k-Means Clustering

After this video you will be able to...

- Describe the steps in the k-means algorithm
- Explain what the 'k' stands for in k-means
- Define what a cluster centroid is

Cluster Analysis

- Divides data into clusters
- Similar items are in same cluster

k-Means Algorithm

- Select k initial centroids (cluster centers)
- Repeat
 - Assign each sample to closest centroid
 - Calculate mean of cluster to determine new centroid
- Until some stopping criterion is reached

Original samples

Initial centroids

k-Means

Assign samples

Re-calculate centroids

Assign samples

Re-calculate centroids

Choosing Initial Centroids

Issue:

Final clusters are sensitive to initial centroids

Solution:

Run k-means multiple times with different random initial centroids, and choose best results

Evaluating Cluster Results

error = distance between sample & centroid squared error = error²

Sum of squared errors between all samples & centroid

Sum over all clusters

WSSE

Within-Cluster Sum of Squared Error

Using WSSE

WSSE₁ < WSSE₂ | WSSE1 is better *numerically*

Caveats:

- Does not mean that cluster set 1 is more 'correct' than cluster set 2
- Larger values for k will always reduce WSSE

Choosing Value for k

- Approaches:
 - Visualization
 - Application-Dependent
 - Data-Driven

Elbow Method for Choosing k

"Elbow" suggests value for k should be 3

Stopping Criteria

When to stop iterating?

- No changes to centroids
- Number of samples changing clusters is below threshold

Interpreting Results

- Examine cluster centroids
 - How are clusters different?

K-Means Summary

 Classic algorithm for cluster analysis

- Simple to understand and implement and is efficient
- Value of k must be specified
- Final clusters are sensitive to initial centroids