

(43) International Publication Date 1 November 2001 (01.11.2001)

PCT

(10) International Publication Number WO 01/81334 A2

(51) International Patent Classification7: C07D 401/00

(21) International Application Number: PCT/JP01/03378

(22) International Filing Date: 20 April 2001 (20.04.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2000-120976

21 April 2000 (21.04.2000)

(71) Applicant (for all designated States except US): SUN-TORY LIMITED [JP/JP]; 1-40, Dojimahama 2-chome, Kita-ku, Osaka-shi, Osaka 530-8203 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): IMOTO, Masahiro [JP/JP]; 15-501, Naka-machi 3-chome, Tatebayashi-shi, Gunma 374-0029 (JP). IWANAMI, Tatsuya [JP/JP]; 16-16, Dai-cho, Ashikaga-shi, Tochigi 326-0056 (JP).

AKABANE, Minako [JP/JP]; 1-37-201, Sojiji 1-chome, Ibaraki-shi, Osaka 567-0801 (JP). TANI, Yoshihiro [JP/JP]; 9-38, Hoshimi-cho, Ibaraki-shi, Osaka 567-0843 (JP).

(74) Agent: KUSAMA, Osamu; KUSAMA PATENT OFFICE, 7F Iwata Bldg., 5-12, Iidabashi 4-chome, Chiyoda-ku, Tokyo 102-0072 (JP).

(81) Designated States (national): AU, CA, CN, KR, US.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CYCLIC AMIDINE COMPOUNDS

(57) Abstract: There is provided cyclic amidine compounds of the following formula (I) wherein: A^1 and A^2 are hydrogen atom, optionally substituted alkyl group; optionally substituted aryl group; or optionally substituted heterocyclic group; and X is $-C(R^1,R^2)-C(R^3,R^4)-$, $-C(R^5)=C(R^6)-$, $-C(R^7,R^8)-C(R^9,R^{10})-C(R^{11},R^{12})-$, or $-C(R^{13},R^{14})-C(R^{15},R^{16})-NH-$ (wherein, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^{10} , $R^{11}R^{12}$, R^{13} , R^{14} , R^{15} and R^{16} are hydrogen atom; halogen atom; optionally substituted alkyl group; optionally substituted aryl group; or optionally substituted heterocyclic group; or pharmaceutically acceptable salts thereof. These compounds have good

affinity for α4β2 nicotinic acetylcholine receptors and activate the same to thereby exert a preventive or therapeutic effect on cerebral dysfunction.

DESCRIPTION

CYCLIC AMIDINE COMPOUNDS

5 TECHNICAL FIELD

present invention relates to compounds showing affinity for nicotinic acetylcholine receptors and activating the same. The compounds of the present invention are useful for preventing or treating of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, dementia such as cerebrovascular dementia, motor ataxia such as Tourette's syndrome, neurosis during chronic cerebral infarction stage, neuropathy and mental disorder such as anxiety and schizophrenia and cerebral dysfunction caused by cerebral injury.

15

20

30

10

BACKGROUND ART

It has been widely known that nicotine exerts a wide variety of pharmacological effects. These include, for example, cholinergic nervous activation as the effect on central nervous systems such as facilitation of acetylcholine release [De sarno P. & Giacobini E., *J. Neurosci. Res.*, 22, 194-200 (1984)], and further, activation effect on monoaminergic nervous systems [Levin E. D. & Simon B. B., *Psychopharmacology*, 138, 217-230 (1998)].

It has been also reported that nicotine possesses lots of very useful cerebral function improving effects such as increasing cerebral blood flow and glucose uptake rate in brain [Decker M. W. et al., *Life Sci.*, 56, 545-570 (1995)].

It has been further reported that nicotine inhibits amyloid formation of β -peptides which is believed to be the cause of neuronal cell death during Alzheimer's disease [Salomon A. R. et al., *Biochemistry*, 35, 13568-13578 (1996)], and have cell

10

15

20

25

30

protective effects on neuronal cell death induced by β -amyloid (A β) [Kihara T. et al., *Ann. Neurol.*, 42, 156-163 (1997)]. Recent studies suggest the possibility of nicotine being a remedy for the inflammatory colitis [Sandborn W. J. et al., *Ann. Intern. Med.*, 126, 364 (1997)].

On the other hand, it is acknowledged that in the patients of Alzheimer's disease, the degeneration of acetylcholinergic neurons known to be one of the important nervous systems responsible for cognition such as attention, learning, memory and recognition, is altered and thus nicotinic acetylcholine receptors in the cerebral cortex and hippocampus are drastically decreased [Nordberg A. et al., *J. Neurosci. Res.*, 31, 103-111 (1992)].

It is reported the possibility of the useful treatment for Alzheimer's disease by activating nicotinic acetylcholine receptors to be recovered the acetylcholine nervous systems mechanism by agonists or modulators of nicotinic acetylcholine receptors [Newhouse P. A. et al., *Psychopharmacology*, 95, 171-175 (1988)].

The nicotinic acetylcholine receptors belong to the ion channel neurotransmitter receptors composed of five subunits. That is, agonists such as acetylcholine, nicotine and the like are bound to receptors to activate and open the channels thereof, thus causing the influx of cationic ion such as sodium ion from extracellular to result the cell excitation [Galzi J. L. & Changeux J. P., Neuropharmacology, 34, 563-582 (1995)]. The aforementioned agonists such as acetylcholine, nicotine and the like show its effect by binding to the specific site existing in α subunit so-called agonist binding site.

It is known, on the other hand, that compounds such as galantamine and so on which activate cells by potentiating the effects of acetylcholine, have no agonist effect at nicotinic

10

15

20

25

30

acetylcholine receptors directly. These compounds show their effects through allosteric site which is clearly different from the agonist binding sites [Schrattenholz A. et al., Mol. Pharmacol., 49, 1-6 (1996)].

Mentioned above, compounds capable to activate nicotinic acetylcholine receptors indirectly are called modulators and it is expected to be the practical medicines for treatment of the various neurological diseases [Lin N. -H & Meyer M. D., Exp. Opin. Thr. Patents, 8, 991-1015 (1998)].

The terms "agonists" and "modulators" are used in these definitions in the present specification.

The nicotinic acetylcholine receptors are believed to participate not only in Alzheimer's disease, but also in neurodegenerative diseases such as Parkinson's disease, and many of the neuroses and psychoses such as dementia, anxiety, schizophrenia and so on [Barrantes F. J., in The Nicotic Acetylcholine Receptor, ed. Barrantes F. J., Springer, 1997, p175-212; Lena C. & Changeux J. -P., J. Physiol. (Paris), 92, 63-74 (1998)].

Especially, since it is known that cerebral blood flow of the patients suffering from cerebrovascular dementia caused by cerebral infarction is decreased [Takagi Shigeharu, Gendai Iryo, 28, 1157-1160 (1996); Tachibana H. et al., J. Gerontol., 39, 415-423 (1984)], there seems to be the possibility of agonists of nicotinic acetylcholine receptors or the modulators possessing cerebral blood flow increasing effect to be applied to the medicines in this area of treatment. Furthermore, recent study revealed that agonists of nicotinic acetylcholine receptors and the modulators thereof show analgesic activities [Bannon A. W. et al., Science, 279, 77-81 (1998)].

Nicotine itself surely affects as the agonist of nicotinic acetylcholine receptors. For example, after administration of

10

15

20

25

30

nicotine to the patients of Alzheimer's disease, the recoveries of their attention or the short-term memory were observed, and also the symptoms of their disease were improved [Newhouse P. A. et al., Drugs & Aging, 11, 206-228 (1997)]. Nevertheless, nicotine also possesses disadvantages such as widely recognized addiction, as well as low bioavailability and severe side effects to the cardiovascular systems.

Therefore, there have been great expectation to develop nicotinic acetylcholine receptors agonists or modulators as medicines in place of nicotine which has no addiction, high bioavailability, and less side effects on cardiovascular systems [Maelicke A. & Albuquerque E. X., Drug Discovery Today, 1, 53-59 (1996); Holladay M. W. et al., J. Med. Chem., 40, 4169-4194 (1997)].

There are some subtypes known as the nicotinic acetylcholine receptors [Shacka J. J. & Robinson S. E. T., Med. Chem. Res., 1996, 444-464], and mainly $\alpha4\beta2$ subtype receptors exist in central nervous systems. Furthermore, there exist $\alpha1\beta1\gamma\delta$ (or $\alpha1\beta1\epsilon\delta$) subtype receptors in the neuromuscular junction of motor neurons, and $\alpha3\beta4$ subtype receptors in ganglion of autonomic nervous systems and adrenal.

The activation of the cholinergic nervous systems and increasing effect of cerebral blood flow are believed to occur though $\alpha 4\beta 2$ subtype receptors in central nervous systems, and above mentioned effects of nicotine on cardiovascular system are induced by affecting receptor subtypes exist in peripheral nervous system.

Therefore, it may be extremely useful as medicines having no side effects to develop compounds which have no affinity at $\alpha1\beta1\gamma\delta$ subtype nor $\alpha3\beta4$ subtype receptors, but selectively affects $\alpha4\beta2$ subtype receptors.

In these circumstances, there have been many proposals to

selective agonists or modulators at develop nicotinic acetylcholine receptors of central nervous system as practical medicines. These include, for example, the compound such as ABT-418 [Arneric S. P. et al., J. Pharmacol. Exp. Ther., 270, 310-318 (1994); Decker M. W. et al., J. Pharmacol. Exp. Ther., 270, 319-5 328 (1994)], ABT-089 [Sullivan J. P. et al., J. Pharmacol. Exp. Ther., 283, 235-246 (1997); Decker M. W. et al., J. Pharmacol. Exp. Ther., 283, 247-258 (1997)], GTS-21 [Arendash G. W. et al., Brain Res., 674, 252-259 (1995); Briggs C. A. et al., Pharmacol. Biochem. Behav., 57, 231-241 (1997)], RJR-2403 [Bencherif M. et 10 al., J. Pharmacol. Exp. Ther., 279, 1413-1421 (1996); Lippiello P. M. et al., J. Pharmacol. Exp. Ther., 279, 1422-1429 (1996)], SIB-1508Y [Cosford N. D. P. et al., J. Med. Chem., 39, 3235-3237 (1996); Lloyd. G. K. et al., Life Sci., 62, 1601-1606 (1995)], SIB-1553A [Lloyd. G. K. et al., Life Sci., 62, 1601-1606 (1995)] 15 and so on.

In European Patent Publication EP679397-A2, substituted amine derivatives represented by the following formula were proposed for the medicines for prevention and treatment of cerebral dysfunction.

in which,

20

25

30

- R represents hydrogen, optionally substituted acyl, alkyl, aryl, aralkyl, heteroaryl or heteroarylalkyl radicals;
- A represents a monofunctional group of the hydrogen, acyl, alkyl or aryl series or represents a bifunctional group which is linked to the radical Z;
 - E represents an electron-withdrawing radical;
- X represents the -CH= or =N- radicals, it being possible for the -CH= radical to be linked to the Z radical

instead of an H atom;

Z represents a monofunctional group of the alkyl, -O-R, -S-R or $-NR_2$ series or represents a bifunctional group which is linked to the A radical or the X radical.

5

10

15

20

25

30

However, the structure of the compounds disclosed in said patent publication is clearly different from that of the compounds disclosed by the present patent application, and there is no description in the above-mentioned patent publication that these compounds can selectively activate $\alpha 4\beta 2$ nicotinic acetylcholine receptors.

On the other hand, it is confirmed that "imidacloprid", as a pesticide, electrophysiologically affects as partial agonist at nicotinic acetylcholine receptors of PC12 cell [Nagata K. et al., J. Pharmacol. Exp. Ther., 285, 731-738 (1998)], and imidacloprid itself or its metabolites and their analogues possess affinity to the nicotinic acetylcholine receptors in mouse brain [Lee Chao S. & Casida E., Pestic. Biochem. Physiol., 58, 77-88 Tomizawa T. & Casida J. E., *J. Pharmacol*., 127, 115-122 (1999); Latli B. et al., J. Med. Chem., 42, 2227-2234 (1999)], however, there is no report of the imidacloprid derivatives selectively activating α4β2 nicotinic acetylcholine receptors. Furthermore, the structure of the imidacloprid itself or its metabolites and their analogues is clearly different from that of the compounds disclosed by the present patent application.

Japanese Laid-open Patent Publication Number Hei 10-226684 disclosed [N-(pyridinylmethyl)heterocyclic]ylideneamine compounds represented by the following formula, pharmaceutically acceptable salts and prodrugs thereof.

in which,

5

10

15

20

25

A represents the -CH(R)-;

 R^3 represents a hydrogen atom or an optionally substituted C_1 - C_6 alkyl; and

B represents the group of the following formula:

It is disclosed that these compounds possess weak affinity to nicotinic receptors; however, there is no description that these compounds have selective activating effect at $\alpha4\beta2$ nicotinic acetylcholine receptors of central nervous systems and act as agonists or modulators of nicotinic acetylcholine receptors. Furthermore, the structure of these compounds is clearly different from that of the compounds disclosed by the present invention.

As mentioned above, there had been many attempts to develop agonists or modulators selectively activating $\alpha 4\beta 2$ nicotinic acetylcholine receptors of central nervous systems via oral administration, but none were satisfactory.

DISCLOSURE OF THE INVENTION

Therefore, the present invention provides therapeutic or preventing agents for treatment of diseases which may be prevented or cured by activating nicotinic acetylcholine receptors, having the capabilities of binding selectively with $\alpha 4\beta 2$ nicotinic acetylcholine receptor of central nervous systems,

and having no undesirable side effects in cardiovascular systems such as hypertension or tachycardia.

More specifically, the present invention provides medicaments for preventing or treating various diseases, which may be prevented or cured by activating nicotinic acetylcholine receptors, such as dementia, senile dementia, presenile dementia, Alzheimer's disease, Parkinson's disease. cerebrovascular dementia, AIDS-related dementia, dementia in Down's syndrome, Tourette's syndrome, neurosis during chronic cerebral infarction stage, cerebral dysfunction caused by cerebral injury, anxiety, schizophrenia, depression, Huntington's disease, pain and so on.

Through extensive investigations of researching compounds having the capabilities of binding selectively with $\alpha 4\beta 2$ nicotinic acetylcholine receptors of central nervous systems, the present inventors discovered that the compounds represented by the formula (I) mentioned below and pharmaceutically acceptable salts thereof possess high affinity for nicotinic acetylcholine receptors in central nervous systems, and activate said receptors as agonists or modulators.

20

10

15

Accordingly, as one aspect of the present invention, it is provided cyclic amidine compounds represented by the following formula (I):

25 wherein:

 ${ t A}^1$ and ${ t A}^2$ are hydrogen atom, optionally substituted alkyl group; optionally substituted aryl group; or optionally substituted heterocyclic group; and

X is
$$-C(R^1, R^2) - C(R^3, R^4) -$$
, $-C(R^5) = C(R^6) -$, $-C(R^7, R^8) - C(R^9, R^{10}) -$

 $C(R^{11},R^{12})$ -, or $-C(R^{13},R^{14})$ - $C(R^{15},R^{16})$ -NH- (wherein, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} and R^{16} are hydrogen atom; halogen atom; optionally substituted alkyl group; optionally substituted aryl group; or optionally substituted heterocyclic group;

or pharmaceutically acceptable salts thereof.

5

10

15

20

25

30

Still another aspect of the present invention, it is provided activator agents for $\alpha 4\beta 2$ nicotinic acetylcholine receptors containing cyclic amidine compounds of the formula (I) or pharmaceutically acceptable salt thereof as active ingredients.

As still further aspect of the present invention, it is provided that the use of cyclic amidine compounds of the formula (I) or pharmaceutically acceptable salt thereof for treating or preventing of cerebral circulation disease, neurodegenerative disease and the like.

BEST MODE FOR CARRYING OUT THE INVENTION

Examples of the pharmaceutically acceptable salt include an inorganic acid salt such as hydrochloric acid salt, hydrobromic acid salt, sulfuric acid salt, phosphoric acid salt and the like, and an organic acid salt such as fumaric acid salt, maleic acid salt, oxalic acid salt, citric acid salt, tartaric acid salt, malic acid salt, lactic acid salt, succinic acid salt, benzoic acid salt, methanesulfonic acid salt, p-toluenesulfonic acid salt and the like.

The groups represented by "A¹" and "A²" in the compound of formula (I) are hydrogen atom, optionally substituted alkyl group, optionally substituted aryl group or optionally substituted heterocyclic group, and preferable examples of said optionally substituted alkyl group include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl and the like.

10

15

20

25

30

Suitable substituent of substituted alkyl group may include optionally substituted aryl group oroptionally substituted heterocyclic group, and therefore, examples of said substituted alkyl group include benzyl, (2-pyridyl)methyl, (3pyridyl)methyl, (2-chloro-3-pyridyl)methyl, (6-chloro-3-pyridyl)methyl, (6-fluoro-3-pyridyl)methyl, (5-bromo-3-pyridyl)methyl, (2,6-dichloro-3-pyridyl)methyl, (5,6-dichloro-3-pyridyl)methyl, (2,6-dichloro-3-pyridyl)methyl, (6-methyl-3-pyridyl)methyl, ethoxy-3-pyridyl)methyl, (5-pyrimidyl)methyl, (3-quinolyl)-methyl, (3-furanyl)methyl, (tetrahydro-3-furanyl)-methyl, (3-thienyl)methyl, (3,5-dimethylisoxazolyl)methyl, 1-(6-chloro-3-pyridyl)ethyl, 2-(6-chloro-3-pyridyl)ethyl and the like.

The preferable examples of aryl group of said optionally substituted aryl group represented by " ${\tt A}^1$ " and " ${\tt A}^2$ " may include phenyl, naphthyl and the like. Suitable substituent of substituted aryl group may include C_1 - C_4 lower alkyl group, hydroxyl group, amino group, halogen atom and the like, and therefore, examples of said substituted aryl group include methylphenyl, hydroxyphenyl, aminophenyl, chlorophenyl, dichlorophenyl and the like.

The term "heterocyclic group" represented by "A¹" and "A²" may be 5 or 6 membered heterocyclic group or condensed heterocyclic group thereof containing the same or different 1 to 3 hetero atom(s) such as sulfur, nitrogen, oxygen atom(s), and examples include thiophene, furan, pyran, pyrrole, pyrazole, pyridine, pyrimidine, pyrazine, pyridazine, imidazole, oxazole, isoxazole, thiazole, isothiazole, quinoline, isoquinoline, indole, azaindole, tetrahydropyrimidine and the like.

Suitable substituent of substituted heterocyclic group may include C_1 - C_4 lower alkyl, halogen atom and the like, and therefore, examples of said substituted heterocyclic group may be 2-methylpyridine, 6-methylpyridine, 2-chloropyridine, 2-

fluoropyridine, 2-bromopyridine, 3-bromopyridine, 2,3-dichloropyridine, 2-chloropyrimidine, 2-chlorothiazole, 3,5-dimethylisoxazole and the like.

The group represented by "X" is the partial component of the bond as following;

wherein, R¹ to R¹⁶ are hydrogen atom; halogen atom; optionally substituted alkyl group; optionally substituted aryl group; or optionally substituted heterocyclic group.

10

15

20

25

30

The term "halogen atom" represented by R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} and R^{16} may include fluorine, chlorine, bromine and iodine.

The term "optionally substituted alkyl group" may include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl and the like.

Suitable substituent of substituted alkyl group may include optionally substituted aryl group or optionally substituted heterocyclic group, and therefore, examples of said substituted alkyl group include benzyl, (2-pyridyl)methyl, (3-pyridyl)methyl, (2-chloro-3-pyridyl)methyl, (6-chloro-3-pyridyl)methyl, (6-fluoro-3-pyridyl)methyl, (5-bromo-3-pyridyl)methyl, (2,6-dichloro-3-pyridyl)methyl, (5,6-dichloro-3-pyridyl)methyl, (6-methyl-3-pyridyl)methyl, (6-ethoxy-3-pyridyl)methyl, (6-methyl-3-pyridyl)methyl, (3-furanyl)methyl, (tetrahydro-3-furanyl)methyl, (3-thienyl)methyl, (3,5-dimethylisoxazolyl)methyl, 1-(6-chloro-3-pyridyl)methyl, 2-(6-chloro-3-pyridyl)ethyl and the like.

The term "optionally substituted aryl group" for the groups R¹ to R¹⁶ may be non-substituted phenyl group or phenyl

10

15

WO 01/81334 PCT/JP01/03378

group which is substituted by halogen atom, or C_1 - C_4 lower alkyl such as methyl, ethyl and the like, and therefore, examples of substituted phenyl group may include methylphenyl, chlorophenyl, dichlorophenyl and the like.

12

The term "heterocyclic group" for the groups R¹ to R¹⁶ may be 5 or 6 membered heterocyclic group containing the same or different 1 to 3 hetero atom(s) such as sulfur, nitrogen, oxygen atom(s), and examples include thiophene, furan, pyran, pyrrole, pyrazole, pyridine, pyrimidine, pyrazine, pyridazine, imidazole, oxazole, isoxazole, thiazole, isothiazole, quinoline, isoquinoline, tetrahydropyrimidine and the like.

Suitable substituent of substituted heterocyclic group may include C_1 - C_4 lower alkyl, halogen atom and the like, therefore, examples of said substituted heterocyclic group may be 3-methylpyridine, 2-chloropyridine, 2-methylpyridine, 2-2-bromopyridine, fluoropyridine, 3-bromopyridine, 2,3-4-chloropyrimidine, dichloropyridine, 3-2-chlorothiazole, methylisoxazole and the like.

- The following are examples of cyclic amidine compounds of the formula (I).
 - Compound 1: 2-(6-chloro-3-pyridyl)-2-imidazoline;
 - Compound 2: 2-(6-chloro-3-pyridyl)-1,4,5,6-tetrahydropyrimidine;
 - Compound 3: 2-(6-chloro-3-pyridyl)-1-methyl-2-imidazoline;
- 25 Compound 4: 2-(6-chloro-3-pyridyl)-1-methyl-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 5: 1-(6-chloro-3-pyridyl)methylimidazole;
 - Compound 6: 2-(6-chloro-3-pyridyl)imidazole;
 - Compound 7: 2-(6-chloro-3-pyridyl)methyl-2-imidazoline;
- 30 Compound 8: 2-(6-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 9: 2-(6-chloro-3-pyridyl)methyl-1-methyl-2-imidazoline;

WO 01/81334 PCT/JP01/03378

```
Compound 10: 2-(6-chloro-3-pyridyl)methyl-1-methyl-1,4,5,6-tetra-
                 hydropyrimidine;
    Compound 11: 1-(6-chloro-3-pyridyl)methyl-2-methyl-2-imidazoline;
    Compound 12: 1-(6-chloro-3-pyridyl)methyl-4,4-dimethyl-2-
5
                 imidazoline:
    Compound 13: 2-(tetrahydrofuran-3-yl)-1,4,5,6-tetrahydro-
                 pyrimidine;
    Compound 14: 2-(tetrahydrofuran-3-yl)-2-imidazoline;
    Compound 15: 2-(tetrahydrofuran-3-yl)methyl-1,4,5,6-tetrahydro-
10
                 pyrimidine;
    Compound 16: 2-(5-bromo-3-pyridyl)methyl-1,4,5,6-tetrahydro-
                 pyrimidine;
    Compound 17: 2-(5-bromo-3-pyridyl)methyl-2-imidazoline;
    Compound 18: 2-(3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
15
    Compound 19: 2-(3-pyridyl)methyl-2-imidazoline;
    Compound 20: 2-(3-aminophenyl)-1,4,5,6-tetrahydropyrimidine;
    Compound 21: 2-(3-quinolyl)methyl-1,4,5,6-tetrahydropyrimidine;
    Compound 22: 2-(2-chloro-5-thiazolyl)-1,4,5,6-tetrahydro-
                 pyrimidine;
20
    Compound 23: 2-(3-quinoly1)methyl-2-imidazoline;
    Compound 24: 2-(2-chloro-5-thiazolyl)-2-imidazoline;
    Compound 25: 2-(3-quinolyl)-1,4,5,6-tetrahydropyrimidine;
    Compound 26: 2-(3-furanyl)methyl-2-imidazoline;
    Compound 27: 1-(6-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydro-
25
                 pyrimidine;
    Compound 28: 2-(3,5-dimethyl-4-isoxazolyl)methyl-1,4,5,6-tetra-
                 hydropyrimidine;
    Compound 29: 2-(3,5-dimethyl-4-isoxazolyl)methyl-2-imidazoline;
    Compound 30; 2-(3-thienyl)methyl-1,4,5,6-tetrahydropyrimidine;
30
    Compound 31: 2-(3-thienyl)methyl-2-imidazoline;
```

Compound 32: 2-methyl-5-(3-pyridyl)-2-imidazoline;

Compound 33: 5-(3-pyridyl)-2-imidazoline;

25

- Compound 34: 1,2-bis[(6-chloro-3-pyridyl)methyl]-1,4,5,6-tetra-hydropyrimidine;
- Compound 35: 1-(6-chloro-3-pyridyl)methyl-2-(3-pyridyl)-2-imidazoline;
- 5 Compound 36: 2-(5,6-dichloro-3-pyridyl)methyl-1,4,5,6-tetra-hydropyrimidine;
 - Compound 37: 2-(6-chloro-3-pyridyl)methyl-5-phenyl-1,4,5,6-tetra-hydropyrimidine;
 - Compound 38: 2-(4-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
- 10 Compound 39: 2-(2-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 40: 2-(2,6-dichloro-3-pyridyl)methyl-1,4,5,6-tetra-hydropyrimidine;
 - Compound 41: 2-[2-(6-chloro-3-pyridyl)ethyl]-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 42: 2-[2-(6-chloro-3-pyridyl)ethyl]-2-imidazoline;
 - Compound 43: 2-(6-methyl-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 44: 1,2-bis[(6-chloro-3-pyridyl)methyl]-2-imidazoline;
- 20 Compound 45: 2-(6-methyl-3-pyridyl)methyl-2-imidazoline;
 - Compound 46: 2-(6-ethoxy-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 47: 2-(6-ethoxy-3-pyridyl)methyl-2-imidazoline;
 - Compound 48: 2-(6-fluoro-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 49: 2-(5,6-dichloro-3-pyridyl)methyl-2-imidazoline;
 - Compound 50: 2-(6-chloro-3-pyridyl)methyl-5,5-dimethyl-1,4,5,6-tetrahydropyrimidine;
 - Compound 51: 2-(2-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
- 30 Compound 52: 1-(5,6-dichloro-3-pyridyl)methyl-1,4,5,6-tetra-hydropyrimidine;
 - Compound 53: 2-(5,6-dichloro-3-pyridyl)methyl-1-methyl-2-

imidazoline;

5

- Compound 54: 2-(6-chloro-3-pyridyl)methyl-4-methyl-1,4,5,6-tetrahydropyrimidine;
- Compound 55: 1-[2-(6-chloro-3-pyridyl)ethyl]-1,4,5,6-tetrahydro-pyrimidine;
- Compound 56: 1-(3-pyridazinyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
- Compound 57: 1-(6-methyl-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
- 10 Compound 58: 1-(3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - Compound 59: 3-(6-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydro-1,2,4-triazine;
 - Compound 60: 2-[1-(6-chloro-3-pyridyl)ethyl]-1,4,5,6-tetra-hydropyrimidine;
- 15 Compound 61: 1-(2-chloro-5-thiazolyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 62: 1-[2-(6-chloro-3-pyridyl)ethyl]-2-methyl-2-imidazoline;
- Compound 63: 1-[2-(6-chloro-3-pyridyl)ethyl]-4,4-dimethyl-2imidazoline;
 - Compound 64: 2-(2-chloro-5-thiazolyl)methyl-1,4,5,6-tetra-hydropyrimidine;
 - Compound 65: 2-(2-chloro-5-thiazolyl)methyl-2-imidazoline;
 - Compound 66: 2-(5-pyrimidyl)methyl-1,4,5,6-tetrahydropyrimidine;
- 25 Compound 67: 2-(5-pyrimidyl)methyl-2-imidazoline;
 - Compound 68: 2-(5-methyl-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine.

The cyclic amidine compounds represented by the formula 30 (I) of the present invention can be prepared in accordance with the various synthetic processes such as following Process 1 to 3.

In the following reaction schemes, the groups A¹, A² and X

have the same meanings mentioned above.

Process 1:

In accordance with the following reaction scheme, the compound (I) of the present invention can be obtained by the condensation reaction of the compound of the formula (II) with the compound of the formula (III).

$$A^{1}-NH NH_{2}$$

$$X$$

$$(II)$$

$$A^{2}-Y$$

$$A^{1}-N$$

$$X$$

$$(II)$$

$$(III)$$

wherein, "Y" is $-\text{COOQ}^1$, $-\text{CONQ}^2\text{Q}^3$, $-\text{C(OQ}^4)_3$, $-\text{C(OQ}^5)=\text{NH or }-\text{CN (in which Q}^1$, Q², Q³, Q⁴ and Q⁵ are C₁-C₄ lower alkyl); that is, the compound (III) represented by "A²-Y" is carboxylic acid derivative such as ester, amide, orthoester, iminoether or nitrile.

15

20

25

5

The compounds (II) and (III) to be used in this reaction can be commercially available or can be easily prepared from known compounds by using common methods.

The reaction of the compound (II) with the compound (III) to obtain the compound (I) can usually be carried out without solvent or in an appropriate solvent such as hydrocarbon solvent, alcohol solvent and ether solvent or the mixture thereof in the presence of acid, a reagent containing sulfur atom or an aluminum reagent if necessary, under the temperature ranging from room temperature to 300°C. The examples of acid include hydrogen chloride, p-toluenesulfonic acid and the like, and the reagent containing sulfur atom may include sulfur, hydrogen sulfide, carbon disulfide, phosphorus pentasulfide and the like.

The examples of the hydrocarbon solvent may include

aromatic hydrocarbon such as benzene, toluene and the like, or aliphatic hydrocarbon such as pentane, hexane and the like. The alcohol solvent includes methanol, ethanol, propanol, 2-propanol, 2-methyl-2-propanol ethylene glycol, diethylene glycol and the like. The examples of ether solvent may include diethyl ether, dimethoxyethane, tetrahydrofuran, 1,4-dioxane and the like.

17

Examples of the aluminum reagent to be used in the reaction may include trimethylaluminum, triethylaluminum, dimethylaluminum chloride, diethylaluminum chloride, ethylaluminum dichloride and the like.

Process 2:

5

10

15

20

25

The compound (I) can be obtained by the reaction of the compound (IV) with the compound (V) in accordance with the following reaction scheme.

$$A^{1}-Z + HN X (V) A^{1}-N X (I)$$

wherein, "Z" is leaving group which accelerates the reaction with nitrogen atoms of cyclic amidine compound, such as halogen atom, p-toluenesulfonyloxy, methanesulfonyloxy, trifluoromethanesulfonyloxy, acyloxy, substituted acyloxy groups and so on.

The compounds (IV) and (V) to be used in this reaction can be commercially available or can be easily prepared from known compounds by using common methods.

The reaction of the compound (IV) with the compound (V) to obtain the compound (I) can be usually carried out in an appropriate solvent such as alcohol solvent, ketone solvent, nitrile solvent, ester solvent, amide solvent, hydrocarbon

10

15

20

solvent and ether solvent or the mixture thereof in the presence of an organic base or an inorganic base if necessary, under the temperature ranging from -20°C to the refluxing temperature of the solvent to be used.

The examples of alcohol solvent include methanol, ethanol, propanol, 2-propanol, 2-methyl-2-propanol and the like. The ketone solvent may include acetone, methyl ethyl ketone and the like. The nitrile solvent may include acetonitrile, propionitrile and so on, and the ester solvent may be ethyl acetate. The examples of amide solvent include N,Ndimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoramide and the like. The hydrocarbon solvent may include aromatic hydrocarbon such as benzene, toluene and the like, or aliphatic hydrocarbon such as pentane, hexane and the The examples of ether solvent may include diethyl ether, dimethoxyethane, tetrahydrofuran, 1,4-dioxane and the like.

Examples of the organic base to be used in the reaction may include triethylamine, collidine, lutidine, potassium tert-butoxide, sodium amide, lithium diisopropylamide, potassium bis(trimethylsilyl)amide and the like, and the inorganic base may include potassium carbonate, sodium carbonate, sodium hydrogencarbonate, sodium hydroxide, potassium hydroxide, sodium hydride, lithium hydride and the like.

25 Process 3:

The compound (I) can be obtained from the compound (VI) by the dehydrating cyclization of the compound (VI) in accordance with the following reaction scheme.

$$A^{1} - N \xrightarrow{A^{2}} NH_{2}$$

$$X \xrightarrow{(VI)} A^{1} - N \xrightarrow{A^{2}} N$$

$$X \xrightarrow{(VI)} (II)$$

WO 01/81334 PCT/JP01/03378

19

The compound (VI) to be used in this reaction can be prepared in accordance with the known method in this field.

This reaction can generally be carried out without solvent or in an appropriate solvent such as hydrocarbon solvent, halogenated hydrocarbon solvent and ether solvent, or in the mixture solvent thereof, in the presence of a dehydrating reagent if necessary, at the temperature ranging from -50°C to 200°C, preferably from room temperature to 120°C.

The examples of hydrocarbon solvent may include aromatic hydrocarbon such as benzene, toluene and the like, or aliphatic hydrocarbon such as pentane, hexane and the like. The examples of halogenated hydrocarbon solvent may include dichloromethane, chloroform, 1,2-dichloroethane and the like. The ether solvent may include diethyl ether, dimethoxyethane, tetrahydrofuran, 1,4dioxane and the like. The examples of the dehydrating reagent include thionyl chloride, sulfuryl chloride, oxychloride, phosphorus trichloride, phosphorus pentachloride, ptoluenesulfonyl chloride, methanesulfonyl chloride, phosgene, diethyl azodicarboxylate, dicyclohexylcarbodiimide and the like.

20

25

30

5

10

15

The compound of formula (I) of the present invention thus obtained can be converted to a pharmaceutically acceptable salt with various kinds of the organic or inorganic acids mentioned above, if necessary. Furthermore, the compound (I) of the present invention can also be purified by the conventional manner, such as recrystallization, column chromatography and the like.

When the compounds of the formula (I) of the present invention exist in the isomer forms, each isomer per se is separated from each other by the conventional manner. Therefore, it is understood that each isomers per se, as well as the isomeric mixture, shall be included in the compounds of the present invention.

10

15

20

25

30

The compounds of formula (I) of the present invention bind selectively to nicotinic acetylcholine receptors in central nervous systems, and activate said receptors as agonists or modulators. Therefore, these compounds are useful as medicaments for preventing or treating various diseases, such as dementia, senile dementia, presenile dementia, Alzheimer's disease, Parkinson's cerebrovascular dementia, disease, AIDS-related dementia, dementia in Down's syndrome, Tourette's syndrome, neurosis during chronic cerebral infarction stage, cerebral dysfunction caused by cerebral injury, anxiety, schizophrenia, depression, Huntington's disease, pain and so on.

The compounds of formula (I) or a pharmaceutically acceptable salt thereof according to the present invention may be administered in the form of oral or parenteral formulations. The formulations for oral administration may include for example, tablets, capsules, granules, fine powders, syrups or the like; the formulations for parenteral administration may include, for example, injectable solutions or suspensions with distilled water for injection or other pharmaceutically acceptable solution, patches for transdermal application, sprays for nasally administration, depositories or the like.

These formulations may be formed by mixing with pharmaceutically acceptable carrier, excipient, sweeter, stabilizer and so on by the conventional procedures known per se to those skilled in the art in the field of pharmaceutical formulations.

Examples of pharmaceutically acceptable carrier or excipient include polyvinyl pyrrolidone, gum arabic, gelatin, sorbit, cyclodextrin, magnesium stearate, talc, polyethylene glycol, polyvinyl alcohol, silica, lactose, crystalline cellulose, sugar, starch, calcium phosphate, vegetable oil, carboxymethyl cellulose, hydroxypropyl cellulose, sodium lauryl sulfate, water,

ethanol, glycerol, mannitol, syrup and the like.

5

10

15

20

25

30

The solutions for injection may be isotonic solution containing glucose and the like, and these solutions can be further contain an appropriate solubilizer such as polyethylene glycol or the like, buffer, stabilizer, preservative, antioxidant and so on.

These formulations can be administered to the human being and other mammalian animals, and the preferable administration route may include oral route, transdermic route, nasal route, rectal route, topical route or the like.

The administration dose may vary in a wide range with ages, weights, condition of patients, routes of administration or the like, and a usual recommended daily dose to adult patients for oral administration is within the range of approximately 0.001-1,000 mg/kg per body weight, preferably 0.01-100 mg/kg per body weight, and more preferably 0.1-10 mg/kg per body weight.

In the case of parenteral administration such as intravenous injections, a usual recommended daily dose is within the range of approximately 0.00001-10 mg/kg per body weight, preferably 0.0001-1 mg/kg per body weight, and more preferably 0.001-0.1 mg/kg per body weight, once or in three times per day.

The methods for evaluating the binding capabilities of the compounds at nicotinic acetylcholine receptors are different by subtypes of receptors. The binding capabilities of the compounds at $\alpha 4\beta 2$ nicotinic acetylcholine receptors are examined using rat brain membrane obtained from whole homogenized brain, and determining the inhibiting rate of the compounds against [3 H]-cytisine binding to said brain membrane. Furthermore, the binding capabilities of the compounds at $\alpha 1\beta 1\gamma \delta$ nicotinic acetylcholine receptors are examined using homogenized rat muscle, and determining the inhibiting rate of the compounds against

 $[^3H]-\alpha$ -bungarotoxin binding to said muscle homogenate.

The agonist effect in human $\alpha 4\beta 2$ subtype of nicotinic acetylcholine receptors are examined by using human nicotinic acetylcholine receptors prepared in oocytes of *Xenopus laevis*, which is injected with cRNA from the corresponding cloning cDNA of human $\alpha 4$ and $\beta 2$ subunits of nicotinic acetylcholine receptors, and to measure the expression of the electric response by adding the test compounds to perfusion solution by means of membrane potential holding method.

10

20

25

30

5

Examples:

The present invention is illustrated in more detail by way of the following examples.

Example 1: Synthesis by the Process 1 2-(6-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine [Compound 8]

To a stirred solution of 20 ml of toluene were added 3.75 ml of 1M trimethylaluminum/hexane solution and 315 µl (3.77 mmol) of trimethylenediamine under argon atmosphere at room temperature, and to this mixture was further added 500 mg (2.5 mmol) of ethyl (6-chloro-3-pyridyl)acetate in toluene solution. The mixture was stirred for 22 hours at 100°C under refluxing. After cooling the reaction mixture to room temperature, 5 ml of chloroform, 5 ml of methanol and 1 ml of water were added. Then precipitated gel was removed off by filtration and washed with a mixture of chloroform and methanol (9:1), and the filtrate was concentrated under resulting residue was reduced pressure. The purified by aminopropyl-coated silica gel (Chromatorex NH-type; Fuji Silysia Chemical Ltd.) column chromatography (eluent; dichloromethane : ethyl acetate = 30:1, then dichloromethane : methanol = 50:1) to give 442 mg (yield; 84.4%) of 2-(6-chloro-3-pyridyl)methyl-

15

20

25

1,4,5,6-tetrahydropyrimidine as crystalline. This product was dissolved in methanol and to this solution was added 245 mg (2.11 mmol) of fumaric acid, and the mixture was concentrated under reduced pressure. The resulting oily residue was treated with acetonitrile to give crystalline. The crystalline was collected by filtration and dried in vacuum to give 643 mg of fumarate of the title Compound 8.

The following compounds were synthesized in accordance with the same procedures as described in Example 1.

- Compound 1: 2-(6-chloro-3-pyridyl)-2-imidazoline;
- Compound 2: 2-(6-chloro-3-pyridyl)-1,4,5,6-tetrahydropyrimidine;
- Compound 3: 2-(6-chloro-3-pyridyl)-1-methyl-2-imidazoline;
- Compound 4: 2-(6-chloro-3-pyridyl)-1-methyl-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 6: 2-(6-chloro-3-pyridyl)imidazole;
 - Compound 7: 2-(6-chloro-3-pyridyl)methyl-2-imidazoline;
 - Compound 9: 2-(6-chloro-3-pyridyl)methyl-1-methyl-2-imidazoline;
 - Compound 10: 2-(6-chloro-3-pyridyl)methyl-1-methyl-1,4,5,6-tetra-hydropyrimidine;
 - Compound 13: 2-(tetrahydrofuran-3-yl)-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 14: 2-(tetrahydrofuran-3-yl)-2-imidazoline;
 - Compound 15: 2-(tetrahydrofuran-3-yl)methyl-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 16: 2-(5-bromo-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 17: 2-(5-bromo-3-pyridyl)methyl-2-imidazoline;
 - Compound 18: 2-(3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
- 30 Compound 19: 2-(3-pyridyl)methyl-2-imidazoline;
 - Compound 20: 2-(3-aminophenyl)-1,4,5,6-tetrahydropyrimidine;
 - Compound 21: 2-(3-quinoly1)methyl-1,4,5,6-tetrahydropyrimidine;

- Compound 22: 2-(2-chloro-5-thiazolyl)-1,4,5,6-tetrahydro-pyrimidine;
- Compound 23: 2-(3-quinoly1)methyl-2-imidazoline;
- Compound 24: 2-(2-chloro-5-thiazolyl)-2-imidazoline;
- 5 Compound 25: 2-(3-quinolyl)-1,4,5,6-tetrahydropyrimidine;
 - Compound 26: 2-(3-furanyl)methyl-2-imidazoline;
 - Compound 28: 2-(3,5-dimethyl-4-isoxazolyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - Compound 29: 2-(3,5-dimethyl-4-isoxazolyl)methyl-2-imidazoline;
- 10 Compound 30; 2-(3-thienyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - Compound 31: 2-(3-thienyl)methyl-2-imidazoline;
 - Compound 33: 5-(3-pyridyl)-2-imidazoline;
 - Compound 36: 2-(5,6-dichloro-3-pyridyl)methyl-1,4,5,6-tetra-hydropyrimidine;
- 15 Compound 37: 2-(6-chloro-3-pyridyl)methyl-5-phenyl-1,4,5,6-tetra-hydropyrimidine;
 - Compound 38: 2-(4-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - Compound 39: 2-(2-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
- 20 Compound 40: 2-(2,6-dichloro-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - Compound 41: 2-[2-(6-chloro-3-pyridyl)ethyl]-1,4,5,6-tetrahydro-pyrimidine;
 - Compound 42: 2-[2-(6-chloro-3-pyridyl)ethyl]-2-imidazoline;
- 25 Compound 43: 2-(6-methyl-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - Compound 45: 2-(6-methyl-3-pyridyl)methyl-2-imidazoline;
 - Compound 46: 2-(6-ethoxy-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;
- 30 Compound 47: 2-(6-ethoxy-3-pyridyl)methyl-2-imidazoline;
 - Compound 48: 2-(6-fluoro-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;

20

25

30

Compound 49: 2-(5,6-dichloro-3-pyridyl)methyl-2-imidazoline;

Compound 50: 2-(6-chloro-3-pyridyl)methyl-5,5-dimethyl-1,4,5,6-tetrahydropyrimidine;

25

Compound 51: 2-(2-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;

5 Compound 53: 2-(5,6-dichloro-3-pyridyl)methyl-1-methyl-2-imidazoline;

Compound 54: 2-(6-chloro-3-pyridyl)methyl-4-methyl-1,4,5,6-tetrahydropyrimidine;

Compound 59: 3-(6-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydro-1,2,4-triazine;

Compound 60: 2-[1-(6-chloro-3-pyridyl)ethyl]-1,4,5,6-tetra-hydropyrimidine;

Compound 61: 1-(2-chloro-5-thiazolyl)methyl-1,4,5,6-tetrahydro-pyrimidine;

15 Compound 62: 1-[2-(6-chloro-3-pyridyl)ethyl]-2-methyl-2-imidazoline;

Compound 63: 1-[2-(6-chloro-3-pyridyl)ethyl]-4,4-dimethyl-2-imidazoline;

Compound 64: 2-(2-chloro-5-thiazolyl)methyl-1,4,5,6-tetra-hydropyrimidine;

Compound 65: 2-(2-chloro-5-thiazolyl)methyl-2-imidazoline;

Compound 66: 2-(5-pyrimidyl)methyl-1,4,5,6-tetrahydropyrimidine;

Compound 67: 2-(5-pyrimidyl)methyl-2-imidazoline;

Compound 68: 2-(5-methyl-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine.

Example 2: Synthesis by the Process 2

1-(6-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine [Compound 27]

To an ice-cooled solution of 384 mg (4.6 mmol) of 1,4,5,6-tetrahydropyrimidine in 5 ml of acetonitrile was added 619 mg (3 mmol) of 5-bromomethyl-2-chloropyridine, and the mixture was

stirred for 15 minutes. After removal of solvent under reduced pressure, 6 ml of the solution of 0.5N potassium hydroxide in ethanol was added to the residue. The insoluble matter was removed off by filtration, and the filtrate was concentrated 5 under reduced pressure. The resulting residue was dissolved in toluene, and the solvent was removed again under reduced pressure. The resulting residue was purified by aminopropyl-coated silica gel (Chromatorex NH-type; Fuji Silysia Chemical Ltd.) column chromatography (eluent; dichloromethane : methanol = 40:1) to 10 mg (yield; 35.2%) of 1-(6-chloro-3-pyridyl)methylgive 221 1,4,5,6-tetrahydropyrimidine as colorless oil. This product was dissolved in methanol and to this solution was added 122 mg (1.05 mmol) of fumaric acid, and the mixture was concentrated under resulting residue reduced pressure. The was 15 acetonitrile to give crystalline. The crystalline was collected by filtration and dried in vacuum to give 308 mg of fumarate of the title Compound 27.

The following compounds were synthesized in accordance 20 with the same procedures as described in Example 2.

- Compound 5: 1-(6-chloro-3-pyridyl)methylimidazole;
- Compound 10: 2-(6-chloro-3-pyridyl)methyl-1-methyl-1,4,5,6-tetra-hydropyrimidine;
- Compound 11: 1-(6-chloro-3-pyridyl)methyl-2-methyl-2-imidazoline;
- 25 Compound 34: 1,2-bis[(6-chloro-3-pyridyl)methyl]-1,4,5,6-tetrahydropyrimidine;
 - Compound 35: 1-(6-chloro-3-pyridyl)methyl-2-(3-pyridyl)-2-imidazoline;
 - Compound 44: 1,2-bis[(6-chloro-3-pyridy1)methy1]-2-imidazoline;
- 30 Compound 52: 1-(5,6-dichloro-3-pyridyl)methyl-1,4,5,6-tetra-hydropyrimidine;
 - Compound 55: 1-[2-(6-chloro-3-pyridyl)ethyl]-1,4,5,6-tetrahydro-

10

20

25

30

pyrimidine;

Compound 56: 1-(3-pyridazinyl)methyl-1,4,5,6-tetrahydro-pyrimidine;

Compound 57: 1-(6-methyl-3-pyridyl)methyl-1,4,5,6-tetrahydro-pyrimidine;

Compound 58: 1-(3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;

Compound 61: 1-(2-chloro-5-thiazolyl)methyl-1,4,5,6-tetrahydropyrimidine;

Compound 62: 1-[2-(6-chloro-3-pyridyl)ethyl]-2-methyl-2-imidazoline;

Compound 63: 1-[2-(6-chloro-3-pyridyl)ethyl]-4,4-dimethyl-2-imidazoline.

Example 3: Synthesis by the Process 3

15 2-Methyl-5-(3-pyridyl)-2-imidazoline [Compound 32]

269 (1 mmol) of oxalate \mathbf{of} N-[2-amino-1-(3mg pyridyl)ethyl]acetamide was dissolved in 5 ml of phosphorus oxychloride, and this mixture was heated for 1.5 hours at 100°C under stirring. After cooling the reaction mixture to room temperature, phosphorus oxychloride was removed off under reduced pressure. The resulting residue was treated with ice, and 1N sodium hydroxide aqueous solution was added to adjust the pH of the solution to 7, then, the mixture was concentrated under reduced pressure. The resulting residue was treated with ethanol and the insoluble matter was removed off by filtration, and the filtrate was concentrated under reduced pressure. The resulting residue was purified by aminopropyl-coated silica gel (Chromatorex NH-type; Fuji Silysia Chemical Ltd.) column chromatography (eluent; chloroform) to give 22 mg (yield; 13.6%) of 2-methyl-5-(3-pyridyl)-2-imidazoline as brownish oil. product was dissolved in methanol and to this solution was added 15 mg (0.13 mmol) of fumaric acid, and the mixture was

concentrated under reduced pressure. The resulting oily residue was treated with a mixture of t-butanol and acetone to give crystalline. The crystalline was collected by filtration and dried in vacuum to give 17 mg of fumarate of the title Compound 32.

The physicochemical data of the Compounds 1 to 68 obtained by the above-mentioned examples are summarized in the following Table 1 to Table 14.

5

TABLE 1:

¹ H-NMR(DMSO-d ₆)	8.87 (d, J=2.4Hz, 1H), 8.29 (dd, J=2.4, 8.4Hz, 1H), 7.70 (d, J=8.4Hz, 1H), 6.56 (s, 2H), 3.78 (s, 4H)	8.79 (d, J=2.5Hz, 1H), 8.24 (dd, J=2.5, 8.3Hz, 1H), 7.74 (d, J=8.3Hz, 1H), 6.40 (s, 2H), 3.49 (t, J=5.7Hz, 4H), 1.94 (m, 2H)	8.65 (d, J=2.4Hz, 1H), 8.09 (dd, J=2.4, 8.2Hz, 1H), 7.71 (d, J=8.2Hz, 1H), 6.53 (s, 2H), 3.84 (m, 2H), 3.70 (m, 2H), 2.89 (s, 3H)	10.26 (br, 1H) 8.66 (d, J=1.8Hz, 1H), 8.13 (dd, J=1.8, 8.3Hz, 1H), 7.80 (d, J=8.3Hz, 1H), 3.57 (t, J=5.6Hz, 2H), 3.43 (t, J=5.3Hz, 2H), 2.98 (s, 3H), 2.08 (m, 2H)	8.39 (d, J=2.4Hz, 1H), 7.81 (d, J=4.6Hz, 1H), 7.73 (dd, J=2.4, 8.2Hz, 1H), 7.52 (d, J=8.2Hz, 1H), 7.24 (s, 1H), 6.94 (br, 1H), 6.63 (s, 2H), 5.26 (s, 2H)
Mass Spectrum found molecular formula	m/z 182 = (M+H) ⁺ G ₈ H ₈ GIN ₃	m/z 196 = (M+H)* C ₉ H ₁₀ CIN ₃	m/z 196 = (M+H) ⁺ C ₉ H ₁₀ ClN ₃	m/z 210 = (M+H) ⁺ C ₁₀ H ₁₂ ClN ₃	m/z 194 = (M+H) ⁺ C ₉ H ₈ CIN ₃
Properties m.p.(°C) crystallized solvent	colorless cryst. 170-175°C acetonitrile	colorless cryst. 162-168°C methanol /acetonitrile	milky white cryst. 117–120°C ether	colorless oil	colorless cryst. 123–124°C acetonitrile
Salt	. fumarate	fumarate	fumarate	oxalate	fumarate
Chemical Structure	NH HN IO	O NEW YORK	N-M N-M	N-W	N N IO
No.	-	2	е .	4	ស

TABLE 2:

¹ H-NMR(DMSO-d ₆)	13.0 (br, 3H), 8.94 (d, J=2.5Hz, 1H), 8.30 (dd, J=2.5, 8.3Hz, 1H), 7.60 (d, J=8.3Hz, 1H), 7.23 (s, 2H), 6.63 (s, 2H)	8.42 (d, J=2.5Hz, 1H), 7.87 (dd, J=2.5, 8.2Hz, 1H), 7.52 (d, J=8.2Hz, 1H), 6.47 (s, 2H), 3.93 (s, 2H), 3.73 (s, 4H)	8.46 (d, J=2.5Hz, 1H), 7.92 (dd, J=2.5, 8.3Hz, 1H), 7.52 (d, J=8.3Hz, 1H), 6.45 (s, 2H), 3.87 (s, 2H), 3.32 (t, J=5.7Hz, 4H), 1.81 (m, 2H)	8.43 (br, 1H), 7.86 (dd, J=2.3, 8.2Hz, 1H), 7.54 (d, J=8.2Hz, 1H), 6.48 (s, 2H), 4.06 (s, 2H), 3.76 (m, 4H), 3.00 (s, 3H)	8.42 (d, J=2.4Hz, 1H), 7.84 (dd, J=2.4, 8.2Hz, 1H), 7.55 (d, J=8.2Hz, 1H), 4.07 (s, 2H), 3.44 (t, J=5.7Hz, 2H), 3.06 (s, 3H), 1.95 (m, 2H)			
Mass Spectrum found molecular formula	$m/z 180 = (M+H)^{+}$ $G_{B}H_{B}GIN_{3}$	m/z 196 = (M+H) ⁺ C ₉ H ₁₀ CIN ₃	m/z 210 = (M+H) ⁺ G ₁₀ H ₁₂ GIN ₃	m/z 210 = (M+H) ⁺ C ₁₀ H ₁₂ CIN ₃	m/z 224 = (M+H) ⁺ G ₁₁ H ₁₄ CIN ₃			
Properties m.p.(°C) crystallized solvent	colorless cryst. 173–186°C acetonitrile	colorless cryst. 139–142°C acetonitrile	colorless cryst. 167-172°C acetonitrile	colorless cryst. 123–126°C acetonitrile	colorless cryst. 85–89°C acetone			
Salt	fumarate	fumarate	fumarate	fumarate	oxalate			
Chemical Structure	NH N ID	IN N IO	IZ IZ	N N IO	OI N			
No.	9	7	80	6	0.			

TABLE 3:

¹ H-NMR(DMSO-d ₆)	8.45 (d, J=2.5Hz, 1H), 7.89 (dd, J=2.5, 8.2Hz, 1H), 7.57 (d, J=8.2Hz, 1H), 6.46 (s, 2H), 4.63 (s, 2H), 3.73 (m, 2H), 3.63 (m, 2H), 2.32 (s, 3H)	8.41 (d, J=2.5Hz, 1H), 7.95 (s, 1H), 7.86 (dd, J=2.5, 8.2Hz, 1H), 7.56 (d, J=8.2Hz, 1H), 6.49 (s, 2H), 4.57 (s, 2H), 3.17 (s, 2H), 1.24 (s, 6H)	9.9 (br, 1H), 6.43 (s, 2H), 3.88 (m, 2H), 3.72 (m, 2H), 3.31 (t, J=5.7Hz, 4H), 3.29 (m, 1H), 2.21 (m, 1H), 2.04 (m, 1H), 1.84 (quintet, J=5.7Hz, 2H)	6.43 (s, 2H), 3.86 (m, 2H), 3.73 (s, 4H), 3.72(m, 2H), 3.35 (m, 1H), 2.19 (m, 1H), 2.06 (m, 1H)	9.71 (br, 2H), 3.74 (m, 2H), 3.64 (m, 1H), 3.32 (m, 4H), 2.44 (m; 4H), 1.99 (m, 1H), 1.84 (m, 2H), 1.54 (m, 1H)			
Mass Spectrum found molecular formula	m/z 210 = (M+H) ⁺ 7.5 3.7. $C_{10}H_{12}CIN_3$	8.4 m/z 224 = (M+H) ⁺ (s, (s, C ₁₁ H ₁₄ CIN ₃	m/z 155 = $(M+H)^+$ 2H) (1H) C ₈ H ₁₄ N ₂ O	m/z 141 = (M+H) ⁺ 3.3 $C_7H_{12}N_2O$	m/z 169 = (M+H) ⁺ (m, C ₉ H ₁₆ N ₂ O			
Properties m.p. (°C) crystallized solvent	colorless cryst. 165-171°C acetonitrile	colorless cryst. 166~168°C acetonitrile	pale yellow cryst. 54–57°C acetone	colorless cryst. 103-105°C acetone	colorless cryst. 187–190°C			
Salt	fumarate	fumarate	fumarate	fumarate	oxalate			
Chemical Structure	N N N N N N N N N N N N N N N N N N N	N TO	Z=ZI	ZZZI	IZ =Z			
No.	=	12	13	14	5			

TABLE 4:

			Properties	Mass Spectrum	
2	Č		(0)		
ġ S	Chemical Structure	Salt	m.p.(^C)	found	H-NMR(DMSO-de)
			crystallized solvent	molecular formula	
			coloriess cryst.		8.66 (d, J=1.6Hz, 1H), 8.62 (d, J=1.6Hz, 1H), 8.16
				$m/z 254 = (M+H)^{+}$	(s, 1H), 6.39 (s, 2H), 3.87 (s, 2H), 3.33 (m, 4H), 1.81 (m, 2H)
16) 	fumarate	155-159°C		(11, 21)
				C ₁₀ H ₁₂ BrN ₃	
			acetone		
	Ι		colorless cryst.		8.63 (s, 1H), 8.53 (s, 1H), 8.05 (s, 1H), 6.44 (s, 2H), 3.78 (s, 2H), 3.65 (s, 4H)
17	N N	fumarate	150-154°C	m/z 242 = (M+H)	
] _ 			C ₉ H ₁₀ BrN ₃	
			acetone	:	
	T		colorless cryst.		10.77 (2H, br), 8.62 (1H, s), 8.51 (d, J=4.8Hz, 1H),
	N Z			m/z 176 = $(M+H)^{+}$	7.83 (4, 0=7.002, 111), 7.33 (44, 0=4.6, 7.002, 111), 6.42 (s. 2H), 3.86 (s. 2H), 3.33 (m. 4H), 1.81 (m. 2H)
<u>&</u>		fumarate	120-124°C		
	>		ethanol	$G_{10}H_{13}N_3$	
			/acetone		
			colorless cryst.	•	8.57 (d, J=2.0Hz, 1H), 8.51 (dd, J=2.0, 4.7Hz, 1H), 778 (d. J=7, 8Hz, 1H)
ç			9	$m/z 162 = (M+H)^{T}$	6.46 (s, 2H), 3.85 (s, 2H), 3.72 (s, 4H)
<u> </u>		tumarate	134-135°C	S.H.S	
	·		acetone		
	Z		colorless cryst.	•	7.21 (m, 1H), 6.85 (s, 1H), 6.81 (m, 2H), 6.37 (s, 2H) 5.54 (br. 2H) 3.45 (m, 4H) 1.95 (m, 2H)
6				m/z 1/6 = (M+H)	
₹	ZI	fumarate	192-195°C	Z. I	
	NH2		acetone	2	

TABLE 5:

TAE																												
	H-NMR(DMSO-d ₆)		8.94 (s, 1H), 8.38 (s, 1H), 8.03 (d, J=8.4Hz, 1H),	/.94 (d, J=8.1Hz, 1H), /.// (m, 1H), /.64 (m, 1H), 6.42 (s. 2H) 4.05 (s. 2H) 3.34 (m. 4H) 1.83 (m. 2H)	3.45 (3) T. (3) T. (3) T. (3) T. (4) T. (4) T. (4) T. (5) T. (6) T. (7)													8.02 (s, 1H), 6.62 (s, 2H), 3.62(s, 4H)				9.16 (d, J=2.2Hz,1H), 8.82 (d, J=2.2Hz,1H), 8.13 (m,	(m, 4H), 2.00 (m, 2H)					
Mass Spectrum	found	molecular formula		m/z 226 = (M+H) ⁺		C14H15N3			$m/z 202 = (M+H)^{+}$		C,H ₆ CIN ₃ S			$m/z 212 = (M+H)^{+}$		C ₁₃ H ₁₃ N ₃			m/z 188 = (M+H) ⁺		C ₆ H ₆ CIN ₃ S			$m/z 212 = (M+H)^{+}$	Z	(13, 113, 3		
Properties	m.p.(°C)	crystallized solvent	colorless cryst.		168-171°C		acetone	colorless cryst.		159-160°C		acetone	colorless cryst.		175-177°C		acetone	pale yellow	cryst	157-158°C		acetone	colorless cryst.	000	188-193 C	acetone		
	Salt		fumarate				fumarate			fumarate			fumarate					fumarate										
	Chemical Structure		IZ Z				ST NEW TO					IZ Z					NH NH NO					<	≥= ⟨	=-\ (\)	, N,			
	No.		21					22					. 23							24					25			

TABLE 6:

TABLE	6:				
¹ H-NMR(DMSO-d ₆)	7.66 (s, 1H), 7.64 (s, 1H), 6.50 (s, 1H), 6.41 (s, 2H), 3.74 (s, 4H), 3.69 (s, 2H),	8.47 (m, 2H), 7.92 (dd, J=2.5, 8.2Hz, 1H), 7.59 (d, J=8.2Hz, 1H), 6.44 (s, 2H), 4.69 (s, 2H), 3.25 (m, 4H), 1.88 (m, 2H)	10.37 (br, 2H), 6.39 (s, 2H), 3.68 (s, 2H), 3.32 (m, 4H), 2.34 (s, 3H), 2.14 (s, 3H), 1.83 (m, 2H)	6.43 (s, 2H), 3.72 (s, 4H), 3.64 (s, 2H), 2.34 (s, 3H), 2.14 (s, 3H)	7.55 (d, J=4.8Hz, 1H), 7.46 (s, 1H), 7.13 (d, J=4.8Hz, 1H), 6.40 (s, 2H), 3.78 (s, 2H), 3.33 (m, 4H), 1.83 (m, 2H)
Mass Spectrum found molecular formula	m/z 151 = (M+H)* C ₈ H ₁₀ N ₂ O	m/z 210 = (M+H) ⁺ C ₁₀ H ₁₂ CIN ₃	m/z 194 = (M+H) ⁺ C ₁₀ H ₁₅ N ₃ O	m/z 180 = (M+H) ⁺ C ₉ H ₁₃ N ₃ O	m/z 181 = (M+H) ⁺ C ₉ H ₁₂ N ₂ S
Properties m.p.(°C) crystallized solvent	colorless cryst. 200-205°C acetone	colorless cryst. 126–129°C acetonitrile	colorless cryst. 188-190°C acetone	colorless cryst. 208–215°C ethanol	colorless cryst. 85–90°C acetone
Salt	fumarate	fumarate	fumarate	fumarate	fumarate
Chemical Structure	HZ N	Colonia (No.	H N N N N N N N N N N N N N N N N N N N	HN N N N N N N N N N N N N N N N N N N	IN IN S
No.	26	27	28	. 59	30

TABLE 7:

		d, J=4.8Hz,					4z, 1H),	t.23 (m,				4z, 1H),	 m, cr.,				(dd, J=2.3,	II, 2FI), 19 (+	(m. 2H)			3Hz, 1H),	.o, /.8HZ,	, 2H), 4.32	=10.0Hz,	
(_B_OSMO) GMN-H ^T	(%) OGWO VIANA	7.55 (d, J=4.8Hz, 1H), 7.43 (s, 1H), 7.11(d, J=4.8Hz, 1H), 6.43 (s, 2H), 3.83 (s, 2H), 3.75 (s, 4H)					8.60 (s, 1H), 8.57 (m, 1H), 7.81 (d, J=6.8Hz, 1H),	8.56 (m, 2H), 8.14 (s, 1H), 7.75 (d, J=7.0Hz, 1H), 7.43 (m, 1H), 6.54 (s, 2H), 5.24 (m, 1H), 4.15 (m, 1H), 3.55 (m, 1H)					8.40 (d, J=2.3Hz, 1H), 8.20 (s, 1H), 7.84 (dd, J=2.3,	8.3012, 107, 7.04 (0, 0=8.2012, 107, 7.47 (10, 207, 16, 47 (c. 9H) 4.93 (c. 9H) 3.42 (+	(3.77) (3, 2.17) 4.14 (4, 2.17), 7.25 (5, 2.17) (3.42, (4, 1)=5.44z, 2.11), 3.34 (4, 1)=5.34z, 2.11), 1.96 (m. 2.11)			8.76 (d, J=1.8Hz, 11), 8.71 (dd, J=1.5, 4.8Hz, 11),	14) 781 (dd .)=2.4nz, 1n., 7.37 (aaa, 0=1.3, 1.6, 7.8nz, 114) 781 (dd .)=24 8.245 1H) 753 (dd .)=4.8	7.8Hz, 1H), 7.52 (d, J=8.2Hz, 1H), 6.58 (s, 2H), 4.32	(s, 2H), 3.83 (t, J=10.0Hz, 2H), 3.45 (t, J=10.0Hz,	(2H)				
Mass Spectrum found	molecular formula		$m/z 167 = (M+H)^{+}$		$C_8H_{10}N_2S$			$m/z 162 = (M+H)^{+}$		C.H.Z			m/z 148 = $(M+H)^{+}$		C ₈ H ₉ N ₃			$m/z 335 = (M+H)^{+}$		C ₁₆ H ₁₆ Cl ₂ N ₄			$m/z 273 = (M+H)^{+}$		C14H13CIN4	
Properties	crystallized solvent	colorless cryst.		150-153°C		acetone	pale brown	cryst.	130-132°C	t-butanol	/acetone	colorless cryst.		148-149°C	ethanol	/acetone	pale brown	cryst.	135-139°C		acetonitrile	pale brown	cryst.	164-166°C		acetone
#eV	Ö			fumarate		fumarate						fumarate				fumarate					fumarate					
Chemical Structure		IZ				HNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN					HNN										Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z					
Ş	<u>.</u>	31							32			-		ee Ee					34			35				

TABLE 8:

TABLE 9:

					
'H-NMR(DMSO-d ₆)	8.28 (s, 1H), 7.74 (d, J=8.2Hz, 1H), 7.46 (d, J=8.2Hz, 1H), 6.70 (s, 2H), 3.41 (t, J=5.5Hz, 4H), 3.02 (t, J=7.6Hz, 2H), 2.73 (t, J=7.6Hz, 2H), 1.95 (m, 2H) in CD ₃ OD	8.27 (s, 1H), 7.73 (d, J=8.0Hz, 1H), 7.43 (d, J=8.0Hz, 1H), 6.68 (s, 2H), 3.90 (s, 4H), 3.02 (br, 2H), 2.86 (br, 2H) in CD ₃ OD	8.46 (s, 1H), 7.71 (d, J=7.9Hz, 1H), 7.23 (d, J=7.9Hz, 1H), 6.40 (s, 2H), 3.77 (s, 2H), 3.31 (m, 4H), 2.44 (s, 3H), 1.80 (m, 2H)	8.38 (d, J=2.0Hz, 1H), 8.31 (d, J=2.4Hz, 1H), 7.82 (dd, J=2.4, 8.2Hz, 1H), 7.75 (dd, J=2.4, 8.2Hz, 1H), 7.75 (dd, J=8.2Hz, 1H), 7.51 (d, J=8.2Hz, 1H), 7.49 (d, J=8.2Hz, 1H), 6.52 (s, 2H), 4.57 (s, 2H), 4.00 (s, 2H), 3.68 (m, 2H), 3.47 (m, 2H)	8.42 (d, J=2.2Hz, 1H), 7.66 (dd, J=2.2, 8.0Hz, 1H), 7.23 (d, J=8.0Hz, 1H), 6.44 (s, 2H), 3.82 (s, 2H), 3.72 (s, 4H), 2.44 (s, 3H)
Mass Spectrum found molecular formula	m/z 224 = (M+H) ⁺ C ₁₁ H ₁₄ CIN ₃	m/z 210 = (M+H) ⁺ C ₁₀ H ₁₂ CIN ₃	m/z 190 = (M+H) ⁺ C ₁₁ H ₁₆ N ₃	m/z 321 = (M+H)* C ₁₅ H ₁₄ Cl ₂ N ₄	m/z 176 = (M+H) ⁺ C ₁₀ H ₁₃ N ₃
Properties m.p.(°C) crystallized solvent	colorless cryst. 156-157°C acetone	colorless cryst. 148–149°C acetone	colorless cryst. 156–158°C 2-propanol /acetone	milky white cryst. 162-164°C 2-propanol	colorless cryst. 165-166°C acetone
Salt	fumarate	fumarate	fumarate	fumarate	fumarate
Chemical Structure	ZH N	CI N I I	IN N N N N N N N N N N N N N N N N N N	CI N N N N N N N N N N N N N N N N N N N	TZ_N
No.	41	42	43	44	45

TABLE 10:

	~*	ei .	F.		
¹H-NMR(DMSO-d ₆)	8.16 (d, J=2.3Hz, 1H), 7.72 (dd, J=2.3, 8.5Hz, 1H), 6.78 (d, J=8.5Hz, 1H), 6.39 (s, 2H), 4.28 (q, J=7.0Hz, 2H), 3.72 (s, 2H), 3.31 (t, J=5.7Hz, 4H), 1.80 (m, 2H), 1.30 (t, J=7.0Hz, 3H)	8.12 (d, J=2.2Hz, 1H), 7.68 (dd, J=2.2, 8.5Hz, 1H), 6.78 (d, J=8.5Hz, 1H), 6.42 (s, 2H), 4.27 (q, J=7.0Hz, 2H), 3.76 (s, 2H), 3.72 (s, 4H), 1.30 (t, J=7.0Hz, 3H)	8.27 (s, 1H), 8.03 (ddd, J=2.3, 8.2, 8.4hz, 1H), 7.21 (dd, J=8.4, 2.7Hz, 1H), 6.39 (s, 2H), 3.84 (s, 2H), 3.32 (t, J=5.7, 4H), 1.81 (m, 2H)	8.37 (s, 1H), 8.15 (s, 1H), 6.46 (s, 2H), 3.85 (s, 2H), 3.66 (s, 4H)	8.37 (s, 1H), 7.82 (dd, J=2.4, 8.2Hz, 1H), 7.50 (d, J=8.2Hz, 1H), 6.68 (s, 2H), 3.86 (s, 2H), 3.13 (s, 4H), 1.02 (s, 6H) in CD ₃ OD
Mass Spectrum found molecular formula	m/z 220 = (M+H) ⁺ C ₁₂ H ₁₇ N ₃ O	m/z 206 = (M+H)* C ₁₁ H ₁₆ N ₃ O	m/z 194 = (M+H) ⁺ C ₁₀ H ₁₂ FN ₃	m/z 230 = (M+H) ⁺ C ₉ H ₉ Cl ₂ N ₃	m/z 238 = (M+H)*
Properties m.p.(°C) crystallized solvent	colorless cryst. 110–112°C acetone	colorless cryst. 170-171°C acetone	pale yellow cryst. 136–139°C acetone	colorless cryst. 176-178°C acetone	pale yellow cryst. 143-145°C acetone
Salt	fumarate	fumarate	fumarate	fumarate	fumarate
Chemical Structure	E N	EL ON N	TZ Z	CI N N I O	CI N N N SI
No.	46	47	48	49	50

TABLE 11:

TABLE 12:

		<u>,</u>	······································		
¹ H-NMR(DMSO-d ₆)	9.22 (s, 1H), 8.37 (s, 1H), 7.80 (s, 1H), 7.79 (s, 1H), 6.71 (s, 3H), 5.01 (s, 2H), 3.49 (t, J=5.5Hz, 2H), 3.43 (t, J=5.5Hz, 2H), 2.11 (t, J=5.5Hz, 2H) in CD ₃ OD	8 49 (s, 2H), 7.72 (d, J=7.8Hz, 1H), 7.32 (d, J=7.8Hz, 1H), 6.53 (s, 4H), 4.65 (s, 2H), 3.25 (m, 4H), 2.50 (s, 3H), 1.87 (m, 2H)	8.62 (s, 1H), 8.58 (d, J=4.8Hz, 1H), 8.49 (s, 1H), 7.83 (d, J=7.7Hz, 1H), 7.46 (dd, J=4.8, 7.7Hz, 1H), 6.52 (s, 4H), 4.69 (s, 2H), 3.25 (m, 4H), 1.87 (m, 2H)	11.46 (br, 1H), 10.21 (br, 1H), 8.47 (s, 1H), 7.93 (d, J=8.2Hz, 1H), 7.57 (d, J=8.2Hz, 1H), 5.94 (br, 1H), 3.81 (s, 2H), 3.38 (m, 2H), 3.00 (m, 2H)	8.37 (d, J=2.5Hz, 1H), 7.81 (dd, J=2.5, 8.3Hz, 1H), 7.50 (d, J=8.3Hz, 1H), 6.68 (s, 2H), 4.04 (q, J=7.2Hz, 1H), 3.45 (t, J=5.7Hz, 4H), 1.98 (quintet, J=5.7Hz, 2H), 1.63 (d, J=7.2Hz, 3H) in GD ₃ OD
Mass Spectrum found molecular formula	m/z 177 = (M+H) ⁺ C ₈ H ₁₂ N ₄	m/z 190 = (M+H) ⁺ $G_{11}H_{16}N_3$	m/z 176 = (M+H) ⁺ C ₁₀ H ₁₃ N ₃	m/z 211 = (M+H) ⁺ C ₄ H ₁₁ CiN ₄	m/z 224 = (M+H) ⁺ C ₁₁ H ₁₄ CIN ₃
Properties m.p.(°C) crystallized solvent	coloriess cryst. 124–125°C acetone	coloriess cryst. 156–157°C acetone	colorless cryst. 141–142°C acetone	yellow cryst. 134–140°C acetonitrile	colorless cryst. 156–158°C acetone
Salt	fumarate (1.5 molecules)	fumarate (2 molecules)	fumarate (2 molecules)	hydrochloride (2 molecules)	fumarate
Chemical Structure	Z-\ \Z-\ \Z-\ \Z-\ \Z-\ \Z-\ \Z-\ \Z-\	Me N	Z- Z- Z- Z-	D ID	HW IN N
No.	56	57	58	59	09

TABLE 13:

	Chemical Structure	Salt	Properties m.p.(°C) crystallized solvent	Mass Spectrum found molecular formula	¹ H-NMR(DMSO-d ₆)
			colorless cryst.	m/- 016 = (M±H) ⁺	8.11 (s, 1H), 7.66 (s, 1H), 6.41 (s, 2H), 4.56 (s, 2H), 3.35 (m, 4H), 1.77 (m, 2H)
		fumarate	133-134°C	C.H.O.H.S	
			acetone		
İ	\(\lambda_{ \cdot\}^{ \cdot\}		colorless cryst.	m/z 224 = (M+H) ⁺	8.38 (d, J=2.1Hz, 1H,), 7.85 (dd, J=2.1, 8.2Hz, 1H), 7.50 (d, J=8.2Hz, 1H), 6.38 (s, 2H), 3.75 (m, 4H),
O	>-# > > 	fumarate	144-146°C	C ₁₁ H ₁₄ CiN ₃	3.59 (t, J=7.2hz, 2H), 2.91(t, J=7.2hz, 2H), 2.09 (s, 3H)
			acetone	•	
	ew ew		colorless cryst.	m/z 238 = (M+H) ⁺	10.34 (1H, s), 8.36 (d, J=2.4Hz, 1H), 8.28 (1H, s), 7.81 (dd, J=2.4, 8.2Hz, 1H), 7.52 (d, J=8.2Hz, 1H), 9.34 (4, J=6.9Hz, 4H), 9.54 (7, 9H), 9.74 (4, J=6.9Hz, 4H), 9.54 (4, J=6.9Hz, 4Hz, 4Hz, 4Hz, 4Hz, 4Hz, 4Hz, 4Hz, 4
	Z N N	hydrochloride	158-162°C	2	2.7.4 (4, 5-0.012, 417, 5.02 (8, 217, 2.37(4, 5-0.0112, 2H), 2.09 (8, 3H), 1.31(8, 3H)
ਠ	\ N	(Seinolechies)	acetone	C12116 C123	,
Ì	IZ		colorless cryst.	m/z 216 = (M+H) ⁺	10.06 (s, 2H), 7.70 (s, 1H), 4.07 (s, 2H), 3.32 (m, 4H), 1.82 (m, 2H)
_		hydrochloride (2 molecules)	213-220°C	C ₈ H ₁₀ ClN ₃ S	
			acetone	2	
1	Ξ.		yellow cryst.	m/z 202 = (M+H) ⁺	7.58 (s, 1H), 6.49 (s, 2H), 4.03 (s, 2H), 3.65 (s, 4H)
	N N N	fumarate	148-150°C	S.NO.H.O	
į			acetone		

TABLE 14:

H-NMR(DMSO-ds)		9.13 (s, 1H), 8.85 (s, 2H), 6.43 (s, 2H), 3.90 (s, 2H),	6.55 (m, 4H), 1.82 (m, 2H)				9.12 (s, 1H), 8.80 (s, 2H), 6.46 (s, 2H), 3.89 (s, 2H),	3./1(s, 4H)				10.42 (s, 2H), 8.40 (s, 1H), 8.35 (s, 1H), 7.63 (s,	(11), 0.47 (S, ZH), 0.78 (S, 111), 0.33 (M, 4H), 2.23 (S, 3H), 1.81 (M, 2H)			
Mass Spectrum found	molec		m/z 177 = $(M+H)^{+}$		C ₉ H ₁₂ N ₄			$m/z 163 = (M+H)^{+}$		C ₈ H ₁₀ N ₄			$m/z 190 = (M+H)^{+}$		C ₁₁ H ₁₅ N ₃	
Properties m.p.(°C)	crystallized solvent	colorless cryst.		151~156°C		acetone	coloriess cryst.		155-156°C		acetone	colorless cryst.		137-139°C		acetone
Salt				fumarate					fumarate					fumarate		
Chemical Structure					\ \ !				;^ }==z }				Ne Ne		\ \ \ Z	
Š				99					29					89		

15

20

25

30

The effect of the compounds (I) of the present invention was evaluated by the following biological experiments.

Biological Experiment 1:

5 Binding assays at $\alpha 4\beta 2$ subtype of nicotinic acetylcholine receptors

The affinity of the compounds of the present invention to $\alpha4\beta2$ subtype of nicotinic acetylcholine receptors was performed by the following method, which was modified method described by Pabreza L. A., Dhawan S. & Kellar K. *J., Mol. Pharm.*, 39, 9-12 (1990), and by Anderson D. J. & Arneric S. P., *Eur. J. Pharm.*, 253, 261-267 (1994).

(1) Preparation of rat brain membrane containing α4β2 subtype of nicotinic acetylcholine receptors

Fischer-344 strain male rats (body weight: 200-240 g; 9 weeks old) obtained from Charles River Japan were used. Rats were housed in the breeding cage controlled of the room temperature at $23 \pm 1^{\circ}$ C, and the humidity of $55 \pm 5^{\circ}$ for 1 to 4 weeks. Rats (3 to 4 rats per a cage) were housed with lights on for 12 hours daily (from 7:00 to 19:00), and allowed free access to food and water.

Preparation of rat brain membrane containing α4β2 subtype of nicotinic acetylcholine receptors was performed as follow. That is, rat brains were isolated just after sacrificed by decapitation, washed with ice-cooled saline solution and then frozen at -80°C with liquid nitrogen and stored till using. After thawing the frozen brain, the brain was homogenized in 10 volumes of ice-cooled buffer solution (50 mM of Tris-HCl, 120 mM of NaCl, 5 mM of KCl, 1 mM of MgCl₂, 2mM of CaCl₂; pH 7.4; 4°C) using homogenizer (HG30, Hitachi Kohki Ltd.) for 30 seconds, and the homogenate were centrifuged under 1,000 x G for 10 minutes at 4°C. The resulting supernatant was separated and the pellet was

10

15

25

homogenized again with half volume of aforementioned prior buffer solution and centrifuged under the same conditions. Combined supernatant was further centrifuged under $40,000 \times G$ for 20 minutes at $4^{\circ}C$. The pellet was suspended in buffer solution and used for binding assays at receptors.

(2) Experiments of $\alpha 4\beta 2$ subtype of nicotinic acetylcholine receptors binding

Suspensions of membrane pellets containing 400-600 μg of protein were added to test tubes containing test compounds and [3H]-cytisine (2 nM) in a final volume of 200 μl and incubated for 75 minutes in ice-cooled bath. The samples were isolated by vacuum filtration onto Whatman GF/B filters, which were prerinsed with 0.5% polyethylenimine just prior to sample filtration, using Brandel multi manifold cell harvester. The filters were rapidly washed with buffer solution (3 x 1 ml). The filters were counted in 3 ml of clearsol I (Nacalai Tesque Inc.). The determination of nonspecific binding was incubated in the presence of 10 μM (-)-nicotine.

20 The analyses of the experimental results were conducted by using the Accufit Competition Program (Beckman Ltd.).

Biological Experiment 2:

Binding assays at α1β1γδ subtype of nicotinic acetylcholine receptors

The affinity of the compounds of the present invention to $\alpha 1\beta 1\gamma \delta$ subtype of nicotinic acetylcholine receptors was measured by the following method, which was modified method described by Garcha H. S., Thomas P., Spivak C. E., Wonnacott S. & Stolerman I.

- 30 P., Psychropharmacology, 110, 347-354 (1993).
 - (1) <u>Preparation of rat skeletal muscles containing α1β1γδ subtype</u>
 of nicotinic acetylcholine receptors

10

15

20

25

30

The substantially same animals described in the Biological Experiment 1 were used.

The isolation of $\alpha 1\beta 1\gamma\delta$ subtype of nicotinic acetylcholine receptors was performed as follow. That is, rat posterior just skeletal muscles were isolated after sacrificed decapitation, washed with ice-cooled saline solution and then frozen at -80°C with liquid nitrogen and stored till using. After thawing the frozen muscles, tissue was homogenized (40% w/v) with buffer solution [2.5 mM of sodium phosphate buffer (pH:7.2), 90 mM of NaCl, 2 mM of KCl, 1 mM of EDTA, 2 mM of benzamidine, 0.1 mM of benzethonium chloride, 0.1 mM of PMSF, 0.01% of sodium azide] in Waring blender (Waring blender 34BL97; WARING PRODUCTS DIVISION DYNAMICS CORPORATION OF AMERICA) for 60 seconds. homogenate were centrifuged under 20,000 x G for 60 minutes at The supernatant was separated and the resulting pellet was added to the same buffer (1.5 ml/g wet weight), and homogenized under the same conditions. Triton X100 (2% w/v) was added and the mixture was stirred for 3 hours at 4°C. The centrifugation at 100,000 x G for 60 minutes at 4°C yielded the rat muscle extract as supernatant. This was stored at 4°C for up to 4 weeks, and used for binding assays at receptors.

(2) Experiments of α1β1γδ subtype of nicotinic acetylcholine receptors binding

Receptors binding experiments were performed as follow. That is, the extract of rat muscle containing 600-900 μg of protein was added to test tubes containing test compounds and incubated for 15 minutes at 37°C. Then, to this mixture was added 1 nM of [3 H]- α -bungarotoxin (α -Bgt) and further incubated for 2 hours. The samples were isolated by vacuum filtration onto Whatman GF/B filters, which were prerinsed with 0.5% polyethylenimine just prior to sample filtration, using Brandel

10

15

multi manifold cell harvester. The filters were rapidly rinsed with washing solution (10 mM of KH₂PO₄, 150 mM of NaCl, pH 7.2, room temperature) (5 x 1 ml). The filters were counted in 3 ml of clearsol I (Nacalai Tesque Inc.). The determination of nonspecific binding was incubated in the presence of 1 μ M α -Bgt. The solutions containing α -Bgt (labeled/non-labeled) were prepared by using buffer solution containing 0.25% of BSA. In the receptor binding experiments, said buffer solution was added for adjusting the final concentration of BSA to be 0.05%.

The analyses of the experimental results were conducted by the same way as described in the Biological Experiment 1.

Table 15 shows the results of receptor binding studies of the compounds of the present invention and (-)-nicotine as reference compound.

TABLE 15:

	Affinities fo	r receptors Ki		
Compound No.	α4β2	α1β1γδ *1		
2	13 nM	(34%, 6%)		
3	45 nM	(34%, 5%)		
4	67 nM	(46%, 16%)		
7	86 nM	(80%, 51%)		
8	29 nM	395 μM		
9	7.7 nM	(43%, 16%)		
10	11 nM	(40%, 17%)		
11	115 nM	(74%, 53%)		
12	268 nM	(79%, 42%)		
15	950 nM	n.d.		
16	392 nM	(63%, 30%)		
18	86 nM	(62%, 18%)		
19	144 nM	(69%, 29%)		
22	429 nM	(23%, -4%)		
25	338 nM	(41%, 7%)		
27	2 nM	45 μM		
32	580 nM	(69%, 53%)		
33	365 nM	n.d.		
36	124 nM	(81%, 34%)		
43	167 nM	(71%, 28%)		
48	82 nM	257 μ M		
49	211 nM	773 μM		
· 52	1.2 nM	23 μΜ		
53	10 nM	83 µM		
54	108 nM	1739 μΜ		
57	12 nM	` 86 μM		
58	6.9 nM	32 µM		
62	70 nM	639 μМ		
64	8.1 nM	23 μΜ		
65	53 nM	524 μM		
66	90 nM	841 μM		
68	203 nM	231 μΜ		
Nicotine	1.6 nM	182 μΜ		

^{*1:} Values indicated in a parenthesis show control % of [3 H]- α -Bgt binding at 100 μ M and 1,000 μ M of test compounds.

⁵ n.d.: not determined.

Biological Experiment 3:

5

15

20

25

30

Agonist activities at human $\alpha 4\beta 2$ subtype of nicotinic acetylcholine receptors

The agonist activities of the compounds of the present invention at human $\alpha 4\beta 2$ subtype of nicotinic acetylcholine receptors was evaluated by the following method, which was modified method described by Papke R. L., Thinschmidt J. S., Moulton B. A., Meyer E. M. & Poirier A., *Br. J. Pharmacol.*, 120, 429-438 (1997).

10 (1) <u>Preparation of cRNA of human α4β2 subtype of nicotinic</u> acetylcholine receptors

The cloning of human nicotinic acetylcholine receptor cDNA and hnAC-R β 2 cDNA were performed, (hnACh-R) accordance with the conventional manners, by synthesizing the each DNA primers corresponding to the sequences of hnACh-R α4 cDNA and hnACh-R β2 cDNA [Monteggia L. M. et al., Gene, 155, 189-193 (1995); and Anand R., & Lindstrom J., Nucl. Acids Res., 18, 4272 (1990)], and obtained hnACh-R α 4 cDNA and hnACh-R β 2 cDNA by polymerase chain reaction (PCR), respectively. The obtained hnACh-R $\alpha 4$ cDNA and hnACh-R $\beta 2$ cDNA were inserted to the cRNA expression vector (pSP64 polyA) having SP6 RNA promoter to construct hnACh-R α4/pSP64 polyA and hnACh-R β2/pSP64 polyA, After cutting from expression respectively. vector restriction enzyme (EcoRI), transcription was performed affecting SP6 RNA polymerase in the presence of cap analogues to obtain hnACh-R α4 cRNA and hnACh-R β2 cRNA, respectively.

(2) Expression of human $\alpha 4\beta 2$ subtype nicotinic acetylcholine receptors in *Xenopus* oocytes

Occytes were purchased from Kitanihonseibutsukyohzai Co., Ltd., which were already enucleated from *Xenopus laevis*, and used in this experiment.

15

20

25

30

The oocytes were treated with collagenase (Sigma type I: 1 mg/ml) in calcium-free modified Birth's solution (88 mM of NaCl, 1 mM of KCl, 2.4 mM of NaHCO₃, 0.82 mM of MgSO₄, 15 mM of HEPES, pH 7.6) under gently stirring at room temperature for 90 minutes, and washed out the enzyme from the tissue. Then, oocytes were separated from ovarian follicle by tweezers, and isolated oocytes were placed in antibiotics containing modified Birth's solution (88 mM of NaCl, 1 mM of KCl, 2.4 mM of NaHCO₃, 0.82 mM of MgSO₄, 15 mM of HEPES, pH 7.6, and 0.1 v/v% of mixture solution 10 containing of penicillin and streptomycin for incubation; Sigma Co.). Thus treated oocytes were injected with 50 nl of adjusted cRNAs (1.0 mg/ml), that is, each 50 ng of hnACh-R α 4 cRNA and hnACh-R β2 cRNA per 1 oocyte by using automatic injector (NANOJECT; DRUMMOND SCIENTIFIC CO.), and further incubated for 4-14 days at 19°C. In oocytes, heterogeneous quintuple $[(\alpha 4)_2(\beta 2)_3]$ was composed by translation of injected cRNAs, and ion channel receptors were constructed on cell membrane.

(3) Agonist activities at human $\alpha 4\beta 2$ subtype \mathbf{of} nicotinic acetylcholine receptors

The recordings of responses at human $\alpha 4\beta 2$ subtype of nicotinic acetylcholine receptors by means of membrane potential holding method were performed as follow. That is, oocytes were placed in recording chamber with a total volume of 50 µl and were perfused with Ringer's solution (115 mM of NaCl, 2.5 mM of KCl, 1.8 mM of CaCl₂, 10 mM of HEPES, pH 7.3) containing atropine (1 µM) under flow rate of 1 ml/min. The membrane electric potentials were held at -50 mV by mean of the two electric membranes potential holding method (CEZ-1250; Nihon Kohden Co.). compounds were added to the perfusion solution, and recorded the peak strength of induced inward current. In order to normalize the responses of test compounds, the responses with acetylcholine

(Ach) were recorded before and after application of the test compounds. Generally in the oocytes just after isolated, the response of intrinsic muscarinic acetylcholine receptors, which is inward current caused by activation of calcium dependence chloride ion channels with increase of the intracellular calcium concentration by stimulation of receptors, is observed. However, the complete disappearances of these responses were confirmed when treated with collagenase or added 1 μM of Furthermore, the oocytes without injection of cRNAs showed no responses by Ach after treatment with collagenase. the responses observed in occytes with injection of hnACh-R a4 cRNA and hnACh-R β 2 cRNA, i.e., the inward current induced by the intracellular influx of sodium ion according to the stimulation of receptors, would be the freshly observed responses of human $\alpha 4\beta 2$ subtype nicotinic acetylcholine receptors.

Table 16 shows the results of the agonist activity test of the compounds in the present invention and (-)-nicotine as reference compound.

5

10

15

TABLE 16:

10

Compound No.	Agonist activity (ED50)*1
2	3.4 µM
3	43.8 μM
22	(13.2%)
27	(18.0%)
45	(12.0%)
57	(9.1%)
58	(27.9%)
62	(9.6%)
nicotine	11.4 µM

*1: These date are calculated in comparison with the reaction with 10 μM of acetylcholine (100%). Values indicated in a parenthesis show control % by response at 100 μM of the test compounds.

The following are Formulation Examples of the compounds (I) or pharmaceutically acceptable salt thereof according to the present invention

Formulation Example 1 (Tablets):

	Compound 2 (Fumarate)	25	g
	Lactose	130	g
	Crystalline cellulose	20	g
15	Corn starch	20	g
	3% aqueous solution of hydroxypropylmeth	ıyl-	
	cellulose	100	ml
	Magnesium stearate	2	g

Fumarate of Compound 2, lactose, crystalline cellulose and 20 corn starch were screened through a 60-mesh sieve, homogenized and charged into a kneader. A 3% aqueous solution of hydroxypropylmethylcellulose was added to the homogeneous mixture and the mixture was further kneaded. The product was granulated by a 16-mesh sieve, dried in air at 50°C, and again granulated by

a 16-mesh sieve. Magnesium stearate was added to the granule and mixed again. The mixture was tabletted to produce tablets weighing 200 mg each and having an 8 mm diameter.

5 Formulation Example 2 (Capsules):

Compound 3 (Fumarate)	25.0 g
Lactose	125.0 g
Corn starch	48.5 g
Magnesium stearate	1.5 g

The above components were finely pulverized and thoroughly mixed to produce a homogeneous mixture. The mixture was filled in gelatin capsules, 200 mg per capsule, to obtain capsules.

Formulation Example 3 (Injection):

The fumarate of Compound 58 was filled in an amount of 250 mg in a vial and mixed in situ with approximately 4-5 ml of injectable distilled water to make an injectable solution.

INDUSTRIAL APPLICABILITY

15

30

As described above, the compounds of the present invention possess high affinity for α4β2 nicotinic acetylcholine receptor of central nervous systems and activate said α4β2 nicotinic acetylcholine receptor as agonists or modulators. Therefore, the compounds of the present invention are useful for preventing or treating various kinds of diseases, which may be prevented or cured by activating nicotinic acetylcholine receptors.

Especially, the activators for $\alpha 4\beta 2$ nicotinic acetylcholine receptors of the present invention are useful for preventing or treating various diseases such as dementia, senile dementia, presentile dementia, Alzheimer's disease, Parkinson's disease, cerebrovascular dementia, AIDS-related dementia, dementia in Down's syndrome, Tourette's syndrome, neurosis during

the chronic cerebral infarction stage, cerebral dysfunction caused by cerebral injury, anxiety, schizophrenia, depression, Huntington's disease, pain and so on.

CLAIMS

1. Cyclic amidine compounds represented by the following formula (I):

$$A^{1} - N \qquad \qquad (1)$$

wherein:

5

 ${ t A}^1$ and ${ t A}^2$ are hydrogen atom, optionally substituted alkyl group; optionally substituted aryl group; or optionally substituted heterocyclic group; and

10 X is $-C(R^1,R^2)-C(R^3,R^4)-$, $-C(R^5)=C(R^6)-$, $-C(R^7,R^8)-C(R^9,R^{10}) C(R^{11},R^{12})-$, or $-C(R^{13},R^{14})-C(R^{15},R^{16})-NH-$ (wherein, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} and R^{16} are hydrogen atom; halogen atom; optionally substituted alkyl group; optionally substituted aryl group; or optionally substituted 15 heterocyclic group;

or pharmaceutically acceptable salts thereof.

- 2. The following compounds represented by the formula (I) of claim 1;
- 20 2-(6-chloro-3-pyridyl)-2-imidazoline;
 - 2-(6-chloro-3-pyridyl)-1,4,5,6-tetrahydropyrimidine;
 - 2-(6-chloro-3-pyridyl)-1-methyl-2-imidazoline;
 - 2-(6-chloro-3-pyridyl)-1-methyl-1,4,5,6-tetrahydropyrimidine;
 - 1-(6-chloro-3-pyridyl)methylimidazole;
- 25 2-(6-chloro-3-pyridyl)imidazole;
 - 2-(6-chloro-3-pyridyl)methyl-2-imidazoline;
 - 2-(6-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - 2-(6-chloro-3-pyridyl)methyl-1-methyl-2-imidazoline;
 - 2-(6-chloro-3-pyridyl)methyl-1-methyl-1,4,5,6-

tetrahydropyrimidine;

- 1-(6-chloro-3-pyridyl)methyl-2-methyl-2-imidazoline;
- 1-(6-chloro-3-pyridyl)methyl-4,4-dimethyl-2-imidazoline;
- 2-(tetrahydrofuran-3-yl)-1,4,5,6-tetrahydropyrimidine;
- 5 2-(tetrahydrofuran-3-yl)-2-imidazoline;
 - 2-(tetrahydrofuran-3-yl)methyl-1,4,5,6-tetrahydropyrimidine;
 - 2-(5-bromo-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - 2-(5-bromo-3-pyridyl)methyl-2-imidazoline;
 - 2-(3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
- 10 2-(3-pyridyl)methyl-2-imidazoline;
 - 2-(3-aminophenyl)-1,4,5,6-tetrahydropyrimidine;
 - 2-(3-quinolyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - 2-(2-chloro-5-thiazolyl)-1,4,5,6-tetrahydropyrimidine;
 - 2-(3-quinoly1)methyl-2-imidazoline;
- 15 2-(2-chloro-5-thiazoly1)-2-imidazoline;
 - 2-(3-quinolyl)-1,4,5,6-tetrahydropyrimidine;
 - 2-(3-furanyl)methyl-2-imidazoline;
 - 1-(6-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - 2-(3,5-dimethyl-4-isoxazolyl)methyl-1,4,5,6-tetrahydro-
- 20 pyrimidine;
 - 2-(3,5-dimethyl-4-isoxazolyl)methyl-2-imidazoline;
 - 2-(3-thienyl)methyl-1,4,5,6-tetrahydropyrimidine;
 - 2-(3-thienyl)methyl-2-imidazoline;
 - 2-methyl-5-(3-pyridyl)-2-imidazoline;
- 25 5-(3-pyridyl)-2-imidazoline;
 - 1,2-bis[(6-chloro-3-pyridyl)methyl]-1,4,5,6-tetrahydro-pyrimidine;
 - 1-(6-chloro-3-pyridyl)methyl-2-(3-pyridyl)-2-imidazoline;
 - 2-(5,6-dichloro-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;
- 2-(6-chloro-3-pyridyl)methyl-5-phenyl-1,4,5,6-tetrahydroprymidine;
 - 2-(4-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine;

2-(2-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine; 2-(2,6-dichloro-3-pyridy1)methy1-1,4,5,6-tetrahydropyrimidine; 2-[2-(6-chloro-3-pyridyl)ethyl]-1,4,5,6-tetrahydropyrimidine; 2-[2-(6-chloro-3-pyridyl)ethyl]-2-imidazoline; 5 2-(6-methyl-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine; 1,2-bis[(6-chloro-3-pyridyl)methyl]-2-imidazoline; 2-(6-methyl-3-pyridyl)methyl-2-imidazoline; 2-(6-ethoxy-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine; 2-(6-ethoxy-3-pyridyl)methyl-2-imidazoline; 10 2-(6-fluoro-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine; 2-(5,6-dichloro-3-pyridyl)methyl-2-imidazoline; 2-(6-chloro-3-pyridyl)methyl-5,5-dimethyl-1,4,5,6-tetrahydropyrimidine; 2-(2-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine; 15 1-(5,6-dichloro-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine; 2-(5,6-dichloro-3-pyridyl)methyl-1-methyl-2-imidazoline; 2-(6-chloro-3-pyridyl)methyl-4-methyl-1,4,5,6-tetrahydropyrimidine; 1-[2-(6-chloro-3-pyridyl)ethyl]-1,4,5,6-tetrahydropyrimidine; 20 1-(3-pyridazinyl)methyl-1,4,5,6-tetrahydropyrimidine; 1-(6-methyl-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine; 1-(3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine; 3-(6-chloro-3-pyridyl)methyl-1,4,5,6-tetrahydro-1,2,4-triazine; 2-[1-(6-chloro-3-pyridyl)ethyl]-1,4,5,6-tetrahydropyrimidine; 25 1-(2-chloro-5-thiazolyl)methyl-1,4,5,6-tetrahydropyrimidine; 1-[2-(6-chloro-3-pyridyl)ethyl]-2-methyl-2-imidazoline; 1-[2-(6-chloro-3-pyridyl)ethyl]-4,4-dimethyl-2-imidazoline; 2-(2-chloro-5-thiazolyl)methyl-1,4,5,6-tetrahydropyrimidine; 2-(2-chloro-5-thiazolyl)methyl-2-imidazoline; 30 2-(5-pyrimidyl)methyl-1,4,5,6-tetrahydropyrimidine; 2-(5-pyrimidyl)methyl-2-imidazoline; 2-(5-methyl-3-pyridyl)methyl-1,4,5,6-tetrahydropyrimidine.

10

30

and pharmaceutically acceptable salt thereof.

- 3. Activators for $\alpha 4\beta 2$ nicotinic acetylcholine receptors containing the compound or pharmaceutically acceptable salt thereof claimed in claim 1 or 2, as active ingredient.
 - 4. The activators for $\alpha 4\beta 2$ nicotinic acetylcholine receptors according to claim 3, wherein said activators are agonists or modulators at $\alpha 4\beta 2$ nicotinic acetylcholine receptors.
- 5. A medicament for preventing or treating cerebral circulation diseases comprising the activator for $\alpha 4\beta 2$ nicotinic acetylcholine receptors claimed in claim 3 or 4.
- 15 6. A medicament for preventing or treating neurodegenerative disease, dementia, motor ataxia, and neuropathy and mental disease comprising the activator for $\alpha 4\beta 2$ nicotinic acetylcholine receptors claimed in claim 3 or 4.
- 7. The medicament according to claim 6, wherein said neurodegenerative disease is Alzheimer's disease or Parkinson's disease, said dementia is cerebrovascular dementia, said motor ataxia is Tourette's syndrome, and said neuropathy and mental disease is neurosis during the chronic cerebral infarction stage, anxiety or schizophrenia.
 - 8. A medicament for improving the cerebral metabolism, neurotransmission functional disorder and memory disorder, for protecting brain, or having analgesic effect, which comprises the activator for $\alpha 4\beta 2$ nicotinic acetylcholine receptors claimed in claim 3 or 4.

WO 01/81334 PCT/JP01/03378

- 9. A medicament for preventing or treating inflammatory intestinal diseases comprising the activator for $\alpha 4\beta 2$ nicotinic acetylcholine receptors claimed in claim 3 or 4.
- 5 10. The use of the compounds claimed in claim 1 or 2 as the activators for $\alpha 4\beta 2$ nicotinic acetylcholine receptors.
- 11. The method of preventing or treating cerebral circulation diseases which comprises administering activators for $\alpha4\beta2$ 10 nicotinic acetylcholine receptors claimed in claim 3 or 4.
 - 12. The method of preventing or treating neurodegenerative diseases, dementia, motor ataxia, and neuropathy and mental disease which comprises administering activators for $\alpha4\beta2$ nicotinic acetylcholine receptors claimed in claim 3 or 4.

15

13. The method according to claim 12, wherein said neurodegenerative disease is Alzheimer's disease or Parkinson's disease, said dementia is cerebrovascular dementia, said motor ataxia is Tourette's syndrome, and said neuropathy and mental disease is neurosis during the chronic cerebral infarction stage, anxiety or schizophrenia.

10/009475

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 November 2001 (01.11.2001)

PCT

(10) International Publication Number WO 01/081334 A3

- (51) International Patent Classification⁷: C07D 401/04, A61K 31/395, A61P 43/00, C07D 401/06, 405/04, 405/06, 239/06, 417/04, 413/06, 409/06, 401/14, 417/06, 237/26
- (21) International Application Number: PCT/JP01/03378
- (22) International Filing Date: 20 April 2001 (20.04.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2000-120976

21 April 2000 (21.04.2000) J:

- (71) Applicant (for all designated States except US): SUN-TORY LIMITED [JP/JP]; 1-40, Dojimahama 2-chome, Kita-ku, Osaka-shi, Osaka 530-8203 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): IMOTO, Masahiro [JP/JP]; 15-501, Naka-machi 3-chome, Tatebayashi-shi, Gunma 374-0029 (JP). IWANAMI, Tatsuya [JP/JP]; 16-16, Dai-cho, Ashikaga-shi, Tochigi 326-0056 (JP).

AKABANE, Minako [JP/JP]; 1-37-201, Sojiji 1-chome, Ibaraki-shi, Osaka 567-0801 (JP). TANI, Yoshihiro [JP/JP]; 9-38, Hoshimi-cho, Ibaraki-shi, Osaka 567-0843 (JP)

- (74) Agent: KUSAMA, Osamu; KUSAMA PATENT OFFICE, 7F Iwata Bldg., 5-12, Iidabashi 4-chome, Chiyoda-ku, Tokyo 102-0072 (JP).
- (81) Designated States (national): AU, CA, CN, KR, US.
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

with international search report

(88) Date of publication of the international search report: 8 August 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

RECEIVED

SEP 0 6 2002

TECH CENTER 1600/2900

(54) Title: CYCLIC AMIDINE COMPOUNDS AND THEIR USE AS ALPHA4BETA2 NICOTINIC ACETYLCHOLINE RE-CEPTOR LIGANDS

(57) Abstract: There is provided cyclic amidine compounds of the following formula (I) wherein: A^1 and A^2 are hydrogen atom, optionally substituted alkyl group; optionally substituted aryl group; or optionally substituted heterocyclic group; and X is $-C(R^1,R^2)-C(R^3,R^4)$, $-C(R^5)=C(R^6)$ -, $-C(R^7,R^8)-C(R^9,R^{10})-C(R^{11},R^{12})$ -, or $-C(R^{13},R^{14})-C(R^{15},R^{16})$ -NH- (wherein, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , $R^{11}R^{12}$, R^{13} , R^{14} , R^{15} and R^{16} are hydrogen atom; halogen atom; optionally substituted alkyl group; optionally substituted aryl group; or optionally substituted heterocyclic group; or pharmaceutically acceptable salts thereof. These

compounds have good affinity for $\alpha 4\beta 2$ nicotinic acetylcholine receptors and activate the same to thereby exert a preventive or therapeutic effect on cerebral dysfunction.

al Application No PCT/JP 01/03378

C07D401/14

C. DOCUMENTS CONSIDERED TO BE RELEVANT

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D401/04 A61K31/395 C07D405/06

A61P43/00 CO7D239/06 CO7D417/04 CO7D417/06 C07D237/26 C07D401/06 C07D413/06 C07D405/04 C07D409/06

According to International Patent Classification (IPC) or to both national classification and IPC

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, WPI Data, EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the	he relevant passages	Relevant to claim No.
Х	LATLI, BACHIR ET AL: "Novel a 6-Chloro-3-pyridinyl Ligands f the alpha.4.beta.2 Neuronal Ni Acetylcholine Receptor" J. MED. CHEM. (1999), 42(12), XP000941733 cited in the application compound 12 table 2	or cotinic	1–13
		-/	
X Furth	er documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
"A" documer consider of filling de "L" documer which is citation "O" documer other m"P" documer	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	 "T" later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an invol	the application but cony underlying the laimed invention be considered to current is taken alone laimed invention ventive step when the re other such docu- us to a person skilled
	actual completion of the international search January 2002	Date of mailing of the international sea 25/01/2002	rch report
	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer De Jong, B	

Inte nal Application No
PCT/JP 01/03378

	INTERNATIONAL SEAROTTEL SIX	PCT/JP 01/03378
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x	DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; AKEMASA, HIROYUKI: "Preparation of pyridine derivatives as intermediates for insecticides and their intermediates" retrieved from STN Database accession no. 120:298481 XP002185104 abstract & JP 05 339267 A (KOEI CHEMICAL CO, JAPAN) 21 December 1993 (1993-12-21)	1,2
Α	EP 0 679 397 A (BAYER AG) 2 November 1995 (1995-11-02) cited in the application claim 1	1-13
A	WO 00 10997 A (ORTHO MCNEIL PHARM INC) 2 March 2000 (2000-03-02) page 30, line 10 - line 13	1,3-13
		·
	•	
		•
	·	
	·	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1,3-13

Present claims 1,3-13 relate to an extremely large number of possible compounds, their use and pharmaceuticals containing them. Claim 1 even covers well known compounds such as imidazole, 2-imidazoline and 1,4,5,6-tetrahydropyrimidine. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search is only complete for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds according to claim 2, their use and pharmaceuticals containing them.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Inti nal Application No
PCT/JP 01/03378

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
JP 5339267	Α	21-12-1993	JP	3179578 B2	25-06-2001
EP 0679397	A	02-11-1995	DE CA EP JP US	4414569 A1 2147930 A1 0679397 A2 7300415 A 5547965 A	02-11-1995 28-10-1995 02-11-1995 14-11-1995 20-08-1996
WO 0010997	A	02-03-2000	AU EP WO	5574799 A 1107965 A1 0010997 A1	14-03-2000 20-06-2001 02-03-2000

PCT

INTERNATIONAL SEARCH REPORT

TECH CENTER	MAR 2 8	RECE
بد	∞	
=	C-3	

□ P.	ATENT COOPERATION TREA	·
doquett	PCT	TECH CENTER 16 8 2 8 2 8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	INTERNATIONAL SEARCH REP	CENTER &
(0.	(PCT Article 18 and Rules 43 and 44)	8 2 8 1
Applicant's or agent's file reference SN-45	FOR FURTHER see Notification o (Form PCT/ISA/2)	f Transmittal of Internationa Sarcia eport 20) as well as, where application, item 5 below.
International application No.	International filing date (day/month/year)	(Earliest) Priority Date (day/nonth/year)
PCT/JP 01/03378	20/04/2001	21/04/2000
Applicant		
SUNTORY LIMITED		
according to Article 18. A copy is being This International Search Report consis		
the international search Authority (Rule 23.1(b)) b. With regard to any nucleotide a was carried out on the basis of contained in the internal filed together with the infurnished subsequently furnished subsequently the statement that the sinternational application the statement that the infurnished 2. X Certain claims were for 3. Unity of invention is lated. 4. With regard to the title, the text is approved as	and/or amino acid sequence disclosed in the in the sequence listing: tional application in written form. International application in computer readable form to this Authority in written form. It to this Authority in computer readble form. In the sequence listing do a sequence listing do a sequence form in the sequence of the sequen	he international application furnished to this aternational application, the international search
CYCLIC AMIDINE COMPOUNT RECEPTOR LIGANDS 5. With regard to the abstract, The text is approved as the text has been estable within one month from the compound of the drawings to be put as suggested by the applicant for the drawing to because the applicant for the drawing to be the applicant for the drawing to be	submitted by the applicant. Nished, according to Rule 38.2(b), by this Authorithe date of mailing of this international search republished with the abstract is Figure No.	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1,3-13

Present claims 1,3-13 relate to an extremely large number of possible compounds, their use and pharmaceuticals containing them. Claim 1 even covers well known compounds such as imidazole, 2-imidazoline and 1,4,5,6-tetrahydropyrimidine. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search is only complete for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds according to claim 2, their use and pharmaceuticals containing them.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

International Application No

PCT/JP 01/03378 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D401/04 A61K C07D401/06 C07D405/04 A61K31/395 A61P43/00 C07D413/06 C07D417/04 C07D409/06 C07D405/06 C07D239/06 C07D401/14 C07D417/06 C07D237/26 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data, WPI Data, EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ° Citation of document, with indication, where appropriate, of the relevant passages X LATLI, BACHIR ET AL: "Novel and Potent 1-13 6-Chloro-3-pyridinyl Ligands for the.alpha.4.beta.2 Neuronal Nicotinic Acetylcholine Receptor" J. MED. CHEM. (1999), 42(12), 2227-2234, XP000941733 cited in the application compound 12 table 2 Further documents are listed in the continuation of box C. Patent family members are listed in annex. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the A document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the citation or other special reason (as specified) document is combined with one or more other such docu-ments, such combination being obvious to a person skilled document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search

6

Name and mailing address of the ISA

9 January 2002

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

25/01/2002

De Jong, B

Authorized officer

International Application No PCT/JP 01/03378

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; AKEMASA, HIROYUKI: "Preparation of pyridine derivatives as intermediates for insecticides and their intermediates" retrieved from STN Database accession no. 120:298481 XP002185104 abstract & JP 05 339267 A (KOEI CHEMICAL CO, JAPAN) 21 December 1993 (1993-12-21)	1,2		
A	EP 0 679 397 A (BAYER AG) 2 November 1995 (1995-11-02) cited in the application claim 1	1-13		
Α	WO 00 10997 A (ORTHO MCNEIL PHARM INC) 2 March 2000 (2000-03-02) page 30, line 10 - line 13	1,3-13		
	·			
	· · · · · · · · · · · · · · · · · · ·			

formation on patent family members

international	Application No		
 ⇔PCT/JP	01/03378		

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
JP 5339267	A	21-12-1993	JP	3179578 B2	25-06-2001
EP 0679397	A	02-11-1995	DE CA EP JP US	4414569 A1 2147930 A1 0679397 A2 7300415 A 5547965 A	02-11-1995 28-10-1995 02-11-1995 14-11-1995 20-08-1996
WO 0010997	Α	02-03-2000	AU EP WO	5574799 A 1107965 A1 0010997 A1	14-03-2000 20-06-2001 02-03-2000

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

From the INTERNATIONAL BUREAU

To:

KUSAMA, Osamu KUSAMA PATENT OFFICE 7F Iwata Bldg. 5-12, Iidabashi 4-chome Chiyoda-ku, Tokyo 102-0072 JAPON

Date of mailing (day/month/year)

01 November 2001 (01.11.01)

Applicant's or agent's file reference

SN-45

IMPORTANT NOTICE

International application No. PCT/JP01/03378

International filing date (day/month/year) 20 April 2001 (20.04.01)

Priority date (day/month/year)

21 April 2000 (21.04.00)

Applicant

SUNTORY LIMITED et al

 Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this notice: KR,US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:

AU, CA, CN, EP

The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

3. Enclosed with this notice is a copy of the international application as published by the International Bureau on 01 November 2001 (01.11.01) under No. WO 01/81334

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination (at present, all PCT Contracting States are bound by Chapter II).

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and the PCT Applicant's Guide, Volume II.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

J. Zahra

Facsimile No. (41-22) 740.14.35

Telephone No. (41-22) 338.91.11