Fanhao Meng

School of Physics, Nanjing University, 210093, Nanjing, China

fhmeng@smail.nju.edu.cn/fhmeng@berkeley.edu

EDUCATION BACKGROUND

08/2018-11/2018 Department of Materials Science and Engineering University of California, Berkeley, USA

Visiting Student Researcher

09/2015-07/2019 School of Physics (Elite Program) Nanjing University, Nanjing, China

Major GPA: 92.1/100, Ranking: 2/144 (1.4%)

TOEFL: 110 (Listening: 30, Reading: 30, Speaking: 23, Writing: 27)

GRE General: 326 + 3.5 (Verbal: 156, Quantitative: 170, Analytical Writing: 3.5)

GRE Physics: 980 (93%)

RESEARCH INTERESTS

Nanomaterials, Nanoelectronics, Nanophotonics, Physical device

PUBLICATION

[1] Chenyu Wang[†], Cong Wang[†], **Fanhao Meng**[†], Pengfei Wang, Shuang Wang, Shi-Jun Liang, Feng Miao*. ([†]**equal contribution**) *Two dimensional materials in memristive devices*. **Advanced Electronic Materials** (submit soon)

[2] Qian Xu, Fanhao Meng, Zheng Xie, Huijun Zhou*. Research on computer generated holograms, 2018 (1) 1-7,

Physics Experimentation (in Chinese) [pdf]

RESEARCH EXPERIENCES

◆ UC Berkeley, Department of Materials Science and Engineering Advisor: Dr. Jie Yao

Berkeley, USA

Aug.2018 - Present

Enhanced chiral response of twisted bilayer graphene by dielectric achiral nanophotonics

Goal: Explore the optical response of chiral twisted bilayer graphene (tBLG) in relation to its band structure; Integrate tBLG into silicon-based nanophotonic structure to enhance its chiral optical signals.

Responsibilities:

- Device fabrication using mechanical exfoliation and transfer technique.
- Characterization of tBLG samples via Raman Spectroscopy, white light absorption measurement, etc.
- Analysis of experimental results to better study the interlayer coupling in the system.

Accomplishments:

- Designed a 2D material transfer system and successfully fabricated tBLG structure on SiO₂/Si substrates.
- Improved the stacking quality of tBLG samples by optimizing the fabrication process and achieved more accurate control of the twist angle, confirmed by Raman mapping and white-light absorption spectrum.
- Observed nonlinear optical resonance in tBLG related to its twist angle and proposed feasible physics explanation.
- Contributed to the fabrication of double-bar photonic structures in Si membrane transfer process.
- Nanjing University, School of Physics, <u>Lab of Mesoscopic Physics and Quantum Devices</u>

FANHAO MENG Curriculum Vitae Updated to 11/27/2018

Advisor: Dr. Feng Miao July.2017 – July.2018

Novel memristive architecture for neuromorphic computing

Goal: build novel neuromorphic computing architecture based on memristors, explore promising applications.

Responsibilities:

• Fabrication technique, circuit integration and investigation of algorithms.

Accomplishments:

- Successfully fabricated memristive crossbar arrays in high yield using photolithography.
- Embedded the crossbar array into the <u>ArC ONE</u> Memristor Characterization Platform and managed to operate the system. Now working on the implementation of neural network algorithms in the arrays.
- Proposed to construct a dropout layer in neural networks utilizing the intrinsic variability of switching behavior in memristors. Combined experimental data with deep learning simulation and proved its efficiency to reduce overfitting.

Fabrication and characterization of memristors based on Transition metal oxide (TMO)

Goal: fabricate TMO-based devices with resistive switching property and continuously tunable conductance Responsibilities:

• Using sputtering deposition, e-beam evaporation and lithography to fabricate high-quality Ta/TaO_x memristive devices.

Accomplishments:

- Successfully fabricated Pd/TaO_x/Pd memristors, used AFM to characterize their roughness and thickness, used probe station to observe its memristive I-V hysteresis.
- Established suitable growth conditions and fabrication procedure to improve the yield and uniformity. Achieved non-volatile tunable resistance within 10^3 - $10^4 \,\Omega$, under electrical pulse sequences.
- ◆ Nanjing University, School of Physics, Basic Physics Laboratory Advisor: Huijun Zhou

Nanjing, China

April.2017 - June.2017

- > Research on computer generated holograms
- Reconstructed 2D and 3D images through computer generated holograms (CGH) on a liquid crystal light valve.
- Applied appropriate methods in CGH to make holograms of 3D objects and optimized their sharpness and clarity.

AWARDS/HONORS/SCHOLARSHIPS/MEMBERSHIP

11/2018	People's Scholarship Award (First Prize)	3000 CHY	5%
11/2017	1st Elite Program Scholarship	8000 CHY	4%
10/2017	National Scholarship Award issued by Ministry of Education of China	8000 CHY	1%
11/2016	1 st Xing Quan Scholarship	5000 CHY	1%
12/2014	1st Prize of Chinese Chemistry Olympiad (Provincial Competition Area)		<1%
09/2014	1 st Prize of Chinese Physics Olympiad (Provincial Competition Area)		<1%

PROFESSIONAL SKILLS

Programming Language: Experienced in Python

Experimental Skills: E-beam Evaporation, Sputtering Deposition, Raman Spectroscopy, atomic force microscope (AFM),

Photolithography, Probe Station, 2D materials Preparation and Transfer, Wire Bonder, Semiconductor Measurement

Computing Software: MATLAB, Origin

Computing Methods: Methods of integration, Runge Kutta method, Monte Carlo methods, Numerical linear algebra