MATH 569 Statistical Learning

Part II: Linear Methods of Regression

Maggie Cheng

Fig 3.1 Linear regression: minimizing RSS

Fig 3.2, $(Y - \hat{Y})$ orthogonal to the subspace spanned by the column vectors of X

Gram—Schmidt procedure for multiple regression

FIGURE 3.4. Least squares regression by orthogonalization of the inputs. The vector \mathbf{x}_2 is regressed on the vector \mathbf{x}_1 , leaving the residual vector \mathbf{z} . The regression of \mathbf{y} on \mathbf{z} gives the multiple regression coefficient of \mathbf{x}_2 . Adding together the projections of \mathbf{y} on each of \mathbf{x}_1 and \mathbf{z} gives the least squares fit $\hat{\mathbf{y}}$.

Gram-Schmidt procedure for multiple regression

Algorithm 3.1 Regression by Successive Orthogonalization.

- 1. Initialize $\mathbf{z}_0 = \mathbf{x}_0 = \mathbf{1}$.
- 2. For $j = 1, 2, \dots, p$

Regress \mathbf{x}_j on $\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_{j-1}$ to produce coefficients $\hat{\gamma}_{\ell j} = \langle \mathbf{z}_\ell, \mathbf{x}_j \rangle / \langle \mathbf{z}_\ell, \mathbf{z}_\ell \rangle$, $\ell = 0, \dots, j-1$ and residual vector $\mathbf{z}_j = \mathbf{x}_j - \sum_{k=0}^{j-1} \hat{\gamma}_{kj} \mathbf{z}_k$.

3. Regress **y** on the residual \mathbf{z}_p to give the estimate $\hat{\beta}_p$.

Fig 3.9 Ridge regression shrinks the coefficients of the low-variance components more than the high-variance components

Fig 3.8 Ridge Regression

Ridge coefficients vs. df df(lambda) monotonically decreases as lambda increases (prostate cancer example)

Fig 3.10 Lasso Regression

Lasso coefficients vs. the standardized tuning parameter s

$$s = \frac{t}{\sum_{j=1}^{p} |\hat{\beta}_j|}$$

(prostate cancer example)

Table 3.4 With orthonormal input matrix X

Estimator	Formula
Best subset (size M)	$\hat{\beta}_j \cdot I(\hat{\beta}_j \ge \hat{\beta}_{(M)})$
Ridge	$\hat{\beta}_j/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j - \lambda)_+$

Fig 3.11 Lasso (left) and ridge (right)

Red: contours of RSS

Blue: constraint regions

Generalize lasso and ridge: Bayes estimates with different priors

q=0: subset selection

q=1: lasso (smallest q such that the constraint region is convex)

q=2: ridge

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.