Selecting features for model performance

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen Boeye Head of Machine Learning, Faktion

Ansur dataset sample

Gender	chestdepth	handlength	neckcircumference	shoulderlength	earlength
Female	243	176	326	136	62
Female	219	177	325	135	58
Male	259	193	400	145	71
Male	253	195	380	141	62

Pre-processing the data

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_std = scaler.fit_transform(X_train)
```

Creating a logistic regression model

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
lr = LogisticRegression()
lr.fit(X_train_std, y_train)
X_test_std = scaler.transform(X_test)
y_pred = lr.predict(X_test_std)
print(accuracy_score(y_test, y_pred))
```


Inspecting the feature coefficients

```
print(lr.coef_)
array([[-3. , 0.14, 7.46, 1.22, 0.87]])
print(dict(zip(X.columns, abs(lr.coef_[0]))))
{'chestdepth': 3.0,
 'handlength': 0.14,
 'neckcircumference': 7.46,
 'shoulderlength': 1.22,
 'earlength': 0.87}
```

Features that contribute little to a model

```
X.drop('handlength', axis=1, inplace=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

lr.fit(scaler.fit_transform(X_train), y_train)

print(accuracy_score(y_test, lr.predict(scaler.transform(X_test))))
```

Recursive Feature Elimination

```
from sklearn.feature_selection import RFE

rfe = RFE(estimator=LogisticRegression(), n_features_to_select=2, verbose=1)
rfe.fit(X_train_std, y_train)
```

```
Fitting estimator with 5 features.
Fitting estimator with 4 features.
Fitting estimator with 3 features.
```

Dropping a feature will affect other feature's coefficients

Inspecting the RFE results

```
X.columns[rfe.support_]
Index(['chestdepth', 'neckcircumference'], dtype='object')
print(dict(zip(X.columns, rfe.ranking_)))
{'chestdepth': 1,
 'handlength': 4,
 'neckcircumference': 1,
 'shoulderlength': 2,
 'earlength': 3}
print(accuracy_score(y_test, rfe.predict(X_test_std)))
0.99
```


Let's practice!

DIMENSIONALITY REDUCTION IN PYTHON

Tree-based feature selection

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen Boeye Head of Machine Learning, Faktion

Random forest classifier

Random forest classifier

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

rf = RandomForestClassifier()

rf.fit(X_train, y_train)

print(accuracy_score(y_test, rf.predict(X_test)))
```

Random forest classifier

Feature importance values

```
rf = RandomForestClassifier()
rf.fit(X_train, y_train)
print(rf.feature_importances_)
array([0. , 0. , 0. , 0. , 0. , 0. , 0.04, 0. , 0.01, 0.01,
    0. , 0.07, 0. , 0. , 0.01, 0. ])
print(sum(rf.feature_importances_))
1.0
```


Feature importance as a feature selector

```
mask = rf.feature_importances_ > 0.1
print(mask)
array([False, False, ..., True, False])
X_reduced = X.loc[:, mask]
print(X_reduced.columns)
Index(['chestheight', 'neckcircumference', 'neckcircumferencebase',
       'shouldercircumference'], dtype='object')
```

RFE with random forests

```
from sklearn.feature_selection import RFE
rfe = RFE(estimator=RandomForestClassifier(),
          n_features_to_select=6, verbose=1)
rfe.fit(X_train,y_train)
Fitting estimator with 94 features.
Fitting estimator with 93 features
Fitting estimator with 8 features.
Fitting estimator with 7 features.
print(accuracy_score(y_test, rfe.predict(X_test))
0.99
```


RFE with random forests

```
from sklearn.feature_selection import RFE
rfe = RFE(estimator=RandomForestClassifier(),
          n_features_to_select=6, step=10, verbose=1)
rfe.fit(X_train,y_train)
Fitting estimator with 94 features.
Fitting estimator with 84 features.
Fitting estimator with 24 features.
Fitting estimator with 14 features.
print(X.columns[rfe.support_])
Index(['biacromialbreadth', 'handbreadth', 'handcircumference',
       'neckcircumference', 'neckcircumferencebase', 'shouldercircumference'], dtype='object')
```


Let's practice!

DIMENSIONALITY REDUCTION IN PYTHON

Regularized linear regression

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen Boeye Head of Machine Learning, Faktion

Linear model concept

Creating our own dataset

x1	x2	х3
1.76	-0.37	-0.60
0.40	-0.24	-1.12
0.98	1.10	0.77
•••	•••	•••

Creating our own dataset

x1	x2	х3
1.76	-0.37	-0.60
0.40	-0.24	-1.12
0.98	1.10	0.77
•••	•••	•••

Creating our own dataset

Creating our own target feature:

$$y = 20 + 5x_1 + 2x_2 + 0x_3 + error$$

Linear regression in Python

```
from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X_train, y_train)

# Actual coefficients = [5 2 0]
print(lr.coef_)
```

```
[ 4.95 1.83 -0.05]
```

```
# Actual intercept = 20
print(lr.intercept_)
```


Linear regression in Python

```
# Calculates R-squared
print(lr.score(X_test, y_test))
```


Linear regression in Python

```
from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X_train, y_train)

# Actual coefficients = [5 2 0]
print(lr.coef_)
```

```
[4.95 \ 1.83 \ -0.05]
```

Loss function: Mean Squared Error

Loss function: Mean Squared Error

Adding regularization

Adding regularization

Adding regularization

Lasso regressor

```
from sklearn.linear_model import Lasso

la = Lasso()
la.fit(X_train, y_train)

# Actual coefficients = [5 2 0]
print(la.coef_)
```

```
[4.07 0.59 0. ]
```

```
print(la.score(X_test, y_test))
```

Lasso regressor

```
from sklearn.linear_model import Lasso

la = Lasso(alpha=0.05)
la.fit(X_train, y_train)

# Actual coefficients = [5 2 0]
print(la.coef_)
```

```
[ 4.91 1.76 0. ]
```

```
print(la.score(X_test, y_test))
```

Let's practice!

DIMENSIONALITY REDUCTION IN PYTHON

Combining feature selectors

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen Boeye Head of Machine Learning, Faktion

Lasso regressor

```
from sklearn.linear_model import Lasso

la = Lasso(alpha=0.05)
la.fit(X_train, y_train)

# Actual coefficients = [5 2 0]
print(la.coef_)
```

```
[ 4.91 1.76 0. ]
```

```
print(la.score(X_test, y_test))
```

LassoCV regressor

```
from sklearn.linear_model import LassoCV

lcv = LassoCV()

lcv.fit(X_train, y_train)

print(lcv.alpha_)
```


LassoCV regressor

```
mask = lcv.coef_ != 0
print(mask)
```

[True True False]

```
reduced_X = X.loc[:, mask]
```

Taking a step back

- Random forest is combination of decision trees.
- We can use combination of models for feature selection too.

Feature selection with LassoCV

```
from sklearn.linear_model import LassoCV

lcv = LassoCV()
lcv.fit(X_train, y_train)

lcv.score(X_test, y_test)
```

0.99

```
lcv_mask = lcv.coef_ != 0
sum(lcv_mask)
```

66

Feature selection with random forest

Feature selection with gradient boosting

Combining the feature selectors

```
import numpy as np

votes = np.sum([lcv_mask, rf_mask, gb_mask], axis=0)

print(votes)
```

```
array([3, 2, 2, ..., 3, 0, 1])
```

```
mask = votes >= 2
reduced_X = X.loc[:, mask]
```


Let's practice!

DIMENSIONALITY REDUCTION IN PYTHON

