

DKN: Deep Knowledge-Aware Network for News Recommendation

Hongwei Wang^{1,2}, Fuzheng Zhang², Xing Xie², Minyi Guo^{1*}

¹Shanghai Jiao Tong University, Shanghai, China

²Microsoft Research Asia, Beijing, China

wanghongwei55@gmail.com,{fuzzhang,xingx}@microsoft.com,guo-my@cs.sjtu.edu.cn

Content

- Intention and background
- Basic knowledge introduction
- Model architecture
- Experiments and results
- Conclusion

Intention and background

Goal: Explosion of news and make personalized recommendation

Major challenges:

- ✓ Highly time-sensitive
- ✓ Topic-sensitive and Multi-interested user
- ✓ Highly condensed and comprised of a large amount of knowledge entities and common sense.

Basic knowledge introduction

Knowledge Graph Embedding

TransE

$$\mathbf{h} + \mathbf{r} \approx \mathbf{t}$$
 SCORE: $f_r(h,t) = -\|\mathbf{h}_{\perp} + \mathbf{r} - \mathbf{t}_{\perp}\|_2^2$,

• TransH hyperplanes

$$\mathbf{h}_{\perp} = \mathbf{h} - \mathbf{w}_r^{\top} \mathbf{h} \mathbf{w}_r, \quad \mathbf{t}_{\perp} = \mathbf{t} - \mathbf{w}_r^{\top} \mathbf{t} \mathbf{w}_r.$$
 $\mathbf{h}_{\perp} + \mathbf{r} \approx \mathbf{t}_{\perp}^{\top}$

• TransR

Entity space
$$\mathbb{R}^d$$

$$\mathbf{h}_{\perp} = \mathbf{M}_r \mathbf{h}, \quad \mathbf{t}_{\perp} = \mathbf{M}_r \mathbf{t}.$$

Each relation \mathbb{R}^k

$$\mathbf{M}_r \in \mathbb{R}^{k \times d}$$

- 定义一个打分函数(scoring function)
- 学习实体和关系的向量表示

(b) TransH.

(c) TransR.

• TransD

$$\mathbf{M}_r^1 = \mathbf{w}_r \mathbf{w}_h^{ op} + \mathbf{I}, \quad \mathbf{M}_r^2 = \mathbf{w}_r \mathbf{w}_t^{ op} + \mathbf{I}.$$
 $\mathbf{w}_h, \mathbf{w}_t \in \mathbb{R}^d \quad \mathbf{w}_r \in \mathbb{R}^k,$ $\mathbf{h}_{\perp} = \mathbf{M}_r^1 \mathbf{h}, \quad \mathbf{t}_{\perp} = \mathbf{M}_r^2 \mathbf{t}.$

损失函数:

$$\mathcal{L} = \sum_{(h,r,t)\in\Delta} \sum_{(h',r,t')\in\Delta'} \max\big(0,f_r(h,t) + \gamma - f_r(h',t')\big),$$

CNN for Sentence Representation Learning

- \triangleright a sentence of length $\mathbf{w}_{1:n} = [\mathbf{w}_1 \ \mathbf{w}_2 \ ... \ \mathbf{w}_n]$
- \triangleright convolution operation with filter $h \in \mathbb{R}^{d \times l}$

$$c_i = f(h * \mathbf{w}_{i:i+l-1} + b),$$

$$c = [c_1, c_2, ..., c_{n-l+1}]$$

max-over-time pooling operation

$$\tilde{c} = \max\{c\} = \max\{c_1, c_2, ..., c_{n-l+1}\}.$$

 $\mathbb{R}^{d imes n}$

Figure 2: A typical architecture of CNN for sentence representation learning [20].

Problem Formulation

user i

click history:

$$\{t_1^i, t_2^i, ..., t_{N_i}^i\}$$

aim to predict whether user i will click a candidate news tj that he has not seen before

Figure 3: Illustration of the DKN framework.

Knowledge Distillation

- By the technique of entity linking to identify entities
- Construct a sub-graph
- Knowledge graph embedding
- additional contextual information for each entity

$$context(e) = \{e_i \mid (e, r, e_i) \in \mathcal{G} \text{ or } (e_i, r, e) \in \mathcal{G}\}$$

$$\overline{\mathbf{e}} = \frac{1}{|context(e)|} \sum_{e_i \in context(e)} \mathbf{e}_i,$$

Knowledge-aware CNN

• a news title t of length n

$$\mathbf{w}_{1:n} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_n] \in \mathbb{R}^{d \times n}$$

knowledge distillation

$$\mathbf{e}_i \in \mathbb{R}^{k \times 1} \qquad \overline{\mathbf{e}}_i \in \mathbb{R}^{k \times 1}$$

Simply method

$$\mathbf{W} = [\mathbf{w}_1 \; \mathbf{w}_2 \; ... \; \mathbf{w}_n \; \mathbf{e}_{t_1} \; \mathbf{e}_{t_2} \; ...],$$

fed into CNN

multi-channel method

$$g(e_{1:n}) = [g(e_1) g(e_2) ... g(e_n)]$$

$$g(\overline{\mathbf{e}}_{1:n}) = [g(\overline{\mathbf{e}}_1) \ g(\overline{\mathbf{e}}_2) \ \dots \ g(\overline{\mathbf{e}}_n)]$$

g is the transformation function

$$g(\mathbf{e}) = \mathbf{M}\mathbf{e}$$
 $g(\mathbf{e}) = \tanh(\mathbf{M}\mathbf{e} + \mathbf{b}), \quad \mathbf{M} \in \mathbb{R}^{d \times k}$

multi-channel input W: $\mathbf{W} = \left[\left[\mathbf{w}_1 \, g(\mathbf{e}_1) \, g(\overline{\mathbf{e}}_1) \right] \left[\mathbf{w}_2 \, g(\mathbf{e}_2) \, \overline{g}(\mathbf{e}_2) \right] \dots \left[\mathbf{e}_n \, g(\mathbf{e}_n) \, g(\overline{\mathbf{e}}_n) \right] \right] \in \mathbb{R}^{d \times n \times 3}$

Attention-based User Interest Extraction

user i with clicked history

$$\{t_{1}^{i}, t_{2}^{i}, ..., t_{N_{i}}^{i}\}$$

$$\downarrow \text{KCNN}$$

$$\mathbf{e}(t_{1}^{i}), \mathbf{e}(t_{2}^{i}), ..., \mathbf{e}(t_{N_{i}}^{i}).$$

Simply method

$$\mathbf{e}(i) = \frac{1}{N_i} \sum_{k=1}^{N_i} \mathbf{e}(t_k^i).$$

Attention network

the candidate news t $_{i}$ clicked news t_{k}^{i} apply a DNN ${\cal H}$

$$\begin{split} s_{t_k^i, t_j} &= \operatorname{softmax} \left(\mathcal{H} \left(\mathbf{e}(t_k^i), \mathbf{e}(t_j) \right) \right) = \frac{\exp \left(\mathcal{H} \left(\mathbf{e}(t_k^i), \mathbf{e}(t_j) \right) \right)}{\sum_{k=1}^{N_i} \exp \left(\mathcal{H} \left(\mathbf{e}(t_k^i), \mathbf{e}(t_j) \right) \right)} \\ \mathbf{e}(i) &= \sum_{k=1}^{N_i} s_{t_k^i, t_j} \mathbf{e}(t_k^i) \end{split}$$

Experiments and results

Dataset:

Bing News Microsoft Satori knowledge graph

in the knowledge graph

Result:

Table 2: Comparison of different models.

	_		
Models*	F1	AUC	<i>p</i> -value**
DKN	68.9 ± 1.5	65.9 ± 1.2	_
LibFM	61.8 ± 2.1 (-10.3%)	59.7 ± 1.8 (-9.4%)	$< 10^{-3}$
LibFM(-)	61.1 ± 1.9 (-11.3%)	58.9 ± 1.7 (-10.6%)	$< 10^{-3}$
KPCNN	67.0 ± 1.6 (-2.8%)	64.2 ± 1.4 (-2.6%)	0.098
KPCNN(-)	65.8 ± 1.4 (-4.5%)	63.1 ± 1.5 (-4.2%)	0.036
DSSM	66.7 ± 1.8 (-3.2%)	63.6 ± 2.0 (-3.5%)	0.063
DSSM(-)	66.1 ± 1.6 (-4.1%)	63.2 ± 1.8 (-4.1%)	0.045
DeepWide	66.0 ±1.2 (-4.2%)	63.3 ± 1.5 (-3.9%)	0.039
DeepWide(-)	63.7 ± 0.9 (-7.5%)	61.5 ± 1.1 (-6.7%)	0.004
DeepFM	63.8 ± 1.5 (-7.4%)	61.2 ± 2.3 (-7.1%)	0.014
DeepFM(-)	64.0 ± 1.9 (-7.1%)	61.1 ± 1.8 (-7.3%)	0.007
YouTubeNet	65.5 ± 1.2 (-4.9%)	$63.0 \pm 1.4 (-4.4\%)$	0.025
YouTubeNet(-)	65.1 ± 0.7 (-5.5%)	62.1 ± 1.3 (-5.8%)	0.011
DMF	57.2 ± 1.2 (-17.0%)	55.3 ± 1.0 (-16.1%)	$< 10^{-3}$

 $^{^{\}ast}$ "(-)" denotes "without input of entity embeddings".

Figure 7: AUC score of DKN and baselines over ten days (Sep. 01-10, 2017).

^{**} p-value is the probability of no significant difference with DKN on AUC by t-test.

Table 3: Comparison among DKN variants.

Variants	F1	AUC
DKN with entity and context emd.	68.8 ± 1.4	65.7 ± 1.1
DKN with entity emd. only	67.2 ± 1.2	64.8 ± 1.0
DKN with context emd. only	66.5 ± 1.5	64.2 ± 1.3
DKN without entity nor context emd.	66.1 ±1.4	63.5 ± 1.1
DKN + TransE	67.6 ± 1.6	65.0 ± 1.3
DKN + TransH	67.3 ± 1.3	64.7 ± 1.2
DKN + TransR	67.9 ± 1.5	65.1 ± 1.5
DKN + TransD	68.8 ± 1.3	65.8 ± 1.4
DKN with non-linear mapping	69.0 ± 1.7	66.1 ± 1.4
DKN with linear mapping	67.1 ± 1.5	64.9 ± 1.3
DKN without mapping	66.7 ± 1.6	63.7 ± 1.6
DKN with attention	68.7 ± 1.3	65.7 ± 1.2
DKN without attention	67.0 ± 1.0	64.8 ± 0.8

CONCLUSIONS

对于新闻推荐中存在的问题和特点:新闻具有时效性和较多的实体,有针对性地提出了 DKN 模型,解决了三个挑战:

- DKN 是一个基于内容过滤的深度推荐系统模型;
- 为了利用知识图谱中的信息,通过 KCNN 来融合文本的语义层面、实体层面上的异构表示;
- 使用了注意力机制对用户的兴趣进行动态提取。

