STA 522, Spring 2022 Introduction to Theoretical Statistics II

Lecture 9

Department of Biostatistics University at Buffalo

AGENDA

- ► Hypothesis testing, LRT
- ▶ Properties of tests, finding *c* in LRT
- ► Methods of evaluating tests

Review: likelihood ratio test

- ► Recall the **likelihood function** $L(\theta \mid \underline{x}) = f(\underline{x} \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$. The **likelihood ratio test (LRT) statistic** for testing $H_0 : \theta \in \Theta_0$ vs. $H_1 : \theta \in \Theta_0^c$ is $\lambda(\underline{x}) = \frac{\sup_{\Theta_0} L(\theta \mid \underline{x})}{\sup_{\Theta} L(\theta \mid \underline{x})}$.
- ▶ Note that the likelihood ratio test statistic can be viewed as

$$\lambda(\underline{x}) = \frac{L(\hat{\theta}_0 \mid \underline{x})}{L(\hat{\theta} \mid \underline{x})} = \frac{\text{restricted maximization}}{\text{unrestricted maximization}},$$

where $\hat{\theta}$ is the MLE obtained by maximizing $L(\theta \mid \underline{x})$ over the entire parameter space Θ , and $\hat{\theta}_0$ is the MLE obtained by maximizing over the restricted parameter space Θ_0 .

► A likelihood ratio test (LRT) is any test that has a rejection region of the form

$$\{\underline{x}: \lambda(\underline{x}) \leq c\},\$$

where $c \in [0, 1]$.

Example: Let $X_1, X_2, \ldots, X_n \sim$ iid from a (location) exponential population with pdf $f(x \mid \theta) = e^{-(x-\theta)} I_{[\theta,\infty)}(x)$, where $\theta \in \Theta = \mathbb{R}$. Suppose we wish to test $H_0: \theta \leq a$ vs. $H_1: \theta > a$ where a is a known value (e.g. 0) supplied by the experimenter. Find the LRT rejection region.

The likelihood function for θ is:

$$L(\theta \mid \underline{x}) = \prod_{i=1}^{n} e^{-(x_i - \theta)} I(x_i \ge \theta) = e^{-n(\overline{x} - \theta)} I(x_{(1)} \ge \theta)$$

 $L(\theta \mid \underline{x})$ is an increasing function in θ for $\theta \in (-\infty, x_{(1)}]$. So unrestricted MLE is $\hat{\theta} = x_{(1)}$ so that $\sup_{\theta \in \Theta} L(\theta \mid \underline{x}) = L(x_{(1)} \mid \underline{x}) = e^{-n(\overline{x} - x_{(1)})}$.

Under H_0 , the restricted range $\theta \in \Theta_0 = (-\infty, a]$ MLE of θ is

$$\hat{\theta}_0 = \begin{cases} x_{(1)} & \text{if } x_{(1)} \le a \\ a & \text{if } x_{(1)} > a \end{cases}$$

Therefore, LRT is:

$$\lambda(\underline{x}) = \begin{cases} 1 & \text{if } x_{(1)} \le a \\ e^{-n(x_{(1)} - a)} & \text{if } x_{(1)} > a \end{cases}$$

Therefore the rejection region for the LRT is:

$$\{\underline{x}: \lambda(\underline{x}) \le c\} = \left\{\underline{x}: x_{(1)} \ge a - \frac{\log c}{n}\right\}$$

for some 0 < c < 1.

NOTE: The LRT rejection region depends on the data only through $X_{(1)}$. In the normal example discussed last week, the LRT rejection region depends on data only through \overline{X} .

LRT and sufficiency

Note: Sufficiency means that all the information about θ in \underline{x} is contained in a sufficient statistic $T(\underline{x})$. Intuitively, a test based on T should be as good as the test based on the complete sample \underline{X} . The following theorem formalizes this.

Theorem (8.2.4)

If $T(\underline{X})$ is a sufficient statistic for θ and $\lambda^*(t)$ and $\lambda(\underline{x})$ are the LRT statistics based on T and \underline{X} , respectively, then

$$\lambda^*(T(\underline{x})) = \lambda(\underline{x})$$

for every \underline{x} in the sample space.

Proof: Since $T(\underline{X})$ is a sufficient statistics, therefore by the Factorization theorem, we have

$$f(\underline{x} \mid \theta) = g(T(\underline{x}) \mid \theta) \ h(\underline{x})$$

Therefore

Therefore
$$\begin{split} \lambda(\underline{x}) &= \frac{\sup_{\Theta_0} L(\theta \mid \underline{x})}{\sup_{\Theta} L(\theta \mid \underline{x})} \\ &= \frac{\sup_{\Theta_0} f(\underline{x} \mid \theta)}{\sup_{\Theta} f(\underline{x} \mid \theta)} \\ &= \frac{\sup_{\Theta_0} g(T(\underline{x}) \mid \theta) \ h(\underline{x})}{\sup_{\Theta} g(T(\underline{x}) \mid \theta) \ h(\underline{x})} \end{split}$$

This completes the proof.

 $=\lambda^*(T(x))$

 $=\frac{\sup_{\Theta_0}g(T(\underline{x})\mid\theta)}{}$ $\sup_{\Theta} g(T(x) \mid \theta)$

 $= \frac{\sup_{\Theta_0} L^*(\theta \mid T(\underline{x}))}{\sup_{\Theta} L^*(\theta \mid T(\underline{x}))}$

Example: Let $X_1, X_2, \ldots, X_n \sim$ iid from a population with pdf $f(x \mid \theta) = \theta x^{\theta-1} I_{(0,1)}(x), \ \theta > 0$. Suppose we wish to test $H_0: \theta = 1$ vs. $H_1: \theta \neq 1$. Find the LRT rejection region.

Note at the outset that the restricted MLE is simply $\hat{\theta}_0 = 1$.

For $\theta \in \Theta = (0, \infty)$ the likelihood function is given by

$$L(\theta \mid \underline{x}) = \theta^{n} \left(\prod_{i=1}^{n} x_{i} \right)^{(\theta-1)} \implies \log L(\theta \mid \underline{x}) = n \log \theta + (\theta-1) \sum_{i=1}^{n} \log x_{i}$$

therefore

$$\frac{\partial L(\theta \mid \underline{x})}{\partial \theta} = \frac{n}{\theta} + \sum_{i=1}^{n} \log x_i \gtrsim 0 \iff \theta \lesssim -\frac{n}{\sum_{i=1}^{n} \log x_i}$$

Therefore, the MLE of θ is $\hat{\theta} = \frac{n}{\sum_{i=1}^{n} \log X_i}$.

Therefore the LRT statistic is

$$\begin{split} \lambda(\underline{x}) &= \frac{\sup_{\Theta_0} L(\theta \mid \underline{x})}{\sup_{\Theta} L(\theta \mid \underline{x})} \\ &= \exp\left[n \log \theta_0 + (\theta_0 - 1) \sum_{i=1}^n \log x_i - n \log \hat{\theta} - (\hat{\theta} - 1) \sum_{i=1}^n \log x_i \right] \\ &= \exp\left[n \log \left(\frac{\theta_0}{\hat{\theta}} \right) + (\theta_0 - \hat{\theta}) \sum_{i=1}^n \log x_i \right] \end{split}$$

Note that
$$\lambda(\underline{x})$$
 depends on \underline{x} only through $\sum_{i=1}^{\infty} \log x_i$.

The orientian ornion of the LD test is along how

The rejection region of the LR test is given by:

$$\left\{\underline{x} : \exp\left[n\log\left(\frac{\theta_0}{\hat{\theta}}\right) + (\theta_0 - \hat{\theta})\sum_{i=1}^n\log x_i\right] \le c\right\}$$

Example (LRT under the presence of nuisance parameters): Let $X_1, X_2, \ldots, X_n \sim \text{iid N}(\mu, \sigma^2)$ (both parameters unknown). Suppose we wish to test $H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$. Find the LRT rejection region.

Note that here σ^2 is a nuisance parameter.

The unrestricted MLEs of μ and σ^2 are $\hat{\mu} = \overline{X}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$.

Under H_0 , the restricted MLE for μ is

$$\hat{\mu}_0 = \begin{cases} \overline{X} & \text{if } \overline{X} \le \mu_0 \\ \mu_0 & \text{if } \overline{X} > \mu_0 \end{cases}$$

The corresponding MLE of σ^2 is

$$\hat{\sigma}_0^2 = \begin{cases} \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 & \text{if } \overline{X} \le \mu_0 \\ \frac{1}{n} \sum_{i=1}^n (X_i - \mu_0)^2 & \text{if } \overline{X} > \mu_0 \end{cases}$$

The LRT statistic is given by:

$$\lambda(\underline{x}) = \begin{cases} 1 & \text{if } \overline{X} \le \mu_0 \\ \frac{L(\mu_0, \sigma_0^2)}{L(\hat{\mu}, \hat{\sigma}^2)} & \text{if } \overline{X} > \mu_0 \end{cases}$$

The rejection region is given by

$$\{\underline{x}:\lambda(\underline{x})\leq c\}$$

It can be shown that (HW, exercise 8.37) the above rejection region can be equivalently expressed as (t-test)

$$\overline{X} > \mu_0 + c' \sqrt{\frac{S^2}{n}}$$

Errors in Hypothesis Testing

Definition: Suppose we are testing

$$H_0: \theta \in \Theta_0$$

vs.
$$H_1: \theta \in \Theta_0^c$$
.

If $\theta \in \Theta_0$, but the test incorrectly rejects H_0 , then the test has made a **Type I error**.

If, on the other hand, $\theta \in \Theta_0^c$, but the test decides to accept H_0 , then the test has made a **Type II error**.

		Decision		
		Accept H_0	Reject H_0	
	H_0	Correct	Туре I	
Truth		decision	Error	
	H_1	Type II	Correct	
		Error	decision	

Computing Error Probabilities

Definition: Let *R* denote the rejection region of a hypothesis test.

If $\theta \in \Theta_0$, then the probability of a Type I error is

$$P_{\theta}(\underline{X} \in R)$$
.

If $\theta \in \Theta_0^c$, then the probability of a Type II error is

$$P_{\theta}(\underline{X} \notin R) = 1 - P_{\theta}(\underline{X} \in R).$$

Power Function

Definition: The **power function** of a hypothesis test with rejection region R is the function of θ defined by

$$\begin{split} \beta(\theta) &= P_{\theta}(\underline{X} \in R) \\ &= \begin{cases} \text{probability of a Type I error} & \text{if } \theta \in \Theta_0 \\ 1 - \text{ probability of a Type II error} & \text{if } \theta \in \Theta_0^c. \end{cases} \end{split}$$

Comments on the Power function:

- (a) Ideally, we want $\beta(\theta)=0$ for all $\theta\in\Theta_0$ and $\beta(\theta)=1$ for all $\theta\in\Theta_0^c$.
- (b) Depends on the hypothesis test (what are we testing?).
- (c) Depends on the rejection region (value of c).
- (d) It's a function of θ , not the data.
- (e) Since it's a probability, $0 \le \beta(\theta) \le 1$ for all θ .

Example: Suppose $X \sim \text{binomial}(5, \theta)$, and we are testing $H_0: \theta \leq \frac{1}{2}$ vs. $H_1: \theta > \frac{1}{2}$. Consider the two rejection regions

$$R_1 = \{x : x = 5\}$$

 $R_2 = \{x : x = 3, 4, 5\}.$

Note that with R_1 , we reject H_0 if and only if we observe all successes, whereas with R_2 , we reject H_0 if and only if we observe at least 3 successes. Determine the power function for each test.

Here

$$\beta_1(\theta) = P_{\theta}(X \in R_1) = P_{\theta}(X = 5) = {5 \choose 5} \theta^5 (1 - \theta)^{5 - 5} = \theta^5$$
$$\beta_2(\theta) = P_{\theta}(X \in R_2) = \sum_{j=1}^{5} P_{\theta}(X = j) = \sum_{j=1}^{5} {5 \choose j} \theta^j (1 - \theta)^{5 - j}$$

Comments about the two power functions

- (a) $\beta_2(\theta)$ has higher Type I error and lower Type II error.
- (b) $\beta_1(\theta)$ has lower Type I error and higher Type II error.
- (c) Ideally, what we will do is try to maximize power while controlling Type I error.
- (d) This is how we will choose *c* in our previous calculations of rejection regions.

Size and Level

Definition: For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a **size** α **test** if

$$\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha.$$

For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a **level** α **test** if

$$\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha.$$

Notes: the set of size α tests is a subset of the set of level α tests.

By specifying the level of a test, we are only controlling the Type I error, not the Type II error.

Choosing c For LRTs

▶ Restricting to size α tests allows us to determine the value of c to use in the LRT.

 \blacktriangleright We can build a size α LRT by choosing c so that

$$\sup_{\theta \in \Theta_0} P_{\theta}(\underline{X} \in R) = \alpha, \quad \text{i.e.,} \quad \sup_{\theta \in \Theta_0} P_{\theta}(\lambda(\underline{X}) \leq c) = \alpha.$$

Example (contd.): Let $X_1, X_2, \ldots, X_n \sim \text{iid N}(\theta, 1)$. Suppose we wish to test $H_0: \theta = \theta_0 \text{vs. } H_1: \theta \neq \theta_0$. We saw that the LRT rejection region is given by

$$R = \{\underline{x} : |\overline{x} - \theta_0| \ge k\},$$

where $k = \sqrt{\frac{-2\log c}{n}}$. Find the value of c so that we have a size α test.

Since $\Theta_0 = \{\theta_0\}$ is singleton, hence

$$\mathsf{size} = \sup_{\Theta_0} P_{\theta} \left(|\overline{X} - \theta_0| \ge k \right) = P_{\theta_0} \left(|\overline{X} - \theta_0| \ge k \right)$$

Now, under H_0 , $\overline{X} \sim N(\theta_0, 1/n)$ so that $Z = \sqrt{n}(\overline{X} - \theta_0) \sim N(0, 1)$. Therefore the size of the LRT being α implies

$$\alpha = P_{\theta_0} \left(|\sqrt{n}(\overline{X} - \theta_0)| \ge \sqrt{n} \ k \right)$$

$$= P_{\theta_0} (|Z| \ge \sqrt{n} \ k)$$

$$= P(Z \ge \sqrt{n} \ k) + P(Z \le -\sqrt{n} \ k)$$

$$= P(Z \ge \sqrt{n} \ k) + P(-Z \ge -\sqrt{n} \ k) = 2 \ P(Z \ge \sqrt{n} \ k)$$

Let z_{α} be the upper α -th quantile of Z such that $P(Z \geq z_{\alpha}) = \alpha$.

Here $\alpha/2 = P(Z \ge \sqrt{n} \ k)$, which implies

$$\sqrt{n} \ k = z_{\alpha/2} \implies k = \frac{1}{\sqrt{n}} z_{\alpha/2} \implies c = \exp\left(-z_{\alpha/2}^2/2\right)$$

Example (contd.): Let $X_1, X_2, \dots, X_n \sim \text{iid from a location exponential population with pdf}$

$$f(x \mid \theta) = e^{-(x-\theta)} I_{[\theta,\infty)}(x).$$

Suppose we wish to test $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$. We showed that the LRT rejection region is given by

$$R = \left\{ \underline{x} : x_{(1)} \ge \theta_0 - \frac{\log c}{n} \right\}.$$

Find the value of c so that we have a size α test.

HW. See p. 386 in the textbook.

Evaluating Tests

Definition: A test with power function $\beta(\theta)$ is **unbiased** if

$$\beta(\theta') \ge \beta(\theta'')$$

for every $\theta' \in \Theta_0^c$ and $\theta'' \in \Theta_0$.

Definition: Let \mathcal{C} be a class of tests for testing $H_0:\theta\in\Theta_0$ vs. $H_1:\theta\in\Theta_0^c$. A test in class \mathcal{C} , with power function $\beta(\theta)$, is a **uniformly most powerful (UMP) class** \mathcal{C} **test** if $\beta(\theta)\geq\beta'(\theta)$ for every $\theta\in\Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class \mathcal{C} .

Note: if we take $\mathcal C$ to be the class of all level α tests, the test described in the above definition is called a **UMP level** α **test**.

Homework

- ► Read p. 374 379, 382 387.
- Exercises: TBA.