Technical Report

problem declaration:

We are going to design a circuit to receive a 4 bit digit number with 4 switches in order to calculate the amount of it's integral.

$$\int 5x \, dx$$

output will display in 7-segments.

solution:

since a 4 bit number in the Decimal system covers a number in range of 0 to 15. According to the definition of integrals, we know that in a function like: $f_{(x)}$ =5x the answer is the between the $f_{(x)}$ and the x-axis. So it should be between x=0 to x=A (A: is the input value to calculate)

$$\int 5x \, dx = 5 (x^2/2) => 5 (A^2/2)$$

We are going to use four 7-segments. So our output will look like xxx.x in the decimal system. The 8th pin of our third seven segment will turn on as DP-point to show the float number.

the 7-segment with common anode display will turn on by 1(TRUE) inputs.

so it will display the numbers according to the below chart:

Digit number	а	b	С	d	е	f	g
0	1	1	1	1	1	1	0
1	0	1	1	0	0	0	0
2	1	1	0	1	1	0	1
3	1	1	1	1	0	0	1
4	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1
6	1	0	1	1	1	1	1
7	1	1	1	0	0	0	0
8	1	1	1	1	1	1	1
9	1	1	1	0	0	1	1

eventually we will have 4 seven segments and 4 tables for each of them to show the output:

the next table demonstrates each potential output for its input for the numbers between 0 to 15(solution for numbers between these 16 digits.)

	inp	out	ts					00							01							02							03			
dec	а	b	С	d	A0	В0	CO	D0	EO	F0	G0	A1	B1	C1	D1	E1	F1	G1	A2	B2	C2	D2	E2	F2	G2	А3	В3	C3	D3	E3	F3	G3
0	0	0	0	0	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1
2	0	0	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	0	0	1	1	0	0	0	0	1	1	1	1	1	1	0
3	0	0	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1
4	0	1	0	0	1	1	1	1	1	1	0	0	1	1	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0
5	0	1	0	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	1	1	1	1	1	0	1	1	1	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0
7	0	1	1	1	0	1	1	0	0	0	0	1	1	0	1	1	0	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1
8	1	0	0	0	0	1	1	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0
9	1	0	0	1	1	1	0	1	1	0	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1
10	1	0	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0
11	1	0	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1
12	1	1	0	0	1	1	1	1	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0
13	1	1	0	1	0	1	1	0	0	1	1	1	1	0	1	1	0	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1
14	1	1	1	0	0	1	1	0	0	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0
15	1	1	1	1	1	0	1	1	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1

SOP form for karnaugh tables will calculate and the functions will deploy in the circuit.

	00	01	11	10
00	1	1	1	1
01	1	1	0	1
11	1	0	1	0
10	0	1	1	1

		00	01	11	10
•	00	1	1	1	1
•	01	1	1	1	1
•	11	1	1	0	1
-	10	1	1	1	1

	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	0	1	0

	00	01	11	10
00	1	1	1	1
01	1	1	0	1
11	1	0	1	0
10	0	1	1	1

	00	01	11	10
00	1	1	1	1
01	1	1	0	1
11	0	0	0	0
10	0	1	0	1

 $A_0=a'b'+a'c'+a'd'+cb'+b'd+bc'd'+cda$

 $B_0=c'+a'+d'+b'$

 $C_0 = a' + b + cd + c'd'$

 $D_0=a'b'+c'a'+b'c+d'a'+db'+bc'd'+cda$

 $E_0=a'b'+a'c'+d'a'+cd'b'+c'db'$

	00	01	11	10
00	1	1	1	1
01	1	1	0	1
11	0	1	1	1
10	0	0	0	0

F_0 =a'b'+a'c'+d'a'+abc+abd

	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	1	1	1

 G_0 =ab+ac+ad

	00	01	11	10
00	1	1	1	1
01	0	1	1	1
11	1	1	1	1
10	1	1	1	1

 A_1 =a+c+d+a'b'

	00	01	11	10
00	1	1	1	1
01	1	0	1	1
11	0	1	0	1
10	0	1	1	0

 B_1 =a'b'+a'c+a'd'+b'd+cd'b+c'da

	00	01	11	10
00	1	1	0	1
01	1	1	0	1
11	1	0	1	1
10	1	1	1	1

	00	01	11	10
00	1	1	1	1
01	0	1	1	0
11	1	1	1	0
10	1	1	1	1

		00	01	11	10
	00	1	1	1	1
	01	0	1	1	0
	11	1	1	1	0
_	10	1	1	1	0

	00	01	11	10
00	1	1	0	1
01	1	1	0	1
11	1	0	1	1
10	1	1	1	1

	00	01	11	10
00	0	0	1	0
01	1	1	1	1
11	1	1	1	1
10	1	0	0	1

	00	01	11	10
00	1	1	1	0
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

D₁=d+b'd'+ac'

 E_1 =d+ac'+a'b'

F₁=d'+ab'+a'c'+ac

 G_1 =b+cda'+ad'

 $A_2 = D_2 = E_2 = c' + d + a + b$

	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

B₂=1

	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

 $C_2=d'$

	00	01	11	10
00	1	0	0	0
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

 $F_2=c'd'+d'a+d'b$

	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

 $G_2=d$

	00	01	11	10
00	1	1	1	1
10	1	1	1	1
11	1	1	1	1
10	1	1	1	1

 $A_3 = C_3 = D_3 = F_3 = 1$

	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

 $B_3 = E_3 = d'$

 $G_3=d$

some of the functions are reduced and briefed:

$$C_0 = a'+b+(c\oplus d)'$$

$$E_0=a'b'+a'c'+a'd'+b'(c\oplus d)$$

$$G_0=a(b+c+d)$$

$$C_1=d'+ab'+(a\oplus c)'=F_1$$

• to reduce a level from the circuit we use not include gates instead of changing the inputs to FALSE.

.cct file is made by Logic work application.(final circuit design)