Name, Student ID

Considerare la seguente architectura MIPS64:

- Integer ALU: 1 clock cycle
- FP arithmetic unit: pipelined 2 stages
- Data memory: 1 clock cycle FP multiplier unit: pipelined 6 stages
- FP divider unit: not pipelined unit that requires 7 clock cycles
- branch delay slot: 1 clock cycle, and the branch delay slot disabled
- forwarding enabled
- è possibile completare lo stage EXE di una istruzion in modo out-of-order.
- o Facendo riferimento al frammento di codice riportato, si mostrino le tempistiche relative all'esecuzione ciascuna istruzione e si calcoli il numero totale di clock cycles necessari per eseguire completamente il programma:

```
for (i = 0; i < 100; i++) {
  v5[i] = v1[i]/v2[i];
  v6[i] = (v1[i]*v2[i])+(v3[i]/v4[i]);
ļ
```

	J																								
	.data																								Clock cycles
V1:	.double "100 values"																								
V2:	.double "100 values"																								
V3:	.double "100 values"																								
V5:	.double "100 zeros"																								
V4:	.double "100 values"																								
V5:	.double "100 values"																								
V6:	.double "100 values"																								
	.text																								
main:	daddui r1,r0,0	F	D	Е	M	W																			5
	daddui r2,r0,100		F	D	Е	M	W																		1
loop:	l.d f1,v1(r1)			F	D	Е	M	W																	12
	l.d f2,v2(r1)				F	D	Е	M	W																1
	1.d f3,v3(r1)					F	D	Е	M	V															1
	1.d f4,v4(r1)						F	D	Е	A V	N														1

Name, Student ID

div.d f5,f1,f2		F	D	/ /	/	/	/	/	/	M	W																			7
s.d f5,v5(r1)			F 1) E	\mathbf{S}	S	S	S	S	S	M	W																		1
mul.d f6,f1,f2				F D	*	*	*	*	*	*	S	M	W																	1
div.d f7,f3,f4				F	D	S	S	S	S	/	/	/	/	/	/	/	M	W												5
add.d f1,f6,f7					F	S	S	S	S	D	S	S	S	S	S	S	+	+	M	W										2
s.d f1,v6(r1)										F	S	S	S	S	S	S	D	Е	S	M	W									1
daddui r1,r1,8																	F	D	S	Е	M	W								1
daddi r2,r2,-1																		F	S	D	Е	M	W							1
bnez r2,loop																				F	S	D	Е	M	W					2
halt																						F	N	N	N	N				01
Total												ϵ	5 + 1	100	* 20	5														2606

Name, Matricola

Question 2

Considerando il programma precedente e l'architettura del processore superscalare descritto in seguito; completare la tabella relativa alle prime 2 iterazioni. Processor architecture:

- Issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 6 stages
 - v. 1 FP divider unit, which is not pipelined: 7 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 2 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	1.d f1,v1(r1)	1	2	3	4	5
1	1.d f2,v2(r1)	1	3	4	5	6
1	1.d f3,v3(r1)	2	4	5	6	7
1	1.d f4,v4(r1)	2	5	6	7	8
1	div.d f5,f1,f2	3	6	_	13	14
1	s.d f5,v5(r1)	3	6	_	_	14
1	mul.d f6,f1,f2	4	6	_	12	15
1	div.d f7,f3,f4	4	13	_	20	21
1	add.d f1,f6,f7	5	21	_	23	24
1	s.d f1,v6(r1)	5	7	_	_	24
1	daddui r1,r1,8	6	7	_	8	25
1	daddi r2,r2,-1	6	8	_	9	25
1	bnez r2,loop	7	10	_	_	26

Name, Matricola

2	l.d f1,v1(r1)	8	9	10	11	26
2	1.d f2,v2(r1)	8	10	11	12	27
2	1.d f3,v3(r1)	9	11	12	13	27
2	1.d f4,v4(r1)	9	12	13	14	28
2	div.d f5,f1,f2	10	20	_	27	28
2	s.d f5,v5(r1)	10	13	_	_	29
2	mul.d f6,f1,f2	11	13	_	19	29
2	div.d f7,f3,f4	11	27	_	34	35
2	add.d f1,f6,f7	12	35	_	37	38
2	s.d f1,v6(r1)	12	14	_	_	38
2	daddui r1,r1,8	13	14	_	15	39
2	daddi r2,r2,-1	13	15	_	16	39
2	bnez r2,loop	14	17	_	_	40