МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет информационных

технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №7

по дисциплине «Основы профессиональной деятельности»

Вариант № 8679

Выполнил: Студент группы Р3115

Барсуков Максим Андреевич

Преподаватель:

Абузов Ярослав Александрович

Содержание

Текст задания	3
Исходный код синтезируемой команды	3
Тестовая программа	4
Методика проверки	6
Вывод	7

Текст задания

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

- 1. **XORSP** Исключающее ИЛИ двух верхних чисел на вершине стека, результат поместить на стек, установить признаки N/Z
- 2. Код операции **0F01**
- 3. Тестовая программа должна начинаться с адреса 01Е316

Исходный код синтезируемой команды

Текст программы

Адрес МП	Микрокоманда	Описание		Комментарий	
E0	00 <mark>80</mark> 00 9 208	~0 + SP	? AR	Saurce VC Ha Bobyanna	
E1	00 <mark>01</mark> 00 9 010	AC	? DR	Запись АС на верхушку стека	
E2	0 2 00000000	DR	? MEM(AR)	CIEKa	
E3	0080009008	SP	? AR	Первое значение стека	
E4	0 1 00000000	MEM(AR)	? DR	вDR	
E5	0020009001	DR	? BR	Первое значение в BR	
E6	00 <mark>80</mark> 00 9 408	SP + 1	? AR	Второе значение стека	
E7	0100000000	MEM(AR)	? DR	вDR	
E8	00 10 00 9 A21	~BR & DR	? AC	XOR от BR и DR => BR	
E9	00 <mark>01</mark> 00 9 921	BR & ~DR	? DR	(a ⊕ b) ≡	
EA	00 <mark>20</mark> 00 9 B <mark>11</mark>	~AC & ~DR	? BR	$\neg (\neg (\neg a \land b) \land \neg (a \land \neg b))$	
EB	00 <mark>20</mark> 80 9 220	~BR	? BR; N, Z	Установка N, Z	
EC	00 <mark>88</mark> 00 9 208	~0 + SP	? SP, AR	Populati co etoka etapoa	
ED	0 1 00000000	MEM(AR)	? DR	Вернуть со стека старое	
EE	0010009001	DR	? AC	значение аккумулятора	
EF	00 <mark>01</mark> 00 9 020	BR	? DR	Положить результат	
F0	0 2 00000000	DR	? MEM(AR)	операции на стек	
F1	80 C4 101040	GOTO INT	@ C4	Переход к циклу прер.	

Таблица трассировки микропрограммы

Пусть на стеке лежит 2 числа: $AAAA_{16}$ и 5555_{16} . В аккумуляторе находится 0001_{16} . Выполняется команда XORSP по адресу 1F1.

МР до выборки	Содержимое памяти и регистров процессора после выборки микрокоманды									
МК	MR	IP	CR	AR	DR	SP	BR	AC	NZVC	СчМК
E0	0080009208	1F2	0F01	7FD	0F01	7FE	1F1	0001	0000	E1
E1	0001009010	1F2	0F01	7FD	0001	7FE	1F1	0001	0000	E2
E2	0200000000	1F2	0F01	7FD	0001	7FE	1F1	0001	0000	E3
E3	0080009008	1F2	0F01	7FE	0001	7FE	1F1	0001	0000	E4
E4	0100000000	1F2	0F01	7FE	AAAA	7FE	1F1	0001	0000	E5
E5	0020009001	1F2	0F01	7FE	AAAA	7FE	AAAA	0001	0000	E6
E6	0080009408	1F2	0F01	7FF	AAAA	7FE	AAAA	0001	0000	E7
E7	0100000000	1F2	0F01	7FF	5555	7FE	AAAA	0001	0000	E8
E8	0010009A21	1F2	0F01	7FF	5555	7FE	AAAA	5555	0000	E9
E9	0001009921	1F2	0F01	7FF	AAAA	7FE	AAAA	5555	0000	EA
EA	0020009B11	1F2	0F01	7FF	AAAA	7FE	0000	5555	0000	EB
EB	0020809220	1F2	0F01	7FF	AAAA	7FE	FFFF	5555	1000	EC
EC	0088009208	1F2	0F01	7FD	AAAA	7FD	FFFF	5555	1000	ED
ED	0100000000	1F2	0F01	7FD	0001	7FD	FFFF	5555	1000	EE
EE	0010009001	1F2	0F01	7FD	0001	7FD	FFFF	0001	1000	EF
EF	0001009020	1F2	0F01	7FD	FFFF	7FD	FFFF	0001	1000	F0
F0	0200000000	1F2	0F01	7FD	FFFF	7FD	FFFF	0001	1000	F1
F1	80C4101040	1F2	0F01	7FD	FFFF	7FD	FFFF	0001	1000	C4

Тестовая программа

ORG 0x1D0

RESULT: WORD 0x0

CHECK1: WORD 0x0 CHECK2: WORD 0x0 CHECK3: WORD 0x0

RES1: WORD 0x0 RES2: WORD 0xFFFF RES3: WORD 0x7D9A

ARG1: WORD 0x0 ARG2: WORD 0x0

ARG3: WORD 0xAAAA ARG4: WORD 0x5555

```
ARG5: WORD 0xAAFF
ARG6: WORD 0xD765
ORG 0x01E3
START: CALL TEST1
   CALL TEST2
   CALL TEST3
   LD #0x1
   AND CHECK1
   AND CHECK2
   AND CHECK3
   ST RESULT
STOP: HLT
TEST1: LD ARG1
   PUSH
   LD ARG2
   PUSH
   LD #0x77
   WORD 0x0F01; XORSP
   CMP #0x77
   BNE ERROR1
   POP
   ST CHECK1
   CMP RES1
   BEQ DONE1
ERROR1: POP
   POP
   CLA
   RET
DONE1: POP
   POP
   LD #0x1
   ST CHECK1
   CLA
   RET
TEST2: LD ARG3
   PUSH
   LD ARG4
   PUSH
   LD #0x77
   WORD 0x0F01; XORSP
   CMP #0x77
   BNE ERROR2
   POP
   ST CHECK2
   CMP RES2
   BEQ DONE2
```

```
ERROR2: POP
   POP
   CLA
   RET
DONE2: POP
   POP
   LD #0x1
   ST CHECK2
   CLA
   RET
TEST3: LD ARG5
   PUSH
   LD ARG6
   PUSH
   LD #0x77
   WORD 0x0F01; XORSP
   CMP #0x77
   BNE ERROR3
   POP
   ST CHECK3
   CMP RES3
   BEQ DONE3
ERROR3: POP
   POP
   CLA
   RET
DONE3: POP
   POP
   LD #0x1
   ST CHECK3
   CLA
   RET
```

Методика проверки

- 0. Записать микропрограмму.
- 1. Загрузить тестовую программу в память базовой ЭВМ.
- 2. Запустить основную программу с адреса 01Е3₁₆ в режиме работа.
- 3. Дождаться останова.
- 4. Проверить значение ячейки памяти RESULT с номером $1D0_{16}$, если значение 0x1 все тесты выполнены успешно.

Комментарии к методике

- Для проверки используется три пары значений: 0000 & 0000, AAAA & 5555, AAFF & D765
- Данные значения показывают правильную работу программы с отрицательными, нулевыми и положительными числами.

- В ходе проверки флаги N и Z меняются с 0 на 1 и с 1 на 0 в двух разных случаях, что говорит о правильном выставлении флагов.
- Результат каждого теста записывается в соответствующую ячейку СНЕСК, значение 0x1 означает успешное выполнение. Любое другое результат выполнения синтезированной команды
- При успешном выполнении всех тестов значение RESULT станет 0x1, иначе любым отличным.

Ячейка с		Первое число		Второе число		Теоретический	Полученный	
результатом						результат	результат	
RES1	0x1D4	0000	(N=0, Z=1)	0000	(N=0, Z=1)	0000 (N=0, Z=1)	0000 (N=0, Z=1)	
RES2	0x1D5	AAAA	(N=1, Z=0)	5555	(N=0, Z=0)	FFFF (N=1, Z=0)	FFFF (N=1, Z=0)	
RES3	0x1D6	AAFF	(N=1, Z=0)	D765	(N=1, Z=0)	7D9A (N=0, Z=0)	7D9A (N=0, Z=0)	

Вывод

В ходе выполнения лабораторной работы я изучил алгоритм синтеза собственной команды БЭВМ с помощью микропрограмм и методику проверки сделанной программы.