Qspice KSKelvin Symbol Explanation

KSKelvin Kelvin Leung

Created on 9-3-2023 Last Updated on 7-11-2024

Comptr: 3 type of Ideal Comparators Overview

Qspice : Comptr.qsym | Comptr-OD.qsym | Comptr-Supply.qsym

Comptr: 3 type of Ideal Comparators – Simulation Results

Qspice : Parent - Comparator.qsch

Delay

Qspice : Delay.qsym

- Delay
 - Reason for Implementation
 - Qspice B-source not offers delay function before 09/22/2023, but after that, Mike Engelhardt implemented delay(input,time) for arbitrary behavioral sources.
 - Concept of Design
 - T1 : Td (delay) in ideal transmission line determines signal delay time
 - R1: To prevent signal reflection, transmission line must terminate with Zo
 - B1: To prevent loading effect when using delay block
 - Symbol of delay.qsym

Opamp-SinglePole : Operation Amplifier Single Pole

Qspice: Opamp-SinglePole.qsch

- Single Pole Opamp
 - This is single pole opamp subckt which used by LTspice and in its opamp.sub library
- Equivalent Formula
 - $V_{output} = Z(R_3, C_3) \times Aol \times I_{G1}$
 - $V_{output} = (R_3 / / \frac{1}{j\omega C_3}) \times Aol \times (V_n V_n)$

opamp.sub in LTspice library

* Copyright © Linear Technology Corp. 1998, 1999, 2000. All rights reserved. subckt opamp 1 2 3 G1 0 3 2 1 {Aol} R3 3 0 1. C3 3 0 {Aol/GBW/6.28318530717959} .ends opamp

Opamp-SinglePole: Operation Amplifier Single Pole

Qspice: Parent.Opamp-SinglePole (.ac).qsch | Parent.Opamp-SinglePole (.tran).qsch

- Test Example
 - Single Pole Opamp in .ac and .tran analysis

Potentiometer

Qspice: Potentiometer.qsym

Potentiometer

- Symbol : Potentiometer.qsym
- Ratio is limited to [1m,0.999]
- Sub-circuit script

.subckt VR + - m params: Rt=1k ratio=0.5 .param w = limit(1m,ratio,0.999) R1 + m (1-w)*Rt R2 m - (w)*Rt .ends VR

VCCS-Ilimit: Voltage Control Current Source with Current Limit

Qspice: VCCS-Ilimit1.qsym | VCCS-Ilimit2.qsym

- VCCS-Ilimit
 - Use Behavioral source with limit(x,y,z) function
 - Intermediate value of x, y, and z
 - Sub-circuit

.subckt VCCS-Ilimit v+ v- out+ out-B1 out- out+ I=limit(gm*(V(v+)-V(v-)),Imax,Imin) .ends VCCS-Ilimit

Symbols

Gain and Signal-Limiter

Qspice : Gain.qsym | Signal-Limiter.qsym

- Gain
 - Gain.qsym
 - $V_{out} = Av \times V_{input}$

- Signal Limiter
 - Signal-Limiter.qsym
 - limit(x,y,z) | intermediate value of x, y, and z, equivalent to min(max(x,y),z)

Sum and Difference

Qspice : Sum.qsym | Difference.qsym

- Sum
 - Sum.qsym
 - $V_{out} = V_{+1} + V_{+2}$

- Difference
 - Difference.qsym
 - $V_{out} = V_{+} V_{-}$

12

PID (Proportional-Integral-Derivative) Controller

Qspice: PID.qsym

- PID (Proportional-Integral-Derivative) Controller
 - PID.qsym
 - $V_{out} = K_p V_{error} + K_i \int V_{error} dt + K_d \frac{dV_{error}}{dt}$

Control System Symbol : Transient Simulation Example

Qspice: CloseLoop Example with control symbol (.tran).qsch

Control System Symbol: AC and Bode Simulation Example Qspice: CloseLoop Example with control symbol (.ac).qsch

Complementary Gate Signal with Deadtime

 $Qspice: Complementary Gate-Duty Exclude Deadtime. qsym \mid Complementary Gate-Duty Include Deadtime. qsym \mid Complementary Gate-Duty Inc$

Complementary Gate

- To generate complementary gate signal (differential output) with deadtime
- Symbol with duty to include or exclude deadtime
 - Include Deadtime, A+ ON time is $\frac{duty}{period}$ + deadtime
 - Exclude Deadtime, A+ ON time is $\frac{duty}{period}$

kskelvin.net 17

18us

24µs

30us

Complementary Gate Driver with Deadtime

Qspice: Gate-DeadTime.qsym

Complementary Driver

- Symbol
 - Gate-DeadTime.qsym
 - Gate driver with complementary output signal separated by deadtime
- Input Parameters
 - Deadtime: deadtime in second
 - TTOL: Temporal tolerance
 - (Invisible) Hi : Output High Level
 - (Invisible) Lo : Output Low Level
- ** beware that as deadtime is required, the ON duration of IN and Q will be different by the deadtime

Phase Shift Pulse with Delay Control

Qspice : PhaseShift_KSK1.qsym

PhaseShift_KSK1.qsym

- Use behavioral source with delay function to generate phase controlled pulse source
- User to define switching frequency and duty as input parameters (these cannot be change during simulation)
- Phase_setpt is input port which control delay time in delay(), the delay is controlled with formula $\frac{v_{phase_setpt}}{2f}$
 - A $\frac{1}{fsw}$ is used to prevent negative y value into delay(x,y,z)
 - z set to $2f_{sw}$ to reduce waveform memory in simulation

PhaseShift_KSK2.qsym

 Same as above but with an extra pulsing source sync with delay to resolve missing pulse

Ideal of PhaseShift_KSK1 subckt

```
.param Vhigh=1
                           .tran 20/fsw
     .param Vlow=0
                           .plot V(out1)+1.1 V(out2)
     .param duty=0.5
                           .plot V(phase setpt)
     .param fsw=100K
     pulse Vlow Vhigh 0 0 0 duty/fsw 1/fsw
phase setpt
                            phase setpt : range [-1,1]
                            -1: -180 degree
     pwl 0 -1 20/fsw 1
                            +1: 180 degree
         =limit(V(phase_setpt),-1,1)
   out1
     <u>↓</u>B2
         =delay(V(Ref),1/fsw,2/fsw)
     \checkmarkV=delay(V(Ref),1/fsw+1/fsw*V(Td)/2,2/fsw)
      delay(x,y,z) with z=2/fsw is to reduce waveform memory
```


Voltage Controlled Oscillator (VCO) Behavioral Model

Qspice: VCO-Behavioral.qsym

- Voltage Controlled Oscillator (VCO)
 - This is a behavioral model that generates a pulsefrequency controlled output signal linearly proportional to the input
- Pin Description
 - Ctrl: control voltage to output fmin at minV and fmax at maxV
 - Duty: duty ratio ranging from 0 to 1
 - Out: oscillator output with high/low levels determined by the external voltage relative to Vdd/Vss
 - Frq: frequency value represented in voltage

SrcXXX Special Voltage Source and Potentiometer

Qspice: Scrxxxx.qsym

- ScrXXX
 - SrcPulse.qsym
 - SrcSawtooth.qsym
 - SrcTriangle.qsym
 - SrcStep.qsym
 - SrcRamp-Slew.qsym
 - SrcRamp-Time1V.qsym

