浙江水学

本科实验报告

课程名称: 计算机网络基础

实验名称: 使用二层交换机组网

姓 名: 徐文祥

学院: 计算机学院

系: 软件工程

专业: 软件工程

学 号: 3140101005

指导教师: 黄正谦

2018年12月8日

浙江大学实验报告

实验名称:	使用二层交换机组网	实验类型: _	操作实验
同组学生.	刘子威	实验地占.	计算机网络实验室

一、实验目的

- 1. 掌握交换机的工作原理、管理配置方法;
- 2. 掌握 VLAN 的工作原理、配置方法;
- 3. 掌握跨交换机的 VLAN Trunk 配置方法;
- 4. 掌握多个交换机的冗余组网、负载平衡的配置方法。

二、实验内容

- 使用网线连接 PC, 让 PC 彼此能够互相 Ping 通;
- 配置和管理交换机:使用 Console 线连接交换机,运行 Putty 等终端软件,对交换机进行配置;
- 通过 Telnet 远程管理交换机;
- 配置镜像端口,用 Wireshark 软件抓取交换机各端口的数据;
- 配置 VLAN Access 端口和 VLAN Trunk 端口;
- 配置交换机的冗余备份:
- 配置交换机的负载均衡。

三、 主要仪器设备

PC 机、路由器、交换机、Console 连接线、直联网络线、交叉网络线。

四、操作方法与实验步骤

IOS 软件的基本操作:

- 1. 进入特权模式: enable;
- 2. 进入配置模式: configure terminal;
- 3. 进入到某个接口的配置模式: interface 接口名 模块号/端口号,例如 interface ethernet 0/1;
- 4. 命令可以不输全,只要能够被唯一识别;

- 5. 输入?可以显示当前上下文环境下可用命令:
- 6. 在命令后面输入? 可以显示命令的参数提示;
- 7. 输入命令的前一部分,再按〈tab〉,可以自动完成完整的命令输入;
- 8. 按上箭头可以重复输入上次打过的命令;
- 9. 鼠标左键选择需要截取的文本内容, 鼠标右键粘贴复制好的文本的内容。

Part 1. 单交换机

- 1. 用 1 台二层交换机和 4 台 PC 组成一个小型局域网
 - a) 使用直联网络线,将每个 PC 机都连接到交换机的不同端口;
 - b) 使用 Console 线,连接到交换机的 Console 端口和控制台 PC 的串口,并在控制台 PC 上运行 Putty 等终端软件;
 - c) 观察交换机的每个端口状态指示,确认 PC 机都正确连接到了交换机的端口;
 - d) 查看当前哪些端口已连接,哪些端口未连接,连接的速率和模式,收发统计;
 - e) 在控制台输入命令查看当前设置了哪些 VLAN, 缺省所有的端口都属于同一个 VLAN 1, 如果有端口属于非默认 VLAN, 输入命令取消该 VLAN;
 - f) 在每个 PC 机上互相用 Ping 来测试连通性,验证局域网已经建立;
 - g) 手工关闭某个端口,然后查看端口关闭后的效果,在对应的 PC 机上使用 Ping 测试连通性;
 - h) 给交换机配置一个 IP 地址,并在交换机上用 Ping 命令测试与 PC 间的连通性;
 - i) 在非控制台 PC 机上,通过 telnet 连接交换机,进行远程配置。

2. 设置交换机的镜像端口

- a) 确定某个 PC (假设为 PC1) 连接的端口为镜像端口;
- b) 在该 PC 机上运行包捕获软件, 抓取数据包;
- c) 在其他 2 个 PC 机上运行 Ping, 互相测试彼此的连通性;
- d) 查看是否能抓取到其他 2 个 PC 机之间的 Ping 响应包,正常情况下,由于交换 机是根据 MAC 地址直接转发的,所以 PC1 是收不到其他 PC 之间的响应包;
- e) 在交换机上将连接 PC1 的端口配置为镜像端口,被镜像的端口分别为另外 2 个 PC 连接的端口:
- f) 在 PC1 上再次启动包捕获软件, 抓取数据包:
- g) 在其他 PC 机上运行 Ping,测试彼此的连通性;

- h) 查看是否能抓取到其他 2 个 PC 机之间的 Ping 响应包。镜像端口设置后,交换 机将把被镜像的源端口收发数据复制一份给镜像目的端口。同时该端口的正常 收发功能关闭。
- 3. 在交换机上设置 VLAN
 - a) 输入命令, 在交换机上增加 1 个新的 VLAN;
 - b) 将 PC3 和 PC4 加入新的 VLAN;
 - c) 通过 PING 验证 PC 之间的连通性;
- 4. 如果交换机上有密码,请按照下面的步骤清除密码:
 - a) 用控制线连接 PC 和交换机的 Console 口, PC 上运行 Putty 软件;
 - b) 断开交换机电源,然后按住交换机的 mode 键不放,重新打开交换机电源,直到 mode 灯闪烁;
 - c) 在 Putty 软件上观察交换机启动过程,直到出现 Switch:的提示符;
 - d) 输入命令 rename flash:config. text flash:configX. text 将配置文件改名;
 - e) 输入命令 reload 重新启动。

Part 2. 多交换机

- 1. 用 2 台交换设备和 4 台 PC 组成一个小型局域网,每个交换机都连接 2 台 PC 机;
- 2. 在交换机上都设置 2 个 VLAN,将每个交换机上的 PC 都分成 2 组,各属于 1 个 VLAN;
- 3. 将两个交换机连起来,设置互联端口为 VLAN Trunk 模式,并测试同一组 VLAN 跨交换机的联通性;普通模式的端口只允许一个 VLAN 的数据通过, VLAN Trunk 模式允许 多个 VLAN 数据同时通过一个端口。
- 4. 用 2 条网线连接 2 个交换机,验证 Spanning-tree 的作用。交换机之间自动会运行 Spanning-tree 协议,避免产生转发回路。如果关闭 Spanning-tree,存在物理回路 的网络很容易产生广播风暴,从而导致网络瘫痪。
- 5. Spanning-tree 是按照 VLAN 进行管理的,不同 VLAN 的 Spanning-tree 可以有不同的设置,因此,可以利用这点实现在两个交换机上的负载平衡。测试 2条网线均连接时,数据是否从 2条网线分别传送,而当 1条网线断开时,数据是否全部改从另外 1条网线和传送。

五、 实验数据记录和处理

以下实验记录均需结合屏幕截图,进行文字标注和描述,图片应大小合适、关键部分清晰可见,可 直接在图片上进行标注,也可以单独用文本进行描述。

----- Part 1 -----

1. 在实验拓扑图上标记交换机的 IP 地址、PC 的 IP 地址及所属 VLAN、交换机的与 PC 的连接端口)

拓扑图:

2. 找一台有串口的 PC 机和一根串口控制线,将控制线的一头连接交换机的 Console 口, 另一头连接 PC 机的串口。

在 PC 机上运行 Putty 软件,选择 Serial 方式,默认为 9600, COM1。按两下回车,检查是否已经连上交换机。并输入 enable 命令进入到特权模式。如果有密码,请参考第四章的第 4 小节进行密码清除。

输入命令 show version 查看当前交换机型号信息并记录:

设备型号: <u>C2950-I6Q4L2-M</u>, IOS 软件版本: <u>12.1(20)EA1a</u>,

软件映像文件名: flash:zzm.bin ,端口数量: 24

3. 输入命令 show flash: 查看当前文件系统的内容:

截图参考(此处应替换成实际截获的数据):

```
Switch#show flash
Directory of flash:/
                   333 Mar 1 1993 01:15:37 +00:00
      -rwx
                                                    env_vars
      -rwx
                  616 Mar 1 1993 06:04:49 +00:00
                                                   vlan.dat
      -rwx
                  1213 Mar 1 1993 00:07:10 +00:00 config.text.renamed
               3036032 Mar 1 1993 00:27:58 +00:00 c2950-i6q412-mz.121-20.EA1a.bin
      -rwx
              1658880
                        Mar 1 1993 01:37:44 +00:00 zzml.bin
      -rwx
                  1206
                        Mar
                            1 1993 01:42:46 +00:00
      -rwx
                        Mar 1 1993 00:42:14 +00:00 stp_config
                  1291
                        Mar 1 1993 01:07:14 +00:00 private-config.text.renamed
      -rwx
               3036032
      -rwx
                        Mar 1 1993 01:13:53 +00:00 zzm.bin
                        Mar 1 1993 00:04:57 +00:00 Yes
                   512
                  1211
                        Mar 1 1993 00:35:07 +00:00 configX.text
  13
      -rwx
741440 bytes total (0 bytes free)
```

4. 显示交换机的 VLAN 数据(命令 show vlan),所有的端口应该都属于 VLAN 1。(如果存在其他 VLAN,先通过命令 no vlan id 删除)

截图参考(此处应替换成实际截获的数据):

1003 token-ring-default		Name				Star	tus Po	rts			
Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 1002 fddi-default	1	defaul	lt			act:	ive Fa	0/1, E	a0/2, Fa0	0/3, Fa	0/4
Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 1002 fddi-default							Fa	0/5, E	a0/6, Fa0	0/7, Fac	0/8
Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 1002 fddi-default							Fa	0/9, E	a0/10, Fa	a0/11, E	Fa0/12
Fa0/21, Fa0/22, Fa0/23, Fa0/24 1002 fddi-default											
1002 fddi-default act/unsup 1003 token-ring-default act/unsup 1004 fddinet-default act/unsup 1005 trnet-default act/unsup 1005 trnet-default act/unsup VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2											
1003 token-ring-default act/unsup 1004 fddinet-default act/unsup 1005 trnet-default act/unsup VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2								0/21,	Fa0/22, I	Fa0/23,	Fa0/24
1004 fddinet-default act/unsup 1005 trnet-default act/unsup VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2 0 0 1 enet 100001 1500 0 0 1002 fddi 101002 1500 0 0 1003 tr 101003 1500 srb 0 1004 fdnet 101004 1500 ieee - 0 0											
1005 trnet-default act/unsup VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2 0 0 1002 fddi 101002 1500 0 0 1003 tr 101003 1500 srb 0 0 1004 fdnet 101004 1500 ieee - 0 0				lt			_				
VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2 1 enet 100001 1500 0 0 1002 fddi 101002 1500 0 0 1003 tr 101003 1500 srb 0 1004 fdnet 101004 1500 ieee - 0 0											
1 enet 100001 1500 0 0 1002 fddi 101002 1500 0 0 1003 tr 101003 1500 srb 0 0 1004 fdnet 101004 1500 ieee - 0 0	1005	trnet-	-default			act,	/unsup				
1 enet 100001 1500 0 0 1002 fddi 101002 1500 0 0 1003 tr 101003 1500 srb 0 0 1004 fdnet 101004 1500 ieee - 0 0	WT.AM	Tume	SATD	MTII	Darent	PinaNo	BridgeNo	Stn	BrdaMode	Trane1	Trang?
1 enet 100001 1500 0 0 1002 fddi 101002 1500 0 0 1003 tr 101003 1500 srb 0 0 1004 fdnet 101004 1500 ieee - 0 0											
1002 fddi 101002 1500 0 0 1003 tr 101003 1500 srb 0 1004 fdnet 101004 1500 ieee - 0 1005 trnet 101005 1500 ibm - 0	1	enet	100001	1500							
1004 fdnet 101004 1500 ieee - 0 0	1002	fddi	101002	1500						0	0
	1003	tr	101003	1500					srb	0	
1005 trnet 101005	1004	fdnet	101004	1500				ieee			
	1005	trnet	101005	1500				ibm			
Remote SPAN VLANs	Remot	te SPA1	VLANs								
Primary Secondary Type Ports											

5. 用直连网线(straight through)将 PC 按照前述拓扑结构连接到交换机。然后给各 PC 配置 IP 地址,并用 Ping 检查各 PC 之间的联通性,确保都能 Ping 通,否则请检查 网线连接。

手工关闭某端口(命令: shutdown),输入命令查看该端口状态(命令: show interface 端口号,如 show interface e0/1),在其他 PC 上使用 Ping 命令检测连接在该端口的 PC 是否能够联通。

命令输出截图:

```
Switch#cofig
Translating "cofig"...domain server (255.255.255.255)

$ Unknown command or computer name, or unable to find computer address
Switch#config t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#int f0/2
Switch(config-if)#shutdown
Switch(config-if)#exit
02:40:59: %LINK-5-CHANGED: Interface FastEthernet0/2, changed state to administratively down
02:41:00: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/2, changed state to down
Switch(config)#exit
Switch#
02:41:05: %SYS-5-CONFIG_I: Configured from console by console
```

Ping 结果截图:

```
C: Wsers \cszju \ping 192.168.0.2

正在 Ping 192.168.0.2 具有 32 字节的数据:
来自 192.168.0.4 的回复: 无法访问目标主机。
来自 192.168.0.4 的回复: 无法访问目标主机。
来自 192.168.0.4 的回复: 无法访问目标主机。
来自 192.168.0.4 的回复: 无法访问目标主机。
和 192.168.0.4 的回复: 无法访问目标主机。

192.168.0.2 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
```

6. 重新打开该端口(命令: no shutdown),输入命令查看交换机上端口状态。使用 Ping 命令检测连接在该端口的 PC 是否能够联通。

命令输出截图:

```
Switch#config t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #int f0/2
Switch(config-if) #no shutdown
Switch(config-if) #exit
Switch(config) #exit

00:33:00: %LINK-3-UPDOWN: Interface FastEthernet0/2, changed state to up
Switch#
00:33:02: %SYS-5-CONFIG_I: Configured from console by console
00:33:04: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/2, changed state to up
Switch#show int f0/2
FastEthernet0/2 is up, line protocol is up (connected)
Hardware is Fast Ethernet, address is 0011.bb5e.19c2 (bia 0011.bb5e.19c2)
MTU 1500 bytes, BW 100000 Kbit, DLY 1000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
```

Ping 结果截图:

```
C: Wsers \cszju > ping 192.168.0.2

正在 Ping 192.168.0.2 具有 32 字节的数据:
来自 192.168.0.2 的回复: 字节=32 时间<1ms TTL=128

192.168.0.2 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

7. 进入 VLAN1 接口配置模式(命令: interface vlan 1),给交换机配置管理 IP(命令: ip address 地址 掩码)。测试 PC 是否能 Ping 通交换机的 IP 地址 输入的命令:

config t

int vlan 1

ip add 192.168.0.5 255.255.255.0

no shutdown

exit

8. 输入以下命令: 打开虚拟终端(命令 line vty 0 4), 允许远程登录(命令: login), 设置登密码(命令: password 密码)

命令截图:

```
Switch#config t
Enter configuration commands, one per line. End with CNTL/Z.
Switch (config) #line ?
 <0-16> First Line number
  console Primary terminal line
         Virtual terminal
Switch(config)#line ?
  <0-16> First Line number
  console Primary terminal line
          Virtual terminal
  vty
Switch(config) #line vty ?
  <0-15> First Line number
Switch(config) #line vty ?
 <0-15> First Line number
Switch(config) #line vty 1
Switch (config-line) #login
Switch (config-line) #password 1234
Switch(config-line)#exit
Switch (config) #exit
Switch#
03:13:37: %SYS-5-CONFIG I: Configured from console by console
Switch#enable password aaa
% Invalid input detected at '^' marker.
Switch#config t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #enable password aaa
Switch (config) #exit
Switch#
03:14:55: %SYS-5-CONFIG_I: Configured from console by console
```

9. 在 PC 上运行 Putty 软件,选择 telnet 协议,输入交换机的 IP 地址,通过网络远程连接交换机,并输入密码。

连接成功的截图:

```
User Access Verification

Password:
Switch>enable
% No password set
Switch>enable
Password:
Switch#show run
Building configuration...

Current configuration : 1174 bytes
!
version 12.1
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
```

10. 在 PC1 上运行 Wireshark,在另外 2 台(PC2、PC3)上互相持续的 Ping(运行"ping IP 地址-t"),观察在 PC1 上是否能抓取到 PC2 和 PC3 发出的 ARP 广播包以及 ICMP响应包。如果不能抓取到 PC2、PC3 发送的 ARP 广播包,在 PC2、PC3 上先运行"arp -d*"删除所有主机的 ARP 缓存。正常情况下,ICMP响应包是不能被抓取到的。

抓包截图:

ARP包:

170 104.018640	AsustekC_57:0f:33	Broadcast	ARP	60 Who has 192.168.0.2? Tell 192.168.0.4
171 104.020418	AsustekC_56:df:f5	Broadcast	ARP	60 Who has 192.168.0.4? Tell 192.168.0.2
211 135.404574	AsustekC_56:df:f5	Broadcast	ARP	60 Who has 192.168.0.4? Tell 192.168.0.2
24 4 4 20 075 250	1 16 10 71	D. I. I.	400	COLUMN 1 400 450 0 33 T 11 400 450 0 4

ICMP 包:

11. 选择一个交换机端口配置为镜像端口(命令: monitor session 1 destination interface 端口),将 PC1 的网线切换到该端口,将 PC2 和 PC3 所连端口配置为被镜像端口(命令: monitor session 1 source interface 端口)。继续运行 Wireshark,观察在 PC1 上是

否能抓取到 PC2 和 PC3 的 ICMP 响应包。

输入的命令:

config t

monitor session 1 destination inter f0/13

monitor session 1 source int f0/2

monitor session 1 source int f0/10

exit

抓包截图:

*****	2002.00	20202111102011		200.0 0.1 2.1.2 0
72 9.710835	192.168.0.4	192.168.0.2	ICMP	74 Echo (ping) reply id=0x0001, seq=737/57602, ttl=128
73 9.710868	192.168.0.2	192.168.0.4	ICMP	74 Echo (ping) request id=0x0001, seq=737/57602, ttl=128 (no response found!)
76 9.986037	192.168.0.4	192.168.0.2	ICMP	74 Echo (ping) request id=0x0001, seq=749/60674, ttl=128 (reply in 77)
77 9.986060	192.168.0.2	192.168.0.4	ICMP	74 Echo (ping) reply id=0x0001, seq=749/60674, ttl=128 (request in 76)
79 10.724941	192.168.0.4	192.168.0.2	ICMP	74 Echo (ping) reply id=0x0001, seq=738/57858, ttl=128
80 10.724975	192.168.0.2	192.168.0.4	ICMP	74 Echo (ping) request id=0x0001, seq=738/57858, ttl=128 (no response found!)
83 10.999833	192.168.0.4	192.168.0.2	ICMP	74 Echo (ping) request id=0x0001, seq=750/60930, ttl=128 (reply in 84)
84 10.999871	192.168.0.2	192.168.0.4	ICMP	74 Echo (ping) reply id=0x0001, seq=750/60930, ttl=128 (request in 83)
85 11.738907	192.168.0.4	192.168.0.2	ICMP	74 Echo (ping) reply id=0x0001, seq=739/58114, ttl=128
86 11.738939	192.168.0.2	192.168.0.4	ICMP	74 Echo (ping) request id=0x0001, seq=739/58114, ttl=128 (no response found!)
89 12.013897	192.168.0.4	192.168.0.2	ICMP	74 Echo (ping) request id=0x0001, seq=751/61186, ttl=128 (reply in 90)
90 12.013944	192.168.0.2	192.168.0.4	ICMP	74 Echo (ping) reply id=0x0001, seq=751/61186, ttl=128 (request in 89)
91 12.752753	192.168.0.4	192.168.0.2	ICMP	74 Echo (ping) reply id=0x0001, seq=740/58370, ttl=128
92 12.752785	192.168.0.2	192.168.0.4	ICMP	74 Echo (ping) request id=0x0001, seq=740/58370, ttl=128 (no response found!)
93 13.027996	192.168.0.4	192.168.0.2	ICMP	74 Echo (ping) request id=0x0001, seq=752/61442, ttl=128 (reply in 94)
94 13.028007	192.168.0.2	192.168.0.4	ICMP	74 Echo (ping) reply id=0x0001, seq=752/61442, ttl=128 (request in 93)
05 10 766006	102 160 0 4	102 160 0 2	TCMD	74 Echo (ning) nonly id-0x0001 cog-741/50626 ++1-120

12. 关闭 PC1 端口的镜像功能(命令: no monitor session 1 destination interface 端口), 否则该端口不能正常收发数据。

输入的命令:

config t

no monitor session 1 destination interface f0/13

exit			

13. 在交换机上增加 VLAN 2(命令: vlan database 或 config terminal, vlan 2),将 PC3、 PC4 所连端口加入到 VLAN 2(命令: interface 端口, switchport access vlan 2)。用 Ping 检查 PC 之间的联通性(同一 VLAN 的 PC 之间能够通,不同 VLAN 的 PC 之间不能通)。

输入的命令:

config t

vlan 2

<u>exit</u>

<u>exit</u>

config t

int f0/13

switch mode access

switch access vlan 2

exit

int f0/15

switch mode access

switch access vlan 2

<u>exit</u>

exit

联通性检测截图:

实验的时候,由于四台电脑只有两台可以相互 Ping 通(IP 为 192.168.0.2 和 192.168.0.4),我们采用的方法是先把这两台电脑接到 vlan1 的端口下面,然后 ping;之后一台接到 vlan1,一台接到 vlan2,然后再 ping;然后两台电脑 vlan 号交换,然后再 ping;最后全都接到 vlan2 端口下面,然后再 ping。

PC1→PC2

```
C:\Users\Administrator\ping 192.168.0.4

正在 Ping 192.168.0.4 具有 32 字节的数据:
来自 192.168.0.4 的回复:字节=32 时间<1ms TTL=128

192.168.0.4 的回复:字节=32 时间<1ms TTL=128

192.168.0.4 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0 <0% 丢失>,往返行程的估计时间<以毫秒为单位>:最短 = 0ms,最长 = 0ms,平均 = 0ms
```

PC1→PC3

```
C: Wsers Administrator>ping 192.168.0.4

正在 Ping 192.168.0.4 具有 32 字节的数据:
来自 192.168.0.2 的回复: 无法访问目标主机。
来自 192.168.0.2 的回复: 无法访问目标主机。
来自 192.168.0.2 的回复: 无法访问目标主机。
来自 192.168.0.2 的回复: 无法访问目标主机。

192.168.0.4 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
```

PC4→PC2

```
C:\Users\Administrator\ping 192.168.0.4

正在 Ping 192.168.0.4 具有 32 字节的数据:
来自 192.168.0.2 的回复: 无法访问目标主机。
来自 192.168.0.2 的回复: 无法访问目标主机。
来自 192.168.0.2 的回复: 无法访问目标主机。
来自 192.168.0.2 的回复: 无法访问目标主机。

192.168.0.4 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0 <0% 丢失>,

C:\Users\Administrator\_
```

PC4→PC3

```
C: Wsers Administrator > ping 192.168.0.4

正在 Ping 192.168.0.4 具有 32 字节的数据:
来自 192.168.0.4 的回复: 字节=32 时间<1ms TTL=128

192.168.0.4 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 0ms,平均 = 0ms

C: Wsers Administrator>
```

14. 查看交换机上的运行配置(命令 show running-config),复制粘贴本节相关的文本。

运行配置文本:

enable password aaa

```
!
username aaa password 0 aaa
ip subnet-zero
interface FastEthernet0/13
 switchport access vlan 2
 switchport mode access
!
interface FastEthernet0/15
 switchport access vlan 2
 switchport mode access
!
interface Vlan1
 ip address 192.168.0.5 255.255.255.0
 no ip route-cache
!
line con 0
line vty 04
 password 1234
 login
line vty 5 15
 login
monitor session 1 source interface Fa0/2, Fa0/10
end
```

----- Part 2 -----

15. 增加一台交换机(Switch2),将 PC2、PC4 连接到该交换机,并用一根交叉网线 (Cross-over) 将两个交换机连接起来。在拓扑图上记录各 PC 的 IP 地址、连接端

口及所在 VLAN:

拓扑图参考,请替换成实际使用的:

在 Switch2 上增加 VLAN 2,将 PC4 所连端口加入到 VLAN 2。用 Ping 检查不同交换机上属于同一 VLAN 的 PC 之间的联通性(即 PC1 与 PC2 应该通,PC3 与 PC4 不能通)。然后显示 2 个交换机的 VLAN 数据(命令 show vlan)

Switch1 的 vlan 数据:

Swite	ch#shov	vlan								
VLAN	Name				Stat	tus	Ports			
1	defaul	lt			act:		Fa0/5, Fa0/9, Fa0/13, Fa0/18,	Fa0/2, Fa Fa0/6, Fa Fa0/10, Fa Fa0/14, Fa0/19, Fa0/23, Fa0/23, Fa0/23, Fa	0/7, Fa(a0/11, 1 Fa0/15, Fa0/20,	0/8 Fa0/12 Fa0/17
2	VLANO(002			act	ive	Fa0/16			
1002	fddi-	default			act,	act/unsup				
1003	token-	-ring-defau	lt		act	unsup				
1004	fddine	et-default			act	act/unsup				
1005	trnet-	-default			act,	/unsup				
VLAN	Type	SAID	MTU	Parent	RingNo	Bridge	No Stp	BrdgMode	Trans1	Trans2
1	enet	100001	1500					_	0	0
		100001			_	_	_		0	0
		101002							0	0
		101003						srb	0	0
		101004						_	0	0
		101005					ibm	_	0	0

Switch2 的 vlan 数据:

swite	ch1#show vlan		
VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/17 Fa0/18, Fa0/19, Fa0/20, Fa0/21 Fa0/22, Fa0/23, Fa0/24
2	VLAN0002	active	Fa0/16
1002	fddi-default	act/unsup	
1003	trcrf-default	act/unsup	
1004	fddinet-default	act/unsup	
1005	trbrf-default	act/unsup	

联通性检测截图:

实验中,由于只有两个电脑能够相互 ping 通,PC1 和 PC2,我们的做法是先将 PC1,PC2 连到 vlan1 上,然后 Ping;之后将两台 PC 连接到 vlan2 上,然后 Ping。下面实验的做法相同。

$PC1 \rightarrow PC2$

```
C: Wsers \cszju>ping 192.168.0.4

正在 Ping 192.168.0.4 具有 32 字节的数据:
来自 192.168.0.4 的回复: 字节=32 时间<1ms TTL=128

192.168.0.4 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

PC3→PC4

```
C:\Users\cszju>ping 192.168.0.4

正在 Ping 192.168.0.4 具有 32 字节的数据:
来自 192.168.0.2 的回复: 无法访问目标主机。
来自 192.168.0.2 的回复: 无法访问目标主机。
来自 192.168.0.2 的回复: 无法访问目标主机。
来自 192.168.0.2 的回复: 无法访问目标主机。

192.168.0.4 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
```

16. 将交换机之间的互联端口配置为 VLAN Trunk 模式(命令: switchport mode trunk, 部分型号的设备可能要先设置封装协议,命令: switchport trunk encapsulation dot1q), 再次用 Ping 检查属于同一 VLAN 但在不同交换机的 PC 之间的联通性(即 PC1 与 PC2 应该通, PC3 与 PC4 也应该通)。

输入的命令:

config t

int f0/16

switch mode trunk

exit

exit

联通性检测截图:

$PC1 \rightarrow PC2$

```
C: Wsers \cszju \ping 192.168.0.2

正在 Ping 192.168.0.2 具有 32 字节的数据:
来自 192.168.0.2 的回复: 字节=32 时间<1ms TTL=128

192.168.0.2 的回复: 字节=32 时间<1ms TTL=128

192.168.0.2 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

```
C: Wsers \cszju \ping 192.168.0.4

正在 Ping 192.168.0.4 具有 32 字节的数据:
来自 192.168.0.4 的回复: 字节=32 时间=1ms TTL=128
来自 192.168.0.4 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.0.4 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.0.4 的回复: 字节=32 时间<1ms TTL=128
和 192.168.0.4 的回复: 字节=32 时间<1ms TTL=128

192.168.0.4 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 <0% 丢失>,往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

17. 再增加一根网线,把 2 个交换机的另外 2 个端口连接起来。并将这 2 个端口都配置成 VLAN Trunk 模式。稍等片刻,查看 4 个互联端口的状态(命令: show spanning-tree),分别在 2 个 VLAN 中标出:哪个交换机是根网桥?哪些端口处于转发状态(FWD),哪些端口处于阻塞状态(BLK)。

Spanning-tree 数据截图示例 (请替换成实际显示的):

交换机 1:

```
Switch#show spanning-tree
VLAN0001
 Spanning tree enabled protocol ieee
              Priority 32769
Address 0011.bb5e.19c0
  Root ID
               This bridge is the root
               Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
  Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
Address 0011.bb5e.19c0
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
               Aging Time 300
                  Role Sts Cost
Interface
                                         Prio.Nbr Type
Fa0/1 Desg FWD 19 128.1 P2p
Fa0/6 Desg FWD 19 128.6 P2p
Fa0/8 Desg FWD 19 128.8 P2p
Fa0/12 Desg FWD 19 128.12 P2p
VLAN0002
 Spanning tree enabled protocol ieee
  Root ID Priority 32770
Address 0011.bb5e.19c0
               This bridge is the root
               Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
  Bridge ID Priority 32770 (priority 32768 sys-id-ext 2)
Address 0011.bb5e.19c0
               Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
               Aging Time 300
Interface
                  Role Sts Cost Prio.Nbr Type
Fa0/6 Desg FWD 19
Fa0/8 Desg FWD 19
                                     128.6 P2p
128.8 P2p
```

交换机 2:

```
switch1#show span
VLAN0001
  Spanning tree enabled protocol ieee
            Priority
            Address
                        0011.bb5e.19c0
                       19
            Cost
                       22 (FastEthernet0/22)
            Port
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority
                       32769 (priority 32768 sys-id-ext 1)
                        0011.bb90.14c0
            Address
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
            Aging Time 300
Interface
               Role Sts Cost
                                 Prio.Nbr Type
                                           P2p
Fa0/1
               Desg FWD 19
                                  128.1
              Desg FWD 19
Fa0/7
                                  128.7
                                  128.22
Fa0/22
                Root FWD 19
                                           P2p
Fa0/24
              Altn BLK 19
                                 128.24
                                           P2p
VLAN0002
 Spanning tree enabled protocol ieee
            Priority 32770
Address 0011.bb5e.19c0
 Root ID
                        19
            Cost
            Port
                       22 (FastEthernet0/22)
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32770 (priority 32768 sys-id-ext 2)
Address 0011.bb90.14c0
            Hello Time
                        2 sec Max Age 20 sec Forward Delay 15 sec
            Aging Time 300
               Role Sts Cost
                                 Prio.Nbr Type
Interface
Fa0/22
             Root FWD 19
                                 128.22
                                           P2p
Fa0/24
               Altn BLK 19
                                   128.24
                                           P2p
```

18. 关闭 2 个 VLAN 的 STP (命令: no spanning-tree vlan ID),观察两个交换机的端口状态指示灯(急速闪动),并在 PC 上用 Ping 测试网络的延迟是否加大(甚至可能出现超时或丢包)。

Ping 结果截图:

```
C: Users \cszju \ping 192.168.0.4

正在 Ping 192.168.0.4 具有 32 字节的数据:
来自 192.168.0.4 的回复: 字节=32 时间=4ms TTL=128
来自 192.168.0.4 的回复: 字节=32 时间=2904ms TTL=128
请求超时。
请求超时。

192.168.0.4 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 2,丢失 = 2 (50% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 4ms,最长 = 2904ms,平均 = 1454ms
```

19. 重新打开 2 个 VLAN 的 STP (命令: spanning-tree vlan ID),观察两个交换机的端口 状态指示灯 (缓慢闪动),并在 PC 上用 Ping 测试网络的延迟是否恢复正常。 Ping 结果截图:

```
C: Wsers\cszju>ping 192.168.0.4
正在 Ping 192.168.0.4 具有 32 字节的数据:
来自 192.168.0.4 的回复: 字节=32 时间<1ms TTL=128
192.168.0.4 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

20. 拔掉连接在 2 个处于 FWD 状态端口之间的网线,等待一会儿,查看 4 个互联端口的 状态(命令: show spaning-tree)(有些端口可能已经消失)。标出原 BLK 状态的端口是否变成了 FWD 状态。

Spanning-tree 数据截图 (分交换机显示):

交换机 1:

Switch#show	spanning-tree
	ree enabled protocol ieee Priority 32769 Address 0011.bb5e.19c0 This bridge is the root Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID	Priority 32769 (priority 32768 sys-id-ext 1) Address 0011.bb5e.19c0 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300
Interface	Role Sts Cost Prio.Nbr Type
Fa0/1	Desg FWD 19 128.1 P2p
Fa0/8	Desg FWD 19 128.8 P2p
VLAN0002	
	ree enabled protocol ieee Priority 32770
1000 15	Address 0011.bb5e.19c0
	This bridge is the root
	Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID	Priority 32770 (priority 32768 sys-id-ext 2) Address 0011.bb5e.19c0 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300
T	
Interface	Role Sts Cost Prio.Nbr Type
Fa0/8	Desg FWD 19 128.8 P2p
	Desg FWD 19 128.16 P2p

交换机 2:

```
switch1#show span
VLAN0001
 Spanning tree enabled protocol ieee
 Root ID
            Priority
                       32769
                       0011.bb5e.19c0
            Address
                       19
            Cost
            Port
                       24 (FastEthernet0/24)
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority
                       32769 (priority 32768 sys-id-ext 1)
                       0011.bb90.14c0
            Address
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
            Aging Time 15
Interface
               Role Sts Cost
                                  Prio.Nbr Type
Fa0/1
                                 128.1
                Desg FWD 19
                                          P2p
Fa0/24
                Root FWD 19
                                  128.24 P2p
VLAN0002
 Spanning tree enabled protocol ieee
           Priority
 Root ID
                       32770
                       0011.bb5e.19c0
            Address
            Cost
                       19
                       24 (FastEthernet0/24)
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority
                       32770 (priority 32768 sys-id-ext 2)
            Address
                      0011.bb90.14c0
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
            Aging Time 15
Interface
                Role Sts Cost
                                Prio.Nbr Type
Fa0/16
                Desg FWD 19
                                 128.16 P2p
Fa0/24
                Root FWD 19
                                  128.24
                                           P2p
```

21. 配置 2 个交换机的互联端口优先级(默认优先级 128),使 VLAN1 的数据优先通过第 1 对互联端口传送(命令: interface 端口, spanning-tree vlan 1 port-priority 16)。使 VLAN2 的数据优先通过第 2 对互联端口传送(命令: interface 端口, spanning-tree vlan 2 port-priority 16)。此处只记录 2 个交换机各自所使用的命令及参数即可。

输入的命令:

Switch1:

config t

int f0/8

spanning-tree vlan 1 port-priority 16

	<u>exit</u>
	config t
	<u>int f0/6</u>
	spanning-tree vlan 2 port-pri 16
	<u>exit</u>
	exit
	Switch2:
	config t
	<u>int f0/24</u>
	span vlan 1 port-priority 16
	<u>exit</u>
	<u>int f0/22</u>
	span vlan 2 port-priority 16
	<u>exit</u>
	exit
22.	拔掉剩下的1根连接互联端口的网线,稍后2根网线重新插上,等待一会儿,查看4
	个互联端口的状态,分别在 2 个 VLAN 中标出:各端口的优先级,哪些端口处于转
	发状态,哪些端口处于阻塞状态。

Spanning-tree 数据截图(分交换机显示):

交换机 1:

<u>exit</u>

```
Switch#show spanning-tree
VLAN0001
 Spanning tree enabled protocol ieee
 Root ID
           Priority 32769
            Address
                       0011.bb5e.19c0
            This bridge is the root
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 se
 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
Address 0011.bb5e.19c0
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 s
            Aging Time 15
                                Prio.Nbr Type
Interface
               Role Sts Cost
                Desg FWD 19
Fa0/1
                                  128.1
                                            P2p
               Desg FWD 19
Desg FWD 19
                                   128.6
Fa0/6
                                            P2p
Fa0/8
                                   16.8
                                            P2p
VLAN0002
 Spanning tree enabled protocol ieee
           Priority 32770
Address 0011.bb5e.19c0
 Root ID
            This bridge is the root
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 s
                       32770 (priority 32768 sys-id-ext 2)
 Bridge ID Priority
            Address 0011.bb5e.19c0
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 s
            Aging Time 15
               Role Sts Cost Prio.Nbr Type
Interface
                Desg FWD 19
                                   16.6
                                            P2p
a0/6
a0/8
               Desg FWD 19
                                   128.8
                                            P2p
                Desg FWD 19
                                   128.16
Fa0/16
                                            P2p
```

交换机 2:

```
switch1#show span
VLAN0001
 Spanning tree enabled protocol ieee
 Root ID
           Priority 32769
                     0011.bb5e.19c0
           Address
            Cost
                      19
                      24 (FastEthernet0/24)
            Port
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority
                      32769 (priority 32768 sys-id-ext 1)
                     0011.bb90.14c0
           Address
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
           Aging Time 15
               Role Sts Cost
                                Prio.Nbr Type
Interface
                                         P2p
Fa0/1
        Desg FWD 19
                                 128.1
                                         P2p
               Altn BLK 19
Fa0/22
                                 128.22
               Root FWD 19
                                         P2p
Fa0/24
                                 16.24
VLAN0002
 Spanning tree enabled protocol ieee
 Root ID
           Priority 32770
                     0011.bb5e.19c0
           Address
           Cost
                      19
                      22 (FastEthernet0/22)
            Port
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32770 (priority 32768 sys-id-ext 2)
                     0011.bb90.14c0
           Address
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
           Aging Time 15
               Role Sts Cost
Interface
                                Prio.Nbr Type
Fa0/16 Desg FWD 19
                                128.16
                                         P2p
               Root FWD 19
Fa0/22
                                 16.22
                                        P2p
Fa0/24
              Altn BLK 19
                                128.24
                                         P2p
```

23. 拔掉其中 1 根连接互联端口的网线,查看 4 个互联端口中原先处于 BLK 状态的端口,

是否变成了 FWD 状态(哪个 VLAN 发生了变化)

Spanning-tree 数据截图 (分交换机显示):

交换机 1 没有变化, 截图如下:

```
Switch#show spanning-tree
VLAN0001
  Spanning tree enabled protocol ieee
           Priority 32769
Address 0011.bb5e.19c0
 Root ID
            This bridge is the root
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
Address 0011.bb5e.19c0
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
            Aging Time 15
Interface Role Sts Cost Prio.Nbr Type
               Desg FWD 19 128.1 P2p
             Desg FWD 19
Fa0/1
Fa0/8
VLAN0002
 Spanning tree enabled protocol ieee
           Priority 32770
Address 0011.bb5e.19c0
 Root ID
            This bridge is the root
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32770 (priority 32768 sys-id-ext 2)
                     0011.bb5e.19c0
            Address
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
            Aging Time 15
Interface Role Sts Cost Prio.Nbr Type
Fa0/8
               Desg FWD 19 128.8 P2p
Fa0/16
               Desg FWD 19
                                 128.16 P2p
```

交换机 2 原来在 vlan2 中 f0/24 端口处于 BLK 状态,拔网线之后变成了 FWD 状态,截图如下:

```
switch1#show span
VLAN0001
 Spanning tree enabled protocol ieee
           Priority 32769
 Root ID
                       0011.bb5e.19c0
            Address
            Cost 19
Port 24 (FastEthernet0/24)
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
Address 0011.bb90.14c0
            Hello Time
                        2 sec Max Age 20 sec Forward Delay 15 sec
            Aging Time 300
Interface
               Role Sts Cost Prio.Nbr Type
          Desg FWD 19 128.1 P2p
Root FWD 19 16.24 P2p
Fa0/1
Fa0/24
VLAN0002
 Spanning tree enabled protocol ieee
           Priority 32770
 Root ID
            Address
                       0011.bb5e.19c0
            Cost 19
Port 24 (FastEthernet0/24)
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32770 (priority 32768 sys-id-ext 2)
Address 0011.bb90.14c0
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
            Aging Time 15
Interface Role Sts Cost Prio.Nbr Type
Fa0/16 Desg FWD 19 128.16 P2p
Fa0/24 Root FWD 19 128.24 P2p
```

24. 记录 2 个交换机上的运行配置(命令:show running-config), 复制粘贴本节相关的文本。

运行配置文本:

Switch1:

hostname Switch

!

spanning-tree mode pvst

no spanning-tree optimize bpdu transmission

```
spanning-tree extend system-id
interface FastEthernet0/6
 switchport mode trunk
 spanning-tree vlan 2 port-priority 16
!
interface FastEthernet0/8
 switchport mode trunk
 spanning-tree vlan 1 port-priority 16
!
interface FastEthernet0/16
 switchport access vlan 2
 switchport mode access
Switch2:
hostname switch1
!
spanning-tree mode pvst
no spanning-tree optimize bpdu transmission
spanning-tree extend system-id
interface FastEthernet0/16
 switchport access vlan 2
 switchport mode access
!
interface FastEthernet0/22
 switchport mode trunk
 spanning-tree vlan 2 port-priority 16
!
interface FastEthernet0/24
```

switchport mode trunk spanning-tree vlan 1 port-priority 16

六、 实验结果与分析

根据你观察到的实验数据和对实验原理的理解,分别解答以下问题:

- 端口状态显示为 administratively down, 意味着什么意思? 端口被手动关闭
- 在交换机配置为镜像端口前,为什么可以抓取到其他 PC 之间的 ARP 请求包,而不能 抓取 ARP 响应包?

ARP 响应包是非广播包,交换机只会将有明确 MAC 地址的数据包转发给接收者所在的端口,其他端口自然无法抓取到了

- PC 属于哪个 VLAN,是由 PC 自己可以配置的,还是由交换机决定的? 交换机决定的
- 同一个 VLAN 的 PC,如果配置了不同长度的子网掩码,能够互相 Ping 通吗? 不能
- 为什么在划分为 2 个 VLAN 后,两组 PC 之间就不能进行 IP 通信了呢? ARP 广播包不能够跨 vlan 传递
- 交换机在 VLAN Trunk 模式下使用的封装协议是什么? 802.1Q
- 未启用 STP(Spanning Tree Protocol)协议时,交换机之间连接了多条网线后,为什么 Ping 测试的响应会延迟很大甚至超时?

交换机之间有多个 VLAN, Trunk 线路负载过重,形成了网络环路

- 从插上网线后开始,交换机的端口状态出现了哪些变化?大约需要多少时间才能成为 FWD 状态?期间,连接在该端口的计算机是否能够 Ping 通?
 - (1) 阻塞->监听->学习->转发
 - (2) 15 秒
 - (3) 不能

七、讨论、心得

在完成本实验后,你可能会有很多待解答的问题,你可以把它们记在这里,接下来的学习中,你也许会逐渐得到答案的,同时也可以让老师了解到你有哪些困惑,老师在课堂可以安排针对性地解惑。等到课程结束后,你再回头看看这些问题时你或许会有不同的见解:

- 1、同一个 vlan 的 PC 必须子网掩码相同
- 2、一个 PC 属于哪个 vlan 是由交换机决定的
- 3、同种设备要用交叉线,比如两个交换机互联(不过现在设备一般都自适应)

在实验过程中你可能会遇到的困难,并得到了宝贵的经验教训,请把它们记录下来,提供给其他人参考吧:

实验之前一定要先学会开机架、交换机、电脑的电源,认识直连线、交叉线以及串口线,不然实验之中容易出笑话。

交换机连线连接好了以后,观察一下端口灯的状态,等到端口灯由橘黄色变成橙色以后再操作。

你对本实验安排有哪些更好的建议呢?欢迎献计献策:

无