十三五实车试验指导文档

参与单位:

清华大学-汽车 清华大学-自动化 东南大学-机械 东南大学-交通 重庆邮电大学 长安汽车

版本控制表

表1文档版本控制表

修改日期	修改说明	修改人
	● 增加任务分工具体人员明细	
2020-06-28	● 增加 2020-07-13 任务产出明细	孙 浩
2020-00-28	● 增加与 DSRC 匹配的程序说明	7/1 1/1
	● 修订任务分工中的若干疏漏	
2020-06-30	● 增加 DSRC 工作进展明细	孙浩
2020-07-02	● 确定导航定位接口	孙浩
2020-07-03	● 修订 Msg 的定义错误	孙浩
2020-07-03	● 定位模块接口使用说明	17JY 🗆
2020-07-06	● 补充及修改控制方案细节	李杰
	● 新增 0708 周报	
2020-07-09	● 新增清华启辰定位测试模块	
2020-07-09	● 根据不同车辆平台特性制定了不同 launch)
	文件	
2020-07-17	● 增加启辰平台上电说明	孙浩

1 智能网联队列实车演示概述

拟演示长直道工况四车异质队列的编队行驶。队列包括1辆虚拟领航车 (红色空心圆圈)及3辆电动跟随车(蓝色空心圆),从前向后(图中从左向 右)车辆编号分别为0号车、1号车、2号车和3号车。

图 1. 队列车辆编号示意图

车辆队列行驶拟实现的场景包括:

- 1、车辆队列行驶;
- 2、队列协同换道;
- 3、队列车辆切出及切入。

试验场地为重庆长安汽车综合试验场一长直道,起点经纬度为(30.268284, 107.397303),终点经纬度为(30.261275, 107.398809),长度约为 793 米。

图 2. 试验场地

2 拟定控制方案

2.1 车辆队列行驶

该任务仅考虑车辆队列的纵向控制,控制目标是使队列中前后相邻车间距离保持固定值 p_{des} ,即队列几何构型采用恒定距离型。虚拟领航车的工况包括车速分别为 20km/h、30km/h 和 40km/h 的匀速工况以及下图所示的变速工况:

图 3. 变速工况

拟采用的信息流拓扑结构为图 4 中三种拓扑结构。各跟随车可以利用的信息包括: 自车毫米波雷达提供的前车距离,虚拟领航车及其他跟随车的组合定位模块通过 DSRC 发送的位置和速度信息。这些信息在利用前将统一转化为相对自车的相对距离和相对速度。

各跟随车的节点动力学模型采用二阶线性模型,控制量为加速度 a^{ctr} (同时保留速度输入接口 $u^{ctr}=u^{ctr}_{ola}+\Delta t\cdot a^{ctr}$)。各跟随车接收信息数量的不同,分布式控制器的设计方法也有所不同,总体上采用线性二次型调节器(LQR)。

a)接收单一车辆的通信信息,即通过车间通信获得车辆i的纵向位置 $x_i(t)$ 和速度 $u_i(t)$ 。假定发送信息车辆i的速度为定值,可以结合位置速度信息所对应

的 GPS 时钟估计两车的纵向位置差 $x = x_k - \left(x_i + u_i(t_k^{GPS} - t_i^{GPS})\right) + (k-i)p_{des}$ 及速度的差值 $u = u_k - u_i$,其中自车编号为k。设系统状态 $s = \begin{bmatrix} x \\ u \end{bmatrix}$,车辆节点k的动力学为双积分器模型,则控制系统的状态空间方程为

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{u} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} a = As + Ba$$

设计线性二次型最优调节器,最小化如下二次型性能指标

$$\min_{a} \int_{0}^{\infty} (s^{T} Q s + a^{T} R a) d\tau$$

即需要求解代数黎卡提方程

$$A^T P + PA + Q - PBR^{-1}B^T P = 0$$

解得最优控制加速度

$$a^{ctr} = -R^{-1}B^TPs$$

b)接收多辆车辆的通信信息。首先分别根据某一车辆的通信信息计算最优控制加速度 a_i^{ctr} ;再对以上计算得到的结果进行加权平均,权重和为 1,得到最终的控制加速度

$$a^{ctr} = \sum_{i} c_i a_i^{ctr}$$
$$\sum_{i} c_i = 1$$

2.2 队列协同换道

队列协同换道需要在长直道上,由虚拟领航车向右换道,各个跟随车辆依次向右换道。因此,该任务涉及车辆队列的横纵向联合控制,纵向控制目标依然是使队列中相邻车辆的纵向距离保持固定值 p_{des} ,横向控制目标是跟踪下图所示的单移线。虚拟领航车的工况包括车速为 20km/h、30km/h 和 40km/h 的三种匀速工况。

图 5 领航车单移线

考虑到队列的稳定性及充分应用毫米波雷达和组合定位的感知信息,通讯 拓扑采用图 4 (c)所示的前车-领航者跟随式拓扑结构。

这里采用横纵向控制解耦的方案: 首先根据虚拟领航车的行驶方向(即长直道的方向)建立纵向和横向空间坐标系,分别将各车的位置和速度信息转化到该坐标系下。队列协同换道过程中,在纵向控制上保持任务 2.1,横向控制上设计方向盘控制输入使得跟随车跟踪上图所示的单移线。该跟踪问题将转化为调节器问题,对相对于虚拟头车的横向距离进行调节。

横向控制采用下图所示的二自由度刚体转向模型:

图 6 二自由度刚体转向模型

其中长直道前进方向为x轴,左侧方向为y轴,L为车辆轴距,组合定位设备安装点距离前后轴距离分别为a和b,前后轮瞬时速度分别为 u_f 和 u_r 。组合定位测得车辆速度为u,车辆姿态角为 ψ ,车辆横摆角速度为 ω_r 。横向控制量前轮转角为 δ ,组合定位设备安装点瞬时速度与车辆夹角记为 β ,刚体瞬时曲率记为 $\frac{1}{B}$ 。

假设 δ 和 ψ 为小角度,那么该二自由度刚体转向模型的状态空间方程为:

设计线性二次型最优调节器,最小化如下的二次型性能指标

$$\min_{\delta} \int_{0}^{\infty} \left(\begin{bmatrix} y & \psi \end{bmatrix} Q \begin{bmatrix} y \\ \psi \end{bmatrix} + \delta^{T} R \delta \right) d\tau$$

即需要求解代数黎卡提方程

$$uA^{T}P_{u} + P_{u}uA + Q - P_{u}uBR^{-1}uB^{T}P_{u} = 0$$

解得最优前轮转角

$$\delta^{ctr} = -R^{-1}uB^T P_u \begin{bmatrix} y \\ \psi \end{bmatrix}$$

注意到在代数黎卡提方程

$$A^{T}P + PA + O - PBR^{-1}B^{T}P = 0$$

两者的解矩阵的关系为

$$P = uP_{u}$$

因此最优前轮转角可以重新写为

$$\delta^{ctr} = -R^{-1}B^T P \begin{bmatrix} y \\ \psi \end{bmatrix}$$

该表达式中与车辆纵向速度u无关。

实际控制过程中,跟随车k接收领航车的信息后,假定领航车的速度 u_0 和姿态角 ψ_0 不变,结合横向坐标及姿态角所对应的 GPS 时钟估计两车的横向位置差 $y = y_k - \left(y_0 + u_0\psi_0(t_k^{GPS} - t_0^{GPS})\right)$ 及姿态角的差值 $\psi = \psi_k - \psi_0$,根据上式计算前轮转角 δ^{ctr} 以跟踪单移线,而各跟随车在纵向控制上保持任务 2.1。

任务 2.3 切入切出中的横向控制方案与本方案类似。

2.3 队列车辆切出及切入

为保证任务的代表性,本任务包括 3 号车和 2 号车的切出和切入,虚拟领航车的工况包括车速为 20km/h、30km/h 和 40km/h 的三种匀速工况。

1)3号车的切出(下图蓝色虚线圆圈表示该跟随车的纵向运动由队列控制,但是该车与队列有一定的横向距离)

设计规则型切出方案如下:在保持车辆队列行驶的同时(即保持3号车的纵向速度与虚拟领航车一致,且3号车与前车的纵向距离一定),控制3号车方向盘,使其向左换道。换道完成后,3号车切出队列。

2) 3 号车的切入

设计规则型切入方案如下: 3 号车首先从队列的左后方接近队列。当 3 号车与 2 号车的纵向距离接近某一固定距离时,开始将 3 号车纳入队列控制。先通过纵向控制保持 3 号车的纵向速度与虚拟领航车一致,且保持与前车的纵向距离一定;再通过横向控制将 3 号车与队列的相对横向距离逐渐调整为 0,其中 3 号车的换道期望轨迹与图 5 相似。

3) 2号车的切出

设计规则型切出方案如下:在保持车辆队列行驶的同时(即保持 2 号车的 纵向速度与虚拟领航车一致,且 2 号车与前车的纵向距离一定),控制 2 号车 方向盘,使其向左换道,且换道期望轨迹与图 5 相似。换道后,2 号车即切出

队列,同时调整队列大小以及通讯拓扑结构,使 3 号车接替 2 号车的位置,期间将 3 号车与 1 号车的期望距离由 $2p_{des}$ 逐渐调整为 p_{des} 。

4) 2号车的切入

图 10.2 号车切入通信拓扑

设计规则型切入方案如下: 2号车首先从队列的左后方接近队列。当2号车与3号车几乎并排行驶时,首先将3号车与前车(1号车)的纵向期望间距由 p_{des} 逐渐调整为 $2p_{des}$ 。队列稳定行驶后,3号车与1号车拉开一定距离,为2号车的切入留出空隙。之后调整队列大小以及通讯拓扑结构,开始将2号车纳入队列控制,且将3号车与前车(2号车)的纵向期望距离改回固定值。先通过纵向控制保持2号车的纵向速度与虚拟领航车一致,且保持与前车的纵向距离一定;再通过横向控制将2号车与队列的相对横向距离逐渐调整为0,其中2号车的换道期望轨迹与图5相似。

3 任务分工及工作计划

3.1 任务分工及人员安排

图 11 队列控制 ROS 程序架构

图 12 队列控制功能模块划分

表 2. 任务分工及人员安排

名称	任务	人员
D 14.	1. 总体队列实验方案设计	7.50
队列实验组	2. <u>队列控制 ROS 节点</u> :输入量为网联信息、自车定位信息、自车状态信息、前向毫米波雷达感知信息;输出量为期望前轮转角、期望加速度/期望速度	清华大学2人(李 杰、孙浩)
毫米波雷达	1. <u>毫米波雷达 ROS 节点</u> : 前车相对距 离、相对位置感知及发布	
定位	2. 定位设备 ROS 节点: 航向、经纬度、GPS 车速等信息感知及发布(设备调试和配置,输出指定报文即可)	清华汽车(许庆、刘科) 东南大学(刘畅、
车辆平台控制 组	1. 纵向控制 ROS 节点:输入量为期望加速度,输出量为自动驾驶平台执行机构控制量。 2. 侧向控制 ROS 节点:输入量为期望前轮转角,输出量为自动驾驶平台执行机构控制量	庄伟超) 长安汽车(孙浩、 曹文涵、熊杰)
无线通信组	 DSRC端: 嵌入式代码开发, TCP Server (重邮) PC端: 基于 ROS 的信息收发, TCP Client。 	重庆邮电大学2人 (焦傲、陈邦傑) 清华大学1人(孙 浩)
后勤保障组	1. <u>前期准备</u> :车辆平台及对应设备 检查、车辆托运 2. <u>车辆平台使用及维护</u> :设备、附加机构及平台的接线、拆装、启动/关闭及车辆平台暂存、充电等。	长安汽车1人(刘 秀鹏) 重庆邮电1人(焦 傲)

- 3. 数据采集:实验数据采集。
- 4. <u>队列实验摄影摄像素材采集,采</u> 用航拍
- 5. <u>安全员</u>:人工保证实验行驶安全性(外聘3个驾驶员)

清华大学1人(北京孙浩、重庆熊 杰)

3.2 工作计划

图 13 工作计划分解

总体上分成(一)模块测试(二)集成调试及队列实验两个阶段;其中(二)阶段一定在试验场集中完成。

在疫情影响下,暂提出2个方案

方案(1)7月13日,除在京人员外其他人重庆集合,各模块并行开发。 工期约7-10个工作日。(优点:任务全涵盖;缺点:人员有不确定性)

方案 (2) 7月 13 日之前,交接工作部分工作。两台车的环境部署、定位以及无线通讯可在北京调试,但车辆控制无法调试;另外一台车的基于由东南大学(机械)负责测试。(优点:预期确定;缺点:控制及部分集成工作无法测试)

在(一)阶段测试完毕后,择机在重庆开展(二)阶段试验工作。

3.3 0 阶段工作安排

模块	任务	截至日期	负责人
	平台恢复(车辆状态检查、工控机、导 航安装、毫米波雷达安装)	2020-07-02-	许庆
清华启辰 自动驾驶 平台	控制程序开发(期望加速度及前轮转角 为控制量),提供(ROS 节点/源程序/ 库文件)	2020-07-07	许庆
	环境部署及模块集成调试	2020-07-12	许庆、
	平台恢复	2020-07-02-	刘畅
东南机械 自动驾驶 平台	控制程序开发(期望加速度及前轮转角 为控制量),提供(ROS 节点/源程序/ 库文件)	2020-07-07	刘畅
	模块集成调试	2020-07-12	刘畅、孙浩
长安自动	<mark>车辆</mark>	?	?
驾驶平台	?	?	?
DSRC 通	制定传输数据包数据结构 PC端 ROS 环境 TCP Client 开发	2020-07-01 2020-07-01	焦傲 孙浩
信	PC 端 DSRC 数据打包与解析	2020-07-02	孙浩

	PC 与 1~2 台 DSRC 设备联机调试	2020-07-10	焦傲、 孙浩
队列控制	队列控制输入数据结构确定	2020-07-01	李杰、孙浩
仿真	不同拓扑下队列控制仿真	2020-07-09	李杰
, , , , , , , , , , , , , , , , , , ,	队列控制算法集成	2020-07-10	李杰、孙浩

3.4 0708 周报

1 、姓名	2、本周工作进展	3、下周工作计划
焦傲	本周进行了4个PC端分别控制4个dsrc 通信设备进行通信,结果显示通信正常。 此外进行了户外实验,检测了通信距离大概500米。	设备已经调试完成,并且检测性工作基本完成。接下来配合孙浩老师进行下一步工作。
李杰	测试车辆切入切出的控制效果	改进控制器,减小低速工况横向 控制的超调
孙浩	1)确定与东南机械的定位信息接口,2)确定与清华汽车的定位及控制接口,3)确定与队列控制的接口并集成	1)与东南机械平台联合调试, 2)与清华汽车平台联合调试 3)与李天福老师协调 <u>实验牌照</u> , 与丛伟老师协调场地(清华校 内,科建大厦)
东南大学	对接定位信息接口,和整车厂沟通负责车	完成新控制器测试工作, 对接控
刘畅	辆新控制器调试测试,测试跟踪算法	制接口信息格式
清华自动驾驶平台	1)确定使用串口输出,\$GPRMC。2)横向控制 ok,车辆底盘控制器不响应纵向控制信号。	1)排查控制故障,2)测试定位
长安自动	1)毫米波装上了,已经标定,可以输出	1)准备发车)。2)执行平台第
驾驶平台	目标	三方测试报告
东南交通试验进展	1)第三方报告,2)通信是否用 DSRC (时延问题),3)试验车控制接口(哪 个平台,接口是什么)	

3.5 0715 周报

1 、姓名	2、本周工作进展	3、下周工作计划
		协助孙老师工作,根据计划实
		施下一步工作
		设备 220V 供电。(配套逆变
焦傲	进行多次户外测试,确保设备工作正常	器,需要确定最高功率)
	1)完成启辰平台定位程序编写;2)与	
	何乐老师对接,了解平台的使用细节。;	
	3)初步测试发现几个问题(差分 GPS	1)补充相关材料,完成定位测
	没流量卡,工控机暂时不能上网,一个人	试; 2) 尽量开展控制测试(请
孙浩	难以开展控制测试)	何老师协助)
	调整控制器参数,减小横向跟踪控制的超	
李杰	调量;测试三个任务的控制效果	待定
	1.更换了新的控制器,相应修改车辆控制	与定位消息订阅节点进行联合
	部分相关代码 2.从 gps 中解析出了车辆	调试,保证定位信息的正确发
	速度信息,按照之前定义好的格式进行消	布和接收。修改车辆底层控制
东南大	息发布 3.测试毫米波雷达目标跟踪稳定	量,由速度控制改为加速度控
学机械	性	制。
	完成了启辰车横纵向控制底层调试,目前	
	DGPS 定位系统和底层控制均以串口形式	配合孙浩老师完成启辰车的调
刘科	与工控机连接。	试工作

3.6 0722 周末

1、姓名	2、本周工作进展	3、下周工作计划
东南大学机	已调试好定位消息的收发,确定	确定底层控制消息格式,联合上层
械	底层控制接口方案	进行实车调试
	本周进行了几次室外调试保证设	
	备工作正常,并进行项目结题相	根据项目组安排,继续配合孙老师
重邮	关材料汇总	进行下一步工作
	查阅相关资料,确定了利用行驶	
	方程式来建立期望加速度和转矩	
	的映射,但需要长安提供车辆参	结合车的参数确定映射中的参数,
曹文涵	数	考虑是否加入最小二乘估计
	依据纵向控制输入接口和车辆顺	
李杰	序改进控制代码和仿真平台	根据实车试验具体进展开展工作
	1)完成定位测试,2)配齐三车	1)配置第三台工控机环境,2)测试
	户外上网的设备,3)启辰控制驱	第二套定位系统,3) 其它零散工
	动程序编写(缺一个下发数据	作收尾,离线工作基本完成。4)
孙浩	线),暂时没有测试	购买其它材料。5)虚拟头车

4 附录

4.1 程序说明

可单独开发 ros 节点,通过 topic 进行交互(均为 ros 标准 msg);也可提 交源程序或接口及库文件(*.a/*.so)进行集成。

表3程序说明表

项目	内容	
程序仓库	https://gitee.com/tsinghua-iDLab/v2v_exp.git	
	Ubuntu 16.04	
】 环境	ROS Kinetic	
小児	C++ std11	
	Python 2.7	
启动整体程序	roslaunch start simu_tsu.launch	
例: 启动 TCP Client	roslaunch shcom tcp_client.launch <launch></launch>	

note: 下载之后,需要 source install/setup.bash

4.2 实车工作群

图 14 十三五实车工作群

4.3 DSRC 工作进展

4.3.1 DSRC 工作进展明细

表 4 DSRC 模块工作进展明细

日期	工作内容	
2020-06-28	◆ 更新数据包结构	
2020 06 20	→ ros tcp client 测试已经通过,	
2020-06-29	◆ dsrc 端为两个进程而非多线程,需要修改 ros 架构	

2020-06-30		完成多进程 tcp client 开发
2020-00-30	→ to	cp client 与 DSRC 设备收发均成功

4.3.2 DSRC 工作参数

表 5. DSRC 关键参数

项目	内容
传播范围	500m
通信发送周期	300ms
通信接受周期	300ms(各设备并行)
通信延迟	100ms
通信带宽	最大数据包 56byte

4.3.3 DSRC 数据包定义

```
typedef struct BasicSafetyMessage{
 2
 3
        uint8 t Msg ID;
        uint8 t Veh ID;
       uint8 t Msg Len;
 5
        Message Vehicle Basic t Message Veh;
 6
       //link list
        struct BasicSafetyMessage *pBsm_pre;
 8
        struct BasicSafetyMessage *pBsm_next;
    } BasicSafetyMessage st;
10
11
12
    typedef struct Message Vehicle Basic{
13
14
        int32 t Pos x;
        int32_t Pos_y;
15
        int32 t Yaw;
16
17
        int32 t Speed;
       uint32 t temp1;
18
       uint32 t temp2;
19
       uint32 t temp3;
20
       uint32 t temp4;
21
       uint32_t temp5;
22
    }Message_Vehicle_Basic_t;
23
```

图 15 DSRC 数据包定义

4.3.4 DSRC 测试说明

- ◆ git clone 获取程序或下载程序并解压
- ◆ 打开终端,并进入在 v2v exp 路径
- ◆ 在该路径下执行 source intall/setup.bash 命令
- ◆ 执行 roslaunch start dsrc.launch 命令即可运行与 dsrc 相关的所有程序

4.4 定位模块工作进展

4.4.1 定位模块使用说明(东南机械)

表6定位信息接口说明

项目	内容	备注
定位接口	nav_msgs/Odometry Msg	ROS 标准 msg
时间	Msg. twist.twist.linear.y	Float64
HJ [HJ	ivisg. twist.twist.inicar.y	单位:s (UTC 时间)
UTM x	Msg.pose.pose.position.x	Float64
OTWIX	Wisg.posc.posc.position.x	单位: m
UTM y	Msg.pose.pose.position.y	Float64
O TIVI y	wisg.posc.posc.position.y	单位: m
经度	Msg.pose.covariance[0]	Float64
-1./X	wisg.pose.covariance[o]	单位: deg
纬度	Msg.pose.covariance[1]	Float64
- P/X	wisg.pose.covariance[1]	单位: deg
		Float64,
航向	Msg.pose.covariance[2]	单位: rad(0~2PI),
		正北为 0,顺时针为正
车速	Msg.twist.twist.linear.x	Float64
十本 Wisg.twist.twist.imeat.x		单位: m/s

source install/setup.bash

启动文件: roslaunch start start_seu_platform.launch

(注:文件路径: v2v_exp/install/share/start/launch/)

参数说明:

<arg name="nav_tpk" default="/nav_info"/>:

nav_tpk 为订阅的 topic 的名字,可使用默认名字,也可自行更改。

<arg name="is_print" default="True"/>:

is_print 为是否打印调试信息,True 为打印,False 为不打印。

当选择打印调试信息时,终端上会打印出: UTM x, UTM y, yaw,

Speed, UTC time 等 5 个重要信息量。可与原始数据对应保证数据传输正确。

4.4.2 定位模块使用说明(清华启辰)

source install/setup.bash (请注意在 ***/v2v_exp/ 路径下执行该命令)

启动文件: roslaunch start start_tsu_platform.launch

(注:文件路径: v2v_exp/install/share/start/launch/)

参数说明:

<arg name="com_serial_port" value="/dev/ttyS0"/>

/dev/ttyS0 为串口端口号,请根据实际情况配置

<arg name="com_baud_rate" value="115200"/>

115200 为串口数据通信波特率,请根据情况配置

其它参数无须修改

4.5 控制模块工作进展

4.5.1 控制测试使用

source install/setup.bash (请注意在 ***/v2v_exp/ 路径下执行该命令)

启动文件: roslaunch start ctrl_test.launch.launch

(注:文件路径: v2v_exp/ install / share / start / launch/),可通过拖拽游标以及直接键入数值调整参数开展控制测试。

图 16 控制测试平台

表7控制接口参数说明

话题	类型	备注
/cmd/all	std_msgs/Float32MultiArray	[0]: 前轮转角(rad,左转方
		向盘为正)
		[1]: 期望速度(m/s)
		[2]: 期望加速度(m/s²)
/cmd/ax_ms2	std_msgs/Float32	期望加速度(m/s²)
/cmd/fw_rad	std_msgs/Float32	前轮转角(rad,左转方向盘
		为正)
/cmd/vx_ms	std_msgs/Float32	期望速度(m/s)

4.5.2 清华启辰平台

特别注意,由于启辰平台特性,要求车辆部件上电顺序必须满足一定条件,即:首先打开后备箱空气开关,然后是1开,车辆上电,2开,然后开工控机。关机次序倒序。请务必注意!

下图中为开关实际图, 当前状态为关闭态。

图 17 启辰平台操作按键-状态关

4.5.3 东南机械平台

4.6 其它

4.6.1 长安平台供电需求表

表8设备供电需求

设备	供电	功率
定位	圆头接口,直流 12V	50w
DSRC	三相插头,交流 220V	200w
工控机	三相插头,交流 220V	300w
显示器	三相插头,交流 220V	200w

4.6.2 长安平台参数需求

表9长安平台参数需求

项目	数值	备注
滚动阻力系数		
传动器的机械效率		
车总质量		
车迎风面积		
主减速比		
车轮半径		
空气阻力系数		
车轮转动惯量		
车运行时的最小转矩		