- Now, we'll look at some commonly used circuits: decoders and multiplexers.
 - These serve as examples of the circuit analysis and design techniques from last lecture.
 - They can be used to implement arbitrary functions.
 - We are introduced to abstraction and modularity as hardware design principles.
- Throughout the semester, we'll often use decoders and multiplexers as building blocks in designing more complex hardware.

What is a decoder

- In older days, the (good) printers used be like typewriters:
 - To print "A", a wheel turned, brought the "A" key up, which then was struck on the paper.
- Letters are encoded as 8 bit codes inside the computer.
 - When the particular combination of bits that encodes "A" is detected, we want to activate the output line corresponding to A
 - (Not actually how the wheels worked)
- How to do this "detection": decoder
- General idea: given a k bit input,
 - Detect which of the 2^k combinations is represented
 - Produce 2^k outputs, only one of which is "1".

What a decoder does

- A n-to-2ⁿ decoder takes an n-bit input and produces 2ⁿ outputs. The n inputs represent a binary number that determines which of the 2ⁿ outputs is **uniquely** true.
- A 2-to-4 decoder operates according to the following truth table.
 - The 2-bit input is called \$150, and the four outputs are Q0-Q3.
 - If the input is the binary number i, then output Qi is uniquely true.

51	50	Q	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- For instance, if the input S1 S0 = 10 (decimal 2), then output Q2 is true, and Q0, Q1, Q3 are all false.
- This circuit "decodes" a binary number into a "one-of-four" code.

How can you build a 2-to-4 decoder?

Follow the design procedures from last time! We have a truth table, so
we can write equations for each of the four outputs (Q0-Q3), based on
the two inputs (S0-S1).

51	50	Q	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

In this case there's not much to be simplified. Here are the equations:

A picture of a 2-to-4 decoder

S1	<i>S</i> 0	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Enable inputs

- Many devices have an additional enable input, which is used to "activate" or "deactivate" the device.
- For a decoder,
 - EN=1 activates the decoder, so it behaves as specified earlier.
 Exactly one of the outputs will be 1.
 - EN=0 "deactivates" the decoder. By convention, that means all of the decoder's outputs are 0.
- We can include this additional input in the decoder's truth table:

EN	S 1	50	Q0	Q1	Q2	Q3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

An aside: abbreviated truth tables

 In this table, note that whenever EN=0, the outputs are always 0, regardless of inputs S1 and S0.

EN	S 1	50	Q0	Q1	Q2	Q3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

 We can abbreviate the table by writing x's in the input columns for S1 and S0.

EN	S1	50	Q0	Q1	Q2	Q3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Blocks and abstraction

- Decoders are common enough that we want to encapsulate them and treat them as an individual entity.
- Block diagrams for 2-to-4 decoders are shown here. The names of the inputs and outputs, not their order, is what matters.

- A decoder block provides abstraction:
 - You can use the decoder as long as you know its truth table or equations, without knowing exactly what's inside.
 - It makes diagrams simpler by hiding the internal circuitry.
 - It simplifies hardware reuse. You don't have to keep rebuilding the decoder from scratch every time you need it.
- These blocks are like functions in programming!

A 3-to-8 decoder

- Larger decoders are similar. Here is a 3-to-8 decoder.
 - The block symbol is on the right.
 - A truth table (without EN) is below.
 - Output equations are at the bottom right.
- Again, only one output is true for any input combination.

52	S1	S 0	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

So what good is a decoder?

Do the truth table and equations look familiar?

51	50	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- Decoders are sometimes called minterm generators.
 - For each of the input combinations, exactly one output is true.
 - Each output equation contains all of the input variables.
 - These properties hold for all sizes of decoders.
- This means that you can implement arbitrary functions with decoders.
 If you have a sum of minterms equation for a function, you can easily use a decoder (a minterm generator) to implement that function.

Design example: addition

- Let's make a circuit that adds three 1-bit inputs X, Y and Z.
- We will need two bits to represent the total; let's call them C and S, for "carry" and "sum." Note that C and S are two separate functions of the same inputs X, Y and Z.
- Here are a truth table and sum-of-minterms equations for C and S.

Decoder-based adder

Here, two 3-to-8 decoders implement C and S as sums of minterms.

• The "+5V" symbol ("5 volts") is how you represent a constant 1 or true in LogicWorks. We use it here so the decoders are always active.

Using just one decoder

 Since the two functions C and S both have the same inputs, we could use just one decoder instead of two.

$$C(X,Y,Z) = \Sigma m(3,5,6,7)$$

 $S(X,Y,Z) = \Sigma m(1,2,4,7)$

Building a 3-to-8 decoder

- You could build a 3-to-8 decoder directly from the truth table and equations below, just like how we built the 2-to-4 decoder.
- Another way to design a decoder is to break it into smaller pieces.
- Notice some patterns in the table below:
 - When 52 = 0, outputs Q0-Q3 are generated as in a 2-to-4 decoder.
 - When 52 = 1, outputs Q4-Q7 are generated as in a 2-to-4 decoder.

52	S1	<i>5</i> 0	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Q0 =
$$52' \, 51' \, 50' = m_0$$

Q1 = $52' \, 51' \, 50 = m_1$
Q2 = $52' \, 51 \, 50' = m_2$
Q3 = $52' \, 51 \, 50' = m_3$
Q4 = $52' \, 51' \, 50' = m_4$
Q5 = $52' \, 51' \, 50' = m_5$
Q6 = $52' \, 51' \, 50' = m_6$
Q7 = $52' \, 51' \, 50' = m_7$

Decoder expansion

 You can use enable inputs to string decoders together. Here's a 3-to-8 decoder constructed from two 2-to-4 decoders:

52	S 1	50	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Modularity

- Be careful not to confuse the "inner" inputs and outputs of the 2-to-4 decoders with the "outer" inputs and outputs of the 3-to-8 decoder (which are in boldface).
- This is similar to having several functions in a program which all use a formal parameter "x".

• You could verify that this circuit is a 3-to-8 decoder, by using equations for the 2-to-4 decoders to derive equations for the 3-to-8.

A variation of the standard decoder

The decoders we've seen so far are active-high decoders.

EN	S 1	50	Q0	Q1	Q2	Q3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

• An active-low decoder is the same thing, but with an inverted EN input and inverted outputs.

EN	51	50	Q0	Q1	Q2	Q3
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	X	X	1	1	1	1

Separated at birth?

Active-high decoders generate minterms, as we've already seen.

 The output equations for an active-low decoder are mysteriously similar, yet somehow different.

$$Q3' = (S1 S0)' = S1' + S0'$$
 $Q2' = (S1 S0)' = S1' + S0'$
 $Q2' = (S1 S0')' = S1' + S0'$
 $Q1' = (S1' S0)' = S1 + S0'$
 $Q0' = (S1' S0')' = S1 + S0'$

It turns out that active-low decoders generate maxterms.

Active-low decoder example

- So we can use active-low decoders to implement arbitrary functions too, but as a product of maxterms.
- For example, here is an implementation of the function from the previous page, $f(x,y,z) = \prod M(4,5,7)$, using an active-low decoder.

- The "ground" symbol connected to EN represents logical 0, so this decoder is always enabled.
- Remember that you need an AND gate for a product of sums.

Summary

- A n-to-2ⁿ decoder generates the minterms of an n-variable function.
 - As such, decoders can be used to implement arbitrary functions.
 - Later on we'll see other uses for decoders too.
- Some variations of the basic decoder include:
 - Adding an enable input.
 - Using active-low inputs and outputs to generate maxterms.
- We also talked about:
 - Applying our circuit analysis and design techniques to understand and work with decoders.
 - Using block symbols to encapsulate common circuits like decoders.
 - Building larger decoders from smaller ones.

How would you implement the function f(x,y,z) = XZ' using a 3 to 8 decoder and a 2-input OR gate

- a) Outputs Q4 and Q6 of the decoder are connected to the OR gate
- b) Outputs Q2 and Q6 of the decoder are connected to the OR gate
- c) Outputs Q7 and Q6 of the decoder are connected to the OR gate
- d) Outputs Q4 and Q5 of the decoder are connected to the OR gate