

รายงาน

INTERNETWORKING STANDARDS AND TECHNOLOGIES Assignment Network Design

เสนอ

อ.จิระศักดิ์ สิทธิกร

จัดทำโดย

นางสาวกนกวรรณ	สังวราภรณ์	รหัสนักศึกษา 62010010
นางสาวชณิสมน	แต่งประกอบ	รหัสนักศึกษา 62010147
นายธีรดนย์	จันทร์หอม	รหัสนักศึกษา 62010436
นายภัทรพัทธิ์	ชัยอมรเวทย์	รหัสนึกศึกษา 62010684
นายรวีโรจน์	ทองดี	รหัสนักศึกษา 62010763
นางสาวอรอนงค์	ปานปลั่ง	รหัสนักศึกษา 62011038

รายงานนี้เป็นส่วนหนึ่งของรายวิชา 01076027 INTERNETWORKING STANDARDS AND TECHNOLOGIES ภาคเรียนที่ 1 ปีการศึกษา 2564 คณะวิศวกรรมศาสตร์ ภาควิชาวิศวกรรมคอมพิวเตอร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

คำนำ

รายงานนี้เป็นส่วนหนึ่งของรายวิชา 01076027 Internetworking Standards and Technologies คณะวิศวกรรมศาสตร์ ภาควิชาวิศวกรรมคอมพิวเตอร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง โดยรายงานฉบับนี้เป็นรายละเอียดข้อมูลเกี่ยวกับการออกแบบเครือข่าย และการกำหนดค่าการทำงานโดยใช้ โปรแกรมจำลองระบบเครือข่าย Packet Tracer

ซึ่งในรายงานนี้มีเนื้อหาเกี่ยวกับความรู้จากเรื่อง Basic Router Configuration, Static Routing Protocols และ Dynamic Routing Protocols, การกำหนดการสื่อสารระหว่างคอมพิวเตอร์โดยใช้ DHCP นอกจากนี้ยังมีการทำ Basic Switch Configuration, VTP และการสื่อสารในระบบเครือข่ายอินเตอร์เน็ต

ทั้งนี้ ทางคณะผู้จัดทำหวังว่ารายงานเล่มนี้จะเป็นประโยชน์กับผู้อ่าน หรือผู้ที่สนใจข้อมูลเกี่ยวกับหัวข้อนี้ อยู่ หากมีข้อแนะนำหรือข้อผิดพลาดประการใดผู้จัดทำขอน้อมรับไว้และขออภัยมา ณ ที่นี้

คณะผู้จัดทำ

สารบัญ

บทที่ 1	
ที่มาและความสำคัญ	1
บทที่ 2	
เอกสารที่เกี่ยวข้อง	3
บทที่ 3	
วิธีการดำเนินงาน	4
การออกแบบเครือข่าย - diagram	5
ส่วนต่าง ๆ ในเครือข่าย	6
ISP	
Medium Enterprise	6
Small Enterprise1	
Small Enterprise 2	
คำถามท้ายการนำเสนอ	

บทที่ 1

ที่มาและความสำคัญ

ที่มาและความสำคัญ

เนื่องจากคณะผู้จัดทำได้มีการเรียนในรายวิชา 01076027 INTERNETWORKING STANDARDS AND TECHNOLOGIES ซึ่งในเนื้อหาการเรียน มีเนื้อหาเกี่ยวกับความรู้จากเรื่อง Basic Router Configuration, Static Routing Protocols และ Dynamic Routing Protocols, การกำหนดการสื่อสารระหว่างคอมพิวเตอร์โดยใช้ DHCP นอกจากนี้ยังมีการทำ Basic Switch Configuration, VTP และการสื่อสารในระบบเครือข่ายอินเตอร์เน็ต

ดังนั้นทางคณะผู้จัดทำจึงได้มีแนวคิดที่จะนำความรู้ที่ได้จากการศึกษามาประยุกต์ใช้งาน โดยใช้ในการ ออกแบบเครือข่ายผ่านโปรแกรม Packet Tracer

วัตถุประสงค์

- 1. เพื่อศึกษาเนื้อหาที่เรียนในรายวิชาและสามารถนำมาประยุกต์ใช้ประโยชน์ได้
- 2. เพื่อศึกษาการออกแบบระบบเครือข่าย (Network Design)
- 3. เพื่อศึกษาเนื้อหาเพิ่มเติม เนื้อหานอกห้องเรียนมาประยุกต์ใช้ในการออกแบบเครือข่ายให้มีความ สมบูรณ์มากยิ่งขึ้น

ข้อกำหนดและขอบเขตของการทำงาน

- 1. ออกแบบเครือข่ายของระดับผู้ให้บริการเชื่อมต่อเข้าระบบอินเทอร์เน็ตหรือ Local ISP และกำหนดให้มี ผู้ใช้บริการเชื่อมต่อแบบองค์กรและการเชื่อมต่อส่วนบุคคล
- 2. มีการใช้งานอุปกรณ์ Router, L2/L3 Switch, PC และอุปกรณ์อื่นๆ
- 3. มีการออกแบบ Topology ภายในเครือข่าย
 - a. ใช้งาน Dynamic Routing Protocols อย่างน้อย 2 ชนิด โดยต้องมีการแลกเปลี่ยนข้อมูล เครือข่ายระหว่างกัน
 - b. ใช้งาน Static routing Protocols

- c. ภายในเครือข่ายต้องมี Routing ที่เชื่อมต่อกันอย่างถูกหลักการ
- d. ออกแบบ และใช้งาน VLAN, Inter-VLAN และ VTP ให้ถูกต้องเหมาะสม
- e. มีการกำหนดค่าการทำงานอื่น ๆ (โดยมีเนื้อหาเพิ่มเติมไม่อยู่ในเนื้อหาที่สอน 2 เรื่องขึ้นไป)
- f. ขนาดของเครือข่ายมีความเหมาะสมกับข้อกำหนด
- 4. มีการกำหนดหมายเลขเครือข่ายที่จะใช้งาน
 - a. ออกแบบโจทย์เครือข่ายที่มีลักษณะเป็น Variable Length Subnet Masking โดยใช้งาน Subnet Zero และ All One Subnet
 - b. การออกแบบ IP Address ใช้งานให้ประหยัด IP Address ที่สุด

ประโยชน์ที่คาดว่าจะได้รับ

- 1. นำความรู้ที่ได้จากศึกษาทั้งในส่วนของทฤษฎีและภาคปฏิบัติมาประยุกต์ใช้งานในการออกแบบและแก้ไข ปัญหาของระบบเครือข่าย
- 2. สร้างองค์ความรู้ความเข้าใจในการออกแบบเครือข่ายและการออกแบบ Topology เพิ่มมากขึ้น
- 3. เสริมสร้างความเข้าใจและแลกเปลี่ยนแนวคิดหรือองค์ความรู้ใหม่ๆ จากการนำเสนองาน
- 4. ฝึกประสบการณ์และทักษะใหม่ๆ ให้กับสมาชิกจากการศึกษาองค์ความรู้ด้านเครือข่าย

บทที่ 2 เอกสารที่เกี่ยวข้อง

การจัดทำในการออกแบบเครือข่ายมีเอกสารที่เกี่ยวข้องเพิ่มเติม ดังนี้

1. ISP (Internet Service Provider)

คือผู้ให้บริการในการเชื่อมต่อเครือข่าย Internet เป็นบริษัทหรือองค์กรที่ให้บริการเส้นทางและโครงข่าย ให้กับลูกค้าองค์กรและลูกค้าทั่วไป ให้สามารถเข้าถึงและเชื่อมต่อกับผู้ให้บริการสารสนเทศต่างหรือแลกเปลี่ยน ข้อมูละหว่างกันได้ โดย ISP สามารถถูกแบ่งตามลักษณะการให้บริการการเชื่อมต่อได้เป็น 2 ลักษณะ คือ

- 1.1 Domestic Internet Exchange Provider (IX) หรือ Local ISP เป็นผู้ให้บริการการเชื่อมต่อ ภายในประเทศทั้งหมด เช่น การเชื่อมต่อในระดับจังหวัดโดยผู้ให้บริการจะเชื่อมต่อทุกจังหวัดภายในประเทศเข้าไว้ ด้วยกันโดยอาจมีโครงข่ายเป็นของตัวเองผ่านการเชื่อมต่อรูปแบบต่างๆ เช่น fiber optics, xDSL, Leased Line, Satellite เป็นต้น
- 1.2 International Internet Gateway Provider (IIG) หรือ ผู้ให้บริการโครงข่ายเชื่อมต่อระหว่าง ประเทศ โดยผู้ให้บริการจะมีเส้นทางและโครงข่ายไปยังผู้ให้บริการรายอื่นในต่างประเทศผ่านตัวกลางโครงข่าย Submarine Cable, Satellite เป็นต้น

2. Email Server

เซิร์ฟเวอร์ที่ให้บริการจัดเก็บและรับส่งอีเมลด้วยโปรโตคอล SMTP และ POP3 ให้กับ end devices ในวงเครือข่ายของบริษัทนั้น ๆ โดยส่วนมากจะไม่ยอมให้คนที่อยู่นอกองค์กรเข้าถึงได้ โดยทั่วไปจะนำ ip address ของเซิร์ฟเวอร์นั้นไปใช้กับ DNS Server เพื่อให้ใช้ที่อยู่ Domain ของ Email Server ได้โดยไม่ต้องจำเลข IP address ซึ่งรายละเอียดของโปรโตคอลที่ใช้ใน Email Server มีดังนี้

2.1 SMTP (Simple Mail Transfer Protocol)

เป็นโปรโตคอลที่ใช้สำหรับการส่งข้อมูลอีเมลจากต้นทางไปยังปลายทาง โดยจะทำการตรวจสอบที่อยู่ปลายทาง ถ้าหากไม่สามารถส่งไปได้ไม่ว่าจะเช้าไม่ได้ หรือที่อยู่ไม่ถูกต้อง SMTP ก็จะส่งข้อมูลกลับมารายงานให้กับผู้ส่ง

2.2 POP3 (Post Office Protocol version 3)

เป็นโปรโตคอลที่ใช้ในการรับ อีเมล มีการทำงานแบบ Store-and-Forward ก็คือเมื่อมีการส่งอีเมลมานั้น ข้อมูลจะถูกเก็บไว้ที่ Email Server และเมื่อผู้ใช้ต้องการอ่านข้อมูล ก็จะทำการส่งข้อมูลของอีเมลมายังเครื่องของ Client และลบข้อมูลบน Email Server ออก ทำให้เมื่อดึงข้อมูลมาแล้ว จะสามารถอ่านอีเมลอีกครั้งเมื่อไหร่ก็ได้ ไม่ต้องเชื่อมต่ออินเทอร์เน็ต

3. DNS Server (Domain Name Server)

เซิร์ฟเวอร์ที่เก็บฐานข้อมูลซึ่งประกอบไปด้วย IP Address และ domain name เพื่อใช้ในการแปลงชื่อ domain เหล่านั้นให้เป็น IP Address ที่ผู้ใช้ต้องการ ทำให้ผู้ใช้ไม่จำเป็นต้องท่องจำ IP Address ของปลายทางที่ผู้ใช้ต้องการเชื่อมต่อไปนั่นเอง

4. Radius Server

RADIUS เป็นคำย่อของ Remote Authentication Dial-In User Service (RADIUS) คือ client/server security protocol สามารถรวบรวม account ของ users ให้อยู่แต่เพียงที่เดียว เพื่อง่ายต่อการบริหาร ไม่ต้อง ทำหลายจุดหลายเชิฟเวอร์ เวลามี users ที่เชิฟเวอร์อื่นๆ ต้องการใช้งาน ก็จะส่งข้อมูลมาตรวจเช็คที่ RADIUS Server

องค์ประกอบพื้นฐานของ RADIUS Server

- 1. Access Clients คือ เครื่องคอมพิวเตอร์หรืออุปกรณ์ที่ผู้ใช้งานสั่งให้ติดต่อระบบเพื่อใช้งาน
- 2. Network Access Servers (NAS) คือ อุปกรณ์ที่ทำหน้าที่เชื่อมต่อและจัดการการติดต่อระหว่าง Access Clients และ RADIUS Server
- 3. RADIUS Server จะทำการตรวจสอบสิทธิ์โดยใช้ข้อมูลที่ NAS ส่งมา (Access-Request) กับข้อมูลที่ จัดเก็บไว้ใน RADIUS Server เอง หรือจากฐานข้อมูลภายนอก

บทที่ 3 วิธีการดำเนินงาน

โปรแกรมที่ใช้

1. Diagram Software and Flowchart Maker (diagrams.net)

ภาพที่ 3.1 เว็บไซต์ diagrams.net

2. Cisco Packet Tracer เวอร์ชั่น 8.0.1

ระยะเวลาการดำเนินงาน

ระยะเวลาดำเนินงานระหว่างวันที่ 21 ตุลาคม พ.ศ. 2564 - 26 พฤศจิกายน พ.ศ. 2564

กิจกรรม		ระยะเวลาการดำเนินงาน								
		ตุลาคม				พฤศจิกายน				
	1	2	3	4	1	2	3	4		
ประชุมระดมความคิด										
กำหนดขนาดเครือข่ายเหมาะสมกับโจทย์ที่ได้รับ										
ศึกษาเนื้อหาเพิ่มเติมที่จะนำมาใช้ในเครือข่าย										
การออกแบบเครือข่ายและกำหนดอุปกรณ์ที่จะใช้ใน Topology										
การกำหนดหมายเลขเครือข่ายและกำหนดค่าการทำงาน										
ทดลองการทำงานของเครือข่ายและแก้ไขการทำงานให้สมบูรณ์										
ผลงานเสร็จสมบูรณ์และนำเสนอผลงาน										

ขั้นตอนการดำเนินงาน

1. การออกแบบเครือข่าย

1.1 กำหนดขอบเขตของการออกแบบ

- 1.1.1 ออกแบบขนาดของเครือข่ายให้เหมาะสมกับข้อกำหนดขอบเขตการทำงาน
- 1.1.2 ออกแบบข้อกำหนดอุปกรณ์ที่จะใช้งานและจำนวนที่ใช้งาน
- 1.1.3 ออกแบบการกำหนดหมายเลขเครือข่ายให้เหมาะสมกับเครือข่าย โดยให้มีการใช้หมายเลขเครือข่าย ประหยัดที่สุด

1.2 ขั้นตอนการออกแบบ

1.2.1 ทำการออกแบบเครือข่ายโดยภาพรวม (Overview) ผ่าน Platform online โดยใช้ diagrams.net

ภาพที่ 3.2 การออกแบบเครือข่ายแบบโดยรวมผ่านเว็บไซต์ diagrams.net

1.2.2 ออกแบบเครือข่ายโดยภาพรวม (Overview) ผ่าน Platform online โดยใช้ diagrams.net โดยมี การกำหนดอุปกรณ์ที่จะใช้ในแต่ละเครือข่ายและกำหนด IP Address ให้แต่ละเครือข่าย

ภาพที่ 3.3 การออกแบบเครือข่ายแบบโดยรวมผ่านเว็บไซต์ diagrams.net

ภาพที่ 3.4 ออกแบบการกำหนดหมายเลขเครือข่ายให้เหมาะสมกับเครือข่าย

2. การกำหนดค่าการทำงานให้เครือข่ายต่าง ๆ

2.1 ผู้ให้บริการอินเทอร์เน็ต

ภาพที่ 3.5 เครือข่าย ISP บน Packet Tracer

การออกแบบระบบเครือข่ายของผู้ให้บริการเครือข่ายเป็นไปตามหลัก RAS คือ Reliability (ความ น่าเชื่อถือของระบบ), availability (ความพร้อมใช้งาน) and serviceability (การดูแลรักษา)

โดยเริ่มจาก Reliability (ความน่าเชื่อถือของระบบ) สำหรับการออกแบบเครือข่ายหลัก (Black-bone Network) ของผู้ให้บริการได้ทำการวาง Core Switch (L3/Multilayer Switch) ที่ใช้สำหรับการทำ Core Routing ของทุก Route ภายใน ISP เอาไว้ตามจังหวัดต่างๆ คือ กรุงเทพมหานครฯ (อาคารบางรัก และ อาคารไซ เบอร์เวิลด์), นนทบุรี (อาคารจัสเทล), ชลบุรี (อาคาร SUPERNAP) เพื่อให้ทุกจังหวัดสามารถเชื่อมต่อและเข้าถึง บริการได้ และยังมีการวาง Router เพื่อการบริการ (AC-HOME, AC-BUSINESS, AC-ENTERPRISE) สำหรับ บริการเครือข่ายเฉพาะส่วนต่างๆ

ต่อมาเป็นเรื่องของ Availability (ความพร้อมใช้งาน) ในส่วนนี้ทางผู้ให้บริการได้ออกแบบให้ Link ในการ เชื่อมต่อระหว่าง Core Switch แต่ละจังหวัดให้มีการเชื่อมต่อมากกว่า 1 Link และในแต่ละ Link มีการใช้ PortChannel ซึ่งเป็นการใช้ Physical link มากกว่า 1 link (Fiber optics และ UTP) หาก link ใดขาดไปเครือข่ายก็ ยังคงสามารถใช้งานต่อไปได้

ส่วนสุดท้าย Serviceability (การดูแลรักษา) ผู้ให้บริการมีเครือข่าย Vlan950 สำหรับการตั้งค่าระบบ

ISP Service

Devices	interface	IP Address /	Default-	VLAN	Name
		Mask	gateway	ID	
NBI-BANGNA	Po1	10.200.3.2/30	-	1	BKK-BANGRAK
	Po2	100.200.23.2/30	-	1	BKK-CBTW
	Po4	100.200.43.2/30	-	1	CBI-SRIRACHA
	Lo1	191.101.185.1/24	-	-	-
	Vlan950	10.95.3.1/24	-	950	MGNT-NET
BKK-BANGRAK	Po2	10.200.1.1/30	-	1	BKK-CBTW
	Po3	10.200.3.1/30	-	1	NBI-BANGNA
	Po4	10.200.4.1/30	-	1	CBI-SRIRACHA
	Lo2	202.28.2.1/24	-	-	BKK-CBTW
	Lo3	161.246.0.1/16	-	-	NBI-BANGNA
	Vlan50	61.19.23.157/30	-	50	DEFT-NET
	Vlan950	10.95.1.1/24	-	950	MGNT-NET
BKK-CBTW	Po1	10.200.1.2/30	-	1	BKK-BANGRAK
	Po3	10.200.23.1/30	-	1	NBI-BANGNA
	Po4	10.200.24.1/30	-	1	CBI-SRIRACHA
	Lo1	191.101.184.1/24	-	-	-
	Vlan50	61.19.23.149/30	-	50	DEFT-NET
	Vlan950	10.95.2.1/24	-	950	MGNT-NET
CBI-SRIRACHA	Po1	10.200.4.2/30	-	1	BKK-BANGRAK
	Po2	10.200.24.2/30	-	1	BKK-CBTW
	Po3	10.200.43.1/30	-	1	NBI-BANGNA
	Lo1	102.129.138.1/24	-	-	-
	Vlan50	61.1923.153/30	-	50	DEFT-NET
	Vlan950	10.95.4.1/24	-	950	MGNT-NET

ISP-ADMIN-SW	Gi 1/0/1	10.95.3.99/24	-	950	MGNT-NET
	Gi 1/0/24	10.95.3.2/24	-	950	MGNT-NET
AC-HOME	Vlan50	61.19.23.158/30	61.19.23.157	50	DEFT-NET
	Vlan201	203.159.92.1/27	-	201	HOM-SV
AC-BUSINESS	Vlan50	61.19.23.150/30	61.19.23.149	50	DEFT-NET
	Vlan100	61.7.236.81/28	-	100	BUS-SV
AC-ENTERPRISE	Vlan50	61.19.23.154/30	61.19.23.153	50	DEFT-NET
	Vlan100	61.7.236.126/27	-	100	BUS-SV
	Vlan200	61.7.236.134/29	-	200	BUS-SV-MPLS

2. ผู้ใช้บริการอินเทอร์เน็ต (Client)

2.1 ผู้ใช้บริการเชื่อมต่อแบบส่วนบุคคล

ภายในเครือข่ายที่ออกแบบมี Client ที่เป็นผู้ใช้บริการเชื่อมต่อแบบส่วนบุคคล ได้แก่ อินเทอร์เน็ตบ้าน HOME

ภายในเครือข่ายนี้ จะเป็นการจำลองของเครือข่ายการแจกจ่ายอินเทอร์เน็ตบ้าน ซึ่งจะประกอบไปด้วย บ้าน 4 หลัง และมี 1 หลังเป็นบ้านที่มีการใช้อุปกรณ์ IoT ภายในบ้าน (Smart home) โดยอุปกรณ์ IoT สามารถ ทำการ Remote อุปกรณ์จาก Server ได้

องค์ประกอบและรายละเอียดของเครือข่าย

- เครือข่ายหลักๆ ทั้งหมด 4 เครือข่าย ได้แก่ Home1, Home2, Home3, Home4
- การจำแนก IP Address มี 2 รูปแบบ คือ Static IP และ Dynamic IP (DHCP)
- Servers: Radius Server

Network Diagram

ภาพที่ 3.6 เครือข่าย Home บน Packet Tracer

Topology

ภาพที่ 3.7 การออกแบบเครือข่าย Home บน Packet Tracer

Layer 2 & Layer 3 Devices

Devices	interface	IP Address / Mask	Default-	VLAN	VLAN
			gateway	ID	Name
SW home	Gi 1/1	-	N/A	-	-
	Gi 2/1	-	N/A	-	-
	Gi 3/1	-	N/A	-	-
	Gi 4/1	-	N/A	-	-
	Fa 0/5	-	N/A	-	-
Home1	LAN	192.168.2.1 /28	N/A	-	-
Home2	LAN	192.168.3.1 /28	N/A	-	-
Home3	LAN	192.168.4.1 /28	N/A	-	-
Home4	LAN	192.168.5.1 /28	N/A	-	-

Host Devices

อุปกรณ์ที่เป็น Host ภายในเครือข่าย Home จะมีการใช้ IP Address อยู่ 2 ประเภท ก็คือ Static IP และ Dynamic IP จาก HomeRouter ซึ่งอุปกรณ์แต่ละชิ้นมีการใช้ IP ดังนี้

Host Devices	IP Address /Mask
IoT & Server	203.159.92.30 /30
Home1 Laptop	DHCP IP
Home1 Smartphone	DHCP IP
Home1 PC1	DHCP IP
Home2 Laptop	DHCP IP
Home2 Tablet	DHCP IP
Home2 PC1	DHCP IP
Home2 PC2	DHCP IP
Home3 Tablet	DHCP IP

Home3 Laptop	DHCP IP
Home3 Smartphone	DHCP IP
Home4 Laptop	DHCP IP
Home4 PC	DHCP IP
Home4 Smartphone	DHCP IP
Thermostat	DHCP IP
CO Detector	DHCP IP
Temperature	DHCP IP
Air (1)	DHCP IP
Lamp	DHCP IP
Window	DHCP IP
Door	DHCP IP

Medium Enterprise

ภายในเครือข่ายนี้ จะเป็นการจำลองของเครือข่ายภายในบริษัทขนาดกลางที่หนึ่ง ซึ่งจะประกอบไปด้วย

Department หรือแผนกต่าง ๆ เช่น แผนกการตลาด แผนกการเงิน แผนกการผลิต เป็นต้น

ซึ่งแต่ละแผนกจะมีหน้าที่การทำงานที่แตกต่างกันออกไป เช่น แผนก A มีหน้าที่จัดการไฟล์ก็จะสามารถเข้าถึง

File Server ได้ แผนก B คอยดูแลและจัดการ Email Server แผนก C จะคอยดูแล HTTP Server โดยทุกๆ

แผนกจะมีคนคอยให้บริการ หรือ Admin ซึ่งสามารถควบคุมอุปกรณ์เน็ตเวิร์คทุกๆ จุดได้ในบริษัท

องค์ประกอบและรายละเอียดของเครือข่าย

- เครือข่ายหลักๆ ทั้งหมด 4 เครือข่าย ได้แก่ Admin, Department A, Department B และ Department C
- Layer 3 Routing protocol ได้แก่ OSPF (Open Shortest Path First)
- Layer 2 VLAN (Virtual LAN) ได้แก่ VLAN 10, VLAN 20, VLAN 30
- การจำแนก IP Address มี 2 รูปแบบ คือ Static IP และ Dynamic IP (DHCP)

• Servers: File Server, DHCP Server, Email Server, HTTP Server และ DNS Server

Network Diagram

ภาพที่ 3.8 การออกแบบเครือข่าย Medium Enterprise บน Packet Tracer

Layer 2 & Layer 3 Devices

Devices	interface	IP Address / Mask	Default-	VLAN	VLAN
			gateway	ID	Name
MediumEnterprise	Se 0/0/0	10.99.99.1/30	N/A	-	-
	Gi 0/0	61.7.236.129/29	N/A	-	-
OrganizeNW	Se 0/0/0	192.168.1.1	N/A	-	-
	Se 0/0/1	192.168.2.1	N/A	-	-
	Se 0/1/0	192.168.3.1	N/A	-	-
	Se 0/1/1	10.99.99.2	N/A	-	-
	Gi 0/0	192.168.7.1	N/A	-	-
NetworkDeptA	Se 0/0/0	192.168.1.254/24	N/A	-	-
	Se 0/0/1	192.168.8.1/24	N/A	-	-
	Gi 0/0	192.168.19.1/24	N/A	Trunk	-

	Gi 0/0.10	192.168.5.1/24	N/A	10	VLAN 10
	Gi 0/0.20	192.168.6.1/24	N/A	20	VLAN 20
	Gi 0/0.30	192.168.10.1/24	N/A	30	VLAN 30
	Gi 0/0.99	192.168.4.1/24	N/A	99	Native
NetworkDeptB	Se 0/0/0	192.168.2.254	N/A	-	-
	Se 0/0/1	192.168.8.254	N/A	-	-
	Se 0/1/0	192.168.9.1	N/A	-	-
	Gi 0/0	192.168.20.1	N/A	Trunk	-
	Gi 0/0.10	192.168.11.1	N/A	10	VLAN 10
	Gi 0/0.20	192.168.12.1	N/A	20	VLAN 20
	Gi 0/0.30	192.168.13.1	N/A	30	VLAN 30
	Gi 0/0.99	192.168.14.1	N/A	99	Native
NetworkDeptC	Se 0/0/0	192.168.3.254/24	N/A	-	-
	Se 0/0/1	192.169.9.254/24	N/A	-	-
	Gi 0/0	192.168.21.1/24	N/A	-	-
	Gi 0/0.10	192.168.15.1/24	N/A	10	VLAN 10
	Gi 0/0.20	192.168.16.1/24	N/A	20	VLAN 20
	Gi 0/0.30	192.168.17.1/24	N/A	30	VLAN 30
	Gi 0/0.99	192.168.18.1/24	N/A	99	Native
SW_Department	Gi 0/1	-	-	Trunk	-
	Fa 0/1	192.168.5.5/24	.5.1/24	10	VLAN 10
	Fa 0/2	192.168.6.5/24	.6.1/24	20	VLAN 20
	Fa 0/3	192.168.10.5/24	.10.1/24	30	VLAN 30
	Fa 0/4	192.168.4.2/24	.4.1/24	99	Native
	Fa 0/5	-	-	Trunk	-
SW_Department1	Fa 0/1	192.168.5.6/24	.5.1/24	10	VLAN 10
	Fa 0/2	192.168.6.6/24	.6.1/24	20	VLAN 20
	Fa 0/3	192.168.10.6/24	.10.1/24	30	VLAN 30
	Fa 0/4	192.168.4.10/24	.4.1/24	99	Native

	Fa 0/5	-	-	Trunk	-
SW_Department2	Gi 0/1	-	-	Trunk	-
	Fa 0/1	192.168.11.2/24	.11.1/24	10	VLAN 10
	Fa 0/2	192.168.12.2/24	.12.1/24	20	VLAN 20
	Fa 0/3	192.168.13.2/24	.13.1/24	30	VLAN 30
	Fa 0/4	192.168.14.2/24	.14.1/24	99	Native
	Fa 0/5	-	-	Trunk	-
SW_Department3	Fa 0/1	192.168.11.3/24	.11.1/24	10	VLAN 10
	Fa 0/2	192.168.12.3/24	.12.1/24	20	VLAN 20
	Fa 0/3	192.168.13.3/24	.13.1/24	30	VLAN 30
	Fa 0/4	192.168.14.3/24	.14.1/24	99	Native
	Fa 0/5	-	-	Trunk	-
SW_Department4	Gi 0/1	-	-	Trunk	-
	Fa 0/1	192.168.15.10/24	.15.1/24	10	VLAN 10
	Fa 0/2	192.168.16.10/24	.16.1/24	20	VLAN 20
	Fa 0/3	192.168.17.10/24	.17.1/24	30	VLAN 30
	Fa 0/4	192.168.18.10/24	.18.1/24	99	Native
	Fa 0/5	-	-	Trunk	-
SW_Department5	Fa 0/1	192.168.15.11/24	.15.11/24	10	VLAN 10
	Fa 0/2	192.168.16.11/24	.16.11/24	20	VLAN 20
	Fa 0/3	192.168.17.11/24	.17.11/24	30	VLAN 30
	Fa 0/4	192.168.18.11/24	.18.11/24	99	Native
	Fa 0/5	-	-	Trunk	-
DHCP Server	Fa 0/5	192.168.4.2/24	.4.1/24	99	Native
File Server	Fa 0/5	192.168.4.10/24	.4.1/24	99	Native
Email Server	Fa 0/5	192.168.14.7	.14.1/24	99	Native
Email Server +	Fa 0/5	192.168.14.8	.14.1/24	99	Native
HTTP Server +	Fa 0/5	192.168.18.7	.18.1/24	99	Native

HTTP Server ++	Fa 0/5	192.168.18.7	.18.1/24	99	Native
WLC 3504	Gi 1	192.168.7.2	.7.1/24	-	-
Admin_AP	Gi 0	192.168.7.50	.7.1/24	-	-

Host Devices

อุปกรณ์ที่เป็น Host ภายในเครือข่าย Medium Enterprise จะมีการใช้ IP Address อยู่ 2 ประเภท ก็คือ Static IP และ Dynamic IP จาก DHCP Server ซึ่งอุปกรณ์แต่ละชิ้นมีการใช้ IP ดังนี้

Host Devices	IP Address		
Department PCs	Dynamic IP (DHCP requested)		
Admin PCs and Laptop	Static IP		
Admin Phone	Static IP		

Access Control List

ภายใน Medium Enterprise เราต้องกำหนดขอบเขตการใช้งานของพนักงานบริษัทแต่ละ Department ซึ่งแต่ละ Department จะมีการควบคุมที่แตกต่างกัน โดยเราจะใช้ Extended ACL เป็นตัวกำหนดขอบเขตของการเข้าถึงภายในเครือข่าย ซึ่งมีเคสดังนี้

- 1. Admin จะสามารถ remote access ไปที่อุปกรณ์ตัวไหนก็ได้ภายในเครือข่ายนี้ (Telnet และ ssh ได้ ขึ้นอยู่กับ access input type)
- 2. Host ของ Department B และ C จะไม่สามารถ ftp (request access to FTP server) ได้
- 3. Host ของ Department A, B และ C จะไม่สามารถ remote access ไปภายนอกเครือข่ายของแต่ละ Department ได้ ไม่ว่าจะเป็น telnet หรือ ssh

ภาพที่ 3.9 การออกแบบ ACL บนเครือข่าย Medium Enterprise บน Packet Tracer

ACL ID	Router	Interface	Direction	Description	
100	Department A	Se 0/0/0,	inside	Blocking ftp from	
		Se0/0/1		network A and	
				network B	
120	Department A	Gi 0/0	inside	Blocking telnet and	
				ssh protocol from	
				network A	
130	Department B	Gi 0/0	inside	Blocking telnet and	
				ssh protocol from	
				network B	
140	Department C	Gi 0/0	inside	Blocking telnet and	
				ssh protocol from	
				network C	

WLC (Wireless LAN Controller)

อุปกรณ์นี้เป็นอุปกรณ์ที่แจก IP Address ให้กับ Access Point ของ Admin ซึ่งการที่ AP จะแจกเครือข่ายแบบไร้สายนั้น ก็ต้องให้ตัว WLC กำหนดวงเครือข่ายที่จะแจกไปให้ยังตัว AP ก่อน หลังจากนั้นก็กำหนดตัว AP ที่มีอยู่ ให้สามารถใช้ WLAN หรือ Network วงนั้นได้ หลังจากนั้นตัว AP ก็จะมี Network ให้บริการ (Authentication จะใส่ให้ตัวกระจายสัญญาณ หรือ ไม่ใส่ให้ตัวกระจายสัญญาณก็ได้)

Small Enterprise1

เป็นการออกแบบสำหรับ SME ขนาดเล็ก ตึก 3 ชั้น ชั้น 1 หลักๆ เกี่ยวกับการขายปลีกขายหน้าร้าน

ชั้น 2 หลักๆ การตลาด

ชั้น 3 หลักๆ คณะผู้บริหาร

ทุกชั้นจะมี server ที่ใช้ในการเก็บข้อมูล

แต่ละชั้นมีการผสมกันหลายแผนก จึงมีการใช้ VLAN ใช้การใช้แยกแต่ละแผนก

VLAN10 ขายปลีกขายหน้าร้าน

VLAN20 การตลาด

VLAN30 คณะผู้บริหาร

แต่ละแผนก สามารถสื่อสารกันได้ทั้งหมด

ใช้ IP ใน บริษัทเป็น Private IP (network 172.16.1.0/24)

แต่ละชั้นจะมี switch สำหรับใช้เชื่อมต่อสื่อสารกันได้ทั้งบริษัท

การแบ่งใช้ Private IP ในบริษัท

	จำนวน	จำนวน			
	ที่ใช้จริง	IP	network ID	subnet mask	gateway
vlan 10: sales	100	128	172.16.1.0	255.255.255.128	172.16.1.126
vlan 20: stock	50	64	172.16.1.128	255.255.255.192	172.16.1.190
vlan 30: marketing	20	32	172.16.1.192	255.255.255.224	172.16.1.222
vlan 40: serverSale	1	4	172.16.1.224	255.255.255.252	172.16.1.226
vlan 50: server stock	1	4	172.16.1.228	255.255.255.252	172.16.1.230
vlan 60: serverMarketing	1	4	172.16.1.232	255.255.255.252	172.16.1.234

การใช้ NAT ในเครือข่าย

- Static NAT => ServerSale 172.16.1.225 (Private IP) -> 61.7.236.83
- ทุกเครื่องที่เหลือในบริษัท ใช้ PAT 61.7.236.84 61.7.236.87 (Public IP)

การให้ IP Address ในแต่ละเครื่อง

- VLAN10-30 ใช้ DHCP
- VLAN40-60 ใช้ Static IP

ภาพเครือข่าย

Small Enterprise 2

Network Diagram

เป็นการออกแบบสำหรับ SME ขนาดเล็กที่แบ่งแยกแผนกออกเป็น 3 แผนกกลุ่มใหญ่

แผนกกลุ่มที่ 1: แผนกเซลส์ขายของ

แผนกกลุ่มที่ 2: แผนกการตลาด

แผนกกลุ่มที่ 3: แผนกบริหารจัดการ

แต่ละแผนกและกลุ่มจะมี VLAN ที่จะนำมาใช้ที่แตกต่างกัน

VLAN10 สำหรับพนักงานเซลส์

VLAN20 สำหรับพนักงานการตลาด

VLAN30 สำหรับคณะกรรมการ

VLAN40 สำหรับคณะกรรมการชั้นสูง (เครือญาติ)

VLAN50 สำหรับผู้จัดการร้านค้า

VLAN60 สำหรับผู้จัดการการตลาด

VLAN70 สำหรับผู้บริหาร

VLAN80 สำหรับ server คลังข้อมูลทั้งหมดและข้อมูลบัญชีของบริษัท

Device Configuration

Device	Interface	IP Address /	Default	VLAN ID	VLAN Name
		Mask	Gateway		
Router	Fa 0/0	-		-	-
	Fa 0/0.10	172.16.2.126/25		-	-
	Fa 0/0.50	172.16.2.194/30		-	-
	Fa 0/1	-		-	-
	Fa 0/1.20	172.16.2.158/27		-	-
	Fa 0/1.60	172.16.2.198/30		-	-
	Fa 1/0	-		-	-
	Fa 1/0.30	172.16.2.174/28		-	-
	Fa 1/0.40	172.16.2.190/28		-	-
	Fa 1/0.70	172.16.2.202/30		-	-
	Fa 1/0.80	172.16.2.206/30		-	-
	Fa 1/1	61.7.236.88/28		-	-
Shop	Fa 0/2 - 23	-		10	VLAN10
	Fa 0/24	-		50	VLAN50
Marketing	Fa 0/2 - 23	-		20	VLAN20
	Fa 0/24	-		60	VLAN60
HQ	Fa 0/2 – 14	-		30	VLAN30
	Fa 0/15 - 22	-		40	VLAN40
	Fa 0/23	-		70	VLAN70
	Fa 0/24	-		80	VLAN80

มีการจำกัดการสื่อสารในระดับนึง

โดยที่

- พนักงานเซลส์สามารถสื่อสารกันได้ และสามารถสื่อสารกับผู้จัดการร้านค้าได้ แต่ไม่สามารถสื่อสารกับ แผนกอื่นได้
- ผู้จัดการร้านค้าสามารถสื่อสารกับพนักงานเซลส์และ สามารถสื่อสารกับแผนกอื่นได้ แต่ไม่สามารถ สื่อสาร/เข้าถึงพนักงานการตลาดและ server ได้
- พนักงานการตลาดสามารถสื่อสารกันได้ และสามารถสื่อสารกับผู้จัดการการตลาดได้ แต่ไม่สามารถ สื่อสารกับแผนกอื่นได้
- ผู้จัดการการตลาดสามารถสื่อสารกับพนักงานการตลาดและ สามารถสื่อสารกับแผนกอื่นได้ แต่ไม่สามารถ สื่อสาร/เข้าถึงพนักงานเซลส์และ server ได้
- คณะกรรมการและคณะกรรมการชั้นสูงสามารถสื่อสารกับผู้จัดการร้านค้า ผู้จัดการการตลาด และ ผู้บริหารได้
- มีเพียงผู้บริหารเท่านั้นที่สามารถเข้าถึง server ได้

ผู้จัดการการตลาด คณะกรรมการ คณะกรรมการชั้นสูง และผู้บริหาร สามารถเล่นเน็ตได้

IP ที่ใช้ภายในบริษัทเป็น Private IP

Network ที่ใช้ คือ 172.16.2.0/24

IP Address ภายในเครื่อข่ายทำเป็น DHCP

แต่ละแผนกจะมี Switch เป็นของตัวเองเพื่อใช้ในการสื่อสารกันภายในเครือข่าย

ตารางการแบ่ง Private IP ภายในบริษัท

ชื่อกลุ่ม	VLAN	จำนวน IP	จำนวน IP ที่ใช้จริง	Network ID	Subnet Mask	Default Gateway	Pool Name
พนักงานเซลส์	10	128	126	172.16.2.0	255.255.255.128	172.16.2.126	POOL-
(employee) พนักงานการตลาด							VLAN-10 POOL-
(staff)	20	32	30	172.16.2.128	255.255.255.224	172.16.2.158	VLAN-20
คณะกรรมการ	30	16	14	172.16.2.160	255.255.255.240	172.16.2.174	POOL-
(committee)			_ `	112110121100			VLAN-30
คณะกรรมการชั้นสูง	40	16	14	172.16.2.176	255.255.255.240	172.16.2.190	POOL-
(high committee)	40	10	14	112.10.2.110	233.233.233.240	1,2.10.2.170	VLAN-40
ผู้จัดการร้านค้า	50	4	2	172.16.2.192	255.255.255.252	170 170 104	POOL-
(store)	30	4	2	172.10.2.192	255.255.255.252	172.16.2.194	VLAN-50
ผู้จัดการการตลาด							POOL-
(marketing	60	4	2	172.16.2.196	255.255.255.252	172.16.2.198	VLAN-60
manager)							
ผู้บริหาร	70	4		470.46.0.000	055 055 055 050	470 4 6 0 000	POOL-
(executive)	70	4	2	172.16.2.200	255.255.255.252	172.16.2.202	VLAN-70
Server 80	90	4	2	172.16.2.204	255.255.255.252	172 16 2 204	POOL-
	00	4	۷			172.16.2.206	VLAN-80

การใช้ NAT ในเครื่อข่าย

- Static NAT
 - O 172.16.2. (Private IP) >> 61.7.236.89 (Public IP)
 - O 172.16.2. (Private IP) >> 61.7.236.90 (Public IP)
 - O 172.16.2. (Private IP) >> 61.7.236.91 (Public IP)
- PAT 61.7.236.92 61.7.236.94 (Public IP)

บทที่ 4 ผลการดำเนินงาน

ผลลัพธ์ที่ได้ สามารถทำได้ตรงตามรูปแบบที่ออกแบบไว้ในตอนต้น