

INFINITE GAMES

Aman Raj (170101006) Mayank Wadhwani (170101038)

Motivation

- Programs for non-terminating systems
- e.g. controller regulating the anti-lock brake in a car, controller to regulate temperature of a system
- Lead to emergence of so-called reactive systems
- Interaction between the system and its environment
- We model them by a finite graph and find winning strategies

- Arena
- Play
- Strategy
- Positional Strategy
- Determinacy

- Arena: A = (V , V0 , V1 , E)
- Play
- Strategy
- Positional Strategy
- Determinacy

- Arena
- Play = infinite sequence
- Ex. v0, v1, v2, v1, v0, v1,
- Strategy
- Positional Strategy
- Determinacy

- Arena
- Play
- Strategy: function V*Vi -> V
- Positional Strategy
- Determinacy

- Arena
- Play
- Strategy
- Positional Strategy: strategy depends only on current state (no history component)
- For red: f(vo) = v1, f(v2) = v1
- Determinacy

- Arena
- Play
- Strategy
- Positional Strategy
- Determinacy
- W0(V) union W1(V) = V

Examples of Games with Uniform Positional Strategy

- Reachability games
- Büchi games
- Parity games

Reachability Games

Intro

- Given, $R \subseteq V$ be a subset of A's vertices, here $R = \{v_4, v_5\}$
- Player 0's goal is to reach R at least once
- Player 1 tries to avoid reaching R
- Reach(R) = $\{v_0, v_1, ..., \in V^w | \exists i: v_i \in R\}$

Reachability Games (Cont.)

Attractor

- Attr₀(R) or 0-attractor of R:
 All vertices from where Player 0 can attract the token to R
- Construction of the attractor is hierarchical
- Vertex v is added to attractor if: {v ∈ V_i | some successor of v ∈ R} or {v ∈ V_{1-i} | all successors of v ∈ R}

Reachability Games (Cont.)

$$\begin{array}{c} \operatorname{Attr}_0^0(\{v_4, v_5\}) = \\ \{v_4, v_5\} \end{array}$$

 $Attr_0^1(\{v_4, v_5\}) = \{v_4, v_5\} \cup \{v_3, v_8\}$

$$Attr_0^2(\{v_4, v_5\}) = \{v_3, v_4, v_5, v_8\} \cup \{v_3, v_7, v_8\}$$

$$\begin{array}{c} \operatorname{Attr}_0^3(\{v_4,v_5\}) = \\ \{v_3,v_4,v_5,v_7,v_8\} \cup \{v_3,v_6,v_7,v_8\} \end{array}$$

$$Attr04({v4, v5}) =
{v3, v4, v5, v6, v7, v8}$$

Reachability Games (Cont.)

Solution

- $W_0(G) = Attr_0(R)$ and
- $W_1(G) = V \setminus Attr_0(R)$
- Uniform positional winning strategies for both players
- Player 0 can enforce a win from every vertex in W₀(G)
- Player 1 can enforce a win by keeping the token in W₁(G)

Safety Games

- Dual of reachability games
- Player 0 is not allowed to leave a specific region S of safe vertices.
- While, Player 1's goal is to reach V\S.
- Safe(S) = $\{v_0, v_1, ..., \in V^w \mid \forall i : v_i \in S\}$
- We can turn a safety game into a reachability game

Büchi Games

- So far: Visit even once, done. Future irrelevant
- Büchi games-> there must be some element in a given set F that should be visited infinite times.

Büchi Games

- So far: Visit even once, done.
 Future irrelevant
- Büchi games-> there must be some element in a given set F that should be visited infinite times.
- Approach: start with F, and move according to following recurrence
- $F^0 = F$,
- $W_1^n = V \setminus \operatorname{Attr}_0(F^n)$ for every $n \geq 0$, and
- $F^{n+1} = F \setminus \operatorname{CPre}_1(W_1^n)$ for every $n \geq 0$.

Büchi Games (Example)

 $\begin{array}{c} \operatorname{Attr}_0^0(\{v_4,v_6\}) = \\ \{v_4,v_6\} \end{array}$

 $W_1^0(\{v_4, v_6\}) = \{v_0, v_1, v_2, v_5, v_8\}$

 $\begin{array}{l} \operatorname{Attr}_0^1(\{v_4,v_6\}) = \\ \{v_4,v_6\} \cup \{v_3,v_7\} \end{array}$

 $CPre_1(\{v_0, v_1, v_2, v_5, v_8\}) = \{v_0, v_1, v_2, v_4, v_5, v_8\}$

Büchi Games (Example explained)

Parity Games

Intro

- Generalization of Büchi games
- Vertices of the arena are colored by natural numbers
- Player i wins a play ρ if, and only if, the minimal color seen infinitely often in ρ has parity i.
- Parity(Ω) = { $\rho \in V^{\omega}$ | min Inf($\Omega(\rho_0)\Omega(\rho_1)\Omega(\rho_2)\cdots$) is even }

Parity Games

Solution

- Can be solved using recursive algorithm involving computing attractors
- Exponential upper bound on the running time

Finite-state Strategies and Reductions

- Finite-state Strategies
- Reductions
- Weak muller games
- Muller games
- Limits on Reductions

Example:

Let game with F = V

Memory Structure

Let A = (V, V0, V1, E) be an arena. A memory structure M = (M, init, upd) for A.

Memory Structure

```
Let A = (V, V0, V1, E) be an arena.
A memory structure M = (M, init, upd) for A.
```

Init: V -> M

Memory Structure

```
Let A = (V, V0, V1, E) be an arena.
A memory structure M = (M, init, upd) for A.

Init: V \rightarrow M
```

Memory Structure

```
Let A = (V, V0, V1, E) be an arena.
A memory structure M = (M, init, upd) for A.

Init: V \rightarrow M
```

Next Move function

nxt: Vi * M -> V satisfying (v, nxt(v,m)) belongs to E

- If some strategy requires a memory structure and some next move function, it is finite state strategy.
- All early games (that are positional strategy-based games) like Büchi, reachability can also be implemented by finite state strategy

Reductions

- Aim is to obtain a new game G' where Player O is known to have a positional winning strategy.
- Reducing G to G' simplifies the winning condition
- But increases the size because of memory structure
- $\rho \in \text{Win if, and only if, } \text{ext}(\rho) \in \text{Win'}$.

Weak Muller Game

 Let A = (V, V0, V1, E) be an arena and let F ⊆ 2 be a family of subsets of A's vertices. Then, the weak Muller condition wMuller(F) is defined as:

wMuller(F) := $\{ \rho \in V^{\omega} \mid Occ(\rho) \in F \}$

We call a game G = (A, wMuller(F)) a weak Muller game.

Weak Muller Game (Reduction)

Weak Muller games are reducible to weak max-parity games

- wMaxParity(Ω) := { $\rho \in V^{\omega} \mid \max Occ(\Omega(\rho 0)\Omega(\rho 1)\Omega(\rho 2)\cdots$) is even}.
- Player i wins a play, if the parity of the maximal color occurring during the play is i
- $\Omega(v, S) = (2 \cdot |S|$ if $S \in F$, $(2 \cdot |S| - 1)$ if S does not $\in F$.
- As the set of visited vertices increases until it gets stationary at some point, larger sets are assigned larger colors than smaller sets.

Weak Muller Game (Family)

There exists a family Gn = (An, wMuller(Fn)) of weak Muller games, each having a designated vertex v, such that

- $|An| \in O(n)$ and |Fn| = 2,
- Player 0 has a finite-state winning strategy from v, but
- Player 0 has no finite-state winning strategy from v with less than 2ⁿ states.

Family of Weak Muller games

Limits on Reduction

- A Büchi condition is harder than a reachability condition
- Intuitively, In a Büchi game, vertices from F have to be visited infinitely often while in a reachability game it suffices to visit R once, which is a much weaker condition.
- Reductions cannot go "down" the hierarchy: A complicated language cannot be reduced to a simpler one.

Rabin's Theorem

- Infinite Tree
- S2S
- Parity Tree Automata
- Rabin's theorem

Infinite Tree

• A tree over an alphabet Σ is a mapping $t \colon B * \to \Sigma$

- Ex:
- $te(w) = (a ext{ if } w = 1*0,$ (b otherwise.

S2S

- The Monadic Second-Order Logic of Two Successors
- Syntax of S2S
- If \$ is a formula, then Complement, union, intersection, quantification, also formula
- Sentence is a formula without free variables
- Solution in from of trees which satisfy the sentence

S2S (Cont.)

- Satisfiability problem for S2S
- Translates a sentence ϕ into an automaton A_ϕ recognizing exactly the trees satisfying ϕ
- Typically simpler to solve

Parity Tree Automata

• A parity tree automaton $A = (Q, \Sigma, qI, \Delta, \Omega)$

Parity Tree Automata (An example)

• L1 = {t: B * \rightarrow {a, b} | t| π = b ω for some path π }, the language of trees containing a path labelled with b ω

- $Q_1 = \{q_I, q_*\},$
- $\Omega_1(q_I) = \Omega_1(q_*) = 0$, and

$$\bullet \ \Delta_1 = \left\{ \begin{array}{cccc} q_I, b & q_I, b & q_*, a & q_*, b \\ & \middle/ & \searrow & \middle/ & \searrow & & \\ q_I & q_* & q_* & q_I & q_* & q_* & q_* & q_* \end{array} \right\}.$$

Thank You