Branch: master 2022-11-27 11:09:57+01:00

CONTINUOUS LOGIC FOR THE CLASSICAL LOGICIAN

C. L. C. L. POLYMATH

1. A CLASS OF STRUCTURES

1 Definition. Let L be a one-sorted (first-order) language. Let $L' \supseteq L$ be a two-sorted language. We consider the class of L'-structures of the form $\mathfrak{M} = \langle M, R \rangle$, where M ranges over L-structures, while R is fixed.

We assume that *R* is endowed with a locally compact Hausdorff topology.

The relation symbols of L' are those of L plus symbols for every compact $C \subseteq R^m$. When suggested by the context, $x \in C$ stands for C(x). In L' there are function symbols of any possible sort that we divide in to clades

- 1. $M^n \times R^m \to M$
- 2. $M^n \times R^m \to R$

We require that function symbols of the second clade are interpreted in functions such that

- i. $f^{\mathcal{M}}: M^n \times R^m \to R$ is bounded, i.e. its range is contained in a compact set;
- ii. $f^{\mathcal{M}}: M^n \times R^m \to R$ is continuous uniformly in M, as defined in Definition 3 below.

There might be models in the class described in Definition 1 that do not have a saturated elementary extension in this class. As a remedy, below we carve out a set of formulas $L \subseteq \mathbb{L} \subseteq L'$ such that every model as in Definition 1 has an \mathbb{L} -elementary extension in the same class that is \mathbb{L} -saturated. Our choice of \mathbb{L} is not the most general, it is a compromise that accommodates the relevant examples and avoids eccessive complications.

In a nutshell, we require that function symbols of the second clade above do not occur under the scope of a negation. We also do not allow existential quantifiers of sort R.

The ultrapower construction in Section 3 is completely classical w.r.t. functions the first clade. On the other hand, functions of the second clade are *critical* and need to be dealt with differently.

Below, \mathbb{T}_{M} denotes the set of the terms obtained composing function symbols as in 1 above.

By \mathbb{T}_R we denote the set of the terms obtained composing function symbols as in 2 above.

By $\mathbb{T}_R \circ \mathbb{T}_M$ we denote the set of the terms obtained composing terms in \mathbb{T}_R with terms in \mathbb{T}_M . Clearly, there are many more terms in L' but for simplicity, we will restrict to these.

- **2 Definition.** Formulas in \mathbb{L} are constricted inductively from two clades of formulas below
 - i. formulas as $t(y; z) \in C$, where $C \subseteq R^n$ is compact and t(y; z) is a tuple of terms in $\mathbb{T}_R \circ \mathbb{T}_M$;
 - ii. quantifier free formulas with only terms in \mathbb{T}_M .

Finally we require that \mathbb{L} is closed under the Boolean connectives \land , \lor , the quantifiers \forall , \exists of sort M; and the universal quantifier \forall of sort R.

Clearly, $L \subseteq \mathbb{L} \subseteq L'$.

2. TOPOLOGICAL TOOLS

We recall the standard definition of *F*-limits. Let *I* be a non-empty set. Let *F* be a filter on *I*. Let *Y* be a topological space. If $f: I \to Y$ and $\lambda \in Y$ we write

$$F\text{-}\lim_{i} f(i) = \lambda$$

if $f^{-1}[A] \in F$ for every $A \subseteq Y$ that is a neighborhood of λ . Such a λ is unique if Y is Hausdorff. When F is an ultrafilter, and Y is compact the limit always exists.

By βI we denote the set of ultrafilters on I. This is a topological space with the topology generated by the clopen sets $[A] = \{ F \in \beta I : A \in F \}$ as A ranges over the subsets of I.

3 Definition. Let I be a pure set. Let X, Y be topological spaces, and assume Y is compact.

We say that $f: I \times X \to Y$ is continuous uniformly in I if the function below is continuous

$$ar{f}: eta I imes X o Y$$
 $\langle F, lpha
angle \hspace{0.1in} \mapsto F - \lim_i f(i, lpha)$

It is convenient to unravel the definition above in a more practicable form.

- **4 Proposition.** The following are equivalent
 - 1. $f: I \times X \to Y$ is continuous uniformly in I.
 - 2. For every $F \in \beta I$ and $\alpha \in X$, and for every $V \subseteq Y$ open neighborhood of F- $\lim_i f(i,\alpha)$ there is $U \subseteq X$ open neighborhood of α and an $A \in F$ such that $f(i,x) \in V$ for every $i \in A$ and every $x \in U$.

3. Ultraproducts

Below we introduce a suitable notion of ultraproducts of some structures $\langle \mathcal{M}_i : i \in I \rangle$. We require that for each function symbol f of sort $M^n \times R^m \to R$ there is a compact $C \subseteq R$ that contains the range of all the functions $f^{\mathcal{M}_i}$. Note that, otherwise, Fact 6 below may fail.

To keep notation tidy, we make two simplifications: (1) we only consider ultrapowers; (2) we do not consider formulas containing equality, so we need not take any quotient.

Let I be an infinite set. Let F be an ultrafilter on I. Let $\mathcal{M} = \langle M, R \rangle$ be an L-structure.

- **5 Definition.** We define a structure $\mathcal{N} = \langle N, R \rangle$ that we call the ultrapower of \mathcal{M} .
 - 1. $N = M^I$ that is, it is the set of sequences $\hat{a}: I \to M$.
 - 2. If f is a function of sort $M^n \times R^m \to M$ then $f^{\mathbb{N}}(\hat{a}; \alpha)$ is the sequence $\langle f^{\mathbb{N}}(\hat{a}i; \alpha) : i \in I \rangle$.
 - 4. If f is a function of sort $M^n \times R^m \to R$ then for every $\alpha \in R^m$

$$f^{\mathcal{N}}(\hat{a};\alpha) = F - \lim_{i} f^{\mathcal{M}}(\hat{a}i;\alpha).$$

3. if *r* is a relation symbol of sort $M^n \times R^m$ then for every $\alpha \in R^m$

$$\mathcal{N} \models r(\hat{a}; \alpha) \Leftrightarrow \left\{ i \in I : \mathcal{M} \models r(\hat{a}i; \alpha) \right\} \in F.$$

The following is immediate.

6 Fact. The structure \mathbb{N} satisfies condition 1 of Definition 1.

The following is easily proved by induction on the syntax

7 Fact. If $t(y; z) \in \mathbb{T}_M$ then

$$t^{\mathcal{N}}(\hat{a};\alpha) = \langle t^{\mathcal{M}}(\hat{a}i;\alpha) : i \in I \rangle.$$

We also have that

8 Fact. If $t(y; z) \in \mathbb{T}_R$ then

$$t^{\mathbb{N}}(\hat{a};\alpha) = F - \lim_{i} t^{\mathbb{M}}(\hat{a}i;\alpha).$$

Proof. By induction. The fact holds by definition if t is a function symbol. Therefore, we assume $\#_0$ as induction hypothesis and prove

$$\#_1 \qquad \qquad f^{\mathcal{N}}\Big(\hat{a};t^{\mathcal{N}}\big(\hat{a};\alpha\big)\Big) \ = \ F - \lim_i f^{\mathcal{M}}\Big(\hat{a}i;t^{\mathcal{M}}\big(\hat{a}i;\alpha\big)\Big).$$

By induction hypothesis

$$\#_2 \qquad \qquad f^{\mathcal{N}}\Big(\hat{a};t^{\mathcal{N}}\big(\hat{a};\alpha\big)\Big) \ = \ F\text{-}\lim_i f^{\mathcal{M}}\Big(\hat{a}i;\lambda\Big).$$

where

$$\lambda = F - \lim_{i} t^{\mathcal{M}}(\hat{a}i; \alpha)$$

Let σ be the limit in $\#_2$. Let $V \subseteq R$ be an open set containing σ . Apply 2 of Proposition 4, to obtain $A \in F$ and an open set $U \subseteq R$ containing λ such that for every $i \in A$ and every $x \in U$

$$f^{\mathcal{M}}(\hat{a}i;x) \in V.$$

After possibly restricting A, we can assume that for every $i \in A$

$$t^{\mathcal{M}}(\hat{a}i;\alpha) \in U.$$

This sufficies to prove that σ is also the limit in $\#_1$.

From the two facts above it immediately follows that

9 Fact. If $t(y; z) \in \mathbb{T}_R \circ \mathbb{T}_M$ then

$$t^{\mathcal{N}}(\hat{a};\alpha) = F - \lim_{i} t^{\mathcal{M}}(\hat{a}i;\alpha).$$

For $\varphi(x)$, $\varphi'(x) \in \mathbb{L}(A)$ we say that $\varphi' > \varphi$ if φ' can be obtained replacing each atomic formula $t \in C$ occurring in φ by $t \in D$ for some compact neighborhood D of C. Note that, if no such atomic formulas occurs in φ , then $\varphi > \varphi$. Formulas in as in (i) of Definition 2 do not occur under the scope of a negation, therefore we always have that $\varphi \to \varphi'$. Moreover

$$\bigwedge_{\varphi'>\varphi}\varphi' \leftrightarrow \varphi.$$

Finally, we prove Łŏś Theorem.

10 Proposition. Assume $|I| \ge$ the weight of the topology on R. Let \mathcal{N} be as above and let $\varphi(x; y) \in \mathbb{L}$. Then for all $\hat{a} \in N^{|x|}$ and all $\alpha \in R^{|y|}$

$$\mathbb{N} \models \varphi(\hat{a}; \alpha) \Leftrightarrow \{i \in I : \mathbb{M} \models \varphi'(\hat{a}i; \alpha)\} \in F \text{ for every } \varphi' > \varphi.$$

Proof. First note that if $\varphi(x; y)$ is as in (ii) of Definition 2 then, if we absorbe α into the language, the proposition reduces to the classical Łŏś Theorem.

Now, suppose that $\varphi(x; y)$ is as in (i) of Definition 2, say it is the formula $t(x; y) \in C$, where $t(x; y) \in \mathbb{T}_R \circ \mathbb{T}_M$.

Assume $\mathbb{N} \models t(\hat{a}, \alpha) \in C$. If D is a compact neighborhood of C then D is also a neighborhood of $t^{\mathbb{N}}(\hat{a}, \alpha)$. Hence, by the definition of F-limit, $\{i : \mathbb{M} \models t(\hat{a}i, \alpha) \in D\} \in F$. Vice versa, assume $\mathbb{N} \models t(\hat{a}, \alpha) \notin C$. Let D be a compact neighborhood of C such that $t^{\mathbb{N}}(\hat{a}, \alpha) \notin D$. By Fact 9 and the definition of F-limit, $\{i : \mathbb{M} \models t(\hat{a}i, \alpha) \notin D\} \in F$.

Induction for the connectives \vee and \wedge is clear. To deal with the universal quantifier of sort R we assume inductively that

$$\mathcal{N} \models \varphi(\hat{a};\alpha,\beta) \; \Leftrightarrow \; \left\{ i \in I \; : \; \mathcal{M} \models \varphi'(\hat{a}i;\alpha,\beta) \right\} \in F \; \text{for every} \; \varphi' > \varphi$$

and we prove that

$$\mathcal{N} \models \forall y \, \varphi(\hat{a}; \alpha, y) \; \Leftrightarrow \; \left\{ i \in I \; : \; \mathcal{M} \models \forall y \, \varphi'(\hat{a}i; \alpha, y) \right\} \in F \text{ for every } \varphi' > \varphi.$$

The implication \Rightarrow is clear. For the converse assume $\mathcal{N} \not\models \varphi(\hat{a}; \alpha, \beta)$ for some β . By induction hypothesis, and the requirement that F is an ultrafilter, $\{i \in I : \mathcal{M} \not\models \varphi'(\hat{a}i; \alpha, \beta)\} \in F$ for some $\varphi' > \varphi$. A fortiori $\{i \in I : \mathcal{M} \not\models \forall y \varphi'(\hat{a}i; \alpha, y)\} \in F$, hence the implication \Leftarrow follows.

To deal with the quantifiers of sort M we assume inductively that

$$\mathcal{N} \models \varphi(\hat{a}, \hat{b}; \alpha) \iff \left\{ i \in I : \mathcal{M} \models \varphi'(\hat{a}i, \hat{b}i; \alpha) \right\} \in F \text{ for every } \varphi' > \varphi.$$

We first we prove that

$$\mathcal{N} \models \forall y \, \varphi(\hat{a}, y; \alpha) \iff \left\{ i \in I : \, \mathcal{M} \models \forall y \, \varphi'(\hat{a}i, y; \alpha) \right\} \in F \text{ for every } \varphi' > \varphi.$$

This is identical to the case above. The implication \Rightarrow is clear. For the converse assume $\mathbb{N} \not\models \varphi(\hat{a}, \hat{b}; \alpha)$ for some \hat{b} . By induction hypothesis, $\{i \in I : \mathbb{M} \not\models \varphi'(\hat{a}i, \hat{b}i; \alpha)\} \in F$ for some $\varphi' > \varphi$. Hence $\{i \in I : \mathbb{M} \models \forall y \varphi'(\hat{a}i, y; \alpha)\} \not\in F$ as required.

Finally we prove

$$\mathbb{N} \models \exists y \, \varphi(\hat{a}, y; \alpha) \iff \{i \in I : \mathbb{M} \models \exists y \, \varphi'(\hat{a}i, y; \alpha)\} \in F \text{ for every } \varphi' > \varphi.$$

Again, \Rightarrow is clear. For the converse, assume the r.h.s. Assume for simplicity that $I = \omega$ and that R is second countable. For every $i \in I$ pick a formula φ_i so that $\varphi_i > \varphi_j > \varphi$ for for every i < j and

$$\mathcal{M} \models \bigwedge_{i \in I} \varphi_i(x, y; \alpha) \rightarrow \varphi(x, y; \alpha).$$

For every $j \in I$ there is a sequence \hat{b}_i such that

$$\left\{i\in I\ :\ \mathcal{M}\models\varphi_{j}(\hat{a}i,\hat{b}_{j}i\,;\alpha)\right\}\in F.$$

As $\varphi_j(x, y; \alpha) \to \varphi_{j'}(x, y; \alpha)$ holds for j > j', the diagonal sequence $\hat{d} = \langle \hat{b}_i i : i \in I \rangle$ satisfies $\mathbb{N} \models \varphi(\hat{a}, \hat{d}; \alpha)$.