Formularium Wiskunde

Ian Claesen

Contents

T	Aige	ebra	4
	1.1	Volgorde van Bewerking	2
	1.2	Absolute Waarde	2
	1.3	Machten en wortels	3
	1.4	Machten met Gehele Exponenten	3
			3
		1.4.2 N-de machtswortel in	3
		1.4.3 $\frac{m}{n}$ -de machtswortel in	3
2	Vee	ltermen	4
	2.1	Vierkantsvergelijking	4
	2.2		4
	2.3	Euclidische Deling	4
3	Con	nplexe getallen	5
	3.1		5
	3.2	Poolcoördinaten	5
4	Gon	niometrie	6
	4.1	De Goniometrische Cirkel	6
	4.2		6
5	Mee	etkunde	6
	5.1	De Cirkel	6
	5.2		6
6	Ana	alvse	6
		· ·	6
	6.2		6
7	Mat	trices	6
•	7.1		6
8	Con	nbinatieleer	7
	8.1	Keuzes zonder Herhaling	7

9	Kansrekening	7
	9.1 Voorwaardelijke Kans	7
10	Statistiek 10.1 Normaalverdeling	7 7
	Diversen 11.1 Wiskundige Symbolen	7 7
_		

1 Algebra

1.1 Volgorde van Bewerking

Haakjes wegwerken, machtsverheffen, worteltrekken, vermenigvuldigen en delen, optellen en aftrekken. Om deze volgorde te onthouden, gebruik de ezelsbrug: Heel Mooie Witte Vaatwassers Doen Onze Afwas.

1.2 Absolute Waarde

De absolute waarde van een getal a wordt genoteerd als |a| en is altijd positief.

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$

1.3 Machten en wortels

1.4 Machten met Gehele Exponenten

$$\forall a \in \forall n \in 0: a^{n} = \underbrace{a.a. \dots a}_{n \text{ factoren}}$$

$$\forall a \in a^{1} = a$$

$$\forall a \in a^{1} = a$$

$$\forall a \in a^{0} = 1$$

$$(a.b)^{n} = a^{m}$$

$$(a.b)^{n} = a^{n} \cdot b^{n}$$

1.4.1 Vierkantswortel in

$$\forall a \in \mathbb{R}^+, \forall b \in \mathbb{R} :$$

$$b = \sqrt{a} \Leftrightarrow b^2 = a \land (b \ge 0) \forall a, b \in \mathbb{R}^+ :$$

$$\sqrt{a^2} = a$$

$$(\sqrt{a})^2 = a$$

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}.$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \land b \ne 0$$

$$\forall a \in \mathbb{R} :$$

$$\sqrt{a^2} = |a| \implies \begin{cases} \sqrt{a^2} = a & \text{als } a \ge 0, \\ \sqrt{a^2} = -a & \text{als } a \le 0. \end{cases}$$

1.4.2 N-de machtswortel in

$$n \ even \Rightarrow \sqrt[n]{a^n} = |a| \to \begin{cases} \sqrt[n]{a^n} = a & \land a \ge 0 \\ \sqrt[n]{a^n} = -a & \land a \le 0 \end{cases}$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$\sqrt[n]{a^n} = a$$

$$(\sqrt[n]{a})^n = a$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{a} = \sqrt[n]{a}$$

$$\sqrt[n]{a} = \sqrt[n]{$$

1.4.3 $\frac{m}{n}$ -de machtswortel in

$$\forall a, b \in \mathbb{R}_0^+, \forall m, n \in \mathbb{Q}:$$

$$\forall a, b \in \mathbb{R}_0^+, \forall m, n \in \mathbb{Q}:$$

$$a^m.a^n = a^{m+n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$(a^m)^n = a^{m.n}$$

$$(a.b)^m = a^m.b^m$$

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

2 Veeltermen

2.1 Vierkantsvergelijking

Een vierkantsvergelijking is van de vorm: $ax^2 + bx + c = 0$, $met D = b^2 - 4ac$

$x \in \mathbb{R}$	$x \in \mathbb{C}$
$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$	$x_{1,2} = \frac{-b \pm i\sqrt{-D}}{2a}$
$P = \frac{c}{a} = x_1 \cdot x_2 , \ S = -\frac{b}{a} = x_1 + x_2$	
$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) = a(x^{2} - Sx + P)$	

2.2 Merkwaardige Producten en Ontbinding in Factoren

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

2.3 Euclidische Deling

Schema van Horner

$$\frac{(3x^3 - 5x^2 + 10x - 52)}{(x-2)}$$

3 Complexe getallen

3.1 Rechthoekige coordinaten

Bewerking	Formule
Optelling/Aftrekking	$(a+j.b) \pm (c+j.d) = (a+c) \pm j(b+d)$
Vermenigvuldiging	$(a+j.b) \cdot (c+j.d) = (ac-bd) + j(ad+bc)$
Deling	$\frac{(a+j.b)}{(c+j.d)} = \frac{(a+j.b)\cdot(c-j.d)}{(c+j.d)\cdot(c-j.d)} = \left(\frac{ac+bd}{c^2+d^2}\right) + j\left(\frac{bc-ad}{c^2+d^2}\right)$
$To e gevoeg de\ van$	$\overline{(a+j.b)} = (a-j.b)$
	$\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}, \overline{Z_1 \cdot Z_2} = \overline{Z_1} \cdot \overline{Z_2}$
Inverse	$z = a + bi \implies z^{-1} = \frac{a - bi}{a^2 + b^2}$
Wortel	$\sqrt{a} \wedge a < 0 \implies \sqrt{a} = \pm i\sqrt{-a}$
	$\sqrt{a+bi} = x+yi \iff (x+yi)^2 = a+bi$
Macht	$(a+bi)^0 = 1 \forall n \in \mathbb{N}_0 :$
	$(a+bi)^n = (a+bi) \cdot (a+bi) \cdots (a+bi)$
Machten of i	$i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$

3.2 Poolcoördinaten

$$z = a + i.b = r(\cos(\varphi) + i.\sin(\varphi)) = r\angle\varphi, \quad \tan(\varphi) = \frac{b}{a}, \quad r = \sqrt{a^2 + b^2}$$

Bewerking	Formule
Vermenigvuldiging	$z_1 \cdot z_2 = r_1 \cdot r_2 \angle \varphi_1 + \varphi_2$
Deling	$\frac{z_1}{z_2} = \frac{r_1 \angle \varphi_1}{r_2 \angle \varphi_2} = \frac{r_1}{r_2} \angle \varphi_1 - \varphi_2$
Inverse	$z^{-1} = \frac{1}{r} \angle - \varphi$
Macht	$z^n = r^n \left[\cos (n \cdot \varphi) + i \sin (n \cdot \varphi) \right] n \in \mathbb{N}$
Wortel	$\sqrt{r(\cos\varphi + i\sin\varphi)} = \pm\sqrt{r}\left(\cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right)$
$\sqrt[n]{r\left(\cos\varphi + i\sin\varphi\right)} =$	$= \sqrt[n]{r} \left(\cos \frac{\varphi + k \cdot 2\pi}{n} + i \sin \frac{\varphi + k \cdot 2\pi}{n} \right) \land k = 0, 1, \dots, n - 1$

4 Goniometrie

4.1 De Goniometrische Cirkel

De goniometrische cirkel wordt gebruikt om de waarden van de sinus, cosinus en tangens te bepalen voor verschillende hoeken.

4.2

$$\sin^{2}(\theta) + \cos^{2}(\theta) = 1$$
$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

5 Meetkunde

5.1 De Cirkel

De vergelijking van een cirkel met middelpunt (a, b) en straal r is:

$$(x-a)^2 + (y-b)^2 = r^2$$

5.2 De Parabool

De standaardvergelijking van een parabool met top in de oorsprong is:

$$y = ax^2$$

6 Analyse

6.1 Limieten van Functies

De limiet van een functie f(x) als x nadert tot a wordt genoteerd als:

$$\lim_{x \to a} f(x)$$

6.2 Afgeleiden

De afgeleide van een functie f(x) wordt gegeven door:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

7 Matrices

7.1 Rekenregels

Voor matrices A, B en C gelden de volgende eigenschappen:

- Commutativiteit van optelling: A + B = B + A
- Associativiteit van optelling: A + (B + C) = (A + B) + C
- Distributiviteit: A(B+C) = AB + AC

8 Combinatieleer

8.1 Keuzes zonder Herhaling

Variaties: Geordende keuze van p elementen uit n elementen. Permutaties: Het rangschikken van n verschillende elementen.

9 Kansrekening

9.1 Voorwaardelijke Kans

De voorwaardelijke kans van A gegeven B is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

10 Statistiek

10.1 Normaalverdeling

De normaalverdeling wordt gegeven door de dichtheidsfunctie:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

11 Diversen

11.1 Wiskundige Symbolen

- \bullet \in : is een element van
- \bullet \forall : voor alle
- ∃: er bestaat