Jaccard Coefficient Calculations

The table shows the pathological test results for three individuals:

The table shows the pathological test results for three individuals.

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	М	Υ	N	Р	N	N	Α
Mary	F	Υ	N	Р	A	Р	N
Jim	M	Υ	Р	N	N	N	Α

Calculate Jaccard coefficient for the following pairs:

Converting the table with exception of gender since has symmetric binary attribute

	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
<mark>Jack</mark>	M	1	0	1	0	0	0
Mary	F	1	0	1	0	1	0
<mark>Jim</mark>	M	1	1	0	0	0	0

Jaccard = (f01+f10) / (f01+f10+f11)

1. (Jack, Mary)

(f01 + f10) = 1 + 0 = 1

(f01+f10+f11) = 1 + 0 + 2 = 3

Jaccard coefficient = 1/3 = 0.33

2. (Jack, Jim)

(f01 + f10) = 1 + 1 = 2

(f01+f10+f11) = 1 + 1 + 1 = 3

Jaccard coefficient = 2/3 = 0.67

3. (Jim, Mary)

(f01 + f10) = 1 + 2 = 2

(f01+f10+f11) = 1 + 2 + 1 = 3

 $Jaccard\ coefficient = 2/3 = 0.75$

Observation:

- Mary is more close to Jim than to Jack
- Jack is more close to Jim than to Mary