No	Mathematical formulation	Physical interpretation
	Paper 1 theorems	
	Anomaly detection enhancement theorems	
1	$S_{\omega}^{I_{R}} \triangleq \frac{1}{I_{R}} \left(\frac{\partial I_{R}}{\partial \omega} \right) = \frac{1}{I_{R}} \left(\frac{\partial I_{R,Scattered}}{\partial \omega} \right), \frac{\partial I_{R,fixed}}{\partial \omega} = 0$	Scattered currents sensitivity theorem: The scattered current may be significantly smaller than total active/reactive current and yet the spectral change information is located there, due to fact that sensitivity measure $S_{\omega}^{I_R}$ of the system's change is there.
2	$i_R = v / R, i_C(s) = sCv, i_L(s) = v / (sL)$	Reactive scatter current sensitivity: The reactive→ scatter
	$s = \sigma + j\omega : \partial i_R / \partial s = 0,$	current signature is more likely to catch changes than total
	$\partial i_C / \partial s = Cv, \partial i_L / \partial s = v / (-s^2 L)$	current or active current: Changes over reactive components. Resistive spectral relation is fixed, reactive is pole/zero dependent.
3	$i_C(j\omega) = j(\omega Cv) = e^{j\pi/2}(\omega Cv), i_L(j\omega) =$	Reactive current sensitivity: phase may contribute to anomaly
		detection not less than amplitude signature, at reactive
	$=e^{-j\pi/2}(v/(\omega L))$	components and mixed active+ reactive components
	Grid/machinery deciphering theorems	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
4	$Y_{Total}(Z) = Y_{active}(Z) + Y_{Scattered}(Z) + Y_{Reactive}(Z) +$	Admittance function separability theorem: as observed from
	$+Y_{Customer}(Z) + Y_{Unbalanced}(Z) = \sum_{m} I_{m}(Z) / V(Z) \triangleq \sum_{m} Y_{m}$	above schematics –admittance transfer function may be modeled as composed of several admittance physical components. Published paper. שגיאה! מקור ההפניה לא נמצא
5	$i_{m,total} = \sum_{n} i_{n,m}$	Currents physical components separability theorem:
	where: $i_{m,total}$ - total current physical component of type m $index \in \{CPC, E - CPC \ current \ types\}$ and n branch index $i_{n,m}$ - current at branch n of CPC type m parallel	Looking at an electric scheme with n parallel branches, the following current relation is maintained at CPC.
6	$Y_{m,total} = \sum Y_{n,m}$	"RL serial circuit" reactive admittance theorem: Following
	where:	CPC relations then admittance relations are maintained
	$Y_{m,total}$ - total current physical component 'admittance' of type $m \in \{CPC \ current \ types\}$ $Y_{n,m}$ - current physical component 'admittance' at branch n of CPC type m including this paper enhanced CPC	
7	$Y_{total \rightarrow reactive \rightarrow scattered} = Im\{Y_{total \rightarrow active}\} =$	"RL serial circuit" active admittance theorem: for a linear
	$=\sum_{m}-\omega L_{m}/(R_{m}^{2}+\omega^{2}L_{m}^{2})$	load that includes only resistors and inductors the total—
	Reason that is written is because it may mistakenly be considered that following is	reactive→ scatter admittance, equals the sum of all parallel inductors, admittances
	correct: $Y_{total \rightarrow reactive} = \sum_{m} 1/(j\omega L_m)$	

8	$Y_{total \to active \to scattered} = \text{Re}\{Y_{total \to active}\} =$	"RLC serial circuit" admittance theorem: For linear loads
	$= \sum_{m} R_{m} / (R_{m}^{2} + \omega^{2} L_{m}^{2})$	with resistive elements at the parallel branches, the
	— <i>'''</i>	total→ active admittance, equals to the sum of real
	Reason that is written is because it may	segments of admittances (not of the resistors only) and is
	mistakenly be considered that following is	not sum only of resistors.
	correct: $Y_{total \to active} = \sum_{m} 1/R_m$	·
9	(17)	RLC serial total admittance separability: 1) for linear loads
	$Y_{total}(s) =$	with mixture of inductors and capacitors at the load parallel
	$= \sum_{m} [R_{m} - j(\omega L_{m} - 1/\omega C_{m})] / [R_{m}^{2} + (\omega L_{m} - 1/\omega C_{m})^{2}]$	branches, the total admittance, that is computable, equals the
		sum of all parallel active admittances separately+ reactive
	The bellow does not show at paper 1.	admittances separately. Example for serial RLC.
	~	The bellow does not show at paper 1
	Generalization:	2) generalization: For linear loads with mixture of
	$Y_{total \to reactive, m}(\omega) = \text{Im}\{Y_{total, m}\}$	inductors and capacitors at the load parallel branches, the
	$Y_{total \to active, m}(\omega) = \text{Re}\{Y_{total, m}\}$	total→ reactive admittance, that is computable, equals
	$Y_{total \to reactive}(\omega) = \sum_{m} \text{Im}\{Y_{total,m}\}, Y_{total \to active}(\omega) = \sum_{m} \text{Re}\{Y_{total,m}\}$	the sum of all parallel imaginary segments of branch
		admittances
		$(a) \begin{tabular}{l l l l l l l l l l l l l l l l l l l $
10-	(18)	Admittance correlation to CPC. Equating between transfer
a	$G_e = P/\ u\ ^2 = \sum_{n \in N_D \oplus N_C} G_n u_n^2 / \sum_{n \in N_D} u_n^2$	measured-computed admittance function for linear load, the total
	where: $G_n = R_m / \left[R_m^2 + (\omega_n L_m - 1/(\omega_n C_n))^2 \right]$	(customer+ distribution)→ reactive→ fixed current is close to
		zero. Although the reactive component of for example parallel
	$\begin{bmatrix} \mathbf{p} & \mathbf{Q} & \mathbf{J} \end{bmatrix}^2 \mathbf{\nabla} = \mathbf{p} \cdot \mathbf{Q} / \mathbf{\nabla} \mathbf{Q}$	branches of serial RLC looks spectral, at CPC spectrally constant
	$B_{e} = Q / \ u\ ^{2} = \sum_{n \in N_{D} \oplus N_{C}} B_{n} u_{n}^{2} / \sum_{n \in N_{D}} u_{n}^{2}$	component is extracted according to equation herein.
	where: $B_n = -(\omega_n L_m - 1/(\omega_n C_n)/[R_m^2 + (\omega_n L_m - 1/(\omega_n C_n))^2]$	
	Where:	This theorem relates to important issue: The components based
	<i>n</i> - harmonic index	active/reactive admittance transfer functions from eq. are based
	m – branch index N_D – set of harmonic indices that are at distribution	on 'total' active and reactive currents.
	N_D – set of narmonic indices that are at distribution current.	
	N_C - set of harmonic indices that are at customer current	

10-	$i_{reactive,total} = i_{CPC,reactive,distribution} + i_{CPC,reactive,customer}$	Relation between CPC and classical theory: Eq. is important
b		because "measured-computed admittance" is according to eq.
	$i_{active,total} = (i_{CPC,active \to fixed} + i_{CPC,active \to scattered})_{distribution} + (-"-)_{customer}$	CPC+Z-transform whereas the proposed electric scheme for
		comparison is described by eq.
11		Active spectral component: for linear load, the total (customer+
		distribution)→ active→ scatter current is not zero. The total→
		reactive→ fixed is not zero. It is according to eq Reason
		theorem is brought is not to suppose by mistake that $Y_{total,real} =$
		$\sum_{n} 1/R_n$ simply because $i_{total,real} = \sum_{n} i_{n,real}$. The active
		component of each branch is containing spectral reactive
		components. The bellow does not show at paper 1:
		Same, theorem is brought so not to suppose by mistake that
		$Y_{total,imag} = \sum_{n} j\omega C_n - j 1/\omega L_n$ simply because $i_{total,imag} = \sum_{n} j\omega C_n - j 1/\omega L_n$
12		$\sum_{n} i_{n,imag}$.
12	if rule – is – correct for: $\{all \ n \in N_D\}$ then rule – is – correct – for: $\{all \ n \in N_C\}$ && $\{n \in N_C + N_D\}$	method enlargement to HGL: theorems 3)-5) are correct also for Harmonic Generating Load (HGL). Practically there might
	у тем у тем и	be changes. Mathematically formulating it referring to
13		paper.שגיאה! מקור ההפניה לא נמצא.
13	$(1/Y_m)^2 / \partial_{\omega} (i_m(\omega) / v_m(\omega)) =$	anomaly enhancement by admittance. Admittance physical
	*	component improves the anomaly detection. Proof: the spectral
	$= \left[i_{m}(\omega) / i_{m}(\omega) - v_{m}(\omega) / v_{m}(\omega) \right]$	sensitivity is a measure of 'the change' signature since it's based
	Where: m index ∈	on 'many frequencies change-detection'.
	{CPC, enhanced CPC current types}	Eq. is to be correctly interpreted 'not' as admittance dependency
		stand-alone on current i'/i and over voltage v'/v . Correct
		interpretation is 'admittance is independent of voltage
		amplitude'. Since current contains dependency over voltage
		through $i = Yv$ – the voltage dependent component is approx.
14		subtracted – leaving only/mainly the 'non-voltage dependent'.
14	$Y_{customer \to reactive \to scattered}(\omega_i) = Y_{inductive}(\omega_i) + Y_{capacitve}(\omega_i)$	separability of inductive and capacitive admittances. Inductive and capacitive components may be separated from the total
		(customer+ distribution)→ reactive→
	Theorems outside nones 4	scatter admittance. Proof: using at least two harmonics $i = 1,2$
15	Theorems outside paper 1	For E CDC (gootton gramouts and for CDC)
15	All of the above theorems 1-13 are correct both	For E-CPC 6 scatter currents, and for CPC- 1 scatter
1 /	for CPC 5 components,& E-CPC 22 components. All of the above theorems 1-14 are correct for Lap.	current
16	1	
17	1)For <u>reactive</u> components – entire reactive current should be taken, and not only customer –	An especially important theorem that is derived from comprehension of definition of customer current as
	reactive current.	defined at CPC
	2) For load current – entire current should be taken	Verified experimentally
10	and not only customer current Signature Conjecture: it is speculated that	Demonstrated ampirically at published paper and to be
18	originally matching zero-poles are close/	Demonstrated empirically at published paper, and to be attempted proven theoretically at thesis. Recently an
	overlapping for linear loads, deviating apart for	interesting related paper published.
	non-linear loads	

No	Mathematical formulation	Physical interpretation
	Paper 2 theorems	Load disaggregation
1	Interpretation: "None" represents not a "vacuum" of	PCA correlation of "None" object instance to device.
	devices, but "all the rest". Outside the "kitchen" there	Theorem: the closest the "None" is to a device cluster, the
	are devices electrically resembling the kitchen devices.	higher "confusion" scoring between the "None" and the device.
	PCA being an orthogonal variables representation,	
	when the "None" clusters have a large boundary or	
	appear to be embedded with the device cluster – then	
	confusion scoring shall be higher.	
2		"None" confusion with devices.
		The "None" has larger confusion scoring with devices than a
		device with another device. Explanation: since "None" is a
		collection of devices outside kitchen then it may contain
		signatures of devices that electrically resemble a kitchen device.
3	This is a weaker more general version of theorem #1.	Correlation between distance at PCA space and confusion.
		Devices that are near each other at PCA space, the "confusion"
		scoring shall be higher between devices.
4		