Ch2: 最优反应, 优势策略

授课教师: 雷浩然

湖南大学课程

上一讲的核心概念: 严格劣势策略 和 重复剔除严格劣势策略(重复剔除法).

- 严格劣势策略是一类"坏策略". 理性的参与人永远不会选择严格劣势策略.
- 我们可以反复剔除这些"坏策略", 直至博弈中不存在"坏策略"为止.
 - 这种方法叫作**重复剔除法**,它可以用来预测博弈结果("**重复剔除均衡**").
 - 对于部分博弈 (如囚徒困境, "中间选民定理"), 重复剔除法预测的博弈结果是唯一的. 也就是说, 这类博弈存在唯一的重复剔除均衡.
 - 对于部分博弈,使用重复剔除法无法得到唯一的预测结果.比如,对于不存在严格劣势策略的博弈(如约会博弈,石头剪刀布),重复剔除法完全不适用.

上一讲的核心概念: 严格劣势策略 和 重复剔除严格劣势策略(重复剔除法).

- 严格劣势策略是一类"坏策略". 理性的参与人永远不会选择严格劣势策略.
- 我们可以反复剔除这些"坏策略", 直至博弈中不存在"坏策略"为止.
 - 这种方法叫作**重复剔除法**, 它可以用来预测博弈结果 ("**重复剔除均衡**").
 - 对于部分博弈 (如囚徒困境, "中间选民定理"), 重复剔除法预测的博弈结果是唯一的. 也就是说, 这类博弈存在唯一的重复剔除均衡.
 - 对于部分博弈,使用重复剔除法无法得到唯一的预测结果.比如,对于不存在严格劣势策略的博弈(如约会博弈,石头剪刀布),重复剔除法完全不适用.

本讲的核心概念: 最优反应, 优势策略. (它们都是某种意义上的"好策略")

最优反应

考虑如下两人同时行动博弈:

- 参与人: $N = \{1, 2\}$
- 行动集: *A*₁, *A*₂
- 效用函数: $u_1(a_1,a_2)$, $u_2(a_1,a_2)$

最优反应

考虑如下同时行动博弈:

- 参与人: $N = \{1, 2\}$
- 行动集: A₁, A₂
- 效用函数: $u_1(a_1,a_2)$, $u_2(a_1,a_2)$

定义: 给定参与人2的行动 a_2 , 若行动 $a_1^* \in A_1$ 最大化了参与人 1 的效用,则 称 a_1^* 是对 a_2 的最优反应.

• 例: 给定李四的行动 $a_2=$ 石头, 张三的最优反应: $a_1^*=$ 布

对于两人有限博弈(即可以用一个收益矩阵来描述的博弈), 我们一般用下划线来标出参与人的最优反应.

张三\李四	左	中	右
上	1,0	1,3	0 , 1
下	0,4	0,2	2,0

下划线表示最优反应

<u>1</u> , 0	1, 3	0,1
0 , <u>4</u>	0,2	<u>2</u> , 0

最优反应: 约会博弈

张三 \ 李四	网吧	商场
网吧	(2,1)	(0,0)
商场	(0,0)	(1, 2)

最优反应: 约会博弈

张三 \ 李四	网吧	商场
网吧	(2,1)	(0,0)
商场	(0,0)	(1,2)

张三 \ 李四	网吧	商场
网吧	$(\underline{2},\underline{1})$	(0,0)
商场	(0,0)	$(\underline{1},\underline{2})$

最优反应: 数学描述

给定行为人2的策略 $a_2 \in A_2$, 若行为人1的策略 $a_1^* \in A_1$ 满足下列不等式:

$$u_1(a_1^*,a_2) \geq u_1(a_1,a_2) \quad orall a_1 \in A_1$$

则称 a_1^* 是对 a_2 的最优反应.

• 换言之, a_1^* 是对 a_2 的最优反应, 当且仅当 a_1^* 是如下优化问题的解:

$$\max_{a_1\in A_1}u_1(a_1,a_2)$$

注:这两个最优反应的定义和前面用文字描述的定义是等价的.第一个定义是不等式描述,第二个定义用到了最优化(optimization)的数学语言.

练习. 说明并对比下面两个定义:

- 1. a_1 是张三的**严格劣势策略**.
- 2. 针对李四的策略 a_2 , 张三的**最优反应**是 a_1 .

练习. 说明并对比下面两个定义:

- 1. a_1 是张三的**严格劣势策略**.
- 2. 针对李四的策略 a_2 , 张三的最优反应是 a_1 .

第一个定义说的是, 存在某个张三的策略 a_1' , 使得无论李四采取何种策略, a_1 带给张三的效用都严格小于 a_1' 带给张三的效用.

第二个定义说的是,给定李四的策略 a_2 ,策略 a_1 最大化了张三的效用.

判断正误

1. 如果 a_1 是张三的劣势策略, 那么 a_1 不可能是张三的最优反应.

判断正误: 答案

1. 如果 a_1 是张三的劣势策略, 那么 a_1 不可能是张三的最优反应. \times

下例中, "上"是张三的劣势策略. 给定李四选 "左", "上"是张三的最优反应.

```
张三\李四 左 右
上 (1,0) (1,-1)
下 (1,1) (2,-2)
```

判断正误

2. 如果 a_1 是张三的严格劣势策略, 那么 a_1 不可能是张三的最优反应.

判断正误

2. 如果 a_1 是张三的严格劣势策略, 那么 a_1 不可能是张三的最优反应. \checkmark

证明 (反证法). 反设存在某个李四的策略 a_2 , 使得 a_1 是张三的最优反应. 也就是说,

$$u_1(a_1,a_2) \geq u_1(ilde{a}_1,a_2) \quad orall ilde{a}_1 \in A_1. \ \ (1)$$

由于 a_1 是张三的严格劣势策略, 存在某个策略 a_1' 使得

$$u_1(a_1,a_2) < u_1(a_1',a_2) \ \ (2)$$

(1)式和(2)式矛盾.

优势策略

最优反应是个"好策略", 但它针对的是某个具体的其他行为人的策略.

如果张三存在某个策略 a_1^* , 它对于**所有李四可能的行动**都是最优反应. 我们称满足这个条件的 a_1^* 为张三的**优势策略** (dominant strategy).

优势策略

最优反应是个"好策略", 但它针对的是某个具体的其他行为人的策略.

如果张三存在某个策略 a_1^* , 它对于**所有李四可能的行动**都是最优反应. 我们称满足这个条件的 a_1^* 为张三的**优势策略** (dominant strategy).

定义: 对于两人博弈, 若存在某个行为人1的策略 a_1^* , 使得下列不等式对任意 $a_1 \in A_1$ 和 $a_2 \in A_2$ 都成立:

$$u_1(a_1^*,a_2) \geq u_1(a_1,a_2)$$

则称 a_1^* 为张三的**优势策略**.

理解优势策略

- 优势策略是"几乎完美"的策略:
 - 。 如果张三存在优势策略 a_1^* , 那么张三不用去思考李四的策略或偏好, 也不用去思考李四有没有私人信息或者李四是不是理性的. 张三只用选 a_1^* 就行, 因为无论李四最终的选择是什么, a_1^* 都是张三的最优反应.
- 优势策略的例子:
 - 囚徒困境中选则坦白
 - 二价拍卖(我们会在之后的不完备信息博弈中介绍)

优势策略均衡

- 优势策略均衡: 每个参与人都选择他自己的优势策略.
 - 例: 囚徒困境, (坦白, 坦白)

```
张三 \ 李四   坦白    抵赖
坦白   (-5, -5)   (0, -8)
抵赖   (-8, 0)   (-1, -1)
```

(坦白, 坦白) 既是优势策略均衡, 也是重复剔除均衡.

优势策略均衡

- 优势策略均衡: 每个参与人都选择他自己的优势策略.
 - 例: 囚徒困境, (坦白, 坦白)

```
张三 \ 李四   坦白    抵赖
坦白   (-5, -5)   (0, -8)
抵赖   (-8, 0)   (-1, -1)
```

(坦白, 坦白) 既是优势策略均衡, 也是重复剔除均衡.

命题. 如果一个策略组合 (a_1, a_2) 是优势策略均衡, 那么 (a_1, a_2) 也一定是重复剔除均衡. 反之不真.

• 这个命题的证明较复杂. 同学们知道这个命题成立即可.

从优势策略均衡到纳什均衡

- 优势策略均衡不是普遍存在的.
 - 。比如约会博弈和选民博弈, 行为人都没有优势策略.
- 如果我们不要求策略组合 (a_1, a_2) 中的每个策略都是优势策略, 只要求 a_1 和 a_2 都是针对其他参与人策略的最优反应, 我们就得到了**纳什均衡**.
- 对于有限博弈(参与人数量有限,每个参与人的策略有限),纳什均衡一定存在.(纳什定理)

优势策略均衡 (重复剔除均衡 (纳什均衡

纳什均衡: Nash (1950) 和 Nash (1951)

John Nash (1950): "Equilibrium points in n-person games"

- 在这篇论文中, Nash 提出均衡的概念, 并用 Kakutani 不动点定理证明了均衡的存在性.
- 课程网站提供了论文的 PDF. 全文仅一页
- 后人将这种均衡称为纳什均衡,均衡的存在性定理称为纳什定理.

在随后的一篇更正式的论文中, Nash 给出了一个均衡存在性的简化证明(主要工具是 Brouwer 不动点定理), 以及纳什均衡在扑克牌游戏中的应用.

• John Nash (1951): "Non-cooperative games". 全文十页