I. AMENDMENT

Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1-29. (Canceled)
- 30. (Currently amended) The composition of claim 28, wherein the dye is A dyeing composition for dyeing keratinous fibres comprising, in an appropriate dyeing medium, at least one cationic tertiary para-phenylenediamine comprising a pyrrolidine ring, and a dicationic diazo dye of general formula Vb

$$W_7 - N = N - W_8 - N = N - W_9$$
(Vb)

in which

W₇ and W₉ represent independently of each other a heteroaromatic radical represented by formulae (C) and (D) below:

$$R"_1$$
 N^1
 A
 $R"_{10}$
 $R"_{10}$
 X''
 X''

W₈ represents a carbon-based aromatic, pyridine or pyridazinyl group of formula (E)

$$R_3$$
 R_4
 X_1-X_2

(E)

in which formulae (C), (D), (E):

X"1 represents a nitrogen atom or a radical CR"5

X"2 represents a nitrogen atom or a radical CR"6

Z", represents an oxygen or sulphur atom or a radical NR",

Z"₂ represents a nitrogen atom or a radical CR"₉,

Z"₃ represents a nitrogen atom or a radical CR"₁₂,

Z"₄ represents a nitrogen atom or a radical CR"₁₃,

the bond a of the 5-membered cationic ring of formula (C) is linked to the azo group of formula (Vb),

the bond b of the 6-membered cationic ring of formula (D) is linked to the azo group of formula (Vb)

R"3, R"4, R"5, R"6, R"7, R"9, R"10, R"11, R"12 and R"13, represent, together or independently of each other, a hydrogen atom, a linear or branched, saturated or unsaturated C1-C16 hydrocarbon-based chain, which can form one or more 3- to 6-membered carbon-based rings, one or more carbon atoms of the carbon-based chain of which may be replaced with an oxygen, nitrogen or sulphur atom or with an SO2 group, and the carbon atoms of which may be, independently of each other, substituted with one or more halogen atoms; R"3, R"4, R"5, R"6, R"7, R"9, R"10, R"11, R"12 and R"13 not comprising a peroxide bond or diazo or nitroso radicals,

R"₇ with R"₉, R"₁₀ with R"₁₁ and R"₁₂ with R"₁₃ can form a carbon-based aromatic ring, such as a phenyl,

X" is an organic or mineral anion[[.]];and

wherein said cationic tertiary paraphenylenediamine containing a pyrrolidine ring corresponds to formula I:

$$R_3$$
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_2
 R_3
 R_2
 R_3
 R_2
 R_3
 R_2
 R_3
 R_3
 R_2
 R_3
 R_3

in which

n varies from 0 to 4, it being understood that when n is greater than or equal to 2, then the radicals R₁ may be identical or different,

R₁ represents a halogen atom; a saturated or unsaturated, aliphatic or alicylic, C₁-C₆

hydrocarbon chain, it being possible for the chain to contain one or more oxygen, nitrogen, silicon or sulphur atoms or an SO₂ group, and it being possible for the chain to be substituted with one or more hydroxyl or amino radicals; an onium radical Z, the radical R₁ not containing a peroxide bond, or diazo, nitro or nitroso radicals,

R₂ represents an onium radical Z or a radical –X-C=NR₈-NR₉R₁₀ in which X represents

an oxygen atom or a radical –NR₁₁ and R₈, R₉, R₁₀ and R₁₁ represent a hydrogen

atom, a C₁-C₄ alkyl radical or a C₁-C₄ hydroxyalkyl radical,

R₃ represents a hydrogen atom or a hydroxyl radical.

- 31. (Original) The composition of claim 30, wherein the dye is selected from the group consisting of:
 - 1, 3-dimethyl-2-[4-(1, 3-dimethyl(imidazol-1-ium)-2-ylazo) phenylazo] imidazol-1-ium.

- 1,4-dimethyl-3-[4-(1,4-dimethyl(triazol-2-ium)-3-ylazo)phenylazo]triazol-2-ium.
- 1-methyl-2-[4-(1-methyl(pyridin-1-ium)-2-ylazo)phenylazo]pyridin-1-ium.
- 1-methyl-3-[4-(1-methyl(pyridin-1-ium)-3-ylazo)phenylazo]pyridin-1-ium.
- 1,3-dimethyl-2-[4-(3-methyl(thiazol-3-ium)-2-ylazo)phenylazo]imidazol-1-ium.
- 1,4-dimethyl-3-[4-(3-methyl(thiazol-3-ium)-2-ylazo)phenylazo]triazol-2-ium.
- 1,3-dimethyl-2-[4-(1,4-dimethyl(triazol-2-ium)-3-ylazo)phenylazo]imidazol-1-ium.
- 1-methyl-2-[4-(3-methyl(thiazol-3-ium)-2-ylazo)phenylazo]pyridin-1-ium.
- 1-methyl-3-[4-(3-methyl(thiazol-3-ium)-2-ylazo)phenylazo]pyridin-1-ium.
- 1,3-dimethyl-2-[4-(1-methyl(pyridin-1-ium)-2-ylazo)phenylazo]imidazol-1-ium.
- 1,4-dimethyl-3-[4-(1-methyl(pyridin-1-ium)-2-ylazo)-phenylazo]-triazol-2-ium.
- 1,3-dimethyl-2-[4-(1-(2-hydroxyethyl)(pyridin-1-ium)-2-ylazo)phenylazo]imidazol-1-ium.
- 1,4-dimethyl-3-[4-(1-(2-hydroxyethyl)(pyridin-1-ium)-2-ylazo)phenylazo]triazol-2-ium.
- 1,3-dimethyl-2-[4-(1-methyl(pyridin-1-ium)-3-ylazo)phenylazo]imidazol-1-ium.
- 1,4-dimethyl-3-[4-(1-methyl(pyridin-1-ium)-3-ylazo)phenylazo]triazol-2-ium.
- 1,3-dimethyl-2-[4-(1-(2-hydroxyethyl)(pyridin-1-ium)-3-ylazo)phenylazo]imidazol-1-ium.
- 1,4-dimethyl-3-[4-(1-(2-hydroxyethyl)(pyridin-1-ium)-3-ylazo)phenylazo]triazol-2-ium.
- 1,3-dimethyl-2-[4-(1,3-dimethyl(imidazol-1-ium)-2-ylazo)-3-methoxyphenylazo]imidazol-1-ium.
- 1,3-dimethyl-2-[4-(1,4-dimethyl(triazol-2-ium)-3-ylazo)-3-methoxyphenylazo]imidazol-1-ium.
- 1,3-dimethyl-2-[4-(1-methyl(pyridin-1-ium)-2-ylazo)-3-methoxyphenylazo]imidazol-1-ium.
- 32-39. (Canceled)

40. (Currently amended) The composition of claim 28, wherein the dye is A dyeing composition for dyeing keratinous fibres comprising, in an appropriate dyeing medium, at least one cationic tertiary para-phenylenediamine comprising a pyrrolidine ring, and a monocationic monoazo dye of formula (Vk)

$$W_{1}^{0}-W_{2}^{0}-N=N-W_{3}^{0}$$

in which

W₁ represents a 5-, 6-, 7- or 8-membered heterocycle of formula (II⁰) below

formula (II⁰)

 W_2^0 represents a divalent carbon-based aromatic, pyridine or pyridazine group of formula (III 0) below

$$\begin{array}{c|c} & R^0_5 & R^0_6 \\ \hline & X^0_1 \cdot X^0_2 \end{array}$$

formula (III⁰)

W₃ represents a cationic heteroaromatic radical represented by formula (IV⁰) below:

in which formulae (II⁰), (III⁰) and (IV⁰):

n = 0, 1, 2 or 3, it being understood that when n is greater than or equal to 2, then the radicals R_4^0 may be identical or different,

 X_{1}^{0} represents a nitrogen atom or a radical CR_{7}^{0} ,

X₂ represents a nitrogen atom or a radical CR₈,

Z₁ represents a radical CHR₂, an oxygen or sulphur atom or a radical NR₁₄,

Z⁰₂ represents an oxygen or sulphur atom or a radical NR⁰₁₅

R⁰₀, R⁰₁, R⁰₂, R⁰₃, R⁰₄, R⁰₅, R⁰₆, R⁰₇, R⁰₈, R⁰₉, R⁰₁₀, R⁰₁₁ and R⁰₁₂, which may be identical or different, represent a hydrogen atom, a linear or branched C₁-C₁₀ hydrocarbon-based chain, which can form one or more 3- to 6-membered carbon-based rings, and which may be saturated or unsaturated, one or more carbon atoms of the carbon-based chain of which may be replaced with an oxygen, nitrogen or sulphur atom or with an SO₂ group, and the carbon atoms of which may be, independently of each other, substituted with one or more halogen atoms; R⁰₀, R⁰₁, R⁰₂, R⁰₃, R⁰₄, R⁰₅, R⁰₆, R⁰₇, R⁰₈, R⁰₉, R⁰₁₁ and R⁰₁₂ not comprising a peroxide bond or diazo or nitroso radicals,

R⁰₁₄ represents a hydrogen atom, a linear or branched C₁-C₁₀ hydrocarbon-based chain, which can form one or more 3- to 6-membered carbon-based rings, and which may be saturated or unsaturated, one or more carbon atoms of the carbon-based chain of which may be replaced with an oxygen, nitrogen or sulphur atom or with an SO₂ group, and the carbon atoms of which may be, independently of each other, substituted with one or more halogen atoms, R⁰₁₄ not comprising a peroxide

bond or diazo or nitroso radicals; it being understood that the said oxygen, nitrogen and sulphur atoms are not directly linked to the nitrogen atom bearing the radical R^0_{14} .

R₅ with R₆ can form a carbon-based aromatic ring, such as a phenyl,

R⁰₁₃ and R⁰₁₅, which may be identical or different, represent a C₁-C₈ alkyl radical, optionally substituted with one or more radicals chosen from the group consisting of a hydroxyl, a C₁-C₂ alkoxy, a C₂-C₄ (poly)hydroxyalkoxy, an amino, a C₁-C₂ (di)alkylamino, a carboxyl, a sulphonic or an optionally substituted phenyl radical;

the bond a of the cationic ring of formula (IV) is linked to the azo group of formula (I); X^0 is an organic or mineral anion[[.]]; and

wherein said cationic tertiary paraphenylenediamine containing a pyrrolidine ring corresponds to formula I:

$$R_3$$
 R_2
 $(R_1)_n$
 $(R_1)_n$

in which

n varies from 0 to 4, it being understood that when n is greater than or equal to 2, then the radicals R₁ may be identical or different,

R₁ represents a halogen atom; a saturated or unsaturated, aliphatic or alicylic, C₁-C₆

hydrocarbon chain, it being possible for the chain to contain one or more oxygen,
nitrogen, silicon or sulphur atoms or an SO₂ group, and it being possible for the
chain to be substituted with one or more hydroxyl or amino radicals; an onium

- radical Z, the radical R_1 not containing a peroxide bond, or diazo, nitro or nitroso radicals,
- R_2 represents an onium radical Z or a radical -X-C= NR_8 - NR_9 R_{10} in which X represents an oxygen atom or a radical $-NR_{11}$ and R_8 , R_9 , R_{10} and R_{11} represent a hydrogen atom, a C_1 - C_4 alkyl radical or a C_1 - C_4 hydroxyalkyl radical,

R₃ represents a hydrogen atom or a hydroxyl radical.

- 41. (Currently amended) The composition of claim 40, wherein the dye is a monocationic monoazo dye of formula (Vk) selected from the group consisting of:
 - 1,3-dimethyl-2-[4-(pyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(3-hydroxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(2-carboxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(3-aminopyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(2-carboxy-3-hydroxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(2-carboxamidopyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(2-hydroxymethylpyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(2-carboxy-4-hydroxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(piperidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(3-hydroxypiperidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(3-hydroxymethylpiperidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(3-carboxypiperidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(2-carboxypiperidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(piperazin-1-yl)phenylazo]benzimidazol-1-ium,
 - 1,3-dimethyl-2-[4-(homopiperazin-1-yl)phenylazo]benzimidazol-1-ium,
 - 5-amino-1,3-dimethyl-2-[4-(pyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
 - 5-amino-1,3-dimethyl-2-[4-(3-hydroxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,

- 5-amino-1,3-dimethyl-2-[4-(2-carboxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(3-aminopyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(2-carboxy-3-hydroxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(2-carboxamidopyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(2-hydroxymethylpyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(2-carboxy-4-hydroxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(piperidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(3-hydroxypiperidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(3-hydroxymethylpiperidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(3-carboxypiperidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(2-carboxypiperidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(piperazin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-amino-1,3-dimethyl-2-[4-(homopiperazin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(pyrrolidin-1-yl)-phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(3-hydroxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(2-carboxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(3-aminopyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,

- 5-dimethylamino-1,3-dimethyl-2-[4-(2-carboxy-3-hydroxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(2-carboxamidopyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(2-hydroxymethylpyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(2-carboxy-4-hydroxypyrrolidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(piperidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(3-hydroxypiperidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(3-hydroxymethylpiperidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(3-carboxypiperidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(2-carboxypiperidin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(piperazin-1-yl)phenylazo]benzimidazol-1-ium,
- 5-dimethylamino-1,3-dimethyl-2-[4-(homopiperazin-1-yl)phenylazo]benzimidazol-1-ium.

42-64. (Canceled)

- 65. (New) The composition of claim 30, wherein the cationic tertiary para-phenylenediamine is such that n is equal to 0.
- 66. (New) The composition of claim 30, wherein the cationic tertiary para-phenylenediamine is such that n is equal to 1 and R_1 is chosen from the group consisting of a halogen atom; a saturated or unsaturated, aliphatic or alicylic, C_1 - C_6 hydrocarbon chain; it being possible for one

or more carbon atoms to be replaced by an oxygen, nitrogen, silicon or sulphur atom, or by an SO_2 group, the radical R_1 not containing a peroxide bond, or diazo, nitro or nitroso radicals.

- 67. (New) The composition of claim 30, wherein the cationic tertiary para-phenylenediamine is such that R_1 is chosen from chlorine, bromine, C_1 - C_4 alkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 aminoalkyl, C_1 - C_4 alkoxy or C_1 - C_4 hydroxyalkoxy radicals.
- 68. (New) The composition of claim 67, wherein the cationic tertiary para-phenylenediamine is such that R₁ is chosen from a methyl, hydroxymethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, methoxy, isopropyloxy or 2-hydroxyethoxy radical.
- 69. (New) The composition of claim 30, wherein the cationic tertiary para-phenylenediamine is such that R_2 represents the onium radical Z corresponding to formula (II)

$$\begin{array}{c|c}
 & R4 \\
 & R5 \\
 & R6 \\
 & Y
\end{array}$$
(II)

in which

- D is a single bond of a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals and which may carry one or more ketone functional groups;
- R₄, R₅ and R₆, taken separately, represent a C₁-C₁₅ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ amidoalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical in which the amine is mono- or disubstituted with a C₁-C₄ alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; or

- R₄, R₅ and R₆ together, in pairs, form, with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated carbon ring which may contain one or more heteroatoms, it being possible for the cationic ring to be substituted with a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxy-alkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a (C₁-C₆)alkylcarbonyl radical, a thio (-SH) radical, a C₁-C₆ thioalkyl (-R-SH) radical, a (C₁-C₆)alkylthio radical, an amino radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical;
- R₇ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphinyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; an N-(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkyl radical;

x is 0 or 1,

- when x = 0, then the linking arm is attached to the nitrogen atom carrying the radicals R_4 to R_6 ;
- when x = 1, then two of the radicals R_4 to R_6 form, together with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated ring and D is linked to the carbon atom of the saturated ring;

Y is a counter-ion.

70. (New) The composition of claim 69, wherein the cationic tertiary para-phenylenediamine is such that R₂ corresponds to formula II in which x is equal to 0 and R₄, R₅ and R₆ separately are

preferably chosen from a C_1 - C_6 alkyl radical, a C_1 - C_4 monohydroxyalkyl radical, a C_2 - C_4 polyhydroxyalkyl radical, a $(C_1$ - C_6)alkoxy(C_1 - C_4)alkyl radical, a C_1 - C_6 amidoalkyl radical, a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical, or R_4 with R_5 form together an azetidine ring, a pyrrolidine, piperazine or morpholine ring, R_6 being chosen in this case from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 aminoalkyl radical, an aminoalkyl radical which is mono- or di-substituted with a (C_1 - C_6)alkyl radical, a (C_1 - C_6)alkylcarbonyl, amido or (C_1 - C_6)alkylsulphonyl radical; a C_1 - C_6 carbamylalkyl radical; a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical; a (C_1 - C_6)alkyl carbonyl(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkylcarbonyl(C_1 - C_6)alkyl radical.

- 71. (New) The composition of claim 69, wherein the cationic tertiary paraphenylenediamine is such that R₂ corresponds to formula II in which x is equal to 1 and R₇ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substited with a (C_1-C_6) alkyl, (C_1-C_6) alkylcarbonyl, amido or a (C_1-C_6) alkylsulphonyl radical; a C_1 - C_6 carbamylalkyl radical, a tri $(C_1$ - $C_6)$ alkylsilane $(C_1$ - $C_6)$ alkyl radical; a $(C_1$ - C_6)alkylcarboxy(C_1 - C_6)alkyl radical; a (C_1 - C_6)alkylcarbonyl(C_1 - C_6)alkyl radical; an N-(C_1 -C₆)alkylcarbamyl(C₁-C₆)alkyl radical; R₄ with R₅ together form an azetidine, pyrrolidine, piperidine, piperazine or morpholine ring, R₆ being chosen in this case from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyl alkyl radical; a C₁-C₆ aminoalkyl radical; a C1-C6 aminoalkyl radical whose amine is mono- or di-substituted with a (C_1-C_6) alkyl, (C_1-C_6) alkylcarbonyl, amido or (C_1-C_6) alkylsulphonyl radical; a C_1-C_6 carbamylalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarboxy(C₁- C_6)alkyl radical; a (C_1-C_6) alkylcarbonyl (C_1-C_6) alkyl radical; an $N-(C_1-C_6)$ alkylcarbamyl (C_1-C_6) alkylcarbamy C₆)alkyl radical.
- 72. (New) The composition of claim 69, wherein the cationic tertiary para-phenylenediamine is such that D is a single bond or an alkylene chain which may be substituted.
- 73. (New) The composition of claim 69, wherein the cationic tertiary para-phenylenediamine is such that R₂ is a trialkylammonium radical.

74. (New) The composition of claim 30, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents the onium radical Z corresponding to formula III

(III)

in which

D is a single bond or a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals, and which may carry one or more ketone functional groups;

the vertices E, G, J, L, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a pyrrole, pyrazole, imidazole, triazole, oxazole, isooxazole, thiazole, isothiazole ring,

q is an integer between 0 and 4 inclusive;

is an integer between 0 and 3 inclusive;

q+o is an integer between 0 and 4;

 C_6)alkyl, (C_1 - C_6)alkylcarbonyl, amido or (C_1 - C_6)alkylsulphonyl radical; a C_1 - C_6 monohydroxyalkyl radical or a C_2 - C_6 polyhydroxyalkyl radical; it being understood that the radicals R_8 are carried by a carbon atom,

the radicals R₉, which are identical or different, represent a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, a benzyl radical; it being understood that the radicals R₉ are carried by a nitrogen,

R₁₀ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; an N-(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkyl radical;

x is 0 or 1

when x = 0, the linking arm D is attached to the nitrogen atom, when x = 1, the linking arm D is attached to one of the vertices E, G, J or L, Y is a counter-ion.

- 75. (New) The composition of claim 74, wherein the cationic tertiary para-phenylenediamine is such that the vertices E, G, J and L form an imidazole ring.
- 76. (New) The composition of claim 74, wherein the cationic tertiary para-phenylenediamine is such that x is equal to 0, D is a single bond or an alkylene chain which may be substituted.
- 77. (New) The composition of claim 30, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents an onium radical Z corresponding to formula IV

$$-D \xrightarrow{(R_{13})_x} N \xrightarrow{E} G^{(R_{12})_p} L Y$$

(IV)

in which:

D is a single bond or a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from an oxygen, sulphur or nitrogen atom, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals, and which may carry one or more ketone functional groups;

the vertices E, G, J, L and M, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a ring chosen from the pyridine, pyrimidine, pyrazine, triazine and pyridazine rings;

p is an integer between 0 and 3 inclusive;

m is an integer between 0 and 5 inclusive;

p+m is an integer between 0 and 5;

the radicals R₁₁, which are identical or different, represent a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a C₁-C₆ alkylcarbonyl radical, a thio radical, a C₁-C₆ thioalkyl radical, a (C₁-C₆)alkylthio radical, an amino radical which is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆

monohydroxyalkyl radical or a C_2 - C_6 polyhydroxyalkyl radical; it being understood that the radicals R_{11} are carried by a carbon atom,

the radicals R₁₂, which are identical or different, represent a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, a benzyl radical; it being understood that the radicals R₁₂ are carried by a nitrogen,

R₁₃ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆
polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a N-(C₁-C₆)alkyl radical; a N-(C₁-C₆)alkyl radical;

x is 0 or 1

when x = 0, the linking arm D is attached to the nitrogen atom, when x = 1, the linking arm D is attached to one of the vertices E, G, J, L or M, Y is a counter-ion.

- 78. (New) The composition of claim 77, wherein the vertices E, G, J, L and M form, with the nitrogen of the ring, a ring chosen from pyridine and pyrimidine rings.
- 79. (New) The composition of claim 77, wherein the cationic tertiary para-phenylenediamine is such that x is equal to 0 and R_{11} is chosen from a hydroxyl radical, a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxyalkyl radical, a C_1 - C_6 alkoxy radical, a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical, an amido radical, a C_1 - C_6 alkylcarbonyl radical, an amino radical which is mono- or di-substituted with a (C_1 - C_6)alkyl, a (C_1 - C_6)alkylcarbonyl, amido or (C_1 - C_6)alkylsulphonyl radical; a C_1 - C_6 monohydroxyalkyl radical or

- a C_2 - C_6 polyhydroxyalkyl radical and R_{12} is chosen from a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxyalkyl radical, a tri $(C_1$ - C_6)alkylsilane $(C_1$ - C_6)alkyl radical, a $(C_1$ - C_6)alkoxy $(C_1$ - C_6)alkyl radical, a C_1 - C_6 carbamylalkyl radical.
- 80. (New) The composition of claim 77, wherein the cationic tertiary para-phenylenediamine is such that x is equal to 1 and R_{13} is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 aminoalkyl radical whose amine is mono- or di-substituted with a $(C_1$ - C_6)alkyl radical, a $(C_1$ - C_6)alkylcarbonyl radical, an amido radical, a $(C_1$ - C_6)alkylsulphonyl radical; a $(C_1$ - C_6)alkyl radical; a tri($(C_1$ - (C_6) alkylsilane($(C_1$ - (C_6) alkyl radical; a $(C_1$ - (C_6) alkyl radical; an N- $(C_1$ - (C_6) alkylcarbamyl($(C_1$ - (C_6) alkyl radical; a $(C_1$ - (C_6) alkyl radical, a $(C_1$
- 81. (New) The composition of claim 77, wherein the cationic tertiary para-phenylenediamine is such that R_{11} , R_{12} and R_{13} are alkyl radicals which may be substituted.
- 82. (New) The composition of claim 30, wherein the cationic tertiary para-phenylenediamine is such that the radical R_2 is the radical of formula -XP(O)(O-) OCH₂CH₂N⁺(CH₃)₃ where X represents an oxygen atom or a radical –NR₁₄, R₁₄ representing a hydrogen, a C₁-C₄ alkyl radical or a hydroxyalkyl radical.
- 83. (New) The composition of claim 30, wherein the cationic tertiary para-phenylenediamine is such that the radical R_2 is a guanidine radical of formula $-X-C=NR_8-NR_9R_{10}$, X represents an oxygen atom or a radical $-NR_{11}$, R_8 , R_9 , R_{10} and R_{11} representing a hydrogen, a C_1-C_4 alkyl radical or a hydroxyalkyl radical.

- 84. (New) The composition of claim 30, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride,
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethyl-guanidinium chloride
 - N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammonium-hexyl)dimethylammonium dichloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]oxophosphorylcholine
 - {2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
 - 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
 - 3-{3-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-ium chloride
 - 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
 - 3-{3-[1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yloxy|propyl}-1-methyl-3H-imidazol-1-um chloride
 - [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethyammonium chloride
 - [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
 - N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride

- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyldimethylammonium dichloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]oxophosphorylcholine
- {2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
- 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
- 3-{3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]-propyl}1-methyl-3H-imidazol-1-um chloride
- 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
- [1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- 3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- 3-{3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
- [1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- 3-[1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride

- 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide,
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-Aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 85. (New) The composition of claim 30, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride

- N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- [1-(4-Aminophenyl)pyrrolidin-3-yl](2-hydroxyethyl)dimethylammonium chloride
- [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
- N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
- N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
- 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanyl-propyl)-3H-imidazol-1-ium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide

- [1-(4-Aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 86. (New) The composition of claim 30, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyl)dimethylammonium dichloride
 - 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride

- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 87. (New) The composition of claim 30, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride.

- 88. (New) The composition of claim 30, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride, and [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride.
- 89. (New) The composition of claim 31, wherein the cationic tertiary para-phenylenediamine is such that n is equal to 0.
- 90. (New) The composition of claim 31, wherein the cationic tertiary para-phenylenediamine is such that n is equal to 1 and R_1 is chosen from the group consisting of a halogen atom; a saturated or unsaturated, aliphatic or alicylic, C_1 - C_6 hydrocarbon chain; it being possible for one or more carbon atoms to be replaced by an oxygen, nitrogen, silicon or sulphur atom, or by an SO_2 group, the radical R_1 not containing a peroxide bond, or diazo, nitro or nitroso radicals.
- 91. (New) The composition of claim 31, wherein the cationic tertiary para-phenylenediamine is such that R_1 is chosen from chlorine, bromine, C_1 - C_4 alkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 aminoalkyl, C_1 - C_4 alkoxy or C_1 - C_4 hydroxyalkoxy radicals.
- 92. (New) The composition of claim 91, wherein the cationic tertiary para-phenylenediamine is such that R₁ is chosen from a methyl, hydroxymethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, methoxy, isopropyloxy or 2-hydroxyethoxy radical.
- 93. (New) The composition of claim 31, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents the onium radical Z corresponding to formula (II)

$$\begin{array}{c|c}
 & R4 \\
\hline
 & R5 \\
\hline
 & R6 \\
 & Y
\end{array}$$
(II)

in which

- D is a single bond of a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals and which may carry one or more ketone functional groups;
- R₄, R₅ and R₆, taken separately, represent a C₁-C₁₅ alkyl radical; a C₁-C₆
 monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical; an aryl radical; a benzyl radical; a C₁-C₆
 amidoalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆
 aminoalkyl radical; a C₁-C₆ aminoalkyl radical in which the amine is mono- or disubstituted with a C₁-C₄ alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; or
- R₄, R₅ and R₆ together, in pairs, form, with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated carbon ring which may contain one or more heteroatoms, it being possible for the cationic ring to be substituted with a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxy-alkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a (C₁-C₆)alkylcarbonyl radical, a thio (-SH) radical, a C₁-C₆ thioalkyl (-R-SH) radical, a (C₁-C₆)alkylthio radical, an amino radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical;
- R₇ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphinyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a

 (C_1-C_6) alkylcarbonyl (C_1-C_6) alkyl radical; an N- (C_1-C_6) alkylcarbamyl (C_1-C_6) alkyl radical; an N- (C_1-C_6) alkylsulphonamido (C_1-C_6) alkyl radical;

x is 0 or 1,

when x = 0, then the linking arm is attached to the nitrogen atom carrying the radicals R_4 to R_6 ;

when x = 1, then two of the radicals R_4 to R_6 form, together with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated ring and D is linked to the carbon atom of the saturated ring;

Y is a counter-ion.

- 94. (New) The composition of claim 93, wherein the cationic tertiary para-phenylenediamine is such that R_2 corresponds to formula II in which x is equal to 0 and R_4 , R_5 and R_6 separately are preferably chosen from a C_1 - C_6 alkyl radical, a C_1 - C_4 monohydroxyalkyl radical, a C_2 - C_4 polyhydroxyalkyl radical, a $(C_1$ - C_6)alkoxy $(C_1$ - C_4)alkyl radical, a C_1 - C_6 amidoalkyl radical, a tri $(C_1$ - C_6)alkylsilane $(C_1$ - C_6)alkyl radical, or R_4 with R_5 form together an azetidine ring, a pyrrolidine, piperidine, piperazine or morpholine ring, R_6 being chosen in this case from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 aminoalkyl radical, an aminoalkyl radical which is mono- or di-substituted with a $(C_1$ - C_6)alkyl radical, a $(C_1$ - C_6)alkylsilane $(C_1$ - C_6)alkyl radical; a $(C_1$ - C_6)alkylsilane $(C_1$ - C_6)alkyl radical; a $(C_1$ - C_6)alkyl radical.
- 95. (New) The composition of claim 93, wherein the cationic tertiary paraphenylenediamine is such that R₂ corresponds to formula II in which x is equal to 1 and R₇ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substited with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or a (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carbamylalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical; R₄ with R₅ together form an azetidine, pyrrolidine, piperazine or morpholine ring, R₆ being chosen in this case from a C₁-C₆ alkyl

radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyl alkyl radical; a C_1 - C_6 aminoalkyl radical whose amine is mono- or di-substituted with a $(C_1$ - C_6)alkyl, $(C_1$ - C_6)alkylcarbonyl, amido or $(C_1$ - C_6)alkylsulphonyl radical; a C_1 - C_6 carbamylalkyl radical; a $tri(C_1$ - C_6)alkylsilane(C_1 - C_6)alkyl radical; a $(C_1$ - C_6)alkylcarboxy(C_1 - C_6)alkyl radical; a $(C_1$ - C_6)alkylcarbonyl(C_1 - C_6)alkyl radical; an N- $(C_1$ - C_6)alkylcarbamyl(C_1 - C_6)alkyl radical.

- 96. (New) The composition of claim 93, wherein the cationic tertiary para-phenylenediamine is such that D is a single bond or an alkylene chain which may be substituted.
- 97. (New) The composition of claim 93, wherein the cationic tertiary para-phenylenediamine is such that R₂ is a trialkylammonium radical.
- 98. (New) The composition of claim 31, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents the onium radical Z corresponding to formula III

$$-D \xrightarrow{(R_{10})_x} N \xrightarrow{E} G (R_9)_0$$

$$Y$$

(III)

in which

D is a single bond or a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals, and which may carry one or more ketone functional groups;

the vertices E, G, J, L, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a pyrrole, pyrazole, imidazole, triazole, oxazole, isooxazole, thiazole, isothiazole ring,

q is an integer between 0 and 4 inclusive;

is an integer between 0 and 3 inclusive;

q+o is an integer between 0 and 4;

- the radicals R₈, which are identical or different, represent a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a C₁-C₆ alkylcarbonyl radical, a thio radical, a C₁-C₆ thioalkyl radical, a (C₁-C₆)alkylthio radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ monohydroxyalkyl radical or a C₂-C₆ polyhydroxyalkyl radical; it being understood that the radicals R₈ are carried by a carbon atom,
- the radicals R₉, which are identical or different, represent a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, a benzyl radical; it being understood that the radicals R₉ are carried by a nitrogen,
- R₁₀ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-

 C_6)alkylcarbonyl(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkylcarbamyl(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkylsulphonamido(C_1 - C_6)alkyl radical;

x is 0 or 1

when x = 0, the linking arm D is attached to the nitrogen atom, when x = 1, the linking arm D is attached to one of the vertices E, G, J or L,

Y is a counter-ion.

- 99. (New) The composition of claim 98, wherein the cationic tertiary para-phenylenediamine is such that the vertices E, G, J and L form an imidazole ring.
- 100. (New) The composition of claim 98, wherein the cationic tertiary para-phenylenediamine is such that x is equal to 0, D is a single bond or an alkylene chain which may be substituted.
- 101. (New) The composition of claim 31, wherein the cationic tertiary para-phenylenediamine is such that R_2 represents an onium radical Z corresponding to formula IV

(IV)

in which:

D is a single bond or a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from an oxygen, sulphur or nitrogen atom, and which

may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals, and which may carry one or more ketone functional groups;

the vertices E, G, J, L and M, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a ring chosen from the pyridine, pyrimidine, pyrazine, triazine and pyridazine rings;

p is an integer between 0 and 3 inclusive; m is an integer between 0 and 5 inclusive; p+m is an integer between 0 and 5;

- the radicals R₁₁, which are identical or different, represent a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a C₁-C₆ alkylcarbonyl radical, a thio radical, a C₁-C₆ thioalkyl radical, a (C₁-C₆)alkylthio radical, an amino radical which is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ monohydroxyalkyl radical or a C₂-C₆ polyhydroxyalkyl radical; it being understood that the radicals R₁₁ are carried by a carbon atom,
- the radicals R₁₂, which are identical or different, represent a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, a benzyl radical; it being understood that the radicals R₁₂ are carried by a nitrogen,
- R₁₃ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-

 C_6)alkyl radical; a (C_1 - C_6)alkyl sulphonyl(C_1 - C_6)alkyl radical; a (C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkyl sulphonamido(C_1 - C_6)alkyl radical;

x is 0 or 1

when x = 0, the linking arm D is attached to the nitrogen atom, when x = 1, the linking arm D is attached to one of the vertices E, G, J, L or M, Y is a counter-ion.

- 102. (New) The composition of claim 101, wherein the vertices E, G, J, L and M form, with the nitrogen of the ring, a ring chosen from pyridine and pyrimidine rings.
- 103. (New) The composition of claim 101, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 0 and R₁₁ is chosen from a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a C₁-C₆ alkylcarbonyl radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, a (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ monohydroxyalkyl radical or a C₂-C₆ polyhydroxyalkyl radical and R₁₂ is chosen from a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical.
- 104. (New) The composition of claim 101, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 1 and R₁₃ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl radical, a (C₁-C₆)alkylcarbonyl radical, an amido radical, a (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carbamylalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical; R₁₁ is chosen from a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a C₁-C₆ alkylcarbonyl radical, an amino radical, an amino radical which is mono- or di- substituted

- with a (C_1-C_6) alkyl, (C_1-C_6) alkylcarbonyl, amido or (C_1-C_6) alkylsulphonyl radical; and R_{12} is chosen from a C_1-C_6 alkyl radical, a C_1-C_6 monohydroxyalkyl radical, a C_2-C_6 polyhydroxyalkyl radical, a tri (C_1-C_6) alkylsilane (C_1-C_6) alkyl radical, a (C_1-C_6) alkoxy (C_1-C_6) alkyl radical, a C_1-C_6 carbamylalkyl radical.
- 105. (New) The composition of claim 101, wherein the cationic tertiary paraphenylenediamine is such that R_{11} , R_{12} and R_{13} are alkyl radicals which may be substituted.
- 106. (New) The composition of claim 31, wherein the cationic tertiary para-phenylenediamine is such that the radical R_2 is the radical of formula -XP(O)(O-) OCH₂CH₂N⁺(CH₃)₃ where X represents an oxygen atom or a radical -NR₁₄, R₁₄ representing a hydrogen, a C₁-C₄ alkyl radical or a hydroxyalkyl radical.
- 107. (New) The composition of claim 31, wherein the cationic tertiary para-phenylenediamine is such that the radical R₂ is a guanidine radical of formula –X-C=NR₈-NR₉R₁₀, X represents an oxygen atom or a radical –NR₁₁, R₈, R₉, R₁₀ and R₁₁ representing a hydrogen, a C₁-C₄ alkyl radical or a hydroxyalkyl radical.
- 108. (New) The composition of claim 31, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride,
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethyl-guanidinium chloride
 - N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammonium-hexyl)dimethylammonium dichloride

- [1-(4-Aminophenyl)pyrrolidin-3-yl]oxophosphorylcholine
- {2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
- 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
- 3-{3-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-ium chloride
- 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
- 3-{3-[1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethyammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
- N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
- N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
- 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyl-dimethylammonium dichloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]oxophosphorylcholine
- {2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
- 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
- 3-{3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]-propyl}1-methyl-3H-imidazol-1-um chloride

- 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
- [1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- 3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- 3-{3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
- [1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- 3-[1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide,
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate

- [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-Aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 109. (New) The composition of claim 31, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl](2-hydroxyethyl)dimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
 - N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride

- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanyl-propyl)-3H-imidazol-1-ium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- [1-(4-Aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide

- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 110. (New) The composition of claim 31, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyl)dimethylammonium dichloride
 - 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
 - 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
 - [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
 - [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
 - [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide
 - [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
 - [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
 - [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide

- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 111. (New) The composition of claim 31, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride.
- 112. (New) The composition of claim 31, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride, and
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride.
- 113. (New) The composition of claim 40, wherein the cationic tertiary para-phenylenediamine is such that n is equal to 0.
- 114. (New) The composition of claim 40, wherein the cationic tertiary para-phenylenediamine is such that n is equal to 1 and R_1 is chosen from the group consisting of a halogen atom; a saturated or unsaturated, aliphatic or alicylic, C_1 - C_6 hydrocarbon chain; it being possible for one or more carbon atoms to be replaced by an oxygen, nitrogen, silicon or sulphur atom, or by an SO_2 group, the radical R_1 not containing a peroxide bond, or diazo, nitro or nitroso radicals.

- 115. (New) The composition of claim 40, wherein the cationic tertiary para-phenylenediamine is such that R_1 is chosen from chlorine, bromine, C_1 - C_4 alkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 aminoalkyl, C_1 - C_4 alkoxy or C_1 - C_4 hydroxyalkoxy radicals.
- 116. (New) The composition of claim 115, wherein the cationic tertiary paraphenylenediamine is such that R₁ is chosen from a methyl, hydroxymethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, methoxy, isopropyloxy or 2-hydroxyethoxy radical.
- 117. (New) The composition of claim 40, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents the onium radical Z corresponding to formula (II)

$$\begin{array}{c|c}
 & R4 \\
 & R5 \\
 & R6 \\
 & Y
\end{array}$$
(II)

in which

- D is a single bond of a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals and which may carry one or more ketone functional groups;
- R₄, R₅ and R₆, taken separately, represent a C₁-C₁₅ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ amidoalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical in which the amine is mono- or disubstituted with a C₁-C₄ alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; or
- R₄, R₅ and R₆ together, in pairs, form, with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated carbon ring which may contain one or more heteroatoms, it being possible for the cationic ring to be substituted with a

halogen atom, a hydroxyl radical, a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxy-alkyl radical, a C_1 - C_6 alkoxy radical, a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical, an amido radical, a carboxyl radical, a (C_1 - C_6)alkylcarbonyl radical, a thio (-SH) radical, a C_1 - C_6 thioalkyl (-R-SH) radical, a (C_1 - C_6)alkylthio radical, an amino radical, an amino radical which is mono- or di-substituted with a (C_1 - C_6)alkyl, (C_1 - C_6)alkylcarbonyl, amido or (C_1 - C_6)alkylsulphonyl radical;

R₇ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphinyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; an N-(C₁-C₆)alkyl radical;

x is 0 or 1,

when x = 0, then the linking arm is attached to the nitrogen atom carrying the radicals R_4 to R_6 ;

when x = 1, then two of the radicals R_4 to R_6 form, together with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated ring and D is linked to the carbon atom of the saturated ring;

Y is a counter-ion.

118. (New) The composition of claim 117, wherein the cationic tertiary paraphenylenediamine is such that R_2 corresponds to formula II in which x is equal to 0 and R_4 , R_5 and R_6 separately are preferably chosen from a C_1 - C_6 alkyl radical, a C_1 - C_4 monohydroxyalkyl radical, a C_2 - C_4 polyhydroxyalkyl radical, a $(C_1$ - $C_6)$ alkoxy(C_1 - C_4)alkyl radical, a C_1 - C_6 amidoalkyl radical, a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical, or R_4 with R_5 form together an

azetidine ring, a pyrrolidine, piperidine, piperazine or morpholine ring, R_6 being chosen in this case from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 aminoalkyl radical, an aminoalkyl radical which is mono- or di-substituted with a $(C_1$ - C_6)alkyl radical, a $(C_1$ - C_6)alkylcarbonyl, amido or $(C_1$ - C_6)alkylsulphonyl radical; a C_1 - C_6 carbamylalkyl radical; a tri $(C_1$ - C_6)alkylsilane $(C_1$ - C_6)alkyl radical; a $(C_1$ - C_6)alkyl carboxyl $(C_1$ - C_6)alkyl radical; a $(C_1$ - C_6)alkyl radical; a $(C_1$ - C_6)alkyl radical.

- (New) The composition of claim 117, wherein the cationic tertiary para-119. phenylenediamine is such that R2 corresponds to formula II in which x is equal to 1 and R7 is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C1-C6 aminoalkyl radical, a C1-C6 aminoalkyl radical whose amine is mono- or di-substited with a (C_1-C_6) alkyl, (C_1-C_6) alkylcarbonyl, amido or a (C_1-C_6) alkylsulphonyl radical; a C_1 - C_6 carbamylalkyl radical, a tri $(C_1$ - C_6)alkylsilane $(C_1$ - C_6)alkyl radical; a $(C_1$ -C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical; R₄ with R₅ together form an azetidine, pyrrolidine, piperidine, piperazine or morpholine ring, R₆ being chosen in this case from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyl alkyl radical; a C₁-C₆ aminoalkyl radical; a C1-C6 aminoalkyl radical whose amine is mono- or di-substituted with a (C_1-C_6) alkyl, (C_1-C_6) alkylcarbonyl, amido or (C_1-C_6) alkylsulphonyl radical; a C_1-C_6 carbamylalkyl radical; a tri (C_1-C_6) alkylsilane (C_1-C_6) alkyl radical; a (C_1-C_6) alkylcarboxy (C_1-C_6) alkylcarboxy C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical.
- 120. (New) The composition of claim 117, wherein the cationic tertiary paraphenylenediamine is such that D is a single bond or an alkylene chain which may be substituted.
- 121. (New) The composition of claim 117, wherein the cationic tertiary paraphenylenediamine is such that R_2 is a trialkylammonium radical.
- 122. (New) The composition of claim 40, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents the onium radical Z corresponding to formula III

$$-D \xrightarrow{(R_{10})_{x}} N \xrightarrow{E} G (R_{9})_{o}$$

$$\downarrow L \xrightarrow{J} (R_{8})_{q}$$

(III)

in which

D is a single bond or a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals, and which may carry one or more ketone functional groups;

the vertices E, G, J, L, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a pyrrole, pyrazole, imidazole, triazole, oxazole, isooxazole, thiazole, isothiazole ring,

q is an integer between 0 and 4 inclusive;

is an integer between 0 and 3 inclusive;

q+o is an integer between 0 and 4;

the radicals R₈, which are identical or different, represent a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a C₁-C₆ alkylcarbonyl radical, a thio radical, a C₁-C₆ thioalkyl radical, a (C₁-C₆)alkylthio radical, an amino radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆

monohydroxyalkyl radical or a C_2 - C_6 polyhydroxyalkyl radical; it being understood that the radicals R_8 are carried by a carbon atom,

the radicals R₉, which are identical or different, represent a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, a benzyl radical; it being understood that the radicals R₉ are carried by a nitrogen,

R₁₀ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a N-(C₁-C₆)alkyl radical; a N-(C₁-C₆)alkyl radical;

x is 0 or 1

Y is a counter-ion.

when x = 0, the linking arm D is attached to the nitrogen atom, when x = 1, the linking arm D is attached to one of the vertices E, G, J or L,

- 123. (New) The composition of claim 122, wherein the cationic tertiary paraphenylenediamine is such that the vertices E, G, J and L form an imidazole ring.
- 124. (New) The composition of claim 122, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 0, D is a single bond or an alkylene chain which may be substituted.
- 125. (New) The composition of claim 40, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents an onium radical Z corresponding to formula IV

$$-D \xrightarrow{(R_{13})_x} \underbrace{K}_{M} \xrightarrow{E} \underbrace{G}_{(R_{12})_p} (R_{11})_m$$

(IV)

in which:

D is a single bond or a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from an oxygen, sulphur or nitrogen atom, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals, and which may carry one or more ketone functional groups;

the vertices E, G, J, L and M, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a ring chosen from the pyridine, pyrimidine, pyrazine, triazine and pyridazine rings;

p is an integer between 0 and 3 inclusive;

m is an integer between 0 and 5 inclusive;

p+m is an integer between 0 and 5;

the radicals R₁₁, which are identical or different, represent a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a C₁-C₆ alkylcarbonyl radical, a thio radical, a C₁-C₆ thioalkyl radical, a (C₁-C₆)alkylthio radical, an amino radical which is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆

monohydroxyalkyl radical or a C_2 - C_6 polyhydroxyalkyl radical; it being understood that the radicals R_{11} are carried by a carbon atom,

the radicals R₁₂, which are identical or different, represent a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, a benzyl radical; it being understood that the radicals R₁₂ are carried by a nitrogen,

R₁₃ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a N-(C₁-C₆)alkyl radical; a N-(C₁-C₆)alkyl radical;

x is 0 or 1

when x = 0, the linking arm D is attached to the nitrogen atom, when x = 1, the linking arm D is attached to one of the vertices E, G, J, L or M, Y is a counter-ion.

- 126. (New) The composition of claim 125, wherein the vertices E, G, J, L and M form, with the nitrogen of the ring, a ring chosen from pyridine and pyrimidine rings.
- 127. (New) The composition of claim 125, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 0 and R_{11} is chosen from a hydroxyl radical, a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxyalkyl radical, a C_1 - C_6 alkoxy radical, a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical, an amido radical, a C_1 - C_6 alkylcarbonyl radical, an amino radical, an amino radical which is mono- or di-substituted with a (C_1 - C_6)alkyl, a (C_1 - C_6)alkylcarbonyl, amido or (C_1 - C_6)alkylsulphonyl radical; a C_1 - C_6

monohydroxyalkyl radical or a C_2 - C_6 polyhydroxyalkyl radical and R_{12} is chosen from a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxyalkyl radical, a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical, a (C_1 - C_6)alkoxy(C_1 - C_6)alkyl radical, a C_1 - C_6 carbamylalkyl radical.

- 128. (New) The composition of claim 125, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 1 and R_{13} is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 aminoalkyl radical, a C_1 - C_6 aminoalkyl radical whose amine is mono- or di-substituted with a $(C_1$ - C_6)alkyl radical, a $(C_1$ - C_6)alkylcarbonyl radical, an amido radical, a $(C_1$ - C_6)alkylsulphonyl radical; a C_1 - C_6 carbamylalkyl radical; a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical; a $(C_1$ - C_6)alkylcarbonyl(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkylcarbamyl(C_1 - C_6)alkyl radical; C_1 - C_6 alkyl radical, a C_1 - C_6 alkoxy radical, a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxyalkyl radical, a C_1 - C_6 alkylcarbonyl radical, an amino radical which is mono- or di-substituted with a $(C_1$ - C_6)alkyl, (C_1 - C_6)alkylcarbonyl, amido or (C_1 - C_6)alkylsulphonyl radical; and R_{12} is chosen from a C_1 - C_6 alkyl radical, a C_1 - C_6 alkyl radical.
- 129. (New) The composition of claim 125, wherein the cationic tertiary paraphenylenediamine is such that R_{11} , R_{12} and R_{13} are alkyl radicals which may be substituted.
- 130. (New) The composition of claim 40, wherein the cationic tertiary para-phenylenediamine is such that the radical R_2 is the radical of formula -XP(O)(O-) OCH₂CH₂N⁺(CH₃)₃ where X represents an oxygen atom or a radical -NR₁₄, R₁₄ representing a hydrogen, a C₁-C₄ alkyl radical or a hydroxyalkyl radical.
- 131. (New) The composition of claim 40, wherein the cationic tertiary para-phenylenediamine is such that the radical R₂ is a guanidine radical of formula –X-C=NR₈-NR₉R₁₀, X represents an oxygen atom or a radical –NR₁₁, R₈, R₉, R₁₀ and R₁₁ representing a hydrogen, a C₁-C₄ alkyl radical or a hydroxyalkyl radical.

- 132. (New) The composition of claim 40, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride,
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethyl-guanidinium chloride
 - N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammonium-hexyl)dimethylammonium dichloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]oxophosphorylcholine
 - {2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
 - 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
 - 3-{3-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-ium chloride
 - 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
 - 3-{3-[1-(5-trimethylsilanylethyl-4-Amino-3- trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
 - [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethyammonium chloride
 - [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
 - N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride

- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyl-dimethylammonium dichloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]oxophosphorylcholine
- {2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
- 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
- 3-{3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]-propyl}1-methyl-3H-imidazol-1-um chloride
- 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
- [1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- 3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- 3-{3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
- [1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- 3-[1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride

- 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide,
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-Aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 133. (New) The composition of claim 40, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride

- N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- [1-(4-Aminophenyl)pyrrolidin-3-yl](2-hydroxyethyl)dimethylammonium chloride
- [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
- N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
- N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
- 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanyl-propyl)-3H-imidazol-1-ium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide

- [1-(4-Aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 134. (New) The composition of claim 40, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyl)dimethylammonium dichloride
 - 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride

- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 135. (New) The composition of claim 40, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride.

- 136. (New) The composition of claim 40, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride, and
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride.
- 137. (New) The composition of claim 41, wherein the cationic tertiary para-phenylenediamine is such that n is equal to 0.
- 138. (New) The composition of claim 41, wherein the cationic tertiary para-phenylenediamine is such that n is equal to 1 and R_1 is chosen from the group consisting of a halogen atom; a saturated or unsaturated, aliphatic or alicylic, C_1 - C_6 hydrocarbon chain; it being possible for one or more carbon atoms to be replaced by an oxygen, nitrogen, silicon or sulphur atom, or by an SO_2 group, the radical R_1 not containing a peroxide bond, or diazo, nitro or nitroso radicals.
- 139. (New) The composition of claim 41, wherein the cationic tertiary para-phenylenediamine is such that R_1 is chosen from chlorine, bromine, C_1 - C_4 alkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 aminoalkyl, C_1 - C_4 alkoxy or C_1 - C_4 hydroxyalkoxy radicals.
- 140. (New) The composition of claim 139, wherein the cationic tertiary paraphenylenediamine is such that R₁ is chosen from a methyl, hydroxymethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, methoxy, isopropyloxy or 2-hydroxyethoxy radical.
- 141. (New) The composition of claim 41, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents the onium radical Z corresponding to formula (II)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in which

- D is a single bond of a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals and which may carry one or more ketone functional groups;
- R₄, R₅ and R₆, taken separately, represent a C₁-C₁₅ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ amidoalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical in which the amine is mono- or disubstituted with a C₁-C₄ alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; or
- R₄, R₅ and R₆ together, in pairs, form, with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated carbon ring which may contain one or more heteroatoms, it being possible for the cationic ring to be substituted with a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxy-alkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a (C₁-C₆)alkylcarbonyl radical, a thio (-SH) radical, a C₁-C₆ thioalkyl (-R-SH) radical, a (C₁-C₆)alkylthio radical, an amino radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical;
- R₇ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphinyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a

 (C_1-C_6) alkylcarbonyl (C_1-C_6) alkyl radical; an N- (C_1-C_6) alkylcarbamyl (C_1-C_6) alkyl radical; an N- (C_1-C_6) alkylsulphonamido (C_1-C_6) alkyl radical;

x is 0 or 1,

- when x = 0, then the linking arm is attached to the nitrogen atom carrying the radicals R_4 to R_6 ;
- when x = 1, then two of the radicals R_4 to R_6 form, together with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated ring and D is linked to the carbon atom of the saturated ring;

Y is a counter-ion.

- 142. (New) The composition of claim 141, wherein the cationic tertiary paraphenylenediamine is such that R₂ corresponds to formula II in which x is equal to 0 and R₄, R₅ and R₆ separately are preferably chosen from a C₁-C₆ alkyl radical, a C₁-C₄ monohydroxyalkyl radical, a C₂-C₄ polyhydroxyalkyl radical, a (C₁-C₆)alkoxy(C₁-C₄)alkyl radical, a C₁-C₆ amidoalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, or R₄ with R₅ form together an azetidine ring, a pyrrolidine, piperidine, piperazine or morpholine ring, R₆ being chosen in this case from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical, an aminoalkyl radical which is mono- or di-substituted with a (C₁-C₆)alkyl radical, a (C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl carboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical.
- 143. (New) The composition of claim 141, wherein the cationic tertiary paraphenylenediamine is such that R_2 corresponds to formula II in which x is equal to 1 and R_7 is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 aminoalkyl radical, a C_1 - C_6 aminoalkyl radical whose amine is mono- or di-substited with a $(C_1$ - C_6)alkyl, $(C_1$ - C_6)alkylcarbonyl, amido or a $(C_1$ - C_6)alkylsulphonyl radical; a C_1 - C_6 carbamylalkyl radical, a tri $(C_1$ - C_6)alkylsilane $(C_1$ - C_6)alkyl radical; a $(C_1$ - C_6)alkyl radical; $(C_1$ - C_6

piperidine, piperazine or morpholine ring, R_6 being chosen in this case from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyl alkyl radical; a C_1 - C_6 aminoalkyl radical; a C_1 - C_6 aminoalkyl radical whose amine is mono- or di-substituted with a $(C_1$ - C_6)alkyl, $(C_1$ - C_6)alkylcarbonyl, amido or $(C_1$ - C_6)alkylsulphonyl radical; a C_1 - C_6 carbamylalkyl radical; a tri $(C_1$ - C_6)alkylsilane $(C_1$ - C_6)alkyl radical; a $(C_1$ - C_6)alkylcarbonyl $(C_1$ - C_6)alkyl radical; a $(C_1$ - C_6)alkylcarbonyl $(C_1$ - C_6)alkyl radical.

- 144. (New) The composition of claim 141, wherein the cationic tertiary paraphenylenediamine is such that D is a single bond or an alkylene chain which may be substituted.
- 145. (New) The composition of claim 141, wherein the cationic tertiary paraphenylenediamine is such that R_2 is a trialkylammonium radical.
- 146. (New) The composition of claim 41, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents the onium radical Z corresponding to formula III

(III)

in which

D is a single bond or a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals, and which may carry one or more ketone functional groups;

the vertices E, G, J, L, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a pyrrole, pyrazole, imidazole, triazole, oxazole, isooxazole, thiazole, isothiazole ring,

q is an integer between 0 and 4 inclusive;

is an integer between 0 and 3 inclusive;

q+o is an integer between 0 and 4;

- the radicals R₈, which are identical or different, represent a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a C₁-C₆ alkylcarbonyl radical, a thio radical, a C₁-C₆ thioalkyl radical, a (C₁-C₆)alkylthio radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ monohydroxyalkyl radical or a C₂-C₆ polyhydroxyalkyl radical; it being understood that the radicals R₈ are carried by a carbon atom,
- the radicals R₉, which are identical or different, represent a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, a benzyl radical; it being understood that the radicals R₉ are carried by a nitrogen,
- R₁₀ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-

 C_6)alkylcarbonyl(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkylcarbamyl(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkylsulphonamido(C_1 - C_6)alkyl radical;

x is 0 or 1

when x = 0, the linking arm D is attached to the nitrogen atom, when x = 1, the linking arm D is attached to one of the vertices E, G, J or L,

Y is a counter-ion.

- 147. (New) The composition of claim 146, wherein the cationic tertiary paraphenylenediamine is such that the vertices E, G, J and L form an imidazole ring.
- 148. (New) The composition of claim 146, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 0, D is a single bond or an alkylene chain which may be substituted.
- 149. (New) The composition of claim 41, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents an onium radical Z corresponding to formula IV

$$-D \xrightarrow{(R_{13})_x} N \xrightarrow{E} G^{(R_{12})_p} L Y$$

(IV)

in which:

D is a single bond or a linear or branched C_1 - C_{14} alkylene chain which may contain one or more heteroatoms chosen from an oxygen, sulphur or nitrogen atom, and which

- may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals, and which may carry one or more ketone functional groups;
- the vertices E, G, J, L and M, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a ring chosen from the pyridine, pyrimidine, pyrazine, triazine and pyridazine rings;

p is an integer between 0 and 3 inclusive; m is an integer between 0 and 5 inclusive; p+m is an integer between 0 and 5;

- the radicals R₁₁, which are identical or different, represent a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a C₁-C₆ alkylcarbonyl radical, a thio radical, a C₁-C₆ thioalkyl radical, a (C₁-C₆)alkylthio radical, an amino radical which is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ monohydroxyalkyl radical or a C₂-C₆ polyhydroxyalkyl radical; it being understood that the radicals R₁₁ are carried by a carbon atom,
- the radicals R₁₂, which are identical or different, represent a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, a benzyl radical; it being understood that the radicals R₁₂ are carried by a nitrogen,
- R₁₃ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-

 C_6)alkyl radical; a (C_1 - C_6)alkylsulphonyl(C_1 - C_6)alkyl radical; a (C_1 - C_6)alkylcarbonyl(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkylsulphonamido(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkylsulphonamido(C_1 - C_6)alkyl radical;

x is 0 or 1

when x = 0, the linking arm D is attached to the nitrogen atom, when x = 1, the linking arm D is attached to one of the vertices E, G, J, L or M, Y is a counter-ion.

- 150. (New) The composition of claim 149, wherein the vertices E, G, J, L and M form, with the nitrogen of the ring, a ring chosen from pyridine and pyrimidine rings.
- 151. (New) The composition of claim 149, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 0 and R₁₁ is chosen from a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a C₁-C₆ alkylcarbonyl radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, a (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ monohydroxyalkyl radical or a C₂-C₆ polyhydroxyalkyl radical and R₁₂ is chosen from a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical.
- 152. (New) The composition of claim 149, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 1 and R₁₃ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl radical, a (C₁-C₆)alkylcarbonyl radical, an amido radical, a (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carbamylalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical; R₁₁ is chosen from a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a C₁-C₆ alkylcarbonyl radical, an amino radical, an amino radical which is mono- or di-substituted

- with a (C_1-C_6) alkyl, (C_1-C_6) alkylcarbonyl, amido or (C_1-C_6) alkylsulphonyl radical; and R_{12} is chosen from a C_1-C_6 alkyl radical, a C_1-C_6 monohydroxyalkyl radical, a C_2-C_6 polyhydroxyalkyl radical, a tri (C_1-C_6) alkylsilane (C_1-C_6) alkyl radical, a (C_1-C_6) alkoxy (C_1-C_6) alkyl radical, a C_1-C_6 carbamylalkyl radical.
- 153. (New) The composition of claim 149, wherein the cationic tertiary paraphenylenediamine is such that R_{11} , R_{12} and R_{13} are alkyl radicals which may be substituted.
- 154. (New) The composition of claim 41, wherein the cationic tertiary para-phenylenediamine is such that the radical R_2 is the radical of formula -XP(O)(O-) OCH₂CH₂N⁺(CH₃)₃ where X represents an oxygen atom or a radical –NR₁₄, R₁₄ representing a hydrogen, a C₁-C₄ alkyl radical or a hydroxyalkyl radical.
- 155. (New) The composition of claim 41, wherein the cationic tertiary para-phenylenediamine is such that the radical R_2 is a guanidine radical of formula -X-C=NR₈-NR₉R₁₀, X represents an oxygen atom or a radical $-NR_{11}$, R_8 , R_9 , R_{10} and R_{11} representing a hydrogen, a C_1 - C_4 alkyl radical or a hydroxyalkyl radical.
- 156. (New) The composition of claim 41, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride,
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethyl-guanidinium chloride
 - N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammonium-hexyl)dimethylammonium dichloride

- [1-(4-Aminophenyl)pyrrolidin-3-yl]oxophosphorylcholine
- {2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
- 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
- 3-{3-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-ium chloride
- 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
- 3-{3-[1-(5-trimethylsilanylethyl-4-Amino-3- trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethyammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride

Ĺ

- N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
- N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
- 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyl-dimethylammonium dichloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]oxophosphorylcholine
- {2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl} trimethylammonium chloride
- 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
- 3-{3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]-propyl}1-methyl-3H-imidazol-1um chloride

- 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
- [1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- 3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- 3-{3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
- [1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- 3-[1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide,
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate

- [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-Aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 157. (New) The composition of claim 41, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl](2-hydroxyethyl)dimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
 - N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride

- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanyl-propyl)-3H-imidazol-1-ium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- [1-(4-Aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide

- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 158. (New) The composition of claim 41, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyl)dimethylammonium dichloride
 - 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
 - 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
 - [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
 - [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
 - [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide
 - [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
 - [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
 - [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide

- [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 159. (New) The composition of claim 41, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride.
- 160. (New) The composition of claim 41, wherein the cationic tertiary para-phenylene is chosen from the group consisting of:
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride, and
 - [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride.