Тема: Хімічний елемент. Нукліди. Ізотопи.

Мета:

- сформувати уявлення про нукліди та ізотопи, нуклонне, протонне та нейтронне числа;
 - закріпити знання учнів про будову атома та склад ядра;
 - розвивати логічне мислення, інтелектуальні та творчі здібності;
 - виховувати любов до предмета та хімічну культуру.

Тип уроку: комбінований.

Обладнання та засоби наочності: Періодична система хімічних елементів Д.І. Менделєєва (довга та коротка форма), схемимоделей атома.

Форми роботи: бесіда, розповідь, усне опитування, міні-самостійна робота.

ХІД УРОКУ

І. ОРГАНІЗАЦІЙНИЙ ЕТАП.

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ. ВІДТВОРЕННЯ ТА КОРЕКЦІЯ ЗНАНЬ.

Фронтальне опитування.

- З яких частинок складається атом? Які їхні характеристики?
- Що таке атомна одиниця маси?
- Які моделі атомів ми розглядали? Яка модель атома загальноприйнята?

Індивідуальна робота

Відомо, що елемент містить 26 протонів і 30 нейтронів (для іншого учня 26 протонів та 28 нейтронів). Який це елемент? Яка відносна атомна маса елемента? Скільки в нього електронів?

III. ПОВІДОМЛЕННЯ ТЕМИ, МЕТИ, ЗАВДАНЬ І ЦІЛЕЙ УРОКУ. МОТИВАЦІЯ НАВЧАЛЬНОЇ ДІЯЛЬНОСТІ.

Розв'язавши попереднє завдання, ми побачили, що мова йшла про один і той же хімічний елемент. Його порядковий номер 26, в нього однакова кількість протонів та електронів, але різна кількість нейтронів, через це і різна відносна атомна маса. Сьогодні на уроці ми дізнаємося, як називаються види атомів з однаковим зарядом, але різною масою, навчимося записувати один вид атомів, але з різною масою; довідаємося, де в природі зустрічаються однакові види атомів з різною масою. І зможемо відповісти на головне запитання, яке почало вас цікавити, щойно ми почали говорити про відносну атомну масу, а на минулому уроці зацікавило вас ще більше — чому ж відносна атомна маса практично всіх хімічних елементів не є пілочисельна величина.

ЩО ТАКЕ ХІМІЧНИЙ ЕЛЕМЕНТ

Головна характеристика атома — позитивний заряд його ядра, тобто число протонів. Π риклад

Якщо забрати з ядра атома Карбону один протон, одержимо ядро атома... (Бору), а якщо додамо один протон, то одержимо ядро атома... (Нітрогену). Якщо ми збільшимо або зменшимо число протонів у ядрі, то одержимо ядро іншого елемента, з іншим порядковим номером. Виявляється, що, змінюючи кількість протонів у ядрі, ми можемо одержати нові хімічні елементи з певним числом протонів, а отже, і зарядом ядра.

Запишемо:

Хімічний елемент — де різновид атомів з однаковим позитивним зарядом ядра (або інакше — з однаковою кількістю протонів у ядрі).

Поняття про нуклід перегляньте відеоматеріал

https://youtu.be/S9woXEReDgk?si=XOG8MLAGnWjT2bnA

Малюнок 1.

Розглянувши дані малюнки, можемо кожен з них охарактеризувати

	Α	D	D	1
Протонів	3	3	3	4
Нейтронів	3	4	3	3
Електронів	3	3	3	4

Бачимо, що A і B мають однаковий кількісний склад, B і Γ відрізняються . Всього на чотирьох малюнках бачимо B різновиди атомів.

Запишемо:

Нуклід – це різновид атомів із певним числом протонів і нейтронів у ядрі.

Характеристики нукліда:

Протонне число Z – вказує на кількість протонів у ядрі;

Нейтронне число N – вказує на кількість нейтронів у ядрі;

Масове або **нуклонне число A** – вказує на число нуклонів (протонів і нейтронів) у ядрі

Масове число = протонне число + нейтронне число

$$\mathbf{A} = \mathbf{Z} + \mathbf{N}$$

Позначення нуклідів

Наприклад, для нуклідів Оксигену:

масове число
$$150$$
 символ хімічного елемента заряд ядра (протонне число)

Також можна писати Оксиген-15, Оксиген-16.

Тільки для Гідрогену для кожного з нуклідів ϵ своя назва. Цих нуклідів ϵ три.

Малюнок 2.

Мал. 10.3. Нукліди Гідрогену: a — Протій; δ — Дейтерій; δ — Тритій

Обчислення складу атомів.

Скільки протонів, нейтронів і електронів міститься в нукліді Плюмбум-210? Масове число Плюмбуму 210. Порядковий номер 82. Отже, протонів 82, електронів 82 і нейтронів $\mathbf{N} = \mathbf{A} - \mathbf{Z}$; 210-82=128.

Ізотопи. Це різні нукліди одного хімічного елемента.

Перегляньте відео

https://youtu.be/x0DEplA7ONY?si=V0-EqRj3kMpxIVcO

Це означає, що в хімічного елемента є однакова кількість протонів, проте може бути різна кількість нейтронів, що вплине на масове число. Повернемося до мал. 1. Однакова кількість протонів міститься на 3x схемах — A, B і B. Отже, A, B і B — це ізотопи одного хімічного елемента. У них однакове протонне число (3), але різне нейтронне число і різне масове (нуклонне) число.

Нукліди в природі.

Усього відомо понад 2000 нуклідів! Найбільше їх у Ксенону і Цезію (по 36). У більшості хімічних елементів є *природні нукліди* (їх близько 300), а інші добуті *штучно*. У природі елементи існують у вигляді суміші різних нуклідів. Наприклад, Карбон-12, Карбон-13 і Карбон-14. Також є ізотопи у Нітрогену, Хлору, Оксигену. Деякі нукліди можуть існувати дуже довго, вони називаються *стабільними*. Ті, які розпадаються, нестабільні, і називаються *радіоактивними*.

Чому ж значення відносних атомних мас у таблиці не є цілочисельне? А тому, що визначають вміст кожного нукліда елемента і обчислюють середнє значення маси. Наприклад, відомо, що Хлору-35 є 75%, а ще 25% припадає на Хлор-37. Тому середня маса буде 35*0,75+37*0,25=26,25+9,25=35,5.

IV. КЕРОВАНА ПРАКТИКА.

<u>Завдання 1.</u> Серед поданих нуклідів знайти ізотопи. 2^3 E, 7^{13} E, 29^{63} E, 8^{16} E, 29^{65} E, 2^4 E.

Завдання 2. Ядро атома хімічного елемента містить 2 протони і один нейтрон. Записати позначення цього атома, хімічний символ, порядковий номер і масове число.

<u>Завдання 3.</u> Чим відрізняються за своїм складом ядра атомів нуклідів а)Оксиген-16, Оксиген-17, Оксиген-18; б) Гідроген-1, Гідроген-2 та Гідроген-3?

V. ДОМАШН€ ЗАВДАННЯ.

- 1. Опрацювати §7
- 2. Виконати завдання № 4; № 5