8)	Show that the number of spanning trees in a complete graph with n vertices is at least $2^{n-1} - 1$.
	In the case Kn
	\mathcal{A}
	0 0 0 0 0 (n-1)
	we have 2" way to connoce the vertex A and
	another vertex, except the situation the A is not
	connected to any of them. So the number of spanning
	tree is at lowst 2 nd - (.