

High Gas Barrier Coatings for Polyester Film

Presented by:

Ginger Cushing Business Development Manager Michelman Inc.

Abstract

Improved oxygen barrier in a multi-layer flexible food pouch, sachet or bag translates to prolonged product freshness and extended shelf life. This presentation will describe a new aqueous coating which, when applied in line during the polyester (BOPET) film production process, can have a high impact on oxygen transmission rate. Metalizing the coated substrate further improves gas barrier.

Agenda

- Objective
- Baseline
- Offline results
- Inline
- Metalizing
- About the coating
- Conclusion

Objective

- Reduce oxygen transmission through thin, transparent packaging film to retard oxidative spoilage and prolong product freshness, extend shelf life
- Demonstrate a very thin layer of coating on film can have a high impact on barrier, without adding significant cost or weight to a package structure.

In Line Barrier Coating Application

- Used in line in the film production process
- BOPET substrate
 - Substrate selection is critical, smoother is better
- Better properties achieved through the stretching process – e.g. adhesion
- Coat weight range 0.04 0.07 dry gsm
- Enhance barrier properties by metalizing on top of the coating

Bi Axial Orientation Film Schematic

Gravure Coating Head MOTHER REEL THICKNESS CONTROL AND TREATMENT MAIN EXTRUDER CO-EXTRUDERS TD ORIENTATION 10:1 HEAT SETTING MD ORIENTATION 5:1

Bi Axial Orientation Film Process

Barrier Coating Characteristics

- 10% solids in water
- Single component
- Excellent shelf life
- No mineral nano-particulate content
- No chlorine
- Food compliant
- Adhesion
 - To film substrates
 - To vacuum deposited metal, AlOx and SiOx
- Promising water resistance
- Good oxygen barrier versus humidity
- >500 g/in metal adhesion between film and metal

Benchmark Polyester Film

Barrier Coating (BC)

English Translation

- 48 ga BOPET/0.04 ppr BC
 - \bullet OTR @0%RH = 0.04 cc/100in²/day
 - **A** MVTR @ 90% RH = $2.6 \text{ g}/100 \text{in}^2/\text{day}$
- Above with 2.7 OD metal
 - \bullet OTR @0%RH = 0.005 cc/100in²/day
 - **A** MVTR @ $90\% = 0.19 \text{ g}/100 \text{ in}^2/\text{day}$

- Above metalized, laminated to 1.2 mils CPP
 - ♦ OTR @ 0%RH = 0.06 cc/100in²/day
 - ❖ MVTR % 90% RH = 0.06 g/100in²/day

ppr = pound per 3000 ft² ream

Performance at Elevated Humidity

Barrier Coating (BC) Effect of Humidity

Fitness for Use

- Print receptivity testing is under way.
- Prototypes under development.
- Adhesive lamination: successful construction made BOPET/BC//CPP with solvent based PU adhesive
- More testing to be done.

Summary: Coating for BOPET

New Building
Block Structure
for higher
performance
and/or lower cost

Can we eliminate
lamination?
Can we eliminate
PVDC?
Where are alu foil
structures overengineered?

High Gas Barrier Coating for Polyester Film

Thank you

PRESENTED BY

Ginger Cushing
Business Development Manager
Michelman
GingerCushing@michelman.com

