第二十八届全国信息学奥林匹克竞赛

CCF NOI 2011

第一试

竞赛时间: 2011 年 8 月 8 日上午 8:00-13:00

题目名称	兔农	智能车比赛	阿狸的打字机
目录	rabbit	car	type
可执行文件名	rabbit	car	type
输入文件名	rabbit.in	car.in	type.in
输出文件名	rabbit.out	car.out	type.out
每个测试点时限	1秒	1秒	1秒
内存限制	256M	256M	256M
测试点数目	20	10	10
每个测试点分值	5	10	10
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型

提交源程序须加后缀

对于 Pascal 语言	rabbit.pas	car.pas	type.pas
对于 C 语言	rabbit.c	car.c	type.c
对于 C++ 语言	rabbit.cpp	car.cpp	type.cpp

注意: 最终测试时,所有编译命令均不打开任何优化开关。

兔农

【问题描述】

农夫栋栋近年收入不景气,正在他发愁如何能多赚点钱时,他听到隔壁的小朋友在讨论兔子繁殖的问题。

问题是这样的:第一个月初有一对刚出生的小兔子,经过两个月长大后,这对兔子从第三个月开始,每个月初生一对小兔子。新出生的小兔子生长两个月后又能每个月生出一对小兔子。问第 n 个月有多少只兔子?

聪明的你可能已经发现,第n个月的兔子数正好是第n个 *Fibonacci*(**斐波那契**)数。栋栋不懂什么是 Fibonacci 数,但他也发现了规律:第i+2个月的兔子数等于第i个月的兔子数加上第i+1个月的兔子数。前几个月的兔子数依次为:

1 1 2 3 5 8 13 21 34 ...

栋栋发现越到后面兔子数增长的越快,期待养兔子一定能赚大钱,于是栋栋 在第一个月初买了一对小兔子开始饲养。

每天,栋栋都要给兔子们喂食,兔子们吃食时非常特别,总是每k对兔子围成一圈,最后剩下的不足k对的围成一圈,由于兔子特别害怕孤独,<u>从第三个月</u>开始,如果吃食时围成某一个圈的只有一对兔子,这对兔子就会很快死掉。

我们假设死去的总是刚出生的兔子,那么每个月的兔子数仍然是可以计算的。例如,当 k=7 时,前几个月的兔子数依次为:

1 1 2 3 5 **7** 12 19 31 **49** 80 ...

给定 n,你能帮助栋栋计算第 n 个月他有多少<mark>对</mark>兔子么?由于答案可能非常大,你只需要告诉栋栋第 n 个月的兔子对数除 p 的余数即可。

【输入格式】

从文件 rabbit.in 中读入数据。

输入一行,包含三个正整数 n, k, p。

【输出格式】

输出到文件 rabbit.out 中。

输出一行,包含一个整数,表示栋栋第n个月的兔子对数除p的余数。

【样例输入1】

6 7 100

【样例输出1】

7

【样例输入2】

7 75

【样例输出2】

2

【数据规模与约定】

所有测试数据的范围和特点如下表所示

测试点编号	n 的规模	k, p 的规模	
1			
2			
3		2ch mc1000	
4			
5	1≤ <i>n</i> ≤50		
6	1 <u>>11>30</u>	2≤k, p≤1000	
7			
8			
9			
10			
11	1≤ <i>n</i> ≤80	2≤k, p≤10,000	
12	1≤ <i>n</i> ≤1000	2≤k, p≤10,000	
13	1 <u></u>		
14	1≤ <i>n</i> ≤10 ⁶	2≤k, p≤10 ⁶	
15	1_11_10		
16	$1 \le n \le 10^{18}$	2≤k, p≤1000	
17	1_11_10		
18		$2 \le k \le 10^6$, $2 \le p \le 10^9$	
19	$1 \le n \le 10^{18}$		
20			

智能车比赛

【问题描述】

新一届智能车大赛在 JL 大学开始啦! 比赛赛道可以看作是由 n 个矩形区域拼接而成(如下图所示),每个矩形的边都平行于坐标轴,第 i 个矩形区域的左下角和右上角坐标分别为 $(x_{i,1},y_{i,1})$ 和 $(x_{i,2},y_{i,2})$ 。

题目保证: $x_{i,1} < x_{i,2} = x_{i+1,1}$,且 $y_{i,1} < y_{i,2}$,相邻两个矩形一定有重叠在一起的边(如图中虚线所示),智能车可以通过这部分穿梭于矩形区域之间。

选手们需要在最快的时间内让自己设计的智能车从一个给定的起点 S 点到 达一个给定的终点 T 点,且智能车不能跑出赛道。假定智能车的速度恒为 v 且转 向不消耗任何时间,你能算出最快需要多少时间完成比赛么?

【输入格式】

从文件 car.in 中读入数据。

输入的第一行包含一个正整数n,表示组成赛道的矩形个数。

接下来 n 行描述这些矩形,其中第 i 行包含 4 个整数 $x_{i,1}, y_{i,1}, x_{i,2}, y_{i,2}$,表示第 i 个矩形左下角和右上角坐标分别为 $(x_{i,1}, y_{i,1})$ 和 $(x_{i,2}, y_{i,2})$ 。

接下来一行包含两个整数xs, vs,表示起点坐标。

接下来一行包含两个整数 x_T , y_T ,表示终点坐标。

接下来一行包含一个实数 $v(1 \le v \le 10)$, 表示智能车的速度。

【输出格式】

输出到文件 car.out 中。

仅输出一个实数,至少精确到小数点后第六位,为智能车完成比赛的最快时间。

【评分标准】

对于每个测试点,如果你的输出结果和参考结果相差不超过 10^{-6} ,该测试点得满分,否则不得分。

【样例输入】

30

1.0

【样例输出】

2.41421356

【数据规模与约定】

所有测试数据的范围和特点如下表所示

测试点编号	n 的规模	约定
1	<i>n</i> ≤1	
2	5	
3	<i>n</i> ≤5	
4		
5	<i>n</i> ≤200	所有坐标均为整数
6		且绝对值不超过 40000
7		
8	<i>n</i> ≤2000	
9		
10		

阿狸的打字机

【问题描述】

阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。打字机上只有 28 个按键,分别印有 26 个小写英文字母和'**B**'、'**P**'两个字母。

经阿狸研究发现,这个打字机是这样工作的:

- 输入小写字母, 打字机的一个凹槽中会加入这个字母(按 P 前凹槽中至 少有一个字母)。
- 按一下印有'B'的按键,打字机凹槽中最后一个字母会消失。
- 按一下印有'**P'**的按键, 打字机会在纸上打印出凹槽中现有的所有字母并 换行, 但凹槽中的字母不会消失(保证凹槽中至少有一个字母)。

例如,阿狸输入 aPaPBbP,纸上被打印的字符如下:

а

aa

ab

我们把纸上打印出来的字符串从 1 开始顺序编号,一直到 n。打字机有一个非常有趣的功能,在打字机中暗藏一个带数字的小键盘,在小键盘上输入两个数 (x,y)(其中 $1 \le x,y \le n$),打字机会显示第 x 个打印的字符串在第 y 个打印的字符串中出现了多少次。

阿狸发现了这个功能以后很兴奋,他想写个程序完成同样的功能,你能帮助他么?

【输入格式】

从文件 type.in 中读入数据。

输入的第一行包含一个字符串,按阿狸的输入顺序给出所有阿狸输入的字符。 第二行包含一个整数 *m*,表示询问个数。

接下来 m 行描述所有由小键盘输入的询问。其中第 i 行包含两个整数 x, y, 表示第 i 个询问为(x, y)。

【输出格式】

输出到文件 type.out 中。

输出m行,其中第i行包含一个整数,表示第i个询问的答案。

【样例输入】

aPaPBbP

3

1 2

1 3

2 3

【样例输出】

2

1

0

【数据规模与约定】

所有测试数据的范围和特点如下表所示

测试点编				输入总长
例 以 点 编 号	n的规模	m 的规模	字符串长度	(输入文件第一行的字符 数)
1	1≤n≤100	1≤ <i>m</i> ≤	/	≤100
2	1_11_100	1000	,	=100
3			单个长度	
4	1≤ <i>n</i> ≤1000	1≤ <i>m</i> ≤ 10 ⁴	≤1000 总长度≤10 ⁵	$\leq 10^{5}$
5				
6	$1 \le n \le 10^4$	$1 \le m \le 10^5$	总长度≤10⁵	$\leq 10^{5}$
7				
8				
9	$1 \le n \le 10^5$	$1 \le m \le 10^5$	/	$\leq 10^{5}$
10				