COL 351: Analysis and Design of Algorithms

Lecture 26

Polynomial Multiplication

Given: Two polynomials $A(x) = a_0 + a_1x + \cdots + a_nx^n$ and $B(x) = b_0 + b_1x + \cdots + b_nx^n$, with degree less than equal to 'n' and integer coefficients.

Find: Product
$$A(x) \cdot B(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{2n} x^{2n}$$
 (Say, $C(x)$)

Example:

If
$$A(x) = 1 + x + x^2$$
 and

$$B(x) = 1 + 2x + x^3$$
. Then,

$$C(x) = 1 + 3x + 3x^2 + 3x^3 + x^4 + x^5$$

$$C_{i} = \sum_{j=0}^{i} a_{j} b_{ij}$$

Trivial:
$$\mathcal{O}(\gamma^2)$$

Representation of a polynomial

• An alternate way to represent polynomial $A(x) = a_0 + a_1 x + \dots + a_n x^n$.

Representation of a polynomial

• An alternate way to represent polynomial $A(x) = a_0 + a_1 x + \dots + a_n x^n$.

Lemma: Given n+1 pairs (x_0,y_0) , (x_1,y_1) , ..., (x_n,y_n) , there exists a <u>unique</u> polynomial (say P) with <u>degree at most n such that $y_i = P(x_i)$, for i = 0,1,...,n.</u>

Proof:

(Hint: A polynomial can be represented as product of monomials in Complex numbers)

- 1. Suppose P_1 , P_2 have same evaluations on $x_0, x_1, ..., x_n$.
- 2. Define $Q := P_1 P_2$.
- 3. On the (n + 1) points Q will evaluate to 0, but Q is not identically 0.
- 4. This is not possible as $deg(Q) \leq n$.

Why are we looking at alternate representation?

Answer: Efficient way to compute product. Take a set $S = \{x_0, x_1, x_2, ..., x_{2n}\}$

S = 1 + 2n Find C(x) $(deg \leq 2n)$ Find C
STEP 3 given the evaluations $A(x_0) \times B(x_0)$ $A(x_1) \times B(x_1)$ $A(x_{2n}) \times B(x_{2n})$

Step 1: Pointwise evaluation

Given: Polynomial 'A' of degree $\leq n$, find its evaluation on a set $S = \{x_0, x_1, ..., x_n\}$.

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \dots + a_n x^n$$

$$= (a_0 + a_2 x^2 + a_4 x^4 + \dots) + x(a_1 + a_3 x^2 + a_5 x^4 + \dots)$$

$$= A_{even}(x^2) + x \cdot A_{odd}(x^2)$$
Assume $N = (n+1)$ is a power of 2
$$|S| \le N$$

$$deg < N$$

$$= A_{even}(x^2) + x \cdot A_{odd}(x^2)$$

$$Problem$$

Remark 1: Degree of polynomials A_{even} , $A_{odd} \leq (n-1)/2 < N/2$.

Remark 2: If $|S^2| \le N/2$, then we get two subproblems of size N/2.

Can we say T(N) = 2T(N/2) + O(N) ?

$$|S| = N$$

$$|S^2| = N/2$$

$$|S^4| = N/4$$

$$|S^N|=1$$
 => Set S should be N roots of $\chi^N=1$

 $e^{2\pi i/8} = \omega$

N-th Roots of Unity

$$S = \{ e^{\frac{2\pi i}{N}} \mid i \in [1, N] \}$$

$$S = \{1, \, \omega, \, \omega^2, \, \omega^3, \, ..., \, \omega^8\}$$

What is:

 $S^8 = \sqrt[3]{3}$

$$S = \begin{cases} 1, \omega, \omega^{2}, \dots, \omega^{7} \end{cases}$$

$$S^{2} = \begin{cases} 1, \omega^{2}, \omega^{4}, \omega^{6} \end{cases} = \begin{cases} 1, i, -1, -i \end{cases}$$

$$S^{4} = \begin{cases} 1, \omega^{2}, \omega^{4}, \omega^{6} \end{cases} = \begin{cases} 1, -1 \end{cases}$$

$$\omega^{5}$$

$$\omega^{7}$$

$$\omega = e$$

$$= \omega \times \left(\frac{2\pi}{8}\right) + i \sin\left(\frac{2\pi}{8}\right)$$

 ω^2

 $2\pi i/8$

How to generate all roots from a single root?

Primitive Root:

An N^{th} root of unity that can generate all other N^{th} roots.

N-th root of unity:

 ω such that $\omega^N = 1$

N-th primitive root of unity:

- ω such that
 - $\omega^N = 1$, and
 - $\omega^i \neq 1$, for 0 < i < N

Homework

Ques 1:

Suppose $\omega = e^{2\pi i/N}$, then list all i for which ω^i is an N^{th} primitive root of unity.

Ques 2:

If ω is N^{th} root of unity other than 1, then show that $1 + \omega + \cdots + \omega^{N-1} = 0$.

Ques 3:

If ω is N^{th} primitive root of unity and $i \in [1, N-1]$, then show that $1 + \omega^i + \dots + \omega^{i(N-1)} = 0$.