

Home Gameboard Physics Electricity Resistors Essential Pre-Uni Physics C1.3

Essential Pre-Uni Physics C1.3

Figure 1: Two different resistor arrangements

Part A Combination (E)

What is the resistance of combination (E)? Answer to 2 significant figures.

Part B Combination (F)

What is the resistance of combination (F)? Answer to 2 significant figures.

<u>Home</u> <u>Gameboard</u> Physics Electricity Resistors Essential Pre-Uni Physics C1.7

Essential Pre-Uni Physics C1.7

Complete the questions in the table.

Length / m	Wire thickness	Resistivity / $\Omega\mathrm{m}$	Resistance / Ω
15000	$1.0\mathrm{cm}$ diameter	$1.5 imes10^{-7}$	R

What is the resistance R? Please provide your answer to 2 significant figures

Gameboard:

STEM SMART Physics 46 - Revision - Electricity

Home Gameboard Physics Electricity Charge & Current Essential Pre-Uni Physics C2.3

Essential Pre-Uni Physics C2.3

Data:

• Magnitude of the charge on the electron = $1.60 imes 10^{-19} \, \mathrm{C}$

Alpha particles have twice the charge of an electron. What is the current caused by a radioactive source which emits 3000 alpha particles per second, to 3 significant figures?

Gameboard:

STEM SMART Physics 46 - Revision - Electricity

Home Gameboard Physics Electricity Resistors Essential Pre-Uni Physics C5.7

Essential Pre-Uni Physics C5.7

Figure 1: Circuit diagram

The $8.0\,\Omega$ resistance in this circuit is a loudspeaker (the battery represents the amplifier). The other resistor is replaced with a variable resistor which can take the values between $0\,\Omega$ and $30\,\Omega$, and is used as a volume control. This volume control changes the voltage across the speaker.

Part A Minimum voltage

a) What is the minimum possible voltage across the speaker?

Part B Maximum voltage

b) What is the maximum possible voltage across the speaker?

Gameboard:

STEM SMART Physics 46 - Revision - Electricity

<u>Home</u> <u>Gameboard</u> Physics Electricity Internal Resistance Essential Pre-Uni Physics C6.4

Essential Pre-Uni Physics C6.4

A high-resistance voltmeter is connected in parallel with a portable battery used to start cars. Before the car is connected, the meter reads $12.4\,\mathrm{V}$. When the car is connected, and a $64\,\mathrm{A}$ current is flowing, the meter reads $11.5\,\mathrm{V}$.

Part A	E.m.f. of the battery	
What is the e.m.f. of the battery to 3 significant figures?		
Part B	Internal resistance of the battery	
What is	the internal resistance of the battery?	

Gameboard:

STEM SMART Physics 46 - Revision - Electricity

<u>Home</u> <u>Gameboard</u> Physics Electricity Resistors Current Division 9.3

Current Division 9.3

How much current flows through a $330\,\Omega$ resistor which is connected in parallel with a $68\,\Omega$ resistor which is carrying $40\,mA$ by itself?

Gameboard:

STEM SMART Physics 46 - Revision - Electricity

<u>Home</u> <u>Gameboard</u> Physics Electricity Power Power in a Potential Divider 10.9

Power in a Potential Divider 10.9

Calculate the voltage, current and power for each of the resistors in the circuit in Figure 1.

Figure 1: A circuit.

Part A $R=10\,\mathrm{k}\Omega$

What is the voltage across the $10\,k\Omega$ resistor?

What is the current through the $10\,k\Omega$ resistor?

What is the power dissipated by the $10\,\mathrm{k}\Omega$ resistor?

<u>Home</u> <u>Gameboard</u> Physics Electricity Power Power in a Potential Divider 10.8

Power in a Potential Divider 10.8

