PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burgers

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5		(11) International Publication Number: WO 94/2506
A61K 37/38, 37/02, 37/43, 37/04, 39/395	A1	(43) International Publication Date: 10 November 1994 (10.11.94
(21) International Application Number: PCT/US: (22) International Filing Date: 28 April 1994 (2		Detent (AT RE CH DU DV DE ED CD CD
(30) Priority Detai 057,166 27 April 1993 (27,04,93) 229,275 14 April 1994 (14,04,94)	U:	
(71)(72) Applicants and Leventors: LADD, Anna, E. [148 Neptune Avenue, Brocklyn, NY 11235 (US). Chang, Yi [US/US]: 47 Snake Hill Road, Cold Harbor, NY 11724 (US). ZAMB, Timothy [US/IBonnie Lane, Stony Brock, NY 11790 (US).	WANG Spring US]; 54	
74) Agent: GROLZ, Edward, W.; Scully, Scott, Murphy &: 400 Garden City Plaza, Garden City, NY 11530 (U.	P rosser , S).	
		1

(34) The Immunogenic Lhrh Peptide Constructs and Synthetic Universal Immune Stimulators for Vaccines

(57) Abstract

ij

This invention relates to immunogenic luttinizing hormone releasing hormone (LHRH) peptides that lead to suppression of LHRH activity in males or females. When male rats are immunized with these peptides, serum testosterone drops and androgen-dependent organs arrophy significantly. These peptides are useful for inducing infertility and for treating prostatic hyperplasia, androgen-dependent carcinoma, prostatic carcinoma and testicular carcinoma in males. In females, the peptides useful for treating endometriosis, benign uterine tumors, recurrent functional ovarian cysts and (sevene) premenstral syndrome as well as prevention or treatment of estrogen-dependent breast cancer. The subject peptides contain a helper T cell epitope and have LHRH at the C terminus. The helper T cell epitope aids in stimulating the immune response against LHRH. The peptides, optionally contain an invasin domain which acts as a general immune stimulator. In another aspect this invention relates to immunogenic synthetic peptides having an invasin domain, a helper T cell epitope and a peptide hapten and methods of using these peptides to treat disease or provide protective immunity. The peptide haptens of the invention include LHRH, amylin, gastrin releasing peptide, IgE CH4 peptide, Chlamydia MOMP peptides, HIV V3 peptides and Plasmodium berghei.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BEE BY BU BE BY A CO	Austria Australia Barbadae Belgian Boddae Bodgian Boddae Benin Brozil Bodarae Consol African Republic Congo Switterland Cite of Twine Cameroon China Crech Expublic Germany Desmants Spein Roland France Gabon Gabon	GE GE GE GE GE GE GE GE GE KE KE KE KE KE KE KE KE KE KE KE KE KE	United Kingdork Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Ledand Linky Lapan Kanya Kynyatan Democratic People's Republic of Korea Republic of Korea Kasakhatan Liectnessisien Sri Lunta Limenthoung Larvia Monaco Rapublic of Moldova Madagascur Muli Mongolia	MR MW ME NL NO NZ PL PT SE SI SI SI SI UZ VI UZ VI	Mauritania Malawi Niger Netherlands Norway New Zealand Poland Portugal Romania
--	--	--	--	--	--

IMMUNOGENIC LHRH PEPTIDE CONSTRUCTS AND SYNTHETIC UNIVERSAL IMMUNE STIMULATORS FOR VACCINES

5

10

15

20

25

30

35

This invention relates to immunogenic luteinizing hormone releasing hormone (LHRH) peptides that lead to functional suppression of LHRH levels in males or females. When male rats are immunized with these peptides, serum testosterone drops and androgen-dependent organs atrophy significantly. These peptides are useful for inducing infertility and for treating prostatic hyperplasia, androgen-dependent carcinoma, prostatic carcinoma and testicular carcinoma in males. In females, the peptides are useful for treating endometriosis, benign uterine tumors, recurrent functional ovarian cysts and (severe) premenstrual syndrome as well as prevention or treatment of estrogendependent breast cancer. The subject peptides contain a helper T cell epitope (Th epitope) and have LHRH at the C terminus. The helper T cell epitope aids in stimulating the immune response against LHRH. The peptides, optionally, contain an invasin domain which acts as a general immune stimulator.

In another aspect this invention relates to immunogenic synthetic peptides having an invasin domain, a helper T cell epitope and a peptide hapten and methods of using these peptides to treat disease or provide protective immunity. The peptide haptens of the invention include LHRH, amylin, gastrin, gastrin releasing peptide, IgE CH4 peptides, Chlamydia MOMP peptides, HIV V3 peptides and Plasmodium berghei peptides.

Prostate cancer is the third leading cause of death in men and the most common malignancy in men over the age of 70 years. The number of new prostate cancer cases has risen steadily over the past 20 years, with the expectation that more than 4 million men over the age of 75 may develop clinically detectable prostate cancer in the early 21st century [Perez et al. (1985) in Cancer Principles and

Practice of Oncology, Vol. 9 (DeVita et al., eds.) J.B.
Lippincott Company, Philadelphia, PA, pp. 1023-48; Chodak et al. (1990) Current Concepts in Prostate Cancer Diagnosis and Management, 26th Annual Meeting, American Society of Clinical Oncology. Unfortunately, at the time of diagnosis about 40-50% of the patients with newly diagnosed prostate cancer will have advanced disease (stage D), with a median survival time of approximately 2.4 years [Torty (1988) Adv. Onc. 4:15]. Consequently, the therapies developed to combat this disease should demonstrate efficacy as rapidly as possible.

The classical treatment for advanced prostate cancer has been surgical orchiectomy, i.e. castration, developed by Huggins and others in the early 1940s [Huggins et al. (1941) Cancer Res. 1:293-297]. This procedure reduces serum testosterone by 95%, causes measurable tumor regression in approximately 45% of patients, and disease stabilization in an additional 40% of patients. At least temporary stabilization of advanced prostatic disease, including improvement of urinary tract symptoms and reduction of pain, occurs in about 70% of patients [Klein (1979) N. Engl. J. Med. 300:824-33]. While such treatments are effective, particularly when combined with estrogen therapy, the associated psychological trauma is unacceptable to some patients.

Over 95% of testosterone production originates in the testes. Testosterone production in the Leydig cells of the testes is controlled by pituitary secretion of luteinizing hormone (LH). The secretion of LH together with follicle stimulating hormone (PSH), in turn is controlled by the pulsatile release of LHRH from the hypothalamus [See, for example, Paulsen (1974) in Textbook of Endocrinology (Williams, ed.) Saunders, Philadelphia, PA, pp323-367]. Attempts to block LHRH, to reduce testosterone effect on androgen-dependent organs, e.g. prostate, or to block other parts of this pathway have provided therapeutic alternative

treatments for prostate cancer, including treatment with estrogens or LHRH analogs. Unfortunately, therapeutic doses of estrogens can cause significant side effects such as cardiovascular mortality, gynecomastia, nausea, sodium retention, and impotence [Blackard (1975) Can. Chem. Rep. 59:225-7]. Treatment with LHRH analogs, such as Leuprolide or goserelin, causes eventual decline of serum testosterone; however, the associated initial rise of serum LH and FSH levels (450 and 250 per cent, respectively), leads to a painful condition known as the "flare up phenomena" in which a temporary increase in serum testosterone and other symptoms occur [Crawford et al. (1991) Urol. Clin. N.A. 18:55-63]. In addition LHRH analog therapy can cause gastrointestinal upset and hot flushes.

5

10

15

20

25

30

35

Active immunization against LHRH has long been known to exert multiple effects, including decreasing serum and pituitary LH and FSH, reducing serum testosterone, suppressing spermatogenesis and causing reversible atrophy of the gonads and accessory sex organs. [See, for example, Fraser et al. (1974) J. Endocrinol. 62:399-405; Giri et al. (1991) Exp. Molec. Pathol. 54:255-264; Ladd et al. (1989) J. Reprod. Immunol. 15:85-101; and references cited therein].

Immune intervention of the androgen hormone cascade can also be used in the treatment of endometriosis in women. This disease is the second leading cause of infertility in females after infection-induced infertility. The ectopic development and maintenance of endometrial tissues outside the uterine musculature is mediated by estrogen. Since LHRH regulates the production of FSH by the anterior pituitary which in turn regulates the production of estrogen by the ovaries, blocking the action of LHRH is another therapy for this disease. Thus by analogy to prostate cancer, estrogendriven tumors of the breast should also be responsive to LHRH immunotherapy.

In addition to providing treatment for a number of important diseases in both men and women, regulation of the

androgen hormone cascade through immunologic intervention provides a means of regulating fertility in both sexes. Since LHRH controls both testosterone production, which regulates the development of sperm, and estrogen production, which causes the ripening of ova, immunological blocking of LHRH action results in reversible infertility. Moreover, LHRH-based immunotherapy provides a means for reversible contraception in male and female companion animals (e.g. dogs, cats, horses and rabbits) as well as mitigating undesirable androgen-driven behavior such as heat, territorial marking and aggression. Lastly, immunological castration (e.g. antibody-based inhibition of LHRH action) has application in the meat animal industry. Males are not processed into prime cuts of meat because of the offensive aroma and taste associated with their flesh as a result of circulating testosterone (e.g. boar taint). Since mechanical castration of male food animals is no longer considered humane, immunological castration provides an acceptable alternative to this practice.

5

10

15

20

25

30

35

Several immunogenic forms of LHRH have been tested. For example, LHRH has been combined with adjuvants or conjugated with protein to enhance immunopotency. However, these adjuvants have been unsuitable for human use, and protein carriers are too expensive for large scale use. Further, effective immunization with LHRH depends on the conjugation site between LHRH and the carrier. Conjugation of the carrier protein (diphtheria toxin or tetanus toxoid) to the amino terminus of LHRH provided a more effective vaccine for immunization and contraception relative to formulations having the carrier protein at other conjugation sites on LHRH [Ladd et al. (1990) Am. J. Reprod. Immunol. 22:56-63].

Moreover, protein linkage to LHRH is problematic because the majority of immune responses are directed to the carrier rather than to LHRH (the mass of the toxin molecule(s) is much greater than that of LHRH). This phenomenon leads to carrier-induced immune suppression.

Because the majority of cancer or endometriosis patients have been previously immunized with diphtheria and tetanus vaccines as part of mandatory immunization programs, antibody and/or suppressor T cell responses directed to tetanus or diphtheria toxin components of the vaccines can interfere with the subsequent immune responses to toxin-linked LHRH immunogens.

Accordingly, an immune enhancer that is suitable for human use, inexpensive and capable of stimulating an early and strong immune response to LHRH has been sought. Likewise this immune enhancer should avoid carrier-induced suppression. Hence, it has been found that peptides containing particular structural arrangements of a Th epitope alone or linked to an invasin domain (as an immune enhancer) and LHRH (as immunogen) are effective in stimulating the production of antibodies against LHRH.

10

15

20

25

30

35

The present invention relates to peptides, preferably synthetic peptides, which are capable of inducing antibodies against LHRH that lead to the suppression of LHRH levels in males or females. The subject peptides are useful for inducing infertility and for treating prostatic hyperplasia, androgen-dependent carcinoma, prostatic carcinoma, testicular carcinoma, endometriosis, benign uterine tumors, recurrent functional ovarian cysts (severe) premenstrual syndrome or for prevention or treating estrogen-dependent breast cancer. In particular, peptides of this invention have a Th epitope and carboxyl-terminal LHRH, or a peptide analog of LHRH. These peptides are effective as immunogens and therapeutics. The peptides of this invention are capable of reducing serum testosterone to levels comparable to those obtained by orchiectomy (castration) and of causing reversible atrophy of the testes, prostate and other androgen- or estrogen-dependent sex organs. Optionally, the peptides have an invasin domain as an immune stimulator.

Another aspect of this invention provides a vaccine composition comprising an immunologically effective amount of a peptide in accordance with this invention and one or

more pharmaceutically acceptable carriers. Such vaccine compositions are useful in the induction of infertility or the treatment of prostatic hyperplasia, androgen-dependent carcinoma, prostatic carcinoma, testicular carcinoma, endometriosis, benign uterine tumors, recurrent functional ovarian cysts and/or (severe) premenstrual syndrome as well as for prevention or treatment of estrogen-dependent breast cancer.

5

10

15

20

25

30

35

A further aspect of the invention relates to a method for suppressing activity of circulating LHRH levels in a mammal by administering one or more of the subject peptides to the mammal for a time and under conditions sufficient to induce functional antibodies directed against said LHRH. Suppression of LHRH activity is useful to treat prostatic hyperplasia, androgen-dependent carcinoma, prostatic carcinoma, testicular carcinoma, endometriosis, benign uterine tumors, recurrent functional ovarian cysts or (severe) premenstrual syndrome, or to prevent or treat estrogen-dependent breast cancer. More particularly, the invention provides a method for inducing infertility in a mammal by administering the subject vaccine compositions to the mammal for a time and under conditions to produce an infertile state in the mammal. Similarly, this invention relates to a method for treating androgen-dependent carcinoma by administering the subject vaccine compositions to the mammal for a time and under conditions to effect regression or prevent growth of the carcinoma.

Yet another aspect of the invention relates to an immunogenic synthetic peptide of about 30 to about 90 amino acids which contains an immunostimulatory invasin domain, a helper T cell (Th) epitope and a peptide hapten. These three elements of the peptide can be covalently joined in any order provided that either the immunoreactivity of the peptide hapten is substantially preserved or that immunoreactivity to a self-peptide can be generated. The peptide haptens of the invention include self-peptides LHRH,

amylin, gastrin (gastrin, and gastrin,), gastrin releasing peptide and a peptide derived from the CH4 domain of the IgE molecule as well as peptides from Chlamydia trachomitis, human immunodeficiency virus, Plasmodium berghei, or any other B cell epitope (such as from pathogenic organisms) or a CTL (cytotoxic T cell)-generating epitope. Further these peptides have one or more amino terminal (A), groups, where A is an amino acid, α -NH, tripalmitoyl cysteine or a fatty acid and n is from 1 to about 10. The three elements of the subject peptides can be separated by a (B), spacer group, where B is independently any amino acid and o is from 0 to about 10.

5

10

15

20

25

30

35

When the peptide hapten is amylin or an immunogenic analog thereof, the peptide can be formulated into a vaccine and administered for the treatment of non-insulin dependent diabetes. This treatment causes a reduction in circulating amylin levels and/or reduction in blood glucose levels.

When the peptide hapten is gastrin, gastrin, or an immunogenic analog thereof, the peptide can be formulated into a vaccine and administered for the treatment of peptic ulcers or gastrin releasing peptide-stimulated tumors. This treatment causes a reduction of gastrin levels and thereby acid secretion.

When the peptide hapten is gastrin releasing peptide or an immunogenic analog thereof, the peptide can be formulated into a vaccine and administered for the treatment of peptic ulcers, gastrin-stimulated tumors or lung cancer. This treatment causes reduction of gastrin releasing peptide levels.

When the peptide hapten is derived from the CH4 domain of IgE (SEQ ID NO:79) or an immunogenic analog thereof, the peptide can be formulated into a vaccine and administered for the treatment of allergy. This treatment causes a reduction in histamine levels or blocks IgE-mediated activation of mast cells or basophils.

When the peptide hapten is a variable domain (VDI-IV)

of Chlamydia trachomatis major outer membrane protein (MOMP) or an immunogenic analog thereof, the peptide can be formulated into a vaccine and administered for immunization against Chlamydia trachomitis and production of neutralizing antibodies thereto.

5

10

15

20

25

30

35

When the peptide hapten is an HIV V3 principal neutralizing domain or an immunogenic analog thereof, the peptide can be formulated into a vaccine and administered for the treatment of acquired immune deficiency syndrome (AIDS), or prevention of HIV infection by the elicitation of neutralizing antibodies against HIV.

Fig. 1 graphically illustrates the average androgen-dependent organ weights (g) obtained 8 or 11 weeks after immunization of rats (n=5) with Peptides A-E. Panel A provides testes weight; Panel B provides epididymis weight; Panel C provides prostate plus associated seminal vesicles weight. Organ weights were obtained at 11 weeks for Peptides A-C and at 8 weeks for Peptides D and E. The average weight of the organs in control animals (n=8) is indicated by "Co".

Fig. 2 shows the relative androgen-dependent organ weights (g) in the responder (solid bars) and non-responder (open bars) animals immunized with Peptide A. Abbreviations: Epid., epididymis; P+SV, prostate and seminal vesicles.

Fig. 3 graphically depicts the correlation between testes weight (g) and serum anti-LHRH antibody levels (nmole/L) as determined in a radioimmunoassay (RIA) after immunization with Peptide A.

Fig. 4 is a photograph illustrating the size of androgen-dependent organs in controls or animals treated with a Peptide F.

Fig. 5 graphically depicts levels of anti-LHRH specific antibody produced in rats following immunization with an immunogenic LHRH construct designated as HBSAg T_b : LHRH (peptide A). Bight sexually mature Sprague-Dawley male rats

per group were given 100 µg or 500 µg of peptide A by intramuscular administration. The antigen was formulated in Freund's complete adjuvant and given at week 0, and in incomplete Preund's adjuvant and administered at weeks 3 and 6. LHRH-specific antibody as reported in this and subsequent figures was determined by standard radioimmunoassay and expressed as the mean value in nanomoles of total LHRH antibody per liter of serum. The control group was given unmodified LHRH in Freund's adjuvant using the same immunization schedule.

5

10

15

20

25

30

35

Fig. 6 graphically depicts serum testosterone levels in rats following administration of peptide A as described in Fig. 5. Testosterone as reported in this and subsequent figures was measured in the serum samples used for determining the LHRH-specific antibody titers. Serum testosterone was measured by radioimmunoassay, and expressed as the mean value in nanomoles of testosterone per liter of serum.

Fig. 7 graphically depicts testis weights of animals given peptide A as described in Fig. 5. At 11 weeks following the commencement of the experiment described in the legend to Fig. 5, animals were sacrificed and the relevant organs dissected and weighed. Testis weights are expressed as the mean value in grams of organ weight per 100 grams of body weight. Hypox designates hypophysectomized rats. Group 1 animals were immunized with Freund's adjuvant without antigen, using an identical schedule to the experimental groups.

Fig. 8 graphically depicts prostate and seminal vesicle weights of animals given peptide A as described in Fig. 5. Prostate and seminal vesicles were weighed together and their collective weight expressed as the mean value in grams of tissue per 100 grams of body weight. HypoX designates hypophysectomized rats. Group 1 animals were immunized with Freund's adjuvant without antigen, using an identical schedule to the experimental groups.

Fig. 9 graphically depicts levels of anti-LHRH specific antibody produced in rats following immunization with an immunogenic LHRH construct designated as HBSAg T_k : GG: LHRH (peptide 18). Six sexually mature Sprague-Dawley male rats per group were given 100 μ g of peptide 18 by subcutaneous administration. The antigen was formulated in Freund's complete adjuvant and given at week 0, and in incomplete Freund's adjuvant and administered at weeks 3 and 6. The control group was given unmodified LHRH in Freund's adjuvant using the same immunization schedule.

5

10

15

20

25

30

35

Fig. 10 graphically depicts levels of anti-LHRH specific antibody produced in rats following immunization with HBsAg T_b: LHRH (peptide A). Six sexually mature Sprague-Dawley male rats per group were given 100µg peptide A by subcutaneous administration. The antigen was formulated in Freund's complete adjuvant and given at week 0, and in incomplete Freund's adjuvant and administered at weeks 3 and 6. The control group was given unmodified LHRH in Freund's adjuvant using the same immunization schedule.

Fig. 11 graphically depicts serum testosterone levels in rats following administration of peptide 18 in Freund's adjuvant. The experimental design is that described in the legend to Fig. 9.

Fig. 12 graphically depicts serum testosterone levels in rats following administration of peptide A. The experimental design is that described in the legend to Fig. 10.

Fig. 13 graphically depicts prostate and seminal vesicle weights of animals given peptide 18. The experimental protocol is described in the legend to Fig. 9. Prostate and seminal vesicles were weighed together and their collective weight expressed as the mean value in grams of tissue per 100 grams of body weight. Control animals were immunized with Freund's adjuvant without antigen, using an identical schedule to the experimental groups.

Fig. 14 graphically depicts levels of anti-LHRH

specific antibody produced in rats following immunization with MV P T_b : LHRH (peptide 19). Peptide 19 consists of a segment of the P protein from measles virus linked to the amino terminus of LHRH. Six sexually mature Sprague-Dawley male rats per group were given peptide 19 equivalent to 100 μ g of peptide A by subcutaneous administration. The antigen was formulated in Freund's complete adjuvant and given at week 0, and in incomplete Freund's adjuvant and administered at weeks 3 and 6. The control group was given unmodified LHRH in Freund's adjuvant using the same immunization schedule.

5

10

15

20

25

30

35

Fig. 15 graphically depicts serum testosterone levels in rats following administration of peptide 19. The experimental design is that described in the legend to Fig. 14. Panel A shows data for animals which achieved serum testosterone levels below the castration threshold, whereas Panel B shows data for animals which did not achieve castration levels of testosterone by week 8.

Fig. 16 graphically depicts testis weights of animals given peptide 19. At 10 weeks following the commencement of the experiment described in the legend to Fig. 14, animals were sacrificed and the relevant organs dissected and weighed. Testis weights are expressed as the mean value in grams of organ weight per 100 grams of body weight. Control animals were immunized with Freund's adjuvant without antigen, using an identical schedule to the experimental groups.

Fig. 17 graphically depicts prostate and seminal vesicle weights of animals given peptide 19. The experimental protocol is described in the legend to Fig. 14. Prostate and seminal vesicles were weighed together and their collective weight expressed as the mean value in grams of tissue per 100 grams of body weight. Control animals were immunized with Freund's adjuvant without antigen, using an identical schedule to the experimental groups.

Fig. 18 graphically depicts anti-LHRH specific antibody

produced in rats following immunization with PT T_h2 : LHRH (peptide K, Seq ID No:16). Peptide K consists of a segment of pertussis toxin linked to the amino terminus of LHRH. Six sexually mature Sprague-Dawley male rats per group were given peptide K equivalent to 100 μ g of peptide A by subcutaneous administration. The antigen was formulated in Freund's complete adjuvant and given at week 0, and in incomplete Freund's adjuvant and administered at weeks 3 and 6. The control group was given unmodified LHRH in Freund's adjuvant using the same immunization schedule.

5

10

15

20

25

30

35

Fig. 19 graphically depicts serum testosterone levels in rats following administration of peptide K. The experimental design is that described in the legend to Fig. 18. Panel A shows data for animals which achieved serum testosterone levels below the castration threshold, whereas Panel B shows data for animals which did not achieve castration levels of testosterone by week 8.

Fig. 20 graphically depicts testis weights of animals given peptide K. At 10 weeks following the commencement of the experiment described in the legend to Fig. 18, animals were sacrificed and the relevant organs dissected and weighed. Testis weights are expressed as the mean value in grams of organ weight per 100 grams of body weight. Control animals were immunized with Freund's adjuvant without antigen, using an identical schedule to the experimental groups.

Fig. 21 graphically depicts levels of anti-LHRH specific antibody produced in rats following immunization with an immunogenic LHRH construct designated as TT T_k1 : LHRH (peptide H). Five sexually mature Sprague-Dawley male rats per group were given 100 μ g of peptide H by subcutaneous administration. The antigen was formulated in Freund's complete adjuvant and given at week 0, and in incomplete Freund's adjuvant and administered at weeks 3 and 6. The control group was given unmodified LHRH on alum using the same immunization schedule.

Fig. 22 graphically depicts serum testosterone levels in rats following administration of peptide H. The experimental design is that described in the legend to Fig. 21.

5

10

15

20

25

30

35

Fig. 23 graphically depicts testis weights of animals given peptide H. At 10 weeks following the commencement of the experiment described in the legend to Fig. 21, animals were sacrificed and the relevant organs dissected and weighed. Testis weights are expressed as the mean value in grams of organ weight per 100 grams of body weight. Control animals were immunized with alum adjuvant without antigen, using an identical schedule to the experimental groups.

Fig. 24 graphically depicts levels of anti-LHRH specific antibody produced by immunization with a prototype immunogen cocktail formulated with Freund's adjuvant. Equimolar amounts of HBsAgT_b: LHRH + MV F T_b:LHRH + PT T_b:LHRH were mixed and formulated in Freund's adjuvant. Six sexually mature Sprague-Dawley male rats were given a molar equivalent of the immunogen cocktail equal to 100 μ g of peptide A in Freund's complete adjuvant at week 0 and in Freund's incomplete adjuvant at weeks 3 and 6. All immunizations were via the subcutaneous route.

Fig. 25 graphically depicts serum testosterone levels in rats following administration of the prototype immunogen cocktail in Freund's adjuvant. The experimental design is that described in the legend to Fig. 24.

Fig. 26 graphically depicts testis weights of animals given the prototype immunogen cocktail in Freund's adjuvant. At 10 weeks following the commencement of the experiment described in the legend to Fig. 24, animals were sacrificed and the relevant organs dissected and weighed. Testis weights are expressed as the mean value in grams of organ weight per 100 grams of body weight. Control animals were immunized with Preund's adjuvant without antigen, using an identical schedule to the experimental groups.

Fig. 27 graphically depicts levels of anti-LHRH

specific antibody produced by immunization with a prototype immunogen cocktail. Equimolar amounts of $HBsAgT_b$: LHRH + MV PT_b : $LHRH + PTT_b$: $LHRH + TTT_b$: LHRH were mixed and formulated on alum. Six sexually mature Sprague-Dawley male rats per group were given a molar equivalent of the immunogen cocktail equal to 100 μg of paptide A by intramuscular administration at weeks 0, 3 and 6.

Fig. 28 graphically depicts serum testosterone levels in rats following administration of the prototype immunogen cocktail. The experimental design is that described in the legend to Fig. 27.

10

15

20

25

30

35

Pig. 29 graphically depicts testis weights of animals given the prototype immunogen cocktail. At 10 weeks following the commencement of the experiment described in the legend to Fig. 27, animals were sacrificed and the relevant organs dissected and weighed. Testis and prostate weights are expressed in grams. Control animals were immunized with alum adjuvant without antigen, using an identical schedule to the experimental groups.

Fig. 30 graphically depicts levels of anti-LHRH specific antibody produced in rats following immunization with Inv: HBsAgT₁: LHRH (peptide 32). Peptide 32 consists of a segment of Yersinnia adhesion molecule, Invasin, linked to a T cell helper epitope derived from the hepatitis B virus surface antigen linked to LHRH. Five sexually mature Sprague-Dawley male rats per group were given peptide 32 equivalent to 100 μ g of peptide A by subcutaneous administration. The antigen was formulated on aluminum hydroxide and given at week 0, 3 and 6. The control group was given unmodified LHRH on alum using the same immunization schedule.

Fig. 31 graphically depicts serum testosterone levels in rats following administration of peptide 32. The experimental design is that described in the legend to Fig. 30.

Fig. 32 graphically depicts testis weights of animals

given peptide 32. At 10 weeks following the commencement of the experiment described in the legend to Fig. 30, animals were sacrificed and the relevant organs dissected and weighed. Testis weights are expressed as the mean value in grams of organ weight per 100 grams of body weight. Control animals were immunized with alum adjuvant without antigen, using an identical schedule to the experimental groups.

5

10

15

20

25

30

35

Fig. 33 graphically depicts levels of anti-LHRH specific antibody produced by immunization with a immunogen cocktail containing peptide H. Equimolar amounts of Inv:HBsAgT_b: LHRH + MV F T_b:LHRH + PT T_b:LHRH + TT T_k:LHRH were mixed and formulated on alum. Five sexually mature Sprague-Dawley male rats per group were given a molar equivalent of the immunogen cocktail equal to 100 μ g of peptide A by intramuscular administration at weeks 0, 3 an 6.

Fig. 34 graphically depicts serum testosterone levels in rats following administration of the prototype immunogen cocktail. The experimental design is that described in the legend to Fig. 33.

Fig. 35 graphically depicts testis weights of animals given the prototype immunogen cocktail. At 10 weeks following the commencement of the experiment described in the legend to Fig. 33, animals were sacrificed and the relevant organs dissected and weighed. Testis weights are expressed in grams. Control animals were immunized with alum adjuvant without antigen, using an identical schedule to the experimental groups.

The present invention relates to peptides, preferably synthetic peptides, which are capable of inducing antibodies against LHRH, which antibodies lead to the suppression of active LHRH levels in males or females. For the present invention, the following factors contribute to the immunoefficacy of the subject LHRH constructs. These factors, singly or in combination, are considered important aspects for preparing peptides in accordance with the

present invention.

5

10

15

20

25

30

35

1. Addition of Promiscuous Helper T (T_k) Cell Epitopes. To evoke an efficient antibody response, immunogens must be presented in conjunction with major histocompatibility (MHC) class II antigens. The MHC class II antigens produced by antigen-presenting cells (APCs) bind to T cell epitopes present in the immunogen in a sequence specific manner. This MHC class II-immunogen complex is recognized by CD4+ lymphocytes (T, cells), which cause the proliferation of specific B cells capable of recognizing a B cell epitope from the presented immunogen and the production of B cell epitope-specific antibody by them. Since LHRH is a self molecule, it does not possess any recognizable T_b epitopes. Such epitopes can be provided by specific sequences derived from potent immunogens including tetanus toxin, pertussis toxin, the measles virus F protein and the hepatitis B virus surface antigen (HBsAg). The T_1 epitopes selected are, preferably, capable of eliciting helper T cell responses in large numbers of individuals expressing diverse MHC haplotypes. These epitopes function in many different individuals of a heterogeneous population and are considered to be promiscuous T_b epitopes. Promiscuous T_b epitopes provide an advantage of eliciting potent LHRH antibody responses in most members of genetically diverse population groups.

Thus, the helper epitopes of this invention are selected not only for a capacity to cause immune responses in most members of a given population, but also for a capacity to cause memory/recall responses. The vast majority of human patients receiving LHRH immunotherapy will already have been immunized with the pediatric vaccines (i.e., measles + mumps + rubella and diphtheria + pertussis + tetanus vaccines) and, possibly, the newer hepatitis B virus vaccine. These patients have therefore been previously exposed to more than one of the Thepitopes present in the immunogen mixture. Prior exposure to a Them.

epitope through immunization with the standard vaccines should establish T_k cell clones which can immediately proliferate upon administration of the LHRH immunotherapy (i.e. a recall response), thereby stimulating rapid B cell responses to LHRH. In addition, the T_k epitopes avoid any pathogen-specific B cell and/or suppressor T cell epitopes which could lead to carrier-induced immune suppression, a problem encountered when toxin molecules are used to elicit helper T cell responses.

5

10

15

20

25

30

35

- 2. Addition of Spacer Residues Between Immunogenic Elements. Immunogenicity can be improved through the addition of spacer residues (e.g. Gly-Gly) between the promiscuous T_b epitope and LHRH. In addition to physically separating the T_b epitope from the B cell epitope (i.e., LHRH), the glycine residues can disrupt any artificial secondary structures created by the joining of the T_b epitope with LHRH --and thereby eliminate interference between the T and/or B cell responses. The conformational separation between the helper epitope and the antibody eliciting domain thus permits more efficient interactions between the presented immunogen and the appropriate T_b and B cells.
- Broad-spectrum Efficacy. The T_b epitopes of the invention are promiscuous but not universal. This characteristic means that the T_b epitopes are reactive in a large segment of an outbred population expressing different MHC antigens (reactive in 50 to 90% of the population), but not in all members of that population. To provide a comprehensive, approaching universal, immune reactivity for the LHRH immunotherapeutic construct, a combination of LHRH constructs with different T_b epitopes can be prepared. For example, a combination of four T_b epitope: LHRH constructs, including promiscuous T_b epitopes from tetanus and pertussis toxins, measles virus F protein and from the HBsAg is particularly effective. On an equimolar basis, this mixture

is more broadly effective than any single immunogen in the mixture.

5

10

15

20

25

30 .

35

4. Production of T, Epitope Libraries. In another embodiment the T epitope can be a structured synthetic antigen library (SSAL) as described in U.S. Serial No. 143,412, filed Oct. 26, 1993, which is incorporated herein by reference. This technology can be used as another, and perhaps, a more efficient means to obtain universal immune reactivity (as opposed to mixing promiscuous helper epitope constructs). An SSAL is composed of an ordered set of from 2 to several trillion different, but related, peptides made simultaneously in a single, automated peptide synthesis. The sequences of the peptides within a library are defined by a set of peptides or protein domains which share common structural and/ or functional properties. The order within any SSAL is provided by invariant amino acid residues which define the core sequence of the library. The core sequence is determined by aligning the primary amino acid sequences of a related family of epitopes, identifying the invariant loci within the alignment and the specific amino acid residues present at each invariant position. The SSAL is then synthesized with conserved amino acid residues at the invariant positions as defined by the alignment. degeneracy within the library is determined by the loci within the alignment that harbor different amino acid residues when the ordered epitopes are compared. The degree of degeneracy within an array is determined by the number of variant loci within the alignment and the number of different amino acids found at each variant locus.

Promiscuous T_b epitopes are included in structured libraries since they often share common structural features as based upon similar landmark sequences. For example, promiscuous T_b epitopes range in size from about 15 to about 30 residues. Amphipathic helices are a common feature of the T_b epitopes. An amphipathic helix is defined by an alpha-helical structure with hydrophobic amino acid residues

dominating one face of the helix, and charged and polar residues dominating the surrounding faces. The epitopes frequently contain additional primary amino acid patterns such as: a Gly or a charged reside followed by two to three hydrophobic residues followed in turn by a charged or polar residue. This pattern defines Rothbard sequences. The epitopes often obey the 1, 4, 5, 8 rule, where a positively charged residue is followed by hydrophobic residues at the fourth, fifth and eighth positions after the charged residue. Since all of these structures are composed of common hydrophobic, charged and polar amino acids, each structure can exist simultaneously within a single The epitope.

5

10

5. Covalent Addition of an Invasin Domain as an Adjuvant. The invasins of the pathogenic bacteria Yersinia 15 spp. are outer membrane proteins which mediate entry of the bacteria into mammalian cells (Isberg and Leong, 1990, Cell 60:861). Invasion of cultured mammalian cells by the bacterium was demonstrated to require interaction between 20 the Yersinia invasin molecule and several species of the $\beta1$ family of integrins present on the cultured cells (Tran Van Nhieu and Isberg, 1991, J. Biol. Chem. 266:24367). Since T lymphocytes are rich in $\beta1$ integrins (especially activated immune or memory T cells) the effects of invasin upon human T cell have been investigated (Brett et al., 1993, Eur. J. 25 Immunol. 23:1608). It is thought that integrins facilitate the migration of immune T cells out of the blood vessels and through connective tissues to sites of antigenic challenge through their interaction with extracellular matrix proteins including fibronectin, laminin and collagen. The carboxy-30 terminus of the invasin molecule was found to be costimulatory for naive human CD4+ T cells in the presence of the non-specific mitogen, anti-CD3 antibody, causing marked proliferation and expression of cytokines. The specific 35 invasin domain which interacts with the β 1 integrins to cause this stimulation also was identified (Brett et al.,

1993). Because of the demonstrated T cell co-stimulatory properties associated with this domain, it can be linked it to promiscuous Th epitope: LHRH constructs.

5

10

15

20

25

35

- 6. Covalent Addition of Pam, Cys as an Adjuvant. Many of the outer membrane proteins of Gram-negative bacteria are both lipid-modified and very immunogenic. Because of the apparent correlation between covalent lipid linkage and immunogenicity, tripalmitoyl-S-glycerol cysteine (Pam, Cys), a lipid common to bacterial membrane proteins, can be coupled to synthetic peptides representing either B cell of cytotoxic T cell epitopes. Because significant adjuvanting responses are elicited by this lipid linkage, lipid-modified promiscuous T, epitope: LHRH constructs can be prepared. Such lipid-modified constructs are more immunogenic than the unmodified version of the same peptide.
- 7. Selection of an Adjuvant/Emulsion Formulation to Maximize Antibody Responses. In addition to the significant adjuvanting properties associated with covalent modifications of the T_k epitope: LHRH constructs (e.g. the invasin domain and/or Pam₃Cys), addition of exogenous adjuvant/emulsion formulations which maximize immune responses to the LHRH immunotherapeutic immunogens have been investigated. The adjuvants and carriers that have been evaluated are those: (1) which have been successfully used in Phase I human trials; (2) based upon their lack of reactogenicity in preclinical safety studies, have the potential for approval for use in humans; or (3) have been approved for use in food and companion animals.
- 8. Microparticle Delivery of Modified Immunogens. Immunotherapy regimens which produce maximal immune 30 responses following the administration of the fewest number of doses, ideally only one dose, are highly desirable. result can be approached through entrapment of immunogen in microparticles. For example, the absorbable suture material poly(lactide-co-glycolide) co-polymer can be fashioned into microparticles containing immunogen. Following oral or

parenteral administration, microparticle hydrolysis in vivo produces the non-toxic byproducts, lactic and glycolic acids, and releases immunogen largely unaltered by the entrapment process. The rate of microparticle degradation and the release of entrapped immunogen can be controlled by 5 · several parameters, which include (1) the ratio of polymers used in particle formation (particles with higher coglycolide concentrations degrade more rapidly); (2) particle size, (smaller particles degrade more rapidly than larger ones); and, (3) entrapment efficiency, (particles with 10 higher concentrations of entrapped antigen degrade more rapidly than particle with lower loads). Microparticle formulations can also provide primary and subsequent booster immunizations in a single administration by mixing immunogen 15 entrapped microparticles with different release rates. Single dose formulations capable of releasing antigen ranging from less than one week to greater than six months can be readily achieved [see, for example, U.S. Serial No. 201,524, filed February 25, 1994]. Moreover, delivery of promiscuous T_h epitope: LHRH immunogens entrapped in 20 microparticles can also provide improved efficacy when the microparticulate immunogen is mixed with an exogenous adjuvant/emulsion formulations.

The peptides of this invention have a helper T cell epitope (Th epitope) and carboxyl-terminal LHRH. Moreover, the subject peptides can have LHRH replaced by an immunogenic analog of LHRH.

25

30

35

The peptides of this invention are represented by the formula

 $(A)_a - (Th)_m - (B)_o - LHRH$

wherein A is independently an amino acid, $\alpha\text{-NH}_2$, a tripalmitoyl cysteine group, a fatty acid, an invasin domain or an immunostimulatory analog of the corresponding invasin domain;

B is an amino acid; each Th is independently a sequence of amino acids

that comprises a helper T cell epitope or an immune enhancing analog or segment thereof;

LHRH is luteinizing hormone releasing hormone or an immunogenic analog thereof;

n is from 1 to about 10;

5

10

15

20

25

30

35

m is from 1 to about 4; and

o is from 0 to about 10.

The peptides of the present invention have from about 20 to about 100 amino acid residues, preferably from about 20 to about 50 amino acid residues and more preferably from about 20 to about 35 amino acid residues. In another preferred embodiment, the peptide has from about 25 to about 40 amino acid residues.

When A is an amino acid, then it can be any nonnaturally occurring amino acid or any naturally occurring
amino acid. Non-naturally occurring amino acids include, but
are not limited to, \$\textit{B}\$-alanine, ornithine, norleucine,
norvaline, hydroxyproline, thyroxine, gamma-amino butyric
acid, homoserine, citrulline and the like. Naturallyoccurring amino acids include alanine, arginine, asparagine,
aspartic acid, cysteine, glutamic acid, glutamine, glycine,
histidine, isoleucine, leucine, lysine, methionine,
phenylalanine, proline, serine, threonine, tryptophan,
tyrosine and valine. Moreover, when m is greater than one,
and two or more of the A groups are amino acids, then each
amino acid is independently the same or different.

When A is a tripalmitoyl cysteine (Pam, Cys) group it acts as an adjuvant by enhancing the immunostimulating properties of the Th epitope [Weismuller et al. (1992) Int. J. Peptide Res. 40:255-260 and references cited therein]. When A is a fatty acid it is usually located at the amino terminus of the peptide. Purthermore, when one of A is a fatty acid, then, there are 2 or 3 additional amino acids as A moieties. As used herein, fatty acids have a hydrocarbon chain length of 8 to 24 carbon atoms. The hydrocarbon chain can be saturated or unsaturated.

when A is an invasin domain it is an immunostimulatory epitope from the invasin protein of a <u>Yersinia</u> species. This invasin domain is also capable of interacting with the ß1 integrin molecules present on T cells, particularly activated immune or memory T cells, as described above under point 5 in the Detailed Description of the Invention. In a preferred embodiment the invasin domain has the sequence:

5

10

15

20

25

30

35

Thr-Ala-Lys-Ser-Lys-Lys-Phe-Pro-Ser-Tyr-Thr-Ala-ThrTyr-Gln-Phe Seq ID No: 53
s an immunostimulatory analog thereof from the

or is an immunostimulatory analog thereof from the corresponding region in another <u>Yersinia</u> species invasin protein. Such analogs thus have substitutions, deletions or insertions to accommodate strain to strain variation, provided that the analogs retain its immunostimulatory properties.

In one embodiment, n is four and A is $\alpha\text{-NE}_2$, lysine, lysine and lysine in that order. In another embodiment n is one and A is $\alpha\text{-NH}_2$. In yet another embodiment, m is four and A is $\alpha\text{-NH}_2$, an invasin domain, glycine and glycine in that order.

The amino acids for B can be the naturally occuring amino acids or the non-naturally occurring amino acids as described above. Each B is independently the same or different. When B is lysine then a polymer can be formed. For example, if o is 7 and all seven B groups are lysine then a branching heptalysyl core (K_4K_2K or K core) is formed when peptide synthesis is performed without protection of the lysyl side chain ϵ -amino group. Peptides with a K core have eight branch arms, with each branch arm being identical and represented by the formula $(A)_{o}$ - $(Th)_{o}$ - $(B)_{o}$ -. In addition, the amino acids of B can form a flexible hinge, or spacer, to enhance the immune reponse to the Th epitope and LHRH. Examples of sequences encoding flexible hinges are found in the immunoglobulin heavy chain hinge region. Flexible hinge sequences are often proline rich. One particularly useful flexible hinge is provided by the

sequence Pro-Pro-Xaa-Pro-Xaa-Pro, where Xaa is any amino acid, and preferably aspartic acid. An example of a spacer is provided by the sequence Gly-Gly.

5

10

15

20

25

30

35

Th is a sequence of amino acids (natural or non-natural amino acids) that comprises a Th epitope. A Th epitope can consist of a continuous or discontinuous epitope. Hence not every amino acid of Th is necessarily part of the epitope. Accordingly, Th epitopes, including analogs and segments of Th epitopes, are capable of enhancing or stimulating an immune response to LHRH. Immunodominant Th epitopes are broadly reactive in animal and human populations with widely divergent MHC types (Celis et al. (1988) J. Immunol. 140:1808-1815; Demotz et al. (1989) J. Immunol. 142:394-402; Chong et al. (1992) Infect. Immun. 60:4640-4647]. The Th domain of the subject peptides has from about 10 to about 50 amino acids and preferably from about 10 to about 30 amino acids. When multiple Th epitopes are present (i.e. $n \ge 2$), then each Th epitope is independently the same or different.

Th epitope analogs include substitutions, deletions and insertions of from one to about 10 amino acid residues in the Th epitope. Th segments are contiguous portions of a Th epitope that are sufficient to enhance or stimulate an immune response to LHRH. An example of Th segments is a series of overlapping peptides that are derived from a single longer peptide.

Th epitopes of the present invention include hepatitis B surface antigen helper T cell epitopes (HB,Th), pertussis toxin helper T cell epitopes (PT Th), tetanus toxin helper T cell epitopes (TT Th), measles virus F protein helper T cell epitope (MV_F Th), Chlamyidia trachomitis major outer membrane protein helper T cell epitopes (CT T_b), diphtheria toxin helper T cell epitopes (DT T_b), Plasmodium falciparum circumsporozoite helper T cell epitopes (PF T_b), Schistosoma mansoni triose phosphate isomerase helper T cell epitopes (SM T_b), Escherichia coli TraT helper T cell epitopes (TraT T_b) and immune-enhancing analogs and segments of any of

these Th epitopes. Examples of Th epitope sequences are provided below:

. 5	HB, Th:	Phe-Phe-Leu-Leu-Thr-Arg-Ile-Leu-t	hr-Ile-Pro-Gln-		
		Ser-Leu-Asp,	SEQ ID NO:2		
10	PT _i Th:	Lys-Lys-Leu-Arg-Arg-Leu-Leu-Tyr-Ma Ser-Gly-Leu-Ala-Val-Arg-Val-His-Va Glu-Gln-Tyr-Tyr-Asp-Tyr,	et-Ile-Tyr-Met- al-Ser-Lys-Glu- SEQ ID NO:3		
	TT, Th:	Lys-Lys-Gln-Tyr-Ile-Lys-Ala-Asn-Se Gly-Ile-Thr-Glu-Leu,	er-Lys-Phe-Ile- SEQ ID NO:4		
15	TT, Th:	TT, Th: Lys-Lys-Phe-Asn-Asn-Phe-Thr-Val-Ser-Phe-T Arg-Val-Pro-Lys-Val-Ser-Ala-Ser-His-Leu			
		·	SEQ ID NO:5		
20	PT _{iA} Th:	Tyr-Met-Ser-Gly-Leu-Ala-Val-Arg-V Lys-Glu-Glu, Tyr-Asp-Pro-Asn-Tyr-Leu-Arg-Thr-As Asp-Arg-Phe-Leu-Gln-Thr-Met-Val-Ly Arg-Ile-Lys,			
	TT, Th:		SEQ ID NO:6 p-Ser-Asp-Lvs-		
			-Leu-Phe-Asn- SEQ ID NO:7		
25	PT, Th:	Gly-Ala-Tyr-Ala-Arg-Cys-Pro-Asn-Gly- Leu-Thr-Val-Ala-Glu-Leu-Arg-Gly-Asn	Thr-Arg-Ala- -Ala-Glu-Leu SEQ ID NO:8.		
30	MV, Th:	Leu-Ser-Glu-Ile-Lys-Gly-Val-Ile-Val-Glu-Gly-Val	-His-Arg-Leu- SEQ ID NO:9		
	MV _{F2} T ₁ :	Gly-His-Leu-Glu-Ser-Arg-Gly-His-Lys- Thr-His-Val-Asp-Thr-Glu-Ser-Tyr	Ala-Arg-His- SEQ ID NO:42		
35	TT ₄ T _b :	Trp-Val-Arg-Asp-His-His-Asp-Asp-Phe-Ser-Ser-Gln-Lys-Thr	Thr-Asn-Glu- SEQ ID NO:43		

	•								
	TT ₃ T _h :	Asp-Val-Ser-Thr-His-Val-Pro-Tyr-His	is-Gly-Pro-Ala-						
		Leu-Asn-His-Val	SEQ 1						
_	CT Th:	Ala-Leu-Asn-His-Trp-Asp-Arg-Phe-Asg	-Val-Phe	э−Су	's-				
5		Thr-Leu-Gly-Ala-Thr-Thr-Gly-Tyr-Leu	-Lys-Gly	-As	n-				
		Ser	SEQ I						
	DT ₁ T _b :	Asp-Ser-Glu-Thr-Ala-Asp-Asn-Leu-Glu	-Ive-The	-170	١_				
		Ala-Ala-Leu-Ser-His-Leu-Pro-Gly-His	-Glv-Cve	-va	1-				
10			SEQ I		D:4 6				
	DT ₂ T _h :	Glu-Glu-His-Val-hla-Cla-Com VI	_						
		Glu-Glu-His-Val-Ala-Gln-Ser-His-Ala-Leu-Ser-Ser- Leu-Met-Val-Ala-Gln-Ala-His-Pro-Leu-Val-Gly-Glu-							
		Leu-Val-Asn-Hig-Clumba 12 22	-Val-Gly	-Glu	1-				
15		Leu-Val-Asp-His-Gly-Phe-Ala-Ala-Thr-Asn-Phe-Val-Glu-Ser-							
		Cys	SEQ II) NC	: 47				
	PF Th:	Asp-His-Glu-Lys-Lys-His-Ala-Lys-Met-	.C1u_z						
		Ser-Ser-Val-Phe-Asn-Val-Val-Asn-Ser							
20		The state of the s	SEQ ID	NO	: 48				
	SM Th:	Lys-Trp-Phe-Lys-Thr-Asn-Ala-Pro-Asn-	Glv-Val-	λen	_				
		Glu-Lys-His-Arg-His	SEQ ID						
	TraT ₁ T _h :	Gly-Leu-Gln-Gly-Lys-Hfis-Ala-Asp-Ala	-Val-Lvs	-A7,	a				
25		Lys-Gly	SEQ ID						
	TraT ₂ T _b :	Ded-Ag1-G1A-W6f-1	Ala-Ala-	Asp-					
		Ala-Met-Val-Glu-Asp-Val-Asn	SEQ ID						
30	TraT, Th:	Ser-Thr-Glu-Thr-Gly-Asn-Gln-His-His-T	\vr-61 n_5	7L					
		Arra-1701-1103 A							
		in aya	SEQ ID	NO:	52				
	In a prefe TT ₁ Th or	erred embodiment the Th epitope is HB,	Th, PT	Ph c	r				
35									
	Clv=ton=3-	has the amino acid sequence Glu-His-T	rp-Ser-T	yr-					
	GTA-DRG-VI	rg-Pro-Gly (SEQ ID NO:1). LHRH analog	s accord	ing					

to the invention have a substitution, deletion, or insertion of from one to about four amino acid residues provided that the analog is capable of stimulating an immmune response crossreactive with LHRH. For example, replacing the glycine residue at position six with a D-amino acid, preferably D-lysine, produces an immunogenic analog of LHRH (Jayashankar et al.). The substitutions and insertions can be accomplished with natural or non-natural amino acids as defined herein.

5

10

15

20

25

30

35

Accordingly, peptides of this invention are Peptide A (SEQ ID NO:10; Table 1), Peptides F-L (SEQ ID NOS:11-17; Table 4) and Peptides 18-41 (SEQ ID NOS:18-41; Table 5). Preferred peptides include Peptide A, Peptide F and Peptide H. More preferred peptides include peptides 18, 19, 32-35, H and K, and most preferably 19, 32, H and K.

The peptides of this invention can be made by synthetic chemical methods which are well known to the ordinarily skilled artisan. See, for example, Grant, ed. (1992) Synthetic Peptides: A User's Guide, W.H.Freeman & Co., New York, NY, pp. 382. Hence, peptides can be synthesized using the automated Merrifield techniques of solid phase synthesis with either t-Boc or F-moc chemistry on an Applied Biosystems Peptide Synthesizer Model 430A or 431. To synthesize a K core moiety, unprotected [Di(tBoc) or $Di(Fmoc)-N^{\circ}$, N^{ϵ}] lysine residues are used in place of lysine residues with a protected ϵ -amino group. To add Pam,Cys, the lipoamino acid S-[2,3-Bis(palmitoyloxy)-(2R)-propyl-Npalmitoyl-(R)-cysteine (Pam,cys) is synthesized by chemical methods. Pam_Cys is coupled to a peptide by solid-phase synthesis using Pam, Cys-OH in the final coupling step to link the lipoamino acid to a resin-bound peptide chain. To improve the specificity of the final coupling reaction, the solid-phase peptide can be elongated with additional serine and lysine residues at the N-terminus.

After complete assembly of the desired peptide, the resin is treated according to standard procedures to cleave

the peptide from the resin and deblock the protecting groups on the amino acid side chains. The free peptide is purified by HPLC and characterized biochemically, for example, by amino acid analysis or by sequencing. Purification and characterization methods for peptides are well known to one of ordinary skill in the art.

5

10

15

20

25

30

35

Alternatively, the longer linear peptides can be synthesized by well known recombinant DNA techniques. Any standard manual on DNA technology provides detailed protocols to produce the peptides of the invention. To construct a gene encoding a peptide of this invention, the amino acid sequence is reverse transcribed into a nucleic acid sequence, and preferably using optimized codon usage for the organism in which the gene will be expressed. Next, a synthetic gene is made, typically by synthesizing overlapping oligonucleotides which encode the peptide and any regulatory elements, if necessary. The synthetic gene is inserted in a suitable cloning vector and recombinants are obtained and characterized. The peptide is then expressed under suitable conditions appropriate for the selected expression system and host. The peptide is purified and characterized by standard methods.

The subject peptides can also be polymerized. Polymerization can be accomplished by reaction with dilute glutaraldehyde using routine methodology.

The efficacy of the peptides can be established and analyzed by injecting an animal, for example rats, and following the immune response to LHRH, the serum testosterone levels and palpating the testes. At the end of the experimental period the animal can be sacrificed and androgen-dependent organ weights obtained. Androgen-dependent organs include the testes, the epididymis, the prostate and the seminal vesicles. In a preferred method of measuring efficacy, the LHRH construct is formulated in alum and injected into rats. This method is detailed in the Examples.

Another aspect of this invention provides a vaccine composition comprising an immunologically-effective amount of one or more of the peptides of this invention and a pharmaceutically acceptable carrier. Such vaccine compositions are used in the methods of inducing infertility or treating prostatic hyperplasia, androgen-dependent carcinoma, prostatic carcinoma, testicular carcinoma, endometriosis, benign uterine tumors, recurrent functional ovarian cysts or (severe) premenstrual syndrome or prevention or treatment of estrogen-dependent breast tumors.

5

10

15

20

25

30

35

Accordingly, the subject peptides can be formulated as a vaccine composition using adjuvants, pharmaceuticallyacceptable carriers or other ingredients routinely provided in vaccine compositions. Such formulations are readily determined by one of ordinary skill in the art and include formulations for immediate release and for sustained release, e.g., microencapsulation. The present vaccines can be administered by any convenient route including subcutaneous, oral, intramuscular, or other parenteral or enteral route. Similarly the vaccines can be administered as a single dose or divided into multiple doses for administration. Immunization schedules are readily determined by the ordinarily skilled artisan. For example, the adjuvants or emulsifiers that can be used in this invention include alum, incomplete Freund's adjuvant, liposyn, saponin, squalene, L121, emulsigen and ISA 720 as well as the other efficacious adjuvants and emulsifiers described in Tables 7-9. In a preferred embodiment, the adjuvants/emulsifiers are alum, incomplete Freund's adjuvant, a combination of liposyn and saponin, a combination of squalene and L121 or a combination of emulsigen and saponin.

The vaccine compositions of the instant invention contain an immunoeffective amount of one or more of the LHRH-containing peptides and a pharmaceutically acceptable carrier. Such compositions in dosage unit form can contain

about 0.5 μ g to about 1 mg of each peptide per kg body weight. When delivered in multiple doses, the dosage unit form is conveniently divided into the appropriate amounts per dosage.

5

10

15

20

25

30

35

Vaccines which contain cocktails of two or more of the subject peptides enhance immunoefficacy in a broader population and thus provide a better immune response against LHRH. For example, a cocktail of Peptides A, F and H is useful. A preferred cocktail includes Peptides 18, 19, K and H; another includes 32, 19, K and H. immunostimulatory synthetic peptide LHRH immunogens are arrived at through modification into lipopeptides so as to provide built-in adjuvanticity for potent vaccines. The immune response to synthetic peptide LHRH immunogens can be improved by delivery through entrapment in or on biodegradable microparticles of the type described by O'Hagan et al. (1991) Vaccine 2:768-771. The immunogens can be encapsulated with or without adjuvant, including covalently attached Pam,Cys (see Example 15), and such microparticles can be administered with an immunostimulatory adjuvant such as Freund's Incomplete Adjuvant or alum. The microparticles function to potentiate immune responses to an immunogen and to provide time-controlled release for sustained or periodic responses, for oral administration, and for topical administration [O'Hagan et al.; Eldridge et al. (1991) Molec. Immunol. 28:287-294].

A further aspect of the invention relates to a method for reducing or suppressing activity of LHRH levels in a mammal by administering one or more of the subject peptides to the mammal for a time and under conditions sufficient to induce functional antibodies directed against said LHRH. Suppression of LHRH levels can be used to induce infertility via suppression of spermatogenesis or ovulation. Likewise, suppression of functional, circulating LHRH levels is effective to treat prostatic hyperplasia, androgen-dependent carcinoma, prostatic carcinoma, testicular carcinoma,

endometriosis, benign uterine tumors, recurrent functional ovarian cysts or (severe) premenstrual syndrome or estrogen-dependent breast tumors (treatment of such breast tumors includes prevention thereof). In animals, suppression of circulating levels of functional LHRH is useful to reduce boar taint in pigs, to immunocastrate dogs and cats, and to geld stallions.

5

10

15

20

25

30

35

Serum LHRH can be measured by radioimmunoassay (RIA), enzyme-linked immunoadsorbent assay (EIA) or other convenient method. Antibodies against LHRH are measured by RIA (see Example 2) or RIA. Serum testosterone is measured by RIA. The vaccine dosage needed to reduce or suppress activity of LHRH can be determined by the ordinarily skilled artisan. Such compositions in dosage unit form can contain about $0.5~\mu g$ to about 1 mg of each peptide per kg body weight. When delivered in multiple doses, the dosage unit form is conveniently divided into the appropriate amounts per dosage.

More particularly, the invention provides a method for inducing infertility in a mammal by administering the subject vaccine compositions to the mammal or a farm animal for a time and under conditions to produce an infertile state in the mammal or the farm animal. As used herein an infertile state is that state which prevents conception. Infertility can be measured by methods known in the art, e.g. evaluation of spermatogenesis or ovulation, as well as by statistical modeling of experimental animal data. An indicator of infertility in males includes reduction of serum testosterone to near castration levels. Compositions in dosage unit form can contain about 0.5 μ g to about 1 mg of each peptide per kg body weight. When delivered in multiple doses, the dosage unit form is conveniently divided into the appropriate amounts per dosage.

Similarly, this invention relates to a method for treating androgen-dependent carcinoma by administering the subject vaccine compositions to the mammal for a time and

under conditions to effect regression of the carcinoma, or to prevent (further) growth of the carcinoma. Compositions in dosage unit form can contain about 0.5 μ g to about 1 mg of each peptide per kg body weight. When delivered in multiple doses, the dosage unit form is conveniently divided into the appropriate amounts per dosage.

5

The identification and synthesis of peptides with a defined B-cell or a cytotoxic-T cell epitope and its immediate flanking sequences provides an essential component for the production of a synthetic peptide immunogen. 10 However, additional required components, such as effective helper T cell epitopes, which must be present to provide the full range of immune responses necessary to elicit the desired biological effect, may not be included in such sequences. Addition of a universal synthetic immune 15 stimulator to a poorly antigenic peptide immunogen provides an effective solution to this problem. A universal immune stimulator which when linked to any peptide or protein (i.e., the peptide hapten), containing either B cell and/or cytotoxic T lymphocyte (CTL) epitopes, causes potent immune 20 responses to the coupled peptide or protein. The universal immune stimulator consists of a promiscuous helper T cell (T_h) epitope which elicits an immune response to the coupled peptide in members of a heterogeneous population expressing diverse HLA phenotypes (as hereinbefore defined) and an 25 adjuvant peptide sequence from the invasin protein of Yersinia which is capable of specifically binding to CD4+ and CD8+ lymphocytes (as defined herein above). Further, the immune stimulator can have a lipid moiety or charged amino acid residues which act to increase the binding 30 affinity of the immune stimulator for biological membranes. The target peptide hapten can be a self molecule and, therefore, not immunogenic without modification, such as LHRH, which following addition of the immune stimulator can be used in the treatment of cancer or other non-infectious 35 diseases. Similarly, the peptide hapten can be a B cell

epitope representing neutralizing determinants or CTL epitope peptides from a viral, bacterial or a parasitic pathogen for use as a vaccine or an immunotherapy.

5

10

15

20

25

30

35

In order to provide maximum coverage, that is maximum immune responses in members of a genetically diverse population (e.g. as broad-based response as possible), synthetic peptides contain the invasin domain, a promiscuous T_b epitope, and a B cell epitope (or a CTL epitope) can be mixed together and formulated with adjuvant and vaccine carrier. Alternatively, rather than paptide mixtures, peptide libraries (i.e. SSALs) which represent the promiscuous T_b epitope and/or the B cell or CTL epitope are synthesized into the peptides of the invention and formulated for vaccine delivery. This technology, i.e. SSAL, provides a significant advantage in both simplifying the manufacture as well as improving the immunologic coverage provided relative to simple mixtures of peptides for use as immunogens.

The synthetic peptides of the invention are made by automated chemical synthesis as described above.

Specific peptide haptens of the present invention are described below together with diseases that can be ameliorated by immune responses to such peptides or immunotherapies provided by such peptides.

Treatment of non-insulin dependent diabetes by Amylin based immunotherapy. Amylin is a 37 amino acid residue peptide hormone produced by the β cells in the islets of Langerhans (Snake, et al 1988, J. Biol. Chem. 263:17243-17246). It is produced as an 89 amino acid prepropeptide, which is proteolytically cleaved to generate the mature active form of the molecule, that is amidated at the carboxy-terminus during the cleavage process (Cooper, et al., 1989, Biochim. Biophys. Acta. 1014: 247-258). A disulfide bridge is present between Cys 2 and Cys 7 of mature amylin. Both the carboxy-terminal amide residue and the disulfide bridge are required for full biologic activity

(Cooper, et al., 1988, Proc. Natl. Acad. Sci. USA 85:7763-7766). Amylin is co-secreted with insulin from the pancreas and they, in conjunction, regulate glucose matabolism and the production of carbohydrate energy stores by a metabolic pathway known as the Cori cycle, which links striated muscle, the liver and adipose tissue. Insulin primarily drives the foreward limb of this cycle, i.e. glucose uptake from the blood by striated muscle and its conversion into glycogen. Amylin primarily regulates the reverse limb, i.e. the promotion of muscle glycogen breakdown to lactate, which is the substrate for glyconeogenesis and glycogen production in the liver. The dominant action of amylin is to be a non-competitive antagonist of insulin in skeletal muscle and the liver, while insulin action in adipose tissue is unhindered by this peptide hormone.

5

10

15

20

25

30

35

Over-production of amylin is associated with noninsulin-dependent diabetes mellitus (NIDDM), and results in the deposition of amylin in eta cells in the form of insoluble amyloid. Over 2% of the US population suffers from this condition, meaning that well over 5 million people are currently afflicted. Amyloid deposition in the pancreas is also a condition associated with aging, and the elderly having this condition may or may not express overt symptoms. High levels of amylin in the blood lead to a number of biological consequences, including: inhibition of glucosestimulated insulin production by the pancreas; a decrease in the rate of insulin-stimulated glucose uptake and its incorporation into glycogen by striated muscle, i.e. insulin resistance resulting from a inhibition of glycogen synthetase activity; an increase in glycogenolysis by striated muscle mediated by the conversion of glycogen phosphorylase from an inactive to its active form; overcoming inhibition by insulin of glucose liberation by glucagon; increasing lactate release from striated muscle and its incorporation into glucose by the liver; and opposing inhibition by insulin of hepatic glucose output.

pathology associated with its overproduction, namely NIDDM.

Treatment of peptic ulcer disease and cancers

associated with an overproduction of Gastrin by Gastrinbased immunotherapy. Gastrin is a well-characterized

gastrointestinal hormone whose purification and chemical
characterization was first achieved in 1964 (Gregory, et
al., 1964, Nature 204: 931-933). Gastrin is first produced

5

10

15

25

30

35

as a 101 amino acid long precursor molecule known as preprogastrin. Preprogastrin consists of the following segments, from the amino- to the carboxy- terminus: a 21 amino acid long signal sequence, a 33 residue long intervening peptide, the 34 residue long "big gastrin" molecule, Gastrin, followed by a 9 residue sequence at the carboxy-terminus. The signal sequence is cleaved from the body of preprogastrin during its entrance into the

endoplasmic reticulum to yield progastrin. A trypsin-like cleavage then removes the intervening peptide from the amino-terminus of progastrin, and the 6 carboxy-terminal residues are also cleaved by a similar process (Shields and Blobell, 1978, J. Biol. Chem. 253:3753-3756). The remaining peptide, termed glycine-extended gastrin possesses the sequence -Gly-Arg-Arg at the carboxy-terminal end. These three residues are then removed, and the carboxy-terminal

residue Phe of big gastrin, or Gastrin₃₄, is amidated (Eipper, et al., 1985, 116:2497-2504). Finally, the carboxy-terminal 17 amino acid residues are cleaved to yield Gastrin₁₇ (Dockray, et al., 1975, Nature 243:770-772). Approximately one-half of the processed gastrin 34 and 17 molecules found in the antrum and duodenum are sulfated at the unique tyrosine residue (Andersen, 1984, Scand. J. Clin. Lab. Invest. Suppl. 168:5-24).

Gastrin has several important functions, the two most important being stimulation of gastric acid secretion and stimulation of the growth of cells in the gastrointestinal tract. The hormone exists in at least two molecular forms, " G_{34} " and " G_{17} ", (see Table 11, Seq ID Nos. 69 and 74

side effects. In those cases where H2 antagonists have healed ulcers, relapses occur in almost 100% of the treated individuals within a year of discontinuation of treatment. No successful chemical antagonists have been identified to inhibit the action of the peptide hormone gastrin.

5

10

15

20

25

30

. 35

Besides being the most potent stimulator of acid secretion by parietal cells, gastrin also promotes the growth of colon carcinoma, gastric carcinoma and gastric carcinoids. Another peptide hormone structurally related to gastrin is Cholecystokinin (CCK). CCK stimulates the growth of pancreatic carcinomas and small cell lung cancers. Furthermore, certain cancers of the gastrointestinal tract, apudomas, are found to produce extremely large quantities of gastrin, while some tumors of the pituitary are also found to produce excessive amounts of CCK. Excessive gastrin production by apudomas stimulates hypertrophy of the acid secreting epithelium of the stomach, leading to excess stomach acid secretion, peptic ulcer, and neoplastic changes in the epithelium. Excessive chronic CCK stimulation of pancreatic cells has been demonstrated to induce pancreatic hypertrophy, hyperplasia and certain premalignant changes.

Current treatment for tumors stimulated by gastrin or by the related CCK and for tumors that produce gastrin or CCK consists primarily of surgical resection of the cancerous tissue. This approach is frequently unsuccessful or not appropriate; in many instances the tumors cannot be located or are present in anatomic sites that are inoperable. In most instances these tumors do not respond well to radiation or chemotherapy regimens. New treatments are urgently needed to supplement present procedures.

A therapeutic method of selectively neutralizing the biological activity of these gastrointestinal hormones (e.g., Gastrin₁₄, Gastrin₁₇ and CCK) would provide an effective means of controlling or preventing the pathologic changes resulting from excessive hormone production. Control of gastrin levels by anti-gastrin antibodies induced

5

10

15

20

25

30

35

GRP is the mammalian homologue of amphibian bombesin (McDonald et al., 1979, Biochem. Biophys. Res. Commun. 90:227-233). It is a ubiquitous hormone found in the gastrointestinal tract, nervous system and pulmonary tract. Within the gastrointestinal tract, it regulates the production of gastrointestinal hormones, including Gastrin 34 and Gastrin 17 (McDonald, et al., 1983, Regul. Pept. 5:125-137). The same hormone, in the central nervous system, regulates hypothermia and hypoglycemia (Tache and Brown, 1982, Trends Neurosci. 5:431-433). GRP is present in the lung in pulmonary neuroendocrine cells (Moody, et al., 1981, Science 214:1246-1248) and it has been found to be an important marker for neuroendocrine cell hyperplasia (Aguayo, et al., 1989, J. Clin. Invest. 84:1105-1113). is also a significant autocrine growth factor for small cell lung carcinomas, and is therefore an important target for intervention therapies for the treatment of lung cancer (Mulshine, et al., 1991, Oncology 5:25-33). Therefore, immune regulation of GRP through induction of antibodies to it, via immunization with a universal synthetic immune stimulator linked to the hormone, provides an effective therapy for gastric ulcers and tumors, as well as for lung cancer.

Specific examples are provided below for the linkage of the universal synthetic immune stimulator to GRP, and its fragments, such that antibody responses are generated to allow an effective GRP-based immunotherapy.

Treatment of allergy by IgE-CH4 based immunotherapy.

Treatment of IgE-mediated allergic responses such as asthma and hay fever by desensitization or hyposensitization has been known and practiced since early in this century (Noon L. (1911) Lancet, i:1572-1573). Limitations to such an allergen-based immunotherapy include difficulties in identifying the allergen involved and the adverse reactions frequently caused by the use of the allergen once it is identified (World Health Organization and International

sera obtained from such immunizations were found to moderately reduce the decapeptide-induced histamine release from rat peritoneal mast cells in a titer-dependent fashion. Inhibitory activity by these immune sera was further confirmed by in vivo passive cutaneous anaphylaxis (PCA) tests under conditions of multiple allergen application.

5

10

15

A major deficiency of these prototype "IgE CH4 peptide" vaccines is weak immunogenicity, an inherent problem associated with almost all self-antigens. In the present invention, specific examples are provided for the linkage of the universal synthetic immune stimulator to the CH4 peptide of IgE such that potent antibodies directed to this activation site on IgE can be generated, which in turn block the stimulatory action of IgE on mast cells and basophils, thus resulting in an effective treatment of allergy.

Other peptide haptens and treatments. Chlamydia trachomatis is an obligate intracellular bacteria which infects the mucosal surfaces of the genital tract and the There are fifteen relevant different serovars of C. trachomatis based upon serological reactivity. 20 serovars are grouped according to the major disease symptoms each is associated with: the eye disease or trachomaassociated group which includes serovars B, Ba, A and C; the sexually transmitted disease-associated group which includes serovars D, E, F, G, H, I, J & K; and, the lymphogranuloma 25 venereum-associated serovars L_1 , L_2 & L_3 (Murdin, et al., 1993, Infect. Immun. 61:4406-4414). Infection by C. trachomatis, by itself and in combination with Neisseria gonorrhea, is responsible for over one-half of the diagnosed cases of pelvic inflammatory disease (PID) of women or 30 salpingitis. Each year, over one million women in the United States are diagnosed with PID, and infertility is the expected sequela in over 25% of the cases (Washington, et al., 1987, J. Am. Med. Assoc. 257:2070-2072). In addition to disease of the genital tract, C. trachomatis is the 35 leading cause of preventable blindness (i.e. trachoma) in

the world. Currently, over 10 million people have been permanently blinded by this condition (Su and Caldwell, 1992, J. Exp. Med. 175: 227-235).

5

10

15

30

35

The life cycle of *C. trachomatis* includes two alternative forms. The elementary body (EB) which is the extracellular, non-replicative, condensed, spore-like infectious form of the organism, and the reticulate body (RB) is the intracellular, vegetative form which produce EBs. The cycle of infection is initiated by attachment of EBs to cells of the permissive host. This process involves non-specific charge interactions followed by specific receptor-ligand binding between the EB and the host cell membrane. The charge interactions are mediated by the major outer membrane protein (MOMP) of Chlamydia, while the specific bacterial attachment protein (i.e. the protein involved in host cell receptor recognition) has not yet been identified (Stephens, 1993, Infect. Agents Dis. 1:279-293).

Following the initial acute stage of infection, during
which EBs are shed, the disease progresses to a chronic
pathology that is largely associated with cellular
lymphoproliferative responses (Morrison et al. 1989, J. Exp.
Med. 169:663-675; Morrison et al., 1989, J. Exp. Med. 170:
1271-1283; Taylor, et al., 1990, Infect. Immun. 58:30613063). Thus, most of the disease pathology is associated
with the immune responses to chlamydial proteins and not
replication of the pathogen per se. During this chronic
phase, it is rare to isolate/identify EB or RB.

Vaccine design is targeted at interrupting EB attachment to permissive cells, since the RB is inaccessible and Chlamydia proteins are not expressed on the surfaces of infected cells. Therefore, the major outer membrane protein (MOMP) protein of EB has been heavily investigated. MOMP is the dominant immunogen on the surface of EBs, mediates EB attachment to cells, and antibodies to MOMP are not implicated with pathology. The immunodominant sites on MOMP

stretch of amino acids that mediates critical events required for virus entry into permissive cells and to which virus neutralizing antibodies are directed. Therefore, a universal synthetic immune stimulator linked to a synthetic peptide sequence corresponding to the V3 PND can potentiate antibody responses to V3 and thus HIV. The example provided below describes a construct which is an important immunogen for inclusion in an effective HIV-1 vaccine.

The following examples further illustrate the invention.

5

10

30

35

EXAMPLE 1

Immunization of Rats with Linear and Octameric LHRH-containing peptides

A. <u>Immunogen preparation</u>: Peptides A-E (Table 1) and all other peptides were synthesized using the strategy of solid phase synthesis employing the standard F-moc chemistry performed on an Applied Biosystems Peptide Synthesizer Model 430A or 431 according to manufacturer's instructions.

Di(Fmoc)-α, ε NH₂ protected lysine was used, in doubling concentrations after each additional cycle of coupling, for synthesis of the heptalysyl core (K₁K₂K or K₀₀₀). After complete assembly of the peptide, the resin was treated with TFA (trifluroacetic acid) according to standard procedures to cleave the pertide from the resin was treated.

to cleave the peptide from the resin and deblock the protecting groups on amino acid side chains. The free peptide was then purified by HPLC and characterized biochemically by amino acid analysis.

The structure of the peptides from the amino terminus to the carboxyl terminus is as follows: Peptide A is a linear peptide with three domains: 3 lysine residues (3K), the hepatitis B surface antigen helper T cell epitope (HB,Th epitope) and LHRH. Peptide A is thus represented by 3K-HB,Th-LHRH. Peptide B is an octameric peptide with each branch having two copies of LHRH. The branches are attached to a heptalysyl core that has a HB,Th epitope attached to

its C terminal tail. Peptide B is thus represented by (LHRH-LHRH)₈-K_{coo}-HB₆Th. Peptide C, represented by (LHRH-LHRH-LHRH)₈-K_{coo}-HB₆Th, is similar to Peptide B except the branch has three copies of LHRH. Peptide D, (LHRH-HB₆Th)₈-K_{coo}-AA, is an octameric peptide with each branch having one LHRH domain and one HB₆Th domain. The branches are attached to a heptalysyl core with two alanine residues (AA) attached to its C-terminal lysine. Peptide E, (LHRH-LHRH-HB₆Th)₈-K_{coo}-AA, is an octameric peptide with each branch having two LHRH domains and one HB₆Th domain. The branches are attached to a heptalysyl core with two alanine residues attached to its C-terminal lysine. The actual sequences of these peptides are shown in Table 1.

5

10

15

20

25

30

35

For immunizations administered at weeks 0 and 2, 600 μg of each peptide was dissolved in 3 mL of an adjuvant solution of 0.2% Tween 80, 2.5% Pluronic L 121, 0.9% NaCl (TP). The solution was stored at 4°C until use and vortexed for 3 to 5 min prior to injection. Each rat received 100 μg per injection in 0.5 ml. For the immunization administered at week 5 in Freunds' complete adjuvant, 4 mg of each peptide was dissolved in 2 mL of 0.9% NaCl and emulsified with an equal volume of Freunds' complete adjuvant. Each rat received 500 μg per injection.

B. Immunization schedule and serum collection:
Sexually mature, male Sprague-Dawley rats (n=5) were
immunized subcutaneously (s.c.). Booster injections were
given s.c. at weeks 2 and 5. Blood was collected at weeks
3, 6, 7 and 11 for rats injected with Peptides A, B and C,
or at weeks 3, 6, 7 and 8 for rats injected with Peptides D
and E.

Blood collection from the middle caudal artery was performed by injecting the rats with 1 mL of sodium pentobarbital (64.8 mg/mL; Anthony Products Co., Accadia, CA) diluted 1 to 10 in 0.9% NaCl administered intraperitoneally. The tails were kept in 48°C ± 0.5°C water for 2 min and rapidly massaged with paper towels

(i.e., milked). Blood was collected immediately into a 5 mL syringe outfitted with a 23 gauge needle. Typically, 3 to 4 mL of blood was obtained. The serum was collected by centrifugation for 25 min at 3000 rpm. The serum was aliquoted in 300 μL volumes and stored frozen until used for assays.

EXAMPLE 2

Immunogenic and Therapeutic Efficacy of Peptides A-E

A. Assay methods and organ weight determinations: The anti-LHRH titer in each serum sample was measured by RIA [Ladd et al. (1988) Am. J. Reprod. Immunol. 17:121-127]. Antisera were diluted 1:100 (V:V) in 1% bovine serum albumin (BSA), pH 7.4. An equal volume of diluted sera was added to 100 μ L of [¹²I]-LHRH diluted in 1% BSA to contain

10

15

20

25

30

35

approximately 15000 cpm for 5.25 pg LHRH (New England Nuclear Company, Boston, MA). The solution was incubated overnight at room temperature and antibody-bound LHRH was precipitated with 400 μ L of 25% polyethylene glycol (MW 8,000) in 0.01 M phosphate-buffered saline (PBS), pH 7.6, and 200 μ L of 5 mg/mL bovine gamma globulin in PBS. Antibody titers are expressed as nmol iodinated LHRH bound per liter of serum.

Serum testosterone levels were measured using an RIA kit from Diagnostic Products (Los Angeles, CA) according to manufacturer's instructions. The lower detection limit for testosterone ranged from 0.01 to 0.03 nmol/L. Each sample was analyzed in duplicate.

At 11 weeks (Peptides A-C) or 8 weeks (Peptides D and E) after the initial injection, the rats were sacrificed by overexposure to carbon dioxide. The maximum amount of trunk blood was collected. The androgen-dependent sex organs (testes, epididymis, prostate and seminal vesicles) were dissected from each rat, paper towel dried and weighed.

B. <u>Results</u>: Groups of five rats were immunized with Peptides A-E. During the course of the study, anti-LHRH titers and testosterone levels were monitored in each rat.

At the end of the study the rats were sacrificed and the androgen-dependent organ weights were obtained. The anti-LHRH titer, testosterone level and testes weight for each rat at the time of sacrifice are shown in Table 2. A summary of this data is provided in Table 3 together with average weights of other androgen-dependent organs.

5

10

15

20

25

30

35

Rats immunized with Peptide A produced antibodies against LHRH as measured by the RIA. None of the rats immunized with the other peptides (e.g. B, C, D and E) profduced any significant antibody titers against LHRH. The average anti-LHRH titer (nmol/L) at week 11 (Peptides A-C), week 8 (Peptides D-E) and control rats are reported in Table 3. The average anti-LHRH titer for the 5 rats immunized with Peptide A was 1.94 nmol/L, whereas the rats from the remaining groups had titers ranging from 0.48 to 0.73 nmol/L. The average weights of androgen-dependent organs from these groups of animals are reported in Table 3 and depicted graphically in Fig. 1. Rats immunized with Peptide A showed a significant decrease (about 40%) in organ weights relative to the control animals.

The results indicate that the presence of LHRH at the C-terminus of the peptide is more effective at stimulating antibody production and the concomitant reduction of androgen-dependent organ weights. In this regard, Peptide A has a C-terminal LHRH domain, whereas non-effective Peptides B-E have N-terminal or internal copies of LHRH.

While the average reduction of androgen-dependent organ weights of the Peptide A rats relative to Peptide B-E rats and control rats was significant, this drop was attributed to dramatic reductions that occurred in three of the five animals. Hence, the group A rats were classified into responder and non-responders and the data reanalyzed. The average androgen-dependent organ weights of responders and non-responders depicted in Fig. 2 graphically illustrates the large difference between these two groups. Responder animals had undetectable levels of serum testosterone (Table

2). Fig. 3 shows the inverse relationship between anti-LHRH titers and testes organ weight. The relationship is similar for the other androgen-dependent organ weights.

EXAMPLE 3

5

10

15

Immunization with a Linear Peptide Containing a Pertussis Toxin Th Epitope

Peptide F (PT₁Th-LHRH; Table 4) was synthesized and purified as described in Example 1. The peptide was prepared for immunization as described in Example 1 except the adjuvant was 0.5% alum. Immunizations were administered s.c. to Sprague Dawley rats at weeks 0, 2 and 4. Determination of anti-LHRH titers, testosterone levels and androgen-dependent organ weights were obtained and analyzed as described in Example 2. Eleven weeks after the initial immunization, the testes, epididymis, prostate and seminal vesicles were significantly smaller than those obtained in control animals (Fig. 4).

EXAMPLE 4

Peptide Cocktails for Induction of anti-LHRH Response in Broad Populations

20

25

30

35

Mixtures of potent synthetic LHRH peptde immunogens are formulated in combinations to provide broadly potent vaccines. Peptides A, F and H (Table 1 and Table 4) are prepared as described in Example 1 and combined in a cocktail for immunization into sexually mature male rats at weeks 0, 3 and 6. The primary injection is in Freunds' complete adjuvant and the booster injections are in Freunds' incomplete adjuvant. Bleeds are done at weeks 0, 3, 6, 9 and 11. Animals are sacrificed at week 11 for organ weight determinations. The results are assayed and evaluated as described in Example 2.

EXAMPLE 5

Dose Dependence of Peptide A

Peptide A, $3K-HB_1T_b-LHRH$, was synthesized as described in Example 1. This peptide was tested for efficacy in accordance with the experimental design set forth below:

dramatic decrease in both LH and FSH was also observed). By week 5 (post primary immunization), there was a ten-fold decrease in serum testosterone and by week 8, serum testosterone was at castration levels (less than 0.5 nmole/L) in all animals. Fig. 7 demonstrates the biological 5 effect of reducing serum testosterone through LHRH immunization. The testes size of animals immunized with the 100 μ g dose of peptide A was significantly reduced by the end of the experiment (week 10). Testis size reduction in these animals was even greater than the effect obtained through pituitary ablation (i.e. the hypophysectomized group). Although not tested through mating, the state of the testes (including histopathologic examination) indicated that every animal immunized with peptide A was functionally sterile before the end of the experiment. Prostate weights (Fig. 8) parallel the results obtained with the testes, i.e. peptide A immunization produced a significant atrophy of the prostate. By any measurement, no significant effect was observed through immunization with LHRH alone, demonstrating that linking promiscuous helper T cell epitopes to poor immunogens provides a means of stimulating a strong immune response to those immunogens.

Conclusions:

10

15

20

25

35

 The HBs T_b epitope induced potent antibody responses to LHRH.

- Antibody to peptide A efficiently neutralized LHRH activity in vaccinated animals.
- LHRH inhibition was sufficient to reduce serum testosterone to castration levels.
- 30 4. Immunization with peptide A produced the desired biological effects, i.e. dramatic shrinkage of the prostate and testis.

EXAMPLE 5A

Identification and Testing of Additional

Efficacious Th: LHRH Constructs

The peptide A results have been reproduced consistently

in a number of different studies with an aggregate efficiency (organ weight reduction used as the endpoint) exceeding 95%. However, to establish a system that reliably measured the relative efficacy, or lack thereof, of different "T, epitope:LHRH" constructs, we modified the immunization protocol. The initial experiments with the LHRH constructs fell into two distinct groups when evaluated by the experimental protocol described in Example 5 (i.e. intramuscular administration of Freund's adjuvant formulations). The constructs either lacked efficacy and did not cause any significant organ weight reduction, or were totally effective and mimicked the results for peptide A, making it impossible to establish the rank order of the efficacious candidates. Thus, a simple modification of the protocol described above, i.e. subcutaneous as opposed to intramuscular administration of the candidate peptide formulations, allowed a determination of rank order. For example, subcutaneous administration of peptide A in FCA/IFA mitigated the responses to this peptide such that approximately 30%, as opposed to greater than 95%, of the animals responded sufficiently to cause shrinkage of their testes and prostates.

10

15

20

25

30

35

Accordingly, equimolar amounts of different T_b : LHRH constructs (equivalent to 100 μg of peptide A) were formulated as above, but administered subcutaneously at 0, 3 and 6 weeks. The sequences of the tested peptides are provided in Table 5 and the results from several different experiments are compiled in Table 6. In each study, peptide A was included as a positive control to normalize data between different experiments. As shown, peptides which elicited significant anti-LHRH antibody titers caused the serum testosterone levels of immunized animals to drop to below castration levels and caused significant reduction in testis weights. The results from the experiments conducted to produce Table 6 are provided in the following Examples.

EXAMPLE 6

Efficacy of Peptide 18, an HBsAg T, Epitope: LHRH Construct Containing a Glycine Spacer

Peptide 18 is a 30 amino acid residue synthetic peptide which is organized in four linear domains, from the aminoto the carboxyl- terminus, as follows: 3 lysine residues (K_3) , the hepatitis B virus helper epitope $_{19,33}$ (HBsAg T_b), a glycine spacer (GG), and LHRH. Peptide 18 is represented as K_3 : HBsAg T_h : GG: LHRH. Thus, the structure of peptide 18 differs from peptide A simply by the addition of the Gly-Gly spacer sequence between the helper epitope and LHRH. following describes analysis of the efficacy of peptide 18 when formulated in Freund's adjuvant and administered subcutaneously. The experimental design is the same as in Example 5 except as indicated otherwise. Experimental Design:

Immunogen: peptide A or peptide 18 (i.e., in separate

groups)

Dose: 100 μg of peptide A, peptide 18 at molar

equivalent to 100 μg of peptide A

Route: subcutaneous

Adjuvant: Freund's complete/incomplete

Species: 6 sexually mature Sprague-Dawley male

rats/group

25 Results:

5

10

15

20

30

35

Two weeks following the second booster immunization (i.e. at 8 weeks), 6 of 6 animals receiving peptide 18 expressed anti-LHRH antibody titers greater than 1 nmole/L (Fig. 9). These high levels of antibodies were maintained in all animals until the termination of the experiment (week 10). In contrast, only 2 of 6 animals immunized with peptide A, expressed anti-LHRH antibody titers greater than 1 nmole/L by week 10 (Fig. 10). The differences in LHRHspecific antibody titers between the two groups were also reflected in the levels of circulating testosterone present in these animals. By week 10 (when animals were

sacrificed), 5 of 6 animals receiving peptide 18 expressed serum testosterone at castration levels (Fig. 11), while 1 of 6 animals receiving peptide A had castration levels of this hormone (Fig. 12). Dissection of organs at week 10 demonstrated that 5 of 6 animals receiving peptide 18 had significantly atrophied prostate glands (Fig. 13), while only 1 of 6 animals receiving peptide A exhibited shrunken prostates.

Conclusions:

5

20

25

- Peptide 18 was effective in eliciting the desired biological responses, i.e. expression of LHRH-specific antibody, reduction in serum testosterone and relevant organ atrophy.
- 2. Insertion of the Gly-Gly spacer sequence between the T_h
 epitope and LHRH improved the immune response to the
 peptide, as seen by comparison of the results from
 peptide 18 with those from peptide A.

EXAMPLE 7

Efficacy of Peptide 19, a Measles Virus Promiscuous T. Epitope: LHRH Construct

A 15 residue domain from the measles virus (MV) F glycoprotein was linked to the LHRH sequence by automated synthesis to produce peptide 19. Peptide 19 is organized in three linear domains, from the amino- to the carboxylterminus, as follows: the measles virus helper epitope (MVF₁ T_b), a glycine spacer (GG) and LHRH. Peptide 19 is thus represented as MVF₁ T_b: GG: LHRH. This peptide was formulated in Freund's adjuvant and administered

subcutaneously as described below. The experimental design is the same as in Example 5 except as indicated otherwise. Experimental Design:

Immunogen: peptide 19

Dose: molar equivalents to 100 μg of peptide A

Route: subcutaneous

35 Adjuvant: Freund's complete/incomplete

Species: 6 sexually mature Sprague-Dawley male

rats/group

Results:

Two weeks following administration of the second booster immunization (at 8 wks), significant LHRH-specific antibody titers were observed in 4 of the 6 animals 5 immunized (Fig. 14). There was a modest increase in the LHRH antibody titers between weeks 8 and 10, and in addition, one of the initially non-responding animals (rat #726) began to express significant anti-LHRH antibody during 10 this period. Pig. 15 again demonstrates the strong positive correlation between the presence of significant LHRH antibodies and the reduction of serum testosterone. The four animals expressing anti-LHRH titers greater than 2 nmole/L at week 8 had serum testosterone levels below 0.5 nmole/L by week 8, and these levels were maintained through 15 week 10 (Fig. 15a). The remaining animals which had lower LHRH antibody titers appeared to have reduced testosterone levels, but not to castration levels (Fig. 15b). The significant reduction in serum testosterone to below castration levels caused the expected severe atrophy of the 20 testis as demonstrated by Fig. 16. An essentially identical result for prostate atrophy was observed as well (Fig. 17). For Peptide 19 greater than 65% of the animals tested exhibited castration levels of testosterone and severe atrophy of the testis and prostate gland (in this "modified" 25 protocol. When given intramuscularly, according to the protocol in Example 5, greater than 95% of the animals exhibit relevant organ atrophy by 10 weeks. The accumulated data for peptide 19 show that LMRH antibody titers of greater than 2 nmole/L will cause serum testosterone to fall 30 to castration levels (below 0.5 nmole/L) which results in atrophy of both the testis and prostate gland. LHRHspecific antibody titers must be elevated for 1-2 weeks for it to have the desired effect, namely organ atrophy. Based upon this, it is likely that rat #726 would have achieved 35 castration levels of testosterone if the study was extended

beyond 10 weeks duration.

5

10

Testis weight reduction is a logical endpoint for screening experiments because testis atrophy is an absolute predictor of prostate gland atrophy: Prostate shrinkage precedes reduction in testis weight (i.e., the prostate gland is heavily dependent upon testosterone for its maintenance, thus elimination of serum testosterone causes rapid prostate gland shrinkage, which is only then followed by testis atrophy); testis removal is trivial relative to the complicated dissection required for removal of the prostate and associated seminal vesicles; and, the simple form of the testis relative to the prostate and seminal vesicles make testis weight measurements more accurate.

- Conclusions:

 1. Peptide 19 is efficacious (i.e. produces significant reduction in serum testosterone, plus testis and prostate weights) when administered with Freund's adjuvant.
- Subcutaneous administration of the peptide formulation
 allows the means of ranking immunogen efficacy.
 - 3. Peptide 19 has better efficacy than peptide A.

EXAMPLE 8

Efficacy of Peptide K, a Pertussis Toxin Promiscuous T. Epitope: LHRH Construct

25

A 24 residue long T_b epitope from pertussis toxin was linked to LHRH through automated synthesis, to form peptide K. This peptide is organized into two linear domains, from the amino- to the carboxyl- terminus, as follows: the pertussis toxin helper epitope T_b2 (PT₂ T_b), and LHRH.

30

Pentide K is thus now.

Peptide K is thus represented as PT₂ T₃: LHRH. This peptide was tested for efficacy using the same protocol as described for the analysis of peptides 18 and 19 (Examples 6 and 7, above). The experimental design is the same as in Example 5 except as indicated otherwise.

35 Experimental Design:

Immunogen: peptide K

Dose: molar equivalent to 100 μg of peptide A

Route: subcutaneous

Adjuvant: Freund's complete/incomplete

Species: 6 sexually mature Sprague-Dawley male

5 rats/group

Necropsy: at 10 weeks

determine testis weights

Results:

35

Fig. 18 describes the LHRH-specific antibody titers expressed in animals given peptide K subcutaneously. 10 animals exhibited significant LHRH-specific antibody titers (greater than 4 nmole/L) by week 8, two intermediate levels (1.5-2.0 nmole/L) and two animals exhibited essentially no response. Again, there was the expected correlation of anti-LHRH titers with serum testosterone levels. The two 15 animals with high antibody titers had serum testosterone at castration levels by week 8, which remained at that level until the termination of the experiment (Fig. 19a). Rat #793 expressed LHRH antibody titers of greater than 2 nmole/L at week 10 and had castration levels of testosterone 20 at that point. Rat #791 which had LHRH antibody titers of 1.6 nmole/L measured at week 10 (Fig. 18) had testosterone levels approaching the limit for castration at that time (Fig. 19b). Animals expressing high levels of LHRH 25 antibodies (Fig. 18) had significantly atrophied testes at 10 weeks (Fig. 20). Rat #791 showed some reduction in testis weights, and based on the kinetics of serum testosterone levels, it is very probable that organ atrophy would have been significant if necropsy was conducted after 30 Week 11.

The variability in the responses to peptide K most probably reflects genetic differences within the outbred rat population used for this study, and define differences between animals in their ability to effectively recognize the T_b epitope contained within this LHRH construct. This result supports the use of mixtures of constructs,

containing different promiscuous T_{k} epitopes to produce uniform potent responses in populations expressing diverse HLA haplotypes.

Conclusions:

- Peptide K is efficacious (i.e. produces significant reduction in serum testosterone and testis weight size) when administered with Freund's adjuvant.
 - Subcutaneous administration of the peptide formulation provides the means of ranking immunogen efficacy.
- 3. Promiscuous T, constructs are capable of differing degrees of efficacy when viewed in genetically heterogeneous populations.
 - 4. Peptide K has an efficacy approximates that achieved by peptide A.

15 EXAMPLE 9

Efficacy of Peptide H. a Tetanus Toxin Promiscuous T. Epitope: LHRH Construct

A 27 amino acid long peptide, consisting of a 15 amino acid T_b epitope from tetanus toxin located near the aminoterminus and followed by the LHRH sequence, was synthesized using the standard automated synthesis techniques. This peptide, peptide H, is organized in three linear domains, from the aminot to the carboxyl-terminus, as follows: 2 lysine residues (K_2) , the tetanus toxin helper T cell

epitope 1 (TT, T_b) and LHRH. Peptide H is thus represented as K_2 : TT₁ T_b : LHRH. The following describes analysis of the efficacy of peptide H when formulated in Freund's adjuvant and administered <u>subcutaneously</u>. The experimental design is the same as in Example 5 except as indicated otherwise.

30 Experimental Design:

20

25

Immunogen: peptide H

Dose: molar equivalent to 100 μg of peptide A

Route: subcutaneous

Adjuvant: Freund's complete/incomplete

35 Species: 5 sexually mature Sprague-Dawley male

rats/group

demonstrated efficacy (Table 6) and are promiscuous, providing maximum coverage in a genetically diverse population. Moreover, because these T_b epitopes are present in previously administered vaccines, they provide the potential for priming responses. The experiments below show the the rapid atrophy of the relevant organs using a cocktail approach. The experimental design is the same as in Example 5 except as indicated otherwise.

Immunogen: Cocktail (HBs T_b:LHRH + MV_P,T_b:LHRH + PT₂

Th: LHRH + TT, Th: LHRH)

Dose: molar equival. of each, to equal 100 μg of

peptide A

Route: subcutaneous

15 Adjuvant: Freund's complete/incomplete

Species: 6 sexually mature Sprague-Dawley male

rats/group

Necropsy: at 10 weeks

determine testis weights

20 Results:

25

30

35

5

The mixture of T_b : LHRH constructs was administered subcutaneously in Freund's adjuvant by the methods described in Examples 6-9, above. As demonstrated by Fig. 24, rapid and potent anti-LHRH antibody responses were observed in all animals. By week 5, i.e. two weeks after the first booster immunization and prior to the second booster, 5 of 6 animals expressed LHRH specific antibody titers sufficient to reduce serum testosterone levels below that required for . castration. Significant increase in antibody titers was achieved for all animals following the second booster immunization. Serum testosterone levels fell below the threshold required for castration between 5 and 8 weeks following the primary immunization and remained at these levels for the remainder of the experiment (Fig. 25). This marked decrease in serum testosterone caused significant atrophy in the testes for every animal measured at week 10

(Fig. 26). This experiment demonstrates the advantages provided by the cocktail of immunogens (compare Fig. 26 with Figs. 16, 20 & 23). The desired endpoint is achieved in all animals as opposed to a few. In addition to the uniformity of responses, the rapidity of the responses and their intensity were enhanced when the cocktail was administered in lieu of the individual components (compare Fig. 24 with Figs. 14, 18 & 21).

Conclusions:

5

15

20

25

- 10 1. A cocktail of T_h : LHRH immunogens is more efficacious than any individual peptide within the mixture.
 - A cocktail of immunogens is fully effective (greater than 95% of the animals exhibiting the desired characteristics) in producing the desired effect, i.e. relevant organ atrophy.

EXAMPLE 11

Immunogen Cocktail Formulated on Alum

For a human prostate cancer therapy, it is necessary to achieve similar levels of organ weight reduction using a vaccine formulation acceptable for use in humans. Therefore, the efficacy of a cocktail of Th: LHRH constructs adjuvanted with aluminum hydroxide was tested. The following is a summary of that experiment. The experimental design is the same as in Example 5 except as indicated otherwise.

Experimental Design:

Immunogen: Cocktail (HBs T_b :LHRH + $MV_{Pl}T_b$:LHRH + PT_2

T_b:LHRH + TT₁T_h:LHRH)

Dose: 250 μ g, molar equivalent of each

30 Route: intramuscular

Adjuvant: aluminum hydroxide

Schedule: week 0, 2 and 4 weeks

Species: 5 sexually mature Sprague-Dawley male

rats/group

Necropsy: at 10 weeks

determine testis weights

Results:

At 8 weeks following the initiation of the experiment, significant LHRH-specific antibody titers were observed in all animals, three animals expressed titers above 2 nmole/L and two had titers between 1.5 and 2.0 nmole/L (Fig. 27). 5 By week 10, 4 of 5 animals exhibited LHRH antibody titers above the 2 nmole/L. At this time, point 4 of 5 animals exhibited castration levels of serum testosterone (Fig. 28) and the same four animals had significantly atrophied prostate glands (Fig. 29). The fifth animal, #231, 10 exhibited a marked, though incomplete, prostate weight reduction when compared to the other animals in the group. Its prostate weight is consistent with reduced, though measurable, levels of serum testosterone in this animal at the end of the experiment. This is the first report ever 15 described where the desired biologic effect (namely, elimination of serum testosterone and significant prostate gland atrophy) was produced through immunization with LHRH constructs on alum. In all other cases thus far described in the literature, attempts to use alum with LHRH-based 20 immunogens have failed, requiring the use of reactogenic formulations (e.g. Preund's adjuvant), to produce the desired effects.

The reduced efficacy of the alum-based formulation

(Fig. 28), when compared to the same immunogen cocktail in Freund's adjuvant (Fig. 25), manifested as a delay in the timing of the desired responses. This is demonstrated by rat #228 (Fig. 29) which had an atrophied prostate gland, but normal testes weights at week 10. It is probable that this animal would have expressed shrunken testes if the experiment were to have continued beyond 10 weeks. In contrast, every animal receiving the Freund's adjuvan t-based formulation exhibited atrophied testes by week 10 (Fig. 26).

35 Conclusions:

1. Mixing promiscuous T_b : LHRH synthetic peptide

constructs provides an efficacious LHRH immunotherapeutic vaccine.

5

10

15

20

25

30

35

2. This immunogen cocktail can be formulated with alum (one of the very few and most safe adjuvants approved for human use) and obtain the required biological effects, i.e. atrophy of the relevant organs.

EXAMPLE 12

Efficacy of an Artificial T. Epitope SSAL: LHRH Construct

Peptide 38 (also represented as peptide SSAL1) is a peptide library in which a degenerate T_b sequence, modeled after the measles virus F₁ T_b epitope, is linked to LHRH. This peptide is organized in three linear domains, from the amino- to the carboxyl- terminus, as follows: the structured synthetic antigen library representing a synthetic helper T cell epitope (SSAL T_b), a glycine spacer (GG), and LHRH. Peptide 38 may therefore be represented as SSAL1 T_b: GG: LHRH, and is analogous to peptide 19 (i.e. MVF₁ T_b: GG: LHRH).

The sequence of peptide 38 is as provided in Table 5. Peptide SSAL1: SSAL $T_b1:GG:$ LHRH (SSAL T_b1MV_{Pl} T_b Derivative).

This peptide library is composed of a mixture of approximately 5.24×10^5 different sequences, where the precise measles virus T_b1 epitope is represented in only one of these sequences. The Gly spacer and LHRH are invariant in the library sequences.

The degenerate helper T cell epitope present in peptide SSAL1 is modeled after a promiscuous helper T cell epitope identified from the F protein of measles virus represented by residues 288-302 of the F protein and has the following amino acid sequence, LSEIKGVIVHRLEGV. The library sequence was constructed using this sequence as a template. Charged residues Glu (E) and Asp (D) were added at position 1 to increase the charge surrounding the hydrophobic face of the amphipathic helical epitope. This face is made up of residues at positions 2, 5, 8, 9, 10, 13 and 16. The hydrophobic residues commonly associated with promiscuous

epitopes were added at these positions. A Rothbard sequence is present at residues 6-10 in the prototype sequence and its character is maintained throughout all sequences within the library. Sequences obeying the 1, 4, 5, 8 rule begin at residue 5 of the prototype sequence and are maintained in all sequences as well.

Peptide 38 was prepared by chemical synthesis using standard techniques well known in the art such as the solidphase synthetic route pioneered by Merrifield. The coupling of multiple amino acids at a given position is accomplished 10 by providing a mixture of the desired amino acids at the appropriate ratios as indicated in the formula. For example, at positions 2, 5, 8, 9, 10, 13, and 15 from the Nterminus, an equimolar amount of protected N^{α} -amino group, Leu (L), Ile(I), Val(V) and Phe(F), instead of a single 15 protected amino acid, was used for each of the corresponding coupling steps. If necessary the ratio of amino acids in the mixture can be varied to account for different coupling efficiency of those amino acids. At the end of the synthesis, the peptide libraries were cleaved individually 20 according to standard procedures to release the free peptide mixtures. The experimental design is the same as in Example 5 except as indicated otherwise.

25 Experimental Design:

5

Immunogen: peptide 38 or peptide 19 (in separate groups)

Dose: 400 µg of each peptide

Route: intramuscular

Adjuvant: Incomplete Freund's

Schedule: week 0 (FCA), 3 and 6 weeks (IFA)

Species: 5 sexually mature Sprague-Dawley male

rats/group

Necropsy: at 10 weeks

35 determine testis weights

Results:

30

Six weeks following the commencement of the experiment (i.e. 2 weeks after the first booster immunization and immediately prior to the second booster), 4 of 5 animals receiving peptide 38 expressed serum testosterone at castration levels. At 8 weeks, serum testosterone was at castration levels in 5 of 5 animals. Palpation of the testes at that time demonstrated that the 4 animals having negligible serum testosterone at week 6 also have atrophied organs. In contrast, only 1 of 5 animals immunized with peptide 19 expressed castration levels of serum testosterone by week 6, the remainder were in the normal range, and this number did not change by week 8. By week 8, the animal receiving peptide 19 which had negligible levels of testosterone at week 6, had atrophied testes by palpation. Conclusions:

10

15

20

25

30

35

- The T_b epitope library has shown significant efficacy by causing reduction of serum testosterone to castration levels in all animals receiving peptide 38.
- The T_h epitope library peptide has provided what a single peptide immunogen composed of a promiscuous T_h epitope linked to LHRH cannot provide, i.e. comprehensive efficacy in all members of an outbred population.

EXAMPLE 13

Further Modification of the LHRH Immunogens to
Amplify Antibody Induction: Addition of an Invasin Domain

T cell activation can also be brought about by LHRH that is covalently linked to a specific fragment from the invasin protein of the pathogenic bacteria Yersinia spp. Peptide 32, in which a domain of the invasin protein is linked to the HBs T_b epitope: LHRH construct (i.e. $Inv_{718-732}$ + peptide 18) has been synthesized. Peptide 32 is organized in five linear domains, from the amino- to the carboxylterminus, as follows: the invasin T cell stimulator (Inv), a glycine spacer (GG), the hepatitis B surface antigen helper T cell epitope (HBsAg T_b1), a glycine spacer (GG), and LHRH.

Peptide 32 is thus represented as: Inv: GG: HBsAg T_b1: GG: LHRH. The following provides a specific example of the significant efficacy imparted to the LHRH immunogen by the addition of the invasin domain. The experimental design is the same as in Example 5 except as indicated otherwise. Experimental Design:

Immunogen: peptide 32

Dose: 100 µg, per dose

Route: subcutaneous

10 Adjuvant: aluminum hydroxide

Species: 5 sexually mature Sprague-Dawley male

rats/group

Necropsy: at 10 weeks

determine testis weights

15 Results:

20

25

30

35

5

Fig. 30 describes the LHRH-specific antibody titers produced in rats immunized with peptide 32. Significant titers were achieved after the first booster immunization (at 3 weeks) which continued to increase following the second booster immunization at 6 weeks. By week 8, 4 of 5 animals exhibited LHRH antibody titers above 2 nmole/L. Control animals immunized with an Inv718-772: LHRH construct, lacking a T epitope, did not produce any measurable LHRHspecific antibody. Serum testosterone levels (Fig. 31) fell precipitously in the animals responding to peptide 32, and by week 8, testosterone levels were below the threshold for castration. Serum testosterone in these animals remained unmeasurable for the remainder of the experiment. As demonstrated by Fig. 32, dramatic organ atrophy was achieved in the four responding animals. The testes of control animals immunized with peptide 18 (HBs Tk: GG: LHRH; lacking the invasin epitope) were unaffected at the end of this experiment (i.e. at week 10). This result is especially important since the invasin-containing LHRH peptide was formulated on alum and administered subcutaneously. Previous studies with LHRH linked to high molecular weight

generates peptide 34, to TT₁T₁:GG:LHRH generates peptide 35, to TT₄T₁:GG:LHRH generates peptide 36, and to TT₃T₁:GG:LHRH generates peptide 37. Experiments designed to evaluate the efficacy of peptides 32-37, alone and in combination, are conducted in accordance with this and Example 13.

5

EXAMPLE 15

Improved Efficacy Provided to an LHRH Immunogen by the Covalent Linkage of Pam-Cys

The HBsAg T: GG: LHRH peptide was further modified by the addition of the lipid moiety Pam₃Cys. The lipid residue 10 was covalently linked to the amino-terminus of peptide 18 prior to its cleavage from the resin used for synthesis of the peptide. Therefore, this modified peptide is organized in four linear domains, from the amino- to the carboxylterminus, as follows: tripalmitoyl-S-glycerol cysteine 15 (Pam $_3$ Cys), the hepatitis B surface antigen promiscuous helper T cell epitope (HBsAg T_b), the glycine spacer (GG), and LHRH. This peptide is represented as follows: Pam, Cys: $\mathtt{HBsAg}\ \mathtt{T_b}$: \mathtt{GG} : \mathtt{LHRH} . The lipid-modified peptide was formulated in the stable lipid emulsion, Liposyn (a mixture 20 of emulsified soy bean and safflower oils) and administered subcutaneously to Sprague-Dawley rats. The dose used was the molar equivalent of 100 μg of peptide 18 given at 0, 3 and 6 weeks. A second group of animals received unmodified 25 peptide 18 in 100 μ g doses at 0, 3 and 6 weeks. 10 weeks following the initiation of the experiment, an ELISA assay was performed on sera from the immunized animals. 5 of 5 animals immunized with $Pam_9Cys:$ HBsAg: GG: LHRH expressed significant anti-peptide 18 antibodies (OD > 0.5 at a 1: 100 dilution). In contrast, none of the animals immunized with 30 unmodified peptide 18 expressed antibodies to this level. Therefore, covalent lipid addition provides an effective means of potentiating immune responses.

less than 10 μ m. Immune responses to microparticulate peptide A was evaluated in rats in an experiment described below and summarized in Table 7. The experimental design is the same as in Example 5 except as indicated otherwise. Experimental Design:

Immunogen: peptide A (HBsAg T_b: LHRH, without spacer)
 in rapid-release microparticles (1: 1, polylactide:co-glycolide)

Dose: 100 μ g of peptide A per dose

Route: <u>subcutaneous</u>

Adjuvant: the experimental variable

Species: 6 sexually mature Sprague-Dawley male

rats/group

Necropsy: at 10 weeks

15 determine testis weights

Results:

5

10

20

25

30

35

Microparticulate peptide A caused significant LHRHspecific antibody production and dramatic atrophy of the testes in 2 of 6 immunized animals. When an equivalent dose of peptide A formulated on alum was administered in an identical manner, none of the animals exhibited significant organ weight reduction. Thus, microparticles were more efficient than alum in causing the desired effects, i.e. elevated LHRH-specific antibody titers, elimination of serum testosterone and organ atrophy. Microparticle delivery compares favorably with the efficacy exhibited by the delivery of soluble peptide A in Freund's adjuvant, which caused organ atrophy in 3 of 6 animals. By comparison, as demonstrated in Example 6, the simple addition of glycine spacer sequences (found in paptide 18) to the HBsAg T_b : LHRH construct significantly improved immunogenicity; 6 of 6 animals given peptide 18 in FCA/IFA had atrophied testes.

The effects of mixing peptide A loaded microparticles in various adjuvant/emulsion formulations was examined. As can be seen in Table 7, certain formulations including Liposyn + Saponin and Squalene + L121 (4 of 6 animals in

have been evaluated. Again, peptide A was used to provide a means of comparing the relative efficacies of the different formulations. A representation of the different adjuvant/emulsion combinations that have been evaluated are listed in Table 8. Table 8 indicates which adjuvant/emulsion combinations are suitable for human or animal use. Some of the more reactogenic adjuvants (e.g. Freund's incomplete) approved for use in cancer patients were included. Animals were immunized at 0, 3 and 6 weeks with 100 µg of peptide A in the indicated formulations administered subcutaneously. Significant efficacy, as good or better than that achieved with Freund's complete adjuvant was obtained with some of these formulations, e.g. Emulsigen + L121 and ISA 720.

15

20

25

30

35

10

5

EXAMPLE 18

Efficacy of the Invasin Containing-peptide Cocktail in Unique Emulsion Formulations

The adjuvant formulations which improved the efficacy of peptide A when compared to an alum-based formulation, e.g. IFA, ISA 720, ISA 51, Detox, Liposyn + Avridine, squalene + L121, MPL + TDE, Emulsigen + DDA, and Emulsigen + L121 were then used to prepare the peptide 32-containing cocktail described in Example 14. The results testing the effectiveness of these different formulations are summarized in Table 9. Significant efficacy (measured by serum testosterone levels below the threshold for castration at 8 weeks for 100% of the animals, and atrophied testes in 100% of the animals at week 10) was observed for several of the adjuvants. These findings demonstrate the power of combining a potent immunogen, namely a T_b epitope: LHRH cocktail containing an Invasin domain with efficacious and safe emulsion formulations.

EXAMPLE 19

Efficacy of the Universal Synthetic
Immune Stimulator-Amylin Constructs
Peptides 92 through 94 (peptide ID No:92-94) are

synthesized using standard Fmoc synthesis procedures. Following purification by HPLC, the integrity and authenticity of the paptides are determined by mass-spectrophotometric analyses. The efficacy of each synthetic peptide construct is determined individually, and as a mixture of constructs, through immunization of laboratory animals using the Experimental Design:

Immunogen: peptides 92 through 94, individually peptides 92 through 94, in combination

Dose: molar equival. to 100 µg of peptide 92

Route: subcutaneous

Adjuvant: Freund's complete/ incomplete

Schedule: 0 weeks, peptide in Freund's complete
3 & 6 weeks, peptide in incomplete

Freund is

Species: 5 female Sprague-Dawley rats per group Control: one group, receiving adjuvant alone

Blood Samples: taken at 0, 3, 6 and 10 weeks post

primary

5

10

15

20

25

30

35

Necropsy: at 10 weeks

isolate pancreata

Sera separated from blood samples withdrawn from immunized animals are tested for the presence of amylin-specific antibodies by standard ELISA assay. Full-length amylin peptide are used to coat the microtiter plates and serial dilutions of each serum sample is tested to determine titers. The capacity of amylin specific antibodies present in ELISA-positive sera to block amylin-mediated inhibition of glucose uptake is determined by the in situ assay for insulin stimulated glycogen synthesis described by Cooper et al. (1988, Proc. Natl. Acad. Sci. USA 85:7763-7766). Briefly, soleus muscle strips are prepared from fasting male Wistar rats and held in modified Krebs-Ringer bicarbonate buffer. Following a brief incubation (30 min.) the muscle strips are transferred to new buffer solutions containing [UMC]glucose and serial dilutions of full-length amylin

peptide previously incubated with the ELISA-positive rat sera. Following a one hour incubation the amount of [U^{id}C]glucose incorporated into glycogen in the muscle tissues is then determined. Control samples, amylin incubated in normal saline and amylin incubated in sera from adjuvant control animals, are also included. Antibodies capable of blocking the functional activity of amylin prevent amylin inhibition of insulin-stimulated glucose uptake by the muscle fibers.

At the completion of the experiment (i.e. at 10 weeks) the animals are sacrificed and their pancreata removed. Tissue sections from these organs are evaluated for the presence of amylin using a peptide hormone-specific immunohistochemical staining procedure (Westermark, et al., 1987, Diabetologia, 30:887-892). Those synthetic immunogens which significantly inhibit the function of amylin and block amylin deposition in islets cells are tested for efficacy in the rat model using adjuvants acceptable for use in humans.

EXAMPLE 20

20

25

35

15

5

10

Efficacy of the Universal Synthetic Immune Stimulator-Gastrin Constructs

Peptides 95 through 100 (peptide ID No:95-100) are synthesized using standard Fmoc synthesis procedures. Following purification by HPLC, the integrity and authenticity of the peptides are determined by mass-spectrophotometric analyses. The efficacy of each synthetic peptide construct is determined individually, and as a mixture of constructs, through immunization of laboratory animals using the Experimental Design:

30 Immunoge

Immunogen: peptides 95 through 100, individually peptides 95 through 100, in combination

Dose: molar equival. to 100 μg of peptide 95

Route: subcutaneous

Adjuvant: Freund's complete/ incomplete

Schedule: 0 weeks, peptide in Freund's complete 3 & 6 weeks, peptide in incomplete

Freund's

Species: 5 female Sprague-Dawley rats per group Control: one group, receiving adjuvant alone Blood Samples: taken at 0, 3, 6 and 10 weeks post-

primary immunization

Results:

5

10

15

20

25

30

35

Blood samples are periodically withdrawn from the immunized and control rats. Sera processed from these samples are analyzed for the presence of $Gastrin_{17}$, $Gastrin_{12}$ and CCK specific-antibodies.

Two types of assays are used to detect anti-gastrin antibodies: a solid-phase enzyme linked immunosorbent assay (ELISA) and a liquid phase radioimmunoassay (RIA).

ELISA is used to screen for reactivity or crossreactivity of antisera raised against $Gastrin_{17}$, $Gastrin_{17}$, and CCK. The RIA is used to quantitate the antibody levels in the serum from each immunized animal by reacting serum aliquots with each of these hormones for the determination of antigen binding capacity, expressed as pg hormone bound per microliter of antiserum (pg/ μ L).

The ELISA is conducted by coating polystyrene 96 well plates with 1 μ g/mL of peptides Gastrin₃, Gastrin₁₇, or CCK. Serial dilutions of test antisera are used to determine the end-point titers of the sera.

In the RIA, 0.1, 1.0 or 10.0 μ l aliquots of antiserum are incubated with 125I-labeled Gastrin, Gastrin, or CCK. The antisera are incubated with the labeled hormones for 2 hours, followed by precipitation of the hormone-antibody complexes with 25% polyethylene glycol. Antigen binding capacities for each antiserum are determined from the amount of the respective radioactive hormone precipitated.

The capacity of gastrin-reactive antibodies present in ELISA or RIA positive sera to neutralize the in vivo acidstimulating activity of gastrin is determined using the perfused rat stomach method described in Gevas, P.C. et al EPO 380230, 1991. In brief, rats injected with gastrin or

gastrin-anti-gastrin complex to induce acid secretion, are surgically prepared for collection of stomach secretions. Under general anesthesia and following tracheostomy, rats are cannulated via the esophagus and duodenum to allow continuous perfusion of the stomach with 0.9% saline. The stomach perfusate is collected periodically, and samples from each interval are titrated for acid content by neutralization with base (NaOH). Incremental and total acid input during the duration of the experiment and immediately after each treatment is determined.

5

10

15

20

25

30

35

The stomach acid outputs are calculated as the percent of maximal acid output = $100 \times (An-Ab/Amax-Ab)$ where $An = 100 \times (An-Ab/Amax-Ab)$ where An = 100

The capacity of gastrin-reactive antibodies present in ELISA or RIA positive sera to neutralize the *in vitro* tumor stimulatory activity of gastrin is determined by the ability of immune sera to inhibit gastrin-induced proliferative response of a colon carcinoma cell line as measured by [H³]-thymidine incorporation.

EXAMPLE 21

Efficacy of the Universal Synthetic Immune Stimulator-GRP Constructs

Peptides 101 through 102 (peptide ID No:101-102) are synthesized using standard Pmoc synthesis procedures. Following purification by HPLC, the integrity and authenticity of the peptides are determined by mass-spectrophotometric analyses. The efficacy of each synthetic peptide construct is determined individually, and as a mixture of constructs, through immunization of laboratory animals using the Experimental Design:

Immunogen: peptides 101 and 102, individually peptides 101 and 102, in combination Dose: molar equival. to 100 μg of peptide 101

Route: subcutaneous

Adjuvant: Freund's complete/ incomplete

Schedule: 0 weeks, peptide in Freund's complete

3 & 6 weeks, peptide in incomplete

Freund's

Species: 5 female Sprague-Dawley rats per group Control: one group, receiving adjuvant alone

Blood Samples: taken at 0, 3, 6 and 10 weeks post-

primary immunization

Sera separated from blood samples withdrawn from immunized animals are tested for the presence of Gastrin Releasing Peptide (GRP)-specific antibodies by standard ELISA assay. Full-length GRP peptide is used to coat the microtiter plates and serial dilutions of each serum sample are tested to determine titers.

The capacity of GRP-specific antibodies present in RLISA-positive sera to inhibit GRP-mediated induction of tumor growth is determined by the *in vitro* assay for [H³]-thymidine uptake by GRP-induced proliferative response of selected carcinoma cell lines.

20

25

30

35

EXAMPLE 22

Efficacy of the Universal Synthetic Immune Stimulator-IgE-CH4 Constructs

Peptides 103 and 104 (peptide ID No:103-104) are synthesized using standard Fmoc synthesis procedures. Following purification by HPLC, the integrity and authenticity of the peptides are determined by mass-spectrophotometric analyses. The efficacy of each synthetic peptide construct is determined individually, and as a mixture, through immunization of laboratory animals using the Experimental Design:

Immunogen: peptides 103 and 104, individually peptides 103 and 104, in combination

Dose: molar equival. to 100 μg of peptide 103

Route: subcutaneous

Adjuvant: Freund's complete/ incomplete

> Schedule: 0 weeks, peptide in Freund's complete 3 & 6 Weeks, peptide in incomplete Freund's

Species: 5 female Sprague-Dawley rats per group Control: one group, receiving adjuvant alone

Blood Samples: taken at 0, 3, 6 and 10 weeks post-

primary

5

10

15

20

25

30

35

Sera isolated from blood samples withdrawn from immunized animals are tested for the presence of IgE CH4specific antibodies by standard ELISA assay. IgE CH4 peptide (SEQ ID NO:79) is used to coat the microtiter plates and serial dilutions of each serum sample are tested on them to determine titers.

The capacity of IgE-CH4 specific antibodies present in ELISA-positive sera to inhibit direct histamine release action of the IgE CH4 peptide on rat peritoneal mast cells is tested as described by Stanworth D.R. et al. (Lancet 1990, 336:1279-1281). These positive sera are further tested by in vivo assays to measure the capability of sera to inhibit the blueing reaction in the Rat Passive Cutaneous Anaphylaxis Assay, as described by Stanworth D.R. et al (Lancet 1990, 336:1279-1281).

EXAMPLE 23

Efficacy of the Universal Synthetic

Immune Stimulator-Chlamydia trachomatis MOMP Constructs Peptides 105 through 114 (Peptides ID NO:105 through 114) Were synthesized using standard Fmoc synthesis procedures. Each universal immune stimulator-C. trachoamtis MOMP peptide construct was formulated, alone and in combination, and then injected into laboratory animals for the determination of relative immunogenicities, using the following Experimental Design:

Immunogen: peptides 105 through 114, individually peptides 105 through 114, in combination Dose: molar equival. to 100 μg of peptide 107

Route: intraperitoneal

Adjuvant: Freund's complete/ incomplete

Schedule: 0 weeks, paptide in Freund's complete

3 and 10 weaks, peptide in incomplete

Freund's

5

10

15

30

35

Species: 5 female Dunkin-Hartley guinea pigs

(450-500 grams) per group

Control: one group receiving adjuvant alone

Blood Samples: taken at 0, 5, 8 & 12 weeks

Sera separated from blood samples withdrawn from the immunized animals are tested for the presence of MOMP variable domain specific antibodies by a standard ELISA assay. Individual microtiter plates are coated with synthetic peptides representing the MOMP variable domains I to IV, lacking the universal immune stimulator, each on separate plates. Serial dilutions of sera from each immunized animal are tested on them to determine anti-MOMP peptide antibody titers. ELISA positive sera are then tested for the capacity to bind to purified elementary bodies (EBs) representing each of the different C.

trachomatis serovars (A through L3) coated on microtiter plates). ZB binding positive sera are then tested for their capacity to block infectivity of permissive mammalian cells in culture by all relevant C. trachomatis serovars (Su, et al., 1990, Infect. Immun. 58;1017-1025). Those synthetic immunogens which demonstrate a similar content to the synthetic

immunogens which demonstrate a significant ability to elicit C. trachomatis neutralizing antibodies are tested for efficacy in guinea pigs using adjuvants acceptable for use in humans. Peptides can be evaluated for a capacity to block infection in vivo using the mouse salpingitis model (Tuffray et al. 1992 J. Con Missardia) 1992 J. Con Missardia.

(Tuffrey et al., 1992, J. Gen. Microbiol. 138: 1707-1715) or the cynomolgus monkey eye challenge model (Taylor, et al., 1988, Invest. Opthalmol. Vis, Sci. 29:1847-1853).

EXAMPLE 24

Efficacy of the Universal Immune Stimulator-

HIV-1 V3 PND Construct

Peptide 115 (SEQ ID No:115) was synthesized using

standard Pmoc synthesis procedures. The efficacy of the construct in eliciting HIV-1 neutralizing antibodies in laboratory animals is determined according to the following: Experimental Design:

5 Immunogen: peptide

10

15

20

25

Dose: 100 µg per immunization

Route: subcutaneous

Adjuvant: Freund's complete/ incomplete

Schedule: 0 weeks, peptide in Freund's complete

4 weeks, peptide in incomplete Freund's

Species: 5 female Dunkin-Hartley guinea pigs

(450-500 grams) per group

Control: one group receiving adjuvant alone

Blood Samples: taken at 0, 4, & 8 weeks

Sera separated from blood samples withdrawn from the immunized animals are tested for the presence of anti-V3 PND antibodies by a standard ELISA assay. The monomeric version of the V3 PND not linked to the synthetic immune stimulator is used to coat the ELISA microtiter plates, and serial dilutions of each serum sample are tested on them to determine ELISA titers. Positive samples are evaluated for their capacity to neutralize HIV-1 strain MN in vitro using a syncytial focus reduction assay (Wang, et al., 1991, Science 245:285). Those sera capable of neutralizing the infectivity of the laboratory adapted strain, HIV-1_{MN}, are tested for their capacity to block infection of primary lymphocytes by assorted field virus isolates (White-Scharf

et al, 1993, Virology 192:197-206).

TABLE 1

Amino Acid Sequence of Peptides A-E

5			no Acid Sequence of Peptides A-E
	Peptide	SEQ II	Amino Acid Sequence
10	A	10	Lys-Lys-Lys-Phe-Phe-Leu-Leu-Thr-Arg-Ile
			Leu-Thr-Ile-Pro-Gln-Ser-Leu-Asp-Glu-His
			Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly
	В	-	[Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-
15			Gly-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-
			Gly-];-Lys,-Lys-Phe-Phe-Leu-Thr-
			Arg-Ile-Leu-Thr-Ile-Pro-Gln-Ser-Leu-Asp
	c	-	(Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-
20			Gly- Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-
			Pro-Gly- Glu-His-Trp-Ser-Tyr-Gly-Leu-
			Arg-Pro-Gly-),-Lys,-Lys,-Lys-Phe-Phe-Leu-
			Leu-Thr-Arg-Ile-Leu-Thr-Ile-Pro-Gln-Ser-
5			Leu-Asp
	D		[Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-
	•		Gly- Phe-Phe-Leu-Leu-Thr-Arg-Ile-Leu-
			Thr-Ile-Pro-Gln-Ser-Leu-Asp-Met]:-Lys;-
0			Lys2-Lys-Ala-Ala
•	E	_	[G]u=Hic=Tru=Con_mus_c
			{Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-
			Gly- Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-
			Pro-Gly- Phe-Phe-Leu-Leu-Thr-Arg-Ile-
j			Leu-Thr-Ile-Pro-Gln-Ser-Leu-Asp-Met] ₈ - Lys ₄ -Lys ₂ -Lys-Ala-Ala

TABLE 2

Immunogenicity and Therapeutic Effect
after Immunization with Peptides A-E in Rats

Peptide	α-LHRH*	Testosterone'	Testes	P+SV°
A	3.93	<0.01		
	2.55	<0.01	0.4	0.2
	2.06	<0.01	0.4	0.3
	0.72	5.3	0.6	0.2
	0.42	2.1	1.8 1.7	1.8 1.8
_				 -
В	0.53	14.0	1.7	1.7
	0.51	16.5	1.7	1.6
	0.49	12.6	1.7	1.6
	0.45	4.6	1.6	1.7
	0.42	10.5	1.7	2.2
С	0.78	5.6	1.6	
	0.45	12.3	1.6 1.8	2.3
	0.41	3.9	2.1	1.6
	0.41	5.3	1.6	1.6 1.8
	0.39	11.2	1.7	1.8
D	• ••			
D	1.44 0.44	2.6	1.7	2.1
	0.44	3.6	1.7	1.3
	0.43	2.3	1.6	2.0
•	0.39	2.1	1.7	1.6
		2.8	1.4	2.1
E	1.69	<0.01	1.4	2.2
	0.66	0.9	1.5	2.0
	0.51	3.3	1.2	1.9 1.9
	0.40	4.0	1.6	2.0
	0.40	13.9	1.3	0.9

^{*} nmol/L

b Weight of testes in g

TABLE 3

Average Anti-LHRH Titers and Androgen-Dependent Organ
Weights in Rats Immunized with Peptides A-E

Peptide ^s	a-LHRH (nmol/L)	Testes (g)	Epid ^b (g)	P+SV
A	1.94	1.0	0.4	0.9
В	0.48	1.7	0:6	1.8
С	0.49	1.8	0.6	1.8
D	0.62	1.6	0.6	1.8
E	0.73	1.4	0.6	1.7
Contro	0.45	1.6	0.7	2.0

^{*} Each peptide was injected in 5 rats.

Abbreviations: Epid., epididymis; P+SV, prostate and seminal vesicles—

TABLE 4

Peptide SE	Q ID No.	Sequence
F (PT ₁ Th-LHRH)	11	Lys-Lys-Leu-Arg-Arg-Leu-Leu-Tyr-
		Met-Ile-Tyr-Met-Ser-Gly-Leu-Ala-
		Val-Arg-Val-His-Val-Ser-Lys-Glu-
		Glu-Gln-Tyr-Tyr-Asp-Tyr-Glu-His-
		Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly
		•
G (PT _{IA} Th-LHRH)	12	Tyr-Met-Ser-Gly-Leu-Ala-Val-Arg-
		Val-His-Val-Ser-Lys-Glu-Glu-Glu-
		His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gl
H (TT ₁ Th-LHRH)	13	Lys-Lys-Gln-Tyr-Ile-Lys-Ala-Asn-
		Ser-Lys-Phe-Ile-Gly-Ile-Thr-Glu-
		Leu-Glu-His-Trp-Ser-Tyr-Gly-Leu-
		Arg-Pro-Gly
I (TT ₂ Th-LHRH)	14	Lys-Lys-Phe-Asn-Asn-Phe-Thr-Val-
		Ser-Phe-Trp-Leu-Arg-Val-Pro-Lys-
		Val-Ser-Ala-Ser-His-Leu-Glu-His-
		Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly
J (TT,Th-LHRH)	15	Tyr-Asp-Pro-Asn-Tyr-Leu-Arg-Thr-
		Asp-Ser-Asp-Lys-Asp-Arg-Phe-Leu-
		Gln-Thr-Met-Val-Lys-Leu-Phe-Asn-
		Arg-Ile-Lys-Glu-His-Trp-Ser-Tyr-
		Gly-Leu-Arg-Pro-Gly
K (PT ₂ Th-LHRH)	16	Gly-Ala-Tyr-Ala-Arg-Cys-Pro-Asn-
•		Gly-Thr-Arg-Ala-Leu-Thr-Val-Ala-
		Glu-Leu-Arg-Gly-Asn-Ala-Glu-Leu-
		Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-
		Pro-Gly
L (MV _F Th-LHRH)	17	Leu-Ser-Glu-Ile-Lys-Gly-Val-Ile-
		Val-His-Arg-Leu-Glu-Gly-Val-Glu-
		His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly

TABLE 5
Peptides of the Invention

		Peptides of	the	Inv	enti	On					
5	Peptide SEQ ID NO:				Se	quer	ce*	~			
10	18 (HB ₁ T _b -GG-LHRH)	K K K G E H G L R	W 5	L L Y	TR	II	TI	P	Q	S J	D G
	19 (MV _{PI} T _b -GG-LHRH)	L S E E H W	I K S Y	G V	I V R P	H R	LE	G	v	G G	;
15	$\begin{array}{c} 20\\ (\text{MV}_{\text{Fi}}\text{T}_{\text{h}}\text{-MV}_{\text{Fi}}\text{T}_{\text{h}}\text{-GG}\text{-LHR} \end{array}$	LSE KGV RLE	T A	H							
20	21 (MV _{F/} T _b -GG-LHRH)	GIL YGG SYG:	e s e h	R G W							
25	22 (TT ₄ T _h -GG-LHRH)	K K W Y G G E I Y G L I	12 W	5	ID	D F	T N	E	S £	S Q	K T
30	23 (TT ₅ T _b -GG-LHRH)	K K D V G E H V G L R I	7 S	Y I	V P	YI	G P	A I	C N	I	V G
	24 (CTT _L -GG-LHRH)	A L N I Y L R G G G E H	9 N 2	3				L	S A	T	T G
35	25 (DT ₁ T _h -GG-LHRH)	D S E T G I G C E H W S	'AE	N I	. B 1	יעז		ΑI	s	I	L P
40	26 (DT ₂ T _b -GG-LHRH)	BEIVPLVGVDIGSYGL	FA	ኔ ገ							
45	27 (PFT _b -GG-LHRH)	DIEK NSGG WSYG	ЕН			KA	SS	v	F	N 1	7 V
50	28 (SMT _h -GG-LHRH)	K W F K E H W S L R P G	T N Y G	A P	N G	V D	EK	Ι	R	10	G
	29	GLQG	K I	A D	A V	K A	ΚG	G	G	E H	W

	Peptide SEQ ID NO:	Sequence
5	31 (TraT,T,-GG-LHRH)	STETGNQHHYQTRVVSNAN KGGEHWSYGLRPG
)	32 (Inv-GG-HB _e T _b -GG-LHRH)	TAKSKKFPSYTATYQPGGF FLLTRILTGGEHWSYGLRP GIPQSLD
	33 (Inv-GG-MV _{Pl} T _h -GG-LHRH)	TAKSKKFPSYTATYQFGGL SEIKGVIVHRLEGVGGEHW SYGLRPG
	34 (Inv-GG-PT ₂ T _b -GG-LHRH)	TAKSKKFPSYTATYQFGGG AYARCPNGTRALTVELRGN AELGGEHWSYGLRPG
	35 (Inv-GG-TT T _k -GG-LHRH)	TAKSKKFPSYTATYQFGGK KQYIKANSKFIGITELGGE HWSYGLRPG
	36 (Inv-gg-TT ₄ T _b -gg-LHRH)	TAKSKKPPSYTATYQPGGK KWVRDIIDDPTNESSQKTG GEHWSYGLRPG
	37 (Inv-GG-TT5-GG-LHRH)	TAKSKKFPSYTATYQFGGK KDVSTIVPYIGPALNIVGG EHWSYGLRPG
	38 (SSAL1-GG-LHRH) ^b	DLSELKGLLLHKLEGLGG- EI DIR III RID I V V VVV V V F F FFF F
(39 (SSAL2-GG-LHRH) ^b	EHWSYGLRPG KKKLFLLTKLLTLPQSLD- RRRIKII RII I LIR VRVV VV V V V V V FFFF FF FF FF
		GGEHWSYGLRPG

 $(\mathtt{Trat}_{!}\mathtt{T}_{\mathtt{k}}\mathtt{-GG-LHRH}) \hspace{1cm} \mathtt{S} \hspace{0.1cm} \mathtt{Y} \hspace{0.1cm} \mathtt{G} \hspace{0.1cm} \mathtt{L} \hspace{0.1cm} \mathtt{R} \hspace{0.1cm} \mathtt{P} \hspace{0.1cm} \mathtt{G}$

30 (TraT₂T_b-GG-LHRH) G L A A G L V G M A A D A M V E D V N G G E H W S Y G L R P G

	Peptide SEQ ID NO:										S	gı	101	nc	<u> </u>			_	_		
5	40 (Inv-GG-SSAL3-GG-LHRH)	7	P.	A	K	s	K	F	F	, 1						r	Y	Q	F		
)		_	3	L V ?	_	E	I V F	R	G	V	I I	I V	•		([. 7		G	L I V F		
		G	,	; ;	3	H	W	8	¥	G	L	R	P	G	;						
	41 (Inv-GG-SSAL4-GG-LHRH)	T	A	· F	: :	s	ĸ	ĸ	F	₽	s	Ý	T	A	T	3	? (Q	F	G	G
	,	K R	R	R	I I V	[]	K	I	I	T	•••	L I V F		T	L I V F	_) (I			L I V F	D-R
		G	G	E	Н		Ä.	S	Y	G	L	R	P	G			•				

Sequences are given in the standard one-letter amino acid codes:

For simplicity, the amino acids present at each position of the
library are indicated below the main chain. Invariant amino acids
are designated a molar value of one, and Variant amino acids ace
added during synthesis at an equimolar ratio depending on the number
of variants at that position, i.e., if a position has 2 amino acids,
then each is added in 0.5 ratio relative to the invariant amount, for
3 amino acids the ratio is 0.33, for 4 amino acids the ratio is 0.25,
for 5 amino acids, the ratio is 0.20, etc.

25

TABLE 6
Efficacy of Th: LHRH Synthetic Peptides

			· · · · · · · · · · · · · · · · · · ·			
	Peptide*	Seq ID No.	T, Epitope	α-LHRH Abb	Reduced S.T.	Testis Atrophy ^d
5	A	10	HBs	45	40	35/90
	18	18	HBs	100	85	65/95
	19	19	MV_{F1} T_b	85	85	80/95
	K	16	$PT_2 T_b$	65	50	35/90
	н	13	TT ₁ T _b	100	100	95:/-
10	1	14	TT ₂ T _b	80	60	40/-
	22	22	TT ₄ T _b	-	-	-/95
	23	23	TT ₅ T _k	-	-	-/95
	LHRH		None	o ·	0 :	0

In each case, animals received equimolar amounts of peptide equivalent to 100 μg of peptide A. Peptide was administered subcutaneously at weeks 0 (in CFA) and at 3 and 6 weeks (in IFA). Percentage of animals having LHRH-specific antibody titers of 1.0 nmole/ L or greater. Percentage of animals having serum testosterone levels below 0.5 15

20 nmole/ L.

nmole/ L.

Percentage of animals having mean testis weights less than 10% of adjuvant control groups. The first number is for animals receiving subcutaneous administration of the peptide; the second number is for animals receiving intramuscular administration of the peptide.

			man in Emulsion	rormulations
5	Formulation ¹	α-LHRH Ab²	Reduced S.T.3	Testis Atrophy
	FCA/ IFA	80	80	60
10	IFA/ IFA ^b	80	60 .	40
	DETOX ^b	60	20	0
	MPL ^b	60	40	0
5	MPL+TDE ^b	40	0	o
	DEAE DEXTRAN ^b	20	0	O
0	LIPOSYN ^b	o	0	0
	LIPOSYN + AVRIDINE ⁶	80	40	40
5	LIPOSYN + L121 ^b	0	0	0
	ISA 51 ^b	60	40	40
)	ISA 720 ^b	80	60	60
	emulsigen*	60	60	40
	EMULSIGEN+ DDA'	60	40	40
•	EMULSIGEN+ SAPONIN'	0	o .	o
	EMULSIGEN+ L121°	100	80	80
	EMULSIGEN+ F127°	60	20	20
	EMULSIGEN+ MDP'	60	40	40
;	L121+TWEEN*	60	40	40
i	ALUM	20	0	0

Sprague-Dawley rats were administered 100 µg of peptide I formulated in the above emulsions at 0, 3 & 6 weeks. All immunizations were given subcutaneously. Results are reported as the percentage of animals giving the indicated responses 10 weeks following the commencement of the experiment.

TABLE 9 Efficacy of a Peptide 32-Containing Th: LHRH Immunogen Cocktail

Formulation'	α-LHRH Abb	Reduced S.T.°	Testis Atrophy
FIA	100	100	100
DETOX	100	100	100
MPL+TDE	100	100	65
MPL	100	35 .	15
Squalene+ L121	100	85	85 .
ISA 51	100	85	80
ISA 720	100	85	85
liposyn + AVRIDINE	100	100	100
EMULSIGEN	100	85	65
EMULSIGEN+ DDA	100	100	100
EMULSIGEN+ L121	100	100	85
ALUM	100	100	100
cocktail w/o pept.32 in IFA°	65	35	35

⁴⁰ Sprague-Dawley rats were administered 100 $\mu\mathrm{g}$ of a cocktail composed Sprague-Dawley rats were administered 100 µg of a cocktail composed of equimolar amounts of Inv: GG: HBsAg T_h: GG: LHRH (peptide 32) + MV F T_h1: GG: LHRH + PT T_h2: LHRH + TT T_h1: LHRH at 0, 3 & 6 weeks. All immunizations were given intramuscularly. Results are reported as the percentage of animals giving the indicated responses 10 weeks following the commencement of the experiment. LHRH-specific antibody titers of 1.0 mmole/ L or greater. Serum testosterone levels below 0.5 nmole/ L. Mean testis weights less than 104 of adjuvant control groups. A cocktail of the same peptides without peptide 32 (at a molar equivalence to the peptide 32-containing cocktail) was formulated in IFA and administered in an identical fashion to the above. 45

⁵⁰

TABLE 10

Examples of Universal Synthetic Immunostimulators
with GG Spacers

5		with GG Spacers
_	Peptide SEQ ID NO:	Sequence
10	54 (Inv-gg-HB,T _b -gg)	TAKSKKFPSYTATYQFGGFF LLTRILTIPQSLDGG
	55 (Inv-GG-MV _{FI} T _h -GG)	TAKSKKFPSYTATYQFGGLS EIKGVIVHRLEGVGG
15	56 (Inv-GG-PT ₂ T _b -GG)	TAKSKK FPSYTATY Q F G G G A Y A R C P N G T R A L T V A E L R G N A E L G G
20	57 (Inv-GG-TT _i T _h -GG)	TAKSKKFPSYTATYQFGGKK QYIKANSKFIGITELGG
	58 (Inv-GG-TT ₄ T _b -GG)	TAKSKKFPSYTATYQFGGKK WVRDIIDDFTNESSQKTGG
25	59 (Inv-GG-TT ₅ T _h -GG)	TAKSKKPPSYTATYQFGGKK DVSTIVPYIGPALNIVGG
30	60 (GG-HB,T _k -GG-Inv)	G G F F L L T R I L T I P Q S L D G G T A K S K K F P S Y T A T Y Q F
	61 (GG-MV _{FI} T _b -GG-Inv)	G G L S E I K G V I V H R L E G V G G T A K S K K F P S Y T A T Y Q F
35	62 (GG-PT ₂ T _k -GG-Inv)	G G G A Y A R C P N G T R A L T V A E L R G N A E L G G T A K S K K F P S Y T A T Y Q F
40	63 (GG-TT _i T _k -GG-Inv)	G G K K Q Y I K A N S K F I G I T E L G G T A K S K K F P S Y T A T Y Q F
45	64 (GG-TT ₄ T _h -GG-Inv)	G G K K W V R D I I D D F T N E S S Q K T G G T A K S K K F P S Y T A T Y Q F
50	65 (GG-TT ₅ -GG-Inv)	G G K K D V S T I V P Y I G P A L N I V G G T A K S K K F P S Y T A T Y Q F

TABLE 11
Examples of Peptide Haptens

	Exa	щĐ.	Les	5 C	<u> </u>	<u> </u>	ep —	£1	ae	3)	Ha	pt	en	. 5									
5	Peptide SEQ ID NO:										Se	đn	er	ıC€	.								
10	66 Human Amylin	1	(() I	7 (T . G .	A A	T	C L	A S	T	Q	F	I	, 1	A 1	N S	F N	L	V	H -a	S mi	S S
	67 Human Amylin N-fragment	F	ζ (: N	7 7	r	A '	T	С	A	T	Q	R	I	. A	1	1	F	L	V	H	s	s
15	68 Human Amylin C-fragment	8	8	N	1	1]	F (G.	A	I	L	8	s	T	N	7	7 (G	S	N	T	¥	'
	69 Gastrin _m	Q	L	G	E	? (E 1	2 6	3)	P E	P A	H Y	L G	V W	A M	D	F) }	S	K	K	Q	G	P
20	70 Gastrin₃₄	Q	L	G	P	, (2 (3 1	P	P	H	L	٧	Α	D	F		3	K	K	Q	G	P
25	71 Gastrin _s	Q	L	G	P	, C	} (; 1	?]	P	H	L	V	A	D	P	. 8	3 1	K	K	Q		
	72 Gastrin _u	Q	L	G	P	Ç	9 G	F)	P	H												
30	73 Gastrin ₃₄	Q	L	G	P	Q	G	F	, 1	P	P	P	P										
	74 Gastrin ₁₇	Q	G	P	W	L	E	E	. 1	3 :	B :	E	A	¥	G	W	M	I) ;	F			
35	75 Gastrin _{i7}	Q	G	P	W	L	E	E	E	3 :	E :	E	A	Y									
40	76 Gastrin ₁₇	Q	G	P	W	L	E	B	E	2													
	77 GRP (Gastrin Releasing Peptide)	V W	P A	L V	P G	A H	G L	G M	G	; 7	P v	7 :	L	T	ĸ	M	¥	P	1	₹ (G :	N	H
45	78 GRP 10	G	N	H	W	A	V	G	Н	Ι	i N	1											
50	79 IgE CH4	ĸ	T	K	G	s	G	F	F	V	7 F	,											

	80 Chlamydia trachomatis MOMP VDI (serovar A C,H,I,J,K & L3) ^b	T N V A R	V K
10		v .	
15	Chlamydia trachomatis MOMP VDI (serovar B, Ba,D,E,L1 & L2)	E F Q M G A K P T T T G N A A A P S T A D S T T S S V T A R	L- C
20	82 Chlamydia rachomatis MOMP VDI (serovar F & G)	E F E M G E A L A G A S G N T T S T L S L V E R	ĸ
25	83 Chlamydia trachomatis MOMP VDII (serovar A, C,H,I,J,K & L3) ^b	FGTKTQSSNFNTAKLVPNTAI KATS D NIF I Y G D K	Ն -
30		N Q A V V D R E .	
35	84 Chlamydia trachomatis MOMP VDII (serovar B, Ba & L2) ^b	PGNNENQTKVSNSAFVPNMSL D HAT DGTL K	•
40		DQSVV	
45	85 Chlamydia trachomatis MOMP VDII (serovar D, E,F,G & L1) ^b	FGDNENQKTVKAESVPNMSFD- GV ASKPATNAI VQLN TQ KD	•
50	0.5	QSVV	
50	86 Chlamydia trachomatis MOMP VDIV (serovar A, B,Ba,D,E,I,L1 & L2)	SATAIFDTTTLNPTIAGAGDV- L ETVL V K T KP E	•
55		KTSAEGQLG VAG NE A SN	

87 L A E A I L D V T T L N P T I A G K G S V-Chlamydia trachomatis VTPVV I MOMP VDIV (srovar C, K F,G,H,J,K,L3)b VASGSENELA ASANTDGDIS G Q

10

88 Chlamydia trachomatis MOMP VDIII (serovar A, B, Ba, C, D, E, F, G, H, I, L1 & L3) b

K G Y V G A E F P L D I T A G T E A A T G-K L ALIS D Q N

T

C

T

15

TKD

89 K G Y V G A E F P L D L K A G T D G V T G-20 Chlamydia trachomatis MOMP VDIII (serovar L2) T K D

25 90 HIV-1 MN PND

[E S V Q I N C T R P N Y N K R K R I H I G PGRĀFYTTKNMJ4K2 KGG

91 Plasmodium berghei NNNDDSYIPSAEKILEFVKQ

Sequences are given in the standard one-letter amino acid codes. For simplicity, the amino acids present at each position of the library are indicated below the main chain. Invariant amino acids are designated at a molar value of one, and Variant amino acids are added during synthesis at an acid are acid to the molar value of the molar value 35 equimolar ratio depending on the number of variants at that position, i.e., if a position has 2 amino acids, then each is added in 0.5 ratio relative to the invariant amount, for 3 amino acids the ratio is 0.33, for 4 amino acids the ratio is 0.25, for 5 amino acids, the ratio is 0.20, etc.

TABLE 12

Examples of "Universal Synthetic Immunostimulator-Peptide Hapten" Constructs

	Peptide Constructs	T	Ī	S	eq	ue	nc	æ					_		_	-	_	_		-	_	_	-
-	92 (SEQ ID NO:92) Human Amylin-GG-HBs T _h -GG-Inv (No:66-60)			K S G	CNF	N N F	F	G	T	R	I	L	T)	T	N	V	и 6 8 0	S	NT.	æ	**	S G T	
10	93 (SEQ ID NO:93) Human Amylin N- fragment-GG-HBsT _h - GG-Inv (No:67-60)			_	•	v	4			- 14	.1.	ĸ		٠.	T1	T	N P T	\sim	•	•	H	S G	
15	94 (SEQ ID NO:94) Inv-GG-HBsT _h -GG- Human Amylin C- fragment (No:54-68)			4.		-	Τ.	ĸ		ш	ч.		р	n	~	T.	Y D S	~	~	27	G S	F S	
20	95 (SEQ ID NO:95) Gastrin ₃ -GG-HBsT ₁ - GG-Inv (No:69-60)		li		L '	T	R	Ē	L	T	E	А	Y O	G g	W T.	u	P D G	₽	~	~ 1		77	
	96 (SEQ ID NO:96) Gastrin ₃ N-fragment- GG-HBsT _h -GG-Inv (No:70-60)		F	2 1	C (G L	P G	Q G	G F	P	P T.	H :	L	V .	A I	r 1	P i	•	_			_	
25	97 (SEQ ID NO:97) Gastrin,N-fragment- GG-HBsT,-GG-Inv (No:71-60)		, ~		- 4		и.			×			•	1		•	P 5		(F	- C) (;	
30	98 (SEQ ID NO:98) Gastrin _M N-fragment- GG-HBs-T _b -GG-Inv (No:72-60)		•	-		` `		2 (P 1	P }	I 6	. A	; F	FF	' I	- I	ı I	P	S	I	•	
35	99 (SEQ ID NO:99) Inv-GG-HBsT _b -GG- Gastrin ₁₇ (No:54-74)		-	_		- 4	- 1			, 1	. 1	P	n	9	T.	n	Q	F	G	G	F P		
	100 (SEQ ID NO:100) Inv-GG-HBsT _b -GG- Gastrin _{!7} N fragment (No:54-75)		T F	A L	K	S	K	K	F	P	S	v	·Π	À	- Fr	v	Q	P G	G Q	G G	P P		
40	101 (SEQ ID NO:101) Gastrin releasing peptide HBsT ₁ -GG-Inv (No:77-60)			P	Q	Š	L	п	ட	м	G	G	F	77	т.	•	YT	7	~	-	_		

102 (SEQ ID NO:102) INV-GG-HBs-GG-Gastrin releasing peptide 10 (No:54-78) 103 (SEQ ID NO:103) IgE CH4-GG-HBsTh-GG-Inv (No:79-60) 104 (SEQ ID NO:104) Inv-GG-HBsTh-GG-Inv (No:80-60) 105 (SEQ ID NO:105) Chlamydia trachomatis MOMP VDI-GG-HBsTh-GG-Inv (No:81-60) 20 (SEQ ID NO:106) Chlamydia trachomatis MOMP VDI-GG-HBsTh-GG-Inv (No:81-60) 20 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBsTh-GG-Inv (No:81-60) 20 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBsTh-GG-Inv (No:81-60) 20 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBsTh-GG-Inv (No:82-60) 20 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBsTh-GG-Inv (No:82-60) 20 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBsTh-GG-Inv (No:82-60) 20 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBsTh-GG-Inv (No:82-60)																					
IGE CH4-GG-HBST _k -GG- Inv (No:79-60) 104 (SEQ ID NO:104) Inv-GG-HBST _k -GG- IgeCH4 (No:54-79) 105 (SEQ ID No:105) Chlamydia trachomatis MOMP VDI-GG-HBST _k -GG-Inv (No:80-60) 106 (SEQ ID No:106) Chlamydia trachomatis MOMP VDI-GG-HBST _k -GG-Inv (No:81-60) 107 (SEQ ID No:106) Chlamydia trachomatis MOMP VDI-GG-HBST _k -GG-Inv (No:81-60) 108 (SEQ ID No:106) Chlamydia trachomatis MOMP VDI-GG-HBST _k -GG-Inv (No:81-60) 109 (SEQ ID No:107) Chlamydia trachomatis MOMP VDI-GG-HBST _k -GG-Inv (No:82-60) 107 (SEQ ID No:107) Chlamydia trachomatis MOMP VDI-GG-HBST _k -GG-Inv (No:82-60) 108 (SEQ ID No:107) Chlamydia trachomatis MOMP VDI-GG-HBST _k -GG-Inv (No:82-60) 109 (SEQ ID No:107) Chlamydia trachomatis MOMP VDI-GG-HBST _k -GG-Inv (No:82-60)	5	Inv-GG-HBs-GG- Gastrin releasing peptide 10 (No:54-	11		LI	J		1	L	T	S	Y P	T Q	A	T	Y	G	F	G	G	F H
INV-GG-HBST _h -GG- IGECH4 (NC:54-79) 105 (SEQ ID NO:105) Chlamydia trachomatis MOMP VDI-GG-HBST _h -GG-Inv (NC:80-60) PTTN VARGGFFLLTRILTRISDTAGLQND- KAASK E PQMGAAPTTSDTAGLQND- KAASK PTTN VARGGFFLLTRILTRISTG- VA KV GIPQSLDGGTAKSKKFPSY- TATYQF EFQMGAAPTTSDTAGLQND- KAASK PTTN VARGGFFLLTRILTRISTG- VA KV GIPQSLDGGTAKSKKFPSY- TATYQF EFQMGAKPTTTTGNAAAPS- TATYQF EFQMGAKPTTTTTGNAAAAPS- DAD ST TSSSV TLTARGGFFLLTRILTRIPQSLDGGKTK CSLDGGTAKSKKFPSYTATY- QF 107 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBST _h -GG-Inv (NO:82-60) EFEMGEALAGASGNTTSTL SKLVERGGFFLLTRILTIPQCSLDGGTAKSKKFPSYTAT		IgE CH4-GG-HBsT,-GG-	I	5 5	ri	₽	Q	S	L	D	V G	P G	G T	G A	P K	F	L K	L K	T	R	I S
Chlamydia trachomatis MoMP VDI-GG-HBsTh-GG-Inv (No:80-60) PTTNVARGGFFLLTRILTG-VAKV GIPQSLDGGTAKSKKFPSY- TATYQF 106 (SEQ ID No:106) Chlamydia trachomatis MOMP VDI-GG-HBsTh-GG-Inv (No:81-60) TLTARGGFFLLTRILTIPQ- C SLDGGTAKSKKFPSYTATY- QF 107 (SEQ ID No:107) Chlamydia trachomatis MOMP VDI-GG-HBsTh-GG-Inv (No:82-60) EFEMGEALAGASGNTTSTL SKLVERGGFFLLTRILTIP QSLDGGTAKSKKFPSYTAT	10	Inv-GG-HBsT,-GG-	F	, 1	L	T	R	I	L	T	s	Y P	Ţ	A S	T L	Y D	Q	F	G K	G T	F K
PTTNVARGGFFLLTRILTG- VA KV GIPQSLDGGTAKSKKPPSY- TATYQF 106 (SEQ ID NO:106) Chlamydia trachomatis MOMP VDI-GG-HBsT _h -GG-Inv (No:81-60) EFQMGAKPTTTTGNAAAAPS- AD ST T SS V TLTARGGFFLLTRILTIPQ- C SLDGGTAKSKKFPSYTATY- QF 107 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBsT _h -GG-Inv (No:82-60) EFEMGEALAGASGNTTSTL SKLVERGGFFLLTRILTIP QSLDGGTAKSKKFPSYTAT	15	Chlamydia trachomatis MOMP VDI-GG-HBsT,-GG-Inv	F	2 E	P Q	M	G	λ		P	T	T	N K	D	V			L	E		D-
TATYQF 106 (SEQ ID NO:106) Chlamydia trachomatis MOMP VDI-GG-HBST _h -GG-Inv (No:81-60) 107 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBST _h -GG-Inv (No:82-60) 108 F Q M G A K P T T T T G N A A A P S-A D S T T T T T T T T T T T T T T T T T T			P	V	A		V	A	R	G	G	F	F	L	L	T	R	I	L	T	G-
20 Chlamydia trachomatis MOMP VDI-GG-HBsT _b -GG-Inv (No:81-60) 107 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBsT _b -GG-Inv (No:82-60) 25 VDI-GG-HBsT _b -GG-Inv (No:82-60) 26 F Q M G A K P T T T T G N A A A P S-A D S T T T T T T T T T T T T T T T T T T			G	I	P	Q	S	L	D	G	G	T	A	K	s	K	ĸ	F	P	s	Y-
Chlamydia trachomatis MOMP SS V VDI-GG-HBST,-GG-Inv (No:81-60) TLTARGGFFLLTRILTIPQ-C SLDGGTAKSKKFPSYTATY-QF 107 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBST,-GG-Inv (No:82-60) 25 V TLTARGGFFLLTRILTIPQ-C SLDGGTAKSKKFPSYTATY-QF QF 26 SKLVERGGFFLLTRILTIP QSLDGGTAKSKKFPSYTAT			T	A	T	Y	Q	F													
(No:81-60) TLTARGGFFLLTRILTIPQ-C SLDGGTAKSKKFPSYTATY- QF 107 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBsT _b -GG-Inv (No:82-60) QSLDGGTAKSKKFPSYTAT	20	Chlamydia trachomatis MOMP	E	F	Q	M	G		ĸ	P	T	T	A	D	G			T	A	P	_ 1
25 (No:82-60) Q F E F E M G E A L A G A S G N T T S T L S K L V E R G G F F L L T R I L T I P Q S L D G G T A K S K K F P S Y T A T		(No:81-60)	T	C	T	A	R	G	G	F	F	L	L	T	R	I	L	T	I	P	Q-
107 (SEQ ID NO:107) Chlamydia trachomatis MOMP VDI-GG-HBsT _b -GG-Inv (No:82-60) E F E M G E A L A G A S G N T T S T L S K L V E R G G F F L L T R I L T I P Q S L D G G T A K S K K F P S Y T A T			s	L	D	G	G	T	A	K	S	K	K	F	P	s	Y	T	A	T	Y-
Chlamydia trachomatis MOMP VDI-GG-HBsT _b -GG-Inv (No:82-60) SKLVERGGFFLLTRILTIP QSLDGGTAKSKKFPSYTAT			Q	F								_									
VDI-GG-HBsTh-GG-Inv (No:82-60) QSLDGGTAKSKKFPSYTAT		Chlamydia	E	F	E	M	G	E	A	L	A	G	A	S	G	N	T	T	S	T	L
	25	VDI-GG-HBsTh-GG-Inv	1																		
YQF		(NO:82-60)	6	S	L	D	G	G	T	A :	K	5	K :	K	F :	P.	S	Y '	T .	A	T
			Y	Q	F																

5	108 (SEQ ID NO:108) Chlamydia trachomatis MOMP VDII-GG-HBsT ₁ -GG-Inv (No:83-60)			F	G	. 1	. 1	. 1	F	2 2 2 2 3	. 1	S G D	; ;	, N	T	A	K N	I	· V	P	, м	T- I A
				A	L	N D	Q R B		V	V	G	G	. F	F	L	L	T	R	I	L	T	I-
								D	G	G	T	A	K	s	K	ĸ	F	P	s	¥	T	A-
	109 (SEQ ID NO:109) Chlamydia trachomatis MOMP		7			Q N D	_	Е	N	QH	T A	K	v	s	N D	G	T	F L	V	P	N	N-
10	VDII-GG-HBsT ₁ -GG-Inv (No:84-60)										G					L						
				P :		s	L	D	G	G	T.	A	K	S :	K :	K :	F :	P	s	Y	T i	A-
15	110 (SEQ ID NO:110) Chlamydia trachomatis MOMP VDII-GG-HBST,-GG-Inv (No:85-60)		I	P (D 1	N :	B V	N	n.	K : S I		V I	A 1	A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1) }	7 2	7 1	P 1	1 1	4 8	3 -
	·		F	N) (2 8	5 1	7 1	V (3 (3 F	, 1	? I	Ŀ	T	R	Į	Ι	. 1	' 1	P	-
) (; (3 7	. 1	K	S	R	K	F	P	S	Y	T	À	T	-
20	111 (SEQ ID NO:111) Chlamydia trachomatis MOMP VDIV-GG-HBsT _b -GG-Inv		S	_		_	¥	F	, ,	T V	T	T	L	N	P	T	1	A	G	A		-
20	(No: 86-60)		D T E	V	K V	••	S G N	A	E	G N	Q	L	G A	G	G	F	F	L	L	T	R-	-
			1	L	T	I	P	Q	s	L	D	G	G	T	A	ĸ	s	ĸ	ĸ	F	P-	.
L		\perp	s	Y	T	A	T	Y	Q	P												

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (1) APPLICANT: Ladd, Anna Wang, Chang Yi Zamb, Timothy
- (11) TITLE OF INVENTION: Immunogenic LHRH peptide constructs and synthetic universal immune stimulators for vaccines
- (111) NUMBER OF SEQUENCES: 114
- (1v) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SCULLY, SCOTT, MURPHY & PRESSER (B) STREET: 400 Garden City Plaza

 - (C) CITY: Garden City
 - (D) STATE: NY
 - (E) COUNTRY: USA
 - (F) ZIP: 11530
- (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: (B) FILING DATE:

 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: GROLZ, EDWARD W.
 - (B) REGISTRATION NUMBER: 33,705
 - (C) REFERENCE/DOCKET NUMBER: 9284
 - (1x) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (516) 742-4343
 - (B) TELEFAX: (516) 742-4366
- (2) INFORMATION FOR SEQ ID NO:1:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
            Glu His Trp Ser Tyr Gly Leu Arg Pro Gly
   5
      (2) INFORMATION FOR SEQ ID NO:2:
            (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 15 amino acids (B) TYPE: amino acid
  10
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
  15
          (x1) SEQUENCE DESCRIPTION: SEQ ID NO:2:
         Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp
 20
      (2) INFORMATION FOR SEQ ID NO:3:
           (i) SEQUENCE CHARACTERISTICS:
 25
                 (A) LENGTH: 28 amino acids
                 (B) TYPE: amino acid
                (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
 30
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
     Lys Lys Leu Arg Arg Leu Leu Tyr Met Ile Tyr Met Ser Gly Leu Ala
35
                                             10
     Val His Val Ser Lys Glu Glu Gln Tyr Tyr Asp Tyr
                   20
40
     (2) INFORMATION FOR SEQ ID NO:4:
          (1) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 17 amino acids (B) TYPE: amino acid
45
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
50
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
```

Lys Lys Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu

5 10 15 Leu 5 (2) INFORMATION FOR SEQ ID NO:5: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear 10 (ii) MOLECULE TYPE: peptide 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: Lys Lys Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys 20 Val Ser Ala Ser His Leu 20 25 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid 30 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Tyr Met Ser Gly Leu Ala Val Arg Val His Val Ser Lys Glu Glu 40 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids 45 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: Tyr Asp Pro Asn Tyr Leu Arg Thr Asp Ser Asp Lys Asp Arg Phe Leu

1

15 Gln Thr Met Val Lys Leu Phe Asn Arg Ile Lys 20 25 5 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids
(B) TYPE: amino acid 10 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: Gly Ala Tyr Ala Arg Cys Pro Asn Gly Thr Arg Ala Leu Thr Val Ala 20 Glu Leu Arg Gly Asn Ala Glu Leu 25 (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid 30 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Leu 40 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid 45 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: Lys Lys Lys Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser

5

1

10 15 Leu Asp Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 20 25 5 (2) INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 amino acids - 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: Lys Lys Leu Arg Arg Leu Leu Tyr Met Ile Tyr Met Ser Gly Leu Ala .20 Val His Val Ser Lys Glu Glu Gln Tyr Tyr Asp Tyr Glu His Trp Ser 25 Tyr Gly Leu Arg Pro Gly 25 (2) INFORMATION FOR SEQ ID NO:12: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 35 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: 40 Tyr Met Ser Gly Leu Ala Val Arg Val His Val Ser Lys Glu Glu Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 45 (2) INFORMATION FOR SEQ ID NO:13: (1) SEQUENCE CHARACTERISTICS: 50 (A) LENGTH: 27 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide

	(MI) DESCRIPTION: SEQ ID NO:13:
5	Lys Lys Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu 1 5 10 15
10	Leu Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 20 25
	(2) INFORMATION FOR SEQ ID NO:14:
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
20	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
25	Lys Lys Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys 1 5 10 15
	Val Ser Ala Ser His Leu Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 20 25 30
30	(2) INFORMATION FOR SEQ ID NO:15:
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
40	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
45	Tyr Asp Pro Asn Tyr Leu Arg Thr Asp Ser Asp Lys Asp Arg Phe Leu 1 5 10
	Gln Thr Met Val Lys Leu Phe Asn Arg Ile Lys Glu His Trp Ser Tyr 20 25 30
50	Gly Leu Arg Pro Gly 35
	(2) INFORMATION FOR SEQ ID NO:16:

· :.

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
10	(HI) DESCRIPTION: SEQ ID NO:16:
	Gly Ala Tyr Ala Arg Cys Pro Asn Gly Thr Arg Ala Leu Thr Val Ala 1 5 10 15
15	20 25 Ser Tyr Gly Leu Arg
20	Pro Gly
	(2) INFORMATION FOR SEQ ID NO:17: (1) SEQUENCE CHARACTERISTICS:
25	(A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
30	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
35	Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Leu Glu 1 5 10 15
	His Trp Ser Tyr Gly Leu Arg Pro Gly 20 25
40	(2) INFORMATION FOR SEQ ID NO:18:
1 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
	Lys Lys Lys Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser
	- 109 -

Leu Asp Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 25

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 amino acids(B) TYPE: amino acid
- (D) TOPOLOGY: linear

10

5

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: 15

Leu Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Gly

- Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 20
 - (2) INFORMATION FOR SEQ ID NO:20:
- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: 35
 - Leu Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Leu
- Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Gly Gly 40

Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 35

- 45 (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 amino acids
 - (B) TYPE: amino acid
- 50 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: Gly Ile Leu Glu Ser Arg Gly Ile Lys Ala Arg Ile Thr His Val Asp 5 Thr Glu ser Tyr Gly Gly Glu His Trp ser Tyr Gly Leu Arg Pro Gly 25 (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: peptide 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22: Lys Lys Trp Val Arg Asp Ile Ile Asp Asp Phe Thr Asn Glu Ser Ser 25 Gln Lys Thr Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly (2) INFORMATION FOR SEQ ID NO:23: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear 35 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23: 40 Lys Lys Asp Val Ser Thr Ile Val Pro Tyr Ile Gly Pro Ala Leu Asn Ile Val Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 45 (2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 37 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

50

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: 5

Ala Leu Asn Ile Trp Asp Arg Phe Asp Val Phe Cys Thr Leu Gly Ala

Thr Thr Gly Tyr Leu Lys Gly Asn Ser Gly Gly Glu His Trp Ser Tyr 10 25

Gly Leu Arg Pro Gly 35

15 (2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 amino acids
- (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

25

50

20

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:
- Asp Ser Glu Thr Ala Asp Asn Leu Glu Lys Thr Val Ala Ala Leu Ser 30

Ile Leu Pro Gly Ile Gly Cys Gly Glu His Trp Ser Tyr Gly Leu

- 35 Arg Pro Gly
 - (2) INFORMATION FOR SEQ ID NO: 26:
- 40 (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide 45
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Glu Glu Ile Val Ala Gln Ser Ile Ala Leu Ser Ser Leu Met Val Ala

Gln Ala Ile Pro Leu Val Gly Glu Leu Val Asp Ile Gly Phe Ala Ala

> 25 30

Thr Asn Phe Val Glu Ser Cys Gly Gly Glu His Trp Ser Tyr Gly Leu 40

Arg Pro Gly 50

5

- (2) INFORMATION FOR SEQ ID NO:27: 10
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
- (D) TOPOLOGY: linear 15
 - (ii) MOLECULE TYPE: peptide
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Asp Ile Glu Lys Lys Ile Ala Lys Met Glu Lys Ala Ser Ser Val Phe

Asn Val Val Asn Ser Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro

Gly

30

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 amino acids (B) TYPE: amino acid
- 35
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: paptide

40

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
- Lys Trp Phe Lys Thr Asn Ala Pro Asn Gly Val Asp Glu Lys Ile Arg 45

Ile Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly

- (2) INFORMATION FOR SEQ ID NO:29: 50
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 amino acids
 - (B) TYPE: amino acid

(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29: Gly Lau Gln Gly Lys Ile Ala Asp Ala Val Lys Ala Lys Gly Gly Gly 10 Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 20 15 (2) INFORMATION FOR SEQ ID NO:30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid 20 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30: Gly Leu Ala Ala Gly Leu Val Gly Met Ala Ala Asp Ala Met Val Glu 30 Asp Val Asn Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 20 25 30 (2) INFORMATION FOR SEQ ID NO:31: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 40 (ii) MOLECULE TYPE: peptide 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31: Ser Thr Glu Thr Gly Asn Gln His His Tyr Gln Thr Arg Val Val Ser

(2) INFORMATION FOR SEQ ID NO:32:

50

Asn Ala Asn Lys Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 45 amino acids (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

> Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 10

Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu 15

Asp Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 45 amino acids
- 25 (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

30

20

5

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:
- Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 35
 - Gly Gly Leu Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly
- Val Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 40
 - (2) INFORMATION FOR SEQ ID NO:34:
- 45 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 54 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- _ 50 (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe

- Gly Gly Gly Ala Tyr Ala Arg Cys Pro Asn Gly Thr Arg Ala Leu Thr 5
 - Val Ala Glu Leu Arg Gly Asn Ala Glu Leu Gly Gly Glu His Trp Ser
- 10 Tyr Gly Leu Arg Pro Gly
 - (2) INFORMATION FOR SEQ ID NO:35:
- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35: 25
 - Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe
- Gly Gly Lys Lys Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile 30
 - Thr Glu Leu Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly
- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids
 - (B) TYPE: amino acid
- 40 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
- Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 50
- Gly Gly Lys Lys Trp Val Arg Asp Ile Ile Asp Asp Phe Thr Asn Glu 20 25 30
 - Ser Ser Gln Lys Thr Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro

> 35 40 45

Gly

5

- (2) INFORMATION FOR SEQ ID NO:37:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids
 (B) TYPE: amino acid

10

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

15

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:
- Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 20

Gly Gly Lys Lys Asp Val Ser Thr Ile Val Pro Tyr Ile Gly Pro Ala

- Leu Asn Ile Val Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 25
 - (2) INFORMATION FOR SEQ ID NO:38:

30

35

40

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site (B) LOCATION: 1

 - (D) OTHER INFORMATION: /note= "D0.50; E0.50"
- (ix) FEATURE:
- 45 (A) NAME/KEY: Modified-site
 - (B) LOCATION: 2
 - (D) OTHER INFORMATION: /note="L0.25;I0.25;V0.25;F0.25"
 - (ix) FEATURE:
- 50
- (A) NAME/KEY: Modified-site
 (B) LOCATION: 4
 (D) OTHER INFORMATION: /note= "E0.50; D0.50"
 - (ix) FEATURE:

```
(A) NAME/KEY: Modified-site (B) LOCATION: 5
                 (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
   5
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 6
                 (D) OTHER INFORMATION: /note= "K0.50;R0.50"
 10
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 8
                 (D) OTHER INFORMATION: /note="L0.25; I0.25; V0.25; F0.25"
 15
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site (B) LOCATION: 9
                 (D) OTHER INFORMATION: /note="L0.25; I0.25; V0.25; F0.25"
 20
          (ix) PEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 10
                (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
 25
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 12
                (D) OTHER INFORMATION: /note= "K0.50; R0.50"
 30
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 13
                (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
35
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 14
                (D) OTHER INFORMATION: /note= "E0.50;D0.50"
40
         (ix) FEATURE:
               (A) NAME/KEY: Modified-site
                (B) LOCATION: 16
               (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
45
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
     Asp Leu Ser Glu Leu Lys Gly Leu Leu Leu His Lys Leu Glu Gly Leu
50
     Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly
```

(2) INFORMATION FOR SEQ ID NO:39:

```
(i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 30 amino acids
                  (B) TYPE: amino acid
                  (D) TOPOLOGY: linear
 • 5
           (ii) MOLECULE TYPE: peptide
           (ix) FEATURE:
 10
                  (A) NAME/KEY: Modified-site (B) LOCATION: 1
                  (D) OTHER INFORMATION: /note= "KO.50; KO.50"
           (ix) FEATURE:
 15
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 2
                  (D) OTHER INFORMATION: /note= "KO.50; RO.50"
           (ix) FEATURE:
 20
                 (A) NAME/KEY: Modified-site
                  (B) LOCATION: 3
                 (D) OTHER INFORMATION: /note= "K0.50;R0.50"
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
(B) LOCATION: 4
(D) OTHER INFORMATION: /note=*L0.25;10.25;V0.25;F0.25"
 25
          (ix) FEATURE:
 30
                 (A) NAME/KEY: Modified-site (B) LOCATION: 5
                 (D) OTHER INFORMATION: /note= "F0.34;K0.33;R0.33"
          (ix) FEATURE:
35
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 6
                 (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
          (ix) FEATURE:
40
                (A) NAME/KEY: Modified-site (B) LOCATION: 7
                (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
         (ix) FEATURE:
45
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 9
(D) OTHER INFORMATION: /note= "K0.50; R0.50"
         (ix) FEATURE:
50
                (A) NAME/KEY: Modified-site
(B) LOCATION: 10
                (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
         (ix) FEATURE:
```

```
(A) NAME/KEY: Modified-site
                 (B) LOCATION: 11
                 (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
   5
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 13
                 (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
  10
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 15
                 (D) OTHER INFORMATION: /note=
                        "Q0.20;L0.20;I0.20;F0.20V0.20"
 15
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 17
                (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
 20
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 18
                (D) OTHER INFORMATION: /note="D0.50;R0.50"
 25
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
      Lys Lys Leu Phe Leu Leu Thr Lys Leu Leu Thr Leu Pro Gln Ser
 30
      Leu Asp Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly
     (2) INFORMATION FOR SEQ ID NO:40:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 46 amino acids
(B) TYPE: amino acid
40
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
45
         (ix) FEATURE:
               (A) NAME/KEY: Modified-site (B) LOCATION: 19
               (D) OTHER INFORMATION: /note="D0.50;E0.50"
50
        (ix) FEATURE:
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 20
               (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
```

```
(ix) FEATURE:
                   (A) NAME/KEY: Modified-site
                   (B) LOCATION: 22
                   (D) OTHER INFORMATION: /note="E0.50;D0.50"
     5
            (ix) FEATURE:
                   (A) NAME/KEY: Modified-site
                   (B) LOCATION: 23
                   (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
10
            (ix) FEATURE:
                   (A) NAME/KEY: Modified-site (B) LOCATION: 24
                   (D) OTHER INFORMATION: /note="K0.50;R0.50"
   15
            (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 26
                  (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
   20
            (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 27
                  (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
  25
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                 (B) LOCATION: 28
(D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
  30
           (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
(B) LOCATION: 30
                 (D) OTHER INFORMATION: /note="K0.50;R0.50"
  35
           (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 31
                 (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
 40
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 32
                (D) OTHER INFORMATION: /note="E0.50;D0.50"
 45
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 34
              (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
 50
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
     Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe
```

- 121 -

```
1
                           5
                                                                      15
        Gly Gly Asp Leu Ser Glu Leu Lys Gly Leu Leu His Lys Leu Glu
                                           25
   5
       Gly Leu Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly
                 35
                                        40
      (2) INFORMATION FOR SEQ ID NO:41:
  10
            (1) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 48 amino acids (B) TYPE: amino acid
                 (D) TOPOLOGY: linear
  15
           (ii) MOLECULE TYPE: peptide
          (ix) FEATURE:
 20
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 19
                 (D) OTHER INFORMATION: /note="K0.50; R0.50"
          (ix) FEATURE:
 25
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 20
(D) OTHER INFORMATION: /note="K0.50;R0.50"
          (ix) FEATURE:
 30
                (A) NAME/KEY: Modified-site (B) LOCATION: 21
                (D) OTHER INFORMATION: /note="K0.50;R0.50"
         (ix) FEATURE:
 35
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 22
                (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;P0.25"
         (ix) FEATURE:
40
                (A) NAME/KEY: Modified-site (B) LOCATION: 23
                (D) OTHER INFORMATION: /note="F0.34;K0.33;R0.33"
         (ix) FRATURE:
45
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 24
               (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
        (ix) FEATURE:
50
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 25
               (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25"
        (ix) FEATURE:
```

(A) NAME/KEY: Modified-site (B) LOCATION: 27 (D) OTHER INFORMATION: /note="K0.50;R0.50" 5 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 28 (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25" 10 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 29 (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25" 15 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 31 (D) OTHER INFORMATION: /note="L0.25; I0.25; V0.25; F0.25" 20 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 33 (D) OTHER INFORMATION: /note= "Q0.20; L0.20; I0.20; F0.20; V0.20" 25 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 35 (D) OTHER INFORMATION: /note="L0.25;10.25;V0.25;F0.25" 30 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 36 (D) OTHER INFORMATION: /note="D0.50;R0.50" 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41: Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 40 10 Gly Gly Lys Lys Leu Phe Leu Leu Thr Lys Leu Leu Thr Leu Pro Gln Ser Leu Asp Gly Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 45 (2) INFORMATION FOR SEQ ID NO:42: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42: Gly Ile Leu Glu Ser Arg Gly Ile Lys Ala Arg Ile Thr His Val Asp 10 Thr Glu Ser Tyr 20 (2) INFORMATION FOR SEQ ID NO:43: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 20 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43: 25 Trp Val Arg Asp Ile Ile Asp Asp Phe Thr Asn Glu Ser Ser Gln Lys 10 Thr 30 (2) INFORMATION FOR SEQ ID NO:44: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 16 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44: Asp Val Ser Thr Ile Val Pro Tyr Ile Gly Pro Ala Leu Asn Ile Val 45

(2) INFORMATION FOR SEQ ID NO: 45:

50

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45: 5
 - Ala Leu Asn Ile Trp Asp Arg Phe Asp Val Phe Cys Thr Leu Gly Ala
- 10 Thr Thr Gly Tyr Leu Lys Gly Asn Ser
 - (2) INFORMATION FOR SEQ ID NO:46:
- (i) SEQUENCE CHARACTERISTICS: 15
 - (A) LENGTH: 23 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide 20
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46: 25
 - Asp Ser Glu Thr Ala Asp Asn Leu Glu Lys Thr Val Ala Ala Leu Ser
- Ile Leu Pro Gly Ile Gly Cys 30

35

- (2) INFORMATION FOR SEQ ID NO:47:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide 40
 - (x1) SEQUENCE DESCRIPTION: SEQ ID NO:47:
- 45 Glu Glu Ile Val Ala Gln Ser Ile Ala Leu Ser Ser Leu Met Val Ala
 - Gin Ala Ile Pro Leu Val Gly Glu Leu Val Asp Ile Gly Phe Ala Ala 30
- 50 Thr Asn Phe Val Glu Ser Cys
 - (2) INFORMATION FOR SEQ ID NO:48:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: peptide 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48: Asp Ile Glu Lys Lys Ile Ala Lys Met Glu Lys Ala Ser Ser Val Phe 15 Asn Val Val Asn Ser (2) INFORMATION FOR SEQ ID NO:49: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear 25 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49: 30 Lys Trp Phe Lys Thr Asn Ala Pro Asn Gly Val Asp Glu Lys Ile Arg Ile 35 (2) INFORMATION FOR SEQ ID NO:50: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 14 amino acids (B) TYPE: amino acid (D) ToPoLogy: linear (ii) MOLECULE TYPE: peptide 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50: Gly Leu Gln Gly Lys Ile Ala Asp Ala Val Lys Ala Lys Gly

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- 5
 - (ii) MOLECULE TYPE: peptide
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Gly Leu Ala Ala Gly Leu Val Gly Met Ala Ala Asp Ala Met Val Glu 10

- 15 Asp Val Asn
 - (2) INFORMATION FOR SEQ ID NO:52:
- (i) SEQUENCE CHARACTERISTICS: 20
 - (A) LENGTH: 20 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide 25
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52: 30

Ser Thr Glu Thr Gly Asn Gln His His Tyr Gln Thr Arg Val Val Ser

Asn Ala Asn Lys 35

40

- (2) INFORMATION FOR SEQ ID NO:53:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- 45
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:
- Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 50
 - (2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 35 amino acids
(B) TYPE: amino acid
                 (D) TOPOLOGY: linear
   5
          (ii) MOLECULE TYPE: peptide
 10
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:
     Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe
 15 Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu
                                          25
     Asp Gly Gly
 20
     (2) INFORMATION FOR SEQ ID NO:55:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 35 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
 25
         (ii) MOLECULE TYPE: peptide
30
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:
      Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe
35
     Gly Gly Leu Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly
40
     Val Gly Gly
               35
    (2) INFORMATION FOR SEQ ID NO:56:
45
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 43 amino acids
               (B) TYPE: amino acid
               (D) TOPOLOGY: linear
50
        (ii) MOLECULE TYPE: peptide
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 1 5 10

Gly Gly Gly Ala Tyr Ala Arg Cys Pro Asn Gly Thr Arg Ala Leu Thr 20 25 30

Val Ala Glu Leu Arg Gly Asn Ala Glu Leu Gly Gly 35

- 10 (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 37 amino acida
 - (B) TYPE: amino acid
- 15 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

20

25

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe

Gly Gly Lys Lys Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile
20 25 30

Thr Glu Leu Gly Gly 35

- (2) INFORMATION FOR SEQ ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

40

35

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:
- - Gly Gly Lys Lys Trp Val Arg Asp Ile Ile Asp Asp Phe Thr Asn Glu 20 25 30

Ser Ser Gln Lys Thr Gly Gly

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: peptide 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 15 Gly Gly Lys Lys Asp Val Ser Thr Ile Val Pro Tyr Ile Gly Pro Ala 25 Leu Asn Ile Val Gly Gly 20 (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60: Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe (2) INFORMATION FOR SEQ ID NO:61: 45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 50 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

Gly Gly Leu Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly

Val Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr

Tyr Gln Phe 35

- (2) INFORMATION FOR SEQ ID NO:62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 amino acids
- (B) TYPE: amino acid (D) TOPOLOGY: linear 15
 - (ii) MOLECULE TYPE: peptide

20

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Gly Gly Gly Ala Tyr Ala Arg Cys Pro Asn Gly Thr Arg Ala Leu Thr 25

Val Ala Glu Leu Arg Gly Asn Ala Glu Leu Gly Gly Thr Ala Lys Ser Lys

Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 30

- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 37 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide 40
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:
- 45 Gly Gly Lys Lys Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile

Thr Glu Leu Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr

50 Ala Thr Tyr Gln Phe 35

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: peptide 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64: Gly Gly Lys Lys Trp Val Arg Asp Ile Ile Asp Asp Phe Thr Asn Glu 15 Ser Ser Gln Lys Thr Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 35 20 (2) INFORMATION FOR SEQ ID NO:65: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 amino acids (B) TYPE: amino acid 25 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65: Gly Gly Lys Lys Asp Val Ser Thr Ile Val Pro Tyr Ile Gly Pro Ala 35 Leu Asn Ile Val Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr 40 Thr Ala Thr Tyr Gln Phe 35 (2) INFORMATION FOR SEQ ID NO:66: (i) SEQUENCE CHARACTERISTICS: 45 (A) LENGTH: 37 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 50 (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Lys Cys Asn Thr Ala Thr Cys Ala Thr Gln Arg Leu Ala Asn Phe Leu Val His Ser Ser Asn Asn Phe Gly Ala Ile Leu Ser Ser Thr Asn Val Gly Ser Asn Thr Tyr (2) INFORMATION FOR SEQ ID NO:67: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67: Lys Cys Asn Thr Ala Thr Cys Ala Thr Gln Arg Leu Ala Asn Phe Leu 10 Val His Ser Ser 20 (2) INFORMATION FOR SEQ ID NO:68: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68; Ser Ser Asn Asn Phe Gly Ala Ile Leu Ser Ser Thr Asn Val Gly Ser 10 45 Asn Thr Tyr

25

30

35

40

50

(2) INFORMATION FOR SEQ ID NO:69:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

Gln Leu Gly Pro Gln Gly Pro Pro His Leu Val Ala Asp Pro Ser Lys

10 Lys Gln Gly Pro Trp Leu Glu Glu Glu Glu Glu Ala Tyr Gly Trp Met

Asp Phe

15

- (2) INFORMATION FOR SEQ ID NO:70:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- - (ii) MOLECULE TYPE: peptide

25

20

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:
- Gln Leu Gly Pro Gln Gly Pro Pro His Leu Val Ala Asp Pro Ser Lys 30

Lys Gln Gly Pro Trp Leu

- 35 (2) INFORMATION FOR SEQ ID NO:71:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids (B) TYPE: amino acid
- 40 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

Gln Leu Gly Pro Gln Gly Pro Pro His Leu Val Ala Asp Pro Ser Lys 10 50

Lys Gln

(2) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72: 10 Gln Leu Gly Pro Gln Gly Pro Pro His 15 (2) INFORMATION FOR SEQ ID NO:73: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid 20 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73: Gln Leu Gly Pro Gln Gly Pro Pro Pro Pro Pro 5 30 (2) INFORMATION FOR SEQ ID NO:74: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 17 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74: Gln Gly Pro Trp Leu Glu Glu Glu Glu Glu Ala Tyr Gly Trp Met Asp 45 Phe 50 (2) INFORMATION FOR SEQ ID NO:75: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75: Gln Gly Pro Trp Leu Glu Glu Glu Glu Ala Tyr 10 1 5 (2) INFORMATION FOR SEQ ID NO:76: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76: 25 Gln Gly Pro Trp Leu Glu Glu Glu 5 (2) INFORMATION FOR SEQ ID NO:77: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear 35 (ii) MOLECULE TYPE: peptide 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: Val Pro Leu Pro Ala Gly Gly Thr Val Leu Thr Lys Met Tyr Pro 10 Arg Gly Asn His Trp Ala Val Gly His Leu Het 45 (2) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

50

```
(ii) MOLECULE TYPE: peptide
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:
   5
        Gly Asn His Trp Ala Val Gly His Leu Met
  10 (2) INFORMATION FOR SEQ ID NO:79:
             (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 10 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
  15
           (ii) MOLECULE TYPE: peptide
  20
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:
       Lys Thr Lys Gly Ser Gly Phe Phe Val Phe
 25
      (2) INFORMATION FOR SEQ ID NO:80:
            (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 26 amino acids
(B) TYPE: amino acid
 30
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
35
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
(B) LOCATION: 7
                 (D) OTHER INFORMATION: /note= "A0.50;E0.50"
40
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                 (B) LOCATION: 11
                (D) OTHER INFORMATION: /note= "SO.25;NO.25;KO.25;RO.25"
45
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 13
                (D) OTHER INFORMATION: /note= "T0.34; V0.33; A0.33"
50
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 14
                (D) OTHER INFORMATION: /note= "A0.50;E0.50"
```

```
(ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 15
                 (D) OTHER INFORMATION: /note= "G0.50; D0.50"
   5
           (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
(B) LOCATION: 17
(D) OTHER INFORMATION: /note= "Q0.34;E0.33;S0.33"
  10
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site (B) LOCATION: 18
                 (D) OTHER INFORMATION: /note= "NO.50; KO.50"
 15
          (ix) FRATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 21
                 (D) OTHER INFORMATION: /note= "T0.34; V0.33; K0.33"
 20
          (ix) FRATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 22
                (D) OTHER INFORMATION: /note= "T0.34; A0.33; V0.33"
 25
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:
      Glu Phe Gln Met Gly Ala Ala Pro Thr Thr Ser Asp Thr Ala Gly Leu
30
      Gln Asn Asp Pro Thr Thr Asn Val Ala Arg
35 (2) INFORMATION FOR SEQ ID NO:81:
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 24 amino acids
                (B) TYPE: amino acid
40
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
45
         (ix) FEATURE:
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 6
               (D) OTHER INFORMATION: /note= "A0.50;D0.50"
50
        (1x) FEATURE:
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 11
               (D) OTHER INFORMATION: /note= "T0.34;A0.33;S0.33"
```

```
(ix) FEATURE:
                    (A) NAME/KEY: Modified-site
                    (B) LOCATION: 12
(D) OTHER INFORMATION: /note= "TO.34; DO.33; SO.33"
    5
             (ix) FEATURE:
                    (A) NAME/KEY: Modified-site
(B) LOCATION: 15
                    (D) OTHER INFORMATION: /note= "A0.50;S0.50"
   10
             (ix) FEATURE:
                   (A) NAME/KEY: Modified-site (B) LOCATION: 16
                   (D) OTHER INFORMATION: /note= "A0.34;T0.33;V0.33"
  15
            (ix) FEATURE:
                   (A) NAME/KEY: Modified-site
(B) LOCATION: 19
(D) OTHER INFORMATION: /note= "S0.50;T0.50"
  20
            (ix) FEATURE:
                   (A) NAME/KEY: Modified-site
(B) LOCATION: 21
                   (D) OTHER INFORMATION: /note= "L0.50;C0.50"
  25
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:
 30
       Glu Phe Gln Met Gly Ala Lys Pro Thr Thr Thr Thr Gly Asn Ala Ala
       Ala Pro Ser Thr Leu Thr Ala Arg
                      20
 35
     (2) INFORMATION FOR SEQ ID NO:82:
           (1) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 25 amino acids (B) TYPE: amino acid
40
                 (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
45
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:
     Glu Phe Glu Met Gly Glu Ala Leu Ala Gly Ala Ser Gly Asn Thr Thr
50
     Ser Thr Leu Ser Lys Leu Val Glu Arg
                     20
```

```
(2) INFORMATION FOR SEQ ID NO:83:
              (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 26 amino acids
(B) TYPE: amino acid
    5
                    (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: peptide
  10
            (ix) FEATURE:
                   (A) NAME/KEY: Modified-site
(B) LOCATION: 6
(D) OTHER INFORMATION: /note= "Q0.50;K0.50"
  15
            (ix) FEATURE:
                   (A) NAME/KEY: Modified-site
(B) LOCATION: 7
                   (D) OTHER INFORMATION: /note= "S0.34; A0.33; Y0.33"
  20
            (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                   (B) LOCATION: 8
                  (D) OTHER INFORMATION: /note= "S0.50; T0.50"
 25
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site (B) LOCATION: 9
                  (D) OTHER INFORMATION: /note=
                          "NO.20;SO.20;GO.20;DO.20;KO.20"
 30
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                 (B) LOCATION: 11
(D) OTHER INFORMATION: /note= "NO.50; DO.50"
 35
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 14
                 (D) OTHER INFORMATION: /note= "K0.50; N0.50"
40
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site (B) LOCATION: 15
                 (D) OTHER INFORMATION: /note= "L0.50;10.50"
45
         (ix) FRATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 16
                (D) OTHER INFORMATION: /note= "V0.50; F0.50"
50
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 19
                (D) OTHER INFORMATION: /note= "T0.34;10.33;A0.33"
```

```
(ix) FEATURE:
                   (A) NAME/KEY: Modified-site
                   (B) LOCATION: 22
(D) OTHER INFORMATION: /note= "NO.50; DO.50"
   5
            (ix) FRATURE:
                  (A) NAME/KEY: Modified-site (B) LOCATION: 23
                  (D) OTHER INFORMATION: /note= "Q0.34;R0.33;E0.33"
  10
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:
  15
       Phe Gly Thr Lys Thr Gln Ser Ser Asn Phe Asn Thr Ala Lys Leu Val
       Pro Asn Thr Ala Leu Asn Gln Ala Val Val
 20
                      20
      (2) INFORMATION FOR SEQ ID NO:84:
            (i) SEQUENCE CHARACTERISTICS:
 25
                  (A) LENGTH: 24 amino acids
                  (B) TYPE: amino acid
(D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
 30
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 3
(D) OTHER INFORMATION: /note= "NO.50; DO.50"
 35
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
(B) LOCATION: 7
                 (D) OTHER INFORMATION: /note= "Q0.50;H0.50"
40
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                 (B) LOCATION: 8
                (D) OTHER INFORMATION: /note= "T0.50; A0.50"
45
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 9
(D) OTHER INFORMATION: /note= "K0.50; T0.50"
50
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 12
                (D) OTHER INFORMATION: /note= "NO.50;D0.50"
```

```
(ix) FEATURE:
                   (A) NAME/KEY: Modified-site
                    (B) LOCATION: 13
                   (D) OTHER INFORMATION: /note= "S0.50;G0.50"
    5
            (ix) FEATURE:
                   (A) NAME/KEY: Modified-site
(B) LOCATION: 14
                   (D) OTHER INFORMATION: /note= "A0.34; T0.33; K0.33"
  10
            (ix) FEATURE:
                  (A) NAME/KEY: Modified-site (B) LOCATION: 15
                   (D) OTHER INFORMATION: /note= "F0.50;L0.50"
  15
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:
       Phe Gly Asn Asn Glu Asn Gln Thr Lys Val Ser Asn Ser Ala Phe Val Pro
  20
       Asn Met Ser Leu Asp Gln Ser Val Val
                      20
  25
      (2) INFORMATION FOR SEQ ID NO:85:
            (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 25 amino acids
 30
                 (B) TYPE: amino acid
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
 35
          (ix) FRATURE:
                 (A) NAME/KEY: Modified-site
                (B) LOCATION: 4
(D) OTHER INFORMATION: /note= "NO.50;GO.50"
40
          (ix) FRATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 5
                (D) OTHER INFORMATION: /note= "E0.50; VO.50"
45
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 7
(D) OTHER INFORMATION: /note= "Q0.50; A0.50"
50
         (ix) FEATURE:
               (A) NAME/KEY: Modified-site (B) LOCATION: 8
               (D) OTHER INFORMATION: /note= "KO.34; 50.33; TO.33"
```

```
(ix) FEATURE:
                   (A) NAME/KEY: Modified-site
                   (B) LOCATION: 9
                  (D) OTHER INFORMATION: /note= "T0.34;K0.33;Q0.33"
    5
            (ix) FEATURE:
                  (A) NAME/KEY: Modified-site (B) LOCATION: 10
                  (D) OTHER INFORMATION: /note= "V0.50; P0.50"
  10
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site (B) LOCATION: 11
                  (D) OTHER INFORMATION: /note= "K0.50; A0.50"
  15
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 12
                 (D) OTHER INFORMATION: /note= "A0.34;T0.33;K0.33"
  20
           (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 13
                 (D) OTHER INFORMATION: /note= "B0.25;N0.25;D0.25;T0.25"
 25
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 14
(D) OTHER INFORMATION: /note= "S0.50; A0.50"
 30
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                (B) LOCATION: 15
                (D) OTHER INFORMATION: /note= "V0.50;10.50"
 35
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 18
(D) OTHER INFORMATION: /note= "MO.50; VO.50"
40
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 19
               (D) OTHER INFORMATION: /note= "S0.50;Q0.50"
45
         (ix) FEATURE:
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 20
               (D) OTHER INFORMATION: /note= "F0.50;L0.50"
50
        (ix) FEATURE:
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 21
               (D) OTHER INFORMATION: /note= "D0.50; NO.50"
```

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:
       Phe Gly Asp Asn Glu Asn Gln Lys Thr Val Lys Ala Glu Ser Val Pro
   5
        1
       Asn Met Ser Phe Asp Gln Ser Val Val
 10
      (2) INFORMATION FOR SEQ ID NO:86:
            (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 30 amino acids
 15
                 (B) TYPE: amino acid
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
 20
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site (B) LOCATION: 1
                 (D) OTHER INFORMATION: /note= "S0.50;L0.50"
 25
          (ix) FRATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 3
                (D) OTHER INFORMATION: /note= "TO.34;E0.33;K0.33"
 30
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 4
(D) OTHER INFORMATION: /note= "A0.34;T0.33;P0.33"
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 5
                (D) OTHER INFORMATION: /note= "IO.50; VO.50"
40
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 6
                (D) OTHER INFORMATION: /note= "F0.50;L0.50"
45
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 8
                (D) OTHER INFORMATION: /note= "TO.50; VO.50"
50
         (ix) FEATURE:
               (A) NAME/KEY: Modified-site (B) LOCATION: 18
               (D) OTHER INFORMATION: /note= "A0.50;K0.50"
```

```
(ix) FRATURE:
                   (A) NAME/KEY: Modified-site
                   (B) LOCATION: 20
                   (D) OTHER INFORMATION: /note= "D0.34;T0.33;E0.33"
    5
            (ix) FRATURE:
                  (A) NAME/KEY: Modified-site (B) LOCATION: 22
                  (D) OTHER INFORMATION: /note= "K0.50; V0.50"
   10
            (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
(B) LOCATION: 23
                  (D) OTHER INFORMATION: /note= "T0.34; A0.33; S0.33"
  15
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 24
                  (D) OTHER INFORMATION: /note= "S0.34;G0.33;N0.33"
  20
           (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                  (B) LOCATION: 27
                 (D) OTHER INFORMATION: /note= "G0.50;N0.50"
  25
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
(B) LOCATION: 28
                 (D) OTHER INFORMATION: /note= "Q0.50;E0.50"
 30
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 30
                (D) OTHER INFORMATION: /note= "G0.50; A0.50"
 35
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:
      Ser Ala Thr Ala Ile Phe Asp Thr Thr Thr Leu Asn Pro Thr Ile Ala
40
    Gly Ala Gly Asp Val Lys Thr Ser Ala Glu Gly Gln Leu Gly
45
    (2) INFORMATION FOR SEQ ID NO:87:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 31 amino acids
(B) TYPE: amino acid
50
               (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: peptide
```

```
(ix) FEATURE:
                 (A) NAME/KEY: Modified-site (B) LOCATION: 3
                 (D) OTHER INFORMATION: /note= "E0.34;T0.33;K0.33"
   5
           (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 4
                 (D) OTHER INFORMATION: /note= "A0.50; P0.50"
  10
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 5
                 (D) OTHER INFORMATION: /note= "I0.50; V0.50"
 15
          (ix) FRATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 6
                 (D) OTHER INFORMATION: /note= "L0.50; V0.50"
 20
          (ix) FRATURE:
                (A) NAME/KEY: Modified-site
                 (B) LOCATION: 8
                (D) OTHER INFORMATION: /note= "V0.50;10.50"
 25
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 16
                (D) OTHER INFORMATION: /note= "A0.50;T0.50"
 30
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 18
                (D) OTHER INFORMATION: /note= "K0.50;C0.50"
35
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 20
                (D) OTHER INFORMATION: /note= "S0.34;T0.33;A0.33"
40
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 22
               (D) OTHER INFORMATION: /note= "V0.50; A0.50"
45
         (ix) FEATURE:
               (A) NAME/KEY: Modified-site (B) LOCATION: 23
               (D) OTHER INFORMATION: /note= "A0.34;S0.33;G0.33"
50
        (ix) FEATURE:
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 24
               (D) OTHER INFORMATION: /note= "S0.50; A0.50"
```

```
(ix) FEATURE:
                   (A) NAME/KEY: Modified-site
(B) LOCATION: 25
(D) OTHER INFORMATION: /note= "G0.50;N0.50"
   5
           (ix) FEATURE:
                   (A) NAME/KEY: Modified-site (B) LOCATION: 26
                  (D) OTHER INFORMATION: /note= "SO.50; TO.50"
  10
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 27
                  (D) OTHER INFORMATION: /note= "E0.50; D0.50"
 15
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 28
                  (D) OTHER INFORMATION: /note= "NO.50;GO.50"
 20
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
(B) LOCATION: 29
(D) OTHER INFORMATION: /note= "E0.34; D0.33; Q0.33"
 25
          (ix) FRATURE:
                 (A) NAME/KEY: Modified-site (B) LOCATION: 30
                 (D) OTHER INFORMATION: /note= "L0.50;10.50"
30
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
(B) LOCATION: 31
                 (D) OTHER INFORMATION: /note= "A0.50; S0.50"
35
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:
      Leu Ala Glu Ala Ile Leu Asp Val Thr Thr Leu Asn Pro Thr Ile Ala
40
      Gly Lys Gly Ser Val Val Ala Ser Gly Ser Glu Asn Glu Leu Ala
45 (2) INFORMATION FOR SEQ ID NO:88:
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 24 amino acids
                 (B) TYPE: amino acid
50
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
```

```
(ix) FEATURE:
                  (A) NAME/KEY: Modified-site (B) LOCATION: 1
                  (D) OTHER INFORMATION: /note= "K0.50; T0.50"
   5
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
(B) LOCATION: 6
                  (D) OTHER INFORMATION: /note= "A0.34;K0.33;Q0.33"
  10
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 8
                  (D) OTHER INFORMATION: /note= "F0.50; L0.50"
  15
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 11
                  (D) OTHER INFORMATION: /note= "D0.34;A0.33;N0.33"
 20
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site (B) LOCATION: 12
                 (D) OTHER INFORMATION: /note= "IO.50; LO.50"
 25
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 13
                 (D) OTHER INFORMATION: /note= "TO.50;10.50"
 30
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 14
(D) OTHER INFORMATION: /note= "A0.50;50.50"
35
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 17
                (D) OTHER INFORMATION: /note= "E0.50;D0.50"
40
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 24
                (D) OTHER INFORMATION: /note= "D0.50; A0.50"
45
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:
     Lys Gly Tyr Val Gly Ala Glu Phe Pro Leu Asp Ile Thr Ala Gly Thr
50
                                               10
     Glu Ala Ala Thr Gly Thr Lys Asp
```

(2) INFORMATION FOR SEQ ID NO:89: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids
(B) TYPE: amino acid 5 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: paptide 10 (x1) SEQUENCE DESCRIPTION: SEQ ID NO:89: Lys Gly Tyr Val Gly Ala Glu Phe Pro Leu Asp Leu Lys Ala Gly Thr 15 10 Asp Gly Val Thr Gly Thr Lys Asp 20 (2) INFORMATION FOR SEQ ID NO:90: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids
(B) TYPE: amino acid 25 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90: Glu Ser Val Gln Ile Asn Cys Thr Arg Pro Asn Tyr Asn Lys Arg Lys 35 Arg Ile His Ile Gly Pro Gly Arg Ala Phe Tyr Thr Thr Lys Asn Met (2) INFORMATION FOR SEQ ID NO:91: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear 45 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91: 50 Asn Asn Asp Asp Ser Tyr Ile Pro Ser Ala Glu Lys Ile Leu Glu

Phe Val Lys Gln

(2) INFORMATION FOR SEQ ID NO:92:

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 55 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear

10

- (ii) MOLECULE TYPE: peptide
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

Lys Cys Asn Thr Ala Thr Cys Ala Thr Gln Arg Leu Ala Asn Phe Leu

Val His Ser Ser Asn Asn Phe Gly Ala Ile Leu Ser Ser Thr Asn Val Gly 20

Ser Asn Thr Tyr Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro 25

Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr

Ala Thr Tyr Gln Phe 30

- (2) INFORMATION FOR SEQ ID NO:93:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 55 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

40

50

35

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:
- Lys Cys Asn Thr Ala Thr Cys Ala Thr Gln Arg Leu Ala Asn Phe Leu
 - Val His Ser Ser Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile

Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser

Tyr Thr Ala Thr Tyr Gln Phe

> 50 55

(2)	INFORMATION	FOR	SRO	TD	NO.OA.

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 10 (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94: 15

Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe

Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu 20

Asp Gly Gly His Ser Ser Asn Asn Phe Gly Ala Ile Leu Ser Ser Thr

25 Asn Val Gly Ser Asn Thr Tyr 50

30

5

- (2) INFORMATION FOR SEQ ID NO:95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 63 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

40

35

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:
- Gln Leu Gly Pro Gln Gly Pro Pro His Leu Val Ala Asp Pro Ser Lys Lys 45
 - Gln Gly Pro Trp Leu Glu Glu Glu Glu Glu Ala Tyr Gly Trp Met Asp Phe
- Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp 50
 - Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln

Phe

(2) INFORMATION FOR SEQ ID NO:96:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 57 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide 10
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:
- 15 Gln Leu Gly Pro Gln Gly Pro Pro His Leu Val Ala Asp Pro Ser Lys
- Lys Gln Gly Pro Trp Leu Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu 20
 - Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys Lys Phe 35 40 45
- 25 Pro Ser Tyr Thr Ala Thr Tyr Gln Phe
 - (2) INFORMATION FOR SEQ ID NO:97:
- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 53 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97: 40
 - Gln Leu Gly Pro Gln Gly Pro Pro His Leu Val Ala Asp Pro Ser Lys
- Lys Gln Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln 45
 - Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr
- 50 Ala Thr Tyr Gln Phe
 - (2) INFORMATION FOR SEQ ID NO:98:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 44 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98: 10 Gin Leu Gly Pro Gin Gly Pro Pro His Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 20 (2) INFORMATION FOR SEQ ID NO:99: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 amino acids (B) TYPE: amino acid 25 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99: Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 35 Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Gln Gly Pro Trp Leu Glu Glu Glu Glu Glu Ala Tyr Gly Trp 40 Met Asp Phe 50 45 (2) INFORMATION FOR SEQ ID NO:100: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 amino acids 50 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

- Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 5 1 5 10 15
 - Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu 20 25 30
- 10 Asp Gly Gly Gln Gly Pro Trp Leu Glu Glu Glu Glu Glu Ala Tyr 35 40 45
 - (2) INFORMATION FOR SEQ ID NO:101:
- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 62 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:
 - Val Pro Leu Pro Ala Gly Gly Gly Thr Val Leu Thr Lys Met Tyr Pro 1 5 10 15
- Arg Gly Asn His Trp Ala Val Gly His Leu Met Gly Gly Phe Phe Leu 30 25 30
 - Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala 35 40 45
- Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe
 50
 55
 - (2) INFORMATION FOR SEQ ID NO:102:
- 40 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 45 (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:
 - Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 1 5 10 15
 - Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu

WO 94/25060

25

30

Asp Gly Gly Asn His Trp Ala Val Gly His Leu Met

(2) INFORMATION FOR SEQ ID NO:103:

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 45 amino acids

(B) TYPE: amino acid 10 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

15

5

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:
- Lys Thr Lys Gly Ser Gly Phe Phe Val Phe Gly Gly Phe Phe Leu Leu 20

Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys

- 25 Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe
 - (2) INFORMATION FOR SEQ ID NO:104:
- (i) SEQUENCE CHARACTERISTICS: 30
 - (A) LENGTH: 33 amino acids

 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: 40

Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe

Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu 45

Asp Gly Gly Lys Thr Lys Gly Ser Gly Phe Phe Val Phe

50

- (2) INFORMATION FOR SEQ ID NO:105:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 63 amino acids

```
(B) TYPE: amino acid
                   (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: peptide
   5
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 7
                  (D) OTHER INFORMATION: /note= "A0.50;E0.50"
  10
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 11
  15
                  (D) OTHER INFORMATION: /note= "S0.25;N0.25;K0.25;R0.25"
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 13
 20
                 (D) OTHER INFORMATION: /note= "T0.34; V0.33; A0.33"
           (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 14
 25
                 (D) OTHER INFORMATION: /note= "A0.50;E0.50"
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 15
(D) OTHER INFORMATION: /note= "G0.50; D0.50"
 30
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 17
                (D) OTHER INFORMATION: /note= "Q0.34;E0.33;S0.33"
35
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 18
40
                (D) OTHER INFORMATION: /note= "NO.50; KO.50"
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 21
(D) OTHER INFORMATION: /note= "T0.34; V0.33; K0.33"
45
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 22
                (D) OTHER INFORMATION: /note= "T0.34; A0.33; V0.33"
50
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:
```

Glu Phe Gln Met Gly Ala Ala Pro Thr Thr Ser Asp Thr Ala Gly Leu 10 Gln Asn Asp Pro Thr Thr Asn Val Ala Arg Gly Gly Phe Phe Leu Leu 5 Thr Arg Ile Leu Thr Gly Gly Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 59 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 20 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 6 25 (D) OTHER INFORMATION: /note= "A0.50; D0.50" (ix) FEATURE: (A) NAME/KEY: Modified-site 30 (B) LOCATION: 11 (D) OTHER INFORMATION: /note= "TO.34; A0.33; S0.33" (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 12 35 (D) OTHER INFORMATION: /note= "T0.34;D0.33;S0.33" (ix) FEATURE: (A) NAME/KEY: Modified-site 40 (B) LOCATION: 15 (D) OTHER INFORMATION: /note= "A0.50;50.50" (ix) FEATURE: (A) NAME/KEY: Modified-site 45 (B) LOCATION: 16 (D) OTHER INFORMATION: /note= "A0.34; To.33; VO.33" (ix) FEATURE: (A) NAME/KEY: Modified-site 50 (B) LOCATION: 19 (D) OTHER INFORMATION: /note= "S0.50; T0.50" (ix) FEATURE: (A) NAME/KEY: Modified-site

- (B) LOCATION: 21
- (D) OTHER INFORMATION: /note= "L0.50;C0.50"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

Glu Phe Gln Met Gly Ala Lys Pro Thr Thr Thr Gly Asn Ala Ala

Ala Pro Ser Thr Leu Thr Ala Arg Gly Gly Phe Phe Leu Leu Thr Arg 10

Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys

Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe

- (2) INFORMATION FOR SEQ ID NO:107: 20
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 60 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- 25

15

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107: 30 Glu Phe Glu Met Gly Glu Ala Leu Ala Gly Ala Ser Gly Asn Thr Thr 10
- Ser Thr Leu Ser Lys Leu Val Glu Arg Gly Gly Phe Phe Leu Leu Thr 35

Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser

- 40 Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe
 - (2) INFORMATION FOR SEQ ID NO: 108:
- 45 (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 61 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 50 (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site

```
(B) LOCATION: 6
                  (D) OTHER INFORMATION: /note= "Q0.50; K0.50"
           (ix) FRATURE:
   5
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 7
                  (D) OTHER INFORMATION: /note= "80.34;A0.33;Y0.33"
           (ix) FEATURE:
 10
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 8
                  (D) OTHER INFORMATION: /note= "S0.50;T0.50"
           (ix) FEATURE:
 15
                  (A) NAME/KEY: Modified-site (B) LOCATION: 9
                  (D) OTHER INFORMATION: /note=
                         "NO.20;SO.20;GO.20;DO.20;KO.20"
 20
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 11
                 (D) OTHER INFORMATION: /note= "NO.50;DO.50"
 25
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site (B) LOCATION: 14
                 (D) OTHER INFORMATION: /note= "K0.50;N0.50"
 30
          (ix) FRATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 15
                 (D) OTHER INFORMATION: /note= "L0.50;10.50"
35
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                (B) LOCATION: 16
(D) OTHER INFORMATION: /note= "V0.50; F0.50"
40
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 19
                (D) OTHER INFORMATION: /note= "T0.34;10.33;A0.33"
45
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 22
                (D) OTHER INFORMATION: /note= "NO.50; DO.50"
50
         (ix) FRATURE:
               (A) NAME/KEY: Modified-site
(B) LOCATION: 23
(D) OTHER INFORMATION: /note= "Q0.34;R0.33;E0.33"
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108: Phe Gly Thr Lys Thr Gln Ser Ser Asn Phe Asn Thr Ala Lys Leu Val 5 Pro Asn Thr Ala Leu Asn Gln Ala Val Val Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys 10 Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 15 (2) INFORMATION FOR SEQ ID NO:109: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 amino acids (B) TYPE: amino acid 20 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 25 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 3 (D) OTHER INFORMATION: /note= "NO.50;DO.50" 30 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 7 (D) OTHER INFORMATION: /note= "Q0.50;H0.50" 35 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 8
(D) OTHER INFORMATION: /note= "TO.50; AO.50" 40 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 9 (D) OTHER INFORMATION: /note= "K0.50; T0.50" 45 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 12 (D) OTHER INFORMATION: /note= "NO.50; DO.50"

(D) OTHER INFORMATION: /note= "S0.50;G0.50"

(A) NAME/KEY: Modified-site (B) LOCATION: 13

50

(ix) FEATURE:

```
(ix) FEATURE:
                  (A) NAME/KEY: Modified-site
(B) LOCATION: 14
                  (D) OTHER INFORMATION: /note= "A0.34;T0.33;K0.33"
    5
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 15
                 (D) OTHER INFORMATION: /note= "F0.50;L0.50"
  10
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:
       Phe Gly Asn Asn Glu Asn Gln Thr Lys Val Ser Asn Ser Ala Phe Val
  15
       Pro Asn Met Ser Leu Asp Gln Ser Val Val Gly Gly Phe Phe Leu Leu
       Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys
  20
      Ser Lys Lys Phe Pro Ser Tyr Thr Ala Gln Phe
 25
     (2) INFORMATION FOR SEQ ID NO:110:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 60 amino acids
 30
                (B) TYPE: amino acid
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
 35
         (ix) FEATURE:
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 4
               (D) OTHER INFORMATION: /note= "NO.50;GO.50"
40
         (ix) FEATURE:
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 5
               (D) OTHER INFORMATION: /note= "E0.50; V0.50"
45
        (ix) FEATURE:
               (A) NAME/KEY: Modified-site (B) LOCATION: 7
              (D) OTHER INFORMATION: /note= "Q0.50; A0.50"
50
        (ix) FEATURE:
              (A) NAME/KEY: Modified-site
              (B) LOCATION: 8
              (D) OTHER INFORMATION: /note= "K0.34;S0.33;T0.33"
```

```
(ix) FEATURE:
                  (A) NAME/KEY: Modified-site (B) LOCATION: 9
                  (D) OTHER INFORMATION: /note= "T0.34;K0.33;Q0.33"
    5
            (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 10
                  (D) OTHER INFORMATION: /note= "V0.50; P0.50"
  10
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 11
                  (D) OTHER INFORMATION: /note= "K0.50; A0.50"
  15
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 12
                  (D) OTHER INFORMATION: /note= "A0.34;T0.33;K0.33"
  20
           (ix) PEATURE:
                 (A) NAME/KEY: Modified-site (B) LOCATION: 13
                 (D) OTHER INFORMATION: /note= "E0.25;N0.25;D0.25;T0.25"
 25
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 14
                 (D) OTHER INFORMATION: /note= "S0.50; A0.50"
 30
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 15
(D) OTHER INFORMATION: /note= "V0.50; I0.50"
 35
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 18
                (D) OTHER INFORMATION: /note= "M0.50; V0.50"
40
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 19
                (D) OTHER INFORMATION: /note= "S0.50;Q0.50"
45
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 20
               (D) OTHER INFORMATION: /note= "F0.50;L0.50"
50
         (ix) FEATURE:
               (A) NAME/KEY: Modified-site
               (B) LOCATION: 21
               (D) OTHER INFORMATION: /note= "D0.50;N0.50"
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110: Phe Gly Asp Asn Glu Asn Gln Lys Thr Val Lys Ala Glu Ser Val Pro 5 Asn Met Ser Phe Asp Gln Ser Val Val Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser 10 Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 15 (2) INFORMATION FOR SEQ ID NO:111: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 amino acids (B) TYPE: amino acid 20 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 25 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /note= "S0.50;L0.50" 30 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 3 (D) OTHER INFORMATION: /note= "T0.34;E0.33;K0.33" 35 (ix) PEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 4 (D) OTHER INFORMATION: /note= "A0.34;T0.33;P0.33" 40 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 5 (D) OTHER INFORMATION: /note= "10.50; V0.50" 45 (ix) FRATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 6 (D) OTHER INFORMATION: /note= "F0.50;L0.50" 50 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 8 (D) OTHER INFORMATION: /note= "T0.50; V0.50"

```
(ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 18
                 (D) OTHER INFORMATION: /note= "A0.50; K0.50"
   5
           (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 20
                 (D) OTHER INFORMATION: /note= "D0.34;T0.33;E0.33"
  10
           (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
(B) LOCATION: 22
(D) OTHER INFORMATION: /note= "K0.50; V0.50"
 15
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
(B) LOCATION: 23
                (D) OTHER INFORMATION: /note= "TO.34;AO.33;SO.33"
 20
          (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 24
                (D) OTHER INFORMATION: /note= "S0.34;G0.33;N0.33"
 25
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 27
(D) OTHER INFORMATION: /note= "GO.50;NO.50"
30
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 28
                (D) OTHER INFORMATION: /note= "Q0.50;E0.50"
35
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 30
               (D) OTHER INFORMATION: /note= "G0.50; A0.50"
40
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:
     Ser Ala Thr Ala Ile Phe Asp Thr Thr Thr Leu Asn Pro Thr Ile Ala
45
    Gly Ala Gly Asp Val Lys Thr Ser Ala Glu Gly Gln Leu Gly Gly Gly
    Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly
    Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln
```

Phe 65 (2) INFORMATION FOR SEQ ID NO:112: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 66 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 10 (ii) MOLECULE TYPE: peptide (A) NAME/KEY: Kodified-site (B) LOCATION: 2 (C) OTHER INFORMATION: /note- A0.50; V0.50 15 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 3 (D) OTHER INFORMATION: /note= "E0.34;T0.33;K0.33" 20 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 4 (D) OTHER INFORMATION: /note= "A0.50; P0.50" 25 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 5 (D) OTHER INFORMATION: /note= "I0.50; V0.50" 30 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 6
(D) OTHER INFORMATION: /note= "L0.50; V0.50" 35 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 8 (D) OTHER INFORMATION: /note= "V0.50;10.50" 40 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16 (D) OTHER INFORMATION: /note= "A0.50;T0.50" 45 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 18 (D) OTHER INFORMATION: /note= "K0.50;C0.50" 50

(ix) FEATURE:

(A) NAME/KEY: Modified-site (B) LOCATION: 20

(D) OTHER INFORMATION: /note= "S0.34;T0.33;A0.33"

```
(ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 22
                  (D) OTHER INFORMATION: /note= "V0.50; A0.50"
  5
           (ix) FEATURE:
                  (A) NAME/KEY: Modified-site
                  (B) LOCATION: 23
                 (D) OTHER INFORMATION: /note= "A0.34;S0.33;G0.33"
 10
          (ix) FRATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 24
                 (D) OTHER INFORMATION: /note= "S0.50; A0.50"
 15
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
(B) LOCATION: 25
                 (D) OTHER INFORMATION: /note= "G0.50; NO.50"
 20
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) LOCATION: 26
                 (D) OTHER INFORMATION: /note= "50.50; T0.50"
 25
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
(B) LOCATION: 27
(D) OTHER INFORMATION: /note= "E0.50;D0.50"
30
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site (B) LOCATION: 28
                 (D) OTHER INFORMATION: /note= "N0.50;G0.50"
35
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 29
                (D) OTHER INFORMATION: /note= "E0.34;D0.33;Q0.33"
40
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site (B) LOCATION: 30
                (D) OTHER INFORMATION: /note= "L0.50;10.50"
45
         (ix) FEATURE:
                (A) NAME/KEY: Modified-site
                (B) LOCATION: 31
                (D) OTHER INFORMATION: /note= "A0.50; S0.50"
50
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:
```

Leu Ala Glu Ala Ile Leu Asp Val Thr Thr Leu Asn Pro Thr Ile Ala

10 15 Cly Lys Gly Ser Val Val Ala Ser Gly Ser Glu Asn Glu Leu Ala Gly 25 5 Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr 10 60 Gln Phe 65 15 (2) INFORMATION FOR SEQ ID NO:113: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 59 amino acids (B) TYPE: amino acid 20 (D) TOPOLOGY: linear (11) MOLECULE TYPE: peptide 25 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /note= "K0.50;T0.50" 30 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 6
(D) OTHER INFORMATION: /note= "A0.34;K0.33;Q0.33" 35 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 8 (D) OTHER INFORMATION: /note= "F0.50;L0.50" 40 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 11 (D) OTHER INFORMATION: /note= "D0.34;A0.33;N0.33" 45 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 12 (D) OTHER INFORMATION: /note= "I0.50;L0.50" 50 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 13 (D) OTHER INFORMATION: /note= "T0.50; I0.50"

(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 14 (D) OTHER INFORMATION: /note= "A0.50;S0.50" 5 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 17 (D) OTHER INFORMATION: /note= "E0.50; D0.50" 10 (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 24 (D) OTHER INFORMATION: /note= "D0.50; A0.50" 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113: Lys Gly Tyr Val Gly Ala Glu Phe Pro Leu Asp Ile Thr Ala Gly Thr 20 Glu Ala Ala Thr Gly Thr Lys Asp Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys 25 Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe 30 (2) INFORMATION FOR SEQ ID NO:114: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 59 amino acids (B) TYPE: amino acid 35 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114: Lys Gly Tyr Val Gly Ala Glu Phe Pro Leu Asp Leu Lys Ala Gly Thr 45 Asp Gly Val Thr Gly Thr Lys Asp Gly Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Gly Gly Thr Ala Lys Ser Lys Lys Phe Pro Ser Tyr Thr Ala Thr Tyr Gln Phe

We claim:

5

10

15

20

25

1. A peptide comprising a helper T cell epitope (Th) and luteinizing hormone releasing hormone (LHRH) wherein said LHRH is at the carboxyl terminus of said peptide.

 The peptide of Claim 1 wherein said peptide is represented by the formula

A is independently an amino acid, $\alpha\text{-NH}_2$, tripalmitoyl cysteine, a fatty acid, an invasin domain or an immunostimulatory analog of the corresponding invasin domain;

B is an amino acid;

each Th is independently a sequence of amino acids that comprises a helper T cell epitope, or an immune enhancing analog or segment thereof;

LHRH is luteinizing hormone releasing hormone or an immunogenic analog thereof;

n is from 1 to about 10;

m is from 1 to about 4; and

o is from 0 to about 10.

- 3. The peptide of Claim 2 wherein said peptide stimulates an immune response to LHRH in a mammal.
- 4. The peptide of Claim 2 wherein immunization with said peptide is capable of causing a reduction in serum testosterone to less than 10% of normal values.
- 5. The peptide of Claim 2 wherein immunization with said peptide causes atrophy of or prevents growth of the prostate.
- The peptide of Claim 2 wherein said LHRH has an
 amino acid sequence of SEQ ID NO:1.
 - 7. The peptide of Claim 2 wherein said Th has an amino acid sequence selected from any one of SEQ ID NOS:2-9 or 42-52, or an analog or segment thereof.
- 8. The peptide of Claim 2 wherein said peptide has an amino acid sequence of any one of SEQ ID NOS:10-41.

9. The peptide of Claim 2 wherein at least one λ is an invasin domain.

- 10. The peptide of Claim 9 wherein n is 4, and A is $\alpha-NH_2$, an invasin domain, glycine and glycine in that order.
- 11. The peptide of Claim 2 or 10 wherein said invasin domain has an amino acid sequence of SEQ ID NO:53.

5

10

20

25

30

- 12. A peptide comprising an amino acid sequence of SEQ ID NO:10, 13, 16, 18, 19, 32 OR 38.
- 13. A vaccine composition comprising an immunologically effective amount of a peptide of Claims 1, 2, 8, 9 or 12 and a pharmaceutically acceptable carrier.
- 14. The vaccine composition of Claim 13, wherein said immunologically effective amount of said peptide is about 0.5 μ g to about 1 mg per kilogram body weight per dose.
- 15. A method for inducing infertility in a mammal which comprises administering to said mammal the vaccine composition of Claim 13 for a time and under conditions to produce an infertile state in said mammal.
 - 16. A method for treating androgen-dependent carcinoma which comprises administering the vaccine composition of Claim 13 to a mammal for a time and under conditions to effect regression of or prevent growth of said carcinoma.
 - 17. A method for suppressing activity of LHRH in a mammal which comprises administering to said mammal a peptide of any one of Claims 1, 2, 8, 9, or 12 for a time and under conditions sufficient to reduce serum levels of said LHRH.
 - 18. The method of Claim 17 wherein said suppression of LHRH activity is a treatment for prostatic hyperplasia, androgen-dependent carcinoma, prostatic carcinoma, testicular carcinoma, endometriosis, benign uterine tumors, recurrent functional ovarian cysts (severe) premenstrual syndrome or estrogen-dependent breast tumors; is for prevention of estrogen-dependent breast cancer; or is for induction of infertility.
 - 19. The method of Claim 17 wherein said suppression of

LHRH activity is for reducing boar taint in pigs, immunocastrating dogs or cats, or gelding stallions.

5

10

15

20

25

30

- 20. A peptide composition comprising a mixture of two or more peptides of Claim 1, 2, 8, 9 or 12.
- 21. The composition of Claim 20 wherein said mixture comprises a combination of peptides having amino acid sequences of SEQ ID NOS:13, 16, 18 and 19.
- 22. The composition of Claim 20 wherein said mixture comprises a combination of peptides having amino acid sequences of SEQ ID NOS:13, 16, 19 and 32.
- 23. A synthetic peptide of about 30 to about 90 amino acids which comprises an immunostimulatory invasin domain, a helper T cell (Th) epitope and a peptide hapten.
- 24. The peptide of Claim 23 wherein said peptide stimulates an immune response to said peptide hapten.
- 25. The peptide of Claim 23 or 24 wherein said invasin domain has an amino acid sequence of SEQ ID NO:53 or an immunostimulatory analog corresponding to said sequence.
- 26. The peptide of anyone of Claims 23 to 25 wherein said T, epitope has an amino acid sequence selected from any one of SEQ ID NOS:2-9, 42-52, or an immune-enhancing analog or segment corresponding to said sequence.
- 27. The peptide of any one of Claims 23 to 26 wherein said peptide hapten has an amino acid sequence selected from anyone of SEQ ID NOS:1, 66-91 or an immunogenic analog corresponding to said sequence.
- 28. The peptide of anyone of Claims 23 to 27 having (A), covalently bound to the amino terminus of said peptide, wherein A is independently an amino acid, α -NH₂, tripalmittyl systems or a factor point and a in formatting of the said and a size for a factor acid.
- tripalmitoyl cysteine or a fatty acid; and n is from 1 to about 10.
 - 29. The peptide of anyone of Claims 23 to 28 wherein said invasin domain, said T_k epitope and said peptide hapten represent groups of amino acids covalently joined in any order which substantially preserves immunoreactivity and with a spacer (B), between any two of said groups, wherein B

is independently any amino acid and o is from 0 to about 10.

- 30. The peptide of Claim 29, wherein o is two and B is glycine and glycine.
- 31. The peptide of Claims 23 or 24, wherein said peptide has an amino acid sequence of any one of SEQ ID NOS:92-114, or peptide 115.
 - 32. The peptide of Claim 24 wherein said peptide hapten is amylin or an immunogenic analog thereof.
- 33. The peptide of Claim 32 Wherein said peptide hapten 10 : has an amino acid sequence of any one of SEQ ID NOS:66-68.
 - 34. A vaccine composition comprising an immunologically effective amount of a peptide of Claim 32 or 33 and a pharmaceutically acceptable carrier.
- 35. A method of treating non-insulin dependent diabetes
 which comprises administering the vaccine composition of
 Claim 34 to a mammal to reduce circulating amylin levels or
 blood glucose levels.
 - 36. The paptide of Claim 24 wherein said peptide hapten is gastrin, gastrin, or an immunogenic analog thereof.

20

25

- 37. The peptide of Claim 36 wherein said peptide hapten has an amino acid sequence of any one of SEQ ID NOS: 69-76.
- 38. A vaccine composition comprising an immunologically effective amount of a peptide of Claim 36 or 37 and a pharmaceutically acceptable carrier.
 - 39. A method of treating peptic ulcer disease or gastrin stimulated tumors which comprises administering the vaccine composition of Claim 38 to a mammal to reduce gastrin levels.
 - 40. The peptide of Claim 24 wherein said peptide hapten is gastrin releasing peptide or an immunogenic analog thereof.
- 41. The peptide of Claim 40 wherein said peptide
 35 hapten has an amino acid sequence of any one of SEQ ID NOS:
 77 or 78.

42. A vaccine composition comprising an immunologically effective amount of a peptide of Claim 40 or 41 and a pharmaceutically acceptable carrier.

43. A method of treating peptic ulcer disease, gastrin-releasing peptide stimulated tumors or lung cancer which comprises administering the vaccine composition of Claim 42 to a mammal to reduce gastrin releasing peptide levels.

5

10

20

- 44. The peptide of Claim 24 wherein said peptide hapten is a peptide from the CH4 domain of an IgE molecule or an immunogenic analog thereof.
- 45. The peptide of Claim 44 wherein said peptide hapten has an amino acid sequence of SEQ ID NOS: 79.
- 46. A vaccine composition comprising an immunologically effective amount of a peptide of Claim 44 or 45 and a pharmaceutically acceptable carrier.
 - 47. A method of treating allergy which comprises administering the vaccine composition of Claim 46 to a mammal to reduce histamine levels or to block IgE-mediated activation of mast cells or basophils.
 - 48. The peptide of Claim 24 wherein said peptide hapten is a variable domain (VDI-IV) of Chlamydia trachomatis major outer membrane protein (MOMP) or an immunogenic analog thereof.
- 25 49. The peptide of Claim 48 wherein said peptide hapten has an amino acid sequence of any one of SEQ ID NOS: 80-89.
 - 50. A vaccine composition comprising an immunologically effective amount of a peptide of Claim 48 or 49 and a pharmaceutically acceptable carrier.
 - 51. A method of immunizing a mammal against Chlamydia which comprises administering the vaccine composition of Claim 50 to a mammal to produce neutralizing antibodies against Chlamydia trachomatis.
- 35 52. The peptide of Claim 24 wherein said peptide hapten is an HIV V3 principal neutralizing domain or an

immunogenic analog thereof.

5

10

53. The peptide of Claim 52 wherein said peptide hapten has an amino acid sequence of SEQ ID NO: 90.

- 54. A vaccine composition comprising an immunologically effective amount of a peptide of Claim 52 or 53 and a pharmaceutically acceptable carrier.
- 55. A method of treating acquired immune deficiency syndrome (AIDS) or preventing Human immunodeficiency virus infection which comprises administering the vaccine composition of Claim 54 to a mammal to produce neutralizing antibodies to human immunodeficiency virus.

MICHOED CLAIRS

[received by the International Bureau on 30 September 1994 (30.09.94), original claims 1 and 3 replaced by new claim 1; original claims 3 cancelled; original claims 15-17 and 19 amended; other claims unchanged (2 pages)]

- 1. A peptide that stimulates an immune response to LHRH of in a mammal comprising a helper T cell epitope (Th) and luteinizing hormone releasing hormone (LHRH) wherein said LHRH is at the carboxyl terminus of said peptide.
- 2. The peptide of Claim 1 wherein said peptide is represented by the formula

(A) .- (Th) .- (B) .- LHRH

A is independently an amino acid, c-NH, tripalmitoyl cysteine, a fatty acid, an invasin domain or an immunostimulatory analog of the corresponding invasin domain;

B is an amino acid;

1

5

20

25

30

each Th is independently a sequence of amino acids that comprises a helper T cell epitope, or an immune enhancing analog or segment thereof;

LHRH is luteinizing hormone releasing hormone or an immunogenic analog thereof;

n is from 1 to about 10;

m is from 1 to about 4; and

o is from 0 to about 10.

- 4. The peptide of Claim 2 wherein immunization with said peptide is capable of causing a reduction in serum testosterone to less than 10% of normal values.
- 5. The peptide of Claim 2 wherein immunization with said peptide causes atrophy of or prevents growth of the prostate.
- The peptide of Claim 2 wherein said LHRH has an amino acid sequence of SEQ ID NO:1.
 - 7. The peptide of Claim 2 wherein said Th has an amino acid sequence selected from any one of SEQ ID NOS:2-9 or 42-52, or an analog or segment thereof.
- 8. The peptide of Claim 2 wherein said peptide has an amino acid sequence of any one of SEQ ID NOS:10-41.

9. The peptide of Claim 2 wherein at least one A is an invasin domain.

- 10. The peptide of Claim 9 wherein n is 4, and A is $\alpha-$ NH, an invasin domain, glycine and glycine in that order.
- 5 11. The peptide of Claim 2 or 10 Wherein said invasin domain has an amino acid sequence of SEQ ID NO:53.
- 12. A peptide comprising an amino acid sequence of SEQ ID NO:10, 13, 16, 18, 19, 32 OR 38.
- 13. A vaccine composition comprising an immunologically effective amount of a peptide of Claims 1, 2, 8, 9 or 12 and a pharmaceutically acceptable carrier.
 - 14. The vaccine composition of Claim 13, wherein said immunologically effective amount of said peptide is about 0.5 μg to about 1 mg per kilogram body weight per dose.
- 15. A method for inducing infertility in a mammal which comprises administering to said mammal the vaccine composition of Claim 13 for a time sufficient to produce an infertile state in said mammal.
- 16. A method for treating androgen-dependent carcinoma
 which comprises administering the vaccine composition of
 Claim 13 to a mammal for a time sufficient to
 effect regression of or prevent growth of said carcinoma.
- 17. A method for suppressing activity of LHRH in a mammal which comprises administering to said mammal a peptide of any one of Claims 1, 2, 8, 9, or 12 for a time sufficient to reduce serum levels of said LHRH.
- 18. The method of Claim 17 wherein said suppression of LHRH activity is a treatment for prostatic hyperplasia, androgen-dependent carcinoma, prostatic carcinoma, testicular carcinoma, endometriosis, benign uterine tumors, recurrent functional ovarian cysts (severe) premenstrual syndrome or estrogen-dependent breast tumors; is for prevention of estrogen-dependent breast cancer; or is for induction of infertility.
- 35 19. The method of Claim 17 wherein said suppression of

Fig. 1A

Fig. 1B

Fig. 1C

Fig. 1
SUBSTITUTE SHEET (RULE 26)

Fig. 2
-2/37
SUBSTITUTE SHEET (RULE 26)

Fig. 3
-3/37
SUBSTITUTE SHEET (RULE 26)

Fig. 4

-4/37

SUBSTITUTE SHEET (RULE 26)

-5/37
SUBSTITUTE SHEET (RULE 26)

Serum Testosterone nmol/L

-6/37

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 28)

Anti-LHRH Titers
J\lomn

-9/37.

SUBSTITUTE SHEET (RULE 26)

10/37
SUBSTITUTE SHEET (RULE 26)

11/37 SUBSTITUTE SHEET (RULE 26)

Serum Testosterone nmol/L

12/37

SUBSTITUTE SHEET (RULE 26)

13/37 SUBSTITUTE SHEET (RULE 26)

Anti-LHRH Titers J\lomn

14/37

SUBSTITUTE SHEET (RULE 26)

15/37
SUBSTITUTE SHEET (RULE 26)

Serum Testosterone

16/37 SUBSTITUTE SHEET (RULE 26)

17/37
SUBSTITUTE SHEET (RULE 26)

18/37 SUBSTITUTE SHEET (RULE 26)

Anti-LHRH Titers LNOI/L

Fig. 19a

Serum Testosterone Serum Testosterone Serum Testosterone

Serum Testosterone nmol/L

21/37 SUBSTITUTE SHEET (RULE 26)

22/37 SUBSTITUTE SHEET (RULE 26)

53\32 Anti-LHRH-itnA J\lomn

Serum Testosterone nmol/L

SUBSTITUTE SHEET (RULE 26)

Anti-LHRH Titers

Fig. 25

22/22 Serum Testosterone nmol/L

28/37
SUBSTITUTE SHEET (RULE 26)

Anti-LHRH Titers |

29/37

Serum Testosterone J\lomn

31/37
SUBSTITUTE SHEET (RULE 26)

32/37
SUBSTITUTE SHEET (RULE 26)

33/37

SUBSTITUTE SHEET (RULE 26)

7/Jowu Ainti-LHRH Titers

35/37

Serum Testosterone nmol/L

37/37 SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/04832

(PC(5) :A61K 37/38, 57/02, 57/43, 57/04, 39/395							
US CL. :514/2; 424/88; 530/399, 403 According to International Putcat Classification (IPC) or to both autional classification and IPC							
	DS SEARCHED						
	Minimum documentation searched (classification system followed by classification symbols)						
	514/2, 841, 843, 927, 866; 424/88; 530/399, 403	·					
i							
Documentat	ion searched other than minimum documentation to the	extent that such documents are included in the fields searched					
	- -						
		of the harmonic management are the second terms (1994)					
		me of data base and, where practicable, search terms used)					
APS, Me	dline, Biosis, Embase, Chemical Abstracts, Gen	eSeq					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	: Citation of document, with indication, where ap	propriate, of the relevant passages Relevant to claim No.					
Υ	EP, A, 0,429,816 (ETLINGER) 1	2 OCTOBER 1990, see 1-55					
	pages 3 and 4.						
		.]					
	A contract of the contract of	ne 72. Part 6. Issued June 1-55					
Y	Journal of General Virology, Volum	nonece in Mice Following					
	1991, Partidos et al, "Immune Res	ponses in Mice Following					
	Immunization with Chimeric Synthe	A Virus Proteins" names					
	B and T Cell Epitopes of Measle	s viids Floteins , pages					
	1293-1299, see page 1298.						
1							
X Furt	her documents are listed in the continuation of Box C	. See patent family annex.					
· Sp	occial categories of clint decounsents:	"]" inter document published after the interestioned filing date or priority date and not in conflict with the application but cited to understand the					
٠٨٠ و	content defining the general state of the act which is not considered be of perfectler relevance.	hejercible on greenly angend and management					
	rier document published on or after the international filling data	"X" document of particular relevance; the claimed investica cannot be considered nevel or cannot be considered to involve an inventive step					
	noment which may throw dealer as priority chain(4) or which is not to establish the publishmen date of another citation or other	when the document is taken alone					
special reason (at specified)							
	connect sofuring to an esti disclosure, use, exhibition or other	combined with our or more other such decements, such combination being obvious to a person skilled in the art					
"P" decreases published prior to the interactional filling date but later than "A" document member of the same patent family the priority date chilated							
Date of the actual completion of the international search Date of mailing of the international search							
19 JULY 1994							
Name and mailing address of the ISA/US Commissioner of Peterss and Trademerks Authorized officer W. Y. L. A. Line							
Name and mailing address of the ISAUS Commissioner of Peterss and Trademarks Box PCT Washington, D.C. 20231 JULIE KRSEK-STAPLES JULIE KRSEK-STAPLES							
_	No. (703) 305-3230	Telephone No. (703) 308-0196					

INTERNATIONAL SEARCH REPORT

laternational application No. PCT/US94/04832

	•			
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT				
Catogory*	Citation of document, with indication, where appropriate, of the relevan	nt bettefce	Relevant to claim No.	
Y	American Journal of Reproductive Immunology, Volume 22, Nos. 1-2, Issued January-February 1990, Ladd et al, "Active Immunization Against LHRH: 1. Effects of Conjugation Site and Dose", pages 56-63, see page 56.		1-55	
Y	Methods in Enzymology, Volume 178, issued 1989, Coral, "Identification of T-cell Epitopes and Use in Constru Synthetic Vaccines," pages 611-634, see pages 630-633.	ction of	1-55	
Y	Vaccine, Volume 7, issued February 1989, Wiesmuller on "Novel Low-Molecular-Weight Synthetic Vaccine Again And-Mouth Disease Containing A Potent B-Cell and Ma Activator", pages 29-33, see page 29.	st Foot-	1-55	
Y	EP, A, 0,301,850 (VICKERY) 28 JULY 1988, see page	es 2 and 4.	1-31	
A	Prostate, Volume 14, No. 1, issued 1989, Jayashankar e "Semisynthetic anti-LHRH Vaccine Causing Atrophy of Prostate", pages 3-11, see page 4.		1-19	
Y	US, A, 4,608,251 (MIA) 26 AUGUST 1986, see column	n 2.	19	
Y	EP, A, 0,343,460 (SINIGAGLIA) 12 MAY 1989, see el document.	ntire	1-55	
Y	EP, A, 0,427,347 (BIANCHI ET AL.) 07 NOVEMBER entire document.	1990, see	1-55	
Y	WO, A, 93/03764 (VITIELLO ET AL) 04 MARCH 199 entire document.	93, see	1-55	
Y.	WO, A, 92/05192 (RUSSELL-JONES ET AL) 02 APRI see entire document.	L 1992,	1-55	
Y	EP, A, 0,403,312, (STANWORTH ET AL) 19 DECEM 1990, see entire document.	BER	24, 44-47	
Y	WO, A, 92/20370 (HIGGINS ET AL) 26 NOVEMBER entire document.	1992, see	24, 52-55	
Y	WO, A, 92/13883 (JANAKY ET AL) 20 AUGUST 199 entire document.	2, see	1-22	
Y	US, A, 4,613,586 (BARCHAS ET AL) 23 SEPTEMBE see entire document.	R 1986,	24, 40-43	

INTERNATIONAL SEARCH REPORT

International application No. PCT/U994/04832

Infection and Immunity, Volume 59, No. 10, issued October 1991, Leong et al, "Mapping and Topographic Localization of Epitopes of the *Tersinia pseudouberculosis* Invasin Protein", pages 3424-3433, see entire document.	Category	Clintion of document, with indication, where appropriate, of the relevant passages	Relevant to claim No	
	7	1991, Leong et al, "Mapping and Topographic Localization of Epitopes of the Yersinia pseudocuberculosis Invasia Protein",	9-55	
		·		
	!			
	•			
		·		