(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3067916号 (P3067916)

(45)発行日 平成12年7月24日(2000.7.24)

(24)登録日 平成12年5月19日(2000.5.19)

(51) Int.Cl.7		識別記号	FΙ			
B 2 2 D	11/115		B 2 2 D 1	1/115	С	
•	11/04	3 1 1	1	1/04	311J	
•	11/10		. 1	1/10	E	
11/18		• .	11/18		G .	
					請求項の数2(全 15 頁)	
(21)出願番号	*****	特顧平4-338881	(73)特許権	者 000006655		
(22)出顧日		平成4年12月18日(1992.12.18)	(72)発明者	新日本製館 東京都千代 藤 崎 韓	代田区大手町2丁目6番3号	
(65)公開番号 (43)公開日		特開平6-182518	(12/)03/14	富津市新富	320-1 新日本製鐵株式会社	
審查請求	日	平成6年7月5日(1994.7.5) 平成10年2月13日(1998.2.13)	(72)発明者	技術開発機工学を	- · · · · · ·	
				富津市新信 技術開発	- 101111 1 0 0 0 0 1 1 1 0 0 0 0 1	
	•		(72)発明者	和蟾	•	
				富津市新富 技術開発	第20-1 新日本製鐵株式会社 港本部内	
			(74)代理人	100076967		
				弁理士 杉	が付け、現 り	
			審査官	北村 明弘	L	

(54) 【発明の名称】 溶融金属の流動制御装置

1

(57)【特許請求の範囲】

【請求項1】溶融金属を取り囲む鋳型辺に沿って配列した、 $m \ge 3$, $n \ge 1$ なる、第1, 第2, ・・・第 $m \times n$ 磁極;

これらの磁極それぞれを励磁するための、第1, 第2, ···第m×n電気コイル:

リニア駆動交流電流波形を形成するためのm連の信号を 発生する信号発生手段:

第1連の信号を第1, m+1, 2m+1, ・・・電気コイルそれぞれに宛てられた増幅率で増幅する増幅手段, 増幅手段の出力信号をこれらの電気コイルそれぞれに宛てられたバイアス値分バイアスする手段、および、バイアスされた信号に対応する通電デューティで電気コイルそれぞれに通電する第1, m+1, 2m+1, ・・・コイルドライバ;

2

最終頁に続く

第2連の信号を第2, m+2, 2m+2, ・・・電気コイルそれぞれに宛てられた増幅率で増幅する増幅手段, 増幅手段の出力信号をこれらの電気コイルそれぞれに宛てられたバイアス値分バイアスする手段、および、バイアスされた信号に対応する通電デューティで電気コイルそれぞれに通電する第2, m+2, 2m+2, ・・・コイルドライバ;

第m連の信号を第m, 2m, 3m, ・・・電気コイルそれぞれに宛てられた増幅率で増幅する増幅手段, 増幅手10 段の出力信号をこれらの電気コイルそれぞれに宛てられたバイアス値分パイアスする手段、および、バイアスされた信号に対応する通電デューティで電気コイルそれぞれに通電する第m, 2m, 3m, ・・・コイルドライバ;

を備える溶融金属の流動制御装置。

【請求項2】溶融金属を取り囲む鋳型辺に沿って配列した、m≧3, n≧1なる、第1, 第2,・・・第m×n 磁極:

とれらの磁極それぞれを励磁するための、第1, 第2, ···第m×n電気コイル;

交流電流波形を形成するための通電デューティデータを 格納したメモリ手段;

所定周期Tpaで該メモリ手段の読出アドレスを順次更新して、前記交流電流波形に関して所定位相づつづれた、 m連の通電デューティデータを読出す手段;

読出された第1連の通電デューティデータに第1,m+1,2m+1,···電気コイルそれぞれに宛てられた増幅率を乗算する乗算手段,得られた積にこれらの電気コイルぞれぞれに宛てられたバイアス値を加える加算手段,所定周期Tpa内の、該加算手段が得た和が示す時間の間とれらの電気コイルそれぞれに通電する第1,m+1,2m+1,····コイルドライバ;

読出された第2連の通電デューティデータに第2, m+2, 2m+2, ・・・電気コイルそれぞれに宛てられた 増幅率を乗算する乗算手段, 得られた積にこれらの電気 20 コイルのそれぞれに宛てられたバイアス値を加える加算 手段, 所定周期Tpa内の、該加算手段が得た和が示す時間の間これらの電気コイルのそれぞれに通電する第2, m+2, 2m+2, ·・・コイルドライバ;

読出された第m連の通電デューティデータに第m、2 m、3m、・・・電気コイルそれぞれに宛てられた増幅 率を乗算する乗算手段、得られた積にこれらの電気コイ ルそれぞれに宛てられたバイアス値を加える加算手段、 所定周期Tpa内の、該加算手段が得た和が示す時間の間 これらの電気コイルそれぞれに通電する第m、2m、3 30 m、・・・コイルドライバ;

を備える溶融金属の流動制御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、鋳型内溶融金属を撹拌するための流動駆動装置に関し、特に、これに限る意図ではないが、連続鋳造鋳型内の溶融金属を、鋳型辺に沿って水平方向に流動駆動し流速が大きい所では制動する流動制御装置に関する。

[0002]

【従来技術】例えば連続鋳造では、タンデイッシュより 鋳型に溶鋼が注入され、鋳型において溶鋼は鋳型壁面から次第に冷却されつつ引き抜かれる。同一高さの鋳型壁 面における温度が不均一であると、表面割れやシェル破 断を生じ易い。これを改善するために、従来は、電磁石 あるいはリニアモータを用いて、鋳型内で溶鋼をその上 面と平行に、鋳型壁面に沿って循環流動駆動する(例え ば特開平1-228645号公報)。また溶鋼表層部で の溶鋼流動速度が不均一であると、溶鋼上のパウダーが 溶鋼中に巻き込まれ、これが鋼片中の欠陥となるが 鋳 型にはタンデイッシュより注入ノズルを介して溶鋼が供給され、この溶鋼が鋳型に流入する速度が高く、これによりパウダー巻込みを生じ易い。これを改善するために特開平3-258442号公報には、溶鋼に静磁界を加える電磁ブレーキ装置が提示されている。

[0003]

【発明が解決しようとする課題】特開平1-228645号公報に提示の溶鋼の流動駆動はある程度の効果があるものの、注入ノズルを介してタンディッシュに流入する溶鋼の流れにより鋳型壁面に沿った循環流動が乱される。特開平3-258442号公報に提示の電磁ブレーキ装置は、注入ノズルを介してタンディッシュに流入する溶鋼の流れを抑制する効果があるが、流速分布を均一化する効果は低い。

【0004】本発明は、溶融金属を流動駆動しかつ流速 をより均一化することを目的とする

[0005]

【課題を解決するための手段】本発明の第一態様の流動 制御装置は、溶融金属を取り囲む鋳型辺(1)に沿って配 列した、m≥3, n≥1なる、第1, 第2, ···第m ×n磁極(11~19); これらの磁極それぞれを励磁するた めの、第1, 第2, ・・・第m×n電気コイル(1Aa,1B a,1Ca,2Aa,2Ba,2Ca,3Aa,3Ba,3Ca); リニア駆動交流電流 波形(Aa, Ba, Ca)を形成するためのm連の信号を発生する 信号発生手段(81~83);第1連の信号(Aa対応)を第1, m+1, 2m+1, ・・・電気コイル(1Aa,2Aa,3Aa)そ れぞれに宛てられた増幅率(611の出力)で増幅する増幅 手段(612), 増幅手段(612)の出力信号をこれらの電気コ イルそれぞれに宛てられたバイアス値(613の出力)分バ イアスする手段(614)、および、バイアスされた信号に 対応する通電デューティで電気コイルそれぞれに通電す る第1, m+1, 2m+1, ・・・コイルドライバ(61, 64,67の615~621;41,44,47の411~414);第2連の信号 (Ba対応)を第2, m+2, 2m+2, ・・・電気コイル (1Ba,2Ba,3Ba)それぞれに宛てられた増幅率で増幅する 増幅手段、増幅手段の出力信号をこれらの電気コイルそ れぞれに宛てられたバイアス値分バイアスする手段、お よび、バイアスされた信号に対応する通電デューティで 電気コイルそれぞれに通電する第2, m+2, 2m+ 2, ・・・コイルドライバ(62,65,68の615~621;42,45, 40 48の411~414);第3連の信号(Ca対応)を第m, 2m, 3 m, ・・・電気コイル(1Ca,2Ca,3Ca)それぞれに宛て られた増幅率で増幅する増幅手段、増幅手段の出力信号 をこれらの電気コイルそれぞれに宛てられたバイアス値 分パイアスする手段、および、バイアスされた信号に対 応する通電デューティで電気コイルそれぞれに通電する 第m, 2m, 3m, ・・・コイルドライバ(63,66,69の6 15~621;43,46,49の411~414);を備える。

の溶鋼流動速度が不均一であると、溶鋼上のパウダーが 【0006】本発明の<u>第2態様の流動制御装置は、</u>溶融 溶鋼中に巻き込まれ、これが鋼片中の欠陥となるが、鋳 50 金属を取り囲む鋳型辺(1)に沿って配列した第1,第

2, · · · 第m×n磁極(11~19); これらの磁極それぞ れを励磁するための、第1,第2,・・・第m×n電気 コイル(1Aa,1Ba,1Ca,2Aa,2Ba,2Ca,3Aa,3Ba,3Ca);交流 電流波形(Aa)を形成するための通電デューティデータを 格納したメモリ手段(81~83の812); 所定周期Tpaで該 メモリ手段(81~83の812)の読出アドレスを順次更新し て、前記交流電流波形(Aa)に関して所定位相づつづれ た、m連(3連:各Aa,Ba,Ca対応)の通電デューティデータ を読出す手段;読出された第1連(Aa対応)の通電デュー ティデータに第1, m+1, 2m+1, ・・・電気コイ ル(1Aa,2Aa,3Aa)それぞれに宛てられた増幅率を乗算す る乗算手段(61,64,67の612), 得られた積にこれらの電 気コイルそれぞれに宛てられたバイアス値を加える加算 手段(61,64,67の614), 所定周期Tpa内の、該加算手段 が得た和が示す時間の間とれらの電気コイルそれぞれに 通電する第1, m+1, 2m+1, ·・・コイルドライ バ(61,64,67の617~621;41,44,47の411~414); 読出さ れた第2連(Ba対応)の通電デューティデータに第2, m +2,2m+2,··・電気コイル(1Ba,2Ba,3Ba)それ ぞれに宛てられた増幅率を乗算する乗算手段(62,65,68 の612), 得られた積にこれらの電気コイルのそれぞれに 宛てられたバイアス値を加える加算手段(62,65,68の61 4), 所定周期Tpa内の、該加算手段が得た和が示す時間 の間とれらの電気コイルのそれぞれに通電する第2, m $+2, 2m+2, \cdots 174$ ~621;42,45,48の411~414); 読出された第m連(Ca対 応)の通電デューティデータに第m, 2m, 3m, · · ・電気コイル(1Ca,2Ca,3Ca)それぞれに宛てられた増幅 率を乗算する乗算手段(63,66,69の612), 得られた積に これらの電気コイルそれぞれに宛てられたバイアス値を 30 加える加算手段(63,66,69の614), 所定周期Tpa内の、 該加算手段が得た和が示す時間の間とれらの電気コイル それぞれに通電する第m、2m、3m、・・・コイルド ライバ(63,66,69の617~621;43,46,49の411~414);を

【0007】なお、上記カッコ内に示した記号等は、後 述する実施例中の対応する要素の符号又は対応事項を参 考までに示したものである。

[0008]

【作用】本発明の溶融金属の流動制御装置では、溶融金 属を取り囲む鋳型辺(1)に沿って配列した複数個の磁極 (11~19)のそれぞれを励磁するための複数個の電気コイ ル(1Aa~3Aa,1Ba~3Ba,1Ca~3Ca)に、交流付勢手段(81 ~83;61~69の、611,612,615~621;41~49)が、磁極の 配列方向に溶融金属を流動駆動するためのリニア駆動用 交流電流(Iaa:Aa,Ba,Ca)を通電し、かつ、直流付勢手段 (61~69の、613,614,615~621;41~49)が、溶融金属を 制動するための制動用直流電流(Ib)を通電する。

【0009】電気コイルの交流通電により溶融金属は、 磁極の配列方向に流動駆動され、直流通電により制動さ 50 することにより、交流電流波形に重畳する。この通電デ

れる。すなわち同一の電気コイルが流動駆動と制動に共 用される。したがってこの流動駆動により溶鋼の流れを うながして溶鋼凝固表面のブローホールを除去すること ができ、しかも、制動により注入溶鋼の流速を抑制して 介在物(例えばパウダー)の浮上を容易にすることがで きる。このように、同一電気コイルで、ブローホールの 抑制又は除去のための流動駆動と、介在物の巻き込みの 抑制および浮上促進のための制動を行なうことができ る。

6

【0010】駆動力設定手段(61~69の611,612)が電気 コイルそれぞれのリニア駆動力を定め、制動力設定手段 (61~69の613,614)が電気コイルそれぞれの制動力を定 め、複数個の交流付勢手段(81~83;61~69の、615~62 1;41~49)が電気コイルそれぞれに、前記駆動力設定手 段が定めたリニア駆動力を発生するための交流電流(Ia a:Aa,Ba,Ca)を通電し、かつ、複数個の直流付勢手段(61 ~69の、615~621;41~49)が電気コイルそれぞれに、前 記制動力設定手段が定めた制動力を発生するための直流 電流(Ib)を通電する。すなわち、電気コイル各一個毎 に、それに宛てられた流動駆動力および制動力を発生す るための交流電流および直流電流が流される。

【0011】例えば図1に示すように、鋳型辺1~4で 囲まれる長方形空間の中心に溶鋼注入用ノズル30があ る場合、鋳型内で溶鋼は大略で図8の(a)に実線矢印 で示す方向に流れ、長辺1の水平方向において溶鋼流は 不均一であり、ノズル30直近では流速が速過ぎ、遠方 では遅い。この場合、ノズル直近の電気コイルには、強 い流動駆動力および弱い制動力を発生する交流電流およ び直流電流を流すことにより、溶鋼凝固表面のブローホ - ルが除去されおよびその発生が抑制される。駆動力設 定手段(61~69の611,612)および制動力設定手段(61~69 の613,614)により、長辺1の水平方向での溶鋼の流速が 均一かつ同一方向になるように、電気コイルそれぞれの リニア駆動力および制動力を設定しておくことにより、 長辺1の水平方向全長に渡って、ブローホールの抑制効 果および介在物の浮上促進効果が同時にもたらされる。 【0012】各電気コイルはm相(実施例ではm=3) 交流によるリニアモータ付勢(流動駆動用)であり、こ れに制動のための直流を加えるために、電気コイル通電 電流値は通電デューティ制御で決定される。交流電流波 形は、通電デューティの時系列変化と、通電極性の切換 えでもたらされる。基本交流波形をもたらす一連の通電 デューティに、増幅率を乗算することにより、所要の流 動駆動力に対応する振幅の交流波形が得られる。とのよ うな振幅調整又は設定を、乗算手段が、各電気コイル対 応で行なう。制動用の直流分は、リニアモータ付勢用交 流電流波形を得る通電デューティに、制動用直流電流値 に対応する通電デューティ (時系列で一定値)を加算 (この通電デューティを負値にしていると実質上減算)

20

ューティを大きく/小さくするととにより、所要の制動力に対応する直流分が得られる。このようなレベル(バイアス)調整又は設定を、加算手段が、各電気コイル対応で行なう。この実施態様では、流動駆動用の所望振幅の交流電流、制動用の所望レベルの直流、ならびにそれらの合成が、通電デューティの演算処理で行なわれ、電気コイル通電回路はきわめて簡単となる。

【0013】本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。

[0014]

【実施例】図1に、本発明の一実施例の、磁極および電 気コイルの配置を示す。図中1および2は、連続鋳造鋳 型の長辺、3および4は短辺であり、これらが囲む空間 に、注入ノズル30を通して溶鋼が、図1紙面の表側か ら裏側に向けて(垂直方向 z で上方から下方に)、注入 される。この実施例では、鋳型(1~4)内の溶鋼を、 3相リニアモータ型で長辺1に沿って右から左に(+ y から-yの方向に)駆動するために、第1組の9個の磁 極11~19が長辺1の外側に水平方向(+yから-y の方向) に配置している。また、長辺2に沿って左から 右に(-yから+yの方向に)駆動するために、第2組 の9個の磁極21~29が長辺2の外側に水平方向(+ yから-yの方向) に配置されている。これらの磁極に は、それぞれ1個の電気コイル1Aa等が巻回されてい る。磁極間の共通磁路である磁極ベース10と20は、 それらの外部への磁束の漏れを抑制するように、ヨーク 31,32で接続されている。

【0015】図2を参照する。第1組の第1磁極11に 巻回された、第1組の第1電気コイル1Aaは、図2に 示すように、正極性通電用のGTO(ゲート・ターン・ オフ・SCR)411および負極性通電用のGTO41 2を通して、直流電源60の+出力端および-出力端に 接続される。GTO411および412は、それぞれG TOドライバ413および414でオン(通電)/オフ (非通電)付勢される。電気コイル1Aaに流れる電流 の値(絶対値)を電流検出器415が検出し、それを示 すアナログ信号を、後述の通電バルス発生器61に与え る。これらの通電および検出回路要素と電気コイル1A aの組合せ回路が、第1の励磁回路41である。

【0016】他の電気コイル1Ab等も、同様な通電および検出回路要素が接続されて、同様な励磁回路42等を構成している。すなわち図1に示す第1組9個および第2組9個の電気コイル1Aa等に関して、図2に示すように、第1組9個の励磁回路41~49および第2組9個の励磁回路51~59が構成されている。

【0017】図3を参照する。図3は、図2に示す励磁回路 $41\sim49$ および $51\sim59$ を含めた、流動制御回路の全体構成を示す。なお図3においては、電源回路は省略し、制御信号の流れる方向を矢印で示した。励磁回路 $41\sim49$, $51\sim59$ のGTOドライバ(411

412)には、通電パルス発生器61~69、71~79が、オン指示パルス(高レベルHがオン指示/低レベルLはオフ指示)を与える。通電パルス発生器61の構成を図4に示す。その機能は後述する。他の通電パルス発生器62等も、61と同一の構成である。

【0018】第1組の中の通電バルス発生器61,64 および67には関数発生器81が、交流サイン波(例えば図7のAa)状の時系列電流変化をもたらす一連の通電デューティデータを与える。第1組の中の通電バルス発生器62,65および68には関数発生器82が、交流サイン波(例えば図7のBa)状の時系列電流変化をもたらす一連の通電デューティデータを与える。第1組の中の通電バルス発生器63,66および69には関数発生器83が、交流サイン波(例えば図7のCa)状の時系列電流変化をもたらす一連の通電デューティデータを与える。

【0019】第2組の中の通電バルス発生器71,74 および77には関数発生器84が、交流サイン波(例えば図7のAb)状の時系列電流変化をもたらす一連の通電デューティデータを与える。第2組の中の通電バルス発生器72,75および78には関数発生器85が、交流サイン波(例えば図7のBb)状の時系列電流変化をもたらす一連の通電デューティデータを与える。第2組の中の通電バルス発生器73,76および79には関数発生器86が、交流サイン波(例えば図7のCb)状の時系列電流変化をもたらす一連の通電デューティデータを与える。

【0020】関数発生器81の構成は図5に示す。その機能は後述する。他の関数発生器82~86も81と同一構成である。パルス発生回路90は、交流サイン波(例えば図7のAa~Ca, Ab~Cb)状の時系列電流変化をもたらすように各連の通電デューティデータを発生するためのタイミングパルス等、タイミング信号を発生し、関数発生器81~86に与える。

【0021】図6を参照して、パルス発生回路90が発 生するパルスを説明する。溶鋼流動駆動用の交流電流波 形を図6に示す1sと想定すると、パルス発生回路90 は、交流電流波形ISの一周期に対して極めて短い周期 の、クロックパルスPdを発生し、クロックパルスPd を分周して、やはり 1 s の一周期に対して短かい周期 の、デューティ通電の一周期を規定する通電タイミング パルスPaを発生し、パルスPaを分周して、交流電流 波形Isの一周期を規定する第1の交流周期同期パルス Pboを発生する。回路90は更に、パルスPboを基 点にパルスPaをカウントして、交流電流波形lsに図 7のAaを対応付けると、それより120°.240 , 180°, 60° および300° 位相が遅れた波形 Ba, Ca, Ab, BbおよびCb (図7) を発生させ るための第2, 第3, 第4, 第5 および第6の交流周期 50 同期パルス P。ュュ。, P。ュィ。, P。ュ。。, P。。。および P

40

に、関数発生器81~86ならびに通電パルス発生器6 1~69,71~79に与えられる。

【0022】図5を参照して、関数発生器81の機能を 説明する。メモリ812には、溶鋼流動駆動用の基準交 流電流波形Is(図6)なる電流を電気コイルに通電す るための通電デューティデータ (パルスPaの一周期の 間の通電時間データであり、クロックパルスPdの個数 を表わす)が、 Isの1サイクル分格納されており、前 半サイクルおよび後半サイクルの通電デューティデータ が表わす値の絶対値は同じであるが、前半サイクルの通 電デューティデータは正極性通電を指定するために正値 とされ、後半サイクルの通電デューティデータは負極性 通電を指定するために負値とされている。第1の交流周 期同期パルスPbo (の高レベルH) がアドレスカウン タ811をクリアし、このパルス信号Pboが低レベル Lの間アドレスカウンタ811が通電タイミングパルス Pa (の立上り) をカウントアップする。 アドレスカウ ンタ811のカウントデータがメモリ812の読出しア ドレスを指定する。これによりメモリ812は、パルス Paの到来(Paの立上り)に同期して、基準交流電流 波形 Isを電気コイルに通電するための一連(Isの1 サイクル分)の通電デューティデータを順次に出力し、 パルスPboが到来するとまた同じく一連の通電デュー ティデータを順次に出力する。メモリ812の出力デー タは、パルスPa(の立下り)に同期してラッチ813 にラッチ (記憶) される。

【0023】関数発生器82~86の構成は81の構成 と同一であるが、図5に示すように、関数発生器82に は、第2の交流周期同期パルスPb,,,が与えられてと れによりそのアドレスカウンタ (図示せず) がクリアさ れるので、またPb,,,。はPboより120°位相が遅 れているので、関数発生器81が発生する通電デューテ ィデータに基づいた電気コイル通電電流が例えば図7の Aaとなる場合、関数発生器82が発生する通電デュー ティデータに基づいた電気コイル通電電流は図7のBa となる。関数発生器83には、第3の交流周期同期パル スPbzzoが与えられてこれによりそのアドレスカウン タ (図示せず) がクリアされるので、またPb, ... はP boより240°位相が遅れているので、関数発生器8 3が発生する通電デューティデータに基づいた電気コイ ル通電電流は図7のCaとなる。大要では後述するよう に、これらの関数発生器81~83が出力する通電デュ - タィデータに基づいて電気コイルに流れる電流(波 形)のAa(81出力)は図1に示す電気コイル1A a, 2Aa, 3Aaに、Ba (82出力) は電気コイル 1Ba, 2Ba, 3Baに、Ca (83出力) は電気コ イル1Ca, 2Ca, 3Caに流れるので、第1組の磁 極11~19により鋳型の長辺1に沿って右 (+y) か ら左(-y)に移動する磁界が、鋳型内の溶融金属に作 50 定する)の他に、制動電流設定器613が、制動電流指

用する。

【0024】関数発生器84には、第4の交流周期同期 バルスPbisoが与えられてこれによりそのアドレスカ ウンタ (図示せず) がクリアされるので、またPb₁₈₀ はPboより180°位相が遅れているので、関数発生 器81が発生する通電デューティデータに基づいた電気 コイル通電電流が例えば図7のAaとなる場合、関数発 生器84が発生する通電デューティデータに基づいた電 気コイル通電電流は図7のAbとなる。関数発生器85 には、第5の交流周期同期パルス Pb。が与えられてこ れによりそのアドレスカウンタ (図示せず) がクリアさ れるので、またPb。はPboより60°位相が遅れて いるので、関数発生器85が発生する通電デューティデ - タに基づいた電気コイル通電電流は図7のBbとな る。また、関数発生器86には、第6の交流周期同期パ ルスPb,。。が与えられてこれによりそのアドレスカウ ンタ(図示せず)がクリアされるので、またPb,,,は Pboより300°位相が遅れているので、関数発生器 86が発生する通電デューティデータに基づいた電気コ イル通電電流は図7のCbとなる。Cbに対してBbは 120°位相が遅れており、AbはCbに対して240 ゜ 位相が遅れている点に注意されたい。大要では後述す るように、これらの関数発生器84~86が出力する通 電デュータィデータに基づいて電気コイルに流れる電流 (波形)のAb(84出力)は図1に示す電気コイル4 Ab, 5Ab, 6Abに、Bb (85出力) は電気コイ ル4Bb, 5Bb, 6Bbに、Cb (86出力) は電気 コイル4Cb, 5Cb, 6Cbに流れるので、第2組の 磁極21~29により鋳型の長辺2に沿って左(-y) 30 から右(+y)に移動する磁界が、鋳型内の溶融金属に 作用する。

10

【0025】図4を参照して通電パルス発生器61の機 能を説明する。関数発生器81の出力データ(図7のA a対応)は乗算器612に与えられる。乗算器612に は駆動電流設定器611が増幅率データを与える。設定 器611は、オペレータが増幅率を指定するためのアブ ソリュートエンコーダを有する。該エンコーダの摘子を 廻わすとエンコーダの、数値を示す出力コードが、回転 角対応のものに変化する。ことで増幅率は、0以上の値 である。乗算器612は、関数発生器81が与えるデュ -ティデータが表わす値に設定器611が与えるデータ (増幅率)を乗算した値を示す通電デューティデータを 加算器614に与える。例えば、設定器611が与える 増幅率が1のときには、電気コイル1Aaには基準電流 Is (図6)が流れるが、増幅率が1より大きいと例え ば図6に示す Laaとなる。増幅率が1未満のときには基 準電流Isより低レベルの電流が電気コイルに流れる。 【0026】加算器614には、上述の増幅率を乗算し た通電デューティデータ(溶鋼流動駆動用の電流値を指

示データを与える。設定器613も、オペレータが制動 電流値(を決定する通電デューティ)を指定するための アプソリュートエンコーダを有する。該エンコーダの摘 子を廻わすとエンコーダの、数値を示す出力コードが、 回転角対応のものに変化する。とこで制動電流値は、 0,正値および負値であり、エンコーダの摘子が中立位 置のときエンコーダは0を表わすデータを、中立位置よ り時計方向に回転すると回転角対応の正値を表わすデー タを、中立位置より反時計方向に回転すると絶対値が回 転角対応の値の負値を表わすデータを、加算器614に 出力する。例えば、設定器613が与えるデータが、制 動電流値0を越える正値(例えば図6の1bを指定)の ときには、電気コイルIAaには、溶鋼流動駆動用の電 流(例えば図6の I aa)を、正方向に I b 分シフトした、 図6に示す I baが流れる。すなわち電気コイル電流が、 溶鋼流動駆動用の電流 Iaaに、制動用の直流バイアス I bを加えたものとなる。設定器613が与えるデータが 負値のときには、電気コイル電流は、溶鋼流動駆動用の 電流laaを負方向にシフトしたものとなる。

【0027】加算器614の出力データ(が表わす値) の正, 負極性を、極性判別器615が検出し、正極性と 検出したときに高レベルHで、負極性と検出したときに 低レベルしの極性検出信号をアンドゲート620,62 1に与え、加算器614の出力データの絶対値を示すデ - タを加算器616およびフィードバック演算器622 に与える。フィードバック演算器622は、電気コイル の電流目標値(加算器614の出力データの絶対値が示 す電流値)から、電気コイルに流れた電流値(の絶対 値。図2に示す電流検出器415の出力)を減算した値 を示すデータをパルスPaに同期してラッチ623にラ ッチ(記憶)する。ラッチ623の出力データは、電気 コイルに流れる電流値を電流目標値とするために必要な 補正量を表わし、それが正値のときには通電電流値 (通 電デューティ)の所要アップ量を、負値のときには所要 ダウン量を表わす。

【0028】加算器616は、電流目標値(加算器614の出力データの絶対値)に補正量(ラッチ623の出力)を加算した値をカウンタ617に出力する。なお、ラッチ623が与える補正量が負値のときには、加算器616は実質上減算を行なうことになる。カウンタ617には、パルスPaを遅延器618で遅延して得たパルスがロード指示信号として、またクロックパルスPdがカウントパルスとして与えられ、カウンタ617は、パルスPaを遅延して得たパルス(ロードパルス)が高レベルHに立上ったときに加算器616の出力データをロードして、ロードパルスが立下ると、クロックパルスPdをカウントし、カウント値がロード値(加算器616の出力データ)に合致すると、キャリー信号を発生してフリップフロップ619をリセットする。なお、フリップフロップ619はロードパルスの立下でセットされて

そのQ出力をLからHに反転し、キャリー信号でリセットされてQ出力をHからLに戻す。これにより、フリップフロップ619のQ出力は、バルスPaに同期して立上り、この立上りから、加算器616の出力データが示す時間(パルスPdの数)の経過の後に立下る。なお、ロードパルスを、パルスPaより遅延させているのは、関数発生器81の出力データがバルスPaに同期して切換わるが、切換わったデータに関して、乗算器612、加算器614、極性判別器615および加算器616による演算、判定等の処理時間(遅れ時間)があるので、すべての演算、判定等の完了を待つためである。【0029】フリップフロップ619の、上述のQ出力

12

はアンドゲート620および621に与えられる。これ らのアンドゲート620, 621 には極性検出信号 (判 別器615の出力)も与えられ、これがアンドゲート6 20にはそのまま入力され、アンドゲート621には反 転して入力されるので、加算器614の出力データが正 値を示すものであるときにはアンドゲート620が、前 記Q出力が高レベルHの間のみHの通電指示信号Pdp 20 を発生し、加算器614の出力データが負値を示すもの であるときにはアンドゲート621が、前記Q出力が高 レベルHの間のみHの通電指示信号Ndpを発生する。 これらの信号PdpおよびNdpは関数発生器81の出 カデータの変化に対応して図6に示すように時系列で変 化し、それぞれ、図2に示す励磁回路41のGTOドラ イバ413および414に与えられる。GTOドライバ 413は、信号PdpがHの間のみGTO411を導通 とし、これにより電気コイル1Aaには、信号Pdpが Hの間のみ正方向電流が流れる。GTOドライバ414 は、信号NdpがHの間のみGTO412を導通とし、 これにより電気コイル 1 A a には、信号N d p が H の間 のみ正方向電流が流れる。これらにより、電気コイル1 Aaの通電電流(時系列平滑値)が図6に示すlbaと なる。この電流Ibaの正ピークから負ピークの間の変 動は乗算器612の出力によって定まる溶鋼流動駆動電 流成分であって、駆動電流設定器611により、正ピー ク/負ピーク間のレベル差すなわち交流電流値つまり溶 鋼駆動力を調節しうる。Ibaの直流バイアス分Ib は、制動電流設定器613の出力によって定まる制動電 流成分であって、制動電流設定器613によって調節し うる。すなわち制動電流設定器613によって制動力を 調節しうる。

【0030】他の通電バルス発生器62~69ならびに71~79も、上述の図4に示す通電バルス発生器61と同じ構成であり、同様に動作する。

および直流バイアスを電気コイル毎に調節した電流が流 れ、電気コイル1Ca, 2Ca, 3Caには、図7に示 す電流波形Ca (83出力)の振幅および直流バイアス を電気コイル毎に調節した電流が流れるので、第1組の 磁極11~19により、鋳型の長辺1に沿って右(+ y)から左(-y)に移動する磁界が、磁極毎に大きさ を変えて鋳型内の溶融金属に作用し、しかも、磁極毎に 大きさが異なる制動磁界(静止磁界)が溶融金属に作用 する。

Ab, 6Abには、図7に示す電流波形Ab (84出 力)の振幅および直流バイアスを電気コイル毎に調節し た電流が流れ、図1に示す電気コイル4Bb, 5Bb, 6Bbには、図7に示す電流波形Bb (85出力)の振 幅および直流バイアスを電気コイル毎に調節した電流が 流れ、図1に示す電気コイル4Cb,5Cb,6Cbに は、図7に示す電流波形Cb(86出力)の振幅および 直流バイアスを電気コイル毎に調節した電流が流れるの で、第2組の磁極21~29により鋳型の長辺2に沿っ て左(-y)から右(+y)に移動する磁界が、磁極毎 に大きさを変えて鋳型内の溶融金属に作用し、しかも、 磁極毎に大きさが異なる制動磁界(静止磁界)が溶融金 属に作用する。

【0033】この実施例は、上述の移動磁界および制動 磁界により、図1に示す鋳型の長辺1に沿って右から左 に進み、短辺4に当ってそれに沿って長辺2に至り、長 辺2に沿って左から右に進み、短辺3に当ってそれに沿 って長辺1に至る、各辺に沿いしかもノズル30の外部 を周回する、この流れ方向で速度が可及的に均一な溶鋼 流を生成しようとするものである。ところでノズル30 から鋳型に流れ込む溶鋼により、図8の(a)および (b) に実線矢印で示すような溶鋼流が発生する。 この 溶鋼流による、長辺1表面での、磁極11~19配列方 向での流速分布は大略で図9の(a)に実線で示すもの となり、長辺2表面での、磁極21~29配列方向での 流速分布は大略で図9の(b)に実線で示すものとな

【0034】この溶鋼流のノズル30近くでの高い流速 を下げることによりパウダーの巻き込みが抑制され溶鋼 中介在物の浮上が容易となり、また、溶鋼が滞留し易い (速度が遅い) 位置で溶鋼を流動駆動して、鋳型辺の面 に沿っての溶鋼流を水平方向で定方向かつ定速度とする ことにより鋳型辺の面による溶鋼の凝固表面の水平方向 温度分布が均一となりブローホールの発生が抑制され る。このようにするためには、溶鋼の流速を、例えば図 9に一点鎖線で示すように水平方向各部で一定値とすれ ばよい。図9に示す例では、左下がり斜線領域は制動を 要し、右下り斜線領域は駆動を要する。これを満すため の、各磁極に巻回した各電気コイルの所要電流値が図1 0に示すものとなる。なお、図9の(a)では磁極19 50 すことができる。

(電気コイル3Ca)では駆動を要するのに、図10の (a)では駆動電流に加えて制動電流も流す必要がある ように示している。この制動電流は、長辺1に沿って左 に流れる溶鋼が短辺4にぶつかることによる、長辺1と 短辺4とのコーナ部での溶鋼の過度の盛り上がりを抑制 するための制動をかけるものである。 図9の(a)では 磁極11(電気コイル1Aa)では駆動を要するのに、 図10の(a)では駆動電流に加えて制動電流も流す必 要があるように示している。との制動電流は、短辺3に 【0032】同様に、図1に示す電気コイル4Ab,5 10 沿って長辺1に向かう溶鋼が短辺3にぶつかることによ る、長辺1と短辺3とのコーナ部での溶鋼の過度の盛り 上がりを抑制するための制動をかけるものである。

> 【0035】図10に示す各電気コイルの駆動電流(右 下り斜線棒グラフで示される値)は、通電パルス発生器 61~69,71~79の駆動電流設定器(611)で 設定し、各電気コイルの制動電流(左下り斜線棒グラフ で示される値)は、通電パルス発生器61~69.71 ~79の制動電流設定器(613)で設定する。これに より、大略で図9に一点鎖線で示す流速分布となり、磁 極11等の位置(高さ)で溶鋼は図8の(b)に一点鎖 線矢印で示す方向に流動し、鋳型各辺1~4の表面直近 では略一定速度の定方向流となる。

> 【0036】なお、上記実施例では、関数発生器81~ 86でサイン波電流を形成するためのデューティデータ を発生し、通電パルス発生器61~69,71~79で は、関数発生器が与える通電デューティデータに、駆動 電流設定器611が与える増幅率を乗算し、得た積に制 動電流設定器613が与える直流バイアス分のデューテ ィを加算し、得た和に更に、電流フィードバックによる 目標値からの偏差分のデューティを加算して出力データ (通電デューティ)を得ている。すなわち通電デューテ ィデータのデジタル演算処理により出力データを算出し ている。

【0037】しかし、通電デューティは、通電デューテ ィ制御で従来公知の他の処理方法で決定してもよい。例 えば、関数発生器81~86でサイン波電圧を発生し、 該サイン波電圧を可変ゲイン増幅器で駆動電流設定器6 11が出力する増幅率 (アナログ信号)で増幅し、その 出力に、演算増幅器で制動電流設定器613が出力する 直流パイアス値(アナログ信号)ならびに電流フィード バックによる目標値からの偏差分 (アナログ信号) を加 算して(可変ゲイン増幅器の出力をバイアスして)、得 たサイン波電圧を、比較器で所定周期, 所定レベルの3 角波(アナログ信号)と比較して、サイン波電圧が3角 波より高いときにはGTO411をオン、GTO412 をオフにし、サイン波電圧が3角波より低いときにはG TO411をオフ、GTO412をオンにするなど、ア ナログ電気回路による信号処理により、上述の実施例と 同様に、例えば図6に示す電流Ibaを電気コイルに流

【0038】更には、上述の実施例では、電気コイル1 Aa等は、磁極11等を周回する形で、すなわちx軸に 平行な直線を周回する形で磁極ベース10,20に装着 しているが、これらの電気コイル1Aa等は、図11に 示すように、磁極ベース10,20の、磁極間幹部を周 回する形で、すなわちy軸(図1)に平行な直線を周回 する形で装着してもよい。

[0039]

【発明の効果】以上の通り本発明の流動制御装置によれ ば、溶融金属を取り囲む鋳型辺(1)に沿って配列した複 数個の磁極(11~19)のそれぞれを励磁するための複数個 の電気コイル(1Aa~3Aa,1Ba~3Ba,1Ca~3Ca)に、交流付 勢手段(81~83;61~69の、611,612,615~621;41~49) が、磁極の配列方向に溶融金属を流動駆動するためのリ ニア駆動用交流電流(Iaa:Aa,Ba,Ca)を通電し、かつ、直 流付勢手段(61~69の、613,614,615~621;41~49)が、 溶融金属を制動するための制動用直流電流(Ib)を通電す るので、電気コイルの交流通電により溶融金属は、磁極 の配列方向に流動駆動され、直流通電により制動され る。すなわち同一の電気コイルが流動駆動と制動に共用 20 示すグラフである。 される。したがってこの流動駆動により溶鋼の流れをう ながして溶鋼凝固表面のブローホールを除去することが でき、しかも、制動により注入溶鋼の流速を抑制して介 在物(例えばパウダー)の浮上を容易にすることができ る。このように、同一電気コイルで、ブローホールの抑 制又は除去のための流動駆動と、介在物の巻き込みの抑 制および浮上促進のための制動を行なうことができる。

【図面の簡単な説明】

【図1】 本発明の一実施例の、磁極および電気コイル の配列を示す図面であり、連続鋳造鋳型の水平断面を示 30 す、

【図2】 図1に示す電気コイルに接続された通電回路 を示すブロック図である。

【図3】 図2に示す励磁回路41~49,51~59 に通電信号を与える通電制御回路を示すブロック図であ る。

【図4】 図3に示す通電パルス発生器61の構成を示 すブロック図である。

【図5】 図3に示す関数発生器81の構成を示すプロ ック図である。

【図6】 図1および図2に示す電気コイル1Aaに流 れる電流の時系列平滑値の1サイクル分1s (基準値の もの), Iaa (コイル毎の駆動力補正を施したもの) およびIba(駆動力補正および制動力補正を施したも の),図3に示すパルス発生回路90が発生するパル

ス、ならびに、図4に示す通電パルス発生器61が発生 する通電指示信号を示すタイムチャートである。

【図7】 図5に示す関数発生器81~86が発生する 通電デューティデータに従って電気コイルに流れる電流 の時系列平滑値を示すタイムチャートである。

【図8】 (a)は図1に示す鋳型(1~4)の垂直断 面図、(b)は水平断面図である。

【図9】 (a)は、図1に示す鋳型(1~4)へのノ ズル30よりの溶鋼の注入による、磁極11等の高さで の長辺1表面に沿った水平方向の、鋳型内溶鋼の流動速 度分布を示すグラフ、(b)は、長辺2表面に沿った水 平方向の、鋳型内溶鋼の流動速度分布を示すグラフであ

【図10】 (a)は、図9の(a)に示す流動速度分 布を平担化するために必要な、長辺1の裏側に配置され た電気コイル1Aa等に流す駆動電流および制動電流を 示すグラフ、(b)は、図9の(b)に示す流動速度分 布を平担化するために必要な、長辺2の裏側に配置され た電気コイル1Ab等に流す駆動電流および制動電流を

【図11】 本発明のもう1つの実施例の、磁極および 電気コイルの配列を示す図面であり、(a)は連続鋳造 鋳型の水平断面を示し、(b)は(a)に示す矢印B方 向の側面図である。

【符号の説明】

1:鋳型の長辺 2:鋳型の長辺 3:鋳型の短辺 4:鋳型の短辺 10:磁極ベース 11~19:第1組の磁極

1 A a:磁極11 に巻回された電気コイル **1Ba:磁極12に巻回された電気コイル** 1Ca:磁極13に巻回された電気コイル

3 C a:磁極 1 9 に 巻回された 電気 コイル

20:磁極ベース 21~29:第2組の磁極

4 A b: 磁極2 1 に巻回された電気コイル 4 B b:磁極22 に巻回された電気コイル 4Cb:磁極23に巻回された電気コイル

6 C b:磁極2 9 に巻回された電気コイル

30:溶鋼注入ノズル 31, 32: 3-7

41~49,51~59:励磁回路

61~69,71~79:通電パルス発生器

【図5】 関数発生器 81 メモリ P 60 クロック <u>61, 64, 67</u> 関数発生器 82 P b 120 Pa バルス発生回路 Pa Pa <u>62, 65, 68</u> 関数発生器 83 <u>63, 66, 69</u> 90 関数発生器 84 P b 180 <u>71, 74, 77</u>€ Рa P b 60 関数発生器 85 <u>72, 75, 78,</u> 関数発生器 86 P b 300 <u>73, 76, 79</u>←

[図3]

【図4】

[図6]

【図7】

【図10】

フロントページの続き

(72)発明者

(72)発明者 植山高次

富津市新富20-1 新日本製鐵株式会社

技術開発本部内

藤健彦

富津市新富20-1 新日本製鐵株式会社

技術開発本部内

(72)発明者 竹内栄一

富津市新富20-1 新日本製鐵株式会社

技術開発本部内

(56)参考文献 特開 昭62-203648 (JP, A)

特開 昭63-188461 (JP, A)

7773 4205 200702 (01, 1

(58)調査した分野(Int.Cl.', DB名)

B22D 11/115

B22D 11/04 311

B22D 11/10

B22D 11/18

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.