NOM: Prénom:

Décembre 2023 Groupe:

Examen Physique: Mécanique quantique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Questions de cours (5 points – pas de points négatifs pour le QCM) Exercice 1.

Document 1 : Niveaux d'énergie associés à l'atome d'hydrogène

E_1	E_2	E ₃	E_4	E _S	E ₆	E_{∞}
−13,6 eV	-3,4 eV	-1,51 eV	-0,850 eV	-0,54 eV	-0,37 eV	0 eV

Le document 1 est utile pour les questions 1 à 4.

- 1. Pour passer du niveau 4 au niveau 3 :
 - a. L'électron a besoin de recevoir de l'énergie sous forme de photon.
 - b. L'électron cède de l'énergie sous forme de photon.
- 2. L'énergie à fournir pour passer de l'état fondamental à l'orbite n = 5 est égale à :
 - a. 13,06 eV

c. -13,06 eV

b. 12,06 eV

d. 14,14 eV

d. $\lambda = \frac{hc}{\Delta E_{2\rightarrow 2}}$

3. La longueur d'onde correspondant à une transition de l'état n = 3 vers l'état n' = 2 vaut :

a.
$$\lambda = hc |\Delta E_{3\rightarrow 2}|$$

b.
$$\lambda = hc \Delta E_{3\rightarrow 2}$$

c.
$$\lambda = \frac{hc}{|\Delta E_{3\rightarrow 2}|}$$

- 4. Si on fournit une énergie de 14 eV à l'électron dans son état fondamental,
- a. Rien ne se passe

- c. L'électron à une énergie cinétique de 0,4 eV
- b. L'atome est ionisé, l'électron s'échappe avec une vitesse non nulle
- d. L'électron à une énergie cinétique de -0,4 eV
- 5. Le spectre du rayonnement d'un corps noir est le graphe de :
- a. La densité d'énergie rayonnée en fonction de la température T.
- c. La densité d'énergie rayonnée en fonction de la longueur d'onde λ .
- b. La température T en fonction de la densité d'énergie rayonnée.
- d. Aucune de ces réponses.

Exercice 2: Modèle de Bohr (6 points)

Les hydrogénoïdes sont des ions formés à partir d'atome ayant perdu tous leurs électrons sauf un. Ils sont composés de Z protons ayant chacun une charge +q, formant le noyau, et d'un électron de masse m et de charge -q. Le modèle de Bohr, développé pour étudier l'atome d'hydrogène, peut aussi être utilisé pour étudier les hydrogénoïdes. Le modèle repose sur trois postulats :

- Considérés comme ayant un mouvement circulaire uniforme de rayon r à une vitesse v, les électrons sont supposés présents sur des orbites stables, des « couches » successives correspondant chacune à un niveau d'énergie de l'électron. L'accélération est centripète est vaut : $a = v^2/r$
- L'électron présent sur une couche n peut passer à une couche n' en absorbant ou en émettant un photon, d'énergie fixée, quantifiée hc/λ, où h est la constante de Planck, c la célérité de la lumière dans le vide, et λ la longueur d'onde du photon
- Le moment cinétique de l'électron est quantifié, ce qui se traduit par la relation $mrv = n\hbar$, où n est le numéro de la couche atomique.

1.	Quelle est la norme de la force de Coulomb subit par l'électron dans le cas d'un hydrogénoïde ? On posera e²=kq². (où k est la constante de Coulomb) Donner le résultat en fonction de Z, e et r. (1pt)
:	
2.	Appliquer le principe fondamental de la dynamique à l'électron, pour l'hydrogénoïde, afin de détermine l'expression de mv² en fonction de Z, e et m. (1,5pts)
•	

3.	venez de trouver, établir un système de deux équations puis exprimer les rayons r_n des orbites successives accessibles à l'électron en fonction de leur nombre quantique n , c'est-à-dire le numéro de la couche électronique, de m , e et Z (2pts)
············	
4.	Quel est le plus petit rayon possible pour l'ion hélium (Z=2) et l'ion lithium (Z=3) ? On donne $\frac{\hbar^2}{me^2} = 5.10^{-11} \ m.$ Commenter la vraisemblance du résultat. (0,5pt)
5.	L'énergie de l'électron d'un hydrogénoïde est donne par :
	$E_n = \frac{Z^2 m e^4}{2\hbar^2 n^2} = 13.6 \frac{Z^2}{n^2} (eV)$
	Quelle est l'énergie fondamentale dans le cas de l'ion Hélium et de l'ion Lithium ? Les valeurs expérimentales son respectivement 54.42 eV et 122.45 eV. Commenter la vraisemblance du résultat en comparant l'énergie d'ionisation de l'hydrogène, de l'ion hélion et de l'ion lithium. (1pt)
**	

Exercice 3: Boite quantique 1D et 2D (9pts)

Particule dans une boite 1D:

Document 1: Niveaux d'énergie associés à l'atome d'hydrogène

Dans cette première partie, on étudie une particule piégée dans une boîte à une dimension et de longueur L, modélisée de la manière suivante (voir schéma ci-contre).

Le potentiel V vaut :

- $+\infty$ en dehors de [0; L]
- $0 \text{ pour } x \in [0; L]$

Fig. 1 : Puits de potentiel infini de largeur L

Pour $x \in [0; L]$, donner l'équation de Schrödinger vérifiée par

la fonction d'onde en fonction de la constante de Planck h, de la masse m et de l'énergie E de la particule. (1pt)

Les solutions générales $\psi(x)$ de l'équation de Schrödinger pour $x \in [0; L]$ sont de la forme :	

Les solutions générales $\psi(x)$ de l'équation de Schrödinger pour $x \in$

$$\psi(x) = A.\sin(kx) + B.\cos(kx)$$

Avec A et B des constantes à déterminer.

2. Quelles sont les conditions aux limites $\psi(0)$ et $\psi(L)$? (0,5pt)

3.	. Utiliser la condition concernant $\psi(0)$ pour déterminer une des constantes. (0,5pt)	

lonne la relation suivante :		
$k^2 = \frac{2n}{\hbar}$	$\frac{nE}{2}$	
11	•	
 Montrer que l'énergie est elle aussi quantifiée. Déterm ħ, n, L et m. (1 pt) 	iner l'expression a	es niveaux d'energies en en fonctior
		· -
ressons-nous maintenant à une particule piégée dans une	boîte à deux dime	nsions. La modélisation est similaire
olutions obtenues sont du type :		
$A = (n_x, \pi, x) (n_x, \pi, y)$		$\hbar^2\pi^2/n_r^2$ n_s
$\sum_{x,n_y} (x,y) = \sqrt{\frac{4}{a \cdot b}} \sin\left(\frac{n_x \cdot \pi \cdot x}{a}\right) \sin\left(\frac{n_y \cdot \pi \cdot y}{b}\right)$	et	$E_{n_x,n_y} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} \right)$
6. A partir de maintenant, et pour toutes les questions su	ivantos, nous cons	idàrarant la cas aù a-h-1 dannar
l'expression du plus petit niveau d'énergie, noté E _{min} . (3		idereront le cas ou a-b-1, donne.

7. En quoi ce résultat est surprenant par rapport à la mécanique classique ? (1pt)
8. Que peut-on dire des niveaux d'énergies (2,1) et (1,2). Comment appelle-t-on cette situation ? (2pts)
9. Donner l'expression du sixième niveau d'énergie en fonction de E _{min} . Pour quel couple (n _x ,n _y) est-il atteint ? (1pts)
L