《第一次习题作业》

- 4 假设 x(t) 为 $x(t) = \sin 200\pi t + 2\sin 400\pi t$ 和 $g(t) = x(t)\sin 400\pi t$ 。 若乘积 $g(t)(\sin 400\pi t)$ 通过一个 截止频率为 500π ,通带增益为 2 的理想低通滤波器,试确定该低通滤波器的输出信号。
- 9 有两个信号 $x_1(t)$ 和 $x_2(t)$,它们的傅里叶变换对于 $|\omega|>\omega_c$ 都为零,现要用频分多路复用将它们组合起来。每个信号都用书中图 8.21(见教材 P.432, 示于下图)的 AM-SSB/SC 技术保留下边带,对 $x_1(t)$ 和 $x_2(t)$ 所用的载波频率分别是 ω_c 和 $2\omega_c$,然后将这两个已调信号加在一起以得到 FDM 信号 y(t) 。
 - (a) 对于什么样的 ω 值, $Y(j\omega)$ 保证是零。
 - (b) 请给出 A 和 ω_0 的值,以使得 $x_1(t) = [\{y(t)*\frac{\sin\omega_0t}{\pi t}\}\cos\omega_0t]*\frac{A\sin\omega_ct}{\pi t}$,式中*记做卷积。

21~ 在 8.1~ 节和 8.2~ 节分析图 8.8~ (见教材 P.424)的正弦幅度调制和解调系统时都假设载波信号的相位 $heta_c$ 是零。

(a) 对于在该图中任意相位 $heta_c$ 的一般情况下,证明在解调系统中的信号可以表示为

$$w(t) = \frac{1}{2}x(t) + \frac{1}{2}x(t)\cos(2\omega_c t + 2\theta_c)$$

(b) 若 x(t) 的频谱在 $|\omega| \ge \omega_M$ 为零,试确定 W_{co} [图 8.8(b) 中理想低通滤波器的截止频率], ω_c (载波频率) 和 ω_M 三者之间的关系,以使得该低通滤波器的输出是正比于 x(t) 。所得答案与载波相位 θ_c 有关吗?

22 下图(a)示出一个系统,其输入是 x(t) ,输出是 y(t) ,输入信号的傅里叶变换 $X(j\omega)$ 如图(b)所示,请确定并画出 y(t) 的频谱 $Y(j\omega)$ 。

 -2ω

 2ω

(b)