$$f = \frac{1}{sT+1} \qquad y = 1 - e^{-\frac{1}{T}} = 1 - e^{-1}$$

$$u(x) = \frac{1}{s} \qquad = 1 - 0.36788$$

$$Y(s) = \frac{1}{T} \cdot \frac{1}{s} - \frac{1}{T} \cdot \frac{1}{sT+1} \qquad = 0.63212$$

ECE 530: Contemporary Energy Applications

Energy Storage

Energy Storage

- Batteries
- Capacitors
- Compressed air
- Pumped hydro (potential energy)
- Flywheels (kinetic energy)

put a mass at high level is nearly wood energy storage

- Generally two components:
 - The storage medium itself
 - A converter to couple the storage medium to electricity
 - Each component can have its own dynamics and efficiencies

Energy Storage Modeling

• Must be mindful to properly account for power loss in both directions: charge and discharge. Power flow is bi-directional, but power loss is unidirectional.

• Put loss in terms of power at one interface.

$$P_{loss} = P_2 - P_1$$

$$P_2 = P_{loss} + P_2$$

one-way efficiency:
$$\eta = 0.9$$

round-trip efficiency: $\eta^2 = 0.81$

Energy Storage Medium and Power Electronics

Each component has its own efficiency and dynamics

Energy Storage Protection

· Power and energy limits: keep power within rated values, and keep from overcharging or undercharging.

Power electronics power limits:
$$P_{PE_upper}$$

if $P_{PE_ref} > P_{PE_upper} \Rightarrow P_{PE} = P_{PE_upper}$

if $P_{PE_ref} < P_{PE_lower} \Rightarrow P_{PE} = P_{PE_lower}$

if
$$SOC \leq 0$$
, then $P_{PE_lower} = 0$ Not allow to discharge, P_{PE} should ≤ 0 if $SOC \geq 1$, then $P_{PE_lower} = 0$ Not allow to Charge, P_{PE} should ≥ 0