(MAT-105W)

All Questions

Contents

- (1) Limit And Continuity
- (2) Graph Of A Function
- (3) Derivative
- (4) Maxima Minima
- (5) Rolle's Theorem
- (6) Mean Value Theorem
- (7) Euler's Theorem
- (8) Taylor And Maclaurin's Polynomial
- (9) Integration: As an Inverse Process of Differentiation
- (10) Definite Integral as The Limit of a Sum
- (11) Reduction Formula
- (12) Improper Integral

Limit and Continuity

Every differentiable function is continuous, but every continuous function need not to be differentiable.

(1) Show that the function $f(x) = x^2 + 2$ is continuous and differentiable at x = 1.

(2) If
$$f(x) = \begin{cases} x ; 0 \le x \le \frac{1}{2} \\ 1 - x ; \frac{1}{2} \le x \le 1 \end{cases}$$

Show that f(x) is continuous at $x = \frac{1}{2}$ but f(x) is not differentiable at that point.

(3) If
$$f(x) = \begin{cases} 1 & when \ x \le 1 \\ x & when \ x > 1 \end{cases}$$

test the continuity and differentiability at x=1.

(4) Discuss the continuity and differentiability at x=0 of the function

$$f(x) = \begin{cases} 1 & \text{when } x < 0 \\ 1 + \sin x & \text{when } 0 \le x \le \frac{\pi}{2} \end{cases}$$

(5) Discuss the continuity and differentiability at x=0 and $x=\frac{\pi}{2}$ of the function

Notes of Promí § Notes of Shanto
$$f(x) = \begin{cases} 1 & ; x < 0 \\ 1 + \sin(x) & ; 0 \le x < \frac{\pi}{2} \\ 2 + \left(x - \frac{\pi}{2}\right)^2 & ; x \ge \frac{\pi}{2} \end{cases}$$

Discuss the continuity and differentiability at x = 0 and x = 1 of the function

$$f(x) = \begin{cases} x^2 + 1 \ ; \ x \le 0 \\ x \ ; \ 0 < x < 1 \\ \frac{1}{x} \ ; \ x \ge 1 \end{cases}$$

A function f is defined as follows: (7)

$$f(x) = \begin{cases} x & when x < 1\\ 2 - x & when 1 \le x \le 2\\ -2 + 3x - x^2 & when x > 2 \end{cases}$$

Show that f is continuous at x = 1 and x = 2 both; it is derivable at x = 2 but not at x = 1.

(8) If
$$f(x) = \begin{cases} 3 + 2x & when -\frac{3}{2} < x \le 0 \\ 3 - 2x & when 0 < x < \frac{3}{2} \\ -3 - 2x & when x \ge \frac{3}{2} \end{cases}$$

Discuss the continuity and differentiability of the functions at x = 0 and $x = \frac{3}{2}$.

- Show that the function f(x) = |x| + |x 1| is continuous at x = 1 but not differentiable.
- (10) A function f(x) is defined as follows:

$$f(x) = \begin{cases} 1+x & when \ x < 0 \\ x & when \ 0 < x < 1 \\ 2-x & when \ 1 \le x \le 2 \\ 2x-x^2 & when \ x > 2 \end{cases}$$

Show that the function f(x) is continuous at the points x = 1 and x = 2 but f'(x) does not exist at that point.

Graph of a function

Sketch the graphs of the following functions: (1)

(i)
$$f(x) = \begin{cases} x ; & x < 1 \\ e^x ; & 1 \le x \le 2 \\ 2 ; & x > 2 \end{cases}$$

(i)
$$f(x) = \begin{cases} x ; & x < 1 \\ e^x ; & 1 \le x \le 2 \\ 2 ; & x > 2 \end{cases}$$
(ii)
$$f(x) = \begin{cases} \sin(x) ; & x < \frac{\pi}{2} \\ 0 ; & x = \frac{\pi}{2} \\ x ; & x > \frac{\pi}{2} \end{cases}$$

Derivative

Formula

$$\frac{d}{dx}(u^v) = u^v \cdot \frac{d}{dx} \{ v \cdot \ln(u) \}$$

(1)
$$\sin y = x \cdot \sin(a + y)$$
; $\frac{dy}{dx} = ?$

(2)
$$y = \sqrt{x} e^x secx$$
; $\frac{dy}{dx} = ?$

(3)
$$y = (\sin x)^{\cos x} + (\cos x)^{\sin x}$$
; $\frac{dy}{dx} = ?$

(4)
$$y = e^{\sin x} \sin(a^x)$$
; $\frac{dy}{dx} = ?$

(5)
$$y = \tan(\ln x^2)$$
; $\frac{dy}{dx} = ?$

(6)
$$y = x^{(\sin^{-1} x)}; \frac{dy}{dx} = ?$$

(7)
$$y = x^{lnx} + x^{\cos^{-1}x}; \frac{dy}{dx} = ?$$

(8)
$$y = (\sin x)^{\sin x}$$
; $\frac{dy}{dx} = ?$

(9)
$$\ln(x+y) = xy; \frac{dy}{dx} = ?$$

(10)
$$y = x^{\cos^{-1} x}; \frac{dy}{dx} = ?$$

(11)
$$y = x^{sinx}$$
; $\frac{dy}{dx} = ?$

(12)
$$y = (\tan x)^{\cot x} + (\cot x)^{\tan x}$$
; $\frac{dy}{dx} = ?$

(13)
$$e^x + e^y = 2xy$$
; $\frac{dy}{dx} = ?$

(14) If
$$y = e^{-x} \cdot \sin x$$
, show that $y_4 + 4y = 0$.

(15) If
$$y = ae^{mx} + be^{-mx}$$
, then show that $y_2 = m^2y$

Successive Differentiation

(1) If
$$y = x^n$$
, then show that $y_n = n!$

(2) If
$$y = (ax + b)^n$$
 and $n \in N$, then show that $y_n = n!$ a^n

Notes of Promí & Notes of Shanto

- (3) If $y = a^{bx+c}$, then show that $y_n = a^{bx+c} \cdot \{\ln(a)\}^n \cdot b^n$
- (4) If $y = \ln(ax + b)$, then show that $y_n = (-1)^{n-1} \cdot (n-1)! \cdot (ax + b)^{-n} \cdot a^n$

Leibnitz's Theorem

$$(uv)_n = u_nv + n_{c_1} \cdot u_{n-1}v_1 + \dots + n_{c_r} \cdot u_{n-r}v_r + \dots + uv_n$$

- (1) If $y = e^{a\sin^{-1}x}$ then show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + a^2)y_n = 0$
- (2) If $y = \cot^{-1} x$ then show that $(1+x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$
- (3) If $y = a\cos(\ln x) + b\sin(\ln x)$ then show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$
- (4) If $y = \cos\{\ln(1+x)\}$ then show that $(1+x^2)y_{n+2} + (2n+1)(1+x)y_{n+1} + (n^2+1)y_n = 0$
- (5) If $y = \tan^{-1}(x)$, show that $(1+x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$
- (6) If $\ln y = \cot^{-1} x$, show that $(1+x^2)y_{n+2} + (2nx+2x-1)y_{n+1} + n(n+1)y_n = 0$
- (7) If $y = \sin(m\sin^{-1}x)$, prove that $(1 x^2)y_{n+2} (2n+1)x \cdot y_{n+1} + (m^2 n^2)y_n = 0$

Maxima - Minima

- (1) Investigate for what values of x, $f(x) = 5x^6 18x^5 + 15x^4 10$ is minimum or maximum.
- (2) Find for what values of x, the following expression is maximum or minimum respectively

$$2x^3 - 21x^2 + 36x - 20$$

Find out the maximum and minimum values of the expression.

Rolle's Theorem

- (1) Verify Rolle's theorem for $f(x) = x^3 12x$ in the interval $0 \le x \le 2\sqrt{3}$.
- (2) Does Rolle's theorem apply to the function $f(x) = 1 (x-3)^{\frac{2}{3}}$
- (3) State Rolle's theorem. Verify it for $f(x) = 2x^3 + x^2 4x 2$

Mean Value Theorem

(No Math Found)

Euler's Theorem

$$x \cdot \frac{\delta F}{\delta x} + y \cdot \frac{\delta F}{\delta y} + \dots = nF$$

(1) If
$$u = \tan^{-1} \frac{x^3 + y^3}{x + y}$$
, show that

$$x \cdot \frac{\delta u}{\delta x} + y \cdot \frac{\delta u}{\delta y} = \sin(2u)$$

(2) If
$$u = \cos^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, show that

$$x \cdot \frac{\delta u}{\delta x} + y \cdot \frac{\delta u}{\delta y} + \frac{1}{2}(\cot u) = 0$$

(3) If
$$u = \tan^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, show that

$$x \cdot u_x + y \cdot u_y = \frac{1}{4} \sin 2u$$

Improper Integral

- (1) Is the area under the curve $y = \frac{1}{\sqrt{x}}$ from x = 0 to x = 1 finite? If so, what is it?
- (2) Evaluate $\int_{2}^{\alpha} \frac{x+3}{(x-1)(x^2+1)} dx$

Taylor & Maclaurin's Polynomial

- (1) Find Maclaurin's series for
 - (i) e^x

- (ii) $\sin x$
- e^{mx} (iii)
- (iv) $\cos x$
- (v) ln(1 + x)
- (vi) $\sin 2x$
- (vii) $\cos 2x$
- (viii) a^x
- (2) Find Taylor series for $f(x) = \ln x$ at x = 2.

Integration: As an Inverse Process Of Differentiation

- Find the anti-derivative of -
 - (1) $\sin 2x + e^{5x}$
 - (2) $\frac{8^{1+x}+4^{1-x}}{2^x}$
- Find the Indefinite Integrals -
 - (1) $\int \frac{\sin^8 x \cos^8 x}{1 2\sin^2 x \cos^2 x} dx$
 - (2) $\int \frac{dx}{x\{10+7\ln(x)+(\ln x)^2\}}$
 - (3) $\int \frac{e^x dx}{e^{2x} + 2e^x + 5}$
 - $\textbf{(4)} \quad \int \frac{dx}{(x^2-16)\sqrt{x+1}}$

 - (5) $\int \frac{dx}{3+2\cos x}$ (6) $\int \frac{\cos x}{2\cos x+3} dx$

(8)
$$\int \frac{dx}{5+4\cos x}$$

$$(9) \quad \int e^{2x} \sin^3 x \ dx$$

(10)
$$\int \frac{x(\tan^{-1}x)^2}{(1+x^2)^{\frac{1}{2}}(1+x^2)} dx$$

(11)
$$\int \frac{xdx}{(x+1)\sqrt{x^2+1}}$$

 Fundamental theorem of integral calculus and its application to definite integrals -

(1)
$$\int \frac{dx}{(a^2+x^2)^{\frac{3}{2}}}$$

(2)
$$\int \frac{x\sqrt{2-x^2}}{\sqrt{1+x^2}} dx$$

Definite Integral As The Limit Of A Sum

(1)
$$\lim_{n\to\infty} \left[\frac{n}{n^2} + \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + (n-1)^2} \right]$$

(2)
$$\lim_{n\to\infty} \left[\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \frac{n}{n^2+3^2} + \dots + \frac{n}{n^2+n^2} \right]$$

(3)
$$\lim_{n\to\infty} \left[\frac{\sqrt{n}}{n^{\frac{3}{2}}} + \frac{\sqrt{n}}{(n+3)^{\frac{3}{2}}} + \frac{\sqrt{n}}{(n+6)^{\frac{3}{2}}} + \dots + \frac{\sqrt{n}}{\{n+3(n-1)\}^{\frac{3}{2}}} \right]$$

(4)
$$\lim_{n\to\infty} \left[\frac{1^2}{1^3+n^3} + \frac{2^2}{2^3+n^3} + \frac{3^2}{3^3+n^3} + \dots + \frac{n^2}{n^3+n^3} \right]$$

(5)
$$\lim_{n \to \infty} \left[\frac{1}{n} + \frac{\sqrt{n^2 - 1^2}}{n^2} + \cdots + \frac{\sqrt{n^2 - (n-1)^2}}{n^2} \right]$$

(6)
$$\lim_{n\to\infty} \left[\frac{1}{\sqrt{2n-1^2}} + \frac{1}{\sqrt{4n-2^2}} + \cdots + \frac{1}{n} \right]$$

Reduction Formula

- (1) Apply reduction formula for $\int cos^n x \, dx$ and then evaluate $\int cos^8 x \, dx$.
- (2) Apply reduction formula for $\int \sin^n x \, dx$ and then evaluate $\int \sin^8 x \, dx$.
- (3) Apply reduction formula for $\int tan^n x \, dx$ and then evaluate $\int tan^8 x \, dx$.

~-~-~ The End ~-~-~