DRIVE CIRCUIT FOR MATRIX DISPLAY DEVICE

Publication number: JP9179518 (A)

Publication date: 1997-07-11

Inventor(s):

TOMIZAWA KAZUNARI [JP]; NUMAO KOJI [JP]

Applicant(s): Classification:

- international:

SHARP KK [JP]; UNITED KINGDOM GOVERNMENT [GB] G02F1/133; G09G3/20; G09G3/36; G02F1/13; G09G3/20;

G09G3/36; (IPC1-7): G09G3/20; G02F1/133; G09G3/36

- European:

G09G3/36C6B; G09G3/36C12 Application number: JP19950341876 19951227

Priority number(s): JP19950341876 19951227

Abstract of JP 9179518 (A)

PROBLEM TO BE SOLVED: To provide a drive circuit suitable for a time division drive method in a matrix display device. SOLUTION: This display device selects a scan electrode Li (i=1-15) one by one in respective four selection periods by a scan driver 2, and displays respective bits of the data of four bits on pixels on the selected scan electrodes Li. The scan driver 2 is provided with four pieces of shift registers 11-14 answering to four selection periods. A clock CK having a width of four selection periods and the bit data DAT showing respective bits are inputted to the shift registers 11-14. Fifteen pieces of shift signals from the shift registers 11-14. Fifteen pieces of shift signals from the shift registers 11-14 are ANDed with four selection signals by AND circuits 101-115, etc. By using the signal of the total sum (OR) of these ANDs, open/close of switches XSW1 ...; (for the output of a selective voltage) and the switches YSW1 ... (for the output of non-selective voltage) are controlled.

Data supplied from the esp@cenet database — Worldwide

Also published as:

]] JP3854329 (B2) GB2308715 (A) 📆 US5969713 (A)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-179518

(43)公開日 平成9年(1997)7月11日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ		Ħ	流表示箇所
G 0 9 G	3/20		4237 - 5H	G 0 9 G	3/20	J	
G02F	1/133	560		G02F	1/133	560	
G 0 9 G	3/36			G 0 9 G	3/36		

審査請求 未請求 請求項の数10 OL (全 28 頁)

(21)出願番号	特願平7-341876	(71)出願人	0000005040
(ひょ/111289(住で行	1177947 1 041010	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ひひひひひひひひせつ

 (22)出願日
 平成7年(1995)12月27日
 大阪府大阪市阿倍

大阪府大阪市阿倍野区長池町22番22号

(74)代理人 弁理士 原 謙三

最終頁に続く

(54) 【発明の名称】 マトリクス型表示装置の駆動回路

(57)【要約】

【課題】 マトリクス型表示装置において時間分割駆動 方法に適した駆動回路を提供する。

【解決手段】 マトリクス型表示装置は、4つの選択期間のそれぞれに走査電極L $_{\rm i}$ ($_{\rm i=1}\sim15$) を走査ドライバ2により1本ずつ選択し、選択された走査電極L $_{\rm i}$ 上の画素に4bitのデータの各bitを表示する。走査ドライバ2は、4つの選択期間に対応する4個のシフトレジスタ11~14に、4つの選択期間の幅を有するクロックCKと、各bitを表すビットデータDATを入力する。AND回路101~115等により、シフトレジスタ11~14からの15個のシフト信号と4つのセレクト信号との論理積をとる。この論理積の総和(論理和)の信号を用いて、スイッチXSW $_{\rm i}$ … (選択電圧出力用) およびスイッチYSW $_{\rm i}$ … (非選択電圧出力用) の開閉を制御する。

【特許請求の範囲】

【請求項1】n(nは2以上の整数)選択期間の幅を有 するデータ信号をn選択期間の周期を有するクロックに 同期してシフトさせて走査電極の数と同数のシフト信号 を出力するn個のシフトレジスタと、

1

上記シフトレジスタの1個あたりに上記シフト信号と同 数設けられ、選択電圧印加期間を決定するための一定周 期のn個のセレクト信号のうちの1つと上記シフト信号 との論理積をとる第1論理積出力手段と、

上記各シフトレジスタからの出力順位が同じシフト信号 10 に基づく論理積同士の論理和をとる第1論理和出力手段 とを備えており、

上記クロックおよびセレクト信号が上記各シフトレジス タ毎に1選択期間ずつずれた位相で入力されることを特 徴とするマトリクス型表示装置の駆動回路。

【請求項2】上記シフトレジスタの1個あたりに上記シ フト信号と同数設けられ、消去電圧印加期間を決定する ための一定周期のn個のブランク信号のうちの1つと上 記シフト信号との論理積をとる第2論理積出力手段と、 上記各シフトレジスタからの出力順位が同じシフト信号 20 に基づく上記第2論理積出力手段からの論理積同士の論 理和をとる第2論理和出力手段とを備えており、

上記ブランク信号は、有意となる期間が上記セレクト信 号と重複しないように入力され、かつ上記各シフトレジ スタ毎に1選択期間ずつずれた位相で入力されることを 特徴とするマトリクス型表示装置の駆動回路。

【請求項3】n(nは2以上の整数)選択期間の幅を有 する選択用データ信号をn選択期間の周期を有するクロ ックに同期してシフトさせて走査電極の数と同数の選択 用シフト信号を出力するn個の選択用シフトレジスタ ٤,

上記データ信号と同じ幅で異なる情報を有する消去用デ ータ信号を上記選択用シフトレジスタと同様にしてシフ トさせて消去用シフト信号を出力するn個の消去用シフ トレジスタと、

上記選択用および消去用シフトレジスタの1組あたりに 上記選択用シフト信号と同数設けられ、選択電圧印加期 間を決定するための一定周期のn個のセレクト信号のう ちの1つと上記選択用シフト信号との論理積をとる第1 論理積出力手段と、

上記選択用および消去用シフトレジスタの1組あたりに 上記消去用シフト信号と同数設けられ、消去電圧印加期 間を決定するための一定周期のn個のブランク信号のう ちの1つと上記消去用シフト信号との論理積をとる第2 論理積出力手段と、

上記選択用シフトレジスタからの出力順位が同じ選択用 シフト信号に基づく上記第1論理積出力手段からの論理 積同士の論理和をとる第1論理和出力手段と、

上記消去用シフトレジスタからの出力順位が同じ消去用 シフト信号に基づく上記第2論理積出力手段からの論理 50 積同士の論理和をとる第2論理和出力手段とを備えてお

上記ブランク信号は、有意となる期間が上記セレクト信 号と重複しないように入力され、上記クロック、セレク ト信号およびブランク信号は、上記各組の選択用および 消去用シフトレジスタ毎に1選択期間ずつずれた位相で 入力されることを特徴とするマトリクス型表示装置の駆 動回路。

【請求項4】n(nは2以上の整数)選択期間の整数倍 の幅を有し2種類の情報を有するデータ信号を n 選択期 間の周期を有するクロックに同期してシフトさせて走査 電極の数と同数のシフト信号を出力するn個のシフトレ ジスタと、

上記シフトレジスタの1個あたりに上記シフト信号と同 数設けられ、選択電圧印加期間を決定するための一定周 期のn個のセレクト信号のうちの1つと上記シフト信号 と上記データ信号に含まれる情報を識別する識別信号と の論理積をとる第1論理積出力手段と、

上記シフトレジスタの1個あたりにシフト信号と同数設 けられ、消去電圧印加期間を決定するための一定周期の n個のブランク信号のうちの1つと上記シフト信号と上 記識別信号との論理積をとる第2論理積出力手段と、

上記識別信号の入力状態を、各順位の上記第1および第 2論理積出力手段の間で互いに否定となるようにし、か つ上記第1および第2論理積出力手段の奇数順位と偶数 順位との間でも互いに否定となるようにする否定入力手 段と、

上記シフトレジスタからの出力順位が同じシフト信号に 基づく上記第1論理積出力手段からの論理積同士の論理 和をとる第1論理和出力手段と、

上記シフトレジスタからの出力順位が同じシフト信号に 基づく上記第2論理積出力手段からの論理積同士の論理 和をとる第2論理和出力手段とを備えており、

上記クロック、セレクト信号およびブランク信号が上記 各シフトレジスタ毎に1選択期間ずつずれた位相で入力 される一方、上記識別信号は、上記データ信号の幅がn の偶数倍であるときに2n選択期間分の周期を有し、上 記データ信号の幅がηの奇数倍であれば3η選択選択期 間分の周期を有するクロックであることを特徴とするマ トリクス型表示装置の駆動回路。

【請求項5】クロックの2周期以上の幅を有する選択用 データ信号をクロックに同期してシフトさせて走査電極 の数と同数の選択用シフト信号を出力する選択用シフト レジスタと、

上記選択用シフトレジスタの隣り合う3つの出力から出 力された上記選択用シフト信号の論理積をとる第1論理 精出力手段と、

上記3つの選択用シフト信号のうち出力順位が第1およ び第2の選択用シフト信号と隣り合う3本の走査電極の うちの1本の特定の走査電極に最初に選択電圧を印加す

40

30

るときに選択電圧印加期間を決定するための一定周期の 第1セレクト信号との論理積をとる第2論理積出力手段 レ

上記3つの選択用シフト信号のうち出力順位が第2および第3となる選択用シフト信号と上記特定の走査電極に 最後に選択電圧を印加するときに選択電圧印加期間を決 定するための一定周期の第2セレクト信号との論理積を とる第3論理積出力手段と、

上記第1ないし第3論理積出力手段からの論理積同士の 論理和をとる第1論理和出力手段とを備えていることを 10 特徴とするマトリクス型表示装置の駆動回路。

【請求項6】上記クロックの2周期以上の幅を有し、上記選択用データ信号と位相の異なる消去用データ信号をクロックに同期してシフトさせて走査電極の数と同数の消去用シフト信号を出力する消去用シフトレジスタと、上記消去用シフトレジスタの隣り合う3つの出力から出力された上記消去用シフト信号の論理積をとる第4論理積出力手段と、

上記3つの消去用シフト信号のうち出力順位が第1および第2の消去用シフト信号と上記特定の走査電極に最初 20 に消去電圧を印加するときに消去電圧印加期間を決定するための一定周期の第1ブランク信号との論理積をとる第5論理積出力手段と、

上記3つの消去用シフト信号のうち出力順位が第2および第3の消去用シフト信号と上記特定の走査電極に最後に消去電圧を印加するときに消去電圧印加期間を決定するための一定周期の第2ブランク信号との論理積をとる第6論理積出力手段と、

上記第4ないし第6論理積出力手段からの論理積同士の 論理和をとる第2論理和出力手段とをさらに備えている 30 ことを特徴とする請求項5に記載のマトリクス型表示装 置の駆動回路。

【請求項7】上記第1および第2論理和出力手段からの 論理和に基づいていずれか1つのみ有意となる3つの信 号を出力する信号出力手段と、

上記3つの信号のそれぞれによりON/OFFが制御され、上記信号が有意のときONすることにより選択電圧、非選択電圧および消去電圧を個別に上記走査電極に印加する選択電圧用スイッチ、非選択電圧用スイッチおよび消去電圧用スイッチとをさらに備えていることを特40徴とする請求項2、3、4または6に記載のマトリクス型表示装置の駆動回路。

【請求項8】上記選択電圧用スイッチに与えられる上記信号が有意であるときに、上記選択電圧用スイッチをOFFさせるOFF手段をさらに備えていることを特徴とする請求項7に記載のマトリクス型表示装置の駆動回路。

【請求項9】上記消去電圧用スイッチに与えられる上記信号が有意であるときに、上記消去電圧用スイッチをOFFさせるOFF手段をさらに備えていることを特徴と 50

する請求項7に記載のマトリクス型表示装置の駆動回路。

【請求項10】反転入力端子に入力される上記第1および第2論理和出力手段からのそれぞれの論理和に基づく電圧の和と非反転入力端子に入力される基準電圧との差を所定の増幅度で増幅する反転増幅器をさらに備えていることを特徴とする請求項2、3、4または6に記載のマトリクス型表示装置の駆動回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、強誘電性液晶表示 装置のようにメモリ性を有するマトリクス型表示装置に おいて表示パネルを駆動する駆動回路に関するものであ る。

[0002]

【従来の技術】メモリ性を有するマトリクス型表示装置は、特開平5-107521号公報に開示されている相転移形液晶表示装置の他に、特開平3-20715号公報に開示されている強誘電性液晶表示装置、特開平6-43829号公報に開示されているプラズマ表示装置などがある。

【0003】一般に、マトリクス型表示装置には、共通して、走査電極毎に独立した選択期間が必要となるので同時に複数の走査電極を選択することができないという特徴がある。また、上記の各マトリクス型表示装置においては、走査電極に印加する電圧を次のように変化させて表示を行っている。まず、画素の表示状態を決める選択電圧を印加した後、画素の表示状態を保持するための保持電圧を印加し、最後に画素の表示状態を消去するための消去電圧を印加する。または、保持電圧の印加を停止することによっても画素の表示状態が消去される。

【0004】このような表示装置の階調表示を実現するためには、例えば、特開昭63-226178号公報に開示されている走査方法が用いられる。以下、この走査方法を図14を用いて説明する。

【0005】図14は、15本の走査電極 $L_1 \sim L_{15}$ から構成されたマトリクス型表示装置の走査方法を模式的に示している。走査電極 $L_1 \sim L_{15}$ は、図14において最上段に付された1から60までの数字(選択期間を表す)の順に選択されるようになっている。また、それぞれのブロックには、走査電極 $L_1 \sim L_{15}$ 上の画素に与えるべきデータのbi t 番号が付記されている。

【0006】この例では、4bitで構成されるデータの各bitが、各選択期間において、選択電圧が印加されることにより指定された走査電極Lit上の画素各に付与される。これにより、第1から第4までの各選択期間に、それぞれ、走査電極Lit1。上の画素が第4bit2を表示し、走査電極Lit2 上の画素が第1bit2 を表示し、走査電極Lit3 上の画素が第2bit4 を表示し、走査電極Lit7 上の画素が第3bit5 を表示する。

【0007】なお、図14において、各選択期間でbit番号が付記されていない走査電極L、には非選択電圧が印加されている。

【0008】このように、上記の走査方法では、時間分割で走査を行うことにより階調表示を可能にしている。

【0009】ここで、上記の走査方法が適用される強誘電性液晶表示装置(以降、FLCDと称する)の一般的な構成について説明する。このFLCDは、図15に示すような液晶パネル61を有している。この液晶パネル61は、互いに対向する2枚の透光性の例えばガラスか10らなる基板62・63を備えている。

【0010】基板62の表面には、例えばインジウム錫酸化物(以降、ITOと称する)からなる複数の透明な信号電極S…が互いに平行に配置されている。これらの信号電極S…は、例えば酸化シリコン(SiO_2)からなる透明な絶縁膜64により被覆されている。

【0011】一方、基板63の表面には、例えばITOからなる複数の透明な走査電極L…が信号電極S…と直交するように互いに平行に配置されている。これらの走査電極L…は、絶縁膜64と同じ材料からなる透明な絶20縁膜65で被覆されている。

【0012】上記の絶縁膜64・65上には、ラビング 処理などの一軸配向処理が施された配向膜66・67が それぞれ形成されている。配向膜66・67としては、 ポリビニルアルコール等が用いられる。

【0013】強誘電性液晶68は、配向膜66・67が対向するように、封止剤69で貼り合わされたガラス基板62・63の間の空間内に充填されて液晶層を形成している。強誘電性液晶68は、封止剤69に設けられた図示しない注入口から注入され、その注入口が封止され 30ることにより封入される。

【0014】基板62・63は、さらに偏光軸が互いに 直交するように配置された2枚の偏光板70・71で挟 まれている。

【0017】信号ドライバ82では、データ信号XIが、クロックCKに基づいてシフトレジスタ82aにより転送され、シフトレジスタ82aの各出力段から出力される。シフトレジスタ82aから出力される信号は、さらに負論理のラッチパルスLPに同期してラッチ8250

6

bで保持される。アナログスイッチアレイ82cは、ラッチ82bに保持された値がハイレベルであるかローレベルであるかに応じて、信号電極 S_{ι} にアクティブ電圧 V_{s_1} を印加するか信号電極 S_{ι} ($k \neq j$)にノンアクティブ電圧 V_{s_0} を印加するかを選択する。

【0018】上記のように構成されるFLCDでは、走査電極Lと信号電極Sとが交差する部分が画素となっている。そして、各画素の点灯および非点灯により、液晶パネル61の全体で表示が行われる。

【0019】図17(b)に示すように、上記の画素に含まれる液晶分子91は、その長軸方向と垂直に自発分極P。を有している。この液晶分子91は、走査電極Lへの印加電圧と信号電極Sへの印加電圧との電位差により発生する電界Eおよび自発分極P。のベクトル積に比例した力を受けて、2倍のチルト角2 θ の頂角を持った円錐92の表面上を移動する。

【0020】また、液晶分子91は、図17(a)に示すように、電界Eにより軸93まで移動させられると位置 P_1 で安定した状態になり、電界Eにより軸94まで移動させられると位置 P_2 で安定した状態になる。このように、液晶分子91は、2つの安定した状態をとるという性質を備えている。

【0021】 さらに、液晶分子91が電界Eにより動かされても、位置 P_1 ・ P_2 が変化しない限り、元の安定した状態へ戻ろうとする復元力が液晶分子91に働く。

【0022】そこで、図15に示す偏光板70・71の一方の偏光軸を、軸93・94のいずれかと一致させることにより、2つの表示状態を得ることができる。すなわち、一方の安定状態にある液晶分子91を有する画素が明るい表示状態となり、他方の安定状態にある液晶分子91を有する画素が暗い表示状態となる。

【0023】液晶分子91には、前記の電界Eによる力の他に分子長軸の方向と分子短軸の方向との誘電率の差である誘電異方性 Δ ϵ および電界Eの二乗の積に比例した力が働く。したがって、液晶分子91に働く力Fは、次式により表される。

【0024】 $F = K_0 \times P_s \times E + K_1 \times \Delta \varepsilon \times E^2$ なお、上式において、 K_0 および K_1 は定数である。

【0025】このため、誘電率異方性 Δ ϵ が負のFLC 材料が封入された液晶パネル61 では、電界Eが増加すれば、ある電界 E_{\min} で自発分極 P_{∞} による力の増加より誘電異方性 Δ ϵ が負であることの効果による力の増加が大きくなり、液晶分子91に働く力は、その電界 E_{\min} で最大となる。また、メモリパルス幅は、液晶分子91に働く力に逆比例すると考えられるから、その電界 E_{\min} で最小となる。

【0026】この現象を利用したFLCDの駆動方法として、例えばFLC国際会議(1991)でDefence Research Agency から"The JOERS/Alvey Ferroelectric Multiplexing Scheme" として発表されたJOERS/Alvey 駆

動法(以降、J/A駆動法と称する)がある。図18にその論文で示されているBDH社製のFLC材料である SCE8の電圧-メモリパルス幅の特性を示す。

【0027】図18において \bigcirc でマーキングされたデータは、図19(a)に示す ± 10 Vのバイアス電圧を重畳しながら測定される。一方、図18において+でマーキングされたデータは、図19(b)に示す ± 0 Vのバイアス電圧を重畳しながら測定された。

【0028】上記の駆動方法では、1画面のデータの書き替えを2フィールドの走査により行う。まず、第1フ 10ィールドでは、図20 (a)に示すように、選択電圧 $V_{c,a}$ を走査電極 L_i へ印加するとき、電圧 $V_{s,c}$ を信号電極 S_j へ印加することにより、電圧 V_{A-c} を両電極の交差部分の画素における液晶分子91へ印加する。これにより、液晶分子91の安定状態が一方の安定状態に切り替えられる。

【0029】第2フィールドでは、図20(b)に示すように、選択電圧 V_{cE} を走査電極 L_i へ印加するとき、電圧 V_{SH} を信号電極 S_j へ印加することにより、電圧 V_{E-B} を両電極の交差部分の画素における液晶分子91 へ印加する。これにより、液晶分子91 の安定状態が保持される。

【0030】液晶分子91の安定状態を他方の安定状態に切り替える場合は、まず、第1フィールドでは、図20(a)に示すように、選択電圧 V_{cA} を走査電極 L_{i} へ印加するとき、電圧 V_{sG} を信号電極 S_{i} へ印加することにより、電圧 V_{A-G} を上記の画素における液晶分子91へ印加する。これにより、液晶分子91の安定状態を変化させない。

【0031】第27ィールドでは、図20(b)に示す 30 ように、選択電圧 V_{cE} を走査電極 L_{i} へ印加するとき、電圧 V_{sD} を信号電極 S_{i} へ印加することにより、電圧 V_{E-D} を上記の画素における液晶分子91 へ印加する。これにより、液晶分子91の安定状態が他方の安定状態に切り替えられる。

【0032】上記の画素以外の画素における液晶分子9 1の安定状態を切り替えているときには、次のように電 圧を印加する。

【0033】まず、第177イールドでは、図20(a)に示すように、電圧 V_{sc} または電圧 V_{sc} を信号電極 S_{i} へ印加するとき、非選択電圧 V_{cs} を走査電極 L_{k} ($k \neq i$)へ印加することにより、電圧 V_{B-c} または電圧 V_{B-c} を両電極の交点の画素における液晶分子91へ印加する。第277イールドでは、図20(b)に示すように、電圧 V_{sc} または電圧 V_{sc} を信号電極 S_{i} へ印加するとき、非選択電圧 V_{cr} を走査電極 L_{k} へ印加することにより、電圧 V_{F-D} または電圧 V_{F-H} を両電極の交点の画素における液晶分子91个印加する。これにより、液晶分子91の安定状態は、信号電極 S_{i} への印加電圧がいずれの電圧であっても変化しない。

【0034】上記の駆動方法が可能となるのは、次の条件による。

【0035】第1の条件は、図20(a)(b)に示す電圧 V_{A-c} ・ V_{E-b} をそれぞれ決定する電圧レベルー V_s + V_a ・ V_s - V_a の絶対値が、液晶分子91に働く力が最大値の近辺となるような40(V)近辺の電圧(図18参照)であること。第2の条件は、図20

(a) (b) に示す電圧 $V_{\lambda-6}$ ・ V_{E-H} をそれぞれ決定する電圧レベルー V_s ー V_d ・ V_s + V_d の絶対値が、液晶分子 9 1 に働く力が最大値から減少していく領域である 6 0 (V) 近辺の電圧(図18参照)であること。それゆえ、第1の条件の電圧により液晶分子 9 1 に働く力は、第2の条件の電圧により液晶分子 9 1 に働く力より大きくなる。

【0036】また、上記の駆動方法が可能となるのは、次の条件にもよる。

【0037】電圧 V_{A-c} は、2つの電圧 V^{α} ルー V_a ・ V_a ・ V_a が同極性であり、電圧 V_{E-D} は、2つの電圧 V^{α} ルン。・ V_a ・ V_a が同極性である。一方、電圧 V_{A-c} は、2つの電圧 V^{α} ルー V_a ・ V_a が逆極性であり、電圧 V_{E-B} は、2つの電圧 V^{α} ルー V_a ・ V_a が逆極性である。このため、同極性の場合、安定状態の切り替えが容易な電圧 V^{α} ルー V_a ・ V_a をとるのに対し、逆極性の場合、安定状態の切り替えが同極性の場合より容易でない電圧 V^{α} ルー V_a ・ V_a ・ V_a をとることになる。

【0038】上記のJ/A駆動法を拡張した駆動方法としては、Liquid Crystals, 1993, Vol. 13, No. 4, 597-601における"A new set of high matrix addressing schemes forferroelectric liquid crystal displays" に開示されているMalvern 駆動法が挙げられる。図21に示すように、J/A駆動法(図中、J/A)は、列電圧波形における選択電圧の持続時間をタイムスロットTに等しく設定している。これに対し、Malvern-2 駆動法(図中、M-2)およびMalvern-3 駆動法(図中、M-3)は、選択電圧の持続時間をそれぞれタイムスロットTの2倍と3倍にまで延長している。

【0039】マトリックス型表示装置としてFLCDを用いる場合、前記のJ/A駆動法では、1画面のデータの書き替えに要する2フィールドの走査において、それぞれ図20(a)(b)に示す波形の駆動電圧を印加する。これに対し、SID '92 における"Colour Digital Ferroelectric Liquid Crystal Displays For Laptop Applications"に開示されている駆動方法では、図22に示すように、消去電圧(ブランキングパルスBP)を用いることにより、1画面のデータの書き替えを第2フィールドだけで行う。

[0040]

40

【発明が解決しようとする課題】ところが、上記のよう 50 な走査方法では、走査電極L, が $L_{15} \rightarrow L_1 \rightarrow L_3 \rightarrow L$, →…のように離散的に選択されていく。このような走 査を既存のドライバICを用いて行う場合、複雑な入力 信号(クロック、データパルス等)が必要であること、 必要以上のドライバICを用意する必要があること等の 不都合が生じる。このため、既存のドライバICにより 構成される駆動回路では、上記の走査方法による時間分 割階調表示を行なうのが困難である。

【0041】また、図21に示すMalvern-2 駆動法およ びMalvern-3 駆動法のように選択電圧の持続時間が選択 ると、やはり時間分割階調表示を行なうのが困難であ る。例えば、走査電極し、に印加される選択電圧が選択 期間より長い期間持続するする場合、次に選択される走 査電極 L₃ でも、選択電圧 L₁ の選択電圧の影響が及 ぶ。この結果、走査電極L。には、本来印加されるはず の選択電圧の他に、選択電圧し、の選択期間を越えた選 択電圧が印加されてしまう。

【0042】さらに、図22に示す消去電圧を組み合わ せて走査する場合にも同様に時間分割階調表示を行なう のが困難である。例えば、この走査方法では、同一の選 20 択期間内に選択電圧と消去電圧が出力されている(図6 参照)。ところが、既存のドライバICでは、1つのI Cから同時に同時に2つの信号を出力することが困難で ある。

【0043】本発明は、上記の事情に鑑みてなされたも のであって、上記の走査方法に適した駆動回路を提供す ることを第1の目的としている。また、本発明の第2の 目的は、消去電圧を組み合わせる走査方法に適した駆動 回路を提供することにある。さらに、本発明の第3の目 的は、選択電圧の持続時間が選択期間より長い走査方法 30 に適した駆動回路を提供することにある。

[0044]

【課題を解決するための手段】本発明のマトリクス型表 示装置の駆動回路は、上記の課題を解決するために、以 下の各構成を採用していることを特徴としている。

【0045】〔第1の駆動回路〕第1の駆動回路は、n*

* (nは2以上の整数) 選択期間の幅を有するデータ信号 をn選択期間の周期を有するクロックに同期してシフト させて走査電極の数と同数のシフト信号を出力するn個 のシフトレジスタと、これらのシフトレジスタの1個あ たりに上記シフト信号と同数設けられ、選択電圧印加期 間を決定するための一定周期のn個のセレクト信号のう ちの1つと上記シフト信号との論理積をとる第1論理積 出力手段(AND回路)と、上記各シフトレジスタから の出力順位が同じシフト信号に基づく論理積同士の論理 期間より長くなる場合にも、既存のドライバICを用い 10 和をとる第1論理和出力手段(OR回路)とを備えてい る。なお、上記クロックおよびセレクト信号は、上記各 シフトレジスタ毎に1選択期間ずつずれた位相で入力さ れる。

> 【0046】図14に示す走査パターンは、前述のよう に走査電極Liが離散的に選択されるように見えるが、 第1ないし第4 b i t のそれぞれに着目すれば、各 b i tについて順位の小さい走査電極し, から順にL, , L 2 , L3 …というように選択されるという規則性があ る。上記の第1の駆動回路は、この規則性を利用してい

> 【0047】第1の駆動回路では、入力されたデータ信 号が、n個のシフトレジスタにより順次シフトされ、複 数のシフト信号として出力される。具体的には、第1, 第2ないし第nのシフトレジスタからは、それぞれ走査 電極 L1, L2, L2, …に対応したシフト信号 SR(1)1 • $SR(2)_1 \cdot SR(3)_1 \cdots$, $SR(1)_2 \cdot SR(2)_2 \cdot SR$ (3)₂…~SR(1) 。SR(2) 。SR(3) 。が出力され

> 【0048】すると、第1論理積出力手段により、これ らのシフト信号とセレクト信号との論理積がとられる。 さらに、第1論理和出力手段により、上記各シフトレジ スタからの出力順位が同じシフト信号に基づく論理積同 士の論理和がとられる。すなわち、走査電極L、につい ての論理和は、セレクト信号をSEL、~SEL。とす れば次の論理式で表される。

 $(SR(i)_1 \times SEL_1) + (SR(i)_2 \times SEL_2) + \cdots$

 $+ (SR(i)_{n} \times SEL_{n})$

 \cdots (1)

なお、上式において、"×"は論理積を表し、"+"は 論理和を表す。これは、以降の駆動回路の説明で用いら 40 ている。これにより、各 b i t についての走査電極の選 れる論理式においても同様である。

【0049】これにより、n選択期間毎に走査電極Li ・L2 ・L3 …と順番にシフトする信号が生成される。 したがって、nbitのデータの各bitについて個別 に走査電極を選択することにより時間分割階調表示を行 う場合、各bit毎にシフトレジスタおよびセレクト信 号を用意すれば、図14の走査パターンによる走査方法 のように、L:, L2, L3 …の順に4選択期間毎に順 番に走査電極に選択電圧を印加することができる。

【0050】また、各シフトレジスタに入力されるクロ 50

ックおよびセレクト信号はそれぞれ1選択期間ずつずれ 択が相互に重なり合うことはない。しかも、階調のレベ ルは、各シフトレジスタに入力されるデータ信号のタイ ミングによって決定される。

【0051】〔第2の駆動回路〕第2の駆動回路は、第 1の駆動回路に適用される回路であって、上記シフトレ ジスタの1個あたりに上記シフト信号と同数設けられ、 消去電圧印加期間を決定するための一定周期のn個のブ ランク信号のうちの1つと上記シフト信号との論理積を とる第2論理積出力手段(AND回路)と、上記各シフ トレジスタからの出力順位が同じシフト信号に基づく上

* して消去電圧を印加するための期間を設定するようになっている。

12

記第2論理積出力手段からの論理積同士の論理和をとる 第2論理和出力手段(OR回路)とを備えている。な お、上記ブランク信号は、有意となる期間が上記セレク ト信号と重複しないように入力され、かつ上記各シフト レジスタ毎に1選択期間ずつずれた位相で入力される。

【0052】FLCDのようにメモリ性を有するマトリ 第2論理和出力 クス型表示装置では、選択電圧を印加する前に消去電圧 の出力順位が同 を印加しなければならない。そこで、第2の駆動回路で 和がとられる。 は、第1の駆動回路において、各シフトレジスタから出 和は、ブランタ 力されるシフト信号にn選択期間の幅があることを利用*10 式で表される。

 $(SR(i)_1 \times BL_1) + (SR(i)_2 \times BL_2) + \cdots$

 $+ (SR(i) \times BL_i)$

これにより、n選択期間毎に走査電極 L.・L2・L3 …と順番にシフトする信号が生成される。したがって、前記のように時間分割階調表示を行う場合、各 b i t 毎にブランク信号を用意すれば、例えば、図 6 に示す走査パターンのように、L1, L2, L3 …というように4選択期間毎に順番に走査電極に消去電圧を印加することができる。しかも、セレクト信号とブランク信号との有意となる期間が重複しないので、消去電圧の印加後に選 20択電圧を印加することもできる。また、ブランク信号が各シフトレジスタ毎に1選択期間ずつずれた位相で入力されるので、各 b i t についての走査電極への消去電圧の印加が相互に重なり合うことはない。

【0054】なお、セレクト信号およびブランク信号の数を増やすことにより、選択電圧および消去電圧の種類を増やすことができる。ただし、同時に複数の走査電極に選択電圧を印加するような選択電圧の設定は避けた方が好ましい。したがって、選択電圧については、1つの選択期間内に複数の電位を発生するようにセレクト信号30を考えなければならない。

【0055】〔第3の駆動回路〕第3の駆動回路は、n (nは2以上の整数)選択期間の幅を有する選択用デー タ信号をn選択期間の周期を有するクロックに同期して シフトさせて走査電極の数と同数の選択用シフト信号を 出力するn個の選択用シフトレジスタと、上記データ信 号と同じ幅で異なる情報を有する消去用データ信号を上 記選択用シフトレジスタと同様にしてシフトさせて消去 用シフト信号を出力するn個の消去用シフトレジスタ と、上記選択用および消去用シフトレジスタの1組あた 40 りに上記選択用シフト信号と同数設けられ、選択電圧印 加期間を決定するための一定周期のn個のセレクト信号 のうちの1つと上記選択用シフト信号との論理積をとる 第1論理積出力手段(AND回路)と、上記選択用およ び消去用シフトレジスタの1組あたりに上記消去用シフ ト信号と同数設けられ、消去電圧印加期間を決定するた めの一定周期のn個のブランク信号のうちの1つと上記 消去用シフト信号との論理積をとる第2論理積出力手段 (AND回路)と、上記選択用シフトレジスタからの出 力順位が同じ選択用シフト信号に基づく上記第1論理積 50 【0053】具体的に第2の駆動回路では、第2論理積出力手段により、各シフトレジスタから出力されるシフト信号とブランク信号との論理積がとられる。さらに、第2論理和出力手段により、上記各シフトレジスタからの出力順位が同じシフト信号に基づく論理積同士の論理和がとられる。すなわち、走査電極L,についての論理和は、ブランク信号をBL,~BL,とすれば次の論理式で表される。

出力手段からの論理積同士の論理和をとる第1論理和出力手段(OR回路)と、上記消去用シフトレジスタからの出力順位が同じ消去用シフト信号に基づく上記第2論理積出力手段からの論理積同士の論理和をとる第2論理和出力手段(OR回路)とを備えている。なお、上記ブランク信号は、有意となる期間が上記セレクト信号と重複しないように入力され、上記クロック、セレクト信号

... (2)

およびブランク信号は、上記各組の選択用および消去用シフトレジスタ毎に1選択期間ずつずれた位相で入力される。

【0056】第3の駆動回路では、上記のような構成により、選択電圧の印加を制御するための制御信号と消去電圧を印加するための制御信号とを独立に出力するようになっている。このため、第3の駆動回路は、選択用および消去用のシフトレジスタを2つで1組として備えている。

【0057】このような駆動回路において、選択用データ信号は、n個の選択用シフトレジスタにより順次シフトされ、複数の選択用シフト信号として出力される。消去用データ信号は、n個の消去用シフトレジスタにより順次シフトされ、複数の消去用シフト信号として出力される。これにより、第1組ないし第n組のシフトレジスタから、第2の駆動回路と同様に2種類のシフト信号が得られる。

【0058】すると、第1論理積出力手段により、各選択用シフトレジスタに応じて入力されるセレクト信号と上記の選択用シフト信号との論理積がとられる。また、第2論理積出力手段により、各消去用シフトレジスタに応じて入力されるブランク信号と上記の消去用シフト信号との論理積がとられる。

【0059】さらに、第1論理和出力手段により、選択用シフトレジスタからの出力順位が同じ選択用シフト信号に基づく第1論理積出力手段からの論理積同士の論理和が、前記の(1)式に基づいてとられる。一方、第2論理和出力手段により、消去用シフトレジスタからの出力順位が同じ消去用シフト信号に基づく第2論理積出力手段からの論理積同士の論理和が、前記の(2)式に基づいてとられる。

【0060】これにより、n選択期間毎に走査電極L: ・L2・L3・・と順番にシフトする2種類の信号が生成 される。したがって、本駆動回路では、第2の駆動回路 と同様、上記の信号を用いて4選択期間毎に順番に走査 電極に選択電圧と消去電圧とを印加することができる。

【0061】また、第3の駆動回路では、上記のように 第1および第2の駆動回路と共通する論理演算が行われ る。ただし、第3の駆動回路は、第1および第2の駆動 回路と異なり、選択用と消去用にそれぞれ専用のシフト レジスタを備えている。これにより、選択用シフト信号 10 と消去用シフト信号が、異なる選択用データ信号と消去 用データ信号を基に得られる。それゆえ、選択用データ 信号と消去用データ信号のタイミングの設定により、選 択電圧と消去電圧の間隔を任意に設定することができ る。

【0062】一方、第2の駆動回路では、消去電圧と選択電圧の間隔が時間分割階調を行うbit数によって制限されてしまう。例えば、4bitの時間分割階調では、シフトレジスタからの出力が4選択期間しか確保できない。このため、消去電圧および選択電圧の幅を1選20択期間とすると、消去電圧と選択電圧の間隔が0から2選択期間までになる。強誘電性液晶を用いたMalvern駆動法では、選択電圧と消去電圧の間隔が狭いと選択時に誤動作が生じやすいため、第2の駆動回路が利用できない。これに対し、第3の駆動回路では、bit数に関わらず、選択電圧と消去電圧の間隔を広げることにより、このような問題を解消することができる。

【0063】[第4の駆動回路]第4の駆動回路は、第2の駆動回路において、シフトレジスタがn選択期間の整数倍の幅を有し2種類の情報を有するデータ信号をシ30フトさせてシフト信号を出力するようにし、第1および第2論理積出力手段が、さらに上記データ信号に含まれる情報を識別する識別信号を論理積の要素として与えられる。第4の駆動回路は、また、上記識別信号の入力状態を、各順位の上記第1および第2論理積出力手段の間で互いに否定となるようにし、かつ上記第1および第2論理積出力手段の奇数順位と偶数順位との間でも互いに否定となるようにする否定入力手段を備えている。なお、上記識別信号は、上記データ信号の幅がnの偶数倍であるときに2n選択期間分の周期を有し、上記データ信号の幅がnの奇数倍であれば3n選択選択期間分の周期を有するクロックである。

【0064】第4の駆動回路では、入力されるデータ信号が、n個のシフトレジスタにより順次シフトされ、複数のシフト信号として出力される。上記のデータ信号は、2種類の情報、例えば選択用および消去用の情報を有しており、信号幅にその情報が含まれる。また、シフトレジスタに入力されるデータ信号は、1フレーム内に選択分と消去分の信号を共存させることができる。このようなデータ信号を用いることにより、選択分と消去分50

14

の信号をそれぞれ2フレームに分ける場合に比べて効率 的である。

【0065】次いで、奇数順位の第1論理積出力手段により、各シフトレジスタ(bit)毎に出力されるシフト信号とセレクト信号と識別信号との論理和がとられ、第2論理積出力手段により、シフト信号とブランク信号と識別信号との論理和がとられる。また、偶数順位の第1論理積出力手段により、セレクト信号とシフト信号と否定入力手段による識別信号の論理否定との論理積がとられる。一方、奇数順位の第2論理積出力手段による識別信号の論理否定との論理積がとられる。また、偶数順位の第2論理積出力手段により、シフト信号とブランク信号と翻測信号との論理積がとられる。

【0066】さらに、第1論理和出力手段により、シフトレジスタからの出力順位が同じシフト信号に基づく第1論理積出力手段からの論理積同士の論理和がとられる。一方、第2論理和出力手段により、シフトレジスタからの出力順位が同じシフト信号に基づく第2論理積出力手段からの論理積同士の論理和がとられる。

【0067】これにより、走査電極L, についての論理和は、識別信号をS/Bとし、識別信号の論理否定を#S/Bとすれば、L, が偶数順位であるとき、

 $\{ (SR(i)_1 \times SEL_1 \times S/B_1) + (SR(i)_1 \times BL_1 \times \#S/B_1) \} + \dots + \{ (SR(i)_n \times S/B_n \times SEL_n) + (SR(i)_n \times \#S/B_n \times BL_n) \}$ と表される。一方、 L_1 が奇数順位であるとき、

{ $(SR(i)_1 \times SEL_1 \times \#S/B_1) + (SR(i)_1 \times BL_1 \times S/B_1)$ } + ... + { $(SR(i)_n \times SEL_n \times \#S/B_n)$ } + $(SR(i)_n \times BL_n \times S/B_n)$ }

と表される。

【0068】また、識別信号S/Bは、選択用の情報と消去用の情報とを区別するための信号であって、データ信号の幅がn選択期間の偶数倍であればその2n選択期間分の周期を有するクロックである。したがって、識別信号とシフト信号とセレクト信号(ブランク信号)との論理積をとることにより、図9または図10に示すように、選択用の情報(SS)と消去用の情報(SB)とを取り出すことができる。図9はデータ信号の幅がn選択期間の2倍である場合を示し、図10はデータ信号の幅がn選択期間の1倍である場合を示している。

【0069】ここで、例えば、データ信号の幅が選択期間の奇数倍のとき、識別信号S/Bの幅を2n選択期間分の周期を有するクロックとすれば、本来、選択用(または消去用)の電圧が出力されるべき期間に消去用(または選択用)の電圧が出力される。したがって、データ信号と識別信号S/Bとの関係は前記のように設定する必要がある。

【0070】なお、前述のように、識別信号の両論理積

16 には選択電圧が

出力手段への入力は、選択側と消去側とで異なり、さらに第1および第2論理積出力手段に対応する走査電極の偶数順位と奇数順位とで異なっている。具体的には、識別信号は、第1(選択側)論理積出力手段と第2(消去側)論理積出力手段との入力時に互いに否定の関係となり、さらに走査電極の偶数順位と奇数順位との間でも互いに否定の関係となる。

【0071】したがって、上記の場合と逆の関係で識別信号を入力することができる。この場合、奇数順位の第1および第2論理積出力手段にそれぞれ#S/BとS/ 10Bが入力され、偶数順位の第1および第2論理積出力手段にそれぞれS/Bと#S/Bが入力される。

【0072】このように、第4の駆動回路では、シフト信号およびセレクト信号に識別信号を加えた3つの信号の論理積をとるようになっているので、シフトレジスタの数を第2の駆動回路と同様にn個にすることができ、かつ選択電圧と消去電圧の間隔を任意に設定することができる。それゆえ、第3の駆動回路に比べてシフトレジスタの数を半減させることができる。

【0073】〔第5の駆動回路〕第5の駆動回路は、ク 20 ロックの2周期以上の幅を有する選択用データ信号をク ロックに同期してシフトさせて走査電極の数と同数の選 択用シフト信号を出力する選択用シフトレジスタと、こ の選択用シフトレジスタの隣り合う3つの出力から出力 された上記選択用シフト信号の論理積をとる第1論理積 出力手段と、上記3つの選択用シフト信号のうち出力順 位が第1および第2の選択用シフト信号と隣り合う3本 の走査電極のうちの1本の特定の走査電極に最初に選択 電圧を印加するときに選択電圧印加期間を決定するため の一定周期の第1セレクト信号との論理積をとる第2論 30 理積出力手段と、上記3つの選択用シフト信号のうち出 力順位が第2および第3の選択用シフト信号と上記特定 の走査電極に最後に選択電圧を印加するときに選択電圧 印加期間を決定するための一定周期の第2セレクト信号 との論理積をとる第3論理積出力手段と、上記第1ない し第3論理積出力手段からの論理積同士の論理和をとる 第1論理和出力手段とを備えている。

【0074】前述のMalvern 駆動法(図21参照)では、選択電圧が2つの選択期間にわたって存在する。これは、例えば、第1ないし第5選択期間のそれぞれにお 40いて、3本の走査電極の各グループ(L_{i-3} , L_{i-2} , L_{i-1})、(L_{i-2} , L_{i-1} , L_{i-2})、(L_{i-1} , L_{i-2})、(L_{i-1} , L_{i-2})、(L_{i-1} , L_{i-2})、(L_{i+1} , L_{i-2} , L_{i+3})に選択電圧が印加されるということである。すなわち、1本の走査電極には、連続する3つの選択期間で選択電圧が印加されることにな

【0075】走査電極L: に着目すれば、最初に走査電極L: に選択電圧が印加される選択期間(上記の第2選択期間)では、同時に走査電極L: に選択電圧が印加50

されるが、走査電極 L_{i+1} には選択電圧が印加されない。一方、最後に走査電極 L_{i} に選択電圧が印加される選択期間(上記の第4選択期間)では、同時に走査電極 L_{i+1} に選択電圧が印加されるが、走査電極 L_{i+1} には選択電圧が印加されない。その間で走査電極 L_{i} に電圧が印加される選択期間(上記の第3選択期間)では、同時に走査電極 L_{i+1} と走査電極 L_{i+1} とに選択電圧が印加される。

【0076】そこで、隣り合う3本の走査電極のうちの特定の走査電極Liについて、最初に選択電圧が印加される選択期間と、最後に選択電圧が印加される選択期間と、その間の選択期間とを区別する。これにより、選択電圧を2つ以上の選択期間にわたって任意の持続時間で印加することができる。

【0077】具体的には、最初と最後とに走査電極上、に選択電圧が印加される選択期間では、それぞれ最初の選択期間用のセレクト信号と最後の選択期間用のセレクト信号とを用いて選択電圧制御信号を作成する。また、その間の選択期間ではセレクト信号を用いずにそのまま選択電圧制御信号を作成する。このようにすれば、上記のように選択電圧を印加することができる。

【0078】このため、第5の駆動回路では、入力された選択用データ信号が、選択用シフトレジスタにより順次シフトされ、複数の選択用シフト信号として出力される。隣り合う3つのシフト信号は、第1ないし第3論理積出力手段による論理演算に供される。

【0079】第1論理積出力手段により、隣り合う3つの選択用シフト信号の論理積がとられる。また、第2論理積出力手段により、3つの選択用シフト信号のうち出力順位が第1および第2の選択用シフト信号と上記の最初の選択期間用のセレクト信号である第1セレクト信号との論理積がとられる。さらに、第3論理積出力手段により、3つの選択用シフト信号のうち出力順位が第2および第3の選択用シフト信号と上記の最後の選択期間用のセレクト信号である第2セレクト信号との論理積がとられる。そして、第1論理和出力手段では、上記の3つの論理積の論理和がとられる。

【0080】ここで、第1および第2セレクト信号をそれぞれSLF、SLLとすれば、第1ないし第3論理積出力手段および第1論理和出力手段による上記の論理演算は次式により表される。

[0 0 8 1] $(SR_{i-1} \times SR_i \times (\#SR_{i+1}) \times SLF) + (SR_{i-1} \times SR_i \times SR_{i+1}) + (\#SR_{i-1}) \times SR_i \times SR_{i+1} \times SLL) = (SR_{i-1} \times SR_i \times SLF) + (SR_{i-1} \times SR_{i+1} \times SLL)$

上式において $\#SR_{i+1}$ は SR_{i+1} の論理否定を表し、 $\#SR_{i-1}$ は SR_{i-1} の論理否定を表す。

【0082】このようにして得られた論理演算の結果を 制御信号として用いて選択電圧の印加を行えば、選択電 圧の持続時間を選択期間より長くすることができる。

【0083】〔第6の駆動回路〕第6の駆動回路は、第 5の駆動回路に適用される回路であって、上記クロック の2周期以上の幅を有し、上記選択用データ信号と位相 の異なる消去用データ信号をクロックに同期してシフト させて走査電極の数と同数の消去用シフト信号を出力す る消去用シフトレジスタと、上記消去用シフトレジスタ の隣り合う3つの出力から出力された上記消去用シフト 信号の論理積をとる第4論理積出力手段と、上記3つの 消去用シフト信号のうち出力順位が第1および第2の消 去用シフト信号と上記特定の走査電極に最初に消去電圧 10 を印加するときに消去電圧印加期間を決定するための一 定周期の第1ブランク信号との論理積をとる第5論理積 出力手段と、上記3つの消去用シフト信号のうち出力順 位が第2および第3の消去用シフト信号と上記特定の走 査電極に最後に消去電圧を印加するときに消去電圧印加 期間を決定するための一定周期の第2ブランク信号との 論理積をとる第6論理積出力手段と、上記第4ないし第 6論理積出力手段からの論理積同士の論理和をとる第2

【0084】第6の駆動回路は、消去電圧についても、前記の第1の駆動回路と同様に、選択期間より長い期間の印加を可能とする構成である。このため、消去用データ信号が消去用シフトレジスタでシフトされた隣り合う3つの消去用シフト信号と、最初および最後の消去電圧印加期間用のブランク信号とを用いる。第4ないし第6論理積出力手段により、上記の消去用シフト信号と、2つのブランク信号とを基にして3つの論理積がとられる。さらに、第2論理和出力手段により、それらの論理積の論理和がとられる。

論理和出力手段とを備えている。

【0085】このようにして得られた論理演算の結果を 30 制御信号として用いて選択電圧の印加を行えば、消去電圧の持続時間を選択期間より長くすることができる。

【0086】[第7の駆動回路]第7の駆動回路は、上記の第2、第3、第4または第6の駆動回路のいずれかに適用される回路であって、上記第1および第2論理和出力手段からの論理和に基づいていずれか1つのみ有意となる3つの信号を出力する信号出力手段と、上記3つの信号のそれぞれによりON/OFFが制御され、上記信号が有意のときONすることにより選択電圧、非選択電圧および消去電圧を個別に上記走査電極に印加する選40択電圧用スイッチ、非選択電圧用スイッチおよび消去電圧用スイッチとを備えている。選択電圧用、非選択電圧用および消去電圧用の各スイッチは、例えばアナログスイッチにより構成される。

【0087】第7の駆動回路では、信号出力手段により、第1および第2論理和出力手段からの論理和に基づいて3つの信号が出力される。その3つの信号のいずれか1つが有意となるので、有意となった信号により1つのスイッチをONさせることができる。

【0088】これにより、1つの信号(選択電圧制御信 50

18

号)が有意(例えばハイレベル)であるとき、選択電圧 用スイッチがONし、他のスイッチがOFFすることに より、選択電圧がONした選択電圧用スイッチを介して 出力される。また、他の1つ(非選択電圧制御信号)が 有意であるとき、非選択電圧用スイッチがONし、他の スイッチがOFFすることにより、非選択電圧がONし た非選択電圧用スイッチを介して出力される。そして、 さらに他の1つ(消去電圧制御信号)が有意であると き、消去電圧用スイッチがONし、他のスイッチがOF Fすることにより、消去電圧が消去電圧用スイッチを介 して出力される。

【0089】このように、第7の駆動回路では、第1および第2論理和出力手段からの2つの論理和に基づいて3つの信号を得て、その信号により、選択電圧、非選択電圧および消去電圧のうち1つを出力することができる

【0090】[第8の駆動回路]第8の駆動回路は、上記の第7の駆動回路に適用される回路であって、上記選択電圧用スイッチに与えられる上記信号が有意であるときに、上記選択電圧用スイッチをOFFさせるOFF手段を備えている。あるいは、OFF手段は、消去電圧用スイッチに与えられる上記信号が有意であるときに、上記消去電圧用スイッチをOFFさせるように構成されていてもよい。

【0091】本駆動回路が液晶パネルのような容量性の 負荷を駆動する場合、上記の選択電圧制御信号が有意の ときでも、選択電圧用スイッチをOFFさせることによ り、液晶パネルに接続される本駆動回路の選択電圧用出 力端子がハイインピーダンスになる。また、消去電圧用 出力端子も同様にハイインピーダンスになる。

【0092】これにより、ハイインピーダンスとなった出力端子では、その直前の電圧レベルが維持される。したがって、選択電圧用スイッチまたは消去電圧用スイッチをOFFさせるタイミングを調整すれば、任意の電圧レベルを液晶パネルへ印加することが可能になる。

【0093】〔第9の駆動回路〕第9の駆動回路は、第2、第3、第4または第6の駆動回路のいずれかに適用される回路であって、反転入力端子に入力される上記第1および第2論理和出力手段からのそれぞれの論理和に基づく電圧の和と非反転入力端子に入力される基準電圧との差を所定の増幅度で増幅する反転増幅器をさらに備えている。反転増幅器は、例えば、オペレーショナルアンプの反転入力端子と出力端子の間に抵抗R。が接続される一方、反転入力端子に並列にm種類の抵抗R。(抵抗値は任意)が接続されることで構成される。

【0094】第9の駆動回路では、第1および第2論理和出力手段からのそれぞれの論理和に基づく電圧が各抵抗R。を介して反転入力端子に入力されることにより、反転入力端子にそれらの電圧の和が入力される。また、非反転入力端子には基準電圧V。が入力される。さら

に、入力電圧は、"High" または"Low" のそれ ぞれのとき V。または V。であるとする。このとき出力 される電圧は、次式で表される。

 $V_{\text{out}} = (V_{\text{o}} - V_{\text{s}}) R_{\text{o}} \Sigma (P_{\text{m}} / R_{\text{m}}) + V_{\text{o}}$ ここで、P』は、各電圧制御信号の状態を表し、"O" か"1"の値をとる。

【0095】m個の P_m の組み合わせは20m乗あるた め、出力電圧は2のm乗の種類の電位となる。このた め、上記のような反転増幅器を用いることにより、少な い信号で多くの電位を発生することができる。したがっ 10 て、多種類の出力電圧を得る際に、入力信号数を減らす とともに、第8の駆動回路で用いたようなスイッチおよ び選択電圧等の電源ラインを省くことができる。

[0096]

【発明の実施の形態】

[第1の実施の形態] 本発明の実施の一形態について図 1ないし図12に基づいて説明すれば、以下の通りであ る。

【0097】(FLCDの基本構成)本実施の形態に係 るFLCDは、図2に示すように、基本的には、従来の 20 技術で述べたFLCD (図15参照) と同等の構造をな す液晶パネル1を備えている。この液晶パネル1は、走 査電極L…と信号電極S…とを備えている。走査電極L …と信号電極S…とは所定の間隔をおいて互いに交差す るように配されており、その間に図示しない強誘電性液 晶が封入されている。

【0098】走査電極L…は走査ドライバ2に接続さ れ、信号電極S…は信号ドライバ3に接続されている。 図2に示す液晶パネル1は、説明を簡単にするために、 16本ずつの走査電極L… (L。~L。) と、同数の信 30 号電極S…(S。 $\sim S$ _F)とを備える構成となってお り、これらが交差する部分が16×16個の画素とな る。

【0099】走査ドライバ2は、走査電極し…に電圧を 印加する回路であり、制御回路2aと、アナログスイッ チアレイ2bとを有している。この走査ドライバ2は、 後述するように複数のシフトレジスタ11~14等(例 えば図1参照)を備え、アナログスイッチアレイ2bの 動作を制御するようになっている。

【0100】アナログスイッチアレイ2bは、制御回路 40 2 a からの制御信号に基づいて選択信号Vc1 または非選 択電圧Vcoを走査電極Lに出力するようになってい る。また、アナログスイッチアレイ2bは、必要に応じ て後述する消去電圧Vc2(図4参照)を走査電極Liに 出力するようになっている。

【0101】信号ドライバ3は、走査電極S…に電圧を 印加する回路であり、シフトレジスタ3aと、ラッチ3 bと、アナログスイッチアレイ3cとを有している。こ の信号ドライバ3では、データ信号XIが、クロックC Kに基づいてシフトレジスタ3aにより転送され、シフ 50 理積をとるようになっている。AND回路301~31

トレジスタ3aの各出力段から出力される。

【0102】シフトレジスタ3aから出力された信号 は、さらに負論理のラッチパルスLPに同期してラッチ 3 b で保持される。

20

【0103】ラッチ3bに保持された値が有意(例えば ハイレベル)のときに、アナログスイッチアレイ3cに より、その値が出力される信号ラインに対応する信号電 極S。にアクティブ電圧Vsュが印加される。一方、ラッ チ3 bに保持された値が非有意(例えばローレベル)の ときに、アナログスイッチアレイ3cにより、その値が 出力される信号ラインに対応する信号電極Sk(k≠ j)にノンアクティブ電圧Vs.が印加される。

【0104】なお、本実施の形態においては、FLCD を例に挙げているが、本発明が他のメモリ性を有するマ トリクス型表示装置に適用が可能であることは言うまで もない。

【0105】以下に、走査ドライバ2の各種の構成例に ついて詳細に説明する。なお、以降に説明する各走査ド ライバ2は、それぞれ4bitの時間分割階調表示を行 うように構成されている。

【0106】(第1の走査ドライバ)図1に示すよう に、本走査ドライバ2は、15本の走査電極L」~L₁₅ へ4bitの時間分割階調表示用の電圧を印加するよう に構成されている。制御回路2aは、シフトレジスタ1 1~14、AND回路101~115·201~215 ・301~315・401~415、フリップフロップ 21~23、OR回路501~515およびインバータ 601~615を備えている。

【0107】シフトレジスタ11~14には、信号ドラ イバ3に入力されるデータを構成する4つのbitがそ れぞれビットデータDAT。~DAT。として入力され る。シフトレジスタ11は、ビットデータDAT」をク ロックCKに基づいて順次次段の出力にシフトさせて、 15個の出力端子からシフト信号ASR₁~ASR₁₅を 出力するようになっている。シフトレジスタ12~14 は、それぞれフリップフロップ21~23により1選択 期間ずつ順次シフトされたクロックCKに基づいて順次 次段の出力に移動させるようになっている。これによ り、シフトレジスタ12~14のそれぞれの15個の出 力端子から、シフト信号BSR、~BSR、・CSR、 ~CSR₁₅·DSR₁ ~DSR₁₅が出力される。

【0108】フリップフロップ21~23は、クロック CKFに基づいてクロックCKをシフトさせるようにな っている。

【0109】第1論理積出力手段としてのAND回路1 01~115は、それぞれシフト信号ASR: ~ASR 15とセレクト信号SEL」との論理積をとるようになっ ている。AND回路201~215は、それぞれシフト 信号BSR₁~BSR₁₈とセレクト信号SEL₂との論

40

5は、それぞれシフト信号CSR₁~CSR₁。とセレク ト信号SEL。との論理積をとるようになっている。A ND回路401~415は、それぞれシフト信号DSR , ~DSR₁sとセレクト信号SEL₄ との論理積をとる ようになっている。

【0110】第1論理和出力手段としてのOR回路50 1~515は、AND回路101~115·201~2 15・301~315・401~415からの第i(同 一順位)の4つの積信号ASS。・SBS。・CSS。 ・DSS_i ($i=1\sim15$) の論理和をとるようになっ 10 理積がとられることにより積信号SBS_i \sim SBS_i。・ ている。OR回路501~515からの各出力信号は、 制御信号SVS、~SVS、。としてアナログスイッチア レイ2bに与えられる。

【0111】インバータ601~615は、OR回路5 01~515の次段に設けられている。これらのインバ ータ601~615は、OR回路501~515からの 各制御信号SVS」~SVS」。を反転するようになって いる。

【0112】アナログスイッチアレイ2bは、スイッチ $XSW_1 \sim XSW_{15} \cdot YSW_1 \sim YSW_{15}$ を有してい る。選択電圧用スイッチとしてのスイッチXSW」~X SWisは、それぞれ制御信号SVSi~SVSisにより ON・OFF制御されるようになっている。非選択電圧 用スイッチとしてのスイッチYSW₁~YSW₁₅は、そ れぞれ制御信号SVS」~SVS」。がインバータ601 ~615により反転された反転制御信号によりON・O FF制御されるようになっている。

[0113] sc, xdyfXSW₁ · YSW₁ , <math>xdッチXSW2 ・YSW2 、…、スイッチXSW15・YS W_{15} は、それぞれ対をなしており、走査電極 $L_1 \sim L_{15}$ 30 に選択電圧Vc」または非選択電圧Vcoを印加するように なっている。具体的には、スイッチXSW』~XSW」。 は、ハイレベルの制御信号SVS」~SVS」。が入力さ れるとONして選択電圧Vc」を走査電極L」~L」。に出 力する。一方、スイッチYSW」~YSW」。は、ハイレ ベルの反転制御信号が入力されるとONして非選択電圧 Vcoを走査電極L」~Lioに出力する。

【0114】上記のように構成される走査ドライバ2の 動作を、図3に示すタイムチャートを参照して以下に説 明する。

【0115】まず、クロックCKは、フリップフロップ 21~23によって1選択期間ずつシフトされることに より4選択期間を1周期とするクロックCK1~CK4 となり、各シフトレジスタ11~14に入力される。各 ビットデータDAT、~DAT、は、それぞれ必要な階 調レベルに応じたタイミングでシフトレジスタ11~1 4に入力される。

【0116】シフトレジスタ11から出力される15個 のシフト信号ASR, ~ASR, ・BSR, ~BSR, s ・CSR、~CSR、・DSR、~DSR、は、4選択 50 示を行うことができる。

期間の幅を有している。シフト信号ASR」~ASR」。 は、AND回路101~115で、それぞれセレクト信 号SEL、と

 $ASR_i \times SEL_i = ASS_i \quad (i = 1 \sim 15)$ なる論理積がとられることにより積信号ASS。~AS S15に整形される。シフト信号BSR1~BSR15・C SR、~CSR」s・DSR、~DSR」まも、同様に、A ND回路201~215・301~315・401~4 15で、それぞれセレクト信号SEL。~SEL。と論 CSS、~CSS15・DSS1~DSS15に整形され

【0117】続いて、上記の積信号ASS: ・SSB: ・CSS、・DSS、(i=1~15)は、OR回路5 01~515で

 $ASS_i + BSS_i + CSS_i + DSS_i = SVS_i$ なる論理和がとられることにより、制御信号SVS、と してアナログスイッチアレイ2bに供給される。また、 制御信号SVS。は、インバータ601~615で反転 されて反転制御信号となり、アナログスイッチアレイ2 bに供給される。

【0118】アナログスイッチアレイ2bでは、スイッ チXSW。は、制御信号SVS。がハイレベルのときに ONする。これにより、選択電圧Vc」が、スイッチXS Wiを介して走査ドライバ2の出力端子から出力され、 走査電極L、に印加される。このとき、スイッチYSW , がOFFしているので、走査電極L, には非選択電圧 Vcoが印加されない。一方、スイッチYSWiは、制御 信号SVS。がローレベルのときにONする。これによ り、非選択電圧Vc。が、スイッチYSW。を介して走査 ドライバ2の出力端子から出力され、走査電極し、に印 加される。

【0119】なお、図3に示すように、クロックCK」 ~CK, およびセレクト信号SEL, ~SEL, の位相 がシフトレジスタ11~14毎に1選択期間ずつシフト しているので、4bitの選択電圧は互いに重なり合う ことはない。

【0120】また、図3から分かるように、クロックC $K_1 \sim CK_4$ 、ビットデータDAT」 $\sim DAT_4$ および セレクト信号SEL、~SEL、はいずれも単純な波形 である。

【0121】さらに、選択電圧は、上記の波形に基づい て動作する本走査ドライバ2から、図14に示された走 査パターンと同じタイミングで出力される。これによ り、例えば、走査電極し、の場合は、第2選択期間に第 1 b i t のデータが表示され、第5選択期間に第4 b i tのデータが表示される。

【0122】それゆえ、本走査ドライバ2を用いること により、単純な波形の入力信号を用いて時間分割階調表

24

【0123】 (第2の走査ドライバ) 本走査ドライバ2 は、図1に示すように、シフトレジスタ11~14まで が前記の第1の走査ドライバと同様に構成され、それ以 降が図4に示すように構成されている。

【0124】第1の走査ドライバと同等の構成および信 号については、その説明を省略する。また、簡略化のた め、図4においては、走査電極L, についての処理系統 の構成を中心に示す。

【0125】本走査ドライバ2における制御回路2a は、AND回路101~115と、AND回路101' ~115'、OR回路501·501'、論理回路群7 01を備えている。

【0126】AND回路101'(~115')は、そ れぞれ消去用のセレクト信号BL」とシフト信号ASR 、~ASR₁₅との論理積をとるようになっている。ブラ ンク信号としてのセレクト信号BLi(BL2~B L₁)は、セレクト信号SEL₁(SEL₂~SE L,)より1選択期間分位相が進んでいる。セレクト信 号BL、~BL。は、セレクト信号SEL、~SEL。 と同様に1選択期間ずつシフトしているので、セレクト 20 信号SEL」~SEL」と各選択期間内で重なり合わな いようになっている。

【0127】OR回路501'は、AND回路101' からの積信号ASB」およびAND回路101'と同順 位の第2ないし第4bitに対応するAND回路からの 積信号BSB、~DSB、の論理和をとるようになって いる。

【0128】信号出力手段としての論理回路群701 は、それぞれEX-OR回路701aと、AND回路7 01bと、AND回路701b²と、インバータ701 30 cとからなっている。

【0129】論理回路群701において、EX-OR回 路701aは、OR回路501・501'からの出力信 号の排他的論理和をとるようになっている。AND回路 701bは、OR回路501およびEX-OR回路70 1 a からの2つの出力信号の論理積をとり、AND回路 701b'は、OR回路501'およびEX-OR回路 701aからの2つの出力信号の論理積をとるようにな っている。インバータ701cは、EX-OR回路70 1 a からの出力信号を反転するようになっている。

【0130】一方、アナログスイッチアレイ2bは、ス イッチXSW₁・YSW₁に加えてスイッチZSW₁を 備えている。スイッチXSW。は、AND回路701b の出力信号に基づいてON・OFF制御され、スイッチ YSW」は、インバータ701cの出力信号に基づいて ON・OFF制御されるようになっている。そして、ス イッチZSW₁は、AND回路701b²の出力信号に 基づいてON・OFF制御され、走査電極し、へ消去電 圧Vc2を印加するようになっている。

【0131】上記のような構成は、図示はしないが、第 50

2ないし第4bitについても同様に設けられており、 走査電極し。~しょに対しても、選択電圧Vc1、非選択 電圧V。。および消去電圧V。2の印加が行われる。

【0132】上記のように構成される走査ドライバ2に おいては、図1に示すシフトレジスタ11からのシフト 信号ASR1 は、AND回路101'~115'で、セ レクト信号BL」と、

 $ASR_i \times BL_i = ASB_i$

なる論理積がとられる。このような論理積は、シフトレ 10 ジスタ12~14からのシフト信号BSR_i・CSR_i ・DSRに対してもとられ、その結果、積信号BSB i · CSBi · DSBi が出力される。

【0133】続いて、OR回路501·501'では、 積信号ASS、~DSS、および積信号ASB、~DS B」に対しそれぞれ

 $ASS_1 + BSS_1 + CSS_1 + DSS_1 = SVS_1$ $ASB_1 + BSB_1 + CSB_1 + DSB_1 = SVB_1$ なる論理和がとられる。これにより、図5に示すよう に、選択電圧用の制御信号SVS」と消去電圧用の制御 信号SVB」とがOR回路501・501'から出力さ れる。

【0134】制御信号SVS」がハイレベルのとき、制 御信号SVB」はローレベルとなる。このとき、ハイレ ベルの信号がEX-OR回路701aおよびAND回路 701bから出力され、ローレベルの信号がAND回路 701b'およびインバータ701cから出力される。 したがって、スイッチXSW」がONし、スイッチYS W₁ ・ZSW₁ がOFFする。それゆえ、選択電圧V_{c1} が、スイッチXSW」のON期間に走査電極L」に出力 される。

【0135】制御信号SVB、がハイレベルのとき、制 御信号SVS」はローレベルとなる。このとき、ハイレ ベルの信号がEX-OR回路701aおよびAND回路 701b'から出力され、ローレベルの信号がAND回 路701bおよびインバータ701cから出力される。 したがって、スイッチZSW」がONし、スイッチXS W₁・YSW₁がOFFする。それゆえ、消去電圧V_{c2} が、スイッチZSW,のON期間に走査電極L,に出力

【0136】制御信号SVS』・SVB』がともにハイ レベルまたはローレベルのとき、ローレベルの信号がE X-OR回路701aおよびAND回路701b・70 1 b'から出力され、ハイレベルの信号がインバータ7 01 c から出力される。したがって、スイッチYSW, がONし、スイッチXSW₁・ZSW₁がOFFする。 それゆえ、非選択電圧 Vcoが、スイッチYSWcのON 期間に走査電極し、に出力される。

【0137】上記の動作は、走査電極し。~L」。に対し ても同様に行われる。

【0138】このように、本走査ドライバ2では、同一

26

の走査電極 L_i において、消去電圧が印加された選択期間の次の選択期間に選択電圧が印加される。したがって、上記のように動作するときの走査パターンは図 6 に、 六 ようになる。そして、この走査パターンから、走査電極 L_i に、 消去電圧(図中、Bにて示す)が印加される選択期間の次の選択期間に選択電圧が印加され、その走査電極 L_i 上の画素には各 b i t のデータが表示されることが分かる。

【0139】それゆえ、本走査ドライバ2を用いることにより、単純な波形の入力信号を用いて、消去電圧を含 10んだ複雑な4bitの時間分割階調表示を行うことができる。

【0140】また、セレクト信号の数を増やすことにより選択電圧および消去電圧の電位を増やすことができる。ただし、同時に複数の走査電極L。を選択しない(例えば、選択電圧が印加される期間内に複数の電位を発生させる)ようにセレクト信号を制御回路2aに与える必要がある。

【0141】 (第3の走査ドライバ) 第3の走査ドライバ2は、図7に示すように、第2の走査ドライバにおけ 20 るシフト11~14の代わりに、選択用シフトレジスタ 11 a~14 a と消去用シフトレジスタ 11 b~14 b とを備えている。

【0142】なお、図7では、簡略化のために、第2ないし第4bitに対応する選択用シフトレジスタ12a~14aおよび消去用シフトレジスタ12b~14bを省略しているが、それらも、シフトレジスタ11a・1bと同様に構成される。

【0143】選択用シフトレジスタ11aには選択用の ビットデータSDAT」が入力され、消去用シフトレジ 30 スタ11bには消去用のビットデータBDAT」が入力 される。また両シフトレジスタ11a・11bには、と もに同じクロックCKが入力される。

【0144】AND回路 $101\sim115$ は、選択用シフトレジスタ11aからのシフト信号ASR、 \sim ASR、とセレクト信号SEL、との論理積をとるようになっている。第2論理積出力手段としてのAND回路101、 \sim 115 は、消去用シフトレジスタ11bからのシフト信号ABR、 \sim ABR、とセレクト信号BL、との論理積をとるようになっている。

【0145】本走査ドライバ2においては、AND回路 101~115・101'~115'以降の回路が、第 2の走査ドライバと同様に構成されている。したがっ て、その回路についての説明は省略する。

【0146】上記のように構成される走査ドライバ2においては、選択用シフトレジスタ11aからのシフト信号ASR₁ \sim ASR₁ は、AND回路 $101\sim115$ により、セレクト信号SEL₁ と、

 $ASR_i \times SEL_1 = ASS_i$

なる論理積がとられる。このような論理積は、選択用シ 50

フトレジスタ12a~14aからのシフト信号BSR; ・CSR; ・DSR; に対してもとられ、その結果、積信号BSS; ・CSS; ・DSS; が出力される。

【0147】一方、消去用シフトレジスタ11bからのシフト信号ABR₁~ABR₁。は、AND回路101'~115'により、セレクト信号BL₁ と、

 $ABR_i \times BL_i = ASB_i$

なる論理積がとられる。このような論理積は、消去用シフトレジスタ $12b\sim14b$ からのシフト信号 BBR_i ・ CBR_i ・ DBR_i に対してもとられ、その結果、積信号 BSB_i ・ CSB_i ・ DSB_i が出力される。

【0148】続いて、 $OR回路501 \cdot 501$ 'では、積信号ASS。 \sim DSS。および積信号ASB。 \sim DSB。に対し、それぞれ第2の走査ドライバと同様にして論理和がとられる。これにより、選択電圧用の制御信号SVS。と消去電圧用の制御信号SVB。とがOR回路 $501 \cdot 501$ 'から出力される。

【0149】このように、本走査ドライバ2は、選択用シフトレジスタ11a(12a~14a)および消去用シフトレジスタ11b(12b~14b)を備えて、セレクト信号SEL。との論理積をとるためのシフト信号と、セレクト信号BL。との論理積をとるためのシフト信号とを個別に得ている。これにより、4bitの時間分割階調表示を行う場合、選択電圧と消去電圧との間隔を、第2の走査ドライバのように固定(最大で2選択期間)することなく、任意に設定することができる。それゆえ、選択電圧と消去電圧の間隔を、第2の走査ドライバから出力される選択電圧と消去電圧の間隔より大きくすることが可能になる。

【0150】(第4の走査ドライバ)第4の走査ドライバ2は、図1に示すように、シフトレジスタ11~14までが前記の第1の走査ドライバと同様に構成され、図4に示すように、AND回路501・501、以降の回路が第2の走査ドライバと同様に構成されている。その間の回路は、図8に示すように構成されている。

【0151】本走査ドライバ2は、図8に示すように、第1論理積出力手段としてのAND回路901・902 および第2論理積出力手段としてのAND回路901 ・902 と、インバータ921・922とを備えている。なお、AND回路903~915・903~915 は便宜上図中より省略する。また、シフトレジスタ11~14には、上記の回路に加えて、それぞれAND回路903~915・903~915 とインバータ921・922とからなる回路が接続されているものとする。

【0152】奇数順位のAND回路 $901 \cdot 903 \cdots$ は、シフトレジス $911 \sim 14$ からの奇数順位のシフト信号 SR_i (iは奇数)と、セレクト信号 SEL_k ($k=1\sim4$)と、後述する識別信号 S/B_k との論理積をとるようになっている。奇数順位のAND回路901

903、…は、上記のシフト信号SR、と、セレクト 信号BLk と、識別信号S/Bk がインバータ921に よる否定出力すなわち否定識別信号#S/B』との論理 積をとるようになっている。

【0153】偶数順位のAND回路902・904… は、シフトレジスタ11~14からの偶数順位のシフト 信号SR_{i+i} と、セレクト信号SEL_k と、識別信号S /B。がインバータ922による否定出力すなわち否定 識別信号#S/B。との論理積をとるようになってい る。偶数順位のAND回路902・904…は、シフト 10 選択期間分の周期となる。この場合では、ビットデータ レジスタ11~14からの偶数順位のシフト信号SR i+i と、セレクト信号BLkと、識別信号S/Bk との 論理積をとるようになっている。

【0154】本走査ドライバ2では、シフトレジスタ1 1~14に入力されるビットデータDATは、1フレー ム内で選択用と消去用との2種類の情報を含んでいる。 また、識別信号S/B。における2種類のパルスを識別 するための信号である。識別信号S/B_k は、ビットデ ータDATの選択用のパルスおよび消去用のパルスの期 間が4選択期間(基本選択期間)の偶数倍であればその 20 2倍の8選択期間分の周期を有し、奇数倍であればその 3倍の12選択期間分の周期を有するクロックである。

【0155】上記のように構成される走査ドライバ2に おいて、シフトレジスタ11~14から出力される奇数 順位のシフト信号SRi(ASRi~DSRi)は、奇 数順位のAND回路901 (903…) で、セレクト信 号SEL_k および識別信号S/B_k と $SR_i \times S/B_k \times SEL_k = SS_i$

【0156】また、上記の奇数順位のシフト信号SR。 は、AND回路901'(903'…)で、セレクト信 号BL および否定識別信号#S/B と $SR_i \times \# S/B_k \times BL_k = SB_i$ なる論理積がとられる。

【0157】一方、シフトレジスタ11~14から出力 される偶数順位のシフト信号SR_{i+i} (ASR_{i+i} ~D SR_{i+1})は、偶数順位のAND回路902 (904 …)で、セレクト信号SELk および否定識別信号#S $/B_k$ \geq

 $SR_{i+1} \times \#S/B_k \times SEL_k = SS_{i+1}$ なる論理積がとられる。

なる論理積がとられる。

【0158】また、上記の偶数順位のシフト信号SR i+, は、AND回路902'(904'…)で、セレク ト信号BL、および識別信号S/B、と $SR_{i+1} \times S/B_k \times BL_k = SB_{i+1}$ なる論理積がとられる。

【0159】ここで、図9に示す場合は、ビットデータ DAT。における選択用および消去用の情報が同じパル スに含まれ、その期間(幅)が8選択期間(基本選択期 間の 2 倍)である。また、識別信号 S $\angle B$ は、 8 選択 50 イバ 2 には、ハイインピーダンス信号 S H E が入力され

期間分の周期となる。この場合では、ビットデータDA Tiの1つのパルスを用いて上記の論理積をとることに より、選択用の積信号SS」・SS; および積信号S Si・SSiinのそれぞれ前の期間に位置する消去用の

積信号SB: ・SB:+: が得られる。

【0160】また、図10に示す場合は、ビットデータ DAT」における選択用および消去用の情報が異なるパ ルスに含まれ、その期間(幅)が4選択期間(基本選択 期間の1倍) である。また、識別信号S/B は、12 DAT: の2つのパルスを用いて上記の論理積をとるこ とにより、選択用の積信号SS: ・SS: および積信 号SS, ・SS:+, のそれぞれ前の期間に位置する消去 用の積信号SBi・SBi+i が得られる。

【0161】このようにして得られた積信号SS。は、 偶数順位と奇数順位の違いはなくなり、第3の走査ドラ イバで得られる積信号と同様に扱われる。したがって、 OR回路501・501'で、積信号ASSi~DSS i および積信号ASB ~DSB に対しそれぞれ論理 和がとられることにより、選択電圧用の制御信号SVS 、と消去電圧用の制御信号SVB、とが得られる。

【0162】上記のように、本走査ドライバ2では、シ フトレジスタ11~14に与えるビットデータDATに 選択用および消去用の情報を持たせるとともに、AND 回路の出力を奇数順位と偶数順位とに分けてそれぞれに ついて個別に論理積をとることにより、選択用の積信号 と消去用の積信号とを得ている。それゆえ、第1の走査 ドライバと同様に構成されるシフトレジスタを用いて、 シフトレジスタの数を増やすことなく第3の走査ドライ 30 バと同様に選択電圧と消去電圧の間隔を任意に設定する ことができる。

【0163】なお、本走査ドライバ2においても、クロ ックCK、セレクト信号SEL・BLおよび識別信号S /B。の位相がシフトレジスタ11~14毎に1選択期 間ずつシフトしているので、4bitの選択電圧は互い に重なり合うことはない。

【0164】 (第5の走査ドライバ) 図11に示すよう に、本走査ドライバ2において、制御回路2aは、フリ ップフロップ31…、フリップフロップ32…、論理回 40 路群 4 1 …、論理回路群 4 2 …、論理回路群 4 3 …およ びNAND回路44を備えている。なお、図11には、 シフトレジスタの3段分の構成を示している。

【0165】本走査ドライバ2には、選択用の信号とし て、3つの連続する選択期間のうち最初の選択期間用の セレクト信号SLFおよび最後の選択期間用のセレクト 信号SLLが入力される。また、本走査ドライバ2に は、消去用の信号として、3つの選択期間の最初の選択 期間用のセレクト信号BLFおよび最後の選択期間用の セレクト信号BLLが入力される。さらに、本走査ドラ

る。

【0166】フリップフロップ31…は、選択用のシフトレジスタを構成しており、図12に示すクロックCK。の2周期以上の幅を有するビットデータDSをクロックCK。に同期して順次シフトさせるようになっている。一方、フリップフロップ32…は、消去用のシフトレジスタを構成しており、クロックCK。の2周期以上の幅を有するビットデータBSをクロックCK。に同期して順次シフトさせるようになっている。

【0167】上記のクロックCK。・CK。は、同一周 10 期であるが、位相はずれていても差し支えない。

【0168】論理回路群41は、AND回路 $41a\sim41$ cと、OR回路41dとからなっており、それぞれは3つの入力を有している。第1論理積出力手段としてのAND回路41aは、隣り合う3つのフリップフロップ $31\cdot31\cdot31$ に接続されている。

【0169】AND回路41b・41cは、それぞれ1つの否定入力を有している。AND回路41bの否定入力には、AND回路41aに接続される3つのフリップフロップ31・31・31のうち最前段のフリップフロップ31に接続されている。また、AND回路41cの否定入力には、上記の3つのフリップフロップ31に接続されている。

【0170】第3論理積出力手段としてのAND回路4 1bは、上記の3つのフリップフロップ31・31・3 1のうち前段の2つのフリップフロップ31・31とセレクト信号SLLの供給ラインとに接続されている。第 2論理積出力手段としてのAND回路41cは、上記の3つのフリップフロップ31・31・31のうち後段の30 2つのフリップフロップ31・31とセレクト信号SLFの供給ラインとに接続されている。

【0171】第1論理和出力手段としてのOR回路41 dは、AND回路41a~41cの出力に接続されている。

【0172】論理回路群42は、AND回路42a~42cと、OR回路42dとからなっており、それぞれは3つの入力を有している。第4論理積出力手段としてのAND回路42aは、隣り合う3つのフリップフロップ32・32・32に接続されている。AND回路42b40・42cは、それぞれ1つの否定入力を有しており、各論理回路群42毎に異なる組み合わせで信号が入力されるようになっている。

【0173】第5論理積出力手段としてのAND回路42bは、AND回路42aに接続された3つのフリップフロップ32・32・32のうち前段の2つのフリップフロップ32・32とセレクト信号BLFの供給ラインとに接続されている。第6論理積出力手段としてのAND回路42cは、上記の3つのフリップフロップ32・32・32のうち後段の2つのフリップフロップ32・50

32とセレクト信号BLLの供給ラインとに接続されている。OR回路42dは、AND回路42a~42cの出力に接続されている。

【0174】OFF手段としてのNAND回路44dは、上記の3つのフリップフロップ31・31・31のうち後段の2つのフリップフロップ31・31とハイインピーダンス信号SHEの供給ラインとに接続されている。ただし、NAND回路44dにおいて、3つのフリップフロップ31に接続される入力は、否定入力となっている。

【0175】信号出力手段としての論理回路群43は、EX-OR回路43aと、 $AND回路43b\sim43e$ とからなっている。EX-OR回路43aは、 $OR回路41d\cdot41d$ の出力に接続されている。 $AND回路43b\sim43d$ は、ともにNAND回路44の出力およびEX-OR回路43aの出力に接続されている。ただし、AND回路43dの一方の入力は否定入力である。また、AND回路43bはOR回路41dの出力に接続され、AND回路43cはOR回路42dの出力に接続されている。

【0176】上記のように構成される走査ドライバ2の動作を図12に示すタイムチャートを参照に説明する。 【0177】ビットデータDSがフリップフロップ31…により順次にシフトされると、隣り合う3本の図示しない走査電極 L_{i-1} ・ L_{i-1} に対応した信号をシフト信号S R_{i-1} ・ SR_{i} ・ SR_{i+1} が出力される。また、論理回路群41では、シフト信号S R_{i-1} ・ SR_{i} ・ SR_{i-1} とセレクト信号SLF ・SLLを用いて、(SR_{i-1} × SR_{i} × SR_{i+1})+(SR_{i-1} × SR_{i} × SR_{i+1})+(SR_{i-1} × SR_{i+1})+(SR_{i-1} × SR_{i+1})+(SR_{i-1} × SR_{i+1})+(SR_{i-1} × SR_{i+1})+(SR_{i-1} × SR_{i+1})+(SR_{i-1} × SR_{i+1})+(SR_{i-1} × SR_{i+1})+(SR_{i-1} × SR_{i+1})+(SR_{i-1} × SR_{i+1}))+(SR_{i-1} × SR_{i+1})+(SR_{i-1} × SR_{i+1} ×SLL)= SS_{i-1}

【0178】一方、ビットデータDBがフリップフロップ32…により順次にシフトされると、3本の走査電極 L_{i-1} ・ L_{i} ・ L_{i+1} に対応した信号をシフト信号BR i-1 ・i-1 ・i-

なる論理演算が行われる。この結果、走査電極し、に対

応した選択電圧用の制御信号SS、が得られる。

 $(BR_{i-1} \times BR_i \times BLF) + (BR_{i-1} \times BR_i \times BR_{i+1}) + (BR_i \times BR_{i+1} \times BLL) = SB_i$ なる論理演算が行われる。この結果、走査電極 L_i に対応した消去電圧用の制御信号 SB_i が得られる。

【0179】また、NAND回路44では、シフト信号 SR_i ・SR_{i+1} とハイインピーダンス信号SHEとを 用いて

 $(SR_i \times SR_{i+1} \times SHE) = SE_i$

なる論理演算が行われる。この結果、走査電極Li に対応した電圧印加中断用の制御信号SEi が得られる。

【0180】論理回路群43では、上記のようにして得

理演

られた制御信号SS, ・SB, ・SE, を用いて論理演算が行われる。【0181】これにより、制御信号SS, ・SE, がハ

【0181】これにより、制御信号SS:・SE:がハイレベルであり制御信号SB:がローレベルであるとき、スイッチXSW:がONし、スイッチZSW:がOFFする。これにより、選択電圧Vc:が本走査ドライバ2の出力電圧HV:として出力される。一方、制御信号SB:・SE:がハイレベルであり制御信号SS:がローレベルであるとき、スイッチZSW:がONし、スイッチXSW:がOFFするので、消去電圧Vc:が出力される。スイッチYSW:は、上記のいずれのときにもOFFしている。

【0.182】また、制御信号 SS_i ・ SB_i ・ SE_i が ともにローレベルであるとき、スイッチ XSW_i ・ ZSW_i がOFFし、スイッチ YSW_i がONするので、非 選択電圧 V_{CO} が出力される。

【0183】このように、本走査ドライバ2では、連続して出力される3つシフト信号 SR_{i-1} ・ SR_i ・ SR_i ・ SR_i の論理積とセレクト信号SLF・SLLとを組み合わせることにより、同じ選択期間で隣り合う2つの制御 20 信号SSをハイレベルにすることができる。また、連続して出力される3つのシフト信号 BR_{i-1} ・ BR_i ・ BR_{i+1} の論理積とセレクト信号BLF・BLLとを組み合わせることにより、同じ選択期間で降り合う2つの制御信号SBをハイレベルにすることができる。

【0184】したがって、同一の走査電極L。に対し2つ以上の選択期間にわたって電圧を印加することができる。

【0185】一方、上記の走査ドライバ2では、制御信号SE:がローレベルであるとき、上記のいずれのとき 30もスイッチXSW:・YSW:・ZSW:がOFFする。このとき、走査ドライバ2の出力端子がハイインピーダンスになっているので、本走査ドライバ2から電圧が出力されなくなる。本走査ドライバ2の負荷となる液晶パネル1が容量性の負荷であることから、ハイインピーダンスの状態では、この容量性負荷に保持された電荷は容易に放電されずに維持される。したがって、出力端子がハイインピーダンスとなる直前の電圧を維持することができる

【0186】また、液晶パネル1(容量性負荷)では、スイッチYSW,がONからOFFに変化し、スイッチXSW,がOFFからONに変化しても、出力端子の電圧はすぐに選択電圧 V_{c1} に達することはなく、数 μ s かけて選択電圧 V_{c1} に達する。

【0187】そこで、図12に示すように、出力電圧V H: が非選択電圧 V_c 。から選択電圧 V_c ,に変化する途中でスイッチXSW。をOFFさせれば、スイッチXSW。がOFFしている間はそのときの電圧が維持される。これにより、非選択電圧 V_c 。から選択電圧 V_c ,までの任意の電圧レベルを液晶パネル1に印加することができ

る。

【0188】また、制御信号 SB_1 がハイレベルであるときでも、上記と同様に、スイッチ ZSW_1 をOFFさせれば、非選択電圧 V_{c0} から消去電圧 V_{c2} までの任意の電圧レベルを液晶パネル1に印加することができる。

32

【0189】なお、上記のように出力端子をハイインピーダンスにする構成は、制御回路2aの出力段にAND回路を備える第2ないし第4の走査ドライバに適用が可能である。この場合、出力段の2入力のAND回路が、ハイインピーダンス信号SHEの入力が可能となるように3入力のAND回路に置き換えられる。

【0190】 [第2の実施の形態] 本発明の実施の他の 形態について図13に基づいて説明すれば、以下の通り である。

【0191】本実施の形態においては、前述の第1の実施の形態における第2または第3の走査ドライバ(図4または図7参照)で用いたOR回路 $501 \cdot 501$ までの回路と同様に構成されており、それ以降の回路がアナログスイッチアレイ2bを含めて図13に示す反転増幅器51回路に置き換えられている。

【0192】この反転増幅器51は、オペレーショナルアンプ(以降、単にOPアンプと称する)52と、抵抗R、~R、~R。とを備えている。OPアンプ52の反転入力端子には、抵抗R、を介して信号SV、が入力されるとともに、抵抗R、と並列に接続される抵抗R。を介して信号SV。が入力されるようになっている。また、OPアンプ52の非反転入力端子には、10Vの基準電圧V。が入力されている。そして、OPアンプ52の出力端子は、走査電極L、に接続されるとともに、抵抗R。を介して上記の反転入力端子に接続されている。

【0193】上記の信号 $SV_1 \cdot SV_2$ は、それぞれ第2の走査ドライバにおける制御信号 $SVS_1 \cdot SVB_1$ に相当する信号である。なお、本走査ドライバ2においては、選択用、消去用に関係なく制御信号として使用するので上記の信号を $SV_1 \cdot SV_2$ と称している。

【0194】本走査ドライバでは、選択電圧として10 Vおよび5 V、消去電圧として-5 V、非選択電圧として0 Vが得られるように構成されている。このため、抵抗 R_1 ・ R_2 ・ R_3 の抵抗値は、それぞれ R_6 と R_6 / 2 と R_6 に設定されている。また、信号S V $_1$ ・S V $_2$ は、"H i g h" および"L o w" のとき、それぞれV 。 (10 V)および V_8 (15 V)の電圧である。

【0195】上記のように構成される本走査ドライバにおいて、OPアンプ52の出力電圧V。。.. は、次式にて表される。

[0196]

50

 $V_{\text{out}} = (V_{\text{o}} - V_{\text{s}}) R_{\text{o}} \Sigma (P_{\text{m}} / R_{\text{m}}) + V_{\text{o}}$ 上式において、 P_{m} は信号 SV_{m} の論理状態を表し、"0" または"1"である。また、 R_{m} は上記の回路に おける各抵抗の抵抗値を表す。さらに、 Σ (P_{m} /

40

R_m) は、P_m / R_m の総和を表す。

【0197】例えば、信号 SV_1 が"High"であり、信号 SV_2 が"Low"である場合、OPアンプ52の出力電圧 V_{out} は、 $V_0=10$ V_0 $V_0=15$ V_0 0 V_0 0

【0198】このように、本走査ドライバでは、信号S $V_1 \cdot SV_2$ の値(論理値)を表1のように組み合わせ 10ることにより、4つの電圧、すなわち(2つの選択電圧、非選択電圧および消去電圧を得ることができる。表1から、入力信号が2つであるにもかかわらず、出力信号として4($=2^2$)種類の電圧が出力されることがわかる。

[0199]

【表1】

となる。

S V i	S V 2	Vout
L	L	10V(選択電圧)
Н	L	5 V (選択電圧)
L	Н	0 V (非選択電圧)
Н	Н	- 5 V (消去電圧)

【0200】第1の実施の形態における各走査ドライバのようにアナログスイッチアレイを用いた構成では、制御信号およびそれにより開閉するスイッチが必要な電圧の数だけ増えるので、回路規模が大きくなりがちである。これに対し、本走査ドライバによれば、信号数を増やすことなく、走査電極Lに印加するための多種の電圧を得ることができる。したがって、本走査ドライバを用いれば、アナログスイッチアレイを用いる走査ドライバに比べて回路規模を小さくすることができる。

【0201】なお、本実施の形態に係る走査ドライバに入力される信号の数は、2であるが、これに限定されることなく1あるいは3以上であってもよい。信号数が1である場合、上記の構成を第1の実施の形態における第1の走査ドライバに適用することができる。この場合、制御信号SVSが抵抗を介してOPアンプに入力される。また、信号数が3である場合、上記の構成を第1の実施の形態における第5の走査ドライバに適用することができる。この場合、制御信号SS: SB: SE: がそれぞれ異なる抵抗を介してOPアンプに入力される。

[0202]

【発明の効果】以上のように、本発明の請求項1に係るマトリクス型表示装置の駆動回路は、n個のシフトレジスタにより、n選択期間の幅を有するデータ信号をn選 50

択期間の周期を有するクロックに同期してシフトさせて 走査電極の数と同数のシフト信号を出力し、第1論理積 出力手段にて、選択電圧印加期間を決定するための一定 周期のn個のセレクト信号のうちの1つと上記シフト信 号との論理積をとり、さらに、第1論理和出力手段に て、上記各シフトレジスタからの出力順位が同じシフト 信号に基づく論理積同士の論理和をとるように構成され ている。

34

【0203】これにより、n選択期間毎に走査電極に応じて順番にシフトする信号が生成される。それゆえ、nbitのデータの各bitについて個別に走査電極を選択することにより時間分割階調表示を行う場合、各bit毎にシフトレジスタおよびセレクト信号を用意すれば、図14の走査パターンによる走査方法のように、4選択期間毎に順番に走査電極に選択電圧を印加することができる。したがって、請求項1に係る駆動回路を採用すれば、単純な入力信号によって時間分割階調表示を可能にすることができるという効果を奏する。

【0204】本発明の請求項2に係るマトリクス型表示 装置の駆動回路は、請求項1に係る駆動回路において、 第2論理積出力手段にて、消去電圧印加期間を決定する ための一定周期のn個のブランク信号のうちの1つと上 記シフト信号との論理積をとり、さらに、第2論理和出 力手段にて、上記各シフトレジスタからの出力順位が同 じシフト信号に基づく上記第2論理積出力手段からの論 理積同士の論理和をとるように構成されている。

【0205】これにより、請求項1に係る駆動回路と同様にして、シフト信号およびブランク信号に基づいて、 n選択期間毎に走査電極に応じて順番にシフトする信号が生成される。それゆえ、その信号により消去電圧の出力を制御すれば、4選択期間毎に順番に走査電極に消去電圧を印加することができる。したがって、請求項2に係る駆動回路を採用すれば、単純な入力信号により、消去電圧を含んだ複雑なnbitの時間分割階調表示を実現することができるという効果を奏する。

【0206】本発明の請求項3に係るマトリクス型表示装置の駆動回路は、n個の選択用シフトレジスタおよびn個の消去用シフトレジスタにより、n選択期間の幅を有する選択用データ信号と消去用データとをそれぞれn選択期間の周期を有するクロックに同期してシフトさせて走査電極の数と同数の選択用シフト信号を出力し、第1論理積出力手段にて、選択電圧印加期間を決定するための一定周期のn個のセレクト信号のうちの1つと上記選択用シフト信号との論理積をとる一方、第2論理和出力手段にて、上記選択用シフトに多い、第1論理和出力手段にて、上記選択用シフトレジスタからの出力順位が同じ選択用シフト信号に基づく上記第1論理積出力手段の論理積同士の論理和をとる一方、第2論理和出力手段の論理積同士の論理和をとる一方、第2論理和出力手段

36

にて、上記消去用シフトレジスタからの出力順位が同じ 消去用シフト信号に基づく上記第2論理積出力手段から の論理積同士の論理和をとるように構成されている。

【0207】これにより、n選択期間毎に走査電極に応 じて順番にシフトする2種類の信号が生成される。それ ゆえ、本駆動回路では、請求項2に係る駆動回路と同 様、上記の信号を用いて4選択期間毎に順番に走査電極 に選択電圧と消去電圧とを印加することができる。ま た、選択用と消去用にそれぞれ専用のシフトレジスタを 備えることにより、選択用データ信号と消去用データ信 10 号のタイミングの設定を種々組み合わせれば、選択電圧 と消去電圧との間隔を任意に設定することができる。し たがって、請求項3に係る駆動回路を採用すれば、より 自由度の高い時間分割階調表示を実現することができる という効果を奏する。

【0208】本発明の請求項4に係るマトリクス型表示 装置の駆動回路は、n個のシフトレジスタにより、n選 択期間の整数倍の幅を有し2種類の情報を有するデータ 信号をn選択期間の周期を有するクロックに同期してシ フトさせて走査電極の数と同数のシフト信号を出力し、 第1論理積出力手段にて、選択電圧印加期間を決定する ための一定周期のn個のセレクト信号のうちの1つと上 記シフト信号と上記データ信号に含まれる情報を識別す る識別信号との論理積をとり、第2論理積出力手段に て、消去電圧印加期間を決定するための一定周期のn個 のブランク信号のうちの1つと上記シフト信号と上記識 別信号との論理積をとり、このとき、否定入力手段によ り、上記識別信号の入力状態を、各順位の上記第1およ び第2論理積出力手段の間で互いに否定となるように し、かつ上記第1および第2論理積出力手段の奇数順位 30 と偶数順位との間でも互いに否定となるようにし、第1 および第2論理和出力手段にて、上記シフトレジスタか らの出力順位が同じシフト信号に基づく上記第1および 第2論理積出力手段からの論理積同士の論理和をそれぞ れとるように構成されている。

【0209】これにより、シフト信号およびセレクト信 号に識別信号を加えた3つの信号の論理積がとられるの で、1種類のデータ信号によっても、n個のシフトレジ スタを用いて請求項3に係る駆動回路と同様な2種類の 信号を生成することができる。しかも、選択電圧と消去 40 電圧の間隔を任意に設定することができる。したがっ て、請求項4に係る駆動回路を採用すれば、簡単な構成 で、より自由度の高い時間分割階調表示を実現すること ができるという効果を奏する。

【0210】本発明の請求項5に係るマトリクス型表示 装置の駆動回路は、選択用シフトレジスタにより、クロ ックの2周期以上の幅を有する選択用データ信号をクロ ックに同期してシフトさせて走査電極の数と同数の選択 用シフト信号を出力し、第1論理積出力手段にて隣り合 う3つの上記選択用シフト信号の論理積をとり、第2論 50 理積出力手段にて上記3つの選択用シフト信号のうち出 力順位が第1および第2の選択用シフト信号と隣り合う 3本の走査電極のうちの1本の特定の走査電極に最初に 選択電圧を印加するときに選択電圧印加期間を決定する ための一定周期の第1セレクト信号との論理積をとり、 第3論理積出力手段にて上記3つの選択用シフト信号の うち出力順位が第2および第3の選択用シフト信号と上 記特定の走査電極に最後に選択電圧を印加するときに選 択電圧印加期間を決定するための一定周期の第2セレク ト信号との論理積をとり、さらにこれらの論理積の論理 和を第1論理和出力手段にてとるように構成されてい

【0211】これにより、隣り合う3本の走査電極のう ちの特定の走査電極について、最初と最後に選択電圧が 印加されるそれぞれ2つの選択期間と、その間の選択期 間とが区別されるので、選択電圧を2つ以上の選択期間 にわたって任意の持続時間で印加することができる。し たがって、請求項5に係る駆動回路を採用すれば、Malv ern 駆動法のように選択電圧の持続時間が選択期間より 長くなる駆動方法を適用する場合でも、容易に走査電極 に選択電圧を印加することができ、ドライバICによる 階調表示を実現することができるという効果を奏する。

【0212】本発明の請求項6に係るマトリクス型表示 装置の駆動回路は、消去用シフトレジスタにより、上記 クロックの2周期以上の幅を有し、上記選択用データ信 号と位相の異なる消去用データ信号をクロックに同期し てシフトさせて走査電極の数と同数の消去用シフト信号 を出力し、第4論理積出力手段手段にて隣り合う3つの 上記消去用シフト信号の論理積をとり、第5論理積出力 手段手段にて上記3つの消去用シフト信号のうち出力順 位が第1および第2の消去用シフト信号と上記特定の走 査電極に最初に消去電圧を印加するときに消去電圧印加 期間を決定するための一定周期の第1ブランク信号との 論理積をとり、第6論理積出力手段手段にて上記3つの 消去用シフト信号のうち出力順位が第2および第3の消 去用シフト信号と上記特定の走査電極に最後に消去電圧 を印加するときに消去電圧印加期間を決定するための一 定周期の第2ブランク信号との論理積をとり、さらにこ れらの論理積の論理和を第2の論理和出力手段にてとる ように構成されている。

【0213】これにより、消去電圧についても、請求項 5に係る駆動回路と同様に、選択期間より長い期間の印 加を可能にすることができる。したがって、請求項7に 係る駆動回路を採用すれば、消去電圧の持続時間が選択 期間より長くなる駆動方法を適用する場合でも、容易に 走査電極に消去電圧を印加することができるという効果 を奏する。

【0214】本発明の請求項7に係るマトリクス型表示 装置の駆動回路は、請求項2、3、4または6に係る駆 動回路において、上記第1および第2論理和出力手段か

らの論理和に基づいていずれか1つのみ有意となる3つ の信号を出力する信号出力手段と、上記3つの信号のそ れぞれによりON/OFFが制御され、上記信号が有意 のときONすることにより選択電圧、非選択電圧および 消去電圧を個別に上記走査電極に印加する選択電圧用ス イッチ、非選択電圧用スイッチおよび消去電圧用スイッ チとをさらに備えている構成である。

【0215】これにより、2つの論理和に基づいて3つ の信号を得て、その信号により、選択電圧、非選択電圧 および消去電圧のうち1つを出力することができる。し 10 たがって、請求項7に係る駆動回路を採用すれば、入力 信号数より多い電圧を走査電極に印加することができ、 入力信号を有効に利用することができるという効果を奏 する。

【0216】本発明の請求項8に係るマトリクス型表示 装置の駆動回路は、請求項7に係る駆動回路において、 上記選択電圧用スイッチに与えられる上記信号が有意で あるときに、上記選択電圧用スイッチをOFFさせるO FF手段をさらに備えている構成である。また、本発明 の請求項9に係るマトリクス型表示装置の駆動回路は、 請求項7に係る駆動回路において、上記消去電圧用スイ ッチに与えられる上記信号が有意であるときに、上記消 去電圧用スイッチをOFFさせるOFF手段をさらに備 えている構成である。

【0217】これにより、本駆動回路が液晶パネルのよ うな容量性の負荷を駆動する場合、上記の選択電圧制御 信号が有意のときでも、選択電圧用スイッチをOFFさ せると、液晶パネルに接続される本駆動回路の選択電圧 用出力端子がハイインピーダンスになる。また、消去電 圧用出力端子も同様にハイインピーダンスになる。それ 30 ゆえ、ハイインピーダンスとなった出力端子では、その 直前の電圧レベルが維持される。したがって、選択電圧 用スイッチまたは消去電圧用スイッチをOFFさせるタ イミングを調整すれば、任意の電圧レベルを液晶パネル へ印加することが可能になる。したがって、請求項8ま たは9に係る駆動回路を採用すれば、選択電圧または消 去電圧の電圧レベルを所望の値に容易に設定することが でき、より多彩な時間分割階調表示を行うことができる という効果を奏する。

【0218】本発明の請求項10に係るマトリクス型表 40 示装置の駆動回路は、請求項2、3、4または6に係る 駆動回路において、反転入力端子に入力される上記第1 および第2論理和出力手段からのそれぞれの論理和に基 づく電圧の和と非反転入力端子に入力される基準電圧と の差を所定の増幅度で増幅する反転増幅器をさらに備え ている構成である。

【0219】これにより、m個の入力電圧を論理レベル で表すと、その論理レベルの組み合わせは2のm乗ある ため、反転増幅器の出力電圧は2のm乗の種類の電位と なる。それゆえ、少ない信号で多くの電位を発生するこ 50 とができ、多種類の出力電圧を得る際に、入力信号数を 減らすとともに、請求項7に係る駆動回路で用いたよう なスイッチ等を省くことができる。したがって、請求項

10に係る駆動回路を採用すれば、駆動回路の規模縮小 化を図ることができるという効果を奏する。

【図面の簡単な説明】

【図1】本発明の実施の一形態に係る第1の走査ドライ バの構成を示す回路図である。

【図2】本発明の実施の一形態に係る液晶表示装置の液 晶パネルを中心とした構成を示すブロック図である。

【図3】上記第1の走査ドライバにより走査電極し、に 電圧を印加する場合の動作を示すタイムチャートであ

【図4】本発明の実施の一形態に係る第2の走査ドライ バの構成の一部を示す回路図である。

【図5】上記第2の走査ドライバにより走査電極し、に 電圧を印加する場合の動作を示すタイムチャートであ る。

【図6】上記第2の走査ドライバによる走査パターンを 示す説明図である。

【図7】本発明の実施の一形態に係る第3の走査ドライ バの構成の一部を示す回路図である。

【図8】本発明の実施の一形態に係る第4の走査ドライ バの構成の一部を示す回路図である。

【図9】上記第4の走査ドライバの動作例を示すタイム チャートである。

【図10】上記第4の走査ドライバの他の動作例を示す タイムチャートである。

【図11】本発明の実施の一形態に係る第5の走査ドラ イバの構成の一部を示す回路図である。

【図12】上記第5の走査ドライバの動作例を示すタイ ムチャートである。

【図13】本発明の実施の他の形態に係る走査ドライバ の構成の一部を示す回路図である。

【図14】従来のFLCDおよび本発明の実施の一形態 に係るFLCDの走査ドライバによる走査パターンを示 す説明図である。

【図15】従来のFLCDが有する液晶パネルの構成を 示す断面図である。

【図16】従来のFLCDの上記液晶パネルを中心とし た構成を示すブロック図である。

【図17】上記の液晶パネルに封入される強誘電性液晶 の分子のガラス基板から見た状態を示す説明図および強 誘電性液晶の分子のスメクチックC相における状態を示 す斜視図である。

【図18】上記強誘電性液晶のスイッチング特性を示す グラフである。

【図19】図18のスイッチング特性を測定する際に用 いるパルス電圧の波形を示す波形図である。

【図20】図16のFLCDの駆動方法として好適なJ0

ERS/Alvey	駆動法における第1および第2フィールドで
の駆動電圧	Eの波形を示す波形図である。

【図21】図16のFLCDに適用されるMalvern 駆動 法における列電圧およびJOERS/Alvey 駆動法における列 電圧を示す波形図である。

【図22】図16のFLCDに適用されるブランキング 駆動法における非スイッチング状態およびスイッチング 状態での駆動電圧の波形を示す波形図である。

【符号の説明】

$1.1 \sim 1.4$	シフトレジスタ	10
1 1 a	選択用シフトレジスタ(第1シフ	
トレジスタ)		
1 1 b	消去用シフトレジスタ(第2シフ	
トレジスタ)		
3 1	フリップフロップ(選択用シフト	
レジスタ)		
3 2	フリップフロップ(消去用シフト	
レジスタ)		
4 1 a	AND回路(第1論理積出力手	
段)		20
4 1 b	AND回路(第3論理積出力手	
段)		
4 1 c	AND回路(第2論理積出力手	
段)		
4 1 d	OR回路(第1論理和出力手段)	
4 2 a	AND回路(第4論理積出力手	
段)		
4 2 b	AND回路(第5論理積出力手 *	c

*段)

12)	
42 c	AND回路(第6論理積出力手
段)	
4 2 d	OR回路(第2論理和出力手段)
4 3	論理回路群(信号出力手段)
4 4	NAND回路(OFF手段)

51 反転増幅器

	101~115	AND回路(第1論理積手段)
	201~215	AND回路(第1論理積手段)
0	$3\ 0\ 1\sim 3\ 1\ 5$	AND回路(第1論理積手段)
	$401 \sim 415$	AND回路(第1論理積手段)
	101'~115'	AND回路(第2論理積手段)
	201'~215'	AND回路(第2論理積手段)
	301'~315'	AND回路(第2論理積手段)
	401'~415'	AND回路(第2論理積手段)
	$501\sim515$	OR回路(第1論理和手段)
	501'~515'	O R 回路(第 2 論理積手段)
	7 0 1	論理回路群(信号出力手段)
	$901 \sim 915$	AND回路(第1論理積手段)
0	901'~915'	AND回路(第2論理積手段)
	1021 • 1022	インバータ(否定入力手段)
	XWS_1	スイッチ(選択電圧用スイッ

チ)

スイッチ(非選択電圧用スイッ

ZWS₁ チ)

 YWS_{\perp}

チ)

スイッチ(消去電圧用スイッ

【図2】

【図8】

【図3】

【図4】

【図5】

【図6】

【図7】

【図14】

	1111111112222222222333333333333444444444	ò
	<u>23456789012345678901234567890123456789012345678901234567890</u>)
Lı		1
L_2	11 14 13 13 13 13 13 13 13 13 13 13 13 13 13	1
L3		1
L4		1
L_5		
Lô		3
L_7	<u> </u>]
Ls	<u>, , , , , , , , , , , , , , , , , , , </u>]
L۹	1 1 2 1 1 4	
L10	1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1]
L11]
L 12	3 1 1 2 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	
L 13	3 1 1 2 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	1
Lμ	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
L15		J

【図10】

【図15】

【図11】

フロントページの続き

(71)出願人 390040604

イギリス国

THE SECRETARY OF STATE FOR DEFENCE IN HER BRITANNIC MAJESTY'S GOVERNMENT OF THE UNETED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELANDイギリス国、ジー・ユー・14・6・テイー・ディー、ハンツ、フアーンボロー(番地なし)

(72)発明者 冨沢 一成

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 沼尾 孝次

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内