Universidad Tecnológica Nacional Facultad Regional La Plata Cátedra: Análisis Matemático II

Ciclo Lectivo: 2022

TP Nº 2 - Funciones de varias variables

Trabajo realizado por el Profesor Ing. Pablo J. García y la JTP Ing. Erika A. Sacchi (2017). Ampliado y corregido por la Ing. Valeria B. Elizalde, bajo la supervisión del Co-Coordinador de Cátedra Ing. Jorge Disandro (2018).

1. Temario

- Dominio de funciones de varias variables
- Superficies
- Curvas de nivel
- Superficies de nivel

2. Resumen teórico

Función de 2 variables

Sea $D \ C \ R^2$. Una función de dos variables independientes es una correspondencia que asocia a cada par $(x,y) \in D$ un único número real z = f(x,y). D es el dominio de f. Notación: $f:D \to R$, dada por z = f(x,y)

La representación gráfica de una función de dos variables, es una superficie en R³ dada por:

$$S = \{[x, y, f(x, y)] \in R^3 / (x, y) \in D\}$$

Una curva de nivel k es el conjunto de todos los puntos del dominio de f(x,y) para los cuales f toma el valor k:

$$C_k \ = \ \{(x,y) \in D \ / \ f(x,y) = k\}$$

Función de 3 variables

Sea $D C R^3$. Una función de tres variables independientes es una correspondencia que asocia a cada terna $(x, y, z) \in D$ un único número real w = f(x, y, z). D es el dominio de f.

Notación: $f: D \to R$, dada por w = f(x, y, z)

Una superficie de nivel k es el conjunto de todos los puntos del dominio de f(x,y,z) para los cuales f toma el valor k:

$$S_k = \{(x, y, z) \in D / f(x, y, z) = k\}$$

Función de n variables

Sea D C R^n . Una función de n variables independientes es una correspondencia que asocia a cada n-upla $(x_1, x_2, ..., x_n) \in D$ un único número real $f(x_1, x_2, ..., x_n)$. D es el dominio de f.

Notación: $f: D \to R$, dada por $w = f(x_1, x_2, ..., x_n)$

Importante:

Se recomienda repasar las representaciones gráficas de curvas cónicas (en el plano) y de superficies cuádricas (en el espacio) ya que serán de uso habitual a lo largo del programa de la asignatura. Ver ANEXO al final de este

3. Ejercicios resueltos

Dado que el contenido fundamental de este trabajo práctico se refiere a representación de superficies en el espacio, no se incluyen ejercicios resueltos sino que se dejan los mismos para su discusión en la clase práctica.

4. Ejercicios de aplicación

1) Ley de los gases ideales

La ley de los gases ideales establece que:

$$PV = kT$$

siendo P la presión, V el volumen, T la temperatura y k una constante de proporcionalidad.

Un depósito contiene 2.600 pulgadas cúbicas de nitrógeno a una presión de 20 libras por pulgada cuadrada (psi), a una temperatura de 300 ° K

a) Determinar k

De la expresión resulta $k = \frac{PV}{T}$

Con los datos
$$k = \frac{20\left[\frac{lb}{in^2}\right]2600\left[in^3\right]}{300\left[^{\circ}K\right]} = 173.33\left[\frac{lb.in}{^{\circ}K}\right]$$

Unidades: in = pulgada, lb=libra

b) Expresar P como función de V y T, y describir sus curvas de nivel

$$P = f(V, T) = 173.33 \left[\frac{lb. in}{{}^{\circ}K} \right] \frac{T}{V}$$

$$D_f = \{(V,T) \in \mathbb{R}^2 \ / \ V \geq 0 \land T \geq 0\}$$

Las curvas de nivel *m* estarán dadas por:

$$C_m = \{(V, T) \in D_f / P(V, T) = m\} = \{(V, T) \in D_f / 173.33 \left[\frac{lb.in}{\circ K}\right] \frac{T}{V} = m\}$$

Obviando las unidades, resulta

$$T=rac{m}{173.33}~V~~$$
 para distintos valores de $m\geq 0.$

Resulta que las curvas de nivel m de la presión, llamadas *isobaras*, son semirrectas en el primer cuadrante, con ordenada al origen nula.

A continuación se grafican la función y algunas curvas de nivel, realizadas mediante el software Mathcad 14.

2) Índice de temperatura

El índice de temperatura (llamada también *sensación* térmica) se utiliza para representar la intensidad evidente del viento. Este índice W es una temperatura subjetiva que depende de la temperatura real T y de la rapidez del viento v. De este modo, W es una función de T y de v, y se escribe:

$$W = f(T, v)$$

Esta relación se modela mediante la siguiente función:

$$W = f(T, v) = 13.12 + 0.6215 T - 11.37 v^{0.16} + 0.3965 T v^{0.16}$$

Observación: la función no es válida cuando v=0.

Confeccione una tabla de doble entrada para los siguientes valores de T y v.

$$T \in \{5, 0, -5, -10, -15, -20, -25, -30, -35, -40\}$$

 $v \in \{5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80\}$

Confeccionamos la tabla indicando en filas las temperaturas y en columnas las velocidades del viento. En cada celda calculamos el valor correspondiente del índice de temperatura redondeado al número entero más próximo.

ν (rapidez del viento km/							h)					
		5	10	15	20	25	30	40	50	60	70	80
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
()	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
eal °(-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
tura r	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
T (temperatura real °C)	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

Por ejemplo, la tabla muestra que si la temperatura real es -5 °C y la rapidez del viento es 50 km/h, entonces:

$$W = f(-5, 50) = -15$$

El índice de temperatura es -15, lo que significa que se sentiría tanto frío como si la temperatura fuera -15 °C y no hubiera viento.

A continuación se grafican la función y algunas curvas de nivel:

3) Temperatura en una placa

Una placa delgada de metal, situada en el plano (x, y), está a una temperatura T = f(x, y) en el punto (x, y). Las curvas de nivel de T se llaman *isotermas* porque la temperatura es igual en todos los puntos sobre la curva. Trace algunas isotermas si la función de temperatura está dada por:

$$T = f(x, y) = \frac{100}{1 + x^2 + 2y^2}$$

Su dominio es: $D_f = \mathbb{R}^2$

Las curvas de nivel k estarán dadas por:

$$C_k = \{(x,y) \in D_f \ / \ T = f(x,y) = k\} = \{(x,y) \in D_f \ / \ \frac{100}{1+x^2+2y^2} = k\} \text{ donde } 0 < k \le 100.$$

Reordenando la expresión, considerando $k \neq 100$ se llega a:

$$1 = \frac{x^2}{\frac{100 - k}{k}} + \frac{y^2}{\frac{100 - k}{2k}}$$

que resultan ser elipses centradas en el origen del sistema de coordenadas, con eje principal coincidente con el eje x y con semiejes mayor $\sqrt{\frac{100-k}{k}}$ y menor $\sqrt{\frac{100-k}{2k}}$.

Si k=100 resulta $\frac{100}{1+x^2+2y^2}=100$, es decir $x^2+2y^2=0$ que es el origen de coordenadas (0,0).

Si k=80 resulta $1=\frac{x^2}{\frac{100-80}{80}}+\frac{y^2}{\frac{100-80}{2.80}}$, es decir $1=\frac{x^2}{1/4}+\frac{y^2}{1/8}$ que es una elipse de semiejes mayor y menor $\frac{1}{2}$ y $\frac{1}{2\sqrt{2}}$, respectivamente.

Si
$$k=60$$
 resulta $1=\frac{x^2}{\frac{100-60}{60}}+\frac{y^2}{\frac{100-60}{2.60}}$, es decir $1=\frac{x^2}{2/3}+\frac{y^2}{1/3}$ que es una elipse de semiejes mayor y menor $\sqrt{\frac{2}{3}}$ y $\sqrt{\frac{1}{3}}$, respectivamente.

Si
$$k=40$$
 resulta $1=\frac{x^2}{\frac{100-40}{40}}+\frac{y^2}{\frac{100-40}{2.40}}$, es decir $1=\frac{x^2}{3/2}+\frac{y^2}{3/4}$ que es una elipse de semiejes mayor y menor $\sqrt{\frac{3}{2}}$ y $\frac{\sqrt{3}}{2}$, respectivamente.

Si k=20 resulta $1=\frac{x^2}{\frac{100-20}{20}}+\frac{y^2}{\frac{100-20}{2.20}}$, es decir $1=\frac{x^2}{4}+\frac{y^2}{2}$ que es una elipse de semiejes mayor y menor 2 y $\sqrt{2}$, respectivamente.

A continuación se grafican la función y las curvas de nivel halladas:

4) Potencial eléctrico

Si V = f(x, y) es el potencial eléctrico en un punto (x, y) del plano xy, entonces las curvas de nivel de V se llaman *curvas equipotenciales*, porque en todos los puntos de dicha curva el potencial eléctrico es el mismo. Trace algunas curvas equipotenciales si:

$$V = f(x, y) = \frac{100}{\sqrt{36 - x^2 - y^2}}$$

El dominio de la función es:

$$D_f = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 36\}$$

y la imagen:

$$Im_f = \left[\frac{50}{3}, +\infty\right)$$

Las curvas de nivel k estarán dadas por:

$$C_k = \left\{ (x, y) \in D_f \ / \ V = f(x, y) = k \right\} = \left\{ (x, y) \in D_f \ / \ \frac{100}{\sqrt{36 - x^2 - y^2}} = k \right\}$$

$$C_k = \left\{ (x, y) \in D_f \ / \ x^2 + y^2 = 36 - (\frac{100}{k})^2 \right\}$$

Si $k = \frac{50}{3}$ resulta $x^2 + y^2 = 0$, que es el origen del sistema de coordenadas (0,0).

Si k = 20 resulta $x^2 + y^2 = 9$, que es una circunferencia de radio 3

Si k=25 resulta $x^2+y^2=20$, que es una circunferencia de radio $\sqrt{20}$

A continuación se grafican la función y algunas curvas de nivel:

5. Ejercicios propuestos

1. Determinar y graficar el dominio de las siguientes funciones. Describir el recorrido de las mismas.

a)
$$f(x,y) = 4x^2 + 9y^2$$

b)
$$f(x,y) = ln (4 - x - y)$$

c)
$$f(x,y) = \frac{1}{\sqrt{4-x^2-y^2}}$$

d)
$$f(x,y) = \frac{2}{x^2 - y^2}$$

e)
$$f(x,y) = \frac{1}{\ln(6x + 4y - 3)}$$

f)
$$f(x,y) = \arcsin(5x - 3y)$$

g)
$$z = \sqrt{25 - x^2 - y^2}$$

2. Representar gráficamente las siguientes superficies:

a)
$$6x + 3y + 4z = 24$$

b)
$$6x + 4z = 24$$

c)
$$4z = 12 - 3y^2$$

d)
$$x^2 + (z-2)^2 = 4$$

e)
$$4x^2 + 6y^2 = 1$$

f)
$$z = e^x$$

g)
$$z = y - x^2$$

3. Describir y graficar las curvas de nivel de la función para el valor indicado:

a)
$$z = xy$$
 para $z = 1$, $z = -1$, $z = 2$, $z = -2$, $z = 3$, $z = -3$

b)
$$z = y - x^2$$
 para $z = -1, 0, 1, 2, 3$

c)
$$f(x,y) = \frac{x}{x^2 + y^2}$$
 para $K = -1, K = 1$

d)
$$f(x,y) = 9 - x^2 - y^2$$
; $z = 0, 2, 4, 6, y$ 8

- e) Sea f(x,y) = y. arctg x, encuentre una ecuación para la curva de nivel de f que pasa por el punto P(1,4).
- 4. Dibujar la superficie de nivel para el valor indicado:

a)
$$w = x^2 + 4y^2 + 9z^2$$
 para $w = 1, 2, 3$

b)
$$f(x, y, z) = ln(x^2 + y^2 + z^2)$$
 para $w = 1$

c)
$$f(x, y, z) = z - \sqrt{x^2 + y^2}$$
; $w = -1, 0, 1, 2$

Sea $f(x,y,z)=x^2+4y^2-z^2$, encuentre una ecuación para la superficie de nivel de f que pasa por el punto P(2,-1,3).

6. Bibliografía

- Cálculo con Geometría Analítica, de Earl W. Swokowski
- Cálculo de varias variables. Trascendentes tempranas, de James Stewart.
- Cálculo y Geometría Analítica, de Roland E. Larson, Robert P. Hostetler y Bruce H. Edwawrds.
- El Cálculo, de Louis Leithold.

IMPORTANTE: ver Anexo de Geometría plana y espacial.

ANEXO

Curvas Cónicas:

Curva		Parábola	Elipse	Hipérbola
Parâmetros	\$0.	 p → Dist. vértice al foco → Dist. vértice a directriz 	$2a \rightarrow \text{Long, eje mayor}$ $2b \rightarrow \text{Long, eje menor}$ $2c \rightarrow \text{Dist. entre focos}$ $c^2 = a^2 - b^2$	$2a \rightarrow \text{Long, eje transverso}$ $2b \rightarrow \text{Long, eje conjugado}$ $2c \rightarrow \text{Dist. entre focos}$ $c^2 = a^2 + b^2$
Ec. Ord. con centro en el origen	El eje focal es el eje x	$y^2 = 4p x$ Directriz: $x + p = 0$, Foco: $F(p, 0)$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Focos $F(c, 0), F'(-c, 0)$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ Focos $F(c, 0), F'(-c, 0)$
Ec. Ord. con centro en el origen	El eje focal es el eje y	$x^2 = 4p y$ Directriz: $y + p = 0$, Foco: $F(0, p)$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ Focos $F(0, c), F'(0, -c)$	$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Focos $F(0, c), F'(0, -c)$
Ec. Ord. con centro fuera del origen	Eje focal paralelo al eje x	$(y-k)^2 = 4p(x-h)$	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$
Ec. Ord. con centro fuera del origen	Eje focal paralelo al eje y	$(x-h)^2 = 4p (y-k)$	$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$	$\frac{(x-h)}{a^2}$
Longitud del lado Excentricidad	ido recto	4p c=1	$\frac{2b^2/a}{c = c/a < 1}$	$2b^2/a$ $e = c/a > 1$

Superficies Cuádricas:

TABLA 1 Gráficas de superficies cuádricas

Superficie	Ecuación	Superficie	Ecuación
Elipsoide	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Todas las trazas son elipses. Si $a = b = c$, la elipsoide es una esfera.	Cono	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Las trazas horizontales son elipses. Las trazas verticales en los planos $x = k$ y $y = k$ son hipérbolas si $k \neq 0$ pero son pares de rectas si $k = 0$.
Paraboloide elíptico	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Las trazas horizontales son elipses. Las trazas verticales son parábolas. La variable elevada a la primera potencia indica el eje del paraboloide.	Hiperboloide de una hoja	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Las trazas verticales son elipses Las trazas verticales son hipérbolas. El eje de simetría corresponde a la variable cuyo coeficiente es negativo.
Paraboloide hiperbólico	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Las trazas horizontales son hipérbolas. Las trazas verticales son parábolas Se ilustra el caso donde $c < 0$.	Hiperboloide de dos hojas	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Las trazas horizontales en $z = k$ son elipses si $k > c$ o $k < -c$. Las trazas verticales son hipérbolas. Los dos signos menos indican dos hojas.