3-line to 8-line Decoder

8-line to 1-line MUX:

SUMMARY: Y = (DOMO + D1M1 + D2M2 + ... + D7M7)E

if E = 0 : Y = DoMo + D1M1 + D2M2 + ... + D7M7

and xyz = 010 then Y = D2 ENABLE

if E = 1: then Y = 0 DISABLE

Y=(D0*m0+D1*m1+D2*m2+...+D7*m7)*E)

ROM: Stores a truth table

ROM NMOS Decoder

ROM NMOS Encoder

EPROM Encoder w/ Floating Gates

2 x 8 PLD AND Array Examples

RAM NMOS Encoder

RAM Chip Addressing

Straight Decoding:

2D Decoding:

Clock WaveForm Illustrations

Sequential Logic Circuit Block Diagram

Sequential Logic Circuit Classes

Class A SLC: Z = f(X, Y)

Class B SLC: Z = f(Y)

Class C SLC: Z = Y

State Diagrams and Tables

State Diagram:

State Table:

PS In NS Out
$$\begin{array}{c|cccc}
Y_n & X & Y_{n+1} & Z \\
\hline
a & X_1 & a & Z_1 & No Change \\
a & X_2 & b & Z_2 & Advance to b
\end{array}$$

Important Types of SLCs

Shift Register:

Synchronous Counter:

Ripple Counter:

