ENGR 599 Homework 3

Adrian Henle

• using PlutoUI

Exercise 4.1.

Use the data in **Table 4.2** to confirm that the significant effect values in this design are really the same as those appearing in **Table 4.3**.

Table 4.2 Results of the 2^4 complete factorial design performed to study the catalytic action of Mo(VI)

Factors	(-)	(+)
	0.16 0.015	0.32 0.030
$3 [H_2O_2] (mol L^{-1})$ $4 Time (s)$	0.0020 90	0.0040 130

	Run	1	2	3	4	$Response^{a}$
	1	_	_	_	_	52
•	2	+	_	_	_	61
	3	_	+	_	_	124
$\sqrt{}$	4	+	+	_	_	113
·	5	_	_	+	_	85
$\sqrt{}$	6	+	_	+	_	66
	7	_	+	+	_	185
·	8	+	+	+	_	192
	9	_	_	_	+	98
	10	+	_	_	+	86
	11	_	+	_	+	201
•	12	+	+	_	+	194
$\sqrt{}$	13	_	_	+	+	122
·	14	+	_	+	+	139
	15	_	+	+	+	289
$\sqrt{}$	16	+	+	+	+	286

 $^{^{\}rm a}$ Analytical signal intensity $\times\,1000.$

```
16×4 Matrix{Float64}:
 -1.0 -1.0 -1.0
                  -1.0
 1.0 -1.0
            -1.0
                  -1.0
 -1.0
      1.0
            -1.0
                  -1.0
 1.0
      1.0
            -1.0
                  -1.0
 -1.0
      -1.0
             1.0
                  -1.0
 1.0
      -1.0
             1.0
                  -1.0
 -1.0
       1.0
             1.0
                  -1.0
-1.0
       1.0
            -1.0
                   1.0
 1.0
       1.0
            -1.0
                   1.0
 -1.0
      -1.0
             1.0
                   1.0
 1.0
      -1.0
             1.0
                    1.0
 -1.0
       1.0
             1.0
                    1.0
 1.0
       1.0
              1.0
                    1.0
 • begin
       levels = zeros(16, 4)
       for i \in 1:4
           levels[:, i] =
           repeat([repeat([-1], 2^{(i-1)})..., repeat([1], 2^{(i-1)})...], Int(8/(2^{(i-1)}))
       end
       levels
 end
            [52, 61, 124, 113, 85, 66, 185, 192, 98, 86, 201, 194, 122, 139, 289, 286]
 responses = vec([52 61 124 113 85 66 185 192 98 86 201 194 122 139 289 286])
```

Table 4.3

Analysis of the 2⁴ factorial design to study the catalytic response of Mo(VI). The most significant values are italicized

12 = -1.13
13 = 2.88
14 = 1.13
23 = 25.63
24 = 21.88
34 = 9.88
1234 = -8.88

```
factors_table4_3 = [-2.38, 109.38, 54.38, 67.13]
    factors_table4_3 = [-2.38, 109.38, 54.38, 67.13]

factors_calc = [-2.375, 109.375, 54.375, 67.125]
    factors_calc = [2 * sum(levels[:, i] .* responses) / length(responses) for i in 1:4]
```

```
all(isapprox.(factors_table4_3, factors_calc, rtol=0.0025))
```

The factors 1, 2, 3, and 4 in **Table 4.3** are identical to those calculated from **Table 4.2** to within 0.25%

Exercise 4.3.

How many experimental runs are there in a 2^(8-4) fractional factorial?

$$2^{8-4} = 16$$

Exercise 4.5.

All contrasts in **Table 4.5** represent the sum of two effects except l_I , which estimates the overall average plus half of the 1234 interaction. Why half?

Table 4.5
Relations between the contrasts of the 2⁴⁻¹ half-fraction and the effects of the 2⁴ full factorial. **M** is the average of all the response values

Relations between columns of signs	Contrasts of the 2^{4-1} half-fraction in terms of the effects of 2^4 factorial
$egin{array}{l} 1 = 234 \ 2 = 134 \ 3 = 124 \ 4 = 123 \ 12 = 34 \ 13 = 24 \ 14 = 23 \ I = 1234 \ \end{array}$	$egin{aligned} l_1 &= l_{234} ightarrow 1 + 234 \ l_2 &= l_{134} ightarrow 2 + 134 \ l_3 &= l_{124} ightarrow 3 + 124 \ l_4 &= l_{123} ightarrow 4 + 123 \ l_{12} &= l_{34} ightarrow 12 + 34 \ l_{13} &= l_{24} ightarrow 13 + 24 \ l_{14} &= l_{23} ightarrow 14 + 23 \ l_I ightarrow \mathbf{M} + rac{1}{2} (1234) \end{aligned}$

The values are contrasts between two halves of the set of 16 responses, except for \mathbf{M} , which is calculated on all 16; so, $\mathbf{1234}$ must be scaled.

Exercise 4.7.

How would you combine the values of the contrasts to obtain the **1234** interaction effect? Do the corresponding calculations and compare the result with the value given in **Table 4.3**.

$$1234 = l_{1234} - l_{1234}^* = 2 * 1 = -4.76$$

This is considerably lower than the value in table 4.3

Exercise 4.9.

In a half-fractional factorial design of resolution VI, the main effects are confounded with what other effects? And the two-factor interactions?

Main effects confound with 5^{th} order interactions, and binary interactions confound with 4^{th} order.

Exercise 4.11.

Construct a 2^{5-1} fractional design using $\mathbf{5} = \mathbf{124}$. Determine, for this fraction, the relations between the contrasts involving one or two factors and the effects calculated from a complete factorial. Can you imagine a situation in which this design would be preferable, instead of a fraction of maximum resolution?

Design matrix:

```
16×5 Matrix{Float64}:
 -1.0 -1.0 -1.0 -1.0
                       -1.0
 1.0 -1.0 -1.0
                 -1.0
                       1.0
      1.0
 -1.0
            -1.0
                 -1.0
                        1.0
      1.0
           -1.0
                 -1.0 -1.0
 1.0
 -1.0 -1.0
            1.0
                 -1.0 -1.0
      -1.0
 1.0
             1.0
                 -1.0
                       1.0
 -1.0
      1.0
             1.0 - 1.0
 -1.0
       1.0 -1.0
                  1.0 -1.0
 1.0
       1.0
            -1.0
                  1.0
                        1.0
             1.0
 -1.0
      -1.0
                  1.0
                        1.0
      -1.0
             1.0
                  1.0 -1.0
 1.0
                  1.0 -1.0
 -1.0
       1.0
             1.0
       1.0
 1.0
             1.0
                   1.0
                        1.0
 hcat(hcat([repeat([-1], 2^(i-1))..., repeat([1], 2^(i-1))...], Int(8/(2^(i-1))...]
  1)))) for i \in 1:4]...), [-1. +1. +1. -1. +1. +1. -1. +1. -1. +1. -1. +1. -1. -1.
  +1.]')
```

Contrasts and effects:

$$l_1=\mathbf{1}+\mathbf{245}$$

$$l_2 = {f 2} + {f 145}$$

$$l_3 = 3 + 12345$$

$$l_4=\mathbf{4}+\mathbf{125}$$

$$l_5=\mathbf{3}+\mathbf{124}$$

$$l_{12} = \mathbf{12} + \mathbf{45}$$

$$l_{13} = \mathbf{13} + \mathbf{2345}$$

$$l_{14} = \mathbf{14} + \mathbf{25}$$

$$l_{15} = \mathbf{15} + \mathbf{24}$$

$$l_{23} = \mathbf{23} + \mathbf{1345}$$

$$l_{24}=\mathbf{15}+\mathbf{24}$$

$$l_{25}=\mathbf{25}+\mathbf{14}$$

$$l_{34} = \mathbf{34} + \mathbf{1235}$$

$$l_{35} = \mathbf{35} + \mathbf{1234}$$

$$l_{45} = \mathbf{12} + \mathbf{45}$$

Exercise 4.13.

Use the data of **Table 4.10** to calculate the value of the contrast corresponding to the main effect of the side of the tennis court.

Table 4.10 (excerpt):

Runs	1	2	3	4	5	6	7	% valid
1	_	_	_	+	+	+	_	56
2	+	_	_	_	_	+	+	66
3	-	+	_	_	+	_	+	51
4	+	+	_	+	_	_	_	52
5	_	_	+	+	_	_	+	54
6	+	_	+	_	+	_	_	70
7	-	+	+	_	_	+	_	42
8	+	+	+	+	+	+	+	64

Let vector \mathbf{p} be the signs of column 5 (the court side factor):

Let vector \mathbf{y} be the percentage of valid serves for each run:

```
y = [56.0, 66.0, 51.0, 52.0, 54.0, 70.0, 42.0, 64.0]

• y = [56., 66., 51., 52., 54., 70., 42., 64.]
```

The contrast is:

$$l_5 = rac{1}{4} \sum_i p_i y_i$$

```
6.75
• 0.25 * sum(p .* y)
```

Exercise 4.15.

Each run in **Tables 4.10** and **4.12** correspond to performing serves under the experimental conditions specified by the signs of the respective design matrices. Describe the experiment represented by run 4 in **Table 4.10**. In practice, what is the difference between this run and run 4 in **Table 4.12**?

Run 4 of **Table 4.10** is slice, high frequency, daytime, on concrete, from the right, shirt-on, medium racquet. Run 4 of **Table 4.12** has the same conditions, except the serve is from the left.

Exercise 4.17.

Use the generating relations given in **Table 4.15** and find the three-factor interactions confounded with factor 1.

The sign of 1 is negative, so the product of the 3 factors' signs must be negative.

Also,

$$I=1248=1358=2368=1237$$

so we don't consider **368**. That gives:

$$l_1 = \mathbf{1} + \mathbf{248} + \mathbf{358} + \mathbf{237} + \mathbf{346} + \mathbf{256} + \mathbf{678} + \mathbf{457}$$