Mathematics Homework Sheet 1

Problem 1

	A	В	$A \Longrightarrow B$	$\neg B$	$A \wedge \neg B$	$\neg (A \land \neg B)$	(a)
	1	1	1	0	0	1	1
a)	1	0	0	1	1	0	1
	0	1	1	0	0	1	1
	0	0	1	1	0	1	1

(a) is all true

	A	В	$A \wedge B$	$\neg (A \land B)$	$\neg A$	$\neg A \lor \neg B$	(b)
	1	1	1	0	0	0	1
b)	1	0	0	1	0	1	1
	0	1	0	1	1	1	1
	0	0	0	1	1	1	1

(b) is all true

	A	В	$A \lor B$	$\neg(A \lor B)$	$\neg A \wedge \neg B$	(c)
	1	1	1	0	0	1
c)	1	0	1	0	0	1
	0	1	1	0	0	1
	0	0	0	1	1	1

(c) is all true

Problem 2

(a)

Let P be set of all people.

$$P := \{p : person(p)\}$$

Let D be set of all decisions.

$$D := \{d : decision(d)\}$$

(i)
$$(\exists d \in D)$$
 $(\forall p \in P)$ $content(p, d)$
Negation (i): $(\forall d \in D)$ $(\exists p \in P)$ $\neg content(p, d)$

(ii)
$$(\forall p \in P) \ (\forall d \in D) \ content(p, d)$$

Negation (ii): $(\exists p \in P) \ (\exists d \in D) \ \neg content(p, d)$

(b)

Every decision results in discontent people

$$(\forall d \in D) \quad (\exists p \in P) \quad \neg content(p, d)$$

and if we negate this, we get

$$\neg((\forall d \in D) \quad (\exists p \in P) \quad \neg content(p, d)) \tag{1}$$

$$(\exists d \in D) \quad (\forall p \in P) \quad \neg\neg content(p, d) \tag{2}$$

$$(\exists d \in D) \quad (\forall p \in P) \quad content(p, d)$$
 (3)

and this is the same as (i). When we negate a statement, \forall turns into \exists and vice versa.

Problem 3

$$A \subseteq \Omega, B \subseteq \Omega$$

(a)

$$A \setminus B := \{a : (a \in A) \land (a \notin B)\}$$
$$A \cap B^C := \{a : (a \in A) \land (a \in B^C)\}$$

To show that $A \setminus B = A \cap B^C$, we need to show that $A \setminus B \subseteq A \cap B^C$ and $A \cap B^C \subseteq A \setminus B$. Let's start with $A \setminus B \subseteq A \cap B^C$

Pick an element from $A \setminus B$ and call it x which means that

$$x \in A \land x \notin B \tag{4}$$

We want to show that such x also exists in $A \cap B^C$. An element in $A \cap B^C$, let's call it y, needs to satisfy this condition:

$$y \in A \land y \in B^C \tag{5}$$

From condition (5) and from the definition, if $y \in B^C$ then $y \notin B$, we can get the following:

$$y \in A \land y \in B^C \tag{5}$$

$$y \in A \land y \notin B \tag{6}$$

(6) is exactly what the element x satisfies. So, any element in $A \setminus B$ is also in $A \cap B^C$. $A \setminus B \subseteq A \cap B^C$

Now the second part $A\cap B^C\subseteq A\setminus B$ Pick an element from $A\cap B^C$ and call it x which means that

$$x \in A \land x \in B^C \tag{6}$$

We want to show that such x also exists in $A \setminus B$. An element in $A \setminus B$, let's call it y, needs to satisfy this condition:

$$y \in A \land y \notin B \tag{7}$$

From condition (7) and from the definition, if $y \in B^C$ then $y \notin B$, we can get the following:

$$y \in A \land y \notin B \tag{7}$$

$$y \in A \land y \in B^C \tag{8}$$

(8) is exactly what the element x satisfies. So, any element in $A \cap B^C$ is also in $A \setminus B$. $A \cap B^C \subseteq A \setminus B$

(b)

To show

$$P(A \cap B) = P(A) \cap P(B)$$

We need to show

$$P(A \cap B) \subseteq P(A) \cap P(B) \quad \land \quad P(A) \cap P(B) \subseteq P(A \cap B)$$

$$P(A \cap B) = \{X : X \subseteq A \cap B\} \tag{8}$$

$$P(A) \cap P(B) = \{X : X \subseteq A\} \cap \{X : X \subseteq B\}$$

$$(9)$$

Lets start with the first one $P(A \cap B) \subseteq P(A) \cap P(B)$

Lets pick an element X from (8). Is this arbitrary element X also in the set (9)?

Yes, because $A \cap B \subseteq A$ and $A \cap B \subseteq B$. So, $P(A \cap B) \subseteq P(A) \cap P(B)$.

Now the second one $P(A) \cap P(B) \subseteq P(A \cap B)$

Lets pick an element X from (9). Is this arbitrary element X also in the set (8)?

Yes, X is subset of A which means X only contains elements that are in A. And X is subset of B which means X only contains elements that are in B. When we consider above two statements, X only contains elements from A and B which corresponds to $A \cap B$.

(c)

 $A \subseteq B$ means that

$$\forall x \in A \quad x \in B \tag{c1}$$

Now, lets take a look at this $B^C \subseteq A^C$

$$\forall x \in B^C \quad x \in A^C \tag{c2}$$

We try to show $(c1) \implies (c2)$. Lets try to prove it using proof by contradiction. Assume $(c1) \land \neg (c2)$ is true. Lets write down $\neg (c2)$.

$$\neg(\forall x \in B^C \quad x \in A^C)$$

$$\exists x \in B^C \quad x \notin A^C$$

$$\exists x \in B^C \quad x \in A$$
(c3)

(c3) states that there is at least one element that is not in B but in A. This contradicts with (c1) because (c1) states that all elements in A are also in B.