Neizrazito, evolucijsko i neuroračunarstvo Neizrazite relacije.

prof.dr.sc. Bojana Dalbelo Bašić prof.dr.sc. Marin Golub dr.sc. Marko Čupić

> Fakultet elektrotehnike i računarstva Sveučilište u Zagrebu Akademska godina 2013./2014.

> > 17. listopada 2013.

Kartezijev produkt

Definition (Kartezijev produkt dvaju skupova)

Neka su A i B dva neprazna skupa. Kartezijev produkt, oznaka $A \times B$, je skup uređenih parova: $\{(a,b) \mid a \in A, b \in B\}$.

Definicija je lako proširiva i na općeniti slučaj.

Definition (Kartezijev produkt više skupova)

Neka je $A_1, A_2, \ldots A_n$ n nepraznih skupova. Kartezijev produkt, oznaka $A_1 \times A_2 \times \cdots \times A_n$, je skup uređenih parova: $\{(a_1, a_2, \ldots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n\}.$

Klasična relacija

Klasična relacija podskup je kartezijevog produkta. Primjerice, neka je $\mathbf{U} = \mathbb{Z}$. Relacija $\mathbf{R} \subseteq \mathbf{U} \times \mathbf{U}$ je $\{(a,b) \mid a \in \mathbf{U}, b \in \mathbf{U}, a \leq b\}$.

- Uređeni parovi (1,2), (-10,20), (5,17), (301,301),
 (-520,-519) pripadaju toj relaciji.
- Uređeni parovi (2, 1), (20, -10), (17, 5), (302, 301),
 (-519, -520) ne pripadaju toj relaciji.

Stoga se često pripadnost klasičnoj relaciji definira indikatorskom funkcijom $\mu_R(a_1, \ldots, a_n): A_1 \times \cdots \times A_n \to \{0, 1\}.$

• U slučaju da je n=2, govorimo o *binarnoj* relaciji i tada se indikatorska funkcija prikazuje kao matrica.

Definicija

Definition (Neizrazita relacija)

Neka su U_1, U_2, \ldots, U_n univerzalni skupovi. Neizrazita relacija R nad $U_1 \times U_2 \times \ldots \times U_n$ definira se kao preslikavanje $\mu_R: U_1 \times U_2 \times \ldots \times U_n \to [0,1]$. Ako su skupovi U_1, \ldots, U_n jednaki U_n govorimo o n-arnoj neizrazitoj relaciji nad U_n . Ako je u= 2 govorimo o u-arnoj neizrazitoj relaciji nad u-

U nastavku su dana dva primjera binarnih neizrazitih relacija:

- x-je-približno-jednak-y definirana nad $[0,20] \times [0,20]$ te,
- x-je-puno-veći-od-y definirana nad $[0,20] \times [0,20]$.

Primjer: neizrazita relacija "približno jednaki"

Funkcija pripadnosti definirana je kao: $\mu_R(x, y) = e^{-|x-y|}$.

Primjer: neizrazita relacija "puno veći"

Funkcija pripadnosti definirana je kao: $\mu_R(x, y) = \max(0, \frac{x-y}{x})$.

Usporedba s neizrazitim skupovima

Neizrazit skup definirali smo na sljedeći način.

Definition (Neizraziti skup)

Neka je U univerzalni skup. Neizraziti skup A definiran nad univerzalnim skupom U je skup uređenih parova $A=\{(x;\mu_A(x))\mid x\in U,\ \mu_A(x)\in [0,1]\},\ \text{gdje je}\ \mu_A(x)$ funkcija pripadnosti (engl. $membership\ function$), i ona određuje stupanj pripadnosti elemenata $x\in U$ neizrazitom skupu A.

Uočimo sada da je neizrazita relacija također neizraziti skup. Pri tome je U u gornjoj definiciji zapravo kartezijev produkt skupova pa x nije "klasičan" element već uređena n-torka. Važna posljedica je da se sve osnovne operacije nad neizrazitim relacijama izvode na jednak način kao i kod neizrazitih skupova.

Kartezijev produkt neizrazitih skupova

Definition (Kartezijev produkt neizrazitih skupova)

Neka je definiran neizraziti skup A nad univerzalnim skupom U_1 te neizraziti skup B nad univerzalnim skupom U_2 . Kartezijev produkt $A \times B$ definira binarnu relaciju R nad $U_1 \times U_2$ sa sljedećim svojstvom:

$$\mu_R(x, y) = \min(\mu_A(x), \mu_B(y)) \quad \forall x \in A, \ \forall y \in B.$$

Kartezijev produkt: primjer

Nad univerzalnim skupom $U=\{1,2,3,4\}$ zadana su dva neizrazita: neizraziti skup A predstavlja koncept "broj oko 1" dok neizraziti skup B predstavlja koncept "broj oko 4".

$$A = \frac{1.0}{1} + \frac{0.7}{2} + \frac{0.3}{3} + \frac{0.1}{4} \quad B = \frac{0.1}{1} + \frac{0.3}{2} + \frac{0.7}{3} + \frac{1.0}{4}.$$

Njihov kartezijev produkt je relacija:

$$A \times B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0.1 & 0.3 & 0.7 & 1.0 \\ 2 & 0.1 & 0.3 & 0.7 & 0.7 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 4 & 0.1 & 0.1 & 0.1 & 0.1 \end{bmatrix}$$

Kartezijev produkt: primjer

Dobivena relacija odgovara konceptu *ako x je oko* 1 *tada y je oko* 4.

- Kasnije ćemo vidjeti kako se pomoću relacija može izvoditi zaključivanje: primjerice, ako znam da je x blizak 1, što znam o y?
- Odvest će nas na generalizirani modus-ponens.

Komplement neizrazite relacije

Definition (Komplement neizrazite relacije)

Neka su $U_1,~U_2,~\dots,~U_n$ univerzalni skupovi. Neka je definirana neizrazita relacija A nad $U_1 \times U_2 \times \dots \times U_n$.

Komplement neizrazite relacija je opet neizrazita relacija nad $U_1 \times U_2 \times \ldots \times U_n$ sa svojstvom:

$$\mu_{\neg A}(x_1,\ldots,x_n) = negacija(\mu_A(x_1,\ldots,x_n)).$$

Najčešće se kao negacija koristi Zadehov komplement (1-x), no definicija dozvoljava uporabu bilo kojeg općenitog operatora komplementa.

Komplement neizrazite relacije: primjer

Zadana je neizrazite relacija A nad univerzalnim skupom $\{1,2,3,4\} \times \{1,2,3\}$.

$$A = \begin{bmatrix} 1.0 & 0.9 & 0.0 \\ 0.8 & 1.0 & 0.3 \\ 0.6 & 0.8 & 0.7 \\ 0.1 & 0.4 & 1.0 \end{bmatrix}$$

Njezin komplement je neizrazita relacija:

$$\neg A = \begin{bmatrix} 0.0 & 0.1 & 1.0 \\ 0.2 & 0.0 & 0.7 \\ 0.4 & 0.2 & 0.3 \\ 0.9 & 0.6 & 0.0 \end{bmatrix}$$

Unija neizrazitih relacija

Definition (Unija neizrazitih relacija)

Neka su U_1 , U_2 , ..., U_n univerzalni skupovi. Neka su definirane neizrazite relacije A i B nad $U_1 \times U_2 \times \ldots \times U_n$. Unija neizrazitih relacija je opet neizrazita relacija nad $U_1 \times U_2 \times \ldots \times U_n$ sa svojstvom:

 $\mu_{A\cup B}(x_1,\ldots,x_n) = s\text{-norma}(\mu_A(x_1,\ldots,x_n),\mu_B(x_1,\ldots,x_n)).$

Najčešće se kao *s*-norma koristi Zadehov maksimum, no definicija dozvoljava uporabu bilo koje *s*-norme.

Unija neizrazitih relacija: primjer

Zadane su neizrazite relacije A i B nad univerzalnim skupom $\{1,2,3,4\} \times \{1,2,3\}$.

$$A = \begin{bmatrix} 1.0 & 0.9 & 0.0 \\ 0.8 & 1.0 & 0.3 \\ 0.6 & 0.8 & 0.7 \\ 0.1 & 0.4 & 1.0 \end{bmatrix} \quad B = \begin{bmatrix} 0.6 & 0.1 & 0.1 \\ 0.5 & 0.7 & 0.4 \\ 0.8 & 0.9 & 0.6 \\ 0.2 & 0.3 & 0.0 \end{bmatrix}$$

Njihova unija je neizrazita relacija:

$$A \cup B = \begin{bmatrix} 1.0 & 0.9 & 0.0 \\ 0.8 & 1.0 & 0.3 \\ 0.6 & 0.8 & 0.7 \\ 0.1 & 0.4 & 1.0 \end{bmatrix} \cup \begin{bmatrix} 0.6 & 0.1 & 0.1 \\ 0.5 & 0.7 & 0.4 \\ 0.8 & 0.9 & 0.6 \\ 0.2 & 0.3 & 0.0 \end{bmatrix} = \begin{bmatrix} 1.0 & 0.9 & 0.1 \\ 0.8 & 1.0 & 0.4 \\ 0.8 & 0.9 & 0.7 \\ 0.2 & 0.4 & 1.0 \end{bmatrix}$$

Presjek neizrazitih relacija

Definition (Presjek neizrazitih relacija)

Neka su $U_1,\ U_2,\ \ldots,\ U_n$ univerzalni skupovi. Neka su definirane neizrazite relacije A i B nad $U_1 \times U_2 \times \ldots \times U_n$.

Presjek neizrazitih relacija je opet neizrazita relacija nad

 $U_1 \times U_2 \times \ldots \times U_n$ sa svojstvom:

$$\mu_{A\cap B}(x_1,\ldots,x_n)=t\text{-norma}(\mu_A(x_1,\ldots,x_n),\mu_B(x_1,\ldots,x_n)).$$

Najčešće se kao *t*-norma koristi Zadehov minimum, no definicija dozvoljava uporabu bilo koje *t*-norme.

Presjek neizrazitih relacija: primjer

Zadane su neizrazite relacije A i B nad univerzalnim skupom $\{1,2,3,4\} \times \{1,2,3\}$.

$$A = \begin{bmatrix} 1.0 & 0.9 & 0.0 \\ 0.8 & 1.0 & 0.3 \\ 0.6 & 0.8 & 0.7 \\ 0.1 & 0.4 & 1.0 \end{bmatrix} \quad B = \begin{bmatrix} 0.6 & 0.1 & 0.1 \\ 0.5 & 0.7 & 0.4 \\ 0.8 & 0.9 & 0.6 \\ 0.2 & 0.3 & 0.0 \end{bmatrix}$$

Njihov presjek je neizrazita relacija:

$$A \cup B = \begin{bmatrix} 1.0 & 0.9 & 0.0 \\ 0.8 & 1.0 & 0.3 \\ 0.6 & 0.8 & 0.7 \\ 0.1 & 0.4 & 1.0 \end{bmatrix} \cap \begin{bmatrix} 0.6 & 0.1 & 0.1 \\ 0.5 & 0.7 & 0.4 \\ 0.8 & 0.9 & 0.6 \\ 0.2 & 0.3 & 0.0 \end{bmatrix} = \begin{bmatrix} 0.6 & 0.1 & 0.0 \\ 0.5 & 0.7 & 0.3 \\ 0.6 & 0.8 & 0.6 \\ 0.1 & 0.3 & 0.0 \end{bmatrix}$$

Cilindrično proširenje neizrazite relacije

Definition (Cilindrično proširenje)

Neka su U_1, \ldots, U_n te U_{n+1} univerzalni skupovi. Neka je definirana neizrazita relacija A nad $U_1 \times \ldots \times U_n$. Cilindrično proširenje neizrazite relacije A je opet neizrazita relacija ali nad $U_1 \times \ldots \times U_n \times U_{n+1}$ sa svojstvom:

$$\mu_{cil}(x_1,\ldots,x_n,x_{n+1}) = \mu_A(x_1,\ldots,x_n).$$

Operacija služi kako bi relaciju proširila na dodatni univerzalni skup. Pri tome uređene (n+1)-torke proširene relacije relaciji pripadaju u istoj mjeri u kojoj originalnoj relaciji pripadaju originalne uređene n-torke.

Cilindrično proširenje neizrazite relacije: primjer

Zadani su univerzalni skupovi $U_1 = \{1, 2, 3, 4\}$ te $U_2 = \{1, 2, 3\}$. Zadan je neizraziti skup F nad U_1 kao:

$$F = \begin{bmatrix} 1.0 \\ 1.0 \\ 0.8 \\ 1.0 \end{bmatrix}$$

Neizrazita relacija A koje je njegovo cilindrično proširenje na U_2 je:

$$A = \begin{bmatrix} 1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & 1.0 \\ 0.8 & 0.8 & 0.8 \\ 1.0 & 1.0 & 1.0 \end{bmatrix}$$

Projekcija neizrazite relacije

Definition (Projekcija neizrazite relacije)

Neka su $U_1, \ldots, U_k, \ldots, U_n$ univerzalni skupovi. Neka je definirana neizrazita relacija A nad $U_1 \times \ldots \times U_k \times \ldots \times U_n$. Projekcija neizrazite relacije A je opet neizrazita relacija ali nad $U_1 \times \ldots \times U_{k-1} \times U_{k+1} \times \ldots \times U_n$ sa svojstvom:

$$\mu_{proj}(x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n) = \max_k (\mu_A(x_1,\ldots,x_{k-1},x_k,x_{k+1},\ldots,x_n))$$

Ovo je u određenom smislu suprotna operacija od cilindričnog proširenja. Postupkom projekcije smanjuje se red relacije; tako će se, primjerice, projekcijom ternarne relacije dobiti binarna relacija a projekcijom binarne relacije običan neizraziti skup.

Projekcija neizrazite relacije: primjer

Zadana je relacija A nad univerzalnim skupom $U_1 \times U_2 = \{1, 2, 3, 4\} \times \{1, 2, 3\}$:

$$A = \begin{bmatrix} 1.0 & 0.9 & 0.0 \\ 0.8 & 1.0 & 0.3 \\ 0.6 & 0.8 & 0.7 \\ 0.1 & 0.4 & 1.0 \end{bmatrix}.$$

Njezine projekcije na U_1 i U_2 su:

$$A_{projU_1} = egin{bmatrix} 1.0 \\ 1.0 \\ 0.8 \\ 1.0 \end{bmatrix} \quad A_{projU_2} = egin{bmatrix} 1.0 & 1.0 & 1.0 \end{bmatrix}$$

Neinteraktivnost binarne neizrazite relacije

Definition (Spoj neizrazitih relacija)

Neka su R i S dvije neizrazite relacije na $U_1 \times \cdots \times U_r$ i $U_s \times \cdots \times U_n$ uz $s \leq r+1$. Spoj relacija R i S je $c(R) \cap c(S)$ gdje su c(R) i c(S) cilindrična proširenja na $U_1 \times \cdots \times U_n$.

Definition (Neinteraktivnost binarne relacije)

Neka je R binarna relacija definirana nad $U_1 \times U_2$, pri čemu su U_1 i U_2 univerzalni skupovi. Neka je X projekcija relacije R na U_1 a Y projekcija relacije R na U_2 . Relacija R je neinteraktivna ukoliko vrijedi: $X \times Y = R$. Drugi način da ovo kažemo jest: relacija je neinteraktivna ako je spoj svojih projekcija: ako se R dobije upravo kao presjek cilindričnih proširenja projekcija. Relacija je interaktivna ukoliko nije neinteraktivna.

Kompozicija binarne neizrazite relacije

Kompozicija relacija vrlo je važan pojam.

Definition (Kompozicija binarnih neizrazitih relacija)

Neka su X, Y i Z univerzalni skupovi. Neka je A neizrazita relacija na $X \times Y$, i neka je B neizrazita relacija na $Y \times Z$. Neka su odabrane jedna s-norma i jedna t-norma. Kompozicija binarnih relacija A i B s obzirom na odabranu s-normu i t-normu, oznaka $A \circ B$, je opet binarna relacija definirana nad $X \times Z$, sa svojstvom:

$$\mu_{A \circ B}(x, z) = s$$
-norma $(t$ -norma $(\mu_A(x, y), \mu_B(y, z)))$
 $\forall x \in X, y \in Y, z \in Z.$

Kompozicija binarne neizrazite relacije

Ideju kompozicije riječima možemo opisati ovako:

- Neka je $x \in X$ i $z \in Z$.
- Stupanj pripadnosti uređenog para (x,z) relaciji koja je kompozicija $A \circ B$ dobiva se tako da se za svaki $y \in Y$ pogleda s kojom mjerom (x,y) pripada relaciji A te s kojom mjerom (y,z) pripada relaciji B; jakost veze (x,y)-(y,z) određuje se kao t-norma.
- Potom se promatraju sve moguće veze između x i z (preko svih postojećih y) i kao konačna mjera uzima najjača veza (s-norma).

Kompozicija binarne neizrazite relacije

Najčešće korištene kompozicije su *sup-min* kompozicija, kod koje se kao *s*-norma koristi Zadehov maksimum (ili supremum) a kao *t*-norma Zadehov minimum pa vrijedi:

$$\mu_{A \circ B}(x, z) = \sup_{y \in Y} (\min(\mu_A(x, y), \mu_B(y, z))) \quad \forall x \in X, z \in Z$$

odnosno sup-produkt kompozicija, kod koje se kao s-norma koristi Zadehov maksimum (ili supremum) a kao t-norma algebarski produkt pa vrijedi:

$$\mu_{A \circ B}(x, z) = \sup_{y \in Y} (\mu_A(x, y) \cdot \mu_B(y, z)) \quad \forall x \in X, z \in Z.$$

Kompozicija binarne neizrazite relacije: primjer

Zadane su binarne relacije A nad $X \times Y$ i B nad $Y \times Z$ gdje je $A = \{x_1, x_2, x_3\}, B = \{y_1, y_2, y_3, y_4\}, Z = \{z_1, z_2\}$:

$$A = \begin{bmatrix} 0.1 & 0.7 & 0.5 & 0.1 \\ 0.5 & 1.0 & 0.9 & 0.4 \\ 0.2 & 0.1 & 0.6 & 0.9 \end{bmatrix} \quad B = \begin{bmatrix} 1.0 & 0.2 \\ 0.7 & 0.5 \\ 0.3 & 0.9 \\ 0.0 & 0.4 \end{bmatrix}$$

max-min kompozicija relacija A ∘ B je:

$$A \circ B = \begin{bmatrix} 0.1 & 0.7 & 0.5 & 0.1 \\ 0.5 & 1.0 & 0.9 & 0.4 \\ 0.2 & 0.1 & 0.6 & 0.9 \end{bmatrix} \circ \begin{bmatrix} 1.0 & 0.2 \\ 0.7 & 0.5 \\ 0.3 & 0.9 \\ 0.0 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.7 & 0.5 \\ 0.7 & 0.9 \\ 0.3 & 0.6 \end{bmatrix}.$$

Kompozicija binarne neizrazite relacije: primjer

Primjerice, mjeru pripadnosti para (x_1, z_1) utvrdili bismo na sljedeći način:

$$\begin{split} \mu_{A\circ B}(x_1,z_1) &= \mathsf{max}(\\ \min(\mu_A(x_1,y_1),\mu_B(y_1,z_1)), \min(\mu_A(x_1,y_2),\mu_B(y_2,z_1)),\\ \min(\mu_A(x_1,y_3),\mu_B(y_3,z_1)), \min(\mu_A(x_1,y_4),\mu_B(y_4,z_1)))\\ &= \mathsf{max}(\min(0.1,1),\min(0.7,0.7),\min(0.5,0.3),\min(0.1,0.0))\\ &= \mathsf{max}(0.1,0.7,0.3,0.0)\\ &= 0.7 \end{split}$$

lpha-presjeci

Kako su neizrazite relacije zapravo neizraziti skupovi, za njih također vrijedi teorem predstavljanja i pojam α -presjeka definira se na uobičajeni način.

- $oldsymbol{lpha}$ -presjek neizrazite relacije može se pri tome tumačiti kao klasična relacija.
- Umnožak αR gdje je R klasična relacija može se tumačiti kao neizrazita relacija u kojoj svaki par koji pripada klasičnoj relaciji neizrazitoj relaciji pripada s mjerom pripadnosti α .

Možemo pisati:

$$R_{\alpha} = R^{-1}([\alpha, 1]) = \{(x, y) : \mu_{R}(x, y) \ge \alpha\}$$

Svojstva klasičnih binarnih relacija

Kod klasičnih relacija definiraju se četiri tipična svojstva. Ovdje ih navodimo preko karakteristične funkcije relacije.

Refleksivnost Binarna relacija R je ima svojstvo refleksivnosti akko $R(x,x)=1 \ \forall x \in U$

Simetričnost Binarna relacija R je ima svojstvo simetričnosti akko R(x,y)=1 implicira da je i R(y,x)=1 $\forall x \in U, \forall y \in U$

Tranzitivnost Binarna relacija R je ima svojstvo tranzitivnosti akko R(x,y)=1 i R(y,z)=1 implicira da je i R(x,z)=1 $\forall x\in U, \forall y\in U, \forall z\in U$

Antisimetričnost Binarna relacija R je ima svojstvo antisimetričnosti akko R(x,y)=1 i R(y,x)=1 implicira da je $x=y \ \forall x \in U, \forall y \in U.$

Svojstva neizrazitih binarnih relacija

Svojstva ćemo iskazati preko funkcije pripadnosti relacije.

- Refleksivnost Neizrazita binarna relacija R je ima svojstvo refleksivnosti akko $\mu_R(x,x)=1 \ \forall x \in U$
- Simetričnost Neizrazita binarna relacija R je ima svojstvo simetričnosti akko $\mu_R(x,y)=\mu_R(y,x)$ $\forall x\in U, \forall y\in U$
- Tranzitivnost Neizrazita binarna relacija R je ima svojstvo tranzitivnosti akko $\mu_R(x,z) \geq \mu_R(x,y) \Delta \mu_R(y,z)$ $\forall x \in U, \forall y \in U, \forall z \in U, \text{ gdje je } \Delta \text{ } t\text{-norma}.$
- Antisimetričnost Neizrazita binarna relacija R je ima svojstvo antisimetričnosti akko $\mu_R(x,y)>0$ i $\mu_R(y,x)>0$ implicira da je x=y $\forall x\in U, \forall y\in U.$

Svojstva neizrazitih binarnih relacija

Tranzitivnost u prethodnoj definiciji traži da je za sve $x \in U$, $y \in U$ i $z \in U$ mjera kojom par (x,z) pripada neizrazitoj binarnoj relaciji barem onoliki u kolikoj mjeri parovi (x,y) i (y,z) pripadaju relaciji. Kako se veze između x i z mogu uspostaviti preko svih $y \in U$, jakost jedne veze određujemo t-normom (oznaka Δ) i potom od svih veza gledamo najjaču odnosno veze povezujemo nekom s-normom (oznaka ∇). (uočite sličnost s kompozicijom relacija!)

(uocite siicnost s kompozicijom reiacija!)

Stoga općenito kažemo da za neizrazitu binarnu relaciju vrijedi svojstvo tranzitivnosti ako vrijedi:

$$\mu_R(x, z) \ge \nabla \{\mu_R(x, y) \Delta \mu_R(y, z), \forall y \in U\} \quad \forall x \in U, \forall z \in U$$

Klasična relacija ekvivalencije

Klasična relacija ekvivalencija je klasična relacija koja je refleksivna, simetrična i tranzitivna.

Definition (Razred ekvivalencije)

Neka je R klasična relacija ekvivalencije nad univerzalnim skupom U i neka je $a \in U$. Razred ekvivalencije elementa a je skup $\{u \in U | R(a, u) = 1\}$.

Definition (Razredi ekvivalencije)

Neka je R klasična relacija ekvivalencije nad univerzalnim skupom U i neka su $a \in U$ i $b \in U$. Razredi ekvivalencije elemenata a i b ili su jednaki skupovi, ili su disjunktni.

Klasična relacija ekvivalencije

Definition (Particija skupa)

Neka je U neprazan skup. Particija od U je skup nepraznih disjunktnih podskupova od U čija je unija jednaka U.

Definition (Particija skupa relacijom ekvivalencije)

Neka je U neprazan skup i R klasična relacija ekvivalencije definirana nad tim skupom. Skup razreda ekvivalencije od U čini particiju skupa U.

Definition (Kvocijentni prostor od R)

Neka je U neprazan skup i R klasična relacija ekvivalencije definirana nad tim skupom. Skup razreda ekvivalencije od U s obzirom na relaciju R označavamo U/R i zovemo kvocijentni prostor od R.

Neizrazita relacija ekvivalencije

Neizrazita relacije je Δ -tranzitivna ako vrijedi:

$$\mu_R(x,z) \ge \mu_R(x,y)\Delta\mu_R(y,z), \quad \forall x \in U, \forall y \in U, \forall z \in U$$

gdje je Δ oznaka za odabranu t-normu.

Definition (Neizrazita relacija ekvivalencije)

Neizrazita relacija R nad skupom U je Δ -neizrazita relacija ekvivalencije za t-normu Δ ako je refleksivna, simetrična i Δ -tranzitivna. Ako je Δ Zadehov minimum, takvu relaciju kraće zovemo neizrazita relacija ekvivalencije.

Neizrazita relacija ekvivalencije: primjer

U autosalonu posjetitelje su pitali da procjene od četiri ponuđena automobila koji je automobil koliko sličan drugim automobilima (na skali od 0 do 1 pri čemu 0 znači da uopće nisu slični a 1 da su jako slični). Temeljem te ankete dobiveni su rezultati koji su prikazani relacijom sličnosti R izgrađenom nad univerzalnim skupom $U = \{A_1, A_2, A_3, A_4\}$ gdje su A_1, \ldots, A_4 automobili. Kako sve skup automobila možemo grupirati prema sličnosti?

$$R = \begin{bmatrix} 1.0 & 0.0 & 0.8 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.6 \\ 0.8 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.6 & 0.0 & 1.0 \end{bmatrix}.$$

Uočiti: prikazana relacija je neizrazita relacija ekvivalencije.

Neizrazita relacija ekvivalencije: primjer

Radit ćemo različite α -presjeke ove relacije.

$$R_{lpha=1} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Relacija $R_{\alpha=1}$ je klasična relacija, i ona jest relacija ekvivalencije. Razredi ekvivalencije koje definira ova relacija su:

$$U_{A_1} = \{A_1\}$$

 $U_{A_2} = \{A_2\}$
 $U_{A_3} = \{A_3\}$
 $U_{A_4} = \{A_4\}$

$$U/R_{\alpha=1} = \{\{A_1\}, \{A_2\}, \{A_3\}, \{A_4\}\}.$$

Neizrazita relacija ekvivalencije: primjer

$$R_{lpha=0.8} = egin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Relacija $R_{\alpha=0.8}$ je klasična relacija, i ona jest relacija ekvivalencije. Razredi ekvivalencije koje definira ova relacija su:

$$U_{A_1} = \{A_1, A_3\}$$

$$U_{A_2} = \{A_2\}$$

$$U_{A_3} = \{A_3, A_1\}$$

$$U_{A_4} = \{A_4\}$$

$$U/R_{\alpha=0.8} = \{\{A_1, A_3\}, \{A_2\}, \{A_4\}\}.$$

Neizrazita relacija ekvivalencije: primjer

$$R_{lpha=0.6} = egin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \end{bmatrix}.$$

Relacija $R_{\alpha=0.6}$ je klasična relacija, i ona jest relacija ekvivalencije. Razredi ekvivalencije koje definira ova relacija su:

$$U_{A_1} = \{A_1, A_3\}$$

$$U_{A_2} = \{A_2, A_4\}$$

$$U_{A_3} = \{A_3, A_1\}$$

$$U_{A_4} = \{A_4, A_2\}$$

$$U/R_{\alpha=0.6} = \{\{A_1, A_3\}, \{A_2, A_4\}\}.$$

Neizrazita relacija ekvivalencije: primjer

Relacija $R_{\alpha=0.0}$ je klasična relacija, i ona jest relacija ekvivalencije. Razredi ekvivalencije koje definira ova relacija su:

$$U_{A_1} = \{A_1, A_2, A_3, A_4\}$$

$$U_{A_2} = \{A_1, A_2, A_3, A_4\}$$

$$U_{A_3} = \{A_1, A_2, A_3, A_4\}$$

$$U_{A_4} = \{A_1, A_2, A_3, A_4\}$$

$$U/R_{\alpha=0.0} = \{\{A_1, A_2, A_3, A_4\}\}.$$

Neizrazita relacija ekvivalencije: primjer

Grafički, ovo grupiranje možemo prikazati na sljedeći način.

Klasična relacija kompatibilnosti je klasična relacija koja je simetrična i refleksivna. Još je zovemo relacija tolerancije te relacija bliskosti.

Gdje se u stvarnosti javljaju ovakve relacije? Zamislite tri grada a, b i c koja se nalaze na pravcu, pri čemu su rubni gradovi od centralnog udaljeni $10\ km$. Želimo definirati relaciju bliski gradovi, pri čemu par gradova (x,y) pripada relaciji ako je udaljenost od x do y manja ili jednaka $12\ km$.

- Ova relacija bit će refleksivna jer je udaljenost grada do samog sebe jednaka 0 što je $\leq 12 \ km$.
- Uz razumnu pretpostavku da su između gradova izgrađene dvosmjerne ceste, ova relacija bit će simetrična: ako je od grada x do grada y put duljine do 12 km, onda će i od grada y do grada x postojati put jednake duljine, pa ako je $(x,y) \in R$, tada će biti i $(y,x) \in R$.
- Relacija nije tranzitivna: u našem primjeru, iako je $(a,b) \in R$ i $(b,c) \in R$, $(a,c) \notin R$ jer je njihova udaljenost 20 km.

Neka je R klasična relacija kompatibilnosti kardinaliteta n. Takva klasična relacija kompatibilnosti uvijek se može prevesti u klasičnu relaciju ekvivalencije radeći najviše n-1 kompoziciju relacije sa samom sobom.

- U našem primjeru, $(a,b) \in R$ i $(b,c) \in R$ pa će kompozicija izgraditi relaciju u kojoj je i $(a,c) \in R$.
- Kako imamo simetričnost, vrijedit i da je $(c,b) \in R$ i $(b,a) \in R$ pa će kompozicija izgraditi relaciju u kojoj je i $(c,a) \in R$.
- Time će relacija nastala kao kompozicija i dalje biti simetrična, i svakim korakom u "sve većoj mjeri" tranzitivna.

Neka je R klasična relacija kompatibilnosti kardinaliteta n. Takva klasična relacija kompatibilnosti uvijek se može prevesti u klasičnu relaciju ekvivalencije radeći najviše n-1 kompoziciju relacije sa samom sobom.

• Najgori slučaj bi bio n gradova kao u našem primjeru, svi na istom pravcu i jednakom razmaku. No tada bismo nakon n-1 koraka sigurno dobili relaciju kojoj bi svaki mogući par pripadao — a to je relacija ekvivalencije.

Neizrazita relacija kompatibilnosti

Neizrazita relacija kompatibilnosti je neizrazita relacija koja je refleksivna i simetrična. Ako ne izgrađena nad konačnim univerzalnim skupom kardinaliteta n, ona se u najviše n-1 kompoziciju sa samom sobom može prevesti u neizrazitu relaciju ekvivalencije.

Zatvaranje binarne relacije

Definition (Zatvaranje relacija)

Neka je zadana binarna relacije R. Zatvaranje te relacije s obzirom na svojstvo ξ je najmanje proširenje te relacije uz koje se postiže zadano svojstvo ξ .

Refleksivno zatvaranje binarne relacije

Definition (Refleksivno zatvaranje relacije)

Neka je zadana relacija R. Refleksivno zatvaranje relacije R je relacija R' ako i samo ako:

- R' je refleksivna relacija,
- ② za svaku relaciju R'', ako je $R \subseteq R''$ i ako je R'' također refleksivna, tada je nužno $R' \subseteq R''$; drugim riječima: R' je najmanja relacija koja zadovoljava zahtjeve (1) i (2).

Na identičan se način definiraju i simetrično zatvaranje relacije te tranzitivno zatvaranje relacije. Refleksivno zatvaranje relacije R još ćemo označavati s r(R), simetrično zatvaranje sa s(R) a tranzitivno zatvaranje sa t(R).

Zatvaranje binarne relacije

lmamo li neizrazitu relaciju tolerancije, neizrazitu relaciju ekvivalencije dobit ćemo tako da pronađemo njezino Δ -tranzitivno zatvaranje.

 Postupak već znamo: potrebno je raditi kompoziciju relacije sa samom sobom.

Gradivo

Pogledati u knjizi poglavlja 3 i 4.

Neka su R i S dvije Δ -neizrazite relacije ekvivalencije nad U. Pokažite da je Relacija W definirana funkcijom pripadnosti

$$\mu_W(x,y) = \mu_R(x,y)\Delta\mu_S(x,y)$$

također Δ -neizrazita relacija ekvivalencije nad U.

Neka su zadane dvije neizrazite relacije R nad $U \times V$ i S nad $V \times W$ i to u obliku matrica $n \times m$ i $m \times k$. Uvjerite se da se kompozicija $R \circ S$ dobiva ako se provede matrično množenje matrica R i S pri čemu se zbrajanje mijenja S-normom a množenje elemenata t-normom.

Neka su R i S:

$$R = \begin{bmatrix} 0.1 & 0.0 & 0.0 \\ 0.2 & 0.3 & 1.0 \\ 0.0 & 0.4 & 0.5 \end{bmatrix} \quad S = \begin{bmatrix} 0.2 & 0.5 & 0.0 \\ 0.9 & 1.0 & 0.3 \\ 1.0 & 0.5 & 0.4 \end{bmatrix}$$

Odredite max-min te max-produkt kompoziciju relacija R i S.

Neka je R binarna neizrazita relacija zadana nad $U \times U$. Pokažite da je $R \circ R \leq R$ ako i samo ako je R tranzitivna.

Neka je R binarna neizrazita relacija zadana nad $U \times U$. Neka su R_{α} njezini α presjeci za $\alpha \in (0,1]$. Pokažite:

- R je simetrična ako i samo ako su svi R_{α} simetrične relacije za sve $\alpha \in (0,1]$.
- R je min-tranzitivna ako i samo ako je R_{α} tranzitivan za sve $\alpha \in (0,1].$

Neka su R i S neizrazite relacije ekvivalencije nad U. Je li $R \circ S$ također neizrazita relacija ekvivalencije nad U?

Neka su R i S neizrazite relacije ekvivalencije nad U. Pokažite da je $R \cap S$ također neizrazita relacija ekvivalencije. Što možemo reći o $R \cup S$?

Neka je d metrika nad skupom U, što znači da je $d:U imes U o \mathbb{R}^+$ i da zadovoljava:

- **2** d(x, y) = d(y, x) te

Pretpostavite da je $d(x,y) \leq 1$ za svaki $x,y \in U$. Definirajte binarnu neizrazitu relaciju R nad U tako da joj je funkcija pripadnosti $\mu_R(x,y) = 1 - d(x,y)$. Pokažite da je R Δ -neizrazita relacija ekvivalencije nad U, gdje je Δ definirana kao t-norma: $x\Delta y = \max(x+y-1,0)$.