Sensor Networks – Hopby-Hop Authentication

Shambhu Upadhyaya Wireless Network Security CSE 566 (Lecture 24)

Shambhu Upadhyaya

Introduction

- Sensor networks are subject to false data injection attacks
 - Deployed in unattended environments
 - Goal may be to deceive base station or deplete resources on relaying nodes
- Interleaved hop-by-hop authentication scheme guarantees detection of injected false data packets
 - If no more than t nodes are compromised

Application Scenario

- Military application of sensor networks for reconnaissance of the opposing forces
- Deploy a cluster of sensor nodes around each area of interest
 - Tank movements, ship arrivals, munition plant
 - Deploy a base station in a secure location to control the sensors and collect data
- An adversary may compromise several sensor nodes
 - Inject false data into the network
 - Traditional authentication not good since adversary knows all the keying material possessed by the compromised nodes
- Goal of research address false data injection attack
 - Base station verifies the authenticity of report
 - Filter out false data packets injected by compromised nodes

Shambhu Upadhyaya

Proposed Solution

- Hop-by-hop authentication scheme in which at least t+1 nodes have to agree upon a report before sending it to the base station
- All nodes in the path from the source to the base station participate in authenticating the report in an interleaved fashion
- Guarantees detection subject to a security threshold
 - No more than t nodes are compromised

Assumptions

- Sensor nodes are organized in clusters (at least t+1 nodes)
- · Cluster head role may be rotated
- Network links are bidirectional
- Every node shares a master key with BS
- Each node establishes a pairwise key with its one-hop neighbors
 - One could use LEAP to achieve this
 - Also, a node can establish pairwise keys with other nodes
- All nodes within a cluster are equally trusted
- Base station has a mechanism to authenticate broadcast messages (µTesla)
- BS will not be compromised

Shambhu Upadhyaya

Design Goals

- When there are no more than t compromised nodes
 - BS should be able to detect any false data packet injected by a compromised node
 - No. of hops before an injected data packet is detected and discarded is small
 - Scheme should be efficient in computation and communication
 - Scheme should be robust to node failures

Definition of Association

- Two nodes ui and uj on the path from CH to BS are associated if their difference = t+1
- If i j = t+1, ui is upper associated node of uj and uj is lower associated node of ui
- A node that is less than t+1 hops away from BS doesn't have an upper associated node
- An intermediate node may have multiple lower associated nodes
 - If it has multiple child nodes leading to multiple clusters
- A node ui that is less than t+1 hops away from CH has one of the cluster nodes as lower associate
- CH is associated with u(t+1)

Shambhu Upadhyaya

Scheme Overview

- The security scheme has 5 phases
 - Node initialization and deployment
 - Association discovery
 - Report endorsement
 - En-route filtering
 - Base station verification

Node Initialization and Deployment

- Key server loads every node with a unique id and necessary keying material
 - Preloads node u with an individual key Ku shared with the BS
 - From Ku, node u derives its authentication key
- Node u then establishes pairwise keys with its neighbors using LEAP or any other protocol
- In summary, node u discovers its 1-hop neighbors and establishes pairwise keys

Shambhu Upadhyaya

Association Discovery

- It is done in a two-way fashion
- It is needed to discover the id's of a node's associates
- First step is Base station Hello (discover upper associate)
- Second step is Cluster ACK (discover lower associate)
- If the path is static, this is a one-time investment
- Otherwise, you have to do an incremental association (whenever the path from CH to BS changes)
- Since ACK is critical for a node to maintain correct association, ACK may be done in an authenticated manner (using MACs)

Shambhu Upadhyaya

10

Report Endorsing

- Sensor nodes generate a report when triggered by a special event
- The scheme requires that at least t+1 nodes agree on the report for consideration
- This means that if t > 0, an adversary cannot cause a false report by compromising just one sensor node

Shambhu Upadhyaya

. .

Report Endorsement Steps

- Node v first sends endorsement report to CH using two MACs
 - When a node v agrees on event E, it computes a MAC for event E using its authentication key derived from the BS (Individual MAC)
 - In addition, it computes another MAC using the pairwise key with its upper associate (pairwise MAC)
- CH collects endorsements from t+1 nodes including itself
- Compresses the t+1 individual endorsements into one XMAC (by ex-oring) after authenticating each one of them
- Final report R to be sent consists of E, a list of id's of the endorsing nodes, XMAC, t+1 pairwise MACs
- R is authenticated with the pairwise key between CH and the next node in the path to the BS

Shambhu Upadhyaya

12

En-route Filtering

- Node u upon receiving R from downstream node, first verifies authenticity of R (using its pairwise key)
- It then checks the no. of different pairwise MACs in R
- If node u is s (s < t+1) hops away from BS, it should see s MACs, otherwise, t+1 MACs $\,$
- It then verifies the last MAC in the list based on the pairwise key shared with its lower associate
- Node u will drop the report if any of the above checks fails
- If u is more than t+1 hops away from BS, it proceeds to compute a new pairwise MAC over E using its upper associate's pairwise key
- It then removes the last MAC from the MAC list and inserts the new MAC $\,$
- It then forwards the report to its upstream node
- Each node is thus able to verify one pairwise MAC (lower associate) in the report independently in addition to MAC computed by its direct downstream node

Shambhu Upadhyaya

Base Station Verification

- Base station BS only needs to verify the compressed MAC
- It computes the t+1 MACs over E using the authentication keys of the nodes in the id list, then XOR the MACs to see if it matches the one in the report
- BS is assumed to know the location of the cluster nodes
 - After reading the report (authenticated), it can react to the event coming from the clusters
 - If the verification fails, BS will discard the report

Security Analysis

- Ability of the BS to detect a false report and ability of the en-route nodes to filter false reports
 - Base station detection guaranteed as long as no more than t nodes try to forge a report (scheme compresses t+1 individual MACs and this compression is secure)
 - En-route filtering analysis shows that both cluster insider attacks and en-route insider attacks can be detected and false packets can be dropped

University at Buffalo The State University of New York

Shambhu Upadhyaya

References

 Sencun Zhu, Sanjeev Setia, Sushil Jajodia, Peng Ning, "An Interleaved Hop-by-Hop Authentication Scheme for Filtering of Injected False Data in Sensor Networks", Proceedings of IEEE Symposium on Security and Privacy (S&P'04), Oakland, California, May 2004

Shambhu Upadhyaya

16