Introdução/Princípios

Inferência Bayesiana

Tailine J. S. Nonato

Conteúdo

Princípio da Verossimilhança

Afirma que a informação contida nos dados é a única informação relevante para a inferência. Assim, toda a informação sobre o parâmetro de interesse contida na amostra está contida na função de verossimilhança $\theta \to L_x(\theta) = f_\theta(x)$, onde x é a amostra observada (e somente ela).

Possíveis resultados experimentais que **não** ocorreram não devem ser considerados na inferência, já que não fornecem informação sobre o parâmetro de interesse.

Princípio da Condicionalidade

Afirma que quando um experimento é escolhido por algum mecanismo aleatório cuja distribuição de probabilidade **não** depende do parâmetro de interesse, a inferência deve ser condicionada ao resultado observado.

Princípio de Suficiência

Afirma que a evidência contida em X=x em um dado experimento é a mesma que a evidência contida em T(x), onde T é uma função de x que não depende do parâmetro de interesse, ou seja, T(x) é uma estatística suficiente para o parâmetro de interesse.

Teorema de Birnbaum

Afirma que a inferência bayesiana é a única inferência que satisfaz os princípios da verossimilhança, da condicionalidade e da suficiência.

Define-se o conceito de evidência como:

$$Ev(E_f, x)$$

Definição 1: Pelo princípio da verossimilhança $Ev(E_f,x)=Ev(E_g,y)$ onde $X\sim f_\theta$ e $Y\sim g_\theta$ e existe uma constante c=c(x,y) que não depende de θ .

Definição 2: Pelo princípio da condicionalidade $Ev(E^c,(E,z)) = Ev(E,z)$ onde E^c é um experiente de lançar uma moeda honesta e receber cara e E é é o experimento realizado caso E^c aconteça e z é o

Teorema 1: O princípio da verossimilhança vale se, e somente se, os princípios da condicionalidade e da suficiência valem.