MCSE 544 Software Design and Integration

Chapter 5: Feasibility Study & Requirements Definition

Dr. Mehedi Hasan Stamford University Bangladesh

Feasibility Study

Before beginning a project, a short, low-cost study to identify

- Client
- Scope
- Potential benefits
- Resources needed:

staff, time, equipment, etc.

Potential obstacles

Where are the risks? How can they be minimized?

Feasibility Study

A feasibility study leads to a decision:

go ahead do not go ahead think again

In production projects, the feasibility study often leads to a **budget request**.

In research, a feasibility study is often in the form of a **proposal**.

CSI 331: Client

In CSI 331, you have two clients:

- The client for the project
- The professor for the course

Can you satisfy them both?

Scope

What are the boundaries of the project?

CSI 331 Examples:

- Static web pages with open access on the Web [Web Profiler]
- Used by the general public [Digital Collections]
- Varying data formats [Legal Information]
- Thousands of sensors [Data mining]
- Support for Windows, Mac, Unix [SALSA]

Potential Benefits

Why are you doing this project?

Examples

- Create a marketable product
- Improve the efficiency of an organization
- Control a system that is too complex to control manually
- New or improved service
- Safety or security
- Get a good grade on CSI 331

Resources

Examples: CSI 331

<u>Staff:</u> 4 to 6 students, with some help. How many hours per week? What skills do people have?

<u>Time:</u> Must be completed by end of semester, including operational system, documentation, presentation

Equipment and software: What special needs are there?

Client: Will the client be sufficiently available and helpful?

Obstacles

CSI 331 projects

<u>Start-up time.</u> Creating a team, scheduling meetings, acquiring software, learning new systems, ...

Business considerations. Licenses, trade-secrets, ...

Too ambitious. Nothing to show at the end of the semester.

<u>Changing circumstances.</u> Client leaves the university, ...

What else?

How to Minimize Risk?

CSI 331 Projects

- Several target levels of functionality: required, desirable, optional
- Visible software process: intermediate deliverables
- Good communication within team and with Teaching Assistant

Good processes lead to good software Good processes reduce risk

Feasibility Report

A written document

- For a general audience: client, financial management, technical management, etc.
- Short enough that everybody reads it
- Long enough that no important topics are skipped

In CSI 331, I am looking for a well written, well presented document.

Feasibility Study

- ▶ Analysis undertaken before committing to a project
- Leads to a yes/no/rework decision
- Often contains a projected budget, and leads to a formal budget request
- Sometimes takes the form of a proposal

Major Difficulty: Uncertainty

- Benefits are hard to quantify
- Approach is usually ill-defined. Cost, risk and timetable estimates are very rough at this point
- Organizational/external changes may be needed for the project
- ▶ Feasibility studies depend heavily on the judgment of experienced leaders
- Mistakes made early in a project are often expensive to correct

The Importance of Advocacy

- Advocacy is often a major factor in overcoming the inaction that naturally accompanies uncertainty
- ▶ Enthusiasm is necessary, but enthusiasts underemphasize costs and risks (sometimes intentionally; always subconsciously)
- ▶ The people evaluating a project often have an interest in seeing it go forward

The Decision Maker's Criteria

- ▶ Client: Who is the project for? Do we care?
- ▶ Scope: What are the boundaries of the project?
- ▶ Benefits: Can the benefits be quantified?
- ▶ Technical: Do we have a clear sense for how to implement the project?
- ▶ Resources: Estimated staff, time, equipment needs?
- Alternatives: What are the options if we don't do the project?

Decision Makers Hate Risk

- Technical
 - There must be a rough initial plan for completing the project
 - ▶ The plan must acknowledge substantial uncertainties
- External
 - Every project depends to some extent on external stakeholders
 - Are there potential users? people who don't want to see the project succeed?

System Ecosystem

- > Systems live in an ecosystem. Is there a friendly one for this project?
 - ▶ Management expertise in developing organization?
 - ▶ Technical expertise in-house or contracted?

Example 1

- Decision before feasibility report
- Government agency that manages a huge number of documents is slowly moving from paper to digital storage

Chronology

- University S developed a prototype system
- Funds were "procured" from congress to develop a major system
- The National Academy of Sciences was commissioned to do a feasibility study
- Problems:
 - ▶ The money was already there!
 - ▶ Feasibility study only looked at technical issues

Obvious Problems

- Organizational
 - The agency management were not prepared to lead a large technology project
 - No thought given to workflow and job changes
- Preparation
 - No preliminary study to evaluate the properties of the documents to be managed (volume, privacy, secrecy, etc)

Outcome: Deeply Flawed System

- No one wants to return money to congress
- ▶ Feasibility study was given short-shrift
- Agency adopted a pure waterfall model
- ▶ The system has had limited success

Scope

- ▶ The boundaries of the system
 - ▶ Included and excluded high-level functionality
 - Dependencies
 - ▶ Current systems to be replaced or augmented
- ▶ Confusion over scope is very common

Example 2

- Government library contracted out for a "repository system" to manage data
- Contractor built software to store and manipulate complex digital material
- Nobody built a system to load and validate the database in the first place
- ▶ The library thought that was implicit in the project
- ▶ The contractor disagreed

Benefits

- Can potential benefits be quantified?
 - ▶ Marketable product? Market size?
 - ▶ Improved efficiency?
 - ▶ New capability?
 - ▶ Improved safety or security?
- Personal development is not a good justification for a project, but organizational development can be

Technical Feasibility

- Rough draft of the requirements
- ▶ Rough draft of high level design (i.e. architecture)
- List of expected frameworks/libraries to be acquired/used
- High-level scale estimates (number of users, size of data, etc)
- ▶ Assessment of existing team's experience

Planning and Resources

- A feasibility study must have a rough plan
- Estimates for staffing, equipment needs, project timetable
- Major milestones and decision points
- Interactions with external stakeholders
- Deliverables and delivery dates
- ▶ (Later lecture on planning details)

Alternatives and Risks

- Major alternatives
 - Revise or rewrite?
 - In-house or contracted out?
 - Delivery phases and points to change course
- Risks
 - ▶ What can go wrong?
 - ▶ How will we know (visibility)?
 - ▶ Are there palatable alternatives?

The Report

- A written document to be archived with the project
- Must be accessible to all stakeholders
- ▶ **Short** enough that people will read it
- Clear writing is crucial
 - ▶ Should spend more time writing and revising than any other document in the project

Use Case Stories

- Powerful tool for bridging the gap between users/clients and developers
- Write short "stories" with "characters" using the software you are going to develop
- Keep them short!
- Add just enough fun detail to get the brain in story mode

Requirements Definition and Analysis

The Requirements Process

Requirements Definition

High-level abstract description of requirements:

- Specifies external system behavior
- Comprehensible by customer, management and users

Should reflect accurately what the customer wants:

- Services that the system will provide
- Constraints under which it will operate

Example: Library of Congress (A Partial Failure)

Outline Description

The Library of Congress requires a repository system to store and make accessible very large amounts of highly varied material over long periods of time.

Chronology

- 1993-94 CNRI carries out research on architectures for digital libraries
- 1995-97 CNRI implements prototype repository for Library of Congress
- 1998 CNRI and Library of Congress carry out requirements definition

The Repository

Storage and Representation of Complex Objects

Data

Several representations:

thumbnail image

reference image

archival image

Metadata

Each representation may have its own metadata

Repository: Research Achievements

- 1. CORBA implementation of repository access protocol.
- 2. Integration of persistent naming through handle system.
- 3. Use of structural metadata to describe complex objects, elementary typology.
- 4. Access management framework and implementation.
- 5. Applet-based middleware for user interfaces.
- 6. Information visualization program to view the structure of large collections.

Good Discoveries During Prototype

- Structuring complex information in digital libraries
- Data driven digital library interfaces
- Comparison of object-oriented, relational, and file based storage systems
- Naming and identification of library objects
- Boundaries of required repository system

Bad Discoveries During Prototype

- Resistance to change within Library of Congress
- Technical weakness of Library of Congress
- Gaps in CNRI architecture

Mistakes

- Confusion of objectives (research and implementation)
- Failure to involve all stakeholders
- Over-ambitious (no proper feasibility study)

Library of Congress Requirements Study

Team (all experienced): Librarian, Software Engineer (CNRI), Computing Project Leader (Library of Congress), + 2 others

Advisors: Mailing list of about 20 knowledgeable stakeholders.

Timetable: Preliminary report (2 months). Final report (1 month).

Functional Requirements

Example: Library of Congress repository

- Support for complex digital objects
- Access management
- Identification
- Information hiding
- Open protocols and formats
- Integration with other systems (scope)

DRAFT OVERVIEW OF ITS SUPPORT FOR NDLP PRODUCTION AND DELIVERY OF AMERICAN MEMORY

Non-functional Requirements

Environment:

- Estimates of sizes, numbers of users, etc.
- Reliability and performance measures and targets

Preferred:

Example: Library of Congress repository

- Hardware and software systems (e.g., IBM/Unix)
- Database systems (e.g., Oracle)
- Programming languages (e.g., C and C++)

Evolution of Requirements

- If the requirements definition is wrong, the system will be a failure.
- With complex systems, understanding of requirements always continues to improve.

Therefore...

- The requirements definition must evolve.
- Its documentation must be kept current (but clearly identify versions).