

A Non-Interfering[™] (NI) Protein Assay (high throughput 96-well)

G-Biosciences

Abstract

The Non-Interfering^m Protein Assay is a colorimetric assay for determining protein concentrations in protein loading buffer (Laemmli buffer), high β -mercaptoethanol concentrations, and in lipid and vesicle preparations.

Citation: G-Biosciences A Non-Interfering™ (NI) Protein Assay (high throughput 96-well). protocols.io

dx.doi.org/10.17504/protocols.io.e9tbh6n

Published: 13 Sep 2016

Guidelines

INTRODUCTION

The Non-Interfering^m Protein Assay is a highly sensitive colorimetric assay that overcomes interference by common laboratory agents. The assay removes detergents (non-ionic, ionic and zwitterionic), reducing agents (β -mercaptoethanol, DTT), chelating agents (EDTA), amines (Tris), sugars, and is highly tolerant of strong chaotropic buffers.

The NI^{$^{\text{M}}$} Protein Assay is suitable for determining protein concentrations in protein loading buffer (Laemmli buffer)1-4, high β -mercaptoethanol concentrations (<15%)5-7 and in lipid and vesicle preparations8-9. The NI^{$^{\text{M}}$} Protein Assay has a linear response between 0.5-50 μ g and has a small sample requirement (1-50 μ l). The kit components are suitable for 500 assays.

NOTE

For high throughput 96-well assays, we recommend using 2ml deep round or V- bottom well titer plates. These are available from multiple sources, including VWR, Fisher and USA Scientific. The high throughput protocol requires centrifugation of the 96-well plate at 2-5,000xg and this may require a special centrifuge adaptor.

ITEM(S) SUPPLIED

Description	786-005	Cat. # 786-896		
UPPA™ I	250ml	250ml		
UPPA™ II	250ml	250ml		
Copper Solution (Reagent I)	50ml	50ml		
Color Agent A	2 x 250ml	2 x 250ml		
Color Agent B	5ml	5ml		
BSA Protein Standard [2mg/ml]	5ml	-		
Non-Animal Protein Standard [2mg/ml]	-	5ml		

Cat #

STORAGE CONDITIONS

The kit is shipped at ambient temperature. Upon arrival, store UPPA-I and UPPA-II at room temperature. The remaining kit components should be stored in the dark and refrigerated in its original box. When stored properly, the kit is stable for 1 year.

OVERVIEW

The Non-Interfering™ Protein Assay is composed of two simple steps (see figure):

- 1. Universal Protein Precipitating Agent (UPPA $^{\text{\tiny M}}$) is added to the protein solutions to rapidly precipitate total protein. Protein is immobilized by centrifugation and interfering agents in the supernatant are discarded.
- 2. Protein concentration is assayed by mixing with an alkaline solution containing a known concentration of copper salt; the copper ions bind to the peptide backbone and the assay measures the unbound copper ions. The assay is independent of protein side chains minimizing protein-to-protein variation. The color density is inversely proportional to the amount of protein.

TOLERANCE GUIDE

- 2-Mercaptoethanol, 15%
- Ammonium Sulfate, 40%
- Brij® 35, 1%
- CHAPS, 4%
- CHAPSO, 1%
- Digitonin, 0.3%
- DTT, 0.35M
- EDTA, 0.1M
- Glycerol, 30%
- Guanidine Thiocynate, 4M
- Guanidine.HCl, 6M
- HEPES, 0.1M
- Hydrochloric acid, 0.1N
- Imidazole, 0.5M
- · Iodoacetamide, 15mM
- N-Octyl Glucosidase, 0.5%

- Phosphate buffer, 0.2M
- Sarcosyl, 1%
- SDS, 2%
- Sodium azide, 0.1M
- Sodium Chloride, 0.5M
- Sodium hydroxide, 2.5mM
- Sucrose, 30%
- TCEP, 15mM
- Thesit, 2%
- Thiourea, 2M
- Tris.HCl, 0.5M
- Triton® X-100, 3%
- Triton® X-114, 3%
- Tween® 20, 2%
- Urea, 8M
- Zwittergent® 3-12, 1.5%

PREPARATION BEFORE USE

Prepare Reagent-II - Prior to use, prepare an appropriate volume of Reagent II by mixing 100 parts of Color Agent A with 1 part of Color Agent B. (e.g. For 10ml of Reagent II, add 0.1ml Color Agent B to 10ml Color Agent A).

Reagent II can be stored refrigerated for one month or as long as the optical density of the solution at 475-490nm is less than 0.025 O.D.

REFERENCES:

1. Ho, T.H. et al (2005) Human Molecular Genetics 14: 1539

- 2. Ladd, A.N. et al (2001) Mol. Cell. Biol. 21: 1285
- 3. Loeb, D.M. et al (2002) J. Biol. Chem. 277: 19627
- 4. Shiels, A. et al (2007) Invest. Ophthalmol. Vis. Sci. 48: 500
- 5. Gushwa, N.N. et al (2003) Plant Physiology 132: 1925
- 6. DePinto, W. et al (2006) Mol. Cancer Ther. 5:2644
- 7. Werner, M.E. et al (2007) J. Biol. Chem. 282: 5560
- 8. Dennison, S.M. et al (2006). Biophysical Journal 90:1661
- 9. Reeve, I. et al (2002) PNAS 99: 8608

Before start

Prepare Reagent-II - Prior to use, prepare an appropriate volume of Reagent II by mixing 100 parts of Color Agent A with 1 part of Color Agent B. (e.g. For 10ml of Reagent II, add 0.1ml Color Agent B to 10ml Color Agent A).

Reagent II can be stored refrigerated for one month or as long as the optical density of the solution at 475-490nm is less than 0.025 O.D.

Materials

NI™ (Non-Interfering™) Protein Assay 786-005 by G-Biosciences

Protocol

Step 1.

Perform assays at room temperature. Use 2ml tubes for assay.

NOTES

Colin Heath 29 Aug 2016

For high throughput 96-well assays, we recommend using 2ml deep round or V- bottom well titer plates. These are available from multiple sources, including VWR, Fisher and USA Scientific. The high throughput protocol requires centrifugation of the 96-well plate at 2-5,000xg and this may require a special centrifuge adaptor.

Step 2.

Prepare a set of protein standards using the supplied BSA or Non-Animal Protein Standard as indicated in the table below:

Tube #	1	2	3	4	5	6
Protein Standard [2mg/ml] (μl	0 (4	8	12	20	25
Protein (µg)	0	8	16	24	40	50

Step 3.

Add 1-50µl of the protein samples to be assayed to 2ml tubes.

NOTES

Colin Heath 06 Jul 2016

NOTE: It is recommended that duplicates are used. The total amount of protein should not exceed 50µg and we recommend various protein dilutions are used to ensure samples are below 50µg.

NOTE: For determination of protein concentrations in buffers free of interfering agents skip steps 4-7.

Step 4.

Add 0.5ml UPPA™ I to each tube and vortex.

Step 5.

Incubate for 2-3 minutes at room temperature.

© DURATION 00:02:00

Step 6.

Add 0.5ml UPPA™ II to the tubes and vortex.

Step 7.

Centrifuge the titer plate at 5,000xg for 7 minutes to pellet the precipitate.

© DURATION 00:07:00

Step 8.

Invert the titer plate to remove the supernatant and shake to remove all excess supernatant.

Step 9.

Add 100µl Copper Solution (Reagent I) and 400µl deionized water to the tubes and vortex until the protein precipitate pellet dissolves.

Step 10.

Using 1ml pipette, **rapidly shoot** 1ml Reagent II directly into each tube containing Reagent I plus DI Water and **immediately mix** it by inverting the tubes.

Step 11.

Incubate at room temperature for 15-20 minutes and then immediately read absorbances at 480nm against DI water.

O DURATION

00:15:00

Step 12.

After incubation, transfer 200µl assay reaction to a flat bottom 96 well micro titer plate and measure the absorbances at 480nm against DI water.

Step 13.

Plot absorbance against protein concentration and determine protein concentrations of unknowns.

NOTES

Colin Heath 06 Jul 2016

NOTE: Do not subtract blank reading from the sample reading as absorbance will decrease as protein concentration increases.