Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Кафедра компьютерных технологий

Применение графических процессоров для генерации управляющих автоматов на основе моделирования и сценариев работы с помощью эволюционных алгоритмов

Автор доклада: Бочкарев А.И.

Научный руководитель: Шалыто А.А.

Цель работы

- Применение графических процессоров при генетическом построении управляющих автоматов в различных задачах
- Изучение платформы *OpenCL* и экспериментальное сравнение ее производительности со стандартными технологиями многопоточности
- Исследование вычислительных способностей графических процессоров
- Изучение применимости полученных результатов в других задачах

Модель платформы *OpenCL*

- Каждая реализация *OpenCL* определяет платформы, которые позволяют приложению взаимодействовать с вычислительными устройствами
- OpenCL использует технологию «Installable Client Driver»
- Структура платформы *OpenCL* изображена на рисунке:

Серия задач об умном муравье

- Поле игры представляет двумерный тор NxM
- В некоторых клетках расположены яблоки
- Муравей имеет область видимости, которая варьируется в различных модификациях
- За один ход муравей может повернуться или сделать шаг вперед, при этом он съедает яблоко, если оно находилось прямо перед ним
- Необходимо построить управляющий автомат, который максимизирует число съеденных яблок за некоторое число ходов

Построение автоматов в данной работе

- Входные воздействия есть ли яблоко в той или иной клетке из области видимости
- Автомат хранится в виде полной таблицы переходов, сокращенной таблицы и дерева решений
- Используются различные генетические алгоритмы
- Размеры поколений варьируются в экспериментах
- Используется стандартная функция приспособленности: число съеденных муравьем яблок за N ходов

Измерения результатов

- Измерения проводились на различных машинах
- Измерялись четыре вида программ: OpenCL на GPU, OpenCL на CPU, многопоточная версия на C++
- Проверялось несколько версий кода *OpenCL*
- Тестирования проводились с различными размерами поколений: от 256 особей до более чем 16 тысяч особей
- Метрикой результата считалось число поколений, выращенных за 30 секунд выполнения программы, а также скорость вычисления функций приспособленности

Результаты измерений для модификации задачи об умном муравье

• CPU: AMD Phenom II X4 955 3.20 GHz

GPU: AMD Radeon HD 6850Ti

Размер поколения	Обертка OpenCL	OpenCL на GPU	OpenCL на CPU	C++
1024	7657	12620	7020	1032
3072	2611	5100	2320	337
4098	1960	3400	1760	268
16384	500	560	440	74

Число поколений, построенных за 30 секунд выполнения алгоритма

Результаты измерений

• CPU: AMD Phenom II X4 955 3.20 GHz

• GPU: AMD Radeon HD 6850Ti

Переход от скалярных операций мутации и скрещивания к векторным.

Размер поколения	OpenCL на GPU	1	OpenCL на CPU
25	19	0880	77440
256	17	980	7680

Размер поколения	OpenCL на GPU	OpenCL на CPU	
25	23020	71040	
256	20160	7280	

Число поколений, построенных за 30 секунд выполнения алгоритма

Переход на Задачу об Умном муравье-3

- Генетический алгоритм выполняется на центральном процессоре, на *OpenCL* рассчитываются только функции приспособленности
- Реализованы другие способы хранения информации о переходах, сокращенные таблицы и деревья решений
- Внесены необходимые изменения в виртуальную лабораторию

Результаты измерений для задачи об Умном муравье 3 (сокращенные таблицы)

• CPU: AMD Phenom II X4 955 3.20 GHz

• GPU: AMD Radeon HD 6850Ti

Размер поколения	OpenCL на GPU	OpenCL на CPU	C++
3072	264.149	101.7	-
16384	46.890	18.894	-

Скорость вычисления функций приспособленности для всего поколения (число обработанных поколений в секунду).

Результаты измерений для задачи об Умном муравье 3 (деревья решений)

• CPU: AMD Phenom II X4 955 3.20 GHz

• GPU: AMD Radeon HD 6850Ti

Размер поколения	OpenCL на GPU	OpenCL на CPU	C++
3072	87.625	57.686	-
16384	20.194	10.346	-

Скорость вычисления функций приспособленности для всего поколения (число обработанных поколений в секунду).

Заключение

- Решения, примененные в данной работе, могут быть использованы для решения других задач
- Возможно использовать мощности графического процессора в дополнение к центральному
- Платформа *OpenCL* является мощным инструментом, позволяющим производить эффективные вычисления на различных устройствах

Спасибо за внимание!

Вопросы?