

AD-A260 213

(2)

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC
ELECTED
FEB 10 1993
S E D

THESIS

THREE-DIMENSIONAL FINITE ELEMENT MODEL
OF A HIGH POWER, LOW FREQUENCY
RING-SHELL FLEXTENSIONAL SONAR TRANSDUCER
by

Rogerio Nascimento Costa Pinto

December 1992

Thesis Co-Advisors:

Steven R. Baker
Ron J. Pieper
Oscar B. Wilson

Approved for public release; distribution is unlimited

93-02448

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution is unlimited.	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Naval Postgraduate School	6b. OFFICE SYMBOL (<i>If applicable</i>) 32	7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School	
6c. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5000		7b. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5000	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (<i>If applicable</i>)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS	
		Program Element No	Project No
		Task No	Work Unit Accession Number
11. TITLE (<i>Include Security Classification</i>) THREE-DIMENSIONAL FINITE ELEMENT MODEL OF A HIGH POWER, LOW FREQUENCY RING-SHELL FLEXTENSIONAL SONAR TRANSDUCER			
12. PERSONAL AUTHOR(S) Pinto, Rogerio N. C.			
13a. TYPE OF REPORT Master's Thesis	13b. TIME COVERED From To	14. DATE OF REPORT (year, month, day) December 1992	15. PAGE COUNT 88
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.			
17. COSATI CODES		18. SUBJECT TERMS (<i>continue on reverse if necessary and identify by block number</i>) Flexextensional Sonar Transducer, ATILA, Finite Element Model, Low Frequency Active Sonar, Sonar Transducer Modeling	
19. ABSTRACT (<i>continue on reverse if necessary and identify by block number</i>) A three-dimensional finite element model of a high power, low frequency ring-shell flexextensional transducer (Sparton of Canada, Ltd., Model 34A0610 was developed for use with the ATILA code. This transducer model is to be coupled with an analytical acoustic field description in order to model a dense sonar array of US Navy interest. The three-dimensional model was derived from a two-dimensional model provided by the Naval Undersea Warfare Center. Two types of finite-element analyses were performed using ATILA: (1) an in-air modal analysis, in which the eigenfrequencies and eigenmodes are computed, and (2) an in-water harmonic analysis, in which the pressure field at a desired frequency is computed. The frequency of the ring mode computed for the three-dimensional model in the modal analysis was found to be 5 percent higher than the corresponding value for the two-dimensional model. From the harmonic analyses, the maximum sound pressure level on the acoustic axis was found to be 4 dB higher than the manufacturer's measured value and is located at exactly the same frequency.			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS REPORT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22a. NAME OF RESPONSIBLE INDIVIDUAL Prof. S. R. Baker		22b. TELEPHONE (<i>Include Area code</i>) (408) 656-2729	22c. OFFICE SYMBOL PH/Ba

Approved for public release; distribution is unlimited.

Three-Dimensional Finite Element Model of a High Power,
Low Frequency Ring-Shell Flextensional Sonar Transducer

by

Rogerio Nascimento Costa Pinto

Lieutenant Commander, Brazilian Navy

B. S., Brazilian Naval Academy, Rio de Janeiro, 1978

B. S., University of Sao Paulo, Sao Paulo, 1984

Submitted in partial fulfillment
of the requirements for the degrees of
MASTER OF SCIENCE IN ENGINEERING ACOUSTICS
and
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL

December 1992

Author:

Rogerio Nascimento Costa Pinto

Rogerio Nascimento Costa Pinto

Approved by:

Steven R. Baker

Steven R. Baker, Thesis Co-Advisor

Ron J. Pieper

Ron J. Pieper, Thesis Co-Advisor

Oscar B. Wilson

Oscar B. Wilson, Thesis Co-Advisor

Anthony A. Atchley, Chairman, Engineering
Acoustics Academic Committee

Michael A. Morgan, Chairman, Department of
Electrical and Computer Engineering

ABSTRACT

A three-dimensional finite element model of a high power, low frequency ring-shell flexextensional transducer (Sparton of Canada, Ltd. Model 34A0610 [Ref. 1]) was developed for use with the ATILA code [Ref. 2]. This transducer model is to be coupled with an analytical acoustic field description in order to model a dense sonar array of US Navy interest [Ref. 3].

The three-dimensional model was derived from a two-dimensional model provided by the Naval Undersea Warfare Center [Ref. 4]. Two types of finite-element analyses were performed using ATILA: (1) an in-air modal analysis, in which the eigenfrequencies and eigenmodes are computed, and (2) an in-water harmonic analysis, in which the pressure field at a desired driving frequency is computed. The frequency of the ring mode computed for the three-dimensional model in the modal analysis was found to be 5 percent higher than the corresponding value for the two-dimensional model. From the harmonic analyses, the maximum sound pressure level on the acoustic axis was found to be 4 dB higher than the manufacturer's measured value and is located at exactly the same frequency.

DTIC QUALITY INSPECTED

DTIC TAB	
Unannounced	
Justification	
By	
Distribution /	
Availability Codes	
Dist	Avail and/or Special
A-1	

TABLE OF CONTENTS

I. INTRODUCTION	1
II. THEORY	6
A. FINITE ELEMENT ANALYSIS, THE ATILA CODE	6
B. HARMONIC ANALYSIS OF A RADIATING PIEZOELECTRIC TRANSDUCER	7
C. MODAL ANALYSIS OF A PIEZOELECTRIC TRANSDUCER . .	11
III. TRANSDUCER DESCRIPTION	13
IV. THREE-DIMENSIONAL MODEL	15
A. INTRODUCTION	15
B. CHARACTERISTICS OF THE MODEL	15
1. MATERIAL PROPERTIES	16
a. Piezoelectric ceramic	16
b. Fiberglass	18
c. Shells	19
2. TYPES OF ELEMENTS	19
3. CONSTRAINTS ON MESH DESIGN	20

a. Aspect ratio	20
b. Internal angles	20
c. Element size	20
d. Interelement compatibility	20
e. Coupling of shell elements to solid elements	20
f. Radiation boundary elements	21
4. FINAL MESH DESIGNS	22
V. RESULTS	25
A. IN-AIR MODAL ANALYSES	25
B. IN-WATER HARMONIC ANALYSES	27
VI. CONCLUSIONS	33
APPENDIX A	34
LIST OF REFERENCES	78
INITIAL DISTRIBUTION LIST	80

ACKNOWLEDGMENTS

I would like to thank Professor Steven Baker for his outstanding guidance, encouragement, support and dedication, Professor Ron Pieper for his recommendations and thesis revisions, and Professor Bryan Wilson for inviting me to do this work, for teaching me the basics of sonar transducer theory and design, for doing the final thesis revision, and for transmitting to me an incomparable example of complete dedication to the education and research causes.

Special thanks are due to Doctor Bernard Hamonic, from l'Institut Superieur d'Electronique du Nord in France, for his assistance with the ATILA code and finite element modeling, to John Blottman, from Naval Undersea Warfare Center, New London, for providing the Sparton ring-shell two-dimensional model, and to Sparton of Canada Ltd. for permitting the publication of this work without restrictions.

Gratitude is also expressed to my colleague Major Tay Tiong Beng, from Republic of Singapore Navy, for doing some drawings and for his assistance with the word processor.

Finally a very special thanks to my wife Vera for typing this thesis, for her encouragement, and for her understanding.

I. INTRODUCTION

The direction of active sonar surveillance systems is toward lower frequencies, requiring arrays of large, high power transducers. The successful design and operation of such arrays requires the ability to predict reliably their performance.

To this end, Professor S. R. Baker of the Physics Department, and Professors D. R. Canright and C. L. Scandrett from the Mathematics Department of the Naval Postgraduate School have established a research program with the goal of developing the means to predict the performance of arbitrarily dense, volumetric active sonar arrays [Ref. 3]. The approach used is based on the T-matrix method, which has been successfully applied to solve multiple scattering problems [Ref. 5]. In the present application, the acoustic field external to an arbitrary collection of radiators (here a radiator is a transducer surrounded by fluid to some arbitrary radius) is represented as a superposition of free-space radiation eigenfunctions (spherical harmonics). For each individual radiator a transition matrix, or T-matrix, is computed, which relates the expansion coefficients of outgoing waves to those of incoming waves and the driving

voltage. This requires the results of two harmonic finite element analyses, the free-field radiation problem and the single element scattering problem. Ultimately, the T-matrix of the total configuration, relating the far-field pressure to the driving voltage applied to each element, is obtained in terms of the T-matrix of the individual elements and translation matrices (of the spherical functions) that depend on the distance between and relative orientation of pairs of elements.

This thesis is concerned with the application of the finite-element code "ATILA", developed at the Institut Supérieur d'Electronique du Nord (Lille, France) [Ref. 2] to provide a three-dimensional model of a low frequency flexextensional transducer of US Navy interest, the Model 34A0610 "ring-shell" transducer, manufactured by Sparton of Canada, Ltd. [Ref. 1], illustrated in Fig. 1. This transducer was used for proof of principle tests of the so-called "billboard" array concept, which is illustrated in Fig. 2. The results of harmonic radiation and scattering analyses performed using ATILA with the three-dimensional model will be used to generate the single-element T-matrix for this transducer, and so enable the billboard array to be modeled using the modified T-matrix method. The solution of the radiation problem is described in this thesis. The solution of the scattering problem can not be performed at this time. It will be performed using the same three-dimensional model as

Figure 1 Sparton Flextensional Transducers. From Ref. 1.

Figure 2 "Billboard" Array Concept.

for the radiation problem as soon this capability is available in ATILA.

A two-dimensional (axisymmetric) model of the ring-shell transducer was developed by the Naval Undersea Warfare Center [Ref. 4]. This model contains 285 elements, 825 nodes, and 1026 degrees-of-freedom. However, an axisymmetric model is not sufficient for modeling a dense array, since all modes of vibration (symmetric and anti-symmetric) can be excited by the incoming pressure field generated by neighboring transducers. A three-dimensional model is necessary.

A three-dimensional model is considerably more complex and requires far more computational time and computer memory. There is, however, a limit of 3000 degrees-of-freedom imposed by our version of the ATILA code. This limitation means that it is not feasible to obtain a three-dimensional model of the ring-shell transducer by a simple rotation of the axisymmetric model about its axis of symmetry. Instead, a simplified three-dimensional model with an acceptable engineering accuracy was pursued.

The remainder of this thesis is divided into six chapters. Chapter II describes the theory involved with the finite element analysis of piezoelectric transducers. Chapter III describes the transducer in question. Chapter IV discusses finite element model design considerations and the characteristics of the three-dimensional model. Chapter V presents and discusses the results of in-air modal analyses

and in-water harmonic analyses. Chapter VI presents the conclusions. Appendix A contains a copy of the input data file for the most refined mesh used in the harmonic analyses.

II. THEORY

A. FINITE ELEMENT ANALYSIS, THE ATILA CODE

The application of finite element analysis (FEA) to solve boundary value problems consists of the transformation of the governing differential or integral equation(s) into a multi-nodal matrix equation, the solution of which represents the discretized solution of the problem. There are many techniques to obtain a finite element formulation [Refs. 6,7,8,9].

ATILA is a finite element code developed at Institut Supérieur d'Electronique du Nord (ISEN) in France for the analysis of underwater transducers. It utilizes the variational formulation of the finite element problem [Refs. 10,11,12,13,14].

ATILA uses quadratic isoparametric elements. Isoparametric means the same polynomial (quadratic) is used to interpolate both geometry and field variation.

ATILA has 46 different types of elements. There are shell, plate, transition, spring, trilaminar, and two- and three-dimensional isoparametric elements of various geometries. It is possible to model elastic, piezoelectric, magnetostrictive, magnetic and composite materials, fluids, solid-fluid interfaces, and radiation dampers.

ATILA can perform: (1) static analyses, (2) modal analyses, which correspond to a free vibration problem, where the eigenfrequencies and eigenmodes are computed, and (3) harmonic analyses of radiation or scattering problems, which correspond to a forced vibration problem, the excitation being the voltage applied across the electrical terminals of the transducer or external forces applied to the nodes.

B. HARMONIC ANALYSIS OF A RADIATING PIEZOELECTRIC TRANSDUCER

This problem is governed by the equations of motion in the elastic and piezoelectric structures, by Poisson's Equation in the piezoelectric structures, and by Helmholtz's Equation in the fluid. Appropriate boundary conditions are defined, both on the solid-fluid interface and over the external fluid boundary, which must simulate the appropriate radiation condition.

The solid equation of motion is given by [Refs. 13,18,19]:

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial \sigma_{ij}}{\partial x_j} \quad (1)$$

where ρ is the solid material density, u is the displacement vector, t is time, $[\sigma]$ is the stress tensor, and x_j is a coordinate direction. Here i and j can be 1, 2 and 3, and the Einstein notation is used, where summation is implied over repeated indices in the same term.

Poisson's Equation is given by [Refs. 13,18,19]:

$$\frac{\partial D_i}{\partial x_i} = 0 \quad (2)$$

where D is the electric displacement vector and x_i is a coordinate direction; i can be 1, 2 and 3.

The linearized, lossless Helmholtz Equation for the propagation of sound in fluids is given by [Ref. 15]:

$$\nabla^2 p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = 0 \quad (3)$$

where ∇^2 is the three-dimensional Laplacian operator, p is the acoustic pressure, and t is time.

In piezoelectric materials the stress tensor and the electric displacement vector can be related to the strain tensor and the electric field vector and its material properties using the following constitutive equations, which neglect magnetic and pyroelectric effects [Refs. 13,18,19]:

$$\sigma_{ij} = C^E_{ijkl} S_{kl} - e_{kij} E_k \quad (4)$$

$$D_i = e_{ikl} S_{kl} + \epsilon^S_{ij} E_j \quad (5)$$

where $[\sigma]$ is the stress tensor, $[S]$ is the strain tensor, E is the electric field vector, D is the electric displacement

vector, $[c^E]$ is the constant electric field elastic stiffness tensor, $[e]$ is the piezoelectric tensor, and $[\epsilon^S]$ is the constant strain dielectric tensor; i , j , k and l can be equal to 1, 2 and 3.

Ultimately the solution is desired in terms of displacements and electric potentials. To this end the following two equations from elasticity and electricity, respectively, are used [Refs. 13,18,19]:

$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \quad (6)$$

$$E_i = - \frac{\partial \Phi}{\partial x_i} \quad (7)$$

where $[S]$ is the strain tensor, u is the displacement vector, x_i is a coordinate direction, E is the electric field vector and Φ is the electrical potential; i and j can be equal to 1, 2 and 3.

The boundary conditions and prescribed excitations at each node can be defined either by a displacement or an applied force, an electrical potential or an electrical charge, or an acoustic pressure.

In ATILA, the previous seven equations are transformed into the following matrix equation [Refs. 2,11,12,14] :

$$\begin{vmatrix} [K_{uu}] - \omega^2 [M] & [K_{u\Phi}] & -[L] \\ [K_{u\Phi}]^T & [K_{\Phi\Phi}] & [0] \\ -\rho^2 C^2 \omega^2 [L]^T & [0]^T & [H] - \omega^2 [M_1] \end{vmatrix} \begin{pmatrix} \mathbf{U} \\ \mathbf{\Phi} \\ \mathbf{P} \end{pmatrix} = \begin{pmatrix} \mathbf{F} \\ -\mathbf{q} \\ \rho C^2 \mathbf{\Psi} \end{pmatrix} \quad (8)$$

where the variables are defined as:

- \mathbf{U} : vector of the nodal values of the components of the displacement field,
- Φ : vector of the nodal values of the electrical potential,
- \mathbf{P} : vector of the nodal values of the pressure field,
- \mathbf{F} : vector of the nodal values of the components of the externally applied forces,
- \mathbf{q} : vector of the nodal values of the externally applied electrical charges,
- Ψ : vector of the nodal values of the integrated normal derivative of the externally applied pressure field (proportional to the externally applied flux),
- $[K_{uu}]$: stiffness matrix,
- $[K_{u\Phi}]$: piezoelectric matrix,
- $[K_{\Phi\Phi}]$: dielectric matrix,
- $[M]$: consistent mass matrix,
- $[H]$: fluid (pseudo-) stiffness matrix,

$[M_1]$: consistent fluid (pseudo-) mass matrix,
 $[L]$: coupling matrix at the fluid structure interface,
 $[0]$: zero matrix,
 ω : angular frequency,
 ρ : fluid density,
 c : fluid sound speed,

and the superscript T represents the matrix transpose.

The results of this analysis for each input frequency are the complex displacement, rotation, and electrical potential fields at each transducer node, the complex pressure field at each fluid node, and the complex electrical impedance and admittance.

C. MODAL ANALYSIS OF A PIEZOELECTRIC TRANSDUCER

This problem is governed by the equations of motion in the elastic and piezoelectric structures, and by Poisson's Equation in the piezoelectric structures. The matrix equation governing this problem is easily obtained from that described in the previous section. In a modal analysis there is no fluid and there are no external forces applied (the natural boundary conditions), so the third row and column of Eq. (8) become irrelevant, and F is replaced by 0, resulting in

$$\begin{vmatrix} [K_{uu}] - \omega^2 [M] & [K_{u\Phi}] \\ [K_{u\Phi}]^T & [K_{\Phi\Phi}] \end{vmatrix} \begin{pmatrix} \sigma \\ \Phi \end{pmatrix} = \begin{pmatrix} 0 \\ -q \end{pmatrix} \quad (9)$$

where the elements are as defined in Eq. (8).

In this equation the resonance condition, which corresponds to the electrical short-circuit condition, is obtained by setting $\Phi=0$. The anti-resonance condition, which corresponds to the electrical open-circuit condition, is obtained by setting $q=0$.

The results of this analysis are the eigenfrequencies and eigenmodes. The maximum number of modes, which must be specified by the user, is 100.

III. TRANSDUCER DESCRIPTION

The transducer modeled in this research project is the Model 34A0610 manufactured by Sparton of Canada, Ltd. [Ref. 1]. It is a depth-compensated, high power, low frequency type V flextensional transducer (so-called "ring-shell"). A cutaway view is shown in Fig. 3 [Ref. 1]. The motor element consists of a set of 144 plates of thickness-poled lead zirconate titanate ceramic of dimensions 8x8x1 cm separated by 72 steel wedges, arranged in a 0.8 m diameter ring [Ref. 4]. The ceramic plates are connected electrically in parallel and effectively poled tangentially. One ST 4340 steel thin shell (a spherical section) is fastened to each ring planar surface. The ring is wrapped on the outside by a fiberglass belt, which provides a compressive stress of 25-40 MPa [Ref. 4].

The main operational characteristics of the transducer are [Ref. 1]:

- a. Resonance Frequency, which corresponds to the maximum voltage response in water - 610 Hz;
- b. Source Pressure Level, which corresponds to the effective pressure on the acoustic axis, at resonance - 213 dB re 1 μ Pa at 1 meter (driven by 3000 volts rms);

- c. Efficiency, which is the ratio of the output acoustic power to the input electric power - 90 percent at resonance, 65 percent at the -6dB points;
- d. Operational Depth, which corresponds to the maximum depth where the performance of the transducer is not compromised - exceeds 400 m.

Figure 3 Cutaway view of the transducer. From Ref. 1.

IV. THREE-DIMENSIONAL MODEL

A. INTRODUCTION

As mentioned in Chapter I, the performance modeling of a dense sonar array by means of the T-matrix method requires the computation of the radiation and scattering of an individual transducer. This can be accomplished very accurately using finite element analysis (FEA); however a three-dimensional (3-D) model must be employed.

A 3-D finite element model of a flexextensional transducer has an inherent complexity compared to a corresponding 2-D model. The major limitation is the number of degrees of freedom (DOF) available, which depends upon the computer used. A simple transformation of the available 2-D model into a 3-D model would represent roughly more than 10000 DOF just for the solid structure. This already exceeds the maximum allowed degrees of freedom on the MICROVAX VMS system, where the ATILA code is installed, and so is not feasible.

Consequently, the objective of this research became to develop the simplest 3-D model of the Sparton ring-shell transducer that could reproduce, within acceptable error limits when compared with experimental data, its pertinent electroacoustic properties.

B. CHARACTERISTICS OF THE MODEL

1. MATERIAL PROPERTIES

All material properties are included on the first page of Appendix A. The format is according to the ATILA user's manual [Ref. 2].

a. *Piezoelectric ceramic*

As described before, the transducer has 144 tangentially poled lead zirconate titanate ceramic plates separated by 72 steel wedges, arranged in a 0.8 m diameter ring. An illustration of this arrangement is shown in Fig. 4. In order to simplify the model, a homogeneous ring with material properties equivalent to an adequate combination of the ceramic and steel was used. This is illustrated in Fig. 5. These properties were provided to us by Blottman who obtained them from McMahon [Ref. 4]: "The smeared material properties were obtained by McMahon and Armstrong through in-air measurement of the segmented ring during various stages of assembly. The measurements consist of the resonance and anti-resonance frequencies and the electrical capacitance." These properties take into consideration the compression given by the fiberglass wrapping. The given ceramic properties include losses, but as will be noted later, the results of harmonic analyses that included losses yielded a pressure field about 100 times smaller than the corresponding experimental results.

Figure 4 Original ring-shell arrangement.

Figure 5 Smeared ring-shell arrangement.

To model the transducer with its actual polarization requires the use of a very large number of elements because of the mesh design requirements; therefore the polarization was switched to an equivalent axially-poled ring. The transformation of the polarization is obtained by a suitable exchange of the elastic, piezoelectric and dielectric tensors. The procedure is outlined in the ATILA user's manual [Ref. 2].

Note that the ATILA manual describes the transformation from tangential polarization to radial polarization, which is not the present case. An axial orientation was chosen here rather than a radial orientation in order to simplify the application of electrical boundary conditions. Because of this modification the results of harmonic analyses have to be modified as follows: (1) divide the displacement and pressure fields by the ratio of the circumferential length of a "smeared" piezoelectric element (which is equal to 1/144 of the the ring circumferencial length) to its height, and (2) multiply the electrical impedance by the square of the same ratio. In the present case this ratio is 0.1958.

b. Fiberglass

To simplify the model the fiberglass wrapping was modeled as an equivalent shell; otherwise a considerable number of additional elements would be required.

c. Shells

Their actual material properties were used.

2. TYPES OF ELEMENTS

The following quadratic isoparametric elements, which are described in the ATILA User's Manual [Ref. 2], were used:

TABLE 1

Region	Element	Geometry
Piezoelectric ring	HEXA20P	20-node hexahedron
Shells	SHEL06C	6-node triangle
Fiberglass wrapping	QUAD08E	8-node quadrilateral
Interface solid-fluid	TRIA12I	2x6-node triangle
Interface solid-fluid	QUAD16I	2x8-node quadrilateral
Fluid	PRISM15F	15-node triangular base prism
Fluid	HEXA20F	20-node hexahedron
Radiation surface	TRIA06R	6-node triangle
Radiation surface	QUAD08R	8-node quadrilateral

3. CONSTRAINTS ON MESH DESIGN

Design of the mesh was guided by the following constraints:

a. Aspect ratio [Ref. 2]

The aspect ratio of each element should be not greater than 3, although 4 is considered an acceptable, though less conservative, value.

b. Internal angles [Ref. 2]

The internal angles of each elements should be not smaller than 45 degrees and not greater than 135 degrees, although 30 degrees and 150 degrees are considered, respectively, acceptable, though less conservative, values.

c. Element size [Ref. 2]

As ATILA utilizes quadratic interpolation functions, the size of each element must be not greater than one fourth of a wavelength at the highest frequency of interest.

d. Interelement compatibility

The mesh should be built in such a way that adjacent elements have adjoining sides with collocated nodes to ensure accurate interpolation at their interfaces.

e. Coupling of shell elements to solid elements

Unlike two-dimensional elements, ATILA does not provide three-dimensional transition elements to match solid (piezoelectric) and shell three-dimensional elements. To

perform harmonic analyses it was necessary to delete the rotational degrees-of-freedom (DOF) for the piezoelectric nodes, which means that a clamped condition, which is not quite realistic, was assumed between the shell and the piezoelectric ring. As will be seen later, as the mesh becomes more and more refined, this assumed boundary condition becomes less and less significant.

f. Radiation boundary elements [Ref. 2]

For in-water harmonic analyses (radiation problems) the fluid mesh outer limit must be spherical. This is required by the radiation elements available in the ATILA code. ATILA offers so-called monopole and dipole radiation damping elements. The latter includes not only the monopole term of the radiated field multipolar expansion, but also the dipole term. Dipolar damping elements were selected to terminate the fluid mesh because they provide a more accurate solution than the monopolar damping elements for the mesh employed.

A fluid mesh outer limit radius greater than the far-field distance is desirable to compute the acoustic source pressure level and to compare computed and measured acoustic pressure data. The boundary was placed at a radius R equal to 0.72 m from the transducer's acoustical center, which is beyond 3.5 times the far-field limit of the equivalent piston-like source at the resonance frequency [Ref. 16].

4. FINAL MESH DESIGNS

With the above constraints one coarse mesh was designed for each type of analysis to be performed: in-air modal and in-water harmonic. An in-air modal analysis requires only the transducer to be modeled. An in-water harmonic analysis requires in addition the surrounding fluid to be modeled. The transducer coarse mesh consists of 12 shell elements and 8 solid elements, totaling 250 DOF, and is shown in Fig. 6. The total coarse mesh, which includes the fluid, contains in addition, 20 interface elements, 72 fluid elements, and 28 radiating elements, totaling 1330 DOF. This mesh is shown in Fig. 7. Based on these meshes and using the pre-processor mesh generator MOSAIQUE [Ref. 2], two mesh refinements were obtained. The most refined transducer mesh, which is shown in Fig. 8, consists of 40 shell elements and 24 solid elements, totaling 557 DOF. The corresponding total mesh, which is shown in Fig. 9, contains, in addition, 56 interface elements, 176 fluid elements and 72 radiating elements, totaling 2868 DOF. The input data file of this mesh is given in Appendix A.

Figure 6 Transducer coarse mesh.

Figure 7 Total coarse mesh.

Figure 8 Transducer refined mesh.

Figure 9 Total refined mesh.

V. RESULTS

A. IN-AIR MODAL ANALYSES

This analysis corresponds to a free vibration problem, where the eigenfrequencies and eigenmodes are computed. Three mesh grades were analysed. For each one, the first twenty eigenfrequencies and eigenmodes were calculated (including the rigid body ones). The following table, which includes the two-dimensional (2-D) model, summarizes some characteristics of each mesh, along with the resonance frequency of the mode of vibration shown in Fig. 10, which is the most important in operation.

TABLE 2

Mesh	Coarse	Inter- mediate	Refined	2-D Model
Nodes	86	202	350	191
Elements	20	56	180	42
DOF	250	730	1330	392
Micro Vax II CPU Time	580 sec	9 hr	24 hr	14 min
Frequency	1746 Hz	1098 Hz	1002 Hz	957 Hz

The dashed lines in Fig. 10 correspond to the rest position; the solid lines correspond to the displaced position. Note the opposite sense of the motion of the ring and shells.

Figure 10 Ring mode of vibration.

A comparison between the results of the ring mode frequency for the more refined 3-D mesh and the 2-D model shows that the first is 5 percent higher than the second. Notice from Table 2 that as the mesh becomes more and more refined, the ring mode natural frequency value approaches more closely the corresponding 2-D model value. This is in part due to the clamped condition between the shell and the piezoelectric ring, which is not quite right, and possibly because of the use of a limited number of elements to describe the shape of the shell.

B. IN-WATER HARMONIC ANALYSES

This analysis corresponds to a forced vibration problem, the excitation being the voltage applied across the electrical terminals of the transducer. Three mesh grades were analysed, now including not only the transducer elements, but the interface, fluid and radiating elements. Internal material losses are not included in this model because the results obtained with such losses included were found to be about 40 dB below the corresponding measured values. The reason for this is not known. It is a problem which appeared only in three-dimensional modeling; no such problem was observed for axisymmetric models. In any case, neglecting internal losses is not a serious deficiency, since radiation losses dominate.

The following table, which includes the two-dimensional model and the manufacturer's measured values, summarizes some characteristics of each mesh along with the maximum sound pressure level (SPL) in dB re $1\mu\text{Pa}$ at a distance of 1m on the acoustic axis when driven by 3000 Vrms at the corresponding frequency.

TABLE 3

Mesh	Coarse	Refined	More Refined	2-D Model	Measured
Nodes	392	972	1696	825	xxxx
Elements	140	360	706	285	xxxx
DOF	557	1501	2868	1026	xxxx
Micro Vax II CPU time	3 hrs	33 hrs	101 hrs	48 min	xxxx
SPL dB re 1 μ Pa	200	209	217	213	213
Frequency Hz	1108	662	610	628	610

The following plot depicts the transmitting voltage response curve obtained by ATILA along with the corresponding manufacturer's data. The model displays a higher peak sound pressure level (SPL) for the primary resonance than the actual transducer. This was expected, since internal material losses were not considered.

It can be observed also from FIG. 11 that the second resonance of the model occurs at a considerably higher frequency than for the actual device. As discussed before, the probable explanation for this is that even the most refined

mesh used is not refined enough to represent the transducer dynamical behavior completely. This is in part due to the clamped condition between the shell and the piezoelectric ring, which is not quite right.

Notice in Table 3 that as the mesh becomes more and more refined, the SPL and resonant frequency values approach more closely the corresponding measured values. An attempt was made to perform a harmonic analysis using a mesh which was more refined (4184 DOF). This was not successful, however; apparently the number of degrees-of-freedom exceeded the limit imposed by our copy of ATILA.

Figure 11 Transmitting voltage response curve at 1m on acoustic axis driven at 3000 Vrms.

Plots of electrical impedance versus frequency and impedance circle for the more refined model are depicted in Figs. 12 and 13, respectively. Finally, electrical admittance versus frequency and the admittance circle are shown in Figs. 14 and 15, respectively.

Figure 12 Impedance versus frequency.

Figure 13 Impedance circle.

Figure 14 Admittance versus frequency.

Figure 15 Admittance circle.

VI. CONCLUSIONS

A three-dimensional model of a ring-shell flexensional transducer was built. Although the model includes many necessary simplifications to handle the problem in the available MICROVAX VMS system, the model is successful in obtaining a maximum sound pressure level from the in-water harmonic analyses that differs by 4 dB from the measured value and is located exactly at the same frequency.

The model does not consider internal material losses because the ATILA code was not able to compute accurate results for the three-dimensional model in this case. These difficulties were not encountered with axisymmetric models.

The model was built for the purpose of computing the radiation and scattering properties of the Sparton ring-shell transducer, the results of which are to be combined with an acoustic field model in order to describe the performance of a dense sonar array. Thus far the model has been used to compute the radiation pressure field. It will be used to compute the scattered pressure field when this capability becomes available in ATILA.

APPENDIX A

INPUT DATA FILE

```
* TRANSDUCER:RINGSHELL / TWO STEP REFINED THREE-DIMENSIONAL MESH.  
*  
*=====*  
* MANUFACTURER:SPARTON OF CANADA. *  
* MODEL:34A0610. *  
* IN-WATER HARMONIC ANALYSIS. *  
* WRITTEN BY LCDR ROGERIO PINTO ON NOV,30,1992. *  
*=====*  
*  
SKYLINE REAL  
PRECISION DOUBLE  
RADIATION DIPOLAR  
LCPDDC  
10 ELECPOT PRESSURE THETAX THETAY UX UY UZ  
NLOAD  
40  
FREQUENCY  
1.100E+03 1.200E+03 1.300E+03 1.400E+03 1.500E+03 1.600E+03  
ANALYSIS HARMONIC  
MATERIAL  
MAVART8D  
0.00000E+00 0.00000E+00 0.75500E+04 0.00000E+00 0.00000E+00 0.00000E+00&  
0.82020E-11-0.35380E-11-0.27030E-11 0.00000E+00 0.00000E+00 0.00000E+00&  
-0.35380E-11 0.11990E-10-0.35380E-11 0.00000E+00 0.00000E+00 0.00000E+00&  
-0.27030E-11-0.35380E-11 0.82020E-11 0.00000E+00 0.00000E+00 0.00000E+00&  
0.00000E+00 0.00000E+00 0.00000E+00 0.26000E-10 0.00000E+00 0.00000E+00&  
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.21800E-10 0.00000E+00&  
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.26000E-10&  
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00-0.28110E-09&  
0.00000E+00 0.00000E+00 0.00000E+00-0.28110E-09 0.00000E+00 0.00000E+00&  
-0.10000E-09 0.21390E-09-0.10000E-09 0.00000E+00 0.00000E+00 0.00000E+00&  
0.11480E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00&  
0.00000E+00 0.11480E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00&  
0.00000E+00 0.00000E+00 0.11480E-07 0.00000E+00 0.00000E+00 0.00000E+00&  
-0.32808E-12 0.14152E-12 0.10812E-12 0.00000E+00 0.00000E+00 0.00000E+00&  
0.14152E-12-0.47960E-12 0.14152E-12 0.00000E+00 0.00000E+00 0.00000E+00&  
0.10812E-12 0.14152E-12-0.14152E-12 0.00000E+00 0.00000E+00 0.00000E+00&  
0.00000E+00 0.00000E+00 0.00000E+00-0.10400E-11 0.00000E+00 0.00000E+00&  
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00-0.87200E-11 0.00000E+00&  
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00-0.10400E-11&  
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00&  
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00&  
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00&  
-0.45920E-12 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00&  
0.00000E+00-0.45920E-12 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00&  
0.00000E+00 0.00000E+00-0.45920E-12 0.00000E+00 0.00000E+00 0.00000E+00&  
ST4340  
0.100E+01 0.195E+12 0.280E+00 0.770E+04 0.000E+00 0.100E+01 &  
0.195E+12 0.280E+00 0.770E+04  
FICFIBER  
0.645E+09 0.400E+00 0.806E+04  
  
GEOMETRY  
1  
0.105E-01 *THICKNESS OF SHELLS.  
2  
0.500E-02 *THICKNESS OF FICTITIOUS FIBER WRAPPING.  
3  
0.720E+00 *RADIUS OF FLUID MESH OUTER LIMIT.
```

GEOMETRY POLARIZA CARTESIA

4
 0.000E+00 0.000E+00 0.180E+03
 5
 0.000E+00 0.000E+00 0.210E+03
 6
 0.000E+00 0.000E+00 0.240E+03
 7
 0.000E+00 0.000E+00 0.270E+03
 8
 0.000E+00 0.000E+00 0.300E+03
 9
 0.000E+00 0.000E+00 0.330E+03
 10
 0.000E+00 0.000E+00 0.000E+00
 11
 0.000E+00 0.000E+00 0.030E+03
 12
 0.000E+00 0.000E+00 0.060E+03
 13
 0.000E+00 0.000E+00 0.090E+03
 14
 0.000E+00 0.000E+00 0.120E+03
 15
 0.000E+00 0.000E+00 0.150E+03

NODES

* 1 * -0.40000E-01 -0.39900E+00 0.00000E+00
 * 2 * -0.40000E-01 -0.37841E+00 -0.11241E+00
 * 3 * -0.40000E-01 -0.33946E+00 -0.20646E+00
 * 4 * -0.40000E-01 -0.28214E+00 -0.28214E+00
 * 5 * -0.40000E-01 -0.20646E+00 -0.33946E+00
 * 6 * -0.40000E-01 -0.11241E+00 -0.37841E+00
 * 7 * -0.40000E-01 0.00000E+00 -0.39900E+00
 * 8 * -0.40000E-01 -0.37679E+00 0.00000E+00
 * 9 * -0.40000E-01 -0.32056E+00 -0.19497E+00
 * 10 * -0.40000E-01 -0.19497E+00 -0.32056E+00
 * 11 * -0.40000E-01 0.00000E+00 -0.37679E+00
 * 12 * -0.40000E-01 -0.35458E+00 0.00000E+00
 * 13 * -0.40000E-01 -0.33628E+00 -0.99897E-01
 * 14 * -0.40000E-01 -0.30167E+00 -0.18347E+00
 * 15 * -0.40000E-01 -0.25073E+00 -0.25073E+00
 * 16 * -0.40000E-01 -0.18347E+00 -0.30167E+00
 * 17 * -0.40000E-01 -0.99897E-01 -0.33628E+00
 * 18 * -0.40000E-01 0.00000E+00 -0.35458E+00
 * 19 * 0.00000E+00 -0.39900E+00 0.00000E+00
 * 20 * 0.00000E+00 -0.33946E+00 -0.20646E+00
 * 21 * 0.00000E+00 -0.20646E+00 -0.33946E+00
 * 22 * 0.00000E+00 0.00000E+00 -0.39900E+00
 * 23 * 0.00000E+00 -0.35458E+00 0.00000E+00
 * 24 * 0.00000E+00 -0.30167E+00 -0.18347E+00
 * 25 * 0.00000E+00 -0.18347E+00 -0.30167E+00
 * 26 * 0.00000E+00 0.00000E+00 -0.35458E+00
 * 27 * 0.40000E-01 -0.39900E+00 0.00000E+00
 * 28 * 0.40000E-01 -0.37841E+00 -0.11241E+00
 * 29 * 0.40000E-01 -0.33946E+00 -0.20646E+00
 * 30 * 0.40000E-01 -0.28214E+00 -0.28214E+00
 * 31 * 0.40000E-01 -0.20646E+00 -0.33946E+00
 * 32 * 0.40000E-01 -0.11241E+00 -0.37841E+00
 * 33 * 0.40000E-01 0.00000E+00 -0.39900E+00
 * 34 * 0.40000E-01 -0.37679E+00 0.00000E+00
 * 35 * 0.40000E-01 -0.32056E+00 -0.19497E+00
 * 36 * 0.40000E-01 -0.19497E+00 -0.32056E+00
 * 37 * 0.40000E-01 0.00000E+00 -0.37679E+00
 * 38 * 0.40000E-01 -0.35458E+00 0.00000E+00
 * 39 * 0.40000E-01 -0.33628E+00 -0.99897E-01
 * 40 * 0.40000E-01 -0.30167E+00 -0.18347E+00
 * 41 * 0.40000E-01 -0.25073E+00 -0.25073E+00
 * 42 * 0.40000E-01 -0.18347E+00 -0.30167E+00

* 43 * 0.40000E-01 -0.99897E-01 -0.33628E+00
 * 44 * 0.40000E-01 0.00000E+00 -0.35458E+00
 * 45 * -0.40000E-01 -0.33679E+00 0.00000E+00
 * 46 * -0.40000E-01 -0.28653E+00 -0.17427E+00
 * 47 * -0.40000E-01 -0.17427E+00 -0.28653E+00
 * 48 * -0.40000E-01 0.00000E+00 -0.33679E+00
 * 49 * -0.40000E-01 -0.31900E+00 0.00000E+00
 * 50 * -0.40000E-01 -0.30254E+00 -0.89872E-01
 * 51 * -0.40000E-01 -0.27140E+00 -0.16506E+00
 * 52 * -0.40000E-01 -0.22557E+00 -0.22557E+00
 * 53 * -0.40000E-01 -0.16506E+00 -0.27140E+00
 * 54 * -0.40000E-01 -0.89872E-01 -0.30254E+00
 * 55 * -0.40000E-01 0.00000E+00 -0.31900E+00
 * 56 * 0.00000E+00 -0.31900E+00 0.00000E+00
 * 57 * 0.00000E+00 -0.27140E+00 -0.16506E+00
 * 58 * 0.00000E+00 -0.16506E+00 -0.27140E+00
 * 59 * 0.00000E+00 0.00000E+00 -0.31900E+00
 * 60 * 0.40000E-01 -0.33679E+00 0.00000E+00
 * 61 * 0.40000E-01 -0.28653E+00 -0.17427E+00
 * 62 * 0.40000E-01 -0.17427E+00 -0.28653E+00
 * 63 * 0.40000E-01 0.00000E+00 -0.33679E+00
 * 64 * 0.40000E-01 -0.31900E+00 0.00000E+00
 * 65 * 0.40000E-01 -0.30254E+00 -0.89872E-01
 * 66 * 0.40000E-01 -0.27140E+00 -0.16506E+00
 * 67 * 0.40000E-01 -0.22557E+00 -0.22557E+00
 * 68 * 0.40000E-01 -0.16506E+00 -0.27140E+00
 * 69 * 0.40000E-01 -0.89872E-01 -0.30254E+00
 * 70 * 0.40000E-01 0.00000E+00 -0.31900E+00
 * 71 * -0.40000E-01 0.11241E+00 -0.37841E+00
 * 72 * -0.40000E-01 0.20646E+00 -0.33946E+00
 * 73 * -0.40000E-01 0.28214E+00 -0.28214E+00
 * 74 * -0.40000E-01 0.33946E+00 -0.20646E+00
 * 75 * -0.40000E-01 0.37841E+00 -0.11241E+00
 * 76 * -0.40000E-01 0.39900E+00 0.00000E+00
 * 77 * -0.40000E-01 0.19497E+00 -0.32056E+00
 * 78 * -0.40000E-01 0.32056E+00 -0.19497E+00
 * 79 * -0.40000E-01 0.37679E+00 0.00000E+00
 * 80 * -0.40000E-01 0.99897E-01 -0.33628E+00
 * 81 * -0.40000E-01 0.18347E+00 -0.30167E+00
 * 82 * -0.40000E-01 0.25073E+00 -0.25073E+00
 * 83 * -0.40000E-01 0.30167E+00 -0.18347E+00
 * 84 * -0.40000E-01 0.33628E+00 -0.99897E-01
 * 85 * -0.40000E-01 0.35458E+00 0.00000E+00
 * 86 * 0.00000E+00 0.20646E+00 -0.33946E+00
 * 87 * 0.00000E+00 0.33946E+00 -0.20646E+00
 * 88 * 0.00000E+00 0.39900E+00 0.00000E+00
 * 89 * 0.00000E+00 0.18347E+00 -0.30167E+00
 * 90 * 0.00000E+00 0.30167E+00 -0.18347E+00
 * 91 * 0.00000E+00 0.35458E+00 0.00000E+00
 * 92 * 0.40000E-01 0.11241E+00 -0.37841E+00
 * 93 * 0.40000E-01 0.20646E+00 -0.33946E+00
 * 94 * 0.40000E-01 0.28214E+00 -0.28214E+00
 * 95 * 0.40000E-01 0.33946E+00 -0.20646E+00
 * 96 * 0.40000E-01 0.37841E+00 -0.11241E+00
 * 97 * 0.40000E-01 0.39900E+00 0.00000E+00
 * 98 * 0.40000E-01 0.19497E+00 -0.32056E+00
 * 99 * 0.40000E-01 0.32056E+00 -0.19497E+00
 * 100 * 0.40000E-01 0.37679E+00 0.00000E+00
 * 101 * 0.40000E-01 0.99897E-01 -0.33628E+00
 * 102 * 0.40000E-01 0.18347E+00 -0.30167E+00
 * 103 * 0.40000E-01 0.25073E+00 -0.25073E+00
 * 104 * 0.40000E-01 0.30167E+00 -0.18347E+00
 * 105 * 0.40000E-01 0.33628E+00 -0.99897E-01
 * 106 * 0.40000E-01 0.35458E+00 0.00000E+00
 * 107 * -0.40000E-01 0.17427E+00 -0.28653E+00
 * 108 * -0.40000E-01 0.28653E+00 0.17427E+00
 * 109 * -0.40000E-01 0.33679E+00 0.00000E+00
 * 110 * -0.40000E-01 0.89872E-01 -0.30254E+00
 * 111 * -0.40000E-01 0.16506E+00 -0.27140E+00

* 112 * -0.40000E-01 0.22557E+00 -0.22557E+00
 * 113 * -0.40000E-01 0.27140E+00 -0.16506E+00
 * 114 * -0.40000E-01 0.30254E+00 -0.89872E-01
 * 115 * -0.40000E-01 0.31900E+00 0.00000E+00
 * 116 * 0.00000E+00 0.16506E+00 -0.27140E+00
 * 117 * 0.00000E+00 0.27140E+00 -0.16506E+00
 * 118 * 0.00000E+00 0.31900E+00 0.00000E+00
 * 119 * 0.40000E-01 0.17427E+00 -0.28653E+00
 * 120 * 0.40000E-01 0.28653E+00 -0.17427E+00
 * 121 * 0.40000E-01 0.33679E+00 0.00000E+00
 * 122 * 0.40000E-01 0.89872E-01 -0.30254E+00
 * 123 * 0.40000E-01 0.16506E+00 -0.27140E+00
 * 124 * 0.40000E-01 0.22557E+00 -0.22557E+00
 * 125 * 0.40000E-01 0.27140E+00 -0.16506E+00
 * 126 * 0.40000E-01 0.30254E+00 -0.89872E-01
 * 127 * 0.40000E-01 0.31900E+00 0.00000E+00
 * 128 * -0.40000E-01 0.37841E+00 0.11241E+00
 * 129 * -0.40000E-01 0.33946E+00 0.20646E+00
 * 130 * -0.40000E-01 0.28214E+00 0.28214E+00
 * 131 * -0.40000E-01 0.20646E+00 0.33946E+00
 * 132 * -0.40000E-01 0.11241E+00 0.37841E+00
 * 133 * -0.40000E-01 0.00000E+00 0.39900E+00
 * 134 * -0.40000E-01 0.32056E+00 0.19497E+00
 * 135 * -0.40000E-01 0.19497E+00 0.32056E+00
 * 136 * -0.40000E-01 0.00000E+00 0.37679E+00
 * 137 * -0.40000E-01 0.33628E+00 0.99897E-01
 * 138 * -0.40000E-01 0.30167E+00 0.18347E+00
 * 139 * -0.40000E-01 0.25073E+00 0.25073E+00
 * 140 * -0.40000E-01 0.18347E+00 0.30167E+00
 * 141 * -0.40000E-01 0.99897E-01 0.33628E+00
 * 142 * -0.40000E-01 0.00000E+00 0.35458E+00
 * 143 * 0.00000E+00 0.33946E+00 0.20646E+00
 * 144 * 0.00000E+00 0.20646E+00 0.33946E+00
 * 145 * 0.00000E+00 0.00000E+00 0.39900E+00
 * 146 * 0.00000E+00 0.30167E+00 0.18347E+00
 * 147 * 0.00000E+00 0.18347E+00 0.30167E+00
 * 148 * 0.00000E+00 0.00000E+00 0.35458E+00
 * 149 * 0.40000E-01 0.37841E+00 0.11241E+00
 * 150 * 0.40000E-01 0.33946E+00 0.20646E+00
 * 151 * 0.40000E-01 0.28214E+00 0.28214E+00
 * 152 * 0.40000E-01 0.20646E+00 0.33946E+00
 * 153 * 0.40000E-01 0.11241E+00 0.37841E+00
 * 154 * 0.40000E-01 0.00000E+00 0.39900E+00
 * 155 * 0.40000E-01 0.32056E+00 0.19497E+00
 * 156 * 0.40000E-01 0.19497E+00 0.32056E+00
 * 157 * 0.40000E-01 0.00000E+00 0.37679E+00
 * 158 * 0.40000E-01 0.33628E+00 0.99897E-01
 * 159 * 0.40000E-01 0.30167E+00 0.18347E+00
 * 160 * 0.40000E-01 0.25073E+00 0.25073E+00
 * 161 * 0.40000E-01 0.18347E+00 0.30167E+00
 * 162 * 0.40000E-01 0.99897E-01 0.33628E+00
 * 163 * 0.40000E-01 0.00000E+00 0.35458E+00
 * 164 * -0.40000E-01 0.28653E+00 0.17427E+00
 * 165 * -0.40000E-01 0.17427E+00 0.28653E+00
 * 166 * -0.40000E-01 0.00000E+00 0.33679E+00
 * 167 * -0.40000E-01 0.30254E+00 0.89872E-01
 * 168 * -0.40000E-01 0.27140E+00 0.16506E+00
 * 169 * -0.40000E-01 0.22557E+00 0.22557E+00
 * 170 * -0.40000E-01 0.16506E+00 0.27140E+00
 * 171 * -0.40000E-01 0.89872E-01 0.30254E+00
 * 172 * -0.40000E-01 0.00000E+00 0.31900E+00
 * 173 * 0.00000E+00 0.27140E+00 0.16506E+00
 * 174 * 0.00000E+00 0.16506E+00 0.27140E+00
 * 175 * 0.00000E+00 0.00000E+00 0.31900E+00
 * 176 * 0.40000E-01 0.28653E+00 0.17427E+00
 * 177 * 0.40000E-01 0.17427E+00 0.28653E+00
 * 178 * 0.40000E-01 0.00000E+00 0.33679E+00
 * 179 * 0.40000E-01 0.30254E+00 0.89872E-01
 * 180 * 0.40000E-01 0.27140E+00 0.16506E+00

*	181	*	0.40000E-01	0.22557E+00	0.22557E+00
*	182	*	0.40000E-01	0.16506E+00	0.27140E+00
*	183	*	0.40000E-01	0.89872E-01	0.30254E+00
*	184	*	0.40000E-01	0.00000E+00	0.31900E+00
*	185	*	-0.40000E-01	-0.11241E+00	0.37841E+00
*	186	*	-0.40000E-01	-0.20646E+00	0.33946E+00
*	187	*	-0.40000E-01	-0.28214E+00	0.28214E+00
*	188	*	-0.40000E-01	-0.33946E+00	0.20646E+00
*	189	*	-0.40000E-01	-0.37841E+00	0.11241E+00
*	190	*	-0.40000E-01	-0.19497E+00	0.32056E+00
*	191	*	-0.40000E-01	-0.32056E+00	0.19497E+00
*	192	*	-0.40000E-01	-0.99897E-01	0.33628E+00
*	193	*	-0.40000E-01	-0.18347E+00	0.30167E+00
*	194	*	-0.40000E-01	-0.25073E+00	0.25073E+00
*	195	*	-0.40000E-01	-0.30167E+00	0.18347E+00
*	196	*	-0.40000E-01	-0.33628E+00	0.99897E-01
*	197	*	0.00000E+00	-0.20646E+00	0.33946E+00
*	198	*	0.00000E+00	-0.33946E+00	0.20646E+00
*	199	*	0.00000E+00	-0.18347E+00	0.30167E+00
*	200	*	0.00000E+00	-0.30167E+00	0.18347E+00
*	201	*	0.40000E-01	-0.11241E+00	0.37841E+00
*	202	*	0.40000E-01	-0.20646E+00	0.33946E+00
*	203	*	0.40000E-01	-0.28214E+00	0.28214E+00
*	204	*	0.40000E-01	-0.33946E+00	0.20646E+00
*	205	*	0.40000E-01	-0.37841E+00	0.11241E+00
*	206	*	0.40000E-01	-0.19497E+00	0.32056E+00
*	207	*	0.40000E-01	-0.32056E+00	0.19497E+00
*	208	*	0.40000E-01	-0.99897E-01	0.33628E+00
*	209	*	0.40000E-01	-0.18347E+00	0.30167E+00
*	210	*	0.40000E-01	-0.25073E+00	0.25073E+00
*	211	*	0.40000E-01	-0.30167E+00	0.18347E+00
*	212	*	0.40000E-01	-0.33628E+00	0.99897E-01
*	213	*	-0.40000E-01	-0.17427E+00	0.28653E+00
*	214	*	-0.40000E-01	-0.28653E+00	0.17427E+00
*	215	*	-0.40000E-01	-0.89872E-01	0.30254E+00
*	216	*	-0.40000E-01	-0.16506E+00	0.27140E+00
*	217	*	-0.40000E-01	-0.22557E+00	0.22557E+00
*	218	*	-0.40000E-01	-0.27140E+00	0.16506E+00
*	219	*	-0.40000E-01	-0.30256E+00	0.89872E-01
*	220	*	0.00000E+00	-0.16506E+00	0.27140E+00
*	221	*	0.00000E+00	-0.27140E+00	0.16506E+00
*	222	*	0.40000E-01	-0.17427E+00	0.28653E+00
*	223	*	0.40000E-01	-0.28653E+00	0.17427E+00
*	224	*	0.40000E-01	-0.89872E-01	0.30254E+00
*	225	*	0.40000E-01	-0.16506E+00	0.27140E+00
*	226	*	0.40000E-01	-0.22557E+00	0.22557E+00
*	227	*	0.40000E-01	-0.27140E+00	0.16506E+00
*	228	*	0.40000E-01	-0.30254E+00	0.89872E-01
*	229	*	0.69986E-01	-0.30439E+00	0.00000E+00
*	230	*	0.69986E-01	-0.27616E+00	-0.93519E-01
*	231	*	0.69986E-01	-0.23160E+00	-0.17072E+00
*	232	*	0.69986E-01	-0.17072E+00	-0.23160E+00
*	233	*	0.69986E-01	-0.93519E-01	-0.27616E+00
*	234	*	0.69986E-01	0.00000E+00	-0.30439E+00
*	235	*	0.94876E-01	-0.25064E+00	0.00000E+00
*	236	*	0.94876E-01	-0.21246E+00	-0.87141E-01
*	237	*	0.94876E-01	-0.15796E+00	-0.15796E+00
*	238	*	0.94876E-01	-0.87141E-01	-0.21246E+00
*	239	*	0.94876E-01	0.00000E+00	-0.25064E+00
*	240	*	0.11467E+00	-0.19333E+00	0.00000E+00
*	241	*	0.11467E+00	-0.14521E+00	-0.80763E-01
*	242	*	0.11467E+00	-0.80763E-01	-0.14521E+00
*	243	*	0.11467E+00	0.00000E+00	-0.19333E+00
*	244	*	0.12937E+00	-0.13245E+00	0.00000E+00
*	245	*	0.12937E+00	-0.74386E-01	-0.74386E-01
*	246	*	0.12937E+00	0.00000E+00	-0.13245E+00
*	247	*	0.13897E+00	-0.68008E-01	0.00000E+00
*	248	*	0.13897E+00	0.00000E+00	-0.68008E-01
*	249	*	0.14348E+00	0.00000E+00	0.00000E+00

* 250 * 0.69986E-01 0.93519E-01 -0.27616E+00
 * 251 * 0.69986E-01 0.17072E+00 -0.23160E+00
 * 252 * 0.69986E-01 0.23160E+00 -0.17072E+00
 * 253 * 0.69986E-01 0.27616E+00 -0.93519E-01
 * 254 * 0.69986E-01 0.30439E+00 0.00000E+00
 * 255 * 0.94876E-01 0.87141E-01 -0.21246E+00
 * 256 * 0.94876E-01 0.15796E+00 -0.15796E+00
 * 257 * 0.94876E-01 0.21246E+00 -0.87141E-01
 * 258 * 0.94876E-01 0.25064E+00 0.00000E+00
 * 259 * 0.11467E+00 0.80763E-01 -0.14521E+00
 * 260 * 0.11467E+00 0.14521E+00 -0.80763E-01
 * 261 * 0.11467E+00 0.19333E+00 0.00000E+00
 * 262 * 0.12937E+00 0.74386E-01 -0.74386E-01
 * 263 * 0.12937E+00 0.13245E+00 0.00000E+00
 * 264 * 0.13897E+00 0.68008E-01 0.00000E+00
 * 265 * 0.69986E-01 0.27616E+00 0.93519E-01
 * 266 * 0.69986E-01 0.23160E+00 0.17072E+00
 * 267 * 0.69986E-01 0.17072E+00 0.23160E+00
 * 268 * 0.69986E-01 0.93519E-01 0.27616E+00
 * 269 * 0.69986E-01 0.00000E+00 0.30439E+00
 * 270 * 0.94876E-01 0.21246E+00 0.87141E-01
 * 271 * 0.94876E-01 0.15796E+00 0.15796E+00
 * 272 * 0.94876E-01 0.87141E-01 0.21246E+00
 * 273 * 0.94876E-01 0.00000E+00 0.25064E+00
 * 274 * 0.11467E+00 0.14521E+00 0.80763E-01
 * 275 * 0.11467E+00 0.80763E-01 0.14521E+00
 * 276 * 0.11467E+00 0.00000E+00 0.19333E+00
 * 277 * 0.12937E+00 0.74386E-01 0.74386E-01
 * 278 * 0.12937E+00 0.00000E+00 0.13245E+00
 * 279 * 0.13897E+00 0.00000E+00 0.68008E-01
 * 280 * 0.69986E-01 -0.93519E-01 0.27616E+00
 * 281 * 0.69986E-01 -0.17072E+00 0.23160E+00
 * 282 * 0.69986E-01 -0.23160E+00 0.17072E+00
 * 283 * 0.69986E-01 -0.27616E+00 0.93519E-01
 * 284 * 0.94876E-01 -0.87141E-01 0.21246E+00
 * 285 * 0.94876E-01 -0.15796E+00 0.15796E+00
 * 286 * 0.94876E-01 -0.21246E+00 0.87141E-01
 * 287 * 0.11467E+00 -0.80763E-01 0.14521E+00
 * 288 * 0.11467E+00 -0.14521E+00 0.80763E-01
 * 289 * 0.12937E+00 -0.74386E-01 0.74386E-01
 * 290 * -0.69986E-01 -0.30439E+00 0.00000E+00
 * 291 * -0.69986E-01 -0.27616E+00 -0.93519E-01
 * 292 * -0.69986E-01 -0.23160E+00 -0.17072E+00
 * 293 * -0.69986E-01 -0.17072E+00 -0.23160E+00
 * 294 * -0.69986E-01 -0.93519E-01 -0.27616E+00
 * 295 * -0.69986E-01 0.00000E+00 -0.30439E+00
 * 296 * -0.94876E-01 -0.25064E+00 0.00000E+00
 * 297 * -0.94876E-01 -0.21246E+00 -0.87141E-01
 * 298 * -0.94876E-01 -0.15796E+00 -0.15796E+00
 * 299 * -0.94876E-01 -0.87141E-01 -0.21246E+00
 * 300 * -0.94876E-01 0.00000E+00 -0.25064E+00
 * 301 * -0.11467E+00 -0.19333E+00 0.00000E+00
 * 302 * -0.11467E+00 -0.14521E+00 -0.80763E-01
 * 303 * -0.11467E+00 -0.80763E-01 -0.14521E+00
 * 304 * -0.11467E+00 0.00000E+00 -0.19333E+00
 * 305 * -0.12937E+00 -0.13245E+00 0.00000E+00
 * 306 * -0.12937E+00 -0.74386E-01 -0.74386E-01
 * 307 * -0.12937E+00 0.00000E+00 -0.13245E+00
 * 308 * -0.13897E+00 -0.68008E-01 0.00000E+00
 * 309 * -0.13897E+00 0.00000E+00 -0.68008E-01
 * 310 * -0.14348E+00 0.00000E+00 0.00000E+00
 * 311 * -0.69986E-01 0.93519E-01 -0.27616E+00
 * 312 * -0.69986E-01 0.17072E+00 -0.23160E+00
 * 313 * -0.69986E-01 0.23160E+00 -0.17072E+00
 * 314 * -0.69986E-01 0.27616E+00 -0.93519E-01
 * 315 * -0.69986E-01 0.30439E+00 0.00000E+00
 * 316 * -0.94876E-01 0.87141E-01 -0.21246E+00
 * 317 * -0.94876E-01 0.15796E+00 -0.15796E+00
 * 318 * -0.94876E-01 0.21246E+00 -0.87141E-01

* 319 * -0.94876E-01 0.25064E+00 0.00000E+00
 * 320 * -0.11467E+00 0.80763E-01 -0.14521E+00
 * 321 * -0.11467E+00 0.14521E+00 -0.80763E-01
 * 322 * -0.11467E+00 0.19333E+00 0.00000E+00
 * 323 * -0.12937E+00 0.74386E-01 -0.74386E-01
 * 324 * -0.12937E+00 0.13245E+00 0.00000E+00
 * 325 * -0.13897E+00 0.68008E-01 0.00000E+00
 * 326 * -0.69986E-01 0.27616E+00 0.93519E-01
 * 327 * -0.69986E-01 0.23160E+00 0.17072E+00
 * 328 * -0.69986E-01 0.17072E+00 0.23160E+00
 * 329 * -0.69986E-01 0.93519E-01 0.27616E+00
 * 330 * -0.69986E-01 0.00000E+00 0.30439E+00
 * 331 * -0.94876E-01 0.21246E+00 0.87141E-01
 * 332 * -0.94876E-01 0.15796E+00 0.15796E+00
 * 333 * -0.94876E-01 0.87141E-01 0.21246E+00
 * 334 * -0.94876E-01 0.00000E+00 0.25064E+00
 * 335 * -0.11467E+00 0.14521E+00 0.80763E-01
 * 336 * -0.11467E+00 0.80763E-01 0.14521E+00
 * 337 * -0.11467E+00 0.00000E+00 0.19333E+00
 * 338 * -0.12937E+00 0.74386E-01 0.74386E-01
 * 339 * -0.12937E+00 0.00000E+00 0.13245E+00
 * 340 * -0.13897E+00 0.00000E+00 0.68008E-01
 * 341 * -0.69986E-01 -0.93519E-01 0.27616E+00
 * 342 * -0.69986E-01 -0.17072E+00 0.23160E+00
 * 343 * -0.69986E-01 -0.23160E+00 0.17072E+00
 * 344 * -0.69986E-01 -0.27616E+00 0.93519E-01
 * 345 * -0.94876E-01 -0.87141E-01 0.21246E+00
 * 346 * -0.94876E-01 -0.15796E+00 0.15796E+00
 * 347 * -0.94876E-01 -0.21246E+00 0.87141E-01
 * 348 * -0.11467E+00 -0.80763E-01 0.14521E+00
 * 349 * -0.11467E+00 -0.14521E+00 0.80763E-01
 * 350 * -0.12937E+00 -0.74386E-01 0.74386E-01
 * 351 * -0.14348E+00 0.00000E+00 0.00000E+00
 * 352 * 0.14348E+00 0.00000E+00 0.00000E+00
 * 353 * 0.13897E+00 0.00000E+00 -0.68008E-01
 * 354 * 0.13897E+00 0.00000E+00 -0.68008E-01
 * 355 * -0.13897E+00 0.68008E-01 0.00000E+00
 * 356 * 0.13897E+00 0.68008E-01 0.00000E+00
 * 357 * -0.13897E+00 -0.68008E-01 0.00000E+00
 * 358 * 0.13897E+00 -0.68008E-01 0.00000E+00
 * 359 * -0.13897E+00 0.00000E+00 0.68008E-01
 * 360 * 0.13897E+00 0.00000E+00 0.68008E-01
 * 361 * -0.12937E+00 0.74386E-01 -0.74386E-01
 * 362 * 0.12937E+00 0.74386E-01 -0.74386E-01
 * 363 * -0.12937E+00 -0.74386E-01 -0.74386E-01
 * 364 * 0.12937E+00 -0.74386E-01 -0.74386E-01
 * 365 * -0.12937E+00 0.74386E-01 0.74386E-01
 * 366 * 0.12937E+00 0.74386E-01 0.74386E-01
 * 367 * -0.12937E+00 -0.74386E-01 0.74386E-01
 * 368 * 0.12937E+00 -0.74386E-01 0.74386E-01
 * 369 * -0.12937E+00 0.00000E+00 -0.13245E+00
 * 370 * 0.12937E+00 0.00000E+00 -0.13245E+00
 * 371 * -0.12937E+00 0.13245E+00 0.00000E+00
 * 372 * 0.12937E+00 0.13245E+00 0.00000E+00
 * 373 * -0.12937E+00 -0.13245E+00 0.00000E+00
 * 374 * 0.12937E+00 -0.13245E+00 0.00000E+00
 * 375 * -0.12937E+00 0.00000E+00 0.13245E+00
 * 376 * 0.12937E+00 0.00000E+00 0.13245E+00
 * 377 * -0.11467E+00 0.80763E-01 -0.14521E+00
 * 378 * 0.11467E+00 0.80763E-01 -0.14521E+00
 * 379 * -0.11467E+00 -0.80763E-01 -0.14521E+00
 * 380 * 0.11467E+00 -0.80763E-01 -0.14521E+00
 * 381 * -0.11467E+00 0.14521E+00 -0.80763E-01
 * 382 * 0.11467E+00 0.14521E+00 -0.80763E-01
 * 383 * -0.11467E+00 -0.14521E+00 -0.80763E-01
 * 384 * 0.11467E+00 -0.14521E+00 -0.80763E-01
 * 385 * -0.11467E+00 0.14521E+00 0.80763E-01
 * 386 * 0.11467E+00 0.14521E+00 0.80763E-01
 * 387 * -0.11467E+00 -0.14521E+00 0.80763E-01

* 388 * 0.11467E+00 -0.14521E+00 0.80763E-01
 * 389 * -0.11467E+00 0.80763E-01 0.14521E+00
 * 390 * 0.11467E+00 0.80763E-01 0.14521E+00
 * 391 * -0.11467E+00 -0.80763E-01 0.14521E+00
 * 392 * 0.11467E+00 -0.80763E-01 0.14521E+00
 * 393 * -0.11467E+00 0.00000E+00 -0.19333E+00
 * 394 * 0.11467E+00 0.00000E+00 -0.19333E+00
 * 395 * -0.11467E+00 0.19333E+00 0.00000E+00
 * 396 * 0.11467E+00 0.19333E+00 0.00000E+00
 * 397 * -0.11467E+00 -0.19333E+00 0.00000E+00
 * 398 * 0.11467E+00 -0.19333E+00 0.00000E+00
 * 399 * -0.11467E+00 0.00000E+00 0.19333E+00
 * 400 * 0.11467E+00 0.00000E+00 0.19333E+00
 * 401 * -0.24011E+00 0.00000E+00 0.00000E+00
 * 402 * 0.24011E+00 0.00000E+00 0.00000E+00
 * 403 * -0.94876E-01 0.15796E+00 -0.15796E+00
 * 404 * 0.94876E-01 0.15796E+00 -0.15796E+00
 * 405 * -0.94876E-01 -0.15796E+00 -0.15796E+00
 * 406 * 0.94876E-01 -0.15796E+00 -0.15796E+00
 * 407 * -0.94876E-01 0.15796E+00 0.15796E+00
 * 408 * 0.94876E-01 0.15796E+00 0.15796E+00
 * 409 * -0.94876E-01 -0.15796E+00 0.15796E+00
 * 410 * 0.94876E-01 -0.15796E+00 0.15796E+00
 * 411 * -0.94876E-01 0.87141E-01 -0.21246E+00
 * 412 * 0.94876E-01 0.87141E-01 -0.21246E+00
 * 413 * -0.94876E-01 -0.87141E-01 -0.21246E+00
 * 414 * 0.94876E-01 -0.87141E-01 -0.21246E+00
 * 415 * -0.94876E-01 0.21246E+00 -0.87141E-01
 * 416 * 0.94876E-01 0.21246E+00 -0.87141E-01
 * 417 * -0.94876E-01 -0.21246E+00 -0.87141E-01
 * 418 * 0.94876E-01 -0.21246E+00 -0.87141E-01
 * 419 * -0.94876E-01 0.21246E+00 0.87141E-01
 * 420 * 0.94876E-01 0.21246E+00 0.87141E-01
 * 421 * -0.94876E-01 -0.21246E+00 0.87141E-01
 * 422 * 0.94876E-01 -0.21246E+00 0.87141E-01
 * 423 * -0.94876E-01 0.87141E-01 0.21246E+00
 * 424 * 0.94876E-01 0.87141E-01 0.21246E+00
 * 425 * -0.94876E-01 -0.87141E-01 0.21246E+00
 * 426 * 0.94876E-01 -0.87141E-01 0.21246E+00
 * 427 * -0.22519E+00 0.00000E+00 -0.13245E+00
 * 428 * 0.22519E+00 0.00000E+00 -0.13245E+00
 * 429 * -0.22519E+00 0.13245E+00 0.00000E+00
 * 430 * 0.22519E+00 0.13245E+00 0.00000E+00
 * 431 * -0.22519E+00 -0.13245E+00 0.00000E+00
 * 432 * 0.22519E+00 -0.13245E+00 0.00000E+00
 * 433 * -0.22519E+00 0.00000E+00 0.13245E+00
 * 434 * 0.22519E+00 0.00000E+00 0.13245E+00
 * 435 * -0.94876E-01 0.00000E+00 -0.25064E+00
 * 436 * 0.94876E-01 0.00000E+00 -0.25064E+00
 * 437 * -0.94876E-01 0.25064E+00 0.00000E+00
 * 438 * 0.94876E-01 0.25064E+00 0.00000E+00
 * 439 * -0.94876E-01 -0.25064E+00 0.00000E+00
 * 440 * 0.94876E-01 -0.25064E+00 0.00000E+00
 * 441 * -0.94876E-01 0.00000E+00 0.25064E+00
 * 442 * 0.94876E-01 0.00000E+00 0.25064E+00
 * 443 * -0.18798E+00 0.15796E+00 -0.15796E+00
 * 444 * 0.18798E+00 0.15796E+00 -0.15796E+00
 * 445 * -0.18798E+00 -0.15796E+00 -0.15796E+00
 * 446 * 0.18798E+00 -0.15796E+00 -0.15796E+00
 * 447 * -0.18798E+00 0.15796E+00 0.15796E+00
 * 448 * 0.18798E+00 0.15796E+00 0.15796E+00
 * 449 * -0.18798E+00 -0.15796E+00 0.15796E+00
 * 450 * 0.18798E+00 -0.15796E+00 0.15796E+00
 * 451 * -0.69986E-01 0.17072E+00 -0.23160E+00
 * 452 * 0.69986E-01 0.17072E+00 -0.23160E+00
 * 453 * -0.69986E-01 -0.17072E+00 -0.23160E+00
 * 454 * 0.69986E-01 -0.17072E+00 -0.23160E+00
 * 455 * -0.69986E-01 0.23160E+00 -0.17072E+00
 * 456 * 0.69986E-01 0.23160E+00 -0.17072E+00

* 457 * -0.69986E-01 -0.23160E+00 -0.17072E+00
 * 458 * 0.69986E-01 -0.23160E+00 -0.17072E+00
 * 459 * -0.69986E-01 0.23160E+00 0.17072E+00
 * 460 * 0.69986E-01 0.23160E+00 0.17072E+00
 * 461 * -0.69986E-01 -0.23160E+00 0.17072E+00
 * 462 * 0.69986E-01 -0.23160E+00 0.17072E+00
 * 463 * -0.69986E-01 0.17072E+00 0.23160E+00
 * 464 * 0.69986E-01 0.17072E+00 0.23160E+00
 * 465 * -0.69986E-01 -0.17072E+00 0.23160E+00
 * 466 * 0.69986E-01 -0.17072E+00 0.23160E+00
 * 467 * -0.69986E-01 0.93519E-01 -0.27616E+00
 * 468 * 0.69986E-01 0.93519E-01 -0.27616E+00
 * 469 * -0.69986E-01 -0.93519E-01 -0.27616E+00
 * 470 * 0.69986E-01 -0.93519E-01 -0.27616E+00
 * 471 * -0.69986E-01 0.27616E+00 -0.93519E-01
 * 472 * 0.69986E-01 0.27616E+00 -0.93519E-01
 * 473 * -0.69986E-01 -0.27616E+00 -0.93519E-01
 * 474 * 0.69986E-01 -0.27616E+00 -0.93519E-01
 * 475 * -0.69986E-01 0.27616E+00 0.93519E-01
 * 476 * 0.69986E-01 0.27616E+00 0.93519E-01
 * 477 * -0.69986E-01 -0.27616E+00 0.93519E-01
 * 478 * 0.69986E-01 -0.27616E+00 0.93519E-01
 * 479 * -0.69986E-01 0.93519E-01 0.27616E+00
 * 480 * 0.69986E-01 0.93519E-01 0.27616E+00
 * 481 * -0.69986E-01 -0.93519E-01 0.27616E+00
 * 482 * 0.69986E-01 -0.93519E-01 0.27616E+00
 * 483 * -0.69986E-01 0.00000E+00 -0.30439E+00
 * 484 * 0.69986E-01 0.00000E+00 -0.30439E+00
 * 485 * -0.69986E-01 0.30439E+00 0.00000E+00
 * 486 * 0.69986E-01 0.30439E+00 0.00000E+00
 * 487 * -0.69986E-01 -0.30439E+00 0.00000E+00
 * 488 * 0.69986E-01 -0.30439E+00 0.00000E+00
 * 489 * -0.69986E-01 0.00000E+00 0.30439E+00
 * 490 * 0.69986E-01 0.00000E+00 0.30439E+00
 * 491 * -0.18798E+00 0.00000E+00 -0.25064E+00
 * 492 * 0.18798E+00 0.00000E+00 -0.25064E+00
 * 493 * -0.18798E+00 0.25064E+00 0.00000E+00
 * 494 * 0.18798E+00 0.25064E+00 0.00000E+00
 * 495 * -0.18798E+00 -0.25064E+00 0.00000E+00
 * 496 * 0.18798E+00 -0.25064E+00 0.00000E+00
 * 497 * -0.18798E+00 0.00000E+00 0.25064E+00
 * 498 * 0.18798E+00 0.00000E+00 0.25064E+00
 * 499 * -0.33674E+00 0.00000E+00 0.00000E+00
 * 500 * 0.33674E+00 0.00000E+00 0.00000E+00
 * 501 * -0.32102E+00 0.74386E-01 -0.74386E-01
 * 502 * 0.32102E+00 0.74386E-01 -0.74386E-01
 * 503 * -0.32102E+00 -0.74386E-01 -0.74386E-01
 * 504 * 0.32102E+00 -0.74386E-01 -0.74386E-01
 * 505 * -0.32102E+00 0.74386E-01 0.74386E-01
 * 506 * 0.32102E+00 0.74386E-01 0.74386E-01
 * 507 * -0.32102E+00 -0.74386E-01 0.74386E-01
 * 508 * 0.32102E+00 -0.74386E-01 0.74386E-01
 * 509 * -0.33190E+00 0.00000E+00 -0.68008E-01
 * 510 * 0.33190E+00 0.00000E+00 -0.68008E-01
 * 511 * -0.33190E+00 0.68008E-01 0.00000E+00
 * 512 * 0.33190E+00 0.68008E-01 0.00000E+00
 * 513 * -0.33190E+00 -0.68008E-01 0.00000E+00
 * 514 * 0.33190E+00 -0.68008E-01 0.00000E+00
 * 515 * -0.33190E+00 0.00000E+00 0.68008E-01
 * 516 * 0.33190E+00 0.00000E+00 0.68008E-01
 * 517 * -0.30408E+00 0.80763E-01 -0.14521E+00
 * 518 * 0.30408E+00 0.80763E-01 -0.14521E+00
 * 519 * -0.30408E+00 -0.80763E-01 -0.14521E+00
 * 520 * 0.30408E+00 -0.80763E-01 -0.14521E+00
 * 521 * -0.30408E+00 0.14521E+00 -0.80763E-01
 * 522 * 0.30408E+00 0.14521E+00 -0.80763E-01
 * 523 * -0.30408E+00 -0.14521E+00 -0.80763E-01
 * 524 * 0.30408E+00 -0.14521E+00 -0.80763E-01
 * 525 * -0.30408E+00 0.14521E+00 0.80763E-01

* 526 * 0.30408E+00 0.14521E+00 0.80763E-01
 * 527 * -0.30408E+00 -0.14521E+00 0.80763E-01
 * 528 * 0.30408E+00 -0.14521E+00 0.80763E-01
 * 529 * -0.30408E+00 0.80763E-01 0.14521E+00
 * 530 * 0.30408E+00 0.80763E-01 0.14521E+00
 * 531 * -0.30408E+00 -0.80763E-01 0.14521E+00
 * 532 * 0.30408E+00 -0.80763E-01 0.14521E+00
 * 533 * -0.32102E+00 0.00000E+00 -0.13245E+00
 * 534 * 0.32102E+00 0.00000E+00 -0.13245E+00
 * 535 * -0.32102E+00 0.13245E+00 0.00000E+00
 * 536 * 0.32102E+00 0.13245E+00 0.00000E+00
 * 537 * -0.32102E+00 -0.13245E+00 0.00000E+00
 * 538 * 0.32102E+00 -0.13245E+00 0.00000E+00
 * 539 * -0.32102E+00 0.00000E+00 0.13245E+00
 * 540 * 0.32102E+00 0.00000E+00 0.13245E+00
 * 541 * -0.40000E-01 0.99897E-01 -0.33628E+00
 * 542 * 0.40000E-01 0.99897E-01 -0.33628E+00
 * 543 * -0.40000E-01 -0.99897E-01 -0.33628E+00
 * 544 * 0.40000E-01 -0.99897E-01 -0.33628E+00
 * 545 * -0.40000E-01 0.33628E+00 -0.99897E-01
 * 546 * 0.40000E-01 0.33628E+00 -0.99897E-01
 * 547 * -0.40000E-01 -0.33628E+00 -0.99897E-01
 * 548 * 0.40000E-01 -0.33628E+00 -0.99897E-01
 * 549 * -0.40000E-01 0.33628E+00 0.99897E-01
 * 550 * 0.40000E-01 0.33628E+00 0.99897E-01
 * 551 * -0.40000E-01 -0.33628E+00 0.99897E-01
 * 552 * 0.40000E-01 -0.33628E+00 0.99897E-01
 * 553 * -0.40000E-01 0.99897E-01 0.33628E+00
 * 554 * 0.40000E-01 0.99897E-01 0.33628E+00
 * 555 * -0.40000E-01 -0.99897E-01 0.33628E+00
 * 556 * 0.40000E-01 -0.99897E-01 0.33628E+00
 * 557 * -0.40000E-01 0.18347E+00 -0.30167E+00
 * 558 * 0.40000E-01 0.18347E+00 -0.30167E+00
 * 559 * -0.40000E-01 -0.30167E+00 -0.18347E+00
 * 560 * 0.40000E-01 -0.30167E+00 -0.18347E+00
 * 561 * -0.40000E-01 0.30167E+00 0.18347E+00
 * 562 * 0.40000E-01 0.30167E+00 0.18347E+00
 * 563 * -0.40000E-01 -0.18347E+00 0.30167E+00
 * 564 * 0.40000E-01 -0.18347E+00 0.30167E+00
 * 565 * -0.40000E-01 -0.18347E+00 -0.30167E+00
 * 566 * 0.40000E-01 -0.18347E+00 -0.30167E+00
 * 567 * -0.40000E-01 0.30167E+00 -0.18347E+00
 * 568 * 0.40000E-01 0.30167E+00 -0.18347E+00
 * 569 * -0.40000E-01 -0.30167E+00 0.18347E+00
 * 570 * 0.40000E-01 -0.30167E+00 0.18347E+00
 * 571 * -0.40000E-01 0.18347E+00 0.30167E+00
 * 572 * 0.40000E-01 0.18347E+00 0.30167E+00
 * 573 * -0.40000E-01 0.00000E+00 -0.35458E+00
 * 574 * 0.40000E-01 0.00000E+00 -0.35458E+00
 * 575 * -0.40000E-01 0.35458E+00 0.00000E+00
 * 576 * 0.40000E-01 0.35458E+00 0.00000E+00
 * 577 * -0.40000E-01 -0.35458E+00 0.00000E+00
 * 578 * 0.40000E-01 -0.35458E+00 0.00000E+00
 * 579 * -0.40000E-01 0.00000E+00 0.35458E+00
 * 580 * 0.40000E-01 0.00000E+00 0.35458E+00
 * 581 * -0.40000E-01 0.25073E+00 -0.25073E+00
 * 582 * 0.40000E-01 0.25073E+00 -0.25073E+00
 * 583 * -0.40000E-01 -0.25073E+00 -0.25073E+00
 * 584 * 0.40000E-01 -0.25073E+00 -0.25073E+00
 * 585 * -0.40000E-01 0.25073E+00 0.25073E+00
 * 586 * 0.40000E-01 0.25073E+00 0.25073E+00
 * 587 * -0.40000E-01 -0.25073E+00 0.25073E+00
 * 588 * 0.40000E-01 -0.25073E+00 0.25073E+00
 * 589 * -0.28109E+00 0.15796E+00 -0.15796E+00
 * 590 * 0.28109E+00 0.15796E+00 -0.15796E+00
 * 591 * -0.28109E+00 -0.15796E+00 -0.15796E+00
 * 592 * 0.28109E+00 -0.15796E+00 -0.15796E+00
 * 593 * -0.28109E+00 0.15796E+00 0.15796E+00
 * 594 * 0.28109E+00 0.15796E+00 0.15796E+00

* 595 * -0.28109E+00 -0.15796E+00 0.15796E+00
 * 596 * 0.28109E+00 -0.15796E+00 0.15796E+00
 * 597 * -0.30408E+00 0.00000E+00 -0.19333E+00
 * 598 * 0.30408E+00 0.00000E+00 -0.19333E+00
 * 599 * -0.30408E+00 0.19333E+00 0.00000E+00
 * 600 * 0.30408E+00 0.19333E+00 0.00000E+00
 * 601 * -0.30408E+00 -0.19333E+00 0.00000E+00
 * 602 * 0.30408E+00 -0.19333E+00 0.00000E+00
 * 603 * -0.30408E+00 0.00000E+00 0.19333E+00
 * 604 * 0.30408E+00 0.00000E+00 0.19333E+00
 * 605 * -0.28109E+00 0.87141E-01 -0.21246E+00
 * 606 * 0.28109E+00 0.87141E-01 -0.21246E+00
 * 607 * -0.28109E+00 -0.87141E-01 -0.21246E+00
 * 608 * 0.28109E+00 -0.87141E-01 -0.21246E+00
 * 609 * -0.28109E+00 0.21246E+00 -0.87141E-01
 * 610 * 0.28109E+00 0.21246E+00 -0.87141E-01
 * 611 * -0.28109E+00 -0.21246E+00 -0.87141E-01
 * 612 * 0.28109E+00 -0.21246E+00 -0.87141E-01
 * 613 * -0.28109E+00 0.21246E+00 0.87141E-01
 * 614 * 0.28109E+00 0.21246E+00 0.87141E-01
 * 615 * -0.28109E+00 -0.21246E+00 0.87141E-01
 * 616 * 0.28109E+00 -0.21246E+00 0.87141E-01
 * 617 * -0.28109E+00 0.87141E-01 0.21246E+00
 * 618 * 0.28109E+00 0.87141E-01 0.21246E+00
 * 619 * -0.28109E+00 -0.87141E-01 0.21246E+00
 * 620 * 0.28109E+00 -0.87141E-01 0.21246E+00
 * 621 * -0.12848E+00 0.18347E+00 -0.30167E+00
 * 622 * 0.12848E+00 0.18347E+00 -0.30167E+00
 * 623 * -0.12848E+00 -0.30167E+00 -0.18347E+00
 * 624 * 0.12848E+00 -0.30167E+00 -0.18347E+00
 * 625 * -0.12848E+00 0.30167E+00 0.18347E+00
 * 626 * 0.12848E+00 0.30167E+00 0.18347E+00
 * 627 * -0.12848E+00 -0.18347E+00 0.30167E+00
 * 628 * 0.12848E+00 -0.18347E+00 0.30167E+00
 * 629 * -0.12848E+00 -0.18347E+00 -0.30167E+00
 * 630 * 0.12848E+00 -0.18347E+00 -0.30167E+00
 * 631 * -0.12848E+00 0.30167E+00 -0.18347E+00
 * 632 * 0.12848E+00 0.30167E+00 -0.18347E+00
 * 633 * -0.12848E+00 -0.30167E+00 0.18347E+00
 * 634 * 0.12848E+00 -0.30167E+00 0.18347E+00
 * 635 * -0.12848E+00 0.18347E+00 0.30167E+00
 * 636 * 0.12848E+00 0.18347E+00 0.30167E+00
 * 637 * -0.28109E+00 0.00000E+00 -0.25064E+00
 * 638 * 0.28109E+00 0.00000E+00 -0.25064E+00
 * 639 * -0.28109E+00 0.25064E+00 0.00000E+00
 * 640 * 0.28109E+00 0.25064E+00 0.00000E+00
 * 641 * -0.28109E+00 -0.25064E+00 0.00000E+00
 * 642 * 0.28109E+00 -0.25064E+00 0.00000E+00
 * 643 * -0.28109E+00 0.00000E+00 0.25064E+00
 * 644 * 0.28109E+00 0.00000E+00 0.25064E+00
 * 645 * -0.12848E+00 0.00000E+00 -0.35458E+00
 * 646 * 0.12848E+00 0.00000E+00 -0.35458E+00
 * 647 * -0.12848E+00 0.35458E+00 0.00000E+00
 * 648 * 0.12848E+00 0.35458E+00 0.00000E+00
 * 649 * -0.12848E+00 -0.35458E+00 0.00000E+00
 * 650 * 0.12848E+00 -0.35458E+00 0.00000E+00
 * 651 * -0.12848E+00 0.00000E+00 0.35458E+00
 * 652 * 0.12848E+00 0.00000E+00 0.35458E+00
 * 653 * -0.40000E-01 0.19497E+00 -0.32056E+00
 * 654 * 0.40000E-01 0.19497E+00 -0.32056E+00
 * 655 * -0.40000E-01 -0.19497E+00 -0.32056E+00
 * 656 * 0.40000E-01 -0.19497E+00 -0.32056E+00
 * 657 * -0.40000E-01 -0.32056E+00 -0.19497E+00
 * 658 * 0.40000E-01 -0.32056E+00 -0.19497E+00
 * 659 * -0.40000E-01 0.32056E+00 -0.19497E+00
 * 660 * 0.40000E-01 0.32056E+00 -0.19497E+00
 * 661 * -0.40000E-01 -0.32056E+00 0.19497E+00
 * 662 * 0.40000E-01 -0.32056E+00 0.19497E+00
 * 663 * -0.40000E-01 0.32056E+00 0.19497E+00

* 664 * 0.40000E-01 0.32056E+00 0.19497E+00
 * 665 * -0.40000E-01 0.19497E+00 0.32056E+00
 * 666 * 0.40000E-01 0.19497E+00 0.32056E+00
 * 667 * -0.40000E-01 -0.19497E+00 0.32056E+00
 * 668 * 0.40000E-01 -0.19497E+00 0.32056E+00
 * 669 * -0.40000E-01 0.00000E+00 -0.37679E+00
 * 670 * 0.40000E-01 0.00000E+00 -0.37679E+00
 * 671 * -0.40000E-01 0.37679E+00 0.00000E+00
 * 672 * 0.40000E-01 0.37679E+00 0.00000E+00
 * 673 * -0.40000E-01 -0.37679E+00 0.00000E+00
 * 674 * 0.40000E-01 -0.37679E+00 0.00000E+00
 * 675 * -0.40000E-01 0.00000E+00 0.37679E+00
 * 676 * 0.40000E-01 0.00000E+00 0.37679E+00
 * 677 * -0.25205E+00 0.17072E+00 -0.23160E+00
 * 678 * 0.25205E+00 0.17072E+00 -0.23160E+00
 * 679 * -0.25205E+00 -0.17072E+00 -0.23160E+00
 * 680 * 0.25205E+00 -0.17072E+00 -0.23160E+00
 * 681 * -0.25205E+00 0.23160E+00 -0.17072E+00
 * 682 * 0.25205E+00 0.23160E+00 -0.17072E+00
 * 683 * -0.25205E+00 -0.23160E+00 -0.17072E+00
 * 684 * 0.25205E+00 -0.23160E+00 -0.17072E+00
 * 685 * -0.25205E+00 0.23160E+00 0.17072E+00
 * 686 * 0.25205E+00 0.23160E+00 0.17072E+00
 * 687 * -0.25205E+00 -0.23160E+00 0.17072E+00
 * 688 * 0.25205E+00 -0.23160E+00 0.17072E+00
 * 689 * -0.25205E+00 0.17072E+00 0.23160E+00
 * 690 * 0.25205E+00 0.17072E+00 0.23160E+00
 * 691 * -0.25205E+00 -0.17072E+00 0.23160E+00
 * 692 * 0.25205E+00 -0.17072E+00 0.23160E+00
 * 693 * -0.25205E+00 0.93519E-01 -0.27616E+00
 * 694 * 0.25205E+00 0.93519E-01 -0.27616E+00
 * 695 * -0.25205E+00 -0.93519E-01 -0.27616E+00
 * 696 * 0.25205E+00 -0.93519E-01 -0.27616E+00
 * 697 * -0.25205E+00 0.93519E-01 0.27616E+00
 * 698 * 0.25205E+00 0.93519E-01 0.27616E+00
 * 699 * -0.25205E+00 -0.93519E-01 0.27616E+00
 * 700 * 0.25205E+00 -0.93519E-01 0.27616E+00
 * 701 * -0.25205E+00 0.27616E+00 -0.93519E-01
 * 702 * 0.25205E+00 0.27616E+00 -0.93519E-01
 * 703 * -0.25205E+00 -0.27616E+00 -0.93519E-01
 * 704 * 0.25205E+00 -0.27616E+00 -0.93519E-01
 * 705 * -0.25205E+00 0.27616E+00 0.93519E-01
 * 706 * 0.25205E+00 0.27616E+00 0.93519E-01
 * 707 * -0.25205E+00 -0.27616E+00 0.93519E-01
 * 708 * 0.25205E+00 -0.27616E+00 0.93519E-01
 * 709 * -0.25205E+00 0.00000E+00 -0.30439E+00
 * 710 * 0.25205E+00 0.00000E+00 -0.30439E+00
 * 711 * -0.25205E+00 0.30439E+00 0.00000E+00
 * 712 * 0.25205E+00 0.30439E+00 0.00000E+00
 * 713 * -0.25205E+00 -0.30439E+00 0.00000E+00
 * 714 * 0.25205E+00 -0.30439E+00 0.00000E+00
 * 715 * -0.25205E+00 0.00000E+00 0.30439E+00
 * 716 * 0.25205E+00 0.00000E+00 0.30439E+00
 * 717 * -0.40000E-01 0.11241E+00 -0.37841E+00
 * 718 * 0.40000E-01 0.11241E+00 -0.37841E+00
 * 719 * -0.40000E-01 -0.11241E+00 -0.37841E+00
 * 720 * 0.40000E-01 -0.11241E+00 -0.37841E+00
 * 721 * -0.40000E-01 0.37841E+00 -0.11241E+00
 * 722 * 0.40000E-01 0.37841E+00 -0.11241E+00
 * 723 * -0.40000E-01 -0.37841E+00 -0.11241E+00
 * 724 * 0.40000E-01 -0.37841E+00 -0.11241E+00
 * 725 * -0.40000E-01 0.37841E+00 0.11241E+00
 * 726 * 0.40000E-01 0.37841E+00 0.11241E+00
 * 727 * -0.40000E-01 -0.37841E+00 0.11241E+00
 * 728 * 0.40000E-01 -0.37841E+00 0.11241E+00
 * 729 * -0.40000E-01 0.11241E+00 0.37841E+00
 * 730 * 0.40000E-01 0.11241E+00 0.37841E+00
 * 731 * -0.40000E-01 -0.11241E+00 0.37841E+00
 * 732 * 0.40000E-01 -0.11241E+00 0.37841E+00

* 733 * 0.00000E+00 0.20646E+00 -0.33946E+00
 * 734 * 0.00000E+00 -0.33946E+00 -0.20646E+00
 * 735 * 0.00000E+00 0.33946E+00 0.20646E+00
 * 736 * 0.00000E+00 -0.20646E+00 0.33946E+00
 * 737 * 0.00000E+00 -0.20646E+00 -0.33946E+00
 * 738 * 0.00000E+00 0.33946E+00 -0.20646E+00
 * 739 * 0.00000E+00 -0.33946E+00 0.20646E+00
 * 740 * 0.00000E+00 0.20646E+00 0.33946E+00
 * 741 * 0.00000E+00 0.00000E+00 -0.39900E+00
 * 742 * 0.00000E+00 0.39900E+00 0.00000E+00
 * 743 * 0.00000E+00 -0.39900E+00 0.00000E+00
 * 744 * 0.00000E+00 0.00000E+00 0.39900E+00
 * 745 * -0.40000E-01 0.20646E+00 -0.33946E+00
 * 746 * 0.40000E-01 0.20646E+00 -0.33946E+00
 * 747 * -0.40000E-01 -0.20646E+00 -0.33946E+00
 * 748 * 0.40000E-01 -0.20646E+00 -0.33946E+00
 * 749 * -0.40000E-01 -0.33946E+00 -0.20646E+00
 * 750 * 0.40000E-01 -0.33946E+00 -0.20646E+00
 * 751 * -0.40000E-01 0.33946E+00 -0.20646E+00
 * 752 * 0.40000E-01 0.33946E+00 -0.20646E+00
 * 753 * -0.40000E-01 0.33946E+00 0.20646E+00
 * 754 * 0.40000E-01 -0.33946E+00 0.20646E+00
 * 755 * -0.40000E-01 0.33946E+00 0.20646E+00
 * 756 * 0.40000E-01 0.33946E+00 0.20646E+00
 * 757 * -0.40000E-01 0.20646E+00 0.33946E+00
 * 758 * 0.40000E-01 0.20646E+00 0.33946E+00
 * 759 * -0.40000E-01 -0.20646E+00 0.33946E+00
 * 760 * 0.40000E-01 -0.20646E+00 0.33946E+00
 * 761 * -0.40000E-01 0.00000E+00 -0.39900E+00
 * 762 * 0.40000E-01 0.00000E+00 -0.39900E+00
 * 763 * -0.40000E-01 0.39900E+00 0.00000E+00
 * 764 * 0.40000E-01 0.39900E+00 0.00000E+00
 * 765 * -0.40000E-01 -0.39900E+00 0.00000E+00
 * 766 * 0.40000E-01 -0.39900E+00 0.00000E+00
 * 767 * -0.40000E-01 0.00000E+00 0.39900E+00
 * 768 * 0.40000E-01 0.00000E+00 0.39900E+00
 * 769 * -0.40000E-01 0.28214E+00 -0.28214E+00
 * 770 * 0.40000E-01 0.28214E+00 -0.28214E+00
 * 771 * -0.40000E-01 -0.28214E+00 -0.28214E+00
 * 772 * 0.40000E-01 -0.28214E+00 -0.28214E+00
 * 773 * -0.40000E-01 0.28214E+00 0.28214E+00
 * 774 * 0.40000E-01 0.28214E+00 0.28214E+00
 * 775 * -0.40000E-01 -0.28214E+00 0.28214E+00
 * 776 * 0.40000E-01 -0.28214E+00 0.28214E+00
 * 777 * -0.21696E+00 0.99897E-01 -0.33628E+00
 * 778 * 0.21696E+00 0.99897E-01 -0.33628E+00
 * 779 * -0.21696E+00 -0.99897E-01 -0.33628E+00
 * 780 * 0.21696E+00 -0.99897E-01 -0.33628E+00
 * 781 * -0.21696E+00 0.33628E+00 -0.99897E-01
 * 782 * 0.21696E+00 0.33628E+00 -0.99897E-01
 * 783 * -0.21696E+00 -0.33628E+00 -0.99897E-01
 * 784 * 0.21696E+00 -0.33628E+00 -0.99897E-01
 * 785 * -0.21696E+00 0.33628E+00 0.99897E-01
 * 786 * 0.21696E+00 0.33628E+00 0.99897E-01
 * 787 * -0.21696E+00 -0.33628E+00 0.99897E-01
 * 788 * 0.21696E+00 -0.33628E+00 0.99897E-01
 * 789 * -0.21696E+00 0.99897E-01 0.33628E+00
 * 790 * 0.21696E+00 0.99897E-01 0.33628E+00
 * 791 * -0.21696E+00 -0.99897E-01 0.33628E+00
 * 792 * 0.21696E+00 -0.99897E-01 0.33628E+00
 * 793 * -0.21696E+00 0.18347E+00 -0.30167E+00
 * 794 * 0.21696E+00 0.18347E+00 -0.30167E+00
 * 795 * -0.21696E+00 -0.30167E+00 -0.18347E+00
 * 796 * 0.21696E+00 -0.30167E+00 -0.18347E+00
 * 797 * -0.21696E+00 0.30167E+00 0.18347E+00
 * 798 * 0.21696E+00 0.30167E+00 0.18347E+00
 * 799 * -0.21696E+00 -0.18347E+00 0.30167E+00
 * 800 * 0.21696E+00 -0.18347E+00 0.30167E+00
 * 801 * -0.21696E+00 -0.18347E+00 -0.30167E+00

* 802 * 0.21696E+00 -0.18347E+00 -0.30167E+00
 * 803 * -0.21696E+00 0.30167E+00 -0.18347E+00
 * 804 * 0.21696E+00 0.30167E+00 -0.18347E+00
 * 805 * -0.21696E+00 -0.30167E+00 0.18347E+00
 * 806 * 0.21696E+00 -0.30167E+00 0.18347E+00
 * 807 * -0.21696E+00 0.18347E+00 0.30167E+00
 * 808 * 0.21696E+00 0.18347E+00 0.30167E+00
 * 809 * -0.21696E+00 0.00000E+00 -0.35458E+00
 * 810 * 0.21696E+00 0.00000E+00 -0.35458E+00
 * 811 * -0.21696E+00 0.35458E+00 0.00000E+00
 * 812 * 0.21696E+00 0.35458E+00 0.00000E+00
 * 813 * -0.21696E+00 -0.35458E+00 0.00000E+00
 * 814 * 0.21696E+00 -0.35458E+00 0.00000E+00
 * 815 * -0.21696E+00 0.00000E+00 0.35458E+00
 * 816 * 0.21696E+00 0.00000E+00 0.35458E+00
 * 817 * -0.21696E+00 0.25073E+00 -0.25073E+00
 * 818 * 0.21696E+00 0.25073E+00 -0.25073E+00
 * 819 * -0.21696E+00 -0.25073E+00 -0.25073E+00
 * 820 * 0.21696E+00 -0.25073E+00 -0.25073E+00
 * 821 * -0.21696E+00 0.25073E+00 0.25073E+00
 * 822 * 0.21696E+00 0.25073E+00 0.25073E+00
 * 823 * -0.21696E+00 -0.25073E+00 0.25073E+00
 * 824 * 0.21696E+00 -0.25073E+00 0.25073E+00
 * 825 * -0.43337E+00 0.00000E+00 0.00000E+00
 * 826 * 0.43337E+00 0.00000E+00 0.00000E+00
 * 827 * -0.37419E+00 0.15796E+00 -0.15796E+00
 * 828 * 0.37419E+00 0.15796E+00 -0.15796E+00
 * 829 * -0.37419E+00 -0.15796E+00 -0.15796E+00
 * 830 * 0.37419E+00 -0.15796E+00 -0.15796E+00
 * 831 * -0.37419E+00 0.15796E+00 0.15796E+00
 * 832 * 0.37419E+00 0.15796E+00 0.15796E+00
 * 833 * -0.37419E+00 -0.15796E+00 0.15796E+00
 * 834 * 0.37419E+00 -0.15796E+00 0.15796E+00
 * 835 * -0.41684E+00 0.00000E+00 -0.13245E+00
 * 836 * 0.41684E+00 0.00000E+00 -0.13245E+00
 * 837 * -0.41684E+00 0.13245E+00 0.00000E+00
 * 838 * 0.41684E+00 0.13245E+00 0.00000E+00
 * 839 * -0.41684E+00 -0.13245E+00 0.00000E+00
 * 840 * 0.41684E+00 -0.13245E+00 0.00000E+00
 * 841 * -0.41684E+00 0.00000E+00 0.13245E+00
 * 842 * 0.41684E+00 0.00000E+00 0.13245E+00
 * 843 * -0.37419E+00 0.00000E+00 -0.25064E+00
 * 844 * 0.37419E+00 0.00000E+00 -0.25064E+00
 * 845 * -0.37419E+00 0.25064E+00 0.00000E+00
 * 846 * 0.37419E+00 0.25064E+00 0.00000E+00
 * 847 * -0.37419E+00 -0.25064E+00 0.00000E+00
 * 848 * 0.37419E+00 -0.25064E+00 0.00000E+00
 * 849 * -0.37419E+00 0.00000E+00 0.25064E+00
 * 850 * 0.37419E+00 0.00000E+00 0.25064E+00
 * 851 * -0.12848E+00 -0.22833E+00 -0.37543E+00
 * 852 * 0.12848E+00 -0.22833E+00 -0.37543E+00
 * 853 * -0.12848E+00 0.22833E+00 -0.37543E+00
 * 854 * 0.12848E+00 0.22833E+00 -0.37543E+00
 * 855 * -0.12848E+00 -0.37543E+00 -0.22833E+00
 * 856 * 0.12848E+00 -0.37543E+00 -0.22833E+00
 * 857 * -0.12848E+00 0.37543E+00 0.22833E+00
 * 858 * 0.12848E+00 0.37543E+00 0.22833E+00
 * 859 * -0.12848E+00 -0.22833E+00 0.37543E+00
 * 860 * 0.12848E+00 -0.22833E+00 0.37543E+00
 * 861 * -0.12848E+00 0.22833E+00 0.37543E+00
 * 862 * 0.12848E+00 0.22833E+00 0.37543E+00
 * 863 * -0.12848E+00 0.37543E+00 -0.22833E+00
 * 864 * 0.12848E+00 0.37543E+00 -0.22833E+00
 * 865 * -0.12848E+00 -0.37543E+00 0.22833E+00
 * 866 * 0.12848E+00 -0.37543E+00 0.22833E+00
 * 867 * -0.12848E+00 0.00000E+00 -0.44128E+00
 * 868 * 0.12848E+00 0.00000E+00 -0.44128E+00
 * 869 * -0.12848E+00 0.44128E+00 0.00000E+00
 * 870 * 0.12848E+00 0.44128E+00 0.00000E+00

* 871 * -0.12848E+00 -0.44128E+00 0.00000E+00
 * 872 * 0.12848E+00 -0.44128E+00 0.00000E+00
 * 873 * -0.12848E+00 0.00000E+00 0.44128E+00
 * 874 * 0.12848E+00 0.00000E+00 0.44128E+00
 * 875 * 0.40000E-01 -0.23996E+00 -0.39454E+00
 * 876 * -0.40000E-01 -0.23996E+00 -0.39454E+00
 * 877 * 0.40000E-01 0.23996E+00 -0.39454E+00
 * 878 * -0.40000E-01 0.23996E+00 -0.39454E+00
 * 879 * 0.40000E-01 0.39454E+00 -0.23996E+00
 * 880 * -0.40000E-01 0.39454E+00 -0.23996E+00
 * 881 * 0.40000E-01 -0.39454E+00 -0.23996E+00
 * 882 * -0.40000E-01 -0.39454E+00 -0.23996E+00
 * 883 * 0.40000E-01 0.39454E+00 0.23996E+00
 * 884 * -0.40000E-01 0.39454E+00 0.23996E+00
 * 885 * 0.40000E-01 -0.39454E+00 0.23996E+00
 * 886 * -0.40000E-01 -0.39454E+00 0.23996E+00
 * 887 * 0.40000E-01 -0.23996E+00 0.39454E+00
 * 888 * -0.40000E-01 -0.23996E+00 0.39454E+00
 * 889 * 0.40000E-01 0.23996E+00 0.39454E+00
 * 890 * -0.40000E-01 0.23996E+00 0.39454E+00
 * 891 * -0.40000E-01 0.00000E+00 -0.46375E+00
 * 892 * 0.40000E-01 0.00000E+00 -0.46375E+00
 * 893 * -0.40000E-01 0.46375E+00 0.00000E+00
 * 894 * 0.40000E-01 0.46375E+00 0.00000E+00
 * 895 * -0.40000E-01 -0.46375E+00 0.00000E+00
 * 896 * 0.40000E-01 -0.46375E+00 0.00000E+00
 * 897 * -0.40000E-01 0.00000E+00 0.46375E+00
 * 898 * 0.40000E-01 0.00000E+00 0.46375E+00
 * 899 * -0.30544E+00 0.18347E+00 -0.30167E+00
 * 900 * 0.30544E+00 0.18347E+00 -0.30167E+00
 * 901 * -0.30544E+00 -0.18347E+00 -0.30167E+00
 * 902 * 0.30544E+00 -0.18347E+00 -0.30167E+00
 * 903 * -0.30544E+00 -0.30167E+00 -0.18347E+00
 * 904 * 0.30544E+00 -0.30167E+00 -0.18347E+00
 * 905 * -0.30544E+00 0.30167E+00 -0.18347E+00
 * 906 * 0.30544E+00 0.30167E+00 -0.18347E+00
 * 907 * -0.30544E+00 0.30167E+00 0.18347E+00
 * 908 * 0.30544E+00 0.30167E+00 0.18347E+00
 * 909 * -0.30544E+00 -0.30167E+00 0.18347E+00
 * 910 * 0.30544E+00 -0.30167E+00 0.18347E+00
 * 911 * -0.30544E+00 0.18347E+00 0.30167E+00
 * 912 * 0.30544E+00 0.18347E+00 0.30167E+00
 * 913 * -0.30544E+00 -0.18347E+00 0.30167E+00
 * 914 * 0.30544E+00 -0.18347E+00 0.30167E+00
 * 915 * -0.30544E+00 0.00000E+00 -0.35458E+00
 * 916 * 0.30544E+00 0.00000E+00 -0.35458E+00
 * 917 * -0.30544E+00 0.35458E+00 0.00000E+00
 * 918 * 0.30544E+00 0.35458E+00 0.00000E+00
 * 919 * -0.30544E+00 -0.35458E+00 0.00000E+00
 * 920 * 0.30544E+00 -0.35458E+00 0.00000E+00
 * 921 * -0.30544E+00 0.00000E+00 0.35458E+00
 * 922 * 0.30544E+00 0.00000E+00 0.35458E+00
 * 923 * -0.21696E+00 0.21684E+00 -0.35653E+00
 * 924 * 0.21696E+00 0.21684E+00 -0.35653E+00
 * 925 * -0.21696E+00 -0.21684E+00 -0.35653E+00
 * 926 * 0.21696E+00 -0.21684E+00 -0.35653E+00
 * 927 * -0.21696E+00 -0.35653E+00 -0.21684E+00
 * 928 * 0.21696E+00 -0.35653E+00 -0.21684E+00
 * 929 * -0.21696E+00 0.35653E+00 -0.21684E+00
 * 930 * 0.21696E+00 0.35653E+00 -0.21684E+00
 * 931 * -0.21696E+00 -0.35653E+00 0.21684E+00
 * 932 * 0.21696E+00 -0.35653E+00 0.21684E+00
 * 933 * -0.21696E+00 0.35653E+00 0.21684E+00
 * 934 * 0.21696E+00 0.35653E+00 0.21684E+00
 * 935 * -0.21696E+00 0.21684E+00 0.35653E+00
 * 936 * 0.21696E+00 0.21684E+00 0.35653E+00
 * 937 * -0.21696E+00 -0.21684E+00 0.35653E+00
 * 938 * 0.21696E+00 -0.21684E+00 0.35653E+00
 * 939 * -0.21696E+00 0.00000E+00 -0.41907E+00

* 940 * 0.21696E+00 0.00000E+00 -0.41907E+00
 * 941 * -0.21696E+00 0.41907E+00 0.00000E+00
 * 942 * 0.21696E+00 0.41907E+00 0.00000E+00
 * 943 * -0.21696E+00 -0.41907E+00 0.00000E+00
 * 944 * 0.21696E+00 -0.41907E+00 0.00000E+00
 * 945 * -0.21696E+00 0.00000E+00 0.41907E+00
 * 946 * 0.21696E+00 0.00000E+00 0.41907E+00
 * 947 * -0.46730E+00 0.15796E+00 -0.15796E+00
 * 948 * 0.46730E+00 0.15796E+00 -0.15796E+00
 * 949 * -0.46730E+00 -0.15796E+00 -0.15796E+00
 * 950 * 0.46730E+00 -0.15796E+00 -0.15796E+00
 * 951 * -0.46730E+00 0.15796E+00 0.15796E+00
 * 952 * 0.46730E+00 0.15796E+00 0.15796E+00
 * 953 * -0.46730E+00 -0.15796E+00 0.15796E+00
 * 954 * 0.46730E+00 -0.15796E+00 0.15796E+00
 * 955 * -0.46730E+00 0.87141E-01 -0.21246E+00
 * 956 * 0.46730E+00 0.87141E-01 -0.21246E+00
 * 957 * -0.46730E+00 -0.87141E-01 -0.21246E+00
 * 958 * 0.46730E+00 -0.87141E-01 -0.21246E+00
 * 959 * -0.46730E+00 0.21246E+00 -0.87141E-01
 * 960 * 0.46730E+00 0.21246E+00 -0.87141E-01
 * 961 * -0.46730E+00 -0.21246E+00 -0.87141E-01
 * 962 * 0.46730E+00 -0.21246E+00 -0.87141E-01
 * 963 * -0.46730E+00 0.21246E+00 0.87141E-01
 * 964 * 0.46730E+00 0.21246E+00 0.87141E-01
 * 965 * -0.46730E+00 -0.21246E+00 0.87141E-01
 * 966 * 0.46730E+00 -0.21246E+00 0.87141E-01
 * 967 * -0.46730E+00 0.87141E-01 0.21246E+00
 * 968 * 0.46730E+00 0.87141E-01 0.21246E+00
 * 969 * -0.46730E+00 -0.87141E-01 0.21246E+00
 * 970 * 0.46730E+00 -0.87141E-01 0.21246E+00
 * 971 * -0.49348E+00 0.80763E-01 -0.14521E+00
 * 972 * 0.49348E+00 0.80763E-01 -0.14521E+00
 * 973 * -0.49348E+00 -0.80763E-01 -0.14521E+00
 * 974 * 0.49348E+00 -0.80763E-01 -0.14521E+00
 * 975 * -0.49348E+00 0.14521E+00 -0.80763E-01
 * 976 * 0.49348E+00 0.14521E+00 -0.80763E-01
 * 977 * -0.49348E+00 -0.14521E+00 -0.80763E-01
 * 978 * 0.49348E+00 -0.14521E+00 -0.80763E-01
 * 979 * -0.49348E+00 0.14521E+00 0.80763E-01
 * 980 * 0.49348E+00 0.14521E+00 0.80763E-01
 * 981 * -0.49348E+00 -0.14521E+00 0.80763E-01
 * 982 * 0.49348E+00 -0.14521E+00 0.80763E-01
 * 983 * -0.49348E+00 0.80763E-01 0.14521E+00
 * 984 * 0.49348E+00 0.80763E-01 0.14521E+00
 * 985 * -0.49348E+00 -0.80763E-01 0.14521E+00
 * 986 * 0.49348E+00 -0.80763E-01 0.14521E+00
 * 987 * -0.43411E+00 0.17072E+00 -0.23160E+00
 * 988 * 0.43411E+00 0.17072E+00 -0.23160E+00
 * 989 * -0.43411E+00 -0.17072E+00 -0.23160E+00
 * 990 * 0.43411E+00 -0.17072E+00 -0.23160E+00
 * 991 * -0.43411E+00 0.23160E+00 -0.17072E+00
 * 992 * 0.43411E+00 0.23160E+00 -0.17072E+00
 * 993 * -0.43411E+00 -0.23160E+00 -0.17072E+00
 * 994 * 0.43411E+00 -0.23160E+00 -0.17072E+00
 * 995 * -0.43411E+00 0.23160E+00 0.17072E+00
 * 996 * 0.43411E+00 0.23160E+00 0.17072E+00
 * 997 * -0.43411E+00 -0.23160E+00 0.17072E+00
 * 998 * 0.43411E+00 -0.23160E+00 0.17072E+00
 * 999 * -0.43411E+00 0.17072E+00 0.23160E+00
 * 1000 * 0.43411E+00 0.17072E+00 0.23160E+00
 * 1001 * -0.43411E+00 -0.17072E+00 0.23160E+00
 * 1002 * 0.43411E+00 -0.17072E+00 0.23160E+00
 * 1003 * -0.43411E+00 0.93519E-01 -0.27616E+00
 * 1004 * 0.43411E+00 0.93519E-01 -0.27616E+00
 * 1005 * -0.43411E+00 -0.93519E-01 -0.27616E+00
 * 1006 * 0.43411E+00 -0.93519E-01 -0.27616E+00
 * 1007 * -0.43411E+00 0.27616E+00 -0.93519E-01
 * 1008 * 0.43411E+00 0.27616E+00 -0.93519E-01

* 1009 * -0.43411E+00 -0.27616E+00 -0.93519E-01
 * 1010 * 0.43411E+00 -0.27616E+00 -0.93519E-01
 * 1011 * -0.43411E+00 0.27616E+00 0.93519E-01
 * 1012 * 0.43411E+00 0.27616E+00 0.93519E 01
 * 1013 * -0.43411E+00 -0.27616E+00 0.93519E-01
 * 1014 * 0.43411E+00 -0.27616E+00 0.93519E-01
 * 1015 * -0.43411E+00 0.93519E-01 0.27616E+00
 * 1016 * 0.43411E+00 0.93519E-01 0.27616E+00
 * 1017 * -0.43411E+00 -0.93519E-01 0.27616E+00
 * 1018 * 0.43411E+00 -0.93519E-01 0.27616E+00
 * 1019 * -0.51266E+00 0.74386E-01 -0.74386E-01
 * 1020 * 0.51266E+00 0.74386E-01 -0.74386E-01
 * 1021 * -0.51266E+00 -0.74386E-01 -0.74386E-01
 * 1022 * 0.51266E+00 -0.74386E-01 -0.74386E-01
 * 1023 * -0.51266E+00 0.74386E-01 0.74386E-01
 * 1024 * 0.51266E+00 0.74386E-01 0.74386E-01
 * 1025 * -0.51266E+00 -0.74386E-01 0.74386E-01
 * 1026 * 0.51266E+00 -0.74386E-01 0.74386E-01
 * 1027 * -0.40000E-01 0.14889E+00 -0.50122E+00
 * 1028 * 0.40000E-01 0.14889E+00 -0.50122E+00
 * 1029 * -0.40000E-01 -0.50122E+00 -0.14889E+00
 * 1030 * 0.40000E-01 -0.50122E+00 -0.14889E+00
 * 1031 * -0.40000E-01 0.50122E+00 0.14889E+00
 * 1032 * 0.40000E-01 0.50122E+00 0.14889E+00
 * 1033 * -0.40000E-01 -0.14889E+00 0.50122E+00
 * 1034 * 0.40000E-01 -0.14889E+00 0.50122E+00
 * 1035 * -0.40000E-01 -0.14889E+00 -0.50122E+00
 * 1036 * 0.40000E-01 -0.14889E+00 -0.50122E+00
 * 1037 * 0.40000E-01 0.50122E+00 -0.14889E+00
 * 1038 * -0.40000E-01 0.50122E+00 -0.14889E+00
 * 1039 * -0.40000E-01 -0.50122E+00 0.14889E+00
 * 1040 * 0.40000E-01 -0.50122E+00 0.14889E+00
 * 1041 * -0.40000E-01 0.14889E+00 0.50122E+00
 * 1042 * 0.40000E-01 0.14889E+00 0.50122E+00
 * 1043 * -0.21696E+00 -0.13623E+00 -0.45861E+00
 * 1044 * 0.21696E+00 -0.13623E+00 -0.45861E+00
 * 1045 * -0.21696E+00 0.45861E+00 -0.13623E+00
 * 1046 * 0.21696E+00 0.45861E+00 -0.13623E+00
 * 1047 * -0.21696E+00 -0.45861E+00 0.13623E+00
 * 1048 * 0.21696E+00 -0.45861E+00 0.13623E+00
 * 1049 * -0.21696E+00 0.13623E+00 0.45861E+00
 * 1050 * 0.21696E+00 0.13623E+00 0.45861E+00
 * 1051 * -0.21696E+00 0.13623E+00 -0.45861E+00
 * 1052 * 0.21696E+00 0.13623E+00 -0.45861E+00
 * 1053 * -0.21696E+00 -0.45861E+00 -0.13623E+00
 * 1054 * 0.21696E+00 -0.45861E+00 -0.13623E+00
 * 1055 * -0.21696E+00 0.45861E+00 0.13623E+00
 * 1056 * 0.21696E+00 0.45861E+00 0.13623E+00
 * 1057 * -0.21696E+00 -0.13623E+00 0.45861E+00
 * 1058 * 0.21696E+00 -0.13623E+00 0.45861E+00
 * 1059 * -0.30544E+00 -0.22153E+00 -0.36591E+00
 * 1060 * 0.30544E+00 -0.22153E+00 -0.36591E+00
 * 1061 * -0.30544E+00 0.36591E+00 -0.22153E+00
 * 1062 * 0.30544E+00 0.36591E+00 -0.22153E+00
 * 1063 * -0.30544E+00 -0.36591E+00 0.22153E+00
 * 1064 * 0.30544E+00 -0.36591E+00 0.22153E+00
 * 1065 * -0.30544E+00 0.22153E+00 0.36591E+00
 * 1066 * 0.30544E+00 0.22153E+00 0.36591E+00
 * 1067 * -0.30544E+00 0.22153E+00 -0.36591E+00
 * 1068 * 0.30544E+00 0.22153E+00 -0.36591E+00
 * 1069 * -0.30544E+00 -0.36591E+00 -0.22153E+00
 * 1070 * 0.30544E+00 -0.36591E+00 -0.22153E+00
 * 1071 * -0.30544E+00 0.36591E+00 0.22153E+00
 * 1072 * 0.30544E+00 0.36591E+00 0.22153E+00
 * 1073 * -0.30544E+00 -0.22153E+00 0.36591E+00
 * 1074 * 0.30544E+00 -0.22153E+00 0.36591E+00
 * 1075 * -0.12848E+00 0.26455E+00 -0.43595E+00
 * 1076 * 0.12848E+00 0.26455E+00 -0.43595E+00
 * 1077 * -0.12848E+00 -0.26455E+00 -0.43595E+00

* 1078 * 0.12848E+00 -0.26455E+00 -0.43595E+00
 * 1079 * -0.12848E+00 -0.43595E+00 -0.26455E+00
 * 1080 * 0.12848E+00 -0.43595E+00 -0.26455E+00
 * 1081 * -0.12848E+00 0.43595E+00 -0.26455E+00
 * 1082 * 0.12848E+00 0.43595E+00 -0.26455E+00
 * 1083 * -0.12848E+00 -0.43595E+00 0.26455E+00
 * 1084 * 0.12848E+00 -0.43595E+00 0.26455E+00
 * 1085 * -0.12848E+00 0.43595E+00 0.26455E+00
 * 1086 * 0.12848E+00 0.43595E+00 0.26455E+00
 * 1087 * -0.12848E+00 -0.26455E+00 0.43595E+00
 * 1088 * 0.12848E+00 -0.26455E+00 0.43595E+00
 * 1089 * -0.12848E+00 0.26455E+00 0.43595E+00
 * 1090 * 0.12848E+00 0.26455E+00 0.43595E+00
 * 1091 * 0.00000E+00 -0.27396E+00 -0.45063E+00
 * 1092 * 0.00000E+00 0.27396E+00 -0.45063E+00
 * 1093 * 0.00000E+00 0.45063E+00 -0.27396E+00
 * 1094 * 0.00000E+00 -0.45063E+00 -0.27396E+00
 * 1095 * 0.00000E+00 0.45063E+00 0.27396E+00
 * 1096 * 0.00000E+00 -0.45063E+00 0.27396E+00
 * 1097 * 0.00000E+00 -0.27396E+00 0.45063E+00
 * 1098 * 0.00000E+00 0.27396E+00 0.45063E+00
 * 1099 * -0.39392E+00 0.99897E-01 -0.33628E+00
 * 1100 * 0.39392E+00 0.99897E-01 -0.33628E+00
 * 1101 * -0.39392E+00 -0.99897E-01 -0.33628E+00
 * 1102 * 0.39392E+00 -0.99897E-01 -0.33628E+00
 * 1103 * -0.39392E+00 0.33628E+00 -0.99897E-01
 * 1104 * 0.39392E+00 0.33628E+00 -0.99897E-01
 * 1105 * -0.39392E+00 -0.33628E+00 -0.99897E-01
 * 1106 * 0.39392E+00 -0.33628E+00 -0.99897E-01
 * 1107 * -0.39392E+00 0.33628E+00 0.99897E-01
 * 1108 * 0.39392E+00 0.33628E+00 0.99897E-01
 * 1109 * -0.39392E+00 -0.33628E+00 0.99897E-01
 * 1110 * 0.39392E+00 -0.33628E+00 0.99897E-01
 * 1111 * -0.39392E+00 0.99897E-01 0.33628E+00
 * 1112 * 0.39392E+00 0.99897E-01 0.33628E+00
 * 1113 * -0.39392E+00 -0.99897E-01 0.33628E+00
 * 1114 * 0.39392E+00 -0.99897E-01 0.33628E+00
 * 1115 * -0.40000E-01 0.27346E+00 -0.44962E+00
 * 1116 * 0.40000E-01 0.27346E+00 -0.44962E+00
 * 1117 * -0.40000E-01 -0.27346E+00 -0.44962E+00
 * 1118 * 0.40000E-01 -0.27346E+00 -0.44962E+00
 * 1119 * -0.40000E-01 -0.44962E+00 -0.27346E+00
 * 1120 * 0.40000E-01 -0.44962E+00 -0.27346E+00
 * 1121 * -0.40000E-01 0.44962E+00 -0.27346E+00
 * 1122 * 0.40000E-01 0.44962E+00 -0.27346E+00
 * 1123 * -0.40000E-01 0.44962E+00 0.27346E+00
 * 1124 * 0.40000E-01 0.44962E+00 0.27346E+00
 * 1125 * -0.40000E-01 -0.44962E+00 0.27346E+00
 * 1126 * 0.40000E-01 -0.44962E+00 0.27346E+00
 * 1127 * -0.40000E-01 0.27346E+00 0.44962E+00
 * 1128 * 0.40000E-01 0.27346E+00 0.44962E+00
 * 1129 * -0.40000E-01 -0.27346E+00 0.44962E+00
 * 1130 * 0.40000E-01 -0.27346E+00 0.44962E+00
 * 1131 * -0.21696E+00 -0.25021E+00 -0.41140E+00
 * 1132 * 0.21696E+00 -0.25021E+00 -0.41140E+00
 * 1133 * -0.21696E+00 0.25021E+00 -0.41140E+00
 * 1134 * 0.21696E+00 0.25021E+00 -0.41140E+00
 * 1135 * -0.21696E+00 -0.41140E+00 -0.25021E+00
 * 1136 * 0.21696E+00 -0.41140E+00 -0.25021E+00
 * 1137 * -0.21696E+00 0.41140E+00 -0.25021E+00
 * 1138 * 0.21696E+00 0.41140E+00 -0.25021E+00
 * 1139 * -0.21696E+00 0.41140E+00 0.25021E+00
 * 1140 * 0.21696E+00 0.41140E+00 0.25021E+00
 * 1141 * -0.21696E+00 -0.41140E+00 0.25021E+00
 * 1142 * 0.21696E+00 -0.41140E+00 0.25021E+00
 * 1143 * -0.21696E+00 0.25021E+00 0.41140E+00
 * 1144 * 0.21696E+00 0.25021E+00 0.41140E+00
 * 1145 * -0.21696E+00 -0.25021E+00 0.41140E+00
 * 1146 * 0.21696E+00 -0.25021E+00 0.41140E+00

* 1147 * -0.39392E+00 0.18347E+00 -0.30167E+00
 * 1148 * 0.39392E+00 0.18347E+00 -0.30167E+00
 * 1149 * -0.39392E+00 -0.18347E+00 -0.30167E+00
 * 1150 * 0.39392E+00 -0.18347E+00 -0.30167E+00
 * 1151 * -0.39392E+00 -0.30167E+00 -0.18347E+00
 * 1152 * 0.39392E+00 -0.30167E+00 -0.18347E+00
 * 1153 * -0.39392E+00 0.30167E+00 -0.18347E+00
 * 1154 * 0.39392E+00 0.30167E+00 -0.18347E+00
 * 1155 * -0.39392E+00 0.30167E+00 0.18347E+00
 * 1156 * 0.39392E+00 0.30167E+00 0.18347E+00
 * 1157 * -0.39392E+00 -0.30167E+00 0.18347E+00
 * 1158 * 0.39392E+00 -0.30167E+00 0.18347E+00
 * 1159 * -0.39392E+00 0.18347E+00 0.30167E+00
 * 1160 * 0.39392E+00 0.18347E+00 0.30167E+00
 * 1161 * -0.39392E+00 -0.18347E+00 0.30167E+00
 * 1162 * 0.39392E+00 -0.18347E+00 0.30167E+00
 * 1163 * -0.52483E+00 0.00000E+00 -0.68008E-01
 * 1164 * 0.52483E+00 0.00000E+00 -0.68008E-01
 * 1165 * -0.52483E+00 0.68008E-01 0.00000E+00
 * 1166 * 0.52483E+00 0.68008E-01 0.00000E+00
 * 1167 * -0.52483E+00 -0.68008E-01 0.00000E+00
 * 1168 * 0.52483E+00 -0.68008E-01 0.00000E+00
 * 1169 * -0.52483E+00 0.00000E+00 0.68008E-01
 * 1170 * 0.52483E+00 0.00000E+00 0.68008E-01
 * 1171 * -0.51266E+00 0.00000E+00 -0.13245E+00
 * 1172 * 0.51266E+00 0.00000E+00 -0.13245E+00
 * 1173 * -0.51266E+00 0.13245E+00 0.00000E+00
 * 1174 * 0.51266E+00 0.13245E+00 0.00000E+00
 * 1175 * -0.51266E+00 -0.13245E+00 0.00000E+00
 * 1176 * 0.51266E+00 -0.13245E+00 0.00000E+00
 * 1177 * -0.51266E+00 0.00000E+00 0.13245E+00
 * 1178 * 0.51266E+00 0.00000E+00 0.13245E+00
 * 1179 * -0.12848E+00 0.00000E+00 -0.51419E+00
 * 1180 * 0.12848E+00 0.00000E+00 -0.51419E+00
 * 1181 * -0.12848E+00 0.51419E+00 0.00000E+00
 * 1182 * 0.12848E+00 0.51419E+00 0.00000E+00
 * 1183 * -0.12848E+00 -0.51419E+00 0.00000E+00
 * 1184 * 0.12848E+00 -0.51419E+00 0.00000E+00
 * 1185 * -0.12848E+00 0.00000E+00 0.51419E+00
 * 1186 * 0.12848E+00 0.00000E+00 0.51419E+00
 * 1187 * -0.49348E+00 0.00000E+00 -0.19333E+00
 * 1188 * 0.49348E+00 0.00000E+00 -0.19333E+00
 * 1189 * -0.49348E+00 0.19333E+00 0.00000E+00
 * 1190 * 0.49348E+00 0.19333E+00 0.00000E+00
 * 1191 * -0.49348E+00 -0.19333E+00 0.00000E+00
 * 1192 * 0.49348E+00 -0.19333E+00 0.00000E+00
 * 1193 * -0.49348E+00 0.00000E+00 0.19333E+00
 * 1194 * 0.49348E+00 0.00000E+00 0.19333E+00
 * 1195 * 0.00000E+00 0.00000E+00 -0.53000E+00
 * 1196 * -0.39392E+00 0.00000E+00 -0.35458E+00
 * 1197 * 0.39392E+00 0.00000E+00 -0.35458E+00
 * 1198 * 0.00000E+00 0.53000E+00 0.00000E+00
 * 1199 * -0.39392E+00 0.35458E+00 0.00000E+00
 * 1200 * 0.39392E+00 0.35458E+00 0.00000E+00
 * 1201 * -0.39392E+00 -0.35458E+00 0.00000E+00
 * 1202 * 0.39392E+00 -0.35458E+00 0.00000E+00
 * 1203 * 0.00000E+00 -0.53000E+00 0.00000E+00
 * 1204 * -0.53000E+00 0.00000E+00 0.00000E+00
 * 1205 * 0.53000E+00 0.00000E+00 0.00000E+00
 * 1206 * -0.39392E+00 0.00000E+00 0.35458E+00
 * 1207 * 0.39392E+00 0.00000E+00 0.35458E+00
 * 1208 * 0.00000E+00 0.00000E+00 0.53000E+00
 * 1209 * 0.40000E-01 0.00000E+00 -0.52849E+00
 * 1210 * -0.40000E-01 0.00000E+00 -0.52849E+00
 * 1211 * 0.40000E-01 0.52849E+00 0.00000E+00
 * 1212 * -0.40000E-01 0.52849E+00 0.00000E+00
 * 1213 * 0.40000E-01 -0.52849E+00 0.00000E+00
 * 1214 * -0.40000E-01 -0.52849E+00 0.00000E+00
 * 1215 * 0.40000E-01 0.00000E+00 0.52849E+00

* 1216 * -0.40000E-01 0.00000E+00 0.52849E+00
 * 1217 * -0.21696E+00 0.00000E+00 -0.48356E+00
 * 1218 * 0.21696E+00 0.00000E+00 -0.48356E+00
 * 1219 * -0.21696E+00 0.48356E+00 0.00000E+00
 * 1220 * 0.21696E+00 0.48356E+00 0.00000E+00
 * 1221 * -0.21696E+00 -0.48356E+00 0.00000E+00
 * 1222 * 0.21696E+00 -0.48356E+00 0.00000E+00
 * 1223 * -0.21696E+00 0.00000E+00 0.48356E+00
 * 1224 * 0.21696E+00 0.00000E+00 0.48356E+00
 * 1225 * -0.40000E-01 0.37370E+00 -0.37370E+00
 * 1226 * 0.40000E-01 0.37370E+00 -0.37370E+00
 * 1227 * -0.40000E-01 -0.37370E+00 -0.37370E+00
 * 1228 * 0.40000E-01 -0.37370E+00 -0.37370E+00
 * 1229 * -0.40000E-01 0.37370E+00 0.37370E+00
 * 1230 * 0.40000E-01 0.37370E+00 0.37370E+00
 * 1231 * -0.40000E-01 -0.37370E+00 0.37370E+00
 * 1232 * 0.40000E-01 -0.37370E+00 0.37370E+00
 * 1233 * -0.30544E+00 0.00000E+00 -0.43314E+00
 * 1234 * 0.30544E+00 0.00000E+00 -0.43314E+00
 * 1235 * -0.21696E+00 0.34193E+00 -0.34193E+00
 * 1236 * 0.21696E+00 0.34193E+00 -0.34193E+00
 * 1237 * -0.21696E+00 -0.34193E+00 -0.34193E+00
 * 1238 * 0.21696E+00 -0.34193E+00 -0.34193E+00
 * 1239 * -0.30544E+00 0.43314E+00 0.00000E+00
 * 1240 * 0.30544E+00 0.43314E+00 0.00000E+00
 * 1241 * -0.30544E+00 -0.43314E+00 0.00000E+00
 * 1242 * 0.30544E+00 -0.43314E+00 0.00000E+00
 * 1243 * -0.21696E+00 0.34193E+00 0.34193E+00
 * 1244 * 0.21696E+00 0.34193E+00 0.34193E+00
 * 1245 * -0.21696E+00 -0.34193E+00 0.34193E+00
 * 1246 * 0.21696E+00 -0.34193E+00 0.34193E+00
 * 1247 * -0.30544E+00 0.00000E+00 0.43314E+00
 * 1248 * 0.30544E+00 0.00000E+00 0.43314E+00
 * 1249 * -0.39392E+00 0.25073E+00 -0.25073E+00
 * 1250 * 0.39392E+00 0.25073E+00 -0.25073E+00
 * 1251 * -0.39392E+00 -0.25073E+00 -0.25073E+00
 * 1252 * 0.39392E+00 -0.25073E+00 -0.25073E+00
 * 1253 * -0.39392E+00 0.25073E+00 0.25073E+00
 * 1254 * 0.39392E+00 0.25073E+00 0.25073E+00
 * 1255 * -0.39392E+00 -0.25073E+00 0.25073E+00
 * 1256 * 0.39392E+00 -0.25073E+00 0.25073E+00
 * 1257 * -0.43411E+00 0.00000E+00 -0.30439E+00
 * 1258 * 0.43411E+00 0.00000E+00 -0.30439E+00
 * 1259 * -0.43411E+00 0.30439E+00 0.00000E+00
 * 1260 * 0.43411E+00 0.30439E+00 0.00000E+00
 * 1261 * -0.43411E+00 -0.30439E+00 0.00000E+00
 * 1262 * 0.43411E+00 -0.30439E+00 0.00000E+00
 * 1263 * -0.43411E+00 0.00000E+00 0.30439E+00
 * 1264 * 0.43411E+00 0.00000E+00 0.30439E+00
 * 1265 * -0.46730E+00 0.00000E+00 -0.25064E+00
 * 1266 * 0.46730E+00 0.00000E+00 -0.25064E+00
 * 1267 * -0.46730E+00 0.25064E+00 0.00000E+00
 * 1268 * 0.46730E+00 0.25064E+00 0.00000E+00
 * 1269 * -0.46730E+00 -0.25064E+00 0.00000E+00
 * 1270 * 0.46730E+00 -0.25064E+00 0.00000E+00
 * 1271 * -0.46730E+00 0.00000E+00 0.25064E+00
 * 1272 * 0.46730E+00 0.00000E+00 0.25064E+00
 * 1273 * -0.57152E+00 0.15796E+00 -0.15796E+00
 * 1274 * 0.57152E+00 0.15796E+00 -0.15796E+00
 * 1275 * -0.57152E+00 -0.15796E+00 -0.15796E+00
 * 1276 * 0.57152E+00 -0.15796E+00 -0.15796E+00
 * 1277 * -0.57152E+00 0.15796E+00 0.15796E+00
 * 1278 * 0.57152E+00 0.15796E+00 0.15796E+00
 * 1279 * -0.57152E+00 -0.15796E+00 0.15796E+00
 * 1280 * 0.57152E+00 -0.15796E+00 0.15796E+00
 * 1281 * -0.32442E+00 -0.27415E+00 -0.45076E+00
 * 1282 * 0.32442E+00 -0.27415E+00 -0.45076E+00
 * 1283 * -0.32442E+00 0.45076E+00 -0.27415E+00
 * 1284 * 0.32442E+00 0.45076E+00 -0.27415E+00

* 1285 * -0.32442E+00 -0.45076E+00 0.27415E+00
 * 1286 * 0.32442E+00 -0.45076E+00 0.27415E+00
 * 1287 * -0.32442E+00 0.27415E+00 0.45076E+00
 * 1288 * 0.32442E+00 0.27415E+00 0.45076E+00
 * 1289 * -0.32442E+00 0.27415E+00 -0.45076E+00
 * 1290 * 0.32442E+00 0.27415E+00 -0.45076E+00
 * 1291 * -0.32442E+00 -0.45076E+00 -0.27415E+00
 * 1292 * 0.32442E+00 -0.45076E+00 -0.27415E+00
 * 1293 * -0.32442E+00 0.45076E+00 0.27415E+00
 * 1294 * 0.32442E+00 0.45076E+00 0.27415E+00
 * 1295 * -0.32442E+00 -0.27415E+00 0.45076E+00
 * 1296 * 0.32442E+00 -0.27415E+00 0.45076E+00
 * 1297 * -0.51028E+00 0.18347E+00 -0.30167E+00
 * 1298 * 0.51028E+00 0.18347E+00 -0.30167E+00
 * 1299 * -0.51028E+00 -0.18347E+00 -0.30167E+00
 * 1300 * 0.51028E+00 -0.18347E+00 -0.30167E+00
 * 1301 * -0.51028E+00 -0.30167E+00 -0.18347E+00
 * 1302 * 0.51028E+00 -0.30167E+00 -0.18347E+00
 * 1303 * -0.51028E+00 0.30167E+00 -0.18347E+00
 * 1304 * 0.51028E+00 0.30167E+00 -0.18347E+00
 * 1305 * -0.51028E+00 0.30167E+00 0.18347E+00
 * 1306 * 0.51028E+00 0.30167E+00 0.18347E+00
 * 1307 * -0.51028E+00 -0.30167E+00 0.18347E+00
 * 1308 * 0.51028E+00 -0.30167E+00 0.18347E+00
 * 1309 * -0.51028E+00 0.18347E+00 0.30167E+00
 * 1310 * 0.51028E+00 0.18347E+00 0.30167E+00
 * 1311 * -0.51028E+00 -0.18347E+00 0.30167E+00
 * 1312 * 0.51028E+00 -0.18347E+00 0.30167E+00
 * 1313 * -0.32442E+00 0.00000E+00 -0.52983E+00
 * 1314 * 0.32442E+00 0.00000E+00 -0.52983E+00
 * 1315 * -0.32442E+00 0.52983E+00 0.00000E+00
 * 1316 * 0.32442E+00 0.52983E+00 0.00000E+00
 * 1317 * -0.32442E+00 -0.52983E+00 0.00000E+00
 * 1318 * 0.32442E+00 -0.52983E+00 0.00000E+00
 * 1319 * -0.32442E+00 0.00000E+00 0.52983E+00
 * 1320 * 0.32442E+00 0.00000E+00 0.52983E+00
 * 1321 * -0.51028E+00 0.00000E+00 -0.35458E+00
 * 1322 * 0.51028E+00 0.00000E+00 -0.35458E+00
 * 1323 * -0.51028E+00 0.35458E+00 0.00000E+00
 * 1324 * 0.51028E+00 0.35458E+00 0.00000E+00
 * 1325 * -0.51028E+00 -0.35458E+00 0.00000E+00
 * 1326 * 0.51028E+00 -0.35458E+00 0.00000E+00
 * 1327 * -0.51028E+00 0.00000E+00 0.35458E+00
 * 1328 * 0.51028E+00 0.00000E+00 0.35458E+00
 * 1329 * -0.40000E-01 -0.32271E+00 -0.53061E+00
 * 1330 * 0.40000E-01 -0.32271E+00 -0.53061E+00
 * 1331 * -0.40000E-01 0.32271E+00 -0.53061E+00
 * 1332 * 0.40000E-01 0.32271E+00 -0.53061E+00
 * 1333 * -0.40000E-01 -0.53061E+00 -0.32271E+00
 * 1334 * 0.40000E-01 -0.53061E+00 -0.32271E+00
 * 1335 * -0.40000E-01 0.53061E+00 -0.32271E+00
 * 1336 * 0.40000E-01 0.53061E+00 -0.32271E+00
 * 1337 * -0.40000E-01 -0.53061E+00 0.32271E+00
 * 1338 * 0.40000E-01 -0.53061E+00 0.32271E+00
 * 1339 * -0.40000E-01 0.53061E+00 0.32271E+00
 * 1340 * 0.40000E-01 0.53061E+00 0.32271E+00
 * 1341 * -0.40000E-01 -0.32271E+00 0.53061E+00
 * 1342 * 0.40000E-01 -0.32271E+00 0.53061E+00
 * 1343 * -0.40000E-01 0.32271E+00 0.53061E+00
 * 1344 * 0.40000E-01 0.32271E+00 0.53061E+00
 * 1345 * -0.60976E+00 0.00000E+00 -0.13245E+00
 * 1346 * 0.60976E+00 0.00000E+00 -0.13245E+00
 * 1347 * -0.60976E+00 0.13245E+00 0.00000E+00
 * 1348 * 0.60976E+00 0.13245E+00 0.00000E+00
 * 1349 * -0.60976E+00 -0.13245E+00 0.00000E+00
 * 1350 * 0.60976E+00 -0.13245E+00 0.00000E+00
 * 1351 * -0.60976E+00 0.00000E+00 0.13245E+00
 * 1352 * 0.60976E+00 0.00000E+00 0.13245E+00
 * 1353 * -0.57152E+00 0.00000E+00 -0.25064E+00

* 1354 * 0.57152E+00 0.00000E+00 -0.25064E+00
 * 1355 * -0.57152E+00 0.25064E+00 0.00000E+00
 * 1356 * 0.57152E+00 0.25064E+00 0.00000E+00
 * 1357 * -0.57152E+00 -0.25064E+00 0.00000E+00
 * 1358 * 0.57152E+00 -0.25064E+00 0.00000E+00
 * 1359 * -0.57152E+00 0.00000E+00 0.25064E+00
 * 1360 * 0.57152E+00 0.00000E+00 0.25064E+00
 * 1361 * 0.40000E-01 0.00000E+00 -0.62369E+00
 * 1362 * -0.40000E-01 0.00000E+00 -0.62369E+00
 * 1363 * 0.40000E-01 0.62369E+00 0.00000E+00
 * 1364 * -0.40000E-01 0.62369E+00 0.00000E+00
 * 1365 * 0.40000E-01 -0.62369E+00 0.00000E+00
 * 1366 * -0.40000E-01 -0.62369E+00 0.00000E+00
 * 1367 * 0.40000E-01 0.00000E+00 0.62369E+00
 * 1368 * -0.40000E-01 0.00000E+00 0.62369E+00
 * 1369 * -0.62500E+00 0.00000E+00 0.00000E+00
 * 1370 * 0.62500E+00 0.00000E+00 0.00000E+00
 * 1371 * -0.67575E+00 0.15796E+00 -0.15796E+00
 * 1372 * 0.67575E+00 0.15796E+00 -0.15796E+00
 * 1373 * -0.67575E+00 -0.15796E+00 -0.15796E+00
 * 1374 * 0.67575E+00 -0.15796E+00 -0.15796E+00
 * 1375 * -0.67575E+00 0.15796E+00 0.15796E+00
 * 1376 * 0.67575E+00 0.15796E+00 0.15796E+00
 * 1377 * -0.67575E+00 -0.15796E+00 0.15796E+00
 * 1378 * 0.67575E+00 -0.15796E+00 0.15796E+00
 * 1379 * -0.26033E+00 0.56673E+00 -0.34296E+00
 * 1380 * 0.26033E+00 0.56673E+00 -0.34296E+00
 * 1381 * -0.26033E+00 -0.56673E+00 0.34296E+00
 * 1382 * 0.26033E+00 -0.56673E+00 0.34296E+00
 * 1383 * -0.26033E+00 0.34296E+00 -0.56673E+00
 * 1384 * 0.26033E+00 0.34296E+00 -0.56673E+00
 * 1385 * -0.26033E+00 -0.34296E+00 -0.56673E+00
 * 1386 * 0.26033E+00 -0.34296E+00 -0.56673E+00
 * 1387 * -0.26033E+00 -0.56673E+00 -0.34296E+00
 * 1388 * 0.26033E+00 -0.56673E+00 -0.34296E+00
 * 1389 * -0.26033E+00 0.56673E+00 0.34296E+00
 * 1390 * 0.26033E+00 0.56673E+00 0.34296E+00
 * 1391 * -0.26033E+00 0.34296E+00 0.56673E+00
 * 1392 * 0.26033E+00 0.34296E+00 0.56673E+00
 * 1393 * -0.26033E+00 -0.34296E+00 0.56673E+00
 * 1394 * 0.26033E+00 -0.34296E+00 0.56673E+00
 * 1395 * -0.40000E-01 -0.68179E+00 -0.20253E+00
 * 1396 * 0.40000E-01 -0.68179E+00 -0.20253E+00
 * 1397 * -0.40000E-01 0.68179E+00 0.20253E+00
 * 1398 * 0.40000E-01 0.68179E+00 0.20253E+00
 * 1399 * -0.40000E-01 0.20253E+00 -0.68179E+00
 * 1400 * 0.40000E-01 0.20253E+00 -0.68179E+00
 * 1401 * -0.40000E-01 -0.20253E+00 -0.68179E+00
 * 1402 * 0.40000E-01 -0.20253E+00 -0.68179E+00
 * 1403 * 0.40000E-01 0.68179E+00 -0.20253E+00
 * 1404 * -0.40000E-01 0.68179E+00 -0.20253E+00
 * 1405 * -0.40000E-01 -0.68179E+00 0.20253E+00
 * 1406 * 0.40000E-01 -0.68179E+00 0.20253E+00
 * 1407 * -0.40000E-01 0.20253E+00 0.68179E+00
 * 1408 * 0.40000E-01 0.20253E+00 0.68179E+00
 * 1409 * -0.40000E-01 -0.20253E+00 0.68179E+00
 * 1410 * 0.40000E-01 -0.20253E+00 0.68179E+00
 * 1411 * -0.69356E+00 0.80763E-01 -0.14521E+00
 * 1412 * 0.69356E+00 0.80763E-01 -0.14521E+00
 * 1413 * -0.69356E+00 -0.80763E-01 -0.14521E+00
 * 1414 * 0.69356E+00 -0.80763E-01 -0.14521E+00
 * 1415 * -0.69356E+00 0.14521E+00 -0.80763E-01
 * 1416 * 0.69356E+00 0.14521E+00 -0.80763E-01
 * 1417 * -0.69356E+00 -0.14521E+00 -0.80763E-01
 * 1418 * 0.69356E+00 -0.14521E+00 -0.80763E-01
 * 1419 * -0.69356E+00 0.14521E+00 0.80763E-01
 * 1420 * 0.69356E+00 0.14521E+00 0.80763E-01
 * 1421 * -0.69356E+00 -0.14521E+00 0.80763E-01
 * 1422 * 0.69356E+00 -0.14521E+00 0.80763E-01

* 1423 * -0.69356E+00 0.80763E-01 0.14521E+00
 * 1424 * 0.69356E+00 0.80763E-01 0.14521E+00
 * 1425 * -0.69356E+00 -0.80763E-01 0.14521E+00
 * 1426 * 0.69356E+00 -0.80763E-01 0.14521E+00
 * 1427 * -0.67575E+00 0.87141E-01 -0.21246E+00
 * 1428 * 0.67575E+00 0.87141E-01 -0.21246E+00
 * 1429 * -0.67575E+00 -0.87141E-01 -0.21246E+00
 * 1430 * 0.67575E+00 -0.87141E-01 -0.21246E+00
 * 1431 * -0.67575E+00 0.21246E+00 -0.87141E-01
 * 1432 * 0.67575E+00 0.21246E+00 -0.87141E-01
 * 1433 * -0.67575E+00 -0.21246E+00 -0.87141E-01
 * 1434 * 0.67575E+00 -0.21246E+00 -0.87141E-01
 * 1435 * -0.67575E+00 0.21246E+00 0.87141E-01
 * 1436 * 0.67575E+00 0.21246E+00 0.87141E-01
 * 1437 * -0.67575E+00 -0.21246E+00 0.87141E-01
 * 1438 * 0.67575E+00 -0.21246E+00 0.87141E-01
 * 1439 * -0.67575E+00 -0.87141E-01 0.21246E+00
 * 1440 * 0.67575E+00 0.87141E-01 0.21246E+00
 * 1441 * -0.67575E+00 -0.87141E-01 0.21246E+00
 * 1442 * 0.67575E+00 -0.87141E-01 0.21246E+00
 * 1443 * -0.65344E+00 0.17072E+00 -0.23160E+00
 * 1444 * 0.65344E+00 0.17072E+00 -0.23160E+00
 * 1445 * -0.65344E+00 -0.17072E+00 -0.23160E+00
 * 1446 * 0.65344E+00 -0.17072E+00 -0.23160E+00
 * 1447 * -0.65344E+00 0.17072E+00 0.23160E+00
 * 1448 * 0.65344E+00 0.17072E+00 0.23160E+00
 * 1449 * -0.65344E+00 -0.17072E+00 0.23160E+00
 * 1450 * 0.65344E+00 -0.17072E+00 0.23160E+00
 * 1451 * -0.65344E+00 0.23160E+00 -0.17072E+00
 * 1452 * 0.65344E+00 0.23160E+00 -0.17072E+00
 * 1453 * -0.65344E+00 -0.23160E+00 -0.17072E+00
 * 1454 * 0.65344E+00 -0.23160E+00 -0.17072E+00
 * 1455 * -0.65344E+00 0.23160E+00 0.17072E+00
 * 1456 * 0.65344E+00 0.23160E+00 0.17072E+00
 * 1457 * -0.65344E+00 -0.23160E+00 0.17072E+00
 * 1458 * 0.65344E+00 -0.23160E+00 0.17072E+00
 * 1459 * -0.70687E+00 0.74386E-01 -0.74386E-01
 * 1460 * 0.70687E+00 0.74386E-01 -0.74386E-01
 * 1461 * -0.70687E+00 -0.74386E-01 -0.74386E-01
 * 1462 * 0.70687E+00 -0.74386E-01 -0.74386E-01
 * 1463 * -0.70687E+00 0.74386E-01 0.74386E-01
 * 1464 * 0.70687E+00 0.74386E-01 0.74386E-01
 * 1465 * -0.70687E+00 -0.74386E-01 0.74386E-01
 * 1466 * 0.70687E+00 -0.74386E-01 0.74386E-01
 * 1467 * -0.43188E+00 0.16230E+00 -0.54636E+00
 * 1468 * 0.43188E+00 0.16230E+00 -0.54636E+00
 * 1469 * -0.43188E+00 -0.16230E+00 -0.54636E+00
 * 1470 * 0.43188E+00 -0.16230E+00 -0.54636E+00
 * 1471 * -0.43188E+00 0.54636E+00 -0.16230E+00
 * 1472 * 0.43188E+00 0.54636E+00 -0.16230E+00
 * 1473 * -0.43188E+00 -0.54636E+00 -0.16230E+00
 * 1474 * 0.43188E+00 -0.54636E+00 -0.16230E+00
 * 1475 * -0.43188E+00 0.54636E+00 0.16230E+00
 * 1476 * 0.43188E+00 0.54636E+00 0.16230E+00
 * 1477 * -0.43188E+00 -0.54636E+00 0.16230E+00
 * 1478 * 0.43188E+00 -0.54636E+00 0.16230E+00
 * 1479 * -0.43188E+00 0.16230E+00 0.54636E+00
 * 1480 * 0.43188E+00 0.16230E+00 0.54636E+00
 * 1481 * -0.43188E+00 -0.16230E+00 0.54636E+00
 * 1482 * 0.43188E+00 -0.16230E+00 0.54636E+00
 * 1483 * -0.65344E+00 0.93519E-01 -0.27616E+00
 * 1484 * 0.65344E+00 0.93519E-01 -0.27616E+00
 * 1485 * -0.65344E+00 -0.93519E-01 -0.27616E+00
 * 1486 * 0.65344E+00 -0.93519E-01 -0.27616E+00
 * 1487 * -0.65344E+00 0.27616E+00 -0.93519E-01
 * 1488 * 0.65344E+00 0.27616E+00 -0.93519E-01
 * 1489 * -0.65344E+00 -0.27616E+00 -0.93519E-01
 * 1490 * 0.65344E+00 -0.27616E+00 -0.93519E-01
 * 1491 * -0.65344E+00 0.27616E+00 0.93519E-01

* 1492 * 0.65344E+00 0.27616E+00 0.93519E-01
 * 1493 * -0.65344E+00 -0.27616E+00 0.93519E-01
 * 1494 * 0.65344E+00 -0.27616E+00 0.93519E-01
 * 1495 * -0.65344E+00 0.93519E-01 0.27616E+00
 * 1496 * 0.65344E+00 0.93519E-01 0.27616E+00
 * 1497 * -0.65344E+00 -0.93519E-01 0.27616E+00
 * 1498 * 0.65344E+00 -0.93519E-01 0.27616E+00
 * 1499 * 0.00000E+00 0.37234E+00 -0.61234E+00
 * 1500 * 0.00000E+00 -0.37234E+00 -0.61234E+00
 * 1501 * 0.00000E+00 -0.61234E+00 -0.37234E+00
 * 1502 * 0.00000E+00 0.61234E+00 -0.37234E+00
 * 1503 * 0.00000E+00 -0.61234E+00 0.37234E+00
 * 1504 * 0.00000E+00 0.61234E+00 0.37234E+00
 * 1505 * 0.00000E+00 0.37234E+00 0.61234E+00
 * 1506 * 0.00000E+00 -0.37234E+00 0.61234E+00
 * 1507 * -0.40000E-01 -0.37197E+00 -0.61160E+00
 * 1508 * 0.40000E-01 -0.37197E+00 -0.61160E+00
 * 1509 * -0.40000E-01 0.61160E+00 -0.37197E+00
 * 1510 * 0.40000E-01 0.61160E+00 -0.37197E+00
 * 1511 * -0.40000E-01 -0.61160E+00 0.37197E+00
 * 1512 * 0.40000E-01 -0.61160E+00 0.37197E+00
 * 1513 * -0.40000E-01 0.37197E+00 0.61160E+00
 * 1514 * 0.40000E-01 0.37197E+00 0.61160E+00
 * 1515 * -0.40000E-01 0.37197E+00 -0.61160E+00
 * 1516 * 0.40000E-01 0.37197E+00 -0.61160E+00
 * 1517 * -0.40000E-01 -0.61160E+00 -0.37197E+00
 * 1518 * 0.40000E-01 -0.61160E+00 -0.37197E+00
 * 1519 * -0.40000E-01 0.61160E+00 0.37197E+00
 * 1520 * 0.40000E-01 0.61160E+00 0.37197E+00
 * 1521 * -0.40000E-01 -0.37197E+00 0.61160E+00
 * 1522 * 0.40000E-01 -0.37197E+00 0.61160E+00
 * 1523 * 0.00000E+00 0.00000E+00 -0.72000E+00
 * 1524 * 0.40000E-01 0.00000E+00 -0.71889E+00
 * 1525 * -0.40000E-01 0.00000E+00 -0.71889E+00
 * 1526 * -0.26033E+00 0.00000E+00 -0.67129E+00
 * 1527 * 0.26033E+00 0.00000E+00 -0.67129E+00
 * 1528 * -0.43188E+00 0.00000E+00 -0.57609E+00
 * 1529 * 0.43188E+00 0.00000E+00 -0.57609E+00
 * 1530 * -0.40000E-01 0.50833E+00 -0.50833E+00
 * 1531 * 0.40000E-01 0.50833E+00 -0.50833E+00
 * 1532 * -0.40000E-01 -0.50833E+00 -0.50833E+00
 * 1533 * 0.40000E-01 -0.50833E+00 -0.50833E+00
 * 1534 * -0.43188E+00 0.29809E+00 -0.49012E+00
 * 1535 * 0.43188E+00 0.29809E+00 -0.49012E+00
 * 1536 * -0.43188E+00 -0.29809E+00 -0.49012E+00
 * 1537 * 0.43188E+00 -0.29809E+00 -0.49012E+00
 * 1538 * -0.55080E+00 0.00000E+00 -0.46375E+00
 * 1539 * 0.55080E+00 0.00000E+00 -0.46375E+00
 * 1540 * -0.43188E+00 0.40736E+00 -0.40736E+00
 * 1541 * 0.43188E+00 0.40736E+00 -0.40736E+00
 * 1542 * -0.43188E+00 -0.40736E+00 -0.40736E+00
 * 1543 * 0.43188E+00 -0.40736E+00 -0.40736E+00
 * 1544 * -0.55080E+00 0.24025E+00 -0.39484E+00
 * 1545 * 0.55080E+00 0.24025E+00 -0.39484E+00
 * 1546 * -0.55080E+00 -0.24025E+00 -0.39484E+00
 * 1547 * 0.55080E+00 -0.24025E+00 -0.39484E+00
 * 1548 * -0.62664E+00 0.00000E+00 -0.35458E+00
 * 1549 * 0.62664E+00 0.00000E+00 -0.35458E+00
 * 1550 * -0.62664E+00 0.99897E-01 -0.33628E+00
 * 1551 * 0.62664E+00 0.99897E-01 -0.33628E+00
 * 1552 * -0.62664E+00 -0.99897E-01 -0.33628E+00
 * 1553 * 0.62664E+00 -0.99897E-01 -0.33628E+00
 * 1554 * -0.65344E+00 0.00000E+00 -0.30439E+00
 * 1555 * 0.65344E+00 0.00000E+00 -0.30439E+00
 * 1556 * -0.62664E+00 0.18347E+00 -0.30167E+00
 * 1557 * 0.62664E+00 0.18347E+00 -0.30167E+00
 * 1558 * -0.62664E+00 -0.18347E+00 -0.30167E+00
 * 1559 * 0.62664E+00 -0.18347E+00 -0.30167E+00
 * 1560 * -0.43188E+00 -0.49012E+00 -0.29809E+00

* 1561 * 0.43188E+00 -0.49012E+00 -0.29809E+00
 * 1562 * -0.43188E+00 0.49012E+00 -0.29809E+00
 * 1563 * 0.43188E+00 0.49012E+00 -0.29809E+00
 * 1564 * -0.62664E+00 0.25073E+00 -0.25073E+00
 * 1565 * 0.62664E+00 0.25073E+00 -0.25073E+00
 * 1566 * -0.62664E+00 -0.25073E+00 -0.25073E+00
 * 1567 * 0.62664E+00 -0.25073E+00 -0.25073E+00
 * 1568 * -0.67575E+00 0.00000E+00 -0.25064E+00
 * 1569 * 0.67575E+00 0.00000E+00 -0.25064E+00
 * 1570 * -0.55080E+00 -0.39484E+00 -0.24025E+00
 * 1571 * 0.55080E+00 -0.39484E+00 -0.24025E+00
 * 1572 * -0.55080E+00 0.39484E+00 -0.24025E+00
 * 1573 * 0.55080E+00 0.39484E+00 -0.24025E+00
 * 1574 * -0.69356E+00 0.00000E+00 -0.19333E+00
 * 1575 * 0.69356E+00 0.00000E+00 -0.19333E+00
 * 1576 * -0.62664E+00 -0.30167E+00 -0.18347E+00
 * 1577 * 0.62664E+00 -0.30167E+00 -0.18347E+00
 * 1578 * -0.62664E+00 0.30167E+00 -0.18347E+00
 * 1579 * 0.62664E+00 0.30167E+00 -0.18347E+00
 * 1580 * -0.70687E+00 0.00000E+00 -0.13245E+00
 * 1581 * 0.70687E+00 0.00000E+00 -0.13245E+00
 * 1582 * -0.62664E+00 0.33628E+00 -0.99897E-01
 * 1583 * 0.62664E+00 0.33628E+00 -0.99897E-01
 * 1584 * -0.62664E+00 -0.33628E+00 -0.99897E-01
 * 1585 * 0.62664E+00 -0.33628E+00 -0.99897E-01
 * 1586 * -0.71568E+00 0.00000E+00 -0.68008E-01
 * 1587 * 0.71568E+00 0.00000E+00 -0.68008E-01
 * 1588 * 0.00000E+00 0.72000E+00 0.00000E+00
 * 1589 * -0.43188E+00 0.57609E+00 0.00000E+00
 * 1590 * 0.43188E+00 0.57609E+00 0.00000E+00
 * 1591 * -0.43188E+00 -0.57609E+00 0.00000E+00
 * 1592 * 0.43188E+00 -0.57609E+00 0.00000E+00
 * 1593 * 0.00000E+00 -0.72000E+00 0.00000E+00
 * 1594 * 0.40000E-01 0.71889E+00 0.00000E+00
 * 1595 * -0.40000E-01 0.71889E+00 0.00000E+00
 * 1596 * 0.40000E-01 -0.71889E+00 0.00000E+00
 * 1597 * -0.40000E-01 -0.71889E+00 0.00000E+00
 * 1598 * -0.62664E+00 0.35458E+00 0.00000E+00
 * 1599 * 0.62664E+00 0.35458E+00 0.00000E+00
 * 1600 * -0.62664E+00 -0.35458E+00 0.00000E+00
 * 1601 * 0.62664E+00 -0.35458E+00 0.00000E+00
 * 1602 * -0.55080E+00 0.46375E+00 0.00000E+00
 * 1603 * 0.55080E+00 0.46375E+00 0.00000E+00
 * 1604 * -0.55080E+00 -0.46375E+00 0.00000E+00
 * 1605 * 0.55080E+00 -0.46375E+00 0.00000E+00
 * 1606 * -0.67575E+00 0.25064E+00 0.00000E+00
 * 1607 * 0.67575E+00 0.25064E+00 0.00000E+00
 * 1608 * -0.67575E+00 -0.25064E+00 0.00000E+00
 * 1609 * 0.67575E+00 -0.25064E+00 0.00000E+00
 * 1610 * -0.65344E+00 0.30439E+00 0.00000E+00
 * 1611 * 0.65344E+00 0.30439E+00 0.00000E+00
 * 1612 * -0.65344E+00 -0.30439E+00 0.00000E+00
 * 1613 * 0.65344E+00 -0.30439E+00 0.00000E+00
 * 1614 * -0.70687E+00 0.13245E+00 0.00000E+00
 * 1615 * 0.70687E+00 0.13245E+00 0.00000E+00
 * 1616 * -0.70687E+00 -0.13245E+00 0.00000E+00
 * 1617 * 0.70687E+00 -0.13245E+00 0.00000E+00
 * 1618 * -0.26033E+00 0.67129E+00 0.00000E+00
 * 1619 * 0.26033E+00 0.67129E+00 0.00000E+00
 * 1620 * -0.26033E+00 -0.67129E+00 0.00000E+00
 * 1621 * 0.26033E+00 -0.67129E+00 0.00000E+00
 * 1622 * -0.71568E+00 0.68008E-01 0.00000E+00
 * 1623 * 0.71568E+00 0.68008E-01 0.00000E+00
 * 1624 * -0.71568E+00 -0.68008E-01 0.00000E+00
 * 1625 * 0.71568E+00 -0.68008E-01 0.00000E+00
 * 1626 * -0.69356E+00 0.19333E+00 0.00000E+00
 * 1627 * 0.69356E+00 0.19333E+00 0.00000E+00
 * 1628 * -0.72000E+00 0.00000E+00 0.00000E+00
 * 1629 * 0.72000E+00 0.00000E+00 0.00000E+00

* 1630 *	-0.69356E+00	-0.19333E+00	0.00000E+00
* 1631 *	0.69356E+00	-0.19333E+00	0.00000E+00
* 1632 *	-0.71568E+00	0.00000E+00	0.68008E-01
* 1633 *	0.71568E+00	0.00000E+00	0.68008E-01
* 1634 *	-0.62664E+00	0.33628E+00	0.99897E-01
* 1635 *	0.62664E+00	0.33628E+00	0.99897E-01
* 1636 *	-0.62664E+00	-0.33628E+00	0.99897E-01
* 1637 *	0.62664E+00	-0.33628E+00	0.99897E-01
* 1638 *	-0.70687E+00	0.00000E+00	0.13245E+00
* 1639 *	0.70687E+00	0.00000E+00	0.13245E+00
* 1640 *	-0.62664E+00	0.30167E+00	0.18347E+00
* 1641 *	0.62664E+00	0.30167E+00	0.18347E+00
* 1642 *	-0.62664E+00	-0.30167E+00	0.18347E+00
* 1643 *	0.62664E+00	-0.30167E+00	0.18347E+00
* 1644 *	-0.69356E+00	0.00000E+00	0.19333E+00
* 1645 *	0.69356E+00	0.00000E+00	0.19333E+00
* 1646 *	-0.55080E+00	-0.39484E+00	0.24025E+00
* 1647 *	0.55080E+00	-0.39484E+00	0.24025E+00
* 1648 *	-0.55080E+00	0.39484E+00	0.24025E+00
* 1649 *	0.55080E+00	0.39484E+00	0.24025E+00
* 1650 *	-0.67575E+00	0.00000E+00	0.25064E+00
* 1651 *	0.67575E+00	0.00000E+00	0.25064E+00
* 1652 *	-0.62664E+00	0.25073E+00	0.25073E+00
* 1653 *	0.62664E+00	0.25073E+00	0.25073E+00
* 1654 *	-0.62664E+00	-0.25073E+00	0.25073E+00
* 1655 *	0.62664E+00	-0.25073E+00	0.25073E+00
* 1656 *	-0.43188E+00	0.49012E+00	0.29809E+00
* 1657 *	0.43188E+00	0.49012E+00	0.29809E+00
* 1658 *	-0.43188E+00	-0.49012E+00	0.29809E+00
* 1659 *	0.43188E+00	-0.49012E+00	0.29809E+00
* 1660 *	-0.62664E+00	0.18347E+00	0.30167E+00
* 1661 *	0.62664E+00	0.18347E+00	0.30167E+00
* 1662 *	-0.62664E+00	-0.18347E+00	0.30167E+00
* 1663 *	0.62664E+00	-0.18347E+00	0.30167E+00
* 1664 *	-0.65344E+00	0.00000E+00	0.30439E+00
* 1665 *	0.65344E+00	0.00000E+00	0.30439E+00
* 1666 *	-0.62664E+00	0.99897E-01	0.33628E+00
* 1667 *	0.62664E+00	0.99897E-01	0.33628E+00
* 1668 *	-0.62664E+00	-0.99897E-01	0.33628E+00
* 1669 *	0.62664E+00	-0.99897E-01	0.33628E+00
* 1670 *	-0.62664E+00	0.00000E+00	0.35458E+00
* 1671 *	0.62664E+00	0.00000E+00	0.35458E+00
* 1672 *	-0.55080E+00	0.24025E+00	0.39484E+00
* 1673 *	0.55080E+00	0.24025E+00	0.39484E+00
* 1674 *	-0.55080E+00	-0.24025E+00	0.39484E+00
* 1675 *	0.55080E+00	-0.24025E+00	0.39484E+00
* 1676 *	-0.43188E+00	0.40736E+00	0.40736E+00
* 1677 *	0.43188E+00	0.40736E+00	0.40736E+00
* 1678 *	-0.43188E+00	-0.40736E+00	0.40736E+00
* 1679 *	0.43188E+00	-0.40736E+00	0.40736E+00
* 1680 *	-0.55080E+00	0.00000E+00	0.46375E+00
* 1681 *	0.55080E+00	0.00000E+00	0.46375E+00
* 1682 *	-0.43188E+00	-0.29809E+00	0.49012E+00
* 1683 *	0.43188E+00	-0.29809E+00	0.49012E+00
* 1684 *	-0.43188E+00	0.29809E+00	0.49012E+00
* 1685 *	0.43188E+00	0.29809E+00	0.49012E+00
* 1686 *	-0.40000E-01	0.50833E+00	0.50833E+00
* 1687 *	0.40000E-01	0.50833E+00	0.50833E+00
* 1688 *	-0.40000E-01	-0.50833E+00	0.50833E+00
* 1689 *	0.40000E-01	-0.50833E+00	0.50833E+00
* 1690 *	-0.43188E+00	0.00000E+00	0.57609E+00
* 1691 *	0.43188E+00	0.00000E+00	0.57609E+00
* 1692 *	-0.26033E+00	0.00000E+00	0.67129E+00
* 1693 *	0.26033E+00	0.00000E+00	0.67129E+00
* 1694 *	0.40000E-01	0.00000E+00	0.71889E+00
* 1695 *	-0.40000E-01	0.00000E+00	0.71889E+00
* 1696 *	0.00000E+00	0.00000E+00	0.72000E+00

ELEMENTS

HEXA2OP	MAVART8D	4
* 1*	1 3 12 14 27 29 38 40 2 8 9 13 19 &	
	20 23 24 28 34 35 39	
HEXA2OP	MAVART8D	5
* 2*	3 5 14 16 29 31 40 42 4 9 10 15 20 &	
	21 24 25 30 35 36 41	
HEXA2OP	MAVART8D	6
* 3*	5 7 16 18 31 33 42 44 6 10 11 17 21 &	
	22 25 26 32 36 37 43	
HEXA2OP	MAVART8D	4
* 4*	12 14 49 51 38 40 64 66 13 45 46 50 23 &	
	24 56 57 39 60 61 65	
HEXA2OP	MAVART8D	5
* 5*	14 16 51 53 40 42 66 68 15 46 47 52 24 &	
	25 57 58 41 61 62 67	
HEXA2OP	MAVART8D	6
* 6*	16 18 53 55 42 44 68 70 17 47 48 54 25 &	
	26 58 59 43 62 63 69	
HEXA2OP	MAVART8D	7
* 7*	7 72 18 81 33 93 44 102 71 11 77 80 22 &	
	86 26 89 92 37 98 101	
HEXA2OP	MAVART8D	8
* 8*	72 74 81 83 93 95 102 104 73 77 78 82 86 &	
	87 89 90 94 98 99 103	
HEXA2OP	MAVART8D	9
* 9*	74 76 83 85 95 97 104 106 75 78 79 84 87 &	
	88 90 91 96 99 100 105	
HEXA2OP	MAVART8D	7
* 10*	18 81 55 111 44 102 70 123 80 48 107 110 26 &	
	89 59 116 101 63 119 122	
HEXA2OP	MAVART8D	8
* 11*	81 83 111 113 102 104 123 125 82 107 108 112 89 &	
	90 116 117 103 119 120 124	
HEXA2OP	MAVART8D	9
* 12*	83 85 113 115 104 106 125 127 84 108 109 114 90 &	
	91 117 118 105 120 121 126	
HEXA2OP	MAVART8D	10
* 13*	76 129 85 138 97 150 106 159 128 79 134 137 88 &	
	143 91 146 149 100 155 158	
HEXA2OP	MAVART8D	11
* 14*	129 131 138 140 150 152 159 161 130 134 135 139 143 &	
	144 146 147 151 155 156 160	
HEXA2OP	MAVART8D	12
* 15*	131 133 140 142 152 154 161 163 132 135 136 141 144 &	
	145 147 148 153 156 157 162	
HEXA2OP	MAVART8D	10
* 16*	85 138 115 168 106 159 127 180 137 109 164 167 91 &	
	146 118 173 158 121 176 179	
HEXA2OP	MAVART8D	11
* 17*	138 140 168 170 159 161 180 182 139 164 165 169 146 &	
	147 173 174 160 176 177 181	
HEXA2OP	MAVART8D	12

* 18*	140	142	170	172	161	163	182	184	141	165	166	171	147	&
	148	174	175	162	177	178	183							
HEXA20P	MAVART8D	13												
* 19*	133	186	142	193	154	202	163	209	185	136	190	192	145	&
	197	148	199	201	157	206	208							
HEXA20P	MAVART8D	14												
* 20*	186	188	193	195	202	204	209	211	187	190	191	194	197	&
	198	199	200	203	206	207	210							
HEXA20P	MAVART8D	15												
* 21*	188	1	195	12	204	27	211	38	189	191	8	196	198	&
	19	200	23	205	207	34	212							
HEXA20P	MAVART8D	13												
* 22*	142	193	172	216	163	209	184	225	192	166	213	215	148	&
	199	175	220	208	178	222	224							
HEXA20P	MAVART8D	14												
* 23*	193	195	216	218	209	211	225	227	194	213	214	217	199	&
	200	220	221	210	222	223	226							
HEXA20P	MAVART8D	15												
* 24*	195	12	218	49	211	38	227	64	196	214	45	219	200	&
	23	221	56	212	223	60	228							
SHEL06C	ST4340	1												
* 25*	38	40	235	39	230	229								
* 26*	235	40	237	230	231	236								
* 27*	40	42	237	41	232	231								
* 28*	237	42	239	232	233	238								
* 29*	42	44	239	43	234	233								
* 30*	235	237	244	236	241	240								
* 31*	244	237	246	241	242	245								
* 32*	237	239	246	238	243	242								
* 33*	244	246	249	245	248	247								
* 34*	44	102	239	101	250	234								
* 35*	239	102	256	250	251	255								
* 36*	102	104	256	103	252	251								
* 37*	256	104	258	252	253	257								
* 38*	104	106	258	105	254	253								
* 39*	239	256	246	255	259	243								
* 40*	246	256	263	259	260	262								
* 41*	256	258	263	257	261	260								
* 42*	246	263	249	262	264	248								
* 43*	106	159	258	158	265	254								
* 44*	258	159	271	265	266	270								
* 45*	159	161	271	160	267	266								
* 46*	271	161	273	267	268	272								
* 47*	161	163	273	162	269	268								
* 48*	258	271	263	270	274	261								
* 49*	263	271	278	274	275	277								
* 50*	271	273	278	272	276	275								
* 51*	263	278	249	277	279	264								
* 52*	163	209	273	208	280	269								
* 53*	273	209	285	280	281	284								
* 54*	209	211	285	210	282	281								
* 55*	285	211	235	282	283	286								
* 56*	211	38	235	212	229	283								
* 57*	273	285	278	284	287	276								
* 58*	278	285	244	287	288	289								
* 59*	285	235	244	286	240	288								
* 60*	278	244	249	289	247	279								
* 61*	12	14	296	13	291	290								
* 62*	296	14	298	291	292	297								
* 63*	14	16	298	15	293	292								
* 64*	298	16	300	293	294	299								
* 65*	16	18	300	17	295	294								

* 66*	296	298	305	297	302	301
* 67*	305	298	307	302	303	306
* 68*	298	300	307	299	304	303
* 69*	305	307	310	306	309	308
* 70*	18	81	300	80	311	295
* 71*	300	81	317	311	312	316
* 72*	81	83	317	82	313	312
* 73*	317	83	319	313	314	318
* 74*	83	85	319	84	315	314
* 75*	300	317	307	316	320	304
* 76*	307	317	324	320	321	323
* 77*	317	319	324	318	322	321
* 78*	307	324	310	323	325	309
* 79*	85	138	319	137	326	315
* 80*	319	138	332	326	327	331
* 81*	138	140	332	139	328	327
* 82*	332	140	334	328	329	333
* 83*	140	142	334	141	330	329
* 84*	319	332	324	331	335	322
* 85*	324	332	339	335	336	338
* 86*	332	334	339	333	337	336
* 87*	324	339	310	338	340	325
* 88*	142	193	334	192	341	330
* 89*	334	193	346	341	342	345
* 90*	193	195	346	194	343	342
* 91*	346	195	296	343	344	347
* 92*	195	12	296	196	290	344
* 93*	334	346	339	345	348	337
* 94*	339	346	305	348	349	350
* 95*	346	296	305	347	301	349
* 96*	339	305	310	350	308	340

QUAD08E	FICFIBER	2						
* 97*	1	3	27	29	2	19	20	28
* 98*	3	5	29	31	4	20	21	30
* 99*	5	7	31	33	6	21	22	32
100	7	72	33	93	71	22	86	92
101	72	74	93	95	73	86	87	94
102	74	76	95	97	75	87	88	96
103	76	129	97	150	128	88	143	149
104	129	131	150	152	130	143	144	151
105	131	133	152	154	132	144	145	153
106	133	186	154	202	185	145	197	201
107	186	188	202	204	187	197	198	203
108	188	1	204	27	189	198	19	205

TRIA12I	0											
109	352	370	374	249	246	244	354	364	358	248	245	247
110	374	406	440	244	237	235	384	418	398	241	236	240
111	374	370	406	244	246	237	364	380	384	245	242	241
112	370	436	406	246	239	237	394	414	380	243	238	242
113	440	560	578	235	40	38	474	548	488	230	39	229
114	440	406	560	235	237	40	418	458	474	236	231	230
115	406	566	560	237	42	40	454	584	458	232	41	231
116	406	436	566	237	239	42	414	470	454	238	233	232
117	436	574	566	239	44	42	484	544	470	234	43	233
118	352	372	370	249	263	246	356	362	354	264	262	248
119	370	404	436	246	256	239	378	412	394	259	255	243
120	370	372	404	246	263	256	362	382	378	262	260	259
121	372	438	404	263	258	256	396	416	382	261	257	260
122	436	558	574	239	102	44	468	542	484	250	101	234
123	436	404	558	239	256	102	412	452	468	255	251	250
124	404	568	558	256	104	102	456	582	452	252	103	251
125	404	438	568	256	258	104	416	472	456	257	253	252
126	438	576	568	258	106	104	486	546	472	254	105	253
127	352	376	372	249	278	263	360	366	356	279	277	264
128	372	408	438	263	271	258	386	420	396	274	270	261
129	372	376	408	263	278	271	366	390	386	277	275	274
130	376	442	408	278	273	271	400	424	390	276	272	275

131	438	562	576	258	159	106	476	550	486	265	158	254
132	438	408	562	258	271	159	420	460	476	270	266	265
133	408	572	562	271	161	159	464	586	460	267	160	266
134	408	442	572	271	273	161	424	480	464	272	268	267
135	442	580	572	273	163	161	490	554	480	269	162	268
136	352	374	376	249	244	278	358	368	360	247	289	279
137	376	410	442	278	285	273	392	426	400	287	284	276
138	376	374	410	278	244	285	368	388	392	289	288	287
139	374	440	410	244	235	285	398	422	388	240	286	288
140	442	564	580	273	209	163	482	556	490	280	208	269
141	442	410	564	273	285	209	426	466	482	284	281	280
142	410	570	564	285	211	209	462	588	466	282	210	281
143	410	440	570	285	235	211	422	478	462	286	283	282
144	440	578	570	235	38	211	448	552	478	229	212	283
145	369	373	351	307	305	310	363	357	353	306	308	309
146	435	405	369	300	298	307	413	379	393	299	303	304
147	369	405	373	307	298	305	379	383	363	303	302	306
148	405	439	373	298	296	305	417	397	383	297	301	302
149	573	565	435	18	16	300	543	469	483	17	294	295
150	435	565	405	300	16	298	469	453	413	294	293	299
151	565	559	405	16	14	298	583	457	453	15	292	293
152	405	559	439	298	14	296	457	473	417	292	291	297
153	559	577	439	14	12	296	547	487	473	13	290	291
154	371	369	351	324	307	310	361	353	355	323	309	325
155	437	403	371	319	317	324	415	381	395	318	321	322
156	371	403	369	324	317	307	381	377	361	321	320	323
157	403	435	369	317	300	307	411	393	377	316	304	320
158	575	567	437	85	83	319	545	471	485	84	314	315
159	437	567	403	319	83	317	471	455	415	314	313	318
160	567	557	403	83	81	317	581	451	455	82	312	313
161	403	557	435	317	81	300	451	467	411	312	311	316
162	557	573	435	81	18	300	541	483	467	80	295	311
163	375	371	351	339	324	310	365	355	359	338	325	340
164	441	407	375	334	332	339	423	389	399	333	336	337
165	375	407	371	339	332	324	389	385	365	336	335	338
166	407	437	371	332	319	324	419	395	385	331	322	335
167	579	571	441	142	140	334	553	479	489	141	329	330
168	441	571	407	334	140	332	479	463	423	329	328	333
169	571	561	407	140	138	332	585	459	463	139	327	328
170	407	561	437	332	138	319	459	475	419	327	326	331
171	561	575	437	138	85	319	549	485	475	137	315	326
172	373	375	351	305	339	310	367	359	357	350	340	308
173	439	409	373	296	346	305	421	387	397	347	349	301
174	373	409	375	305	346	339	387	391	367	349	348	350
175	409	441	375	346	334	339	425	399	391	345	337	348
176	577	569	439	12	195	296	551	477	487	196	344	290
177	439	569	409	296	195	346	477	461	421	344	343	347
178	569	563	409	195	193	346	587	465	461	194	342	343
179	409	563	441	346	193	334	465	481	425	342	341	345
180	563	579	441	193	142	334	555	489	481	192	330	341

QUAD16I	0												
181	560	578	750	766	40	38	29	27	548	658	674	724	39 &
	35	34	28										
182	566	560	748	750	42	40	31	29	584	656	658	772	41 &
	36	35	30										
183	574	566	762	748	44	42	33	31	544	670	656	720	43 &
	37	36	32										
184	558	574	746	762	102	44	93	33	542	654	670	718	101 &
	98	37	92										
185	568	558	752	746	104	102	95	93	582	660	654	770	103 &
	99	98	94										
186	576	568	764	752	106	104	97	95	546	672	660	722	105 &
	100	99	96										
187	562	576	756	764	159	106	150	97	550	664	672	726	158 &
	155	100	149										
188	572	562	758	756	161	159	152	150	586	666	664	774	160 &
	156	155	151										
189	580	572	768	758	163	161	154	152	554	676	666	730	162 &

PRIS15F	EAU	0												
217	578	560	440	814	796	642	548	474	488	650	624	496	784	& 704
218	560	406	440	796	592	642	458	418	474	624	446	496	684	& 612
219	560	566	406	796	802	592	584	454	458	624	630	446	820	& 680
220	566	436	406	802	638	592	470	414	454	630	492	446	696	& 608
221	566	574	436	802	810	638	544	484	470	630	646	492	780	& 710
222	440	406	374	642	592	538	418	384	398	496	446	432	612	& 524

223 406 370 374 592 534 538 380 364 384 446 428 432 520 &
 504 524
 224 406 436 370 592 638 534 414 394 380 446 492 428 608 &
 596 520
 225 376 370 352 538 534 500 364 354 358 432 428 402 504 &
 510 514
 226 574 558 436 810 794 638 542 468 484 646 622 492 778 &
 694 710
 227 558 404 436 794 590 638 452 412 468 622 444 492 678 &
 606 694
 228 558 568 404 794 804 590 582 456 452 622 632 444 818 &
 682 678
 229 568 438 404 804 640 590 472 416 456 632 494 444 702 &
 610 682
 230 568 576 438 804 812 640 546 486 472 632 648 494 782 &
 712 702
 231 436 404 370 638 590 534 412 378 394 492 444 428 606 &
 518 598
 232 404 372 370 590 536 534 382 362 378 444 430 428 522 &
 502 518
 233 404 438 372 590 640 536 416 396 382 444 494 430 610 &
 600 522
 234 370 372 352 534 536 500 362 356 354 428 430 402 502 &
 512 510
 235 576 562 438 812 798 640 550 476 486 648 626 494 786 &
 706 712
 236 562 408 438 798 594 640 460 420 476 626 448 494 686 &
 614 706
 237 562 572 408 798 808 594 586 464 460 626 636 448 822 &
 690 686
 238 572 442 408 808 644 594 480 424 464 636 498 448 698 &
 618 690
 239 572 580 442 808 816 644 554 490 480 636 652 498 790 &
 716 698
 240 438 408 372 640 594 536 420 386 396 494 448 430 614 &
 526 600
 241 408 376 372 594 540 536 390 366 386 448 434 430 530 &
 506 526
 242 408 442 376 594 644 540 424 400 390 448 498 434 618 &
 604 530
 243 372 376 352 536 540 500 366 360 356 430 434 402 506 &
 516 512
 244 580 564 442 816 800 644 556 482 490 652 628 498 792 &
 700 716
 245 564 410 442 800 596 644 466 426 482 628 450 498 692 &
 620 700
 246 564 570 410 800 806 596 588 462 466 628 634 450 450 824 &
 688 692
 247 570 440 410 806 642 596 478 422 462 634 496 450 708 &
 616 688
 248 570 578 440 806 814 642 552 488 478 634 650 496 788 &
 714 708
 249 462 410 376 644 596 540 426 392 400 498 450 434 620 &
 532 604
 250 410 374 376 596 538 540 388 368 392 450 432 434 528 &
 508 532
 251 410 440 374 596 642 538 422 398 388 450 496 432 616 &
 602 528
 252 376 374 352 540 538 500 368 358 360 434 432 402 508 &
 514 516
 253 814 796 642 1202 1152 1270 784 704 714 920 904 848 1106 &
 1010 1262
 254 796 592 642 1152 950 1270 684 612 704 904 830 848 994 &
 962 1010
 255 796 802 592 1152 1150 950 820 680 684 904 902 830 1252 &
 990 994
 256 802 638 592 1150 1266 950 696 608 680 902 844 830 1006 &
 958 990
 257 802 810 638 1150 1197 1266 780 710 696 902 916 844 1102 &

	1258	1006	
258	642	592	538 1270 950 1176 612 524 602 848 830 840 962 &
	978	1192	
259	592	534	538 950 1172 1176 520 504 524 830 836 840 974 &
	1022	978	
260	592	638	534 950 1266 1172 608 598 520 830 844 836 958 &
	1188	974	
261	538	534	500 1176 1172 1205 504 510 514 840 836 826 1022 &
	1164	1168	
262	810	794	638 1197 1148 1266 778 694 710 916 900 844 1100 &
	1004	1258	
263	794	590	638 1148 948 1266 678 606 694 900 828 844 988 &
	956	1004	
264	794	804	590 1148 1154 948 818 682 678 900 906 828 1250 &
	992	988	
265	804	640	590 1154 1268 948 702 610 682 906 846 828 1008 &
	960	992	
266	804	812	640 1154 1200 1268 782 712 702 906 918 846 1104 &
	1260	1008	
267	638	590	534 1266 948 1172 606 518 598 844 828 836 956 &
	972	1188	
268	590	536	534 948 1174 1172 522 502 518 828 838 836 976 &
	1020	972	
269	590	640	536 948 1268 1174 610 600 522 828 846 838 960 &
	1190	976	
270	534	536	500 1172 1174 1205 502 512 510 836 838 826 1020 &
	1166	1164	
271	812	798	640 1200 1156 1268 786 706 712 918 908 846 1108 &
	1012	1260	
272	798	594	640 1156 952 1268 686 614 706 908 832 846 996 &
	964	1012	
273	798	808	594 1156 1160 952 822 690 686 908 912 832 1254 &
	1000	996	
274	808	644	594 1160 1272 952 698 618 690 912 850 832 1016 &
	968	1000	
275	808	816	644 1160 1207 1272 790 716 698 912 922 850 1112 &
	1264	1016	
276	640	594	536 1268 952 1174 614 526 600 846 832 838 964 &
	980	1190	
277	594	540	536 952 1178 1174 530 506 526 832 842 838 984 &
	1024	980	
278	594	644	540 952 1272 1178 618 604 530 832 850 842 968 &
	1194	984	
279	536	540	500 1174 1178 1205 506 516 512 838 842 826 1024 &
	1170	1166	
280	816	800	644 1207 1162 1272 792 700 716 922 914 850 1114 &
	1018	1264	
281	800	596	644 1162 954 1272 692 620 700 914 834 850 1002 &
	970	1018	
282	800	806	596 1162 1158 954 824 688 692 914 910 834 1256 &
	998	1002	
283	806	642	596 1158 1270 954 708 616 688 910 848 834 1014 &
	966	998	
284	806	814	642 1158 1202 1270 788 714 708 910 920 848 1110 &
	1262	1014	
285	644	596	540 1272 954 1178 620 532 604 850 834 842 970 &
	986	1194	
286	596	538	540 954 1176 1178 528 508 532 834 840 842 982 &
	1026	986	
287	596	642	538 954 1270 1176 616 602 528 834 848 840 966 &
	1192	982	
288	540	538	500 1178 1176 1205 508 514 516 842 840 826 1026 &
	1168	1170	
289	813	795	641 577 559 439 783 703 713 649 623 495 547 &
	473	487	
290	795	591	641 559 405 439 683 611 703 623 445 495 457 &
	417	473	
291	795	801	591 559 565 405 819 679 683 623 629 445 583 &
	453	457	

292 801 637 591 565 435 405 695 607 679 629 491 445 469 &
 413 453
 293 801 809 637 565 573 435 779 709 695 629 645 491 543 &
 483 469
 294 641 591 537 439 405 373 611 523 601 495 445 431 417 &
 383 397
 295 591 533 537 405 369 373 519 503 523 445 427 431 379 &
 363 383
 296 591 637 533 405 435 369 607 597 519 445 491 427 413 &
 393 379
 297 537 533 499 373 369 351 503 509 513 431 427 401 363 &
 353 357
 298 809 793 637 573 557 435 777 693 709 645 621 491 541 &
 467 483
 299 793 589 637 557 403 435 677 605 693 621 443 491 451 &
 411 467
 300 793 803 589 557 567 403 817 681 677 621 631 443 581 &
 455 451
 301 803 639 589 567 437 403 701 609 681 631 493 443 471 &
 415 455
 302 803 811 639 567 575 437 781 711 701 631 647 493 545 &
 485 471
 303 637 589 533 435 403 369 605 517 597 491 443 427 411 &
 377 393
 304 589 535 533 403 371 369 521 501 517 443 429 427 381 &
 361 377
 305 589 639 535 403 437 371 609 599 521 443 493 429 415 &
 395 381
 306 533 535 499 369 371 351 501 511 509 427 429 401 361 &
 355 353
 307 811 797 639 575 561 437 785 705 711 647 625 493 549 &
 475 485
 308 797 593 639 561 407 437 685 613 705 625 447 493 459 &
 419 475
 309 797 807 593 561 571 407 821 689 685 625 635 447 585 &
 463 459
 310 807 643 593 571 441 407 697 617 689 635 497 447 479 &
 423 463
 311 807 815 643 571 579 441 789 715 697 635 651 497 553 &
 489 479
 312 639 593 535 437 407 371 613 525 599 493 447 429 419 &
 385 395
 313 593 539 535 407 375 371 529 505 525 447 433 429 389 &
 365 385
 314 593 643 539 407 441 375 617 603 529 447 497 433 423 &
 399 389
 315 535 539 499 371 375 351 505 515 511 429 433 401 365 &
 359 355
 316 815 799 643 579 563 441 791 699 715 651 627 497 555 &
 481 489
 317 799 595 643 563 409 441 691 619 699 627 449 497 465 &
 425 481
 318 799 805 595 563 569 409 823 687 691 627 633 449 587 &
 461 465
 319 805 641 595 569 439 409 707 615 687 633 495 449 477 &
 421 461
 320 805 813 641 569 577 439 787 713 707 633 649 495 551 &
 487 477
 321 643 595 539 441 409 375 619 531 603 497 449 433 425 &
 391 399
 322 595 537 539 409 373 375 527 507 531 449 431 433 387 &
 367 391
 323 595 641 537 409 439 373 615 601 527 449 495 431 421 &
 397 387
 324 539 537 499 375 373 351 507 513 515 433 431 401 367 &
 357 359
 325 1201 1151 1269 813 795 641 1105 1009 1261 919 903 847 783 &
 703 713
 326 1151 949 1269 795 591 641 993 961 1009 903 829 847 683 &

361 1202 1222 814 1152 1136 796 1242 944 920 1106 1054 784 1070 &
 928 904
 362 1152 1136 796 1150 1132 802 1070 928 904 1252 1238 820 1060 &
 926 902
 363 1150 1132 802 1197 1218 810 1060 926 902 1102 1044 780 1234 &
 940 916
 364 1197 1218 810 1148 1134 794 1234 940 916 1100 1052 778 1068 &
 924 900
 365 1148 1134 794 1154 1138 804 1068 924 900 1250 1236 818 1062 &
 930 906
 366 1154 1138 804 1200 1220 812 1062 930 906 1104 1046 782 1240 &
 942 918
 367 1200 1220 812 1156 1140 798 1240 942 918 1108 1056 786 1072 &
 934 908
 368 1156 1140 798 1160 1144 808 1072 934 908 1254 1244 822 1066 &
 936 912
 369 1160 1144 808 1207 1224 816 1066 936 912 1112 1050 790 1248 &
 946 922
 370 1207 1224 816 1162 1146 800 1248 946 922 1114 1058 792 1074 &
 938 914
 371 1162 1146 800 1158 1142 806 1074 938 914 1256 1246 824 1064 &
 932 910
 372 1158 1142 806 1202 1222 814 1064 932 910 1110 1048 788 1242 &
 944 920
 373 1222 1213 766 1136 1120 750 1184 896 872 1054 1030 724 1080 &
 881 856
 374 1136 1120 750 1132 1118 748 1080 881 856 1238 1228 772 1078 &
 875 852
 375 1132 1118 748 1218 1209 762 1078 875 852 1044 1036 720 1180 &
 892 868
 376 1218 1209 762 1134 1116 746 1180 892 868 1052 1028 718 1076 &
 877 854
 377 1134 1116 746 1138 1122 752 1076 877 854 1236 1226 770 1082 &
 879 864
 378 1138 1122 752 1220 1211 764 1082 879 864 1046 1037 722 1182 &
 894 870
 379 1220 1211 764 1140 1124 756 1182 894 870 1056 1032 726 1086 &
 883 858
 380 1140 1124 756 1144 1128 758 1086 883 858 1244 1230 774 1090 &
 889 862
 381 1144 1128 758 1224 1215 768 1090 889 862 1050 1042 730 1186 &
 898 874
 382 1224 1215 768 1146 1130 760 1186 898 874 1058 1034 732 1088 &
 887 860
 383 1146 1130 760 1142 1126 754 1088 887 860 1246 1232 776 1084 &
 885 866
 384 1142 1126 754 1222 1213 766 1084 885 866 1048 1040 728 1184 &
 896 872
 385 1214 1221 765 1119 1135 749 1183 871 895 1029 1053 723 1079 &
 855 882
 386 1119 1135 749 1117 1131 747 1079 855 882 1227 1237 771 1077 &
 851 876
 387 1117 1131 747 1210 1217 761 1077 851 876 1035 1043 719 1179 &
 867 891
 388 1210 1217 761 1115 1133 745 1179 867 891 1027 1051 717 1075 &
 853 878
 389 1115 1133 745 1121 1137 751 1075 853 878 1225 1235 769 1081 &
 863 880
 390 1121 1137 751 1212 1219 763 1081 863 880 1038 1045 721 1181 &
 869 893
 391 1212 1219 763 1123 1139 755 1181 869 893 1031 1055 725 1085 &
 857 884
 392 1123 1139 755 1127 1143 757 1085 857 884 1229 1243 773 1089 &
 861 890
 393 1127 1143 757 1216 1223 767 1089 861 890 1041 1049 729 1185 &
 873 897
 394 1216 1223 767 1129 1145 759 1185 873 897 1033 1057 731 1087 &
 859 888
 395 1129 1145 759 1125 1141 753 1087 859 888 1231 1245 775 1083 &

	865	886	
396	1125	1141	753 1214 1221 765 1083 865 886 1039 1047 727 1183 &
	871	895	
397	1221	1201	813 1135 1151 795 1241 919 943 1053 1105 783 1069 &
	903	927	
398	1135	1151	795 1131 1149 801 1069 903 927 1237 1251 819 1059 &
	901	925	
399	1131	1149	801 1217 1196 809 1059 901 925 1043 1101 779 1233 &
	915	939	
400	1217	1196	809 1133 1147 793 1233 915 939 1051 1099 777 1067 &
	899	923	
401	1133	1147	793 1137 1153 803 1067 899 923 1235 1249 817 1061 &
	905	929	
402	1137	1153	803 1219 1199 811 1061 905 929 1045 1103 781 1239 &
	917	941	
403	1219	1199	811 1139 1155 797 1239 917 941 1055 1107 785 1071 &
	907	933	
404	1139	1155	797 1143 1159 807 1071 907 933 1243 1253 821 1065 &
	911	935	
405	1143	1159	807 1223 1206 815 1065 911 935 1049 1111 789 1247 &
	921	945	
406	1223	1206	815 1145 1161 799 1247 921 945 1057 1113 791 1073 &
	913	937	
407	1145	1161	799 1141 1157 805 1073 913 937 1245 1255 823 1063 &
	909	931	
408	1141	1157	805 1221 1201 813 1063 909 931 1047 1109 787 1241 &
	919	943	

	HEXA20F	EAU	0	
409	766	750	578 560 1222 1136 814 796 724 674 658 548 872 &	
	856	650	624 1054 944 928 784	
410	750	748	560 566 1136 1132 796 802 772 658 656 584 856 &	
	852	624	630 1238 928 926 820	
411	748	762	566 574 1132 1218 802 810 720 656 670 544 852 &	
	868	630	646 1044 926 940 780	
412	762	746	574 558 1218 1134 810 794 718 670 654 542 868 &	
	854	646	622 1052 940 924 778	
413	746	752	558 568 1134 1138 794 804 770 654 660 582 854 &	
	864	622	632 1236 924 930 818	
414	752	764	568 576 1138 1220 804 812 722 660 672 546 864 &	
	870	632	648 1046 930 942 782	
415	764	756	576 562 1220 1140 812 798 726 672 664 550 870 &	
	858	648	626 1056 942 934 786	
416	756	758	562 572 1140 1144 798 808 774 664 666 586 858 &	
	862	626	636 1244 934 936 822	
417	758	768	572 580 1144 1224 808 816 730 666 676 554 862 &	
	874	636	652 1050 936 946 790	
418	768	760	580 564 1224 1146 816 800 732 676 668 556 874 &	
	860	652	628 1058 946 938 792	
419	760	754	564 570 1146 1142 800 806 776 668 662 588 860 &	
	866	628	634 1246 938 932 824	
420	754	766	570 578 1142 1222 806 814 728 662 674 552 866 &	
	872	634	650 1048 932 944 788	
421	1214	1119	765 749 1213 1120 766 750 1029 895 882 723 1203 &	
	1094	743	734 1030 896 881 724	
422	1119	1117	749 747 1120 1118 750 748 1227 882 876 771 1094 &	
	1091	734	737 1228 881 875 772	
423	1117	1210	747 761 1118 1209 748 762 1035 876 891 719 1091 &	
	1195	737	741 1036 875 892 720	
424	1210	1115	761 745 1209 1116 762 746 1027 891 878 717 1195 &	
	1092	741	733 1028 892 877 718	
425	1115	1121	745 751 1116 1122 746 752 1225 878 880 769 1092 &	
	1093	733	738 1226 877 879 770	
426	1121	1212	751 763 1122 1211 752 764 1038 880 893 721 1093 &	
	1198	738	742 1037 879 894 722	
427	1212	1123	763 755 1211 1124 764 756 1031 893 884 725 1198 &	
	1095	742	735 1032 894 883 726	
428	1123	1127	755 757 1124 1128 756 758 1229 884 890 773 1095 &	
	1098	735	740 1230 883 889 774	

429 1127 1216 757 767 1128 1215 758 768 1041 890 897 729 1098 &
 1208 740 744 1042 889 898 730
 430 1216 1129 767 759 1215 1130 768 760 1033 897 888 731 1208 &
 1097 744 736 1034 898 887 732
 431 1129 1125 759 753 1130 1126 760 754 1231 888 886 775 1097 &
 1096 736 739 1232 887 885 776
 432 1125 1214 753 765 1126 1213 754 766 1039 886 895 727 1096 &
 1203 739 743 1040 885 896 728
 433 1221 1135 813 795 765 749 577 559 1053 943 927 783 871 &
 855 649 623 723 673 657 547
 434 1135 1131 795 801 749 747 559 565 1237 927 925 819 855 &
 851 623 629 771 657 655 583
 435 1131 1217 801 809 747 761 565 573 1043 925 939 779 851 &
 867 629 645 719 655 669 543
 436 1217 1133 809 793 761 745 573 557 1051 939 923 777 867 &
 853 645 621 717 669 653 541
 437 1133 1137 793 803 745 751 557 567 1235 923 929 817 853 &
 863 621 631 769 653 659 581
 438 1137 1219 803 811 751 763 567 575 1045 929 941 781 863 &
 869 631 647 721 659 671 545
 439 1219 1139 811 797 763 755 575 561 1055 941 933 785 869 &
 857 647 625 725 671 663 549
 440 1139 1143 797 807 755 757 561 571 1243 933 935 821 857 &
 861 625 635 773 663 665 585
 441 1143 1223 807 815 757 767 571 579 1049 935 945 789 861 &
 873 635 651 729 665 675 553
 442 1223 1145 815 799 767 759 579 563 1057 945 937 791 873 &
 859 651 627 731 675 667 555
 443 1145 1141 799 805 759 753 563 569 1245 937 931 823 859 &
 865 627 633 775 667 661 587
 444 1141 1221 805 813 753 765 569 577 1047 931 943 787 865 &
 871 633 649 727 661 673 551

PRIS15F EAU 0
 445 1202 1152 1270 1601 1577 1609 1106 1010 1262 1326 1302 1358 1585 &
 1490 1613
 446 1152 950 1270 1577 1374 1609 994 962 1010 1302 1276 1358 1454 &
 1434 1490
 447 1152 1150 950 1577 1559 1374 1252 990 994 1302 1300 1276 1567 &
 1446 1454
 448 1150 1266 950 1559 1569 1374 1006 958 990 1300 1354 1276 1486 &
 1430 1446
 449 1150 1197 1266 1559 1549 1569 1102 1258 1006 1300 1322 1354 1553 &
 1555 1486
 450 1270 950 1176 1609 1374 1617 962 978 1192 1358 1276 1350 1434 &
 1418 1631
 451 950 1172 1176 1374 1581 1617 974 1022 978 1276 1346 1350 1414 &
 1462 1418
 452 950 1266 1172 1374 1569 1581 958 1188 974 1276 1354 1346 1430 &
 1575 1414
 453 1176 1172 1205 1617 1581 1629 1022 1164 1168 1350 1346 1370 1462 &
 1587 1625
 454 1197 1148 1266 1549 1557 1569 1100 1004 1258 1322 1298 1354 1551 &
 1484 1555
 455 1148 948 1266 1557 1372 1569 988 956 1004 1298 1274 1354 1444 &
 1428 1484
 456 1148 1154 948 1557 1579 1372 1250 992 988 1298 1304 1274 1565 &
 1452 1444
 457 1154 1268 948 1579 1607 1372 1008 960 992 1304 1356 1274 1488 &
 1432 1452
 458 1154 1200 1268 1579 1599 1607 1104 1260 1008 1304 1324 1356 1583 &
 1611 1488
 459 1266 948 1172 1569 1372 1581 956 972 1188 1354 1274 1346 1428 &
 1412 1575
 460 948 1174 1172 1372 1615 1581 976 1020 972 1274 1348 1346 1416 &
 1460 1412
 461 948 1268 1174 1372 1607 1615 960 1190 976 1274 1356 1348 1432 &
 1627 1416
 462 1172 1174 1205 1581 1615 1629 1020 1166 1164 1346 1348 1370 1460 &

1623 1587
 463 1200 1156 1268 1599 1641 1607 1108 1012 1260 1324 1306 1356 1635 &
 1492 1611
 464 1156 952 1268 1641 1376 1607 996 964 1012 1306 1278 1356 1456 &
 1436 1492
 465 1156 1160 952 1641 1661 1376 1254 1000 996 1306 1310 1278 1653 &
 1448 1456
 466 1160 1272 952 1661 1651 1376 1016 968 1000 1310 1360 1278 1496 &
 1440 1448
 467 1160 1207 1272 1661 1671 1651 1112 1264 1016 1310 1328 1360 1667 &
 1665 1496
 468 1268 952 1174 1607 1376 1615 964 980 1190 1356 1278 1348 1436 &
 1420 1627
 469 952 1178 1174 1376 1639 1615 984 1024 980 1278 1352 1348 1424 &
 1464 1420
 470 952 1272 1178 1376 1651 1639 968 1194 984 1278 1360 1352 1440 &
 1645 1424
 471 1174 1178 1205 1615 1639 1629 1024 1170 1166 1348 1352 1370 1464 &
 1633 1623
 472 1207 1162 1272 1671 1663 1651 1114 1018 1264 1328 1312 1360 1669 &
 1498 1665
 473 1162 954 1272 1663 1378 1651 1002 970 1018 1312 1280 1360 1450 &
 1442 1498
 474 1162 1158 954 1663 1643 1378 1256 998 1002 1312 1308 1280 1655 &
 1458 1450
 475 1158 1270 954 1643 1609 1378 1014 966 998 1308 1358 1280 1494 &
 1438 1458
 476 1158 1202 1270 1643 1601 1609 1110 1262 1014 1308 1326 1358 1637 &
 1613 1494
 477 1272 954 1178 1651 1378 1639 970 986 1194 1360 1280 1352 1442 &
 1426 1645
 478 954 1176 1178 1378 1617 1639 982 1026 986 1280 1350 1352 1422 &
 1466 1426
 479 954 1270 1176 1378 1609 1617 966 1192 982 1280 1358 1350 1438 &
 1631 1422
 480 1178 1176 1205 1639 1617 1629 1026 1168 1170 1352 1350 1370 1466 &
 1625 1633
 481 1600 1576 1608 1201 1151 1269 1584 1489 1612 1325 1301 1357 1105 &
 1009 1261
 482 1576 1373 1608 1151 949 1269 1453 1433 1489 1301 1275 1357 993 &
 961 1009
 483 1576 1558 1373 1151 1149 949 1566 1445 1453 1301 1299 1275 1251 &
 989 993
 484 1558 1568 1373 1149 1265 949 1485 1429 1445 1299 1353 1275 1005 &
 957 989
 485 1558 1548 1568 1149 1196 1265 1552 1554 1485 1299 1321 1353 1101 &
 1257 1005
 486 1608 1373 1616 1269 949 1175 1433 1417 1630 1357 1275 1349 961 &
 977 1191
 487 1373 1580 1616 949 1171 1175 1413 1461 1417 1275 1345 1349 973 &
 1021 977
 488 1373 1568 1580 949 1265 1171 1429 1574 1413 1275 1353 1345 957 &
 1187 973
 489 1616 1580 1628 1175 1171 1204 1461 1586 1624 1349 1345 1369 1021 &
 1163 1167
 490 1548 1556 1568 1196 1147 1265 1550 1483 1554 1321 1297 1353 1099 &
 1003 1257
 491 1556 1371 1568 1147 947 1265 1443 1427 1483 1297 1273 1353 987 &
 955 1003
 492 1556 1578 1371 1147 1153 947 1564 1451 1443 1297 1303 1273 1249 &
 991 987
 493 1578 1606 1371 1153 1267 947 1487 1431 1451 1303 1355 1273 1007 &
 959 991
 494 1578 1598 1606 1153 1199 1267 1582 1610 1487 1303 1323 1355 1103 &
 1259 1007
 495 1568 1371 1580 1265 947 1171 1427 1411 1574 1353 1273 1345 955 &
 971 1187
 496 1371 1614 1580 947 1173 1171 1415 1459 1411 1273 1347 1345 975 &
 1019 971

497 1371 1606 1614 947 1267 1173 1431 1626 1415 1273 1355 1347 959 &
 1189 975
 498 1580 1614 1628 1171 1173 1204 1459 1622 1586 1345 1347 1369 1019 &
 1165 1163
 499 1598 1640 1606 1199 1155 1267 1634 1491 1610 1323 1305 1355 1107 &
 1011 1259
 500 1640 1375 1606 1155 951 1267 1455 1435 1491 1305 1277 1355 995 &
 963 1011
 501 1640 1660 1375 1155 1159 951 1652 1447 1455 1305 1309 1277 1253 &
 999 995
 502 1660 1650 1375 1159 1271 951 1495 1439 1447 1309 1359 1277 1015 &
 967 999
 503 1660 1670 1650 1159 1206 1271 1666 1664 1495 1309 1327 1359 1111 &
 1263 1015
 504 1606 1375 1614 1267 951 1173 1435 1419 1626 1355 1277 1347 963 &
 979 1189
 505 1375 1638 1614 951 1177 1173 1423 1463 1419 1277 1351 1347 983 &
 1023 979
 506 1375 1650 1638 951 1271 1177 1439 1644 1423 1277 1359 1351 967 &
 1193 983
 507 1614 1638 1628 1173 1177 1204 1463 1632 1622 1347 1351 1369 1023 &
 1169 1165
 508 1670 1662 1650 1206 1161 1271 1668 1497 1664 1327 1311 1359 1113 &
 1017 1263
 509 1662 1377 1650 1161 953 1271 1449 1441 1497 1311 1279 1359 1001 &
 969 1017
 510 1662 1642 1377 1161 1157 953 1654 1457 1449 1311 1307 1279 1255 &
 997 1001
 511 1642 1608 1377 1157 1269 953 1493 1437 1457 1307 1357 1279 1013 &
 965 997
 512 1642 1600 1608 1157 1201 1269 1636 1612 1493 1307 1325 1357 1109 &
 1261 1013
 513 1650 1377 1638 1271 953 1177 1441 1425 1644 1359 1279 1351 969 &
 985 1193
 514 1377 1616 1638 953 1175 1177 1421 1465 1425 1279 1349 1351 981 &
 1025 985
 515 1377 1608 1616 953 1269 1175 1437 1630 1421 1279 1357 1349 965 &
 1191 981
 516 1638 1616 1628 1177 1175 1204 1465 1624 1632 1351 1349 1369 1025 &
 1167 1169

HEXA20F	EAU	0
517	1222 1136 1202 1152 1592 1561 1601 1577 1054 1242 1070 1106 1318 &	
	1292 1326 1302 1474 1605 1571 1585	
518	1136 1132 1152 1150 1561 1537 1577 1559 1238 1070 1060 1252 1292 &	
	1282 1302 1300 1543 1571 1547 1567	
519	1132 1218 1150 1197 1537 1529 1559 1549 1044 1060 1234 1102 1282 &	
	1314 1300 1322 1470 1547 1539 1553	
520	1218 1134 1197 1148 1529 1535 1549 1557 1052 1234 1068 1100 1314 &	
	1290 1322 1298 1468 1539 1545 1551	
521	1134 1138 1148 1154 1535 1563 1557 1579 1236 1068 1062 1250 1290 &	
	1284 1298 1304 1541 1545 1573 1565	
522	1138 1220 1154 1200 1563 1590 1579 1599 1046 1062 1240 1104 1284 &	
	1316 1304 1324 1472 1573 1603 1583	
523	1220 1140 1200 1156 1590 1657 1599 1641 1056 1240 1072 1108 1316 &	
	1294 1324 1306 1476 1603 1649 1635	
524	1140 1144 1156 1160 1657 1685 1641 1661 1244 1072 1066 1254 1294 &	
	1288 1306 1310 1677 1649 1673 1653	
525	1144 1224 1160 1207 1685 1691 1661 1671 1050 1066 1248 1112 1288 &	
	1320 1310 1328 1480 1673 1681 1667	
526	1224 1146 1207 1162 1691 1683 1671 1663 1058 1248 1074 1114 1320 &	
	1296 1328 1312 1482 1681 1675 1669	
527	1146 1142 1162 1158 1683 1659 1663 1643 1246 1074 1064 1256 1296 &	
	1286 1312 1308 1679 1675 1647 1655	
528	1142 1222 1158 1202 1659 1592 1643 1601 1048 1064 1242 1110 1286 &	
	1318 1308 1326 1478 1647 1605 1637	
529	1596 1518 1213 1120 1592 1561 1222 1136 1396 1365 1334 1030 1621 &	
	1388 1184 1080 1474 1318 1292 1054	
530	1518 1508 1120 1118 1561 1537 1136 1132 1533 1334 1330 1228 1388 &	

1386 1080 1078 1543 1292 1282 1238
 531 1508 1524 1118 1209 1537 1529 1132 1218 1402 1330 1361 1036 1386 &
 1527 1078 1180 1470 1282 1314 1044
 532 1524 1516 1209 1116 1529 1535 1218 1134 1400 1361 1332 1028 1527 &
 1384 1180 1076 1468 1314 1290 1052
 533 1516 1510 1116 1122 1535 1563 1134 1138 1531 1332 1336 1226 1384 &
 1380 1076 1082 1541 1290 1284 1236
 534 1510 1594 1122 1211 1563 1590 1138 1220 1403 1336 1363 1037 1380 &
 1619 1082 1182 1472 1284 1316 1046
 535 1594 1520 1211 1124 1590 1657 1220 1140 1398 1363 1340 1032 1619 &
 1390 1182 1086 1476 1316 1294 1056
 536 1520 1514 1124 1128 1657 1685 1140 1144 1687 1340 1344 1230 1390 &
 1392 1086 1090 1677 1294 1288 1244
 537 1514 1694 1128 1215 1685 1691 1144 1224 1408 1344 1367 1042 1392 &
 1693 1090 1186 1480 1288 1320 1050
 538 1694 1522 1215 1130 1691 1683 1224 1146 1410 1367 1342 1034 1693 &
 1394 1186 1088 1482 1320 1296 1058
 539 1522 1512 1130 1126 1683 1659 1146 1142 1689 1342 1338 1232 1394 &
 1382 1088 1084 1679 1296 1286 1246
 540 1512 1596 1126 1213 1659 1592 1142 1222 1406 1338 1365 1040 1382 &
 1621 1084 1184 1478 1286 1318 1048
 541 1597 1517 1214 1119 1596 1518 1213 1120 1395 1366 1333 1029 1593 &
 1501 1203 1094 1396 1365 1334 1030
 542 1517 1507 1119 1117 1518 1508 1120 1118 1532 1333 1329 1227 1501 &
 1500 1094 1091 1533 1334 1330 1228
 543 1507 1525 1117 1210 1508 1524 1118 1209 1401 1329 1362 1035 1500 &
 1523 1091 1195 1402 1330 1361 1036
 544 1525 1515 1210 1115 1524 1516 1209 1116 1399 1362 1331 1027 1523 &
 1499 1195 1092 1400 1361 1332 1028
 545 1515 1509 1115 1121 1516 1510 1116 1122 1530 1331 1335 1225 1499 &
 1502 1092 1093 1531 1332 1336 1226
 546 1509 1595 1121 1212 1510 1594 1122 1211 1404 1335 1364 1038 1502 &
 1588 1093 1198 1403 1336 1363 1037
 547 1595 1519 1212 1123 1594 1520 1211 1124 1397 1364 1339 1031 1588 &
 1504 1198 1095 1398 1363 1340 1032
 548 1519 1513 1123 1127 1520 1514 1124 1128 1686 1339 1343 1229 1504 &
 1505 1095 1098 1687 1340 1344 1230
 549 1513 1695 1127 1216 1514 1694 1128 1215 1407 1343 1368 1041 1505 &
 1696 1098 1208 1408 1344 1367 1042
 550 1695 1521 1216 1129 1694 1522 1215 1130 1409 1368 1341 1033 1696 &
 1506 1208 1097 1410 1367 1342 1034
 551 1521 1511 1129 1125 1522 1512 1130 1126 1688 1341 1337 1231 1506 &
 1503 1097 1096 1689 1342 1338 1232
 552 1511 1597 1125 1214 1512 1596 1126 1213 1405 1337 1366 1039 1503 &
 1593 1096 1203 1406 1338 1365 1040
 553 1591 1560 1221 1135 1597 1517 1214 1119 1473 1317 1291 1053 1620 &
 1387 1183 1079 1395 1366 1333 1029
 554 1560 1536 1135 1131 1517 1507 1119 1117 1542 1291 1281 1237 1387 &
 1385 1079 1077 1532 1333 1329 1227
 555 1536 1528 1131 1217 1507 1525 1117 1210 1469 1281 1313 1043 1385 &
 1526 1077 1179 1401 1329 1362 1035
 556 1528 1534 1217 1133 1525 1515 1210 1115 1467 1313 1289 1051 1526 &
 1383 1179 1075 1399 1362 1331 1027
 557 1534 1562 1133 1137 1515 1509 1115 1121 1540 1289 1283 1235 1383 &
 1379 1075 1081 1530 1331 1335 1225
 558 1562 1589 1137 1219 1509 1595 1121 1212 1471 1283 1315 1045 1379 &
 1618 1081 1181 1404 1335 1364 1038
 559 1589 1656 1219 1139 1595 1519 1212 1123 1475 1315 1293 1055 1618 &
 1389 1181 1085 1397 1364 1339 1031
 560 1656 1684 1139 1143 1519 1513 1123 1127 1676 1293 1287 1243 1389 &
 1391 1085 1089 1686 1339 1343 1229
 561 1684 1690 1143 1223 1513 1695 1127 1216 1479 1287 1319 1049 1391 &
 1692 1089 1185 1407 1343 1368 1041
 562 1690 1682 1223 1145 1695 1521 1216 1129 1481 1319 1295 1057 1692 &
 1393 1185 1087 1409 1368 1341 1033
 563 1682 1658 1145 1141 1521 1511 1129 1125 1678 1295 1285 1245 1393 &
 1381 1087 1083 1688 1341 1337 1231
 564 1658 1591 1141 1221 1511 1597 1125 1214 1477 1285 1317 1047 1381 &
 1620 1083 1183 1405 1337 1366 1039

565 1591 1560 1600 1576 1221 1135 1201 1151 1473 1604 1570 1584 1317 &
 1291 1325 1301 1053 1241 1069 1105
 566 1560 1536 1576 1558 1135 1131 1151 1149 1542 1570 1546 1566 1291 &
 1281 1301 1299 1237 1069 1059 1251
 567 1536 1528 1558 1548 1131 1217 1149 1196 1469 1546 1538 1552 1281 &
 1313 1299 1321 1043 1059 1233 1101
 568 1528 1534 1548 1556 1217 1133 1196 1147 1467 1538 1544 1550 1313 &
 1289 1321 1297 1051 1233 1067 1099
 569 1534 1562 1556 1578 1133 1137 1147 1153 1540 1544 1572 1564 1289 &
 1283 1297 1303 1235 1067 1061 1249
 570 1562 1589 1578 1598 1137 1219 1153 1199 1471 1572 1602 1582 1283 &
 1315 1303 1323 1045 1061 1239 1103
 571 1589 1656 1598 1640 1219 1139 1199 1155 1475 1602 1648 1634 1315 &
 1293 1323 1305 1055 1239 1071 1107
 572 1656 1684 1640 1660 1139 1143 1155 1159 1676 1648 1672 1652 1293 &
 1287 1305 1309 1243 1071 1065 1253
 573 1684 1690 1660 1670 1143 1223 1159 1206 1479 1672 1680 1666 1287 &
 1319 1309 1327 1049 1065 1247 1111
 574 1690 1682 1670 1662 1223 1145 1206 1161 1481 1680 1674 1668 1319 &
 1295 1327 1311 1057 1247 1073 1113
 575 1682 1658 1662 1642 1145 1141 1161 1157 1678 1674 1646 1654 1295 &
 1285 1311 1307 1245 1073 1063 1255
 576 1658 1591 1642 1600 1141 1221 1157 1201 1477 1646 1604 1636 1285 &
 1317 1307 1325 1047 1063 1241 1109

TRIA06R EAU 3
 577 1601 1577 1609 1585 1490 1613
 578 1609 1577 1374 1490 1454 1434
 579 1577 1559 1374 1567 1446 1454
 580 1374 1559 1569 1446 1486 1430
 581 1559 1549 1569 1553 1555 1486
 582 1609 1374 1617 1434 1418 1631
 583 1617 1374 1581 1418 1414 1462
 584 1374 1569 1581 1430 1575 1414
 585 1617 1581 1629 1462 1587 1625
 586 1549 1557 1569 1551 1484 1555
 587 1569 1557 1372 1484 1444 1428
 588 1557 1579 1372 1565 1452 1444
 589 1372 1579 1607 1452 1488 1432
 590 1579 1599 1607 1583 1611 1488
 591 1569 1372 1581 1428 1412 1575
 592 1581 1372 1615 1412 1416 1460
 593 1372 1607 1615 1432 1627 1416
 594 1581 1615 1629 1460 1623 1587
 595 1599 1641 1607 1635 1492 1611
 596 1607 1641 1376 1492 1456 1436
 597 1641 1661 1376 1653 1448 1456
 598 1376 1661 1651 1448 1496 1440
 599 1661 1671 1651 1667 1665 1496
 600 1607 1376 1615 1436 1420 1627
 601 1615 1376 1639 1420 1424 1464
 602 1376 1651 1639 1440 1645 1424
 603 1615 1639 1629 1464 1633 1623
 604 1671 1663 1651 1669 1498 1665
 605 1651 1663 1378 1498 1450 1442
 606 1663 1643 1378 1655 1458 1450
 607 1378 1643 1609 1458 1494 1438
 608 1643 1601 1609 1637 1613 1494
 609 1651 1378 1639 1442 1426 1645
 610 1639 1378 1617 1426 1422 1466
 611 1378 1609 1617 1438 1631 1422
 612 1639 1617 1629 1466 1625 1633
 613 1600 1576 1608 1584 1489 1612
 614 1608 1576 1373 1489 1453 1433
 615 1576 1558 1373 1566 1445 1453
 616 1373 1558 1568 1445 1485 1429
 617 1558 1548 1568 1552 1554 1485
 618 1608 1373 1616 1433 1417 1630
 619 1616 1373 1580 1417 1413 1461

620 1373 1568 1580 1429 1574 1413
 621 1616 1580 1628 1461 1586 1624
 622 1548 1556 1568 1550 1483 1554
 623 1568 1556 1371 1483 1443 1427
 624 1556 1578 1371 1564 1451 1443
 625 1371 1578 1606 1451 1487 1431
 626 1578 1598 1606 1582 1610 1487
 627 1568 1371 1580 1427 1411 1574
 628 1580 1371 1614 1411 1415 1459
 629 1371 1606 1614 1431 1626 1415
 630 1580 1614 1628 1459 1622 1586
 631 1598 1640 1606 1634 1491 1610
 632 1606 1640 1375 1491 1455 1435
 633 1640 1660 1375 1652 1447 1455
 634 1375 1660 1650 1447 1495 1439
 635 1660 1670 1650 1666 1664 1495
 636 1606 1375 1614 1435 1419 1626
 637 1614 1375 1638 1419 1423 1463
 638 1375 1650 1638 1439 1644 1423
 639 1614 1638 1628 1463 1632 1622
 640 1670 1662 1650 1668 1497 1664
 641 1650 1662 1377 1497 1449 1441
 642 1662 1642 1377 1654 1457 1449
 643 1377 1642 1608 1457 1493 1437
 644 1642 1600 1608 1636 1612 1493
 645 1650 1377 1638 1441 1425 1644
 646 1638 1377 1616 1425 1421 1465
 647 1377 1608 1616 1437 1630 1421
 648 1638 1616 1628 1465 1624 1632

QUAD08R EAU 3

649 1592 1561 1601 1577 1474 1605 1571 1585
 650 1561 1537 1577 1559 1543 1571 1547 1567
 651 1537 1529 1559 1549 1470 1547 1539 1553
 652 1529 1535 1549 1557 1468 1539 1545 1551
 653 1535 1563 1557 1579 1541 1545 1573 1565
 654 1563 1590 1579 1599 1472 1573 1603 1583
 655 1590 1657 1599 1641 1476 1603 1649 1635
 656 1657 1685 1641 1661 1677 1649 1673 1653
 657 1685 1691 1661 1671 1480 1673 1681 1667
 658 1691 1683 1671 1663 1482 1681 1675 1669
 659 1683 1659 1663 1643 1679 1675 1647 1655
 660 1659 1592 1643 1601 1478 1647 1605 1637
 661 1596 1518 1592 1561 1396 1621 1388 1474
 662 1518 1508 1561 1537 1533 1388 1386 1543
 663 1508 1524 1537 1529 1402 1386 1527 1470
 664 1524 1516 1529 1535 1400 1527 1384 1468
 665 1516 1510 1535 1563 1531 1384 1380 1541
 666 1510 1594 1563 1590 1403 1380 1619 1472
 667 1594 1520 1590 1657 1398 1619 1390 1476
 668 1520 1514 1657 1685 1687 1390 1392 1677
 669 1514 1694 1685 1691 1408 1392 1693 1480
 670 1694 1522 1691 1683 1410 1693 1394 1482
 671 1522 1512 1683 1659 1689 1394 1382 1679
 672 1512 1596 1659 1592 1406 1382 1621 1478
 673 1597 1517 1596 1518 1395 1593 1501 1396
 674 1517 1507 1518 1508 1532 1501 1500 1533
 675 1507 1525 1508 1524 1401 1500 1523 1402
 676 1525 1515 1524 1516 1399 1523 1499 1400
 677 1515 1509 1516 1510 1530 1499 1502 1531
 678 1509 1595 1510 1594 1404 1502 1588 1403
 679 1595 1519 1594 1520 1397 1588 1504 1398
 680 1519 1513 1520 1514 1686 1504 1505 1687
 681 1513 1695 1514 1694 1407 1505 1696 1408
 682 1695 1521 1694 1522 1409 1696 1506 1410
 683 1521 1511 1522 1512 1688 1506 1503 1689
 684 1511 1597 1512 1596 1405 1503 1593 1406
 685 1591 1560 1597 1517 1473 1620 1387 1395
 686 1560 1536 1517 1507 1542 1387 1385 1532

687 1536 1528 1507 1525 1469 1385 1526 1401
688 1528 1534 1525 1515 1467 1526 1383 1399
689 1534 1562 1515 1509 1540 1383 1379 1530
690 1562 1589 1509 1595 1471 1379 1618 1404
691 1589 1656 1595 1519 1475 1618 1389 1397
692 1656 1684 1519 1513 1676 1389 1391 1686
693 1684 1690 1513 1695 1479 1391 1692 1407
694 1690 1682 1695 1521 1481 1692 1393 1409
695 1682 1658 1521 1511 1678 1393 1381 1688
696 1658 1591 1511 1597 1477 1381 1620 1405
697 1600 1576 1591 1560 1584 1604 1570 1473
698 1576 1558 1560 1536 1566 1570 1546 1542
699 1558 1548 1536 1528 1552 1546 1538 1469
700 1548 1556 1528 1534 1550 1538 1544 1467
701 1556 1578 1534 1562 1564 1544 1572 1540
702 1578 1598 1562 1589 1582 1572 1602 1471
703 1598 1640 1589 1656 1634 1602 1648 1475
704 1640 1660 1656 1684 1652 1648 1672 1676
705 1660 1670 1684 1690 1666 1672 1680 1479
706 1670 1662 1690 1682 1668 1680 1674 1481
707 1662 1642 1682 1658 1654 1674 1646 1678
708 1642 1600 1658 1591 1636 1646 1604 1477

END

-27 -1 -1 1 * EXCITATION POTENCIAL.
-1 1 1 * ELECTRODE AT V=0.
-27 34 1 S * HOLDING ROTATIONAL DOF.
-20 34 1 S * HOLDING ROTATIONAL DOF.
-1 34 1 S * HOLDING ROTATIONAL DOF.

LIST OF REFERENCES

1. Sparton of Canada, Ltd, "Depth Compensated Ring-Shell Projector," Technical Information Sheets.
2. Institut Supérieur d'Electronique du Nord (ISEN), "ATILA Finite Element Code for Piezoelectric and Magnetostrictive Transducer Modeling Version 5.02," User's Manual, August 1991. For further information contact Dr. B. Hamonic at ISEN, 41 Blvd Vauban, 59046 Lille, France.
3. C. L. Scandrett and D. R. Canright, "Acoustic Interactions in Arrays of Spherical Elastic Shells," NPS Technical Report NPS-53-90-009, June 1990.
4. Blottman, J. B., "Sparton Ring-Shell Single Element Modeling," Technical Memorandum No. 89-1090, NUWC, New London Laboratory, June 1989.
5. Varadan, V. V., and Varadan, V. K., "Configurations with Finite Numbers of Scatterers - A Self-Consistent T-matrix Approach," *Journal of Acoustical Society of America*, Vol. 70, pp. 213-217, March 1981.
6. A. J. Davies, *The Finite Element Method: A First Approach*, Clarendon Press, Oxford, 1980.
7. O. C. Zienkiewicz and R. L. Taylor, *The Finite Element Method*, McGraw-Hill Book Company, Berkshire, 1989.
8. Roger T. Fenner, *Finite Element Methods for Engineers*, The MacMillan Press Ltd, London, 1975.
9. H. R. Schwarz, *Finite Element Methods*, Academic Press, London, 1988.
10. J. T. Hunt, M. R. Knittel, and D. Barach, "Finite Element Approach to Acoustic Radiation From Elastic Structures," *Journal of Acoustical Society of America*, Vol. 55, pp. 269-280, 1974.
11. O. C. Zienkiewicz and R. F. Newton, "Coupled Vibrations of a Structure Submerged in a Compressible Fluid," *Proceedings of the International Symposium on Finite Element Techniques*, Stuttgart, 1969.
12. Decarpigny, J. N., "Application de la Methode des Elements Finis à L'Etude de Transducteurs Piezoelectriques," These de Doctorat d'Etat, Université des Sciences et Techniques de Lille, 1974.

13. Anifrani, K., "Contribution a l'Etude de Structures Piezoelectriques a l'Aide de La Methode des Elements Finis," These de Doctorat en Sciences des Materiaux, Universite des Sciences et Techniques de Lille, 1988.
14. Bernard Hamonic, Jean Claude Debus, and Jean-Noel Decarpigny, "Analysis of a Radiating Thin-Shell Sonar Transducer Using the Finite-Element Method," *Journal of Acoustical Society of America*, Vol. 86, pp. 1245, 1989.
15. Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, and James V. Sanders, *Fundamental of Acoustics*, 3rd Edition, John Wiley & Sons, New York, 1982.
16. Robert J. Bobber, *Underwater Electroacoustic Measurements*, Peninsula Publishing, California, 1988.
17. B. A. Armstrong and G. W. McMahon, "Modeling and Performance of Ring-Shell Projectors," *IEE Proceedings*, Vol. 131, Part F, No 3, June 1984.
18. Oscar Bryan Wilson, *Introduction to Theory and Design of Sonar Transducers*, Peninsula Publishing, California, 1988.
19. B. A. Auld, *Acoustic Fields and Waves in Solids*, John Wiley & Sons, New York, 1973.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145	2
2.	Library, Code 52 Naval Postgraduate School Monterey, California 93943-5000	2
3.	Professor Anthony A. Atchley, Code PH/Ay Department of Physics Naval Postgraduate School Monterey, California 93943-5000	1
4.	Chairman, Code EC Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943-5000	1
5.	Professor Steven R. Baker, Code PH/Ba Department of Physics Naval Postgraduate School Monterey, California 93943-5000	5
6.	Professor Ron J. Pieper, Code EC/Pr Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943-5000	1
7.	Professor Oscar B. Wilson, Code PH/W1 Department of Physics Naval Postgraduate School Monterey, California 93943-5000	1
8.	Professor David R. Canright, Code MA/Ca Department of Mathematics Naval Postgraduate School Monterey, California 93943-5000	1
9.	Professor Clyde L. Scandrett, Code MA/Sd Department of Mathematics Naval Postgraduate School Monterey, California 93943-5000	1
10.	Mr. George Benthien, Code 712 Naval Command, Control and Ocean Surveillance Center Research, Development, Test and Evaluation Division San Diego, California 92152-5000	1

11.	Mr. Roger Richards, Code 213 Naval Undersea Warfare Center New London, Connecticut 06320	1
12.	Mr. Robert Timme Naval Research Lab-USRD Orlando, Florida 32856	1
13.	Mr. Bernard F. Hamonic Institut Superieur d'Electronique du Nord 41 Blvd Vauban 59046 Lille, Cedex, France	2
14.	Mr. Linas Siurna Manager, Design & Development Sparton of Canada Ltd. P.O. Box 5125 London, Ontario, Canada N6A 4N2	1
15.	Mr. Steve Hughes Defense Research Establishment Atlantic P.O. Box 1012 Dartmouth, Nova Scotia, Canada B2Y 3Z7	1
16.	Instituto de Pesquisas da Marinha, Brazilian Navy 4706 Wisconsin Avenue, NW Washington, DC 20016	1
17.	LCDR Rogerio Nascimento Costa Pinto, Brazilian Navy Instituto de Pesquisas da Marinha 4706 Wisconsin Avenue, NW Washington, DC 20016	2