Next Token Generation & Word Embeddings

Nipun Batra

IIT Gandhinagar

July 30, 2025

Outline

- 1. Introduction & Motivation
- 2. Vocabulary & Encoding
- 3. Training Data Generation
- 4. Embedding Architecture
- 5. Neural Network Architecture
- 6. Training and Loss Function
- 7. Text Generation
- 8. Temperature and Sampling Strategies
- 9. Summary and Applications

Challenge: How do we feed text into neural networks?

Neural networks work with numbers, not words

Challenge: How do we feed text into neural networks?

- Neural networks work with numbers, not words
- Need to convert text \rightarrow numerical representations

Challenge: How do we feed text into neural networks?

- Neural networks work with numbers, not words
- Need to convert text \rightarrow numerical representations
- Goal: Learn meaningful representations of words/characters

Challenge: How do we feed text into neural networks?

- Neural networks work with numbers, not words
- Need to convert text \rightarrow numerical representations
- Goal: Learn meaningful representations of words/characters

Challenge: How do we feed text into neural networks?

- Neural networks work with numbers, not words
- Need to convert text → numerical representations
- Goal: Learn meaningful representations of words/characters

Our Task: Character-Level Next Token Prediction

Given a sequence like "hello", predict the next character

Challenge: How do we feed text into neural networks?

- Neural networks work with numbers, not words
- Need to convert text → numerical representations
- Goal: Learn meaningful representations of words/characters

Our Task: Character-Level Next Token Prediction

Given a sequence like "hello", predict the next character

Input: "h", "e", "I", "I" → Output: "o"

Challenge: How do we feed text into neural networks?

- Neural networks work with numbers, not words
- Need to convert text → numerical representations
- Goal: Learn meaningful representations of words/characters

Our Task: Character-Level Next Token Prediction

Given a sequence like "hello", predict the next character

- Input: "h", "e", "I", "I" → Output: "o"
- Learn patterns in character sequences

Pop Quiz: Text Representation

Quick Quiz 1

Why can't we directly feed text into neural networks?

a) Text is too long for neural networks

Answer: b) Neural networks perform mathematical operations requiring numerical inputs!

Pop Quiz: Text Representation

Quick Quiz 1

Why can't we directly feed text into neural networks?

- a) Text is too long for neural networks
- b) Neural networks only work with numerical inputs

Answer: b) Neural networks perform mathematical operations requiring numerical inputs!

Pop Quiz: Text Representation

Quick Quiz 1

Why can't we directly feed text into neural networks?

- a) Text is too long for neural networks
- b) Neural networks only work with numerical inputs
- c) Text doesn't contain useful information

Answer: b) Neural networks perform mathematical operations requiring numerical inputs!

Vocabulary Size:

26 letters + 1 hyphen = **27 characters**

Vocabulary Size:

26 letters + 1 hyphen = 27 characters

Character-to-Index Mapping:

- 'a'
$$\rightarrow$$
 0, 'b' \rightarrow 1, ..., 'z' \rightarrow 25

Vocabulary Size:

26 letters + 1 hyphen = **27 characters**

Character-to-Index Mapping:

- 'a' \rightarrow 0, 'b' \rightarrow 1, ..., 'z' \rightarrow 25
- '-' ightarrow 26 (end-of-word marker)

Vocabulary Size:

26 letters + 1 hyphen = **27 characters**

Character-to-Index Mapping:

- 'a' \rightarrow 0, 'b' \rightarrow 1, ..., 'z' \rightarrow 25
- '-' ightarrow 26 (end-of-word marker)

Vocabulary Size:

26 letters + 1 hyphen = 27 characters

Character-to-Index Mapping:

- 'a' \rightarrow 0, 'b' \rightarrow 1, ..., 'z' \rightarrow 25
- '-' ightarrow 26 (end-of-word marker)

One-Hot Encoding: Each character becomes a 27-dimensional vector

• 'a': [1, 0, 0, ..., 0]

Vocabulary Size:

26 letters + 1 hyphen = 27 characters

Character-to-Index Mapping:

- 'a' \rightarrow 0, 'b' \rightarrow 1, ..., 'z' \rightarrow 25
- '-' \rightarrow 26 (end-of-word marker)

One-Hot Encoding: Each character becomes a 27-dimensional vector

- 'a': [1, 0, 0, ..., 0]
- 'b': [0, 1, 0, ..., 0]

Vocabulary Size:

26 letters + 1 hyphen = 27 characters

Character-to-Index Mapping:

- 'a' \rightarrow 0, 'b' \rightarrow 1, ..., 'z' \rightarrow 25
- '-' ightarrow 26 (end-of-word marker)

One-Hot Encoding: Each character becomes a 27-dimensional vector

- 'a': [1, 0, 0, ..., 0]
- 'b': [0, 1, 0, ..., 0]
- Very sparse representation!

Word2Vec Analogy Example

Classic Word2Vec Relationship

Relationship: queen \approx king - man + woman

Analogy with Emotions

Emotional Expression Analogy

Relationship: child crying = child smiling + adult crying - adult smiling

Embedding Matrix/Table Concept

Process: Character \rightarrow Lookup in Embedding Table \rightarrow Dense Vector

Embedding Table Structure

27 × K Embedding Matrix

Char	D1	D2	•••	DK
а	0.2	-0.1		0.8
b	-0.3	0.5		-0.2
С	0.1	0.3		0.4
:	•	:	٠	:
z	0.7	-0.4	•••	0.1
_	0.0	0.9	•••	-0.5

Key Point

Each character maps to a K-dimensional vector.

• Embedding Matrix: 27 × K parameters

- Embedding Matrix: 27 × K parameters
 - Initially random

- Embedding Matrix: 27 × K parameters
 - Initially random

- Embedding Matrix: 27 × K parameters
 - Initially random
 - Updated during training via backpropagation

- Embedding Matrix: 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations

- Embedding Matrix: 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters

- Embedding Matrix: 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters
 - Transform concatenated embeddings to output

- Embedding Matrix: 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters
 - Transform concatenated embeddings to output
 - Learn classification patterns

- Embedding Matrix: 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters
 - Transform concatenated embeddings to output
 - Learn classification patterns
- Total Learnable Parameters:

- Embedding Matrix: 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters
 - Transform concatenated embeddings to output
 - Learn classification patterns
- Total Learnable Parameters:
 - Embedding: 27 × K

- Embedding Matrix: 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters
 - Transform concatenated embeddings to output
 - Learn classification patterns
- Total Learnable Parameters:
 - Embedding: 27 × K
 - MLP: (context_size × K) → hidden → ... → 27

Example: 2D Embeddings for "abi"

Embedding Matrix (27 x 2)

Input: X = ["a", "b", "i"]

Concatenate the Embeddings

Feature Vector Construction

Result

3 chars × 2D embeddings = 6D input to neural network

Multi-Layer Perceptron Architecture

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

 Loss Function: Cross-entropy loss for multi-class classification

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

What we learn:

 Loss Function: Cross-entropy loss for multi-class classification

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

What we learn:

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - Embedding Matrix: Character representations (27 x K parameters)
 - MLP Weights: Neural network parameters for classification

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - Embedding Matrix: Character representations (27 x K parameters)
 - MLP Weights: Neural network parameters for classification

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - Embedding Matrix: Character representations (27 x K parameters)
 - MLP Weights: Neural network parameters for classification
- Training Process:

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - Embedding Matrix: Character representations (27 x K parameters)
 - MLP Weights: Neural network parameters for classification
- Training Process:

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)
 - MLP Weights: Neural network parameters for classification
- Training Process:
 - Forward pass: Input → Embeddings → Concatenate → MLP → Probabilities

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)
 - MLP Weights: Neural network parameters for classification
- Training Process:
 - Forward pass: Input → Embeddings → Concatenate → MLP → Probabilities
 - Compute cross-entropy loss

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- · What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)
 - MLP Weights: Neural network parameters for classification
- Training Process:
 - Forward pass: Input → Embeddings → Concatenate → MLP → Probabilities
 - Compute cross-entropy loss
 - Backward pass: Update both embeddings and MLP weights

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- · What we learn:
 - Embedding Matrix: Character representations (27 x K parameters)
 - MLP Weights: Neural network parameters for classification
- Training Process:
 - Forward pass: Input → Embeddings → Concatenate → MLP → Probabilities
 - Compute cross-entropy loss
 - Backward pass: Update both embeddings and MLP weights

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- · What we learn:
 - Embedding Matrix: Character representations (27 x K parameters)
 - MLP Weights: Neural network parameters for classification
- Training Process:
 - Forward pass: Input → Embeddings → Concatenate → MLP → Probabilities
 - 2. Compute cross-entropy loss
 - Backward pass: Update both embeddings and MLP weights
 - 4. Repeat for all training examples

Sampling from the Learned Model

Test Input: "abi"

Predicted Probability Distribution

Next Char	Probability	Next Char	Probability
а	0.01	n	0.05
b	0.01	0	0.02
С	0.03	р	0.01
d	0.60	q	0.00
е	0.02	r	0.03
f	0.01	S	0.08
•••	•••		•••
_	0.05	z	0.01

Most Likely Continuation

Generation Tree Structure

Recursive Process: Sample next character, append, repeat until end token

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (3)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (3)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

Temperature-scaled Softmax:

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (3)

Temperature Effects:

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (3)

- Temperature Effects:
 - $_{\circ}$ T=1: Standard probabilities

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (3)

- Temperature Effects:
 - T=1: Standard probabilities
 - $T \rightarrow 0$: More peaked (deterministic)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (3)

- Temperature Effects:
 - T=1: Standard probabilities
 - $T \rightarrow 0$: More peaked (deterministic)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (3)

- Temperature Effects:
 - T=1: Standard probabilities
 - $T \rightarrow 0$: More peaked (deterministic)
 - $T \rightarrow \infty$: More uniform (random)

Temperature Variations

Context: "abi" → Next character probabilities

Char	T=0.5 (Low)	T=1.0 (Default)	T=2.0 (High)
а	0.001	0.01	0.08
d	0.95	0.60	0.25
S	0.01	0.08	0.12
h	0.005	0.03	0.09
-	0.02	0.05	0.11
others	0.015	0.23	0.35

• Low T: Conservative, predictable

Temperature Variations

Context: "abi" → Next character probabilities

Char	T=0.5 (Low)	T=1.0 (Default)	T=2.0 (High)
а	0.001	0.01	0.08
d	0.95	0.60	0.25
S	0.01	0.08	0.12
h	0.005	0.03	0.09
-	0.02	0.05	0.11
others	0.015	0.23	0.35

• Low T: Conservative, predictable

Temperature Variations

Context: "abi" → Next character probabilities

Char	T=0.5 (Low)	T=1.0 (Default)	T=2.0 (High)
а	0.001	0.01	0.08
d	0.95	0.60	0.25
S	0.01	0.08	0.12
h	0.005	0.03	0.09
-	0.02	0.05	0.11
others	0.015	0.23	0.35

Low T: Conservative, predictable

• **High T:** Creative, diverse

• Core Idea: Next token prediction as classification

• Core Idea: Next token prediction as classification

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling
- Training: Joint learning of embeddings and classifier weights

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling
- Training: Joint learning of embeddings and classifier weights

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling
- Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling
- Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling
- Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control
- Applications: Foundation for modern language models

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling
- Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control
- Applications: Foundation for modern language models
 - GPT models use the same principle

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling
- Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control
- Applications: Foundation for modern language models
 - GPT models use the same principle
 - Scaled to words/subwords instead of characters

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling
- Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control
- Applications: Foundation for modern language models
 - GPT models use the same principle
 - Scaled to words/subwords instead of characters

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling
- Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control
- Applications: Foundation for modern language models
 - GPT models use the same principle
 - Scaled to words/subwords instead of characters
 - Transformer architecture instead of MLP

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- Architecture: Embeddings + MLP for sequence modeling
- Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control
- Applications: Foundation for modern language models
 - GPT models use the same principle
 - Scaled to words/subwords instead of characters
 - Transformer architecture instead of MLP
 - Billions of parameters instead of thousands

From Character-Level to ChatGPT

Same fundamental principle: Predict the next token!