Linear Models

Exercise 1 : Derivative of $l_{\sigma}(c, y(\mathbf{x}))$

Show that
$$\nabla l_{\sigma}(c, y(\mathbf{x})) = -\delta \cdot \mathbf{x}$$
, i.e., $\frac{\partial}{\partial w_i} [l_{\sigma}(c, y(\mathbf{x}))] = -\delta \cdot x_i$

with $\delta = c - y(\mathbf{x})$ for $y(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$.

Exercise 2: Batch Gradient Descent

- (a) Explain the difference of LMS and BGD that allows to overcome a significant flaw of the former.
- (b) How is that related to the idea of a global loss?
- (c) Verify that, indeed, $\nabla L(\mathbf{w}) = \sum_{(\mathbf{x},c) \in D} \nabla l(c,y(\mathbf{x})).$
- (d) Why is that needed to justify the BGD algorithm?

Exercise 3: Convergence criterion

In algorithms like \widetilde{LMS} and \widetilde{BGD} , we analyze the global loss $L(\mathbf{w}_t)$ or the norm of the loss gradient $||\nabla L(\mathbf{w}_t)||$ at the time step t.

In this exercise, we will compare three choices of comparison values in the convergence criterion and see that they are approximately equivalent.

- (a) By using the update rule $\mathbf{w}_{t+1} = \mathbf{w}_t \eta \cdot \nabla L(\mathbf{w}_t)$, express $\Delta L = L(\mathbf{w}_t) L(\mathbf{w}_{t+1})$ in terms of $||\nabla L(\mathbf{w}_t)||$.
 - Hint: You may estimate using the Taylor formula: $f(x) \approx f(a) + \nabla f(a)^T (x-a)$ for cleverly chosen f, x and a.
- (b) Express $||\Delta \mathbf{w}|| = ||\mathbf{w}_{t+1} \mathbf{w}_t||$ in terms of $||\nabla L(\mathbf{w}_t)||$.
- (c) What does that mean for the choice of ϵ in the convergence criterion? Why would we prefer to use $||\nabla L(\mathbf{w}_t)||$?

Exercise 4: Overfitting and train-test leakage

- (a) What is the experimental setup of choice when trying to detect overfitting?
- (b) What are methods to mitigate overfitting?
- (c) What must be payed attention to when performing a train-validation split on the following datasets in the given problems?
 - (c1) Detecting pneumonia from chest x-rays. Data includes 112,120 unique images from 30,805 unique patients.

- (c2) Given 1000 voice recordings (single sentences) of 100 people in total from 5 German cities. The model should be able to classify the dialects of arbitrary people into one of these cities.
- (c3) Given 1000 voice recordings (single sentences) of 100 people in total from 5 German cities. The model should be able to rate the dialects of arbitrary people from all over Germany by intelligibility.
- (c4) Given 1000 voice recordings (single sentences) of 100 people in total from 5 German cities. The model should be able to classify the person that said a given sentence.