In [5]: ▶ import pandas as pd
import numpy as np

In [7]: ► data

Out[7]:

|     | Name             | Team              | Number | Position | Age | Height     | Weight | College              | Salary    |
|-----|------------------|-------------------|--------|----------|-----|------------|--------|----------------------|-----------|
| 0   | Avery<br>Bradley | Boston<br>Celtics | 0      | PG       | 25  | 06-Feb     | 180    | Texas                | 7730337.0 |
| 1   | Jae<br>Crowder   | Boston<br>Celtics | 99     | SF       | 25  | 06-Jun     | 235    | Marquette            | 6796117.0 |
| 2   | John<br>Holland  | Boston<br>Celtics | 30     | SG       | 27  | 06-<br>May | 205    | Boston<br>University | NaN       |
| 3   | R.J.<br>Hunter   | Boston<br>Celtics | 28     | SG       | 22  | 06-<br>May | 185    | Georgia<br>State     | 1148640.0 |
| 4   | Jonas<br>Jerebko | Boston<br>Celtics | 8      | PF       | 29  | 06-Oct     | 231    | NaN                  | 5000000.0 |
|     |                  |                   |        |          |     |            |        |                      |           |
| 453 | Shelvin<br>Mack  | Utah<br>Jazz      | 8      | PG       | 26  | 06-Mar     | 203    | Butler               | 2433333.0 |
| 454 | Raul Neto        | Utah<br>Jazz      | 25     | PG       | 24  | 06-Jan     | 179    | NaN                  | 900000.0  |
| 455 | Tibor<br>Pleiss  | Utah<br>Jazz      | 21     | С        | 26  | 07-Mar     | 256    | NaN                  | 2900000.0 |
| 456 | Jeff<br>Withey   | Utah<br>Jazz      | 24     | С        | 26  | 7-0        | 231    | Kansas               | 947276.0  |
| 457 | Priyanka         | Utah<br>Jazz      | 34     | С        | 25  | 07-Mar     | 231    | Kansas               | 947276.0  |

458 rows × 9 columns

replace the values in 'height' by random numbers in between 150 and 180

In [8]: ▶ data['Height'] = np.random.randint(150, 181, size=len(data))

```
In [22]:
          M data.info()
             <class 'pandas.core.frame.DataFrame'>
             Index: 447 entries, 0 to 457
             Data columns (total 10 columns):
                            Non-Null Count Dtype
              #
                  Column
                  -----
                            _____
                                            ____
              0
                  Name
                            447 non-null
                                            object
                            447 non-null
                                            object
              1
                  Team
              2
                            447 non-null
                                             int64
                  Number
              3
                  Position 447 non-null
                                            object
              4
                            447 non-null
                                            int64
                  Age
              5
                            447 non-null
                                            int32
                  Height
              6
                  Weight
                            447 non-null
                                            int64
              7
                            365 non-null
                  College
                                            object
              8
                  Salary
                            447 non-null
                                            float64
                  AgeGroup 415 non-null
                                             category
             dtypes: category(1), float64(1), int32(1), int64(3), object(4)
             memory usage: 33.7+ KB
In [23]:

    data.isnull().sum()

   Out[23]: Name
                          0
             Team
                          0
             Number
                          0
             Position
                          0
             Age
                          0
             Height
                          0
             Weight
                          0
             College
                         82
             Salary
                          0
             AgeGroup
                         32
             dtype: int64
          data.shape[0]
In [28]:
   Out[28]: 447
             s=(data.isnull().sum()/data.shape[0])*100
In [35]:
             round(s,2)
   Out[35]: Name
                          0.00
             Team
                          0.00
             Number
                          0.00
             Position
                          0.00
                          0.00
             Age
             Height
                          0.00
             Weight
                          0.00
             College
                         18.34
             Salary
                          0.00
             AgeGroup
                          7.16
             dtype: float64
```

In [38]: ▶ data.shape

Out[38]: (447, 10)

In [39]: ▶ d1=data.drop(columns='College')

In [40]: ▶ d1

Out[40]:

|     | Name             | Team              | Number | Position | Age   | Height | Weight                                | Salary     | AgeGroup  |
|-----|------------------|-------------------|--------|----------|-------|--------|---------------------------------------|------------|-----------|
|     |                  |                   |        |          | , .90 |        | · · · · · · · · · · · · · · · · · · · | - Canary   | 7.g00.0up |
| 0   | Avery<br>Bradley | Boston<br>Celtics | 0      | PG       | 25    | 165    | 180                                   | 7730337.0  | 25-29     |
| 1   | Jae<br>Crowder   | Boston<br>Celtics | 99     | SF       | 25    | 158    | 235                                   | 6796117.0  | 25-29     |
| 3   | R.J.<br>Hunter   | Boston<br>Celtics | 28     | SG       | 22    | 168    | 185                                   | 1148640.0  | 20-24     |
| 4   | Jonas<br>Jerebko | Boston<br>Celtics | 8      | PF       | 29    | 151    | 231                                   | 5000000.0  | 25-29     |
| 5   | Amir<br>Johnson  | Boston<br>Celtics | 90     | PF       | 29    | 168    | 240                                   | 12000000.0 | 25-29     |
|     |                  |                   |        |          |       |        |                                       |            |           |
| 453 | Shelvin<br>Mack  | Utah<br>Jazz      | 8      | PG       | 26    | 178    | 203                                   | 2433333.0  | 25-29     |
| 454 | Raul Neto        | Utah<br>Jazz      | 25     | PG       | 24    | 176    | 179                                   | 900000.0   | 20-24     |
| 455 | Tibor<br>Pleiss  | Utah<br>Jazz      | 21     | С        | 26    | 172    | 256                                   | 2900000.0  | 25-29     |
| 456 | Jeff<br>Withey   | Utah<br>Jazz      | 24     | С        | 26    | 177    | 231                                   | 947276.0   | 25-29     |
| 457 | Priyanka         | Utah<br>Jazz      | 34     | С        | 25    | 177    | 231                                   | 947276.0   | 25-29     |

447 rows × 9 columns

```
d1.describe()
In [42]:
    Out[42]:
                          Number
                                         Age
                                                  Height
                                                             Weight
                                                                            Salary
                count 447.000000
                                              447.000000
                                                                     4.470000e+02
                                   447.000000
                                                          447.000000
                        17.718121
                                    26.914989
                                              166.053691
                                                          221.774049
                                                                     4.833970e+06
                mean
                        16.026218
                                     4.394955
                                                8.826010
                                                                    5.226620e+06
                  std
                                                           26.132217
                  min
                         0.000000
                                    19.000000
                                             150.000000
                                                          161.000000
                                                                     3.088800e+04
                 25%
                         5.000000
                                    24.000000
                                              159.000000
                                                          200.000000
                                                                     1.025210e+06
                 50%
                        13.000000
                                    26.000000
                                              167.000000
                                                          220.000000
                                                                     2.836186e+06
                        25.000000
                 75%
                                    30.000000
                                             174.000000
                                                          240.000000
                                                                     6.500000e+06
                                                         307.000000 2.500000e+07
                        99.000000
                                    40.000000 180.000000
                 max
In [41]:

d1.duplicated().sum()

    Out[41]: 0
In [52]:
               d1.shape
    Out[52]: (447, 9)
```

### 1.Distribution of employees

|                        | Count | Percentage |
|------------------------|-------|------------|
| Team                   |       |            |
| New Orleans Pelicans   | 19    | 4.250559   |
| Utah Jazz              | 16    | 3.579418   |
| New York Knicks        | 16    | 3.579418   |
| Milwaukee Bucks        | 16    | 3.579418   |
| Indiana Pacers         | 15    | 3.355705   |
| Portland Trail Blazers | 15    | 3.355705   |
| Oklahoma City Thunder  | 15    | 3.355705   |
| Washington Wizards     | 15    | 3.355705   |
| Charlotte Hornets      | 15    | 3.355705   |
| Atlanta Hawks          | 15    | 3.355705   |
| San Antonio Spurs      | 15    | 3.355705   |
| Houston Rockets        | 15    | 3.355705   |
| Brooklyn Nets          | 15    | 3.355705   |
| Dallas Mavericks       | 15    | 3.355705   |
| Detroit Pistons        | 15    | 3.355705   |
| Chicago Bulls          | 15    | 3.355705   |
| Sacramento Kings       | 15    | 3.355705   |
| Phoenix Suns           | 15    | 3.355705   |
| Los Angeles Lakers     | 15    | 3.355705   |
| Los Angeles Clippers   | 15    | 3.355705   |
| Golden State Warriors  | 15    | 3.355705   |
| Toronto Raptors        | 15    | 3.355705   |
| Cleveland Cavaliers    | 14    | 3.131991   |
| Memphis Grizzlies      | 14    | 3.131991   |
| Orlando Magic          | 14    | 3.131991   |
| Denver Nuggets         | 14    | 3.131991   |
| Philadelphia 76ers     | 14    | 3.131991   |
| Boston Celtics         | 14    | 3.131991   |
| Miami Heat             | 13    | 2.908277   |
| Minnesota Timberwolves | 13    | 2.908277   |

### 2. Employees and their positions

```
In []: M
```

## 3.predominant age group among employees.

```
import pandas as pd
In [44]:
             d1= pd.DataFrame(d1)
             # Creating age group
             bins = [20, 25, 30, 35]
             labels = ['20-24', '25-29', '30-34']
             d1['AgeGroup'] = pd.cut(d1['Age'], bins=bins, labels=labels, right=False)
             age_group_counts = d1['AgeGroup'].value_counts()
             print(age_group_counts)
             AgeGroup
             25-29
                      178
             20-24
                      148
             30-34
                       89
             Name: count, dtype: int64
```

# 4.the team position which has highest salary expenditure

```
In [45]: | import pandas as pd
d1= pd.DataFrame(d1)

team_salary = d1.groupby('Team')['Salary'].sum()
position_salary = d1.groupby('Position')['Salary'].sum()
highest_team_salary = team_salary.idxmax()
highest_position_salary = position_salary.idxmax()

print(f"Team with the highest salary expenditure: {highest_team_salary}")
print(f"Position with the highest salary expenditure: {highest_position_salary}")
```

Team with the highest salary expenditure: Cleveland Cavaliers Position with the highest salary expenditure: C

#### 5.relation between age and salary

```
import pandas as pd
In [46]:
              import matplotlib.pyplot as plt
             d1= pd.DataFrame(d1)
             # Drop rows where the salary is missing
             d1= d1.dropna(subset=['Salary'])
             # Plot the data
             plt.scatter(d1['Age'], d1['Salary'])
             plt.xlabel('Age')
             plt.ylabel('Salary')
             plt.title('Age and Salary')
             plt.show()
                 2.0
                 1.5
               Salary
                 1.0
                 0.5
                 0.0
                          20
                                        25
                                                      30
                                                                    35
                                                                                  40
                                                    Age
 In [ ]:
```

# GRAPHICAL REPRESENTATIONS OF ANALYSIS

1

```
In [48]:
             import pandas as pd
             import matplotlib.pyplot as plt
             d1 = pd.DataFrame(d1)
             fig, ax1 = plt.subplots(figsize=(14, 8))
             ax1.bar(d1['Team'], d1['Salary'], color='b', alpha=0.6, label='Salary')
             ax1.set_xlabel('Team')
             ax1.set_ylabel('Salary', color='b')
             ax1.tick_params(axis='y', labelcolor='b')
             ax1.set_xticklabels(d1['Team'], rotation=90)
             ax2 = ax1.twinx()
             ax2.plot(d1['Team'], d1['Position'], color='r', marker='o', label='Percent
             ax2.set_ylabel('Position', color='r')
             ax2.tick_params(axis='y', labelcolor='r')
             plt.title('Team and Position Salary Expenditure')
             fig.tight_layout()
             plt.show()
```

C:\Users\Y0GA\AppData\Local\Temp\ipykernel\_18204\724937870.py:11: UserWa
rning: FixedFormatter should only be used together with FixedLocator
ax1.set\_xticklabels(d1['Team'], rotation=90)



```
In []: M 2.

In []: M
```

3

```
import pandas as pd
In [51]:
             import matplotlib.pyplot as plt
             # Data
             data = {
                 'AgeGroup': ['25-29', '20-24', '30-34'],
                 'Count': [182, 152, 90]
             }
             # Create DataFrame
             df = pd.DataFrame(data)
             # Plot
             plt.figure(figsize=(8, 6))
             plt.bar(df['AgeGroup'], df['Count'], color=['blue', 'green', 'red'])
             plt.xlabel('Age Group')
             plt.ylabel('Count')
             plt.title('Distribution of Employees Across Age Groups')
             plt.show()
```



4

```
import matplotlib.pyplot as plt
In [105]:
              # Data
              labels = ['Cleveland Cavaliers', 'Other Teams']
              sizes = [1, 0]
              colors = ['gold', 'lightgrey']
              labels_position = ['C', 'Other Positions']
              sizes_position = [1, 0]
              colors_position = ['skyblue', 'lightgrey']
              fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
              ax1.pie(sizes, labels=labels, colors=colors, startangle=90, autopct='%1.1
              ax1.axis('equal')
              ax1.set_title('Team with the Highest Salary Expenditure')
              ax2.pie(sizes_position, labels=labels_position, colors=colors_position, st
              ax2.axis('equal')
              ax2.set_title('Position with the Highest Salary Expenditure')
              plt.show()
```



5.

```
In [111]: | import pandas as pd
import matplotlib.pyplot as plt

data = data
    df = pd.DataFrame(data)
    df = df.dropna(subset=['Salary'])

plt.scatter(df['Age'], df['Salary'])
    plt.xlabel('Age')
    plt.ylabel('Salary')
    plt.title('Age vs. Salary')
    plt.show()
```

