【选必一 电解池】【考点精华】电解池电极反应式书写技巧(中档+重要)

电解池电极判断

判断依据电极	与外接电源的接法	电极反应	电子流向	离子移向 🦳	1	【口诀】"阴阳相
阳极	与外接电源正极相连	氧化反应	流出	阴离子移向		吸": 阴离子移向阳极, 阳离子移向阴极
阴极	与外接电源负极相连	还原反应	流人	阳离子移向		1/2 14 14 17 19 171 17X

- (1) 阴极的电极反应与阴极的电极材料无关,但阳极的电极反应必须优先考虑电极材料,若为活性电极(如 Pt、Au 以外的金属电极),则金属电极本身失去电子;若为惰性电极(如 Pt、Au、石墨等),则电极只导电、不反应。书写电解池的电极反应式时,一定要优先看阳极的电极材料,千万别忘了哦!
- (2) 若题目已经给出反应物与生成物信息,则按照"阳极、氧化、化合价升高,阴极、还原、化合价降低"确定阴阳极的放电物质。
- (3) 电解水溶液中的 K^+ 、 Ca^{2+} 、 Na^+ 、 Mg^{2+} 、 Al^{3+} 等,阴极的电极反应等同于电解 H_2O : $2H_2O + 2e^- = H_2 \uparrow + 2OH^-$ (放氢生碱);若用惰性电极电解水溶液中的 SO_4^{2-} 、 NO_3^- 、 ClO_4^- 等最高价含氧酸根离子,阳极的电极反应等同于电解 H_2O : $2H_2O 4e^- = O_2 \uparrow + 4H^+$ (放氧生酸)。

电解池电极反应式书写

第一步

根据题目信息写出电极反应式"架构"

阳极为: A 物- $ne^- \rightarrow B$ 物 ; 阴极为: C 物+ $ne^- \rightarrow D$ 物

通过化合价变化确认得失电子数,并且先搞定"变价元素的原子守恒"。

第二步

调平电荷:酸性溶液用 H^+ 、碱性溶液用 OH^- 、熔融碳酸盐用 CO_3^{2-} 、氧化物电解质用 O^{2-} 、锂离子电池用 Li^+ 等,按照题目信息灵活调整。

第三步

水溶液电解质:看 H 补 H₂O,用 O 检查;熔融碳酸盐:看 C 补 CO₂;按照题目信息灵活调整。

电解池(以熔盐电解池捕获二氧化碳的装置为例)

	阴极	阳极
根据信息判断阴、阳极与反应的物质		
第一步:确定得失电子数,写出反应物 与最终产物(变价元素原子守恒)		
第二步:调平电荷		
第三步:检查未变价的原子守恒		

原电池电极反应式书写

用惰性电极电解硝酸工业的尾气 NO 可制备 NH_4NO_3 ,其工作原理如图所示。

为使电解产物全部转化为 NH_4NO_3 ,需向电解产物中补充适量 NH_3 。

- (1)阴极、阳极的电极反应式分别为____、__、
- (2)当实际参加反应的 NO 为 8 mol 时,要将电解产生的硝酸全部转化为硝酸铵,还应至少通入 mol NH₃。

