Algebra para la Computación: MAT1185 Guía de Trabajo N°05

ACTIVIDADES

1)	Determinar	el	valor	О	simplificar	(según	corresponda)	en	cada	una	de	las
	siguientes e	xpr	esione	S	$(n, k \in \mathbb{N})$:							

a)
$$\frac{10! \cdot 15!}{14! \cdot 9!}$$

b)
$$\frac{7! \cdot 10!}{9! \cdot 12!}$$

c)
$$\frac{n!}{(n-2)!}$$

a)
$$\frac{10! \cdot 15!}{14! \cdot 9!}$$
 b) $\frac{7! \cdot 10!}{9! \cdot 12!}$ c) $\frac{n!}{(n-2)!}$ d) $\frac{n!}{(n-r)!}$ $[r < n]$

e)
$$\frac{(n-1)!}{(n-3)!}$$
 f) $\frac{\binom{n+1}{3}}{\binom{n}{2}}$

f)
$$\frac{\binom{n+1}{3}}{\binom{n}{2}}$$

g)
$$\frac{\binom{n+1}{r+1}}{\binom{n}{r}}$$

h)
$$\frac{n!-(n-1)!}{(n-1)!} \cdot \frac{(2n+2)!}{(2n-1)! \cdot 2n}$$

2) Determinar:

a)
$$\binom{5}{3}$$

b)
$$\binom{8}{5}$$

a)
$$\binom{5}{3}$$
 b) $\binom{8}{5}$ c) $\binom{102}{100}$

d)
$$\binom{128}{2} + \binom{128}{126}$$

3) Determinar x en las siguientes relaciones:

$$a) \quad \begin{pmatrix} x \\ 3 \end{pmatrix} = \begin{pmatrix} x \\ 5 \end{pmatrix}$$

a)
$$\begin{pmatrix} x \\ 3 \end{pmatrix} = \begin{pmatrix} x \\ 5 \end{pmatrix}$$
 b) $\begin{pmatrix} x+1 \\ 3 \end{pmatrix} = 2 \begin{pmatrix} x \\ 2 \end{pmatrix}$

c)
$$\begin{pmatrix} x \\ 4 \end{pmatrix}$$
 : $\begin{pmatrix} x+1 \\ 3 \end{pmatrix}$ = 5:6

4) Obtener el desarrollo de las expresiones dadas, utilizando el teorema del binomio. a) $(x+1)^4$ b) $(x+\frac{1}{x})^6$ c) $(2x-3)^5$ d) $(x^2+2y)^6$

a)
$$(x+1)^4$$

b)
$$(x + \frac{1}{x})^6$$

c)
$$(2x-3)^{\frac{1}{5}}$$

d)
$$(x^2 + 2y)^6$$

5) Encontrar lo que se indica en el desarrollo de cada una de las expresiones dadas:

a) Cuarto término en $(x-2)^{20}$

b) Término central de
$$\left(\sqrt[3]{x} - \frac{1}{2}x^{-2}\right)^6$$

c) El coeficiente de
$$a^{10}b^3$$
 en $(a-b)^{13}$ d) El término de x^4 en $\left(\frac{2}{x}+\frac{x^2}{4}\right)^{14}$

e) El término independiente de $\left(4x-\frac{1}{x}\right)^{10}$ f) El término constante de $\left(\frac{1}{4y^3}-\frac{2y^2}{3}\right)^{14}$

g) Los términos centrales de $\left(x+\frac{1}{\sqrt{x}}\right)^{15}$ h) El último término de $\left(5-x^{\frac{2}{3}}\right)^{14}$

h) El último término de
$$\left(5-x^{\frac{2}{3}}\right)^{14}$$

6) Encontrar n en el desarrollo de $\left(x^2 + \frac{1}{\sqrt{x}}\right)^n$, si la suma de los coeficientes del segundo y del tercer término es 55.

7) Determinar, si existe, el valor de n en cada caso:

$$a) \quad \binom{14}{n} = \binom{14}{n-4}$$

b)
$$\binom{n}{2} + \binom{n+2}{3} = \binom{n+1}{3}$$

- 8) Calcular el valor de k en el desarrollo de $(1 + x)^{43}$, si se sabe que los coeficientes de los términos de orden 2k + 1 y k + 2 son iguales.
- 9) Una moneda se lanza 16 veces. ¿De cuántas maneras se obtendrán, al menos, 13 caras?; 14 caras?; A lo más 5 sellos?
- 10) Un vendedor de servicios de cable visita una población con 30 casas, anotando v si vende y n si no vende. Al revisar sus registros, ¿cuántas posibilidades hay de observar que vendió el servicio en, a lo más, 5 casas?
- 11) Un matrimonio tuvo una descendencia de 17 hijos. ¿Cuántas posibilidades tuvo el matrimonio de tener 15 hijos varones o más?¿De tener, a lo más, 4 hijas mujeres?¿De tener entre 10 y 13 hijos hombres?¿De no tener hijas mujeres?
- 12) ¿Cuál es la probabilidad de que un basquetbolista enceste por lo menos 8 de un total de 10 lanzamientos libres? ¿De que los enceste todos? ¿Que enceste sólo 1 lanzamiento? ¿Que falle 4 lanzamientos?
- 13) Demostrar que el coeficiente del término central en el desarrollo de $(1+x)^{2n}$ corresponde a la suma de los coeficientes de los términos centrales en el desarrollo de $(1+x)^{2n-1}$.
- 14) En un curso de 25 alumnos, ¿cuántas posibilidades hay de que falten, a lo más, 2 alumnos a una prueba?