«ОСТРЫЕ УГЛЫ» В РАССУЖДЕНИИ ПЬЕРА ФЕРМА О НЕРАЗЛОЖИМОСТИ СТЕПЕНИ ВЫШЕ КВАДРАТА (ОБЗОР)

Preprint · June 2024						
DOI: 10.13140/RG.2.2.24531.39207/12						
CITATIONS 0		READS 423				
1 author:						
	Grigoriy Dedenko Financial University					
	76 PUBLICATIONS 127 CITATIONS					
	SEE PROFILE					

«Острые углы» в рассуждении Пьера Ферма о неразложимости степени выше квадрата (обзор)

Г. Л. Деденко

Кандидат физико-математических наук,

Старший преподаватель, Кафедра информационных технологий (КИТ)

Финансовый университет при Правительстве Российской Федерации, Москва, Россия

Электронная почта для связи с автором: GLDedenko@fa.ru

Идентификатор ORCID автора: 0000-0002-0418-6389

DOI: 10.13140/RG.2.2.24531.39207/12

23 сентября 2025 г.

Аннотация

Представлена возможная версия оригинального доказательства неразложимости целых степеней выше квадрата, о котором говорил Пьер де Ферма. Это реконструированное доказательство обсуждается с некоторыми дополнительными выводами, сделанными на его основе.

Ключевые слова: теория чисел, Великая/Последняя теорема Ферма, история математики, алгебра, доказательство.

Классификационный код ACM CSS 1998: D.2.4; F.3.1; F.4.1

Классификационный код MSC: 68V20; Вторичный: 68V15, 03B35

Конкурирующие интересы

Нет, я заявляю, что у авторов нет конкурирующих интересов, как это определено Springer, или других интересов, которые могли бы повлиять на результаты и/или обсуждение, представленные в этой статье.

Автор(ы) заявляет(ют), что нет никаких конфликтов интересов в отношении публикации данной статьи.

Согласие на публикацию

Я даю согласие на публикацию этой статьи.

Доступность данных и материалов

Я заявляю, что доступность данных имеет лицензию типа «CC BY-SA: Creative Commons Attribution-ShareAlike» в соответствии с лицензионным соглашением на предыдущую публикацию этой статьи в 2019 году (на тот момент статья была не завершена) — предыдущая незавершенная публикация английской версии этой статьи доступна по ссылке https://iiste.org/Journals/index.php/MTM/article/view/48744

и https://www.fermatslibrary.com/p/0c39c9be

и размещена в виде препринта некоторая небольшая предыдущая версия (октябрь 2023 г.):

 $https://www.researchgate.net/publication/374350359_The_Difficulties_in_Fermat's \\ _Original_Discourse_on_the_Indecomposability_of_Powers_Greater_Than_a_Square_A_Ret \\ rospect$

и эта текущая завершенная версия в виде препринта опубликована там же по той же ссылке. Данные для этой завершенной статьи также доступны по следующей ссылке (вы можете получить все предыдущие версии по этой ссылке): https://doi.org/10.31219/osf.io/jbdas

Финансирование

Без финансирования

Одобрение этического комитета и согласие на участие.

Неприменимо

Вклад авторов

Вся статья написана одним автором. Благодарности приведены в разделе «Благодарности».

Благодарности

Прежде всего, автор выражает благодарность Всевышнему Богу и Его моральным заповедям, которые всегда поддерживали автора в трудные моменты.

Автор также хочет почтить память своей матери, Наталье Алексеевне Деденко, чья непоколебимая вера в него и его работу оставалась источником вдохновения даже спустя годы после ее ухода. Ее поддержка и вера в ценность упорства и интеллектуального поиска продолжают находить отклик в этом исследовании.

Кроме того, автор выражает глубочайшую благодарность своему отцу, Леониду Григорьевичу Деденко, доктору физико-математических наук, профессору физического факультета МГУ, за его неоценимое руководство, наставничество и фундаментальное влияние на научное развитие автора. Автор также благодарен учительнице математики Колесниковой В.Е. из школы № 533 г. Москвы за ее раннюю поддержку в математическом образовании.

Автор выражает признательность доцентам Национального исследовательского ядерного университета МИФИ Малову А.Ф., Ивлиеву С.В., Макаровой И.Ф., заместителю заведующего кафедрой прикладной ядерной физики НИЯУ МИФИ Рябевой Е.В. и сотруднику МАГАТЭ Юркину П.Г. за их содержательные обсуждения и профессиональную поддержку.

Дальнейшая благодарность выражается доценту Чернышеву Л.Н. из Финансового университета при Правительстве РФ, доктору Борису Борисову с механико-математического факультета МГУ, доктору Пащенко Ф.Ф. и коллегам из ИПУ РАН, доценту Милосердину В.Ю. из НИЯУ МИФИ и преподавателю НИЯУ МИФИ Мухину В.И. за их ценные отзывы и технические обсуждения. Автор признателен Сергею П. Клыкову, эксперту по ферментации из ООО «Альфа-Интегрум», и координатору по математике (Ph.D.) Ливанского международного университета Иссаму Каддуре за их вклад в некоторые аналитические аспекты работы.

Также выражается благодарность создателям генеративных нейронных сетей — ChatGPT, Claude, Gemini, DeepSeek, Mistral — за их роль в частичной проверке и улучшении результатов, представленных в этой статье. Автор ценит участников математических форумов, таких как dxdy и cyberforum, за их критические отзывы, которые повысили качество исследования.

Искренние слова благодарности также адресуются научному руководителю, доценту Кадилину В.В. из НИЯУ МИФИ, декану физико-технического факультета НИЯУ МИФИ Тихомирову Г.В., и профессорам Самосадному В.Т., Филиппову В.П., Крамер-Агееву Е.А., Мур В.Д., Петрунину В.Ф., Болоздыне А.И., Дмитренко В.В., Грачеву В.М., Машковичу В.П., Улину С.Е. и доцентам Бойко Н.В., Евстюхиной И.А., Каплуну А.А., Куценко К.В., Колесникову С.В., Минаеву В.М., Петрову В.И., Самонову А.М., Сулаберидзе Г.А. и Ростокину В.И. из НИЯУ МИФИ за их академическую поддержку и ценные идеи.

Дальнейшая благодарность выражается директору проекта в Индии АО «АТОМСТРОЙ-ЭКСПОРТ» Ангелову В.А., первому заместителю директора по строительству АЭС «Куданкулам» АО «АТОМСТРОЙЭКСПОРТ» Кваше А.В. и коллегам из Управления проектом АЭС «Куданкулам» АСЭ: Амосову А.М., Носихину Д.В., Фомичеву А.В., Галепину К.Э., Савину А.Н., Малинину Д.С., Васильеву В.В., Спирину В.В., Авдеенко В.В., Преображенской А.А. и Матушкиной Г.Л. за их технические обсуждения и профессиональные идеи.

Коллеги из Финансового университета при Правительстве РФ, включая декана факультета информационных технологий Феклина В.Г., заведующего кафедрой больших данных и машинного обучения Алюнова А.Н., Петросова Д.А., Соловьева В.И., Жолобову Г.Н., Коротеева М.В., Иванова М.Н., Иванюк В.А. и Савинова Е.А., признаются за их вклад в обсуждение вычислительных аспектов работы.

Автор также благодарен за конструктивные обсуждения с коллегами-исследователями, включая Кондрашкина И.Б., Моторина Н.М., Клепикова К.С., Мищенко А.Ю., Костенецкого А.Л.,

Шевелева С.Э., Исакова С.В., Клементьева А.В., Логинова В.Ю., Волканова Д.Ю., Фолиянц Э.В., Кондарь Е.В., Бурову В.П., Васильеву О.А., Шабельникова А.В., Сержантову О.В., Данилову Н.В., Хан Т.А., Кузанского Н.В., Хрущева Ю.В., Егоркина И.А. и пульмонолога Крысина Ю.С. из Центральной клинической больницы Управления делами Президента России за их отзывы и содержательные обсуждения.

Наконец, автор выражает признательность широкому научному и профессиональному сообществу, чья конструктивная критика и участие способствовали совершенствованию этой работы.

Информация об авторе (необязательно)

Первый автор Доктор Григорий ДЕДЕНКО, родился в Москве 9 июля 1971 года, получил степень магистра в области ядерной физики и инженерии (кинетические явления) в Московском инженерно-физическом институте (МИФИ) в феврале 1995 года и кандидатскую диссертацию (Ph.D.) в области ядерного приборостроения и управления там же в сентябре 2005 года.

В МИФИ он работал в области прикладной ядерной физики в должностях ассистента (1995-2002), старшего преподавателя (2002-2010) и доцента (2010-середина 2018). С середины 2018 по август 2020 года он был ведущим специалистом по проекту АЭС «Куданкулам» для Индии в АО «Атомстройэкспорт». С сентября 2020 года он работает в Финансовом университете при Правительстве Российской Федерации — в должности доцента (сентябрь 2020-декабрь 2023) и, с января 2024 года, старшего преподавателя.

Научные интересы доктора Деденко варьируются от ядерной науки и инженерии до чистой математики, истории и философии.

1 Введение

Настоящая работа является результатом попытки реконструкции оригинального рассуждения Ферма, а также объяснения того, почему он мог его не записать. Автор выполнил ее в течение двух периодов времени — между 1990 и 1993 годами — пытаясь доказать теорему, и окончательную редакцию в 2017-2025 годах. По завершении она выглядела как доказательство эпохи Ферма, поскольку в ней использовались только знания и методы, доступные и применявшиеся в математическом мире современников Ферма и до него.

Чтобы не перегружать этот текст деталями реального исторического исследования, кратко напомним историю гипотезы. Около 1637 года Ферма записал свою Последнюю теорему на полях своей копии «Арифметики» рядом с задачей Диофанта о сумме квадратов [7]:

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadra-tos & generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

Попытки доказать эту гипотезу использовали разнообразные методы. Ранние попытки, включая собственное доказательство Ферма для случая n=4, использовали **метод бесконечного спуска**. Значительным шагом вперед стало доказательство Леонарда Эйлера для случая n=3, в котором использовались **целые числа Гаусса** [13]. Последующие усилия включали подходы, основанные на работах Софи Жермен и других методах, прежде чем Эндрю Уайлс наконец представил полное доказательство в 1995 году, опираясь на глубокие результаты **теории модулярных форм и эллиптических кривых** [1–6].

Современные методы, такие как теория модулярных форм, имеют дело со свойствами преобразования конкретных кривых над определенными типами пространств (например, рациональными числами), подчеркивая устойчивость эллиптических кривых относительно модулярных преобразований. Хотя современные формализации алгебраических кривых, пространств, преобразований и групп, используемые в этих методах, отсутствовали во времена Ферма, математики той эпохи обладали собственными подходами и интуитивным пониманием для изучения свойств натуральных (и простых) чисел. (Подробнее об этом можно найти в разделе «Заключение» данной статьи.)

 $^{^1}$ Работа в основном выполнялась на стипендию студента НИЯУ МИФИ в 1990-93 гг., окончательная редакция в 2017-2025 гг.

Теорема 1 (В предположении гипотезы Деденко). Предположим следующую гипотезу: для каждого n > 2 и каждого целочисленного решения $x^n + y^n = z^n$ существует целое число o > 1 такое, что $o^n = 2 \cdot n$. Тогда уравнение Ферма $x^n + y^n = z^n$ не имеет решений в $\mathbb N$ для всех n > 2.

Набросок доказательства. Гипотеза требует, чтобы $o^n = 2 \cdot n$. Элементарные оценки роста показывают, что o = 2 и $n \in \{1,2\}$; следовательно, для n > 2 мы получаем противоречие. Машинно-проверенное доказательство см. в прилагаемом файле Coq FLT.v.

2 Возможное доказательство

Формулировка теоремы довольно проста и звучит следующим образом:

Ни куб на два куба, ни биквадрат на два биквадрата и вообще никакая степень, большая квадрата, не может быть разложена на две степени того же показателя. Другими словами, уравнение

$$x^n + y^n = z^n$$

не имеет решений в натуральных числах, если n- целое число больше 2. Итак, сначала

1). Запишем теорему

$$x^n + y^n = z^n (2.1)$$

2). Перепишем (2.1)

$$z^n - x^n = y^n (2.2)$$

3). Выполним преобразование (2.2) к виду

$$(m^n + p^n)^n - (m^n - p^n)^n = y^n,$$
 (2.3)

где $n \in \mathbb{N}, m, p - \underline{\text{произвольные числа}}$ (не обязательно целые; знаки произвольны), а $z, x \in \mathbb{N}$ удовлетворяют системе

$$\begin{cases}
 m^n + p^n = z, \\
 m^n - p^n = x.
\end{cases}$$
(2.4)

Возведение обоих тождеств в n-ю степень даёт

$$\begin{cases}
(m^n + p^n)^n = z^n, \\
(m^n - p^n)^n = x^n.
\end{cases}$$
(2.5)

Таким образом, из (2.4) следует (2.5).

Решение (2.4). Сложение и вычитание уравнений даёт

$$2m^n = z + x, \qquad 2p^n = z - x,$$

откуда формально

$$m = \sqrt[n]{\frac{z+x}{2}}, \qquad p = \sqrt[n]{\frac{z-x}{2}}.$$

Замечание об области определения. В области \mathbb{R} : для нечётных n корни единственны; для чётных n нам требуется, чтобы $(z\pm x)/2 \geq 0$, и существует выбор знака $m=\pm \left((z+x)/2\right)^{1/n}$, $p=\pm \left((z-x)/2\right)^{1/n}$. В области \mathbb{C} : существует n ветвей для корня n-й степени; как только ветвь зафиксирована, восстановление является последовательным.

Эквивалентность (2.4)–(2.5). Прямое следование $(2.4) \Rightarrow (2.5)$. Непосредственно следует из возведения в n-ю степень.

Обратное следование $(2.5) \Rightarrow (2.4)$. Предположим, что $z, x \in \mathbb{N}$ и

$$z^{n} = (m^{n} + p^{n})^{n}, \qquad x^{n} = (m^{n} - p^{n})^{n}.$$

Извлекая корни n-й степени в той же области, что и $m^n \pm p^n$ (главный корень в $\mathbb{R}_{\geq 0}$ или фиксированная ветвь в \mathbb{C}), получаем

$$z = m^n + p^n, \qquad x = m^n - p^n,$$

т.е. (2.4). Для чётных n выбираются согласованные знаки, как указано выше. Следовательно, (2.4) и (2.5) эквивалентны <u>в выбранной числовой области</u> при фиксированном соглашении о выборе корня/ветви.

Предложение 1 (Случай целых чисел: необходимые и достаточные условия). *Если*, вдобавок, требуется, чтобы $m, p \in \mathbb{Z}$, то с необходимостью

$$z\pm x$$
 являются чётными, $\frac{z+x}{2}=m^n, \frac{z-x}{2}=p^n.$

Обратно, если $z \pm x$ являются чётными и обе половины являются точными n-ми степенями в \mathbb{Z} , то восстановленные m, p являются целыми числами (c точностью до знаков для чётных n).

Замечание 1. Это разделяет общее восстановление в вещественных/комплексных числах (где нет препятствий, связанных с чётностью) от целочисленного восстановления, где ограничения по чётности и требование быть точной степенью являются существенными.

Пример (вещественная область). Для n = 2, m = 3, p = 2:

$$z = 3^2 + 2^2 = 13,$$
 $x = 3^2 - 2^2 = 5,$

следовательно

$$z^2 = 169, \qquad x^2 = 25,$$

и обратное преобразование через $(z \pm x)/2$ возвращает m = 3, p = 2.

Контрпример (целочисленный случай). Для n=3, z=2, x=1 мы имеем (z+x)/2=3/2, что не является точным кубом в \mathbb{Z} ; следовательно, не существует целых m,p, удовлетворяющих (2.4), хотя вещественные m,p существуют.

4). Зададимся вопросом: что представляет собой число y? Является ли оно целым положительным числом или нет? Если нет, то при каких условиях оно будет натуральным числом? Зависит ли его натуральность от степени n?

Из (2.3) мы имеем разность:

$$y^{n} = z^{n} - x^{n} = (m^{n} + p^{n})^{n} - (m^{n} - p^{n})^{n} =$$
(2.6)

которую можно разложить в сумму по биному Ньютона [8, 9]:

$$= [(m^{n})^{n} + C_{n}^{1}(m^{n})^{n-1}p^{n} + C_{n}^{2}(m^{n})^{n-2}(p^{n})^{2} + \dots + C_{n}^{n-1}m^{n}(p^{n})^{n-1} + (p^{n})^{n}] - [(m^{n})^{n} - C_{n}^{1}(m^{n})^{n-1}p^{n} + C_{n}^{2}(m^{n})^{n-2}(p^{n})^{2} \pm \dots \pm C_{n}^{n-1}m^{n}(p^{n})^{n-1} \pm (p^{n})^{n}] = 2C_{n}^{1}(m^{n})^{n-1}p^{n} + 2C_{n}^{3}(m^{n})^{n-3}(p^{n})^{3} + \dots + 2C_{n}^{k}(m^{n})^{n-k}(p^{n})^{k} + \{2C_{n}^{n}(p^{n})^{n}\} = 2\sum_{i=0}^{k} C_{n}^{(2i+1)}(m^{n})^{n-(2i+1)}(p^{n})^{(2i+1)}$$

где k = (n-1)/2, если n нечетно, и k = (n-2)/2, если n четно.

Перепишем (2.6) как

$$z^n = x^n + y^n,$$
 где x, y, z равны
$$\begin{cases} z = m^n + p^n \\ x = m^n - p^n \\ y = \sqrt[n]{2} \left[\sum_{i=0}^k C_n^{(2i+1)} (m^n)^{n-(2i+1)} (p^n)^{(2i+1)} \right]^{1/n} \end{cases}$$

где k=(n-1)/2, если n нечетно, и k=(n-2)/2, если n четно; мы знаем, что в общем случае для n=2 имеем

где
$$x, y, z$$
 задаются формулами
$$\begin{cases} z = r \cdot (m^2 + p^2), \\ x = r \cdot (m^2 - p^2), \\ y = r \cdot 2mp. \end{cases}$$
 (2.7)

но в нашем случае мы опускаем множитель r — некоторую положительную (r > 0) целую константу, поскольку она сокращается в наших вычислениях. Таким образом, мы сделали преобразование (2.3), чтобы учесть этот случай (n=2), известный со времен Пифагора, поскольку общий случай должен включать частное решение как подмножество.

5). исследуем теперь y:

$$y = \sqrt[n]{2} \left[\sum_{i=0}^{k} C_n^{(2i+1)} (m^n)^{n-(2i+1)} (p^n)^{(2i+1)} \right]^{1/n}.$$
 (2.8)

Для того чтобы y могло быть целым положительным числом, $\sqrt[n]{2}$ должно сократиться, поскольку для n>1 $\sqrt[n]{2}$ является иррациональным числом (см. Приложение A). Следовательно, необходимо, чтобы выражение

$$\left[\sum_{i=0}^{k} C_n^{(2i+1)}(m^n)^{n-(2i+1)} (p^n)^{(2i+1)}\right]^{1/n}$$
(2.9)

содержало некоторый общий множитель, который уничтожает радикал $\sqrt[n]{2}$, выясним, что это за множитель. В противном случае, y не является целым положительным числом из-за присутствия $\sqrt[n]{2}$. Рассмотрим теперь, какой наибольший делитель может содержать эта сумма и чему он равен:

$$\left[\sum_{i=0}^{k} C_{n}^{(2i+1)}(m^{n})^{n-(2i+1)}(p^{n})^{(2i+1)}\right] =
= C_{n}^{1}(m^{n})^{n-1}p^{n} + C_{n}^{3}(m^{n})^{n-3}(p^{n})^{3} + \dots + C_{n}^{k}(m^{n})^{n-k}(p^{n})^{k} + \left\{C_{n}^{n}(p^{n})^{n}\right\} =
= n(m^{n})^{n-1}p^{n} + \frac{n(n-1)(n-2)}{3!}(m^{n})^{n-3}p^{3} + \dots +
+ \frac{n(n-1)\dots(n-k+1)}{k!}(m^{n})^{n-k}(p^{n})^{k} + \left\{\frac{n(n-1)\dots2\cdot1}{n!}(p^{n})^{n}\right\} =
= n \cdot \left[(m^{n})^{n-1}p^{n} + \frac{(n-1)(n-2)}{3!}(m^{n})^{n-3}p^{3} + \dots +
+ \frac{(n-1)\dots(n-k+1)}{k!}(m^{n})^{n-k}(p^{n})^{k} + \left\{\frac{(n-1)\dots2\cdot1}{n!}(p^{n})^{n}\right\}\right] = n \cdot l^{n}$$
(2.10)

где k = (n-1)/2, если n нечетно, и k = (n-2)/2, если n четно.

Отсюда следует вывод: n является общим делителем, и где l — некоторая константа, о которой мы ничего не знаем (в общем случае она может быть вещественной или целой), через которую мы обозначили остаток радикала после выделения общего множителя n.

Поскольку все члены в сумме (2.10) содержат множитель n, выражение делится на n.

Для доказательства единственности разложения выражения (2.10) можно использовать следующие соображения:

(a) Степень n — фиксированное положительное целое число.

- (b) Возведение в степень однозначная операция; для любого числа существует единственное значение степени.
- (c) Сложение и вычитание действительных чисел коммутативные операции, и результат не зависит от порядка действий.

Основываясь на этих свойствах, можно утверждать, что для фиксированных m, p и n существует единственный результат вычисления выражения (2.10). Перестановка членов не повлияет на конечный ответ.

Мы видим из (2.8 - 2.10) (где l — некоторая константа (которая будет таковой для фиксированных m, p, n), о которой мы пока ничего не знаем)

$$y = \sqrt[n]{2 \cdot n} \cdot l \tag{2.11}$$

В результате, из (2.6-2.11) мы видим

$$z^{n} - x^{n} = (m^{n} + p^{n})^{n} - (m^{n} - p^{n})^{n} = y^{n}$$
(2.12)

Подставим в (2.12) выражение (2.11), получим

$$(m^{n} + p^{n})^{n} - (m^{n} - p^{n})^{n} = 2 \cdot n \cdot l^{n}$$
(2.13)

Положим $m = j \cdot p$, где j > 1 — любое число.

$$((j \cdot p)^n + p^n)^n - ((j \cdot p)^n - p^n)^n = 2 \cdot n \cdot l^n$$
$$(p^n \cdot (j^n + 1))^n - (p^n \cdot (j^n - 1))^n = 2 \cdot n \cdot l^n$$
$$(p^n)^n \cdot ((j^n + 1)^n - (j^n - 1)^n) = 2 \cdot n \cdot l^n$$

Рассмотрим разность $(j^n+1)^n-(j^n-1)^n$, разложим ее по биному Ньютона

$$(j^{n}+1)^{n} - (j^{n}-1)^{n} = \sum_{k=0}^{n} \binom{n}{k} (j^{n})^{n-k} - \sum_{k=0}^{n} \binom{n}{k} (j^{n})^{n-k} (-1)^{k}$$

Объединяя суммы

$$\sum_{k=0}^{n} \binom{n}{k} (j^n)^{n-k} \left[1 - (-1)^k \right]$$

Упростим сумму. Поскольку $\left[1-(-1)^k\right]$ равно 2, когда k нечетно, и 0, когда k четно, в сумму войдут только нечетные значения k.

Таким образом, мы имеем:

$$(p^n)^n \cdot 2 \cdot \sum_k \binom{n}{k} (j^n)^{n-k} = 2 \cdot n \cdot l^n$$

Обозначим

$$q^n = 2 \cdot \sum_k \binom{n}{k} (j^n)^{n-k}$$

Следовательно

$$(p^n)^n q^n = 2 \cdot n \, l^n,$$

т.е.

$$\frac{\left(p^n\right)^n q^n}{I^n} = 2 \cdot n. \tag{2.14}$$

Учитывая явные выражения для q и l в (2.14), мы фактически получаем тождество и, следовательно, бесконечно много решений.

Из (2.8)–(2.11) мы имеем

$$l^n = \frac{1}{n} \sum_{\substack{1 \le k \le n \\ k \text{ NEUTRIJIJI}}} \binom{n}{k} m^{n(n-k)} p^{nk}.$$

Полагая m = j p (где $j \in \mathbb{R}$), получаем

$$l^{n} = (p^{n})^{n} \frac{1}{n} \sum_{\substack{1 \le k \le n \\ k \text{ нечетный}}} \binom{n}{k} (j^{n})^{n-k}.$$

Аналогично, из биномиального разложения $(m^n + p^n)^n - (m^n - p^n)^n$ выделяется нечетная часть, и можно записать

$$q^{n} = 2 \sum_{\substack{1 \le k \le n \\ k \text{ necessary if }}} \binom{n}{k} \left(j^{n}\right)^{n-k}.$$

Подстановка этих выражений в (2.14) сокращает общий множитель $(p^n)^n$ и дает

$$\frac{(p^n)^n \cdot 2 \sum\limits_{\substack{1 \le k \le n \\ k \text{ нечетный}}} \binom{n}{k} (j^n)^{n-k}}{(p^n)^n \cdot \frac{1}{n} \sum\limits_{\substack{1 \le k \le n \\ k \text{ нечетный}}} \binom{n}{k} (j^n)^{n-k}} = 2 \cdot n,$$

что является тождеством (для любых $p \neq 0, j \in \mathbb{R}$). Таким образом, если понимать буквально, (2.14) допускает бесконечно много решений: на данном этапе нет никаких арифметических препятствий.

Введение нормирующей переменной. Чтобы продолжить, мы вводим дополнительное структурное ограничение и определяем

$$o := \frac{p^n q}{l}.$$

Тогда (2.14) становится единственным скалярным соотношением

$$o^n = 2 \cdot n. \tag{2.15}$$

Эквивалентно,

$$\left(\frac{p^n q}{l}\right)^n = 2 \cdot n,$$
 следовательно $\frac{p^n q}{l} = \sqrt[n]{2 \cdot n}$. (2.16)

Почему именно такая форма для o. Составными блоками в разложении являются m^n и p^n , т.е. чистые n-е степени. Поэтому естественно, что «нормирующая» величина, поглощающая $\sqrt[n]{2}$, сама является n-й степенью. Конкретно, мы <u>определяем</u>

$$o := \sqrt[n]{2 \cdot n},$$

так что

$$o^n = 2 \cdot n. \tag{2.21}$$

Однако ключевым моментом является <u>целочисленность</u>: тот факт, что $o \in \mathbb{N}, o > 1$, является <u>не</u> следствием (2.16)–(2.19), а <u>дополнительным постулатом</u>. Это и есть в точности подход Деденко:

$$\exists o \in \mathbb{N}, o > 1, o^n = 2 \cdot n.$$

После принятия эта единственная гипотеза сводит задачу к элементарному сравнению роста, анализируемому ниже.

Полезное упрощение. Определим

$$f(n) := \sqrt[n]{2 \cdot n}.$$

Для каждого фиксированного n, (2.16) вынуждает o = f(n). Можно проверить

$$f(1) = 2,$$
 $f(2) = 2,$ $f(n) < 2$ и строго убывает при $n > 2,$

и $f(n) \to 1$ при $n \to \infty$. Таким образом, o = 2 — это единственный выбор, который дает максимальное количество целочисленных решений по n (а именно, n = 1, 2).

Следовательно, анализ наиболее «насыщенного целыми числами» случая сводится к принятию o=2, что дает

$$2 = \sqrt[n]{2 \cdot n}. \tag{2.22}$$

Возводя обе части (2.22) в n-ю степень,

$$2^n = 2 \cdot n, \tag{2.23}$$

или, что эквивалентно,

$$n = 2^{n-1}. (2.24)$$

Функция $g(n) = n - 2^{n-1}$ обращается в ноль ровно при n = 1 и n = 2, и отрицательна для всех целых n > 2 (поскольку экспонента 2^{n-1} растет быстрее линейной функции n). Следовательно, (2.24) имеет ровно два положительных целых корня, n = 1 и n = 2.

Заключение. В рамках <u>подхода</u>, что $o \in \mathbb{N}$, o > 1, $o^n = 2 \cdot n$, единственными возможными целочисленными значениями показателя степени, согласующимися с (2.21), являются $n \in \{1,2\}$. Следовательно, при n > 2 такого целого o не существует, что даёт нужное противоречие в постановке Ферма — именно того типа «заметка на полях», которую мог сделать сам Ферма: сведя рассуждение к равенству $o^n = 2 \cdot n$, остаются лишь показатели n = 1, 2, а значит при любых больших степенях решений нет.

- 6.) Проверка (без учета общего множителя r из (2.7), который был сокращен)
 - (a) Рассмотрим случай n=1

$$\begin{split} z &= m + p \\ x &= m - p \\ y &= 2 \cdot \left[C_1^1 (m^1)^{1 - (2 \cdot 0 + 1)} (p^1)^{(2 \cdot 0 + 1)} = 2[1 \cdot 1 \cdot p] = 2p \end{split}$$

то есть для случая n=1 мы имеем решение в натуральных числах $x,\ y,\ z,$ если m и p - — положительные целые числа и m>p.

(b) Рассмотрим случай n=2

$$\begin{split} z &= m^2 + p^2 \\ x &= m^2 - p^2 \\ y &= \sqrt{2} \cdot [C_1^2 (m^2)^{2 - (2 \cdot 0 + 1)} (p^2)^{(2 \cdot 0 + 1)}]^{1/2} = \sqrt{2} \cdot [2m^2 p^2]^{1/2} = 2mp \end{split}$$

то есть для случая n=2 мы также имеем решение в положительных целых числах x, y, z, если m и p — положительные целые числа и m>p, или согласно [10], если m>p, и m, p — такие нецелые числа, что комбинации с ними дадут положительные целые числа x, y, z, например: $m=3/\sqrt{2}$, $p=1/\sqrt{2}$, в этом случае мы также получаем классическую пифагорову тройку:

$$x = m^2 - p^2 = \left(\frac{3}{\sqrt{2}}\right)^2 - \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{9}{2} - \frac{1}{2} = \frac{8}{2} = 4$$

$$y = 2 \cdot m \cdot p = 2 \cdot \frac{3}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = 3$$

$$z = m^2 + p^2 = \left(\frac{3}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{9}{2} + \frac{1}{2} = 5$$

Мы получили классическую пифагорову тройку и видим, что эта формула работает.

- 7). Рассмотрим теперь более общий случай, когда r не сокращается, чтобы перейти к окончательным формулам типа (2.7). Если r положительное целое число, то все вышесказанное применимо. Но согласно [10], r может быть рациональным числом. Например, пусть r = 0.5:
 - (a) Рассмотрим случай n=1, m=4 и p=2 $x=0.5\cdot(m-p)=0.5\cdot(4-2)=1$ $z=0.5\cdot(m+p)=0.5\cdot(4+2)=3$ $y=0.5\cdot(2\cdot p)=0.5\cdot(2\cdot 2)=2$

Мы видим положительные целые числа. То есть,, m, p должны быть такими, чтобы 7(a) выполнялось аналогично. В этом случае, мы видим, что формула 6(a) работает.

(b) Рассмотрим случай $n=2, \ m=2\cdot\sqrt{2}, \ p=\sqrt{2},$ $x=0.5\cdot(m^2-p^2)=0.5\cdot\left(\left(2\cdot\sqrt{2}\right)^2-\left(\sqrt{2}\right)^2\right)=3$ $z=0.5\cdot(m^2+p^2)=0.5\cdot\left(\left(2\cdot\sqrt{2}\right)^2+\left(\sqrt{2}\right)^2\right)=5$ $y=0.5\cdot(2\cdot m\cdot p)=0.5\cdot\left(2\cdot\left(2\cdot\sqrt{2}\right)\cdot\left(\sqrt{2}\right)\right)=4$

Мы видим положительные целые числа. То есть,, m, p должны быть такими, чтобы 7(b) выполнялось аналогично. В этом случае мы видим, что формула 6(b) работает.

Это сохраняет общность решений для n=2, как видно на примере пифагоровой тройки.

8). Таким образом, случаи n=1 и n=2 исчерпывают все возможные целочисленные решения, что согласуется с теоремой.

Проверка показала, что для n=1 или для n=2, во всех рассмотренных случаях мы имеем решения уравнения $x^n+y^n=z^n$ в положительных целых числах $x,\ y,\ z$

9). уравнение $x^n+y^n=z^n$ имеет корни в положительных целых числах $x,\ y,\ z$ только для n=1 и для n=2

ч.т.д.

3 Замечание и следствия

ЗАМЕЧАНИЕ. Отметим, что выражение (2.8) можно упростить, а именно

$$y = \sqrt[n]{2} \left[\sum_{i=0}^{k} C_n^{(2i+1)}(m^n)^{n-(2i+1)}(p^n)^{(2i+1)} \right]^{1/n} =$$

$$= \sqrt[n]{2} \left[\sum_{i=0}^{k} C_n^{(2i+1)} \frac{(m^n)^n}{(m^n)^{2i}m^n} (p^n)^{2i} p^n \right]^{1/n} =$$

$$= \sqrt[n]{2} m^n \frac{1}{m} p \left[\sum_{i=0}^{k} C_n^{(2i+1)} \left(\frac{p}{m} \right)^{n2i} \right]^{1/n} =$$

$$= \sqrt[n]{2} m^{n-1} p \left[\sum_{i=0}^{k} C_n^{(2i+1)} \left(\frac{p}{m} \right)^{2in} \right]^{1/n}$$

$$= \sqrt[n]{2} m^{n-1} p \left[\sum_{i=0}^{k} C_n^{(2i+1)} \left(\frac{p}{m} \right)^{2in} \right]^{1/n}$$
(3.1)

где k = (n-1)/2, если n нечетно, и k = (n-2)/2, если n четно.

СЛЕДСТВИЕ 1. Рассмотрим случай m = p, тогда из выражения (3.1) можно вывести, что

$$x = 0$$

$$z = m^{n} + m^{n} = 2m^{n}$$

$$y = \sqrt[n]{2}m^{n-1}m \left[\sum_{i=0}^{k} C_{n}^{(2i+1)} \left(\frac{m}{m}\right)^{2in}\right]^{1/n} = \sqrt[n]{2}m^{n} \left[\sum_{i=0}^{k} C_{n}^{(2i+1)}\right]^{1/n}$$

где k=(n-1)/2, если n нечетно, и k=(n-2)/2, если n четно. Очевидно, что y=z

$$\sqrt[n]{2}m^n \left[\sum_{i=0}^k C_n^{(2i+1)} \right]^{1/n} = 2m^n$$

$$\sqrt[n]{2} \left[\sum_{i=0}^k C_n^{(2i+1)} \right]^{1/n} = 2$$

откуда

$$\sum_{i=0}^{k} C_n^{(2i+1)} = 2^{n-1} \tag{3.2}$$

где k = (n-1)/2, если n нечетно, и k = (n-2)/2, если n четно.

СЛЕДСТВИЕ 2. *На основе (3.2) можно вычислить сумму четных комбинаций.* Рассмотрим треугольник Паскаля [7]:

Аналогично вышеизложенному, делается вывод, что

$$\sum_{j=0}^{s} C_n^{2j} = 2^{n-1} \tag{3.3}$$

где k = (n-1)/2, если n нечетно, и k = (n-2)/2, если n четно.

ДОКАЗАТЕЛЬСТВО.

Разложим

$$(m^n + p^n)^n + (m^n - p^n)^n =$$

в бином [8, 9]:

$$= \left[(m^n)^n + C_n^1(m^n)^{n-1}p^n + C_n^2(m^n)^{n-2}(p^n)^2 + \dots + C_n^{n-1}m^n(p^n)^{n-1} + (p^n)^n \right] + \left[(m^n)^n - C_n^1(m^n)^{n-1}p^n + C_n^2(m^n)^{n-2}(p^n)^2 \pm \dots \pm C_n^{n-1}m^n(p^n)^{n-1} \pm (p^n)^n \right] = 2C_n^0(m^n)^n + 2C_n^2(m^n)^{n-2}(p^n)^2 + \dots + 2C_n^k(m^n)^{n-k}(p^n)^k + \left\{ 2C_n^n(p^n)^n \right\} = 2\sum_{j=0}^s C_n^{2j}(m^n)^{n-2j}(p^n)^{2j}$$

где s=(n-1)/2, если n нечетно, и s=n/2, если n четно. Если m=p

$$(p^{n} + p^{n})^{n} + (p^{n} - p^{n})^{n} = 2\sum_{j=0}^{s} C_{n}^{2j} (p^{n})^{n-2j} (p^{n})^{2j}$$
$$(2p^{n})^{n} = 2\sum_{j=0}^{s} C_{n}^{2j} \frac{(p^{n})^{n}}{(p^{n})^{2j}} (p^{n})^{2j}$$
$$2^{n} (p^{n})^{n} = 2(p^{n})^{n} \sum_{j=0}^{s} C_{n}^{2j}$$
$$2^{n-1} = \sum_{j=0}^{s} C_{n}^{2j}$$

где s=(n-1)/2, если n нечетно, и s=n/2, если n четно. Следствие 2 доказано.

СЛЕДСТВИЕ 3. Анализируя (3.2) и (3.3), можно заключить, что

$$\sum_{i=0}^{k} C_n^{(2i+1)} = \sum_{j=0}^{s} C_n^{2j}$$
(3.4)

где $k=(n-1)/2,\, s=(n-1)/2,\,$ если n нечетно, и $k=(n-2)/2,\, s=n/2,\,$ если n четно. Почему такие границы?

Тип числа	Условие	Последний член в	
		уравнении	
Нечетное	$k=2((n ext{-}1)/2) ext{+}1=n$	C_n^n	
Печетное	s=2((n-1)/2)=n-1	C_n^{n-1}	
Четное	$k=2((n ext{-}2)/2)\!+\!1=n ext{-}1$	C_n^{n-1}	
leinoe	$s={\it 2}(n/{\it 2})=n$	C_n^n	

Таблица 1: Границы биномиальных коэффициентов

Вывод: сумма четных коэффициентов равна сумме нечетных и равна 2^{n-1} , следовательно из (3.4) мы имеем

$$\sum_{r=0}^{n} C_n^r = \sum_{i=0}^{k} C_n^{(2i+1)} + \sum_{j=0}^{s} C_n^{2j} = 2 \cdot 2^{n-1} = 2^n$$
(3.5)

где k = (n-1)/2, s = (n-1)/2, если n нечетно, и k = (n-2)/2, s = n/2, если n четно.

4 Заключение

«Трудности» для Ферма заключались в длительности его умозаключений, изложенных в письменной форме, поскольку в первой половине семнадцатого века математические обозначения были далеки от их нынешней краткой и разнообразной формы, многие действия приходилось записывать словами. Кроме того, чисто математической проблемой было то, что ему приходилось оперировать совершенно новыми на тот момент понятиями биномов и логарифмов, оба из которых только появились и их приходилось осваивать «на лету».

Как упоминалось во введении, математические методы эпохи Пьера Ферма, использованные в доказательстве этой статьи, доступны любому студенту первого курса физико-математических факультетов. Это выгодно отличает его от доказательства Эндрю Уайлса, которое довольно сложно для среднего математика из-за использования передовых и запутанных современных математических инструментов.

Ферма, очевидно, «играл» с новыми понятиями, разлагая степени разностей на суммы степеней, и внезапно обнаружил, что, если ограничиться целыми положительными числами в степени, логарифмическое уравнение немедленно дает, что $x^n + y^n = z^n$ (что является разностью, переписанной в виде суммы) верно для целых x, y, z только и если только n=1 или 2.

Ему (пришлось бы) сначала ввести два новых понятия, чтобы полностью объяснить свое открытие. Можно представить, *сколько места потребовалось бы, чтобы записать все рассуждения*, которые привели его к открытию, *на полях книги*, *не имея надлежащих символических обозначений*, *которыми располагает современный математик*.

Почему Пьер Ферма не записал все эти идеи в отдельном документе — это вопрос отдельного специального исследования. Может оказаться, что он действительно был автором такого отдельного документа, который впоследствии был каким-то образом утерян или — альтернативно — сохранился до наших дней, скрытый в архиве, библиотеке или у кого-то на нереализованном хранении.

Автор просит математическое сообщество критически отнестись к изложенным выше рассуждениям и дать свою оценку.

Эта статья была опубликована в виде препринта на платформах ResearchGate и OSF по следующим ссылкам [11, 12].

Список литературы

- 1. Faltings Gerd, "The Proof of Fermat's last theorem by R. Taylor and A. Wiles". *Notices of the AMS*, 42:7 (1995), 743–746.
- 2. Wiles, A. (1995). Modular Elliptic Curves and Fermat's Last Theorem. Annals of Mathematics, 141(3), 443–551.
- 3. Taylor, R., & Wiles, A. (1995). Ring-theoretic properties of certain Hecke algebras. Annals of Mathematics, 141(3), 553–572.
- 4. Ribet, K. A. (1990). On modular representations of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ arising from modular forms. Inventiones Mathematicae, **100**, 431–476.
- 5. Mazur, B. (1977). Modular curves and the Eisenstein ideal. Publications Mathématiques de l'IHÉS, 47, 33–186.
- 6. Serre, J.-P. (1987). Sur les représentations modulaires de degré 2 de $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$. Duke Mathematical Journal, 54(1), 179–230.
- 7. Савин А. П. и др. Энциклопедический словарь юного математика. М.: Педагогика, 1985.
- 8. Корн Т., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1977.
- 9. Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. М.: Наука, 1976.
- 10. FERMAT'S LAST THEOREM AND EUCLID'S FORMULAS, Sergey P. Klykov, Marina Klykova, Препринт, Март 2024, DOI: 10.13140/RG.2.2.11109.20967 https://www.researchgate.net/publication/379445595_FERMAT'S_LAST_THEOREM_AND_E UCLID'S_FORMULAS
- 11. The "Difficulties" in Fermat's Original Discourse on the Indecomposability of Powers Greater Than a Square: A Retrospect,
 Grigoriy Dedenko, Препринт, Сентябрь 2024,
 https://www.researchgate.net/publication/374350359_The_Difficulties_in_Ferma
 t's_Original_Discourse_on_the_Indecomposability_of_Powers_Greater_Than_a_Squ
 are_A_Retrospect
- 12. The "Difficulties" in Fermat's Original Discourse on the Indecomposability of Powers Greater Than a Square: A Retrospect, Grigoriy Dedenko, Препринт, Сентябрь 2024, https://doi.org/10.31219/osf.io/jbdas
- 13. Euler, L. (1770). Vollständige Anleitung zur Algebra. St. Petersburg: Kayserliche Academie der Wissenschaften.

- А Приложение А. Доказательство иррациональности $\sqrt[n]{2}$ для $n \geq 2$
- **А.1** Теорема: Число $\sqrt[n]{2}$ является иррациональным для любого целого $n \geq 2$.

А.2 Доказательство:

Будем доказывать от противного. Предположим, что $\sqrt[n]{2}$ — рациональное число. Это означает, что его можно представить в виде несократимой дроби $\frac{p}{q}$, где p и q — целые числа, $q \neq 0$, и у p и q нет общих делителей, кроме 1.

Таким образом, мы имеем:

$$\sqrt[n]{2} = \frac{p}{q}$$

Возведём обе части уравнения в степень n:

$$(\sqrt[n]{2})^n = \left(\frac{p}{q}\right)^n$$
$$2 = \frac{p^n}{q^n}$$

Умножим обе части на q^n :

$$2q^n = p^n$$

Из этого уравнения мы видим, что p^n — чётное число, так как оно равно $2q^n$. Если p^n чётно, то и p должно быть чётным (если бы p было нечётным, то и p^n было бы нечётным).

Поскольку p чётно, мы можем записать его как p=2k, где k — некоторое целое число. Подставим это выражение для p в уравнение $2q^n=p^n$:

$$2q^n = (2k)^n$$

$$2q^n = 2^n k^n$$

Разделим обе части уравнения на 2 (что допустимо, так как $n \ge 2$, и, следовательно, 2^n делится на 2):

$$q^n = 2^{n-1}k^n$$

Поскольку $n \geq 2$, то $n-1 \geq 1$. Из последнего уравнения мы видим, что q^n — чётное число, так как оно равно $2^{n-1}k^n$, где 2^{n-1} — чётный множитель. Если q^n чётно, то и q должно быть чётным.

Таким образом, мы пришли к выводу, что и p, и q являются чётными числами. Это означает, что у них есть общий делитель 2. Однако в начале доказательства мы предположили, что дробь $\frac{p}{q}$ была несократимой, то есть у p и q нет общих делителей, кроме 1.

Полученное противоречие указывает на то, что наше первоначальное предположение о рациональности $\sqrt[n]{2}$ неверно.

А.3 Вывод:

Следовательно, число $\sqrt[n]{2}$ является иррациональным для любого целого $n \geq 2$.

В Приложение В. Доказательство того, что предел функции $f(n) = \sqrt[n]{2 \cdot n} \ \mathbf{paseh} \ \mathbf{1}$

В.1 Постановка задачи

Доказать, что предел функции $f(n) = \sqrt[n]{2 \cdot n}$ при n, стремящемся к бесконечности, равен 1.

В.2 Решение

Рассмотрим функцию $f(n) = \sqrt[n]{2 \cdot n}$. Наша цель — найти предел этой функции при $n \to \infty$. Перепишем функцию в виде степени:

$$f(n) = (2 \cdot n)^{\frac{1}{n}}$$

Чтобы найти предел этой функции, рассмотрим натуральный логарифм f(n):

$$\ln(f(n)) = \ln\left((2 \cdot n)^{\frac{1}{n}}\right)$$

Используя свойства логарифмов, получаем:

$$\ln(f(n)) = \frac{1}{n}\ln(2 \cdot n)$$

Разделим логарифм произведения на сумму логарифмов:

$$\ln(f(n)) = \frac{\ln(2) + \ln(n)}{n}$$

Теперь найдём предел $\ln(f(n))$ при $n \to \infty$:

$$\lim_{n \to \infty} \ln(f(n)) = \lim_{n \to \infty} \frac{\ln(2) + \ln(n)}{n}$$

Этот предел имеет неопределённость вида $\frac{\infty}{\infty}$, поэтому мы можем применить правило Лопиталя. Возьмём производные числителя и знаменателя по n:

$$\frac{d}{dn}(\ln(2) + \ln(n)) = \frac{1}{n}$$

$$\frac{d}{dn}(n) = 1$$

Таким образом, предел становится:

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{1} = \lim_{n \to \infty} \frac{1}{n} = 0$$

Итак, мы нашли, что предел натурального логарифма функции равен 0:

$$\lim_{n \to \infty} \ln(f(n)) = 0$$

Теперь, чтобы найти предел исходной функции f(n), воспользуемся непрерывностью экспоненциальной функции:

$$\lim_{n \to \infty} f(n) = \lim_{n \to \infty} e^{\ln(f(n))} = e^{\lim_{n \to \infty} \ln(f(n))} = e^0 = 1$$

В.3 Вывод

Таким образом, мы доказали, что предел функции $f(n) = \sqrt[n]{2 \cdot n}$ при n, стремящемся к бесконечности, равен 1.

С Приложение С. Краткое доказательство монотонности

Хорошо известно, что $\sqrt[n]{2 \cdot n} \to 1$ при $n \to \infty$ (см. Приложение В). Однако в этом приложении мы сосредоточимся на том, чтобы показать, что $(2 \cdot n)^{1/n}$ является строго убывающей для $n \ge 3$. Ниже приведён один из способов доказать это, используя логарифмическую производную:

С.1 Определим функцию.

Пусть

$$f(n) = (2 \cdot n)^{\frac{1}{n}}.$$

Удобно работать с её натуральным логарифмом:

$$\ln(f(n)) = \ln((2 \cdot n)^{\frac{1}{n}}) = \frac{1}{n}\ln(2 \cdot n).$$

Обозначим

$$g(n) = \ln(f(n)) = \frac{\ln(2 \cdot n)}{n} = \frac{\ln(2) + \ln(n)}{n}.$$

С.2 Вычислим производную.

Рассматривая n как вещественную переменную n > 0, имеем

$$g'(n) = \frac{d}{dn} \left(\frac{\ln(2 \cdot n)}{n} \right).$$

Используя правило частного,

$$g'(n) = \frac{\frac{d}{dn}[\ln(2 \cdot n)] \cdot n - \ln(2 \cdot n) \cdot 1}{n^2} = \frac{\frac{1}{n} \cdot n - \ln(2 \cdot n)}{n^2} = \frac{1 - \ln(2 \cdot n)}{n^2}.$$

(Обратите внимание, что $\frac{d}{dn}[\ln(2\cdot n)] = \frac{1}{2\cdot n}\cdot 2 = \frac{1}{n}.)$

С.3 Знак производной.

Мы хотим увидеть, где q'(n) < 0:

$$g'(n) < 0 \iff 1 - \ln(2 \cdot n) < 0 \iff \ln(2 \cdot n) > 1 \iff 2 \cdot n > e \iff n > \frac{e}{2}.$$

Поскольку $e \approx 2.718$, неравенство n > e/2 безусловно верно для всех целых $n \geq 2$, и, следовательно, строго для $n \geq 3$. Таким образом, для $n \geq 3$, g(n) строго убывает.

$\mathbf{C.4}$ Следствие для f(n).

Поскольку $f(n) = \exp(g(n))$, а $\exp(\cdot)$ является строго возрастающей функцией своего аргумента, f(n) убывает всякий раз, когда убывает g(n). Следовательно, f(n) действительно строго убывает для $n \ge 3$.

Таким образом, только при n=1 и n=2 f(n) достигает максимального значения 2, а для всех $n\geq 3$ она строго убывает (что согласуется с пределом $\lim_{n\to\infty} (2\cdot n)^{1/n}=1$).

С.5 Вывод

Следовательно, мы продемонстрировали, что f(n) строго убывает для $n \ge 3$, либо анализируя производную $\ln(f(n))$ (как показано выше), либо сравнивая f(n+1) и f(n). Это завершает доказательство монотонности f(n).

D Приложение D: Анализ функций и проверка критических точек

D.1 Введение

Целью этого анализа является изучение поведения функции:

$$f(p,q) = q - \sqrt[p]{qp},$$

и определение её критических точек, где вторая производная f''(p) равна нулю. Это исследование направлено на поддержку выводов, представленных в основной статье, в частности, относительно уникальной роли o=2 в контексте Великой теоремы Ферма:

$$x^n + y^n = z^n.$$

В этой статье число o представляет собой ключевой параметр, связанный с симметрией уравнения. В наших расчётах это соответствует q=o. Уникальность q=2 (или o=2) подтверждается как геометрически, так и алгебраически.

D.2 Результаты анализа

D.2.1 Совмещённый график функций

Следующий график (Рис. 1) иллюстрирует три функции, каждая с соответствующими дискретными значениями:

- $1.5 \sqrt[p]{1.5p}$ (синяя линия) и $1.5 \sqrt[n]{1.5n}$ (синие квадраты),
- $2 \sqrt[p]{2p}$ (зелёная линия) и $2 \sqrt[n]{2 \cdot n}$ (зелёные квадраты),
- $3 \sqrt[p]{3p}$ (оранжевая линия) и $3 \sqrt[n]{3n}$ (оранжевые квадраты).

Рис. 1. Совмещённый график $q-\sqrt[p]{qp}$ для q=1.5,2,3. Линии представляют непрерывные p, а квадраты — дискретные n.

$\mathbf{D.2.2}$ Поверхностный график f(p,q)

Трёхмерный поверхностный график ниже (Рис. 2) иллюстрирует поведение $f(p,q)=q-\sqrt[p]{qp}$ для непрерывных значений p>0 и q>0. Перспектива подчёркивает изменение кривизны при изменении обоих параметров.

Рис. 2. 3D поверхностный график $f(p,q) = q - \sqrt[p]{qp}$ для p > 0 и q > 0.

D.3 Анализ и выводы

- Критическая точка при p=2 существует уникально для q=2, где вторая производная f''(p) равна нулю. Это подчёркивает особую роль q=2 (или o=2).
- Для других значений q критические точки существуют, но они находятся при значениях $p \neq 2$, что показывает, что q=2 уникально в своей симметрии и простоте.

Эти результаты подтверждают двойственную природу решения этой статьи: как **геометрическую**, так и **алгебраическую**. Параметр o=2 служит объединяющей концепцией в анализе Великой теоремы Ферма (см. Приложение Е для более подробной информации).

Е Приложение Е: Геометрическая верификация Великой теоремы Ферма через анализ функции f(p,q)

В этом приложении мы исследуем связь между функцией

$$f(p,q) = q - \sqrt[p]{qp}$$

и уравнением Ферма

$$x^n + y^n = z^n.$$

Показано, что для n=2 существует точка перегиба второй производной, что соответствует существованию Пифагоровых троек. Для n>2 эта точка перегиба смещается в сторону меньших значений p, что указывает на изменение математических свойств уравнения и невозможность целочисленных решений.

Е.1 Анализ второй производной

Функция

$$f(p,q) = q - \sqrt[p]{qp}$$

позволяет нам изучать поведение точек перегиба, которые определяются условием

$$f_p''(p,q) = \frac{\partial^2}{\partial p^2} \left(q - \sqrt[p]{qp} \right) = 0.$$

Точки перегиба важны, потому что они выявляют специфические математические закономерности в уравнении.

E.2 Дополнительный анализ для переменной q

Также были проведены исследования по переменной q. В точке q=2 (при p=2) первая и вторая частные производные по q равны 0.5. Этот результат указывает на фундаментальное свойство уравнения Ферма в этой точке. Однако в нашем случае переменная q зафиксирована на значении 2, что определяется биномиальными вычислениями, хотя сам факт выделения значения q представляет интерес.

Е.3 Численные результаты

Ниже приведены численные значения второй производной $f_p''(p,q)$ для различных значений p и q:

Таблица 2. Численные значения второй производной $f_p''(p,q)$ для различных p и q.

\overline{p}	q = 1.5	q = 2.0	q = 2.5	q = 3.0	q = 4.0
1	2.75	0.77	2.90	0.96	1.10
2	0.17	0.00	-0.11	-0.34	-0.55
3	-0.0056	-0.08	-0.099	-0.21	-0.31
4	-0.018	-0.11	-0.056	-0.12	-0.17
5	-0.014	-0.10	-0.033	-0.067	-0.093

Е.4 Выводы из данных

- При $p=2,\ q=2$ мы имеем $f_p''(p,q)=0,$ что соответствует существованию Пифагоровых троек.
- При q>2 точка перегиба смещается в сторону меньших значений p, что указывает на изменение свойств уравнения и невозможность целочисленных решений.
- Рисунок 3 иллюстрирует поверхность $f_p''(p,q)$ с отмеченными точками перегиба.

Рис. 3. Поверхность второй производной $f_p''(p,q)$, демонстрирующая смещение точки перегиба.

Е.5 Верификация Великой теоремы Ферма

Е.5.1 Связь с точками перегиба

Из данных следует, что:

- 1. Если точка перегиба находится при p = n, то целочисленные решения возможны.
- 2. Если точка перегиба смещается к меньшим значениям p, то целочисленные решения невозможны.

Таким образом, **только для** n=2 **возможны целочисленные решения**, в то время как для n>2 свойства уравнения изменяются, исключая такие решения.

Е.5.2 Окончательный вывод

На основании наших расчётов:

- При q=2, точка перегиба соответствует $p=2 \Rightarrow$ уравнение Ферма имеет целочисленные решения.
- При q > 2, точка перегиба смещается к меньшим значениям $p \Rightarrow$ математические свойства уравнения изменяются, и целочисленные решения становятся невозможными.
- Это подтверждает, что уравнение Ферма

$$x^n + y^n = z^n, \quad n > 2$$

не имеет решений в целых числах.

Таким образом, функция f(p,q) наглядно демонстрирует, что при n>2 точка перегиба смещается, и свойства уравнения Ферма изменяются, подтверждая невозможность целочисленных решений.

F Приложение F: Аксиоматическая формулировка анзаца и вывод ВТФ

F.1 Введение

В этом приложении анзац Деденко представлен в виде независимой аксиомы. Это подчёркивает, что он не является следствием стандартной арифметики, а вводится как дополнительный постулат. В таком аксиоматическом стиле можно строго показать, что при принятии анзаца Великая теорема $(BT\Phi)$ немедленно следует, тогда как при его отклонении доказательство не работает. Таким образом, формализация разделяет гипотезу и вывод, полученный из неё.

Аксиома F.1 (Анзац Деденко). Для любых $n, x, y, z \in \mathbb{N}$ выполняется следующее:

$$n > 2 \land x^n + y^n = z^n \implies \exists o \in \mathbb{N}, \ o > 1 \land o^n = 2 \cdot n.$$

Теорема 2 (О решениях уравнения $o^n = 2 \cdot n$). *Если* o > 1 u $o^n = 2 \cdot n$, mo

$$(o, n) \in \{(2, 1), (2, 2)\}.$$

Доказательство F.1. Пусть o = 2. Тогда $2^n = 2 \cdot n$. Это уравнение имеет решения только для n = 1 и n = 2, поскольку для $n \ge 3$ выполняется неравенство $2^n > 2 \cdot n$.

Пусть $o \ge 3$. Тогда $o^n \ge 3^n > 2 \cdot n$ для любого $n \ge 1$, что невозможно, если $o^n = 2 \cdot n$. Следовательно, других решений нет.

Теорема 3 (Великая теорема Ферма в рамках анзаца).

$$\forall n > 2, \ \forall x, y, z \in \mathbb{N}, \quad x^n + y^n \neq z^n.$$

Доказательство F.2. Предположим, вопреки утверждению, что существуют n > 2 и $x, y, z \in \mathbb{N}$ такие, что $x^n + y^n = z^n$. Согласно анзацу, существует o > 1 такое, что $o^n = 2 \cdot n$. Но по предыдущей теореме это возможно только для n = 1 или n = 2. Это противоречие, поскольку n > 2.

F.2 Пояснение о нецелых значениях o

Частое возражение заключается в том, что в уравнении $o^n = 2 \cdot n$ параметр o может принимать нецелые значения. Следует сделать несколько уточнений:

- Ограничение на целые числа. Реконструкция проводится полностью в рамках натуральных чисел, что соответствует исходной задаче Ферма. Формальная верификация в Соq подтверждает, что только целочисленные пары (o,n)=(2,1) и (2,2) удовлетворяют уравнению.
- Эвристическое наблюдение. Рассматривая $f(n) = (2 \cdot n)^{1/n}$, можно видеть, что o = 2 единственное значение, дающее более одного целочисленного решения по n (а именно n = 1, 2). Это делает o = 2 центром целочисленной стабильности.
- Анзац как бритва. Хотя единственное решение с нецелым o не может быть исключено чистой алгеброй, анзац сознательно постулирует, что релевантен только структурно совершенный целочисленный случай o = 2. Все остальные случаи отсекаются этим постулатом.
- Аналитическая уникальность. Как показано в Приложениях D и E, случай o = 2, n = 2 соответствует точке перегиба связанной функции (вторая производная обращается в ноль). Это аналитическое свойство подчёркивает особую роль o = 2: при n = 2 существуют целочисленные решения, но при n > 2 система проходит эту критическую точку, и целочисленные решения исчезают.

Таким образом, анзац — это не отрицание возможных нецелых o, а структурный принцип: если целочисленные решения (x, y, z) существуют, они должны соответствовать уникальному целочисленному случаю o = 2, что, в свою очередь, приводит к противоречию для n > 2.

F.3 Вывод

Аксиоматическое представление подчёркивает:

- анзац является независимым постулатом, а не доказуемым фактом;
- его принятие немедленно влечёт за собой ВТФ для всех n > 2;
- с точки зрения формальной логики, это рассуждение имеет структуру

Арифметика + Анзац \implies ВТФ.

F.4 Методологическая аналогия

Ситуация с анзацем Деденко напоминает историю <u>пятого постулата Евклида</u>. Веками предпринимались попытки вывести постулат о параллельных прямых из других аксиом геометрии. Однако он оказался <u>независимым</u> предположением: можно его принять — и получить евклидову геометрию, или заменить его альтернативой — и получить геометрию Лобачевского или Римана.

Аналогично, анзац Деденко не выводится из стандартной арифметики. Если его принять, Великая теорема Ферма становится немедленным следствием. Если его отвергнуть, остаётся современное доказательство Уайлса, использующее теорию эллиптических кривых и модулярных форм.

Замечание 2 (О нецелых значениях о). Важно подчеркнуть, что исключение нецелых значений о не следует из алгебраического доказательства, а является частью самого анзаца. Анзац выступает как структурный постулат: если бы целочисленные решения уравнения Ферма существовали, они обязательно соответствовали бы целочисленному случаю o = 2. При этом предположении дробные или иррациональные о не считаются релевантными, и рассуждение ведётся полностью в области целых чисел.

F.5 Схема рассуждений

Легенда:

- ightarrow Зелёная ветвь: «быстрый путь», если анзац принят (немедленно влечёт ${\rm BT}\Phi$).
- → Синяя ветвь: исторический путь без анзаца доказательство возможно только методами Уайлса (1995).

G Приложение G: Формализация анзаца Деденко и его применение к Великой теореме Ферма

G.1 Введение

Великая теорема Ферма утверждает, что для любого целого числа n>2 не существует таких натуральных чисел x,y,z, которые бы удовлетворяли уравнению $x^n+y^n=z^n$. Хотя эта теорема была знаменито доказана Эндрю Уайлсом с использованием современного математического аппарата, альтернативные подходы продолжают вызывать интерес. В данной работе рассматривается условное доказательство, предложенное Григорием Деденко. Основная идея состоит в том, чтобы свести всю сложность ВТФ к одной, хотя и недоказанной, гипотезе: анзацу Деденко.

G.2 Анзац Деденко

Анзац является краеугольным камнем этой стратегии доказательства. Он не выводится из первых принципов, а вводится как структурный постулат, который должен выполняться для любого целочисленного решения уравнения Ферма.

G.2.1 Эвристическая мотивация

Путь к анзацу начинается с параметризации уравнения Ферма. Предположив, что решение (x,y,z) существует, мы можем переписать $y^n=z^n-x^n$. Следуя реконструкции Деденко, введем параметры $m,p\in\mathbb{R}$ такие, что $z=m^n+p^n$ и $x=m^n-p^n$. Это приводит к выражению для y^n :

$$y^{n} = (m^{n} + p^{n})^{n} - (m^{n} - p^{n})^{n}.$$
 (G.1)

При раскрытии этого выражения с помощью бинома Ньютона все члены с четными степенями p^n сокращаются, оставляя:

$$y^{n} = 2\sum_{i=0}^{k} {n \choose 2i+1} (m^{n})^{n-(2i+1)} (p^{n})^{2i+1},$$
 (G.2)

где $k = \lfloor (n-1)/2 \rfloor$. Извлекая корень n-ой степени, получаем выражение для y:

$$y = \sqrt[n]{2} \left[\sum_{i=0}^{k} {n \choose 2i+1} (m^n)^{n-(2i+1)} (p^n)^{2i+1} \right]^{1/n}.$$
 (G.3)

Предложение 2 (Иррациональное препятствие). Для целого числа n > 2 член $\sqrt[n]{2}$ является иррациональным. Это означает, что для того, чтобы у было целым числом, иррациональность $\sqrt[n]{2}$ должна быть «нейтрализована» структурой оставшихся членов.

Ключевой нестрогий, творческий шаг заключается в том, чтобы постулировать, что эта нейтрализация происходит очень специфическим образом. Вместо того чтобы сумма случайно давала необходимые множители для сокращения радикала, мы налагаем структурное ограничение. Это ограничение и есть анзац, который, по сути, упаковывает проблематичный множитель $\sqrt[n]{2}$ и параметр n в новое целочисленное соотношение.

Определение 4 (Анзац Деденко). Для каждого целого числа n>2 любое предполагаемое решение $x^n+y^n=z^n$ при $x,y,z\in\mathbb{N}$ обязательно сопровождается целым числом o>1 таким, что:

$$o^n = 2 \cdot n. \tag{G.4}$$

Замечание 3 (Природа анзаца). Анзац представлен как независимая аксиома, а не теорема. Его роль аналогична пятому постулату Евклида в геометрии: он не выводим из других аксиом арифметики, но его принятие приводит к глубоким последствиям. Все условное доказательство основывается на его справедливости.

G.3 Условное доказательство Великой теоремы Ферма

Когда анзац принят в качестве нашей основной гипотезы, доказательство ВТФ становится прямолинейным рассуждением, основанным на анализе скорости роста функций.

Лемма 5 (Анализ уравнения $o^n = 2 \cdot n$). Для целых чисел o > 1 и $n \ge 1$ уравнение $o^n = 2 \cdot n$ имеет целочисленные решения только для $(o, n) \in \{(2, 1), (2, 2)\}$. Решений для n > 2 не существует.

Доказательство G.3.1. Рассмотрим случаи для целого числа *о*:

- Случай 1: o=2. Уравнение принимает вид $2^n=2\cdot n$, что эквивалентно $2^{n-1}=n$. Прямой проверкой убеждаемся, что это верно для n=1 и n=2. Для $n\geq 3$ простая индукция показывает, что экспоненциальная функция 2^{n-1} растет строго быстрее, чем линейная функция n, поэтому $2^{n-1}>n$.
- Случай 2: $o \ge 3$. Экспоненциальная функция o^n растет намного быстрее, чем $2 \cdot n$. Для n=1 имеем $3^1 > 2 \cdot 1$. По индукции тривиально показать, что $3^n > 2 \cdot n$ для всех $n \ge 1$. Поскольку $o^n \ge 3^n$, отсюда следует, что $o^n > 2 \cdot n$ для всех $o \ge 3, n \ge 1$.

Объединяя оба случая, мы заключаем, что целочисленных решений для n>2 не существует. \square

Теорема 6 (Великая теорема Ферма в предположении анзаца). Предположим, что анзац Деденко верен. Тогда для всех целых чисел n > 2 уравнение $x^n + y^n = z^n$ не имеет решений в натуральных числах.

Доказательство G.3.2. Предположим, что для некоторого целого числа n>2 существует решение $(x,y,z)\in\mathbb{N}^3$. Согласно анзацу (Определение 4), существование этого решения подразумевает наличие целого числа o>1, удовлетворяющего уравнению $o^n=2\cdot n$. Однако, согласно Лемме 5, это уравнение не имеет целочисленных решений для n>2. Это прямое противоречие. Следовательно, первоначальное предположение должно быть ложным, и такое решение (x,y,z) существовать не может.

G.4 Заключение и формальная верификация

Замечание 4 (Соответствие с разработкой на Coq). Логический вывод, представленный в Разделе G.3, формально верифицирован в системе автоматического доказательства Coq.

- Анзац принимается как явная гипотеза: dedenko_ansatz.
- Основной аргумент из Леммы 5 формализован леммой Coq integer_solution_o, которая доказывает, что из $o^n = 2 \cdot n$ следует $n \in \{1, 2\}$.
- Итоговая теорема, $fermat_last_theorem_from_ansatz$, механизирует доказательство от противного, показывая, что анзац и условие n > 2 являются взаимоисключающими.

Формализация на Coq дает твердую уверенность в том, что вывод $BT\Phi$ <u>из анзаца</u> является логически состоятельным. Оставшаяся задача — доказать или опровергнуть сам анзац.

View publication stats 26