Clustering with the k-means algorithm I

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- 1 The clustering problem
- 2 Two uses of clustering
- 4 Initializing Lloyd's algorithm

Clustering in \mathbb{R}^d

Two common uses of clustering:

- Vector quantization
 - Find a finite set of representatives that provides good coverage of a complex, possibly infinite, high-dimensional space.
- Finding meaningful structure in data Finding salient grouping in data.

Widely-used clustering methods

- 1 K-means and its many variants
- 2 EM for mixtures of Gaussians
- 3 Agglomerative hierarchical clustering

The *k*-means optimization problem

- Input: Points $x_1, \ldots, x_n \in \mathbb{R}^d$; integer k
- Output: "Centers", or representatives, $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$
- Goal: Minimize average squared distance between points and their nearest representatives:

$$cost(\mu_1, ..., \mu_k) = \sum_{i=1}^n \min_j ||x_i - \mu_j||^2$$

The centers partition \mathbb{R}^d into k convex regions: μ_j 's region consists of points for which it is the closest center.

Lloyd's k-means algorithm

The k-means problem is NP-hard. Most popular heuristic: "k-means algorithm".

- Initialize centers μ_1, \ldots, μ_k in some manner.
- Repeat until convergence:
 - Assign each point to its closest center.
 - Update each μ_i to the mean of the points assigned to it.

Each iteration reduces the cost \Rightarrow convergence to a local optimum.

Initialization matters

Initializing the *k*-means algorithm

Typical practice: choose k data points at random as the initial centers.

Another common trick: start with extra centers, then prune later.

A particularly good initializer: k-means++

- ullet Pick a data point x at random as the first center
- Let $C = \{x\}$ (centers chosen so far)
- Repeat until desired number of centers is attained:
 - Pick a data point x at random from the following distribution:

$$\Pr(x) \propto \operatorname{dist}(x, C)^2$$
,

where
$$\operatorname{dist}(x, C) = \min_{z \in C} \|x - z\|$$

• Add *x* to *C*