Типовой расчет №3 по математической статистике. Статистические гипотезы

Ким В.Р. Группа М3207 Вариант №5

Теоретическая справка

- Нулевая гипотеза $H_0: \theta = \theta_0$
- Альтернативная гипотеза H_1
 - двусторонняя: $\theta \neq \theta_0$
 - односторонняя $\theta > \theta_0, \theta < \theta_0$
- ullet Ошибка I рода отклонение верной H_0
 - $-P(I)=\alpha$ уровень значимости
 - Ошибка II рода
- ullet Ошибка II рода принятие неверной H_1
 - $-P(II) = \beta$
 - $-1-\beta$ мощность критерия или вероятность правильно отвергнуть H_0 , когда она ложна.

Задача 1. По выборке объема n=36, извлеченной из нормальной генеральной совокупности с известным средним квадратическим отклонением $\sigma=6$, на уровне значимости $\alpha=0,01$ проверяется нулевая гипотеза H_0 : $a=a_0=15$ при конкурирующей гипотезе $H_1: a=a_0\neq 15$.

Найти мощность $(1-\beta)$ двустороннего критерия проверки рассматриваемой гипотезы для $a_1=12$.

Решение:

Ответ:

Задача 2. Из нормальной генеральной совокупности извлечена выборка объема n=17 и по ней найдена исправленная выборочная дисперсия $s^2=0,24$. Требуется при уровне значимости a=0,05 проверить нулевую гипотезу $H_0:\sigma^2=18$, приняв в качестве альтернативной гипотезы $H_1:\sigma^2>0,18$

Решение:

Ответ:

Задача 3. По группировке, полученной в Практической работе №1(часть1), используя критерий χ^2 , проверить при уровнях значимости 0,05 и 0,01 гипотезу о нормальном распределении соответствующего признака взяв в качестве значений параметров нормального распределения их оценки, полученные по сгруппированным данным

Решение:

Ответ:

Задача 4. По выборке объема n=30 найден средний вес x=130г изделий, изготовленных на первом станке; по выборке объема m=40 найден средний вес $\bar{y}=125$ г изделий, изготовленных на втором станке. Генеральные дисперсии известны: D(X)=60г, D(Y)=80г. Требуется при уровне значимости 0,05 проверить нулевую гипотезу $H_0:M(X)=M(Y)$ при конкурирующей гипотезе $H_1:M(X)\neq M(Y)$. Предполагается, что случайные величины XиY распределены нормально и выборки независимы

Решение:

Ответ:

Задача 5. В результате взвешивания 800 стальных шариков получено эмпирическое распределение, приведенное в таблице (в первом столбце указан интервал веса в граммах, во втором – частота, то есть количество шариков, вес которых принадлежит этому интервалу. Требуется при уровне значимости 0,01 проверить гипотезу о том, что вес шариков X распределен равномерно

$X_{i-1} - X_i$	n_i
20.0-20.5	91
20.5 - 21.0	76
21.0 - 21.5	75
21.5 - 22.0	74
22.0 - 22.5	92
22.5 - 23.0	83
23.0 - 23.5	79
23.5 - 24.0	73
24.0 - 24.5	80
24.5 - 25.0	77

Решение:

Ответ: