CS 70

Discrete Mathematics and Probability Theory

DIS 6A

1 Count it

Spring 2021

Let's get some practice with counting!

- (a) How many sequences of 15 coin-flips are there that contain exactly 4 heads?
- (b) An anagram of HALLOWEEN is any re-ordering of the letters of HALLOWEEN, i.e., any string made up of the letters H, A, L, L, O, W, E, E, N in any order. The anagram does not have to be an English word.
 - How many different anagrams of HALLOWEEN are there?
- (c) How many solutions does $y_0 + y_1 + \cdots + y_k = n$ have, if each y must be a non-negative integer?
- (d) How many solutions does $y_0 + y_1 = n$ have, if each y must be a positive integer?
- (e) How many solutions does $y_0 + y_1 + \cdots + y_k = n$ have, if each y must be a positive integer?

Solution:

- (a) This is just the number of ways to choose 4 positions out of 15 positions to place the heads, and so is $\binom{15}{4}$.
- (b) In this 9 letter word, the letters L and E are each repeated 2 times while the other letters appear once. Hence, the number 9! overcounts the number of different anagrams by a factor of $2! \times 2!$ (one factor of 2! for the number of ways of permuting the 2 L's among themselves and another factor of 2! for the number of ways of permuting the 2 E's among themselves). Hence, there are $9!/(2!)^2$ different anagrams.
- (c) $\binom{n+k}{k}$. We can imagine this as a sequence of n ones and k plus signs: y_0 is the number of ones before the first plus, y_1 is the number of ones between the first and second plus, etc. We can now count the number of sequences using the "balls and bins" method (also known as "stars and bars").
- (d) n-1. We can just enumerate the solutions here. y_0 can take values 1, 2, ..., n-1 and this uniquely fixes the value of y_1 . So, we have n-1 ways to do this. But, this is just an example of the more general question below.

(e) $\binom{(n-(k+1))+k}{k} = \binom{n-1}{k}$. By subtracting 1 from all k+1 variables, and k+1 from the total required, we reduce it to problem with the same form as the previous problem. Once we have a solution to that we reverse the process, and adding 1 to all the non-negative variables gives us positive variables.

2 The Count

- (a) How many of the first 100 positive integers are divisible by 2, 3, or 5?
- (b) The Count is trying to choose his new 7-digit phone number. Since he is picky about his numbers, he wants it to have the property that the digits are non-increasing when read from left to right. For example, 9973220 is a valid phone number, but 9876545 is not. How many choices for a new phone number does he have?
- (c) Now instead of non-increasing, they must be strictly decreasing. So 9983220 is no longer valid, while 9753210 is valid. How many choices for a new phone number does he nave now?

Solution:

(a) We use inclusion-exclusion to calculate the number of numbers that satisfy this property. Let *A* be the set of numbers divisible by 2, *B* be the set of numbers divisible by 3, and *C* be the set of numbers divisible by 5. Then, we calculate

$$|A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

$$= \left\lfloor \frac{100}{2} \right\rfloor + \left\lfloor \frac{100}{3} \right\rfloor + \left\lfloor \frac{100}{5} \right\rfloor - \left\lfloor \frac{100}{6} \right\rfloor - \left\lfloor \frac{100}{10} \right\rfloor - \left\lfloor \frac{100}{15} \right\rfloor + \left\lfloor \frac{100}{30} \right\rfloor$$

$$= 50 + 33 + 20 - 16 - 10 - 6 + 3 = 74$$

numbers.

- (b) This is actually a stars and bars problem in disguise! We have seven positions for digits, and nine dividers to partition these positions into places for nines, places for eights, etc. This is because we know that the digits are non-increasing, so all the nines (if any) must come first, then all the eights (if any), and so on. That means there are a total of 16 objects and dividers, and we are looking for where to put the nine dividers, so our answer is $\binom{16}{9}$.
- (c) This can be found from just combinations. For any choice of 7 digits, there is exactly one arrangement of them that is strictly decreasing. Thus, the total number of strictly decreasing strings is exactly $\binom{10}{7}$.

3 CS70: The Musical

Edward, one of the previous head TA's, has been hard at work on his latest project, *CS70: The Musical*. It's now time for him to select a cast, crew, and directing team to help him make his dream a reality.

- (a) First, Edward would like to select directors for his musical. He has received applications from 2n directors. Use this to provide a combinatorial argument that proves the following identity: $\binom{2n}{2} = 2\binom{n}{2} + n^2$
- (b) Edward would now like to select a crew out of n people, Use this to provide a combinatorial argument that proves the following identity: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (this is called Pascal's Identity)
- (c) There are n actors lined up outside of Edward's office, and they would like a role in the musical (including a lead role). However, he is unsure of how many individuals he would like to cast. Use this to provide a combinatorial argument that proves the following identity: $\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$
- (d) Generalizing the previous part, provide a combinatorial argument that proves the following identity: $\sum_{k=j}^{n} {n \choose k} {k \choose j} = 2^{n-j} {n \choose j}$.

Solution:

(a) Say that we would like to select 2 directors.

LHS: This is the number of ways to choose 2 directors out of the 2n candidates.

RHS: Split the 2n directors into two groups of n; one group consisting of experienced directors, or inexperienced directors (you can split arbitrarily). Then, we consider three cases: either we choose:

- (a) Both directors from the group of experienced directors,
- (b) Both directors from the group of inexperienced directors, or
- (c) One experienced director and one inexperienced director.

The number of ways we can do each of these things is $\binom{n}{2}$, $\binom{n}{2}$, and n^2 , respectively. Since these cases are mutually exclusive and cover all possibilities, it must also count the total number of ways to choose 2 directors out of the 2n candidates. This completes the proof.

(b) Say that we would like to select *k* crew members.

LHS: This is simply the number of ways to choose k crew members out of n candidates.

RHS: We select the k crew members in a different way. First, Edward looks at the first candidate he sees and decides whether or not he would like to choose the candidate. If he selects the first candidate, then Edward needs to choose k-1 more crew members from the remaining n-1 candidates. Otherwise, he needs to select all k crew members from the remaining n-1 candidates.

We are not double counting here - since in the first case, Edward takes the first candidate he encounters, and in the other case, we do not.

(c) In this part, Edward selects a subset of the *n* actors to be in his musical. Additionally, assume that he must select one individual as the lead for his musical.

LHS: Edward casts k actors in his musical, and then selects one lead among them (note that $k = \binom{k}{1}$). The summation is over all possible sizes for the cast - thus, the expression accounts for all subsets of the n actors.

RHS: From the *n* people, Edward selects one lead for his musical. Then, for the remaining n-1 actors, he decides whether or not he would like to include them in the cast. 2^{n-1} represents the amount of (possibly empty) subsets of the remaining actors. (*Note that for each actor, Edward has 2 choices: to include them, or to exclude them.*)

(d) In this part, Edward selects a subset of the n actors to be in the musical; additionally he must select j lead actors (instead of only 1 in the previous part).

LHS: Edward casts $k \ge j$ actors in his musical, then selects the j leads among them. Again, the summation is over all possible sizes for the cast (note that any cast that has < j members is invalid, since Edward would be unable to select j lead actors) - thus, the expression accounts for all valid subsets of the n actors.

RHS: From the *n* people, Edward selects *j* leads for his musical. Then, for the remaining n-j actors, he decides whether or not he would like to include them in the cast. Then, for the remaining n-j actors, he decides whether or not he would like to include them in the cast. 2^{n-j} represents the amount of ways that Edward can do this.