

Robust Convolutional Neural Networks under Adversarial Noise

Jonghoon Jin, Aysegul Dundar and Eugenio Culurciello

Abstract

We propose a new feedforward CNN that is robust to adversarial noise. With uncertainty noise added to input, all operators in CNNs are modified to benefit from the noise. The model is parameterized by mean and variance per pixel and successfully applied to deep architecture like ResNet-101.

Adversarial example

- generated to fool CNNs on purpose

Input with uncertainty

(2x2 example image)

Convolution

$$E\left[Y
ight] = \sum \omega E\left[X
ight] + b$$
 $Var\left[Y
ight] = \sum \omega^2 Var\left[X
ight]$
(Gaussian output)

Max-pooling

ReLU

Gaussian approximation for max-pooling (and ReLU)

- low error when max-pooled in ascending order by mean

Parameter tuning (σ)

- trade-off (small classification loss <-> large gain with noise)

Demo

Code

Classification accuracy under noise

(higher is better)

Dataset	CIFAR-10 NIN		ImageNet			
Model			AlexNet			ResNet-101
Adversarial noise intensity [px]	0	0.5	0	0.01	0.5	1
Standard training	90.1	72.3	57.0	56.1	24.8	17.50
Standard training + stochastic (this work)	88.9	78.1	57.0	56.2	33.4	39.24
LWA + BN (Huang et al. 2016)	89.0	82.3				
Adversarial training (Goodfellow et al. 2015)	88.7	82.1	43.0	42.9	*	*
Adversarial training + stochastic (this work)	88.7	82.9	43.0	42.9	*	*

(* : failed to converge)