First Assignment
(Make function for Multiple Linear Regression Analysis MyReg())

Exploratory Data Analysis & Statistical Consulting

200903877 황 성 윤 Department of Statistics R을 내가 원하는 함수를 만들어서 사용할 수 있다는 특징이 있다. 다중선형회귀분석 (Multiple Linear Regression)을 수행하는 통계분석함수 lm() 이 이미 R에는 내장되어 있다. 하지만 내가 원하는 방식대로 회귀분석 함수를 function()을 이용하여 다음과 같이 제작할 수 있다. 함수를 만들고 2가지의 데이터를 통해 이 함수가 제대로 작동되는지 점검하였음을 밝혀둔다.

Make function MyReg()

```
MyReg <- function(data) {
n \leftarrow nrow(data); p \leftarrow ncol(data)-1
y \leftarrow as.matrix(data)[,1]; X \leftarrow cbind(rep(1,n),as.matrix(data)[,-1])
beta <- (solve(t(X)%*%X))%*%(t(X))%*%(y)
pred <- X%*%beta
residuals \leftarrow y-pred; sig2 \leftarrow (t(residuals)%*%residuals)/(n-p-1)
H <- (X)\% *\%(solve(t(X)\% *\%X))\% *\%(t(X))
stdresid \leftarrow rep(0.n)
for(i in 1:n) {
stdresid[i] <- residuals[i]/sqrt(sig2*(1-H[i,i]))</pre>
SST \leftarrow sum((y-mean(y))^2); SSE \leftarrow sum((y-pred)^2); SSR \leftarrow SST - SSE
MSR \leftarrow SSR/(p); MSE \leftarrow SSE/(n-p-1); F \leftarrow MSR/MSE
P.value \leftarrow 1-pf(F.p.n-p-1); Rsq \leftarrow SSR/SST
C \leftarrow solve(t(X)\% * \%X)
std.error <- rep(0,p+1)
for(i in 1:(p+1)) {
std.error[i] <- sqrt(sig2*C[i,i])</pre>
t.value \leftarrow rep(0,p+1)
for(i in 1:(p+1)) {
t.value[i] <- beta[i]/std.error[i]</pre>
}
Pr.t < - rep(0,(p+1))
for(i in 1:(p+1)) {
Pr.t[i] <- 2*(1-pt(abs(t.value[i]), n-p-1))
args <- list(Data=data, Beta=beta, Sigma2=sig2, Predict=pred,
Residuals=residuals. Standard.Residuals=stdresid.
SSR=SSR, SSE=SSE, F.Statistic=F, P.value=P.value)
aster <- function(p) {
if (p \ge 0.05 \& p < 0.1) "."
else if (p >= 0.01 & p < 0.05) "*"
else if (p \ge 0.001 \& p < 0.1) "**"
else if (p < 0.001) "***"
```

```
else " "
}
cat("₩n == ANALYSIS OF VARIANCE == ₩n₩n",
encodeString(c("Source", " df", " SS", " MS", " F", " P-value"),
width=8. iustify="right").
"₩n",
"₩n", encodeString(c("Regression", p, round(SSR,2),
round(MSR,2), round(F,2), round(P.value,2)), width=8, justify="right"),
aster(P.value), "₩n", encodeString(c("
                                         Error", n-p-1, round(SSE,2),
round(MSE,2)), width=8, justify="right"), "₩n",
encodeString(c("
                   Total", n-1, round(SST,2)), width=8, justify="right"),
"₩n".
"\mathcal{H}n", "Estimated error variance:", round(sig2,4),
"₩n", "R-squares : ", round(Rsq,4), "₩n₩n")
ind.name <- colnames(data)</pre>
ind.name[1] <- "(Intercept)"</pre>
test.mat <- cbind(ind.name, round(beta,4), round(std.error,4),
round(t.value,4), round(Pr.t,4))
cat("₩n₩n₩n== PARAMETER ESTIMATES ==₩n₩n".
encodeString(c(" ", "Estimate", "Std.Error", "t value", "Pr(>|t|)"),
width=11, justify="right"), "₩n")
for(i in 1:nrow(test.mat)) {
cat(encodeString(test.mat[i,], width=11, justify="right"), aster(Pr.t[i]),"\n")
}
cat("₩n", "===Various Statistics in Multiple Regression===", "₩n₩n")
print(args)
```

Checking function 1

```
N <- 100
set.seed(1234)
tX1 <- rnorm(N,0,1)
tX2 <- rnorm(N,3,1)
tX3 <- rgamma(N,1,3)
tX4 <- sample(c(0,1),N,replace=T)
tX5 <- sample(1:3,N,replace=T,prob=c(1,2,3)/6)
tX6 <- rbinom(N,4,0.3)
tX <- cbind(rep(1,length(tX1)),tX1,tX2,tX3,tX4,tX5,tX6)
tbeta <- (0:6)/5
ty <- as.vector(tX%*%tbeta)+rnorm(N,0,2)
dat <- data.frame(y=ty, age=tX1, height=tX2, weight=tX3,</pre>
```

```
smoking=tX4, therapy=tX5, surgery=tX6)
res1 <- MyReg(dat)
str(res1)
attributes(res1)
```

Result

Sourc	е	df	SS	MS	F	P-value			
Regress Er To		6 93 99	195.3 347.11 542.41	32.55 3.73	8.72	0 ,	***		
		 or variar 0.3601	nce : 3.73	23					
== PARA	METE	R ESTIM	IATES ==						
(Intercep	t)	Estima -0.7866	3 1.	182	t value -0.6655	0.507			
	age	0.01		.1951	0.1012				
hei		0.598		1953	3.0653				
wei		-0.080			-0.1322				
smo	Ŭ)27 (0.713				
thera surg		1.280 1.094		2794 2018	4.5809 5.4219		0 ***		
\/ori	oue C	tatiotico	in Multiple	Pograce	sion				
van	Jus 3	ialistics	iii wuitipie	negress	51011				
SData									
	у				weight				
					5 0.30065			2	3
					5 0.37135		0	3	2
					5 0.21326 2 0.37275		0 1	2 2	1 1
								2	
					4 0.24822 3 0.39410		0	3	1
					5 0.39410 54 0.88382		0	2	1
					64 0.53196		1	2	1
					3 0.17445		0	3	3
					19 0.00748		1	1	2
					54 0.62611		0	3	1
					2 1.17962		1	1	1
	46059	- 08 -0.77	6253895	1.890232	28 0.10258	1133	1	2	3
4 6.5	96415	5 0.06	4458817	3.849274	2 0.22467	7931	0	3	1

15	7.1039366 0.959494059 3.0223625 0.563909112	0	3	2	
16	1.4979346 -0.110285494 3.8311406 0.167726840	0	2	0	
17	3.2428745 -0.511009506 1.7557121 0.201034863	0	3	1	
18	6.2127608 -0.911195417 3.1690264 0.254401211	1	3	1	
19	8.1941169 -0.837171680 3.6731663 0.693440641	0	2	2	
20	6.0718540 2.415835178 2.9737236 0.213521547	1	3	1	
21	3.4667472 0.134088220 2.8086078 0.098975684	1	2	1	
22	0.4867931 -0.490685897 2.2180934 0.176831684	1	3	1	
23	4.7385541 -0.440547872 5.0581620 0.024831943	1	1	0	
24	4.5970284 0.459589441 3.7505015 0.250382061	0	2	0	
25	7.8639016 -0.693720247 4.8242083 0.757634302	0	3	0	
26	6.9645135 -1.448204910 3.0800596 0.147808868	0	3	0	
27	5.0848131 0.574755721 2.3685907 0.180896373	0	3	1	
28	8.7539894 -1.023655723 1.4867119 0.278347274	0	2	3	
29	8.3501663 -0.015138300 2.3639002 0.008344596	1	3	3	
30	5.3399869 -0.935948601 3.2263015 0.315793550	0	3	2	
31	5.1378487 1.102297546 4.0136903 0.013843684	1	3	1	
32	5.0961565 -0.475593079 3.2527501 0.640095477	0	3	1	
33	5.0096718 -0.709440038 1.8280517 0.275633695	1	3	0	
34	4.4533125 -0.501258061 3.6687143 0.234801962	0	3	0	
35	4.9573960 -1.629093469 1.3498991 0.235832515	0	3	1	
36	5.3893573 -1.167619262 2.6341478 0.285561219	1	2	1	
37	7.7728607 -2.180039649 2.6838817 0.510195492	0	3	2	
38	3.9803126 -1.340993192 1.0517540 0.290288645	0	3	1	
39	7.9956412 -0.294293859 3.9200575 0.359636780	0	3	0	
40	5.5369194 -0.465897540 2.3771284 0.006432923	1	3	0	
41	3.2315194 1.449496265 2.6659634 0.770510833	1	3	0	
42	6.7268347 -1.068642724 4.3951479 0.226339440	0	2	3	
43	3.5572367 -0.855364634 3.6366744 0.403122869	0	1	0	
44	3.9056203 -0.280623002 2.8915683 1.045380347	1	1	1	
45	5.7657251 -0.994340076 3.5137628 0.115163135	1	3	0	
	6.8175870 -0.968514318 3.3992718 1.304649095			1	
46	6.4152961 -1.107318193 4.6628564 0.274436277	1	2 2	0	
		0			
48	4.8616932 -1.251985886 3.2758934 0.175208053	1	3	1	
49		1	2	1	
50	4.1239824 -0.496849957 3.3475520 0.032860857	1	2	1	
51	5.3127850 -1.806031257 2.6227624 0.465253488	0	3	3	
52	1.2245240 -0.582075925 3.0976195 0.999719975	0	2	1	
53	6.4538941 -1.108889624 4.6387446 0.048526795	0	2	2	
54	7.2596023 -1.014962009 2.1244075 0.016168668	0	3	2	
55	7.5936876 -0.162309524 3.1217600 0.165215369	1	3	1	
56	1.5583003 0.563055819 4.3621307 0.468037451	0	1	1	
57	3.0788377 1.647817473 2.7653789 1.170797202	0	2	1	
58	0.4581519 -0.773353424 1.9466172 0.527473505	1	1	0	
59	3.3099758 1.605909629 2.1302164 0.523417265	0	2	1	
60	5.2972146 -1.157808548 2.6098730 0.240719133	1	2	1	
61	7.4377150 0.656588464 2.1526499 0.093950833	1	2	2	
62	5.4576686 2.548991071 2.7393606 0.136985760	1	1	3	
63	-1.9376925 -0.034760390 2.5855803 0.939535162	0	1	1	
64	9.2465962 -0.669633580 2.8169492 0.243493845	1	3	2	
65	7.3245442 -0.007604756 3.4070561 0.554455368	0	2	2	

66	3.3409581 1.777084448 3.6246331 0.229048919	1	2	0	
67	5.8706458 -1.138607737 4.6782057 0.290679589	1	3	2	
68	6.0322781 1.367827179 2.9313063 0.310287531	1	3	1	
69	4.7213034 1.329564791 2.6791601 1.945855520	0	2	0	
70	7.5783331 0.336472797 4.4710057 0.127057828	1	1	2	
71	7.6815165 0.006892838 4.7043294 0.030359993	0	3	0	
72	4.4577125 -0.455468738 3.0432440 0.048792384	1	3	1	
73	7.7402535 -0.366523933 2.6673427 1.275292553	0	3	2	
74	9.7061666 0.648286568 1.1777646 0.395085718	1	3	2	
75	3.7923051 2.070270861 4.4112624 0.694050412	0	3	0	
76	2.3613461 -0.153398412 2.1624176 0.287642700	1	1	0	
77	3.1786706 -1.390700947 1.8762372 0.082086647	1	3	2	
78	5.1042255 -0.723581777 6.0437659 0.760985052	1	1	0	
79	5.2019065 0.258261762 3.2350213 0.231048529	1	3	1	
80	2.6156518 -0.317059115 2.9667414 0.237070641	0	2	1	
81	5.2341128 -0.177789958 0.2677805 0.204189201	1	1	4	
82	6.4998278 -0.169994077 2.9002094 0.474560230	1	1	2	
83	-0.9153396 -1.372301886 3.9760317 0.489410169	1	1	0	
84	5.9297626 -0.173787170 3.4138689 0.083323763	0	3	2	
85	2.6109900 0.850232257 3.9123222 0.172416743	1	2	0	
86	6.4501599 0.697608712 4.9837322 0.068972247	1	3	2	
87	8.4683504 0.549997351 4.1691085 0.569063747	0	3	2	
88	4.8777452 -0.402731975 2.4912630 0.430463151	0	3	0	
89	7.8100242 -0.191593770 3.7041802 0.301186011	1	2	3	
90	5.2398306 -1.194527880 2.8015837 0.138446892	0	2	1	
91	5.2926870 -0.053158819 2.4619292 0.537928137		2	2	
92	2.6914147 0.255196001 0.1442413 0.048790497		3	3	
93	7.0006510 1.705964007 2.2103531 0.777457371	0	3	0	
94	5.5954422 1.001513252 3.4878146 0.102332856	0	2	2	
95	7.2981776 -0.495583443 5.1680325 0.767098073	0	2	3	
96	4.8584337	1	1	1	
97	7.0215120 -1.134608044 3.6202102 0.780808501				
			3	0	
98	8.6139680 0.878203627 2.0340968 0.287524310		3	3	
99		1	3	0	
100	3.9999188 2.121117105 0.9217625 0.191202086	0	3	0	
\$Bet					
	[,1]				
	-0.78660499				
age	0.01975009				
heig					
_	ht -0.08026628				
	king 0.29271521				
	apy 1.28005300				
surg	ery 1.09439426				
\$Sig	ma2				
	[,1]				
[1,]	3.732336				
1					

\$Predict

```
[,1]
 [1,] 7.345432
 [2,] 6.729701
 [3,] 4.707563
 [4,] 4.579432
 [5,] 4.157849
 [6,] 6.022136
 [7,] 4.044942
 [8,] 5.003657
[9,] 8.319940
[10,] 4.721444
[11,] 5.766840
[12,] 3.173471
[13,] 6.457367
[14,] 6.435443
[15,] 7.025279
[16,] 4.051261
[17,] 5.172725
[18,] 6.299293
[19,] 6.088929
[20,] 6.251371
[21,] 4.836605
[22,] 5.744576
[23,] 3.803390
[24,] 4.007609
[25,] 5.866912
[26,] 4.856876
[27,] 5.562668
[28,] 5.904101
[29,] 8.043563
[30,] 7.129841
[31,] 6.864001
[32,] 6.034341
[33,] 4.404443
[34,] 5.220976
[35,] 4.904922
[36,] 4.691485
[37,] 6.764963
[38,] 4.727765
[39,] 5.365503
[40,] 4.759550
[41,] 4.908952
[42,] 7.648438
[43,] 2.621186
[44,] 3.522059
[45,] 5.420799
[46,] 5.071638
[47,] 4.520886
[48,] 6.362891
[49,] 5.229931
[50,] 5.152074
```

```
[51,] 7.833764
[52,] 4.630455
[53,] 6.713343
[54,] 6.492714
[55,] 6.292947
[56,] 4.172657
[57,] 4.461878
[58,] 1.893837
[59,] 4.132791
[60,] 4.680746
[61,] 5.549052
[62,] 5.748532
[63,] 3.059525
[64,] 7.188573
[65,] 5.957170
[66,] 4.252710
[67,] 8.289710
[68,] 6.197514
[69,] 3.247374
[70,] 5.647836
[71,] 5.867363
[72,] 6.249501
[73,] 6.729468
[74,] 6.221184
[75,] 5.679407
[76,] 2.054514
[77,] 6.624157
[78,] 4.328715
[79,] 6.363770
[80,] 4.618558
[81,] 5.304138
[82,] 4.669629
[83,] 3.099912
[84,] 7.275835
[85,] 4.411167
[86,] 8.526665
[87,] 7.703244
[88,] 4.502370
[89,] 7.538839
[90,] 4.510277
[91,] 5.684539
[92,] 6.424207
[93,] 4.348007
[94,] 6.061734
[95,] 8.079016
[96,] 3.973535
[97,] 5.428321
[98,] 7.548656
[99,] 5.214942
[100,] 3.631885
```

```
$Residuals
            [,1]
 [1,] 0.27307748
 [2,] 4.40988390
 [3,] 1.07631221
 [4,] 1.63487922
 [5,] 3.60266744
 [6,] 1.75189198
 [7,] -2.03757453
 [8,] 1.89292234
 [9,] -0.60461022
 [10,] 4.04941549
[11,] -0.65187166
[12,] -1.77921650
 [13,] 1.58869294
[14,] 0.16097255
[15,] 0.07865770
 [16,] -2.55332600
 [17,] -1.92985078
[18,] -0.08653188
[19,] 2.10518761
 [20,] -0.17951677
 [21,] -1.36985822
[22,] -5.25778252
 [23,] 0.93516377
 [24,] 0.58941938
[25,] 1.99698954
[26,] 2.10763788
 [27,] -0.47785447
[28,] 2.84988813
[29,] 0.30660316
 [30,] -1.78985430
 [31,] -1.72615274
[32,] -0.93818463
[33,] 0.60522834
 [34,] -0.76766374
[35,] 0.05247420
[36,] 0.69787267
 [37,] 1.00789823
 [38,] -0.74745238
[39,] 2.63013818
[40,] 0.77736946
 [41,] -1.67743265
 [42,] -0.92160296
[43,] 0.93605032
[44,] 0.38356091
 [45,] 0.34492631
[46,] 1.74594924
[47,] 1.89440971
[48,] -1.50119816
[49,] 0.17803138
```

```
[50,] -1.02809195
[51,] -2.52097847
[52,] -3.40593097
[53,] -0.25944882
[54,] 0.76688853
[55,] 1.30074046
[56,] -2.61435704
[57,] -1.38304001
[58,] -1.43568476
[59,] -0.82281543
[60,] 0.61646826
[61,] 1.88866260
[62,] -0.29086317
[63,] -4.99721750
[64,] 2.05802371
[65,] 1.36737425
[66,] -0.91175167
[67,] -2.41906393
[68,] -0.16523549
[69,] 1.47392896
[70,] 1.93049729
[71,] 1.81415371
[72,] -1.79178830
[73,] 1.01078597
[74,] 3.48498284
[75,] -1.88710167
[76,] 0.30683238
[77,] -3.44548652
[78,] 0.77551044
[79,] -1.16186342
[80,] -2.00290589
[81,] -0.07002558
[82,] 1.83019893
[83,] -4.01525198
[84,] -1.34607257
[85,] -1.80017661
[86,] -2.07650540
[87,] 0.76510680
[88,] 0.37537499
[89,] 0.27118489
[90,] 0.72955358
[91,] -0.39185245
[92,] -3.73279184
[93,] 2.65264428
[94,] -0.46629188
[95,] -0.78083813
[96,] 0.88489860
[97,] 1.59319079
[98,] 1.06531237
[99,] 2.22644678
[100,] 0.36803345
```

```
$Standard.Residuals
 [1] 0.14621932 2.32114970 0.57153929 0.87974071 1.90940601 0.92011018
 [7] -1.08413684  0.99306711 -0.32351339  2.17266615 -0.34288737 -0.98076112
 [13] 0.84919099 0.08485406 0.04173664 -1.36122109 -1.02336295 -0.04573283
 [19] 1.11549389 -0.09804247 -0.71981894 -2.77953994 0.51186661 0.31366989
 [25] 1.07755297 1.13136116 -0.25226494 1.53626742 0.16453837 -0.94461232
 [31] -0.92611157 -0.49376898 0.32502459 -0.40735099 0.02834328 0.36761431
 [37] \quad 0.54242613 \quad -0.40399631 \quad 1.39370414 \quad 0.41608024 \quad -0.91057152 \quad -0.49983195
 [43] 0.50878722 0.20754560 0.18421732 0.96496966 1.01878534 -0.79633830
 [49] 0.09331282 -0.54082447 -1.36291393 -1.81089345 -0.13990659 0.40781113
 [55] 0.68549359 -1.41232270 -0.75325283 -0.78080575 -0.44049989 0.32484902
 [61] 1.00074739 -0.16549547 -2.69924865 1.08900085 0.72007226 -0.49087686
 [67] \ -1.31213965 \ -0.08811307 \ \ 0.87626859 \ \ 1.04331695 \ \ 0.97856093 \ -0.94605065
 [73] \quad 0.55642828 \quad 1.87485168 \quad -1.03107986 \quad 0.16624905 \quad -1.84199828 \quad 0.43186179
 [79] -0.61288542 -1.05455478 -0.04005917 0.97389414 -2.16611993 -0.71160574
 [85] -0.95776832 -1.13700689 0.40890568 0.19899248 0.14514993 0.38777677
 [91] -0.20652954 -2.06344447 1.43414533 -0.24914333 -0.43376220 0.47286605
 [97] 0.86279698 0.57223897 1.19066657 0.20592839
$SSR
[1] 195.2996
$SSF
[1] 347.1072
$F.Statistic
[1] 8.721064
$P value
[1] 1.556127e-07
> str(res1)
List of 10
$ Data
                   :'data.frame':
                                    100 obs. of 7 variables:
           : num [1:100] 7.62 11.14 5.78 6.21 7.76 ...
 ..$ v
 ..$ age : num [1:100] -1.207 0.277 1.084 -2.346 0.429 ...
 ..$ height : num [1:100] 3.41 2.53 3.07 2.5 2.17 ...
 ..$ weight: num [1:100] 0.301 0.371 0.213 0.373 0.248 ...
 ..$ smoking: num [1:100] 1 0 0 1 0 0 0 1 0 1 ...
 ..$ therapy: int [1:100] 2 3 2 2 2 3 2 2 3 1 ...
 ..$ surgery: int [1:100] 3 2 1 1 1 1 1 3 2 ...
                   : num [1:7, 1] -0.7866 0.0198 0.5986 -0.0803 0.2927 ...
 ..- attr(*, "dimnames")=List of 2
 ....$ : chr [1:7] "" "age" "height" "weight" ...
 .. ..$ : NULL
 $ Sigma2
                   : num [1, 1] 3.73
 $ Predict
                 : num [1:100, 1] 7.35 6.73 4.71 4.58 4.16 ...
$ Residuals
                  : num [1:100, 1] 0.273 4.41 1.076 1.635 3.603 ...
 $ Standard.Residuals: num [1:100] 0.146 2.321 0.572 0.88 1.909 ...
                   : num 195
```

```
$ SSF
                      : num 347
 $ F.Statistic
                   : num 8.72
$ P.value
                    : num 1.56e-07
> attributes(res1)
$names
[1] "Data"
                          "Beta"
                                               "Sigma2"
[4] "Predict"
                         "Residuals"
                                              "Standard.Residuals"
[7] "SSR"
                          "SSE"
                                                "F.Statistic"
[10] "P.value"
```

Checking function 2

```
crime <- read.csv("D:/수업자료/대학/(4)Senior/4-2/
탐색적자료분석및상담(1전공)/Assignment/crime.csv",sep=",",header=T)
crime1 <- crime[,-1]
res2 <- MyReg(crime1)
str(res2)
attributes(res2)
```

Result

```
== ANALYSIS OF VARIANCE ==
  Source
                     SS
                              MS
                                            P-value
                7 2405.09
                            343.58
                                      1.47
                                               0.2
 Regression
               42 9799.79
     Error
                            233.33
               49 12204.88
     Total
Estimated error variance: 233.3282
R-squares : 0.1971
== PARAMETER ESTIMATES ==
             Estimate Std.Error
                                 t value Pr(>|t|)
                                                  0 ***
(Intercept)
            58.1798
                     10.0669
                                  5.7793
    MURDER
               -1.6568
                          0.9025
                                   -1.8358
                                                 0.0735 .
      RAPE
               0.0764
                          0.3902
                                     0.1959
                                                0.8457
   ROBBERY
                0.0328
                          0.0388
                                     0.8454
                                                 0.4027
   ASSAULT
                0.0064
                         0.0365
                                    0.1739
                                                 0.8628
  BURGLARY
                0.002
                           0.0111
                                     0.1823
                                                 0.8562
   LARCENY
               -0.0069
                           0.0058
                                     -1.2057
                                                 0.2347
      AUTO
               -0.0212
                          0.0157
                                    -1.3457
                                                 0.1856
===Various Statistics in Multiple Regression===
```

\$Dat	:a							
S	TATE	MURDER RA	PE ROBE	BERY AS	SAULT BI	JRGLARY	LARCENY	AUTO
1	38	0.9 9.0	13.3	43.8	446.1	1843.0	144.7	
2	55	2.8 12.9	52.2	63.7	846.9	2614.2	220.7	
3	15	7.2 25.5	128.0	64.1		3920.4		
4	33	3.2 10.7	23.2	76.0		2343.9		
5	27	2.7 19.5	85.9	85.8		2559.3		
6	19	2.3 10.6	41.2	89.8		2685.1	219.9	
7	54	6.0 13.2	42.2	90.9			163.3	
8	50	1.4 15.9	30.8	101.2			265.2	
9	31	3.9 18.1	64.7	112.7		2316.1	249.1	
10	21	10.1 19.1	81.1	123.3		1662.1	245.4	
11	42	5.6 19.0	130.3	128.0		1624.1	333.2	
12	9	4.2 16.8	129.5	131.8		2620.7		
13	49	3.5 20.3	68.8	147.3		3004.6		
14	18	7.4 26.5	123.2	153.5		2498.7		
15	46	2.0 13.5	17.9	155.7		1704.4		
16	30	5.4 16.7	39.2	156.8		2773.2		
17	51	9.0 23.3	92.1	165.7		2521.2		
18	23	2.4 13.5	38.7	170.0		2350.7		
19	16	5.5 19.4	39.6	170.0		2599.6		
20	56	5.4 21.9	39.7	172.3		2772.2		
21			100.7	180.5		2739.3		
22	20 39	6.6 22.0	190.7	181.1		2696.8		
23		7.8 27.3		185.1		2774.5		
	34 28	5.6 21.0	180.4			1239.9		
24	10	14.3 19.6	65.7	189.1		3678.4		
25		6.0 24.9	157.0	194.2				
26	44	3.6 10.5	86.5	201.0		2844.1	791.4	
27	5	8.8 27.6	83.2	203.4		1862.1	183.4	
28	47	10.1 29.7	145.8	203.9		1776.5		
29	40	8.6 29.2	73.8	205.0		2228.1 2988.7	326.8	
30	48	13.3 33.8	152.4	208.2				
31	17	9.9 21.8	211.3	209.0		2828.5		
32	53	4.3 39.6	106.2	224.8		3386.9		
33	25	3.1 20.8	169.1	231.6		2311.3		
34	29	9.6 28.3	189.0	233.5	1318.3	2424.2		
35	13	11.7 31.1	140.5	256.5	1351.1	2170.2		
36	26	9.3 38.9	261.9	274.6	1522.7	3159.0	545.5	
37	1	14.2 25.2	96.8	278.3	1135.5	1881.9	280.7	
38	2	10.8 51.6	96.8	284.0	1331.7	3369.8	753.3	
39	41	4.9 39.9	124.1	286.9	1636.4	3506.1	388.9	
40	8	6.3 42.0	170.7	292.9	1935.2	3903.2	477.1	
41	4	9.5 34.2	138.2	312.3	2346.1	4467.4	439.5	
42	37	10.6 17.0	61.3	318.3	1154.1	2037.8	192.1	
43	36	10.7 29.4	472.6	319.1	1728.0		745.8	
44	22	15.5 30.9	142.9	335.5	1165.5		337.7	
45	35	8.8 39.1	109.6	343.4	1418.7		259.5	
46	32	15.8 49.1	323.1	355.0	2453.1	4212.6	559.2	
47	6	11.5 49.4	287.0	358.0	2139.4	3499.8	663.5	
48	24	8.0 34.8	292.1	358.9	1400.0	3177.7	428.5	
49	12	10.2 39.6	187.9	449.1	1859.9	3840.5	351.4	

```
45 11.9 33.0 105.9 485.3 1613.6 2342.4 245.1
$Beta
              [,1]
       58.179791780
MURDER -1.656824516
RAPE 0.076432200
ROBBERY 0.032812798
ASSAULT 0.006353436
BURGLARY 0.002030337
LARCENY -0.006939401
AUTO -0.021173230
$Sigma2
 [,1]
[1,] 233.3282
$Predict
       [,1]
[1,] 43.14388
[2,] 35.54978
[3,] 19.12055
[4,] 34.57741
[5,] 35.83982
[6,] 35.46237
[7,] 39.65472
[8,] 40.57765
[9,] 36.13708
[10,] 31.39119
[11,] 38.89895
[12,] 29.57862
[13,] 31.57203
[14,] 29.83763
[15,] 43.68230
[16,] 28.63495
[17,] 28.83079
[18,] 38.58928
[19,] 32.00845
[20,] 29.75390
[21,] 31.77492
[22,] 30.02156
[23,] 30.43378
[24,] 29.53991
[25,] 24.52991
[26,] 23.66445
[27,] 34.90126
[28,] 33.37685
[29,] 30.12135
[30,] 19.14746
[31,] 23.08731
[32,] 31.12327
```

```
[33,] 24.58577
[34,] 29.96460
[35,] 28.78764
[36,] 25.70289
[37,] 24.82628
[38,] 12.58026
[39,] 29.76381
[40,] 25.15551
[41,] 16.02951
[42,] 30.08525
[43,] 28.64560
[44,] 19.75782
[45,] 28.87439
[46,] 12.51970
[47,] 20.60261
[48,] 31.16831
[49,] 23.01093
[50,] 29.37578
$Residuals
           [,1]
[1,] -5.1438808
[2,] 19.4502215
[3,] -4.1205523
 [4,] -1.5774101
[5,] -8.8398167
[6,] -16.4623721
[7,] 14.3452824
[8,] 9.4223505
[9,] -5.1370768
[10,] -10.3911866
[11,] 3.1010470
[12,] -20.5786153
[13,] 17.4279659
[14,] -11.8376264
[15,] 2.3177029
[16,] 1.3650541
[17,] 22.1692065
[18,] -15.5892818
[19,] -16.0084477
[20,] 26.2461020
[21,] -11.7749210
[22,] 8.9784434
[23,] 3.5662170
[24,] -1.5399068
[25,] -14.5299068
[26,] 20.3355484
[27,] -29.9012552
[28,] 13.6231524
[29,] 9.8786508
[30,] 28.8525410
```

```
[31,] -6.0873137
[32,] 21.8767301
[33,] 0.4142290
[34,] -0.9646009
[35,] -15.7876359
[36,] 0.2971090
[37,] -23.8262785
[38,] -10.5802551
[39,] 11.2361943
[40,] -17.1555057
[41,] -12.0295057
[42,] 6.9147544
[43,] 7.3544001
[44,] 2.2421752
[45,] 6.1256085
[46,] 19.4803009
[47,] -14.6026130
[48,] -7.1683107
[49,] -11.0109307
[50,] 15.6242192
$Standard.Residuals
[1] -0.36121647 1.33939163 -0.32444263 -0.10775065 -0.60168076 -1.14712006
[7] 0.98970216 0.69457958 -0.34873481 -0.71896082 0.21461404 -1.41042592
[13] \quad 1.17530965 \quad -0.79460820 \quad 0.16332833 \quad 0.09628086 \quad 1.50152330 \quad -1.09362497
[19] -1.07409594 1.83237798 -0.78733160 0.60605599 0.24074008 -0.11419928
[25] -0.99896653 1.61278352 -2.04641305 0.96093626 0.67352815 2.02738267
[31] \ -0.44035735 \ \ 1.56942649 \ \ 0.04068382 \ -0.06466979 \ -1.07521232 \ \ 0.02053804
[37] -1.68470507 -1.03165343 0.79409809 -1.20067617 -0.92558091 0.50411206
[43] \quad 0.67109925 \quad 0.16273439 \quad 0.42701794 \quad 1.46902313 \quad -1.04447941 \quad -0.53624931
[49] -0.81275898 1.25500996
$SSR
[1] 2405.095
$SSE
[1] 9799.785
$F.Statistic
[1] 1.472539
$P.value
[1] 0.2033474
> str(res2)
List of 10
$ Data
                    :'data.frame': 50 obs. of 8 variables:
 ..$ STATE : int [1:50] 38 55 15 33 27 19 54 50 31 21 ...
 ..$ MURDER : num [1:50] 0.9 2.8 7.2 3.2 2.7 2.3 6 1.4 3.9 10.1 ...
 ..$ RAPE
            : num [1:50] 9 12.9 25.5 10.7 19.5 10.6 13.2 15.9 18.1 19.1 ...
 ..$ ROBBERY: num [1:50] 13.3 52.2 128 23.2 85.9 41.2 42.2 30.8 64.7 81.1 ...
```

```
..$ ASSAULT : num [1:50] 43.8 63.7 64.1 76 85.8 ...
 ..$ BURGLARY: num [1:50] 446 847 1912 1042 1135 ...
 ..$ LARCENY: num [1:50] 1843 2614 3920 2344 2559 ...
 ..$ AUTO : num [1:50] 145 221 489 293 343 ...
$ Beta
                  : num [1:8, 1] 58.17979 -1.65682 0.07643 0.03281 0.00635 ...
 ..- attr(*, "dimnames")=List of 2
 .. ..$ : chr [1:8] "" "MURDER" "RAPE" "ROBBERY" ...
 .. ..$ : NULL
$ Sigma2
                   : num [1, 1] 233
$ Predict
                 : num [1:50, 1] 43.1 35.5 19.1 34.6 35.8 ...
$ Residuals
                   : num [1:50, 1] -5.14 19.45 -4.12 -1.58 -8.84 ...
$ Standard.Residuals: num [1:50] -0.361 1.339 -0.324 -0.108 -0.602 ...
                  : num 2405
$ SSE
                   : num 9800
$ F.Statistic
                : num 1.47
$ P.value
                 : num 0.203
> attributes(res2)
$names
[1] "Data"
                        "Beta"
                                           "Sigma2"
[4] "Predict"
                       "Residuals"
                                          "Standard.Residuals"
[7] "SSR"
                        "SSE"
                                            "F.Statistic"
[10] "P.value"
```