UNIVERSIDAD DEL VALLE DE GUATEMALA CAMPUS CENTRAL FACULTAD DE INGENIERÍA

Iniciativa Académica de Visión por Computadora

1 Identificación

Curso:	CC3102 – Visión por Computadora	Créditos:	4
Ciclo:	Primero	Requisitos:	Algoritmos y Estructuras de Datos
Año:	2024		Deep Learning
			Álgebra Lineal
Profesor:	Alan Reyes–Figueroa	Horario:	Martes 18:10-19:45 y jueves 17:20-18:55
Email:	agreyes	Sala:	H-301 y CIT-312.

Sitio Web del Curso:

• https://pfafner.github.io/cv2024

Office Hours:

• Por solicitud del estudiante, o pueden enviar sus dudas por correo electrónico.

2 Descripción

Este es un curso introductorio a la visión computacional (CV). Inicialmente, haremos una revisión de las técnicas estándar usadas en el procesamiento de imágenes digitales, el diseño de filtros básicos y aplicaciones de transformaciones, las cuales sirven como base para el desarrollo de aplicaciones inteligentes asociadas a imágenes.

Aprenderemos y estudiaremos los algoritmos más comunes para la detección, extracción y comparación de características. Abordaremos también el estudio geométrico de imágenes de una vista (one-point-view) y de dos vistas (two-point-view), y sus transformaciones asociadas. Estos algoritmos se utilizan para alinear y unir imágenes para crear una única imagen de una escena más grande, y para recrear escenas 3D a partir de imágenes planas.

Abordaremos también grandes temas como la clasificación y segmentación de imágenes, y estudiaremos los métodos actuales de aprendizaje automático para este objetivo, principalmente redes neuronales convolucionales. Abordaremos también temas como la detección de objetos en una imagen, así como estimación de movimiento y seguimiento de objetos con aprendizaje automático. Al final del curso y si el tiempo lo permite haremos un breve recorrido por metodologías y herramientas actuales de IA generativa, para producir imágenes a partir de descripciones.

El curso requiere madurez por parte del estudiante, pues se integran contenidos de muchos cursos de computación, matemática y estadística. Entre los prerrequisitos se encuentra tener un buen dominio de las técnicas vistas en los cursos de matemática discreta, grafos, álgebra lineal, programación y algoritmos, cálculo diferencial e integral, y estadística.

3 Competencias a Desarrollar

Competencias genéricas

- 1. Piensa de forma crítica y analítica.
- 2. Resuelve problemas de forma efectiva.
- 3. Desarrolla habilidades de investigación y habilidades de comunicación científica a través de seminarios y presentaciones ante sus colegas.

Competencias específicas

- 1.1 Identifica y conoce los aspectos fundamentales del procesamiento de imágenes y la visión computacional, para tener una visión global de los orígenes y motivaciones de ésta área.
- 1.2 Distingue el concepto de cámara, modelo de cámara, transformaciones proyectivas, filtro digital, convolución discreta, morfología, puntos característicos, alineación, entre otros.
- 1.3 Comprende y conoce la terminología común en las áreas de procesamiento de imágenes, visión por computadora, y redes neuronales convolucionales.
- 2.1 Evalúa correctamente los métodos más adecuados para abordar un problema relacionado con imágenes digitales, vídeos, así como sus usos prácticos, tomando en consideración limitantes de disponibilidad de datos.
- 2.2 Construye algoritmos específicos de visión por computadora para resolver eficientemente problemas computacionales asociados a imágenes o vídeo.
- 2.3 Utiliza un enfoque global para resolver problemas. Utiliza herramientas auxiliares en su solución, como álgebra lineal, estadística y ciencia de datos, lógica y algoritmos.
- 3.1 Desarrolla todas las etapas de un proyecto aplicado donde se realiza una implementación de algoritmos de visión computacional.
- 3.2 Escribe un reporte técnico sobre la solución de un problema aplicado. Concreta un análisis riguroso y conclusiones importantes.
- 3.3 Comunica de manera efectiva, en forma escrita, oral y visual, los resultados de su investigación.

4 Metodología Enseñanza Aprendizaje

El curso se desarrollará durante diecinueve semanas, con cuatro períodos semanales de cuarenta y cinco minutos para desenvolvimiento de la teoría, la resolución de ejemplos y problemas, comunicación didáctica y discusión. Se promoverá el trabajo colaborativo de los estudiantes por medio de listas de ejercicios.

El resto del curso promoverá la revisión bibliográfica y el auto aprendizaje a través de la solución de los ejercicios del texto, y problemas adicionales, y el desarrollo de una monografía. Se espera que el estudiante desarrolle su trabajo en grupo o individualmente, y que participe activamente y en forma colaborativa durante todo el curso.

5 Contenido

1. Procesamiento de imágenes: (6 semanas) Imágenes digitales. Principales formatos y tipos de imágenes. Formatos cromáticos y conversión entre ellos. Filtros y convolución. Diseño y efectos de filtros. Gradientes y líneas. Detección de bordes. Aplicaciones en restauración de imágenes.

Operadores morfológicos: opening, closing, top-hat. Transformaciones morfológicas. Esqueletización. Detección de componentes. Histogramas y ecualización. Algoritmos para segmentación binaria de una imagen.

Filtros de Gabor, bancos de filtros. Transformada de Fourier, transformada de Hough. Submustreo y efectos, aliasing y artefactos. Eliminación de artefactos. Pirámides. Filtros de Haar. Aplicaciones a detección de objetos.

- 2. Geometría de 1 y 2 vistas. (3 semanas) Transformaciones proyectivas y homografías. Modelos de cámaras. Matriz fundamental. Calibración de cámaras. Geometría epipolar, visión estéreo y profundidad.
- 3. Física y óptica de las imágenes. (1 semana) Formación de imágenes físicas y digitales. Cámaras y lentes. Color, luz y aberraciones ópticas. Espectro visible. Sensores biológicos y sensores digitales.
- 4. Alineación de imágenes. (2 semanas) Puntos característicos, Descriptores. Detección de esquinas. Algoritmos principales: SIFT, SURF. RANSAC. Aplicaciones para matching y stitching de imágenes. Construcción de panoramas.
- 5. Aprendizaje autómatico aplicado a imágenes. (6 semanas) Redes convolucionales (CNN o ConvNets). Tips para calibración y entrenamiento. Arquitecturas para clasificación de imágenes: AlexNet, ResNet, GoogleNet. Bag of Words y descriptores. Algoritmos de clasificación no-supervisada: K-means $et\ al.$

Arquitecturas para segmentación de imágenes: U-Net, Mask R-CNN. Otros algoritmos para segmentación. Detección de objetos. Arquitecturas para detección de objetos: Regional-CNN, ResNet-50, YOLO, YOLO2.

Estimación de movimiento y Flujo óptico: algoritmo de Horn-Schunk. Tracking y seguimiento de objetos: algoritmo de Lucas-Kanade.

GANS, IA generativa y métodos de difusión, aplicaciones y herramientas actuales para generación de imágenes (StableDiffussion, MidJourney, DaLL-e).

6 Bibliografía

Textos:

• R. Szeliski (2022). Computer Vision: Algorithms and Applications.

Referencias adicionales:

- R. Hartley y A. Zisserman (2009). Multiple View Geometry in Computer Vision.
- D. FOrsyth y J. Ponce (2000). Computer Vision: A Modern Approach.
- R. Gonzalez y R. Woods (1999). Digital Image Processing.

7 Actividades de evaluación

Actividad	Cantidad aproximada	Porcentaje
Listas y Laboratorios	6	20%
Proyectos	4	80%

8 Cronograma

Semana	Tópico	Fecha	Actividades
1	Conceptos básicos.	08-12 enero	
	(Formación de imágenes, luz, lentes, color, receptores)		
2		15-19 enero	
3	Procesamiento de imágenes.	22-26 enero	
	(Filtros, bordes, morfología, threshold, procesamiento)		
4		29 enero-02 febrero	
5		05-09 febrero	
6	Transformadas. (Pirámides, Fourier, transformada Hough, filtros Haar)	12-16 febrero	
7		19-23 febrero	
8		26 febrero-01 marzo	
9	Descriptores. (SIFT, SURF, Ransac, Matching)	04-08 marzo	
10	3,	11-15 marzo	
11	Geometría de 1 y 2 vistas. (Transformaciones 2D, homografías, modelos de cámaras)	18-22 marzo	
	Semana Santa	25-29 marzo	
12		01-05 abril	
13		08-12 abril	
14		15-19 abril	
15	Visión en la era del Deep Learning. (Redes neuronales, Redes convolucionales)	22-26 abril	
16	(clasificación imágenes, segmentación)	29 abril-03 mayo	
17	(detección objetos)	06-10 mayo	
18	(tracking, restoration, style transfer,)	13-17 mayo	
19	(aplicaciones con IA generativa)	20-24 mayo	
20	Presentación de proyectos.	27-31 mayo	