Introduction to Machine Learning

Raphael Cobe December 11th, 2018

Artificial Inteligence - A.I.

Inside AI

Many related areas;

What is Al?

- Making computers that think?
- The automation of activities we associate with human thinking, like decision making, learning ... ?
- The art of creating machines that perform functions that require intelligence when performed by people?
- The study of mental faculties through the use of computational models?
- Anything in Computing Science that we don't yet know how to do properly? (!)

What is Al?

Systems that think like humans? Systems that think rationally?

Systems that act like humans? Systems that act rationally?

- Uses the "Imitation Game"
- Usual method:
 - Three people play (man, woman, and interrogator)
 - Interrogator determines which of the other two is a woman by asking questions
 - Example: How long is your hair?
 - Typewritten or repeated by an intermediary

- · Requires success in:
 - Natural language processing: communicate with the interrogator;
 - Knowledge representation: store and retrieve what it knows;
 - Automated reasoning: use the stored information to answer questions and to draw new conclusions;
 - Machine learning: adapt to new circumstances and to detect and extrapolate patterns

- Not a big effort to try to pass the Turing test;
- Acting like a human:
 - When Al programs have to interact with people
 - e.g. when an expert system explains how it came to its diagnosis;
 - e.g. natural language processing system has a dialogue with a user.
- When programs must behave according to certain normal conventions of human interaction?
- Underlying representation and reasoning may or may not be based on a human model.

What is inside A.I.?

- Search (includes Game Playing).
- · Representing Knowledge and Reasoning with it.
- · Planning;
- Learning;
- Natural language processing.
- Interacting with the Environment (e.g. Vision, Speech recognition, Robotics)

Machine Learning

Types of Learning

- Supervised learning
 - Training data includes desired outputs
- Unsupervised learning
 - Training data does not include desired outputs
- Semi-supervised learning
 - Training data includes a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud
- · Regression, Classification or a Mix.

Unsupervised Learning

- Learning what normally happens
 - Based on the underlying (unknown) data structure;
- Not based on examples;

"we have a bunch of data and we want to know how to separate it into meaningful groups"

- Clustering: Grouping similar instances
- · Other applications: Summarization, Association Analysis

R and Machine Learning

- lot of good machine learning packages;
- Each package in R is like its own mini-ecosystem that requires a little bit of understanding first before going all out with it;
- Sometimes, you might need to select a package you're less familiar with for its specific functionality and leave your favorite one behind;

Why Build Models?

- Fundamental aspect of machine learning;
- Offer a static picture of what the data shows;
- A report is a static entity that doesn't offer an intuition as to how it evolves over time.
 - E.g.: "A distribution of vehicle fuel efficiency based on the built-in mtcars dataset, found in R".

Why Build Models

A model is any sort of function that has predictive power!

Why Build Models

How do we turn this boring R eport into something more useful?

How do we bridge the gap between reporting and machine learning?

Regression

Linear Regression

- Regression analysis is used to describe the relationship between:
- A single response variable: Y; and
- One or more predictor variables: $X_1, X_2, ..., X_n$
 - n = 1: Simple Regression
 - n > 1: Multivariate Regression

Linear Regression

 Model a continuous variable Y as a mathematical function of one or more X variable(s);

$$\widehat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n$$

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- β_0 (Intercept): point in which the line intercepts the yaxis;
- β_1 (Slope): increase in Y per unit change in X.

We want to find the equation of the line that *best* fits the data. It means finding b_0 and b_1 such that the fitted values of y_i , given by

$$\hat{y_i} = b_0 + b_1 x_i$$

are as *close* as possible to the observed values y_i .

Residuals

• The difference between the observed value y_i and the fitted value $\hat{y_i}$: $e_i = y_i - \hat{y_i}$

A usual way of calculating b_0 and b_1 is based on the minimization of the sum of the squared residuals;

Regression in R with lm() function:

```
cars.lm1 <- lm(mpg ~ hp, data = mtcars);
plot(x=mtcars$hp, y=mtcars$mpg);
abline(cars.lm1);</pre>
```


Check with summary() some details of the model:

```
summary(cars.lm1);
##
## Call:
## lm(formula = mpg ~ hp, data = mtcars)
## Residuals:
              1Q Median 3Q
      Min
                                     Max
## -5.7121 -2.1122 -0.8854 1.5819 8.2360
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 30.09886    1.63392    18.421 < 2e-16 ***
         -0.06823 0.01012 -6.742 1.79e-07 ***
## hp
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.863 on 30 degrees of freedom
## Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892
## F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07
```

Obtain fitted values with fitted():

```
plot(fitted(cars.lm1), residuals(cars.lm1));
abline(a=0,b=0); # Intercept and Slope
```


Residual Standard Error - RSE:

- Derived from the Residual Sum of Squares RSS;
- Associated with each observation is an error term ϵ :

$$y_i = b_0 + b_1 x_i + \epsilon_i$$

- Even if we knew the true regression line, we would not be able to perfectly predict *Y* from *X*;
- The RSE is an estimate of the standard deviation of ϵ ;
- The average amount that the response will deviate from the true regression line

Residual Standard Error - RSE:

- · a measure of the lack of fit of the model to the data;
- If the predictions obtained using the model are very close to the true outcome:
 - RSE will be small, and we can conclude that the model fits the data very well;
- If \hat{y}_i is very far from y_i for one or more observations, then:
 - The RSE may be quite large, indicating that the model doesn???t fit the data well;

R^2 :

- Provides an alternative measure to RSE;
- "Unitless";
- The proportion of variance explained;
- Always takes on a value between 0 and 1;
- Independent of the scale of Y;

R^2 :

- Statistic close to 1:
 - A large proportion of the variability in the response has been explained by the regression.
- · A value near 0:
 - Indicates that the regression did not explain much of the variability in the response;
- it can still be challenging to determine what is a good R^2 value;
 - depend on the application;

Linear Regression

Quick Challenge: Investigate if the Car Weight has some impact on its Fuel Efficiency. How good is your model?

Multiple Linear Regression

• Extend the simple linear regression model to directly accommodate multiple predictors:

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n$$

Multiple Linear Regression

- · The values of radio and TV better explain the variance;
- Fitting a separate simple linear regression model for each predictor is bad;
- Each of the three regression equations ignores the other two media;

Multiple Linear Regression

Multiple Linear Regression

In R (define a more complex formula):

formula = sales ~ TV + radio + newspaper;

$$sales = \beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper + \epsilon$$

Quick Challenge

- Use the Prestige dataset in cars dataset;
- Answer the questions:
 - 1. Is at least one of the predictors X1, X2, ..., Xp useful in predicting the response?
 - 2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
 - 3. How well does the model fit the data?

Polynomial Regression

- Fitting a higher degree function to the data;
- Differs from the simple linear cases by having multiple degrees for each feature in the dataset;

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2^2 + \dots + \beta_n X_n^n$$

Polynomial Regression in R

Use the poly() function while defining the formula:

```
lm2 <- lm(pop$uspop ~ poly(pop$year, 2))</pre>
```

Classification

Binary Classification

- You want to see if a given data point is of a categorical nature instead of numeric;
- e.g., Discover whether or not a car is automatic by examining its Fuel Efficiency;
- Fitting a linear regression model to this data would not work, because we cannot have half a transmission value;
- · Logistic regression model;
 - Logit Function;

Logistic Regression

· Challenge: perform the same analysis using the iris dataset. Classify try to classify the setosa species in terms of Sepal Width and Length;

Decision Trees

- a tree is a structure that has nodes and edges;
- For a decision tree, at each node we might have a value against which we split in order to gain some insight from the data;

Decision Trees

Challenge: Use the Iris dataset to perform an analysis of theis species using Decision Trees.

Support Vector Machines

- Optimal hyperplane for linearly separable patterns;
- Extend to patterns that are not linearly separable by transformations of original data to map into new space
 - the Kernel function

Support Vector Machines

Support Vector Machines

- In R use the svm() function;
- define the Kernel Family;
 - Linear, Radial, etc...

SVM classification plot

Unsupervised Methods

KMeans

- clusters are represented by a central vector or a centroid
 - This centroid might not necessarily be a member of the dataset;
- iterative clustering algorithm;
- notion of similarity
 - derived by how close a data point is to the centroid of the cluster;
- The initial number of centroids should be specified;

Challenge

CMS Calorimeter

• The CMS barrel calorimeter

The Challenge

- Use the variables inside the dataset and try to build the particle clusters.
 Be aware that the dataset contains the cluster to which the particle belongs the jet variable.
- Try classification algorithms. How we assess the quality of the models proposed?