Feuille 4: Information de Fisher et vraisemblance

Exercice 1 Soient X la variable aléatoire réelle de loi

$$\mathbb{P}(X = k) = e^{-\lambda^a} \frac{\lambda^{ak}}{k!}, \qquad k \in \mathbb{N},$$

 $n \in \mathbb{N}^*$, et (X_1, \dots, X_n) un *n*-échantillon de X. Le paramètre $a \neq 0$ est un réel connu et le paramètre $\lambda > 0$ est un réel inconnu.

- 1. Montrer que le modèle considéré appartient à la famille des modèles exponentiels.
- 2. Montrer que l'information de Fisher est

$$I_n(\lambda) = na^2 \lambda^{a-2}$$
.

Exercice 2 Soient X la variable aléatoire réelle de densité

$$f(x) = \begin{cases} \frac{1+\theta}{(x+\theta)^2} & \text{si } x \geqslant 1, \\ 0 & \text{sinon,} \end{cases}$$

 $n \in \mathbb{N}^*$, et (X_1, \ldots, X_n) un n-échantillon de X. Le paramètre $\theta > -1$ est un réel inconnu. On admet que le modèle est suffisamment régulier pour impliquer l'existence de l'information de Fisher et du théorème de Cramer-Rao. Montrer que l'information de Fisher est

$$I_n(\theta) = \frac{n}{3(1+\theta)^2}.$$

Exercice 3 La durée de vie en heures d'un certain type d'ampoule est une variable aléatoire réelle X de densité

$$f(x) = \begin{cases} \theta^2 x e^{-\theta x} & \text{si } x \geqslant 0, \\ 0 & \text{sinon.} \end{cases}$$

Soient $n \in \mathbb{N}^*$, et (X_1, \dots, X_n) un n-échantillon de X. Ici, $\theta > 0$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

- 1. Montrer que le modèle considéré appartient à la famille des modèles exponentiels.
- 2. Calculer l'information de Fisher $I_n(\theta)$.
- 3. Déterminer un estimateur de θ par la méthode des moments.
- 4. Déterminer un estimateur $\hat{\theta}_n^{MV}$ de θ par la méthode du maximum de vraisemblance et donner son risque quadratique.
- 5. Proposer un estimateur sans biais et comparer le à l'estimateur du maximum de vraisemblance.

6. Étudier la convergence en loi de la suite de variables aléatoires réelles $\sqrt{n}(\hat{\theta}_n^{MV} - \theta)$.

Exercice 4 Soient X une variable aléatoire réelle de densité

$$f(x) = \begin{cases} \frac{1}{\theta} x^{-1 - \frac{1}{\theta}} & \text{si } x \geqslant 1, \\ 0 & \text{sinon,} \end{cases}$$

 $n \in \mathbb{N}^*$, et (X_1, \dots, X_n) un n-échantillon de X. Ici, $\theta > 0$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

- 1. Montrer que le modèle considéré appartient à la famille des modèles exponentiels.
- 2. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\theta}_n$ de θ . Est-il sans biais?
- 3. Calculer l'information de Fisher $I_n(\theta)$.
- 4. Comparer $I_n(\theta)$ avec $\mathbb{V}\left(\widehat{\theta}_n\right)$. En déduire que $\widehat{\theta}_n$ est un estimateur efficace de θ .

Exercice 5 Soient X une variable aléatoire réelle de densité

$$f(x) = \begin{cases} \frac{\theta}{x^{\theta+1}} & \text{si } x \geqslant 1, \\ 0 & \text{sinon,} \end{cases}$$

 $n \in \mathbb{N}^*$, et (X_1, \dots, X_n) un *n*-échantillon de X. Ici, θ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

- 1. Montrer que le modèle considéré appartient à la famille des modèles exponentiels.
- 2. On suppose que $\theta > 1$. Déterminer un estimateur $\hat{\theta}$ de θ par la méthode des moments.
- 3. On suppose maintenant que $\theta > 0$. Montrer que la méthode des moments n'est pas applicable et calculer l'estimateur du maximum de vraisemblance $\tilde{\theta}$.
- 4. Calculer l'information de Fisher $I_n(\theta)$.
- 5. Étudier la convergence en loi de la suite de variables aléatoires réelles $\sqrt{n}(\tilde{\theta}_n \theta)$.
- 6. L'estimateur $\tilde{\theta}$ est-il asymptotiquement efficace?

Exercice 6 Soient X une variable aléatoire réelle de densité

$$f(x) = \frac{1}{2\theta} e^{-\frac{|x|}{\theta}}, \qquad x \in \mathbb{R},$$

 $n \in \mathbb{N}^*$, et (X_1, \dots, X_n) un n-échantillon de X. Ici, $\theta > 0$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

- 1. Montrer que le modèle considéré appartient à la famille des modèles exponentiels.
- 2. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\theta}_n$ de θ .
- 3. Montrer que $\widehat{\theta}_n$ est un estimateur efficace de θ .

4. Étudier la convergence en loi de la suite de variables aléatoires réelles $\left(\sqrt{I_n(\theta)}\left(\widehat{\theta}_n - \theta\right)\right)_{n \in \mathbb{N}^*}$. On suppose que n est suffisamment grand pour approcher la loi de $\sqrt{I_n(\theta)}\left(\widehat{\theta}_n - \theta\right)$ à cette loi limite. En utilisant cette approximation, déterminer un intervalle de confiance pour θ au niveau asymptotique 95%.

Exercice 7 La durée de vie en heures d'un certain type d'ampoule est une variable aléatoire réelle X de densité

$$f(x) = \begin{cases} \theta e^{-\theta x} & \text{si } x \geqslant 0, \\ 0 & \text{sinon.} \end{cases}$$

Soient $n \in \mathbb{N}^*$, et (X_1, \ldots, X_n) un n-échantillon de X. Ici, $\theta > 0$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \ldots, X_n) .

- 1. Montrer que le modèle considéré appartient à la famille des modèles exponentiels.
- 2. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\theta}_n$ de θ .
- 3. Calculer l'information de Fisher $I_n(\theta)$.
- 4. Étudier la convergence en loi de la suite de variables aléatoires réelles

$$\left(\sqrt{I_n(\theta)}\left(\widehat{\theta}_n - \theta\right)\right)_{n \in \mathbb{N}^*}$$
.

On suppose que n est suffisamment grand pour approcher la loi de $\sqrt{I_n(\theta)} \left(\widehat{\theta}_n - \theta \right)$ à cette loi limite. En utilisant cette approximation, déterminer un intervalle de confiance pour θ au niveau 98%.

5. Application. Un expérimentateur a évalué la durée de vie de 1000 ampoules de ce type. Les résultats en heures, notés (x_1, \ldots, x_{1000}) , donne. $\frac{1}{1000} \sum_{i=1}^{1000} x_i = 95, 6$. Déterminer un intervalle de confiance pour θ au niveau 98% correspondant à ces observations.

Exercice 8 On considère un n-échantillon (X_1, \dots, X_n) d'une loi logisitique de paramètre $\theta \in \mathbb{R}$, de densité

$$f(x) = \frac{e^{-(x-\theta)}}{(1+e^{-(x-\theta)})^2}, \quad x \in \mathbb{R}$$

- 1. Montrer que f est symétrique autour de θ . En déduire l'espérance de X_1 .
- 2. En déduire un estimateur des moments de θ .
- 3. En admettant que $Var(X_1) = \pi^2/3$, donner une approximation de la loi asymptotique de l'estimateur.
- 4. En déduire un intervalle de confiance pour θ au niveau asymptotique $1-\alpha$, où $\alpha \in [0,1]$.
- 5. On admet que l'information de Fisher apportée par une observation vaut $I(\theta) = 1/3$. L'estimateur proposé précédemment est-il asymptotiquement efficace?
- 6. Montrer que le maximum de vraisemblance existe. Peut-on en donner une formule explicite? Quelle est approximativement sa loi asymptotique?
- 7. En déduire un second intervalle de confiance pour θ au niveau asymptotique $1-\alpha$, où $\alpha \in [0,1]$.