Activités Mentales

24 Août 2023

Soit $(u_n)_n$ la suite définie pour tout n par $u_n = 2n + 10$. Après avoir conjecturé le sens de variation de la suite, le démontrer.

Soit $(u_n)_n$ la suite définie pour tout n par $u_{n+1} = u_n + 5n$ et $u_0 = -4$. Après avoir conjecturé le sens de variation de la suite, le démontrer.

Soit $(u_n)_n$ la suite définie pour tout n par $u_n = 10n - 1$. Après avoir conjecturé le sens de variation de la suite, le démontrer.

Soit $(u_n)_n$ la suite définie pour tout n par $u_n = -5n - 2$. Après avoir conjecturé le sens de variation de la suite, le démontrer.

Soit $(u_n)_n$ la suite définie pour tout n par $u_{n+1} = u_n - 5n$ et $u_0 = 10$. Après avoir conjecturé le sens de variation de la suite, le démontrer.

On commence par calculer les premiers termes de la suite. On a

$$u_n = 2n + 10$$
 $u_0 = 10$ $u_1 = 12$ $u_2 = 14$

 $u_2 \geqslant u_1 \geqslant u_0$ donc il semblerait que la suite soit croissante. Pour le démontrer, il faut calculer la différence $u_{n+1}-u_n$ et montrer qu'elle est positive pour tout $n \in \mathbb{N}$. Pour cela, il faut connaître l'expression de u_{n+1} :

$$u_{n+1} = 2(n+1) + 10 = 2n + 2 + 10 = 2n + 12$$

On peut maintenant calculer $u_{n+1} - u_n$:

$$(u_{n+1}) - u_n = 2n + 12 - (2n + 10)$$
$$= 2n + 12 - 2n - 10$$
$$= 2 > 0$$

La suite est donc croissante.

Soit $(u_n)_n$ la suite définie pour tout n par $u_{n+1}=u_n+5n$ et $u_0=-4$. Après avoir conjecturé le sens de variation de la suite, le démontrer. On commence par calculer les premiers termes de la suite. On a

$$u_{n+1} = u_n + 5n$$
 $u_1 = -4$ $u_2 = 1$ $u_3 = 11$

 $u_2 \geqslant u_1 \geqslant u_0$ donc il semblerait que la suite soit croissante. Pour le démontrer, il faut calculer la différence $u_{n+1}-u_n$ et montrer qu'elle est positive pour tout $n \in \mathbb{N}$. Ainsi :

$$u_{n+1} - u_n = u_n + 5n - u_n$$
$$= 5n > 0$$

car n > 0.

Ainsi, la suite est bien croissante.

On commence par calculer les premiers termes de la suite. On a

$$u_n = 10n - 1$$
 $u_0 = -1$ $u_1 = 9$ $u_2 = 19$

 $u_2 \geqslant u_1 \geqslant u_0$ donc il semblerait que la suite soit croissante. Pour le démontrer, il faut calculer la différence $u_{n+1}-u_n$ et montrer qu'elle est positive pour tout $n \in \mathbb{N}$. Pour cela, il faut connaître l'expression de u_{n+1} :

$$u_{n+1} = 10(n+1) - 1 = 10n + 10 - 1 = 10n + 9$$

On peut maintenant calculer $u_{n+1} - u_n$:

$$(u_{n+1}) - u_n = 10n + 9 - (10n - 1)$$
$$= 10n + 9 - 10n + 1$$
$$= 10 > 0$$

La suite est donc croissante.

On commence par calculer les premiers termes de la suite. On a

$$u_n = -5n - 2$$
 $u_0 = -2$ $u_1 = -7$ $u_2 = -12$

 $u_0 \geqslant u_1 \geqslant u_2$ donc il semblerait que la suite soit décroissante. Pour le démontrer, il faut calculer la différence $u_{n+1}-u_n$ et montrer qu'elle est négative pour tout $n \in \mathbb{N}$. Pour cela, il faut connaître l'expression de u_{n+1} :

$$u_{n+1} = -5(n+1) - 2 = -5n - 5 - 2 = -5n - 7$$

On peut maintenant calculer $u_{n+1} - u_n$:

$$u_{n+1} - (u_n) = -5n - 7 - (-5n - 2)$$
$$= -5n - 7 + 5n + 2$$
$$= -5 < 0$$

La suite est donc croissante.

Soit $(u_n)_n$ la suite définie pour tout n par $u_{n+1} = u_n - 5n$ et $u_0 = 10$. Après avoir conjecturé le sens de variation de la suite, le démontrer. On commence par calculer les premiers termes de la suite. On a

$$u_{n+1} = u_n - 5n$$
 $u_1 = 10$

$$u_1 = 10$$

$$u_2 = 5$$

$$u_3 = -5$$

 $u_0 \ge u_1 \ge u_2$ donc il semblerait que la suite soit décroissante. Pour le démontrer, il faut calculer la différence $u_{n+1} - u_n$ et montrer qu'elle est négative pour tout $n \in \mathbb{N}$. Ainsi :

$$u_{n+1} - u_n = u_n - 5n - u_n$$
$$= -5n < 0$$

car n > 0.

Ainsi, la suite est bien décroissante.

