Encrypting OVN tunnels with IPsec

Qiuyu Xiao (qiuyu.xiao.qyx@gmail.com)

Ben Pfaff (blp@ovn.org)

Open Virtual Network (OVN)

OVN provides a logical network abstraction on top of a physical network

Open Virtual Network (OVN)

VMs are oblivious to the physical network states

Open Virtual Network (OVN)

Network appliances can be implemented and placed in

the logical network

Physical

Logical

Inner	Inner	
Ethernet	IP	Payload
Header	Header	

ı	Outer	Outer	Outer	Canava	Inner	Inner	
	Ethernet	IP	UDP	Geneve	Ethernet	IP	Payload
١	Header	Header	Header	Header	Header	Header	

ı	Outer	Outer	Outer	Canava	Inner	Inner	
	Ethernet	IP	UDP	Geneve	Ethernet	IP	Payload
١	Header	Header	Header	Header	Header	Header	

ı	Outer	Outer	Outer	Canava	Inner	Inner	
	Ethernet	IP	UDP	Geneve	Ethernet	IP	Payload
١	Header	Header	Header	Header	Header	Header	

Inner	Inner	
Ethernet	IP	Payload
Header	Header	

The Needs for Tunnel Encryption

- VMs compute and communicate sensitive data, e.g., financial and health data
- Physical network devices (e.g., router, switch) cannot be trusted or might be compromised
 - ☐ Traffic across datacenters
 - ☐ Router misconfiguration
 - ☐ Attackers breaking into internal network
 - ☐ Phishing or social engineering attacks on administrators

Encrypting Tunnel Traffic with IPsec

Outer	Outer	Outer	Conovo	Inner	Inner		
Ethernet	IP	UDP	Geneve	Ethernet	IP	Payload	
Header	Header	Header	Header	Header	Header		

IPsec Encryption

Outer	Outer	ESP	
Ethernet	IP	l	
Header	Header	Header	

- Confidentiality
- Integrity
- Authenticity

IKE daemon

- Authentication
- Negotiates cryptographic algorithms
- Generates keying material

IKE daemon

- Authentication
- Negotiates cryptographic algorithms
- Generates keying material
- Installs security policy and security association

IKE daemon

- Authentication
- Negotiates cryptographic algorithms
- Generates keying material
- Installs <u>security policy</u> and security association

Which traffic to protect

IKE daemon

- Authentication
- Negotiates cryptographic algorithms
- Generates keying material
- Installs security policy and <u>security</u> <u>association</u>

How to protect the selected traffic

IPsec kernel stack

- Encryption and decryption
- Checks integrity and authenticity

Configuring IPsec tunnel via ovsdb

Using pre-shared key

For example:

```
root@ubuntu:~# ovs-vsctl add-port br-int tun \
> -- set interface tun type=geneve \
> options:local_ip=10.33.78.172 \
> options:remote_ip=10.33.79.149 \
> options:psk=swordfish
```

Configuring IPsec tunnel via ovsdb

- Using pre-shared key
- Using self-signed certificate

> -- set interface tun type=geneve \

> options:local ip=10.33.78.172 \ > options:remote ip=10.33.79.149 \

ovs-monitor-ipsec IKE daemon ovsdb **→** User space **IPsec kernel** ovs datapath stack root@vm1:~# ovs-vsctl set Open_vSwitch . \ > other config:certificate = /etc/ipsec.d/certs/vml-cert.pem \ > other_config:private_key=/etc/ipsec.d/private/vm1-privkey.pem root@vm1:~# ovs-vsctl add-port br-int tun \ options:remote cert=/etc/ipsec.d/certs/vm2-cert.pem

For example:

Configuring IPsec tunnel via ovsdb

- Using pre-shared key
- Using self-signed certificate
- Using CA-signed certificate

For example:

ovs-monitor-ipsec

ovsdb

User space

IKE daemon

→

Establishing IPsec tunnel

ovs-monitor-ipsec configures IKE daemon

Establishing IPsec tunnel

- ovs-monitor-ipsec configures IKE daemon
- IKE daemon sets up security policy and security association

Establishing IPsec tunnel

- ovs-monitor-ipsec configures IKE daemon
- IKE daemon sets up security policy and security association

For example (geneve tunnel):

```
root@ubuntu:~/debian/4.13# ip xfrm policy show
src 10.33.78.172/32 dst 10.33.79.149/32 proto udp sport 6081
       dir in priority 5888
       tmpl src 0.0.0.0 dst 0.0.0.0
               proto esp reqid 2 mode transport
src 10.33.79.149/32 dst 10.33.78.172/32 proto udp dport 6081
       dir out priority 5888
       tmpl src 0.0.0.0 dst 0.0.0.0
               proto esp reqid 2 mode transport
src 10.33.78.172/32 dst 10.33.79.149/32 proto udp dport 6081
       dir in priority 5888
       tmpl src 0.0.0.0 dst 0.0.0.0
               proto esp regid 1 mode transport
src 10.33.79.149/32 dst 10.33.78.172/32 proto udp sport 6081
       dir out priority 5888
       tmpl src 0.0.0.0 dst 0.0.0.0
                proto esp regid 1 mode transport
```


IPsec kernel stack

- Encryption and decryption
- Checks integrity and authenticity

OVN IPsec

OVN IPsec

- In each hypervisor, configure ovsdb to use CA-signed certificate for authentication
- Enable IPsec by configuring northbound database

For example:

[root@ubuntu:~# ovn-nbctl set nb_global . ipsec=true

ovsdb

- Environment: StrongSwan 5.3.5, Linux 4.4.0, Intel Xeon 2 GHz, 10 Gbps NIC
- iperf generates TCP stream (window size: 85KB), which is encrypted in a single core

- Environment: StrongSwan 5.3.5, Linux 4.4.0, Intel Xeon 2 GHz, 10 Gbps NIC
- iperf generates TCP stream (window size: 85KB), which is encrypted in a single core

- Environment: StrongSwan 5.3.5, Linux 4.4.0, Intel Xeon 2 GHz, 10 Gbps NIC
- iperf generates TCP stream (window size: 85KB), which is encrypted in a single core

- Environment: StrongSwan 5.3.5, Linux 4.4.0, Intel Xeon 2 GHz, 10 Gbps NIC
- iperf generates TCP stream (window size: 85KB), which is encrypted in a single core

Current Status

- Compatible with StrongSwan and LibreSwan IKE daemon
- Packages for Ubuntu and Fedora
- Tutorials on using OVN IPsec
- Need to use OVS upstream kernel module

Future Directions

More flexible tunnel encryption policies:

- Only encrypting tunnel traffic between certain hypervisors
- Only encrypting tunnel traffic from certain logical network

Q&A

