IN THE CLAIMS:

- 1. (previously presented) A chip arrangement comprising a first chip which has at least one first signal interface with first coupling elements arranged along a first line in a first number density and at least one second chip which has at least one second signal interface with second coupling elements arranged along a second line in a second number density,
- wherein the first signal interface is provided along an edge of the first chip and the second signal interface is provided along an edge of the second chip,
- wherein the first and second coupling elements are configured to permit contactless signal transmission between the first and second signal interfaces,
- wherein the first and second chips are so arranged relative to each other that coupling elements of the first and the second signal interfaces can contactlessly transmit signals with each other, wherein said edges of the first and second chips are arranged in mutually facing relationship,
- wherein the first and second signal interfaces have a respective first and second longitudinal extent along a respective line associated with the respective one of the first and second interfaces, the longitudinal extent of at least one of the signal interfaces along the line associated therewith being greater than a length of an overlap of the two longitudinal extents, wherein said overlap is a distance which a projection of the first longitudinal extent on to the second longitudinal extent has in common with the second longitudinal extent,
- wherein one of the signal interfaces has a greater number density of coupling elements than the other, and
- wherein the coupling elements are coils whose magnetic longitudinal axes are arranged in a horizontal plane in parallel relationship with a surface of the chip.
- 2. (canceled) A chip arrangement comprising a first chip which has at least one first signal interface with first coupling elements arranged along a first line in a first number density and at least one second chip which has at least one second signal interface with second coupling elements arranged along a second line in a second number density, and

a coupling component which on a substrate has a coupling unit with third coupling elements arranged along a third line in a third number density and fourth coupling elements arranged along a fourth line in a fourth number density, wherein the third coupling elements are respectively electrically conductingly connected to the fourth coupling elements,

- in which the first signal interface is provided along an edge of the first chip and the second signal interface is provided along an edge of the second chip,
- in which the first, second, third and fourth coupling elements are adapted to permit contactless signal transmission between the first and second signal interfaces,
- in which the first and second chips and the coupling component are so arranged relative to each other that third coupling elements of the coupling unit and first coupling elements of the first signal interface and fourth coupling elements of the coupling unit and second coupling elements of the second signal interface can respectively contactlessly transmit signals with each other, wherein said edges of the first and second chips are arranged in mutually facing relationship,
- in which in respect of the longitudinal extents of the first and third coupling elements respectively in the spacing direction of the coupling elements along the line associated therewith, at least one of the longitudinal extents is greater than the length of the overlap of both longitudinal extents,
- in which in respect of the longitudinal extents of the second and fourth coupling elements respectively in the spacing direction of the coupling elements along the line associated therewith, at least one of the longitudinal extents is greater than the length of the overlap of both longitudinal extents,
- and in which the coupling component has a greater number density of coupling elements than the first or the second signal interface or the first and the second signal interfaces.
- 3. (previously presented) The chip arrangement as set forth in claim 1, wherein the first and second coupling elements are configured to permit contactless signal transmission by means of electromagnetic, alternatively capacitive, alternatively inductive,

alternatively inductive and capacitive coupling between a first and one or more second coupling elements respectively.

- 4. (previously presented) The chip arrangement as set forth in claim 1, whereinthe longitudinal extent of the signal interface which has the greater number density is greater.
- 5. (canceled) A chip arrangement as set forth in claim 1 in which the second chip at least partially rests on the first chip.
- 6. (canceled) A chip arrangement as set forth in claim 2 in which the first and second chips are arranged in mutually juxtaposed relationship on a carrier surface.
- 7. (canceled) A chip arrangement as set forth in claim 5 in which a filler with a high dielectric constant is disposed between the first and the second signal interface or optionally between the first signal interface and the coupling unit and between the second signal interface and the coupling unit.
- 8. (previously presented) The chip arrangement as set forth in claim 1, wherein a number N2 of the coupling elements of the signal interface with the greater number density is in a ratio N2=g*N1+X to the number N1 of the coupling elements of the signal interface with the lesser number density, and wherein g is a number greater than 1 and X is the number of the coupling elements which are in overshoot longitudinal portions of the signal interface.
- 9. (previously presented) The chip arrangement as set forth in claim 1, wherein the signal interface of the chip which in a signal flow between the first and the second chips forms a receiver and is referred to subsequently as the receiver chip has coupling elements with a greater number density.
- 10. (previously presented) The chip arrangement as set forth in claim 9 comprising a filter circuit on the receiver chip, which is connected downstream of the signal interface

and is configured to reconstruct signals sent from coupling elements at a transmitter end on the basis of the signals received by the coupling elements at a receiver end.

- 11. (previously presented) The chip arrangement as set forth in claim 10, wherein the filter circuit has a number of weighting elements which are respectively configured to multiply signals received by a plurality of coupling elements at the receiver end by variable weighting factors and to add the signals weighted in that way.
- 12. (previously presented) The chip arrangement as set forth in claim 1, wherein each of a plurality of the coupling elements of the receiver chip are connected to a respective plurality of the weighting elements.
- 13. (previously presented) The chip arrangement as set forth in claim 1, wherein the number of the weighting elements is equal to the number of the coupling elements provided on the transmitter chip.
- 14. (canceled) A chip arrangement as set forth in claim 11 comprising a control unit which is connected to the coupling elements and the filter circuit and is adapted to determine the weighting factors.
- 15. (canceled) A chip arrangement as set forth in claim 14 in which the control unit is adapted, for each weighting element, to compare the signals received at the coupling elements at the receiver end which are connected to the filter to a respective predefined signal pattern and to associate a weighting factor dependent on the comparison result with the respective coupling elements.
- 16. (canceled) A chip arrangement as set forth in claim 15 in which the control unit is adapted per weighting element to associate a weighting factor which is different from zero at a maximum with one through three coupling elements in such a way that the total of all weighting factors is 1.

- 17. (previously presented) The chip arrangement as set forth in claim 10, wherein the filter circuit has a number of filter banks, each of the filter banks being connected at its input side to a number of the coupling elements.
- 18. (previously presented) The chip arrangement as set forth in claim 17, wherein each of the filter banks has a number of filters, and wherein each of the filters is connected on its input side to a respective one of the coupling elements.
- 19. (previously presented) The chip arrangement as set forth in claim 18, wherein each of the filters has a filter input and is configured to deliver an output signal which depends on a weighted sum of the current signal and its filter input and a number of signals at its filter input which signals preceded the current signal in respect of time.
- 20. (previously presented) The chip arrangement as set forth in claim 17, wherein each of the filters is configured to determine its output signal A in accordance with the following formula:

$$A(z) = \sum_{j=1}^{r} S(j) \cdot w(j, z)$$

wherein S(j) is the signal at the filter input in a time step j, r is a total number of the time steps considered, w is a weighting factor depending on the respective time step j and z is an index identifying the filter.

- 21. (previously presented) The chip arrangement as set forth in claim 20,
- wherein the filter has a signal delay line with r delay elements, r multipliers and one adder,
- wherein one of the multipliers and one of the delay elements are connected in parallel relationship downstream of each except the last delay element,
- wherein solely one of the multipliers is connected downstream of the last delay element, and
 - wherein the outputs of the multipliers are connected to parallel inputs of the adder.

- 22. (previously presented) The chip arrangement as set forth in claim 18, wherein the weighting element is included in each of the filter banks.
- 23. (previously presented) The chip arrangement as set forth in claim 1, further7 comprising a control unit, which is connected to the filter banks and which is configured to subject, in a training phase, the signals applied to the coupling elements of the receiver chip to a correlation with one or more known signal patterns and to determine the weighting factors on the basis of the correlation result.
- 24. (canceled) A chip arrangement as set forth in claim 1 in which the chip without an increased number of first coupling elements has a respective edge coupling element at the ends of its signal interface and is adapted to apply a predefined edge signal to the edge coupling elements.
- 25. (previously presented) The chip arrangement as set forth in claim 1, wherein the transmitter chip has a transmitting circuit which has complementary CMOS transistors.
- 26. (previously presented) The chip arrangement as set forth in claim 1, wherein one of the first or second chip is a microprocessor and the other is a memory chip.
- 27. (canceled) A chip arrangement as set forth in claim 1 comprising a third chip which is coupled to the first chip or the second chip corresponding to the manner recited in claim 1 for signal transmission in such a way that the first or the second chip respectively is adapted for coupling to the third chip like the first chip of claim 1 and the third chip is adapted for coupling to the first chip like the second chip of claim 1, or vice-versa, wherein the first or the second chip has a further signal interface having the features of the first signal interface or the second signal interface.
- 28. (canceled) A chip arrangement as set forth in claim 2 comprising a third chip which with the first or the second chip corresponding to the manner recited in claim 2 is adapted and arranged for signal transmission, wherein the first or the second chip has a

further signal interface having the features of the first signal interface or the second signal interface.

- 29. (canceled) A coupling component for contactless signal transmission between a first and a second chip in an arrangement as set forth in claim 2, which on a substrate has a coupling unit which has third coupling elements arranged along a third line in a third number density and fourth coupling elements arranged along a fourth line in a fourth number density, wherein the third coupling elements are respectively electrically conductingly connected to the fourth coupling elements.
- 30. (canceled) A coupling component as set forth in claim 29 in which the spacing of the third or fourth coupling elements and their widthwise extent are so selected that a third coupling element or a fourth coupling element and the spacing relative to an adjacent third or fourth coupling element respectively assume overall a maximum of 10 micrometers.
 - 31. (cancelled).
- 32. (previously presented) The chip arrangement as set forth in claim 1, wherein the first or the second coupling elements are metallic electrically conductive strips arranged in mutually parallel relationship.
- 33. (previously presented) The chip arrangement as set forth in claim 32, wherein the strips have a strip width and are arranged with an equal spacing between mutually neighboring strips, and wherein a sum of the spacings of the mutually neighboring strips and of the strip width is between 1 and 25 micrometers.
 - 34. (cancelled).

- 35. (previously presented) The chip arrangement as set forth in claim 1, wherein the first coupling elements, alternatively the second coupling elements, alternatively the first and second coupling elements, are covered by an insulating layer.
- 36. (previously presented) The chip arrangementas set forth in claim 1, having a reference edge for positioning in manufacturing of the chip arrangement.
 - 37. (cancelled).
- 38. (canceled) A chip as set forth in claim 31 in which a respective metal element which is connected to ground is provided between the first coupling elements.
- 39. (canceled) A chip as set forth in claim 38 in which the metal element surrounds the coupling element laterally and at the substrate side, in particular in a U-shape.
- 40. (canceled) A chip as set forth in claim 31 comprising a transmitter control which is adapted to output signals on adjacent first or second coupling elements with a predetermined phase shift relative to each other.
- 41. (canceled) A wafer for the production of a chip as set forth in claim 31 comprising a plurality of chip portions, wherein at least one chip portion has the features of a chip as set forth in claim 31.
- 42. (canceled) A process for the production of a chip arrangement as set forth in claim 2 comprising the steps:
 - a) positioning the first chip on a carrier,
 - b) positioning the second chip relative to the first chip on the carrier,
- c) positioning a coupling component to produce a contactless coupling for signal transmission between the first and second chips.

- 43. (canceled) A process as set forth in claim 42 comprising an additional step of ascertaining active coupling elements.
- 44. (canceled) A chip arrangement as set forth in claim 2 in which the first, second and optionally third and fourth coupling elements are adapted to permit contactless signal transmission by means of electromagnetic, alternatively capacitive, alternatively inductive, alternatively inductive and capacitive coupling between a first and one or more second coupling elements respectively.