```
In [1]: #Anish Almeida
        #Credit Card Fraud Project
        #Machine Learning
        #aa4170
        # importing all relevant libraries/packages
In [2]:
        # getting the library versions
        import sys
        import numpy
        import pandas
        import matplotlib
        import seaborn
        import scipy
        import sklearn
        print('Python: {}'.format(sys.version))
        print('Numpy: {}'.format(numpy. version ))
        print('Pandas: {}'.format(pandas.__version__))
        print('Matplotlib: {}'.format(matplotlib.__version__))
        print('Seaborn: {}'.format(seaborn.__version__))
        print('Scipy: {}'.format(scipy. version ))
        print('Sklearn: {}'.format(sklearn.__version__))
        Python: 3.6.5 | Anaconda, Inc. | (default, Mar 29 2018, 13:32:41) [MSC v.1900 64
        bit (AMD64)]
        Numpy: 1.14.3
        Pandas: 0.23.0
        Matplotlib: 2.2.2
        Seaborn: 0.8.1
        Scipy: 1.1.0
        Sklearn: 0.19.1
In [3]: # importing all relevant packages
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
In [4]: # Load the dataset from the csv file using pandas
        import pandas as pd
        dataset = pd.read csv('creditcard.csv')
```

In [6]: dataset.head()

Out[6]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.36
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.2
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.5 ⁻
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.38
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.8

5 rows × 31 columns

http://localhost:8888/notebooks/PYTHON%20NOTEBOOK%20PROGRAMS/Anish_Almeida_Credit_Card_Fraud.ipynb

In [7]: #Printing shape of data

#since data set is so large, I am using a fraction of it- only 50% of the whole so #using a larger sample would yeild a slightly better result, but for sake of compa

datasetnew=dataset.sample(frac=0.5,random_state=1)
print(datasetnew.shape)
print(datasetnew.describe())

4					
(1424	404, 31)				
	Time	V1	V2	V3	\
count	t 142404.000000	142404.000000	142404.000000	142404.000000	
mean	94636.653149	0.005281	0.002965	0.003540	
std	47530.885474	1.941833	1.650699	1.499189	
min	0.000000	-56.407510	-72.715728	-33.680984	
25%	54070.750000	-0.917749	-0.597082	-0.883249	
50%	84580.000000	0.022735	0.067128	0.180715	
75%	139223.250000	1.315881	0.808052	1.027217	
max	172784.000000	2.454930	21.467203	4.069865	
	V4	V5	V6	V7	\
count	t 142404.000000	142404.000000	142404.000000	142404.000000	
mean	0.003841	0.000792	-0.004870	-0.001985	
std	1.414823	1.366677	1.324166	1.211335	
min	-5.560118	-42.147898	-26.160506	-41.506796	
25%	-0.844659	-0.691845	-0.768605	-0.555711	
50%	-0.015981	-0.056669	-0.274647	0.038852	
75%	0.749088	0.610292	0.394917	0.567912	
max	16.875344	34.801666	23.917837	44.054461	
	V8	V9	• • •	V21	\
count		142404.000000	• • •	142404.000000	
mean	-0.000766	0.003195	• • •	0.000922	
std	1.175487	1.094855	•••	0.733308	
min	-50.943369	-13.434066	•••	-22.665685	
25%	-0.207989	-0.639601	• • •	-0.228590	
50%	0.022932	-0.048424	• • •	-0.029715	
75%	0.326090	0.601086	•••	0.185524	
max	19.587773	10.370658	•••	27.202839	
	V22	V23	V24	V25	\
count		142404.000000	142404.000000	142404.000000	\
mean	-0.000007	-0.000430	-0.001235	0.000195	
std	0.725359	0.622963	0.604677	0.519967	
min	-10.933144	-36.666000	-2.836627	-7.081325	
25%	-0.541946	-0.161815	-0.355513	-0.317501	
50%	0.006314	-0.011454	0.040566	0.016570	
75%	0.529105	0.147364	0.437015	0.350654	
	8.361985	22.528412	4.022866	6.070850	
max	0.301903	22.526412	4.022000	0.070030	
	V26	V27	V28	Amount	\
count		142404.000000	142404.000000	142404.000000	•
mean	0.001279	0.000031	-0.000930	87.952260	
std	0.481653	0.397273	0.322851	248.187289	
min	-2.604551	-9.895244	-9.617915	0.000000	
25%	-0.326278	-0.070537	-0.052824	5.560000	
	3.5252.0			2.22230	

50%	-0.051101	0.001464	0.011112	22.000000
75%	0.242282	0.090594	0.077872	77.370000
max	3.220178	12.152401	33.847808	19656.530000

Class 142404.000000 count 0.001594 mean std 0.039894 0.000000 min 25% 0.000000 50% 0.000000 75% 0.000000 1.000000 max

[8 rows x 31 columns]

In [8]: datasetnew.hist(figsize = (20, 20))
 plt.show()


```
In [9]: #Classifing the data
# Determine the amount of fraudulent cases

fraudulent_cases = datasetnew[datasetnew['Class'] == 1]
  valid_cases = datasetnew[datasetnew['Class'] == 0]

percent_fraud = len(fraudulent_cases)/float(len(valid_cases))
  print(percent_fraud)

print('Fraudulent Cases: {}'.format(len(datasetnew[datasetnew['Class'] == 1])))
  print('Valid/Correct Transactions: {}'.format(len(datasetnew[datasetnew['Class']
```

0.0015966014193575613
Fraudulent Cases: 227

Valid/Correct Transactions: 142177

```
In [10]: # Creating the Correlation matrix
    corrmat = datasetnew.corr()
    fig = plt.figure(figsize = (12, 9))
    sns.heatmap(corrmat, vmax = .8, square = True)
    plt.show()
```



```
In [11]:
         # Getting all the columns from the data
         columns = datasetnew.columns.tolist()
         # Filtering out the columns to remove data that we do not require
         columns = [c for c in columns if c not in ["Class"]]
         # Storing the variable that I am predicting on
         target = "Class"
         X = datasetnew[columns]
         Y = datasetnew[target]
         # Print shapes
         print(X.shape)
         print(Y.shape)
         (142404, 30)
         (142404,)
In [13]: from sklearn.metrics import classification report, accuracy score
         from sklearn.ensemble import IsolationForest
         from sklearn.neighbors import LocalOutlierFactor
         # defining the random state
         rand state = 1
         # defining all outlier detection tools to be compared
         classifiers = {
              "Isolation Forest": IsolationForest(max_samples=len(X),
                                                  contamination=percent_fraud,
                                                  random state=rand state),
             "Local Outlier Factor": LocalOutlierFactor(
                 n neighbors=20,
                 contamination=percent fraud)}
         #class sklearn.neighbors.LocalOutlierFactor(n neighbors=20, algorithm='auto', lea
         #referenced LOF Method and code from:
         #https://qithub.com/scikit-learn/scikit-learn/blob/55bf5d9/sklearn/neighbors/lof.
         #class sklearn.ensemble.IsolationForest(n estimators=100, max samples='auto', con
         #referenced Isolation Forest Method and code from:
         #https://github.com/scikit-learn/scikit-learn/blob/55bf5d9/sklearn/ensemble/ifore
```

```
In [14]: # Finally Fitting the model
         plt.figure(figsize=(9, 7))
         n outliers = len(fraudulent cases)
         for i, (clf_name, clf) in enumerate(classifiers.items()):
             # fitting the data and tagging outliers
             if clf_name == "Local Outlier Factor":
                 y_pred = clf.fit_predict(X)
                  scores pred = clf.negative outlier factor
             else:
                  clf.fit(X)
                  scores pred = clf.decision function(X)
                 y pred = clf.predict(X)
             # Reshaping the prediction values to: 0 for valid, 1 for fraud.
             y_pred[y_pred == 1] = 0
             y_pred[y_pred == -1] = 1
             n errors = (y pred != Y).sum()
             # Running the classification metrics
             print('{}: {}'.format(clf_name, n_errors))
             print(accuracy_score(Y, y_pred))
             print(classification report(Y, y pred))
         Isolation Forest: 317
         0.9977739389342996
                      precision
                                   recall f1-score
                                                       support
                           1.00
                                      1.00
                                                1.00
                                                        142177
                   0
```

```
1
                   0.30
                             0.30
                                        0.30
                                                   227
avg / total
                   1.00
                             1.00
                                        1.00
                                                142404
Local Outlier Factor: 439
0.9969172214263644
             precision
                           recall f1-score
                                               support
          0
                   1.00
                             1.00
                                        1.00
                                                142177
                             0.04
          1
                   0.04
                                        0.04
                                                   227
                                                142404
avg / total
                             1.00
                                        1.00
                   1.00
```

```
In [ ]: # We can see Isolation Forest Method yeilded better results
```

<Figure size 648x504 with 0 Axes>