Clustering documents and visualization of Embedding Vector Space

Presented By:

- Aditya Shidhaye (1566213)
- Pradeep Patwa (1564727)
- Adithya Ramesh (1567434)

Examined by:

Prof. Dr. Damir Dobric

Prof. Dr. Andreas Pech

Content

- Introduction
- Problem Statement
- Methodology
- Implementation
- Results
- Conclusion

Introduction

- Document clustering is an essential technique for organizing large volumes of textual data.
- Traditional clustering (TF-IDF, BoW) approaches often struggle with capturing semantic meaning.
- This project leverages OpenAI's text embeddings for efficient and meaningful document grouping.

Problem Statement

- Large datasets contain unstructured textual data that is difficult to categorize manually.
- Keyword-based approaches fail to capture semantic relationships between documents.
- The goal is to create an AI-powered clustering model that groups similar documents efficiently.

Methodology

Text Embedding Process

- OpenAl's text-embedding-3-large
- Captures semantic relationships between words and phrases. Eg. Apple(fruit)/Apple(company), not feeling good / sick
- Allows for more accurate clustering compared to traditional term frequency methods.

Before K-Means K-Means

K Means Clustering

Clustering Algorithm

- K-Means Clustering: An unsupervised learning algorithm that partitions data into K clusters.
- **Objective**: Minimize intra-cluster distance and maximize inter-cluster separation.
- The embeddings are clustered based on their numerical similarities.

Cosine Similarity Analysis

- measure simililarity within the same cluster.
- Intra-cluster similarity: Higher similarity within a cluster indicates well-defined groups.
 - Similarity = 0.95 → "Artificial Intelligence" and "Machine Learning" (very related)
- Inter-cluster similarity: Lower similarity between different clusters ensures better separation.
 - Similarity = 0.10 → "Artificial Intelligence" and "Cooking Recipes" (almost unrelated)

Cosine similarity is a metric used to determine how similar two vectors are

Closer angle = more similar | Wider angle = less similar

Implementation

Data Processing and Analysis Workflow

Initial data preparation step

Evaluate Clusters (Using Cosine Similarity)

Assess cluster quality and relevance

Visualize Results

Create visual representation of data

Generate Embeddings (Using OpenAl Embedding Model)

Transform data into vector space

Perform Clustering (K-Means Algorithm)

Group data into clusters

Analyze & Interpret Results

Draw insights and conclusions

Results

- Clusters were successfully formed based on the semantic meaning of documents.
- Cosine similarity confirmed well-defined groups with minimal overlap.
- Visualization showed clear separation between clusters.
- Challenges: Optimal selection of K-value and processing time for large datasets.

Outputs

Cosine Similarity values

```
=== Document Clustering Evaluation ===
Overall Metrics:
Average Intra-Cluster Similarity: 0,2940
Average Inter-Cluster Similarity: 0,1868
Average Category Similarity: 0,2961
Silhouette Coefficient: 0,3647 (higher is better)
Cluster to Category Mapping:
Cluster 2 -> Category '0' (Purity: 100,00 %)
Cluster 0 -> Category '1' (Purity: 94,34 %)
Cluster 1 -> Category '2' (Purity: 97,78 %)
Cluster 3 -> Category '3' (Purity: 88,68 %)
Cluster Details:
Cluster 0 Intra-Similarity: 0,3535
Cluster 1 Intra-Similarity: 0,2761
Cluster 2 Intra-Similarity: 0,3143
Cluster 3 Intra-Similarity: 0,2465
Category Details:
Category 0 Intra-Similarity: 0,3483
Category 1 Intra-Similarity: 0,2811
Category 2 Intra-Similarity: 0,3025
Category 3 Intra-Similarity: 0,2526
```

Embedding Vectors Heatmap by Label

Heatmap

representation of the embeddings based on the category they belong.

Conclusion

- AI-driven document clustering provides a more efficient and scalable approach.
- OpenAI embeddings enhance clustering accuracy by capturing semantic meaning.
- Future improvements can lead to even more refined document classification models.
- Trade-off between accuracy and efficiency

Thank you!