TERM-SEARCH OPERATOR FOR ABELIAN GROUP

LUCAS OLIVEIRA

ABSTRACT. I present a unconditional probabilistic operator that determines abelian terms from single input element using abstract structure as search context.

1. Introduction

...

2. Principle

Definition 2.1. Let $\varphi: \langle X, G \rangle \mapsto \mathcal{L}^*$ where $\mathcal{L}^* \subset \mathcal{L} = \{\ell_1, \dots \ell_{|\mathcal{L}|}\}$

Definition 2.2. Let $G(\mathcal{L}, \circ, e)$ a abelian group and $X \in \{\mathcal{L} \cup \sup \mathcal{L} \cup \inf \mathcal{L}\}$ such that $X = \ell_* \circ \ell_{*'} \circ \cdots \circ \ell_{*''}$ where each ℓ_* is unknow apriori and lives in image of $\varphi \mapsto \mathcal{L}^*$

Definition 2.3. Let $\mathcal{M} : \mathcal{L}_k \mapsto \{\mathcal{L}\}$ a one-to-many map, mapping each element result of a comutation k living or not in \mathcal{L} to a family of possible(s) comutation(s) term(s) set. A thing like:

$$\mathcal{M}: (\ell_k \circ \ell_{k'} \circ \cdots \circ \ell_{*''}) \mapsto \left\{ \{\ell_k, \ell_{k'}, \cdots, \ell_{k''}\}, \cdots \right\}$$

The structure of \mathcal{M} can be imaginated as bi-dimensional matrix, but you cannot define a priori your size because it is k-iteration-dependent.

Step 2.4. Determine $\mathcal{M}(\ell_i) \leftarrow \ell_i$ for $i = 1..|\mathcal{L}|$

Step 2.5. Let k a iteration block; Pick ℓ_{α} , ℓ_{β} sample pair elements from \mathcal{L}

$$\mathcal{M}(\ell_{\alpha} \circ \ell_{\beta}) \leftarrow \{\ell_{\alpha}, \ell_{\beta}\} \iff (k=0) \vee (|\mathcal{M}| = |\mathcal{L}|)$$

Step 2.6. A trivial step for each iteration k before sample the pair $\{\ell_{\alpha}, \ell_{\beta}\}$ is compute:

$$\mathrm{if}\Big((\ell_\alpha\circ\ell_\beta)^{-1}\circ X=e\Big)\mathrm{then\ return\ }X=\{\ell_\alpha,\ell_\beta\}$$

Step 2.7. Iff evaluation is different than e:

A second step is check if the inverse exists in map \mathcal{M} , computing:

$$\mathcal{L}_{\mathcal{M}} \leftarrow \mathcal{M}\Big((\ell_{\alpha} \circ \ell_{\beta})^{-1} \circ X\Big)$$

Before check

$$\mathrm{if}\Big((\ell_\alpha\circ\ell_\beta\circ\mathcal{L}_\mathcal{M})^{-1}\circ X=e\Big)\mathrm{then\ return\ }X=\{\ell_\alpha,\ell_\beta\}\cup\mathcal{L}_\mathcal{M}$$

Step 2.8. In this step X_k^{-1} denote $(\ell_{\alpha} \circ \ell_{\beta} \circ \mathcal{L}_{\mathcal{M}})^{-1}$ then

$$\mathrm{if}\Big(X_k^{-1}\circ X\neq e \wedge \exists\, \mathcal{M}(\mathcal{L}_{\mathcal{M}})\Big) \mathrm{then} \ \mathrm{push} \ \big\{\ell_\alpha,\ell_\beta\big\} \cup \mathcal{L}_{\mathcal{M}} \to \mathcal{M}\Big((\ell_\alpha\circ\ell_\beta)\circ\mathcal{L}_{\mathcal{M}}\Big)$$

Step 2.9. Compute next k

3. Conclusion

[1]

REFERENCES

[1] G. L. Miller. Riemanns hypothesis and tests for primality. J. Comput. Sys. Sci., 1976.