HOMEWORK 1 MATH 270A, FALL 2019, PROF. ROMAN VERSHYNIN

Problem 1

Let Ω be an arbitrary set.

- (a). Let \mathcal{F} be the family of all finite subsets of Ω and their complements. Is \mathcal{F} a σ -algebra?
- (b). Let \mathcal{F} be the family of all finite or countable subsets of Ω and their complements. Is \mathcal{F} a σ -algebra?
- (c). Let \mathcal{F} and \mathcal{G} be two σ -algebras of subsets of Ω . Is $\mathcal{F} \cap \mathcal{G}$ always a σ -algebra?
- (c). Let \mathcal{F} and \mathcal{G} be two σ -algebras of subsets of Ω . Is $\mathcal{F} \cup \mathcal{G}$ always a σ -algebra?

Problem 2

A subset $A \subset \mathbb{N}$ is said to have asymptotic density if

$$\lim_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n} \quad \text{exists.}$$

Let \mathcal{F} be the collection of subsets of \mathbb{N} for which the asymptotic density exists. If \mathcal{F} a σ -algebra?

Problem 3

Let X and Y be two random variables on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $E \subset \mathcal{F}$ be an event. Define

$$Z := \begin{cases} X & \text{if } E \text{ occurs} \\ Y & \text{otherwise.} \end{cases}$$

Prove that Z is a random variable.

Problem 4

Let X be a random variable with density (pdf) f. Compute the density of X^2 . (Hint: first compute the distribution function (cdf) of X^2 , then differentiate.)

Problem 5

Let X be a nonnegative random variable. Show that

$$\mathbb{E} X = \int_0^\infty \mathbb{P} \left\{ X > t \right\} dt.$$

Problem 6

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a strictly convex function. Let X be a random variable such that $\mathbb{E}|X| < \infty$ and $\mathbb{E}|\varphi(X)| \leq \infty$. Show that

$$\varphi(\mathbb{E} X) = \mathbb{E}(\varphi(X))$$
 implies $X = \mathbb{E} X$ a.s.

Problem 7

Suppose $0 \le p_n \le 1$ and put $\alpha_n := \min(p_n, 1 - p_n)$. Show that, if $\sum_n \alpha_n$ diverges, then no discrete probability space can contain independent events A_1, A_2, \ldots such that $\mathbb{P}(A_n) = p_n$.

Problem 8

Prove that if random variables X and Y are independent, then so are f(X) and g(X), for any Borel measurable functions $f, g : \mathbb{R} \to \mathbb{R}$.

Problem 9

Let $p \ge 3$ be a prime. Let X and Y be independent random variables that are uniformly distributed on $\{0, \ldots, p-1\}$. Define

$$Z_n := X + nY, \quad n = 0, \dots, p - 1.$$

Show that the random variables Z_n are pairwise independent, but not jointly independent.

Problem 10

(a). For any given $\mu \in \mathbb{R}$, $\sigma > 0$, k > 0, show that there exists a random variable X with mean μ and variance δ^2 and for which Chebyshev's inequality becomes an identity:

$$\mathbb{P}\left\{|X - \mu| \ge k\sigma\right\} = \frac{1}{k^2}.$$

(b). Show that for any random variable X with mean μ and variance σ^2 , one has

$$\mathbb{P}\left\{|X - \mu| \ge k\sigma\right\} = o\left(\frac{1}{k^2}\right) \text{ as } k \to \infty.$$

Why do parts (a) and (b) not contradict each other?