Circuitos Elétricos II

Aula 8

Cálculo da corrente de motores trifásicos

$$I = \frac{P_{HP} \times 746}{\sqrt{3}V_l \cos(\phi) \eta} = \frac{P_{cv} \times 736}{\sqrt{3}V_l \cos(\phi) \eta}$$

- Em que:
 - P_{HP} e P_{cv} são as potências do motor em HP e CV, respectivamente;
 - V_l é a tensão entre fases;
 - $cos(\phi)$ é o fator de potência do motor;
 - η é a eficiência do motor.
- A corrente de um motor de indução trifásico de 20 HP, $220~V, \cos(\phi) = 0.85~e~\eta = 90\%~\acute{e}$

$$I = \frac{P_{HP} \times 746}{\sqrt{3}V_l \cos(\phi) \, \eta} \to I = \frac{20 \times 746}{\sqrt{3} \times 220 \times 0.85 \times 0.9}$$

Fonte: Disponível em https://pt.m.wikipedia.org/wiki/Ficheiro:Stator_and_rotor_by_Zureks.JPG

Dimensionamento de circuitos alimentadores de força

• Capacidade de corrente:

$$I_{alimentador} = \sum_{i=1}^{n} I_{nom_i} \times FS_i$$

- Em que I_{nom_i} é a corrente nominal do i-ésimo motor e FS_i é o fator de serviço do i-ésimo motor;
- Pela queda de tensão:
 - A queda de tensão admissível para circuitos de força é de 5%. Assim, podemos atribuir, por exemplo, uma queda de tensão de 3% nos alimentadores e de 2% nos ramais.
 - Motores monofásicos ou CC: $S = \frac{2\rho \sum (I \times L)}{u}$
 - Motores trifásicos: $S = \frac{\sqrt{3}\rho\sum(I\times L)}{\nu}$
 - Em que S é a seção transversal em mm^2 , I é a corrente multiplicada por FS, u é a queda de tensão absoluta em volts, L é o comprimento em metros e as resistividades para o Cobre e Alumínio são, respectivamente, $\rho_{Cu} = \frac{1}{58} \frac{\Omega \times mm^2}{m}$ e $\rho_{Al} = \frac{1}{32} \frac{\Omega \times mm^2}{m}$.
- O crescimento da carga ao longo do ano também deve ser considerado para determinar o horizonte do projeto do circuito alimentador.

Exemplo

Um alimentador deve abastecer os seguintes motores trifásicos e suas distâncias em relação ao quadro de distribuição:

- elevador social 10 cv (4 polos), $\cos \phi = 0.81$, $\eta = 90\%$, FS = 1.25 e 25 m;
- elevador de serviço 7,5 cv (4 polos) , $\cos\phi=0.85$, $\eta=88\%$, FS=1.25 e 15 m;
- bomba-d'água 5 cv (2 polos), $\cos\phi=0.8$, $\eta=90\%$, FS=1 e 10~m;

Todos os motores são de indução trifásicos, com rotor em gaiola e partida direta, tensão 220 volts - 60 Hz. Assuma que os condutores serão de cobre com isolação PVC $70^{\circ}C$ e instalados no método B1 para dimensionar os cabos deste circuito.

Solução:

•
$$I_{soc} = \frac{10 \times 736}{\sqrt{3} \times 220 \times 0.81 \times 0.9} \rightarrow I_{soc} = 26.5 A$$

•
$$I_{serv} = \frac{7,5 \times 736}{\sqrt{3} \times 220 \times 0,85 \times 0,88} \rightarrow I_{serv} = 19,37 A$$

•
$$I_{bomba} = \frac{5 \times 736}{\sqrt{3} \times 220 \times 0,8 \times 0,9} \rightarrow I_{serv} = 13,41 A$$

- $I_{alimentador} = 26.5 \times 1.25 + 19.37 \times 1.25 + 13.41 \times 1 \rightarrow I_{alimentador} = 70.75 A$
- Tabela de ampacidade (B1 com 3 condutores carregados): cabo de $25\ mm^2$.

Exemplo

Projetando o condutor para 2% de queda de tensão:

$$S = \frac{\sqrt{3}\rho\Sigma(I \times L)}{u} = \frac{\sqrt{3}\times(26,5\times25+19,37\times15+13,41\times10)}{58\times220\times0,02}$$
$$S = 7,38 \text{ } mm^2$$

Será usado o cabo de $25 \, mm^2$ determinado a partir do critério da capacidade de corrente, por ser de maior bitola.

Queda de tensão real usando o cabo de $25 \text{ } mm^2$:

$$u = \frac{\sqrt{3}\rho\Sigma(I \times L)}{S} = \frac{\sqrt{3}\times(26.5\times25 + 19.37\times15 + 13.41\times10)}{58\times220\times25} \approx 0.6\%$$