Ejercicos monitoría semana 4

Rodrigo Castillo

2 de septiembre de 2020

1. Sea R un anillo, demuestre que

1.1. si existe la identidad 1 es única

Demostracion:

Supongamos que existen 1 y 1'.

por lo tanto, para cada $a \in R$ existe $b \in R$ tal que ab = 1 y ab = 1'.

por lo tanto 1 = 1' luego la identidad es única.

si un elemento a tiene inverso multiplicativo este es único 1.2.

Supongamos que un elemento $a \in R$ tiene múltiples inversos multiplicativos, es decir que para todo $a \in R$ existen $b, b' \in R$ tales que ab = 1 y ab' = 1. por lo tanto

$$b = \frac{1}{a}$$
$$b' = \frac{1}{a}$$

luego el inverso multiplicativo en un anillo es único

(no sé que tanto sentido tenga esta demostración jaja, preguntar)

2. Demuestre que los siguientes son subanillos de C

$\overline{2.1.}$ Los enteros de Gauss

$$Z[i] = \{a + bi, a, b \in Z\}$$

$$\tag{1}$$

Demostración: sean $a, a' \in Z[i]$, por
, por lo anto $a = a + bi, a, b \in Z$ y $a' = a' + b'i, a', b' \in Z$ Z .

Los enteros de einstein 2.2.

$$Z[w] = \{a + bw, a, b \in Z\}$$

$$\tag{2}$$

donde $w = e^{\frac{2\pi i}{3}} = \frac{-1 + \sqrt{3}}{3}$

- 3. Demuestre que si $\theta:R\to S$ es un homomorfismo invertible de anillos $\Rightarrow \theta^{-1}:R\to S$ también es un homomorfismo de anillos
- 4. Encuentre el nucleo de los siguientes homomorfismos
 - $\theta: [x,y] \to R$ $f(x,y) \to f(0,0)$ donde R[x,y] es el anillo de los polinomios en dos indeterminadas $x \neq y$, es decir: cada monomio tiene la forma $a_{ij}x^iy^j$ con $a_{ij} \in Ry$ $i,j \in N$
 - $\theta: R[x] \to C ,$ $f(x) \to f(2+i)$

sugerencia , encuentre el polinomo p(x) de grado minimo en $ker(\theta)$ y después muestre que cualquier elemento de $ker(\theta)$ es de la forma p(x)q(x) por algún $q(x) \in R[x]$.