Introduction To Balanced Trees

By Yash Gupta

Balancing

- An unbalanced tree usually the skewed tree violates the properties of binary tree.
- It does not take the advantage in terms of time complexity
- For skewed tree time complexity is equivalent to linear i.e o(n)

Balanced Trees

- AVL TREE
- RED-BLACK TREE

AVL Tree

- An AVL tree is a height balanced tree in which difference of HLeft-HRight <=1
 - Left of Left : A subtree of tree that is left high has also become left high
 - Right of Left: A subtree of tree that is right high has also become right high
 - Left of Right: A subtree of tree that is right high has become left high
 - Right of Left: A subtree of tree that is left high has become right high

RB Tree

- A red-black tree is a binary search tree in which each node has a color (red or black) associated with it
- Property:
 - (root property) The root of the red-black tree is black
 - (red property) The children of a red node are black.
 - (black property) For each node with at least one null child, the number of black nodes on the path from the root to the null child is the same.

Example

Insert Operation

- Let us insert key K into tree T maintaining RB properties and remember initially the color is always RED
- Case 1:
 - If T is empty replace K by T and recolor to BLACK (ROOT PROPERTY)
- Case 2 : K's parent P Is black
 - If K's parent P Is black, then addition of K did not result into RED property violation

- Case 3: K's parent P is red
 - If K's parent P is red, then P now has a red child,
 which violates the red property RED-RED situation
- 3a: P's sibling S is **black** or null do RESTRUCTURING
 - If P's sibling S is black or null, then we will do a trinode restructuring of K (the newly added node), P (K's parent), and G (K's grandparent)
 - Arrange K,P,G in inorder A,B,C. We then make B the parent of A and C, color B black, and color A and C red

Before restructuring After restructuring (s)

- 3b: P's sibling S is red
 - Do recoloring of P, S, and G: the color of P and S is changed to black and the color of G is changed to red (unless G is the root, in which case we leave G black to preserve the root property).

Contact Info

- trainers@finaldesk.com
- rishabh@finaldesk.com
- nilesh@finaldesk.com
- jignesh@finaldesk.com
- yash@finaldesk.com
- anand@finaldesk.com