Package 'agriwater'

June 8, 2023
Title Evapotranspiration and Energy Fluxes Spatial Analysis
Version 1.0.2
Description Spatial modeling of energy balance and actual evapotranspiration using satellite images and meteorological data. Options of satellite are: Landsat-8 (with and without thermal bands), Sentinel-2 and MODIS. Respectively spatial resolutions are 30, 100, 10 and 250 meters. User can use data from a single meteorological station or a grid of meteorological stations (using any spatial interpolation method). Silva, Teixeira, and Manzione (2019) <doi:10.1016 j.envsoft.2019.104497="">.</doi:10.1016>
Maintainer Cesar de Oliveira Ferreira Silva <cesaroliveira.f.silva@gmail.com></cesaroliveira.f.silva@gmail.com>
Depends R (>= 3.2.0)
License MIT + file LICENSE
Encoding UTF-8
BugReports https://github.com/cesarofs/agriwater/issues
Imports terra
RoxygenNote 7.2.2
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Cesar de Oliveira Ferreira Silva [aut, cre], Antonio Heriberto de Castro Teixeira [ctb], Rodrigo Lilla Manzione [aut]
Repository CRAN
Date/Publication 2023-06-08 02:23:00 UTC
R topics documented:
albedo_modis

2 albedo_18

Index		2 4
	reflectance_18	23
	radiation_s2_grid	
	radiation_s2	
	radiation_modis_grid	
	radiation_modis	
	radiation_18_grid	19
	radiation_18t_grid	18
	radiation_18t	17
	radiation_18	17
	kc_s2_grid	
	kc_s2	15
	kc_modis_grid	14
	kc_modis	
	kc_18_grid	
	kc_l8t_grid	
	kc 18t	
	kc 18	
	evapo_s2_grid	
	evapo_s2	
	evapo_modis_grid	
	evapo_modis	
	evapo_18_grid	
	evapo_18t	
	<u> </u>	
	evapo 18	
	albedo_s2	4

albedo_18

Surface Albedo using Landsat-8 images.

Description

Surface Albedo using Landsat-8 images.

Usage

albedo_18(doy)

Arguments

doy

is the Day of Year (DOY)

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24").

albedo_modis 3

albedo_modis

Surface Albedo using MODIS images.

Description

Surface Albedo using MODIS images.

Usage

```
albedo_modis()
```

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24").

Examples

```
library(agriwater)
# dependencies of package 'agriwater'
library(terra)
# Using a temporary folder to run example
wd <- tempdir()</pre>
initial = getwd()
setwd(wd)
# creating raster which simulate Sentinel-2 reflectances - for using
# real data, please download:
# https://drive.google.com/open?id=14E1wHNLxG7_Dh4I-GqNYakj8YJDgKLzk
xy \leftarrow matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B2.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.05, sd = 0.01), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B1.tif"),filetype = "GTiff", overwrite=TRUE)
# creating mask of study area
mask <- as.polygons(rast)</pre>
writeVector(mask, file.path(getwd(), "mask.shp"), overwrite=TRUE)
# using "agriwater"
albedo_modis()
#Exiting temporary folder and returning to previous workspace
setwd(initial)
```

4 albedo_s2

albedo_s2

Surface Albedo using Sentinel-2 images.

Description

Surface Albedo using Sentinel-2 images.

Usage

```
albedo_s2()
```

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24").

Examples

```
library(agriwater)
# dependencies of package 'agriwater'
library(terra)
# Using a temporary folder to run example
wd <- tempdir()</pre>
initial = getwd()
setwd(wd)
# creating raster which simulate Sentinel-2 reflectances - for using
# real data, please download:
# https://drive.google.com/open?id=14E1wHNLxG7_Dh4I-GqNYakj8YJDgKLzk
xy < -matrix(rnorm(4, mean = 0.07, sd = 0.01), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B2.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) < c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B3.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.03, sd = 0.018), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B4.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B8.tif"),filetype = "GTiff", overwrite=TRUE)
mask <- as.polygons(rast)</pre>
writeVector(mask, file.path(getwd(), "mask.shp"), overwrite=TRUE)
```

evapo_18 5

```
# using "agriwater"
albedo_s2()

#Exiting temporary folder and returning to previous workspace
setwd(initial)
```

evapo_18	Actual evapotranspiration (ETa) using Landsat-8 images with single
	agrometeorological data.

Description

Actual evapotranspiration (ETa) using Landsat-8 images with single agrometeorological data.

Usage

```
evapo_18(doy, RG, Ta, ET0, a, b)
```

Arguments

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
ET0	is the reference evapotranspiration
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), net radiation ("Rn_MJ"), Crop Coefficient ("kc") and Actual Evapotranspiration (evapo).

evapo_18t	Actual evapotranspiration (ETa) using Landsat-8 (including thermal
	bands) images with single agrometeorological data.

Description

Actual evapotranspiration (ETa) using Landsat-8 (including thermal bands) images with single agrometeorological data.

Usage

```
evapo_18t(doy, RG, Ta, ET0, a, b)
```

6 evapo_18t_grid

Arguments

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
ET0	is the reference evapotranspiration
a	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), net radiation ("Rn_MJ"), Crop Coefficient ("kc") and Actual Evapotranspiration (evapo).

evapo_18t_grid	Actual evapotranspiration (ETa) using Landsat-8 (including thermal bands) images with a grid of agrometeorological data.
	buttus) images with a grid of agrometeorological data.

Description

Actual evapotranspiration (ETa) using Landsat-8 (including thermal bands) images with a grid of agrometeorological data.

Usage

```
evapo_l8t_grid(doy, a, b)
```

Arguments

doy	is the Day of Year (DOY)
a	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), net radiation ("Rn_MJ"), Crop Coefficient ("kc") and Actual Evapotranspiration (evapo).

evapo_18_grid 7

of agrometeorological data.

Description

Actual evapotranspiration (ETa) using Landsat-8 images with a grid of agrometeorological data.

Usage

```
evapo_18_grid(doy, a, b)
```

Arguments

doy	is the Day of Year (DOY)
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), net radiation ("Rn_MJ"), Crop Coefficient ("kc") and Actual Evapotranspiration (evapo).

evapo_modis	Actual evapotranspiration (ETa) using MODIS with single agromete-
	orological data.

Description

Actual evapotranspiration (ETa) using MODIS with single agrometeorological data.

Usage

```
evapo_modis(doy, RG, Ta, ET0, a, b)
```

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
ET0	is the reference evapotranspiration
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

8 evapo_modis_grid

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), net radiation ("Rn_MJ"), Crop Coefficient ("kc") and Actual Evapotranspiration (evapo).

Examples

```
library(agriwater)
# dependencies of package 'agriwater'
library(terra)
# Using a temporary folder to run example
wd <- tempdir()</pre>
initial = getwd()
setwd(wd)
# creating raster which simulate Sentinel-2 reflectances - for using
# real data, please download:
# https://drive.google.com/open?id=14E1wHNLxG7_Dh4I-GqNYakj8YJDgKLzk
xy \leftarrow matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B2.tif"),filetype = "GTiff", overwrite=TRUE)
xy <- matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B1.tif"),filetype = "GTiff", overwrite=TRUE)
mask <- as.polygons(rast)</pre>
writeVector(mask, file.path(getwd(), "mask.shp"), overwrite=TRUE)
# using "agriwater" - it's the same procedure as the used for
# evapo_18(), evapo_18t(), evapo_modis_grid(), evapo_18_grid(),
# evapo_18t_grid(), evapo_s2() and evapo_s2_grid()
evapo_modis(doy = 134, RG = 17.6, Ta = 27.9, ET0 = 3.8, a = 1.8, b = -0.008)
#Exiting temporary folder and returning to previous workspace
setwd(initial)
```

evapo_modis_grid

Actual evapotranspiration (ETa) using MODIS with a grid of agrometeorological data.

Description

Actual evapotranspiration (ETa) using MODIS with a grid of agrometeorological data.

evapo_s2

Usage

```
evapo_modis_grid(doy, a, b)
```

Arguments

doy	is the Day of Year (DOY)
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), net radiation ("Rn_MJ"), Crop Coefficient ("kc") and Actual Evapotranspiration (evapo).

evapo_s2	Actual evapotranspiration (ETa) using Sentinel-2 images with single
	agrometeorological data.

Description

Actual evapotranspiration (ETa) using Sentinel-2 images with single agrometeorological data.

Usage

```
evapo_s2(doy, RG, Ta, ET0, a, b)
```

Arguments

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
ET0	is the reference evapotranspiration
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), net radiation ("Rn_MJ"), Crop Coefficient ("kc") and Actual Evapotranspiration (evapo).

10 evapo_s2_grid

Examples

```
library(agriwater)
# dependencies of package 'agriwater'
library(terra)
# Using a temporary folder to run example
wd <- tempdir()</pre>
initial = getwd()
setwd(wd)
# creating raster which simulate Sentinel-2 reflectances - for using
# real data, please download:
# https://drive.google.com/open?id=14E1wHNLxG7_Dh4I-GqNYakj8YJDgKLzk
xy \leftarrow matrix(rnorm(4, mean = 0.07, sd = 0.01), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B2.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B3.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.03, sd = 0.018), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) < c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B4.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B8.tif"),filetype = "GTiff", overwrite=TRUE)
mask <- as.polygons(rast)</pre>
writeVector(mask, file.path(getwd(), "mask.shp"), overwrite=TRUE)
# using "agriwater"
evapo_s2(doy = 134, RG = 17.6, Ta = 27.9, ET0 = 3.8, a = 1.8, b = -0.008)
#Exiting temporary folder and returning to previous workspace
setwd(initial)
```

evapo_s2_grid

Actual evapotranspiration (ETa) using Sentinel-2 images with a grid of agrometeorological data.

Description

Actual evapotranspiration (ETa) using Sentinel-2 images with a grid of agrometeorological data.

kc_18

Usage

```
evapo_s2_grid(doy, a, b)
```

Arguments

doy	is the Day of Year (DOY)
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), net radiation ("Rn_MJ"), Crop Coefficient ("kc") and Actual Evapotranspiration (evapo).

kc_18	Crop coefficient (ETa / ET0) using Landsat-8 images with single
	agrometeorological data.

Description

Crop coefficient (ETa / ET0) using Landsat-8 images with single agrometeorological data.

Usage

```
kc_18(doy, RG, Ta, a, b)
```

Arguments

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc") and net radiation ("Rn_MJ").

12 kc_18t_grid

kc 18t	Crop coefficient (ETa / ET0) using Landsat-8 images (including ther-
KC_10t	mal bands) with single agrometeorological data.
	mai banas) win single agrometeorological adia.

Description

 $Crop\ coefficient\ (ETa\ /\ ET0)\ using\ Landsat-8\ images\ (including\ thermal\ bands)\ with\ single\ agrometeorological\ data.$

Usage

```
kc_l8t(doy, RG, Ta, a, b)
```

Arguments

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc") and net radiation ("Rn_MJ").

kc_18t_grid	Crop coefficient (ETa / ET0) using Landsat-8 images (including thermal bands) with a grid of agrometeorological data.
	mai vanas) min a gra of agrometeorological actai

Description

Crop coefficient (ETa / ET0) using Landsat-8 images (including thermal bands) with a grid of agrometeorological data.

Usage

```
kc_18t_grid(doy, a, b)
```

doy	is the Day of Year (DOY)
a	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

kc_18_grid 13

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc") and net radiation ("Rn_MJ").

kc_l8_grid Crop coefficient (ETa / ET0) using Landsat-8 images with a grid of agrometeorological data.

Description

Crop coefficient (ETa / ET0) using Landsat-8 images with a grid of agrometeorological data.

Usage

```
kc_18_grid(doy, a, b)
```

Arguments

doy is the Day of Year (DOY)

a is one of the regression coefficients of SAFER algorithmb is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc") and net radiation ("Rn_MJ").

kc_modis Crop coefficient (ETa / ET0) using MODIS with single agrometeorological data.

Description

Crop coefficient (ETa / ET0) using MODIS with single agrometeorological data.

Usage

```
kc_modis(doy, RG, Ta, a, b)
```

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
a	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

14 kc_modis_grid

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc") and net radiation ("Rn_MJ").

Examples

```
library(agriwater)
# dependencies of package 'agriwater'
library(terra)
# Using a temporary folder to run example
wd <- tempdir()</pre>
initial = getwd()
setwd(wd)
# creating raster which simulate MODIS reflectances - for using
# real data, please download:
# https://drive.google.com/open?id=14E1wHNLxG7_Dh4I-GqNYakj8YJDgKLzk
xy \leftarrow matrix(rnorm(4, mean = 0.07, sd = 0.01), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B2.tif"), filetype = "GTiff", overwrite=TRUE)
xy < -matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B1.tif"), filetype = "GTiff", overwrite=TRUE)
mask <- as.polygons(rast)</pre>
writeVector(mask, file.path(getwd(), "mask.shp"), overwrite=TRUE)
# using "agriwater"
kc_{modis}(doy = 134, RG = 17.6, Ta = 27.9, a = 1.8, b = -0.008)
#Exiting temporary folder and returning to previous workspace
setwd(initial)
```

kc_modis_grid

Crop coefficient (ETa / ET0) using MODIS with a grid of agrometeo-rological data.

Description

Crop coefficient (ETa / ET0) using MODIS with a grid of agrometeorological data.

Usage

```
kc_modis_grid(doy, a, b)
```

kc_s2

Arguments

doy	is the Day of Year (DOY)
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc") and net radiation ("Rn_MJ").

kc_s2	Crop coefficient (ETa / ET0) using Sentinel-2 images with single
	agrometeorological data.

Description

Crop coefficient (ETa / ET0) using Sentinel-2 images with single agrometeorological data.

Usage

```
kc_s2(doy, RG, Ta, a, b)
```

Arguments

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc") and net radiation ("Rn_MJ").

Examples

```
library(agriwater)

# dependencies of package 'agriwater'
library(terra)

# Using a temporary folder to run example
wd <- tempdir()
initial = getwd()
setwd(wd)</pre>
```

16 kc_s2_grid

```
# creating raster which simulate Sentinel-2 reflectances - for using
# real data, please download:
# https://drive.google.com/open?id=14E1wHNLxG7_Dh4I-GqNYakj8YJDgKLzk
xy \leftarrow matrix(rnorm(4, mean = 0.07, sd = 0.01), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B2.tif"),filetype = "GTiff", overwrite=TRUE)
xy <- matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B3.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.03, sd = 0.018), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B4.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B8.tif"),filetype = "GTiff", overwrite=TRUE)
mask <- as.polygons(rast)</pre>
writeVector(mask, file.path(getwd(),"mask.shp"), overwrite=TRUE)
# using "agriwater"
kc_s2(doy = 134, RG = 17.6, Ta = 27.9, a = 1.8, b = -0.008)
#Exiting temporary folder and returning to previous workspace
setwd(initial)
```

kc_s2_grid

Crop coefficient (ETa / ET0) using Sentinel-2 images with a grid of agrometeorological data.

Description

Crop coefficient (ETa / ET0) using Sentinel-2 images with a grid of agrometeorological data.

Usage

```
kc_s2_grid(doy, a, b)
```

doy	is the Day of Year (DOY)
a	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

radiation_18

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc") and net radiation ("Rn_MJ").

radiation_18	Energy balance using Landsat-8 images with single agrometeorological data.
--------------	--

Description

Energy balance using Landsat-8 images with single agrometeorological data.

Usage

```
radiation_18(doy, RG, Ta, ET0, a, b)
```

Arguments

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
ET0	is the reference evapotranspiration
a	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc"), Actual Evapotranspiration (evapo), latent heat flux "LE_MJ"), net radiation ("Rn_MJ"), ground heat flux ("G_MJ") and the sensible heat flux ("H_MJ").

radiation_18t	Energy balance using Landsat-8 images (including thermal bands)
	with single agrometeorological data.

Description

Energy balance using Landsat-8 images (including thermal bands) with single agrometeorological data.

Usage

```
radiation_18t(doy, RG, Ta, ET0, a, b)
```

18 radiation_18t_grid

Arguments

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
ET0	is the reference evapotranspiration
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc"), Actual Evapotranspiration (evapo), latent heat flux "LE_MJ"), net radiation ("Rn_MJ"), ground heat flux ("G_MJ") and the sensible heat flux ("H_MJ").

radiation_l8t_grid	Energy balance using Landsat-8 images (including thermal bands)
	with a grid of agrometeorological data.

Description

Energy balance using Landsat-8 images (including thermal bands) with a grid of agrometeorological data.

Usage

```
radiation_18t_grid(doy, a, b)
```

Arguments

doy	is the Day of Year (DOY)
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc"), Actual Evapotranspiration (evapo), latent heat flux "LE_MJ"), net radiation ("Rn_MJ"), ground heat flux ("G_MJ") and the sensible heat flux ("H_MJ").

radiation_18_grid

radiation_18_grid Energy balance using Landsat-8 images with a grid of agrometed logical data.	ro-
--	-----

Description

Energy balance using Landsat-8 images with a grid of agrometeorological data.

Usage

```
radiation_18_grid(doy, a, b)
```

Arguments

doy	is the Day of Year (DOY)
a	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc"), Actual Evapotranspiration (evapo), latent heat flux "LE_MJ"), net radiation ("Rn_MJ"), ground heat flux ("G_MJ") and the sensible heat flux ("H_MJ").

radiation_modis	Energy balance using Landsat-8 images with single agrometeorological data.

Description

Energy balance using Landsat-8 images with single agrometeorological data.

Usage

```
radiation_modis(doy, RG, Ta, ET0, a, b)
```

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
ET0	is the reference evapotranspiration
а	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

20 radiation_modis_grid

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc"), Actual Evapotranspiration (evapo), latent heat flux "LE_MJ"), net radiation ("Rn_MJ"), ground heat flux ("G_MJ") and the sensible heat flux ("H_MJ").

Examples

```
library(agriwater)
# dependencies of package 'agriwater'
library(terra)
# Using a temporary folder to run example
wd <- tempdir()</pre>
initial = getwd()
setwd(wd)
# creating raster which simulate Sentinel-2 reflectances - for using
# real data, please download:
# https://drive.google.com/open?id=14E1wHNLxG7_Dh4I-GqNYakj8YJDgKLzk
xy < -matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B2.tif"),filetype = "GTiff", overwrite=TRUE)
xy <- matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B1.tif"),filetype = "GTiff", overwrite=TRUE)
# creating mask of study area
mask <- as.polygons(rast)</pre>
writeVector(mask, file.path(getwd(), "mask.shp"), overwrite=TRUE)
# using "agriwater" - it's the same procedure as the used for
# radiation_18(), radiation_18t(), radiation_s2(),
# radiation_18_grid(), radiation_18t_grid(),
# radiation_s2_grid(), radiation_s2() and radiation_modis_grid()
radiation_modis(doy = 134, RG = 17.6, Ta = 27.9, ET0 = 3.8, a = 1.8, b = -0.008)
#Exiting temporary folder and returning to previous workspace
setwd(initial)
```

radiation_modis_grid Energy balance using Landsat-8 images with a grid of agrometeoro-logical data.

Description

Energy balance using Landsat-8 images with a grid of agrometeorological data.

radiation_s2 21

Usage

```
radiation_modis_grid(doy, a, b)
```

Arguments

doy	is the Day of Year (DOY)
a	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc"), Actual Evapotranspiration (evapo), latent heat flux "LE_MJ"), net radiation ("Rn_MJ"), ground heat flux ("G_MJ") and the sensible heat flux ("H_MJ").

radiation_s2	Energy balance using Sentinel-2 images with single agrometeorological data.

Description

Energy balance using Sentinel-2 images with single agrometeorological data.

Usage

```
radiation_s2(doy, RG, Ta, ET0, a, b)
```

Arguments

doy	is the Day of Year (DOY)
RG	is the global solar radiation
Та	is the average air temperature
ET0	is the reference evapotranspiration
a	is one of the regression coefficients of SAFER algorithm
b	is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc"), Actual Evapotranspiration (evapo), latent heat flux "LE_MJ"), net radiation ("Rn_MJ"), ground heat flux ("G_MJ") and the sensible heat flux ("H_MJ").

22 radiation_s2_grid

Examples

```
library(agriwater)
# dependencies of package 'agriwater'
library(terra)
# Using a temporary folder to run example
wd <- tempdir()</pre>
initial = getwd()
setwd(wd)
# creating raster which simulate Sentinel-2 reflectances - for using
# real data, please download:
# https://drive.google.com/open?id=14E1wHNLxG7_Dh4I-GqNYakj8YJDgKLzk
xy \leftarrow matrix(rnorm(4, mean = 0.07, sd = 0.01), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B2.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B3.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.03, sd = 0.018), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) < c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B4.tif"),filetype = "GTiff", overwrite=TRUE)
xy \leftarrow matrix(rnorm(4, mean = 0.05, sd = 0.015), 2, 2)
rast <- rast(xy, crs="+proj=longlat +datum=WGS84")</pre>
ext(rast) <- c(-40.5, -40.45, -9.5, -9.45)
writeRaster(rast, file.path(wd, "B8.tif"),filetype = "GTiff", overwrite=TRUE)
mask <- as.polygons(rast)</pre>
writeVector(mask, file.path(getwd(), "mask.shp"), overwrite=TRUE)
# using "agriwater"
radiation_s2(doy = 134, RG = 17.6, Ta = 27.9, ET0 = 3.8, a = 1.8, b = -0.008)
#Exiting temporary folder and returning to previous workspace
setwd(initial)
```

radiation_s2_grid

Energy balance using Sentinel-2 images with a grid of agrometeorological data.

Description

Energy balance using Sentinel-2 images with a grid of agrometeorological data.

reflectance_18 23

Usage

```
radiation_s2_grid(doy, a, b)
```

Arguments

doy is the Day of Year (DOY)

a is one of the regression coefficients of SAFER algorithmb is one of the regression coefficients of SAFER algorithm

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24"), NDVI, Surface Temperature ("LST"), Crop Coefficient ("kc"), Actual Evapotranspiration (evapo), latent heat flux "LE_MJ"), net radiation ("Rn_MJ"), ground heat flux ("G_MJ") and the sensible heat flux ("H_MJ").

reflectance_18

Reflectancies from Landsat-8 images.

Description

Reflectancies from Landsat-8 images.

Usage

```
reflectance_18(doy)
```

Arguments

doy is the Day of Year (DOY)

Value

It returns in raster format (.tif) the Surface Albedo at 24h scale ("Alb_24").

Index

```
albedo_18, 2
albedo_modis, 3
albedo_s2, 4
evapo_18, 5
evapo_18_grid, 7
evapo_18t, 5
evapo_18t_grid, 6
evapo_modis, 7
evapo_modis_grid, 8
evapo_s2, 9
evapo_s2_grid, 10
kc_18, 11
kc_18_grid, 13
kc_18t, 12
kc_18t_grid, 12
kc\_modis, 13
kc\_modis\_grid, 14
kc_s2, 15
kc_s2_grid, 16
radiation_18, 17
radiation_18_grid, 19
radiation_18t, 17
radiation\_18t\_grid, 18
radiation_modis, 19
{\tt radiation\_modis\_grid}, {\tt 20}
radiation_s2, 21
radiation_s2_grid, 22
reflectance_18, 23
```