

Cours Statistiques Uni-variées

K. BELATTAR,

Département Informatique - Université d'Alger 1

	Result of first semester						
Roll no.	Students Name	English	Maths	Science	total	percentage	Class rank
1	Leena	67	71	65	203	84.58	
2	Ritika	65	78	70	213	88.75	3
3	Pradhnya	64	76	68	208	86.67	6
4	Smita	69	73	64	206	85.83	7
5	Rashmi	64	68	58	190	79.17	19
6	Prachi	68	75	59	202	84.17	10
7	Sheetal	67	69	64	200	83.33	11
8	Garima	64	70	65	199	82.92	13
9	Angel	68	73	76	217	90.42	1
10	Bindiya	69	73	70	212	88.33	4
11	Vinita	65	79	59	203	84.58	4 8
12	Jyoti	68	78	70	216	90.00	2
13	Dani	64	68	59	191	79.58	18
14	Vijay	61	65	59	185	77.08	22
15	Sagar	62	67	63	192	80.00	17
16	Jyotiram	63	66	60	189	78.75	20
17	Ajmal	67	65	54	186	77.50	21
18	vaibhav	68	75	57	200	83.33	11
19	Ravi	68	71	59	198	82.50	15
20	Rahul	69	79	63	211	87.92	5
21	Suraj	64	65	64	193	80.42	16
22	Abhijit	68	64	67	199	82.92	13
23	Danial	63	60	61	184	76.67	23

Données

« 10 dollars »

Information

- → 5 dollars par unité
- → prendre 50 dollars (gain)
- → Gain par voiture: 5000 dollars

Vente: 3.5 million dollars

Vente: 3 million dollars

La voiture jaune est plus couteuse.

Acheter la voiture rouge (moins chère)

Connaissance

Analyse de données Stat

❖ Office Nationale des Statistiques : l'Institution Centrale des Statistiques de l'Algérie chargée de la collecte, du traitement et de la diffusion de l'information statistique socio-économique de la population Algérienne.

https://www.ons.dz/spip.php?rubrique38

Données relatives aux attributs de la population Algérienne et sur les entreprises.

Taux d'alphabétisation de la population \rightarrow manipuler ces données qui consiste à :

1) Collecter des données

- Nom
- Age
- Genre
- Date et lieu de naissance,
- Etat civil,
- Occupation,
- Education,
- etc.

Manipuler ces données consiste à :

2) Organiser des données

		Taille de population	Chiffre
Sexe	\int	Taille de la population (sexe male)	1210854877
	L	Taille de la population (sexe femelle)	6232770258
Région		Taille de la population (régions rurale)	587584719
	L	Taille de la population (régions urbaine)	8337734885
•		Taille de la population (régions rurale, sexe male)	3777106125
Sexe et Région		Taille de la population (régions rural, sexe femelle)	427781058
		Taille de la population (régions urbaine, sexe male)	195489200

Manipuler ces données consiste à :

3) Analyser les données

Algérie	Analyse (2020)
Densité de la population	382 personnes par Km carrées
Ratio sexe (femelles par 1000 males)	943
Taux d'alphabétisation	74,04%

Résultat d'analyse

Manipuler ces données consiste à :

4) Interpréter les données

Algérie	Analyse (2020)	Analyse (2018)
Densité de la population	382 personnes par carrées	324
Ratio sexe (femelles par 1000 males)	943	933
Taux d'alphabétisation	74,04%	65.38%

Manipuler ces données consiste à :

5) Représenter les données

Statistiques

(2) Organisation de données

(1) Collection de données

Statistiques

(5) Représentation de données

(3) Analyse de données

(4) Interprétation de données

Concepts statistiques

- * Population: ensemble sur lequel les données sont collectées.
- Individu : tout élément de la population.
- **Echantillon**: sous ensemble de la population à analyser.

11/04/2021

Concepts statistiques

- Variable statistique: est une caractéristique d'un individu de la population décrivant sa qualité et quantité.
- Variables quantitatives (rapport, intervalle)
- Variables qualitatives (nominales, ordinales)
- Variables discrètes et continues

Poids d'une personne

Nombre des personnes

Couleur

Degré dommage accidentel

Types des mesures statistiques uni-variées

Mesures de fréquence

Mesures de tendance centrale

Mesures de dispersion

- Variables quantitatives
- Variables qualitatives
- Effectif, effectif cumulé croissant / décroissant
- Fréquence, fréquence cumulée croissante / décroissante
- Pourcentage, pourcentage cumulé

Soit les valeurs $\{x_1, x_2, \dots x_N\}$ un ensemble de N observations (série statistique à une variable) de l'attribut X.

Mesure de fréquence	Formule mathématique
Effectif (fréquence absolue)	n_i : nombre d'apparition d'une valeur x_i
Effectif cumulé croissant	$N_i^{\uparrow} = \sum_{k=1}^i n_k$
Effectif cumulé décroissant	$N_i^{\downarrow}=N-\sum_{k=1}^i n_k$ N: somme totale des effectifs (n_1++n_N) .

Mesure de fréquence	Formule mathématique
Fréquence (relative)	$f_i = \frac{n_i}{N}$
Fréquence cumulée croissante	$F_i^{\uparrow} = \frac{\sum_{k=1}^i n_k}{N}$
Fréquence cumulée décroissante	$F_i^{\downarrow} = 1 - \frac{\sum_{k=1}^i n_k}{N}$
Pourcentage	$P=f_i*100\%$

Exemple 1:

On s'intéresse à la variable qualitative « état-civil » pour 20 personnes.

célibataire (C), marié(e) (M), veuf(ve) (V), divorcée (D).

Considérons la série statistique suivante : M M V V C M C C C M C M V

CMDDCCM.

Calculer l'effectif, la fréquence, l'effectif cumulé et la fréquence cumulé de chaque valeur de la variable.

Exemple 2:

On s'intéresse à la variable quantitative continue « nombre d'enfant allergique à la coste ».

Nombre d'enfants	[11-21[[21-31[[31-41[[41-51[
n_i (Effectif)	16	40	34	10

Calculer la fréquence, l'effectif cumulé et la fréquence cumulé de chaque valeur de la variable.

Types des mesures statistiques uni-variées

Mesures de fréquence

Mesures de tendance centrale

Mesures de dispersion

Les valeurs de données sont accumulés dans le centre de la distribution.

- Moyenne
- Médiane
- Mode (et variables qualitatives)

Mesure de tendance centrale	Formule mathématique	Caractéristiques
Moyenne arithmétique d'une variable discrète	$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} x_i$	Considérer toutes les valeurs de la sérieSensible aux outliers
Moyenne arithmétique d'une variable continue (classes)	$\bar{X} = \frac{\sum_{i=1}^{M} n_i c_i}{N}$ c_i : centre de chaque classe $(\frac{e_{i-1} + e_i}{2})$ M : nombre de classes N : somme des effectifs pour chaque classe $(N = \sum_{i=1}^{M} n_i)$	 Considérer toutes les valeurs de la série Sensible aux outliers
Moyenne arithmétique pondérée	$\bar{X} = \frac{\sum_{i=1}^{N} w_i x_i}{\sum_{i=1}^{N} w_i}$	Considérer toutes les valeurs de la sérieSensible aux outliers
Moyenne Harmonique	$H = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{x_i}$	Considérer toutes les valeurs de la sérieSensible aux outliers
Moyenne géométrique	$G = \frac{1}{N} \sum_{i=1}^{N} n_i \log x_i$	Considérer toutes les valeurs de la sérieSensible aux outliers
Moyenne quadratique	$Q = \sqrt{\frac{1}{N} \sum_{i=1}^{N} n_i x^2}$	 Considérer toutes les valeurs de la série Sensible aux outliers

Mesure de tendance centrale	Formule mathématique	Caractéristiques
Médiane d'une variable discrète	Valeur médiane d'un ensemble ordonnée de valeur	/
Médiane d'une variable continue classes)	$mediane_X = e_{i-1} + a_i \left(\frac{N/2 - N_i}{n_{mediane}}\right)$	/
	e_{i-1} : extrémité inferieure de la classe médiane $[e_{i-1},e_i[$. N_i : effectif cumulé de classe qui précède la classe médiane. $n_{mediane}$: effectif de la classe médiane a_i : amplitude de la classe médiane (e_i-e_{i-1}) .	

Mesure de tendance centrale	Formule mathématique	Caractéristiques
Mode d'une variable discrète	La valeur qui a la plus grande fréquence.	Un (unimodale) ou plusieurs (bimodale, trimodale, etc.) modes
Mode d'une variable continue (classes)	$ Mode = e_{i-1} + a_i \ \frac{\Delta_1}{\Delta_1 + \Delta_2} $ $ e_{i-1} \text{: extrémité inferieure de la classe modale } [e_{i-1}, e_i]. $ $ \Delta_1 \text{: différence entre l'effectif ou fréquence de la classe précédente et celui ou celle de la classe modale. } $ $ \Delta_2 \text{: différence entre l'effectif ou fréquence de la classe modale et celui ou celle de la classe suivante. } $ $ a_i \text{: amplitude (longueur) de la classe modale } (e_i - e_{i-1}). $	

Exemple 1:

Soit le score total des étudiants dans 5 communications[/100 pour chacune]:

26

60 70 74 78 78

Calculer la moyenne, la médiane et le mode de cette série statistique.

Moyenne=72

Mode= 78

Médiane= 74

Types des mesures statistiques uni-variées

Mesures de fréquence

Mesures de tendance centrale

Mesures de dispersion

Décrire la variabilité d'une distribution par rapport à une variable particulière.

- Etendue
- Quantiles
- Ecarts inter-quantiles
- Variance
- Ecart-type
- etc.

- Variables quantitatives

Types des mesures statistiques uni-variées

- La courbe de la distribution normale:
 - $[\bar{X} \pm \sigma]$: contient approximativement 68% des valeurs.
 - $[\bar{X} \pm 2\sigma]$: contient approximativement 95% des valeurs
 - $[\bar{X} \pm 3 \sigma]$: contient approximativement 99.7 % des valeurs

Mesure de dispersion	Formule mathématique
Etendue d'une variable discrète	$E = x_{max} - x_{min}$
Etendue d'une variable continue (classes)	$E = e_{max} - e_{min}$
Quartiles d'une variable discrète (4 quantiles, $Q_{k=1}$, $Q_{k=2}$, $Q_{k=3}$)	$F(Q_1)=25\%$ $N(Q_1)=\frac{1}{4}N$ $F(Q_2)=50\%$ $N(Q_2)=\frac{2}{4}N$ $F(Q_3)=75\%$ $N(Q_3)=\frac{3}{4}N$
Déciles d'une variable discrète (10 quantiles, $D_{k=1}, D_{k=2}, \dots D_{k=9}$)	$F(D_1)=10\%$ $N(D_1)=\frac{1}{10}N$ $F(D_2)=20\%$ $N(D_2)=\frac{2}{10}N$ $F(D_9)=90\%$ $N(D_9)=\frac{9}{10}N$
Centiles d'une variable discrète (100 quantiles, $C_{k=1}, C_{k=2}, \dots C_{k=99}$)	$F(C_1)=1\%$ $N(C_1)=\frac{1}{100}N$ $F(C_2)=2\%$ $N(C_2)=\frac{2}{100}N$ $F(C_{99})=99\%$ $N(C_{99})=\frac{99}{100}N$

Quantiles

Mesure de dispersion	Formule mathématique
Quantiles d'une variable continue (classes)	$\begin{array}{l} \frac{k}{q}*N-N_i\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Ecarts inter-quantiles	Ecarts inter-quartiles: $I_Q=Q_3-Q_1$ (contenant 50% des observations) Ecarts interdéciles: $I_D=D_9-D_1$ (contenant 80% des observations) Ecarts intercentiles: $I_C=C_{99}-C_1$ (contenant 98% des observations)

Mesure de dispersion	Formule mathématique
Variance d'une variable discrète	$\sigma^{2} = \frac{\sum_{i=1}^{N} n_{i} * (x_{i} - \bar{X})^{2}}{N} = (\frac{1}{N} \sum_{i=1}^{N} n_{i} x_{i}^{2}) - \bar{X}^{2}$ $= \frac{\sum_{i=1}^{N} (x_{i} - \bar{X})^{2}}{N} = (\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}) - \bar{X}^{2}$
Variance d'une variable continue	$\sigma^2 = \frac{\sum_{i=1}^M (C_i - \bar{X})^2}{N}, N = \sum_{i=1}^M n_i$ $\sigma^2 = \frac{\sum_{i=1}^M n_i * (C_i - \bar{X})^2}{N}$ $C_i : \text{Centre de chaque classe}$ $M : \text{nombre de classes}$
Ecart type	$\sigma_X = \sqrt{\sigma^2}$
Coefficient de variation	$CV = \frac{\sigma_X}{ \overline{X} }$

Mesure de dispersion	Formule mathématique	Caractéristiques
Coefficient d'assymétrie (skewness) d'une variable discrète	Pour un échantillon: $\gamma_1 = \frac{\mu_3}{\sigma^3} \text{ avec } \mu_3 = \frac{1}{(N-1)(N-2)} \sum_{i=1}^N n_i (x_i - \bar{X})^3$ Pour une population: $\gamma_1 = \frac{\mu_3}{\sigma^3} \text{ avec } \mu_3 = \frac{1}{N} \sum_{i=1}^N n_i (x_i - \bar{X})^3$	 γ₁=0 → distribution symétrique γ₁<0 → distribution étalée vers la gauche γ₁>0 → distribution étalée vers la droite
Coefficient d'applatissment (kurtosis) d'une variable discrète	Pour un échantillon: $\gamma_2 = \frac{\mu_4}{\sigma^4} \text{ avec } \mu_4 = \frac{1}{(N-1)(N-2)} \sum_{i=1}^N n_i (x_i - \bar{X})^4$ Pour une population: $\gamma_2 = \frac{\mu_4}{\sigma^4} \text{ avec } \mu_4 = \frac{1}{N} \sum_{i=1}^N n_i (x_i - \bar{X})^4$	 γ₂ = 0 (= 3) → distribution normalisée (non normalisée) normale γ₂<0 (< 3) → distribution normalisée (non normalisée) plus aplatie γ₂>0 (> 3) → distribution normalisée (non normalisée) moins aplatie ou pointue

Visualisation des descriptions statistiques

- Graphiques: l'une des technique de l'exploration de données.
- Convertir les données en formats graphiques (visuel) ou tabulaire tels que les points, les lignes, etc.
 - Représenter les données (individus) par des points. Les coordonnées de points sont définies par les valeurs de variables.
 - Visualiser et analyser les relations entre :
- 1) les données (si les points forment un cluster ou c'est un point outlier ou encore un autre pattern)
- 2) les attributs (corrélation, indépendance, causalité).

N(.): fonction cumulative des effectifs

F(.): fonction cumulative des fréquences

- Déterminer la distribution qui correspond aux donnés.
- Comparer deux jeux de données (distribution similaire/différente)

- 1. Calculer pour chaque point du dataset son quantile.
- 2. Calculer la courbe d'une distribution choisie
- 3. Ajouter les quantiles à la distribution choisie (même nombre que ceux du dataset)
- 4. Dessiner le graphe Q-Q (intersection des quantiles de du jeu de données et la distribution choisie)
- 5. Aligner les intersections de quantiles sur une droite

09/10/2023 40

Exemple: Vérifier la distribution (normale) des 15 expressions génétiques.

(3) 15 quantiles de taille égale (distribution normale)

09/10/2023 43

Exemple: Comparer le deux jeux de données.

