

文献分享: Flex-conv KPconv

刘宗健 8.27

目录

- □ 背景
- □ 卷积方法
- □ 网络层
- □ 实验

Flex-Convolution Million-Scale Point-Cloud Learning Beyond Grid-Worlds

Kpconv: Flexible and deformable convolution for point clouds. ICCV 2019. Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Franc ois Goulette, and Leonidas J Guibas.

背景

□卷积网络从图像到点云的困境

数据存储不规则(像素vs位置信息)

无序性

稀疏性

背景

□与网格的联系

空间中可以局域化定位

点 P∈R^{N * 3} 视为结构要素 特征 F∈R^{N * D} 视为实际数据

最大分辨率的限制

背景

- □点云的处理思路
 - 1. 套用CNN

多个视角二维图像;三维网格化

2. 直接点云输入

对称函数处理(以pointnet为典型的MLP网络);图卷积网络

3. 利用点云特性直接卷积操作

PointwiseCNN, SpiderCNN, PCNN, Flex-conv

卷积方法1

$$(w \circledast f)[\ell] = \sum_{c \in C} \sum_{\tau \in \{-1,0,1\}^2} w_{c'}(c,\tau) f(c,\ell-\tau),$$

$$P = \left\{ (\ell^{(i)}, f^{(i)}) \in L \times F \mid i = 0, 1, \dots, n - 1 \right\}.$$

Nਡੇ ਝਾਂਸ਼ ਰਭ, I, ਡ਼, . . . , I, ਖ਼ੜ

$$f'(c', \ell^{(i)}) = \sum_{c \in C} \sum_{\ell' \in \mathcal{N}_k(\ell^{(i)})} \tilde{w}(c, \ell^{(i)}, \ell') \cdot f(c, \ell').$$

$$\tilde{w}_{c'}: C \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}, \quad (c, \ell, \ell') \mapsto \tilde{w}(c, \ell, \ell')$$

□标准数积

$$\tilde{w}(c,\ell,\ell'|\theta_c,\theta_{b_c}) = \langle \theta_c,\ell-\ell' \rangle + \theta_{b_c}.$$

□ 处处定义良好,连续可微

核卷积定义2

ロ xi 是点 $P \in R^{N \times 3}$ fi 是其特征 $F \in R^{N \times D}$ $(\mathcal{F} * g)(x) = \sum_{x_i \in \mathcal{N}_x} g(x_i - x) f_i$ $\left\{ x_i \in \mathcal{P} \mid \|x_i - x\| \leqslant r \right\}$

□ Kernel points(核点)

$$\left\{ \widetilde{x}_k \mid k < K \right\} \subset \mathcal{B}_r^3 \qquad \mathcal{B}_r^3 = \left\{ y \in \mathbb{R}^3 \mid ||y|| \leqslant r \right\}$$

$$\left\{ W_k \mid k < K \right\} \subset \mathbb{R}^{D_{in} \times D_{out}}$$

$$(\mathcal{F} * g)(x) = \sum_{x_i \in \mathcal{N}_x} g(x_i - x) f_i \qquad g(y_i) = \sum_{k < K} h(y_i, \widetilde{x}_k) W_k$$

$$h(y_i, \widetilde{x}_k) = \max\left(0, 1 - \frac{\|y_i - \widetilde{x}_k\|}{\sigma}\right)$$

□核点的初始化产生

优化问题: k个点尽量远离(每个点分配排斥势)

$$\forall x \in \mathbb{R}^3, \quad E_k^{rep}(x) = \frac{1}{\|x - \widetilde{x}_k\|}$$

避免无限发散(中心加引力势)

$$\forall x \in \mathbb{R}^3, \quad E^{att}(x) = ||x||^2$$

能量最小化

$$E^{tot} = \sum_{k < K} \left(E^{att}(\widetilde{x}_k) + \sum_{l \neq k} E_k^{rep}(\widetilde{x}_l) \right)$$

□刚性or可变形核

$$(\mathcal{F} * g)(x) = \sum_{x_i \in \mathcal{N}_x} g_{deform}(x - x_i, \Delta(x)) f_i$$

$$g_{deform}(y_i, \Delta(x)) = \sum_{k < K} h(y_i, \widetilde{x}_k + \Delta_k(x)) W_k$$

$$\mathcal{L}_{reg} = \sum_{x} \mathcal{L}_{fit}(x) + \mathcal{L}_{rep}(x)$$

$$\mathcal{L}_{fit}(x) = \sum_{k < K} \min_{y_i} \left(\frac{\|y_i - (\widetilde{x}_k + \Delta_k(x))\|}{\sigma} \right)^2$$

$$\mathcal{L}_{rep}(x) = \sum_{k < K} \sum_{l \neq k} h\left(\widetilde{x}_k + \Delta_k(x), \widetilde{x}_l + \Delta_l(x)\right)^2$$

网络结构1

point cloud size n

Table 2: Classification accuracy on ModelNet40 (1024 points) and 256 points*.

Method	Accuracy	y #params.
PointNet [17]	89.2	1'622'705
PointNet2 [19]	90.7	1'658'120
KD-Net[14]	90.6	4'741'960
D-FilterNet [23]	87.4	345'288
Human	64.0	-
Ours	90.2	346'409
Ours $(1/4)$	89.3	171'048

Table 3: ShapeNet part segmentation results per category and mIoU (%) for different methods and inference speed (on a Nvidia GeForce GTX 1080 Ti).

	Airpl.	Bag	Cap	Car	Chair	Earph.	Guitar	Knife	Lamp	Laptop	Motorb.	Mug	Pistol	Rocket	Skateb.	Table	mIoU	shapes/see
Kd-Network [14]	80.1	74.6	74.3	70.3	88.6	73.5	90.2	87.2	81.0	94.9	57.4	86.7	78.1	51.8	69.9	80.3	77.4	n.a.
PointNet [17]	83.4	78.7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6	80.4	n.a.
PointNet++ [19]	82.4	79.0	87.7	77.3	90.8	71.8	91.0	85.9	83.7	95.3	71.6	94.1	81.3	58.7	76.4	82.6	81.9	2.7
SPLATNet3D [25]	81.9	83.9	88.6	79.5	90.1	73.5	91.3	84.7	84.5	96.3	69.7	95.0	81.7	59.2	70.4	81.3	82.0	9.4
SGPN [28]	80.4	78.6	78.8	71.5	88.6	78.0	90.9	83.0	78.8	95.8	77.8	93.8	87.4	60.1	92.3	89.4	82.8	n.a.
Ours	83.6	91.2	96.7	79.5	84.7	71.7	92.0	86.5	83.2	96.6	71.7	95.7	86.1	74.8	81.4	84.5	85.0	489.3

	Table	Chair	Sofa	Bookc.	Board	Ceiling	Floor	Wall	Beam	Col.	Wind.	Door	mAP
Armenin et al. $[2]$ *	46.02	16.15	6.78	54.71	3.91	71.61	88.70	72.86	66.67	91.77	25.92	54.11	49.93
Armenin et al. [2]‡	39.87	11.43	4.91	57.76	3.73	50.74	80.48	65.59	68.53	85.08	21.17	45.39	44.19
PointNet [17]*	46.67	33.80	4.76	n.a.	11.72	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
SGPN [28]*	46.90	40.77	6.38	47.61	11.05	79.44	66.29	88.77	77.98	60.71	66.62	56.75	54.35
Ours	66.03	51.75	15.59	39.03	43.50	87.20	96.00	65.53	54.76	52.74	55.34	35.81	55.27
Ours**	67.02	52.75	16.61	39.26	47.68	87.33	96.10	65.52	56.83	55.10	57.66	36.76	56.55

网络结构2

- □ 采样层
- □ 池化层
- KPConv层
- □ 网络参数

每一层有单元格大小dli

$$\sigma_j = \Sigma \times dl_j$$

$$r_j = \rho \times dl_j$$

$$dl_{j+1} = 2 * dl_j.$$

$$K = 15, \Sigma = 1.0 \text{ and } \rho = 5.0.$$

KP-CNN

实验

□场景分割

Scannet(室内场景, 20类, 1513个训练场景) S3DIS(6个大型室内, 13类, 2.73亿点) Semantic3D(在线基准, 户外场景, 40亿点8类)

Paris-Lille-3D(4个城市2km街道, 1.6亿10类)

KP-FCNN 随机选择球训练和测试输入球半径选择为50×dI₀

Methods	Scannet	Sem3D	S3DIS	PL3D
Pointnet [26]	_	-	41.1	_
Pointnet++ [27]	33.9		-	-
SnapNet [4]	-	59.1	-	-
SPLATNet [34]	39.3	-	-	-
SegCloud [37]	1-1	61.3	48.9	-
RF_MSSF [38]	-	62.7	49.8	56.3
Eff3DConv [50]		-	51.8	-
TangentConv [36]	43.8	-	52.6	-
MSDVN [30]	-	65.3	54.7	66.9
RSNet [15]	-	-	56.5	-
FCPN [28]	44.7	-	-	-
PointCNN [20]	45.8	-	57.3	-
PCNN [2]	49.8	-	i -	-
SPGraph [17]	-	73.2	58.0	-
ParamConv [41]	-	-	58.3	-
SubSparseCNN [9]	72.5	n - :	; -	:-
KPConv rigid	68.6	74.6	65.4	72.3
KPConv deform	68.4	73.1	67.1	75.9

□分割结果

Figure 4. Outdoor and Indoor scenes, respectively from Semantic3D and S3DIS, classified by KP-FCNN with deformable kernels.

□ 消融实验

□特征可视化

□ 有效感受野

谢谢聆听!

