Physics 12 Comfort Blanket

Relativity

$$t_r = \frac{t_o}{\sqrt{1 - \frac{\vec{v}^2}{\vec{c}^2}}}$$

$$m_r = \frac{m_o}{\sqrt{1 - \frac{\vec{v}}{\vec{c}}}}$$

$$t_r = \frac{t_o}{\sqrt{1 - \frac{\vec{v}^2}{\vec{c}^2}}} \qquad m_r = \frac{m_o}{\sqrt{1 - \frac{\vec{v}^2}{\vec{c}^2}}} \qquad l_r = l_o \cdot \sqrt{1 - \frac{\vec{v}^2}{\vec{c}^2}} \qquad \vec{v}_{total} = \frac{\vec{v}_1 + \vec{v}_2}{1 + \frac{\vec{v}_1 \vec{v}_2}{\vec{c}^2}}$$

$$\vec{v}_{total} = \frac{\vec{v}_1 + \vec{v}_2}{1 + \frac{\vec{v}_1 \vec{v}_2}{\vec{c}^2}}$$

$$E = m\vec{c}^2$$

$$\beta = \frac{\vec{v}}{\vec{c}}$$

Forces, Dynamics, Collisions, & Equilibrium

$$\overrightarrow{F_g} = m\overrightarrow{g}$$

$$\vec{g} = G \frac{m}{r^2}$$

$$\overrightarrow{F_g} = m\overrightarrow{g}$$
 $\overrightarrow{g} = G\frac{m}{r^2}$ $\overrightarrow{F_g} = G\frac{m_1m_2}{r^2}$ $\overrightarrow{F_{net}} = m\overrightarrow{a}$ $\overrightarrow{F_f} = \mu \overrightarrow{F_N}$

$$\overrightarrow{F_{net}} = m\vec{a}$$

$$\overrightarrow{F_f} = \mu \overrightarrow{F_N}$$

$$\vec{\rho} = m\vec{v}$$

$$\vec{\rho} = m\vec{v}$$
 $\overline{Impulse} = \vec{F}\Delta t$ $\vec{F}\Delta t = m\Delta \vec{v}$ $\Sigma \overrightarrow{\rho_i} = \Sigma \overrightarrow{p_f}$ $\vec{\tau} = \overrightarrow{F_\perp} d$

$$\vec{F}\Delta t = m\Delta\vec{v}$$

$$\Sigma \overrightarrow{\rho_i} = \Sigma \overrightarrow{p_f}$$

$$\vec{\tau} = \overrightarrow{F_1} d$$

Energy & Orbital Mechanics

$$E_p = m\vec{g}h$$

$$E_k = \frac{1}{2} m \overline{v^2}$$

$$E_p = -G \frac{m_1 m_2}{r}$$

$$T = \frac{1}{f}$$

$$E_p = m\vec{g}h$$
 $E_k = \frac{1}{2}m\vec{v^2}$ $E_p = -G\frac{m_1m_2}{r}$ $T = \frac{1}{f}$ $\vec{a_c} = \frac{v^2}{r} = \frac{4\pi^2r}{T^2}$

$$\overrightarrow{F_c} = m\overrightarrow{a_c} = m\frac{v^2}{r} = m\frac{4\pi^2r}{T^2}$$
 $\overrightarrow{v}_{esc} = \sqrt{\frac{2Gm}{r}}$ Top: $\overrightarrow{F_c} = T + F_g$ Bottom: $\overrightarrow{F_c} = T + F_g$

$$\vec{v}_{esc} = \sqrt{\frac{2Gm}{r}}$$

Top:
$$\overrightarrow{F_c} = T + F_g$$

Bottom:
$$\overrightarrow{F_c} = T + F_g$$

Electrostatics

$$\overrightarrow{F_e} = k \frac{Q_1 Q_2}{r^2}$$
 $\overrightarrow{E} = \frac{\overrightarrow{F}}{Q}$ $\overrightarrow{E} = k \frac{Q_1}{r^2}$ $\Delta V = \frac{\Delta E_p}{Q}$ $\overrightarrow{E} = \frac{\Delta V}{d}$

$$\vec{E} = \frac{\vec{F}}{o}$$

$$\vec{E} = k \frac{Q_1}{r^2}$$

$$\Delta V = \frac{\Delta E_p}{Q}$$

$$\vec{E} = \frac{\Delta V}{d}$$

$$E_p = \pm k \frac{Q_1 Q_2}{r} \qquad V = k \frac{Q}{r}$$

$$V = k \frac{Q}{r}$$

Electromagnetism

$$\overrightarrow{F_m} = \overrightarrow{B_\perp} I l$$

$$\overrightarrow{F_m} = Qv\overrightarrow{B_\perp}$$

$$\overrightarrow{F_m} = \overrightarrow{B_\perp} I l$$
 $\overrightarrow{F_m} = Q v \overrightarrow{B_\perp}$ $\overrightarrow{B} = \mu_0 n I = \mu_0 \frac{N}{I} I$ $\varepsilon = \overrightarrow{B_\perp} l v$

$$\varepsilon = \overrightarrow{B_{\perp}} l v$$

$$\Phi = \overrightarrow{B_{\perp}}A$$

$$\varepsilon = -N \frac{\Delta \Phi}{\Delta t}$$

$$\Phi = \overrightarrow{B_{\perp}}A$$
 $\varepsilon = -N\frac{\Delta\Phi}{\Delta t}$ $V_{back} = \varepsilon - Ir$ $\frac{V_s}{V_n} = \frac{N_s}{N_n} = \frac{I_p}{I_s}$

$$\frac{V_S}{V_p} = \frac{N_S}{N_p} = \frac{I_p}{I_S}$$

Kinematics

$$\vec{v} = \frac{\overrightarrow{\Delta d}}{\Delta t}$$

$$\vec{a} = \frac{\overline{\Delta v}}{\Delta t}$$

$$\vec{d} = \left(\frac{\overrightarrow{v_f} + \overrightarrow{v_l}}{2}\right) \Delta$$

$$\vec{v} = \frac{\overline{\Delta d}}{\Delta t} \qquad \vec{a} = \frac{\overline{\Delta v}}{\Delta t} \qquad \vec{d} = \left(\frac{\overline{v_f} + \overline{v_l}}{2}\right) \Delta t \qquad \vec{d} = \overline{v_l t} + \frac{1}{2} \vec{a} t^2 \qquad \overline{v_f^2} = \overline{v_l^2} + 2\vec{a} \vec{d}$$

$$\overrightarrow{v_f^2} = \overrightarrow{v_l^2} + 2\overrightarrow{a}\overrightarrow{d}$$

$$\overrightarrow{v_f} = \overrightarrow{v_i} + \vec{a}t$$

Work Power Energy Momentum

$$W = Fd$$
 $E_p = mg\Delta h$ $E_k = \frac{1}{2}mv^2$ $P = \frac{W}{\Delta t}$ $\vec{p} = mv$ $\Delta \vec{p} = F_{net}\Delta t$ $\Delta \vec{p} = m\Delta v$ $\Delta E_H = F_{fric}d$ $W = \Delta E$ Efficiency $= \frac{W_{out}}{W_{in}} \times 100\% = \frac{P_{out}}{P_{in}} \times 100\%$

PREFIX	SYMBOL	MULTIPLIER	EXPONENT
			FORM
exa	E	1, 000, 000, 000, 000, 000, 000	1018
peta	P	1, 000, 000, 000, 000, 000	1015
tera	T	1, 000, 000, 000, 000	1012
giga	G	1, 000, 000, 000	10 ⁹
mega	M	1, 000, 000	10 ⁶
kilo	k	1,000	10^{3}
hecto	h	100	10^{2}
deca	da	10	10^{1}
Basic Unit	Basic Unit	1	100
deci	d	0.1	10-1
centi	c	0.01	10-2
milli	m	0.001	10-3
micro	μ	0. 000, 001	10-6
nano	n	0. 000, 000, 001	10-9
pico	р	0.000,000,000,001	10-12
femto	f	0. 000, 000, 000, 000, 001	10-15
atto	a	0. 000, 000, 000, 000, 000, 001	10-18

Useful Constants and Physical Data:

Gravitational Acceleration at Earth's surface $\vec{g} = -9.80 \frac{m}{s^2}$
Universal Gravitational Constant
Speed of light in a vacuum. $c = 3.00 \times 10^8 \frac{m}{s}$
Coulomb's Constant
Elementary charge
Mass of a proton
Mass of an electron
Mass of an alpha particle $m_{\alpha^{2+}} = 6.65 \times 10^{-27} kg$
Permeability of free space

Earth Data:

Mass of the Earth	$m_E = 5.98 \ x \ 10^{24} \ kg$
Radius of the Earth	$r_E = 6.38 \times 10^6 m$
Orbital Radius around the Sun	$r = 1.50 x 10^{11} m$
Orbital Period around the Sun	$T = 3.16 \times 10^7 s$
Period of Rotation on axis (length of day)	$T = 8.61 \times 10^4 s$

Moon Data:

Mass of the Moon	$m_M = 7.35 x 10^{22} kg$
Radius of the Moon	$r_M = 1.74 \times 10^6 m$
Period of orbit around Earth	$T = 2.36 \times 10^6 s$
Radius of orbit around Earth	$ r = 3.84 \times 10^8 s$
Period of rotation on axis (length of day)	$T = 2.36 \times 10^6 s$

Sun Data:

Mass of Sun	$m_s =$	$1.98x10^{30}kg$
-------------	---------	------------------

Non 90° Triangle Geometry (Or all triangles)

Cosine Law

$$c^2 = a^2 + b^2 - (2ab \cdot cos C)$$

Sine Law

$$\frac{Sin A}{a} = \frac{Sin B}{b} = \frac{Sin C}{c}$$

If,
$$ax^2 + bx + c = 0$$
 then,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$