

IEL — protokol k projektu

Dmytro Sadovskyi xsadov06

December 20, 2020

Příklad 1

Stanivte napětí U_{R_6} a proud I_{R_6} . Použijtě metodu postupného zjednodušování obvodu.

Sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8[\Omega]$
A	80	120	350	650	410	130	360	750	310	190

Tento obvod můsíme rešit pomocí metody postupného zjednodušování obvodu. Snažíme se ze složitého obvodu postupným zjednodušováním dostat až k obvodu s jediným rezistorem, proudem a napetovým zdrojem. Nejprve zjednodušime rezistory R_3 a R_4 zapojené paralelne a zároven sloucime zdroje napetí U_1 a U_2 . Po zjednodušení dostaneme rezistor, který nazveme R_{34} a jediný zdroj napetí U_{12} . Pak zjednodušime rezistory R_{34} a R_2 zapojené seriove a dostanéme rezistor, který nazveme R_{234} . Zároven si oznacíme uzly (využijeme v dalším kroku). Odpor rezistoru a napetí vypocteme a obvod zjednodušíme :

$$R_{34} = \frac{R_3 * R_4}{R_3 + R_4} = \frac{410 * 130}{410 + 130} = 98,7037037 \,\Omega$$

$$R_{234} = R_{34} + R_2 = 98,7037037 + 650 = 748.7037037 \Omega$$

$$U_{12} = U_1 + U_2 = 200 V$$

Pro rezistory $R_1,\,R_{234},\,R_5$ můžéme použít transformace trojúhelník -> hvezda - pri uzlu A bude

rezistor RA, pri uzlu B bude RB a pri uzlu C bude RC. Odpory techto rezistoru vypocítáme :

$$R_A = \frac{R_1 * R_{234}}{R_1 + R_{234} + R_5} = \frac{350 * 748.7037037}{350 + 748.7037037 + 360} = 179.64326520 \,\Omega$$

$$R_B = \frac{R_1 * R_5}{R_1 + R_{234} + R_5} = \frac{350 * 360}{350 + 748.7037037 + 360} = 86.37806271 \,\Omega$$

$$R_B = \frac{R_1 * R_5}{R_1 + R_{234} + R_5} = \frac{350 * 360}{350 + 748.7037037 + 360} = 184.77592992 \,\Omega$$

Zjednodušíme rezistory R_B , R_7 a R_C , R_6 zapojené seriove a dostaneme R_{B7} a R_{C6} .

$$R_{B7} = R_B + R_7 = 86.37806271 + 310 = 396.37806271 \Omega$$

 $R_{C6} = R_C + R_6 = 184.77592992 + 750 = 934.77592992 \Omega$

Teď můžéme zjednodušít rezistory R_{B7} a R_{C6} zapojené seriove. Po zjednodušení dostaneme resistor R_{B7C6} .

$$R_{B7C6} = \frac{R_{B7}*R_{C6}}{R_{B7}+R_{C6}} = \frac{396.37806271*934.77592992}{396.37806271+934.77592992} = 278.34846623\,\Omega$$

Zjednodušíme rezistory R_{A_i} , R_{B_i} , R_{B_i} , zapojené seriove, a dostaneme R_{EKV} .

$$\begin{array}{l} R_{EKV} = R_A + R_8 + R_{B7C6} = 179.64326520 + 190 + 278.34846623 \\ = 647.99173143 \, \Omega \end{array}$$

Vypočet proudu:

$$I = \frac{U_{12}}{R_{EKV}} = \frac{200}{647.99173143} = 0.30864591 \, A$$

Pomocí Ohmůvého zákonu můžeme vypočítat napětí $U_{R_{B7C6}}$:

$$\begin{array}{c} U_{R_{B7C6}} = U_{R_{B7}} = U_{R_{C6}} = R_{B7C6} * I = 278.34846623 * 0.3086459 \\ = 85.91111667 \, V \end{array}$$

$$I_{R_{C6}} = I_{R_c} = I_{R_6} = \frac{U_{R_{C6}}}{R_{C6}} = \frac{85.91111667}{934.77592992} = 0.09190557 A$$

$$U_{R_6} = R_6 * I_{R_6} = 750 * 0.09190557 = 68.9291911 V$$

sk.	U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$
Е	250	150	335	625	245	600	150

Krok 1 – vypočítáme U_{AB}

$$R_2I_2 + R_6I_2 = U$$

$$I_2 = \frac{U}{R_2 + R_6} = \frac{250}{335 + 150} = 0.51546388 A$$

$$(I_1 - I_2) * (R_1 + R_4 + R_5) = U$$

$$I_1 - I_2 = \frac{U}{R_1 + R_4 + R_5} = \frac{250}{150 + 245 + 600} = 0.25125628 A$$

$$I_1 = 0.76672017 A$$

$$U_{AB} = (I_1 - I_2) * (R_4 + R_5) - I_2 * R_6$$

= 0.25125628 * (245 + 600) - 0.51546388 * 150
= 134.99197387 V

Krok 2 – vypočítáme R_{TH}

$$R_{26} = \frac{R_6 * R_2}{R_6 + R_2} = \frac{150 * 335}{150 + 335} = 103.6082458 \,\Omega$$

$$R_{45} = R_4 + R_5 = 245 + 600 = 845 \,\Omega$$

$$R_{145} = \frac{R_{45} * R_1}{R_{45} + R_1} = \frac{845 * 150}{845 + 150} = 127.38693237 \,\Omega$$

$$R_{TH} = R_{145} + R_{26} = 127.38693237 + 103.6082458 = 230.99517822\,\Omega$$

 $\mathbf{Krok}\ \mathbf{3}$ – Pomocí ekvivalentného obvodu dopocítame I_{R_3} a U_{R_3}

$$I_{R_3} = \frac{U_{AB}}{R_{TH} + R_3} = \frac{134.99197387}{230.99517822 + 625} = 0.15770179 A$$

$$U_{R_3} = I_{R_3} * R_3 = 0.15770179 * 625 = 98.56362152 V$$

Příklad 3

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí (U_A , U_B , U_C).

sk.	U[V]	$I_1[A]$	$I_2[A]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$
С	110	0,85	0,75	44	31	56	20	30

Sestavím si rovnice proudu (I. Kirchoffuv zákon) a to podle uzlu A, B, C - uzel A je tam, kde zacíná šipka napetí R_A , uzel B tam kde zacíná U_B a uzel C u U_C .

$$I_{R_1} - I_{R_3} - I_{R_2} = 0$$

$$I_{R_3} + I_1 - I_{R_5} = 0$$

$$I_2 + I_{R_5} - I_1 - I_{R_4} = 0$$

Najdeme $I_{R_1}, I_{R_2}, I_{R_3}, I_{R_4}, I_{R_5}$:

$$I_{R_1} = \frac{U - U_A}{R_1}$$

$$I_{R_2} = \frac{U_A}{R_2}$$

$$I_{R_3} = \frac{U_A - U_B}{R_3}$$

$$I_{R_4} = \frac{U_C}{R_4}$$

$$I_{R_5} = \frac{U_B - U_C}{R_5}$$

Teď můžeme dosadit do rovnic všechny známé hodnoty a vyjádrit si neznámá napetí:

$$\begin{cases} \frac{U - U_A}{R_1} - \frac{U_A}{R_2} - \frac{U_A - U_B}{R_3} = 0\\ 0.85 + \frac{U_A - U_B}{R_3} - \frac{U_B - U_C}{R_5} = 0\\ 0.75 + \frac{U_B - U_C}{R_5} - 0.85 - \frac{U_C}{R_4} = 0 \end{cases}$$

$$\begin{cases} 2.5 - \frac{1}{44} * U_A - \frac{1}{31} * U_A - \frac{1}{56} * U_A + \frac{1}{56} * U_B = 0\\ 0.85 + \frac{1}{56} * U_A - \frac{1}{56} * U_B - \frac{1}{30} * U_B + \frac{1}{30} * U_C = 0\\ 0.75 + \frac{1}{30} * U_B - \frac{1}{30} * U_C - 0.85 - \frac{1}{20} U_C = 0 \end{cases}$$

$$\begin{cases} -\frac{1391}{19096} * U_A + \frac{1}{56} * U_B = -2.5\\ \frac{1}{56} * U_A - \frac{43}{840} * U_B + \frac{1}{30} * U_C = -0.85\\ \frac{1}{30} * U_B - \frac{1}{12} * U_C = 0.1 \end{cases}$$

Ted si všechno prevedu do matice:

$$\begin{bmatrix} -\frac{1391}{19096} & \frac{1}{56} & 0 & -\frac{5}{2} \\ \frac{1}{56} & -\frac{43}{840} & \frac{1}{30} & -\frac{17}{20} \\ 0 & \frac{1}{30} & -\frac{1}{12} & \frac{1}{10} \end{bmatrix}$$

Po upravení matici dostaneme:

$$\begin{bmatrix} 0 & \frac{1}{56} & 0 & \frac{197921}{260792} \\ 0 & 0 & \frac{1}{30} & \frac{7358}{13971} \\ -\frac{4657}{13640} & 0 & 0 & -\frac{611}{40} \end{bmatrix}$$

Teď můžeme najit U_A , U_B , U_C

$$U_A = \frac{208351}{4657} = 44.73931715 \, V$$

$$U_B = \frac{197921}{4657} = 42.49967790 \, V$$

$$U_B = \frac{73580}{4657} = 15.79987116 \, V$$

Teď můžeme najít I_{R_2} , U_{R_2}

$$I_{R_2} = \frac{U_A}{R_2} = 1.443203779 \, A$$

$$U_{R_2} = U_A = 44.73931715 V$$

Příklad 4

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L2} = U_{L2} \cdot \sin(2\pi f t + \phi_{L2})$ určete $|U_{L2}|$ a ϕ_{L2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecich zdrojů platí pro speciální časový okamžik ($t = \frac{\pi}{2\omega}$)

sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$\mathrm{R}_2[\Omega]$	$L_1[\psi]$	$L_2[\psi]$	$C_1[F]$	$C_2[F]$	f[Hz]
A	35	55	12	14	120	100	200	105	70

$$\omega = 2\pi f = 2\pi 70 = 140\pi \, rad/s$$

Sestavíme maticovou rovnici pro smyčky I_A , I_B , I_C :

Přiklad 5

V obvodu na obrázku níže v čase t = 0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dasazením hodnot parametrů. Vypočítejte analystické řešení $i_L = f(t)$. Proved te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecich zdrojů platí pro speciální časový okamžik ($t = \frac{\pi}{2\omega}$)

sk.	U[V]	L[ψ]	$R[\Omega]$	$i_{\rm L}(0)[{\rm A}]$
F	22	30	15	10

Začneme sestavením rovnici pro i'_L :

$$i_L' = \frac{U_L}{L}$$

Pak sestavíme rovnice pro U v obvodě:

$$U_R + U_L - U = 0$$

$$U_L = U - U_R$$

Můžeme dosadít U_L do rovnice pro i'_L :

$$i_L' = \frac{U - U_R}{L}$$

$$U_R = R * i'_L$$

$$i_L' = \frac{U - R * i_L'}{L}$$

$$L * i_L' + R * i_L' = U$$

$$30 * i_L' + 15 * i_L = 22$$

Vytvoříme a řešíme charakteristickou rovnici:

$$30 * \alpha + 15 = 22$$

$$\alpha = \frac{15}{30} = \frac{1}{2}$$

Dosadíme α do očekávaného tvaru řešení:

$$i_I(t) = C(t) * e^{\alpha t}$$

$$i_L(t) = C(t) * e^{-\frac{1}{2}t}$$

$$i_L(t)' = C(t)' * e^{-\frac{1}{2}t} - \frac{1}{2}C(t) * e^{-\frac{1}{2}t}$$

Dosadíme i_L^\prime a i_L do diferenciální rovnice:

$$30\left(C(t)'* e^{-\frac{1}{2}t} - \frac{1}{2}C(t) * e^{-\frac{1}{2}t}\right) + 15\left(C(t) * e^{-\frac{1}{2}t}\right) = 22$$

$$30 * C(t)' * e^{-\frac{1}{2}t} - 15 * C(t) * e^{-\frac{1}{2}t} + 15 * C(t) * e^{-\frac{1}{2}t} = 22$$

$$30 * C(t)' * e^{-\frac{1}{2}t} = 22$$

$$C(t)' = \frac{11}{15}e^{\frac{1}{2}t}$$

Integrujeme C(t)'

$$C(t) = \int \frac{11}{15} e^{\frac{1}{2}t} = \frac{22}{15} e^{\frac{t}{2}} + K$$

Dosadíme C(t) do očekávaného tvaru řešení:

$$i_L(t) = \left(\frac{22}{15}e^{\frac{1}{2}t} + K\right) * e^{-\frac{1}{2}t} = \frac{22}{15} + K * e^{-\frac{1}{2}t}$$

Dosadíme počáteční podmínku aby provést výpočet K:

$$i_L(0) = \frac{22}{15} + K * e^{-\frac{1}{2}*0}$$

$$10 = \frac{22}{15} + K$$

$$K = 8\frac{8}{15}$$

$$i_L(t) = \frac{22}{15} + 8\frac{8}{15} * e^{-\frac{1}{2}t}$$

Dosadíme K do očekáváného tvaru řešení:

$$i_L = \frac{22}{15} + 8\frac{8}{15} * e^{-\frac{1}{2}*0} = \frac{22}{15} + 8\frac{8}{15} = 10 [A]$$

Dostali jsme počáteční podmínku $i_L(0) = 10$

Kontrola výsledku:

$$30 * i_L' + 15 * i_L = 22$$

$$30 * (\frac{11}{15} * e^{\frac{1}{2}*0} * e^{-\frac{1}{2}*0} - \frac{1}{2}(\frac{22}{15} * e^{\frac{0}{2}} + \frac{128}{15}) * e^{-\frac{1}{2}*0}) + 15 * 10 = 22$$

$$30 * (\frac{11}{15} - \frac{1}{2}(\frac{22}{15} + \frac{128}{15})) + 150 = 22$$

$$22 = 22$$

Výsledky

1	2	3	4	5
Α	E	С	Α	F
$U_{R_6} = 68.9292 V$				$\frac{1}{1} - \frac{22}{1} + \frac{128}{120} + \frac{1}{2}t$
$I_{R_6} = 0.0919 A$	$U_{R_3} = 98.5636 V$	I_{R2} =1.4432 A		$\frac{\iota_L}{15} - \frac{\iota_L}{15} + \frac{\iota_L}{15} + \frac{\iota_L}{15}$