	7	86
	0-1					
	1-4	.02	.02			
	4-18	.02	.05			
	18-28	.02	.05			
	28-34	.02	.02	İ	İ	İ
	34-60	.02	.05	į		
Rubble land.		 		 		
Rock outcrop.						
245: Rock outcrop.		 	 	 		
Canisrocks	0 - 0			4	7	38
	0-1					
	1-4	.02	.02			
	4-18	.02	.05			
j	18-28	.02	.05			
	28-34	.02	.02			
	34-60	.02	.05	İ		
Xeric Dystrocryepts	0-2	.17	.24	-	3	86
j	2 - 4	.17	.24			
İ	4-11	.32	.37	İ	İ	Ì
	11-60	.64	.64	ĺ		
246.		 		 		
Rock outcrop, domes		ļ	ļ	ļ		

Table 13.—Erosion Properties of the Soils—Continued

		Erosion factors			Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	 Kf	T	erodi- bility group	erodi- bility index	
247:				 		 	
Canisrocks	0-2			4	7	86	
	2-8	.02	.05				
	8-36	.05	.10				
	36-45	.02	.05				
	45-60	.02	.05	 			
Xeric Dystrocryepts	0-1			4	7	86	
	1-2						
	2-10	.15	.17				
	10-21	.10	.10				
	21-31	.10	.10				
	31-42	.15	.15				
	42-58 58-60	.15 .10	.17	 		 	
						İ	
248: Canisrocks	0-1			4	7	38	
Canisiocks	1-2			4	'	38 	
	2-2			 			
	2-5	.05	.10				
	5-13	.05	.17	 			
	13-32	.05	.15	i			
j	32-60	.02	.10			İ	
Rock outcrop.				 		 	
Glacierpoint	0 - 0			 4	7	86	
	0-1			i -	,		
	1-4	.05	.17	i	i	i	
	4-16	.10	.20	j	i	İ	
	16-27	.10	.20	į	İ	İ	
İ	27-46	.02	.02	İ	İ	İ	
	46-64	.05	.10			ļ	
249: Rock outcrop.			 	 		 	
Canisrocks	0-1			 4	7	86	
	1-3			İ	İ	İ	
	3 - 4			İ	İ	İ	
	4-11	.10	.10				
	11-17	.10	.10				
	17-37	.05	.05				
	37-53	.05	.10	ļ I			
	53-68	.05	.10	 		l I	
250:	_			į			
Canisrocks	0-0			4	7	38	
	0-1						
	1-4	.02	.02	 			
	4-18 18-28	.02	.05	 			
	28-34	.02	.03	 			
	34-60	.02	.05				
Voria Duatroaryonta	0 - 0			 4	7	 86	
Xeric Dystrocryepts	0-0			** 	'	00	
	1-9	.10	.24				
	9-19	.10	.28			i	
	19-32	.05	.37		İ	i	
	32-60	.05	.37	į	İ	i	

Table 13.-Erosion Properties of the Soils-Continued

Map symbol and soil name	Depth (inches)	Erosion factors			Wind	Wind	
		Kw	Kf	 T 	erodi- bility group	erodi- bility index	
251:							
Glacierpoint	0 - 0			4	7	38	
	0-1						
	1-4	.05	.17				
	4-16	.10	.20				
	16-27	.10	.20				
	27-46 46-64	.02	.02	 		ļ	
Typic Cryorthents	0 - 0			 4	7	38	
İ	0 - 4	.05	.17	İ	İ	İ	
	4-10	.05	.10				
	10-16	.05	.10				
	16-30 30-60	.10 .10	.20	 		 	
252:				<u> </u> 		Í I	
Rock outcrop.				į		İ	
Canisrocks	0 - 0			4	7	38	
	0-1				ļ		
	1-4	.02	.02		ļ		
	4-18	.02	.05				
	18-28	.02	.05				
	28-34 34-60	.02	.02			<u> </u>	
Xeric Dystrocryepts	0-3	.15	.17	 4	2	134	
	3-15	.05	.10	İ	İ	İ	
İ	15-35	.05	.15	İ	İ	İ	
	35-47	.05	.15				
	47-61	.05	.17			<u> </u>	
253: Canisrocks	0-1			4	7	38	
	1-2			İ	İ		
İ	2-3	.20	.28	İ	İ	İ	
į	3-11	.05	.10	İ	İ	İ	
İ	11-23	.05	.10				
	23-35	.05	.28				
	35-60	.05	.28	 			
Glacierpoint	0 - 0			4	7	86	
	0 - 4	.15	.32	[ļ	
	4-7	.15	.32				
	7-11	.10	.32		ļ		
	11-19 19-60	.05	.32	 			
Humic Dystrocryepts	0 - 0			4	7	38	
	0-1			-	,		
	1-2			İ	İ	i	
İ	2-16	.10	.20	İ	İ	İ	
İ	16-30	.05	.20	İ	İ	İ	
	30-60	.02	.28	 		<u> </u> 	
256:	0.7					20	
Craneflat	0-1			4	7	38	
	1-2 2-7	.05	.10				
	7-13	.05	1 .17				
	13-60	.10	.24				

Table 13.-Erosion Properties of the Soils-Continued

	Depth (inches)	Erosion factors			Wind	Wind
Map symbol and soil name		Kw	Kf	 T 	erodi- bility group	erodi- bility index
256: Rock outcrop.			 	 		
Rubble land.				 		
Waterwheel	0-1			 4	7	 38
	1-2			į	İ	į
	2-2		15			ļ
	2-6 6-14	.05 .10	.15	 		l I
	14-28	.02	.10			İ
	28-60	.02	.15	į		
257:						
Badgerpass	0-1			4	7	38
	1-6	.15	.17			
	6-13 13-21	.15 .17	.20			
	21-32	.17	.24	 		l I
	32-50	.17	.24			I I
	50-60	.05	.15			İ
Oxyaquic Dystroxerepts	0-11	.24	.32	 4	5	 56
i	11-19	.24	.32	į	j	į
	19-32	.17	.28			ļ
	32-43	.37	.37			ļ
	43-60	.24	.24	 		
258: Typic Dystroxerepts	0-1			4	7	 38
17920 2720200020902	1-2			<u>-</u>	,	İ
į	2-2			İ	İ	İ
į	2-3	.20	.20	İ	İ	ĺ
	3-11	.28	.28			ļ
	11-26	.43	.43			ļ
	26-43	.37	.37			
	43-60	.10	.32	 		
Badgerpass	0-2 2-7	.10	.10	4	7	38
-	7-18	.05	.05			l I
	18-37	.02	.02			İ
i	37-55	.02	.02	İ	İ	İ
	55-67	.02	.02	İ		
Dystric Xerorthents	0-1			4	7	38
	1-2					ļ
	2-3					
	3-11 11-24	.05	.10			l I
+	24-38	.10 .10	.20			l I
	38-60	.15	.32			
260:				 		
Rock outcrop.						
Craneflat	0-1			4	7	38
	1-2	.15	.20			
	2-4	.15	.20			
	4-13 13-19	.05 .05	.10			
	19-60	.03	.15	ļ.	!	!

Table 13.-Erosion Properties of the Soils-Continued

		Erosion factors			Wind	Wind
Map symbol and soil name	Depth (inches)	Kw	 Kf 	 T 	erodi- bility group	erodi- bility index
260:						
Dystric Xerorthents	0-1			4	7	38
ļ	1-1					
	1-5	.24	.28			
	5-17	.24	.28			
	17-60	.28	.32	 		
261:						
Dystric Xeropsamments	0 - 0			4	7	38
	0 - 6	.15	.17			
ļ	6-18	.15	.17			
	18-25	.15	.17			
	25-41	.17	.20			
	41-60	.17	.24			
Typic Dystroxerepts	0-0			4	7	38
	0-1			İ	İ	İ
į	1-3	.10	.17	İ	İ	İ
į	3 - 8	.17	.24	İ	İ	İ
į	8-20	.20	.32	İ	İ	İ
į	20-31	.15	.32	İ	İ	İ
	31-60	.10	.37	į		į
Badgerpass	0-7	.10	 .17	 4	2	134
Ladgerpass	7-18	.10	.15	1 -	-	131
	18-60	.17	.24			
Rock outcrop.						
262:			 			
Humic Dystroxerepts	0 - 0			4	7	38
1	0-1			İ	İ	
į	1-2	.05	.24	i	İ	İ
į	2-5	.05	.20	İ	İ	İ
į	5-18	.05	.24	İ	İ	İ
	18-60	.05	.28	į		İ
Dystric Xerorthents	0-1			 4	7	38
Dyberre mererements	1-2			-	,	
i	2-3			i		i
į	3-11	.05	.10	İ	i	İ
i	11-24	.10	.20	İ	İ	İ
į	24-38	.10	.20	i	İ	İ
	38-60	.15	.32	į		į
Rock outcrop.				 		
264:			 	 		
Crazymule	0-1			4	7	38
- i	1-2			İ	İ	İ
į	2-12	.17	.24	į	İ	İ
į	12-22	.05	.32	İ	İ	İ
į	22-34	.20	.37	İ		İ
	34-60	.10	.20			
Canisrocks	0-1			 4	7	38
· · · · · · · · · · · · · · · · · · ·	1-2			i -	· ·	
i	2-3	.15	.17			i
j	3-11	.10	.24			i
j	11-23	.05	.17	İ	İ	İ
į	23-35	.02	.17	į	İ	İ
}	35-60	.02	.20	i	i	i

Table 13.-Erosion Properties of the Soils-Continued

Map symbol and soil name	Depth (inches)	Erosion factors			Wind	Wind
		Kw	Kf	 T 	erodi- bility group	erodi- bility index
267:			 	 		
Rock outcrop.						l I
Typic Cryorthents	0-5	.05	.10	4	7	38
	5-13	.05	.15	İ	İ	İ
Į.	13-28	.05	.32]
	28-60	.10	.37			
Xeric Dystrocryepts	0-2			4	7	 38
	2-4			i -	,	i
į	4-13	.02	.02	İ	İ	İ
ĺ	13-20	.02	.02			
Į.	20-30	.02	.02			[
	30-42	.02	.02			
	42-48	.10	.10			
1	48-62 62-78	.05 .10	.05			
	78-84	.10	.15			
268: Rock outcrop.			 	 		
Canisrocks	0 - 0			4	7	 38
į	0-1			İ	İ	Ì
ĺ	1-4	.02	.02			
Į.	4-18	.02	.05			
ļ	18-28	.02	.05			
	28-34 34-60	.02	.02			
Glacierpoint	0 - 0			4	7	 38
i	0-1			İ	İ	İ
ĺ	1-4	.05	.17			
Į.	4-16	.10	.20			[
	16-27	.10	.20		ļ	ļ
	27-46 46-64	.02	.02	 		
269:			į	į	į	į
Canisrocks	0 - 0			4	7	38
į	0-2	.10	.15	İ	İ	İ
Į.	2 - 7	.05	.05			[
	7-20	.02	.10			ļ
	20-60	.02	.17 			
Rock outcrop.				İ		l I
Glacierpoint	0-0			4	7	38
	0-1					
	1-4 4-16	.05	.17			
-	16-27	.10 .10	.20			
1	27-46	.02	.02			İ
	46-64	.05	.10	į		į
270:						
Rock outcrop.						

Table 13.-Erosion Properties of the Soils-Continued

		Erosion factors			Wind	Wind	
Map symbol and soil name	Depth (inches)			 T	erodi- bility	erodi- bility	
				<u> </u>	group	index	
270:							
Typic Cryorthents	0-0			 4	7	 38	
7,5-0 0-7,0-0-0-0-0	0-1			i -		i	
i	1-4	.02	.05	i		i	
i	4-18	.02	.10	i		i	
į	18-28	.02	.15	i	İ	i	
i	28-34	.02	.15	i	İ	İ	
į	34-60	.02	.17		İ	İ	
Vitrandic Dystrocryepts	0-3	.15	.15	4	2	134	
	3 - 4	.10	.10			ļ	
ļ	4-8	.10	.15	!			
	8-17	.05	.24			ļ	
	17-60	.05	.20	 		 	
271:						! 	
Rock outcrop.				İ	İ	j I	
Lithic Xerorthents	0-3	.05	.20	4	1	180	
	3 - 7	.02	.20				
	7-60						
Waterwheel	0-1			 4	7	 38	
	1-2		i	i -		i	
i	2-2		i	i	İ	İ	
i	2-6	.05	.15	i	İ	İ	
i	6-14	.10	.28	i	İ	İ	
i	14-28	.02	.10	i	İ	İ	
į	28-60	.02	.15	İ		İ	
273:				 		 	
Nevadafalls	0 - 0	.10	.15	4	7	38	
į	0 - 6	.10	.15	İ	İ	İ	
į	6-17	.15	.17	İ	İ	İ	
į	17-31	.05	.10	İ	İ	İ	
İ	31-60	.05	.17	į		ļ	
Waterwheel	0-0			 4	7	 38	
	0-1			<u> </u>	i .	İ	
j	1-1				İ	İ	
i	1-6	.15	.20		İ	İ	
j	6-11	.10	.20		İ	İ	
i	11-19	.10	.24		İ	İ	
	19-60	.10	.24	į		į	
274.				 		 	
Rock outcrop, domes	İ		İ	İ	İ	İ	
	i		İ	i	i	i	

Table 13.-Erosion Properties of the Soils-Continued

Map symbol and soil name		Erosion factors			Wind	Wind
	Depth (inches)	Kw	Kf	 T 	erodi- bility group	erodi- bility index
275:						
Oxyaquic Dystroxerepts	0-1			4	7	38
	1-2			İ	İ	İ
	2-9	.10	.20			
	9-19	.10	.28			ļ
	19-34	.10	.32			
	34-46	.05	.24			
	46-60	.02	.24			l I
Dystric Xerorthents	0-1			4	7	38
i	1-2			İ	İ	į
	2-2		i	İ	İ	İ
	2-6	.05	.15	İ	İ	İ
į	6-14	.10	.24	İ	İ	İ
	14-28	.05	.24			
	28-60	.05	.24			
Vitrandic Xerorthents	0-8	.10	 .15	 4	5	 180
Vitrandic Xerorthents	8-18	.20	.32	1 4] 5	1 100
	18-24	.43	.43			l I
	24-35	.24	.28			ľ
	35-50	.20	.24			i
	50-62	.28	.28	İ		İ
Rubble land.	İ		j I	<u> </u> 	İ	
į	į		į	į	İ	į
76:				_		
Happyisles	0-3			5	3	86
	3-7	.20	.24			ļ
	7-13 13-17	.20 .20	.24			ļ
	17-33	.24	.24			l I
	33-60	.24	.28	 		
į	i			İ		İ
Typic Dystroxerepts	0-1			3	5	56
	1-19	.10	.20			
	19-28	.10	.20			
	28-33	.05	.24			ļ
	33-50	.02	.10			ļ
	50-60	.05	.28			
!77:			 			
Tuolumne	0-1			4	7	38
į	1-2		j	İ	İ	j
İ	2-5	.10	.10	İ	İ	İ
	5-32	.02	.10	İ	İ	İ
Į.	32-60	.02	.10	[ļ
Humic Dystroxerepts	0_1			4	7	 38
numic pasticxetebrs	0-1 1-1			4	'	38
	1-1					
	2-15	.02	.10			I I
	15-25	.02	.20			!
j	25-60	.02	.24			
78:			 	 	 	
Rock outcrop.						
Tuolumne	0-2	.05	.10	4	2	 134
	2-10	.05	.17	-	-	
	10-35	.02	.10			İ
	35-60	.10	.17	i		i

Table 13.-Erosion Properties of the Soils-Continued

		Erosion factors			Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	 Kf	 T 	erodi- bility group	erodi- bility index	
270.							
278: Humic Dystroxerepts	0-1			 4	2	134	
	1-1			i -	_		
İ	1-10	.05	.10	j	İ	İ	
	10-21	.02	.05			[
	21-60	.02	.10	 		İ	
Rubble land.				 			
279:							
Canisrocks	0-2			4	7	38	
!	2-2						
	2-11 11-21	.10 .05	.10	 			
i	21-29	.03	.10	 			
i	29-36	.02	.10	 			
i	36-60	.02	.15	 	1		
						İ	
Xeric Dystrocryepts	0 – 0			4	7	38	
	0-1						
	1-4	.02	.02				
	4-18	.02	.02				
!	18-28	.02	.05				
	28-34 34-60	.02	.02	 			
ł	34-60	.02	.05	 			
280:			İ	İ	İ	İ	
Typic Dystroxerepts	0-1			4	7	38	
	1-2						
	2 - 4 4 - 8	.15	.17	 			
ļ	8-15	.17 .20	.20	 			
i	15-24	.20	.24	 			
i	24-36	.24	.28	 	i		
	36-60	.20	.28	ļ		į	
Humic Dystroxerepts	0 - 2			 4	7	 38	
namic by belonelepes	2-2			-	· '		
İ	2-3			İ	İ		
į	3 - 8	.05	.10	İ	İ	İ	
İ	8-16	.10	.17	ĺ	İ	İ	
	16-30	.10	.32				
	30-60	.10	.28			İ	
Rock outcrop.				 		 	
282:					j	İ	
Clarkslodge	0-1			4	7	38	
	1-2					!	
	2-6	.15	.20				
	6-19 19-34	.10 .10	.24	 			
i	34-60	.10	.32	 		 	
	İ		į		_		
Craneflat	0-1			4	7	38	
	1-1			 			
	1-2 2-4	.05	.15	 			
	4-11	.05	.20	 			
	11-22	.05	.15				
	22-30	.10	.24	İ	İ	i	
İ	30-60	.05	.10	j	İ	İ	

Table 13.—Erosion Properties of the Soils—Continued

		Erosion factors			Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	 Kf 	 T 	erodi- bility group	erodi- bility index	
202							
282: Nevadafalls	0-0			 4	7	38	
	0-6	.10	.15	i -			
į	6-17	.15	.17	İ	i	İ	
į	17-31	.05	.10	İ	İ	İ	
	31-60	.05	.17				
283:				 			
Waterwheel	0-1	.15	.32	4	2	134	
	1-7	.17	.32				
	7-26	.10	.37				
	26-60	.02	.15	 		 	
Nevadafalls	0-1			4	7	38	
	1-2			!			
!	2-6	.17	.20	!			
	6-11	.17	.20				
	11-21 21-60	.28 .20	.32	 			
Rock outcrop.				 		 	
285:			 	 		 	
Waterwheel	0 - 0		j	4	7	38	
į	0 - 4	.10	.10	İ	İ	İ	
İ	4-8	.10	.15				
	8-16	.05	.10				
	16-60	.02	.15	 		 	
Humic Dystroxerepts	0-1			4	7	38	
!	1-6	.15	.15				
}	6-13	.17	.20				
	13-24	.17	.20				
	24-42	.15 .10	.15	 			
	42-55 55-60	.10	.15	 		 	
286:			[
Nevadafalls	0-8	.05	.10	4	2	134	
	8-21	.15	.20				
	21-28	.17	.24				
	28-60	.15	.17	 		 	
Typic Dystroxerepts	0-1			4	7	38	
!	1-2						
	2-3						
	3-16	.10	.10				
	16-25 25-35	.15 .24	.20	 			
	35-60	.20	.28	 			
Ultic Palexeralfs	0-1			 4	7	38	
	1-2			i			
	2-9	.28	.32	İ		i	
İ	9-14	.32	.32	İ	İ	İ	
İ	14-22	.32	.32	İ	İ	İ	
	22-32 32-60	.32	.32	į		į	
	J2-00	.20	.44				
Rock outcrop.			I	I	I	1	

Table 13.-Erosion Properties of the Soils-Continued

		Erosion factors			Wind	Wind
Map symbol and soil name	Depth (inches)	 Kw	Kf	 T 	erodi- bility group	erodi- bility index
287: Badgerpass	0 - 2 2 - 2 2 - 3	 	 	 4 	 7 	 38
	3-11 11-25 25-60	.15 .15 .17	.17 .15 .24			
Waterwheel	0-0 0-1 1-4 4-11 11-22 22-29 29-60	 .10 .10 .05 .05	 .10 .10 .05 .15	4 	7	38
288: Rock outcrop.		 	 	 		
Craneflat	0-1 1-1 1-2 2-4 4-11 11-22 22-30 30-60	 .05 .05 .05 .10	 .15 .20 .15 .24	4 	7 	38
Waterwheel	0-0 0-1 1-4 4-11 11-22 22-29 29-60	.10 .10 .05 .05	 .10 .10 .05 .15	4	7	38
289: Waterwheel	0-1 1-6 6-15 15-25 25-36 36-60	.10 .05 .05 .05	.15 .15 .15 .15 .17	 4 	7 7 	38
Craneflat	0-2 2-4 4-4 4-12 12-23 23-28 28-60	 .05 .05 .05	 .20 .20 .24 .37	4 	7	38
290: Humic Dystroxerepts	0-0 0-9 9-20 20-60	.15 .05	.20 .15 .24	 4 	7	38

Table 13.—Erosion Properties of the Soils—Continued

		Erosion factors			Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	 Kf	 T 	erodi- bility group	erodi- bility index	
290:				 		İ	
Tuolumne	0-3	.05	.10	4	2	134	
	3-7	.02	.10	İ	İ		
	7-12	.02	.10	İ	İ	İ	
İ	12-24	.02	.10	İ	İ	İ	
	24-39	.05	.24			[
	39-46	.05	.20				
	46-60	.05	.20	 		İ	
Typic Xerorthents	0 - 4	.20	.24	4	7	38	
	4-15	.17	.28	İ	İ	İ	
	15-33	.05	.32	İ	İ	İ	
	33-60						
Ultic Haploxeralfs	0-1			4	7	38	
•	1-2			İ	İ	İ	
	2-2		i	İ	İ	İ	
	2-6	.15	.20				
	6-12	.10	.20				
	12-30	.10	.20				
	30-41	.15	.20				
	41-60	.17	.24				
291:						İ	
Ultic Haploxeralfs	0-1			4	7	38	
	1-2				ļ		
	2-3						
	3-5 5-12	.20	.24				
	12-19	.28	.32				
	19-22	.32	.32	 			
	22-41	.32	.32				
	41-57	.28	.28		i	i	
	57-61	.32	.32	į	İ	į	
Typic Dystroxerepts	0-1			4	7	38	
Typic Dystloxelepts	1-2			*	,	30	
	2-7	.15	.20		i	i	
	7-16	.15	.24	İ	İ	İ	
	16-29	.15	.24	İ	İ	İ	
	29-39	.10	.20				
	39-60	.20	.32				
292:							
Humic Dystroxerepts	0-1			4	7	38	
	1-1				ļ		
	1-3	.05	.10				
	3-4	.10	.10				
	4-7 7-11	.15 .05	.20				
	11-19	.10	.15	 			
	19-31	.05	.17				
	31-60	.05	.28		į	į	
Typic Haploxerults	0-2			4	7	38	
TABLE umdroxetnics	0-2 2-4			4	/	38 	
	4-7	.15	.24				
	7-9	.10	.17			i	
	9-15	.20	.24		İ	i	
	15-22	.20	.32	İ	İ	İ	
j	22-60	.20	.28				

Table 13.-Erosion Properties of the Soils-Continued

		Erosion factors			Wind	Wind
Map symbol and soil name	Depth (inches)	Kw	Kf	 T 	erodi- bility group	erodi- bility index
293:				 		
Xeric Dystrocryepts	0 – 0			4	7	38
İ	0 - 4	.15	.17	İ	İ	İ
	4-20	.15	.17			
	20-34	.10	.10			
	34-47	.10	.20			
	47-60	.10	.20			
Vitrandic Dystrocryepts	0 - 0			4	7	 38
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-2	.20	.20	İ	İ	İ
İ	2-5	.20	.24	İ	i	İ
İ	5-18	.20	.24	İ	i	İ
İ	18-25	.20	.24	İ	i	İ
İ	25-36	.10	.28	į	i	İ
	36-60	.10	.24	į		į
 29 4:						
Waterwheel	0 - 0			4	7	38
İ	0-1		j	İ	İ	İ
İ	1-2		j	İ	İ	İ
İ	2-6	.05	.10	İ	İ	İ
İ	6-11	.05	.10	İ	İ	İ
İ	11-26	.05	.20	İ	İ	İ
	26-60	.05	.02			
Typic Dystroxerepts	0-1			4	7	 38
	1-5	.05	.05	İ	i	İ
İ	5-12	.05	.05	İ	i	İ
İ	12-20	.05	.10	i	i	İ
į	20-28	.05	.20	İ	İ	İ
į	28-49	.10	.20	İ	İ	İ
	49-60			į		į
295:						
Craneflat	0 - 5	.02	.05	4	2	134
ĺ	5-19	.02	.05			
	19-60	.05	.10			
Typic Dystroxerepts	0-1			4	7	 38
<u>-</u>	1-9	.17	.24	İ	İ	İ
İ	9-18	.15	.20	į	İ	İ
İ	18-31	.15	.24	İ	İ	j
	31-60	.28	.32	İ		į
296:				 		
Ultic Palexeralfs	0 - 2			4	7	38
İ	2-3		j			
İ	3 - 6	.24	.28			
İ	6-12	.24	.28			
İ	12-23	.28	.28			
İ	23-32	.32	.32			
İ	32-41	.32	.32			
	41-60	.32	.32	1	I	I

Table 13.—Erosion Properties of the Soils—Continued

		Erosion factors			Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	Kf	T	erodi- bility group	erodi- bility index	
296:		 		 		 	
Humic Dystroxerepts	0-1		j	4	7	38	
	1-3					ļ	
	3 - 6	.15	.15				
	6-17	.20	.24				
	17-22 22-28	.17 .17	.20				
	28-37	.20	.28	 			
	37-48	.20	.24	 			
	48-70	.20	.24		İ	İ	
	70-86	.24	.28	İ	İ	İ	
	86-106	.32	.37	į	į	į	
297:		 					
Typix Xerorthents	0-1			4	7	38	
	1-1					!	
	1-3	.05	.05				
	3-6	.05	.05				
	6-9 9-16	.05	.10	 			
	16-28	.05	.10	 			
	28-60	.02	.10				
Rock outcrop.		 		 		 	
Typic Xeropsamments	0-1	 		 4	7	38	
	1-1	i		İ	İ	İ	
	1-3	.10	.10	İ	İ	İ	
	3 - 7	.15	.15				
	7-12	.15	.15				
	12-17	.15	.15				
	17-21 21-30	.02	.02				
	30-38	.02	.02	 			
	38-60						
298:		 		 			
Tuolumne	0 - 0	i	j	4	7	38	
	0-1						
	1-2					ļ	
	2-6	.05	.10				
	6-11	.05	.10				
	11-26 26-60	.05	.02				
Typic Dystroxerepts	0-1	 		 4	7	38	
-15-3-12-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	1-5	.05	.05	i	1		
	5-12	.05	.05	İ	i	i	
	12-20	.05	.10	İ	İ	İ	
j	20-28	.05	.20	[[
	28-49 49-60	10	.20	 		 	
	15 00			į			
299: Humic Dystroxerepts	0-1	 		 4	7	38	
	1-1		j	j	İ	İ	
j	1-2	i	j	j	İ	İ	
	2 - 4	.02	.02	[[
	4-11	.02	.02	ļ		ļ	
	11-22	.02	.02			!	
	22-30	.10	.20				
	30-60	.05	.10		1	I	

Table 13.-Erosion Properties of the Soils-Continued

		Erosion factors			Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	Kf	 T 	erodi- bility group	erodi- bility index	
299:				 		 	
Ultic Haploxeralfs	0 - 0			4	7	38	
-	0-1		i	İ	j	İ	
İ	1-8	.15	.24	İ	İ	İ	
İ	8-17	.17	.24	İ	İ	Ì	
	17-28	.15	.24	İ	İ	İ	
	28-47	.20	.28				
	47-60	.32	.37				
00:						 	
Typic Dystroxerepts	0-1			4	7	38	
	1-2			İ	İ	İ	
İ	2-2	.15	.20	İ	İ	İ	
	2-5	.15	.20	İ	İ	Ì	
	5-9	.17	.24	İ	İ	Ì	
	9-15	.15	.28	İ	İ	Ì	
	15-20	.20	.28	İ	İ	Ì	
	20-30			į	į	į	
 	0-1			 4	7	 38	
	1-2			i -	i	i	
	2-2			i	i	i	
	2-10	.10	.20	i	i	i	
	10-19	.10	.20	i	i	i	
	19-60	.15	.20	į		į	
01:						 	
Vitrandic Haploxerolls	0-1			5	5	56	
	1-4	.05	.05				
	4-7	.17	.17				
	7-11	.17	.17				
	11-19	.28	.28				
	19-34	.55	.55				
	34-57	.64	.64				
	57-63	.64	.64				
	63-69	.17	.17				
02:						 	
Typic Haploxerults	0-2			4	7	38	
	2-2						
	2-3						
	3-5	.28	.28			ļ	
	5-12	.32	.32				
	12-22	.28	.28				
	22-60	.20	.24				
Ultic Haploxeralfs	0-1			4	7	38	
İ	1-2		i		İ	ĺ	
j	2-2						
İ	2-10	.15	.24				
j	10-19	.15	.24				
	19-60	.15	.20				
303:			1	1			

Table 13.-Erosion Properties of the Soils-Continued

### and soil name (inches)	Wind	Wind	
Dystric Xeropsamments 0-0 4	rodi- ility roup	erodi- bility index	
0-1			
1-3	7	38	
3-5			
S-14			
14-28			
Humic Dystroxerepts			
Humic Dystroxerepts			
Humic Dystroxerepts			
1-2		i	
2-7	7	38	
Tuolumne			
Tuolumne			
Tuolumne			
Tuolumne			
1-9		i	
9-21	3	86	
21-29			
29-44			
44-60			
304: Clarkslodge			
Clarkslodge			
0-1			
0-1	7	38	
1-3		İ	
3-6		İ	
6-12			
12-27			
27-35 .24 .32			
35-60 .28 .37			
Rock outcrop. 305: Rock outcrop. Waterwheel			
Rock outcrop. 0-3 .02 .05 4 3-9 .02 .05 9-11 .02 .05 11-21 .02 .05 21-60 .02 .05 Dystric Xeropsamments 0-0 4 0-6 .15 .17			
Rock outcrop. 0-3 .02 .05 4 3-9 .02 .05 9-11 .02 .05 11-21 .02 .05 21-60 .02 .05 Dystric Xeropsamments 0-0 4 0-6 .15 .17			
3-9 .02 .05 9-11 .02 .05 11-21 .02 .05 21-60 .02 .05			
9-11 .02 .05 11-21 .02 .05 21-60 .02 .05 Dystric Xeropsamments 0-0 4 0-6 .15 .17	1	180	
11-21 .02 .05		İ	
21-60 .02 .05			
Dystric Xeropsamments 0-0 4 0-6 1.15 1.17			
0-6 .15 .17			
0-6 .15 .17	7	38	
6-18 .15 .17		İ	
		İ	
18-25 .17		İ	
25-41 .17 .20			
41-60 .17 .24			
306:			
	2	134	
0-1		İ	
1-4 .05 .05		İ	
4-15 .10 .10			
15-32 .15 .17			
32-43 .15 .17			
43-60 .10 .15			

Table 13.-Erosion Properties of the Soils-Continued

1	_	Ero	sion facto	Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	Kf	 T 	erodi- bility group	erodi- bility index
306:				 		
Humic Dystrocryepts	0 - 0			4	7	38
i	0 - 5	.17	.24	İ	İ	İ
į	5-13	.15	.17	į	İ	İ
į	13-23	.15	.20	İ	İ	İ
į	23-60	.28	.43	į	į	ļ
307:				 		
Rock outcrop.				İ		
Dystric Xeropsamments	0 - 0			 4	7	38
Dyborio noropoumento	0-1			-	,	
ŀ	1-3	.17	.24	l I		l I
i	3-5	.17	.24	¦		1
i	5-14	.15	.17	¦		1
i	14-28	.15	.20	¦		1
i	28-37	.20	.32	¦		1
j	37-60					
Dugtais Venenthents	0-3	.02	0.5	 4	1	180
Dystric Xerorthents			.05	4	<u> </u>	180
	3-9 9-11	.02	.05			
	11-21	.02	.05	 		
i	21-60	.02	.05	 		
09: Rock outcrop.			 	 		
Waterwheel	0-2			 4	7	38
	2-7	.05	.17	<u> </u>	,	
i	7-17	.05	.15	i		i
i	17-31	.10	.20	İ	İ	İ
į	31-60	.10	.28	į	İ	į
Typic Dystroxerepts	0-1			 4	7	38
Typic Dyscioxerepes	1-2				,	30
i	2-2			¦		1
i	2-3	.05	.20	¦		1
	3-7	.05	.15	 		ŀ
i	7-27	.02	.17	i		i
	27-41	.02	.17	i	İ	İ
į	41-60	.05	.24		İ	ļ
Rock outcrop.			 		 	
Humic Dystroxerepts	0 - 0			 4	7	38
¥	0-1			İ	i	
j	1-4	.02	.05	İ	i	İ
j	4-8	.02	.05	İ	i	İ
į	8-30	.02	.10	İ	İ	İ
į	30-39	.02	.10	j	İ	İ
į	39-60	.05	.24	į		İ
Humic Lithic Haploxerepts	0 - 0			 4	7	38
	0-2			i	i '	
	2-2			İ	İ	
	2-10	.10	.20			i
			!	İ	İ	i
			!	İ	İ	i
	10-20 20-60	.05	.24			

Table 13.-Erosion Properties of the Soils-Continued

		Ero	sion facto	Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	Kf	 T 	erodi- bility group	erodi- bility index
311:		 				
Rock outcrop.						
Humic Dystroxerepts	0 - 1 1 - 11	.05	.17	 4 	 2 	 134
	11-30 30-60	.05 .05	.20	 	 	
Humic Lithic Haploxerepts	0 - 0 0 - 2			4	7	38
	2-2 2-10 10-20	 .10 .05	.20	 	 	
	20-60			 		
313: Nevadafalls	0 - 0	 		 4	7	 38
Nevadatatis	0-6	.10	.15	4	,	36
	6-17	.15	.17	İ	İ	j
	17-31	.05	.10			ļ
	31-60	.05 	.17			
Oxyaquic Dystrudepts	0 - 0			4	7	38
	0-10	.20	.20			
	10-35	.24	.24			ļ
	35-48 48-61	.24	.24			
Badgerpass	0-1	j		4	7	38
	1-6	.15	.15			ļ
	6-13	.15	.17			
	13-24 24-42	.15	.17			
	24-42 42-55	.05	.05			l I
	55-60	.05	.05			
Dystric Xeropsamments	0 - 2 2 - 4	 	 	 4	6	38
	4-4					
İ	4 - 9	.15	.17	j	İ	j
	9-25	.17	.20			ļ
	25-30 30-60	.17 .32	.20	 		
Rock outcrop.			<u> </u> 	<u> </u> 	<u> </u> 	
Nevadafalls	0-1			4	7	38
	1-2 2-14	.10	.15			
	2-14 14-35	.05	.17			I I
	35-60	.05	.20			
Dystric Xeropsamments	0 - 0	 		4	7	 38
	0 - 7	.10	.10	İ	İ	j
j	7-16	.15	.17	[
	16-26	.17	.24			ļ
	26-60	.15	.24			

Table 13.-Erosion Properties of the Soils-Continued

		Ero	sion facto	Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	Kf	T	erodi- bility group	erodi- bility index
316: Dystric Xerorthents	0-4 4-13 13-23 23-35 35-393	.15 .10 .10 .10	.28 .28 .32 .32	 4 	 2 	 134
Rock outcrop.				 		
Rubble land.		 		 		
318: Typic Dystroxerepts	0-4 4-12 12-27 27-39 39-57	.10 .20 .24 .24	.10 .24 .28 .28	 4 	 7 	 38
Humic Dystroxerepts	0-0 0-1 1-2 2-5 5-14 14-33 33-46 46-48 48-54 54-60	 .10 .17 .17 .17 .24 .28 .32 .32	 .10 .20 .20 .20 .28 .32 .32	4 	7 	38
319: Humic Dystroxerepts	0-0 0-1 1-5 5-13 13-20 20-35 35-60	 .02 .02 .05 .02	 .02 .05 .17 .17	 4 	7 7 	38
Typic Haploxerults	0-0 0-1 1-2 2-5 5-7 7-12 12-20 20-31 31-46 46-53 53-71		 .10 .10 .20 .17 .20 .20 .10	4 4 	7 	38
Inceptic Haploxeralfs	0-0 0-1 1-4 4-12 12-22 22-30 30-60	 .10 .10 .10 .10 .05 .02	 .20 .32 .32 .24 .32	 4 	7 7 	38

Table 13.—Erosion Properties of the Soils—Continued

Mars. 2		Ero	rs	Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	Kf	 T 	erodi- bility group	erodi- bility index
320:			 	 		
Half Dome	0-1		i	4	7	38
į	1-4	.10	.20	İ	İ	İ
į	4-10	.15	.20	İ	İ	İ
į	10-20	.10	.24	İ	İ	İ
į	20-47	.05	.24	İ	İ	İ
İ	47-61	.17	.24	į		ļ
Humic Dystroxerepts	0 - 0		 	 4	7	 38
i i	0 - 3	.10	.15	İ	İ	İ
i	3 - 7	.10	.15	i	İ	İ
į	7-16	.15	.20	i	i	i
i	16-22	.05	.24	i		i
i	22-35	.02	.20			İ
	35-60	.15	.32			
Rock outcrop.						
21:						
Dystric Xeropsamments, thermic	0 - 0		j	4	7	38
i i	0 - 8	.05	.05	İ	İ	İ
į	8-21	.05	.05	i	i	ì
	21-61	.20	.32	İ		
 	0-3	.02	.05	 4	1	 180
by borrow moror emency	3-9	.02	.05	-	-	1 200
}	9-11	.02	.05			}
<u> </u>	11-21	.02	.05	-		
	21-60	.02	.05			
22:			 	 		
Typic Xerorthents	0 - 0		j	4	7	38
	0 - 7	.17	.24			
İ	7-24	.15	.24			
į	24-42	.05	.28	İ	İ	İ
	42-60	.02	.24	į		į
23:			 	 		
Ultic Haploxeralfs	0-3	.17	.24	4	3	86
	3 - 5	.17	.20			
İ	5-10	.17	.20			
į	10-21	.15	.20	İ	İ	ĺ
į	21-37	.10	.20	İ	İ	İ
	37-60	.05	.24	į		į
 	0-1			 4	7	 38
i	1-2		j	j	İ	İ
į	2-2		j	İ	İ	ĺ
į	2-7	.05	.10	j	İ	į
į	7-15	.20	.24	į	İ	İ
j	15-29	.20	.24	İ	İ	İ
	29-60	.17	.24	į		į
24:			 	 		
Humic Haploxerepts	0 - 0			4	7	38
į	0 - 4	.10	.20			
į	4-8	.05	.17	İ	İ	ĺ
į	8-20	.02	.17	j	İ	į
į	20-30	.05	.20	į	İ	İ
į	30-60	.02	.15	į	İ	İ
				1		1

Table 13.-Erosion Properties of the Soils-Continued

		Ero	sion facto	Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	Kf	 T 	erodi- bility group	erodi- bility index
324: Rock outcrop.			 	 		
Ultic Haploxeralfs	0-0 0-6 6-16 16-29 29-60	.15 .20 .17	.37 .55 .43	 4 	7 	38
325. Urban land			 	 		
328: Clarkslodge	0-0 0-1 1-5 5-11 11-20 20-37 37-60	.17 .10 .15 .10	.24 .24 .28 .24 .28	 4 	7	38
Ultic Palexeralfs	0-1 1-4 4-13 13-31 31-49 49-60	.28 .24 .32 .32 .32	 .37 .37 .43 .37 .43	4 	7 	38
401: Sentinel	0-1 1-5 5-20 20-27 27-41 41-56 56-66	.10 .17 .24 .28 .37	.10 .17 .24 .28 .37	 5 	 5 	 56
412. Water-Riverwash			 	 		
501: Happyisles, sandy loam	0-3 3-7 7-13 13-17 17-33 33-60	.17 .17 .17 .17 .15	.24 .24 .24 .20 .20	 5 	3	 86
Happyisles, loamy fine sand, overwash	0-3 3-7 7-13 13-17 17-33 33-41 41-62	.10 .15 .15 .15 .17	.10 .15 .15 .15 .17	 5 	 2 	 134

Table 13.-Erosion Properties of the Soils-Continued

		Ero	Erosion factors			Wind
Map symbol and soil name	Depth				erodi-	erodi-
	(inches)	Kw	Kf	T 	bility group	bility index
02:						
Happyisles	0-3			5	3	86
	3-7	.10	.10	i		i
	7-13	.15	.15	i		i
	13-17	.15	.15	İ		İ
	17-33	.15	.15			ł
	33-41	1 .17	.17			}
	41-62	.15	.15	 		
				į		į
04: Mollic Xerofluvents	0 - 2	 		 5	 5	 56
	2-6	.37	.37	i		i
	6-8	.05	.10	İ		i i
	8-12	.20	.15	 		İ
	12-23	.05	.10	 		l I
		!	!	 		I I
	23-29	.05	.10			ļ
	29-49	.05	.10			ļ
	49-54	.10	.05			
	54-68	.10 	.05	 	 	
10t:				į		į
Rubble land.		 		 	 	
Lithnip	0 - 1	.05	.28	1	8	0
	1-5	.10	.32	!		ļ
	5-15	 		 	 	
Rock outcrop.				ļ		į
51:		 	 	 		
Happyisles	0-3	i		5	3	86
	3-7	.10	.10			i
	7-13	.15	.15	İ		i i
	13-17	.15	.15			ŀ
	17-33	.15	.15			1
	33-41	1 .17	.17			1
	41-62	.15	.15			
W-16 D	0.1		10		į <u>-</u>	j
Half Dome	0-1	.02	.10	3	5	56
	1-19	.02	.10			ļ
	19-28	.02	.10			ļ
	28-33	.02	.10			ļ
	33-50	.02	.10		!	ļ
	50-60	.02	1 .10	 		
52:						
Mollic Xerofluvents	0 - 2			5	5	56
	2 - 6	.37	.37			
İ	6 - 8	.05	.10			
İ	8-12	.20	.15			
	12-23	.05	.10	j	İ	į
İ	23-29	.05	.10	į	İ	İ
	29-49	.05	.10	<u> </u>	i	İ
	49-54	.10	.05			İ
	54-68	.10	.05	i		i
	J = 00			1	1	1

Table 13.-Erosion Properties of the Soils-Continued

		Ero	sion facto	Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	Kf	T	erodi- bility group	erodi- bility index
590:				 		
Terric Haplosaprists	0-3	.05	.05	5	3	86
	3-8	.05	.10	İ	İ	İ
	8-12	.05	.10			
	12-31	.02	.02			
	31-35	.20	.20			
	35-38	.17	.17			
	38-46	.20	.20	[
	46-52	.02	.02	!		
	52-58	.15	.15			
	58-60	.15	.15			
601:						
Half Dome, very bouldery	0-3			3	5	56
	3 - 5	.02	.10			
	5-8	.02	.10			
	8-15	.02	.10			
	15-39	.02	.10			
	39-63	.02	.10			
Half Dome, cobbly	0-1			 3	4	86
	1-2				-	
	2-10	.02	.10	i		
	10-17	.02	.10	İ		
	17-29	.02	.10	i		İ
	29-60	.02	.10	İ		İ
500						
602: Half Dome	0-1	.02	.10	 3	5	56
1.422 555	1-19	.02	.10			
	19-28	.02	.10	i		i
	28-33	.02	.10	i		İ
	33-50	.02	.10	i		İ
	50-60	.02	.10	İ		į
610: Rubble land.			 	 		
7.16.7					_	
Half Dome	0-1 1-2			3	5	56
	2-10		!			
	10-17	.02	.10 .10			
	17-29	.02	.10	 		
	29-60	.02	.10			İ
	į			į		ļ
620: Half Dome, extremely stony sandy				 		
loam, warm	0-1	.02	.10	 5	8	0
Tourn, warm	1-19	.02	.10			
	19-28	.02	.10			i
	28-33	.02	.10	İ		
	33-50	.02	.10	<u> </u>		i
	50-60	.02	.10	į		į
Half Domo work sabble and last						
Half Dome, very cobbly sandy loam,	0-1			 5	5	 56
W. C. L. M. C. L.	1-2					
	2-10	.02	.10	 		
	10-17	.02	.10	 		
	17-29	.02	.10			
	29-60	.02	.10			i
}				1		1

Table 13.-Erosion Properties of the Soils-Continued

		Ero	sion facto	Wind	Wind	
Map symbol and soil name	Depth (inches)	Kw	Kf	 T 	erodi- bility group	erodi- bility index
530:			 	 		
Rubble land.			İ	į		į
Half Dome	0-1	.02	.10	5	5	56
	1-19	.02	.10	İ	İ	İ
	19-28	.02	.10			
	28-33	.02	.10			
	33-50	.02	.10			
	50-60	.02	.10	į		ļ
701:				 		
Vitrandic Haploxerolls	0-1	i	i	5	3	86
-	1-3	.02	.02	İ	İ	İ
	3-12	.10	.10	İ	İ	İ
	12-16	.17	.17	İ	İ	İ
	16-24	.17	.17	İ	İ	į
	24-36	.20	.20	İ	İ	į
	36-50	.20	.20	İ	i	į
	50-60	.20	.20	į		į
702:				 		
Vitrandic Dystroxerepts	0 - 8	.02	.05	4	4	86
	8-30	.02	.05	İ	İ	İ
	30-50	.02	.05	i	İ	İ
	50-60	.02	.05	ļ		
000.				 		
Rock outcrop				į		į
DAM.			 			
Dam				į		į
v				 		
Water						

Table 14.—Chemical Properties of the Soils

(Soil properties are measured or inferred from direct observations in the field or laboratory. Laboratory data for selected pedons are included in Appendix II. Absence of an entry indicates that data were not estimated)

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
101:				
Oxyaquic Xerofluvents	0 - 0 0 - 2	11-22		4.0-6.0
i	2-4	9.5-17		5.6-6.0
	4-10	5.6-13		5.6-6.0
i	10-17	3.5-11		5.6-6.0
j	17-28	2.3-7.8	j	5.6-6.0
	28-39	2.3-7.8		5.6-6.0
	39-43	1.6-6.6		5.6-6.0
	43-57 57-60	1.6-6.6		5.6-6.0 5.6-6.0
	57-60	11-22		5.6-6.0
Riverwash.		İ		
Fluvaquents	0-1	12-22		5.6-6.0
	1-4	10-16		5.6-6.0
	4-6	6.2-12		5.6-6.0
	6-10	2.9-7.3		5.6-6.0
·	10-60	2.3-5.5		5.6-6.0
101t:				
Lithnip	0-1	9.0-16		6.1-7.3
	1-5 5-15	9.0-16		6.1-7.3
Rogh outgron	3 13			
Rock outcrop.				<u> </u>
Fishsnooze	0-1	j		4.5-5.5
	1-9			4.5-5.5
ļ.	9-13			4.5-5.5
	13-35 35-45			4.5-5.5
	33-43			
102:	0.0	į		
Oxyaquic Xerofluvents	0 - 0 0 - 2	11-24		4.0-6.0 5.6-6.0
i	2-4	9.5-18		5.6-6.0
	4-10	5.6-15		5.6-6.0
	10-17	3.5-13		5.6-6.0
	17-28	2.3-9.3		5.6-6.0
	28-39	2.3-9.3		5.6-6.0
	39-43	1.6-8.0		5.6-6.0
	43-57 57-60	1.6-8.0		5.6-6.0 5.6-6.0
Riverwash.				<u> </u>
1004				
102t: Lithnip	0-1	9.0-16		 6.1-7.3
<u></u>	1-5	9.0-16		6.1-7.3
j	5-15			
Rock outcrop.				
		1	1	I

Table 14.—Chemical Properties of the Soils—Continued

Map symbol	Depth	Cation-	Effective	1
and soil name		exchange capacity	cation- exchange	reaction
		capacity	capacity	
	In	meq/100g	meq/100g	рН
102t:				
Fishsnooze	0-1			4.5-5.5
	1-9 9-13			4.5-5.5
	13-35			4.5-5.5
	35-45			
104:				
Aquandic Humaquepts	0-8			3.5-5.5
	8-18 18-26		6-11	3.5-5.5
	26-68	1.2-4.8		5.6-6.0
111t:				
Whittell	0-0			
	0-7		0-3	5.1-6.5
	7-20 20-32		0-2	5.1-6.5 5.1-6.5
	32-42			5.1-6.5
Jobsis	0-5		2-6	4.5-5.5
	5-9		1-4	4.5-5.5
	9-17		0-3	4.5-5.5
	17-20 20-30		0-2	4.5-5.5
Rock outcrop.				
151:				
Elcapitan	0-1	81-96		5.1-6.5
	1-7 7-12	8.2-20		5.6-6.0
	12-20	8.2-20		5.6-6.0
	20-31	6.2-19		5.6-6.0
	31-38	5.2-17	j	5.6-6.0
	38-44	4.1-20		5.6-6.0
	44-47	8.2-20		5.6-6.0
	47-53 53-58	8.2-20		5.6-6.0
	58-60	6.2-19		5.6-6.0
152:				
Vitrandic Haploxerolls	0-2	6.8-20		5.6-6.0
	2-3	2.3-7.3		5.6-6.0
	3-5 5-13	6.8-20		5.6-6.0
	13-18	4.1-10		5.6-6.0
	18-24	2.9-7.3		5.6-6.0
	24-28	2.3-6.1		5.6-6.0
	28-32	1.5-5.5		5.6-6.0
	32-60	1.5-5.5	!	5.6-6.0

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
201:				
Leidig	0 - 0			
.	0 - 7	4.6-26		5.1-6.0
	7-16	4.6-26	i	5.1-6.0
	16-23	4.6-26		5.1-6.0
	23-30 30-34	4.6-17		5.1-6.0
	34-42		3-8	5.1-6.0 5.1-6.0
	42-46		2-6	5.1-6.0
	46-52		2-6	5.1-6.0
	52-58		2-6	5.1-6.0
	58-60		1-6	5.1-5.5
210:				
Rubble land.		İ		
		-		
Typic Cryorthents	0-2		4-10	5.1-5.5
	2-13 13-19		3-9	5.1-5.5 5.1-5.5
	19-60		2-7	5.1-5.5
		į	į	į
Rock outcrop.				
Xeric Dystrocryepts	0-1			
	1-5	14-24	j	5.1-6.0
	5-13	6.3-14		5.1-6.0
	13-28 28-60	5.9-11	3-5	5.1-6.0 4.5-5.5
	20-00		3-5	4.5-5.5
211:		į	į	į
Xeric Dystrocryepts	0-0			
	0-1 1-9	12-16	4-8	 4.5-6.0
	9-19	4.0-10	1-4	4.5-6.0
	19-32	4.0-8.0	1-4	4.5-6.0
	32-60	4.0-7.0	2-5	4.5-6.0
Canisrocks	0 - 0			
	0-1			
	1-4	2.0-8.0	4-10	4.5-5.5
	4-18	1.5-6.0	1-6	4.5-5.5
	18-28	1.8-6.0	1-6	4.5-5.5
	28-34 34-60	1.5-6.0	1-6	4.5-5.5
	31 00	2.0		
Oxyaquic Dystrocryepts	0 - 0		7-12	4.5-5.5
	0-9		7-12	4.0-5.5
	9-16 16-23		5-10 4-8	4.0-5.5 4.0-5.5
	23-60		2-6	4.0-5.5
		į		
213:	0 0			
Canisrocks	0 - 0 0 - 3	12-18		 4.5-5.5
	3-12	2.6-9.6		4.5-5.5
	12-60	0.9-5.7		4.5-5.5

Table 14.—Chemical Properties of the Soils—Continued

213: Glacierpoint	Map symbol and soil name	Depth	Cation- exchange capacity	 Effective cation- exchange capacity	 Soil reaction
Glacierpoint		In	meq/100g	meq/100g	рН
Vitrandic Dystrocryepts		0-1 1-9 9-15	 13-21 6.7-14	 	 5.1-6.0 5.1-6.0
0-1		29-37		1-5	5.0-6.0 4.5-6.0 4.5-6.0
Marmotland	Vitrandic Dystrocryepts	0-1 1-11 11-17 17-25 25-37	 6.0-12 4.0-10 1.0-6.0 1.0-6.0	 1-6 1-4 0-3 0-3	 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0
2-7		0-11 11-19 19-36 36-48	 4.4-11 3.3-6.7	6-12 6-12 	 5.1-6.0 5.1-6.0 5.1-6.0 5.1-6.0
1-2	Oxyaquic Dystrocryepts	2-7 7-14 14-20 20-31 31-40	5.0-10 5.0-12 5.0-10 1.6-8.8 1.6-8.8	1-4 1-3 1-2 0-2	4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0
Typic Cryorthents	Xeric Dystrocryepts	1-2 2-16 16-23 23-36 36-63	 	 6-10 3-7 1-5 1-3	4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5
Rubble land. 219: Rock outcrop.		0-1 1-3 3-12 12-18 18-22	 	 5-10 4-9 2-7 2-5	4.5-5.0 4.5-5.0 4.5-5.0 4.5-5.0 4.5-5.0
Rubble land. 219: Rock outcrop.	Rock outcrop.	 			
219: Rock outcrop.	_	 			j I
Rock outcrop.	AMDIE TANG.	 			!
Rubble land.		 		 	
į į į į	Rubble land.	<u> </u> 	İ	İ	<u> </u>

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
219: Canisrocks	0-0			
	0-1			
	1-4	2.0-7.0	5-9	4.5-5.5
	4-18 18-28	2.0-7.0	2-4	4.5-5.5
	28-34	2.0-7.0	2-3	4.5-5.5
İ	34-60	2.0-7.0	1-2	4.5-5.5
221:				
<pre>ZZI: Typic Cryorthents</pre>	0-2		8-15	5.1-5.5
	2-13		4-10	5.1-5.5
	13-19		3-6	5.1-5.5
·	19-60		2-5	5.1-5.5
Xeric Dystrocryepts	0-3	16-26		4.5-6.0
	3-19	9.5-19		4.5-6.0
	19-60		2-7	4.5-6.0
Oxyaquic Dystrocryepts	0-0		7-12	4.5-5.5
i	0-9		7-12	4.0-5.5
	9-16		5-10	4.0-5.5
	16-23 23-60		4-8	4.0-5.5
j	23 00			
222:				
Canisrocks	0-0 0-2			
	2-7		4-9	4.5-5.5
j	7-14	j	2-5	4.5-5.5
	14-60		1-4	4.5-5.5
Rubble land.				
Rock outcrop.				
Crazymule	0 - 0		5-10	5.1-5.5
	0-5		5-10	5.1-5.5
i	5-22 22-35		3-7	5.1-5.5
j	35-60		4-9	4.5-5.5
223: Rock outcrop.		 	 	
Rubble land.				
Canisrocks				
	0-1 1-4	2.0-7.0	5-9	4.5-5.5
	4-18	!	!	4.5-5.5
j	18-28	!	!	4.5-5.5
	28-34	!	!	4.5-5.5
	34-60	2.0-5.0	1-2	4.5-5.5
224:				

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
224: Crazymule	0-0 0-5 5-22 22-35 35-60	 	 6-10 3-7 2-6 5-8	 5.1-5.5 5.1-5.5 5.1-5.5 4.5-5.5
Vitrandic Cryorthents	0-2 2-2 2-7 7-15 15-24 24-60	 	 6-10 3-7 1-4 	 5.1-5.5 5.1-5.5 4.5-5.5
225: Canisrocks	0-0 0-1 1-4 4-18 18-28 28-34 34-60	2.0-7.0 2.0-5.0 2.0-5.0 2.0-5.0 2.0-5.0 2.0-5.0	 5-9 2-4 2-3 2-3 1-2	 4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5
Rock outcrop.		 	 	
Rubble land.		 	 	
Vitrandic Dystrocryepts	0-1 1-2 2-5 5-12 12-26 26-30 30-60	 	5-12 5-9 3-7 1-4 1-3	4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5
227: Canisrocks	0-0 0-2 2-6 6-17 17-25 25-34 34-60	 13-23 6.3-13 3.8-10 3.8-8.3 	 1-5 1-5	5.1-6.0 5.1-6.0 5.1-6.0 5.1-6.0 5.1-5.5 4.5-5.5
Crazymule	0-1 1-2 2-12 12-22 22-34 34-60	 	 9-15 6-10 3-8 1-5	 4.5-5.5 4.5-5.5 4.5-5.5
228: Xeric Dystrocryepts	0-4 4-14 14-20 20-30 30-60	13-23 6.3-12 3.2-8.8 	 1-3 1-3	5.1-6.0 5.1-6.0 5.1-6.0 4.5-6.0 4.5-6.0

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	<u>In</u>	meq/100g	meq/100g	рН
228: Vitrandic Eutrocryepts	 0-6 6-14 14-21	 8.6-23	 7-14 	 4.5-6.5 4.5-6.5 4.5-6.5
	21-28	3.8-10		4.5-6.5
	28-60	2.6-6.8		4.5-6.5
229:				
Marmotland	0-0		8-14	4.5-5.5
	0-9 9-16		7-12 5-10	4.5-5.5
	16-23		3-7	4.5-5.5
	23-60		1-5	4.5-5.5
Oxyaquic Dystrocryepts	 0-0			
	0-2			
	2-5		2-10	4.0-6.0
	5-12		2-9	4.0-6.0
	12-19 19-28		2-9	4.0-6.0
	28-60		2-7	4.0-6.0
021				
231: Canisrocks	 0-1			
	1-1			
	1-2			
	2-6		1-5	4.5-5.5
	6-10 10-17		3-10	4.5-5.5
	17-26		1-3	4.5-5.5
	26-35		1-3	4.5-5.5
	35-60		1-3	4.5-5.5
Typic Cryaquents	 0-0			
	0-1			j
	1-3	15-31		5.1-6.0
	3-9 9-17	14-26		5.1-6.0 5.1-6.0
	17-60	1.1-5.9		5.1-6.0
	į	į	į	į
232: Casinrocks	 0-0			
Cabiniocks	0-2		5-10	4.5-6.0
	2-10		1-5	4.5-6.0
	10-24		1-5	4.5-6.0
	24-60		1-5	4.5-6.0
Glacierpoint	0 - 0			
	0-6	11-24		4.5-6.5
	6-9	4.7-13		4.5-6.5
	9-18 18-31	2.9-11	1-5	4.5-6.5
	31-60		1-3	4.5-6.5
024				
234.				

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth 	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	pН
235: Canisrocks	 0-1			
Callblocks	1-3			
	3-4	j		
	4-11		5-10	
	11-17 17-37		3-8	
	37-53		1-3	
	53-68	ļ	1-3	
Rock outcrop.				
Rubble land.				
225				
237: Canisrocks	 0-0			
	0-3			
	3-8	j	2-6	4.5-5.5
	8-13		2-4	4.5-5.5
	13-27 27-60		2-4	4.5-5.5 4.5-5.5
Glacierpoint	 0-0			
-	0-4	13-25		5.6-6.5
	4-17	5.6-13		5.6-6.5
	17-27 27-60	3.2-11 1.5-7.1		5.1-6.5 5.1-6.5
Vitrandic Cryorthents	 0-1		4-10	 3.5-5.0
-	1-6	j	4-10	4.5-5.5
	6-12 12-60		2-5	4.5-5.5 4.5-5.5
238:				
Oxyaquic Cryorthents	0-3	12-23		5.6-6.5
	3-13	8.2-16		5.6-6.5
	13-18	4.1-13		5.6-6.5
	18-30 30-60	1.7-4.6		5.6-6.5 5.6-6.5
Canisrocks	0-0	j 		j
	0-1			
	1-4	2.0-7.0	5-9	4.5-5.5
	4-18	2.0-5.0	2-4	4.5-5.5
	18-28 28-34	2.0-5.0	2-3	4.5-5.5 4.5-5.5
	34-60	2.0-5.0	1-2	4.5-5.5
239:				
Crazymule	0-0	12.22		 5.1.6.6
	0-5 5-13	12-22		5.1-6.0 5.1-6.0
	13-23	3.8-9.9		5.1-6.0
	23-60		1-5	5.0-6.0

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	Hq
239:				
Canisrocks	0-0			
	0-1 1-4	2.0-7.0	5-9	 4.5-5.5
	4-18	2.0-5.0	2-4	4.5-5.5
i	18-28	2.0-5.0	2-3	4.5-5.5
İ	28-34	2.0-5.0	2-3	4.5-5.5
	34-60	2.0-5.0	1-2	4.5-5.5
241:				
Canisrocks	0 - 0			i
	0-1			
ļ.	1-4		5-9	4.5-5.5
	4-18 18-28		2-4	4.5-5.5 4.5-5.5
i	28-34		2-3	4.5-5.5
	34-60		1-2	4.5-5.5
240				
242: Rock outcrop.				
Canisrocks	0 - 0	j		i
	0-1			
	1-1			4.5-5.5
	1-7 7-23		4-11	4.5-5.5 4.5-5.5
	23-32		1-5	4.5-5.5
	32-60		1-4	4.5-5.5
Xeric Dystrocryepts	0 - 0			
Actic Dyscroolycpes	0-5	13-21		5.1-6.0
i	5-20	4.9-12		5.1-6.0
İ	20-35	2.9-9.8		5.1-6.0
	35-47	1.8-5.6		5.1-6.0
	47-60	1.0-5.0		5.1-6.0
244:		į		į
Typic Cryorthents	0-0			
+	0-1 1-4	2.0-7.0	5-9	 4.5-5.5
	4-18	2.0-5.0	2-4	4.5-5.5
i	18-28	2.0-5.0	2-3	4.5-5.5
j	28-34	2.0-5.0	2-3	4.5-5.5
	34-60	2.0-5.0	1-2	4.5-5.5
Rubble land.				
Rock outcrop.				
245: Rock outcrop.				
Gandana aka	0 0			
Canisrocks	0-0 0-1			
i	1-4	2.0-7.0	5-9	4.5-5.5
İ	4-18	2.0-5.0	2-4	4.5-5.5
İ	18-28	!	2-3	4.5-5.5
	28-34	!	2-3	4.5-5.5
	34-60	2.0-5.0	1-2	4.5-5.5

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
245: Xeric Dystrocryepts	0-2 2-4 4-11 11-60	 	7-13 3-9 2-7 1-5	 5.1-5.5 5.1-5.5 5.1-5.5 5.1-5.5
246. Rock outcrop, domes		 	 	
247: Canisrocks	0-2 2-8 8-36 36-45 45-60	 2.1-6.1 2.1-5.0	 1-5 1-5 	 5.1-5.5 5.1-5.5 5.1-6.0 5.1-6.0
Xeric Dystrocryepts	0-1 1-2 2-10 10-21 21-31 31-42 42-58 58-60	 	 4-10 3-8 2-6 1-5 1-4 1-3	4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5
248: Canisrocks	0-1 1-2 2-2 2-5 5-13 13-32 32-60	 	 3-9 2-6 1-4 0-3	 4.5-5.5 4.5-5.5 4.5-5.5
Rock outcrop.				
248: Glacierpoint	0-0 0-1 1-4 4-16 16-27 27-46 46-64	 12-21 5.2-9.6 3.2-7.6 	 1-2 1-2	 5.1-6.0 5.1-6.0 5.1-6.0 5.0-6.0 4.5-6.0
249: Rock outcrop.			 	
Canisrocks	0-1 1-3 3-4 4-11 11-17 17-37 37-53 53-68	 	 4-10 3-8 2-6 1-4 1-3	

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
0.50				
250: Canisrocks	0-0			
Canislocks	0-0			
	1-4		5-9	4.5-5.5
	4-18		2-4	4.5-5.5
	18-28		2-3	4.5-5.5
	28-34		2-3	4.5-5.5
	34-60		1-2	4.5-5.5
Yoria Duatroarupha	0-0			
Xeric Dystrocryepts	0-0			
	1-9		9-15	4.5-6.0
	9-19		6-11	4.5-6.0
	19-32		3-7	4.5-6.0
	32-60		1-5	4.5-6.0
251:	0.0			l I
Glacierpoint	0-0 0-1			
	1-4	12-21		5.1-6.0
	4-16	5.2-9.6		5.1-6.0
	16-27	3.2-7.6		5.1-6.0
	27-46	j	0-3	5.0-6.0
	46-64		0-3	4.5-6.0
Typic Cryorthents	0-0			
Typic Cryotchencs	0-4		7-13	5.1-5.5
	4-10		7-12	5.1-5.5
	10-16		4-9	5.1-5.5
	16-30		2-6	5.1-5.5
	30-60		2-5	5.1-5.5
252:				
Rock outcrop.				
Canisrocks	0-0	j		j
	0-1			
	1-4	2.0-7.0	5-9	4.5-5.5
	4-18	2.0-5.0	2-4	4.5-5.5
	18-28 28-34	2.0-5.0	2-3	4.5-5.5 4.5-5.5
	34-60	2.0-5.0	1-2	4.5-5.5
	31 00	2.0 3.0		1.5 5.5
Xeric Dystrocryepts	0-3		5-11	4.5-5.5
	3-15		4-10	4.5-5.5
	15-35		1-5	4.5-5.5
	35-47		1-4	4.5-5.5
	47-61		1-3	4.5-5.5
253:				
Canisrocks	0-1			
	1-2			
	2-3		6-13	4.0-5.0
	3-11		4-9	4.0-5.0
	11-23 23-35		3-6	4.0-5.0 4.0-5.0
	35-60		1-3	4.0-5.0
			- 5	
	l	T.	T.	i .

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	pН
	_			
253: Glacierpoint	0 - 0			
Giacierpoint	0-0	16-23		 5.1-6.0
i	4-7	5.7-15		5.1-6.0
i	7-11	3.8-11		5.1-6.0
i	11-19		1-6	5.1-6.0
i	19-60		1-4	5.1-6.0
j		İ	İ	j
Humic Dystrocryepts	0 - 0			
!	0-1			
	1-2			
	2-16	11-20		4.5-6.0
i	16-30 30-60		1-5 1-3	4.5-6.0 4.5-6.0
i	30-60		1-3	4.5-6.0
256:				
Craneflat	0-1			
	1-2			
	2-7		6-12	3.5-5.5
!	7-13		3-7	3.5-5.5
}	13-60		1-4	3.5-5.5
Rock outcrop.				
Rubble land.				
Waterwheel	0-1			
	1-2			i
İ	2-2			i
j	2-6	17-27		5.1-6.5
j	6-14	2.9-8.8		5.1-6.5
	14-28	1.8-6.5		5.1-6.5
	28-60	1.8-5.0		5.1-6.5
257 :				
Badgerpass	0-1			
İ	1-6	6.1-20		4.5-6.5
	6-13	4.4-15		4.5-6.5
	13-21	3.5-13		4.5-6.5
!	21-32	2.6-10		4.5-6.5
	32-50	2.1-8.3		4.5-6.5
i	50-60	0.9-7.1		4.5-6.5
Oxyaquic Dystroxerepts	0-11	19-29		5.1-6.0
	11-19	15-28		5.1-6.0
j	19-32	12-26		5.1-6.0
ĺ	32-43	9.6-16		5.1-6.0
	43-60	6.8-16		5.1-6.0
258:				
Typic Dystroxerepts	0-1			
İ	1-2			i
Ī	2-2			
	2-3	13-20		5.6-6.5
!	3-11	12-18		5.6-6.5
	11-26	2.9-5.9		5.6-6.5
	26-43		2-5	5.1-6.5
	43-60		2-5	5.1-6.5

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
258:				
Badgerpass	0-2			
	2-7 7-18	13-21		5.1-6.0 5.1-6.0
	18-37	4.9-12		5.1-6.0
	37-55	2.3-6.7		5.1-6.0
	55-67		1-3	4.5-6.0
	İ	İ	j	j
Dystric Xerorthents	0-1			
	1-2			
	2-3			
	3-11 11-24		5-10 3-8	4.5-5.5 4.5-5.5
	24-38		2-5	4.5-5.5
	38-60		1-4	4.5-5.5
		İ	j	İ
Rock outcrop.				
Craneflat	 0-1			
	1-2	15-22		5.1-6.0
	2-4	13-20		5.1-6.0
	4-13	6.7-13	j	5.1-6.0
	13-19	2.9-9.2		5.1-6.0
	19-60	1.0-4.4		5.1-6.0
Destris Verenthents	 0-1			
Dystric Xerorthents	1-1			
	1-5	6.3-14		5.1-6.0
	5-17	3.3-8.3		5.1-6.0
	17-60	2.5-7.1	j	5.1-6.0
261:	00			
Dystric Xeropsamments	0-0 0-6		5-10	 4.5-5.5
	6-18		3-8	4.5-5.5
	18-25		2-7	4.5-5.5
	25-41	j	2-6	4.5-5.5
	41-60		2-5	4.5-5.5
Typic Dystroxerepts	0-0			
	0-1 1-3		6-12	 4.5-5.5
	3-8		5-10	4.5-5.5
	8-20		3-7	4.5-5.5
	20-31		3-6	4.5-5.5
	31-60		1-5	4.5-5.5
De deserve e e	0-7		4-10	4.5-5.5
Badgerpass				. /
Badgerpass	7-18		2-5	4.5-5.5
Badgerpass	7-18 18-60		1-3	4.5-5.5

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth 	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
262:	00		l I	
Humic Dystroxerepts	0-0 0-1			
	1-2	16-26		5.1-6.5
	2-5	16-26		5.1-6.5
	5-18	9.8-19		5.1-6.5
	18-60	2.5-13		5.1-6.5
Dystric Xerorthents	 0-1			
2,20120	1-2			
	2-3			i
	3-11		5-10	4.5-5.5
	11-24		3 - 7	4.5-5.5
	24-38		2-6	4.5-5.5
	38-60		1-5	4.5-5.5
Rock outcrop.				
264:				
Crazymule	0-1			
	1-2			
	2-12	16-24		5.1-6.5 5.1-6.5
	12-22 22-34	6.3-15		5.1-6.5
	34-60	1.4-5.3		5.1-6.5
				ļ
Canisrocks	0-1 1-2			
	2-3		4-12	3.5-5.0
	3-11		2-7	3.5-5.0
	11-23		1-5	3.5-5.0
	23-35		1-5	3.5-5.0
	35-60		1-5	3.5-5.0
267:		 		
Rock outcrop.	 			
Typic Cryorthents	0-5		2-9	5.1-5.5
	5-13		1-6	5.1-5.5
	13-28		3-8	5.1-5.5
	28-60		2-5	5.1-5.5
Xeric Dystrocryepts	 0-2			
11-E	2-4			
	4-13	9.0-14	2-7	4.5-6.0
	13-20	5.2-13	2-7	4.5-6.0
	20-30	4.3-11	2-7	4.5-6.0
	30-42	5.0-9.0	2-5	4.5-6.0
	42-48 48-62	!	2-5	4.5-6.0 4.5-6.0
	62-78	!	2-5	4.5-6.0
	78-84	!	2-5	4.5-6.0
268: Rock outcrop.	 			
ROCK OUTGIOD.	 			
	1	1	1	1

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	capacity	Soil reaction
	In	meq/100g	meq/100g	рН
0.50				
268: Canisrocks	0 - 0			
Campiocks	0-1			
i	1-4	2.0-7.0	4-9	4.5-5.5
	4-18	2.0-5.0	1-5	4.5-5.5
	18-28	2.0-5.0	1-4	4.5-5.5
	28-34 34-60	2.0-5.0	1-4	4.5-5.5 4.5-5.5
i	34-00	2.0-5.0	1-3	4.5-5.5
Glacierpoint	0 - 0			
	0-1			
	1-4	12-21	i	5.1-6.0
	4-16	5.2-9.6		5.1-6.0
	16-27	3.2-7.6		5.1-6.0
	27-46		0-3	5.0-6.0
	46-64		0-3	4.5-6.0
269:				
Canisrocks	0 - 0			
	0-2	j	4-9	4.0-6.0
	2-7		2-6	4.0-6.0
	7-20		2-5	4.0-6.0
	20-60		1-4	4.0-6.0
Rock outcrop.				
Glacierpoint	0 - 0			
Giacieipoint	0-1			
	1-4	12-21		5.1-6.0
	4-16	5.2-9.6	j	5.1-6.0
	16-27	3.2-7.6		5.1-6.0
	27-46		0-3	5.0-6.0
	46-64		0-3	4.5-6.0
270:				
Rock outcrop.				
Typic Cryorthents	0 - 0			
	0-1			
	1-4		5-9	4.5-5.5
+	4-18 18-28		2-4	4.5-5.5 4.5-5.5
i	28-34		2-3	4.5-5.5
	34-60		1-2	4.5-5.5
İ				
Vitrandic Dystrocryepts	0-3	14-21		5.1-6.0
	3-4	12-21		5.1-6.0
	4-8 8-17	7.0-14		5.1-6.0 5.1-6.0
	17-60	1.4-5.0		5.1-6.0
271: Rock outcrop.				
Titling Wassach and a	0-3		2-7	 4.5-5.5
LIENIC Xerorenenes		1	/	
Lithic Xerorthents	3-7	j	2-5	4.5-5.5

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth 	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
271: Waterwheel	0-1 1-2 2-2 2-6 6-14	 17-27 2.9-8.8	 	 5.1-6.5 5.1-6.5
	14-28 28-60	1.8-6.5		5.1-6.5
273: Nevadafalls	0-0 0-6 6-17 17-31 31-60	1.8-5.0 6.5-15 4.0-11 3.0-7.3 2.0-6.7	 	5.1-6.5 5.6-6.5 5.1-6.0 5.1-6.0
Waterwheel	0-0 0-1 1-1 1-6 6-11 11-19	 13-21 6.7-14 1.8-5.6 1.0-5.0	 	 5.1-6.0 5.1-6.0 5.1-6.0
274. Rock outcrop, domes		 	 	
275: Oxyaquic Dystroxerepts	0-1 1-2 2-9 9-19 19-34 34-46 46-60	7.0-14 5.0-12 5.0-10 3.0-8.0 3.0-8.0	 3-8 2-4 2-5 2-4 2-4	 5.1-6.0 5.1-6.0 5.1-6.0 5.1-6.0
Dystric Xerorthents	0-1 1-2 2-2 2-6 6-14 14-28 28-60	 18-27 3.1-8.8 1.9-6.5 1.9-4.7	 	 5.6-6.5 5.6-6.5 5.6-6.5
Vitrandic Xerorthents	0-8 8-18 18-24 24-35 35-50 50-62	7.0-14 10-18 3.0-8.0 3.0-10 3.0-8.0 3.0-8.0	2 - 7 2 - 6 0 - 3 0 - 3 0 - 3 0 - 3	4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0
Rubble land.	 			
276: Happyisles	0-3 3-7 7-13 13-17 17-33 33-60	 6.2-19 4.7-16 5.8-17 4.6-11 2.8-7.5	 	 6.1-7.3 5.6-6.5 5.6-6.5 5.6-6.5

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	 Cation- exchange capacity	 Effective cation- exchange capacity	 Soil reaction
	In	meq/100g	meq/100g	рН
276: Typic Dystroxerepts	0-1	 77-92		 5.6-7.3
1/210 2/201011020202	1-19	15-27		5.6-7.3
	19-28	13-25	j	5.6-7.3
	28-33	5.3-16		5.6-7.3
	33-50 50-60	1.5-6.5		5.6-7.3
277: Tuolumne	0-1			
	1-2			
	2-5	1.6-14		4.5-6.0
	5-32	0.9-9.8		4.5-6.0
	32-60	4.9-15	1-4	4.5-6.0
Humic Dystroxerepts	0-1			
	1-1			
	1-2			
	2-15	13-21		5.1-6.0
	15-25 25-60	1.0-5.0		5.1-6.0 5.1-6.0
278: Rock outcrop.		 		
Tuolumne	0-2 2-10	14-24		6.6-7.8
	10-35	2.9-6.5		5.6-6.5
	35-60	1.4-5.3		5.1-6.5
Humic Dystroxerepts	0-1 1-1			
	1-10	13-20		5.1-6.0
	10-21	4.9-11		5.1-6.0
	21-60	1.0-4.4		5.1-6.0
Rubble land.				
279:				
Canisrocks	0-2			
	2-2 2-11	12-16	4-6	 4.5-5.5
	11-21	4.0-8.0	0-3	4.5-5.5
	21-29	4.0-8.0	0-3	4.5-5.5
	29-36	4.0-7.0	0-3	4.5-5.5
	36-60	4.0-7.0	0-3	4.5-5.5
Xeric Dystrocryepts	0 - 0			
	0-1			
	1-4	12-16	4-6	4.5-5.5
	4-18	4.0-8.0	1-4	4.5-5.5
	18-28 28-34	4.0-8.0	1-2	4.5-5.5
	34-60	4.0-7.0	0-2	4.5-5.5
	••			

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth 	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
				ļ
280:				
Typic Dystroxerepts	0-1 1-2			
	2-4	14-23		5.1-6.0
	4-8	12-21		5.1-6.0
	8-15	5.9-12		5.1-6.0
	15-24	5.4-11		5.1-6.0
	24-36	4.8-10		5.1-6.0
	36-60	3.4-8.9		5.1-6.0
Humia Duatrovoronta	 0-2			
Humic Dystroxerepts	2-2			
	2-3			
	3-8	13-21		5.1-6.0
	8-16	6.7-14		5.1-6.0
	16-30	3.8-11		5.1-6.0
	30-60	1.0-5.0		5.1-6.0
	İ		İ	İ
Rock outcrop.				
000				
282: Clarkslodge	 0-1			
Clarkslouge	1-2			
	2-6	15-25		4.5-6.0
	6-19	12-22		4.5-6.0
	19-34	8.6-21		4.5-6.0
	34-60	6.1-15		4.5-6.0
Craneflat	0-1	i		j
	1-1			i
	1-2			
	2-4	27-40		5.1-6.5
	4-11	5.7-16		5.1-6.5
	11-22	3.8-12		5.1-6.5
	22-30	3.8-12		5.1-6.5
	30-60	2.0-8.9	1-4	5.1-6.5
Nevadafalls	 0-0			
Nevadatatib	0-6	6.5-15		5.6-6.5
	6-17	4.0-11		5.1-6.0
	17-31	3.0-7.3		5.1-6.0
	31-60	2.0-6.7		5.1-6.0
283:		İ	İ	İ
Waterwheel	0-1	15-25		5.1-6.5
	1-7	14-23		5.1-6.5
	7-26	2.1-7.7		5.1-6.5
	26-60	2.1-6.5		5.1-6.5
Name de Salla				
Nevadafalls	0-1			
	1-2 2-6	14.21		 E 1 6 0
	2-6 6-11	14-21		5.1-6.0 5.1-6.0
	6-11	3.2-9.8		5.1-6.0
	21-60	1.4-5.0		5.1-6.0
	21 00	1.1 3.0		3.1 0.0
Rock outcrop.		İ	İ	İ
-	İ	İ	İ	j

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
İ	In	meq/100g	meq/100g	рН
285:	0 - 0			
Waterwheel	0-0	6.0-12		 4.5-6.0
i	4-8	6.0-12	2-7	4.5-6.0
	8-16	5.0-10	2-7	4.5-6.0
į	16-60	6.0-11	2-7	4.5-6.0
		ļ		
Humic Dystroxerepts	0-1			
	1-6	7.7-21		4.5-6.5
	6-13 13-24	4.4-16	1-5	4.5-6.5 4.5-6.5
ļ	24-42		1-5	4.5-6.5
i	42-55		1-5	4.5-6.5
İ	55-60		1-3	4.5-6.5
į		j	İ	
286:				
Nevadafalls	0-8	16-23		5.1-6.0
	8-21	10-19		5.1-6.0
ļ	21-28 28-60	1.9-14		5.1-6.0 5.1-6.0
i	20-00	2.0-0.1		J.1-0.0
Typic Dystroxerepts	0-1	j		
	1-2			
	2-3			
	3-16	13-20		5.1-6.0
	16-25	9.3-16		5.1-6.0
	25-35	3.8-11		5.1-6.0
ļ	35-60	2.0-6.1		5.1-6.0
Ultic Palexeralfs	0-1			
İ	1-2	j	j	i
İ	2-9			5.1-6.0
	9-14	15-24		5.1-6.0
	14-22	15-28		5.1-6.0
	22-32	8.4-26		5.1-6.0
	32-60	7.7-22		5.1-6.0
Rock outcrop.				
287:		j	į	
Badgerpass	0-2			
	2-2			
	2-3			
	3-11	!		5.1-6.0
· ·	11-25 25-60	1.0-5.6		5.1-6.0 5.1-6.0
	••			
Waterwheel	0 - 0			
	0-1			
	1-4	15-24		5.6-7.3
	4-11	9.5-18		5.6-7.3
	11-22 22-29	5.6-14		5.6-7.3 5.6-7.3
	22-29	2.3-5.8		5.6-7.3
	25-00	1 2.3-3.0	!	3.0-7.3

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	 Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	pН
288: Rock outcrop.				
Craneflat	0-1			
Clanellac	1-1			
	1-2			
	2-4	27-40		5.1-6.5
	4-11	5.7-16		5.1-6.5
	11-22	3.8-12		5.1-6.5
	22-30	3.8-12		5.1-6.5
	30-60	2.0-8.9	1-4	5.1-6.5
Waterwheel	0-0			
	0-1	j		j
	1-4	15-24		5.6-7.3
	4-11	9.5-18		5.6-7.3
	11-22	5.6-14		5.6-7.3
	22-29	1.5-5.8		5.6-7.3
	29-60	2.3-5.8		5.6-7.3
289:				l I
Waterwheel	0-1			
Macerwieer	1-6		5-12	4.5-6.0
	6-15		4-10	4.5-6.0
	15-25		3-7	4.5-6.0
	25-36		1-6	4.5-6.0
	36-60		1-4	4.5-6.0
Craneflat	0-2			
	2-4			i
	4 - 4			
	4-12		5-11	4.5-6.0
	12-23		2-7	4.5-6.0
	23-28		2-5	4.5-6.0
	28-60		2-5	4.5-6.0
290:				
Humic Dystroxerepts	0-0			
	0-9		8-14	4.5-6.0
	9-20	i	5-11	4.5-6.0
	20-60	ļ	2-6	4.5-6.0
Tuolumne	0-3		4-11	 4.5-6.0
	3-7		4-10	4.5-6.0
	7-12		3-8	4.5-6.0
	12-24		2-6	4.5-6.0
	24-39		1-5	4.5-6.0
	39-46		1-5	4.5-6.0
	46-60		1-5	4.5-6.0
Typic Xerorthents	0 - 4		7-13	 5.1-6.0
	4-15		2-6	5.1-6.0
		i	i	i
	15-33		2-4	5.1-6.0

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	pН
290: Ultic Haploxeralfs	0-1			
oitic mapioxeralis	1-2			
	2-2			
i	2-6	18-27		5.1-6.0
	6-12	16-26	i	5.1-6.0
	12-30	14-26		5.1-6.0
	30-41	11-24		5.1-6.0
	41-60	8.2-17		5.1-6.0
291:				
Ultic Haploxeralfs	0-1			
	1-2		i	i
	2-3			
	3-5	11-25		6.1-7.3
	5-12	4.7-15		5.6-6.5
	12-19 19-22	4.7-13 3.8-10	5-9	5.6-6.5 5.1-6.0
	22-41	3.3-8.9	5-9	5.1-6.0
	41-57	3.3-8.2	5-9	5.1-6.0
	57-61	2.9-7.0	5-12	5.1-6.0
	0 1			
Typic Dystroxerepts	0-1 1-2			
i	2-7	11-20		 5.1-6.5
i	7-16	9.3-18		5.1-6.5
	16-29	6.4-14		5.1-6.5
i	29-39	5.4-16		5.1-6.5
	39-60	2.0-7.0	ļ	5.1-6.5
200				
292: Humic Dystroxerepts	0-1			
	1-1			i
	1-3	14-22		4.5-6.0
	3 - 4	12-21	j	4.5-6.0
	4-7	11-19		4.5-6.0
	7-11	9.2-17		4.5-6.0
	11-19	4.4-12		4.5-6.0
i	19-31 31-60	0.9-5.0		4.5-6.0 4.5-6.0
			İ	
Typic Haploxerults	0-2			i
	2 - 4			
ļ.	4-7	14-25		4.5-6.0
	7-9	13-26		4.5-6.0
+	9-15 15-22	11-26		4.5-6.0 4.5-6.0
	22-60	8.8-20		4.5-6.0
İ		İ	į	
293:	0 0			
Xeric Dystrocryepts	0-0			 4 E E E
ł	0-4 4-20		4-10	4.5-5.5 4.5-5.5
	20-34		2-6	4.5-5.5
i	34-47		1-4	4.5-5.5
j	47-60		1-4	4.5-5.5
		İ	İ	İ

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	pН
j	_	i		<u>-</u>
293:		ļ		
Vitrandic Dystrocryepts	0 - 0			
!	0-2	18-31		5.5-6.5
	2-5	11-19		5.5-6.5
}	5-18 18-25	7.2-17 4.6-10		5.5-6.5 5.5-6.5
ł	25-36	4.0-10		5.5-6.5
i	36-60	3.1-9.5		5.5-6.5
j				
294:		ļ		
Waterwheel	0 – 0			
!	0-1			
	1-2			
	2-6		5-10	4.5-6.0
	6-11 11-26	1.9-5.8	2-6	4.5-6.0 5.6-7.3
i	26-60	1.1-5.1		5.6-7.3
j	_		İ	
Typic Dystroxerepts	0-1	j		i
	1-5	29-39		5.1-6.0
	5-12	6.3-19		5.1-6.0
!	12-20	4.4-16		5.1-6.0
	20-28	3.3-11		5.1-6.0
·	28-49 49-60	 	2-6	5.1-6.0
i	15 00			
295:		į	İ	
Craneflat	0-5	15-23		5.1-6.0
	5-19	6.7-16		5.1-6.0
	19-60	1.0-6.1		5.1-6.0
Typic Dystroxerepts	0-1			
i i	1-9	16-25	i	5.1-6.0
	9-18	8.1-16		5.1-6.0
	18-31	4.4-12		5.1-6.0
	31-60	2.5-7.5		5.1-6.0
296:		l I		
Ultic Palexeralfs	0-2			
	2-3	i		
į	3 - 6	19-32	i	5.1-6.0
	6-12	16-28		5.1-6.0
	12-23	15-28		5.1-6.0
	23-32	15-28		5.1-6.0
!	32-41	13-26		5.1-6.0
	41-60	9.6-19		5.1-6.0
Humic Dystroxerepts	0-1			
	1-3			
j	3 - 6	17-27		5.1-6.0
į	6-17	16-25		5.1-6.0
j	17-22	11-20		5.1-6.0
İ	22-28	7.3-17		5.1-6.0
Ī	28-37	5.4-15		5.1-6.0
	37-48	3.4-9.8		5.1-6.0
!	48-70	2.0-6.1		5.1-6.0
	70-86	2.0-6.1		5.1-6.0
	86-106	2.0-6.1		5.1-6.0

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	 Effective cation- exchange capacity	 Soil reaction
i	In	meq/100g	meq/100g	рН
005				
297: Typic Xerorthents	0-1			
Typic Nerorenenes	1-1			
į	1-3	11-27		5.1-7.3
Ī	3-6	11-27		5.1-7.3
	6-9	5.7-17		5.1-7.3
}	9-16 16-28	3.8-15		5.1-7.3
j	28-60	2.7-9.6		5.1-7.3 5.1-7.3
Rock outcrop.				
Maria Vananaania	0 1			
Typic Xeropsamments	0-1 1-1			
İ	1-3	13-21		5.1-6.0
j	3-7	12-19		5.1-6.0
İ	7-12	6.7-14		5.1-6.0
	12-17	4.9-12		5.1-6.0
	17-21	2.9-9.8		5.1-6.0
}	21-30 30-38	1.8-5.6		5.1-6.0 5.1-6.0
	38-60	1.0-5.0		5.1-6.0
298:				
Tuolumne	0 – 0			
	0-1			
}	1-2 2-6		5-10	 4.5-6.0
i	6-11		2-6	4.5-6.0
j	11-26	1.9-5.8		5.6-7.3
	26-60	1.1-5.1		5.6-7.3
Typic Dystroxerepts	0-1			
	1-5	29-39		5.1-6.0
	5-12	6.3-19		5.1-6.0
}	12-20 20-28	4.4-16		5.1-6.0 5.1-6.0
i	28-49		2-6	5.1-6.0
	49-60			
299:				
Humic Dystroxerepts	0-1			
	1-1			
}	1-2 2-4		2-8	 4.5-5.5
i	4-11		2-6	4.5-5.5
j	11-22		1-4	4.5-5.5
İ	22-30		1-4	4.5-5.5
	30-60		0-2	4.5-5.5
Ultic Haploxeralfs	0 - 0			
]	0-1			
	1-8	15-28		5.1-6.0
	8-17 17-28	8.1-21		5.1-6.0 5.1-6.0
i	28-47	3.3-13		5.1-6.0
		, 	1	

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
300:				
Typic Dystroxerepts	0-1 1-2			
	2-2		7-14	4.5-6.0
	2-5		6-12	4.5-6.0
	5-9		3-8	4.5-6.0
	9-15	j	2-6	4.5-6.0
	15-20		2-6	4.5-6.0
	20-30			
Ultic Haploxeralfs	0-1 1-2			
	2-2			
	2-10	16-26		5.1-6.5
	10-19	6.3-16		5.1-6.5
	19-60	6.8-15		5.1-6.5
301:		İ	İ	İ
Vitrandic Haploxerolls	0-1			4.0-6.0
	1-4	2.0-32		5.6-6.5
	4-7	2.0-29		5.6-6.5
	7-11	2.0-18		5.6-6.5
	11-19 19-34	1.0-18		5.6-6.5
	34-57	1.0-14		5.6-6.5
	57-63	1.0-12		5.6-6.5
	63-69	1.2-9.7		5.6-6.5
		İ	İ	j
302:				ļ
Typic Haploxerults	0-2			
	2-2			
	2-3			 E 1 6 0
	3-5 5-12	20-30		5.1-6.0 5.1-6.0
	12-22	14-24		5.1-6.0
	22-60	8.2-16		5.1-6.0
		İ	İ	İ
Ultic Haploxeralfs	0-1			i
	1-2			
	2-2			
	2-10	16-26		5.1-6.5
	10-19	6.3-16		5.1-6.5
	19-60	6.8-15		5.1-6.5
303:				
Rock outcrop.		İ		
-	İ	İ	İ	j
Dystric Xeropsamments	0 - 0	j		j
	0-1			
	1-3	15-23		5.1-6.0
	3-5	14-22		5.1-6.0
	5-14	7.0-15		5.1-6.0
	14-28	3.2-11		5.1-6.0 5.1-6.0
	28-37 37-60	1.4-6.1		5.1-6.0
	J,-00 			3.1-0.0

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
303: Humic Dystroxerepts	0-1 1-2 2-7 7-13 13-33	 	 4-12 4-10 3-7 2-6	 4.5-6.0 4.5-6.0 4.5-6.0
	33-60		1-4	4.5-6.0
Tuolumne	0-1 1-9 9-21 21-29 29-44 44-60	 	 7-14 2-7 2-6 2-4 1-4	 4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5
304: Clarkslodge	0-0 0-1 1-1 1-3 3-6 6-12 12-27 27-35 35-60	 9.0-18 7.9-16 6.2-15 5.4-14 4.1-13 3.2-11	 	 6.1-7.3 6.1-7.3 5.6-6.5 5.6-6.5 5.6-6.5
Rock outcrop.				
305: Rock outcrop.		 	 	
Waterwheel	0-3 3-9 9-11 11-21 21-60	14-22 11-19 4.7-12 2.9-9.8 1.2-5.0	 	4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0
Dystric Xeropsamments	0-0 0-6 6-18 18-25 25-41 41-60	 	5-10 2-8 2-7 1-6	 4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5
306: Typic Cryopsamments	0-0 0-1 1-4 4-15 15-32 32-43 43-60	 	 2-8 1-4 1-3 0-2 0-2	4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0
Humic Dystrocryepts	0-0 0-5 5-13 13-23 23-60	 	 6-10 3-7 2-6 5-8	 5.1-5.5 5.1-5.5 5.1-5.5 4.5-5.5

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
i	In	meq/100g	meq/100g	Нq
207.				
307: Rock outcrop.				
Noon outersp.				
Dystric Xeropsamments	0 - 0	j	ļ	ļ
!	0-1			
-	1-3 3-5	15-23 14-22		5.1-6.0 5.1-6.0
i	5-14	7.0-15		5.1-6.0
i	14-28	3.2-11		5.1-6.0
j	28-37	1.4-6.1		5.1-6.0
	37-60			5.1-6.0
Propherical Control of the Control o	0 0	14.00		
Dystric Xerorthents	0 - 3 3 - 9	14-22		4.5-6.0 4.5-6.0
i	9-11	4.7-12		4.5-6.0
i	11-21	2.9-9.8		4.5-6.0
į	21-60	1.2-5.0		4.5-6.0
309: Rock outcrop.		 	 	
Waterwheel	0-2			
waterwheer	2-7	17-25		5.1-6.0
i	7-17	8.6-16		5.1-6.0
j	17-31	4.9-12		5.1-6.0
	31-60	2.9-7.5		5.1-6.0
Typic Dystroxerepts	0-1			
1/210 5/20101101020202	1-2			
j	2-2	i		i
İ	2-3	16-24		5.1-6.0
	3 - 7	15-23		5.1-6.0
	7-27	6.3-14		5.1-6.0
i	27-41 41-60	4.4-12		5.1-6.0 5.1-6.0
İ	11 00	2.3 / . 2		3.1 0.0
310: Rock outcrop.		 		
Humic Dystroxerepts	0 - 0			
İ	0-1			
	1-4	16-24		5.1-6.0
	4-8	15-22		5.1-6.0
	8-30 30-39	6.3-13		5.1-6.0 5.1-6.0
i	39-60	2.5-6.6		5.1-6.0
į			į	
Humic Lithic Haploxerepts	0 - 0			
!	0-2			
	2-2	12-24		 5.6-6.5
}	2-10 10-20	20-37		5.6-6.5
l	20-60	20-37		5.6-6.5
i				

Table 14.—Chemical Properties of the Soils—Continued

and soil name	Depth 	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	<u>In</u>	meq/100g	meq/100g	рН
311: Rock outcrop.	 			
Humic Dystroxerepts	0-1	16-23		5.1-6.0
	1-11	14-21		5.1-6.0
	11-30 30-60	3.8-14		5.1-6.0 5.1-6.0
Humic Lithic Haploxerepts	0-0			
	0-2			
	2-2			
	2-10	11-27		4.5-6.5
	10-20	18-34		4.5-6.5
313:	 			
Nevadafalls	0-0		ļ	ļ
	0-6 6-17	6.5-15		5.6-6.5 5.1-6.0
	17-31	3.0-7.3		5.1-6.0
	31-60	2.0-6.7		5.1-6.0
Oxyaquic Dystrudepts	0-0			
	0-10	16-24		5.1-6.0
	10-35	7.3-15		5.1-6.0 5.1-6.0
	48-61	2.0-5.5		5.1-6.0
314:	 			
Badgerpass	0-1			
	1-6 6-13	15-22 12-19		5.1-6.0 5.1-6.0
	13-24	6.7-14		5.1-6.0
	24-42	2.9-9.8	j	5.1-6.0
	42-55	1.8-5.6		5.1-6.0
	55-60 	1.0-5.0		5.1-6.0
Dystric Xeropsamments	0-2			
	4-4			
	4-9	14-22	i	5.1-6.0
	9-25	5.7-13		5.1-6.0
	25-30 30-60	3.8-11		5.1-6.0 5.1-6.0
Rock outcrop.				
315:				
Nevadafalls	0-1			
	1-2	17-25		5.5-6.5
	2-14	6.1-14 8.0-16		5.5-6.5
	35-60	2.1-6.5		5.5-6.5
Dystric Xeropsamments	0-0			
	0-7	14-21		5.1-6.0
	7-16 16-26	7.0-14		5.1-6.0 5.1-6.0
	26-60	1.4-5.5		5.1-6.0

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
316: Dystric Xerorthents	0-4 4-13 13-23 23-35 35-393	 15-23 10-18 3.2-11 1.4-6.1 	 	 5.1-6.0 5.1-6.0 5.1-6.0 5.1-6.0
Rock outcrop.		 	 	
Rubble land.		 	 	
21.0				
318: Typic Dystroxerepts	0-4 4-12 12-27 27-39 39-57	17-27 10-20 6.8-16 	 2-8 	 5.1-6.5 5.1-6.5 5.1-6.5
Humic Dystroxerepts	0-0 0-1 1-2 2-5 5-14 14-33 33-46 46-48 48-54 54-60	 13-27 6.3-16 6.3-16 5.3-10.0 1.5-9.0 1.5-12 2.4-15 14-19	 3-9 3-7 2-5 1-5 2-6 4-9 5-13 2-6	 5.1-6.0 5.1-6.0 5.1-6.0 5.1-6.0 5.1-6.0 5.1-6.0 5.1-6.0
319: Humic Dystroxerepts	0-0 0-1 1-5 5-13 13-20 20-35 35-60	 14-23 5.7-15 	 2-8 1-4 1-4 1-4	5.0-6.0 5.0-6.0 5.0-6.0 5.0-6.0 5.0-6.0
Typic Haploxerults	0-0 0-1 1-2 2-5 5-7 7-12 12-20 20-31 31-46 46-53 53-71	 	 4-12 4-10 4-9 4-9 4-7 4-8 0-2 0-2	4.0-5.5 4.0-5.5 4.0-5.5 4.0-5.5 4.0-5.5 4.0-5.5 4.0-5.5
Inceptic Haploxeralfs	0-0 0-1 1-4 4-12 12-22 22-30 30-60	 14-22 7.0-15 	 2-9 2-6 2-5	5.1-6.0 5.1-6.0 4.5-6.0 4.5-6.0

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
320: Half Dome	0-1			
nair bome	1-4	18-29		6.1-7.3
	4-10	11-21		6.1-7.3
	10-20	6.6-17		6.1-7.3
	20-47	4.4-15	j	6.1-7.3
	47-61	2.3-8.8		6.1-7.3
Humia Dratrovoropta	0-0			
Humic Dystroxerepts	0-0	18-27		6.1-7.3
	3-7	16-25		6.1-7.3
	7-16	8.7-17		6.1-7.3
	16-22	6.6-14	j	6.1-7.3
	22-35	4.4-13		6.1-7.3
	35-60	2.3-7.7		6.1-7.3
Rock outcrop.				
321:				
Dystric Xeropsamments	0-0			
-	0-8	15-23		5.6-6.5
	8-21	5.6-13	j	5.6-6.5
	21-61	2.7-6.5		5.6-6.5
Dystric Xerorthents	0-3	14-22		 4.5-6.0
Dyscric Reformence	3-9	11-19		4.5-6.0
	9-11	4.7-12		4.5-6.0
	11-21	2.9-9.8	i	4.5-6.0
	21-60	1.2-5.0		4.5-6.0
322:				
Typic Xerorthents	0-0			
	0-7	5.0-12	j	5.6-7.3
	7-24	4.0-10		5.6-7.3
	24-42	2.0-7.0		5.6-7.3
	42-60	2.0-6.0		5.6-7.3
323:		İ		
Ultic Haploxeralfs	0-3	18-29	j	5.6-7.3
	3-5	16-28		5.6-7.3
	5-10	12-24		5.6-7.3
	10-21	11-22		5.6-7.3
	21-37	9.1-23		5.6-7.3
	37 00	7.5 10		3.0 7.3
Humic Dystroxerepts	0-1			
	1-2			
	2-2			
	2-7	17-28		6.0-7.3
	15-29	7.8-20 5.6-17		6.0-7.3
	29-60	4.3-11		6.0-7.3
224.				
324: Humic Haploxerepts	0-0			
	0-4	10-18		5.6-6.5
	4-8	6.0-12		5.6-6.5
	8-20	2.0-9.0	j	5.6-6.5
	20-30	2.0-9.0		5.6-6.5
	30-60	2.0-9.0		5.6-6.5

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
324: Rock outcrop.		 	 	
Ultic Haploxeralfs	0 - 0			
	0 - 6	6.5-22		6.0-7.3
	6-16	4.7-22		6.0-7.3
	16-29 29-60	2.0-16		6.0-7.3 6.0-7.3
j	23 00			
325. Urban land.			 	
328:				
Clarkslodge	0 - 0			
	0-1			
	1-5 5-11			5.1-6.0
1	11-20	8.7-20 5.5-13		5.1-6.0 5.1-6.0
	20-37	4.5-12		5.1-6.0
	37-60	4.0-11		5.1-6.0
Ultic Palexeralfs	0-1			
	1-4			5.1-7.0
İ	4-13	10-27		5.1-7.0
	13-31	8.0-15	4-11	5.1-7.0
	31-49 49-60	7.0-15 8.0-15	2-7	5.1-7.0 5.1-7.0
		ļ		
401: Sentinel	0-1			 3.0-5.0
	1-5	11-24		5.6-6.5
	5-20	5.8-19		5.6-6.5
	20-27	5.8-15		5.6-6.5
	27-41 41-56	3.5-12		5.6-6.5
	56-66	1.6-7.5		5.6-6.5 5.6-6.5
412.			[[
Water-Riverwash				
501:				
Happyisles, sandy loam	0-3		16-57	3.0-5.0 6.1-7.3
i	3-7 7-13	5.0-21 4.7-19		5.6-6.5
	13-17	4.7-19		5.6-6.5
İ	17-33	3.5-13		5.6-6.5
	33-60	2.8-7.0		5.6-6.5
Happyisles, loamy fine sand,				
overwash	0 - 3		16-57	3.0-5.0
	3-7	5.6-19		6.1-7.3
ł	7-13 13-17	4.7-16 5.8-17		5.6-6.5 5.6-6.5
	17-33	4.6-11		5.6-6.5
j	33-41	2.8-7.5		5.6-6.5
	41-62	3.8-9.5	i	5.6-6.5

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
	In	meq/100g	meq/100g	рН
502: Happyisles	0-3			
nappyisies	3-7	6.2-19		6.1-7.3
	7-13	4.7-16	i	5.6-6.5
	13-17	5.8-17		5.6-6.5
	17-33	4.6-11		5.6-6.5
	33-41 41-62	!		5.6-6.5 5.6-6.5
Mollic Xerofluvents	0-2			
	2-6		8-16	5.1-5.5
	6-8	4.4-11	1-5	5.1-6.0
	8-12	1.5-10	1-5	5.1-6.0
	12-23		1-5	5.1-5.5
	23-29 29-49		1-5	5.1-5.5 5.1-5.5
	49-54		2-8	5.1-5.5
	54-68		2-8	5.1-5.5
510t: Rubble land.				
Lithnip	0-1	9.0-16		 6.1-7.3
•	1-5	9.0-16		6.1-7.3
	5-15			
Rock outcrop.				
551:				
Happyisles	0-3	j	j	j
	3-7	6.2-19		6.1-7.3
	7-13	4.7-16		5.6-6.5
	13-17 17-33	5.8-17		5.6-6.5 5.6-6.5
	33-41	2.8-7.5		5.6-6.5
	41-62	3.8-9.5		5.6-6.5
Half Dome	0-1	5.3-16		5.6-7.3
	1-19	5.3-16	j	5.6-7.3
	19-28	2.0-9.5		5.6-7.3
	28-33 33-50	2.0-9.5		5.6-7.3 5.6-7.3
	50-60	0.8-5.7		5.6-7.3
552.				
552: Mollic Xerofluvents	0-2			
	2-6	j	10-16	5.1-5.5
	6-8	4.4-11	1-5	5.1-6.0
	8-12	1.5-10	1-5	5.1-6.0
	12-23 23-29		1-5	5.1-5.5 5.1-5.5
	29-49		0-3	5.1-5.5
	49-54		2-8	5.1-5.5
	54-68	l	2-8	5.1-5.5

Table 14.—Chemical Properties of the Soils—Continued

Map symbol and soil name	Depth	Cation- exchange capacity	Effective cation- exchange capacity	Soil reaction
İ	In	meq/100g	meq/100g	pН
500				
590: Terric Haplosaprists	0-3		12-19	 5.1-5.5
	3-8		1-6	5.1-5.5
j	8-12		2-7	5.1-5.5
ĺ	12-31			5.1-5.5
	31-35		9-15	5.1-5.5
}	35-38 38-46		5-10 7-13	5.1-5.5 5.1-5.5
i	46-52		/-13	5.1-5.5
i	52-58		6-12	5.1-5.5
	58-60		7-13	5.1-5.5
601:			 	
Half Dome, very bouldery	0 – 3			
!	3-5	5.3-16		5.6-7.3
	5-8	5.3-16		5.6-7.3
1	8-15 15-39	3.3-11		5.6-7.3 5.6-7.3
	39-63	3.3-11		5.6-7.3
Half Dome, cobbly	0-1			
Ī	1-2	j		j
	2-10	5.3-16		5.6-7.3
	10-17	5.3-16		5.6-7.3
	17-29 29-60	2.0-9.5		5.6-7.3 5.6-7.3
602:				
Half Dome	0-1	5.3-16		5.6-7.3
İ	1-19	5.3-16		5.6-7.3
	19-28	2.0-9.5		5.6-7.3
!	28-33	2.0-9.5		5.6-7.3
	33-50 50-60	2.0-9.5		5.6-7.3 5.6-7.3
510:			 	
Rubble land.			 	
Half Dome	0-1			
	1-2			
	2-10	5.3-16		5.6-7.3
}	10-17 17-29	5.3-16		5.6-7.3 5.6-7.3
	29-60	2.0-9.5		5.6-7.3
620:				
Half Dome, extremely stony sandy		İ	İ	İ
loam, warm	0-1	5.3-16		5.6-7.3
ĺ	1-19	5.3-16		5.6-7.3
!	19-28	2.0-9.5		5.6-7.3
	28-33	2.0-9.5		5.6-7.3
	33-50 50-60	2.0-9.5		5.6-7.3 5.6-7.3
}	30-00	0.0-5.7	- 	J.G-7.3

Table 14.—Chemical Properties of the Soils—Continued

Map symbol	Depth	Cation-	Effective	
and soil name		exchange	cation-	reaction
		capacity	exchange	
			capacity	
	In	meq/100g	meq/100g	рН
620:				
Half Dome, very cobbly sandy loam,				ļ
warm	0-1			
	1-2			
	2-10	5.3-16		5.6-7.3
	10-17	5.3-16		5.6-7.3
	17-29	2.0-9.5		5.6-7.3
	29-60	2.0-9.5		5.6-7.3
630:				l I
Rubble land.				
Rubble land.				l I
Half Dome	0-1	5.3-16		5.6-7.3
nair bome	1-19	5.3-16		5.6-7.3
	19-28	2.0-9.5		5.6-7.3
	28-33	2.0-9.5		5.6-7.3
	33-50	2.0-9.5		5.6-7.3
	50-60	0.8-5.7		5.6-7.3
		İ	İ	İ
701:		İ	İ	İ
Vitrandic Haploxerolls	0-1			
	1-3	15-24		5.6-6.0
	3-12	7.9-17		5.6-6.0
	12-16	3.0-16		5.6-6.5
	16-24	5.8-14		5.6-6.5
	24-36	4.6-12		5.6-6.5
	36-50	3.8-11		5.6-6.5
	50-60	3.1-9.9		5.6-6.5
702:		10.04		
Vitrandic Dystroxerepts	0-8	13-24		5.6-6.0
	8-30	5.8-14		5.6-6.5
	30-50 50-60	4.6-7.7		5.6-6.5 6.1-6.5
	50-60	4.9-7.7		6.1-6.5
900.				l I
Rock outcrop.				I I
noon outdrop.				
DAM.				
Dam		İ	İ	
-		İ	İ	
w.		i	İ	İ
Water		İ	İ	İ
		İ	İ	İ

Table 15.-Water Features

(Depths of layers are in feet. See text for definitions of terms used in this table. Estimates of the frequency of ponding and flooding apply to the whole year rather than to individual months. Absence of an entry indicates that the feature is not a concern or that data were not estimated)

	_		Water	table		Ponding		Flooding	ling
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency
			된 다	편 다	F)				
101: Oxyaquic Xerofluvents									
		January	3.0-5.0	>6.0	:	!	None	Brief	Frequent
		February	3.0-5.0			:	None	Brief	Frequent
		March	3.0-5.0			!	None	Brief	Frequent
	_	April	3.0-5.0		!!!	!	None	Brief	Frequent
		May	3.0-5.0			!	None	Brief	Frequent
		June	3.0-5.0	>6.0	!!!	!	None	Brief	Frequent
	_	Jul-Oct		1		:		-	
		November	3.0-5.0	>6.0		:	None	Brief	Frequent
		December	3.0-5.0	>6.0	!	!!!	None	Brief	Frequent
Riverwash									
		January	0.0	>6.0	:	!	None	Long	Frequent
		February	0.0	>6.0	1 1	:	None	Long	Frequent
		March	0.0	>6.0		:	None	Long	Frequent
		April	•	>6.0	1	!!!	None	Long	Frequent
		May	0.0	>6.0	1	-	None	Long	Frequent
		June	0	>6.0			None	Long	Frequent
		July	1.5-5.0	>6.0	1	!	None		-
		August		>6.0	1	!	None		-
		September	1.5-5.0	>6.0	1	-	None		
		October	1.5-5.0	>6.0			None		-
		November	•	>6.0	1	-	None	Long	Frequent
		December	0.0	0.9<	!	!	None	Long	Frequent
Fluvaquents	Α								
•		January	0.0-1.2	>6.0	:	!!!	None	Very long	Frequent
		February	0.0-1.2	>6.0	1 1	-	None	Very long	Frequent
		March	0.0-1.2	>6.0		!	None		Frequent
		April	0.0-1.2	>6.0	1 1	-	None		Frequent
	_	May	0.0-1.2			:	None	Very long	Frequent
		June	0.0-1.2		:	!	None		Frequent
		July	0.0-1.7		1	-	None	:	:
		August	0.0-1.7				None		-
		September	0.0-1.7	>6.0		:	None		
		October	0.0-1.7	>6.0	1	:	None	!	:
		November	۰.	>6.0	!	!	None	Very long	Frequent
		December	0.0-1.2	>6.0	!	!	None	Very long	Frequent
	_		_		_		_		

Table 15.-Water Features-Continued

	_		Water	table		Ponding		F100	Flooding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency
			F)	F)	FI T				
101t: Lithnip	Δ	Jan-Dec	!	;	!	}	None	!	None
Rock outcrop.									
Fishsnooze	м	Jan-Dec	!	:	! ! !	1 1 1	None	1	None
102: Oxyaquic Xerofluvents	⋖								
		January	3.0-5.0	0.9<			None	Brief	Frequent
		February	3.0-5.0	0.9<		!	None	Brief	Frequent
		March	3.0-5.0	>6.0	!!!	1 1	None	Brief	Frequent
		April	3.0-5.0	>6.0	!!!	1 1	None	Brief	Frequent
		May	3.0-5.0	>6.0	1 1		None	Brief	Frequent
		June	3.0-5.0	>6.0			None	Brief	Frequent
	_	Jul-Oct	1					:	:
		November	3.0-5.0	0.9<	!	!	None	Brief	Frequent
		December	3.0-5.0	>6.0		!	None	Brief	Frequent
Riverwash	4								
		January	0.0	>6.0	:	1 1	None	Long	Frequent
		February	0.0	>6.0	!	!!!	None	Long	Frequent
		March	0.0	>6.0	-	1	None	Long	Frequent
		April	0.0	>6.0	!	!!!	None	Long	Frequent
		May	0.0	>6.0			None	Long	Frequent
		June	0.0	0.9<	1	!	None	Long	Frequent
		July	1.5-5.0	>6.0	!	1	None	:	-
		August		>6.0	!	1	None	:	-
		September	1.5-5.0	>6.0			None		
	_	October	1.5-5.0	0.9<			None	:	:
	_	November	0.0	0.9<	!	1 1	None	Long	Frequent
		December	0.0	>6.0	!	1 1	None	Long	Frequent
102t: Lithnip	А								
		Jan-Dec	!	!	!	!	None	;	None
Rock outcrop.									
Fishsnooze	м	Jan-Dec	:	!	!	1 1	None	;	None
	_		_						

Table 15.-Water Features-Continued

			Water	table		Ponding		F100	Flooding
Map symbol and soil name	Hydro- logic	Month	Upper limit	Lower	Surface	Duration	Frequency	Duration	Frequency
	group				depth				
			FF T	면	면 t				
Aquandic Humaquepts	υ 	Treite	, ,	9	1	!	N CN		1 0 1 1
		February	0.5-3.0	0.0		 	None	Brief	Frequent
		March	0.5-3.0	0.94	!	1	None	Brief	Frequent
		April	5-3	0.9	1	1	None	Brief	Frequent
		May	.5-3	0.9<		!	None	Brief	Frequent
		June	5-3	0.9<	!	1	None	Brief	Frequent
		July	5-3	>6.0	!	!!!	None	:	: :
	_	August	0.5-3.0	>6.0		!	None	-	-
	_	September	5-3	>6.0	!	!!!	None	:	!
		October	0.5-3.0	>6.0		1	None	-	-
		November	0.5-3.0	0.0	:	! !	None	Brief	Frequent
		December	0.0-0.0	0.0	: :	! ! !	None	Briei	redneur
111t: Whittell	υ	Jan-Dec	i i i	! ! !	!!!	!	None	;	None
Jobsis	Д	Jan-Dec	1	!	!	!	None	;	None
Rock outcrop.									
151: Blcapitan		ı	1	•			:	,	-
		January	3.0-5.0	0.0	1	1	None	Long	Occasional
		February	3.0-0.0	0.0		1 I	None	puo I	Occasional
		Anril	2.0.6	0 0	 	 	None	בי בי	
		May	3.0-5.0	0.9	:	!	None	Long	Occasional
		June	3.0-5.0	>6.0	1	!!!	None	Long	Occasional
		Jul-Oct	1 1	1		!	-	1	:
	_	November	3.0-5.0	>6.0		!!!	None	Long	Occasional
		December	.0-5	>6.0	!	 	None	Long	Occasional
Vitrandic Haploxerolls	∢	January	5.0-6.0	>6.0		:	None	Brief	Occasional
		February	5.0-6.0	>6.0	!	!!!	None	Brief	Occasional
	_	March	5.0-6.0	>6.0			None	Brief	Occasional
		April	5.0-6.0	>6.0	:	1 1	None	Brief	Occasional
		May	2.0-6.0	>6.0	!	!	None	Brief	Occasional
		June	2.0-6.0	>6.0	:	!!!!	None	Brief	Occasional
		Jul-Oct	1 (!	1 1		1 4 1 -1	
		November	0.0-0.0	0.0	1 1	1 1 1	None	brice	Occasional
		December	0.0-0.0	0.0	 	! !	None	DITEI	Occasional
	_		_		_		_		_

Table 15.-Water Features-Continued

			Water	table		Ponding		Flooding	ding
Map symbol and soil name	Hydro- logic group	Month	Upper	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency
			F	F.	Ft				
201; Leidig	ф								
		January	3.3-5.0			1	None	Brief	Occasional
		February	3.3-5.0		1 1	!	None	Brief	Occasional
		March	3.3-5.0				None	Brief	Occasional
		April	3.3-5.0		-	!!!	None	Brief	Occasional
		May	3.3-5.0			!	None	Brief	Occasional
		June	3.3-5.0	0.9<			None	Brief	Occasional
		Jul-Oct	1	!			!	-	
		November	3.3-5.0	0.0	!	!	None	: 4 : -	: : -
		December	3.3-5.0	0.0	1	!	мопе	Briei	Occasional
210: Rubble land.									
Typic Cryorthents	4	Jan-Dec	!	!	1 1	;	None	;	None
Rock outcrop.									
Xeric Dystrocryepts	ф	Jan-Dec	:	! ! !	1 1	!	None	!	None
211: Xeric Dystrocryepts	4	ב. הרי מכרי				;	0 0 0 0	;	e no
Canistocks	4	; ;		 -					
	l 	Jan-Dec	!	 	1	!	None	:	None
Oxyaquic Dystrocryepts	щ		, ,	9			i i		, , , , , , , , , , , , , , , , , , ,
		February	1.6-3.3	0.0	 	 	None		None
		March	1.6-3.3	0.9<	!	1	None	:	None
		April	1.6-3.3	>6.0	1 1	!	None	!	None
		May	1.6-3.3				None	:	None
		June	1.6-3.3			!	None	!	None
		July	1.6-3.3				None		None
		August	3.3-5.0		1 1	!	None	!	None
		September	3.3-5.0		1 1	!	None	!	None
		October	3.3-5.0	0.9	:	!	None	!!!!	None
		November	L.0-1	0.0	 ! !	1 1 1	None	!	None
		лесешрег	L.6-3.3	0.0	! !	: :	None	:	None

Table 15.-Water Features-Continued

			1 (1)	0 1		1		F	-
			Warer	cable		Fonding		Бигроотя	ding.
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
			H T	H T	H.				
213:	A								
	¢	Jan-Dec	:	-	!	!	None	}	None
Glacierpoint	4	Jan-Dec	!	:	!	1 1	None	;	None
Vitrandic Dystrocryepts	₫	Jan-Dec	1		!!!	! ! !	None	;	None
214: Marmotland	ф								
	_	January	5.0-6.0	>6.0	:	:	None	!	!
		February	5.0-6.0	>6.0	!!!	!!!	None	!	!
		March	5.0-6.0	>6.0	!	!	None	Brief	Occasional
		April	5.0-6.0	>6.0	!!!	!!!	None	Brief	Occasional
		May	5.0-6.0	>6.0			None	Brief	Occasional
		June	5.0-6.0	>6.0	1	-	None	Brief	Occasional
-		Jul-Oct	!	!	1	!	!	1	1
		November	2.0-6.0	>6.0	!	!	None	Brief	Occasional
		December	2.0-6.0	>6.0	:	!!!!	None	Brief	Occasional
Oxyaquic Dystrocryepts	ט								
		January	1.6-3.3	>6.0	1	!	None	-	-
		February	1.6-3.3	>6.0		!	None	-	-
		March	1.6-3.3	>6.0	-	:	None	!	:
		April	1.6-3.3	>6.0	!!!	!!!	None	Long	Frequent
		May	1.6-3.3	>6.0			None	Long	Frequent
		June	1.6-3.3	>6.0			None	Long	Frequent
		July	1.6-3.3	>6.0	1	-	None	-	
		August	ų.	>6.0	!	!	None	:	:
		September	÷٠	>6.0	!	!!!!	None	!	!
		October	3.3-5.0	>6.0	1	-	None	!	-
-		November	9	>6.0	1	!	None	!	!
		December	1.6-3.3	>6.0	1	!	None	!	!
Xeric Dystrocryepts	⋖	ı					!		
		Jan-Dec	!	-	1	!	None	!!!!	None
215: Typic Cryorthents	Д	Jan-Dec	!	:	!	}	None	}	None
Rock outcrop.									
Rubble land.									
					_				

Table 15.-Water Features-Continued

				4 4		Ponding		ָבָּרְיִּנְיָּטָטְרָבָּּ	ני
Months of the second	200	M	T S S S S S S S S S S S S S S S S S S S	P C C C	4	Formal Property		1 1 1	5000
map symbol and soil name	logic	монсп	Upper limit	limit	water	Duracion	- reduency	Duracion	Kouenberg
	drozb				aeprn				
			편 다	ا بیا ا ب	ا بی ا ا دا				
71-1-1									
kock outerop.									
Rubble land.									
20 C C C C C C C C C C C C C C C C C C C	4								
	:	Jan-Dec	!	:	!	!	None	-	None
221: Typic Cryorthents	4	Jan-Dec	!	! ! !	!	!	None	;	None
Xeric Dystrocryepts	м	Jan-Dec	:	!	!	!	None	}	None
100000000000000000000000000000000000000	р				-				
	a 	January	1.6-3.3		!	:	None	!	!
		February	1.6-3.3		-	!!!	None		-
		March	1.6-3.3	0.9<	!	! !	None	!	1
		April	1.6-3.3	0.94	 		None	Long	Frequent
		May	1.6-3.3		1	!!!	None	Long	Frequent
		June	1.6-3.3		1 1	!	None	Long	Frequent
		July	1.6-3.3		 		None		
		August	3.3-5.0		!	1 1	None	:	:
		September	0.0-0.0	0.0	 	1	None	!	! !
		Verober	1 6 2 3		1 1	1 1 1	None	1 1	1 1
		December	1.0-1	0 0		 	None		
		December	n		 	l !	NOTIC	! !	! ! !
222: Canisrocks	Ą	Jan-Dec	!	!	1 1	!	None	1	None
Rubble land.									
Rock outcrop.									
Crazvmille	A								
		Jan-Dec	!	!	!	!	None	;	None
223: Rock outcrop.									
Rubble land.									
Canisrocks	щ	Jan-Dec	:	!	!	!	None	;	None
					_		_		

Table 15.-Water Features-Continued

			Water	table		Ponding		Flooding	ding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
			F)	Ft	F)				
24: Rock outcrop.									
Crazymule	Ą	Jan-Dec	1 1	!	!	;	None	;	None
Vitrandic Cryorthents	4	Jan-Dec	:	!		;	None	;	None
25: Canisrocks	4	Jan-Dec	!	!	!	;	None	1	None
Rock outcrop.									
Rubble land.									
Vitrandic Dystrocryepts	4	Jan-Dec	!		!	! ! !	None	;	None
27: Canisrocks	щ	Jan-Dec	:	!	!	;	None	-	None
Crazymule	Æ	Jan-Dec	1		!	!	None	!!!	None
28; Xeric Dystrocryepts	<	Jan-Dec	!	1	!	;	None	!	None
Vitrandic Eutrocryepts	4	January	1.6-3.3	0.9		!	None	!	1
		February	1.6-3.3	>6.0	:	!	None	:	!
	_	March	1.6-3.3	>6.0	!!!	!!!	None	!	!
		April	1.6-3.3	>6.0	:	1	None	Long	Occasional
		May	1.6-3.3	0.9	:		None	Long	Occasional
		July .	1.0-1.	0.04	: :	 ! !	N OH	Found	Occasional
		August	1.6-3.3	0.9<	!	1	None	:	
		September	1.6-3.3	>6.0	!	-	None		
		October	1.6-3.3	>6.0	:	!	None	!	!
		November	1.6-3.3	>6.0	1	:	None	:	:
		December	1.6-3.3	0.9<	!	! !	None	!	!

Table 15.-Water Features-Continued

			Water	table		Ponding		F100	Flooding
Map symbol and soil name	Hydro- logic	Month	Upper limit	Lower	Surface	Duration	Frequency	Duration	Frequency
	group				depth				
			Ft	平	FF.				
229:									
Marmotland	Д								
		January	5.0-6.0	>6.0	 	!	None	:	:
		February	5.0-6.0		 	!	None	!!!	1 1
		March	5.0-6.0		!	:	None	Brief	Occasional
		April	5.0-6.0		 	!	None	Brief	Occasional
		May	5.0-6.0		!	-	None	Brief	Occasional
		June	2.0-6.0	>6.0	!		None	Brief	Occasional
		Jul-Oct	1	1	!	-		:	-
-		November	5.0-6.0	>6.0	1		None	Brief	Occasional
		December		0.9<	!		None	Brief	Occasional
Oxyaquic Dystrocryepts	ф	יים בר. הפר	, ,	9		;	0 0 0 2	;	N Out
			2						
231: Canisrocks	⋖	Jan-Dec	!	! ! !	! !	;	None	;	None
Typic Cryaquents	4								
		January	0.0-1.2		!	!!!	None	!	None
		February	0.0-1.2		 	!	None	!!!	None
		March	0.0-1.2		! !	! !	None	!!!	None
		April	0.0-1.2	>6.0	! !	!	None	!!!	None
		May	0.0-1.2	0.9<	!	!	None	!	None
		June	0.0-1.2	>6.0	!		None		None
		July	0.0-1.7	>6.0	! !	!	None	!!!	None
		August	0.0-1.7	>6.0	!		None		None
		September	0.0-1.7	>6.0	!		None		None
		October	0.0-1.7	>6.0	!		None		None
		November	0.0-1.2	>6.0	!		None		None
		December	0.0-1.2	>6.0	!	!!!!	None	!	None
CALLUT	€	Jan-Dec	:	!	!	}	None	-	None
Glacierpoint	⋖	Tan-Dec	 	!		!	N C C C	!	N S
234. Rock outcrop-Rubble land									
	_	_	_						

Table 15.-Water Features-Continued

			Water	table	-	Ponding		Flooding	ding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
	1		F)	14 14	1 11				
			2	2	0				
235: Canisrocks	Ą								
		Jan-Dec	!	!	!	!	None	-	None
Rock outcrop.									
Rubble land.									
237:									
Canisrocks	4	Jan-Dec	:	!		1 1	None	:	None
Glacierpoint	щ	Jan-Dec	!	!	!	!	None	!	None
Vitrandic Cryorthents	4	Jan-Dec	:	!	!	!	None	!!!	None
Oxyaquic Cryorthents	щ	January	1.6-3.3	>6.0	!!!	1	None	;	!
		February	1.6-3.3		!	!	None	!	:
		March	1.6-3.3			!	None	-	-
		April	1.6-3.3		1 1	!	None	Long	Frequent
		May	1.6-3.3		:	!!!!	None	Long	Frequent
		June	1.6-3.3		1	!	None	Long	Frequent
		July	1.6-3.3	0.0	!	!	None		1
		August	1.6-3.3	0.0	! !	! !	None	:	!
		September	1.0-3.3	0.0	1 1	1 1	None	1 1	1 1
		November	1.6-3.3	0.0			None		I
		December	1.6-3.3	>6.0	!	:	None	!	!
Canisrocks	Ą	1							
		Jan-Dec	!	1	1	1	None	!	None
239; Crazvmile	<								
	: :	Jan-Dec	:	!	:	!	None	:	None
Canisrocks	∢	Jan-Dec	! !	!	!	1	None	;	None
Canlsrocks	⋖	Jan-Dec	!	!!!!	!	 	None	-	None
_	_		_	_	_		_		_

Table 15.-Water Features-Continued

			Water	table		Ponding		Flooding	ling
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
			Ft.	F)	F.				
242: Rock outcrop.									
Canisrocks	⋖	Jan-Dec	-	!	! !	!	None	!	None
Xeric Dystrocryepts	⋖ 	Jan-Dec	:	:	! !	!	None	!	None
244: Typic Cryorthents	∢	Jan-Dec	! ! !	!!!	! ! !	!	None	}	None
Rubble land.									
Rock outcrop.									
245: Rock outerop.									
Canisrocks	⋖	Jan-Dec	!	1	!	! ! !	None	1	None
Xeric Dystrocryepts	м	Jan-Dec	!	1 1	! !	! ! !	None	;	None
246. Rock outerop, domes									
247: Canisrocks	⋖	Jan-Dec	!	!!!!	! ! !	! ! !	None	}	None
Xeric Dystrocryepts	₫	Jan-Dec		:	! ! !	1	None	;	None
248: Canisrocks	⋖	Jan-Dec	1	!	!!!	!	None	;	None
Rock outcrop.									
Glacierpoint	∢	Jan-Dec	:	:	:	}	None	:	None

Table 15.-Water Features-Continued

						-		Ī	
		•	Water	table		Ponding		FTOOGING	ung
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency
			표 다	F.	편 다				
249: Rock outcrop.									
Canisrocks	₫	Jan-Dec	 	!	:	:	None	}	None
250: Canisrocks	⋖	Jan-Dec	!	!	!	;	None	1	None
Xeric Dystrocryepts	⋖	Jan-Dec	1 1	!	:	-	None	}	None
251: Glacierpoint		Jan-Dec	! ! !	1 1	! ! !	!	None	}	None
Typic Cryorthents		Jan-Dec	 		!	!	None	:	None
252: Rock outsrop.									
Canisrocks	4	Jan-Dec	!	!	:	;	None	!	None
Xeric Dystrocryepts	⋖	Jan-Dec	!	!	:	1	None	!	None
253: Canisrocks	⋖	Jan-Dec	! ! !	! ! !	! ! !	!	None	}	None
Glacierpoint	м	Jan-Dec	!	!	!	!	None	;	None
Humic Dystrocryepts	м	Jan-Dec	!	!	!	!	None	;	None
256: Craneflat	⋖	Jan-Dec	!	!	!	:	None	1	None
Rock outcrop. Rubble land.									

Table 15.-Water Features-Continued

			Water	table		Ponding		Flooding	ling
Map symbol and soil name	Hydro-	Month	Upper limit	Lower	Surface	Duration	Frequency	Duration	Frequency
	group				depth				
			Ft	편 다	편 다				
256: Waterwheel	∢	Jan-Dec	!	;	!	!	None	!	None
257: Badgerpass	∢	Jan-Dec	!	1	! ! !	;	None		None
Oxyaquic Dystroxerepts	4	January	1.6-3.3	0.9	:	;	None	;	;
		February	1.6-3.3	0.9<	:	!	None	:	:
		March	1.6-3.3	>6.0	:	1 1	None	:	!
		April	1.6-3.3	0.9		 	None	Long	Frequent
		June	1.6-3.3		:	 	None	Long Duod	Frequent
		July	1.6-3.3		:	1	None	:	::
		August	3.3-5.0		:	!!!	None	-	
		September	3.3-5.0		!	1 1	None	!	!
		October	3.3-5.0		 	!	None	!	-
		November	1.6-3.3				None	-	-
		December	1.6-3.3	>6.0	:	1	None	-	-
258: Typic Dystrocryepts	ф	Jan-Dec	!	}	!	;	None	;	None
Badgerpass	Д	Jan-Dec	!	}	!	;	None	;	None
Dystric Xerorthents	Д	;							
		Jan-Mar	1	:	!	1			
		Aprıı	!	!	!	!	None	Extremely	Occasional
		Мау	!	!	!	!	None	Extremely brief	Occasional
		June	1	:	!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	None	Extremely brief	Occasional
		Jul-Dec	!	1	!	!	1	<u> </u>	1
260: Rock outcrop.									
Craneflat	4	Jan-Dec	!	;	! !	!!!	None	;	None
Dystric Xerorthents	Д								
		Jan-Dec		-	!	! ! !	None	;	None

Table 15.-Water Features-Continued

						-	-		
			Water		-	Ponding		Flooding	ling
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
			FI L	H T	H.				
261: Dystric Xeropsamments	⋖	Jan-Dec	!	:	:	1 1	None	!	None
Typic Dystroxerepts	⋖	Jan-Dec	:	;		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	None	;	None
Badgerpass	∢	Jan-Dec	1 1		!	!	None	;	None
Rock outcrop.									
262: Humic Dystroxerepts	ф	Jan-Dec	:	;	<u> </u>		None	;	None
Dystric Xerorthents	4	Jan-Dec	;			1	None	1	None
Rock outcrop.									
264: Crazymule	∢	Jan-Dec	1	:	!	!	None	-	None
Canisrocks	⋖	Jan-Dec	! !		1 1 1	:	None	;	None
267: Rock outcrop.									
Typic Cryorthents	4	Jan-Dec	1 1		!!!	!	None	;	None
Xeric Dystrocryepts	4	Jan-Dec	1	:	!	!	None	}	None
268: Rock outcrop.									
Canisrocks	ď	Jan-Dec	!	:	 	:	None	:	None
Glacierpoint	⋖	Jan-Dec	!	:	!	!	None	;	None

Table 15.-Water Features-Continued

			Water	Water table		Ponding		Flooding	ding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
			F.	F)	F.				
269: Canisrocks	₫	Jan-Dec	1		!	!	None	!	None
Rock outcrop.									
Glacierpoint	м 	Jan-Dec	;	:	i !	!!!	None	;	None
270: Rock outcrop.									
Typic Cryorthents	⋖	Jan-Dec	1	!	1	1	None	1 1	None
Vitrandic Dystrocryepts	⋖ 	Jan-Dec	!	:	!	!	None	;	None
271: Rock outcrop.									
Lithic Xerorthents	⋖	Jan-Dec		:	i i	!	None	;	None
Waterwheel	∢ 	Jan-Dec	!	!	!	}	None	}	None
273: Nevadafalls	₫	Jan-Dec	 	!	1	!	None	;	None
Waterwheel	м 	Jan-Dec	!	:	! ! !	1	None	;	None
274. Rock outcrop, domes									

Table 15.-Water Features-Continued

			Water	table		Ponding		Flooding	ding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency
			F	표 다	F)				
275: Oxyaquic Dystroxerepts	ф								
		January	1.6-3.3	0.94	!	! !	None	!!!	!
		February	1.6-3.3		!	 	None	!!!!	1 1
		April	1.6-3.3			! ! ! !	None	Brief	Occasional
		May	1.6-3.3		!	1 1	None	Brief	Occasional
		June	1.6-3.3		-	!	None	Brief	Occasional
		July	1.6-3.3	٨	!	!!!!	None		!
		Aug-Oct November	1.6-3.3	0.9	: :	! ! ! !	None	: :	: :
		December	1.6-3.3	0.9<	!	}	None	}	!
Dystric Xerorthents	∢	Jan-Dec	1	;	!	!	None	;	None
Vitrandic Xerorthents	4	Jan-Mar		;	1	!	1	!	
		Anril		!	1	;	Mon	Bripf	רמתסיממיסס
		May	- 1	!	!	1	None	Brief	Occasional
		June	1	:	:		None	Brief	Occasional
		Jul-Dec	:	!	!	:	1 1	!	!
Kubble Land.									
276: Happyisles	Д	; ; ;					W.		() () () () () () () () () ()
		Jan-Dec	!	!	! !	:	None	;	None
Typic Dystroxerepts	м	Jan-Dec	!	-	!	1	None	;	None
277: Tirolimpe	A								
	:	Jan-Dec	1	1	1	-	None	-	None
Humic Dystroxerepts	4	Jan-Dec	!	!	!	!	None	:	None
278: Rock outcrop.									
Tuolumne	4	1					:		:
		Jan-Dec	!	! !	!	!	None	!!!!	None
Humic Dystroxerepts	⋖	Jan-Dec	1	:	1	!	None	!	None
Rubble land.									

Table 15.-Water Features-Continued

			Water	table		Ponding		F100	Flooding
Map symbol and soil name	Hydro-	Month	Upper limit	Lower	Surface	Duration	Frequency	Duration	Frequency
	group				depth				
			Ft.	Ft	F)				
279: Canisrocks	∢	Jan-Dec	:	}	!	;	None	;	None
Xeric Dystrocryepts	⋖	Jan-Dec		1	!	!	None	;	None
280: Typic Dystrocryepts	∢	Jan-Dec	! ! !	! ! !	! !	;	None	;	None
Humic Dystroxerepts	∢	Jan-Dec	;	!	:	}	None	;	None
Rock outcrop.									
282: Clarkslodge	щ	Jan-Dec	:	}	!	;	None	;	None
Craneflat	⋖	Jan-Dec	-	;	1	:	None	;	None
Nevadafalls	4	Jan-Dec	:	}	!	!	None	-	None
283: Waterwheel	∢	Jan-Dec	! ! !	!	! ! !	!	None	1	None
Nevadafalls	∢	Jan-Dec	:	}	:	;	None	;	None
Rock outcrop.									
285: Waterwheel	₫	Jan-Dec	!	1	! ! !	1	None	;	None
Humic Dystroxerepts	м	Jan-Dec	:	}	1	;	None	;	None

Table 15.-Water Features-Continued

			Water	table		Ponding		Flooding	ding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
			H T	F.	H T				
286: Nevadafalls		Jan-Dec	!	:	:	1	None	!	None
Typic Dystrocryepts	∢	Jan-Dec	1 1 1	!	1 1 1	!	None	;	None
Ultic Palexeralfs		Jan-Dec	!	!	:	!	None	;	None
Rock outcrop.									
287: Badgerpass	4	Jan-Dec	: ! !	;	:	!	None	;	None
Waterwheel	4	Jan-Dec	1 1 1	! !	1 1 1	:	None	;	None
288: Rock outgrop.									
Craneflat	⋖	Jan-Dec	1 1	!	1 1	:	None	1	None
Waterwheel	∢	Jan-Dec	!	!!!	!	:	None	;	None
289: Waterwheel	€	Jan-Dec	1	;		!	None	;	None
Craneflat	Ф	Jan-Dec	!	!!!	!	1	None	!	None
290: Humic Dystrocryepts	ф	Jan-Dec	! ! !	!!!!	!	1	None	;	None
Tuolumne	∢	Jan-Dec	:	!	:	-	None	;	None
Typic Xerorthents	ф	Jan-Dec	!	!!!	!!!		None	;	None
Ultic Haploxeralfs		Jan-Dec	!!!	:	!	!	None	;	None

Table 15.-Water Features-Continued

			Water	table		Ponding		Flooding	ding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
			타 나	护	타 나				
291: Ultic Haploxeralfs	щ	Jan-Dec	:	}	1	!	None	;	None
Typic Dystrocryepts	щ	Jan-Dec	!	;	1	1	None	;	None
292: Humic Dystroxerepts	4	Jan-Dec	! ! !	}	!	}	None	!	None
Typic Haploxerults	ф	Jan-Dec	!	}	:	!	None	! !	None
293; Xeric Dystrocryepts	4	Jan-Dec	:	}	:	;	None	;	None
Vitrandic Dystrocryepts	ф	Jan-Dec	;		:	:	None	;	None
294: Waterwheel	щ	Jan-Dec	1	!	!	!	None	}	None
Typic Dystroxerepts	∢	Jan-Dec		;	:	!!!	None	;	None
295: Craneflat	4	Jan-Dec	!	!	!	;	None		None
Typic Dystrocryepts	щ	Jan-Dec	:	;	1	:	None	}	None
296: Ultic Palexeralfs	ф	Jan-Dec	:	}		}	None	;	None
Humic Dystrocryepts	Ф	Jan-Dec	-	;	!	!	None	!!!	None
297: Typic Xerorthents	4	Jan-Dec	!	}	:	;	None	}	None
Rock outcrop.									

Table 15.-Water Features-Continued

			W + CM	4		54,5400		ָבָּר : בְּיִינִייִינִייִינִייִינִייִינִייִינִייִינִייִינִייִינִייִּנְיִינִייִּנְיִינִייִּנְיִינִייִּנְיִינִייִּ	Ç
Map symbol and soil name	Hydro- logic	Month	Upper	H T	Surface	Duration	Frequency	Duration	Frequency
	group				depth				
			FF C	FI C	Ft				
297; Typic Xeropsamments	4	Jan-Dec	1	!	!	1	None	}	None
298; Tuolumne	ф	Jan-Dec	1 1	!	!	1	None	}	None
Typic Dystrocryepts	4	Jan-Dec	!!!!	:	!	}	None	}	None
299; Humic Dystroxerepts	Æ	Jan-Dec	1	:	:	!	None	;	None
Ultic Haploxeralfs	ď	Jan-Dec	!	1	!	-	None	!!!	None
300: Typic Dystroxerepts	4	Jan-Dec	:	;	:	1	None	;	None
Ultic Haploxeralfs	ď	Jan-Dec	:	;	:	-	None	!	None
301: Vitrandic Haploxerolls	Ū	January	0.8-2.5	0.9	:	:	None	;	Rare
		February	0.8-2.5		-	1	None	!	Rare
	_	March	0.8-2.5		:	!!!	None	!	Rare
		April	0.8-2.5				None		Rare
		May	0.8-2.5				None	!	Rare
		June	0.8-2.5	٨	! !	! !	None	!	Rare
		July	!	1 1	1 1	!!!	None	!	Rare
		August	1	!	 	1 1	None		Rare
		September	!	!	!	1	None	:	kare
		October	1 (1 '		1	None	-	Rare
		November	0.8-2.5	0.9<	1	!!!	None	!	Rare
		December	0.8-2.5	0.9<		-	None	!!!	Rare
302: Typic Haploxerults	Ф	1					:		;
		Jan-Dec	!	!	!	!	None	!!!!	None
Ultic Haploxeralfs	4	Jan-Dec	:	:	:	!	None	;	None

Table 15.-Water Features-Continued

			Water	427.10		Ponding		pu:00017	ding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
			F)	Ψt	FL T				
03: Rock outcrop.									
Dystric Xeropsamments	⋖	Jan-Dec		:	!	:	None	;	None
Humic Dystroxerepts	4	Jan-Dec	!	:	!!!	!	None	;	None
Tuolumne	⋖	Jan-Dec	1	:	:	1	None	;	None
04: Clarkslodge	4	Jan-Dec	1 1	! ! !	1 1	;	None	}	None
Rock outcrop.									
05: Rock outcrop.									
Waterwheel	₫	Jan-Dec	!	-	! ! !	!	None	;	None
Dystric Xeropsamments	⋖	Jan-Dec	-	!	! !	1 1	None	;	None
06: Typic Cryopsamments	4	Jan-Dec	!	!	!	}	None	!	None
Humic Dystrocryepts	⋖	Jan-Dec	-		! ! !	1	None	!	None
07: Rock outsrop.									
Dystric Keropsamments	4	Jan-Dec	!	:	!	;	None	}	None
Dystric Xerorthents	4	Jan-Mar	-	:	!	;	- 1	1 4 1 -	1 -
		April May	: :	: :	!!!	: :	None	Brief	Occasional
		June	!	!	!	!	None	Brief	Occasional
		our-nec	 	 		1 1 1	! !	I I I	! ! !

Table 15.-Water Features-Continued

			W T T	table		Ponding		P100017	ing.
Man awahol	Hvdro	Month	Thomas	Tower	Surface	Duration	Frequency	Diration	Trechence
and soil name	logic		limit	limit	water depth		7 7 7 7 7 9		
			Ħ T	Ft	년 다				
:608					,				
Rock outcrop.									
Waterwheel	4	Jan-Dec	!	!	!	! ! !	None	:	None
Typic Dystroxerepts	4	Jan-Dec	!	!	!	! ! !	None	:	None
310: Rock outcrop.									
Humic Dystroxerepts	∢	Jan-Dec	!	1 1	:	!	None	;	None
Humic Lithic Haploxerepts	Д	ı							!
		January	1	:	1	!	-	-	None
		February	!	:	 	!	!	!!!	None
		March	1 7		1 0	: { : ! : (1 1	!!!!	None
		April	0.0-L-0	0.0-1-0 0.1-0 0.1-0	0.T-0.3	pro-I	Occasional	: :	None
		Turne	9-1-0		0.1.0	1 C.T.	Occasional	;	o i co
		July	0.0-1.6	0.8-1.6	0.1-0.3	Long	Occasional	!	None
		August	0.0-1.6	0.8-1.6	1 1) !	!	:	None
	_	September		-		!		!	None
		October	- !	!		!!!	!	!	None
		November		:					None
		December	:	!	!	:	!	!!!!	None
311: Rock outcrop.									
Humic Dystroxerepts	щ								
		Jan-Dec	!	:	1 1	!	None	:	None
Humic Lithic Haploxerepts	Д								
		January	-	-	:	!	!	!!!	None
		February		!	1	:		:	None
		March	1 7		1 0		1 -	!	None
		April Mav	0.0-1.6	0.8-I.6	0.1-0.3	Long	Occasional	: :	None
		June	0.0-1.6		0.1-0.3	Long	Occasional	;	None
		July	0.0-1.6	0.8-1.6	0.1-0.3	Long	Occasional	:	None
		August	0.0-1.6	0.8-1.6	:	1	!	:	None
		September	1	:	1	-	-	:	None
		October	!	-	1	!!!	!	!!!	None
		November	-	!	!	1	!	-	None
	_	December	:	!	- ! !	:	:	!	NOTIC

Table 15.-Water Features-Continued

			Water	table		Ponding		Flooding	ding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency
			표 다	#4 t	편 나				
313: Nevadafalls	4	Jan-Dec	!	! ! !	!	;	None	;	None
Oxyaquic Dystrudepts	щ	January	1.6-3.3	0.94	!	! ! !	Non	;	
		February	1.6-3.3		!	-	None	:	:
		March	1.6-3.3		!	!	None	1 1	
		April May	1.6-3.3	0.94	: :	: :	None	Brief Brief	Occasional
		June	1.6-3.3			!	None	Brief	Occasional
		July	1.6-3.3	>6.0	:	!	None	!	:
		Aug-Oct November		ı (: :	: :	- K	: :	: :
		December	1.6-3.3	>6.0	!	!	None	1 1	!
314: Badgerpass	∢	Jan-Dec	!	1 1	!	;	None	;	None
Dystric Xeropsamments	4	Jan-Dec	!	:	!	!	None	1	None
Rock outcrop.									
315: Nevadafalls	4	Jan-Dec	:	!	!	;	None		None
Dystric Xeropsamments	4	Jan-Dec	 	:	! !	!	None	!	None
316: Dystric Xerorthents	4	Jan-Dec	!	! ! !	!	1 1	None	;	None
Rock outcrop.									
Rubble land.									
318: Typic Dystroxerepts	щ	Jan-Dec	:	1	:	1	None	!!	None
Humic Dystroxerepts	м	Jan-Dec	!	!	!	-	None	1	None

Table 15.-Water Features-Continued

			Water table	table		Ponding		Flooding	ding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
			F.	F)	Ft.				
319; Humic Dystroxerepts	4	Jan-Dec	! ! !	! ! !	1 1	!	None	}	None
Typic Haploxerults	ф	Jan-Dec	!	1	! !	!	None	;	None
Inceptic Haploxeralfs	ф	Jan-Dec	!	!	1	;	None	1	None
320; Half Dome	Ą	Jan-Dec	!	!!!!	!!!	!	None	;	None
Humic Dystroxerepts	4	Jan-Dec	!	!	1	;	None	1	None
Rock outcrop.									
321: Dystric Xeropsamments	4	Jan-Dec	1	! !	! !	!	None	}	None
Dystric Xerorthents	ď	Т. Т.			!	,		;	;
		April May June Jul-Dec					None None None	Brief Brief Brief	Occasional Occasional
322: Typic Xerorthents	4	Jan-Dec	!	! ! !	!!!	!	None	;	None
323: Ultic Haploxeralfs	ф	Jan-Dec	!	!	1	:	None	;	None
Humic Dystroxerepts	4	Jan-Dec	:	!!!!	!	;	None	;	None

Table 15.-Water Features-Continued

			Water	table		Ponding		F100	Flooding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency
324:			편 다	표 	파 다				
Humic Haploxerepts	ф	January	!	;	:	1 1	None	;	Very rare
		February	-	:	:	!!!	None	!	Very rare
		March	!	:		!!!	None	:	Very rare
		April	!	:	 	!	None		Very rare
		May True Ort	: :	: :	: :	! ! ! !	None	!!!	very rare
		November	!	:	!	!	None	!	Very rare
		December	!	!	!	!	None	;	Very rare
Rock outcrop.									
Ultic Haploxeralfs	ф	Jan-Dec	!	}	!	1	None	1 1	None
325. Urban land									
328: Clarkslodge	м	Jan-Dec	!	!	1	}	None	!	None
Ultic Palexeralfs	м	Jan-Dec	!	-	1	1 1	None	1 1	None
401: Sentinel	ф	Jan-Dec	:	:	!	}	None	;	None
412: Water.									
Riverwash	!	January	0.0	0.9<	!	!	None	Long	Frequent
		February	0.0	>6.0	:	:	None	Long	Frequent
		March	0.0	0.94	: :	: :	None	Long	Frequent
		May	0.0	>6.0	:	1 1	None	Long	Frequent
		June	0	>6.0	:	1 1	None	Long	Frequent
		July	1.5-5.0	0.94	!	I I I	None	1	1
		September	1.5-5.0		-	!	None	! !	1 1
		October	1.5-5.0		!	1 1	None	!	!!!
		November December	0.0	0.94	: :	: :	None None	Long	Frequent
	_)	1

Table 15.-Water Features-Continued

			Water	table		Ponding		F100	Flooding
Map symbol	Hydro-	Month	Upper	Lower	Surface	Duration	Frequency	Duration	Frequency
	group		7	7 7 1111 7	depth				
			Ħ T	H T	H H				
501: Happvisles, sandv loam									
1		January	1	;	!	!	None	!	Rare
		February	1	:	1	!	None	!	Rare
		March	1	:	1	!	None	!	Rare
		April	1 1	;		!	None	-	Rare
		May-Oct	!	!	!	:	!	:	:
		November	1	;	!	!	None	!	Rare
		December	:	-	!	:	None	!!!	Rare
Happyisles, loamy fine sand,									
	l 	January	-	:	:	1 1	None	Brief	Occasional
		February	1 1	;		!	None	Brief	Occasional
		March	!	!	!	:	None	Brief	Occasional
		April	!	1 1	!	!	None	Brief	Occasional
		May-Oct		1		-	-	1	-
		November		1		!	None	Brief	Occasional
		December	- !	1	- - - -	1 1	None	Brief	Occasional
наррутвлев	щ		с п				1		, i
		January	3.3-5.0		!	! ! !	None	!	Rare
		February	3.3-5.0	0.0	!!!!	! ! !	None	!	Rare
		March	0.0-0.0		!	!	None	!	Rare
		April	0.0-0.0		!	!	None	!	Rare
		May	0.0.0		 	1	NOTICE	!	
		Julie	0.0-0-0	0.00	 	!	D TOOL	!	
		Jar-Oct	i L	i (!	:		!	
		November	3.3-5.0	0.0	!!!	! ! ! !	None	: :	Kare o re
504:									
Mollic Xerofluvents	K							-	
		January	:	1	!	!	None	Briei	Frequent
		February	:	 	1	!	None	Briei	Frednent
		March		1		-	None	Brief	Frequent
		April	!	1	1	!	None	Brief	Frequent
		May-Oct	1 1	1		1	-		
		November		1		-	None	Brief	Frequent
		December	:	:	:	1	None	Brief	Frequent

Table 15.-Water Features-Continued

	-					;			
		;	ы -			Fonding		BUIDOOT4	uing
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency
			H T	다 나	FI T				
510t: Rubble land.									
	Α								
		Jan-Dec	!	!!!!	 	!	None	:	None
Rock outcrop.									
551: Hannvisles									
		January	!	!	!	:	None	-	Rare
		February	!	!	:	:	None	!	Rare
		April	: :	: :		: :	None	! ! ! !	Rare
		May-Oct	:	!	!	:	1	:	!
		November	!	!	!	 	None	1	Rare
		December	! !	! !	! !	!	None	! ! !	kare
Half Dome	⋖	Jan-Dec	:	:	:	-	None	;	None
552: Mollic Xerofluvents									
		January	:	:	!	-	None	Brief	Frequent
		February	:	!	:	-	None	Brief	Frequent
		March		!		1 1	None	Briet	Frequent
		May-Oct	:				0 :	1 1	1000
		November		-	:		None	Brief	Frequent
		December	!	!	!	:	None	Brief	Frequent
590: Terric Haplosaprists	Α	, , , , , , , , , , , , , , , , , , ,	C C				, and a	8 6 1	
		January	1.0-5.0	0.0	!!!	!	None	rong	Occasional
		February	1.0-5.0	0.0	!!!!	1	None	Long	Occasional
		April	1.0-5.0	0.0	: :		None	Long Proof	Occasional
		May	1.0-5.0	0.9		!	None	Lond	Occasional
		Jun-Nov	:	: :	:	-		n : ! !	
		December	1.0-5.0	0.9<	!	-	None	Long	Occasional
601: Half Dome, very bouldery	⋖	¢							
		Jan-Dec		!	!	!	None	1 1 1	None
Half Dome, cobbly	∢ 	Jan-Dec	!	:	:		None	:	None
	_		_	_	_		_		

Table 15.-Water Features-Continued

			Water	table		Ponding		Floo	Flooding
Map symbol and soil name	Hydro- logic group	Month	Upper limit	Lower	Surface water depth	Duration	Frequency	Duration	Frequency
			편 다	F.	표 다				
602: Half Dome	⋖ 	Jan-Dec	!	!	!	;	None	;	None
610: Rubble land.									
Half Dome	∢	Jan-Dec	!!!		!	!	None	;	None
620: Half Dome, extremely stony sandy loam, warm	⋖	Jan-Dec	<u> </u>	!	:	}	None	1	None
Half Dome, very cobbly sandy loam,	⋖	Jan-Dec	! ! !	! ! !	!	!	None	}	None
630: Rubble land.									
Half Dome	∢	Jan-Dec	! ! !		! !	!	None	;	None
701: Vitrandic Haploxerolls		Jan-Dec	!	! ! !	!	!	None	}	None
702: Vitrandic Dystroxerepts		Jan-Dec	!	! ! !	!!!	!	None	;	None
900. Rock outcrop									
DAM. Dam									
W. Water									

Table 16.-Soil Features

(See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated)

Map symbol	Resti	Restrictive 1	layer	Potential	Risk of	corrosion
and soil name		Depth		for	P	
	Kind	to top	Hardness	frost action	steel	Concrete
		u				
101: Oxyaquic Xerofluvents	1	! ! !	!	Moderate	Moderate	Moderate
Riverwash	!	!	:	Low	Moderate	Low
Fluvaquents	!	!	!	Moderate	High	Moderate
101t: Lithnip	Bedrock (lithic)	4-10	Indurated	Moderate	Moderate	Low
Rock outcrop.						
Fishsnooze	Bedrock (lithic)	20-40	Indurated	Moderate	High	High
102: Oxyaquic Xerofluvents	!	! ! !	!	Moderate	Moderate	Moderate
Riverwash	!!!	!	1 1	Low	Moderate	Low
102t: Lithnip	Bedrock (lithic)	4-10	Indurated	Moderate	Moderate	Low
Rock outcrop.						
Fishsnooze	Bedrock (lithic)	20-40	Indurated	Moderate	High	High
104: Aquandic Humaquepts	-	! ! !	!	Moderate	High	Low
Mhittell	Bedrock (paralithic)	20-39	Moderately cemented	Low	Low	Moderate
Jobsis	Bedrock (paralithic)	10-20	Weakly cemented	Low	High	High
Rock outcrop.						
151: Blcapitan	-	! ! !	!	Moderate	Moderate	Moderate
152: Vitrandic Haploxerolls		!	!	Low	Moderate	Moderate

Table 16.-Soil Features-Continued

Man symbol	Σ π π	Restrictive 1	Javer	Potential	Risk of	corrosion
ביים ביים ביים				f0 1		
מזונים ביותונים	Kind	to top	Hardness	frost action	steel	Concrete
		[대]				
01: Leidig	;	:	;	Moderate	Moderate	Moderate
110: Rubble land	;	!	;	:	!	;
Typic Cryorthents	!!!	! !	1 1	Moderate	Moderate	High
Rock outcrop	!!!	! !	!!!	!	!	:
Xeric Dystrocryepts	!	 	1 1	Moderate	Moderate	Moderate
111: Xeric Dystrocryepts	Dense material	34	Moderately cemented	Moderate	Moderate	High
Canisrocks	!!!	! !	1 1	Moderate	Moderate	High
Oxyaquic Dystrocryepts	!!!	! !	!!!	Moderate	Moderate	High
113: Canisrocks	;	:	;	Moderate	Moderate	High
Glacierpoint	!!!	1 1	!!!	Moderate	Moderate	High
Vitrandic Dystrocryepts	!	! !	!!!!	Moderate	Moderate	Moderate
114: Marmotland	Dense material	33	Moderately cemented	Moderate	Moderate	High
Oxyaquic Dystrocryepts	!!!	1	!!!	Moderate	Moderate	High
Xeric Dystrocryepts	!!!	1	!!!	Moderate	Moderate	High
115: Typic Cryorthents	1	1	:	Moderate	Moderate	High
Rock outgrop.						
Rubble land.						
119: Rock outcrop.						
Rubble land.						
Canisrocks	:	!	;	Moderate	Moderate	High

Table 16.-Soil Features-Continued

Map symbol	Resti	Restrictive layer	layer	Potential	Risk of	Risk of corrosion
and soil name	Kind	Depth to top	Hardness	for frost action	Uncoated	Concrete
		u I				
221: Typic Cryorthents	;	!	;	Moderate	Moderate	нідһ
Xeric Dystrocryepts	! !	:	1	Moderate	Moderate	High
Oxyaquic Dystrocryepts	!	:	1	Moderate	Moderate	High
222: Canisrocks	;	!	:	Moderate	Moderate	High
Rubble land.						
Rock outcrop.						
Crazymule	!	:	1	Moderate	Moderate	High
223: Rock outcrop.						
Rubble land.						
Canisrocks	!	:	1	Moderate	Moderate	High
224: Rock outerop.						
Crazymule	1 1	:	1	Moderate	Moderate	High
Vitrandic Cryorthents	Bedrock (lithic)	24-26	Very strongly cemented	Moderate	Moderate	High
225: Canisrocks	;	!	:	Moderate	Moderate	High
Rock outcrop.						
Rubble land.						
Vitrandic Dystrocryepts	!	!	1	Moderate	Moderate	High
227: Canisrocks	;	1 1	:	Moderate	Moderate	High
Crazymule	Dense material	34	Strongly cemented	Moderate	Moderate	High
_		_	_	_		

Table 16.-Soil Features-Continued

Map symbol	Rest	Restrictive	laver	Potential	Risk of	corrosion
and soil name		1		for	P	
	Kind	to top	Hardness	frost action	steel	Concrete
228; Xeric Dystrocryepts	!	! ! !	;	Moderate	Moderate	High
Vitrandic Eutrocryepts	Dense material	37	Moderately cemented	Moderate	Moderate	High
229: Marmotland	;	!	;	Moderate	Moderate	High
Oxyaquic Dystrocryepts	1 1	:	1 1	Moderate	Moderate	High
231: Canisrocks	;	! ! !	;	Moderate	Moderate	High
Typic Cryaquents	!	:	1 1	Moderate	Moderate	High
232: Canisrocks	;	1	;	Moderate	Moderate	High
Glacierpoint	!	:	1	Moderate	Moderate	High
234: Rock outcrop.						
Rubble land.						
235: Canisrocks	;	!	;	Moderate	Moderate	High
Rock outcrop.						
Rubble land.						
237: Canisrocks	Bedrock (densic)	2 9	Strongly cemented	Moderate	Moderate	High
Glacierpoint	1 1	!	1 1	Moderate	Moderate	High
Vitrandic Cryorthents	Bedrock (densic)	13	Strongly cemented	Moderate	Moderate	High
238: Oxyaquic Cryorthents	1	! ! !	!	Moderate	Moderate	Moderate
Canisrocks	!	:	1 1	Moderate	Moderate	High
239: Crazymule	Bedrock (densic)	24	Strongly cemented	Moderate	Moderate	High
Canisrocks	!!!	!	1 1	Moderate	Moderate	High

Table 16.-Soil Features-Continued

Map symbol	Re	Restrictive layer	ıyer	Potential	Risk of	corrosion
and soil name	Kind	Depth	Hardness	frost action	Uncoated	Congrete
		u u				
241: Canisrocks	-	:	;	Moderate	Moderate	High
242: Rock outcrop.						
Canisrocks	!!!	! ! !	!	Moderate	Moderate	High
Xeric Dystrocryepts	!!!	!!!	!	Moderate	Moderate	Moderate
244: Typic Cryorthents	!	:	:	Moderate	Moderate	High
Rubble land.						
Rock outgrop.						
245: Rock outcrop.						
Canisrocks	!	!!!	!	Moderate	Moderate	High
Xeric Dystrocryepts	!	!!!	!	Moderate	Moderate	High
246. Rock outcrop, domes						
247: Canisrocks	-	:	;	Moderate	Moderate	High
Xeric Dystrocryepts	!	1 1	:	Moderate	Moderate	High
248: Canisrocks	:	:	!	Moderate	Moderate	High
Rock outcrop.						
Glacierpoint	!	1 1	:	Moderate	Moderate	High
249: Rock outcrop.						
Canisrocks	:	!!!	;	Moderate	Moderate	High
250: Canisrocks	;	:	-	Moderate	Moderate	High
Xeric Dystrocryepts	:	!!!	;	Moderate	Moderate	High
		_		_		

Table 16.-Soil Features-Continued

Map symbol	RE	Restrictive layer	ayer	Potential	Risk of	corrosion
and soil name	Kind	Depth to top	Hardness	frost action	Uncoated stee1	Concrete
		티				
251: Glacierpoint	;	!	;	Moderate	Moderate	High
Typic Cryorthents	:	!	:	Moderate	Moderate	High
252: Rock outcrop.						
Canisrocks	;		;	Moderate	Moderate	High
Xeric Dystrocryepts	;		;	Moderate	Moderate	High
253: Canisrocks	;	i i	;	Moderate	Moderate	High
Glacierpoint	;		;	Moderate	Moderate	High
Humic Dystrocryepts	:	1	1 1	Moderate	Moderate	High
256: Craneflat	:	!	:	Moderate	Moderate	High
Rock outerop.						
Rubble land.						
Waterwheel	:	!	:	Moderate	Moderate	High
257: Badgerpass	;	:	;	Moderate	Moderate	High
Oxyaquic Dystroxerepts	!	!	:	Moderate	Moderate	High
258: Typic Dystroxerepts	1	:	!	Moderate	Moderate	High
Badgerpass	:	!	1 1	Moderate	Moderate	Moderate
Dystric Xerorthents	!	!	:	Moderate	Moderate	High
260: Rock outcrop.						
Craneflat	!	!	!	Moderate	Moderate	High
Dystric Xerorthents	!	1 1	!	Moderate	Moderate	High
		-		-		_

Table 16.-Soil Features-Continued

Map symbol	Re	Restrictive layer	lyer	Potential	Risk of	corrosion
and soil name		Depth		for	P	
	Kind	to top	Hardness	frost action	steel	Concrete
61: Dystric Xeropsamments	!	! ! !	!	Moderate	Moderate	High
Typic Dystroxerepts	:	1 1 1	!	Moderate	Moderate	High
Badgerpass	;	! ! !	! !	Moderate	Moderate	High
Rock outcrop.						
.62: Humic Dystroxerepts	;	:	-	Moderate	Moderate	High
Dystric Xerorthents	;	1 1	:	Moderate	Moderate	High
Rock outcrop.						
64: Crazymule	!	:	-	Moderate	Moderate	High
Canisrocks	;	!!!	!	Moderate	Moderate	High
67: Rock outcrop.						
Typic Cryorthents	:	1 1	:	Moderate	Moderate	High
Xeric Dystrocryepts	:	1 1	:	Moderate	Moderate	High
68: Rock outcrop.						
Canisrocks	:	!	;	Moderate	Moderate	High
Glacierpoint	:	!	;	Moderate	Moderate	High
69: Canisrocks	-	:	1	Moderate	Moderate	High
Rock outcrop.						
Glacierpoint	;	!!!!	;	Moderate	Moderate	High
70: Rock outcrop.						
Typic Cryorthents	;	!!!!	;	Moderate	Moderate	High
Vitrandic Dystrocryepts	;	!	;	Moderate	Moderate	High
		_		_		

Table 16.-Soil Features-Continued

Map symbol	Rest	Restrictive]	layer	Potential	Risk of	corrosion
and soil name	ž Ž	Depth	Hardness	frost action		Concrete
		I I			d 0	
271: Rock outcrop.						
Lithic Xerorthents	Bedrock (lithic)	7	Very strongly cemented	Moderate	Moderate	High
Waterwheel	!	:	!!!!	Moderate	Moderate	High
273: Nevadafalls	;	:	!	Moderate	Moderate	High
Waterwheel	!!!	 	1 1	Moderate	Moderate	High
274. Rock outcrop, domes						
275: Oxyaquic Dystroxerepts	;	!	!	Moderate	Moderate	High
Dystric Xerorthents	1 1	1	1 1	Low	Moderate	Moderate
Vitrandic Xerorthents	1 1	-	1 1 1	Moderate	Moderate	High
Rubble land.						
276: Happyisles	;	;	;	Moderate	Moderate	Moderate
Typic Dystroxerepts	!!!	:	1 1	Moderate	Moderate	Moderate
277: Tuolumne	;	;	;	Low	Moderate	High
Humic Dystroxerepts	1 1	-	1 1	Low	Moderate	High
278: Rock outcrop.						
Tuolumne	!!!	:	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	Low	Moderate	High
Humic Dystroxerepts	!	:	!!!	Low	Moderate	High
Rubble land.						
279: Canisrocks	!	1	!	Moderate	Moderate	High
Xeric Dystrocryepts	Dense material	34	Moderately cemented	Moderate	Moderate	High

Table 16.-Soil Features-Continued

Map symbol	R	Restrictive layer	ayer	Potential	Risk of	Risk of corrosion
and soil name		Depth		for	Uncoated	
	Kind	to top	Hardness	frost action	steel	Concrete
(80): Typic Dystroxerepts	;	1 1	:	Moderate	Moderate	High
Humic Dystroxerepts	;	!	;	Moderate	Moderate	High
Rock outgrop.						
82: Clarkslodge	;	:	;	Moderate	Moderate	High
Craneflat	;	!	;	Moderate	Moderate	High
Nevadafalls	:	! ! !	;	Moderate	Moderate	High
83: Waterwheel	;	!	;	Moderate	Moderate	High
Nevadafalls	:	 	;	Moderate	Moderate	High
Rock outcrop.						
85: Waterwheel	;	!	;	Moderate	Moderate	Moderate
Humic Dystroxerepts	!	!!!	!	Moderate	Moderate	High
86: Nevadafalls	;	:	;	Moderate	Moderate	High
Typic Dystroxerepts	:	1 1 1	:	Moderate	Moderate	High
Ultic Palexeralfs	:	 	;	Moderate	Moderate	High
Rock outcrop.						
87: Badgerpass	:	:	;	Moderate	Moderate	High
Waterwheel	:	!	:	Moderate	Moderate	Moderate
88: Rock outcrop.						
Craneflat	:	1	;	Moderate	Moderate	High
Waterwheel	:	1 1	!	Moderate	Moderate	Moderate

Table 16.-Soil Features-Continued

Map symbol	Re	Restrictive layer	ayer	Potential	Risk of	corrosion
and soil name		Depth		for	Uncoated	
	Kind	to top	Hardness	frost action	steel	Concrete
		티				
289: Waterwheel	!	1	1	Moderate	Moderate	High
Craneflat	:	!	!	Moderate	Moderate	High
290: Humic Dystroxerepts	!	1	1	Moderate	Moderate	High
Tuolumne	;	!	1 1	Low	Moderate	High
Typic Xerorthents	:	!	1 1	Moderate	Moderate	High
Ultic Haploxeralfs	:	!	1 1	Moderate	Moderate	Moderate
291: Ultic Haploxeralfs	}		;	Moderate	Moderate	High
Typic Dystroxerepts	:	!	!!!	Moderate	Moderate	High
292: Humic Dystroxerepts	!	1	1	Low	Moderate	High
Typic Haploxerults	;	:	!	Moderate	Moderate	High
293: Xeric Dystrocryepts	!	1	1	Moderate	Moderate	High
Vitrandic Dystrocryepts	;	!	!	Moderate	Moderate	Moderate
294: Waterwheel	!		1	Low	Moderate	High
Typic Dystroxerepts	:	!	!!!	Low	Moderate	High
295: Craneflat	!		1	Moderate	Moderate	High
Typic Dystroxerepts	;	!	1 1	Moderate	Moderate	High
296: Ultic Palexeralfs	!!!	1	!	Moderate	Moderate	High
Humic Dystroxerepts	!	!	1 1	Moderate	Moderate	High

Table 16.-Soil Features-Continued

Map symbol	Res	Restrictive 1	layer	Potential	Risk of	corrosion
and soil name	Kind	Depth to top	Hardness	frost action	Uncoated	Concrete
		H				
197: Typic Xerorthents	:	!	:	Low	Moderate	High
Rock outcrop.						
Typic Keropsamments	:	! !	!	Low	Moderate	High
198: Tuolumne	;	!	;	Low	Moderate	High
Typic Dystroxerepts	!	1 1	:	Moderate	Moderate	High
Humic Dystroxerepts	;	!	;	Moderate	Moderate	High
Ultic Haploxeralfs	1 1	1 1	! ! !	Moderate	Moderate	High
100: Typic Dystroxerepts	;	1	;	Moderate	Moderate	High
Ultic Haploxeralfs	!	1 1	:	Moderate	Moderate	High
01: Vitrandic Haploxerolls	;	!	;	Moderate	Moderate	Moderate
17pic Haploxerults	;	1	;	Moderate	Moderate	High
Ultic Haploxeralfs	:	1 1	:	Moderate	Moderate	High
103: Rock outcrop.						
Dystric Xeropsamments	!	!!!!	!	LOW	Moderate	High
Humic Dystroxerepts	!	! !	1 1	Low	Moderate	High
Tuolumne	!	! !	1 1	Low	Moderate	High
04: Clarkslodge	;	!	;	Moderate	Moderate	High
Rock outcrop.						
-		_		_		

Table 16.-Soil Features-Continued

Map symbol	Rest	Restrictive la	layer	Potential	Risk of o	corrosion
and soil name	Kind	Depth to top	Hardness	frost action	Uncoated	Concrete
		 		-		
305: Rock outgrop.						
Waterwheel	!	!	1 1	Moderate	Moderate	High
Dystric Xeropsamments	!	!	1 1	Moderate	Moderate	High
306: Typic Cryopsamments	!	!	!	Moderate	Moderate	High
Humic Dystrocryepts	!	!	1 1	Moderate	Moderate	High
307: Rock outcrop.						
Dystric Xeropsamments	!	!	1 1	Low	Moderate	High
Dystric Xerorthents	1 1	! !	1 1 1	Moderate	Moderate	High
309; Rock outerop.						
Waterwheel	1 1	 	1 1 1	Moderate	Moderate	High
Typic Dystroxerepts	!!!	 	1 1	Moderate	Moderate	High
310: Rock outgrop.						
Humic Dystroxerepts	!!!	 	1 1	Low	Moderate	High
Humic Lithic Haploxerepts	Bedrock (lithic)	10-20	Indurated	Moderate	Moderate	High
311: Rock outcrop.						
Humic Dystroxerepts	!	!	 	Low	Moderate	High
Humic Lithic Haploxerepts	Bedrock (lithic)	10-20	Indurated	Moderate	Moderate	High
313; Nevadafalls	!	:	!	Moderate	Moderate	High
Oxyaquic Dystrudepts	:	:	!	Moderate	Moderate	High
_		_		-		

Table 16.-Soil Features-Continued

Map symbol	Re	Restrictive 18	layer	Potential	Risk of	corrosion
and soil name	Kind	Depth to top	Hardness	frost action	Uncoated steel	Concrete
		티				
314: Badgerpass	;	:	}	Moderate	Moderate	High
Dystric Keropsamments	!	:	;	Moderate	Moderate	High
Rock outcrop.						
315: Nevadafalls	;	:	;	Moderate	Moderate	Moderate
Dystric Xeropsamments	:	:	:	Moderate	Moderate	High
316: Dystric Xerorthents	;	!	;	None	Moderate	High
Rock outcrop.						
Rubble land.						
318: Typic Dystroxerepts	;	!	;	Moderate	Moderate	High
Humic Dystroxerepts	-	:	;	Moderate	Moderate	High
319: Humic Dystroxerepts	;	!	}	Moderate	Moderate	High
Typic Haploxerults	-	:	;	Moderate	Moderate	High
Inceptic Haploxeralfs	;	:	;	Moderate	Moderate	High
320: Half Dome	:	!	;	Moderate	Moderate	Moderate
Humic Dystroxerepts	;	:	;	Low	Moderate	Moderate
Rock outcrop.						
321: Dystric Xeropsamments	!	:	-	None	Moderate	Moderate
Dystric Xerorthents	!	!	!	None	Moderate	High
322: Typic Xerorthents	1	!	}	None	High	Moderate
		-		-		_

Table 16.-Soil Features-Continued

Map symbol	Restr	Restrictive la	layer	Potential	Risk of	corrosion
and soil name	7 1 2	Depth	1 1 1 1 1 1	for	Uncoated	2 2 3 4 4
		HI HI		5	d D D	
323: Ultic Haploxeralfs	:	:	;	None	Moderate	Moderate
Humic Dystroxerepts	1	 	1 1	None	Moderate	Moderate
324: Humic Haploxerepts	;	!	;	None	Moderate	Moderate
Rock outcrop.						
Ultic Haploxeralfs	1 1	!!!	1 1	None	Moderate	Moderate
325. Urban land.						
328: Clarkslodge	1	!	:	Moderate	Moderate	High
Ultic Palexeralfs	1 1	 	1 1	Moderate	Moderate	High
401: Sentinel	;	:	;	Moderate	Moderate	Moderate
112. Water-Riverwash						
501: Happyisles, sandy loam	;	!	;	Moderate	Moderate	Moderate
Happyisles, loamy fine sand, overwash-	1	1 1 1	;	Moderate	Moderate	Moderate
502: Happyisles	:		;	Moderate	Moderate	Moderate
504: Mollic Xerofluvents	:		;	Moderate	Moderate	High
510t: Rubble land.						
Lithnip	Bedrock (lithic)	4-10	Indurated	Moderate	Moderate	Low
Rock outcrop.						
551: Happyisles		:	:	Moderate	Moderate	Moderate
Half Dome	1 1	 	1 1	Moderate	Moderate	Moderate
		_		_		

Table 16.-Soil Features-Continued

Map symbol	Re	Restrictive layer	ayer	Potential	Risk of	Risk of corrosion
and soil name	77 12 13 14	Depth	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	for	Uncoated	
	Kind	Tu Tu	hardness	irost action	Sceel	Concrete
52: Mollic Xerofluvents	;		1	Moderate	Moderate	High
90: Terric Haplosaprists	!	!	1	Moderate	High	нідһ
01: Half Dome, very bouldery	!	:	!	Moderate	Moderate	Moderate
Half Dome, cobbly	;	!	;	Moderate	Moderate	Moderate
02: Half Dome	1	1 1	;	Moderate	Moderate	Moderate
10: Rubble land.						
Half Dome	;	!	}	Moderate	Moderate	Moderate
Half Dome, extremely stony sandy loam,	;	!	!	Moderate	Moderate	Moderate
Half Dome, very cobbly sandy loam,	!	:	!	Moderate	Moderate	Moderate
30: Rubble land.						
Half Dome	:	1	:	Moderate	Moderate	Moderate
01: Vitrandic Haploxerolls	;	!	;	Moderate	Moderate	Moderate
02: Vitrandic Dystroxerepts	:	!	;	Moderate	Moderate	Moderate
00. Rock outcrop						
Д. Б. Б. Б. Б. Б. Б. Б. Б. Б. Б. Б. Б. Б.						
7. Water						
				_		

Table 17.—Taxonomic Classification of the Soils

Soil name	Family or higher taxonomic class
Aquandic Humaquepts	Coarse-silty over sandy or sandy-skeletal, isotic,
i i	nonacid, mesic, Aquandic Humaquepts
Badgerpass	Sandy, isotic, frigid Humic Dystroxerepts
	Sandy-skeletal, isotic Typic Cryorthents
	Coarse-loamy, isotic, frigid Ultic Haploxeralfs
	Sandy-skeletal, isotic, frigid Humic Dystroxerepts
- :	Loamy-skeletal, isotic Xeric Dystrocryepts
= :	Isotic, frigid Dystric Xeropsamments
	Isotic, mesic Dystric Xeropsamments
	Isotic, thermic Dystric Xeropsamments Coarse-loamy, isotic, nonacid, frigid Dystric Xerorthents
	Sandy, isotic, frigid Dystric Xerorthents
	Sandy-skeletal, isotic, frigid Dystric Xerorthents
	Sandy-skeletal, isotic, mesic Dystric Xerorthents
	Sandy-skeletal, isotic, mesic bystric kerorthents
	Coarse-loamy, isotic, mesic Vitrandic Dystroxerepts
	Loamy-skeletal, isotic Xeric Dystrocryepts
Fluvaquents	
- !	Sandy-skeletal, isotic Xeric Dystrocryepts
	Loamy-skeletal, isotic, mesic Typic Dystroxerepts
	Coarse-loamy, isotic, mesic Humic Dystroxerepts
	Loamy-skeletal, isotic Humic Dystrocryepts
	Sandy-skeletal, isotic Humic Dystrocryepts
	Coarse-loamy, isotic, frigid Humic Dystroxerepts
	Coarse-loamy, isotic, mesic Humic Dystroxerepts
	Coarse-loamy, isotic, thermic Humic Dystroxerepts
	Loamy-skeletal, isotic, frigid Humic Dystroxerepts
	Sandy, isotic, frigid Humic Dystroxerepts
	Sandy-skeletal, isotic, frigid Humic Dystroxerepts
	Sandy-skeletal, isotic, mesic Humic Dystroxerepts
	Loamy-skeletal, isotic, thermic Humic Haploxerepts
	Loamy-skeletal, isotic, mesic Humic Lithic Haploxerepts
Inceptic Haploxeralfs	Loamy-skeletal, isotic, frigid Inceptic Haploxeralfs
Jobsis	Sandy-skeletal, mixed, shallow Typic Cryorthents
Leidig	Coarse-loamy, isotic, mesic Vitrandic Dystroxerepts
Lithic Xerorthents	Sandy-skeletal, isotic, frigid Lithic Xerorthents
= '	Loamy-skeletal, isotic, nonacid Lithic Cryorthents
	Coarse-loamy, isotic Vitrandic Dystrocryepts
	Isotic, mesic Mollic Xerofluvents
	Coarse-loamy, isotic, frigid Humic Dystroxerepts
	Coarse-loamy, isotic, nonacid Oxyaquic Cryorthents
Oxyaquic Dystrocryepts	Coarse-loamy, isotic Oxyaquic Dystrocryepts
	Loamy-skeletal, isotic Oxyaquic Dystrocryepts
	Sandy, isotic Oxyaquic Dystrocryepts
	Fine-loamy, isotic, frigid Oxyaquic Dystroxerepts
:	Loamy-skeletal, isotic, mesic Oxyaquic Dystroxerepts
	Coarse-loamy, isotic, frigid Oxyaquic Dystrudepts
:	Isotic, mesic Oxyaquic Xerofluvents
:	Coarse-loamy, isotic, mesic Vitrandic Dystroxerepts
	Isotic, euic, mesic Terric Haplosaprists Sandy-skeletal, isotic, mesic Dystric Xerorthents
	Sandy-skeletal, isotic, mesic Dystric Kerorthents Sandy-skeletal, isotic Typic Cryaquents
	Sandy-skeletal, isotic typic cryaquents Isotic Typic Cryopsamments
:	Isotic Typic Cryopsamments Loamy-skeletal, isotic, acid Typic Cryorthents
:	Loamy-skeletal, isotic, acid Typic Cryorthents Loamy-skeletal, isotic, nonacid Typic Cryorthents
	Sandy-skeletal, isotic Typic Cryorthents
:	Coarse-loamy, isotic, frigid Typic Dystroxerepts
	Coarse-loamy, isotic, frigit Typic Dystroxerepts Coarse-loamy, isotic, mesic Typic Dystroxerepts
	Loamy-skeletal, isotic, frigid Typic Dystroxerepts
:	Loamy-skeletal, isotic, mesic Typic Dystroxerepts
:	Sandy, isotic, frigid Typic Dystroxerepts
į.	Sandy-skeletal, isotic, frigid Typic Dystroxerepts

Table 17.—Taxonomic Classification of the Soils—Continued

Soil name	 Family or higher taxonomic class
Typic Haploxerults	 Coarse-loamy, isotic, frigid Typic Haploxerults
	Fine-loamy, isotic, mesic Typic Haploxerults
	Isotic, mesic Typic Xeropsamments
Typic Xerorthents	Loamy-skeletal, isotic, nonacid, mesic Typic Xerorthents
	Sandy-skeletal, isotic, mesic Typic Xerorthents
	Sandy-skeletal, isotic, thermic Typic Xerorthents
Ultic Haploxeralfs	Coarse-loamy, isotic, frigid Ultic Haploxeralfs
	Coarse-loamy, isotic, mesic Ultic Haploxeralfs
	Coarse-loamy, isotic, thermic Ultic Haploxeralfs
	Fine-loamy, isotic, mesic Ultic Haploxeralfs
	Loamy-skeletal, isotic, thermic Ultic Haploxeralfs
Ultic Palexeralfs	Fine-loamy, isotic, frigid Ultic Palexeralfs
	Fine-loamy, isotic, mesic Ultic Palexeralfs
Vitrandic Cryorthents	Sandy, isotic Vitrandic Cryorthents
	Sandy-skeletal, isotic, shallow Vitrandic Cryorthents
Vitrandic Dystrocryepts	Coarse-loamy, isotic Vitrandic Dystrocryepts
	Loamy-skeletal, isotic Vitrandic Dystrocryepts
	Sandy, isotic Vitrandic Dystrocryepts
	Loamy-skeletal, isotic, mesic Vitrandic Dystroxerepts
	Coarse-loamy, isotic Vitrandic Eutrocryepts
Vitrandic Haploxerolls	Coarse-loamy, isotic, mesic Vitrandic Haploxerolls
	Sandy, isotic, mesic Vitrandic Haploxerolls
	Coarse-loamy, isotic, nonacid, mesic Vitrandic Xerorthents
	Sandy-skeletal, isotic, frigid Dystric Xerorthents
	Sandy-skeletal, mixed Typic Cryorthents
Xeric Dystrocryepts	Coarse-loamy, isotic Xeric Dystrocryepts
	Loamy-skeletal, isotic Xeric Dystrocryepts
	Sandy, isotic Xeric Dystrocryepts
	Sandy-skeletal, isotic Xeric Dystrocryepts

Appendix I

Accessory Notes for Components of Detailed Soil Map Units

Map Unit 101

Component name: Oxyaquic Xerofluvents

Taxonomic unit notes:

- Typic Xerofluvents in recently overwashed areas are a similar component.
- · Lateral drainageways that carry valley side runoff cross some areas of this map unit.

Map Unit 104

Component name: Aquandic Humaquepts

Remarks:

- Soils that have a thin organic surface horizon and are in very poorly drained areas are a similar component in this map unit.
- Lateral drainageways that carry valley side runoff cross some areas of this map unit.

Map Unit 151

Component name: Elcapitan

Remarks:

- Similar components include poorly drained Vitrandic Dystroxerepts in some channel positions, Vitrandic Dystroxerepts that do not have distinct stratification, and Vitrandic Dystroxerepts that have loamy sand surface textures.
- · Lateral drainageways that carry valley side runoff cross some areas of this map unit.

Map Unit 152

Component name: Vitrandic Haploxerolls

Remarks:

• Fluventic Haploxerolls in areas lacking the influences of volcanic ash are a similar component.

Map Unit 201

Component name: Leidig

Remarks:

- Similar components include moderately well drained Vitrandic Dystroxerepts in bare positions adjacent to low stream terraces, lake terraces, or alluvial fans and Vitrandic Dystroxerepts that have gravelly spots.
- Lateral drainageways that carry valley side runoff cross some areas of this map unit.

Map Unit 210

Component name: Typic Cryorthents

Taxonomic unit notes:

- The vegetation consists of alpine grasses, white bark pine, and lodgepole pine.
- The soils formed in colluvial mantles and drainageways and in small discontinuous deposits among rock rubble.
- Tephritic surfaces occur on about 15 percent of the slopes that are less than 20 percent.
- Sheet erosion is common on slopes that are more than about 35 percent.
- Soils on the mid and lower slopes commonly have a surface layer of slopewash that is 1 to 2 centimeters thick.
- Except for slopewash layers, which are nonrepellent, the soils commonly are moderately or strongly water repellent in the surface horizon and very slightly or

slightly water repellent in the second horizon. Repellency typically is negligible below a depth of 30 to 40 centimeters.

Map Unit 210

Component name: Xeric Dystrocryepts

Taxonomic unit notes:

- The soils formed in colluvial mantles on slopes that are about or less than 45 percent.
- Sheet erosion is common on slopes steeper than about 35 percent. The soils on the mid and lower slopes commonly have a surface layer of slopewash that is 1 to 2 centimeters thick.
- Except for slopewash layers, which are nonrepellent, the soils commonly are
 moderately or strongly water repellent in the surface horizon and very slightly or
 slightly water repellent in the second horizon. Repellency usually is negligible below
 a depth of 30 to 40 centimeters.
- Tephritic surfaces occur on about 15 percent of the slopes that are about or less than 20 percent in steepness.

Map Unit 211

Component name: Canisrocks

Taxonomic unit notes:

- The soil occurs on moraines, especially below rock outcrop.
- The soil occurs on the steeper slopes and is more bouldery than other Typic Cryorthents in the same map unit.

Map Unit 211

Component name: Xeric Dystrocryepts

Taxonomic unit notes:

- The soils typically occur on slopes that are about or less than 20 percent.
- The soils tend to be less bouldery than Typic Cryorthents in the same map unit.
- The soils may be glacially compacted at a depth of about or less than 0.5 meter.
- The soils may contain volcanic ash and grade into Vitrandic Dystrocryepts.

Map Unit 211

Component name: Oxyaquic Dystrocryepts

Taxonomic unit notes:

• The soils occur mostly on sites having convergent water drainage, in springs supporting hydric vegetation, and in avalanche tracks.

Map Unit 213

Component name: Canisrocks

Taxonomic unit notes:

This map unit is characterized by a high content of boulders at the surface.

Map Unit 214

Component name: Oxyaquic Dystrocryepts

Taxonomic unit notes:

- Lodgepole pine has encroached on meadows in many areas.
- As revealed by field characteristics, these mineral soils commonly are organic-rich in their surface horizons.
- The soils grade to Humic Cryaquepts in zones with a frigid temperature regime along the low elevation margin of the map unit.

Component name: Marmotland

Taxonomic unit notes:

• The soil may exhibit redoximorphic features at a depth of less than 1 meter.

Map Unit 215

Component name: Typic Cryorthents

Taxonomic unit notes:

The soils are susceptible to debris avalanche on the steepest slopes.

Map Unit 221

Component name: Xeric Dystrocryepts

Taxonomic unit notes:

- The vegetation consists of lodgepole pine forest and brush (huckleberry oak).
- Where there is adequate amounts of volcanic ash, these soils grade to Vitrandic Dystrocryepts.

Map Unit 221

Component name: Typic Cryorthents

Taxonomic unit notes:

• The soils are subject to minor solifluction at the high elevations (about or more than 10,000 feet/3,048 meters).

Map Unit 221

Component name: Oxyaquic Dystrocryepts

Taxonomic unit notes:

 The soils occur mostly on sites having convergent water drainage, in springs supporting hydric vegetation, and in avalanche tracks.

Map Unit 222

Component name: Canisrocks

Taxonomic unit notes:

- The soil formed in colluvial mantles and in small discontinued deposits among rock rubble.
- Downslope creep is common.
- The soil commonly is moderately or strongly water repellent in the surface horizon and very slightly or slightly water repellent in the second horizon. Repellency typically is negligible below a depth of about 30 centimeters.

Map Unit 222

Component name: Crazymule

Taxonomic unit notes:

- This map unit most commonly supports underbrush.
- The vegetation is brush and lodgepole pine (40 percent cover).

Map Unit 224

Component name: Crazymule

Taxonomic unit notes:

The soil surface typically is nearly flush with the upper surface of adjacent bedrock.

Map Unit 224

Component name: Vitrandic Cryorthents

Taxonomic unit notes:

The soil surface typically is nearly flush with the upper surface of adjacent bedrock.

Component name: Canisrocks

Taxonomic unit notes:

- Thin (1 cm thick), discontinuous layers of volcanic ash were found above an elevation of 8,000 feet (2,438 meters).
- The soil typically is slightly water repellent to a depth of 20 centimeters.

Map Unit 227

Component name: Crazymule

Taxonomic unit notes:

- The soil is typically very slightly or slightly water repellent in the surface mineral horizon.
- The soil occurs more commonly under red fir forest than under lodgepole pine forest.

Map Unit 228

Component name: Xeric Dystrocryepts

Taxonomic unit notes:

- Pedons 111 and 118 derived from mixed metamorphic and granitoid till with volcanic ash
- · Rodent activity is common in these soils.

Map Unit 228

Component name: Vitrandic Eutrocryepts

Taxonomic unit notes:

• The soils commonly have a water table within 1 meter of the surface.

Map Unit 229

Component name: Marmotland

Taxonomic unit notes:

• Soils in valley bottoms and on ground moraines typically have Oxyaquic conditions at a depth of less than 1 meter.

Map Unit 231

Component name: Canisrocks

Taxonomic unit notes:

• The soil commonly has a tephritic surface and grades to Vitrandic Cryorthents.

Map Unit 231

Component name: Typic Cryaquents

Taxonomic unit notes:

The soils commonly have a tephritic surface and grade to Aquandic Cryaquents.

Map Unit 237

Component name: Canisrocks

Taxonomic unit notes:

• The soil may have thin, discontinuous deposits of volcanic ash on the surface (tephritic surface), and it is mixed in the upper horizon.

Map Unit 237

Component name: Glacierpoint

Taxonomic unit notes:

• This soil tends to support the densest forest cover in this map unit.

Component name: Canisrocks

Taxonomic unit notes:

• The soil occurs in well drained, elevated areas on moraines.

Map Unit 238

Component name: Oxyaquic Cryorthents

Taxonomic unit notes:

• The soils occur in depressional and fluvial areas on moraines.

Map Unit 242

Component name: Canisrocks

Taxonomic unit notes:

Till may be compacted at a depth of about 75 centimeters.

Map Unit 247

Component name: Canisrocks

Taxonomic unit notes:

• The soil dominantly occurs on young till (of Tioga age).

Map Unit 247

Component name: Xeric Dystrocryepts

Taxonomic unit notes:

• The soils occur dominantly on old (Tahoe and pre-Tahoe age) till on slopes that are about or less than 20 percent.

Map Unit 248

Component name: Glacierpoint

Taxonomic unit notes:

• The soil grades to Humic Dystroxerepts at low elevations in the map unit.

Map Unit 251

Component name: Glacierpoint

Taxonomic unit notes:

• This soil is more common on slopes that are about or less than 45 percent than on the steeper slopes.

Map Unit 251

Component name: Typic Cryorthents

Taxonomic unit notes:

These soils extend to the steepest slopes in the map unit.

Map Unit 252

Component name: Canisrocks

Taxonomic unit notes:

 This soil occurs on the steepest slopes and at the highest elevations in the map unit.

Map Unit 252

Component name: Xeric Dystrocryepts

Taxonomic unit notes:

• These soils formed most commonly on old till (Tahoe and pre-Tahoe age) and on mountain slopes that are about or less than 30 percent.

Component name: Canisrocks

Taxonomic unit notes:

• This soil occurs at the highest elevations and on the steepest slopes in the map unit.

Map Unit 253

Component name: Glacierpoint

Taxonomic unit notes:

 This soil is more common on older till (pre-Tahoe age and Tahoe age) than on younger till (Tioga age).

Map Unit 253

Component name: Humic Dystrocryepts

Taxonomic unit notes:

• These soils most commonly occur on slopes that are about or less than 35 percent.

Map Unit 256

Component name: Craneflat

Taxonomic unit notes:

 Significant amounts of volcanic ash are common in soils in the Grand Canyon of the Tuolumne River.

Map Unit 257

Component name: Oxyaquic Dystrocryepts

Taxonomic unit notes:

• These soils may grade to Fluvaquentic Humaquepts, Aquandic Dystrudepts, or Fluvaquentic Dystrudepts.

Map Unit 268

Component name: Canisrocks

Taxonomic unit notes:

This soil is dominant on the narrow, steeply sloping joints and fractures.

Map Unit 268

Component name: Glacierpoint

Taxonomic unit notes:

• Xeric Dystrocryepts develop more strongly in joints and fractures that are wider and less steep than those in which Typic Cryorthents occur.

Map Unit 269

Component name: Glacierpoint

Taxonomic unit notes:

 This soil is more common on slopes that are about or less than 45 percent than on the steeper slopes.

Map Unit 270

Component name: Vitrandic Dystrocryepts

Taxonomic unit notes:

- Without volcanic ash, Vitrandic Dystrocryepts would be classified as Xeric Dystrocryepts, with which they are closely associated.
- The discontinuous ash mantle on these soils is susceptible to rill erosion, even on sites that have slopes as low as 10 percent.

Component name: Typic Cryorthents

Taxonomic unit notes:

• On slopes that are about or less than 20 percent, these soils have few or no hornfels in their parent material.

Map Unit 275

Component name: Vitrandic Xerorthents

Taxonomic unit notes:

• These soils grade to Vitrandic Udifluvents and Vitrandic Udorthents.

Map Unit 282

Component name: Clarkslodge

Taxonomic unit notes:

This soil is dominant in the more gently sloping areas of the map unit.

Map Unit 282

Component name: Craneflat Taxonomic unit notes:

• This soil is dominant in the more steeply sloping areas of the map unit.

Map Unit 282

Component name: Nevadafalls

Taxonomic unit notes:

This soil is dominant in the more steeply sloping areas of the map unit.

Map Unit 286

Component name: Nevadafalls

Taxonomic unit notes:

• Soils grade to Alfisols (Inceptic Haploxeralfs) in this map unit.

Map Unit 292

Component name: Humic Dystrocryepts

Taxonomic unit notes:

 These soils are dominant on smooth slopes that have weakly weathered surface stones and boulders and in included areas that have slopes of more than 35 percent.

Map Unit 292

Component name: Typic Haploxerults

Taxonomic unit notes:

 These soils commonly occur in stable interfluve positions and on smooth slopes that are about or less than 20 percent.

Map Unit 301

Component name: Vitrandic Haploxerolls

Taxonomic unit notes:

- Soils that have surface layers of fine sandy loam, sandy loam, or mucky loam are a similar component.
- Some soils that occur in subtle depressional drainageways are occasionally flooded.

Map Unit 305

Component name: Dystric Xeropsamments

Taxonomic unit notes:

• This soil component was inferred by extrapolation from comparable components in another map unit.

Map Unit 305

Component name: Waterwheel

Taxonomic unit notes:

• This soil was inferred by extrapolation from comparable components in other map units, which might have a different soil temperature regime.

Map Unit 328

Component name: Clarkslodge

Taxonomic unit notes:

 Soils that have a coarse-loamy particle-size class occur more commonly on the mid to upper backslopes and shoulders; fine-loamy soils occur more commonly on the more gently sloping lower backslopes.

Map Unit 501

Component name: Happyisles

Remarks:

 Typic Dystroxerepts that randomly occur where there is a thinner dark surface layer are a similar component.

Map Unit 502

Component name: Happyisles

Remarks:

 Typic Dystroxerepts that are in a higher position on alluvial fans are a similar component.

Map Unit 504

Component name: Mollic Xerofluvents

Remarks:

Typic Xerofluvents in recently overwashed areas are a similar component.

Map Unit 551

Component name: Half Dome

Remarks:

• Similar components include soils with surface textures ranging from extremely bouldery sandy loam to loamy coarse sand.

Map Unit 551

Component name: Happyisles

Remarks:

 Similar components include Happyisles loamy fine sand, overwash, and soils that have surface textures ranging from bouldery sandy loam to loamy coarse sand.

Map Unit 552

Component name: Mollic Xerofluvents

Remarks:

Typic Xerofluvents in recently overwashed areas are a similar component.

Map Unit 601

Component name: Half Dome

Remarks:

• Similar components include soils that have surface textures ranging from extremely bouldery sandy loam to cobbly loamy coarse sand.

Map Unit 602

Component name: Half Dome

Remarks:

• Similar components include soils that have surface textures ranging from extremely bouldery sandy loam to cobbly loamy coarse sand.

Map Unit 610

Component name: Half Dome

Remarks:

• Similar components include soils that have surface textures ranging from extremely bouldery sandy loam to cobbly loamy coarse sand.

Map Unit 620

Component name: Half Dome

Remarks:

• Similar components include soils that have surface textures ranging from extremely bouldery sandy loam to cobbly loamy coarse sand.

Appendix II

Soil Survey of Yosemite National Park, California

Physical and Chemical Analyses of Selected Soils
(Data are also available at http://ssldata.nrcs.usda.gov/)

Lab sample pedon ID Map (0SD) or texnomic component name Lab data				Series typical		
(MU)	Lab sample	Site/pedon	Map		į į	Lab data
90CA 043 -013	pedon ID	ID	unit		Component name	pedon
90CA 043-013 790514 mu104 TUD Aquandic Humaquepts 91P0404 91CA 043-006 790520 mu151 91P1077 91CA 043-006 790520 mu151 91P1077 91CA 043-006 790520 mu151 91P1079 91CA 043-006 790520 mu151 91P1079 91CA 043-006 790521 mu201 91P1079 91CA 043-007 790513 mu201 91P1079 91CA 043-008 790522 mu201 91P1079 97CA-109-010 790070 mu211 98P0211 97CA-109-011 790112 mu211 98P0212 97CA-109-011 790112 mu211 Vitrandic Dystrocryepts 98P0212 97CA-109-011 790070 mu214 OSD Marmotland 98P0214 97CA-109-013 790095 mu214 OSD Marmotland 98P0214 97CA-109-013 790095 mu214 Marmotland 98P0214 97CA-109-013 790095 mu214 Marmotland 98P0214 97CA-109-013 790095 mu214 Marmotland 98P0214 97CA-109-014 790122 mu219 98P0215 97CA-043-001 790224 mu214 0SD Marmotland 98P0215 97CA-043-001 790026 mu214 98P0215 97CA-043-001 790028 mu214 98P0215 97CA-043-007 790086 mu224 98P0215 97CA-043-007 790086 mu224 98P0215 97CA-043-007 790086 mu224 98P0215 97CA-043-007 790086 mu224 98P0215 97CA-043-007 790086 mu224 98P0215 97CA-043-007 790086 mu224 98P0215 97CA-109-001 790107 mu229 TUD 0xyaquic Dystrocryepts 98P0205 97CA-109-001 790107 mu229 TUD 0xyaquic Dystrocryepts 98P0205 97CA-109-001 790103 mu229 TUD 0xyaquic Dystrocryepts 98P0205 97CA-109-001 790107 mu229 TUD 0xyaquic Dystrocryepts 98P0205 97CA-109-001 790107 mu229 TUD 0xyaquic Dystrocryepts 98P0205 97CA-109-001 790107 mu229 Marmotland 98P0202 97CA-109-001 790108 mu232 97CA-043-007 790086 mu242 0xyaquic Dystrocryepts 98P0205 97CA-043-007 790090 mu232 97CA-043-007 790090 mu232 97CA-043-007 790010 mu239 97CA-			(MU)	example (TUD)		number
1910.0 1			symbol	pedon		
## 1912.0 Add	90CA 043-013	790514	mu104	TUD	Aquandic Humaquepts	91P0404
	91CA 043-003	790517	mu151			91P1074
	91CA 043-006	790520	mu151			91P1077
### 10.0 Ad 3-008	91CA 043-005	790519	mu151			91P1076
### ### ### ### ### ### ### ### ### ##	90CA 043-012	790513	mu201			91P0403
17/CA-109-010	91CA 043-008	790522	mu201			91P1079
		790518				
07CA-109-015 790089 mu213 TUD Vitrandic Dystrocryepts 98P0216 07CA-109-012 790325 mu214 OSD Marmotland 01N0148 97CA-109-013 790095 mu214 Marmotland 98P0214 97CA-109-010 790224 mu214 Occording 10CA-043-003 79098 mu214 Occording 97CA-109-012 79098 mu214 Occording 97CA-109-014 790122 mu219 98P0213 97CA-109-015 790259 mu224 Processor Occording 97CA-109-014 790122 mu215 Occording Processor Occording Processor Occording 97CA-109-003 790259 mu225 Vitrandic Eutrocryepts 98P0189 98P0205 97CA-109-005 790109 mu228 Vitrandic Eutrocryepts 98P0303 98P0205 97CA-109-007 790103 mu229 TUD Oxyaquic Dystrocryepts 98P0303 98P0205 97CA-109-001 790103 mu229		790070				98P0211
### APPORT						
36CA-109-003 790005 mu214 00P0787 00CA-043-001 790224 mu214 02P0787 01CA-043-003 790375 mu214 02R0614 97CA-109-012 790088 mu214 98P0213 97CA-109-003 790260 mu224 98P0189 97CA-109-003 790260 mu225 00P0782 90CA-109-002 790259 mu225 00P0782 97CA-109-017 790107 mu229 Marmotland 98P0202 97CA-109-001 790107 mu229 Marmotland 98P0202 97CA-109-017 790103 mu229 TUD Oxyaquic Dystrocryepts 98P0303 97CA-109-017 790103 mu229 TUD Oxyaquic Dystrocryepts 98P0303 97CA-109-004 790099 mu232 98P0303 98P0303 97CA-109-004 790131 mu232 98P0185 97CA-109-007 790131 mu232 98P0185 90CA-109-008 790148 mu237 TUD Vitrandic Cryorthents 00P0791 90CA-109-001 790233 mu237 TUD<				OSD		
10CA-043-001					Marmotland	
10CA-109-003 790260 mu225 00P0782 10CA-109-002 790259 mu225 00P0782 107CA-109-005 790109 mu229 Marmotland 98P0206 107CA-109-017 790103 mu229 TUD Oxyaquic Dystrocryepts 98P0303 107CA-109-004 790099 mu232 98P0205 107CA-109-008 790113 mu232 98P0185 107CA-109-008 79014 mu232 98P0185 10CA-109-001 799233 mu237 TUD Vitrandic Cryorthents 00P0780 10CA-019-001 799204 mu237 TUD Vitrandic Cryorthents 0P0780 10CA-039-001 79018 mu237 TUD Vitrandic Cryorthents 0P0790 10CA-034-004 799226 mu247 0P0790 98P0217 10CA-034-004 799225 mu242 0P0790 0P0790 10CA-043-005 790226 mu247 Canisrocks 97P0121 10CA-109-001 79901 mu247 0P0791 9P079						
OCA-109-002 790259 mu225 mu225 mu226 Proca-109-005 790109 mu228 Vitrandic Eutrocryepts 980206 Proca-109-001 790107 mu229 Marmotland 980202 Proca-109-017 790103 mu229 TUD Oxyaquic Dystrocryepts 980205 Proca-109-004 790099 mu232 980205 Proca-109-004 790099 mu232 980205 Proca-109-008 790014 mu232 980205 Proca-109-008 790014 mu232 980205 Proca-109-008 79024 mu237 TUD Vitrandic Cryorthents O000780 Proca-109-005 790204 mu237 Proca-109-005 790204 mu237 Proca-109-006 790100 mu239 Proca-109-006 Proca-1						
### PROPRIESS PR						
Marmotland 98P0202 Marmotland 98P0202 Marmotland 98P0202 98P0203 98P0205 98P02					Witnesdie Betweente	
### Record						
				TITO		
				100	Oxyaquic Dystrocryepts	
100A-109-008 790014 mu232 mu237 TUD Vitrandic Cryorthents 00P0780 00P07900 00P0790 00P0780 99CA-109-005 790204 mu237 99P0318 02N0611 790418 mu237 98P0217 98P0217 98P0217 98P0217 99CA-043-004 790225 mu242 00P0790 00CA-043-005 790206 mu247 Canisrocks 97P0121 96CA-109-005 790007 mu247 Canisrocks 97P0127 790156 mu251 97P0128 97CA-043-019 790035 mu252 OSD Canisrocks 97P0129 97P0129 97CA-109-008 790003 mu252 97P0129 97CA-109-008 790003 mu252 98P0209 97CA-043-012 790033 mu252 98P0209 97CA-043-012 790033 mu252 98P0209 97CA-043-012 790034 mu252 98P0209 97CA-043-012 790034 mu252 98P0209 97CA-043-012 790034 mu252 98P0209 97CA-043-012 790034 mu252 98P0209 97P0118 99CA-109-001 790214 mu253 99P0313 99P0313 99P0313 99P0313 99P0313 99P0313 99P0313 99P0313 99CA-109-013 790348 mu256 OSD Waterwheel 01N0149 90CA-109-014 790340 mu256 OSD Badgerpass 97P0131 99CA-109-008 790349 mu258 OSD Badgerpass 97P0131 99CA-109-009 790320 mu258 OSD Badgerpass 97P0131 99P0320 99CA-109-000 790320 mu258 OSD Badgerpass 97P0131 99P0320 99CA-109-000 790320 mu258 99P0320 99CA-109-000 790320 mu258 99P0320 99CA-109-000 790320 mu258 99P0320 99CA-109-000 790320 mu258 99P0320 99CA-109-000 790320 mu258 99P0320 99CA-109-000 790320 mu258 99P0320 99CA-109-000 790320 mu258 99CA-109-000 790320 mu258 99CA-109-000 790320 mu258 99CA-109-000 790320 mu258 99CA-109-000 790320 mu258 99CA-109-000 790320 mu258 99CA-109-000 790320 mu258 99CA-109-000 790320 mu258 99CA-109-000 790320 mu258 99CA-109-000 790320 mu258 99CA-109-000 79						
99CA-109-005 790204 mu237 99P0318 01CA-039-001 790418 mu237 02N0611 79CA-109-016 790100 mu239 98P0217 00CA-043-004 790225 mu242 00P0790 00CA-043-005 790226 mu242 00P0791 06CA-109-005 790007 mu247 Canisrocks 97P0121 06CA-109-011 790028 mu247 97P0127 06CA-109-017 779001 mu247 97P0127 06CA-109-006 790384 mu247 97P0122 01CA-043-007 79033 mu251 97P0122 01CA-043-007 790035 mu251 98P0201 99CA-109-001 79014 mu252 98P014 99CA-109-001 79014 mu252 98P014 99CA-109-001 79038 mu252 98P014 99CA-109-001 79038 mu252 98P0194 99CA-109-001 79038 mu252 98P0194 99CA-109-001 79038 mu252 98P0194 99CA-109-015 79038 mu256 OSD Waterwheel 01N0152 01CA-043-002 790388 mu256 OSD Waterwheel 01N0152 01CA-043-001 790341 mu256 Craneflat 01N0152 01CA-043-001 790341 mu256 OSD Waterwheel 01N0152 01CA-043-001 790340 mu256 OSD Waterwheel 01N0152 01CA-043-001 790340 mu256 OSD Waterwheel 01N0152 01CA-043-001 790340 mu256 OSD Waterwheel 01N0152 01CA-043-001 790340 mu256 OSD Waterwheel 01N0154 01CA-043-001 790340 mu258 OSD Badgerpass 97P0131 99CA-109-008 790320 mu258 OSD Badgerpass 97P0131 99CA-109-008 790320 mu258 OSD Badgerpass 97P0131 99CA-109-008 790320 mu258 OSD Badgerpass 97P0131 99CA-109-009 790320 mu258 OSD Badgerpass 97P0132 01CA-043-001 790322 mu258 OSD Badgerpass 97P0132 01CA-043-001 790322 mu258 OSD Badgerpass 97P0132 01CA-043-001 790322 mu258 OSD Badgerpass 97P0132 01CA-043-001 790320 mu258 OSD Badgerpass 97P0132 01CA-043-001 790322 mu258 OSD SAGGER-109-000 790320 mu258 OSD SAGGER-109-000 790320 mu258 OSD SAGGER-109-000 790320 mu258 OSD SAGGER-109-000 790320 mu258 OSD SAGGER-109-000 790320 mu258 OSD SAGGER-109-000 790320 mu258 OSD SAGGER-109-000 790320 mu258 OSD SAGGER-109-000 790320 mu258 OSD SAGGER-109-000 790320 mu269 OSD SAGGER-109-000 790320 mu269 OSD SAGGER-109-000 790320 mu269 OSD SAGGER-109-000 790320 mu269 OSD SAGGER-109-000 OSD SAGGER-109-000 790320 mu269 OSD SAGGER-109-000				מוזים	Witrandia Cryorthants	
021CA-039-001 790418 mu237 9870217 9870217 9870217 00CA-043-004 790225 mu242 00P0790 00CA-043-005 790226 mu242 00P0790 00CA-043-005 790226 mu242 00P0791 06CA-109-005 790007 mu247 97P0127 9870217 97P0127 9870217 97P0127 9870217 97P0127 9870217 97P0127 9870217 97P0127 9870217 987				100	Viciandic Ciyorchenes	
97CA-109-016 790100 mu239 98P0217 00CA-043-004 790225 mu242 00P0790 00CA-043-005 790226 mu242 00P0791 06CA-109-005 790007 mu247 Canisrocks 97F0121 06CA-109-011 790028 mu247 97F0122 06CA-109-011 790028 mu247 97F0122 06CA-109-006 790384 mu247 97F0123 06CA-109-006 790384 mu247 97F0123 06CA-109-012 790033 mu251 97F0128 06CA-109-012 790033 mu251 97F0128 06CA-109-013 790035 mu251 98F0201 98F0201 98F0201 99F0129 06CA-109-001 790002 mu252 OSD Canisrocks 97F0129 06CA-109-008 790081 mu252 OSD Canisrocks 97F0129 06CA-109-008 790081 mu252 98F0209 06CA-109-001 790003 mu252 98F0209 06CA-109-001 790163 mu252 98F0209 06CA-109-001 790214 mu253 98F0209 06CA-109-015 790341 mu256 Caneflat 01N0152 00CA-109-015 790341 mu256 CSD Waterwheel 01N0152 00CA-109-013 790388 mu256 OSD Waterwheel 01N0152 00CA-109-014 790340 mu256 OSD Badgerpass 97F0131 00CA-109-004 790340 mu258 OSD Badgerpass 97F0131 00CA-109-005 790340 mu258 OSD Badgerpass 97F0131 00CA-109-000 790320 mu258 OSD Badgerpass 97F0131 00CA-109-000 790320 mu258 OSD Badgerpass 97F0130 00CA-109-000 790320 mu258 OSD Badgerpass 97F0130 00CA-109-000 790320 mu258 OSD Badgerpass 97F0130 00CA-109-000 790320 mu258 OSD Badgerpass 97F0130 00CA-109-000 790320 mu258 OSD Badgerpass 97F0130 00CA-109-000 790320 mu258 OSD Badgerpass 97F0130 00CA-109-000 790320 mu258 OSD Badgerpass 97F0130 00CA-109-000 790320 mu258 OSD Badgerpass 97F0130 00CA-109-000 790320 mu258 OSD Badgerpass 97F0130 00CA-109-000 790320 mu258 OSD Badgerpass 97F0130 00CA-109-000 790320 mu258 OSD SACIED POST OSD SA						
00CA-043-004 790225 mu242 00P0790 00CA-043-005 790226 mu247 Canisrocks 97P0121 06CA-109-005 790007 mu247 Canisrocks 97P0121 06CA-109-011 790028 mu247 97P0123 06CA-109-006 790384 mu247 97P0122 06CA-109-012 790033 mu247 02N0618 06CA-109-012 790033 mu251 97P0128 06CA-109-013 790035 mu252 OSD Canisrocks 97P0129 06CA-109-013 790035 mu252 OSD Canisrocks 97P0129 06CA-109-001 790002 mu252 97P0119 98P0209 06CA-109-003 790081 mu252 97P0118 98P0209 06CA-109-004 790163 mu252 98P0194 99P0313 99P0313 00CA-109-001 790341 mu253 02N0613 02N0613 02N0613 00CA-109-013 790346 mu256 Craneflat 01N0149 00CA-109-014 790340 mu256 OSD Waterwheel 01N0149						
00CA-043-005 790226 mu242 00P0791 06CA-109-005 790007 mu247 Canisrocks 97P0121 06CA-109-001 790028 mu247 97P0127 06CA-109-007 779001 mu247 97P0123 06CA-109-006 790384 mu247 97P0122 06CA-109-006 790384 mu247 97P0122 06CA-109-012 790033 mu251 97P0128 06CA-109-012 790033 mu251 97P0128 06CA-109-013 790035 mu252 OSD Canisrocks 97P0129 06CA-109-001 790002 mu252 97P0117 06CA-109-008 790081 mu252 97P0117 06CA-109-008 790081 mu252 97P0118 06CA-109-001 790003 mu252 97P0118 06CA-109-002 790003 mu252 97P0118 07CA-043-012 790163 mu252 98P0194 09CA-109-001 790214 mu253 98P0194 09CA-109-015 790341 mu256 Craneflat 01N0152 00CA-109-015 790341 mu256 OSD Waterwheel 01N0149 00CA-109-014 790340 mu256 OSD Waterwheel 01N0151 01CA-043-001 790365 mu257 Badgerpass 02N0612 09CA-109-014 790340 mu256 OSD Badgerpass 97P0131 09CA-109-008 790199 mu258 9P0320 01N0144 01CA-109-009 790320 mu258 9P0320 01N0144 01CA-109-010 790226 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-010 790226 mu269 Glacierpoint 97P0120 01CA-043-001 79006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269						
26CA-109-005 790007 mu247 Canisrocks 97P0121 26CA-109-011 790028 mu247 97P0127 26CA-109-007 779001 mu247 97P0123 26CA-109-006 790384 mu247 02N0618 26CA-109-012 790033 mu251 97P0128 26CA-109-012 790033 mu251 98P0201 26CA-109-013 790035 mu252 OSD Canisrocks 97P0128 26CA-109-001 790002 mu252 OSD Canisrocks 97P0129 26CA-109-001 790002 mu252 97P0117 26CA-109-008 790081 mu252 98P0209 26CA-109-008 790081 mu252 98P0194 26CA-109-001 790214 mu253 98P0194 26CA-109-001 790368 mu253 02N0613 26CA-109-015 790341 mu256 Craneflat 01N0149 26CA-109-014 790340 mu256 OSD Waterwheel 01N0149 26CA-109-014 790340 mu256 Badgerpass 97P0131						
06CA-109-011 790028 mu247 97P0127 06CA-109-007 779001 mu247 97P0123 06CA-109-006 790384 mu247 97P0122 06CA-109-012 790033 mu247 02N0618 06CA-109-012 790033 mu251 98P0201 06CA-109-013 790035 mu252 OSD Canisrocks 97P0128 06CA-109-013 790002 mu252 97P0117 06CA-109-004 790003 mu252 97P0118 06CA-109-005 790003 mu252 97P0118 06CA-109-002 790003 mu252 97P0118 06CA-109-001 790163 mu252 98P0194 09CA-109-001 790214 mu253 99P0313 00CA-109-001 790368 mu253 02N0613 00CA-109-015 790341 mu256 Craneflat 01N0152 00CA-109-014 790340 mu256 OSD Waterwheel 01N0149 01CA-043-001 790365 mu257 Badgerpass 02N0612 06CA-043-002 790048 mu258					Canisrocks	
0.00	96CA-109-011	790028	mu247			97P0127
01CA-043-007 790433 mu247 970038 mu251 97P0128 99P0313 99P0320 90P0313 99P0320 90P0320 9	96CA-109-007	779001	mu247			97P0123
### PROPRISED NOT SETTING TO BE ADDRESS OF THE PROPRISE OF THE	96CA-109-006	790384	mu247			97P0122
98P0201 98P0201 98P0201 98P0201 98P0201 98P0201 98P0201 98P0201 98P0201 98P0201 98P0201 98P0202 98P0209 97P0117 97CA-109-008 79008 790081 98P0209 98P0200 mu252 97P0118 07CA-043-012 790163 mu252 98P0194 09CA-109-001 790214 mu253 99P0313 01CA-043-002 790368 mu253 02N0613 01CA-109-015 790341 mu256 Craneflat 01N0152 01CA-109-013 790338 mu256 OSD Waterwheel 01N0149 01CA-043-001 790340 mu256 01N0149 01N0151 01CA-043-001 790365 mu257 Badgerpass 02N0612 09CA-109-008 790199 mu258 9P0320 00CA-109-009 790320 mu258 01N0144 00CA-109-010 790322 mu258 01N0145 06CA-109-004 790026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 790032 mu269 Glacierpoint 97P0	96CA-109-012	790033	mu251			97P0128
96CA-109-001 790002 mu252 97P0117 97CA-109-008 790081 mu252 98P0209 96CA-109-002 790003 mu252 97P0118 97CA-043-012 790163 mu252 98P0194 99CA-109-001 790214 mu253 99P0313 00CA-109-015 790341 mu256 Craneflat 01N0152 00CA-109-013 790338 mu256 OSD Waterwheel 01N0149 00CA-109-014 790340 mu256 0SD Waterwheel 01N0151 01CA-043-001 790365 mu257 Badgerpass 02N0612 09CA-109-008 790199 mu258 OSD Badgerpass 97P0131 09CA-109-008 790199 mu258 99P0320 mu258 00CA-109-010 790322 mu258 00CA-109-010 790322 mu258 00CA-109-010 790026 mu267 TUD Xeric Dystrocryepts 97P0126 09CA-109-004 790006 mu269 Glacierpoint 97P0120 00CA-043-011 790432 mu269	97CA-043-019	790156	mu251			98P0201
98F0209 96CA-109-002 790003 mu252 97F0118 97CA-043-012 790163 mu252 98F0194 99CA-109-001 790214 mu253 99F0313 01CA-043-002 790368 mu253 02N0613 01CA-109-015 790341 mu256 Craneflat 01N0152 01CA-109-013 790338 mu256 OSD Waterwheel 01N0149 01CA-109-014 790340 mu256 0SD Waterwheel 01N0151 01CA-043-001 790365 mu257 Badgerpass 02N0612 09CA-109-008 790199 mu258 OSD Badgerpass 97F0131 09CA-109-008 790199 mu258 99F0320 mu258 01N0144 01CA-109-010 790322 mu258 01N0145 01CA-109-010 790322 mu258 01N0145 09CA-109-000 790026 mu267 TUD Xeric Dystrocryepts 97F0126 09CA-109-004 790006 mu269 Glacierpoint 97F0120 01CA-043-011 790432 mu269	96CA-109-013	790035	mu252	OSD	Canisrocks	97P0129
97F0118 97CA-043-012 790163 mu252 98F0194 99CA-109-001 790214 mu253 99F0313 01CA-043-002 790368 mu253 02N0613 01CA-109-015 790341 mu256 Craneflat 01N0152 01CA-109-013 790338 mu256 OSD Waterwheel 01N0149 01CA-109-014 790340 mu256 OSD Waterwheel 01N0151 01CA-043-001 790365 mu257 Badgerpass 02N0612 01CA-043-001 790365 mu258 OSD Badgerpass 97F0131 09CA-109-008 790199 mu258 99F0320 01CA-109-009 790320 mu258 01N0144 01CCA-109-010 790322 mu258 01N0145 01CCA-109-010 790322 mu258 01N0145 01CCA-109-010 790322 mu269 Glacierpoint 97F0120 01CCA-043-011 790432 mu269	96CA-109-001	790002	mu252			97P0117
98P0194 99CA-109-001 790214 mu253 99P0313 01CA-043-002 790368 mu253 02N0613 01CA-109-015 790341 mu256 Craneflat 01N0152 01CA-109-013 790338 mu256 OSD Waterwheel 01N0149 01CA-109-014 790340 mu256 0SD Waterwheel 01N0151 01CA-043-001 790365 mu257 Badgerpass 02N0612 09CA-109-008 790199 mu258 OSD Badgerpass 97P0131 09CA-109-008 790199 mu258 99P0320 01CA-109-010 790322 mu258 01N0145 06CA-109-010 790322 mu258 01N0145 06CA-109-010 790026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 790006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269	97CA-109-008	790081	mu252			98P0209
99CA-109-001 790214 mu253 99P0313 01CA-043-002 790368 mu253 02N0613 00CA-109-015 790341 mu256 Craneflat 01N0152 00CA-109-013 790338 mu256 OSD Waterwheel 01N0149 00CA-109-014 790340 mu256	96CA-109-002	790003	mu252			97P0118
01CA-043-002 790368 mu253 02N0613 00CA-109-015 790341 mu256 Craneflat 01N0152 00CA-109-013 790338 mu256 OSD Waterwheel 01N0149 00CA-109-014 790340 mu256 OSD Waterwheel 01N0151 01CA-043-001 790365 mu257 Badgerpass 02N0612 06CA-043-002 79048 mu258 OSD Badgerpass 97P0131 09CA-109-008 790199 mu258 99P0320 00CA-109-009 790320 mu258 01N0144 00CA-109-010 790322 mu258 01N0145 06CA-109-010 790026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 79006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269			mu252			
00CA-109-015 790341 mu256 Craneflat 01N0152 00CA-109-013 790338 mu256 OSD Waterwheel 01N0149 00CA-109-014 790340 mu256 01N0151 01CA-043-001 790365 mu257 Badgerpass 02N0612 06CA-043-002 790048 mu258 OSD Badgerpass 97P0131 09CA-109-008 790199 mu258 99P0320 99P0320 00CA-109-009 790320 mu258 01N0144 00CA-109-010 790322 mu258 01N0145 06CA-109-010 790026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 790006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269 Glacierpoint 02N0623						
00CA-109-013 790338 mu256 OSD Waterwheel 01N0149 00CA-109-014 790340 mu256 01N0151 01CA-043-001 790365 mu257 Badgerpass 02N0612 06CA-043-002 790048 mu258 OSD Badgerpass 97P0131 09CA-109-008 790199 mu258 99P0320 01N0144 00CA-109-009 790320 mu258 01N0144 00CA-109-010 790322 mu258 50CA-109-010 90026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 790006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269 Glacierpoint 02N0623						
00CA-109-014 790340 mu256 01N0151 01CA-043-001 790365 mu257 Badgerpass 02N0612 06CA-043-002 790048 mu258 OSD Badgerpass 97P0131 09CA-109-008 790199 mu258 9P0320 00CA-109-010 790322 mu258 01N0144 00CA-109-010 790322 mu258 01N0145 06CA-109-010 790026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 790006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269						
01CA-043-001 790365 mu257 Badgerpass 02N0612 06CA-043-002 790048 mu258 OSD Badgerpass 97P0131 09CA-109-008 790199 mu258 99P0320 00CA-109-009 790320 mu258 01N0144 00CA-109-010 790322 mu258 01N0145 06CA-109-010 790026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 790006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269				OSD	Waterwheel	
### PROPRIES OF PR						
99CA-109-008 790199 mu258 99P0320 00CA-109-009 790320 mu258 01N0144 00CA-109-010 790322 mu258 01N0145 06CA-109-010 790026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 790006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269 02N0623				2.50		
00CA-109-009 790320 mu258 01N0144 00CA-109-010 790322 mu258 01N0145 06CA-109-010 790026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 790006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269 02N0623				OSD	Badgerpass	
00CA-109-010 790322 mu258 01N0145 06CA-109-010 790026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 790006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269 02N0623						
06CA-109-010 790026 mu267 TUD Xeric Dystrocryepts 97P0126 06CA-109-004 790006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269 02N0623						
96CA-109-004 790006 mu269 Glacierpoint 97P0120 01CA-043-011 790432 mu269 02N0623				mir.	Ward or Breaters	
01CA-043-011 790432 mu269 02N0623				TUD		
					Glacierpoint	
90CA-103-003 /30024 mu263 97P0125						
	90CA-109-009	/90024	mu269			9/10125

Soil Survey of Yosemite National Park, California

Physical and Chemical Analyses of Selected Soils—Continued

	-1. /		Series typical		
Lab sample	Site/pedon	Map	(OSD) or	g	Lab data
pedon ID	ID	unit (MU)	taxonomic	Component name	pedon number
		(MU) symbol	example (TUD) pedon		number
		Symbol	pedon	I I	
0CA-109-008	790319	mu273	OSD	Nevadafalls	01N0143
00CA-109-006	790280	mu275		Vitrandic Xerorthents	00P0785
00CA-109-005	790278	mu275			00P0784
7CA-109-009	790138	mu276			98P0210
00CA-043-003	790276	mu277		Tuolumne	00P0789
00CA-109-007	790281	mu277		Tuolumne	00P0786
1CA-043-004	790382	mu277		Tuolumne	02N0615
9CA-109-006	790193	mu278	OSD	Tuolumne	99P0314
1CA-043-008	790450	mu278			02N0619
0CA-109-004	790277	mu278			00P0783
7CA-043-008	790129	mu282	OSD	Craneflat	98P0190
0CA-043-002	790272	mu285		Waterwheel	00P0788
9CA-109-004	790182	mu285			99P0317
7CA-109-007	790094	mu285			98P0208
0CA-043-008	790329	mu285			01N0147
9CA-043-002	790180	mu290		Typic Xerorthents	99P0321
7CA-043-011	790151	mu291		Ultic Haploxeralfs	98P0193
9CA-109-002	790185	mu291		Ultic Haploxeralfs	99P0316
7CA-043-016	790128	mu292			98P0198
00CA-043-006	790227	mu293			00P0792
1CA-109-001	790429	mu293			02N0622
7CA-043-004	790073	mu294			98P0186
0CA-043-009	790337	mu295			01N0150
00CA-043-007	790229	mu295			00P0793
1CA-043-005	790388	mu296			02N0616
7CA-043-001	790124	mu296			98P0183
7CA-043-018	790154	mu296			98P0200
7CA-043-014	790069	mu297		Typic Xerorthents	98P0196
7CA-109-002	790132	mu298			98P0203
1CA-043-006	790426	mu300			02N0617
OCA 043-011	790512	mu301			91P0402
91CA 043-002	790516	mu301			91P1073
7CA-043-002	790142	mu304	OSD	Clarkslodge	98P0184
7CA-043-010	790134	mu304		Clarkslodge	98P0192
7CA-043-009	790135	mu304			98P0191
6CA-043-001	790042	mu306	TUD	Typic Cryopsamments	97P0130
7CA-043-015	790114	mu306			98P0197
9CA-109-007	790194	mu310	TUD	Humic Lithic Haploxerepts	99P0319
0CA-109-011	790324	mu313			01N0146
9CA-109-003	790184	mu318			99P0322
6CA-109-014	790056	mu318			97P0132
7CA-043-017	790075	mu319	TUD	Humic Dystroxerepts	98P0199
6CA-109-015	790057	mu319			97P0133
9CA-043-001	790173	mu322	TUD	Typic Xerorthents	99P0315
1CA-043-010	790452	mu324	TUD	Humic Haploxerepts	02N0621
1CA-043-009	790451	mu324			02N0620
7CA-109-003	790092	mu328	TUD	Ultic Palexeralfs	98P0204
7CA-043-005	790083	mu328			98P0187
7CA-109-006	790101	mu328			98P0207
7CA-043-013	790085	mu328			98P0195
7CA-043-006	790084	mu328			98P0188
OCA 043-010	790511	mu401			91P0401
91CA 043-009	790523	mu501			91P1080
91CA 043-001	790515	mu501			91P1072
91CA 043-007	790521	mu501			91P1078
90CA 043-005	790510	mu701			91P0400

NRCS Accessibility Statement

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by e-mail at helpdesk@helpdesk.itc.nrcs.usda.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number at http://offices.sc.egov.usda.gov/locator/app.

SPECIAL SYMBOLS FOR SOIL

SURVEY AND SSURGO

SOIL LEGEND

The field symbols were used as the publication symbols in this soil survey. Most of the publication symbols consist of nonconsecutive numbers that are arranged numerically. Miscellaneous land types are designated only by letters and are listed after the other publication symbols

SYMBOL NAME Oxyaquic Xerofluvents-Riverwash-Fluvaquents association, 0 to 2 percent slopes, mesic Lithnip-Rock outcrop-Fishsnooze complex, 30 to 75 percent slopes, mountains, cryic
 Oxyaquic Xerofluvents-Riverwash complex, 1 to 4 percent slopes, mesic 102t Lithnip-Rock outcrop-Fishsnooze complex, 8 to 30 percent slopes, mountains, cryic104 Aquandic Humaquepts, 0 to 2 percent slopes, mesic 111t Whittell-Jobsis-Rock outcrop complex, 30 to 75 percent slopes, mountains, cryic 151 Elcapitan fine sandy loam, 0 to 2 percent slopes, mesic 152 Vitrandic Haploxerolls, sandy, 0 to 3 percent slopes, mesic 201 Leidig fine sandy loam, 0 to 2 percent slopes, occasionally flooded, mesic 210 Rubble land-Typic Cryorthents-Rock outcrop-Xeric Dystrocryepts complex, 30 to 80 percent slopes, mountainflanks, metamorphic, mafic, cryic 211 Xeric Dystrocryepts-Canisrocks-Oxyaquic Dystrocryepts association, 10 to 40 percent slopes, aprons, lateral moraines, cryic Canisrocks-Glacierpoint-Vitrandic Dystrocryepts complex, bouldery, 20 to 45 percent slopes, medial moraines, cryic
 Marmotland-Oxyaquic Dystrocryepts-Xeric Dystrocryepts complex, 0 to 15 percent slopes, mountain valley floors, cryic Typic Cryorthents-Rock outcrop-Rubble land complex, 30 to 65 percent slopes, metamorphic, glacially scoured mountain slopes, cryic
 Rock outcrop-Rubble land-Canisrocks association, 0 to 80 percent slopes, cirqued mountainflanks, cryic Typic Cryorthents-Xeric Dystrocryepts-Oxyaquic Dystrocryepts complex, 15 to 45 percent slopes, metamorphic, mountain slopes, lateral moraines, cryic Canisrocks-Rubble land-Rock outcrop-Crazymule complex, 30 to 75 percent slopes, mountainflanks, colluvial aprons, cryic Rock outcrop-Rubble land-Canisrocks association, 10 to 65 percent slopes, mountain slopes, cryic
Rock outcrop-Crazymule-Vitrandic Cryorthents association, 0 to 45 percent slopes, joints, fractures, scoured, cryic Canisrocks-Rock outcrop-Rubble land-Vitrandic Dystrocryepts association, 2 to 30 percent slopes, glacially scoured mountain valleys, cryic Canisrocks-Crazymule complex, 15 to 45 percent slopes, mountain slopes, lateral moraines, cryic Xeric Dystrocryepts-Vitrandic Eutrocryepts complex, 0 to 15 percent slopes, wet/dry meadows, cryic
 Marmotland-Oxyaquic Dystrocryepts association, 0 to 8 percent slopes, mountain valleys, ground moraines, fluted, cryic Canisrocks-Typic Cryaquents complex, 5 to 30 percent slopes, lateral moraines, aprons, wet/dry, cryic Canisrocks-Glacierpoint complex, 0 to 25 percent slopes, lateral moraines, cryic 232 Canisrocks-Gaucierpoint Coringes, vi to 23 percent slopes, lateral moralities, crylic
 233 Rock outcrop-Rubble land association, 0 to 80 percent slopes, metamorphic, cirques, mountainflanks, crylic
 235 Canisrocks-Rock outcrop-Rubble land complex, 30 to 80 percent slopes, mountainflanks, crylic
 237 Canisrocks-Glacierpoint-Vitrandic Cryorthents complex, bouldery, 5 to 20 percent slopes, ground moraines, crylic
 238 Oxyaquic Cryorthents-Canisrocks complex, 0 to 15 percent slopes, ground moraines, wet/dry, crylic 239 Crazymule-Canisrocks complex, 0 to 20 percent slopes, ground moraines, cryic 241 Canisrocks, 5 to 35 percent slopes, mountain valleys, cryic Rock outcrop-Canisrocks-Xeric Dystrocryepts complex, 0 to 35 percent slopes, mountain slopes, cryic Typic Cryorthents-Rubble land-Rock outcrop complex, 15 to 40 percent slopes, moraines, cryic Rock outcrop-Canisrocks-Xeric Dystrocryepts association, 0 to 35 percent slopes, mountain valleys, scoured, filled, cryic Rock outcrop, domes, cryic Canisrocks-Xeric Dystrocryepts association, 5 to 30 percent slopes, mountain valleys, moraines, cryic Canisrocks-Rock outcrop-Glacierpoint complex, 30 to 70 percent slopes, mountain slopes, cryic
 Rock outcrop-Canisrocks complex, 30 to 70 percent slopes, mountain slopes, cryic
 Canisrocks-Xeric Dystrocryepts association, 5 to 40 percent slopes, mountain valleys, moraines, avalanches, cryic Glacierpoint-Typic Cryorthents complex, 30 to 65 percent slopes, mountain slopes, lateral moraines, aprons, cryic Rock outcrop-Canisrocks-Xeric Dystrocryepts complex. 5 to 45 percent slopes, moraines, mountain slopes, cryic 253 Canisrocks-Glacierpoint-Humic Dystrocryepts complex, 15 to 55 percent slopes, lateral moraines, cryic
256 Craneflat-Rock outcrop-Rubble land-Waterwheel association, 30 to 80 percent slopes, mountainflanks, frigid Badgerpass-Oxyaquic Dystroxerepts association, 0 to 15 percent slopes, mountain valley floors, frigid
Typic Dystroxerepts-Badgerpass-Dystric Xerorthents complex, 15 to 45 percent slopes, mountain slopes, moraines, frigid Rock outcrop-Craneflat-Dystric Xerorthents complex, 30 to 65 percent slopes, mountain slopes, frigid 261 Dystric Xeropsamments-Typic Dystroxerepts-Badgerpass-Rock outcrop association, 5 to 35 percent slopes, mountain valleys, mountain slopes, frigid

Humic Dystroxerepts-Dystric Xerorthents-Rock outcrop association, 30 to 70 percent slopes, mountain slopes, frigid Crazymule-Canisrocks association, 0 to 20 percent slopes, lateral moraines, wet/dry meadows, cryic

Rock outcrop-Typic Cryorthents-Xeric Dystrocryepts complex, 0 to 35 percent slopes, mountain slopes, joints, cryic 268 Rock outcrop-Canisrocks-Glacierpoint complex, 30 to 80 percent slopes, mountain slopes, joints, cryic

Canisrocks-Rock outcrop-Glacierpoint complex, 0 to 35 percent slopes, mountain slopes, moraines, joints, cryic Rock outcrop-Typic Cryorthents-Vitrandic Dystrocryepts complex, 0 to 65 percent slopes, meantain slopes, mountain slopes, cryic Rock outcrop-Lithic Xerorthents-Waterwheel complex, 0 to 150 percent slopes, cliffs, ledges, frigid

273 Nevadafalls-Waterwheel association, 0 to 35 percent slopes, moraines, frigid

274 Rock outcrop, domes, frigid

Oxyaquic Dystroxerepts-Dystric Xerorthents-Vitrandic Xerorthents-Rubble land complex, stony, 0 to 20 percent slopes, mountain valleys, mesic Happyisles-Typic Dystroxerepts association, 0 to 15 percent slopes, mountain valley floors, mesi 277 Tuolumne-Humic Dystroxerepts complex, 15 to 65 percent slopes, aprons, mesic

278 Rock outcrop-Tuolumne-Humic Dystroxerepts-Rubble land complex, 30 to 100 percent slopes, mountainflanks, mesic Canisrocks-Xeric Dystrocryepts complex, 15 to 45 percent slopes, mountain slopes, moraines, cryic

SYMBOL 280 Typic Dystroxerepts-Humic Dystroxerepts-Rock outcrop association, 15 to 45 percent slopes, mountain slopes, frigid 282 Clarkslodge-Craneflat-Nevadafalls complex, 0 to 30 percent slopes, mountain slopes, hummocky, frigid
283 Waterwheel-Nevadafalls-Rock outcrop complex, 15 to 45 percent slopes, mountain slopes, landslides, frigid Waterwheel-Humic Dystroxerepts complex, 15 to 45 percent slopes, mountain slopes, frigid
Nevadafalls-Typic Dystroxerepts-Ultic Palexeralfs-Rock outcrop complex, 0 to 30 percent slopes, mountain slopes, landslides, moraines, frigid Badgerpass-Waterwheel association, 0 to 15 percent slopes, ridge crests, frigid Rock outcrop-Craneflat-Waterwheel association, 0 to 30 percent slopes, mountain slopes, frigid 289 Waterwheel-Craneflat complex, 35 to 70 percent slopes, mountain slopes, frigid
490 Humic Dystroxerepts-Tuolumne-Typic Xerorthents-Ultic Haploxeralfs complex, 30 to 70 percent slopes, mountain slopes, mesic Ultic Haploxeralfs-Typic Dystroxerepts complex, 5 to 25 percent slopes, mountain footslopes, frigid
 Humic Dystroxerepts-Typic Haploxerults complex, 5 to 35 percent slopes, mountain footslopes, landslides, mesic 293 Xeric Dystrocryepts-Vitrandic Dystrocryepts association, 0 to 25 percent slopes, mountain slopes, summits, cryic Waterwheel-Typic Dystroxerepts complex, 30 to 70 percent slopes, landslides, mountain slopes, frigid

Craneflat-Typic Dystroxerepts complex, 15 to 45 percent slopes, landslides, mountain slopes, frigic Ultic Palexeralfs-Humic Dystroxerepts complex, 10 to 35 percent slopes, mountain slopes, mesic Typic Xerorthents-Rock outcrop-Typic Xeropsamments complex, 15 to 45 percent slopes, mountain slopes, mesic
 Tuolumne-Typic Dystroxerepts complex, 30 to 65 percent slopes, mountain slopes, landslides, mesic Humic Dystroxerepts-Ultic Haploxeralfs complex, 15 to 35 percent slopes, mountain slopes, moraines, mesic
 Typic Dystroxerepts-Ultic Haploxeralfs complex, 0 to 15 percent slopes, mountain slopes, moraines, mesic Vitrandic Haploxerolls, coarse-loamy, 0 to 2 percent slopes, somewhat poorly drained, mesic
 Typic Haploxerults-Ultic Haploxeralfs complex, 0 to 30 percent slopes, mountain slopes, hummocky, mesic 303 Rock outcrop-Dystric Xeropsamments-Humic Dystroxerepts-Tuolumne complex, 30 to 65 percent slopes, mountain slopes, mesic 304 Clarkslodge-Rock outcrop complex, 0 to 30 percent slopes, mountain slopes, metavolcanic, frigid/mesic Rock outcrop-Waterwheel-Dystric Xeropsamments association, 0 to 35 percent slopes, mountain valleys, scoured, valley fill, frigid Typic Cryopsamments-Humic Dystrocryepts complex, 0 to 20 percent slopes, mountain toeslopes, moraines, cryic 307 Rock outcrop-Dystric Xeropsamments-Dystric Xerorthents association, 0 to 35 percent slopes, mountain valleys, scoured, valley fill, mesic 309 Rock outcrop-Waterwheel-Typic Dystroxerepts association, 30 to 80 percent slopes, mountain slopes, joints, frigid Rock outcrop-Humic Dystroxerepts-Humic Lithic Haploxerepts association, 30 to 100 percent slopes, mountain slopes, mesic 311 Rock outcrop-Humic Dystroxerepts-Humic Lithic Haploxerepts association, 0 to 30 percent slopes, ioints, mountain slopes, mesic Nevadafalls-Oxyaquic Dystrudepts complex, 5 to 30 percent slopes, mountain valleys, moraines, frigid 314 Badgerpass-Dystric Xeropsamments-Rock outcrop complex, 5 to 45 percent slopes, mountain slopes, moraines, frigid Nevadafalls-Dystric Xeropsamments complex, 15 to 45 percent slopes, lateral moraines, frigid Dystric Xerorthents-Rock outcrop-Rubble land complex, 30 to 80 percent slopes, mountainflanks, thermic
Typic Dystroxerepts-Humic Dystroxerepts complex, 0 to 20 percent slopes, ridge crests, frigid/mesic
Humic Dystroxerepts-Typic Haploxerults-Inceptic Haploxeralfs complex, 30 to 65 percent slopes, mountain slopes, metamorphic, frigid 1319 Half Dome-Humic Dystroxerpts-Rock outcrop complex, 30 to 60 percent slopes, mountain slopes, moraines, mesic Dystric Xeropsamments-Dystric Xerorthents association, 0 to 20 percent slopes, mountain valleys, thermic 322 Typic Xerorthents, 45 to 100 percent slopes, mountain slopes, thermic 323 Ultic Haploxeralfs-Humic Dystroxerepts complex, bouldery, 10 to 35 percent slopes, mountain footslopes, thermic Humic Haploxerepts-Rock outcrop-Ultic Haploxeralfs association, 45 to 100 percent slopes, metasedimentary, mountain slopes, thermic 325 Urban land, 0 to 45 percent slopes 328 Clarkslodge-Ultic Palexeralfs complex, metasedimentary, 15 to 45 percent slopes, mountain slopes, landslides, frigid 401 Sentinel loam, 0 to 2 percent slopes, mesic 412 Water-Riverwash complex, 0 to 1 percent slopes, mesic 501 Happyisles complex, 1 to 5 percent slopes, mesic Happyisles sandy loam, 0 to 3 percent slopes, somewhat poorly drained, mesic 504 Mollic Xerofluvents, 1 to 5 percent slopes, frequently flooded, mesic
510t Rubble land-Lithnip-Rock outcrop association, 8 to 30 percent slopes, mountains, cryic
551 Happyisles-Half Dome complex, 5 to 15 percent slopes, mesic Mollic Xerofluvents, 5 to 15 percent slopes, frequently flooded, mesic 590 Terric Haplosaprists, 0 to 3 percent slopes, mesic

Half Dome complex, 25 to 60 percent slopes, mesic

620 Half Dome complex, warm, 25 to 60 percent slopes, mesic

702 Vitrandic Dystroxerepts, 4 to 30 percent slopes, mesic

900 Rock outcrop, mesic

W Water

602 Half Dome extremely stony sandy loam, 10 to 25 percent slopes, mesic 610 Rubble land-Half Dome complex, 25 to 60 percent slopes, mesic

630 Rubble land-Half Dome complex, warm, 25 to 60 percent slopes, mesic 701 Vitrandic Haploxerolls, coarse-loamy, 4 to 30 percent slopes, well drained, mesic

NAME

CONVENTIONAL AND SPECIAL SYMBOLS LEGEND

CULTURAL FEATURES

	CULTURAL	FEATURES		SURVEY AND SSURGO	
BOUNDARIES		MISCELLANEOUS CULTURAL FEATURES		SOIL DELINEATIONS AND SYMBOLS	100 121
National, state, or province		Farmstead, house		LANDFORMFEATURES	
County or parish		Church	±		
Minor civil division		School	i	Bedrock escarpment	NATANATATATATATATATATATATATA
Reservation (national forest or park, state forest or park)		Other Religion	M t Carmel	Other than bedrock escarpment	************
Land grant Limit of soil survey (label)		Located object	RangerStation	Short steep slope	• • • • • • • • •
and/or denied access area		Tank	Petroleum	•	~~~~
Field sheet matchline & neatline Previously Published Survey		Lookout Tower	፟፟ጾ	Depression, closed	♦
OTHER BOUNDARY (label)	Eura +	Oil and/or Natural Gas Wells	A	Sinkhole	♦
Airport, airfield	Street		ă		
Cemetery City/county park	Copyro Ect	Windmill		PITS	
STATE COORDINATE TICK		Lighthouse	Ä	Borrow pits	\boxtimes
1 890 000 FEET LAND DIVISION CORNER	L + + +	HYDROGRAPHIC FEA	TURES	Gravel pit	X
(section and land grants) GEOGRAPHIC COORDINATETICK				Mine or quarry	☆
TRANSPORTATION		STREAMS		Landfill	
Divided roads		Perennial stream, double line		MISCELLANEOUS SURFACE FEATURES	
		Perennial stream, single line	Label only	Blowout	·
Other roads Trail		Intermittent stream	Label only	Clay spot	*
		Drainage end	Label only	Gravelly spot	•••
ROAD EMBLEM AND DESIGNATIONS	- =	DRAINAGE AND IRRIGATION		Lava flow	V
Interstate	173 79 345	Double-line canal (label)	CANAL	Marsh or swamp	乖
Federal	287 410	Perennial drainage and/or irrigation ditch	Label only	Rock outcrop (includes sandstone and sha	ale) ∨ +
State	52 347	Intermittent drainage and/or irrigation	Label only	Saline spot Sandy spot	
County, farm or ranch		ditch		Severely eroded spot	
RAILROAD		SMALL LAKES, PONDS AND RESERVOIF	RS	Slide or slip	}
POWERTRANSMISSIONLINE		Perennial water	•	Sodic spot	ø
DIDEL N.E.		Miscellaneous water	©	Spoil area	Ξ
PIPELINE		Flood pool line	FLOOD POOL LINE	Stony spot	0
FENCE	x	MISCELLANEOUS WATER FEATURES		Very stony spot Wet spot	∞ Ψ
LEVEES		Spring	o~	wet oper	*
Without road		Well, artesian	•		
With road		Well, irrigation	- O -		
With railroad		vvoii, irrigution	· ·		
Single side slope (showing actual feature location)					
DAMS					
Medium or Small	W				
LANDFORMFEATURES					
Prominent hill or peak	*				
Soil Sample Site	©				

QUADRANGLE LOCATION

