Вырождение распределений при многократном обучении в рекомендательных системах

Николай Александрович Крехов

Московский физико-технический институт

Курс: Моя первая научная статья Эксперт: к.ф.-м.н. А. С. Хританков Консультант: А. С. Веприков

2024

Цель исследования

Мы рассматриваем системы рекомендации товаров пользователям. Изучаем поведение таких системы во времени. Наша задача состоит в том, чтобы развить результат полученный в статье [1] с учетом эффектов feedback loops [2] и filter bubbles [3].

Цель

Исследование изменений распределений пользователей и товаров в динамической системе с рекомендательным алгоритмом.

Задача

Предложить алгоритм, который повышает качество рекомендаций при условии, что не происходит вырождения (т.е. снижения разнообразия) товаров и пользователей.

Математическая постановка задачи

Пользователи и товары: $C \subset \mathbb{R}^d, W \subset \mathbb{R}^l$. На каждом шаге t имеется совместное распределение: $(c,w)^T \sim p^t_{c,w}(x_c,x_w)$

Предполгаем, что существует функция $u_{\text{true}}(c, w, z)$, которая показывает вероятность совершения сделки.

Рассмтриваемый класс рекомендательных алгоримтов:

- 1. Строит функцию $u_{\text{pred}}^t(c,w)$, которая оценивает функцию u_{true}^t
- 2. Для каждого c по функци u_{pred} выбирает множество товаров размера k для рекомендации: $\{w_i, \dots, w_{i_k}\}$

 D_t - оператор эволюции распределения: $p^{t+1}(x_c, x_w) = D_t(p^t)(x_c, x_w)$ Вудем говорить, что распределение p(x) вырождается, если

$$\mu(\operatorname{supp} p(x)) = 0,$$

Введем функционал

$$L^t(c,w) = \mathbb{E}_z[(u_{\mathrm{true}}(c,w,z) - u_{\mathrm{pred}}(c,w))^2],$$

Согласно ему, начиная с некоторого $t=\tau$ и будет изменяться распределение:

$$p_{c,w}^{t+1} \propto L^t(c,w)^{-1}$$

Критерии качества модели

Мы должны найти такой алгоритм, при использовании которого в динамической системе не происходит вырождение распределения $p_{c,w}^t$ пользователей-товаров.

- Вырождение распределения невязок: $u_{\rm true} u_{\rm pred} \sim \delta(x)$, где $\delta(x)$ дельта-функция Дирака. Условия такого вырождения описаны в статье [1], однако никаких гарантий на отсутствие выраждения $p_{c,w}^t$ нет.
- $y_{
 m true} := Bern(u_{
 m true}), \ y_{
 m pred} := Bern(u_{
 m pred})$ Для каждого пользователя считаем $accuracy@K = rac{\sum_{k=1}^K (I\{y_{
 m pred}^k = y_{
 m true}^k\})}{K}$ и затем усредняем по всем пользователям.

Основные результаты

Theorem

Пусть пользователи и площадка с товарами ведут себя рационально, т.е. $p_{c,w}^{t+1} \propto L^t(c,w)^{-1}$, где а функция $u_{\rm true}(c,w,z)$ существует. Тогда множество вырождения Φ^t для $p_{c,w}^t$ в зависимости от $u_{\rm pred}$ будет иметь следующий вид;

1.
$$u_{\text{pred}}(c, w) = \mathbb{E}_z[(u_{\text{true}}(c, w, z)]]$$

$$\Phi^t = \left\{ (x_c, x_w)^T \in \mathbb{R}^{d_c + d_w} \mid \mathbb{D}_z[(u_{\text{true}}(c, w, z)] = 0 \right\}$$

2.
$$u_{\mathrm{pred}}(c,w) = \begin{cases} 1, & \mathbb{E}_z[(u_{\mathrm{true}}(c,w,z)] \geq \frac{1}{2} \\ 0, & \mathrm{иначе} \end{cases}$$

$$\Phi^t = \left\{ (x_c, x_w)^T \in \mathbb{R}^{d_c + d_w} \mid \mathrm{для \ n.s.} \ x_z \in \Omega_z \ u_{\mathrm{true}}(c,w,z) = 1 \ \mathrm{или} \ 0 \ \right\}$$
Лемма: при таком u_{pred} максимизируется $\mathbb{P}(y_{\mathrm{true}} = y_{\mathrm{pred}})$

3.
$$u_{\text{pred}}(c, w) = a = const$$

$$\Phi^t = \left\{ (x_c, x_w)^T \in \mathbb{R}^{d_c + d_w} \mid \text{для п.в. } x_z \in \Omega_z \ u_{\text{true}}(c, w, z) = a \right\}$$

Выполнены вложения $\Phi_2^t \subset \Phi_1^t$ и $\Phi_3^t \subset \Phi_1^t$. Обратим внимание, что на точки, подходящие для Φ_2^t или Φ_3^t накладываются достаточно сильные ограничения. Это позволяет выдвинуть гипотезу, что вырождения при $u_{\mathrm{pred}}(c,w) := u_{\mathrm{pred}}^{2,3}(c,w)$ не будет, если u_{true} почти всюду не равно 1 или 0.

Вычислительный эксперимент

Данные будут использоваться синтетические:

$$u_{\text{true}}(c, w, z) = 0.95 \cdot \exp(-0.5((c-c_0)^2 + (w-w_0)^2 + z^2)), c_0 = 1, w_0 = 0.1$$

Синтетический датасет:

$$c \sim \mathcal{N}(0.7, 0.3), \qquad w \sim \mathcal{N}(0, 0.6), \qquad z \sim \mathcal{N}(0, 0.05),$$

Реализован макет динамической системы во времени. Итерация системы выглядит следующим образом:

- 1. Генерируем распределение пользователей и товаров
- 2. Оцениваем u_{true} рекомендательным алгоритмом
- 3. С вероятностью, полученной из функции $u_{\rm true}$ совершаем сделку
- 4. На полученной информации о новых сделках строим новое распределение пользователей и товаров: p_c^t и p_w^t и обучаем модель на новых данных.

Эксперимент проводился на 50 итерациях. На каждой измерялись значения accuracy08, значение функции распределения невязок в точке 0, среднего значения функцонала L(c,w), дисперсии параметров пользователей и товаров.

Изменение дисперсий пользователей и товаров со временем

Рис.: Значение accuracy@8

Рис.: Значение распределения невязок в точке 0

Рис.: Значение функционала L

Заключение

- ▶ Построена математическая модель динамической во времени рекомендательной системы.
- Для определенного вида алгоримтов удалось найти вид множества вырождения пользователей-товаров.
- Предложены гипотезы о вырождениях распределений в зависимости от алгоритма рекомендации.
- Проведен вычислительный эксперимент на синтетических данных, который подтвердил теоретические результаты.

Публикации по теме

- ▶ [1] A. S. Vepricov, A. S. Khritankov. On the problem of repeated supervised learning https://github.com/intsystems/2023-Project-119/blob/master/paper/M1P.pdf.
- ▶ [2] Anton Khritankov. Positive feedback loops lead to concept drift in machine learning systems.
- ▶ [3] Jiang, Ray Chiappa, Silvia Lattimore, Tor György, András Kohli, Pushmeet. (2019). Degenerate Feedback Loops in Recommender Systems