Task paperchase

Paperchase

Mouse Martin and Mouse Fabian are preparing a paperchase taking place in the campus of EPF Lausanne. Since they don't have a lot of time until the paperchase starts, they prepare their parts independently.

Mouse Martin prepares a post at building a, where the group has to solve a riddle and then has to go to the next hint at building b.

Mouse Fabian prepares his post at building c and with a hint leading to building d.

The campus of EPF Lausanne has the special property that for any two buildings there is exactly one path (in other words, the graph forms a tree).

Now, it would be really bad if two groups, one moving from a to b and one moving from c to d could possibly meet, because they could spoil the solutions. You can assume both groups always take the shortest path.

Input

The first line contains three integers, n, a, b, c, d. n is the number of buildings, and a, b, c and d are the locations of the posts mentioned in the descriptions.

The following n-1 lines contain two numbers uv, meaning there is an edge between u and v.

Output

If the paths of the two grops intersect, print "bad preparation", otherwise print "good job".

Limits

There are 4 test groups, each of which is worth 25 points. In all test cases $1 \le n$, a, b, c, d are pairwise distinct. $0 \le a$, b, c, d, x, y < n.

- In test group 1, we have $N \le 10$.
- In test group 2, we have $N \le 100$
- In test group 3, we have $N \le 50000$
- In test group 4, we have $N \le 200000$

Examples

Input	Output
4 0 3 1 2	bad preparation
0 1	
1 2	
2 3	

Swiss Olympiad in Informatics

Workshop 2019

Task paperchase

Input	Output
5 3 2 0 1	good job
0 4	
4 1	
1 3	
3 2	