Kemi Vecka 14 lektion 3

Simon Freiermuth 15 April 2020

Molekyl	C_{init}	n_{init}	$C_{\frac{1}{2}eq}$	$n_{\frac{1}{2}eq}$	C_{eq}	n_{eq}
$CH_3 - NH_2$	0.0025	0.05	0.4	0.025	_	_
HCl	_	_	_	_	_	_
$CH_3 - NH_3^+$	_	_	0.4	0.025	$3.3*10^{-2}$	0.0025
OH^-	$6.3 * 10^{-3}$	0.126	$5.0 * 10^{-4}$	$8.0*10^{-3}$	$1.0 * 10^{-8}$	$1.3 * 10^{-7}$
Total volym	$V_{init} = 0.050$		$V_{\frac{1}{2}eq} = 0.05 + 0.0125$		$V_{eq} = 0.050 + 0.025$	

 $C_{init}(OH^{-}) = 10^{-(14-pH)} = 6.3 * 10^{-3} \ mol/dm^{3}$

$$\begin{split} C_{\frac{1}{2}eq}(OH^{-}) &= 10^{-(14-pH)} = \\ 5.0*10^{-4} \ mol/dm^{3} \end{split}$$

 $C_{eq}(OH^{-}) = 10^{-(14-pH)} = 1.0 * 10^{-8} \ mol/dm^{3}$

$$C = \frac{n}{V} \rightarrow V = \frac{n}{C} \rightarrow n = C * V$$

$$pH = pK_a + log(\frac{[A^-]}{[HA]})$$

$$K_b = \frac{[CH_3 - NH_3^+] * [OH^-]}{[CH_3 - NH_2]}$$

$$log(K_b) = log(\frac{[CH_3 - NH_3^+] * [OH^-]}{[CH_3 - NH_2]})$$

$$\begin{array}{l} -pK_b = \\ log\Big(\frac{[CH_3-NH_3^+]}{[CH_3-NH_2]}\Big) + log([OH^-]) \end{array}$$

$$-pK_b = log(\frac{[CH_3 - NH_3^+]}{[CH_3 - NH_2]}) - pOH$$

$$pK_b = log(\frac{[CH_3 - NH_3^+]}{[CH_3 - NH_2]}) + pOH$$

$$pOH = pK_b + log\left(\frac{[CH_3 - NH_3^+]}{[CH_3 - NH_2]}\right)$$

$$pOH_{\frac{1}{2}eq} = pK_b + log(1)$$

$$pK_b = 3.4$$

Vid ekvivalenspunkten har vi ingen $CH_3 - NH_2$ kvar, allt har förbrukats av HCl. Vi hällde i 0.025 dm^3 0.1 molarig lösning HCl

$$n_{tillsatt}(HCl) = n_{eq}(CH_3 - NH_3^+) = n_{init}(CH_3 - NH_2)$$

$$n_{tillsatt}(HCl) = V(HCl) * C(HCl)$$

$$n_{tillsatt}(HCl) = 0.025 * 0.1 = 0.0025 mol$$

Reaktionen vid Ekvivalenspunkten: $CH_3-NH_3^+ \ + \ H_2O \ \rightleftharpoons \ CH_3-NH_2 \ + \ H_3O^+$

Bromkresol röd är den bästa indikatorn eftersom dess färgomslag är närmast titrerpunkten