Exercises on diagonalization and powers of A

January 15, 2017

22.1

In order to find the eigenvectors of A, we first need to find the eigenvalues by solving:

$$\det(A - \lambda I) = 0$$

$$\det\begin{bmatrix} 4 - \lambda & 0 \\ 1 & 2 - \lambda \end{bmatrix} = \det\begin{bmatrix} 4 - \lambda & 0 \\ 0 & 2 - lambda \end{bmatrix} = (4 - \lambda)(2 - \lambda) = 0$$

$$\lambda = 4, 2$$
 When $\lambda = 4$, $(A - \lambda I)x = \begin{bmatrix} 0 & 0 \\ 1 & -2 \end{bmatrix}x = 0 \rightarrow x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
When $\lambda = 2$, $(A - \lambda I)x = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix}x = 0 \rightarrow x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Therefore, S has the columns of multiples of the two eigenvectors above.

The matrices that diagonalize A^{-1} is the same because $A^{-1} = S\Lambda^{-1}S^{-1}$

22.2

To find Λ and S of A, we can solve:

$$det \begin{bmatrix} 0.6 - \lambda & 9 \\ 0.4 & 0.1 - \lambda \end{bmatrix} = det \begin{bmatrix} 0.6 - \lambda & 0.9 \\ 0 & (0.1 - \lambda) - \frac{0.36}{0.6 - \lambda} \end{bmatrix} = \frac{0.7 \pm \sqrt{1.69}}{2}$$
$$\lambda = 1, -0.3$$

When
$$\lambda = 1$$
, $(A - \lambda I)x = \begin{bmatrix} -0.4 & 0.9 \\ 0.4 & -0.9 \end{bmatrix} x = 0 \rightarrow x = \begin{bmatrix} 0.9 \\ 0.4 \end{bmatrix}$.

When
$$\lambda = -0.3$$
, $(A - \lambda I)x = \begin{bmatrix} 0.9 & 0.9 \\ 0.4 & 0.4 \end{bmatrix} x = 0 \rightarrow x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Therefore,
$$\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & -0.3 \end{bmatrix}$$
 and $S = \begin{bmatrix} 9 & 1 \\ 4 & -1 \end{bmatrix}$.

As
$$\Lambda^k \to \infty$$
, $\Lambda \to \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $S\Lambda^{\infty}S^{-1} \to \begin{bmatrix} 9 & 1 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \left(-\frac{1}{13} \right) \begin{bmatrix} -1 & -1 \\ -4 & 9 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} 9 & 9 \\ 4 & 4 \end{bmatrix}$. The columns of this matrix are steady state vectors.