Подготовка: Дифференциальные уравнения

Полная версия с разборами тем и ссылками

Содержание

1	Раз	азностные уравнения		
	1.1	Однородные линейные разностные уравнения	2	
	1.2	Минимальная ЛОРУ: метод аннигиляторов	3	
	1.3	Неоднородные линейные разностные уравнения	4	
	1.4	Системы разностных уравнений	6	

1 Разностные уравнения

Определение

Разностное уравнение — соотношение между элементами последовательности (или векторной последовательности), задающее правило перехода от шага $t \times t+1$ или к нескольким последующим шагам. В этом разделе: ЛОРУ (линейные однородные разностные уравнения) и их расширения.

Однородные линейные разностные уравнения 1.1

Пример. Решите однородное линейное разностное уравнение:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 0 (1)$$

Определение. Линейное однородное разностное уравнение порядка k с постоянными коэффициентами:

$$a_t + c_1 a_{t-1} + c_2 a_{t-2} + \dots + c_k a_{t-k} = 0, \quad c_k \neq 0$$
 (2)

Пара «уравнение + k начальных условий» задаёт единственное решение.

Идея решения: метод характеристических корней. Полагаем $a_t = r^t \Rightarrow$

$$r^{t}(1 + c_{1}r^{-1} + c_{2}r^{-2} + \dots + c_{k}r^{-k}) = 0 \iff r^{k} + c_{1}r^{k-1} + \dots + c_{k} = 0$$
(3)

т.е. характеристический многочлен $\chi(r) = r^k + c_1 r^{k-1} + \cdots + c_k$. Его корни целиком описывают форму общего решения.

Обозначения: $p_i(t), q_i(t)$ — полиномы по t степени $\leq j$.

Таблица 1: Выбор формы решения по типу корней характеристического многочлена

	1 1
Условия на корни	Вклад в решение
Действительный корень r кратности $m \geq 1$	$p_{m-1}(t) r^t$
Комплексно-сопряжённая пара $\rho e^{\pm i\theta}$ кратности $s \geq 1$	$\rho^t (p_{s-1}(t)\cos(\theta t) + q_{s-1}(t)\sin(\theta t))$

Итоговое общее решение — сумма форм всех корней:

$$a_t = \sum_{i} p_{m_j - 1}(t) r_j^t + \sum_{k} \rho_k^t (p_{s_k - 1}(t) \cos(\theta_k t) + q_{s_k - 1}(t) \sin(\theta_k t)),$$

где r_j — действительные корни кратности $m_j,\, \rho_k e^{\pm i \theta_k}$ — комплексно-сопряжённые корни кратности s_k . Сумма кратностей всех корней равна порядку k.

Начальные условия. Подставляем $t = 0, 1, \dots, k-1$ в общий вид, решаем линейную систему на α -коэффициенты.

Алгоритм.

- 1. Нормализация. Привести уравнение к виду $a_t + \sum_{j=1}^k c_j a_{t-j} = 0, \ c_k \neq 0.$ 2. Характеристический многочлен. Записать $\chi(r) = r^k + c_1 r^{k-1} + \cdots + c_k.$
- 3. **Корни и кратности.** Найти корни r и их кратности m ($\sum m = k$).
- 4. Общий вид решения (см. таблицу 1). Для каждого корня/пары взять соответствующий вклад из таблицы и сложить их.
- 5. **Подгонка под начальные условия.** Подставить k заданных значений подряд и решить линейную систему для постоянных.

1.2 Минимальная ЛОРУ: метод аннигиляторов

TL:DR

Минимальная ЛОРУ (линейное однородное разностное уравнение с постоянными коэффициентами), для которой данные последовательности являются решениями, строится так:

- 1. к каждой заданной последовательности приписать аннигилятор (многочлен от E);
- 2. взять НОК этих аннигиляторов как многочлен $L(\lambda)$;
- 3. развернуть L(E) y = 0 в явную рекурренту. Степень L минимальный порядок.

Методика

Пусть даны частные решения $y^{(1)}, \dots, y^{(m)}$.

Атом \to аннигилятор Для каждой последовательности выпишите минимальный аннигилирующий многочлен:

Таблица 2: Атом \rightarrow аннигилятор

Атом (последовательность)	Минимальный аннигилятор $L(\lambda)$
r^t	$(\lambda - r)$
$t^k r^t$	$(\lambda - r)^{k+1}$
$\rho^t \cos(\omega t), \rho^t \sin(\omega t)$	$Q_{\rho,\omega}(\lambda) = \lambda^2 - 2\rho\cos\omega\lambda + \rho^2$
$t^k \rho^t \cos / \sin(\omega t)$	$Q_{\rho,\omega}(\lambda)^{k+1}$
t^k	$(\lambda - 1)^{k+1}$
$(-1)^t$	$(\lambda + 1)$

Шаг 2. Собрать общий аннигилятор Возьмём НОК (наименьший общий кратный) всех многочленов из шага 1:

$$L(\lambda) = \operatorname{lcm} (L_1(\lambda), \dots, L_m(\lambda)).$$

При одинаковых базах/частотах выбирается максимальная кратность (а не сумма).

Шаг 3. Развернуть в рекуррент Если $L(\lambda) = \lambda^k + c_1 \lambda^{k-1} + \dots + c_k$, то искомое уравнение:

$$y_{t+k} + c_1 y_{t+k-1} + \dots + c_k y_t = 0$$

Минимальность. Любой многочлен P(E), который зануляет все данные последовательности, обязан делиться на L(E). Поэтому $\deg L$ — минимально возможный порядок.

Пример

Простой пример. Дано: $y_t^{(1)} = 3^t, \ y_t^{(2)} = (-2)^t.$

Шаг 1: Аннигиляторы: $(\lambda - 3)$ и $(\lambda + 2)$.

Шаг 2: HOK: $(\lambda - 3)(\lambda + 2) = \lambda^2 - \lambda - 6$.

Шаг 3: Развёртка: $y_{t+2} - y_{t+1} - 6y_t = 0$.

Проверка: обе последовательности являются решениями; порядок 2 минимален.

Пример

Пример посложнее. Дано: $y_t^{(1)} = 2^t$, $y_t^{(2)} = t2^t$, $y_t^{(3)} = (-1)^t$, $y_t^{(4)} = 3^t \cos \frac{\pi t}{3}$.

Шаг 1. Аннигиляторы

Для 2^t : $(\lambda - 2)$. Для $t2^t$: $(\lambda - 2)^2$. Для $(-1)^t$: $(\lambda + 1)$. Для $3^t \cos \frac{\pi t}{3}$: $Q_{3,\pi/3}(\lambda) = \lambda^2 - 3\lambda + 9$.

Шаг 2. НОК

Учитываем максимальную кратность по базе 2: $L(\lambda) = (\lambda - 2)^2 (\lambda + 1)(\lambda^2 - 3\lambda + 9)$.

Шаг 3. Развёртка

Сначала $(\lambda - 2)^2(\lambda + 1) = (\lambda^2 - 4\lambda + 4)(\lambda + 1) = \lambda^3 - 3\lambda^2 + 4$. Затем умножаем на $\lambda^2 - 3\lambda + 9$ и получаем $L(\lambda) = \lambda^5 - 6\lambda^4 + 18\lambda^3 - 23\lambda^2 - 12\lambda + 36$. Отсюда рекуррентное соотношение: $y_{t+5} - 6y_{t+4} + 18y_{t+3} - 23y_{t+2} - 12y_{t+1} + 36y_t = 0$.

Kомментарий: это и есть минимальная ЛОРУ, аннигилятор которой равен $L(\lambda)$.

1.3 Неоднородные линейные разностные уравнения

Пример. Решите неоднородное линейное разностное уравнение:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 2^t + t (4)$$

Определение. Линейное неоднородное разностное уравнение порядка k с постоянными коэффициентами:

$$a_t + c_1 a_{t-1} + c_2 a_{t-2} + \dots + c_k a_{t-k} = f(t), \quad c_k \neq 0$$
 (5)

где f(t) — заданная функция (неоднородность).

Структура общего решения: $a_t = a_t^{(h)} + a_t^{(p)}$, где:

- $a_t^{(h)}$ общее решение однородного уравнения (см. раздел 1.1)
- $a_t^{(p)}$ частное решение неоднородного уравнения

Метод неопределённых коэффициентов для $a_t^{(p)}$.

Пусть характеристический многочлен однородного уравнения:

$$\chi(r) = r^k + c_1 r^{k-1} + \dots + c_k$$
 $\chi(r) = \prod_i (r - r_i)^{m_i} \prod_{\ell} Q_{\rho_{\ell}, \theta_{\ell}}(r)^{s_{\ell}},$

где

$$Q_{\rho,\theta}(r) = (r - \rho e^{i\theta})(r - \rho e^{-i\theta}) = r^2 - 2\rho\cos\theta \, r + \rho^2.$$

Правило «множитель \rightarrow вклад» (однородная часть):

- Линейный $(r-r_0)^m \Rightarrow \sum_{j=0}^{m-1} \alpha_j t^j r_0^t$.
- Квадратный $Q_{\rho,\theta}(r)^s \Rightarrow \rho^t \Big(\sum_{j=0}^{s-1} t^j \big(a_j \cos(\theta t) + b_j \sin(\theta t) \big) \Big).$

Итог: $a_t^{(h)}$ — сумма всех таких вкладов по всем множителям χ .

Выбор формы частного решения $a_{t}^{(p)}$:

Обозначения: $P_n(t)$ — полином степени n; $Q_n(t)$, $R_n(t)$ — полиномы; $\lambda \in \mathbb{C}$; s — кратность резонанса (кратность соответствующего множителя в χ).

Правило резонанса: если проверка даёт резонанс кратности s, домножьте базовую форму на t^s .

Таблица 3: Выбор формы частного решения и проверка резонанса

$oxed{\mathbf{Heoghopoghoctb}\ f(t)}$	Проверка резонанса	Базовая форма $a_t^{(p)}$
$P_n(t) \lambda^t$	$\chi(\lambda) = 0?$	$Q_n(t)\lambda^t$
$\rho^t \cos(\theta t), \rho^t \sin(\theta t)$	$Q_{\rho,\theta}(r) \mid \chi(r)$?	$\rho^t (A\cos(\theta t) + B\sin(\theta t))$
$P_n(t) \rho^t \cos(\theta t)$ (или \sin)	$Q_{\rho,\theta}(r) \mid \chi(r)$?	$\rho^t (Q_n(t)\cos(\theta t) + R_n(t)\sin(\theta t))$
Чистый полином $P_n(t)$	$\chi(1) = 0?$	$Q_n(t)$

Алгоритм решения неоднородного уравнения.

- 1. Однородная часть. Найти $a_t^{(h)}$ методом характеристических корней (см. раздел 1.1).
- 2. **Форма частного решения.** По таблице 3 выбрать форму $a_t^{(p)}$ с учётом правила резонанса.
- 3. **Подстановка.** Подставить $a_t^{(p)}$ в исходное неоднородное уравнение и найти неопределённые коэффициенты.
- 4. Общее решение. $a_t = a_t^{(h)} + a_t^{(p)}$.
- 5. **Начальные условия.** Подставить k заданных значений и найти константы в $a_t^{(h)}$.

Пример. Решите разностное уравнение третьего порядка с постоянными коэффициентами:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 2^t + t$$

Найти общее решение y_t .

Решение.

1) Однородная часть. Характеристический многочлен:

$$\chi(r) = r^3 - 3r^2 + 6r - 4 = (r - 1)(r^2 - 2r + 4),$$

корни: $r_1 = 1$, $r_{2,3} = 1 \pm i\sqrt{3} = 2e^{\pm i\pi/3}$.

Отсюда

$$y_t^{(h)} = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{3} + C_3 \sin \frac{\pi t}{3} \right).$$

2) Частное решение $y_t^{(p)}$. Правая часть $f(t) = 2^t + t$ — сумма двух типов. Экспонента 2^t : $\chi(2) = 8 - 12 + 12 - 4 = 4 \neq 0 \Rightarrow$ резонанса нет, берём $y_{(1)}^{(p)} = \alpha \, 2^t$. Полином t: $\chi(1) = 0$ (кратность 1) \Rightarrow резонанс порядка s = 1. Базовая форма для $P_1(t) - At + B$, домножаем на t:

$$y_{(2)}^{(p)} = t(At + B) = At^2 + Bt.$$

Итого

$$y_t^{(p)} = \alpha 2^t + At^2 + Bt.$$

3) Подстановка и определение коэффициентов. Обозначим линейный оператор:

$$\mathcal{L}[y_t] = y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t.$$

Для экспоненты: $\mathcal{L}[2^t] = \chi(2) \, 2^t = 4 \cdot 2^t \Rightarrow 4\alpha \, 2^t = 2^t$, значит $\alpha = \frac{1}{4}$. Для полинома $At^2 + Bt$ прямой подсчёт даёт:

$$\mathcal{L}[At^2 + Bt] = 6At + (3A + 3B).$$

Требуем $\mathcal{L}[At^2 + Bt] = t$, откуда

$$6A = 1 \Rightarrow A = \frac{1}{6}, \qquad 3A + 3B = 0 \Rightarrow B = -\frac{1}{6}.$$

Следовательно,

$$y_t^{(p)} = \frac{1}{4} 2^t + \frac{t^2 - t}{6}.$$

4) Общее решение.

$$y_t = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{3} + C_3 \sin \frac{\pi t}{3} \right) + \frac{1}{4} 2^t + \frac{t^2 - t}{6}$$

(константы C_1, C_2, C_3 находятся по начальным условиям).

1.4 Системы разностных уравнений

Пример

Пример. Решите систему разностных уравнений: $\begin{cases} x_{t+1} = 4x_t + y_t \\ y_{t+1} = 2y_t \end{cases}$, с начальными усло-

виями $\mathbf{x}_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Определение

Система линейных разностных уравнений первого порядка с постоянными коэффициентами: $\mathbf{x}_{t+1} = A\mathbf{x}_t$, где задано \mathbf{x}_0 , $A \in \mathbb{R}^{n \times n}$, $\mathbf{x}_t \in \mathbb{R}^n$. Цель: найти $\mathbf{x}_t = A^t\mathbf{x}_0$.

Идея решения: возведение матрицы A в степень t. Для этого используем спектральное разложение матрицы.

Обозначения: λ_i — собственные значения, \mathbf{v}_i — собственные векторы, $\chi_A(\lambda) = \det(\lambda I - A)$ — характеристический многочлен.

Таблица 4: Выбор метода решения по типу собственных значений

Условия на собственные значения	Рекомендуемый метод
Разные действительные корни, полный базис собственных векторов	Диагонализация
Повторный корень, недостаточно собственных векторов	Жорданова форма
Комплексно-сопряжённая пара	Реальный блок поворота
Матрица 2×2 (любой случай)	Кэли-Гамильтон

1. Диагонализация

Условие применения: матрица A имеет n линейно независимых собственных векторов (диагонализуема).

Теорема. Если A диагонализуема, то $A = S\Lambda S^{-1}$, где $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ — диагональная матрица собственных значений, $S = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ — матрица собственных векторов.

Алгоритм

Алгоритм диагонализации.

- 1. Характеристический многочлен: $\chi_A(\lambda) = \det(\lambda I A)$.
- 2. Собственные значения: решить $\chi_A(\lambda) = 0$.
- 3. Собственные векторы: для каждого λ_i решить $(A \lambda_i I)\mathbf{v}_i = \mathbf{0}$.
- 4. Проверка диагонализуемости: $\det S \neq 0$.
- 5. Диагонализация: $A = S\Lambda S^{-1}$.
- 6. Возведение в степень: $A^{t} = S\Lambda^{t}S^{-1}$.
- 7. Решение: $\mathbf{x}_t = A^t \mathbf{x}_0$.

Пример

Пример. Та же система. Решение: $A = \begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix}$. Найдём собственные значения и векторы, построим S, Λ, S^{-1} и получим $A^t = \begin{pmatrix} 4^t & \frac{4^t - 2^t}{2} \\ 0 & 2^t \end{pmatrix}$, откуда $\mathbf{x}_t = \begin{pmatrix} \frac{3 \cdot 4^t - 2^t}{2} \\ 2^t \end{pmatrix}$.

2. Жорданова форма (повторный корень)

Условие применения: матрица A имеет повторное собственное значение, но недостаточно собственных векторов для диагонализации.

Теорема. Если A имеет единственное собственное значение λ кратности n, то $A = \lambda I + N$, где N — нильпотентная матрица ($N^m = 0$ для некоторого $m \le n$).

Ключевая идея: используем биномиальную формулу для $(I + \lambda^{-1}N)^t$.

Алгоритм

Алгоритм Жордановой формы.

- 1. Собственное значение λ .
- 2. Нильпотентная матрица $N = A \lambda I$.
- 3. Индекс нильпотентности: $N^m = 0$.
- 4. Формула: $A^t = \lambda^t \sum_{k=0}^{m-1} {t \choose k} (\lambda^{-1} N)^k$.
- 5. Решение: $\mathbf{x}_t = A^t \mathbf{x}_0$.

Пример. Система
$$\begin{cases} x_{t+1} = 2x_t + y_t \\ y_{t+1} = 2y_t \end{cases}$$
. Для $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ имеем $\lambda = 2, \ N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ m = 2,$ поэтому $A^t = 2^t \begin{pmatrix} 1 & t/2 \\ 0 & 1 \end{pmatrix}$ и $\mathbf{x}_t = 2^t \begin{pmatrix} 1 + t/2 \\ 1 \end{pmatrix}$.

3. Комплексная пара (реальный блок)

Условие применения: матрица $A \ 2 \times 2$ имеет комплексно-сопряжённые собственные значения $\lambda = \rho e^{\pm i\theta}$.

Теорема. Для матрицы A 2 × 2 с комплексными корнями $\lambda = \rho e^{\pm i\theta}$ справедливо:

$$A^{t} = \rho^{t} \begin{pmatrix} \cos(t\theta) & -\sin(t\theta) \\ \sin(t\theta) & \cos(t\theta) \end{pmatrix}$$

Ключевая идея: комплексные корни соответствуют повороту с масштабированием в вещественном пространстве.

Алгоритм

Алгоритм для комплексной пары.

- 1. Проверка: $(\operatorname{tr} A)^2 4 \det A < 0$.
- 2. $\rho = \sqrt{\det A}$, $\cos \theta = \frac{\operatorname{tr} A}{2\rho}$. 3. $A^t = \rho^t \begin{pmatrix} \cos(t\theta) & -\sin(t\theta) \\ \sin(t\theta) & \cos(t\theta) \end{pmatrix}$.
- 4. Решение: $\mathbf{x}_t = A^t \mathbf{x}_t$

Пример

Пример.
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
: $(\operatorname{tr} A)^2 - 4 \det A = -4 < 0, \ \rho = \sqrt{2}, \ \theta = \pi/4$. Тогда $A^t = (\sqrt{2})^t R(t\theta)$ и $\mathbf{x}_t = (\sqrt{2})^t \begin{pmatrix} \cos \frac{\pi t}{4} \\ \sin \frac{\pi t}{4} \end{pmatrix}$.

4. Кэли-Гамильтон (универсальный метод)

Условие применения: универсальный метод для матриц любого размера, особенно удобен для 2×2 .

Теорема Кэли–Гамильтона. Матрица A удовлетворяет своему характеристическому уравнению:

Ключевая идея: используем тождество $\chi_A(A) = 0$ для построения рекуррентного соотношения на степени матрицы.

Алгоритм

Алгоритм Кэли–Гамильтона (2×2) .

- 1. $\chi_A(\lambda) = \lambda^2 (\operatorname{tr} A)\lambda + \det A$.
- 2. Рекуррентное: $A^{t+2} = (\operatorname{tr} A)A^{t+1} (\det A)A^t$.
- 3. Представление: $A^t = \alpha_t A + \beta_t I$.
- 4. Решить на α_t , β_t и получить \mathbf{x}_t .

Пример

Пример. Для
$$A = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$$
: $\chi_A(\lambda) = (\lambda - 1)^2$, откуда $A^{t+2} = 2A^{t+1} - A^t$, $A^t = tA + (1-t)I$, и $\mathbf{x}_t = \begin{pmatrix} 4t+1 \\ 1-4t \end{pmatrix}$.

Общий алгоритм решения систем разностных уравнений

- 1. Анализ матрицы: $\operatorname{tr} A$, $\det A$, $\chi_A(\lambda)$.
- 2. Выбор метода по типу спектра.
- 3. Получить A^t соответствующим методом.
- 4. Решить $\mathbf{x}_t = A^t \mathbf{x}_0$.
- 5. Проверка: $A^0 = I$, $A^1 = A$.

Полезные проверки:

- Начальные условия: $A^0 = I$, $A^1 = A$.
- Жорданова форма: если $A = \lambda I + N$, проверить $N^m = 0$.
- Комплексная пара: $\det A = \rho^2$, $\operatorname{tr} A = 2\rho \cos \theta$.
- Биномиальные коэффициенты: не забыть $\binom{t}{k}$ в формуле Жордана.