

Relatório do Desenvolvimento BrainLight

Equipa LGP 5A BrainLight

Developers

André Pinheiro David Azevedo João Monteiro José Lima Luís Natividade Luís Pinto

MM Delegates

Nerea Castro Simão Pereira

Designers

Diana Magalhães Mariana Almeida

Cliente

INOVA+

ÍNDICE

1. PROJETO	. 3
2. EQUIPA	. 4
3. DESENVOLVIMENTO	. 5
4. FUNCIONALIDADES	. 6
6. CONCLUSÃO	. 7

1. PROJETO

O projeto *BrainLight* consiste numa *framework* que é capaz de ler dados de diversos dispositivos biomédicos para os poder visualizar, processar e analisar. No âmbito de LGP, os dispositivos a implementar restringiram-se ao *Emotiv EPOC* e *Neurosky Mindset*, eletroencefalógrafos com diferentes características, mas a *framework* será facilmente expansível no futuro e facultará as ferramentas necessárias para o desenvolvimento de uma miríade de aplicações que recorram aos dados biomédicos recolhidos. O objetivo final da *BrainLight* é auxiliar técnicas de optogenética na alteração dos comportamentos de neurónios específicos como método de terapia para diversas doenças.

Para testar o funcionamento da *framework* foi desenvolvida uma prova de conceito que expande as suas funcionalidades, a *BrainStream*. Esta consiste numa aplicação *web* que envia os dados lidos em tempo real, permitindo que paciente e médico estejam em locais diferentes e possam ainda assim comunicar e analisar simultaneamente os dados recolhidos. Também será facultado ao paciente um jogo simples que pode ser usado para efeitos de teste de concentração ou apenas para o entreter no decorrer da análise.

2. EQUIPA

A equipa é constituída por seis alunos do Mestrado Integrado em Engenharia Informática e Computação, mas tem atribuídos também dois alunos que representam a equipa do Mestrado em Multimédia e duas alunas que colaboram no projeto e pertencem ao curso de Design de Comunicação.

Desde o início, a equipa dividiu-se em grupos de desenvolvimento para facilitar a elaboração dos documentos necessários e torná-la mais expedita e flexível. Os responsáveis pela elaboração do Relatório de Especificação de Requisitos foram o David Azevedo, João Monteiro e Nerea Castro; pelo Relatório Preliminar da Arquitetura ficaram responsáveis o André Pinheiro e Luís Pinto; o Relatório de Testes de Aceitação ficou a cargo do Luís Natividade e José Lima; enquanto o Protótipo foi atribuído aos elementos de multimédia, Nerea Castro e Simão Pereira.

O Team Leader e Project Manager da equipa é o João Monteiro, que tem assim a responsabilidade de representar a equipa sempre que necessário, comunicar com o cliente, garantir que o projeto está sempre de acordo com os interesses do cliente, negociar pontos de desacordo com o cliente, manter a coesão do grupo, planear as etapas de desenvolvimento, manter a plataforma Scraim atualizada ao longo do desenvolvimento do projeto, assegurar continuamente um bom encaminhamento do projeto, delegar responsabilidades e alocar membros dentro da equipa, manter um fluxo de comunicação com o COO, CEO e outros Team Leaders, e tratar de toda a burocracia necessária.

O David Azevedo é o *Requirements Manager*, pelo que é quem lidera a equipa de desenvolvimento de requisitos. A seu cargo está a análise, rastreabilidade e prioritização dos requisitos, sendo portanto também o responsável pelo documento de especificação de requisitos.

O título de *Quality Manager* foi atribuído ao Luís Natividade, o que significa que é ele o responsável por garantir que a aplicação funciona de acordo com os requisitos de qualidade pretendidos. Ele é também o responsável pelo documento relativo aos testes de aceitação.

Apesar de não terem títulos atribuído pela empresa, o André Pinho é o responsável pelo desenvolvimento do documento preliminar da arquitetura do projeto e o Simão Pereira o responsável pelo protótipo da solução.

No início da fase de desenvolvimento, o grupo voltou a dividir-se: o Luís Pinto, André Pinheiro e João Monteiro dedicaram-se à *framework* e o José Lima, Luís Natividade e David Azevedo à prova de conceito. Esses grupos sofreram alterações ao longo do semestre de acordo com as preferências de cada membro e as necessidades de cada um dos grupos, mantendo-se no entanto um mínimo de 2 pessoas por projeto em cada momento.

3. DESENVOLVIMENTO

Desde o início do desenvolvimento foi claro que a equipa teria de redobrar esforços no sentido de concluir as duas soluções eficaz e eficientemente. A primeira fase consistiu na investigação e teste dos SDK dos dispositivos. No entanto, como o Emotiv tinha sido devolvido à INOVA+ devido a um defeito, apenas tínhamos disponível o dispositivo NeuroSky; todos os testes e avanços que realizámos relativamente ao Emotiv neste período foi através de um simulador de sinais.

O trabalho realizado seguiu a ordem prevista no planeamento, mas sofreu alguns contratempos. Um dos atrasos que houve foi na construção do módulo de gestão da *framework*, a componente que iria ler os sinais dos dispositivos, comunicar com os módulos de histórico e análises, e enviar os dados necessários à interface. Conseguimos, no entanto, adiantar as outras componentes da *BrainLight* contornando esse problema através da ligação direta entre os dispositivos e a interface, bem como no desenvolvimento modular das funções relacionadas com o histórico e as análises dos sinais.

Outro dos atrasos relacionou-se com o Emotiv e os seus SDK. Apenas foi possível à INOVA+ fornecer-nos um novo exemplar no final de abril, e o respetivo software no início de maio. Em princípio isso poderia não ter consequências notórias no projeto, não fosse a incompatibilidade entre o SDK Premium fornecido e o dispositivo. O grupo teve de identificar o problema, compreender a sua origem, e tentar solucioná-lo. Uma das possibilidades seria a utilização de uma versão Lite do SDK disponível *online*, mas isso impediria a leitura de algumas informações importantes. Contudo, o grupo conseguiu encontrar uma versão anterior do SDK Premium e utilizá-la, uma vez que essa lia corretamente os dados. No entanto, os dados lidos eram em potência, e ainda foi preciso despender de mais tempo para conseguir convertê-los para decibéis em função da frequência. Todo esse processo foi longo, extenuante e atribulado, o que acabou por atrasar significativamente a implementação correta do Emotiv na plataforma.

O desenvolvimento da prova de conceito provou-se difícil porque o grupo nunca tinha trabalhado com as tecnologias que se tinha comprometido a usar (Polymer e Firebase); apenas as escolheu por, depois de uma pesquisa profunda, perceber que seriam as mais indicadas, tanto pelas suas características como pelo seu surgimento recente e meteórico no mercado. No entanto, a falta de documentação e exemplos disponíveis aumentou significativamente a curva de aprendizagem, criando mais um entrave ao desenvolvimento como planeado.

Todas as decisões relevantes foram tomadas depois de consultar as engenheiras que representam a INOVA+, e estas foram também informadas do planeamento e dos atrasos que foram ocorrendo. O seu auxílio foi indispensável para a conclusão deste projeto, tendo sido extremamente acessíveis e prestáveis na resolução de todos os problemas que o grupo enfrentou.

4. FUNCIONALIDADES

Todos os requisitos, *use cases* e *user stories* de prioridade alta e média foram cumpridos em ambas as aplicações, como planeado, e os *mockups* fornecidos foram seguidos, apesar de o grupo ter reservado alguma liberdade no modo de implementação de alguns componentes de modo a facilitar o processo de desenvolvimento ou incorporar novas funcionalidades que não estavam previstas.

Para além disso, também foram implementadas *user stories* de baixa prioridade (relativamente à prova de conceito: US14 e US15) e funcionalidades que não tinham sido especificadas na fase de conceção (na prova de conceito, por exemplo, a possibilidade de um médico tirar notas sobre um paciente ou sinalizar ficheiros do histórico como importantes).

As *user stories* de baixa prioridade que não foram implementadas, não o foram sobretudo devido a restrições de tempo e recursos. Algumas exigiam do grupo conhecimentos que este não possuía e não conseguia descobrir com facilidade (como a criação de novos estados de espírito a partir de cálculos efetuados sobre as ondas cerebrais lidas), ou tempo de implementação que não houve devido à densidade já elevada de trabalho no planeamento e aos atrasos que ocorreram.

6. CONCLUSÃO

Este foi desde o início um projeto extremamente ambicioso, sobretudo devido à escolha desta prova de conceito em particular, que é por si só complexa o suficiente para merecer ser um trabalho independente numa edição de LGP, mas que no nosso projeto se resumiu a apenas 40% da solução, em termos de importância. Para além da carga de trabalho, o grupo sofreu também com os múltiplos contratempos e imprevistos que acabaram por atrasar a entrega.

No entanto, em retrospetiva, o grupo não poderia estar mais orgulhoso do trabalho que concluiu e do sucesso que teve na sua implementação. Reitera-se uma vez mais a importância das representantes da INOVA+, que se mostraram sempre disponíveis para ajudar o grupo e facilitar o processo de desenvolvimento.

Ao longo do semestre foram aprendidas lições inestimáveis relativamente à coordenação de projetos, organização de equipas, gestão de conflitos, alocação de recursos humanos e comunicação empresarial; isto sem mencionar todos os conhecimentos técnicos que o grupo desenvolveu e o trabalho de equipa fomentado.

Devido a todos esses fatores, é a opinião do grupo que este projeto foi um processo de aprendizagem como nenhum outro, e espera-se que possa criar novos padrões de excelência na cadeira de LGP.