Universidade do Minho Departamento de Matemática

LCC

Análise

Ficha de trabalho 1

2019/2020

• Derivadas parciais de ordem superior

[Ver páginas 26 a 30, slides "Capítulo 1 - Derivadas parciais"]

1. Verifique que $\frac{\partial^2 w}{\partial x \partial y} = \frac{\partial^2 w}{\partial y \partial x}$ para

(a)
$$w = x^4 e^y + y \cos x$$
; (b) $w = x^2 \cos(xy)$.

(b)
$$w = x^2 \cos(xy)$$
.

2. Calcule
$$w_{xyz}=\frac{\partial^3 w}{\partial z\partial u\partial x}$$
 quando $w=x^3y^2z+xy^6z-yz$.

3. Uma função
$$f$$
 de x e y diz-se $harmónica$ se $\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=0$. Prove que a função

$$f(x,y) = e^{-x}\cos(y) - e^{-y}\cos(x)$$

é uma função harmónica.

• Derivadas de funções compostas

[Ver páginas 31 a 36, slides "Capítulo 1 - Derivadas parciais"]

4. Usando a regra da cadeia, determine
$$\frac{dz}{dt}$$
 para

(a)
$$z = x^3 + y^2$$
, $x = \cos t \ {\rm e} \ y = \frac{1}{t}$;

(b)
$$z = \ln(x + y^2)$$
, $x = e^{t^2}$ e $y = t^3 + t$.

5. Determine
$$\frac{\partial w}{\partial x} \in \frac{\partial w}{\partial y}$$
 para $w = u \cos v^2$, onde $u = x^3 + y$ e $v = x^2y$.

6. Determine
$$\frac{\partial z}{\partial r}$$
, sabendo que $z=u^2+v^2+w^2$, onde $u=re^{-s}$, $v=s^2e^{-r}$ e $w=re^s$.

Qual o valor de
$$\frac{\partial z}{\partial r}$$
 quando $r=2$ e $s=1$?

• Derivada da função implícita

[Ver páginas 37 a 48, slides "Capítulo 1 - Derivadas parciais"]

7. Admitindo que
$$y = f(x)$$
 verifica

$$x^3 + xy^2 + y^4 + x = 4,$$

determine $\frac{dy}{dx}$

8. Calcule
$$\frac{\partial z}{\partial x}$$
 e $\frac{\partial z}{\partial y}$, admitindo que $z=f(x,y)$ verifica

$$z^2y + 2xz^2 + xy^2 + 4z = 0.$$

Data limite para o envio da resolução: 13h de 21 de março.