

ABSTRACT

B

10

15

20

A titanium catalyst for reaction between a mpound having a farbon-carbon unsaturated bond and a compound having an electrophilic functional group or an electrophilic reagent, said titanium catalyst being composed of a titanium compound represented by the formula (1) below

 $TiX^1X^2X^3X^4 \tag{1}$

(where X^1 , X^2 , X^3 , and X^4 denote independently a halogen atom, C_{1-20} alkoxyl group, aralkyloxy group, aryloxy group, or -NRxRy group (where Rx and Ry denote independently a C_{1-20} alkyl group or aralkyl group), and any two of X^1 , X^2 , X^3 , and X^4 may form a ring.) and a Grignard reagent represented by the formula (2) below in a molar amount 1.5-2.5 times as much as the titanium compound.

 R^1MgX^5 (2)

(where R^1 denotes a C_{2-10} alkyl group having a hydrogen atom at the β position and X^5 denotes a halogen atom.)

The titanium catalyst of the present invention activates the carbon-carbon unsaturated bond, which has a comparatively low reactivity, thereby catalyzing the reaction with an electrophilic functional group. It is inexpensive and industrially advantageous. When applied to reaction between a carbon-carbon unsaturated bond and an electrophilic functional group, it yields industrially a variety of adducts of a compound having a carbon-carbon unsaturated bond and a compound having an electrophilic functional group, and it also yields a variety of intramolecular adducts of a compound having a carbon-carbon unsaturated bond and an electrophilic functional group in the same molecule.

DESIZE O COOS

a 25

30