ضرب کانوولوشنی ماتریسی تصویر در شبکه های عصبی CNN

از عنوان سوال نترسید قرار نیست شبکه عصبی پیاده کنید!!!(فقط یک قسمت خیلی خیلی کوچیکشو قراره پیاده کنین)

قطعا همگی دیدین وقتی دارین با موبایل عکس میگیرین دور صورت افراد یک سری مربع هایی کشیده میشه و صورتشون و detect میکنه.

یه بخش کوچیکی ازین الگوریتم که قراره شما پیاده کنین رو بش میگن edge detection

که یعنی شما شروع به پیدا کردن خطوط توی عکس میکنین خطوط عمودی افقی و مورب و یا خطوط با زاویه های مختلف و ... ولی مهم ترین این خطوط عمودی و افقیه که توی عکسه.

برای بیدا کردن خطوط باید از ضرب کانوولوشنی استفاده کنین.

اول به نکات زیر توجه کنین:

هر عکس سیاه سفید (برای عکس رنگی هم همه ی اینا هست ولی یکم فرق داره واسه همین تو این سوال باش کاری نداریم) در حقیقت یه ماتریسه که درایه هاش اعداد ۰ تا ۲۵۵ هستن که طیف رنگی بین سفید و سیاه رو مشخص میکنن و اون عکس و تشکیل میدن .

کامپیوتر و موبایلو ... در حقیقت از روی همون ماتریس عکسو به شما نشون میدن.

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87		201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139		20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75			47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

٠		•			<i>.</i>	.,	,			***	
157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

هر چی ماتریستون بزرگتر باشه یعنی تعداد درایه های بیشتر باشه که باعث میشه تعداد پیکسلاش بیشتر باشه کیفیت عکس شما بالا تر میره.

خب حالا بريم سراغ ضرب كانوولوشنى:

1	1	1	0	0
0	1	1	1	0
0 x 1	0x0	1x1	1	1
0x0	0x1	1x0	1	0
0 x 1	1x0	1x1	0	0

4	3	4
2	4	3
2		

این ویدیو ی کوتاه که توی این لینکه رو حتما ببینیدش چون نحوه ی این ضربو نشون میده

https://www.youtube.com/watch?time continue=16&v=43pm7yh-NYQ

در حقیقت شما یه ماتریس بزرگ مثلا ۱۵۰۰*۱۵۰۰ دارین که همون عکستونه و یه ماتریس کوچیک که بش میگن فیلتر و معمولا ۳*۳ هست دارین شما باید این دو تا رو در هم ضرب کانوولوشن کنین و ماتریس جدیدی که حاصل میشه همونیه که دنبالشیم و مثلا خطوط عمودی یا افقیه عکس توش مشخص شده که مجموعه ای ازین اطلاعات برای کار شبکه عصبی لازمه.

حالا ماتریس فیلتر ۳*۳ محتویاتش چیه؟

برای تشخیص خطوط افقی این ماتریس این شکلیه:

پس ینی شما باید ماتریس عکستونو در این ماتریس ضرب کانوولوشن کنین تا خطوط افقیش مشخص بشه.

خب بریم سراغ تکلیف شما:

توجه:توصیه شدید میکنم با پایتون این برنامه رو بزنین.(اگه بلد نیستین بهونه ی خوبیه که یاد بگیرین ⊙)

مراحل:

۱- عکس اول که براتون گذشتم رو داخل برنامه load کنین و بریزین داخل یه متغیر.

۲- عکسو که رنگیه با استفاده از توابعی که در پایتون اماده هست و با سرچ کردن به راحتی بدست میان
به عکس سیاه سفید تبدیل کنین.

۳- ماتریس نشان دهنده ی عکسو با توابع اماده موجود بدست بیارین و با سایز ۱۵۰۰*۱۵۰۰ ذخیرش کنین (یه ارایه ی دوبعدی ۱۵۰۰*۱۵۰۰)

۴-ماتریس فیلتر ۳*۳ که براتون بالاتر نوشتمو تعریف کنین.

۵- حالا کدی بنویسین که این دو ماتریسو در هم ضرب کانوولوشن کنه. (دقت کنین در این مرحله به هیچ عنوان از توابع اماده استفاده نکنین)

۶-حالا ماتریس جدیدی که بدست میادو با توابع اماده پایتون به شکل عکس نشون بدین و نتیجه که خطوط افقی موجود در عکسه رو ببینین.

سوال:حالا میخایم توی عکس دوم که براتون گذشتم این دفعه خطوط عمودی رو تشخیص بدیم . این دفعه نیازی نیست هیچ کدی بزنین فقط باید ماتریس فیلتر ۳*۳ رو عوض کنین و دوباره از همون تابعی که نوشتین استفاده کنین (فیلتر تشخیص خطوط عمودیو با سرچ پیدا کنین)

در نهایت پیچیدگی این الگوریتمو محاسبه کنین.

نکته : شما باید یه فایل zip شامل کد و اسکرین شات نتیجه ی کد به همراه پیچیدگی کد اپلود کنین.