

Points & Surfaces

Johannes Müller

With materials from:

Robert Haase

Marco Musy

Ben Gross

Inherent limitation of image data as arrays:

- → Biology does not have edges at pixels
- → Measurements get distorted by pixel artifacts especially for smaller objects

Common image data

Limitations of image data as arrays:

- → Small objects: Biology does not have edges at pixels
- → Small objects: Measurements get distorted by pixel artifacts
- → Large objects: Storing raw and processed images requires huge storage!
- → Large objects after segmentation: Most of the pixels/voxels carry no useful information

Useful pixels for shape

1000x1000x1000

Intensity Image

1000x1000x1000

Binary image

1000x1000x1000

Label image

Points:

- → Represent shape of objects by points on surface
- → Points can be between pixels!
- → Coordinates have **physical units**

Surfaces/Meshs:

→ Connect neighboring points with graph structure

```
array([[13.1896702 , 10.97073578],
       [15.15516485, 10.18453792],
```


Meshes consist of vertices, edges and faces:

- \rightarrow Vertices (1, 2, 3, 4, 5)
- \rightarrow Edges (a, b, c, d, e, f, g)
- \rightarrow Faces (A, B, C)

Mesh structure

Mesh data structure:

Point x	Point y	Point z
x_{1}	y ₁	z_1
X_2	Y_2	Z_2
X_3	Y ₃	Z_3
X_4	Y ₄	Z_4

Point 1	Point 2	Point 3
1	2	3
1	2	4
2	3	4
1	3	4

For simplicity: Only triangles

How many vertices would a pyramid have as a mesh object?

How many edges would a pyramid have as a mesh object?

How many faces would a pyramid have as a mesh object?

Generating meshes from label images

Marching cubes: Converts label image into surface (Cline & Lorensen, 1985)

- → Slide cube over image (similar to filter concept)
- → Are cube corners inside or outside of the label object?

→ Finite possibilities of how surface planes can be oriented with respect to the label surface

Generating meshes from points

Surface reconstruction algorithms:

- Signed distance + flying edges
 - → Calculate distance to nearest point at sample location
 - → Fit curve to zero-crossings
 - → Surface vertices approximated

- Ball pivoting
 - → Rolling ball over points
 - → Preserves original points
 - → Can lead to holes

Processing meshes

Source: https://github.com/haesleinhuepf/napari-process-points-and-surfaces

Typical mesh processing algorithms

- Reconstruction (1)
- Convex hull (2)
- Mesh smoothing (simple) (3)
- Mesh smoothing (Laplacian) (4)
- Mesh smoothing (taubin) (5)
- Mesh simplification I (6)
- Mesh simplification II (7)

Further operations:

- Connected components
- Hole filing

Standard shape features

- Volume, surface area (perimeter), elongation

Surface area: 5.646863245482599

Volume: 0.7620278501410354

Asphericity: $\frac{\pi^{\frac{1}{3}}(6V)^{\frac{2}{3}}}{A}$

(V: Volume, A: Surface area)

- → measure of compactness
- → This is actually just

Circularity in 3D

Roundness in 3D

Solidity in 3D

Face-wise features: Local surface shape descriptors

```
- EDGE RATIO, 0
- ASPECT RATIO, 1
- RADIUS RATIO, 2
- ASPECT FROBENIUS, 3
- MED ASPECT FROBENIUS, 4
- MAX ASPECT FROBENIUS, 5
- MIN_ANGLE, 6
- COLLAPSE RATIO, 7
- MAX ANGLE, 8
- CONDITION, 9
- SCALED JACOBIAN, 10
- SHEAR, 11
- RELATIVE SIZE SQUARED, 12
- SHAPE, 13
- SHAPE AND SIZE, 14
- DISTORTION, 15
- MAX EDGE RATIO, 16
- SKEW, 17
- TAPER, 18
- VOLUME, 19
- STRETCH, 20
- DIAGONAL, 21
- DIMENSION, 22
- ODDY, 23
- SHEAR AND SIZE, 24
- JACOBIAN, 25
- WARPAGE, 26
- ASPECT GAMMA, 27
- AREA, 28
- ASPECT BETA, 29
```

Measurable features: fancy

Geodesic distances:

- → Shortest distance on surface between two points
- → Can be found with Djikstra algorithm

Surface curvature

- → Mean curvature: [0,...]
- → Gaussian curvature: [-...,...] (identifies ridge regions)

Euler characteristics:

→ Distinguish topologies of objects

 \rightarrow Euler characteristic $\chi = n_{points} - n_{edges} + n_{faces}$

Sources: Stanford Computer Graphics Laboratory https://graphics.stanford.edu/data/3Dscanrep/

https://vedo.embl.es, License: https://vedo.embl.es/examples/data/LICENSE.txt

Where there are features...

There is data science!

Annotated surface regions

Prediction on surface

Recent feature: SVeC (surface vertex classification)

- →Interactively annotate surface vertices
- → Predict class membership of all other vertices

Coming soon:

- → Dimensionality reduction on meshes
- → Clustering on meshes

Source: Stanford Computer Graphics Laboratory https://graphics.stanford.edu/data/3Dscanrep/
https://github.com/haesleinhuepf/napari-accelerated-pixel-and-object-classification
October 2022

Spherical harmonics

Basic idea:

→ Express object shape as superposition of multiple elemental shapes

l:		$P_{\ell}^{m}(\cos\theta) \cos(m\varphi)$						$P_\ell^{ m }(\cos heta) \sin(m arphi)$						
0	s													Z
1	р						•0	8	•				X/	~у
2	d					06	×	÷	\$	eje.				
3	f				2/6	34	×	4	N.	*	90			
4	g			9/9	*	₩	$\frac{N}{N}$	#	$\frac{k_i}{q}$	*	冰	4/6		
5	h		96	*	*	Ħ	禁	ф	被	米	米	*	90	
6	i	*	滌	*	*	辨	*	ф	*	*	*	*	*	2/0
	m:	6	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6

→ Final object shape described by spherical harmonics coeffcients

Historical background:

- → Describe probability distributions of electron location in nuclear shell
- → First described in 1782

→ Leads to the concept of **shape-spectra** of objects

Napari-stress

Application: Measure quantitative tissue stresses

- → Inject droplet of known interfacial tension into tissue
- → Reconstruct surface
- → Spherical harmonics expansion
- → Calculate surface curvature

Local maxima

1

tight junctions of neighboring cells

Source: Gross et al. (biorXiv, 2021)

Why meshes?

Pol Physics of Life Til Presden

- **Lightweight:** Label image of 0.5GB = Surface data of ~7MB
- Speed: Mesh structures are fast to render and interact visually
- Quantitative measurements: Using Mesh structures capture the shape of objects on a more abstract levels
- 3D-printable: Meshes are the native format for 3D printers!
- Relevant Python packages: Vedo, open3d

3D printed cell nucleus from cryo-EM

Home Blog Documentation Code Help

In Napari

viewer.add_surface(bunny)

viewer.add_points(points_array, size=0.01, face_color='red')