Modeling & Verification

CCS (Calculus of Communicating Systems)

Max Tschaikowski (tschaikowski@cs.aau.dk)
Slides courtesy of Giorgio Bacci

in the last Lecture

- Reactive Systems
- Labelled Transition Systems
- Process Algebra (atoms + operations)
- CCS (informally)

in this Lecture

- CCS the basic principles & motivations
- Examples
- CCS formal definition (syntax & semantics)

CCS - Motivations

The Calculus of Communicating Systems (CCS) is a prototypical example of process algebra to reason about communication and interactions between reactive systems.

A Calculus of Communicating Systems, Robin Milner.

Lecture Notes in Computer Science, Volume 92, 1980. Springer-Verlag.

Robin Milner (Turing Award winner)

The Key Issue

How to describe communication or interaction between processes running at the same time?

Communicating Processes

The key new idea to describe communication in a genuine general way is to make no distinction between active/passive components

Everything is a process!

The "shape" of a Process

Each process is characterised by a name, an interface, and a behaviour

"A computer scientist is a machine for turning coffee into publications"(*)

(*) "A mathematician is a machine for turning coffee into theorems" Misattributed to Paul Erdös - actually by Alfréd Rényi.

Interaction via interfaces

The Algebra of CCS Processes

The Nil Process

The Nil process is the most basic process, used to represent inactivity (deadlock behaviour)

Action Prefixing

Prefixing is the operation taking a process P to a.P that does the action a and behaves like P thereafter

Behaviour (as an LTS)

Names & Definitions

Having names for processes allows us to give definitions to process behaviours (possibly recursive)

Recursion (Example)

```
Clock = tick.Clock
                   = tick.tick.Clock
                   = tick.tick.Clock
                   = tick.tick.tick.Clock
                   = tick.tick. ... tick.tick.Clock
                             n-times
for each positive integer n
```

Choice

The choice operator acts as non-deterministic combinator. The process P+Q has the capabilities of both P and Q.

Behaviour (only the intuition)

Choice

Behaviour (as an LTS - example)

Parallel composition

The parallel composition offers the possibility of making the processes P and Q interacting with each other through synchronous communication

Parallel Composition

Restriction

The restriction operator allows one to restrict the visibility of specific communication ports (public vs private)

Interface

Restriction

Behaviour (as an LTS - example)

Relabelling

Relabelling gives the programmer an easy way to define "generic" process procedures

Relabelling

Behaviour (as an LTS - example)

break?

CM | CS

(coin.coffee.CM) | (pub.coin.coffee.CS)

(coin.coffee.CM) | (pub.coin.coffee.CS)

(coin.coffee.CM) | (pub.coin.coffee.CS)

(coin.coffee.CM) | (pub.coin.coffee.CS)

coin.(coffee.CTM + tea.CTM)

CTM = coin.(coffee.CTM + tea.CTM)

coin.(coffee.CTM + tea.CTM)

CTM = coin.(coffee.CTM + tea.CTM)

CTM = coin.(coffee.CTM + tea.CTM)

CM = coin.coffee.CM

CHM = coin.choc.CHM

TM = coin.tea.TM

they have almost the same behaviour

formally!

Syntax & Semantics

Labels vs Actions

Let A be a set of *(channel) names*

Definition

Let $\bar{A} = {\bar{a} \mid a \in A}$ be the set of *co-names*.

We let

- $\mathbb{L} = \mathbb{A} \cup \overline{\mathbb{A}}$ be the set of *labels*, and
- Act = $\mathbb{L} \cup \{\tau\}$ the set of actions, where τ is the internal (or silent) action

By convention, $\bar{\bar{a}} = a$.

A function f : Act → Act is a *relabelling function* if

$$f(\tau) = \tau$$
 and $f(\bar{a}) = \overline{f(a)}$

CCS Expressions

syntax

```
P := K constant (K∈K)
```

α.P prefixing (α∈Act)

 $\sum_{i \in I} P_i$ summation

P | Q parallel composition

P\L restriction (L⊆A)

P[f] relabelling (f : Act→Act)

Conventions

The set of all CCS expressions is denoted by ${\cal P}$

Notation

$$P_1 + P_2 = \sum_{i \in \{1,2\}} P_i$$
 $0 = \sum_{i \in \emptyset} P_i$

Precedence of operators

- 1. restriction & relabelling (tightest binding)
- 2. action prefixing
- 3. parallel composition
- 4. summation

CCS Programs

Definition

A CCS program is a set of defining equations of the form

$$K \stackrel{\text{def}}{=} P$$

where $K \in \mathbb{K}$ is a process constant and $P \in \mathcal{P}$ is a CCS process expression.

We assume that each constant process K∈K has a **unique** associated defining equation (note: recursion is allowed!)

Semantics of CCS

The behaviour of CCS processes, intuitively, is clear. However, intuition alone can lead us to wrong conclusions and, most importantly, cannot be fed into computers!

Definition

The formal semantics of processes is given in the form of the following LTS

(Proc, Act,
$$\{ \stackrel{\alpha}{\longrightarrow} \mid \alpha \in Act \}$$
)

- set of states $Proc = \mathcal{P}$
- set of actions $Act = \mathbb{L} \cup \{\tau\}$
- and transition relations are given by SOS rules

SOS Rules for CCS(*)

$$(ACT) \xrightarrow{\qquad} P \xrightarrow{\alpha} P \qquad (SUM_{j}) \xrightarrow{\qquad} P_{j} \xrightarrow{\alpha} P_{j}^{!} \qquad where j \in I$$

$$(COM1) \xrightarrow{\qquad} P \xrightarrow{\alpha} P' \qquad (COM2) \xrightarrow{\qquad} Q \xrightarrow{\alpha} Q' \qquad P|Q \xrightarrow{\alpha} P|Q' \qquad P|Q \xrightarrow{\alpha} P|Q' \qquad P|Q \xrightarrow{\alpha} P|Q' \qquad P|Q \xrightarrow{\alpha} P'|Q' \qquad P|Q \xrightarrow{\alpha} P'|Q \qquad P|Q \xrightarrow{\alpha} P|Q \qquad P|Q \qquad$$

(*) We assume that $a \in A$ is an arbitrary label and $\alpha \in A$ ct an arbitrary action.

Let A = a.A. Then

 $((A \mid a.0) \mid b.0)[c/a] \xrightarrow{c} ((A \mid a.0) \mid b.0)[c/a]$

(REL)
$$\frac{P \xrightarrow{\alpha} P'}{P[f] \xrightarrow{f(\alpha)} P'[f]}$$

$$\frac{((A \mid a.0) \mid b.0) \xrightarrow{a} ((A \mid a.0) \mid b.0)}{((A \mid a.0) \mid b.0) [c/a] \xrightarrow{c} ((A \mid a.0) \mid b.0) [c/a]}$$

$$\frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q}$$

(COM1)
$$\frac{A \mid a.0 \stackrel{a}{\rightarrow} A \mid a.0}{((A \mid a.0) \mid b.0) \stackrel{a}{\rightarrow} ((A \mid a.0) \mid b.0)}$$
(REL)
$$\frac{((A \mid a.0) \mid b.0) \stackrel{c}{\rightarrow} ((A \mid a.0) \mid b.0) [c/a]}{((A \mid a.0) \mid b.0) [c/a]}$$

$$\frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q}$$

$$(COM1) = A \stackrel{a}{\rightarrow} A$$

$$(COM1) = A \mid a.0 \stackrel{a}{\rightarrow} A \mid a.0$$

$$(COM1) = (A \mid a.0) \mid b.0) \stackrel{a}{\rightarrow} ((A \mid a.0) \mid b.0)$$

$$(REL) = (A \mid a.0) \mid b.0) \mid (A \mid a.0) \mid a.0) \mid (A \mid a.0) \mid a.0 \mid (A \mid a.0) \mid (A$$

(CON)
$$\xrightarrow{P} \xrightarrow{\alpha} P'$$
 where $K \stackrel{def}{=} P$

$$(CON) \xrightarrow{a.A} \xrightarrow{a} A$$

$$A \xrightarrow{a} A$$

$$A \xrightarrow{a} A$$

$$A = A$$

$$A \xrightarrow{a} A$$

$$A = A$$

(ACT)
$$\alpha.P \xrightarrow{\alpha} P$$

$$(CON) = \frac{(ACT)}{a.A} = \frac{(CON)}{A} = \frac{a.A}{A} = \frac{A}{A} = \frac{A}$$

The LTS of Processes

