HMS 112 FORMULAS

STATIONARY POINTS ON A SURFACE: if a surface z = f(x, y) has $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ zero at the point P

(a,b,f(a,b)), then P is a stationary point, and

- (i) the surface has a local maximum at P if $\frac{\partial^2 z}{\partial x^2} < 0$ and $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} (\frac{\partial^2 z}{\partial x \partial y})^2 > 0$;
- (ii) the surface has a local minimum at P if $\frac{\partial^2 z}{\partial x^2} > 0$ and $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} (\frac{\partial^2 z}{\partial x \partial y})^2 > 0$;
- (iii) the surface has a saddle point at P if $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} (\frac{\partial^2 z}{\partial x \partial y})^2 < 0$)

CHAIN RULES:

(i) if
$$z = f(x, y)$$
 and $x = x(t)$ and $y = y(t)$ then
$$\frac{dz}{dt} = \frac{\partial z}{\partial t} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

(ii) if
$$z = f(x,t)$$
 and $x = x(t)$ then $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial t}$

(iii) if
$$z = f(x, y)$$
 and $y = y(x)$ then $\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \frac{dy}{dx}$

(iv) if
$$z = f(x, y)$$
 and $x = x(u, v)$ and $y = y(u, v)$ then
$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \quad \text{and} \quad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

Complex Impedance in RLC Circuits

$$\omega = 2\pi f$$

$$V = V_0 \sin(\omega t + \phi)$$

$$I = I_0 \sin(\omega t)$$

$$Z = R + j(\omega L - \frac{1}{\omega C})$$

$$Z = |Z| cis\phi$$

$$I_0 = \frac{V_0}{|Z|}$$

i.e.
$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$
 (1)

$\underline{}$ $\underline{}$ $\underline{}$	` '
IF THE ROOTS OF THE CHARACTERISTIC (AUXILIARY) EQUATION $am^2 + bm + c = 0$ ARE	THEN THE SOLUTION OF (1) IS
2 real and different roots m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$
2 real and equal roots (i.e. $m = m_1 = m_2$) (also called a double root)	$y = e^{m_1 x} (A + Bx)$
2 conjugate complex roots m_1 and m_2 , where $m_1=\alpha+j\beta$ and $m_2=\alpha-j\beta$, (where $j=\sqrt{-1}$)	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$

$\underline{ \text{LINEAR NONHOMOGENEOUS 2ND ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT } \underline{ \text{COEFFICIENTS} }$

i.e.
$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$
, where $f(x) \neq 0$ (2)

The solution of (2) is $y = y_h + y_p$, where $y_h (\equiv y_c)$ (the COMPLEMENTARY FUNCTION or C.F.) is the GENERAL SOLUTION (i.e. it contains 2 arbitrary constants) of the corresponding homogeneous equation, i.e.

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

and y_n , the PARTICULAR INTEGRAL, can be found by the table below:

IF $f(x)$ HAS A TERM A CONSTANT MULTIPLE OF	AND IF	THEN y_p IS
e^{px}	p N.R.A.E (i.e. p not a root of auxiliary equation)	Ce px
	p S.R.A.E (i.e. p a single root of the auxiliary equation)	Cxe ^{px}
	p D.R.A.E (i.e. p a double root of the auxiliary equation)	Cx^2e^{px}
$\sin qx \text{ or } \cos qx$	jq N.R.A.E (where $j = \sqrt{-1}$	$C\cos qx + D\sin qx$
	jq S.R.A.E	$x(C\cos qx + D\sin qx)$
$a_0 + a_1 x + \dots + a_n x^n$	0 N.R.A.E.	$b_0 + b_1 x + \dots + b_n x^n$
	0 S.R.A.E.	$x(b_0 + b_1 x + \dots + b_n x^n)$
	0 D.R.A.E.	$x^{2}(b_{0}+b_{1}x++b_{n}x^{n})$

Note: the constants in y_p can always be found.

Derivatives

<u>Derivatives</u>	
FUNCTION	DERIVATIVE
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$
$sinh^{-1}x$	$\frac{1}{\sqrt{1+x^2}}$
$\cosh^{-1} x$	$\frac{1}{\sqrt{x^2-1}}$
$\tanh^{-1} x$	$\frac{1}{1-x^2}$

Integrals

<u>Integrals</u>		
FUNCTION	INTEGRAL	
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\frac{x}{a} + c$	
$\frac{1}{x^2 + a^2}$	$\frac{1}{a}\tan^{-1}\frac{x}{a} + c$	
sinh kx	$\frac{\cosh kx}{k} + c$	
cosh kx	$\frac{\sinh kx}{k} + c$	
$\operatorname{sech}^2 kx$	$\frac{\tanh kx}{k} + c$	
$\frac{1}{\sqrt{a^2 + x^2}}$	$\sinh^{-1}\frac{x}{a} + c \text{ or } \ln(x + \sqrt{x^2 + a^2}) + c$	
$\frac{1}{\sqrt{x^2 - a^2}}$	$\cosh^{-1}\frac{x}{a} + c \text{ or } \ln(x + \sqrt{x^2 - a^2}) + c$	
$\frac{1}{a^2 - x^2}$	$\frac{1}{a} \tanh^{-1} \frac{x}{a} + c \text{ or } \frac{1}{2a} \ln \frac{a+x}{a-x} + c$	
$\frac{1}{x^2 - a^2}$	$-\frac{1}{a}\coth^{-1}\frac{x}{a} + c \text{ or } \frac{1}{2a}\ln\frac{x-a}{x+a} + c$	
e ^{ox} sinβx	$\frac{e^{\alpha x}}{\alpha^2 + \beta^2} (\alpha \sin \beta x - \beta \cos \beta x) + c$	
e ^{ax} cosbx	$\frac{e^{\alpha x}}{\alpha^2 + \beta^2} (\alpha \cos \beta x + \beta \sin \beta x) + c$	

INTEGRATION BY PARTS: $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$

SUBSTITUTION RULE: $\int f(u) \frac{du}{dx} dx = \int f(u) du \text{ or } \int f(x) dx = \int f(x) \frac{dx}{d\theta} d\theta$

RADIUS OF CURVATURE:
$$\frac{(1+(y')^2)^{3/2}}{y''}$$

CURVATURE:

$$\kappa = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3}$$

CENTRE OF CURVATURE:

$$h = x_1 - R\sin\theta$$
$$k = y_1 + R\cos\theta$$

EULER SPIRAL TRANSITION CURVE:

$$\theta = \frac{s^2}{2rL} \quad (\theta \text{ is in radians}).$$

$$x = s - \frac{s^5}{40(rL)^2}$$

$$y = \frac{s^3}{6rL} - \frac{s^7}{336(rL)^3}$$

PLANES:

For a plane ax + by + cz = d

Perpendicular distance from the origin to the plane : $p = \frac{\mid d \mid}{\sqrt{a^2 + b^2 + c^2}}$

L , the distance between parallel planes

$$ax + by + cz = d_1$$

and

$$ax + by + cz = d_2$$

is given by

$$L = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$