Demonstration of potentiometric pH

determination using the filament of an

incandescent lightbulb as indicator electrode

János Klucsik, Venkat Rajat Rao Yalamarti, and András Kiss*

Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, 7622

Pécs, Hungary

E-mail: akiss@gamma.ttk.pte.hu

Abstract

One of the earliest concepts of chemistry taught in school is pH. It is usually in-

troduced during the discussion of acids and bases. Students are taught to detect the

acidity of substances using pH indicators, usually in the form of indicator paper. While

this method is convenient and easy for students to relate to, apart from not being very

accurate, it does not give any deeper insight into the meaning of pH. To truly com-

prehend pH, students need to learn to approach the concept from an electroanalytical

point of view. The aim of this paper is to avail teachers of an additional interactive

and demonstrative experiment in order to facilitate this transition.

We demonstrate the fabrication of a simple and economical metal/metal-oxide type

pH indicator electrode using simple household items. The sensing element is made from

the tungsten alloy filament of an incandescent lightbulb, that is sandwiched between

two pieces of Plexiglass using superglue.

1

Keywords

pH, tungsten electrode, ion-selective electrode, potentiometry

Introduction

The glass electrode is the most well-known ion-selective electrode, because the negative logarithm of hydrogen-ion activity that is pH, has special importance. It is found in virtually every chemistry laboratory, and students are likely to encounter it even during their highschool education. However, besides the glass electrode, highschool students and even undergraduates usually don't learn about other hydrogen-ion selective electrodes. The exclusivity of the glass electrode is most likely due to it's relatively low cost and excellent characteristics. Other ion-selective electrodes usually cost a lot more and don't function as well. For educational purposes however, they could be valuable tools. There are several low cost fabrication techniques described in the literature, which allow students even in a highschool chemistry laboratory to fabricate their own electrodes, such as ionophore based indicator electrodes^{1,2} or simple reference electrodes.³ There is even a procedure to fabricate low cost glass electrodes from microscope slide cover sheets. 4 These electrodes can be manufactured and calibrated by students in a few laboratory sessions and can provide a great learning experience for them. They allow a view on pH and ion-selective electrodes from another angle, and students are more likely to understand the function of a device when they fabricate it themselves.

The electrode demonstrated in this paper is an ion-selective electrode that is made using the filament of an incandescent light bulb. It is well known that the filament of incandescent lightbulbs is made of an alloy called "tungsten bronze" that is mostly tungsten with a small amount of potassium to improve ductility $^{5-7}$. The electrode is of the metal/metal-oxide type that is sensitive to pH. Its function is based on the intercalation and deintercalation of hydrogen ions into the oxide layer followed by a change in the oxidation state of tungsten

oxide:8

$$WO_3 + xH^+ + xe^- \rightleftharpoons H_xWO_3$$
 (1)

The metal/metal-oxide type pH electrodes are usually used in research if the application of glass electrodes is challenging or impossible. These include measuring pH at high temperature or in hydrogen–fluoride solution, or application in the food industry. Besides the tungsten electrode, one of the most often used type of these is the Ir/IrO_2 electrode. The oldest is certainly the Sb/Sb_2O_3 electrode, its initial characterization dating back to 1923.

In this paper, the fabrication and calibration of the above mentioned tungsten filament electrode is described. The components for the electrode can be obtained from a local hardware store, and the construction is very simple, requiring only an incandescent lighbulb, a small sheet of PlexiGlas and superglue. Electrodes prepared by students will be shown as well as the results of the calibration and selectivity study performed by 1st and 2nd year university BSc students of chemistry. Altogether 8 students participated in the demonstration that involved a 2 hour seminar about ion-selective electrodes and pH (for which the discussion points are roughly outlined in the *Theory* section) and two 3 hour laboratory sessions fabricating and characterizing the electrodes. A typical notebook prepared by a 2nd year chemistry BSc student about the demonstration is shown as example in the supportin material.

Theory

pH is one of the most important concepts in chemistry, originally defined by Sørensen in 1909^{11} as the negative logarithm of the concentration of hydrogen ion:

$$pH = -\log_{10} c_{H^+} \tag{2}$$

At first glance, it looks like a deceptively simple concept. Complications start to arise when we replace concentration with activity, taking into account that hydrogen ions have charge, therefore their behaviour correlates more closely with activity than concentration:

$$pH = -\log_{10} a_{H^{+}} = -\log_{10} c_{H^{+}} \gamma_{H^{+}}$$
(3)

where a_{H^+} is the activity and γ_{H^+} is the activity coefficient of hydrogen ions. This definition however raises another problem. It includes the activity coefficient of a single ion, which cannot be separated from the activity coefficient of counterions. The IUPAC recommended solution 12 is the Bates-Guggenheim convention. 13 In order to provide a basis for the determination of single ion activity coefficients, the activity coefficient of chloride ion is defined using the extended Debye-Hückel equation:

$$-\log_{10}\gamma = \frac{Az^2\sqrt{I}}{1 + Ba\sqrt{I}}\tag{4}$$

where A and B are constants, a is ionic radius and I is ionic strength calculated with the following equation:

$$I = \frac{1}{2} \sum_{i=1}^{n} c_i z_i^2 \tag{5}$$

where c_i and z_i is the concentration and charge of the *i*th ion, and *n* is the total number of ionic species in the solution.

In practice, pH is most commonly measured with a glass electrode. It has been known for more than a hundred years that the potential difference measured across a glass membrane depends on the ratio of the hydrogen ion activity in the two solutions that the membrane separates. The glass electrode is usually combined with a reference electrode for convenience. Such an electrode pair is called the "combined glass electrode", and this the most common type the students might encounter. The glass electrode is the best electrochemical sensor and one of the best sensors ever made, with a linear response of over more than 13

orders of magnitude and excellent selectivity. However, it's not perfect. One of the imperfections is that although to a negligible extent, it responds to cations other than hydrogen ion. This behaviour is described by the Nikolsky–equation that takes the effect of interfering ions into account with the so-called "selectivity coefficient": ¹⁶

$$E = E^{\theta} + \frac{RT}{z_i F} \ln \left[a_i + \sum_j \left(k_{ij} a_j^{z_i/z_j} \right) \right]$$
 (6)

Materials and Methods

Electrode fabrication. The electrodes were fabricated entirely by students with guidance from the supervisor. To obtain the sensing element of the electrode, a 100 W incandescent lightbulb (Tungsram brand, purchased at local hardware store) was carefully wrapped in cloth and broken with a mallet. The contact wire that still had the filament attached was cut near the stem (Fig. 1a). The electrode body was prepared from two, 4 mm thick, \approx 0.5 cm $\times \approx 2$ cm, identically shaped Plexiglass pieces (Fig. 1b). In one of them, a \approx 1 mm groove was cut longitudinally, in which the filmanet with stem was layed (Fig. 1c). Then, superglue was applied onto the Plexiglas surface that contained the groove with the filament and stem. The other Plexiglass piece was pressed onto the superglued surface, and was held firmly until the superglue cured (Fig. 1d). The electrode was sanded and polished from all sides except where the electrical lead, the stem was protruding (Fig. 1e). The PlexiGlas enclosure is necessary to limit the area of contact with the sample solution to only a well defined surface of the tungsten, and avoid the stem or further electrical leads to get in contact with the solution.

Calibration. The fabricated tungsten filament electrodes were calibrated by students in a series of Britton–Robinson buffers with the following pH values: 2.19, 3.04, 4.10, 5.12, 6.09, 7.19, 8.08, 8.89, 9.87, 10.88, 11.81. The buffers were also prepared by the students. The pH was measured with a home made pH meter built previously using an Arduino similar

Figure 1: The fabrication process of the tungsten filament electrode.

to devices reported by other authors previously. ¹⁷ To verify the pH of the buffer series, they were first measured with a conventional glass electrode WTW SenTix combined pH electrode connected to a WTW inoLab pH 740p high input impedance pH meter (Xylem Analytics Germany Sales GmbH & Co. KG, Weilheim Germany), that was calibrated with three high accuracy pH buffers (4.00, 7.00, 10.00 at 20 °C, Scharlab, S.L. Barcelona, Spain) by the laboratory supervisor beforehand. The glass and the tungsten filament electrodes were calibrated by measuring their potential against the internal reference electrode of the glass electrode in the buffer series. The potential of the indicator electrode was continuously monitored and the results were recorded by the computer connected to the home made pH meter. The students then plotted the potential values as a function of time and as a function of the corresponding pH. Then, they performed a linear regression on the potential–pH data using a commonly available open source spreadsheet program (LibreOffice) to determine the slope of the potentiometric cell.

Selectivity study. The selectivity coefficient was determined using the "separate solution method II (SSMII)". ¹⁸ Besides the pH buffer series, several other series of solutions (KCl, NaCl, CaCl₂ and MgCl₂) were prepared by the students, each containing an interfering ion. Since the primary ion for the glass and the tungsten filament electrodes is already present in water at an activity that would influence the selectivity study, a buffer had to be used to lower the hydrogen ion activity. Most of the common pH buffers contain alkaline metals, and they could not be used to carry the selectivity study, because alkaline and alkaline earth

metals are the most common interferences. For this reason, a pH = 8 TRIS buffer was used as a solvent to create the dilution series using KCl, NaCl, CaCl₂ and MgCl₂. In each cases, the activities ranged from 10^{-6} M to 10^{-1} M with tenfold increments in activity. The electrodes were immersed in each of the solutions and the resulting potential differences were measured and recorded with the already mentioned pH meter.

To determine the selectivity coefficients, first the activities had to be calculated from the concentrations. This involved the calculation of activity coefficients which in turn required the calculation of ionic strength for each solution. This is an important step, and usually requires guidance from the laboratory instructor. To calculate the ionic strength, eq. 5. was used. Then the extended Debye-Hückel equation 4 was applied to calculate the activity coefficients. To obtain the activities, concentrations were multiplied with the corresponding activity coefficients.

To calculate the selectivity coefficient, a common potential was picked and the corresponding activity of the primary and interfering ions were calculated. The selectivity coefficient is then given by the ratio (SSMII):

$$k_{i,j} = \frac{a_i}{a_j^{z_i/z_j}} \tag{7}$$

where a_i and a_j are the activities of the primary and interfering ion at the same potential, and z_i and z_j is the charge of the primary and interfering ions.

Hazards

When salvaging the tungsten filament from the lighbulb, care must be taken. The lightbulb must be wrapped several times in a cloth before it is hit with a mallet. Care must be taken when the filament is picked up from the broken pieces of glass. When the Plexiglass body is prepared, a saw is used to cut the groove, then superglue is used to enclose the filament in the groove. During these steps, close supervision of the students is necessary to prevent any

accident. Lastly, HCl and NaOH is used during the preparation of the pH buffer series. If these get in contact with skin or the eye, flush with plenty of tapwater for several minutes.

Results and Discussion

The pH values of the Britton–Robinson buffer series were first measured with a calibrated glass electrode. Once these were known with high accuracy, the same buffer series was used again to calibrate the tungsten filament electrode. The raw data can be seen in Fig. 2A, while the resulting calibration plot in Fig. 2B. The slope of the calibration equation is 40.05 mV / pH, which is significantly lower than that of the theoretically expected value from the Nernst–equation. The lower value might be explained by the alloying elements in the tungsten filament. It is well known, that the filaments of incandescent lightbulbs are not made of pure tungsten, but a so-called "tungsten bronze" alloy. The alloy consists of tungsten and potassium or sodium, which improves ductility that helps during the manufacturing process. ^{5–7} Even high purity metal/metal–oxide electrodes don't reach the nernstian slope, which is well documented in the literature. ^{19,20} Nonetheless, a slope of 40.05 mV / pH is enough to measure pH reliably. The electrode response was slighty non-linear, but it can be said that it works well within the tested pH range of 2–12.

Because of these alloying elements, the tungsten filament electrode was expected to be less selective towards hydrogen ions than the glass electrode. The selectivity study was performed in dilution series of KCl, NaCl, CaCl₂ and MgCl₂ from 10^{-1} M to 10^{-6} M with tenfold increases in concentration. A buffer was used to lower the hydrogen ion activity, and because most of the alkaline buffers contain an ion that interefes with hydrogen ion–selective electrodes, the TRIS buffer was selected at pH = 8. The measured potentials of the tungsten filament electrode for the interfering ions can be seen in Fig. 2B. The electrodes showed remarkable selectivity towards hydrogen-ions. Only a slight increase in potential was observed at higher than 10^{-4} M concentration. Below this concentration the potential

corresponding to pH = 8 buffer was observed (\approx -315 mV). Interestingly, K⁺ caused the potential to decrease at higher concentration. This result was replicated several times. The selectivity coefficient values are summarized in Table 1.

IUPAC recommends the use of the separate solution (and also the "fixed interference") only if the electrode exhibits a Nernstian response to both the primary and the interfering ions. ¹⁸ With the fabricated tungsten electrode it is not the case. Within the tested interfering ion activity range the tested ions interfere with the measurement only very slightly. The use of the method might be unjustified, and it could be simply stated instead that K^+ , Na^+ , Ca^{2+} and Mg^{2+} ions do not interfere significantly with the pH measurement under these conditions. Nevertheless, there is a noticeable and reproducible interference, and the calculation of the selectivity coefficients is a good excercise for the students to learn about the behaviour of ion–selective electrodes.

Figure 2: Calibration and selectivity study of the glass electrode (A), and the tungsten filament electrode (B).

Conclusion

The construction and usage of an economical pH sensitive electrode was presented that is highly selective towards hydrogen ions. It has been shown that the electrode performs

Table 1: The selectivity coefficients of the tungsten filament electrode for the different cations.

Interfering ion	Selectivity coefficient
Na ⁺	$8.57 \cdot 10^{-7}$
K^{+}	$1.91 \cdot 10^{-7}$
$\mathrm{Ca^{2+}}$	$9.48 \cdot 10^{-7}$
Mg^{2+}	$6.17 \cdot 10^{-7}$

very well, with a 40.05 mV / pH slope in the pH range 2–12. There was no significant interference from K⁺, Na⁺, Mg²⁺ and Ca²⁺ ions. The potentiometric cell utilizing the electrode can be used as an engaging demonstration of the potentiometric determination of pH. The participating students showed high motivation during the electrode fabrication process. They were excited to use electrodes that they've prepared themselves to measure pH. As a result of the interactive demonstration and evaluation, they showed a deeper understanding of pH and its potentiometric determination.

Acknowledgement

The project has been supported by the European Union, co-financed by the European Social Fund Grant no.: EFOP-3.6.1.-16-2016-00004 entitled by Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs. The work was supported by the Hungarian Research Grant: NKFI No.: K125244.

References

- (1) Goldcamp, M. J.; Conklin, A.; Nelson, K.; Marchetti, J.; Brashear, R.; Epure, E. Inexpensive and disposable pH electrodes. *Journal of chemical education* 2010, 87, 1262–1264.
- (2) Marafie, H. M.; Shoukry, A. F.; Alshatti, L. A. Plastic Membrane Sensor from a Dis-

- posed Combined Glass Electrode. A Project for Graduate and Fourth-Year Undergraduate Students of Analytical Chemistry. *Journal of chemical education* **2007**, *84*, 793.
- (3) Riyazuddin, P. Low-Cost Reference Electrode for Potentiotitrimetry. *Journal of chemical education* **1994**, *71*, 167.
- (4) Yong, F.; Zhu, Q.; Zhang, G.; Tao, G.; Qin, S. Simple and Economical Procedure

 To Assemble pH Glass Membrane Electrodes Used in Chemical Education. *Journal of Chemical Education* **2019**,
- (5) Cisternas, R.; Kahlert, H.; Wulff, H.; Scholz, F. The Electrode Responses of a Tungsten Bronze Electrode differ in Potentiometry and Voltammetry and give Access to the Individual Contributions of Electron and Proton Transfer. *Electrochemistry Communi*cations 2015, 56, 34–37.
- (6) Wechter, M.; Shanks, H.; Carter, G.; Ebert, G.; Guglielmino, R.; Voigt, A. Use of Metal Tungsten Bronze Electrodes in Chemical Analysis. Analytical chemistry 1972, 44, 850–853.
- (7) Schade, P. 100 Years of Doped Tungsten Wire. *International Journal of Refractory Metals and Hard Materials* **2010**, *28*, 648–660.
- (8) Fenster, C.; Smith, A. J.; Abts, A.; Milenkovic, S.; Hassel, A. W. Single tungsten nanowires as pH sensitive electrodes. *Electrochemistry Communications* 2008, 10, 1125–1128.
- (9) Beyenal, H.; Davis, C. C.; Lewandowski, Z. An improved Severinghaus-type carbon dioxide microelectrode for use in biofilms. Sensors and Actuators B: Chemical 2004, 97, 202–210.
- (10) Uhl, A.; Kestranek, W. The electrometric titration of acids and bases with the antimony indicator electrodes. *Monatshefte für Chemie Chemical Monthly* **1923**, *44*, 29–34.

- (11) Sørensen, S. P. L. Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen. *Biochemische Zeitschrift* **1909**, *21*, 131–304.
- (12) Buck, R.; Rondinini, S.; Covington, A.; Baucke, F.; Brett, C. M.; Camoes, M.; Milton, M.; Mussini, T.; Naumann, R.; Pratt, K., et al. Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002). Pure and applied chemistry 2002, 74, 2169–2200.
- (13) Bates, R.; Guggenheim, E. Report on the standardization of pH and related terminology. *Pure and Applied Chemistry* **1960**, *1*, 163–168.
- (14) Haber, F.; Klemensiewicz, Z. Über elektrische Phasengrenzkräfte. Zeitschrift für Physikalische Chemie 1909, 67, 385–431.
- (15) Haber, F.; Klemensiewicz, Z. Concerning electrical phase boundary forces. Zeitschrift für Physikalische Chemie, Stöchiometrie und Verwandtschaftslehre 1909, 67, 385–431.
- (16) Nicolsky, B. Theory of the glass electrode. I. Acta Physicochimica USSR 1937, 7, 597–610.
- (17) Jin, H.; Qin, Y.; Pan, S.; Alam, A. U.; Dong, S.; Ghosh, R.; Deen, M. J. Open-source low-cost wireless potentiometric instrument for pH determination experiments. 2018.
- (18) Buck, R. P.; Lindner, E. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). *Pure and Applied Chemistry* **1994**, *66*, 2527–2536.
- (19) Kriksunov, L. B.; Macdonald, D. D.; Millett, P. J. Tungsten/tungsten oxide pH sensing electrode for high temperature aqueous environments. *Journal of the Electrochemical* Society 1994, 141, 3002.
- (20) Midgley, D. A review of pH measurement at high temperatures. *Talanta* **1990**, *37*, 767–781.