

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023

First Semester 23CY111- ENGINEERING CHEMISTRY (Common to: ALL ENGINEERING BRANCHES) (Regulation 2021) QUESTION BANK (Applicable for Theory Courses)

Q.No	Part A- Questions	Marks	CO's	Bloom's Level
1.	Define hardness of water.	2	1	K1
2.	Distinguish between hard water and soft water.	2	1	K1
3.	What are the salts responsible for carbonate and non-carbonate hardness?	2	1	K1
4.	List out the requirements of boiler feed water.	2	1	K1
5.	What are scales and sludges?	2	1	K1
6.	Why is hardness expressed in terms of calcium carbonate equivalent?	2	1	K1
7.	What are Zeolites?	2	1	K1
8.	What is Brackish water?	2	1	K1
9.	Why Calgon conditioning is better than phosphate conditioning?	2	1	K1
10.	Soft water is not demineralised water whereas demineralised water is soft water. Justify.	2	1	КЗ
11.	Phosphate conditioning is suitable at all-operating pressures? Give reasons to support this statement.	2	1	K3
12.	What is meant by caustic embrittlement? How is it prevented?	2	1	K1
13.	Name some chemicals that contribute for sludge in boilers.	2	1	K1
14.	How is exhausted resin regenerated in ion-exchange process.	2	1	K1
15.	How boiler corrosion is prevented?	2	1	K1
Q.No	Part B- Questions	Marks	CO's	Bloom's Level

1	What are water quality Parameters? Explain its	13	1	K2
1.	significance.			
	What is desalination? With a neat diagram, describe the	13	1	K2
2.	'reverse osmosis' method for the desalination of brackish			
	water.			
3.	Describe the principle and procedure involved in the zeolite process for water treatment.	13	1	K2
4.	Explain the demineralisation of water by ion-exchange process	13	1	K2
5.	Explain the various steps involved in the municipal sewage water treatment process.	13	1	K2
6	Discuss the Break point Chlorination.	13	1	K2
7	Choose any four appropriate methods to remove scales from water through internal treatments.	13	1	K3
8	Write the steps and methodologies involved in the municipal water treatment with a neat diagram.	13	1	K3
9	Discuss the demonstration of estimation of hardness of EDTA.	13	1	K2
10	Discuss the internal conditioning agents.	13	1	K2
	UNIT 2			
Q.No	Part A- Questions	Marks	CO's	Bloom's Level
1.	Define Nanomaterials	2	2	K1
2.	Define Nanoscience.	2	2	K1
3.	Define Nanotechnology.	2	2	K1
4.	Define Nanocluster	2	2	K1
5.	Define Nanowire	2	2	K1
6.		 	1	7.54
0.	List any four Nanomaterials?	2	2	K1
7.	List any four Nanomaterials? Mention any two properties of Nanomaterials.	2	2	K1 K1
	<u> </u>			
7.	Mention any two properties of Nanomaterials.	2	2	K1
7.	Mention any two properties of Nanomaterials. Define Nanorod.	2	2	K1 K1

12.	Mention some uses of carbon nanotubes.	2	2	K1
13.	What is magic number?	2	2	K1
14.	Mention some applications of Nanowires.	2	2	K1
15.	What is the basic principle involved in the Sol-gel synthesis	2	2	K1
15.	of Nanomaterials?			
Q.No	Part B- Questions	Marks	CO's	Bloom's Level
1.	With a neat sketch explain sol-gel synthesis of Nanomaterials.	13	2	K2
2.	Discuss the size dependent properties of Nanomaterials.	13	2	K2
3.	Discuss the applications of Nanomaterials in energy, medicine, sensor and catalysis.	13	2	K2
4.	Explain laser ablation process for Producing nanomaterials with a neat diagram.	13	2	K2
5.	Explain the synthesis, properties and uses of Carbon Nanotubes.	13	2	K2
6.	Write a short note on Electrodeposition.	13	2	K2
7	Explain Electrospinning method of synthesis of Nanowires.	13	2	K2
8	Discuss the Solvothermal synthesis of ZnO Nanoparticle with a neat diagram.	13	2	K2
9	Discuss the synthesis, Properties and application of Nanoclusters.	13	2	K2
10	Discuss any one bottom up method of synthesis of Nanomaterials	13	2	K2
	UNIT 3	I		
Q.No	Part A- Questions	Marks	CO's	Bloom's Level
1.	Define Phase.	2	3	K1
2.	Define Composite	2	3	K1
3.	Define Degree of Freedom.	2	3	K1
4.	Write any two merits of the Phase rule.	2	3	K1
5.	Define Triple Point.	2	3	K1
6.	Write the uses of Phase diagram.	2	3	K1

7.	State the condensed phase rule	2	3	K1
8.	NH4Cl(s)NH3 (g) + HCl (g). Write the values of P, F and C for this system?	2	3	K1
9.	How many phases and components are present in the following system? (i) CaCO ₃ (s) CaO(s) + CO ₂ (g) & (ii) PCl ₅ (s) PCl ₃ (s) + Cl ₂ (g) at 500 C	2	3	K1
10.	Write the need for composites	2	3	K1
11.	Write the examples of natural and synthetic composite.	2	3	K1
12.	What is cured resin?	2	3	K1
13.	Write the classification of composite.	2	3	K1
14.	What are the advantages and disadvantages of using cotton fiber as reinforcement?	2	3	K1
15.	Write the advantages and disadvantages of MMC	2	3	K1
Q.No	Part B- Questions	Marks	CO's	Bloom's Level
1.	Draw a neat one component water system and explain it.	13	3	K2
2.	Draw a neat two component system with applications in detail.	13	3	K2
3.	State Phase rule and explain the terms involved in it.	13	3	K2
4.	Write short notes on Ceramic matrix composite ,Metal matrix and hybrid composite	13	3	K2
5.	Write a note on FRP composite	13	3	K2
6	Discuss the various reinforcement Materials its properties and advantages of its usage.	13	3	K2
7	Discuss the metal matrix composite in detail.	13	3	K2
8	With a neat sketch of CO ₂ system explain its curves and areas in detail.	13	3	K2
		10	3	K2
9	Discuss the hybrid composite in detail.	13	3	INZ

	UNIT 4				
Q.No	Part A- Questions	Mark s	CO's	Bloom's Level	
1.	Define Gross or high calorific value (GCV)	2	4	K1	
2.	Write the Dulong formula for GCV and NCV.	2	4	K1	
3.	Distinguish between proximate and ultimate analysis of coal.	2	4	K1	
4.	What is metallurgical coke? Give the characteristics of metallurgical coke.	2	4	K1	
5.	What is meant by Knocking?	2	4	K1	
6.	Define octane number. How can it be improved?	2	4	K1	
7.	Define cetane number. How can it be improved?	2	4	K1	
8.	Define explosive range. Give examples.	2	4	K1	
9.	What is the difference between caking coal and coaking coal?	2	4	K1	
10.	What are the requisites (or) characteristics of good metallurgical coke	2	4	K1	
11.	Define ignition temperature.	2	4	K1	
12.	Define explosive range. Give examples.	2	4	K1	
13.	What are the classification of Petroleum?	2	4	K1	
14.	What are the advantages and disadvantages of Biodiesel?	2	4	K1	
15.	What is meant by flue gas?	2	4	K1	
Q.No	Part B- Questions	Mark	CO's	Bloom'	
Q.110	Tart B- Questions	S		s Level	
1.	Discuss the proximate analysis analysis of Coal.	13	4	K2	
2.	Explain flue gas analysis by ORSAT method	13	4	K2	
3.	Illustrate the synthesis of Liquid fuel from solids.	13	4	K3	
4.	Illustrate a method to manufacture metallurgical coke with valuable byproducts.	13	4	K3	
5.	Explain Otto hoffmann method with a neat diagram	13	4	K2	
6.	Define Green Hydrogen. Discuss the significance and challenges related to green Hydrogen(8).	13	4	K2	
7	Discuss the ultimate analysis of Coal.	13	4	K2	

8	Illustrate some of the sources of carbon foot print and compute the ways to lower the foot print.	13	4	K3
9	Discuss the biodiesel synthesis, properties and advantages	13	4	K2
10	Illustrate a methodology to calculate the amount of Sulphur and Nitrogen present in the coal.	13	4	К3
	UNIT 5			
Q.No	Part A- Questions	Marks	CO's	Bloom's Level
1.	Lithium battery is the cell of future.why?	2	5	K1
2.	What are fuel cells?	2	5	K1
3.	What is Photogalvanic cell?	2	5	K1
4.	What are the applications of H2-O2 fuel cell?	2	5	K1
5.	Will the EMF of battery vary with size? Give reasons for your answer	2	5	K1
6.	What is Breeder reactor?	2	5	K1
7.	State the reaction when a lead acid battery is recharged.	2	5	K1
8.	What is meant by Supercapacitor?	2	5	K1
9.	What are the electrodes used in the fuel cell?	2	5	K1
10.	Write the components of Lithium Ion battery.	2	5	K1
11.	Mention some important applications of Supercapacitor.	2	5	K1
12.	What are the advantages of Lithium cell?	2	5	K1
13.	What are the limitations of H2-O2 fuel cell?	2	5	K1
14.	Define Nuclear fission.	2	5	K1
15.	What is meant by nuclear reactor?	2	5	K1
Q.No	Part B- Questions	Marks	CO's	Bloom's Level
1.	Explain the construction and working of a Lead acid battery.	13	5	K2
2.	Conduct an experiment using bacteria to transform organic waste into electrical energy and discuss the benefits.	13	5	K3
3.	Showcase the benefits and uses of solar-derived renewable energy.	13	5	К3

4.	Construct a rechargeable battery using Pb and PbO2 and explain its charging and discharging reactions.	13	5	K3
5.	Sketch the reactor and explain the generation of electrical energy from it.	13	5	K3
6	With a neat diagram explain the working principle of H2-O2 fuel cell	13	5	K2
7	What are Lithium ion batteries? Explain the working and construction.	13	5	K2
8	Write notes on Supercapacitor.	13	5	K2
9	What is microbial fuel cell? Explain its principle and working with a neat diagram.	13	5	K2
10	Explain the power generation from light water nuclear reactor.	13	5	K2

