Static-33

Title

Twisted beam under tip shear loads

Description

A twisted cantilever beam of rectangular cross-section is subjected to the action of unit static shear loads applied at the tip. Load P_1 is applied in the in-plane and load P_2 is applied in the out-of-plane directions. The undeformed cantilever configuration has a 90° twist. Determine the tip displacements in the load directions.

Structural geometry and analysis model

MODEL

Analysis Type

3-D static analysis

Unit System

m, kgf

Dimension

Length 12 m

Element

Plate element

Material

Modulus of elasticity $E = 2.9 \times 10^7 \text{ kgf/m}^2$ Poisson's ratio v = 0.22

Sectional Property

Rectangular cross-section: b = 1.1 m, t = 0.32 m

Boundary Condition

Node 1,2,4,5: Constrain D_X , D_Z and R_Y Node 3: Constrain D_X , D_Y , D_Z and R_Y

Load Case

Case 1: Unit static shear loads $P_1 = 1.0 \text{ kgf (Vertical)}$ Case 2: Unit static shear loads $P_2 = 1.0 \text{ kgf (Horizontal)}$

Results

Tip displacements in the load directions (Case 1)

Tip displacements in the load directions (Case 2)

Comparison of Results

Unit: in

Results	Theoretical	MIDAS/Civil
In-Plane (δ_Z)	-0.005424	-0.005416
Out-of-Plane (δ_Y)	-0.001754	-0.001780

Reference

MacNeal, R. H., and Harder, R. L. (1985). "A Proposed Standard Set of Problems to Test Finite Element Accuracy", Finite Element in Analysis and Design, 1, Elsevier Science Publishers, North-Holland, 3-20.