LTN Examples and Code

Luciano Serafini Michael Spranger

FBK-IRST, Trento, Italy
Sony Computer Science Laboratories Inc., Tokyo, Japan

July 8, 2018

Logic Tensor Networks

- https://github.com/logictensornetworks/
- git clone https://github.com/logictensornetworks/logictensornetworks.git

Classification

Domain A set D of points in the $[0,1]^2$ square;

Predicate A unary predicate A (class)

- Supervisions 1. Positive examples a set of points in D, which are known to be instances of A;
 - 2. **Negative examples** a set of points in D, which are known not to be instances of A;

Task For all the other point in D determine if they are instances of A.

Classification in LTN

```
D = \text{random subset of } [0,1]^2
P = \{ p \in D \mid p \text{ is a positive example of } A \}
N = \{ p \in D \mid p \text{ is a negative example of } A \}
\forall x \in P : A(x)
\forall x \in N : \neg A(x)
```


Regression

Domain A set D = [0, 1]

Function A unary function $f: D \rightarrow D$

Supervisions A set of supervision pairs $S = \{\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle\}$ such that $y_i = f(x_i)$

Task For all the other points $x \in D$ predict f(x)

Regression in LTN

$$D = \text{a uniform sampling of } [0,1]$$

$$S = \{\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle\}$$

$$\forall \langle x, y \rangle \in S : f(x) = y$$

Multi-Label Classification with Label Constraints

- Domain A set D of points in the $[0,1]^2$ square; Predicate A set unary predicate A_1, \ldots, A_n (class/labels)
- Supervisions 1. Positive examples for A_i a set of points in D, which are known to be instances of A_i ;
 - 2. Negative examples for A_i a set of points in D, which are known not to be instances of A_i ;
- Label constraints \triangleright **Subset constraint** if x is labelled with A_i then it is labelled with A_i ;
 - ▶ **Disjoint constraint** x is labelled with A_i iff then x is labelled with $\neg A_i$ and viceversa;
 - Task For all the points in D determine if they are labelled with A_i or $\neg A_i$ (Notice that it is possible that x is labelled neither with A_i nor $\neg A_i$)

Multi-Label Classification with Label Constraints in LTN

$$\forall x \in A_i^+ : A_i(x)$$

$$\forall x \in A_i^- : \neg A_i(x)$$

$$\forall x \in D : A_i(x) \to A_j(x)$$

$$\forall x \in D : A_i(x) \leftrightarrow \neg A_j(x) \land \neg A_i(x) \leftrightarrow A_j(x)$$

Notice that FOL allows to express more general constraints between labels, as for instance

$$\forall x \in D : (A(x) \land B(x)) \to (C(x) \lor D(x))$$

Multi-Label Classification with Label Constraints in LTN

Unsupervised learning - Clustering

Domain A set $D \subset [0,1]$

Cluster labels A set of cluster labels C_1, \ldots, C_n

Task Put each point in some cluster C_i minimizing intra-cluster distance and maximizing inter-cluster distance

Clustering Constraints

Every point belongs to a claster

$$\forall x : C_1(x) \lor \cdots \lor C_n(x)$$

Every point cannot belong to two clusters

$$\forall x : \neg (C_i(x) \land C_j(x))$$
 for $i \neq j \in \{1, \dots, n\}$

Clusters are not empty

$$\exists x : C_i(x)$$
 for $i \in \{1, ..., n\}$

Close points should belong to the same cluster.

$$\forall x, y : Close(x, y) \rightarrow (C_i(x) \leftrightarrow C_i(y)) \text{ for } i \in \{1, \dots, n\}$$

Exemplary results

Relations

Domain A set D of points in the $[0,1]^2$ square;

Predicate A set 2-ary relational predicates R_1, \ldots, R_n

- Supervision 1. Positive examples for $R_i(x, y)$ a set of points in $D \times D$, which are known to be instances of R_i ;
 - 2. Negative examples for $R_i(x, y)$ a set of points in $D \times D$, which are known not to be instances of R_i :

Constraints

- **Symmetry** if $\forall x, y \in D \times D : R(x, y) \rightarrow R(y, x)$
- ▶ **Subset** if $\forall (x, y) \in D \times D : R(x, y) \rightarrow R'(x, y)$

Relations

Domain

Our domain is composed of 2d rectangles on a plane; We are interested in the following 6 spatial relations.

a

Domain

Our domain is composed of 2d rectangles on a plane; We are interested in the following 6 spatial relations.

▶ a is on the left of b

a b

Domain

Our domain is composed of 2d rectangles on a plane; We are interested in the following 6 spatial relations.

- ▶ a is on the left of b
- ▶ a is on the right of b

а

Domain

Our domain is composed of 2d rectangles on a plane; We are interested in the following 6 spatial relations.

- ▶ a is on the left of b
- ▶ a is on the right of b
- ▶ a is above of b

b

Domain

Our domain is composed of 2d rectangles on a plane; We are interested in the following 6 spatial relations.

- a is on the left of b
- ▶ a is on the right of b
- ▶ a is above of b
- ▶ a is below of b

b

а

Domain

Our domain is composed of 2d rectangles on a plane; We are interested in the following 6 spatial relations.

- ▶ a is on the left of b
- ▶ a is on the right of b
- ▶ a is above of b
- ▶ a is below of b
- ▶ a is contained in b

Domain

Our domain is composed of 2d rectangles on a plane; We are interested in the following 6 spatial relations.

- ▶ a is on the left of b
- ► a is on the right of b
- ▶ a is above of b
- ▶ a is below of b
- a is contained in b
- ► a contains b

Problem

Given some some examples of pairs of rectangles for each specific relation, and some background knowledge about them as for instance:

- left is the inverse of right
- an object cannot be at the same time on the left and on the right of another object
- ▶ if an object a is contained in an object b and b is on the left of c, then a is on the left of c

we want to be able to predict if two randomly generated rectangles, are in one of the 6 spatial relation.

Domain representation

Every rectangle is represented with 4 real numbers,

$$\langle x, y, w, h \rangle$$

encoding the coordinates of the bottom-left corner, and the width and the height

The language

The language is constituted by 6 ninary relations

$$left(x, y)$$
, $right(x, y)$, $above(x, y)$, $below(x, y)$, $contains(x, y)$, $in(x, y)$

The constraints

- a set of positive examples for each spatial relation: left(a, b), right(c, d), above(e, f), below(h, i), contains(j, k), in(l, m), . . .
- axioms about spatial relations:
 - $\blacktriangleright \forall x, y : left(x, y) \rightarrow \neg left(y, x);$
 - $\forall x,y : left(x,y) \rightarrow right(y,x);$
 - $\forall x,y,z: in(x,y) \land left(y,z) \rightarrow left(x,z)$
 - **...**

Domain: Smoking-Friends-Cancer, [?]

- ▶ Of two groups of people {a, b, ..., h} and {i, j, ..., n}; we know if each of them smokes and the friendship relation within each group;
- for the first group we also know who has a cancer;
- we know that cancer depends on smoking
- and that smoking habits depend on the friendship relation

Task 1 For each of the person of the second group we have to predict if he/she has a cancer or not

Task 2

For each person we want to find a semantic embedding in \mathbb{R}^k consistend with the semantics and the structure. For instance:

Task 2

For each person we want to find a semantic embedding in \mathbb{R}^k consistend with the semantics and the structure. For instance:

▶ $a^{\mathcal{G}} \approx e^{\mathcal{G}}$ since both a and e smoke and have cancer, and they have two friends that smoke, one of which has a cancer

Task 2

For each person we want to find a semantic embedding in \mathbb{R}^k consistend with the semantics and the structure. For instance:

- ▶ $a^{\mathcal{G}} \approx e^{\mathcal{G}}$ since both a and e smoke and have cancer, and they have two friends that smoke, one of which has a cancer
- ▶ $d^{\mathcal{G}} \approx k^{\mathcal{G}} \approx i^{\mathcal{G}}$ because they don't smoke and don't have cancer, and they have only one friend, who does not smoke and does not have a cancer

Task 3

We want to know the truth value of certain formulas,

- e.g., the correlation between friendship and smoking habits;
- the correlation between smoking habits and cancer

Representation of the domain in \mathbb{R}^k

For each individual of the domain $\{a, \ldots, n\}$ we don't provide an explicit mapping to \mathbb{R}^k , which instead is generated, as the result of the constraint optimization. We only provide the dimension of the domain (i.e., k)

The language

▶ unary predicates S(x) and C(x) for "x smokes" and "x has a cancer" and a binary predicate F(x, y) for "y is a fiend of x"

Constraints

- \blacktriangleright S(a), $\neg S(b)$, $\neg S(c)$, $\neg S(d)$, S(e), ..., S(i), ..., S(n);
- $ightharpoonup C(a), \neg C(b), \neg C(c), \ldots, \neg C(h);$
- $\blacktriangleright \forall x : \neg F(x,x)$
- $\blacktriangleright \forall xy : F(x,y) \rightarrow F(y,x)$

Dataset

Contains pictures resulting from overlaying two MNIST digit pictures, where the smaller digit is in black-on-white and the smallest in white-on-black. I.e., d_x and d_y are the pixel matrices of the digits x and y, then the pixel matrix $d_{xy} = d_x \oplus d_y$ is defined as

$$d_x \oplus d_y = \begin{cases} d_x - w \cdot d_y & \text{if } x \le y \\ d_y - w \cdot d_x & \text{Otherwise} \end{cases}$$

where w is randomly generated number in [0,1]

The Task

Given an image $d_{xy} = d_x \oplus d_y$ we have to predict x and y.

Input

The Task

Given an image $d_{xy} = d_x \oplus d_y$ we have to predict x and y.

The language

20 unary predicates, two for every digit;

$$zero_1(x)$$
 $one_1(x)$... $nine_1(x)$
 $zero_2(x)$ $one_2(x)$... $nine_2(x)$

 $zero_1(x)$ (resp. $zero_2(x)$) means: "the smaller (resp the larger) digit of x is a 0

Constraints

- $\forall x : zero_1(x) \rightarrow \neg one_1(x), \ldots$
- $ightharpoonup \forall x : \neg(one_1(x) \land zero_2(x)), \ldots$