

Photon super-bunching from a metal-metal tunnel junction

ABHISHEK GREWAL

C. C. Leon¹, A. Rosławska¹, A. Grewal¹, O. Gunnarsson¹, K. Kuhnke¹, and K. Kern^{1,2}

 ${}^{1}\!\underline{\text{Max-Planck-Institut f\"{u}r Festk\"{o}rperforschung, Stuttgart, Germany}}$

²Institut de Physique, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Sci. Adv. aav4986 (in press) or arXiv:1805.10234

DPG Fruhjahrstagung, Regensburg
April 2019

Inelastic electron tunneling

Photon pair emission

Hanbury Brown Twiss-STM

Photon super-bunching

Pairs within 50 ps of each other

 $g^2(0) > 2$ (limit for chaotic light)

Observed for:

- Ag(111) Au tip
- Au(111) Au/PtIr tip
- Cu(111) Au/AuAg tip

Closer to the instrumental time-resolution (< 50 ps) than the reference measurement using ps light-source

Observation limited by detection range

Possible mechanism

$g^2(t)$ vs tunneling current

Not a cascade

 k_1 – rate for emitting one photon k_2 – rate for emitting two photons

If cascade then, $k_2 = k_1^2$

But we see, $k_2 = 215k_1^2$ – it is easier to get a pair than two single photons

Spectral-filtering dependent correlation

$$\hbar\omega_1 + \hbar\omega_2 \le e \cdot V_{\text{bias}}$$

Not e^- co-tunneling either

- Photon pair creation can be made possible by the spontaneous parametric down-conversion of plasmon polaritons (optical nonlinearity alleviates phase-matching conditions)
- Photon pairs emitted within 50 ps of each other: possibly entangled?

Conclusion

Leon, C. C., *et al.* Sci. Adv. aav4986 (in press) arXiv:1805.10234

Max. bunching observed

Polarization dependent correlation

Quantum interference of photon pairs

Hong, C. K., et al. Phys. Rev. Lett. 59, 2044 (1987)

Detecting entanglement in STM

For single detection,
$$p(U_1|\phi_1,\phi_2) = p(L_1|\phi_1,\phi_2) = p(U_2|\phi_1,\phi_2) = p(L_2|\phi_1,\phi_2) = \frac{\eta}{2}$$

For joint detection,
$$p(U_1,U_2|\phi_1,\phi_2) = p(L_1,L_2|\phi_1,\phi_2) = \eta^2 \left[\frac{1}{4} + \frac{1}{4}\cos(\phi_2 - \phi_1 + \theta) \right]$$

$$p(U_1,L_2|\phi_1,\phi_2) = p(L_1,U_2|\phi_1,\phi_2) = \eta^2 \left[\frac{1}{4} - \frac{1}{4}\cos(\phi_2 - \phi_1 + \theta) \right]$$

$$g^{2}(t)$$
: $(U_{1}, U_{2}), (L_{1}, L_{2}), (U_{1}, L_{2}), (L_{1}, U_{2})$