FIRAS Vegard Falmår

CMB Temperature From FIRAS Data

Vegard Falmår

March 11, 2024

I. TASK

Analyse the FIRAS data set. It is the average spectrum of the sky as measured by the FIRAS experiment, which is considered to be a near-perfect blackbody, given by the Planck blackbody law.

Estimate the temperature of the blackbody and the uncertainty of the temperature. One important thing to note is the non-standard frequency units, reported in inverse-centimetres.

We also ask that you perform the analysis using as few external packages as possible, for example avoiding the use of scipy.minimize or other "black box" routines.

II. DATA SET

The data set contains five sets of data points.

A. Frequency

The frequency is given in units of inverse-centimetres (cm⁻¹). If desired this can be converted to Hertz through multiplying with 100c, where $c \approx 3 \cdot 10^8$ m/s is the speed of light.

B. Spectrum

Intensity, as obtained from Planck's blackbody law, given in units of MegaJanskys per steradian (MJy / sr).

FIRAS Vegard Falmår

III. PLANCK'S LAW OF BLACKBODY RADIATION

Reads

$$B(\nu, T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/(k_B T)} - 1}.$$
 (1)

In SI units it is expressed as

$$J m^{-2} sr^{-1} = W m^{-2} sr^{-1} Hz^{-1}$$
. (2)

To convert into MJy / sr multiply with

- 10^{26} for the Janskys $(1\mathrm{Jy} = 10^{-26}\mathrm{W\ m^{-2}\ Hz^{-1}})$ and
- 10^{-6} for the Mega.