

Universidade Federal do Paraná

Bacharelado em Ciência da Computação

Disciplina: Processamento de Imagem [CI1394]

Relatório referente a Laboratório 3: Filtragem de Imagem

João Pedro Vicente Ramalho - GRR20224169

Abril 2024

1. Introdução

O presente relatório descreve os experimentos realizados para testar e comparar diferentes tipos de filtros para a remoção de ruído "salt and pepper". O objetivo foi avaliar a eficácia de diferentes técnicas de filtragem na restauração de imagens corrompidas por esse tipo de ruído.

2. Metodologia

2.1 Preparação de Dados

Foi utilizada uma imagem binária de teste fornecida para realizar os experimentos. Ela foi submetida à adição de ruídos do tipo "Salt and Pepper" para auxiliar na mensuração da qualidade das técnicas de remoção de filtro.

2.2 Filtro de Dados

Os seguintes filtros foram testados para remover os ruídos das imagens:

- 1. Filtro de Média (cvBlur)
- 2. Filtro Gaussiano (cvGaussianBlur)
- 3. Filtro de Mediana (cvMedianBlur)
- 4. Filtro de Empilhamento (Stacking)

3. Avaliação de Desempenho

Para avaliar o desempenho dos filtros, utilizamos a métrica Peak Signal-to-Noise Ratio (PSNR), implementada na biblioteca OpenCV (cv2.PSNR). Quanto maior o valor do PSNR, mais similares são as imagens, indicando uma melhor restauração da imagem original.

4. Resultados

A seguir, são apresentados os resultados dos experimentos para cada filtro testado, com base nos diferentes níveis de ruído.

Número de margens

5. Discussão

- 1. Kernel de maiores dimensões desempenham um pior desempenho, independente da quantidade de ruído aplicada à imagem. Isso ocorre em razão do fato que quanto maior um kernel, maior é a área ocupada por ele e consequentemente há uma maior perda de detalhes finos da imagem, pois a informação contida nos pixels individuais é diluída em uma área maior.
- A técnica de filtragem Gaussiana demonstrou ser mais eficaz para imagens com baixos níveis de ruído (0.01 e 0.02). No entanto, à medida que o nível de ruído aumentava, a técnica da mediana mostrou-se superior.
- 3. Quanto mais imagens forem empilhadas para a aplicação do Stacking, melhor será o resultado, pois essa técnica consiste na média dos pixels no eixo z (altura da pilha de imagens ruidosas) e, estatisticamente, o ruído tende a ser reduzido à medida que mais amostras são consideradas. Isso aumenta a probabilidade de que as características verdadeiras da imagem sejam preservadas, enquanto os ruídos são atenuados.
- 4. A partir do item anterior temos que quanto mais ruidosa for uma imagem, mais imagens são necessárias para que a técnica de Stacking retorne uma imagem satisfatória.

6. Conclusão

Com base nos resultados e discussões apresentados, concluímos que os melhores filtros para os cinco níveis de ruídos foram o Stacking e a Mediana.