

Scarafilo Germán. Editores: Guevara Mariano, Lucchetta Giovanni.

Algoritmos de ordenamiento

Algoritmos de ordenamiento

Scarafilo Germán. Editores: Guevara Mariano, Lucchetta Giovanni.

Algoritmos de ordenamiento

¿Qué son?

Los algoritmos de ordenamiento son un conjunto de instrucciones que buscan organizar elementos en un orden particular (criterio de ordenamiento).

Scarafilo Germán. Editores: Guevara Mariano, Lucchetta Giovanni.

Algoritmos de ordenamiento

¿Para qué sirven?

El ordenamiento cumple un rol muy importante, ya sea como un fin en sí (ej. Ordenar una lista de mayor a menor) o como parte de otros procedimientos más complejos permitiendo simplificar la solución al contar con un conjunto ordenado de datos.

Scarafilo Germán. Editores: Guevara Mariano, Lucchetta Giovanni.

Algoritmos de ordenamiento

¿Cuántos hay?

- Bubble sort
- Selection sort
- Insertion sort
- Merge sort
- Quick sort

- Heap sort
- Counting sort
- Radix sort
- Bucket sort

Scarafilo Germán. Editores: Guevara Mariano, Lucchetta Giovanni.

Algoritmos de ordenamiento

Clasificación

- La cantidad de intercambios: esta es la cantidad de veces que el algoritmo intercambia elementos.
- El número de **comparaciones**: este es el número de veces que el algoritmo compara elementos.
- La cantidad de **espacio** adicional requerido: algunos algoritmos pueden ordenar una lista sin la necesidad de crear listas nuevas.
- Utilizan **recursividad** o no: algunos algoritmos usan técnicas recursivas y otros no.

Scarafilo Germán. Editores: Guevara Mariano, Lucchetta Giovanni.

Algoritmos de ordenamiento

Bubble sort

- Se basa en recorrer el array ("realizar una pasada") un cierto número de veces, comparando pares de valores que ocupan posiciones adyacentes (0-1,1-2, ...).
- Si ambos datos no están ordenados, se intercambian.
- Esta operación se repite n-1 veces, siendo n el tamaño del conjunto de datos de entrada.

Programación l'

Scarafilo Germán. Editores: Guevara Mariano, Lucchetta Giovanni.

Algoritmos de ordenamiento

Selección

- Buscas el elemento más pequeño de la lista.
- Lo intercambias con el elemento ubicado en la primera posición de la lista.
- Buscas el segundo elemento más pequeño de la lista.
- Lo intercambias con el elemento que ocupa la segunda posición en la lista.
- Repites este proceso hasta que hayas ordenado toda la lista.

Scarafilo Germán. Editores: Guevara Mariano, Lucchetta Giovanni.

Algoritmos de ordenamiento

Quick sort

"Divide y vencerás"

En general, puede ordenar una lista de datos mucho más rápido que cualquier otro método.

Se basa en la estrategia típica de "divide y vencerás", la lista a ordenar se divide en dos partes: una contendrá todos los valores menores o iguales a un cierto valor (que se suele denominar pivote) y la otra con los valores mayores que dicho valor.

en Programación

Programación I

Scarafilo Germán. Editores: Guevara Mariano, Lucchetta Giovanni.

Algoritmos de ordenamiento

Pasos:

Elegir un Pivote: Selecciona un elemento de la lista (puede ser el primero, el último, o un elemento aleatorio).

Partición: Reorganiza la lista de modo que todos los elementos menores que el pivote queden a su izquierda y los mayores a su derecha.

Recursividad: Aplica QuickSort recursivamente en las sublistas izquierda y derecha hasta que estén ordenadas.

Scarafilo Germán. Editores: Guevara Mariano, Lucchetta Giovanni.

Algoritmos de ordenamiento

¿Cómo elegir el algoritmo correcto?"

- Si tu lista es pequeña o está casi ordenada: Selection Sort o Bubble Sort Mejorado.
- Si necesitás eficiencia en listas grandes y desordenadas: QuickSort o MergeSort.
- Si **te preocupa la estabilidad**: MergeSort.
- Si tenés restricciones de memoria: QuickSort.