Al6122 Text Data Management & Analysis

Topic: POS and HMM

Topics

- Word classes
- Part of speech tagging
- Use HMMs for POS tagging

Word Classes: Parts of Speech

- Parts of speech (POS)
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc.
 - Also Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tags...

N V	noun verb	chair, bandwidth, pacing study, debate, munch
ADJ ADV	adjectiv adverb	e purple, tall, ridiculous unfortunately, slowly
P PRO DET	preposit pronour determi	n I, me, mine

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a sequence.
 - First step of a vast number of practical tasks
- Information extraction
 - Finding names, e.g., people, organization -- N.
- Machine Translation
 - E.g. result/N, result/V -> kyol-kwa/N, kyol-kwa-lul-ne-da/V
- Parsing
 - Helpful to know parts of speech before you start parsing, e.g. subject-verb-object

WORD	tag
the koala put the keys on the table	DET N V DET N P DET N

POS Tagging: Choosing a Tagset

- To do POS tagging, we need to choose a standard set of tags
 - Could pick very coarse tagsets (e.g., N, V, Adj, Adv.)
 - More commonly used set is the finer grained, "Penn TreeBank tagset", 45 tags

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	66	left quote	or "
POS	possessive ending	's	,,	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

Using the Penn Tagset

- The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
- Except the preposition "to" is just marked "TO".

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), },>
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

POS Tagging

- Words often have more than one POS: back
 - The back door = JJ (adj)
 - On my **back** = NN
 - Win the voters back = RB (adv)
 - Promised to back the bill = VB (verb, base form)
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

How Hard is POS Tagging? Measuring Ambiguity

 Number of word types with different levels of POS ambiguity from the Brown corpus

Many ambiguous words appear frequently in corpus

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2–7 tags)		5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

POS Tagging as Sequence Classification

- Input: We are given a sentence (an "observation" or "sequence of observations")
- Output: What is the best sequence of tags that corresponds to this sequence of observations?

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words $w_1 \dots w_n$.

Road to HMMs

• Out of all sequences of n tags $t_1 \dots t_n$ the single tag sequence such that $P(t_1 \dots t_n | w_1 \dots w_n)$ is highest.

$$\hat{t}_1^n = \arg \max_{t_1^n} P(t_1^n | w_1^n)$$

- Hat ^ means "our estimate of the best one"
- $arg \max_{x} f(x)$ means "the x such that f(x) is maximized"

- But how to compute this value?
 - Bayesian inference: Use Bayes rule to transform this equation into a set of other probabilities that are easier to compute

Using Bayes Rule

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

$$\qquad \qquad \hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and Prior

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \underbrace{P(w_1^n | t_1^n)} \underbrace{P(t_1^n)}$$

The/DT yellow/JJ hat/NN

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

The probability of a word appearing depends only on its own POS tag P (the | DT)

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

The probability of a tag appearing depends only on the previous tag P(NN|JJ)

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

Two Kinds of Probabilities

• Tag transition probabilities $p(t_i|t_{i-1})$

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

- Example: determiners likely to precede adjectives and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
- So we expect P(NN|DT) and P(JJ|DT) to be high, but not P(DT|JJ) to be high
- Compute P(NN|DT) by counting in a labeled corpus:

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two Kinds of Probabilities

• Word likelihood probabilities $p(w_i|t_i)$

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

- Example: VBZ (3rd person singular present verb) likely to be "is"
- Compute P(is|VBZ) by counting in a labeled corpus:

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Example: The Verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag for word "race" in each sentence?

Disambiguating "race"

Assuming tags of other words are known (for this example)

Calculating estimated probability

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$


```
p(Secretariat|NNP) * p(NNP|Start)
* p(is|VBZ) * p(VBZ|NNP)
* p(expected|VBN) * p(VBN|VBZ)
* p(to|TO) * p(TO|VBN)
* p(race|VB) * p(VB|TO)
* p(tomorrow|NR) * p(NR|VB)
```

Example

From a training corpus, we know

$$-P(NN|TO) = .00047$$
 $P(VB|TO) = .83$ $P(race|NN) = .00057$ $-P(race|VB) = .00012$ $P(NR|VB) = .0027$ $P(NR|NN) = .0012$

- How to use the above information to do POS tagging?
 - -P(VB|TO)P(NR|VB)P(race|VB) = .00000027
 - -P(NN|TO)P(NR|NN)P(race|NN) = .00000000032
- So we (correctly) choose <u>verb</u> for <u>race</u> in this sentence

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

Summary

- Parts of speech, Tagsets, and tagging
- Next: HMM Tagging
 - Hidden Markov Models
 - Viterbi decoding
- The next two slides are about linguistics and are for your references

Open and Closed Classes

- Closed class: a small(ish) fixed membership
 - Usually function words (short common words which play a role in grammar)

```
prepositions: on, under, over, ...
particles: up, down, on, off, ...
determiners: a, an, the, ...
pronouns: she, who, I, ..
conjunctions: and, but, or, ...
auxiliary verbs: can, may should, ...
numerals: one, two, three, third, ...
```

- Open class: new ones can be created all the time
 - English has 4: Nouns, Verbs, Adjectives, Adverbs
 - Many languages have these 4, but not all!
 - Nouns are typically where the bulk of the action is with respect to new items

Open Class Words

- Nouns
 - Proper nouns (Boulder, Granby, Beyoncé) -- English capitalizes these.
 - Common nouns (the rest)
 - Count nouns and mass nouns
 - Count: have plurals, get counted: goat/goats, one goat, two goats
 - Mass: don't get counted (snow, salt, communism) (*two snows)
- Adverbs: tend to modify things
 - Unfortunately, John walked home extremely slowly yesterday
 - Directional/locative adverbs (here,home, downhill)
 - Degree adverbs (extremely, very, somewhat)
 - Manner adverbs (slowly, slinkily, delicately)
- Verbs: In English, have morphological affixes (eat/eats/eaten)
 - With differing patterns of regularity

HMM for Ice Cream

- You are a climatologist in the year 2799 studying global warming
- You can't find any records of the weather in Singapore for summer of 2018
- But you find your grandma's diary which lists how many ice-creams she ate every date that summer
- Your job: figure out whether each day was cold/hot

Example of sequence prediction

- Can the number of ice cream eaten be used to predict the weather?
 - Ice cream observation sequence: 2,1,3,2,2...
 - Weather Sequence: H,C,H,H,C...

Hidden Markov Models

- What we've described with these two kinds of probabilities is a Hidden Markov Model (HMM)
 - Transition Probabilities
 - Observation Likelihoods
- Formalizing HMM:
 - A weighted finite-state automaton where each arc is associated with a probability
 - The probability indicates how likely a path is to be taken

Transition Probabilities

- The sum of the probabilities leaving any arc must sum to one
 - For example, $a_{01} + a_{02} + a_{03} = 1$

Observation Likelihoods

Hidden Markov Model

- In part-of-speech tagging
 - The input symbols are words
 - But the hidden states are part-of-speech tags

- It has many other applications
 - Named entity recognition, gene prediction, etc

Hidden Markov Models

- States $Q = q_1, q_2 \dots q_N$; and the start and end states q_0, q_F
- Observations $O = o_1, o_2 \dots o_T$;
 - Each observation is a symbol from a vocabulary $V = \{v_1, v_2, \dots v_V\}$
 - $-s_i$: the state of the *i*-th observation;
 - $-q_0$, q_F are not associated with observations
- Transition probabilities: Transition probability matrix $A = \{a_{ij}\}$;
 - $-a_{ij} = P(s_t = j | s_{t-1} = i) \ 1 \le i, j \le N$
- Observation likelihoods: Output probability matrix $B = \{b_i(k)\};$
 - $-b_i(k) = P(X_t = o_k | s_t = i)$
- Special initial probability vector π;
 - $-\pi_i = P(s_1 = i) \ 1 \le i \le N$

Hidden Markov Model

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$


```
p(Secretariat|NNP) * p(NNP|Start)

* p(is|VBZ) * p(VBZ|NNP)

* p(expected|VBN) * p(VBN|VBZ)

* p(to|TO) * p(TO|VBN)

* p(race|VB) * p(VB|TO)

* p(tomorrow|NR) * p(NR|VB)
```

Decoding

Now we have a complete model and we need to get

$$\hat{t}_1^n = \arg \max_{t_1^n} P(t_1^n | w_1^n)$$

- Determine sequences of variables, given sequence of observations
- We could just enumerate all paths given the input and use the model to assign probabilities to each.
 - Not a good idea. 12 -- HH, HC,CC,CH
 - $-N^{T}: N$ (number of states) T (size of sequence)
 - Dynamic programming helps us here

Example sentence

Enumerate all paths

- VBN TO RB DT VB
- VBN TO RB DT NN
- VBN TO RB NNP VB
- VBN TO RB NNP NN
- VBN TO NN DT VB
- VBN TO NN DT NN
- VBN TO NN NNP VB
- VBN TO NN NNP NN
- VBN TO JJ DT VB
- VBN TO JJ DT NN
- VBN TO JJ NNP VB
- VBN TO JJ NNP NN
- VBN TO VB DT VB
- VBN TO VB DT NN
- VBN TO VB NNP VB
- VBN TO VB NNP NN

- VBD TO RB DT VB
- VBD TO RB DT NN
- VBD TO RB NNP VB
- VBD TO RB NNP NN
- VBD TO NN DT VB
- VBD TO NN DT NN
- VBD TO NN NNP VB
- VBD TO NN NNP NN
- VBD TO JJ DT VB
- VBD TO JJ DT NN
- VBD TO JJ NNP VB
- VBD TO JJ NNP NN
- VBD TO VB DT VB
- VBD TO VB DT NN
- VBD TO VB NNP VB
- VBD TO VB NNP NN

The best choice?

From DT to NN?

Intuition

- Consider a state sequence (tag sequence) that ends at time t with a particular tag i.
- The probability of that tag sequence can be broken into two parts
 - The probability of the **BEST** tag sequence up through t-1
 - Multiplied by the transition probability from the tag at the end of the t-1 sequence to i, and the observation probability of the word given tag i.
- Let j be the tag at the end of the t-1 sequence, and W be the word at time t

$$\begin{aligned} Viterbi[i,t] &= Viterbi[j,t-1] \times p(i|j) \times p(W|i) \\ v_t[i] & a_{j,i} & b_i(W) \end{aligned}$$

Consider paths ending with bill:NN

From S4, we have two paths P1, P2 to reach NN

- $p_1 = v_4[DT] * p(NN|DT) * p(bill|NN)$
- $p_2 = v_4[NNP] * p(NN|NNP) * p(bill|NN)$
- $v_5[NN] = \max(p_1, p_2)$

```
• v_4[DT] = \max(v_3[RB] * p(DT|RB) * p(the|DT),

v_3[NN] * p(DT|NN) * p(the|DT),

v_3[JJ] * p(DT|JJ) * p(the|DT),

v_3[VB] * p(DT|VB) * p(the|DT))

= \max(v_3[RB] * p(DT|RB), v_3[NN] * p(DT|NN), v_3[JJ] * p(DT|JJ), v_3[VB] * p(DT|VB)) * p(the|DT)
```

Main Idea

- We also have a matrix.
 - Each column— a time 't' (observation)
 - Each row a state 'i'
 - For each cell $v_t[i]$, we compute the probability of the **best** path to the cell
- Viterbi path probability at time t for state i
 - there are |Q| number of paths from t-1 to $v_t[i]$
 - if we know the best path to each cell in t-1 ($v_{t-1}[j]$)

$$\arg\max_{j} v_{t-1}[j] \times P(i|j) \times P(s_t|i)$$

Viterbi Example: Variable $v_t[i]$ the Viterbi path probability at time t for state i

Example continue from previous slide

- $v_2[NN] = \max(v_1[NN] * p(NN|NN), v_1[TO] * p(NN|TO), v_1[VB] * p(NN|VB), v_1[PPSS] * p(NN|PPSS)) * p(want|NN)$
- $= \max(0 * 0.087, 0 * 0.00047, 0 * 0.047, 0.025 * 0.0012) * 0.000054$

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

The Viterbi Algorithm

function VITERBI(observations of len T, state-graph of len N) **returns** best-path create a path probability matrix viterbi[N+2,T]for each state s from 1 to N do ; initialization step $viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)$ $backpointer[s,1] \leftarrow 0$ for each time step t from 2 to T do ; recursion step for each state s from 1 to N do $viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})$ $backpointer[s,t] \leftarrow \underset{s'.s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s'.s}$ $viterbi[q_F,T] \leftarrow \max^{N} viterbi[s,T] * a_{s,q_F}$; termination step $backpointer[q_F,T] \leftarrow \underset{s,q_F}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}$; termination step return the backtrace path by following backpointers to states back in time from

backpointer[q_F, T]

Viterbi Example: Variable $v_t[i]$ the Viterbi path probability at time t for state i

Viterbi Summary

- Create a matrix (two-dimensional array)
 - With columns corresponding to inputs
 - Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell, (not all paths).

Summary

- HMM
 - Transition Probabilities
 - Observation Likelihoods
- Decoding
 - Viterbi
- Next
 - Evaluation
 - Assigning probabilities to inputs
 - Forward
 - Finding optimal parameters for a model

Evaluation

- The result is compared with a manually coded "Gold Standard"
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

HMM

- Given this framework there are 3 problems that we can pose to an HMM
 - Given an observation sequence and a model, what is the most likely state sequence?
 - Given an observation sequence, what is the probability of that sequence given a model?
 - Given an observation sequence, infer the best parameters for model

Problem

Most probable state sequence given a model and an observation sequence

Decoding: Given as input an HMM $\lambda = (A,B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1q_2q_3...q_T$.

- Typically used in tagging problems, where the tags correspond to hidden states
- Viterbi solves problem

Problem

• The probability of a sequence given a model.. P(seq|model).

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

- Forward algorithm
 - Efficiently computes the probability of an observed sequence given a model
 - P(sequence|model)
 - Nearly identical to Viterbi: replace the MAX with a SUM

Ice Cream Example

Variable a_t[i] the forward path probability at time t for state i

Forward algorithm: SUM

Forward

function FORWARD(observations of len T, state-graph of len N) **returns** forward-prob

create a probability matrix forward[N+2,T]

for each state s from 1 to N do

; initialization step

$$forward[s,1] \leftarrow a_{0,s} * b_s(o_1)$$

for each time step t from 2 to T do

; recursion step

for each state s from 1 to N do

$$forward[s,t] \leftarrow \sum_{s'=1}^{N} forward[s',t-1] * a_{s',s} * b_{s}(o_{t})$$

$$forward[q_F,T] \leftarrow \sum_{s,q_F}^{N} forward[s,T] * a_{s,q_F}$$
; termination step

return $forward[q_F, T]$

Summary

- HMM model- two probabilities
- Viterbi algorithm
- Evaluation
- Three problems in HMM model