Sistemas Microcontrolados

LCD e teclas

Prof. Guilherme Peron

LCD

LCD

- Liquid Crystal Display
- Tipos de Displays
 - Modo Alfanumérico
 - Modo Gráfico

Alfanumérico – Controlador Interno HD44780

Caracter é composto em uma matriz de pixels com 8x5

Pinagem: 14/16 pinos (15-16 para o backlight)

Pino	Símbolo	Função						
1	V_{SS}	Alimentação – GND (Terra)						
2	V_{DD}	Alimentação – V _{CC} (5V)						
3	Vo	Entrada de Contraste – Normalmente ligado a um potenciômetro ou $\it trimpot$ de $10 \rm K\Omega$ ligado entre $\rm V_{CC}$ e terra						
4	RS	Seleção de dado/instrução	RS = 0 → Instrução RS = 1 → Dado					
5	R/W	Seleção de escrita/leitura	R/W = 0 → LCD em modo escrita R/W = 1 → LCD em modo leitura					
6	E ou EN	Seleção de ENABLE do LCD	E=0 → Desabilitado E=1 → Habilitado					
7-14	D_7 - D_0	Barramento de dados						
15	Α	Backlight 5V						
16	K	Backlight GND						

- Principais comandos (Verificar no datasheet do HD44780)
 - Enviar comandos ou instruções para o LCD → RS=0
 - Reset: 0x01 (tempo de delay: 1,64 ms)
 - *Home:* **0x02** (tempo de *delay*: 1,64 ms)
 - Configuração do LCD: 0x38 (tempo de delay: 40 μs)
 - o 0x20 (Inicia configuração do LCD)
 - o 0x10 (modo 8 bits)
 - o 0x08 (2 linhas)
 - Configuração do cursor: 0xE ou 0xF (tempo de delay: 40 μs)
 - 0x08 (Inicia configuração do cursor)
 - o 0x04 (habilita display)
 - o 0x02 (habilita cursor)
 - o 0x01 (cursor pisca)

- Principais comandos (Verificar no datasheet do HD44780)
 - Enviar dados para o LCD → RS=1
 - Envia caracter em ASCII por meio do barramento de dados D₇-D₀ (tempo de *delay*: 40 μs)
 - Fazer <u>leitura</u> do LCD → RW=1
 - Leitura do Busy Flag no bit 7. Se BF=1, a última operação ainda não terminou
 - Não obrigatório → somente no caso de não esperarmos o tempo entre os comandos
 - Alterar posição do cursor → RS=0
 - Estabelece a posição de escrita do próximo caracter enviando o comando da posição do display (próximo slide)

- Alfanumérico Controlador Interno HD44780
 - Endereços das posições no display
 - Módulo 16x2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0x80	0x81	0x82	0x83	0x84	0x85	0x86	0x87	0x88	0x89	0x8A	0x8B	0x8C	0x8D	0x8E	0x8F
0xC0	0xC1	0xC2	0xC3	0xC4	0xC5	0xC6	0xC7	0xC8	0xC9	0xCA	0xCB	0xCC	0xCD	0xCE	0xCF

- Exemplo: Colocar o cursor na linha 2 coluna 11:
 - Enviar o comando 0xCA

- Exemplo de temporização a cada comando/dado:
 - Escrever no barramento de dados o comando ou o caracter;
 - 2. Habilitar por 10us o LCD (EN=1) e o pino de comando ou dado (RS=1 ou RS=0, respectivamente);
 - 3. Desabilitar o LCD (EN=0) pelo tempo necessário (40us ou 1,64ms de acordo com o comando)

- Exemplo de Inicialização:
 - Inicializar no modo 2 linhas / caracter matriz 5x7 (0x38) → esperar 40us
 - Cursor com autoincremento para direita (0x06) → esperar
 40us
 - Configurar o cursor (habilitar o display + cursor + não-pisca) (0x0E) → esperar 40us
 - 4. Resetar: Limpar o display e levar o cursor para o home
 (0x01) → esperar 1,64ms

Tabela de comandos (Verificar no Datasheet do HD44700)

Principais Comandos								
Descrição	Modo	RS	R/W	Código (Hexa)				
Dionlov	Liga (sem cursor)	0	0	0C				
Display	Desliga	0	0	0A/08				
Limpa <i>Display</i> com <i>Home</i> cursor		0	0	01				
	Liga	0	0	0E				
	Desliga	0	0	0C				
	Desloca para Esquerda	0	0	10				
Controle do Cursor	Desloca para Direita	0	0	14				
	Cursor Home	0	0	02				
	Cursor Piscante	0	0	0D				
	Cursor com Alternância	0	0	0F				
Sentido de deslocamento do cursor	Para a Esquerda	0	0	04				
ao entrar com caracter	Para a Direita	0	0	06				
Deslocamento da mensagem ao	Para a Esquerda	0	0	07				
entrar com caracter	Para a Direita	0	0	05				
Deslocamento da entrada de	Para a Esquerda	0	0	18				
caracter	Para a Direita	0	0	1C				
Endagona do maionales nocisão	Primeira Linha	0	0	80				
Endereço da primeira posição	Segunda Linha	0	0	C0				

LCD

- o Interfaceamento com o Tiva 1294 e PAT DAELN
 - Barramento de dados D₇-D₀ → PK7-PK0
 - RS → PM0
 - R/W → PM1
 - EN → PM2

Display LCD

 Atentar-se para a posição dos pinos 15 e 16 que podem estar em outra posição conforme o display

LCD

 Função para realizar 1us de atraso (adicionar no utils.s)

```
DELAY1US EQU 80 ; número de ciclos de clock para contar lus (assumindo
                   ; 80 MHz) 80 x 12,5 ns = 1 us
SysTick Waitlus
        PUSH {R4, LR} ; salva o valor atual de R4 e Link Register
        MOVS R4, R0 ; R4 = R0 numEsperasRestantes com atualização dos
                         ; flags
        BEQ SysTick Waitlus done ; Se o numEsperasRestantes == 0, vai
                                   ; para o fim
SysTick Waitlus loop
        LDR RO, =DELAY1US
                           ; R0 = DELAY1US (número de ticks para
                                   ; contar lus)
        BL SysTick Wait ; chama a rotina para esperar por lus
        SUBS R4, R4, \#1; R4 = R4 - 1; numEsperasRestantes--
        BHI SysTick Waitlus loop ; se (numEsperasRestantes > 0), espera
                                   ; mais lus
SysTick Waitlus done
        POP {R4, PC}
                              ;return
   LCD e teclas
```

- Teclas: contato mecânico com dispositivo de recuo (mola), reed-switch ou magnético
 - Problema → ruído causado pelo efeito rebote (bounce) da tecla

- Técnicas de debouncing ou anti-bouncing
 - O tempo de bouncing (rebote) depende da qualidade da tecla e se é abertura ou fechamento.
 - Duração: dezenas de μs a centenas de ms.
 - Solução:
 - Por hardware (RC ou flip-flop SR)
 - Por software (temporização)

- Técnicas de debouncing por software
 - Aguardar um tempo fixo prolongado quando uma tecla mudar de estado (p. ex. < 0,5s)
 - Contar n estados estáveis da tecla (com um intervalo de tempo entre cada verificação (1-50ms). Se o estado não for estável, reinicializa o contador.

http://eletronworld.com.br/eletronica/efeito-bounce/

Teclado Matricial

- Interfaceamento com teclado matricial
 - O Utilizar uma tecla por pino?
 - As teclas são conectadas no formato matriz por exemplo 4x4;

Utilizar a multiplexação para realizar a leitura das

teclas.

- Interfaceamento com teclado matricial
 - Utilizar a técnica da varredura de linhas e colunas para verificar se a tecla conecta a linha com a coluna
 - Ativar uma coluna por vez e checar se houve alteração nas linhas;
 - Num teclado 4x4 são utilizados 4 pinos para entrada e 4 pinos para saída;
 - Caso uma alteração em uma linha seja identificada, o bounce deve ser devidamente tratado para que possa afirmar que o botão foi pressionado

Interfaceamento com teclado matricial

- Interfaceamento com teclado matricial
 - Quando pressionadas 3 ou mais teclas:
 - Pode ocorrer tecla fantasma
 - Para solucionar este problema deve-se adicionar um diodo em cada botão para evitar que estes caminhos indesejados sejam formados

- Interfaceamento com teclado matricial
 - Teclas com diodos

Algoritmo para varredura

Dado um vetor de bits C4-C1 e um vetor L4-L1 que representam colunas e linhas:

- Configurar a primeira coluna como saída e as demais como entrada, para estas se comportarem como alta impedância;
- Colocar 0 na primeira coluna;
- Verificar o valor de leitura das linhas;
- Caso algum dos bits das linhas esteja zerado, alguma tecla está pressionada da primeira coluna. O bit que está zerado representa a linha. Por exemplo, o primeiro bit representa o número '1', o segundo bit representa o número '4', a varredura pode ser encerrada;
- Se todos os bits estiverem em 1, então deve-se varrer a próxima coluna configurando esta como saída (com valor 0) e as demais para entrada.
- Repetir para a terceira e quarta (se houver) colunas.

- Na PAT DAELN
 - Os pinos PL0, PL1, PL2 e PL3 estão disponíveis para verificar as linhas
 - Devem ser inicializados como entradas
 - Não esquecer da configuração de resistor de pullup interno!!!!!!!
 - Os pinos PM4, PM5, PM6 e PM7 estão disponíveis para varrer as colunas
 - Devem ser inicializados como entradas para alta impedância / saídas