Lecture 10 Sorting

Bringing Order to the World

Lecture Outline

- Iterative sorting algorithms (comparison based)
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
- Recursive sorting algorithms (comparison based)
 - Merge Sort
 - Quick Sort
- Radix sort (non-comparison based)
- Properties of Sorting
 - In-place sort, stable sort
 - Comparison of sorting algorithms
- Note: we only consider sorting data in ascending order

Why Study Sorting?

- When an input is sorted, many problems become easy (e.g. searching, min, max, k-th smallest)
- Sorting has a variety of interesting algorithmic solutions that embody many ideas
 - Comparison vs non-comparison based
 - Iterative
 - Recursive
 - Divide-and-conquer
 - Best/worst/average-case bounds
 - Randomized algorithms

Applications of Sorting

- Uniqueness testing
- Deleting duplicates
- Prioritizing events
- Frequency counting
- Reconstructing the original order
- Set intersection/union
- Finding a target pair x, y such that x+y=z
- Efficient searching

Selection Sort

Selection Sort: Idea

- Given an array of n items
 - 1. Find the largest item x, in the range of [0...n-1]
 - 2. Swap x with the (n-1)th item
 - 3. Reduce *n* by 1 and go to Step 1

Selection Sort: Illustration

We can also find the smallest and put it the front instead

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Selection

Selection Sort: Implementation

```
void selectionSort(int a[], int n) {
  for (int i = n-1; i >= 1; i--) {
    int maxIdx = i;
    for (int j = 0; j < i; j++)
      if (a[j] >= a[maxIdx])
       maxIdx = j;
    // swap routine is in STL <algorithm>
    swap(a[i], a[maxIdx]);
```

Step 1: Search for maximum element

Step 2:
Swap
maximum
element
with the last
item i

Selection Sort: Analysis

```
Number of times
void selectionSort(int a[], int n) {
                                              executed
  for (int i = n-1; i >= 1; i--) {
                                        — n−1
    int maxIdx = i;
    for (int j = 0; j < i; j++)
                                         (n-1)+(n-2)+...+1
      if (a[j] >= a[maxIdx])
                                          = n(n-1)/2
        maxIdx = j;
    // swap routine is in STL <algorithm>
    swap(a[i], a[maxIdx]); <---</pre>
                                         ■ n−1
                                         Total
                                         = c_1(n-1) +
```

 c₁ and c₂ are cost of statements in outer and inner blocks

_[CS1020E AY1617S1 Lecture 10]____

 $c_2^*n^*(n-1)/2$

 $= O(n^2)$

Bubble Sort

Bubble Sort: Idea

- Given an array of n items
 - 1. Compare pair of adjacent items
 - 2. Swap if the items are out of order
 - 3. Repeat until the end of array
 - The largest item will be at the last position
 - 4. Reduce *n* by 1 and go to Step 1
- Analogy
 - Large item is like "bubble" that floats to the end of the array

Bubble Sort: Illustration

(a) Pass 1

At the end of Pass 1, the largest item 37 is at the last position.

(b) Pass 2

At the end of Pass 2, the second largest item 29 is at the second last position.

Bubble Sort: Implementation

```
void bubbleSort(int a[], int n) {
  for (int i = n-1; i >= 1; i--) {
    for (int j = 1; j <= i; j++) {
       if (a[j-1] > a[j])
            swap(a[j], a[j-1]);
       }
  }
}
```

Step 1:

Compare adjacent pairs of numbers

Step 2:

Swap if the items are out of order

29 10 14 37 13	29	10	14	37	13
------------------------	----	----	----	----	----

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Bubble

Bubble Sort: Analysis

- 1 iteration of the inner loop (test and swap) requires time bounded by a constant c
- Two nested loops
 - Outer loop: exactly *n* iterations
 - Inner loop:
 - when i=0, (n-1) iterations
 - when i=1, (n-2) iterations
 - **...**
 - when i=(n-1), 0 iterations
- Total number of iterations = 0+1+...+(n-1) = n(n-1)/2
- Total time = $c n(n-1)/2 = O(n^2)$

Bubble Sort: Early Termination

- Bubble Sort is inefficient with a $O(n^2)$ time complexity
- However, it has an interesting property
 - Given the following array, how many times will the inner loop swap a pair of item?

3	6	11	25	39
---	---	----	----	----

- Idea
 - If we go through the inner loop with no swapping
 - the array is sorted
 - can stop early!

Bubble Sort v2.0: Implementation

```
void bubbleSort2(int a[], int n) {
  for (int i = n-1; i >= 1; i--)
    bool is sorted = true;
    for (int j = 1; j <= i; j++) {
      if (a[j-1] > a[j]) {
        swap(a[j], a[j-1]);
        is sorted = false;
    } // end of inner loop
    if (is sorted) return;
```

Assume the array is sorted before the inner loop

Any swapping will invalidate the assumption

If the flag remains **true** after the inner loop → sorted!

Bubble Sort v2.0: Analysis

Worst-case

- Input is in descending order
- Running time remains the same: $O(n^2)$

Best-case

- Input is already in ascending order
- The algorithm returns after a single outer iteration
- Running time: O(n)

Insertion Sort

Insertion Sort: Idea

- Similar to how most people arrange a hand of poker cards
 - Start with one card in your hand
 - Pick the next card and insert it into its proper sorted order
 - Repeat previous step for all cards

Insertion Sort: Illustration

http://visualgo.net/sorting?create=40,13,20,8&mode=Insertion

Insertion Sort: Implementation

```
void insertionSort(int a[], int n) {
                                                   next is the
  for (int i = 1; i < n; i++) {
                                                    item to be
    int next = a[i];
                                                    inserted
    int j;
    for (j = i-1; j >= 0 && a[j] > next; j--)
       a[j+1] = a[j];
                                                   Shift sorted
                                                  items to make
    a[j+1] = next;
                                                  place for next
                                                  Insert next to
                                                   the correct
                                                    location
                29
                      10
                            14
                                   37
                                         13
```

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Insertion

Insertion Sort: Analysis

- Outer-loop executes (n-1) times
- Number of times inner-loop is executed depends on the input
 - Best-case: the array is already sorted and (a[j] > next) is always false
 - No shifting of data is necessary
 - Worst-case: the array is reversely sorted and (a[j] > next) is always true
 - Insertion always occur at the front
- Therefore, the best-case time is O(n)
- \blacksquare And the worst-case time is $O(n^2)$

Merge Sort

Merge Sort: Idea

- Suppose we only know how to merge two sorted sets of elements into one
 - Merge {1, 5, 9} with {2, 11} → {1, 2, 5, 9, 11}
- Question
 - Where do we get the two sorted sets in the first place?
- Idea (use merge to sort n items)
 - Merge each pair of elements into sets of 2
 - Merge each pair of sets of 2 into sets of 4
 - Repeat previous step for sets of 4 ...
 - Final step: merge 2 sets of n/2 elements to obtain a fully sorted set

Divide-and-Conquer Method

- A powerful problem solving technique
- Divide-and-conquer method solves problem in the following steps
 - Divide step
 - Divide the large problem into smaller problems
 - Recursively solve the smaller problems
 - Conquer step
 - Combine the results of the smaller problems to produce the result of the larger problem

Divide and Conquer: Merge Sort

- Merge Sort is a divide-and-conquer sorting algorithm
- Divide step
 - Divide the array into two (equal) halves
 - Recursively sort the two halves
- Conquer step
 - Merge the two halves to form a sorted array

Merge Sort: Illustration

Divide into two halves

Recursively sort the halves

Merge them

2 3 4 5 6 7 8

- Question
 - How should we sort the halves in the 2nd step?

Merge Sort: Implementation

```
void mergeSort(int a[], int low, int high)
  if (low < high)
                                                   Merge sort on
     int mid = (low+high) / 2;
                                                    a[low...high]
    mergeSort(a, low , mid );
                                               Divide a[] into two
                                              halves and recursively
    mergeSort(a, mid+1, high);
                                                   sort them
    merge(a, low, mid, high);
                                                Conquer: merge the
                                                 two sorted halves
                   Function to merge
                    a[low...mid] and
                  a[mid+1...high] into
                     a[low...high]
```

- Note
 - mergeSort() is a recursive function
 - low >= high is the base case, i.e. there is 0 or 1 item

Merge Sort: Example

Merge Sort: Merge

a[0..2] a[3..5] b[0..5] 5 5

Two sorted halves to be merged

Merged result in a temporary array

X
 Items used for comparison
 X
 Merged items

Merge Sort: Merge Implementation

PS: C++ STL <algorithm> has merge subroutine too

```
void merge(int a[], int low, int mid, int high) {
  int n = high-low+1;
                                                    b is a
                                                  temporary
  int* b = new int[n];
                                                 array to store
  int left=low, right=mid+1, bIdx=0;
                                                    result
  while (left <= mid && right <= high) { }
    if (a[left] <= a[right])</pre>
                                                 Normal Merging
      b[bIdx++] = a[left++];
                                                   Where both
    else
                                                   halves have
      b[bIdx++] = a[right++];
                                                 unmerged items
  // continue on next slide
```

Merge Sort: Merge Implementation

```
// continued from previous slide
while (left \leq mid) b[bIdx++] = a[left++];
while (right <= high) b[bIdx++] = a[right++];</pre>
                                                  Remaining
for (int k = 0; k < n; k++) | Merged result
                                                   items are
                                   are copied
  a[low+k] = b[k];
                                                  copied into
                                  back into a [ ]
                                                     b[]
delete [] b;
                                         Remember to free
                                         allocated memory
```

- Question
 - Why do we need a temporary array b[]?

Merge Sort: Analysis

- In mergeSort(), the bulk of work is done in the merge step
- For merge(a, low, mid, high)
 - Let total items = k = (high low + 1)
 - Number of comparisons ≤ k 1
 - Number of moves from original array to temporary array = k
 - Number of moves from temporary array back to original array = k
- In total, number of operations $\leq 3k 1 = O(k)$
- The important question is
 - How many times is merge () called?

Merge Sort: Analysis

Level 0:

mergeSort n items

Level 1:

mergeSort n/2 items

Level 2:

mergeSort n/22 items

Level 0:

1 call to mergeSort

Level 1:

2 calls to mergeSort

Level 2:

2² calls to mergeSort

Level (**Ig** *n*):

mergeSort 1 item

Level (**Ig** *n*):

2^{lg n}(= n) calls to mergeSort

$$n/(2^k) = 1 \rightarrow n = 2^k \rightarrow k = \lg n$$

Merge Sort: Analysis

- Level 0: 0 call to merge ()
- Level 1: 1 calls to merge () with n/2 items in each half, $O(1 \times 2 \times n/2) = O(n)$ time
- Level 2: 2 calls to merge () with $n/2^2$ items in each half, $O(2 \times 2 \times n/2^2) = O(n)$ time
- Level 3: 2^2 calls to merge () with $n/2^3$ items in each half, $O(2^2 \times 2 \times n/2^3) = O(n)$ time
-
- Level (lg n): $2^{\lg(n)-1}$ (= n/2) calls to merge() with $n/2^{\lg(n)}$ (= 1) item in each half, O(n) time
- Total time complexity = O(n lg(n))
- Optimal comparison-based sorting method

Merge Sort: Pros and Cons

Pros

- The performance is guaranteed, i.e. unaffected by original ordering of the input
- Suitable for extremely large number of inputs
 - Can operate on the input portion by portion

Cons

- Not easy to implement
- Requires additional storage during merging operation
 - O(n) extra memory storage needed

Quick Sort

Quick Sort: Idea

- Quick Sort is a divide-and-conquer algorithm
 - Divide step
 - Choose an item p (known as pivot) and partition the items of a[i...j] into two parts
 - Items that are smaller than p
 - Items that are greater than or equal to p
 - Recursively sort the two parts
 - Conquer step
 - Do nothing!
- In comparison, Merge Sort spends most of the time in conquer step but very little time in divide step

Quick Sort: Divide Step Example

Quick Sort: Implementation

```
void quickSort(int a[], int low, int high) {
   if (low < high) {
      int pivotIdx = partition(a, low, high) and return the index of the pivot item
      quickSort(a, low, pivotIdx-1);
      quickSort(a, pivotIdx+1, high);
   }
}</pre>
Recursively sort the two portions
```

- partition() splits a[low...high] into two portions
 - a[low ... pivot-1] and a[pivot+1 ... high]
- Pivot item does not participate in any further sorting

- To partition a[i...j], we choose a[i] as the pivot p
 - Why choose a[i]? Are there other choices?
- The remaining items (i.e. a[i+1...j]) are divided into 3 regions
 - **S1** = a[i+1...m] where items < p
 - **S2** = a[m+1...k-1] where item $\geq p$
 - Unknown (unprocessed) = a[k...j], where items are yet to be assigned to S1 or S2

- Initially, regions S1 and S2 are empty
 - All items excluding p are in the unknown region
- For each item a[k] in the unknown region
 - Compare a[k] with p
 - If a[k] >= p, put it into S2
 - Otherwise, put a[k] into S1

Case 1: if a[k] >= p

Case 2: if a[k] < p</p>

Quick Sort: Partition Implementation

PS: C++ STL <algorithm> has <u>partition</u> subroutine too

```
int partition(int a[], int i, int j) {
                                                    p is the pivot
  int p = a[i];
  int m = i;
                                                  S1 and S2 empty
                                                      initially
  for (int k = i+1; k \le j; k++)
                                                   Go through each
     if (a[k] < p) {
                                                  element in unknown
       m++;
                                  Case 2
                                                       region
       swap(a[k], a[m]);
    else {
                                  Case 1: Do nothing!
                                             Swap pivot with a[m]
  swap(a[i], a[m])
  return m;
                                             m is the index of pivot
```

Quick Sort: Partition Example

Quick Sort: Partition Analysis

- There is only a single for-loop
 - Number of iterations = number of items, n, in the unknown region
 - \blacksquare n = high low
 - Complexity is O(*n*)

 Similar to Merge Sort, the complexity is then dependent on the number of times partition() is called

Quick Sort: Worst Case Analysis

When the array is already in ascending order

- What is the pivot index returned by partition()?
 - What is the effect of swap(a, i, m)?
- S1 is empty, while S2 contains every item except the pivot

Quick Sort: Worst Case Analysis

As each partition takes linear time, the algorithm in its worst case has n levels and hence it takes time $n+(n-1)+...+1 = O(n^2)$

Quick Sort: Best/Average Case Analysis

- Best case occurs when partition always splits the array into two equal halves
 - Depth of recursion is log n
 - Each level takes n or fewer comparisons, so the time complexity is O(n log n)
- In practice, worst case is rare, and on the average we get some good splits and some bad ones (details in CS3230 :O)
 - Average time is also O(n log n)

Lower Bound: Comparison-Based Sort

- It is known that
 - All comparison-based sorting algorithms have a complexity lower bound of n log n

 Therefore, any comparison-based sorting algorithm with worst-case complexity
 O(n log n) is optimal

Radix Sort

Radix Sort: Idea

- Treats each data to be sorted as a character string
- It is not using comparison, i.e. no comparison between the data is needed
- In each iteration
 - Organize the data into groups according to the next character in each data
 - The groups are then "concatenated" for next iteration

Radix Sort: Example

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150 Original integers (156**0**, 215**0**) (106**1**) (022**2**) (012**3**, 028**3**) (215**4**, 000**4**) Grouped by fourth digit 1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004 Combined (00**0**4) (02**2**2, 01**2**3) (21**5**0, 21**5**4) (15**6**0, 10**6**1) Grouped by third digit (0283)0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283 Combined (0**0**04, 1**0**61) (0**1**23, 2**1**50, 2**1**54) (0**2**22, 0**2**83) (1**5**60) Grouped by second digit 0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560 Combined (**0**004, **0**123, **0**222, **0**283) (**1**061, **1**560) (**2**150, **2**154) Grouped by first digit 0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154 Combined (sorted)

Radix Sort: Implementation

```
void radixSort(vector<int>& v, int d) {
  int i;
  int power = 1;
                                            10 groups. Each is
  queue<int> digitQueue[10];
                                             a queue to retain
                                             the order of item
  for (i = 0; i < d; i++) {
    distribute (v, digitQueue, power);
    collect(digitQueue, v);
    power *= 10;
```

- distribute(): Organize all items in v into groups using digit indicated by the power
- collect(): Place items from the groups back into v, i.e. "concatenate" the groups

Radix Sort: Implementation

Question

How do we extract the digit used for the current grouping?

Radix Sort: Implementation

```
void collect(queue<int> digitQ[], vector<int>& v) {
  int i = 0, digit;

for (digit = 0; digit < 10; digit++)
  while (!digitQ[digit].empty()) {
    v[i] = digitQ[digit].front();
    digitQ[digit].pop();
    i++;
  }
}</pre>
```

Basic Idea

- Start with digitQ[0]
 - Place all items into vector v
- Repeat with digitQ[1], digitQ[2], ...

Radix Sort: Analysis

- For each iteration
 - We go through each item once to place them into group
 - Then go through them again to concatenate the groups
 - Complexity is O(*n*)
- Number of iterations is d, the maximum number of digits (or maximum number of characters)
- Complexity is thus O(dn)

Properties of Sorting

In-Place Sorting

- A sort algorithm is said to be an in-place sort
 - If it requires only a constant amount (i.e. O(1)) of extra space during the sorting process
- Questions
 - Merge Sort is not in-place, why?
 - Is Quick Sort in-place?
 - Is Radix Sort in-place?

Stable Sorting

 A sorting algorithm is stable if the relative order of elements with the same key value is preserved by the algorithm

- Example application of stable sort
 - Assume that names have been sorted in alphabetical order
 - Now, if this list is sorted again by tutorial group number, a stable sort algorithm would ensure that all students in the same tutorial groups still appear in alphabetical order of their names

Non-Stable Sort

Selection Sort

```
1285 5_a 4746 602 5_b (8356)
1285 5_a 5_b 602 (4746 8356)
602 5_a 5_b (1285 4746 8356)
5_b 5_a (602 1285 4746 8356)
```

Quick Sort

```
■ \frac{1285}{5_a} 5<sub>a</sub> 150 4746 602 5<sub>b</sub> 8356 (pivot=1285)

■ \frac{1285}{5_b} (5<sub>a</sub> 150 602 5<sub>b</sub>) (4746 8356)

■ 5<sub>b</sub> 5<sub>a</sub> 150 602 1285 4746 8356
```

Sorting Algorithms: Summary

	Worst Case	Best Case	In-place?	Stable?
Selection Sort	O(n ²)	O(n ²)	Yes	No
Insertion Sort	O(n ²)	O(n)	Yes	Yes
Bubble Sort	O(n ²)	O(n ²)	Yes	Yes
Bubble Sort 2	O(n ²)	O(n)	Yes	Yes
Merge Sort	O(n lg n)	O(n lg n)	No	Yes
Quick Sort	O(n ²)	O(n lg n)	Yes	No
Radix sort	O(dn)	O(dn)	No	yes

Summary

- Comparison-Based Sorting Algorithms
 - Iterative Sorting
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Recursive Sorting
 - Merge Sort
 - Quick Sort
- Non-Comparison-Based Sorting Algorithms
 - Radix Sort
- Properties of Sorting Algorithms
 - In-Place
 - Stable