Universität Duisburg-Essen Lehrstuhl für Ökonometrie Prof. Dr. Christoph Hanck M.Sc. Karolina Gliszczynska

Methoden der Ökonometrie - Übung 10

Aufgabe 1:

- a) In der Vorlesung haben Sie den p-Wert bei einer zweiseitigen Alternativhypothese betrachtet, $H_0: \beta = \beta_0$ gegen $H_1: \beta \neq \beta_0$ für $z \sim N(\beta, \sigma^2)$ (erinnern Sie sich daran). Leiten Sie jetzt den p-Wert für Tests mit Hypothesen der Form $H_0: \beta \leq \beta_0$ gegen $H_1: \beta > \beta_0$, sowie $H_0: \beta \geq \beta_0$ gegen $H_1: \beta < \beta_0$ her.
- b) Bestimmen Sie jeweils das Monotonieverhalten des p-Werts bei steigenden/fallenden n bzw. steigendem/fallendem σ .
- c) Diskutieren Sie den Wahrheitsgehalt folgender Aussagen:
 - Falls der p-Wert= 0.05 ist, besteht nur eine 5% Wahrscheinlichkeit, dass die Nullhypothese wahr ist.
 - Falls zwei Studien den gleichen p-Wert haben, bedeutet das den gleichen Anhaltspunkt gegen die Nullhypothese gefunden zu haben.
 - Falls die Nullhypothese belassen wird, ist sie mit Wahrscheinlichkeit $1-\alpha$ wahr.
 - Der *p*-Wert ist die Wahrscheinlichkeit die beobachteten Daten zu erhalten, falls die Nullhypothese wahr ist.

Aufgabe 2:

 $X_1, \ldots X_n$ sind u.i.v. Zufallsvariablen. Die Teststatistik $T = g(X_1, X_2, \ldots, X_n)$ hat unter der Nullhypothese die Verteilungsfunktion F_{H_0} .

Für einen rechtseitigen Test ist der p-Wert definiert als $p_{rechts} = P[T \ge t | H_0]$. Für einen linksseitigen Test gilt $p_{links} = P[T \le t | H_0]$.

Zeigen Sie davon ausgehend, dass der p-Wert für einseitige Tests unter der Nullhypothese auf dem Intervall [0,1] uniformverteilt ist. Sie können annehmen, dass F_{H_0} stetig und invertierbar ist.

Aufgabe 3:

- a) Betrachten Sie das Testproblem aus Aufgabe 1a) $H_0: \beta = \beta_0$ gegen $H_1: \beta \neq \beta_0$ zum Signifikanzniveau α unter der Normalverteilungsannahme mit bekanntem σ . Es sei der wahre Parameter $\beta = \beta_1 \neq \beta_0$. Berechnen Sie die Macht des Test als Funktion von β_1 .
- b) Bestimmen Sie jeweils das Monotonieverhalten der Macht in Abhängigkeit von β_1, n, σ und α .

Aufgabe 4:

a) Sei $\boldsymbol{y} \sim N\left(\mathbf{0},\boldsymbol{\Sigma}\right)$, wobei $\boldsymbol{\Sigma}\left(m \times m\right)$ positiv definit ist. Zeigen Sie:

$$oldsymbol{y}^T oldsymbol{\Sigma}^{-1} oldsymbol{y} \sim \chi_m^2.$$

Hinweis: Beachten Sie Result 30 im Matrix Reader.

b) Zeigen Sie: Falls $y \sim t_n$, dann $y^2 \sim F_{1,n}$.