Feuille d'exercices 4 : séries entières

Exercice 1.— Déterminer le rayon de convergence des séries entières suivantes :

1.
$$\sum_{n \ge 2} \frac{x^n}{\ln n}$$

1.
$$\sum_{n\geq 2} \frac{x^n}{\ln n}$$
 2. $\sum_{n\geq 1} \frac{(-1)^n}{n^n} x^{2n+1}$ 3. $\sum_{n\geq 1} (2^n - n) x^n$ 4. $\sum_{n\geq 0} n^{\sqrt{n}} x^n$ 5. $\sum_{n\geq 0} 3^n x^{n!}$

$$3. \sum_{n \ge 1} (2^n - n) x^n$$

4.
$$\sum_{n>0} n^{\sqrt{n}} x^n$$

5.
$$\sum_{n\geq 0} 3^n x^{n!}$$

6.
$$\sum_{n>0} x^{n^2}$$

7.
$$\sum_{n>1} (\tan(\frac{1}{n}) - \sin(\frac{1}{n})) x^n$$

6.
$$\sum_{n\geq 0} x^{n^2} \qquad 7. \sum_{n\geq 1} (\tan(\frac{1}{n}) - \sin(\frac{1}{n})) x^n \qquad 8. \sum_{n\geq 1} a_n x^n \text{ avec } a_n = \begin{cases} n2^n & \text{si } n \text{ est impair } \frac{1}{n} & \text{si } n \text{ est pair } \end{cases}$$

Exercice 2.— On suppose que la suite (a_n) tend vers 0 et que la série $\sum a_n$ diverge. Quel est le rayon de convergence de la série entière $\sum a_n x^n$?

Exercice 3.— Comparer les rayons de convergence R_1 et R_2 des séries entières $\sum_{n>0} a_n x^n$ et $\sum_{n>0} a_n x^{2n}$.

Exercice 4.— Déterminer le domaine de convergence puis la somme des séries entières suivantes:

1.
$$u(x) = \sum_{n>1} \frac{1}{n3^n} x^n$$
 2. $v(x) = \sum_{n>0} \frac{n+2}{n+1} x^n$

Exercice 5.— Soit f la fonction définie par

$$f(x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^{2n+1}}{n(2n+1)}.$$

- 1. Calculer le rayon de convergence R et le domaine de convergence de cette série entière.
- 2. Pourquoi f est-elle C^{∞} sur]-R,R[? Montrer que pour tout $x\in]-R,R[$ on a : $f'(x) = \ln(1+x^2).$
- 3. En déduire une expression de f(x) pour $x \in]-R, R[$.
- 4. On pose, pour tout $n \ge 1$, $f_n(x) = (-1)^{n+1} \frac{x^{2n+1}}{n(2n+1)}$ pour tout $x \in \mathbb{R}$. Montrer que la série de fonctions $\sum_{x \in \mathbb{R}} f_x(x) = (-1)^{n+1} \frac{x^{2n+1}}{n(2n+1)}$ la série de fonctions $\sum_{n\geq 1} f_n$ converge normalement sur [-R,R]. Montrer que f est continue sur [-R, R].
- 5. En déduire l'égalité

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n(2n+1)} = \ln(2) + \frac{\pi}{2} - 2$$

Exercice 6.— On considère la série entière $S(x) = \sum_{n \ge 0} \frac{x^n}{\ln(n)}$.

- 1. a) Calculer son rayon de convergence R.
 - b) Montrer que la série entière S(x) converge en x=-R et diverge en x=R. En déduire son domaine de convergence.
- 2. Montrer que $S(x) \geq \sum_{n=2}^{+\infty} \frac{x^n}{n}$ pour tout $x \in [0,1[$ et en déduire (en justifiant) que $\lim_{x \to 1^{-}} S(x) = +\infty.$
- 3. On note, pour tout $n \ge 3$, $a_n = \frac{1}{\ln(n-1)} \frac{1}{\ln(n)}$.
 - a) Montrer que la série numérique $\sum_{n\geq 3} a_n$ converge, et calculer sa somme.
 - b) En déduire que la série entière $u(x) = \sum_{n=2}^{+\infty} a_n x^n$ converge normalement sur [-1,1].
- 4. a) Montrer que, pour tout $x \in [-1, 1[$, on a :

$$(x-1)S(x) = -\frac{x^2}{\ln(2)} + \sum_{n=3}^{+\infty} a_n x^n = -\frac{x^2}{\ln(2)} + u(x).$$

b) En déduire que S est continue sur [-1, 1] et qu'elle vérifie

$$\lim_{x \to 1^{-}} (x - 1)S(x) = 0.$$

Exercice 7.— Donner le développement en série entière en 0 des fonctions :

$$1. \qquad x \mapsto \frac{1}{1-x}$$

2.
$$x \mapsto \frac{1}{(1-x)^2}$$

$$3. \quad x \mapsto \ln(1+x)$$

4.
$$x \mapsto e^x$$

5.
$$x \mapsto \cos(x)$$

6.
$$x \mapsto \sin(x)$$

7.
$$x \mapsto \operatorname{ch}(x)$$

8.
$$x \mapsto \operatorname{sh}(x)$$

1.
$$x \mapsto \frac{1}{1-x}$$
 2. $x \mapsto \frac{1}{(1-x)^2}$ 3. $x \mapsto \ln(1+x)$ 4. $x \mapsto e^x$ 5. $x \mapsto \cos(x)$ 6. $x \mapsto \sin(x)$ 7. $x \mapsto \operatorname{ch}(x)$ 8. $x \mapsto \operatorname{sh}(x)$ 9. $x \mapsto \arctan(x)$ 10. $x \mapsto \sin^2(x)$.

10.
$$x \mapsto \sin^2(x)$$
.

Dans chaque cas, préciser le rayon de convergence et le domaine de convergence de la série.

Exercice 8.— a) Décomposer en éléments simples la fonction $f: x \mapsto \frac{x}{(x-1)(x-2)}$ et développer la en série entière en 0. Donner le rayon de convergence de la série obtenue.

b) Même question avec la fonction $g: x \mapsto \frac{1}{1+x+x^2}$.

Exercice 9.— On considère les polynômes $P_n: x \mapsto \sum_{k=0}^n \frac{x^k}{k!}$. On fixe R > 0. Montrer qu'il existe un entier n_R tel que pour tous les entiers $n \ge n_R^{n-1}$, P_n n'admet pas de racine réelle dans [-R, R].

Exercice 10.— Déterminer le domaine de convergence de la série entière $\sum_{n \geq 0} \frac{x^n}{(2n)!}$ puis calculer sa somme.

Exercice 11.—

- 1. Montrer que la fonction $x \mapsto \frac{\sin(x)}{x}$ se prolonge en une fonction C^{∞} sur \mathbb{R} .
- 2. Montrer alors que la fonction $x \mapsto \frac{1}{x} \frac{1}{\sin(x)}$ se prolonge en une fonction C^{∞} sur $]-\pi,\pi[$.

Exercice 12.—. On considère l'équation différentielle (E): y' = xy + 1 avec la condition initiale y(0) = 0. On en cherche la solution y(x) sous la forme d'une série entière inconnue $y(x) = \sum_{n>0} a_n x^n$ de rayon de convergence R > 0.

1. Montrer soigneusement que si y est solution de l'équation différentielle (E) avec y(0) = 0, alors $a_0 = 0$, $a_1 = 1$ et, pour tout $n \ge 1$,

$$(n+1)a_{n+1} = a_{n-1}.$$

- 2. Montrer par récurrence que $a_{2p}=0$ et $a_{2p+1}=\frac{2^p\,p!}{(2p+1)!}$ pour tout $p\geq 0$.
- 3. Calculer le rayon de convergence R de y(x).

Exercice 13.—. On cherche à résoudre l'équation différentielle

(E)
$$xy''(x) + 2y'(x) + xy(x) = 0.$$

avec la condition initiale y(0) = 1. On en cherche une solution sous la forme d'une série entière inconnue $\sum_{n>0} a_n x^n$ de rayon de convergence R > 0, dont on note f la somme.

- 1. Donner des conditions nécessaires et suffisantes sur les coefficients a_n pour que f soit solution de (E) sur]-R,R[avec f(0)=1.
- 2. Calculer alors les coefficients a_n pour tout $n \in \mathbb{N}$.
- 3. Calculer le rayon de convergence R de la série entière obtenue, puis déterminer la fonction f.

Exercice 14.— (Complément au cours 5.) On considère la série numérique $\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n+1}}$.

- 1. Justifier sa convergence. Converge-t-elle absolument?
- 2. On regarde son produit de Cauchy avec elle-même. On note $\sum_{n\geq 0} c_n$ ce produit de Cauchy. En minorant c_{2p} , montrer que ce produit de Cauchy diverge.

Exercice 15.— Soit n un entier ≥ 1 . On note d_n le nombre de permutations de $\{1, 2, \ldots, n\}$ qui ne possèdent aucun point fixe (ce sont les dérangements). On pose $d_0 = 1$.

- 1. Dénombrer les permutations de $\{1, 2, \dots, n\}$ qui possèdent exactement k points fixes pour montrer la relation : $\sum_{k=0}^{n} \binom{n}{k} d_{n-k} = n!$.
- 2. On introduit la série entière $\sum_{n\geq 0} \frac{d_n}{n!} x^n$. Montrer que son rayon de convergence est ≥ 1 et établir que, pour tout $x\in]-1,1[$, on a :

$$e^{x} \cdot \sum_{n=0}^{+\infty} \frac{d_{n}}{n!} x^{n} = \frac{1}{1-x}.$$

3. En déduire une expression de d_n en fonction de n et la limite de $\frac{d_n}{n!}$ quand n tend vers $+\infty$. Interprétation probabiliste ?