Warm Up: Kinematics in 2D and 3D

Prof. Jordan C. Hanson

September 21, 2022

1 Memory

- 1. $y(t) = -\frac{1}{2}gt^2 + v_{i,y}t + y_i$... Accelerating system vertically.
- 2. $x(t) = v_{i,x}t + x_i$... Constant velocity horizontally.
- 3. $v_f^2 = v_i^2 + 2a(x_f x_i)$... Kinematic equation without time.

2 Kinematics in 2D and 3D

- 1. Imagine a system propagating through 3D space with a velocity vector $\vec{v} = (2t^2 t)\hat{i} + 2t\hat{j}$. (a) Write the acceleration vector by taking the derivative. (b) What is $\vec{a}(0.5)$?
- 2. Suppose a system is thrown into the air, accelerating downwards due to gravity, but proceeding horizontally at constant velocity.
 - We have shown in a previous calculation that the trajectory follows $y(x) = -ax^2 + b$, with $b = \tan \theta$ and $a = \frac{1}{2}g/v_{i,x}^2$.
 - Note in Fig. 1 that breaks the initial velocity v_i into two components:

Figure 1:

- Convince yourself that the x-component of the initial velocity is $v_{i,x} = v_i \cos \theta$, and $v_{i,y} = v_i \sin \theta$ by performing Pythagorean theorem to get the hypoteneuse.
- Suppose a system is launched at a 60 degree angle with speed $v_i = 20$ m/s from the origin. (a) Where will it land? (b) How fast is it going when it lands?