VC210

Chemical Equilibrium

Zhao Yiqing

November 13, 2018

The Reversibility of Reactions

4 All chemical equilibria are dynamic equilibria.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

Chemical reactions reach a state of dynamic equilibrium in which the rates of forward and reverse reactions are equal and there is no net change in composition.

Equilibrium and the Law of Mass Action

• The Law of Mass Action:

For the reaction

$$aA(g) + bB(g) \rightleftharpoons cC(g) + dD(g)$$

between the ideal gases, we can get the equilibrium constant K

$$K = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b}$$

which is characteristic of the reaction <u>at a given temperature</u>, with P_J denoting the numerical values of the partial pressures <u>in bar</u> at equilibrium.

For reactions consists of substances other than gases, such as

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

we consider the equilibrium constant K as

$$K = P_{\text{CO}_2}$$

Equilibrium and the Law of Mass Action

3 To get a more general idea about the equilibrium constant, we introduce a new concept of activity a_P of a substance J:

Substance	Activity	Simplified form
ideal gas	$a_J = P_J/P^\circ$	$a_{\rm J} = P_{\rm J}$
solute in a dilute solution	$a_J = [J]/c^\circ$	$a_{J} = [J]$
pure solid or liquid	$a_{J} = 1$	$a_{\rm J}=1$

- 4 All activities are pure numbers and unitless.
- To calculate the equilibrium constant for equations with phase not specified, such as

$$aA + bB \Longrightarrow cC + dD$$

we can get the equilibrium constant K as

$$K = \frac{(a_C)^c (a_D)^d}{(a_A)^a (a_B)^b}$$

• Equilibrium constant of a certain reaction can be changed only by varing the temperature.

The Origin of Equilibrium Constants

Define the reaction quotient Q as

$$Q = \frac{(a_C)^c (a_D)^d}{(a_A)^a (a_B)^b}$$

- For differences between K and Q, the activities used in K must be measured at equilibrium.
- Relative thermodynamics reactions:

$$\Delta G_r = \Delta G_r^\circ + RT \ln Q = -RT \ln K + RT \ln Q$$
 $\Delta G_r^\circ = -RT \ln K (at equilibrium)$ $K = e^{-rac{\Delta G_r^\circ}{RT}}$

- ① If ΔG_r° is negative, then $\ln K$ must be positive and therefore K > 1; products are favored at equilibrium.
- If ΔG_r° is positive, then $\ln K$ must be negative and therefore K < 1; reactants are favored at equilibrium.

The Origin of Equilibrium Constants

- For relationships between Q and K:
 - If Q < K, ΔG_r is negative; the reaction has a tendency to proceed toward products.
 - **1** If Q = K, ΔG_r is zero; the reaction has its equilibrium.
 - **1** If Q > K, ΔG_r is positive; the reverse reaction is spontaneous.

6 / 18

Multiples of the Chemical Equation

Chemical Equation	Equilibrium Constant
$aA + bB \Longrightarrow cC + dD$	K_1
$cC + dD \Longrightarrow aA + bB$	$K_2 = \frac{1}{K_1} = K_1^{-1}$
$N(aA + bB \rightleftharpoons cC + dD)$	$K_3 = K_1^N$

Table: Relations Between Equilibrium Constants

Composite Equations

Chemical Equation	Equilibrium Constant		
$aA + bB \Longrightarrow cC + dD$	κ_1		
$eE + fF \rightleftharpoons gG + hH$	K_2		
$aA + bB + eE + fF \rightleftharpoons cC + dD + gG + hH$	$K_3 = K_1 K_2$		

Table: Relations Between Equilibrium Constants

Molar Concentrations of Gases

- We determine:
 - $K_P = equilibrium constant in terms of pressure$
 - $K_c = equilibrium constant in terms of concentration$
- 2 The relationship between K_P and K_c is

$$K_P = (RT)^{\Delta n} K_c$$

where

$$\Delta n = \sum n_{products} - \sum n_{reactants}$$

The Extent of Reaction

- Large values of K (larger than about 10^3): equilibrium favors the products.
- ② Intermediate values of K (approximately in the range 10^{-3} to 10^{3}): neither reactants nor products are strongly favored at equilibrium.
- **3** Small values of K (smaller than about 10^{-3}): equilibrium favors the reactants.

	Species 1	Species 2	Species 3	• • •
initial composition				
change in composition				
equilibrium composition				

Question 1. Suppose that there are 3.12 g of PCI5 in a reaction vessel of volume 500 mL and allow the sample to reach equilibrium with its decomposition products PCI3 and CI2 at $250^{\circ}C$, when K = 78.3 for the reaction PCI5(g) \Longrightarrow PCI3(g) + CI2(g). Find the composition of the equilibrium mixture.

Step 1. Calculate the initial partial pressure of PCI₅.

$$n_{\text{PCl}_5} = \frac{3.12g}{208.24g \cdot mol^{-1}} = \frac{3.12}{208.24} mol = 0.0150 mol$$

$$P_{\mathrm{PCl5}} = (0.0150 \textit{mol}) imes \frac{(8.3145 imes 10^{-2} \textit{L} \cdot \textit{bar} \cdot \textit{K}^{-1} \cdot \textit{mol}^{-1}) imes 523 \textit{K}}{0.500 \textit{L}} = 0.130 \textit{bar}$$

Step 2. Write the equilibrium expression and set up the equilibrium table.

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$
 $K = \frac{P_{PCl_5}P_{Cl_2}}{P_{PCl_3}}$

	PCI ₅	PCI3	Cl_2
initial pressure	1.30	0	0
change in pressure	-x	+x	+x
equilibrium pressure	1.30 - x	+x	+x

Then we can get the equation

$$K = \frac{x^2}{1.30 - x} = 78.3$$

$$x = 1.28$$
 or -79.6 (abandoned)

Adding and Removing Reagents

Le Chatelier's Principle: When a stress is applied to a system in dynamic equilibrium, the equilibrium tends to adjust to minimize the effect of the stress.

Compressing a Reaction Mixture

Compression of a reaction mixture at equilibrium tends to drive the reaction in the direction that reduces the number of gas-phase molecules; increasing the pressure by introducing an inert gas has no effect on the equilibrium composition.

Temperature and Equilibrium

$$\Delta G_1^\circ = -RT \ln K_1$$

$$\Delta G_2^\circ = -RT \ln K_2$$

$$\ln \frac{K_2}{K_1} = \frac{\Delta H^\circ}{R} (\frac{1}{T_1} - \frac{1}{T_2})$$

- If the reaction is endothermic, an increase in temperature favors the formation of products.
- ② If the reaction is exothermic, an increase in temperature favors the formation of reactants.

Thank you!