IIT Bombay

Course Code: EE 614

Department: Electrical Engineering

Instructor Name: Jayanta Mukherjee

Email: jayanta@ee.iitb.ac.in

Lecture 2

The Scattering Matrix

$$b_1 = \frac{V_1^-}{\sqrt{Z_1}} \ b_2 = \frac{V_2^-}{\sqrt{Z_2}} \text{ with } I_j = \frac{V_j^+}{Z_j} - \frac{V_j^-}{Z_j}$$

$$v_j = \frac{V_j}{\sqrt{Z_j}} = \frac{1}{\sqrt{Z_j}} \left[V_j^+ + V_j^- \right] = a_j + b_j$$
 defines normalized voltage at port j

$$i_j = I_j \sqrt{Z_j} = \sqrt{Z_j} \left[\frac{V_j^+}{Z_j} - \frac{V_j^-}{Z_j} \right] = a_j - b_j$$
 defines normalized current at port j

Scattering Parameters

For a linear device (small-signal) we have a linear relationship

between a's and b's:

$$b_1 = S_{11}a_1 + S_{12}a_2$$

$$\mathbf{b}_2 = \mathbf{S}_{21} \mathbf{a}_1 + \mathbf{S}_{22} \mathbf{a}_2$$

In matrix form:

$$\begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = S \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$S_{11} = \frac{b_1}{a_1} \bigg|_{a_2 = 0}$$

 $S_{11} = \frac{b_1}{a_1}\Big|_{a_1=0}$ Input reflection coefficient with output matched

$$S_{21} = \frac{b_2}{a_1} \bigg|_{a_2 = 0}$$

Forward transmission coefficient with output matched

$$S_{22} = \frac{b_2}{a_2} \bigg|_{a_1 = 0}$$

Output reflection coefficient with input matched

$$S_{12} = \frac{b_1}{a_2} \bigg|_{a_1 = 0}$$

Reverse transmission coefficient with input matched

Shifting reference planes for lossless lines

IIT Bombay Page 5

Shifting reference planes for lossless lines

Consider an incident wave a_l at port l and reflected wave b_k at port k. The new incident wave a_l at port l and reflected wave b_k at port k after we respectively shift the reference planes by l_l and l_k are

$$b'_{k} = b_{k}e^{-j\beta_{k}x_{k}} = b_{k}e^{-j\theta_{k}}$$
with $\theta_{k} = \beta_{k}x_{k}$

$$a'_{l} = a_{l}e^{j\beta_{l}x_{l}} = a_{l}e^{j\theta_{l}}$$
with $\theta_{l} = \beta_{l}x_{l}$

$$S'_{kl} = \frac{b'_{k}}{a'_{l}}\Big|_{a'_{l\neq l}=0} = \frac{b_{k}e^{-j\theta_{k}}}{a_{l}e^{j\theta_{l}}}\Big|_{a_{l\neq l}=0} = S_{kl}e^{-j(\theta_{k}+\theta_{l})}$$
 (phase correction)

Shifting reference planes for lossless lines

This means that our scattering parameters in terms of the primed quantities now become

$$S'_{nm} = \frac{b'_n}{a'_m}\bigg|_{a'_{k\neq m}=0} = \frac{b_n}{a_m}\bigg|_{a_{k\neq m}=0} e^{-j(\beta_m x_m + \beta_n x_n)} = S_{nm} e^{-j(\theta_m + \theta_n)}$$

with
$$\theta_n = \beta_n d_n$$

The relationship between matrices can be written more conveniently as

$$[S'] = \begin{bmatrix} e^{-j\theta_1} & 0 & \cdots & 0 \\ 0 & e^{-j\theta_2} & & 0 \\ 0 & & & 0 \\ 0 & \cdots & \cdots & e^{-j\theta_N} \end{bmatrix} \begin{bmatrix} s \end{bmatrix} \begin{bmatrix} e^{-j\theta_1} & 0 & \cdots & 0 \\ 0 & e^{-j\theta_2} & & 0 \\ 0 & & & 0 \\ 0 & \cdots & \cdots & e^{-j\theta_N} \end{bmatrix}$$

Page 7

2 Port example

$$S'_{kl} = S_{kl}e^{-j(\theta_k + \theta_l)}$$

$$egin{bmatrix} S_{11}^{'} & S_{12}^{'} \ S_{21}^{'} & S_{22}^{'} \ \end{bmatrix}$$

$$= \begin{bmatrix} e^{-j\theta_1} & 0 \\ 0 & e^{-j\theta_2} \end{bmatrix}$$

$$egin{bmatrix} S_{11} & S_{12} \ S_{21} & S_{22} \ \end{bmatrix}$$

$$\begin{bmatrix} S_{11}^{'} & S_{12}^{'} \\ S_{21}^{'} & S_{22}^{'} \end{bmatrix} = \begin{bmatrix} e^{-j\theta_{1}} & 0 \\ 0 & e^{-j\theta_{2}} \end{bmatrix} \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} e^{-j\theta_{1}} & 0 \\ 0 & e^{-j\theta_{2}} \end{bmatrix}$$

Properties of Scattering Parameters

Power dissipated by the load:

$$P_{L} = \operatorname{Re}\left\{VI^{*}\right\}_{rms} = \frac{1}{2}\operatorname{Re}\left\{VI^{*}\right\}_{amplitude}$$

$$= \operatorname{Re}\left\{\left(V^{+} + V^{-}\left(\frac{V^{+}}{Z_{0}} - \frac{V^{-}}{Z_{0}}\right)^{*}\right\}$$

$$= \frac{\left|V^{+}\right|^{2}}{Z_{0}} - \frac{\left|V^{-}\right|^{2}}{Z_{0}} = P^{+} - P^{-} \quad \text{(incident minus reflected power)}$$

Properties of Scattering Parameters

In terms of normalized waves (add 1/2 factor for amplitude)

$$P_{L} = \text{Re}\{v i^{*}\}_{rms} = |a|^{2} - |b|^{2} = P^{+} - P^{-}$$

with

$$P^{+} = \frac{|V^{+}|^{2}}{Z_{0}} = |a|^{2} \text{ and } P^{-} = \frac{|V^{-}|^{2}}{Z_{0}} = |b|^{2}$$

Given $b = \Gamma_L a$ we have:

$$P_{L} = |a|^{2} (1 - |\Gamma_{L}|^{2}) = P_{L} = P^{+} (1 - |\Gamma_{L}|^{2})$$

Two Port Network Parameter conversion

To convert Z parameters to S parameters

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \mathbf{Z} \mathbf{I}$$

Using matrix notation $(V = V^+ + V^- \text{ and } I = I^+ - I^-)$

and assuming $Z_1 = Z_2 = Z_0$ we have, $V^+ + V^- = Z(I^+ - I^-)$

Using $I^{\pm} = \frac{1}{Z_0}V^{\pm}$ we can rearrange this equation as:

$$(Z + Z_0 U)I^- = (Z - Z_0 U)I^+$$

with Uthe identity matrix.

$$S = \frac{b}{a} = \frac{V - I}{V + I} = \frac{I - I}{I + I} = (Z + Z_0 U)^{-1} (Z - Z_0 U)$$

Conversely: $Z = Z_0 (1 + S)(1 - S)^{-1}$

Two Port Network Parameter conversion

To convert Z parameters to S parameters

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \mathbf{Z} \mathbf{I}$$

Using matrix notation $(V = V^+ + V^- \text{ and } I = I^+ - I^-)$

and assuming $Z_1 = Z_2 = Z_0$ we have, $V^+ + V^- = Z(I^+ - I^-)$

Using $I^{\pm} = \frac{1}{Z_0}V^{\pm}$ we can rearrange this equation as:

$$(Z + Z_0 U)I^- = (Z - Z_0 U)I^+$$

with Uthe identity matrix.

$$S = \frac{b}{a} = \frac{V - I}{V + I} = \frac{I - I}{I + I} = (Z + Z_0 U)^{-1} (Z - Z_0 U)$$

Conversely: $Z = Z_0 (1 + S)(1 - S)^{-1}$

Various Types of Transistor

- Device Types: family FET's or Bipolar transistors
 - FET: C-MOSFET LDMOSFET HEMT/MODFET
 - Bipolar: BJT HBT DHBT
- Materials:
 - Si (C-MOSFET, BJT), SiGe (HBT's)
 - GaAs, AlGaAs/GaAs (1st generation of HEMTs/HBTs)
 - InP-InGaAs/AllnAs (2nd generation of HEMT's/HBT's)
 - GaN/AlGaN (NEW: high temperature, high power)
- Technology:
 - horizontal resolution (e.g. gate length Lg) is set by lithography
 - vertical resolution is set by process or growth (MBE)

Various Types of Transistor

• Short - circuit Unity current - gain fT for BJT :

- defined using
$$|h_{21}(\omega_T)| = \left| \frac{y_{21}}{y_{11}} \right| \frac{z_{21}}{z_{22}} = 1$$

- Maximum frequency of oscillation : f_{max} :
 - defined using U(fmax) = 1 with U unilateral power gain (defined below)
- Noise Figure F (Chapter 4)
- Maximum Power Gain MAG (Chapter 3)
- Output Power P_{1dB} (Chapter 4)

BJT Model

$$h_{21}(\omega) = \frac{i_c}{i_b} = \frac{\beta}{1 + j\frac{\omega}{\omega_{\beta}}} \quad \text{with } \omega_{\beta} = \frac{1}{r_{be}(C_{be} + C_{bc})}$$

From $|h_{21}(\omega_T)| = 1$ we find that the intrinsic f_T is:

$$f_T \approx \beta f_\beta \approx \frac{1}{2\pi} \frac{g_m}{C_{be}} = \frac{1}{2\pi} \frac{1}{\tau_{ec}}$$
 with $\tau_{ec} = \tau_b + \tau_c$

where τ_b and τ_c are the base and collector propagation times.

Unilateral Power Gain

$$U = \frac{|y_{21} - y_{12}|^2}{4[\text{Re}(y_{11})\text{Re}(y_{22}) - \text{Re}(y_{12})\text{Re}(y_{21})]}$$
$$= \frac{|z_{21} - z_{12}|^2}{4[\text{Re}(z_{11})\text{Re}(z_{22}) - \text{Re}(z_{12})\text{Re}(z_{21})]}$$

- U is the MAG (maximum available power) gain for a unilateralized device $(S_{12} = 0)$
- $U(f_{max}) = 1$
- U and therefore f_{max} are invariant under loss less loading
- \bullet For frequencies larger than f_{max} the device becomes passive
- \bullet f_{max} is the maximum frequency of oscillation of the device
- For the intrinsic BJT, f_{max} is approximately given by:

$$f_{\text{max}} \approx \sqrt{\frac{f_{\text{T}}}{8\pi r_{be}C_{be}}}$$

Frequency Characteristics of U and h₂₁

Device Packaging

- The device packaging impacts the device characteristics
- Direct on-wafer measurement of transistors can be used for RFIC and MMIC design
- Package or bond-wire modeling is required for packaged and chip devices respectively

Field Effect Transistors

- C-MOSFET (Si)
- MESFET (GaAs)
- HEMT/MODFET

Field Effect Transistors

- SOI-MOSFETs provide high-frequency performance thanks to their insulated S_iO₂ substrate but are affected by a kink in their IV's due to their parasitic bipolar transistor.
- LD-MOSFETs use a laterally doped diffused drain junction to achieve high-voltage breakdown for high power applications up to 2 GHz

Field Effect Transistors

$$f_T \approx \frac{1}{2\pi} \frac{g_m}{C_{gs}} = \frac{1}{2\pi} \frac{v_s}{L_g} = \frac{1}{2\pi} \frac{1}{\tau_c}$$

where v_s is the electron saturation velocity, L_g the gate length and τ_c the channel propagation time constant.

$$f_{\text{max}} = \frac{f_T}{2} \sqrt{\frac{r_{ds}}{r_i}}$$

Comparison of Various Technologies

Technology	Circuit freq. range (GHz)	f _t (GHz)	f _{max} (GHz)	BV _{off} (V)	Pout (freq, bias, size)		PAE (%)	NF _{min} /G _a (dB)	
Si CMOS 0.1 μm NMOS	→ 3–4	55 > 150						0.51/18.5 2.4/5.5	(2 GHz) (10 GHz)
Si BJT		26-50 100 (R&D)	40-80	3–7					
SiGe HBT	1–30 40 GHz VCO	40-60 130 (R&D)	50–80 160? (R&D)	3–6	630 mW	(2 GHz)	80	0.8/13 0.9/-	(2 GHz) (10 GHz, R&D)
GaAs HBT	0.9-64	60 170 (R&D)	100 224 (R&D)	10–30	4.33 W/mm 0.77 W/mm	(20 GHz,10.5 V) (3.4 V)	66 61	0.83/16.9 1.1/11 1.7/10	(2 GHz) (4 GHz) (18 GHz)
InP HBT (mostly DHBT)	2–94	60–180 250 (SHBT, R&D)	90–200 800 (SHBT, R&D)	5–20	2.7 W/mm 7.5 W/mm 4.9 W/mm 1.9 W/mm	(10 GHz, SHBT) (10 GHz) (18 GHz) (30 GHz)	43 54 36	0.46/- 2/- 3.3/-	(2 GHz) (10 GHz) (18 GHz)

Comparison of Various Technologies

Technology	Circuit freq. range (GHz)	f _t (GHz)	f _{max} (GHz)	BV _{off} (V)	Pout (freq, bias, size)		PAE (%)	NF_{min}/G_a (dB)	
0.4 μm GaAs MESFET (HP)	-26	31–23	55	12	0.65 W/mm	(18 GHz,6 V)			
0.25 μm GaAs PHEMT	-50	64	> 120	10	0.65 W/mm	(40 GHz,5 V)	> 30	1.3/-	(18 GHz)
0.1–0.15 μm GaAs PHEMT	12–94	90–120	150–290	8 9 5	2.8 W 0.72 W/mm 0.60 W/mm 0.40 W/mm	(77 GHz,5 V) (44 GHz) (60 GHz) (94 GHz)	48 26 29 13	0.38/10.5 1.5/- 2.1	(12 GHz) (60 GHz) (94 GHz)
0.2 μm InP HEMT	50_94	110	3_400?		0.45 W/mm	(60 GHz,4 V)	26		
0.1 μm InP HEMT	12–213	160-210 340 (R&D)	3-400?	5 6	0.40 W/mm 0.21 W/mm 0.34 W/mm 0.53 W/mm	(40 GHz,2.5 V) (60 GHz,2 V) (60 GHz,3 V) (60 GHz,4 V)	42 39	0.35/16.8 0.8/8.9 1.2/7.2	(12 GHz) (60 GHz) (94 GHz)
0.15–0.25 μm (Al)GaN HEMT	4–20	73	140	→ 100	470 mW 3 W	$\begin{array}{c} (\textrm{8 GHz,150 } \textrm{\mu m}) \\ (\textrm{4 GHz, 2 mm,} L_{\textrm{g}} = \textrm{1 } \textrm{\mu m}) \end{array}$	46 30	1.2/-	(10 GHz)

Non-Quasi-Static Models

Static Model (valid at DC)

$$y_{22} = g_{22}$$

• Quasi - static model (typically valid up to f_T):

$$y_{22} = g_{22} + j\omega C_{22}$$

• Non - quasi - static model (1st order) (typically valid up to intrinsic f_{max})

$$y_{22} = g_{22} + \frac{j\omega C_{22}}{1 + j\omega \tau_{22}}$$
 with τ_{22} the channel charging time constant of C_{22}

Non-Quasi-Static Models

The Smith Chart

Bilateral Transform connecting the impedance Z and the Reflection coefficient Γ . The smith chart maps the x-plane on the Γ plane

$$\Gamma = \frac{Z - Z_0}{Z + Z_0} = \frac{\frac{Z}{Z_0} - 1}{\frac{Z}{Z_0} + 1} = \frac{z - 1}{z + 1} \text{ with } z = \frac{Z}{Z_0} = r + jx$$

Extended Smith Chart

For negative resistance r<0 we have $|\Gamma|>1$

$$\Gamma = \frac{\mathbf{Z} - \mathbf{Z}_0}{\mathbf{Z} + \mathbf{Z}_0} = \frac{\frac{\mathbf{Z}}{\mathbf{Z}_0} - 1}{\frac{\mathbf{Z}}{\mathbf{Z}_0} + 1}$$

$$=\frac{z-1}{z+1}$$

with
$$z = \frac{Z}{Z_0} = r + jx$$

For r=-1 (Re{Z}=-50 ohms) we have Γ =infinity

IIT Bombay Active and Passive Load

Inductance and Capacitance on Smith Chart

Locus of the reflection coefficient for an inductor and a capacitor In a Z Smith chart

Z smith chart

Y Smith Chart

The Y - smith chart can be obtained by expressing Γ in terms of Y:

$$\Gamma_{L} = \frac{\frac{Z_{L}}{Z_{0}} - 1}{\frac{Z_{L}}{Z_{0}} + 1} = \frac{z - 1}{z + 1} = \frac{\frac{1}{y} - 1}{\frac{1}{y} + 1} = -\frac{\frac{y - 1}{y - 1}}{\frac{y - 1}{y + 1}} = -\frac{\frac{Y_{L}}{Y_{0}} - 1}{\frac{Y_{L}}{Y_{0}} + 1}$$

Normal

Rotated

- The Y Smith Chart is obtained by inverting the Z smith chart
- In the rotated Y-Smith Chart the short and open are exchanged

Impedance and Admittance Smith Charts

