

Institut National
Universitaire
Champollion

Architecture Systèmes Réseaux Protocole TCP/IP

L1 MAT-INF-PCI

Nicolas GARRIC

Le modèle en couches TCP/IP

Modèle TCP/IP	Modèle OSI	
Couche Application	Couche Application	
	Couche Présentation	
	Couche Session	
Couche Transport	Couche Transport	
Couche Réseau	Couche Réseau	
Couche Liens	Couche Liaison	
	Couche Physique	

Les couches TCP/IP

TCP/IP est constitué de 4 couches de protocoles :

- La couche de liens : c' est l'interface avec le réseau physique : driver du système d'exploitation + carte réseau. Il s'agit principalement du protocole Ethernet
- La couche réseau ou couche IP (Internet Protocol) : gère la circulation des paquets à travers le réseau en assurant leur routage.

Les couches TCP/IP

- La couche transport ou couche TCP (Transport Control Protocol) :
 - elle assure une communication de bout en bout en faisant abstraction des machines intermédiaires entre l'émetteur et le destinataire.
 - elle s'occupe de réguler le flux de données et assure un transport fiable (données transmises sans erreur et reçues dans l'ordre de leur émission)

Les couches TCP/IP

- La couche application : c'est la couche des programmes utilisateurs
 - Clients et serveurs web (HTTP),
 - Clients et serveurs FTP,
 - Clients et serveurs mail (SMTP, POP, IMAP)

Communication sur un même réseau

puis sur 2 réseaux distincts

- Le protocole IP (Internet Protocol) procède par envoi de paquets :
- L'expéditeur découpe le message à envoyer en paquets, envoyés séparément sur internet, en spécifiant le destinataire
- Le récepteur réceptionne les paquets et reconstitue le message initial.

 Le protocole IP se compare à l'envoi d'une lettre par la poste : c'est une communication asynchrone

 Par opposition à une communication synchrone comme le téléphone

Sur Internet, chaque paquet de données est enveloppé par le protocole IP qui lui ajoute diverses informations :

- L'adresse de l'expéditeur (son adresse IP),
- L'adresse IP du destinataire,
- Quelques données supplémentaires qui permettent le bon acheminement du message

Adresse IP (1)

- Le protocole IP utilise des adresses IP pour identifier chaque ordinateur de façon unique
- L'adresse IP est un entier de 32 bits. On le représente sous la forme de 4 entiers (de 0 à 255) séparés par des points. (chaque entier code 8 bits de l'adresse)
- Exemples :

194.153.205.26

83.193.102.235

Adresse IP (2)

- L'adresse IP se découpe en deux parties:
 - La partie gauche contient l'adresse du réseau.
 - La partie droite contient l'adresse de la machine dans le réseau.
- Exemples :

194.153.205.26 : 194.153.205 est l'adresse du réseau

83.193.102.235 : 83 est l'adresse du réseau

Masque de sous-réseau

- Comment savoir combien d'octets sont consacrés à l'adresse du réseau ?
- On utilise le système CIDR (Classless InterDomain Routing)
- Un masque de sous réseau indique où est la frontière entre l'adresse du réseau et l'adresse de la machine

Adresse CIDR

- Exemple : soit l'adresse 83.193.102.235 avec le masque de sous réseau 255.128.0.0

 - Donc les 9 premiers bits désignent l'adresse du réseau : 83.128.0.0
- 83.193.102.235=01010011.11000001.01100110.1 1101011
 - Donc l'adresse du réseau est : 83.128.0.0
 - Donc l'adresse de la machine dans le réseau est : 0.65.102.235
- La notation CIDR = 83.193.102.235 / 9

Attribution d'adresses IP

 Au niveau mondial, l'ICANN (Internet Corporation for Assigned Names and Numbers) attribue les adresses IP

 En pratique : les FAI (Fournisseurs Accès Internet) dispose de nombreuses adresses IP qu'ils mettent à disposition de leurs clients

Notion de port

- Si plusieurs programmes qui fonctionnent en même temps sur le même ordinateur (par exemple firefox, thunderbird et avast) et utilisent internet
- Quand l'ordinateur reçoit un paquet IP, à quelle application donner ce paquet ?
- Pour distinguer les différentes sources de données chacune de ces applications se voit attribuer une adresse unique sur la machine, codée sur 16 bits : un numéro de port

Notion de port

Votre ordinateur(adresse IP 208.26.195.4)

De même, à une même adresse IP, en peut s'adresser à différents logiciels en précisant le numéro du port (ici : 3).

http://speedwebl.free.fr/frames2.php?page=reseaul

Principaux numéros de ports

- 20/21, pour l'échange de fichiers via FTP
- 23, pour le port telnet
- 25, pour le courrier électronique via SMTP
- 53, pour la résolution de noms de domaine : DNS
- 67/68, pour DHCP
- 80, serveur HTTP par le biais d'un navigateur web
- 110, pour le courrier électronique via POP

Le routage

Pour envoyer une lettre par la poste,

- Vous la postez dans la boîte-aux-lettre la plus proche
- Ce courrier est transmis au centre de tri de votre ville
- Il est alors transmis à d'autres centres de tri jusqu'à atteindre le destinataire

Le routage

- Sur internet les centres de tri sont les routeurs
- Les routeurs sont des équipements réseau répartis sur l'ensemble du réseau internet
- Il aiguillent les messages qu'ils reçoivent vers :
 - Leur destinataire
 - Ou un autre routeur plus proche de leur destinataire
- Le routage est le mécanisme par lequel des chemins sont sélectionnés dans le réseau pour acheminer les données de l'expéditeur jusqu'au destinataire

Les routeurs

- Les routeurs sont des machines possédant plusieurs cartes réseau dont chacune est reliée à un réseau différent
- le routeur qui reçoit un paquet détermine sur quel réseau se trouve l'ordinateur de destination
- puis il envoie le paquet au réseau choisi
- Pour faire son travail, le routeur utilise des tables de routage

Les tables de routage

- Le routeur reçoit un paquet provenant d'une machine connectée à un des réseaux auquel il est rattaché
- Le routeur regarde l'en-tête du paquet pour trouver l'adresse IP du destinataire
- Si l'adresse IP de destination appartient à l'un des réseaux auxquels le routeur est rattaché, l'information est envoyée vers ce réseau

Les tables de routage

- Si l'adresse IP de destination fait partie d'un réseau différent, le routeur consulte sa table de routage, qui définit le chemin à emprunter pour une adresse donnée
- Le routeur envoie le paquet sur le réseau correspond au début du chemin indiqué par la table de routage

Exemple de table de routage

Adresse réseau	Masque	Passerelle	Interface
200.50.60.0	255.255.255.0	200.50.60.1	200.50.60.1
200.50.61.0	255.255.255.0	200.50.60.3	200.50.60.1

- Les paquets d'adresse commençant par 200.50.60 sont envoyés à leur destinataire en les envoyant au routeur (passerelle) d'adresse 200.50.60.1 via la carte réseau (interface) d'adresse IP 200.50.60.1
- Les paquets d'adresse commençant par 200.50.61 sont envoyés à leur destinataire en les envoyant au routeur (passerelle) d'adresse 200.50.60.3 via la carte réseau (interface) d'adresse IP 200.50.60.1

Les noms de domaines

- Chaque ordinateur possède une adresse IP mais l'utilisateur souhaite avoir un nom plus facilement utilisable
- Exemple : serveur_web.univ-jfc.fr
- Ce nom est composé du nom de la machine (serveur_web) auquel on accole le nom du domaine (univ-jfc.fr)

Les serveurs de noms de domaine (DNS)

- Les DNS (Domain Name Server) distribués sur l'ensemble du réseau font la traduction entre un nom de machine avec son nom de domaine et une adresse IP
- Pour cela chaque DNS :
 - Gère une table de correspondance des machines de son domaine
 - Répond aux demandes d'autres DNS
 - Envoie des demandes à d'autres DNS

Résolution de nom (1)

- En réalité chaque DNS possède peu d'informations.
- Si le nom recherché lui est inconnu, il demande à un serveur racine. De lui indiquer le nom du DNS qui pourra lui répondre
- Il y a peu de serveurs racine : un pour chaque zone : .org, .fr, .it,...

Résolution de nom (2)

- Exemple : mail.univ-jfc.fr
- Votre DNS ne connaît pas ce nom
- Votre DNS interroge le serveur racine de la zone .fr qui lui indique que le serveur www.univ-jfc.fr pourra lui répondre
- Votre DNS interroge www.univ-jfc.fr qui lui donne l'adresse IP recherchée

Attribution de noms de domaines (1)

- Au niveau mondial, l'ICANN (Internet Corporation for Assigned Names and Numbers) attribue les noms de domaine
- En fait l'ICANN délègue se pouvoir à un organisme local pour chaque zone
- Pour la zone .fr : l'AFNIC (Association française pour le nommage Internet en coopération) gère les noms de domaines.

Attribution de noms de domaines (2)

- En pratique l'AFNIC délègue à des bureaux d'enregistrement le soin de louer des noms de domaines
- Un nom de domaine pour 1 an vaut entre 10€ et 30€

