1 Corpos

Definição 1.1. [Coolho,AlgLin,2013] Um conjunto não vazio K é um corpo se em K pudermos definir duas operações, denotadas por +(adição) e . (multiplicação). satisfazendo as sequintes propriedades:

propriedade comutativa (A1) $a + b = b + a, \forall a, b \in K$

propriedade associativa (A2) $a + (b + c) = (a + b) + c, \forall a, b, c \in K$

elemento neutro da soma (A3) Existe um elemento em K, denotado por 0 e chamado de elemento neutro da adição, que satisfaz $0 + a = a + 0 = a, \forall a \in K$

inserso aditivo (A4) Para cada $a \in K$, existe um número em K, denotado por -a e chamado de oposto de a (ou inverso aditivo de a) tal que a + (-a) = 0

propriedade comutativa (M1) $a.b = b.a, \forall a, b \in K$ (propriedade comutativa)

propriedade associativa (M2) $a.(b.c) = (a.b).c, \forall a,b,c \in K$ (propriedade associativa)

elemento neutro da multiplicação (M3) Existe um elemento em K, denotado por 1 e chamado de elemento neutro da multiplicação, tal que $1.a = a.1 = a, \forall a \in K$

inverso multiplicativo (M4) Para cada elemento não nulo $a \in K$, existe um elemento em K, denotado por a^{-1} e chamando de inverso multiplicativo de a, tal que $a.a^{-1} = a^{-1}.a = 1$.

2 Matrizes

Definição 2.1. [Noble,AlgLinApl-pt,1986] Uma matriz anti-simétrica é definida como sendo uma matriz tal que $A^t = -A$, ou seja, $a_{ij} = -a_{ji}$

Lema 2.2. [Noble,AlgLinApl-pt,1986] Uma matriz anti-simétrica é quadrada, e que os elementos da diagonal de uma matriz anti-simétrica são nulos.

Lema 2.3. [Noble, AlgLin Apl-pt, 1986] Se A é qualquer matriz quadrada, então $A - A^t$ é anti-simétrica.

Definição 2.4. Noble, AlgLin Apl-pt, 1986 Uma matriz real é uma cujos elementos são todos reais. Uma matriz complexa tem elementos que podem ser complexos. Uma matriz imaginária tem elementos que são todos imaginários ou nulos. O símbolo \overline{A} é usado para represenar a matriz cujo (i,j)-ésimo elementos é conjugado complexo \overline{a}_{ij} do (i,j)-ésimo elemento de A.

Definição 2.5. [Noble AlgLin Apl-pt. 1986] Chama-se de matriz transposta hermitiana, denotado por A^H , $A^H = \overline{A}^t$, que é a complexa cojugada da transposta ordinária.

Definição 2.6. [Noble,AlgLinApl-pt,1986] Chama-se de matriz hermitiana uma matriz tal que $A^H = A$.

Lema 2.7. [Noble, AlgLin Apl-pt, 1986] Uma matriz hermitiana é a soma de uma matriz real simétrica e de uma matriz imaginária anti-simétrica.

Lema 2.8. [Noble, AlgLin Apl-pt, 1986] As propriedades de matrizes são válidas:

- $\overline{AB} = \overline{A}.\overline{B}$
- \bullet $(\overline{A})^t = (\overline{A^t})$

Definição 2.9. [Noble,AlgLinApl-pt,1986] Uma matriz P tal que $P^HP = PP^H = I$ é chamada matriz unitária.

Definição 2.10. Noble, AlgLin Apl-pt, 1986 Uma matriz P real tal que $P^TP = PP^T = I$ é chamada matriz ortogonal.

Teorema 2.11. [Noble, AlgLin Apl-pt, 1986]

- (i) Tanto as colunas quanto as linhas de uma matriz unitária (ou ortogonal) formal um cojunto ortonormal.
- (ii) Se P é unitária, então |det P| = 1.
- (iii) Se P e Q são unitárias, então o mesmo acontece com PQ.
- (iv) Se P é unitária, então, para todos os x e y, temos (Px, Py), $||Px||_2 = ||x||_2$ e $||P||_2 = 1$.
- (v) Se λ for um autovalor da matriz unitária P, então $|\lambda|=1$.

Definição 2.12. [Noble, AlgLin Apl-pt, 1986] Uma matriz quadrada A que satisfaz $A^HA = AA^H$ é chamada matriz normal.

Lema 2.13. [Noble,AlgLinApl-pt,1986] Seja A uma matriz quadrada.

- (i) Matrizes hermitianas são normais, ou seja $A^{H}A = AA^{H} = AA$
- (ii) Se A é uma matriz real, $A^TA = AA^T = AA$, A é simétrico.

3 Espaços e Subespaços Vetoriais

Definição 3.1. [Lima,AlgLin,2014] Chama-se espaço vetorial E a um conjunto de elementos chamados vetores, no qual estão definidas duas operações: adição, $\forall u, v \in E \Rightarrow u + v \in E$, e multiplicação $\forall \alpha \in \mathbb{R}, \forall v \in E \Rightarrow \alpha v \in E$. Sejam, $\alpha, \beta \in \mathbb{R}, u, v \in E$. As operações de adição e multiplicação também devem satisfazer os seguintes axiomas:

comutatividade u+v=v+u associatividade (u+v)+w=v+(u+w) e $(\alpha\beta)v=\alpha(\beta v)$ vetor nulo existe um vetor $0\in E$, tal que v+0=0+v para todo $v\in E$ inverso aditivo para cada vetor $v\in E$ existe $-v\in E$ tal que v+(-v)=0 distributividade $(\alpha+\beta)v=\alpha v+\beta v$ e $\alpha(u+v)=\alpha u+\alpha v$ multiplicação por 1 1v=v

Definição 3.2. [Lima,AlgLin,2014] Seja E um espaço vetorial, Um subespaço vetorial de E \acute{e} um subconjunto $F \subset E$ com as seguintes propriedades:

vetor nulo existe um vetor $0 \in F$

fechamento da soma $\forall u, v \in F \Rightarrow u + v \in F$

fechamento produto com escalar $\forall v \in E \Rightarrow \forall \alpha \in \mathbb{R}, \alpha v \in F$

Definição 3.3. [Lima,AlgLin,2014] Seja $F_1, F_2 \subset E, F_1 + F_2 := \{v_1 + v_2 : v_1 \in F_1 \land v_2 \in F_2\}.$

Definição 3.4. [Lima,AlgLin,2014] Seja $F_1, F_2 \subset E \land F_1 \cap F_2 = \{0_v\}$, chama-se de soma direta entre F_1 e F_2 , denotado como $F_1 \oplus F_2$, $F_1 \oplus F_2 := F_1 \cup F_2$.

Teorema 3.5. [Lima,AlgLin,2014] Sejam F, F_1, F_2 subespaços vetoriais de E com $F_1 \subset F$ e $F_2 \subset F$. São equivalentes:

- $F = F_1 \oplus F_2$
- $\forall w \in F$ se escreve, de modo único, como a soma $w = v_1 + v_2$, onde $v_1 \in F_1$, e $v_2 \in F_2$

Definição 3.6. [Lima,AlgLin,2014] Seja E um espaço vetorial. Se $x,y \in E$ e $x \neq y$, a reta que une os pontos $x,y \in E$, por definição o conjunto: $r = \{(1-t)x + ty; t \in \mathbb{R}\}.$

Definição 3.7. [Lima,AlgLin,2014] Um subconjunto $V \in E$ chama-se uma variedade afim quando a reta que une dois pontos quaisquer de V está contida em V. Assim $V \in E$ é uma variedade afim se, e somente se, cumpre a seguinte condição:

$$x, y \in V, t \in \mathbb{R} \Rightarrow (1 - t)x + ty \in V.$$

Teorema 3.8. [Lima,AlgLin,2014] Se $V_1, V_2, V_3, \ldots, V_n \subset E$ são variedades afins, estão a interseção $V = V_1 \cap V_2 \cap V_3 \cap \ldots, \cap V_n$ também é uma variedade afim.

Teorema 3.9. [Lima,AlgLin,2014] Todo ponto $p \in E$ é uma variedade afim.

Teorema 3.10. [Lima,AlgLin,2014] Seja V uma variedade afim não-vazia no espaço vetorial V. Existe um único subespaço vetorial $F \subset E$ tal que, $\forall x \in V$ tem-se $V = x + F = \{x + v : v \in F\}$.

4 Bases

Considere V um espaço vertorial sobre $\mathsf{K}.$

Definição 4.1. [Coelho,AlgLin,2013] Um vetor $v \in V$ é uma combinação linear dos vetores $v_1, \ldots, v_n \in V$ se existirem escalares $\alpha_1, \ldots \alpha_n \in K$ tais que:

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n = \sum_{i=0}^n \alpha_i v_i$$

Definição 4.2. [Coelho,AlgLin,2013] Seja $\mathcal B$ um subconjunto de V. Dizemos que $\mathcal B$ é um conjunto gerador de V se todos os elementos de V for uma combinação linear de um número finito de elementos de $\mathcal B$.

Definição 4.3. [Coelho,AlgLin,2013] O conjunto vazio qera o espaço vetorial 0.

Definição 4.4. [Coelho,AlgLin,2013] Seja $\mathcal B$ um subconjunto de $\mathsf V$. Dizemos que $\mathcal B$ é linearmente independente (ou l.i.) se $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$, para $v_i \in \mathcal B$ e $\alpha_i \in \mathsf K$, $i = 0, \ldots, n$ implica $\alpha_1 = \cdots = \alpha_n = 0$.

Definição 4.5. [Lima,AlgLin,2014] Seja E um espaço vetorial. Diz-se que um conjunto $X \subset E$ é linearmente independente (LI) quando nenhum vetor $v \in X$ é combinação linear de outros elementos de X ou se X tem somente um elemento não nulo.

Coelho, AlgLin, 2013 Dizemos que um subconjunto \mathcal{B} de V é uma base de V se:

- (i) $\mathcal B$ for um subconjunto gerador de $\mathsf V$
- (ii) \mathcal{B} for linearmente independente.

Definição 4.6. [Coelho,AlgLin,2013] O conjunto vazio é uma base do espaço vetorial 0.

Teorema 4.7. [Lima,AlgLin,2014] Seja X um conjunto LI de um espaço vetorial E. $\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 + \cdots + \alpha_mv_m$ com $v_1, v_2, v_3, \ldots, v_m \in X \Leftrightarrow \alpha_1 = \alpha_2 = \alpha_3 = \cdots = \alpha_m = 0$

Corolário 4.8. [Lima,AlgLin,2014] Se $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_m v_m = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 + \dots + \beta_m v_m$ e os vetores $v_1, v_2, v_3, \dots, v_m$ são LI então $\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_3, \dots, \alpha_m = \beta_m$.

Teorema 4.9. [Lima,AlgLin,2014] Sejam $v_1, v_2, v_3, \ldots, v_m$ vetores não nulos do espaço vetorial E. Se nenhum deles é combinação linear dos anteriores então $X = \{v_1, v_2, v_3, \ldots, v_m\}$ é LI.

Definição 4.10. [Lima,AlgLin,2014] Um conjunto $X \in E$ é linearmente dependente (LD) quando não é LI. Ou seja, $X = \{0_v\}$ ou $\exists v \in X$ tal que v é combinação linear de outros elementos em X.

Definição 4.11. [Lima,AlgLin,2014] Uma base de um espaço vetorial E é um conjunto $\mathcal{B} \subset E$ linearmente independente que gera E. Ou seja, $\forall v \in E$ se exprime, de modo único como combinação linear $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \cdots + \alpha_m v_m$, $v_1, v_2, v_3, \ldots, v_m \in \mathcal{B}$. $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_m$ são coordenadas do vetor v na base \mathcal{B} .

Definição 4.12. [Coelho,AlgLin,2013] Dizemos que V é finitamente gerado se possuir um gerador finito.

Proposição 4.13. [Coelho,AlgLin,2013] Seja V um K espaço vetorial finitamente gerado não nulo e assuma $\{v_1, \ldots, v_m\}$ seja um conjunto gerador de V. Então todo conjunto linearmente independente de vetores em V tem no máximo m elementos.

Corolário 4.14. [Coelho, AlgLin, 2013] Seja V um K espaço vetorial finitamente gerado não nulo. Então duas bases qualquer de V têm o mesmo número de elementos.

Definição 4.15. [Lima,AlgLin,2014] Um sistema linear é chamado homogêneo quando o segundo membro de cada equação é igual a zero.

Teorema 4.16. [Lima,AlgLin,2014] Todo sistema linear homogêneo cujo número de incógnitas é maior do que o número de equações admite uma solução não trivial.

Teorema 4.17. [Lima,AlgLin,2014] Se os vetores $v_1, v_2, v_3, \ldots, v_m$ geram o espaço vetorial E então qualquer conjunto com mais de m vetores em E é LD

Teorema 4.18. [Lima,AlgLin,2014] Se os vetores $v_1, v_2, v_3, \ldots, v_m$ geram o espaço vetorial E e os vetores $u_1, u_2, u_3, \ldots, u_n$ são LI, então $n \leq m$.

Teorema 4.19. [Lima,AlgLin,2014] Se o espaço vetorial E admite uma base $\mathcal{B} = \{u_1, u_2, u_3, \dots, u_n\}$ com n elementos, qualquer outra base de E possui também n elementos.

Definição 4.20. [Lima,AlgLin,2014] Diz-se que o espaço vetorial E tem dimensão finita quando admite uma base $\mathcal{B} = \{v_1, v_2, v_3, \ldots, v_n\}$ com um número finito n de elementos. Este número, que é igual para todas as bases de E, chama-se a dimensão do espaço vetorial E. Denotado por dimE := n. Diz-se que o espaço vetorial E = $\{0_v\}$ tem dimensão zero

Teorema 4.21. [Lima,AlgLin,2014] Se a dimensão de E é n, um conjunto com n vetores, gera E se, e somente se, é LI.

Teorema 4.22. [Lima, AlgLin, 2014] Seja E um espaço vetorial de dimensão finita n, então:

- Todo conjunto X de geradores de E contém uma base.
- Todo conjunto LI $\{v_1, v_2, v_3, \dots, v_n\} \subset E$ está contido numa base.
- \bullet Todo subespaço vetorial ${\it F} \subset {\it E}$ tem dimensão finita a qual $\leq n.$
- Se a dimensão do subespaço $F \subset E$ é igual a n, então F = E

Definição 4.23. [Lima,AlgLin,2014] Diz-se que o espaço vetorial E tem dimensão infinita quando não tem dimensão finita. Ou seja, quando nenhum subconjunto finito de E é uma base.

Definição 4.24. [Lima,AlgLin,2014] Diz-se que a variedade afim de $V \subset E$ tem dimensão r quando V = x + F, onde o subespaço vetorial $F \subset E$.

5 Transformações Lineares

Definição 5.1. [Lima,AlgLin,2014] Sejam E, F espaços vetoriais. Uma transformação linear $A: E \to F$ é uma correspondência que associa a cada vetor $v \in E$ um vetor $A(v) = Av \in F$ de modo que valham, para quaisquer $u, v \in E$ e $\alpha \in \mathbb{R}$, as relações:

- $\bullet \ A(u+v) = Au + Av$
- $A(\alpha v) = \alpha A v$

Definição 5.2. [Lima,AlgLin,2014] Seja $\mathcal{L}(E;F)$, espaço vetorial dos conjunto das transformações lineares de E para F. $\mathcal{L}(E) := \mathcal{L}(E;E)$, $A:E \to E$ chamado de operador linear em E. $E:E^* := \mathcal{L}(E;\mathbb{R})$, $\varphi:E \to \mathbb{R}$, chamados funcionais lineares. O conjunto dos funcionais lineares E^* de dual de E

Teorema 5.3. [Lima,AlgLin,2014] Sejam E, F espaços vetoriais e \mathcal{B} uma base de E. A cada vetor $u \in \mathcal{B}$, façamos corresponder (de maneira arbitrária) um vetor $u' \in F$. Então existe uma única transformação linear $A : E \to F$ tal que $Au = u', \forall u \in \mathcal{B}$.

Definição 5.4. [Lima,AlgLin,2014] Dadas as transformações lineares $A: E \to F$, $B: F \to G$, D(B) = CD(A). Define-se o produto $BA: A \to G$, $\forall v \in E$, (BA)v = B(Av)

Dadas as transformações lineares $A: \mathsf{E} \to \mathsf{F}, B: \mathsf{F} \to \mathsf{G}, C: \mathsf{G} \to \mathsf{H}$. Temos as seguintes propriedades:

Associatividade (CB)A = C(BA)

Distributiva à esquerda (B + C)A = BA + CA

Distributiva à direita C(A + B) = CA + CB

Homogeneidade $B(\alpha A) = \alpha(BA)$

Definição 5.5. [Lima, AlgLin, 2014] Um operador A chama-se nilpotente quando, para algum $n \in \mathbb{N}$, tem-se $A^n = 0$. Um exemplo significativo de um operador nilpotente é a derivação $D: P_n \to P_n$. Para todo polinômio p de grau $\leq n$ tem-se $D^{n+1}p = 0$, logo $D^{n+1} = 0$.

6 Núcleo e Imagem

Considerando a transformação linear $A:\mathsf{E}\to\mathsf{F}$ sendo, E,F dois espaços vetoriais.

Definição 6.1. [Lima,AlgLin,2014] A imagem de A é o subconjunto $\mathcal{I}m(A) := \{w \in F : w = Av, \forall v \in E\}.$

Definição 6.2. [Lima,AlgLin,2014] Se $\mathcal{I}m(A) = F$, diz que A é sobrejetiva.

Definição 6.3. [Lima,AlgLin,2014] Uma transformação linear $B: F \to E$ chama-se inversa à direita da transformação A, quando tem $AB = I_F$, ou seja, $A(Bw) = w, \forall w \in F$.

Teorema 6.4. [Lima, AlgLin, 2014] Uma transformação linear $A: E \to F$ entre espaços vetoriais de dimensões finitas possui uma inversa à direita se, e somente se A é sobrejetiva.

Definição 6.5. [Lima,AlgLin,2014] O núcleo de A é o subconjunto $\mathcal{N}(A) := \{v \in E : Av = 0\}.$

Definição 6.6. [Lima,AlgLin,2014] Uma transformação linear $A: E \to F$ chama-se injetiva $\Leftrightarrow \forall v, v' \in E, v \neq v' \Rightarrow Av \neq Av', Av, Av' \in F$.

Teorema 6.7. [Lima,AlgLin,2014] Uma transformação linear $A: E \to F$ é injetiva $\Leftrightarrow \mathcal{N}(A) = \{0_v\}$.

Teorema 6.8. [Lima,AlgLin,2014] Uma transformação linear $A: E \to F$ é injetiva \Leftrightarrow leva vetores LI para vetores LI.

Teorema 6.9. [Lima,AlgLin,2014] Seja $A: E \to F$ uma transformação linear. $V = \{x \in E: Ax = b, \forall b \in \mathcal{I}m(A)\}$ é uma variedade afim paralela a $\mathcal{N}(A)$.

Definição 6.10. [Lima,AlgLin,2014] Uma transformação linear $B: F \to E$ chama-se inversa à esquerda da transformação A, quando tem $BA = I_E$, ou seja, $B(Aw) = w, \forall w \in F$.

Teorema 6.11. [Lima,AlgLin,2014] Uma transformação linear $A: E \to F$ entre espaços vetoriais de dimensões finitas possui uma inversa à esquerda se, e somente se A é injetiva.

Definição 6.12. [Lima,AlgLin,2014] Uma transformação linear $A: E \to F$ chama-se inversível quando existe $B: F \to E$ linear tal que $BA = I_E$ e $AB = I_F$, quando B é ao mesmo tempo inversa pela esquerda e à direta de A. B é inversa de A e denota-se $B = A^{-1}$.

Teorema 6.13. [Lima,AlgLin,2014] Se uma transformação linear A é inversível é equivalente dizer:

- A é injetiva e sobrejetiva ou seja, A é uma bijeção linear entre E e F.
- $A: E \to F$ é um isomorfismo e os espaços vetoriais E e F são isomorfos.
- A tem uma inversa à esquerda $B: F \to E$ e uma inversa à direita $C: F \to E$ então B = C e A é um isomorfismo, com $A^{-1} = B = C$.

Teorema 6.14. [Lima,AlgLin,2014] Uma transformação linear $A: E \to F \ e \ B: F \to G \ temos:$

- $(AB)^{-1} = B^{-1}A^{-1}$
- $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}, \ \alpha \neq 0$

Teorema 6.15. [Lima,AlgLin,2014] [Teorema do Núcleo e da Imagem] Sejam E, F espaços vetoriais de dimensão finita. Para toda transformação linear $A: E \to F$ tem-se dim $E = \dim \mathcal{N}(A) + \dim \mathcal{I}m(A)$

Corolário 6.16. [Lima,AlgLin,2014] Sejam E, F espaços vetoriais de **mesma dimensão finita**. Uma transformação linear $A: E \to F$ é injetiva se, e somente se, é sobrejetiva, portanto é um isomorfismo.

7 Produto Interno

Definição 7.1. [Lima,AlgLin,2014] Um produto interno num espaço vetorial E é um funcional bilinear simétrico e positivo em E. É uma função $E \times E \to \mathbb{R}$, que associa cada par de vetores $u, v \in E$ a um número real $\langle u, v \rangle$ de modo que sejam válidas as seguintes propriedades:

Bilinearidade

Comutatividade (simetria)

$$\langle u, v \rangle = \langle v, u \rangle$$

Positividade

$$\langle u, u \rangle > 0, u \neq 0$$

Definição 7.2. [Lima,AlgLin,2014] Seja E um espaço vetorial com produto interno, $u, v \in E$. $u \in v$ são ortogonais $\Leftrightarrow \langle u, v \rangle = 0$. Denotado como $u \perp v$.

Definição 7.3. [Lima,AlgLin,2014] Seja E um espaço vetorial com produto interno, Um conjunto $X \subset E$. $\forall u, v \in X$ tal que $u \neq v \land u \perp v$ diz que X é ortogonal. Se todos os vetores em X são unitários X é um conjunto ortonormal.

Teorema 7.4. [Lima,AlgLin,2014] Num espaço vetorial E com produto interno, todo conjunto ortogonal X de vetores não nulos é LI.