Summer-2019 UM-SJTU JI Ve311 Homework #4

Instructor: Dr. Chang-Ching Tu

Due: 10:00 am, June 27, 2019 (Thursday) in class

Note:

(1) Please use A4 size papers.

(2) Please use the SPICE model below for simulation. .model Qbreakn NPN IS=1e-16 BF=100 VAF=100

- 1. [BJT Common-Emitter Amplifier] For a npn BJT circuit as below:
 - (a) [40%] When $V_{IN}=0.7 \text{ V}$, use proper equations provided in the course slides and the spice model above to calculate the small-signal voltage gain $(A_{\upsilon}=\frac{\upsilon_{out}}{\upsilon_{in}})$. Hint: take Early Effect into consideration.
 - (b) [20%, DC Sweep] In Pspice, plot V_{OUT} versus V_{IN} (increasing from 0 to 1 V). Find out the slope at $V_{IN} = 0.7$ V and compare it with the voltage gain calculated in (a).
 - (c) [20%, Transient Analysis] In Pspice, when $V_{in} = 0.7 + 0.01 \cdot \sin(2\pi 100 \cdot \text{time}) \text{ V}$, plot V_{out} and V_{in} versus time (from 0 to 0.1 second). Find out $|A_{\upsilon}| = \left|\frac{\upsilon_{out}}{\upsilon_{in}}\right|$ and compare it with the voltage gain calculated in (a).
 - (d) [20%, Transient Analysis] In Pspice, when $V_{in} = 0.7 + 0.05 \cdot \sin(2\pi 100 \cdot \text{time}) \, \text{V}$, plot V_{out} and V_{in} versus time (from 0 to 0.1 second). Comment how the result here is different from (c) and explain why?

