Enhancing Underwater Fish Tracking through Ensemble Methods and Autonomous Reinitialization

A robust semi-autonomous fish tracking framework for underwater video using OpenCV legacy trackers, Kalman filters, Mahalanobis distance filtering, and Covariance Intersection (CI) fusion. Includes support for both manual and automatic tracker reinitialization.

Project Structure

File	Description
main.py	Main tracking pipeline: trackers + Kalman
	+ CI fusion
mark_reinit.py	Manual tool for GUI-based reinitialization
	annotation
test_label.py	Visualizer for ground truth label overlays
requirements.txt	Python dependencies
data/	Output data folders (CSV + Evaluation
	python-based file)
labels/	Ground-truth data folders (YOLO-style
	format)
reinitialization_data/	Folder to store annotated or auto-
_	generated reinit data

Installation

Set up your environment and install dependencies:

git clone https://github.com/benztimm/thesis_fishtracking.git cd thesis_fishtracking pip install -r requirements.txt

. 1	•	
python	main.r	יוו
Python	"" total top	J

Press x during playback to select an ROI and reinitialize trackers. Press Esc to quit.

Evaluation variable:

Variable name	Description
TRACKER_NUM	configure number of tracker run in the
	program
COLLECT_DATA	True: Save output to CSV, False: not save
SWITCH	'kalman' or 'tracker' mode
VERSION	Version/iteration name of output file
DATA_FOLDER	data folder name (e.g. 'data_9862')
VIDEO_NAME	Video file name (e.g. video9862.mp4)
LABEL_FOLDER	Ground-truth folder name
OUTPUT_WRITE_VIDEO	True: Save video output, False: not save

Annotate Reinitialization Points

python mark_reinit.py

Variable name	Description
video_name	File name of the input video
label_folder	Ground-truth folder name
reinitialization_data_folder	Output folder name
reinitialization data filename	Output file name

- Press x to select a new bounding box and pick trackers via GUI.
- Saves data into reinitialization_data/reinitialization_data_*.csv

Visualize Ground Truth

python test_label.py

Variable

Variable name	Description
video name	File name of the input video
label folder	Ground-truth folder name

Overlays label bounding boxes from labels (video) folders onto video frames.

Metrics used:

- RMSE (Root Mean Squared Error)
- Euclidean Distance
- IoU (Intersection over Union)
- Inside Ratio: % of frames where tracker's centroid is inside GT box
- Reinitialization Count and Failure Count

Data Folder

III Tracker Evaluation and Visualization

This directory contains evaluation logs and visualization tools for comparing tracking performance between raw outputs and Kalman-enhanced fusion on a specific underwater video dataset.

S Contents

File	Description
evaluate.py	Prints summary statistics for all trackers and fused output
plot_distance_overtime.py	Line plot of Euclidean distance over time for each tracker
plot_rmse_overtime.py	Line plot of RMSE per frame per tracker
plot_iou_overtime.py	Line plot of IoU per frame for fused tracker (or optionally all)
*.csv	Evaluation results generated from the main tracking pipeline

***** Evaluate Summary Statistics

python eval.py

This script will:

- Load metrics from both 'tracker' and 'kalman' versions
- Print:
- RMSE
- Max/Min/Avg distance
- Inside ratio
- Reinitialization count
- Failure count
- Mean IoU per tracker

✓ Plot Distance Over Time

python plot_distance_overtime.py

Generates `distance_over_time_<option>_<version>_<title>.png`, a graph showing per-frame Euclidean distance.

N Plot RMSE Over Time

python plot_rmse_overtime.py

Generates `rmse_over_time_<option>_<version>_<title>.png`, a graph showing root mean square error over frames for each tracker.

Plot IoU Over Time

python plot_iou_overtime.py

Generates `iou_over_time_<option>_<version>_<title>.png`, a graph showing intersection over union per frames for each tracker.