Implicit Differentiation and the Chain Rule

The chain rule tells us that:

$$\frac{d}{dx}(f \circ g) = \frac{df}{dg}\frac{dg}{dx}.$$

While implicitly differentiating an expression like $x+y^2$ we use the chain rule as follows:

$$\frac{d}{dx}(y^2) = \frac{d(y^2)}{dy}\frac{dy}{dx} = 2yy'.$$

Why can we treat y as a function of x in this way?

Figure 1: The hyperbola $y^2 - x^2 = 1$.

Consider the equation $y^2 - x^2 = 1$, which describes the hyperbola shown in Figure 1. We cannot write y as a function of x, but if we start with a point (x,y) on the graph and then change its x coordinate by sliding the point along the graph its y coordinate will be constrained to change as well. The change in y is *implied* by the change in x and the constraint $y^2 - x^2 = 1$. Thus, it makes sense to think about $y' = \frac{dy}{dx}$, the rate of change of y with respect to x.

Given that $y^2 - x^2 = 1$:

- a) Use implicit differentiation to find y'.
- b) Check your work by using Figure 1 to estimate the slope of the tangent line to the hyperbola when y = -1 and when x = 1.
- c) Check your work for y > 0 by solving for y and using the direct method to take the derivative.

a. Use Implicit differentiation to find y'.

$$\frac{d}{dx} \left(y^{3} - x^{3} = 1 \right)$$

$$2yy' - 2x = 0$$

$$y' = \frac{2x}{2y}$$

$$y' = \frac{x}{y} = \frac{x}{2\sqrt{x^{2}+1}}$$

b. Check your work by using Figure 1 to estimate the slope of the tongent line to the hyperbola When y=-1 and when X=1

m at
$$y = -1$$
 is 0.
m at $x = 1$ is $\frac{x - 1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$.

c. Check your work for y>o by solving for y and using the direct method to take the derivative.

$$y^{\frac{1}{2}-x} \overset{x}{\overset{1}{=}} 1$$

$$y^{\frac{1}{2}-x} \overset{y^{\frac{1}{2}-x}}{\overset{y^{\frac{1}$$

differentiation.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.