LFA

Prova por Indução Matemática: Reverso do Reverso

March 7, 2018

1 Exercício: $(w^r)^r = w$

Sabendo-se que $u^r v^r = (vu)^r$, a propriedade de associativida e definição de reverso, prove: $(w^r)^r = w$.

BASE Indutiva:

- 1. Define-se comprimento de |w| por |w| = n ou k
- 2. Da definição de reverso: $k=0 \to \mathbb{A}^r = \mathbb{A} \to (\mathbb{A}^r)^r = \mathbb{A}$
- 3. Idem $k = 1 \Rightarrow a^r = a \in (a^r)^r = a$
- 4. Logo k = |w| on k é equivalente ao n passo

HIPÓTESE INDUTIVA:

- 1. Em k ou n tem-se $(w^r)^r = w$
- 2. k=0 já foi definido anteriormente

 \rightarrow Precisamos provar para (k+1), então digamos uma palavra aw, logo $((aw)^r)^r=aw$. Não experimentei com wa mas deve funcionar também, tarefa do aluno!

Passo (ou Prova) Indutivo:

- 1. $((aw)^r)^r$ assim, esta é a partida
- 2. $((aw)^r)^r = (w^r a^r)^r$ aplicar o reverso na parte interna. Usar o teorema $(uv)^r = v^r u^r$, demonstrado anteriormente
- 3. $(w^r a^r)^r = (xy)^r$ para fins de cl
clareza $x = w^r$ e $y = a^r$ na expressão anterior
- 4. $(xy)^r = y^r x^r$ aplicar o reverso, do teorema $(uv)^r = v^r u^r$, demonstrado anteriormente
- 5. $y^r x^r = (a^r)^r (w^r)^r$ aplicando a Hipótese Indutiva, e substituindo os valores originais de y e x
- 6. $a(w^r)^r = aw$ aplicando a Hipótese Indutiva mais uma vez na 2a. parte na expressão
- 7. *aw* C.Q.D.

Cada passo é realizado em relação ao anterior!

2 Notas:

- 1. Esclarecendo: $a^r \equiv a$ da definição do reverso, pois a é símbolo do alfabeto.
- 2. Idem quanto $A^r \equiv A$
- 3. Digitação inicial: Paula