Week 8: Statistical tests involving two variables (part II)

Phase 3

Recap from previous week

- Sometimes we want to make inferences that involve one categorical variable and one continuous variable (e.g differences in means between two or more populations).
- In this case, we could use a **two-sample t-test** (2 populations) or a **one-way ANOVA** (>= 2 populations).
- For ANOVA, we may need to run **post-hoc analyses** followed by a procedure to keep Type I error, α, under control.
- In this lecture, we will cover testing the relationship between pairs of categorical variables and pairs of continuous variables.

Inferences based on the relation between two variables

gender	education	1	age	ACT	SATV	SATQ
2	2	3	19	24	500	500
2)	3	23	35	600	500
2	<u> </u>	3	20	21	480	470
1	l •8	4	27	26	550	520
1		2	33	31	600	550
1	38	5	26	28	640	640
2	2	5	30	36	610	500
1	} ¥8	3	19	22	520	560
2	2	4	23	22	400	600
2)	5	40	35	730	800

Inferences based on the relation between two variables

e.g. are there differences in ACT scores between men and women?

gende	er (education		age A	СТ	SATV	SATQ
	2		3	19	24	500	500
	2		3	23	35	600	500
	2		3	20	21	480	470
	1	0	4	27	26	550	520
	1	-	2	33	31	600	550
	1		5	26	28	640	640
	2		5	30	36	610	500
	1		3	19	22	520	560
	2	10	4	23	22	400	600
	2		5	40	35	730	800

Inferences based on the relation between two variables

e.g. do men and women taking ACT exams exhibit differences in their education levels?

Inferences based on the relation between two variables

e.g. do people of
greater ages tend to
score ACT exams
better?

gender educ	cation a	ge /	ACT S	SATV S	SATQ
2	3	19	24	500	500
2	3	23	35	600	500
2	3	20	21	480	470
1	4	27	26	550	520
1	2	33	31	600	550
1	5	26	28	640	640
2	5	30	36	610	500
1	3	19	22	520	560
2	4	23	22	400	600
2	5	40	35	730	800

Categorical vs categorical variable

Categorical vs categorical variable

- Here, instead of comparing means across levels of one of the categorical variables, we compare their **proportions**.
- <u>Key concept:</u> Each level in the categorical variable represents a different population (e.g. healthy and disease, education levels, etc)
- The most famous tests in this scenario are a χ^2 -test of independence and the Fisher exact test.

Categorical vs categorical variable

Research question
do men and women
taking ACT exams
exhibit differences
in their education
levels?

gende	er	educatio	n a	age	ACT	SATV	SATQ
0.000	2		3	19	24	500	500
	2		3	23	35	600	500
	2		3	20	21	480	470
	1		4	27	26	550	520
	1		2	33	31	600	550
	1		5	26	28	640	640
	2		5	30	36	610	500
	1		3	19	22	520	560
	2		4	23	22	400	600
	2		5	40	35	730	800

Categorical vs categorical variable: Contingency Table

Research question do men and women taking ACT exams exhibit differences in their education levels?

	1	2	Total
0	27	30	57
1	20	25	45
2	23	21	44
3	80	195	275
4	51	87	138
5	46	95	141
Total	247	453	700

Categorical vs categorical variable: Contingency Table

Notation:

- O_{ij} = Observed occurrences of the category *i* of the first variable in the category *j* of the second variable
- R_i = number of the category *i* of the first variable
- C_j = of the category j of the second variable

	1	2	Total
0	O ₁₁	O ₁₂	R ₁
1	O ₂₁	O ₂₂	R ₂
2	O ₃₁	O ₃₂	R ₃
3	O ₄₁	O ₄₂	R ₄
4	O ₅₁	O ₅₂	R ₅
5	O ₆₁	O ₆₂	R ₆
Total	C ₁	C ₂	N

- The hypothesis of a χ^2 -test of independence is that there is no association between two categorical variables.
- Null hypothesis: the two categorical variables are independent of each other.
- Alternative hypothesis: there is a dependence between the two categorical variables.
- Evaluated by testing whether the number of occurrences in one variable change with the number of occurrences in the other variable.
- <u>Example</u>: Is there a significant association between the size of the hippocampus (small, medium, or large) and memory performance (poor, fair, or excellent) in older adults?

Assumptions:

- 1. <u>Independence</u>: Observations in your sample are not correlated with each other (e.g. in *cross-sectional* studies).
- Sufficiently large expected frequencies.

Rule of thumb: expected frequencies larger than about 5, or at least 80% of the the expected frequencies are above 5 and none of them are below 1 (larger tables)

Assumptions:

- Independence: Observations in your sample are not correlated with each other (e.g. in cross-sectional studies). What if they are? → McNemar test!!!
- Sufficiently large expected frequencies.

Rule of thumb: expected frequencies larger than about 5, or at least 80% of the the expected frequencies are above 5 and none of them are below 1 (larger tables)

 \triangleright Null Hypothesis $\mathbf{H}_{\mathbf{n}}$: the two variables are independent of each other.

$$ightharpoonup$$
 Test statistic: $\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(E_{ij} - O_{ij})^2}{E_{ij}}$

 \rightarrow Null Hypothesis $\mathbf{H}_{\mathbf{n}}$: the two variables are independent of each other.

$$E_{ij} = \frac{C_j imes R_i}{N}$$
 No input, we have to estimate this from the data!

$$ightharpoonup$$
 Test statistic: $\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(E_{ij} - O_{ij})^2}{E_{ij}}$

 \rightarrow Null Hypothesis $\mathbf{H}_{\mathbf{n}}$: the two variables are independent of each other.

$$E_{ij} = rac{C_j imes R_i}{N}$$
 No input, we have to estimate this from the data!

> Test statistic:
$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(E_{ij} - O_{ij})^2}{E_{ij}} \sim \Box^2$$
 distribution (df)

 \rightarrow Null Hypothesis $\mathbf{H}_{\mathbf{n}}$: the two variables are independent of each other.

$$E_{ij} = \frac{C_j \times R_i}{N}$$

$$> \text{ Test statistic: } \chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(E_{ij} - O_{ij})^2}{E_{ij}} \sim \Box^2 \text{ distribution (df)}$$

$$= \frac{1}{N} \sum_{i=1}^r \sum_{j=1}^c \frac{(E_{ij} - O_{ij})^2}{E_{ij}} \sim \Box^2 \text{ distribution (df)}$$

$$= \frac{1}{N} \sum_{i=1}^r \sum_{j=1}^r \frac{(E_{ij} - O_{ij})^2}{E_{ij}} \sim \Box^2 \text{ distribution (df)}$$

$$= \frac{1}{N} \sum_{i=1}^r \sum_{j=1}^r \frac{(E_{ij} - O_{ij})^2}{E_{ij}} \sim \Box^2 \text{ distribution (df)}$$

 \triangleright Null Hypothesis $\mathbf{H}_{\mathbf{n}}$: the two variables are independent of each other.

ightharpoonup Test statistic: $\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(E_{ij} - O_{ij})^2}{E_{ij}}$

 $qchisq(\alpha, df=(r-1)\cdot(c-1), lower.tail = FALSE)$

Alternative Hypothesis H_A:

Significant association between the two variables

Rejection region for α

$$\chi^2 \ge \chi^2_{\alpha,k-1}$$

 \triangleright Null Hypothesis $\mathbf{H}_{\mathbf{n}}$: the two variables are independent of each other.

> Test statistic: $\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(E_{ij} - O_{ij})^2}{E_{ij}}$

 $pchisq(\chi^2, df=(r-1)\cdot(c-1), lower.tail = FALSE)$

- Alternative Hypothesis H_A:
 - Significant association between the two variables

Rejection for α in P-values

 $P(X \ge \chi^2) \le \alpha$

 \rightarrow Null Hypothesis \mathbf{H}_0 : the two variables are independent of each other.

> Test statistic:
$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(E_{ij} - O_{ij})^2}{E_{ij}}$$

R: chisq.test(O_{jj})

Input as table, see tutorial!!

Alternative Hypothesis H_A:

Significant association between the two variables

Rejection for α in P-values

 $P(X \ge \chi^2) \le \alpha$

Practice example

<u>Problem</u>: Relationship between anxiety and test performance in college students.

	High Anxiety	Low Anxiety	Total
High Score	24	40	64
Low Score	70	50	120
Total	90	90	184

<u>Question</u>: At a significance level of 0.05, are students with high anxiety levels more likely to perform poorly on tests compared to students with low anxiety levels? (Hint: $\chi^2_{0.05.1} \sim 3.84$)

Practice example

<u>Problem</u>: Relationship between anxiety and test performance in college students.

	High Anxiety	Low Anxiety	Total
High Score	24 (32.7)	40 (31.3)	64
Low Score	70 (61.3)	50 (52.7)	120
Total	94	90	184

Question: At a significance level of 0.05, are students with high anxiety levels more likely to perform poorly on tests compared to students with low anxiety

levels? (Hint: $\chi^2_{0.05.1} \sim 3.84$) $\chi^2 \sim 7.25$

Reject the null!!

- \succ The χ^2 -test works reasonably well when there are sufficiently large observations expected in each category.
- ➤ If our two variable has only two categories, that is, we have 2 x 2 contingency tables we could use the Fisher's test.

	1	2	Total
0	O ₁₁	O ₁₂	R ₁
1	O ₂₁	O ₂₂	R ₂
Total	C ₁	C ₂	N

- ➤ If our two variable has only two categories, that is, we have 2 x 2 contingency tables we could use the Fisher's test.
- ightharpoonup Here probabilities are **exact**, so for small samples, it might be more powerful than the $χ^2$ -test.
- Example: Are more proportions of smokers in men than in women? .
- It's a two-tailed test: we may test for greater, less, or unequal.

- ➤ If our two variable has only two categories, that is, we have 2 x 2 contingency tables we could use the Fisher's test.
- ightharpoonup Here probabilities are **exact**, so for small samples, it might be more powerful than the $χ^2$ -test.
- Example: Are more proportions of smokers in men than in women? .
- It's a two-tailed test: we may test for greater, less, or unequal.

R: fisher.test(O_{ij} alternative="greater") or

R: fisher.test(X, Y, alternative="greater")

- ➤ If our two variable has only two categories, that is, we have 2 x 2 contingency tables we could use the Fisher's test.
- ightharpoonup Here probabilities are **exact**, so for small samples, it might be more powerful than the $χ^2$ -test.
- Example: Are more proportions of smokers in men than in women? .
- It's a two-tailed test: we may test for greater, less, or unequal.

R: fisher.test(O_{ii.} alternative="less") or

R: fisher.test(X, Y, alternative="less")

- ➤ If our two variable has only two categories, that is, we have 2 x 2 contingency tables we could use the Fisher's test.
- ightharpoonup Here probabilities are **exact**, so for small samples, it might be more powerful than the $χ^2$ -test.
- Example: Are more proportions of smokers in men than in women? .
- > It's a **two-tailed** test: we may test for greater, less, or unequal.

R: fisher.test(O_{ii.} alternative="two.sided") or

R: fisher.test(X, Y, alternative="two.sided")

Paired data

- What if your categorical variables are paired (e.g. in longitudinal studies)?
- In this case we can't use either χ^2 -test or the Fisher test, because they assume that observations are not correlated.
- In this case, we can use the McNemar test.

Paired data

<u>Example</u>: a study investigates the effectiveness of a mindfulness intervention for reducing symptoms of depression. Participants are recruited and complete a depression symptom questionnaire before and after the intervention. The study aims to determine whether the proportion of participants who report a decrease in depression symptoms after the intervention is significantly different from the proportion who report no change or an increase in symptoms.

	After Intervention: Reduced Anxiety	After Intervention: No Change/Increased Anxiety
Before Intervention: High Anxiety	20	10
Before Intervention: Low Anxiety	5	15

McNemar Test

 \succ The test is only applicable to a 2 × 2 contingency table. For example:

	Before: Yes	Before: No	Total
After: Yes	a	b	a+b
After: No	c	d	c+d
Total	a+c	b+d	n

Null hypothesis: row totals and column totals come from the same distribution, i.e. $p_a + p_b = p_c + p_d$ and $p_c + p_d = p_b + p_d$

McNemar Test

 \triangleright The test is only applicable to a 2 × 2 contingency table. For example:

	Before: Yes	Before: No	Total
After: Yes	a	b	a+b
After: No	c	d	c+d
Total	a+c	b+d	n

Null hypothesis: row totals and column totals come from the same distribution, i.e. $p_a + p_b = p_c + p_d$ and $p_c + p_d = p_b + p_d$

Only the off-diagonal entries matter!

$$\rightarrow$$
 Null Hypothesis $\mathbf{H_0}$: $\mathbf{p_b} = \mathbf{p_d}$

> Test statistic:
$$\chi^2 = \frac{(b-c)^2}{b+c}$$

➤ Alternative Hypothesis
$$\mathbf{H}_{\mathbf{A}}$$
:
$$\mathbf{p}_{\mathbf{b}} \neq \mathbf{p}_{\mathbf{d}}$$

$$\rightarrow$$
 Null Hypothesis $\mathbf{H_0}$: $\mathbf{p_b} = \mathbf{p_d}$

> Test statistic:
$$\chi^2 = \frac{(b-c)^2}{b+c} \sim \Box^2$$
-distribution (df=1)

➤ Alternative Hypothesis $\mathbf{H_A}$: $\mathbf{p_b} \neq \mathbf{p_d}$

x² test of independence

Null Hypothesis $\mathbf{H_0}$: $\mathbf{p_b} = \mathbf{p_d}$

> Test statistic:
$$\chi^2 = \frac{(b-c)^2}{b+c} \sim \Box^2$$
-distribution (df=1)

Alternative Hypothesis **H**_A:

$$p_b \neq p_d$$

R: mcnemar.test(O_{ij}) or R: mcnemar.test(X, Y)

Paired data

<u>Example</u>: a study investigates the effectiveness of a mindfulness intervention for reducing symptoms of depression. Participants are recruited and complete a depression symptom questionnaire before and after the intervention. The study aims to determine whether the proportion of participants who report a decrease in depression symptoms after the intervention is significantly different from the proportion who report no change or an increase in symptoms.

	After Intervention: Reduced Anxiety	After Intervention: No Change/Increased Anxiety
Before Intervention: High Anxiety	20	10
Before Intervention: Low Anxiety	5	15

Paired data

Example: a study investigates the effectiveness of a mindfulness intervention for reducing symptoms of depression. Participants are recruited and complete a depression symptom questionnaire before and after the intervention. For a type I error α =0.05, can we say mindfulness intervention was effective for reducing symptoms of depression? (Hint: $\Box^2_{0.05.1} \sim 3.84$)

	After Intervention: Reduced Anxiety	After Intervention: No Change/Increased Anxiety
Before Intervention: High Anxiety	20	10
Before Intervention: Low Anxiety	5	15

Continuous vs Continuous variable

Continuous vs continuous variable

➤ Here, we want to test whether one continuous variable changes as the other continuous variable changes as well.

We are mainly going to use a test for association based on Pearson's

correlation. Association

Continuous vs continuous variable

e.g. do people of
greater ages tend to
score ACT exams
better?

nender	education	ane	ΔC	Т	:ΔΤ\/	SATO
gender	caacation	T				
2	3	3 19	9	24	500	500
2	3	3 23	3	35	600	500
2	3	3 20	0	21	480	470
1	4	1 2	7	26	550	520
1	2	33	34>	31	600	550
1	5	5 20	3	28	640	640
2	5	30	0	36	610	500
1	3	3 19	9	22	520	560
2	4	23	3	22	400	600
2	5	5 40)	35	730	800

Covariance and correlation

The **covariance** is the generalization of the variance and it is just the average cross-product between two variables X and Y:

$$Cov(X,Y) = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \langle X \rangle)(Y_i - \langle Y \rangle)$$

- It is a measure co-variability.
- Property: if X and Y are entirely unrelated, Cov(X,Y) is exactly zero.

Covariance and correlation

 \succ The Pearson's **correlation**, r_{xy} , is just the standardization of the covariance:

$$r_{XY} = \frac{Cov(X,Y)}{\hat{\sigma}_X \hat{\sigma}_Y}$$

> Properties:

- A. r_{xy} is symmetrical
- B. The value r_{XY} is independent of the units of X and Y (WHY?)
- C. $-1 \le r_{xy} \le 1$

Pearson's correlation

r_{XY} = 1; perfect association

 $r_{xy} = 0$; no association

 r_{XY} = -1; perfect anti-association

WARNING: Correlation does not imply causation!

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

tylervigen.com

> It tests whether there is a significant correlation between two variables.

$$H_0$$
: $r_{XY} = 0$
 H_A : $r_{XY} > 0$ or $r_{XY} < 0$ (one-sided)

r ≠ 0 (two-sided)

Example: Is there a significant correlation between brain volume and cognitive performance in older adults?

- > Null Hypothesis $\mathbf{H_0}$: $\mathbf{r_{xy}} = 0$
- > Test statistic: $t = \frac{r_{XY}\sqrt{N-2}}{\sqrt{1-r_{XY}^2}}$
- Alternative Hypothesis $\mathbf{H_A}$ $r_{XY} > 0 \text{ (one-sided right tail)}$ $r_{XY} < 0 \text{ (one-sided left tail)}$ $r_{XY} \neq 0 \text{ (two-sided)}$

- > Null Hypothesis $\mathbf{H_0}$: $\mathbf{r_{XY}} = 0$
- > Test statistic: $t = \frac{r_{XY}\sqrt{N-2}}{\sqrt{1-r_{XY}^2}}$ ~ Student's t (df=N-2)
- Alternative Hypothesis $\mathbf{H_A}$ $r_{XY} > 0 \text{ (one-sided right tail)}$ $r_{XY} < 0 \text{ (one-sided left tail)}$ $r_{XY} \neq 0 \text{ (two-sided)}$

> Null Hypothesis $\mathbf{H_0}$: $\mathbf{r_{XY}} = 0$

> Test statistic:
$$t = \frac{r_{XY}\sqrt{N-2}}{\sqrt{1-r_{XY}^2}}$$
 ~ Student's t (df=N-2)

> Null Hypothesis $\mathbf{H_0}$: $\mathbf{r_{XY}} = 0$

> Test statistic:
$$t = \frac{r_{XY}\sqrt{N-2}}{\sqrt{1-r_{XY}^2}}$$

cor.test(X, Y, alternative="greater")

Alternative Hypothesis $\mathbf{H_A}$ $r_{XY} > 0 \text{ (one-sided right tail)}$ $r_{XY} < 0 \text{ (one-sided left tail)}$ $r_{XY} \neq 0 \text{ (two-sided)}$

Rejection region for α

$$P(T \ge t \mid H_0) \le \alpha$$
$$t \le t_{\alpha, N-2}$$

$$|t| \ge |t_{\alpha/2,N-2}|$$

> Null Hypothesis $\mathbf{H_0}$: $\mathbf{r_{xy}} = 0$

> Test statistic:
$$t = \frac{r_{XY}\sqrt{N-2}}{\sqrt{1-r_{XY}^2}}$$

cor.test(X, Y, alternative="less")

Alternative Hypothesis $\mathbf{H_A}$ $r_{XY} > 0 \text{ (one-sided right tail)}$ $r_{XY} < 0 \text{ (one-sided left tail)}$ $r_{XY} \neq 0 \text{ (two-sided)}$

Rejection region for α

$$t \ge t_{\alpha, N-2}$$

$$P(T \le t \mid H_0) \le \alpha$$

$$|t| \ge |t_{\alpha/2,N-2}|$$

> Null Hypothesis $\mathbf{H_0}$: $\mathbf{r_{xy}} = 0$

> Test statistic:
$$t = \frac{r_{XY}\sqrt{N-2}}{\sqrt{1-r_{XY}^2}}$$

cor.test(X, Y, alternative="two.sided")

Alternative Hypothesis H_A

 $r_{yy} > 0$ (one-sided right tail)

 $r_{xy} < 0$ (one-sided left tail)

 $r_{xy} \neq 0$ (two-sided)

Rejection region for α

 $t \ge t_{\alpha,N-2}$

 $t \le t_{\alpha,N-2}$

 $P(T \ge |\mathbf{t}| | \mathbf{H}_0) \le \alpha$

Practice question

<u>Problem:</u> Is there an association between brain activity in the amygdala and self-reported anxiety levels?

<u>Data analysis</u>: In order to address this question, a lab collected functional magnetic resonance imaging (fMRI) data from 10 subjects while completing a task designed to activate the amygdala. The lab also measured the subjects' self-report anxiety levels through a questionnaire. After data collection, the lab calculated the Pearson correlation between the mean activity in the amygdala during the task and the self-reported anxiety scores. The result was $r \sim 0.69$.

<u>Question:</u> At a significance level 0.05, can they conclude that higher levels of amygdala activity associates with higher levels of reported anxiety? (Hint: $t_{0.05,8} \sim 1.85$)

Recap

- > Two categorical variables and sufficiently large expected frequencies $\rightarrow \chi^2$ test
- ightharpoonup Small sample sizes and only 2 x 2 contingency tables \rightarrow Fisher's test
- Paired data and only 2 x 2 contingency tables → Mcnemar test
- ➤ For **two continuous** variable → Test of association for Pearson's correlation
- Next week we will study a generalization of all of these and previous tests:
 Regression!