

ISEL – ADEETC – LEIM

Comunicões e Processamento de Sinal (CPS)

2017/18 Semestre de Inverno, 2ª Época, 23 de Janeiro de 2018 (10h00) Duração: 2,5 horas, Docentes: André Lourenço e Pedro Fazenda

$\begin{array}{c|c} \mathbf{Grupo} \ \mathbf{1} & [6\mathcal{V}] \\ \hline & & \\$

Figura 1: Modulação por código de pulso diferencial (DPCM).

Suponha que o sinal $x(t) = \sin(2\pi 400t)$ é amostrado a 1kHz e codificado em **DPCM** unitário (a = 1) como ilustrado na Figura 1. Considere que o valor máximo do quantificador midrise é de 0.4V, o número de bits de codificação por amostra é de 2 e que o valor de predição $(m_n[n])$ inicial é de 0V.

- a) [1.0V] Apresente uma tablela com os valores de decisão, quantificação e codificação do quantificador.
- b) [2.0 \mathcal{V}] Qual a sequência binária a ser transmitida para as primeiras 4 amostras? Apresente uma tabela com o número da amostra e os valores correspondentes a $(m[n], m_p[n], e[n], e_q[n], m_q[n]$ e C[n]).
- c) [1.0V] Compare o SNR deste codificador com o de um codificador PCM midrise de amplitude 1V.
- d) [1.0V] Represente os espectros de amplitude (em gráficos separados) do sinal original, do sinal amostrado e do sinal reconstruído (represente também o filtro de reconstrução). Qual o sinal reconstruído?
- e) [1.0V] Se o sinal de entrada no sistema fosse $b(t) = x(t) + \cos(2\pi 700t)$, como se alterariam os espectros anteriores? Qual o sinal reconstruído?

Grupo 2 [8V]

Considere um sistema de transmissão que usa o código de linha PRZ, com débito binário de 500kbit s $^{-1}$, potência no transmissor de 0.5W e um factor de roll-off de 0.8. O canal de comunicação é do tipo AWGN, com densidade espectral de potência de ruído de 1×10^{-6} W Hz $^{-1}$ e atenuação de 3 dB.

- a) [1.0V] Calcule a amplitude A do código no receptor. Esboce a trama de bits [10011010] (no receptor)
- b) [1.0V] Quais as vantagens e desvantagens face a outros códigos que conhece.
- c) [1.5V] Calcule a probabilidade de erro de bit.
- d) [1.0V] Considere que o canal tem uma largura de banda de 1MHz. Pode continuar a transmitir o mesmo sinal? É possível aumentar o débito binário? Justifique as opções.
- e) [1.0V] Desenhe o esquema do receptor.
- f) [1.0V] Admita que usa adicionalmente um código linear sistemático H(7,4). Qual a trama enviada?
- g) [1.5 \mathcal{V}] Admita que está nas condições da alínea anterior em modo de correcção FEC e que recebe o seguinte bloco no receptor: [1101110101011]. Quais são os valores dos bits de informação? O que pode concluir?

Grupo 3 [6V]

Considere um sistema de transmissão 32 QAM com um débito de 1Gbit s⁻¹. Sabe-se que o canal de comunicação passa banda (AWGN) tem ruído com uma densidade espectral de potência de $0.5 \times 10^{-9} \,\mathrm{W\,Hz^{-1}}$. Pretende-se que o sistema no receptor tenha um BER igual ou inferior a 1×10^{-2} .

- a) [2V] Calcule a potência necessária à saída emissor para cumprir todos os requisitos.
- b) [1.5V] Considerando um sistema genérico de transmissão de banda passante, explique sucintamente o que entende por interferência intersimbólica. Relacione esta com diagrama de "padrão de olho".
- c) [1.5V] Represente a constelação no receptor indicando as coordenadas dos pontos da constelação (em função de E_0).

Função complementar de erro

$$\frac{1}{2}\operatorname{erfc}(x) = \frac{1}{\sqrt{\pi}} \int_{x}^{\infty} e^{-\mu^{2}} d\mu$$

Х	½ erfc(x)
0	5.000E-01
0,05	4,718E-01
0,1	4,438E-01
0,15	4,160E-01
0,2	3.886F-01
0,2 0,25	3,618E-01
0,3	3.357E-01
0,35	3,103E-01
0,4	2,858E-01
0,45	2 623F-01
0,5	2,398E-01
0,55	2,183E-01
0,6	1,981E-01
0,65	1,790E-01
0,7	1,611E-01
0,75	1,444E-01
0,8	1,289E-01
0,85	1,147E-01
0,9	1,015E-01
0,95	8,955E-02
1	7,865E-02
1,05	6,878E-02
1,1	5,990E-02
1,15	5,194E-02
1,2	4,484E-02
1,25	3,855E-02
1,3	3,300E-02
1,35	2,812E-02
1,4	2,386E-02
1,45	2,015E-02
1,5	1,695E-02
1,55	1,419E-02
1,6	1,183E-02
1,65	9,812E-03
1,7	8,105E-03
1,75	6,664E-03
1,8 1,85	5,455E-03
1,85	4,444E-03 3,605E-03
	2,910E-03
1,95	Z,910E-03

X	1/2 erfc(x)
2	2,339E-03
2,05	1,871E-03
2,1	1,490E-03
2,15	1,181E-03
2,15	9,314E-04
2,25	7,314E-04
2,3	5,716E-04
2,35	4,446E-04
2,4	3,443E-04
2,45	2,653E-04
2,5	2,035E-04
2,55	1,553E-04
2,6	1,180E-04
2,65	8,924E-05
2,7	6,717E-05
2,75	5,031E-05
2,8	3,751E-05
2,85	2,783E-05
2,9	2,055E-05
2,95	1,510E-05
3	1,105E-05
3,05	8,040E-06
3,1	5,824E-06
3,15	4,199E-06
3,2	3,013E-06
3,25	2,151E-06
3,3	1,529E-06
3,35	1,081E-06
3,4	7,610E-07
3,45	5,330E-07
3,5	3,715E-07
3,55	2,577E-07
3,6	1,779E-07
3,65	1,222E-07
3,7	8,358E-08
3,75	5,686E-08
3,8	3,850E-08
3,85	2,594E-08
3,9	1,740E-08
3,95	1,161E-08

х	1/2 erfc(x)
4	7 700F_00
4,05	5,094E-09
4,1	3.330E-09
4,15	2,192E-09
4,2	1,428E-09
4.25	9,253E-10
4,3	5 967F-10
4,35	3,830E-10
4,4	2,446E-10
4,45	1,554E-10
4,5	9,831E-11
4,55	6,187E-11
4,6	3,875E-11
4,65	2,415E-11
4,7	1,498E-11
4,75	9,243E-12
4,8	5,676E-12
4,85	3,469E-12
4,9	2,109E-12
4,95	1,277E-12
5	7,687E-13
5,05	4,606E-13
5,1	2,747E-13
5,15	1,630E-13
5,2	9,626E-14
5,25	5,657E-14
5,3	3,308E-14
5,35	1,926E-14 1,116E-14
5,4	1,116E-14 6,439E-15
5,45	
5,5	3,664E-15 2,109E-15
5,55 5,6	1.166E-15
5,65	6.661E-16
	3,886E-16
5,7 5,75	2,220E-16
5,73	1,110E-16
5,85	5,551E-17
5,9	5,551E-17
5,95	0,000E+00
0,00	J,000L.00