Modification of 2NN MEAM parameters for diamond structure in LAMMPS

Kyung-Han Kang

Computational Materials Science and Engineering Lab.

Dept. of Materials Science and Engineering | Pohang University of Science and Technology

Problem of 2NN MEAM in LAMMPS

- If a reference structure was diamond and the C_{min} value was lower than 0.5, LAMMPS calculation shows different result with KISSMD calculation.
- In those case, the pair potential is affected by screening function because second-nearest neighbors were considered.
- Something is wrong with that in LAMMPS.
- 2NN MEAM codes in LAMMPS should be modified.
 Path: Lammps-DDMMYY/lib/meam/meam_setup_done.F

Modification of 2NN MEAM parameters in LAMMPS

(meam_setup_done.F)

```
c neighbor screening function for lattice type "latt"
     subroutine get Zij2(Zij2,a,S,latt,cmin,cmax)
     implicit none
     integer Zij2
     real*8 a, S, cmin, cmax
     character*3 latt
     real*8 rratio, C, x, sijk
     integer numscr
     if (latt.eq.'bcc') then
       Zij2 = 6
       a = 2.d0/sqrt(3.d0)
       numscr = 4
     else if (latt.eq.'fcc') then
       Zij2 = 6
       a = sqrt(2.d0)
       numscr = 4
     else if (latt.eq.'dia') then
       Zij2 = 0
       a = sqrt(8.d0/3.d0)
       numscr = 4
       if (cmin.lt.0.500001) then
          call error('can not do 2NN MEAM for dia')
     else if (latt.eq.'hcp') then
       Zij2 = 6
       a = sqrt(2.d0)
       numscr = 4
     else if (latt.eq.'b1') then
       Zii2 = 12
       a = sgrt(2.d0)
       numscr = 2
        call error('Lattice not defined in get Zij2.')
     endif
c Compute screening for each first neighbor
     C = 4.d0/(a*a) - 1.d0
     x = (C-cmin)/(cmax-cmin)
     call fcut(x,sijk)
c There are numscr first neighbors screening the second neighbors
     S = sijk**numscr
```

Variable	Value	Notes
Zij2	$0 \rightarrow 12$	Number of second-nearest neighbor
a	sqrt(8/3)	R2/R1
numscr	4 → 1	Square of screening function

```
elseif(lattice.eg.'HCP A3') then
  a2(n) = dsqrt(2.d0)
   Z(n)
         = 12.0d0
   scr = screen(0.5d0, 0.5d0, Cmax(n, n, n), Cmin(n, n, n))
  scr_2nn = scr * scr * scr * scr
  Z2(n) = 6.0d0 * scr 2nn
   ZR2 = Z2(n) / Z(n)
   alat = Re(n)
   omega(n,n) = alat * alat * alat / a2(n)
elseif(lattice.eg.'DIA A4') then
   a2(n) = 4.d0 / dsqrt(6.d0)
         = 4.0d0
   Z(n)
  scr_2nn = screen(0.375d0, 0.375d0, Cmax(n, n, n), Cmin(n, n, n))
   Z2(n) = 12.0d0 * scr 2nn
   print *, n, Z2(n)
  ZR2 = Z2(n) / Z(n)
  alat = 4.d0 * Re(n) / dsqrt(3.d0)
  omega(n,n) = alat * alat * alat / 8.d0
```

Modification of 2NN MEAM parameters in LAMMPS

(meam_setup_done.F)

```
The B1, B2, and L12 cases with NN2 have a trick to them; we need to
compute the contributions from second nearest neighbors, like a-a
pairs, but need to include NN2 contributions to those pairs as
well.
        if (lattce_meam(a,b).eq.'b1'.or.
             lattce meam(a,b).eq.'b2'.or.
                                                                                 add
          rarat = r*arat
          phi aa
          phiaa = phi meam(rarat,a,a)
          call get_Zij(Z1,lattce_meam(a,a))
                                                                                      400
          call get Zij2(Z2, arat, scrn, lattce meam(a, a),
               Cmin meam(a,a,a),Cmax meam(a,a,a))
                                                                                                                                      LAMMPS
          nmax = 10
          if (scrn.gt.0.0) then
                                                                                                                                      KISSMD
            do n = 1, nmax
              phiaa = phiaa +
                    (-Z2*scrn/Z1)**n * phi meam(rarat*arat**n,a,a)
                                                                                 Pair Potential, eV
          endif
                                                                                      200
          phi bb
          phibb = phi meam(rarat,b,b)
          call get Zij(Z1,lattce meam(b,b))
               get Zij2(Z2, arat, scrn, lattce meam(b, b),
               Cmin meam(b,b,b), Cmax meam(b,b,b))
          nmax = 10
          if (scrn.gt.0.0) then
            do n = 1, nmax
              phibb = phibb +
                   (-Z2*scrn/Z1)**n * phi_meam(rarat*arat**n,b,b)
          endif
                                                                                                                1.5
                                                                                                                        2.0
                                                                                                                                2.5
                                                                                         0.0
                                                                                                 0.5
                                                                                                         1.0
                                                                                                                                        3.0
                                                                                                                                               3.5
                                                                                                                                                       40
           if(nv2.eq.2) then
               print *, phiaa
                                                                                                                       r, Å
               print *, phir(j,nv2)
           endif
           print *, phiaa, phibb
          if (lattce meam(a,b).eq.'b1'.
                                                                                 add
               or.lattce meam(a,b).eg.'
Add contributions to the B1 or B2 potential
            call get Zij(Z1,lattce meam(a,b))
            call get Zij2(Z2, arat, scrn, lattce meam(a,b),
                 Cmin meam(a,a,b), Cmax meam(a,a,b))
            phir(j,nv2) = phir(j,nv2) -
```

Si-N MEAM potential (KISSMD vs. LAMMPS)

Si-N Potential : α , β , γ - Si₃N₄ structure

Type	Property		KISSMD	Lammps
	Lattice constant	a	7.751	7.759
	(Å)	c	5.619	5.617
	Formation energy(eV/atom))	-1.218	-1.218
	Volume of cells(Å	3)	292.4	292.8
	Melting Temperature(K)		3200	
α -Si ₃ N ₄	Bulk modulus B (G	Pa)	206.5 (B'=4.132)	
(type)	C_{11} (GPa)		431.6	429.1
	C_{12} (GPa)		153.8	151.2
	C_{13} (GPa)		47.9	48.5
	C_{33} (GPa)		494.9	491.4
	C_{44} (GPa)		190.5	189.2
	C_{66} (GPa)		138.8	139.4

Type	Property	KISSMD	Lammps
	Lattice constant (Å)	7.539	7.496
	Lattice constant (Å) c	2.981	2.983
	Formation energy(eV/atom)	-1.32	-1.32
	Volume of cells(Å ³)	144.62	144.71
0 C: N	Bulk modulus <i>B</i> (GPa)	214.3	
β -Si ₃ N ₄ (type)	Duik inodulus D (OI a)	(B'=1.43)	
(type)	C_{11} (GPa)	412.5	409.3
	C_{12} (GPa)	161.0	174.3
	C_{13} (GPa)	33.3	37.2
	C_{33} (GPa)	653.6	647.0
	C_{44} (GPa)	153.3	153.3
	C_{66} (GPa)	125.7	120.7

Property	KISSMD	Lammps
Lattice constant (Å)	7.981	7.985
Formation energy(eV/atom)	0.0443	0.0444
Volume of cells(Å ³)	444.81	445.53
Bulk modulus B (GPa)	263.1 (B'=4.609)	
C_{11} (GPa)	473.9	471.7
C_{12} (GPa)	157.7	156.6
C ₄₄ (GPa)	364.5	351.0
	Formation energy(eV/atom) Volume of cells(\mathring{A}^3) Bulk modulus B (GPa) C_{11} (GPa) C_{12} (GPa)	Lattice constant (Å) 7.981 Formation energy(eV/atom) 0.0443 Volume of cells(ų) 444.81 Bulk modulus B (GPa) 263.1 (B'=4.609) C_{11} (GPa) 473.9 C_{12} (GPa) 157.7

C-N MEAM Potential (KISSMD vs. LAMMPS)

C-N Potential: C₃N₄ structure

238.7

238.8

 C_{44} (GPa)

Property		α-C ₃ N ₄ (MEAM)	Lammps	β - C_3N_4 (MEAM)	Lammps	γ-C ₃ N ₄	Lammps
Lattice constant (Å)	a	6.387	6.388	5.994	5.994	6.82	6.82
	c	4.63	4.63	2.489	2.489		
Formation energy(eV/atom)		-0.321	-0.321	-0.499	-0.499	1.962	1.962
Volume of cells(Å ³)		81.78	81.82	39.67	39.67	39.66	39.66
Bulk modulus B (GPa)		427		456		373	

Property	Cubic-C ₃ N ₄ (MEAM)	Lammps	Pseudocubic-C ₃ N ₄ (MEAM)	Lammps	Property		Graphitic-C ₃ N ₄ (MEAM)	Lammps
Lattice constant (Å) a	5.475	5.475	3.54	3.54	T*	a	5.056	5.056
Formation energy(eV/atom)	0.628	0.628	0.658	0.658	Lattice constant (Å)	c	6.996	6.996
Volume of cells(Å ³)	41.03	41.03	19.07	19.07	Formation			
Bulk modulus B (GPa)	392		350		energy(eV/atom)		0.1434	0.1434
C_{11} (GPa)	857.4	857.3						
C_{12} (GPa)	159.0	159.3						

Si-C-N MEAM potential (KISSMD vs. LAMMPS)

Si-C-N Potential: Si_xC_yN_z structure

				_					
Property		α-Si ₂ CN ₄ (KISSMD)	Lammps	α-SiC ₂ N ₄ (KISSMD)	Lammps	β-Si ₂ CN ₄ (KISSMD)	Lammps	β-SiC ₂ N ₄ (KISSMD)	Lammps
Lattice	a	7.355	7.357	6.863	6.863	7.197	7.197	6.559	6.558
constant (Å)	c	5.235	5.236	4.912	4.912	2.683	2.683	2.586	2.585
Formation energy(eV/ator	n)	-0.836	-0.837	-0.5532	-0.5533	-0.9593	-0.9593	-0.6624	-0.6627
Volume of cells((\mathring{A}^3)	244.06	244.29	199.79	199.79	119.62	119.63	98.21	98.15
Bulk modulus (GPa)	В	253 (B'=4.11)		312 (B'=4.29)		268.7 (B'=4.191)		352.9 (B'=6.184)	
Property		Cubic-SiC ₂ N ₄ (KISSMD)	Lammps	Cubic-SiCN (KISSMD)	Lammps	Orthorhomb (KISSI	2 7	Lammps	
		6.042	6 042	4 (7)	4 (7)	5 A'	7	5 AT	

Property		Cubic-SiC ₂ N ₄ (KISSMD)	Lammps	Cubic-SiCN (KISSMD)	Lammps	Orthorhombic-Si ₂ CN ₄ (KISSMD)	Lammps
	a	6.943	6.943	4.672	4.672	5.47	5.47
Lattice constant (Å)	b					14.32	14.32
(A)	c					4.88	4.88
Formation energy(eV/atom	.)	-0.468	-0.468	0.764	0.764	-0.953	-0.953
		D 1 1: 0:0) T	D 1 11	G: GM		

Property	Pseudocubic-SiC ₂ N ₄ (KISSMD)	Lammps	Pseudocubic-Si ₂ CN ₄ (KISSMD)	Lammps
Lattice constant a	3.62	3.62	4.01	4.01
(Å) c	3.96	3.96	3.93	3.93
Formation energy(eV/atom)	-0.076	-0.076	-0.424	-0.426
Bulk modulus <i>B</i> (GPa)	277.3		225.5	
Volume of cells	51.88	51.88	62.49	62.48