

Tecnologias de Redes de Comunicações

2006/2007

2^a aula

Fernando M. Silva

Fernando.Silva@ist.utl.pt

Instituto Superior Técnico

Sumário

- Perspectiva e enquadramento
- História da Internet
- Evolução do tráfego
- Tecnologias de acesso e transporte

Perspectiva histórica

- 3000 AC Ábaco
- Séc XVII/XVIII - Blaise Pascal, Charles Babbage
- 1890 - Perfuração de cartões (Hollerith)
 - 1o recenseamento ”informático” da população (USA).

Máquinas electromecânicas

- Z1, Z2 e Z3 (Alemanha)
- Colossus (Inglaterra)
- Harvard Mark I (E.U.) [Multiplicação de 10 dígitos: 3 segundos]

Máquinas electrónicas

- 1946: ENIAC (Universidade da Pensilvânia)

18000 válvulas, 500,000 soldaduras

Arquitectura de Von Neuman

- 1951: EDVAC
 - Arquitectura de Von Neuman:
 - Conceito de programa armazenado
 - Memória partilhada de dados e programa
- 1955: Transistores
- 1965: Circuitos integrados
 - IBM 360, CDC 6600-7600
 - Minicomputadores: PDP-8

- 1971: Intel 4004
- 1974: Intel 8080 (Altair)
- 1976: Zilog Z80 (ZX-80, ZX-81, ZX-Spectrum)
- 1976: Motorola 6800 (Apple Lisa, 1980, Macintosh, 1983)
- 1978: 8086 (IBM PC-XT, 1981)
- 1982: 80286 (PC-AT)
- 1985: 80386
- 1989: 80486
- 1993: Pentium
- 1995: Pentium Pro
- 1997: Pentium II
- 1999: Pentium III
- 2001: Pentium 4, Xeon
- 2006(Julho): Intel Core 2

Para além dos processadores Intel, convém recordar o papel de muitas outras empresas como a Digital, IBM, Motorola, AMD...

- 1958 - Lançamento do *Sputnik* e criação da ARPA (Advanced Research Projects Agency)
- 1959-1962 - Len Kleinrock cria uma teoria matemática sobre transmissão de pacotes no MIT
 - Motivação: existência de vários computadores isolados e sem meios de comunicação
- Resultados da tese
 - Definida a arquitectura básica do que seriam redes de dado;
 - Hipóteses sobre a caracterização estatística do tráfego (bursty), distinto das ligações ponto a ponto convencionais (tráfego de voz)
 - Definição de medidas fundamentais para avaliação do desempenho da transmissão de dados:
 - * Largura de banda
 - * Latência
 - * Buffering
 - * Perdas de blocos de dados (pacotes...)

- 1960-64 Paul Baran define a arquitectura da rede de pacotes
- 1965 Doug Englebert desenvolve primeiros conceitos de hipertexto
- 1965 Donald Davies inventa o termo ”pacote”
- 1965 1a ligação remota de computadores entre o MIT ao SDC (System Development Corporation)
- 1966 Larry Roberts e Tom Marill publicam o primeiro artigo sobre testes de rede
- 1966 Criada a ideia do que seria o projecto ARPANET
- 1967 Wes Clark sugere a utilização de um microcomputador dedicado para libertar os computadores de cálculo das tarefas de encaminhamento e gestão da rede.
- 1968 Fim das especificações e lançamento do caderno de encargos da ARPA-NET
 - 1969 BBN ganha o concurso sendo-lhe adjudicada a primeira fase da rede: 4 IMP (Interface Message Processors).
-
-

- 1960-64 Paul Baran define a arquitectura da rede de pacotes
- 1965 Doug Englebert desenvolve primeiros conceitos de hipertexto
- 1965 Donald Davies inventa o termo ”pacote”
- 1965 1a ligação remota de computadores entre o MIT ao SDC (System Development Corporation)
- 1966 Larry Roberts e Tom Marill publicam o primeiro artigo sobre testes de rede
- 1966 Criada a ideia do que seria o projecto ARPANET
- 1967 Wes Clark sugere a utilização de um microcomputador dedicado para libertar os computadores de cálculo das tarefas de encaminhamento e gestão da rede.
- 1968 Fim das especificações e lançamento do caderno de encargos da ARPA-NET
 - 1968 BBN ganha o concurso sendo-lhe adjudicada a primeira fase da rede: 4 IMP (Interface Message Processors).

- 1969: 4 nós iniciais instalados
Cada nó: Computador Honeywell's DDP-516
 - UCLA (University of California, LA)
 - SRI (Stanford)
 - University of California, Santa Barbara
 - University of Utah

Arpanet: Desenvolvimento

- Dezembro 1969 - 4 computadores

THE ARPA NETWORK

DEC 1969

4 NODES

FIGURE 6.2 Drawing of 4 Node Network
(Courtesy of Alex McKenzie)

Arpanet: Desenvolvimento

- 1971 18 computadores

MAP 4 September 1971

- 1972 (computadores interligados = 23)
 - ARPA passa a DARPA.
 - A BBN desenvolve o primeiro programa de e-mail.
- 1973/1974 (computadores interligados > 23)
 - Desenvolvimento do protocolo TCP/IP
 - Inventados os termos “Internettig” e “Internet”
- 1976 (computadores interligados > 111)
 - Desenvolvimento da ethernet (redes locais)
 - Invenção do UUCP

Crescimento

- 1983 (computadores interligados > 562)
 - Uniformização de protocolos (TCP/IP)
- 1987/1991 (computadores interligados > 617,000)
 - Ligação da maioria das Universidades e centros de investigação.
- 1991 NSF abre a Internet a operadores comerciais
- Criação pelo CERN do sistema World Wide Web e da primeira página de WWW (Tim Berners-Lee)

- 1991 Início da expansão da rede GSM
- 1992/1993 (computadores interligados > 1,136,000)
- 1993 Início da expansão das redes celulares
- 1993 Eleição de Clinton/Gore e promoção política da massificação da Internet
- 1993 Entrada em operação do primeiro ISP
- 1995 Entrada em operação do primeiro ISP em Portugal (Esoterica)
- 1995 (computadores interligados > 73,000,000)
 - Difusão comercial e massificação da utilização
- 2008: 1,000,000,000(?) (estimativa: Forrester forecasts)

Os anos recentes

- 1994 Introdução do SPAM
- 1995 Início da "bolha" dos dot.com
- 1997 Estabelecimento do consórcio Internet2
- 1997 IEEE define o 802.11
- 1998 Blogs
- 1998 VoIP
- 1998 Fundação da Google
- 1999 Napster
 - Início da difusão dos protocolos p2p
- 2000 Fim da bolha dos .com
- 2002 Globalização
- 2005 Crescimento do tráfego p2p

Hierarquia de redes

Nota:

- As componentes funcionais podem nem sempre corresponder a entidades físicas claramente distintas
- Embora permita clarificar a terminologia, a separação entre as várias componentes funcionais pode nem sempre ser totalmente clara na prática.

- Dorsal (Core ou backbone)
 - Banda muito larga
 - Encaminhamento de tráfego
 - Encaminhadores de alto desempenho
- Distribuição (distribution or policy)
 - Filtragem (ACLs)
 - Encaminhamento entre VLANs
 - Group Multicast Protocol (GMP),
 - Definição dos domínios de broadcast e multicast
 - Agregação de área e domínios
- Acesso
 - Ligação aos terminais/utilizadores
 - ACLs (nível 2)
 - Micro-segmentação

- Até ao início da década de 90, o serviço de internet era apenas prestado a grandes Instituições, Empresas e Universidades
- Com o advento dos ISP em meados de 90s, o problema da entrega de tráfego aos utilizadores finais coloca-se na ordem do dia.
 - Até 2000, a ligação aos ISPs é feita fundamentalmente usando o par de cobre telefónico, o qual constitui o mais generalizado meio disponível nos utilizadores domésticos.
 - A utilização da linha telefónica era realizada usando uma chamada telefónica convencional e modems que permitiam a modulação, transmissão e desmodulação do sinal digital.
 - Limitações
 - * Ocupação da linha telefónica
 - * Uma chamada é normalmente conduzida entre centrais usando uma ligação PCM a 64Kbps (limite superior de desempenho de qualquer modem)

- Débito elevado
- Baixo custo
- Independência de outros serviços
- Qualidade de serviço
- Flexibilidade

Requisitos de débito de aplicações (1998)

Tipo	% de fluxos	% de tráfego	#pacotes (média)	#bytes média)
Web → cliente	20	34	16	8270
Cliente → Servidor web	23	3	12	710
Mbone	0,01	20	10K	6,3M
DNS	31	3	-	-
Outros	26	40	-	-

Conclusão:

- Tráfego fortemente assimétrico
- Maioria das tecnologias de acesso em serviço baseiam-se neste pressuposto:
 - Elevada largura de banda no sentido operador → cliente
 - Largura de banda moderada no sentido cliente→ operador
 - Será este pressuposto válido?

Exemplo: rede sem fios

Tráfego da rede sem fios do IST durante esta semana

Qual a conclusão?

Crescimento de tráfego

Crescimento anual do tráfego

- Voz: 10%-20%
- Dados e vídeo: 100%
- P2P ???

Da comutação de circuitos à comutação de pacotes

- Comutação de circuitos
 - Reserva do circuito ponto a ponto
 - Elevada qualidade do serviço
 - Elevado custo de reserva de recursos
 - Só aplicável para ligações de tempo limitado (p. ex., chamadas de voz convencionais)
- Comutação de pacotes
 - Adequada a situações de tráfego "bursty" (fortes variações de débito)
 - Partilha estatística de recursos por multiplexagem
 - Economia recursos
 - Permite débitos elevados
 - Limitação: qualidade de serviço (fortemente mitigada pelo crescimento da largura de banda disponível).

Tecnologias de acesso

O European Telecommunications Standards Institute (ETSI) define as seguintes interfaces UNI (User Network Interface) (1998)

- Acesso cablado
 - Telefonia analógica (POTS)
 - Interfaces de dados (serie V)
 - Linhas alugadas analógicas
 - Linhas alugadas digitais
 - Interface básica RDIS
 - Interface primária RDIS
 - RDIS-BL 2 048 kbit/s
 - RDIS-BL 25,6 Mbit/s
 - RDIS-BL 155,520Mbit/s
 - RDIS-BL 622,08Mbit/s
 - High bit Digital Subscriber line (HDSL)
 - Asymmetric DSL (ADSL)
 - VHDSL Very High Speed DSL

- TV por cabo analógica
 - TV por cabo digital
 - Canal de interacção para redes TV por cabo
 - Ethernet
- Sem fios
 - GSM
 - DECT
 - UMTS

- Até 1997
 - O acesso era dominado pela linha telefónica
 - A ligação fazia-se ponto a ponto a través da rede telefónica
 - O concentrador de rede encontra-se longe do terminal cliente
 - Modo dominante de acesso vídeo: radiodifusão
- Início da divulgação de TV por cabo na Europa: 1990.

Norma	Débito down/up	Baud	Modulação	Data
V.26	2400	1200	DPSK	1968
V.27	4800	1600	DPSK	1972
V.29	9600	2400	16-QAM	1976
V.32	9600	2400	32-QAM	1984
V.33	14400	2400	128-QAM	1988
V.34	33600	4800	256-QAM	1996
V.90	56000/33000	8000	PCM	1998
V.92	56000/48000		PCM	2000

- No final da década de 90 inicia-se a introdução da banda larga, através de cabo ou ADSL
- Qualquer destas tecnologias pressupõe aproximação física da rede ao utilizador final
 - Concentrador na central mais próxima (ADSL) ou na zona de distribuição (cabو)

Tecnologias de acesso: banda larga

- A partir de 2005/2006, inicia-se a divulgação da aproximação "triple-play": Internet, telefone e vídeo são apenas diferentes conteúdos de um mesmo suporte IP
- A rede estende-se até ao utilizador final
- Multiplicam-se os dispositivos domésticos com ligação de rede (consolas de jogos, TV, gravadores de vídeo...)

Classificação do meio de transmissão

- Par metálico entrançado
- Cabo coaxial
- Fibra óptica
- Acesso sem fios
- Linha de energia (PLC, Power Line Communications)

Tecnologias de acesso

Tecnologia	Meio	Ritmo (bit/s) [up/down]	Distância
HDSL/SHDSL	Par de cobre	2M	4Km
ADSL	Par de cobre	1.5-8M/64k-1M	3-5Km
ADSL 2	Par de cobre	5-12M / 1-3.5M	3-5Km
ADSL 2+	Par de cobre	24M / 1-3.5M	3-5Km
VDSL	Par de cobre	13-52M/1.5-2.3M	100-200m
VDSL2	Par de cobre	100M	300m
HFC	FO/C. Coaxial	N×34M /3-15M	80Km
FTTH/FTTP	FO	155M	100Km
FTTB	FO/Cobre	25M	100Km
FTTC	FO/Cobre 6M	100Km	
PON/APON	FO	155M/ 2-10M	100Km
MMDS,LMDS	Microondas	N×34M [d]	30Km
DBS	Satélite	N×34M [d]	6000Km

HDSL - High Bit Rate Digital Subscriber Line

ADSL - Assymetric Digital Subscriber Line

VDSL - Very High Speed DSL

APON - ATM PON - Passive Optical Network

LMDS - Local Multi-point Distribution System

MMDS - Microwave Multi Point Distribution Systems

HFC - Hybrid Fiber Coax

FTTH - Fiber To The Home

FTTB - Fiber To The Building

FTTP - Fiber to the Premises (=FTTH)

FTTC - Fiber To The Curb

DBS - Direct Broadcast Satellite

Acesso à Internet em Portugal (2005)

Índice de penetração:
2005 - 11,5% (Valor muito desactualizado?)

Tecnologia	Valor
ADLS	47,2%
Cabo (HFC)	46,6%
3G (UMTS/CDMA)	3%
PLC	1,2%
Outras (FWA, Fixed Wireless Access)	2,0%