COMP 2711 Discrete Mathematical Tools for Computer Science 2022 Fall Semester – Tutorial 9

Question 1: Evaluate 1819¹³ (mod 2537)). Show the steps of fast modular exponentiation.

Question 2: Compute each of the following. Show or explain your work. Do not use a calculator or computer.

- 1) $15^{96} \mod 97$.
- 2) $67^{72} \mod 73$.
- 3) $67^{73} \mod 73$.

Question 3: (a) Use Fermat's Little Theorem to show that, if an integer a is not divisible by any of 3, 5, and 7, then

$$a^{49} \equiv a \pmod{105}.$$

(b) Use part (a) to calculate

$$4^{385} \mod 105$$
.

Question 4: This problem is on the RSA algorithm for public key cryptography. To generate his keys, Bob starts by picking p=37 and q=31. So, n=pq=1147 and T=(p-1)(q-1)=1080.

(a) Bob's public key is a pair (e, 1147). Which of the following integers can Bob use for e? Why?

(b) Suppose Bob chooses e=47. Compute his private key d by running the extended GCD algorithm. Show all the steps.

Question 5: Consider the following simplified version of the RSA algorithm for public cryptography:

- (i) Bob's public key is a pair (n, e), where n is a prime number and e is a positive integer that is smaller than n and is relatively prime with n-1.
- (ii) Bob's private key is $d = e^{-1} \mod (n-1)$.
- (iii) Alice encrypts a message m (0 < m < n 1) by calculating $c = m^e \mod n$, and sends the ciphertext c to Bob.

(iv) Bob decrypts the ciphertext c by calculating $c^d \mod n$.

Suppose n = 251 and e = 137.

- (a) Calculate d using the extended GCD algorithm. Show the computational steps.
- (b) Suppose m = 200. Calculate $c = m^e \mod n$ using repeated squaring. Show the computational steps.
- (c) Is the system secure? Explain why or why not.