PROGRAMACIÓN FUNCIONAL

Lambda Cálculo: Programación

Lambda Cálculo

- Programando con λ-cálculo
 - Bottom
 - Booleanos
 - Pares
 - Maybe
 - Listas (y otras estructuras recursivas)
 - Números enteros
 - Recursión

Representando tipos

- ¿Es suficiente el λ -cálculo para programar?
 - Sí. Para mostrarlo, veremos como representar tipos de datos elementales con λ-expresiones.
- *¿Qué significa representar un tipo en λ-cálculo?
 - Establecemos qué propiedades deben cumplirse (especificación)
 - ◆ Establecemos qué forma tienen:
 - las expresiones que representan elementos del tipo
 - las expresiones que representan operaciones del tipo, de tal forma que respeten la especificación

Definiendo bottom

- ◆ <u>Bottom</u>: ¿Cómo definir un término para ⊥?
 - Con una expresión cuya computación no termine
 - Especificación:

```
bottom ≡<sub>def</sub> ...
tal que
```

$$(bottom \rightarrow_{\beta}^* bottom \rightarrow_{\beta}^* ...)$$

→ Para solucionarlo se puede pensar en la paradoja del Barbero

Definiendo bottom

- ◆ Bottom: ¿Cómo definir un término para ⊥?
 - Con una expresión cuya computación no termine
 - Especificación:

```
bottom \equiv_{def} (\lambda x.xx)(\lambda x.xx)tal que
```

$$(bottom \rightarrow_{\beta} *bottom \rightarrow_{\beta} *...)$$

◆ Es fácil ver que la computación de bottom no termina

Consideraciones

Notación

- introduciremos nombres para representar expresiones
- usaremos el símbolo \equiv_{def} para ello (similar al #define de C)
- sólo es una convención sintáctica para simplificar la lectura

Observaciones

- Si bien el lenguaje base no tiene tipos, asumiremos que las construcciones que hacemos sí los tienen
- No nos preocupa el significado de expresiones que no respetan estas reglas de formación 'implícitas'
 - Ej: (not $\underline{2}$) será una λ -expresión válida, pero no nos molestaremos por este tipo de expresiones
- El tratamiento de tipos es tema para otro curso

◆ Booleanos: especificación

```
True \equiv_{def} ...
False \equiv_{def} ...
ifthenelse \equiv_{def} (\lambda b. \lambda m. \lambda n. ...)
```

tal que para todo par de λ -expresiones M y N

ifthenelse True $MN \rightarrow_{\beta}^{*} M$ ifthenelse False $MN \rightarrow_{\beta}^{*} N$

- Observaciones
 - ◆ Lo único que deben cumplir es elegir entre 2 alternativas
 - ◆ La construcción if es representable como una función

◆ Primer abstraemos M y N; o sea alcanza pedir que

```
ifthenelse True \rightarrow_{\beta}^* (\lambda x. \lambda y. x)
ifthenelse False \rightarrow_{\beta}^* (\lambda x. \lambda y. y)
```

- Cualquier grupo de expresiones que cumplan esto sirve
- La solución más simple es decidir que *ifthenelse* sea la identidad ((λb.b) o equivalentemente (λb.λm.λn.b m n))
 - ◆ Entonces *True* y *False* son claramente las expresiones resultantes a la derecha

◆ Booleanos: solución

```
True \equiv_{def} (\lambda x. \lambda y. x)
False \equiv_{def} (\lambda x. \lambda y. y)
ifthenelse \equiv_{def} (\lambda b. \lambda m. \lambda n. b. m. n)
```

cumple que para todo par de λ -expresiones M y N

ifthenelse True
$$MN \rightarrow_{\beta}^{*} M$$

ifthenelse False $MN \rightarrow_{\beta}^{*} N$

- Observaciones
 - → ¡True y False son funciones! (¿podía ser de otra manera?)

- → ¿Existen otras representaciones que cumplan?
- ❖ Sí. Una alternativa es dar vuelta las representaciones

```
True' \equiv_{def} (\lambda x.\lambda y.y)
False' \equiv_{def} (\lambda x.\lambda y.x)
ifthenelse' \equiv_{def} (\lambda b.\lambda m.\lambda n.b n m)
```

- También podemos pensar otras alternativas
 - los booleanos con más parámetros y el if enviando los valores correspondientes a b
 - Preferiremos la primera, por simplicidad

- ¿Y otras operaciones sobre booleanos?
 - ◆ Se definen usando ifthenelse
- ightharpoonup Por ejemplo, siendo M un booleano cualquiera:
 - and True $M \to_{\beta}^* M$
 - and False $M \rightarrow_{\beta}^{*} False$

en consecuencia

and
$$\equiv_{\text{def}} \lambda b_1 . \lambda b_2 . if the nelse b_1 b_2 False$$

♦ Usando una notación infija para *ifthenelse*, queda and $\equiv_{def} \lambda b_1.\lambda b_2.if b_1$ then b_2 else False

- Expandiendo los sinónimos, and queda
 - $\lambda b_1 \cdot \lambda b_2 \cdot (\lambda b \cdot \lambda m \cdot \lambda n \cdot b \cdot m \cdot n) \cdot b_1 \cdot b_2 \cdot (\lambda x \cdot \lambda y \cdot y)$

y reduciendo a β-fn (removiendo la abstracción),

• $\lambda b_1 . \lambda b_2 . b_1 b_2 (\lambda x . \lambda y . y)$

Así es fácil ver que cumple la especificación

◆ Ejemplo: and True (and True False) = def

- Para reducir una expresión con sinónimos
 - expandirla completamente y llevarla a β-fn
 - → and True False = $(\lambda b_1 b_2.b_1 b_2 (\lambda xy.y)) (\lambda xy.x) (\lambda xy.y) \rightarrow_{\beta}^* (\lambda xy.x) (\lambda xy.y) (\lambda xy.y) \rightarrow_{\beta}^* (\lambda xy.y) ≡ False$
 - irla expandiendo y β-reduciendo según haga falta
 - → and True False \equiv (λb₁ b₂.b₁ b₂ False) True False \rightarrow_{β}^* True False False \equiv (λxy.x) False False \rightarrow_{β}^* False
 - utilizar las especificaciones de los tipos (luego de haber chequeado que funcionan)
 - and True False \rightarrow_{β}^* False

- Ejercicios
 - \bullet dar una λ -expresión *iff* que para todo booleano M cumpla
 - iff True $M \rightarrow_{\beta}^{*} M$
 - iff False True \rightarrow_{β}^* False
 - iff False False \rightarrow_{β}^* True
 - especificar y representar las operaciones *not*, *or* y *xor*
 - reducir las expresiones mediante los tres métodos
 - (λb₁ b₂. and (or b₁ b₂) (not (and b₁ b₂))) True False
 - ♦ (λb. and (xor b (not b)) (iff b b)) False

Pares: especificación

```
pair \equiv_{def} (\lambda xy....)
fst \equiv_{def} (\lambda p....)
snd \equiv_{def} (\lambda p....)
```

tal que para todo par de λ -expresiones M y N

$$fst (pair M N) \rightarrow_{\beta}^{*} M$$

 $snd (pair M N) \rightarrow_{\beta}^{*} N$

 Observar que las ecuaciones son similares a las de booleanos (¡pero no iguales!)

- La expresión (pair M N) representa al par (M, N)
- ¿Cómo podemos usar la similitud de esta especificación con la de los booleanos?
 - La idea es que un par debe elegir entre M o N según se use con fst o snd
 - ◆ Entonces, pair sería un ifthenelse con un parámetro
 - ◆ fst y snd instanciarían el parámetro adecuadamente
 - Ello nos lleva directo a la solución

Pares: solución

```
pair \equiv_{def} (\lambda xy.\lambda b.if b then x else y)
fst \equiv_{def} (\lambda p.(p True))
snd \equiv_{def} (\lambda p.(p False))
```

cumple que para todo par de λ -expresiones M y N

$$fst (pair M N) \rightarrow_{\beta}^{*} M$$

 $snd (pair M N) \rightarrow_{\beta}^{*} N$

→ ¡Observar que el par (pair M N) es una función!
(Ya no debería sorprender...)

- ◆ Ejemplo:
 - el par (True, and) se representaría

```
→ pair True and ≡_{def}

pair

True

(λxy.λb. ifthenelse b x y)

(λb<sub>1</sub> b<sub>2</sub>.b<sub>1</sub> b<sub>2</sub> (λxy.y))

and
```

- al β -reducir queda (λb . if b then True else and)
- Ejercicio:
 - construir funciones para tuplas de 3 y 4 elemenos

Definiendo Maybe

Maybe: especificación

```
egin{align*} & Nothing & \equiv_{
m def} ... \ & Just & \equiv_{
m def} (\lambda x. \ ...) \ & caseMaybe & \equiv_{
m def} (\lambda m.\lambda zf. \ ...) \ \end{aligned}
```

tal que para todas F y Z se cumple que caseMaybe Nothing $ZF \rightarrow_{\beta}^* Z$ caseMaybe (Just X) $ZF \rightarrow_{\beta}^* FX$

◆ El caseMaybe es la versión del case, pero en "formato fold"

Definiendo Maybe

- Usamos la misma técnica que con booleanos
 - "Pasar" los argumentos como parámetros

caseMaybe Nothing
$$\rightarrow_{\beta}^* (\lambda f. \lambda z. z)$$

caseMaybe (Just X)
$$\rightarrow_{\beta}^*$$
 ($\lambda f. \lambda z. f X$)

- ◆ Expresar el caseMaybe como la identidad
- Entonces los constructores quedan como las expresiones de la derecha

Definiendo Maybe

Maybe: solución

```
Nothing \equiv_{\text{def}} (\lambda z f. z)

Just \equiv_{\text{def}} (\lambda x. \lambda z f. f x)

caseMaybe \equiv_{\text{def}} (\lambda m. \lambda z f. m z f)
```

cumple que para todas F y Z se cumple que caseMaybe Nothing $ZF \to_{\beta}^* Z$ caseMaybe (Just X) $ZF \to_{\beta}^* FX$

Son como booleanos con un argumento!

Listas: especificación

```
nil \equiv_{def} ...
cons \equiv_{def} (\lambda x. \lambda xs. ...)
foldr \equiv_{def} (\lambda f. \lambda z. \lambda xs. ...)
```

tal que para todas F y Z se cumple que

foldr
$$FZ$$
 nil $\rightarrow_{\beta}^{*}Z$
foldr FZ (cons XXS) = $_{\beta}FX$ (foldr $FZXS$)

◆ Observar que en la 2da se usa un signo =

- ◆ La recursión queda capturada por el foldr
- Cualquier cosa que cumpla esto sirve como listas...
- ◆ La idea es proceder como con los booleanos
 - juntar el foldr con los constructores (foldr' = flip foldr)
 - "pasar" los argumentos como parámetros
 - expresar el foldr' como la identidad

Juntar el foldr con los constructores

```
(foldr' nil) FZ \rightarrow_{\beta}^{*} Z
(foldr' (cons XXS)) FZ =_{\beta} FX ((foldr' XS) FZ)
```

"Pasar" los argumentos como parámetros

```
(foldr' nil) \rightarrow_{\beta}^{*} (\lambda f. \lambda z. z)
(foldr' (cons X XS)) =_{\beta} (\lambda f. \lambda z. f X ((foldr' XS) f z))
```

◆ Expresar el foldr' como la identidad

$$nil \rightarrow_{\beta}^{*} (\lambda f. \lambda z. z)$$

$$(cons X XS) =_{\beta} (\lambda f. \lambda z. f X (XS f z))$$

Listas: solución

```
nil \equiv_{def} (\lambda f. \lambda z. z)
cons \equiv_{def} (\lambda x. \lambda xs. (\lambda f. \lambda z. f x (xs f z)))
foldr \equiv_{def} (\lambda f. \lambda z. \lambda xs. xs f z)
```

cumple que para todas F y Z se cumple que

foldr
$$F Z \text{ nil } \rightarrow_{\beta}^{*} Z$$

foldr $F Z \text{ (cons } XXS\text{)} =_{\beta} F X \text{ (foldr } F Z XS\text{)}$

→ ¡Las listas son funciones que esperan para realizar la recursión!

- Observaciones
 - las listas son funciones (obvio)
 - ◆ se representan con el patrón de recursión 'diferido' (o sea, como en los booleanos, haciendo que el foldr sólo delegue su trabajo)
 - → las operaciones se sintetizan de la especificación
 - el resultado funciona como una especie de "double dispatch", donde el *foldr* delega el trabajo en los constructores

- ◆ Ejemplos:
 - [2,3] se representa como (cons 2 (cons 3 nil)), que luego de β -reducir queda ($\lambda f.\lambda z.f$ 2 (f 3 z))
 - ◆ [v,w,x,y] se representa como

```
(cons v (cons w (cons x (cons y nil)))), que luego de \beta-reducir queda \lambda f.\lambda z.f v (f w (f x (f y z)))
```

- En general
 - ightharpoonup se representa una lista como el resultado de hacerle *foldr*, pero parametrizando las funciones F y Z

- → ¿Cómo definir funciones sobre listas?
 - Utilizando el patrón de recursión
 - → length $\equiv_{def} \lambda xs.$ foldr ($\lambda x.succ$) \underline{O} xs
- ◆ Ejemplos (reduciendo el *foldr*)
 - → length $\equiv_{def} \lambda xs. xs (\lambda x n. succ n) \underline{0}$
 - → sum \equiv_{def} λxs. xs (λx y.suma x y) \underline{O}
 - → map $\equiv_{\text{def}} \lambda f$. λxs . xs (λx zs. cons (f x) zs) nil

Definiendo otros tipos

- ♦ ¿Y otros tipos recursivos?
 - se representarían en base a su fold
 - el fold sólo debe delegar el trabajo
 - ◆ las operaciones constructoras serían consecuencia de esta decisión y la especificación
- Ejercicios
 - Definir árboles binarios (tipo Tree)
 - Definir expresiones aritméticas (tipo ExpA)

Números: especificación

```
\underline{0} \equiv_{\text{def}} \dots

succ \equiv_{\text{def}} (\lambda n. ...)

foldNat \equiv_{\text{def}} (\lambda s. \lambda z. \lambda n. ...)
```

cumple que para todos S y Z

foldNat
$$SZ \ \underline{O} \rightarrow_{\beta}^{*} Z$$

foldNat SZ (succ N) = $_{\beta} S$ (foldNat SZN)

 Seguimos la idea para otros tipos recursivos (y así obtenemos los "numerales de Church")

- ◆ La recursión queda capturada por el foldNat
- Cualquier cosa que cumpla esto sirve como números...
- ◆ La idea es proceder como con otros tipos recursivos
 - → juntar el foldNat con los constructores (foldNat' = flip foldNat)
 - "pasar" los argumentos como parámetros
 - expresar el foldNat' como la identidad

Números: solución

```
\underline{0} \equiv_{\text{def}} (\lambda s. \lambda z. z) 

succ \equiv_{\text{def}} (\lambda n. (\lambda s. \lambda z. s (n s z))) 

foldNat \equiv_{\text{def}} (\lambda s. \lambda z. \lambda n. n s z)
```

cumple que para todos S y Z

foldNat
$$SZ \ \underline{O} \rightarrow_{\beta}^{*} Z$$

foldNat SZ (succ N) = $_{\beta} S$ (foldNat SZN)

Nuevamente observamos el "double dispatch" de representar los números como su fold diferido

- ◆ Ejemplos:
 - * 2 se representa como $\underline{2}$ dado por \underline{succ} (\underline{succ} $\underline{0}$)), que luego de β-reducir queda ($\lambda s. \lambda z. s$ (sz))

 - → 3 se representa como $\underline{3}$ dado por succ (succ (succ $\underline{0}$))), que luego de β-reducir queda (λ s. λ z.s (s (s z)))

- Más ejemplos
 - ◆ 17 se representa como <u>17</u> dado por (succ ... (succ <u>0</u>)...)),

```
17 veces
```

```
que luego de \beta-reducir queda (\lambda s. \lambda z. s (... (s. z)...))
```

→ un número n se representa como <u>n</u> dado por

```
(succ ... (succ <u>0</u>)...)),
```

n veces

que luego de β -reducir queda ($\lambda s. \lambda z. s. (... (s. z)...)$)

- Notación
 - $F^{(0)}Z \equiv_{\text{def}} Z$
 - $F^{(n+1)}Z \equiv_{def} F^{(n)}(FZ)$
- ◆ Ejemplo:
 - $(\lambda x.x)^{(2)}y$ $\equiv (\lambda x.x)^{(1)}((\lambda x.x)y)$ $\equiv (\lambda x.x)^{(0)}((\lambda x.x)((\lambda x.x)y))$ $\equiv (\lambda x.x)((\lambda x.x)y)$
- Observar:
 - el n en la expresión $F^{(n)}Z$ es una constante fuera de Λ

- Observaciones
 - ¡¡los números son funciones!!
 - → la cantidad que un 'número' representa se usa para aplicar una función S esa cantidad de veces
 - \bullet el n utilizado en <u>n</u> es una constante fuera de Λ
 - → la representación del <u>O</u> y la de False coinciden
 - (pero no hay problemas, pues no consideramos expresiones en las que no coincidan los 'tipos')

- ¿Cómo usamos esta notación para definir cada *n*?
- ♦ Usamos el esquema $\underline{n} \equiv_{def} (\lambda s. \lambda z. s^{(n)}z)$

$$\underline{n} \equiv_{\text{def}} (\lambda s. \lambda z. s^{(n)} z)$$

O sea:

$$\underline{0} \equiv_{\text{def}} (\lambda s.\lambda z.s^{(0)}z) \equiv_{\text{def}} (\lambda s.\lambda z.z)$$

$$\underline{1} \equiv_{\text{def}} (\lambda s.\lambda z.s^{(1)}z) \equiv_{\text{def}} (\lambda s.\lambda z.s z)$$

$$\underline{2} \equiv_{\text{def}} (\lambda s.\lambda z.s^{(2)}z) \equiv_{\text{def}} (\lambda s.\lambda z.s (s z))$$

$$\vdots$$

- → ¿Cómo definimos funciones sobre naturales?
 - ◆ Con foldNat
- ◆ Ejemplo:
 - → definir un término suma para la función suma
 - debe cumplir suma $\underline{n} \ \underline{m} \rightarrow_{\beta}^* \underline{n+m}$
 - podemos usar foldNat
 - → $suma \equiv_{def} (λn.λm.foldNat succ m n)$

- ◆ Vemos que succ se usa de la siguiente manera
 - m+n es igual a sumar n veces 1 a m (o sea, $succ^{(n)}m$)
 - **→** *succ* (*succ* (*succ* ... (*succ m*) ...))
 - Después de reducir queda

- Ejercicios
 - definir un término para representar la multiplicación
 - → definir un término isNotZero, que cumpla
 - isNotZero $\underline{0} \rightarrow_{\beta}^* False$
 - $isNotZero \underline{n+1} \rightarrow_{\beta}^{*} True$
 - definir términos
 - → isZero, para la función que dice si un número es 0
 - exp, para representar la exponenciación
 - pred, para representar la función que resta uno (difícil)
 - resta, para representar la resta de dos naturales

Definiendo recursión

- → Recursión: se utiliza el siguiente 'truco'
 - dada una ecuación recursiva f = ... f ..., definir

•
$$f \equiv_{\text{def}} fix (\lambda f. ...f...)$$

siendo *fix* cualaquier λ-término que cumpla

$$fix F \rightarrow_{\beta}^{*} F (fix F)$$

◆ Ejemplo de un término para representar fix

$$fix \equiv_{\text{def}} (\lambda x.\lambda f.f(xxf))(\lambda x.\lambda f.f(xxf))$$

→ Por qué funciona es tema para un curso entero

Definiendo recursión

- ◆ Ejemplo: sea fact un término que cumple que
 - ◆ fact es equivalente a

```
λn. if (isZero n) then 1 else mult n (fact (pred n))
```

Entonces

```
    fact ≡<sub>def</sub> fix (λf.λn.if (isZero n)
    then 1/else mult n (f (pred n)))
```

y luego de β-reducir

fix (λf.λn.(isZero n) <u>1</u> (mult n (f (pred n))))

Resumen

- *Se mostró cómo representar tipos de datos básicos en el λ-cálculo puro
 - bottom
 - booleanos
 - tuplas
 - Maybe
 - listas
 - números naturales
 - recursión