Image Compression

- Image Compression is the art and science of reducing amount data required to represent an image.
- Digital images require huge amounts of space for storage and large bandwidths for transmission.
 - A 640 x 480 color image requires close to 1MB of space.
- The goal of image compression is to reduce the amount of data required to represent a digital image.
 - Reduce storage requirements and increase transmission rates.

Lossless

- Information preserving
- Low compression ratios

Lossy

- Not information preserving
- High compression ratios

Data and Information:

- Data and information are not synonymous terms!
- Data is the means by which information is conveyed.
- Data compression aims to reduce the amount of data required to represent a given quantity of information while preserving as much information as possible.

The same amount of <u>information</u> can be represented by various amount of <u>data</u>, e.g.:

Ex1: Your wife, Helen, will meet you at Logan Airport in Boston at 5 minutes past 6:00 pm tomorrow night

Ex2: Your wife will meet you at Logan Airport at 5 minutes past 6:00 pm tomorrow night

Ex3: Helen will meet you at Logan at 6:00 pm tomorrow night

Data redundancy and compression ratio.

Relative data redundancy R

R = 1 - 1/C where C commonly called the compression ratio is defined as

C = b/b' where b and b' denote the number of bits in two representations of the same information

If C = 10, for instance, means larger representation has 10 bits of data for every 1 bit of data in the smaller representation

Corresponding relative data redundancy of the larger representation is 0.9 indicating 90% of its data is redundant

Types of data redundancy

- 1. Coding redundancy
- 2. Spatial redundancy
- 3. Irrelevant information

abe

FIGURE 8.1 Computer generated 256 × 256 × 8 bit images with (a) coding redundancy, (b) spatial redundancy, and (c) irrelevant information. (Each was designed to demonstrate one principal redundancy but may exhibit others as well.)

Irrelevant Information

FIGURE 8.3

(a) Histogram of the image in Fig. 8.1(c) and (b) a histogram equalized version of the image.

1) Coding Redundancy: A code is a system of symbols (letters, numbers, bits) used to represent a body of information or set of events.

Each piece of information or event is assigned a sequence of code symbols, called a code word.

Number of symbols in each code word is its length

- 2) Spatial and temporal redundancy: Pixels of most 2-D intensity arrays are correlated spatially (i.e. each pixel is similar to or dependent on neighboring pixels. In a video sequence, temporally correlated pixels also duplicate information
- 3) Irrelevant information: Most 2-D intensity arrays contain information that is ignored by human visual system and/or extraneous to the intended use of the image. It is redundant in the sense that it is not used

Coding Redundancy

Let $0 \le r_k \le 1$: gray levels (discrete random variable) $p_r(r_k) : \text{ probability of occurrence of } r_k$ $n_k : \text{ number of pixels that } r_k \text{ appears in the image}$ n : total number of pixels in an image L : number of gray levels $l(r_k) : \text{ number of bits used to represent } r_k$ $L_{avg} : \text{ average length of code words assigned to the grey levels}$

$$L_{avg} = \sum_{k=0}^{L-1} l(r_k) p_r(r_k)$$
 where $p_r(r_k) = \frac{n_k}{n}, k = 0, 1, \dots, L-1$

Hence, total number of bits required to code an $M \times N$ image is MNL_{avg} . For a natural m-bit coding $L_{avg} = m$.

Examples of variable length encoding

r_k	$p_r(r_k)$	Code 1	$l_I(r_k)$	Code 2	$l_2(\mathbf{r}_k)$
$r_{87} = 87$	0.25	01010111	8	01	2
$r_{128} = 128$	0.47	10000000	8	1	1
$r_{186} = 186$	0.25	11000100	8	000	3
$r_{255} = 255$	0.03	11111111	8	001	3
r_k for $k \neq 87, 128, 186, 255$	0	_	8	_	0

$$L_{\text{avg}} = 0.25(2) + 0.47(1) + 0.25(3) + 0.03(3) = 1.81 \text{ bits}$$

The total number of bits needed to represent the entire image is MNL_{avg} = 256 × 256 × 1.81 or 118,621. From Eqs. (8.1-2) and (8.1-1), the resulting compression and corresponding relative redundancy are

$$C = \frac{256 \times 256 \times 8}{118,621} = \frac{8}{1.81} \approx 4.42$$

and

$$R = 1 - \frac{1}{442} = 0.774$$

Spatial redundancy

Spatial Redundancy

Run-length coding (RLC)

(interpixel redundancy)

• Used to reduce the size of a repeating string of characters (i.e., runs):

$$1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ \square$$
 (1,5) (0, 6) (1, 1) a a a b b b b b c c \square (a,3) (b, 6) (c, 2)

- Encodes a run of symbols into two bytes: (symbol, count)
- Can compress any type of data but cannot achieve high.

Run-length coding

Every code word is made upp of a pair (**g,l**) where **g** is the graylevel and **l** is the number of pixels with that graylevel (length, or "run").

Ex 56 56 56 82 82 82 83 80 56 56 56 56 56 56 80 80 80

creates the runlength code (56,3) (82,3) (83,1) (80,4) (56,5)

- -The code is calculated row by row.
- -Very efficient coding for binary data.
- -Important to know position, and the image dimensions must be stored with the coded image.

Measuring Image Information

A random event E with probability P(E) contains:

I(E) = log(1/P(E)) = -log(P(E)) units of information

If the base 2 is selected, the unit of information is the bit.

Note: I(E)=0 when P(E)=1

How much information does a pixel contain?

Suppose that gray level values are generated by a random variable, then rk contains:

$$I(r_k) = -\log(P(r_k))$$

units of information!

Entropy of the image is defined as:

$$\widetilde{H} = -\sum_{k=0}^{L-1} p_r(r_k) \log_2 p_r(r_k)$$

$$\tilde{H} = -[0.25 \log_2 0.25 + 0.47 \log_2 0.47 + 0.25 \log_2 0.25 + 0.03 \log_2 0.03]$$

$$\approx -[0.25(-2) + 0.47(-1.09) + 0.25(-2) + 0.03(-5.06)]$$

 $\approx 1.6614 \, \text{bits/pixel}$

Can variable length coding procedure be used to compress a

histogram equalized image?

Can such image contain spatial or temporal redundancies?

Can run length encoding be beneficial for every image?

Example:

Consider the simple 4×8 , 8-bit image:

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243

(a) Compute the entropy of the image.

(a) The entropy of the image is estimated using Eq. (8.1-7) to be

$$\begin{split} \tilde{H} &= -\sum_{k=0}^{255} p_r(r_k) \log_2 p_r(r_k) \\ &= -\left[\frac{12}{32} \log_2 \frac{12}{32} + \frac{4}{32} \log_2 \frac{4}{32} + \frac{4}{32} \log_2 \frac{4}{32} + \frac{12}{32} \log_2 \frac{12}{32} \right] \\ &= -[-0.5306 - 0.375 - 0.375 - 0.5306] \\ &= 1.811 \, \text{bits/pixel.} \end{split}$$

Fidelity Criteria

Quantify the nature and extent of information loss.

Objective fidelity criteria:

Level of information loss can be expressed as a function of the original (input) and compressed-decompressed (output) image.

Given an $M \times N$ image f(x,y) (original image), its compressed-thendecompressed image: $\hat{f}(x,y)$, then the error between corresponding values are given as:

$$e(x, y) = \hat{f}(x, y) - f(x, y)$$

Total error is given by:

$$\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\hat{f}(x,y) - f(x,y) \right]$$

Normally the objective fidelity criterion parameters are as follows:

 e_{rms} (root-mean-square error):

$$e_{rmz} = \sqrt{\frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\hat{f}(x,y) - f(x,y) \right]^2}$$

SNR_{ms} (mean-square signal-to-noise ratio):

$$SNR_{ms} = \frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \hat{f}(x,y)^{2}}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\hat{f}(x,y) - f(x,y)\right]}$$

Subjective Fidelity Criteria:

Value	Rating	Description		
1 Excellent		An image of extremely high quality, as good as you could desire.		
2	Fine	An image of high quality, providing enjoyable viewing. Interference is not objectionable.		
3	Passable	An image of acceptable quality. Interference is not objectionable.		
4	Marginal	An image of poor quality; you wish you could improve it. Interference is somewhat objectionable.		
5	Inferior	A very poor image, but you could watch it. Objectionable interference is definitely present.		
6	Unusable	An image so bad that you could not watch it.		

TABLE 8.2 Rating scale of the Television Allocations Study Organization. (Frendendall and Behrend.)

FIGURE 8.4 Three approximations of the image in Fig. 8.1(a).

Consider an 8-pixel line of intensity data, {108, 139, 135, 244, 172, 173, 56, 99}. If it is uniformly quantized with 4-bit accuracy, compute the rms error and rms signal-to-noise ratios for the quantized data.

f(x,y)		$\hat{f}(x,y)$
Base 10	Base 2	Base 2
108	01101100	0110
139	10001011	1000

f(x,y)		$\hat{f}(x,y)$		$16\hat{f}(x,y) - f(x,y)$
Base 10	Base 2	Base 2	Base 10	Base 10
108	01101100	0110	6	-12
139	10001011	1000	8	-11
135	10000111	1000	8	-7
244	11110100	1111	15	-4
172	10101100	1010	10	-12
173	10101101	1010	10	-13
56	00111000	0011	3	-8
99	01100011	0110	6	-3

Table P8.3

Using Eq. (8.1-10), the rms error is

osing Eq. (8.1-10), the rms error is
$$e_{rms} = \sqrt{\frac{1}{8} \sum_{x=0}^{0} \sum_{y=0}^{7} \left[16\hat{f}(x,y) - f(x,y) \right]^{2}}$$

 $=\sqrt{\frac{1}{8}(716)}$

 $= \sqrt{\frac{1}{9}\left[(-12)^2 + (-11)^2 + (-7)^2 + (-4)^2 + (-12)^2 + (-13)^2 + (-8)^2 + (-3)^2\right]}$

$$SNR_m$$

≥ 227.

$$SNR_{ms} = \frac{\sum_{x=0}^{0} \sum_{y=0}^{7} \left[16\hat{f}(x,y)\right]^{2}}{\sum_{x=0}^{0} \sum_{y=0}^{7} \left[16\hat{f}(x,y) - f(x,y)\right]^{2}}$$

$$96^{2} + 128^{2} + 128^{2} + 240^{2} + 160^{2} + 160^{2} + 48^{2} + 96^{2}$$

Image Compression Model (cont'd)

Mapper: transforms input data in a way that facilitates reduction of interpixel redundancies (spatial and temporal redundancy)

• Example - Run length coding

Image Compression Model (cont'd)

- Quantizer: reduces the accuracy of the mapper's output in accordance with some pre-established fidelity criteria.
- The goal is to keep irrelevant information out of the compressed representation.
- It is irreversible but it must be omitted when error free compression is desired.

Image Compression Model (cont'd)

• <u>Symbol encoder</u>: assigns the shortest code to the most frequently occurring output values – thus minimizing coding redundancy.

Image Compression Models (cont'd)

Inverse operations are performed.

Huffman Coding (coding redundancy)

- A variable-length coding technique.
- Optimal code (i.e., minimizes the number of code symbols per source symbol).

Huffman Coding (cont'd)

Forward Pass

- 1. Sort probabilities per symbol
- 2. Combine the lowest two probabilities
- 3. Repeat *Step2* until only two probabilities remain.

Original source			Source r	eduction	
Symbol	Probability	1	2	3	4
a_2	0.4	0.4	0.4	0.4 _	0 .6
a_2 a_6	0.3	0.3	0.3	0.3	0.4
a_1	0.1	0.1	- 0.2 -	- 0.3	0.4
a_4	0.1	0.1	0.1		
a_3	0.06	0.1			
a_5	0.04				

Huffman Coding (cont'd)

• Backward Pass

Assign code symbols going backwards

Ori	ginal sou	rce	Source reduction							
Sym.	Prob.	Code	Sili	1	3	2	3	3	4	4
a_{2} a_{6} a_{1} a_{4} a_{3} a_{5}	0.4 0.3 0.1 0.1 0.06 0.04	1 00 011 0100 01010 01011	0.4 0.3 0.1 0.1 - 0.1	1 00 011 0100 0101	0.4 0.3 0.2 0.1	1 00 010 011	0.4 0.3 — 0.3	00 -	0.6 0.4	0

Huffman Coding (cont'd)

• L_{avg} using Huffman coding:

$$L_{avg} = E(l(a_k)) = \sum_{k=1}^{6} l(a_k)P(a_k) =$$

3x0.1 + 1x0.4 + 5x0.06 + 4x0.1 + 5x0.04 + 2x0.3 = 2.2 bits/symbol

• L_{ave} assuming binary codes:

6 symbols, we need a 3-bit code

$$(a_1: 000, a_2: 001, a_3: 010, a_4: 011, a_5: 100, a_6: 101)$$

$$L_{avg} = \sum_{k=1}^{6} l(a_k)P(a_k) = \sum_{k=1}^{6} 3P(a_k) = 3 \sum_{k=1}^{6} P(a_k) = 3 \text{ bits/symbol}$$

Huffman Coding/Decoding

• After the code has been created, *coding/decoding* can be implemented using a look-up table.

Note that decoding is done unambiguously.

0	1	0	1	0,0	1	1	1	.1	0	0
`	6.48	a _z	87	_^ ヾ		_	-	1 /	7 /	a ₆

Original source					
Sym.	Prob.	Code			
0	0.4	1			
a_2 a_6	0.3	00			
a_1	0.1	011			
a.	0.1	0100			
a.	0.06	01010			
a ₄ a ₃ a ₅	0.04	01011			

Using the previously discussed Huffman decode the encoded string 01010000101111110100

O,	ginal sou	
Sym.	Prob.	Code
a-	0.4	1
a_2 a_6	0.3	00
a_1	0.1	011
a.	0.1	0100
a.	0.06	01010
a ₄ a ₃ a ₅	0.04	01011

a3 a6 a6 a2 a5 a2 a2 a2 a4.

Consider the simple 4×8 , 8-bit image:

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243

- (b) Compress the image using Huffman coding.
- (c) Compute the compression achieved and the effectiveness of the Huffman coding.

(c) Using Eq. (8.1-4), the average number of bits required to represent each pixel in the Huffman coded image (ignoring the storage of the code itself) is

$$L_{avg} = 1\left(\frac{3}{8}\right) + 2\left(\frac{3}{8}\right) + 3\left(\frac{1}{8}\right) + 3\left(\frac{1}{8}\right) = \frac{15}{8} = 1.875 \text{ bits/pixel}.$$

Thus, the compression achieved is

$$C = \frac{8}{1.875} = 4.27.$$

Because the theoretical compression resulting from the elimination of all coding redundancy is $\frac{8}{1.811} = 4.417$, the Huffman coded image achieves $\frac{4.27}{4.417} \times 100$ or 96.67% of the maximum compression possible through the removal of coding redundancy alone.

Arithmetic Coding (cont'd)

Encode message: a₁ a₂ a₃ a₃ a₄

Source Symbol	Probability
a_1	0.2
a_2	0.2
a_3	0.4
a_4	0.2
55455	

1) Assume message occupies [0, 1)

2) Subdivide [0, 1) based on the probability of α_i

Initial Subinterval
[0.0, 0.2)
[0.2, 0.4)
[0.4, 0.8)
[0.8, 1.0)

Example

Source Symbol	Probability	Initial Subinterval
a_1	0.2	[0.0, 0.2)
a_2	0.2	[0.2, 0.4)
a_3	0.4	[0.4, 0.8)
a_4	0.2	[0.8, 1.0)

Encode a₁ a₂ a₃ a₃ a₄ [0.06752, 0.0688) or, 0.068.

Arithmetic decoding of 0.068

Decode: 0.572

Arithmetic Decoding

LZW Coding (interpixel redundancy)

- Requires <u>no priori knowledge</u> of pixel probability distribution values.
- Lempel-Ziv-Welch code.
- Assigns fixed length code words to variable length sequences.
- Included in GIF and TIFF and PDF file formats

LZW Coding

- A codebook (or dictionary) needs to be constructed.
- Initially, the first 256 entries of the dictionary are assigned to the gray levels 0,1,2,..,255 (i.e., assuming 8 bits/pixel)

Consider a 4x4, 8 bit image

39	39	126	126
39	39	126	126
39	39	126	126
39	39	126	126

Dictionary Location	Entry
0	0
1	1
255	255
256	-
511	-

Currently Recognized Sequence	Pixel Being Processed	Encoded Output	Dictionary Location (Code Word)	Dictionary Entry
×	39			
39	39	39	256	39-39
39	126	39	257	39-126
126	126	126	258	126-126
126	39	126	259	126-39
39	39			
39-39	126	256	260	39-39-126
126	126			
126-126	39	258	261	126-126-39
39	39			
39-39	126			
39-39-126	126	260	262	39-39-126-126
126	39			
126-39	39	259	263	126-39-39
39	126			
39-126	126	257	264	39-126-126
126		126		
	39 39 126 126 39 39-39 126 126-126 39 39-39 39-39 39-39 39-39-126 126-39 39 39-126	Recognized Sequence Pixel Being Processed 39 39 39 39 39 126 126 126 126 39 39 39 39-39 126 126-126 39 39 39 39-39 126 39-39-126 126 126-39 39 39-126 126 39-126 126	Recognized Sequence Pixel Being Processed Encoded Output 39 39 39 39 39 39 39 126 39 126 126 126 126 39 126 39 39 39 39-39 126 256 126-126 39 258 39 39 39 39-39 126 260 126-39 39 259 39-126 126 257	Recognized Sequence Pixel Being Processed Encoded Output Location (Code Word) 39 39 39 256 39 126 39 257 126 126 126 258 126 39 126 259 39 39 256 260 126 126 256 260 126-126 39 258 261 39 39 258 261 39-39 126 260 262 126 39 259 263 39 126 259 263 39 126 259 263 39 126 259 263 39 126 257 264

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2 - Edition

Decoding LZW

• The dictionary which was used for encoding need not be sent with the image.

• Can be built on the "fly" by the decoder as it reads the received code words.

Symbol-Based Coding

In *symbol*- or *token-based* coding, an image is represented as a collection of frequently occurring sub-images, called *symbols*. Each such symbol is stored in a *symbol dictionary* and the image is coded as a set of triplets $\{(x_1, y_1, t_1), (x_2, y_2, t_2), \dots\}$, where each (x_i, y_i) pair specifies the location of a symbol in the image and *token* t_i is the address of the symbol or sub-image in the dictionary.

ababcabac

letztes W.	aktuelles W.	Einnag	Ausgabe
_	a	140	
۵	Ь	ab= 5	1
Ь	۹	ba=6	2
a	Ь		Ì
ab	c	abc=7	5 3
C	a	abc=7	3
a	Ь		_
ab	α	aba=9	5
0		ac = 10	1
c	C EOF		3

Use LZW to decompress the output sequence <66> <65> <256> <257> <65> <260>

- 1. 66 is in Dictionary; output string(66) i.e. B
- 2. 65 is in Dictionary; output string(65) i.e. A, insert BA
- 3. 256 is in Dictionary; output string(256) i.e. BA, insert AB
- 4. 257 is in Dictionary; output string(257) i.e. AB, insert BAA
- 5. 65 is in Dictionary; output string(65) i.e. A, insert ABA
- 260 is <u>not</u> in Dictionary; output previous output + previous output first character: AA, insert AA

Dictionary

а

01243

a b ab aba ba

Token	Symbol
0	
1	
2	

(0, 2,	0)
(3, 10)	, 1)
(3, 18)	, 2)
(3, 26)	, 1)
(3, 34)	, 2)
(3, 42)	, 1)

Compression ratio??

In this case, the starting image has 9x51x1 or 459 bits and, assuming that each

triplet is composed of 3 bytes, the compressed representation has 6x3x8

+[(9x7)+(6x7)+(6x6)] or 285 bits; the resulting compression ratio= 1.61

Bit-Plane Coding

The run-length and symbol-based techniques of the previous sections can be applied to images with more than two intensities by processing their bit planes individually. The technique, called bit-plane coding, is based on the concept of decomposing a multilevel (monochrome or color) image into a series of binary images.

The intensities of an *m*-bit monochrome image can be represented in the form of the base-2 polynomial

$$a_{m-1}2^{m-1} + a_{m-2}2^{m-2} + \dots + a_12^1 + a_02^0$$

Bit plane slicing: solution??

127	128	127
128	127	128
127	128	127

0	1	0
1	0	1
0	1	0

1	0	1
0	1	0
1	0	1

1	0	1
0	1	0
1	0	1

1	0	1
0	1	0
1	0	1

1	0	1
0	1	0
1	0	1

1	0	1
0	1	0
1	0	1

1	0	1
0	1	0
1	0	1

1	0	1
0	1	0
1	0	1

Gray codes instead of binary!

128⇒ 10000000 ⇒ 11000000

127⇒ 011111111 ⇒ 01000000

$$g_i = a_i \oplus a_{i+1} \quad 0 \le i \le m-2$$

 $g_{m-1} = a_{m-1}$

Bit plane slicing: solution??

127	128	127
128	127	128
127	128	127

0	1	0
1	0	1
0	1	0

1	1	1
1	1	1
1	1	1

0	0	0
0	0	0
0	0	0

0	0	0
0	0	0
0	0	0

0	0	0
0	0	0
0	0	0

0	0	0
0	0	0
0	0	0

0	0	0
0	0	0
0	0	0

0	0	0
0	0	0
0	0	0

g₆

 a_7, g_7

Predictive coding

The approach, commonly referred to as predictive coding, is based on eliminating the redundancies of closely spaced pixels—in space and/or time— by extracting and coding only the new information in each pixel. The new information of a pixel is defined as the difference between the actual and predicted value of the pixel

1. Lossless predictive coding

The system consists of an encoder and a decoder, each containing an identical predictor. As successive samples of discrete time input signal, f(n), are introduced to the encoder, the predictor generates the anticipated value of each sample based on a specified number of past samples. The output of the predictor is then rounded to the nearest integer, denoted $\hat{f}(n)$, and used to form the difference or prediction error

$$e(n) = f(n) - \hat{f}(n)$$

The decoder reconstructs e(n) from the received variable-length code words and performs the inverse operation

$$f(n) = e(n) + \hat{f}(n)$$

to decompress or recreate the original input sequence.

Various local, global, and adaptive methods (see the later subsection entitled Lossy predictive coding) can be used to generate $\hat{f}(n)$. In many cases, the prediction is formed as a linear combination of m previous samples. That is,

$$\hat{f}(n) = \text{round} \left[\sum_{i=1}^{m} \alpha_i f(n-i) \right]$$

where m is the *order* of the linear predictor, round is a function used to denote the rounding or nearest integer operation, and the α_i for i = 1, 2, ..., m are prediction coefficients

the *m* samples used to predict the value of each pixel come from the current scan line (called 1-D linear predictive coding), from the current and previous scan lines (called 2-D linear predictive coding), or from the current image and previous images in a sequence of images (called 3-D linear predictive coding). Thus, for 1-D linear predictive image coding, Eq. (8.2-32) can be written as

$$\hat{f}(x, y) = \text{round} \left[\sum_{i=1}^{m} \alpha_i f(x, y - i) \right]$$

Lossy predictive coding

$$\dot{f}(n) = \dot{e}(n) + \hat{f}(n)$$

Delta modulation:

$$\hat{f}(n) = \alpha \dot{f}(n-1)$$

$$\dot{e}(n) = \begin{cases} +\zeta & \text{for } e(n) > 0 \\ -\zeta & \text{otherwise} \end{cases}$$

BLOCK TRANSFORM CODING

g(x, y) of size $n \times n$ whose forward, discrete transform, T(u, v), can be expressed in terms of the general relation

$$T(u,v) = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} g(x,y) r(x,y,u,v)$$
 (8.2-10)

for u, v = 0, 1, 2, ..., n - 1. Given T(u, v), g(x, y) similarly can be obtained using the generalized inverse discrete transform

$$g(x, y) = \sum_{u=0}^{n-1} \sum_{v=0}^{n-1} T(u, v) s(x, y, u, v)$$
 (8.2-11)

for x, y = 0, 1, 2, ..., n - 1. In these equations, r(x, y, u, v) and s(x, y, u, v) are called the *forward* and *inverse transformation kernels*, respectively.

One of the transformations used most frequently for image compression is the discrete cosine transform (DCT). It is obtained by substituting the following (equal) kernels into Eqs. (8.2-10) and (8.2-11)

$$r(x, y, u, v) = s(x, y, u, v)$$

$$= \alpha(u)\alpha(v)\cos\left[\frac{(2x+1)u\pi}{2n}\right]\cos\left[\frac{(2y+1)v\pi}{2n}\right] \quad (8.2-18)$$

where

$$\alpha(u) = \begin{cases} \sqrt{\frac{1}{n}} & \text{for } u = 0\\ \sqrt{\frac{2}{n}} & \text{for } u = 1, 2, \dots, n - 1 \end{cases}$$
(8.2-19)

and similarly for $\alpha(v)$. Figure 8.23 shows r(x, y, u, v) for the case n = 4.

a

FIGURE 8.25 The periodicity implicit in the 1-D (a) DFT and (b) DCT.

Jpeg

JPEG is an image compression standard which was accepted as an international standard in 1992.

Developed by the Joint Photographic Expert Group of the ISO/IEC for coding and compression of color/gray scale images.

Yields acceptable compression in the 10:1 range.

A scheme for video compression based on JPEG called Motion JPEG (MJPEG) exists

JPEG

Lossy Compression Technique based on use of Discrete Cosine Transform (DCT)

STEPS IN JPEG COMPRESSION:

- 1. Divide Each plane into 8x8 size blocks.
- 2. Compute DCT of each block
- 3. Treat separately DC components of each block.
- 4. Apply Quantization to discard values
- 5. Encode DC components and transmit data.

Steps in JPEG

1. Divide the image into 8x8 subimages;

For each subimage do:

- 2. Shift the gray-levels in the range [-128, 127] DCT requires range be centered around 0
- 3. Apply DCT (i.e., 64 coefficients)

1 DC coefficient: F(0,0)

63 AC coefficients: F(u,v)

Image Compression Standards JPEG Encoding - Example

DCT

F(0,0) = (1/8) * addition of

matrix = (1/8) *
$$F(0,0) = (1/8) * (-3317) = -$$

414.62 =~ -415

Z represents quality

55 - 20 - 1

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

0

-415 -29 -62 25

If DC coefficient of the transformed and quantized sub-image to its immediate left

Zigzag

ordering

[-26 -3 1 -3 -2 -6 2 -4 1 -4 1 1 5 0 2 0 0 -1 2 0 0 0 0 0 -1 -1 EOB]

DCT-1

+128 53 64 81 67

56 55 67

119 141 116

Error

TABLE 8.17JPEG coefficient coding categories.

Range	DC Difference Category	AC Category	
0	0	N/A	
-1, 1	1	1	
-3, -2, 2, 3	2	2	
$-7, \ldots, -4, 4, \ldots, 7$	3	3	
$-15, \ldots, -8, 8, \ldots, 15$	4	4	
$-31, \ldots, -16, 16, \ldots, 31$	5	5	
$-63, \ldots, -32, 32, \ldots, 63$	6	6	
$-127, \ldots, -64, 64, \ldots, 127$	7	7	
-255,, -128, 128,, 255	8	8	
-511,, -256, 256,, 511	9	9	
$-1023, \ldots, -512, 512, \ldots, 1023$	A	A	
-2047,, -1024, 1024,, 2047	В	В	
$-4095, \ldots, -2048, 2048, \ldots, 4095$	C	C	
-8191,,-4096, 4096,, 8191	D	D	
-16383,, -8192, 8192,, 16383	E	E	
-32767,,-16384,16384,,32767	F	N/A	

TABLE 8.18JPEG default DC

code (luminance).

Category	Base Code	Length	Category	Base Code	Length
0	010	3	6	1110	10
1	011	4	7	11110	12
2	100	5	8	111110	14
3	00	5	9	1111110	16
4	101	7	A	11111110	18
5	110	8	В	111111110	20

Run/ Category	Base Code	Length	Run/ Category	Base Code	Length
0/0	1010 (= EOB)	4			
0/1	00	3	8/1	11111010	9
0/2	01	4	8/2	1111111111000000	17
0/3	100	6	8/3	11111111110110111	19
0/4	1011	8	8/4	1111111111111111000	20
0/5	11010	10	8/5	11111111110111001	21
0/6	111000	12	8/6	11111111110111010	22
0/7	1111000	14	8/7	11111111110111011	23
0/8	1111110110	18	8/8	111111111101111100	24
0/9	11111111110000010	25	8/9	11111111110111101	25
0/A	11111111110000011	26	8/A	111111111101111110	26
1/1	1100	5	9/1	111111000	10
1/2	111001	8	9/2	11111111110111111	18
1/3	1111001	10	9/3	11111111111000000	19
1/4	111110110	13	9/4	11111111111000001	20
1/5	111111110110	16	9/5	11111111111000010	21
1/6	11111111110000100	22	9/6	11111111111000011	22
1/7	11111111110000101	23	9/7	11111111111000100	23
1/8	11111111110000110	24	9/8	11111111111000101	24
1/9	11111111110000111	25	9/9	11111111111000110	25
1/A	11111111110001000	26	9/A	11111111111000111	26
2/1	11011	6	A/1	111111001	10
2/2	11111000	10	A/2	11111111111001000	18
2/3	1111110111	13	A/3	11111111111001001	19
2/4	11111111110001001	20	A/4	11111111111001010	20
2/5	11111111110001010	21	A/5	11111111111001011	21
2/6	11111111110001011	22	A/6	11111111111001100	22
2/7	11111111110001100	23	A/7	1111111111001101	23

JPEG default AC code (luminance) (continues on next page).

TABLE 8.19

Table 8.19 (Con't)

2/8	11111111110001101	24	A/8	1111111111001110	24
	11111111110001110			11111111111001111	25
2/A	11111111110001111	26	A/A	11111111111010000	26
	111010 111110111 11111110111	7	B/1	111111010	10
	111110111	11	B/2	11111111111010001	18
	11111110111	14	B/3	11111111111010010	19
3/4	11111111110010000	20	B/4	11111111111010011	20
3/5	11111111110010001	21	B/5	11111111111010100	21
3/6	11111111110010010	22	B/6	11111111111010101	22
3/7	11111111110010011	23		11111111111010110	23
3/8	11111111110010100	24	B/8	111111111110101111	24
	11111111110010101	25		11111111111011000	25
	11111111110010110		B/A	11111111111011001	26
4/1	111011	7	C/1	1111111010	11
4/2	1111111000	12	C/2	11111111111011010	18
4/3	11111111110010111	19	C/3	11111111111011011	19
4/4	11111111110011000	20	C/4	11111111111011100	20
4/5	11111111110011001	21	C/5	11111111111011101	21
4/6	11111111110011010	22		11111111111011110	22
	11111111110011011			11111111111011111	23
	11111111110011100		C/8	11111111111100000	24
	11111111110011101		C/9	11111111111100001	25
4/A	11111111110011110	26		11111111111100010	26

■ The BMP file format uses a form of run-length encoding in which image data is represented in two different modes: encoded and absolute—and either mode can occur anywhere in the image. In encoded mode, a two byte RLE representation is used. The first byte specifies the number of consecutive pixels that have the color index contained in the second byte. The 8-bit color index selects the run's intensity (color or gray value) from a table of 256 possible intensities.

In absolute mode, the first byte is 0 and the second byte signals one of four possible conditions, as shown in Table 8.8. When the second byte is 0 or 1, the end of a line or the end of the image has been reached. If it is 2, the next two bytes contain unsigned horizontal and vertical offsets to a new spatial position (and pixel) in the image. If the second byte is between 3 and 255, it specifies the number of uncompressed pixels that follow—with each subsequent byte containing the color index of one pixel. The total number of bytes must be aligned on a 16-bit word boundary.

Second Byte Value	Condition		
0	End of line		
1	End of image		
2	Move to a new position		
3-255	Specify pixels individually		

Decode the BMP encoded sequence $\{3, 4, 5, 6, 0, 3, 103, 125, 67, 0, 2, 47\}$.

Using the BMP specification given in Example 8.8 of Section 8.2.5, the first two bytes indicate that the uncompressed data begins with a run of 4s with length In a similar manner, the second two bytes call for a run of 6s with length 5. The first four bytes of the BMP encoded sequence are encoded mode. Because the 5th byte is 0 and the 6th byte is 3, absolute mode is entered and the next three values are taken as uncompressed data. Because the total number of bytes in absolute mode must be aligned on a 16-bit word boundary, the 0 in the 10th byte of the encoded sequence is padding and should be ignored. The final two bytes specify an encoded mode run of 47s with length 2. Thus, the complete uncompressed sequence is {4, 4, 4, 6, 6, 6, 6, 6, 6, 103, 125, 67, 47, 47}.

Consider a binary (black and white) image of size 8x8 pixels. Region splitting and merging algorithm is applied on the image. The quad tree generated is given by following sequence of symbols: g(g(wbbw)g(bg(bwwb)ww)g(bwww)g(wwbw)). In which the homogeneous square black pixels block are encoded by b, the homogeneoussquare white pixels block by w and the nonhomogeneous square pixel block by g is described. Calculate the number of white pixels and black pixels the image contains. Show your calculation.