Lecture 9: UMVUEs and the Cramér-Rao Lower Bound

MATH 667-01 Statistical Inference University of Louisville

October 5, 2017

Introduction

- We discuss uniform minimum variance unbiased estimators as discussed in Section 7.3 of Casella and Berger (2002)¹.
- We review correlation from Section 4.5.
- We discuss and prove the Cramér-Rao Inequality and some corollaries. The regularity conditions in these notes are from Section 7.3 of Casella and Berger (1990)².
- We present several examples to illustrate the results.

¹Casella, G. and Berger, R. (2002). *Statistical Inference, Second Edition*. Duxbury Press, Belmont, CA.

²Casella, G. and Berger, R. (1990). *Statistical Inference*. Duxbury Press, Belmont, CA.

Best Unbiased Estimator (UMVUE)

- ullet In this lecture, we evaluate an estimator W of a parameter θ based on the squared error loss function.
- If we consider only unbiased estimators, then $\mathsf{E}_{\theta}[(W-\theta)^2] = \mathsf{Var}_{\theta}[W].$
- Definition L9.1 (Def 7.3.7 on p.334): An estimator W^* is a best unbiased estimator of $\tau(\theta)$ if it satisfies $\mathsf{E}_{\theta}[W^*] = \tau(\theta)$ for all θ and, for any other unbiased estimator W with $\mathsf{E}_{\theta}[W] = \tau(\theta)$, we have $\mathsf{Var}_{\theta}[W^*] \leq \mathsf{Var}_{\theta}[W]$ for all θ .
- W^* is also called a *uniform minimum variance unbiased* estimator (UMVUE) of $\tau(\theta)$.

Best Unbiased Estimator (UMVUE)

- Example L9.1:
- Answer to Example L9.1:

Review: Correlation

- $\bullet \ \mathsf{E}[X] = \mu_X \text{, } \mathsf{E}[Y] = \mu_Y \text{, } \mathsf{Var}[X] = \sigma_X^2 \text{, } \mathsf{Var}[Y] = \sigma_Y^2$
- Assume $0 < \sigma_X^2 < \infty$ and $0 < \sigma_Y^2 < \infty$
- Definition L9.2 (Def 4.5.2 on p.169): The correlation of X and Y is the number defined by

$$\rho_{XY} = \frac{\mathsf{Cov}[X,Y]}{\sigma_X \sigma_Y}.$$

The value ρ_{XY} is also called the *correlation coefficient*.

- Theorem L9.1 (Thm 4.5.7 on p.172): For any random variables X and Y,
 - (a) $-1 \le \rho_{XY} \le 1$.
 - (b) $|\rho_{XY}|=1$ if and only if there exists numbers $a\neq 0$ and b such that P(Y=aX+b)=1. If $\rho_{XY}=1$ then a>0, and if $\rho_{XY}=-1$ then a<0.

• Theorem L9.2 (p.335): Let X_1, \ldots, X_n be a sample with pdf $f(\boldsymbol{x}|\theta)$, and let $W(\boldsymbol{X}) = W(X_1, \ldots, X_n)$ be any estimator where $\mathsf{E}_{\theta}[W(\boldsymbol{X})]$ is a differentiable function of θ . Suppose the joint pdf $f(\boldsymbol{x}|\theta)$ satisfies

$$\frac{d}{d\theta} \int \cdots \int h(\boldsymbol{x}) f(\boldsymbol{x}|\theta) \ d\boldsymbol{x} = \int \cdots \int h(\boldsymbol{x}) \frac{\partial}{\partial \theta} f(\boldsymbol{x}|\theta) \ d\boldsymbol{x},$$

for any function h(x) with $\mathsf{E}_{\theta}[\ |h(X)|\]<\infty.$ Then

$$\mathsf{Var}_{\theta}[W(\boldsymbol{X})] \geq \frac{\left\{\frac{d}{d\theta}\mathsf{E}_{\theta}[W(\boldsymbol{X})]\right\}^2}{\mathsf{E}_{\theta}\left[\left(\frac{\partial}{\partial\theta}\ln f(\boldsymbol{X}|\theta)\right)^2\right]}.$$

- The inequality is referred to as the Cramér-Rao inequality.
- If $W(\boldsymbol{X})$ is an unbiased estimator of $\tau(\theta)$, then the numerator becomes

$$\left(\frac{d}{d\theta}\mathsf{E}_{\theta}[W(\boldsymbol{X})]\right)^{2} = \left(\tau'(\theta)\right)^{2}.$$

• Proof of Theorem L9.2: Since Theorem L9.1(a) implies

$$\left\{ \mathsf{Cov}\left[W(\boldsymbol{X}), \frac{\partial}{\partial \boldsymbol{\theta}} \ln f(\boldsymbol{X}|\boldsymbol{\theta}) \right] \right\}^2 \leq \mathsf{Var}[W(\boldsymbol{X})] \mathsf{Var}\left[\frac{\partial}{\partial \boldsymbol{\theta}} \ln f(\boldsymbol{X}|\boldsymbol{\theta}) \right],$$

it follows that

$$\mathsf{Var}[W(\boldsymbol{X})] \geq \frac{\left\{\mathsf{Cov}\left[W(\boldsymbol{X}), \frac{\partial}{\partial \theta} \ln f(\boldsymbol{X}|\theta)\right]\right\}^2}{\mathsf{Var}\left[\frac{\partial}{\partial \theta} \ln f(\boldsymbol{X}|\theta)\right]}.$$

Proof of Theorem L9.2 continued: Note that

$$\begin{split} \mathsf{E} \left[\frac{\partial}{\partial \theta} \ln f(\boldsymbol{X}|\theta) \right] &= \int_{\mathcal{X}} \frac{\partial}{\partial \theta} \ln f(\boldsymbol{x}|\theta) f(\boldsymbol{x}|\theta) \; d\boldsymbol{x} \\ &= \int_{\mathcal{X}} \frac{\frac{\partial}{\partial \theta} f(\boldsymbol{X}|\theta)}{f(\boldsymbol{X}|\theta)} f(\boldsymbol{x}|\theta) \; d\boldsymbol{x} \\ &= \int_{\mathcal{X}} \frac{\partial}{\partial \theta} f(\boldsymbol{x}|\theta) \; d\boldsymbol{x} \\ &= \frac{\partial}{\partial \theta} \int_{\mathcal{X}} f(\boldsymbol{x}|\theta) \; d\boldsymbol{x} = \frac{\partial}{\partial \theta} \boldsymbol{1} = 0. \end{split}$$

Proof of Theorem L9.2 continued: Then we have

$$\begin{split} \mathsf{Cov}\left[W(\boldsymbol{X}), \frac{\partial}{\partial \theta} \ln f(\boldsymbol{X}|\theta)\right] &= \mathsf{E}\left[W(\boldsymbol{X}) \frac{\partial}{\partial \theta} \ln f(\boldsymbol{X}|\theta)\right] \\ &= \mathsf{E}\left[W(\boldsymbol{X}) \frac{\frac{\partial}{\partial \theta} f(\boldsymbol{X}|\theta)}{f(\boldsymbol{X}|\theta)}\right] \\ &= \int_{\mathcal{X}} \frac{d}{d\theta} [W(\boldsymbol{x}) f(\boldsymbol{x}|\theta)] \; d\boldsymbol{x} \\ &= \frac{d}{d\theta} \mathsf{E}[W(\boldsymbol{X})] \end{split}$$

and

$$\mathsf{Var}\left[\frac{\partial}{\partial \boldsymbol{\theta}} \ln f(\boldsymbol{X}|\boldsymbol{\theta})\right] = \mathsf{E}\left[\left(\frac{\partial}{\partial \boldsymbol{\theta}} \ln f(\boldsymbol{X}|\boldsymbol{\theta})\right)^2\right].$$

• Theorem L9.3 (p.337): Let X_1, \ldots, X_n be iid with pdf $f(x|\theta)$, and let $W(\boldsymbol{X}) = W(X_1, \ldots, X_n)$ be any estimator where $\mathsf{E}_{\theta}[W(\boldsymbol{X})]$ is a differentiable function of θ . If the joint pdf $f(\boldsymbol{x}|\theta) = \prod f(x_i|\theta)$ satisfies

$$\frac{d}{d\theta} \int \cdots \int h(\boldsymbol{x}) f(\boldsymbol{x}|\theta) \ d\boldsymbol{x} = \int \cdots \int h(\boldsymbol{x}) \frac{\partial}{\partial \theta} f(\boldsymbol{x}|\theta) \ d\boldsymbol{x},$$

for any function $h(\boldsymbol{x})$ with $\mathsf{E}_{\theta}[\;|h(\boldsymbol{X})|\;]<\infty$, then

$$\mathsf{Var}_{\theta}[W(\boldsymbol{X})] \geq \frac{\left(\frac{d}{d\theta}\mathsf{E}_{\theta}[W(\boldsymbol{X})]\right)^{2}}{n\mathsf{E}_{\theta}\left[\left(\frac{\partial}{\partial\theta}\ln f(X|\theta)\right)^{2}\right]}.$$

• Proof of Theorem L9.3 continued: If we also assume that X_1, \ldots, X_n is iid, then we have

$$\begin{split} & \mathsf{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(\boldsymbol{X}|\theta)\right)^{2}\right] = \mathsf{E}\left[\left(\frac{\partial}{\partial \theta} \ln \prod_{i=1}^{n} f(X_{i}|\theta)\right)^{2}\right] \\ & = & \mathsf{E}\left[\left(\frac{\partial}{\partial \theta} \sum_{i=1}^{n} \ln f(X_{i}|\theta)\right)^{2}\right] \\ & = & \sum_{i=1}^{n} \sum_{j=1}^{n} \mathsf{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X_{i}|\theta)\right)\left(\frac{\partial}{\partial \theta} \ln f(X_{j}|\theta)\right)\right] \\ & = & \sum_{i=1}^{n} \mathsf{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X_{i}|\theta)\right)^{2}\right] + \\ & \sum_{i=1}^{n} \sum_{j=1}^{n} \mathsf{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X_{i}|\theta)\right)\left(\frac{\partial}{\partial \theta} \ln f(X_{j}|\theta)\right)\right] \end{split}$$

• Proof of Theorem L9.3 continued:

$$= \sum_{i=1}^{n} \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X_{i}|\theta)\right)^{2}\right] +$$

$$\sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X_{i}|\theta)\right) \left(\frac{\partial}{\partial \theta} \ln f(X_{j}|\theta)\right)\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X_{i}|\theta)\right)^{2}\right] +$$

$$\sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E}\left[\frac{\partial}{\partial \theta} \ln f(X_{i}|\theta)\right] \mathbb{E}\left[\frac{\partial}{\partial \theta} \ln f(X_{j}|\theta)\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X_{i}|\theta)\right)^{2}\right]$$

$$= n\mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X_{j}|\theta)\right)^{2}\right] .$$

- The quantity $\mathsf{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \ln f(X|\theta) \right)^2 \right]$ is called the *information number*, or *Fisher information* of the sample.
- Theorem L9.4 (Lem 7.3.11 on p.338): If $f(x|\theta)$ satisfies

$$\frac{d}{d\theta}\mathsf{E}_{\theta}\left[\frac{\partial}{\partial\theta}\ln f(X|\theta)\right] = \int\frac{\partial}{\partial\theta}\left[\left(\frac{\partial}{\partial\theta}\ln f(x|\theta)\right)f(x|\theta)\right]\;dx,$$

then

$$\mathsf{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \ln f(X|\theta) \right)^2 \right] = -\mathsf{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \ln f(X|\theta) \right].$$

• The condition on $f(x|\theta)$, and consequently the result, is true for an exponential family.

Proof of Theorem L9.4:

- Example L9.3: Let X_1, \ldots, X_n be iid Poisson(λ). Find the Cramér-Rao lower bound on the variance of unbiased estimators of λ . Also, find the MLE and show that it is the UMVUE of λ .
- ullet Answer to Example L9.3: The Cramér-Rao lower bound is $\frac{\lambda}{n}$. The MLE of λ is $\hat{\lambda}=\bar{X}$ and $\mathrm{Var}[\bar{X}]=\frac{\lambda}{n}$.

- Example L9.4:
- Answer to Example L9.4:

Attainment

• Theorem L9.5 (Cor 7.3.15 on p.341): Let X_1,\ldots,X_n be iid $f(x|\theta)$, where $f(x|\theta)$ satisfies the conditions of Theorem L9.3. Let $L(\theta|\boldsymbol{x}) = \prod_{i=1}^n f(x_i|\theta)$ denote the likelihood function. If $W(\boldsymbol{X}) = W(X_1,\ldots,X_n)$ is any unbiased estimator of $\tau(\theta)$, then $W(\boldsymbol{X})$ attains the Cramér-Rao Lower Bound if and only if

$$a(\theta)[W(\mathbf{x}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \ln L(\theta|\mathbf{x})$$

for some function $a(\theta)$.

• Proof of Theorem L9.5:

Attainment

- Example L9.4:
- Answer to Example L9.4:

Attainment

- Example L9.5:
- Answer to Example L9.5: