CAIRO UNIVERISITY FACULTY OF SCIENCE MATHEMATICS DEPARTMENT

Exam Midterm Math 493 (Operations research) 4th year

Time: 45 Mints Date: 10-11-2022

Answer the following questions:

Question (1)

a) Solve the following (LP) problem by using two-phase technique

Maximize
$$Z=x_1 + x_2 + 4$$

Subject to $-x_1 + 3x_2 \le 9$; $x_1+x_2 \ge 5$; $3x_1 - x_2 \le 9$
 $x_1, x_2 \ge 0$

b) The following table represents a minimize (LP) in standard form:

	x_{I}	x_2	x_3	X4	x_5	solution
z-eqn.	0	B	E	0	0	3
	1	C	1	0	0	A
	0	D	-1	1	0	2
	0	1	1	0	1	4

Give conditions on the parameters A, B, C, D, and E so that:

i) The table is in optimal form

P < 0 < 0

ii) The table is in unbounded form

iii) The table is in feasible form (2)

Question (2)

- a) Prove that a (LP) problem in standard form has a finite optimal solution it has an extreme optimal point.
- b) Consider the following (LP) problem:

Minimize
$$Z=-x_1-x_2$$

Subject to $-x_1+x_2 \le 2$; $-x_1+x_2 \ge -2$; \times (-) $0 \le x_1 \le 4$; $0 \le x_2 \le 4$.

Solve the (LP) problem graphically and find its dual problem.

FACULTY OF SCIENCE

MATHEMATICS DEPARTMENT

Math 493 (Operations research) 4th years

First midterm Exam

Time allowed: 45 min

Date: 1-12-2022

Answer the following questions:

Question (1)

a) Solve the following (ILP) problem by apply Gomory's cutting plane method

Minimize
$$Z = x_1 - 2x_2$$

Subject to $2x_1 + x_2 \le 5$
 $-4x_1 + 4x_2 \le 5$

 $x_1, x_2 \ge 0$ And x_2 integer

The optimal continuous solution for given (ILP) problem is given by the table:

Basis	X_1	352	X_3	X ₄	Solution
Z	0	0	-1/3	-5/12	-15/4
X_1	1	0	1/3	-1/12	5/4
X_2	0	1	1/3	1/6	5/2 2

- b) Find the dual problem to the problem in (a) after change $x_1, x_2 \ge 0$ and x_2 integer to $x_1, x_2 \ge 0$
- c) Solve the problem in (b) graphically and specify (S, θ , θ_x , θ_μ , z^* , x^*)

Question (2)

Select (True) or (False) and correct the wrong answer for the following statements:

- a. The dual simplex method solves any (LP) problem. ×
- b. The feasible region of (ILP) problem is convex set. X dis evete
- c. The variables in (ILP) problem are non-negative and integers.
- d. A point $x \in S$ is degenerate if the number of constraints active at x is equal the dimension of the feasible region S
- e. To solve maximize (LP) problem by M- technique we add $M \sum_{i=1}^{k} R_i$ to objective function.
- f. To solve (LP) problem by two-phase Method the objective function in phase (II) is a function of basic variable.