SLR cheat sheet

Steps in ML Model deployment

Simple Linear Regression formula

 $y = \beta 0 + \beta 1x + \epsilon$

Where:

- $\beta 0 = y$ intercept
- $\beta 1 = slope$
- x = set of values taken by independent variable X
- y = target/dependent variable
- ε = random error term

Note: Error term also called residual, it represents the distance of the observed value from the value predicted by regression line.

 ε = yactual - ypredicted

independent variables

Multiple linear regression

$$y = \beta 0 + \beta 1x1 + \beta 2x2 + \beta 3x3 + ... + \beta nxn + \epsilon$$

 $\beta 0,~\beta 1,~\beta 2,~\beta 3,~...,~\beta n$ are the parameters of the linear regression model with n

y = set of values taken by dependent variable

xi = set of values taken by independent variable Xi, $i \in [1,n]$ $\beta 0 = y$ intercept

 $\beta i = \text{beta coefficient for the ith independent variable Xi, } i \in [1,n]$

 ε = random error component

Ordinary least Squares

$$min \sum_{i=1}^n (y_i - eta_i x_i)^2$$

- The ordinary least square method is used to find the best fit line for given data
- This method aims at minimizing the sum of squares of the error terms, that is, it determines those values of $\beta 0$ and $\beta 1$ at which the error terms are minimum

Measures of variation

Sum of squares total (SST)

It can be seen as the total variation of the response variable about its mean value.

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

This file is meant for personal use by jainharshal1997@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

Sum of Squares Regression (SSR)

SSR is the measure of variability in the response variable considering the effect of predictor variable . It is the explained variation

$$SSR = \sum_{i=1}^{n} (\widehat{y} - \overline{y})^2$$

Sum of squares of error (SSE)

The sum of squares of error (SSE) is the sum of squared differences between observed response variable and its predicted value

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y})^2$$

Measure of unexplained variation

- Standard error of estimate is a measure of the unexplained variance
- Smaller value of standard error of estimate indicates a better model

$$min \sum_{i=1}^n (y_i - eta_i x_i)^2$$

n = sample size

k = number of parameter estimates $(\beta 0, \beta 1)$

Measure of explained variation

R2 also called the coefficient of determination gives total percentage of variation in Y that is explained by predictor variable.

$$R^2 = rac{ ext{Explained variation}}{ ext{Total variation}} = rac{ ext{SSR}}{ ext{SST}}$$
 $0 \le R^2 \le 1$

$R^2 = 1 - \frac{SSE}{SST}$

T-test for significance in SLR

H0: The parameter β is not significant H1: The parameter β is significant

T-test for slope in SLR

H0: There is no relationship between variables X and Y

H1: There is relationship between variables X and Y

The t test for intercept

H0: The parameter β0 is not significant

H1: The parameter β0 is significant

ANOVA for regression

H0: The regression model is not significant

H1: The regression model is significant

R2 vs. Adjusted R2

- The value of R Squared never decreases. If we add new independent variables, then the value of R Squared increases. It cannot show the effect of adding a bad or insignificant variable
- As compared to the R-Squared value, Adj. R- # create an empty dataframe to store the VIF for each variable vif = pd.DataFrame() Squared has an ability to decrease are added to the model. Thus we get an accurate evaluation.

Assumptions of Linear Regression

1. The dependent variable must be numeric

This file is meant for personal use by jainharshal 1997@gmail.com only. Check the data type of target variable. Sharing or publishing the contents in part or full is liable for legal action.

2. Predictors must not show multicollinearity

- Multicollinearity arises when the independent variables have high **correlation** among each other.
- Detection of multicollinearity:
 - Determinant of correlation matrix
 - Let D be the determinant of correlation matrix.
 - 0 < D < 1

D=0	High multicollinearity
D=1	No multicollinearity

- Condition Number (CN)
 - present in OLS summary

CN > 1000	Severe multicollinearity
100 < CN < 1000	Moderate multicollinearity
100 < CN	No multicollinearity

- Correlation matrix
 - .corr()
- Variance Inflation Number (VIF)

$$VIF = \frac{1}{1-R^2}$$

from statsmodels.stats.outliers_influence import variance_inflation_factor # Drop Dependent Variable a.k.a Target Variable x = premium.drop("Premium", axis = 1) whenever a bad or an insignificant variables

calculate VIF using list comprehension

use for loop to access each variable

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to store the values

calculate VIF for each variable and create a column 'VIF Factor' to vif["VIF_Factor"] = [variance_inflation_factor(x.values, i) for i in range(x.shape[1])] # create a column of variable names vif["Features"] = x.columns # sort the dataframe based on the values of VIF_Factor in descending order # 'ascending = False' sorts the data in descending order # 'reset_index' resets the index of the dataframe # 'drop = True' drops the previous index vif.sort_values('VIF_Factor', ascending = False).reset_index(drop = True)

3.Linear relationship between dependent and independent variables

• This can be checked by plotting a scatter plot of residuals vs predictors A scatter plot depicting no pattern indicates that the variable has a linear relationship with the response variable

4.Independence of observations should exist(ie. Absence of Auto correlation

- Assumption of autocorrelation is violated when residuals are correlated within themselves, ie they are serially correlated
- Durbin Watson Test (present in OLS summary)
 - H0: The error terms are not autocorrelated
 - H1: The error terms are autocorrelated

Value	Interpretation
0 < d <2	Positive autocorrelation
d = 2	No autocorrelation
2 < d < 4	Negative autocorrelation

5.The error terms should be homoscedastic

- Variance of the residual is assumed to be independent of the explanatory variables
- Heteroscedasticity: non-constant variance of residuals
- Statistical tests:
 - Goldfeld Quandt test
 - H0: The errors terms are homoskedastic
 - H1: The errors terms are heteroskedastic
 - Breusch Pagan test
 - H0: The errors terms are homoskedastic
 - H1: The errors terms are heteroskedastic

6.The error terms should follow a normal distribution

Normality test:

• Quantile-Quantile Plot

- Jarque-Bera (JB) Test
 - H0: Skewness (S) = 0 and Kurtosis (K) = 0
 - H1: Skewness (S) ≠ 0 and Kurtosis (K) ≠ 0 scipy.stats.jarque_bera(model.resid)
- Shapiro-Wilk Test
 - H0: The data is normally distributed
 - H1: The data is not normally distributed stats.shapiro(model.resid)

Feature Transformation

- Incase of skewed (predictor and/or dependent) variable, we transform it to reduce the skewness.
- If the assumptions of linear regression are not met, transformation of skewed target variable can be used for making the error terms more compatible to the assumptions
- Transformation methods
 - Log-Transform(postivie values only)
 - data_log = np.log(data)
 - Squareroot Transform(positive and zero values)
 - data_log = np.sqrt(data)

from scipy import stats transformed data = sta

- Reciprocal Transformation(positive and negative values)
 transformed_data = np.reciprocal(data)
- Exponential Transformation(reverse of log)

transformed_data = np.exp(data)

Feature Scaling

It is a technique used to transform the data into a common scale

Feature Scaling methods:

- Standardization
 - Standardization rescales the feature such that it has mean 0 and unit variance
 - from sklearn.preprocessing import StandardScaler
 - scaler = StandardScaler()
 - data_scaled=scaler.fit_transform(data)

$$x' = \frac{x - \overline{x}}{\sigma}$$

- Normalization
 - Normalization is the process of rescaling features in the range 0 to 1
 - from sklearn.preprocessing import MinMaxScaler
 - scaler = MinMaxScaler()
 - data_scaled=scaler.fit_transform(data)

$$x' = rac{x - \min(x)}{\max(x) - \min(x)}$$

import statsmodels.stats.api as gq gq.het_goldfeldquandt(model.resid,predictors) his file is meant for personal use by jainharshalf 997 @gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

Feature Selection

- Feature selection is the process of including the significant features in the model
- This can be achieved by:
 - Forward selection method
 - Backward elimination method
 - Stepwise method

Forward Selection

from mlxtend.feature_selection import SequentialFeatureSelector as sfs

Ridgelinreg_forward = sfs(estimator = model, k_features, forward = True

Backward Elimination

from mlxtend.feature_selection import SequentialFeatureSelector as sfs

linreg_backward = sfs(estimator = model, k_features, forward = False)

• Recursive Feature Elimination

from sklearn.feature_selection import RFE

rfe_model = RFE(estimator = model, n features to select)

Bias and Variance

- Model which doesn't perform well on Train data itself will have High Bias
- Model which performs well on train data but doesnt perform well on test data will have High Variance

 This

Bias

- If the model is too simple it will have a high bias and low variance
- Such a model will give not perfectly accurate predictions, but the predictions will be consistent
- The model will not be flexible enough to learn from majority of given data, this is termed as underfitting

Variance

- If the model is too complex it will have a low bias and high variance
- Such a model will give accurate predictions but inconsistently
- The high variance indicates it will have a much better fit on the train data compared to the test data, this is termed as overfitting

Linear Regression

#Using sklearn

from sklearn.linear_model import LinearRegression model=LinearRegression().fit(Xtrain,ytrain)

Or

#Using statmodels

import statsmodels.api as sm
model=sm.OLS(ytrain,sm.add_constant(Xtrain))
model.summary() #to get ols summary

Model Prediction

ypred=model.predict(Xtest)

Model Evaluation R-Squared

from sklearn.metrics import r2_score r_sq = r2_score(y_test, y_pred)

Adjusted R-Squared

n = number of observations k = number of columns (including intercept) $adj_r_squared = 1 - (((1 - r_sq) * (n - 1)) / (n - k - 1))$

Mean Squared Error

from sklearn.metrics import mean_squared_error MSE = mean_squared_error(y_test, y_pred)

Root Mean Squared Error

RMSE = np.sqrt(MSE)

Mean Absolute Error

from sklearn.metrics import mean_absolute_error MAE = mean_absolute_error(y_test, y_pred)

Mean Absolute Percentage Error

MAPE = np.mean(np.abs((y_test - y_pred) / y_test)) * 100

This file is meant for personal use by jainharshal1997@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

Model Validation

The model validation methods use test data to validate the model built using train data

Cross_val_score

This method is known as two fold cross validation

Here, each observation is used exactly once for training and once for testing from sklearn.model_selection import cross_val_score

scores = cross_val_score(estimator = LinearRegression(), X = X_train, y = y_train, cv, scoring)

K-Fold CV

Here, each observation is used exactly k times for training and exactly once for testing from sklearn.model_selection import KFold kf = KFold(n_splits)

Leave One Out CV

It is a special case of k - fold cross validation method. Instead of subsetting the data, at every run one observation is considered as the test set

from sklearn.model_selection import LeaveOneOut

loocv = LeaveOneOut()

Grid Search

The estimates of parameters are usually estimated from the data

from sklearn.model_selection import GridSearchCV
grid_model = GridSearchCV(estimator, param_grid ,
cv)

Cost Function

- A cost function tells how good the model performs at making predictions for a given set of parameters
- Cost function = Loss function = Error function

$$Error = \sum_{i=1}^{n} (y_{act} - y_{pred})^2$$

Note: where yact is the actual value and ypred is the predicted value.

Gradient Descent

- The gradient descent is an optimization technique which finds the parameters such that the error term is minimum.
- It is an iterative method which converges to the optimum solution.
- It takes large steps when it is away from the solution and takes smaller steps closer to the optimal solution.
- The estimates of the parameter are updated at every iteration.

from sklearn.linear_model import SGDRegressor sgd = SGDRegressor()

Regularization

• Regularization refers to the modifications we make to a learning algorithm, that help in reducing its generalization error but not its

- Regularization adds a cost function such tha higher variance receives a larger penalty
- It chooses a model with smaller parameter values (i.e. shrunk coefficients) that has less error

 $Loss \ function \ \ _{regularization} \ = Loss \ function \ \ _{ols} \ + Penalty \ term$

Ridge Regression

- Ridge regression uses squared L-2 norm regularization i.e it adds a squared L-2 penalty
- It diminishes the insignificant predictors but does not completely eliminate them

from sklearn.linear_model import Ridge ridge = Ridge(alpha)

Lasso Regression

- Lasso regression uses L-1 norm regularization i.e it adds a L-1 penalty
- It extinguishes the insignificant predictors from sklearn.linear_model import Lasso lasso = Lasso(alpha)

Elastic-net regression

- Elastic-net regression uses both L-1 and L-2 norm regularization
- Elastic-net regression is the combination of lasso and ridge regression

from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha, l1_ratio)

This file is meant for personal use by jainharshal1997@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.