Name: Maragathavalli c s

Data Science Internship Position at Prodigy Infotech

Task 1

Create a bar chart or histogram to visualize the distribution of a categorical or continuous variable, such as the distribution of ages or genders in a population

Importing necessary libraries

```
In [2]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Loading the Dataset

```
In [4]: df=pd.read_excel(r"C:\Users\cskes\Downloads\P_Data_Extract_From_World_Development_Indicators.xlsx")
In [6]: df.head()
```

ut[6]:		Series Name	Series Code	Country Name	Country Code	1990 [YR1990]	2000 [YR2000]	2015 [YR2015]	2016 [YR2016]	2017 [YR2017]	2018 [YR2018]	2019 [YR2019]	2020 [YR2020]	[YF
	0	Population, total	SP.POP.TOTL	Afghanistan	AFG	12045660	20130327	33831764	34700612	35688935	36743039	37856121	39068979	400
	1	Population, total	SP.POP.TOTL	Albania	ALB	3286542	3089027	2880703	2876101	2873457	2866376	2854191	2837849	28
	2	Population, total	SP.POP.TOTL	Algeria	DZA	25375810	30903893	40019529	40850721	41689299	42505035	43294546	44042091	447
	3	Population, total	SP.POP.TOTL	American Samoa	ASM	46640	56855	52878	52245	51586	50908	50209	49761	
	4	Population, total	SP.POP.TOTL	Andorra	AND	52597	65685	72174	72181	73763	75162	76474	77380	
	4		_	_	_	_	_	_	_	_				

Selecting and cleaning relevant columns

```
In [25]: df_2023=df[['Country Name', '2023 [YR2023]']].copy()
    df_2023.columns=['Country', 'Population_2023']
```

In [27]: df_2023

Out[27]:		Country	Population_2023
	0	Afghanistan	41454761
	1	Albania	2745972
	2	Algeria	46164219
	3	American Samoa	47521
	4	Andorra	80856
	•••		
	266	NaN	NaN
	267	NaN	NaN
	268	NaN	NaN
	269	NaN	NaN
	270	NaN	NaN

271 rows × 2 columns

Convert Population to numeric and drop missing values

```
In [32]: df_2023['Population_2023']=pd.to_numeric(df_2023['Population_2023'],errors='coerce')
    df_clean=df_2023.dropna()
In [36]: df_clean
```

Out[36]:		Country	Population_2023
	0	Afghanistan	4.145476e+07
	1	Albania	2.745972e+06
	2	Algeria	4.616422e+07
	3	American Samoa	4.752100e+04
	4	Andorra	8.085600e+04
	•••		
	261	Sub-Saharan Africa	1.259902e+09
	262	Sub-Saharan Africa (excluding high income)	1.259783e+09
	263	Sub-Saharan Africa (IDA & IBRD countries)	1.259902e+09
	264	Upper middle income	2.816864e+09
	265	World	8.061876e+09

265 rows × 2 columns

Histogram (Distribution of Population Across Countries(2023))

```
In [49]: plt.figure(figsize=(10,6))
    sns.histplot(df_clean['Population_2023'],bins=30,kde=True,color='orange')
    plt.title("Distribution of Population Across Countries (2023)")
    plt.xlabel('Population')
    plt.ylabel('Number of Countries')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```


Bar Chart (Top 10 countries by Population(2023))

```
In [58]: plt.figure(figsize=(10,6))
    sns.barplot(x='Population_2023',y='Country',data=top_10,palette='viridis')
    plt.title('Top 10 Most Populous Countries(2023)')
    plt.xlabel('Population')
    plt.ylabel('Country')
    plt.tight_layout()
    plt.show()

C:\Users\cskes\AppData\Local\Temp\ipykernel_18344\373236642.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and se t `legend=False` for the same effect.

sns.barplot(x='Population_2023',y='Country',data=top_10,palette='viridis')
```

Top 10 Most Populous Countries(2023)

5

6

ż

8

1e9

World -

IDA & IBRD total -

Middle income -

IBRD only -

Low & middle income -

Early-demographic dividend -

Late-demographic dividend -

Lower middle income -

Upper middle income -

East Asia & Pacific -

ò

i

2

3

4

Population

Country