

BEGINNING OF ARTIFICIAL INTELLIGENCE

COMPUTERS ARE MADE IN PART TO COMPLETE HUMAN TASKS

EARLY ON, GENERALIZED INTELLIGENCE LOOKED POSSIBLE

TURNED OUT TO BE HARDER THAN EXPECTED

EARLY NEURAL NETWORKS

Inspired by biology

Created in the 1950's

Outclassed by Von Neumann Architecture

EXPERT SYSTEMS

Highly complex

Programmed by hundreds of engineers

Rigorous programming of many rules

EXPERT SYSTEMS - LIMITATIONS

What are these three images?

HOW DO CHILDREN LEARN?

- Expose them to lots of data
- Give them the "correct answer"
- They will pick up the important patterns on their own

DATA

- Networks need a lot of information to learn from
- The digital era and the internet has supplied that data

COMPUTING POWER

Need a way for our artificial "brain" to observe lots of data within a practical amount of time.

THE IMPORTANCE OF THE GPU

TRADITIONAL PROGRAMMING

Building a Classifier

Define a set of rules for classification

Program those rules into the computer

Feed it examples, and the program uses the rules to classify

MACHINE LEARNING

Building a Classifier

1

Show model the examples with the answer of how to classify

2

Model takes guesses, we tell it if it's right or not 3

Model learns to correctly categorize as it's training. The system learns the rules on its own

WHEN TO CHOOSE DEEP LEARNING

Classic Programming

If rules are clear and straightforward, often better to just program it Deep Learning

If rules are nuanced, complex, difficult to discern, use deep learning

DEEP LEARNING COMPARED TO OTHER AI

Depth and complexity of networks

Up to billions of parameters (and growing)

Many layers in a model

Important for learning complex rules

COMPUTER VISION

ROBOTICS AND MANUFACTURING

OBJECT DETECTION

SELF DRIVING CARS

NATURAL LANGUAGE PROCESSING

REAL TIME TRANSLATION

VOICE RECOGNITION

VIRTUAL ASSISTANTS

RECOMMENDER SYSTEMS

CONTENT CURATION

TARGETED ADVERTISING

SHOPPING RECOMMENDATIONS

REINFORCEMENT LEARNING

ALPHAGO BEATS WORLD CHAMPION IN GO

AI BOTS BEAT PROFESSIONAL VIDEOGAMERS

STOCK TRADING ROBOTS

