XIANGYU LU

• <u>luxyzju@zju.edu.cn</u>

• hobbitarmy.github.io

• github.com/HobbitArmy

• RG researchgate.net/profile/xiangyu_lu6

OBJECTIVE

Observe and Interpret Remote Sensing Imagery with Deep-Learning and Photogrammetry Methods, towards the Automatic end-to-end Processing and Analyzing System for Eco & Ag Science.

EDUCATION

Zhejiang University Ph.D., Agricultural Electrification and Automation	Sep. 2020 - Jul. 2025
Research Field: Agricultural Information Technology	Hangzhou, China
China Agricultural University Exchange Student	Sep. 2018 - Jul. 2019
Course Learning	Beijing, China
University of Oxford Summer Institute Program	Aug. 2018
Summer Courses: Quantum Computing, Cosmology	Oxford, U.K.
Northwest A&F University B.S., Agricultural Mechanization and Automation	Sep. 2016 - Jul. 2020
Final GPA: 3.71 (rank: 2/75)	Yangling, China

RESEARCH Abilities

Skilled in: Python Programming, CNN & Transformer Networks, Diffusion Models, UAV Sensing & QGIS. Interested in: Large-Area Eco & Ag Sensing, Multimodal Model, Contrastive Learning, Visual Prompting.

RESEARCH PROJECTS

Aerial Image Super-Resolution with Diffusion Model and Variance Attention	Jan. 2023 - Oct.2023
■ Propose a variance-based attention (VASA) that enhanced various super-resolution models	
• Constructed a VASA-enhanced Diffusion Model for effective aerial image super-resolution	
Automated Rice Phenology Mapping using UAV Images and Deep Learning	Jul. 2022 - Dec. 2022
■ Improve the bilateral segmentation model for canopy extraction and phenology detection	
 Propose direct geo-locating and incremental sparse sampling for traits mapping 	
Grape Leaf Disease and Pest Diagnose Using Transformer Networks	Jul. 2021 - Dec. 2021
 Design a method of multi-model integration using prediction confidence 	
■ Propose a Transformer hybrid model achieving 98.51% mAcc on 11 categories	
Wheat Field Weed Sensing System using UAV (Provincial Project: 5k funds)	Mar. 2018 - Apr.2019
■ Good Ending Reward As team leader and algorithm implementation coder	

AWARDS & HONORS

■ Award of Honor for Graduate 2020-2023 (top 15%, 3-times)	Dec. 2023
 Special Award of Agricultural Equipment Innovation - ZOOMLION Cup 2020 	Jun. 2020
■ President Scholarship 2017-2018 (top 5%)	Dec. 2018

• Construct a real-time 4-classes weeds detection system with UAV image sequence

PUBLICATIONS

- Lu X, Zhou J, Yang R, et al. 2023. Automated Rice Phenology Stage Mapping Using UAV Images and Deep Learning. *Drones*. 7(2):83. https://doi.org/10.3390/drones7020083
- Lu, X., Yang, R., Zhou, J., et al., 2022. A hybrid model of ghost-convolution enlightened transformer for effective diagnosis of grape leaf disease and pest. *Journal of King Saud University Computer and Information Sciences*. 34(5):1755-1767. https://doi.org/10.1016/j.jksuci.2022.03.006
- Zhou, J., **Lu, X.**, Yang, R., et al., 2023. Developing thermal infrared de-ghost and multi-level nested conglutinated segmentation algorithm for detection of rice seed setting rate. *Computers and Electronics in Agriculture*. 207:107725. https://doi.org/10.1016/j.compag.2023.107725