Stability of Discretization Schemes

a.
$$A = [0 \ 1; -1 \ 0]$$

Stability: finding eigenvalues gives that $\lambda = \pm i$. This means that the system is **marginally stable**.

b.
$$\delta = \frac{1}{2}$$
.

i. Forward Euler:

$$x^+ = x + \delta(Ax)$$
 \rightarrow $x^+ = x(I + \delta A)$ \rightarrow $\bar{A} = (I + \delta A) = [1 \%; -\% 1]$

Finding the eigenvalues of this matrix gives $\lambda = 1 \pm \frac{1}{2}i$. This means the system is **unstable** because $|\lambda| > 1$.

ii. Backward Euler:

$$x^{+} = x + \delta(Ax^{+})$$
 \rightarrow $x^{+} - \delta Ax^{+} = x$ \rightarrow $x^{+}(I - \delta A) = x$ $x^{+} = (I - \delta A)^{-1}$ \rightarrow $\bar{A} = (I - \delta A)^{-1} = [1 - \frac{1}{2}; \frac{1}{2}]^{-1}$

Finding the eigenvalues of this matrix gives λ = .8 \pm .4i. This means the system is **stable** because $|\lambda|$ < 1.

iii. Exact Discretization: By definition of exact discretization:

$$\bar{A} = e^{\delta A}$$
 \rightarrow $\bar{A} = [0.878 \ 0.479 \ ; -0.479 \ 0.878]$

Finding the eigenvalues of this matrix gives $\lambda = 0.878 \pm 0.479i$. This means the system is marginally stable because $|\lambda| = 1$.