WHAT IS CLAIMED IS:

- 1 1. A double shoulder connection joint (4) for use in a drill stem, having
- a pin (10) with external threads (18) formed between a pin external shoulder (30) and
- 3 a pin face (26),
- a box (12) with internal threads (20) formed between a box external shoulder (28) and
- 5 a box internal shoulder (24),
- 6 the box (12) having a counterbore section (14) between the internal threads (20) and
- 7 the box external shoulder (28),
- 8 the pin having a base section (16) between the external shoulder (30) and the external
- 9 threads (18), and a nose section (22) between the external pin face (26) and the external
- 10 threads (18),
- said internal threads (20) and said external threads (18) are arranged and designed for
- 12 connection with each other so that said box (12) and said pin (10) are connected with a
- common center-line (C/L) and with a primary seal (PS) formed by said pin external shoulder
- 14 (30) forced against said box external shoulder (28) and a secondary shoulder (SS) formed by
- said pin face (26) forced against said box internal shoulder (24), and
- wherein said connection joint is characterized by,
- said internal threads (20) and said external threads (18) having a thread taper (T_{th})
- with respect to said center-line (C/L) which is greater than a thread taper ($T_{th\ lower}$) of 1.0 inch
- per foot, and which is less than an upper limit ($T_{th upper}$) of 1.2 inch per foot.
- 1 2. The connection of claim 1, wherein
- 2 thread form characteristics of pitch, thread major diameter, and thread pitch diameter
- are arranged and designed so that less than 8 turns are required from stabbed to snugged.
- 1 3. The connection of claim 2, wherein

- 2 said turns required from stabbed to snugged is about 6 turns with a thread taper of
- 3 about 1.125 inch per foot.
- 1 4. The connection of claim 1, wherein
- 2 said external and internal threads are characterized by a thread depth (h), measured
- between a major radius $\left(\frac{D_{MJ}}{2}\right)$ and a minor radius $\left(\frac{d_{MI}}{2}\right)$, is about one-half or less of the
- 4 height (H) of a fundamental triangle of the threads.
- 1 5. The connection of claim 1, wherein
- said internal threads (20) and said external threads (18) are characterized by a stab
- flank angle (Θ_S) between about 35 and about 42 degrees and a load flank angle (Θ_P) between
- 4 about 25 and about 34 degrees.
- 1 6. The connection of claim 5, wherein
- said stab flank angle (Θ_S) is about 40 degrees and said load flank angle (Θ_P) is about
- 3 30 degrees.
- 1 7. The connection of claim 1, wherein
- 2 roots of said internal threads (20) and said external threads (18) are formed in a shape
- 3 of a portion of an ellipse (E).
- 1 8. The connection of claim 1, wherein
- said internal threads (20) and said external threads (18) have a threaded taper (T_{th})
- 3 with respect to said center-line (C/L), and
- 4 said internal threads (20) and said external threads (18) are characterized by crests
- 5 having a crest taper (T_C) which slopes at an opposite direction from that of said thread taper
- 6 (T_{th}) .
- 1 9. The connection of claim 5, wherein

- said internal threads (20) and said external threads (18) are characterized by crests,
- 3 and
- a transition shape (44) between said load flank (36) and said crest (42) includes a
- 5 radius of curvature equal to or less than 0.012 inch,
- 6 thereby providing a large load flank.
- 1 10. The connection joint of claim 5, wherein
- said internal threads (20) and said external threads (18) are characterized by thread
- 3 crest widths formed by the truncation of the threads of a total height (H), and
- 4 a transition shape (46) between said stab flank (34) of said crest (42) includes a radius
- of curvature greater than 80% of the said thread crest width, thereby enabling a gradual entry
- 6 of the mating thread during stab-in and make up.
- 1 11. The connection of claim 7, wherein
- 2 roots of said internal threads (20) and said external threads (18) are characterized by
- an elliptical shape that produces a stress concentration factor less than that of a 0.038" root
- 4 radius.
- 1 12. The connection of claim 1, wherein
- 2 said internal threads (20) and said external threads (18) are characterized by a thread
- 3 form with a pitch of about 0.25 inches or greater.
- 1 13. The connection of claim 1, wherein
- said nose section (22) of said pin (10) has a length (L_{PN}) equal to or greater than a
- 3 length (L_{BC}) of said counterbore section (14).
- 1 14. The connection of claim 13, wherein
- said length (L_{PN}) of said pin nose section (22) is about 1.25 inches and said length
- 3 (L_{BC}) of said counterbore section (14) is about 1 inch.
- 1 15. The connection of claim 1, having

- a pin nose cross section area, a counterbore cross-section area and a length L_{TH} of said
- 3 internal threads (20) connected with said external threads (18) that are designed and arranged
- 4 such that torque applied to the assembled connection causes substantial yielding to first occur
- 5 in the weaker of the pin base section or the box counterbore section or of the pin nose.
- 1 16. The connection of claim 1, wherein
- when said pin (10) and said box (12) are connected together, said box external
- 3 shoulder (28) and said pin external shoulder (30) define a Primary Shoulder (PS) and said pin
- 4 face (26) and said box internal shoulder (24) define a Secondary Shoulder (SS), and
- said pin nose length (L_{PN}) , said counterbore length (L_{BC}) , a length (L_{TH}) of said
- 6 internal threads (20) connected with said external threads (18), pin nose cross-sectional area
- 7 (CS_{PN}), box counterbore area (CS_{BC}), pin base section area and tool joint outer and inner
- 8 diameters (TJ_{OD}, TJ_{ID2}) are selected whereby secondary shoulder (SS) stress and primary
- 9 shoulder (PS) stress at surface make-up are within 70% of each other depending on
- manufacturing tolerances of said lengths, areas and diameters.
- 1 17. The connection of claim 2, wherein
- said thread taper (T_{TH}) is about 1.125 inch per foot
- said external and internal threads are characterized by a thread depth (h), measured
- 4 between a major radius $\left(\frac{D_{MJ}}{2}\right)$ and a minor radius $\left(\frac{d_{MI}}{2}\right)$, that is about one-half of the
- 5 height (H) of a fundamental triangle of the threads,
- 6 said internal threads (20) and said external threads (18) are characterized by a stab
- 7 flank angle (Θ_S) between about 35 and about 42 degrees and a load flank angle (Θ_P) between
- 8 about 25 and about 34 degrees.
- 1 18. The connection of claim 2, wherein
- said thread taper (T_{th}) is about 1.125 inch per foot.

- said stab flank angle (Θ_S) is about 40 degrees and said load flank angle is about 30
- 4 degrees,
- 5 roots of said internal threads (20) and said external threads (18) are formed in a shape
- of a portion of an ellipse (E),
- said internal threads (20) and said external threads (18) have a threaded taper (T_{th})
- 8 with respect to said center-line (C/L), and
- 9 said internal threads (20) and said external threads (18) are characterized by crests
- having a crest taper (T_c) which slopes in an opposite direction with respect to said centerline
- 11 (C/L) than that of said thread taper (T_{TH}) .
- 1 19. The connection of claim 18, wherein
- 2 said internal threads (20) and said external threads (18) are characterized by a thread
- 3 form with a pitch of about 0.25 inch or greater,
- said length (L_{PN}) of said pin nose section (22) is about 1.25 inches and said length
- 5 (L_{BC}) of said counterbore section (14) is about 1 inch, and
- said pin nose cross section area, said counterbore cross-section area and a length L_{TH}
- 7 of said internal threads (20) connected with said external threads (18) are designed and
- 8 arranged such that strength of the connected threads with torque applied is greater than the
- 9 strength of said pin nose (22) or said box counterbore (14) or said pin base.
- 1 20. The connection of claim 19, wherein
- when said pin (10) and said box (12) are connected together, said box external
- 3 shoulder (28) and said pin external shoulder (30) define a Primary Shoulder (PS) and said pin
- 4 face (26) and said box internal shoulder (24) define a Secondary Shoulder (SS), and
- said pin nose length (L_{PN}) , said counterbore length (L_{BC}) , a length (L_{TH}) of said
- 6 internal threads (20) connected with said external threads (18), pin nose cross-sectional area
- 7 (CS_{PN}), box counterbore area (CS_{BC}) and tool joint outer and inner diameters (TJ_{OD} , TJ_{ID2}) are

- 8 selected whereby secondary shoulder (SS) longitudinal stress and primary shoulder (PS)
- 9 longitudinal stress at surface make-up torque are within 70% of each other, depending on
- manufacturing tolerances of said lengths, areas and diameters.
- 1 21. A double shoulder connection (4) for use in a drill stem, having
- a pin (10) with external threads (18) formed between a pin external shoulder (30) and
- 3 a pin face (26),
- a box (12) with internal threads (20) formed between a box face (28) and a box
- 5 internal shoulder (24),
- 6 the box (12) having a counterbore section (14) between the internal threads (20) and
- 7 the box external shoulder (28),
- 8 the pin having a base section (16) between the external shoulder (30) and the external
- 9 threads (18), and a nose section (22) between the external pin face (26) and the external
- 10 threads (18),
- said internal threads (20) and said external threads (18) are arranged and designed for
- 12 connection with each other so that said box (12) and said pin (10) are connected with
- 13 common center-line (C/L) and with a primary seal (PS) formed by said pin external shoulder
- 14 (30) forced against said box face (28) and a secondary shoulder (SS) formed by said pin face
- 15 (26) forced against said box internal shoulder (24), and
- wherein said connection is characterized by
- said internal threads (20) and said external threads (18) have a stab flank angle (Θ_s)
- between about 35 and about 42 degrees and a load flank angle (Θ_P) between about 25 and
- 19 about 34 degrees.
- 1 22. The connection of claim 21, wherein

- 2 said external and internal threads having a thread depth (h), measured between a
- major radius $\left(\frac{D_{MJ}}{2}\right)$ and a minor radius $\left(\frac{d_{MI}}{2}\right)$, that is about one-half of the height (H) of a
- 4 fundamental triangle of the threads.
- 1 23. The connection of claim 21, wherein
- said stab flank (Θ_S) angle is about 40 degrees and said load flank angle is about 30
- 3 degrees.
- 1 24. The connection of claim 21, wherein
- 2 roots of said internal threads (20) and said external threads (18) are formed in a shape
- of a portion of an ellipse (E).
- 1 25. The connection of claim 21, wherein
- said internal threads (20) and said external threads (18) have a threaded taper (T_{th})
- 3 with respect to said center-line (C/L), and
- said internal threads (20) and said external threads (18) are characterized by crests
- 5 having a crest taper (T_C) which slopes in an opposite direction with respect to said centerline
- 6 (C/L) than that of said thread taper (T_{th}) .
- 1 26. The connection of claim 21, wherein
- said internal threads (20) and said external threads (18) are characterized by crests,
- 3 and
- a transition shape (44) between said load flank (36) and said crest (42) includes a
- 5 radius of curvature equal to or less than 0.012 inch,
- 6 thereby providing a large load flank.
- 1 27. The connection of claim 21, wherein
- 2 said internal threads (20) and said external threads (18) are characterized by thread
- 3 crest widths formed by the truncation of the threads of a total height (H), and

- 4 a transition shape (46) between said stab flank (34) of said crest (42) includes a radius
- 5 of curvature greater than 80% of the said thread crest width, thereby enabling a gradual entry
- 6 of the mating thread during stab-in and make up.
- 1 28. The connection of claim 21, wherein
- 2 roots of said internal threads (20) and said external threads (18) are characterized by
- an elliptical shape that produces a stress concentration less than that of a 0.038 inch root.
- 1 29. The connection of claim 22, wherein
- said internal threads (20) and said external threads (18) have a taper (T_{th}) with respect
- 3 to said center-line (C/L) of about 1.125 inch per foot.
- 1 30. A double shoulder connection (4) for use in a drill stem, having
- a pin (10) with external threads (18) formed between a pin external shoulder (30) and
- 3 a pin face (26),
- a box (12) with internal threads (20) formed between a box external shoulder (28) and
- 5 a box internal shoulder (24),
- 6 the box (12) having a counterbore section (14) between the internal threads (20) and
- 7 the box external shoulder (28),
- 8 the pin having a base section (16) between the external shoulder (30) and the external
- 9 threads (18), and a nose section (22) between the external pin face (26) and the external
- 10 threads (18),
- said internal threads (20) and said external threads (18) are arranged and designed for
- 12 connection with each other so that said box (12) and said pin (10) are connected with
- common center-line (C/L) and with a primary seal (PS) formed by said pin external shoulder
- 14 (30) forced against said box external shoulder (28) and a secondary shoulder (SS) formed by
- said pin face (26) forced against said box internal shoulder (24), and
- wherein said connection is characterized by

- said internal threads (20) and said external threads having crests (42), and
- said internal threads (20) and said external threads have a crest taper (T_C) which
- 19 slopes in a different direction from the center line of the drill pipe joint than a direction of
- slope from the centerline of said thread taper (T_{th}) .
- 1 31. The connection of claim 30, wherein
- 2 said internal threads (20) and said external threads are characterized by a stab flank
- angle of (Θ_S) between about 35 and 42 degrees and a load flank angle (Θ_P) between about 25
- 4 and 33 degrees.
- 1 32. The connection of claim 31, wherein
- said stab flank angle (Θ_S) is about 40 degrees and said load flank angle (Θ_P) is about
- 3 30 degrees.
- 1 33. The connection of claim 32, wherein
- 2 said internal threads (20) and said external threads (18) are characterized by thread
- 3 crest widths formed by the truncation of the threads of a total height (H), and
- 4 a transition shape (46) between said stab flank (34) of said crest (42) includes a radius
- 5 of curvature greater than 80% of the said thread crest width, thereby enabling a gradual entry
- 6 of the mating thread during stab-in and make up.
- 1 34. A drill string comprising,
- a first drill pipe (2) with a threaded box tool joint (12) welded (6) to an upset portion
- 3 (3) thereof and a second drill pipe (2') with a threaded pin tool joint (10) welded to an upset
- 4 portion (3') thereof, with said threaded pin tool joint (10) screwed into connection with said
- 5 box tool joint (12) wherein
- said first and second (2, 2') drill pipes are characterized by a pipe outer diameter (P_{OD})
- 7 and a pipe inner diameter (P_{ID}) , and by a pipe upset inner diameter (PU_{ID}) ,

0	said pili tool joint (10) and said box tool joint (12) are characterized by a tool joint
9	outer diameter (TJ_{OD}) , by a first tool joint inner diameter (TJ_{IDI}) at each weld end thereof and
10	by a tool joint inner diameter (TJ_{ID2}) in a region adjacent box threads and pin threads wherein
11	said tool joint outer diameter TJ_{OD} is larger than said pipe outer diameter P_{OD} ,
12	said pipe upset inner diameter (PU_{ID}) in smaller than said pipe inner diameter (P_{ID}),
13	said pipe upset inner diameter (PU_{ID}) is larger than said tool joint inner diameter
14	(TJ_{ID2}) , and
15	said first tool joint inner diameter (TJ_{IDI}) is substantially equal to said pipe upset inner
16	diameter (PU_{ID}) and said tool joint inner diameter (TJ_{ID2}) is smaller than said first tool joint
17	inner diameter (TJ_{IDI}) , wherein a wall thickness of said tool joint adjacent said pin and
18	threads is enhanced for providing increased torque strength of the connection, and
19	a length of tool joint characterized by TJ_{ID2} is not greater than about 2/3 of the total
20	tool joint length (L_{TJ}) .
1	35. A double shoulder connection (4) for use in a drill stem, having
2	a pin (10) with external threads (18) formed between a pin external shoulder (30) and
3	a pin face (26),
4	a box (12) with internal threads (20) formed between a box external shoulder (28) and
5	a box internal shoulder (24),
6	the box (12) having a counterbore section (14) between the internal threads (20) and
7	the box external shoulder (28),
8	the pin having a base section (16) between the external shoulder (30) and the external
9	threads (18), and a nose section (22) between the external pin face (26) and the external
10	threads (18),
11	said internal threads (20) and said external threads (18) are arranged and designed for

connection with each other so that said box (12) and said pin (10) are connected with

12

- common center-line (C/L) and with a primary seal (PS) formed by said pin external shoulder
- 14 (30) forced against said box external shoulder (28) and a secondary shoulder (SS) formed by
- said pin face (26) forced against said box internal shoulder (24), and
- wherein said drill pipe joint is characterized by
- a pin nose cross section area, CS_{PN} which is at least 50% as large as the smaller of the
- area of the cross section of box counterbore CS_{BC} or the cross-section of the pin base CS_{PB} ,
- 19 and
- the pin nose length L_{PN} is from about 1 to 1.5 times the counterbore length L_{BC} .
- 1 36. The connection (4) of claim 35 wherein
- said counterbore section is characterized by a length L_{BC} of about 3/4".
- 1 37. The connection (4) of claim 36 wherein
- 2 thread characteristics of pitch, thread major diameter, and pitch diameter are arranged
- 3 and designed so that less than 8 turns are required from stabbed to snugged.