Highlights

Extracting the iron concentration in silicon solar cells using photovoltaic parameters and machine learning

Oleg Olikh, Oleksii Zavhorodnii

- The iron defect transformation effect on Si solar cells' performance was studied using SCAPS simulation
- Short-circuit current changes are most suitable for estimating iron impurity concentration.
- Open-circuit voltage changes are a non-monotonic function of iron concentration at low doping levels.
- Monochromatic illumination is more effective than AM1.5 for accurate iron concentration estimation.

Extracting the iron concentration in silicon solar cells using photovoltaic parameters and machine learning

Oleg Olikh*, Oleksii Zavhorodnii

Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine

ARTICLE INFO

Keywords: silicon iron-boron pairs solar cells SCAPS simulation defect influence estimation of iron contamination

ABSTRACT

Transitioning to renewable energy sources is paramount for humanity's sustainable development, and silicon solar cells are at the forefront of solar energy conversion. Iron in these structures is a primary one of the most detrimental metallic impurities. This study examines the impact of iron defect variability on silicon solar cell performance across various scenarios. We have simulated solar cells using SCAPS software across a range of temperatures (290 - 340) K, base thicknesses (180 – 380) μ m, doping levels (10¹⁵ – 10¹⁷) cm⁻³, with iron concentrations varying from 10¹⁰ to 10¹⁴ cm⁻³ under AM1.5 and monochromatic (940 nm) illumination. Analyzed across all cases were the effects of iron-boron pair dissociation on short-circuit current, open-circuit voltage, fill factor, and efficiency. The experimental measurements validated the simulation results, demonstrating good agreement for all photovoltaic parameters. This study investigates the potential of using photovoltaic parameter changes induced by iron-related defect restructuring to estimate iron concentration. It is shown that changes in short-circuit current obtained under monochromatic illumination are the most reliable, while the fill factor is the least effective. The study examined the correlation between changes in photovoltaic parameters caused by pair dissociation while establishing the expedience of applying principal component analysis in impurity concentration evaluation with the help of multiple parameters.

1. Introduction

The urgent challenges of global warming and fossil fuel depletion have spurred the search for renewable energy sources, accelerating the rapid advancement of photovoltaic (PV) energy and the widespread deployment of solar panels [1, 2]. However, PV energy faces several significant challenges: the need to optimize solar cell manufacturing processes, improve the efficiency and stability of PV devices (either by discovering new materials or by enhancing existing structures), develop energy management systems designed to regulate the energy flow in real-time and establish methods for monitoring the condition of photoelectric converters, specifically through defect characterization. Simultaneously, the application of machine learning (ML) methods, which can identify patterns and correlations that are not readily apparent through traditional analysis [3], opens new avenues for addressing the issues above in photovoltaics. For instance, ML methods optimize individual production stages — such as crystal growth [4] and plasma-enhanced vapor deposition [5] — and streamline entire solar cell production lines, which may involve up to ten processing steps and forty-seven process parameter inputs [6]. Moreover, ML techniques enhance PV devices by identifying key photovoltaic materials, analyzing references to various structural configurations in the literature [7] or optimizing perovskite solar cells [8], designing renewable energy-based demand-side management systems [9], and extracting additional information from internal quantum efficiency measurements [10]. Numerous reviews provide further insights into ML applications in PV systems [11, 12, 13, 14, 15].

We will now explore the application of artificial intelligence in greater depth for defect analysis. Most relevant studies focus on image analysis of solar cells, including electroluminescence, photoluminescence, and infrared thermography [16, 17, 18, 19, 20, 21, 22, 23]. These methods facilitate detecting and classifying defects such as cracks, finger failures, hot spots, scratches, and horizontal dislocations and are predominantly implemented using convolutional neural networks. Another widely adopted approach involves applying ML models to current-voltage (I-V) curves, enabling the identification of permanent and temporal faults in PV arrays [24, 25, 26, 27]. A key advantage of this defect characterization method is its reliance on I-V measurements, a standard procedure for PV device assessment. Additionally, ML techniques specifically designed for analyzing point defects warrant particular attention. For instance,

olegolikh@knu.ua (O. Olikh); nevermor464@gmail.com (O. Zavhorodnii)
ORCID(s): 0000-0003-0633-5429 (O. Olikh); 0000-0001-8080-7661 (O. Zavhorodnii)

researchers have developed methods for determining the electronic structure of intrinsic defects [28, 29], detecting radiation-induced defects via Raman spectroscopy [30, 3], and extracting recombination-active center parameters from temperature- and injection-dependent lifetime measurements [31, 32, 33]. Although such defects represent one of the main limitations of PV devices [34, 35], studies in this area remain scarce. Moreover, existing research primarily focuses on characterizing defects in PV materials rather than solar cells and relies on data obtained through specialized equipment.

This study proposes an ML-based approach to extract impurity concentrations from I-V curves. Specifically, we focus on quantifying iron in boron-doped crystalline silicon solar cells. This constraint is not overly restrictive, given that (i) Si-based solar cells dominate the current PV market [36, 37], with most being manufactured from boron-doped crystalline silicon (c-Si:B); and (ii) iron is one of the most prevalent, ubiquitous, and efficiency-limiting metallic impurities [38, 39]. It is well established that in p-type material, iron tends to bind with dopant atoms such as boron, forming iron-boron pairs under equilibrium conditions or existing as interstitial species only in the presence of sufficiently high free electron densities [40, 41]. The deliberate transition between these states can be readily induced through intense illumination, electron injection, or heating up to 200 °C and is commonly employed in various methods for assessing iron concentration [42, 43, 44, 45, 46, 47, 48, 49]. The approach proposed in this study leverages changes in photovoltaic parameters (PVPs) (short-circuit current, open-circuit voltage, efficiency, and fill factor) resulting from FeB dissociation as input features for ML algorithms. The specified PVPs can be easily extracted from I-V characteristics, making this method advantageous compared to existing approaches:

(1) Unlike glow discharge mass spectrometry or secondary ion mass spectrometry [50], it is non-destructive. (2) It does not require specialized equipment or specially prepared samples, in contrast to Fourier-transform infrared spectroscopy, electron paramagnetic resonance, deep-level transient spectroscopy (DLTS), Laplace DLTS, carrier lifetime measurements, photoluminescence, or photoconductance [51, 52, 53, 43, 44, 47, 45]. (3) It is relatively simple and fast compared to other methods that also rely on measuring PV parameters, such as the kinetics of short-circuit current [46] and open-circuit voltage [48], but require lengthy experimental procedures or multiple illumination levels.

In our previous work [54], we employed a deep learning approach to estimate iron concentration based on the ideality factor, which was also derived from I-V characteristics. However, the method proposed in this study imposes fewer constraints on the accuracy of I-V measurements across the entire voltage range and the model used to describe the I-V characteristics of actual structures. Thus, our approach allows for the simultaneous determination of iron impurity concentration along with key electrical parameters. These inline characterization techniques are crucial for ensuring efficient production lines and optimizing processes to produce reliable solar cells. Notably, luminescence imaging is increasingly used for solar cell characterization. However, ML methods have been proposed to extract I-V characteristic data from such images [55, 56]. Integrating these methods with our approach into a unified pipeline would enable the extraction of iron concentration data from luminescence measurements.

2. Methodology

The workflow of the ML pipeline for extracting iron contamination from IV data is shown in Fig. 1. A more detailed description follows.

2.1. Data Collection

Our research aimed to develop ML models for estimating iron concentration in silicon solar cells. Selecting relevant descriptors is a critical first step in building robust and effective predictive models. It is well established that the presence of iron induces the formation of recombination centers, which, in turn, affect the photoelectric conversion process and key PV parameters, including short-circuit current (I_{SC}), open-circuit voltage (V_{OC}), efficiency (η), and fill factor (F!F). Both theoretical and experimental studies [57, 39, 58] have demonstrated that the restructuring of iron-related defects (the dissociation of FeB pairs) leads to variations in PVPs that depend on iron concentration (N_{Fe}). As a result, this investigation focused on using iron presence as a descriptor of the relative changes in PVPs caused by the Fe $_i$ B_{Si} \rightleftharpoons Fe $_i$ + B_{Si} reconstruction. Specifically, the relative changes in short-circuit current, εI_{SC} , were calculated as

$$\varepsilon I_{\text{SC}} = \frac{I_{\text{SC}}^{\text{FeB}} - I_{\text{SC}}^{\text{Fe}}}{I_{\text{SC}}^{\text{FeB}}} \times 100\%, \tag{1}$$

Figure 1: The workflow of the ML pipeline.

where $I_{\text{SC}}^{\text{FeB}}$ and $I_{\text{SC}}^{\text{Fe}}$ represent the short–circuit current values before and after pair dissociation, respectively. The relative changes in the other parameters ($\varepsilon V_{\text{OC}}$, $\varepsilon \eta$ and εFF) were determined similarly. Using relative rather than absolute changes helped, to some extent, isolate iron-related defect contributions from those of other recombination centers and mitigate potential fluctuations in external conditions, such as illumination intensity.

At the same time, changes in PVPs are shown [57, 58] to be influenced not only by iron concentration but also by specific characteristics of the solar cell structure, such as doping level and base thickness, as well as external factors, including temperature and illumination spectrum. Therefore, these effects must be considered when selecting an appropriate set of descriptors. In our study, we incorporated features such as boron concentration in the base (N_B) , base thickness (d_n) , and temperature (T) and developed separate models for different illumination conditions.

For this research, datasets were obtained from both simulations and experiments. Specifically, I-V curve simulations were performed for a silicon n^+ -p- p^+ structure using SCAPS 3.3.11. The SCAPS-1D software [59] is a widely used tool [60, 61, 62, 63, 64, 65] that enables modeling of barrier structure I-V characteristics while accounting for defect states. PVPs were extracted from pairs of I-V curves simulated for a solar cell with a known structure and a specified iron concentration under defined external conditions, both before and after FeB pair dissociation. This approach allowed us to determine the values of εI_{SC} , εV_{OC} , $\varepsilon \eta$, and εF !F. A detailed description of the modeling approach, including the used temperature dependencies of silicon and defect parameters, is provided elsewhere [66, 58].

To generate the training dataset, we performed simulations over a temperature range of (290-340) K for solar cells with a base thickness of (180-380) μ m, a boron concentration of $(10^{15}-10^{17})$ cm⁻³, and an iron concentration of $(10^{10}-10^{14})$ cm⁻³. The simulations covered all parameter combinations within a four-dimensional grid, consisting of 11 values along the T axis, 5 along the d_p axis, 9 along the N_B axis, and 25 along the N_{Fe} axis. The values were evenly distributed within the specified ranges, with N_B and N_{Fe} spaced logarithmically.

We also generated four test datasets through simulation, each representing different scenarios that may arise in the practical application of ML models. In one test dataset, the iron concentration values used in the simulation were absent from the training set, while the other parameters $(T, d_p, N_{\rm B})$ matched the grid node values from the training simulations. This dataset was labeled " $N_{\rm Fe}$ -altered". Similarly, we created the " $N_{\rm B}$ -altered" and "T-altered" test datasets using boron concentration and temperature values that were not present in the training dataset. In the "All-altered" dataset, all four simulation parameters differed from those used in the training dataset.

The specified simulations for both the training and test datasets were performed under two lighting scenarios: AM1.5, which corresponds to standard characterization conditions for PV devices, and monochromatic light with a wavelength of 940 nm and an intensity of 5 W/m², reflecting the remarkable sensitivity of PVPs to iron [58].

Figure 2: Cumulative explained variance versus number of PC components. Feature dimension: 4 (a), 5 (b), 6 (c), 7 (d).

For experimental validation of the proposed models, we used data obtained from measurements of real solar cells. We used a set of n^+ -p- p^+ -Si samples in the experiment. The structure was fabricated from a 380 μ m thick p-type borondoped Czochralski silicon (100) wafer with a doping level of $N_{\rm B}=1.36\times10^{15}~{\rm cm}^{-3}$. Iron concentration, determined using the methodology described in [67, 46], ranged from 2×10^{11} to $4\times10^{13}~{\rm cm}^{-3}$ across different samples. To create the experimental test dataset, we measured the I-V characteristics under monochromatic illumination from a light-emitting diode (SN-HPIR940nm-1W) with a wavelength of 940 nm and an intensity of approximately 5 W/m², within a temperature range of (305 - 340) K. The decay of FeB pairs was induced using intensive halogen lamp illumination (7000 W/m²).

2.2. Data Pre-Processing

Feature selection is a crucial pre-processing step in developing a forecasting model. Selecting the appropriate number of features requires balancing two competing factors. On one hand, fewer features simplify data collection and reduce computational costs. On the other hand, incorporating more features may enhance prediction accuracy by providing additional information. In this study, various feature combinations were explored. As shown in [58], εI_{SC} is a key metric for quantifying iron impurities due to its monotonic dependence on iron concentration and relatively large absolute values during the Fe_iB_{Si} \rightleftarrows Fe_i + B_{Si} transformation. The following most suitable parameters for estimating N_{Fe} are $\varepsilon \eta$, εV_{OC} , and εFF [58].

Moreover, $N_{\rm B}$ (one of the selected descriptors) and $N_{\rm Fe}$ (target output) span several orders of magnitude. To achieve high prediction accuracy, we transformed the doping level and iron concentration into log $N_{\rm B}$ and log $N_{\rm Fe}$. This approach is standard for quantities that vary over a wide range [68, 69].

Thus, we used the following sets to predict $y = \log N_{\rm Fe}$: $(T, d_p, N_{\rm B}, \varepsilon I_{\rm SC})$; $(T, d_p, N_{\rm B}, \varepsilon I_{\rm SC}, \varepsilon \eta)$; $(T, d_p, N_{\rm B}, \varepsilon I_{\rm SC}, \varepsilon \eta)$; $(T, d_p, N_{\rm B}, \varepsilon I_{\rm SC}, \varepsilon \eta)$; $(T, d_p, N_{\rm B}, \varepsilon I_{\rm SC}, \varepsilon \eta, \varepsilon V_{\rm OC})$; $(T, d_p, N_{\rm B}, \varepsilon I_{\rm SC}, \varepsilon \eta, \varepsilon V_{\rm OC}, \varepsilon FF)$. For simplicity, we will refer to the number of features as "dimension" from here on. That is, features with dimensions 4, 5, 6, and 7 were used in various models.

Data normalization transforms a dataset's values to a standard scale, which can improve model accuracy. To standardize our features, we normalized them to have a mean of zero and a standard deviation of one.

Increasing the number of features does not always enhance informativeness if the descriptors are not independent. This study used the Pearson correlation coefficient to assess the relationships between input features. We found that changes in PV parameters are not entirely independent, particularly under monochromatic illumination (see Fig. S1 in the Supplementary Material). This is not surprising, since each of the PV parameters is linked to the diffusion and recombination of photo-induced charge carriers. Besides, εI_{SC} , εV_{OC} , $\varepsilon \eta$, and εFF exhibit a strong correlation with boron concentration. N_B determines the position of the Fermi level, which, in turn, significantly influences the intensity of recombination processes within the Shockley–Read–Hall approximation. This provides the physical basis for the observed correlation.

To ensure that ML algorithms are trained on independent input features while reducing data redundancy and memory usage, we applied Principal Component Analysis (PCA). PCA constructs new, uncorrelated features (principal components, PCs) and allows us to evaluate each PC's contribution to the total variance. Fig.2 shows that increasing the feature dimension does not always enhance overall information variance. To assess the impact of redundant data, we trained ML models using features selected as follows: we computed PCs for the original dataset and then reduced the total dimension by discarding PCs whose contribution to the total variance was below 1.5%. The final dimensions of the different feature sets are provided in Table 1.

 Table 1

 Feature dimension after PCA applying

Initial dimension	Final dimension				
initial dimension	AM1.5 illumination	940 nm illumination			
4	4	4			
5	4	4			
6	5	4			
7	6	5			

2.3. Machine Learning Algorithms

We used five ML algorithms to develop regression models for predicting iron concentration.

Random Forest (RF) improves predictive accuracy by training multiple decision trees on different subsets of the dataset. RF aggregates predictions from all trees using majority voting for classification or averaging for regression, reducing overfitting and increasing robustness to noise [70].

Gradient Boosting (GB) combines multiple weak learners, typically decision trees, to improve predictive performance. It sequentially adds predictors, with each new model correcting the errors of its predecessor, thereby enhancing overall accuracy. The final prediction is obtained by aggregating forecasts, usually through a weighted sum [71].

eXtreme Gradient Boosting (XGB) is an advanced ensemble method for gradient boosting machines [72]. Unlike standard GB, XGB utilizes the Newton–Raphson method with second-order derivatives of the loss function, improving accuracy, computational speed, and efficiency for large datasets.

Support Vector Regression (SVR) finds a hyperplane that maximizes the margin while minimizing errors within a specified tolerance. It maps input data into a high-dimensional feature space using kernel functions, effectively capturing nonlinear relationships [73].

Deep Neural Network (DNN) comprises multiple layers of interconnected neurons that process input data through successive nonlinear transformations [8].

It is worth noting that all the algorithms used have demonstrated effectiveness in previous defect studies [33, 32, 54, 14].

Considering different machine learning algorithms, data collected under various lighting conditions, features with varying dimensions, and the inclusion or exclusion of PCA, we evaluated 80 distinct models. From this point forward, the models will be referred to as

where "MLA" represents the algorithm used, and it can take one of the following values: (RF, GB, XGB, SVR, DNN); "illum" indicates the solar cell illumination type: illum \in (AM1.5, 940); "feat" represents the feature dimension and the application of PCA, where feat \in (4, 5, 6, 7, 4:PC, 5:PC, 7:PC).

The models are implemented using Python toolkits: Keras for DNN, Scikit-learn for RF, GB, and SVR, and XGBoost for XGB. Hyperparameter tuning is known [74] to be essential for optimizing model performance. We used the Optuna toolkit to optimize model parameters, employing the TPE sampler and Hyperband pruner for efficient hyperparameter selection. Tables S1–S5 (Supplementary Material) provide the tuned hyperparameters and their search ranges. It is worth noting that 5-fold cross-validation was employed during the model tuning process, with 20% of the train data used as the validation set to evaluate models trained on the remaining 80%. The chosen hyperparameter combinations are presented in Tables S6–S10.

2.4. Model evaluation

To build a regression model, it is crucial to evaluate its performance using various metrics. These metrics assess how well the model has learned and predicted outcomes. The evaluation metrics for iron quantification were the mean squared error (MSE), mean absolute percentage error (MAPE), and coefficient of determination (R²), as defined in Eqs. (2)–(4).

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2,$$
(2)

where $\hat{y_i}$ represents the predicted value for the i-th data point, y_i is the known value for the i-th data point, and N is the number of samples in the dataset. MSE is one of the most commonly used metrics for evaluating model accuracy. However, since the computation of $\hat{y_i}$ involves the normalization and logarithm transformation of N_{Fe} , this metric does not fully reflect the accuracy of iron contamination estimation. Therefore, we used MAPE, which determines the mean relative error:

MAPE =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{|N_{\text{Fe,PRED},i} - N_{\text{Fe,TRUE},i}|}{N_{\text{Fe,TRUE},i}} \times 100\%$$
, (3)

where $N_{\text{Fe,PRED},i}$ is the predicted value of iron concentration, $N_{\text{Fe,TRUE},i}$ is the known value (used in simulation or obtained from experimental iron determination).

The R^2 score is often interpreted as the percentage of explained variance and measures how well the predicted and true values align; a value of unity indicates a perfect prediction:

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (N_{\text{Fe,TRUE},i} - N_{\text{Fe,PRED},i})^{2}}{\sum_{i=1}^{N} (N_{\text{Fe,TRUE},i} - \overline{N_{\text{Fe,TRUE}}})^{2}},$$
(4)

where $\overline{N_{\rm Fe,TRUE}}$ is the mean of the true values.

In particular, Table S11 (Supplementary Materials) presents the performance metrics obtained using 5-fold cross-validation on the train dataset with the selected hyperparameter combinations.

The MSE and MAPE are highly sensitive to even a few low-accuracy predictions. To better assess the models and account for the impact of individual outliers, we also used the median absolute percentage error (MdAPE), which indicates the error value below which 50% of the predictions in the dataset fall. Furthermore, we evaluated the metric p, representing the percentage of samples (feature vectors) in a dataset with an error below a specified threshold. Specifically, we computed the values of p01 and p10, which represent the proportion of predictions in the dataset with an accuracy of 1% or better and 10% or better, respectively.

3. Results and Discussion

- 3.1. Train dataset
- 3.2. $N_{\rm Fe}$ -altered dataset

4. Conclusion

Acknowledgments

O.O. would like to acknowledge the financial support by National Research Foundation of Ukraine (Project No. 2023.03/0252 "Development of principles for the creation and machine-oriented characterization of porous silicon nanostructures with optimal heat transport properties")

Supplementary data

Supplementary data to this article can be found online at http://surl.li/qneich

Data availability

Data will be made available on request.

References

[1] S. Karlilar Pata, M. Balcilar, Decarbonizing energy: Evaluating fossil fuel displacement by renewables in oecd countries, Environ. Sci. Pollut. Res. 31 (2024) 31304–31313.

Table 2PSA results for sets of variables that serve to estimate the iron concentration in SSC. The numbers represent the ratio of information variance associated with each principal component when using AM1.5 illumination / 940 nm illumination.

Model	MSE, 10	-3 R ²	MAPE,	% MdAPE,	% p01,%	p10,%	Model	MSE,10 ⁻	3 R^2	MAPE,%	MdAPE,%	6 <i>p</i> 01,%	p10,%
RF ₄ ⁹⁴⁰	1.93	0.982	8.30	6.47	10.1	68.0	RF_4^{AM}	42.1	0.938	137	8.29	7.54	57.0
RF_{4}^{940} $RF_{4:PC}^{940}$	1.80	0.986	8.12	6.38	9.50		RF ^{AM} _{4:PC}	40.5	0.906	54.7	8.00	8.12	57.9
RF_{5}^{940}	2.64	0.976	9.84	7.67	7.06	60.5	RF_5^{AM}	10.8	0.963	16.9	6.96	10.1	64.22
$RF_{5:PC}^{940}$	2.26	0.989	8.04	6.00	8.51	72.2	$RF_{5 \cdot PC}^{AM}$	59.9	0.884	74.4	9.46	6.96	52.1
$RF_{5:PC}^{340}$ RF_{6}^{6}	2.92	0.971	10.9	8.01	6.58	59.5	RF_6^{AM}	5.81	0.970	9.56	5.46	11.0	72.4
$RF_{6,DC}^{940}$	2.90	0.969	10.9	7.34	7.74		RF ^{AM} _{6:PC}	9.87	0.983	17.4	5.66	10.9	72.9
RF_7^{945}	3.99	0.955	12.2	8.89	5.71	54.2	/	5.21	0.975	10.5	6.27	10.4	68.8
RF ⁹⁴⁰ _{7:PC}	7.07	0.975	10.9	8.74	5.42	56.4	$RF_{7:PC}^{AM}$	2.47	0.988	8.00	4.62	13.3	82.2
GB_4^{940}	1.55	0.978	7.04	4.63	13.6		GB_4^{AM}	39.1	0.943	68.0	6.95	9.87	62.4
$GB_{4:PC}^{940}$	1.55	0.987	6.39	4.35	14.1	80.3	$GB_{4:PC}^{\overline{A}M}$	33.0	0.934	55.3	6.27	9.38	67.2
GB_5^{940}	2.04	0.973	7.79	4.96	13.6	72.7	GB_5^{AM}	11.4	0.966	17.7	6.55	11.2	66.6
GB ⁹⁴⁰ GP ⁹⁴⁰	1.17	0.988	6.27	4.63	12.5	82.4	$GB_{5:PC}^{AM}$	41.2	0.921	51.6	8.05	7.25	57.4
GB_6^{940}	1.87	0.977	8.99	6.78	8.03	65.5	GB_6^{AM}	4.47	0.974	8.75	5.31	11.9	74.4
$GB_{6;PC}^{940}$	3.07	0.965	10.2	6.73	9.09	64.0	$GB_{6:PC}^{AM}$	8.88	0.971	14.9	4.41	15.4	79.1
GB^{940}	3.23	0.963	10.5	7.87	7.16	60.7	/	3.88	0.976	8.51	4.97	12.2	75.3
$GB_{7:PC}^{740}$	6.50	0.974		7.41	7.64		GB ^{AM} _{7:PC}	2.18	0.974	7.05	3.73	17.4	84.3
XGB_4^{940}	2.35	0.962	8.18	4.82	11.0		XGB_4^{AM}	35.5	0.925	51.4	6.43	10.1	62.7
$XGB_{4:PC}^{340}$	4.76	0.970	11.5	6.91	9.77	63.5	$XGB_{4:PC}^{AM}$	40.4	0.890	60.4	7.75	8.32	60.2
XGB_5^{940}	1.44	0.976	6.91	4.46	11.7		XGB_5^{AM}	9.03	0.980	12.1	4.26	13.8	74.7
XGB ⁹⁴⁰ _{5:PC}	5.15	0.975	10.9	6.02	10.2		$XGB_{5:PC}^{AM}$	68.4	0.847	98.3	9.03	6.58	52.3
$XGB_{5:PC}^{5:PC}$ XGB_{640}^{640}	1.45	0.978	8.31	6.49	9.87			2.83	0.984	7.31	4.13	14.8	83.2
XGB_{r}^{940}	4.72	0.973	12.9	7.57	8.51	59.9	$XGB_{6:PC}^{MM}$	13.0	0.907	27.5	4.79	11.8	77.2
XGB_7^{940}	2.02	0.971	9.12	6.16	8.80		XGB_7^{AM}	2.46	0.974	7.19	3.71	15.2	83.3
XGB _{7:PC}	11.8	0.969	12.1	7.96	7.54		XGB ^{AM} _{7:PC}	1.93	0.980	6.97	3.94	15.6	83.0
SVR ₄ ⁹⁴⁰	286	0.494	231	31.1	1.45	14.9	SVR ₄ ^{AM}	292	0.463	216	41.2	1.06	11.4
$SVR_{4:PC}^{940}$	284	0.498	227	26.7	1.35	18.2	SVR _{4:PC}	292	0.467	215	40.5	0.77	11.8
SVR_5^{940}	279	0.502	205	36.3	1.64	14.4	SVR ₅ ^{AM}	263	0.514	183	39.7	1.74	10.9
$SVR_{5:PC}^{940}$	285	0.474	206	42.7	0.87	10.8	SVR _{5:PC}	301	0.473	201	51.9	1.35	9.77
SVR_6^{940}	247	0.500	139	37.0	1.16	13.4	SVR ₆ ^{AM}	257	0.496	69.4	37.3	1.64	14.4
$SVR_{6:PC}^{940}$	277	0.505	164	44.8	0.48	8.99	SVR _{6:PC}	291	0.442	96.0	44.2	0.77	10.1
SVR_7^{940}	216	0.511	133	39.1	1.16		SVR ₇ ^{AM}	209	0.496	61.7	36.5	0.68	13.4
SVR _{7:PC}	262	0.523	143	38.1	1.06	13.7	SVR _{7:PC}	212	0.522	57.1	32.5	1.26	15.2
DNN ₄ ⁹⁴⁰	2.35	0.962	8.18	4.82	11.0		DNN_4^{AM}	35.5	0.925	51.4	6.43	10.1	62.7
$DNN_{4\cdot PC}^{940}$	4.76	0.970	11.5	6.91	9.77	63.5	$DNN_{4;PO}^{AM}$	40.4	0.890	60.4	7.75	8.32	60.2
DNN ₅	1.44	0.976	6.91	4.46	11.7		DNN_5^{AM}	9.03	0.980	12.1	4.26	13.8	74.7
DNN _{5;PC}	5.15	0.975	10.9	6.02	10.2	68.6	DNN _{5;P} C	68.4	0.847	98.3	9.03	6.58	52.3
DNN_{6}^{940}	1.45	0.978	8.31	6.49	9.87		DNN ₆	2.83	0.984	7.31	4.13	14.8	83.2
DNN _{6;RC}	4.72	0.973	12.9	7.57	8.51		DNN _{6;PO}	13.0	0.907	27.5	4.79	11.8	77.2
DNN_{740}^{940}	2.02	0.971	9.12	6.16	8.80	66.0	DNN ₇	2.46	0.974	7.19	3.71	15.2	83.3
DNN _{7:PC}	11.8	0.969	12.1	7.96	7.54	60.9	DNN _{7:PC}	1.93	0.980	6.97	3.94	15.6	83.0

^[2] J. L. Holechek, H. M. E. Geli, M. N. Sawalhah, R. Valdez, A global assessment: Can renewable energy replace fossil fuels by 2050?, Sustainability 14 (2022) 4792.

^[3] S. Park, J. Lee, S. Khan, A. Wahab, M. Kim, Machine learning-based heavy metal ion detection using surface-enhanced raman spectroscopy, Sensors 22 (2022) 596.

^[4] X. Qi, W. Ma, Y. Dang, W. Su, L. Liu, Optimization of the melt/crystal interface shape and oxygen concentration during the czochralski silicon crystal growth process using an artificial neural network and a genetic algorithm, J. Cryst. Growth 548 (2020) 125828.

^[5] L. Rachdi, M. Hofmann, Use of optical emission spectroscopy to predict silicon nitride layer properties, Vacuum 191 (2021) 110322.

^[6] Y. Buratti, C. Eijkens, Z. Hameiri, Optimization of solar cell production lines using neural networks and genetic algorithms, ACS Appl. Energy Mater. 3 (2020) 10317–10322.

^[7] L. Zhang, M. He, Unsupervised machine learning for solar cell materials from the literature, J. Appl. Phys. 131 (2022) 064902.

- [8] T. Liu, S. Wang, Y. Shi, L. Wu, R. Zhu, Y. Wang, J. Zhou, W. C. H. Choy, Machine-learning accelerating the development of perovskite photovoltaics. Sol. RRL 7 (2023) 2300650.
- [9] Z. Asghar, K. Hafeez, D. Sabir, B. Ijaz, S. S. H. Bukhari, J. Ro, Reclaim: Renewable energy based demand-side management using machine learning models, IEEE Access 11 (2023) 3846–3857.
- [10] Z. Abdullah-Vetter, B. Wright, T.-C. Wu, A. Shakiba, Z. Hameiri, Automatic quantitative analysis of internal quantum efficiency measurements of gaas solar cells using deep learning, Adv. Sci. 12 (2025) 2407048.
- [11] M. Di Sabatino, R. Hendawi, A. S. Garcia, Silicon solar cells: Trends, manufacturing challenges, and ai perspectives, Crystals 14 (2024) 167.
- [12] S. Datta, A. Baul, G. C. Sarker, P. K. Sadhu, D. R. Hodges, A comprehensive review of the application of machine learning in fabrication and implementation of photovoltaic systems, IEEE Access 11 (2023) 77750–77778.
- [13] R. Jaiswal, M. Martínez-Ramón, T. Busani, Recent advances in silicon solar cell research using data science-based learning, IEEE J. Photovolt. 13 (2023) 2–15.
- [14] Y. Buratti, G. M. Javier, Z. Abdullah-Vetter, P. Dwivedi, Z. Hameiri, Machine learning for advanced characterisation of silicon photovoltaics: A comprehensive review of techniques and applications, Renewable Sustainable Energy Rev. 202 (2024) 114617.
- [15] S. Bhatti, H. U. Manzoor, B. Michel, R. S. Bonilla, R. Abrams, A. Zoha, S. Hussain, R. Ghannam, Revolutionizing low-cost solar cells with machine learning: A systematic review of optimization techniques, Advanced Energy and Sustainability Research 4 (2023) 2300004.
- [16] H. Munawer Al-Otum, Classification of anomalies in electroluminescence images of solar pv modules using cnn-based deep learning, Sol. Energy 278 (2024) 112803.
- [17] L. Pratt, D. Govender, R. Klein, Defect detection and quantification in electroluminescence images of solar pv modules using u-net semantic segmentation, Renew. Energ. 178 (2021) 1211–1222.
- [18] Z. Li, S. Zhang, C. Qu, Z. Zhang, F. Sun, Research on multi-defects classification detection method for solar cells based on deep learning, PLOS ONE 19 (2024) 1–16.
- [19] H.-H. Lin, H. K. Dandage, K.-M. Lin, Y.-T. Lin, Y.-J. Chen, Efficient cell segmentation from electroluminescent images of single-crystalline silicon photovoltaic modules and cell-based defect identification using deep learning with pseudo-colorization, Sensors 21 (2021) 4292.
- [20] W. Tang, Q. Yang, K. Xiong, W. Yan, Deep learning based automatic defect identification of photovoltaic module using electroluminescence images, Sol. Energy 201 (2020) 453–460.
- [21] C. Bu, T. Liu, R. Li, R. Shen, B. Zhao, Q. Tang, Electrical pulsed infrared thermography and supervised learning for pv cells defects detection, Sol. Energ. Mat. Sol. 237 (2022) 111561.
- [22] M. Turek, M. Meusel, Automated classification of electroluminescence images using artificial neural networks in correlation to solar cell performance parameters, Sol. Energ. Mat. Sol. 260 (2023) 112483.
- [23] C. Huang, Z. Zhang, L. Wang, Psopruner: Pso-based deep convolutional neural network pruning method for pv module defects classification, IEEE J. Photovolt. 12 (2022) 1550–1558.
- [24] Y. Liu, K. Ding, J. Zhang, Y. Li, Z. Yang, W. Zheng, X. Chen, Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with i-v curves, Energy Convers. Manage. 245 (2021) 114603.
- [25] Z. Chen, Y. Chen, L. Wu, S. Cheng, P. Lin, Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions, Energy Convers. Manage. 198 (2019) 111793.
- [26] M. W. Hopwood, T. Gunda, H. Seigneur, J. Walters, Neural network-based classification of string-level iv curves from physically-induced failures of photovoltaic modules, IEEE Access 8 (2020) 161480–161487.
- [27] A. Mellit, S. Kalogirou, Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions, Renewable Sustainable Energy Rev. 143 (2021) 110889.
- [28] Y. Ma, H. Yu, Y. Zhong, S. Chen, X. Gong, H. Xiang, Transferable machine learning approach for predicting electronic structures of charged defects, Appl. Phys. Lett. 126 (2025) 044103.
- [29] K. Choudhary, B. G. Sumpter, Can a deep-learning model make fast predictions of vacancy formation in diverse materials?, AIP Adv. 13 (2023) 095109.
- [30] J. Y. Chia, N. Thamrongsiripak, S. Thongphanit, N. Nuntawong, Machine learning-enhanced detection of minor radiation-induced defects in semiconductor materials using raman spectroscopy, J. Appl. Phys. 135 (2024) 025701.
- [31] S. Wang, B. Wright, Y. Zhu, Y. Buratti, Z. Hameiri, Extracting the parameters of two-energy-level defects in silicon wafers using machine learning models, Sol. Energ. Mat. Sol. 277 (2024) 113123.
- [32] Y. Buratti, J. Dick, Q. Le Gia, Z. Hameiri, Deep learning extraction of the temperature-dependent parameters of bulk defects, ACS Appl. Mater. Interfaces 14 (2022) 48647–48657.
- [33] Y. Buratti, Q. T. Le Gia, J. Dick, Y. Zhu, Z. Hameiri, Extracting bulk defect parameters in silicon wafers using machine learning models, npj Computational Materials 6 (2020) 142.
- [34] T. T. Le, Z. Zhou, A. Chen, Z. Yang, F. Rougieux, D. Macdonald, A. Liu, Reassessing iron–gallium recombination activity in silicon, J. Appl. Phys. 135 (2024) 133107.
- [35] M. Yamaguchi, K.-H. Lee, K. Araki, N. Kojima, Y. Ohshita, Analysis for efficiency potential of crystalline si solar cells, J. Mater. Res. 33 (2018) 2621–2626.
- [36] M. Bošnjaković, Advance of sustainable energy materials: Technology trends for silicon-based photovoltaic cells, Sustainability 16 (2024) 7962
- [37] J. Zhang, Solar pv market research and industry competition report, IOP Conf. Ser.: Earth Environ. Sci. 632 (2021) 032047.
- [38] T. Buonassisi, A. A. Istratov, M. D. Pickett, M. Heuer, J. P. Kalejs, G. Hahn, M. A. Marcus, B. Lai, Z. Cai, S. M. Heald, Chemical natures and distributions of metal impurities in multicrystalline silicon materials, Prog. Photovolt.: Res. Appl. 14 (2006) 513–531.
- [39] M. Schubert, M. Padilla, B. Michl, L. Mundt, J. Giesecke, J. Hohl-Ebinger, J. Benick, W. Warta, M. Tajima, A. Ogura, Iron related solar cell instability: Imaging analysis and impact on cell performance, Sol. Energy Mater. Sol. Cells 138 (2015) 96–101.
- [40] L. Kimerling, J. Benton, Electronically controlled reactions of interstitial iron in silicon, Physica B+C 116 (1983) 297-300.

- [41] C. Möller, T. Bartel, F. Gibaja, K. Lauer, Iron-boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon, J. Appl. Phys. 116 (2014) 024503.
- [42] G. Zoth, W. Bergholz, A fast, preparation-free method to detect iron in silicon, J. Appl. Phys. 67 (1990) 6764-6771.
- [43] S. Rein, S. W. Glunz, Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy, J. Appl. Phys. 98 (2005) 113711.
- [44] J. Schmidt, D. Macdonald, Recombination activity of iron-gallium and iron-indium pairs in silicon, J. Appl. Phys. 97 (2005) 113712.
- [45] M. Goodarzi, R. A. Sinton, H. Jin, P. Zheng, W. Chen, Q. Wang, D. Macdonald, Accuracy of interstitial iron measurements on p-type multicrystalline silicon blocks by quasi-steady-state photoconductance, IEEE J. Photovolt. 7 (2017) 1216–1223.
- [46] O. Olikh, V. Kostylyov, V. Vlasiuk, R. Korkishko, Y. Olikh, R. Chupryna, Features of FeB pair light-induced dissociation and repair in silicon n+-p-p+ structures under ultrasound loading, J. Appl. Phys. 130 (2021) 235703.
- [47] S. Herlufsen, D. Macdonald, K. Bothe, J. Schmidt, Imaging of the interstitial iron concentration in crystalline silicon by measuring the dissociation rate of iron-boron pairs, Phys. Status Solidi RRL 6 (2012) 1–3.
- [48] A. Herguth, Quantification of iron in boron-doped silicon solar cells from open circuit voltage measurements, IEEE J. Photovolt. 12 (2022) 937–947.
- [49] D. H. Macdonald, L. J. Geerligs, A. Azzizi, Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping, J. Appl. Phys. 95 (2004) 1021–1028.
- [50] M. Di Sabatino, Detection limits for glow discharge mass spectrometry (gdms) analyses of impurities in solar cell silicon, Measurement 50 (2014) 135–140.
- [51] D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, New Jersey, third edition, 2006.
- [52] R. C. Kurchin, J. R. Poindexter, V. Vähänissi, H. Savin, C. del Cañizo, T. Buonassisi, How much physics is in a current-voltage curve? inferring defect properties from photovoltaic device measurements. IEEE J. Photovolt. 10 (2020) 1532–1537.
- [53] A. R. Peaker, V. P. Markevich, J. Coutinho, Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors, J. Appl. Phys. 123 (2018) 161559.
- [54] O. Olikh, O. Lozitsky, O. Zavhorodnii, Estimation for iron contamination in si solar cell by ideality factor: Deep neural network approach, Prog. Photovoltaics Res. Appl. 30 (2022) 648–660.
- [55] P. Kunze, J. M. Greulich, A. Tummalieh, W. Wirtz, H. Hoeffler, N. Woehrle, S. Glunz, S. Rein, M. Demant, Contactless inline iv measurement of solar cells using an empirical model, Sol. RRL 7 (2023) 2200599.
- [56] M. Battaglia, E. Comi, T. Stadelmann, R. Hiestand, B. Ruhstaller, E. Knapp, Deep ensemble inverse model for image-based estimation of solar cell parameters, APL Machine Learning 1 (2023) 036108.
- [57] J. Schmidt, Effect of dissociation of iron-boron pairs in crystalline silicon on solar cell properties, Progress in Photovoltaics: Research and Applications 13 (2005) 325–331.
- [58] O. Olikh, O. Zavhorodnii, Iron's impact on silicon solar cell execution: Comprehensive modeling across diverse scenarios, Materials Science and Engineering: B 317 (2025) 118192.
- [59] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361–362 (2000) 527–532.
- [60] M. Masum Mia, M. Faruk Hossain, M. Rahman, N. Badi, A. Irfan, M. Ferdous Rahman, Unveiling the impact of Se based HTM on BaZrSe3 perovskites solar cell and improving the theoretical efficiency above 32%, Materials Science and Engineering: B 311 (2025) 117817.
- [61] T. K. Joshi, G. Sharma, Y. R. Sharma, A. S. Verma, Spectroscopic screening and performance parameters of hybrid perovskite (CH3CH2PH3PbI3) using WIEN2k and SCAPS-1d, Phys. B Condens. Matter 682 (2024) 415793.
- [62] B. K. Ravidas, A. Das, S. K. Agnihotri, R. Pandey, J. Madan, M. K. Hossain, M. K. Roy, D. Samajdar, Design principles of crystalline silicon/CsGel3 perovskite tandem solar cells using a combination of density functional theory and SCAPS-1D frameworks, Sol. Energ. Mat. Sol. 267 (2024) 112688.
- [63] H. Liu, L. Xiang, Q. Liu, P. Gao, Y. Zhang, S. Li, F. Gao, Toward high-performance HTL-free all-perovskite tandem solar cells: SCAPS simulation, IEEE J. Photovolt. 14 (2024) 59–64.
- [64] L. You, X. Zhang, Q. Ma, W. Zhu, J. Wu, Optimization of electron transport layer-free Cs2TiBr6/MASnBr3 laminated structure perovskite solar cells by SCAPS-1D simulation, Phys. Status Solidi A 220 (2023) 2300071.
- [65] M. Abdulmalik, E. Danladi, Influence of perovskite thickness on the performance of silver-doped NaZnBr3 perovskite solar cells using SCAPS software, Semiconductor Physics, Quantum Electronics & Optoelectronics 26 (2023) 321–331.
- [66] O. Olikh, Relationship between the ideality factor and the iron concentration in silicon solar cells, Superlattices Microstruct. 136 (2019) 106309.
- [67] O. Olikh, V. Kostylyov, V. Vlasiuk, R. Korkishko, R. Chupryna, Intensification of iron-boron complex association in silicon solar cells under acoustic wave action, J. Mater. Sci.: Mater. Electron. 33 (2022) 13133–13142.
- [68] Y. Srivastava, A. Jain, End-to-end material thermal conductivity prediction through machine learning, J. Appl. Phys. 134 (2023) 225101.
- [69] H. Minagawa, T. Tezuka, H. Tsuchida, Effective combinations of features in predicting the range of incident ions using machine learning, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 553 (2024) 165383.
- [70] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5-32.
- [71] A. Natekin, A. Knoll, Gradient boosting machines, a tutorial, Front. Neurorob. 7 (2013).
- [72] S. Akinpelu, S. Abolade, E. Okafor, D. Obada, A. Ukpong, S. Kumar R., J. Healy, A. Akande, Interpretable machine learning methods to predict the mechanical properties of abx3 perovskites, Results Phys. 65 (2024) 107978.
- [73] W. Cao, X. Liu, J. Ni, Parameter optimization of support vector regression using henry gas solubility optimization algorithm, IEEE Access 8 (2020) 88633–88642.
- [74] M. F. Hanif, M. U. Siddique, J. Si, M. S. Naveed, X. Liu, J. Mi, Enhancing solar forecasting accuracy with sequential deep artificial neural network and hybrid random forest and gradient boosting models across varied terrains, Advanced Theory and Simulations 7 (2024) 2301289.