

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION

(51) International Patent Classification 5: G01P 3/36	A1	(11) International Publication Number: WO 90/10876 (43) International Publication Date: 20 September 1990 (20,09.90)	
(21) International Application Number: PCT/US9 (22) International Filing Date: 10 March 1990 (1)		Skyton Drive Trumbull CT 06611 (118)	
(30) Priority data: 322,114 13 March 1989 (13.03.89) US		ropean patent), GB (European patent), IT (European	
(71) Applicant: THE BOARD OF TRUSTEES OF TH VERSITY OF ILLINOIS [US/US]; 506 South Street, Urbana, IL 61801 (US).	E UI Wrig	patent), JP, KP, LU (European patent), NL (European	
(72) Inventors: ADRIAN, Ronald, J.; 1908 Woodfield Champaign, IL 61821 (US). LANDRETH, Chri C.; 402 South Race Street, Number 8, Urbana, I (18)	stonh	Refore the expiration of the time limit for any Jim d.	

amendments.

(54) Title: ELECTRO-OPTICAL METHOD AND SYSTEM FOR DETERMINING THE DIRECTION OF MOTION IN DOUBLE-EXPOSURE VELOCIMETRY BY SHIFTING AN OPTICAL IMAGE FIELD

(57) Abstract

The present invention is an improvement on a system for double-pulsed particle velocimetry in which small scattering particles (20) are illuminated by two short pulses of laser light and then images are recorded photographically (18) to produce a record from which the particle velocity can be determined by measuring the displacement of the particle images. The known system cord from which the particle velocity can be determined by measuring the displacement of the placement angles. The known appears involves a method and apparatus for resolving the ambiguity which exists with respect to the direction of displacement of particle images so recorded by multiple exposures on film or videographic media. The directional ambiguity is resolved by means of shifting the image field between exposures by an amount (XS) that is greater than any negative displacement occuring in the image field. In this way, all recorded displacement are positive, and negative displacements are obtained from the measurements. The present improvement incorporates an electro-optical device (34) that performs the desired image shifting function, without mechanical motion, in place of the shifting produced by rotating mirrors and the like.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austra	125	Spain	MICI	Management .
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	Prance	MR	Mauritania
BE	Belgium	GA	Gabon	MW	Malawi
BF	Burkina Famo	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
BI	Benin	IT	Italy	RO	Romania
BR	Brazil	JР	Japan	50	Sudan
CA	Canada	KP	Democratic People's Republic	SE	Sweden
Œ	Central African Republic		of Korea	SN	Sepegal
ČĠ	Congo	KR	Republic of Korea	SU	Soviet Union
ан	Switzerland	ü	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanka	TG	Tono
	Germany, Federal Republic of	w	Lexembourg	US	United States of America
DE		MC	Monaco		Clinic China
DK	Denmark	MIC	MORRO		

ELECTRO-OPTICAL METHOD AND SYSTEM FOR DETERMINING
THE DIRECTION OF MOTION IN DOUBLE-EXPOSURE
VELOCIMETRY BY SHIFTING AN OPTICAL IMAGE FIELD

The invention herein resulted from work which is supported by TSI Inc. and the National Science Foundation under NSF ATM 86-00509.

BACKGROUND OF THE INVENTION

The present invention is an improvement on that previously described in co-pending 10 application 023,773, of which the present application is a continuation-in-part. The benefit of the filing date of that co-pending application with respect to common subject matter is herewith claimed.

The present invention pertains to the measurement of the velocity of fluid flows and, more particularly, to systems in which the fluid flow rate is inferred from measurements made in the context of double-pulsed particle image 20 velocimetry, in which small scattering particles are illuminated by two short pulses of laser light or other light, and their images are recorded photographically to produce a record

from which the particle velocity can be determined by measuring the displacement of the particle images.

For specific background material, reference may be made to U.S. patent 4,729,109, assigned to the assignee of the present invention; also to co-pending application serial number 023,773, also assigned to the assignee of the present invention.

10 As will be appreciated by the references cited above, particle image velocimetry (PTV) is a well-established technique in experimental photo-mechanics for quantitatively measuring velocity data at a given instant of time over an 15 extended flow field. A variety of other references which were cited in co-pending application 023,773 may be consulted for the details of the technique involved.

Generally speaking, in the PIV technique the 20 flow is seeded with small particles, typically ten micrometers or less in size, and illuminated by a thin sheet of pulsed laser light, typically coded with a double pulse. Particles moving within the light sheet are recorded

photographically as pairs of particle images. The local fluid velocity is found on a grid of small "interrogation spots" on the photograph by sequentially measuring the displacement Ax of the images within each spot. Interrogation is accomplished by a variety of methods including the Young's fringe method, direct measurement of image-to-image displacement, and spatial correlation analysis. By successively analyzing the photograph at many adjacent interrogation regions, local velocity may be inferred in a large number of points in the role flow field.

Given identical conditions in viewing each of the two exposures on a double-pulsed PIV photograph, there exist no characteristics on the photograph to distinguish first images from second images. As a result, measurement of the particle image separation cannot determine the polarity of the fluid velocity and the velocity the fluid velocity and the velocity of the second images. Lu. Clearly, it is necessary to determine the order of the two exposures on the photograph to eliminate directional ambiguity.

In accordance with the invention described in co-pending application 023,773, a technique known as "image shifting" has been shown to be effective in resolving directional ambiguity.

5 This method displaces the photographic image field by an appropriate uniform, known distance between the first and second pulses. As a result, the second image of each particle image pair is shifted by a displacement X, such that the most negative fluid velocity still produces a positive displacement of the second particle image with respect to the first. After the interrogation, the artificial shift X, is subtracted mathematically to obtain the actual fluid velocity.

Several methods have been implemented to produce the image shifting during the recording procedure in particle image velocimetry. Image shifting has been accomplished by placing a rotating mirror in front of the photographiclens, and by translating the camera apparatus between exposures. Other methods have also been proposed, including moving the film within the camera and translating the camera lens with a

piezoelectric device. The drawback with each of
the above-noted methods is the mechanical motion
involved in part of the recording apparatus
between the first and second light pulses.

5 Consequently, they are subject to limitations on
speed due to the dynamics of moving components,
and limitations on accuracy and consistency.

Accordingly, it is a primary object of the present invention to overcone the limitations on 10 operations at high and low speeds in connection with image shifting in pulsed velocimetry systems, and to carry out the operations with a high degree of accuracy.

Another object is to permit image shifting 15 in periods of time less than one microsecond.

A-further object is to provide precise reproducible shifts without the need for moving parts to accomplish them.

SUMMARY OF THE INVENTION

The above and other objects are fulfilled in accordance with the present invention by a primary feature involving an electro-optic image shifting arrangement including a birefringent,

uniaxial crystal plate; and a camera lens interposed between said crystal plate and the image plane, the crystal plate being cut with its "surface normal" aligned parallel to the crystal's optic axis, such that a given light ray from any source in the object plane is refracted into two parallel light rays having mutually orthogonal states of linear polarization. Accordingly, for a given scattering particle in 10 the object plane, two images of the particle are formed at the film plane of the camera, separated by X_s , which is the amount of image shifting introduced by the present invention. However, it will be understood that when the moving particle 15 or the image thereof is recorded by means of two illuminating pulses, four images are thereby formed.

In accordance with a more specific feature of the present invention, means are provided for 20 controlling the polarization of the light scattered from the seeding particles so that the first illuminating pulse from the source scatters light which is linearly polarized and parallel to the principal plane of the birefringent crystal,

and the second pulse scatters light which is linearly polarized at 90 degrees with respect to the light from the first pulse, whereby only two particle images will be formed for a single 5 moving particle.

Other and further objects, advantages and features of the present invention will be understood by reference to the following specification in conjunction with the annexed drawing, wherein like parts have been given like numbers.

BRIEF DESCRIPTION OF DRAWING

Fig. 1 is a schematic diagram of the electro-optic image shifting system of the present invention.

Fig. 2 illustrates the polarization of linearly-polarized light at 90 degrees by a spherical particle.

Figs. 3A and 3B illustrate the light scattering response of plastic particles in water 10 (n/n₀=1.20) for linearly-polarized illumination (Λ = 694.3nm), at 90 degrees side-scatter, using a finite light gathering cone. Numerical calculations incorporate Nie scattering theory and assume a lens aperture of fl6. The two 15 horizontal bars in each graph bound the approximate range of scattering response suitable for Kodak Technical Pan 2415 film.

Figs. 44, 4B, and 4C..illustrate image shift response using a calcite crystal (n_o = 1.65259, 20 n_e=1.49382), having an optic axis angle Φ_a = 53.58. Open circles indicate observed measurements. Fig. 4A shows principal image shift vs. the tangent of the principal angular derivation from the photographic axis; Fig. 43 is

the same as Fig. 4A but reduced scale; Fig. 4C shows transverse image shift vs. the tangent of the transverse angular deviation from the photographic axis. X_{SO} is the on-axis image-shift, and s₁ is the image distance.

Figs. 5A and 5B illustrate PIV velocity vector maps of a uniformly-displaced water flow field having a small transient flow velocity, using electro-optic image shifting. Fig. 5A 10 shows stationary reference frame. Fig. 5B shows reference frame moving at the uniform translation velocity.

DESCRIPTION OF PREFERRED EMBODIMENT

Referring now to the figures of the drawing
15 and, in particular, Fig. 1, there is illustrated
in this figure an embodiment of the electro-optic
image shifting system of the present invention.
As will be seen therein, a birefringent, uniaxial
crystal plate 10 (for example, calcite) is
20 positioned in front of a camera lens 12. The
plate is cut with its "surface normal" aligned
parallel to the crystal's principal plane and at
an oblique angle of the crystal's optic axis,

such that a given light ray from any source in the object plane 14 is refracted into two parallel light rays 16A and 16B, commonly referred to as an o-ray and an e-ray, having 5 mutually orthogonal states of linear polarization. Consequently, the separation of the two rays is nearly uniform for a wide range of incident angles and scaled to the desired image shift X_S seen on the image plane 18 for the 0 chosen camera magnification.

For a given scattering particle 20 in the object plane 14 within the flow field, two images of that particle are formed at the film or image plane 18 of the camera, separated by X_S. The intensities of the two images are equal to the intensities of the two orthogonal components of polarization, with respect to the crystal's principal plane, of the light incident on the plate 10. Accordingly, when a moving particle is recorded with two illuminating pulses, four images are formed, arranged in a parallelogram having two sides equal in length to the image displacement (AX) and two sides equal to X_S.

If the polarization of the light scattered from the seeding particles is controlled so that the first illuminating pulse scatters light which is linearly polarized and parallel to the principal plane of the birefringent crystal plate 10, and the second pulse gathers light which is linearly polarized at 90 degrees with respect to the light from the first pulse, then only two particle images will be formed for a single 10 particle, displaced by the vector sum of Ax and . *s. This is the desired result for any image shifting technique.

In the system shown in Fig. 1, the polarization of the scattered light is controlled

15 by switching the polarization of the laser beam 30 at the exit of the cavity of double-pulsed laser 32. A Pockels cell 34, well-known per se, is used with the double-pulsed laser to switch the linear polarization, between pulses, from a 20 vertical state to a horizontal state (or vice versa). The output of Pockels cell 34 is transmitted to sheet forming optics means 36, also well-known, thus producing the light sheet 38. An alternate system to that of Fig. 1

incorporates the output from two orthogonallypolarized single-pulsed lasers, fired in sequence, which are combined using a polarizing beam-splitting cube.

photographic axis z, the polarization of the scattered light wave is linear. If the illuminating beam is polarized vertically (Eq.1), then the side-scattered light is also vertically polarized: G = A(0) If the illuminating

solid angle perpendicular to the direction of

wave is polarized horizontally, then the sidescattered wave is also polarized horizontally:

2 = 8(40) . In the ideal limit of
infinitesimal solid angle, the first and second
exposures of a particle centered in the camera's
field of view would be polarized, respectively,
in the X and Y directions of the camera
coordinates (Fig. 1), as desired.

Practical applications of this approach

10 require orthogonal polarization of the two
scattered light waves when the photographic field
of view is finite and the solid angle of the lens
is finite. The latter effect has been evaluated
by calculating the scattering characteristics of

15 typical PIV seeding particles, using Mie
scattering theory.

. Figure 3 shows the results of calculations

of the scattering efficiency (defined as the ratio of the particle image intensity to the 20 illumination intensity) performed for a polystyrene particle in water, in which the particle diameter is varied up to 10 m and a lens aperture of f16 is used. In Fig. 3A, two curves are shown corresponding to the X and Y.

14

components of the scattered light, for a \widehat{y} polarized light source. The \widehat{y} polarization
component is over four orders of magnitude larger
than the \widehat{x} component for the entire range of
5 particle diameters. In Fig. 3B, the source is
switched to \widehat{z} -polarization, and the \widehat{x} and \widehat{y} responses likewise switch. The \widehat{x} -component
dominates by over four orders of magnitude.
Calculations using a variety of other particle
10 sizes and compositions (including hollow spheres
and metallic-coated spheres) show similar
tendencies for the scattered light waves to
retain linear, orthogonal polarization when the
scattering occurs over finite solid angles normal
to the illuminating light.

The effect of finite field of view is to include scattering from off-axis particles whose mean scattering angles are not perpendicular to the light sheet (e.g. 4 + 90°). In general, the 20 polarizations at these angles need not be linear or orthogonal. However, experimental examination of the ratio of the horizontally and vertically polarized waves indicates that the extinction ratio is large over a ±20° field-of-view for 15

micron polystyrene particles in water and 4 micron silver-coated glass spheres in water. The use of a finite field of view is thus not a limiting factor in these cases.

The design of the uniaxial crystal plate 10 (Fig. 1) involves appropriate selection of the angle between the optic axis θ_a and the normal to the transmitting surfaces, and the plate thickness T. Ha is chosen so that the image 10 shift X_S (X, Y) is nearly uniform across the photograph, and T is selected so that the shift is scaled to the desired constant value X_s for the user-chosen camera magnification. The optimal value of A has been determined 15 computationally by modeling the propagation of light through uniaxial calcite material using Huvgens's wavefront construction in three dimensions. A value € = 53.58 degrees results in a shift magnitude Xs along the principal plane 20 of the crystal which is very uniform. The calculations in Fig. 4A indicate a maximum variation of the shift in the X-direction that is less than 0.15 per cent. -The computations indicate the presence of a non-negligible

transverse component $Y_{S}(X,Y)$, perpendicular to the principal plane, which is shown in Fig. 4C. The image shift vector X_{S} is thus somewhat non-uniform, but the non-uniformity is known a priori and thus may be corrected computationally during the interrogation procedure.

EXPERIMENTAL RESULTS

An electro-optic image shifting system using the Pockels cell system of Fig. 1 has been 10 constructed. The response time of the Pockels cell is approximately 10 ns, which is conparable to the pulse width of the double pulsed lasers used for PIV, and therefore capable of image shifting the fastest flow fields that are 15 currently contemplated. Currently there are three calcite plates in use having thicknesses of 2 mm, 6 mm, and 10 mm, which may be mounted separately or combined in front of the camera-lens to provide-image shifts magnitudes of 20 0.2mm(%c(1.8 mm.

Two experiments were performed to evaluate the image-shifting technique. In the first, the accuracy of image-shifted measurements was 17

uated across a PIV photograph. For this experiment, single-pulse illumination was used to record a stationary flow field illuminated by a circularly polarized beam. The Pockels cell was not activated in this experiment. As a result, the PIV photographic field contained two images of each particle, separated by the local value of Xs for that image pair. Over three hundred particle image displacements were measured across 10 the photograph. A selection of these measurements, collapsed along the X- and Y-. directions, are plotted in Figs. 4B and 4C. The measurements agree well with the numerical predictions: The RMS error of the measurements 15 is approximately 0.8% full-scale, most of which may be attributed to the accuracy limitations of the PIV interrogation system used to extract information from the photograph.

In the second experiment, the entire image 20 shifting system was evaluated using PIV photos of nearly-quiescent water contained in a test section which was horizontally displaced with a uniform velocity U. A small transient velocity Ut(x,y,z) was present in the flow during-the

uniform translation, where | ut | max < 0.15 U. The calcite plate was oriented to provide a vertical image shift. The photographs were taken over an extended field of view (±15°) using a finite 5 camera aperture (f8). Each interrogation of a PIV photograph of the flow generally produced a highly detachable measurement of the particle image displacement, consisting of the vector sum of the image shift $X_S(X,Y)$, the displacement 10 MAtu, and a small component which is attributed to the transient displacement $M\Delta t u$ (M is the magnification of the camera). The vector map of the interrogated PIV photograph (Fig. 5A) shows a highly resolved-velocity field $\overline{U} + \underline{u}_t(x,y)$. When 15 the translation velocity $\overline{\overline{U}}$ is subtracted from the vector field, the resulting map (Fig. 5B) clearly reveals the transient structure.

. SUMMARY AND CONCLUSIONS

In summary, image shifting based on electrooptic hardware is an effective approach in PIV
that offers several advantages over mechanical
shifting techniques. Two systems for
implementing this approach, one incorporating a

Pockels cell to modulate the output from a single laser and the other incorporating the output from two orthogonally polarized lasers have been described. The use of a properly designed calcite element results in an image shift which is nearly uniform over a wide light-gathering cone. The method is accurate, reliable and fast enough to accommodate the highest fluid velocities likely to be studied with particle image velocimetry, and it is equally applicable to laser speckle velocimetry.

It is understood that the effectiveness of either of the two systems described above depends upon retaining light polarization after sidescatter. Consequently they may be limited to certain ranges of particle types, particle sizes, angular fields of view and camera apertures. Further investigation is required to determine these limitations. An alternative electrooptical system, which incorporates a wide-angle Pockels cell in front of the uniaxial plate for directly modulating the particle-stattered light, is anticipated to expand the effectiveness of

WO 90/10876 PCT/US90/01322

20

electro-optic image shifting, and is currently being investigated.

While there has been shown and described what is considered at present to be the preferred.

5 embodiment of the present invention, it will be appreciated by those skilled in the art that modifications of such enbodiment may be made. It is therefore desired that the invention not be limited to this embodiment, and it is intended to cover in the appended claims all such

10 cover in the appended claims all such modifications as fall within the true spirit and scope of the invention.

SUBSTITUTE SHEET

21

CLAIMS

1. In a particle image velocimetry system in which images are created by accurately timed pulses of light from a light source, and successive particle images, resulting from seeding particles being displaced by the motion of a fluid, are recorded, such that the fluid velocity is inferred from the displacement of the image field between exposures, the improvement which comprises:

means for determining unambiguously the direction of displacement and hence the sign of the velocity vector, said means including means for shifting the successive particle images with respect to the first image so that all image displacements are positive even though physical displacements of the seeding particles may be negative, said means for shifting being an electro-optic image shifting arrangement, including a birefringent, unlaxial crystal plate; and a camera lens interposed between said plate and the image plane:

SUBSTITUTE SHEET

WO 90/10876 PCT/US90/01322

22

2. The system as defined in claim 1, in which said crystal plate is cut with its surface normal aligned parallel to the crystal's principal plane and at an oblique angle \bigoplus_{α} to the crystal's optic axis, such that a given light ray from any source in the optic plane is refracted into two parallel light rays having mutually orthogonal states of linear polarization.

- '3. In a system as defined in claim 1 in which the light source is a double-pulsed laser that and further comprising a Pockels cell, sheet-forming optics, and a light sheet produced by said sheet-forming optics.
- 4. In a system as defined in claim 3, the improvement further comprising means for controlling the polarization of the light scattered from the seeding particles so that the first illuminating pulse scatters light which is linearly polarized and parallel to the principal plane of the birefringent crystal plate, the second pulse scatters light which is linearly

polarized at 90 degrees with respect to light from the first pulse, whereby only two particle images are formed for a single particle, displaced by the vector sum of Δx and $x_{\rm S}$, where Δx is the displacement between successive images and Δ and $x_{\rm S}$ is the image shift for each of the images.

- 5. In a system as defined in claim 4, in which said means for controlling the polarization of the scattered light includes means for switching the polarization of the laser heam at the exit of the laser cavity.
- 6. In a system as defined in claim 5, in which said means for switching comprises at 54: Pockels cell for switching the linear polarization, between pulses, from a vertical state to a horizontal state.

SUBSTITUTE SHEET

SUBSTITUTE SHEET

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER (1) several classification symbols apply, indicate att 1

II FIELDS	SEARCHE	•			
			Minimum Docume	intation Searches 7	
Classification	n System			Classification Sympols	
U.S.					
		Docum to the Ext	entation Searched other lent that such Document	than Minimum Documentation s are included in the Fields Searched *	
III. DOCU		NSIDERED TO I		propriate, of the relevent passages 12	Balance Charles III
				The reserve passages 4	Relevent to Claim No '3
A,P	US, A,	4,851,697	SCHODL publis	hed 25 July 1989	1-6
A.	US, A,	4,733,962	BRENDEMUEHL P	ublished 29 March 1988	1-6
"A" doc- cont "E" earli- filing "L" doc- white cited "O" doc- othe "P" doc-	ument defining idered to be er document if g dete ument which is the sided to kind or other a ument reterment resense.	but published on a mey throw doubte sstablish the publi pecial resson (se g to an orel disclo	of the art which is not more or after the international an arisonly clasmica or incident and are all enother specified.	-T" letter document gublished elter is cited to understelled the principal invention. 2" document of particular relevant involved in invention states of involved in invention states of involved in inventions states of involved in inventions states of involved in inventions and involved in invention and involved in commitment and continuent in combined with one ments, such commission benefit and involved in involved in involved in involved involved in involv	ce; the claimed invention cannot be considered inventions; the claimed inventions are more other such documents to a person skiller.
	FICATION	, 2410 C101.1190		- Cocament member of the same !	perent remay
		station of the interr	national Search	Date of Maiking of this International Sc	earch Report
21 MAY	1990 el Searching	Authority		Signature of Authorized Officer	90 Fu
ISA/US				STEPHEN C. BUCZINSKI	