Solutions to Odd-numbered Exercises

of A First Look at Rigorous Probability Theory (Rosenthal, 2006)

Jacob Louis Hoover

Chapter 2: Probability Triples

Exercise (2.2.3)

Prove that the collection $\mathcal{J} = \{all \text{ intervals contained in } [0,1] \}$ is a semialgebra of subsets of Ω , meaning that it contains \emptyset and Ω , it is closed under finite intersection, and the complement of any element of \mathcal{J} is equal to a finite disjoint union of elements of \mathcal{J} .

Solution

Show it obeys the requirements

- by definition $\mathcal J$ contains \emptyset and Ω
- the intersection of any finite number of intervals is an interval
- complement of any interval can be made by taking the union of disjoint intervals (only at most two are needed: before and after).

Exercise (2.2.5)

- (a) Prove that $\mathcal{B}_0 = \{ \text{all finite unions of elements of } \mathcal{J} \}$ is an algebra (or field) of subsets of Ω , meaning that it contains Ω and \emptyset , and is closed under formation of complements and of finite unions and intersections.
- **(b)** Prove that \mathcal{B}_0 is <u>not</u> a σ -algebra.

Solution

- (a) by definition \mathcal{B}_0 it contains \emptyset and Ω
 - it is closed under formation of complements because the complement of any element of \mathcal{J} is a finite disjoint union of elements of \mathcal{J} , which is in \mathcal{B}_0 by definition
 - likewise it is closed under finite unions, since any finite union of elements of \mathcal{B}_0 is a finite union of elements of \mathcal{J} .
 - for any finite set $\{A_i\}_i$ of elements of \mathcal{B}_0 , the intersection $\bigcap A_i = (\bigcup A_i^c)^c \in \mathcal{B}_0$ by closure under complements and finite unions.
- (b) Assume \mathcal{B} is a σ -algebra. Then it is closed under formation of countable unions. Take the set $N = \bigcup_{n \in \mathbb{N}} (\frac{1}{2^{n+1}}, \frac{1}{2^n})$, which is a countable union of intervals in [0,1], so it is in \mathcal{B} . However, the set N consists of an infinite number of disjoint intervals, so it cannot be constructed from finite union of intervals, thus is not in \mathcal{B}_0 . Contradiction.

References

Rosenthal, Jeffrey S (Nov. 2006). A First Look at Rigorous Probability Theory. 2nd ed. World Scientific.