CONTENTS 1

Final

Yuechen Liu, Mufeng Xu, Yanhao Li

Contents

Introduction	2
Load, clean, and tidy data	2
Exploratory analysis/ visualization	3
Models	4
GLM	5
GLMN	6
MARS	7
GAM	8
LDA (from the midterm, LDA is the best among LDA, QDA and KNN)	9
Random Forest	0
gbmA	.3
svml	4
svmr	6
Comparison 1	.8

```
library(tidyverse)
library(caret)
library(glmnet)
library(ISLR)
library(pls)
library(AppliedPredictiveModeling)
library(MASS)
library(e1071)
library(mlbench)
library(pROC)
library(arsenal)
library(visdat)
library(pdp)
library(vip)
library(randomForest)
library(ranger)
library(gbm)
library(e1071)
library(kernlab)
```

Introduction

Stroke is a serious life-threatening medical condition. According to the World Health Organization, stroke is the second leading cause of death globally. To better understand which factors correlate to the stroke event, our group find a stroke prediction dataset. This dataset contains twelve columns. The first column labels the unique identifier of the patient. The last column records the occurrence of stroke by 1 (Yes) or 0 (No). The other ten columns contain the observations of possible predictors.

Load, clean, and tidy data

```
stroke = read csv("./healthcare-dataset-stroke-data.csv") %>%
  mutate(
   bmi = as.numeric(bmi),
    gender = as.factor(gender),
   hypertension = as.factor(hypertension),
   heart_disease = as.factor(heart_disease),
   work_type = as.factor(work_type),
    smoking_status = as.factor(smoking_status)
  dplyr::select(-id, -Residence_type, -ever_married, -smoking_status, -work_type)
stroke1 = stroke %>%
  janitor::clean_names() %>%
  na.omit() %>%
  filter(
   bmi != "N/A",
   gender != "Other"
  ) %>%
  mutate(
```

```
gender = recode(
    gender,
    "Male" = 0,
    "Female" = 1
),
stroke = recode(
    stroke,
    "0" = "No",
    "1" = "Yes"
),
stroke = as.factor(stroke)
) %>%
relocate(
    age, avg_glucose_level, bmi
)
```

Exploratory analysis/ visualization

```
stats = tableby(stroke ~ gender + age + hypertension + heart_disease + avg_glucose_level + bmi, data =
summary(stats, text = TRUE) %>% knitr::kable()
```

	0 (N=4861)	1 (N=249)	Total (N=5110)	p value
gender	, , ,	, ,	, , , , , , , , , , , , , , , , , , , ,	0.790
- Female	2853 (58.7%)	141 (56.6%)	2994 (58.6%)	
- Male	2007 (41.3%)	108 (43.4%)	2115 (41.4%)	
- Other	1 (0.0%)	0 (0.0%)	1 (0.0%)	
age	(()	()	< 0.001
- Mean (SD)	41.972 (22.292)	67.728 (12.727)	43.227 (22.613)	
- Range	0.080 - 82.000	1.320 - 82.000	0.080 - 82.000	
hypertension				< 0.001
- 0	4429 (91.1%)	183 (73.5%)	4612 (90.3%)	
- 1	432 (8.9%)	66 (26.5%)	498 (9.7%)	
heart disease	()	(' ' ' ' ' '	()	< 0.001
- 0	4632 (95.3%)	202 (81.1%)	4834 (94.6%)	
- 1	229 (4.7%)	47 (18.9%)	276 (5.4%)	
avg_glucose_level	()	(' ' ' ' ' '	()	< 0.001
- Mean (SD)	104.796 (43.846)	132.545 (61.921)	106.148 (45.284)	
- Range	55.120 - 267.760	56.110 - 271.740	55.120 - 271.740	
bmi				0.003
- N-Miss	161	40	201	
- Mean (SD)	28.823 (7.908)	30.471 (6.329)	28.893 (7.854)	
- Range	10.300 - 97.600	16.900 - 56.600	10.300 - 97.600	

```
plot = "density",
pch = "|",
auto.key = list(columns = 2),
font = 2)
```


Models

GLM 5

GLM

```
## Prediction No Yes
          No 530 39
##
          Yes 409
##
##
##
                  Accuracy: 0.5429
                    95% CI : (0.5111, 0.5744)
##
##
       No Information Rate: 0.9582
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: -0.0728
##
    Mcnemar's Test P-Value : <2e-16
##
##
##
               Sensitivity: 0.048780
##
               Specificity: 0.564430
##
            Pos Pred Value: 0.004866
            Neg Pred Value: 0.931459
##
##
                Prevalence: 0.041837
##
            Detection Rate: 0.002041
##
      Detection Prevalence: 0.419388
         Balanced Accuracy: 0.306605
##
##
##
          'Positive' Class : Yes
##
```

GLMN 6

```
model.glm$bestTune
```

```
## parameter
## 1 none
```

GLMN

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction No Yes
         No 587 40
##
         Yes 352
##
##
##
                  Accuracy: 0.6
##
                    95% CI: (0.5686, 0.6308)
##
      No Information Rate: 0.9582
      P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: -0.0756
##
##
   Mcnemar's Test P-Value : <2e-16
##
##
              Sensitivity: 0.024390
##
              Specificity: 0.625133
##
            Pos Pred Value : 0.002833
##
            Neg Pred Value: 0.936204
##
               Prevalence: 0.041837
           Detection Rate: 0.001020
##
```

MARS 7

```
## Detection Prevalence : 0.360204

## Balanced Accuracy : 0.324762

##

## 'Positive' Class : Yes

##

model.glmn$bestTune

## alpha lambda

## 68 0.6 0.003059592
```

MARS

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction No Yes
         No 484 38
##
##
         Yes 455
##
##
                  Accuracy : 0.4969
                    95% CI: (0.4652, 0.5287)
##
##
      No Information Rate : 0.9582
##
      P-Value [Acc > NIR] : 1
##
##
                     Kappa: -0.0702
##
##
  Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.073171
               Specificity: 0.515442
##
```

GAM 8

```
Pos Pred Value: 0.006550
##
##
           Neg Pred Value: 0.927203
##
               Prevalence: 0.041837
##
           Detection Rate: 0.003061
##
      Detection Prevalence: 0.467347
##
         Balanced Accuracy: 0.294306
##
          'Positive' Class : Yes
##
##
model.mars$bestTune
   nprune degree
## 7
         8
```

GAM

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction No Yes
         No 512 39
##
          Yes 427
##
##
##
                  Accuracy : 0.5245
##
                    95% CI: (0.4927, 0.5562)
##
       No Information Rate: 0.9582
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: -0.0735
##
##
   Mcnemar's Test P-Value : <2e-16
##
```

```
##
               Sensitivity: 0.048780
##
               Specificity: 0.545261
##
            Pos Pred Value: 0.004662
            Neg Pred Value: 0.929220
##
##
                Prevalence: 0.041837
##
            Detection Rate: 0.002041
##
      Detection Prevalence: 0.437755
         Balanced Accuracy: 0.297021
##
##
##
          'Positive' Class : Yes
##
model.gam$bestTune
     select method
## 1 FALSE GCV.Cp
```

LDA (from the midterm, LDA is the best among LDA, QDA and KNN)

```
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction No Yes
##
          No 556
##
          Yes 383
                    1
##
##
                  Accuracy : 0.5684
##
                    95% CI: (0.5367, 0.5996)
##
       No Information Rate: 0.9582
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: -0.0767
##
```

Random Forest 10

```
Mcnemar's Test P-Value : <2e-16
##
              Sensitivity: 0.024390
##
##
              Specificity: 0.592119
           Pos Pred Value: 0.002604
##
##
           Neg Pred Value: 0.932886
##
               Prevalence: 0.041837
           Detection Rate: 0.001020
##
##
      Detection Prevalence: 0.391837
##
         Balanced Accuracy: 0.308255
##
##
          'Positive' Class : Yes
##
```

model.lda\$bestTune

```
## parameter
## 1 none
```

Random Forest

Random Forest 11


```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction No Yes
          No 939 41
##
##
          Yes
##
                  Accuracy : 0.9582
##
                    95% CI : (0.9437, 0.9698)
##
##
       No Information Rate: 0.9582
       P-Value [Acc > NIR] : 0.5414
##
##
                     Kappa : 0
##
##
   Mcnemar's Test P-Value : 4.185e-10
```

Random Forest 12

```
##
               Sensitivity: 0.00000
##
               Specificity: 1.00000
##
##
            Pos Pred Value :
            Neg Pred Value: 0.95816
##
##
                Prevalence: 0.04184
##
            Detection Rate: 0.00000
      Detection Prevalence : 0.00000
##
##
         Balanced Accuracy: 0.50000
##
##
          'Positive' Class : Yes
##
```

model.rf\$bestTune

```
## mtry splitrule min.node.size
## 4 1 gini 8
```


gbmA 13

gbmA


```
test.pred.prob = predict(model.gbma, newdata = x2, type = "prob")[,1]
test.pred = rep("Yes", length(test.pred.prob))
```

svml 14

```
test.pred[test.pred.prob < 0.99] = "No"</pre>
confusionMatrix(data = as.factor(test.pred),
                reference = y2,
                positive = "Yes")
## Confusion Matrix and Statistics
##
             Reference
## Prediction No Yes
##
          No 448 37
          Yes 491
##
##
                  Accuracy : 0.4612
##
                    95% CI : (0.4297, 0.493)
##
       No Information Rate: 0.9582
##
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: -0.0676
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.097561
##
               Specificity: 0.477103
##
            Pos Pred Value: 0.008081
            Neg Pred Value: 0.923711
##
##
                Prevalence: 0.041837
##
            Detection Rate: 0.004082
##
      Detection Prevalence: 0.505102
##
         Balanced Accuracy: 0.287332
##
          'Positive' Class : Yes
##
##
model.gbma$bestTune
     n.trees interaction.depth shrinkage n.minobsinnode
##
                                   0.001
## 6
        4000
                             2
```

svml

svml 15

maximum number of iterations reached 0.0006552409 0.0006552036maximum number of iterations reached 0

```
plot(model.svml, highlight = TRUE, xTrans = log)
```



```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction No Yes
          No 939 41
##
##
          Yes
##
##
                  Accuracy : 0.9582
                    95% CI : (0.9437, 0.9698)
##
##
       No Information Rate: 0.9582
       P-Value [Acc > NIR] : 0.5414
##
```

svmr 16

```
##
##
                     Kappa: 0
##
   Mcnemar's Test P-Value: 4.185e-10
##
##
##
              Sensitivity: 0.00000
##
              Specificity: 1.00000
           Pos Pred Value :
##
##
           Neg Pred Value: 0.95816
                Prevalence: 0.04184
##
##
           Detection Rate: 0.00000
      Detection Prevalence: 0.00000
##
##
         Balanced Accuracy: 0.50000
##
          'Positive' Class : Yes
##
##
model.svml$bestTune
```

svmr

7 1.880578

maximum number of iterations reached 0.004702465 0.004682068maximum number of iterations reached 0.0

```
plot(model.svmr, highlight = TRUE)
```

svmr 17


```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction No Yes
          No 939 41
##
                0
##
          Yes
##
                  Accuracy : 0.9582
##
                    95% CI : (0.9437, 0.9698)
##
##
       No Information Rate: 0.9582
       P-Value [Acc > NIR] : 0.5414
##
##
                     Kappa: 0
##
##
    Mcnemar's Test P-Value : 4.185e-10
```

```
##
               Sensitivity: 0.00000
##
##
               Specificity: 1.00000
##
            Pos Pred Value :
##
            Neg Pred Value: 0.95816
##
                Prevalence: 0.04184
##
            Detection Rate: 0.00000
##
      Detection Prevalence: 0.00000
##
         Balanced Accuracy: 0.50000
##
##
          'Positive' Class : Yes
##
model.svmr$bestTune
            sigma
                          C
## 1 0.0003354626 0.3678794
```

Comparison

```
##
## Call:
## summary.resamples(object = res)
## Models: glm, glmn, mars, gam, lda, rf, gbmA, svml, svmr
## Number of resamples: 10
##
## ROC
##
             Min.
                    1st Qu.
                               Median
                                           Mean
                                                  3rd Qu.
## glm 0.7850731 0.8110138 0.8408166 0.8480004 0.8759778 0.9245932
## glmn 0.7517209 0.8343608 0.8595070 0.8510521 0.8747653 0.8976846
## mars 0.7291927 0.8045421 0.8578448 0.8378447 0.8744329 0.9000313
                                                                       0
## gam 0.7526596 0.8331948 0.8583532 0.8490858 0.8757431 0.8969024
## lda 0.7257509 0.8223952 0.8388220 0.8362690 0.8613892 0.9094180
                                                                       0
       0.7484355 0.8074546 0.8351651 0.8328594 0.8564612 0.9061327
## gbmA 0.7666615 0.8350648 0.8573217 0.8493674 0.8716755 0.8890801
                                                                       0
## svml 0.3864205 0.5213939 0.5744241 0.6028463 0.6939338 0.8635795
                                                                       0
## svmr 0.4946809 0.6954005 0.7973981 0.7623484 0.8372966 0.8878285
                                                                       0
```

```
##
## Sens
                              Median
##
            Min.
                   1st Qu.
                                          Mean
                                                 3rd Qu. Max. NA's
## glm 1.0000000 1.0000000 1.0000000 1.0000000
  glmn 1.0000000 1.0000000 1.0000000 1.0000000
                                                                0
  mars 0.9973404 1.0000000 1.0000000 0.9997340 1.0000000
                                                                0
  gam 1.0000000 1.0000000 1.0000000 1.0000000
## lda 0.9787234 0.9893617 0.9933511 0.9920213 0.9946809
                                                                0
##
  rf
       1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
                                                                0
  gbmA 1.0000000 1.0000000 1.0000000 1.0000000
                                                                0
  svml 1.0000000 1.0000000 1.0000000 1.0000000
                                                           1
                                                                0
  svmr 1.0000000 1.0000000 1.0000000 1.0000000
                                                                0
##
## Spec
##
       Min. 1st Qu. Median
                                         3rd Qu.
                                                  Max. NA's
                                 Mean
## glm
          0
                  0
                         0 0.00000000 0.00000000 0.0000
## glmn
          0
                  0
                         0 0.00000000 0.00000000 0.0000
                                                          0
                         0 0.00000000 0.00000000 0.0000
## mars
          0
                  0
                         0 0.00000000 0.00000000 0.0000
                                                          0
##
  gam
##
  lda
          0
                         0 0.03639706 0.05882353 0.1875
                                                          0
## rf
          0
                  0
                         0 0.00000000 0.00000000 0.0000
                                                          0
## gbmA
          0
                         0 0.00000000 0.00000000 0.0000
                         0 0.00000000 0.00000000 0.0000
## svml
          0
                  0
                                                          0
## svmr
                          0.00000000 0.00000000 0.0000
```


