Chapter 3. Geomtric Dimensioning and Tolerancing

Quoc-Nguyen Banh, PhD
Faculty of Mechanical Engineering
Ho Chi Minh City University of Technology

Flatness Definition

Surface Plate

Work surface

Allowable flatness error for different grades

Diagonal length

工作面尺度	工作面真平度之許可差 (μm)			對角線長度度 (mm)
(mm)	0 級	1 級	2 級	(參考用)
250×250	2	4	8	354
400×250	3	5	10	472
400×400	3	6	12	566
630×400	4	8	16	746
630×630	5	9	18	891
1000×630	6	12	24	1132
1000×1000	8	15	30	1414
1600×1000	10	19	38	1887
2000×1000	12	23	46	2236
2500×1600	15	30	60	2968

Sampling for Flatness Error

(a)方格型分割法 (Rectangular grid)

(b)米字型分割法 (Union jack)

Fringe Formation

Appearance to eye

Optical Flat Used for Flatness Measurement

Formation of interference fringes on a flat surface viewed under an optical flat in a parallel beam of monochromatic light.

Interference fringes on a flat surface viewed under an optical flat in a parallel beam of monochromatic light.

Fringe Patterns

The sharp drop-off is clearly shown by the close bands on the right.

Fringe patterns reveal surface condition like contour lines on a map

Flatness Measurement Using Straight Edge

Interferometer Setup for Flatness Measurement

Flatness Error Using LSQ Method

Flatness Error Using Graphical Method

Lines of Test							
A-C	A-E	A-G	C-C	G-E	C-E	В–F	H-D
0	0	0	0	0	0	0	0
0	0	0	0	0	0	-90	0
-1	0	+1	+2	+1	- 1	+1	+3
-4	- 1	+2	+4	-3	+2	+2	+7
-7	-2	-2	+5	-6	+5	-2	+9
-12	-4	-6	. +6	-8	+3	-5	+9
-15	-8	-6	+4	-9	+2		+6
-15	-12		+2	-11			+9
	-17		0	-12			+10
	-21		- 2				
1	-24		0)			

Surface table marked out with the minimum number of lines for a flatness test

Three corners of a surface adjusted to zero enable the height of the mid-point to be fixed relative to a plane through the corners. this enables the Height of the other corner to be determined.

Cumulative Error	Correction	Height Relative to Plane ACG
0	0	0
0	+2	+2
0	+4	+4
-1	+6	+ 5
- 2	+8	+6
- 4	+10	+6
- 8	+12	+4
- 12	+14	+2
- 17	+ 16	- 1
- 21	+18	-3
- 24	+20	-4

Correction for Line C E

Cumulative Error	Correction Rel. to ACG	Error Rel. to ACG
0	0	0
0	-1	- 1
- 1	-2	- 3
+2	- 3	- 1
+ 5	-4	+1
+ 3	- 5	- 2
+2	-6	-4

Correction for Line G E

Cumulative Error	Correction Rel. to ACG	
0	0	0
0	+1	+1
+1	+ 2	+3
- 3	+3	0
- 6	+4	- 2
- 8	+ 5	- 3
-9	+6	- 3
- 11	+7	-4
- 12	+ 8	-4

Correction for Line B F

Cumu- lative Error	Initial Cor- rection	Cor- rection	Error Rel. to ACG
0	+1	0	+ 1
0	+1	÷ 1	+2
+1	+2	+ 2	+4
+ 2	+ 3	+ 3	+6
- 2	- 1	+4	+ 3
- 5	- 4	+ 5	+1
- 9	-8	+6	-2

Correction for Line H D

Cumu- lative Error	Initial Cor- rection	Cor- rection	Error Rel. to ACG
0	÷ 5	0	+ 5
0	+ 5	- 2	+ 3
+ 3	+8	- 4	+4
+ 7	+12	-6	+6
+9	+14	8	+6
+9	+14	- 10	+4
+6	+11	-12	- 1
+9	+14	- 14	0
+10	+15	- 16	- 1

Height of all measured points related to an arbitrary plane ACG

Fig12.5(a) Initial assessment shows a flatness error of +10 units at one corner relative to an arbitrary plane
(b) By tilting the whole surface about axis XX, the actual Error is shown to be +5 units

The true flatness error of +5units.obtained by titling in fig12.5(b)can also be obtained by projection

Journal Review

A new minimum zone method for evaluating flatness errors

S. T. Huang,* K. C. Fan,† and John H. Wu*

*Institute of Optical Sciences, National Central University, and †Department of Mechanical Engineering, National Taiwan University, Taiwan, Republic of China

A new minimum zone method for flatness error analysis is proposed in this article. Based on the criteria for the minimum zone solution and strict rules for data exchange, a simple and rapid algorithm, called the control plane rotation scheme, is developed for the flatness analysis of a flat surface. Experimental work was performed, and some examples are given in terms of the minimum zone and least-squares solutions.

Keywords: flatness; minimum zone method; least-squares method

