(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-34179 (P2002-34179A)

(43)公開日 平成14年1月31日(2002.1.31)

(51) Int.Cl. ⁷		酸別配号 FI			テーマコード(参考)	
H02J	9/06	505	H02J	9/06	505C	5 G O 1 5
		503			503A	5 H 4 2 0
		504			504A	
G 0 5 F	1/67		G 0 5 F	1/67	Z	

審査請求 未請求 請求項の数9 () L (全 11 頁)

		田土山水	一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、
(21)出顧番号	特顧2000-214823(P2000-214823)	(71)出顧人	000003078
			株式会社東芝
(22) 出顧日	平成12年7月14日(2000.7.14)		東京都港区芝浦一丁目1番1号
		(72)発明者	梅村 時博
			三重県三重郡朝日町大字輝生2121番地 株
			式会社東芝三重工場内
		(72)発明者	川上 紀子
			東京都府中市東芝町1番地 株式会社東芝
			府中事業所内
		(74)代理人	100071135
		(, 2, 14, 2,)	弁理士 佐藤 強
			JI PELL VIII

最終頁に続く

(54) 【発明の名称】 電力制御装置

(57)【要約】

【課題】 サイクル寿命が長く、環境にやさしく、低コストな電力制御装置を提供する。

【解決手段】 電源2から供給される交流入力をコンバータ3により直流に変換し、インバータ5を介して交流出力として負荷6に給電する。EDLCバンク4は、多数のEDLC単セルを直並列に接続してなるもので、その充放電により負荷6や電源2の変動に対応して電力制御を行う。EDLCバンク4は、鉛蓄電池と比較すると、内部抵抗が低く高速に充放電をすることができ、サイクル寿命を長くすることができるため環境負荷も軽減される。また、高効率に電力を出し入れすることができるので、電力制御の効率と動作性能との向上を図ることができる。

4:春曜集世

【特許請求の範囲】

【請求項1】 負荷への給電経路に設けられ負荷への電力供給を蓄電装置の充放電による電力も利用して制御するようにした電力制御装置において、

前記蓄電装置は、複数個のEDLC (Electric Double Layer Capacitor ;電気二重層キャパシタ)単セルを直並列に複数個接続してなるEDLCバンクとして構成されていることを特徴とする電力制御装置。

【請求項2】 前記蓄電装置は、少なくとも1つの前記 EDLCバンクに加えて、二次電池を組み合わせる構成 とされていることを特徴とする請求項1記載の電力制御 装置。

【請求項3】 前記蓄電装置は、少なくとも1つの前記 EDLCバンクに加えて、アルミ電解コンデンサを組み 合わせる構成とされていることを特徴とする請求項1記 載の電力制御装置。

【請求項4】 前記蓄電装置は、少なくとも1つの前記 EDLCバンクに加えて、アルミ電解コンデンサと二次 電池とを組み合わせる構成とされていることを特徴とす る請求項1記載の電力制御装置。

【請求項5】 前記EDLCバンクは、前記EDLC単セルあたりの内部抵抗値が $2 [m\Omega]$ 以下のもので、且つ前記EDLC単セルの静電容量値と内部抵抗値との積の値が $4 [\Omega F]$ 以下のものであることを特徴とする請求項1ないし4記載の電力制御装置。

【請求項6】 前記EDLCバンクは、電力貯蔵を主体とした用途の場合に、前記EDLC単セルあたりの内部抵抗値が10 [mΩ]以下のもので、且つ前記EDLC単セルの静電容量値と内部抵抗値との積の値が100 [ΩF]以下のものであることを特徴とする請求項1ないし4記載の電力制御装置。

【請求項7】 前記EDLCバンクは、前記EDLC単セルあたりのエネルギー密度の値Y [Wh/Kg]と、出力密度の値X [W/Kg]とが、

 $Y > 100 \times X^{-0.8}$

なる条件を満たすものにより構成されていることを特徴 とする請求項1ないし4記載の電力制御装置。

【請求項8】 前記蓄電装置を構成する二次電池は、そのエネルギー密度が10[Wh/Kg]以上のものを少なくとも1つ含んだものとして構成されていることを特徴とする請求項2又は4記載の電力制御装置。

【請求項9】 前記蓄電装置を構成するアルミ電解コンデンサは、その出力密度が10000[W/Kg]以上のものを少なくとも1つ含んだものとして構成されていることを特徴とする請求項3又は4記載の電力制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、負荷への給電経路 に設けられ負荷への電力供給を蓄電装置の充放電による 電力も利用して制御するようにした電力制御装置に関する。

[0002]

【従来の技術】この種の電力制御装置としては、交流もしくは直流の電源から負荷に給電する際に、負荷の変動や電源の変動に対応して所定の電力を供給できるように、蓄電装置を備えた構成として給電制御を行うように構成されている。

【0003】例えば無停電電源装置などの電力制御装置は、交流電源を直流に変換するコンバータ装置と、このコンバータの直流出力を交流出力に変換して負荷に供給するインバータ装置と、コンバータ装置とインバータ装置との間に接続される蓄電装置などから構成されている。

【0004】上記構成において、通常状態では、交流入力をコンバータ装置により直流出力に変換し、インバータ装置により所望の電流、電圧、周波数の交流出力に変換して負荷に供給すると共に、蓄電装置にも直流出力の一部を充電に宛てて電力を蓄えた状態としている。停電が発生したときには、蓄電装置の電力を負荷側に出力することで負荷が無給電状態となるのを防止できるようにしている。

【0005】このような構成において、蓄電装置としては、例えば鉛蓄電池やリチウムイオン電池あるいはナトリウム・イオウ電池(NaS電池)などに代表される放電時間を比較的長くとることができる二次電池や、エネルギー密度の大きいアルミ電解コンデンサを多数接続してなる蓄電装置が使用されている。

[0006]

【発明が解決しようとする課題】しかしながら、上記した従来の電力制御装置においては、蓄電装置として二次電池、もしくはアルミ電解コンデンサなどを使用しているので次の点で実用上の制約を受ける。すなわち、第1に、蓄電装置のサイクル寿命には限界があり、蓄電装置を消耗品として使用していた。例えば、鉛蓄電池は、長期間に渡って充放電を繰り返し使い続けられると、200~1000回程度の充放電回数で電極の劣化等によりその能力が低下し、従って電力制御装置の効率は悪化する。このため、使用者は、2年から3年程度の周期で蓄電装置を交換する必要があった。

【0007】また第2に、蓄電装置として用いる二次電池では、鉛,酸,硫黄,リチウムなどの環境に有害な物質を含んでいるため、使用者が誤って過負荷の条件等で使用した場合に、蓄電装置を破損する可能性もある。この様な破損から環境破壊などを引き起こさぬ様、十分な保守、管理が必要となり、そのコストが高くなるという不具合がある。また、前記したように、2年から3年程度の周期で蓄電装置を交換する必要があることから、その廃棄処分についても環境に対する負荷や、コストの上昇が避けられない事情があった。

【0008】本発明は、上記事情に鑑みてなされたもので、その目的は、蓄電装置のサイクル寿命を長くして信頼性の向上を図るとともに、環境にやさしい材料を用いて環境対策のコスト低減も図ることができる電力制御装置を提供することにある。

[0009]

【課題を解決するための手段】上記の目的を達成するために請求項1記載の電力制御装置は、負荷への給電経路に設けられ負荷への電力供給を蓄電装置の充放電による電力も利用して制御するようにしたものを対象とし、前記蓄電装置を、複数個のEDLC (Electric Double La yer Capacitor :電気二重層キャパシタ)単セルを直並列に複数個接続してなるEDLCバンクとして構成したところに特徴を有する。

【0010】このような構成によれば、EDLC単セルを直並列に複数個接続することで、電力制御に適した電圧及び容量を得ることができ、電源に余裕がある状態ではEDLCバンクに電力を蓄え、停電、電源変動や負荷変動で電源の給電能力が低いときには、EDLCバンクを使用することにより、負荷に対して安定した電力供給を行うことができる。そして、EDLCバンクは、高速充放電が可能で充電効率が高く、しかもサイクル寿命が長いので、電力制御の効率及び動作性能を向上させることができる。さらに、EDLCバンクは環境汚染物質を用いない構成で、且つサイクル寿命が長いことから、環境にやさしいものとすることができる。

【0011】この場合、蓄電装置を、少なくとも1つのEDLCバンクに加えて、二次電池を組み合わせるように構成することが望ましい(請求項2)。このような構成によれば、停電時等の電源停止のような急激な変化が起こった場合の初期の比較的短時間領域では、EDLCバンクに蓄えられた電力を使用し、負荷に所望の電力を供給する。また、これ以後の時間領域では、二次電池に蓄えられた電力を使用し、負荷に所望の電力を供給する。これにより、長時間の電力バックアップをすることが可能になる。すなわち、電源停止のような電源の急激な変化に対して長い時間領域にわたって負荷への給電を維持できる。

【0012】そして、請求項1記載の発明において、蓄電装置を、少なくとも1つのEDLCバンクに加えて、アルミ電解コンデンサを組み合わせるように構成することもできる(請求項3)。

【0013】このような構成によれば、次の様な作用を得ることができる。アルミ電解コンデンサはスイッチングリップル電流を吸収することができる。したがって、交流入力を直流に変換して蓄電装置により充電する構成で、例えばコンバータに接続される電力系統の不平衡補償をする構成の場合や、あるいは、蓄電装置の直流出力を交流に変換して出力する構成に適用している場合で、例えばインバータに不平衡負荷を接続した構成の場合な

どにおいては、直流側に基本波の2倍の周波数の電源変動が発生するが、これをアルミ電解コンデンサで吸収することができる。そして、停電時等の急激な電源変動の初期のきわめて短時間の領域(数十ミリ秒以下)では、アルミ電解コンデンサに蓄えられた電力を使用し、負荷に所望の電力を供給する。また、それ以後の時間領域ではEDLCバンクに蓄えられた電力を使用し、負荷に所望の電力を供給する。これにより、比較的長時間の時間領域で高速の電力制御が可能になる。すなわち、電源停止のような急激な変動に対して高速で電源制御を行うことができる。

【0014】また、請求項1記載の発明において、蓄電装置を、少なくとも1つのEDLCバンクに加えて、アルミ電解コンデンサと二次電池とを組み合わせるように構成することが望ましい(請求項4)。このような構成によれば、上記した請求項2及び3の両者の構成及び作用を併せ持つことになり、停電等の急激な電源変動に対応して、幅広い時間領域で負荷への電力制御を行うことができる。

【0015】上記の各構成において、EDLCバンクの EDLC単セルを、EDLC単セルあたりの内部抵抗値 が2 $[m\Omega]$ 以下のもので、且つEDLC単セルの静電 容量値と内部抵抗値との積の値が4 $[\Omega F]$ 以下のもの とすることが望ましい(請求項5)。

【0016】上記構成によれば、特に、周期が数時間以下程度の範囲で電力制御を行うような負荷変動あるいは電源変動などに対応する場合に適した構成とすることができる。すなわち、例えば、数時間よりも短い時間で変動する負荷に給電するように接続することで、負荷の平準化を行い、これによって電力系統に及ぼす影響を小さくすることができるようになる。これは、電力の出し入れを行う場合において、EDLC単セルの内部抵抗が大きくなると、電力を出し入れする時の電流による内部抵抗での電力損失が大きくなるため、これを考慮したものである。

【0017】つまり、負荷の変動が数時間よりも短い時間の変動である場合でも対応可能なものとするためには、EDLC単セルあたりの内部抵抗値を抑える必要があり、しかも、この内部抵抗値そのものはEDLC単セルの静電容量値にも依存しているので、静電容量との関係で内部抵抗を評価した値として静電容量値と内部抵抗値との積の値でも規定しているのである。この両者の条件を満たすことにより、数時間よりも短い時間で変動する負荷に対して十分な電力制御を行うことができるようになる。

【0018】そして、請求項1ないし4記載の発明において、電力貯蔵を主体とした用途の場合に、EDLCバンクのEDLC単セルを、内部抵抗値が $10[m\Omega]$ 以下のもので、且つEDLC単セルの静電容量値と内部抵抗値との積の値が $100[\Omega F]$ 以下のものとすること

が望ましい(請求項6)。

【0019】上記構成によれば、電力制御として、電力を比較的長い時間蓄えながら、電力の制御をすることを主目的とした無停電電力制御装置などに適したものとなる。すなわち、具体的には、周期が数日以下の範囲で電力制御を行うことに適しており、負荷の変動が数日よりも短い時間で変動するものに適用することで、負荷の平準化を行い、電力系統の効率的運用を行うことができるものである。

【0020】この電力制御では、上述のように、比較的 低速度で電力の制御を行うものを対象としているため、 電力の出し入れの際の内部抵抗による電力損失をほとん ど無視することができ、換言すれば、請求項5のものに 比べて内部抵抗値及び静電容量値と内部抵抗値との積の 値を緩和することができ、その結果として、大容量の電 力を貯蔵することができるのである。

【0021】そして、請求項1ないし4記載の発明において、EDLCバンクを、EDLC単セルのエネルギー密度の値Y [Wh/Kg] と、出力密度の値X [W/Kg]とが、

$Y > 100 \times X^{-0.8}$

なる条件を満たすEDLC単セルにより構成することが 好ましい(請求項7)。上記構成によれば、上記条件を 満たすEDLC単セルを用いることで、このEDLC単 セルを用いたEDLCバンクによる電力制御の効率と性 能を最も良い状態とすることができる。逆に、この条件 を満たすことができない場合には、抵抗損失の増大や、 動作速度の低下あるいは制御エネルギー量の低下などの 性能劣化につながり、電力制御用に用いることは不適切 なものとなるものである。

【0022】なお、発明者らは、上記条件を見出だすのに、このEDLC単セル以外にアルミ電解コンデンサ及び鉛蓄電池について、そのエネルギー密度[Wh/Kg]と出力密度[W/Kg]との関係を対数プロットするいわゆるRagoneプロットで検証し、これらの結果から、上記条件が必要であることを見出だしたものである。

【0023】そして、請求項2又は4記載の発明において、蓄電装置を構成する二次電池として、そのエネルギー密度が10[Wh/Kg]以上のものを少なくとも1つ含めて構成することが好ましい(請求項8)。

【0024】このような構成によれば、特に蓄電エネルギー量を大きくすることができるので、長時間の電力を供給することができる。

【0025】そして、請求項3又は4記載の発明において、蓄電装置を構成するアルミ電解コンデンサとして、その出力密度が10000[W/Kg]以上のものを少なくとも1つ含めて構成することが好ましい(請求項9)。

【0026】このような構成によれば、特に出力密度を

大きくすることができるので、電力制御装置の制御速度 を上昇させることができる。

[0027]

【発明の実施の形態】 (第1の実施の形態)以下、本発 明の第1の実施形態について図1ないし図5を参照して 説明する。図1は電力制御装置1のブロック構成を示し ている。この図1において、商用交流電源などの電源2 は、電力制御装置1の入力端子1aを介してコンバータ 3の交流入力端子に接続されている。コンバータ3は、 サイリスタ等からなっており、交流入力端子に交流電力 が入力されると、直流電力に変換し、直流出力端子に出 力するように構成されている。 コンバータ3の直流出力 端子は、EDLCバンク4の充放電端子4a(図2参 照)及びインバータ5の直流入力端子に接続されてい る。インバータ5は、IGBT (Insulated Gate Bipol ar Transistor) 等のスイッチング素子をブリッジ接続 してなるもので、直流入力端子に直流電力が入力される と、設定された所望の電圧,電流,周波数,位相,及び 高調波含有率の信号を交流出力するように構成されてい る。また、インバータ5の交流出力端子は、電力制御装 置1の出力端子1bを介して負荷6に接続されている。 【0028】制御装置7は、コンバータ制御装置8、イ ンバータ制御装置9及びEDLCバンク制御装置10を 主体として構成されている。コンバータ制御装置8は、 コンバータ3を駆動制御し、インバータ制御装置9はイ ンバータラを駆動制御し、EDLCバンク制御装置10 はEDLCバンク4の充放電動作を制御する。制御装置 7は、各制御装置8~10の制御動作を統括的に監視し て電力制御動作を行い、負荷6に対して所定の電力が供 給できるように構成されている。

【0029】図2は、EDLCバンク4の電気的構成を示している。EDLCバンク4は、単位EDLCユニット11を複数個直列に接続したものを並列に(直並列に)接続した回路として構成されている。単位EDLCユニット11を複数個直並列に接続した回路の一端は、充放電端子4aに接続されており、他端は、アースに接続されている。

【0030】図3は、単位EDLCユニット11の電気的構成を示している。単位EDLCユニット11は、EDLC単セル12と電圧バランス装置13とが並列に接続された構成である。電圧バランス装置13は、ツエナーダイオード、ダイオード、抵抗素子、コンデンサ素子、コンパレータ等から構成されており、EDLC単セル12の端子間電圧を所定の電圧範囲、例えば2.0[V]~3.0[V]の範囲で設定された電圧(現状のEDLC単セル12の実力では例えば2.7V)となるように制御する。また、電圧バランス装置13は、逆極性の充電を防ぎ、さらに、急峻に流れる電流による破壊からEDLC単セル12を保護するように構成されている。さらに、劣化によるEDLC単セル12の故障時に

は、電圧バランス装置13は、EDLC単セル12を短絡するように構成されている。これらにより、電圧バランス装置13は、EDLC単セル12を適切に、効率的に、且つ長期間にわたって、充放電動作させるように構成されている。

【0031】次に、本実施形態の作用について、図4も参照して説明する。ここで、制御装置7には、あらかじめ電圧、電流、周波数、位相、及び高調波含有率の値が設定されているものとする。まず、制御装置7は、コンバータ制御装置8にコンバータ3を駆動させるための制御信号を与える。これにより、コンバータ制御装置8は、コンバータ3を駆動する。コンバータ3は、電源2から入力端子1aを介して入力された交流電力を直流電力に変換出力し、EDLCバンク4及びインバータ5に供給する。

【0032】EDLCバンク4は、初期状態においては蓄電エネルギー量が零であるから、供給された直流電力を充電する。一方、制御装置7は、インバータ制御装置9に電圧、電流、周波数、位相、及び高調波含有率の設定値を与える。インバータ5は、供給された直流電力を、インバータ制御装置9から与えられた設定値に基づいて所望の交流電力に変換して負荷6に出力する。

【0033】EDLCバンク4は、電力制御のために放電を行っていない状態では、制御装置7の制御によって、コンバータ3を介して入力される直流出力により充電動作され、蓄電エネルギーがその容量を満たすまで充電される。この場合、後述するように、EDLCバンク4を構成する各EDLC単セル12が充放電を高速で行える。制御装置7は、電源2の電圧低下等の変動が生じて負荷6に供給すべき電力の制御が必要と判断したときには、EDLCバンク4の直流電力をインバータ5、出力端子1bを介して負荷6に供給する。

【0034】ここで、EDLCバンク4を使用した本実施形態における電力制御装置1の性能について説明する。図4は、鉛蓄電池と、アルミ電解コンデンサと、本実施形態の電力制御装置1に使用されるEDLC単セル12との夫々により構成された蓄電装置の性能を比較して示したものである。

 $E=CV^2/2=2000\times(2.5)^2/(2\times3600)$ = ± 1.74 [Wh]

となる。

【0039】すなわち、EDLC単セル12は、約1. 74 [Wh] の電力量を蓄電することができる。また、 EDLC単セル12の出力P[W]は、

 $P = V I = 2.5 \times 30 = 75 [W]$

となり、そのときのEDLC単セル12あたりの電力損失Pr[W]は、

 $Pr = I^2R = 30^2 \times 0.0015 = 1.35$ [W] である。

【0040】したがって、この場合には、出力Pに対す

【0035】EDLCバンク4を使用した蓄電装置は、 鉛蓄電池を使用した蓄電装置と比較すると、内部抵抗が 低く、サイクル寿命が長いので、高速で且つ高効率に電 力を出し入れすることができる。また、環境汚染物質を 含まないEDLCバンク4を蓄電装置として採用してい るため、サイクル寿命が長いことと相俟って、環境負荷 を軽減したすぐれたものとすることができる。

【0036】次に、上記構成において、電力制御の対象となる負荷6あるいは電源2の変動の程度に対応してEDLCバンク4の特性をどの様に設定するかという点について説明する。この場合のEDLCバンク4に要求される条件のパラメータとしては、例えば、EDLC単セル12の内部抵抗値R及び静電容量値Cがあげられる。これは、電源2や負荷6の変動の速度がEDLCバンク4の充放電動作の頻度に相当するからであり、この充放電動作に伴い内部抵抗による電力損失が発熱として発生することになるからである。そこで、ここでは、以下に説明する基準によってEDLC単セル12の条件を設定している。

【0037】すなわち、第1に、負荷6の変動周期が数 時間以下で変動することがあらかじめ判明している場合 には、EDLCバンク4のEDLC単セル12の内部抵 抗値R $[\Omega]$ を2 $[m\Omega]$ 以下とし、且つEDLC単セ ル12の静電容量値C[F]と内部抵抗値R[Ω]との 積の値を4「ΩF]以下である条件を満たすものをED LCバンク4に組み込む。このとき、EDLC単セル1 2の内部抵抗値R [Ω] が大きくなると、EDLCバン ク4は、充放電時の電流により生じる電力損失が大きく なる。つまり、このEDLC単セル12の内部抵抗値R $[\Omega]$ や静電容量値C[F]と内部抵抗値 $R[\Omega]$ との 積の値を極力小さくすることが好ましい。そして、上記 条件を満たす多数のEDLC単セル12を直並列に組み 上げるため、EDLCバンク4全体の内部抵抗を低下さ せることができ、電力損失を低下させることができる。 【0038】例えば、EDLC単セル12の定格を2. 5V-30A-2000Fとし、内部抵抗値Rを1.5 $[m\Omega]$ とすると、蓄電エネルギー量E[Wh]は、

る損失Prの割合し[%]は、

L=1.35/75=1.8[%] となる。したがって、実用上十分に望ましいものとして使用することができる。また、上述の内部抵抗値R [Ω]は、EDLC単セル12の静電容量にも依存しているので、その関係から内部抵抗との積を求め、その値を4[Ω F]以下となるものを選ぶ必要がある。ここで、条件として、静電容量値Cと内部抵抗値Rとの積の値を用いて規定するのは次の理由による。すなわち、EDLC単セル12の静電容量値C[F]が大きくなる

と、その形状寸法も大きくなり、EDLC単セル12の 内部抵抗もこの形状に依存して、様々な値となるため、 評価の尺度が定まらないからである。つまり、静電容量 との関係付けをした条件を設定しないと、EDLCバン ク4の全体の抵抗損失を効率よく下げることが困難にな るからである。この結果、EDLC単セル12の静電容 量値C[F]と内部抵抗値R[Ω]との積の値を求め て、この値を小さくするように設定することが実用上最 も有効な条件として規定できるのである。

【0041】上記の条件を満たしたEDLC単セル12 を採用することにより、数時間よりも短い程度の周期で 変動する負荷6に併設することで、電力損失の少ない状 態で負荷6の平準化を行い、電力系統に及ぼす影響を小 さくすることができる。

【0042】また、第2に、負荷6の変動周期が数日以

=約17.4 [Wh]

となる。すなわち、EDLC単セル12は、約17.4 [Wh]の電力量を蓄電することができる。

【0045】結果として、出力端子1bに接続する負荷 6の値が変動周期を、あらかじめ見積っておくことによ り、最適な条件で大容量化を図りながら負荷6の平準化 を行い、電力系統に及ぼす影響を小さくすることができ

【0046】図5は、電気二重層キャパシタの技術分野 においてよく知られているRagoneプロットを示し ている。これは、EDLC単セル12の重量あたりの出 力密度 [W/Kg]とエネルギー密度 [Wh/Kg]と の関係を示したものである。 図5中に黒丸及び塗りつぶ し三角の記号で示したものは、鉛蓄電池等の二次電池の 特性の一例を示しており、塗りつぶしダイヤの記号で示 したものは、アルミ電解コンデンサの特性の一例を示 し、その他の白丸と、白三角と、白四角と、白ダイヤと の記号は、様々な種類のEDLC単セル12の特性の一 例を示している。

【0047】図5の中に示した直線は、エネルギー密度 の値Yと、出力密度の値Xとの関係が、

 $Y = 100 \times X^{-0.8}$

なるものを表している。そして、電力制御装置1として 使用するのに適したEDLC単セル12のエネルギー密 度の値Y[Wh/Kg]と、出力密度の値X[W/K g〕とが満たすべき条件は、この直線で区切られた上の 部分の領域に当てはまるものである。したがって、 . . . (1) $Y > 100 \times X^{-0.8}$

の条件を満たすものを選べばよい。

【0048】逆にこの条件を満たさない場合には、電力 制御装置1としては、前記した抵抗損失の増大、動作速 度、制御エネルギー量などの各種性能が効率よく働かな いため、実用上では採用することが難しい。

【0049】このような第1の実施形態によれば、電気

下の比較的長い範囲で変動することがあらかじめ判明し ている場合には、EDLC単セル12あたりの内部抵抗 値R $[\Omega]$ が $10[m\Omega]$ 以下で、且つその静電容量値 C[F]と内部抵抗値R[F]との積の値が100[Ω F]以下である条件を満たすものをEDLCバンク4に 組み込むことができる。

【0043】この場合、電力制御装置1は、比較的低速 度で電力を充放電することになるため、実用的には抵抗 損失をほとんど無視することが可能となり、この結果、 前述の場合よりも条件が緩和され、静電容量値C「F] が大きいものを選ぶことができるため、大容量の電力を 貯蔵することができる。

【0044】例えば、EDLC単セルの定格を2.5V -10A-20000Fとすると、蓄電エネルギー量E [W] は、

 $E = CV^2/2 = 20000 \times (2.5)^2/(2 \times 3600)$

二重層キャパシタを採用したEDLC単セル12を使用 し、そのEDLC単セル12を使用したEDLCバンク 4を蓄電装置として使用することにより、蓄電装置の交 換頻度を低下させ、長寿命化がはかれる。また、電力制 御装置として、電力の制御を数時間以下の周期で行う場 合や、電力の制御を数日以下の周期で行う場合などの負 荷の変動状況に対応して、EDLC単セル12の選択条 件を速度重視か容量重視かに応じて適切に変えること で、負荷6を平準化し、安定化させる動作を効率よく行 うことができる。さらに、EDLCバンク4を用いるこ とで内部抵抗が従来の二次電池に比較して小さく、充放 電周期が短いので、電力損失、動作速度、エネルギー量 などの各種性能を効率よく働かせることができ、充放電 回数を少なくとも1ケタ以上に向上させることができ る。また、EDLC単セル12は、サイクル寿命が長 く、しかも環境に有害な物質が含まれないので、環境に やさしい電力制御装置を提供することができる。

【0050】 (第2の実施形態) 図6は、本発明の第2 の実施形態を示すものである。この実施形態では、停電 時における電力制御機能を補えるようにした電力制御装 置を示している。尚、第1の実施の形態と同一部分には 同一符号を付して説明を省略し、以下異なる部分につい てのみ説明する。

【0051】すなわち、この構成においては、蓄電装置 14としてEDLCバンク4に並列に、二次電池15を 接続している。二次電池15は、図4に示した性能の鉛 蓄電池により構成されている。また、制御装置16に は、二次電池15を制御する二次電池制御装置17が設 けられ、二次電池15の蓄電状態を常に監視し、その状 態を制御装置16に伝えるとともに、二次電池15の充 放電を制御できるように構成されている。以上のよう に、電力制御装置18は構成され、入力端子18aに電 源2が接続され、また、出力端子18bに負荷6が接続 されている。

【0052】次に本実施形態の作用を説明する。第1の 実施形態と同様に蓄電装置14のEDLCバンク4及び 二次電池15は、電源2から入力端子18a、コンバー タ3を介して受ける電力により蓄電エネルギー量が満杯 となるように制御される。

【0053】制御装置16は、電源2から入力端子18 aを介してコンバータ3に入力する電力が低下したことを検出する(停電状態)と、停電の初期の比較的短時間の期間(0.1~100分間)、例えば50分間程度の期間は、制御装置16は、EDLCバンク制御装置10を介してEDLCバンク4から負荷6へ電力を供給することで所定の電力バックアップを行う。その後、制御装置16は、二次電池制御装置17を介して二次電池15から負荷6へ電力を供給することにより、長時間の電力バックアップをすることが可能になる。すなわち、蓄電エネルギー量が第1の実施形態に比較して大きいため、停電時における機能が補われることになる。

【0054】この場合、二次電池15は、エネルギー密度が10[Wh/Kg]以上で且つ前述の式(1)の条件を満たすものを使用することが望ましい。これにより、EDLCバンク4では不足する分の蓄電エネルギー量を増大させることができ、電力制御の性能を増大させることができる。

【0055】尚、第1の実施形態と同様に、出力端子18bに接続する負荷6の値がどの程度の周期で変動するかを、あらかじめ判別してEDLCバンク4を適切な条件で使用することにより、負荷6の平準化を行い、電力系統に及ぼす影響を小さくすることができる。

【0056】このような第2の実施形態によれば、ED LCバンク4に併設して二次電池15を接続しているため、より長時間の電力バックアップをすることが可能になり、停電時における機能を補なうことができる。

【0057】(第3の実施形態)図7は、本発明の第3の実施形態を示すものである。この実施形態では、電力を比較的長い時間蓄えながら、電力の制御をすることを主目的とした無停電電力制御装置を示す。尚、第1の実施の形態と同一部分には同一符号を付して説明を省略し、以下異なる部分についてのみ説明する。

【0058】すなわち、この構成においては、蓄電装置 19としてEDLCバンク4に並列に多数のアルミ電解 コンデンサ20を組み合わせて構成された回路を接続している。この時、多数のアルミ電解コンデンサ20を組み合わせて構成された回路は、図4に示したように、EDLCバンク4よりも一層の高速の電力制御が可能なものを使用している。

【0059】また、制御装置21には、大容量化したアルミ電解コンデンサ20を組み合わせて構成された回路を制御するアルミ電解コンデンサ制御装置22が設けられ、アルミ電解コンデンサ20の蓄電状態を常に監視

し、その状態を制御装置21に伝えるとともに、アルミ電解コンデンサ20の充放電を制御できるように構成されている。以上のように構成される電力制御装置23は、入力端子23aに電源2が接続され、出力端子23bに負荷6が接続されている。

【0060】次に、本実施形態の作用を説明する。第1 の実施形態と同様に、蓄電装置19のEDLCバンク4 及びアルミ電解コンデンサ20は、電源2から入力端子 23a, コンバータ3を介して供給される電力により、 その蓄電エネルギー量が満杯となるように制御される。 【0061】制御装置21は、電源2から入力端子23 aを介してコンバータ3に入力する電力が低下したこと を検出する(停電状態)と、停電の初期のきわめて短時 間の数十ミリ秒の間は、制御装置21は、アルミ電解コ ンデンサ制御装置22を介してアルミ電解コンデンサ2 Oから負荷6へ電力を供給する。その後、EDLCバン ク4から負荷6へ電力を供給することにより、停電時に おける初期の電力制御を行うことが可能となり、瞬時の 電力バックアップを行うことが可能になる。すなわち、 電力制御装置は、停電時における電力制御機能が補われ ることになる。また、このような構成においては、アル ミ電解コンデンサ20は、コンバータ3やインバータ5 のスイッチング素子により発生するスイッチングリップ ル電流を吸収する機能がある。これは、例えば三相電源 から単層負荷などの不平衡負荷を取る場合に直流側に生 ずる基本波の2倍の周波数の電源変動などに対処するこ とができるものである。

【0062】この場合、アルミ電解コンデンサ20は、出力密度が10000 [W/Kg]以上で且つ前述の式(1)の条件を満たすものを使用することが望ましい。これは、特に電力の制御速度を上げて制御を行う場合に適するように蓄電装置19を設定することを示している。これにより、数十ミリ秒以下での高速な電力制御を行うことができる。電力制御装置の性能を増大させることができる。

【0063】また、第1の実施形態と同様に、出力端子23bに接続する負荷6の値がどの程度の周期で変動するかを、あらかじめ判別してEDLCバンク4を適切な条件で使用することにより、負荷6の平準化を行い、電力系統に及ぼす影響を小さくすることができる。

【0064】このような第3の実施形態によれば、ED LCバンク4に併設してアルミ電解コンデンサ20を接 続しているため、停電時の負荷6への電力供給を瞬時に 開始することができる。

【0065】(他の実施形態)本発明は、上記実施形態にのみ限定されるものではなく、次のように変形または拡張できる。二次電池15とアルミ電解コンデンサ20とを、共にEDLCバンク4に併用する蓄電装置を構成することもできる。これにより、停電時において、きわめて短時間のマイクロ秒の領域から比較的長時間の無停

電電力制御を可能にすることができる。

【0066】また、第2の実施形態においては、二次電池15として、鉛蓄電池を使用したが、リチウムイオン電池、ナトリウム イオウ電池 (NaS電池)等を使用してもよい。

【0067】 これらに示した電力制御装置は、車(電気自動車)、UPS、アクチュエータに適用可能である。 【0068】

【発明の効果】以上説明したように、本発明の電力制御装置によれば、次のような効果を得ることができる。すなわち、請求項1記載の発明によれば、EDLC単セルを直並列に複数個接続することで、電力制御に適した電圧及び容量を得ることができ、電源変動や負荷変動で電源の給電能力が低いときには、EDLCバンクを使用することにより、負荷に対して安定した電力供給を行うことができる。そして、EDLCバンクは、高速充放電が可能で充電効率が高く、しかもサイクル寿命が長いので、電力制御の効率及び動作性能を向上させることができる。さらに、EDLCバンクは環境汚染物質を用いない構成で、且つサイクル寿命が長いことから、環境にやさしいものとすることができる。

【0069】請求項2記載の発明によれば、停電時等の電源停止のような急激な変化が起こった場合の初期の比較的短時間領域では、EDLCバンクに蓄えられた電力を使用し、負荷に所望の電力を供給する。また、これ以後の時間領域では、二次電池に蓄えられた電力を使用し、負荷に所望の電力を供給する。これにより、長時間の電力バックアップをすることが可能になる。すなわち、電源停止のような電源の急激な変化に対して長い時間領域にわたって負荷への給電を維持できる。

【0070】請求項3記載の発明によれば、停電時等の急激な電源変動の初期のきわめて短時間の領域(数十ミリ秒以下)では、アルミ電解コンデンサに蓄えられた電力を使用し、負荷に所望の電力を供給する。また、それ以後の時間領域ではEDLCバンクに蓄えられた電力を使用し、負荷に所望の電力を供給する。これにより、比較的長時間の時間領域で高速の電力制御が可能になる。すなわち、電源停止のような急激な変動に対して高速で電源制御を行うことができる。

【0071】請求項4記載の発明によれば、上記した請求項2及び3の両者の構成及び作用を併せ持つことになり、停電等の急激な電源変動に対応して、幅広い時間領域で負荷への電力制御を行うことができる。

【0072】請求項5記載の発明によれば、特に、周期が数時間以下程度の範囲で電力制御を行うような負荷変動あるいは電源変動などに対応する場合に適している。すなわち、例えば、数時間よりも短い時間で変動する負荷に給電するように接続することで、負荷の平準化を行い、これによって電力系統に及ぼす影響を小さくするこ

とができるようになる。

【0073】請求項6記載の発明によれば、電力制御として、電力を比較的長い時間蓄えながら、電力の制御をすることを主目的とした無停電電力制御装置などに適したものとなる。すなわち、具体的には、周期が数日以下の範囲で電力制御を行うことに適しており、負荷の変動が数日よりも短い時間で変動するものに適用することで、負荷の平準化を行い、電力系統の効率的運用を行うことができる。この電力制御では、上述のように、比較的低速度で電力の制御を行うものを対象としているため、電力の出し入れの際の内部抵抗による電力損失をほとんど無視することができ、換言すれば、請求項5のものに比べて内部抵抗値及び静電容量値と内部抵抗値との積の値を緩和することができ、その結果として、大容量の電力を貯蔵することができる。

【0074】請求項7記載の発明によれば、EDLCバンクとして、EDLC単セルのエネルギー密度の値Y [Wh/Kg]と、出力密度の値X [W/Kg]とが、Y>100×X^{-0.8}

の条件を満たすEDLC単セルにより構成されるため、 条件を満たすEDLC単セルを用いることで、このED LC単セルを用いたEDLCバンクによる電力制御の効 率と性能を最も良い状態とすることができる。

【0075】請求項8記載の発明によれば、蓄電装置を構成する二次電池として、そのエネルギー密度が10 [Wh/Kg]以上のものを少なくとも1つ含めて構成しており、特に蓄電エネルギー量を大きくすることができるので、長時間の電力を供給することができる。

【0076】請求項9記載の発明によれば、蓄電装置を構成するアルミ電解コンデンサとして、その出力密度が10000 [W/Kg]以上のものを少なくとも1つ含めて構成しており、特に出力密度を大きくすることができるので、電力制御装置の制御速度を上昇させることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態を示す電気的構成図

【図2】EDLCバンクの電気的構成図

【図3】単位EDLCユニットの電気的構成図

【図4】蓄電装置の性能比較図

【図5】EDLC単セルのRagoneプロット図

【図6】本発明の第2の実施形態を示す図1相当図

【図7】本発明の第3の実施形態を示す図1相当図 【符号の説明】

2は電源、4はEDLCバンク(蓄電装置)、6は負荷、7,16,21は制御装置、11は単位EDLCユニット、12はEDLC単セル、13は電圧バランス装置、14,19は蓄電装置、15は二次電池、20はアルミ電解コンデンサである。

4:新電装置

【図4】

性 能	EDL Cパンク	给李电池	アルミ電解コンデンサ
エネルヤー密度	0.2~10Wh/kg	10~40W it /kg	< 0.1Wir/log
出力由定	100W/kg~5000W/kg	50W/kg~ 130W/kg	10KV/kg~ 100KV/kg
充電時間	0.1~ 100 57	1~10時間	<1ミリ か
故電時間	0.1~ 1009	0.8~3時間	<1ミリ砂
充電効率	>95%	70%~85%	>85%
内部抵抗	数πΩ	数十四日	ESR=10~ 100 ₹ リΩ
サイクル寿命	>10000	200~1000	>100000

14: 書電装置

【図7】

19:善電装置

フロントページの続き

(72)発明者 石塚 智嗣

東京都府中市東芝町 1 番地 株式会社東芝 府中事業所内 (72)発明者 中島 和弘

東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内

Fターム(参考) 5G015 GA04 HA16 JA22 JA34 JA52 JA60

5H420 BB03 BB14 CC03 CC04 CC06 DD03 EB39 EB40 LL03

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

□ OTHER: _____