Calculabilitate si Complexitate*

Mihai Prunescu[†]

Contents

Ι	Gramatici	3
1	Ierarhia lui Chomsky	4
2	Masini Turing	5
3	Limbaje de tip 1	7
4	Limbaje de tip 0	8
II	Functii calculabile	11
5	Notiunea intuitiva de functie calculabila	12
6	Calculabilitate Turing	13
7	Limbaje de programare	15
8	Busy beavers	20
9	Functii primitiv recursive si μ -recursive	22
II	I Problema Opririi	27
10	Multimi recursiv enumerabile	28
11	Self-reference Problem	29
19	Tooroma lui Rico	21

^{*}Cea mai mare parte a textului este tradusa din lucrarea lui Uwe Schöning, Theoretische Informatik kurzgefaßt, Spektrum Akademischer Verlag, 1999. Alte pasaje sunt preluate din surse semnalate la paginile respective.

[†]University of Bucharest, Faculty of Mathematics and Informatics; and Simion Stoilow Institute of Mathematics of the Romanian Academy, Research unit 5, P. O. Box 1-764, RO-014700 Bucharest, Romania. mihai.prunescu@imar.ro, mihai.prunescu@gmail.com

13 Problema Corespondentei (Post)	32
14 Masina Turing Universala	33
15 Teorema lui Gödel	34

Part I Gramatici

1 Ierarhia lui Chomsky

Conceptul formal de gramatica a fost definit de catre Noam Chomsky, un pionier al teoriei limbajelor si al lingvisticii.

Definitie: O gramatica este un tuplu $G = (V, \Sigma, P, S)$ dupa cum urmeaza:

V este o multime finita. Elementele ei se numesc variabile sau simboluri neterminale, si se noteaza cu majuscule.

 Σ este o multime finita. Elementele ei se numesc simboluri terminale si se noteaza cu litere mici. Multimile V si Σ sunt disjuncte: $V \cap \Sigma = \emptyset$.

 $P \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^+$ este multimea regulilor sau a productiilor.

 $S \in V$ este simbolul de start.

Definitie: Pentru cuvinte $u, v \in (V \cup \Sigma)^*$ definim relatia $u \Rightarrow_G v$. Spunem ca $u \Rightarrow_G v$ daca exista cuvinte $x, z \in (V \cup \Sigma)^*$ si o regula $(y \to y') \in P$ astfel incat u = xyz si v = xy'z.

Definitie: Limbajul generat de G este multimea:

$$L(G) = \{ w \in \Sigma^* \, | \, S \Rightarrow_G^* w \}.$$

Relatia \Rightarrow_G^* este inchiderea reflexiva si tranzitiva a relatiei \Rightarrow_G . Un sir de cuvinte (w_0, w_1, \dots, w_n) cu $w_0 = S$, $w_n \in \Sigma^*$ si $w_0 \Rightarrow w_1 \Rightarrow \dots \Rightarrow w_n$ se numeste derivare in G. Observam ca derivarea intr-o gramatica este un proces nedeterminist.

Definitie: Ierarhia lui Chomsky.

- Orice gramatica este de tip 0.
- O gramatica de tip 0 este de tip 1 (dependenta de context, context-senzitiva) daca pentru orice regula $w_1 \to w_2$ din P este adevarat ca $|w_1| \le |w_2|$.
- O gramatica de tip 1 este de tip 2 (independenta de context, libera de context) daca pentru orice regula $w_1 \to w_2$ din P este adevarat ca $|w_1| = 1$ si $w_1 \in V$.
- O gramatica de tip 2 este de tip 3 (regulata) daca pentru orice regula $w_1 \to w_2$ din P este adevarat ca $w_2 \in \Sigma \cup \Sigma V$.

Definitie: Un limbaj $\Sigma \subseteq \Sigma^*$ este de tip t daca exista o gramatica de tip t care il genereaza. Intotdeauna suntem interesati de tipul maximal al unui limbaj.

Observam ca o gramatica de tip $t \geq 1$ nu poate genera cuvantul vid ε . In unele limbaje insa, cuvantul vid apare in mod natural. De aceea pentru cuvantul vid se introduce o regula speciala $S \to \varepsilon$. Pentru a pastra neschimbat limbajul L(G) se introduce o noua variabila S' iar regulile se modifica in modul urmator:

 $S \to \text{membrul drept al regulii, cu } S \text{ inlocuit cu } S',$

toate regulile cu S inlocuit cu S',

plus regula $S \to \varepsilon$.

In cursul de Limbaje Formale s-a vazut ca limbajele generate de gramatici de tip 3 (regulate) sunt exact cele recunoscute de automate deterministe finite. De asemeni s-a vazut ca limbajele generate de gramatici de tip 2 (independente de context) sunt cele recunoscute de automatele nedeterministe cu stiva. Un scop al acestui curs este introducerea conceptului de calculabilitate. Vom vedea ca o posibila definitie a acestui concept este legata de masinile Turing. De asemeni, vom vedea ca limbajele de tip 0 sunt cele recunoscute de masini Turing deterministe, iar limbajele de tip 1 sunt cele recunoscute de masini Turing nedeterministe liniar marginite. O alta aplicatie interesanta a acestor dezvoltari este Problema Cuvantului.

Definitie: Fie $L \subseteq \Sigma^*$ un limbaj. Problema Cuvantului pentru L este urmatoarea: dat un cuvant $x \in \Sigma^*$, sa se decida daca $x \in L$.

Teorema: Problema Cuvantului pentru limbaje de tip 1 este decidabila. Cu alte cuvinte, exista un algoritm determinist care primeste o gramatica dependenta de context $G = (V, \Sigma, P, S)$ si un cuvant $x \in \Sigma^*$, si care decide in timp finit daca $x \in L(G)$ sau daca $x \notin L(G)$.

Demonstratie: Pentru $m, n \in \mathbb{N}$ definim multimea:

 $T^n_m = \{ w \in (V \cup \Sigma)^* \, | \, |w| \leq n \text{ si } w \text{ se deriva din } S \text{ in cel mult } m \text{ pasi} \}.$

Mai exact:

$$T_0^n = \{S\},$$

$$T^n_{m+1} = T^n_m \cup \{w \in (V \cup \Sigma)^* \, | \, |w| \leq n \text{ si } w' \Rightarrow w \text{ pentru un } w' \in T^n_m \}.$$

Aceasta reprezentare este corecta numai pentru gramaticile de tip 1, deoarece la gramaticile de tip 0 s-ar putea ca dintr-un cuvant de lungime > n sa rezulte un cuvant de lungime $\le n$.

Observam ca pentru orice m si n, $T_m^n \subseteq T_{m+1}^n$. Cum exista doar un numar finit de cuvinte de lungime $\leq n$ in $(V \cup \Sigma)^*$ rezulta ca pentru orice n exista un m astfel incat:

$$T_m^n = T_{m+1}^n = T_{m+2}^n = \dots$$

Algoritmul este deci urmatorul. Fie n lungimea lui x. Se calculeaza sirul de multimi (T_m^n) pana cand acest sir devine stationar. Daca la un pas am intalnit cuvantul x, raspunsul este da. Altfel raspunsul este nu.

Ca urmare a caracterizarii limbajelor de tip 0 cu ajutorul masinilor Turing, vom vedea ca, in contrast, Problema Cuvantului pentru limbajele de tip 0 este nedecidabila.

Definitie: O gramatica de tip 1 este in Forma Normala Kuroda daca fiecare regula are una din formele urmatoare:

$$A \to a$$
, $A \to B$, $A \to BC$, $AB \to CD$.

Literele mari semnifica variabile, iar litera a semnifica diferite constante.

Teorema: Pentru orice gramatica G de tip 1 cu $\varepsilon \notin L(G)$, exista o gramatica G' in Forma Normala Kuroda cu L(G) = L(G').

Demonstratie: Pentru fiecare simbol terminal a introducem o noua variabila A si regula $A \to a$. Fiecare regula de forma $A \to B_1 B_2 \dots B_k$ se poate inlocui cu un set de reguli de forma $A \to BC$. Raman regulile de forma $A_1 \dots A_m \to B_1 \dots B_n$ unde $2 \le m \le n$. O asemenea regula se inlocuieste cu urmatoarea multime de reguli:

$$\begin{array}{cccc} A_1A_2 \to B_1C_2, & C_m \to B_mC_{m+1} \\ C_2A_3 \to B_2C_3, & C_{m+1} \to B_{m+1}C_{m+2} \\ & \vdots & & \vdots \\ C_{m-1}A_m \to B_{m-1}C_m, & C_{n-1} \to B_{n-1}C_n \end{array}$$

unde C_2, \ldots, C_{n-1} sunt variabile noi.

2 Masini Turing

Masina Turing este un model de calcul mai puternic decat automatul finit sau automatul finit cu stiva. Vom vedea ca masinile Turing liniar marginite nedeterministe sunt exact sistemele care accepta limbajele de tip 1 iar masinile Turing deterministe sunt exact sistemele care accepta limbajele de tip 0. Mai departe vom vedea ca masina Turing duce la o posibila definitie a notiunii

de calculabilitate, si ca aceasta definitie se dovedeste echivalenta cu alte definitii justificate. Alan Turing a definit masina Turing abstractizand munca unui contabil. Simbolurile (cifrele) scrise de contabil pot fi puse pe o singura banda iar contabilul le parcurge in mod liniar in ambele sensuri. Functie de *starea* in care se afla, contabilul sterge un simbol, scrie un al simbol, isi schimba starea si se deplasesaza cu un simbol mai la stanga sau mai la dreapta. Definitia corespunde acestei abstractizari:

Definitie: O masina Turing determinista cu o banda este un tuplu $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$, unde:

Z este o multime finita de stari,

 Σ este alfabetul de input,

 $\Gamma \supset \Sigma$ este alfabetul de lucru,

 $\delta: Z \times \Gamma \to Z \times \Gamma \times \{L, R, N\}$ este functia de tranzitie,

 $z_0 \in Z$ este starea initiala (de start),

 $\square \in \Gamma \setminus \Sigma$ este simbolul blanc (care marcheaza o casuta goala),

 $E \subset Z$ este multimea starilor finale.

Semnificatia acestor simboluri: O banda infinita in ambele sensuri contine inputul, care este un cuvant $w \in \Sigma^*$. Un cap de citire si scriere se afla pe prima litera a inputului iar masina se afla in starea initiala z_0 .

$$\dots \square \square \square \square \square \square b c 0 1 1 0 \square \square \square \dots$$

Aici notatia a indica pozitia capului de citire-scriere pe litera a, prima litera a inputului. Daca la un moment dat masina se afla in starea z si citeste litera a, se evalueaza functia de tranzitie $\delta(z,a)=(z',b,x)$. Deci masina va inlocui a cu b, va trece in starea z' si va face un pas la R (dreapta), L (stanga) respectiv N (nu se va muta).

Definitie: O masina Turing nedeterminista cu o banda se defineste asemanator, doar ca functia de tranzitie este o functie:

$$\delta: Z \times \Gamma \to P(Z \times \Gamma \times \{L, R, N\}).$$

In acest caz, dupa ce a citit litera a in starea z, masina alege la intamplare un element $(z', b, x) \in \delta(z, a)$ si il executa.

Definitie: O configuratie a masinii Turing este un cuvant $k \in \Gamma^* Z \Gamma^*$. Configuratia $k = \alpha z \beta$ inseamna ca masina este in starea z pe prima litera a lui β , iar in stanga are cuvantul α . Pozitia de start este configuratia $z_0 x$ cu $x \in \Sigma^*$.

Definitie: Pe multimea configuratiilor se defineste o relatie ⊢ dupa cum urmeaza:

$$a_1 \dots a_m z b_1 \dots b_n \vdash \begin{cases} a_1 \dots a_m z' c b_2 \dots b_n, & \delta(z, b_1) = (z', c, N), \ m \ge 0, \ n \ge 1, \\ a_1 \dots a_m c z' b_2 \dots b_n, & \delta(z, b_1) = (z', c, R), \ m \ge 0, \ n \ge 2, \\ a_1 \dots a_{m-1} z' a_m c b_2 \dots b_n, & \delta(z, b_1) = (z', c, L), \ m \ge 1, \ n \ge 1. \end{cases}$$

Exista si doua cazuri speciale. Daca n=1 si masina merge la dreapta, va intalni un blanc:

$$a_1 \dots a_m z b_1 \vdash a_1 \dots a_m c z' \square, \quad \delta(z, b_1) = (z', c, R)$$

Daca m=0 si masina merge catre stanga, va intalni de asemeni un blanc:

$$zb_1 \dots b_n \vdash z' \Box cb_2 \dots b_n, \quad \delta(z, b_1) = (z', c, L).$$

Exemplu: Urmatoarea masina Turing primeste un input $x \in \{0,1\}^*$. Ea interpreteaza acest cuvant ca numar binar, aduna 1 si opreste.

$$M = (\{z_0, z_1, z_2, z_e\}, \{0, 1\}, \{0, 1, \square\}, \delta, z_0, \square, \{z_e\}),$$

$$\delta(z_0, 0) = (z_0, 0, R)$$

$$\delta(z_0, 1) = (z_0, 1, R)$$

$$\delta(z_0, \square) = (z_1, \square, L)$$

$$\delta(z_1, 0) = (z_2, 1, L)$$

$$\delta(z_1, 1) = (z_1, 0, L)$$

$$\delta(z_1, \square) = (z_e, 1, N)$$

$$\delta(z_2, 0) = (z_2, 0, L)$$

$$\delta(z_2, 1) = (z_2, 1, L)$$

$$\delta(z_2, \square) = (z_e, \square, N)$$

Iata un calcul efectuat de catre aceasta masina:

$$z_0 101 \vdash 1z_0 01 \vdash 10z_0 1 \vdash 101z_0 \square \vdash 10z_1 1 \square \vdash$$

 $\vdash 1z_1 00 \square \vdash z_2 110 \square \vdash z_2 \square 110 \square \vdash \square z_e 110 \square.$

Definitie: Limbajul acceptat de catre o masina Turing M este:

$$T(M) = \{ x \in \Sigma^* \mid z_0 x \vdash^* \alpha z \beta; \ \alpha, \beta \in \Gamma^*; \ z \in E \}.$$

3 Limbaje de tip 1

Definitie: O masina Turing este liniar marginita, daca in timpul functionarii ea nu paraseste segmentul determinat de input. In acest scop, se dubleaza alfabetul de input: $\Sigma' = \Sigma \cup \{\bar{a} \mid a \in \Sigma\}$. Literele \bar{a} se folosesc pentru a marca sfarsitul cuvantului. Astfel, masina Turing M (determinista sau nu) este liniar marginita daca si numai daca pentru orice input $a_1 \dots a_n \in \Sigma^+$ si pentru orice configuratie $\alpha z \beta$ astfel incat $a_1 a_2 \dots a_{n-1} \bar{a}_n \vdash^* \alpha z \beta$ are $|\alpha \beta| = n$.

Teorema: (Kuroda) Limbajele acceptate de catre masini Turing nedeterministe liniar marginite (LBA) sunt limbajele de tip 1.

Demonstratie: \Leftarrow Fie A un limbaj de ordinul 1, adica A = L(G) unde $G = (V, \Sigma, P, S)$ este o gramatica de tip 1. Descriem o masina Turing nedeterminista M care accepta limbajul A. Fie $x = a_1 \dots a_n$ un input. M alege in mod nedeterminist o regula $u \to v$ din multimea P. Apoi M cauta o aparitie a lui v in x. Daca o gaseste, inlocuieste v cu u. Daca u este mai scurt decat v, restul literelor sunt translatate la stanga. Se poate presupune ca G este in Forma Normala Kuroda, astfel incat niciodata o asemenea translatie nu va fi cu mai mult de o casuta. Cand pe banda ramane doar simbolul de start S, masina se opreste.

Asadar: $x \in L(G)$ iff exista o derivare $S \Rightarrow \cdots \Rightarrow x$ iff exista o evolutie a lui M care simuleaza aceasta derivare in ordine inversa iff $x \in T(M)$.

 \Rightarrow Fie A=T(M) limbajul recunoscut de o masina Turing nedeterminista liniar marginita. Fie $\Delta=\Gamma\cup(Z\times\Gamma)$ un nou alfabet finit. O δ -tranzitie nedeterminista:

$$\delta(z,a)\ni(z',b,L)$$

va fi inlocuita cu reguli de productie dependente de context, de tipul:

$$c(z,a) \rightarrow (z',c)b$$

pentru toate $c \in \Gamma$. Notam cu P' aceasta multime de reguli de productie. Daca in M are loc un calcul de forma $k \vdash^* k'$, atunci in gramatica G este posibila o derivatie corespunzatoare $\tilde{k} \Rightarrow^* \tilde{k}'$, unde \tilde{k} este reprezentarea corespunzatoare a configuratiei k. Gramatica dependenta de context (context-senzitiva) $G = (V, \Sigma, P, S)$ se defineste in modul urmator:

$$V = \{S, A\} \cup (\Delta \times \Sigma)$$

$$P = \{S \to A(\bar{a}, a) \mid a \in \Sigma\}$$
 (1)

$$\cup \{A \to A(a,a) \mid a \in \Sigma\} \tag{2}$$

$$\cup \{A \to ((z_0, a), a) \mid a \in \Sigma\} \tag{3}$$

$$\cup \{(\alpha_1, a)(\alpha_2, b) \to (\beta_1, a)(\beta_2, b) \mid \alpha_1 \alpha_2 \to \beta_1 \beta_2 \in P'; \ a, b \in \Sigma\}$$
 (4)

$$\cup \{((z,a),b) \to b \mid z \in E, a \in \Gamma, b \in \Sigma\}$$
 (5)

$$\cup \{(a,b) \to b \mid a \in \Gamma, b \in \Sigma\}$$
 (6)

Folosind reguli de tip (1), (2) si (3) se deriva:

$$S \Rightarrow^* ((z_0, a_1), a_1)(a_2, a_2) \dots (a_{n-1}, a_{n-1})(\bar{a}_n, a_n)$$

Primele componente din fiecare pereche definesc configuratia de start a unui calcul Turing. Componentele celelalte definesc cuvantul si nu se vor modifica. Pe componenta 1 se aplica acum regulile (4) si se simuleaza un calcul nedeterminist, pana se atinge o stare finala:

$$\cdots \Rightarrow^* (\gamma_1, a_1) \dots (\gamma_{k-1}, a_{k-1})((z, \gamma_k), a_k)(\gamma_{k+1}, a_{k+1}) \dots (\gamma_n, a_n)$$

cu $z \in E$, $\gamma_i \in \Gamma$, $a_i \in \Sigma$. Acum, folosind regulile de productie (5) si (6) este stearsa componenta 1 si se genereaza cuvantul final:

$$\Rightarrow^* a_1 \dots a_n$$
.

Se verifica imediat ca toate regulile sunt de tip 1.

4 Limbaje de tip 0

Teorema: Limbajele acceptate de catre masini Turing nedeterministe sunt limbajele de tip 0.

Demonstratie: \Leftarrow Demonstratia este asemanatoare cu cea pentru tipul 1. Masina alege nondeterminist o productie $u \to v$ si gaseste in mod determinist o aparitie a lui v in input ca subcuvant.

- In cazul in care |u| < |v|, masina il inlocuieste pe v cu u si deplaseaza partea din dreapta lui v catre stanga, litera cu litera, |v| |u| casute pentru a forma un cuvant conex.
- In cazul in care |u| = |v|, masina il inlocuieste pe v cu u.
- In cazul in care |u| > |v|, masina deplaseaza partea din dreapta lui v catre dreapta, litera cu litera, |u| |v| casute, dupa care il inlocuieste pe v cu u.

Lasam ca exercitiu sa se arate ca aceste operatii deterministe se pot face utilizand un numar finit de stari si eventual o extensie finita a alfabetului gramaticii. Dupa acest pas, se alege din nou in mod nedeterminist o productie, si procesul se reia. Masina se opreste numai in situatia in care la un moment dat pe banda apare doar simbolul initial S. Observati ca masina obtinuta nu este liniar marginita.

 \Rightarrow^1 Fie A=T(M) limbajul recunoscut de o masina Turing nedeterminista. Facem conventia ca functia δ nu este definita pentru nicio pereche de forma (z,a) unde z este stare finala. Construim urmatoarea gramatica $G=(V,\Sigma,P,S)$ unde:

$$V = ((\Sigma \cup \{\varepsilon\}) \times \Gamma) \cup Z \cup \{S, E_1, E_2, E_3\},\$$

unde S, E_1 , E_2 , E_3 sunt litere noi iar ε este un simbol pentru cuvantul vid. Multimea regulilor de productie P contine urmatoarele:

$$S \to E_1 E_2,$$
 (1)

$$E_2 \to (a, a)E_2, \ a \in \Sigma$$
 (2)

$$E_2 \to E_3,$$
 (3)

$$E_3 \to (\varepsilon, \Box)E_3, \ E_1 \to (\varepsilon, \Box)E_1,$$
 (4)

$$E_3 \to \varepsilon, E_1 \to z_0,$$
 (5)

$$z(a,\alpha) \to (a,\beta)z', \ \delta(z,\alpha) \ni (z',\beta,R), \ a \in \Sigma \cup \{\varepsilon\}$$
 (6)

$$(a,\alpha)z \to z'(a,\beta), \ \delta(z,\alpha) \ni (z',\beta,L), \ a \in \Sigma \cup \{\varepsilon\}$$
 (7)

$$(a,\alpha)z \to zaz, \ z(a,\alpha) \to zaz, \ z \to \varepsilon, \ a \in \Sigma \cup \{\varepsilon\}, \ \alpha \in \Gamma, \ z \in E. \tag{8}$$

De data aceasta cuvantul din Σ^* este mentinut pe prima pozitie iar calculul Turing este simulat pe pozitia a doua. Folosind regulile (1), (2) si (3) se pot construi derivatii de forma:

$$S \Rightarrow^* E_1(a_1, a_1)(a_2, a_2) \dots (a_{n-1}, a_{n-1})(a_n, a_n) E_3$$

Presupunem ca masina Turing M, pentru a accepta cuvantul $a_1
ldots a_n$, foloseste un numar de l casute in stanga casutei ocupate initial de a_1 si un numar de m casute in dreapta casutei ocupate initial de a_n . Folosind regulile (4) si (5) se obtine o derivatie:

$$S \Rightarrow^* (\varepsilon, \Box)^l z_0(a_1, a_1)(a_2, a_2) \dots (a_{n-1}, a_{n-1})(a_n, a_n)(\varepsilon, \Box)^m$$
.

Folosind (6) si (7) se simuleaza masina M pe componenta a doua, pana cand se ajunge la o stare finala. Acum, folosind (8), se obtine cuvantul terminal $a_1 \dots a_n$. Observam ca aceasta gramatica nu este de tip 1 din cauza regulilor (5) si (8).

Urmatorul rezultat intareste puternic teorema precedenta, insa este foarte interesant si in sine.

Teorema: Pentru orice masina Turing nedeterminista M exista o masina Turing determinista M' care recunoaste acelasi limbaj.

Demonstratie²: La inceputul fiecarei runde de simulare, banda masinii M' contine un cuvant de forma urmatoare:

$$\square\square\square\#\#\alpha_1z_1\beta_1\#\alpha_2z_2\beta_2\#\ldots\#\alpha_kz_k\beta_k\#\#\square\square\square$$

Aici # este un nou simbol, folosit ca separator, iar $\alpha_i z_i \beta_i$ sunt configuratii ale masinii M. La fiecare runda de simulare, masina M' adauga in dreapta toate configuratiile posibile care provin din $\alpha_1 z_1 \beta_1$ intr-un pas nedeterminist al masinii M, dupa care sterge configuratia $\alpha_1 z_1 \beta_1$. Cand intalneste o stare finala, masina M' se opreste.

Teorema: Limbajele de tip 0 sunt exact limbajele acceptate (recunoscute) prin oprire de catre masinile Turing deterministe.

Demonstratie: Acest lucru rezulta direct din juxtapunerea ultimelor doua rezultate. □

Deci, in cazul general (tip 0), nu are nicio importanta daca vorbim despre o masina Turing determinista sau nedeterminista. In caul limbajelor de tip 1 nu este deloc clar daca o masina nedeterminista liniar marginita (LBA = linear bounded automaton) poate fi simulat de catre o masina

¹Ian Chiswell, A course in formal languages, automata and groups, Springer Verlag, 2009.

²Din memorie...

determinista liniar marginita (DLBA = determinist linear bounded automaton). Una dintre cele mai grele probleme din informatica teoretica, inca deschisa in momentul de fata, este daca:

$$LBA = NLBA$$

O alta problema inrudita, numita mult timp "Second LBA Problem", a fost daca limbajele de tip 1 sunt inchise la complementare. Acest lucru a fost demonstrat in lucrari independente de catre Immerman si Szelepcsenyi.

Part II Functii calculabile

5 Notiunea intuitiva de functie calculabila

Fie A un alfabet finit. Cum exista bijectii calculabile $f:A^*\to\mathbb{N}$ cu inversa calculabila $f^{-1}:\mathbb{N}\to A^*$ (exerctiu!) pentru a intelege notiunea de calculabilitate, este suficient sa studiem functii definite pe multimea numerelor naturale cu valori naturale. O functie $f:\mathbb{N}^k\to\mathbb{N}$, eventual partiala, poate fi considerata calculabila, daca exista o procedura efectiva (un algoritm) care, pornita pentru niste valori initiale $(n_1,n_2,\ldots,n_k)\in\mathbb{N}^k$, se opreste dupa un numar finit de pasi si produce un rezultat $f(n_1,n_2,\ldots,n_k)\in\mathbb{N}$. Asadar obiectul studiului vor fi de fapt algoritmii. Fiecarui algoritm i se asociaza functia calculabila calculata de catre el.

Exemplu: Algoritmul

INPUT(n);

REPEAT UNTIL FALSE;

calculeaza functia care nu este definita nicaieri. Cu alte cuvinte dom $f = \emptyset$.

Exemplu: Functia

$$f_{\pi}(n) = \begin{cases} 1 & n \text{ este un segment initial al dezvoltarii lui } \pi \text{ ca fractie zecimala,} \\ 0 & \text{altfel.} \end{cases}$$

astfel incat $f_{\pi}(314) = 1$, $f_{\pi}(5) = 0$, este calculabila, deoarece exista metode de aproximare pentru numarul π .

Exemplu: Functia

$$g(n) = \begin{cases} 1 & n \text{ apare undeva in dezvoltarea lui } \pi \text{ ca fractie zecimala,} \\ 0 & \text{altfel.} \end{cases}$$

s-ar putea sa nu fie calculabila. Ceea ce stim despre numarul π nu este suficient ca sa putem decide acest lucru. In cazul in care fiecare numar ar aparea undeva in dezvoltarea zecimala a lui π , ceea ce nu se stie, functia ar fi g(n) = 1 pentru orice n, deci ar fi calculabila.

Exemplu: Functia

$$h(n) = \begin{cases} 1 & \text{dezvoltarea lui } \pi \text{ ca fractie zecimala contine undeva cifra 7 de } n \text{ ori consecutiv,} \\ 0 & \text{altfel.} \end{cases}$$

este calculabila! Intr-adevar, sau aceasta dezvoltare ca fractie zecimala contine segmente arbitrar de lungi formate din cifra 7, caz in care functia h este constanta si egala cu 1, sau exista un n_0 astfel incat h(n)=1 daca si numai daca $n\leq n_0$. Desi stim ca functia este calculabila, nu cunoastem aceasta functie pentru ca nu cunoastem algoritmul care o calculeaza. Asta deoarece avem prea putine cunostiinte despre numarul π .

Daca fiecarui numar real $r \in \mathbb{R}$ ii asociem o functie f_r asa cum i-am asociat lui π functia f_{π} in exemplul de mai sus, marea majoritate a acestor functii nu sunt calculabile. Motivul este simplu: exista doar o infinitate numarabila \aleph_0 de algoritmi, dar o infinitate nenumarabila 2^{\aleph_0} de numere reale. Mai mult, daca consideram toate submultimile $A \subseteq \mathbb{N}$, marea majoritate a acestor submultimi au functii caracteristice necalculabile si numai o multime numarabila de astfel de submultimi au functii caracteristice calculabile, deoarece exista 2^{\aleph_0} astfel de submultimi³. Cu alte cuvinte majoritatea submultimilor lui \mathbb{N} sunt nedecidabile algoritmic.

Demonstratie: Fie $f: A \to P(A)$ o functie surjectiva. Definim multimea:

$$C = \{ x \in A \mid x \not\in f(x) \}.$$

³**Teorema**: (Cantor) Daca A este o multime, iar $P(A) = \{B \mid B \subseteq A\}$ este multimea partilor ei, atunci nu exista nicio functie $f: A \to P(A)$ surjectiva. Cu alte cuvinte, |A| < |P(A)|.

Cum $C \in P(A)$ si f este surjectiva, exista $c \in A$ astfel incat f(c) = C. Daca $c \in C$ atunci $c \in f(c)$ deci $c \notin C$, contradictie. Daca $c \notin C$ atunci $c \in C$, contradictie.

Daca notam cu \aleph_0 cardinalitatea lui \mathbb{N} si cu 2^{\aleph_0} cardinalitatea lui $P(\mathbb{N})$, rezulta ca $\aleph_0 < 2^{\aleph_0}$. Cu alte cuvinte infinitatea numarabila este strict mai slaba decat puterea continuumului.

Teza lui Church: Clasa functiilor Turing-calculabile (sau, echivalent, a functiilor WHILE calculabile, GOTO calculabile sau μ -recursive) coincide cu clasa functiilor calculabile in mod intuitiv.

In aceasta parte a cursului vom defini aceste clase de functii si vom demonstra echivalenta lor. Se vor prezenta si doua notiuni mai slabe: functiile loop-calculabile si functiile primitiv recursive, care se vor dovedi la randul lor echivalente.

6 Calculabilitate Turing

Prezentam cateva definitii posibile pentru notiunea de functie Turing calculabila. Se va vedea ca aceste definitii sunt echivalente.

Definitie: Fie Σ un alfabet finit. O functie $f: \Sigma^* \to \Sigma^*$ se numeste Turing calculabila, daca exista o masina Turing determinista M astfel incat pentru orice $x, y \in \Sigma^*$, f(x) = y daca si numai daca:

$$z_0x \vdash^* \Box \dots \Box z_ey \Box \dots \Box$$

unde $z_e \in E$.

Pentru un numar natural n fie bin(n) scrierea binara a lui n, un(n) scrierea lui unara si dec(n) scrierea lui zecimala. De exemplu, dec(3) = 3, un(3) = 111 iar bin(3) = 11.

Definitie: O functie $f: \mathbb{N}^k \to \mathbb{N}$ se numeste Turing calculabila daca exista o masina Turing M astfel incat pentru orice $n_1, n_2, \ldots, n_k, m \in \mathbb{N}$ are loc $f(n_1, n_2, \ldots, n_k) = m$ daca si numai daca:

$$z_0bin(n_1)\#bin(n_2)\#\dots\#bin(n_k)\vdash^*\Box\dots\Box z_ebin(m)\Box\dots\Box$$
.

Ultima definitie se poate scrie identic pentru reprezentarea unara un(n), pentru reprezentarea zecimala dec(n), pentru diferite produse \mathbb{N}^k atat la domeniu cat si la codomeniu. Ne putem gandi si la functii $f: \Sigma^2 \to \mathbb{N}^4$, cu output codificat in formatul (bin, un, dec, bin). In realitate, exista bijectii calculabile cu inversa calculabila intre Σ^* si \mathbb{N} si intre \mathbb{N}^k si \mathbb{N} . Mai mult, transformarile reprezentarii numerice din baza b_1 in baza b_2 si invers sunt functii calculabile. Fiecare dintre acestea se poate realiza in particular cu masini Turing, care se pot combina cu o masina Turing data atat la prepararea inputului cat si la traducerea outputului (asa cum se va vedea in paginile urmatoare). De aceea avem de a face cu o singura clasa de functii Turing calculabile, iar definitiile de mai sus si alte variante ale lor slujesc mai mult la fixarea unor specificatii legate de reprezentarea functiei, de formatul de input si de formatul de output.

Exemplu: Functia succesor s(n) = n + 1 este Turing calculabila, vezi Sectiunea 2 pentru functia succesor in scrierea binara. Daca folosim scrierea unara, masina respectiva este mult mai simpla (exercitiu).

Exemplu: Functia care nu este definita nicaieri Ω este calculata de masina Turing:

$$\delta(z_0, a) = (z_0, a, R)$$
 pentru toate $a \in \Gamma$.

Exemplu: Am vazut ca un limbaj este de tip 0 daca si numai daca este acceptat de catre o masina Turing. Cu alte cuvinte, exista o masina Turing care calculeaza urmatoarea functie $\chi'_A: \Sigma^* \to \{0,1\}$,

$$\chi'_{A}(w) = \begin{cases} 1, & w \in A, \\ nedefinita, & w \notin A. \end{cases}$$

Cum aceasta este numai jumatate din functia caracteristica a lui A, spunem despre A ca este o multime semidecidabila.

Definitie: O masina Turing cu mai multe benzi poate opera pe un numar de $k \ge 1$ benzi. Ea are k capete de citire-scriere. Aceste capete pot citi casute, pot scrie in casute si se misca independent unul de altul, fiecare pe banda lui. Formal, functia de tranzitie este:

$$\delta: Z \times \Gamma^k \to Z \times \Gamma^k \times \{L, R, N\}.$$

Teorema: Pentru orice masina Turing M cu mai multe benzi exista o masina Turing M' cu o banda astfel incat T(M) = T(M'), respectiv care calculeaza aceeasi functie ca si M.

Demonstratie: Fie k numarul de benzi ale lui M si fie Γ alfabetul de lucru al lui M. Ideea este sa impartim banda lui M in 2k canale. O posibila configuratie a masinii M este:

Aici a_3 inseamna ca primul cap de citire-scriere este pe litera a_3 de pe prima banda, b_7 inseamna ca al doilea cap de citire-scriere este pe b_7 si analog pentru al treilea cap de citire-scriere pe c_2 .

Cele 2k canale ale benzii masinii M' sunt folosite in modul urmator: canalele de indice impar replica benzile masinii M, pe cand canalele de indice par contin un singur simbol (o litera noua). Pozitia lui indica pozitia capului de citire-scriere de pe banda corespunzatoare a masinii M.

 a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	
		*								
 b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9	b_{10}	
						*				
 c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9	c_{10}	
	*									

Alfabetul de lucru al masinii M' este $\Gamma' = \Gamma \cup (\Gamma \cup \{\bigstar\})^{2k}$. M' o simuleaza pe M dupa cum urmeaza. M' porneste cu un input $x_1x_2 \dots x_n \in \Gamma^*$. Apoi M' genereaza configuratia de start a lui M in reprezebtarea cu canale. Un pas al lui M este simulat prin mai multi pasi ai lui M'. Presupunem ca capul de citire-scriere al lui M' se afla in stanga tuturor marcajelor cu \bigstar . M' merge catre dreapta pana cand a citit toate aceste marcaje. Acum M' "stie" (cu ajutorul starii in care se afla) care argument al functiei δ a lui M trebuie aplicat. Pentru aceasta, $|Z'| > |Z \times \Gamma^k|$. Apoi merge M' catre stanga peste toate marcajele cu \bigstar si produce toate schimbarile necesare, care corespund unui pas al masinii M.

In randurile urmatoare vom arata cum putem inlantui masini Turing simple in scopul de a demonstra ca anumite functii sunt Turing calculabile. Vom lucra cu masini Turing cu mai multe benzi, deoarece stim datorita propozitiei precedente ca ele sunt echivalente cu niste masini Turing cu o singura banda.

Definitie: Fie M o masina Turing cu o singura banda. Notam cu M(i,k) o masina Turing cu k benzi, astfel incat pe banda i lucreaza masina Turing M iar celelalte benzi raman neschimbate. Mai exact, daca pentru masina M are loc $\delta(z,a) = (z',b,y)$ atunci in masina M(3,5) de exemplu,

$$\delta(z, c_1, c_2, a, c_3, c_4) = (z', c_1, c_2, b, c_3, c_4, N, N, y, N, N)$$

pentru toate $c_1, c_2, a, c_3, c_4 \in \Gamma$. Daca k nu este important, folosim notatia M(i) in loc de M(i, k).

Definitie: Masina care aduna 1 poate fi denumita "Tape := Tape + 1". In loc de "Tape := Tape + 1"(i) scriem "Tape(i) := Tape(i) + 1". In mod asemanator putem obtine masinile Turing cu

mai multe benzi "Tape(i) := Tape(i) - 1", "Tape(i) := 0", "Tape(i) := Tape(j)". Aici operatia $\dot{-}$, scaderea naturala, este definita in modul urmator:

$$\dot{x-y} = \begin{cases} x - y, & x \ge y \\ 0, & x < y. \end{cases}$$

Definitie: Dorim sa aplicam masini Turing (cu una sau mai multe benzi) una dupa cealalta. Fie $M_i = (Z_i, \Sigma, \Gamma_i, \delta_i, z_i, \Box, E_i)$ cu i = 1, 2, doua masini Turing. Masina:

$$start \rightarrow M_1 \rightarrow M_2 \rightarrow stop,$$

notata si $M_1; M_2$, se defineste ca:

$$M = (Z_1 \cup Z_2, \Sigma, \Gamma_1 \cup \Gamma_2, \delta, z_1, \square, E_2)$$

unde $Z_1 \cap Z_2 = \emptyset$ si

$$\delta = \delta_1 \cup \delta_2 \cup \{(z_e, a, z_2, a, N) \mid z_e \in E_1, a \in \Gamma_1\}.$$

Exemplu: Masina

$$start \rightarrow "Tape := Tape + 1" \rightarrow "Tape := Tape + 1" \rightarrow "Tape := Tape + 1" \rightarrow stop,$$

este o masina Turing, care aduna cu 3.

Definitie: Fie M, M_1 si M_2 masini Turing. M are doua stari finale speciale z_{e_1} si z_{e_2} . Se poate imagina usor masina:

IF state(M) =
$$z_{e_1}$$
 THEN M_1 ELSE IF state(M) = z_{e_2} THEN M_2

Definitie: Masina Turing cu o banda "Tape=0?" se defineste in modul urmator: $Z = \{z_0, z_1, y_0\}$, starea initiala z_0 , stari finale yes si no. Pentru scrierea binara, δ contine urmatoarele tranzitii:

$$\delta(z_0, a) = (\text{no}, a, N) \quad a \neq 0$$

$$\delta(z_0, a) = (z_1, 0, R)$$

$$\delta(z_1, a) = (\text{no}, a, L) \quad a \neq \square$$

$$\delta(z_1, \square) = (\text{ves}, \square, L)$$

In loc de "Tape=0?"(i) scriem "Tape(i)=0?".

Definitie: Fie M o masina Turing. Folosind ultimele doua definitii, si reinitializarea masinii de test dupa fiecare test efectuat, se poate construi masina:

WHILE Tape(i)
$$\neq 0$$
 DO M

7 Limbaje de programare

Definitie: O masina cu registre este formata dintr-un numar potential infinit de registre x_0, x_1, x_2, \ldots Fiecare registru poate contine un numar arbitrar de bete de chibrit |. Daca nu contine niciun bat de chibrit, valoarea lui x_i este 0. Prin conventie, numai un numar finit de registre pot

avea o valoare diferita de 0. De exemplu, in configuratia:

$$x_0 = |||$$
 $x_1 = ||$
 $x_2 = |||||$
 $x_3 = ||$
 $x_4 = ||$
 $x_5 = ||$
 $x_5 = ||$

 $x_0 = 3$, $x_1 = 0$, $x_2 = 5$, $x_3 = 2$, iar celelalte x_i sunt 0.

Definitie: Simbolurile cu care se scrie un program in limbajul LOOP sunt de urmatoarele tipuri:

Variabile: $x_0, x_1, x_2, x_3, ...$

Constante: 0, 1, 2, 3, 4, ...

Separatoare: ; :=

Semne de operatie: + -

Cuvinte cheie: LOOP DO END

Definitie: Sintaxa programelor LOOP este definita inductiv.

- Atat $x_i := x_j + 1$ cat si $x_i := x_j 1$ sunt programe LOOP.
- Daca P_1 si P_2 sunt programe LOOP, atunci P_1 ; P_2 este un program LOOP.
- Daca P este un program LOOP si x_i este o variabila, atunci LOOP x_i DO P END este un program LOOP.

Definitie: Semantica programelor LOOP se defineste inductiv in mod asemanator cu sintaxa.

- Programele $x_i := x_j + 1$ si $x_i := x_j 1$ au semnificatia intuitiva, cu completarea ca scaderea folosita aici este scaderea naturala, definita in sectiunea precedenta si notata acolo cu " $\dot{-}$ ". Pentru simplitate folosim doar semnul minus.
- Atunci cand se ruleaza programul P_1 ; P_2 , se ruleaza programul P_1 iar pe configuratia rezultata se ruleaza programul P_2 .
- Atunci cand se ruleaza programul LOOP x_i DO P END, programul P se ruleaza in mod repetat un numar de ori egal cu valoarea lui x_i la inceput, adica inainte de prima rulare a lui P.

Limbajul LOOP a fost introdus in 1967 de catre Albert R. Meyer si Dennis M. Ritchie, cu scopul de a defini asa-zisele functii primitiv recursive. Sensul acestei notiuni va fi explicat mai tarziu.

Definitie: O functie $f: \mathbb{N}^k \to \mathbb{N}$ se numeste LOOP calculabila daca exista un program LOOP P astfel incat, pentru orice $n_1, \ldots, n_k \in \mathbb{N}$, daca este pornit cu valorile $n_1, \ldots, n_k \in \mathbb{N}$ in registrele x_1, \ldots, x_k si cu valoarea 0 in celelalte registre, opreste cu valoarea $f(n_1, \ldots, n_k)$ in registrul x_0 .

Este usor de observat ca urmatoarele programe pot fi scrise in LOOP: $x_i := x_j + c$, $x_i := x_j - c$, $x_i := x_j$, $x_i := c$. Aici putem avea si situatia i = j, iar c poate fi orice constanta.

Programul IF x = 0 THEN A END este urmatorul:

$$y := 1;$$

LOOP x DO $y := 0$ END;

LOOP
$$y$$
 DO A END;

Programul $x_0 := x_1 + x_2$ se scrie:

$$x_0 := x_1;$$

LOOP
$$x_2$$
 DO $x_0 := x_0 + 1$ END

Analog se poate scrie programul $x_0 := x_1 - x_2$. Cu ajutorul adunarii, putem scrie programul $x_0 := x_1 * x_2$ dupa cum urmeaza:

$$x_0 := 0;$$

LOOP
$$x_2$$
 DO $x_0 := x_0 + x_1$ END

Putin mai complicat este programul $x_0 = x_1$ DIV x_2 , prezentat mai jos:

$$x_0 := 0;$$

LOOP x_1 DO

IF
$$x_1 \geq x_2$$
 THEN

$$x_1 := x_1 - x_2;$$

$$x_0 := x_0 + 1;$$

END

END

Pentru $x_0 := x_1 \text{ MOD } x_2 \text{ putem considera programul } x_0 := x_1 - (x_1 \text{ DIV } x_2) * x_2.$

Teorema: Rularea unui program LOOP se termina intotdeauna, indiferent de valoarea initiala a argumentelor. In particular, toate functiile LOOP calculabile sunt functii totale.

Demonstratie: Demonstratia se face prin inductie dupa definitia inductiva a programelor LOOP.

Aceasta teorema arata deja ca nu toate functiile calculabile sunt LOOP calculabile. Astfel, programele LOOP nu sunt indicate pentru recunoasterea multimilor prin oprire. Vom vedea introsectiune viitoare ca exista si functii calculabile total definite care nu sunt LOOP calculabile.

Definitie: Programele WHILE sunt programele LOOP imbogatite cu urmatorul pas de constructie: Daca P este un program WHILE, atunci

WHILE
$$x_i \neq 0$$
 DO P END

este un program WHILE. Semantica acestui construct este urmatoarea: programul P se repeta pana cand se intampla ca valoarea x_i sa fie egala cu 0. Spre deosebire de programele LOOP, valoarea lui x_i se verifica dupa fiecare rulare a programului P.

Teorema: Orice functie LOOP calculabila este WHILE calculabila. Mai mult, pentru orice program WHILE exista un program WHILE echivalent, care nu contine nicio comanda LOOP.

Demonstratie: Orice subprogram care are structura

LOOP
$$x$$
 DO P END

poate fi inlocuit cu subprogramul:

$$y := x$$

WHILE
$$y \neq 0$$
 DO $y := y - 1$; P END

unde y este o variabila care nu apare in P.

Definitie: O functie $f: \mathbb{N}^k \to \mathbb{N}$ se numeste WHILE calculabila daca exista un program WHILE P astfel incat, pentru orice $n_1, \ldots, n_k \in \mathbb{N}$, daca este pornit cu valorile $n_1, \ldots, n_k \in \mathbb{N}$ in registrele x_1, \ldots, x_k si cu valoarea 0 in celelalte registre, opreste cu valoarea $f(n_1, \ldots, n_k)$ in registrul x_0 daca si numai daca valoarea $f(n_1, \ldots, n_k)$ este definita, iar in caz contrar nu se opreste niciodata.

Teorema: Masinile Turing deterministe cu o banda pot simula programe WHILE. In particular orice functie WHILE calculabila este Turing calculabila.

Demonstratie: In sectiunea precedenta am aratat cum fiecare comanda si constructie din programele WHILE poate fi facuta cu masini Turing deterministe cu mai multe benzi. Am aratat de asemeni ca aceste masini Turing pot fi simulate de masini Turing cu o banda.

Definitie: Un program GOTO pentru masina cu registre, este un sir de comenzi indexate cu etichete (labels):

$$M_1: A_1; M_2: A_2; \ldots M_n: A_n;$$

Oricare doua etichete sunt diferite. Comenzile A_i pot fi de urmatoarele tipuri:

Atribuiri: $x_i := x_j \pm 1$

Salt neconditionat: GOTO M_i

Salt conditionat: IF $x_i = c$ THEN GOTO M_i

Oprire: STOP

Semantica programelor GOTO se defineste asemanator cu cea a programelor WHILE. Programele GOTO pot intra si ele in bucle infinite, precum si programele WHILE, de exemplu M: GOTO M:. Calculabilitatea GOTO se defineste exact ca si calculabilitatea WHILE - conditia necesara si suficienta ca functia sa fie definita pentru un anumit argument, este ca programul GOTO corespunzator sa opreasca. Datorita structurii care poate deveni foarte complicata, programele GOTO se mai numesc si programe spaghetti.

Teorema: Orice WHILE program poate fi simulat printr-un program GOTO. In particular orice functie WHILE calculabila este GOTO calculabila.

Demonstratie: Orice subprogram de forma

WHILE
$$x_i \neq 0$$
 DO P END

poate fi simulat de un subprogram de forma:

Reciproca este adevarata:

Teorema: Orice GOTO program poate fi simulat printr-un program WHILE. In particular orice functie GOTO calculabila este WHILE calculabila.

Demonstratie: Fie un GOTO program:

$$M_1: A_1; M_2: A_2; \ldots M_k: A_k;$$

Vom simula acest program printr-un WHILE program care are o singura comanda WHILE, in modul urmator:

$$count := 1;$$

```
WHILE count \neq 0 DO 
 IF count = 1 THEN A_1' END; 
 IF count = 2 THEN A_2' END; 
 \vdots 
 IF count = k THEN A_k' END; 
 END
```

Aici programele A' sunt definite in modul urmator:

$$A' = \begin{cases} x_i := x_j \pm c; count := count + 1 & \text{daca } A = \{x_i := x_j \pm c\}, \\ count := n & \text{daca } A = \{\text{ GOTO } M_n\}, \\ \text{IF } x_i = c \text{ THEN } count := n & \text{daca } A = \{\text{ IF } x_i = c \\ \text{ELSE } count := count + 1 \text{ END} & \text{THEN GOTO } M_n\}, \\ count := 0 & \text{daca } A = \{\text{ STOP }\}. \end{cases}$$

Cele doua demonstratii de mai sus au o consecinta neasteptata, dupa cum urmeaza:

Teorema: (Forma Normala Kleene a Programlor WHILE) Orice functie WHILE calculabila poate fi calculata printr-un program WHILE care contine o singura bucla WHILE.

Demonstratie: Se folosesc demonstratiile ultimelor doua teoreme. Programul WHILE se transforma intr-un program GOTO, iar acesta se transforma intr-un program WHILE care contine o singura bucla WHILE.

In continuare vom nota cu LOOP, WHILE, GOTO si Turing clasa functiilor calculabile prin respectivele modele de calcul. Am vazut ca LOOP \subset WHILE. De asemeni am vazut ca WHILE = GOTO \subset Turing. Scopul nostru urmator este sa aratam ca Turing \subset GOTO.

Teorema: Programele GOTO pot simula masinile Turing. In particular orice functie Turing calculabila este GOTO calculabila.

Demonstratie: Fie $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ o masina Turing determinista cu o banda. Programul GOTO care o simuleaza este format din trei parti

$$M_1: P_1; M_2: P_2; M_3: P_3$$

dupa cum urmeaza:

- P_1 transforma configuratia de start k_1 a masinii Turing intr-un triplet de numere naturale (x_1,y_1,z_1) .
- P_2 simuleaza pas cu pas functionarea masinii Turing. De fiecare data o configuratie k este codificata intr-un triplet de numere naturale (x, y, z). Daca $k \vdash k'$ atunci in programul GOTO, $(x, y, z) \vdash (x', y', z')$.
- P_3 primeste forma codificata a configuratiei finale (x_f, y_f, z_f) si genereaza outputul masinii Turing.

Numai P_2 foloseste functia δ , asa ca ne vom concentra pe aceasta parte a programului. Iata cum se face codificarea. Fie $b \in \mathbb{N}$ un numar natural astfel incat $b > |\Gamma|$. O configuratie a masinii Turing este un cuvant de forma:

$$a_{i_1} \dots a_{i_n} z_t a_{j_1} \dots a_{j_q}$$
.

Aici este important ca nicio litera din alfabetul Γ si nicio stare din multimea Z sa nu fie indexata cu 0. De aceea am si denumit starea initiala z_1 . Numerele naturale (x, y, z) care codifica configuratia

sunt:

$$x = (i_1 \dots i_p)_b$$

$$y = (j_q \dots j_1)_b$$

$$z = t$$

Aici $(i_1 \dots i_p)_b$ semnifica acel numar natural care in baza b are ca reprezentare " $i_1 \dots i_p$ ". Faptul ca in y cifrele apar in ordine inversa este important. Cifra unitatilor este cea mai accesibila, si reprezinta intotdeauna litera cea mai apropiata de capul de citire-scriere. Secventa de program $M_2: P_2$ are urmatoarea structura:

Acum ne ocupam cu partile marcate cu \diamondsuit . Fie M_{ij} eticheta respectiva, presupunem ca valoarea functiei de tranzitie este:

$$\delta(z_i, a_j) = (z_{i'}, a_{j'}, L).$$

Actiunea ei poate fi simulata de urmatoarea succesiune de comenzi:

$$z := i';$$

 $y := y \text{ DIV } b;$
 $y := b * y + j';$
 $y := b * y + (x \text{ MOD } b);$
 $x := x \text{ DIV } b;$

O succesiune similara de comenzi simuleaza tranzitiile la stanga. In cazul in care $z_{i'}$ este o stare finala, se adauga la sfarsit comanda GOTO M_3 . Subprogramele P_1 si P_3 sunt standard si pot fi realizate in multe moduri.

Concuzia este ca clasele de functii (partiale sau totale) Turing calculabile, WHILE calculabile si GOTO calculabile coincid. Clasa functiilor LOOP calculabile este inclusa in aceasta clasa si este strict mai mica deoarece contine numai functii total definite. Vom vedea mai tarziu ca exista si functii totale care sunt WHILE calculabile dar nu sunt LOOP calculabile.

8 Busy beavers

Conform Tezei lui Church, vom numi de acum inainte clasa functiilor Turing, WHILE sau GOTO calculabile, pur si simplu functii calculabile. In acest paragraf vom construi:

- O functie total definita care este calculabila dar nu este LOOP calculabila.
- O functie total definita care nu este calculabila.

In acest scop, va trebui sa definim notiunea de lungime a unui program. In acest scop, pentru fiecare limbaj de programare prezentat, trebuie sa definim alfabetul in care sunt scrise programele. Pentru limbajul LOOP definim alfabetul:

$$A_{\text{LOOP}} = \{x : = + - \mid \text{LOOP DO END}\}$$

care are 9 litere. Variabilele x_0, x_1, x_2, \ldots se noteaza $x, x|, x|, \ldots$ Expresiile x+1 si x-1 se scriu x+| si x-|. Se accepta numai comenzile din definitia limbajului. Pentru programele WHILE, alfabetul este asemanator, doar ca litera LOOP se inlocuieste cu litera WHILE si se mai adauga literele \neq si 0. Cum avem literele 0 si |, variabilele se pot nota in limbajul WHILE cu x urmat de un cuvant binar. Asadar x00 si x|0 sunt exemple de variabile.

Ne reamintim definitia functiei calculabile de o variabila. Un program P care poate fi LOOP, WHILE sau GOTO calculeaza o valoare P(n) daca si numai daca programul porneste cu $x_1 = n$ si toate celelalte registre goale, si la un moment dat se opreste. Atunci valoarea din registrul x_0 este valoarea functiei P(n) care in acest caz este definita.

Notiunea "busy beaver" (castori ocupati, castori vrednici) se refera istoric la masini Turing. Asa zisa Busy Beaver Competition, conceputa de catre Tibor Rado in 1962, este intrebarea: Care este numarul cel mai mare de betigase "|" scrise pe banda de catre o masina Turing cu cel mult n stari si care foloseste alfabetul format dintr-o singura litera, si anume betigasul?

Definitie: Pentru un tip de program TYPE in multimea { LOOP, WHILE } definim functia totala BB_{TYPE} in modul urmator:

$$BB_{\text{TYPE}}(n) = \max \{P(0) \mid P \text{ este un TYPE program de lungime } \leq n$$

care este pornit cu toate registrele goale si opreste }

In cazul in care niciun asemenea program nu exista, se ia $BB_{\text{TYPE}}(n) = 0$.

Observam ca functia este monotona, adica pentru orice n, $BB_{\text{TYPE}}(n+1) \ge BB_{\text{TYPE}}(n)$ si tinde la infinit.

Teorema⁴: Fie $f: \mathbb{N} \to \mathbb{N}$ o functie total definita TYPE calculabila. Atunci exista $n_f \in \mathbb{N}$ astfel incat $BB_{TYPE}(n) > f(n)$ pentru orice $n \ge n_f$.

Demonstratie: Fie P_f acel program TYPE care il calculeaza pe f. Presupunem ca in alfabetul A_{TYPE} , programul respectiv are lungimea c. Atunci, pentru orice $n \in \mathbb{N}$, exista un program $P_{n,f}$ care porneste pe registrele goale, scrie numarul n in registrul x_1 , apoi lucreaza precum P_f si la oprire a scris valoarea lui f(n) in x_0 . In final programul $P_{n,f}$ mai adauga un betigas in registrul x_0 . Orice numar poate fi format fintr-o alternanta de programe de tipul $x_1 := x_1 + 1$ respectiv $x_1 := x_1 + x_1$. Daca lungimea totala a combinatiei acestor doua programe scrise in sintaxa din definitie este k, lungimea programului $P_{n,f}$ este $c + k \log n + 8$. Deci:

$$BB_{\text{TYPE}}(c + 8 + k \log n) > f(n)$$

pentru toti $n \in \mathbb{N}$. Dar pentru un anumit n_f , daca $n \geq n_f$, atunci $n > c + 8 + k \log n$. Deci:

$$BB_{\text{TYPE}}(n) \ge BB_{\text{TYPE}}(c + 8 + k \log n) > f(n)$$

pentru
$$n \geq n_f$$
.

Teorema: Functia BB_{LOOP} nu este LOOP calculabila, dar este o functie calculabila. Functia BB_{WHILE} nu este o functie calculabila.

⁴Un rezultat asemanator, formulat pentru masini Turing, se gaseste in articolul lui Scott Aaronson, The Busy Beaver Frontier, Electronic Colloquium on Computational Complexity, Report No. 115 (2020)

Demonstratie: Functia Busy Beaver pentru limbajul LOOP nu este LOOP calculabila, conform teoremei precedente. Intr-adevar, daca ar fi LOOP calculabila, de la un rang incolo ar trebui sa fie strict dominata de catre ea insasi, ceea ce este imposibil. Functia Busy Beaver LOOP creste asadar mai repede decat orice functie LOOP calculabila.

Totusi, aceasta functie este intuitiv calculabila. Un posibil algoritm arata in felul urmator. Se genereaza toate cuvintele de lungime $\leq n$ in alfabetul limbajelor LOOP. Daca un asemenea cuvant se dovedeste a fi un program corect scris in LOOP, programul se ruleaza pe configuratia initiala vida a registrelor. Cum orice program LOOP opreste cu orice input, si acest program va opri si va calcula o valoare. Cea mai mare dintre aceste valori este rezultatul functiei Busy Beaver LOOP. Acest algoritm ar putea fi implementat, de exemplu, pe o masina Turing cu mai multe benzi, deci si in WHILE sau GOTO.

Functia Busy Beaver pentru limbajul WHILE nu este WHILE calculabila. Dar cum identificam multimea functiilor WHILE calculabile cu multimea functiilor calculabile in general, tragem concluzia ca Busy Beaver pentru WHILE nu este calculabila deloc. De data aceasta putem spune ca functia Busy Beaver WHILE creste mai repede decat orice functie calculabila.

In capitolul urmator vom vedea ca functiile LOOP calculabile mai au o caracterizare - cea de functii primitiv recursive, pe cand functiile calculabile sunt acelasi lucru cu functiile recursive sau μ -recursive. Istoric, primul exemplu de functie primitiv recursiva care nu este recursiva a fost dat de Gabriel Sudan in 1927. Cel mai cunoscut exemplu de asemenea functie este functia lui Wilhelm Ackermann din 1928. Functia Busy Beaver LOOP este un exemplu relativ recent.

9 Functii primitiv recursive si μ -recursive

Mai jos sunt definite functiile primitiv recursive. Este vorba despre functii $f: \mathbb{N}^k \to \mathbb{N}$ cu un numar arbitrar de variabile. Principiul acestei definitii este urmatorul: intai sunt mentionate cateva functii simple care fac parte din aceasta clasa, apoi sunt mentionate operatiile cu functii la care este inchisa aceasta clasa sau, mai bine zis, care genereaza aceasta clasa.

Definitie: Functiile primitiv recursive se definesc in modul urmator.

- Toate functiile constante $f: \mathbb{N}^k \to \mathbb{N}$ date de $c(n_1, \dots, n_k) = c$ sunt primitiv recursive.
- Toate projectiile $\pi_m^k: \mathbb{N}^k \to \mathbb{N}$ date de $\pi_m^k(n_1, \dots, n_m, \dots, n_k) = n_m$ sunt primitiv recursive.
- Functia succesor $s: \mathbb{N} \to \mathbb{N}$ data de s(n) = n+1 este primitiv recursiva.
- Orice compunere de functii primitiv recursive este o functie primitiv recursiva. Mai exact, daca $f: \mathbb{N}^k \to \mathbb{N}$ si functiile $g_1, \ldots, g_k: \mathbb{N}^m \to \mathbb{N}$ sunt primitiv recursive, atunci functia $h: \mathbb{N}^m \to \mathbb{N}$

$$h(n_1, \ldots, n_m) := f(g_1(n_1, \ldots, n_m), \ldots, g_k(n_1, \ldots, n_m))$$

este primitiv recursiva.

- Orice functie obtinuta prin operatia de recursie primitiva din functii primitiv recursive este primitiv recursiva. Mai exact, daca $f: \mathbb{N}^k \to \mathbb{N}$ si $g: \mathbb{N}^{k+2} \to \mathbb{N}$ sunt functii primitiv recursuve, atunci functia $h: \mathbb{N}^{k+1} \to \mathbb{N}$ data de:

$$h(0, n_1, \dots, n_k) = f(n_1, \dots, n_k)$$

 $h(n+1, n_1, \dots, n_k) = g(h(n, n_1, \dots, n_k), n, n_1, \dots, n_k)$

este primitiv recursiva.

Se observa ca toate functiile primitiv recursive sunt functii total definite. Iata cateva exemple. Functia adunare $add: \mathbb{N}^2 \to \mathbb{N}$ data de add(n,x) = n+x este primitiv recursiva, deoarece se defineste:

$$\begin{array}{rcl} add(0,x) & = & x \\ add(n+1,x) & = & s(add(n,x)) \end{array}$$

La fel functia inmultire $mult: \mathbb{N}^2 \to \mathbb{N}$, mult(n, x) = n * x este primitiv recursiva, cu definitia:

$$mult(0,x) = 0$$

 $mult(n+1,x) = add(mult(n,x),x)$

Functia predecesor, $u: \mathbb{N} \to \mathbb{N}$, data de $u(x) = \max(0, n-1)$, este primitiv recursiva, deoarece:

$$u(0) = 0$$

$$u(n+1) = n$$

Cu ajutorul lui u putem arata ca si scaderea naturala $sub: \mathbb{N}^2 \to \mathbb{N}, \ sub(x,y) = x-y,$ este primitiv recursiva:

$$sub(x,0) = x$$

$$sub(x,y+1) = u(sub(x,y))$$

Functia $\binom{n}{2} = \frac{n(n-1)}{2}$ este primitiv recursiva deoarece se poate defini prin recursie primitiva bazata pe adunare:

$$\begin{pmatrix} 0 \\ 2 \end{pmatrix} = 0$$

$$\begin{pmatrix} n+1 \\ 2 \end{pmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix} + n$$

Folosind proiectiile si compunerea, observam ca si functia urmatoare este primitiv recursiva:

$$c(x,y) = \binom{x+y+1}{2} + x$$

este la randul ei primitiv recursiva. Aceasta functie se numeste functia de imperechere a lui Cantor.

Exercitiu: Sa se arate ca functia de imperechere a lui Cantor $c: \mathbb{N}^2 \to \mathbb{N}$ este o bijectie. Folosind aceasta functie, putem codifica tupluri de lungime k+1 in numere, pentru orice k dat:

$$\langle n_0, n_1, \dots, n_k \rangle := c(n_0, c(n_1, \dots, c(n_k, 0) \dots)).$$

Aceasta functie este si ea primitiv recursiva. Codificarea obtinuta nu este bijectiva datorita ultimului 0. Ea a fost insa aleasa asa pentru simplitatea functiei inverse.

Fie e si f reciprocele functiei c, definite de relatiile:

$$e(c(x,y)) = x$$
, $f(c(x,y)) = y$, $c(e(n), f(n)) = n$.

Atunci functia de codificare a tuplurilor are urmatoarele functii inverse (functii de proiectie):

$$d_0(n) = e(n)$$

$$d_1(n) = e(f(n))$$

$$\vdots$$

$$d_k(n) = e(f(f(\dots f(n) \dots)))$$

unde litera f apare de k ori.

Urmatoarele randuri au ca scop justificarea faptului ca functiile inverse e si f sunt primitiv recursive.

Definitie: Fie $P \subseteq \mathbb{N}$ un predicat unar. Notatia P(x) inseamna ca $x \in P$. P se numeste primitiv recursiv daca functia lui caracteristica (o notam la fel) $P : \mathbb{N} \to \mathbb{N}$ este primitiv recursiva.

Definitie: Dat fiind predicatul P, se defineste o functie q(x) cu ajutorul asa-zisului operator max marginit, adica:

$$q(n) = \begin{cases} \max\{x \le n \mid P(x)\}, & \text{daca acest maxim exista,} \\ 0, & \text{altfel.} \end{cases}$$

Observam ca:

$$q(0) = 0$$

$$q(n+1) = \begin{cases} n+1, & \text{daca } P(n+1), \\ q(n) & \text{altfel.} \end{cases}$$

ceea ce este echivalent cu

$$q(0) = 0,$$

 $q(n+1) = q(n) + P(n+1) * (n+1-q(n)).$

Asadar functia q este primitiv recursiva.

Analog se poate defini quantificatorul existential marginit. Dat fiind un predicat P(x), se defineste un nou predicat Q(n) care e adevarat daca si numai daca exista un $x \leq n$ cu proprietatea P(x). Asadar:

$$Q(0) = P(0),$$

$$Q(n+1) = P(n+1) + Q(n) - P(n+1) * Q(n).$$

Asadar, daca P este primitiv recursiv, asa este si Q.

Acum ne putem intoarce la functiile e si f. Observam ca:

$$e(n) = \max\{x \le n \mid \exists y \le n : c(x, y) = n\},\$$

 $f(n) = \max\{y \le n \mid \exists x \le n : c(x, y) = n\}.$

Cu aceasta e clar ca ambele functii sunt primitiv recursive.

Teorema: Clasa functiilor primitiv recursive coincide exact cu clasa functiilor LOOP calculabile.

Demonstratie: \Leftarrow Fie $f: \mathbb{N}^r \to \mathbb{N}$ o functie LOOP calculabila. Fie P acel program LOOP, care calculeaza f. Presupunem fara a restrange generalitatea ca variabilele care apar in P sunt x_0, x_1, \ldots, x_k cu $k \geq r$. Aratam prin inductie dupa structura lui P ca exista o functie primitiv recursiva $g_P: \mathbb{N} \to \mathbb{N}$ care descrie actiunea lui P in urmatorul sens. Daca $a_1, \ldots a_k$ sunt valorile variabilelor la inceput, atunci:

$$g_P(\langle a_0, a_1, \dots, a_k \rangle) = \langle b_0, b_1, \dots, b_k \rangle$$

unde b_0, b_1, \ldots, b_k sunt valorile registrelor la oprirea programului.

Daca P are structura $x_i := x_j \pm 1$ atunci:

$$g_P(n) = \langle d_0(n), \dots, d_{i-1}(n), d_j(n) \pm 1, d_{i+1}(n), \dots, d_k(n) \rangle.$$

Daca P are forma Q; R atunci $g_P(n) = g_R(g_Q(n))$, unde g_R si g_Q exista datorita ipotezei de inductie.

Daca P are forma LOOP x_i DO Q END, atunci se defineste initial o functie h prin recursie primitiva, dupa cum urmeaza:

$$\begin{array}{rcl} h(0,x) & = & x, \\ h(n+1,x) & = & g_Q(h(n,x)). \end{array}$$

Este clar ca h(n,x) reflecta starea variabilelor $x=\langle x_0,\ldots,x_k\rangle$ dupa n aplicari ale programului Q. Deci functia cautata g_P este in mod natural:

$$g_P(n) = h(d_i(n), n).$$

Cu asta am aratat ca orice functie LOOP calculabila este primitiv recursiva. Mai exact, functia calculata de programul P va fi:

$$f(n_1,\ldots,n_r) = d_0(g_P(\langle 0, n_1, n_2,\ldots,n_r, 0_{r+1},\ldots,0_k \rangle)),$$

si este clar o functie primitiv recursiva.

 \Rightarrow Cealalta directie se arata prin inductie dupa structura functiilor primitiv recursive. Functiile de baza (constante, proiectii si functia succesor) sunt evident LOOP calculabile. De asemeni compozitia functiilor LOOP calculabile este LOOP calculabila. Singura problema ar fi la recursia primitiva. Daca f este definita prin relatiile:

$$f(0, x_1, \dots, x_r) = g(x_1, \dots, x_r)$$

$$f(n+1, x_1, \dots, x_k) = h(f(n, x_1, \dots, x_k), n, x_1, \dots, x_k)$$

atunci f poate fi calculat de urmatorul program LOOP:

$$y := g(x_1, \dots, x_r); k := 0;$$

LOOP n DO $y := h(y, k, x_1, \dots, x_r); k := k + 1$ END.

Observam ca toate functiile primitiv recursive sunt functii totale, adica functii definite pentru toate valorile argumentelor lor. O extensie stricta a clasei functiilor primitiv recursive se obtine prin adaugarea operatorului μ .

Definitie: Fie $f: \mathbb{N}^{k+1} \to \mathbb{N}^k$ o functie, eventual partiala. Operatorul μ aplicat lui f este o functie $\mu f = g: \mathbb{N}^k \to \mathbb{N}$ data de:

$$g(x_1, \ldots, x_k) = \min\{n \mid f(n, x_1, \ldots, x_n) = 0 \text{ si pentru orice } m < n, f(m, x_1, \ldots, x_k) \text{ este definita}\}.$$

In aceasta constructie, $\min \emptyset$ este o valoare nedefinita.

Prin urmare, ca urmare a aplicarii operatorului μ unor functii totale, pot rezulta functii partiale. De exemplu, daca operatorul μ se aplica functiei totale constante f(x,y)=1, se obtine functia partiala Ω , care nu este definita nicaieri.

Definitie: Clasa functiilor μ -recursive (denumite si functii recursive) este cea mai mica clasa de functii (eventual partiale) care functiile constante, proiectiile si functia succesor si care este inchisa la compunerea de functii, la recursia primitiva si la actiunea operatorului μ .

Teorema: Clasa functiilor μ -recursive coincide exact cu clasa functiilor WHILE calculabile.

Demonstratie: Trebuie sa adaugam operatorul μ in demonstratia precedenta. Daca P este un program WHILE de forma:

WHILE
$$x_i \neq 0$$
 DO Q END

outem defini o functie h astfel incat valoarea h(n,x) reflecta starea variabilelor $\langle x_0,\ldots,x_k\rangle$ dupa ce Q a rulat de n ori pe masina cu registre. Apoi definim:

$$g_P(x) = (\mu(d_i(h))(x), x).$$

Observam ca $\mu(d_i(h))(x)$ este numarul minim de repetitii ale lui Q pana cand x_i ia valoarea 0.

Reciproc, fie $g=\mu f$ unde functia f este calculata de un program WHILE. Atuncui urmatorul program calculeaza functia g:

$$x_0 = 0; y := f(0, x_1, \dots, x_n);$$

WHILE $y \neq 0$ DO $x_0 := x_0 + 1; y := f(x_0, x_1, \dots, x_n);$
END

Aceasta demonstratie are si o implicatie neasteptata:

Teorema: (Kleene) Pentru orice functie recursiva f de aritate n exista doua functii primitiv recursive p si q de aritate n + 1 astfel incat f se reprezinta sub forma:

$$f(x_1, \ldots, x_n) = p(x_1, \ldots, x_n, (\mu q)(x_1, \ldots, x_n)).$$

Demonstratie: Orice functie recursiva se calculeaza cu ajutorul unui program WHILE care contine o singura data cuvantul WHILE. Daca acest program este transformat in functie recursiva, apare o reprezentare de aceasta forma. \Box

Part III Problema Opririi

10 Multimi recursiv enumerabile

Notiunea de calculabilitate a fost definita pentru functii. Vom introduce aici notiunea corespunzatoare pentru multimi de cuvinte, respectiv pentru sumbultimile lui N.

Definitie: O submultime $A \subseteq \Sigma^*$ se numeste decidabila, daca functia $\chi_A : \Sigma^* \to \{0,1\}$ ei caracteristica este calculabila. Asta inseamna ca pentru toate $w \in \Sigma^*$,

$$\chi_A(w) = \begin{cases} 1, & w \in A, \\ 0, & w \notin A. \end{cases}$$

O submultime $A \subseteq \Sigma^*$ se numeste semidecidabila daca functia partiala $\chi'_A : \Sigma^* \to \{0,1\}$ este calculabila:

$$\chi_A'(w) = \begin{cases} 1, & w \in A, \\ \text{nedefinita} & w \notin A. \end{cases}$$

O multime semidecidabila este asadar multimea de valori pentru care o masina Turing (sau program WHILE, program GOTO, functie μ -recursiva) se opreste. In cazul multimii decidabile, dimpotriva, exista un algoritm de decizie care se opreste pentru orice input posibil si da intotdeauna raspunsul adecvat.

Exact aceleasi definitii sunt valabile si pentru submultimile lui \mathbb{N} .

Teorema: O multime A este decidabila daca si numai daca atat multimea A cat si complementara ei \overline{A} sunt semidecidabile. Aici complementara se refera la Σ^* sau la \mathbb{N} , in functie de multimea in care traieste A.

Demonstratie: Este clar ca daca o multime este decidabila atunci atat ea cat si complementara ei sunt semidecidabile. Pentru directia cealalta: Fie T_1 si T_0 masini Turing cu o banda astfel incat A este multimea de valori pentru care T_1 se opreste iar \overline{A} este multimea de valori pentru care T_0 se opreste. Se poate construi usor o masina Turing cu doua benzi T astfel incat capul de pe banda 1 o simuleaza pe T_1 , capul de pe banda 0 o simuleaza pe T_0 si cele doua capete muta alternativ. In momentul in care unul dintre capete ajunge intr-o stare finala, intreaga masina se opreste si da output 1 in cazul in care T_1 s-a oprit, respectiv 0 daca T_0 s-a oprit.

Definitie: O multime $A \subseteq \Sigma^*$ respectiv $A \subseteq \mathbb{N}$ se numeste recursiv enumerabila daca $A = \emptyset$ sau daca exista o functie calculabila totala $f : \Sigma^* \to \mathbb{N}$ respectiv $f : \mathbb{N} \to \mathbb{N}$ astfel incat

$$A = \{f(0), f(1), f(2), \dots\}.$$

Nu este insa exclusa posibilitatea ca f sa enumere A cu repetitii, adica pentru $i \neq j$ sa avem f(i) = f(j).

Teorema: O multime nevida este recursiv enumerabila daca si numai daca este semidecidabila.

Demonstratie: Fara a restrange generalitatea, schitam demonstratia doar pentru submultimile lui \mathbb{N} . Directia de la stanga la dreapta este simpla. Fie $f: \mathbb{N} \to \mathbb{N}$ o functie calculabila total definita care o enumera pe A. Iata un program care opreste doar daca inputul x este in A:

1 : INPUT
$$(x)$$
;
2: $n := 0$;
3: IF $f(n) = x$ THEN OUTPUT 1 END
4: $n := n + 1$;
5: GOTO 3

Pentru directia cealalta ne reamintim functia de imperechere a lui Cantor c(x,y) = n si inversele ei d(n) si e(n). Cum functia c este bijectiva, inseamna ca (d(n), e(n)) parcurge toate perechile de numere naturale cand n il parcurge pe n. Fie A o multime semidecidabila si M o masina Turing cu o banda astfel incat A = T(M). Fixam un element $a \in A$. Urmatoarea masina Turing

M' calculeaza o functie total definita care are ca imagine multimea A. M' primeste o valoare n, calculeaza x = d(n) si y = e(n), apoi simuleaza masina M cu input x cel mult y pasi. (Observati ca masina M' trebuie sa isi numere proprii pasi. Acest lucru se realizeaza usor daca masina M' este o masina Turing cu mai multe benzi.) Daca aceasta simulare ajunge intr-o stare finala a masinii M, atunci M' reurneaza x, altfel M' returneaza a.

Concluzie: Daca $A \subseteq \Sigma^*$ sau $A \subseteq \mathbb{N}$, si $A \neq \emptyset$, atunci urmatoarele sunt echivalente:

- 1. A este recursiv enumerabila.
- 2. A este semidecidabila.
- 3. Aeste de tip 0.
- 4. A = T(M) pentru o masina Turing M.
- 5. χ'_A este o functie partiala calculabila.
- 6. A este domeniul de definitie al unei functii partiale calculabile.
- 7. A este imaginea unei functii calculabile totale.

In capitolul urmator vom vedea ca exista multimi recursiv enumerabile care nu sunt decidabile (nu sunt recursive).

11 Self-reference Problem

Pentru a produce o multime semidecidabila dar nedecidabila, trebuie sa asociem fiecarei masini Turing cu o banda un nume (un cod). Desi nu este foarte important cum se face acest lucru, prezentam acum o metoda simpla. Elementele din $\Gamma = \{a_0, \ldots, a_k\}$ si elementele din $Z = \{z_0, \ldots, z_n\}$ sunt numerotate. Sunt fixate numerele simbolurilor \square , 0, 1, #, al starii initiale si ale starilor finale. Fiecarei δ -reguli de forma:

$$\delta(z_i, a_i) = (z_{i'}, a_{i'}, y).$$

i se asociaza cuvantul

$$w_{i,j,i',j'y} = \#\#bin(i)\#bin(j)\#bin(i')\#bin(j')\#bin(m),$$

unde bin(x) este reprezentarea binara a lui x iar m=0 daca y=L, m=1 daca y=R, m=2 daca y=N.

Acestui cuvant i se poate in sfarsit asocia un cuvant peste alfabetul $\{0,1\}$ daca recurgem la codificarea $0 \to 00$, $1 \to 01$ si $\# \to 11$. Este clar, ca nu orice cuvant binar va fi codul unei masini Turing. Acest lucru se poate face insa prin conventie. Pentru aceasta fixam o masina Turing \overline{M} si definim pentru orice cuvant $w \in \{0,1\}^*$:

$$M_w = \begin{cases} M, & \text{daca } w \text{ este codul lui } M, \\ \overline{M}, & \text{in caz contrar.} \end{cases}$$

Definitie: Problema Recunoasterii Propriului Nume (sau Self-reference Problem) este urmatoarea multime:

$$K = \{w \in \{0,1\}^* \mid w \in T(M_w)\}.$$

Intrebarea asociata este urmatoarea: Care sunt masinile Turing care isi recunosc propriul nume, in sensul ca ating o stare finala in timpul prelucrarii acestui cuvant? \Box

Teorema: Problema Recunoasterii Propriului Nume este nedecidabila.

Demonstratie⁵: Sa presupunem ca problema K este decidabila. Atunci functia caracteristica χ_K este calculabila si exista o masina Turing M care calculeaza aceasta functie. Aceasta masina M poate fi transformata usor intr-o masina M' care are urmatorul comportament: Daca M returneaza 0, M' returneaza 0 si se opreste. Daca M returneaza 1, M' intra intr-o bucla infinita si nu se opreste niciodata. Fie w' numele (codul) lui M'.

$$M'(w')$$
 opreste $\Leftrightarrow M(w') = 0$
 $\Leftrightarrow \chi_K(w') = 0$
 $\Leftrightarrow w' \notin K$
 $\Leftrightarrow M_{w'}(w')$ nu opreste
 $\Leftrightarrow M'(w')$ nu opreste

Aceasta contradictie arata ca multimea K nu poate fi decidabila.

Pentru a arata ca alte probleme sunt nedecidabile, se recurge la reductii.

Definitie: Fie $A \subseteq \Sigma^*$ si $B \subseteq \Gamma^*$ limbaje. Spunem ca A se reduce la B si scriem $A \leq B$ daca exista o functie calculabila totala $f: \Sigma^* \to \Gamma^*$ astfel incat pentru toti $x \in \Sigma^*$ are loc:

$$x \in A \iff f(x) \in B$$
.

Bineinteles \mathbb{N} il poate inlocui in definitie pe Σ^* , pe Γ^* sau pe ambele⁶.

Lema: $Daca \ A \leq B \ si \ B$ este decidabila, atunci A este decidabila. $Daca \ A \leq B \ si \ B$ este semidecidabila, atunci A este semidecidabila.

Demonstratie: Presupunem ca f este functia totala calculabila care il reduce pe A la B. Daca χ_B calculabila, atunci si $\chi_B \circ f$ este calculabila. Dar in virtutea echivalentei din definitie, pentru orice x, $\chi_A(x) = \chi_B(f(x))$, χ_A este calculabila si A este decidabila. Acelasi rationament in cazul in care B este semidecidabila.

Definitie: Problema (generala a) Opririi este multimea:

$$H = \{w \# x \mid M_w(x) \text{ opreste } \}.$$

Teorema: Problema Opririi H este nedecidabila.

Demonstratie: Este suficient sa aratam $K \leq H$. Alegem f(w) = w # w. Atunci $w \in K \Leftrightarrow f(w) \in H$.

Definitie: Problema Opririi Pe Banda Goala este multimea:

$$H_0 = \{ w \mid M_w(\square) \text{ opreste } \}.$$

Teorema: Problema Opririi Pe Banda Goala H₀ este nedecidabila.

Demonstratie: Aratam ca $H \leq H_0$. Fiecarui cuvant w # x ii asociem o masina Turing M dupa cum urmeaza: M porneste cu banda goala, scrie x, dupa care se comporta ca M_w cu input x. Fie f(w # x) = code(M). Este evident ca:

$$w \# x \in H \iff f(w \# x) \in H_0.$$

 $^{^5}$ Aceasta demonstratie se aseamana cu demonstratia faptului ca pentru orice multime A, A < P(A). Metoda se numeste diagonalizare.

⁶Asemenea indicatii sunt in realitate superflue, deoarece daca $\Sigma = \{|\}$ este alfabetul cu o litera, atunci $\Sigma^* = \mathbb{N}$. Totusi voi repeta din cand in cand genul acesta de indicatie pentru a sublinia faptul ca nu este nicio diferenta intre calculabilitatea cu numere si calculabilitatea cu cuvinte.

12 Teorema lui Rice

Cele trei probleme nedecidabile din sectiunea precedenta se refera la proprietati ale masinilor Turing. Teorema urmatoare arata ca aproape orice proprietate a masinilor Turing este nedecidabila.

Teorema: (Rice) Fie \mathcal{R} class tuturor functiilor Turing calculabile, inclusiv cele partial definite. Fie $\mathcal{S} \subset \mathcal{R}$ o submultime oarecare, astfel incat $\mathcal{S} \neq \emptyset$ si $\mathcal{S} \neq \mathcal{R}$. Atunci multimea:

$$C(S) = \{w \mid functia \ calculata \ de \ M_w \ este \ in \ S\}.$$

este nedecidabila.

Demonstratie: Fie $\Omega \in \mathcal{R}$ functia total nedefinita. Ω poate fi in \mathcal{S} sau nu.

Cazul 1: $\Omega \in \mathcal{S}$.

Cum $S \neq R$, exista o functie $q \in R \setminus S$. Fie Q o masina Turing care o calculeaza pe q. Fiecarui cuvant $w \in \{0,1\}^*$ ii ordonam o masina Turing M care se comporta in modul urmator:

M este pornita pe un input y. M ignora initial acest input si se comporta precum M_w pornita pe banda goala. Daca acest calcul atinge o stare finala, atunci M se comporta precum Q cu input y.

Fie g functia calculata de masina M.

$$g = \begin{cases} \Omega, & \text{daca } M_w \text{ nu opreste pe banda goala,} \\ q, & \text{altfel.} \end{cases}$$

Functia f(w) = code(M) este total definita si calculabila. Au loc urmatoarele implicatii:

 $w \in H_0 \implies M_w$ opreste pe banda goala $\Rightarrow M$ calculeaza functia q \Rightarrow functia calculata de $M_{f(w)}$ nu este in S $\Rightarrow f(w) \notin C(S)$

Reciproc este valabil:

$$w \notin H_0 \Rightarrow M_w$$
 nu opreste pe banda goala
$$\Rightarrow M \text{ calculeaza functia } \Omega$$
$$\Rightarrow \text{ functia calculata de } M_{f(w)} \text{ este in } \mathcal{S}$$
$$\Rightarrow f(w) \in C(\mathcal{S})$$

Cu alte cuvinte functia f este o reductie $\overline{H_0} \leq C(\mathcal{S})$. Cum H_0 este nedecidabila, asa este si $\overline{H_0}$, deci $C(\mathcal{S})$ este nedecidabila.

Cazul 2: $\Omega \in \mathcal{S}$.

In acest caz se demonstreaza analog $H_0 \leq C(\mathcal{S})$.

Teorema lui Rice are multiple aplicatii. De exemplu, nu este decidabil daca o masina Turing calculeaza o functie total definita. Nu este decidabil daca o masina Turing calculeaza o functie constanta, o functie marginita, o functie nemarginita, etc.

Exista probleme algoritmice care sunt *si mai nedecidabile* decat Problema Opririi. Fie Problema Echivalentei pentru Masini Turing:

$$E = \{u \# v \mid M_u \text{ calculeaza aceeasi functie precum } M_v\}.$$

Atunci $H \leq E$ dar $E \not\leq H$. In realitate se poate defini un sir infinit de probleme A_1, A_2, A_3, \ldots astfel incat mereu $A_i < A_{i+1}$. Se vorbeste despre grade de nerezolvabilitate.

13 Problema Corespondentei (Post)

Post's Correspondence Problem, prescurtat PCP, are urmatoarea definitie:

Se da: Un sir finit de perechi de cuvinte $(x_1, y_1), (x_2, y_2), \ldots, (x_k, y_k)$, unde toti $x_i, y_i \in \Sigma^+$.

Se cere: Exista $n \ge 1$ si un sir de numere naurale $i_1, \ldots, i_n \in \{1, 2, \ldots, k\}$ astfel incat:

$$x_{i_1}x_{i_2}\dots x_{i_n}=y_{i_1}y_{i_2}\dots y_{i_n}$$
?

Exemplu: Instanta

$$C = ((1, 101), (10, 00), (011, 11))$$

adica $x_1 = 1$, $x_2 = 10$, $x_3 = 011$, $y_1 = 101$, $y_2 = 00$ si $y_3 = 11$, are o solutie (1, 3, 2, 3) deoarece:

$$x_1 x_3 x_2 x_3 = 101110011 = y_1 y_3 y_2 y_3.$$

Observatie: PCP este recursiv enumerabila (echivalent, semidecidabila). Intr-adevar, se pot incerca toate combinatiile de lungine 1, apoi toate combinatiile de lungime 2, apoi toate combinatiile de lungime 3, etc. Daca la un moment dat se gaseste o solutie, procedura se opreste.

Pentru a arata ca PCP este nedecidabila, o vom reduce intai la o problema inrudita, MPCP (modified PCP), dupa care vom reduce MPCP la Problema Opririi. In problema MPCP se cauta solutii i_1, \ldots, i_n unde $i_1 = 1$.

Lema: MPCP < PCP.

Demonstratie: Fie \$ si # litere noi, care nu apar in alfabetul Σ in care este formulata o instanta a problemei MPCP. Pentru un cuvant $w = a_1 a_2 \dots a_n \in \Sigma^+$ definim:

$$cw = \#a_1 \# a_2 \# \dots \# a_m \#$$

 $sw = \#a_1 \# a_2 \# \dots \# a_m$

$$ew = a_1 \# a_2 \# \dots \# a_m \#$$

Fiecarei instante $C = ((x_1, y_1), (x_2, y_2), \dots, (x_k, y_k))$ a lui MPCP ii asociem urmatoarea instanta:

$$f(C) = ((cx_1, sy_1), (ex_1, sy_1), (ex_2, sy_2), \dots, (ex_k, sy_k), (\$, \#\$)).$$

Functia f este evident calculabila. Aratam ca f este o reductie de la MPCP la PCP. Mai exact aratam: C are o solutie cu $i_1 = 1$ daca si numai daca f(C) are o solutie.

Daca C are o solutie $(1, i_2, \dots, i_n)$ atunci $(1, i_2 + 1, \dots, i_n + 1, k + 2)$ este o solutie a lui f(C).

Daca f(C) are o solutie $i_1, \ldots, i_n \in \{1, \ldots, k+2\}$, neaparat $i_1 = 1$, $i_n = k+2$, si ceilalti indici sunt in multimea $\{2, \ldots, k+1\}$. In acest caz $(1, i_2 - 1, \ldots, i_{n-1} - 1)$ este o solutie pentru C. \square

Lema: $H \leq MPCP$.

Demonstratie: Fie o masina Turing $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ o masina Turing si un input $w\in\Sigma^*$. Prezentam o metoda algoritmica de generare a unui sir de perechi $(x_1,y_1),\ldots,(x_k,y_k)$ astfel incat:

$$M(w)$$
 opreste \iff $(x_1, y_1), \dots, (x_k, y_k)$ are o solutie cu $i_1 = 1$.

Alfabetul instantei MPCP pe care o construim este $\Gamma \cup Z \cup \{\#\}$. Prima pereche de cuvinte este $(\#, \#z_0w\#)$. Solutia trebuie sa inceapa cu aceasta pereche. Celelalte perechi se impart in niste grupe dupa cum urmeaza:

Reguli de copiere: (a, a) pentru toate $a \in \Gamma \cup \{\#\}$.

Reguli de tranzitie:

$$(za, z'c)$$
 daca $\delta(z, a) = (z', c, N)$

$$(za, cz')$$
 daca $\delta(z, a) = (z', c, R)$

$$(bza, z'bc)$$
 daca $\delta(z, a) = (z', c, L)$, pentru toti $b \in \Gamma$

```
 \begin{array}{ll} (\#za,\#z'\square c) & \operatorname{daca}\; \delta(z,a) = (z',c,L) \\ (z\#,z'c\#) & \operatorname{daca}\; \delta(z,\square) = (z',c,N) \\ (z\#,cz'\#) & \operatorname{daca}\; \delta(z,\square) = (z',c,R) \\ (bz\#,z'bc\#) & \operatorname{daca}\; \delta(z,\square) = (z',c,L), \; \operatorname{pentru}\; \operatorname{toti}\; b \in \Gamma \\ \end{array}
```

Reguli de stergere: (az_e, z_e) , $(z_e a, z_e)$ pentru toate $a \in \Gamma$ si $z_e \in E$.

Regula finala: $(z_e \# \#, \#)$ pentru toate $z_e \in E$.

Daca masina Turing M opreste cu input w, exista un sir de configuratii $(k_0, k_1, \dots k_t)$ cu $k_0 = z_0 w$, $k_t = u z_e v$ cu $u, v \in \Gamma^*$ si $z_e \in E$ si $k_i \vdash k_{i+1}$ pentru $i = 0, 1, \dots, t-1$. Problema MPCP are atunci o solutie de forma:

$$\#k_0\#k_1\#\ldots\#k_t\#k_t'\#k_t''\#\ldots\#z_e\#\#.$$

Cuvintele k'_t , k''_t , ... rezulta din $k_t = uz_e v$ prin stergerea succesiva a simbolurilor in jurul lui z_e . In timpul constructiei solutiei, cuvantul format din x_{i_j} este mereu cu o configuratie in urma cuvantului format din y_{i_j} .

Metoda de constructie prezentata este o reductie de la H la MPCP.

Teorema: Problema Corespondentei lui Post este nedecidabila.

Demonstratie: In lemele anterioare am vazut ca $H \leq MPCP \leq PCP$. Deci $H \leq PCP$. Cum H este nedecidabila, asa este si PCP.

Definitie: Notam cu 01PCP varianta Problemei Corespondentei peste alfabetul $\{0,1\}$.

Teorema: Problema 01PCP este nedecidabila.

Demonstratie: Aratam ca PCP \leq 01PCP. Fie $\Sigma = \{a_1, \ldots, a_m\}$ alfabetul in care e scrisa o instanta a problemei PCP. Fiecarei litere a_j din Σ ii asociem stringul $\hat{a_j} = 01^j$. Pentru un cuvant $w = x_1 \ldots x_n \in \Sigma^+$ fie $\hat{w} = \hat{b_1} \ldots \hat{b_n}$. Este clar ca $(x_1, y_1), \ldots, (x_n, y_n)$ are o solutie daca si numai daca $(\hat{x_1}, \hat{y_1}), \ldots, (\hat{x_n}, \hat{y_n})$ are o solutie.

14 Masina Turing Universala

Am aratat ca $H \leq PCP$ si am vazut anterior ca PCP este recursiv enumerabila. Asadar si H este recursiv enumerabila. Asta inseamna urmatorul lucru: exista o masina Turing care, daca primeste un input w # x, va opri daca si numai daca masina M_w opreste cand calculeaza inputul x. De fapt se poate demonstra mai mult, si anume existenta unei masini Turing universale.

Definitie: O masina Turing universala U este o masina Turing care pentru fiecare input de forma w # x simuleaza functionarea masinii M_w pentru inputul x.

Teorema: (Turing) Exista masini Turing universale.

Demonstratie⁷: Masina universala pe care o descriem aici este o masina Turing cu mai multe benzi. In final se poate aplica teorema de echivalenta si se poate trage concluzia ca exista masini Turing universale cu o singura banda. Presupunem ca masina Turing care trebuie simulata are un alfabet de lucru de n litere si un numar de m stari. Literele se codifica in stringuri de forma $\#code(a_i)$ iar starile in stringuri de forma $code(z_j)$, unde aceste coduri sunt cuvinte binare iar separatorul # indica inceputul unei noi litere.

In procesul de simulare sunt folosite mai multe benzi dupa cum urmeaza:

Banda C contine codul masinii care este simulata. Aceasta banda este read only. Codul este dat de o succesiune de tranzitii δ scrise sub forma:

$$\#\#code(z)\#code(a)\#code(z')\#code(a')\#code(m)$$

⁷Folclor.

unde fara a restrange generalitatea presupunem ca toate starile sunt codificate cu stringuri binare de aceeasi lungime si la fel toate literele sunt codificate cu stringuri binare de aceeasi lungime.

Banda S este banda pe care are loc simularea. Daca la un moment dat masina M_w are pe banda cuvantul $a_1 \dots a_n$ cu capul de citire-scriere centrat pe a_i , pe banda S a masinii U se citeste

$$\#code(a_1)\dots \boxed{\#code(a_i)\dots \#code(a_n)}.$$

Banda Z este banda pe care masina U retine starea actuala z a masinii M_w . La orice schimbare de stare a masinii M_w , cuvantul de pe banda Z este inlocuit: code(z) este sters si inlocuit cu code(z').

Cum are loc simularea: capul de pe banda C cauta perechea (z,a) corespunzatoare literei scanate pe banda S si a starii notate pe banda Z. Capetele S si Z scaneaza codurile respective de mai multe ori in timpul cautarii pentru a gasi tranzitia potrivita. In momentul in care ea a fost gasita, se inlocuieste starea de pe banda Z si litera corespunzatoare de pe banda S, dupa care capul de pe banda S face miscarea m care poate fi la dreapta, la stanga sau pe loc.

Important este faptul ca aceasta simulare se poate face cu un numar finit de stari, care nu depinde de lungimea codurilor pentru litere si stari simulate. \Box

Masina care se obtine din transformarea masinii de mai sus intr-o masina cu o banda nu este performanta, si este departe de a avea cel mai mic numar posibil de stari sau de litere. Aceasta este o doar o demonstratie pentru existenta masinii universale. Marvin Minsky a descoperit in 1962 o masina universala cu 7 stari si 4 litere. Yurii Rogozhin a mers mai departe si a gasit masini cu urmatoarele caracteristici (numar de stari, numar de litere): (15, 2), (9, 3), (6, 4), (5, 5), (4, 6), (3, 9) si (2, 18). In anul 2007 studentul Alex Smith (20 de ani) de la Universitatea din Birmingham a castigat Premiul Wolfram de 25.000 de \$ aratand ca o masina cu 2 stari si 3 litere este universala si, mai mult, este cea mai mica masina Turing universala posibila. Demonstratia este foarte complexa, si anumite detalii inca sunt in dezbatere.

Ideea lui Turing - existenta unei masini universale - a prefigurat aparitia calculatorului in sine si a compilerelor si interpreterelor pentru diferite limbaje de programare. Notiunea de completitudine Turing descrie capacitatea unui sistem de a fi programabil si universal. Masinile Turing, programele WHILE si GOTO, functiile recursive, sunt sisteme Turing complete. Un sistem de calcul este Turing complet daca poate simula o masina Turing universala si poate fi simulat de o masina Turing universala.

15 Teorema lui Gödel

Teorema de Incompletitudine a lui Gödel spune ca orice tentativa de a axiomatiza Aritmetica este incompleta. Cu alte cuvinte, vor exista intotdeauna propozitii adevarate in structura algebrica $(\mathbb{N}, +, \cdot)$ care nu sunt demonstrabile in sistemul de axiome expus. Vom vedea ca teorema are o demonstratie alternativa in teoria calculabilitatii, diferita de demonstratia initiala a lui Gödel. Totusi, descoperirea teoremei in 1935 a fost un pas important catre actuala teorie a calculabilitatii.

Pentru inceput vom defini inductiv notiunile de termen si formula.

Definitie: Notiunea de termen este definita dupa cum urmeaza:

- 1. Orice numar $n \in \mathbb{N}$ este un termen.
- 2. Orice variabila x_i , $i \in \mathbb{N}$ este un termen.
- 3. Daca t_1 si t_2 sunt termeni, atunci si $(t_1 + t_2)$ respectiv $(t_1 \cdot t_2)$ sunt termeni.

Definitie: Notiunea de formula este definita dupa cum urmeaza:

- 1. Daca t_1 si t_2 sunt termeni, atunci $(t_1 = t_2)$ este o formula.
- 2. Daca F si G sunt formule, atunci $\neg F$, $(F \land G)$ si $(F \lor G)$ sunt formule.
- 3. Daca x este o variabila si F este o formula, atunci $\exists x F$ si $\forall x F$ sunt formule.

Definitie: Fie V multimea variabilelor. O functie $\varphi:V\to\mathbb{N}$ se numeste evaluare. Actiunea lui φ se poate extinde de la variabile la termeni, dupa cum urmeaza:

$$\varphi(n) = n
\varphi((t_1 + t_2)) = \varphi(t_1) + \varphi(t_2)
\varphi((t_1 \cdot t_2)) = \varphi(t_1) \cdot \varphi(t_2)$$

Definitie: O formula care nu contine variabile libere se numeste propozitie.

Definitie: Pentru formule aritmetice definim notiunea de adevar dupa cum urmeaza:

- 1. $(t_1 = t_2)$ este adevarata, daca pentru orice evaluare $\varphi : V \to \mathbb{N}$, $\varphi(t_1) = \varphi(t_2)$. In particular, rezulta ca formula x = x este adevarata, desi nu este o propozitie.
- 2. $\neg F$ este adevarata, daca F nu este adevarata.
- 3. $(F \wedge G)$ este adevarata, daca atat F cat si G sunt adevarate.
- 4. $(F \vee G)$ este adevarata, daca F este adevarata sau G este adevarata.
- 5. $\exists x \ F$ este adevarata, daca pentru un $n \in \mathbb{N}$, F(x/n) este adevarata. Aici x/n inseamna ca orice aparitie libera a lui x este inlocuita cu constanta n.
- 6. $\forall x \ F$ este adevarata, daca pentru orice $n \in \mathbb{N}$, F(x/n) este adevarata.

Exemple:

$$\forall x \; \exists y \; ((x+y) = (x \cdot (x+1))$$

este o formula (propozitie) adevarata, deoarece pentru orice $x \in \mathbb{N}$ putem alege $y = x \cdot x$.

$$\forall x \; \exists y \; ((x=0) \vee ((x \cdot y) = 1))$$

este o formula (propozitie) falsa in multimea numerelor naturale. Ea este adevarata peste alte multimi in care s-a definit o operatie de inmultire, cum ar fi cea a numerelor rationale sau cea a numerelor reale.

Definitie: O functie $f: \mathbb{N}^k \to \mathbb{N}$ se numeste functie definibila in limbajul aritmeticii daca exista o formula aritmetica $F(x_1, \dots, x_k, y)$ cu proprietatea ca pentru toate valorile $n_1, \dots, n_k, m \in \mathbb{N}$,

$$f(n_1,\ldots,n_k)=m \Leftrightarrow F(n_1,\ldots,n_k,m).$$

Exemple: Functia de adunare este definita de formula:

$$y = x_1 + x_2$$

si analog este definita functia de inmultire. Daca se introduce relatia:

$$a < b : \longleftrightarrow \exists z \ a + z + 1 = b$$
,

functia DIV este definita de formula:

$$\exists r \ (r < x_2) \land (x_1 = y \cdot x_2 + r),$$

iar functia MOD este definita de formula:

$$\exists k \ (y < x_2) \land (x_1 = k \cdot x_2 + y).$$

Definitie: Pentru o mai usoara scriere a formulelor, introducem urmatoarele notatii:

$$\forall x < k(\dots)$$
 pentru $\forall x \ (\neg(x < k) \lor (\dots)),$

$$\exists x < k(\dots)$$
 pentru $\exists x \ ((x < k) \land (\dots)).$

Cuantificatorii introdusi se numesc cuantificatori marginiti.

In cele ce urmeaza, ne ocupam cu codificarea sirurilor finite de numere naturale. Un asemenea sir (n_0, \ldots, n_k) se poate obtine dintr-o pereche de numere (a, b) in modul urmator:

$$n_i = a \text{ MOD } (1 + (i+1) \cdot b).$$

Aceasta relatie poate fi reprezentata printr-o formula aritmetica. Formula:

$$G(a, b, i, y) := y < (1 + (i + 1) \cdot b) \land \exists k \ (a = y + k \cdot (1 + (i + 1) \cdot b))$$

este adevarata daca si numai daca $y = a \text{ MOD } (1 + (i+1) \cdot b)$.

Lema: Pentru orice sir finit $(n_0, ..., n_k) \in \mathbb{N}^k$ exista $a \in \mathbb{N}$ si $b \in \mathbb{N}$ astfel incat pentru orice i = 0, 1, ..., k are loc:

$$n_i = a \text{ MOD } (1 + (i+1)b).$$

Demonstratie: Fie $s = \max(k, n_0, \dots, n_k)$ si alegem b = s!. Aratam intai ca numerele $b_i = 1 + (i+1) \cdot b$ sunt doua cate doua prime intre ele. Fie i < j si presupunem ca exista un numar prim p care il divide atat pe b_i cat si pe b_j . Atunci p divide diferenta $b_j - b_i = (j-i)b$. Dar cum $(j-i) \le k \le s$ rezulta ca (j-i) il divide pe b. Deci p il divide pe b. Dar cum p il divide pe b_i , p divide 1, contradictie.

In continuare aratam ca pentru fiecare doua numere a si a' cu $0 \le a < a' < b_0 b_1 \dots b_k$ solutiile sistemelor de congruente:

$$n_i = a \text{ MOD } b_i \ (i = 0, \dots, k)$$

 $n'_i = a' \text{ MOD } b_i \ (i = 0, \dots, k)$

sunt diferite. Presupunem ca $(n_0, \ldots, n_k) = (n'_0, \ldots, n'_k)$. Atunci fiecare b_i divide numarul a' - a. Cum numerele b_i sunt prime intre ele, rezulta ca produsul $b_0b_1 \ldots b_k$ divide a' - a. Dar $|a' - a| < b_0b_1 \ldots b_k$, deci a' = a. Contradictie.

Numerele $a \in \{0, \dots, b_0 b_1 \dots b_k - 1\}$ genereaza $b_0 b_1 \dots b_k$ sisteme de solutii (n_0, \dots, n_k) cu proprietatea ca $b_i < n_i$ pentru toti i. Deci fiecare sir finit apare ca solutie a sistemului de congruente. Deci exista un a care livreaza exact sirul dat.

Teorema: Orice functie calculabila este aritmetic definibila.

Demonstratie: Pentru functiile calculabile alegem metoda de calcul data de limbajul WHILE. Aratam ca pentru orice program WHILE P, care contine variabilele x_0, \ldots, x_k , exista o formula F_P care contine variabilele libere x_0, \ldots, x_k si y_0, \ldots, y_k astfel incat pentru toate $m_i, n_i \in \mathbb{N}$:

$$F_P(m_0,\ldots,m_k,n_0,\ldots,n_k) \iff P(m_0,\ldots,m_k) = (n_0,\ldots,n_k),$$

adica programul P pornit cu valorile (n_0, \ldots, n_k) in registre, va opri la un moment dat si va lasa in registre valorile (n_0, \ldots, n_k) . Odata ce vom fi demonstrat acest lucru, daca P calculeaza o functie $f: \mathbb{N}^n \to \mathbb{N}$ cu $n \leq k$. atunci f este definita de urmatoarea formula:

$$F(x_1, \dots, x_n, y) = \exists w_1 \exists w_2 \dots \exists w_k \ F_P(0, x_1, \dots, x_n, 0_{n+1}, \dots, 0_k, y, w_1, \dots, w_k).$$

Existenta formulei F_P se demonstreaza inductiv dupa structura programelor WHILE.

Daca P are forma $x_i := x_i + 1$, atunci:

$$F_P = (y_i = x_j + 1) \land \bigwedge_{l \neq i} (y_l = x_l).$$

Daca P are forma $x_i := x_i - 1$, atunci:

$$F_P = [(x_j = 0) \lor (x_j = y_i + 1)] \land [(x_j \ge 1) \lor (y_i = 0)] \land \bigwedge_{l \ne i} (y_l = x_l).$$

Daca P are forma Q; R, atunci exista conform ipotezei de inductie formulele F_Q si F_R care satisfac cerinta de mai sus pentru programele respective. Definim:

$$F_P = \exists z_0 \dots \exists z_k \ (F_O(x_0, \dots, x_k, z_0, \dots, z_k) \land F_R(z_0, \dots, z_k, y_0, \dots, y_k)).$$

Daca P are forma WHILE $x_i \neq 0$ DO Q END, exista din ipoteza de inductie formula corespunzatoare F_Q . Fie F_P urmatoarea formula:

$$f_P = \exists a_0 \exists b_0 \dots \exists a_k \exists b_k \exists t \tag{1}$$

$$[G(a_0, b_0, 0, x_0) \land \cdots \land G(a_k, b_k, 0, x_k) \land$$
(2)

$$G(a_0, b_0, t, y_0) \wedge \cdots \wedge G(a_k, b_k, t, y_k) \wedge \tag{3}$$

$$\forall j < t \; \exists w \; G(a_i, b_i, j, w) \land (w > 0) \land \tag{4}$$

$$G(a_i, b_i, t, 0) \land$$
 (5)

$$\forall j < t \ \exists w_0 \dots \exists w_k, \exists w_0' \dots \exists w_k'$$
 (6)

$$[F_O(w_0, \dots, w_k, w'_0, \dots, w'_k) \land \tag{7}$$

$$G(a_0, b_0, j, w_0) \wedge \cdots \wedge G(a_k, b_k, j, w_k) \wedge$$
 (8)

$$G(a_0, b_0, j + 1, w'_0) \wedge \cdots \wedge G(a_k, b_k, j + 1, w'_k)$$
 (9)

In randul (1) se enunta existenta unor perechi de numere a_n si b_n care codifica siruri de lungime t. In randul (2) se scrie conditia ca valorile initiale ale sirurilor sa fie valorile initiale din registre, adica variabilele libere x_j . In randul (3) se scrie conditia ca valorile finale din registre sa fie valorile finale ale sirurilor, adica variabilele libere y_j . In randurile (4) si (5) se pune conditia ca valorile din registrul i sunt diferite de 0 pana la pasul t, cand valoarea acestui registru devine 0. Incepand cu randul (6) se pune conditia ca valorile succesive din registre sa fie data de aplicarea programului Q. Asadar programul Q se aplica de t ori, pana cand valoarea din registrul t devine 0.

Teorema: Multimea formulelor aritmetice adevarate nu este recursiv enumerabila. De asemeni, multimea propozitilor adevarate nu este recursiv enumerabila.

Demonstratie: Cum propozitiile adevarate sunt incluse in formulele aritmetice adevarate, si este decidabil daca o expresie este propozitie sau nu (deoarece propozitiile nu au variabile libere), este suficient sa demonstram teorema pentru propozitii. Pentru orice propozitie F este adevarat ca sau F, sau $\neg F$ este adevarata in structura algebrica $(\mathbb{N}, +, \cdot)$. Daca multimea de propozitii:

$$Th(\mathbb{N}) = \{F \mid (\mathbb{N}, +, \cdot) \models F\}$$

(numita si teoria numerelor naturale) ar fi recursiv enumerabila, atunci ea ar fi decidabila. Algoritmul de decizie este urmatorul: fie F_0, F_1, F_2, \ldots o enumerare algoritmica a lui $Th(\mathbb{N})$, eventual cu repetitii. La un moment dat, $F_i = F$, caz in care F este adevarata, sau $F_i = \neg F$, caz in care F este falsa. Decizia se va lua in timp finit.

Acum aratam ca $Th(\mathbb{N})$ nu este decidabila, si cu asta vom fi aratat ca aceasta multime nu este nici macar recursiv enumerabila. Fie A o multime recursiv enumerabila, care nu este decidabila, de exemplu K, H, H_0 , PCP. Cum A este recursiv-enumerabila, functia:

$$\chi'_A(n) = \begin{cases} 1, & n \in A, \\ \text{nedefinita}, & n \notin A. \end{cases}$$

este WHILE calculabila, deci conform teoremei anterioare, este aritmetic definibila cu ajutorul unei formule F(x,y). Asadar:

$$n \in A \iff \chi'_A(n) = 1$$

 $\iff F(n,1) \text{ e adevarata}$
 $\iff F(n,1) \in Th(\mathbb{N}).$

Aplicatia $n \rightsquigarrow F(n,1)$ este o reductie de la A la $Th(\mathbb{N})$. Cum A nu este decidabil, nu este nici $Th(\mathbb{N})$, si datorita discutiei anterioare, $Th(\mathbb{N})$ nu este recursiv enumerabila.

Pentru a formula si demonstra Teorema de Incompletitudine a lui Gödel in forma ei initiala, trebuie sa ne referim la notiunea de demonstratie. Teoriile la care se refera Teorema de incompletitudine a lui Gödel nu pornesc cu o structura matematica si cu propozitiile adevarate in structura respectiva. Aceste teorii pornesc cu o multime de propozitii numite axiome si cu niste reguli de a deriva noi propozitii din axiome. Retinem faptul ca multimea axiomelor - care sunt cuvinte finite peste un anumit alfabet - este decidabila. Fiecare demonstratie este un sir finit de cuvinte in care fiecare cuvant este sau o axioma, sau rezulta din cuvinte deja existente in sir in virtutea unei reguli de derivatie. Daca se introduce un simbol nou cu rol de separator, multimea demonstratiilor intrun sistem formal este o multime decidabila de cuvinte, pentru ca se poate verifica mecanic daca un cuvant este sau nu este o demonstratie. In final exista o functie calculabila care asociaza fiecarei demonstratii propozitia care a fost demonstrata. De exemplu, ultimul cuvant dedus in demonstratie este teorema demonstrata.

Definitie: Un sistem formal pentru o multime $A \subset \Gamma^*$ este o pereche (B, F) astfel incat:

- 1. $B \subseteq \Sigma^*$ este o multime decidabila.
- 2. $F: B \to A$ este o functie totala calculabila.

Fie $Dem(B,F) := F(B) \subseteq A$. Sistemul formal se numeste complet daca Dem(B,F) = A.

Teorema: (De incompletitudine a lui Gödel) Orice sistem formal pentru $Th(\mathbb{N})$ este in mod necesar incomplet. Raman intotdeauna propozitii adevarate care nu sunt demonstrate de catre sistem.

Demonstratie: Dem(B, F) = F(B) este imaginea unei multimi decidabile printr-o functie calculabila totala, deci este o multime recursiv enumerabila. Cum $Th(\mathbb{N})$ nu este recursiv enumerabila, $Dem(B, F) \neq Th(\mathbb{N})$.

Retinem faptul ca teoria completa a unei structuri este sau decidabila, sau nici macar recursiv enumerabila. Alfred Tarski a aratat ca $Th(\mathbb{R},+,\cdot)$ si ca $Th(\mathbb{C},+,\cdot)$ sunt in prima categorie. Kurt Gödel a aratat ca $Th(\mathbb{N},+,\cdot)$ este in a doua categorie, si de aici s-a dedus ca $Th(\mathbb{Z},+,\cdot)$ si $Th(\mathbb{Q},+,\cdot)$ sunt in a doua categorie. Ultimul rezultat a fost obtinut de Julia Robinson.

Unele probleme specifice sunt la randul lor nedecidabile. Yuri Matiasievici a aratat ca multimea ecuatiilor rezolvabile:

$$D = \{ P \in \mathbb{Z}[X_1, \dots, X_n] \mid n \ge 1, \exists x_1, \dots, x_n \in \mathbb{N} \mid P(x_1, \dots, x_n) = 0 \}$$

este recursiv enumerabila dar nedecidabila. Cu aceasta Matiasievici a rezolvat negativ problema a 10-a a lui Hilbert, aratand ca nu exista niciun algoritm de decizie pentru rezolvarea ecuatiilor diofantice.