CS3402 Tutorial Transactions (Part 2) and Concurrency (Part 1):

Question 1

Consider the following arrival order of operations to the scheduler. Assume that the scheduler uses strict two-phase locking (S2PL) and add lock/unlock operations in the table below to show the new schedule.

Ta	Tb	Tc
	Write(x)	
Read(y)		
	Read(z)	
		Read(x)
	Write(y)	
Write(x)		
	Read(x)	
	Commit	
		Write(z)
Commit		
		Commit

Question 2

Consider the following schedule.

T_1	T_2
Read(a)	
	Read(a)
Write(a)	
	Write(a)
Commit	
	Commit

- (1) Add lock and unlock operations to the schedule assuming that Conservative 2PL (C2PL) is used.
- (2) Add lock and unlock operations to the schedule assuming that Strict 2PL (S2PL) is used.
- (3) Which one (S2PL or C2PL) is preferable for scheduling the two transactions?

Question 3

Consider the three schedules below. Determine whether each schedule is strict, cascadeless, recoverable, or nonrecoverable. Determine the strictest recoverability condition that each schedule satisfies.

- (a) $r_1(X)$; $w_1(X)$; $r_2(X)$; $r_1(Y)$; $w_2(X)$; c_2 ; c_1 ;
- $(b) \ r_1(X); \ w_1(X); \ r_2(X); \ r_1(Y); \ w_2(X); \ w_1(Y); \ c_1; \ c_2;$
- (c) $r_1(X)$; $w_1(X)$; $w_2(X)$; $w_1(Y)$; c_1 ; $c_2(X)$; c_2 ;
- (d) Make the schedule in (c) strict.