Menentukan Jumlah Produksi Tempe dengan metode Fuzzy Tsukamoto

Perhitungan Manual

Data Permintaan, Persediaan dan Produksi Tempe

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	04/0	05/0	06/0	07/0	08/0	09/0	10/0	11/0	12/0	13/0	14/0			
Tang	8/20	8/20	8/20	8/20	8/20	8/20	8/20		8/20	8/20	8/20	15/08/	16/08/2	17/08/
gal	10	10	10	10	10	10	10	10	10	10	10	2010	010	2010
Per														
mint														
aan	5164	2979	3517	2227	3043	4777	3148	5766	7493	4935	2049	4778	6176	5821
Pers														
edia		=00	4440		4.50	4040			4000		44=0	0.4=		
an	774	700	1142	628	1452	1018	1147	1419	1332	863	1152	617	711	567
Prod														
uksi	5428	4393	3928	5545	4020	4741	6769	4951	5501	5369	6029	4887	5775	5161
No	15	16	17	18	19	20	21	22	23	24	25			
	18/0	19/0	20/0	21/0	22/0	23/0	24/0	25/0	26/0	27/0	28/0			
Tang	8/20	8/20	8/20	8/20	8/20	8/20	8/20	8/20	8/20	8/20	8/20			
gal	10	10	10	10	10	10	10	10	10	10	10			
Per														
mint												Minimal	Maksima	Median
aan	6632	2847	7198	2360	2925	4861	6510	5070	7147	4254	4971	= 2049	I = 7493	= 4861
Pers														
edia													Maksima	
an	1237	1223	927	1285	1249	1175	1248	926	695	667	550	= 550	I = 1285	
Prod												_	Maksima	
uksi	6496	3867	4948	3719	6705	4768	5433	4876	6180	4460	4785	= 3719	I = 6769	

Mendefinisikan Variabel

a. Variable Permintaan

terdiri dari atas 3 himpunan fuzzy, yaitu TURUN, TETAP dan NAIK.

- pmt Turun [c] = (c median c / c median c minimal)
- pmt Naik [c] = (c c_median / c_maximal c_median)
- pmt Tetap [c] = (c_maximal c / c_maximal c_median)

(c - c minimal / c median - c minimal)

c = 5662

- pmt Turun [5662] = (4861 5662 / 4861 2049) = 801 / 2812 = 0.28485064
- pmt Naik [5662] = (5662 4861 / 7493 4861)
 = 801 / 2632
 = 0.3043313067
- pmt Tetap [5662] = (7493 5662 / 7493 4861)= 1831 / 2632= 0.695668693
- b. Variable Persediaan

terdiri dari 2 himpunan fuzzy, yaitu SEDIKIT dan BANYAK.

- psd Sedikit [s] = (s maximal s / s maximal s minimal)
- psd Banyak [s] = (s s_minimal / s_maximal s_minimal)

s = 630

- psd Sedikit [630] = (1285 630 / 1285 550)
 = 655/735
 = 0.891156563
- psd Banyak [630] = (630 550 / 1285 550)= 80/735= 0.108843537
- c. Variable Produksi

terdiri dari 2 himpunan fuzzy, yaitu KURANG dan TAMBAH.

- kurang [t] = (t_maximal t / t_maximal t_minimal)
 kurang [t] = (6769 s / 6769 3719)
- tambah [t] = (t t_minimal / t_maximal t_minimal)
 tambah [t] = (t 3719 / 6769 3719)

Inferensi

dari uraian diatas terbentuk 6 himpunan fuzzy dan diperoleh 6 aturan fuzzy sebagai berikut :

[T1] jika Permintaan TURUN, dan Persediaan BANYAK, maka Produksi Barang BERKURANG.

```
= min(pmt TURUN [5662], psd Banyak[630])
= min([0.28485064], [0.108843537])
= 0.108843537
```

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

```
T1 = Tmax-\alpha 1( Tmax-Tmin)
T1 = 6769-0.108843537(6769-3719)
T1 = 6769 - 331.97278785
T1 = 6437.03
```

[T2] jika Permintaan TURUN, dan Persediaan SEDIKIT, maka Produksi Barang BERKURANG.

```
= min(pmt TURUN [5662], psd Sedikit[630])
= min([0.28485064], [0.891156563])
= 0.28485064
```

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

```
T2 = Tmax-\alpha 2( Tmax-Tmin)
T2 = 6769-0.28485064(6769-3719)
T2 = 6769 - 868.794452
T2 = 5900
```

[T3] jika Permintaan NAIK, dan Persediaan BANYAK, maka Produksi Barang BERTAMBAH.

```
= min(pmt Naik [5662], psd Banyak[630])
= min([0.3043313067], [0.108843537])
= 0.108843537
```

Menurut fungsi keanggotaan himpunan Produksi Barang BERTAMBAH pada persamaan di atas maka diperoleh persamaan berikut.

```
T3 = \alpha3(Tmax-Tmin)+ Tmin

T3 = 0.108843537(6769 - 3719) + 3719

T3 = 331.97278785 + 1000

T3 = 1331.97
```

[T4] jika Permintaan NAIK, dan Persediaan SEDIKIT, maka Produksi Barang BERTAMBAH.

```
= min(pmt Naik [5662], psd Banyak[630])
= min([0.3043313067], [0.891156563])
= 0.3043313067
```

- 0.3043313001

Menurut fungsi keanggotaan himpunan Produksi Barang BERTAMBAH pada persamaan di atas maka diperoleh persamaan berikut.

```
T4 = \alpha4(Tmax-Tmin)+ Tmin

T4 = 0.3043313067(6769 - 3719) + 3719

T4 = 928.210485435 + 1000

T4 = 1928.2
```

[T5] jika Permintaan TETAP, dan Persediaan SEDIKIT, maka Produksi Barang BERTAMBAH.

```
= min(pmt Tetap[5662], psd Sedikit[630])
= min([0.695668693], [0.891156563])
= 0.695668693
```

Menurut fungsi keanggotaan himpunan Produksi Barang BERTAMBAH pada persamaan di atas maka diperoleh persamaan berikut.

```
T5 = Tmax-α5( Tmax-Tmin)
T5 = 6769-0.695668693(6769-3719)
T5 = 6769 -2121.78951365
T5 = 4647.2
```

[T6] jika Permintaan TETAP, dan Persediaan BANYAK, maka Produksi Barang BERKURANG.

- = min(pmt Tetap[5662], psd Banyak[630])
- = min([0.695668693], [0.108843537])
- = 0.108843537

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

```
T6 = Tmax-\alpha 6( Tmax-Tmin)
T6 = 6769-0.108843537(6769-3719)
T6 = 6769 -331.97278785
T6 = 6437
```

Defuzifikasi

Pada metode tsukamoto, untuk menentukan output crisp, digunakan defuzifikasi rata-rata terpusat, yaitu :

```
T = \alpha 1*t 1+ \alpha 2*t 2+\alpha 3*t 3+\alpha 4*t 4+\alpha 5*t 5+\alpha 6*t 6/\alpha 1+\alpha 2+\alpha 3+\alpha 4+\alpha 5+\alpha 6
```

```
T= 0.108843537*6437.03+0.28485064*5900+ 0.108843537*1331.97 +0.3043313067*1928.2+ 0.695668693*4647.2 +0.108843537*6437 / 0.108843537+0.28485064+0.108843537+ 0.3043313067 +0.695668693+ 0.108843537
```

```
T= 700.629112975+1680.618776+144.976325978 +586.811625579 + 3232.91155011 + 700.625847669 / 1.6113812507
```

T=7046.57323831 / 1.6113812507

T=4373.00187975