Solutions of HW#1: Basic Logic

 $\mathbf{Q.1}$ Make truth tables for the following statement:

$$\bullet \neg (p \to q) \to (q \to p)$$

Answer

p	q	$p \rightarrow q$	$q \rightarrow p$	$\neg(p \to q) \to (q \to p)$
T	T	T	T	T
T	F	F	T	T
\overline{F}	T	T	F	T
\overline{F}	F	T	T	T

•
$$(p \to \neg q) \land (\neg p \to q)$$

Answer

p	q	$p \rightarrow \neg q$	$\neg p \to q$	$(p \to \neg q) \land (\neg p \to q)$
\overline{T}	T	F	T	F
T	F	T	T	T
F	T	T	T	T
\overline{F}	F	T	F	F

Q.2 Using logical equivalences discussed in class prove that

$$(p \land q) \to (p \lor q)$$

is a tautology, that is, prove that

$$(p \land q) \to (p \lor q) \equiv T.$$

Answer

$$\begin{array}{rcl} (p \wedge q) \rightarrow (p \vee q) & \equiv & \neg (p \wedge q) \vee (p \vee q) \\ & \equiv & (\neg p \vee \neg q) \vee (p \vee q) \\ & \equiv & (\neg p \vee p) \vee (\neg q \vee q) \\ & \equiv & T \vee T \\ & \equiv & T \end{array}$$

Note: Another way to solve this question is by constructing the truth table for the given logical expression and showing that it is always T for all values of p and q as follows.

p	q	$p \wedge q$	$p\vee q$	$(p \land q) \to (p \lor q)$
T	T	T	T	T
T	F	F	T	T
F	T	F	T	T
F	F	F	F	T

Q.3 Let Determine the truth value of the following statements when x and y are real numbers:

- 1. $\exists_x \forall_y \ (x = y^2),$
- $2. \ \exists_x \forall_y \ (xy = 0),$
- $3. \ \forall_{x \neq 0} \exists_y \ xy = 1,$
- 4. $\exists_x \exists_y (x + y \neq y + x)$.

Answer

1. $\exists_x \forall_y \ (x = y^2)$: (False)

Suppose x = a satisfies the above statement. This means that $a = y^2$ for all real values of y. This is impossible since y would then be equal to at most 2 real values $(\pm \sqrt{a})$.

- 2. $\exists_x \forall_y \ (xy = 0)$: (True) At x = 0, xy = 0 for all real values of y.
- 3. $\forall_{x\neq 0} \exists_y \ xy = 1$: (True)

If we pick an arbitrary value for $x \neq 0$, say a, then there exists a value for y that satisfies the given statement, $y = \frac{1}{a}$.

4. $\exists_x \exists_y (x + y \neq y + x)$: (False)

The addition of real numbers is always commutative operation.