In the Claims:

1. - 7. Cancelled

- 8. (Currently Amended) In a method of affecting cleaning to remove A1F₃ residue from walls of a reactor chamber, the method comprising the steps of:
- a) identifying cleaning process conditions of plasma containing H_2 -gases that maximize H-atom concentration in [[a]] said plasma of a gas mixture containing H_2 and Ar using optical emission spectroscopy or actinometry to identify the H atom concentration in the plasma based on the relative emission intensity from excited H and Ar atoms by the formula:

intensity of H atom concentration; concentration.

said cleaning process conditions including one or more of flow rate, pressure, and RF power;

- b) subjecting said reactor chamber in situ to a gas mixture of He/H₂ for striking a plasma then subjecting said reactor chamber in situ to H₂ gas or a gas mixture of He/H₂ according to the cleaning process conditions identified in step a) without opening said chamber and without shutting down said chamber to affect reduction and removal of said A1F₃ residue.
- 9. Cancelled

2001 P 11900 US01 Page 2 of 10

10. (Currently Amended) A method of cleaning a chamber, the method comprising:

determining cleaning process conditions that maximizes maximize H atom concentration
in the chamber, the cleaning process conditions including one or more of flow rate, pressure, and

RF power;

injecting into the chamber a first gas mixture in accordance with striking process conditions, the first gas mixture comprising hydrogen and a first carrier gas;

striking a first plasma from the first gas mixture, thereby creating a first plasma mixture; and

injecting into the chamber a second gas mixture in accordance with the cleaning process conditions, wherein the second gas mixture comprises hydrogen.

wherein the cleaning process conditions are different than the striking process conditions.

11. Cancelled

- 12. (Currently Amended) The method of claim 10, wherein the step of striking the first gasmixture plasma is performed at a flow rate of about 1,000/200 sccm, at a pressure of about 0.8 Torr, and at an RF power of about 750 W for about 5 seconds.
- 13. (Previously Presented) The method of claim 10, wherein the chamber remains closed.
- 14. (Previously Presented) The method of claim 10, wherein the cleaning process conditions are determined to be a flow rate of about 500 sccm, an RF power of about 500 W, and a pressure of about 0.5 Torr.

2001 P 11900 US01 Page 3 of 10

15. (Previously Presented) The method of claim 10, wherein the step of determining cleaning process conditions is performed by using optical emission spectroscopy with an Ar tracer to determine the H atom concentration, the H atom concentration being determined by the formula:

intensity of H atom concentration.

intensity of Ar

- 16. (Currently Amended) The method of claim [[10]] 10, wherein the first gas mixture comprises a mixture of He and H₂.
- 17. Cancelled
- 18. (New) The method of claim 8, wherein the striking the plasma is performed at a flow rate of about 1,000/200 sccm, at a pressure of about 0.8 Torr, and at an RF power of about 750 W for about 5 seconds.
- 19. (New) The method of claim 8, wherein the cleaning process conditions are determined to be a flow rate of about 500 sccm, an RF power of about 500 W, and a pressure of about 0.5 Torr.

2001 P 11900 US01 Page 4 of 10

- 20. (New) A method of cleaning a chamber, the method comprising:
- determining cleaning process conditions for hydrogen atoms in the chamber, the cleaning process conditions including one or more of flow rate, pressure, and RF power;

injecting into the chamber a hydrogen-containing gas mixture; striking a plasma from the hydrogen-containing gas mixture; and injecting hydrogen into the chamber in accordance with the cleaning process conditions.

- 21. (New) The method of claim 20, wherein the step of striking the plasma is performed at a flow rate of about 1,000/200 sccm, at a pressure of about 0.8 Torr, and at an RF power of about 750 W for about 5 seconds.
- 22. (New) The method of claim 20, wherein the chamber remains closed.
- 23. (New) The method of claim 20, wherein the cleaning process conditions are determined to be a flow rate of about 500 sccm, an RF power of about 500 W, and a pressure of about 0.5 Torr.
- 24. (New) The method of claim 20, wherein the step of determining cleaning process conditions is performed by using optical emission spectroscopy with an Ar tracer to determine the H atom concentration, the H atom concentration being determined by the formula:
 - intensity of H ~ H atom concentration. intensity of Ar
- 25. (New) The method of claim 20, wherein the hydrogen-containing gas mixture comprises a mixture of helium and hydrogen.

2001 P 11900 US01 Page 5 of 10