

数列的极限

一、数列极限的定义

二、收敛数列的性质

三、极限存在准则

一、数列极限的定义

引 \mathbf{g} . 设有半径为r的圆,用其内接正n 边形的面积

 A_n 逼近圆面积 S.

如图所示,可知

$$A_n = n r^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}$$

$$(n = 3, 4, 5, \dots)$$

当 n 无限增大时, A_n 无限逼近 S (刘徽割圆术),

数学语言描述: $\forall \varepsilon > 0$, \exists 正整数 N, $\underline{\exists} n > N$ 时, 总有

$$|A_n - S| < \varepsilon$$

定义: 自变量取正整数的函数称为数列,记作 $x_n = f(n)$

或 $\{x_n\}$. x_n 称为通项(一般项).

若数列 $\{x_n\}$ 及常数 a 有下列关系:

$$\forall \varepsilon > 0$$
,∃正数 N ,当 $n > N$ 时,总有 $|x_n - a| < \varepsilon$

则称该数列 $\{x_n\}$ 的极限为a,记作

$$\lim_{n \to \infty} x_n = a \quad \vec{\mathbf{x}} \ x_n \to a \ (n \to \infty)$$

此时也称数列收敛,否则称数列发散 $a-\varepsilon < x_n < a+\varepsilon$

几何解释:

即
$$x_n \in \bigcup (a, \varepsilon)$$
 $(n > N)$

$$x_{n} = \frac{n + (-1)^{n-1}}{n} \rightarrow 1 \quad (n \rightarrow \infty)$$

$$x_{n} = \frac{n + (-1)^{n-1}}{n} \rightarrow 1 \quad (n \rightarrow \infty)$$

$$8 \cdots 2^n \cdots$$

$$2,4,8,\cdots,2^{n},\cdots$$

 $x_n = 2^n \to \infty \quad (n \to \infty)$ 发 1,-1,1,...,(-1)ⁿ⁺¹,... $x_n = (-1)^{n+1}$ 趋势不定

机动 目录

关于数列极限定义的说明:

(1) ε 的任意性

(2) N 的存在性

例1. 已知 $x_n = \frac{n + (-1)^n}{n}$,证明数列 $\{x_n\}$ 的极限为1.

i.E.
$$|x_n - 1| = \left| \frac{n + (-1)^n}{n} - 1 \right| = \frac{1}{n}$$

$$\forall \varepsilon > 0$$
, 欲使 $|x_n - 1| < \varepsilon$, 即 $\frac{1}{n} < \varepsilon$, 只要 $n > \frac{1}{\varepsilon}$

因此,取 $N = \left[\frac{1}{\varepsilon}\right]$,则当 n > N 时,就有

$$\left| \frac{n + (-1)^n}{n} - 1 \right| < \varepsilon$$

故
$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{n + (-1)^n}{n} = 1$$

例2. 已知
$$x_n = \frac{(-1)^n}{(n+1)^2}$$
,证明 $\lim_{n \to \infty} x_n = 0$.

in:
$$|x_n - 0| = \left| \frac{(-1)^n}{(n+1)^2} - 0 \right| = \frac{1}{(n+1)^2} < \frac{1}{n+1}$$

$$\forall \varepsilon \in (0,1)$$
, 欲使 $|x_n - 0| < \varepsilon$, 只要 $\frac{1}{n+1} < \varepsilon$, 即 $n > \frac{1}{\varepsilon} - 1$.

取
$$N = \left[\frac{1}{\varepsilon} - 1\right]$$
, 则当 $n > N$ 时,就有 $\left|x_n - 0\right| < \varepsilon$,

故
$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{(-1)^n}{(n+1)^2} = 0$$

说明: $N = \varepsilon$ 有关, 但不唯一. 取 $N = \left[\frac{1}{\sqrt{\varepsilon}} - 1\right]$

不一定取最小的
$$N$$
.

也可由 $|x_n-0|=\frac{1}{(n+1)^2}$

例3. 设 |q|<1, 证明等比数列 $1,q,q^2,\cdots,q^{n-1},\cdots$ 的极限为 0.

in:
$$|x_n - 0| = |q^{n-1} - 0| = |q|^{n-1}$$

$$\forall \varepsilon \in (0,1)$$
, 欲使 $|x_n - 0| < \varepsilon$, 只要 $|q|^{n-1} < \varepsilon$, 即

$$(n-1)\ln|q| < \ln \varepsilon$$
,亦即 $n > 1 + \frac{\ln \varepsilon}{\ln|q|}$.

因此,取
$$N = \left[1 + \frac{\ln \varepsilon}{\ln |q|}\right]$$
,则当 $n > N$ 时,就有

$$|q^{n-1}-0|<\varepsilon$$

$$\lim_{n\to\infty}q^{n-1}=0$$

故

设 $x_n = \frac{n^2 - n + 2}{3n^2 + 2n - 4}$, 例: $\lim_{n\to\infty}x_n=\frac{1}{3}.$ 证明:

例:

$$\lim_{n\to\infty} \sqrt[n]{n} = 1.$$

二、收敛数列的性质

1. 收敛数列的极限唯一.

证: 用反证法. 假设 $\lim_{n \to \infty} x_n = a$ 及 $\lim_{n \to \infty} x_n = b$,且 a < b.

取 $\varepsilon = \frac{b-a}{2}$, 因 $\lim_{n\to\infty} x_n = a$, 故存在 N_1 , 使当 $n > N_1$ 时,

$$|x_n-a| < \frac{b-a}{2}$$
, $\lim x_n < \frac{a+b}{2}$

同理,因 $\lim_{n\to\infty} x_n = b$,故存在 N_2 ,使当 $n > N_2$ 时,有

$$|x_n - b| < \frac{b-a}{2}$$
, 从而 $x_n > \frac{a+b}{2}$

取 $N = \max\{N_1, N_2\}$, 则当 n > N 时, x_n 满足的不等式

矛盾. 故假设不真! 因此收敛数列的极限必唯一.

例4. 证明数列 $x_n = (-1)^{n+1} (n=1,2,\cdots)$ 是发散的.

证: 用反证法.

假设数列 $\{x_n\}$ 收敛,则有唯一极限 a 存在.

取 $\varepsilon = \frac{1}{2}$,则存在 N,使当 n > N 时,有

$$a - \frac{1}{2} < x_n < a + \frac{1}{2}$$
 $a - \frac{1}{2}$ $a + \frac{1}{2}$

但因 x_n 交替取值 1 与 - 1,而此二数不可能同时落在 长度为 1 的开区间($a-\frac{1}{2}$, $a+\frac{1}{2}$)内,因此该数列发散.

2. 改变数列的有限项,不改变数列的敛散性及极限

3. 收敛数列一定有界.

证: 设
$$\lim_{n\to\infty} x_n = a$$
, 取 $\varepsilon = 1$, 则 $\exists N$, 当 $n > N$ 时, 有

$$|x_n-a|<1$$
,从而有

$$|x_n| = |(x_n - a) + a| \le |x_n - a| + |a| < 1 + |a|$$

取
$$M = \max\{|x_1|, |x_2|, \dots, |x_N|, 1+|a|\}$$

则有
$$|x_n| \leq M \ (n=1,2,\cdots).$$

由此证明收敛数列必有界.

说明: 此性质反过来不一定成立. 例如,

数列
$$\{(-1)^{n+1}\}$$
 虽有界但不收敛.

4. 收敛数列的保号性.

若
$$\lim_{n\to\infty} x_n = a$$
,且 $a > 0$ (< 0),则 $\exists N \in \mathbb{N}^+$,当 $n > N$

 $\overline{\text{lth}}, \overline{\text{fth}}, x_n > 0 \ (< 0).$

证: 对 a > 0,取 $\varepsilon = \frac{a}{2}$,则 $\exists N \in \mathbb{N}^+$,当 n > N 时,

$$\left| x_{n} - a \right| < \frac{a}{2} \qquad x_{n} > a - \frac{a}{2} > 0$$

$$\frac{a}{2} \qquad \frac{a}{2}$$

推论: 若数列从某项起 $x_n \ge 0 \ (\le 0)$ 且 $\lim_{n \to \infty} x_n = a$,

则 $a \ge 0$ (≤ 0). (用反证法证明)

更一般的

若
$$\lim_{n\to\infty} x_n = a$$
,且 $a > 0$ (< 0), 则对于满足

$$0 < \eta < a \quad (a < \eta < 0)$$
 的任何常数 η , $\exists N \in \mathbb{N}^+$,

$$x_n > \eta > 0 \quad (x_n < \eta < 0)$$

推论: 若数列从某项起 $x_n \ge y_n$, 且 $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = y$, 则 $x \ge y$.

5.数列极限的四则运算法则

设
$$\lim_{n\to\infty} x_n = x$$
, $\lim_{n\to\infty} y_n = y$, 则数列 $\{x_n \pm y_n\}$, $\{x_n y_n\}$, $\{x_n\}$ $\{y \neq 0\}$ 的极限都存在,且

(1)
$$\lim_{n\to\infty} (x_n \pm y_n) = \lim_{n\to\infty} x_n \pm \lim_{n\to\infty} y_n = x \pm y$$

(2)
$$\lim_{n\to\infty} (x_n \cdot y_n) = \lim_{n\to\infty} x_n \cdot \lim_{n\to\infty} y_n = x \cdot y$$

(3) 当
$$y \neq 0$$
 时,
$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n} = \frac{x}{y}$$

证明:

三、极限存在准则

夹逼准则;

数列与其子列的关系

单调有界准则;

柯西审敛准则.

1. **夹逼准则** (准则1)

(1)
$$y_n \le x_n \le z_n \quad (n = 1, 2, \cdots)$$

(2) $\lim y_n = \lim z_n = a$

$$\lim_{n \to \infty} x_n = a$$

$$(2) \lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = a$$

$$\implies \lim_{n \to \infty} x_n = a$$

证: 由条件 (2), $\forall \varepsilon > 0$, $\exists N_1, N_2$,

当
$$n > N_2$$
 时, $|z_n - a| < \varepsilon$

令
$$N = \max\{N_1, N_2\}$$
, 则当 $n > N$ 时, 有

$$a - \varepsilon < y_n < a + \varepsilon, \quad a - \varepsilon < z_n < a + \varepsilon,$$

由条件 (1)
$$a - \varepsilon < y_n \le x_n \le z_n < a + \varepsilon$$

即
$$|x_n-a|<\varepsilon$$
,故 $\lim x_n=a$.

例5. 证明
$$\lim_{n\to\infty} n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \dots + \frac{1}{n^2 + n\pi} \right) = 1$$

证: 利用夹逼准则.由

$$\frac{n^2}{n^2 + n\pi} < n\left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \dots + \frac{1}{n^2 + n\pi}\right) < \frac{n^2}{n^2 + \pi}$$

$$\lim_{n \to \infty} \frac{n^2}{n^2 + n\pi} = \lim_{n \to \infty} \frac{1}{1 + \frac{\pi}{n}} = 1$$

$$\lim_{n \to \infty} \frac{n^2}{n^2 + \pi} = \lim_{n \to \infty} \frac{1}{1 + \frac{\pi}{n^2}} = 1$$

$$\therefore \lim_{n\to\infty} n\left(\frac{1}{n^2+\pi} + \frac{1}{n^2+2\pi} + \dots + \frac{1}{n^2+n\pi}\right) = 1$$

2. 数列的子列

给定数列 $\{x_n\}$, 从中挑选无穷多项并按照原有的次序列出来,即

$$x_{n_1}, x_{n_2}, \cdots, x_{n_k}, \cdots \quad (n_1 < n_2 < \cdots < n_k < \cdots)$$

就得到一个以 k 为序号的数列 $\{x_{n_k}\}$, 称其为原数列 $\{x_n\}$

的一个子数列, 简称子列

<mark>定理:</mark> 数列收敛的充要条件是其任一子数列收敛于同一极限.

证: 设数列 $\{x_{n_k}\}$ 是数列 $\{x_n\}$ 的任一子数列.

若
$$\lim_{n \to \infty} x_n = a$$
,则 $\forall \varepsilon > 0$, $\exists N$, $\exists n > N$ 时,有 $|x_n - a| < \varepsilon$

现取<u>正整数 K</u>, 使 $n_K \ge N$, 于是当 k > K 时, 有

$$n_k > n_K \ge N \qquad ******$$

从而有 $\left|x_{n_k}-a\right|<\varepsilon$,

由此证明 $\lim_{k\to\infty} x_{n_k} = a$.

这就证明了必要性.

而充分性是显然的.

说明:

由此性质可知,若数列有两个子数列收敛于不同的极限,则原数列一定发散.

例如,

$$x_n = (-1)^{n+1} (n=1,2,\cdots)$$
 发散!

$$\lim_{k \to \infty} x_{2k-1} = 1; \qquad \lim_{k \to \infty} x_{2k} = -1$$

$$x_n = \sin \frac{n\pi}{2}$$

3. 单调有界数列必有极限(准则2)

$$x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq x_{n+1} \leq \cdots \leq M$$

$$\Longrightarrow \lim_{n \to \infty} x_{n} = a \quad (\leq M)$$

$$x_{1} \quad x_{2} \quad x_{n} \quad x_{n+1} \quad a \quad M$$

$$x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq x_{n+1} \geq \cdots \geq m$$

$$\Longrightarrow \lim_{n \to \infty} x_{n} = b \quad (\geq m)$$

$$\Longrightarrow \lim_{n \to \infty} x_{n} = b \quad (\geq m)$$

证明:

例6. 设 $x_n = (1 + \frac{1}{n})^n (n = 1, 2, \dots)$, 证明数列 $\{x_n\}$

极限存在.

证: 利用二项式公式,有

$$x_{n} = (1 + \frac{1}{n})^{n}$$

$$= 1 + \frac{n}{1!} \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^{3}} + \cdots$$

$$+ \frac{n(n-1)\cdots(n-n+1)}{n!} \frac{1}{n^{n}}$$

$$= 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) + \cdots$$

$$+ \frac{1}{n!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdots (1 - \frac{n-1}{n})$$

$$x_{n} = 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) + \cdots$$

$$+ \frac{1}{n!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdots (1 - \frac{n-1}{n})$$

$$x_{n+1} = 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n+1}) + \frac{1}{3!} (1 - \frac{1}{n+1}) (1 - \frac{2}{n+1}) + \cdots$$

$$+ \frac{1}{(n+1)!} (1 - \frac{1}{n+1}) (1 - \frac{2}{n+1}) \cdots (1 - \frac{n}{n+1})$$

比较可知
$$x_n < x_{n+1} (n=1,2,\cdots)$$

$$X_n = (1 + \frac{1}{n})^n < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

$$\nabla x_n = (1 + \frac{1}{n})^n < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}$$

$$= 1 + \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} = 3 - \frac{1}{2^{n-1}} < 3$$

根据准则 2 可知数列 $\{x_n\}$ 有极限.

记此极限为e即

$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$

e 为无理数,其值为

$$e = 2.718281828459045\cdots$$

*4. 柯西极限存在准则(柯西审敛原理)

数列 $\{x_n\}$ 极限存在的充要条件是:

 $\forall \varepsilon > 0$, 存在正整数 N, 使当m > N, n > N 时,

有

$$|x_n - x_m| < \varepsilon$$

证: "必要性".设 $\lim_{n\to\infty} x_n = a$,则 $\forall \varepsilon > 0$, $\exists N$,使当

m > N, n > N 时,有

$$|x_n-a| < \varepsilon/2$$
, $|x_m-a| < \varepsilon/2$

因此

$$\begin{aligned} |x_n - x_m| &= |(x_n - a) - (x_m - a)| \\ &\leq |x_n - a| + |x_m - a| < \varepsilon \end{aligned}$$

"充分性"证明从略。

内容小结

- 1. 数列极限的 " εN " 定义及应用
- 2. 收敛数列的性质:

唯一性;有界性;保号性;

任一子数列收敛于同一极限

3. 极限存在准则:

夹逼准则;单调有界准则;柯西准则

思考与练习

1. 如何判断极限不存在?

方法1. 找一个趋于∞的子数列;

方法2. 找两个收敛于不同极限的子数列.

2. 已知 $x_1 = 1$, $x_{n+1} = 1 + 2x_n$ $(n = 1, 2, \dots)$,求 $\lim_{n \to \infty} x_n$

时 下述作法是否正确? 说明理由.

设 $\lim_{n\to\infty} x_n \neq a$,由递推式两边取极限得

$$a = 1 + 2a \implies a = -1$$

不对! 此处 $\lim_{n\to\infty} x_n = \infty$

作业

```
P32 1 (2), (3) (4), 3, 4
7 (2), (4), (6)
8 (2), (4), (5)
9 (1), (3), 10, 15
```

备用题

1.设
$$x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})$$
 $(n = 1, 2, \dots)$, 且 $x_1 > 0$,

利用极限存在准则

$$x_{n+1} = \frac{1}{2} (x_n + \frac{a}{x_n}) \ge \sqrt{x_n \cdot \frac{a}{x_n}} = \sqrt{a}$$

$$\frac{x_{n+1}}{x_n} = \frac{1}{2} (1 + \frac{a}{x_n^2}) \le \frac{1}{2} (1 + \frac{a}{a}) = 1$$

:数列单调递减有下界, 故极限存在, 设 $\lim_{n\to\infty} x_n = A$

则由递推公式有
$$A = \frac{1}{2}(A + \frac{a}{A}) \Longrightarrow A = \pm \sqrt{a}$$

2. 设 $a_i \ge 0$ $(i = 1, 2, \cdots)$, 证明下述数列有极限.

$$x_n = \frac{a_1}{1+a_1} + \frac{a_2}{(1+a_1)(1+a_2)} + \dots + \frac{a_n}{(1+a_1)(1+a_2)\dots(1+a_n)}$$

$$(n = 1, 2, \dots)$$

证: 显然 $x_n \leq x_{n+1}$, 即 $\{x_n\}$ 单调增,又

$$x_{n} = \sum_{k=1}^{n} \frac{(1+a_{k})-1}{(1+a_{1})\cdots(1+a_{k})} = 1 - \frac{1}{1+a_{1}} + \frac{1}{1+a_{1}} + \frac{1}{(1+a_{1})\cdots(1+a_{k})} - \frac{1}{(1+a_{1})\cdots(1+a_{k})}$$

$$= 1 - \frac{1}{1+a_{1}} - \frac{1}{1+a_{1}} - \frac{1}{1+a_{1}} + \frac{1}{1+a_{1}} - \frac{1}{1+a_{1}} -$$

