# Leptoquark pair production at future hadron colliders

Maeve Madigan

B.C.Allanach, T. Corbett, MM: 1911.04455



### Motivation

How can the neutral current B anomalies motivate the FCC-hh?

If leptoquarks are responsible, could they be directly detected at future hadron colliders?

### Future hadron colliders

|        | $\sqrt{s}$ [TeV] | $\mathcal{L}\left[\mathrm{ab}^{-1}\right]$ |
|--------|------------------|--------------------------------------------|
| HL-LHC | 14               | 3                                          |
| HE-LHC | 27               | 15                                         |
| FCC-hh | 100              | 20                                         |

#### Neutral current B anomalies

Discrepancies from the SM predictions in observables related to  $b \to sll$  transitions including

$$P_5'$$
 BR $(B_s \to \phi \mu^+ \mu^-)$ 

$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu^{+}\mu^{-})}{BR(B \to K^{(*)}e^{+}e^{-})}$$





#### Neutral current B anomalies

Effective field theory description:

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i C_i O_i + h.c.$$

Aebischer, Altmannshofer, Guadagnoli, Reboud, Stangl, Straub 1903.10434:

A single-coefficient fit to the flavour anomaly data prefers new physics in  $C_9 = -C_{10}$  i.e.

$$\mathcal{O}_{LL} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\mu}\gamma^{\mu}P_{L}\mu)$$
 with  $C_{LL}^{\rm NP} = -0.53^{+0.08}_{-0.09}$ 

Other preferred options:  $C_9, C_9 \& C_{10}$ 







$$S_3: (\overline{3}, 3, \frac{1}{3})$$
  
under  $SU(3) \times SU(2) \times U(1)$ 

- $\rightarrow$  only  $q_L l_L$  couplings
- $\rightarrow$  scalar LQ

$$\mathcal{L} \supset y_{3ij}^{LL} \bar{Q}_L^{ci,a} \epsilon^{ab} (\tau^k S_3^k)^{bc} L_L^{j,c}$$

Rotate to the mass eigenbasis:

I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik, N. Košnik: 1603.04993

$$\mathcal{L} \supset y_{3ij}^{LL} \bar{Q}_L^{ci,a} \epsilon^{ab} (\tau^k S_3^k)^{bc} L_L^{j,c}$$

Rotate to the mass eigenbasis:

I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik, N. Košnik: 1603.04993

We will work with  $(y_3^{LL})_{22} \propto y_{s\mu} \neq 0 \ (y_3^{LL})_{32} \propto y_{b\mu} \neq 0$  and all other  $(y_3^{LL})_{ij}=0$ 



$$y_{b\mu}y_{s\mu}^* = \frac{C_{LL}^{NP}V_{tb}V_{ts}^*\alpha_{EM}}{2\pi v^2}m_{LQ}^2$$

$$y_{b\mu} = y_{s\mu}$$

These couplings describe a narrow width leptoquark:

$$\Gamma = \frac{|y_{lq}|^2 m_{\mathrm{LQ}}}{16\pi} \quad \Gamma/m_{\mathrm{LQ}} < 0.01$$



$$y_{b\mu}y_{s\mu}^* = \frac{C_{LL}V_{tb}V_{ts}^*\alpha_{\rm EM}}{2\pi v^2}m_{\rm LQ}^2$$



#### Constraints from:

LHC searches for LQ pair production

ATLAS:1906.08983 CMS:1808.05082 1605.06035

Perturbative unitarity

Neutral B meson mixing:  $m_{\rm LQ} \lesssim 70~{\rm TeV}$  for LQ solutions to the B anomalies

Luzioa, Kirk, Lenz, Rauh: 1909.11087

Simulate a search for the pair production of scalar LQs and decay into the dimuon dijet channel



We select events containing: 2 muons and  $\geq$ 2 jets with no flavour tagging.

Simulate a search for the pair production of scalar LQs and decay into the dimuon dijet channel



Pair production: dominant production mechanism for relevant couplings: g

- independent of  $y_{lq}$
- single production is always dependent on some  $y_{lq}$

Simulate a search for the pair production of scalar LQs and decay into the dimuon dijet channel



 $\mu\mu jj$  channel: motivated by the couplings  $y_{b\mu},y_{s\mu}$  required by the neutral current B anomalies.

Simulate a search for the pair production of scalar LQs and decay into the dimuon dijet channel



Direct search for a resonance in the invariant mass distribution, defined by:

Minimise  $|m(\mu_1, j_1) - m(\mu_2, j_2)|$ 

Define:  $m_{\min}(\mu, j) = \min[m(\mu_1, j_1), m(\mu_2, j_2)]$ 

### Methodology

Simulate the standard model background in  $m_{\min}(\mu,j)$  using

- Leading order Madgraph5
- Pythia8 for parton showering
- Delphes3 for detector simulation

Simulate the distribution of LQ events

UFO files from I. Doršner, A. Greljo, 'Leptoquark toolbox for precision collider studies' 1801.07641

Statistical analysis using HistFactory via pyhf

# Methodology

Signal region defined by cuts on  $~p_T^\mu, p_T^j, m_{\mu\mu}, |\eta_\mu|, |\eta_j|$  and  $S_T=p_T^{\mu_1}+p_T^{\mu_2}+p_T^{j_1}+p_T^{j_2}$ 

Drell-Yan + jets 
$$t\bar{t}$$
 + jets  $Wt + jets$   $W^+W^- + jets$ 

Match multijet samples with MLM matching

# Methodology

- $DY, t\bar{t}, Wt$  in a 5-flavour scheme
- WW in a 4-flavour scheme to avoid interference between  $W^+W^- + 2j, \ Wt + 1j$  and  $t\bar{t}$
- Diagram removal method to remove interference between Wt+1j and  $t\bar{t}$
- Bias the event generation to improve statistics in the tail regions.

### Validation

Comparison with ATLAS search for scalar leptoquarks at √s=13 TeV, 3.2 fb<sup>-1</sup>



#### Future colliders

- Signal regions: scale up cuts on  $p_T, M_{\mu\mu}, S_T$  by  $\sqrt{s}/(13~{\rm TeV})$
- Use the appropriate Delphes cards for each detector
- No selection on muon isolation is applied as the specific choice of parameters is found to have a significant impact on the SM background

following Helsens, Jamin, Mangano, Rizzo, Selvaggi: 1902.11217



### Projections: exclusion limits

Integrated luminosity required to exclude masses up to  $m_{\rm LQ}$  at 95% CL.

$$L = \prod_{\text{bins } i} \frac{(b_i + \mu s_i)^{n_i}}{n_i!} e^{-(b_i + \mu s_i)}$$



# Projections: discovery potential

Integrated luminosity required to discover masses up to  $m_{\rm LQ}$  with a significance of  $5\sigma$ .

$$L = \prod_{\text{bins } i} \frac{(b_i + \mu s_i)^{n_i}}{n_i!} e^{-(b_i + \mu s_i)}$$



### Narrow width LQs

#### Spread of LQ events due to:

- momentum lost during parton showering
- smearing due to detector efficiency and mismeasurement
- definition of  $m_{\min}(\mu,j)$



This shape is determined by the **experimental resolution**. Any narrow width scalar LQ should produce the same shape.

#### Exclusion limits: Projections for HL-LHC



#### Exclusion limits: Projections for HE-LHC and FCC-hh





#### Conclusions

Neutral current B anomalies are good motivators for future hadron colliders, if they remain.

For similar work on Z' solutions to the neutral current B anomalies:

B. C. Allanach, B. Gripaios, T. You: 1710.06363

B. C. Allanach, T. Corbett, M. J. Dolan, T.You: 1810.02166

B. C. Allanach, J. M. Butterworth, T. Corbett: 1904.10954



# Backup

#### LO Madgraph5 vs MG5\_aMC@NLO

Model our definition of signal region on the ATLAS search:

| $p_T^j \text{ (GeV)}$ | $p_T^{\mu} \; (\mathrm{GeV})$ | $M_{\mu\mu} \; ({\rm GeV})$ | $S_T 	ext{ (GeV)}$ |
|-----------------------|-------------------------------|-----------------------------|--------------------|
| > 50                  | > 40                          | > 130                       | > 600              |

| $\Delta R_{\mu j}$ | $\Delta R_{\mu\mu}$ | $ \eta_{\mu} $ | $ \eta_j $ |
|--------------------|---------------------|----------------|------------|
| > 0.4              | > 0.3               | < 2.5          | < 2.8      |

For efficiency we need to place cuts on the final state particles at parton level while generating events in Madgraph.

This was not efficient enough in MG5\_aMC@NLO + MadSpin.

#### Validation by comparison with ATLAS: 1605.06035



#### Use of ATLAS data

We model our search and validate our simulations against arXiv:1605.06035

Search for scalar leptoquarks in pp collisions at  $\sqrt{s}=13$  TeV with the ATLAS experiment (at 3.2 fb<sup>-1</sup>)

This has the advantage of following a simple cut-based analysis which is easily reproducible.

Other searches from ATLAS & CMS exist which are more constraining:

- CMS:1808.05082 search at √s=13 TeV and 35.9 fb<sup>-1</sup>
  - uses a 3-dimensional optimisation to optimise signal-tobackground separation (using Punzi significance).
- ATLAS: 1906.08983 search at √s=13 TeV and 36.1 fb<sup>-1</sup>
  - uses boosted decision trees to discriminate signal from background.

#### Charged current anomalies and vector leptoquarks

We ignore charged current anomalies associated with  $b \to c \tau \bar{\nu}$  transitions.

The scale of new physics required is  $\sim \mathcal{O}(1~{\rm TeV})$  compared to  $\sim \mathcal{O}(10~{\rm TeV})$  for the charged current anomalies

this new physics should be more easily discoverable

The vector LQ  $U_1$  can accommodate both anomalies

see e.g. A. Angelescu, D. Becirevic, D.A. Faroughy, O. Sumensari 1808.08179 C. Cornella, J. Fuentes-Martin, G. Isidori 1903.11517