Table 1: Aggregate Consumption Dynamics in Rep Agent Markov Economy (11 states)

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$							
Expectations : Dep Var			OLS	2 nd Stage	KP p -val		
Independent Variables			or IV	$ar{R}^2$	Hansen J \boldsymbol{p} val		
Frictionless: $\Delta \log \mathbf{C}_{t+1}$							
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
-0.029			OLS	0.002			
(0.080)							
	0.301		IV	0.003	0.057		
	(0.289)				0.480		
		-0.57e-4	IV	0.003	0.000		
		(0.98e-4)			0.517		
-0.009	0.227	0.02e-4	IV	0.002	0.613		
,	(0.500)	,					
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.002$							
Sticky : $\Delta \log \widetilde{\mathbf{C}}_{t+1}$ (no measurement error)							
_	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
$0.767^{\bullet\bullet\bullet}$	•		OLS	0.587			
(0.049)	~			~	~		
~	~		ment er	$(ror); \widetilde{\mathbf{C}}_{t+1}^* =$	$\mathbf{C}_{t+1} imes \xi_t$		
_ 0	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.375	1		OLS	0.143			
(0.065)							
0.767	1		IV	0.141	0.001		
(0.148)					0.564		
	0.613		IV	0.097	0.046		
	(0.157)				0.321		
		-0.75e-4	IV	0.033	0.000		
		(0.47e-4)			0.021		
$0.594^{\bullet\bullet}$		-0.05e-4	IV	0.129	0.352		
	(0.273)		~				
Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.142$							
$var(\xi_t) = 0.03e-4$							

Notes: Reported statistics are the average values for 10 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta_{t-3}, \Delta_{t-3}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-2}$

Table 2: Aggregate Consumption Dynamics in PE/SOE Markov Economy (11 states)

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$							
Expectations : D	ep Var	OLS	2 nd Stage	KP p -val			
Independent Var	or IV	$ar{R}^2$	Hansen J \boldsymbol{p} val				
Frictionless : $\Delta \log \mathbf{C}_{t+1}$							
$\Delta \log \mathbf{C}_t \Delta \log \mathbf{Y}_{t+1}$	A_t						
$0.377^{\bullet\bullet\bullet}$		OLS	0.146				
(0.064)							
$0.551^{\bullet \bullet}$		IV	0.065	0.142			
(0.220)				0.378			
	$-11.26e-4^{\bullet}$	IV	0.052	0.000			
	(6.54e-4)			0.280			
$0.439 \qquad 0.346$	0.79e-4	IV	0.072	0.494			
$(0.368) \qquad (0.387)$	(11.08e-4)						
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.075$							
Sticky : $\Delta \log \widetilde{\mathbf{C}}_{t+1}$ (no measurement error)							
$\Delta \log \widetilde{\mathbf{C}}_t \Delta \log \widetilde{\mathbf{Y}}_{t+1}$	A_t						
$0.827^{\bullet\bullet\bullet}$		OLS	0.688				
(0.038)							
Sticky: $\Delta \log \widetilde{\mathbf{C}}_{t+1}^*$ (with measurement error); $\widetilde{\mathbf{C}}_{t+1}^* = \widetilde{\mathbf{C}}_{t+1} \times \xi_t$							
$\Delta \log \widetilde{\mathbf{C}}_t^* \Delta \log \widetilde{\mathbf{Y}}_{t+1}$	A_t						
$0.494^{\bullet\bullet\bullet}$		OLS	0.258				
(0.060)							
0.771 •••		IV	0.250	0.000			
(0.105)				0.617			
0.757***	•	IV	0.186	0.114			
(0.179)				0.223			
	$-13.86e-4^{\bullet \bullet \bullet}$	· IV	0.107	0.000			
	(4.49e-4)			0.025			
$0.649^{\bullet\bullet\bullet}$ 0.118	-2.27e-4	IV	0.213	0.463			
(0.164) (0.247)	(5.83e-4)						
Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.246$							
$var(\xi_t) = 0.05e-4$							

Notes: Reported statistics are the average values for 10 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2},$

Table 3: Aggregate Consumption Dynamics in HA-DSGE Markov Economy (11 states)

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$							
Expectations : Dep Var			OLS	2 nd Stage	KP p -val		
			or IV	$ar{R}^2$	Hansen J \boldsymbol{p} val		
Frictionless : $\Delta \log \mathbf{C}_{t+1}$							
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
$0.373^{\bullet\bullet\bullet}$			OLS	0.147			
(0.063)							
	$0.534^{\bullet\bullet\bullet}$		IV	0.091	0.110		
	(0.197)				0.326		
		$-4.59e-4^{\bullet \bullet \bullet}$	IV	0.092	0.000		
		(1.68e-4)			0.337		
0.382	0.126	-1.67e-4	IV	0.108	0.491		
(0.360)	(0.374)	(3.55e-4)					
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.108$							
Sticky : $\Delta \log \widetilde{\mathbf{C}}_{t+1}$ (no measurement error)							
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \widetilde{\mathbf{Y}}_{t+1}$	A_t					
$0.834^{\bullet\bullet\bullet}$			OLS	0.699			
(0.038)							
Sticky: $\Delta \log \widetilde{\mathbf{C}}_{t+1}^*$ (with measurement error); $\widetilde{\mathbf{C}}_{t+1}^* = \widetilde{\mathbf{C}}_{t+1} \times \xi_t$							
$\Delta \log \widetilde{\mathbf{C}}_t^*$	$\Delta \log \widetilde{\mathbf{Y}}_{t+1}$	A_t					
$0.458^{\bullet\bullet\bullet}$			OLS	0.224			
(0.061)							
$0.784^{\bullet\bullet\bullet}$			IV	0.283	0.000		
(0.105)					0.563		
	$0.730^{\bullet\bullet\bullet}$		IV	0.218	0.091		
	(0.164)				0.274		
		$-5.87e-4^{\bullet \bullet \bullet}$	IV	0.183	0.000		
		(1.18e-4)			0.034		
0.631	0.022	-1.71e-4	IV	0.263	0.489		
` '	(0.270)	,					
Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.284$							
$var(\xi_t) = 0.03e-4$							

Notes: Reported statistics are the average values for 10 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2},$