31	25	24	20 19	9 15	14	12	11	7	6	0	
		imm[31:12]					rd		opcode		$\mathbf{Type}\text{-}\mathbf{U}$
	im	m[20 10:1 11 19:	12]				rd		opcode		$\mathbf{Type}\text{-}\mathbf{UJ}$
	imm[11:0]			rs1	funct	3	rd		opcode		Type-I
imm[12 10:	5]	rs2		rs1	funct	3	imm[4:1 1	1]	opcode		$\mathbf{Type}\text{-}\mathbf{SB}$
imm[11:5]		rs2		rs1	funct	3	imm[4:0]		opcode		$\mathbf{Type}\text{-}\mathbf{S}$
funct5	funct2	rs2		rs1	funct	3	rd		opcode		Type-R

RV32I Base Integer Instruction Set

imm $[31:12]$ rd 0110111 LUI rd, imm												
		imm[31:12] imm[31:12]			rd rd	0010111	4 ′					
	:	$\frac{\min[31:12]}{\min[20 10:1 11 19:12]}$			rd	1101111	AUIPC rd, offset					
			rs1	000	rd		JAL rd, offset					
	imm[11:0		1.5			1100111	JALR rd, rs1, offset					
imm[12 10:5	1	rs2	rs1	000	imm[4:1 11]	1100011	BEQ rs1, rs2, offset					
imm[12 10:5		rs2	rs1	001	imm[4:1 11]	1100011	BNE rs1, rs2, offset					
imm[12 10:5		rs2	rs1	100	imm[4:1 11]	1100011	BLT rs1, rs2, offset					
imm[12 10:5		rs2	rs1	101	imm[4:1 11]	1100011	BGE rs1, rs2, offset					
imm[12 10:5		rs2	rs1	110	imm[4:1 11]	1100011	BLTU rs1, rs2, offset					
imm[12 10:5		rs2	rs1	111	imm[4:1 11]	1100011	BGEU rs1, rs2, offset					
	imm[11:0		rs1	000	rd	0000011	LB rd, offset(rs1)					
	imm[11:0	1	rs1	001	rd	0000011	LH rd, offset(rs1)					
	imm[11:0]	,	rs1	010	rd	0000011	LW rd, offset(rs1)					
j	imm[11:0]]	rs1	100	rd	0000011	LBU rd, offset(rs1)					
	imm[11:0]]	rs1	101	rd	0000011	LHU rd, offset(rs1)					
imm[11:5]		rs2	rs1	000	imm[4:0]	0100011	SB rs2, offset(rs1)					
imm[11:5]		rs2	rs1	001	imm[4:0]	0100011	SH rs2, offset(rs1)					
imm[11:5]		rs2	rs1	010	imm[4:0]	0100011	SW rs2, offset(rs1)					
j	imm[11:0		rs1	000	rd	0010011	ADDI rd, rs1, imm					
j	imm[11:0		rs1	010	rd	0010011	SLTI rd, rs1, imm					
j	imm[11:0		rs1	011	rd	0010011	SLTIU rd, rs1, imm					
j	imm[11:0		rs1	100	rd	0010011	XORI rd, rs1, imm					
j	imm[11:0		rs1	110	rd	0010011	ORI rd, rs1, imm					
j	imm[11:0		rs1	111	rd	0010011	ANDI rd, rs1, imm					
000000	0	shamt[4:0]	rs1	001	rd	0010011	SLLI rd, rs1, imm					
000000	0	shamt[4:0]	rs1	101	rd	0010011	SRLI rd, rs1, imm					
010000	0	shamt[4:0]	rs1	101	rd	0010011	SRAI rd, rs1, imm					
00000	00	rs2	rs1	000	rd	0110011	ADD rd, rs1, rs2					
01000	00	rs2	rs1	000	rd	0110011	SUB rd, rs1, rs2					
00000	00	rs2	rs1	001	rd	0110011	SLL rd, rs1, rs2					
00000	00	rs2	rs1	010	rd	0110011	SLT rd, rs1, rs2					
00000	00	rs2	rs1	011	rd	0110011	SLTU rd, rs1, rs2					
00000	00	rs2	rs1	100	rd	0110011	XOR rd, rs1, rs2					
00000	00	rs2	rs1	101	rd	0110011	SRL rd, rs1, rs2					
01000	00	rs2	rs1	101	rd	0110011	SRA rd, rs1, rs2					
00000	00	rs2	rs1	110	rd	0110011	OR rd, rs1, rs2					
00000	00	rs2	rs1	111	rd	0110011	AND rd, rs1, rs2					
0000 pred	pred	pred succ	00000	000	00000	0001111	FENCE pred, succ					
0000000	r	00000	00000	001	00000	0001111	FENCE.I					
] . ~ =					

fset(rs1) offset(rs1) offset(rs1) fset(rs1) fset(rs1) ffset(rs1) rs1, immrs1, imm rs1, imm rs1, imms1, imm rs1, immrs1, imm rs1, imm rs1, imm rs1, rs2 s1, rs2 s1, rs2 s1, rs2 rs1, rs2rs1, rs2 s1, rs2 s1, rs2 1, rs2 rs1, rs2red, succ

RV64I Base Integer Instruction Set (in addition to RV32I)

imr	n[11:0]	rs1	110	rd	0000011
imr	n[11:0]	rs1	011	rd	0000011
imm[11:5]	rs2	rs1	011	imm[4:0]	0100011
000000	shamt[5:0]	rs1	001	rd	0010011
000000	shamt[5:0]	rs1	101	rd	0010011
010000	shamt[5:0]	rs1	101	rd	0010011
imr	n[11:0]	rs1	000	rd	0011011
0000000	shamt[4:0]	rs1	001	rd	0011011
0000000	shamt[4:0]	rs1	101	rd	0011011
0100000	$\operatorname{shamt}[4:0]$	rs1	101	rd	0011011

LWU rd, offset(rs1) $LD\ rd,\ offset(rs1)$ SD rs2, offset(rs1) SLLI rd, rs1, imm SRLI rd, rs1, imm SRAI rd, rs1, imm ADDIW rd, rs1, imm $SLLIW\ rd,\ rs1,\ imm$ $SRLIW\ rd,\ rs1,\ imm$ SRAIW rd, rs1, imm

31	25	24	20	19	15	14	12	11	7	6		0	
funct5	funct2	rs2		r	s1	fun	ct3		$^{\mathrm{rd}}$		opcode		$_{\mathrm{Type-R}}$

RV64I Base Integer Instruction Set (in addition to RV32I) contd

00000	00	rs2	rs1	000	rd	0111011	ADDW rd, rs1, rs2
01000	00	rs2	rs1	000	rd	0111011	SUBW rd, rs1, rs2
00000	00	rs2	rs1	001	rd	0111011	SLLW rd, rs1, rs2
00000	00	rs2	rs1	101	rd	0111011	SRLW rd, rs1, rs2
01000	00	rs2	rs1	101	rd	0111011	SRAW rd, rs1, rs2

RV32M Standard Extension for Integer Multiply and Divide

00000	01	rs2	rs1	000	rd	0110011	MUL rd, rs1, rs2
00000	01	rs2	rs1	001	rd	0110011	MULH rd, rs1, rs2
00000	01	rs2	rs1	010	rd	0110011	MULHSU rd, rs1, rs2
00000	01	rs2	rs1	011	rd	0110011	MULHU rd, rs1, rs2
00000	01	rs2	rs1	100	rd	0110011	DIV rd, rs1, rs2
00000	01	rs2	rs1	101	rd	0110011	DIVU rd, rs1, rs2
00000	01	rs2	rs1	110	rd	0110011	REM rd, rs1, rs2
00000	01	rs2	rs1	111	rd	0110011	REMU rd, rs1, rs2

RV64M Standard Extension for Integer Multiply and Divide (in addition to RV32M)

	00000	01	rs2	rs1	000	rd	0111011	MULW rd, rs1, rs2
ĺ	00000	01	rs2	rs1	100	rd	0111011	DIVW rd, rs1, rs2
Ì	00000	01	rs2	rs1	101	rd	0111011	DIVUW rd, rs1, rs2
ĺ	00000	01	rs2	rs1	110	rd	0111011	REMW rd, rs1, rs2
ĺ	00000	01	rs2	rs1	111	rd	0111011	REMUW rd, rs1, rs2

RV32A Standard Extension for Atomic Instructions

00010	aq	rl	00000	rs1	010	rd	0101111	LR.W aqrl, rd, (rs1)
00011	aq	rl	rs2	rs1	010	rd	0101111	SC.W aqrl, rd, rs2, (rs1)
00001	aq	rl	rs2	rs1	010	rd	0101111	AMOSWAP.W aqrl, rd, rs2, (rs1)
00000	aq	rl	rs2	rs1	010	rd	0101111	AMOADD.W aqrl, rd, rs2, (rs1)
00100	aq	rl	rs2	rs1	010	rd	0101111	AMOXOR.W aqrl, rd, rs2, (rs1)
01000	aq	rl	rs2	rs1	010	rd	0101111	AMOOR.W aqrl, rd, rs2, (rs1)
01100	aq	rl	rs2	rs1	010	rd	0101111	AMOAND.W aqrl, rd, rs2, (rs1)
10000	aq	rl	rs2	rs1	010	rd	0101111	AMOMIN.W aqrl, rd, rs2, (rs1)
10100	aq	rl	rs2	rs1	010	rd	0101111	AMOMAX.W aqrl, rd, rs2, (rs1)
11000	aq	rl	rs2	rs1	010	rd	0101111	AMOMINU.W aqrl, rd, rs2, (rs1)
11100	aq	rl	rs2	rs1	010	$^{\mathrm{rd}}$	0101111	AMOMAXU.W aqrl, rd, rs2, (rs1)

RV64A Standard Extension for Atomic Instructions (in addition to RV32A)

							,	
00010	aq	rl	00000	rs1	011	rd	0101111	LR.D aqrl, rd, (rs1)
00011	aq	rl	rs2	rs1	011	rd	0101111	SC.D aqrl, rd, rs2, (rs1)
00001	aq	rl	rs2	rs1	011	rd	0101111	AMOSWAP.D aqrl, rd, rs2, (rs1)
00000	aq	rl	rs2	rs1	011	rd	0101111	AMOADD.D aqrl, rd, rs2, (rs1)
00100	aq	rl	rs2	rs1	011	rd	0101111	AMOXOR.D aqrl, rd, rs2, (rs1)
01000	aq	rl	rs2	rs1	011	rd	0101111	AMOOR.D aqrl, rd, rs2, (rs1)
01100	aq	rl	rs2	rs1	011	rd	0101111	AMOAND.D aqrl, rd, rs2, (rs1)
10000	aq	rl	rs2	rs1	011	rd	0101111	AMOMIN.D aqrl, rd, rs2, (rs1)
10100	aq	rl	rs2	rs1	011	rd	0101111	AMOMAX.D aqrl, rd, rs2, (rs1)
11000	aq	rl	rs2	rs1	011	rd	0101111	AMOMINU.D aqrl, rd, rs2, (rs1)
11100	aq	rl	rs2	rs1	011	rd	0101111	AMOMAXU.D aqrl, rd, rs2, (rs1)

31	25	24	20	19	15	14	12	11	7	6		0
funct5	funct2	rs	2		rs1	fur	ict3		rd		opcode	Type-R
	imm[11:0]				rs1	fur	ict3		rd		opcode	Type-I
imm[11	:5]	rs	2		rs1	fur	ict3	im	nm[4:0]		opcode	Type-S
rs3	funct2	rs	2		rs1	fur	ict3		rd		opcode	Type-R4

RV32S Standard Extension for Supervisor-level Instructions

	0000000	00000	00000	000	00000	1110011	ECALL
\perp							ECALL
	0000000	00001	00000	000	00000	1110011	EBREAK
	0000000	00010	00000	000	00000	1110011	URET
	0001000	00010	00000	000	00000	1110011	SRET
	0010000	00010	00000	000	00000	1110011	HRET
	0011000	00010	00000	000	00000	1110011	MRET
Г	0111101	10010	00000	000	00000	1110011	DRET
	00010 00	00100	rs1	000	00000	1110011	SFENCE.VM rs1
	0001000	00101	00000	000	00000	1110011	WFI
	csr[11:0]		rs1	001	rd	1110011	CSRRW rd, csr, rs1
Г	csr[11:0]		rs1	010	rd	1110011	CSRRS rd, csr, rs1
	csr[11:0]		rs1	011	rd	1110011	CSRRC rd, csr, rs1
	csr[11:0]		zimm[4:0]	101	rd	1110011	CSRRWI rd, csr, zimm
	csr[11:0]		zimm[4:0]	110	rd	1110011	CSRRSI rd, csr, zimm
	csr[11:0]		zimm[4:0]	111	rd	1110011	CSRRCI rd, csr, zimm
							-

RV32F Standard Extension for Single-Precision Floating-Point

	imm[11:0]		rs1	010	frd	0000111	FLW frd, offset(rs1)
imm[11	:5]	frs2	rs1	010	imm[4:0]	0100111	FSW frs2, offset(rs1)
frs3	00	frs2	frs1	rm	frd	1000011	FMADD.S rm, frd, frs1, frs2, frs3
frs3	00	frs2	frs1	rm	frd	1000111	FMSUB.S rm, frd, frs1, frs2, frs3
frs3	00	frs2	frs1	rm	frd	1001011	FNMSUB.S rm, frd, frs1, frs2, frs3
frs3	00	frs2	frs1	rm	frd	1001111	FNMADD.S rm, frd, frs1, frs2, frs3
00000	00	frs2	frs1	rm	frd	1010011	FADD.S rm, frd, frs1, frs2
00001	00	frs2	frs1	rm	frd	1010011	FSUB.S rm, frd, frs1, frs2
00010	00	frs2	frs1	rm	frd	1010011	FMUL.S rm, frd, frs1, frs2
00011	00	frs2	frs1	rm	frd	1010011	FDIV.S rm, frd, frs1, frs2
00100	00	frs2	frs1	000	frd	1010011	FSGNJ.S frd, frs1, frs2
00100	00	frs2	frs1	001	frd	1010011	FSGNJN.S frd, frs1, frs2
00100	00	frs2	frs1	010	frd	1010011	FSGNJX.S frd, frs1, frs2
00101	00	frs2	frs1	000	frd	1010011	FMIN.S frd, frs1, frs2
00101	00	frs2	frs1	001	frd	1010011	FMAX.S frd, frs1, frs2
01011	00	00000	frs1	rm	frd	1010011	FSQRT.S rm, frd, frs1
10100	00	frs2	frs1	000	rd	1010011	FLE.S rd, frs1, frs2
10100	00	frs2	frs1	001	rd	1010011	FLT.S rd, frs1, frs2
10100	00	frs2	frs1	010	rd	1010011	FEQ.S rd, frs1, frs2
11000	00	00000	frs1	rm	rd	1010011	FCVT.W.S rm, rd, frs1
11000	00	00001	frs1	rm	rd	1010011	FCVT.WU.S rm, rd, frs1
11010	00	00000	rs1	rm	frd	1010011	FCVT.S.W rm, frd, rs1
11010	00	00001	rs1	rm	frd	1010011	FCVT.S.WU rm, frd, rs1
11100	00	00000	frs1	000	rd	1010011	FMV.X.S rd, frs1
11100	00	00000	frs1	001	rd	1010011	FCLASS.S rd, frs1
11110	00	00000	rs1	000	frd	1010011	FMV.S.X frd, rs1

RV64F Standard Extension for Single-Precision Floating-Point (in addition to RV32F)

	11000	00	00010	frs1	rm	rd	1010011
Ī	11000	00	00011	frs1	rm	rd	1010011
Ī	11010	00	00010	rs1	rm	frd	1010011
	11010	00	00011	rs1	rm	frd	1010011

FCVT.L.S rm, rd, frs1 FCVT.LU.S rm, rd, frs1 FCVT.S.L rm, frd, rs1 FCVT.S.LU rm, frd, rs1

31		25	24	20	19	15	14	12	11	7	6	()
	i	imm[11:0]			rs	1	fun	.ct3	1	rd		opcode	Type-I
	imm[11:	:5]	r	s2	rs	1	fun	.ct3	imn	n[4:0]		opcode	Type-S
	rs3	funct2	r	s2	rs	1	fun	.ct3	1	rd		opcode	Type-R4
f	unct5	funct2	r	s2	rs	1	fun	ct3	r	rd		opcode	Type-R

RV32D Standard Extension for Double-Precision Floating-Point

	RV32D	Standard Ex	tension for D	ouble-Pre	ecision Floatii	ng-Point	
	imm[11:0		rs1	011	frd	0000111	F
imm[11:	:5]	frs2	rs1	011	imm[4:0]	0100111	F
frs3	01	frs2	frs1	rm	frd	1000011	F
frs3	01	frs2	frs1	rm	frd	1000111	F
frs3	01	frs2	frs1	rm	frd	1001011	F
frs3	01	frs2	frs1	rm	frd	1001111	F
00000	01	frs2	frs1	rm	frd	1010011	F
00001	01	frs2	frs1	rm	frd	1010011	F
00010	01	frs2	frs1	rm	frd	1010011	F
00011	01	frs2	frs1	rm	frd	1010011	F
00100	01	frs2	frs1	000	frd	1010011	F
00100	01	frs2	frs1	001	frd	1010011	F
00100	01	frs2	frs1	010	frd	1010011	F
00101	01	frs2	frs1	000	frd	1010011	F
00101	01	frs2	frs1	001	frd	1010011	F
01000	00	00001	frs1	rm	frd	1010011	F
01000	01	00000	frs1	rm	frd	1010011	F
01011	01	00000	frs1	rm	frd	1010011	F
10100	01	frs2	frs1	000	rd	1010011	F
10100	01	frs2	frs1	001	rd	1010011	F
10100	01	frs2	frs1	010	rd	1010011	F
11000	01	00000	frs1	rm	rd	1010011	F
11000	01	00001	frs1	rm	rd	1010011	F
11010	01	00000	rs1	rm	frd	1010011	F
11010	01	00001	rs1	rm	frd	1010011	F
11100	01	00000	frs1	001	rd	1010011	F

FLD frd, offset(rs1) FSD frs2, offset(rs1) FMADD.D rm, frd, frs1, frs2, frs3 $FMSUB.D\ rm,\ frd,\ frs1,\ frs2,\ frs3$ FNMSUB.D rm, frd, frs1, frs2, frs3 $FNMADD.D\ rm,\ frd,\ frs1,\ frs2,\ frs3$ FADD.D rm, frd, frs1, frs2 FSUB.D rm, frd, frs1, frs2 FMUL.D rm, frd, frs1, frs2 $FDIV.D\ rm,\ frd,\ frs1,\ frs2$ FSGNJ.D frd, frs1, frs2 $FSGNJN.D\ frd,\,frs1,\,frs2$ FSGNJX.D frd, frs1, frs2 FMIN.D frd, frs1, frs2 $FMAX.D\ frd,\ frs1,\ frs2$ $FCVT.S.D\ rm,\ frd,\ frs1$ $FCVT.D.S\ rm,\ frd,\ frs1$ $FSQRT.D\ rm,\ frd,\ frs1$ $FLE.D\ rd,\ frs1,\ frs2$ FLT.D rd, frs1, frs2 $FEQ.D\ rd,\ frs1,\ frs2$ $FCVT.W.D\ rm,\ rd,\ frs1$ $FCVT.WU.D\ rm,\ rd,\ frs1$ $FCVT.D.W\ rm,\ frd,\ rs1$ $FCVT.D.WU\ rm,\ frd,\ rs1$ $FCLASS.D\ rd,\ frs1$

RV64D Standard Extension for Double-Precision Floating-Point (in addition to RV32D)

01	00010	frs1	$^{ m rm}$	rd	1010011
01	00011	frs1	$^{ m rm}$	rd	1010011
01	00000	frs1	000	rd	1010011
01	00010	rs1	rm	frd	1010011
01	00011	rs1	$^{ m rm}$	frd	1010011
01	00000	rs1	000	frd	1010011
	01 01 01 01	01 00011 01 00000 01 00010 01 00011	01 00011 frs1 01 00000 frs1 01 00010 rs1 01 00011 rs1	01 00011 frs1 rm 01 00000 frs1 000 01 00010 rs1 rm 01 00011 rs1 rm	01 00011 frs1 rm rd 01 00000 frs1 000 rd 01 00010 rs1 rm frd 01 00011 rs1 rm frd

FCVT.L.D rm, rd, frs1 FCVT.LU.D rm, rd, frs1 FMV.X.D rd, frs1 FCVT.D.L rm, frd, rs1 FCVT.D.LU rm, frd, rs1 FMV.D.X frd, rs1

15	13	12	10	9	7	6 5	5 4	2	1	0	
	funct3			imm8			rd'		op		Type-CIW
	funct3	imi	m3	rs1'		imm2	rd'		op		Type-CL
	funct3	imi	m3	rs1'		imm2	rs2'		op		Type-CS
	funct3	imm1		rd/rs1			imm5		op		Type-CI
	funct3		imm11						op		Type-CJ
	funct3	imi	m3	rs1'			imm5		op		Type-CB
	funct4	Ė		rd/rs1			rs2		op		Type-CR
funct3			imm6				rs2		op		Type-CSS

RV32C Standard Extension for Compressed Instructions

000	1		n[5:4 9:6 2 3]	F	rd'	00	C.ADDI4SPN rd, rs1, imm
001	imm		rs1'	imm[7:6]	frd'	00	C.FLD frd, offset(rs1)
010	imm		rs1'	imm[2 6]	rd'	00	C.LW rd, offset(rs1)
011	imm		rs1'	imm[2 6]	frd'	00	C.FLW frd, offset(rs1)
101	imm		rs1'	imm[7:6]	frs2'	00	C.FSD frs2, offset(rs1)
110	imm		rs1'	imm[2 6]	rs2'	00	C.SW rs2, offset(rs1)
111	imm		rs1'	imm[2 6]	frs2'	00	C.FSW frs2, offset(rs1)
000	0	-	00000		00000	01	C.NOP
000	nzimm[5]	rs	$s1/rd \neq 0$	nz	imm[4:0]	01	C.ADDI rd, rs1, imm
001			imm[11 4 9:8 10 6 7	7[3:1[5]		01	C.JAL rd, offset
010	imm[5]	rs	$s1/rd \neq 0$	iı	nm[4:0]	01	C.LI rd, rs1, imm
011	nzimm[9]	rs	s1/rd=2	nzim	m[4 6 8:7 5]	01	C.ADDI16SP rd, rs1, imm
011	nzimm[17]	rc	$l \neq \{0, 2\}$	nzir	mm[16:12]	01	C.LUI rd, imm
100	0	00	rs1'/rd'	nz	imm[4:0]	01	C.SRLI rd, rs1, imm
100	0	01	rs1'/rd'	nz	imm[4:0]	01	C.SRAI rd, rs1, imm
100	nzimm[5]	10	rs1'/rd'	nz	imm[4:0]	01	C.ANDI rd, rs1, imm
100	01	1	rs1'/rd'	00	rs2'	01	C.SUB rd, rs1, rs2
100	01	1	rs1'/rd'		rs2'	01	C.XOR rd, rs1, rs2
100	01	1	rs1'/rd'	10	rs2'	01	C.OR rd, rs1, rs2
100	01	1	rs1'/rd'	11	rs2'	01	C.AND rd, rs1, rs2
100	11		rs1'/rd'	00	rs2'	01	C.SUBW rd, rs1, rs2
100	11			01 rs2'		01	C.ADDW rd, rs1, rs2
101			imm[11 4 9:8 10 6 7			01	C.J rd, offset
110	imm[8			imm[7:6 2:1 5]		01	C.BEQZ rs1, rs2, offset
111	imm[8		rs1'	imm[7:6 2:1 5]		01	C.BNEZ rs1, rs2, offset
000	0	rs	$s1/rd \neq 0$		imm[4:0]	10	C.SLLI rd, rs1, imm
001	imm[5]		frd	imm[4:3 8:6]		10	C.FLDSP frd, offset(rs1)
010	imm[5]		$rd \neq 0$		m[4:2 7:6]	10	C.LWSP rd, offset(rs1)
011	imm[5]		frd		m[4:2 7:6]	10	C.FLWSP frd, offset(rs1)
100	rd"		rs1		00000	10	C.JR rd, rs1, offset
1000			$rd \neq 0$		rs2≠ 0	10	C.MV rd, rs1, rs2
100	1		00000	00000		10	C.EBREAK
100	rd"		rs1		00000	10	C.JALR rd, rs1, offset
1001			$s1/rd \neq 0$		$rs2 \neq 0$	10	C.ADD rd, rs1, rs2
101		imm[5:3 8			frs2	10	C.FSDSP frs2, offset(rs1)
110		imm[5:2 7			rs2	10	C.SWSP rs2, offset(rs1)
111		imm[5:2 7]	7:6]		frs2	10	C.FSWSP frs2, offset(rs1)

RV64C Standard Extension for Compressed Instructions (in addition to RV32C)

011	imm[5:3]	rs1'	imm[7:6]	rd	00
111	imm[5:3]		rs1'	imm[7:6]	rs2'	00
001	imm[5] rs		$s1/rd \neq 0$	ir	01	
100	nzimm[5] 00		rs1'/rd'	nz	imm[4:0]	01
100	nzimm[5]	01	rs1'/rd'	nz	imm[4:0]	01
000	nzimm[5]	rs	$s1/rd \neq 0$	nzimm[4:0]		10
011	imm[5]		$rd \neq 0$	imm[4:3 8:6]		10
111		imm[5:3 8]	3:6]		10	

C.LD rd, offset(rs1)C.SD rs2, offset(rs1) $C.ADDIW\ rd,\ rs1,\ imm$ C.SRLI rd, rs1, imm C.SRAI rd, rs1, imm $C.SLLI\ rd,\ rs1,\ imm$ C.LDSP rd, offset(rs1) $C.SDSP\ rs2,\ offset(rs1)$