Лабораторная №2

Задание

- 1. Сгенерировать выборки для разных распределений и посчитать доверительные интервалы для них. Распределения: нормальное, бернулли, пуассона, экспоненциальное. Для нормального распределения выполнить группировку и сравнить доверительные интервалы.
- 2. Построить ядерную оценку для N(3, 5) с прямоугольным и гауссовским ядром (за h принять h_{opt}). То же самое сделать для uniform[3, 5]

Дополнительная информация

Часть 1. Генерация выборок и доверительные интервалы

Доверительным интервалом параметра θ с уровнем доверия 1-lpha называется

$$P\{\hat{\theta}_{1,n} \le \theta \le \hat{\theta}_{2,n}\} = 1 - \alpha$$

 $\alpha = 0.05$

Нормальное распределение

Нормальное распределение $N(M,\sigma^2),\{x_1,\ldots,x_n\}$ имеет функцию распределения

$$F(x)=rac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{x}e^{-rac{(t-M)^2}{2\sigma^2}}dt$$

Доверительный интервал для M

$$\overline{x_n} - rac{S_n}{\sqrt{n}} t_{1-rac{lpha}{2},n-1} \leq M \leq \overline{x_n} + rac{S_n}{\sqrt{n}} t_{1-rac{lpha}{2},n-1}$$

Выборку генерировать размера n=200

Доверительный интервал для σ^2

$$rac{n-1}{\chi^2_{1-rac{lpha}{2},n-1}}S^2_n \leq \sigma^2 \leq rac{n-1}{\chi^2_{rac{lpha}{2},n-1}}S^2_n$$

Для группировки принять $k = [log_2 200] + 1 \approx 8$

Распределение Бернулли

Распределение Бернулли B(0.3;200)

Доверительный интервал

$$rac{m}{n} - \mu_{rac{lpha}{2}} rac{\sqrt{m(1-rac{m}{n})}}{n} \leq P \leq rac{m}{n} + \mu_{rac{lpha}{2}} rac{\sqrt{m(1-rac{m}{n})}}{n}$$

Для выборки размера n= 50

Можно посчитать отдельно оценки $P_{\textit{ниж}}$ и $P_{\textit{верх}}$, такие что $P_{\textit{ниж}} \leq P \leq P_{\textit{верх}}$ Доверительный интервал по формуле Уилсона:

$$\hat{P}_{ ext{ t HUOK}} = rac{rac{m}{n} + rac{\mu_{rac{lpha}{2}}^2}{2n} - \mu_{rac{lpha}{2}} \sqrt{rac{m}{n^2}(1 - rac{m}{n}) + rac{\mu_{rac{lpha}{2}}^2}{4n^2}}}{1 + rac{\mu_{rac{lpha}{2}}^2}{n}}$$

$$\hat{P}_{ extit{sepx}} = rac{rac{m}{n} + rac{\mu_{rac{lpha}{2}}^2}{2n} + \mu_{rac{lpha}{2}} \sqrt{rac{m}{n^2}(1 - rac{m}{n}) + rac{\mu_{rac{lpha}{2}}^2}{4n^2}}}{1 + rac{\mu_{rac{lpha}{2}}^2}{n}}$$

Распределение Пуассона

Распределение Пуассона $P(\theta)$ имеет функцию распределения распределения:

$$P(heta) = rac{ heta^k}{k!} e^{- heta}$$

И среднее и дисперсия равны θ

Доверительный интервал:

$$\overline{x_n} - rac{\sqrt{\overline{x_n}}}{\sqrt{n}} \mu_{rac{lpha}{2}} \leq heta \leq \overline{x_n} + rac{\sqrt{\overline{x_n}}}{\sqrt{n}} \mu_{rac{lpha}{2}}$$

Выборку генерировать размера n = 200

Экспоненциальное распределение

Экспоненциальное распределение имеет имеет следующую плотность распределения

$$\lambda e^{-\lambda x}, x > 0$$
$$0, x \le 0$$

Где $\lambda=\frac{1}{\nu}$, ν - экспоненциальный параметр scale в scipy.stats.expon.rvs(scale, n). Доверительный интервал

$$\frac{1}{\overline{x_n}} + \frac{\mu_{\frac{\alpha}{2}}}{\sqrt{n\overline{x_n}}} \le \nu \le \frac{1}{\overline{x_n}} - \frac{\mu_{\frac{\alpha}{2}}}{\sqrt{n\overline{x_n}}}$$

$$\frac{1}{\frac{1}{\overline{x_n}} - \frac{\mu_{\frac{\alpha}{2}}}{\sqrt{n\overline{x_n}}}} \le \lambda \le \frac{1}{\frac{1}{\overline{x_n}} + \frac{\mu_{\frac{\alpha}{2}}}{\sqrt{n\overline{x_n}}}}$$

Часть 2. Ядерные оценки

Ядро

Исходная выборка "портится" другим распределением Функция k(x) называется ядром, если

$$k(x) \geq 0$$
 $\int_{-\infty}^{\infty} k(x) dx = 1$ $k(-x) = k(x)$

Ядра бывают <u>разными</u>: полукруглыми, треугольными, прямоугольными (равномерными) и др.

Нормальная ядерная функция

$$k(x)=rac{e^{-rac{x^2}{2}}}{\sqrt{2\pi}}$$

Прямоугольная ядерная функция

k(x) задаётся системой

$$rac{1}{2}, |x| \leq 1$$
 $0, |x| > 1$

Ядерный оценщик плотности

Ядерный оценщик плотности равен

$$\hat{f}(x)=rac{1}{n}\sum_{i=1}^n k_h(x-x_j)$$

где

$$k_h(x) = rac{1}{h}k(rac{x}{h})$$

h называется шириной окна

С учётом k_h :

$$\hat{f}(x) = rac{1}{hn} \sum_{j=1}^n k(rac{x-x_j}{h})$$

Где k - дельтоорбразное $\, \,$ что-то $\,$ там , оно стремится к дельта функции при h o 0

При $n \to \infty$ и $h \to 0$, h можно принять за $h \sim \frac{1}{\sqrt[5]{n}}$ h оптимизированная под распределение гаусса:

$$h_{\mathit{onm}} = rac{1,05S_n}{\sqrt[5]{n}}$$

где S_n - исправленное стандартное отклонение

$$S_{n\, u$$
справленная $=rac{n}{n-1}\sum_{i=1}^k (x_i-\overline{x_n})^2 n_i$

Оценка для нормального и равномерного распределений

Построить ядерную оценку для $\mathbb{N}(3\,;5)$ с h_{onm} , за k(x) взять гауссовское и прямоугольное ядра

Построить ядерную оценку для uniform[3;5] с $h_{\it onm}$, за k(x) взять гауссовское и прямоугольное ядра

Построить графики исходных плотностей и ядерных оценок

Материалы по матстату

- <u>Теория вероятностей и математическая статистика : учебное пособие Е. А. Трофимова, Н. В. Кисляк, Д. В. Гилёв</u>
- <u>mathprofi: Статистические оценки параметров генеральной совокупности.</u> <u>Доверительный интервал и доверительная вероятность</u>