

PCT

(21) International Application Number:

(30) Priority Data:

98203407.6 -

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
C08F 4/40
A1
(11) International Publication Number: WO 00/22003
(43) International Publication Date: 20 April 2000 (20.04.00)

EP

PCT/EP99/07769

(22) International Filing Date: 11 October 1999 (11.10.99)

(71) Applicant (for all designated States except US): AKZO NOBEL N.V. [NL/NL]; Velperweg 76, NL-6824 BM Amhem (NL).

12 October 1998 (12.10.98)

(72) Inventors; and
(75) Inventors/Applicants (for US only): VAN SWIETEN, Andreas, Petrus [NL/NL]; Reinaldstraat 6, NL-6883 HM Velp (NL). WAANDERS, Petrus, Paulus [NL/NL]; Bentinck-straat 13, NL-7471 SL Goor (NL). MALTHA, Annemarieke

(74) Agent: ARNOLD & SIEDSMA; Sweelinckplein 1, NL-2517 GK 's Gravenhage (NL).

[NL/NL]; De Meren 1729, NL-6605 XS Wijchen (NL).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: REDOX POLYMERIZATION PROCESS

(57) Abstract

A process for emulsion polymerization comprising the steps of reacting together a polymerization initiator, a reductor, and a polymerizable species, with the proviso that the polymerization initiator is not a hydroperoxide, characterized in that the polymerization initiator and the reductor are reacted together to provide a free radical moiety of the initiator, whereupon this free radical moiety initiates polymerization of the polymerizable species, this step being carried out at an initial cold start temperature, whereafter the temperature is increased to follow a temperature profile to a final preselected polymerization temperature.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ne					•
AM	Amenia	ES	Spain	LS	Lesotho	SI	Slovenia
AT	Austria	FI	Finland	LT	Lithuania	SK	Slovakia
AU	Australia	FR	France	LU	Luxembourg	SN	Senegal
AZ		GA	Gabon	LV	Latvia	SZ	Swaziland
	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkmenistan
BG	Bulgaria	HU	Hungary	ML	Mali		Turkey
BJ	Benin	IE	Treland	MN	Mongolia	TT	Trinidad and Tobago
BR	Brazil	IL	Israel	MR	Mauritania	ŲA	Ukraine
BY	Belarus	IS	Iceland	MW	Malawi	UG	Uganda
CA	Canada	IT	Italy	MX		US	United States of Americ
CF	Central African Republic	JP	Japan	NE	Mexico	UZ	Uzbekistan
CG	Congo	KE	Kenya		Niger	VN	Viet Nam
CH	Switzerland	KG	Kyrgyzstan	NL NO	Netherlands	YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	_	Norway	zw	Zimbabwe
СМ	Сатегооп		Republic of Korea	NZ	New Zealand		
CN	China	KR	Republic of Korea	PL	Poland		
CU	Cuba	KZ	Kazakstan	PT	Portugal		
CZ	Czech Republic	LC	Saint Lucia	RO	Romania		
DE	Germany	LI		RU	Russian Federation		
DK	Denmark	LK	Liechtenstein	SD	Sudan		
EE	Estonia	LR	Sri Lanka	SE	Sweden		
52	Estona	LK	Liberia	SG	Singapore		
l							
l							

. WO 00/22003 PCT/EP99/07769

REDOX POLYMERIZATION PROCESS

The present invention relates to a process for emulsion polymerization, to the polymers obtainable by such a process, and to their uses.

5

The production of water based resins, for example by means of emulsion polymerization techniques, is carried out thermally with inorganic persulfates. A problem with thermal polymerization is the process time, which leads to a less than desirable reactor output.

10

An object of the present invention is to provide an alternative polymerization process which aims to improve the process time.

The first aspect of the present invention provides a process according to claim 1.

15

20

Since the polymerization process according to the present invention provides a free radical initiator moiety by means of a redox reaction instead of by thermal decomposition, the polymerization can be carried out with a so-called "cold start", which involves the process time being reduced and the reactor output per unit time being increased.

A redox polymerization is known for tertiary butyl hydroperoxide "Trigonox A-W70". The inventors have shown, however, that a redox polymerization utilizing

25

The inventors have shown that polymerization can start at a lower initial temperature, which means that because of the longer "heating-up" time necessary in thermal polymerization, the polymerization time can be reduced utilizing the process of the current invention.

other organic peroxides provides unexpectedly good results.

30

The inventors have furthermore demonstrated that the process according to the present invention enables a polymer with a very low residual monomer level to be

obtained, whilst, with respect to thermal polymerization, the amount of initiator used can be reduced.

Good results have been achieved under the conditions as defined in claims 2-6.

The polymerization initiator is most preferably a substantially non-water-soluble initiator, such as defined in claim 7 or 8, since these non-water-soluble initiators yield an unexpectedly high efficiency in polymerization.

- This higher efficiency results in shorter polymerization times and in polymer resins with improved properties. The higher efficiency of the organic peroxides is expressed by the low level of residual monomers and by the low molecular weights (Mw/Mn) of the polymers formed.
- Furthermore, the conductivity of the resins initiated with the organic peroxide/redox system is lower than for corresponding resins that were initiated by persulfates.

The reductor of the redox system preferably is chosen from the following group:
sodium formaldehyde sulfoxylate (SFS), sodium bisulfite, Ascorbic acid (vitamin C), aldehydes, for example glutaraldehyde, sodium metabisulfite, sodium dithionate, and sugars, wherein the reductor most preferably is sodium formaldehyde sulfoxide.

The polymerizable species preferably is chosen from the following group: acrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methoxyethyl acrylate, dimethyl aminoacrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearic methacrylate, dimethyl aminomethacrylate, allyl methacrylate, 2-hydroxyethyl

10

25

30

acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, acrylamide, methacrylamide, glycidyl acrylate, vinyl ester of versatic acid, styrene, para-methyl styrene, vinyl acetate, alpha-methyl styrene, wherein the polymerizable species most preferably comprises vinyl acetate and/or the vinyl ester of versatic acid.

Further preferred process conditions are detailed in claims 11-15.

The polymerization is carried out in a conventional emulsion, for example in a mixture of anionic and non-ionic surfactants such as Witconate (sodium alphaolefin sulfonate) and Syntopon (ethoxylated nonylphenol); however, other emulsifiers or mixtures are also possible.

This emulsifier solution preferably is a mixture of nonionic and anionic emulsifiers and most preferably is selected from the group consisting essentially of:

- long-chain aliphatic carboxylates (ionic)
- alkylbenzene sulfonates (ionic)
- alkyl sulphates (ionic)
- dialkylsulphosuccinate (ionic)
- 20 ethoxylated alcohols (nonionic)
 - ethoxylated alkyl phenols (nonionic)
 - ethoxylated amine or amides (nonionic).

A second aspect of the present invention provides a polymer obtainable according to this process.

The invention will now be further elucidated by way of the following examples. Examples 1-6 are comparative examples and Examples 7-12 are examples according to the present invention using a redox system. Examples 3, 4, 6, 8-12 were subjected to a temperature profile increasing from an initial temperature to a

final temperature, i.e. subjected to a so-called "cold-start", and Example 7 was carried out at constant temperature.

Procedure of preparation

The polymerization in all the examples was carried out in a 0.25 L glass reactor with a stirrer under nitrogen. A seed was prepared first by adding 10% of the reactive components at polymerization temperature.

The preparation of the seed was carried out as follows:

The reactor was filled with buffered (NaAc/HAc) emulsifier solution (Witconate/Syntopon), prepared with oxygen-free deionized water. At the polymerization temperature 10% of the pre-emulsion containing soaps (Witconate and Syntopon), monomers, and, in the case of the redox system according to the present invention, also reductor and catalyst, were added. In addition the solution or pre-emulsion of the initiator was added to achieve control over the accurate dosing of the initiator.

After a polymerization time of 30 minutes the remaining monomers, pre-emulsion, and initiator solution were dosed in 2.5 hours. In Examples 3, 4, 6, 8-12 the temperature was increased to the final temperature in the same period, following a temperature profile. The final temperature was maintained for 1 hour.

The composition of the buffered soap solution used was as follows:

NaAC.3ag

0.25 g (sodium acetate)

25 HAC

20

0.11 g (acetic acid)

H₂O

30.3 g

Witconate

0.38 g (soap)

Syntopon

0.38 g (soap)

Example 1

Thermal system

The temperature was kept at 70°C during the polymerization. The composition of the used pre-emulsion was:

Witconate 1.28 g Syntopon 1.28 g H_2O 34.43 g

Vac (vinyl acetate) 52.5 g (monomer)

VEOVA (vinyl ester of versatic acid) 22.5 g (monomer)

The initiator solution was composed of 4.18 mmoles ammonium/sodium or potassium persulfate in 25 g H_2O . The total process time including the time needed for heating up the reactor contents to $70^{\circ}C$ before polymerization amounted to 5.5 hours.

10

15

Examples 2, 5, 7

The temperature was kept at 70°C (Examples 2, 5) and 20°C (Example 7), respectively. The composition of the used pre-emulsions was as follows:

Witconate 1.28 g Syntopon 1.28 g H_2O 34.43 g

Peroxide 1.04-4.18 mmoles as mentioned in the examples

Vac (vinyl acetate) 52.5 g (monomer)
VEOVA (vinyl ester of 22.5 g (monomer)

versatic acid)

The reductor SFS (sodium formaldehyde sulfoxyde: 0.65 g) and the catalyst (FeSO₄ 16.7 mg) were dissolved in 25 g H_2O .

The total process time was 4 hours.

Examples 3, 4, 6, 8-12

The polymerization temperature was kept at 20°C for the first 30 minutes to prepare a seed. The temperature was then increased by 20°C/hour to 70°C following a temperature profile.

5

It is noted that other starting temperatures and temperature programmes can be used, either for initiating polymerization or for initiating and completing polymerization.

In all the examples the residual monomers were determined by gas chromatography (GC). The molecular weight of the prepared polymers was determined by gel permeation chromatography (GPC) with polystyrene for calibration. The conversion/solids content was determined by standard procedure. The viscosity was determined using a Brookfield digital viscometer.

15

30

The results are shown in Table 1.

Examples 13-24

20 Procedure of preparation

The polymerization in all examples was carried out in a 0.25 L glass reactor with a stirrer under nitrogen. A seed was prepared first by adding 10% of the reactive components at polymerization temperature.

The preparation of the seed was carried out as follows:

The reactor was filled with the emulsifier solution (sodium lauryl sulfate in water) prepared with oxygen-free deionized water. At the starting polymerization temperature 10% of the pre-emulsion containing soap, monomers, and in the case of the redox system, also reductor and catalyst, were added. In addition the solution or pre-emulsion of the initiator was added to achieve control over the

accurate dosing of the initiator.

After a polymerization time of 30 minutes the remaining monomers, pre-emulsion, and initiator solution were dosed in 2.5 hours. The temperature was increased to the final temperature in the same period, following a temperature profile. The final temperature was maintained for 1 hour.

The composition of the soap solution was as follows:

- 0.10 g sodium lauryl sulfate (emulsifier)
- 10 25.0 ml deionized water

Pre-emulsion:

- 1.60 g sodium lauryl sulfate
- 30 ml deionized water
- 70 g monomer mixture (butylacrylate / styrene / methacrylic acid = 6/4/0.1) including the initiator (1.04 meq), if not water-soluble.

The reductor SFS (sodium formaldehyde sulfoxylate 0.16 g) and the catalyst ($Fe^{\parallel}SO_4$ 2.8 mg) were dissolved in 10 ml water.

The molar ratio oxidator: reductor: Fe = 1: 1: 0.01

The results are shown in Tables 2 and 3.

PS (mm) 8 212 128 8 141 143 175 98 148 197 181 γ mS/cm 5.3 9.8 5.6 3.6 3.4 3.2 1.9 3.1 3.1 1000/48 Mw/Mn x1000 790/64 630/50 290/19 170/18 150/22 270/35 560/48 670/44 residual VeoVa % <0.004 0.074 0.095 0.095 0.30 0.028 0.03 0.067 residual Vac% 0.17 0.049 0.082 0.048 <0.016 0.51 0.36 0.096 0.073 0.054 20° --> 70°C redox 20° --> 70°C redox 20° --> 70°C redox 20° --> 70°C redox 20 --> 70°C redox 20 --> 70°C redox 20 --> 70°C redox 20 --> 70°C redox 70°C thermal 70°C redox 70°C redox 20°C redox conditions meq oxid. 1.05 4.2 1.5 4.2 4.2 2.7 Tx C (tert-Butyl peroxybenzoate) Tx C (tert-Butyl peroxybenzoate) Without Fe2+ Tx C (tert-Butyl peroxybenzoate) Tx C (tert-Butyl peroxybenzoate) Tx C (tert-Butyl peroxybenzoate) Tx 21 (tert-Butyl peroxy-2hydroperoxide) Tx A-W70 (tert-Butyl Tx A-W70 (tert-Butyl ethylhexanoate) hydroperoxide) K2S208 K2S208 K2S208 K2S208 Initiator Example 9 12 ဖ 6

Table 1

Table 2

Emulsion: Theoretical solids content: VeoVa10/VAc-emulsions: 44% Reductant: SFS/Fe(II) Ox: SFS: Fe = 1:1:0.01

Initiator	Monomers	[initiator]	Solids	Residual mon	monomers Vac	»«	Ę.	<u> </u>	Ha.
		haur		2001				30,0	000
002	1/00//0V/Ac	1.4	39.8	0.65	1.23	482900	51900	9.30	2.30
7202CB	ACOVA! AND					00001	. 00001	0 3	200
	VeoVaVAc	2.1	43.2	0.34	0.13	412000	00060	6.0	2.30
					3	244200	33300	6.34	4 35
T, C	Wen/Ja/VAc	77	42.2		0.04	2000	2000	5	}
) 	2000	:			,	000000	00800	80	3.61
Tv 22	VecVaVAc	28	40.5	76.0	0.70	nonceo	22000	3	
77 41	211024	2				070000	24400	α α	4 55
T., 447	1/00//ON/AC	77	42.5	- D.G		0029/2	20400	20.0	22.5
×-	22.422.422		2			00000	002777	2 4 6	7
70410	\\oo\\o\\\D\\\DC	1 4	16.5	n.d.	n.d.	00087/	141200	0.10	2
Laciox	20,000	-	2						

n.a. = not applicable n.d. = not detected

Emulsion: Table 3

Theoretical solids content: STY/BA/MA-emulsions:46% Reductant: SFS/Fe(II) Ox: SFS: Fe = 1:1:0.01

1-14:-4									
initiator	Monomers	[initiator]	Solids	Residual r	monomers	Mw	Mn	a	Ha
		med		STY	ВА			ı	i
K,S,O,	STY/BA/MA	1.04	44.8	n.d.	1.59	1753000	346000		2.40
7.7	ALM ACIVITO	5				0000011	27000		2.13
ے خ	SI T/BAVMA	2.08	45.1	n.d.	1.20	000069	169000	4.1	20
	CTV/DA/AAA	707	00,	,,,,					
	OI MONIMA	1.04	48.3	0.04	1.17	713700	144300		4 20
T > 22	CTV/DA/MAA	90.0	605	-			222:::		7.50
77 \	SI MONING	2.00	20.0	٦.	n.d.	529500	20900		1 02
Tv 117	CTV/DA/MA	70,	0.17	0,0	-				-02
	Alviorii C	2.	0.74	0.10	1.87	536080	140400		4 40
20110	ALM ACIVITO	707							2
Laurox	SI I/DAVMA	40.1	45.5	n.d.	n.d.	2367400	426300		8 30

n.a. = not applicable n.d. = not detected

Ŋ

Styrene/butyl acrylate/methacrylic acid: 4/6/0.1

Tx C = tert-butyl peroxybenzoate Tx 22 = 1,1 di(tert-butylperoxy)cyclohexane Tx 117 = tert-butylperoxy-2-ethylhexyl carbonate Laurox = di-lauroyl peroxide

Results

As reference the emulsion copolymerization of vinylacetate and VeoVa with potassium persulfate at 70°C was used (thermal conditions).

5

The results show low residual monomer levels for the non-water-soluble organic peroxides (peroxyesters) under redox conditions. As the efficiency of the non-water-soluble peroxyesters such as Trigonox C was much higher than that of the water-soluble persulfates and hydroperoxides, the levels of addition could be lowered to 20-40% of the original milli-equivalents of initiator used. Due to lower amounts of initiator and reductor, a higher value for pH and lower values for the conductivity were obtained. The prepared polymer had molecular weights (Mw/Mn) comparable with those of the reference copolymer of VeoVa/VAc.

15

20

10

The peroxyesters such as Trigonox 21 gave a high conversion of monomers at ambient temperature.

The invention is not limited to the above description; rather, the requested rights are determined by the following claims.

CLAIMS

5

10

15

- 1. A process for emulsion polymerization comprising the steps of reacting together a polymerization initiator, a reductor, and a polymerizable species, with the proviso that the polymerization initiator is not a hydroperoxide, characterized in that the polymerization initiator and the reductor are reacted together to provide a free radical moiety of the initiator, whereupon this free radical moiety initiates polymerization of the polymerizable species, this step being carried out at an initial cold start temperature, whereafter the temperature is increased to follow a temperature profile to a final preselected polymerization temperature.
- 2. Process according to claim 1 carried out at an initial temperature of up to 70°C, for example carried out at an initial temperature of up to 50°C and preferably of up to 35°C.
- 3. Process according to claim 1 or 2 carried out at an initial temperature lying in the range of +10° to 35°C, preferably in the range of 15° to 25°C.
- 4. Process according to any one of the preceding claims wherein the initial temperature is maintained for a predetermined length of time, for example up to 2 hours, preferably up to 1 hour, most preferably up to half an hour.
- 5. Process according to any one of the preceding claims wherein the temperature is increased subsequent to the initial temperature maintenance period to follow a temperature profile to a final polymerization temperature, preferably up to a final polymerization temperature of at the most 90°C, and wherein the final polymerization temperature preferably lies in the range of 50-80°C and most preferably is

10

15

70°C or less.

- Process according to claim 5 wherein the initial temperature is increased 6. incrementally per pre-selected time period, preferably by about 20°C per hour.
- Process according to claim 6 wherein the initiator is selected from the 7. consisting essentially of: diisobutanoyl peroxide, peroxyneodecanoate, 2,4,4-trimethylpentyl-2-peroxyneodecanoate, tertamyl peroxyneodecanoate, bis(4-tert-butylcyclohexyl)peroxydicarbonate, bis(-ethylhexyl)peroxydicarbonate, tert-butyl peroxyneodecanoate, dibutyl peroxydicarbonate, dicetyl peroxydicarbonate, dimyristyl peroxydicarbonate, tert-amyl peroxypivalate, tert-butyl peroxypivalate, bis(3,5,5trimethylhexanoyl) peroxide, dilauroyl peroxide, didecanoyl peroxide, 2,5"tert-amyi peroxy-2bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane, ethylhexanoate, dibenzoyl peroxide, tert-butyl peroxy-2-ethylhexanoate, tert-butyl peroxydiethylacetate, 1,4-bis(tert-butylperoxycarbo)cyclohexane, 1,1-bis(tert-butylperoxy)-3,3,5peroxyisobutanoate, tert-butyl tert-butyl 1,1-bis(tert-butylperoxy)cyclohexane, trimethylcyclohexane, 2,2-bis(tert-butylperoxy)butane, tertperoxy-3,5-trimethylhexanoate, 20 butylperoxy isopropyl carbonate, tert-butylperoxy 2-ethylhexyl carbonate, tert-butyl peroxyacetate, tert-butyl peroxybenzoate, di-tert-amyl peroxide, dicumyl peroxide, bis(tert-butylperoxyisopropyl)benzene, 2,5-bis(tertbutylperoxy)-2,5-dimethylhexane, tert-butyl cumyl peroxide, 2,5-bis(tertbutylperoxy)-2,5-dimethyl-3-hexyne, and di-tert-butyl peroxide. 25
 - Process according to claim 7 wherein the initiator is substantially non-8. water-soluble and is selected from the group consisting essentially of:
 - alifatic and aromatic peroxyesters, preferably tert-butyl peroxy-2-

15

20

25

ethylhexanoate (Trigonox 21), tert-amyl peroxy-2-ethylhexanoate, tert-butyl peroxybenzoate (Trigonox C), tert-amyl peroxybenzoate, tert-butyl peroxyacetate, tert-butyl peroxy-3,5-trimethylhexanoate, tert-butyl peroxyisobutanoate, tert-butyl peroxydiethylacetate, tert-butyl peroxypivalate;

- peroxycarbonates, preferably tert-butyl peroxyisopropyl carbonate (Trigonox BPIC), and tert-butyl peroxy-2-ethyl hexyl carbonate Trigonox 117).
- 9. Process according to any one of the preceding claims wherein the reductor is chosen from the group consisting essentially of: sodium formaldehyde sulfoxylate (SFS), sodium bisulfite, Ascorbic acid (vitamin C), aldehydes, for example glutaraldehyde, sodium metabisulfite, sodium dithionate, and sugars.
 - 10. Process according to any one of the preceding claims wherein the polymerizable species is selected from the group consisting essentially of: acrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methoxyethyl acrylate, dimethyl aminoacrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearic methacrylate, dimethyl aminomethacrylate, allyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, acrylamide, methacrylamide, glycidyl acrylate, vinyl ester of versatic acid, styrene, paramethyl styrene, vinyl acetate, alpha-methyl styrene.
 - Process according to any one of the preceding claims carried out in the presence of a catalyst, said catalyst preferably being a water-soluble salt

10

derived from a transition metal, and most preferably being selected from the group consisting essentially of Fe²⁺, Co³⁺, Cu⁺, and Ce³⁺.

- 12. Process according to any one of the preceding claims wherein the initiator and the reductor are provided in the following ratios 10:1 to 1:5, preferably 4:1 to 1:2.
 - 13. Process according to any one of the preceding claims wherein the ratio of catalyst: oxidator is about 0-0.1 on a molar basis.
 - 14. A polymer obtainable according to the process of any one of the preceding claims.
- 15. Polymer according to claim 14 having one or more of the following characteristics:
 - a conductivity lower than about 5,
 - a low residual monomer level,
 - a particle size of less than about 220 nm, preferably less than 200 nm.
- 16. Use of a polymer according to claims 14 and/or 15 in coatings and/or adhesives.

INTERNATIONAL SEARCH REPORT

Inter onal Application No

		PCT/EF	P 99/07769
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C08F4/40		
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC	
	SEARCHED		
Minimum do	ocumentation searched (classification system followed by classificati COSF	on symbols)	
	tion searched other than minimum documentation to the extent that s		
Electionic	ata base consulted during the International search (name of data ba	se and, where practical, search term	is used)
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
X	US 3 022 281 A (E. S. SMITH) 20 February 1962 (1962-02-20) claim 1		1
Α	GB 1 558 835 A (JAPAN SYNTHETIC F CO.) 9 January 1980 (1980-01-09)	RUBBER	
	er documents are listed in the continuation of box C.	X Patent family members are	s listed in annex.
3 Special cat	egories of cited documents :	"T" later document published after to	he international filing date
conside	nt defining the general state of the art which is not ared to be of particular relevance ocument but published on or after the international	or priority date and not in confli cited to understand the principl invention	ict with the application but le or theory underlying the
filing da	e; the claimed invention cannot be considered to		
citation	the document is taken alone e; the claimed invention e an inventive step when the		
"P" documer	nt published prior to the international filing date but	document is combined with one ments, such combination being in the art.	obvious to a person skilled
	an the priority date claimed ctual completion of the international search	"&" document member of the same	
	January 2000	Date of mailing of the internation 24/01/2000	nal search report
Name and m	alling address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nt, Fax: (+31-70) 340-3016	Cauwenberg, C	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intel anal Application No
PCT/EP 99/07769

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 3022281	Α	20-02-1962	DE FR GB	1099738 B 1236360 A 851964 A	16-11-1960
GB 1558835	A	09-01-1980	JP JP JP JP JP JP JP US	1298730 C 52084269 A 60023681 B 1298731 C 52084268 A 60023682 B 1250848 C 52084275 A 59013525 B 4201848 A	31-01-1986 13-07-1977 08-06-1985 31-01-1986 13-07-1977 08-06-1985 14-02-1985 13-07-1977 30-03-1984 06-05-1980

