(520|600).666

Information Extraction from Speech and Text

Homework # 4

Due March 28, 2024.

In class, we discussed linear interpolation for smoothing a bigram language model, namely

$$P(w|v) = \gamma f(w|v) + (1 - \gamma)f(w),$$

where $f(\cdot|\cdot)$ and $f(\cdot)$ denoted the appropriate relative frequency estimates, and γ was chosen so as to maximize the probability of some held-out data.

This homework considers alternative strategies for smoothing a bigram language model by directly modifying the counts observed in the training data. In particular, let C(v, w) denote the count of a bigram $\langle v, w \rangle$ in the <u>training text</u>, and let $C^*(v, w)$ be the modified count. For some constant $\theta > 0$, consider the three cases

- (i) $C^*(v, w) = C(v, w) + \theta$,
- (ii) $C^*(v, w) = C(v, w) + \theta C(w)$, and
- (iii) $C^*(v, w) = C(v, w) + \theta C(v) f(w)$.

In each case, the smoothed bigram probability is calculated as

$$P^*(w|v) = \frac{C^*(v,w)}{\sum_{w' \in \mathcal{V}} C^*(v,w')}.$$

Let N(v, w) denote the count of a bigram $\langle v, w \rangle$ in the <u>held-out text</u> \mathcal{H} .

1. Derive an expression for the θ that maximizes the log-probability

$$P(\mathcal{H}) = \sum_{v \in \mathcal{V}} \sum_{w \in \mathcal{V}} N(v, w) \log P^*(w|v)$$

of the held-out text in each of the three cases (i), (ii) and (iii) above.

- 2. Show that if N(v, w) = C(v, w) for all bigrams $\langle v, w \rangle$, then the optimal value is $\theta = 0$ in each case. Why is this an expected result?
- 3. Show, in each case, that P^* may be written as the linear interpolation of a bigram and a lower order language model, though not necessarily f(w).

$$P^*(w|v) = \gamma f_2(w|v) + (1-\gamma)f_1(w),$$

i.e., identify f_1 , f_2 and γ , and discuss the merits/drawbacks of each smoothing strategy. After finishing the homework, carefully review *all sections* of Chapter 4 again.