一、(20分)

(1)

厦门大学《离散数学》课程试卷

\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	学院		系	_系年组			_专业	
	主 	· 杨维	<u> </u>	· <u>米米刑</u>	· (Δ	坐 \		
分)将下列命	题符号化:	其中 (1),	(2) 在	命题逻辑	中, (3),	(4) 1	在一阶逻辑中	1 0
虽然天气很冷	·,但人们情	绪很高。						
<i>u</i>	H.A.		\ 					

- (2) 你无法去 super bowl,除非你付得起门票。
- (3) 有的人喜欢所有的花。
- (4) 任何金属都可以溶解在某种液体中。
- 二、(14分) 求下列式子的主析取范式和主合取范式。
 - $(1) (p \lor (q \land r)) \rightarrow p \lor q \lor r$
 - (2) $(p \land q) \lor (r \land \neg p)$
- 三、(6 分) 将 $p \rightarrow (q \rightarrow r)$ 化成与之等值且仅含 $\{\neg, \land\}$ 中联结词的公式。
- 四、(6分)设A、B、C是命题公式,
- (1) 若已知 $A \lor C \Leftrightarrow B \lor C$, 在______条件下, $A \Leftrightarrow B$ 一定成立。
- (2) 若已知 $A \wedge C \Leftrightarrow B \wedge C$, 在 条件下, $A \Leftrightarrow B$ 一定成立。
- 五、(10分)民警侦查一起盗窃安,掌握了下述事实:
 - (1) 甲或乙偷了一台计算机。
 - (2) 若甲偷了这台计算机,则作案时间不可能发生在午夜之前。
 - (3) 若乙说的是真话,则午夜时屋里的灯是亮着的。
 - (4) 若乙说的是谎话,则作案时间在午夜之前。

(5) 午夜时屋里的灯灭了。

问: 是谁偷了这台计算机? 并在命题逻辑自然推理系统 P 中构造推理的证明。

六、(10 分) 求 $\exists x_1 F(x_1, x_2) \rightarrow (H(x_1) \rightarrow \neg \exists x_2 G(x_1, x_2))$ 的前東范式。

七、(14 分)判断下列公式类型(注意:需要说明原因,如果是可满足式还要指出是否为永真式)

- (1) $\forall x \exists y F(x, y) \rightarrow \exists x \forall y F(x, y)$
- (2) $\exists x \forall y F(x, y) \rightarrow \forall y \exists x F(x, y)$

八、(10 分) 给定解释 I 和赋值 σ 如下:

- (a) 个体域 D=N(N为自然数集)
- (b) a = 2
- (c) D 上特定函数 f(x, y) = x + y, $g(x, y) = x \cdot y$
- (d) D 上特定谓词 F(x, y) : x = y
- (e) $\sigma(x) = 0$, $\sigma(y) = 1$, $\sigma(z) = 2$

求下列各式的真值:

(1)
$$\exists x F(f(x, y), g(x, z))$$
 (2) $\sigma(x) = 0$,

九、(10分)在自然推理系统中构造下面推理的证明(个体域:全总个体域):

每个科学工作者都是刻苦钻研的,每个刻苦钻研而又聪明的人在他的事业中都将获得成功。王大海是科学工作者,并且是聪明的。所以,王大海线在他的事业中将获得成功。