FINANCIAL ECONOMETRICS

Problem Set-1

Q1.

a.

b.

a.

. summarize, detail

r(m1)							
	Percentiles	Smallest					
1%	-1.336852	-1.550657					
5%	-1.231915	-1.502916					
10%	-1.178755	-1.479418	Obs	5,000			
25%	-1.09399	-1.464529	Sum of wgt.	5,000			
50%	-1.000471		Mean	-1.000328			
		Largest	Std. dev.	.1405898			
75%	9061102	5926968					
90%	8186465	5832513	Variance	.0197655			
95%	7702168	5598732	Skewness	0640003			
99%	6814846	4621855	Kurtosis	3.002239			

Sample Variance = 0.0197655

Sample Bias: $E[\hat{\beta}] - \beta = -1.000328 + 1 = -0.000328$

b.

. summarize, detail

r(median)

	Percentiles	Smallest		
1%	-1.409499	-1.637296		
5%	-1.292199	-1.629403		
10%	-1.227982	-1.557177	Obs	5,000
25%	-1.122236	-1.540094	Sum of wgt.	5,000
50%	-1.003142		Mean	-1.002358
		Largest	Std. dev.	.1755834
75%	8770337	4682474		
90%	7797345	4534649	Variance	.0308295
95%	7179845	4252262	Skewness	024258
99%	5962797	3268192	Kurtosis	2.899953

Sample Variance = 0.0308295

Sample Bias: $E[\hat{\beta}] - \beta = -1.002358 + 1 = -0.002358$

Clearly, the mean has both a lower variance and bias than the median, so we should use the mean as an estimator.

c.

. summarize, detail

r(mean)						
	Percentiles	Smallest				
1%	.6109588	.500175				
5%	.6896025	.5037712				
10%	.7376716	.5083175	Obs	5,000		
25%	.8345756	.509377	Sum of wgt.	5,000		
50%	.9593815		Mean	1.00567		
		Largest	Std. dev.	.2859106		
75%	1.118677	4.254641				
90%	1.310578	4.340088	Variance	.0817449		
95%	1.454491	6.150612	Skewness	5.402133		
99%	1.824515	7.498726	Kurtosis	88.94567		

Sample Variance = 0.0817449

Sample Bias: $E[\hat{eta}] - \beta = 1.00567 - 1 = 0.00567$

. summarize, detail

r(median)

	Percentiles	Smallest		
1%	.2442765	.1945058		
5%	.2748112	.1960465		
10%	.2930143	.2107337	Obs	5,000
25%	.3256424	.2144704	Sum of wgt.	5,000
50%	.3668547		Mean	.3728189
		Largest	Std. dev.	.0657745
75%	.4162321	.6261464		
90%	.4587524	.6359828	Variance	.0043263
95%	.4878296	.6536595	Skewness	.4858539
99%	.5509161	.7216309	Kurtosis	3.354239

.

Sample Variance = 0.0043263 Sample Bias: $E[\hat{\beta}] - \beta = .3728189 - 1 = -0.6271811$

In this case, the variance is lower for the median estimator, but the bias is substantially higher. It is not exactly clear which estimator would be better because both low bias and low variance are desirable features of a good estimator. Low variance implies that, on repeated sampling, the estimate will not change much while low bias is important too. Thus, it is unclear which estimator to use.

Q3.

a. The findings we obtained align with the values documented in the article.

regress var1 L(1).var1 if tin(1953m4, 2013m12)

Source	ss	df	MS		er of obs	=	729
Model Residual	181189993 453508.784	1 727	181189993 623.808506	Prob R-sq	727) > F puared R squared	> = =	99999.00 0.0000 0.9975 0.9975
Total	181643502	728	249510.305	_	R-squared : MSE	=	24.976
var1	Coefficient	Std. err.	t	P> t	[95% co	onf.	interval]
var1 L1.	1.003282	.0018616	538.94	0.000	.99962	73	1.006937
_cons	.9466052	1.255869	0.75	0.451	-1.5189	57	3.412167

regress D(1).var1 L(1).var1 if tin(1953m4, 2013m12)

Source	SS	df	MS		er of obs	s =	729
Model Residual	1938.99747 453508.784	1 727	1938.99747 623.808506	7 Prob 6 R-sc	, 727)) > F quared R-squared	= = = d =	3.11 0.0783 0.0043 0.0029
Total	455447.781	728	625.615084	_	: MSE	=	24.976
D.var1	Coefficient	Std. err.	t	P> t	[95% (conf.	interval]
var1 L1.	.003282	.0018616	1.76	0.078	00037	727	.0069368
_cons	.9466052	1.255869	0.75	0.451	-1.5189	957	3.412167

b. The findings we obtained align with the values documented in the article.

regress GS10 L(1/3).GS10 if tin(1953m4, 2013m12)

Source	SS	df	MS		er of obs	=	726
Model	5526.82921	3	1842.2764		722)	=	20307110
		_				_	
Residual	46.9884088	722	.065080899	R-sq	uared	=	0.9916
				- Adj∣	R-squared	=	0.9915
Total	5573.81762	725	7.6880243	8 Root	MSE	=	.25511
GS10	Coefficient	Std. err.	t	P> t	[95% con	f.	interval]
GS10							
L1.	1.370355	.0363631	37.69	0.000	1.298965	;	1.441745
L2.	5889166	.0586691	-10.04	0.000	704099)	4737343
L3.	.2135858	.0363561	5.87	0.000	.1422096	,	.284962
_cons	.0302642	.023024	1.31	0.189	0149378	3	.0754662

regress D(1).GS10 L(1/3).GS10 if tin(1953m3, 2013m12)

Source	SS	df	MS		er of obs	s =	726
				- F(3,	722)	=	39.03
Model	7.62063045	3	2.54021015	Prob	> F	=	0.0000
Residual	46.9884088	722	.065080899	R-sqi	uared	=	0.1395
				- Adj I	R-squared	d =	0.1360
Total	54.6090393	725	.075322813	Root	MSE	=	.25511
D.GS10	Coefficient	Std. err.	t	P> t	[95% (conf.	interval]
GS10							
L1.	.3703547	.0363631	10.18	0.000	.29890	548	.4417447
L2.	5889166	.0586691	-10.04	0.000	7040	399	4737343
L3.	.2135858	.0363561	5.87	0.000	.14220	396	.284962
_cons	.0302642	.023024	1.31	0.189	0149	378	.0754662

summarize

Variable	0bs	Mean	Std. dev.	Min	Max
r2	1,000	.0098684	.0130894	7.45e-09	.0871385
r2diff	1,000	.5067238	.0495061	.3497049	.6443531

The first R-squared value, which looks at the relationship between a variable "y" and its past value (lag), is extremely low, around 0.99%. This low R-squared suggests that knowing the past value of "y" doesn't help much in predicting its current value because "y" is essentially random with a mean of 0 and a variance of 1. In simpler terms, there's no useful information in past values of "y" to explain its current value.

On the other hand, when we examine the regression of the difference between "y" and its lagged value against the lagged value itself, the R-squared is high, approximately 50%. This means that there's a strong relationship between the change in "y" from one period to the next and its lagged value. In other words, the past value of "y" does contain important information for predicting how "y" will change over time.

STATA CODE

Q1.

a. clear all freduse INDPRO gen datem = mofd(daten)

format datem %tm

tsset datem

tsline INDPRO, xtitle("") ytitle("Index level") title("U.S. Industrial Production - Total Index"), if tin(1972m1,2017m12)

b. clear all

freduse IPGMFN

gen datem = mofd(daten)

format datem %tm

tsset datem

tsline IPGMFN, xtitle("") ytitle("Index level") title("U.S. Industrial Production - Manufacturing"), if tin(1972m1,2017m12)

c. clear all

freduse INDPRO IPGMFN

gen datem = mofd(daten)

format datem %tm

tsset datem

gen Log_Total = In(INDPRO)

gen Log Manufacturing = In(IPGMFN)

tsline INDPRO, xtitle("") ytitle("Index level") title("U.S. Industrial Production - Total Index"), if tin(1972m1,2017m12)

tsline IPGMFN, xtitle("") ytitle("Index level") title("U.S. Industrial Production -

Manufacturing"), if tin(1972m1,2017m12)

tsline Log_Total Log_Manufacturing, ytitle ("Index Level") title ("U.S. Industrial Production Combined"), if tin(1972m1,2017m12)

```
a. clear all
   program findmean, rclass
     drop all
     set obs 100
     gen x = rnormal(-1, sqrt(2))
     quietly summarize x, detail
     return scalar m1 = r(mean)
   end
   findmean
   display r(m1)
   set seed 6219
   simulate xmean=r(m1), reps(5000): findmean
   summarize, detail
b. clear all
   program findmedian, rclass
     drop all
     set obs 100
     gen x = rnormal(-1, sqrt(2))
     quietly summarize x, detail
     return scalar median = r(p50)
   end
   findmedian
   display r(median)
   set seed 6219
   simulate xmedian=r(median), reps(5000): findmedian
   summarize, detail
c. clear all
   program findMeanForExp, rclass
     drop all
     set obs 100
     gen x = rnormal(-1, sqrt(2))
     gen y = exp(x)
     quietly summarize y, detail
     return scalar mean = r(mean)
   end
   set seed 6219
   simulate ymean=r(mean), reps(5000): findMeanForExp
   summarize, detail
```

```
clear all
program findMedianForExp, rclass
    drop _all
    set obs 100
    gen x = rnormal(-1, sqrt(2))
    gen y = exp(x)
    quietly summarize y, detail
    return scalar median = r(p50)
end

set seed 6219
simulate ymedian=r(median), reps(5000): findMedianForExp
summarize, detail
```

```
a. clear all
   use SPShiller.dta
   gen time=tm(1871m1)+ n-1
   format time %tm
   tsset time
   describe
   regress var1 L.var1 if tin(1953m4, 2013m12)
   regress D.var1 L.var1 if tin(1953m4, 2013m12)
b. clear all
   freduse GS10
   describe
   tsmktim time, start(1953m4)
   tsset time
   describe
   regress GS10 L(1/3).GS10 if tin(1953m4, 2013m12)
   regress D.GS10 L(1/3).GS10 if tin(1953m4, 2013m12)
c. program findrsq, rclass
     drop _all
     set obs 100
     gen time= n
     tsset time
     gen y = rnormal(0,1)
     quietly regress y L.y
     return scalar rsq = e(r2)
     quietly regress D.y L.y
     return scalar rsqdiff = e(r2)
   end
   set seed 6219
   simulate r2=r(rsq) r2diff=r(rsqdiff), reps(1000) nodots: findrsq
   summarize
```