الأسس واللوغاريتمات Exponents and Logarithms

$$\begin{split} \log_a 1 &= 0, \log_a a = 1 \\ \log_a xy &= \log_a x + \log_a y \\ \log_a \frac{x}{y} &= \log_a x - \log_a y \\ \log_a x^b &= b \log_a x \\ a^{\log_a x} &= x \end{split} \qquad \begin{matrix} x^a x^b &= x^{a+b} \\ \frac{x^a}{x^b} &= x^{a-b} \\ (xy)^a &= x^a y^b \\ (xy)^a &= x^a y^b \end{matrix}$$
 من قوانين الأسس:
$$(xy)^a &= x^a y^b \\ (xy)^b &= x^a y^b \\ (x^a)^b &= x^a b \\ x^a &= \sqrt[a]{x} \end{split}$$

وهي متحققة طالما كانت الحدود معرفة.

a,x>0 حيث $\log_a x=b\Leftrightarrow a^b=x$ وللربط بين الأسس واللوغاريتمات يمكننا استخدام التعريف

$$\log_a \frac{x}{y} \neq \frac{\log_a x}{\log_a y}$$
 $\log_a xy \neq \log_a x \log_a y$ وينبغي دائما تذكر أن $\log_a (x+y) \neq \log_a x + \log_a y$

Examples : أمثلة

$$\log_4 128$$
 حسب (1)

برهن أن
$$x = \log_a b$$
 و $\log_a b^c = y$ و مما العلاقة بين $\log_a b = x$ إذا كان $\log_a b = x$ و $\log_a b = x$ و $\log_a b = x$ و رعمن أن $\log_a b = \log_a b$ و رعمن أن $\log_a b = \log_a b$

.
$$S = \frac{1}{\log_2 100!} + \frac{1}{\log_3 100!} + \frac{1}{\log_4 100!} + \dots + \frac{1}{\log_{100} 100!}$$
 أوحد قيمة $\left(4\right)$

$$egin{cases} x^{\log_y x} = 2 & \qquad ext{ حل المعادلتين} \ y^{\log_x y} = 16 \end{cases}$$

تمارين: Exercises

$$\cdot \frac{4}{\log_{10} 5} - \frac{2}{\log_4 5}$$
 أو حد قيمة أو (A)

$$\,\cdot\,a^{\log_{b}c} = c^{\log_{b}a}\,$$
برهن أن $\left(B
ight)$

$$a_{_2} + a_{_3} + a_{_4} - a_{_6} - a_{_7} - a_{_8}$$
 فاحسب $a_{_n} = \frac{1}{\log_n 14}$ إذا عرّفنا $\left(C\right)$

.
$$\log_{10} a^2 + \log_{10} b^2 = \log_{10} c^2$$
 يقال عن مثلث أضلاعه $a \leq b \leq c$ إنه قائم لوغاريتمياً إذا حقق (D) يقال عن مثلث أصلاعه $a \leq b \leq c$ في مثلث قائم الزاوية و قائم لوغاريتمياً.

.
$$\log_2 x$$
 بنا كان $\log_2 \left(\log_{\mathbb{S}} x\right) = \log_{\mathbb{S}} \left(\log_2 x\right)$ ناحسب $\left(E\right)$

$$a \geq b > 1$$
 حيث $\log_a rac{a}{b} + \log_b rac{b}{a}$ ما أكبر قيمة ممكنة للمقدار $\left(F
ight)$

افاحسب ، $\log_x w = 24$, $\log_y w = 40$, $\log_{xyz} w = 12$ ، فاحسب ، x,y,z > 1 فاحسب (G) . $\log_z w$

$$\log_{a^n} b = rac{1}{n} \log_a b$$
 برهن أن $\left(H
ight)$

$$\log_b(9a) = 3\log_a b = -3$$
 بحيث (a,b) بحيث الأزواج المرتبة (a,b)

$$\cdot 5^{\log_{10} 2} \cdot 2^{\log_{10} 3} \cdot 2^{\log_{10} 6} \cdot 5^{\log_{10} 9}$$
 احسب قیمة $\left(J
ight)$