Lab1: Design implement and test a 120V, 60Hz, 10VA, 8V-0-8V step down transformer (Complete in 2 weeks . Lab report should include the final design, all test results and the final specifications. (Transformer to power your emergency light system) 1200 Electrical transformers: High Voltage Transformer Low voltage / power transformer **Toroidal** Placement Layer 1 Layer 2

transformer laminations (Silicon Steel)

Reduce Eddy curent losses

Bobbins and winding

Ferrite Cores for high frequency transformers

A mil, is a unit of length equal to 0.001 inches

Wire Gauge

enamelled copper wire

Winding machine

See a full table at http://www.powerstream.com/Wire_Size.htm

AWG	Diam. (mils)	Circular mils	Ohms/1000ft	Current Carrying	Fusing Current
0	324.85	105531	0.096	12	-
1	289.3	83694	0.1264	119.6	
2	257.6	66358	0.1593	94.8	-
3	229.4	52624	0.2009	75.2	-
14	64.1	4109	2.575	5.87	166
15	57.1	3260	3.247	4.65	140
16	50.8	2581	4.094	3.69	117
17	45.3	2052	5.163	2.93	98.4
18	40.3	1624	6.510	2.32	82.9
19	35.9	1289	8.210	1.84	69.7
20	32.0	1024	10.35	1.46	58.4
21	28.5	812	13.05	1.16	-51
22	25.3	640	16.46	.918	41.2
23	22.6	511	20.76	.728	(-)
24	20.1	404	26.17	.577	29.2
25	17.9	320	33.0	.458	-
26	15.9	253	41.62	.363	20.5
27	14.2	202	52.48	.288	-
28	12.6	159	66.17	.228	14.4
29	11.3	128	83.44	.181	-
30	10.0	100	105.2	.144	10.2
31	8.9	79	132.7	.114	
32	8.0	64	167.2	000	(74
		Cole al	ea (CYOSS Section	al area)	

Primary Secondary winding N_S turns winding N_P turns Secondary Magnetic Flux, Φ Primary I_S current current Primary voltage Secondary voltage V_p Auto transformer N Ws Specifications (Vin, V., f, Power)

Detail - A, No No. Design; NP, Ns, Wp, Ws, Package

Ideal transformer , n = 100% Po = Pla

B-H cyrre. B(wb)

$$\frac{V_{p}}{V_{s}} = \frac{I_{s}}{I_{p}} = \frac{N_{p}}{N_{s}}$$

__ B max ___ t core material dependent

H (A/m)

B = MM H

magnetic field intensity

$$B = M_{o}M_{1}H$$

to relative permeability (Core national) 2000 - 8000

flux = Air permeability (411×10-7 H/m)

density. (Permeability Degree of magnetization of a material in response to)

magnetic field

 $\phi = BA$

(Webers)

Favaday's law

V = N
$$\frac{d}{dt}$$
 $V_{\text{Yms}} = \frac{N}{\sqrt{2}} \frac{d}{dt}$ Number of Eurns.

Input is sine voltage -> \$ 10 also Snussoidal

Example

Say we need a 12VA 12V step down tromsformer. (60Hz 120V)

Using (2)
$$A = 0.1725 \sqrt{12} = 0.597 \text{ m}^2$$
 Gre grea

$$\frac{G_{1000}}{1100}$$
 for $\frac{B_{11}}{1100} = \frac{1.2 \times 16^{8} \text{ lines}}{(39-37)(39.37)} = \frac{77420 \text{ lines}}{110/m}$
 $\frac{G_{110}}{110/m} = \frac{1.2 \times 16^{8} \text{ lines}}{110/m} = \frac{77420 \text{ lines}}{110/m}$

Using 1
$$\frac{V}{N} = \frac{9.44 \times 60 \times 0.597 \times 77420}{108} = 0.123 \text{ /turn}$$

$$\frac{N}{V} = \frac{1}{0.123} = \frac{8.13}{1.123} \text{ turns/volt.}$$

Layer by layer winding

$$N = 120 \times 8.13 = 975$$

$$N_s = 12 \times 8.13 = 97$$
 (Integer value)

Report: (in pdf format)

Include introduction, design calculations, photos (while building the transformer) above 7 test results, issues, problem faced and conclusions.