

ESCUELA POLITÉCNICA NACIONAL

FUNDAMENTOS INTELIGENCIA ARTIFICIAL

ASIGNATURA: Fundamentos de Inteligencia Artificial

PROFESOR: Ing. Yadira Franco R PERÍODO ACADÉMICO: 2025-A

TAREA SEMANA 3

TÍTULO:

Introducción a la Inteligencia Artificial IA

Ariel Sánchez

Objetivo de la clase: Introducir los conceptos de **aprendizaje supervisado**, enseñar a aplicar modelos de clasificación en Python y evaluar su rendimiento.

Tarea: Crear un conjunto de datos, entrenar y evaluar modelos de clasificación, y comparar los resultados obtenidos.

1. Que es algoritmos de aprendizaje supervisado y modelos supervisados, diferencias y uso

Los algoritmos de aprendizaje supervisado son técnicas o métodos que se usan para entrenar modelos con datos etiquetados mientras que los modelos supervisados son el resultado de aplicar un algoritmo a un conjunto de datos, es algo así como el "cerebro entrenado" que ya aprendió y ahora puede hacer predicciones.

Los usos comunes de los modelos supervisados son la detección de spam en correos electrónicos, los diagnósticos médicos como predecir enfermedades y el reconocimiento de voz o imágenes.

2. Cómo funciona aprendizaje supervisado en Python, utilizando el conjunto

PRACTICA #1 identifique si un estudiante **aprobó o no aprobó** en función de características como el número de horas de estudio, nivel de conocimiento previo, entre otras, puedes seguir esta estructura.

Características (Entradas) para el Dataset:

- 1. Horas de Estudio: Número de horas que el estudiante dedicó al estudio.
- 2. **Nivel de Conocimiento Previo**: Un valor de 1 a 10, donde 1 es bajo conocimiento y 10 es un nivel alto de conocimiento previo.
- 3. **Asistencia a Clases**: Porcentaje de clases asistidas, entre 0 y 100.
- 4. **Promedio de Tareas**: Promedio de calificaciones de las tareas o ejercicios realizados.
- 5. **Tipo de Estudiante**: Si es un estudiante que estudia solo (1) o en grupo (0).

Salida (Etiqueta):

• **Resultado**: "Aprobado" o "No Aprobado" (0 = No Aprobado, 1 = Aprobado).

Entrenamiento de un modelo: Este dataset puede ser utilizado para entrenar un modelo de clasificación supervisado (por ejemplo, Regresión Logística, Árboles de Decisión, etc.) para predecir si un estudiante aprobará o no en función de las características dadas.

Próxima clase TEST SERÁ NOTA DE LAS TAREAS

Resumen de Clasificación:

Tipo de Aprendizaje	Definición	Ejemplo de Tareas	Algoritmos Comunes
Supervisado	Datos etiquetados para predicción de resultados.	Clasificación, Regresión	Regresión Logística, SVM, Árboles de Decisión, KNN, Redes Neuronales
No Supervisado	Datos no etiquetados para encontrar patrones y estructuras.	Clustering, Reducción de Dimensionalidad	K-means, PCA, Agrupamiento Jerárquico
Refuerzo	Aprende mediante recompensas y penalizaciones en decisiones secuenciales.	Juegos, Control de Robots, Optimización de Estrategias	Q-learning, DQN, Algoritmos de Política

Lo que se necesita del Dataset para entrenar y evaluar estos modelos:

- 1. **Datos Etiquetados**: Necesitamos que el dataset esté correctamente etiquetado, es decir, que tengamos las columnas de características (entradas) y la etiqueta de salida (si el estudiante aprobó o no).
- 2. **División en Conjuntos de Entrenamiento y Prueba**: Para evaluar el rendimiento de los modelos, dividimos el dataset en **dos partes**: una para entrenar los modelos (usualmente 70-80% del total) y otra para probarlos (usualmente 20-30% del total).
- 3. **Datos Limpios**: Es importante que el dataset no tenga valores faltantes o datos irrelevantes que puedan afectar la precisión de los modelos.
- 4. **Escalado de Datos (si es necesario)**: Algunos modelos, como KNN y SVM, pueden beneficiarse de la **normalización** o **escalado** de los datos para asegurar que todas las características tengan la misma escala.

Subir el archivo y código al git hub INDIVIDUAL LA TAREA

https://github.com/ArielSanchez12/PRACTICA1.git