Relatório de Controle de Sistemas Lineares Segunda Aula Prática - Malha Aberta vs. Malha Fechada

Eduardo Marques da Silva - 11721EMT018 Guilherme Salomão Agostini - 11721EMT003 Luiz Renato Rodrigues Carneiro - 11721EMT004 Víctor Assunção Ávila - 11721EMT006

1. Controle em Malha Aberta:

1.1

Gráfico da velocidade com Duty Cycle = 0%. Perceba: no sistema apareceu somente ruidos de leitura.

Gráfico da velocidade com Duty Cycle = 25%

Gráfico da velocidade com Duty Cycle = 35%

Gráfico da velocidade com Duty Cycle = 50%

Gráfico da velocidade com Duty Cycle = 75%

Gráfico da velocidade com Duty Cycle = 95%

Tabela 1: Relação entre Duty Cycle (u%) e velocidade de rotação de eixo (Wss)

u (%)	W _{ss} (rpm)
0	0,8379
25	1106,8751
35	1660,3209
50	2273,6257
75	4266,7145
95	5517,1090

1.2 Realizando uma regressão linear, obtemos:

$$Y = 59,2815 * x - 295,5605 \tag{1}$$

Onde Y = velocidade de rotação (rpm) e x = duty-cycle (percentual)

1.3 Tabela 2: Dado Yref, obter x, na equação 1. Simular x obtido e compará-lo com a referência

Referência (rpm)	u (%)	W _{ss} (rpm)
1000	21,8544	1197,62
1500	30,2887	1867,51
4000	72,4603	3433,69

O sistema de controle em Malha Aberta é sensível à ruídos e perturbações por isso, a relação linear não representa com exatidão o modelo real.

É necessário conhecer com precisão a relação entre o sinal de entrada e saída.

Trata-se de um sistema mais barato de ser implementado, por não precisar de sensores além de poder aplicar em sistemas que não é possível ler o sinal de saída.

Exige menos poder computacional e mais fácil de ser implementado.

Exige manutenção frequente (calibração) por não possuir realimentação.

2. Controle em Malha Fechada:

2.1-

A principal diferença entre o controle de malha aberta e fechada é a presença da realimentação, em outras palavras, é a utilização do sinal da saída para recalcular o sinal da entrada que será utilizado posteriormente. Sua maior vantagem são as consequências geradas por essa realimentação, assim aumentando a robustez do sistema, reduzindo a frequência de calibração do sistema. Contudo apresenta de implementação maior custo por necessitar de sensores. implementação mais complexa, além de exigir maior poder computacional.

2.2-

Gráfico da velocidade angular com Kp = 0,1 e Wss ref = 1000

Kp = 0,1

Média: 853,62 RPM

ERRO MÉDIO = 146.38 RPM

Gráfico da velocidade angular com Kp = 0,25 e Wss ref = 1000

Kp=0.25 MÉDIA = 938,39 RPM ERRO MÉDIO = 61.61 RPM

Gráfico da velocidade angular com Kp = 0,5 e Wss ref = 1000

Kp=0.5

MÉDIA: 1060,19 RPM

ERRO MÉDIO = 60.19 RPM

Gráfico da velocidade angular com Kp = 1,0 e Wss ref = 1000

Kp=1

. MÉDIA: 1221.60

ERRO MÉDIO = 221.60 RPM

2.3-

A conclusão obtida perante a simulação do sistema mostra que,em um intervalo de *Kp* entre 0.25 e 0.5, o erro médio é o menor possível para este controlador. Em valores distantes a essa faixa, o sistema convergiu porém em uma faixa de erro maior. Esta faixa de erro, porém, continua constante para Kps maiores, pois a entrada é limitada entre 0% e 100%. Além disso o aumento do Kp gerou oscilações maiores tanto na saída quanto na estrada da planta.

3. Controle em Malha Fechada com integrador:

3.1-

Gráfico da velocidade angular com Ki = 0.1, Kp = 0.15 e Wss ref =3000

Ao incluir o fator integrador, o sistema passa a enxergar o erro acumulado, convergindo com uma faixa de erro menor, porém com um tempo de resposta maior para estabilizar. Este tipo de controlador é mais robusto, porém, tem maior custo de implementação.