1)
$$\overline{X} \sim N(\mu, \frac{\vartheta}{m})$$
 $\mu = 10$ $sa = 1$ $n = 16$ lower = 9,525 $\pi = \frac{1}{2}$ $\pi = 16$ $\pi = 16$

$$\mu = 10$$
 $5d = 1$ $n = 16$
 $10wer = 9.525$
 $upper = 9.9$

$$P\left(\frac{9.525-10}{\frac{1}{\sqrt{16}}} \ \frac{\sqrt{x-10}}{\sqrt{16}} \ \frac{\sqrt{9.9-10}}{\sqrt{16}}\right)$$

3)
$$P(X=1) = (3) C^{X}(1-C)^{2-X}$$
 $p=C$
= $2 C(1-C)$ $p=C$
 $= 3 C(1-C)$

On we increase the level of confidence, the confidence interval becomes bisgien

B-LATima reported a large murgin of error because as sample size increuses, marsin of error decreases. The more info you have, the more accurate C=950/0

CT, n=500 LA, n=300

$$Sd = Sd$$

mansingervan?
$$\frac{Z+J}{\sqrt{n}} = \frac{95 \times J}{\sqrt{300}} = \frac{95 \times J}{\sqrt{500}}$$

- 6) True, The Standard deviations would be different in the 2 samples. The first would have a smaller Sd, so also a smaller MOE.
- 7) (i) $\Delta = 0.05$ Z = 2.2/2 = 1.960 SE = 0/M = 0.3/36 = 0.0500 $MDE = E = 2 \times SE = 1.96 \times 0.05 = 0.0980$

2.6-0.098 = 2.690

95% (2,502 < y < 2.698)

(ii') A = 0.01 Z = 22/2 = 2.576 SE = 0/m = 0.3/36 = 0.0500 $M0E = E = 2 \times SE = 2.576 \times 0.05 = 0.1288$

2.6-01288= 2.4710 2.6+0.1288= 2.7288 990/0 (2.4712 ML 2.729)

$$Sd = 0 = 0.300$$
 $C = 0.05$
 $C = 95\%$
 $1 - C = 5\%$
 $2 - 2.2 = 1960$
 $1 - 1.96 \times 0.3 = 138.293$
 0.05^{2}

need n = 139

8)
$$n=15$$
 mean = 73.3 mph $5d=30$
 $d=0.1$

$$\frac{2a}{a} = \frac{201}{a} = \frac{20.05}{1.645}$$

$$\times \div (Za/a * \frac{3}{m})$$

90% 2=1645

n-17 samples

$$2 + (2) = 1.28 + 2 = 2.56$$

So, 315 ± 2.56