```
Notation we use
 y ∈ Rn: outcome vector
 X = [1, 3, ..., X_p] \in \mathbb{R}^{N \times (ph)}: olesign matrix with an intercept
 B = (B), B, ... B) T: coefficients
 E~N(0, 6°In): homostedastic Gaussian errors
 P: number of markers excluding the intercept.
 ofz = n-p-1: residual degrees of freedom
 R: the constraint matrix that encodes the linear hypothesis Ho: RB=r
 Under the normal - error linear model
     B~ N 1 B, 6° (XTX)-1)
 Applying the Imear map R gives
     RB ~ N (RB O'R (XTX)-' RT)
Therefore, PB-r~ N(PB-r, 62R(xTx) TPT)
 The standardized quadratic form
 T^2 = \frac{(R\hat{\beta} - r)^T [R(x^T x)^{-1} R^T]^{-1} (R\hat{\beta} - r)}{(R\hat{\beta} - r)^T [R(x^T x)^{-1} R^T]^{-1}}
 Under H_0, T^2 \sim \chi_q^2 (central) with q = rank(R)
 Under Hi, T2 ~ X2 (>> (non-central) with noncertrality parameter
    \lambda = \frac{(R\beta - r)^T [R(X^T X)^{-1}R^T]^{-1} (R\beta - r)}{6^2}
The A is the key link between true effect and factor
 1° Single parameter Ho: B= =0
  Set R= ej (a 1xp row vector with a 1 in position j, o elesuhere)
         1-2
 RB-r= ej B-0 = B; (a scalar)
 P(x x) - P = ej (x x) ej. Because ej Aej = Ajj for any matrix A, this equals (x x) (a scalar)
 Its inverse is [R(X^TX)^{-1}R^TJ^{-1}=((X^TX)^{-1}_{1i})^{-1}
 Plug these into NCP formular:
```

$$\lambda_{\bar{j}} = \frac{(\beta_{\bar{j}})^2}{6^2} \cdot ((x^T x)_{\bar{j}\bar{j}})^{-1} = \frac{\beta_{\bar{j}}^2}{6^2 \cdot (x^T x)_{\bar{j}\bar{j}}^{-1}}$$

where $M_{-j} = 1 - X_{-j} (X_{-j}^{-j} X_{-j}^{-j})^{-1} X_{-j}^{-j}$ is the residual-marker on the space orthogonal to X_{-j}

and $x_j := M_j x_j$ is x_j after partialling out the other regressors.

The Gram mostrix in block form by splitting off column j:

$$X^{\mathsf{T}}X = \begin{bmatrix} X_{-j}^{\mathsf{T}}X_{-j} & X_{-j}^{\mathsf{T}}X_{j} \\ X_{j}^{\mathsf{T}}X_{-j} & X_{j}^{\mathsf{T}}X_{j} \end{bmatrix}$$

The Schur complement of the top-left block is

A standard block-inverse identity tells us that the bottom right element of (XTX)

equals 5-1. Therefore

$$(X^{T}X)_{j}^{-1} = \frac{1}{X_{j}^{T}M_{-j}X_{j}} \Rightarrow \frac{1}{(X^{T}X)_{i,j}^{-1}} = X_{j}^{T}M_{-j}X_{j}$$

Define
$$\hat{X}_j := \mathcal{M}_j \hat{X}_j$$
. Then, $\hat{X}_j^T \mathcal{M}_{-j} \hat{X}_j = \hat{\hat{X}}_j^T \hat{\hat{X}}_j$

So the NCP can be written as
$$\lambda_j = \frac{\beta_j^*}{S_j^*} \widetilde{\chi}_j^T \widetilde{\chi}_j$$

If the column is mean-centered, $\widetilde{\gamma}_{j}^{T}\widetilde{\chi}_{j}^{T} = \sum_{i=1}^{n} \widetilde{\gamma}_{ij}^{T} \approx n \operatorname{Var}(\widetilde{\chi}_{j})$

Hence, the approximation
$$\lambda_j \approx n \frac{\beta_j}{62} Var(\tilde{\chi}_j)$$

Consider to collinearity, we take the relation of VIF into account.

If Ny is standardized so Var (Ny)=1, and Pj is the R' from regressing Ny on X-j.

then $Var(\tilde{x_{j}}) = |-R_{j}^{2}| = \frac{1}{VIF_{j}}$

$$\Rightarrow \lambda_j \approx n \cdot \frac{\beta_j^2}{6^2} \cdot \frac{1}{V_{1}F_j}$$

>> Therefore, showing directly that higher collinearity inflates the required in for fixed effect size

The noncentral +- startistic for Bj has

$$J_{j} = \frac{\beta_{j}}{\phi([X_{i}x)_{ij}^{-1}]} \Rightarrow J_{j} = \frac{\beta_{j}^{2}}{6^{2}(x_{i}x)_{ij}^{-1}} = \lambda_{j}$$

ν°	e	1101	Ψ		of	q	į (ာဇ	ffr	сīе	nt!	3																									
	Н	io ;	F	3 ₅ -	- 0																																
									_																												
Ĺ	et	S	M	dex	t	le	9	∞e	ffi	ઉજ	νts	}	bei	ng	t	est	ed	J	מוס	ly ;	. le	*	R	Þi	ck	th	,o\$6	۷ (9 (200 1	างไภ	nod	સ્ક				
ς	3 0	Rŧ	3 =	βs		α	q;	×Ι	ve	cte	71-	۵r	rd	T :	- 0																						
h	1th	P	. D.	S (2 6	٦×	P	sel	eo	ימן	.,																										
								x)																													
. •		-											1	т	1																						
† k	ર (٧	i	Pm	nci	pal	9	ubı	ma	/17)	< 1	宁	(χ	`X) .	to	_	m	oli(æs	ς.																
Н	enc	e,		λs	=		βŗ	Įι				-1	βs	_																							
										63																											
S	۶lrt	· >	ነ=	[>	ſ-s,	Ϋ́	չ].	丁人	و	res	idu	a l	- y	nQı	-ke	Γ.	for	#	æ	COM	uple	2me	ent	- i	\$	M.	3 =	l-	۸ ،	-5 (Ά-	۲ د ک	1-s	>"	γ <u>-</u> ς	3	
TI	\ e.	Ы	ock	c Ç	-hu	- (NQ.	φle	h.e	wit	10	Xen	+5+	น	Qe,	ner	-a li	>20		۲۱٦	τ _γ Έ)° °	ו- ך	=	X	ŢΛ	ا_و أ	λe									
_[)e+	Me	٤	the	٤	re	2511	avk	liz	ed	Ь	OC	k	X	:	= /	u-	x و	s.	71	len																
			۱s	=	<u> </u>	;. [ξŢ	へ ⁻ Xs	T 3	Śs	β	•	z	r	'	βs	Σ	ર્જે,	β,																		
																	-6	52																			
W	her	e	Σ	χ̃ς	Ιċ	; †	he	S	m	ple	C	DO.	3 7 i	ZNC	و	of	Ź	L S																			