NLP - Home Work 1

Pan Eyal 208722058

January 22, 2024

1 Question 1

```
To get all case-insensitive tokens:

tr -sc 'A-Za-z' '\n' < wizard.txt | tr 'A-Z' 'a-z'

To get all case-insensitive types:

tr -sc 'A-Za-z' '\n' < wizard.txt | tr 'A-Z' 'a-z' | sort | uniq

To get all starting words with "ea":

grep -E '^ea'

And to count all words:

wc -1

So overall, we get for (A):

tr -sc 'A-Za-z' '\n' < wizard.txt | tr 'A-Z' 'a-z' | sort | uniq | grep -E '^ea' | wc -1

overall 8 types.

And we get for (B):

tr -sc 'A-Za-z' '\n' < wizard.txt | tr 'A-Z' 'a-z' | grep -E '^ea' | wc -1

overall 26 tokens.
```

Question 2

2.1

1. For P precision and R recall, which are positive numbers in [0,1]:

$$F_1 \stackrel{?}{\leq} \operatorname{avg}(P,R)$$

$$\frac{2PR}{P+R} \stackrel{?}{\leq} \frac{P+R}{2}$$

$$\frac{4PR}{2(P+R)} \stackrel{?}{\leq} \frac{(P+R)^2}{2(P+R)}$$

$$4PR \stackrel{?}{\leq} (P+R)^2$$

$$4PR \stackrel{?}{\leq} P^2 + 2PR + R^2$$

$$0 \stackrel{?}{\leq} P^2 - 2PR + R^2$$

$$0 \stackrel{?}{\leq} (P-R)^2$$
always
non-negative

Therefore, we proved that $F_1 \leq avg(P, R)$

2. In general, for some arbitrary β : $F_{\beta} \leq \text{avg}(P, R)$ is no longer true. For example, when $\beta = 0$:

$$F_0 \stackrel{?}{\leq} \operatorname{avg}(P, R)$$

$$\frac{PR}{0 \cdot P + R} \stackrel{?}{\leq} \frac{P + R}{2}$$

$$\frac{2PR}{2R} \stackrel{?}{\leq} \frac{(P + R)R}{2R}$$

$$2PR \stackrel{?}{\leq} PR + R^2$$

$$PR \stackrel{?}{\leq} R^2$$

We can easily see that for P=0.2 and R=0.1 we get:

$$0.2 \cdot 0.1 \stackrel{?}{\leq} 0.1$$

 $\mathbf{0.02} \nleq \mathbf{0.01}$

Therefore, we disproved the claim for F_{β} with some arbitrary β .

2.2
The finished transition table is:

ก	פ	•	n	•	ב)	מ	#	
8 -	> 7 -	> 6 -	⇒ 5 -	» 4 -	» 3 -	, 2 -	21 -	7 0	#
8 -	→ 7 -	> 6 -	> 5 -	> 4 -	→ 3 -	\$ 2 /	2	1	ע
7 -	3 6 -	, 5 -	- 4 -	³ 3	4	-3	3	2	ı
7	7 -	> 6 -	, 5 -	> 4 -	> 3	4	3.5	1 3	ב
8 -	> 7 -	>7-	76 -	75	4	-5	4.5	4	ı
9 -	> 8	7.5	6.5	5.5	5	6	5.5	5	т
10 -	79-	78	7	6.5	6	7	6.5	6	ש
9 -	38/	9	8	7.5	7	8	7.5	7	פ
8	9	10	9	8.5	8	9	8.5	8	ก

And the transition scheme based on it is:

ה	9	ש	Т	ı	Ø	ב	ı	ע	Ø
ה	9		n	Ø	•	ב	Ø	Э	מ
=	=	Sub	Sub	Del	Add	=	Del	Sub	Add
(0)	(0)	(1.5)	(1.5)	(1)	(1)	(0)	(1)	(1)	(1)

So overall, the distance between the two strings is $\bf 8$

Question 3

3.1

For data:

- ullet ל " פיעם בא באושר מושה כזו שהאושר מקופה ", $y_1=1$
- ullet לי כל היום שחר את שחר עם עולמי ", $y_2=0$
- $d_3 =$ " עכשיו ש הזמן הזמן של ", $y_3 = 1$

The feature values are:

- ullet $f_1=ra{1}$ 1 1 1 1 raket
- ullet $f_2=ra{1}$ 0 3 0 1raket
- ullet $f_3=ig\langle 0 \quad 1 \quad 0 \quad 1 \quad 1ig
 angle$

(with 5th parameter as bias)

3.2

Remembering the parameter update function $\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla L_{CE}(\theta^{(t)})$ the iterations are as follows:

Iteration 1:

$$\hat{y}^{(1)} = \sigma(f_1 \cdot \theta^{(0)})$$

$$= \sigma(0 + 0 + 0 + 0 + 0)$$

$$= \sigma(0) = 0.5$$

$$\eta(1) = 0.8$$

$$\nabla L_{CE}(\theta^{(0)}) = (\hat{y}^{(1)} - y_1) \cdot f_1$$

$$= (0.5 - 1) \cdot \langle 1 \quad 1 \quad 1 \quad 1 \quad 1 \rangle$$

$$= -0.5 \cdot \langle 1 \quad 1 \quad 1 \quad 1 \quad 1 \rangle$$

$$= \langle -0.5 \quad -0.5 \quad -0.5 \quad -0.5 \quad -0.5 \rangle$$

$$\theta^{(1)} = \langle 0 \quad 0 \quad 0 \quad 0 \quad 0 \rangle - 0.8 \cdot \langle -0.5 \quad -0.5 \quad -0.5 \quad -0.5 \quad -0.5 \rangle$$

= $\langle \mathbf{0.4} \quad \mathbf{0.4} \quad \mathbf{0.4} \quad \mathbf{0.4} \quad \mathbf{0.4} \rangle$

Iteration 2:

$$\hat{y}^{(2)} = \sigma(f_2 \cdot \theta^{(1)})$$

$$= \sigma(\langle 1 \quad 0 \quad 3 \quad 0 \quad 1 \rangle \cdot \langle 0.4 \quad 0.4 \quad 0.4 \quad 0.4 \quad 0.4 \rangle$$

$$= \sigma(0.4 + 0 + 1.2 + 0 + 0.4) = \sigma(2) \approx 0.88$$

$$\eta(2) = 0.4$$

$$\nabla L_{CE}(\theta^{(1)}) = (\hat{y}^{(2)} - y_2) \cdot f_2$$

$$= (0.88 - 0) \cdot \langle 1 \quad 0 \quad 3 \quad 0 \quad 1 \rangle$$

$$= 0.88 \cdot \langle 1 \quad 0 \quad 3 \quad 0 \quad 1 \rangle$$

$$= \langle 0.88 \quad 0 \quad 2.64 \quad 0 \quad 0.88 \rangle$$

$$\theta^{(2)} = \langle 0.4 \quad 0.4 \quad 0.4 \quad 0.4 \quad 0.4 \rangle - 0.4 \cdot \langle 0.88 \quad 0 \quad 2.64 \quad 0 \quad 0.88 \rangle$$

$$= \langle 0.4 \quad 0.4 \quad 0.4 \quad 0.4 \quad 0.4 \rangle - \langle 0.352 \quad 0 \quad 1.056 \quad 0 \quad 0.352 \rangle$$

$$= \langle 0.048 \quad 0.4 \quad -0.656 \quad 0.4 \quad 0.048 \rangle$$

Iteration 3:

$$\hat{y}^{(3)} = \sigma(f_3 \cdot \theta^{(2)})$$

$$= \sigma(\langle 0 \quad 1 \quad 0 \quad 1 \quad 1 \rangle \cdot \langle 0.048 \quad 0.4 \quad -0.656 \quad 0.4 \quad 0.048 \rangle$$

$$= \sigma(0 + 0.4 + 0 + 0.4 + 0.048) = \sigma(0.848) \approx 0.7$$

$$\eta(3) = 0.27$$

$$\nabla L_{CE}(\theta^{(2)}) = (\hat{y}^{(3)} - y_3) \cdot f_3$$

$$= (0.7 - 1) \cdot \langle 0 \quad 1 \quad 0 \quad 1 \quad 1 \rangle$$

$$= -0.3 \cdot \langle 0 \quad 1 \quad 0 \quad 1 \quad 1 \rangle$$

$$= \langle 0 \quad -0.3 \quad 0 \quad -0.3 \quad -0.3 \rangle$$

$$\theta^{(3)} = \langle 0.048 \quad 0.4 \quad -0.656 \quad 0.4 \quad 0.048 \rangle - 0.27 \cdot \langle 0 \quad -0.3 \quad 0 \quad -0.3 \quad -0.3 \rangle$$

$$= \langle 0.048 \quad 0.4 \quad -0.656 \quad 0.4 \quad 0.048 \rangle - \langle 0 \quad -0.081 \quad 0 \quad -0.081 \quad -0.081 \rangle$$

$$= \langle \mathbf{0.048} \quad \mathbf{0.481} \quad -\mathbf{0.656} \quad \mathbf{0.481} \quad \mathbf{0.129} \rangle$$

3.3

For data:

• $d_4 = "$ אם כבר אז שיירד כאן "

The feature values are:

$$ullet$$
 $f_4=egin{pmatrix}0&0&1&1&1 \end{pmatrix}$

(with 5th parameter as bias)

And the model prediction is:

$$\hat{\boldsymbol{y}}^{(4)} = \sigma(f_4 \cdot \theta^{(3)})$$

$$= \sigma(\langle 0 \quad 0 \quad 1 \quad 1 \quad 1 \rangle \cdot \langle 0.048 \quad 0.481 \quad -0.656 \quad 0.481 \quad 0.129 \rangle$$

$$= \sigma(0 + 0 - 0.656 + 0.481 + 0.129) = \sigma(-0.046) \approx \mathbf{0.049}$$

Therefore, the model will predict that the data d_4 is not a sentence from a Shlomo Artzi song.

Question 4

Feedback: In general, I already enjoy the class lectures and material as it is delivered. For me, I find it a bit confusing to have multiple definitions names, both in English and in Hebrew. I would prefer that we stick to a single defining name during the lectures (and preferable in English).