Bayesian Statistics III/IV (MATH3361/4071)

Michaelmas term 2021

Problem class 2: Bayesian point estimation, and Credible sets

Lecturer: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

1 Bayesian point estimation

Exercise 1. $(\star\star)$ Consider observables $x=(x_1,...,x_n)$. Consider the Bayesian model

$$\begin{cases} x_i | \theta & \stackrel{\text{IID}}{\sim} \mathbf{N}(\theta, 1), \quad i = 1, ..., n \\ \theta & \sim \Pi(\theta) \end{cases}$$

where $\pi(\theta) \propto 1$ and that we have only one observable. Consider the LINEX loss function

$$\ell(\theta, \delta) = \exp(c(\theta - \delta)) - c(\theta - \delta) - 1$$

- 1. Show that $\ell(\theta, \delta) \geq 0$
- 2. Find the Bayes estimator $\hat{\delta}$ under LINEX loss function and under the given Bayesian model.

Hint-1: Random variable B follows a log-normal distribution $B \sim \text{LN}(\mu_A, \sigma_A^2)$ with parameters μ_A, σ_A^2 if $B = \exp(A)$ where $A \sim \text{N}(\mu_A, \sigma_A^2)$.

Hint-2: If $B \sim \text{LN}(\mu_A, \sigma_A^2)$ then $E_{\text{LN}(\mu_A, \sigma_A^2)}(B) = \exp(\mu_A + \frac{\sigma_A^2}{2})$.

Hint-3: It is

$$-\frac{1}{2}\frac{(\mu-\mu_1)^2}{v_1^2}-\frac{1}{2}\frac{(\mu-\mu_2)^2}{v_2^2}...-\frac{1}{2}\frac{(\mu-\mu_n)^2}{v_n^2}=-\frac{1}{2}\frac{(\mu-\hat{\mu})^2}{\hat{v}^2}+C$$

where

$$\hat{v}^2 = \left(\sum_{i=1}^n \frac{1}{v_i^2}\right)^{-1}; \quad \hat{\mu} = \hat{v}^2 \left(\sum_{i=1}^n \frac{\mu_i}{v_i^2}\right); \quad C = \frac{1}{2} \frac{\hat{\mu}^2}{\hat{v}^2} - \frac{1}{2} \sum_{i=1}^n \frac{\mu_i^2}{v_i^2}$$

Exercise 2. $(\star\star)$ Suppose we wish to estimate the values of a collection of discrete random variables $\vec{X} = X_1, \ldots, X_n$. We have a posterior joint probability mass function for these variables, $p(\vec{x}|y) = p(x_1, \ldots, x_n|y)$ based on some data y. We decide to use the following loss function:

$$\ell(\hat{\vec{x}}, \vec{x}) = \sum_{i=1}^{n} (1 - \delta(\hat{x}_i, x_i))$$
 (1)

where $\delta(a, b) = 1$ if a = b and zero otherwise.

- 1. Derive an expression for the estimated values, found by minimizing the expectation of the loss function. [Hint: use linearity of expectation.]
- 2. When the probability distribution is a posterior distribution in some problem, this type of estimate is sometimes called 'maximum posterior marginal' (MPM) estimate. Explain why this name is appropriate.
- 3. Explain in words what the loss function is measuring. Compare with the loss function for MAP estimation.

2 Credible sets

Exercise 3. (**) (Example from the Lecture's handout) Consider a Bayesian model

$$\begin{cases} y_i | \mu & \stackrel{\text{iid}}{\sim} \mathbf{N}_d(\mu, \Sigma), & i = 1, ..., n \\ \mu & \sim \mathbf{N}_d(\mu_0, \Sigma_0) \end{cases}$$

where uncertain $\mu \in \mathbb{R}^d$, $d \ge 1$, and known $\Sigma > 0$, μ_0 , $\Sigma_0 > 0$. Find the C_a parametric HPD credible set for μ .

Hint-1: If $z = (z_1, ..., z_d)^{\top}$ such as $z_j \stackrel{\text{iid}}{\sim} \text{N}(0, 1)$ for j = 1, ..., d, and $\xi = z^{\top}z = \sum_{j=1}^d z_j^2$, then $\xi \sim \chi_d^2$

Hint-2: It is

$$\begin{split} -\frac{1}{2} \sum_{i=1}^{n} (x - \mu_{i})^{\top} \Sigma_{i}^{-1} (x - \mu_{i})) &= -\frac{1}{2} (x - \hat{\mu})^{\top} \hat{\Sigma}^{-1} (x - \hat{\mu})) + C(\hat{\mu}, \hat{\Sigma}) \quad ; \\ \hat{\Sigma} &= (\sum_{i=1}^{n} \Sigma_{i}^{-1})^{-1}; \quad \hat{\mu} = \hat{\Sigma} (\sum_{i=1}^{n} \Sigma_{i}^{-1} \mu_{i}); \\ C(\hat{\mu}, \hat{\Sigma}) &= \underbrace{\frac{1}{2} (\sum_{i=1}^{n} \Sigma_{i}^{-1} \mu_{i})^{\top} (\sum_{i=1}^{n} \Sigma_{i}^{-1})^{-1} (\sum_{i=1}^{n} \Sigma_{i}^{-1} \mu_{i}) - \frac{1}{2} \sum_{i=1}^{n} \mu_{i}^{\top} \Sigma_{i}^{-1} \mu_{i}}_{= \text{independent of } x} \end{split}$$

Example 4. $(\star\star)$ (Example from the Lecture's handout) Assume an 1- dimensional random quantity $x \sim Q(x|y)$. In the Lecture Handout (Handout 11: Bayesian point estimation), discussed the following Hint:

Hint: The Bayes estimate $\hat{\delta}$ of x under the linear loss function

$$\ell(x, \delta; \varpi) = (1 - \varpi)(\delta - x) \mathbf{1}_{x < \delta}(\delta) + \varpi(x - \delta) \mathbf{1}_{x > \delta}(\delta),$$

where $\varpi \in [0,1]$, is the ϖ -th quantile of distribution Q, let's denote it as x_{ϖ} .

1. Derive the (1-a)-credible interval $C_a = [L, U]$ for x as a Bayesian rule C_a under the loss function

$$\ell(x, C_a; \varpi_L, \varpi_U) = \ell(x, L; \varpi_L) + \ell(x, U; \varpi_U)$$
(2)

by computing L and U.

- 2. Your client is worried the same both for under-estimation and over-estimation; derive a suitable (1 a)-credible interval $C_a = [L, U]$ based on (2) by computing L, and U.
- 3. Your client is worried only for over-estimation; derive a suitable (1-a)-credible interval $C_a = [L, U]$ based on (2) by computing L and U.