

(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(10) DE 103 31 107 B3 2004.12.02

(12)

Patentschrift

(21) Aktenzeichen: 103 31 107.6

(51) Int Cl.⁷: C12Q 1/68

(22) Anmeldetag: 04.07.2003

(43) Offenlegungstag: –

(45) Veröffentlichungstag
der Patenterteilung: 02.12.2004

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden.

(71) Patentinhaber: Epigenomics AG, 10435 Berlin, DE	(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften: DE 101 30 800 A1 BRANSTEITTER, R. u.a.: Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA (01.04.2003) 100 (7) 4102-7;
(74) Vertreter: Schubert, K., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 10178 Berlin	
(72) Erfinder: Gütig, David, 10435 Berlin, DE	

(54) Bezeichnung: **Verfahren zum Nachweis von Cytosin-Methylierungen in DNA mittels Cytidin-Deaminasen**

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur Untersuchung von Cytosin-Methylierungen in DNA-Sequenzen. Dabei wird die zu untersuchende DNA mit einer Cytidin-Deaminase umgesetzt, die Cytidin schneller als 5-Methylcytidin deaminiert. Durch die Umwandlung wird Cytosin in Uracil umgewandelt, während 5-Methylcytosin im wesentlichen unverändert bleibt. Die enzymatisch vorbehandelte DNA wird bevorzugt amplifiziert und kann dann über unterschiedliche Methoden analysiert werden. Das erfindungsgemäße Verfahren eignet sich insbesondere zur Diagnose von Krebserkrankungen und anderer mit einer Veränderung des Methylierungsstatus assoziierter Krankheiten sowie zur Prognose unerwünschter Arzneimittelwirkungen.

und die in Frage kommenden Enzyme sind dem Fachmann bekannt und ergeben sich etwa aus den von den Herstellern mitgelieferten Protokollen.

[0011] Die zu untersuchende DNA muss für den Umsatz mit der AID zumindest partiell einzelsträngig vorliegen. Dem Fachmann sind unterschiedliche Wege bekannt, zu einzelsträngiger DNA zu gelangen. In einer bevorzugten Variante wird die zu untersuchende DNA hitze-denaturiert und anschließend mit Oligonukleotiden hybridisiert, die partiell komplementär zu der zu untersuchenden DNA sind. Dabei sind die Oligonukleotide gerade zu den zu untersuchenden Cytosinpositionen nicht komplementär, so dass in diesen Bereichen einzelsträngige „Blasen“ gebildet werden, an denen die AID aktiv werden kann. Die nicht komplementären Bereiche sind dabei bevorzugt zwischen 3 und 20 Nukleotide, besonders bevorzugt zwischen 5 und 12 Nukleotide und ganz besonders bevorzugt 9 Nukleotide lang (vgl.: Bransteitter et al., 2003 S. 4106, Tab.1). In einer bevorzugten Ausführungsform werden synthetische Oligonukleotide eingesetzt. Diese haben bevorzugt eine Länge zwischen 20 und 150, besonders bevorzugt zwischen 35 und 60 Nukleotiden. Diese Oligonukleotide werden in einem Überschuss zu der zu untersuchenden DNA eingesetzt, so dass gewährleistet ist, dass möglichst viel der zu untersuchende Cytosin-Positionen für die Deaminase zugänglich sind. Bevorzugt ist dabei eine Konzentration von 1 pmol/l bis 1000 nmol/l, besonders bevorzugt ein Bereich zwischen 1 nmol/l und 100 nmol/l. Im einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahren werden mehrere Oligonukleotide unterschiedlicher Sequenz eingesetzt, so dass gleichzeitig eine Untersuchung mehrere Cytosinpositionen möglich ist. In einer weiteren bevorzugten Variante sind die Oligonukleotide so aufgebaut, dass sie selbst nicht von dem AID-Enzym umgesetzt werden können. Dies kann etwa dadurch geschehen, dass in den Oligonukleotidén 5-Methylcytosine statt Cytosine enthalten sind. Dem Fachmann ist bekannt, dass statt Oligonukleotiden auch andere Oligomere eingesetzt werden können, etwa Peptid-Nukleinsäure-(PNA)-Oligomere. Die Synthese der Oligomere sowie die Hybrisierungsbedingungen gehören zum Stand der Technik. Es ist naheliegend, dass für das erfindungsgemäße Verfahren statt chemisch synthetisierter Oligonukleotide auch Oligonukleotide anderen Ursprungs, etwa PCR-Fragmente oder genomische DNA eingesetzt werden können. Reaktionsbedingungen für die Deaminierung sind in der Literatur beschrieben (siehe etwa: Bransteitter et al. 2003, a.a.o.; Sohail et al. 2003, a.a.o.; Chaudhuri et al. 2003, a.a.o.). Die umgewandelte DNA kann anhand der gängigen molekularbiologischen Verfahren analysiert werden, etwa über Hybridisierung oder Sequenzierung. In einer bevorzugten Variante wird die umgewandelte DNA zunächst amplifiziert.

[0012] Hierzu sind dem Fachmann unterschiedliche Verfahren bekannt, etwa Ligasekettenreaktionen. In einer bevorzugten Ausführungsform wird die DNA allerdings über eine Polymerasereaktion amplifiziert. Hierzu sind verschiedene Ausgestaltungen denkbar, etwa die Verwendung isothermer Amplifikationsverfahren. Besonders bevorzugt sind allerdings Polymerasekettenreaktionen (PCR). In einer ganz besonders bevorzugten Ausführungsform erfolgt die PCR unter Verwendung von Primern, die spezifisch nur an Positionen der umgewandelten Sequenz binden, die vorher entweder methyliert (oder bei umgekehrtem Ansatz: unmethyliert) waren. Dieses Verfahren ist bei bisulfitierter DNA unter dem Namen methylierungssensitive PCR bekannt (MSP). Dabei werden Primer verwendet, die mindestens ein 5'- CpG -3' Dinukleotid enthalten; bevorzugt sind Primer, die mindestens drei 5'-CpG-3'-Positionen tragen, von denen mindestens eine am 3' Ende lokalisiert ist. Für die Amplifikation der unmethylierten Sequenzen bzw. der Gegenstrände sind dementsprechend 5'-TG-3' oder 5'-CA-3'-Dinukleotide erforderlich (Vgl.: Herman et al.: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996 Sep 3; 93(18): 9821-6).

[0013] Eine andere ganz besonders bevorzugten Ausführungsform ist für Bisulfit-vorbehandelte DNA unter dem Namen „Heavy-Methyl“-Methode bekannt. Dabei wird eine spezifische Amplifizierung nur der ursprünglich methylierten (bzw. unmethylierten) DNA durch Einsatz mindestens eines methylierungsspezifischen Blocker-Oligomers erreicht. Der Blocker bindet an ein 5'-CG-3' (bzw. 5'-TG-3'-Dinukleotid oder 5'-CA-3')-Dinukleotid und verhindert so die Amplifikation der Hintergrund-DNA. Die Ausführungsform kann über die Auswahl der Polymerase oder über die Modifikation der Blockeroligomere so ausgestaltet sein, dass ein Abbau oder eine Verlängerung der Blocker minimiert wird (zur Übersicht: WO 02/072880).

[0014] Für den Fall, dass die erforderliche Bildung der einzelsträngigen DNA über den Einsatz partiell komplementärer Oligomere erreicht wird (s.o.), ergeben sich für die o.g. „MSP“- und „Heavy-Methyl“-Varianten weitere bevorzugte Ausführungsformen. Dabei wird zur PCR-Amplifikation mindestens ein Primer eingesetzt, der am 5'-Bereich die genomische Sequenz trägt (entspricht dem doppelsträngigen, und daher nicht umgewandelten Teil der zu untersuchenden DNA), und der in seinem 3'-Bereich über eine Sequenz verfügt, die der umgewandelten DNA entspricht. In der MSP-Variante trägt der 3'-Bereich zusätzlich methylierungsspezifische Positionen.

[0015] Die Detektion der Amplifikate kann über herkömmliche Verfahren erfolgen, etwa über Methoden der

Längenmessung wie Gelelektrophorese, Kapillargelelektrophorese und Chromatographie (z.B. HPLC). Auch Massenspektrometrie und Methoden zur Sequenzierung wie die Sanger-Methode, die Maxam-Gilbert-Methode und Sequencing by Hybridisation (SBH) können verwendet werden. In einer bevorzugten Ausführungsform werden die Amplifikate durch Primer-Extension-Verfahren nachgewiesen (siehe etwa: Gonzalgo & Jones: Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 1997 Jun 15; 25(12): 2529-31; DE 100 10 282; DE 100 10 280).

[0016] In einer anderen bevorzugten Ausführungsform werden die Amplifikate mittels Hybridisierung an Oligomer-Arrays analysiert (ein Überblick über Array-Technologie befindet sich in der Extraausgabe von: Nature Genetics Supplement, Volume 21, January 1999). Auf einem solchen Array können die verschiedenen Oligomere auf einer Festphase in Form eines rechtwinkligen oder hexagonalen Gitters angeordnet sein. Die Festphasenoberfläche ist bevorzugt aus Silizium, Glas, Polystyrol, Aluminium, Stahl, Eisen, Kupfer, Nickel, Silber oder Gold zusammengesetzt. Jedoch sind auch Nitrocellulose und Kunststoffe wie Nylon, die in Form von Pellets oder auch als Harz-Matrizes existieren können, möglich. Die etwa fluoreszenzmarkierten Amplifikate werden an die gebundenen Oligomere hybridisiert und die nicht gebundenen Fragmente entfernt. Vorteilhaft ist es dabei, wenn die Oligomere über einen 12-22 Basen langen Abschnitt an die zu analysierende DNA hybridisieren und sie mindestens ein CG, TG oder CA Dinukleotid umfassen. Die Fluoreszenz-Signale können gescannt und mit Software-Programmen verarbeitet werden (Siehe etwa: Adorjan et al., Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 2002 Mar 1; 30(5): e21). In einer anderen besonders bevorzugten Ausführungsform werden die Amplifikate unter Verwendung von PCR-Echtzeit-Varianten analysiert (vgl.: Heid et al.: Real time quantitative PCR. Genome Res. 1996 Oct; 6(10): 986-94, US Patent No. 6,331,393 „Methyl-Light“). Dabei wird die Amplifikation in Gegenwart eines fluoreszenzmarkierten Reporteroligonukleotid durchgeführt, das an ein 5'-CG-3'-Dinukleotid (bzw. 5'-TG-3'- oder 5'-CA-3'-Dinukleotid) hybridisiert. Das Reporteroligonukleotid bindet dabei bevorzugt an die zu untersuchende DNA und zeigt deren Amplifikation durch Zunahme oder Abnahme der Fluoreszenz an. Dabei ist es besonders vorteilhaft, wenn die Fluoreszenzveränderung direkt zur Analyse benutzt wird und aus dem Fluoreszenzsignal auf einen Methylierungszustand geschlossen wird. Eine besonders bevorzugte Variante ist dabei das „Tagman®-Verfahren. In einer anderen besonders bevorzugten Ausführungsform wird ein zusätzliches fluoreszenzmarkiertes Oligomer verwendet, das in unmittelbarer Nähe zu dem ersten Reporteroligonukleotid hybridisiert und sich diese Hybridisierung mittels Fluoreszenz-Resonanz-Energietransfer nachweisen lässt („Lightcycler®-Verfahren).

[0017] Eine bevorzugte Ausführungsform der Erfindung ist es, mehrere Fragmente gleichzeitig mittels einer Multiplex-PCR zu amplifizieren. Bei deren Design muss darauf geachtet werden, dass nicht nur die Primer, sondern auch die weiteren eingesetzten Oligonukleotide nicht zueinander komplementär sein dürfen, so dass eine hochgradige Multiplexierung in diesem Fall schwieriger ist als in üblich. Jedoch hat man bei der enzymatisch vorbehandelten DNA den Vorteil, dass aufgrund des unterschiedlichen G und C-Gehaltes der beiden DNA-Stränge ein Forward-Primer niemals auch als Reverse-Primer fungieren kann, was die Multiplexierung wiederum erleichtert und den oben beschriebenen Nachteil im wesentlichen ausgleicht. Die Detektion der Amplifikate ist wiederum über unterschiedliche Verfahren möglich. Denkbar ist dabei etwa die Verwendung von Echtzeit-Varianten. Für Amplifikationen von mehr als vier Genen empfiehlt es sich aber, die Amplifikate auf andere Weise zu detektieren. Bevorzugt ist dabei eine Analyse über Arrays (s.o.). In einer anderen bevorzugten Ausführungsform erfolgt nach der Amplifizierung eine erneute enzymatische Umwandlung mit der AID. Hierdurch werden auch die nach der ersten Deaminierung verbleibenden Cytosine umgewandelt. Eine solche wiederholte Umwandlung hat mehrere Vorteile und ist für die Bisulfitierung bereits beschrieben (vgl.: DE 100 50 942).

[0018] Im übrigen wird noch einmal betont, dass das Ergebnis der erfindungsgemäßen enzymatischen Umwandlung dem Ergebnis der Bisulfit-Behandlung entspricht. Es ist daher naheliegend, dass alle bereits bekannten Verfahren zur Analyse der bisulfitierten DNA auch zur Analyse der erfindungsgemäß umgewandelten DNA verwendet werden können. Der Fachmann findet Angaben über die entsprechenden Verfahren in der wissenschaftlichen Veröffentlichungen und in der Patentliteratur. Eine aktuelle Übersicht über die möglichen Methoden findet sich in: Fraga and Esteller: DNA Methylation: A Profile of Methods and Applications. Biotechniques 33: 632-649 (September 2002).

[0019] Eine besonders bevorzugte Verwendung des erfindungsgemäßen Verfahrens liegt in der Diagnose von Krebserkrankungen oder anderen mit einer Veränderung des Methylierungsstatus assoziierten Krankheiten. Hierzu gehören u.a. CNS-Fehlfunktionen, Aggressionssymptome oder Verhaltensstörungen; klinische, psychologische und soziale Konsequenzen von Gehirnschädigungen; psychotische Störungen und Persönlichkeitsstörungen; Demenz und/oder assoziierte Syndrome; kardiovaskuläre Krankheit, Fehlfunktion und Schädigung; Fehlfunktion, Schädigung oder Krankheit des gastrointestinalen Traktes; Fehlfunktion, Schädi-

gung oder Krankheit des Atmungssystems; Verletzung, Entzündung, Infektion, Immunität und/oder Rekonvalleszenz; Fehlfunktion, Schädigung oder Krankheit des Körpers als Abweichung im Entwicklungsprozess; Fehlfunktion, Schädigung oder Krankheit der Haut, der Muskeln, des Bindegewebes oder der Knochen; endokrine und metabolische Fehlfunktion, Schädigung oder Krankheit; Kopfschmerzen oder sexuelle Fehlfunktion. Das erfindungsgemäße Verfahren eignet sich außerdem zur Vorhersage von unerwünschten Arzneimittelwirkungen und zur Unterscheidung von Zelltypen oder Geweben oder zur Untersuchung der Zelldifferenzierung.

[0020] Erfindungsgemäß ist auch die Verwendung von Cytidin-Deaminasen, die Cytidin und 5-Methylcytidin unterschiedlich schnell umsetzen, insbesondere die Verwendung der Aktivierungs-induzierten Cytidin-Deaminase (AID), eines biologisch aktiven Fragmentes der AID bzw. einer Modifikation hiervon zur Methylierungsanalyse, insbesondere zur Diagnose von Krebserkrankungen oder anderen mit einer Veränderung des Methylierungsstatus assoziierten Krankheiten, zur Vorhersage von unerwünschten Arzneimittelwirkungen, zur Unterscheidung von Zelltypen und Geweben oder zur Untersuchung der Zelldifferenzierung.

[0021] Erfindungsgemäß ist schließlich auch ein Kit, der aus dem AID-Enzym, eines biologisch aktiven Fragmentes der AID oder einer Modifikation hiervon sowie Oligomeren und den für die Deaminierung erforderlichen Puffern besteht, sowie optional auch eine Polymerase, Primer und Sonden für eine Amplifikation und Detektion enthält.

Ausführungsbeispiel

Nachweis der CpG Methylierung im Exon 1 vom Homo sapiens p16-INK4 (p16) Gen in humaner DNA (Promega).

[0022] Die folgende Sequenz aus dem p16-INK4-Gen soll auf ihren Methylierungsstatus untersucht werden:

```

1 gaagaaaagag gaggggctgg ctggtcacca gaggggtgggg cggaccgcgt gcgctggcg
61 gctgcggaga gggggagagc aggca ggggg cggcggggag cagcatggag cggcgccgcgg
121 ggagcagcat ggagccttcg gctgactggc tggccacggc cgccggccgg ggtcggttag
181 aggagggtgcg ggcgctgctg gagggcggggg cgctgccc aa cgacccaa atttacggc
241 ggaggccat ccagggtgggt agagggtctg cagcgggagc agggatggc gggcgactct
301 ggaggacgaa gtttgcaggg gaattggaa caggtacgc (Seq ID 1)

```

[0023] Dazu werden 160 ng der zu untersuchenden DNA (als Kontrolle 160 ng künstlich aufmethylierter ge-

nomischer DNA, Promega) und jeweils 25 pmol von den beiden Oligonukleotiden:

5'-ctccccccccccgcgtgcgcgtgcgcgtccgcacgccttc-3' (Seq ID 2) und

5'-gccgactgaccgaccacggccgcggccggccca-3' (Seq ID 3)

in einem Reaktionsgefäß mit 20 µl Puffer (10 mM Tris-HCl (pH 8,0), 1 mM EDTA, 1 mM DTT) für 5 min bei 96°C denaturiert und danach zum Abkühlen für 2 min auf Eis gegeben. Dabei hybridisieren die Oligonukleotide an die genomische DNA mit jeweils einer 10 bp weiten Öffnung, die ein optimales Substrat für die nachfolgende Behandlung mit dem AID-Enzym bilden. Dazu werden dem abgekühltem Reaktionsgemisch 400 µg AID und 2 µg RNaseA (Bransteitter et. al., PNAS, v. 100, p. 4102 (2003)) zugesetzt, und das Gemisch wird für 7 min bei 37°C inkubiert. Die Reaktion wird durch eine Phenol/Cloroform/Isoamyl (25:24:1) Fällung abgebrochen. Die Detektion wird mit einer PCR durchgeführt. Dazu werden 2 µl der gefällten DNA Lösung in 18 µl Wasser mit 2 µl Primerlösung mit jeweils 25 pmol von zwei Oligonukleotiden (5'-cgccctggcgacgcggaaa-3' (Seq ID 4), 5'-ttacggcgccggccggctc-3' (Seq ID 5)) und 2,5 µl dNTP-Mix (Fermentas, Konzentration je dNTP 2,5 µmol/µl), 0,3 µl Hot Star Taq (Qiagen), 2,5 µl 10 × PCR Buffer Solution (Qiagen, 15 mM MgCl₂ im Puffer enthalten) in einem Reaktionsgefäß gemischt und auf einem Thermocycler mit folgendem Temperaturprogramm inkubiert:

1. 95°C 15min
2. 95°C 1min
3. 55°C 45sec
4. 72°C 1min 15sec
5. go to 2. Rep 39
6. 72°C 10min
7. Hold 10°C.

[0024] Die Kontrollierte PCR erfolgt mittels Gelelektrophorese. Dazu werden 5 µl PCR-Produkt mit 3 µl Loading-Dye auf ein 1,4 % iges Agarosegel (Eurogentec, Inc.) aufgetragen. Als Laufpuffer dient 1 × TBE. Die Fragmente werden mittels Ethidiumbromid angefärbt und das Gel wird unter UV-Beleuchtung abfotografiert.

Sequenzprotokoll

Sequence listing

<110> Epigenomics AG

<120> Verfahren zum Nachweis von Cytosin-Methylierungen in DNA mittels
Cytidin-Deaminasen

<160> 5

<210> 1

<211> 340

<212> DNA

<213> Homo Sapiens

<400> 1

gaagaagag gaggggctgg ctggcacca	gagggtgggg cggaccgcgt	gcgctcggcg	60
gctgcggaga gggggagac	aggcagcggg cggccgggag	cacatggag cggcgccgg	120
ggagcagcat ggacccatcg	gctgactggc tggcacccgc	cgcggcccg	180
aggaggctcg ggcgtctg	gagggggggg cgctccccaa	cgcaccgaat agttacggtc	240
ggaggccgat ccagggtgggt	agagggtctg cagcggagc	aggggatggc gggcgactct	300
ggaggacgaa gttgcaggg	gaatttggaaat cagtagcgc		340

<210> 2

<211> 41

<212> DNA

<213> artificial

<400> 2

ctcccacccc gcctgcgcgt gcgctccgcg cgacgcctct c 41

<210> 3

<211> 41

<212> DNA

<213> artificial

<400> 3

gccgactgac cgacccacg gccgccccggg ccccaagccc a 41

<210> 4

<211> 17

<212> DNA

<213> artificial

<400> 4

cgccctggcgc acgaaaa 17

<210> 5

<211> 21

<212> DNA

<213> artificial

<400> 5

ttacggtcgg ggccgggct c 21

Patentansprüche

1. Verfahren zum Nachweis von Cytosinmethylierungen in DNA, dadurch gekennzeichnet, dass man
 - a) die zu untersuchende DNA mit einer Cytidin-Deaminase in Kontakt bringt, wobei die Cytidin-Deaminase Cytidin und 5-Methylcytidin unterschiedlich schnell deaminiert,
 - b) die partiell deaminierte DNA hinsichtlich ihrer Sequenz untersucht, und
 - c) aus dem Vorliegen oder dem Anteil deaminierten Positionen auf den Methylierungszustand der zu untersuchenden DNA in besagten Positionen schließt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man als methylierungsspezifische Cyt-

din-Deaminase die Aktivierungs-induzierte Cytidin-Deaminase (AID) oder ein biologisch aktives Fragment der AID oder eine Modifikation hiervon verwendet.

3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die zu untersuchende DNA in zumindest partiell einzelsträngiger Form vorliegt.

4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man die zu untersuchende DNA mit Oligomeren hybridisiert, wobei die Hybride an den zu untersuchenden Cytosinpositionen einzelsträngig vorliegen.

5. Verfahren nach den Anspruch 4, dadurch gekennzeichnet, dass die einzelsträngigen Bereiche zwischen 3 und 20 Nukleotide groß sind.

6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass die einzelsträngigen Bereiche zwischen 5 und 12 Nukleotide groß sind.

7. Verfahren nach mindestens einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der einzelsträngige Bereich 9 Nukleotide groß ist.

8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Oligomere eine Länge von 20 bis 150 Nukleotide aufweisen.

9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Oligomere eine Länge von 35 bis 60 Nukleotide aufweisen.

10. Verfahren nach mindestens einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass die Oligomere in einer Konzentration von 1 pmol/l bis 1000 nmol/l vorliegen.

11. Verfahren nach mindestens einem der Ansprüche 4 bis 10, dadurch gekennzeichnet, dass die Oligomere in einer Konzentration von 1 nmol/l bis 100 nmol/l vorliegen.

12. Verfahren nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man die zu untersuchende DNA nach der enzymatischen Behandlung amplifiziert.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Amplifikation mittels einer Polymerasereaktion erfolgt.

14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Amplifikation mittels einer Polymerasekettenreaktion erfolgt.

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Polymerasekettenreaktion mittels methylierungsspezifischer Primer erfolgt.

16. Verfahren nach einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, dass in der Polymerasekettenreaktion mindestens ein methylierungsspezifisches Blocker-Oligomer eingesetzt wird.

17. Verfahren nach mindestens einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass nach der Amplifikation eine erneute enzymatische Umsetzung mit einer Cytidin-Deaminase erfolgt.

18. Verfahren nach mindestens einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass man die Amplifikate über Methoden der Längenmessung, der Massenspektrometrie oder der Sequenzierung analysiert.

19. Verfahren nach mindestens einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass man die Amplifikate durch Primer-Extension-Verfahren analysiert.

20. Verfahren nach mindestens einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass man die Amplifikate durch Hybridisierung an Oligomer-Arrays analysiert.

21. Verfahren nach mindestens einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass man die

Amplifizate unter Verwendung von Echtzeit-Varianten analysiert.

22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass man ein Taqman® oder ein Lightcycler®-Verfahren durchführt.
23. Verfahren nach mindestens einem der Ansprüche 12 bis 22, dadurch gekennzeichnet, dass man mehrere Fragmente gleichzeitig mittels einer Multiplex-Reaktion amplifiziert.
24. Verwendung eines Verfahrens nach mindestens einem der Ansprüche 1–23 zur Diagnose von Krebserkrankungen oder anderen mit einer Veränderung des Methylierungsstatus assoziierten Krankheiten.
25. Verwendung eines Verfahrens nach mindestens einem der Ansprüche 1 bis 23 zur Vorhersage von unerwünschten Arzneimittelwirkungen, zur Unterscheidung von Zelltypen und Geweben oder zur Untersuchung der Zelldifferenzierung.
26. Verwendung von Cytidin-Deaminasen, die Cytidin und 5-Methylcytidin unterschiedlich schnell umsetzen, zur Methylierungsanalyse.
27. Verwendung von Cytidin-Deaminasen, die Cytidin und 5-Methylcytidin unterschiedlich schnell umsetzen, zur Diagnose von Krebserkrankungen oder anderen mit einer Veränderung des Methylierungsstatus assoziierten Krankheiten.
28. Verwendung von Cytidin-Deaminasen, die Cytidin und 5-Methylcytidin unterschiedlich schnell umsetzen, zur Vorhersage von unerwünschten Arzneimittelwirkungen, zur Unterscheidung von Zelltypen und Geweben oder zur Untersuchung der Zelldifferenzierung.
29. Verwendung nach mindestens einem der Ansprüche 24 bis 28, dadurch gekennzeichnet, dass es sich bei der Cytidin-Deaminase um die Aktivierungs-induzierte Cytidin-Deaminase (AID), um ein biologisch aktives Fragment der AID bzw. eine Modifikation hiervon handelt.
30. Ein Kit zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 23, der aus dem AID-Enzym, einem biologisch aktiven Fragment der AID oder einer Modifikation hiervon sowie Oligomeren und den für die Deaminierung erforderlichen Puffern besteht, sowie optional auch eine Polymerase, Primer und Sonden für eine Amplifikation und Detektion enthält.

Es folgt kein Blatt Zeichnungen