D11: Fingerprinting & Modular Arithmetic Review

Sec 101: MW 3:00-4:00pm DOW 1018

IA: Eric Khiu

Fingerprinting

Setup

- ightharpoonup Suppose Alice wants to communicate some large n-bits number x to Bob
- ► She wants to send as few bits as possible, so instead she uploads this number to a server for him to download
- The server is untrusted, so once Bob downloads the number y, he and Alice will need to confirm that x and y are the same

Randomized Fingerprinting

- \blacktriangleright Alice randomly chooses a prime p from the first 10n primes and sends Bob the message $(p, x \mod p)$
- ightharpoonup Bob computes $y \mod p$
 - ▶ If $x \mod p = y \mod p$, Bob concludes that x = y
 - ightharpoonup Otherwise, Bob concludes that $x \neq y$
- \blacktriangleright When x=y, this protocol is correct for all choices of p
- ▶ When $x \neq y$, this protocol is correct for at least 90% of the choices of p
 - ► Example: p = 3; $x = 1, y \in \{7,10,13,...\}$ breaks the protocol

Randomized Fingerprinting Exercise

- \blacktriangleright Alice randomly chooses a prime p from the first 10n primes and sends Bob the message $(p, x \mod p)$
- ightharpoonup Bob computes $y \mod p$
 - ▶ If $x \mod p = y \mod p$, Bob concludes that x = y
 - ightharpoonup Otherwise, Bob concludes that $x \neq y$
- \blacktriangleright State whether the algorithm is correct for all choices of p, or give all examples of p that cause the protocol to result in the incorrect decision
 - x = 70, y = 64
 - x = 342, y = 342

Hint: If $x \mod p = y \mod p$, what is $(x - y) \mod p$?

Randomized Fingerprinting Exercise

- ▶ Recall that a and b are congruent modulo n, written as $a \equiv b \pmod{n}$ if
 - $ightharpoonup a \mod n = b \mod n$, or equivalently,
 - $ightharpoonup \exists k \in \mathbb{Z}$ such that a = b + kn, or equivalently
 - ightharpoonup a-b is a multiple of n
- ▶ So if $x \mod p = y \mod p$, then $(x y) \mod p = 0$
- ▶ This means we just need to find the prime divisors of x y
- \blacktriangleright State whether the algorithm is correct for all choices of p, or give all examples of p that cause the protocol to result in the incorrect decision
 - x = 70, y = 64
 - x = 342, y = 342

Modular Arithmetic Review

Modular Arithmetic Review

- \blacktriangleright Let a, b, n be integers
- **Definition:** $a \mod n$ is the remainder of a when divided by n
 - ▶ $a \mod n$ is a unique value in $\mathbb{Z}_n = \{0, ..., n-1\}$
- ▶ **Definition:** a and b are congruent modulo n, written as $a \equiv b \pmod{n}$ if
 - $ightharpoonup a \mod n = b \mod n$, or equivalently,
 - $ightharpoonup \exists k \in \mathbb{Z}$ such that a = b + kn, or equivalently
 - ightharpoonup a-b is a multiple of n
- ▶ Modular Arithmetic: Suppose $a \equiv b \pmod{n}$, $c \in \mathbb{Z}$
 - Addition: $a + c \equiv b + c \pmod{n}$
 - ▶ Multiplication: $ac \equiv bc \pmod{n}$

Division in \mathbb{Z}_n

- ▶ **Definition:** Let $a \in \mathbb{Z}$. $a^{-1} \in \mathbb{Z}$ is a multiplicative inverse of a in modulo n such that $a^{-1} \cdot a \equiv 1 \pmod{n}$
 - ▶ Note: We typically standardize a^{-1} to be in \mathbb{Z}_n
- ▶ In modular arithmetic, dividing by a is the same as multiplying by a^{-1}
- \blacktriangleright WARNING: Division is not always possible, as α does not always have an inverse
 - For example: 2 has no inverse in $\mathbb{Z}_4 = \{0,1,2,3\}$ $0 \cdot 2 \equiv 2 \cdot 2 \equiv 0 \pmod{4}, 1 \cdot 2 \equiv 3 \cdot 2 \equiv 2 \pmod{4}$
- ▶ Theorem: An integer a has a multiplication inverse in mod n iff gcd(a, n) = 1
 - ▶ Corollary: For all $a \neq 0 \in \mathbb{Z}_p$, where p is prime, there is a multiplicative inverse of a in modulo p. -This is key in cryptography!

Finding Multiplicative Inverse: Intuition

- Suppose we want to find multiplicative inverse of 4 in mod 7
 - \blacktriangleright By inspection, gcd(4,7) = 1, so 4 has multiplicative inverse in mod 7
- ▶ By definition, we want some $b \in \mathbb{Z}$ such that

$$4b \equiv 1 \pmod{7}$$

▶ By definition of modular congruence, $\exists k \in \mathbb{Z}$ such that

$$4b = 1 + 7k$$

Rearranging,

$$4b - 7k = 1 = \gcd(4,7)$$

- \blacktriangleright Obs: b and k are coefficients of 4 and 7 in the linear combination of their gcd
- We have seen this in Extended Euclid Algorithm!

Extended Euclid Algorithm

► Example: Find the multiplicative inverse of 4 in mod 7

1: fu	nction ExtendedEuclid (x,y)
2:	if $y = 0$ then
3:	return $(x,1,0)$
4:	else
5:	Write $x = qy + r$ for an integer q, where $0 \le r < y$
6:	$(g, a', b') \leftarrow \text{ExtendedEuclid}(y, r)$
7:	$a \leftarrow b'$
8:	$b \leftarrow a' - b'q$
9:	return(g,a,b)

<u>x</u>	у	q	r	g	$a \leftarrow b'$	$b \leftarrow a' - b'q$
7	4	1	3			

Extended Euclid Algorithm

► Example: Find the multiplicative inverse of 4 in mod 7

1: f	unction ExtendedEuclid (x,y)
2:	if $y=0$ then
3:	$\mathbf{return}\ (x,1,0)$
4:	else
5:	Write $x = qy + r$ for an integer q, where $0 \le r < y$
6:	$(g, a', b') \leftarrow \text{ExtendedEuclid}(y, r)$
7:	$a \leftarrow b'$
8:	$b \leftarrow a' - b'q$
9:	$\mathbf{return}\ (g,a,b)$

	x	у	q	r	g	$a \leftarrow b'$	$b \leftarrow a' - b'q$
	7	4	1	3			
	4	3	1	1			
	3	1	3	0			
4	1	0	-	-			

Extended Euclid Algorithm

► Example: Find the multiplicative inverse of 4 in mod 7

	1	Ī	1		Ī	1	
<u> </u>	у	q	r	${\it g}$	$a \leftarrow b'$	$b \leftarrow a' - b'q$	_
7	4	1	3	1	-1	1-(-1)(1)=2	_
4	3	1	1	1	1	0-1(1)=-1	
3	1	3	0	1	0	1-0(3)=1	-
1	0	-	-	1	1	0	-

- ▶ Observe that $4(2) 7(-1) = 15 \equiv 1 \pmod{7}$
- ▶ In fact, $4^{-1} \mod 7 = 2$

Exercise

► Find 13⁻¹ mod 21

1: f u	$\mathbf{nction} \; \mathrm{ExtendedEuclid}(x,y)$
2:	if $y = 0$ then
3:	$\mathbf{return}\ (x,1,0)$
4:	else
5:	Write $x = qy + r$ for an integer q, where $0 \le r < y$
6:	$(g, a', b') \leftarrow \text{ExtendedEuclid}(y, r)$
7:	$a \leftarrow b'$
8:	$b \leftarrow a' - b'q$
9:	${f return}(g,a,b)$

Exercise

► Find 13⁻¹ mod 21

1:	function Extended Euclid (x, y)
2:	if $y = 0$ then
3:	$\mathbf{return}\ (x,1,0)$
4:	${f else}$
5:	Write $x = qy + r$ for an integer q, where $0 \le r < y$
6:	$(g, a', b') \leftarrow \text{ExtendedEuclid}(y, r)$
7:	$a \leftarrow b'$
8:	$b \leftarrow a' - b'q$
9:	$\mathbf{return}\ (a, a, b)$

$-8 \mod 21 = 13$ $r \leftarrow x/y - q$ $a \leftarrow b'$ $q \leftarrow \lfloor x/y \rfloor$ $b \leftarrow a' - b'q$ g χ -3-5(1)=-8 21 13 2-(-3)(1)=513 5 -1-(2)(1)=-3 5 1-(-1)(1)=20-1(1)=-11-0(2)=10

Fast Modular Exponentiation

Exponentiation in Modular Arithmetic

- ▶ Recall that if $a \equiv b \pmod{n}$, then for any $k \in \mathbb{Z}$,
 - $a + k \equiv b + k \pmod{n}$
 - $ightharpoonup ak \equiv bk \pmod{n}$
- ▶ **Property 215:** Suppose $a = a' \pmod{n}$ and $b = b' \pmod{n}$, then $ab \equiv a'b' \pmod{n}$
 - ▶ Proof idea: Let a a' = kn and b b' = mn for some integers k and m, then $ab = (kn + a') \cdot (mn + b') = \cdots = (kmn + a'm + b'k)n + a'b'$
 - ► Therefore, ab a'b' = (kmn + a'm + b'k)n, so $ab \equiv a'b' \pmod{n}$
- ▶ Corollary: If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$
 - Proof idea: $a^k = \underbrace{a \cdot a \cdot ... \cdot a}_{k \text{ times}}$, use property 215 and induction

 $ab \equiv a'b' \pmod{n}$

$$= b' \pmod{n}$$
, then

Fast Modular Exponentiation

- Suppose we want to compute $a^b \mod n$
- Consider the binary representation of b

$$b = b_r \cdot 2^r + b_{r-1} \cdot 2^{r-1} + \dots + b_0 \cdot 2^0$$

- \blacktriangleright Here, b_i is either 0 or 1
- $r = \lfloor \log_2 b \rfloor$
- Then, we can represent a^b as

$$a^{b} = a^{b_{r} \cdot 2^{r} + b_{r-1} \cdot 2^{r-1} + \dots + b_{0} \cdot 2^{0}}$$
$$= a^{b_{r} \cdot 2^{r}} \times a^{b_{r-1} \cdot 2^{r-1}} \times \dots \times a^{b_{0} \cdot 2^{r-1}}$$

▶ Thus, we can compute $a^{2^i} \mod n$ for each $a \le i \le r$ and include those whose $b_i = 1$ in the product

Fast Modular Exponentiation

- ► Example: 3⁵ mod 14
- \blacktriangleright Step 1: Express b=5 in binary

$$5 = 101$$

▶ Step 2: Compute $3^{2^i} \mod 14$ for $i = 0 \le i \le \lfloor \log_2 5 \rfloor = 2$ $3^{2^0} = 3^1 = 3 \equiv 3 \pmod{14}$ $3^{2^1} = 3^2 = 9 \equiv 9 \pmod{14}$ $3^{2^2} = 9^2 = 81 \equiv 11 \pmod{14}$

Step 3: Multiply and simplify

$$3^{5} = 3^{4} \cdot 3^{1}$$

 $\equiv 11 \cdot 3 \pmod{14}$
 $\equiv 33 \pmod{14}$
 $\equiv 5 \pmod{14}$

Your turn: Compute 3⁵⁷ mod 14 Ans: 13 **Property 215:** Suppose $a = a' \pmod{n}$ and $b = b' \pmod{n}$, then $ab \equiv a'b' \pmod{n}$

Fast Modular Exponentiation Algorithm

► (Take home) exercise: Complete the following DP algorithm for fast modular exponentiation and analyze the runtime:

```
FastModExp(a,b,n):

r \leftarrow \lfloor \log b \rfloor

allocate an empty array DP[0, ..., r]

DP[0] \leftarrow a

for i = 1, ..., r do

ans \leftarrow 1

for i = 0, ..., r do

if then
```

See Algorithm 220 on course notes for solution

Congruent Class and Generator

Congruent class

- ▶ Congruent class: For any $n \in \mathbb{N}$, we define $\mathbb{Z}_n = \{0,1,2,...,n-1\}$ as the set of congruence class modulo n.
- The group $\mathbb{Z}_n^* \subseteq \mathbb{Z}_n$ is the set of nonzero elements of \mathbb{Z}_n that have an inverse in modulo n, i.e., $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n : \gcd(x,n) = 1\}$
 - ► A prime number is coprime to all natural numbers smaller than it

Discuss: What if n is prime?

Generator

- ▶ Generator: Let p be a prime. $g \in \mathbb{Z}_p^*$ is a *generator* if for every $x \in \mathbb{Z}_p^*$, there exists some $i \in \mathbb{N}$ such that $x = g^i \mod p$
- ▶ Example: g = 2 is a generator of \mathbb{Z}_5^* :
 - $\mathbb{Z}_5^* = \{1,2,3,4\}$
 - $ightharpoonup 2^0 = 1 \equiv 1 \pmod{5}$
 - $ightharpoonup 2^1 = 2 \equiv 2 \pmod{5}$
 - $ightharpoonup 2^2 = 4 \equiv 4 \pmod{5}$
 - $ightharpoonup 2^3 = 8 \equiv 3 \pmod{5}$

- ▶ But g = 2 is a not generator of \mathbb{Z}_7^* :

 - $ightharpoonup 2^0 = 1 \equiv 1 \pmod{7}$
 - $ightharpoonup 2^1 = 2 \equiv 2 \pmod{7}$
 - $ightharpoonup 2^2 = 4 \equiv 4 \pmod{7}$
 - $ightharpoonup 2^3 = 8 \equiv 1 \pmod{7}$
 - \triangleright 2⁴ = 16 \equiv 2 (mod 7)
 - **...**

Concept Check

- ▶ Is g = 3 a generator of \mathbb{Z}_{11}^* ?

 - \rightarrow 3⁰ = 1 \equiv 1 (mod 11)
 - $ightharpoonup 3^1 = 3 \equiv 3 \pmod{11}$
 - $ightharpoonup 3^2 = 9 \equiv 9 \pmod{11}$
 - $ightharpoonup 3^3 = 27 \equiv 5 \pmod{11}$
 - $ightharpoonup 3^4 = 81 \equiv 4 \pmod{11}$
 - \rightarrow 3⁵ = 3 · 3⁴ \equiv 3 · 4 = 12 \equiv 1(mod 11)
 - **...**

Generator: Let p be a prime. $g \in \mathbb{Z}_p^*$ is a generator if for every $x \in \mathbb{Z}_p^*$, there exists some $i \in \mathbb{N}$ such that $x = g^i \mod p$

```
11 x 1 = 11

11 x 2 = 22

11 x 3 = 33

11 x 4 = 44

11 x 5 = 55

11 x 6 = 66

11 x 7 = 77

11 x 8 = 88

11 x 9 = 99

11 x 10 = 110
```

Another Definition of Generator

- We had the following definition for a generator:
 - ▶ Let p be a prime. $g \in \mathbb{Z}_p^*$ is a *generator* if for every $x \in \mathbb{Z}_p^*$, there exists some $i \in \mathbb{N}$ such that $x = g^i \mod p$
- ► The following definition is equivalent:
 - ▶ Let p be a prime. $g \in \mathbb{Z}_p^*$ is a *generator* if for every $x \in \mathbb{Z}_p^*$, there exists some $y \in \{0, ..., p-2\}$ such that $x = g^y \mod p$
 - ► So instead of defining congruent class of a prime number as

$$\mathbb{Z}_p^* = \{x \in \mathbb{Z}_p : \gcd(x, n) = 1\} = \{1, 2, ..., p - 1\}$$

► The following definition is equivalent:

$$\mathbb{Z}_p^* = \{ g^y \mod p : y \in \{0, 1, ..., p - 2\} \}$$

▶ Main takeaway: g generates \mathbb{Z}_p^* iff $g^0 \mod p$ through $g^{p-2} \mod p$ hit all elements of \mathbb{Z}_p^* (exactly once)