#### e-book















& Analytics.

Como alcançar resultados de forma inteligente.

## jornada do curso

MÓDULO 01\_O PRINCÍPIO DE TUDO

MÓDULO 02\_DADOS, INFORMAÇÕES E INTELIGÊNCIA

MÓDULO 03 OS DADOS CONTAM HISTÓRIAS

AULA 07\_ CONECTAR DADOS A RESULTADOS: OLHAR PARA TRÁS



AULA 08\_CONECTAR DADOS A RESULTADOS: OLHAR PARA FRENTE

AULA 09\_DADOS COMO HIPÓTESES NA NOVA ECONOMIA: ENTRE PREVISÕES E RESULTADOS DE SUCESSO

**AULA 10\_CASE #01** 

**AULA 11\_CHECKPOINT** 

MÓDULO 04\_APRESENTAR OS DADOS E AS DECISÕES







**MÓDULO 03:** 

OS DADOS CONTAM HISTÓRIAS

**CONECTAR DADOS A RESULTADOS: OLHAR PARA FRENTE** 





# AND SOR MADE SOR MADE





### missão da aula

das **análises preditivas**.

Entender **como** o **passado** nos ajuda a tomar melhores decisões, por meio

80

I

S

S

Ã



0



a análise do **passado** garante uma melhor avaliação e **previsão dos resultados** do futuro.



interativo! 💲

# conceitos estatísticos

#### conceitos estatísticos



#### **POPULAÇÃO**

Conjunto de indivíduos que compartilham, pelo menos, uma característica em comum.

#### exemplos:

Etnia, matrícula na universidade, tipos de uma fruta ou verdura, carros em Curitiba, carros de uma marca etc.

#### **AMOSTRA**

Subconjunto de indivíduos extraídos da população.

#### exemplos:

- Analisar uma parte da população de certa etnia para descobrir a faixa etária predominante.
- Investigar parte da população dos alunos matriculados na universidade para saber de onde esses estudantes vieram.
  - Examinar a amostra dos carros de uma marca para saber qual é a quilometragem média que andam por ano.

#### conceitos estatísticos

#### MARGEM DE ERRO

Trata-se da diferença entre o resultado obtido com a amostra e o resultado real da população.

exemplo: Se a margem de erro de uma pesquisa é de 5%, isso significa que se 50% dos entrevistados (amostra) gostam de um produto, você deve considerar que esse número, na população, pode oscilar entre 45% e 55%.



#### **NÍVEL DE CONFIANÇA**

É o nível de certeza de que os dados medidos refletem a população, ou seja, ele garante que o valor exato está dentro da margem de erro.

exemplo: Se o nível de confiança de uma pesquisa é de 98%, isso significa que, se ela for aplicada 100 vezes, ela daria resultados dentro da margem de erro em 98 casos.

Geralmente, utiliza-se o nível de confiança de 95%, mas podem ser usados outros níveis de confiança como 90%, 99% ou outro, dependendo somente do quão importante é para o pesquisador que o valor esteja o mais próximo do valor real da população.









#### **EXEMPLO:**

Com 95% de confiança, podemos afirmar que 50% dos clientes preferem o produto A, com uma margem de erro de 3% para cima ou para baixo.

#### **OU SEJA:**

Temos 95% de certeza que entre 47 e 53% dos clientes preferem o produto A.

#### conceito estatístico

#### (NÍVEL DE SIGNIFICÂNCIA:)

É conhecido como ALFA. Ele indica a probabilidade de que o valor encontrado não está dentro da margem de erro esperada.

**ALFA = 100% - nível de confiança** Como é utilizado o nível de confiança de 95%, o valor do alfa, em geral, será de 5%.



interativo! 🏖

# correlação





## correlação

Significa uma semelhança ou relação entre duas coisas, pessoas ou ideias.

Na estatística, ela nos ajuda a determinar qual é a intensidade da relação que existe entre 2 variáveis:

$$\left( r = rac{\sum \left( x_i - ar{x} 
ight) \left( y_i - ar{y} 
ight)}{\sqrt{\sum \left( x_i - ar{x} 
ight)^2 \sum \left( y_i - ar{y} 
ight)^2}} 
ight)$$



EXCEL PHYTON

=CORREL(X;Y)

X.corr(Y)





#### exemplos de correlação:

De acordo com o IBGE, temos:



Correlação: -0,93

Ou seja, quanto menos nascimentos, mais óbitos. Portanto, se nascer muitas pessoas, não haverá mais óbitos.



#### "O galo sempre canta antes de nascer o sol. Logo, o sol nasce porque o galo canta."

Na verdade, o galo canta para avisar o galinheiro que continua vivo e no comando; para demarcar território e indicar que quem manda naquele espaço é ele.

Ou seja, o que acontece aqui é a suposição de que uma relação real — ou percebida entre duas coisas — significa que uma é a causa da outra.

## correlação não implica em causalidade!

A correlação nos diz a força e a direção do relacionamento entre variáveis, mas nada esclarece sobre os motivos desse relacionamento.







# mão na

#### RH - parte 1

Você trabalha no RH e tem um candidato com 5 anos de experiência. Qual é o melhor salário que você deve oferecer a ele?

- Existe correlação entre: anos de experiência x salário?
- Faça um diagrama de dispersão parece existir uma correlação linear entre as variáveis?
- > Calcule o coeficiente de correlação.

resposta abaixo (passe o mouse)





# mão ha

#### Imobiliária - parte 1

A imobiliária House solicitou um modelo para estimar o preço dos imóveis de acordo com a área do terreno. Existe correlação entre: **preço x área**?

| > | Faça um diagrama de dispersão - parece existir uma |
|---|----------------------------------------------------|
|   | correlação linear entre as variáveis?              |

🕟 Calcule o **coeficiente de correlação**.

resposta abaixo (passe o mouse)



interativo! 😘

# regressão linear

#### regressão linear simples

Utilizamos a regressão linear simples para descrever a relação linear entre duas variáveis, ou seja, quando queremos prever o valor de uma variável utilizando apenas uma outra variável.

#### Assim, temos:

- > uma variável dependente Y, ou resposta.
- > uma independente X, também conhecida como explicativa.

#### reta de regressão linear

A relação entre as 2 variáveis pode ser descrita por meio de uma função linear:







# mão ha

#### RH - parte 2

Você trabalha no RH e tem um candidato com 5 anos de experiência. Qual é o melhor salário que você deve oferecer a ele?



- Encontre a **reta de regressão** para os dados do arquivo
- > Qual o salário para o candidato com 5 anos de experiência?
- > Continue utilizando o arquivo salário.xlsx.

resposta abaixo (passe o mouse)

#### regressão linear simples

#### método 01:

Gráfico de dispersão + linha de tendência.

#### passo a passo:

- Criar um gráfico de dispersão;
- Clicar com o botão direito nos dados da série;
- Selecionar: adicionar linha de tendência;
- Opção da linha de tendência: LINEAR;
- Selecionar: exibir equação no gráfico.

#### método 02:

Fórmulas

#### passo a passo:



Utilizar as fórmulas para calcular os coeficientes:

b<sub>0</sub>=INTERCEPÇÃO(Y,X)

b<sub>1</sub>=INCLINAÇÃO(Y,X)



#### método 03:

Ferramenta de análise de dados.

#### passo a passo:

- > Habilitar o suplemento: ferramentas de análise;
- Selecionar a aba: DADOS;
- Selecionar a opção: análise de dados;
- Ferramenta de análise: regressão;
- Preencher com as informações da tabela.

#### regressão linear simples

Utiliza dados do passado para prever comportamentos e detectar padrões no conjunto de dados analisados.

Seu objetivo é se aprofundar no que aconteceu no **passado** para obter uma melhor avaliação e previsão dos **resultados do futuro.** 

#### vantagens:

- **01.** Detecta fraudes:
- 02. Otimiza campanhas de marketing;
- 03. Melhora operações;
- 04. Reduz riscos;
- 05. Torna melhor a gestão de clientes.







# mão ha

#### Imobiliária - parte 2

A imobiliária House solicitou um modelo para estimar o preço dos imóveis de acordo com a área do terreno.

- > Encontre a **reta de regressão** para os dados do arquivo.
- > Qual o **preço** para um imóvel com **área** igual à 2150? E 3280?
- > Continue utilizando o arquivo imobiliária.xlsx.

resposta abaixo (passe o mouse)

## a equação encontrada se ajusta bem aos nossos dados?

É importante checar as medidas de regressão e os resíduos do modelo para responder a essa pergunta.

#### entendendo parâmetros

Quão bem a equação de **regressão linear** encontrada **se encaixa em seus dados de origem?** 

| Estatística de regressão |            |  |  |  |  |
|--------------------------|------------|--|--|--|--|
| R múltiplo               | 0,97824162 |  |  |  |  |
| Quadrado de R            | 0,95695666 |  |  |  |  |
| Quadrado de R ajustado   | 0,9554194  |  |  |  |  |
| Erro-padrão              | 5788,31505 |  |  |  |  |
| Observações              | 30         |  |  |  |  |

| ANOVA            |                          |            |            |              |                |               |                |
|------------------|--------------------------|------------|------------|--------------|----------------|---------------|----------------|
|                  | gl                       |            | SQ         | MQ           | F              | F de sig      | gnificância    |
| Regressão        |                          | 1 2,08     | 357E+10    | 2,0857E+10   | 622,50720      | )3 1,         | 14307E-20      |
| Residual         |                          | 28 938     | 3128552    | 33504591,1   |                |               |                |
| Total            |                          | 29 2,17    | 795E+10    |              |                |               |                |
|                  | Coeficientes Erro-padrão | Stat t     | valor P    | 95% inferior | 95% superior I | nferior 95,0% | Superior 95,0% |
| Interceptar      | 25792,2002 2273,05343    | 11,3469397 | 5,512E-12  | 21136,06131  | 30448,33908    | 21136,06131   | 30448,33908    |
| Anos Experiência | 9449,96232 378,754574    | 24,9500942 | 1,1431E-20 | 8674,118747  | 10225,8059     | 8674,118747   | 10225,8059     |





| Estatística de regressão |            |  |  |  |  |  |
|--------------------------|------------|--|--|--|--|--|
| R múltiplo               | 0,97824162 |  |  |  |  |  |
| Quadrado de R            | 0,95695666 |  |  |  |  |  |
| Quadrado de R ajustado   | 0,9554194  |  |  |  |  |  |
| Erro-padrão              | 5788,31505 |  |  |  |  |  |
| Observações              | 30         |  |  |  |  |  |

> É o coeficiente de correlação, que já analisamos anteriormente.

| Estatística de regressão |            |  |  |  |  |  |
|--------------------------|------------|--|--|--|--|--|
| R múltiplo               | 0,97824162 |  |  |  |  |  |
| Quadrado de R            | 0,95695666 |  |  |  |  |  |
| Quadrado de R ajustado   | 0,9554194  |  |  |  |  |  |
| Erro-padrão              | 5788,31505 |  |  |  |  |  |
| Observações              | 30         |  |  |  |  |  |

➤ É o coeficiente de determinação. Ele quer dizer o quanto da variação em Y é explicada por X, em outras palavras, ele nos mostra se o modelo possui um bom ajuste.

Ele varia de 0% a 100%: neste caso, 95% da variação no **preço** do aluguel é explicada pela variação da **área** (os outros 5% que faltam é explicado por outras variáveis que não foram consideradas no modelo + o erro amostral).





| Estatística de regressão |            |  |  |  |  |
|--------------------------|------------|--|--|--|--|
| R múltiplo               | 0,97824162 |  |  |  |  |
| Quadrado de R            | 0,95695666 |  |  |  |  |
| Quadrado de R ajustado   | 0,9554194  |  |  |  |  |
| Erro-padrão              | 5788,31505 |  |  |  |  |
| Observações              | 30         |  |  |  |  |

➤ É o coeficiente de determinação ajustado para o número de variáveis independentes. Utilizamos para comparar modelos com diferentes quantidades de variáveis independentes.

| Estatística de regressão |            |  |  |  |  |
|--------------------------|------------|--|--|--|--|
| R múltiplo               | 0,97824162 |  |  |  |  |
| Quadrado de R            | 0,95695666 |  |  |  |  |
| Quadrado de R ajustado   | 0,9554194  |  |  |  |  |
| Erro-padrão              | 5788,31505 |  |  |  |  |
| Observações              | 30         |  |  |  |  |

> Indica a precisão da análise em valores absolutos. Mostra, em média, o quanto a estimativa pode estar errada para mais ou para menos.

| Estatística de regressão |            |  |  |  |  |
|--------------------------|------------|--|--|--|--|
| R múltiplo               | 0,97824162 |  |  |  |  |
| Quadrado de R            | 0,95695666 |  |  |  |  |
| Quadrado de R ajustado   | 0,9554194  |  |  |  |  |
| Erro-padrão              | 5788,31505 |  |  |  |  |
| Observações              | 30         |  |  |  |  |

Quantidade de observações utilizadas para construção do modelo, isto é, o número de linhas na tabela origem.





| ANOVA     |    |    |            |            |            |                    |
|-----------|----|----|------------|------------|------------|--------------------|
|           | gl |    | SQ         | MQ         | F          | F de significância |
| Regressão |    | 1  | 2,0857E+10 | 2,0857E+10 | 622,507203 | 1,14307E-20        |
| Residual  |    | 28 | 938128552  | 33504591,1 |            |                    |
| Total     |    | 29 | 2,1795E+10 |            |            |                    |



F de significância nos diz se o modelo é estatisticamente significante, por meio do teste F. Se esse valor for menor que o nível de significância, podemos concluir que o modelo estimado é estatisticamente significativo. Caso seja maior que o nível de significância, o ideal seria rever o seu modelo e a escolha das variáveis independentes que foram utilizadas.

|                                                                                                            |                  | Coeficientes | Erro-padrão | Stat t     | valor P    | 95% inferior | 95% superior | Inferior 95,0% | Superior 95,0% |
|------------------------------------------------------------------------------------------------------------|------------------|--------------|-------------|------------|------------|--------------|--------------|----------------|----------------|
| Anos Experiência 9449,96232 378,754574 24,9500942 1,1431E-20 8674,118747 10225,8059 8674,118747 10225,8059 | Interceptar      | 25792,2002   | 2273,05343  | 11,3469397 | 5,512E-12  | 21136,06131  | 30448,33908  | 21136,06131    | 30448,33908    |
|                                                                                                            | Anos Experiência | 9449,96232   | 378,754574  | 24,9500942 | 1,1431E-20 | 8674,118747  | 10225,8059   | 8674,118747    | 10225,8059     |



Valor P nos diz se cada uma das variáveis é estatisticamente significante, por meio do teste F.

Se esse valor for menor que nível de significância, podemos concluir que a variável é estatisticamente significativa. Caso seja maior que o nível de significância, o ideal seria retirar essa variável e recalcular o modelo





# mão ha

#### Imobiliária - parte 3

A imobiliária House solicitou um modelo para estimar o preço dos imóveis de acordo com a área do terreno.

| Λt |  |
|----|--|

- A reta de regressão está **bem ajustada**?
- Continue utilizando o arquivo imobiliária.xlsx.



#### regressão linear múltipla

É utilizada quando se quer investigar a relação entre uma variável dependente Y e duas ou mais variáveis independentes X's. O modelo é representado por:

$$\hat{y} = b_0 + b_1 x_1 + \dots + b_n x_n$$

# man ha

#### Carros - parte 1

Você foi contratado por uma empresa automobilística e eles vão lançar um novo modelo. Qual deve ser o **preço** deste carro?

- Calcule a matriz de correlações.
- Estime o modelo de regressão, encontrando a equação de regressão que se ajuste aos dados.
- > Avalie as medidas de ajuste do modelo.
- > Faça novas estimativas.







# mão ha

#### **Carros - parte 2**

Como vimos, o modelo utilizando todas as variáveis não é o melhor modelo, pois temos variáveis com **p-valor alto.** 

- Agora, precisamos então recalcular o modelo de Regressão apenas com as melhores variáveis.
- Quais variáveis vocês selecionariam?
- Recalcule o modelo com estas variáveis.
- Continue utilizando o arquivo carros.xlsx.





#### menos é MAIS!

Modelos mais simples (ou com menos variáveis) devem ser escolhidos desde que a qualidade do ajuste seja similar, ou seja, é importante verificar a significância das variáveis no seu modelo.







# CAIXA DE DÚVIDAS







# desafio ↑⊕♥conquer

- Nelhorar o modelo de precificação de carros.
- Prever o preço dos imóveis de Melbourne, baseado nos indicadores disponibilizados.
- Baixe o arquivo desafio\_Conquer\_08.xlsx disponível para download no botão abaixo.

# Conquer **notes**

#### site

#### **KAGGLE**

Find Open Datasets and Machine Learning Projects

#### livro

#### **NOÇÕES DE PROBABILIDADE E ESTATÍSTICA**

Marcos N. Magalhães e Antonio C. Pedroso de Lima

#### INTRODUÇÃO À ECONOMETRIA

Jeffrey M. Wooldridge

