Tsinghua-Berkeley Shenzhen Institute INFORMATION INFERENCE Fall 2017

Coursework 6

YOUR NAME April 1, 2018

• Acknowledgments: This template takes some materials from course CSE 547/Stat 548 of Washington University: https://courses.cs.washington.edu/courses/cse547/17sp/index.html. If you refer to other materials in your homework, please list here.

- Collaborators: I finish this template by myself. If you finish your homework all by yourself, make a similar statement. If you get help from others in finishing your homework, state like this:
 - 1.2 (b) was solved with the help from _____.
 - Discussion with _____ helped me finishing 1.3.

You may use enumerate to generate answers for each question:

- 6.1. Type of commonly used notations. Use another enumerate to start generate answers for sub-questions:
 - (a) Use \$ \$ to get an inline equation: $\mathbb{P}(A) = \mathbb{E}[\mathbb{1}_A(\omega)]$.
 - (b) Use equation to have equation in display math mode:

$$\frac{a+b}{2} \ge \sqrt{ab} \tag{1}$$

- (c) Use **\eqref** to get reference for equations: (1) holds when $a \geq 0, b \geq 0$.
- (d) Now we would introduce some commonly used notations:
 - i. Use \mathbb{R}, \mathbb{R}, \mathbb{E} to type $\mathbb{P}, \mathbb{R}, \mathbb{E}$.
 - ii. Use $\mbox{ \mbox{$$ $\bf X$, $\bf X$, $\mbox{$$ $\bf X$, $\it X$.}}, \mbox{$\mbox{$$ $\bf X$, $\it Y$, $\it X$.}}$
 - iii. Use \underline{x}, \underline{y} to type vectors \underline{x}, y .
 - iv. Use \mathsf{x}, \mathsf{y}, \mathsf{z} to type random variables x, y, z. For simplicity, I have defined several macros so you could simply type \rvx, \rvy, \rvz. Don't forget \$ \$!
 - v. Thanks to these macros, we could have $\mathbb{R}, \mathbb{E}[x], \operatorname{Var}(y), \mathbb{P}(A), \perp, 1$ by typing \reals, \E[\rvx], \Var(\rvy), \Prob(A),\independent, \1.
 - vi. Now you can use \ux, \uy, \uz to type vectors $\underline{x}, \underline{y}, \underline{z}$, and use \urvx, \urvy, \urvz to type random vectors $\underline{x}, \underline{y}, \underline{z}$.
 - vii. Remember that $P_{x|y}(x|y) \triangleq \mathbb{P}(x = x|y = y)$.