

Gating is Weighting:

Understanding Gated Linear Attention through In-context Learning

Yingcong Li*,1,5

Davoud Ataee Tarzanagh*,2

Ankit Singh Rawat³

Maryam Fazel⁴

Samet Oymak¹

Equal contribution*

University of Michigan¹

Samsung SDS Research America²

Google Research NYC³

University of Washington⁴

New Jersey Institute of Technology⁵

Motivation

 ${f Q1}$: What optimization algorithms are implemented by different model architectures in ICL?

Key Findings on ICL Implementations:

Linear attention \Longrightarrow Preconditioned Gradient Descent $(PGD)^{[1,2]}$

State-space model/H3 \Longrightarrow Sample-weighted PGD (WPGD)^[1]

Our work: Gated linear attention \Longrightarrow Data-dependent WPGD (DWPGD)^[4]

Q2: What are Gated Linear Attention (GLA) architectures?

Definition 1 (GLA): Given a sequence of (query, key, value) embeddings $(q_i, k_i, v_i)_{i=1}^n$, the GLA recurrence is given by

 $m{S}_i = m{G}_i \odot m{S}_{i-1} + m{v}_i m{k}_i^ op, \quad ext{and} \quad m{o}_i = m{S}_i m{q}_i, \quad i \in \{1, \dots, n\}$. (GLA)

Here, the gating variable G_i is applied to the state S_{i-1} through the Hadamard product \odot .

Note: When $G_i \equiv 1$, (GLA) reduces to causal linear attention.

Popular GLA Architectures [3].

Popular GLA Architectures.	
Model ^[3]	Parameterization
Mamba (Gu & Dao, 2023)	$m{G}_t = \exp(-(1^{ op}m{lpha}_t)\odot\exp(A))$, $m{lpha}_t = \operatorname{softplus}(m{x}_tW_{lpha_1}W_{lpha_2})$
Mamba-2 (Dao & Gu, 2024)	$G_t = \gamma_t 1^{T} 1$, $\gamma_t = \exp(-\operatorname{softplus}(\boldsymbol{x}_t W_{\gamma}) \exp(a))$
mLSTM (Beck et al., 2024; Peng et al., 2021)	$oldsymbol{G}_t = \gamma_t 1^ op 1$, $\gamma_t = \sigma(oldsymbol{x}_t W_\gamma)$
Gated Retention (Sun et al., 2024)	$oldsymbol{G}_t = \gamma_t 1^ op 1$, $\gamma_t = \sigma(oldsymbol{x}_t W_\gamma)^rac{1}{ au}$
DFW (Mao, 2022; Pramanik et al., 2023)	$m{G}_t = m{lpha}_t m{eta}_t^ op$, $m{lpha}_t = \sigma(m{x}_t W_lpha)$, $m{eta}_t = \sigma(m{x}_t W_eta)$
GateLoop (Katsch, 2023)	$m{G}_t = m{lpha}_t^ op m{1}$, $m{lpha}_t = \sigma(m{x}_t W_{lpha_1}) \exp(m{x}_t W_{lpha_2} m{i})$
HGRN-2 (Qin et al., 2024b)	$m{G}_t = m{lpha}_t^ op 1$, $m{lpha}_t = \gamma + (1-\gamma) \sigma(m{x}_t W_lpha)$
RWKV-6 (Peng et al., 2024)	$oldsymbol{G}_t = oldsymbol{lpha}_t^ op 1$, $oldsymbol{lpha}_t = \exp(-\exp(oldsymbol{x}_t W_lpha))$
Gated Linear Attention (GLA)	$oldsymbol{G}_t = oldsymbol{lpha}_t^ op 1$, $oldsymbol{lpha}_t = \sigma(oldsymbol{x}_t W_{lpha_1} W_{lpha_2})^{rac{1}{ au}}$

Our Goal: Develop a mathematical understanding of the GLA mechanism through the lens of in-context learning and optimization.

[3] Yang S, Wang B, Shen Y, Panda R, Kim Y. Gated linear attention transformers with hardware-efficient training. ICML 2024.

[4] Li Y, Tarzanagh DA, Fazel M, Oymak S. Gating is weighting: Understanding gated linear attention through in-context learning. COLM 2025.

Main Results

Input prompt: Construct input prompt as follows:

$$oldsymbol{Z} = [oldsymbol{z}_1 \ \dots \ oldsymbol{z}_n \ oldsymbol{z}_{n+1}]^ op = egin{bmatrix} oldsymbol{x}_1 \dots oldsymbol{x}_n \ oldsymbol{x}_{n+1} \end{bmatrix}^ op \ oldsymbol{y}_1 \dots oldsymbol{y}_n \ 0 \end{bmatrix}^ op.$$

Theorem 1: $GLA \Leftrightarrow DWPGD$

Consider model construction $\mathbf{W}_k = \begin{bmatrix} \mathbf{P}_k & 0 \\ 0 & 0 \end{bmatrix}$, $\mathbf{W}_q = \begin{bmatrix} \mathbf{P}_q & 0 \\ 0 & 0 \end{bmatrix}$, $\mathbf{W}_v = \begin{bmatrix} \mathbf{0}_{d \times d} & 0 \\ 0 & 1 \end{bmatrix}$, and take the last coordinate of the last token output denoted by $(\boldsymbol{o}_{n+1})_{d+1}$ as a prediction. Then, we have

$$f_{ extsf{GLA}}(oldsymbol{Z}) := (oldsymbol{o}_{n+1})_{d+1} = oldsymbol{x}^ op \hat{oldsymbol{eta}}, \quad ext{where} \quad \hat{oldsymbol{eta}} = oldsymbol{P}_q (oldsymbol{X} oldsymbol{P}_k \odot oldsymbol{\Omega})^ op oldsymbol{y}.$$

Here, $\mathbf{\Omega} = [\mathbf{g}_{1:n+1} \cdots \mathbf{g}_{n:n+1}]^{\top} \in \mathbb{R}^{n \times d}$, where $\mathbf{g}_{i:n+1}, i \in [n]$ is given by

$$oldsymbol{g}_{i:n+1} := oldsymbol{g}_{i+1} \odot oldsymbol{g}_{i+2} \cdots oldsymbol{g}_{n+1} \in \mathbb{R}^d, \quad ext{and} \quad oldsymbol{G}_i = egin{bmatrix} * & * \ oldsymbol{g}_i^ op * \end{bmatrix}.$$

Note: When $G_i \equiv 1$, $\hat{\boldsymbol{\beta}} = \boldsymbol{P}_q \boldsymbol{P}_k^{\top} \boldsymbol{X}^{\top} \boldsymbol{y}$ reduces to preconditioned gradient descent (PGD).

Optimization Landscape of WPGD

• Learning problem: Given $(x, y, X, y) \sim \mathcal{D}$, learn optimal WPGD:

$$\mathcal{L}^{\star}_{\mathtt{WPGD}} := \min_{oldsymbol{P} \in \mathbb{R}^{d imes d}, oldsymbol{\omega} \in \mathbb{R}^n} \mathbb{E}\left[\left(y - oldsymbol{x}^{ op} oldsymbol{P} oldsymbol{X}^{ op} (oldsymbol{\omega} \odot oldsymbol{y})
ight)^2
ight].$$

• Data model: Correlated tasks $\beta_i \sim \mathcal{N}(0, I)$ jointly Gaussian, $x_i \sim \mathcal{N}(0, \Sigma)$, $y_i \sim \mathcal{N}(x_i^{\top} \beta_i, \sigma^2)$.

Theorem 2: Stationary Points

Define $h_1: \mathbb{R}_+ \to \mathbb{R}_+$ and $h_2: [1, \infty) \to \mathbb{R}_+$ as

$$h_1(\bar{\gamma}) := \left(\sum_{i=1}^n \frac{\lambda_i a_i^2}{(1+\lambda_i \bar{\gamma})^2}\right) \left(\sum_{i=1}^n \frac{a_i^2}{(1+\lambda_i \bar{\gamma})^2}\right)^{-1},$$

$$h_2(\gamma) := \left(1+M\left(\sum_{i=1}^d \frac{s_i^2}{(M+s_i \gamma)^2}\right) \left(\sum_{i=1}^d \frac{s_i^3}{(M+s_i \gamma)^2}\right)^{-1}\right)^{-1},$$

where $\{s_i\}$, $\{\lambda_i\}$ are eigenvalues of Σ , R; $\{a_i\}$ from r = Ea; $M = \sigma^2 + \sum_i s_i$.

The stationary point $(\mathbf{P}^{\star}, \boldsymbol{\omega}^{\star})$ (up to rescaling) is:

$$m{P}^{\star} = m{\Sigma}^{-rac{1}{2}} \left(rac{\gamma^{\star}}{M} \cdot m{\Sigma} + m{I}
ight)^{-1} m{\Sigma}^{-rac{1}{2}}, \quad m{\omega}^{\star} = (h_2(\gamma^{\star}) \cdot m{R} + m{I})^{-1} m{r},$$

where γ^* is a fixed point of $h_1(h_2(\gamma)) + 1$.

Theorem 3: Global Uniqueness

Under mild spectral gap condition $\Delta_{\Sigma} \cdot \Delta_{R} < M + s_{\min}$:

T1. Mapping $h_1(h_2(\gamma)) + 1$ is a contraction with unique fixed point γ^* .

T2. Loss has unique global minimum (P^*, ω^*) up to rescaling.

Key insight: Optimal $\omega^* = (h_2(\gamma^*)R + I)^{-1}r$ depends on task correlations R, r, enabling context-aware weighting.

Optimization Landscape of GLA

Definition 2(Multi-task Prompt and GLA Objective): Consider prompt with K correlated tasks $(\beta_k)_{k=1}^K$ and one query task $m{\beta}$. For each task $k \in [K]$, a prompt of length n_k is drawn, consisting of IID input-label pairs $\{(m{x}_i^k, y_i^k)\}_{i=1}^{n_k}$. Let $n := \sum_{k=1}^K n_k$.

$$\mathbf{Z} = \underbrace{\begin{bmatrix} \mathbf{x}_1^1 \cdots \mathbf{x}_{n_1}^1 & 0 & \mathbf{x}_1^K \cdots \mathbf{x}_{n_K}^K & 0 & \mathbf{x} \\ y_1^1 \cdots y_{n_1}^1 & 0 & \cdots & y_1^K \cdots y_{n_K}^K & 0 & 0 \\ 0 \cdots 0 & \mathbf{c}^1 & 0 & \cdots & 0 & \mathbf{c}^K & 0 \end{bmatrix}}_{\mathsf{task } 1} . \tag{1}$$

Here, $\{c^1,\cdots,c^K\}$ are K linearly independent contextual features. The GLA optimization problem is described as:

$$\mathcal{L}_{ ext{GLA}}^{\star} := \min_{oldsymbol{P}_k, oldsymbol{P}_q \in \mathbb{R}^{d imes d}, G \in \mathcal{G}} \ \mathcal{L}_{ ext{GLA}}(oldsymbol{P}_k, oldsymbol{P}_q, G) \quad ext{where} \quad \mathcal{L}_{ ext{GLA}}(oldsymbol{P}_k, oldsymbol{P}_q, G) = \mathbb{E}\left[(y - f_{ ext{GLA}}(oldsymbol{Z}))^2
ight].$$

Here, $G(\cdot)$ represents the gating function and $\mathcal G$ denotes the function search space.

Given context examples $\{(\boldsymbol{X}_k,\boldsymbol{y}_k):=(\boldsymbol{x}_i^k,y_k^k)_{i=1}^{n_k}\}_{k=1}^K$, define the concatenated data $(\boldsymbol{X},\boldsymbol{y})$:

$$m{X} = egin{bmatrix} m{X}_1^ op & \cdots & m{X}_K^ op \end{bmatrix}^ op \in \mathbb{R}^{n imes d}, \quad ext{and} \quad m{y} = egin{bmatrix} m{y}_1^ op & \cdots & m{y}_K^ op \end{bmatrix}^ op \in \mathbb{R}^n.$$

Theorem 4 (Optimization Equivalence): $GLA \Leftrightarrow DWPGD$

Consider GLA with input prompt **Z** defined in (1). There exists a gating function $G(\cdot)$ such that the optimal risk $\mathcal{L}^\star_{ t GLA}$ obeys

$$\mathcal{L}_{ exttt{GLA}}^{\star} = \mathcal{L}_{ exttt{WPGD}}^{\star}.$$

Corollary (Loss landscape of one-layer linear attention): Consider a single-layer linear attention following the same model constructions. Let R and r be the corresponding correlation matrix and vector. Suppose $\Sigma=I$. Then, the optimal risk obeys

$$\mathcal{L}_{\mathtt{ATT}}^{\star} := \min_{m{P} \in \mathbb{R}^{d imes d}} \mathcal{L}_{\mathtt{WPGD}}(m{P}, m{\omega} = m{1}) = d + \sigma^2 - rac{d(m{1}^{ op}m{r})^2}{n(d + \sigma^2 + 1) + m{1}^{ op}m{R}m{1}}.$$

Experiments

Data setting:

• K = 2, $n_1 = n_2 = n/2$, $\beta_1, \beta_2, \beta \sim \mathcal{N}(0, I)$

• $(r_1, r_2) = (\text{corr_coef}(\boldsymbol{\beta}_1, \boldsymbol{\beta}), \text{corr_coef}(\boldsymbol{\beta}_2, \boldsymbol{\beta}))$ and $\text{corr_coef}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2) = 0$.

• $G(z) = \sigma(W_a z) \mathbf{1}^{\top}$ where $\sigma(x) = (1 + e^{-z})^{-1}$ is the activation function.

• LinAtt: Linear attention; GLA: Gated linear attention; GLA-wo: GLA without contextual features

^[1] Li Y, Rawat AS, Oymak S. Fine-grained analysis of in-context linear estimation: Data, architecture, and beyond. NeurIPS 2024 [2] Ahn K, Cheng X, Daneshmand H, Sra S. Transformers learn to implement preconditioned gradient descent for in-context learning. NeurIPS 2023.