

Università degli Studi di Ferrara

DEPARTMENT OF ENGINEERING Corso di Laurea Triennale in Ingegneria Elettronica e Infomatica

On the Design of Quantum Communication Systems with non-Gaussian States

Candidate:

Federico Forzano Matricola 143528 Supervisor:

Chiar.mo Prof. Andrea Conti

Co-Supervisor:

Dott.Ing Stefano Guerrini

Contents

1	Qua	antum	Mechanics Abstract	
	1.1	Postul	lates	
		1.1.1	First Postulate	
		1.1.2	Second Postulate	
		1.1.3	Third Postulate	
		1.1.4	Fourth Postulate	
		1.1.5	Fifth Postulate	
\mathbf{B}	iblios	graphy	•	

iv CONTENTS

Chapter 1

Quantum Mechanics Abstract

In this chapter, a bief overview of quantum mechanics postulates and of the notation used in this thesis is given. The target of that is to explain to the reader the essential concept [...]

1.1 Postulates

Like every phisics theory, quantum mechanics is builded from few essential postulates. In this section are briefly introduced the six Dirac-Von Newman postulates of Quantum Mechanics [1][2].

1.1.1 First Postulate

Postulate 1 (State Representation) The state of an isolated quantum system is represented by a complex unitary vector in an Hilbert space:

$$|\psi\rangle \in \mathcal{H}$$

The space of possible states of the system is called state space and it is a separable complex Hilbert space.

Observation Differently from the classical physics, in quantum mechanics the concept of state of system is introduced. In classical mechanics a system is described by his observables, like position or four-wheeled.

1.1.2 Second Postulate

Postulate 2 (Observables) Every observables of the system is represented by an Hermitian operator acting on the state space:

$$\mathcal{M}:\mathcal{H}\to\mathcal{H}$$

The outcomes of the measurement can only be one of the eigenvalue of the operator \mathcal{M} .

Observation The possible outcomes of the measurement are real number because \mathcal{M} is self-andjoint.

1.1.3 Third Postulate

Postulate 3 (Born's Rule) The probability to get the measurement λ_i from the observable \mathcal{M} in the system in state $|\psi\rangle$ is:

$$\mathbb{P}(\lambda_i) = \langle \psi | \mathcal{P}_i | \psi \rangle$$

where $\langle \psi |$ is the correspondent vector of $| \psi \rangle$ in the dual space of \mathcal{H} and where \mathcal{P}_i is the projection operator of λ_i in the correspondent space.

1.1.4 Fourth Postulate

Postulate 4 (Wavefunction Collapse) The state after measurement of λ_i is $\mathcal{P}_i | \psi \rangle$ (with the necessary normalization):

$$|\psi'\rangle = \frac{\mathcal{P}_i |\psi\rangle}{\langle \psi | \mathcal{P}_i |\psi\rangle}.$$

1.1.5 Fifth Postulate

Postulate 5 (Time Evolution) The time evolution of an isolated quantum system is given by an unitary operator U:

$$|\psi(t)\rangle = \mathcal{U}(t_0, t) |\psi(t_0)\rangle$$
.

Observation (Time dependent Shrodinger Equation) From postulate 5, is possible to found the time dependent Shrodinger Equation:

$$i\hbar\frac{\partial}{\partial t}\left|\psi(t)\right\rangle=H(t)\left|\psi(t)\right\rangle$$

where H(t) is the Hemiltonian matrix.

1.1.6 Sixth Postulate

Postulate 6 (Composite System) The state space of a system composite from \mathcal{H}_1 and \mathcal{H}_2 is given by

$$\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$$
.

Bibliography

- [1] P.A.M. Dirac. *The Principles of Quantum Mechanics*. Oxford University Press, 1981.
- [2] J. Von Neumann. Mathematical foundations of quantum mechanics. Princeton University Press, 1995.