

Exame Final Nacional de Matemática A Prova 635 | Época Especial | Ensino Secundário | 2019

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Caderno 1

Duração da Prova (Caderno 1 + Caderno 2): 150 minutos. | Tolerância: 30 minutos.

6 Páginas

Caderno 1: 75 minutos. Tolerância: 15 minutos. É permitido o uso de calculadora.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro e transferidor.

Só é permitido o uso de calculadora no Caderno 1.

Apresente apenas uma resposta para cada item.

As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.

A prova inclui um formulário.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperimetro × Apótema

Área de um sector circular:

 $\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$

Área lateral de um cone: $\pi rg(r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3 \ (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

cos(a+b) = cos a cos b - sen a sen b

 $\frac{\operatorname{sen} A}{a} = \frac{\operatorname{sen} B}{b} = \frac{\operatorname{sen} C}{c}$

 $a^2 = b^2 + c^2 - 2bc\cos A$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta) \quad \text{ou} \quad (\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$${}^n \! \sqrt{\rho \operatorname{cis} \theta} = {}^n \! \sqrt{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n} \right) \quad \text{ou} \quad {}^n \! \sqrt{\rho e^{i\theta}} = {}^n \! \sqrt{\rho} \ e^{i\frac{\theta + 2k\pi}{n}}$$

$$(k \in \{0, \dots, n-1\} \quad \mathbf{e} \quad n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \notin N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1.	Considere, num referencial o.n. $Oxyz$,
	• o plano α , de equação $2x + 3y - z - 9 = 0$
	• a reta r , de equação vetorial $(x, y, z) = (1, 2)$
	1.1. Seja A o ponto da reta r cuja ordenada é i
	Determine uma equação do plano que é par

 $(z, z) = (1, 2, 1) + k(0, 1, 5), k \in \mathbb{R}$

rdenada é igual a 4

o que é paralelo ao plano ~lpha~ e que passa pelo ponto ~AApresente essa equação na forma ax + by + cz + d = 0

1.2. Seja P o ponto de intersecção da reta r com o plano α Determine as coordenadas do ponto P

2.

Os dois itens que se apresentam a seguir são itens em alternativa.

O item 2.1. integra-se nos Programas de Matemática A, de 10.º, 11.º e 12.º anos, homologados em 2001 e 2002 (P2001/2002).

O item 2.2. integra-se no Programa e Metas Curriculares de Matemática A, implementado em 2015-2016 (PMC2015).

Responda apenas a um dos dois itens.

Na sua folha de respostas, identifique claramente o item selecionado.

P2001/2002

2.1. Lança-se cinco vezes um dado tetraédrico equilibrado, com as faces numeradas de 1 a 4, e regista-se o número da face voltada para baixo.

Qual é o valor, arredondado às centésimas, da probabilidade de, nos cinco lançamentos, sair face 4 exatamente três vezes?

(A) 0.01

(B) 0,03

(C) 0.07

(D) 0,09

PMC2015

2.2. De um triângulo, sabe-se que os comprimentos dos seus lados são 4, 5 e 8

Seja α a amplitude, em graus, do maior ângulo interno desse triângulo.

Qual é o valor de α , arredondado às unidades?

(A) 75°

(B) 100°

(C) 120°

(D) 125°

- 3. Um saco contém nove cartões, indistinguíveis ao tato, numerados de 1 a 9.
 - **3.1.** Retiram-se, simultaneamente e ao acaso, quatro cartões do saco.

Qual é a probabilidade de o menor dos números saídos ser 3 e o maior ser 8?

- (A) $\frac{1}{18}$
- (B) $\frac{1}{21}$
- (c) $\frac{1}{6}$
- **(D)** $\frac{1}{7}$
- 3.2. Colocam-se os nove cartões em cima de uma mesa, lado a lado, em linha reta.

Determine de quantas maneiras diferentes é possível colocar os cartões, de modo que os números inscritos nos três primeiros cartões sejam primos.

4. Numa turma de 12.º ano, apenas alguns alunos estão matriculados na disciplina de Química.

Relativamente a essa turma, sabe-se que:

- o número de raparigas é o dobro do número de alunos matriculados na disciplina de Química;
- um terço dos alunos matriculados na disciplina de Química são raparigas;
- metade dos rapazes não estão matriculados na disciplina de Química.

Escolhe-se ao acaso um aluno da turma.

Determine a probabilidade de esse aluno estar matriculado na disciplina de Química.

Apresente o resultado na forma de fração irredutível.

5. Na Figura 1, está representado, no plano complexo, o quadrado $\begin{bmatrix} ABCD \end{bmatrix}$, cujo centro coincide com a origem.

Os pontos A, B, C e D são os afixos (imagens geométricas) dos números complexos z_1 , z_2 , z_3 e z_4 , respetivamente.

A que é igual $z_1 + z_2 + z_3 + z_4$?

Figura 1

- **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 3

- **6.** Na Figura 2, estão representadas, em referencial o.n. xOy,
 - ullet parte do gráfico da função f, de domínio $\mathbb R$, definida por $f(x)=e^x$
 - parte do gráfico da função g, de domínio \mathbb{R}^+ , definida por $g(x) = \frac{\ln x}{x}$

Considere que um ponto A se desloca no primeiro quadrante sobre o gráfico da função g. Para cada posição do ponto A, seja B o ponto do gráfico da função f cuja abcissa é igual à do ponto A

Seja $a\ (a > 1)$ a abcissa comum dos pontos $A\ e\ B$

Determine, recorrendo às capacidades gráficas da calculadora, o valor de a para o qual a área do triângulo $\begin{bmatrix} OAB \end{bmatrix}$ é igual a 5, sabendo-se que esse valor existe e é único.

Figura 2

Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação;
- $-\,$ apresente o valor de $\,a\,$ arredondado às décimas.
- 7. Considere a sucessão (u_n) de termo geral $u_n = \frac{(-1)^{n+1}}{n+1}$

Determine a menor ordem a partir da qual todos os termos da sucessão (u_n) são maiores do que -0.01

8. Para um certo número real $\,k,\,$ é contínua em $\,\mathbb{R}\,$ a função $f,\,$ definida por

$$f(x) = \begin{cases} \frac{x-1}{x^2 + x - 2} & \text{se } x > 1\\ k & \text{se } x \le 1 \end{cases}$$

Qual é o valor de k?

(A) 2

(B) 3

(C) $\frac{1}{3}$

(D) $\frac{1}{2}$

FIM DO CADERNO 1

COTAÇÕES (Caderno 1)

Item													
Cotação (em pontos)													
1.1.	1.2.	2.1.	2.2.	3.1.	3.2.	4.	5.	6.	7.	8.			
12	12	8		8	12	13	8	12	12	8	105		