Insurance Charge Prediction

Problem Statement or Requirement: A client's requirement is, he wants to predict the insurance charges based on the several parameters.

The Client has provided the dataset of the same. As a data scientist, you must develop a model which will predict the insurance charges.

1. Problem Statement:

Input and Output are clear. – SuperVised Learning Input is many
Output is Insurance Charge which is Regression

2. DataSet:

- a. Input is age, sex, bmi, children, smoker, charges
- b. Output is Insurance Charges
- c. Total Number of rows are: 1338
- d. Total Number of columns are: 6

3. Pre-Processing Method:

The input data has both Categorical and Nominal Data

Categorical Data are: Sex, smoker

Nominal Data are : age, bmi, children, charges

Therefore convert Categorical Data into Nominal data

4. Model:

R2_SCORE:

Multiple Linear R_Score : 0.76568

SVM: R_Score : -0.9063

Sno	HyperParam	linear	poly	rbf	sigmoid
1	C10	-0.0466	-0.0963	-0.0710	-0.07675
2	C100	0.49318	-0.1152	-0.11826	-0.09201
3	C500	0.60134	-0.1051	-0.1334	-0.26652
4	C0.5	-0.1348	-0.0683	-0.0753	-0.07611
5	C0.1	-0.1306	-0.0742	-0.07584	-0.07599
6	C1000	0.6131	-0.08850	-0.1297	<mark>-0.9063</mark>

Decision Tree

Sno	Criterion	Max_features	Splitter	R Score
1	squared_error	sqrt	best	0.5839
2	friedman_mse	sqrt	best	0.618650
3	absolute_error	sqrt	best	0.69077
4	poisson	sqrt	best	0.62056
5	squared_error	sqrt	random	0.65209
6	friedman_mse	sqrt	random	0.66199
7	absolute_error	sqrt	random	0.60450
8	poisson	sqrt	random	0.6213
9	squared_error	log2	best	0.7199
10	friedman_mse	log2	best	0.56909
11	absolute_error	log2	best	0.72402
12	poisson	log2	best	0.73210
13	squared_error	log2	random	0.57171
14	friedman_mse	log2	random	0.65473
15	absolute_error	log2	random	0.70884
16	poisson	log2	random	0.665280
17				
18				

RandomForest

Sno	Criterion	Max_features	n_estimators	R Score
1	squared_error	sqrt	50	0.8417
2	friedman_mse	sqrt	50	0.8438
3	absolute_error	sqrt	50	0.8408
4	poisson	sqrt	50	0.8392
5	squared_error	log2	50	0.8417
6	friedman_mse	log2	50	0.8438
7	absolute_error	log2	50	0.8408
8	poisson	log2	50	0.8392
9	squared_error	None	50	0.82793
10	friedman_mse	None	50	0.82811

11	absolute_error	None	50	0.8198
12	poisson	None	50	0.82726
13	squared_error	sqrt	100	0.8425
14	friedman_mse	<mark>sqrt</mark>	<mark>100</mark>	<mark>0.84371</mark>
15	absolute_error	sqrt	100	0.8443
16	poisson	sqrt	100	0.8417
17	squared_error	log2	100	0.84259
18	friedman_mse	log2	100	0.8437
19	absolute_error	log2	100	0.8443
20	poisson	log2	100	0.84173
21	squared_error	None	100	0.8333
22	friedman_mse	None	100	0.8337
23	absolute_error	None	100	0.8259
24	poisson	None	100	0.83453

5. Best Model:

Multiple Linear R_Score: 0.76568

SVM: R_Score : -0.9063

Decision: **0.73210**

Random Forest: 0.84371

Good Model has to be nearly 1, but here largest number nearing 1 is:

Random Forest: R_Score : 0.84371