NTIN071 A&G: Cvičení 3 – Myhill-Nerodeova věta, ekvivalentní a minimální reprezentace, testování vlastností

Vyřešte nejprve 1, 2, 3a-f, 4abc pro A&B, 5 (zbytek je na procvičení).

Příklad 1 (Ekvivalence na slovech). Uveďte příklad ekvivalence \sim na Σ^* , která:

- (a) je pravá a levá kongruence
- (b) je pravá, ale ne levá kongruence
- (c) je konečného indexu

Příklad 2 (Myhill–Nerodeova věta: formulace). Zformuluje Myhill–Nerodeovu větu a připomeňte si myšlenku důkazu (bez nahlížení do poznámek z přednášky).

Příklad 3 (Myhill–Nerodeova věta: aplikace). Pomocí Myhill–Nerodeovy věty dokažte nebo vyvratte, že je jazyk regulární.

(a)
$$L = \{aa, ab, ba\}$$

(e)
$$L = \{a^{2^i} \mid i \ge 0\}$$

(b)
$$L = \{a^i b^j \mid i \le j\}$$

(f)
$$L = \{ww^R \mid w \in \Sigma^*\}$$

(c)
$$L = \{a^i b^j \mid i \ge j\}$$

(g)
$$L = \{a^i b^{i+j} a^j \mid i, j \ge 0\}$$

(d)
$$L_k = \{a^i b^j \mid i \leq j \leq k\}$$
 pro dané $k \in \mathbb{N}$ (h) $L = \{ww \mid w \in \Sigma^*\}$

Příklad 4 (Ekvivalentní a minimální reprezentace). Pro následující automaty:

- (a) Najděte a odstraňte nedosažitelné stavy.
- (b) Určete relaci ekvivalence (nerozlišitelnosti) stavů. (Navíc pro každou rozlišitelnou dvojici stavů najděte všechna nejkratší rozlišující slova.)
- (c) Zkonstruujte jejich redukty.
- (d) Jsou některé dva z automatů ekvivalentní? Použijte algoritmus z přednášky.

A	a	b	В	a	b		\mathbf{C}	a	b
$\rightarrow * 0$	1	2	$\rightarrow * 0$	0	5	-	$\rightarrow 1$	2	3
1	3	0	1	1	3		2	2	4
2	4	5	2	2	7		* 3	3	5
3	0	2	3	3	2		4	2	7
4	2	5	* 4	6	1		* 5	6	3
5	0	3	5	5	1		* 6	6	6
			* 6	4	2		7	7	4
			7	7	0		8	2	3
			· ·				9	9	4

Příklad 5 (Testování vlastností). Mějme konečné automaty A, B. Navrhněte algoritmy, které rozhodnou, zda platí následující vlastnosti. (Umíte odhadnout jejich časovou složitost?)

(a)
$$L(A) = \emptyset$$
, (c) $L(A) \subseteq L(B)$,

(b)
$$L(A) = L(B)$$
, (d) $L(A)$ je konečný.

Příklad 6 (Homomorfismus automatů). Najděte DFA A, B takové, že:

- (a) Jsou oba redukované, a nejsou izomorfní.
- (b) A je homomorfní na B, ale nejsou izomorfní.
- (c) Jsou ekvivalentní, ale ne izomorfní.
- (d) Jsou oba homomorfní na, ale ne izomorfní sC,a zároveň Anení homomorfní na B ani B na A.

$$C = (\{p,q\},\{0,1\},\{((p,0),q),((p,1),p),((q,0),p),((q,1),q)\},p,\{q\})$$

Příklad 7 (Regulární? Zredukuj). Uvažme jazyk L nad abecedou $\{a,b\}$ sestávající ze všech slov, která neobsahují trojici po sobě jdoucích stejných písmen. Rozhodněte, zda je L regulární. Pokud ano, najděte regulární DFA, který ho rozpoznává.