Homework

Encrypt the first three letters of your first name in uppercase letter

ENCRYPTION TYPE: RSA

PUBLIC KEY: n = 187, e=3 (to encrypt)

PRIVATE KEY: p=11, q=17, d=107 (to decrypt)

*Background information: pxq=n (11x17=187)

p, q - chosen prime numbers, the bigger the better, more secure

e - chosen prime number

m - message to encrypt in corresponding ASCII code

c - ciphered text (me mod n)

ASCII Table:

Α	В	С	D	E	F	G	н	1	J	K	L	М
65	66	67	68	69	70	71	72	73	74	75	76	77
N	0	Р	Q	R	s	Т	U	٧	w	x	Υ	Z
78	79	80	81	82	83	84	85	86	87	88	89	90

ENCRYPTION							
Instructio ns	Examp le: H	First Letter: [M]	Second Letter: [A]	Third Letter: [R]	Fourth Letter: [I]	Fifth Letter: [S]	Sixth Letter: [A]
1. Find the correspo nding ASCII code to your letter	72	77	65	82	73	83	65
2. Calculate m ^e	72 ³ = 37324 8	77³=456533	65 ³ = 274625	82 ³ = 551368	73 ³ = 389017	83 ³ = 571787	65 ³ = 274625
3. Find c = me mod n	37324 8 mod 187 = 183	456533 mod 187 = 66	274625 mod 187 = 109	552368 mod 187 = 92	389017 mod 187 = 57	571787 mod 187 = 128	274625 mod 187 = 109
4. Your ciphered letter (c value)	183	66	109	92	57	128	109

DECRYPTION					
Instructions	Example: 183	Ciphered letter: 77	Ciphered letter: 166	Ciphered letter: 137	
Calculate m=c ^d mod n	m = c ^d mod n = 183 ¹⁰⁷ mod 187 = 72	77 ¹⁰⁷ mod 187 = 66	166 ¹⁰⁷ mod 187 = 89	137 ¹⁰⁷ mod 187 = 69	
2. Convert m to letter based on ASCII table	72 = H	66 = O	89 = Y	69 = E	

Use https://www.wolframalpha.com/ to calculate modulo mathematics and huge exponents

Extension: Encrypt your full first name (add columns to the table above - right click on the table and choose "insert column right" option)

Use this code to check your work in the Homework above for Encryption ONLY:

```
import math

message = input("Enter the letter to be encrypted: ")
ascii_code = ord(message)

p = 11 #private key
q = 17 #private key
e = 3 #public key

n = p*q #public key

#Encryption, c = m^e mod n
def encrypt(msg):
    m_power_e = math.pow(msg,e) #calculates m to the power of e
    c = m_power_e % n #find modulo to get the ciphered text
    print("Encrypted Message is: ", c)
    return c

print("ASCII Code is: ", ascii_code)
c = encrypt(ascii_code)
```

https://github.com/hunter-teacher-cert/work-topics-leungbenson/blob/master/public key/RSA.md

ASYNC:

Find another type of encryption and give a brief summary of how it works. Post on Slack and comment on one other person's post.