

TRIPLE VOLTAGE REGULATOR

- ONLY TWO CELL NEED AS INPUT
- THREE REGULATED OUTPUT
 1) HIGH EFFICENCY PFM DC/DC
 CONVERTER 3.3V AT 200mA (87% EFFICENCY)
 2) VERY LOW NOISE AND VERY LOW DROP V_{REG} (3V AT 20mA)
 3) VERY LOW NOISE AAND VERY LOW DROP V_{REG} (1.9V AT 20mA)
- LOGIC CONTROLLED ELECTRONIC SHUTDOWN
- LOW BATTERY DETECTOR
- VIRTUAL GND PIN
- TEMPERATURA RANGE: -40 TO 85°C

SCHEMATIC DIAGRAM

November 2000 1/11

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{IN}	DC Input Voltage (Both IN_Linear and IN_SW)	-0.3 to 7	V
V _{SHDN}	Shutdown Input Voltage	-0.3 to V _{IN} +0.3	V
V_{LX}	Switch Voltage	-0.3 to 7	V
V_{LBO}	Low Battery Output Voltage	-0.3 to 7	V
$V_{virtual_GND}$	Virtual GND Output Voltage	-0.3 to 7	V
I_{LBO}	Low Battery Output Maximum Current	30	mA
I _{virtual_GND}	Virtual GND Output Maximum Current	30	mA
T _{stg}	Storage Temperature Range	-65 to +150	°C
T _{op} Operating Junction Temperature Range		-40 to +85	°C

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{thj-amb}	Thermal Resistance Junction-ambient (*)	160	°C/W

ORDER CODES

Type Package		Comment		
ST3M01D SO-14		50 parts per tube / 20 tube per box		
ST3M01DTR SO-14 (Tape & Reel)		2500 parts per reel		

2/11

CONNECTION DIAGRAM (top view)

PIN DESCRIPTION

Pin N°	Symbol	Name and Function	
1	GND SW	Switching Ground. Must be low impedance; solder directly to GND plane	
2	GND SW	Switching Ground. Must be low impedance; solder directly to GND plane	
3	Virtual GND	Virtual GND. Open Drain N-Cnannel MOSFET: must be high impedance when the Low Battery condition is detected.	
4	LBO	Low Battery Output. Open Drain N-Cnannel MOSFET: sinks current when the input voltage drops below 2V typically.	
5	V_{REF}	Reference Voltage Output. Bypass with 0.1 μF to improve the linears V _{REF}	
		thermal noise performance.	
6	IN Linear	Linear Input. Must be connected togheter with IN SW to the input supply.	
7	OUT L _B	Linear B Output port. 1.9V typically.	
8	SHDN	Shutdown Input. Disables the SMPS and L _A output, but the L _B , the	
		referencevoltage and the low batery comparator remain active.	
9	GND Signal	Signal GND. Must be connected togheter with the Switching Ground.	
10	OUT L _A	Linear A Output port. 3V typically.	
11	OUT DC/DC	DC/DC Output Port: 3.3V typically.	
12	IN SW	SMPS Input. Must be connected togheter with IN_Linear to the input supply.	
13	LX	1.5A N-Channel Power MOSFET Drain.	
14	LX	1.5A N-Channel Power MOSFET Drain.	

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, please refer to the typical operating circut of the pag 1 for the external components values and connections. Unless otherwise noted V_{SHDN} =HIGH)

Symbol	Parameter	Parameter Test Conditions			Max.	Unit
VI	Operating Input Voltage		1.9		3.3	V
V _{O(DC/DC)}	DC/DC Converter Output Voltage (Test Circuit A)	$ \begin{array}{lll} 2.24 < V_{IN} < 3.3V; & 0 < I_{O(DC/DC)} < 200 mA; \\ 0 < I_{O(LA)} < 20 mA; & 0 < I_{O(LB)} < 20 mA; \\ -40 < T_{J} < 85 \ ^{\circ}C \end{array} $	3.2	3.3	3.415	V
ν	DC/DC Converter Efficency	V_{IN} =2.4V; $I_{O(DC/DC)}$ =100mA; $I_{O(LA)}$ =0mA; $I_{O(LB)}$ =0mA; I_{J} = 25°C		87		%
V _{O(LA)}	Linear A Output Voltage (Test Circuit A)	2.24 <v<sub>IN<3.3V; 0<i<sub>O(DC/DC)<200mA; 0<i<sub>O(LA)<20mA; 0<i<sub>O(LB)<20mA; -40 < T_J < 85°C</i<sub></i<sub></i<sub></v<sub>	2.93	3	3.09	V
V _{O(LB)}	Linear B Output Voltage (Test Circuit A)	2.24 <v<sub>IN<3.3V; 0<i<sub>O(DC/DC)<200mA; 0<i<sub>O(LA)<20mA; 0<i<sub>O(LB)<20mA; -40 < T_J < 85°C</i<sub></i<sub></i<sub></v<sub>	1.86	1.9	1.955	V
e _{N(LA)}	Linear A Thermal Output Noise Voltage (Note 2)	$\begin{array}{lll} V_{\text{IN}} \! = \! 2.4 \text{V}; & V_{\text{O(DC/DC)}} \! = \! 3.5 \text{V}; \\ I_{\text{O(LA)}} \! = \! 20 \text{mA}; & 10 < f < 80 \text{KHz}; \\ C_{\text{O(LA)}} \! = \! 1 \mu \text{F}; & C_{\text{REF}} \! = \! 0.1 \mu \text{F}; & T_{\text{J}} = 25 ^{\circ} \text{C} \end{array}$		60		μV_{rms}
e _{N(LB)}	Linear B Thermal Output Noise Voltage (Note 2)	$\begin{aligned} & V_{\text{IN}} \!\!=\!\! 2.4 \text{V}; & V_{\text{O(DC/DC)}} \!\!=\!\! 3.5 \text{V}; \\ & I_{\text{O(LB)}} \!\!=\!\! 20 \text{mA}; & 10 < \text{f} < 80 \text{KHz}; \\ & C_{\text{O(LB)}} \!\!=\!\! 1 \mu \text{F}; & C_{\text{REF}} \!\!=\!\! 0.1 \mu \text{F}; & T_{\text{J}} = 25 ^{\circ} \text{C} \end{aligned}$		35		μV_{rms}
I _{q(OFF)}	Quiescent Current OFF Mode DC/DC & L _A OFF L _B ON) (Test Circuit E)	V_{IN} =3.3V; No Load; V_{SHDN} =LOW; T_{J} = 25°C		75		μΑ
I _{q(OFF)}	Quiescent Current OFF Mode (DC/DC & L _A OFF L _B ON) (Test Circuit F)	V_{IN} =1.9V; No Load; V_{SHDN} =HIGH; T_J = 25°C		50		μΑ
I _{S(DC/DC)}	DC/DC Supply Current (Test Circuit B)	V_{IN} =2.24V; No Load; T_J = 25°C		100		μΑ
I _{q(LA)}	Linear A Quiescent Current (Test Circuit C)	V_{IN} =2.24V; $V_{O(DC/DC)}$ =3.5V; $I_{O(LA)}$ =10mA; T_{J} = 25°C		220		μА
$I_{q(LB)}$	Linear B Quiescent Current (Test Circuit C)	V_{IN} =2.24V; $V_{O(DC/DC)}$ =3.5V; $I_{O(LB)}$ =10mA; T_{J} = 25°C		75		μΑ
V_{BATT}	Low Battery Detection Range	V _{SHDN} =HIGH with falling edge	1.96	2	2.04	V
V _{BATT(HYS)}	Low Battery Detection Hysteresys			150	200	mV
R _{ON(LBO)}	LBO R _{DSON}	$V_{IN}=1.9V; I_{D}=5mA; T_{J}=25^{\circ}C$		10		Ω
V _{ih}	Control Input Logic Low	V _{IN} >2.24V; -40 < T _J < 85°C			0.4	V
V _{il}	Control Input Logic High	V _{IN} >2.24V; -40 < TJ < 85°C	1.5			V
T _{on}	Timer On Response Time on DC/DC	V_{IN} =2.4V; C_O =100 μ F; T_J = 25°C $I_{O(DC/DC)}$ =200mA V_{SHDN} =from GND to $V_{SHDN(MAX)}$		0.6	9	ms
$R_{ON(V_GND)}$	Virtual GND RDSON	V_{IN} >2.24V; I_D =5mA; T_J = 25°C		10		Ω

Note 1: For V_{IN} < 1.9V the $V_{O(LB)}$ is out of regulation because of under dropout condition

Note 2: $V_{O(DC/DC)} = 3.5V$ force for an external DC source to avoid switching noise

4/11

DC/DC CONVERTER BLOCK DIAGRAM

LINEAR VREG BLOCK DIAGRAM

TEST CIRCUIT A

TEST CIRCUIT B

6/11

TEST CIRCUIT C (Iq)la=(lin)la-(lout)la

TEST CIRCUIT D (Iq)Ib=(Iin)Ib-(Iout)Ib

TEST CIRCUIT E

TEST CIRCUIT F

DEMOBOARD CIRCUIT

PC BOARD LAYOUT

///

SO-14 MECHANICAL DATA

DIM.	mm			inch			
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.068	
a1	0.1		0.2	0.003		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45 ((typ.)			
D	8.55		8.75	0.336		0.344	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.68			0.026	
S	8 (max.)						

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

