ANALYSIS QUALIFYING EXAM AUGUST 1992

Directions. 1. Write your solution to each problem on a separate sheet:

2. Write on one side of the paper only.

- 3. Questions one to eight are each worth 10 points. Question nine is worth 20 points (4. points for each part).
- 1. PROVE: The closed interval [a, b] is connected.
- 2. Let B denote the Borel σ -algebra of the real line and let C be a collection of Borel sets such that the σ -algebra generated by C is B, i.e. $\sigma(C) = B$.

PROVE: Let $f: \mathbb{R} \to \mathbb{R}$. Then f is Lebesgue measurable if and only if, for every $C \in \mathcal{C}$,

 $f^{-1}(C)$ is Lebesgue measurable.

3. Let μ be a finite Borel measure on [0,1] such that if E is a closed nowhere dense set in [0,1] then $\mu(E) = 0$. PROVE: $\mu([0,1]) = 0$.

HINT: Let D denote the rational numbers in [0, 1]. Show that, for every $\varepsilon > 0$, there exists an open set \mathcal{O} such that $\mathcal{D} \subset \mathcal{O}$ and $\mu(\mathcal{O}) < \varepsilon$.

4. Let (X, \mathcal{A}, μ) be a finite measure space and let f be a nonnegative integrable function on X, i.e. $f \in L_1^+(\mu)$.

PROVE: There exist a sequence (E_n) of measurable sets and a sequence (a_n) of nonnegative numbers such that

$$f(x) = \sum_{n=1}^{\infty} a_n \chi_{E_n}(x)$$
 a.e. $[\mu]$

and

$$\int f \, d\mu = \sum_{n=1}^{\infty} a_n \mu(E_n).$$

. 5. Let (f_n) be a sequence of differentiable functions on [a, b] such that

(i) $f_n(a) = 0$ for all n,

 $(ii)|f'_n(x)| \leq M$ for all $x \in [a,b]$ and for all n,

(iii) $(f'_n(x))$ converges a.e. on [a, b].

PROVE: (f_n) converges uniformly to an absolutely continuous function f on [a,b].

6. Let f be a bounded measurable function on [0,1]. PROVE:

$$\left[\int x f(x) dx\right]^2 \le \frac{1}{3} \int f(x)^2 dx.$$

7. Suppose that f(z) is an analytic function on the open disk $D_r(a) = \{z \in \mathbb{C} : |z-a| < r\}$.

PROVE: If f(z) is not identically zero, then there exists $\delta > 0$ such that $f(z) \neq 0$ for all $z \in D_{\delta}(a) \setminus \{a\}$.

- 8. Suppose that E is an $m \times m$ measurable set in $[0,1] \times [0,1]$ (m is Lebesgue measure on [0,1] here) such that $m \times m(E) \geq \frac{1}{2}$: PROVE: $m\{x \in [0,1]; m(E_x) \geq \frac{1}{4}\} \geq \frac{1}{3}$. Note: $E_x = \{y \in [0,1]: (x,y) \in E\}$.
- 9. TRUE or FALSE: Prove or give a counterexample.
- (a) If (f_n) is a sequence of nonnegative measurable functions on \mathbb{R} such that $\lim_{n\to\infty} f_n(x) = f(x)$ for each $x \in \mathbb{R}$ and $\lim_{n\to\infty} \int_{-\infty}^{\infty} f_n(x) dx = 0$, then f(x) = 0 a.e.
 - (b) If f(z) is an analytic function on an open set \mathcal{O} and γ is a piecewise smooth closed curve in \mathcal{O} , then $\int_{\gamma} f(z) dz = 0$.
 - (c) If f(z) and g(z) are analytic on an open set O,

$$\overline{D_r(a)} = \{ z \in \mathbb{C} : |z - a| \le r \} \subset \mathcal{O},$$

for some r > 0, and f(z) = g(z) for all $z \in T_r(a) = \{z \in \mathbb{C} : |z - a| = r\}$, then f(z) = g(z) on $D_r(a) = \{z \in \mathbb{C} : |z - a| < r\}$

- (d) If f(z) is an entire function and $|f(z)| \ge M$ for all $z \in \mathbb{C}$ (some M > 0) then f(z) is constant:
- (e) If f is a continuous function of bounded variation on [a, b] and f'(x) = 0 a.e. then f is constant on [a, b].