Regresní analýza dat 01REAN - Cvičení 06

Jiri Franc

Czech Technical University
Faculty of Nuclear Sciences and Physical Engineering
Department of Mathematics

01REAN - Exercise 06

Outline of todays exercises:

- Model selection in multivariable regression
- Post hoc analysis

Model selection in multivariable regression

How to select the "best"model fitting your data?

Model selection - Helpful metrics and criterion	
STATISTIC	CRITERION
Mean squared error (MSE)	Lower the better
R^2	Higher the better
	> 0.60 technical and > 0.20 social sciences
Adj R ²	Higher the better
Fisher-Snedecor F Statistic	Higher the better
Std. Error	Closer to zero the better
t-statistic	Greater better, depends on p-value
AIC	Lower the better
BIC	Lower the better
C_p	Lower the better (close to number of predictors)

Mean squared error (MSE)

Mean squared error (MSE, residual error MS) is the unbiased estimate of σ_{ε}^2 .

$$MSE = \hat{\sigma}_{\varepsilon}^2 = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n - p - 1}$$

The linear regression model

$$Y_i = X_{i1}\beta_1^0 + X_{i2}\beta_2^0 + \cdots + X_{ip}\beta_p^0 + \varepsilon_i = X_i^T\beta^0 + \varepsilon_i, \qquad i = 1 \dots n$$

In R:

Note: R considers p as a number of predictors, not number of coefficients. Decomposition of variation same as in ANOVA:

total SS = regression SS + residual error SS

Coefficient of determination

Coefficient of determination R²

$$R^2 = 1 - \frac{S_R^2}{R_0^2} = 1 - \frac{\text{residual error SS}}{\text{total SS}} = 1 - \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{\sum_{i=1}^n (Y_i - \bar{Y}_i)^2}$$

We compare our model with the model $Y_i = \bar{Y} + \varepsilon_i$

Adjusted Coefficient of determination R_A^2

$$R_A^2 = 1 - \frac{\text{residual error MS}}{\text{total MS}} = 1 - \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{\sum_{i=1}^{n} (Y_i - \bar{Y}_i)^2} \frac{n-1}{n-p-1}$$

We reduce bias in R^2 by replace number of observations n with number of DF, i.e. $R_4^2 < R^2$.

If the model does not include intercept than $R_0^2 = \sum_{i=1}^n Y_i^2$,

$$R^2 = 1 - \frac{S_R^2}{R_0^2} = 1 - \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{\sum_{i=1}^n (Y_i)^2}$$

and we compare our model with the model $Y_i = \varepsilon_i$.

Do not compare models with and without intercept on the basis of the coefficient of determination.

In R:

summary(model01)\$r.squared
summary(model01)\$adj.r.squared

Fisher-Snedecor F Statistic

If the regression model include the intercept then

$$F = \frac{\frac{R^2}{p-1}}{\frac{1-R^2}{n-p}}$$

If the regression model does not include the intercept then

$$F = \frac{\frac{R^2}{p}}{\frac{1-R^2}{n-p}}$$

Fisher-Snedecor F statistics has F distribution with p-1 and n-p DF:

$$\mathcal{L}(F) = F_{p-1,n-1}$$

In R:

summary (model01) \$fstatistic

For forward variable selection (adding one variable per step)

add1(model01, Y ~ X1*X2*X3 + X4, test="F") dropterm(fullmodel, test = "F")

Testing submodel - Model selection

We test the hypothesis that the "true" model is

Model I:
$$Y_i = X_i^T \beta^0 + \varepsilon_i$$
, $i = 1, 2, ..., n$, rank $(X) = p$

against the alternative that the "true" model is

Model II:
$$Y_i = Z_i^T \beta^0 + e_i$$
, $i = 1, 2, ..., n$, rank $(Z) = q < p$

under assumption that $\mathcal{M}(Z) \subset \mathcal{M}(X)$, i.e. predictor variables in model II are a subset of those in model I. Then

$$F = \frac{\frac{\text{regression SS for model I - regression SS for model II}}{\frac{\text{DF of model I - DF of model I}}{\text{DF of model I}}} = \frac{\frac{S_{R(Z)}^2 - S_{R(X)}^2}{p - q}}{\frac{S_{R(X)}^2}{n - p}}$$

Under the null hypothesis, the F statistics has F-distribution with (p-q) and (n-p) DF.

In R:

$$model01 \leftarrow lm(Y \sim X1*X2 + X3, data=mydata)$$

 $model02 \leftarrow lm(Y \sim X1*X2, data=mydata)$
 $anova(model01, model02)$

Information Criterion

F-test is not suitable for step selection, because we don't know joint statistical behavior of all possible F-tests.

Akaike Information Criterion (AIC) is defined as:

AIC =
$$n(1 + \log(2\pi\hat{\sigma}^2)) + 2(p+1)$$
,

where p+1 is number of estimated coefficients + estimated variance. Bayesian information criterion (BIC) for regression model is defined as:

AIC =
$$n(1 + \log(2\pi\hat{\sigma}^2)) + \log(n)(p+1)$$
.

In R:

The multiple of the number of DF used for the penalty.

- k = 2, gives AIC.
- k = log(n), gives BIC (sometimes called SBC).

```
AIC (model01, k=2)
AIC (model01, k=log(n))
```

Mallows C_p

Another statistics to compare full model model01 and submodel model02.

$$C_{p} = 2q - n + rac{S_{R(2)}^{2}}{\hat{\sigma}_{(1)}^{2}}$$

The relation with Fisher-Snedecor F Statistic:

$$(p-q)(F-1)=rac{S_{R(2)}^2}{\hat{\sigma}_{(1)}^2}-n+q=C_p-q.$$

In R:

Post hoc analysis - Regression Diagnostics

- Check Normality.
- Check Homoscedasticity.
- Check presence of outliers.
- Check presence of Leverages.

Check presence of outliers

Cook's distance:

Check presence of Leverages

Leverages:

Exercise + Next Lesson:

Solve problems described at the end of the R code.

Next Lesson:

- Collinearity.
- Multicollinearity.
- Variance Inflation.
- Ridge Regression.