. Apply this to finite fields.

Thm: Tp-prime, ret, F) GF(pr).

=) Fixed field

 $(X+B)^P = X^P+B^P \Rightarrow Frobenius is a field$ $<math>(X+B)^P = X^P+B^P \Rightarrow Frobenius is a field$ $(X+B)^P \Rightarrow Frobenius is a field$

whose fixed field contains 7/2

Since $x^p = x$ has at most p roots, The fixed field
of the Foreign Is Dreisely GF(P) = 4/PI.
$\sim 1/(2+1)$
that every acGF(pr) satisfies [1 = 1.]
We know Mass (Frob(Frob))(x) = $\pm rob(x^p) = x^{p^2}$.
$(F_{20}h)^{3}(x) = \chi P^{3} + S$.
- the order of Fooh in Gal (GT(P)/GT(P)) - 0.
$= 2GP(P') \cdot 9P(P').$
: GF(P)/GF(P) is Galois & its Galois group is cyclic,
a gen given by Frish.
(Gal (GF(P) / GF(P)) > Fab
GF(P) 2 + 30b GF(F) Gal(GF(F)/4F(A))
GF(x) 2 Frob GF(p) - P. GF(p) - P.
GFA) x x x P
\mathbb{Q} . $\xrightarrow{\times} -\times $
Q. tactor x:-x con \(\sigma = 1 \)
Idea. Its Splitting field is GF(p), GF(pr)* is cyclic, Say generated by X. 2. EGF(p) [X] im.
Say generated by &. If $X^p \times -f_1 \cdot f_2 \cdot \cdot \cdot \cdot f_0 = f_1 \cdot \in GF(p) \cdot (x) \cdot irr$
If X-X = f ₁ -52 & fi & G+(P) LX) IN-
$(\times \neg \swarrow_{l_1}) (\times \neg \swarrow_{2,l_1}) (\times \neg \swarrow_{4,l_1})$
$(x-x^{i_1})(x-x^{i_2})-(x-x^{i_{k_1}})$
X1 = X = X = 1 X = 1 + (-1) X T X (12 X (1))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
GT(P)[X].

=> every coeff of f; is invariant under Frobenius map. Frob(fi) = T(x-Food(xit) 0: F > F. field borno. O: F(X) >F(X) Eaix HEDaix «J'is a root of fi then so is x Pizz. Order powers so that infizer = it look at xi, xi, ... xin with (xi) = xi1 o(x)=p-1 0(xi) | 0(x) & :: is coprime to p. =>] x st. P*= 1 modn. $9 = (x - x^{1})(x - x^{p(i)}) - (x - x^{p(i)})$ invariant GF(p)[X]. \Rightarrow 9=f1. Ily we can find all roots fi + 1 \le 1 \le 1. Algorithm Start with any number i from 0 to \$-1. What is the Order x' in Z/py_1= <x>. = $\frac{p^n-1}{(v_1p^n-1)}$ = n. Let g be the first integer g. (i,7) $P^{sr} = 1 \pmod{n}$ (i,7) $Q^{s}(1) = 1 \pmod{n}$ xi in GF(p). To factor xP-1 we partition the set {0,1,..., p-13 (i, Pi, Pi, ..., Pi) Sit $p^{8H} = 1 \mod \left(\frac{p^{8}-1}{(i, p^{8}-1)}\right)$ Explicit computation over GF(16) P=2, Y=4. ex.1 S={0,1, --, 15}

