1. DS codage Gpe2

Thème 1 : Types de bases

DS

Codage des caractères

Table ASCII

Décoder l'expression suivante, écrite en ASCII :

Yoda

• Première méthode en passant par les binaires :

128	64	32	16	8	4
0	1	0	1	0	0
0	1	1	0	0	1

- Deuxième méthode en passant par l'hexadécimal en découpant 4 par 4 :
- pour 01010000 -> 0101 soit 5 et 0000 soit 0 donc en hexadécimal 50 donc la lettre P
- pour 01100101 -> 0110 soit 6 et 0101 soit 5 donc en héxadécimal 65 donc la lettre e
- etc ...

Au final, on obtient une citation de Yoda:

"Personne par la guerre ne devient grand"

Latin-9

Exercice 2:

Q.1. Le mot représenté par les octets ci-dessous est-il codé en ASCII ou en Latin 9 ? Donner ce mot :

64 E9 E7 75 65 73 21

Q.2. Représenter goûté en Latin-9

Définition du nombre d'octets utilisés dans le codage (uniquement les séquences valides)

Caractères codés	Représentation binaire UTF-8	Premier octet valide (hexadécimal)	Signification
U+0000 à U+007F	Øxxxxx	x 00 à 7F	1 octet, codant 7 bits
U+0080 à U+07FF	I10xxxxx 10xxxx	C2 à DF	2 octets, codant 11 bits
U+0800 à U+0FFF	11100000 101xxxxx 10xxxxx	E0 (le 2 ^e octet est restreint de A0 à BF)	
U+1000 à U+1FFF	11100001 10xxxxx 10xxxxx	x E1	
U+2000 à U+3FFF	1110001x 10xxxxxx 10xxxxx	x E2 à E3	
U+4000 à U+7FFF	111001xx 10xxxxxx 10xxxxx	x E4 à E7	3 octets, codant 16 bits
U+8000 à U+BFFF	111010xx 10xxxxxx 10xxxxx	E8 à EB	3 octets, codant 10 bits
U+C000 à U+CFFF	11101100 10xxxxxx 10xxxxx	K EC	
U+D000 à U+D7FF	11101101 100xxxxx 10xxxxx	ED (le 2 ^e octet est restreint de 80 à 9F)	
U+E000 à U+FFFF	1110111x 10xxxxxx 10xxxxx	EE à EF	
U+10000 à U+1FFFF	111110000 1001xxxx 10xxxxxx 10xxxxx	F0 (le 2 ^e octet est restreint de 90 à BF)	
U+20000 à U+3FFFF	111110000 101xxxxx 10xxxxxx 10xxxxx		
U+40000 à U+7FFFF	111110001 10xxxxxx 10xxxxxx 10xxxxx	x F1	4 octets, codant 21 bits
U+80000 à U+FFFFF	III 1001x 10xxxxxx 10xxxxxx 10xxxxx	x F2 à F3	
U+100000 à U+10FFFF	11110100 1000xxxx 10xxxxxx 10xxxxx	F4 (le 2 ^e octet est restreint de 80 à 8F)	

★ Exercice 3 :

Latin étendu B

HEX		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
180	384	ħ	В	Б	Б	Ъ	b	Э	Ç	ď	Đ	D	а	đ	δ	3	ə
190	400	3	F	f	ď	¥	h	ι	ł	К	ƙ	ł	λ	ш	И	η	θ
1A0	416	Q	ď	a	aı	ъ	þ	R	S	s	Σ	ı	ţ	τ	f	τ	ư
1B0	432	ư	Ω	υ	Υ	У	Z	Z	3	3	3	3	2	5	5	\$	р
100	448	_		ŧ	!	DŽ	Dž	dž		Lj	lj	NJ	Nj	nj	Ă	ă	Ĭ
1D0	464	ĭ	Ŏ	ŏ	Ŭ	ŭ	Ü	ü	ΰ	ű	Ŭ	ŭ	Ù	ù	ə	Ā	ä
1E0	480	Ā	ā	Æ	æ	G	g,	Ğ	ğ	K	Ř	Q	Q	Ō	ō	3	ž
1F0	496	Ĭ	DZ	Dz	dz	Ġ	ģ	н	р	Ň	'n	Å	á	Æ	æ	Ø	ø
200	512	Ä	ä	Â	â	È	è	Ê	ê	ĩ	ĩ	î	î	ő	ő	ô	ô
210	528	Ř	ř	Ŕ	î	Ű	ű	Û	û	Ş	ş	Ţ	ţ	3	3	Ĥ	ň
220	544	η	ď	8	8	ζ	3	À	à	Ę	ę	Ö	ö	Õ	õ	Ò	ò
230	560	Ō	ō	Ÿ	ÿ	L	ŋ,	ţ.	J	ф	ф	Æ	Ø	g	Ł	7	ş
240	576	ζ	?	0	B	¥	٨	Ľ	Ø	ł	j	q	q	R	f	٧	¥

Donner le codage Unicode la lettre Q puis son codage en UTF-8

Exercice 4

Décoder le message suivant :

★ Exercice 5

Le défi du cours : codage UTF-8 (Latin-9), décoder le texte ci-dessous :

`56 65 72 73 20 6C 27 69 6E 66 69 6E 69 20 65 74 20 6C 27 61 75 2D 64 65 6C C3 A0``

Q.1. Le nombre 65, donné ici en écriture décimale, s'écrit 01000001 en notation binaire. En détaillant la méthode utilisée, donner l'écriture binaire du nombre 86.

Q.2. La fonction logique OU EXCLUSIF, appelée XOR et représentée par le symbole ⊕, fournit une sortie égale à 1 si l'une ou l'autre des deux entrées vaut 1 mais pas les deux.

On donne ci-dessous la table de vérité de la fonction XOR

А	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Poser et calculer l'opération : 11011101 ⊕ 01101011

On donne, ci-dessous, un extrait de la table ASCII qui permet d'encoder les caractères de A à Z.

On peut alors considérer l'opération XOR entre deux caractères en effectuant le XOR entre les codes ASCII des deux caractères.

Par exemple : 'F' XOR 'S' sera le résultat de 01000110 ⊕ 01010011.

Code ASCII	Code ASCII	
Décimal	Binaire	Caractère
65	01000001	Α
66	01000010	В
67	01000011	С
68	01000100	D
69	01000101	E
70	01000110	F
71	01000111	G
72	01001000	Н
73	01001001	I
74	01001010	J
75	01001011	K
76	01001100	L
77	01001101	M

crypter et les lettres de la clé de cryptage.

dessous:

Code ASCII	Code ASCII	
Décimal	Binaire	Caractère
78	01001110	N
79	01001111	0
80	01010000	Р
81	01010001	Q
82	01010010	R
83	01010011	S
84	01010100	Т
85	01010101	U
86	01010110	V
87	01010111	W
88	01011000	X
89	01011001	Υ
90	01011010	Z

On souhaite mettre au point une méthode de cryptage à l'aide de la fonction XOR. Pour cela, on dispose d'un message à crypter et d'une clé de cryptage de même longueur que ce message. Le message et la clé sont composés uniquement des caractères du tableau cidessus et on applique la fonction XOR caractère par caractère entre les lettres du message à

Question 3. Chiffrer ALPHA avec la clé NSI. Pour cela recopier et compléter le tableau ci-

LETTRE	Α	L	P	Н	A
ASCII					
BINAIRE					
CLE ASCII BINAIRE	N	S	ı		
ASCII					
XOR ASCII					
ASCII					

Correcti										
LETTRE	Α		L		Р		H		Α	
ASCII		65		76		80		72		65
BINAIRE	1000001		1001100		1010000		1001000		1000001	
CLE	N		S		I		N		S	
ASCII		78		83		73		78		83
BINAIRE	1001110		1010011		1001001		1001110		1010011	
XOR	0001111		0011111		0011001		0000110		0010010	
ASCII		15		31		25		6		18

Q.4. Recopier et compléter la table de vérité de $(E1 \oplus E2) \oplus E2$.

$\boldsymbol{E_1}$	$\boldsymbol{E_2}$	$E_1 \oplus E_2$	$(E_1 \oplus E_2) \oplus E_2$
0	0	0	
0	1	1	
1	0	1	
1	1	0	

A l'aide de ce résultat, proposer une démarche pour décrypter un message crypté.

