Data Science and Artificial Intelligence Probability and Statistics

Bivariate Random Variable

Lecture No.-01

Topic

Random Variable Part-2

Event (A) $P(A) = \frac{n(A)}{n(s)}$

Random varable

Two or more event simulle

Topics to be Covered

Topic

Bivariate Random Variable Part-1

Bivariate Random Variables:

3 Balls b, b2 b3 3 balls put 3 cells cell 2 No ball in any cell (Repetation allowed)

X= random variable. Y= vandom variable Simultaneous X= No. of balls in all 1 Jointly X= No. of alls Are occupied works X= No. of alls Are occupied X] Two dimensional Random Variable.

	61	b2	63	
	6162	-	p3	
,	_	b3	6162	
	plps	hz —	_	
		7		

P[X=0,Y=1] = P[X=No ball m, Y=1 cell occupred] $P[X=0,Y=2] = P[X=No ball m, Y=2 cell occupred]$ $Cell occupred]$	X = 0,1,2,3 [No of balls in cell 1 Y = 1,2,3 [No of cells occurren)
P[X=0, Y=2] = P[X=No ball m, Y=2 cell cell occupied]	P[X=0,Y=1] = P[X=Noball in,Y=1cell	~)
P[x-14-17 p[x 1/4]	P[X=0, Y=2] = P[X=No ball in, Y=2 cell cell occurbage	
in all poor of	P[x=1, y=1]=P[x=me ball, y=1cell in cell 1 occurre	רג

17				W
X	1	2	3	
0	(0,1)	(1,2)	(0,3)	
1	(1,1)	(1/2)	(1,3)	
2	(2/1)	(2,2)	(2,3)	
3	(3,1)	(3,2)	(3,3)	
	11) (0	12)(0,	3)	
(1	1) (1,	2) (1; 2) (2; 2) (3;	3)	
(2	1) (2	2)/2	-) > \	
(3	1)/3	2)/2.		
		7/3	2)	

Topic: Bivariate Random Variable

X=No. of hall in cell 1

Y=No. of cells occupied

P[X=0,Y=1] =>
$$\frac{2}{27}$$

P[X=0,Y=2] => $\frac{2}{27}$

P[X=0,Y=3] => 0

P[X=1,Y=1] => $\frac{6}{27}$

P[X=1,Y=2] => $\frac{6}{27}$

P[X=1,Y=3] => $\frac{6}{27}$

P[X=1,Y=3] => $\frac{6}{27}$

P[X=1,Y=1] => $\frac{6}{27}$

XX	1	2	3 Pw
0	(xy)	(0,2)	(0,3)
1	(1,1)	(1,2)	(1,3)
2	(2,1)	(2,2)	(2,3)
3	(3,1)	(3,2)	(3,3)
P[X=2, Y= P[X=2, Y= P[X=3, Y=	5 = (PE	(=3, Y=2)=0 (=3, Y=3)=0

Joint Joint Prob (Discrete bivariable Then York Joint Probability =
$$P[X=xi, Y=yj] = P[X=xi, X=yj] = both Mass Function

Joint Pseudo Table:

A) $P[X=xi, Y=Yj] \geq 0$

B) $P[X=xi, Y=Yj] \geq 0$
 $P[X=xi, Y=Xj] \geq 0$
 $P[X=xi$$$

PEX	=76 /	y= y;] = b	oth Simuli	taneonly
XX	. 1	2	3	Total
0	2(91)	6 (0,2)	0 (0,3)	, 8/27
1	0(1/1)	6/27 (1,2)	6/27(1,3)	12/27
2	0 (2,1)	1/27 (2,2)	6 (2,3)	927
3	名子(3,1)	0 (3,2)	0 (3,3)	1/27
otal	37	18/27	6 27	

(Discrete bivariate Random Variable)

$$P[X=0] = \frac{8}{27} = \frac{2}{27} + \frac{6}{27} + 0$$

$$P[X=1] = \frac{12}{27}$$

$$P[X=2] = \frac{6}{27}$$

$$P[X=3] = \frac{1}{27}$$

$$P[Y=1] = \frac{3}{27}$$

$$P[Y=3] = \frac{18}{27}$$

X	1.	2	3	Pw.
D:	27(011)	6 (0,2)	D (0,3)	18/27
1.	0 (1,1)	6/27(1,2)	1/27 (13)	12 27
2	0(31)			6/27
3.	27(31)		0 (3,3)	27
	3/27	18/27	6/27	1

Marginal Pseobability
Only Target with one value

Marginal Prob: State

$$P[X=xi] = P[X=xi \land Y=yj] \Rightarrow P[X=xi \land Y=yj] + P[X=xi \land Y=yz]$$

$$(P[X=xi] - \sum_{j=1}^{n} P[X=xi \land Y=yj] + P[X=xi \land Y=yz] + P[X=xi \land Y=yz] + P[X=xi \land Y=yz]$$

$$\begin{cases} P[x=x^{*}] = \sum P[x=x^{*}, y=y^{*}] + P[x=x^{*}] \\ P[y=y^{*}] = \sum P[x=x^{*}, y=y^{*}] \end{cases}$$

[P[y=y;]= \[\frac{1}{2} P[x=\ai, y=y;]

Marginal Probability Distribution

for X X 0 | 1 | 2 | 3

P[X=xi] 8/27 | 12/27 | 6/27 | 27

THANK - YOU