Kubernetes fundamentals

(for sysadmins)

About me

- Sysadmin
- Nimium
- Working with Kubernetes for the past year
- @0x6976

Overview

- What is Kubernetes
- The building blocks of Kubernetes
- Some hiccups you might run into on your way to Kubernetes
- Q&A

What is Kubernetes?

- "Kubernetes is named after the Greek god of spending money on cloud services"
 - Corey Quinn (<u>@QuinnyPig</u>)

What is the cloud?

Kris Nova (@krisnova)

What is Kubernetes?

- Three main questions
- Where?
 - Public cloud
 - On premises
 - Some kind of a stretched configuration
- How?
 - Self-supported
 - Outsourcing
 - The cloud(TM)
- What actually is Kubernetes?

What is Kubernetes?

- A container orchestrator
- A set of software components that manages application lifecycle
- A scheduler
- A container runtime
- A set of pods (container groups)
- A set of replication and scaling rules for pods

"Not my monkey, not my circus" line

- Separation of concerns (KUAR book)
- Application developer
 - Uses the API
- API reliability engineer
 - Maintains the container orchestration API
- OS reliability engineer
 - Takes care of the operating system
- HW reliability engineer
 - Takes care of the hardware

What are the building blocks in Kubernetes?

- etcd
- API server
- Storage
- DNS
- Ingress
- Container runtime
- Networking

What are the building blocks in Kubernetes?

- Monitoring
- Deployment
- Service mesh
- Container registries
- Resource limits
- Upgrade story
- Software ecosystem

etcd

- Key-value store
- Make sure you have enough hardware
 - https://github.com/etcd-io/etcd/blob/master/Documentat ion/op-guide/hardware.md#hardware-recommendations
- SSDs
- Run a multi-node cluster
 - Five-member cluster recommended

etcd

- Backup
- Security
 - Firewall
 - o PKI
- Restrict access to etcd
 - Having access to etcd == having root access to the cluster
- Scaling an etcd cluster is done for reliability, not performance

API server

- The front-end for the Kubernetes control plane
- Talks to etcd
- Can be scaled horizontally

Storage

- Well abstracted in Kubernetes
 - Volumes
 - Storage claims
- Numerous options
 - Ceph
 - NFS
 - Hardware-specific integrations

DNS

- Runs inside the cluster
- Make sure your networking is set up properly
 - Your worker nodes need to be able to talk to the DNS
 - Your master nodes need to be able to talk to the DNS
- Make sure your pods and nodes are configured properly
 - Queries which do not match the configured cluster domain suffix will be forwarded to the upstream DNS defined on the node

Ingress

- A lot of available options
 - NGINX
 - o F5
 - Contour
 - HAProxy
 - Traefik
 - Istio

Container runtime

- Several options
 - Docker
 - o rkt
 - o CRI-O
 - frakti
- Docker Engine is hard to avoid

Networking

- Several options available
 - Calico
 - Flannel
- 2018 Public Cloud Performance Benchmark Report
 - https://www.thousandeyes.com/press-releases/2018-publi c-cloud-performance-benchmark-report

Networking

Dave Anderson (<u>@dave_universetf</u>)

Monitoring

- Some great options here
 - Prometheus
 - TICK stack
- Absolutely crucial if you want to run a cluster by yourself
- Prometheus + Alertmanager + Grafana + various exporters

Monitoring

- Prometheus collects the data and stores it
 - Also provides a basic UI for your PromQL queries
- Alertmanager can route alerts
 - Also does deduplication and silencing of alerts
 - Supports various ways of sending out alerts
 - Slack, Opsgenie, PagerDuty, email
- Try to figure out your monitoring high availability story early on

Deployment

- Helm
- Roll out YAML by hand
- Terraform
 - Has a Kubernetes provider
- Pulumi

Container registries

- Nexus
- Artifactory
- Something that can handle both Helm charts and Docker images?
 - VMware Harbor
- Handling images/charts is important

Service mesh

- Service mesh brings control, security and observability of services, API calls and traffic for your Kubernetes clusters
- Istio

Resource limits

- Use limits and requests
 - CPU
 - Memory
- Use reasonable values
- Take care of your storage
- Plan for failure
 - OOM killer

Upgrade story

- From the OS perspective
 - New OS versions
 - Security patching
 - Switching to another OS
- From the Kubernetes perspective
 - Kubernetes version upgrades

Software ecosystem

- There's a lot of stuff out there
- Heptio (now VMware) things (Ark/Velero, Sonobuoy, Gimbal)
- kube-hunter
- kube-bench (CIS benchmark)
- Possible OpenStack ecosystem parallels in the future?

Software ecosystem

CNCF (https://www.cncf.io)

RBAC

- If you don't implement this you're going to have a bad time
- Really hard to get right for your organization
- Plan time to do this properly
 - It can impact the processes

RBAC

Kelsey Hightower (<u>@kelseyhightower</u>)

Cluster validation

- Both when deploying and while it is in production
- Serverspec/InSpec tests
- Running e2e tests from Kubernetes
- Sonobuoy
- OpenSCAP
- You may also want to think about performance testing

Security

- There are some vendors in the ecosystem
 - Aqua Security
 - NeuVector
 - Twistlock
 - Isovalent (Cilium)
- Auditing

Security

Jessie Frazelle (@jessfraz)

Conclusion

- Kubernetes is good
- The ecosystem is rich
 - Vendors
 - Open source projects that are available
- You need to make sure you're not just deploying to Kubernetes
 - Make sure you have a complete infrastructure that you can leverage in day-to-day operations

Thank you! Questions?