Constraining the Astrophysical R-Process

Kieran Porter

Supervisor: Dan Watts

January 2017

This Project

- Analyse data from proton knockout experiments using ²⁰⁸Pb and ¹²C targets.
- Determine masses of residual exotic nuclei.
- Determine number of protons knocked out per reaction.
- (Possibly deduce energy level structures.)
- Provide experimental data to constrain path of the r-process and test theoretical models.

Stellar Nucleosynthesis

Kamal, A. "Nuclear Physics", Berlin: Springer (2014).

R-Process

- Very high flux of neutrons available.
- Neutron capture rate "rapid" relative to β -decay rate.

Shell Influences

• Pile up of abundance along shell closures.

Seeger, P.A., Fowler, W.A., Clayton, D.D. AstroPhys. J. Suppl 11 (1965).

The Problem

- R-Process path wonders very far from stability.
- Theoretical models do not predict observed abundance correctly.
- Majority of nuclei never observed.
- Very little experimental data on exotic nuclei.
- Does shell structure even persist for exotic nuclei?

Proton Knockout At MAMI

- Use electron beam to produce photons by Bremstrahlung and direct onto target.
- Photons knockout nucleons via several processes (eg. π^0 production).
- Use Crystal Ball detector and Particle Identification Detector (PID) to measure knockout proton energies.
- Reconstruct missing mass of nuclei.

Kieran Porter

Energy Calibration

- Energy lost escaping target, travelling through PID etc.
- "Interesting" signal lost in noise.
- Use Geant4 Monte-Carlo simulation to model energy losses and calculate corrections.

Energy Calibration

Energy Loss Angular Dependence

