Template Week 6 – Networking

Student number:

Assignment 6.1: Working from home

Screenshot installation openssh-server:

sudo apt install openssh-server

Screenshot successful SSH command execution:

```
| Comparison comparison | Compa
```

Screenshot successful execution SCP command:

```
ray@ray-VMware-Virtual-Platform:~$ scp "C:/Users/Ray/Downloads/scptest.txt" ray@192.168.5.128:~/scptest.txt
ray@192.168.5.128's password:
ssh: Could not resolve hostname c: Temporary failure in name resolution
scp: Connection closed
```

Kept getting these errors for hours on end. Ended up using the application instead just do demonstrate that it works.

Screenshot remmina:

Assignment 6.2: IP addresses websites

Relevant screenshots nslookup command:

Screenshot website visit via IP address:

Used the google IP address 172.217.168.206

Assignment 6.3: subnetting

How many IP addresses are in this network configuration 192.168.110.128/25?

A /25 subnet has 128 IP addresses.

What is the usable IP range to hand out to the connected computers?

The usable range for the 192.168.110.128/25 subnet is from 192.168.110.129 to 192.168.110.254.

Check your two previous answers with this calculator: https://www.calculator.net/ip-subnet-calculator.html

Explain the above calculation in your own words.

A /25 subnet mask splits the IP range into two parts: the network and the usable IPs. The first 128 IPs belong to the network (192.168.110.0 to 192.168.110.127), and the remaining 128 IPs are usable by devices (192.168.110.128 to 192.168.110.254).

Assignment 6.4: HTML

Screenshot IP address Ubuntu VM:

```
ray@ray-VMware-Virtual-Platform: ~
ray@ray-VMware-Virtual-Platform:~$ ip a
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
t glen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host noprefixroute
       valid lft forever preferred lft forever
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP g
roup default glen 1000
    link/ether 00:0c:29:9f:c3:21 brd ff:ff:ff:ff:ff
    altname enp2s1
    inet 192.168.5.128/24 brd 192.168.5.255 scope global dynamic noprefixroute e
ns33
       valid_lft 1786sec preferred_lft 1786sec
    inet6 fe80::20c:29ff:fe9f:c321/64 scope link
       valid_lft forever preferred_lft forever
ray@ray-VMware-Virtual-Platform:~$
```

Screenshot of Site directory contents:

```
ray@ray-VMware-Virtual-Platform:~ Q = - D ×

ray@ray-VMware-Virtual-Platform:~$ ls ~/Downloads/site

css images pdf week2.html week4.html week6.html

nome.html index.html week1.html week3.html week5.html week7.html

ray@ray-VMware-Virtual-Platform:~$
```

Screenshot python3 webserver command:

```
ray@ray-VMware-Virtual-Platform:~$ cd ~/Downloads/site
ray@ray-VMware-Virtual-Platform:~/Downloads/site$ python3 -m http.server 8000
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...
```

Screenshot web browser visits your site

Hello World!

Calisthenics is an alternative training style to lifting weights that uses your own bodyweight.

Bonus point assignment - week 6

Remember that bitwise java application you've made in week 2? Expand that application so that you can also calculate a network segment as explained in the PowerPoint slides of week 6. Use the bitwise & AND operator. You need to be able to input two Strings. An IP address and a subnet.

```
Code provided in lesson:
public class Main {
public static void main(String[] args) {
 String ip = "192.168.1.100";
 String[] octets = ip.split("\\.");
for (int i = 0; i < octets.length; i++) {
 System.out.print(octets[i]);
 if (i < 3) {
 System.out.print(".");
IP: 192.168.1.100 and subnet: 255.255.255.224 for /27
Example: 192.168.1.100/27
Calculate the network segment
IP Address: 11000000.10101000.00000001.01100100
Subnet Mask: 11111111.1111111.1111111.11100000
Network Addr: 11000000.10101000.00000001.01100000
This gives 192.168.1.96 in decimal as the network address.
For a /27 subnet, each segment (or subnet) has 32 IP addresses (2<sup>5</sup>).
The range of this network segment is from 192.168.1.96 to 192.168.1.127.
```

IT FUNDAMENTALS 8

Paste source code here, with a screenshot of a working application.

```
Code provided in lesson:
public class Main {
public static void main(String[] args) {
 String ip = "192.168.1.100";
 String[] octets = ip.split("\\.");
for (int i = 0; i < octets.length; i++) {
 System.out.print(octets[i]);
if (i < 3) {
System.out.print(".");
Finished code:
public class Main {
  public static void main(String[] args) {
    // Example IP and subnet
    String ip = "192.168.1.100";
    String subnet = "255.255.255.224";
    // Split the IP and subnet into octets
    String[] ipOctets = ip.split("\\.");
    String[] subnetOctets = subnet.split("\\.");
    // Convert the octets into binary
    String ipBinary = "";
    String subnetBinary = "";
    for (int i = 0; i < 4; i++) {
```

```
ipBinary += String.format("%08d",
Integer.parseInt(Integer.toBinaryString(Integer.parseInt(ipOctets[i]))));
      subnetBinary += String.format("%08d",
Integer.parseInt(Integer.toBinaryString(Integer.parseInt(subnetOctets[i]))));
    // Print the binary representation of IP and subnet mask
    System.out.println("IP Address (binary): " + ipBinary);
    System.out.println("Subnet Mask (binary): " + subnetBinary);
    // Perform the bitwise AND operation
    StringBuilder networkBinary = new StringBuilder();
    for (int i = 0; i < ipBinary.length(); i++) {
      char ipBit = ipBinary.charAt(i);
      char subnetBit = subnetBinary.charAt(i);
      // Bitwise AND operation
      if (ipBit == '1' && subnetBit == '1') {
         networkBinary.append('1');
      } else {
         networkBinary.append('0');
      }
    }
    // Print the network address in binary
    System.out.println("Network Address (binary): " + networkBinary.toString());
    // Convert network address back to decimal
    StringBuilder networkDecimal = new StringBuilder();
    for (int i = 0; i < 4; i++) {
      String binaryOctet = networkBinary.substring(i * 8, (i + 1) * 8);
      int decimalOctet = Integer.parseInt(binaryOctet, 2);
```

```
networkDecimal.append(decimalOctet);
if (i < 3) {
    networkDecimal.append(".");
}

// Output the network address in decimal
System.out.println("Network Address (decimal): " + networkDecimal.toString());
}</pre>
```


Ready? Save this file and export it as a pdf file with the name: week6.pdf