P. Maurer ENS Rennes

Leçon 156. Exponentielle de matrices. Applications.

Devs:

- Morhphismes continus de S^1 vers $GL_n(\mathbb{R})$
- L'exponentielle de matrice exp: $S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$ est un homéomorphisme

Références:

- 1. Gourdon, Algèbre
- 2. Mneime & Testard, Introduction à la théorie des groupes de Lie
- 3. Zavidovique, Un max de maths
- 4. Rouvière, Petit guide du calcul différentiel
- 5. Coron, Control and nonlinearity

Dans tout ce qui suit, K désigne \mathbb{R} ou \mathbb{C} .

1 Construction de l'exponentielle de matrices

1.1 Topologie sur $\mathcal{L}(E, F)$

On se donne E et F deux espaces vectoriels sur K.

Théorème 1. Soit $f \in \mathcal{L}(E,F)$. Les propositions suivantes sont équivalentes :

- f est continue sur E.
- f est continue en 0,
- f est bornée sur la boule unité fermée $\overline{B(0,1)}$ de E,
- il existe M > 0 tel que $||f(x)|| \le M ||x||$ pour tout $x \in E$,
- f est lipschitzienne,
- f est uniformément continue sur E.

Définition 2. L'ensemble des applications linéaires continues de E dans F est noté $\mathcal{L}_c(E,F)$. C'est un espace vectoriel normé, muni de la norme d'opérateur $\|\cdot\|\|$ définie par

$$\forall f \in \mathcal{L}_c(E, F) \quad |||f||| := \sup_{\|x\|=1} ||f(x)|| = \sup_{\|x\| \le 1} ||f(x)||.$$

Proposition 3. Soit E, F, G trois e.v.n, $f \in \mathcal{L}_c(E, F)$ et $g \in \mathcal{L}_c(F, G)$. Alors $g \circ f \in \mathcal{L}_c(E, F)$ et on a $|||g \circ f||| \le |||g||| \cdot |||f|||$: la norme d'opérateur est une norme d'algèbre.

Théorème 4. L'ensemble $\mathcal{L}_c(E, F)$ muni de la norme d'opérateur est un espace de Banach.

Proposition 5. Soit E un espace de Banach, et $u \in \mathcal{L}_c(E)$ tel que |||u||| < 1. Alors $\operatorname{Id} - u$ est inversible, d'inverse $\sum_{n=0}^{+\infty} u^n \in \mathcal{L}_c(E)$.

1.2 Exponentielle de matrices

Proposition 6. La série $\sum_{k \in \mathbb{N}} \frac{A^k}{k!}$ est normalement convergente sur tout compact de $\mathcal{M}_n(K)$. On en déduit que cette série converge en tout point de $\mathcal{M}_n(K)$.

Définition 7. On note
$$\exp(A) = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$$
.

Proposition 8. On $a \| |\exp(A)| \| \le \exp(\||A||)$.

Proposition 9. Si $A, B \in \mathcal{M}_n(K)$ commutent, alors $\exp(A+B) = \exp(A) \exp(B)$.

Remarque 10. Le résultat est faux si A et B ne commutent pas. Par exemple, $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Proposition 11. Pour $A \in \mathcal{M}_n(\mathbb{R})$, on $a \exp(A) \in GL_n(K)$, et $\exp(A)^{-1} = \exp(-A)$.

Proposition 12. Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on $a \exp(A^T) = \exp(A)^T$ et $\exp(\overline{A}) = \overline{\exp(A)}$

Proposition 13. Si $P \in GL_n(k)$, on a $\exp(PAP^{-1}) = P \exp(A) P^{-1}$.

2 Calcul et propriétés de exp

2.1 Décomposition de Dunford et calcul pratique

Proposition 14. Soit $N \in \mathcal{M}_n(\mathbb{R})$ nilpotente d'indice $r \ge 1$. On a $\exp(N) = I_n + N + \dots + \frac{N^{r-1}}{(r-1)!}$.

Proposition 15. Soit $D \in \mathcal{M}_n(\mathbb{R})$ diagonale, avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Alors $\exp(D) = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})$.

Proposition 16. Soit $P = P_1 \cdots P_r$ un polynôme annulateur de f avec P_1, \dots, P_r premiers entre eux deux à deux. On a $E = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_r(f)$, et la projection sur $\operatorname{Ker} P_i(f)$ parallèlement à $\bigoplus_{j \neq i} \operatorname{Ker} P_j(f)$ est un polynôme en f.

Théorème 17. (Décomposition de Dunford ou Jordan-Chevalley)

On suppose que χ_f est scindé sur k. Alors il existe un unique couple (d,n) d'endomorphismes de $\mathcal{L}(E)$ tels que :

• d est diagonalisable, n est nilpotent.

2 Section 3

• f = d + n et $d \circ n = n \circ d$

De plus, d et n sont des polynômes en f.

Remarque 18. Si χ_A est scindé sur k, la réduction de Jordan-Chevalley donne alors une méthode simple pour calculer $\exp(A)$. En effet, $\exp(D)$ et $\exp(N)$ se calculent facilement. Cependant, il est parfois difficile de calculer la décomposition de Dunford.

2.2 Propriétés topologiques

Proposition 19. L'espace vectoriel K[A] des polynômes en A est de dimension finie, donc fermé.

Corollaire 20. Pour $A \in \mathcal{M}_n(K)$, la matrice $\exp(A)$ est un polynôme en A.

Théorème 21. L'application exp: $\mathcal{M}_n(K) \to \operatorname{GL}_n(K)$ est de classe \mathcal{C}^1 (et même analytique). Sa différentielle en 0 est l'identité.

Corollaire 22. L'exponentielle réalise un C^1 -difféomorphisme entre un voisinnage de 0 dans $\mathcal{M}_n(K)$ et un voisinnage de Id dans $\mathrm{GL}_n(K)$.

Proposition 23. On considère la fonction det: $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$. Pour tout $X, H \in \mathcal{M}_n(\mathbb{R})$, on a la formule suivante :

$$D \det(X) \cdot H = \operatorname{Tr}(\operatorname{Com}(X)^T H).$$

Application 24. Pour $t \in \mathbb{R}$ et $A \in \mathcal{M}_n(\mathbb{R})$ indépendante de t, on a $\det(e^{tA}) = e^{t\operatorname{Tr}(A)}$.

Développement 1 :

Théorème 25.

Les morphismes continus de \mathbb{U} vers $\mathsf{GL}_n(\mathbb{R})$ sont de la forme :

$$\varphi \colon e^{it} \mapsto Q \begin{pmatrix} R_{tk_1} & & & \\ & \ddots & & & \\ & & R_{tk_r} & & \\ & & & 1 & \\ & & & (0) & & \ddots \\ & & & & 1 \end{pmatrix} Q^{-1}$$

 $O\grave{u}\ Q\in \mathsf{GL}_n(\mathbb{R}),\ r\in\mathbb{N},\ k_1,\ldots,k_r\in\mathbb{Z}^*\ \text{et}\ R_\theta=\left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array}\right)\ pour\ tout\ \theta\in\mathbb{R}.$

2.3 Injectivité, surjectivité

Remarque 26. L'exponentielle de matrices, en général, n'est pas injective. Par exemple, l'égalité $\exp(A) = I_n$ n'entraı̂nne pas A = 0 (prendre $A = \begin{pmatrix} 2ik\pi & 0 \\ 0 & 2ik\pi \end{pmatrix}$).

Lemme 27. Pour $A \in \mathcal{M}_n(\mathbb{C})$, on a $\mathbb{C}[A]^{\times} = \mathbb{C}[A] \cap \mathrm{GL}_n(\mathbb{C})$.

Lemme 28. $\mathbb{C}[A]^{\times}$ est un ouvert connexe dans $\mathbb{C}[A]$.

Théorème 29. Pour tout $A \in \mathcal{M}_n(\mathbb{C})$, on $a \exp(\mathbb{C}[A]) = \mathbb{C}[A]^{\times}$.

Corollaire 30. L'exponentielle de matrices exp: $\mathcal{M}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ est surjective.

Corollaire 31. On $a \exp(\mathcal{M}_n(\mathbb{R})) = \{A^2 : A \in \mathrm{GL}_n(\mathbb{R})\}.$

Définition 32. Si $A \in B(I_n, 1)$, on appelle logarithme de A et on note Log A la somme de la série normalement convergente $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{(A-I_n)^n}{n}$.

Définition 33. On désigne par n^p l'ensemble des matrices nilpotentes d'ordre p, et N_p celui des matrices unipotentes d'ordre p, c'est-à-dire les matrices $B \in \mathcal{M}_n(K)$ telles que $B = A + I_n$ où $A \in n_p$.

Théorème 34. L'exponentielle de matrices $\exp: n_p \to N_p$ est un homéomorphisme, dont l'inverse est donné par Log.

Développement 2 :

Théorème 35. L'exponentielle de matrices $\exp: S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$ est un homéomorphisme.

Théorème 36. (décomposition polaire)

La multiplication matricielle induit des homéomorphismes :

$$O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) \simeq \mathrm{GL}_n(\mathbb{R})$$
 et $U_n(\mathbb{C}) \times \mathcal{H}_n^{++}(\mathbb{C}) \simeq \mathrm{GL}_n(\mathbb{C}),$
via $(O,S) \mapsto OS$ et $(U,H) \mapsto UH.$

Corollaire 37. Compte tenu du théorème 35, on en déduit que $GL_n(\mathbb{R}) \simeq O_n(\mathbb{R}) \times \mathbb{R}^{n(n+1)/2}$.

3 Application à l'étude des équations différentielles linéaires

3.1 Résolvante et formule de Duhamel

On se donne un intervalle T_0, T_1 de \mathbb{R} , et on considère problème de Cauchy suivant :

$$(\mathcal{P}_0)$$
:
$$\begin{cases} x'(t) = A(t) x(t) + b(t) \\ x(T_0) = x_0 \end{cases}$$
,

avec $A \in L^{\infty}(]T_0, T_1[, \mathcal{M}_n(\mathbb{R}))$ et $b \in L^{\infty}(]T_0, T_1[, \mathbb{R}^n)$.

Définition 38. On appelle résolvante du système homogène $x'(t) = A(t) \, x(t)$ l'application R définie par

$$R: \left\{ \begin{array}{ll} [T_0, T_1]^2 & \to & \mathcal{M}_n(\mathbb{R}) \\ (t_1, t_2) & \mapsto & R(t_1, t_2) \end{array} \right.,$$

de sorte que pour tout $t_2 \in [T_0, T_1]$, l'application $R(\cdot, t_2)$: $\begin{cases} [T_0, T_1] \to \mathcal{M}_n(\mathbb{R}) \\ t_1 \mapsto R(t_1, t_2) \end{cases}$ est solution du problème de Cauchy M'(t) = A(t) M(t), $M(t_2) = I_n$.

Proposition 39. La résolvante R vérifie les propriétés suivantes.

- 1. $R \in C^0([T_0, T_1]^2, \mathcal{M}_n(\mathbb{R}))$.
- 2. $\forall t_1 \in [T_0, T_1] \quad R(t_1, t_1) = I_n$.
- 3. $\forall (t_1, t_2, t_3) \in [T_0, T_1]^3$ $R(t_1, t_2) R(t_2, t_3) = R(t_1, t_3)$

De plus, si $A \in \mathcal{C}^0([T_0, T_1], \mathcal{M}_n(\mathbb{R}))$, alors $R \in \mathcal{C}^1([T_0, T_1]^2, \mathcal{M}_n(\mathbb{R}))$ et on a, pour tout $(t, \tau) \in [T_0, T_1]^2$:

$$\frac{\partial R}{\partial t_1}(t,\tau) = A(t) \; R(t,\tau) \quad et \quad \frac{\partial R}{\partial t_2}(t,\tau) = -R(t,\tau) \; A(\tau).$$

Théorème 40. On suppose que pour tout $(t,\tau) \in [T_0,T_1]^2$, on a

$$A(t) A(\tau) = A(\tau)A(t). \tag{1}$$

Alors la résolvante s'obtient par la formule

$$R(t_1, t_2) = \exp\left(\int_{t_1}^{t_2} A(t) dt\right).$$

Remarque 41. Dans le cas où les coefficients ne dépendent pas du temps, cette formule s'écrit alors

$$R(t_1, t_2) = e^{A(t_2 - t_1)}.$$

Théorème 42. (Formule de Duhamel)

La solution du problème de Cauchy (\mathcal{P}_0) vérifie :

$$\forall (t_0, t_1) \in [T_0, T_1]^2 \qquad x(t_1) = R(t_1, t_0) \, x(t_0) + \int_{t_0}^{t_1} R(t_1, s) \, b(s) \, ds.$$

Cette formule s'obtient via la méthode dite de « variation de la constante ».

3.2 Contrôle des EDL

On se donne un intervalle T_0, T_1 de \mathbb{R} , et on considère problème de Cauchy :

$$(\mathcal{P}_0): \left\{ \begin{array}{l} x'(t) = A(t) \, x(t) + B(t) \, u(t) \\ x(T_0) = x_0 \end{array} \right.,$$

avec $A \in L^{\infty}(]T_0, T_1[, \mathcal{M}_n(\mathbb{R})), B \in L^{\infty}(]T_0, T_1[, \mathcal{M}_{m,n}(\mathbb{R}))$ et $u \in L^{\infty}(]T_0, T_1[, \mathbb{R}^m)$ et $x_0 \in \mathbb{R}^n$.

Définition 43.

On dit que le système x'(t) = A(t) x(t) + B(t) u(t) est contrôlable si pour tout $(x_0, x_1) \in \mathbb{R}^n \times \mathbb{R}^n$, il existe $u \in L^{\infty}(]T_0, T_1[, \mathbb{R}^m)$ tel que la solution $x \in \mathcal{C}^0(]T_0, T_1[, \mathbb{R}^n)$ du problème de Cauchy (\mathcal{P}_0) vérifie $x(T_0) = x_0$ et $x(T_1) = x_1$.

Définition 44. On définit le Gramian de contrôlabilité du système x'(t) = A(t) x(t) + B(t) u(t) comme la matrice $\mathfrak{C} \in \mathcal{S}_n(\mathbb{R})$ vérifiant

$$\mathfrak{C} := \int_{T_0}^{T_1} \!\! R(T_1,s) \, B(s) B(s)^T R(T_1,s)^T ds,$$

où M^T signifie la transposée de M.

Théorème 45. Le système de contrôle x'(t) = A(t) x(t) + B(t) u(t) est contrôlable si et seulement si son Gramian de contrôle $\mathfrak C$ est inversible, et dans ce cas, une fonction de contôle $\overline u$ est donnée par

$$\forall \tau \in [T_0, T_1] \qquad \overline{u}(\tau) = B(\tau)^T R(T_1, \tau)^T \mathfrak{C}^{-1}(x_1 - R(T_1, T_0) \, x_0)$$

Théorème 46. (Condition de Kalman indépendante du temps)

On suppose que A, B et u ne dépendent pas du temps. Alors le système de contrôle x'(t) = Ax(t) + Bu est contrôlable sur $[T_0, T_1]$ si et seulement si $\text{Vect}(A^i Bu : u \in \mathbb{R}^m \text{ et } i \in \{0, \dots, n-1\}) = \mathbb{R}^n$.