BioinformHer Mini Project – Module 2

Tracking the Evolution of the Hemoglobin Beta (HBB) Gene Across Species

Project Objective

To investigate the evolutionary conservation of the HBB gene across six species using nucleotide sequences. This includes sequence retrieval, alignment, sequence logo generation, and phylogenetic tree construction.

1. Sequence Retrieval & BLAST Search

Nucleotide sequences of the HBB gene were retrieved from NCBI for six species. A BLAST search was used to identify orthologs, and percentage identity with the human gene was noted.

Species	Accession Number	Gene Symbol	% Identity with Human HBB
Human	NM_000518.5	НВВ	100%
Chimpanzee	XM_508242.5	НВВ	100%
Cow	NM_17391.7	НВВ	100%
Mouse	NM_198776	Hbb-b1	100%
Chicken	NM_205489.3	НВВА	100%
Zebrafish	NM_131020.3	hbba1	100%
Zebra fish	NM-001013027	hb1	97.73%

2. Pairwise & Multiple Sequence Alignment

Table: Pairwise Comparison to Human HBB

Species	% Identity	No. of Gaps	Conservation Notes
Human	628/628	0/628	
Chimpanzee	626/628	0/628	Highly conserved, nearly identical

Zebrafish	603/617	0/617	Least conserved, most distantly related
Zebrafish	716/716	0/716	

dispatcher/msa/clustalo/summary?jobld=clustalo-I20250514-165751-0625-84629186-p1m

Maps Maps

CLUSTAL O(1.2.4) multiple sequence alignment

XM_019036164.3	TCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACT	40
XM_003819029.5	AGCCATCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACT	45
XM_508242.5	ATCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACT	41
MH382900.1	***************************************	0
XM_054440830.2	ATCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACT	41
XM_002822127.6	TAAAAGTTAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACT	60
XM_019036164.3	AGCAACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTG	100
XM_003819029.5	AGCAACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTG	105
XM_508242.5	AGCAACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTG	101
MH382900.1	ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTG	40
XM_G5444G830.2	AGCAACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGCTGTTACTG	101
XM_002822127.6	AGCAACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGCTGTTACTG	120

XM_019036164.3	CCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGG	160
XM_003819029.5	CCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGG	165
XM_508242.5	CCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGG	161
MH882900.1	CCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGB	100
XM 054440830.2	CCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGG	161
XM 002822127.6	CCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGG	180

XM_019036164.3	TGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG	220
XM_003819029.5	TGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGGATCTGTCCACTCCTGATG	225
XM 508242.5	TGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG	221
XM_800242.0	TOCTOTACCOTTEGRACCOAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG	160

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our Privacy Notice and Terms of Use.

