
Investigação Operacional (Economia) Exercícios de programação linear Formulação (Problemas propostos)

- 1- Um fabricante produz bicicletas e motoretas, devendo cada uma delas ser processada em duas oficinas. A oficina 1 tem um máximo de 120 hora de trabalho disponível e a oficina 2 um máximo de 180 h. O fabrico de uma bicicleta requer 6 hora de trabalho na oficina 1 e 3 h na oficina 2. O fabrico de uma motoreta requer 4 h na oficina 1 e 1 hora na oficina 2. O lucro é de 30 € por bicicleta e de 40 € por motoreta. Formule o problema da determinação do plano de produção como sendo de programação linear, de modo a maximizar o lucro.
- 2 Uma empresa metalomecânica decidiu abandonar a produção de alguns produtos não lucrativos da sua gama de fabrico. Esta decisão conduz à existência de excesso de capacidade de produção em algumas secções da fábrica, que a administração pensa utilizar para produzir três novos produtos (P1, P2, e P3) mais rentáveis.

A capacidade disponível em cada uma das três secções que podem limitar a produção destes produtos é dada na tabela seguinte:

Secção	Disponibilidade Horas/semana
Frezadoras	500
Tornos	350
Furadoras	150

O número de horas necessárias, em cada secção, para produzir uma unidade de cada um dos produtos apresenta-se na seguinte tabela:

Secção	P1	P2	Р3
Frezadoras	9	3	5
Tornos	5	4	О
Furadoras	3	О	2

O departamento de vendas prevê que a procura dos produtos P1 e P3 excede a capacidade de produção destes produtos e que a procura semanal do produto P2 é de 20 unidades. O lucro unitário é de 33 u.m., 12 u.m. e 19 u.m., respectivamente, para os produtos P1, P2 e P3.

Formule este problema, como um problema de programação linear de modo a determinar qual o número de unidades a fabricar semanalmente de cada um dos produtos, por forma a maximizar o lucro.

3 - Uma fábrica produz dois produtos P1 e P2. A produção unitária de cada produto necessita de uma certa quantidade de horas de fabricação sobre cinco máquinas diferentes (A, B, C, D e E), como se pode verificar no quadro seguinte:

Máquina	A	В	С	D	E
Produto					
P1	0	1.5	2	3	3
P2	3	4	3	2	0
Disp. De cada máquina	39h	60h	57h	70h	57h

As margens brutas unitárias de cada produto são: 6 € para o produto 1 e 15 € para o produto 2.

Formular o programa linear que permite a determinação do plano de produção óptimo desta fábrica.

4 - Uma empresa de empacotamento (produção) de carnes pode produzir diariamente até 480 presuntos, 400 salpicões e 230 lombos. Cada um destes produtos pode ser vendido fresco ou defumado. O total de presuntos, salpicões e lombos que podem ser defumados num dia de trabalho normal é de 420 unidades; todavia podem ainda ser defumados em horário extraordinário até um total de 250 unidades daqueles produtos. Os lucros líquidos unitários de vendas são os seguintes (em escudos)

		Defumado em horário				
	Fresco	Normal	Extraordinário			
Presunto	800	1400	1100			
Salpicão	400	1200	700			
Lombo	400	1300	900			

O objectivo é planear um esquema de produção (empacotamento) que maximize o lucro diário total, ou seja, saber quantos presuntos frescos e quantos defumados, quantos salpicões frescos e quantos defumados, quantos lombos frescos e quantos defumados se devem produzir diariamente por forma a maximizar a lucro total.

Formule este problema de acordo com um modelo de programação linear.

5 - Suponha que uma dona de casa pretende servir à família um menu semanal em que entrem seis vegetais, tentando minimizar o custo, mas fornecendo o número de

componentes necessários a uma alimentação equilibrada. Na tabela seguinte resumem-

se os factores envolvidos.

		Custo/				
Vegetal	Ferro	Fósforo	Vit. A	Vit. B	Vit. C	porção (\$)
Feijão verde	.45	10	415	8	.3	50
Cenouras	.45	28	9065	3	·35	50
Brócolos	1.05	50	2550	53	.6	80
Couves	.4	25	75	27	.15	20
Nabos	. 5	22	15	5	.25	60
Batatas	·5	75	235	8	.8	30
Necessidades						
semanais mínimas	6	325	17500	245	5	

Sabe-se ainda que não podem ser servidas mais do que duas porções de couve e mais do que quatro porções dos outros vegetais por semana.

Formule o problema em termos de programação linear de modo a determinar o número de vezes que cada vegetal deve ser servido durante a próxima semana de forma a minimizar os custos e suprir as necessidades alimentares.

6 - Pretende-se determinar a composição de uma ração para o gado. O alimento é obtido a partir de uma mistura de três produtos brutos: cevada, amendoim e sésamo. Para responder a certas exigências da clientela, o alimento deverá conter pelo menos 22% de proteínas e 3.6% de matéria gorda. No quadro abaixo, indicamos as quantidades de proteínas e de gorduras presentes respectivamente na cevada, no amendoim e no sésamo, bem como o custo, por tonelada, de cada um destes três produtos brutos.

Produto bruto	Cevada	Amendoim	Sésamo
% de proteínas	22	52	42
% de gorduras	2	2	10
Custo por tonelada	25	41	39

Formular, sem resolver, o programa linear que permite a determinação da composição do alimento por forma a minimizar o custo de produção.

7 - Um fabricante possui três fábricas, A, B e C que produzem 100, 120 e 120 toneladas de um determinado produto, respectivamente. O produto deverá ser entregue em cinco armazéns (1, 2, 3, 4 e 5), cada um dos quais deve receber a sua parte, 40, 50, 70, 90 e 90 toneladas, respectivamente. Os custos, por tonelada, de transporte entre cada fábrica e cada armazém são dados na tabela seguinte:

		Armazém							
Fábrica	1	2	3	4	5				
A	4	1	2	6	9				
В	6	4	3	5	7				
C	5	2	6	4	8				

Formule o problema em termos de programação linear.

- 8 Uma empresa produz dois tipos diferentes (A e B) de fio de algodão. O fabrico de 100 Kg de fio do tipo A requer 2 h na secção de tinturaria e 1h na secção de fiação. A mesma quantidade de fio B requer 1.5h na secção de tinturaria e 2h na secção de fiação. As secções de tinturaria e fiação têm disponíveis diariamente 15h e 12 h respectivamente. Por imposição do mercado, a produção diária de fio A não deve ser inferior a 3000 Kg. Os lucros da venda de 100 Kg de fio são de 5 contos para o tipo A e de 10 contos para o tipo B. Pretende-se saber o plano de produção diário que maximize o lucro.
- 9 Uma empresa pretende fabricar um novo produto e pretende contratar operadores de máquina. Sabe-se que os operadores de máquina se dividem em 3 categorias: especializado, não especializado e estagiário.

Um operador especializado tem 10 anos de experiência e deve ser capaz de produzir 20 peças por dia das requeridas pela empresa. Um operador não especializado tem 6 anos de experiência e deverá produzir 16 peças por dia. Um operador estagiário tem 1 ano de experiência e deverá produzir 12 peças por dia.

Devido a entraves legais, sabe-se ainda que pelo menos 30% dos operários a contratar têm de ser especializados e que o número de estagiários a contratar deve ser pelo menos igual ao número de operários não especializados a contratar.

Os salários, por dia, destes 3 tipos de operadores são, respectivamente, 8, 6 e 4 contos.

Há no máximo 4 operadores especializados, 7 não especializados e 9 estagiários disponíveis para contratar. Estão orçamentados 400 contos por semana (5 dias) para os salários dos operadores. Por outro lado, a empresa pretende conseguir um nível mínimo total de 60 anos de experiência dos operadores contratados.

A empresa pretende maximizar a produção diária.

10* - Uma empresa produz apenas cómodas e armários. Cada cómoda é composta por uma estrutura base de cómoda, 3 gavetas grandes e 2 gavetas pequenas. Cada armário é composto por uma estrutura base de armário, 2 portas e 2 gavetas grandes (iguais às das cómodas).

Cada componente dos moveis deve ser processada nas duas secções da empresa, estando os tempos de processamento indicados na tabela seguinte:

	Secção 1	Secção 2
Estrutura base de cómoda	6 h	4 h
Estrutura base de armário	6 h	8 h
Gaveta grande	2 h	2 h
Gaveta pequena	1 h	2 h
Porta de armário	3 h	3 h
Tempo disponível	200 h	150 h

O número de horas semanais disponíveis é de 200 para a secção 1 e 150 para a secção 2. Podem ser adquiridas mais horas de laboração para a secção 2, com um custo adicional de 1 u. m. por cada hora, e num máximo de 80 horas por semana.

As gavetas podem ser compradas (em parte ou na totalidade) a uma outra empresa, implicando um custo adicional de 4 u.m. por gaveta grande e de 3 u.m. por gaveta pequena.

O lucro obtido com cada cómoda é de 35 u.m., e o lucro obtido com cada armário é de 45 u.m.. O objectivo da empresa é maximizar o lucro.

Formule o problema segundo o modelo de programação linear, indicando o significado de cada variável e de cada restrição.

11* – As existências actuais de tábuas numa fábrica de serração são constituídas por pranchas de madeira de 70 cm de comprimento. Esta fábrica tem uma encomenda de 50 pranchas de 22 cm e 25 pranchas de 20 cm (todas as pranchas têm a mesma largura). Pretende-se satisfazer a encomenda por forma a minimizar o desperdício de madeira, o qual é constituído pelos restos e pelas pranchas produzidas a mais. Formule este problema como um problema de programação linear, interpretando claramente as variáveis de decisão, restrições e a função objectivo.

- 12 Considere que se pretende produzir dois bens A e B. Utilizam-se na produção duas matérias primas C e D. Para o efeito podem utilizar-se dois processos tecnológicos:
 - 1) para produzir 5 unidades de A e duas unidades de B são necessárias, 1 unidade de C e 3 de D.
 - 2) para produzir 3 unidades de A e 8 unidades de B são necessárias 4 unidades de C e 2 de D

Sabe-se ainda que, durante o período de planeamento, dispomos de 100 unidades de "C" e de 150 unidades de "D". Por outro lado, pretende-se produzir pelo menos 200 unidades de A e 75 de B.

Pretende-se maximizar a produção de A+B durante o período de planeamento.

13 - Um criador de porcos pretende determinar as quantidades de cada tipo de ração que devem ser dadas diariamente a cada animal por forma a conseguir uma certa quantidade nutritiva a um custo mínimo.

Os dados relativos ao custo de cada tipo de ração, às quantidades mínimas diárias de ingredientes nutritivos básicos a fornecer a cada animal, bem como às quantidades destes existentes em cada tipo de ração (g/Kg), constam do quadro a seguir

Ingredientes Nutritivos	Ração	Granulado	Farinha	Quantidade mínima requerida
Carbohidratos		20	50	200
Vitaminas		50	10	150
Proteínas	•	30	30	210

Custo (Esc/Kg) 10 5				
	Custo (Esc/Kg)	10	5	

Formule o problema de acordo com um modelo de programação linear, de modo a minimizar os custos.

14 - Uma construtora possui um terreno de 9900 m2 onde pretende construir um conjunto de moradias. As moradias a construir nesse terreno são de 3 tipos: Tipos I, II e III. Cada moradia de tipo I ocupa 170 m2 e permite obter um lucro de 3000 contos; cada uma do tipo II ocupa 120 m2 e permite obter um lucro de 2000 contos; e cada uma do tipo III ocupa 70 m2 e permite obter um lucro de 1000 contos.

A empresa sabe que o projecto de urbanização será aprovado se e só se:

- * a área ocupada pelas moradias dos tipos I e II não for superior a 5100 m2,
- * forem construídas pelo menos 20 moradias do tipo III
- * forem reservados pelo menos 2000 m2 para jardins, vias e aparcamentos (os custos de construção destes serão suportados pela Câmara Municipal).

O estudo de mercado efectuado mostra que todas as moradias construídas serão vendidas.

Formule este problema de acordo com um modelo de programação linear.

15 - Pretende-se formar equipas de trabalho numa determinada empresa de construção naval. Um número total de quatro equipas deverá ser formado. Cada equipa contém apenas duas pessoas: um técnico e um operário. Para a constituição das equipas considera-se as afinidades existentes entre os operários e os técnicos. Assim, foi pedido a cada operário para atribuir uma nota de o a 5 (5 representando a melhor nota) a cada técnico. As notas são apresentadas no quadro seguinte:

a	b	\mathbf{c}	d	
Operário1	1	4	1	4
Operário2	4	2	2	1
Operário3	5	3	5	1
Operário4	1	2	3	1

Formular, sem resolver, o programa linear que permite a determinação das equipas de trabalho por forma a que a soma total das notas seja máxima.

16 - Uma empresa pretende escolher a melhor forma de publicitar um determinado produto. A empresa está disposta a usar anúncios na televisão e anúncios radiofónicos. Sabe-se que cada anúncio de televisão do produto a comercializar custa 8 unidades monetárias (u.m.) e que cada anúncio radiofónico custa 5 u.m.. O orçamento da empresa para

publicidade é de 58 u.m. e a empresa segue a política de emitir pelo menos 3 anúncios na televisão por cada 2 anúncios transmitidos na rádio.

Supondo que por cada anúncio emitido pela rádio a empresa, depois de pago o anúncio, obtém um lucro nas vendas do produto de 2 u.m. e que por cada anúncio de televisão obtém um lucro de 6 u.m., determine o lucro máximo que a empresa pode obter com publicidade. Admita que se utiliza um modelo de programação linear, como primeira aproximação.

Formule o problema, indicando as variáveis de decisão, função objectivo e restrições. Justifique todas as suas escolhas.

^{*} Exercícios de nível de dificuldade elevada