CS 452 – Probabilistic Graphical Models

Unit # 07

Naïve Bayes

Bayes' Rule Applied to Documents and Classes

For a document d and a class c

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(C) = N_c/N$$

- $P(No) = ?$
 $P(Yes) = ?$

For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{Ck}$$

- where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
- Examples:

```
P(Status=Married|No) = ?
P(Refund=Yes|Yes)= ?
```

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(C) = N_c/N$$

- e.g., $P(No) = 7/10$, $P(Yes) = 3/10$

For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{Ck}$$

- where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
- Examples:

Learning a Naïve Bayes Model

Naïve Bayes

Classification: Mammals vs. Non-mammals

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

- Train the model (learn the parameters) using the given data set.
- Apply the learned model on new cases.

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Naïve Bayes

Classification: Mammals vs. Non-mammals

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

Applying Naïve Bayes

Applying Multinomial Naive Bayes Classifiers

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

Why it is Called 'Naïve' Bayes?

 The "Naive" part of the name indicates the simplifying assumption made by the Naïve Bayes classifier. The classifier assumes that the features used to describe an observation are conditionally independent, given the class label.

Example: Play Tennis

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

Outlook	Temperature	Humidity	Windy	Class
rain	hot	high	false	?

Example: Play Tennis

Outlook	Temperature	Humidity	/ Windy	Class	outlook	
sunny	hot	high	false	N	Calledia	
sunny	hot	high	true	N	P(sunny p) = 2/9	P(sunny n) = 3/5
overcast		high	false	Р	P(overcast p) = 4/9	P(overcast n) = 0
rain	mild	high	false	Р	F(0vercast p) = 4/9	F(Overcastill) = 0
rain	cool	normal	false	Р	P(rain p) = 3/9	P(rain n) = 2/5
rain	cool	normal	true	N	tomporeture	
overcast	cool	normal	true	Р	temperature	
sunny	mild	high	false	N	P(hot p) = 2/9	P(hot n) = 2/5
sunny	cool	normal	false	Р	,	`
rain	mild	normal	false	Р	P(mild p) = 4/9	P(mild n) = 2/5
sunny	mild	normal	true	P	P(cool p) = 3/9	P(cool n) = 1/5
overcast	mild	high	true	Р		1 (0001/11)
overcast	hot	normal	false	P	humidity	
rain	mild	high	true	N	P(high p) = 3/9	P(high n) = 4/5
	P(P)	= 9/14			P(normal p) = 6/9	P(normal n) = 2/5
P(N) = 5/14					windy	
	1 (11)		<u> </u>	P(true p) = 3/9	P(true n) = 3/5	
_	Temperature Hui hot high	•	Vindy e ?	Class	P(false p) = 6/9	P(false n) = 2/5

Naïve Bayes takes this naïve assumption that all input attributes are conditionally independent.

Dealing with small values

• Multiplying lots of small probabilities (all are under 1) can lead to numerical underflow ...

$$\log \prod_{i} x_i = \sum_{i} \log x_i$$

Smoothing

- What if we have seen no training documents with the word fantastic and classified in the topic positive (thumbs-up)
- To deal with low counts, it can be helpful to smooth probabilities
- Smoothing term! is a hyperparameter, which must be tuned on a development set
- Laplace (add-1) smoothing: widely used

Strength

- Very Fast, low storage requirements
- Robust to Irrelevant Features Irrelevant Features cancel each other without affecting results
- Very good in domains with many equally important features Decision Trees suffer from fragmentation in such cases – especially if little data
- Optimal if the independence assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for problem

Resources

 How Naive Bayes Algorithm Works? (with example and full code) | ML+ (machinelearningplus.com)