Образовательный центр МГТУ им. Н.Э. Баумана

Выпускная квалификационная работа по курсу "Data Science"

Слушатель: Головина Евгения

Тема: Прогнозирование конечных свойств новых материалов (композиционных материалов)

Постановка задачи

- изучить предметную область
- провести разведочный анализ данных
- разделить данные на тренировочную и тестовую выборки
- выполнить препроцессинг (предобаботку)
- выбрать базовую модель и модели для подбора
- сравнить модели с гиперпараметрами по умолчанию
- подобрать гиперпараметры с помощью с помощью поиска по сетке с перекрестной проверкой
- сравнить модели после подбора гиперпараметров и выбрать лучшую
- сравнить качество лучшей и базовой моделей на тестовой выборке
- сравнить качество лучшей модели на тренировочной и тестовой выборке
- разработать приложение

Разведочный анализ данных

X_bp (матрица из базальтопластика):

• признаков: 10 и индекс

• строк: 1023

X_nup (наполнитель из углепластика):

• признаков: 3 и индекс

• строк: 1040

Объединение с типом INNER по индексу, получилось:

• признаков: 13

• строк: 1023

Разведочный анализ данных

Название	Файл	Тип	Непустых	Уникальных
		данных	значений	значений
Соотношение матрица-	X_bp	float64	1023	1014
наполнител				
Плотность, кг/м3	X_bp	float64	1023	1013
модуль упругости, ГПа	X_bp	float64	1023	1020
Количество отвердителя, м.%	X_bp	float64	1023	1005
Содержание эпоксидных	X_bp	float64	1023	1004
групп,%_2				
Температура вспышки, С_2	X_bp	float64	1023	1003
Поверхностная плотность,	X_bp	float64	1023	1004
г/м2				
Модуль упругости при	X_bp	float64	1023	1004
растяжении, ГПа				
Прочность при растяжении,	X_bp	float64	1023	1004
МПа				
Потребление смолы, г/м2	X_bp	float64	1023	1003
Угол нашивки, град	X_nup	float64	1023	2
Шаг нашивки	X_nup	float64	1023	989
Плотность нашивки	X_nup	float64	1023	988

	Среднее	Стандартное отклонение	Минимум	Максимум	Медиана
Соотношение матрица-наполнитель	2.9304	0.9132	0.3894	5.5917	2.9069
Плотность, кг/м3	1975.7349	73.7292	1731.7646	2207.7735	1977.6217
модуль упругости, ГПа	739.9232	330.2316	2.4369	1911.5365	739.6643
Количество отвердителя, м.%	110.5708	28.2959	17.7403	198.9532	110.5648
Содержание эпоксидных групп, %_2	22.2444	2.4063	14.2550	33.0000	22.2307
Температура вспышки, С_2	285.8822	40.9433	100.0000	413.2734	285.8968
Поверхностная плотность, г/м2	482.7318	281.3147	0.6037	1399.5424	451.8644
Модуль упругости при растяжении, ГПа	73.3286	3.1190	64.0541	82.6821	73.2688
Прочность при растяжении, МПа	2466.9228	485.6280	1036.8566	3848.4367	2459.5245
Потребление смолы, г/м2	218.4231	59.7359	33.8030	414.5906	219.1989
Угол нашивки, град	44.2522	45.0158	0.0000	90.0000	0.0000
Шаг нашивки	6.8992	2.5635	0.0000	14.4405	6.9161
Плотность нашивки	57.1539	12.3510	0.0000	103.9889	57.3419

Пропусков нет

Гистограммы распределения и диаграммы "ящик с усами"

- Большинство количественные, вещественные, положительные, нормально распределенные
- Угол нашивки категориальный, бинарный

Попарные графики рассеяния точек

- Выбросы есть
- Зависимостей нет

Выбросы

Найдено:

- методом 3-х сигм 24 выброса
- методом межквартильных расстояний 93 выброса

Удалить осталось 1000 строк

Матрица корреляции

Линейной зависимости нет

-1.00

0.75

- 0.50

- 0.25

- 0.00

-0.25

-0.50

-0.75

-1.00

Предметная область: композитные материалы

Выходные переменные

# Описательная ста	тистика выходной переменной	# Описательна	я статистика выходной переменной	# Описательная с	татистика выходной переменной
Модуль упру	гости при растяжении, ГПа	Прочно	сть при растяжении, МПа	Соотношени	е матрица-наполнитель
min	64.054061	min	1071.123751	min	0.389403
max	82.682051	max	3848.436732	max	5.455566
mean	73.354026	mean	2468.178562	mean	2.907441
std	3.066086	std	487.297434	std	0.908368

Для каждого признака — отдельная модель

- модуль упругости при растяжении
- прочность при растяжении
- соотношение матрица-наполнитель

Входные переменные

Значения признаков в разных диапазонах => необходим препроцессинг

- разделить на количественные и категориальные
- категориальные («Угол нашивки») OrdinalEncoder список значений стал [0, 1]
- количественные (остальные) StandardScaler
 - матожидание стало 0
 - стандартное отклонение стало 1
- создать объект-препроцесор, сохранить вместе с моделью
 - ~ для train fit_transform
 - ~ для test transform
 - для введенных данных transfom

Метрики качества

- R2 или коэффициент детерминации
- RMSE (Root Mean Squared Error) или корень из средней квадратичной ошибки
- MAE (Mean Absolute Error) или средняя абсолютная ошибка
- MAPE (Mean Absolute Percentage Error) или средняя абсолютная процентная ошибка
- max error или максимальная ошибка данной модели

Модели

- Линейная регрессия
- Лассо (LASSO) и гребневая (Ridge) регрессия
- Метод опорных векторов для регрессии
- Метод k-ближайших соседей
- Деревья решений
- Случайный лес
- Градиентный бустинг
- Нейронная сеть

Модель для модуля упругости при растяжении

Значения выхода от 64 до 83

По умолчанию →

После подбора гиперпараметров ↓

	R2	RMSE	MAE	MAPE	max_error
DummyRegressor	-0.021502	-3.059339	-2.465060	-0.033641	-8.053111
LinearRegression	-0.022620	-3.059379	-2.464305	-0.033641	-8.139731
Ridge	-0.022538	-3.059264	-2.464226	-0.033640	-8.139352
Lasso	-0.021502	-3.059339	-2.465060	-0.033641	-8.053111
SVR	-0.037763	-3.082058	-2.472179	-0.033767	-8.146369
KNeighborsRegressor	-0.197298	-3.312241	-2.624624	-0.035795	-8.876770
DecisionTreeRegressor	-1.229594	-4.485293	-3.545377	-0.048431	-12.178495
RandomForestRegressor	-0.061516	-3.117096	-2.485271	-0.033934	-8.457280

	R2	RMSE	MAE	MAPE	max_error
Ridge(alpha=480, solver='lsqr')	-0.013299	-3.046623	-2.455526	-0.033517	-8.071899
Lasso(alpha=0.15)	-0.019048	-3.055423	-2.459921	-0.033574	-8.102101
SVR(C=0.015, kernel='linear')	-0.016521	-3.052020	-2.456808	-0.033549	-8.140634
KNeighborsRegressor(n_neighbors=25)	-0.030786	-3.074728	-2.461113	-0.033581	-8.031419
$Decision Tree Regressor (criterion = 'absolute_error', max_depth = 2, max_features = 10, random_state = 3128, splitter = 'random')$	-0.009281	-3.041407	-2.435050	-0.033185	-8.004156
RandomForestRegressor(bootstrap=False, criterion='absolute_error', max_depth=4, max_features=2, random_state=3128)	-0.015396	-3.049810	-2.446070	-0.033369	-8.275716

Модель для модуля упругости при растяжении

	R2	RMSE	MAE	MAPE	max_error
Базовая модель	-0.001377	-3.222954	-2.577796	-0.035319	-7.800690
Лучшая модель (дерево решений)	-0.035776	-3.277844	-2.610243	-0.035707	-8.152045

	R2	RMSE	MAE	MAPE	max_error
Модуль упругости, тренировочный	0.017295	-3.037284	-2.410294	-0.032850	-9.008468
Модуль упругости, тестовый	-0.035776	-3.277844	-2.610243	-0.035707	-8.152045

Модель для прочности при растяжении

Значения выхода от 1071 до 3849

По умолчанию →

После подбора гиперпараметров ↓

	R2	RMSE	MAE	MAPE	max_error
DummyRegressor	-0.012988	-484.654884	-385.827028	-0.169931	-1228.780064
LinearRegression	-0.022969	-487.063246	-388.303827	-0.170559	-1249.517419
Ridge	-0.022896	-487.046319	-388.290667	-0.170555	-1249.460177
Lasso	-0.021388	-486.695829	-387.988314	-0.170448	-1248.210674
SVR	-0.011952	-484.429045	-385.715018	-0.169382	-1232.355369
DecisionTreeRegressor	-1.187233	-702.791415	-555.350332	-0.238620	-1927.849316
GradientBoostingRegressor	-0.084580	-500.230316	-398.052645	-0.174164	-1312.873325

	R2	RMSE	MAE	MAPE	max_error
Ridge(alpha=990, solver='sparse_cg')	-0.010764	-484.199853	-385.891069	-0.169828	-1233.196571
Lasso(alpha=50)	-0.012988	-484.654884	-385.827028	-0.169931	-1228.780064
SVR(C=0.2)	-0.012246	-484.489867	-385.724279	-0.169413	-1232.341495
$Decision Tree Regressor (criterion = 'poisson', max_depth = 3, max_features = 6, random_state = 3128, splitter = 'random')$	-0.009440	-483.713960	-384.045197	-0.169031	-1244.359901
GradientBoostingRegressor(max_depth=1, max_features=1, n_estimators=50, random_state=3128)	-0.005486	-483.026609	-385.268908	-0.169409	-1231.878292

Модель для прочности при растяжении

	R2	RMSE	MAE	MAPE	max_error
Базовая модель	-0.000531	-479.694153	-375.066608	-0.165566	-1431.321957
Лучшая модель (градиентный бустинг)	0.004028	-478.600202	-376.647056	-0.166046	-1384.841404

	R2	RMSE	MAE	MAPE	max_error
Прочность при растяжении, тренировочный	0.057141	-472.832206	-374.670333	-0.164825	-1383.885510
Прочность при растяжении, тестовый	0.004028	-478.600202	-376.647056	-0.166046	-1384.841404

MLPRegressor из библиотеки sklearn

	R2	RMSE	MAE	MAPE	max_error	
DummyRegressor	-0.011269	-0.911261	-0.737067	-0.299795	-2.684301	
MLPRegressor	-0.052842	-0.929803	-0.751262	-0.306957	-2.790557	

Значения выхода от 0.39 до 5.46

Нейросеть из библиотеки tensorflow

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	24)	312
dense_2 (Dense)	(None,	24)	600
dense_3 (Dense)	(None,	24)	600
dense_4 (Dense)	(None,	24)	600
dense_5 (Dense)	(None,	24)	600
dense_6 (Dense)	(None,	24)	600
dense_7 (Dense)	(None,	24)	600
dense_8 (Dense)	(None,	24)	600
out (Dense)	(None,	1)	25

Total params: 4,537 Trainable params: 4,537 Non-trainable params: 0

Обучение нейросети Борьба с переобучением: ранняя остановка Борьба с переобучением: Dropout

Разработка веб-приложения

③ BKP × +			~	_ @ ×
← → C ♠ ① 127.0.0.1:5000/model_1_2/	>	☆	* [1 🚇 :
Прогнозирование модуля упругости при растяжении и прочности при растяжении				
Соотношение матрица-наполнитель (06) 4.02912621359223				
Плотность, кг/м3 (17002300) 1880.0				
Модуль упругости, ГПа (22000) 622.0				
Количество отвердителя, м.% (17200) 111.86				
Содержание эпоксидных групп,%_2 (1434) 22.2678571428571				
Температура вспышки, С_2 (100414) 284.615384615384				
Поверхностная плотность, г/м2 (0.61400) 470.0				
Потребление смолы, г/м2 (33414) 220.0				
Угол нашивки, град (0 или 90) 90.0				
Шаг нашивки (015) 4.0				
Плотность нашивки (0104) 60.0				
Отправить				
Входные переменные:				
Соотношение матрица- Плотность, кг/ модуль наполнитель м3 упругости, ГПа отвердителя, м.% групп,%_2 вспышки, С_2 плотность, г/м2 смолы, г/м2 град		Шаг пивки	I	Ілотность нашивки
0 4.029126 1880.0 622.0 111.86 22.267857 284.615385 470.0 220.0 90.0	4.0		60.0	пашивки
Результат модели:				
Модуль упругости при растяжении, ГПа Прочность при растяжении, МПа				
72.81891497929365 2523.9223070281537				

Разработка веб-приложения

⊗ BKP x +		`	′ –	e ×
← → C ↑ ① 127.0.0.1:5000/model_3/	>	☆	• 🗆	<u></u> :
Прогнозирование соотношения матрица-наполнитель				
Плотность, кг/м3 (17002300) [1880.0				
Модуль упругости, ГПа (22000) 622.0				
Количество отвердителя, м.% (17200) [111.86				
Содержание эпоксидных групп,%_2 (1434) 22.2678571428571				
Температура вспышки, C_2 (100414) 284.615384615384				
Поверхностная плотность, г/м2 (0.61400) 470.0				
Модуль упругости при растяжении, ГПа (6483) 73.33333333333				
Прочность при растяжении, МПа (10363849) 2455.555555555				
Потребление смолы, г/м2 (33414) 220.0				
Угол нашивки, град (0 или 90) 90.0				
Шаг нашивки (015) [4.0				
Плотность нашивки (0104) [60.0				
Отправить				
Входные переменные:				
Плотность, кг/м3 упругости, ГПа отвердителя, м.% Содержание эпоксидных групп, % 2 Поверхностная плотность, г/м2 плотность, г/м	і, нап	Шаг шивки		лотность нашивки
0 1880.0 622.0 111.86 22.267857 284.615385 470.0 73.333333 2455.555556 220.0 90.0	4.0		60.0	
Результат модели:				
Соотношение матрица-наполнитель				
2.5154960585858928				

Результаты

Задача не решена

Дальнейшие поиски решения могли бы включать:

- проконсультироваться у экспертов
- уточнить постановку задачи
- исследовать сырые данные
- провести отбор признаков и уменьшение размерности
- поэкспериментировать с градиентным бустингом
- углубиться в нейросети

Спасибо за внимание!