

Python Springboard Data Science Bootcamp

Data Science Guided Capstone

"Big Mountain" ski resort ticket price strategy and optimization regarding the existing facilities – presentation & storytelling.

PROBLEM IDENTIFICATION

Which facilities changes to consider to cut cost and to sustain or to increase revenue at the Big Mountain Resort?

- □Potential **undercapitalization** of the existing **facilities** due to the actual ticket price strategy.
- □Success = ability to recommend a ticket price which is justified and optimized based on the existing the facilities.
- □**Key data sources** = dataset over 330 US-based ski resort.

RECOMMENDATION & KEY FINDINGS

Springboard

• (+) Closing runs:

- •Closing 1 run has no impact on ticket price; closing more than 1 reduces revenue.
- •Consider closing 1 run with associated lift and snowmaking to cut costs while maintaining price.

• (+) Increase vertical drop (+150m) + 1 chair lift:

- Supports a \$1.99 ticket price increase (~\$3.47M seasonal revenue gain).
- •Ensure lift cost is justified by revenue increase.

• (-) Increase vertical drop + lift + snowmaking:

No measurable effect on ticket price or revenue.

• (-) Extend longest run (+0.2 miles) + snowmaking:

• No measurable effect on ticket price or revenue.

Future work:

- Recommend collecting missing data (e.g., customer numbers, costs, depreciation).
- Develop a user-friendly tool and graphical interface for scenario analysis and visual reporting.

MODELING RESULTS & ANALYSIS

MODEL SELECTED = RANDOM FOREST REGRESSOR.

BIG MOUNTAIN RESORT MODELLED PRICE = \$ 95.87.

BIG MOUNTAIN RESORT ACTUAL PRICE = \$81.00.

BIG MOUNTAIN (----) RESORT IN ITS MARKET CONTEXT:

- IN THE HIGH RANGE OF FACILITIES AND PRICE.
- JUSTIFICATION FOR TICKET OPTIMIZATION BASED ON EXISTING FACILITIES.

Springboard

SUMMARY & CONCLUSION

CONCLUSION:

☐ The study explored four operational scenarios aimed at optimizing costs and enhancing revenue.
☐ Key findings show that strategic facility upgrades (e.g., increasing vertical drop) can support price increases and revenue growth .
☐ Some proposed changes (e.g., expanding snowmaking) had no significant impact on pricing power or revenue.
□ Selective closures of runs, if paired with cost-cutting measures (e.g., related lifts), may reduce expenses without hurting revenue.
☐ Further analysis requires complete operational and customer data to improve model accuracy and independence.
☐ A decision support tool is recommended to visualize scenario outcomes and assist strategic planning.