MATH 254 Assignment 1

November 5, 2022

1a

WTS.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

Proof. We can use a chain of equivalences. Suppose that both not empty.

$$x \in A \cap (B \cup C) \iff x \in A \land x \in (B \cup C)$$
$$\iff x \in A \text{ and } (x \in B \text{ or } x \in C)$$
$$\iff (x \in A \land x \in B) \text{ or } (x \in A \land x$$
$$\iff x \in (A \cap B) \cup (A \cap C)$$

Now suppose one of the two members are empty. Then if the $\mathfrak c$ was not empty, it would imply that the original member was not this means that the two sets must be equal.

WTS.
$$(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$
.

Proof. Define $W = (A \backslash B) \cup (B \backslash A)$, then we will apply Q1a, an Theorem.

$$W^{c} = (A^{c} \cup B) \cap (B^{c} \cup A)$$

$$= ((A^{c} \cup B) \cap B^{c}) \cup ((A^{c} \cup B) \cap A)$$

$$= (A^{c} \cap B^{c}) \cup (A \cap B)$$

$$= (A \cup B)^{c} \cup (A \cap B)$$

$$= [(A \cup B) \setminus (A \cap B)]^{c}$$

Taking complements on both sides finishes the proof.

3a

WTS. $f := \{(x, y) \in [-1, +1] \times [-1, +1] : x^2 + y^2 = 1\}$ is not

Proof. f is not a function because $(0,1) \in f$ and $(0,-1) \in f$, and

WTS. f is a function.

Proof. Since $y \ge 0$, we can write $y = +\sqrt{1-x^2}$. Fix an $x \in$ there is a unique $y \in [0,1]$ that satisfies the above. Also, for ever $|y| \le 1$. Therefore f is a function.

4a

WTS. $f(f^{-1}([-4, -1] \cup [1, 4])) = [1, 4]$, where $f = x^{-2}$ for eve

Proof. Write $W = f^{-1}([-4, -1] \cup [1, 4])$, and because the inverserves intersections and unions by Q5, and $[-4, -1] \cap \{f(x) : x \varnothing$, then $f^{-1}[-4, -1] = \varnothing$. Which means $W = f^{-1}[1, 4]$ and hor [1, 4], as $[1, 4] \subseteq \{f(x) : x \in \mathbb{R} \setminus \{0\}\}$.

WTS.
$$f^{-1}(f(1,2)) = [-2, -1] \cup [1, 2]$$
. Where $f = x^{-2}$, for ev

Proof. The equality is obvious by inspection.

4cd

WTS. $f(f^{-1}B) = B$ if f is a surjection, and $f^{-1}(f(B)) = injection$.

We split this problem into two parts. We begin with the first ass $R = \{f(x) : x \in A\}.$

Lemma 0.1. For every function $f: X \to Y$, $f(f^{-1}(B)) \subseteq B$.

Proof. Use Q5a) onto the disjoint sets $f^{-1}(B \cap R)$ and $f^{-1}(B \cap R)$

$$f^{-1}(B) = f^{-1}(B \cap R) \cup f^{-1}(B \cap R^c)$$

Now $f^{-1}(B \cap R^c)$ must be empty, since no $x \in A$ satisfies f(A). Hence $f^{-1}(B) = f^{-1}(B \cap R)$.

$$f(f^{-1}(B)) = f(f^{-1}(B \cap R) \cup f^{-1}(B \cap R^c))$$

$$= f(f^{-1}(B \cap R)) \cup f(f^{-1}(B \cap R^c))$$

$$= f(f^{-1}(B \cap R))$$

$$= \{f(x) : x \in f^{-1}(B \cap R)\}$$

$$= \{y : y \in (B \cap R)\}$$

$$= B \cap R$$

Where for the second last equality we used the fact that f is jection onto its range. Then $f(f^{-1}(B)) = B \cap R \subseteq B$.

Remark. If f is a surjection, then its range R = Y, then $B \cap Y = B$.

Lemma 0.2. For every function $f: X \to Y$, $A \subseteq f^{-1}(f(A))$.

Proof. Write $f^{-1}(f(A))$ as the disjoint union of $A \cap f^{-1}(f(A))$ as the disjoint union of $A \cap f^{-1}(f(A))$. Then, we shall show that $f^{-1}(f(A)) = A$. For every

$$f(x) \in f(A) \land x \in A \iff x \in f^{-1}(f(A)) \land x \in A$$

 $\iff x \in A \cap (f^{-1}(f(A)))$

Hence $A \cap f^{-1}(f(A)) = A$, and $A \subseteq f^{-1}(f(A))$

Remark. If f is a injection, then for every $x \in A^c$, $f(x) \in A^c \cap f^{-1}(f(A)) = \emptyset$, and

$$f^{-1}(f(A)) = [A \cap f^{-1}(f(A))] \cup [A^c \cap f^{-1}(f(A))] =$$

5a

WTS. $f: A \to B$ is a function, and $A_1, A_2 \subseteq A$ and B_1, B_2 that $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.

Proof. Fix two subsets $B_1, B_2 \subseteq B$, then

$$f^{-1}(B_1 \cup B_2) = \{x \in A, f(x) \in B_1 \cup B_2\}$$

$$= \{x \in A, f(x) \in B_1 \text{ or } f(x) \in B_2\}$$

$$= \{x \in f^{-1}(B_1) \text{ or } x \in f^{-1}(B_2)\}$$

$$= f^{-1}(B_1) \cup f^{-1}(B_2)$$

WTS. $f: A \to B$ is a function, and $A_1, A_2 \subseteq A$ and B_1, B_2 that $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.

Proof. For any two sets $A_1, A_2 \subseteq A$,

$$f(A_1 \cup A_2) = \{ f(x) : x \in A_1 \cup A_2 \}$$

$$= \{ f(x) : x \in A_1 \text{ or } x \in A_2 \}$$

$$= \{ f(x) : x \in A_1 \text{ or } f(x) : x \in A_2 \}$$

$$= f(A_1) \cup f(A_2)$$

5c

WTS. $f: A \to B$ is a function, and $A_1, A_2 \subseteq A$ and B_1, B_2 that $f^{-1}(B_1 \setminus B_2) = f^{-1}(B_1) \setminus f^{-1}(B_2)$.

Proof.

Lemma 0.3. f^{-1} preserves complements.

Proof. For every $E \subseteq B$,

$$f^{-1}(B \setminus E) = \{x \in A : f(x) \in B \setminus E\}$$
$$= \{x \in A, f(x) \in E^c\}$$
$$= A \setminus f^{-1}(E)$$

Lemma 0.4. f^{-1} preserves intersections.

Proof. Now we wish to prove that f^{-1} preserves intersection every pair of subsets, $B_1, B_2 \subseteq B$. Write their intersection a apply Q5a, and take complements.

$$f^{-1}((B_1^c \cup B_2^c)^c) = (f^{-1}(B_1^c) \cup f^{-1}(B_2^c))^c$$

= $f^{-1}(B_1) \cap f^{-1}(B_2)$

To prove the assertion in Q5c, write $B_1 \setminus B_2 = B_1 \cap B_2^c$, and ε Lemmas.

5d

WTS. Provide an example such that $f(A_1 \setminus A_2) \neq f(A_1) \setminus f(A_2)$ condition on f that implies $f(A_1 \setminus A_2) = f(A_1) \setminus f(A_2)$.

We begin our answer with the example. Suppose $f \in L^{p*}$, we every element to 0. Take two subsets of $A \subseteq L^p$, $A_1 = \{g_1\}$; Then $f(A_1) \setminus f(A_2) = \emptyset$, but $A_1 \setminus A_2 = A_1$, and $f(A_1 \setminus A_2) = \emptyset$

The condition we want to impose on f is that it must be an will prove that it satisfies the assertion.

Proof.

Lemma 0.5. The direct image is monotonic. For every $E_1 \subseteq f(E_1) \subseteq f(E_2) \subseteq B$.

Proof. Apply Q5b) to sets $E_2 = (E_2 \setminus E_1) \cup (E_2 \cap E_1)$, then $f(E_1) \cup f(E_2 \cap E_1)$ implies that $f(E_1) \subseteq f(E_2)$.

Lemma 0.6. For every pair of subsets, $E_1, E_2 \subseteq A$, then $f(E_1 \setminus E_2)$.

Proof. If the left member is empty, then it is trivial. If not, th ment $y \in f(E_1) \setminus f(E_2)$, then $y \in f(E_1)$ and $y \in f(E_2)^c$.

This is equivalent to saying that there exists a $x_1 \in E_1$ such th and for every $x_2 \in E_2$, $f(x_2) \neq y$, and therefore x_1 is not a m since f is a function. It follows that $x_1 \in E_1 \setminus E_2$, and $f(x_1) = y$ Since g is arbitrary, we are done.

Suppose f is an injection, then for every $x \neq p \in A$ implies that We wish to prove the reverse estimate in the second Lemma. If in $y \in f(E_1 \setminus E_2)$, then this y induces an $x \in E_1 \setminus E_2$. Since $(E_1 \setminus E_2)$ and E_2 are disjoint, for every $p \in E_2$, $x \neq p$ yields and $f(x) = y \in f(E_2)^c$. But this y is also a member of $f(E_1$ Lemma, if we simply take $E_1 \setminus E_2 \subseteq E_1 \subseteq A$. Therefore $y \in f$ This completes the proof.

WTS. Show that f(x) = x/(|x|+1) is a bijection from \mathbb{R} to (

Proof. We begin with an important Lemma.

Lemma 0.7. For any $f: X \to Y$, if $A \subseteq X$ such that $f = f|_{X}$ is the disjoint union of $f|_{A}(A)$ and $f|_{A^{c}}(A^{c})$, and the restrict A and A^{c} are bijections onto their direct images, then f is a bigodian.

Proof. To prove injectivity, suppose we have $x_1 \neq x_2$, where $x_1 \neq x_2$ the trivial case of them both belonging to the same A or A loss of generality, suppose $x_1 \in A$ and $x_2 \in A^c$. Then by $f(x_1) = f|_A(x) \in f|_A(A)$ which implies that $f(x_1)$ is not in $f(x_1) \neq f(x_2)$.

Now to show surjectivity, simply take any $y \in Y$, and either $y \in f_{A^c}(A^c)$, and since the two restrictions of f onto the two sets a there exists a corresponding $x \in X$ which will satisfy. This opposes

Now we want to prove the original assertion. To use the lemme $[0, +\infty) \subseteq \mathbb{R}$. We will satisfy the assumptions of the Lemma. $x \in A$, f(x) = 1 - 1/(x + 1). Injectivity is obvious at first gle claim that $f|_A(A) = [0, 1)$. To show that $f|_A(A) \subseteq [0, 1)$, notice

$$f|_A = 1 - \frac{1}{x+1} \ge 0, \quad \forall x \in [0, +\infty)$$

$$f|_A \ge 1 \implies 1 - \frac{1}{x+1} \ge 1 \implies x \le -1 \implies x \in$$

Then $f|_A(A) \subseteq [0,1)$ as required. Now to show the converse [0,1), then there exists an $x = (1-y)^{-1} - 1 \in A$. Thus we have $f|_A$ is a bijection onto its direct image.

Next for $f|_{A^c}(x) = -1 + 1/(1-x)$ for any $x \in A^c$. It is tr that $f|_{A^c}$ is an injection. So, fix any $y \in (-1,0)$ and there co $x = 1 - (y+1)^{-1} \in A^c$. Hence $(-1,0) \subseteq f|_{A^c}(A^c)$. To show th will proceed by contradiction. So suppose there exists an $x \in$ $f|_{A^c}(x) \ge 0$, which means that $f|_{A^c}(x) \in A$, then a cool way contradiction this would be to plug $y = f|_{A^c}(x)$ into $f|_A(y) \in$ we have

$$f|_{A}(y) = y/(y+1)$$

$$= \frac{x/(1-x)}{x/(1-x)+1}$$

$$= x \in [0,1)$$

But $x \in A^c$ by assumption, so we have a contradiction. Suppoexists an $x \in A^c$ such that $f|_{A^c}(x) \leq 1$, then

$$\frac{x}{1-x} \le 1$$
$$-x/(1-x) \ge 1$$
$$1-1/(1-x) \ge 1$$
$$1/(1-x) \le 0$$
$$1 \le x$$

And the contradiction establishes the bijection. Since $f|_A(A)$ $f|_{A^c}(A^c) = (-1,0)$. Y = (-1,1) is the disjoint union of these can finally apply the Lemma, and the proof is complete.

WTS. Show that

$$f(x) = (x+1)(m/2) + a$$

induces a bijection from $(-1,1) \rightarrow (a,b)$ for every m=b-a>

Proof. Since $m \neq 0$, f is obviously injective. And for every y can easily find an

$$x = (y - a)(2/m) + (-1) \in (-1, 1)$$

To show that $f \in (a, b)$, we can attempt the contrapositive. f implies $|x| \ge 1$.

$$|f(x) - (a+b)/2| \ge m/2$$

$$|(x+1)(m/2) + 2a/2 - (a+b)/2| \ge m/2$$

$$|(x+1)m + 2a - a - b| \ge m$$

$$|x| \ge 1$$

This establishes the bijection.