Υπολογιστικά Μαθηματικά 2021–2022

Παύλος Ορφανίδης Γιώργος Χατζηλίγος Σπύρος Κοντάκης

10 Ιανουαρίου 2022

Περιεχόμενα

T	1160	ορλημα Ι	2
	1.1	Να βρεθούν οι τύποι για την επίλυση του $\Pi.A.T$ με την M έθοδο του $Euler$ και την βελτιωμένη μέθοδο του $Euler$ με τις παρακάτω	
		τιμές για τις εισόδους και τις αρχικές συνθήκες	2
	1.2	Ερώτημα γ: Μέθοδος Euler	3
		1.2.1 Δεδομένα:	
	1.3		
	1.4		
		1.4.1 Δεδομένα	
		1.4.2 Μεταφορική Κίνηση	4
		AM = 4835	(1)
		$ms'' = (f_1 + f_2) - b_s s' s'$	(2)
		$I_z\omega'=\frac{d}{2}(f_2-f_1)-b_\theta \omega \omega$	(3)
		$s(0) = s_0$	(4)
		$s'(0) = 0, \omega(0) = 0$	(5)
		m = 9kg	
		τιμές για τις εισόδους και τις αρχικές συνθήκες 2 Ερώτημα γ: Μέθοδος $Euler$ 3 1.2.1 Δεδομένα: 3 Μεταφορική K ίνηση 3 Πρόβλημα 1 γ: Βελτιωμένη M έθοδος E υλερ 4 1.4.1 Δεδομένα 4 1.4.2 Μεταφορική K ίνηση 4 $AM = 4835$ (1) $ms'' = (f_1 + f_2) - b_s s' s'$ (2) $I_z \omega' = \frac{d}{2}(f_2 - f_1) - b_\theta \omega \omega$ (3) $s(0) = s_0$ (4) $s'(0) = 0, \omega(0) = 0$ (5)	
		$I_z = 0.38 kgm^2$	

1 Πρόβλημα 1

1.1 Να βρεθούν οι τύποι για την επίλυση του $\Pi.A.T$ με την Μέθοδο του Euler και την βελτιωμένη μέθοδο του Euler με τις παρακάτω τιμές για τις εισόδους και τις αρχικές συνθήκες

 $Euler\ s'$

Έχουμε από τα δεδομένα ότι:

$$s'' = f'(t, s') = (f1 + f2) - bs|s'|s'$$

$$s' = f(t, s)$$

$$[f_1, f_2]^T = [A.M./7000, A.M./7000]^T$$

$$[f_1, f_2]^T = [A.M./7000, A.M./8000]^T$$

$$s_0 = A.M./1000$$

$$\theta_0 = 0$$

Εφαρμόζουμε την μέθοδο Euler:

Βελτιωμένη μέθοδος Euler s'

Βελτιωμένη μέθοδος Euler s

```
Εφαρμόζουμε την βελτιωμένη μέθοδο Euler: t_n=t_0+nh \qquad s_{n+1}=s_n+hf(t,s)n το οποίο σημαίνει ότι: t_1=t_0+1h \qquad s_{n+1}=s_n+hs_n' t_2=t_0+2h \qquad s_1=s_0+hs_0' . . . . t_n=t_0+nh
```

1.2 Ερώτημα γ: Μέθοδος Euler

1.2.1 Δεδομένα:

$$f_1 + f_2 = Kps(sdes - s) - Kds(s')$$

$$K_{ps} = 5$$

$$K_{ds} = 15 + (AM/100)$$

$$S_0 = 0$$

$$S_{des} = AM/200$$

1.3 Μεταφορική Κίνηση

$$s' = -[[(f_1+f_2)-Kps(s_{des}-s)]/K_{ds}] = f(t,s)$$
 Άρα, για την συνάρτηση $s(t)$ έχουμε:
$$t_n = t_0 + nh \qquad s_{n+1} = s_n + hs'_n$$

$$t_n = t_0 + 1h \qquad s_1 = s_0 + hs'$$

$$t_1 = t_0 + 1h$$
 $s_1 = s_0 + hs'_0$
 $t_2 = t_0 + 2h$ $s_2 = s_1 + hs'_1$

•

 $t_{30.000} = t_0 + 30.000h$ $s_{30.000} = s_{29.999} + hs'_{29.999}$

Για την συνάρτηση s'(t):

$$S'' = K_{ps}(s_{des} - s) - K_{ds}(s') - b_s|s'|s'$$

Άρα, προκύπτει:

$$t_n = t_0 + nh$$
 $s'_{n+1} = s''_n + hs''_n$
 $t_1 = t_0 + 1h$ $s'_1 = s'_0 + hs''_n$
 $t_2 = t_0 + 2h$ $s_2 = s'_1 + hs''_1$

.

 $t_{30.000} = t_0 + 30.000h$ $s_{30.000} = s_{29.999} + hs''29.999$

1.4 Πρόβλημα 1γ: Βελτιωμένη Μέθοδος Ευλερ

1.4.1 Δεδομένα

$$f_1 + f_2 = K_{ps}(s_{des} - s) - K_{ds}(s')$$

$$K_{ps} = 5$$

$$K_{ds} = 15 + (AM/100)$$

$$S_0 = 0$$

$$S_{des} = AM/200$$

1.4.2 Μεταφορική Κίνηση

 Γ ια την σ (τ):

 $\tau v = \tau 0 + v \eta \ \sigma v + 1 = \sigma v + \eta \varsigma' v$

 $\begin{array}{l} \tau 1 = \tau 0 + 1 \eta \ \sigma 1 = \sigma 0 + \eta \varsigma' 0 \ \tau 2 = \tau 0 + 2 \eta \ \sigma 2 = \sigma 1 + \eta \varsigma' 1 \ \dots \ \tau 30.000 \\ = \tau 0 + 30.000 \eta \ \sigma 30.000 = \sigma 29.999 + \eta \varsigma' 29.999 \end{array}$

$$\begin{split} & \sigma \nu + 1 = \sigma \nu + (\eta/2) * \left[\ \phi \ (\tau \nu, \, \sigma \nu) + \phi \ (\tau \nu + \eta, \, \sigma \nu + \eta \ (\ \phi \ (\ \tau \nu, \sigma \nu \,) \right] = \sigma \nu \\ & + (\eta/2) * \left[\ \phi \ (\tau \nu, \, \sigma \nu) + \left[\ - \ (\tau 1 + \tau 2) - K \pi \varsigma \ (\ \sigma \delta \epsilon \varsigma - (\ \sigma \nu + \eta (\left[\ - \ (\phi 1 + \phi 2 \) - K \pi \varsigma^* * (\sigma \delta \epsilon \varsigma - \sigma \nu) \ \right] / \ \mu \rangle \right] K \delta \varsigma \end{split}$$

Fix th s'(t): s'n+1 = s'n + (h/2) * [ϕ '(tn, sn) + ϕ (tn + h, s'n + h (ϕ ' (tn,sn »]]

Οπότε, Σ 'ν + $(\eta/2)$ * [φ ' $(\tau \nu, \sigma \nu)$ + [$[(\varphi 1 + \varphi 2) - \beta \varsigma (\varsigma' \nu + \eta \cdot (\varphi 1 + \varphi 2) - \beta \varsigma , \varsigma' \nu, \varsigma' \nu]$ / μ , [Σ 'ν + $\eta \cdot (\varphi 1 + \varphi 2) - \beta \varsigma , \varsigma' \nu, \varsigma' \nu$] / μ , μ