# Sequential Decision-Making Under Uncertainty: Solving MDPs

Siddharth Srivastava, Ph.D. Assistant Professor Arizona State University



## Recall: MDPs

#### S set of states

- E.g., At(1,1)

#### A set of actions

#### T transition model

$$-P(s'|s,a) = T(s,a,s')$$





#### $R: S \to \mathbb{R}$ reward, or utility function

Reward collected when timestep completes (agent is ready to act)

Agent can "drift", end up in unintended states

Solutions take the form of policies:  $\pi: S \to A$ 

## Recall: Useful Equations for MDPs

#### Value of a state s under a policy $\pi$

- $-V^{\pi}(s)$  = expected utility starting in s and following  $\pi$
- $-Exp_{\pi}[\sum_{t}R(t)]$

#### **Q-function:** value of (s, a) pair

 $-Q^{\pi}(s,a) =$  expected utility when executing a in s, then following  $\pi$ 

$$=\sum_{s'}P(s'|s,a)\left[R(s)+\gamma V^{\pi}(s')\right],$$

#### Optimal policy: $\pi^*$

$$-\pi^*(s) = \operatorname{argmax}_{\pi} V^{\pi}(s)$$

#### **Convenient:**

– Infinite horizon + discounting  $\rightarrow \pi^*$  independent of time, starting state!



## **Computing Optimal Policies**

#### Q function for the optimal policy:

$$Q^*(s,a) = \sum_{s'} P(s'|s,a) [R(s) + \gamma V^*(s')]$$

V function for the optimal policy:

$$V^*(s) = \max_{a} Q^*(s, a)$$

Combining the two:

$$V^{*}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s) + \gamma V^{*}(s')] \leftarrow$$

This is Bellman's Equation

## **Example**

## A, D: terminal states

- Also called "trap" states
- Actions have no effects in them; zero reward after the first time they are reached



## Transition probabilities:

- 0.8: move according to action executed,
- 0.2: stay;
- $\gamma = 0.9$

## **Solving MDPs: Stochastic Transitions**



A, D: terminal states
Transition probability: 0.8 move according to action executed, 0.2 stay



## **Solving MDPs: Stochastic Transitions**



A, D: terminal states

Transition probability: 0.8 move according to action executed, 0.2 stay



MDP Search Tree

## How Would We Compute V\*?



- Bellman's equation is recursive
- Tree is of unbounded depth, repetitive

Solutions: dynamic programming, iterative computation

Transition probability: 0.8 move according to action executed, 0.2 stay;  $\gamma = 0.9$ 

A B C D

10 | • | 1



$$V_1(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s)]$$

Transition probability: 0.8 move according to action executed, 0.2 stay;  $\gamma = 0.9$ 

A B C D

10 | • | 1



$$V_2$$
 10 7.2 .72 1  $V_2$  10 0 0 1  $V_3$   $V_4$  0 0 0 0 0

$$V_1(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s)]$$

Transition probability: 0.8 move according to action executed, 0.2 stay;  $\gamma = 0.9$ 

A B C D

10 | • | 1





Transition probability: 0.8 move according to action executed, 0.2 stay;  $\gamma = 0.9$ 





$$V_{3}(s) = \max\{\sum_{s'} P(s'|s, \leftarrow)[R(s) + \gamma V_{2}(s')], \\ \sum_{s'} P(s'|s, \rightarrow)[R(s) + \gamma V_{2}(s')]\}$$

 $V_i(s)$  gives the best possible expected total utility of starting from s, and executing i actions

"Value with i steps to go"

### Value Iteration

#### The algorithm we just used is called value iteration

Incrementally propagates the effects of R across the state space

Start with 
$$V_0(s) = 0$$
 no time steps left

$$V_{k+1}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s') + \gamma V_{k}(s')]$$

#### Repeat until convergence

- (memoize  $V_k(s)$  when it is first encountered)

#### When does this work?

– Theorem: Value iteration converges to the unique solution when  $\gamma < 1$ 

## Computing Actions from the Value Function

Suppose we have the optimal values

How should the agent act?

We could use V\* to compute best action (policy extraction):

$$-\pi^*(s) = \operatorname{argmax}_a(\sum_{s'} P(s'|s,a)[R(s) + \gamma V^*(s')]$$

More efficient: store Q\*

$$\pi^*(s) = \operatorname{argmax}_{a} \{Q^*(s, a) \}$$

## **Limitations of Value Iteration**

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s) + \gamma V_k(s')]$$

 $O(S^2A)$  time per iteration

Policy may have converged even when values haven't

Policy iteration is another approach for computing  $V^*$  and  $\pi^*$ that addresses these issues

## **Policy Iteration**

## Repeat steps until policy converges:

- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: lookahead one step (greedy) using converged (but not optimal!) values of subsequent states



#### **Computes optimal policies**

Can converge (much) faster under some conditions

## **Policy Iteration in Practice**

# Policy evaluation step: Compute a policy's value function using VI

$$-V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s) + \gamma V_k(s')]$$

– Does this make sense?

## **Policy Iteration: Details**

#### Repeat until convergence:

Policy Evaluation: First fix a policy, find its value function using VI

$$V_{k+1}(s) = \sum_{s'} P(s'|s, \pi_i(s)) [R(s) + \gamma V_k^{\pi_i}(s')]$$

This is easier than value iteration for computing the optimal V(why?)

Policy Improvement: Then, improve the policy using a greedy update:

$$\pi_{i+1}(s) = argmax_a \sum_{s'} P(s'|s,a) [R(s) + \gamma V^{\pi_i}(s')]$$

This is looks ahead a single step using  $V^{\pi_i}$ 

– Go back to policy evaluation for  $\pi_{i+1}$ .