Numerical Analysis (Review of) Linear Algebra

Aleksandar Donev

Courant Institute, NYU¹ donev@courant.nyu.edu

¹Course MATH-UA.0252/MA-UY_4424, Spring 2021

Spring 2021

- Vector Spaces
- 2 Linear Transformations
- Norms and Conditioning
- 4 Conditioning of linear maps
- 5 Eigen and singular values

- 1 Vector Spaces
- 2 Linear Transformations
- Norms and Conditioning
- 4 Conditioning of linear maps
- Eigen and singular values

Linear Spaces

• A vector space V is a set of elements called vectors $\mathbf{x} \in V$ that may be multiplied by a scalar c and added, e.g.,

$$\mathbf{z} = \alpha \mathbf{x} + \beta \mathbf{y}$$

- I will denote scalars with lowercase letters and vectors with lowercase bold letters.
- Prominent examples of vector spaces are \mathbb{R}^n (or more generally \mathbb{C}^n), but there are many others, for example, the set of polynomials in x.
- A subspace $\mathcal{V}' \subseteq \mathcal{V}$ of a vector space is a subset such that sums and multiples of elements of \mathcal{V}' remain in \mathcal{V}' (i.e., it is closed).
- An example is the set of vectors in $x \in \mathbb{R}^3$ such that $x_3 = 0$.

Image Space

• Consider a set of n vectors $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n \in \mathbb{R}^m$ and form a **matrix** by putting these vectors as columns

$$\mathbf{A} = [\mathbf{a}_1 \,|\, \mathbf{a}_2 \,|\, \cdots \,|\, \mathbf{a}_m] \in \mathbb{R}^{m,n}.$$

- I will denote matrices with bold capital letters, and sometimes write $\mathbf{A} = [m, n]$ to indicate dimensions.
- The matrix-vector product is defined as a linear combination of the columns:

$$\mathbf{b} = \mathbf{A}\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n \in \mathbb{R}^m.$$

The image im(A) or range range(A) of a matrix is the subspace of all linear combinations of its columns, i.e., the set of all b's.
 It is also sometimes called the column space of the matrix.

Dimension

- The set of vectors $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ are linearly independent or form a basis for \mathbb{R}^m if $\mathbf{b} = \mathbf{A}\mathbf{x} = \mathbf{0}$ implies that $\mathbf{x} = \mathbf{0}$.
- The **dimension** $r = \dim \mathcal{V}$ of a vector (sub)space \mathcal{V} is the number of elements in a basis. This is a property of \mathcal{V} itself and *not* of the basis, for example,

$$\dim \mathbb{R}^n = n$$

• Given a basis $\bf A$ for a vector space ${\cal V}$ of dimension n, every vector of ${\bf b} \in {\cal V}$ can be uniquely represented as the vector of coefficients ${\bf x}$ in that particular basis,

$$\mathbf{b} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n.$$

• A simple and common basis for \mathbb{R}^n is $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, where \mathbf{e}_k has all components zero except for a single 1 in position k. With this choice of basis the coefficients are simply the entries in the vector, $\mathbf{b} \equiv \mathbf{x}$.

Kernel Space

• The dimension of the column space of a matrix is called the **rank** of the matrix $\mathbf{A} \in \mathbb{R}^{m,n}$,

$$r = \operatorname{rank} \mathbf{A} \leq \min(m, n).$$

- If $r = \min(m, n)$ then the matrix is of **full rank**.
- The nullspace null(A) or kernel ker(A) of a matrix A is the subspace of vectors x for which

$$Ax = 0$$
.

- The dimension of the nullspace is called the nullity of the matrix.
- For a basis **A** the nullspace is $null(\mathbf{A}) = \{\mathbf{0}\}\$ and the nullity is zero.

Orthogonal Spaces

- An inner-product space is a vector space together with an inner or dot product, which must satisfy some properties.
- The standard dot-product in \mathbb{R}^n is denoted with several different notations:

$$\mathbf{x} \cdot \mathbf{y} = (\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i.$$

• For \mathbb{C}^n we need to add complex conjugates (here \star denotes a complex conjugate transpose, or **adjoint**),

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^* \mathbf{y} = \sum_{i=1}^n \bar{x}_i y_i.$$

• Two vectors \mathbf{x} and \mathbf{y} are **orthogonal** if $\mathbf{x} \cdot \mathbf{y} = 0$.

Part I of Fundamental Theorem

• One of the most important theorems in linear algebra is that the sum of rank and nullity is equal to the number of columns: For $\mathbf{A} \in \mathbb{R}^{m,n}$

rank
$$\mathbf{A}$$
 + nullity \mathbf{A} = n .

- In addition to the range and kernel spaces of a matrix, two more important vector subspaces for a given matrix **A** are the:
 - Row space or coimage of a matrix is the column (image) space of its transpose, im A^T.
 Its dimension is also equal to the the rank.
 - Left nullspace or cokernel of a matrix is the nullspace or kernel of its transpose, ker A^T.

Part II of Fundamental Theorem

- The **orthogonal complement** \mathcal{V}^{\perp} or orthogonal subspace of a subspace \mathcal{V} is the set of all vectors that are orthogonal to every vector in \mathcal{V} .
- Let \mathcal{V} be the set of vectors in $x \in \mathbb{R}^3$ such that $x_3 = 0$. Then \mathcal{V}^{\perp} is the set of all vectors with $x_1 = x_2 = 0$.
- Second fundamental theorem in linear algebra:

$$\mathsf{im}\,\mathbf{A}^{T}=(\mathsf{ker}\,\mathbf{A})^{\perp}$$

$$\ker \mathbf{A}^T = (\operatorname{im} \mathbf{A})^{\perp}$$

- Vector Spaces
- 2 Linear Transformations
- 3 Norms and Conditioning
- 4 Conditioning of linear maps
- Eigen and singular values

Linear Transformation

• A function $L: \mathcal{V} \to \mathcal{W}$ mapping from a vector space \mathcal{V} to a vector space \mathcal{W} is a **linear function** or a **linear transformation** if

$$L(\alpha \mathbf{v}) = \alpha L(\mathbf{v})$$
 and $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2)$.

 Any linear transformation L can be represented as a multiplication by a matrix L

$$L(\mathbf{v}) = \mathbf{L}\mathbf{v}.$$

• For the common bases of $\mathcal{V} = \mathbb{R}^n$ and $\mathcal{W} = \mathbb{R}^m$, the product $\mathbf{w} = \mathbf{L}\mathbf{v}$ is simply the usual **matix-vector product**,

$$w_i = \sum_{k=1}^n L_{ik} v_k,$$

which is simply the dot-product between the i-th row of the matrix and the vector \mathbf{v} .

Matrix algebra

$$w_i = (\mathbf{L}\mathbf{v})_i = \sum_{k=1}^n L_{ik} v_k$$

• The composition of two linear transformations $\mathbf{A} = [m, p]$ and $\mathbf{B} = [p, n]$ is a **matrix-matrix product** $\mathbf{C} = \mathbf{AB} = [m, n]$:

$$z = A(Bx) = Ay = (AB)x$$

$$z_{i} = \sum_{k=1}^{n} A_{ik} y_{k} = \sum_{k=1}^{p} A_{ik} \sum_{j=1}^{n} B_{kj} x_{j} = \sum_{j=1}^{n} \left(\sum_{k=1}^{p} A_{ik} B_{kj} \right) x_{j} = \sum_{j=1}^{n} C_{ij} x_{j}$$

$$C_{ij} = \sum_{k=1}^{p} A_{lk} B_{kj}$$

 Matrix-matrix multiplication is not commutative, AB ≠ BA in general.

The Matrix Inverse

• A square matrix $\mathbf{A} = [n, n]$ is **invertible or nonsingular** if there exists a **matrix inverse** $\mathbf{A}^{-1} = \mathbf{B} = [n, n]$ such that:

$$AB = BA = I$$
,

where I is the identity matrix (ones along diagonal, all the rest zeros).

- The following statements are equivalent for $\mathbf{A} \in \mathbb{R}^{n,n}$:
 - A is invertible.
 - **A** is **full-rank**, rank $\mathbf{A} = n$.
 - The columns and also the rows are linearly independent and form a basis for \mathbb{R}^n .
 - The **determinant** is nonzero, det $A \neq 0$.
 - Zero is not an eigenvalue of A.

Matrix Algebra

• Matrix-vector multiplication is just a special case of matrix-matrix multiplication. Note $\mathbf{x}^T \mathbf{y}$ is a scalar (dot product).

$$C\left(A+B\right)=CA+CB \text{ and } ABC=\left(AB\right)C=A\left(BC\right)$$

$$(\mathbf{A}^T)^T = \mathbf{A} \text{ and } (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

$$\left(\mathbf{A}^{-1}\right)^{-1} = \mathbf{A} \text{ and } \left(\mathbf{A}\mathbf{B}\right)^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \text{ and } \left(\mathbf{A}^{T}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{T}$$

Instead of matrix division, think of multiplication by an inverse:

$$\mathbf{A}\mathbf{B} = \mathbf{C} \quad \Rightarrow \quad \left(\mathbf{A}^{-1}\mathbf{A}\right)\mathbf{B} = \mathbf{A}^{-1}\mathbf{C} \quad \Rightarrow \quad \begin{cases} \mathbf{B} &= \mathbf{A}^{-1}\mathbf{C} \\ \mathbf{A} &= \mathbf{C}\mathbf{B}^{-1} \end{cases}$$

- Vector Spaces
- 2 Linear Transformations
- Norms and Conditioning
- 4 Conditioning of linear maps
- Eigen and singular values

Vector norms

- Norms are the abstraction for the notion of a length or **magnitude**.
- For a vector $\mathbf{x} \in \mathbb{R}^n$, the *p*-norm is

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

and special cases of interest are:

- **1** The 1-norm (L^1 norm or Manhattan distance), $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- 2 The 2-norm (L^2 norm, Euclidian distance),

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\sum_{i=1}^n |x_i|^2}$$

- **③** The ∞-norm (L^{∞} or maximum norm), $\|\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$
- Note that all of these norms are inter-related in a finite-dimensional setting.

Matrix norms

• Matrix norm induced by a given vector norm:

$$\|\mathbf{A}\| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \quad \Rightarrow \|\mathbf{A}\mathbf{x}\| \leq \|\mathbf{A}\| \, \|\mathbf{x}\|$$

- The last bound holds for matrices as well, $\|\mathbf{AB}\| \leq \|\mathbf{A}\| \|\mathbf{B}\|$.
- Special cases of interest are:
 - **1** The 1-norm or **column sum norm**, $\|\mathbf{A}\|_1 = \max_i \sum_{i=1}^n |a_{ii}|$
 - 2 The ∞ -norm or row sum norm, $\|\mathbf{A}\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$
 - **3** The 2-norm or **spectral norm**, $\|\mathbf{A}\|_2 = \sigma_1$ (largest singular value)
 - **1** The Euclidian or **Frobenius norm**, $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$ (note this is not an induced norm)

- Vector Spaces
- 2 Linear Transformations
- Norms and Conditioning
- 4 Conditioning of linear maps
- 5 Eigen and singular values

Conditioning

• Consider a function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$, and perturb \mathbf{x} to the **absolute** condition number

$$\mathsf{Cond}_{\mathbf{x}}\left(f\right) = \sup_{\delta \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{f}\left(\mathbf{x} + \delta \mathbf{x}\right) - \mathbf{f}\left(\mathbf{x}\right)\|}{\|\delta \mathbf{x}\|}$$

where $\|\delta \mathbf{x}\| \ll \|\mathbf{x}\|$ is a small perturbation (assume $\mathbf{x} \neq \mathbf{0}$).

- This measures how sensitive the value of the function is to small errors in the input (e.g., roundoff or measurement).
- For differentiable scalar functions $f(x \in \mathbb{R}) \in \mathbb{R}$,

$$Cond_{x}(f) = |f'(x)|.$$

More commonly used is the relative condition number

$$\mathsf{cond}_{\mathbf{x}}(f) = \sup_{\delta \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{f}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{f}(\mathbf{x})\| / \|\mathbf{f}(\mathbf{x})\|}{\|\delta \mathbf{x}\| / \|\mathbf{x}\|}$$

which measures the maximum relative change in the output for a given small relative change in the input.

Conditioning number

• Consider a linear mapping f(x) = Ax. What is the relative conditioning number?

$$\begin{aligned} \operatorname{cond}_{\mathbf{x}}\left(f\right) &= \sup_{\delta \mathbf{x} \neq \mathbf{0}} \frac{\left\|\mathbf{A} \left(\mathbf{x} + \delta \mathbf{x}\right) - \mathbf{A} \mathbf{x}\right\| / \left\|\mathbf{A} \mathbf{x}\right\|}{\left\|\delta \mathbf{x}\right\| / \left\|\mathbf{x}\right\|} \\ &= \frac{\left\|\mathbf{x}\right\|}{\left\|\mathbf{A} \mathbf{x}\right\|} \sup_{\delta \mathbf{x} \neq \mathbf{0}} \frac{\left\|\mathbf{A} \delta \mathbf{x}\right\|}{\left\|\delta \mathbf{x}\right\|} = \\ &= \frac{\left\|\mathbf{x}\right\|}{\left\|\mathbf{A} \mathbf{x}\right\|} \left\|\mathbf{A}\right\| \geq 1. \end{aligned}$$

To get an upper bound, consider an invertible square A,

$$\operatorname{cond}_{\mathbf{x}}(f) = \frac{\left\|\mathbf{A}^{-1}(\mathbf{A}\mathbf{x})\right\|}{\|\mathbf{A}\mathbf{x}\|} \|\mathbf{A}\| \le \left\|\mathbf{A}^{-1}\right\| \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{A}\mathbf{x}\|} \|\mathbf{A}\|$$

which leads us to define a matrix condition number

$$\kappa\left(\mathbf{A}\right) = \left\|\mathbf{A}^{-1}\right\| \left\|\mathbf{A}\right\| > 1.$$

- Vector Spaces
- 2 Linear Transformations
- Norms and Conditioning
- 4 Conditioning of linear maps
- 5 Eigen and singular values

Eigenvalue Decomposition

• For a square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, there exists at least one λ such that

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \quad \Rightarrow \quad (\mathbf{A} - \lambda\mathbf{I})\mathbf{x} = \mathbf{0}$$

• Putting the eigenvectors \mathbf{x}_j as columns in a matrix \mathbf{X} , and the eigenvalues λ_j on the diagonal of a diagonal matrix $\mathbf{\Lambda}$, we get

$$AX = X\Lambda$$
.

 A matrix is non-defective or diagonalizable if there exist n linearly independent eigenvectors, i.e., if the matrix X is invertible:

$$X^{-1}AX = \Lambda$$

leading to the eigen-decomposition of the matrix

$$A = X\Lambda X^{-1}$$
.

Unitarily Diagonalizable Matrices

• A unitary (complex) or orthogonal (real) matrix U has orthogonal colums each of which has unit L_2 norm:

$$U^{-1} = U^*$$
.

Recall that star denotes adjoint (conjugate transpose).

• A matrix is **unitarily diagonalizable** if there exist n linearly independent **orthogonal eigenvectors**, $X \equiv U$,

$$A = U\Lambda U^*$$
.

There is a **geometric interpretation** of this (sphere->ellipsoid).

 Theorem: Hermitian matrices, A* = A, are unitarily diagonalizable and have real eigenvalues.
 For real matrices we use the term symmetric.

Non-diagonalizable Matrices

 For matrices that are not diagonalizable, one can use Jordan form factorizations, or, more relevant to numerical mathematics, the Schur factorization (decomposition):

$$A = UTU^*$$

- where **T** is **upper-triangular** (unlike **Jordan form** where only nonzeros are on super-diagonal).
- The eigenvalues are on the diagonal of T, and in fact if A is unitarily diagonalizable then $T \equiv \Lambda$.
- The Schur decomposition is **not unique** but it is the best generalization of the eigenvalue (spectral) decomposition to general matrices.

Singular Value Decomposition (SVD)

Every matrix has a singular value decomposition (SVD)

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^* = \sum_{i=1}^{p} \sigma_i \mathbf{u}_i \mathbf{v}_i^*$$
$$[m \times n] = [m \times m] [m \times n] [n \times n],$$

where **U** and **V** are **unitary matrices** whose columns are the left, \mathbf{u}_i , and the right, \mathbf{v}_i , **singular vectors**, and

$$\mathbf{\Sigma} = \mathsf{Diag}\left\{\sigma_1, \sigma_2, \dots, \sigma_p\right\}$$

is a **diagonal matrix** with real positive diagonal entries called **singular** values of the matrix

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0,$$

and $p = \min(m, n)$ is the maximum possible rank of the matrix.

Comparison to eigenvalue decomposition

• Recall the eigenvector decomposition for diagonalizable matrices

$$AX = X\Lambda$$
.

 The singular value decomposition can be written similarly to the eigenvector one

$$\boldsymbol{AV} = \boldsymbol{U\Sigma}$$

$$\mathbf{A}^{\star}\mathbf{U} = \mathbf{V}\mathbf{\Sigma}$$

and they both **diagonalize A**, but there are some important **differences**:

- The SVD exists for any matrix, not just diagonalizable ones.
- The SVD uses different vectors on the left and the right (different basis for the domain and image of the linear mapping represented by A).
- The SVD always uses orthonormal basis (unitary matrices), not just for unitarily diagonalizable matrices.

Relation to Eigenvalues

- For Hermitian (symmetric) matrices, there is no fundamental difference between the SVD and eigenvalue decompositions (and also the Schur decomposition).
- The squared singular values are eigenvalues of the normal matrix:

$$\sigma_i(\mathbf{A}) = \sqrt{\lambda_i(\mathbf{A}\mathbf{A}^*)} = \sqrt{\lambda_i(\mathbf{A}^*\mathbf{A})}$$

since

$$\mathbf{A}^{\star}\mathbf{A} = (\mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\star})(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\star}) = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\star}$$

• Similarly, the singular vectors are eigenvectors of $\mathbf{A}^*\mathbf{A}$ or $\mathbf{A}\mathbf{A}^*$.

Matrix norms

• Recall: Matrix norm **induced** by a given vector norm:

$$\|\mathbf{A}\| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \quad \Rightarrow \|\mathbf{A}\mathbf{x}\| \leq \|\mathbf{A}\| \, \|\mathbf{x}\|$$

- Special cases of interest are:
 - **1** The 2-norm or **spectral norm**, $\|\mathbf{A}\|_2 = \sigma_1$ (largest singular value)
 - **②** The Euclidian or **Frobenius norm**, $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$ (note this is not an induced norm)
- Unitary matrices are important because they are always well-conditioned, $\kappa_2(\mathbf{U}) = 1$.