A perceptron learns to perform a binary NAND function on inputs x_1 and x_2 .

Inputs: x_0 , x_1 , x_2 , with input x_0 held constant at 1.

Threshold (t): 0.5

5 of 8 Bias (**b**): 0

\W/

Bias (**b**): 0

Learning rate (r): 0.1

Training set, consisting of four samples: $\{((0,0),1),((0,1),1),((1,0),1),((1,1),0)\}$

In the following, the final weights of one iteration become the initial weights of the next. Each cycle over all the samples in the training set is demarcated with heavy lines.

		Inp	ut	Initial		Output										
	Sensor values		Desired output	weights		Per sensor			Sum Netw	Network	Error	Correction	Final weights			
x_0	x_1	x_2	z	w_0	w_1	w_2	c_0	c_1	c_2	s	n	e	d	w_0	w_1	w_2
							$x_0 * w_0$	$x_1 * w_1$	$x_2 * w_2$	$c_0 + c_1 + c_2$	$\begin{array}{c} \text{if } s > t \\ \text{then 1, else} \\ 0 \end{array}$	z-n	r * e	$\Delta(x_0*d)$	$\Delta(x_1*d)$	$\Delta(x_2*d)$
1	0	0	1	0	0	0	0	0	0	0	0	1	+0.1	0.1	0	0
1	0	1	1	0.1	0	0	0.1	0	0	0.1	0	1	+0.1	0.2	0	0.1
1	1	0	1	0.2	0	0.1	0.2	0	0	0.2	0	1	+0.1	0.3	0.1	0.1
1	1	1	0	0.3	0.1	0.1	0.3	0.1	0.1	0.5	0	0	0	0.3	0.1	0.1
1	0	0	1	0.3	0.1	0.1	0.3	0	0	0.3	0	1	+0.1	0.4	0.1	0.1
1	0	1	1	0.4	0.1	0.1	0.4	0	0.1	0.5	0	1	+0.1	0.5	0.1	0.2
1	1	0	1	0.5	0.1	0.2	0.5	0.1	0	0.6	1	0	0	0.5	0.1	0.2
1	1	1	0	0.5	0.1	0.2	0.5	0.1	0.2	0.8	1	-1	-0.1	0.4	0	0.1
1	0	0	1	0.4	0	0.1	0.4	0	0	0.4	0	1	+0.1	0.5	0	0.1
1	0	1	1	0.5	0	0.1	0.5	0	0.1	0.6	1	0	0	0.5	0	0.1
1	1	0	1	0.5	0	0.1	0.5	0	0	0.5	0	1	+0.1	0.6	0.1	0.1
1	1	1	0	0.6	0.1	0.1	0.6	0.1	0.1	0.8	1	-1	-0.1	0.5	0	0
1	0	0	1	0.5	0	0	0.5	0	0	0.5	0	1	+0.1	0.6	0	0
1	0	1	1	0.6	0	0	0.6	0	0	0.6	1	0	0	0.6	0	0
1	1	0	1	0.6	0	0	0.6	0	0	0.6	1	0	0	0.6	0	5/8/2014 1

6 of 8

10:45 AM

1	0	1	1	0.6	0	0	0.6	0	0	0.6	1	0	0	0.6	0	0
1	1	0	1	0.6	0	0	0.6	0	0	0.6	1	0	0	0.6	0	0
1	1	1	0	0.6	0	0	0.6	0	0	0.6	1	-1	-0.1	0.5	-0.1	-0.1
1	0	0	1	0.5	-0.1	-0.1	0.5	0	0	0.5	0	1	+0.1	0.6	-0.1	-0.1
1	0	1	1	0.6	-0.1	-0.1	0.6	0	-0.1	0.5	0	1	+0.1	0.7	-0.1	0
1	1	0	1	0.7	-0.1	0	0.7	-0.1	0	0.6	1	0	0	0.7	-0.1	0
1	1	1	0	0.7	-0.1	0	0.7	-0.1	0	0.6	1	-1	-0.1	0.6	-0.2	-0.1
1	0	0	1	0.6	-0.2	-0.1	0.6	0	0	0.6	1	0	0	0.6	-0.2	-0.1
1	0	1	1	0.6	-0.2	-0.1	0.6	0	-0.1	0.5	0	1	+0.1	0.7	-0.2	0
1	1	0	1	0.7	-0.2	0	0.7	-0.2	0	0.5	0	1	+0.1	0.8	-0.1	0
1	1	1	0	0.8	-0.1	0	0.8	-0.1	0	0.7	1	-1	-0.1	0.7	-0.2	-0.1
1	0	0	1	0.7	-0.2	-0.1	0.7	0	0	0.7	1	0	0	0.7	-0.2	-0.1
1	0	1	1	0.7	-0.2	-0.1	0.7	0	-0.1	0.6	1	0	0	0.7	-0.2	-0.1
1	1	0	1	0.7	-0.2	-0.1	0.7	-0.2	0	0.5	0	1	+0.1	0.8	-0.1	-0.1
1	1	1	0	0.8	-0.1	-0.1	0.8	-0.1	-0.1	0.6	1	-1	-0.1	0.7	-0.2	-0.2
1	0	0	1	0.7	-0.2	-0.2	0.7	0	0	0.7	1	0	0	0.7	-0.2	-0.2
1	0	1	1	0.7	-0.2	-0.2	0.7	0	-0.2	0.5	0	1	+0.1	0.8	-0.2	-0.1
1	1	0	1	0.8	-0.2	-0.1	0.8	-0.2	0	0.6	1	0	0	0.8	-0.2	-0.1
1	1	1	0	0.8	-0.2	-0.1	0.8	-0.2	-0.1	0.5	0	0	0	0.8	-0.2	-0.1
1	0	0	1	0.8	-0.2	-0.1	0.8	0	0	0.8	1	0	0	0.8	-0.2	-0.1
1	0	1	1	0.8	-0.2	-0.1	0.8	0	-0.1	0.7	1	0	0	0.8	-0.2	-0.1

This example can be implemented in the following Python code.

7 of 8

```
threshold = 0.5
learning_rate = 0.1
weights = [0, 0, 0]
training_set = [((1, 0, 0), 1), ((1, 0, 1), 1), ((1, 1, 0), 1), ((1, 1, 1), 0)]
def dot_product(values, weights):
    return sum(value * weight for value, weight in zip(values, weights))
```