

Time Series

Author: Wenxiao Yang

Institute: Haas School of Business, University of California Berkeley

Date: 2024

Contents

Chapter 1 Time Series Analysis				1
1	.1	Goals	and Terminology	1
1.2		Moving-Average Process		3
		1.2.1	Moving-Average Process	3
		1.2.2	Conditions for Infinite Moving-Average Process	4
		1.2.3	Remarks about $MA(\infty)$ models	6
1	.3	Autore	gressive Model (Special Case of $MA(\infty)$)	6

Chapter 1 Time Series Analysis

1.1 Goals and Terminology

Goals and Challenge

Data in time series is denoted by

$$\{\underbrace{y_t}_{n\times 1}: 1 \le t \le T\}$$

Assumption Each y_t is the realization of some random vector Y_t .

The **objective** is to provide data-based answers to questions about the distribution of $\{Y_t : 1 \le t \le T\}$.

The **challenge** we face is $Y_1, Y_2, ..., Y_T$ are not necessarily independent. Time series analysis gives the models and methods that can accommodate dependence.

Terminology

Some terminologies we need to know:

Definition 1.1 (Stochastic Process)

A **stochastic process** is a collection $\{Y_t : t \in \mathcal{T}\}$ of random variables/vectors (defined on the same probability space).

- 1. $\{Y_t : t \in \mathcal{T}\}$ is discrete time process if $\mathcal{T} = \{1, ..., T\}$ or $\mathcal{T} = \mathbb{N} = \{1, 2, ...\}$ or $\mathcal{T} = \mathbb{Z} = \{..., -1, 0, 1, ...\}$.
- 2. $\{Y_t: t \in \mathcal{T}\}$ is **continuous time process** if $\mathcal{T} = [0,1]$ or $\mathcal{T} = \mathbb{R}_+$ or $\mathcal{T} = \mathbb{R}$.

Observed data Y_t is a realization of a discrete time process with $\mathcal{T} = \{1, ..., T\}$.

Definition 1.2 (Strictly Stationary (Discrete and Scalar Process))

A scalar^{*a*} process $\{Y_t : t \in \mathbb{Z}\}$ is **strictly stationary** *if and only if*

$$(Y_t,...,Y_{t+k})\underbrace{\sim}_{\text{``is distributed as''}} (Y_0,...,Y_k)\,,\;\forall t\in\mathbb{Z},k\geq 0$$

^ai.e., Y_t is 1×1

Note

- 1. If $Y_t \sim i.i.d.$, then $\{Y_t : t \in \mathbb{Z}\}$ is strictly stationary.
- 2. If $\{Y_t : t \in \mathbb{Z}\}$ is strictly stationary, then Y_t are identically distributed (i.e., "marginal stationary").

Example 1.1 Strictly Stationary and Dependent

A constant process that ... = $Y_{-1} = Y_0 = Y_1 = ...$ is strictly stationary.

All these above hold for strictly stationary vector process.

Lemma 1.1 (Property of Strictly Stationary)

If $\{Y_t: t \in \mathbb{Z}\}$ is strictly stationary with $\mathbb{E}[Y_t^2] < \infty$ ($\forall t$), then

1. Same Expectation:

$$\mathbb{E}[Y_t] = \mu, \ \forall t \ (\text{for some constant } \mu) \tag{*}$$

2. Covariance only depends on time length:

$$Cov(Y_t, Y_{t-j}) = \gamma(j), \ \forall t, j \ (for some function \ \gamma(\cdot))$$
 (**)

Note $\gamma(0) = \text{Var}(Y_t), \forall t$.

A subset of strictly stationary processes that has second moment (i.e., $\mathbb{E}[Y_t^2] < \infty$) can be defined as **covariance** stationary.

Definition 1.3 (Covariance Stationary)

A process $\{Y_t : t \in \mathbb{Z}\}$ is **covariance stationary** *iff* $\mathbb{E}[Y_t^2] < \infty$ ($\forall t$) and it satisfies (*) and (**).

Note Not every strictly stationary process is covariance stationary. (e.g., if it does not have second moment).

Definition 1.4 (Autocovariance and Autocorrelation Functions)

 $\gamma(\cdot)$ in (**) is called **autocovariance function** of $\{Y_t : t \in \mathbb{Z}\}.$

The autocorrelation function is

$$\rho(j) = \operatorname{Corr}(Y_t, Y_{t-j}) = \frac{\operatorname{Cov}(Y_t, Y_{t-j})}{\sqrt{\operatorname{Var}(Y_t)\operatorname{Var}(Y_{t-j})}} = \frac{\gamma(j)}{\gamma(0)}.$$

Lemma 1.2

The autocovariance function satisfies the following properties:

- 1. $\gamma(\cdot)$ is **even** i.e., $\gamma(j) = \gamma(-j)$.
- 2. $\gamma(\cdot)$ is **positive semi-definite** (psd) i.e., for any $n \in \mathbb{N}$ and any $a_1, ..., a_n$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \gamma(i-j) = \operatorname{Var}(\sum_{i=1}^{n} a_i Y_i) \ge 0$$

1.2 Moving-Average Process

Definition 1.5 (White Noise)

A process $\{\epsilon_t : t \in \mathbb{Z}\}$ is a **white noise** process iff it is covariance stationary with $\mathbb{E}[\epsilon_t] = 0$ and

$$Cov(\epsilon_t, \epsilon_{t-j}) = \begin{cases} \sigma^2, & \text{if } j = 0\\ 0, & \text{otherwise} \end{cases}$$

We use notation $\epsilon_t \sim WN(0, \sigma^2)$.

Note

- 1. If $\epsilon_t \sim \text{i.i.d.}(0, \sigma^2)$, then $\{\epsilon_t : t \in \mathbb{Z}\}$ is white noise, i.e., $\epsilon_t \sim \text{WN}(0, \sigma^2)$.
- 2. Gauss-Markov theorem assumes WN errors.
- 3. WN terms are used as "building blocks": often a variable can be generated as

$$Y_t = h(\epsilon_t, \epsilon_{t-1}, ...)$$
 for some function $h(\cdot)$ and some $\epsilon_t \sim WN(0, \sigma^2)$.

1.2.1 Moving-Average Process

Definition 1.6 (Finite Moving-Average Process)

1. First-order moving average process: $Y_t \sim MA(1)$ iff

$$Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

where $\epsilon_t \sim WN(0, \sigma^2)$.

Claim 1.1

 $\{Y_t\}$ is covariance stationary: $\mathbb{E}[Y_t] = \mu$ and its autocovariance function is

$$\gamma(j) := \operatorname{Cov}(Y_t, Y_{t-j}) = \begin{cases} (1+\theta^2)\sigma^2, & j=0\\ \theta\sigma^2, & j=1\\ 0, & j \ge 2 \end{cases}$$

2. $Y_t \sim MA(q)$ (for some $q \in \mathbb{N}$) iff

$$Y_t = \mu + \epsilon_t + \sum_{i=1}^q \theta_i \epsilon_{t-i}$$

where $\epsilon_t \sim WN(0, \sigma^2)$.

Claim 1.2

 $\{Y_t\}$ is covariance stationary: $\mathbb{E}[Y_t] = \mu$ and its autocovariance function is

$$\gamma(j) := \operatorname{Cov}(Y_t, Y_{t-j}) = \begin{cases} \left(\sum_{i=0}^{q-j} \theta_i \theta_{i+j}\right) \sigma^2, & j \leq q \\ 0, & j \geq q+1 \end{cases}$$

where $\theta_0 = 1$.

Definition 1.7 (Infinite Moving-Average Process)

 $Y_t \sim \text{MA}(\infty)$ iff

$$Y_t = \mu + \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}$$

where $\epsilon_t \sim \text{WN}(0, \sigma^2)$ and $\sum_{i=0}^{\infty} \psi_i^2 < \infty$

1.2.2 Conditions for Infinite Moving-Average Process

Note Conjecture:

- 1. $\{Y_t\}$ is covariance stationary;
- 2. $\mathbb{E}[Y_t] = \mu$ and
- 3. its autocovariance function is

$$\gamma(j) := \operatorname{Cov}(Y_t, Y_{t-j}) = (\sum_{i=0}^{\infty} \psi_i \psi_{i+j}) \sigma^2, \forall j \ge 0.$$

The necessary condition to make these conjectures correct is

$$\mathbb{E}[Y_t^2] = (\mathbb{E}[Y_t])^2 + \Gamma(0)$$

$$= \mu^2 + (\sum_{i=0}^{\infty} \psi_i^2)\sigma^2 < \infty$$

$$\Leftrightarrow \sum_{i=0}^{\infty} \psi_i^2 < \infty$$

Claim 1.3

With the `right' definition of `` $\sum_{i=0}^{\infty}$ ", the conjecture is correct.

Remark

- 1. If X_0, X_1, \ldots are i.i.d. with $X_0 = 0$, then $\sum_{i=0}^{\infty} X_i$ denote $\lim_{n \to \infty} \sum_{i=0}^{n} X_i$ (assuming the limit exists).
- 2. \exists various models of stochastic convergence.
- 3. There: convergence in mean square.

Definition 1.8 (Stochastic Convergence in Mean Square)

If $X_0, X_1, ...$ are random (with $\mathbb{E}[X_i^2] < \infty, \forall i$), then $\sum_{i=0}^{\infty} X_i$ denotes any S such that $\lim_{n\to\infty} \mathbb{E}[(S-\sum_{i=0}^n X_i)^2]=0$.

Lemma 1.3

The properties of the S are

- 1. S is ``essentially unique."
- 2. $\mathbb{E}[S] = \sum_{i=0}^{\infty} \mathbb{E}[X_i] = \lim_{n \to \infty} \sum_{i=0}^{n} \mathbb{E}[X_i]$
- 3. $\operatorname{Var}[S] = \dots = \lim_{n \to \infty} \operatorname{Var}[\sum_{i=0}^{n} X_i]$
- 4. (Higher order moments of S are similar) \cdots

Theorem 1.1 (Cauchy Criterion)

 $\sum_{i=0}^{\infty} X_i$ exists iff

$$\lim_{n \to \infty} \sup_{m > n} \mathbb{E}[(S_m - S_n)^2] = 0,$$

where $S_n = \sum_{i=0}^n X_i$.

In the $MA(\infty)$ context: The condition that can make

$$\lim_{n \to \infty} \sup_{m > n} \mathbb{E}[(Y_{t,m} - Y_{t,n})^2] = 0$$

where $Y_{t,n} = \mu + \sum_{i=0}^{n} \psi_i \epsilon_{t-i}$.

This condition is given as: If m > n,

$$Y_{t,m} - Y_{t,n} = \sum_{i=n+1}^{m} \psi_i \epsilon_{t-i}$$

$$\Rightarrow \mathbb{E}[(Y_{t,m} - Y_{t,n})^2] = \mathbb{E}\left[\left(\sum_{i=n+1}^{m} \psi_i \epsilon_{t-i}\right)^2\right] = \left(\sum_{i=n+1}^{m} \psi_i^2\right) \sigma^2$$

$$\Rightarrow \sup_{m>n} \mathbb{E}[(Y_{t,m} - Y_{t,n})^2] = \left(\sum_{i=n+1}^{\infty} \psi_i^2\right) \sigma^2$$

$$\Rightarrow \lim_{n\to\infty} \sup_{m>n} \mathbb{E}[(Y_{t,m} - Y_{t,n})^2] = \left(\lim_{n\to\infty} \sum_{i=n+1}^{\infty} \psi_i^2\right) \sigma^2$$

Thus,

$$\lim_{n \to \infty} \sup_{m > n} \mathbb{E}[(Y_{t,m} - Y_{t,n})^2] = 0 \text{ iff } \lim_{n \to \infty} \sum_{i=n+1}^{\infty} \psi_i^2 = 0$$

$$\text{iff } \sum_{i=0}^{\infty} \psi_i^2 < \infty$$

1.2.3 Remarks about $MA(\infty)$ models

- 1. $MA(\infty)$ models are useful in theoretical work.
- 2. The $MA(\infty)$ class is "large": Wold decomposition (theorem).
- 3. Parametric $MA(\infty)$ models are useful in inference.

1.3 Autoregressive Model (Special Case of $MA(\infty)$)

Autoregressive model is an example of well-defined $MA(\infty)$ model.

Example 1.2 (Autoregressive model)

Suppose

$$Y_t = \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}, \ \forall t$$

where

- $\circ \ \epsilon_t \sim WN(0, \sigma^2);$
- $\phi \quad \psi_i = \phi^i \ (\forall i \ge 0) \text{ for some } |\phi| < 1.$

Checking the condition: $\lim_{n\to\infty} \sum_{i=0}^n \psi_i^2 = \lim_{n\to\infty} \sum_{i=0}^n \phi^{2i} = \lim_{n\to\infty} \frac{1-\phi^{2(n+1)}}{1-\phi^2} = \frac{1}{1-\phi^2} < \infty$.

Lemma 1.4 (Property of $MA(\infty)$)

For $j \ge 0$, the autocovariance function is

$$\gamma(j) := \text{Cov}(Y_t, Y_{t-j}) = (\sum_{i=0}^{\infty} \psi_i \psi_{i+j}) \sigma^2 = \phi^j (\sum_{i=0}^{\infty} \phi^{2i}) \sigma^2 = \phi^j \frac{\sigma^2}{1 - \phi^2}$$
$$= \phi^j \gamma(0)$$

Note

- 1. $\gamma(i) \neq 0, \forall i \text{ if } \phi \neq 0.$
- 2. $\gamma(j) \propto \phi^j$ decays exponentially.

Definition 1.9 (Alternative Representation of AR)

Alternatively, the AR model ca be represented as

$$Y_t = \phi Y_{t-1} + \epsilon_t, \ \forall t$$

Proof 1.1

$$Y_t = \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i} = \epsilon_t + \sum_{i=1}^{\infty} \psi_i \epsilon_{t-i} = \epsilon_t + \sum_{i=0}^{\infty} \psi_{i+1} \epsilon_{t-i-1} = \epsilon_t + \phi \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i-1} = \epsilon_t + \phi Y_{t-1}$$

The natural estimator of ϕ (OLS) is

$$\hat{\phi} = \frac{\sum_{t=2}^{T} Y_{t-1} Y_t}{\sum_{t=2}^{T} Y_{t-1}^2}$$

Definition 1.10 (Model for Finite AR)

$$Y_t = \phi Y_{t-1} + \epsilon_t, \ 2 \le t \le T$$

where

More generally, consider an AR with a drift,

$$Y_t = \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}, \ \forall t$$

which is equivalent to

$$Y_t = c + \phi Y_{t-1} + \epsilon_t, \ \forall t$$

where $c = \mu(1 - \phi)$.

Definition 1.11 (AR(1)**)**

 $\{Y_t: 1 \leq t \leq T\}$ is an **autoregreessive process** of order 1, $Y_t \sim AR(1)$, if

$$Y_t = c + \phi Y_{t-1} + \epsilon_t, \ 2 \le t \le T$$

where $\epsilon_t \sim \text{WN}(0, \sigma^2)$.

Note $|\phi| < 1$ is not assumed (yet) and $Y_1 = \frac{c}{1-\phi} + \sum_{i=0}^{\infty} \phi^i \epsilon_{1-i}$ is not assumed.