Riassunto: moto di un corpo rigido

	Moto di traslazione	Moto rotatorio
Massa	$M = \sum_{i} m_i$	$I = \sum_{i} m_i r_{\perp i}^2$
Velocità	$\vec{V} = \frac{1}{M} \sum_{i} m_i \vec{v}_i$	$ec{\omega}$
Quantità di moto	$ec{P} = M ec{V}^{i}$	$L_a = I\omega$ (lungo l'asse)
Energia cinetica	$K = \frac{1}{2}MV^2$	$L_a = I\omega$ (lungo l'asse) $K_R = \frac{1}{2}I\omega^2$
Equilibrio	$\sum \vec{F} = 0$	$\sum_{\vec{\tau}} \vec{\tau} = 0$
II Legge di Newton	$\sum_{i} \vec{F} = 0$ $\sum_{i} \vec{F} = M\vec{a}$	$\sum_{i} \vec{\tau} = 0$ $\sum_{i} \tau_{a} = I\alpha \text{ (lungo l'asse)}$
o anche	$\sum \vec{F} = \frac{d\vec{P}}{dt}$	$\sum_{\vec{L}} \vec{\tau} = \frac{d\vec{L}}{dt}$ $\vec{L} = \text{costante}$
Legge di conservazione	$\vec{P}=$ costante	$ec{L}=$ costante
Potenza	$\mathcal{P} = ec{F} \cdot ec{v}$	$\mathcal{P} = \vec{ au} \cdot \vec{\omega}$

Riassunto: leggi di conservazione

Per un sistema di particelle o un corpo esteso isolato, si conservano

- 1. energia cinetica, $K_f=K_i$, per i soli processi (esempio: urti) elastici
- 2. quantità di moto, $\vec{P}_f = \vec{P}_i$, se risultante forze esterne nulla
- 3. momento angolare, $\vec{L}_f = \vec{L}_i$, se risultante momenti esterni nulla

Per un sistema sotto sole forze conservative, si conservano

- 1. energia meccanica, $E_f = K_f + U_f = K_i + U_i = E_i$
- 2. momento angolare, $\vec{L}_f = \vec{L}_i$ se forze *centrali*, dirette verso un punto

Esercizio: Equilibrio di un corpo rigido

Scala uniforme di lunghezza ℓ e massa m, appoggiata a parete verticale liscia. Qual è θ_{min} per il quale la scala scivola, se $\mu_s=0.4$ con il suolo?

Soluzione: Equilibrio di un corpo rigido

Scala uniforme di lunghezza ℓ e massa m, appoggiata a parete verticale liscia. Qual è θ_{min} per il quale la scala scivola, se $\mu_s=0.4$ con il suolo?

Condizione di equilibrio sulle forze: n=mg, $P=f_a\leq mg\mu_s$.

Condizione di equilibrio sui momenti (che conviene calcolare rispetto al punto O): $mg(\ell/2)\cos\theta = \ell\sin\theta P$ da cui $P = (mg/2\tan\theta) \leq mg\mu_s$, condizione che può essere rispettata solo se $\tan\theta \geq (1/2\mu_s) = 1.25$, ovvero $\theta_{min} = 51^\circ$.

Nota: Momento delle forze gravitazionali

Notare che il momento delle forze gravitazionali agenti su di un corpo è uguale al momento della forza peso, concentrata nel centro di massa:

$$\vec{\tau} = \sum_{i} \vec{r}_{i} \times (m_{i}\vec{g}) = \left(\sum_{i} m_{i}\vec{r}_{i}\right) \times \vec{g}$$

ma per la definizione di centro di massa:

$$\sum_{i} m_{i} \vec{r}_{i} = \left(\sum_{i} m_{i}\right) \vec{R}_{cm} = M_{cm} \vec{R}_{cm}$$

da cui

$$\vec{\tau} = \vec{R}_{cm} \times (M_{cm}\vec{g})$$

Esercizio: accelerazione angolare di una ruota

Una ruota di raggio R, massa M, momento di inerzia I può ruotare su di un asse orizzontale. Una corda è avvolta attorno alla ruota e regge un oggetto di massa m. Calcolare l'accelerazione angolare della ruota, l'accelerazione lineare dell'oggetto, la tensione della corda (si trascurino massa della corda, attrito, resistenza dell'aria, etc.)

Soluzione: accelerazione angolare di una ruota

Momento torcente esercitato sulla ruota: au=TR, dove T è la forza esercitata dalla corda sul bordo della ruota. Da $I\alpha=\tau$ si ottiene $\alpha=TR/I$.

Legge di Newton per l'oggetto sospeso:

$$mg - T = ma$$
 \rightarrow $a = \frac{mg - T}{m}$

Relazione che lega a e α : $a=R\alpha$, da cui

$$a = R\alpha = \frac{TR^2}{I} = \frac{mg - T}{m}$$
$$T = \frac{mg}{1 + (mR^2/I)}$$

Esercizio: urto con rotazione vincolata

Un proiettile di massa m colpisce un'asticella di massa M e lunghezza l a distanza r dalla cerniera. Dopo l'urto, il proiettile rimane conficcato nell'asticella. Cosa possiamo dire del moto dell'asticella dopo l'urto?

Attenzione: la conservazione della quantità di moto *NON vale!* La cerniera esercita forze impulsive sull'asticella durante l'urto.

In questo caso l'urto è anelastico, non vale la conservazione dell'energia.

Si conserva invece il momento angolare rispetto al punto O di incernieramento: le forze impulsive della cerniera hanno momento nullo.

Soluzione: urto con rotazione vincolata

Un proiettile di massa m colpisce un'asticella di massa M e lunghezza l a distanza r dalla cerniera. Dopo l'urto, il proiettile rimane conficcato nell'asticella. Cosa possiamo dire del moto dell'asticella dopo l'urto?

Prima dell'urto: $L_i = mvr$, uscente dalla pagina. Dopo l'urto:

$$L_f = \left(mr^2 + rac{Ml^2}{3}
ight)\omega \equiv I_f\omega$$
, da cui: $\omega = mvr/I_f$.

Quantità di moto prima dell'urto: $p_i=mv$, dopo: $p_f=(mr+\frac{Ml}{2})\omega$ In generale non è conservata salvo per un valore particolare di r (quale?)

Energia cinetica: $E_i = \frac{1}{2}mv^2 > E_f = \frac{1}{2}I_f\omega^2$ sempre.

Come si vede? scrivete l'energia cinetica in funzione di L e ${\cal I}$

Esercizio: urto con rotazione libera

Disco di massa m=2 kg che viaggia a $v_{di}=3$ m/s colpisce asta di massa M=1 kg e lunghezza $\ell=4$ m ad un estremo, come in figura. Disco e asta sono appoggiati ad una superficie ghiacciata con attrito trascurabile. Conosciamo il momento d'inerzia $I=1.33~{\rm kg\cdot m^2}$ dell'asta attorno al suo centro di massa. Si assume che la collisione sia perfettamente elastica e che il disco non sia deviato dalla sua traiettoria.

Determinare il moto (v_{df}, v_s, ω) del sistema dopo l'urto.

Soluzione: urto con rotazione

1. Per la conservazione della quantità di moto: $| m\vec{v}_{di} = m\vec{v}_{df} + M\vec{v}_{s} |$ (tutti i vettori lungo la stessa direzione)

$$m\vec{v}_{di} = m\vec{v}_{df} + M\vec{v}_s$$

- 2. Conservazione del momento angolare (calcolato rispetto alla posizione iniziale del centro dell'asse) : $\left| \frac{1}{2} m \ell v_{di} = \frac{1}{2} m \ell v_{df} + I \omega \right|$ (nella direzione ortogonale al piano)

3. Conservazione dell'energia:
$$\frac{1}{2}mv_{di}^2 = \frac{1}{2}mv_{df}^2 + \frac{1}{2}Mv_s^2 + \frac{1}{2}I\omega^2$$

Da (1): $mv_{di}=mv_{df}+Mv_s$; da (2): $mv_{di}=mv_{df}+\frac{2I}{\ell}\omega$, da cui: $\omega=\frac{M\ell}{2I}v_s$.

$$\omega = \frac{M\ell}{2I}v_s$$

Da (1):
$$v_{df} = v_{di} - \frac{M}{m}v_s$$
.

Sostituiamo ω nella (3): $\frac{1}{2}mv_{di}^2 = \frac{1}{2}mv_{df}^2 + \frac{1}{2}M\left(1 + \frac{M\ell^2}{4I}\right)v_s^2$

Sostituiamo v_{df} : $\frac{1}{2}mv_{di}^2 = \frac{1}{2}mv_{di}^2 - Mv_{di}v_s + \frac{1}{2}\frac{M^2}{m}v_s^2 + \frac{1}{2}M\left(1 + \frac{M\ell^2}{4I}\right)v_s^2$, da cui

$$\frac{1}{2}M\left(1+\frac{M}{m}+\frac{M\ell^2}{4I}\right)v_s = Mv_{di} \text{ (se } v_s \neq 0\text{). Infine } v_s = 2v_{di}/\left(1+\frac{M}{m}+\frac{M\ell^2}{4I}\right)$$

Inserendo i dati: $v_s=1.33$ m/s, $v_f=2.33$ m/s, $\omega=2.0$ rad/s.

Altri esempi di moto angolare: trottola

Il moto della trottola semplice (in figura) è un problema ... complicato! Se ne può dare una versione semplificata, osservando che il momento torcente rispetto al punto $O, \ \vec{\tau} = \vec{h} \times M \vec{g}, \$ è sempre ortogonale al momento angolare $\vec{L} = I \vec{\omega}.$ L'equazione per il moto angolare

$$\frac{d\vec{L}}{dt} = \vec{\tau} \implies I \frac{d\vec{\omega}}{dt} = -\frac{Mgh}{\omega} \vec{\omega} \times \hat{k}$$

ha una soluzione (approssimata, vale per $\Omega_p << \omega$) con L costante e $\vec{\omega}$ che precede (routa) con velocità angolare $\vec{\Omega}_p$ diretta lungo la verticale:

$$\frac{d\vec{\omega}}{dt} = \vec{\Omega}_p \times \vec{\omega} \quad \Longrightarrow \quad \vec{\Omega}_p = \frac{Mgh}{I\omega}\hat{k}$$

Altri esempi di moto angolare: ruota di bicicletta

Consideriamo una ruota di bicicletta di massa M che gira orizzontalmente, sostenuta ai due lati del mozzo da due fili, distanti l dal centro della ruota. Il momento angolare $\vec{L}=I\vec{\omega}$ è sul piano orizzontale.

Tagliamo ora uno dei due fili: il sistema non è più in equilibrio anche se la forza esercitata dal filo $\vec{F}=Mg\hat{k}$ compensa la forza peso, perché il suo momento $\vec{\tau}=Mgl\hat{\omega}\times\hat{k}$ non è compensato.

La ruota non cade (almeno per un po'): come nel caso della trottola, $\vec{\tau}$ è sempre ortogonale a $\vec{\omega}$, che comincia a ruotare con velocità di precessione $\vec{\Omega}_p = -\frac{Mgl}{L\omega}\hat{k}$.