FCC REPORT

Applicant: Radiant Sensors LLC

Address of Applicant: 11340 Lakefield Drive, Suite 200, Johns Creek, GEORGIA, USA

Equipment Under Test (EUT)

Product Name: POS RFID Barcode Encoder Scanner

Model No.: RSPOS-100

FCC ID: 2AMX9RSPOS-100

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 26 Sep., 2016

Date of Test: 26 Sep., to 09 Oct., 2016

Date of report issued: 09 Oct., 2016

Test Result: Pass *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	09 Oct., 2016	Original

Tested by:

Date: 09 Oct., 2016

Test Engineer

Reviewed by: 2 Mam / De Date: 09 Oct., 2016

Project Engineer

3 Contents

			Page
1	С	COVER PAGE	1
2	٧	/ERSION	2
3	С	CONTENTS	3
4	т	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
į	5.1	CLIENT INFORMATION	5
!	5.2	GENERAL DESCRIPTION OF E.U.T.	5
!	5.3	TEST MODE	5
!	5.4	MEASUREMENT UNCERTAINTY	5
!	5.5	DESCRIPTION OF SUPPORT UNITS	6
!	5.6	LABORATORY FACILITY	6
!	5.7	LABORATORY LOCATION	6
!	5.8	TEST INSTRUMENTS LIST	7
6	Т	EST RESULTS AND MEASUREMENT DATA	8
(6.1	CONDUCTED EMISSION	8
(6.2	RADIATED EMISSION	11
7	Т	EST SETUP PHOTO	17
8	Ε	EUT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part 15.107	Pass	
Radiated Emission	Part 15.109	Pass	

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Radiant Sensors LLC
Address of Applicant:	11340 Lakefield Drive, Suite 200, Johns Creek, GEORGIA, USA
Manufacturer	Radiant Sensors LLC
Address of Manufacturer:	11340 Lakefield Drive, Suite 200, Johns Creek, GEORGIA, USA

5.2 General Description of E.U.T.

Product Name:	POS RFID Barcode Encoder Scanner	
Model No.:	RSPOS-100	
Power supply:	AC 120/60Hz	

5.3 Test Mode

Operating mode	Detail description
Communication mode	Keep the EUT in Communication WITH PC mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Description of Support Units

Manufacturer	Manufacturer Description		Serial Number	FCC ID/DoC
DELL	DELL PC		N/A	DoC

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

5.8 Test Instruments list

Radia	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017			
4	4 Pre-amplifier HP (10kHz-1.3GHz)		8447D	CCIS0003	03-25-2016	03-25-2017			
5	Pre-amplifier (1GHz-18GHz)	· I · P		CCIS0011	03-25-2016	03-25-2017			
6	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-25-2016	03-25-2017			
7	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-25-2016	03-25-2017			
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
9	Coaxial Cable	N/A	N/A	CCIS0018	03-25-2016	03-25-2017			
10	Coaxial Cable	N/A	N/A	CCIS0020	03-25-2016	03-25-2017			

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-25-2016	03-25-2017				
3	LISN	CHASE	MN2050D	CCIS0074	03-25-2016	03-25-2017				
4	Coaxial Cable	CCIS	N/A	CCIS0086	03-25-2016	03-25-2017				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107					
Test Method:	ANSI C63.4:2014					
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Francisco de (MILE)	Lir	mit (dBµV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	0.5-30	60	50			
	* Decreases with the logarith					
Test setup:	Reference Plan	ne				
	Remark: E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are a LISN that provides a 500 termination. (Please refers photographs). Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.4: 	on network(L.I.S.N.) pedance for the mean ealso connected to ohm/50uH coupling as to the block diagrate checked for maximal the maximum end all of the interface	. The provide a asuring equipment. the main power through impedance with 50ohm am of the test setup and num conducted hission, the relative cables must be changed			
Test environment:	Temp.: 23 °C Humid.: 56% Press.: 101kl					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement data:

Line:

Trace: 5

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE : POS RFID Barcode Encoder Scanner Site Condition

EUT

Model : RSPOS-100

Test Mode : Communication mode
Power Rating : AC 230/50Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

.emark	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	<u>ab</u>	dBu∜	dBu∇	<u>dB</u>	
1	0.158	30.44	-0.55	10.77	40.66	65.56	-24.90	QP
1 2 3 4 5	0.162	35.15	-0.55	0.00	34.60	55.34	-20.74	Average
3	0.190	31.11	-0.53	10.76	41.34	64.02	-22.68	QP
4	0.190	31.46	-0.53	0.00	30.93	54.02	-23.09	Average
5	0.258	28.65	-0.51	10.75	38.89	61.51	-22.62	QP
6	0.258	33.77	-0.51	0.00	33.26	51.51	-18.25	Average
7 8 9	0.322	23.34	-0.51	10.74	33.57	59.66	-26.09	QP
8	9.966	27.34	0.12	0.00	27.46	50.00	-22.54	Average
9	16.398	33.55	-0.63	0.00	32.92	50.00	-17.08	Average
10	16.928	27.00	-0.61	10.91	37.30	60.00	-22.70	QP
11	23.263	27.40	-0.62	10.89	37.67	60.00	-22.33	QP
12	23.263	34.84	-0.62	0.00	34.22	50.00	-15.78	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 7

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL : POS RFID Barcode Encoder Scanner Condition EUT

: RSPOS-100 Model

Test Mode : Communication mode

Power Rating : AC 230/50Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	<u>d</u> B	dBu₹	dBu∇	<u>ab</u>	
1	0.158	31.28	-0.37	10.77	41.68	65.56	-23.88	QP
2	0.158	36.66	-0.37	0.00	36.29	55.56	-19.27	Average
2	0.262	28.14	-0.33	10.75	38.56	61.38	-22.82	QP
4 5	0.262	35.41	-0.33	0.00	35.08	51.38	-16.30	Average
5	2.993	23.34	-0.20	10.92	34.06	56.00	-21.94	QP
6	3.642	29.90	-0.20	0.00	29.70	46.00	-16.30	Average
7 8 9	9.603	23.88	0.30	10.92	35.10	60.00	-24.90	QP
8	10.125	31.96	0.31	0.00	32.27	50.00	-17.73	Average
9	16.928	28.30	-0.38	10.91	38.83	60.00	-21.17	QP
10	17.291	36.27	-0.40	0.00	35.87	50.00	-14.13	Average
11	23.511	30.37	-0.68	10.89	40.58	60.00	-19.42	QP
12	23.511	36.97	-0.68	0.00	36.29	50.00	-13.71	Average

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

0.2 Radiated Ellission										
Test Requirement:	FCC Part 15 B S	FCC Part 15 B Section 15.109								
Test Method:	ANSI C63.4:201	14								
Test Frequency Range:	30MHz to 10GH	lz								
Test site:	Measurement D	istance:	3m (Se	mi-Anechoi	c Chan	nber)				
Receiver setup:	Frequency	Dete		RBW	VB\		Remark			
·	30MHz-1GHz	Quasi-			300kHz		Quasi-peak Value			
	Above 1GHz	Pea RM				3MHz Peak Va 3MHz Average \				
Limit:	Frequenc		1S 1MHz 3MF Limit (dBuV/m @3m)			72	Average Value Remark			
Littiit.	30MHz-88M		Liiiiii	40.0	20111)	(Quasi-peak Value			
	88MHz-216N			43.5			Quasi-peak Value			
	216MHz-960			46.0			Quasi-peak Value			
	960MHz-1G			54.0			Quasi-peak Value			
				54.0			Average Value			
	Above 1GI	72		74.0			Peak Value			
Test setup:	Below 1GHz Antenna Tower									
	Search Antenna Tum 0.8m 1m RF Test Receiver Ground Plane									
	Above 1GHz									
	Antenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver									

Test Procedure:	ground degrees 2. The EU antenna	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 							
	ground horizont	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.							
	and the	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.							
		5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test environment:	Temp.:	25 °C	Humid.:	55%	Press.:	1 01kPa			
Test Instruments:	Refer to se	ection 5.7 for	details						
Test mode:	Refer to se	ection 5.3 for	details						
Test results:	Passed				-				
Remark:	All of the o	All of the observed value above 6GHz ware the niose floor , which were no recorded							

Measurement Data:

Below 1GHz

Horizontal:

Job I EUT Mode: Test Power Envir Test	tion : No. : I : mode : Rating : conment : Engineer:	999RF POS RF: RSPOS-: Commun: AC 120V Temp:28	RT15 CLA ID Barco 100 ication V/60Hz	de Enc	oder Sca		2G) HOR.	IZONTAL	
REMAI	K : Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∀	dB/m	dB	dB	dBu∜/m	dBuV/m	dB	
1	30.000	44.04	11.20	0.72	29.98	25.98	40.00	-14.02	CHARLES CONTROL
1 2	30.000 95.762	44.04 46.80	11.20 11.40	0.72 2.01	29.98 29.55	25.98 30.66	40.00 43.50	-14.02 -12.84	QP
1 2 3	30.000 95.762 128.113	44.04 46.80 48.06	11.20 11.40 8.94	0.72 2.01 2.26	29.98 29.55 29.34	25.98 30.66 29.92	40.00 43.50 43.50	-14.02 -12.84 -13.58	QP QP
1 2 3 4 5	30.000 95.762	44.04 46.80	11.20 11.40	0.72 2.01	29.98 29.55 29.34 28.89	25.98 30.66	40.00 43.50 43.50 43.50	-14.02 -12.84 -13.58 -12.70	QP QP QP

Vertical:

	tion :	3m char FCC PAF		.SS B 31	m VULB9		G) VER		
Job No. : 999RF									
EUT : POS RFID Barcode Encoder Scanner Model : RSPOS-100									
	mode :			mode					
	Rating:			wore					
	onment :			uni : 559	κ.				
	Engineer:	and the second s	11		•				
REMAR		outey							
	W	Read	Intenna	Cable	Preamo		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBu∀		dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	43.202	37.77	14.07	1.26	29.87	23.23	40.00	-16.77	QP
2	96.099	38.69	11.67	2.00	29.55	22.81	43.50	-20.69	QP
3	126.772	41.51	9.28	2.25	29.35	23.69	43.50	-19.81	QP
1 2 3 4 5 6	143.830								
5	287.990								
	370.702	46.03	14.50	3.09	28.65	34.97	40 00	-11.03	AD.

Above 1GHz

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : 999RF

EUT : POS RFID Barcode Encoder Scanner

Model : RSPOS-100

Test mode : Communication mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

EMARI	· :								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	dB	dB	dBu∜/m	dBu∜/m	dB	
1	2993.840	49.49	27.15	5.34	41.52	40.46	74.00	-33.54	Peak
2	2993.840	41.17	27.15	5.34	41.52	32.14	54.00	-21.86	Average
3	4988.864	53.40	31.80	6.93	41.88			-23.75	
4	4988.864	44.67	31.80	6.93	41.88	41.52	54.00	-12.48	Average
5	5778.433	53.23	31.17	7.84	42.00	50.24	74.00	-23.76	Peak
6	5778.433	43.70	31.17	7.84	42.00	40.71	54.00	-13.29	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

: 999RF Job No.

: POS RFID Barcode Encoder Scanner : RSPOS-100 EUT Model

Test mode : Communication mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55% Test Engineer: Carey

			Antenna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
5	MHz	dBu∜	$-\overline{dB}/\overline{m}$		<u>dB</u>	dBuV/m	$\overline{\mathtt{dBuV/m}}$	<u>dB</u>	
1	1989.803	46.89	24.55	4.33	41.64	34.13	74.00	-39.87	Peak
2	1989.803	37.87	24.55	4.33	41.64	25.11	54.00	-28.89	Average
3	4504.505	55.78	29.30	6.81	42.06	49.83	74.00	-24.17	Peak
4	4504.505	47.51	29.30	6.81	42.06	41.56	54.00	-12.44	Average
5	4988.864	52.84	31.80	6.93	41.88	49.69	74.00	-24.31	Peak
6	4988, 864	44.71	31, 80	6, 93	41.88	41.56	54,00	-12.44	Average