Solution of Ali Math Competition

Shiqi Zhou

LSEC, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

1. problem 1.1

We can buy earphone with another good which is worth 50. Then we should only pay 300-60-5*5=215. For the audio, we should pay 600-5*10-60=490. So, all we should pay is 215+490=705.

2. problem 1.2

- 1) If we buy earphone with another good which is worth 49, we should pay 299-60-x. Then 299-60-x=215-1 which implies x=25.
- 2) 299-60-x+600-60-x=705-1 which implies x=37.5.

3. problem 1.3

1) The profit $t_i = p_i - c_i$, then the expect of profit is $\int_{p_i}^{u_i} \frac{p_i - c_i}{u_i} = \frac{(u_i - p_i)(p_i - c_i)}{u_i}$. It is easy to see that the best price $p_i = \frac{u_i + c_i}{2}$ and the corresponding profit expect is $\frac{(u_i - c_i)^2}{4u_i}$ 2) The expect of profit is $\int_{p_{12} \le t_1 + t_2 \le u_1 + u_2} \frac{p_{12} - c_{12}}{u_1 u_2} dt_1 dt_2 =$

4. problem 3.2

By the assumption of problem, it is easy to see that $HH^T = nI$. Therefore the singular value of H is \sqrt{n} . Let M be the submatrix $a \times b$ of H such that all elements are 1. Then the rank of MM^T is 1 which implies that MM^T has only one nonezero eigenvalue. Sine the sum of all eigenvalues is equal to the trace. Then we can obtain the singular value of M is \sqrt{ab} . By the definition of singular value of H that $\sigma(H) = \max_{\|x\| \le 1, \|y\| \le 1} x^T H y$, we can assert that the singular value of submatrix can not be larger than the singular value of H. Therefore $ab \le n$. This completes the proof.

5. problem 3.3

Since F has finite elements, let $F = \{h_1, h_2, \dots h_k\}, k > 0$ satisfies $h_i^{m_i} = e, m_i \ge 1, 1 \le i \le k$. By choosing any $g \in G$, it is easy to see that

$$(g^{-1}h_ig)^{m_i} = g^{-1}h_i^{m_i}g = e$$

Let $F_g := \{g^{-1}h_ig, 1 \le i \le k\}$, then we have $F_g = F$. Let σ_g be the permutation on F such that $\sigma_g(h_i) = g^{-1}h_ig$. Therefore, we can find integer n, for any $g \in G$, $(\sigma_g)^n$ is a identity permutation which implies $(g^{-n}hg^n) = h$. This completes the proof.