Physics 107: Physics for Life-Sciences

Midterm Exam: October 20, 2014

This test is administered under the rules and regulations of the honor code of the College of William & Mary.

| Name:      |  |  |  |  |
|------------|--|--|--|--|
|            |  |  |  |  |
| Signature: |  |  |  |  |

## **Instructions:**

- This is a closed book, closed notes test.
- Calculators are permitted, but not laptops or cell phones. Devices with wireless connections are not allowed.
- Start your work from the fundamental equations on the formula sheet, and derive any additional expressions that you may need.
- Circle your answer for each part of each problem.
- Clearly mark out any work that you wish the grader to disregard. Do not waste your time erasing.
- Your work will be graded based on your ability to write down a logical and organized solution grounded in the correct assessment of the physics of a situation. No credit will be given for an answer that is not justified by a logical solution or where that justification is not organized or readable. Partial credit will be given up to the point where your solution departs from a correct analysis of the physics involved for any given part of a problem.

| Question | Points | Score |
|----------|--------|-------|
| 1        | 20     |       |
| 2        | 25     |       |
| 3        | 25     |       |
| Total:   | 70     |       |

| 1. | Part of riding a bicycle involves leaning at the correct angle when making a turn. The force exerted by the ground on the wheel can be resolved into two perpendicular components, the force of friction $\vec{f}$ and the normal force $\vec{N}$ . To be in equilibrium the total force exerted by the ground must be on a line shrough the center of gravity of the bicycle and rider (this requirement imposes a relation between $\vec{f}$ and $\vec{N}$ ). |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | (a) (5 points) Draw a free-body diagram of this system, and write down Newton's second law in horizontal and vertical components.                                                                                                                                                                                                                                                                                                                               |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|    | (b) (10 points) Determine the angle $\theta$ from the vertical with which the bike will have to lean when you are making a turn at a velocity of 12.0 m/s with a turn radius of 30.0 m. The mass of the bicycle and person is 90 kg, and the coefficient of static friction of the tire on the road is $\mu_s = 0.9$ .                                                                                                                                          |  |
|    | (c) (5 points) Turns on ice are much more difficult to negotiate than turns on concrete. If the coefficient                                                                                                                                                                                                                                                                                                                                                     |  |
|    | of static friction is $\mu_s = 0.05$ , what changes in your derivation above? What is the minimum coefficient of static friction required to negotiate the curve at the velocity and turn radius above?                                                                                                                                                                                                                                                         |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

| 2. | A bungee jumper with a mass of 80 kg is determining the length of rope necessary for a jump from a 100 high bridge (for obvious reasons she does not want to make any mistakes). Assume that the massle rope has a diameter of 1 cm, an initial length of 80 m, and a small Young's modulus of $0.002 \times 10^9 \mathrm{N/r}$ (the rope remains in the elastic regime through-out the jump). |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | (a) (5 points) What is Hooke's constant for the rope?                                                                                                                                                                                                                                                                                                                                          |  |
|    | (b) (5 points) Using conservation of energy, determine the velocity immediately before the rope starts to stretch.                                                                                                                                                                                                                                                                             |  |
|    | (c) (10 points) Using conservation of energy, determine the lowest point the jumper reaches. Should she use a shorter rope, or does the rope have a safe length?                                                                                                                                                                                                                               |  |
|    | (d) (5 points) Draw a free-body diagram at the lowest point and determine the tension in the rope at that point.                                                                                                                                                                                                                                                                               |  |

3. The objective of curling, an Olympic discipline, is to throw stones at houses. The *stone* is a 20 kg block of granite that slides on the carefully prepared ice with a very low coefficient of kinetic friction,  $\mu_k = 0.0168$ . With a curling broom the players can increase the friction to get as close as possible to the *house*, the target pattern embedded in the ice. Frequently an oncoming stone will bump a stone from a previous throw by the competing team.





(a) (10 points) An stone reaches the house with a velocity of 1 m/s after traveling the 40 m length of the curling lane. Assuming a constant coefficient of friction, use conservation of energy to determine how fast the stone was going when it was released.

(b) (10 points) The oncoming stone with a velocity  $v_1$  of 1 m/s bumps a second motionless stone headon. What are the velocities  $v_1$  and  $v_2$  of the two stones after this elastic collision?

| (c) | (5 points) In a bad throw the stone with a velocity of $1\mathrm{m/s}$ bounces perpendicularly of the back end wall of the lane and returns with a velocity of $0.5\mathrm{m/s}$ . What is the average force of the stone on the wall if the collision lasted for $30\mathrm{ms}$ ? |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                     |

Possibly useful relations (feel free to detach this page):

| $\vec{v}_{avq} = \Delta \vec{x} / \Delta t$ | $\vec{a}_{avq} = \Delta \vec{v} / \Delta t$                 |
|---------------------------------------------|-------------------------------------------------------------|
| $x = x_0 + v_0 t + \frac{1}{2}at^2$         | $v = v_0 + at$                                              |
| $v^2 = v_0^2 + 2a(x - x_0)$                 | $v_{avg} = \frac{v_0 + v}{2}$                               |
| $R = \frac{v_0^2}{a} \sin 2\theta$          | $h = \frac{v_0^2}{2a} \sin^2 \theta$                        |
| $ec{F}_{net} = mec{a}$                      | $ec{F}_{BA} = -ec{F}_{AB}$                                  |
| $\vec{W} = m\vec{g}$                        | $0 \le f_s \le \mu_s N$                                     |
| $\vec{g} = 9.80 \mathrm{m/s^2}$ downward    | $f_k = \mu_k N$                                             |
| $\cos \theta = \text{adjacent/hypotenuse}$  | $\tan \theta = \sin \theta / \cos \theta$                   |
| $\sin \theta = \text{opposite/hypotenuse}$  | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$                    |
| $\frac{F}{A} = Y \frac{\Delta L}{L}$        | $F_k = -kx^{2a}$                                            |
| $W = Fd\cos\theta$                          | $KE = \frac{1}{2}mv^2$                                      |
| $W_{ m net} = -\Delta PE$                   | $W_{\text{net}} \stackrel{2}{=} \Delta K E$                 |
| $PE_k = \frac{1}{2}kx^2$                    |                                                             |
| $PE_g = mgh$                                | $P = \frac{W}{\Delta t}$ $\vec{I} = \vec{F}_{avg} \Delta t$ |
| $KE_i + PE_i + W_{nc} = KE_f + PE_f$        | $ec{F}_{net} = rac{\Delta ec{p}}{\Delta t}$                |
| $\mathrm{Eff} = \frac{W_{out}}{E_{in}}$     | $v_1 - v_2 = v_2' - v_1'$                                   |
| $ec{p}=mar{ec{v}}^{m}$                      | $F_c = m\frac{v^2}{r} = mr\omega^2$                         |
| $	heta = rac{s}{r}$                        | $\omega = \frac{\Delta \theta}{\Delta t}$                   |
| $v = r\omega$                               | $a_c = \frac{\Delta t}{r^2} = r\omega^2$                    |
| $f = \frac{1}{T}$                           | $a_c - \frac{1}{r} - r\omega$ $\omega = 2\pi f$             |
| 1  cal = 4.186  J                           | $\omega = 2\pi J$ $F = G \frac{mM}{r^2}$                    |
| $1 \mathrm{Cal} = 1000 \mathrm{cal}$        | $G = 6.67 \times 10^{-11} \mathrm{N \cdot m^2 / kg^2}$      |
|                                             | $G = 0.07 \times 10^{\circ}$ N·III / Kg                     |