Data Engineering

Question 1:

Use case 1:

Student academic performance analysis

Analyze a student's performance based on their previous academic performance, highest education, gender and studied credits. The goal of this use case is to analyze if these features have an impact on a student's academic performance.

Use case 2:

Student region detection analysis

Analyze if a student's region has an impact on several features like: student assessment performance, the courses they are following (is a region known for/provides better lectures for certain courses), highest education among other features.

Question 2:

This data architecture is applicable to both use cases mentioned above.

Data Sources and Data Ingestion

- Student information datasets: contains demographics, enrollment details and academic records.
- Extracurricular activities: storing information about a student's participation in extracurricular activities
- Assessment and exam evaluations: stores scores and performance data for each assessment and exam.

ETL Design Pattern

 Gather data from various sources, transform the data and ensure that it fits the data model, then proceed to load the data

Operational Database

Centralized repository for storing data containing student information

- Make use of database management to create structured database storage environment
- Analysis database and operational database are not tied. The analysis database is brought up to date around every month.

Data Security and Privacy

- Implement encryption on data to ensure that the data is safely stored and kept.
- Ensure that no sensitive data is being accessed by unqualified personnel.
- Make sure that privacy regulations are being followed and respected.

Scalability and Performance

- Implement scalable data processing frameworks to handle large loads of data and datasets
- Ensure the use of distributed data storage to enhance data availability, scalability and fault tolerance