Computer Organization – HW2

Email: iustCompOrg+4022@gamil.com

- 1. Write the control signals of the single-bus processor below for the following instructions (be careful with the addressing modes).
 - a. (mem1) + (mem2) = R1
 - b. (mem1) (R1) = mem2
 - c. (mem1) R1 = (mem2)
 - c. Conditional Jump relative
 (PC + offset in N and END in N)

- 2. Answer the following questions:
 - Describe "BUS multiplexing".
 - Describe "Daisy Chain" interrupt handling system.
- 3. Following circuit is considered for a microprocessor which the microinstructions stored in instruction memory (also known as control memory) have a width of 32 bits. These microinstructions are broken down to three fields:
 - 1) Micro-Operation field (16 bits)
 - 2) Next address field (X)
 - 3) Status bits of MUX (8 bits)

Calculate number of bit in X and Y. What is the size of the memory?

- 4. Write RISC-V assembly code to calculate n! $(n! = 1 \times 2 \times ... \times n)$
- 5. What is ISA? What are the main differences between instruction sets such as Intel x86, ARM, RISC-V and MIPS?
- 6. In the following assembly code, how many times instruction memory, data memory and register bank have been accessed? Fill the table and write a full description about every line of code.

Assembly Code:

LOAD R0, M40 (Loads the content of M40 in R1)

LOAD R1, M41 (Loads the content of M41 in R2)

ADDI R2, R0, R1 (Add the contents of R1 and R0 -> R2)

STORE M42, R2 (Stores the contents of R2 in M42)

HALT

Code lines	Register Bank	Instruction Memory	Data Memory		
Line 1					
Line 2					
Line 3					
Line 4					
Line 5					

7. In a computer, the length of instructions is 16 bits, and the address fields are 4 bits each. If this processor has 15 different "two-operand instructions" and 23 "one-operand" instructions, what is the number of zero-operand instructions?

instruction [15:12] ins	struction [11:8] inst	ruction [7:4]	instruction [3:0]
-------------------------	-----------------------	---------------	-------------------

Please submit your homework, simulations and projects in the following format:

Name StudentNumber HW2 (BillGates 12345678 HW2)

Good Luck!

		ISC-V	D. C		DV64M Multiply F	vtoneion					
			Reference 1	Data	RV64M Multiply E MNEMONIC		NAME	DE	SCRIPTION	(in Manila a)	N
64I BASE II	NTE	GER INSTRUCTIONS, in al	phabetical order								18
NEMONIC			DESCRIPTION (in Verilog)	NOTE	mul, mulw		MULtiply (Word)		d] = (R[rs1] * F		
, addw		ADD (Word)	R[rd] = R[rs1] + R[rs2]	1)	mulh		MULtiply High		$\mathbf{d}] = (\mathbf{R}[\mathbf{rs1}] * \mathbf{F}$		
i,addiw		, ,			mulhu	R	MULtiply High Un	signed R[re	$\mathbf{d}] = (\mathbf{R}[\mathbf{rs1}] * \mathbf{F}$	R[rs2])(127:64)	
I, addIw		ADD Immediate (Word)	R[rd] = R[rs1] + imm	1)	mulhsu	R	MULtiply upper Half	Sign/Uns R[re	d] = (R[rs1] * F	R[rs2])(127:64)	
		AND	R[rd] = R[rs1] & R[rs2]		div, divw	R	DIVide (Word)	R[re	$\mathbf{d}] = (\mathbf{R}[\mathbf{rs1}] / \mathbf{R}$	[rs2])	
i	I	AND Immediate	R[rd] = R[rs1] & imm		divu	R	DIVide Unsigned	R[re	d] = (R[rs1] / R	[rs2])	
рс	U	Add Upper Immediate to PC	$R[rd] = PC + \{imm, 12'b0\}$		rem, remw		REMainder (Word)		d] = (R[rs1] %		
	SB	Branch EQual	if(R[rs1]==R[rs2)				REMainder Unsign				
			PC=PC+{imm,1b'0}		remu, remuw		(Word)	u Kin	$\mathbf{d}] = (\mathbf{R}[\mathbf{rs1}] \%)$	K[IS2])	
	SB	Branch Greater than or Equal	if(R[rs1]>=R[rs2)		RV64F and RV64D	Floating-l	Point Extension	s			
		•	PC=PC+{imm,1b'0}		fld,flw		Load (Word)		d] = M[R[rs1]+	imml	
u	SB	Branch ≥ Unsigned	$if(R[rs1] \ge R[rs2)$	2)	fsd, fsw	_	Store (Word)		R[rs1]+imm] =		
		_ 8	PC=PC+{imm,1b'0}	,	fadd.s,fadd.d		ADD	_	d] = F[rs1] + F[
	SB	Branch Less Than	if(R[rs1] <r[rs2) pc="PC+{imm,1b'0}</td"><td></td><td></td><td></td><td></td><td></td><td>, , ,</td><td></td><td></td></r[rs2)>						, , ,		
1	SB	Branch Less Than Unsigned	if(R[rs1] <r[rs2) pc="PC+{imm,1b'0}</td"><td>2)</td><td>fsub.s,fsub.d</td><td></td><td>SUBtract</td><td></td><td>d] = F[rs1] - F[</td><td></td><td></td></r[rs2)>	2)	fsub.s,fsub.d		SUBtract		d] = F[rs1] - F[
и				2)	fmul.s,fmul.d	R	MULtiply	F[re	d] = F[rs1] * F[rs2]	
		Branch Not Equal	if(R[rs1]!=R[rs2) PC=PC+{imm,1b'0}		fdiv.s,fdiv.d	R	DIVide	F[re	d] = F[rs1] / F[r	rs2]	
rc	Ι	Cont./Stat.RegRead&Clear	$R[rd] = CSR; CSR = CSR \& \sim R[rs1]$		fsqrt.s,fsqrt.d	R	SQuare RooT	F[re	d] = $sqrt(F[rs1])$)	
rci	I	Cont./Stat.RegRead&Clear	$R[rd] = CSR;CSR = CSR \& \sim imm$		fmadd.s, fmadd.d	R	Multiply-ADD		d] = F[rs1] * F[:		
		Imm			fmsub.s,fmsub.d		Multiply-SUBtract		d] = F[rs1] * F[:		
rs	I	Cont./Stat.RegRead&Set	$R[rd] = CSR; CSR = CSR \mid R[rs1]$								
rsi	I	Cont./Stat.RegRead&Set	R[rd] = CSR; CSR = CSR imm		fnmadd.s,fnmadd		Negative Multiply-			F[rs2] + F[rs3])	
	-	Imm			fnmsub.s,fnmsub		Negative Multiply-				
rw	I	Cont./Stat.RegRead&Write	R[rd] = CSR; CSR = R[rs1]		fsgnj.s,fsgnj.d	R	SiGN source	F[re	$d] = \{ F[rs2] < 6.$	3>,F[rs1]<62:0>}	i
rwi	I				fsgnjn.s,fsgnjn	d R	Negative SiGN sour	rce F[re	d] = { (~F[rs2]<	<63>), F[rs1]<62:	:0>}
L W L	1	Cont./Stat.Reg Read&Write	R[rd] = CSR; CSR = imm		fsgnjx.s,fsgnjx		Xor SiGN source	-	d] = {F[rs2]<63		
eak		*******	T		2 2				s1]<62:0>}	. ,,	
	I	Environment BREAK	Transfer control to debugger		fmin.s, fmin.d	R	MINimum	F[re	d = (F[rs1] < F	[rs2]) ? F[rs1] : F	[rs2]
11	I	Environment CALL	Transfer control to operating system		fmax.s,fmax.d	R	MAXimum			[rs2]) ? F[rs1] : F	
ce	I	Synch thread	Synchronizes threads		feq.s,feq.d		Compare Float EQu		d] = (F[rs1]==]		[roa]
ce.i	I	Synch Instr & Data	Synchronizes writes to instruction								
		-	stream		flt.s,flt.d		Compare Float Less	-	$\mathbf{d}] = (\mathbf{F}[\mathbf{rs1}] < \mathbf{F}]$		
	UJ	Jump & Link	$R[rd] = PC+4; PC = PC + \{imm, 1b'0\}$		fle.s,fle.d		Compare Float Less	than or = R[re	r= R[rd] = (F[rs1]<= F[rs2]) ? 1 : 0		
r	I	Jump & Link Register	R[rd] = PC+4; $PC = R[rs1]+imm$	3)	fclass.s,fclass	.d R	Classify Type	R[re	R[rd] = class(F[rs1])		
-				,	fmv.s.x,fmv.d.x	R	Move from Integer	F[re	d] = R[rs1]		
	I	Load Byte	R[rd] =	4)	fmv.x.s,fmv.x.d	R	Move to Integer	Rſn	d] = F[rs1]		
	_		{56'bM[](7),M[R[rs1]+imm](7:0)}		fcvt.s.d		Convert to SP from	_	d] = single(F[rs	11)	
	Ι	Load Byte Unsigned	$R[rd] = \{56'b0,M[R[rs1]+imm](7:0)\}$								
	I	Load Doubleword	R[rd] = M[R[rs1] + imm](63:0)		fcvt.d.s		Convert to DP from		d] = double(F[r		
	I	Load Halfword	R[rd] =	4)	fcvt.s.w,fcvt.d		Convert from 32b I	-	d] = float(R[rs1](31:0))	
			{48'bM[](15),M[R[rs1]+imm](15:0)}		fcvt.s.l,fcvt.d	.1 R	Convert from 64b I	nteger F[re	d] = float(R[rs1](63:0))	
	I	Load Halfword Unsigned	$R[rd] = \{48'b0,M[R[rs1]+imm](15:0)\}$		fcvt.s.wu,fcvt.		Convert from 32b I	nt F[re	d] = float(R[rs1](31:0))	
	II	Load Upper Immediate	R[rd] = {32b'imm<31>, imm, 12'b0}				Unsigned				
				40	fcvt.s.lu,fcvt.		Convert from 64b I	nt F[ro	d] = float(R[rs1])](63:0))	
	I	Load Word	R[rd] = (22"hMf](21) MfD[re-1]+imm-1(21-0))	4)	ft ft		Unsigned	Dr	17(21.0) - :	(Pf - 17)	
			{32'bM[](31),M[R[rs1]+imm](31:0)}		fcvt.w.s,fcvt.w		Convert to 32b Inte	_	d](31:0) = integ		
	I	Load Word Unsigned	$R[rd] = \{32b0,M[R[rs1]+imm](31:0)\}$		fcvt.l.s,fcvt.l		Convert to 64b Inte		d](63:0) = integ		
	R	OR	$R[rd] = R[rs1] \mid R[rs2]$		fcvt.wu.s,fcvt.	wu.d R	Convert to 32b Int I	Insigned R[re	d](31:0) = integ	ger(F[rs1])	
	I	OR Immediate	$R[rd] = R[rs1] \mid imm$		fcvt.lu.s,fcvt.	lu.d R	Convert to 64b Int I	Insigned R[re	d](63:0) = integ	ger(F[rs1])	
	S	Store Byte	M[R[rs1]+imm](7:0) = R[rs2](7:0)		RV64A Atomtic Ex						
	S	Store Doubleword	M[R[rs1]+imm](63:0) = R[rs2](63:0)		amoadd.w,amoadd		ADD	Rie	d] = M[R[rs1]],		
					umouduu	K		MI	R[rs1] = M[R[rs1]]	rs1]] + R[rs2]	
-22-	S	Store Halfword	M[R[rs1]+imm](15:0) = R[rs2](15:0)		amoand.w,amoand	.d R	AND		d] = M[R[rs1]],		
,sllw	R	Shift Left (Word)	R[rd] = R[rs1] << R[rs2]	1)				M[I	R[rs1] = $M[R[rs1]$	rs1]] & R[rs2]	
i,slliw	I	Shift Left Immediate (Word)	R[rd] = R[rs1] << imm	1)	amomax.w,amomax	.d R	MAXimum	R[re	$\mathbf{d}] = \mathbf{M}[\mathbf{R}[\mathbf{rs1}]],$		
	R	Set Less Than	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0					if (F	R[rs2] > M[R[rs1]]]) M[R[rs1]] = R[[rs2]
i	I	Set Less Than Immediate	R[rd] = (R[rs1] < imm) ? 1 : 0		amomaxu.w,amomax	ı.d R	MAXimum Unsign		$\mathbf{d}] = \mathbf{M}[\mathbf{R}[\mathbf{rs1}]],$	ID MIDI. 133 -	r21
iu	ī	Set < Immediate Unsigned	R[rd] = (R[rs1] < imm) ? 1 : 0	2)	amomin w amori-	d D	MINimum]]) M[R[rs1]] = R[rs2]
ı .	-		,		amomin.w,amomin	M K	Thinnin	K[K	d]=M[R[rs1]], R[rs2] <m[r[rs1< td=""><td>]]) M[R[rs1]] = R[</td><td>[rs2]</td></m[r[rs1<>]]) M[R[rs1]] = R[[rs2]
		Set Less Than Unsigned	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0	2)	amominu.w,amomin	a.d R	MINimum Unsigne		d]=M[R[rs1]],	II) mindress III — Ki	إعدم
,sraw	R	Shift Right Arithmetic (Word)	R[rd] = R[rs1] >> R[rs2]	1,5)	,		gare]]) M[R[rs1]] = R[[rs2]
i,sraiw	I	Shift Right Arith Imm (Word)	R[rd] = R[rs1] >> imm	1,5)	amoor.w,amoor.d	R	OR	R[re	d] = M[R[rs1]],		
srlw,	R	Shift Right (Word)	R[rd] = R[rs1] >> R[rs2]	1)				M[l	R[rs1] = $M[R[rs1]$	rs1]] R[rs2]	
i,srliw				1)	amoswap.w,amoswa		SWAP	R[re	$\mathbf{d}] = \mathbf{M}[\mathbf{R}[\mathbf{rs1}]],$	M[R[rs1]] = R[r	:s2]
, subw		SUBtract (Word)	R[rd] = R[rs1] - R[rs2]	1)	amoxor.w,amoxor	.d R	XOR	R[re	d] = M[R[rs1]],	,	
		Store Word		1)	2 2 2		I 1 D '	M[I	R[rs1] = $M[R[rs1]$	rs1]] ^ R[rs2]	
	S		M[R[rs1]+imm](31:0) = R[rs2](31:0)		lr.w,lr.d	R	Load Reserved		d] = M[R[rs1]],		
		XOR	$R[rd] = R[rs1] \wedge R[rs2]$		sc.w,sc.d	D	Store Conditional		ervation on M[F eserved, M[R[rs		
i		XOR Immediate	$R[rd] = R[rs1] \land imm$		50.11,50.14	K			d] = 0; else R[re		
			ightmost 32 bits of a 64-bit registers						_, .,		
		assumes unsigned integers (in			CORE INSTRUC	TION FO	DMATC				
		significant bit of the branch ad						10 15	14 12	11 7	6
			n bit of data to fill the 64-bit register			27 26 2		19 15	14 12	11 7	6
			st bits of the result during right shift		R fun	ct7	rs2	rsl	funct3	rd	Opco
		vith one operand signed and or			I	imm[11:0]		rs1	funct3	rd	Opco
			on operation using the rightmost 32 bits	of a 64-	s imm[rs2	rs1	funct3	imm[4:0]	opco
bit F											
			ich properties are true (e.g., -inf, -0,+0,	, +inf,	SB imm[1:	2 10:5]	rs2	rsl	funct3	imm[4:1 11]	opco
	2*322)			U		imm[31:12]			rd	opco
denoi			can interpose itself between the read and								

