

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

FEBRUARY/MARCH/FEBRUARIE/MAART 2016

MEMORANDUM

MARKS: 150 *PUNTE: 150*

This memorandum consists of 18 pages. *Hierdie memorandum bestaan uit* 18 *bladsye*.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in ALL aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing.

1.1.1	$x^2 - x - 12 = 0$	/ factors
	(x-4)(x+3)=0	✓factors
	x = 4 or x = -3	✓✓answers
	OR/OF	(3)
	$x^2 - x - 12 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	✓ substitution into formula
	$= \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-12)}}{2(1)}$ = 4 or -3	✓✓ answers (3)
1.1.2	x(x+3)-1=0	
	$x^2 + 3x - 1 = 0$	✓ standard form
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$= \frac{-3 \pm \sqrt{3^2 - 4(1)(-1)}}{2(1)}$ $= \frac{-3 \pm \sqrt{13}}{2}$	✓ substitution into correct formula ✓ answer
1.1.3	x(4-x)<0	(3)
	x < 0 or x > 4	$\begin{array}{c} \checkmark x < 0 \\ \checkmark x > 4 \\ \checkmark \text{ or} \end{array}$
	OR/OF	(3)
	x(4-x) < 0 x(x-4) > 0 OR/OF $x(4-x) < 0$ $x(x-4) > 0$	$\begin{array}{c} \checkmark \ x < 0 \\ \checkmark \ x > 4 \\ \checkmark \ \text{or} \end{array}$
	x < 0 or x > 4	(3)

1 1 4	2	
1.1.4	$x = \frac{a^2 + a - 2}{a - 1}$	$\checkmark (a+2)(a-1)$
		(a+2)(a-1)
	$=\frac{(a+2)(a-1)}{a-1}$	✓answer (check
	a - 1 $= a + 2$	ten eights
	= 888 888 888 890	written)/tien
	- 000000 000 070	agtstes geskryf (2)
1.2	y + 7 = 2x	
	y = 2x - 7(1)	
	$x^2 - xy + 3y^2 = 15$	$\checkmark y = 2x - 7$
	substitute (1) in (2):	
	$x^{2} - x(2x - 7) + 3(2x - 7)^{2} = 15$	✓ substitution
	$x^{2}-2x^{2}+7x+3(4x^{2}-28x+49)=15$	
	$x^{2}-2x^{2}+7x+12x^{2}-84x+147-15=0$	
		✓ standard form
	$11x^2 - 77x + 132 = 0$	
	$x^2 - 7x + 12 = 0$	✓ factorisation
	(x-3)(x-4)=0	✓x-values
	x=3 or $x=4$	
	y = 2(3) - 7 $y = 2(4) - 7$	
	y = -1 y = 1	✓y-values
	OR/OF	(6)
	y + 7 = 2x	. 7
	$x = \frac{y+7}{2}$ (1)	$\checkmark x = \frac{y+7}{2}$
	$x = \frac{1}{2}$ (1)	2
	$x^2 - xy + 3y^2 = 15$ (2)	
	substitute (1) in (2):	/14:44:
	$\left(\frac{y+7}{2}\right)^2 - \left(\frac{y+7}{2}\right)y + 3y^2 = 15$	✓ substitution
	$\frac{y^2 + 14y + 49}{4} - \frac{y^2 + 7y}{2} + 3y^2 = 15$	
	$y^{2} + 14y + 49 - 2y^{2} - 14y + 12y^{2} - 60 = 0$	
		✓standard form
	$11y^2 - 11 = 0$	· Standard 101111
	$y^2 - 1 = 0$	✓ factorisation
	(y-1)(y+1) = 0	√u voluos
	$y = -1 \qquad \qquad y = 1$	✓y-values
	$x = \frac{-1+7}{2} \qquad x = \frac{1+7}{2}$	
	- -	▼ x-values
	x = 3 $x = 4$	(6)

1.3
$$y = x + \frac{1}{x}$$

$$xy = x^{2} + 1$$

$$x^{2} - xy + 1 = 0$$
Since x is real, this equation has real roots./Omdat x reëel is, het die vergelyking reële wortels.
$$\Delta \ge 0$$

$$y^{2} - 4 \ge 0$$

$$(y - 2)(y + 2) \ge 0$$

$$\sqrt{y^{2} - 4}$$

$$\sqrt{y^{2} - 2}$$

$$\sqrt{y^{$$

2.1.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	The next term of the sequence is 12./Die volgende term in die ry is 12.	✓answer	(1)
2.1.2	2a = 1		
	$a = \frac{1}{2}$	✓ value of a	
	$3a + b = T_2 - T_1$ $3\left(\frac{1}{2}\right) + b = 2$	$\checkmark 3\left(\frac{1}{2}\right) + b = 2$	
	$b = \frac{1}{2}$ $a + b + c = T_1$	✓ value of b	
	$\frac{1}{2} + \frac{1}{2} + c = -2$	$\sqrt{\frac{1}{2} + \frac{1}{2} + c} = -2$	
	$c = -3$ $\therefore T_n = \frac{1}{2}n^2 + \frac{1}{2}n - 3$	✓ value of c	(5)
	OR/OF		

2a=1	
$a=\frac{1}{2}$	✓ value of <i>a</i>
$T_n = an^2 + bn + c$	
$-2 = \frac{1}{2} + b + c \dots T_1$	$\checkmark -2 = \frac{1}{2} + b + c$
$b+c=-\frac{5}{2}$ line 1	
$0 = 2 + 2b + c \dots T_2$	$\checkmark 0 = 2 + 2b + c$
2b + c = -2line 2 line 2 – line 1:	
$b = \frac{1}{2}$	✓ value of <i>b</i>
substitute in line 1 or substitute in line 2	
$\frac{1}{2} + c = -\frac{5}{2}$ $2\left(\frac{1}{2}\right) + c = -2$	
c = -3	✓ value of c
$\therefore T_n = \frac{1}{2}n^2 + \frac{1}{2}n - 3$	(5)
OR/OF	
$T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2}d_2$	
$= -2 + (n-1)(2) + \frac{(n-1)(n-2)}{2}(1)$	√formula
$= -2 + 2n - 2 + (n^2 - 3n + 2)(\frac{1}{2})$	✓substitution
$= -2 + 2n - 2 + \frac{1}{2}n^2 - \frac{3}{2}n + 1$	✓ value of <i>a</i>
$= \frac{1}{2}n^2 + \frac{1}{2}n - 3$	✓ value of <i>b</i> ✓ value of <i>c</i>
OR/OF	(5)
2a = 1	
$a = \frac{1}{2}$	✓ value of <i>a</i>
$3a + b = T_2 - T_1$	(1)
$3\left(\frac{1}{2}\right) + b = 2$	$\checkmark 3\left(\frac{1}{2}\right) + b = 2$
$b = \frac{1}{2}$	✓ value of b
$T_0 = c = -3$	$\checkmark T_0 = c$
$\therefore T_n = \frac{1}{2}n^2 + \frac{1}{2}n - 3$	✓ value of c (5)
OR/OF	(3)

	Since $T_2 = 0$, $(n-2)$ is a factor of T_n	
	$T_n = an^2 + bn + c$	
	=a(n-2)(n-k)	
	$T_1 = -2 = a(1-2)(1-k)$	
	-2 = -a(1-k)	(a)(1)
	$a = \frac{2}{1 - k}$	$\checkmark T_n = a(n-2)(n-k)$ $\checkmark -2 = a(1-2)(1-k)$
	= **	$\sqrt{-2} = a(1-2)(1-k)$
	$T_3 = 3 = a(3-2)(3-k)$	
	3 = a(3-k)	(2 (2 2)(2 1)
	$a = \frac{3}{3 - k}$	$\checkmark 3 = a(3-2)(3-k)$
	$\frac{2}{1-k} = \frac{3}{3-k}$	
	2(3-k) = 3(1-k)	
	6 - 2k = 3 - 3k	
	k = -3	
	$a=\frac{1}{2}$	✓ value of k
	2	
	$T_n = \frac{1}{2}(n-2)(n+3)$	✓ value of a
	$\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$	value of a
	$= \frac{1}{2}n^2 + \frac{1}{2}n - 3$	(5)
2.1.3	$\frac{1}{2}n^2 + \frac{1}{2}n - 3 = 322$	$\sqrt{\frac{1}{2}n^2 + \frac{1}{2}n - 3} = 322$
	$2 2 n^2 + n - 6 = 644$	
		✓ standard form
	$n^2 + n - 650 = 0$	Standard form
	$n = \frac{-1 \pm \sqrt{1^2 - 4(1)(650)}}{2}$	✓ substitution into
	n = 25 or $n = -26$	quadratic formula
	The 25 th term has a value of 322./Die 25 ^{ste} term se waarde is 322.	
		✓answer
	OR/OF	(4)
	$\frac{1}{2}n^2 + \frac{1}{2}n - 3 = 322$	$\checkmark \frac{1}{2}n^2 + \frac{1}{2}n - 3 = 322$
	$n^2 + n - 6 = 644$	2 2
	$n^2 + n - 650 = 0$	
	(n-25)(n+26)=0	✓ standard form
	n = 25 or $n = -26$	✓ factors
	The 25 th term has a value of 322./Die 25 ^{ste} term se waarde is 322.	✓ answer (4)
	OR/OF	(4)

	$\frac{1}{2}n^{2} + \frac{1}{2}n - 3 = 322$ $n^{2} + n - 6 = 644$ $(n+3)(n-2) = 23 \times 28$ $n-2 = 23$ $n = 25$	$\sqrt{\frac{1}{2}n^2 + \frac{1}{2}n - 3} = 322$ $\sqrt{(n+3)(n-2)}$ $\sqrt{23 \times 28}$
	n = 23	✓ answer (4)
2.2.1	$T_2:$ $a+d=8$ $T_5:$ $a+4d=10$ $T_5-T_2:$ $3d=2$	$\checkmark a + d = 8$ $\checkmark a + 4d = 10$
	$d = \frac{2}{3}$	✓answer (3)
2.2.2	$T_{1} = T_{2} - d$ $= 8 - \frac{2}{3}$ $= \frac{22}{3}$ $T_{n} = a + (n-1)d$ $= \frac{22}{3} + (n-1)\frac{2}{3}$ $= \frac{2n+20}{3}$	$\checkmark T_1 = \frac{22}{3}$ $\checkmark \text{answer}$ (2)
	$S_{50} = \sum_{n=1}^{50} \left(\frac{22}{3} + (n-1)\frac{2}{3} \right)$ $\mathbf{OR/OF}$ $S_{50} = \sum_{n=1}^{50} \left(\frac{2n+20}{3} \right)$	
2.2.3		(2)
	$S_{n} = \frac{n}{2} [2a + (n-1)d]$ $S_{50} = \frac{50}{2} \left[2\left(\frac{22}{3}\right) + (50 - 1)\left(\frac{2}{3}\right) \right]$ $= \frac{3550}{3}$	✓ correct substitution into correct formula ✓ answer
	_ 3	(3) [18]

3.1	70	
3.1	$r = \frac{70}{100}$	
	$=\frac{7}{10}$	
	10	✓ value of r
	Tn-1	, 4140 017
	$T_n = ar^{n-1}$	
	$(7)^{n-1}$	✓ substitution in
	$11,76 = 100 \left(\frac{7}{10}\right)^{n-1}$	formula for T_n
		n
	$\left(\frac{7}{10}\right)^{n-1} = \frac{11,76}{100}$	
	(11,76)	
	$n-1 = \log_{\frac{7}{10}} \left(\frac{11,76}{100} \right).$	✓ use of logarithms
		<i>5</i> 1 <i>3</i> 2
	n-1=6	
	n=7	✓answer
	During the 7 th year/ <i>In die 7^{de} jaar</i>	(4)
	ODIOE	
	OR/OF	
	$r = \frac{70}{100}$	
	100	
	_ 7	
	$=\frac{7}{10}$	✓ value of r
	$T_n = ar^{n-1}$	
		✓ substitution in
	$11,76 = 100(0,7)^{n-1}$	formula for T_n
	$0.7^{n-1} = \frac{11.76}{100}$	
	100	
	= 0,1176	
	$(n-1)\log 0.7 = \log 0.1176$	✓use of logarithms
		- use of logarithms
	$n - 1 = \frac{\log 0,1176}{\log 0,7}$	
	_	
	n-1=6	
	n=7	✓answer
	During the 7 th year/ <i>In die 7^{de} jaar</i>	(4)
3.2	h(n) = 130 + (100 + 70 + 49 + to n terms)	√ 130
		✓
	$=130 + \frac{100(1 - (0,7)^n)}{1 - 0,7}$	100 + 70 + 49 +to <i>n</i> terms
	1-0,7	
	$120 \cdot 100(1-(0.7)^n)$	
	$=130 + \frac{100(1 - (0.7)^n)}{0.3}$	✓answer
	-,~	(3)

3.3	Eventual height of the tree/ <i>Uiteindelike hoogte van die boom</i>	100
	130 _ 100	$\checkmark \checkmark 130 + \frac{100}{1 - 0.7}$
	$=130 + \frac{100}{1 - 0.7}$,
	1390	✓answer
	$= 463,33 \text{ mm} \text{ OR} \frac{1390}{3} \text{ mm}$	(3)
	3	[10]

4.1	(0;2)	✓answer	
			(1)
4.2	N N		
		✓shape	
	(0; 2)	√ (0; 2)	
	y=1	✓asymptote	
			(3)
4.3	f(-2) = 5	$\checkmark f(-2)=5$	(5)
	f(-2) = 5 $f(1) = 2^{-1} + 1 = \frac{3}{2}$	$\checkmark f(-2) = 5$ $\checkmark f(1) = \frac{3}{2}$	
	Average gradient = $\frac{f(1) - f(-2)}{1 - (-2)}$		
	$=\frac{\frac{3}{2}-5}{3}$		
	$=-\frac{7}{6}$	✓ answer	(2)
4.4	Since the asymptote of f is $y = 1$,		(3)
7.7	the asymptote of $h(x) = 3 f(x)$ will be $y = 3$.		
	the asymptote of $h(x) = 3f(x)$ will be $y = 3$.		
	Omdat die asimptoot van f $y = 1$ is,	✓answer	74 5
	sal die asimptoot van $h(x) = 3f(x)$ $y = 3$ wees.		(1) [8]

5.1	$y = a(x+p)^2 + q$	
	Turning point $(1;-8)$: $y = a(x-1)^2 - 8$	$\checkmark y = a(x-1)^2 - 8$
	Substitute $(0; -4): -4 = a(0-1)^2 - 8$	\checkmark substitute (0;-4)
	-4 = a - 8	(2, 1)
	a=4 $p=-1$ $q=-8$	$\checkmark a = 4$
	$y = 4(x-1)^2 - 8$	$\checkmark p \text{ and } q \text{ values}$ (4)
7.2	<u> </u>	
5.2	Asymptote is $y = -2$ \Rightarrow $d = -2$	$\checkmark d = -2$
	Substitute $(1; -8)$:	
	$-8 = \frac{k}{1+r} - 2$	
	k = -6(1+r)	$\checkmark k = -6 - 6r$
	k = -6 - 6rline 1	
	Substitute $(0; -4)$:	
	$-4=\frac{k}{n}-2$	
	$\frac{k}{-}=-2$	
	$\frac{-}{r} = -2$	$\checkmark k = -2r$
	k = -2rline 2	$\checkmark k = -2r$ $\checkmark -6 - 6r = -2r$
	Equating lines 1 and 2: $-6-6r = -2r$	$\checkmark -6 - 6r = -2r$
	-4r = 6	
	3	✓ value of r
	$r = -\frac{3}{2}$	
	Substituting into line 2 or line 1:	
	_	✓ value of k
	$k = (-2)(-\frac{3}{2}) = 3$ $k = -6 - 6(-\frac{3}{2}) = 3$	$\begin{array}{c c} & \text{value of } \kappa \\ & & (6) \end{array}$
5.3	$g(x) \ge f(x)$	$\checkmark 0 \le x$
	$\therefore 0 \le x \le 1$	$\checkmark x \le 1 \tag{2}$
5.4	The line $y = k$ must pass through f twice on the positive side of	
	the x-axis./Die lyn $y = k$ moet twee keer deur f aan die positiewe	$\begin{array}{c} \checkmark -8 < k \\ \checkmark k < -4 \end{array}$
	kant van die x-as sny.	
	-8 < k < -4	(2)

5.5	y = -x + c	$\checkmark y = -x + c$
	Substitute the intersection point of the asymptotes, i.e. $\left(\frac{3}{2}; -2\right)$:	
	Vervang die snypunt van die asimptote, m.a.w. $\left(\frac{3}{2}; -2\right)$:	$\checkmark -2 = -\frac{3}{2} + c$
	$-2 = -\frac{3}{2} + c$	
	$c = -\frac{1}{2}$	✓answer (3)
	$y = -x - \frac{1}{2}$	
	OR/OF	
	$y = -x$ is translated $\frac{3}{2}$ units right and 2 units down/	$\checkmark y = -x$
	$y = -x$ transleer $\frac{3}{2}$ eenhede na regs en 2 eenhede na onder \Rightarrow	
	$y = -\left(x - \frac{3}{2}\right) - 2$	$\checkmark y = -\left(x - \frac{3}{2}\right) - 2$ $\checkmark \text{answer}$
	$y = -x - \frac{1}{2}$	(3)
5.6	By symmetry,	
	$Q = \left(\frac{3}{2} + 8 - 2; -2 + \frac{3}{2} - 1\right)$	$\checkmark x = \frac{15}{3}$
	$=\left(\frac{15}{2}; -\frac{3}{2}\right)$	$\checkmark x = \frac{15}{2}$ $\checkmark y = -\frac{3}{2}$
		(2) [19]

6.1	$f: y = \frac{1}{4}x^2$	
	$f^{-1}: x = \frac{1}{4}y^2$ $y^2 = 4x$ $y = \pm \sqrt{4x}$	✓ interchanging x and y ✓ $y^2 = 4x$
	$y = \pm \sqrt{4x}$ $f^{-1}(x) = -\sqrt{4x}$ OR/ OF $f^{-1}(x) = -2\sqrt{x}$	✓answer (3)
6.2	(-2;1)	✓both graphs pass through (0; 0)
	<u> </u>	✓ shape for both
	(1; -2)	✓one additional point on both graphs
	f^{-1}	(3)
6.3	Yes. No value of x in the domain of f^{-1} maps onto more than one y -value. Ja. Geen waarde van x in die definisieversameling van f^{-1} assosieer met meer as een y -waarde nie.	✓ yes ✓ reason (2)
	OR/OF	
	Yes. One to one function./Ja. Een-tot-een-funksie.	✓ yes ✓ reason
	OR/OF	(2)
	Yes. Vertical line test holds./Ja. Die vertikale lyntoets werk.	✓ yes ✓ reason
		(2) [8]

7.1.1	Quarterly interest rate/Kwartaallikse rentekoers	
7.1.1		
	$=\frac{10\%}{4}$	
	= 2,5%	✓answer
	,	(1)
7.1.2	$A = P(1+i)^n$	/ 0
	$(25)^{2\times4}$	$\checkmark n = 8$
	$=5000\left(1+\frac{2.5}{100}\right)^{2\times4}$	$\checkmark n = 8$ $\checkmark 5000 \left(1 + \frac{2.5}{100}\right)^{2\times 4}$
		✓ answer
	= R6092,01	(3)
7.2.1	$-x 1-(1+i)^{-n} $	
	$P_{v} = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$	
	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	$\checkmark i = \frac{0.14}{12}$
	$800000 = \frac{10000 \left[1 - \left(1 + \frac{0.14}{12}\right)^{-n}\right]}{0.14}$	
	800000 =	✓ substitute into
	0,14	present value formula
	12	
	$800\ 000\ 0.14\ (1+0.14)^{-n}$	
	$\frac{800\ 000}{10\ 000} \times \frac{0.14}{12} = 1 - \left(1 + \frac{0.14}{12}\right)^{-n}$	
	$(0.14)^{-n}$ 800 000 0.14	✓
	$\left(1 + \frac{0.14}{12}\right)^{-n} = 1 - \frac{800\ 000}{10\ 000} \times \frac{0.14}{12}$	$\left(1+\frac{0.14}{12}\right)^{-n} = 1-\frac{800\ 000}{10\ 000} \times \frac{0.14}{12}$
	(12) 10 000 12	(12) 10 000 12
	Γ 014]	
	$\log \left[1 - \frac{800000 \times \frac{0,14}{12}}{10000} \right]$	
	$\log \left 1 - \frac{12}{10000} \right $	
		✓ use of logs
	$-n = \frac{1}{\log\left(1 + \frac{0.14}{12}\right)}$	
	$\log\left(1+\frac{3}{12}\right)$	
	n = 233,4699962	
	Motloi can make 233 withdrawals of R10 000./Motloi kan 233	
	onttrekkings van R10 000 maak.	√ 233
		(5)
7.2.2		/ · · - 40 ·
(a)	$10000 \left(1 + \frac{0.14}{1}\right)^{48} - 1$	$\checkmark n = 48$ in both formulae $\checkmark i = \frac{0.14}{12}$ in both formulae
	$\begin{bmatrix} 1 & 0.000 & 0.00 & $	$\checkmark i = \frac{0.14}{12}$ in both formulae
	$A - F_{v} = 800000 \left(1 + \frac{0.14}{12}\right)^{48} - \frac{10000 \left[\left(1 + \frac{0.14}{12}\right)^{48} - 1\right]}{\frac{0.14}{12}}$	✓ substitution into
	12	both formulae
	=1 396 005,54 - 638 577,36	
	= R757428	✓answer
		(4)
	OR/OF	
L		

	$P_{V} = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$ $= \frac{10000 \left[1 - \left(1 + \frac{0,14}{12}\right)^{-185,4699962}\right]}{\frac{0,14}{12}}$	$ \checkmark n = -185,46996 $ $ \checkmark i = \frac{0,14}{12} $ $ \checkmark $ $ \frac{10000 \left[1 - \left(1 + \frac{0,14}{12} \right)^{-185,4699962} \right]}{\frac{0,14}{12}} $
	= R757428	✓answer (4)
7.2.2 (b)	Let the purchase price of the house be y./Laat die koopprys van die huis y wees. $ \frac{757 \ 428}{y} = 30\% $ $ 757 \ 428 = 0.3y $ $ y = \frac{757 \ 428}{0.3} $ $ = R2 \ 524 \ 760 $ OR/OF	✓answer (1)
	Let the purchase price of the house be y./Laat die koopprys van die huis y wees. $y = \frac{757 \ 428}{30} \times 100$	✓answer
	30 = R2 524 760	(1) [14]

_		
8.1	$f(x+h) = -(x+h)^2 + 4 = -(x^2 + 2xh + h^2) + 4$ $= -x^2 - 2xh - h^2 + 4$ $f(x+h) - f(x) = -2xh - h^2$	✓ finding $f(x+h)$ ✓ $-2xh-h^2$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula
	$= \lim_{h \to 0} \frac{-2xh - h^2}{h}$ $= \lim_{h \to 0} \frac{h(-2x - h)}{h}$ $= \lim_{h \to 0} (-2x - h)$ $= -2x$	✓ factorisation ✓ answer
	OR/OF	(5)
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{-(x+h)^2 + 4 - (-x^2 + 4)}{h}$	✓ formula
	$= \lim_{h \to 0} \frac{-x^2 - 2xh - h^2 + 4 + x^2 - 4}{h}$	$\checkmark \text{ finding } f(x+h)$
	$=\lim_{h\to 0}\frac{-2xh-h^2}{h}$	$\checkmark -2xh-h^2$
	$=\lim_{h\to 0}\frac{h(-2x-h)}{h}$	✓ factorisation
	$= \lim_{h \to 0} (-2x - h)$ $= -2x$	✓answer (5)
8.2.1	$y = 3x^2 + 10x$ $\frac{dy}{dx} = 6x + 10$	$\begin{array}{c c} \checkmark 6x \\ \checkmark 10 \end{array}$
8.2.2	$f(x) = \left(x - \frac{3}{x}\right)^2$ $= x^2 - 6 + \frac{9}{x^2}$	$\sqrt{x^2-6+\frac{9}{x^2}}$
	$= x^{2} - 6 + \frac{1}{x^{2}}$ $= x^{2} - 6 + 9x^{-2}$ $f'(x) = 2x - 18x^{-3}$	$\checkmark x^2 - 6 + \frac{9}{x^2}$ $\checkmark 9x^{-2}$ $\checkmark 2x - 18x^{-3}$
		(3)

8.3.1	$f(2) = 2(2)^3 - 23(2)^2 + 80(2) - 84$	✓ substitution of 2
	= 0	into f \checkmark value of 0
	$\therefore (x-2)$ is a factor	(2)
8.3.2	$f(x) = 2x^3 - 23x^2 + 80x - 84$	(-)
	$= (x-2)(2x^2-19x+42)$	$\checkmark 2x^2 - 19x + 42$
	, , ,	$\checkmark (x-2)(2x-7)(x-6)$
	= (x-2)(2x-7)(x-6)	$f'(x) = 6x^2 - 46x + 80$
8.3.3	$f'(x) = 6x^2 - 46x + 80$	
	$6x^2 - 46x + 80 = 0$	$\checkmark f'(x) = 0$
	$3x^2 - 23x + 40 = 0$	
	(3x-8)(x-5)=0	√factors
	$x = \frac{8}{3}$ or $x = 5$	
	$x = \frac{1}{3}$ or $x = 5$	$\checkmark x$ -values
8.3.4		(4)
0.5.7	↑ y	
	2 3,5	
		$\checkmark x$ -intercepts
	f'	✓ y-intercept ✓ shape
		Shape
	-84/	
	ý	(3)
8.3.5	$6x^2 - 46x + 80 = 40$	$\checkmark 6x^2 - 46x + 80 = 40$
	$6x^2 - 46x + 40 = 0$	
	$3x^2 - 23x + 20 = 0$	
	(3x-20)(x-1)=0	✓factors
	$x = \frac{20}{3}$ or $x = 1$	$\checkmark x = 1$
	But x must be an integer, so $x = 1$ at the point where tangent	
	touches f/x moet heelgetal wees so $x = 1$ by punt waar die	
	raaklyn f raak:	✓ y-value
	$y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$	
		$\checkmark -25 = 40(1) + c$
	y = mx + c	✓answer
	-25 = 40(1) + c	
	-65 = c	(6)
	(0;-65)	(6) [27]
	1	[27]

9.1	$340 = \pi r^2 h$	✓ substitution into	
	340	volume formula	
	$\therefore h = \frac{340}{\pi r^2}$	✓answer	2)
0.2		,	2)
9.2	$A = 2\pi r^2 + 2\pi rh$	√formula	
	$=2\pi r^2 + 2\pi r \left(\frac{340}{\pi r^2}\right)$	✓ substitution of h	
	$=2\pi r^2 + 680r^{-1}$	(2	2)
9.3	$A(r) = 2\pi r^2 + 680r^{-1}$		
	$A'(r) = 4\pi r - 680r^{-2}$	$\checkmark 4\pi r$ $\checkmark -680r^{-2}$	
	• •	$\sqrt{-680}r^{-2}$	
	$4\pi r - 680r^{-2} = 0$		
	680		
	$4\pi r = \frac{680}{r^2}$		
	$r^3 = \frac{680}{4\pi}$	$\checkmark r^3 = \frac{680}{4\pi}$	
	$r^3 = \frac{660}{4}$	4π	
	4π		
	$r = \sqrt[3]{\frac{680}{4\pi}}$ cm or 3,78 cm	✓answer	
	$\sqrt{4\pi}$	(4	4)
		[8	8]

10.1.1	160	✓answer
		(1)
10.1.2	$P(M) = \frac{60}{160}$	√ 60
	$\frac{1}{160}$	
	$=\frac{3}{8}$	
	8	✓answer
	= 0.375	(2)
10.1.3	$P(Male) \times P(Coffee) = P(Male \ and \ Coffee)$	√formula
	$P(Manlik) \times P(Koffie) = P(Manlik en Koffie)$	0.0
	3 80 b	$\checkmark \frac{80}{160}$
	$\frac{3}{8} \times \frac{80}{160} = \frac{b}{160}$	160
	3 - b	$\sqrt{\frac{b}{160}}$
	$\frac{3}{16} = \frac{3}{160}$	160
	16b = 480	
	b = 30	✓ answer
	0 – 50	(4)

10.2.1	6!	√ 6!
	$= 6 \times 5 \times 4 \times 3 \times 2 \times 1$	
	= 720	✓answer
		(2)
10.2.2	number of ways Xoliswa sits next to Anees/	
	getal maniere waarop Xoliswa langs Anees sit	(
	$=5!\times2$	✓ 5!×2
	= 240	✓answer (2)
	OR/OF	(2)
	Regard Xoliswa and Anees as a single entity/Beskou Xoliswa en Anees as	
	een	√ 5!+5!
	Number of ways in which 5 passengers can be arranged = 5!	3.13.
	Getal maniere waarop 5 passasiers gerangskik kan word = 5!	
	So 5! different arrangements for XA and 5! different arrangements for	✓answer
	AX	
	So 5! verskillende rangskikkings vir XA en 5! verskillende rangskikkings vir AX	
	munhan of more Valiance site nant to Amaza	(2)
	number of ways Xoliswa sits next to Anees	
	getal maniere waarop Xoliswa langs Anees sit = 5!×2	
	$= 3! \times 2$ $= 240$	
10.2.3	number of ways Mary is at an end of the row on the left = 1×5 !	
	number of ways Mary is at an end of the row on the right = $5! \times 1$	✓both LHS
	total number of arrangements $= 6!$	and RHS ways
	_	✓6! ✓ setting up
	$P(\text{Mary is at an end of the row}) = \frac{5! \times 1 + 1 \times 5!}{6!}$	probability
	$=\frac{1}{3}$	✓answer
	getal maniere waarop Mary aan die einde van die ry links is = 1×5 !	(4)
	getal maniere waarop Mary aan die einde van die ry regs is = $5! \times 1$	
	totale getal rangskikkings = 6!	
	$P(\text{Mary is aan einde van die } ry) = \frac{5! \times 1 + 1 \times 5!}{6!}$	
	_ 1	
	$=\frac{1}{3}$	[15]
	TOTAL/TOTAAL:	150