Leftovers from last week:

- 1. Show that $\forall (n_r, n_b) \in \mathbb{N}^2, \exists N \in \mathbb{N} \text{ such that, for any 2 (edge) coloring } \{r, b\}$ of the complete graph K_N , there exists a color $c \in \{r, b\}$ for which there is a complete sub-graph K_{n_c} which is monochromatic in the color c.
 - (the smallest N for which this property holds is denoted by $R(n_r, n_b)$).
- 2. Show that $\forall k \in \mathbb{N}, \forall (n_1, n_2, \dots, n_k) \in \mathbb{N}^k, \exists N \in \mathbb{N}$ such that, for any k (edge) coloring of the complete graph K_N , there exists a color $c \in [1, k]$ for which there is a complete sub-graph K_{n_c} which is monochromatic in the color c. (the smallest N for which this property holds is denoted by $R(n_1, \dots, n_k)$).

Exercice 0:

- 1. Let E and F two countable sets. Show that $E \cup F$ is countable.
- 2. Let E_1, \ldots, E_n be countable sets. Show that $\prod_{i=1}^n E_i$ is countable.

Combinatorial reasoning

Exercice 1:

Demonstrate by combinatorial arguments the identity:

$$\forall n \in \mathbb{N}, \ {3n \choose 3} = 3{n \choose 3} + 6n{n \choose 2} + n^3$$

Applications of the pigeonhole principle

Exercice 2:

Some arcs of a circle with a diameter 1 were colored. The sum of the lengths of the colored arcs is $> \pi/2$. Show that there exists a diameter of the circle, for which both ends are colored.

Exercice 3:

Let $m_1, ..., m_{n+1}$ be n+1 numbers, chosen from the set [2n]. Show that there exist a pair $i, j, 1 \le i \ne j \le n+1$ such that m_i is divisible by m_j .

Cardinalities.

Exercice 4:

Show that the family of all the finite sets of \mathbb{N} is countable.

Exercice 5:

Show that the set of decimal numbers is countable.

Exercice 6:

Let Σ be a finite alphabet.

- 1. Show that the set of finite trees on Σ is countable.
- 2. Show that Σ^{∞} isn't countable (unless it $|\Sigma| = 1$)

Exercice 7:

Give an example of an uncountable family $F \subseteq P(\mathbb{N})$, such that for any $A \neq B \in F$, $A \cap B$ is finite.

Exercice 8:

By using Cantor–Schröder–Bernstein theorem, show that $\{0,1\}^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$ and \mathbb{R} are equipotent.

Exercice 9:

Another way to show that [0,1] is a uncountable set.

Let $\{x_n\}_{n\in\mathbb{N}}$ a series of real numbers in the interval [0,1].

- 1. Construct recursively a sequence of closed intervals I_n of length > 0 such that :
 - $I_0 \subset [0,1],$
 - $I_n \subset I_{n-1}$,
 - I_n are intervals of length > 0 that do not contain x_n .
- 2. Deduce that [0, 1] is uncountable.

Exercise 10 (Stern-Brocot tree):

In this exercise we'll show a way to represent strictly positive rational numbers in the form of an infinite binary tree.

We start we two imaginary vertices 0/1 (which represents 0) and 1/0 (which represent infinity). Each step we insert between each two of the consecutive fractions m_1/n_1 and m_2/n_2 the fraction $(m_1 + m_2)/(n_1 + n_2)$.

Thus, we obtain after four stages:

- 1. Verify that for $m_1/n_1 < m_2/n_2$, we have $m_1/n_1 < (m_1 + m_2)/(n_1 + n_2) < m_2/n_2$.
- 2. Show that for any step and for any two consecutive fractions $m_1/n_1 < m_2/n_2$, we have $n_2m_1 m_2n_1 = \pm 1$.
- 3. Deduce that the fractions constructed by this process are in an irreducible form (i.e. the numerator and the denominator greatest common divisor is 1).
- 4. Let p/q be a strictly positive rational represented by an irreducible fraction. Suppose that $\frac{m_1}{n_1} < \frac{p}{q} < \frac{m_2}{n_2}$ and show that $m_1 + m_2 + n + n_2 \le p + q$ (where $\frac{m_1}{n_1}$ and $\frac{m_2}{n_2}$ are two consecutive fractions).
- 5. Let p/q be a strictly positive rational number represented by an irreducible fraction. Show that it appears uniquely in the construction.
- 6. Conclude that \mathbb{Q}^{*+} is countable.