# Package 'hpgltools'

September 8, 2016

Type Package

Title A pile of (hopefully) useful R functions

**Version** 2016.02 **Date** 2016-02-01

**Author** Ashton Trey Belew, Keith Hughitt

Maintainer Ashton Trey Belew <abelew@gmail.com>

**Description** This is a set of functions I have been using in my various analyses in the El-Sayed laboratory. The set of tasks included herein run a spectrum from preprocessing count-tables from RNAseq-like data, through differential expression analyses, to post-processing tasks like gene ontology enrichment. Along the way, these function seek to make plotting analyses consistent, provide multiple entry-points to the various tools, and handle

License GPL-2 | file LICENSE

**Suggests** ade4, affy, AnnotationDbi, AnnotationForge, AnnotationHub, BiocGenerics, BiocInstaller, Biostrings,

corner cases which are not flexibly handled by the packages this is based upon.

biomaRt, Category, clusterProfiler, corpcor, corrplot, data.table, DBI, DESeq2, DESeq, devtools, directlabels, dplyr, doParallel, DOSE, EDASeq, edgeR, ffpe, fission, genbankr, genefilter, genomeIntervals, GenomicFoDb, GenomicFeatures, genoPlotR, GenomicRanges, ggdendro, ggrepel,

GO.db, googleVis, goseq, GOstats, gplots, graph, gProfileR, GSEABase, gtools, gridExtra, hash, Heatplus, Hmisc, igraph, inflection, IRanges, jsonlite, KEGGgraph, KEGGREST, knitcitations, lattice, limma, matrixStats, motifRG, multtest, mygene, openxlsx, OrganismDbi, pander, pasilla, pathview, plyr, preprocessCore, qvalue, RamiGO, RColorBrewer, ReactomePA, readr, rentrez, reshape2, RCurl, rGADEM, Rgraphviz, rmarkdown, RMySQL, robustbase, RUVSeq, reshape, rjson, robust,

Rsamtools, rtracklayer, S4Vectors, scales, seqinr, seqLogo, statmod, stringi, stringr, survJamda, sva, taxize, testthat, topGO, variancePartition, xtable, XVector

**Imports** Biobase, knitr, ggplot2, magrittr, methods

VignetteBuilder knitr RoxygenNote 5.0.1

# $\mathsf{R}$ topics documented:

| all_ontology_searches       | 6  |
|-----------------------------|----|
| all_pairwise                | 8  |
| backup_file                 | 9  |
| basic_pairwise              | 9  |
| batch_counts                | 10 |
| bioc_all                    | 11 |
| biomart_orthologs           | 12 |
| cbcb_batch_effect           | 12 |
| cbcb_filter_counts          | 13 |
| check_clusterprofiler       | 14 |
| choose_dataset              | 14 |
| choose_model                | 15 |
| choose_orgdb                | 16 |
| choose_txdb                 | 16 |
| circos_arc                  | 17 |
| circos_heatmap              | 18 |
| circos_hist                 | 18 |
| circos_ideogram             | 19 |
| circos_karyotype            | 20 |
| circos_make                 | 20 |
| circos_plus_minus           | 21 |
| circos_prefix               | 22 |
| circos_suffix               | 22 |
| circos_tile                 | 23 |
| cluster_trees               | 24 |
| combine_de_tables           | 25 |
| compare_go_searches         | 26 |
| compare_logfc_plots         | 26 |
| compare_surrogate_estimates | 27 |
| compare_tables              | 27 |
| concatenate_runs            | 28 |
| convert_counts              | 29 |
| create_combined_table       | 30 |
| create_expt                 | 31 |
| default_norm                | 32 |
| deparse_go_value            |    |
| deseq2_pairwise             | 33 |
| deseq_coefficient_scatter   | 34 |
| deseq_pairwise              | 35 |
| divide_seq                  | 35 |
| edger_coefficient_scatter   | 36 |
| edger_pairwise              | 37 |
| expt_subset                 | 38 |
| extract_go                  | 39 |
| extract_lengths             | 39 |
| extract_significant_genes   | 40 |
|                             |    |

| factor_rsquared               |
|-------------------------------|
| filter_counts                 |
| gather_goseq_genes            |
| gbk2txdb                      |
| gbk_annotations               |
| genefilter_cv_counts          |
| genefilter_kofa_counts        |
| genefilter_pofa_counts        |
| generate_gene_kegg_mapping    |
| generate_kegg_pathway_mapping |
| getEdgeWeights                |
| get_biomart_annotations       |
| get_biomart_ontologies        |
| get_eupath_config             |
| get_genelengths               |
| get_kegg_genes                |
| get_kegg_sub                  |
| get_microbesonline_annotation |
| get_microbesonline_ids        |
|                               |
| 6 = =                         |
| get_model_adjust              |
| get_ncbi_taxonid              |
| get_sig_genes                 |
| gff2df                        |
| gff2irange                    |
| godef                         |
| golev                         |
| golevel                       |
| golevel_df                    |
| goont                         |
| gosec                         |
| goseq_table                   |
| goseq_trees                   |
| gostats_kegg                  |
| gostats_trees                 |
| gosyn                         |
| goterm                        |
| gotest                        |
| graph_metrics                 |
| heatmap.3                     |
| hpgltools                     |
| hpgl_arescore                 |
| hpgl combatMod                |
| hpgl_cor                      |
| hpgl_enrich.internal          |
|                               |
| 10-                           |
| hpgl_Gff2GeneTable            |
| hpgl_GOplot                   |

| npgl_GroupDensity        | . 78  |
|--------------------------|-------|
| npgl_log2cpm             | . 79  |
| npgl_norm                | . 79  |
| npgl_pathview            | . 80  |
| npgl_qshrink             | . 81  |
| npgl_qstats              | . 82  |
| npgl_read_files          | . 83  |
| npgl_rpkm                | . 84  |
| npgl_voom                | . 84  |
| kegg_get_orgn            | . 85  |
| kegg_to_ensembl          | . 86  |
| imma_coefficient_scatter | . 87  |
| imma_pairwise            | . 88  |
| imma_scatter             | . 89  |
| oadme                    | . 90  |
| oad_annotations          | . 91  |
| oad_go_terms             | . 92  |
| oad_host_annotations     | . 92  |
| oad_kegg_mapping         | . 93  |
| oad_kegg_pathways        |       |
| makeSVD                  |       |
| make_exampledata         | . 95  |
| make_id2gomap            | . 96  |
| make_organismdbi         | . 97  |
| make_orgdb               | . 98  |
| make_orgdb_info          | . 98  |
| make_pairwise_contrasts  | . 99  |
| make_report              |       |
| make_tooltips            | . 100 |
| make_txdb                | . 101 |
| median_by_factor         | . 102 |
| model_test               | . 102 |
| my_identifyAUBlocks      |       |
| normalize_counts         | . 104 |
| normalize_expt           | . 104 |
| orgdb idmap              | . 106 |
| parse gene go terms      |       |
| parse_gene_info_table    | . 107 |
| parse_go_terms           |       |
| parse_interpro_domains   |       |
| pattern_count_genome     |       |
| oca_highscores           |       |
| oca_information          |       |
| ocRes                    |       |
| oct_all_kegg             |       |
| oct_kegg_diff            |       |
| okg_cleaner              |       |
| plot batchsv             |       |

| plot_bcv                   | 115 |
|----------------------------|-----|
| plot_boxplot               | 116 |
| plot_corheat               | 117 |
| plot_density               | 118 |
| plot_disheat               | 119 |
| plot_dist_scatter          | 120 |
| plot_essentiality          | 121 |
| plot_goseq_pval            | 121 |
| plot_gostats_pval          | 122 |
| plot_gprofiler_pval        | 123 |
| plot_gvis_ma               | 123 |
| plot_gvis_scatter          | 124 |
| plot_gvis_volcano          | 125 |
| plot_heatmap               | 126 |
| plot_histogram             | 127 |
| plot_libsize               | 128 |
| plot_linear_scatter        | 129 |
| -<br>plot_ma               | 130 |
|                            |     |
| plot_multihistogram        | 132 |
| plot_multiplot             | 133 |
| plot_nonzero               | 133 |
| plot_num_siggenes          | 134 |
| plot_ontpval               | 135 |
| plot_pairwise_ma           | 135 |
| plot_pca                   | 136 |
| plot pcfactor              | 137 |
| <br>plot_pcs               | 137 |
| <br>plot_qq_all            | 138 |
| plot_qq_all_pairwise       | 139 |
| plot_qq_plot               | 139 |
| plot_sample_heatmap        | 140 |
| plot_scatter               |     |
| plot sm                    | 141 |
| plot spirograph            | 142 |
| plot_svfactor              | 143 |
| plot_topgo_densities       |     |
| plot_topgo_pval            |     |
| plot_volcano               |     |
| pp                         |     |
| print_ups_downs            |     |
| read_metadata              |     |
| require.auto               |     |
| saveme                     |     |
| semantic_copynumber_filter |     |
| sequence_attributes        |     |
| set_expt_batch             |     |
| set_expt_colors            | 151 |

**177** 

| set_expt_condition         |
|----------------------------|
| set_expt_factors           |
| sillydist                  |
| simple_clusterprofiler     |
| simple_clusterprofiler_old |
| simple_comparison          |
| simple_cp_enricher         |
| simple_filter_counts       |
| simple_gadem               |
| simple_goseq               |
| simple_gostats             |
| simple_gprofiler           |
| simple_topgo               |
| sm                         |
| subset_ontology_search     |
| sum_exons                  |
| s_p                        |
| tnseq_saturation           |
| topDiffGenes               |
| topgo_tables               |
| topgo_trees                |
| transform_counts           |
| translate_ids_querymany    |
| tritryp_downloads          |
| tryCatch.W.E               |
| u_plot                     |
| varpart                    |
| write_goseq_data           |
| write_go_xls               |
| write_gprofiler_data       |
| write_limma                |
| write_subset_ontologies    |
| write_xls                  |
| ymxb_print                 |
|                            |

 ${\it all\_ontology\_searches} \ \ {\it Perform\ ontology\ searches\ given\ the\ results\ of\ a\ differential\ expression\ analysis.}$ 

# Description

Index

This takes a set of differential expression results, extracts a subset of up/down expressed genes; passes them to goseq, clusterProfiler, topGO, GOstats, and gProfiler; collects the outputs; and returns them in a (hopefully) consistent fashion. It attempts to handle the differing required annotation/GOid inputs required for each tool and/or provide supported species in ways which the various tools expect.

all\_ontology\_searches 7

#### Usage

```
all_ontology_searches(de_out, gene_lengths = NULL, goids = NULL, n = NULL,
z = NULL, fc = NULL, p = NULL, overwrite = FALSE,
species = "unsupported", orgdb = "org.Dm.eg.db",
goid_map = "reference/go/id2go.map", gff_file = NULL, gff_type = "gene",
do_goseq = TRUE, do_cluster = TRUE, do_topgo = TRUE,
do_gostats = TRUE, do_gprofiler = TRUE, do_trees = FALSE, ...)
```

### **Arguments**

| de_out       | List of topTables comprising limma/deseq/edger outputs.                               |
|--------------|---------------------------------------------------------------------------------------|
| gene_lengths | Data frame of gene lengths for goseq.                                                 |
| goids        | Data frame of goids and genes.                                                        |
| n            | Number of genes at the top/bottom of the fold-changes to define 'significant.'        |
| Z            | Number of standard deviations from the mean fold-change used to define 'significant.' |
| fc           | Log fold-change used to define 'significant'.                                         |
| р            | Maximum pvalue to define 'significant.'                                               |
| overwrite    | Overwrite existing excel results file?                                                |
| species      | Supported organism used by the tools.                                                 |
| goid_map     | Mapping file used by topGO, if it does not exist then goids_df creates it.            |
| gff_file     | gff file containing the annotations used by gff2genetable from clusterprofiler.       |
| gff_type     | Column to use from the gff file for the universe of genes.                            |
| do_goseq     | Perform simple_goseq()?                                                               |
| do_cluster   | Perform simple_clusterprofiler()?                                                     |
| do_topgo     | Perform simple_topgo()?                                                               |
| do_gostats   | Perform simple_gostats()?                                                             |
| do_gprofiler | Perform simple_gprofiler()?                                                           |
| do_trees     | make topGO trees from the data?                                                       |
|              |                                                                                       |

#### Value

a list of up/down ontology results from goseq/clusterprofiler/topgo/gostats, and associated trees.

### **Examples**

8 all\_pairwise

### **Description**

This takes an expt object, collects the set of all possible pairwise comparisons, sets up experimental models appropriate for the differential expression analyses, and performs them.

# Usage

```
all_pairwise(input, conditions = NULL, batches = NULL, model_cond = TRUE,
  model_batch = TRUE, model_intercept = TRUE, extra_contrasts = NULL,
  alt_model = NULL, libsize = NULL, annot_df = NULL, ...)
```

### **Arguments**

| input           | Dataframe/vector or expt class containing count tables, normalization state, etc.                                                                                                                                                                                                       |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| conditions      | Factor of conditions in the experiment.                                                                                                                                                                                                                                                 |  |
| batches         | Factor of batches in the experiment.                                                                                                                                                                                                                                                    |  |
| model_cond      | Include condition in the model? This is likely always true.                                                                                                                                                                                                                             |  |
| model_batch     | Include batch in the model? This may be true/false/"sva" or other methods supported by get_model_adjust().                                                                                                                                                                              |  |
| model_intercept |                                                                                                                                                                                                                                                                                         |  |
|                 | Use an intercept model instead of cell means?                                                                                                                                                                                                                                           |  |
| extra_contrasts |                                                                                                                                                                                                                                                                                         |  |
|                 | Optional extra contrasts beyone the pairwise comparisons. This can be pretty neat, lets say one has conditions A,B,C,D,E and wants to do (C/B)/A and (E/D)/A or (E/D)/(C/B) then use this with a string like: "c_vs_b_ctrla = (C-B)-A, e_vs_d_ctrla = (E-D)-A, de_vs_cb = (E-D)-(C-B)". |  |
| alt_model       | Alternate model to use rather than just condition/batch.                                                                                                                                                                                                                                |  |
| libsize         | Library size of the original data to help voom().                                                                                                                                                                                                                                       |  |
| annot_df        | Annotations to add to the result tables.                                                                                                                                                                                                                                                |  |

Picks up extra arguments into arglist, currently only passed to write\_limma().

# Value

A list of limma, deseq, edger results.

### **Examples**

```
## Not run:
    finished_comparison = eBayes(limma_output)
    data_list = write_limma(finished_comparison, workbook="excel/limma_output.xls")
## End(Not run)
```

backup\_file 9

| backup_file | Make a backup of an existing file with n revisions, like VMS! |
|-------------|---------------------------------------------------------------|
|             |                                                               |

### **Description**

Sometimes I just want to kick myself for overwriting important files and then I remember using VMS and wish modern computers were a little more like it.

### Usage

```
backup_file(backup_file, backups = 4)
```

### **Arguments**

backup\_file Filename to backup.
backups How many revisions?

basic\_pairwise

The simplest possible differential expression method.

### Description

Perform a pairwise comparison among conditions which takes nothing into account. It \_only\_ takes the conditions, a mean value/variance among them, divides by condition, and returns the result. No fancy nomalizations, no statistical models, no nothing. It should be the very worst method possible. But, it should also provide a baseline to compare the other tools against, they should all do better than this, always.

# Usage

```
basic_pairwise(input, design = NULL, force = FALSE, ...)
```

### **Arguments**

| input  | Count table by sample.                |
|--------|---------------------------------------|
| design | Data frame of samples and conditions. |
| force  | Force as input non-normalized data?   |
|        | Extra options passed to arglist.      |

#### Value

Df of pseudo-logFC, p-values, numerators, and denominators.

10 batch\_counts

#### See Also

#### limma DESeq2 edgeR

### **Examples**

```
## Not run:
stupid_de <- basic_pairwise(expt)
## End(Not run)</pre>
```

batch\_counts

Perform different batch corrections using limma, sva, ruvg, and cbcb-SEO.

#### **Description**

I found this note which is the clearest explanation of what happens with batch effect data: https://support.bioconductor.org/p/7 Just to be clear, there's an important difference between removing a batch effect and modelling a batch effect. Including the batch in your design formula will model the batch effect in the regression step, which means that the raw data are not modified (so the batch effect is not removed), but instead the regression will estimate the size of the batch effect and subtract it out when performing all other tests. In addition, the model's residual degrees of freedom will be reduced appropriately to reflect the fact that some degrees of freedom were "spent" modelling the batch effects. This is the preferred approach for any method that is capable of using it (this includes DESeq2). You would only remove the batch effect (e.g. using limma's removeBatchEffect function) if you were going to do some kind of downstream analysis that can't model the batch effects, such as training a classifier. I don't have experience with ComBat, but I would expect that you run it on log-transformed CPM values, while DESeq2 expects raw counts as input. I couldn't tell you how to properly use the two methods together.

#### Usage

```
batch_counts(count_table, design, batch = TRUE, batch1 = "batch",
  batch2 = NULL, noscale = TRUE, ...)
```

### **Arguments**

| count_table | Matrix of (pseudo)counts.                                                                                     |
|-------------|---------------------------------------------------------------------------------------------------------------|
| design      | Model matrix defining the experimental conditions/batches/etc.                                                |
| batch       | String describing the method to try to remove the batch effect (or FALSE to leave it alone, TRUE uses limma). |
| batch1      | Column in the design table describing the presumed covariant to remove.                                       |
| batch2      | Column in the design table describing the second covariant to remove (only used by limma at the moment).      |
| noscale     | Used for combatmod, when true it removes the scaling parameter from the invocation of the modified combat.    |
|             | More options for you!                                                                                         |

bioc\_all

#### Value

The 'batch corrected' count table and new library size. Please remember that the library size which comes out of this may not be what you want for voom/limma and would therefore lead to spurious differential expression values.

#### See Also

### limma edgeR RUVSeq sva cbcbSEQ

### **Examples**

```
## Not run:
limma_batch <- batch_counts(table, design, batch1='batch', batch2='strain')
sva_batch <- batch_counts(table, design, batch='sva')
## End(Not run)</pre>
```

bioc\_all

Grab a copy of all bioconductor packages and install them by type

### **Description**

This uses jsonlite to get a copy of all bioconductor packages by name and then iterates through them with BiocInstaller to install all of them. It performs a sleep between each installation in an attempt to avoid being obnoxious. As a result, it will of a necessity take forever.

### Usage

```
bioc_all(release = "3.4", mirror = "bioc.ism.ac.jp", base = "packages",
  type = "software", suppress_updates = TRUE, suppress_auto = TRUE,
  force = FALSE)
```

#### **Arguments**

release Bioconductor release to use, should probably be adjusted to automatically find

it.

mirror Bioconductor mirror to use.

base Base directory on the mirror to download from.

type Type in the tree to use (software, annotation, or experiment)

force Install if already installed?

suppressUpdates

For BiocLite(), don't update?

suppressAutoUpdate

For BiocLite(), don't update?

#### Value

a number of packages installed

12 cbcb\_batch\_effect

### **Description**

Biomart's function getLDS is incredibly powerful, but it makes me think very polite people are going to start knocking on my door, and it fails weirdly pretty much always. This function attempts to alleviate some of that frustration.

### Usage

```
biomart_orthologs(gene_ids, first_species = "hsapiens",
   second_species = "mmusculus", host = "dec2015.archive.ensembl.org",
   trymart = "ENSEMBL_MART_ENSEMBL")
```

### **Arguments**

gene\_ids List of gene IDs to translate.

first\_species Linnean species name for one species.

second\_species Linnean species name for the second species.

host Ensembl server to query.
trymart Assumed mart name to use.

#### Value

Df of orthologs.

cbcb\_batch\_effect A function suggested by Hector Corrada Bravo and Kwame Okrah for

batch removal

#### **Description**

During a lab meeting, the following function was suggested as a quick and dirty batch removal tool

### Usage

```
cbcb_batch_effect(normalized_counts, model)
```

### **Arguments**

normalized\_counts

Data frame of log2cpm counts.

model Balanced experimental model containing condition and batch factors.

cbcb\_filter\_counts 13

### Value

Dataframe of residuals after subtracting batch from the model.

### See Also

```
voom lmFit
```

### **Examples**

```
## Not run:
newdata <- cbcb_batch_effect(counts, expt_model)
## End(Not run)</pre>
```

cbcb\_filter\_counts

Filter low-count genes from a data set using cpm data and a threshold.

### **Description**

This was a function written by Kwame Okrah and perhaps also Laura Dillon to remove low-count genes. It drops genes based on a cpm threshold and number of samples.

### Usage

```
cbcb_filter_counts(count_table, threshold = 2, min_samples = 2)
```

### **Arguments**

count\_table Data frame of (pseudo)counts by sample.
threshold Lower threshold of counts for each gene.
min\_samples Minimum number of samples.

#### Value

Dataframe of counts without the low-count genes.

# **Examples**

```
## Not run:
filtered_table <- cbcb_filter_counts(count_table)
## End(Not run)
```

14 choose\_dataset

check\_clusterprofiler Make sure that clusterProfiler is ready to run.

#### **Description**

Many of our ontology searches are using non-supported organisms. These need to have a geneTable.rda file in place which maps the gene IDs to GO IDs. This function checks for that file and attempts to set it up if it is not found.

# Usage

```
check_clusterprofiler(gff = "test.gff", goids_df = NULL)
```

# **Arguments**

gff Ggff file containing annotation data (gene lengths).

goids\_df Data frame of gene IDs and GO ontologies 1:1, other columns are ignored.

#### Value

GO2EG data structure created, probably don't save this, it is entirely too big.

#### **Examples**

```
## Not run:
  go2eg <- check_clusterprofiler(gff, goids_df)
  rm(go2eg)
## End(Not run)</pre>
```

choose\_dataset

Choose a suitable data set for Edger/DESeq

# Description

The \_pairwise family of functions all demand data in specific formats. This tries to make that consistent.

### Usage

```
choose_dataset(input, force = FALSE, ...)
```

### Arguments

input Expt input.

force Force non-standard data

... More options for future expansion

choose\_model 15

#### Value

List the data, conditions, and batches in the data.

| choose_model | Try out a few experimental models and return a likely working option. |
|--------------|-----------------------------------------------------------------------|
|              |                                                                       |

### **Description**

The \_pairwise family of functions all demand an experimental model. This tries to choose a consistent and useful model for all for them. This does not try to do multi-factor, interacting, nor dependent variable models, if you want those do them yourself and pass them off as alt\_model.

### Usage

```
choose_model(conditions, batches, model_batch = TRUE, model_cond = TRUE,
  model_intercept = TRUE, alt_model = NULL, alt_string = NULL,
  intercept = 0, reverse = FALSE)
```

#### **Arguments**

conditions Factor of conditions in the putative model.

batches Factor of batches in the putative model.

model\_batch Try to include batch in the model?

model\_cond Try to include condition in the model? (Yes!)

model\_intercept

Use an intercept model instead of cell-means?

alt\_model Use your own model.

alt\_string String describing an alternate model.

### Value

List including a model matrix and strings describing cell-means and intercept models.

16 choose\_txdb

choose\_orgdb

Load the appropriate orgDb environment for a given species.

#### **Description**

Ok, so these are a bit more complex than I realized. The heirarchy as I now understand it (probably wrong) is that orgdb objects provide ID mappings among the various DBs. txdb objects provide the actual annotation information, and organismdbs acquire both (but only exist for a few species). Let's face it, I will never remember that the yeast orgdb is 'org.Sc.sgd.something'. This function is intended to make that process easier. Feed it a species name which makes sense: 'homo\_sapiens' and it will assume you mean orgdb.whatever and load that into your environment. This should also make a reasonable attempt at installing the appropriate orgdb if it is not already in your R library tree.

### Usage

```
choose_orgdb(species = "saccharomyces_cerevisiae")
```

### **Arguments**

species

Human readable species name

#### Value

orgdb object for the relevant species, or an error if I don't have a mapping for it.

#### **Examples**

```
object <- choose_orgdb("homo_sapiens")</pre>
```

choose\_txdb

Load the appropriate TxDb environment for a given species.

# Description

Ok, so these are a bit more complex than I realized. The heirarchy as I now understand it (probably wrong) is that orgdb objects provide ID mappings among the various DBs. txdb objects provide the actual annotation information, and organismdbs acquire both (but only exist for a few species). Let's face it, I will never remember that the yeast orgdb is 'org.Sc.sgd.something'. This function is intended to make that process easier. Feed it a species name which makes sense: 'homo\_sapiens' and it will assume you mean orgdb.whatever and load that into your environment. This should also make a reasonable attempt at installing the appropriate orgdb if it is not already in your R library tree.

#### Usage

```
choose_txdb(species = "saccharomyces_cerevisiae")
```

circos\_arc 17

#### **Arguments**

species Human readable species name

#### Value

orgdb object for the relevant species, or an error if I don't have a mapping for it.

#### **Examples**

```
object <- choose_txdb("homo_sapiens")</pre>
```

circos\_arc

Write arcs between chromosomes in circos.

### Description

Ok, so when I said I only do 1 chromosome images, I lied. This function tries to make writing arcs between chromosomes easier. It too works in 3 stages, It writes out a data file using cfgout as a basename and the data from df in the circos arc format into circos/data/bob\_arc.txt It then writes out a configuration plot stanza in circos/conf/bob\_arc.conf and finally adds an include to circos/bob.conf

# Usage

```
circos_arc(df, cfgout = "circos/conf/default.conf", first_col = "chr1",
  second_col = "chr2", color = "blue", radius = 0.75, thickness = 3)
```

### **Arguments**

df Dataframe with starts/ends and the floating point information.

cfgout Master configuration file to write.

first\_col Name of the first chromosome.

second\_col Name of the second chromosome.

color Color of the chromosomes.

radius Outer radius at which to add the arcs.

thickness Integer thickness of the arcs.

#### **Details**

In its current implementation, this only understands two chromosomes. A minimal amount of logic and data organization will address this weakness.

### Value

The file to which the arc configuration information was written.

18 circos\_hist

| circos_heatmap | Write tiles of arbitrary heat-mappable data in circos. |
|----------------|--------------------------------------------------------|
|                |                                                        |

### **Description**

This function tries to make the writing circos heatmaps easier. Like circos\_plus\_minus() and circos\_hist() it works in 3 stages, It writes out a data file using cfgout as a basename and the data from df in the circos histogram format into circos/data/bob\_heatmap.txt It then writes out a configuration plot stanza in circos/conf/bob\_heatmap.conf and finally adds an include to circos/bob.conf

# Usage

```
circos_heatmap(df, annot_df, cfgout = "circos/conf/default.conf",
  colname = "logFC", chr = "chr1", colors = NULL, outer = 0.9,
  width = 0.08, spacing = 0)
```

# **Arguments**

| df       | Dataframe with starts/ends and the floating point information.          |
|----------|-------------------------------------------------------------------------|
| annot_df | Annotation data frame with starts/ends.                                 |
| cfgout   | Master configuration file to write.                                     |
| colname  | Name of the column with the data of interest.                           |
| chr      | Name of the chromosome (This currently assumes a bacterial chromosome). |
| colors   | Colors of the heat map.                                                 |
| outer    | Floating point radius of the circle into which to place the heatmap.    |
| width    | Width of each tile in the heatmap.                                      |
| spacing  | Radial distance between outer, inner, and inner to whatever follows.    |
|          |                                                                         |

#### Value

Radius after adding the histogram and the spacing.

| circos_hist | Write histograms of arbitrary floating point data in circos. |
|-------------|--------------------------------------------------------------|

# Description

This function tries to make the writing of histogram data in circos easier. Like circos\_plus\_minus() it works in 3 stages, It writes out a data file using cfgout as a basename and the data from df in the circos histogram format into circos/data/bob\_hist.txt It then writes out a configuration plot stanza in circos/conf/bob\_hist.conf and finally adds an include to circos/bob.conf

circos\_ideogram 19

#### Usage

```
circos_hist(df, annot_df, cfgout = "circos/conf/default.conf",
  colname = "logFC", chr = "chr1", color = "blue", fill_color = "blue",
  outer = 0.9, width = 0.08, spacing = 0)
```

#### **Arguments**

df Dataframe with starts/ends and the floating point information.

annot\_df Annotation data frame containing starts/ends.

cfgout Master configuration file to write.

colname Name of the column with the data of interest.

chr Name of the chromosome (This currently assumes a bacterial chromosome).

color Color of the plotted data.

fill\_color Guess!

outer Floating point radius of the circle into which to place the data.

width Radial width of each tile.

spacing Distance between outer, inner, and inner to whatever follows.

#### Value

Radius after adding the histogram and the spacing.

| circos_ideogram | Create the description of chromosome markings. |  |
|-----------------|------------------------------------------------|--|
|-----------------|------------------------------------------------|--|

#### **Description**

This function writes ideogram files for circos.

#### Usage

```
circos_ideogram(name = "default", conf_dir = "circos/conf",
  band_url = NULL)
```

#### **Arguments**

name Name of the configuration file to which to add the ideogram.

conf\_dir Where does the configuration live?

band\_url Provide a url for making these imagemaps?

# Value

The file to which the ideogram configuration was written.

20 circos\_make

circos\_karyotype

*Create the description of (a)chromosome(s) for circos.* 

#### Description

This function tries to save me from having to get the lengths of arcs for bacterial chromosomes manually correct, and writes them as a circos compatible karyotype file. The outfile parameter was chosen to match the configuration directive outlined in circos\_prefix(), however that will need to be changed in order for this to work in variable conditions. Next time I make one of these graphs I will do that I suspect. In addition, this currently only understands how to write bacterial chromosomes, that will likely be fixed when I am asked to write out a L.major karyotype. These defaults were chosen because I have a chromosome of this length that is correct.

### Usage

```
circos_karyotype(name = "default", conf_dir = "circos/conf",
  length = NULL, chr_name = "chr1", segments = 6, color = "white",
  chr_num = 1, fasta = NULL)
```

#### **Arguments**

| name     | Name of the chromosome (This currently assumes a bacterial chromosome). |
|----------|-------------------------------------------------------------------------|
| conf_dir | Where to put the circos configuration file(s).                          |
| length   | Length of the chromosome (the default is mgas5005).                     |
| chr_name | Short name of the chromosome.                                           |
| segments | How many segments to cut the chromosome into?                           |
| color    | Color segments of the chromosomal arc?                                  |
| chr_num  | Number to record for each chromosome.                                   |
| fasta    | Fasta file to use to create the karyotype.                              |

#### Value

The output filename.

circos\_make

Write a simple makefile for circos.

# Description

I regenerate all my circos pictures with make(1). This is my makefile.

#### Usage

```
circos_make(target = "", output = "circos/Makefile",
  circos = "/usr/bin/circos")
```

circos\_plus\_minus 21

#### **Arguments**

target Default make target.
output Makefile to write.

circos Location of circos. I have a copy in home/bin/circos and use that sometimes.

#### Value

a kitten

circos\_plus\_minus Write tiles of bacterial ontology groups using the categories from microbesonline.org.

### Description

This function tries to save me from writing out ontology definitions and likely making mistakes. It uses the start/ends from the gff annotation along with the 1 letter GO-like categories from microbesonline.org. It then writes two data files circos/data/bob\_plus\_go.txt, circos/data/bob\_minus\_go.txt along with two configuration files circos/conf/bob\_minus\_go.conf and circos/conf/bob\_plus\_go.conf and finally adds an include to circos/bob.conf

### Usage

```
circos_plus_minus(go_table, cfgout = "circos/conf/default.conf",
    chr = "chr1", outer = 1, width = 0.08, spacing = 0)
```

#### **Arguments**

go\_table Dataframe with starts/ends and categories.

cfgout Master configuration file to write.

chr Name of the chromosome.

outer Floating point radius of the circle into which to place the plus-strand data.

width Radial width of each tile.

spacing Radial distance between outer, inner, and inner to whatever follows.

#### Value

Radius after adding the plus/minus information and the spacing between them.

22 circos\_suffix

|    |      | ٠.     |
|----|------|--------|
| CI | rcas | prefix |
|    |      |        |

Write the beginning of a circos configuration file.

### **Description**

A few parameters need to be set when starting circos. This sets some of them and gets ready for plot stanzas.

# Usage

```
circos_prefix(name = "mgas", conf_dir = "circos/conf", radius = 1800,
  band_url = NULL)
```

#### **Arguments**

name Name of the map, called with 'make name'.

conf\_dir Directory containing the circos configuration data.

radius Size of the image.

band\_url Place to imagemap link.

#### **Details**

In its current implementation, this really assumes that there will be no highlight stanzas and at most 1 link stanza. chromosomes. A minimal amount of logic and data organization will address these weaknesses.

# Value

The master configuration file name.

circos\_suffix

Write the end of a circos master configuration.

### **Description**

circos configuration files need an ending. This writes it.

#### Usage

```
circos_suffix(cfgout = "circos/conf/default.conf")
```

### **Arguments**

cfgout

Master configuration file to write.

circos\_tile 23

### Value

The filename of the configuration.

| circos | tile |
|--------|------|

Write tiles of arbitrary categorical point data in circos.

### **Description**

This function tries to make the writing circos tiles easier. Like circos\_plus\_minus() and circos\_hist() it works in 3 stages, It writes out a data file using cfgout as a basename and the data from df in the circos histogram format into circos/data/bob\_tile.txt It then writes out a configuration plot stanza in circos/conf/bob\_tile.conf and finally adds an include to circos/bob.conf

# Usage

```
circos_tile(df, annot_df, cfgout = "circos/conf/default.conf",
  colname = "logFC", chr = "chr1", colors = NULL, outer = 0.9,
  width = 0.08, spacing = 0)
```

### **Arguments**

| df       | Dataframe with starts/ends and the floating point information.                |
|----------|-------------------------------------------------------------------------------|
| annot_df | Annotation data frame defining starts/stops.                                  |
| cfgout   | Master configuration file to write.                                           |
| colname  | Name of the column with the data of interest.                                 |
| chr      | Name of the chromosome (This currently assumes a bacterial chromosome)        |
| colors   | Colors of the data.                                                           |
| outer    | Floating point radius of the circle into which to place the categorical data. |
| width    | Width of each tile.                                                           |
| spacing  | Radial distance between outer, inner, and inner to whatever follows.          |

### Value

Radius after adding the histogram and the spacing.

24 cluster\_trees

| cluster_trees | Take clusterprofile group data and print it on a tree as per topGO. |
|---------------|---------------------------------------------------------------------|
|---------------|---------------------------------------------------------------------|

# Description

TopGO's ontology trees can be very illustrative. This function shoe-horns clusterProfiler data into the format expected by topGO and uses it to make those trees.

# Usage

```
cluster_trees(de_genes, cpdata, goid_map = "reference/go/id2go.map",
  goids_df = NULL, score_limit = 0.2, overwrite = FALSE,
  selector = "topDiffGenes", pval_column = "adj.P.Val")
```

### **Arguments**

| de_genes    | List of genes deemed 'interesting'.                              |
|-------------|------------------------------------------------------------------|
| cpdata      | Data from simple_clusterprofiler().                              |
| goid_map    | Mapping file of IDs to GO ontologies.                            |
| goids_df    | Dataframe of mappings used to build goid_map.                    |
| score_limit | Scoring limit above which to ignore genes.                       |
| overwrite   | Overwrite an existing goid mapping file?                         |
| selector    | Name of a function for applying scores to the trees.             |
| pval_column | Name of the column in the GO table from which to extract scores. |

#### Value

```
plots! Trees! oh my!
```

### See Also

Ramigo showSigOfNodes

# Examples

```
## Not run:
cluster_data <- simple_clusterprofiler(genes, stuff)
ctrees <- cluster_trees(genes, cluster_data)
## End(Not run)</pre>
```

combine\_de\_tables 25

combine\_de\_tables

Combine portions of deseq/limma/edger table output.

#### **Description**

This hopefully makes it easy to compare the outputs from limma/DESeq2/EdgeR on a table-by-table basis.

#### **Usage**

```
combine_de_tables(all_pairwise_result, extra_annot = NULL, csv = NULL,
  excel = NULL,
  excel_title = "Table SXXX: Combined Differential Expression of YYY",
  excel_sheet = "combined_DE", keepers = "all", include_basic = TRUE,
  add_plots = TRUE, plot_dim = 6, compare_plots = TRUE)
```

### **Arguments**

```
all_pairwise_result
```

Output from all\_pairwise().

extra\_annot Add some annotation information?

excel Filename for the excel workbook, or null if not printed.

excel\_title Title for the excel sheet(s). If it has the string 'YYY', that will be replaced by

the contrast name.

excel\_sheet Name the excel sheet.

keepers List of reformatted table names to explicitly keep certain contrasts in specific

orders and orientations.

add\_plots Add plots to the end of the sheets with expression values?

plot\_dim Number of inches squared for the plot if added.

#### Value

Table combining limma/edger/deseq outputs.

#### See Also

```
all_pairwise
```

### **Examples**

```
## Not run:
pretty = combine_de_tables(big_result, table='t12_vs_t0')
## End(Not run)
```

compare\_go\_searches

Compare the results from different ontology tools

### **Description**

Combine the results from goseq, cluster profiler, topgo, and gostats; poke at them with a stick and see what happens. The general idea is to pull the p-value data from each tool and contrast that to the set of all possibile ontologies. This allows one to do a correlation coefficient between them. In addition, take the 1-pvalue for each ontology for each tool. Thus for strong p-values the score will be near 1 and so we can sum the scores for all the tools. Since topgo has 4 tools, the total possible is 7 if everything has a p-value equal to 0.

### Usage

```
compare_go_searches(goseq = NULL, cluster = NULL, topgo = NULL,
  gostats = NULL)
```

# **Arguments**

goseq The goseq result from simple\_goseq()
cluster The result from simple\_clusterprofiler()

topgo Guess gostats Yep, ditto

### Value

a summary of the similarities of ontology searches

compare\_logfc\_plots Comp

Compare logFC values from limma and friends

### Description

There are some peculiar discrepencies among these tools, what is up with that?

#### Usage

```
compare_logfc_plots(combined_tables)
```

# **Arguments**

combined\_tables

The combined tables from limma et al.

#### Value

Some plots

```
compare_surrogate_estimates
```

Perform a comparison of the surrogate estimators demonstrated by Jeff Leek.

#### **Description**

This is entirely derivative, but seeks to provide similar estimates for one's own actual data and catch corner cases not taken into account in that document (for example if the estimators don't converge on a surrogate variable). This will attempt each of the surrogate estimators described by Leek: pca, sva supervised, sva unsupervised, ruv supervised, ruv residuals, ruv empirical. Upon completion it will perform the same limma expression analysis and plot the ranked t statistics as well as a correlation plot making use of the extracted estimators against condition/batch/whatever else. Finally, it does the same ranking plot against a linear fitting Leek performed and returns the whole pile of information as a list.

#### Usage

```
compare_surrogate_estimates(expt, extra_factors = NULL, do_catplots = FALSE)
```

# **Arguments**

expt Experiment containing a design and other information.

extra\_factors Character list of extra factors which may be included in the final plot of the data.

do\_catplots Include the catplots? They don't make a lot of sense yet, so probably no.

#### Value

List of the results.

compare\_tables

See how similar are results from limma/deseq/edger.

# **Description**

limma, DEseq2, and EdgeR all make somewhat different assumptions. and choices about what makes a meaningful set of differentially. expressed genes. This seeks to provide a quick and dirty metric describing the degree to which they (dis)agree.

#### Usage

```
compare_tables(limma = NULL, deseq = NULL, edger = NULL, basic = NULL,
  include_basic = TRUE, annot_df = NULL, ...)
```

28 concatenate\_runs

# **Arguments**

limma Data from limma\_pairwise().

deseq Data from deseq2\_pairwise().

edger Data from edger\_pairwise().

basic Data from basic\_pairwise().

include\_basic include the basic data?

annot\_df Include annotation data?

More options!

# Value

Heatmap showing how similar they are along with some correlations betwee the three players.

#### See Also

limma\_pairwise edger\_pairwise deseq2\_pairwise

### **Examples**

```
## Not run:
1 = limma_pairwise(expt)
d = deseq_pairwise(expt)
e = edger_pairwise(expt)
fun = compare_tables(limma=1, deseq=d, edger=e)
## End(Not run)
```

concatenate\_runs Sum the reads/gene for multiple sequencing runs of a single condition/batch.

### **Description**

On occasion we have multiple technical replicates of a sequencing run. This can use a column in the experimental design to identify those replicates and sum the counts into a single column in the count tables.

### Usage

```
concatenate_runs(expt, column = "replicate")
```

# **Arguments**

expt Experiment class containing the requisite metadata and count tables.

column of the design matrix used to specify which samples are replicates.

convert\_counts 29

#### Value

Expt with the concatenated counts, new design matrix, batches, conditions, etc.

#### See Also

Biobase

### **Examples**

```
## Not run:
  compressed = concatenate_runs(expt)
## End(Not run)
```

convert\_counts

Perform a cpm/rpkm/whatever transformation of a count table.

# Description

I should probably tell it to also handle a simple df/vector/list of gene lengths, but I haven't. cp\_seq\_m is a cpm conversion of the data followed by a rp-ish conversion which normalizes by the number of the given oligo. By default this oligo is 'TA' because it was used for tnseq which should be normalized by the number of possible transposition sites by mariner. It could, however, be used to normalize by the number of methionines, for example – if one wanted to do such a thing.

# Usage

```
convert_counts(data, convert = "raw", ...)
```

### **Arguments**

data Matrix of count data.

convert Type of conversion to perform: edgecpm/cpm/rpkm/cp\_seq\_m.

Options I might pass from other functions are dropped into arglist, used by rpkm

(gene lengths) and divide\_seq (genome, pattern to match, and annotation type).

#### Value

Dataframe of cpm/rpkm/whatever(counts)

#### See Also

```
edgeR Biobase cpm
```

#### **Examples**

```
## Not run:
   converted_table = convert_counts(count_table, convert='cbcbcpm')
## End(Not run)
```

create\_combined\_table Given a limma, edger, and deseq table, combine them into one.

### **Description**

This combines the outputs from the various differential expression tools and formalizes some column names to make them a little more consistent.

#### Usage

```
create_combined_table(li, ed, de, ba, table_name, annot_df = NULL,
  inverse = FALSE, include_basic = TRUE, fc_cutoff = 1, p_cutoff = 0.05)
```

# **Arguments**

Limma output table.ed Edger output table.de Deseq2 output table.ba Basic output table.

table\_name Name of the table to merge.

annot\_df Add some annotation information?

inverse Invert the fold changes? include\_basic Include the basic table?

fc\_cutoff Preferred logfoldchange cutoff.

p\_cutoff Preferred pvalue cutoff.

#### Value

List containing a) Dataframe containing the merged limma/edger/deseq/basic tables, and b) A summary of how many genes were observed as up/down by output table.

create\_expt 31

| information. | create_expt | Wrap bioconductor's expressionset to include some other extraneous information. |
|--------------|-------------|---------------------------------------------------------------------------------|
|--------------|-------------|---------------------------------------------------------------------------------|

# Description

It is worth noting that this function has a lot of logic used to find the count tables in the local filesystem. This logic has been superceded by simply adding a field to the .csv file called 'file'. create\_expt() will then just read that filename, it may be a full pathname or local to the cwd of the project.

# Usage

```
create_expt(metadata, gene_info = NULL, count_dataframe = NULL,
  sample_colors = NULL, title = NULL, notes = NULL,
  include_type = "all", include_gff = NULL, savefile = "expt",
  low_files = FALSE, ...)
```

### **Arguments**

| metadata       | Comma separated file (or excel) describing the samples with information like condition, batch, count_filename, etc.                                  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| gene_info      | Annotation information describing the rows of the data set, this often comes from a call to import.gff() or biomart or organismdbi.                  |
| count_datafram | e                                                                                                                                                    |
|                | If one does not wish to read the count tables from the filesystem, they may instead be fed as a data frame here.                                     |
| sample_colors  | List of colors by condition, if not provided it will generate its own colors using colorBrewer.                                                      |
| title          | Provide a title for the expt?                                                                                                                        |
| notes          | Additional notes?                                                                                                                                    |
| include_type   | I have usually assumed that all gff annotations should be used, but that is not always true, this allows one to limit to a specific annotation type. |
| include_gff    | Gff file to help in sorting which features to keep.                                                                                                  |
| savefile       | Rdata filename prefix for saving the data of the resulting expt.                                                                                     |
| low_files      | Explicitly lowercase the filenames when searching the filesystem?                                                                                    |
|                | More parameters are fun!                                                                                                                             |

#### Value

experiment an expressionset

### See Also

Biobase pData fData exprs hpgl\_read\_files as.list.hash

32 deparse\_go\_value

#### **Examples**

```
## Not run:
new_experiment = create_expt("some_csv_file.csv", color_hash)
## Remember that this depends on an existing data structure of gene annotations.
## End(Not run)
```

default\_norm

Perform a default normalization of some data

#### **Description**

This just calls normalize expt with the most common arguments except log2 transformation, but that may be appended with 'transform=log2', so I don't feel bad. Indeed, it will allow you to overwrite any arguments if you wish. In our work, the most common normalization is: quantile(cpm(low-filter(data))).

#### Usage

```
default_norm(expt, ...)
```

deparse\_go\_value

Extract more easily readable information from a GOTERM datum.

#### **Description**

The output from the GOTERM/GO.db functions is inconsistent, to put it nicely. This attempts to extract from that heterogeneous datatype something easily readable. Example: Synonym() might return any of the following: NA, NULL, "NA", "NULL", c("NA",NA,"GO:00001"), "GO:00002",  $c("Some\ text",NA, NULL, "GO:00003")$  This function will boil that down to 'not found', '', 'GO:00004', or "GO:0001, some text, GO:00004"

# Usage

```
deparse_go_value(value)
```

### **Arguments**

value

Result of try(as.character(somefunction(GOTERM[id])), silent=TRUE). somefunction would be 'Synonym' 'Secondary' 'Ontology', etc...

#### Value

something more sane (hopefully).

deseq2\_pairwise 33

#### **Examples**

```
## Not run:
    ## goterms = GOTERM[ids]
    ## sane_goterms = deparse_go_value(goterms)
## End(Not run)
```

deseq2\_pairwise

Set up model matrices contrasts and do pairwise comparisons of all conditions using DESeq2.

#### **Description**

Invoking DESeq2 is confusing, this should help.

#### Usage

```
deseq2_pairwise(input, conditions = NULL, batches = NULL,
  model_cond = TRUE, alt_model = NULL, extra_contrasts = NULL,
  model_intercept = FALSE, model_batch = TRUE, annot_df = NULL,
  force = FALSE, ...)
```

### **Arguments**

input Dataframe/vector or expt class containing data, normalization state, etc.

conditions Factor of conditions in the experiment.

batches Factor of batches in the experiment.

model\_cond Is condition in the experimental model?

alt\_model Provide an arbitrary model here.

extra\_contrasts

Provide extra contrasts here.

annot\_df Include some annotation information in the results?

force Force deseq to accept data which likely violates its assumptions.

... triple dots! Options are passed to arglist.

#### Value

List including the following information: run = the return from calling DESeq() denominators = list of denominators in the contrasts numerators = list of the numerators in the contrasts conditions = the list of conditions in the experiment coefficients = list of coefficients making the contrasts all\_tables = list of DE tables

#### See Also

 $\textbf{DESeq2} \ \textbf{results} \ \textbf{estimateSizeFactors} \ \textbf{estimateDispersions} \ \textbf{nbinomWaldTest}$ 

#### **Examples**

```
## Not run:
pretend = deseq2_pairwise(data, conditions, batches)
## End(Not run)
```

deseq\_coefficient\_scatter

*Plot out 2 coefficients with respect to one another from deseq2.* 

#### **Description**

It can be nice to see a plot of two coefficients from a deseq2 comparison with respect to one another. This hopefully makes that easy.

### Usage

```
deseq_coefficient_scatter(output, toptable = NULL, x = 1, y = 2,
  gvis_filename = NULL, gvis_trendline = TRUE, z = 1.5,
  tooltip_data = NULL, base_url = NULL, color_low = "#DD0000",
  color_high = "#7B9F35", ...)
```

### **Arguments**

output Set of pairwise comparisons provided by deseq\_pairwise().

x Name or number of the x-axis coefficient column to extract.

y Name or number of the y-axis coefficient column to extract.

gvis\_filename Filename for plotting gvis interactive graphs of the data.

gvis\_trendline Add a trendline to the gvis plot?

tooltip\_data Dataframe of gene annotations to be used in the gvis plot.

base\_url When plotting interactive plots, have link-outs to this base url.

#### Value

Ggplot2 plot showing the relationship between the two coefficients.

### See Also

```
plot_linear_scatter deseq2_pairwise
```

### **Examples**

```
## Not run:
    pretty = coefficient_scatter(deseq_data, x="wt", y="mut")
## End(Not run)
```

deseq\_pairwise 35

deseq\_pairwise

deseq\_pairwise() Because I can't be trusted to remember '2'.

### **Description**

This calls deseq2\_pairwise(...) because I am determined to forget typing deseq2.

# Usage

```
deseq_pairwise(...)
```

#### **Arguments**

```
... I like cats.
```

#### Value

stuff deseq2\_pairwise results.

#### See Also

```
deseq2_pairwise
```

divide\_seq

Express a data frame of counts as reads per pattern per million.

# Description

This uses a sequence pattern rather than length to normalize sequence. It is essentially fancy pants rpkm.

#### Usage

```
divide_seq(counts, genome = NULL, ...)
```

### **Arguments**

counts Read count matrix.

genome Genome to search (fasta/BSgenome).

... Options I might pass from other functions are dropped into arglist.

#### Value

The RPseqM counts

#### See Also

```
FaFile rpkm
```

### **Examples**

```
## Not run:
   cptam <- divide_seq(cont_table, fasta="mgas_5005.fasta.xz", gff="mgas_5005.gff.xz")
## End(Not run)</pre>
```

```
edger_coefficient_scatter
```

Plot two coefficients with respect to one another from edgeR.

### **Description**

It can be nice to see a plot of two coefficients from a edger comparison with respect to one another This hopefully makes that easy.

#### Usage

```
edger_coefficient_scatter(output, toptable = NULL, x = 1, y = 2,
  gvis_filename = NULL, gvis_trendline = TRUE, z = 1.5,
  tooltip_data = NULL, base_url = NULL, color_low = "#DD0000",
  color_high = "#7B9F35", ...)
```

### **Arguments**

| output                   | Set of pairwise comparisons provided by edger_pairwise().   |
|--------------------------|-------------------------------------------------------------|
| x                        | Name or number of the x-axis coefficient column to extract. |
| у                        | Name or number of the y-axis coefficient column to extract. |
| <pre>gvis_filename</pre> | Filename for plotting gvis interactive graphs of the data.  |
| ${\tt gvis\_trendline}$  | Add a trendline to the gvis plot?                           |
| tooltip_data             | Dataframe of gene annotations to be used in the gvis plot.  |
| base_url                 | Add a linkout to gvis plots to this base url.               |

#### Value

Ggplot2 plot showing the relationship between the two coefficients.

#### See Also

```
plot_linear_scatter edger_pairwise
```

edger\_pairwise 37

#### **Examples**

# **Description**

This function performs the set of possible pairwise comparisons using EdgeR.

# Usage

```
edger_pairwise(input, conditions = NULL, batches = NULL,
  model_cond = TRUE, model_batch = TRUE, model_intercept = TRUE,
  alt_model = NULL, extra_contrasts = NULL, annot_df = NULL,
  force = FALSE, edger_method = "default", ...)
```

### **Arguments**

input Dataframe/vector or expt class containing data, normalization state, etc.
conditions Factor of conditions in the experiment.
batches Factor of batches in the experiment.
model\_cond Include condition in the experimental model?
model\_batch Include batch in the model? In most cases this is a good thing(tm).

model\_intercept

Use cell means or intercept?

alt\_model Alternate experimental model to use?

extra\_contrasts

Add some extra contrasts to add to the list of pairwise contrasts. This can be pretty neat, lets say one has conditions A,B,C,D,E and wants to do (C/B)/A and (E/D)/A or (E/D)/(C/B) then use this with a string like: "c\_vs\_b\_ctrla = (C-B)-

A,  $e_{vs_d} = (E-D)-A$ ,  $de_{vs_c} = (E-D)-(C-B)$ ,"

annot\_df Annotation information to the data tables?

force Force edgeR to accept inputs which it should not have to deal with.

... The elipsis parameter is fed to write\_edger() at the end.

#### Value

List including the following information: contrasts = The string representation of the contrasts performed. lrt = A list of the results from calling glmLRT(), one for each contrast. contrast\_list = The list of each call to makeContrasts() I do this to avoid running into the limit on # of contrasts addressable by topTags() all\_tables = a list of tables for the contrasts performed.

38 expt\_subset

### See Also

# **Examples**

```
## Not run:
    pretend = edger_pairwise(data, conditions, batches)
## End(Not run)
```

expt\_subset

Extract a subset of samples following some rule(s) from an experiment class.

# Description

Sometimes an experiment has too many parts to work with conveniently, this operation allows one to break it into smaller pieces.

# Usage

```
expt_subset(expt, subset = NULL)
```

#### Arguments

expt Expt chosen to extract a subset of data.

subset Valid R expression which defines a subset of the design to keep.

### Value

metadata Expt class which contains the smaller set of data.

#### See Also

Biobase pData exprs fData

# **Examples**

```
## Not run:
smaller_expt = expt_subset(big_expt, "condition=='control'")
all_expt = expt_subset(expressionset, "") ## extracts everything
## End(Not run)
```

extract\_go 39

| extract_go  | Extract a set of geneID to GOID mappings from a suitable data source.  |
|-------------|------------------------------------------------------------------------|
| CXTI dCt_go | Extract a set of general to GOID mappings from a suitable data source. |

### **Description**

Like extract\_lengths above, this is primarily intended to read gene ID and GO ID mappings from a OrgDb/OrganismDbi object.

# Usage

```
extract_go(db, metadf = NULL, keytype = "ENTREZID")
```

# **Arguments**

db Data source containing mapping information.
metadf Data frame containing extant information.

keytype used for querying

#### Value

Dataframe of 2 columns: geneID and goID.

# **Description**

Primarily goseq, but also other tools on occasion require a set of gene IDs and lengths. This function is resposible for pulling that data from either a gff, or TxDb/OrganismDbi.

#### Usage

```
extract_lengths(db = NULL, gene_list = NULL,
  type = "GenomicFeatures::transcripts", id = "TXID",
  possible_types = c("GenomicFeatures::genes", "GenomicFeatures::cds",
  "GenomicFeatures::transcripts"), possible_ids = c("GENEID", "CDSID",
  "TXID"))
```

#### **Arguments**

db Object containing data, if it is a string then a filename is assumed to a gff file.

gene\_list Set of genes to query.

type Function name used for extracting data from TxDb objects.id Column from the resulting data structure to extract gene IDs.

possible\_types Character list of types I have previously used.
possible\_ids Corresponding IDs for the above types.

# Value

Dataframe containing 2 columns: ID, length

```
extract_significant_genes
```

Extract the sets of genes which are significantly up/down regulated from the combined tables.

# Description

Given the output from combine\_de\_tables(), extract the genes in which we have the greatest likely interest, either because they have the largest fold changes, lowest p-values, fall outside a z-score, or are at the top/bottom of the ranked list.

# Usage

```
extract_significant_genes(combined, according_to = "all", fc = 1,
    p = 0.05, z = NULL, n = NULL, p_type = "adj",
    excel = "excel/significant_genes.xlsx", csv = NULL)
```

# **Arguments**

| combined     | Output from combine_de_tables().                                                             |
|--------------|----------------------------------------------------------------------------------------------|
| according_to | What tool(s) decide 'significant?' One may use the deseq, edger, limma, basic, meta, or all. |
| fc           | Log fold change to define 'significant'.                                                     |
| p            | (Adjusted)p-value to define 'significant'.                                                   |
| Z            | Z-score to define 'significant'.                                                             |
| n            | Take the top/bottom-n genes.                                                                 |
| excel        | Write the results to this excel file, or NULL.                                               |

# Value

The set of up-genes, down-genes, and numbers therein.

#### See Also

```
combine_de_tables
```

factor\_rsquared 41

| factor_rsquared | Collect the $r^2$ values from a linear model fitting between a singular value decomposition and factor. |
|-----------------|---------------------------------------------------------------------------------------------------------|
|                 | value decomposition and jactor.                                                                         |

# **Description**

Collect the r^2 values from a linear model fitting between a singular value decomposition and factor.

# Usage

```
factor_rsquared(svd_v, fact, type = "factor")
```

# **Arguments**

V'V = I portion of a fast.svd call.

fact Experimental factor from the original data.

type Make this categorical or continuous with factor/continuous.

#### Value

The r<sup>2</sup> values of the linear model as a percentage.

#### See Also

fast.svd

| filter_counts | Call various count filters. |
|---------------|-----------------------------|
|               |                             |

# **Description**

This calls the various filtering functions in genefilter along with suggestions made in our lab meetings; defaulting to the threshold based filter suggested by Hector.

```
filter_counts(count_table, filter = "cbcb", p = 0.01, A = 1, k = 1,
    cv_min = 0.01, cv_max = 1000, thresh = 4, min_samples = 2, ...)
```

42 gather\_goseq\_genes

#### **Arguments**

count\_table

filter Filtering method to apply (cbcb, pofa, kofa, cv right now). Used by genefilter's pofa().

Also for pofa().

Used by genefilter's kofa(). Used by genefilter's cv(). cv\_min

Also used by cv(). cv\_max

thresh Minimum threshold across samples for cbcb.

Some counts to filter.

Minimum number of samples for cbcb. min\_samples

More options might be needed, especially if I fold cv/p/etc into ...

#### Value

Data frame of filtered counts.

#### See Also

genefilter

#### **Examples**

```
## Not run:
new <- filter_counts(old)</pre>
## End(Not run)
```

gather\_goseq\_genes

Given a set of goseq data from simple\_goseq(), make a list of genes represented in each ontology.

#### **Description**

This function uses the GO2ALLEG data structure to reverse map ontology categories to a list of genes represented. It therefore assumes that the GO2ALLEG.rda data structure has been deposited in pwd(). This in turn may be generated by clusterProfilers buildGOmap() function if it doesn't exist. For some species it may also be auto-generated. With little work this can be made much more generic, and it probably should.

```
gather_goseq_genes(goseq_data, ontology = NULL, pval = 0.1,
  include_all = FALSE, ...)
```

gbk2txdb 43

## **Arguments**

goseq\_data List of goseq specific results as generated by simple\_goseq().

ontology Ontology to search (MF/BP/CC).

pval Maximum accepted pvalue to include in the list of categories to cross reference.

include\_all Include all genes in the ontology search?... Extra options without a purpose just yet.

#### Value

Data frame of categories/genes.

#### See Also

```
simple_goseq buildGOmap,
```

# **Examples**

```
## Not run:
  data = simple_goseq(de_genes=limma_output, lengths=annotation_df, goids=goids_df)
  genes_in_cats = gather_genes(data, ont='BP')
## End(Not run)
```

gbk2txdb

Given a genbank accession, make a txDb object along with sequences, etc.

#### **Description**

Let us admit it, sometimes biomart is a pain. It also does not have easily accessible data for microbes. Genbank does!

#### Usage

```
gbk2txdb(accession = "AE009949")
```

## **Arguments**

accession

Accession to download and import

#### Value

List containing a txDb, sequences, and some other stuff which I haven't yet finalized.

44 genefilter\_cv\_counts

gbk\_annotations

Extract some useful information from a gbk imported as a txDb.

# **Description**

Maybe this should get pulled into the previous function?

#### Usage

```
gbk_annotations(gbr)
```

### **Arguments**

gbr

TxDb object to poke at.

#### Value

Granges data

genefilter\_cv\_counts Filter genes from a dataset outside a range of variance.

# **Description**

This function from genefilter removes genes surpassing a variance cutoff. It is not therefore a lowcount filter per se.

#### Usage

```
genefilter_cv_counts(count_table, cv_min = 0.01, cv_max = 1000)
```

#### **Arguments**

count\_table Input data frame of counts by sample. Minimum coefficient of variance. cv\_min Maximum coefficient of variance. cv\_max

# Value

Dataframe of counts without the high/low variance genes.

#### See Also

genefilter kOverA which this uses to decide what to keep.

genefilter\_kofa\_counts 45

# **Examples**

```
## Not run:
filtered_table = genefilter_kofa_counts(count_table)
## End(Not run)
```

```
genefilter_kofa_counts
```

Filter low-count genes from a data set using genefilter's kOverA().

# Description

This is the most similar to the function suggested by Hector I think.

# Usage

```
genefilter_kofa_counts(count_table, k = 1, A = 1)
```

# **Arguments**

count\_table Input data frame of counts by sample.

k Minimum number of samples to have >A counts.

A Minimum number of counts for each gene's sample in kOverA().

#### Value

Dataframe of counts without the low-count genes.

# See Also

genefilter kOverA which this uses to decide what to keep.

# **Examples**

```
## Not run:
  filtered_table = genefilter_kofa_counts(count_table)
## End(Not run)
```

```
genefilter_pofa_counts
```

Filter low-count genes from a data set using genefilter's pOverA().

# **Description**

I keep thinking this function is pofa... oh well. Of the various tools in genefilter, this one to me is the most intuitive. Take the ratio of counts/samples and make sure it is >= a score.

#### Usage

```
genefilter_pofa_counts(count_table, p = 0.01, A = 100)
```

# **Arguments**

count\_table Input data frame of counts by sample.

p Minimum proportion of each gene's counts/sample to be greater than a mini-

mum(A).

A Minimum number of counts in the above proportion.

#### Value

Dataframe of counts without the low-count genes.

#### See Also

genefilter poverA which this uses to decide what to keep.

# **Examples**

```
## Not run:
  filtered_table = genefilter_pofa_counts(count_table)
## End(Not run)
```

```
{\tt generate\_gene\_kegg\_mapping}
```

Generate GENE/KEGG mapping.

### **Description**

This uses KEGGREST and related function kegg\_to\_ensembl() to associate genes to KEGG pathways.

#### Usage

```
generate_gene_kegg_mapping(pathways, org_abbreviation, verbose = FALSE)
```

# **Arguments**

pathways Vector of KEGG pathway IDs returned from call to keggLink() e.g. "path:mmu05134". org\_abbreviation

KEGG identifier for the species of interest (e.g. "hsa" for Homo sapiens).

verbose talky talky?

#### Value

Df mapping kegg and gene IDs.

# See Also

keggLink

# **Examples**

```
## Not run:
kegg_df <- generate_gene_kegg_mapping(path, org)
## End(Not run)</pre>
```

generate\_kegg\_pathway\_mapping

Generate a KEGG PATHWAY / description mapping.

# **Description**

Make an easier to use df of KEGG -> descriptions using keggGet.

### Usage

```
{\tt generate\_kegg\_pathway\_mapping(pathways,\ verbose\ =\ FALSE)}
```

# **Arguments**

pathways Vector of KEGG pathway identifiers.

verbose talk talk?

### Value

Data frame describing some kegg pathways

# See Also

keggGet

#### **Examples**

```
mapping <- generate_kegg_pathway_mapping(c("hsa00040", "hsa00100"))</pre>
```

getEdgeWeights

Plot the ontology DAG.

# Description

This function was stolen from topgo in order to figure out where it was failing.

#### Usage

```
getEdgeWeights(graph)
```

# **Arguments**

graph

Graph from topGO

#### Value

Weights!

```
get_biomart_annotations
```

Extract annotation information from biomart.

# Description

Biomart is an amazing resource of information, but using it is a bit annoying. This function hopes to alleviate some common headaches.

```
get_biomart_annotations(species = "hsapiens", overwrite = FALSE,
do_save = TRUE, host = "dec2015.archive.ensembl.org",
trymart = "ENSEMBL_MART_ENSEMBL", include_lengths = TRUE)
```

#### **Arguments**

species Choose a species.

overwrite Overwite an existing save file?

do\_save Create a savefile of annotations for future runs?

host Ensembl hostname to use.

trymart Biomart has become a circular dependency, this makes me sad, now to list the

marts, you need to have a mart loaded...

include\_lengths

Also perform a search on structural elements in the genome?

#### Value

Df of some (by default) human annotations.

# **Examples**

```
## Not run:
   tt = get_biomart_annotations()
## End(Not run)
```

get\_biomart\_ontologies

Extract gene ontology information from biomart.

#### **Description**

I perceive that every time I go to acquire annotation data from biomart, they have changed something important and made it more difficult for me to find what I want. I recently found the \*.archive.ensembl.org, and so this function uses that to try to keep things predictable, if not consistent.

# Usage

```
get_biomart_ontologies(species = "hsapiens", overwrite = FALSE,
do_save = TRUE, host = "dec2015.archive.ensembl.org",
trymart = "ENSEMBL_MART_ENSEMBL", secondtry = "_gene")
```

#### **Arguments**

species Species to query.

overwrite Overwrite existing savefile?

do\_save Create a savefile of the annotations? (if not false, then a filename.)

host Ensembl hostname to use.

trymart Default mart to try, newer marts use a different notation.

secondtry The newer mart name.

50 get\_eupath\_config

# Value

Df of geneIDs and GOIDs.

#### See Also

```
getBM
```

# **Examples**

```
## Not run:
   tt = get_biomart_ontologies()
## End(Not run)
```

get\_eupath\_config

Grab some configuration data collated and used to make Organis-mDbi/OrgDb/TxDb objects.

# Description

This function uses some data copied into inst/ to decide some parameters used for generating the various packages generated here.

# Usage

```
get_eupath_config(cfg = NULL)
```

# Arguments

cfg

Optional data frame

#### Value

Dataframe of configuration data, a few columns are required, run it with no args to see which ones.

get\_genelengths 51

get\_genelengths

Grab gene lengths from a gff file.

# **Description**

This function attempts to be robust to the differences in output from importing gff2/gff3 files. But it certainly isn't perfect.

# Usage

```
get_genelengths(gff, type = "gene", key = "ID", ...)
```

# Arguments

```
gff Gff file with (hopefully) IDs and widths.

type Annotation type to use (3rd column).

key Identifier in the 10th column of the gff file to use.

Extra arguments likely for gff2df
```

# Value

Data frame of gene IDs and widths.

# See Also

```
rtracklayer import.gff
```

# **Examples**

```
## Not run:
tt = get_genelengths('reference/fun.gff.gz')
head(tt)
##
            ID width
     YAL069W 312
## 1
## 2 YAL069W
                315
## 3 YAL069W
                3
## 4 YAL068W-A
              252
## 5 YAL068W-A
                255
## 6 YAL068W-A
## End(Not run)
```

52 get\_kegg\_sub

| get_kegg_genes | Extract the set of geneIDs matching pathways for a given species. |  |
|----------------|-------------------------------------------------------------------|--|
|                |                                                                   |  |

#### **Description**

This uses KEGGREST to extract the mappings for all genes for a species and pathway or 'all'. Because downloading them takes a while, it will save the results to kegg\_species.rda. When run interactively, it will give some information regarding the number of genes observed in each pathway.

# Usage

```
get_kegg_genes(pathway = "all", abbreviation = NULL,
  species = "leishmania major", savefile = NULL)
```

# **Arguments**

pathway Either a single pathway kegg id or 'all'.

abbreviation Optional 3 letter species kegg id.

species Stringified species name used to extract the 3 letter abbreviation.

savefile Filename to which to save the relevant data.

#### Value

Dataframe of the various kegg data for each pathway, 1 row/gene.

# **Examples**

```
## Not run:
   kegg_info <- get_kegg_genes(species="Canis familiaris")
## End(Not run)</pre>
```

# **Description**

This function should provide 2 character lists which, when applied sequentially, will result in a hopefully coherent set of mapped gene IDs matching the TriTypDB/KEGG specifications.

```
get_kegg_sub(species = "lma")
```

### Arguments

species

3 letter abbreviation for a given kegg type

#### Value

2 character lists containing the patterns and replace arguments for gsub(), order matters!

```
get_microbesonline_annotation
```

Skip the db and download all the text annotations for a given species.

#### **Description**

Like I said, the microbesonline mysqldb is rather more complex than I prefer. This shortcuts that process and just grabs a tsv copy of everything and loads it into a dataframe.

### Usage

```
get_microbesonline_annotation(ids = "160490", species = NULL)
```

# **Arguments**

ids List of ids to query.

species Species name(s) to use instead.

# Value

List of dataframes with the annotation information.

```
get_microbesonline_ids
```

Use the publicly available microbesonline mysql instance to get species ids.

## **Description**

The microbesonline mysql instance is more complex than I like. Their id system is reminiscent of KEGG's and similarly annoying. Though I haven't figured out how the tables interact, a query to get ids is simple enough.

```
get_microbesonline_ids(name, exact = FALSE)
```

54 get\_model\_adjust

### Arguments

name Text string containing some part of the species name of interest.

exact Use an exact species name?

#### Value

Dataframe of ids and names.

get\_microbesonline\_name

Use the publicly available microbesonline mysql instance to get species name(s).

# **Description**

The microbesonline mysql instance is more complex than I like. Their id system is reminiscent of KEGG's and similarly annoying. Though I haven't figured out how the tables interact, a query to get ids is simple enough.

#### Usage

```
get_microbesonline_name(id)
```

# **Arguments**

id

Text string containing some part of the species name of interest.

### Value

Dataframe of ids and names.

get\_model\_adjust

Extract some surrogate estimations from a raw data set using sva, ruv, and/or pca.

# **Description**

This applies the methodologies very nicely explained by Jeff Leek at https://github.com/jtleek/svaseq/blob/master/recount.Rn and attempts to use them to acquire estimates which may be applied to an experimental model by either EdgeR, DESeq2, or limma. In addition, it modifies the count tables using these estimates so that one may play with the modified counts and view the changes (with PCA or heatmaps or whatever). Finally, it prints a couple of the plots shown by Leek in his document. In other words, this is entirely derivative of someone much smarter than me.

get\_ncbi\_taxonid 55

# Usage

```
get_model_adjust(expt, estimate_type = "sva_supervised", surrogates = "be",
...)
```

# Arguments

expt Raw experiment object

estimate\_type One of sva\_supervised, sva\_unsupervised, ruv\_empirical, ruv\_supervised, ruv\_residuals,

or pca.

surrogates Choose a method for getting the number of surrogates, be or leek.

... Parameters fed to arglist.

# Value

List including the adjustments for a model matrix, a modified count table, and 3 plots of the known batch, surrogates, and batch/surrogate.

# **Description**

taxize looks like it might be awesome, but it is also pretty annoying

#### Usage

```
get_ncbi_taxonid(species = "Leishmania major")
```

# **Arguments**

species Human readable species name

#### Value

potential NCBI taxon IDs

56 gff2df

| get_sig_genes | Get a set of up/down differentially expressed genes. |
|---------------|------------------------------------------------------|
|               |                                                      |

# **Description**

Take one or more criteria (fold change, rank order, (adj)p-value, z-score from median FC) and use them to extract the set of genes which are defined as 'differentially expressed.' If no criteria are provided, it arbitrarily chooses all genes outside of 1-z.

# Usage

```
get_sig_genes(table, n = NULL, z = NULL, fc = NULL, p = NULL,
column = "logFC", fold = "plusminus", p_column = "adj.P.Val")
```

#### **Arguments**

| table    | Table from limma/edger/deseq.                                                                                                                                                                                           |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n        | Rank-order top/bottom number of genes to take.                                                                                                                                                                          |
| z        | Number of z-scores >/< the median to take.                                                                                                                                                                              |
| fc       | Fold-change cutoff.                                                                                                                                                                                                     |
| p        | P-value cutoff.                                                                                                                                                                                                         |
| column   | Table's column used to distinguish top vs. bottom.                                                                                                                                                                      |
| fold     | Identifier reminding how to get the bottom portion of a fold-change (plusminus says to get the negative of the positive, otherwise 1/positive is taken). This effectively tells me if this is a log fold change or not. |
| p_column | Table's column containing (adjusted or not)p-values.                                                                                                                                                                    |
|          |                                                                                                                                                                                                                         |

# Value

Subset of the up/down genes given the provided criteria.

| gff2df | Extract annotation information from a gff file into a df |  |
|--------|----------------------------------------------------------|--|
|        |                                                          |  |

# **Description**

Try to make import.gff a little more robust; I acquire (hopefully) valid gff files from various sources: yeastgenome.org, microbesonline, tritrypdb, ucsc, ncbi. To my eyes, they all look like reasonably good gff3 files, but some of them must be loaded with import.gff2, import.gff3, etc. That is super annoying. Also, I pretty much always just do as.data.frame() when I get something valid from rtracklayer, so this does that for me, I have another function which returns the iranges etc. This function wraps import.gff/import.gff3/import.gff2 calls in try() because sometimes those functions fail in unpredictable ways.

gff2irange 57

#### Usage

```
gff2df(gff, type = NULL, id_col = "ID", second_id_col = "locus_tag",
    try = NULL)
```

#### **Arguments**

gff Gff filename.

type Subset the gff file for entries of a specific type.

id\_col Column in a successful import containing the IDs of interest.

second\_id\_col Second column to check.

try Give your own function call to use for importing.

#### Value

Dataframe of the annotation information found in the gff file.

#### See Also

rtracklayer import.gff import.gff2 import.gff3

#### **Examples**

```
## Not run:
funkytown <- gff2df('reference/gff/saccharomyces_cerevsiae.gff.xz')
## End(Not run)
```

gff2irange

Extract annotation information from a gff file into an irange object.

### Description

Try to make import.gff a little more robust; I acquire (hopefully) valid gff files from various sources: yeastgenome.org, microbesonline, tritrypdb, ucsc, ncbi. To my eyes, they all look like reasonably good gff3 files, but some of them must be loaded with import.gff2, import.gff3, etc. That is super annoying. Also, I pretty much always just do as.data.frame() when I get something valid from rtracklayer, so this does that for me, I have another function which returns the iranges etc. This function wraps import.gff/import.gff3/import.gff2 calls in try() because sometimes those functions fail in unpredictable ways.

```
gff2irange(gff, type = NULL)
```

58 godef

## **Arguments**

gff Gff filename. type Subset to extract.

#### **Details**

This is essentially gff2df(), but returns data suitable for getSet()

#### Value

```
Iranges! (useful for getSeq().)
```

#### See Also

```
rtracklayer gff2df getSeq
```

# **Examples**

```
## Not run:
library(BSgenome.Tcruzi.clbrener.all)
tc_clb_all <- BSgenome.Tcruzi.clbrener.all
cds_ranges <- gff2irange('reference/gff/tcruzi_clbrener.gff.xz', type='CDS')
cds_sequences <- Biostrings::getSeq(tc_clb_all, cds_ranges)
## End(Not run)</pre>
```

godef

Get a go long-form definition from an id.

# **Description**

Sometimes it is nice to be able to read the full definition of some GO terms.

# Usage

```
godef(go = "GO:0032432")
```

# Arguments

go

GO ID, this may be a character or list (assuming the elements are goids).

#### Value

Some text providing the long definition of each provided GO id.

# See Also

# **GOTermsAnnDbBimap**

golev 59

# **Examples**

```
## Not run:
   godef("GO:0032432")
## > GO:0032432
## > "An assembly of actin filaments that are on the same axis but may be oriented with the
## > same or opposite polarities and may be packed with different levels of tightness."
## End(Not run)
```

golev

Get a go level approximation from an ID.

# Description

Sometimes it is useful to know how far up/down the ontology tree a given id resides. This attmepts to answer that question.

### Usage

```
golev(go)
```

#### **Arguments**

go

GO id, this may be a character or list (assuming the elements are goids).

#### Value

Set of numbers corresponding to approximate tree positions of the GO ids.

#### See Also

# **GOTermsAnnDbBimap**

# **Examples**

```
## Not run:
  golev("GO:0032559")
## > 3
## End(Not run)
```

golevel\_df

golevel

Get a go level approximation from a set of IDs.

# **Description**

This just wraps golev() in mapply.

# Usage

```
golevel(go = c("GO:0032559", "GO:0000001"))
```

# Arguments

go

Character list of IDs.

#### Value

Set pf approximate levels within the onlogy.

#### See Also

# **GOTermsAnnDbBimap**

# **Examples**

```
## Not run:
  golevel(c("GO:0032559", "GO:0000001")
## > 3 4
## End(Not run)
```

golevel\_df

Extract a dataframe of golevels using getGOLevel() from clusterProfiler.

# Description

This function is way faster than my previous iterative golevel function. That is not to say it is very fast, so it saves the result to ontlevel.rda for future lookups.

```
golevel_df(ont = "MF", savefile = "ontlevel.rda")
```

goont 61

# **Arguments**

ont the ontology to recurse.

savefile a file to save the results for future lookups.

# Value

golevels a dataframe of goids<->highest level

goont

Get a go ontology name from an ID.

# Description

Get a go ontology name from an ID.

# Usage

```
goont(go = c("GO:0032432", "GO:0032433"))
```

# **Arguments**

go

GO id, this may be a character or list (assuming the elements are goids).

# Value

The set of ontology IDs associated with the GO ids, thus 'MF' or 'BP' or 'CC'.

#### See Also

# **GOTermsAnnDbBimap**

# Examples

```
## Not run:
  goont(c("GO:0032432", "GO:0032433"))
## > GO:0032432 GO:0032433
## > "CC" "CC"
## End(Not run)
```

62 goseq\_table

gosec

Get a GO secondary ID from an id.

# Description

Unfortunately, GOTERM's returns for secondary IDs are not consistent, so this function has to have a whole bunch of logic to handle the various outputs.

# Usage

```
gosec(go = "GO:0032432")
```

# **Arguments**

go

GO ID, this may be a character or list(assuming the elements, not names, are goids).

#### Value

Some text comprising the secondary GO id(s).

#### See Also

# **GOTermsAnnDbBimap**

# **Examples**

```
## Not run:
    gosec("G0:0032432")
## > G0:0032432
## > "G0:0000141" "G0:0030482"
## End(Not run)
```

goseq\_table

Enhance the goseq table of gene ontology information.

# Description

While goseq has some nice functionality, the table of outputs it provides is somewhat lacking. This attempts to increase that with some extra helpful data like ontology categories, definitions, etc.

```
goseq_table(df, file = NULL)
```

goseq\_trees 63

#### **Arguments**

df Dataframe of ontology information. This is intended to be the output from goseq

including information like numbers/category, GOids, etc. It requires a column

'category' which contains: GO:000001 and such.

file Csv file to which to write the table.

#### Value

Ontology table with annotation information included.

#### See Also

goseq

# **Examples**

```
## Not run:
annotated_go = goseq_table(go_ids)
head(annotated_go, n=1)
## >
           category numDEInCat numInCat over_represented_pvalue
## > 571 GO:0006364
                             9
                                                   4.655108e-08
## >
         under_represented_pvalue
                                    qvalue ontology
## > 571
                        1.0000000 6.731286e-05
## >
                                   term
                        rRNA processing
## > 571
## >
                                  synonym
## > 571
               "35S primary transcript processing, GO:0006365"
## >
           secondary
                        definition
                        Any process involved in the conversion of a primary ribosomal
## > 571
           GO:0006365
##
           RNA (rRNA) transcript into one or more mature rRNA molecules.
## End(Not run)
```

goseq\_trees

Make fun trees a la topgo from goseq data.

# Description

This seeks to force goseq data into a format suitable for topGO and then use its tree plotting function to make it possible to see significantly increased ontology trees.

```
goseq_trees(de_genes, godata, goid_map = "reference/go/id2go.map",
    score_limit = 0.01, goids_df = NULL, overwrite = FALSE,
    selector = "topDiffGenes", pval_column = "adj.P.Val")
```

64 gostats\_kegg

#### **Arguments**

de\_genes Some differentially expressed genes.

godata Data from goseq.

goid\_map File to save go id mapping.
score\_limit Score limit for the coloring.

goids\_df Mapping of IDs to GO in the Ramigo expected format.

overwrite Overwrite the trees?

selector Function for choosing genes.
pval\_column Column to acquire pvalues.

#### Value

A plot!

#### See Also

# Ramigo

| gostats_kegg | Use gostats() against kegg pathways. |
|--------------|--------------------------------------|
|--------------|--------------------------------------|

# Description

This sets up a GSEABase analysis using KEGG pathways rather than gene ontologies. Does this even work? I don't think I have ever tested it yet. oh, it sort of does, maybe if I export it I will rembmer it.

#### Usage

```
gostats_kegg(organism = "Homo sapiens", pathdb = "org.Hs.egPATH",
  godb = "org.Hs.egGO")
```

### **Arguments**

organism The organism used to make the KEGG frame, human readable no taxonomic.

pathdb Name of the pathway database for this organism. godb Name of the ontology database for this organism.

# Value

Results from hyperGTest using the KEGG pathways.

gostats\_trees 65

| gostats_trees | Take gostats data and print it on a tree as topGO does. |
|---------------|---------------------------------------------------------|
|               |                                                         |

# Description

This shoehorns gostats data into a format acceptable by topgo and uses it to print pretty ontology trees showing the over represented ontologies.

# Usage

```
gostats_trees(de_genes, mf_over, bp_over, cc_over, mf_under, bp_under, cc_under,
  goid_map = "reference/go/id2go.map", score_limit = 0.01,
  goids_df = NULL, overwrite = FALSE, selector = "topDiffGenes",
  pval_column = "adj.P.Val")
```

# Arguments

| de_genes    | Some differentially expressed genes.                           |
|-------------|----------------------------------------------------------------|
| mf_over     | Mfover data.                                                   |
| bp_over     | Bpover data.                                                   |
| cc_over     | Ccover data.                                                   |
| mf_under    | Mfunder data.                                                  |
| bp_under    | Bpunder data.                                                  |
| cc_under    | Ccunder expression data.                                       |
| goid_map    | Mapping of IDs to GO in the Ramigo expected format.            |
| score_limit | Maximum score to include as 'significant'.                     |
| goids_df    | Dataframe of available goids (used to generate goid_map).      |
| overwrite   | Overwrite the goid_map?                                        |
| selector    | Function to choose differentially expressed genes in the data. |
| pval_column | Column in the data to be used to extract pvalue scores.        |

# Value

```
plots! Trees! oh my!
```

# See Also

# topGO

66 goterm

gosyn

Get a go synonym from an ID.

# Description

I think I will need to do similar parsing of the output for this function as per gosec() In some cases this also returns stuff like c("some text", "GO:someID") versus "some other text" versus NULL versus NA. This function just goes a mapply(gosn, go).

#### Usage

```
gosyn(go = "GO:0000001")
```

#### **Arguments**

go

GO id, this may be a character or list(assuming the elements are goids).

# Value

Some text providing the synonyms for the given id(s).

#### See Also

# GOTermsAnnDbBimap

# **Examples**

```
## Not run:
    text = gosyn("GO:0000001")
    text
## > GO:000001
## > "mitochondrial inheritance"
## End(Not run)
```

goterm

Get a go term from ID.

# Description

Get a go term from ID.

```
goterm(go = "GO:0032559")
```

gotest 67

# **Arguments**

go

GO id or a list thereof, this may be a character or list(assuming the elements, not names, are goids).

# Value

Some text containing the terms associated with GO id(s).

# See Also

# **GOTermsAnnDbBimap**

# **Examples**

```
## Not run:
   goterm("GO:0032559")
## > GO:0032559
## > "adenyl ribonucleotide binding"
## End(Not run)
```

gotest

Test GO ids to see if they are useful.

# **Description**

This just wraps gotst in mapply.

# Usage

```
gotest(go)
```

# Arguments

go

go IDs as characters.

# Value

Some text

#### See Also

# **GOTermsAnnDbBimap**

68 graph\_metrics

#### **Examples**

```
## Not run:
  gotest("GO:0032559")
## > 1
  gotest("GO:0923429034823904")
## > 0
## End(Not run)
```

graph\_metrics

Make lots of graphs!

#### **Description**

Plot out a set of metrics describing the state of an experiment including library sizes, # non-zero genes, heatmaps, boxplots, density plots, pca plots, standard median distance/correlation, and qq plots.

#### Usage

```
graph_metrics(expt, cormethod = "pearson", distmethod = "euclidean",
   title_suffix = NULL, qq = NULL, ma = NULL, ...)
```

# **Arguments**

expt an expt to process

cormethod the correlation test for heatmaps.

distmethod define the distance metric for heatmaps. title\_suffix text to add to the titles of the plots.

qq include qq plots

ma include pairwise ma plots

... extra parameters optionally fed to the various plots

#### Value

a loooong list of plots including the following: nonzero = a ggplot2 plot of the non-zero genes vs library size libsize = a ggplot2 bar plot of the library sizes boxplot = a ggplot2 boxplot of the raw data corheat = a recordPlot()ed pairwise correlation heatmap of the raw data smc = a recordPlot()ed view of the standard median pairwise correlation of the raw data disheat = a recordPlot()ed pairwise euclidean distance heatmap of the raw data smd = a recordPlot()ed view of the standard median pairwise distance of the raw data pcaplot = a recordPlot()ed PCA plot of the raw samples pcatable = a table describing the relative contribution of condition/batch of the raw data pcares = a table describing the relative contribution of condition/batch of the raw data pcavar = a table describing the variance of the raw data qq = a recordPlotted() view comparing the quantile/quantiles between the mean of all data and every raw sample density = a ggplot2 view of the density of each raw sample (this is complementary but more fun than a boxplot)

heatmap.3 69

#### See Also

**Biobase ggplot2 grDevices gplots** exprs hpgl\_norm plot\_nonzero plot\_libsize plot\_boxplot plot\_corheat plot\_sm plot\_disheat plot\_pca plot\_qq\_all plot\_pairwise\_ma

#### **Examples**

heatmap.3

a minor change to heatmap.2 makes heatmap.3

#### **Description**

heamap.2 is the devil.

```
heatmap.3(x, Rowv = TRUE, Colv = if (symm) "Rowv" else TRUE,
  distfun = dist, hclustfun = hclust, dendrogram = c("both", "row",
  "column", "none"), reorderfun = function(d, w) reorder(d, w),
  symm = FALSE, scale = c("none", "row", "column"), na.rm = TRUE,
  revC = identical(Colv, "Rowv"), add.expr, breaks, symbreaks = min(x < 0, y)
  na.rm = TRUE) || scale != "none", col = "heat.colors", colsep, rowsep,
  sepcolor = "white", sepwidth = c(0.05, 0.05), cellnote, notecex = 1,
  notecol = "cyan", na.color = par("bg"), trace = c("column", "row",
  "both", "none"), tracecol = "cyan", hline = median(breaks),
  vline = median(breaks), linecol = tracecol, margins = c(5, 5),
  ColSideColors, RowSideColors, cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 +
  1/log10(nc), labRow = NULL, labCol = NULL, srtRow = NULL,
  srtCol = NULL, adjRow = c(0, NA), adjCol = c(NA, 0), offsetRow = 0.5,
  offsetCol = 0.5, key = TRUE, keysize = 1.5,
  density.info = c("histogram", "density", "none"), denscol = tracecol,
  symkey = min(x < 0, na.rm = TRUE) || symbreaks, densadj = 0.25,
  key.title = NULL, key.xlab = NULL, key.ylab = NULL,
  key.xtickfun = NULL, key.ytickfun = NULL, key.par = list(),
 main = NULL, xlab = NULL, ylab = NULL, lmat = NULL, lhei = NULL,
  lwid = NULL, extrafun = NULL, linewidth = 1, ...)
```

70 heatmap.3

#### **Arguments**

x data

Rowv add rows?
Colv add columns?

distfun distance function to use hclustfun clustering function to use dendrogram which axes to put trees on reorderfun reorder the rows/columns?

symm symmetrical? scale add the scale?

na.rm remove nas from the data?
revC reverse the columns?

add.expr no clue
breaks also no clue
symbreaks still no clue
col colors!

colsep column separator rowsep row separator

sepcolor color to put between columns/rows

sepwidth how much to separate

cellnote mur?

notecex size of the notes
notecol color of the notes

na.color a parameter call to bg

trace do a trace for rows/columns?

tracecol color of the trace

hline the hline
vline the vline
linecol the line color
margins margins are good

ColSideColors colors for the columns as annotation RowSideColors colors for the rows as annotation

cexRow row size
cexCol column size
labRow hmmmm

labCol still dont know srtRow srt the row? heatmap.3 71

srtCol srt the column?
adjRow adj the row?
adjCol adj the column?

offsetRow how far to place the text from the row

offsetCol how far to place the text from the column

key add a key?

keysize if so, how big?

density.info for the key, what information to add

denscol tracecol hmm ok

symkey I like keys
densadj adj the dens?
key.title title for the key

key.xlab text for the x axis of the key key.ylab text for the y axis of the key

key.xtickfun add text to the ticks of the key x axis key.ytickfun add text to the ticks of the key y axis

key.par parameters for the key
main the main title of the plot

xlab main x label
ylab main y label
lmat the lmat
lhei the lhei
lwid the lwid

extrafun I do enjoy me some extra fun

linewidth the width of lines

... because this function did not already have enough options

# Value

a heatmap!

72 hpgl\_arescore

| h.,       |                                                         |
|-----------|---------------------------------------------------------|
| hpgltools | hpgltools: a suite of tools to make our analyses easier |

#### **Description**

This provides a series of helpers for working with sequencing data

#### **Details**

It falls under a few main topics

- Data exploration, look for trends in sequencing data and identify batch effects or skewed distributions.
- Differential expression analyses, use DESeq2/limma/EdgeR in a hopefully robust and flexible fashion.
- Ontology analyses, use goseq/clusterProfiler/topGO/GOStats/gProfiler in hopefully robust ways.
- Perform some simple TnSeq analyses.

To see examples of this inaction, check out the vignettes: browseVignettes(package = 'hpgltools')

| gl_arescore Implement the arescan function in |
|-----------------------------------------------|
|-----------------------------------------------|

### **Description**

This function was taken almost verbatim from AREScore() in SeqTools Available at: https://github.com/lianos/seqtools.git At least on my computer I could not make that implementation work So I rewrapped its apply() calls and am now hoping to extend its logic a little to make it more sensitive and get rid of some of the spurious parameters or at least make them more transparent.

## Usage

#### **Arguments**

| x           | DNA/RNA StringSet containing the UTR sequences of interest          |
|-------------|---------------------------------------------------------------------|
| basal       | I dunno.                                                            |
| overlapping | default=1.5                                                         |
| d1.3        | default=0.75 These parameter names are so stupid, lets be realistic |
| d4.6        | default=0.4                                                         |

hpgl\_combatMod 73

```
d7.9 default=0.2 within.AU default=0.3 aub.min.length default=10 aub.p.to.start default=0.8 aub.p.to.end default=0.55
```

#### **Details**

Note that I did this two months ago and haven't touched it since...

### Value

a DataFrame of scores

### See Also

#### **IRanges Biostrings**

#### **Examples**

```
## Not run:
## Extract all the genes from my genome, pull a static region 120nt following the stop
## and test them for potential ARE sequences.
## FIXME: There may be an error in this example, another version I have handles the +/- strand
## genes separately, I need to return to this and check if it is providing the 5' UTR for 1/2
## the genome, which would be unfortunate -- but the logic for testing remains the same.
are_candidates <- hpgl_arescore(genome)</pre>
utr_genes <- subset(lmajor_annotations, type == 'gene')</pre>
threep <- GenomicRanges::GRanges(seqnames=Rle(utr_genes[,1]),</pre>
                                ranges=IRanges(utr_genes[,3], end=(utr_genes[,3] + 120)),
                                strand=Rle(utr_genes[,5]),
                                name=Rle(utr_genes[,10]))
threep_seqstrings <- Biostrings::getSeq(lm, threep)</pre>
are_test <- hpgltools:::hpgl_arescore(x=threep_seqstrings)</pre>
are_genes <- rownames(are_test[ which(are_test$score > 0), ])
## End(Not run)
```

hpgl\_combatMod

A modified version of comBatMod.

#### Description

This is a hack of Kwame Okrah's combatMod to make it not fail on corner-cases. This was mostly copy/pasted from https://github.com/kokrah/cbcbSEQ/blob/master/R/transform.R

## Usage

```
hpgl_combatMod(dat, batch, mod, noScale = TRUE, prior.plots = FALSE, ...)
```

74 hpgl\_cor

### **Arguments**

dat Df to modify.
batch Factor of batches.
mod Factor of conditions.

noScale The normal 'scale' option squishes the data too much, so this defaults to TRUE.

prior.plots Print out prior plots?

... Extra options are passed to arglist

### Value

Df of batch corrected data

## See Also

```
sva ComBat
```

## **Examples**

```
## Not run:
df_new = hpgl_combatMod(df, batches, model)
## End(Not run)
```

hpgl\_cor

Wrap cor() to include robust correlations.

# Description

Take covRob's robust correlation coefficient and add it to the set of correlations available when one calls cor().

# Usage

```
hpgl_cor(df, method = "pearson", ...)
```

### **Arguments**

df Data frame to test.

method Correlation method to use. Includes pearson, spearman, kendal, robust.

... Other options to pass to stats::cor().

### Value

Some fun correlation statistics.

hpgl\_enrich.internal 75

## See Also

robust cor cov covRob

### **Examples**

```
## Not run:
hpgl_cor(df=df)
hpgl_cor(df=df, method="robust")
## End(Not run)
```

hpgl\_enrich.internal A minor hack in the clusterProfiler function 'enrich.internal'.

# Description

I do not remember any longer why, but enrichGO errors out in ways which do not always make sense, this was written to alleviate that problem. I believe I sent a diff to the clusterProfiler author but did not hear back and so added this function.

## Usage

```
hpgl_enrich.internal(gene, organism, pvalueCutoff = 1,
   pAdjustMethod = "fdr", ont, minGSSize = 2, qvalueCutoff = 0.2,
   readable = FALSE, universe = NULL)
```

# **Arguments**

gene Differentially expressed genes.

organism Pull ensembl annotations if this is a supported species.

pvalueCutoff P-value cutoff.
pAdjustMethod P-adjust method.

ont Molecular function, Biological process, or Cellular component?

minGSSize Minimum gs size?

qvalueCutoff Maximum allowed q-value.

readable Set the readable flag for the DOSE object?
universe Universe of genes to score significance against.

#### Value

Some clusterProfiler data.

## See Also

### clusterProfiler

76 hpgl\_enrichGO

| hpgl_enrichGO | A minor hack in the clusterProfiler function 'enrichGO'. |
|---------------|----------------------------------------------------------|
|               | · ·                                                      |

## **Description**

I do not remember any longer why, but enrichGO errors out in ways which do not always make sense, this was written to alleviate that problem. I believe I sent a diff to the clusterProfiler author but did not hear back and so added this function.

# Usage

```
hpgl_enrichGO(gene, organism = "human", ont = "MF", pvalueCutoff = 0.05,
   pAdjustMethod = "BH", universe, qvalueCutoff = 0.2, minGSSize = 2,
   readable = FALSE)
```

## **Arguments**

gene Some differentially expressed genes.

organism if used will cause this to pull the ensG annotations.

ont Molecular function, Biological process, or Cellular component?

pvalueCutoff P-value cutoff.

pAdjustMethod P-value adjustment.

universe Gene universe to use.

qvalueCutoff Maximum qvalue before adding.

minGSSize Smallest ontology group size allowed.

readable Set the readable tag on the returned object?

## Value

Some clusterProfiler data.

### See Also

#### clusterProfiler

hpgl\_Gff2GeneTable 77

| npg1_GTT2GeneTable A near copy-paste of clusterProfiler's readGff() | hpgl_Gff2GeneTable | A near copy-paste of clusterProfiler's readGff(). |
|---------------------------------------------------------------------|--------------------|---------------------------------------------------|
|---------------------------------------------------------------------|--------------------|---------------------------------------------------|

### **Description**

There is a redundant merge in the original code which caused my invocations to use up all the memory on my machine.

## Usage

```
hpgl_Gff2GeneTable(gffFile, compress = TRUE, split = "=")
```

## **Arguments**

gffFile Gff file of annotations.
compress Compress the results?

split Splitter when reading gff files to extract annotation information.

#### Value

geneTable.rda file of gene attributes.

hpgl\_GOplot

A minor hack of the topGO GOplot function.

# Description

This allows me to change the line widths from the default.

## Usage

```
hpgl_GOplot(dag, sigNodes, dag.name = "GO terms", edgeTypes = TRUE,
nodeShape.type = c("box", "circle", "ellipse", "plaintext")[3],
genNodes = NULL, wantedNodes = NULL, showEdges = TRUE,
useFullNames = TRUE, oldSigNodes = NULL, nodeInfo = NULL,
maxchars = 30)
```

# **Arguments**

dag DAG tree of ontologies.

sigNodes Set of significant ontologies (with p-values).

dag.name Name for the graph.

edgeTypes Types of the edges for graphviz.

nodeShape.type Shapes on the tree.

78 hpgl\_GroupDensity

genNodes Generate the nodes?

wantedNodes Subset of the ontologies to plot.

showEdges Show the arrows?

useFullNames Full names of the ontologies (they can get long).

oldSigNodes I dunno.
nodeInfo Hmm.

maxchars Maximum characters per line inside the shapes.

## Value

Topgo plot!

hpgl\_GroupDensity
A hack of topGO's groupDensity()

# Description

This just adds a couple wrappers to avoid errors in groupDensity.

# Usage

```
hpgl_GroupDensity(object, whichGO, ranks = TRUE, rm.one = FALSE)
```

# Arguments

object TopGO enrichment object.

whichGO Individual ontology group to compare against.

ranks Rank order the set of ontologies?

rm.one Remove pvalue=1 groups?

## Value

plot of group densities.

hpgl\_log2cpm 79

hpgl\_log2cpm

Converts count matrix to log2 counts-per-million reads.

## **Description**

Based on the method used by limma as described in the Law et al. (2014) voom paper.

## Usage

```
hpgl_log2cpm(counts, lib.size = NULL)
```

# Arguments

counts Read count matrix. lib.size Library size.

## Value

log2-CPM read count matrix.

## See Also

edgeR

## **Examples**

```
## Not run:
12cpm <- hpgl_log2cpm(counts)
## End(Not run)</pre>
```

hpgl\_norm

Normalize a dataframe/expt, express it, and/or transform it

## **Description**

There are many possible options to this function. Refer to normalize\_expt() for a more complete list.

# Usage

```
hpgl_norm(data, ...)
```

# **Arguments**

data Some data as a df/expt/whatever.
... I should put all those other options here

hpgl\_pathview

### Value

edgeR's DGEList expression of a count table. This seems to me to be the easiest to deal with.

#### See Also

cpm rpkm hpgl\_rpkm DESeqDataSetFromMatrix estimateSizeFactors DGEList calcNormFactors

### **Examples**

hpgl\_pathview

Print some data onto KEGG pathways.

### **Description**

KEGGREST and pathview provide neat functions for coloring molecular pathways with arbitrary data. Unfortunately they are somewhat evil to use. This attempts to alleviate that.

## Usage

```
hpgl_pathview(path_data, indir = "pathview_in", outdir = "pathview",
  pathway = "all", species = "lma", from_list = NULL, to_list = NULL,
  suffix = "_colored", filenames = "id", fc_column = "limma_logfc",
  format = "png", verbose = TRUE)
```

#### **Arguments**

| path_data | Some differentially expressed genes.                                                   |
|-----------|----------------------------------------------------------------------------------------|
| indir     | Directory into which the unmodified kegg images will be downloaded (or already exist). |
| outdir    | Directory which will contain the colored images.                                       |
| pathway   | Perform the coloring for a specific pathway?                                           |
| species   | Kegg identifier for the species of interest.                                           |
| from_list | Regex to help in renaming KEGG categories/gene names from one format to another.       |
| to_list   | Regex to help in renaming KEGG categories/gene names from one format to another.       |
| suffix    | Add a suffix to the completed, colored files.                                          |
| filenames | Name the final files by id or name?                                                    |

hpgl\_qshrink 81

## Value

A list of some information for every KEGG pathway downloaded/examined. This information includes: a. The filename of the final image for each pathway. b. The number of genes which were found in each pathway image. c. The number of genes in the 'up' category d. The number of genes in the 'down' category

### See Also

### Ramigo pathview

# Examples

hpgl\_qshrink

A hacked copy of Kwame's qsmooth/qstats code.

# **Description**

I made a couple small changes to Kwame's qstats() function to make it not fail when on cornercases. I sent him a diff, but haven't checked to see if it was useful yet.

# Usage

```
hpgl_qshrink(data = NULL, groups = NULL, refType = "mean",
  groupLoc = "mean", window = 99, groupCol = NULL, plot = TRUE, ...)
```

### **Arguments**

| data     | Count table to modify                 |
|----------|---------------------------------------|
| groups   | Factor of the experimental conditions |
| refType  | Method for grouping conditions        |
| groupLoc | Method for grouping groups            |
| window   | Window, for looking!                  |
| groupCol | Column to define conditions           |
| plot     | Plot the quantiles?                   |
|          | More options                          |

# Value

New data frame of normalized counts

hpgl\_qstats

## See Also

qsmooth

## **Examples**

```
## Not run:
df <- hpgl_qshrink(data)
## End(Not run)</pre>
```

hpgl\_qstats

A hacked copy of Kwame's qsmooth/qstats code.

# Description

I made a couple small changes to Kwame's qstats() function to make it not fail when on cornercases. I sent him a diff, but haven't checked to see if it was useful yet.

### Usage

```
hpgl_qstats(data, groups, refType = "mean", groupLoc = "mean",
   window = 99)
```

## **Arguments**

data Initial count data

groups Experimental conditions as a factor.

refType Method to separate groups, mean or median.

groupLoc I don't remember what this is for.

window Window for basking!

#### Value

Some new data.

```
## Not run:
qstatted <- hpgl_qstats(data, conditions)
## End(Not run)</pre>
```

hpgl\_read\_files 83

| hpgl_read_files Read a bunch of count tables and create a usa them. | bunch of count tables and create a usable data frame from |
|---------------------------------------------------------------------|-----------------------------------------------------------|
|---------------------------------------------------------------------|-----------------------------------------------------------|

# Description

It is worth noting that this function has some logic intended for the elsayed lab's data storage structure. It shouldn't interfere with other usages, but it attempts to take into account different ways the data might be stored.

# Usage

```
hpgl_read_files(ids, files, header = FALSE, include_summary_rows = FALSE,
   suffix = NULL, ...)
```

# Arguments

ids List of experimental ids.

files List of files to read.

header Whether or not the count tables include a header row.

include\_summary\_rows
Whether HTSeq summary rows should be included.

suffix Optional suffix to add to the filenames when reading them.

... More options for happy time!

## Value

Data frame of count tables.

### See Also

```
create_expt
```

```
## Not run:
    count_tables = hpgl_read_files(as.character(sample_ids), as.character(count_filenames))
## End(Not run)
```

hpgl\_voom

hpgl\_rpkm

Reads/(kilobase(gene) \* million reads)

#### **Description**

Express a data frame of counts as reads per kilobase(gene) per million(library). This function wraps EdgeR's rpkm in an attempt to make sure that the required gene lengths get sent along.

# Usage

```
hpgl_rpkm(df, ...)
```

# Arguments

df Data frame of counts, alternately an edgeR DGEList.

... extra options including annotations for defining gene lengths.

#### Value

Data frame of counts expressed as rpkm.

### See Also

```
edgeR and cpm rpkm
```

# **Examples**

```
## Not run:
rpkm_df = hpgl_rpkm(df, annotations=gene_annotations)
## End(Not run)
```

hpgl\_voom

A slight modification of limma's voom().

## **Description**

Estimate mean-variance relationship between samples and generate 'observational-level weights' in preparation for linear modeling RNAseq data. This particular implementation was primarily scabbed from cbcbSEQ, but changes the mean-variance plot slightly and attempts to handle corner cases where the sample design is confounded by setting the coefficient to 1 for those samples rather than throwing an unhelpful error. Also, the Elist output gets a 'plot' slot which contains the plot rather than just printing it.

kegg\_get\_orgn 85

### Usage

```
hpgl_voom(dataframe, model = NULL, libsize = NULL, stupid = FALSE,
  logged = FALSE, converted = FALSE)
```

### **Arguments**

dataframe Dataframe of sample counts which have been normalized and log transformed.

model Experimental model defining batches/conditions/etc.

libsize Size of the libraries (usually provided by edgeR).

stupid Cheat when the resulting matrix is not solvable?

logged Is the input data is known to be logged?

converted Is the input data is known to be cpm converted?

### Value

EList containing the following information: E = The normalized data weights = The weights of said data design = The resulting design lib.size = The size in pseudocounts of the library plot = A ggplot of the mean/variance trend with a blue loess fit and red trend fit

### See Also

```
voom lmFit
```

## **Examples**

```
## Not run:
  funkytown = hpgl_voom(samples, model)
## End(Not run)
```

kegg\_get\_orgn

Search KEGG identifiers for a given species name.

### **Description**

KEGG identifiers do not always make sense. For example, how am I supposed to remember that Leishmania major is lmj? This takes in a human readable string and finds the KEGG identifiers that match it.

# Usage

```
kegg_get_orgn(species = "Leishmania", short = TRUE)
```

### **Arguments**

species Search string (Something like 'Homo sapiens').

short Only pull the orgid?

kegg\_to\_ensembl

## Value

Data frame of possible KEGG identifier codes, genome ID numbers, species, and phylogenetic classifications.

### See Also

**RCurl** 

### **Examples**

```
## Not run:
    fun = kegg_get_orgn('Canis')
## > Tid orgid species phylogeny
## > 17 T01007 cfa Canis familiaris (dog) Eukaryotes; Animals; Vertebrates; Mammals
## End(Not run)
```

 $kegg\_to\_ensembl$ 

 ${\it Maps~KEGG~identifiers~to~ENSEMBL~gene~ids.}$ 

## **Description**

Takes a list of KEGG gene identifiers and returns a list of ENSEMBL ids corresponding to those genes.

# Usage

```
kegg_to_ensembl(kegg_ids)
```

# Arguments

kegg\_ids

List of KEGG identifiers to be mapped.

## Value

Ensembl IDs as a character list.

### See Also

keggGet

```
## Not run:
ensembl_list <- kegg_to_ensembl("a")
## End(Not run)</pre>
```

```
limma_coefficient_scatter
```

Plot out 2 coefficients with respect to one another from limma.

# Description

It can be nice to see a plot of two coefficients from a limma comparison with respect to one another. This hopefully makes that easy.

# Usage

```
limma_coefficient_scatter(output, toptable = NULL, x = 1, y = 2,
  gvis_filename = NULL, gvis_trendline = TRUE, z = 1.5,
  tooltip_data = NULL, base_url = NULL, color_low = "#DD0000",
  color_high = "#7B9F35", ...)
```

## **Arguments**

| output                    | Set of pairwise comparisons provided by limma_pairwise().    |
|---------------------------|--------------------------------------------------------------|
| toptable                  | Use this to get up/downs and color them on the scatter plot. |
| X                         | Name or number of the x-axis coefficient column to extract.  |
| у                         | Name or number of the y-axis coefficient column to extract   |
| gvis_filename             | Filename for plotting gvis interactive graphs of the data.   |
| <pre>gvis_trendline</pre> | Add a trendline to the gvis plot?                            |
| z                         | How far from the median to color the plot red and green.     |
| tooltip_data              | Dataframe of gene annotations to be used in the gvis plot.   |
| base_url                  | Basename for gvis plots.                                     |
| color_low                 | Color for the ups.                                           |
| color_high                | Color for the downs.                                         |
|                           | More parameters to make you happy!                           |

## Value

Ggplot2 plot showing the relationship between the two coefficients.

### See Also

```
plot_linear_scatter limma_pairwise
```

```
## Not run:
pretty = coefficient_scatter(limma_data, x="wt", y="mut")
## End(Not run)
```

88 limma\_pairwise

| limma_pairwise Set up a model matrix and set of contrasts for pairwise using voom/limma. | wise comparisons |
|------------------------------------------------------------------------------------------|------------------|
|------------------------------------------------------------------------------------------|------------------|

### **Description**

Creates the set of all possible contrasts and performs them using voom/limma.

# Usage

```
limma_pairwise(input, conditions = NULL, batches = NULL,
  model_cond = TRUE, model_batch = TRUE, model_intercept = TRUE,
  extra_contrasts = NULL, alt_model = NULL, libsize = NULL,
  annot_df = NULL, ...)
```

## **Arguments**

| input           | Dataframe/vector or expt class containing count tables, normalization state, etc.                                                                                                                                                                                      |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| conditions      | Factor of conditions in the experiment.                                                                                                                                                                                                                                |
| batches         | Factor of batches in the experiment.                                                                                                                                                                                                                                   |
| model_cond      | Include condition in the model?                                                                                                                                                                                                                                        |
| model_batch     | Include batch in the model? This is hopefully TRUE.                                                                                                                                                                                                                    |
| model_intercept |                                                                                                                                                                                                                                                                        |
|                 | Perform a cell-means or intercept model? A little more difficult for me to understand. I have tested and get the same answer either way.                                                                                                                               |
| extra_contrasts |                                                                                                                                                                                                                                                                        |
|                 | Some extra contrasts to add to the list. This can be pretty neat, lets say one has conditions A,B,C,D,E and wants to do (C/B)/A and (E/D)/A or (E/D)/(C/B) then use this with a string like: "c_vs_b_ctrla = (C-B)-A, e_vs_d_ctrla = (E-D)-A, de_vs_cb = (E-D)-(C-B)," |

alt\_model Separate model matrix instead of the normal condition/batch.

libsize I've recently figured out that libsize is far more important than I previously re-

alized. Play with it here.

annot\_df Data frame for annotations.

... Use the elipsis parameter to feed options to write\_limma().

### Value

List including the following information: macb = the mashing together of condition/batch so you can look at it macb\_model = The result of calling model.matrix(~0 + macb) macb\_fit = The result of calling lmFit(data, macb\_model) voom\_result = The result from voom() voom\_design = The design from voom (redundant from voom\_result, but convenient) macb\_table = A table of the number of times each condition/batch pairing happens cond\_table = A table of the number of times each condition appears (the denominator for the identities) batch\_table = How many times each

limma\_scatter 89

batch appears identities = The list of strings defining each condition by itself all\_pairwise = The list of strings defining all the pairwise contrasts contrast\_string = The string making up the make-Contrasts() call pairwise\_fits = The result from calling contrasts.fit() pairwise\_comparisons = The result from eBayes() limma\_result = The result from calling write\_limma()

### See Also

write limma

# **Examples**

```
## Not run:
pretend = balanced_pairwise(data, conditions, batches)
## End(Not run)
```

limma\_scatter

Plot arbitrary data from limma as a scatter plot.

## **Description**

Extract the adjusted abundances for the two conditions used in the pairw

#### Usage

```
limma_scatter(all_pairwise_result, first_table = 1, first_column = "logFC",
    second_table = 2, second_column = "logFC", type = "linear_scatter", ...)
```

## **Arguments**

```
all_pairwise_result
Result from calling balanced_pairwise().

first_table
First table from all_pairwise_result$limma_result to look at (may be a name or number).

first_column
Name of the column to plot from the first table.

second_table
Second table inside all_pairwise_result$limma_result (name or number).

second_column
Column to compare against.

type
Type of scatter plot (linear model, distance, vanilla).

...
Use the elipsis to feed options to the html graphs.
```

## Value

plot\_linear\_scatter() set of plots comparing the chosen columns. If you forget to specify tables to compare, it will try the first vs the second.

90 loadme

### See Also

```
plot_linear_scatter topTable
```

# **Examples**

loadme

Load a backup rdata file

## **Description**

I often use R over a sshfs connection, sometimes with significant latency, and I want to be able to save/load my R sessions relatively quickly. Thus this function uses my backup directory to load its R environment.

# Usage

```
loadme(directory = "savefiles", filename = "Rdata.rda.xz")
```

# Arguments

dir

Directory containing the RData.rda.xz file.

## Value

a bigger global environment

## See Also

load save

```
## Not run:
    ## loadme()
## End(Not run)
```

load\_annotations 91

| load_annotations | Load organism annotation data (parasite). |
|------------------|-------------------------------------------|
|------------------|-------------------------------------------|

# Description

Creates a dataframe gene and transcript information for a given set of gene ids using the Organis-mDbi interface.

# Usage

```
load_annotations(orgdb, gene_ids = NULL, include_go = FALSE,
  keytype = "ENSEMBL", fields = NULL, sum_exons = FALSE)
```

# Arguments

| orgdb    | OrganismDb instance.                         |
|----------|----------------------------------------------|
| gene_ids | Gene identifiers for retrieving annotations. |
| keytype  | mmm the key type used?                       |
| fields   | Columns included in the output.              |
|          |                                              |

sum\_exons Perform a sum of the exons in the data set?

### Value

Table of geneids, chromosomes, descriptions, strands, types, and lengths.

### See Also

select

```
## Not run:
one_gene <- load_parasite_annotations(org, c("LmJF.01.0010"))
## End(Not run)</pre>
```

92 load\_host\_annotations

load\_go\_terms

Retrieve GO terms associated with a set of genes.

### **Description**

AnnotationDbi provides a reasonably complete set of GO mappings between gene ID and ontologies. This will extract that table for a given set of gene IDs.

### Usage

```
load_go_terms(orgdb, gene_ids, keytype = "ENSEMBL")
```

### **Arguments**

orgdb OrganismDb instance.

keytype the mysterious keytype returns yet again to haunt my dreams

### Value

Data frame of gene IDs, go terms, and names.

## See Also

select

## **Examples**

```
## Not run:
go_terms <- load_go_terms(org, c("a","b"))
## End(Not run)</pre>
```

load\_host\_annotations Load organism annotation data (mouse/human).

# Description

Creates a dataframe gene and transcript information for a given set of gene ids using the OrganismDbi interface.

### Usage

```
load_host_annotations(orgdb, gene_ids = NULL, keytype = "ENSEMBL",
  fields = c("TXCHROM", "GENENAME", "TXSTRAND", "TXSTART", "TXEND"),
  biomart_dataset = "hsapiens_gene_ensembl")
```

load\_kegg\_mapping 93

### **Arguments**

orgdb OrganismDb instance.

gene\_ids Gene identifiers for retrieving annotations.

keytype a, umm keytype? I need to properly read this code.

fields Columns to include in the output.

biomart\_dataset

Name of the biomaRt dataset to query for gene type.

#### Value

a table of gene information

#### See Also

select

## **Examples**

```
## Not run:
host <- load_host_annotations(org, c("a","b"))
## End(Not run)</pre>
```

load\_kegg\_mapping

Creates a gene/KEGG mapping dataframe.

# **Description**

In much the same way AnnotationDbi provides GO data, it also provides KEGG data.

## Usage

```
load_kegg_mapping(orgdb, gene_ids, keytype = "ENSEMBL")
```

# Arguments

orgdb OrganismDb instance.

gene\_ids Identifiers of the genes to retrieve annotations.
keytype the keytype, damn I really need to read this code

#### Value

Df of kegg mappings

### See Also

select

94 load\_kegg\_pathways

# **Examples**

```
## Not run:
kegg_data <- load_kegg_mapping(org, c("a","b"))
## End(Not run)</pre>
```

load\_kegg\_pathways

Creates a KEGG pathway/description mapping dataframe.

# Description

Use AnnotationDbi to map descriptions of KEGG pathways to gene IDs.

# Usage

```
load_kegg_pathways(orgdb, gene_ids, keytype = "ENSEMBL")
```

# Arguments

orgdb OrganismDb instance.

keytype as per the previous functions, I don't know what this does yet

# Value

Character list of pathways.

#### See Also

select

```
## Not run:
pathnames <- load_kegg_pathways(org, c("a","b","c")
## End(Not run)</pre>
```

makeSVD 95

makeSVD

this a function scabbed from Hector and Kwame's cbcbSEQ

# Description

It just does fast.svd of a matrix comprised of the matrix - rowMeans(matrix)

### Usage

```
makeSVD(data)
```

## Arguments

data

A data frame to decompose

### Value

a list containing the s,v,u from fast.svd

### See Also

```
corpcor fast.svd
```

# **Examples**

```
## Not run:
   svd = makeSVD(data)
## End(Not run)
```

make\_exampledata

Small hack of limma's exampleData() to allow for arbitrary data set sizes.

# Description

exampleData has a set number of genes/samples it creates. This relaxes that restriction.

## Usage

```
make_exampledata(ngenes = 1000, columns = 5)
```

# Arguments

ngenes How many genes in the fictional data set?

columns How many samples in this data set?

96 make\_id2gomap

## Value

Matrix of pretend counts.

## See Also

limma

# **Examples**

```
## Not run:
    pretend = make_exampledata()
## End(Not run)
```

make\_id2gomap

Make a go mapping from IDs in a format suitable for topGO.

## **Description**

When using a non-supported organism, one must write out mappings in the format expected by topgo. This handles that process and gives a summary of the new table.

## Usage

```
make_id2gomap(goid_map = "reference/go/id2go.map", goids_df = NULL,
    overwrite = FALSE)
```

# Arguments

goid\_map TopGO mapping file.

goids\_df If there is no goid\_map, create it with this data frame.

overwrite Rewrite the mapping file?

# Value

Summary of the new goid table.

make\_organismdbi 97

| make_organismdbi | Create an OrganismDbi for a species at the TriTrypDb |
|------------------|------------------------------------------------------|
|------------------|------------------------------------------------------|

# Description

OrganismDbi instances are pretty neat, they pull together OrgDb and TxDb. With any luck, this function provides the ability to pull together all the data from the TriTrypDb, GO.db, and KEG-GREST in order to accomplish these peculiar tasks.

### Usage

```
make_organismdbi(id = "lmajor_friedlin", cfg = NULL,
  output_dir = "organdb", ...)
```

# Arguments

| id         | Unique tritrypdb identifier.                                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cfg        | A configuration dataframe, when null it will be replaced by reading a csv file in inst/extdata.                                                                          |
| output_dir | The directory into which to put the various intermediate files, including downloads from the TriTrypdb, the created OrgDb and TxDb instances, and the final OrganismDbi. |
|            | Extra arguments including a boolean for whether to include kegg.                                                                                                         |

### Value

A path, some data files, and a kitty!

# See Also

## AnnotationForge

```
## Not run:
    crazytown <- make_organismdbi() ## wait a loong time
## End(Not run)</pre>
```

98 make\_orgdb\_info

| make_orgdb_info() |  | an orgDb object from<br>orgdb_info() | some information | provided by |
|-------------------|--|--------------------------------------|------------------|-------------|
|-------------------|--|--------------------------------------|------------------|-------------|

# **Description**

An orgDb object should provide some useful annotation data including fun stuff like gene ontology, kegg, etc. In the case of the species at the TriTrypDb, much of this information is available in the species .txt file. This function takes that data and collates it into the final orgDb objects using AnnotationForge. It then makes some attempts to ensure that the resulting material created in the filesystem conforms to specifications which allow one to have multiple strains, etc. Finally, if everything goes according to plan, it calls devtools::install() and installs the resulting package.

### Usage

```
make_orgdb(orgdb_info, id = "lmajor_friedlin", cfg = NULL, kegg = TRUE,
  output_dir = "organismdbi", ...)
```

# Arguments

| orgdb_info | List of data frames generated by make_orgdb_info()                                              |
|------------|-------------------------------------------------------------------------------------------------|
| id         | Human readable species identifier, keys off the cfg data frame.                                 |
| cfg        | Configuration data extracted either from inst/eupath_configuration.csv or provided by the user. |
| kegg       | Attempt adding kegg data?                                                                       |
| output_dir | Base output directory for the resulting packages.                                               |

#### Value

List of the resulting package name(s) and whether they installed.

| make_orgdb_info | Generate the (large) set of data frames required to make functional OrgDb/TxDb/OrganismDbi objects. |
|-----------------|-----------------------------------------------------------------------------------------------------|
|-----------------|-----------------------------------------------------------------------------------------------------|

## **Description**

This function should probably be split into a few more pieces as it is pretty unwieldy at the moment.

# Usage

```
make_orgdb_info(gff, txt, kegg = TRUE)
```

#### **Arguments**

| gff | File to read gff annotations from. |
|-----|------------------------------------|
| txt | File to read txt annotations from. |

kegg Boolean deciding whether to try for KEGG data.

#### Value

List containing gene information (likely from the txt file), chromosome information (gff file), gene types (gff file), gene ontology information, and potentially kegg information.

```
make_pairwise_contrasts
```

Run makeContrasts() with all pairwise comparisons.

# **Description**

In order to have uniformly consistent pairwise contrasts, I decided to avoid potential human erors(sic) by having a function generate all contrasts.

## Usage

```
make_pairwise_contrasts(model, conditions, do_identities = TRUE,
  do_pairwise = TRUE, extra_contrasts = NULL)
```

### **Arguments**

model Model describing the conditions/batches/etc in the experiment.

conditions Factor of conditions in the experiment.

can not.

do\_pairwise Include all pairwise strings? This shouldn't need to be set to FALSE, but just in

case.

extra\_contrasts

Optional string of extra contrasts to include.

#### Value

List including the following information: all\_pairwise\_contrasts = the result from makeContrasts(...) identities = the string identifying each condition alone all\_pairwise = the string identifying each pairwise comparison alone contrast\_string = the string passed to R to call makeContrasts(...) names = the names given to the identities/contrasts

### See Also

makeContrasts

100 make\_tooltips

## **Examples**

```
## Not run:
    pretend = make_pairwise_contrasts(model, conditions)
## End(Not run)
```

make\_report

Make a knitr report with some defaults set a priori.

## **Description**

I keep forgetting to set appropriate options for knitr. This tries to set them.

## Usage

```
make_report(name = "report", type = "pdf")
```

# **Arguments**

name Name the document!
type Html or pdf reports?

# Value

Dated report file.

### See Also

# knitr rmarkdown knitrBootstrap

make\_tooltips

Create a simple df from a gff which contains tooltips usable in google-Vis graphs.

# Description

The tooltip column is a handy proxy for more thorough anontations information when it would otherwise be too troublesome to acquire.

## Usage

```
make_tooltips(annotations, desc_col = "description", type = "gene",
  id_col = "ID", ...)
```

make\_txdb

# Arguments

annotations Either a gff file or annotation data frame (which likely came from a gff file.).

desc\_col Gff column from which to gather data.
type Gff type to use as the master key.

id\_col Which annotation column to cross reference against?

... Extra arguments dropped into arglist.

#### Value

Df of tooltip information or name of a gff file.

#### See Also

```
googleVis gff2df
```

# Examples

```
## Not run:
tooltips <- make_tooltips('reference/gff/saccharomyces_cerevisiae.gff.gz')
## End(Not run)</pre>
```

make\_txdb

Create a TxDb object given data provided by make\_orgdb\_info()

## **Description**

Much like make\_orgdb() above, this uses the same data to generate a TxDb object.

# Usage

```
make_txdb(orgdb_info, cfg, gff = NULL, output_dir = "organismdbi", ...)
```

### **Arguments**

orgdb\_info List of data frames generated by make\_orgdb\_info().

cfg Configuration data frame as per make\_orgdb.

gff File to read

## Value

List of the resulting txDb package and whether it installed.

102 model\_test

| median_by_factor | Create a data frame of the medians of rows by a given factor in the data. |
|------------------|---------------------------------------------------------------------------|
|                  | uuu.                                                                      |

## **Description**

This assumes of course that (like expressionsets) there are separate columns for each replicate of the conditions. This will just iterate through the levels of a factor describing the columns, extract them, calculate the median, and add that as a new column in a separate data frame.

### Usage

```
median_by_factor(data, fact)
```

## **Arguments**

data Data frame, presumably of counts.

fact Factor describing the columns in the data.

### Value

Data frame of the medians.

# **Examples**

```
## Not run:
  compressed = hpgltools:::median_by_factor(data, experiment$condition)
## End(Not run)
```

model\_test

Make sure a given experimental factor and design will play together.

## **Description**

Have you ever wanted to set up a differential expression analysis and after minutes of the computer churning away it errors out with some weird error about rank? Then this is the function for you!

### Usage

```
model_test(design, goal = "condition", factors = NULL, ...)
```

my\_identifyAUBlocks 103

# Arguments

| design  | Dataframe describing the design of the experiment.       |
|---------|----------------------------------------------------------|
| goal    | Experimental factor you actually want to learn about.    |
| factors | Experimental factors you rather wish would just go away. |
|         | I might decide to add more options from other functions. |

# Value

List of booleans telling if the factors + goal will work.

|  | copy/paste the function from SeqTools and figure out where it falls on its ass. |
|--|---------------------------------------------------------------------------------|
|--|---------------------------------------------------------------------------------|

# Description

Yeah, I do not remember what I changed in this function.

# Usage

```
my_identifyAUBlocks(x, min.length = 20, p.to.start = 0.8, p.to.end = 0.55)
```

# **Arguments**

| X          | Sequence object                               |
|------------|-----------------------------------------------|
| min.length | I dunno.                                      |
| p.to.start | P to start of course                          |
| p.to.end   | The p to end – wtf who makes names like this? |

# Value

a list of IRanges which contain a bunch of As and Us.

104 normalize\_expt

| normalize_counts |  |
|------------------|--|
|------------------|--|

### **Description**

This provides shortcut interfaces for normalization functions from deseq2/edger and friends.

### Usage

```
normalize_counts(data, design = NULL, norm = "raw", ...)
```

## **Arguments**

data Matrix of count data.

design Dataframe describing the experimental design. (conditions/batches/etc)

norm Normalization to perform: 'sflquantlqsmoothltmmlupperquartileltmmlrle' I keep

wishy-washing on whether design is a required argument.

... More arguments might be necessary.

### Value

Dataframe of normalized(counts)

#### See Also

### edgeR limma DESeq2

# **Examples**

```
## Not run:
norm_table = normalize_counts(count_table, design=design, norm='qsmooth')
## End(Not run)
```

normalize\_expt Normalize the data of an expt object. Save the original data, and note what was done.

# **Description**

It is the responsibility of normalize\_expt() to perform any arbitrary normalizations desired as well as to ensure that the data integrity is maintained. In order to do this, it writes the actions performed in expt\$state and saves the intermediate steps of the normalization in expt\$intermediate\_counts. Furthermore, it should tell you every step of the normalization process, from count filtering, to normalization, conversion, transformation, and batch correction.

normalize\_expt 105

### Usage

```
normalize_expt(expt, transform = "raw", norm = "raw", convert = "raw",
batch = "raw", filter = FALSE, annotations = NULL, fasta = NULL,
entry_type = "gene", use_original = FALSE, batch1 = "batch",
batch2 = NULL, batch_step = 5, low_to_zero = FALSE, thresh = 2,
min_samples = 2, p = 0.01, A = 1, k = 1, cv_min = 0.01,
cv_max = 1000, ...)
```

## **Arguments**

expt

transform Transformation desired, usually log2. norm How to normalize the data? (raw, quant, sf, upperquartile, tmm, rle) Conversion to perform? (raw, cpm, rpkm, cp\_seq\_m) convert batch Batch effect removal tool to use? (limma sva fsva ruv etc) filter Filter out low/undesired features? (cbcb, pofa, kofa, others?) annotations Used for rpkm – probably not needed as this is in fData now. fasta Fasta file for cp\_seq\_m counting of oligos. For getting genelengths by feature type (rpkm or cp\_seq\_m). entry\_type use\_original Use the backup data in the expt class? batch1 Experimental factor to extract first. batch2 Second factor to remove (only with limma's removebatcheffect()). From step 1-5, when should batch correction be applied? batch\_step

low\_to\_zero When log transforming, change low numbers (< 0) to 0 to avoid NaN? thresh Used by cbcb\_lowfilter().

min\_samples Also used by cbcb\_lowfilter().

p Used by genefilter's pofa().

A Also used by genefilter's pofa().

k Used by genefilter's kofa().

cv\_min Used by genefilter's cv().

cv\_max Also used by genefilter's cv().

Original expt.

... more options

#### Value

Expt object with normalized data and the original data saved as 'original\_expressionset'

#### See Also

genefilter limma sva edgeR DESeq2

106 orgdb\_idmap

# **Examples**

orgdb\_idmap

Load organism annotation data (mouse/human).

# Description

Creates a dataframe gene and transcript information for a given set of gene ids using the Organis-mDbi interface.

### Usage

```
orgdb_idmap(orgdb, gene_ids = NULL, mapto = c("ensembl"),
   keytype = "geneid")
```

# Arguments

orgdb OrganismDb instance.

gene\_ids Gene identifiers for retrieving annotations.

mapto Key to map the IDs against.

#### Value

a table of gene information

### See Also

select

```
## Not run:
host <- load_host_annotations(org, c("a","b"))
## End(Not run)</pre>
```

parse\_gene\_go\_terms 107

 ${\tt parse\_gene\_go\_terms}$ 

TriTrypDB gene information table GO term parser

## **Description**

TriTrypDB gene information table GO term parser

## Usage

```
parse_gene_go_terms(filepath, verbose = FALSE)
```

## **Arguments**

filepath Location of TriTrypDB gene information table.

verbose Whether or not to enable verbose output.

#### Value

Returns a dataframe where each line includes a gene/GO terms pair along with some addition information about the GO term. Note that because each gene may have multiple GO terms, a single gene ID may appear on multiple lines.

## Author(s)

Keith Hughitt

```
parse_gene_info_table TriTrypDB gene information table parser
```

## **Description**

An example input file is the T. brucei Lister427 gene information table available at: http://tritrypdb.org/common/downloads/C5.0\_TbruceiLister427Gene.txt

# Usage

```
parse_gene_info_table(file, verbose = FALSE)
```

### **Arguments**

verbose Whether or not to enable verbose output.

filepath Location of TriTrypDB gene information table.

# Value

Returns a dataframe of gene info.

#### Author(s)

Keith Hughitt

parse\_go\_terms

EuPathDB gene information table GO term parser

## **Description**

Note: EuPathDB currently includes some GO annotations corresponding to obsolete terms. For example, the L. major gene LmjF.19.1390 (http://tritrypdb.org/tritrypdb/showRecord.do?name=GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecordClasses.GeneRecord

# Usage

```
parse_go_terms(filepath)
```

# **Arguments**

filepath Location of TriTrypDB gene information table.

verbose Whether or not to enable verbose output.

### Value

Returns a dataframe where each line includes a gene/GO terms pair along with some addition information about the GO term. Note that because each gene may have multiple GO terms, a single gene ID may appear on multiple lines.

## Author(s)

Keith Hughitt

parse\_interpro\_domains

EuPathDB gene information table InterPro domain parser

## **Description**

EuPathDB gene information table InterPro domain parser

## Usage

```
parse_interpro_domains(filepath)
```

pattern\_count\_genome 109

# **Arguments**

filepath Location of TriTrypDB gene information table.

verbose Whether or not to enable verbose output.

### Value

Returns a dataframe where each line includes a gene/domain pairs.

# Author(s)

Keith Hughitt

pattern\_count\_genome Find how many times a given pattern occurs in every gene of a genome.

# Description

There are times when knowing how many times a given string appears in a genome/CDS is helpful. This function provides that information and is primarily used by cp\_seq\_m().

# Usage

```
pattern_count_genome(fasta, gff = NULL, pattern = "TA", type = "gene",
   key = "locus_tag")
```

### **Arguments**

| fasta   | Genome sequence.                                                                                                |
|---------|-----------------------------------------------------------------------------------------------------------------|
| gff     | Gff of annotation information from which to acquire CDS (if not provided it will just query the entire genome). |
| pattern | What to search for? This was used for thseq and TA is the mariner insertion point.                              |
| type    | Column to use in the gff file.                                                                                  |
| key     | What type of entry of the gff file to key from?                                                                 |

#### Value

Data frame of gene names and number of times the pattern appears/gene.

#### See Also

**Biostrings Rsamtools PDict FaFile** 

pca\_highscores

### **Examples**

```
## Not run:
num_pattern = pattern_count_genome('mgas_5005.fasta', 'mgas_5005.gff')
## End(Not run)
```

pca\_highscores

Get the highest/lowest scoring genes for every principle component.

# **Description**

This function uses princomp to acquire a principle component biplot for some data and extracts a dataframe of the top n genes for each component by score.

# Usage

```
pca_highscores(df = NULL, conditions = NULL, batches = NULL, n = 20)
```

# Arguments

df a dataframe of (pseudo)counts

conditions a factor or character of conditions in the experiment.

batches a factor or character of batches in the experiment.

n the number of genes to extract.

### Value

a list including the princomp biplot, histogram, and tables of top/bottom n scored genes with their scores by component.

# See Also

```
princomp
```

```
## Not run:
  information = pca_highscores(df=df, conditions=cond, batches=bat)
  information$pca_bitplot ## oo pretty
## End(Not run)
```

pca\_information 111

| pca_information | Gather information about principle components. |
|-----------------|------------------------------------------------|
|                 |                                                |

### **Description**

Calculate some information useful for generating PCA plots. pca\_information seeks to gather together interesting information to make principle component analyses easier, including: the results from (fast.)svd, a table of the r^2 values, a table of the variances in the data, coordinates used to make a pca plot for an arbitrarily large set of PCs, correlations and fstats between experimental factors and the PCs, and heatmaps describing these relationships. Finally, it will provide a plot showing how much of the variance is provided by the top-n genes and (optionally) the set of all PCA plots with respect to one another. (PCx vs. PCy)

### Usage

```
pca_information(expt_data, expt_design = NULL, expt_factors = c("condition",
   "batch"), num_components = NULL, plot_pcas = FALSE)
```

#### **Arguments**

| expt_data      | the data to analyze (usually exprs(somedataset)).                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| expt_design    | a dataframe describing the experimental design, containing columns with useful information like the conditions, batches, number of cells, whatever      |
| expt_factors   | a character list of experimental conditions to query for $R^2$ against the fast.svd of the data.                                                        |
| num_components | a number of principle components to compare the design factors against. If left null, it will query the same number of components as factors asked for. |
| plot_pcas      | plot the set of PCA plots for every pair of PCs queried.                                                                                                |

### Value

a list of fun pca information: svd\_u/d/v: The u/d/v parameters from fast.svd rsquared\_table: A table of the rsquared values between each factor and principle component pca\_variance: A table of the pca variances pca\_data: Coordinates for a pca plot pca\_cor: A table of the correlations between the factors and principle components anova\_fstats: the sum of the residuals with the factor vs without (manually calculated) anova\_f: The result from performing anova(withfactor, withoutfactor), the F slot anova\_p: The p-value calculated from the anova() call anova\_sums: The RSS value from the above anova() call cor\_heatmap: A heatmap from recordPlot() describing pca\_cor.

#### Warning

This function has gotten too damn big and needs to be split up.

### See Also

```
fast.svd, 1m
```

pct\_all\_kegg

### **Examples**

```
## Not run:
    pca_info = pca_information(exprs(some_expt$expressionset), some_design, "all")
    pca_info
## End(Not run)
```

pcRes

Compute variance of each principal component and how they correlate with batch and cond

# Description

This was copy/pasted from cbcbSEQ https://github.com/kokrah/cbcbSEQ/blob/master/R/explore.R

### Usage

```
pcRes(v, d, condition = NULL, batch = NULL)
```

# **Arguments**

 $\begin{array}{ll} v & & \text{from makeSVD} \\ \text{d} & & \text{from makeSVD} \end{array}$ 

condition factor describing experiment batch factor describing batch

### Value

A dataframe containig variance, cum. variance, cond.R-sqrd, batch.R-sqrd

| <pre>pct_all_kegg</pre> | Extract the percent differentially expressed genes for all KEGG path- |
|-------------------------|-----------------------------------------------------------------------|
|                         | ways.                                                                 |

# **Description**

KEGGgraph provides some interesting functionality for mapping KEGGids and examining the pieces. This attempts to use that in order to evaluate how many 'significant' genes are in a given pathway.

```
pct_all_kegg(all_ids, sig_ids, organism = "dme", pathways = "all",
   pathdir = "kegg_pathways", verbose = FALSE, ...)
```

pct\_kegg\_diff

### **Arguments**

| all_ids  | Set of all gene IDs in a given analysis.                            |
|----------|---------------------------------------------------------------------|
| sig_ids  | Set of significant gene IDs.                                        |
| organism | KEGG organism identifier.                                           |
| pathways | What pathways to look at?                                           |
| pathdir  | Directory into which to copy downloaded pathway files.              |
|          | Options I might pass from other functions are dropped into arglist. |

### Value

Dataframe including the filenames, percentages, nodes included, and differential nodes.

# See Also

# **KEGGgraph KEGGREST**

| pct_kegg_diff | Extract the percent differentially expressed genes in a given KEGG pathway. |
|---------------|-----------------------------------------------------------------------------|
|---------------|-----------------------------------------------------------------------------|

# Description

KEGGgraph provides some interesting functionality for mapping KEGGids and examining the pieces. This attempts to use that in order to evaluate how many 'significant' genes are in a given pathway.

# Usage

```
pct_kegg_diff(all_ids, sig_ids, pathway = "00500", organism = "dme",
   pathdir = "kegg_pathways", ...)
```

# **Arguments**

| all_ids  | Set of all gene IDs in a given analysis.                            |
|----------|---------------------------------------------------------------------|
| sig_ids  | Set of significant gene IDs.                                        |
| pathway  | Numeric pathway identifier.                                         |
| organism | KEGG organism identifier.                                           |
| pathdir  | Directory into which to copy downloaded pathway files.              |
|          | Options I might pass from other functions are dropped into arglist. |

### Value

Percent genes/pathway deemed significant.

# See Also

# **KEGGgraph KEGGREST**

plot\_batchsv plot\_batchsv

| Packages generated by make_organismdbi(), make_orgdb(), and make_txdb() are entirely too fragile. This attempts to fix some of the common problems therein. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P. Commission                                                                                                                                               |
|                                                                                                                                                             |

# **Description**

OrganismDbi instances are pretty neat, they pull together OrgDb and TxDb. With any luck, this function provides the ability to pull together all the data from the TriTrypDb, GO.db, and KEG-GREST in order to accomplish these peculiar tasks.

# Usage

```
pkg_cleaner(path, removal = "-like", replace = "")
```

# **Arguments**

path Location for the original Db/Dbi instance.

removal String to remove from the instance.

replace What to replace removal with, when necessary.

### Value

A new OrgDb/TxDb/OrganismDbi

### **Examples**

```
## Not run:
    crazytown <- make_organismdbi() ## wait a loong time
## End(Not run)</pre>
```

plot\_batchsv

Make a dotplot of known batches vs. SVs.

# **Description**

This should make a quick df of the factors and surrogates and plot them. Maybe it should be folded into plot\_svfactor? Hmm, I think first I will write this and see if it is better.

```
plot_batchsv(expt, svs, batch_column = "batch", factor_type = "factor")
```

plot\_bcv 115

# Arguments

expt Experiment from which to acquire the design, counts, etc.

svs Set of surrogate variable estimations from sva/svg or batch estimates.

batch\_column Which experimental design column to use?

factor\_type This may be a factor or range, it is intended to plot a scatterplot if it is a range,

a dotplot if a factor.

# Examples

```
## Not run:
estimate_vs_snps <- plot_batchsv(start, surrogate_estimate, "snpcategory")
## End(Not run)</pre>
```

plot\_bcv

Steal edgeR's plotBCV() and make it a ggplot2.

# **Description**

This was written primarily to understand what that function is doing in edgeR.

# Usage

```
plot_bcv(data)
```

### **Arguments**

data

A dataframe/expt/exprs with count data

#### Value

```
a plot! of the BCV a la ggplot2.
```

# See Also

```
edgeR plotBCV
```

```
## Not run:
bcv <- plot_bcv(expt)
summary(bcv$data)
bcv$plot
## End(Not run)</pre>
```

plot\_boxplot

| plot_boxplot | Make a ggplot boxplot of a set of samples. |  |
|--------------|--------------------------------------------|--|
|              |                                            |  |

# **Description**

Boxplots and density plots provide complementary views of data distributions. The general idea is that if the box for one sample is significantly shifted from the others, then it is likely an outlier in the same way a density plot shifted is an outlier.

### Usage

```
plot_boxplot(data, colors = NULL, names = NULL, title = NULL,
    scale = NULL, ...)
```

# Arguments

| data   | Expt or data frame set of samples.                |
|--------|---------------------------------------------------|
| colors | Color scheme, if not provided will make its own.  |
| names  | Another version of the sample names for printing. |
| title  | A title!                                          |
| scale  | Whether to log scale the y-axis.                  |
|        | More parameters are more fun!                     |

### Value

Ggplot2 boxplot of the samples. Each boxplot contains the following information: a centered line describing the median value of counts of all genes in the sample, a box around the line describing the inner-quartiles around the median (quartiles 2 and 3 for those who are counting), a vertical line above/below the box which shows 1.5x the inner quartile range (a common metric of the non-outliers), and single dots for each gene which is outside that range. A single dot is transparent.

#### See Also

```
ggplot2 reshape2 geom_boxplot melt scale_x_discrete
```

```
## Not run:
   a_boxplot <- plot_boxplot(expt)
   a_boxplot ## ooo pretty boxplot look at the lines
## End(Not run)</pre>
```

plot\_corheat 117

| plot_corheat | Make a heatmap.3 description of the correlation between samples. |
|--------------|------------------------------------------------------------------|
|              |                                                                  |

# Description

Given a set of count tables and design, this will calculate the pairwise correlations and plot them as a heatmap. It attempts to standardize the inputs and eventual output.

# Usage

```
plot_corheat(expt_data, expt_colors = NULL, expt_design = NULL,
  method = "pearson", expt_names = NULL, batch_row = "batch",
  title = NULL, ...)
```

# **Arguments**

| expt_data   | Dataframe, expt, or expressionset to work with.                         |
|-------------|-------------------------------------------------------------------------|
| expt_colors | Color scheme for the samples, not needed if this is an expt.            |
| expt_design | Design matrix describing the experiment, not needed if this is an expt. |
| method      | Correlation statistic to use. (pearson, spearman, kendall, robust).     |
| expt_names  | Alternate names to use for the samples.                                 |
| batch_row   | Name of the design row used for 'batch' column colors.                  |
| title       | Title for the plot.                                                     |
|             | More options are wonderful!                                             |

# Value

Gplots heatmap describing describing how the samples are clustering vis a vis pairwise correlation.

# See Also

hpgl\_cor brewer.pal recordPlot

```
## corheat_plot = hpgl_corheat(expt=expt, method="robust")
## corheat_plot
```

plot\_density

| plot     | density |
|----------|---------|
| P = 0 c_ | _ ~ ~   |

Create a density plot, showing the distribution of each column of data.

# Description

Density plots and boxplots are cousins and provide very similar views of data distributions. Some people like one, some the other. I think they are both colorful and fun!

### Usage

```
plot_density(data, colors = NULL, sample_names = NULL,
  position = "identity", fill = NULL, title = NULL, scale = NULL,
  colors_by = "condition")
```

# Arguments

data Expt, expressionset, or data frame.

colors Color scheme to use. sample\_names Names of the samples.

position How to place the lines, either let them overlap (identity), or stack them.

fill Fill the distributions? This might make the plot unreasonably colorful.

title Title for the plot.

scale Plot on the log scale?

colors\_by Factor for coloring the lines

# Value

Ggplot2 density plot!

#### See Also

```
ggplot2 geom_density
```

```
## Not run:
funkytown <- plot_density(data)
## End(Not run)</pre>
```

plot\_disheat 119

| plot_disheat | Make a heatmap.3 description of the distances (euclidean by default) between samples. |
|--------------|---------------------------------------------------------------------------------------|
|              |                                                                                       |

# Description

Given a set of count tables and design, this will calculate the pairwise distances and plot them as a heatmap. It attempts to standardize the inputs and eventual output.

# Usage

```
plot_disheat(expt_data, expt_colors = NULL, expt_design = NULL,
  method = "euclidean", expt_names = NULL, batch_row = "batch",
  title = NULL, ...)
```

# Arguments

| expt_data   | Dataframe, expt, or expressionset to work with.        |
|-------------|--------------------------------------------------------|
| expt_colors | Color scheme (not needed if an expt is provided).      |
| expt_design | Design matrix (not needed if an expt is provided).     |
| method      | Distance metric to use.                                |
| expt_names  | Alternate names to use for the samples.                |
| batch_row   | Name of the design row used for 'batch' column colors. |
| title       | Title for the plot.                                    |
| • • •       | More parameters!                                       |

# Value

a recordPlot() heatmap describing the distance between samples.

# See Also

brewer.pal heatmap.2 recordPlot

```
## Not run:
    disheat_plot = plot_disheat(expt=expt, method="euclidean")
    disheat_plot
## End(Not run)
```

120 plot\_dist\_scatter

| plot_dist_scatter | Make a scatter plot between two sets of numbers with a cheesy distance metric and some statistics of the two sets. |
|-------------------|--------------------------------------------------------------------------------------------------------------------|
|                   |                                                                                                                    |

### **Description**

The distance metric should be codified and made more intelligent. Currently it creates a dataframe of distances which are absolute distances from each axis, multiplied by each other, summed by axis, then normalized against the maximum.

### Usage

```
plot_dist_scatter(df, tooltip_data = NULL, gvis_filename = NULL, size = 2)
```

# **Arguments**

df Dataframe likely containing two columns.
tooltip\_data Df of tooltip information for gvis graphs.
gvis\_filename Filename to write a fancy html graph.
size Size of the dots.

#### Value

Ggplot2 scatter plot. This plot provides a "bird's eye" view of two data sets. This plot assumes the two data structures are not correlated, and so it calculates the median/mad of each axis and uses these to calculate a stupid, home-grown distance metric away from both medians. This distance metric is used to color dots which are presumed the therefore be interesting because they are far from 'normal.' This will make a fun clicky googleVis graph if requested.

# See Also

```
ggplot2 plot_gvis_scatter geom_point plot_linear_scatter
```

plot\_essentiality 121

| plot | essent | i | al | i | t١ | , |
|------|--------|---|----|---|----|---|
|      |        |   |    |   |    |   |

Plot the essentiality of a library as per DeJesus et al.

# **Description**

This provides a plot of the essentiality metrics 'zbar' with respect to gene.

### Usage

```
plot_essentiality(file)
```

### **Arguments**

file

a file created using the perl script 'essentiality\_tas.pl'

#### Value

A couple of plots

plot\_goseq\_pval

Make a pvalue plot from goseq data.

# Description

With minor changes, it is possible to push the goseq results into a clusterProfiler-ish pvalue plot. This handles those changes and returns the ggplot results.

# Usage

```
plot_goseq_pval(goterms, wrapped_width = 20, cutoff = 0.1, n = 10,
    mincat = 10, level = NULL)
```

# **Arguments**

goterms Some data from goseq!

wrapped\_width 
Number of characters before wrapping to help legibility.

cutoff Pvalue cutoff for the plot.

n How many groups to include?

mincat Minimum size of the category for inclusion.

level Levels of the ontology tree to use.

# Value

Plots!

122 plot\_gostats\_pval

### See Also

```
goseq clusterProfiler plot_ontpval
```

plot\_gostats\_pval Make a pvalue plot similar to that from clusterprofiler from gostats data.

# **Description**

clusterprofiler provides beautiful plots describing significantly overrepresented categories. This function attempts to expand the repetoire of data available to them to include data from gostats. The pval\_plot function upon which this is based now has a bunch of new helpers now that I understand how the ontology trees work better, this should take advantage of that, but currently does not.

# Usage

```
plot_gostats_pval(gs_result, wrapped_width = 20, cutoff = 0.1, n = 12,
   group_minsize = 5)
```

# **Arguments**

gs\_result Ontology search results.

wrapped\_width Make the text large enough to read.

cutoff What is the maximum pvalue allowed?

n How many groups to include in the plot?

group\_minsize Minimum group size before inclusion.

# Value

Plots!

#### See Also

clusterProfiler plot\_ontpval

plot\_gprofiler\_pval 123

| plot_gprofiler_pval | Make a p | value plot fi | rom gprofiler data. |
|---------------------|----------|---------------|---------------------|
|---------------------|----------|---------------|---------------------|

### **Description**

The p-value plots from clusterProfiler are pretty, this sets the gprofiler data into a format suitable for plotting in that fashion and returns the resulting plots of significant ontologies.

### Usage

```
plot_gprofiler_pval(gp_result, wrapped_width = 20, cutoff = 0.1, n = 12,
  group_minsize = 5, ...)
```

### **Arguments**

gp\_result Some data from gProfiler.

wrapped\_width Maximum width of the text names.

cutoff P-value cutoff for the plots.

n Maximum number of ontologies to include.

group\_minsize Minimum ontology group size to include.

... Options I might pass from other functions are dropped into arglist.

#### Value

List of MF/BP/CC pvalue plots.

# See Also

topgo clusterProfiler

| plot_gvis_ma | Make an html version of an MA plot: M(log ratio of conditions) / |
|--------------|------------------------------------------------------------------|
|              | A(mean average).                                                 |

# **Description**

A fun snippet from wikipedia: "In many microarray gene expression experiments, an underlying assumption is that most of the genes would not see any change in their expression therefore the majority of the points on the y-axis (M) would be located at 0, since Log(1) is 0. If this is not the case, then a normalization method such as LOESS should be applied to the data before statistical analysis. If the median line is not straight, the data should be normalized.

124 plot\_gvis\_scatter

### Usage

```
plot_gvis_ma(counts, degenes, tooltip_data = NULL,
  filename = "html/gvis_ma_plot.html", base_url = "", ...)
```

### **Arguments**

counts Df of counts which have been normalized counts by sample-type, which is to

say the output from voom/voomMod/hpgl\_voom().

degenes Df from toptable or its friends containing p-values.

filename Filename to write a fancy html graph.

base\_url String with a basename used for generating URLs for clicking dots on the graph.

... more options are more options!

### Value

NULL, but along the way an html file is generated which contains a googleVis MA plot. See plot\_ma() for details.

#### See Also

```
plot_ma
```

### **Examples**

plot\_gvis\_scatter

Make an html version of a scatter plot.

# Description

Given an arbitrary scatter plot, we can make it pretty and javascript-tacular using this function.

```
plot_gvis_scatter(df, tooltip_data = NULL,
  filename = "html/gvis_scatter.html", base_url = "", trendline = NULL)
```

plot\_gvis\_volcano 125

### **Arguments**

df Df of two columns to compare.

tooltip\_data Df of tooltip information for gvis graphs. filename Filename to write a fancy html graph.

base\_url Url to send click events which will be suffixed with the gene name.

trendline Add a trendline?

### Value

NULL, but along the way an html file is generated which contains a googleVis scatter plot. See plot\_scatter() for details.

#### See Also

```
gvisScatterChart
```

### **Examples**

plot\_gvis\_volcano

Make an html version of an volcano plot.

# Description

Volcano plots provide some visual clues regarding the success of a given contrast. For our data, it has the -log10(pvalue) on the y-axis and fold-change on the x. Here is a neat snippet from wikipedia describing them generally: "The concept of volcano plot can be generalized to other applications, where the x-axis is related to a measure of the strength of a statistical signal, and y-axis is related to a measure of the statistical significance of the signal."

```
plot_gvis_volcano(toptable_data, fc_cutoff = 0.8, p_cutoff = 0.05,
  tooltip_data = NULL, filename = "html/gvis_vol_plot.html",
  base_url = "", ...)
```

plot\_heatmap

### **Arguments**

p\_cutoff Maximum p value to allow.
tooltip\_data Df of tooltip information.

filename Filename to write a fancy html graph.

base\_url String with a basename used for generating URLs for clicking dots on the graph.

... more options

#### Value

NULL, but along the way an html file is generated which contains a googleVis volcano plot.

#### See Also

plot\_volcano

# **Examples**

plot\_heatmap Make a heatmap.3 plot, does the work for plot\_disheat and plot\_corheat.

### **Description**

This does what is says on the tin. Sets the colors for correlation or distance heatmaps, handles the calculation of the relevant metrics, and plots the heatmap.

```
plot_heatmap(expt_data, expt_colors = NULL, expt_design = NULL,
  method = "pearson", expt_names = NULL, type = "correlation",
  batch_row = "batch", title = NULL, ...)
```

plot\_histogram 127

# **Arguments**

expt\_data Dataframe, expt, or expressionset to work with.

expt\_colors Color scheme for the samples.

expt\_design Design matrix describing the experiment vis a vis conditions and batches.

method Distance or correlation metric to use.

expt\_names Alternate names to use for the samples.

type Defines the use of correlation, distance, or sample heatmap.

batch\_row Name of the design row used for 'batch' column colors.

title Title for the plot.... I like elipses!

#### Value

a recordPlot() heatmap describing the distance between samples.

### See Also

brewer.pal recordPlot

| plot_histogram | Make a pretty histogram of something. |  |
|----------------|---------------------------------------|--|
|----------------|---------------------------------------|--|

### **Description**

A shortcut to make a ggplot2 histogram which makes an attempt to set reasonable bin widths and set the scale to log if that seems a good idea.

# Usage

```
plot_histogram(df, binwidth = NULL, log = FALSE, bins = 500,
  fillcolor = "darkgrey", color = "black")
```

#### **Arguments**

df Dataframe of lots of pretty numbers. binwidth Width of the bins for the histogram.

log Replot on the log scale?

bins Number of bins for the histogram.

fillcolor Change the fill colors of the plotted elements?

color Change the color of the lines of the plotted elements?

### Value

Ggplot histogram.

128 plot\_libsize

### See Also

```
geom_histogram geom_density
```

# **Examples**

```
## Not run:
kittytime = plot_histogram(df)
## End(Not run)
```

plot\_libsize

Make a ggplot graph of library sizes.

# Description

It is often useful to have a quick view of which samples have more/fewer reads. This does that and maintains one's favorite color scheme and tries to make it pretty!

### Usage

```
plot_libsize(data, colors = NULL, names = NULL, text = TRUE,
   title = NULL, yscale = NULL, ...)
```

#### **Arguments**

| data   | Expt, dataframe, or expressionset of samples.                  |
|--------|----------------------------------------------------------------|
| colors | Color scheme if the data is not an expt.                       |
| names  | Alternate names for the x-axis.                                |
| text   | Add the numeric values inside the top of the bars of the plot? |
| title  | Title for the plot.                                            |
| yscale | Whether or not to log10 the y-axis.                            |
|        | More parameters for your good time!                            |

### Value

```
a ggplot2 bar plot of every sample's size
```

### See Also

```
geom_bar geom_text prettyNum scale_y_log10
```

```
## Not run:
  libsize_plot = plot_libsize(expt=expt)
  libsize_plot ## ooo pretty bargraph
## End(Not run)
```

plot\_linear\_scatter 129

| plot_linear_scatter | Make a scatter plot between two groups with a linear model superim- |
|---------------------|---------------------------------------------------------------------|
|                     | posed and some supporting statistics.                               |

#### **Description**

Make a scatter plot between two groups with a linear model superimposed and some supporting statistics.

#### Usage

```
plot_linear_scatter(df, tooltip_data = NULL, gvis_filename = NULL,
    cormethod = "pearson", size = 2, loess = FALSE, identity = FALSE,
    gvis_trendline = NULL, first = NULL, second = NULL, base_url = NULL,
    pretty_colors = TRUE, color_high = NULL, color_low = NULL, ...)
```

# **Arguments**

df Dataframe likely containing two columns.
tooltip\_data Df of tooltip information for gvis graphs.
gvis\_filename Filename to write a fancy html graph.
cormethod What type of correlation to check?
size Size of the dots on the plot.

loess Add a loess estimation?
identity Add the identity line?

gvis\_trendline Add a trendline to the gvis plot? There are a couple possible types, I think linear

is the most common.

first First column to plot.
second Second column to plot.
base\_url Base url to add to the plot.

pretty\_colors Colors!

color\_high Chosen color for points significantly above the mean.

Chosen color for points significantly below the mean.

Extra args likely used for choosing significant genes.

# Value

List including a ggplot2 scatter plot and some histograms. This plot provides a "bird's eye" view of two data sets. This plot assumes a (potential) linear correlation between the data, so it calculates the correlation between them. It then calculates and plots a robust linear model of the data using an 'SMDM' estimator (which I don't remember how to describe, just that the document I was reading said it is good). The median/mad of each axis is calculated and plotted as well. The distance from the linear model is finally used to color the dots on the plot. Histograms of each axis are plotted separately and then together under a single cdf to allow tests of distribution similarity. This will make a fun clicky googleVis graph if requested.

130 plot\_ma

### See Also

lmRob weights plot\_histogram

### **Examples**

```
## Not run:
  plot_linear_scatter(lotsofnumbers_intwo_columns, tooltip_data=tooltip_dataframe,
                       gvis_filename="html/fun_scatterplot.html")
 ## End(Not run)
                                                MA
plot_ma
                         Make
                                                       plot
                                                              from
                                                                       the
                                  a
                                       pretty
                                                                             output
                                                                                       of
                         voom/limma/eBayes/toptable.
```

### **Description**

Make a pretty MA plot from the output of voom/limma/eBayes/toptable.

### Usage

```
plot_ma(counts, de_genes, pval_cutoff = 0.05, alpha = 0.4,
 logfc_cutoff = 1, pval = "adjpval", size = 2, tooltip_data = NULL,
 gvis_filename = NULL, ...)
```

### **Arguments**

| _            |                                                                                                                     |
|--------------|---------------------------------------------------------------------------------------------------------------------|
| counts       | Df of linear-modelling, normalized counts by sample-type, which is to say the output from voom/voomMod/hpgl_voom(). |
| de_genes     | Df from toptable or its friends containing p-values.                                                                |
| pval_cutoff  | Cutoff defining significant from not.                                                                               |
| alpha        | How transparent to make the dots.                                                                                   |
| logfc_cutoff | Fold change cutoff.                                                                                                 |
| pval         | Name of the pvalue column to use for cutoffs.                                                                       |
| size         | How big are the dots?                                                                                               |

tooltip\_data Df of tooltip information for gvis. gvis\_filename Filename to write a fancy html graph.

More options for you!

### Value

Ggplot2 MA scatter plot. This is defined as the rowmeans of the normalized counts by type across all sample types on the x-axis, and the log fold change between conditions on the y-axis. Dots are colored depending on if they are 'significant.' This will make a fun clicky googleVis graph if requested.

plot\_ma\_de 131

#### See Also

plot\_gvis\_ma toptable voom hpgl\_voom lmFit makeContrasts contrasts.fit

#### **Examples**

```
## Not run:
plot_ma(voomed_data, toptable_data, gvis_filename="html/fun_ma_plot.html")
## Currently this assumes that a variant of toptable was used which
## gives adjusted p-values. This is not always the case and I should
## check for that, but I have not yet.
## End(Not run)
```

plot\_ma\_de

Make a pretty MA plot from a DE tool (limma/deseq/edger/basic

### **Description**

Make a pretty MA plot from a DE tool (limma/deseq/edger/basic

### Usage

```
plot_ma_de(table, expr_col = "logCPM", fc_col = "logFC", p_col = "qvalue",
    pval_cutoff = 0.05, alpha = 0.4, logfc_cutoff = 1, size = 2,
    tooltip_data = NULL, gvis_filename = NULL, ...)
```

### **Arguments**

table Df of linear-modelling, normalized counts by sample-type, expr\_col Column showing the average expression across genes.

fc\_col Column showing the logFC for each gene.
p\_col Column containing the relevant p-values.

alpha How transparent to make the dots.

logfc\_cutoff Fold change cutoff. size How big are the dots?

tooltip\_data Df of tooltip information for gvis. gvis\_filename Filename to write a fancy html graph.

... More options for you!

pval Name of the pvalue column to use for cutoffs.

#### Value

Ggplot2 MA scatter plot. This is defined as the rowmeans of the normalized counts by type across all sample types on the x-axis, and the log fold change between conditions on the y-axis. Dots are colored depending on if they are 'significant.' This will make a fun clicky googleVis graph if requested.

plot\_multihistogram

### See Also

plot\_gvis\_ma toptable voom hpgl\_voom lmFit makeContrasts contrasts.fit

### **Examples**

```
## Not run:
plot_ma(voomed_data, toptable_data, gvis_filename="html/fun_ma_plot.html")
## Currently this assumes that a variant of toptable was used which
## gives adjusted p-values. This is not always the case and I should
## check for that, but I have not yet.
## End(Not run)
```

plot\_multihistogram

Make a pretty histogram of multiple datasets.

# **Description**

If there are multiple data sets, it might be useful to plot them on a histogram together and look at the t.test results between distributions.

# Usage

```
plot_multihistogram(data, log = FALSE, binwidth = NULL, bins = NULL)
```

### **Arguments**

data Dataframe of lots of pretty numbers, this also accepts lists.

log Plot the data on the log scale?

binwidth Set a static bin width with an unknown # of bins? If neither of these are provided,

then bins is set to 500, if both are provided, then bins wins.

bins Set a static # of bins of an unknown width?

### Value

List of the ggplot histogram and some statistics describing the distributions.

#### See Also

```
pairwise.t.test ddply
```

```
## Not run:
kittytime = plot_multihistogram(df)
## End(Not run)
```

plot\_multiplot 133

| prot_murtiprot make a gria of piots. | plot_multiplot | Make a grid of plots. |
|--------------------------------------|----------------|-----------------------|
|--------------------------------------|----------------|-----------------------|

# **Description**

Make a grid of plots.

# Usage

```
plot_multiplot(plots, file, cols = NULL, layout = NULL)
```

# **Arguments**

plots a list of plots file a file to write to

cols the number of columns in the grid

layout set the layout specifically

# Value

a multiplot!

| plot_nonzero | Make a ggplot graph of the number of non-zero genes by sample. |
|--------------|----------------------------------------------------------------|
| plot_nonzero | Make a ggplot graph of the number of non-zero genes by sample. |

# Description

This puts the number of genes with > 0 hits on the y-axis and CPM on the x-axis. Made by Ramzi Temanni <temanni at umd dot edu>.

# Usage

```
plot_nonzero(data, design = NULL, colors = NULL, labels = NULL,
    title = NULL, ...)
```

# Arguments

| data   | Expt, expressionset, or dataframe.                                                                                                                                                                                  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| design | Eesign matrix.                                                                                                                                                                                                      |
| colors | Color scheme.                                                                                                                                                                                                       |
| labels | How do you want to label the graph? 'fancy' will use directlabels() to try to match the labels with the positions without overlapping anything else will just stick them on a 45' offset next to the graphed point. |
| title  | Add a title?                                                                                                                                                                                                        |
|        | rawr!                                                                                                                                                                                                               |

plot\_num\_siggenes

#### Value

a ggplot2 plot of the number of non-zero genes with respect to each library's CPM.

#### See Also

```
geom_point geom_dl
```

### **Examples**

```
## Not run:
  nonzero_plot = plot_nonzero(expt=expt)
  nonzero_plot ## ooo pretty
## End(Not run)
```

plot\_num\_siggenes

Given a DE table with fold changes and p-values, show how 'significant' changes with changing cutoffs.

# **Description**

Sometimes one might want to know how many genes are deemed significant while shifting the bars which define significant. This provides that metrics as a set of tables of numbers of significant up/down genes when p-value is held constant, as well as number when fold-change is held constant.

# Usage

```
plot_num_siggenes(table, p_column = "limma_adjp", fc_column = "limma_logfc",
bins = 100, constant_p = 0.05, constant_fc = 0)
```

### **Arguments**

table DE table to examine.

p\_column Column in the DE table defining the changing p-value cutoff.

fc\_column Column in the DE table defining the changing +/- log fold change.

bins Number of incremental changes in p-value/FC to examine.

constant\_p When plotting changing FC, where should the p-value be held?

constant\_fc When plotting changing p, where should the FC be held?

# Value

Plots and dataframes describing the changing definition of 'significant.'

plot\_ontpval

plot\_ontpval

Make a pvalue plot from a df of IDs, scores, and p-values.

### **Description**

This function seeks to make generating pretty pvalue plots as shown by clusterprofiler easier.

# Usage

```
plot_ontpval(df, ontology = "MF")
```

### **Arguments**

df Some data from topgo/goseq/clusterprofiler.

ontology Ontology to plot (MF,BP,CC).

### Value

Ggplot2 plot of pvalues vs. ontology.

### See Also

goseq ggplot2

plot\_pairwise\_ma

Plot all pairwise MA plots in an experiment.

# Description

Use affy's ma.plot() on every pair of columns in a data set to help diagnose problematic samples.

# Usage

```
plot_pairwise_ma(data, log = NULL, ...)
```

# Arguments

data Expt expressionset or data frame.

log Is the data in log format?

. . . Options are good and passed to arglist().

# Value

List of affy::maplots

plot\_pca

### See Also

```
ma.plot
```

### **Examples**

```
## Not run:
    ma_plots = plot_pairwise_ma(expt=some_expt)
## End(Not run)
```

plot\_pca

Make a ggplot PCA plot describing the samples' clustering.

# **Description**

Make a ggplot PCA plot describing the samples' clustering.

### Usage

```
plot_pca(data, design = NULL, plot_colors = NULL, plot_labels = NULL,
    plot_title = NULL, plot_size = 5, size_column = NULL, ...)
```

### **Arguments**

```
data an expt set of samples.

design a design matrix and.

plot_colors a color scheme.

plot_labels add labels? Also, what type? FALSE, "default", or "fancy".

plot_title a title for the plot.

plot_size size for the glyphs on the plot.

size_column use an experimental factor to size the glyphs of the plot

arglist from elipsis!
```

### Value

a list containing the following: pca = the result of fast.svd() plot = ggplot2 pca\_plot describing the principle component analysis of the samples. table = a table of the PCA plot data res = a table of the PCA res data variance = a table of the PCA plot variance This makes use of cbcbSEQ and prints the table of variance by component.

### See Also

```
makeSVD, geom_dl plot_pcs
```

plot\_pcfactor 137

### **Examples**

```
## Not run:
   pca_plot = plot_pca(expt=expt)
   pca_plot
## End(Not run)
```

plot\_pcfactor

make a dotplot of some categorised factors and a set of principle components.

# **Description**

This should make a quick df of the factors and PCs and plot them.

# Usage

```
plot_pcfactor(pc_df, expt, exp_factor = "condition", component = "PC1")
```

#### **Arguments**

pc\_df Df of principle components.

expt Expt containing counts, metadata, etc. exp\_factor Experimental factor to compare against.

component Which principal component to compare against?

# **Examples**

```
## Not run:
estimate_vs_pcs <- plot_pcfactor(pcs, times)
## End(Not run)</pre>
```

plot\_pcs

A quick and dirty PCA plotter of arbitrary components against one another.

# Description

A quick and dirty PCA plotter of arbitrary components against one another.

```
plot_pcs(pca_data, first = "PC1", second = "PC2", variances = NULL,
  design = NULL, plot_title = NULL, plot_labels = NULL, plot_size = 5,
  size_column = NULL, ...)
```

plot\_qq\_all

# Arguments

pca\_data a dataframe of principle components PC1 .. PCN with any other arbitrary infor-

mation.

first principle component PCx to put on the x axis. second principle component PCy to put on the y axis.

variances a list of the percent variance explained by each component.

design the experimental design with condition batch factors.

plot\_title a title for the plot.

plot\_labels a parameter for the labels on the plot.

plot\_size The size of the dots on the plot

size\_column an experimental factor to use for sizing the glyphs

... extra arguments dropped into arglist

### Value

```
a ggplot2 PCA plot
```

# See Also

```
ggplot2 geom_dl
```

#### **Examples**

```
## Not run:
    pca_plot = plot_pcs(pca_data, first="PC2", second="PC4", design=expt$design)
## End(Not run)
```

plot\_qq\_all

Quantile/quantile comparison of the mean of all samples vs. each sample.

### **Description**

This allows one to visualize all individual data columns against the mean of all columns of data in order to see if any one is significantly different than the cloud.

### Usage

```
plot_qq_all(data, labels = "short")
```

# **Arguments**

data Expressionset, expt, or dataframe of samples.

labels What kind of labels to print?

plot\_qq\_all\_pairwise 139

### Value

List containing: logs = a recordPlot() of the pairwise log qq plots. ratios = a recordPlot() of the pairwise ratio qq plots. means = a table of the median values of all the summaries of the qq plots.

```
 \begin{array}{ll} {\tt plot\_qq\_all\_pairwise} & \textit{Perform qq plots of every column against every other column of a} \\ & \textit{dataset.} \end{array}
```

# **Description**

This function is stupid, don't use it. It makes more sense to just use plot\_qq, however I am not quite read to delete this function yet.

# Usage

```
plot_qq_all_pairwise(data)
```

### **Arguments**

data

Dataframe to perform pairwise qqplots with.

#### Value

List containing the recordPlot() output of the ratios, logs, and means among samples.

plot\_qq\_plot

Perform a qqplot between two columns of a matrix.

# **Description**

Given two columns of data, how well do the distributions match one another? The answer to that question may be visualized through a qq plot!

### Usage

```
plot_qq_plot(data, x = 1, y = 2, labels = TRUE)
```

# Arguments

data Data frame/expt/expressionset.

x First column to compare.
y Second column to compare.
labels Include the lables?

### Value

a list of the logs, ratios, and mean between the plots as ggplots.

plot\_scatter

| plot_sample_heatmap | Make a heatmap.3 description of the similarity of the genes among samples. |
|---------------------|----------------------------------------------------------------------------|
|---------------------|----------------------------------------------------------------------------|

# Description

Sometimes you just want to see how the genes of an experiment are related to each other. This can handle that. These heatmap functions should probably be replaced with neatmaps or heatplus or whatever it is, as the annotation dataframes in them are pretty awesome.

### Usage

```
plot_sample_heatmap(data, colors = NULL, design = NULL, names = NULL,
    title = NULL, Rowv = TRUE, ...)
```

# **Arguments**

| data   | Expt/expressionset/dataframe set of samples.                          |
|--------|-----------------------------------------------------------------------|
| colors | Color scheme of the samples (not needed if input is an expt).         |
| design | Design matrix describing the experiment (gotten for free if an expt). |
| names  | Alternate samples names.                                              |
| title  | Title of the plot!                                                    |
| Rowv   | Reorder the rows by expression?                                       |
|        | More parameters for a good time!                                      |

#### Value

a recordPlot() heatmap describing the samples.

### See Also

brewer.pal recordPlot

| plot_scatter | Make a pretty scatter plot between two sets of numbers. |  |
|--------------|---------------------------------------------------------|--|
| prot_scatter | make a pretty scatter plot between two sets of numbers. |  |

# Description

This function tries to supplement a normal scatterplot with some information describing the relationship between the columns of data plotted.

```
plot_scatter(df, tooltip_data = NULL, color = "black",
  gvis_filename = NULL, size = 2)
```

plot\_sm 141

### **Arguments**

df Dataframe likely containing two columns.

tooltip\_data Df of tooltip information for gvis. color Color of the dots on the graph.

gvis\_filename Filename to write a fancy html graph.

size Size of the dots on the graph.

### Value

Ggplot2 scatter plot.

### See Also

plot\_gvis\_scatter geom\_point plot\_linear\_scatter

### **Examples**

plot\_sm

Make an R plot of the standard median correlation or distance among samples.

# Description

This was written by a mix of Kwame Okrah <kokrah at gmail dot com>, Laura Dillon <dillonl at umd dot edu>, and Hector Corrada Bravo <hcorrada at umd dot edu> I reimplemented it using ggplot2 and tried to make it a little more flexible. The general idea is to take the pairwise correlations/distances of the samples, then take the medians, and plot them.

# Usage

```
plot_sm(data, colors = NULL, method = "pearson", names = NULL,
   title = NULL, ...)
```

#### **Arguments**

| data   | Expt, expressionset, or data frame.    |
|--------|----------------------------------------|
| colors | Color scheme if data is not an expt.   |
| method | Correlation or distance method to use. |
| names  | Use pretty names for the samples?      |
| title  | Title for the graph.                   |

... More parameters to make you happy!

plot\_spirograph

### Value

ggplot of the standard median something among the samples. This will also write to an open device. The resulting plot measures the median correlation of each sample among its peers. It notes 1.5\* the interquartile range among the samples and makes a horizontal line at that correlation coefficient. Any sample which falls below this line is considered for removal because it is much less similar to all of its peers.

# See Also

hpgl\_cor rowMedians quantile diff recordPlot

### **Examples**

```
## Not run:
   smc_plot = hpgl_smc(expt=expt)
## End(Not run)
```

plot\_spirograph

Make spirographs!

### Description

Taken (with modifications) from: http://menugget.blogspot.com/2012/12/spirograph-with-r.html#more A positive value for 'B' will result in a epitrochoid, while a negative value will result in a hypotrochoid.

### Usage

```
plot_spirograph(radius_a = 1, radius_b = -4, dist_bc = -2, revolutions = 158, increments = 3160, center_a = list(x = 0, y = 0))
```

### **Arguments**

radius\_a The radius of the primary circle.

radius\_b The radius of the circle travelling around a.

dist\_bc A point relative to the center of 'b' which rotates with the turning of 'b'.

How many revolutions to perform in the plot

increments The number of radial increments to be calculated per revolution

center\_a The position of the center of 'a'.

#### Value

something which I don't yet know.

plot\_svfactor 143

| plot_svfactor | Make a dotplot of some categorised factors and a set of SVs (for other factors). |
|---------------|----------------------------------------------------------------------------------|
|---------------|----------------------------------------------------------------------------------|

# **Description**

This should make a quick df of the factors and surrogates and plot them.

# Usage

```
plot_svfactor(expt, svest, chosen_factor = "snpcategory",
  factor_type = "factor")
```

### **Arguments**

expt Experiment from which to acquire the design, counts, etc.

svest Set of surrogate variable estimations from sva/svg or batch estimates.

chosen\_factor Factor to compare against.

factor\_type This may be a factor or range, it is intended to plot a scatterplot if it is a range,

a dotplot if a factor.

# **Examples**

```
## Not run:
estimate_vs_snps <- plot_svfactor(start, surrogate_estimate, "snpcategory")
## End(Not run)</pre>
```

# Description

This can make a large number of plots.

# Usage

```
plot_topgo_densities(godata, table)
```

#### **Arguments**

godata Result from topgo. table Table of genes.

plot\_volcano

plot\_topgo\_pval

Make a pvalue plot from topgo data.

#### Description

The p-value plots from clusterProfiler are pretty, this sets the topgo data into a format suitable for plotting in that fashion and returns the resulting plots of significant ontologies.

### Usage

```
plot_topgo_pval(topgo, wrapped_width = 20, cutoff = 0.1, n = 12,
    type = "fisher")
```

# **Arguments**

topgo Some data from topgo!

wrapped\_width Maximum width of the text names.

cutoff P-value cutoff for the plots.

n Maximum number of ontologies to include.

type Type of score to use.

#### Value

List of MF/BP/CC pvalue plots.

#### See Also

topgo clusterProfiler

plot\_volcano

Make a pretty Volcano plot!

# Description

Volcano plots and MA plots provide quick an easy methods to view the set of (in)significantly differentially expressed genes. In the case of a volcano plot, it places the -log10 of the p-value estimate on the y-axis and the fold-change between conditions on the x-axis. Here is a neat snippet from wikipedia: "The concept of volcano plot can be generalized to other applications, where the x-axis is related to a measure of the strength of a statistical signal, and y-axis is related to a measure of the statistical significance of the signal."

```
plot_volcano(toptable_data, tooltip_data = NULL, gvis_filename = NULL,
  fc_cutoff = 0.8, p_cutoff = 0.05, size = 2, alpha = 0.6,
  xaxis_column = "logFC", yaxis_column = "P.Value", modify_y = TRUE, ...)
```

pp 145

# **Arguments**

toptable\_data Dataframe from limma's toptable which includes log(fold change) and an adjusted p-value.

tooltip\_data Df of tooltip information for gvis.
gvis\_filename Filename to write a fancy html graph.

fc\_cutoff Cutoff defining the minimum/maximum fold change for interesting. This is log,

so I went with +/- 0.8 mostly arbitrarily as the default.

p\_cutoff Cutoff defining significant from not.

size How big are the dots?

alpha How transparent to make the dots.

xaxis\_column Column from the data to use on the x axis (logFC)
yaxis\_column Column from the data to use on the y axis (p-value)

... I love parameters!

#### Value

Ggplot2 volcano scatter plot. This is defined as the -log10(p-value) with respect to log(fold change). The cutoff values are delineated with lines and mark the boundaries between 'significant' and not. This will make a fun clicky googleVis graph if requested.

## See Also

plot\_gvis\_ma toptable voom hpgl\_voom lmFit makeContrasts contrasts.fit

#### **Examples**

```
## Not run:
   plot_volcano(toptable_data, gvis_filename="html/fun_ma_plot.html")
## Currently this assumes that a variant of toptable was used which
## gives adjusted p-values. This is not always the case and I should
## check for that, but I have not yet.
## End(Not run)
```

pp png() shortcut

## **Description**

I hate remembering my options for png()

#### Usage

pp(file)

print\_ups\_downs

## **Arguments**

file

a filename to write

## Value

a png with height=width=9 inches and a high resolution

print\_ups\_downs

Reprint the output from extract\_significant\_genes().

# **Description**

I found myself needing to reprint these excel sheets because I added some new information. This shortcuts that process for me.

## Usage

```
print_ups_downs(upsdowns, wb = NULL, excel = "excel/significant_genes.xlsx",
   csv = NULL, according = "limma", summary_count = 1)
```

## **Arguments**

upsdowns Output from extract\_significant\_genes().

wb Workbook object to use for writing, or start a new one.

excel Filename for writing the data.

according Use limma, deseq, or edger for defining 'significant'.

summary\_count For spacing sequential tables one after another.

#### Value

Return from write\_xls.

#### See Also

```
combine_de_tables
```

read\_metadata 147

| read_metadata      | Given a ta |
|--------------------|------------|
| r eau_ille taua ta | Given a ia |

Given a table of meta data, read it in for use by create\_expt().

# Description

Reads an experimental design in a few different formats in preparation for creating an expt.

# Usage

```
read_metadata(file, ...)
```

# Arguments

file Csv/xls file to read.

... Arguments for arglist, used by sep, header and similar read.csv/read.table pa-

rameters.

#### Value

Df of metadata.

require.auto

Automatic loading and/or installing of packages.

# Description

Load a library, install it first if necessary.

# Usage

```
require.auto(lib, update = FALSE)
```

# Arguments

1ib String name of a library to check/install.

update Update packages?

## **Details**

This was taken from: http://sbamin.com/2012/11/05/tips-for-working-in-r-automatically-install-missing-package/

#### Value

0 or 1, whether a package was installed or not.

148 saveme

#### See Also

biocLite install.packages

## **Examples**

```
## Not run:
require.auto("ggplot2")
## End(Not run)
```

saveme

Make a backup rdata file for future reference

## **Description**

I often use R over a sshfs connection, sometimes with significant latency, and I want to be able to save/load my R sessions relatively quickly. Thus this function uses pxz to compress the R session maximally and relatively fast. This assumes you have pxz installed and >= 4 CPUs.

# Usage

```
saveme(directory = "savefiles", backups = 4, filename = "Rdata.rda.xz")
```

# Arguments

directory Directory to save the Rdata file.

backups How many revisions?

#### Value

Command string used to save the global environment.

#### See Also

save pipe

#### **Examples**

```
## Not run:
    ## saveme()
## End(Not run)
```

```
semantic_copynumber_filter
```

Remove multicopy genes from up/down gene expression lists.

#### **Description**

In our parasite data, there are a few gene types which are consistently obnoxious. Multi-gene families primarily where the coding sequences are divergent, but the UTRs nearly identical. For these genes, our sequence based removal methods fail and so this just excludes them by name.

#### Usage

```
semantic_copynumber_filter(de_list, max_copies = 2, semantic = c("mucin",
    "sialidase", "RHS", "MASP", "DGF"), semantic_column = "1.tooltip")
```

#### **Arguments**

de\_list List of sets of genes deemed significantly up/down with a column expressing

approximate count numbers.

max\_copies Keep only those genes with <= n putative copies.

semantic Set of strings with gene names to exclude.

semantic\_column

Column in the DE table used to find the semantic strings for removal.

#### Value

Smaller list of up/down genes.

```
sequence_attributes Gather some simple sequence attributes.
```

# **Description**

This extends the logic of the pattern searching in pattern\_count\_genome() to search on some other attributes.

#### Usage

```
sequence_attributes(fasta, gff = NULL, type = "gene", key = "locus_tag")
```

# **Arguments**

| fasta | Genome encoded as a fasta file.                                                  |
|-------|----------------------------------------------------------------------------------|
| gff   | Optional gff of annotations (if not provided it will just ask the whole genome). |
| type  | Column of the gff file to use.                                                   |
| kev   | What type of entry of the gff file to key from?                                  |

set\_expt\_batch

## Value

List of data frames containing gc/at/gt/ac contents.

#### See Also

Biostrings Rsamtools letterFrequency FaFile

## **Examples**

```
## Not run:
num_pattern = sequence_attributes('mgas_5005.fasta', 'mgas_5005.gff')
## End(Not run)
```

set\_expt\_batch

Change the batches of an expt.

#### **Description**

When exploring differential analyses, it might be useful to play with the conditions/batches of the experiment. Use this to make that easier.

## Usage

```
set_expt_batch(expt, fact, ids = NULL, ...)
```

# Arguments

expt Expt to modify.

ids Specific samples to change.

... Extra options are like spinach.

factor Batches to replace.

#### Value

The original expt with some new metadata.

# **Examples**

```
## Not run:
    expt = set_expt_batch(big_expt, factor=c(some,stuff,here))
## End(Not run)
```

set\_expt\_colors 151

set\_expt\_colors

Change the colors of an expt!

## **Description**

After fiddling with conditions/batches, one might want to change the colors.

When exploring differential analyses, it might be useful to play with the conditions/batches of the experiment. Use this to make that easier.

## Usage

```
set_expt_colors(expt, colors = TRUE, chosen_palette = "Dark2")
set_expt_colors(expt, colors = TRUE, chosen_palette = "Dark2")
```

# Arguments

| expt   | Expt to modify.                        |
|--------|----------------------------------------|
| colors | New color list.                        |
| ids    | Specific ids to change.                |
|        | Arguments passed along (likely colors) |
| expt   | Expt to modify                         |
| colors | colors to replace                      |

#### Value

```
expt Send back the expt with some new metadata expt Send back the expt with some new metadata
```

# **Examples**

```
## Not run:
    expt = set_expt_colors(big_expt) ## This will call rcolorbrewer again
## End(Not run)
## Not run:
    expt = set_expt_batch(big_expt, factor=c(some,stuff,here))
## End(Not run)
```

set\_expt\_factors

set\_expt\_condition

Change the condition of an expt

## **Description**

When exploring differential analyses, it might be useful to play with the conditions/batches of the experiment. Use this to make that easier.

#### Usage

```
set_expt_condition(expt, fact, ids = NULL, ...)
```

#### **Arguments**

expt Expt to modify

factor Conditions to replace

colors Reset the set of colors (Give a factor if you want to choose your own).

#### Value

expt Send back the expt with some new metadata

## **Examples**

```
## Not run:
    expt = set_expt_condition(big_expt, factor=c(some, stuff, here))
## End(Not run)
```

set\_expt\_factors

Change the factors (condition and batch) of an expt

# **Description**

When exploring differential analyses, it might be useful to play with the conditions/batches of the experiment. Use this to make that easier.

#### Usage

```
set_expt_factors(expt, condition = NULL, batch = NULL, ids = NULL, ...)
```

## Arguments

expt Expt to modify
condition New condition factor
batch New batch factor

... Arguments passed along (likely colors)

sillydist 153

#### Value

expt Send back the expt with some new metadata

#### **Examples**

```
## Not run:
    expt = set_expt_factors(big_expt, condition="column", batch="another_column")
## End(Not run)
```

sillydist

Calculate a simplistic distance function of a point against two axes.

#### **Description**

Sillydist provides a distance of any point vs. the axes of a plot. This just takes the abs(distances) of each point to the axes, normalizes them against the largest point on the axes, multiplies the result, and normalizes against the max of all point.

## Usage

```
sillydist(firstterm, secondterm, firstaxis = 0, secondaxis = 0)
```

# Arguments

firstterm X-values of the points.
secondterm Y-values of the points.
firstaxis X-value of the vertical axis.
secondaxis Y-value of the second axis.

#### Value

Dataframe of the distances.

## See Also

ggplot2

## **Examples**

simple\_clusterprofiler

Perform the array of analyses in the 2016-04 version of clusterProfiler

## **Description**

The new version of clusterProfiler has a bunch of new toys. However, it is more stringent in terms of input in that it now explicitly expects to receive annotation data in terms of a orgdb object. This is mostly advantageous, but will probably cause some changes in the other ontology functions in the near future. This function is an initial pass at making something similar to my previous 'simple\_clusterprofiler()' but using these new toys.

#### Usage

```
simple_clusterprofiler(sig_genes, all_genes, orgdb = "org.Dm.eg.db",
  orgdb_from = "FLYBASE", orgdb_to = c("ENSEMBL", "SYMBOL", "ENTREZID"),
  go_level = 3, pcutoff = 0.05, qcutoff = 0.1, fc_column = "logFC",
  permutations = 100, min_groupsize = 5, kegg_prefix = "Dmel_",
  kegg_organism = "dme", kegg_id_column = "FLYBASECG", categories = 12)
```

#### Arguments

| sig_genes           | Dataframe of genes deemed 'significant.'                                        |
|---------------------|---------------------------------------------------------------------------------|
| orgdb               | Name of the orgDb used for gathering annotation data.                           |
| orgdb_from          | Name of a key in the orgdb used to cross reference to entrez IDs.               |
| orgdb_to            | List of keys to grab from the orgdb for cross referencing ontologies.           |
| <pre>go_level</pre> | How deep into the ontology tree should this dive for over expressed categories. |
| pcutoff             | P-value cutoff for 'significant' analyses.                                      |
| qcutoff             | Q-value cutoff for 'significant' analyses.                                      |
| fc_column           | When extracting vectors of all genes, what column should be used?               |
| permutations        | How many permutations for GSEA-ish analyses?                                    |
| min_groupsize       | What is the minimum ontology group's size?                                      |
| kegg_prefix         | Many KEGG ids need a prefix before they will cross reference.                   |

kegg\_organism Choose the 3 letter KEGG organism name here.

kegg\_id\_column Column in the orgdb to use for cross referencing to KEGG. categories How many categories should be plotted in bar/dot plots?

universe Dataframe of all genes in the analysis, primarily for gse analyses.

```
simple_clusterprofiler_old
```

Perform a simplified clusterProfiler analysis.

# Description

I like clusterProfiler quite a lot, but making it work for non-standard species is a bit of a chore. This attempts to alleivate some of those headaches and cover some corner cases where it fails.

## Usage

```
simple_clusterprofiler_old(de_genes, goids_df = NULL, golevel = 4,
   pcutoff = 0.1, fold_changes = NULL, include_cnetplots = FALSE,
   showcategory = 12, universe = NULL, species = "undef", gff = NULL,
   wrapped_width = 20, method = "Wallenius", padjust = "BH", ...)
```

#### **Arguments**

| de_genes       | Data frame of differentially expressed genes, it must contain an ID column.                                                                    |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| goids_df       | df containing mappings of genes to goids in the format expected by build-GOmap().                                                              |
| golevel        | Relative level in the tree for printing p-value plots, higher is more specific.                                                                |
| pcutoff        | (Adj)p-value cutoff to define 'significant'.                                                                                                   |
| fold_changes   | Df of fold changes for the DE genes.                                                                                                           |
| include_cnetpl | ots                                                                                                                                            |
|                | Cnetplots often have too many glyphs to read, so by default they are not included, however on occasion they are fairly interesting to look at. |
| showcategory   | How many categories to show in p-value plots? Too many and they become illegible.                                                              |
| universe       | Gene universe to use.                                                                                                                          |
| species        | Name of the species to use if supported, jibberish otherwise.                                                                                  |
| gff            | Gff file to generate the universe of genes.                                                                                                    |
| wrapped_width  | Width of ontology names in the pvalue plots, too long and the bars disappear, too short and the words run into the lines above.                |
| method         | Method for calculating p-values.                                                                                                               |
| padjust        | Method for adjusting the p-values.                                                                                                             |
|                |                                                                                                                                                |

More options, passed to arglist.

156 simple\_comparison

#### Value

List including the following: mf\_interesting: A table of the interesting molecular function groups bp\_interesting: A table of the interesting biological process groups cc\_interesting: A table of the interesting cellular component groups mf\_pvals: A histogram of the molecular function p-values bp\_pvals: Ditto, biological process cc\_pvals: And cellular component... mf\_enriched: A table of the enriched molecular function groups by adjusted p-value. bp\_enriched: yep, you guessed it cc\_enriched: cellular component, too mf\_all/bp\_all/cc\_all: A table of all go categories observed (mf/bp/cc respectively) mfp\_plot/bpp\_plot/ccp\_plot: ggplot2 p-value bar plots describing the over represented groups mf\_cnetplot/bp\_cnetplot/cc\_cnetplot: clusterProfiler cnetplots mf\_group\_barplot/bp\_group\_barplot/cc\_g The group barplots from clusterProfiler

#### **Examples**

```
## Not run:
up_cluster = simple_clusterprofiler(mga2_ll_thy_top, goids=goids, gff="reference/genome/gas.gff")
## > Some chattery while it runs
## tail(head(up_cluster$bp_interesting, n=10), n=1)
## > ID ont GeneRatio BgRatio
                                 pvalue p.adjust
                                                       gvalue
## > 10 GO:0009311 BP
                          5/195 10/1262 0.01089364 0.01089364 0.1272835
## >
      geneID Count
## >
      10 M5005_Spy1632/M5005_Spy1637/M5005_Spy1635/M5005_Spy1636/M5005_Spy1638
## >
      10 oligosaccharide metabolic process
## End(Not run)
```

simple\_comparison

Perform a simple experimental/control comparison.

#### **Description**

This is a function written primarily to provide examples for how to use limma. It does the following:

- 1. Makes a model matrix using condition/batch 2. Optionally uses sva's combat (from cbcbSEQ)
- 3. Runs voom/lmfit 4. Sets the first element of the design to "changed" and the second to "control".
- 5. Performs a makeContrasts() of changed control. 6. Fits them 7. Makes histograms of the two elements of the contrast, cor.tests() them, makes a histogram of the p-values, ma-plot, volcano-plot, writes out the results in an excel sheet, pulls the up/down significant and p-value significant (maybe this should be replaced with write\_limma()? 8. And returns a list containining these data and plots. Currently this assumes that a variant of toptable was used which gives adjusted p-values. This is not always the case and I should check for that, but I have not yet.

```
simple_comparison(subset, workbook = "simple_comparison.xls",
   sheet = "simple_comparison", basename = NA, batch = TRUE,
   combat = FALSE, combat_noscale = TRUE, pvalue_cutoff = 0.05,
   logfc_cutoff = 0.6, tooltip_data = NULL, ...)
```

simple\_comparison 157

## Arguments

subset Experimental subset with two conditions to compare.

workbook Excel workbook to which to write.
sheet Excel worksheet to which to write.

basename Url to which to send click evens in clicky volcano/ma plots.

batch Whether or not to include batch in limma's model.

combat Whether or not to use combatMod().

combat\_noscale Whether or not to include combat noscale (makes combat a little less heavy-

handed).

pvalue\_cutoff P-value definition of 'significant.'

logfc\_cutoff Fold-change cutoff of significance. 0.6 on the low end and therefore 1.6 on the

high.

tooltip\_data Text descriptions of genes if one wants google graphs.

... More parameters!

#### Value

A list containing the following pieces: amean\_histogram = a histogram of the mean values between the two conditions coef\_amean\_cor = a correlation test between the mean values and coefficients (this should be a p-value of 1) coefficient\_scatter = a scatter plot of condition 2 on the y axis and condition 1 on x coefficient\_x = a histogram of the x axis coefficient\_y = a histogram of the y axis coefficient\_both = a histogram of both coefficient\_lm = a description of the line described by y=slope(y/x)+b where coefficient\_lmsummary = the r-squared and such information for the linear model coefficient\_weights = the weights against the linear model, higher weights mean closer to the line comparisons = the result from eBayes() contrasts = the result from contrasts.fit() contrast\_histogram = a histogram of the coefficients downsignificant = a subset from toptable() of the 'down-regulated' genes (< 1 Z from the mean) fit = the result from lmFit(voom\_result) ma\_plot = an ma plot using the voom\$E data and p-values psignificant = a subset from toptable() of all genes with p-values <= pvalue\_cutoff pvalue\_histogram = a histogram of all the p-values table = everything from toptable() upsignificant = a subset from toptable() of 'up-regulated' genes (> 1 Z from the mean) volcano\_plot = a volcano plot of x/y voom\_data = the result from calling voom() voom\_plot = a plot from voom(), redunant with voom\_data

#### See Also

plot\_gvis\_ma toptable voom hpgl\_voom lmFit makeContrasts contrasts.fit

#### **Examples**

```
## Not run:
  model = model.matrix(~ 0 + subset$conditions)
  simple_comparison(subset, model)
## End(Not run)
```

simple\_filter\_counts

| simple_cp_enricher | Generic enrichment using clusterProfiler. |  |
|--------------------|-------------------------------------------|--|
|--------------------|-------------------------------------------|--|

## **Description**

culsterProfiler::enricher provides a quick and easy enrichment analysis given a set of siginficant' genes and a data frame which connects each gene to a category.

## Usage

```
simple_cp_enricher(sig_genes, de_table, goids_df = NULL)
```

#### **Arguments**

| sig_genes | Set of 'significant' genes as a table.                                     |
|-----------|----------------------------------------------------------------------------|
| de_table  | All genes from the original analysis.                                      |
| goids_df  | Dataframe of GO->ID matching the gene names of sig_genes to GO categories. |

#### Value

Table of 'enriched' categories.

```
simple_filter_counts Filter low-count genes from a data set only using a simple threshold and number of samples.
```

## **Description**

This was a function written by Kwame Okrah and perhaps also Laura Dillon to remove low-count genes. It drops genes based on a threshold and number of samples.

## Usage

```
simple_filter_counts(count_table, threshold = 2, min_samples = 2)
```

# Arguments

count\_table Data frame of (pseudo)counts by sample.
threshold Lower threshold of counts for each gene.
min\_samples Minimum number of samples.

## Value

Dataframe of counts without the low-count genes.

simple\_gadem 159

## **Examples**

```
## Not run:
filtered_table <- simple_filter_counts(count_table)
## End(Not run)
```

simple\_gadem

run the rGADEM suite

## Description

This is another function I started but never had cause to finish for the test sequences it works though

## Usage

```
simple_gadem(inputfile, genome = "BSgenome.Hsapiens.UCSC.hs19", ...)
```

# Arguments

inputfile Fasta or bed file containing sequences to search.

genome BSgenome to read.

... Parameters for plotting the gadem result.

simple\_goseq

Perform a simplified goseq analysis.

# Description

goseq can be pretty difficult to get set up for non-supported organisms. This attempts to make that process a bit simpler as well as give some standard outputs which should be similar to those returned by clusterprofiler/topgo/gostats/gprofiler.

```
simple_goseq(de_genes, go_db, length_db, doplot = TRUE, adjust = 0.1,
  pvalue = 0.1, qvalue = 0.1, length_keytype = "transcripts",
  go_keytype = "ENTREZID", goseq_method = "Wallenius",
  padjust_method = "BH", bioc_length_db = "ensGene", ...)
```

simple\_gostats

# **Arguments**

| de_genes                 | Data frame of differentially expressed genes, containing IDs etc. |
|--------------------------|-------------------------------------------------------------------|
| go_db                    | Database of go to gene mappings (OrgDb/OrganismDb)                |
| length_db                | Database of gene lengths (gff/TxDb)                               |
| doplot                   | Include pwf plots?                                                |
| adjust                   | Minimum adjusted pvalue for 'significant.'                        |
| pvalue                   | Minimum pvalue for 'significant.'                                 |
| qvalue                   | Minimum qvalue for 'significant.'                                 |
| length_keytype           | Keytype to provide to extract lengths                             |
| go_keytype               | Keytype to provide to extract go IDs                              |
| goseq_method             | Statistical test for goseq to use.                                |
| ${\tt padjust\_method}$  | Which method to use to adjust the pvalues.                        |
| ${\tt bioc\_length\_db}$ | Source of gene lengths?                                           |
|                          |                                                                   |

Extra parameters which I do not recall

#### Value

Big list including: the pwd:pwf function, alldata:the godata dataframe, pvalue\_histogram:p-value histograms, godata\_interesting:the ontology information of the enhanced groups, term\_table:the goterms with some information about them, mf\_subset:a plot of the MF enhanced groups, mfp\_plot:the pvalues of the MF group, bp\_subset:a plot of the BP enhanced groups, bpp\_plot, cc\_subset, and ccp\_plot

#### See Also

goseq goseq nullp

| for clusters rojues, goseq, una topoo. | simple_gostats | Simplification function for gostats, in the same vein as those written for clusterProfiler, goseq, and topGO. |
|----------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------|
|----------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------|

## **Description**

GOstats has a couple interesting peculiarities: Chief among them: the gene IDs must be integers. As a result, I am going to have this function take a gff file in order to get the go ids and gene ids on the same page.

```
simple_gostats(de_genes, gff, goids_df, universe_merge = "id",
   second_merge_try = "locus_tag", species = "fun", pcutoff = 0.1,
   direction = "over", conditional = FALSE, categorysize = NULL,
   gff_type = "cds", ...)
```

simple\_gprofiler 161

## **Arguments**

de\_genes Input list of differentially expressed genes.

gff Annotation information for this genome.

goids\_df Set of GOids, as before in the format ID/GO.

universe\_merge Column from which to create the universe of genes.

second\_merge\_try

If the first universe merge fails, try this.

species Genbank organism to use.

pcutoff Pvalue cutoff for deciding significant.
direction Under or over represented categories.

conditional Perform a conditional search?

categorysize Category size below which to not include groups.

gff\_type Gff column to use for creating the universe.

... More parameters!

#### Value

List of returns from GSEABase, Category, etc.

#### See Also

## **GSEABase Category**

simple\_gprofiler Run searches against the web service g:Profiler.

## **Description**

Thank you Ginger for showing me your thesis, gProfiler is pretty cool!

```
simple_gprofiler(de_genes, species = "hsapiens", first_col = "logFC",
   second_col = "limma_logfc", do_go = TRUE, do_kegg = TRUE,
   do_reactome = TRUE, do_mi = TRUE, do_tf = TRUE, do_corum = TRUE,
   do_hp = TRUE)
```

162 simple\_topgo

## **Arguments**

de\_genes guess! species an organism supported by gprofiler where to search for the order of 'significant' first first\_col second\_col if that fails, try some where else. Perform GO search? do\_go Perform KEGG search? do\_kegg Perform reactome search? do\_reactome Do miRNA search? do\_mi do\_tf Search for transcription factors? Do corum search? do\_corum

#### Value

do\_hp

a list of results for go, kegg, reactome, and a few more.

Do the hp search?

|--|

#### **Description**

This will attempt to make it easier to run topgo on a set of genes.

#### Usage

```
simple_topgo(de_genes, goid_map = "id2go.map", goids_df = NULL,
    pvals = NULL, limitby = "fisher", limit = 0.1, signodes = 100,
    sigforall = TRUE, numchar = 300, selector = "topDiffGenes",
    pval_column = "adj.P.Val", overwrite = FALSE, densities = FALSE,
    pval_plots = TRUE, ...)
```

## **Arguments**

| de_genes  | Data frame of differentially expressed genes, containing IDs any other columns. |
|-----------|---------------------------------------------------------------------------------|
| goid_map  | File containing mappings of genes to goids in the format expected by topgo.     |
| goids_df  | Data frame of the goids which may be used to make the goid_map.                 |
| pvals     | Set of pvalues in the DE data which may be used to improve the topgo results.   |
| limitby   | Test to index the results by.                                                   |
| limit     | Ontology pvalue to use as the lower limit.                                      |
| signodes  | I don't remember right now.                                                     |
| sigforall | Provide the significance for all nodes?                                         |

sm 163

numchar Character limit for the table of results.

selector Function name for choosing genes to include.

pval\_column Column from which to acquire scores.

overwrite Yeah I do not remember this one either.

densities Densities, yeah, the densities...

pval\_plots Include pvalue plots of the results a la clusterprofiler?
... Other options which I do not remember right now!

#### Value

Big list including the various outputs from topgo

sm Silence, m...

## **Description**

Some libraries/functions just won't shut up. Ergo, silence, peasant! This is a simpler silence peasant.

#### Usage

```
sm(...)
```

## Arguments

... Some code to shut up.

# Value

Whatever the code would have returned.

subset\_ontology\_search

Perform ontology searches on up/down subsets of differential expression data.

## **Description**

In the same way all\_pairwise() attempts to simplify using multiple DE tools, this function seeks to make it easier to extract subsets of differentially expressed data and pass them to goseq, clusterProfiler, topGO, GOstats, and gProfiler.

sum\_exons

#### Usage

```
subset_ontology_search(changed_counts, doplot = TRUE, do_goseq = TRUE,
  do_cluster = TRUE, do_topgo = TRUE, do_gostats = TRUE,
  do_gprofiler = TRUE, according_to = "limma", ...)
```

## Arguments

changed\_counts List of changed counts as ups and downs.

doplot Include plots in the results?
do\_goseq Perform goseq search?

do\_cluster Perform clusterprofiler search?

do\_topgo Perform topgo search?
do\_gostats Perform gostats search?
do\_gprofiler Do a gprofiler search?

according\_to If results from multiple DE tools were passed, which one defines 'significant'?

... Extra arguments!

#### Value

List of ontology search results, up and down for each contrast.

| sum_exons | Given a data frame of exon counts and annotation information, sum |
|-----------|-------------------------------------------------------------------|
|           | the exons.                                                        |

## **Description**

This function will merge a count table to an annotation table by the child column. It will then sum all rows of exons by parent gene and sum the widths of the exons. Finally it will return a list containing a df of gene lengths and summed counts.

#### Usage

```
sum_exons(data, gff = NULL, annotdf = NULL, parent = "Parent",
    child = "row.names")
```

## **Arguments**

data Count tables of exons.

gff Gff filename.

annotdf Dataframe of annotations (probably from gff2df).

Column from the annotations with the gene names.

Column from the annotations with the exon names.

s\_p 165

## Value

List of 2 data frames, counts and lengths by summed exons.

#### See Also

rtracklayer

## **Examples**

```
## Not run:
summed <- sum_exons(counts, gff='reference/xenopus_laevis.gff.xz')
## End(Not run)</pre>
```

s\_p

Silence, peasant!

# Description

Some libraries/functions just won't shut up. Ergo, silence, peasant! This function uses 2 invocations of capture.output and a try(silent=TRUE) to capture the strings of the outputs from the given expression in 'output', and the messages in 'message'. The result of the expression goes into 'result.' If there is an error in the expression, it is returned as a try-error object which may therefore be inspected as needed.

# Usage

```
s_p(code)
```

# **Arguments**

code

Some code to shut up.

## Value

List of the output log, message log, and result of the expression.

topDiffGenes

tnseq\_saturation

Make a plot and some simple numbers about tnseq saturation

#### **Description**

This function takes as input a tab separated file from essentiality\_tas.pl This is a perl script written to read a bam alignment of tnseq reads against a genome and count how many hits were observed on every TA in the given genome. It furthermore has some logic to tell the difference between reads which were observed on the forward vs. reverse strand as well as reads which appear to be on both strands (eg. they start and end with 'TA').

## Usage

```
tnseq_saturation(file)
```

# **Arguments**

file

a file created using the perl script 'essentiality\_tas.pl'

#### Value

A plot and some numbers

topDiffGenes

A very simple selector of strong scoring genes (by p-value)

#### **Description**

This function was provided in the topGO documentation, but not defined. It was copied/pasted here. I have ideas for including up/down expression but have so far deemed them not needed because I am feeding topGO already explicit lists of genes which are up/down/whatever. But it still is likely to be useful to be able to further subset the data.

## Usage

```
topDiffGenes(allScore)
```

## **Arguments**

allScore

The scores of the genes

topgo\_tables 167

# Description

The topgo function GenTable is neat, but it needs some simplification to not be obnoxious.

## Usage

```
topgo_tables(result, limit = 0.1, limitby = "fisher", numchar = 300,
  orderby = "classic", ranksof = "classic")
```

# Arguments

| result  | Topgo result.                                             |
|---------|-----------------------------------------------------------|
| limit   | Pvalue limit defining 'significant'.                      |
| limitby | Type of test to perform.                                  |
| numchar | How many characters to allow in the description?          |
| orderby | Which of the available columns to order the table by?     |
| ranksof | Which of the available columns are used to rank the data? |

|             | D:                      |  |
|-------------|-------------------------|--|
| topgo_trees | Print trees from topGO. |  |
|             |                         |  |

## **Description**

The tree printing functionality of topGO is pretty cool, but difficult to get set correctly.

```
topgo_trees(tg, score_limit = 0.01, sigforall = TRUE,
  do_mf_fisher_tree = TRUE, do_bp_fisher_tree = TRUE,
  do_cc_fisher_tree = TRUE, do_mf_ks_tree = FALSE, do_bp_ks_tree = FALSE,
  do_cc_ks_tree = FALSE, do_mf_el_tree = FALSE, do_bp_el_tree = FALSE,
  do_cc_el_tree = FALSE, do_mf_weight_tree = FALSE,
  do_bp_weight_tree = FALSE, do_cc_weight_tree = FALSE)
```

168 transform\_counts

#### **Arguments**

```
Data from simple_topgo().
tg
score_limit
                 Score limit to decide whether to add to the tree.
sigforall
                  Add scores to the tree?
do_mf_fisher_tree
                  Add the fisher score molecular function tree?
do_bp_fisher_tree
                 Add the fisher biological process tree?
do_cc_fisher_tree
                  Add the fisher cellular component tree?
                 Add the ks molecular function tree?
do_mf_ks_tree
                 Add the ks biological process tree?
do_bp_ks_tree
do_cc_ks_tree
                 Add the ks cellular component tree?
do_mf_el_tree
                 Add the el molecular function tree?
do_bp_el_tree
                 Add the el biological process tree?
do_cc_el_tree
                 Add the el cellular component tree?
do_mf_weight_tree
                  Add the weight mf tree?
do_bp_weight_tree
                  Add the bp weighted tree?
do_cc_weight_tree
                 Add the guess
```

## Value

Big list including the various outputs from topgo.

# Description

the add argument is only important if the data was previously cpm'd because that does a +1, thus this will avoid a double+1 on the data.

#### Usage

```
transform_counts(count_table, transform = "raw", base = NULL, ...)
```

## **Arguments**

count\_table A matrix of count data

transform A type of transformation to perform: log2/log10/log

base for other log scales

. . . Options I might pass from other functions are dropped into arglist.

## Value

```
dataframe of logx(counts)
```

## **Examples**

```
## Not run:
filtered_table = transform_counts(count_table, transform='log2', converted='cpm')
## End(Not run)
```

translate\_ids\_querymany

Use mygene's queryMany to translate gene ID types

# **Description**

Juggling between entrez, ensembl, etc can be quite a hassel. This hopes to make it easier.

## Usage

```
translate_ids_querymany(queries, from = "ensembl", to = "entrez",
   species = "human")
```

## **Arguments**

queries Gene IDs to translate.

from Database to translate IDs from. to Database to translate IDs into.

species Human readable species for translation (Eg. 'human' instead of 'hsapiens'.)

## Value

Df of translated IDs/accessions

#### See Also

```
queryMany
```

#### **Examples**

```
## Not run:
  data <- translate_ids_querymany(genes)
## End(Not run)</pre>
```

170 tryCatch.W.E

| tritryp_downloads | Download the various data files from http://tritrypdb.org/ |
|-------------------|------------------------------------------------------------|
|                   |                                                            |

# Description

The tritrypdb nicely makes their downloads standardized!

# Usage

```
tritryp_downloads(version = "27", species = "lmajor", strain = "friedlin",
    dl_dir = "organdb/tritryp", quiet = TRUE)
```

#### **Arguments**

| version | What version of the tritrypdb to use?               |
|---------|-----------------------------------------------------|
| species | Human readable species to use.                      |
| strain  | Strain of the given species to download.            |
| dl_dir  | Directory into which to download the various files. |
| quiet   | Print download progress?                            |
| quiet   | rinit download progress?                            |

tryCatch.W.E

tryCatch both warnings and errors

# Description

We want to catch \*and\* save both errors and warnings, and in the case of a warning, also keep the computed result.

#### Usage

```
tryCatch.W.E(expr)
```

# Arguments

expr an expression to try

## **Details**

This was taken from: http://r.789695.n4.nabble.com/How-to-catch-both-warnings-and-errors-td3073597.html and http://tolstoy.newcastle.edu.au/R/help/04/06/0217.html

#### Value

a list with 'value' and 'warning', where 'value' may be an error caught.

u\_plot 171

#### Author(s)

Martin Maechler

u\_plot

Plot the rank order svd\$u elements to get a view of how much the first genes contribute to the total variance by PC.

## **Description**

Plot the rank order svd\$u elements to get a view of how much the first genes contribute to the total variance by PC.

## Usage

```
u_plot(plotted_us)
```

## **Arguments**

plotted\_us

a list of svd\$u elements

#### Value

a recordPlot() plot showing the first 3 PCs by rank-order svd\$u.

varpart

Use variancePartition to gather some plots about a troubling dataset

# Description

variancePartition is the newest toy introduced by Hector

## Usage

```
varpart(expt, factors = c("condition", "batch"), cpus = 6, genes = 20)
```

## **Arguments**

expt Some data

factors Character list of columns in the experiment design to query

cpus Number cpus to use

genes Number of genes to count

#### Value

partitions List of plots and variance data frames

172 write\_go\_xls

| write_goseq_data | Make a pretty table of goseq data in excel. |  |
|------------------|---------------------------------------------|--|
|------------------|---------------------------------------------|--|

## **Description**

It is my intention to make a function like this for each ontology tool in my repetoire

## Usage

```
write_goseq_data(goseq, file = "excel/goseq.xlsx", pval = 0.1,
   add_plots = TRUE)
```

## **Arguments**

goseq A set of results from simple\_goseq().

file An excel file to which to write some pretty results.

pval Choose a cutoff for reporting by p-value.

add\_plots Include some pvalue plots in the excel output?

#### Value

The result from openxlsx

| write_go_xls Write gene ontology tables for excel |
|---------------------------------------------------|
|---------------------------------------------------|

# Description

Combine the results from goseq, cluster profiler, topgo, and gostats and drop them into excel Hopefully with a relatively consistent look.

#### Usage

```
write_go_xls(goseq, cluster, topgo, gostats, gprofiler,
  file = "excel/merged_go", dated = TRUE, n = 30, overwritefile = TRUE)
```

# Arguments

| goseq   | The goseq result from simple_goseq()     |
|---------|------------------------------------------|
| cluster | The result from simple_clusterprofiler() |
| topgo   | Guess                                    |

gostats Yep, ditto

file the file to save the results.

dated date the excel file

n the number of ontology categories to include in each table.

overwritefile overwrite an existing excel file

write\_gprofiler\_data 173

#### Value

the list of ontology information

write\_gprofiler\_data Write some excel results from a gprofiler search.

# Description

Gprofiler is pretty awesome. This function will attempt to write its results to an excel file.

## Usage

```
write_gprofiler_data(gprofiler_result, wb = NULL,
   excel = "excel/gprofiler_result.xlsx", add_plots = TRUE, ...)
```

## **Arguments**

gprofiler\_result

The result from simple\_gprofiler().

wb Optional workbook object, if you wish to append to an existing workbook.

excel Excel file to which to write.

add\_plots Add some pvalue plots?

write\_limma

*Writes out the results of a limma search using toptable().* 

## Description

However, this will do a couple of things to make one's life easier: 1. Make a list of the output, one element for each comparison of the contrast matrix 2. Write out the toptable() output for them in separate .csv files and/or sheets in excel 3. Since I have been using qvalues a lot for other stuff, add a column for them.

```
write_limma(data, adjust = "fdr", n = 0, coef = NULL,
  workbook = "excel/limma.xls", excel = FALSE, csv = FALSE,
  annot_df = NULL)
```

## **Arguments**

| data   | Output from eBayes().     |
|--------|---------------------------|
| adjust | Pvalue adjustment chosen. |

n Number of entries to report, 0 says do them all.

coef Which coefficients/contrasts to report, NULL says do them all.

workbook Excel filename into which to write the data.

excel Write an excel workbook?

csv Write out csv files of the tables?

annot\_df Optional data frame including annotation information to include with the tables.

#### Value

List of data frames comprising the toptable output for each coefficient, I also added a qualue entry to these toptable() outputs.

#### See Also

```
toptable write_xls
```

# **Examples**

```
## Not run:
    finished_comparison = eBayes(limma_output)
    data_list = write_limma(finished_comparison, workbook="excel/limma_output.xls")
## End(Not run)
```

```
write_subset_ontologies
```

Write gene ontology tables for data subsets

# Description

Given a set of ontology results, this attempts to write them to an excel workbook in a consistent and relatively easy-to-read fashion.

```
write_subset_ontologies(kept_ontology, outfile = "excel/subset_go",
  dated = TRUE, n = NULL, overwritefile = TRUE, add_plots = TRUE,
  table_style = "TableStyleMedium9", ...)
```

write\_xls 175

# **Arguments**

kept\_ontology A result from subset\_ontology\_search()
outfile Workbook to which to write.

dated Append the year-month-day-hour to the workbook.

n How many ontology categories to write for each search overwritefile Overwrite an existing workbook?

add\_plots Add the various p-value plots to the end of each sheet?

table\_style The chosen table style for excel

some extra parameters

#### Value

. . .

a set of excel sheet/coordinates

## **Examples**

write\_xls

Write a dataframe to an excel spreadsheet sheet.

## Description

I like to give folks data in any format they prefer, even though I sort of hate excel. Most people I work with use it, so therefore I do too. This function has been through many iterations, first using XLConnect, then xlsx, and now openxlsx. Hopefully this will not change again.

```
write_xls(data, wb = NULL, sheet = "first", rownames = TRUE,
    start_row = 1, start_col = 1, ...)
```

176 ymxb\_print

#### **Arguments**

data Data frame to print.

wb Workbook to which to write. sheet Name of the sheet to write.

start\_row First row of the sheet to write. Useful if writing multiple tables.

start\_col First column to write.

... Set of extra arguments given to openxlsx.

#### Value

List containing the sheet and workbook written as well as the bottom-right coordinates of the last row/column written to the worksheet.

#### See Also

```
openxlsx writeDataTable
```

## **Examples**

```
## Not run:
    xls_coords <- write_xls(dataframe, sheet="hpgl_data")
    xls_coords <- write_xls(another_df, sheet="hpgl_data", start_row=xls_coords$end_col)
## End(Not run)</pre>
```

ymxb\_print

Print a model as y = mx + b just like in grade school!

#### **Description**

```
Because, why not!?
```

# Usage

```
ymxb_print(model)
```

## **Arguments**

model

Model to print from glm/lm/robustbase.

# Value

a string representation of that model.

# **Index**

| all_ontology_searches, 6                                         | convert_counts, 29                           |
|------------------------------------------------------------------|----------------------------------------------|
| all_pairwise, 8, 25                                              | cor, <i>75</i>                               |
| as.list.hash, 31                                                 | cov, <i>75</i>                               |
|                                                                  | covRob, 75                                   |
| backup_file,9                                                    | cpm, 29, 80, 84                              |
| basic_pairwise, 9                                                | <pre>create_combined_table, 30</pre>         |
| batch_counts, 10                                                 | create_expt, 31, <i>83</i>                   |
| bioc_all, 11                                                     |                                              |
| biocLite, 148                                                    | ddply, <i>132</i>                            |
| biomart_orthologs, 12                                            | default_norm, 32                             |
| brewer.pal, <i>117</i> , <i>119</i> , <i>127</i> , <i>140</i>    | deparse_go_value, 32                         |
| buildGOmap, 43                                                   | deseq2_pairwise, 28, 33, 34, 35              |
|                                                                  | <pre>deseq_coefficient_scatter, 34</pre>     |
| calcNormFactors, $38,80$                                         | deseq_pairwise,35                            |
| cbcb_batch_effect, 12                                            | DESeqDataSetFromMatrix, 80                   |
| cbcb_filter_counts, 13                                           | DGEList, 38, 80                              |
| check_clusterprofiler, 14                                        | diff, <i>142</i>                             |
| choose_dataset, 14                                               | divide_seq, 35                               |
| choose_model, 15                                                 |                                              |
| choose_orgdb, 16                                                 | edger_coefficient_scatter, 36                |
| choose_txdb, 16                                                  | edger_pairwise, 28, 36, 37                   |
| circos_arc, 17                                                   | estimateCommonDisp, 38                       |
| circos_heatmap, 18                                               | estimateDispersions, 33                      |
| circos_hist, 18                                                  | estimateGLMCommonDisp, 38                    |
| circos_ideogram, 19                                              | estimateGLMTrendedDisp, 38                   |
| circos_karyotype,20                                              | estimateSizeFactors, 33,80                   |
| circos_make, 20                                                  | estimateTagwiseDisp, 38                      |
| circos_plus_minus, 21                                            | exprs, 31, 38, 69                            |
| circos_prefix, 22                                                | expt_subset, 38                              |
| circos_suffix, 22                                                | extract_go, 39                               |
| circos_tile, 23                                                  | extract_lengths, 39                          |
| cluster_trees, 24                                                | extract_significant_genes, 40                |
| ComBat, <i>74</i>                                                |                                              |
| combine_de_tables, 25, 40, 146                                   | factor_rsquared, 41                          |
| compare_go_searches, 26                                          | FaFile, <i>36</i> , <i>109</i> , <i>150</i>  |
| <pre>compare_logfc_plots, 26</pre>                               | fast.svd, <i>41</i> , <i>95</i> , <i>111</i> |
| compare_surrogate_estimates, 27                                  | fData, <i>31</i> , <i>38</i>                 |
| compare_tables, 27                                               | filter_counts, 41                            |
| concatenate_runs, 28                                             |                                              |
| contrasts.fit, <i>131</i> , <i>132</i> , <i>145</i> , <i>157</i> | gather_goseq_genes,42                        |
|                                                                  |                                              |

INDEX

| gbk2txdb, 43                                 | gvisScatterChart, 125                                   |
|----------------------------------------------|---------------------------------------------------------|
| gbk_annotations, 44                          | heatmap.2, <i>119</i>                                   |
| genefilter_cv_counts, 44                     | heatmap.3,69                                            |
| genefilter_kofa_counts, 45                   | hpgl_arescore, 72                                       |
| genefilter_pofa_counts, 46                   | hpgl_combatMod, 73                                      |
| generate_gene_kegg_mapping,46                | hpgl_cor, 74, 117, 142                                  |
| generate_kegg_pathway_mapping, 47            | hpgl_enrich.internal,75                                 |
| geom_bar, 128                                | hpgl_enrichGO, 76                                       |
| geom_boxplot, 116                            | hpgl_Gff2GeneTable, 77                                  |
| geom_density, <i>118</i> , <i>128</i>        | hpgl_GOplot, 77                                         |
| geom_dl, 134, 136, 138                       | hpgl_GroupDensity, 78                                   |
| geom_histogram, 128                          | hpgl_log2cpm, 79                                        |
| geom_point, 120, 134, 141                    | hpgl_norm, 69, 79                                       |
| geom_text, 128                               | hpgl_pathview, 80                                       |
| get_biomart_annotations, 48                  | hpgl_qshrink, 81                                        |
| <pre>get_biomart_ontologies, 49</pre>        | hpgl_qstats, 82                                         |
| get_eupath_config, 50                        | hpgl_read_files, 31, 83                                 |
| get_genelengths, 51                          | hpgl_rpkm, 80, 84                                       |
| <pre>get_kegg_genes, 52</pre>                | hpgl_voom, 84, 131, 132, 145, 157                       |
| get_kegg_sub, 52                             | hpgltools, 72                                           |
| <pre>get_microbesonline_annotation, 53</pre> | hpgltools, 72<br>hpgltools-package (hpgltools), 72      |
| <pre>get_microbesonline_ids, 53</pre>        | ipgituuis package (iipgituuis), 72                      |
| <pre>get_microbesonline_name, 54</pre>       | import.gff, <i>51</i> , <i>57</i>                       |
| <pre>get_model_adjust, 54</pre>              | import.gff2, 57                                         |
| <pre>get_ncbi_taxonid, 55</pre>              | import.gff3,57                                          |
| get_sig_genes, 56                            | install.packages, 148                                   |
| getBM, <i>50</i>                             |                                                         |
| <pre>getEdgeWeights, 48</pre>                | kegg_get_orgn, 85                                       |
| getSeq, 58                                   | kegg_to_ensembl,86                                      |
| gff2df, 56, 58, 101                          | keggGet, 48, 86                                         |
| gff2irange, 57                               | keggLink, <i>4</i> 7                                    |
| glmFit, 38                                   | k0verA, <i>44</i> , <i>45</i>                           |
| glmLRT, 38                                   | lattarEraguanay 150                                     |
| godef, 58                                    | letterFrequency, 150                                    |
| golev, 59                                    | limma_coefficient_scatter, 87                           |
| golevel, 60                                  | limma_pairwise, 28, 87, 88<br>limma_scatter, 89         |
| golevel_df, 60                               |                                                         |
| goont, 61                                    | lm, 111                                                 |
| gosec, 62                                    | lmFit, 13, 85, 131, 132, 145, 157                       |
| goseq, 122, 135, 160                         | lmRob, <i>130</i>                                       |
| goseq_table, 62                              | load, <i>90</i><br>load_annotations, 91                 |
| goseq_trees, 63                              | load_go_terms, 92                                       |
| gostats_kegg, 64                             |                                                         |
| gostats_trees, 65                            | load_host_annotations, 92                               |
| gosyn, 66                                    | <pre>load_kegg_mapping, 93 load_kegg_pathways, 94</pre> |
| goterm, 66                                   |                                                         |
| gotest, 67                                   | loadme, 90                                              |
| graph_metrics, 68                            | ma.plot, <i>136</i>                                     |
| <b>○</b> . <i>→</i>                          |                                                         |

INDEX 179

| plot_gvis_ma, 123, <i>131</i> , <i>132</i> , <i>145</i> , <i>157</i> |
|----------------------------------------------------------------------|
| plot_gvis_scatter, <i>120</i> , 124, <i>141</i>                      |
| plot_gvis_volcano, 125                                               |
| plot_heatmap, 126                                                    |
| plot_histogram, 127, <i>130</i>                                      |
| plot_libsize, <i>69</i> , 128                                        |
| plot_linear_scatter, 34, 36, 87, 90, 120,                            |
| 129, <i>141</i>                                                      |
| plot_ma, <i>124</i> , 130                                            |
| plot_ma_de, 131                                                      |
| plot_multihistogram, 132                                             |
| plot_multiplot, 133                                                  |
| plot_nonzero, <i>69</i> , 133                                        |
| plot_num_siggenes, 134                                               |
| plot_ontpval, <i>122</i> , 135                                       |
| plot_pairwise_ma, 69, 135                                            |
| plot_pca, 69, 136                                                    |
| plot_pcfactor, 137                                                   |
| plot_pcs, <i>136</i> , 137                                           |
| plot_qq_all, 69, 138                                                 |
| plot_qq_all_pairwise, 139                                            |
| plot_qq_plot, 139                                                    |
| plot_sample_heatmap, 140                                             |
| plot_scatter, 140                                                    |
| plot_sm, 69, 141                                                     |
| plot_spirograph, 142                                                 |
| plot_svfactor, 143                                                   |
| plot_topgo_densities, 143                                            |
| plot_topgo_pval, 144                                                 |
| plot_volcano, <i>126</i> , 144                                       |
| plotBCV, <i>115</i>                                                  |
| p0verA, 46                                                           |
| pp, 145                                                              |
| prettyNum, 128                                                       |
| princomp, 110                                                        |
| print_ups_downs, 146                                                 |
| , , ,                                                                |
| quantile, <i>142</i>                                                 |
| queryMany, 169                                                       |
|                                                                      |
| read_metadata, 147                                                   |
| recordPlot, 117, 119, 127, 140, 142                                  |
| require.auto,147                                                     |
| results, 33                                                          |
| rowMedians, <i>142</i>                                               |
| rpkm, 36, 80, 84                                                     |
|                                                                      |
| s_p, 165                                                             |
| save, <i>90</i> , <i>148</i>                                         |
|                                                                      |

INDEX

```
saveme, 148
                                                 write_xls, 174, 175
scale_x_discrete, 116
                                                 writeDataTable, 176
scale_y_log10, 128
                                                 ymxb_print, 176
select, 91-94, 106
semantic_copynumber_filter, 149
sequence_attributes, 149
set_expt_batch, 150
set_expt_colors, 151
set_expt_condition, 152
set_expt_factors, 152
showSigOfNodes, 24
sillydist, 153
simple_clusterprofiler, 154
simple_clusterprofiler_old, 155
simple_comparison, 156
simple_cp_enricher, 158
simple\_filter\_counts, 158
simple_gadem, 159
simple_goseq, 43, 159
simple\_gostats, 160
simple_gprofiler, 161
\verb|simple_topgo|, 162|
sm, 163
subset_ontology_search, 163
sum_exons, 164
tnseq_saturation, 166
topDiffGenes, 166
topgo_tables, 167
topgo_trees, 167
topTable, 90
toptable, 131, 132, 145, 157, 174
topTags, 38
transform_counts, 168
translate_ids_querymany, 169
tritryp_downloads, 170
tryCatch.W.E, 170
u_plot, 171
varpart, 171
voom, 13, 85, 131, 132, 145, 157
weights, 130
write_go_xls, 172
write_goseq_data, 172
write_gprofiler_data, 173
write_limma, 89, 173
write_subset_ontologies, 174
```