(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 15. November 2001 (15.11.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/85691 A1

(51) Internationale Patentklassifikation⁷:
A61K 31/4409, A61P 9/00

C07D 213/38,

(21) Internationales Aktenzeichen:

PCT/EP01/05267

(22) Internationales Anmeldedatum:

9. Mai 2001 (09.05.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 23 485.2

9. Mai 2000 (09.05.2000) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von AT, US): NOVARTIS AG [CH/CH]; Lichtstrasse 35, CH-4056 Basel (CH).
- (71) Anmelder (nur für AT): NOVARTIS-ERFINDUNGEN VERWALTUNGSGESELLSCHAFT M.B.H. [AT/AT]; Brunner Strasse 59, A-1230 Vienna (AT).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SEIDELMANN, Dieter [DE/DE]; Stierstrasse 14, 12159 Berlin (DE). KRÜGER, Martin [DE/DE]; Heerruferweg 7A, 13465 Berlin (DE). OTTOW, Eckbard [DE/DE]; Moltkestrasse 48, 12203 Berlin (DE). HUTH, Andreas [DE/DE]; Dammweg 113, 12437 Berlin (DE). THIERAUCH, Karl-Heinz [DE/DE]; Hochwildpfad 45, 14169 Berlin (DE). MENRAD, Andreas [DE/DE]; Allerstrasse 7.

16515 Oranienburg (DE). HABEREY, Martin [DE/DE]; Steinstrasse 1, 12169 Berlin (DE).

- (74) Anwalt: BECKER, Konrad; Novartis AG, Corporate Intellectual Property, Patent & Trademark Dept., CH-4002 Basel (CH).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\(\tilde{u}\)r \(\tilde{A}\)nderungen der Anspr\(\tilde{u}\)che geltenden
 Frist; Ver\(\tilde{g}\)flentlichung wird wiederholt, falls \(\tilde{A}\)nderungen
 eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: ANTHRANYLALKYL AND CYCLOALKYL AMIDES AND USE THEREOF AS VEGF RECEPTOR INHIBITORS
- (54) Bezeichnung: ANTHRANYLALKYL- UND -CYCLOALKYLAMIDE UND DEREN VERWENDUNG ALS VEGF-RE-ZEPTORENHEMMER

- (57) Abstract: The invention relates to substituted anthranylalkyl and cycloalkyl amides of general formula (I) and to their use as medicaments for treating diseases caused by persistent angiogenesis.
- (57) Zusammenfassung: Es werden substituierte Anthranylalkyl- und -cycloalkylamide der allgemeinen Formel (I) und deren Verwendung als Arzneimittel zur Behandlung von Erkrankungen, die durch persistente Angiogenese ausgelöst werden, beschrieben.

ANTHRANYLALKYL- UND CYCLOALKYLAMIDE UND DEREN VERWENDUNG ALS VEGF-REZEPTORENHEMMER

- Die Erfindung betrifft substituierte Anthranylalkyl- und -cycloalkylamide und deren Verwendung als Arzneimittel zur Behandlung von Erkrankungen, die durch persistente Angiogenese ausgelöst werden.
- Persistente Angiogenese kann die Ursache für verschiedene Erkrankungen wie Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofribroma,

 10 Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome,

 Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose, mesangialzellproliferative Erkrankungen, Artheriosklerose und Verletzungen des Nervengewebes sein oder zu einer Verschlimmerung dieser Erkrankungen führen.
- Eine direkte oder indirekte Inhibition des VEGF-Rezeptors kann zur Behandlung derartiger Erkrankungen und anderer VEGF-induzierter pathologischer

 20 Angiogenese und vaskularer permeabiler Bedingungen, wie Tumor-Vaskularisierung, verwendet werden. Beispielsweise ist bekannt, daß durch lösliche Rezeptoren und Antikörper gegen VEGF das Wachstum von Tumoren gehernmt werden kann.
- Die persistente Angiogenese wird durch den Faktor VEGF über seinen Rezeptor induziert. Damit VEGF diese Wirkung entfalten kann ist es nötig, daß VEGF am Rezeptor bindet und eine Tyrosinphosphorylierung hervorgerufen wird.
- 30 Es wurde nun gefunden, daß Verbindungen der allgemeinen Formel I

$$R^5$$
 R^6
 A
 Z
 R^1
 W
 $N-X-R^2$
 R^3
 R^9

in der

Α

für die Gruppe =NR7 steht,

5 W für Sauerstoff, Schwefel, zwei Wasserstoffatome

oder die Gruppe =NR⁸ steht.

Z

für eine Bindung oder die Gruppe =NR¹⁰ oder =N-

steht,

 R^1

10

15

X

 R^2

20

R3,R4,R5 und R6

25

 R^7 R8, R9 und R10 für gegebenenfalls ein- oder mehrfach mit Halogen, Hydroxy, C₁₋₆-Alkyloxy, Aralkyloxy, C₁₋₆-Alkyl und/ oder NR¹¹R¹² substituiertes verzweigtes oder unverzweigtes C₁₋₁₂-Alkyl oder C₂₋₁₂-Alkenyl; oder gegebenenfalls ein- oder mehrfach mit Halogen Hydroxy, C₁₋₆-Alkyloxy, Aralkyloxy, C₁₋₆-Alkyl und/ oder NR¹¹R¹² substituiertes C₃₋₁₀-Cycloalkyl, oder C₃₋₁₀-Cycloalkenyl, steht,

für C₁₋₆-Alkyl steht,

unsubstituiertes oder gegebenenfalls ein- oder mehrfach mit Halogen, C₁₋₆-Alkyl, C₁₋₆-Alkoxy und/ oder Hydroxy, substituiertes monocyclisches oder

bicyclisches Heteroaryl bedeutet,

für Wasserstoff, Halogen oder unsubstituiertes oder

gegebenenfalls ein- oder mehrfach mit Halogen

substituiertes C₁₋₆-Alkoxy, C₁₋₆-Alkyl, C₁₋₆-

Carboxyalkyl stehen,

für Wasserstoff, C₁₋₆-Alkyl oder C₁₋₈-Cycloalkyl steht,

für Wasserstoff oder C₁₋₆-Alkyl stehen und

30

 R^{11} und R^{12} für Wasserstoff oder C_{1-6} -Alkyl stehen oder einen Ring bilden, der ein weiteres Heteroatom enthalten kann und gegebenenfalls mit C_{1-6} -Alkyl substituiert sein kann,

bedeuten, sowie deren Isomeren und Salze, eine Tyrosinphosphorylierung bzw.
die persistente Angiogenese stoppen und damit das Wachstum und ein Ausbreiten von Tumoren verhindern.

Unter Alkyl ist jeweils ein geradkettiger oder verzweigter Alkylrest, wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek. Butyl, tert.

Butyl, Pentyl, Isopentyl oder Hexyl, Heptyl, Octyl, Nonyl, Decylk, Undecyl, Dodecyl zu verstehen.

Unter Cycloalkyl sind monocyclische Alkylringe wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl, Cyclooctyl, Cyclononyl oder

15 Cyclodecyl, aber auch bicyclische Ringe oder tricyclische Ringe, wie zum Beispiel Adamantanyl, zu verstehen.

Unter Cycloalkenyl ist jeweils Cyclobutenyl, Cyclopentenyl, Cyclohexenyl, Cyclohexenyl, Cyclononenyl oder Cyclodecenyl zu verstehen, wobei die Anknüpfung sowohl an der Doppelbindung wie auch an den Einfachbindungen erfolgen kann.

Unter Halogen ist jeweils Fluor, Chlor, Brom oder Jod zu verstehen.

Die Alkenyl- Substituenten sind jeweils geradkettig oder verzweigt und enthalten 2 - 6, bevorzugt 2 - 4 C-Atome. Beispielsweise seien die folgenden Reste genannt Vinyl, Propen-1-yl, Propen-2-yl, But-1-en-1-yl, But-1-en-2-yl, But-2-en-1-yl, But-2-en-2-yl, 2-Methyl-prop-2-en-1-yl, 2-Methyl-prop-1-en-1-yl, But-1-en-3-yl, But-3-en-1-yl, Allyl.

Der Arylrest hat jeweils 6 - 12 Kohlenstoffatome wie beispielsweise Naphthyl, Biphenyl und insbesondere Phenyl.

Der Heteroarylrest kann jeweils benzokondensiert sein. Beispielsweise seien als 5-Ringheteroaromaten genannt: Thiophen, Furan, Oxazol, Thiazol, Imidazol, Pyrazol und Benzoderivate davon und als 6-Ring-Heteroaromaten Pyridin, Pyrimidin, Triazin, Chinolin, Isochinolin und Benzoderivate.

5

Der Aryl- und der Heteroarylrest kann jeweils 1-, 2- oder 3-fach gleich oder verschieden substitutiert sein mit Hydroxy, Halogen, C₁₋₄-Alkoxy.

Ist eine saure Funktion enthalten sind als Salze die physiologisch verträglichen
Salze organischer und anorganischer Basen geeignet wie beispielsweise die gut löslichen Alkali- und Erdalkalisalze sowie N-Methyl-glukamin, Dimethyl-glukamin, Ethyl-glukamin, Lysin, 1,6-Hexadiamin, Ethanolamin, Glukosamin, Sarkosin, Serinol, Tris-hydroxy-methyl-amino-methan, Aminopropandiol, Sovak-Base, 1-Amino-2,3,4-butantriol.

15

Ist eine basische Funktion enthalten sind die physiologisch verträglichen Salze organischer und anorganischer Säuren geeignet wie Salzsäure, Schwefelsäure, Phosphorsäure, Zitronensäure, Weinsäure, Fumarsäue u.a.

20 Besonders interessant sind solche Verbindungen der allgemeinen Formel I, in der

	aer	
	Α	für die Gruppe =NR ⁷ steht,
	W	für Sauerstoff steht,
	Z	für eine Bindung steht,
25	R ¹	für gegebenenfalls ein- oder mehrfach mit Halogen,
		Hydroxy, C ₁₋₆ -Alkyloxy, Aralkyloxy, C ₁₋₆ -Alkyl und/
		oder NR ¹¹ R ¹² substituiertes verzweigtes oder
•		unverzweigtes C ₁₋₁₂ -Alkyl oder C ₂₋₁₂ -Alkenyl; oder
		gegebenenfalls ein- oder mehrfach mit Halogen
30		Hydroxy, C ₁₋₆ -Alkyloxy, Aralkyloxy, C ₁₋₆ -Alkyl und/
		oder NR ¹¹ R ¹² substituiertes C ₃₋₁₀ -Cycloalkyl, oder
		C ₃₋₁₀ -Cycloalkenyl, steht,

X für C₁₋₆-Alkyl steht,

	R ²	unsubstituiertes oder gegebenenfalls ein- oder
		mehrfach mit Halogen, C ₁₋₆ -Alkyl, C ₁₋₆ -Alkoxy und/
		oder Hydroxy, substituiertes monocyclisches oder
		bicyclisches Heteroaryl bedeutet,
5	R^3 , R^4 , R^5 und R^6	für Wasserstoff, Halogen oder unsubstituiertes oder
		gegebenenfalls ein- oder mehrfach mit Halogen
		substituiertes C ₁₋₆ -Alkoxy, C ₁₋₆ -Alkyl, C ₁₋₆ -
		Carboxyalkyl stehen,
	R ⁷	für Wasserstoff, C ₁₋₆ -Alkyl oder C ₁₋₈ -Cycloalkyl steht,
10	R ⁹	für Wasserstoff oder C ₁₋₆ -Alkyl steht und
	R ¹¹ und R ¹²	für Wasserstoff oder C ₁₋₆ -Alkyl stehen oder einen
		Ring bilden, der ein weiteres Heteroatom enthalten
		kann und gegebenenfalls mit C ₁₋₆ -Alkyl substituiert
		sein kann,
15	bedeuten, sowie deren Is	someren und Salze.

Ganz besonders interessant sind solche Verbindungen der allgemeinen Formel I, in der

	-, ==-	
	Α	für die Gruppe =NR ⁷ steht,
20	W	für Sauerstoff steht,
	Z	für eine Bindung steht,
	R ¹	für gegebenenfalls ein- oder mehrfach mit Halogen,
		Hydroxy, C ₁₋₆ -Alkyloxy, Aralkyloxy, C ₁₋₆ -Alkyl und/
		oder NR ¹¹ R ¹² substituiertes verzweigtes oder
25		unverzweigtes C ₁₋₁₂ -Alkyl oder C ₂₋₁₂ -Alkenyl; oder
		gegebenenfalls ein- oder mehrfach mit Halogen
		Hydroxy, C ₁₋₆ -Alkyloxy, Aralkyloxy, C ₁₋₆ -Alkyl und/
		oder NR ¹¹ R ¹² substituiertes C ₃₋₁₀ -Cycloalkyl, oder
		C ₃₋₁₀ -Cycloalkenyl, steht,
30	X	für C ₁₋₆ -Alkyl steht,
	R^2	Pyridyl bedeutet,
	R^3 , R^4 , R^5 und R^6	für Wasserstoff, Halogen oder unsubstituiertes oder

gegebenenfalls ein- oder mehrfach mit Halogen

		substituiertes C ₁₋₆ -Alkoxy, C ₁₋₆ -Alkyl, C ₁₋₆ -
		Carboxyalkyl stehen,
	R ⁷	für Wasserstoff, C ₁₋₆ -Alkyl oder C ₁₋₈ -Cycloalkyl steht,
	R ⁹	für Wasserstoff oder C ₁₋₆ -Alkyl steht und
5	R ¹¹ und R ¹²	für Wasserstoff oder C ₁₋₆ -Alkyl stehen oder einen
		Ring bilden, der ein weiteres Heteroatom enthalten
		kann und gegebenenfalls mit C ₁₋₆ -Alkyl substituiert
		sein kann,

bedeuten, sowie deren Isomeren und Salze.

10

Besonders wertvoll sind solche Verbindungen der allgemeinen Formel I, in der

	Α	für die Gruppe =NR ⁷ steht,
15	W	für Sauerstoff steht,
	Z	für eine Bindung steht,
	R ¹	für gegebenenfalls ein- oder mehrfach mit Halogen,
		Hydroxy, C ₁₋₆ -Alkyloxy, Aralkyloxy, C ₁₋₆ -Alkyl und/
		oder NR ¹¹ R ¹² substituiertes verzweigtes oder
20		unverzweigtes C ₁₋₁₂ -Alkyl oder C ₂₋₁₂ -Alkenyl; oder
		gegebenenfalls ein- oder mehrfach mit Halogen
		Hydroxy, C ₁₋₆ -Alkyloxy, Aralkyloxy, C ₁₋₆ -Alkyl und/
		oder NR ¹¹ R ¹² substituiertes C ₃₋₁₀ -Cycloalkyl, oder
		C ₃₋₁₀ -Cycloalkenyl, steht,
25	X	für C ₁₋₆ -Alkyl steht,
	R ²	Pyridyl bedeutet,
	R^3 , R^4 , R^5 und R^6	für Wasserstoff, Halogen oder unsubstituiertes oder
		gegebenenfalls ein- oder mehrfach mit Halogen
		substituiertes C ₁₋₆ -Alkoxy, C ₁₋₆ -Alkyl, C ₁₋₆ -
30		Carboxyalkyl stehen,
	R ⁷	für Wasserstoff, C ₁₋₆ -Alkyl oder C ₁₋₈ -Cycloalkyl steht,
	R ⁹	für Wasserstoff oder C ₁₋₆ -Alkyl steht und

R¹¹und R¹² für Wasserstoff oder C₁₋₆-Alkyl stehen oder einen

Ring bilden, der als weiteres Heteroatom Sauerstoff

oder Stickstoff enthalten kann und

gegebenenfalls mit C₁₋₆-Alkyl substituiert sein kann,

5 bedeuten, sowie deren Isomeren und Salze.

Als ganz besonders wertvoll haben sich solche Verbindungen der allgemeinen Formel I erwiesen, in der

10 A für die Gruppe =NR⁷ steht,

W für Sauerstoff steht,

Z für eine Bindung steht,

R¹ für gegebenenfalls ein- oder mehrfach mit Halogen,

C₁₋₆-Alkyloxy oder NR¹¹R¹² substituiertes verzweigtes

oder unverzweigtes C₁₋₁₂-Alkyl oder gegebenenfalls

ein- oder mehrfach mit Hydroxy, C₁₋₆-Alkyloxy, C₁₋₆-Alkyl oder Benzyloxy substituiertes C₃₋₁₀-Cycloalkyl

steht,

 χ für C₁₋₆-Alkyl steht,

20 R² Pyridyl bedeutet,

R³,R⁴,R⁵ und R⁶ für Wasserstoff steht,

R⁷ und R⁹ für Wasserstoff stehen,

R¹¹und R¹² für Wasserstoff oder C₁₋₆-Alkyl stehen oder einen

Morpholinyl-, Piperidinyl-, Pyrrolidinoyl- oder

25 Tetrahydrofuranyl-Ring bilden, der gegebenenfalls

mit C₁₋₆-Alkyl substituiert sein kann,

bedeuten, sowie deren Isomeren und Salze.

Die erfindungsgemäßen Verbindungen verhindem eine Phosphorylierung, d. h. bestimmte Tyrosinkinasen können selektiv inhibiert werde, wobei die persistente Angiogenese gestoppt werden kann. Somit wird beispielsweise das Wachstum und die Ausbreitung von Tumoren unterbunden.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I beinhalten auch die möglichen tautomeren Formen und umfassen die E- oder Z-Isomeren oder, falls ein chirales Zentrum vorhanden ist, auch die Racemate und Enantiomeren.

5

10

15

Die Verbindungen der Formel I sowie deren physiologisch verträglichen Salze sind auf Grund ihrer inhibitorischen Aktivität in Bezug auf Phosphorylierung des VEGF-Rezeptors als Arzneimittel verwendbar. Auf Grund ihres Wirkprofils eignen sich die erfindungsgemäßen Verbindungen zur Behandlung von Erkrankungen, die durch eine persistente Angiogenese hervorgerufen oder gefördert werden.

Da die Verbindungen der Formel I als Inhibitoren der Tyrosinkinase KDR und FLT identifiziert werden, eignen sie sich insbesondere zur Behandlung von solchen Krankheiten, die durch die über den VEGF-Rezeptor ausgelöste persistente Angiogenese oder eine Erhöhung der Gefäßpermeabilität hervorgerufen oder gefördert werden.

Gegenstand der vorliegenden Erfindung ist auch die Verwendung der erfindungsgemäßen Verbindungen als Inhibitoren der Tyrosinkinase KDR und FLT.

Gegenstand der vorliegenden Erfindung sind somit auch Arzneimittel zur Behandlung von Tumoren bzw. deren Verwendung.

25

30

Die erfindungsgemäßen Verbindungen können entweder alleine oder in Formulierung als Arzneimittel zur Behandlung von Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofribroma, Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose,

mesangialzellproliferative Erkrankungen, Artheriosklerose und Verletzungen des Nervengewebes zum Einsatz kommen.

Bei der Behandlung von Verletzungen des Nervengewebes kann mit den erfindungsgemäßen Verbindungen eine schnelle Narbenbildung an den Verletzungsstellen verhindert werden, d. h. es wird verhindert, daß die Narbenbildung eintritt, bevor die Axone wieder Verbindung miteinander aufnehmen. Damit würde eine Rekonstruktion der Nervenverbindungen erleichtert.

Ferner kann mit den erfindungsgemäßen Verbindungen die Ascites-Bildung bei 10 Patienten unterdrückt werden. Ebenso lassen sich VEGF bedingte Ödeme unterdrücken.

Derartige Arzneimittel, deren Formulierungen und Verwendungen sind ebenfalls Gegenstand der vorliegenden Erfindung.

15

5

Die Erfindung betrifft ferner die Verwendung der Verbindungen der allgemeinen Formel I, zur Herstellung eines Arzneimittels zur Behandlung von Tumoren, Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofribroma, Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne 20 Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose, mesangialzellproliferative Erkrankungen, Artheriosklerose und Verletzungen des Nervengewebes.

25

30

Zur Verwendung der Verbindungen der Formel I als Arzneimittel werden diese in die Form eines pharmazeutischen Präparats gebracht, das neben dem Wirkstoff für die enterale oder parenterale Applikation geeignete pharmazeutische, organische oder anorganische inerte Trägermaterialien, wie zum Beispiel, Wasser, Gelatine, Gummi arabicum, Milchzucker, Stärke, Magnesiumstearat, Talk, pflanzliche Öle, Polyalkylenglykole usw. enthält. Die pharmazeutischen Präparate können in fester Form, zum Beispiel als Tabletten, Dragees, Suppositorien, Kapseln oder in flüssiger Form, zum Beispiel als

Lösungen, Suspensionen oder Emulsionen vorliegen. Gegebenenfalls enthalten sie darüber hinaus Hilfsstoffe wie Konservierungs-, Stabilisierungs-, Netzmittel oder Emulgatoren, Salze zur Veränderung des osmotischen Drucks oder Puffer.

5

Für die parenterale Anwendung sind insbesondere Injektionslösungen oder Suspensionen, insbesondere wäßrige Lösungen der aktiven Verbindungen in polyhydroxyethoxyliertem Rizinusöl, geeignet.

- Als Trägersysteme können auch grenzflächenaktive Hilfsstoffe wie Salze der Gallensäuren oder tierische oder pflanzliche Phospholipide, aber auch Mischungen davon sowie Liposome oder deren Bestandteile verwendet werden.
- 15 Für die orale Anwendung sind insbesondere Tabletten, Dragees oder Kapseln mit Talkum und/oder Kohlenwasserstoffträger oder -binder, wie zum Beispiel Lactose, Mais- oder Kartoffelstärke, geeignet. Die Anwendung kann auch in flüssiger Form erfolgen, wie zum Beispiel als Saft, dem gegebenenfalls ein Süßstoff und/ oder Geschmacksstoff beigefügt ist.

20

- Die Dosierung der Wirkstoffe kann je nach Verabfolgungsweg, Alter und Gewicht des Patienten, Art und Schwere der zu behandelnden Erkrankung und ähnlichen Faktoren variieren. Die tägliche Dosis beträgt 0,5-1000 mg, vorzugsweise 50-200 mg, wobei die Dosis als einmal zu verabreichende
- 25 Einzeldosis oder unterteilt in 2 oder mehreren Tagesdosen gegeben werden kann.
 - Die oben beschrieben Formulierungen und Darreichungsformen sind ebenfalls Gegenstand der vorliegenden Erfindung.
- 30 Die Herstellung der erfindungsgemäßen Verbindungen erfolgt nach an sich bekannten Methoden. Beispielsweise gelangt man zu Verbindungen der Formel I dadurch, daß man

a) eine Verbindung der Formel II

$$R^5$$
 R^6
 O
 A
 NH_2

worin R³ bis R⁶ die obige Bedeutung haben und A OR¹³ ist, wobei R¹³
Wasserstoff oder C₁₋₄-Alkyl oder C₁₋₄-Acyl zuerst das Amin alkyliert und dann
COA in ein Amid überführt,
oder

b) eine Verbindung der Formel III

10

15

$$R^5$$
 R^6
 O
 A
 NO_2

worin R^3 bis R^6 die obige Bedeutung haben und A Halogen oder OR^{13} ist, wobei R^{13} Wasserstoff, niedrig Alkyl oder Acyl sein kann, COA in ein Amid überführt, die Nitrogruppe zum Amin reduziert und dann alkyliert.

Die Reihenfolge der Schritte kann in allen Fällen vertauscht werden.

Die Amidbildung erfolgt nach literaturbekannten Methoden.

Zur Amidbildung kann man von einem entsprechenden Ester ausgehen. Der Ester wird nach J. Org. Chem. 1995, 8414 mit Aluminiumtrimethyl und dem entsprechenden Amin in Lösungsmitteln wie Toluol bei Temperaturen von 0°C bis zum Siedepunkt des Lösungsmittels umgesetzt. Enthält das Molekül zwei Estergruppen, werden beide in das gleiche Amid überführt.

Beim Einsatz von Nitrilen statt des Esters erhält man unter analogen

Bedingungen Amidine.

Zur Amidbildung stehen aber auch alle aus der Peptidchemie bekannten Verfahren zur Verfügung. Beispielsweise kann die entsprechende Säure in aprotischen polaren Lösungsmitteln wie zum Beispiel Dimethylformamid über eine aktiviertes Säurederivat, zum Beispiel erhältlich mit Hydroxybenzotriazol und einem Carbodiimid wie zum Beispiel Diisopropylcarbodiimid oder auch mit vorgebildeten Reagenzien wie zum Beispiel HATU (Chem. Comm. 1994, 201)oder BTU, bei Temperaturen zwischen 0°C und dem Siedepunkt des Lösungsmittels mit dem Amin umgesetzt werden. Für die Amidbildung kann auch das Verfahren über das gemischte Säureanhydrid, das Säurechlorid, das Imidazolid oder das Azid eingesetzt werden. Bei Umsetzungen des Säurechlorids ist als Lösungsmittel Dimethylacetamid bei Temperaturen von Raumtemperatur bis zum Siedepunkt des Lösungsmittels vorzugsweise bei 80-100°C bevorzugt.

20

25

30

Sollen verschiedene Amidgruppen in das Molekül eingeführt werden, muss beispielsweise die zweite Estergruppe nach der Erzeugung der ersten Amidgruppe in das Molekül eingeführt und dann amidiert werden oder man hat ein Molekül in dem eine Gruppe als Ester, die andere als Säure vorliegt und amidiert die beiden Gruppen nacheinander nach verschiedenen Methoden.

Thioamide sind aus den Anthranilamiden durch Umsetzung mit Diphosphadithianen nach Bull Soc.Chim. Belg. 87, 229,1978 oder durch Umsetzung mit Phosphorpentasulfid in Lösungsmitteln wie Pyridin oder auch ganz ohne Lösungsmittel bei Temperaturen von 0°C bis 200°C zu erhalten.

Die Reduktion der Nitrogruppe wird in polaren Lösungsmitteln bei Raumtemperatur oder erhöhter Temperatur durchgeführt. Als Katalysatoren für WO 01/85691 13

die Reduktion sind Metalle wie Raney-Nickel oder Edelmetallkatalysatoren wie Palladium oder Platin oder auch Palladiumhydroxid gegebenenfalls auf Trägern geeignet. Statt Wasserstoff können auch zum Beispiel Ammoniumformiat, Cyclohexen oder Hydrazin in bekannter Weise benutzt werden.

- Reduktionsmittel wie Zinn-II-chlorid oder Titan-(III)-chlorid können ebenso verwendet werden wie komplexe Metallhydride eventuell in Gegenwart von Schwermetallsalzen. Als Reduktionsmittel ist auch Eisen nutzbar. Die Reaktion wird dann in Gegenwart einer Säure wie z.B. Essigsäure oder Ammoniumchlorid gegebenenfalls unter Zusatz eines Lösungsmittels wie zum Beispiel Wasser, Methanol, Eisen/ Ammoniak etc. durchgeführt. Bei 10 verlängerter Reaktionszeit kann bei dieser Variante eine Acylierung der Aminogruppe eintreten.
- Wird eine Alkylierung einer Aminogruppe gewünscht, so kann nach üblichen Methoden - beispielsweise mit Alkylhalogeniden - oder nach der Mitsonubo 15 Variante durch Umsetzung mit einem Alkohol in Gegenwart von beispielsweise Triphenylphosphin und Azodicarbonsäureester alkyliert werden. Man kann auch das Amin einer reduktiven Alkylierung mit Aldehyden oder Ketonen unterwerfen, wobei man in Gegenwart eines Reduktionsmittels wie beispielsweise Natriumcyanoborhydrid in einem geeigneten inerten 20 Lösungsmittel wie zum Beispiel Ethanol bei Temperaturen von 0°C bis zum Siedepunkt des Lösungsmittels umsetzt. Wenn man von einer primären Aminogruppe ausgeht, so kann man gegebenenfalls nacheinander mit zwei verschiedenen Carbonylverbindungen umsetzen, wobei man gemischte Derivate erhält [Literatur z.B. Verardo et al. Synthesis (1993), 121; Synthesis 25 (1991), 447; Kawaguchi, Synthesis (1985), 701; Micovic et al. Synthesis (1991), 1043].
 - Es kann vorteilhaft sein, zunächst die Schiffsche Base durch Umsetzung des Aldehyds mit dem Amin in Lösungsmitteln wie Ethanol oder Methanol, gegebenenfalls unter Zugabe von Hilfsstoffen wie Eisessig zu bilden und dann erst Reduktionsmittel wie z. B. Natriumcyanoborhydrid zuzusetzen.

30

Etherspaltungen werden nach literaturüblichen Verfahren durchgeführt. Dabei kann auch bei mehreren im Molekül vorhandenen Gruppen eine selektive

Spaltung erreicht werden. Dabei wird der Ether beispielsweise mit Bortribromid in Lösungsmitteln wie Dichlormethan bei Temperaturen zwischen –100 °C bis zum Siedepunkt des Lösungsmittels vorzugsweise bei –78 °C behandelt. Es ist aber auch möglich, den Ether durch Natriumthiomethylat in Lösungsmitteln wie Dimethylformamid zu spalten. Die Temperatur kann zwischen Raumtemperatur und dem Siedepunkt des Lösungsmittels vorzugsweise bei 150°C liegen. Bei Benzyläthern gelingt die Spaltung auch mit starken Säuren wie zum Beispiel Trifluoressigsäure bei Temperaturen von Raumtemperatur bis zum Siedepunkt, vorzugsweise bei 70 °C.

14

10

5

Die Isomerengemische können nach üblichen Methoden wie beispielsweise Kristallisation, jede Form von Chromatographie oder Salzbildung in die Enantiomeren bzw. E/Z-Isomeren aufgetrennt werden.

Die Herstellung der Salze erfolgt in üblicher Weise, indem man eine Lösung der Verbindung der Formel I mit der äquivalenten Menge oder einem Überschuß einer Base oder Säure, die gegebenenfalls in Lösung ist, versetzt und den Niederschlag abtrennt oder in üblicher Weise die Lösung aufarbeitet.

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Verbindungen, ohne den Umfang der beanspruchten Verbindungen auf diese Beispiele zu beschränken.

5

Beispiel 1.0

N- (4-Methylcyclohexyl)-2-(4-Pyridylmethyl)amino)benzoesäureamid.

849mg (7,5mMol) 4-Methylcyclohexylamin (cis/ trans-Gemisch) werden in 7,5ml 10 Toluol unter Argon und Feuchtigkeitsausschluss unter Eiskühlung vorgelegt und tropfenweise mit 4,5ml einer Trimethylaluminiumlösung (2,5M in Toluol) versetzt. Anschliessend wird eine kalte Lösung von 1,21g (5mmol) N(4-Pyridylmethyl)anthranylsäuremethylester in 10ml Toluol zugesetzt, die Eiskühlung entfernt, 10min bei Raumtemperatur gerührt und dann 1h am 15 Rückfluss gekocht. Nach Abkühlen wird auf eine gesättigte Natriumcarbonatlösung gegeben und mit Essigester extrahiert. Die Essigesterphase wird mit Wasser und gesättigter Kochsalzlösung gewaschen, getrocknet, filtriert und eingeengt. Der Rückstand wird über Kieselgel mit Hexan: Essigester=4:6 als Elutionsmittel chromatographiert. Man erhält 1,45g 20 (90% d.Th.) eines cis/ trans-Gemisches von N- (4-Methylcyclohexyl)-2-(4-Pyridylmethyl)amino)benzoesäureamid.

In analoger Verfahrensweise werden auch folgende Verbindungen hergestellt:

25

Beispiel	R¹	Schmelzpunkt °C
1.1	\triangle	130-131
1.2	-0	128,6
1.3	1-	116
1.4	\rightarrow	103-104
1.5	Me _x , →	93-95
1.6	→ Me	OI
1.7	Me _z Me	93-94
1.8	t-Bu	118,4
1.9	-01	102,5
1.10	~	85
1.11	~	
1.12	<i>></i>	
1.13	~~~	Öl
1.14	~~~~	
1.15	~~~~	84,8
1.16		121,6
1.17	~	
1.18	×	
1.19		
1.20		Öl
1.21	~	

Beispiel	R ¹	Schmelzpunkt °C
1.22	ak.	104,6
1.23		
1.24	/(CF ₂)CF ₃	Öl
1.25	(CF ₂) ₆ -CF ₃	110-11
1.26		106,2
1.27		65,2
1.28		103-105
1.29	N	ÖI .
1.30	OMe	ÓI

B ispiel 2.0

2-(N(4-Pyridylmethyl)aminobenzoesäure(1S,2S)-(-)-benzyloxycyclohexylamid

5

684mg (3mmol) N(4-Pyridylmethyl)anthranylsäure werden in 18ml Dimethylformamid gelöst und unter Argon sowie unter Feuchtigkeitsausschluss mit 405mg (3mMol) Hydroxybenzotriazol, 573mg (3mmol) N-(3-Dimethylaminopropyl)-N-ethylcarbodiimid Hydrochlorid, 615mg (3mmol) (1S,2S)-(-)-Benzyloxycyclohexylamin und 774mg (6mMol) N-Ethyldiisopropylamin versetzt und für 2h bei 80°C Badtemperatur gerührt. Nach

(1S,2S)-(-)-Benzyloxycyclohexylamin und 774mg (6mMol) NEthyldiisopropylamin versetzt und für 2h bei 80°C Badtemperatur gerührt. Nach
Einengen am Vakuum wird der Rückstand in 50ml verdünnter
Natriumhydrogencarbonatlösung aufgenommen und dreimal mit 50ml
Essigester ausgeschüttelt. Die vereinigte organische Phase wird mit Wasser
gewaschen, getrocknet, filtriert und eingeengt. Der Rückstand wird über

15 gewaschen, getrocknet, filtriert und eingeengt. Der Rückstand wird über Kieselgel mit Methylenchlorid:Ethanol=10:1 als Elutionsmittel chromatographiert. Man erhält 530mg (=42,4% d.Th.) 2-(N(4-Pyridylmethyl)aminobenzoesäure(1S,2S)-(-)-benzyloxycyclohexylamid vom Schmelzpunkt 121,9°C.

20

In analoger Verfahrensweise wird auch folgende Verbindung hergestellt:

25

Beispiel	R ¹	Schmelzpunkt °C
2.1	O III	125,1

Bn= Benzyl

B ispi 13.0

2-(N(4-Pyridylmethyl)aminobenzoesäure(1S,2S)-(-)-hydroxycyclohexylamid

- 5 250mg (0,6 mmol) Pyridylmethyl)aminobenzoesäure(1S,2S)-(-)-benzyloxycyclohexylamid werden zu 2ml Trifluoressigsäure gegeben und 2h auf 80°C erwärmt. Nach Einengen am Vakuum wird in 50ml verdünnter Natriumhydrogencarbonatlösung aufgenommen und dreimal mit 50ml Essigester extrahiert. Die vereinigte organische Phase wird mit Wasser gewaschen, getrocknet, filtriert und eingeengt. Der Rückstand wird über Kieselgel mit Aceton:Hexan=1:1 als Elutionsmittel chromatographiert. Man erhält 76mg (=48% d.Th.) an 2-(N(4-Pyridylmethyl)aminobenzoesäure-(1S,2S)-(-)-hydroxycyclohexylamid vom Schmelzpunkt 141,5 °C.
- 15 In analoger Verfahrensweise wird auch folgende Verbindung hergestellt:

Beispiel	R ¹	Schmelzpunkt °C
3.1	HOW	161,1

Aufr inigung der V rbindungen

HPLC Trennung des cis/ trans-Gemisches von N- (4-Methylcyclohexyl)-2-(4-Pyridylmethyl)amino)benzoesäureamid aus Beispiel 1

5

140mg cis/ trans-Gemisch von N- (4-Methylcyclohexyl)-2-(4-Pyridylmethyl)amino)benzoesäureamid werden über über eine Chiralpak AD-Säule mit
Hexan:EtOH=85:15 bei einer Flussgeschwindigkeit von 30ml/min. getrennt.
Man erhält 15,9mg cis- von N- (4-Methylcyclohexyl)-2-(4-Pyridylmethyl)amino)benzoesäureamid mit einer Rentionszeit von 15min, und 21,5mg trans- N- (4Methylcyclohexyl)-2-(4-Pyridylmethyl)amino)benzoesäure-amid mit einer
Retentionszeit von 19 Minuten.

5

H rstellung der Zwischenprodukte

Soweit die Herstellung der Zwischenprodukte nicht beschrieben wird, sind diese bekannt oder analog zu bekannten Verbindungen oder hier beschriebenen

Verfahren herstellbar.

Die beschriebenen Zwischenprodukte sind besonders zur Herstellung der erfindungsgemäßen Anthranylalkyl-und cycloalkylamide geeignet.

Die Zwischenprodukte sind teilweise selbst aktiv und können somit ebenfalls

zur Herstellung eines Arzneimittels zur Behandlung von Tumoren, Psoriasis,
Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofribroma,
Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom,
Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne
Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie
Leberzirrhose, mesangialzellproliferative Erkrankungen, Artheriosklerose,
Verletzungen des Nervengewebes, Ascites-Bildung und Unterdrückung VEGF
bedingter Ödeme zum Einsatz kommen.

20

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Zwischenprodukte, die zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel I besonders geignet sind, ohne die Erfindung auf diese Beispiele zu beschränken.

25

A. N(4-Pyridylmethyl)anthranylsäuremethylester

15,1g (100mMol) Anthranilsäuremethylester werden in 600ml Methanol mit 6ml
 Eisessig und 17,2g (160mMol) 4-Pyridincarbaldehyd versetzt und 12h bei Raumtemperatur gerührt. Dann werden unter Eisbadkühlung 11,4g (160mMol) Natriumcyanoborhydrid zugegeben und 12h bei Raumtemperatur gerührt. Der Ansatz wird einrotiert, der Rückstand in 500ml Essigester aufgenommen und und nacheinander mit gesättigter Natriumhydrogencarbonatlösung und
 g sättigter Kochsalzlösung gewaschen. Das Rohprodukt wird über Kieselgel mit

Aceton:Hexan=1:1als Elutionsmittel chromatographiert. Nach Zusammenfassen der entsprechenden Fraktionen und Ausrühren mit Hexan:Essigester=8:2 erhält man 15,7g (65% d.Th.) an N(4-Pyridylmethyl)anthranylsäuremethylester.

5

B. N(4-Pyridylmethyl)anthranylsäure

2g (8,3mMol) N(4-Pyridylmethyl)anthranylsäuremethylester werden in 15ml Methanol mit 16ml (16mMol) einer 1-n-Natronlaugelösung versetzt und 1h am Rückfluß gekocht. Nach Abziehen des Methanols am Vakuujm wird mit 20ml Wasser und 20ml einer 1-m Zitronensäure versetzt, die Fällung wird abgesaugt, mit Wasser nachgewaschen und über Phosphorpentoxid getrocknet. Man erhält 1,7g (90% d.Th.) an N(4-

15 Pyridylmethyl)anthranylsäure vom Schmelzpunkt 208°C.

Die nachfolgenden Anwendungsbeispiele erläutern die biologische Wirkung und Verwendung der erfindungsgemäßen Verbindungen ohne diese auf die Beispiele zu beschränken.

5 Für die Versuche benötigte Lösungen

Stammlösungen

Stammlösung A: 3mM ATP in Wasser pH 7,0 (-70°C)

Stammlösung B: g-33P-ATP 1mCi/ 100µl

Stammlösung C: poly-(Glu4Tyr) 10mg/ ml in Wasser

10

Lösung für Verdünnungen

Substratlösemittel: 10mM DTT, 10 mM Manganchlorid, 100 mM

Magnesiumchlorid

Enzymlösung:

120 mM Tris/ HCl, pH 7,5, 10 µM Natriumvanadiumoxid

15

20

25

30

Anwendungsbeispiel 1

Hemmung der KDR- und FLT-1 Kinaseaktivität in Gegenwart der erfindungsgemäßen Verbindungen

mit Meltilex beschichtet und im Microbetazähler gemessen.

In einer spitz zulaufenden Mikrotiterplatte (ohne Proteinbindung) werden 10 μ l Substratmix (10 μ l Vol ATP Stammlösung A + 25 μ Ci g-33P-ATP (ca. 2,5 μ l der Stammlösung B) + 30 μ l poly-(Glu4Tyr) Stammlösung C + 1,21ml

Substratlösemittel), 10 µl Hemmstofflösung (Substanzen entsprechend den Verdünnungen, als Kontrolle 3% DMSO in Substratlösemittel) und 10 µl Enzymlösung (11,25µg Enzymstammlösung (KDR oder FLT-1 Kinase) werden bei 4°C in 1,25ml Enzymlösung verdünnt) gegeben. Es wird gründlich durchgemischt und bei 10 Minuten Raumtemperatur inkubiert. Anschließend gibt man 10µl Stop-Lösung (250mM EDTA, pH 7,0) zu, mischt und überträgt 10 µl der Lösung auf einen P 81 Phosphozellulosefilter. Anschließend wird mehrfach in 0,1M Phosphorsäure gewaschen. Das Filterpapier wird getrocknet,

Die IC50-Werte bestimmen sich aus der Inhibitorkonzentration, die notwendig ist, um den Phosphateinbau auf 50% des ungehemmten Einbaus nach Abzug des Leerwertes (EDTA gestoppte Reaktion) zu hemmen.

5 Die Ergebnisse der Kinase-Inhibition IC50 in μM sind in der nachfolgenden Tabelle dargestellt:

Beispiel-Nr.	VEGFR I	VEGFR II
	(FLT)	(KDR, nM)
1.8	500	39
1.14	200	200
1.23	400	500
1.19	200	50
1.4	100	80
1.27	2000	1000

Patentansprüche ...

Verbindungen der allgemeinen Formel I

$$\begin{array}{c|c}
R^{6} & A & Z \\
R^{5} & W & W \\
R^{4} & N - X - R^{2} \\
R^{3} & R^{9}
\end{array}$$

5

in der

Α

H

W

10

Ζ

R¹

15

20

X R²

25

für die Gruppe =NR7 steht,

für Sauerstoff, Schwefel, zwei

Wasserstoffatome oder die Gruppe =NR⁸

steht,

für eine Bindung oder die Gruppe =NR¹⁰ oder

=N- steht,

für gegebenenfalls ein- oder mehrfach mit Halogen, Hydroxy, C₁₋₆-Alkyloxy, Aralkyloxy, C₁₋₆-Alkyl und/ oder NR¹¹R¹² substituiertes verzweigtes oder unverzweigtes C₁₋₁₂-Alkyl oder C₂₋₁₂-Alkenyl oder gegebenenfalls einoder mehrfach mit Halogen Hydroxy, C₁₋₆-Alkyloxy, Aralkyloxy, C₁₋₆-Alkyl und/ oder NR¹¹R¹² substituiertes C₃₋₁₀-Cycloalkyl oder C₃₋₁₀-Cycloalkenyl steht,

für C₁₋₆-Alkyl steht,

unsubstituiertes oder gegebenenfalls ein- oder mehrfach mit Halogen, C₁₋₆-Alkyl, C₁₋₆-Alkoxy und/ oder Hydroxy, substituiertes monocyclisches oder bicyclisches Heteroaryl

bedeutet,

: 1

	R^3 , R^4 , R^5 und R^6	für Wasserstoff, Halogen oder unsubstituiertes oder gegebenenfalls ein- oder mehrfach mit
		Halogen substituiertes C ₁₋₆ -Alkoxy, C ₁₋₆ -Alkyl,
		C ₁₋₆ -Carboxyalkyl stehen,
5	R ⁷	für Wasserstoff, C ₁₋₆ -Alkyl oder C ₁₋₈ -Cycloalkyl
		steht,
	R^8 , R^9 und R^{10}	für Wasserstoff oder C ₁₋₆ -Alkyl stehen und
	R ¹¹ und R ¹²	für Wasserstoff oder C ₁₋₆ -Alkyl stehen oder
		einen Ring bilden, der ein weiteres
10		Heteroatom enthalten kann und
		gegebenenfalls mit C ₁₋₆ -Alkyl substituiert sein
	·	kann,

bedeuten, sowie deren Isomeren und Salze.

15			1. 3
	2.	Verbindungen der allgem	einen Formel I, gemäß Anspruch 1, in der
		Α .	für die Gruppe =NR ⁷ steht,
		W	für Sauerstoff steht,
		Z	für eine Bindung steht,
20		R ¹	für gegebenenfalls ein- oder mehrfach mit
			Halogen, Hydroxy, C ₁₋₆ -Alkyloxy, Aralkyloxy,
			C ₁₋₆ -Alkyl und/ oder NR ¹¹ R ¹² substituiertes
			verzweigtes oder unverzweigtes C ₁₋₁₂ -Alkyl
			oder C ₂₋₁₂ -Alkenyl oder gegebenenfalls ein-
25			oder mehrfach mit Halogen Hydroxy, C ₁₋₆ -
			Alkyloxy, Aralkyloxy, C ₁₋₆ -Alkyl und/ oder
			NR ¹¹ R ¹² substituiertes C ₃₋₁₀ -Cycloalkyl, oder
			C ₃₋₁₀ -Cycloalkenyl, steht,
		X	für C ₁₋₆ -Alkyl steht,
30		R ²	unsubstituiertes oder gegebenenfalls ein- oder
			mehrfach mit Halogen, C ₁₋₆ -Alkyl, C ₁₋₆ -Alkoxy
			und/ oder Hydroxy, substituiertes

		monocyclisches oder bicyclisches Heteroaryl
		bedeutet,
	R^3 , R^4 , R^5 und R^6	für Wasserstoff, Halogen oder unsubstituiertes
	,	oder gegebenenfalls ein- oder mehrfach mit
5		Halogen substituiertes C ₁₋₆ -Alkoxy, C ₁₋₆ -Alkyl,
•		C ₁₋₆ -Carboxyalkyl stehen,
	R ⁷	für Wasserstoff, C ₁₋₆ -Alkyl oder C ₁₋₈ -Cycloalkyl
	·	steht,
	R ⁹	für Wasserstoff oder C ₁₋₆ -Alkyl steht und
10	R ¹¹ und R ¹²	für Wasserstoff oder C ₁₋₆ -Alkyl stehen oder
		einen Ring bilden, der ein weiteres
		Heteroatom enthalten kann und
		gegebenenfalls mit C ₁₋₆ -Alkyl substituiert sein
		kann,
15	bedeuten, sowie der	en Isomeren und Salze.
	Verbindungen der a	llgemeinen Formel I, gemäß den Ansprüchen 1 und
	2, in der	_
20	Α	für die Gruppe =NR ⁷ steht,
	W	für Sauerstoff steht,
	Z	für eine Bindung steht,
	R ¹	für gegebenenfalls ein- oder mehrfach mit
		Halogen, Hydroxy, C ₁₋₆ -Alkyloxy, Aralkyloxy,
25		C ₁₋₆ -Alkyl und/ oder NR ¹¹ R ¹² substituiertes
		verzweigtes oder unverzweigtes C ₁₋₁₂ -Alkyl
		oder C ₂₋₁₂ -Alkenyl oder gegebenenfalls ein-
		oder mehrfach mit Halogen Hydroxy, C ₁₋₆ -
		Alkyloxy, Aralkyloxy, C ₁₋₆ -Alkyl und/ oder
30		NR ¹¹ R ¹² substituiertes C ₃₋₁₀ -Cycloalkyl oder
		C ₃₋₁₀ -Cycloalkenyl steht,
	X R²	C ₃₋₁₀ -Cycloalkenyl steht, für C ₁₋₆ -Alkyl steht, Pyridyl bedeutet,

	R^3 , R^4 , R^5 und R^6	für Wasserstoff, Halogen oder unsubstituiertes oder gegebenenfalls ein- oder mehrfach mit
		Halogen substituiertes C ₁₋₆ -Alkoxy, C ₁₋₆ -Alkyl,
		C ₁₋₆ -Carboxyalkyl stehen,
5	R ⁷	für Wasserstoff, C ₁₋₆ -Alkyl oder C ₁₋₈ -Cycloalkyl
		steht,
	R ⁹	für Wasserstoff oder C ₁₋₆ -Alkyl steht und
	R ¹¹ und R ¹²	für Wasserstoff oder C ₁₋₆ -Alkyl stehen oder
		einen Ring bilden, der ein weiteres
10		Heteroatom enthalten kann und
		gegebenenfalls mit C ₁₋₆ -Alkyl substituiert sein
		kann,
	bedeuten, sowie dere	en Isomeren und Salze.

15

4. Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 bis 3,

	in der	
	Α	für die Gruppe =NR ⁷ steht,
	W	für Sauerstoff steht,
20	Z	für eine Bindung steht,
	R ¹	für gegebenenfalls ein- oder mehrfach mit
		Halogen, Hydroxy, C ₁₋₆ -Alkyloxy, Aralkyloxy,
		C ₁₋₆ -Alkyl und/ oder NR ¹¹ R ¹² substituiertes
		verzweigtes oder unverzweigtes C ₁₋₁₂ -Alkyl
25	•	oder C ₂₋₁₂ -Alkenyl oder gegebenenfalls ein-
		oder mehrfach mit Halogen Hydroxy, C ₁₋₆ -
		Alkyloxy, Aralkyloxy, C ₁₋₆ -Alkyl und/ oder
		NR ¹¹ R ¹² substituiertes C ₃₋₁₀ -Cycloalkyl oder
		C ₃₋₁₀ -Cycloalkenyl steht,
30	X	für C ₁₋₆ -Alkyl steht,
	R ²	Pyridyl bedeutet,
	R^3 , R^4 , R^5 und R^6	für Wasserstoff, Halogen oder unsubstituiertes

oder gegebenenfalls ein- oder mehrfach mit

		-
	R ⁷	Halogen substituiertes C ₁₋₆ -Alkoxy, C ₁₋₆ -Alkyl, C ₁₋₆ -Carboxyalkyl stehen, für Wasserstoff, C ₁₋₆ -Alkyl oder C ₁₋₈ -Cycloalkyl
	K'	steht,
5	R ⁹ R ¹¹ und R ¹²	für Wasserstoff oder C ₁₋₆ -Alkyl steht und für Wasserstoff oder C ₁₋₆ -Alkyl stehen oder einen Ring bilden, der als weiteres Heteroatom Sauerstoff oder Stickstoff enthalten kann und gegebenenfalls mit C ₁₋₆ -Alkyl substituiert sein
	bedeuten, sowie d	kann, eren Isomeren und Salze.
15	in der	allgemeinen Formel I, gemäß den Ansprüchen 1 bis 4 für die Gruppe =NR ⁷ steht,
	Λ	in die Oluppo in Comma

15	5.	Verbindungen der allger	meinen Formel I, gemäß den Ansprüchen 1 bis 4,
		in der	
		Α	für die Gruppe =NR ⁷ steht,
		W .	für Sauerstoff steht,
		Z	für eine Bindung steht,
20		R ¹	für gegebenenfalls ein- oder mehrfach mit
20			Halogen, C ₁₋₆ -Alkyloxy oder NR ¹¹ R ¹²
			substituiertes verzweigtes oder unverzweigtes
		•	C ₁₋₁₂ -Alkyl, oder gegebenenfalls ein- oder
			mehrfach mit Hydroxy, C ₁₋₆ -Alkyloxy,
25			C ₁₋₆ -Alkyl oder Benzyloxy substituiertes C ₃₋₁₀ -
			Cycloalkyl steht,
		X	für C ₁₋₆ -Alkyl steht,
		\mathbb{R}^2	Pyridyl bedeutet,
		R ³ ,R ⁴ ,R ⁵ und R ⁶	für Wasserstoff steht,
30		R ⁷ und R ⁹	für Wasserstoff stehen,
•		R ¹¹ und R ¹²	für Wasserstoff oder C ₁₋₆ -Alkyl stehen oder
			einen Morpholinyl-, Piperidinoyl- od r

Pyrrolidinoyl-Ring bilden, der gegebenenfalls

mit C₁₋₆-Alkyl substituiert sein kann, bedeuten, sowie deren Isomeren und Salze.

- Verwendung der Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 bis 5, zur Herstellung eines Arzneimittels zur Behandlung von Tumoren, Psoriasis, Arthritis, wie rheumatoide Arthritis, Hāmangioma, Angiofribroma, Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie
 Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome,
 Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose, mesangialzellproliferative Erkrankungen, Artheriosklerose, Verletzungen des Nervengewebes, zur Unterbindung der Ascites-Bildung und zur Unterdrückung VEGFbedingter Ödeme.
 - 7. Arzneimittel, enthaltend mindestens eine Verbindung gemäß den Ansprüchen 1 bis 5.

20

Arzneimittel gemäß Anspruch 7, zur Behandlung von Tumoren,
Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma,
Angiofribroma, Augenerkrankungen, wie diabetische Retinopathie,
 Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis,
diabetische Nephropatie, maligne Nephrosklerose, thrombische
mikroangiopatische Syndrome, Transplantationsabstoßungen und
Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose,
mesangialzellproliferative Erkrankungen, Artheriosklerose, Verletzungen
des Nervengewebes, zur Unterbindung der Ascites-Bildung und zur
Unterdrückung VEGF-bedingter Ödeme.

- Verbindungen gemäß den Ansprüchen 1 bis 5 mit geeigneten Formulierungs und Trägerstoffen.
- 10. Verwendung der Verbindungen der Formel I, gemäß den Ansprüchen 1
 bis 5, als Inhibitoren der Tyrosinkinase KDR und FLT.
- Verwendung der Verbindungen der allgemeinen Formel I gemäß den Ansprüchen 1 bis 5 in Form eines pharmazeutischen Präparats für die enteral, parenterale und orale Applikation.

INTERNATIONAL SEARCH REPORT

rational Application No

			FCI/EI 01/03207
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER CO7D213/38 A61K31/4409 A61P9/0	0	
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 7	cumentation searched (classification system followed by classificati CO7D A61K A61P	ion symbols)	
	ion searched other than minimum documentation to the extent that		
	ata base consulted during the international search (name of data base		search terms used)
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re	levant passages	Relevant to claim No.
х	US 3 226 394 A (SHULTON INC., CL. USA) 28 December 1965 (1965-12-28 claims 8-10; table 1	IFTON, NJ, B)	1,6-11
	ner documents are listed in the continuation of box C.	X Patent family r	nembers are listed in annex.
A docume	tegories of cited documents : ant defining the general state of the art which is not	or priority date and	ished after the international filing date I not in conflict with the application but If the principle or theory underlying the
'E' earlier o		invention "X" document of particu	lar relevance; the claimed invention red novel or cannot be considered to
which citation	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"Y" document of particu cannot be consider	e step when the document is taken alone lar relevance; the claimed invention red to involve an inventive step when the med with one or more other such docu-
other r	neans ent published prior to the international filing date but han the priority date claimed	ments, such combining the art.	Ination being obvious to a person skilled of the same patent family
	actual completion of the international search		he international search report
1.	2 September 2001	24/09/2	
Name and n	railing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bosma,	P

INTERNATIONAL SEARCH REPORT

national Application No

MATERIANT		SEARCH REPO ion on patent family men			national Application No		
Patent document Publication cited in search report date			Patent family member(s)			Publication date	
US 3226394		28-12-1965	NONE			<u> </u>	
	•						
•							

WO 01/85691 A1

ANTHRANYLALKYL AND CYCLOALKYL AMIDES AND USE THEREOF AS VEGF RECEPTOR INHIBITORS

Patent Claims

1. Compounds of the general formula I

in which

A stands for the group = NR^7 ,

W stands for oxygen, sulfur, two hydrogen atoms

or the group $=NR^8$,

Z stands for a bond or the group = NR^{10} or =N-,

R¹ stands for, possibly, mono- or poly- halogen-, hydroxy-, C_{1-6} -alkyloxy, aralkyloxy, C_{1-6} -alkyl and/or NR¹¹R¹²-substituted, - branched or unbranched C_{1-12} -alkyl or C_{2-12} -alkenyl or, possibly, mono- or poly- halogen-, hydroxy-, C_{1-6} -alkyloxy, aralkyloxy, C_{1-6} -alkyl and/or NR¹¹R¹²-substituted C_{3-10} -

cycloalkyl or C₃₋₁₀-cycloalkenyl,

X stands for C_{1-6} alkyl,

R² means unsubstituted or, possibly, mono- or poly- halogen-, C₁₋₆-alkyl-, C₁₋₆-alkyloxy-, and/or hydrogen, substituted monocyclic or bicyclic heteroaryl,

R³,R⁴,R⁵ and R⁶ stand for hydrogen, halogen or unsubstituted or, possibly, mono- or poly- halogen-substituted C₁₋₆-alkoxy, C₁. 6-alkyl, C₁₋₆-carboxyalkyl,

R⁷ stands for hydrogen, C₁₋₆ alkyl or C₁₋₈-cycloalkyl,

R⁸,R⁹ and R¹⁰ stand for hydrogen or C₁₋₆ alkyl and

 R^{11} and R^{12} stand for hydrogen or C_{1-6} alkyl or form a ring, which can contain a further heteroatom and, possibly, can be substituted by C_{1-6} alkyl,

as well as their isomers and salts.

2. Compounds of the general formula I, in accordance with Claim 1, in which

A stands for the group = NR^7 ,

W stands for oxygen,

Z stands for a bond,

R¹ stands for, possibly, mono- or poly- halogen-, hydroxy-, C_{1-6} -alkyloxy, aralkyloxy, C_{1-8} -alkyl and/or $NR^{11}R^{12}$ -substituted, - branched or unbranched C_{1-12} -alkyl or C_{2-12} -alkenyl or, possibly, mono- or poly- halogen-, hydroxy-, C_{1-6} -alkyloxy, aralkyloxy, C_{1-8} -alkyl and/or $NR^{11}R^{12}$ -substituted C_{3-10} -cycloalkyl, or C_{3-10} -cycloalkenyl,

 χ stands for C_{1-6} alkyl,

means unsubstituted or, possibly, mono- or poly- halogen-, C₁₋₆-alkyl-, C₁₋₆-alkyloxy-, and/or hydrogen, substituted monocyclic or bicyclic heteroaryl,

 R^3, R^4, R^5 and R^6 stand for hydrogen, halogen or unsubstituted or, possibly, mono- or poly- halogen-substituted C_{1-6} -alkoxy, C_{1-6} -alkyl, C_{1-6} -carboxyalkyl,

R⁷ stands for hydrogen, C₁₋₆ alkyl or C₁₋₈-cycloalkyl,

R⁹ stands for hydrogen or C₁₋₆ alkyl and

 R^{11} and R^{12} stand for hydrogen or C_{1-6} alkyl or form a ring, which can contain a further heteroatom and, possibly, can be substituted by C_{1-6} alkyl,

as well as their isomers and salts.

3. Compounds of the general formula I, in accordance with Claims 1 and 2, in which

A stands for the group = NR^7 ,

W stands for oxygen,

Z stands for a bond,

R¹ stands for, possibly, mono- or poly- halogen-, hydroxy-, C_{1-6} -alkyloxy, aralkyloxy, C_{1-6} -alkyl and/or NR¹¹R¹²-substituted, - branched or unbranched C_{1-12} -alkyl or C_{2-12} -alkenyl or, possibly, mono- or poly- halogen-, hydroxy-, C_{1-6} -alkyloxy, aralkyloxy, C_{1-6} -alkyl and/or NR¹¹R¹²-substituted C_{3-10} -cycloalkyl, or C_{3-10} -cycloalkenyl,

X stands for C_{1-6} alkyl,

R² means pyridyl,

R³,R⁴,R⁵ and R⁶ stand for hydrogen, halogen or unsubstituted or, possibly, mono- or poly- halogen-substituted C₁₋₆-alkoxy, C₁₋₆-alkyl, C₁₋₈-carboxyalkyl,

R⁷ stands for hydrogen, C₁₋₆ alkyl or C₁₋₈-cycloalkyl,

R⁹ stands for hydrogen or C₁₋₆ alkyl and

R¹¹ and R¹² stand for hydrogen or C₁₋₆ alkyl or form a ring, which can contain a further heteroatom and, possibly, can be substituted by C₁₋₆ alkyl,

as well as their isomers and salts.

4. Compounds of the general formula I, in accordance with Claims 1 through 3, in which

A stands for the group = NR^7 ,

W stands for oxygen,

Z stands for a bond,

stands for, possibly, mono- or poly- halogen-, hydroxy-, C₁₋₆-alkyloxy, aralkyloxy, C₁₋₆-alkyl and/or NR¹¹R¹²-substituted, -branched or unbranched C₁₋₁₂-alkyl or C₂₋₁₂-alkenyl or, possibly, mono- or poly- halogen-, hydroxy-, C₁₋₆-alkyloxy, aralkyloxy, C₁₋₆-alkyl and/or NR¹¹R¹²-substituted C₃₋₁₀-cycloalkyl, or C₃₋₁₀-cycloalkenyl,

X stands for C_{1-6} alkyl,

R² means pyridyl,

 R^3 , R^4 , R^5 and R^6 stand for hydrogen, halogen or unsubstituted or, possibly, mono- or poly- halogen-substituted C_{1-6} -alkoxy, C_{1-6} -alkyl, C_{1-6} -carboxyalkyl,

R⁷ stands for hydrogen, C₁₋₆ alkyl or C₁₋₈-cycloalkyl,

R⁹ stands for hydrogen or C₁₋₆ alkyl and

 R^{11} and R^{12} stand for hydrogen or C_{1-6} alkyl or form a ring, which can contain a further heteroatom and, possibly, can be substituted by C_{1-6} alkyl,

as well as their isomers and salts.

 Compounds of the general formula I, in accordance with Claims 1 through 4, in which

A stands for the group = NR^7 ,

W stands for oxygen,

Z stands for a bond,

stands for, possibly, mono- or poly- halogen-, hydroxy-, C₁₋₆-alkyloxy-, or NR¹¹R¹²-substituted, -branched or unbranched C₁₋₁₂-alkyl or, possibly, mono- or poly- halogen-, hydroxy-, C₁₋₆-alkyloxy, C₁₋₆ alkyl or benzyloxy-substituted C₃₋₁₀-cycloalkyl,

X stands for C₁₋₆ alkyl,

R² means pyridyl,

R³,R⁴,R⁵ and R⁶ stand for hydrogen,

R⁷ and R⁹ stand for hydrogen

 R^{11} and R^{12} stand for hydrogen or C_{1-6} alkyl or form a morpholinyl, piperidinoyl or pyrrolidinoyl ring which, possibly, can be substituted by C_{1-6} alkyl,

as well as their isomers and salts.

- 6. Compounds of the general formula I, in accordance with Claims 1 through 5, for the production of a medicament for the treatment of tumors, psoriasis, arthritis, like rheumatoid arthritis, hematoangioma, angiofribroma, diseases of the eye, like diabetic retinopathy, neovascular glaucoma, kidney diseases, like glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombic microangiopathic syndrome, transplant rejection and glomerulopathy, fibrotic diseases, like liver cirrhosis, mesangial cell-proliferative diseases, arteriosclerosis and nerve tissue injuries, inhibition of ascites formation, and suppression of VEGF-induced edemas.
- 7. Medicament, containing at least one compound in accordance with Claims 1 through 5.

- 8. Medicaments in accordance with Claim 7, for the treatment of tumors, psoriasis, arthritis, like rheumatoid arthritis, hematoangioma, angiofribroma, diseases of the eye, like diabetic retinopathy, neovascular glaucoma, kidney diseases, like glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombic microangiopathic syndrome, transplant rejection and glomerulopathy, fibrotic diseases, like liver cirrhosis, mesangial cell-proliferative diseases, arteriosclerosis and nerve tissue injuries, inhibition of ascites formation, and suppression of VEGF-induced edemas.
- 9. Compounds in accordance with Claims 1 through 5 with suitable formulation and support materials.
- 10. Use of the compounds of the general formula I in accordance with Claims 1 through 5 as KDR and FLT tyrosinekinase inhibitors.
- 11. Use of the compounds of the general formula I in accordance with Claims 1 through 5 in the form of a pharmaceutical preparation for enteral, parenteral and oral application.

THIS PAGE BLANK (USPTO)