Cours de mathématiques spéciales (CMS)

(écrire lisiblement s.v.p)
Nom:
Prénom:
Groupe:

Question	Pts max.	Pts
1	3	
2	3	
3	6	
4	4	
5	4	
Total	20	

Note (barème sur 20 points) :

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Les questions

Question 1

Points obtenus: (laisser vide)

(a) (1 point) Sans utiliser la dérivée, mais en utilisant un argument géométrique ainsi que la définition du logarithme, calculez

$$\lim_{x \to \infty} (x - \ln x).$$

(b) (1 point) Sans utiliser la dérivée, mais en utilisant le résultat précédent ainsi que les propriétés du logarithme et de l'exponentielle, calculez

$$\lim_{x \to \infty} x \exp(-x).$$

(c) (1 point) Sans utiliser la dérivée, mais en utilisant le résultat précédent ainsi que les propriétés du logarithme et de l'exponentielle, calculez

$$\lim_{x \to \infty} x^n \exp(-x).$$

avec $n \ge 1$.

Réponse à la question 1:

laisser la marge vide

Question 2 (à 3 points)

Points obtenus: (laisser vide)

Résoudre

$$\begin{cases}
\operatorname{Cosh}(x) + \operatorname{Cosh}(\tan(y)) = 8/3 \\
\operatorname{Sinh}(x) + \operatorname{Sinh}(\tan(y)) = 4/3
\end{cases} \quad \text{avec} \quad -\frac{\pi}{2} < y < x < \frac{\pi}{2}.$$

Réponse à la question 2:

laisser la marge vide

Question 3 Points obtenus: (laisser vide)

Etudiez la fonction

$$f(x) = e^{(e^x)} - (e^e)^x$$
.

En particuliers, déterminez son domaine de définition et

- (a) (2 points) trouvez (en comparant les exposants de l'exponentielle), s'il y en a, ses points zéros, i.e. $x \in dom(f)$, t.q. f(x) = 0,
- (b) (2 points) trouvez ses maxima ou minima locaux (en dérivant et en comparant les exposants de l'exponentielle).
- (c) (1 point) déterminez son image en calculant $\lim_{x\to\infty} f(x)$,
- (d) (1 point) esquissez son graphe

Réponse à la question 3:

laisser marge vide

Question 4 (à 4 points)

Points obtenus: (laisser vide)

En utilisant le calcul dans \mathbb{C} , trouver les sommets $z_0, z_1, z_2, z_3, z_4, z_5$ d'un hexagone régulier, sachant qu'ils sont énumérés dans le sens trigonométrique, que $z_3=0$ et que $z_5=\sqrt{6}(1+i)$.

Réponse à la question 4:

laisser la marge vide

Question 5 (à 4 points)

Points obtenus: (laisser vide)

Soient les polynômes

$$P(X) = X^4 + 5X^3 + 5X^2 - 5X + \lambda^3 - 3\lambda - 4$$
 et $Q(X) = X^2 - 1$.

Déterminez les valeurs de λ pour que Q(X)|P(X). Déterminez dans ces cas les racines de P(X).

Réponse à la question 5:

laisser la marge vide

