

CSE 473/573-A L10: HOUGH TRANSFORM

Chen Wang
Spatial AI & Robotics Lab
Department of Computer Science and Engineering

University at Buffalo The State University of New York

Content

- Hough Transform
 - Line Parameterization
 - Slope Intercept Form
 - Double Intercept Form
 - Normal Form
 - Line Detection
 - Image Space
 - Parameter Space
 - Hough Voting
 - Circles and Others

Hough Transform

- Hough Transform can detect basic shapes
 - Detect points/edges → Find shapes.
 - Lines, Circles, etc.
- Line parameterizations
 - Slope intercept form
 - Double intercept form
 - Normal Form

Slope intercept form

Double intercept form

$$\frac{x}{a} + \frac{y}{b} = 1$$
 x-intercept y-intercept

Normal Form

$$x\cos\theta + y\sin\theta = \rho$$

plug into:

$$\frac{x}{a} + \frac{y}{b} = 1$$

What are ρ and θ ?

Hough Transform

- Slope intercept form
- Normal Form

What would a point in image space become in parameter space?

Image space

$$y = mx + b$$
 $\sqrt{y} = mx + b$
 \sqrt{y}
parameters

a point becomes a line

Image space

$$y = mx + b$$
 $\sqrt{y} = mx + b$
 \sqrt{y}
parameters

two points become

variables
$$y=mx+b$$
 $\sqrt{}$ parameters

two points become ?

Image space

variables
$$y=mx+b$$
 $\sqrt{}$ parameters

three points become

$$y = mx + b$$
 $y = mx + b$
parameters

three points become

variables
$$y=mx+b$$
 y parameters

four points become

variables
$$y=mx+b$$
 y parameters

four points become ?

Hough Voting

Line Detection Algorithm:

- 1. Quantize Parameter Space (m,b).
- 2. Create Hough Space Array H(m,b)=0.
- 3. For each image point (x_i, y_i) : For all points (m, b) on $b = -x_i m + y_i$: H(m, b) = H(m, b) + 1
- 4. Find local maxima in $H(m_m, b_m)$.

Is this solution good enough?

H(m,b)

Problems with slope intercept form

How big does the Hough array have to be?

The space of m is huge! The space of b is huge!

$$-\infty \le m \le \infty$$

$$-\infty \le b \le \infty$$

Hough Transform with Normal Form

Use normal form:

$$x\cos\theta + y\sin\theta = \rho$$

The Hough space become $H(\rho, \theta)$

Hough Space

$$0 \le \theta \le \pi$$
$$0 \le \rho \le \rho_{max}$$

(Finite Hough Array Size)

Image space

parameters

a line becomes a point

a line becomes a point

(1,1)

x

Image space

a line becomes a point

Image space

pass through (1,1)

Image space

a line becomes a point

Wait ...why is ρ negative?

a line becomes a point

There are two ways to write the same line

Positive ρ version:

$$x\cos\theta + y\sin\theta = \rho$$

Negative ρ version:

$$\sin(\theta) = -\sin(\theta + \pi)$$

$$\cos(\theta) = -\cos(\theta + \pi)$$

two points become

three points become

Image and parameter space

Image space

four points become

Parameter space

Line Detection by Hough Voting

H: accumulator array (votes)

Algorithm:

- 1. Quantize Parameter Space (heta,
 ho) .
- 2. Create Hough Space Array $H(\theta, \rho) = 0$.
- 3. For each image point (x_i,y_i) : For all points (θ,ρ) on $\rho=x_i\cos\theta+y_i\sin\theta$: $H(\theta,\rho)=H(\theta,\rho)+1$
- 4. Find local maxima $H(\theta_m, \rho_m)$.
- 5. The detected line: $x\cos\theta_m + y\sin\theta_m = \rho_m$

Line Detection by Hough Voting

Votes

If images are noisy...

Votes

Too much noise

Real-world example

Original

Edges

Parameter Space

Hough Lines

More complex image

Basic Shapes

Parameter space

Let's assume known radius

parameters parameters
$$(x-a)^2 + (y-b)^2 = r^2$$

$$(x-a)^2 + (y-b)^2 = r^2$$
 variables Fixed variables Fixed

parameters
$$(x-a)^2 + (y-b)^2 = r^2$$
variables Fixed

What is the dimension of the parameter space?

Image space

Parameter space

What does a point in image space correspond to in parameter space?

$$(x-a)^2+(y-b)^2=r^2$$
variables

What if radius is unknown?

parameters
$$(x-a)^2 + (y-b)^2 = r^2$$

$$(x-a)^2 + (y-b)^2 = r^2$$
 variables
$$(x-a)^2 + (y-b)^2 = r^2$$

parameters
$$(x-a)^2 + (y-b)^2 = r^2$$
variables

If radius is unknown:

3D Hough Space! Use Hough array H(a, b, r).

Surface shape in Hough space is complicated.

Frustum of cone

Other Shapes?

Vertical Ellipse:

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1$$

$$H(x_0, y_0, a, b)$$

Ellipse:

$$\frac{[(x-x_0)\cos\theta + (y-y_0)\sin\theta]^2}{a^2} + \frac{[-(x-x_0)\sin\theta + (y-y_0)\cos\theta]^2}{b^2} = 1$$

Applications of Hough Voting

Scenes Prediction Ground Truth

Conclusion

Is the following correct about Hough transform ...

Detects multiple instances (lines/circles)?

Robust to noise?

Can be used for other shapes beyond lines/circles?

Good computational complexity?

Deals with occlusion well?

