东南大学学生会 Students' Union of Southeast University

08-09-2高数AB期末试卷

一. 填空题(本题共9小题,每小题4分,满分36分)

2.
$$\exists \exists \lim_{t \to 0} \frac{\int_0^{t^2} x \arctan(ax) dx}{t^6} = 1$$
, $\exists \exists a = 1$;

3. 曲线
$$y = x^3 - 6x^2 + 3x + 5$$
 的拐点是______;

4. 曲线
$$y = \frac{x^3}{3(2+x)^2}$$
 的斜渐近线的方程是______;

5. 二阶常系数线性非齐次微分方程
$$y'' + y' - 6y = 5e^{2x}$$
 的特解形式是 $y^* = _____;$

6. 设
$$\theta$$
 是 常 数, 若 对 $\forall x > 0$, 有 $\int_0^x \ln t dt = x \ln \left(\frac{\theta x}{2} \right)$, 则 $\theta = \underline{\hspace{1cm}}$;

7.
$$\int_0^{2\pi} \sin^4 x dx =$$
_____;

8. 设
$$f(x)$$
 是连续函数,且 $f(x) = \sin x + \int_0^{\pi} f(x) dx$,则 $\int_0^{\pi} f(x) dx =$ ______;

9.
$$\% f(x) = \int_{1}^{x} \cos t^{2} dt$$
, $\iiint_{0}^{1} f(x) dx = \underline{ }$.

二. 按要求计算下列各题(本题共5小题,每小题6分,满分30分)

$$10. \lim_{x\to 0} \frac{\int_0^x \frac{\sin t^3}{t} dt}{x(1-\cos x)}$$

11.
$$\int_0^2 \left(x^2 \sqrt{4 - x^2} + (x - 1)^4 \sin(x - 1) \right) dx$$

东南大学学生会 Students' Union of Southeast University

12. 已知
$$f(x)$$
 的一个原函数为 $(1+\sin x)\ln x$,求 $\int xf'(x)dx$

13. 设
$$f(x) = 2 + \int_0^x \frac{x + \sin t}{1 + t^2} dt$$
, $p(x) = ax^2 + bx + c$, 求常数 $a \cdot b \cdot c$, 使得 $p(0) = f(0)$, $p'(0) = f'(0)$, $p''(0) = f''(0)$ 。

14.
$$\int_0^{\frac{\pi}{4}} \sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx$$

三(15).(本题满分 8 分)求微分方程 $y'' + y = \sin x + 2e^x$ 满足初始条件 $y\big|_{x=0} = 1$, $y'\big|_{x=0} = 0$ 的特解.

四(16).(本题满分 7 分)设函数 f 在区间 $[0, +\infty)$ 上连续,且恒取正值,若对 $\forall x \in (0, +\infty)$,f 在 [0, x] 上的积分(平)均值等于 f(0) 与 f(x) 的几何平均值,试求 f(x) 的表达式.

五(17).(本题满分 7 分) 在 xOy 平面上将连接原点 O(0,0) 和点 A(1,0) 的线段 OA (即区间 [0,1])作 n 等分,分点记作 $P_k\left(\frac{k}{n},0\right)$, $k=1,2,\cdots,n-1$,过 P_k 作抛物线 $y=x^2$ 切

线,切点为 Q_k ,**(1)** 设三角形 $\Delta P_k Q_k A$ 的面积为 S_k ,求 S_k ;**(2)** 求极限 $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n-1} S_k$.

六(18).(本题满分 6 分)试比较 $\sqrt{2}-1$ 与 $\ln\left(1+\sqrt{2}\right)$ 的大小,并给出证明.(注:若通过比较这两个数的近似值确定大小关系,则不得分)

七(19).(本题满分 6 分)设 f(x) 在区间[0,2] 上连续可导,f(0) = f(2) = 0,求证:

$$\left| \int_0^2 f(x) dx \right| \le \max_{0 \le x \le 2} \left| f'(x) \right|$$