

Написал диплом в LaTeX, а не в Word

Ожидание

- Никаких проблем с форматированием
- Картинки и таблицы сами нумеруются

Реальность

Ожидания сбылись. Но документы принимаются только в формате .docx

Офисное программное обеспечение

К офисному программному обеспечению (ПО) относят наиболее часто применяемые в офисной работе программы для редактирования электронных документов. Существует более 30 серьёзных офисных пакетов разных производителей. Они различаются по составу и функциональности, но почти во всех присутствуют следующие три обязательных компонента:

- Текстовый процессор (текстовый редактор) ТП.
- Электронная таблица (табличный процессор) ЭТ.
- Программа подготовки презентаций ПП.

Форматы файлов офисного ПО (наиболее популярные)

- TΠ: doc, docx, odt
- 3T: xls, xlsx, ods
- ПП: ppt, pptx, odp

Интересные факты

- Форматы doc/xls/ppt до сих пор «закрыты» (по состоянию на 2017 год), хотя в разное время компания Microsoft предоставляла временный и/или частичный доступ к ним.
- Форматы docx, odt, xlsx, ods, pptx, odp это zip-архивы с xml- и медиафайлами.
- Криптографическая защита в doc, xls, ppt крайне слабая (даже для длинных паролей).

Наиболее популярные офисные пакеты

Данные о популярности офисных пакетов получены с помощью анализа статистики, собранной с помощью сайта trends.google.com. В таблице пакеты приведены по убыванию популярности. Стоимость указана для desktop-версий.

Название офисного пакета	Особенности	Примерная стоимость на 2022 год, руб.	Исходный код
Google Docs, Яндекс.Диск, Облако Mail.ru	Ориентация на публичные облачные решения	бесплатно	закрытый
Microsoft Office	Имеет наиболее богатая функциональность, захватил > 90% desktop установок	5000–17000	закрытый
LibreOffice, OpenOffice, Calligra Suite	Слабая поддержка одновременного редактирования	бесплатно	открытый
iWork	Узкая ориентация на технику фирмы Apple	бесплатно	закрытый
WPS Office	Интерфейс идентичен Microsoft Office	3000-8000	закрытый
WordPerfect Office	Узкая ориентация на рынок персональных компьютеров	7000–28000	закрытый
OnlyOffice, Feng Office	Приоритетная ориентация на частные и публичные облачные решения	бесплатно*	открытый

Классификация офисных пакетов

Формат ODF и ГОСТ России

Открытый бесплатный формат **ODF** (Open Document Format) позволяет обеспечить возможность долгосрочного хранения электронных документов без привязки к «капризам» конкретного производителя офисного ПО. Стандарты ODF описывают 16 форматов файлов (документы, картинки, таблицы, формулы, диаграммы), включая odt, ods, odp.

Стандратизация ОDF в России (во многих других странах ситуация похожая)

- ODF 1.0 был описан и введён в действия по ГОСТ 26300-2010 (с 1 июня 2011 г.)
- ГОСТ 26300-2010 должен использоваться для документооборота в госструктурах.
- Стандартизация ODF не означает навязывание LibreOffice/OpenOffice.

Проблемы ГОСТ 26300-2010

- Текущая версия ODF уже 1.3 (в ней исправлены многие проблемы версии 1.0)
- Не описаны спецификации скриптов и макросов.
- Не описано применение цифровых подписей.
- Не описан язык описания формул.
- Не допускается использование таблиц в презентациях.

Спецификация ODF 1.3 (апрель 2021), принят 21 января 2020:

http://docs.oasis-open.org/office/OpenDocument/v1.3/os/

«Продвинутые» функции текстовых процессоров и электронных таблиц

В школе офисные пакеты изучаются очень подробно. Однако есть ряд немаловажных функций текстовых процессоров и электронных таблиц, о которых в школе почти не говорят.

Текстовый процессор

- Концепция стилей для оформления текстового документа
- Автонумерация рисунков, таблиц, формул
- Макросы для автоматизации повторяющихся действий
- Автозаполнение «мусорным» текстом

Табличный процессор

- Расчёт доверительного интервала
- Фильтры содержимого таблиц
- Запрет на ввод некорректных значений в ячейку.
- Условное форматирование
- Инструмент «Подбор параметра»

Рассматриваемые далее примеры выполнены в LibreOffice 5.1, однако в других офисных пакетах есть аналогичные функции (даже их названия почти всегда дословно совпадают).

Концепция стилей в текстовых процессорах

Автособираемое оглавление с помощью стилей

Алгоритм

- 1. При первичном наполнении документа использовать **только** стили для разметки структуры текста.
- 2. Наполняя документ, не тратить время на оформление внешнего вида «буковок».
- 3. Приступить к настройке внешнего вида стилей только после окончательного наполнения документа текстом.

Не нужно форматировать текст вручную без стилей, задавая кегль, цвет шрифта и т. п. «врукопашную»!

Примечание. Приведённые рекомендации имеют смысл лишь при оформлении больших сложных документов!

При изменении настроек стиля автоматически изменится отображение текста во всём документе во всех местах, где этот стиль был использован!

Перекрёстные ссылки и автонумерация рисунков

Памятка

- При добавлении нового рисунка его порядковый номер будет выбран автоматически.
- При изменении порядка следования рисунков они автоматически перенумеруются
- Для принудительной перенумерации следует нажать F9 (или меню «Сервис --> Обновить»).

Перекрёстные ссылки и автонумерация рисунков (2)

Макросы: особенности модели безопасности

Макросы: запись вместо программирования вручную

Макросы: пример записи макроса

Макросы: пример записи макроса (продолжение 1)

Макросы: пример записи макроса (продолжение 2)

Макросы: назначение макроса на горячую клавишу

Макросы: как исправить макрос

Макросы: как исправить макрос

Mas://hop.in/beomice.org/88/3/c/p.gramming with 88/3/c/

Каталог объектов

- 🗦 🖅 Мои макросы и диалоги
- 🗎 🖅 Макросы и диалоги LibreOffice

```
sub Openedu_macros_name
rem define variables
dim document as object
dim dispatcher as object
rem get access to the document
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")
dim args1(4) as new com.sun.star.beans.PropertyValue
args1(0).Name = "CharFontName.StyleName"
args1(0).Value = "Полужирный"
args1(1).Name = "CharFontName.Pitch"
args1(1).Value = 2
args1(2).Name = "CharFontName.CharSet"
|args1(2).Value = -1
|args1(3).Name = "CharFontName.Family"
args1(3).Value = 1
args1(4).Name = "CharFontName.FamilyName"
args1(4).Value = "IzhitsaShadowC"
dispatcher.executeDispatch(document, ".uno:CharFontName", "", 0, args1())
dim args2(2) as new com.sun.star.beans.PropertyValue
args2(0).Name = "FontHeight.Height"
args2(0).Value = 26
args2(1).Name = "FontHeight.Prop"
args2(1).Value = 100
args2(2).Name = "FontHeight.Diff"
|args2(2).Value = 0
dispatcher.executeDispatch(document, ".uno:FontHeight", "", 0, args2())
dim args3(0) as new com.sun.star.beans.PropertyValue
args3(0).Name = "Bold"
args3(0).Value = true
dispatcher.executeDispatch(document, ".uno:Bold", "", 0, args3())
lend sub
```


Интересные факты о текстовых процессорах

1. Панграмма (с греч. «все буквы»), или разнобуквица — текст, использующий все буквы алфавита. Панграммы используются в текстовых процессорах для демонстрация шрифтов, проверки передачи текста по линиям связи, тестирования печатающих устройств.

Microsoft Windows 47 букв: «Съешь же ещё этих мягких французских булок, да выпей чаю»

GNU/Linux (Gnome) 45 букв: «В чащах юга жил бы цитрус? Да, но фальшивый экземпляр!»

Самая короткая панграмма: «Шеф взъярён тчк щипцы с эхом гудбай Жюль» (33 буквы).

2. Скрытые незадокументированные возможности текстовых редакторов

«=rand(m, n)» – если ввести этот текст без кавычек и нажать Enter, то сгенерируется псевдослучайный текст, состоящий из m абзацев по n предложений в каждом абзаце.

«=lorem(m, n)» – аналогично сгенерируется искажённый отрывок из философского трактата Цицерона «О пределах добра и зла», написанного на латинском языке в 45 году до Р. Х. (впервые этот текст был применен для набора шрифтовых образцов в XVI веке).

«dt» + F3 — сгенерируется 1 абзац текста в LibreOfffice.

Запрет на ввод некорректных значений в ячейку

Условное форматирование

ФИО

Таненбаум Эндрю

Торвальдс Линус

Оценкт-

Расчёт доверительного интервала

В русской версии MS Office аналогичные функции называются

- «ОКРУГЛ»
- «ДОВЕРИТ.СТЬЮДЕНТ»
- «СТАНДОТКЛОН»
- «CYËT»

Доверительная вероятность принята равной 95% (типичное используемое учёными значение)

The state of the s

Функция «Подбор параметра»

Аналитик данных

Ароматный мир 🗸

Санкт-Петербург

Планирование и расчет эффективности маркетинговых акций. Факторный анализ влияния акций с помощью регрессионных моделей и проверки гипотез. Подготовка презентаций по...

Знания Excel на уровне продвинутого пользователя (визуализация, функции (index, match и т.п.), макросы). Аналитический склад ума, абстрактное мышление, умение...

Аналитик

Национальный исследовательский университет Высшая школа экономики 🗸

Санкт-Петербург

Сбор, обработка и проверка больших массивов данных (реестров). Расчет показателей для отчетов на основе реестров. Формирование отчетов по заданной методике.

Продвинутый пользователь Excel (включая обработку массивов данных, сводные таблицы, **макросы**, функции). Владение языками R, Python (как преимущество). Продвинутый пользователь Power...

Программист С#

АО ИнфоТеКС 🗸

Санкт-Петербург

Настройка шаблона для веб-сайта с документацией: HTML, CSS, JavaScript, XML. Поддержка Word-шаблонов и **макросов** к ним на с#.

Опыт разработки веб приложений на asp.net. Опыт разработки плагинов или **макросов** к excel и word документам. Опыт разработки плагинов к...

Специалист по внедрению ВРМ-систем

ELMA 🗸

Санкт-Петербург, • Выборгская

Реализовывать решения на платформах ELMA. Участвовать в оценке и составлении архитектуры решения. Участвовать в тестировании решения. Устанавливать, настраивать и администрировать...

Знание MS Excel (сводные таблицы, ВПР, макросы). Опыт работы с реляционными СУБД (MSSQL\ MySQL\ PostgreSQL\ Oracle), знание SQL.

Представление целых чисел в ограниченной двоичной разрядной сетке (РС) компьютера

Для хранения целой переменной в памяти компьютера используется фиксированное заранее известное число бит. Например, для хранения *a*=2 в компьютерную память будет записано следующее двоичное число, если используется 32-разрядный компьютер:

Процессор за один такт работы выполняет операцию сразу со всеми 32-мя битами:

 $00000000000000010000000000100_{(2)}\\$

Пусть для хранения целого неотрицательного числа в переменной a используется k бит.

MIN(a) =
$$000...000_{(2)} = 0$$
,
MAX(a) = $111...111_{(2)} = 2^k - 1$.
$$999 = 1000 - 1 = 10^3 - 1$$

$$111_{(2)} = 1000_{(2)} - 1 = 2^3 - 1$$

Диапазон представления целых неотрицательных чисел в k-разрядной сетке: от 0 до 2^k-1.

Представление целых чисел со знаком в компьютере

В ЭВМ нет способа обозначить в двоичной СС знак «МИНУС» перед числом. Способы решения этой проблемы с примерами для 4-разрядного компьютера:

- Специальный знаковый бит (СЗБ) +5 = 0101₂, -5 = 1101₂ (первый бит означает знак числа)
- Фиксированное смещение влево (ФСВ) -5 = 0000₂, -4 = 0001₂, ..., +10 = 1111₂ (все числа уменьшены на 5)
- Нега-двоичная система счисления (НДСС) -5 = 1111-2, +5 = 0101-2 (основание СС равно «-2»)
- Обратный/инверсный код (ОК) +5 = 0101₂, -5 = 1010₂ (инвертируются все биты)
- Δοπολημτελιστικό κομ (ΔΚ)
 +5 = 0101₂, -5 = 1011₂ (инвертировать все биты и прибавить 1)

Целые числа со знаком в трёхразрядном коде

Для сравнения – диапазон представления целых неотрицательных чисел в трёхразрядной сетке: от $000_{(2)}$ до $111_{(2)}$, т. е. от 0 до 7.

Трёхразрядный код	СЗБ	ФСВ (5)	ндсс	OK	ДК
000	+0	-5	0	+0	0
001	1	-4	1	1	1
010	2	-3	-2	2	2
011	3	-2	-1	3	3
100	-O	-1	4	-3	-4
101	-1	0	5	-2	-3
110	-2	1	2	-1	-2
111	-3	2	3	-0	-1
Диапазон	-3+3	-5+2	-2+5	-3+3	-4+3

Целые числа со знаком в *n*-разрядном компьютере

Имея *n*-разрядный двоичный регистр, можно закодировать 2ⁿ разных символов. Для кодирования целых чисел без знака используется диапазон от 0 до 2ⁿ – 1. Каков диапазон хранимых чисел со знаком в *n*-разрядном регистре?

1. Специальный знаковый бит (СЗБ): от
$$-(2^{n-1}-1)$$
 до $+(2^{n-1}-1)$.

$$\begin{array}{c} \text{min} {\rightarrow} \\ \text{max} {\rightarrow} \end{array}$$

Т	Т	Т	Т	•••	Т	Т	Т	т.
0	1	1	1		1	1	1	1
0	0	0	0		0	0	0	0
1	1	1	1		1	1	1	1

2. Фиксированное смещение влево (ФСВ): от
$$(-S)$$
 до $(2^n - 1 - S)$, где S – смещение.

3. Нега-двоичная система счислен	ния (НДСС):
чётное n : от $-(2^n-1)*2/3$	до $(2^n-1)/3$,
нечётное n : от $-(2^{n-1}-1)*2/3$	до $(2^{n+1}-1)/3$,
любое n : от $-(2^{n-(n \mod 2)}-1)*2/3$	$\Delta o (2^{n+(n \mod 2)}-1)/3.$

 1	0	1	0	1	0	1	0
 0	1	0	1	0	1	0	1

4. Обратный/инверсный код (ОК): от
$$-(2^{n-1}-1)$$
 до $+(2^{n-1}-1)$.

1	0	0	0	 0	0	0	0
0	1	1	1	 1	1	1	1
1	0	0	0	 0	0	0	0
0	1	1	1	 1	1	1	1

5. Дополнительный код (ДК): от
$$(-2^{n-1})$$
 до $(2^{n-1}-1)$.

Дополнительный код: пример

Как хранится число «-2» в памяти десятиразрядного компьютера?

<u>Решение</u>

1 шаг: записать число «+2», используя все доступные разряды $2_{10} = 000000010_2$

2 шаг: инвертировать каждый бит полученного числа: $000000010_{\circ} \rightarrow 11111111101_{\circ}$

3 шаг: прибавить один 1111111101₂ + 00000001

+ <u>000000001</u>₂ 1111111110₂

4 шаг: радоваться результату: $-2_{10} = 11111111110_2$ (обратный перевод выполняется так же)

Иллюстрация эффекта 2 + (-2) = 0 \rightarrow $_{_{+}}000000010_{_{2}}$ $\underline{1111111110}_{_{2}}$ $\underline{1000000000}_{_{2}}$ – это ноль, т. к. 11-го разряда нет

Как придумали правило ДК? Почему нужно инвертировать биты и прибавлять 1?

$$x_{(2,n)} + inv(x_{(2,n)}) = ...111111111_{(2,n)} = 2^n - 1$$
. Пример: $0101_{(2,4)} + 1010_{(2,4)} = 1111_{(2,4)} = 2^4 - 1$ $inv(x_{(2,n)}) + 1 = 2^n - x_{(2,n)}$ $inv(x_{(2,n)}) + 1 = -x_{(2,n)}$ $a_{(2,n)} - b_{(2,n)} = a_{(2,n)} + (-b_{(2,n)}) = a_{(2,n)} + (2^n - b_{(2,n)}) = a_{(2,n)} + (inv(b_{(2,n)}) + 1)$

Арифметические операции в ограниченной разрядной сетке

- После любой арифметической операции процессор автоматически без явной команды от программиста устанавливает флаги, характеризующие состояние процессора.
- Совокупность этих флагов называется регистром состояния.
- Программист может анализировать содержимое регистра состояния процессора для принятия решений в программе.

Флаги состояния процессора

- SF Sign Flag. Равен 1, если результат операции отрицателен, иначе 0.
- ZF Zero Flag. Равен 1, если результат операции равен нулю.
- **PF Parity Flag.** Равен 1, если младший байт результата выполнения операции содержит чётное число единиц.
- **AF Adjust Flag.** Равен 1, если произошёл заём или перенос между первым и вторым полубайтом (нибблом).
- **CF Carry Flag.** Равен 1, если происходит перенос за пределы разрядной сетки или заём извне.
- OF Overflow Flag. Равен 1, если результат операции не помещается разрядную сетку (при использовании дополнительного кода).

Флаги переполнения и переноса (OF, CF)

- **OF Overflow Flag.** Принимает значение 1, если в результате выполнения операции со знаковыми числами появляется одна из ошибок:
 - 1) складываем положительные числа, получаем неположительный результат;
 - 2) складываем отрицательные числа, получаем неотрицательный результат.

Примеры для 4-разрядного компьютера:

```
0100_{(2)} + 0001_{(2)} = 0101_{(2)} (CF=0, OF=0) : +4 + 1 = +5 0110_{(2)} + 1001_{(2)} = 1111_{(2)} (CF=0, OF=0) : +6 - 7 = -1 (11111<sub>2</sub> в доп. коде это -1<sub>10</sub>) 1000_{(2)} + 0001_{(2)} = 1001_{(2)} (CF=0, OF=0) : -8 + 1 = -7 1100_{(2)} + 1100_{(2)} = 1000_{(2)} (CF=1, OF=0) : -4 - 4 = -8 1000_{(2)} + 1000_{(2)} = 0000_{(2)} (CF=1, OF=1) : -8 - 8 = 0 0101_{(2)} + 0100_{(2)} = 1001_{(2)} (CF=0, OF=1) : +5 + 4 = -7
```


Пример установки флагов состояния процессора

16-разрядный компьютер

```
Пример 1
   0010.0101.0000.1100_{(2)} + 9484_{(10)}
+ 0011.1101.1010.0100_{(2)} +15780_{(10)}
   0110.0010.1011.0000_{(2)} = +25264_{(10)}
               CF=0, OF=0, ZF=0, AF=1, SF=0, PF=0
Пример 2
  0110.0010.1010.1001_{(2)} +25257<sub>(10)</sub>
+ 0011.1101.1010.1100_{(2)} +15788_{(10)}
  1010.0000.0101.0101_{(2)} = -24491_{(10)}
                CF=0, OF=1, ZF=0, AF=1, SF=1, PF=1
Пример 3
  1110.0111.0110.1000_{(2)} - 6296_{(10)}
+ 0110.0010.1011.0000_{(2)} +25264_{(10)}
1.0100.1010.0001.1000_{(2)} = +18968_{(10)}
               CF=1, OF=0, ZF=0, AF=0, SF=0, PF=1
```