1.2.23 - Matgeo Assignment

ai25btech11015 - M Sai Rithik

Question

Represent graphically a displacement of $40\,km,\ 30^\circ$ west of south.

Coordinate Convention

We choose the coordinate axes as:

East
$$\equiv +x$$
, West $\equiv -x$, North $\equiv +y$, South $\equiv -y$.

The unit column for South is

$$\mathbf{s} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
.

Rotation Matrix

For rotation by angle θ ,

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Since " 30° west of south" means a clockwise rotation of 30° , we apply

$$u = R(-30^{\circ})s$$
.

Direction Column

$$\mathbf{u} = \begin{bmatrix} \cos 30^{\circ} & \sin 30^{\circ} \\ -\sin 30^{\circ} & \cos 30^{\circ} \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix}.$$

Displacement Column

With magnitude 40 km:

$$\mathbf{d} = 40\mathbf{u} = 40 \begin{bmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} -20 \\ -20\sqrt{3} \end{bmatrix}$$
 km.

Endpoint:

$$(x,y) = (-20, -20\sqrt{3}) \text{ km}.$$

Graphical Representation

Figure: Displacement vector: 40 km, 30° west of south