

Prof. Dr. Anne Frühbis-Krüger M.Sc. Marco Melles

Präsenzaufgaben 3

Keine Abgabe vorgesehen

Präsenzaufgabe 3.5. Zeigen Sie:

(a). Zu einem Ideal I eines Ringes R definieren wir den Annullator von I als

$$\operatorname{ann}(\mathbf{I}) := \{ \, r \in R \mid r \, a \, = \, a \, r \, = \, 0 \, \text{ für alle } \, a \in I \, \}.$$

Bestimmen Sie ann(I) für

- (a) $R = \mathbb{Z}$ und $I = \langle 3 \rangle$.
- (b) $R = \mathbb{Z}/_{6\mathbb{Z}}$ und $I = \langle [3]_6 \rangle$.
- (b). Sei $I \subseteq R$ ein Ideal eines kommutativen Ringes R. Dann ist das Radikal \sqrt{I} von I ebenfalls ein Ideal von R, welches I enthält:

$$\sqrt{I} := \{ r \in R \mid r^n \in I \text{ für ein } n \in \mathbb{N} \}.$$

- (c). Sei $R = \mathbb{Z}/_{18\mathbb{Z}}$. Bestimmen Sie $\sqrt{\{[0]_{18}\}}$. Verdeutlichen Sie sich, dass das Radikal des Nullideals eines Ringes genau die nilpotenten Elemente eines Ringes beschreibt.
- (d). Seien R, S kommutative Ringe und $\varphi: R \longrightarrow S$ ein Ringhomomorphismus. Dann ist

$$\sqrt{\varphi^{-1}(I)} = \varphi^{-1}(\sqrt{I}).$$

Präsenzaufgabe 3.6. Sei R ein kommutativer Ring und seien $I, J \triangleleft R$ zwei Ideale von R.

(a). Zeigen Sie, dass das Idealprodukt IJ von I und J ebenfalls ein Ideal von R ist:

$$IJ := \left\{ \sum_{i=1}^{n} a_i \, b_i \mid n \in \mathbb{N}, \, a_i \in I, \, b_i \in J \text{ für alle } i = 1, \dots, n \right\}.$$

(b). Seien $A = \{a_1, \ldots, a_m\} \subseteq R$ und $B = \{b_1, \ldots, b_n\} \subseteq R$ Erzeugersysteme von I bzw. J. Bestimmen Sie jeweils ein Erzeugersystem $\mathcal{E} \neq R$ von I + J und IJ.

Präsenzaufgabe 3.7.

- (a). Sei R ein kommutativer Ring und $f = \sum_{i=0}^{n} a_i t^i \in R[t]$. Zeigen Sie: Falls f ein Nullteiler in R[t] ist, so existiert ein $b \in R \setminus \{0\}$ mit $b a_i = 0$ für alle $i \in \{0, \ldots, n\}$.
- (b). Sei K ein Körper und $f = \sum_{i=0}^{n} a_i t^i \in K[t]$. Beweisen Sie: Falls $a \in K^*$ eine Nullstelle von f ist, so ist a^{-1} eine Nullstelle des Polynoms $g = \sum_{i=0}^{n} a_{n-i} t^i$.

Präsenzaufgabe 3.8.

- (a). Sei K ein Körper. Zeigen Sie, dass alle Ideale im Ring der formalen Potenzreihen K[[t]] über K die von den Monomen erzeugten Hauptideale sind.
- (b). Sei $R = \mathbb{Z}$, $n \in \mathbb{N}_{\geq 2}$ und $f = t^n \in R[t]$. Beschreiben Sie die Elemente von $\tilde{R} = R[t]/\langle f \rangle$ und entscheiden Sie, ob \tilde{R} ein Körper ist?