In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
df=pd.read_csv(r"C:\Users\hp\Downloads\loan1.csv")
df
```

Out[2]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [3]:

df.head()

Out[3]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes

In [4]:

```
df.tail()
```

Out[4]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [5]:

df.describe()

Out[5]:

Annual Income

count	10.000000
mean	104.000000
std	45.631373
min	60.000000
25%	77.500000
50%	92.500000
75%	115.000000
max	220.000000

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Home Owner	10 non-null	object
1	Marital Status	10 non-null	object
2	Annual Income	10 non-null	int64
3	Defaulted Borrower	10 non-null	object

dtypes: int64(1), object(3)
memory usage: 448.0+ bytes

```
In [7]:
```

```
df.isnull().sum()
```

Out[7]:

Home Owner 0
Marital Status 0
Annual Income 0
Defaulted Borrower 0

dtype: int64

In [8]:

```
df['Marital Status'].value_counts()
```

Out[8]:

Single 4 Married 4 Divorced 2

Name: Marital Status, dtype: int64

In [9]:

```
df['Annual Income'].value_counts()
```

Out[9]:

Name: Annual Income, dtype: int64

In [10]:

```
convert={"Home Owner":{"Yes":1,"No":0}}
df=df.replace(convert)
df
```

Out[10]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	Single	125	No
1	0	Married	100	No
2	0	Single	70	No
3	1	Married	120	No
4	0	Divorced	95	Yes
5	0	Married	60	No
6	1	Divorced	220	No
7	0	Single	85	Yes
8	0	Married	75	No
9	0	Single	90	Yes

In [11]:

```
x=["Home Owner","Annual Income"]
y=["Yes","No"]
all_inputs=df[x]
all_classes=df["Defaulted Borrower"]
(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.03)
```

In [12]:

```
clf=DecisionTreeClassifier(random_state=0)
clf.fit(x_train,y_train)
```

Out[12]:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
```

In [13]:

```
score=clf.score(x_test,y_test)
print(score)
```

1.0