3 Matrice i determinante

Osnovne definicije

Matrica formata $m \times n$ nad poljem $\mathbb{F} = (F, +, \cdot)$ jeste pravougaona tabela oblika:

$$\begin{bmatrix}
a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\
\vdots & \vdots & & \vdots & & \vdots \\
a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\
\vdots & \vdots & & \vdots & \dots & \vdots \\
a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn}
\end{bmatrix}.$$

Označimo sa A prethodnu tabelu nad poljem \mathbb{F} . U daljem tekstu, polje koje razmatramo može da bude proizvoljno polje.

Napomenimo da se samo izdvajanje elementa a_{ij} iz matrice A može odrediti kao vrednost funkcije

(2)
$$A: \{1, 2, \dots, m\} \times \{1, 2, \dots, n\} \longrightarrow F.$$

U tom smislu svaka funkcija (2) određuje matricu A formata $m \times n$.

Niz elemenata a_{i1}, \ldots, a_{in} čine i-tu vrstu, a niz elemenata a_{1j}, \ldots, a_{mj} čine j-tu kolonu. Element $a_{ij} \in F$ matrice A nalazi se na poziciji i-te vrste i j-te kolone, gde $i \in \{1, \ldots, m\}$ i $j \in \{1, \ldots, n\}$. Pri tom, i je indeks vrste i j je indeks kolone. Prirodan broj m određuje broj vrsta i prirodan broj n određuje broj kolona matrice A formata $m \times n$.

Za i-tu vrstu a_{i1}, \ldots, a_{in} koristimo oznaku $A_{i\rightarrow}$ i tada matrica i-te vrste je matrica formata $1 \times n$

$$\left[\begin{array}{cccc} a_{i1} & a_{i2} & \dots & a_{in} \end{array}\right].$$

Za j-tu kolonu a_{1j}, \ldots, a_{mj} koristimo oznaku $A_{j\downarrow}$ i tada matrica j-te kolone je matrica formata $m \times 1$

$$\begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mi} \end{bmatrix}.$$

Primer 1. Za realnu matricu

$$A = \left[\begin{array}{rrrr} 4 & 7 & -3 & 0 \\ 11 & -1 & 4 & 5 \\ 2 & 3 & -10 & 9 \end{array} \right]$$

 $formata \ 3 \times 4 \ izdvajamo \ redom \ sledeće \ matrice-vrste$:

$$\begin{bmatrix}
4 & 7 & -3 & 0 \\
11 & -1 & 4 & 5 \\
2 & 3 & -10 & 9
\end{bmatrix},$$

i izdvajamo redom sledeće matrice-kolone:

$$\begin{bmatrix} 4 \\ 11 \\ 2 \end{bmatrix}, \begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \\ -10 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ 9 \end{bmatrix}.$$

Dalje, u slučaju da je m=n pravougaona tabela (1) postaje kvadratna tabela i takve matrice nazivamo kvadratnim matricama. Prirodan broj n nazivamo redom kvadratne matrice. Za kvadratne matrice određujemo glavnu dijagonalu kao niz elemenata $a_{11}, a_{22}, \ldots, a_{ii}, \ldots, a_{nn}$ i određujemo sporednu dijagonalu kao niz elemenata $a_{1n}, a_{2(n-1)}, \ldots, a_{i(n+1-i)}, \ldots, a_{n1}$.

Za prirodne brojeve m i n skup svih matrica formata $m \times n$ nad poljem $\mathbb{F} = (F, +, \cdot)$ označavaćemo

$$F^{m \times n}$$
.

Za proizvoljnu matricu $\mathbf{A} \in F^{m \times n}$ koristimo sledeći zapis matrice sa svojim elementima

$$A = [a_{ij}]_{m \times n}.$$

Za dve matrice $A=[\,a_{ij}\,]_{m\times n}$ i $B=[\,b_{ij}\,]_{m\times n}$ nad poljem $\mathbb F$ smatramo da su $jednake\ matrice$, u oznaci

$$A = B$$
,

ako važi:

$$(\forall i \in \{1, ..., m\}) (\forall j \in \{1, ..., n\}) a_{ij} = b_{ij}.$$

Može se dokazati da relacija jednakosti matrica je relacija ekvivalencije, tj. važi:

- (i) A = A (refleksivnost),
- (ii) $A = B \implies B = A \text{ (simetričnost)},$
- (iii) $A = B \land B = C \implies A = C$ (tranzitivnost),

za matrice $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$ i $C = [b_{ij}]_{m \times n}$.

Zbir matrica, proizvod skalara i matrice

Zbir matrica $A = [a_{ij}]_{m \times n}$ i $B = [b_{ij}]_{m \times n}$ nad poljem \mathbb{F} je matrica

$$C = A + B = [c_{ij}]_{m \times n}$$

određena elementima

$$c_{ij} = a_{ij} + b_{ij},$$

gde $i \in \{1, ..., m\}$ i $j \in \{1, ..., n\}$. Za matricu C kažemo da je dobijena sabiranjem matrica A i B. Suprotna matrica matrica $A = [a_{ij}]_{m \times n}$ nad poljem \mathbb{F} je matrica

$$-\mathsf{A} = [-a_{ij}]_{m \times n},$$

gde $i \in \{1, ..., m\}$ i $j \in \{1, ..., n\}$. Na osnovu suprotne matrice uvodimo razliku matrica $\mathbf{A} = [a_{ij}]_{m \times n}$ i $\mathbf{B} = [b_{ij}]_{m \times n}$ nad poljem \mathbb{F} kao matricu

$$A - B = A + (-B).$$

Samim tim razlika matrica

$$D = A - B = [d_{ij}]_{m \times n}$$

je određena elementima

$$d_{ij} = a_{ij} - b_{ij},$$

gde $i \in \{1, ..., m\}$ i $j \in \{1, ..., n\}$. Za matricu D kažemo da je dobijena oduzimanjem matrica.

Primer 2. Za realne matrice

$$A = \begin{bmatrix} 1 & -2 & 0 & 4 \\ 5 & 4 & 5 & 1 \\ 0 & 11 & 3 & 1 \end{bmatrix} \quad i \quad B = \begin{bmatrix} 3 & 2 & 12 & 0 \\ -4 & 4 & -2 & 3 \\ 2 & 7 & 0 & 8 \end{bmatrix}$$

zbir i razlika su matrice

$$C = A + B = \begin{bmatrix} 1 & -2 & 0 & 4 \\ 5 & 4 & 5 & 1 \\ 0 & 11 & 3 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 2 & 12 & 0 \\ -4 & 4 & -2 & 3 \\ 2 & 7 & 0 & 8 \end{bmatrix}$$
$$= \begin{bmatrix} 1+3 & -2+2 & 0+12 & 4+0 \\ 5-4 & 4+4 & 5-2 & 1+3 \\ 0+2 & 11+7 & 3+0 & 1+8 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0 & 12 & 4 \\ 1 & 8 & 3 & 4 \\ 2 & 18 & 3 & 9 \end{bmatrix}$$

i

$$D = A - B = \begin{bmatrix} 1 & -2 & 0 & 4 \\ 5 & 4 & 5 & 1 \\ 0 & 11 & 3 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 2 & 12 & 0 \\ -4 & 4 & -2 & 3 \\ 2 & 7 & 0 & 8 \end{bmatrix}$$
$$= \begin{bmatrix} 1 - 3 & -2 - 2 & 0 - 12 & 4 - 0 \\ 5 + 4 & 4 - 4 & 5 + 2 & 1 - 3 \\ 0 - 2 & 11 - 7 & 3 - 0 & 1 - 8 \end{bmatrix}$$
$$= \begin{bmatrix} -2 & -4 & -12 & 4 \\ 9 & 0 & 7 & -2 \\ -2 & 4 & 3 & -7 \end{bmatrix}.$$

 $Poizvod\ skalara\ \alpha\!\in\! F\ i\ matrice\ \mathbf{A}\!=\!\left[\,a_{ij}\,\right]_{m\times n}$ nad poljem \mathbb{F} je matrica:

$$C = \alpha \cdot A = [c_{ij}]_{m \times n}$$

određena elementima

$$c_{ij} = \alpha \cdot a_{ij},$$

gde $i \in \{1, ..., m\}$ i $j \in \{1, ..., n\}$. Za matricu C kažemo da je dobijena *množenjem skalara* α *i* matrice A.

Primer 3. Za realnu matricu

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},$$

proizvod broja 5 i matrice A je određen kao matrica:

$$5 A = 5 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 10 \\ 15 & 20 \end{bmatrix}.$$

Primer 4. Za realne matrice

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad i \quad B = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix},$$

matrica 5 A - B je određena kao matrica:

$$5 A - B = 5 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 5-6 & 10-7 \\ 15-8 & 20-9 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 7 & 11 \end{bmatrix}.$$

Nula matrica je oblika $[0]_{m \times n}$ i označavamo je sa 0.

Važi tvrđenje.

Teorema 1. Važi

- (1) $(F^{m \times n}, +)$ jeste komutativna grupa;
- (2) $(\forall \alpha \in F)(\forall A, B \in F^{m \times n}) \alpha (A + B) = \alpha A + \alpha B$;
- (3) $(\forall \alpha, \beta \in F)(\forall A \in F^{m \times n}) (\alpha + \beta) A = \alpha A + \beta A;$
- (4) $(\forall \alpha, \beta \in F)(\forall A \in F^{m \times n}) \ \alpha (\beta A) = (\alpha \beta) A;$
- (5) za jedinični skalar $1 \in F$ važi $(\forall A \in F^{m \times n})$ 1A = A.

Proizvod matrica

Proizvod matrica $A = [a_{is}]_{m \times n}$ i $B = [b_{sj}]_{n \times k}$ nad poljem \mathbb{F} je matrica

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} = [c_{ij}]_{m \times k}$$

određena elementima

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \ldots + a_{in} \cdot b_{nj},$$

redom za indekse $i \in \{1, 2, ..., m\}$ i $j \in \{1, 2, ..., k\}$. Za matricu C kažemo da je dobijena množenjem matrica A i B.

Primer 5. Za realne matrice

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 5 & 4 & 5 \end{bmatrix} \quad i \quad B = \begin{bmatrix} 3 & 2 & 0 & 1 \\ -2 & 4 & -1 & 3 \\ 1 & 5 & 11 & -7 \end{bmatrix}$$

proizvod je matrica

$$\begin{split} \mathbf{C} &= \mathbf{A} \cdot \mathbf{B} \\ &= \left[\frac{1 \quad 2 \quad 0}{\mathbf{5} \quad 4 \quad \mathbf{5}} \right] \cdot \left[\begin{array}{c|c} 3 & 2 & 0 & 1 \\ -2 & 4 & -1 & 3 \\ 1 & 5 & 11 & -7 \end{array} \right] \\ &= \left[\begin{array}{c|c} (1 \cdot 3 + 2 \cdot (-2) + 0 \cdot 1) & (1 \cdot 2 + 2 \cdot 4 + 0 \cdot 5) & (1 \cdot 0 + 2 \cdot (-1) + 0 \cdot 11) & (1 \cdot 1 + 2 \cdot 3 + 0 \cdot (-7)) \\ (5 \cdot 3 + 4 \cdot (-2) + 5 \cdot 1) & (5 \cdot 2 + 4 \cdot 4 + 5 \cdot 5) & (\mathbf{5} \cdot 0 + 4 \cdot (-1) + \mathbf{5} \cdot 11) & (5 \cdot 1 + 4 \cdot 3 + 5 \cdot (-7)) \end{array} \right] \\ &= \left[\begin{array}{c|c} -1 & 10 & -2 & 7 \\ 12 & 51 & 51 & -18 \end{array} \right]. \end{split}$$

Prema prethodnoj definiciji proizvod dve matrice $\mathbf{A} = [a_{is}]_{m \times n}$ i $\mathbf{B} = [b_{sj}]_{n \times k}$ određuje matricu

$$C = A \cdot B = [a_{is}]_{m \times n} \cdot [b_{sj}]_{n \times k} = \left[\sum_{s=1}^{n} a_{is} b_{sj}\right]_{m \times k}.$$

Primetimo da za proizvoljne dve matrice A i B nad datim poljem nije uvek definisan proizvod $A \cdot B$. Naime, samo ako je broj kolona matrice A jednak broju vrsta matrice B postoji proizvod $A \cdot B$ nad datim poljem. U tom slučaju smatramo da su matrice A i B matrice saglasnog formata za proizvod matrica, inače matrice nisu saglasnog formata.

Jedinična matrica I_n , reda n, je kvadratna matrica koja ima na glavnoj dijagonali elemente $1 \in F$ i van glavne dijagonale elemente $0 \in F$, tj.

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Za matricu $A \in F^{m \times n}$ i jedinične matrice I_n , I_m važi:

$$(1) A \cdot I_n = I_m \cdot A = A.$$

Elementi jedinične matrice se označavaju Kronekerovim (Kronecker) simbolom:

$$\delta_{ij} = \begin{cases} 1 : i = j, \\ 0 : i \neq j. \end{cases}$$

Ukoliko je poznat red n kvadratne matrice nad poljem \mathbb{F} , tada umesto I_n koristimo i oznaku I. Dijagonalna matrica

$$D_n = D_n(d_1, \ldots, d_n)$$

reda n je kvadratna matrica koja ima na glavnoj dijagonali elemente d_1, \ldots, d_n i van glavne dijagonale elemente 0, tj.

$$D_n = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}.$$

Donje trougaona matrica je matrica $[a_{ij}]_{n\times n}$ kod koje je $a_{ij}=0$ za j>i, tj. matrica oblika

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}.$$

Gornje trougaona matrica je matrica [a_{ij}]_{$n \times n$} kod koje je $a_{ij} = 0$ za j < i, tj. matrica oblika

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}.$$

Primetimo da je, dijagonalna matrica je istovremeno i donje trougaona i gornje trougaona.

Skalarna matrica jeste specijalna dijagonalna matrica

$$D_n = D_n(d, \ldots, d)$$

za izabrani skalar $d \in F$. Za skalarnu matricu D_n određenu skalarom $d \in F$ koristimo i kraći način pisanja $D_n(d)$ kao zamenu za $D_n(d, \ldots, d)$. Očigledno važi

$$D_n(d) = d I_n$$
.

Dalje, navodimo dva tvrđenja.

Teorema 2. Važi

(i) Za svako $A \in F^{m \times n}$, $B \in F^{n \times k}$, $C \in F^{k \times q}$ važi:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C).$$

(ii) Za svako $A \in F^{m \times n}$ i svako $B, C \in F^{n \times k}$ važi:

$$A \cdot (B + C) = A \cdot B + A \cdot C.$$

(iii) Za svako A, B $\in F^{m \times n}$ i svako C $\in F^{n \times k}$ važi:

$$(A + B) \cdot C = A \cdot C + B \cdot C.$$

(iv) Za svako $A \in F^{m \times n}$, $B \in F^{n \times k}$ i svako $\alpha \in F$ važi:

$$(\alpha A) \cdot B = A \cdot (\alpha B) = \alpha (A \cdot B).$$

Teorema 3. Algebarska struktura $(F^{n\times n}, +, \cdot)$ jeste prsten sa jedinicom I_n .

Napomenimo da generalno *množenje matrica istog formata nije komutativno*, kao što pokazuje sledeći primer.

Primer 6. Za realne kvadratne matrice drugog reda

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad i \quad B = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$

 $va\check{z}i$

$$\mathbf{A} \cdot \mathbf{B} = \left[\begin{array}{cc} -5 & 2 \\ -10 & 4 \end{array} \right] \neq \left[\begin{array}{cc} 1 & 2 \\ -1 & -2 \end{array} \right] = \mathbf{B} \cdot \mathbf{A}.$$

Znači da prsten $(F^{n\times n}, +, \cdot)$ jeste primer nekomutativnog prstena sa jedinicom.

$Stepeni\ kvadratne\ matrice$

Za kvadratnu matricu $A \in F^{n \times n}$ određujemo $A^1 = A$ i za $m \in \{2, 3, ...\}$ određujemo m-ti stepen matrice sa:

$$A^m = A^{m-1} \cdot A$$

Na osnovu asocijativnosti proizvoda za m-ti stepen matrice važi

$$A^m = A \cdot A^{m-1}$$
.

Dodatno, za kvadratnu matricu $A \neq 0$, reda n, definišemo $A^0 = I_n$.

Primer 7. 1°. Za realnu matricu

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

matematičkom indukcijom se jednostavno pokazuje

$$A^m = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix} \qquad (m \in N).$$

2°. Za realnu matricu

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right],$$

 $va\check{z}i A^2 = 3 A i odatle$:

$$\mathbf{A}^{m} = 3^{m-1} \mathbf{A} = \begin{bmatrix} 3^{m-1} & 3^{m-1} & 3^{m-1} \\ 3^{m-1} & 3^{m-1} & 3^{m-1} \\ 3^{m-1} & 3^{m-1} & 3^{m-1} \end{bmatrix} \qquad (m \in N).$$

Za kvadratnu matricu A kažemo da je nilpotentna matrica ako postoji prirodan broj $k \in N$ takav da $A^k = 0$. Najmanji prirodan broj k sa prethodnom osobinom određuje stepen nilpotentnosti. Kvadratna matrica A je idempotentna matrica ako je $A^2 = A$. Kvadratna matrica A je involutivna matrica ako je $A^2 = I$.

Primer 8. 1°. Za realnu matricu

$$A = \left[\begin{array}{cc} 3 & -9 \\ 1 & -3 \end{array} \right],$$

 $va\check{z}i A^2 = 0 i odatle:$

$$A^m = 0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 $(m=2, 3, ...).$

2º. Za realnu matricu

$$A = \begin{bmatrix} 3 & -6 \\ 1 & -2 \end{bmatrix},$$

 $va\check{z}i A^2 = A i odatle$:

$$A^m = A = \begin{bmatrix} 3 & -6 \\ 1 & -2 \end{bmatrix} \qquad (m \in N).$$

3°. Za realnu matricu

$$A = \left[\begin{array}{cc} 4 & -1 \\ 15 & -4 \end{array} \right],$$

 $va\check{z}i A^2 = I i odatle:$

$$A^{2k} = I \quad i \quad A^{2k+1} = A \qquad (k \in N_0).$$

Teorema 4. Za kvadratnu matricu A i brojeve $p, q \in N_0$ važi:

$$A^p A^q = A^{p+q} \quad i \quad (A^p)^q = A^{pq}.$$

Prirodno se postavlja pitanje za koje kvadratne matrice A, reda n, postoji kvadratna matrica A', istog reda, takva da je ispunjen uslov

$$A \cdot A' = A' \cdot A = I_n$$
.

Ako za matricu A postoji matrica A' tako da je ispunjena prethodna jednakost, tada matricu A' nazivamo inverznom matricom za matricu A. Tako na primer za skalarne matrice $A = D_n(d)$, sa skalrom $d \neq 0$, postoji inverzna matrica $A' = D_n(d^{-1})$. Sa druge strane kvadratna nula matrica 0, reda n, nema inverznu matricu. Potrebni i dovoljni uslovi za postojanje inverzne matrice biće naknadno razmatrani.

$Transponovana\ matrica$

Za matricu $A = [a_{ij}] \in F^{m \times n}$ transponovana matrica jeste matrica $A^T = [\alpha_{ij}] \in F^{n \times m}$ takva da važi

$$\alpha_{ij} = a_{ji}$$

za sve indekse $i \in \{1, \ldots, m\}$ i $j \in \{1, \ldots, n\}$.

Primer 9. Za realnu matricu

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right]$$

formata 2×3 transponovana matrica je matrica

$$\mathbf{A}^T = \left[\begin{array}{cc} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{array} \right]$$

formata 3×2 .

Za operaciju transponvanja važi sledeće tvrđenje.

Teorema 5. Važi

- (i) Za svako $A \in F^{m \times n}$ važi: $(A^T)^T = A$.
- (ii) Za svako $A, B \in F^{m \times n}$ važi: $(A + B)^T = A^T + B^T$.
- (iii) Za svako $A \in F^{m \times n}$ i svako $\alpha \in F$ važi: $(\alpha A)^T = \alpha (A)^T$.
- (iv) Za svako $A \in F^{m \times n}$ i svako $B \in F^{n \times k}$ važi: $(A \cdot B)^T = B^T \cdot A^T$.

Napomena. Za niz matrica $A_1, \ldots, A_q \ (q \in N)$, istog formata nad poljem \mathbb{F} , važi:

$$(A_1 + \ldots + A_q)^T = A_1^T + \ldots + A_q^T.$$

Za niz matrica $A_1, \ldots, A_q \ (q \in N)$ nad poljem \mathbb{F} , takvih da postoji proizvod $A_1 \cdot \ldots \cdot A_q$ postoji i proizvod $A_q^T \cdot \ldots \cdot A_1^T$, i važi:

$$(\mathsf{A}_1 \cdot \ldots \cdot \mathsf{A}_q)^T = \mathsf{A}_q^T \cdot \ldots \cdot \mathsf{A}_1^T.$$

Preko transponovane matrice definišemo pojmove simetrične i kososimetrične matrice. Kvadratna matrica $A \in F^{n \times n}$ je simetrična matrica ako je $A^T = A$. Sa druge strane, kvadratna matrica $A \in F^{n \times n}$ je sossimetrična matrica ako je $A^T = -A$. Kvadratna matrica $A \in F^{n \times n}$ je ortogonalna matrica ako je $A^T = A$.

Primer 10. Odredimo sve ortogonalne kososimetrične matrice sledećeg oblika:

$$A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix},$$

 $za\ a,b\in F$; $ako\ je$:

(i) $\mathbb{F} = \mathbb{Z}_2$,

(ii) $\mathbb{F} = \mathbb{R}$.

Prema uslovu ortogonalnosti važi:

$$\mathbf{A}^T \cdot \mathbf{A} = \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right] \cdot \left[\begin{array}{cc} a & b \\ -b & a \end{array} \right] = \left[\begin{array}{cc} a^2 + b^2 & 0 \\ 0 & a^2 + b^2 \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

Samim tim, jednakost $a^2+b^2=1$ je potreban i dovoljan uslov da je posmatrana matrica A ortogonalna kososimetrična matrica nad poljem \mathbb{F} .

(i) Ako je $\mathbb{F} = \mathbb{Z}_2$, tada rešenje jednačine $a^2 + b^2 = 1$ nad \mathbb{Z}_2 čine uređeni parovi

$$(a, b) \in \{(1,0), (0,1)\}.$$

(ii) Ako je $\mathbb{F} = \mathbb{R}$, tada rešenje jednačine $a^2 + b^2 = 1$ nad R određujemo sa

$$a=t, b=\sqrt{1-t^2}, ili a=t, b=-\sqrt{1-t^2};$$

 $za \ t \in [0, 1]$. Drugi način pisanja prethodnog rešenja je

$$a = \cos \varphi, b = \sin \varphi;$$

 $za\ 0 \le \varphi < 2\pi$. Za tako određene vrednosti a i b tražene matrice su oblika

$$A = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix}$$

 $i\ takve\ matrice\ se\ nazivaju\ matricama\ rotacije\ u\ R^2.$