

Acquisition Analytics

By: Pramodini V. Nayak

Abstract

Objective:

To build a response model for the bank marketing data set. The business objective is to achieving 80% of total responders for a loan product at the minimum possible cost.

Problem statement:

We have to build the model without 'duration' as variable. Because, the prospect data procured by the marketing team will not contain 'duration', since the call has not been made yet.

Data collection and cleaning

- Import the data
- Identifying the data quality issues and clean the data

Visualizing the data

- Visualizing original data variables to look for any pattern or correlation.
- Analyzing the outlier and treating accordingly.

- Dropping duration column
- Creating dummy variables.
- Test and train split of the data.
- Standardizing all the continuous variables.

Decision Making

- Based on business objective to achieve 80% of total responders selecting suitable number of decile.
- Calculating average call duration for targeting 80% responders.
- Calculating cost of acquisition
- Calculating the amount saved after the influence of the model.

Modelling and Evaluation

- Feature selection using RFE for selecting top 20 variables.
- Using GLM statsmodel to select significant variables.
- Hyperparameters tuning our model.
- Finding optimal probability cut-off.
- Prediction on test data.
- Evaluating the model accuracy , sensitivity and specificity.

Feature selection using RFE and stats-model:

Generalized Linear Model Regression Results

Dep. Variable:	re	sponse	No. Obse	rvations:	28	831	
Model:		GLM	Df R	esiduals:	28	818	
Model Family:	В	inomial		Of Model:		12	
Link Function:		logit		Scale:	1.0	000	
Method:		IRLS	Log-Lil	kelihood:	-812	20.1	
Date:	Mon, 04 Nov 2019		Deviance:		16240.		
Time:	16:13:38		Pearson chi2:		3.08e+04		
No. Iterations:	6		Covariance Type:		nonrobust		
		coef	std err	z	P> z	[0.025	0.9751
	const	-2.5298		-39.104	0.000	-2.657	
cor	s.price.idx	0.1815	0.025	7.402	0.000	0.133	0.230
	euribor3m	-0.9292	0.028	-33.095	0.000	-0.984	-0.874
	job_retired	0.4338	0.081	5.333	0.000	0.274	0.593
jo	ob_student	0.4668	0.102	4.553	0.000	0.266	0.667
defaul	t_unknown	-0.3835	0.067	-5.424	0.000	-0.495	-0.232
contact	_telephone	-0.1933	0.059	-3.263	0.001	-0.309	-0.077
	month_dec	0.4441	0.198	2.269	0.023	0.060	0.828
	month_mar	0.8193	0.113	7.243	0.000	0.598	1.041
n	nonth_may	-0.8794	0.052	-16.809	0.000	-0.982	-0.777
	month_sep	0.2711	0.116	2.344	0.019	0.044	0.498
previous_Never	contacted	0.4076	0.063	6.484	0.000	0.284	0.531
poutcom	e success	1.8859	0.090	21.017	0.000	1.710	2.062

- Our final model has 12 features.
- The variables with positive co-efficient effect the output positively. Variables such as: retired, students etc.
- The variables with negative co-efficient effect the output negatively. Variables such as: contacting via telephone, euribor3m etc.

The area under the curve of the ROC is 0.79 which is quite good.

We see that the optimal probability cut-off is 0.405.

With 0.405 as cut-off, our model evaluation are as follow:

Accuracy is 72.02 %

Sensitivity is 70.26%

Specificity is 72.24%

	decile	total	response	cumresp	gain	cumlift	duration
0	1	4117	1966	1966	42.370690	4.237069	1183069
1	2	3963	887	2853	61.487069	3.074353	1074082
2	3	4139	384	3237	69.762931	2.325431	1065006
3	4	3976	220	3457	74.504310	1.862608	959090
4	5	4382	230	3687	79.461207	1.589224	1087228
5	6	4118	262	3949	85.107759	1.418463	1073691
6	7	4063	231	4180	90.086207	1.286946	917071
7	8	4126	185	4365	94.073276	1.175916	972874
8	9	4086	128	4493	96.831897	1.075910	1021963
9	10	4218	147	4640	100.000000	1.000000	1122062

We see from the table that from top 5 decile we get 79.46% (Approx. 80%) of response. This can be confirmed again from gain graph.

But if we want exact 80% or above 80%(85.10%) we can reach out to top 6 decile. However, it will cost us additional 4118 calls.

Lift chart

By looking at the lift chart we clearly see that, model has huge influence on response rate. By contacting 20000 prospects we had only 20% response rate. But by using logistic regression model we see a response rate of 80% for the same number of contacts.

Summary

By using logistic regression model for analyzing bank marketing data without the 'duration' variable, we found the following observation:

- The average call duration for targeting the top 80% prospects is 261 seconds, which is about 4.35 minutes.
- Cost of acquisition:
- A. If we assume that Cost for each call will be cost per **minute*duration**:

Cost for targeting 80% prospects = Rs. 44, 737.29

Cost for targeting all the customer = Rs. 87,301.13.

So we save Rs. 42,563.84 which is approx. 49% savings.

B. If we assume that Cost = **1*number of contacts** made in the current campaign:

Cost for targeting 80% prospects = Rs. 20, 577

Cost for targeting all the customer = Rs. 41,188.

So we save Rs. 20,611 which is approx. 50% savings.

Note: Assumed the cost of call is 50 paisa per minute.