RADC-TR-80-299
Final Technical Report
September 1980

REVISION OF ENVIRONMENTAL FACTORS FOR MIL-HDBK-217B

Martin Marietta Corporation

B. F. Kremp E. W. Kimball

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344!

7400

80

This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-80-299 has been reviewed and is approved for publication.

APPROVED:

LESTER J. GUBBINS Project Engineer

APPROVED:

DAVID C. LUKE, Colonel, USAF

Lester J. Gubbins

Chief, Reliability & Compatibility Division

FOR THE COMMANDER: John S. Huss

JOHN P. HUSS

Acting Chief, Plans Office

SUBJECT TO EXPORT CONTROL LAWS

This document contains information for manufacturing or using munitions of war. Export of the information contained herein, or release to foreign nationals within the United States, without first obtaining an export license, is a violation of the International Traffic in Arms Regulations. Such violation is subject to a penalty of up to 2 years imprisonment and a fine of \$100,000 under 22 U.S.C 2778.

Include this notice with any reproduced portion of this document.

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC. (RBET) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Fatered)	
(19) REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	DEFORE COMPLETING FORM
RADCHTR-80-299 AD-A09/ 837	V
	<u> </u>
A TITLE (and Subtitle)	Final Technical Report
REVISION OF ENVIRONMENTAL FACTORS FOR	1
MIL-HDBK-217B	Aug 440 78 - Mar 440 80
The state of the s	A BERFORMING ORG. REPORT NUMBER
(14)	OR-15-927
T-AUTHORISH.	B. CONTRACT OR GRANT NUMBER(s)
B. F. Kremp	F30602-78-C-0227
E; W./Kimball (/5	I was
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10 BROCHAN ELEMENT BROJECT TARK
Martin Marietta/Corporation	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	$\frac{162702F}{1}$
P.O. Box 5837	23380220
Of Tallub FL 32833	
11. CONTROLLING OFFICE NAME AND ADDRESS	12 GEPORT DATE
Rome Air Development Center (RBET) ()/)	Sep. 980
Griffiss AFB NY 13441	13. NUMBER OF PAGES
	220
14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
Same	UNCLASSIFIED
7000	154. DECLASSIFICATION DOWNGRADING
	N/A ^{SCHEDULE}
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unl	
	imited.
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different fro	
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different fro	
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different fro	
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different fro Same	
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Same 18. SUPPLEMENTARY NOTES	om Report)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different fro Same	om Report)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Same 18. SUPPLEMENTARY NOTES	om Report)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Same 18. SUPPLEMENTARY NOTES	om Report)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different from Same 18. Supplementary notes RADC Project Engineer: Lester J. Gubbins (RBI	om Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Same 18. Supplementary notes RADC Project Engineer: Lester J. Gubbins (RBI	om Report)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Reliability Prediction	om Report) ET)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different from Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI) 19. KEY WORDS (Continue on reverse side II necessary and identify by block number, Reliability Prediction Mathematical Models	om Report) ET)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Reliability Prediction	om Report) ET)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Same 18. Supplementary notes RADC Project Engineer: Lester J. Gubbins (RBI 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Reliability Prediction Mathematical Models Failure Rates	ET)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different for Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI 19. KEY WORDS (Continue on reverse side II necessary and identify by block number, Rellability Prediction Mathematical Models	om Report) ET)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Same 18. Supplementary notes RADC Project Engineer: Lester J. Gubbins (RBI 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Reliability Prediction Mathematical Models Failure Rates	om Report) ET)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Reliability Prediction Mathematical Models Failure Rates Environmental Factors 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	E TENTOTHE 127H
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different for Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI 19. KEY WORDS (Continue on reverse side II necessary and identify by block number) Reliability Prediction Mathematical Models Failure Rates Environmental Factors 20. ABSTRACT (Continue on reverse side II necessary and identify by block number) This study revised and updated the appropriate	TEN 70 THE 1274 e sections of Military
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different for Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Reliability Prediction Mathematical Models Failure Rates Environmental Factors 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study revised and updated the appropriate Handbook 217C, Reliability Prediction of Elected	ET) For The Total Control of Military stronic Equipment Apper-
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI) 19. KEY WOHDS (Continue on reverse side if necessary and identify by block number, Rellability Prediction Mathematical Models Failure Rates Environmental Factors 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study revised and updated the appropriate Handbook 217C, Reliability Prediction of Electaining to Environmental Factor (RE) Tables. Mor	e sections of Military stronic Equipment per-
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI 19. NEY WORDS (Continue on reverse side if necessary and identify by block number, Reliability Prediction Mathematical Models Failure Rates Environmental Factors 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study revised and updated the appropriate Handbook 217C. Reliability Prediction of Electaining to Environmental Factor (Tables. Mornhours of field data were collected and analyze	e sections of Military stronic Equipment per- te than 1.79 x (1012) part and during the study effort.
18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI 19. KEY WORDS (Continue on reverse side II necessary and identity by block number). Reliability Prediction Mathematical Models Failure Rates Environmental Factors 20. ABSTRACT (Continue on reverse side II necessary and identity by block number). This study revised and updated the appropriate Handbook 217C. Reliability Prediction of Electaining to Environmental Factor (Reliability Prediction of Flectaining to Environmental Factor (Reliability Prediction of Fl	e sections of Military tronic Equipment per- te than 1.79 x (1012) part and during the study effort. Ithe present 11 to a new
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Lester J. Gubbins (RBI 19. NEY WORDS (Continue on reverse side if necessary and identify by block number, Reliability Prediction Mathematical Models Failure Rates Environmental Factors 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study revised and updated the appropriate Handbook 217C. Reliability Prediction of Electaining to Environmental Factor (Tables. Mornhours of field data were collected and analyze	e sections of Military tronic Equipment per- te than 1.79 x (1012) part and during the study effort. Ithe present 11 to a new

DD TORM 1473 FOITION OF I NOV 65 IS OBSOLETE

UNCLASSIFIED

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

UNCLASSIFIED

EVALUATION

This contractual effort is part of the broad RADC Reliability Program intended to provide reliability prediction, control and demonstration procedures for military electronic systems and equipment. The prediction procedures are contained in MIL-HDBK-217C for which RADC is the Preparing Activity. The new environmental factors developed in this effort for both operating and nonoperating modes will expand the applicability of the reliability prediction procedures and will be included in the next issue of MIL-HDBK-217. This effort is responsive to TPO IV F2, Equipment/System R&M.

Lection & Dulling

LESTER J. GUBBINS Project Engineer

Accession Fo	r
NTIS GRAWI	ī.tv
DTIC TAB	
Unannounced	
Justification	n
Ву	
Distribution	1/
Availabilit	y Codes
Avall	and/or
Dist Spec	ial
	\$17%
1	

SUMMARY

This report comprises the results of a 19-month program conducted by Martin Marietta Aerospace to revise the environmental factors for MIL-HDBK-217. This report summarizes the data collected and the data analysis methodology used. The revisions to the failure rate models and the environmental factor tables are provided separately in Appendix F.

A total of more than 1.39 x 10^{12} part hours of operating data and 3.98 x 10^{11} part hours of nonoperating data were collected. This gave a grand total of 1.79 x 10^{12} part hours of new information. The data were amassed as a result of an extensive collection program that included all major contractors, government facilities, and research organizations throughout the aerospace industry.

The 13st of environments was expanded from the present total of 11 to a new total of 21, thus facilitating improved prediction accuracy in both old and new applications for military electronic equipment.

PREFACE

This final technical recort on Revision of Environmental Factors for MIL-HDBK-217B was prepared for Rome Air Development Center, Air Force Systems Command, Griffias Air Force Base, New York by the Product Support and Logistics Division, Martin Marietta Aerospace, Orlando, Florida under contract F30602-78-C-0227. The objective of the study was to evaluate the environmental factors presently used in MIL-HDBK-217B and to determine what changes were needed concerning the environmental categorization, their definitions, their application level and their numerical values.

The contract was issued by Rome Air Development Center on 22 August 1978. Mr. Lester Gubbins (RBRT) was the RADC Project Engineer. This study was performed during the period August 1978 through March 1980.

Study team members included Edwin Kimball, Gloria Isler, Julie Gallassini, Marianne Sweeney, Peter Golding, John Keppel, Earle Kirkley, Nancy Thomson, Shelley Kujawa, Richard Long and others.

Technical consultation, and assistance in the collection of data was provided by George Guth, Thomas Kirejczyk, Donald Cottrell and others.

CONTENTS

1.1	Introduction	6
2.0	Environmental Factors Survey	8
	2.1 First Survey	11 11 12
3.0	Literature Search	15
4.C	Data Collection	16
	4.1 Planning	16 16 17
5.0	Data Analysis	19
	5.1 Investigation of New Methodology	19 20 22 24 33 38
6.0	Environmental Modes	41
	6.1 Ground Benign	41 41 43
	6.5 Naval Sheltered	44
	6.8 Missile Launch/Re-entry	44 45 46 46
7.0		47
8.0	·	49
9.0		52

10.0	Bibliography	 • •	 •	 •	 •	•	•	٠	٠	•	•	٠	•	٠	53
Appen	ndixes														
Α	First Survey	 		 ٠									•		A-1
В	Survey Particip														
С	Second Survey	 	 												C-1
Ð	Presentation to														
E	Revised Semicon														
F	Revision Sheet														
G	Data Summary To	 	 	 			_	-		-	-				

ILLUSTRATIONS

2.1-1 2.3-1 5.0-1 5.4-1 5.4-2 5.4-3 5.4-6 5.4-6 5.4-7 5.4-8 5.4-10 5.4-11 5.4-12 5.4-13 5.4-14 5.4-17 5.6-1 5.6-2 5.6-3 8.0-1	Matrix Summary Influence Matrix Data Analysis Methodology Flow Chart Microelectronic Devices Temperature Histogram Discrete Semiconductors Temperature/Stress Histo Tubes Temperature Histogram Resistors Temperature/Stress Histogram Capacitors Temperature/Stress Histogram Inductive Devices Temperature Histogram Relays Temperature/Stress Histogram Relays Temperature/Stress Histogram Switches Temperature/Stress Histogram Connectors Temperature Histogram Printed Wiring Boards Temperature Histogram Connection Temperature Histogram Microelectronic Devices Quality Level Histogram Discrete Semiconductors Quality Level Histogram Resistors Quality Level Histogram Inductive Devices Quality Level Histogram Inductive Devices Quality Level Histogram Weighing Matrix Composite Matrix Environmental Matrix	gr.			10 13 19 25 25 26 27 27 28 29 29 30 31 31 31 32 32 39 40 50
	TABLES				
5.3-1 5.5-1	Comparison of FRAP versus Survey Data				23 34
5.5-2	Microelectronics Field Data				36
6.9-1	Comparison of Average Environmental Factors				42
6.3-1	Missile Categories				45
6.10-1	Miscellaneous Categories				46
	-				

1.0 INTRODUCTION

The reliability prediction procedure in MII-HDBK-2178 contained a series of nine equipment use environments. Each environment had associated up factors for each device model which adjust the predicted failure rate to account for the expected environmental severities that are not explicitly treated in the device models. Information received from users of the Handbook indicated that the method of accounting for environmental field conditions was overly simplistic, poorly defined, and inaccurate. Also, some equipment applications are omitted, for example helicopter and submarine. The study was initiated to correct these deficiencies.

Initially, the objective of the study consisted of revising and updating the appropriate environmental factors in MIL-HDBK-217B. However, during the course of the 19-month program, MIL-HDBK-217C was released and Proposed Change Notice 1 was circulated. Accordingly, appropriate revision of these later documents was included in the scope of the study.

It was necessary to determine what changes were required in the environmental categorization, definitions, application levels and numerical values of mg that would result in more accurate reliability predictions that properly reflect field environments and equipment usage. The nuclear radiation environment and the effects of field conditions on avionics electronic equipment mounted on-board, or ir pods for winged aircraft were specifically excluded from the study. It is anticipated that a contract will be awarded during 1980 to revise and update the Avionics Environmental Factors for MIL-HDBK-217.

The present study methodology consisted of 8 clearly defined tasks which are listed below:

- 1 Conducting environmental factors survey
- 2 Collection of data
- 3 Evaluation of alternate prediction techniques
- 4 Analysis of data
- 5 Determination of new environmental modes
- 6 Formulation of new mathematical models
- 7 Calculation of WE values
- 8 Preparation of final report.

In the performance of this contract, Martin Harietta has developed procedures which more realistically describe how military environmental stress and field use conditions affect electronic equipment reliability. Data was collected from a wide range of recent vintage equipments being used in a variety of field environments. The data analysis resulted in all the necessary numerical factors required for reliability prediction. Clear definitions of these factors and directions for application have been included. Appropriate revision sheets to MIL-HDBK-217 have been provided as an appendix to the final report.

2.0 ENVIRONMENTAL FACTORS SURVEY

In accomplishing the evaluation and revision of the mg environmental factors in MIL-HDBK-217B, efforts were constrained by a circumstance common to reliability engineering; there is no centrally organized collection and statistical analysis of historical data. Collection of "classical data," i.e., records of part and system failures with respect to part hours and operating conditions, has been erratic for electronic equipment in the field, dependent upon the military user and the responsible contractor. Data is held by both government agencies and private industry with access often restricted. There are environments for which little or no field data has been gathered. The difficulties involved with collecting statistically significant quantities of usable data in all field environments was recognized at the outset of this study. In anticipation of insufficient data for direct statistical analysis in all categories of the study, it was determined that expert opinion should be sought from the industry and used in conjunction with other results.

Since any single individual would have limited influence on the decisions and outcomes of this study, a technique that incorporated the concensus of the participating experts was established for use as an aid in decision making. A survey, consisting of two questionnaires, was conducted. The first questionnaire was distributed and the responses collected. Results of the first questionnaire were used to establish the content and format of the second questionnaire, which was then distributed to the participants. This feedback of the answers into the second questionnaire served to stimulate the experts to consider points which they might have neglected on first thought. The idea of tapping a wide spectrum of expert opinion is quite appealing on face value. This strategy appears even more attractive when participants are permitted to interact with each other's ideas in an anonymous atmosphere.

It was expected that the experts opinions would be valuable during data analysis and model formulation. The analysis for those environments for which little or no data is available could be supported by the experts opinion. The need for additional environments was addressed in the questionnaire and their responses were helpful in determining which ones were needed by the users of MIL-HDBK-217B. Of course, data availability was another determining factor in making these decisions.

Participants in the survey were selected: 1) because of association with the reliability department of a government contracto.; 2) on the basis of a connection with a Navy, Army, Air Force, or NASA operation; 3) due to involvement in preparation of earlier versions of MIL-HDBK-217, or related investigations. The initial questionnaire was distributed to 102 people. The second questionnaire was distributed to those people responding to the first survey. However, all 102 people received feedback from the first survey.

2.1 First Survey

The first survey asked for evaluation of the MIL-HDBK-217 mg factors from two different aspects. First there were questions designed to generate a broad critique of the handbook as it presently exists, its organization at the part level, the accuracy of the factors, the defined environments, etc. Secondly, the problem of evaluation of the handbook factors specifically, in terms of environmental categories and influences within those categories, was addressed. The participants were provided with definitions for nineteen different environments (or utilization modes). MIL-HDBK-217G lists eleven of these nineteen environments. A matrix with the environments down the left side and twenty-three influence factors across the top was provided. Participants were asked to indicate with an "x" in the appropriate box the influence factors they believed to be of major importance to environments with which they are familiar. Additional environments and/or influence factors could be added.

The initial survey, (see Appendix A) was distributed to 102 persons over the period November 21, 1978 through January 4, 1979. Seventy-four surveys (73.5% of total sent) were returned and a list of these participants is contained in Appendix B. The following conclusions were made by survey experts.

A majority of those responding to question 1 regarding improvements to environmental factors in MIL-HDBK-217 suggested:

- 1 A range of stress factors (or stress levels) be shown so that the user can know the effects of single factors.
- Air to surface missiles, surface to air missiles, ICBM, MRBM, and shipboard launch missiles should be included as environmental categories.
- Power on/off, cycling, dormancy, nonoperating and temperaturehumidity-altitude should be included among the influence factors.
- 4 Forty-five percent of all those responding felt the environmental model for MIL-HDBK-217 should be at the part level; 30% felt it should be at the systems level; 25% wanted the model at both systems and parts levels.

A matrix summary, Figure 2.1-1 was prepared showing the total number of respondents that gave a positive response for each block in the matrix of survey one. As of January 19, 1979, there had been 49 responses. This matrix summary was sent to all survey participants. Through this summary a participant could measure his own judgements against those of the group. This allows reconsideration by the individual of his judgements and contributes to a convergence of expert response. Such convergence is desired as it generally tends towards a correct answer.

DATA SURVEY #1 RESULTS
CONTRACT F30602-78-C-0227 MIL-HDBK-217B ENVIRONMENTAL FACTORS

	CONT	-	~	306	02-	78- T	-	227	M	E V L - H		-21	7B	ENV	_	_	_	7	1	_		Т	T .	T	
	TEMP HUMIDITY	+-	7	1	1	+	, ,	1	+-	╁	ľ	10	P	۴	10	٩	٩	ŀ	12	10	┝	녙	P	-	0
	MAINT SKILL LEVEL	┿	+	+-	+	╁	╁	+	+-	╁	ľ	╀	F	۲	1-	-	0	10	P	⊢	╀	ľ	╀╌	P	읙
	ON-OFF CYCLING	┿	1	+	╄	┿	+	+	+	+-	1~	╁	~	~	~	~	2	~	13	_	L	Lº	L	°	
,	ELECTRICAL ENERGIZING	ľ	9 9	4	1	֓֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡֡֡֡֜֜֜֡֡	1	19	1	╁	Ľ	l°	L	Ľ	L	0	0	l°	ľ	0	L	l°	<u> °</u>	°	
	- NOTTATION	╀	Ψ-	#	4-	1-	1-	1-	╁	-	-	-	ᆮ	Ľ	-	_	L	ニ	ᆮ	Ľ	L	Ļ	-	c	리
•	- NOITARBIY-NUUCAY	Ļ	+-	╁.	╄	╄╌	+	+	┿	0	L	٥	٥	°	L°	٥	0	L	二	Ľ	L	L	°	0	٥
•	- YACUUM-THERMAL	٢	┿	╄	┿	┿	┿	╀	┿	-	0	L	0	Ľ	L	٥	٥	°	占	_	L	L	~	2	2
•	1CE/SHOM/RAIN	ľ	#	#	╀	+-	╀	+	╄	P	0	P	°	Ľ	~	2	1	0	P	L	L	L	°	0	
•	- STORS TON 9N3T	Ľ	15	╀-	٥	+	+	0	10	厂	0	0	٥	Ľ	L	°	٥	L	-	٥	L	°	°	Ľ	의
•	- 9M3T-NOTTARBIY	Ľ	┿	┾	+	╀	۲'	2 إ	10	P	0	°	_	Ľ	°		0	0	0	٥	L	10	0	P	٥
•	CUNFIRE VIBRATION	Ľ	٦	5	\\^c	\\ c	٩	ļ°	L	L	l°	٥	°	_	٥	_	٥	0	°	°	L	°	L	0	្ន
•	STATIC ELECTRICITY	Ŀ	ŀ	1	· •	15	10	\ <u>_</u>	<u> </u>	0	°	0	٥	c	0	0	0	٥	٥	0	L	0	0	0	ា
•	GNA2 GNA T2UG	L	<u> </u>	1	1	1-	L	<u> </u>	Ŀ	0	Ŀ	_	_	3	2	7	2	_	٥	٥	L_	P	0	0	긥
•	CORROSTON	L°	2إ	2	10	ļ	10	0	0	0	0	٥	٥	0	~	0	0	٥	٥	٥	L	°	0	٥	٥
-	1 MP ACT	Ľ	0	0	ľ	Ļ	ŀ	0	0	٥	0	0	0	0	င	°	0	0	0	٥	L	<u> -</u>	0	Ŀ	٥
-	(16W 8 ROCKET MOTOR)	٥	٥	9	0	9	0	0	ဂ	0	?	0	0	0	0	0	-	0	0	0		0	0	0	٥
		L	L	L																					
;	3N3	9	=	=	٥	0	2	-	-	9	′	13	2	13	15	7	12	1	•	9		٥	1	0	•
;	-YT10 IMUH - 3RUTAN 3RH3T 30UT ITJA	7	-	•	_~	_	~	~	2	1	ſ	10	13	17	18	=	7	3	,	1		-	1	c	-]
5	SPACE SIMULATION	Ŀ	0	0	0	0	9	0	0	٥	c	С	0	1	-	С	•	0	R.	8		0	U	0	-
=	BYESSURE SHOCK	Ŀ	-	-	_	[-	7	~	6	3	Þ	1	3	4	σ	2	10	7	5	1		0	0		2
,	ACOUSTICAL NOISE	-	-	20	6	-	_	-	3	5	5	7	α	8	10	=	Ξ	5	\$	1		-	0	-	-
8	SINE VIBRATION	2	2	10	0	œ	9	=	9	9	7	13	12	13	13	=	8	5	θ	2		-	0	-	~
7	RANDOM YIBRATION	G	^	22	=	ø	=	=	ď	12	13	23	≈	23	25	۳	19	2	=	5		0	-	~	~
,	ACCELERATION	0	٥	5	-	-	-	4	~	1	5	12	=	=	=	=	17	Ξ	~	2		0	0	-	7
5	LEAKAGE (IMMERSION)	1	2	_	۰	æ	-	=	12	-	9	۰	-	~	-1	~	-	-	٩	0		-	0	0	-1
ž =	EXPLOSIVE ATMOSPHERE	0	-	7	-	-	1-	-	0	7	~	~	~	5	ᆈ	7	~	~	~	0		٥	٥	-	9
PATRI)	YT 10 I MUH	1	72	23	82	9	=	2	=	15	=	-2	2	~	≖	=	2	~	~	~		7	۰	-	7
INPLUENCE	SALT FOG	_	۰	11	σ.	7	6	9	8	٠	::	~	~	€	2	œآ	2	~	-	-		-	9	-	~
IN S		*	6	13	=	=	_	æ	9	۳	۳٠]	^	^	_	٥	^	~	~	2	~		-	0	٥	
92		•	-	14	~	2	9	80	7	_	ائ	~	크	=	크	=	=	6	_	_		0	-	-]	~
28	PYROTECHNIC SHOCK (HIGH FREQUENCY)	0	0	-	2	<u>-</u>	~	~		-	-1	-	~	-	•	~	2	의	٥	-		0	0	-]	-
23	SOLAR RADIATION	-	9	5	5	•	0	5	0	_		~	7	~	٥	2	7	-	7	=		0	0	0	~
2	30UT1TJA-3RUTAR39M3T	0	٥	0	٥	0	0	٥	0	٥	<u> </u>	∞	9	2	=	^	<u>م</u>		2	۳		0	0	0	_
35	TEMP SHOCK/CYCLING	80	Ξ	12	6	٥	5	80	و	_	₹	=	=	=	2	=	=	٥	∞	^		0	0	0	~
37	LOW TEMPERATURE	~	18	Ç	11	13	9	Ξ	~	~	٠	=	=	6	22	2	=[2	=	<u>ء</u>		-	-	9	٠
7	HIGH TEMPERATURE	6	8	20	11	13	80	=	٣	_	4	15	=	23	%	=	9	~	=	=		9	-	٥	₹
23	30UT1TJA	٥	0	0	0	2	0	0	-	-	9	و	80	=	=	۳	₽	-	2	2		-	-	0	~]
:	INFLUENCE PACTORS									Ī		_[į	~	Т	T	T	T				П	1	
	EN VÎ POKWENT	GROUND, BENIGN	GROUND, FIXED	GROUND, MOBILE, WHEELED	GROUND, MOBILE, TRACKED	MANPACK	MAVAL, SHELTERED*	MAVAL, UNSHELTERED*	NAVAL, UNDERSEA, UNSHELTERED	NAVAL, BENIGN, SUBMARINE	NAVAL, HYDROFOIL	AIRBORNE, INHABITED, TRANSPORT	AIRBORNE, INHABITED, FIGHTER	ALMONNE, UNINHABITED, TRANSPORT	AIRBORNE, UNINHABITED, FIGHTER	AIRBORNE, POTARY WING	MISSILE LAUNCH	CANNON LAUNCH	MISSILE, FREE FLIGHT	SPACE FLIGHT			MISSILE FREE FLIGHT (CRUISE)	IMPACT PENETRATION	NON-OPERATING
•		_	l. 1	<u>ٿ</u> چ	23		ž	2		_					_	_	_	_	_	- 1		듸	Ī	Š	
	:	12	~	⊼	7	20	~	2	=	≃ :	*	56	58	*	28	2 3	•	=	20	6		-	-	- '	•

*ENVIRONMENTS SIGNIFICANTLY DIFFERENT FROM DEFINITION IN MIL-HDBK-217

SYDWS THE NUMBER OF RESPONDENTS WHO INDI-CATED THE IMPORTANCE OF EACH ENVIRONMENT FOR AT LEAST ONE INFLUENCE FACTOR. *SHOUS THE NUMBER OF RESPONDENTS WHO IKNI-CATED THE JMPORTANCE OF EACH INFLUENCE FACTOR FOR AT LEAST ONE ENVIRONMENT.

INDIVIDUAL BLOCKS SHOW THE TOTAL NUMBER OF RESPONDENTS
THAT CAVE A POSITIVE RESPONSE BY INDICATING THEIR BELIEF
THAT THE BLOCK IN QUESTION IS OF MAJOR INFORTANCE TO A
BACTICULAR ENVIRONMENT. THERE HAVE BEEN 49 RESPONDENTS
TO DATE.

Figure 2.1-1. Matrix Summary

2.2 Second Survey

In preparing the second survey, the matrix summary from the first survey was reviewed for insignificant blocks. An insignificant block was determined to be one in which less than twenty percent of the respondents for the environment felt that the influence factor was of major importance. These insignificant blocks were crossed out on a blank matrix. Also the blank matrix was modified in the following ways:

- The list of environments was expanded to twenty-three by the addition of tactical missile launch, undersea launch, airbreathing missile flight, and nonoperating.
- The missile launch environment was redefined as missile launch/reentry.
- 3 The influence factor of high temperature was deleted.
- 4 The three electromagnetic environments were combined under EME.
- 5 Dust/sand was added to the list of influence factors.

In the second survey, the participants were requested to establish an order of significance between influence factors in each environment for which they are familiar. The influence factors that are not crossed-out for that environment should be ranked on a scale of 1 to 10 with 10 being the most significant.

A participant was requested to rank their level of expertise for the environmental categories they responded to. A column on the left side was added to this modified matrix. The respondent was requested to rank their expertise on a scale of 1 to 3, 3 being a high level of expertise based on recorded failure rate data for that particular environment. For this reason, the survey was both intuitive and factual in content.

In addition, a column was added to the left side of the environment names to allow the participants to rank the overall severity of each environment to ground benign, which was given a severity ranking of 1.

The second survey is contained in Appendix C. Seventy-four second surveys were distributed. Fifty-two (70.3%) of the second surveys were returned. The average number of responses to any one environment was 25. This provided a sufficient sample size for statistical analysis.

2.3 Analysis

The 1 to 10 rankings of influence factors for each environment were analyzed by two methods: calculation of means and histograms. For ranking for each influence factor, an overall mean and the standard deviation for

responses were calculated. In addition, a mean and standard deviation were calculated for the responses within each of the three groups of expertise. Bartlett's test for variance and the F-test of difference between means were run between the statistics for the three groups of expertise in each influence factor. There are a total of 301 influence factors. For 263 of these, the overall mean of the ranking values was an acceptable index of significance for that influence factor. In order to resolve the problem of finding a ranking for those 38 influence factors where the overall mean was not acceptable, and in order to reveal any clusters of opinion at one ranking which reasonably should override the overall mean as representative of the opinion of the survey sample, histograms were constructed for each influence factor. The objective of the statistical analyses was to establish a ranking and degree of significance between influence factors in each environment. To determine the appropriate number for each factor, the correlation between the overall mena and the histogram mode was tested by a visual scan. The overall mean was chosen as a factor's ranking when the histogram upheld its validity as the best representation of the opinion of the respondents. However, if the mode indicated the mean was a distorted indicator of the opinion of a majority of respondents, a number which was more representative of that opinion was determined from the histogram.

Rankings of reverity between the environments were determined on the basis of the overall mean of the ratios suggested in the surveys. Out iers as determined by the Dixon Criterion Procedure with a 5% probability of risk were eliminated in calculating the means.

The resulting means for both influence factors and environmental severity ratios appear in the ranking matrix, Figure 2.3-1.

2.4 Survey Conclusions

Analysis of the survey results revealed several interesting conclusions. Worthy of note is the severity ranking for space flight being twice that of ground benign. Currently, MIL-HDBK-217C assigns space flight the same $\pi_{\rm E}$ factor as ground benign. Actual data collected in this study indicates that several of the part failure rates in space flight are lower than the rates in the ground benign modes.

Another survey observation is that nonoperating has approximately the same severity ratio as ground benign which is contrary to a previous study which showed that the average nonoperating part failure rate was about 1/100 of the average ground benign operating failure rate.

The new categories of missile launch were, on average, given significantly higher severity ratios than any πg factors currently in MIL-HDBK-217. However the distributions of the $U_{\rm SL}$ (undersea launch), MFF (missile free flight), MFA (airbreathing missile, flight) and ML (missile launch) rankings were bimodal. The lower mode was used in the analysis because it correlated with existing field data.

ENALMONNENT - ENE		o,	2	-		-1	3	_	2	_	5	3	7	Ξ.	ž.	_	٤Ţ	3	_	3	_	=	7
ALTITUDE 2173/GAMONT2213	Ż	d	Ä	$\overline{\forall}$	A	7	$\hat{\nabla}$	V	A	=	-	7	"		ند	-		~	_	-	5	Ž	二
ZAVČE ZIMTVVIION ZAVČE ZIMTVVIION	θ	Θ	a	€	H	θ	H	Θ	Θ	H	V	Ĵ	V	V	V	J		d	V	5	-		\exists
	Θ	Δ	A	a	A	A	Ş	Δ	A	ļ	Θ	Θ	Θ	4	A	4	-		∧	Ë		3	\exists
PRESSINE SHOCK	A	Ă	Δ	Ā	A	A	13.32	Ŷ	Δ	3]3.2	Ž	٥	X	•	Ž	7	_	7.0	3 6.	7	5 (. 59	A	4
ACOUSTICAL NOISE	χ	X		-	X		~	X	~	4.93	3.59	4.19	S	4.53	5.37	6	3.		15.3	1	5.05	Ŋ	
MCITARELY SHIZ	X	X		5.03	1.5	3.45	4.14	(2:2)	Ŷ	5.38	29.1	(; ;)	89.3	18.8	æ 0	5.35	4.7	-	(1.23	15.5	4.83	X	
WWW. VIBRATION	X	-	3.	2	•	3.52	\$	~	5.5	6.62	6.33	G.	69.9	0.	o T	٥٢	2	60	6.53	\$	9	-	-
ACCELERATION	X		X	X	X	1.54	3	X	X	3.	2	4	2	1	3.64	8	6	10	5	2	80	X	~~
FENCYEE (THMERSTOR)	X	X	4.83	4.87	~	X	10	0	X	7.5	X	X	X	X	X	X	X	X	10	X	X	X	-
EXPLOSIVE ATHOSOHERE	X	X	X	X	X	3.6	1.5	X	-	X	X	X	-	-	X	-	-	X	X	X	X	X	-
ALTO EMBH	26	5.65	5	. 45	6.07	5.3	10	9	3.75	7.12	4.62	·	F	5	5.35	37.22	4.05	4.32	8.64	22.2	3.33	X	\$
904 TJA2	X	1.5	2	~	-	-	01	2	J	20	X	X	~	~	~	X	X	X	5	X	X	X	3
S380%2 (A/S09MDJ	F	39.	-	-	~	1	1.23	-	85	3.53	-	-	-	-	5:	X	X	-	-	X	X	X	3
FOVOR SHOCK	5	X	15.	30	Ε.	-		2.18	32.	5.3	.35	-	2	6.03	5.80	8	7.	2	E	-	s	X	-
PYROTECHNIC SHOCK (HIGH FRECUENCY)	X	X	X	Ž	X	X	X	X	X	X	Ż	X	X	X	X	8.5	01	2	-	X	X	X	-
20FW #W01 /110M	X	-	X	2.62	X	X	3.2	X	X	~	X	X	~	2.78	X	X	X	X	X	X	2.69	0=	F
30HT JT.JA-3KUTAR39H3T	X	X	X	X	X	X	X	X	X	X	6. \$	8.00	-	8.9	5.56	6.65	5	36.5	-	~	5.2	8	-
SHOCK/CYCLING	-	-	5.88	8	-	~	-	3.94	X	-	6.53	∞	3	2	-	7.07	7.12	5.45		2.3	5	5	2
BALTAN SIMIST NO.J	X	-	2.42	~	٥	X	25.5	-	-	-	-	5.0	5	6.65	E	5.07	3	-	3	11.	5.10	5.88	-
GM2\T2U0	X	X	2	-	X	X	X	X	X	X	X	X	X	X	2.5	X	X	X	Ŋ	X	X	X	8
3001111A	X	X	X	X	X	X	X	X	X	X	-	Ī~			۳	6.38	2	X	Ī	9	5.85	-	-
INFLUENCE FACTORS			1000	63				KSHELTERED	RINE		TRANSPORT	FIGHTER	TRANSPORT	ł			LAGRICA				FLIGHT		
EW1 ROMENT	GROUND, RENIGN	+-	CROIND MOBILE NH	1	MANPACK	٠.	+	MAYAL . INDERSEA. U	SHAME BENICK SUB	MAYAL HYDROFOIL	ATRACRME INHABITED.	AT PROPRE TWAST TEO.	AT PROPRE LENT MARRITED	AT PROPRE UNINHABI	ATRECIBIL BOTARY M		TACTICAL MISSILE.		LINES RS EA. LAIMCH			SPACE. FLEGHT	
NAMK WALLO	+	+	+	Ť	╬	╁	t	+	+	t	Т	1	+	1	+	1	t	1	7	+	1-	т	Т
ENVIRONMENTAL SEVERITY SATIO	-	-	-		1	-	16.8	2 2	9	2	٤	: 2	: =	: =	27.6	2	287 9	720 6		2	2	-	1=

NOTE: THE MUMBERS INSIDE THE MATRIX REPRESENT THE IMPORTANCE OF EACH FACTOR USING P SCALE OF 1 TO 10 WITH 10 BEING THE HIGHEST SEVERITY LEVEL.

Figure 2.3-1. Influence Matrix

For environments in which little or no data could be collected, the severity ratio rankings provided an insight to the relative rank of the environmental utilization mode and was of assistance in making a realistic estimate of a π_E factor.

The rankings of influence factors also proved helpful in defining the environments being evaluated by this study contract.

3.0 LITERATURE SEARCH

A search for information on the effects of environments on electronic equipments was conducted. All data available from past RADC reliability studies, conducted by Martin Marietta, were reviewed for environmental data. This existing data base consisted of 512 documents that were gathered as a result of past reliability studies and were available for review. By using the facilities of the Technical Information Center (TIC), The Defense Documentation Center's data base was researched so that appropriate new documents could be ordered.

The Martin Marietta Technical Information Center is a computerized information research laboratory. The company designed information storage and retrieval system provided documents to environmental project personnel in various fields of interest. The literature research staff conducted searches to support specific tasks and prepare computerized bibliographies, using the internal data base, commercial data bases and the Defense Documentation Center data base. The research capability includes:

- 1 100,000 records in an IBM370 computerized strage and retrieval system
- 2 On-line access to Defense Documentation Centers data base.
- $\underline{\mathbf{3}}$ On-line entry to commercial data bases via DIALOG and ORBIT systems
- 4 31,000 technical volumes and more than 900 military manuals
- 5 Current issues and back copies of over 300 technical journals
- 6 An additional 53,000 reports stored on microfiche.

All of the above facilities were utilized to produce a master bibliography with abstracts. The master bibliography was reviewed in detail and copies of all pertinent documents were ordered from their respective scurces. The documents received were further analyzed and reduced to the bibliography included in this report (see Section 10.0). The final bibliography represents all the formal manuals and reports reviewed during the update of MIL-HDBK-217C environmental factors. A large part of the failure rate data was obtained from informal reports and information gathered from outside contractors and government agencies as well as from Martin Marietta's various military projects under development and production.

4.0 DATA COLLECTION

After the survey was completed, attention was turned to the collection of failure rate data from fielded systems in the several environmental utilization modes. A list of potential data contributors was derived from several sources, the primary source being contributors of data for past reliability studies. Other potential data sources were obtained from the list of survey participants, their recommendations for contacts, suggestions from in-house personnel, from RADC, and from the literature search.

4.1 Planning

From the list of potential data contributors, a telephone canvas was made. In these calls, the objectives of the study were discussed so the potential data contributor would understand the use of the contributed data. The type of data and the desired formats for data were described to each potential contributor. From this initial dialogue, a determination was made whether there was a reasonable possibility that the organization had usable data or not. If contact had been made with the proper person in the organization, and if they knew of any other person/organization who might have data meeting our requirements. Other suggested sources were added to the primary list to be contacted. More than one hundred and eighty-five organizations were called during this telephone canvas.

As a result of the telephone canvas, a list of eighty-three potential data sources of military and governmental agencies, private companies and non-profit organizations was used for making follow-up calls. Before making the follow-up call, the source to be called was researched. The more information that was known about each potential data contributor, the better the chance of successfully suggesting the presence of usable data that may be available from that source. This is true especially concerning updates of data received from the organization for previous studies.

During the follow-up call, the objectives and data requirements of the study were reiterated. A discussion of that source data and its format usually ensued. If it was felt that the data would fit the needs of the study, and they were willing to donate it, a visit was scheduled to their plant to discuss and pick up their data. After itineraries had been established, appointment confirmation letters were sent to the parties to be visited and clearances transferred where necessary. A total of thirty-five organizations were scheduled for visits.

4.2 Presentation to Potential Data Contributors

Two different formats were used in the presentations given during the data collection trips. A formal, stand up presentation with visual

aids was used if the grouping being addressed was large and there was a projector available. Appendix D contains the discussion and slides used in the formal presentation.

In some cases the situation lent itself to a more informal presentation. It was soon discovered that this informal, more personal approach yielded better results. Basically, the data collection team sat down and discussed in detail the study, its objectives, problems envisioned, plans and data requirements with the ori mization's representatives. The data collection team then listened to any suggestions that were made and expressed their views of these suggestions with useful dialogue often ensuing. The organization's representatives were then questioned about data they had which would fit the study's requirements. Part quality levels, derating guidelines, temperature stress, environment and other factors affecting the failure rates were discussed.

4.3 Data Collection

A total of six trips, three short and three extended trips, were taken to collect environmental failure rate data for this study. Two of the major trips were covered by a team of two persons and the remaining four trips were taken by a single person.

The first major trip covered the Northwastern United States. Six private companies, six military agencies and one non-profit research organization under contract with the military, in seven different areas from Boston, Massachusetts to Washington, D.C. were covered in two weeks.

The second major data collection trip included visits to fourteen private companies and two military organizations in the Los Angeles, San Francisco, and San Diego areas. Due to the number of scheduled visits and the limited time, the team split up for the second week of the trip in order to keep all of the appointments. One person covered the San Diego appointments while the other person kept the San Francisco appointments.

The third trip covered the central part of the country. One military organization, three private companies, and one governmental agency ere visited during this trip. Facilities in Louisville, Kentucky, Crane, Indiana, St. Paul, Minnesota, Dallas, Texas and Albuquerque, New Mexico were visted during this trip.

Three shorter data collection trips were also taken. Mr. Earl Kirkley attended the 1978 Institute of Environmental Studies Seminar in Chicago to obtain information and advice pertaining to the Environmental Factors Study with a special emphasis on learning potential failure rate data sources. An announcement was made at the start of the seminar regarding the efforts to revise the application of environmental factors to reliability prediction in accordance with MIL-HDBK-217B. Private discussions were held between Mr. Kirkley and representatives from

Westinghouse Defense and Electronics Center, Sperry Univac, and Wright-Patterson Air Force Base in which the Program Plan was reviewed and inquiries made on any ideas the participants had pertaining to methods of revising the application of the π_E factors in reliability prediction.

Mr. Edwin Kimball traveled to Aberdeen, Maryland for the purpose of securing failure rate data for tracked versus wheeled vehicles. Problems with predicting failure rates for the above environments were also discussed.

Mr. Lee Mirth collected missile launch data from the Denver Division of Martin Marietta Aerospace. A major topic of discussion was Centaur Program data.

5.0 DATA ANALYSIS

The data analysis methodology used to update and revise the MIL-HDBK-217 environmental factor (πp) tables conformed to the flow chart, Figure 5.0-1. The methods and equations employed during the analysis are described in detail in the following sections.

5.1 Investigation of New Methodology

Several alternate methods for calculating the environmental effects on electronic equipment were investigated during the course of this study. New techniques, such as the environmental stress method described in Section 8.0 and the matrix approach discussed in Section 5.6 were considered and were found not feasible. Average part failure rates were calculated for the various environmental modes and this data was used to test the systems method for reliability prediction. Multiplying the total systems electronics part count by the segmented mission average part failure rates for a system with known field reliability, resulted in gross inaccuracies so this method was abandoned. The resulting system failure rates were too low by a factor of approximately 30 to 1. System type TR factors were then calculated from the average part failure rates for each environmental mode. Conventional electronic part level predictions were then evaluated for 2 different complex systems in the benign mode. These failure rates were summed and the total was multiplied by appropriate system π_E factors for modes in which the true system reliability was already known. The resulting mode failure rates were too low by a factor of about 8 to 1. This method was more accurate than the average part failure rate

approach but still considerably less accurate than the standard analytical procedure. It was therefore decided to retain the existing MIL-Handbook-217 methodology and data analysis proceeded as shown in the flow chart Figure 5.0-1 and described in subsequent sections of this report.

5.2 Analytical Methods

The collected failure rate data were categorized by the part types contained in HIL-HDBK-217. For the purpose of this analysis, a part type is defined to be that group of parts for which a separate model is shown in HIL-HDBK-217. For example, the discrete semiconductor part types are Group I conventional transistors, Group II FET transistors, etc.

The collected failure rate data for each part type contained a mix of quality levels, operating temperatures, stress ratios, and other influence factors that are contained in the part failure rate models of MIL-HDBK-217.

In order to isolate the effects of the environmental modes on failure rate, it was necessary to normalize the data to selected reference levels. The reference levels for the quality level, operating temperature and atress ratio were those which are representative of the largest quantity of collected part hours of data within each part type. The method used for normalization is shown below and is based on using modified part hours to calculate a normalized failure rate:

 $H_i = \lambda$ factor x Q factor x h_i

where:

H, = modified part hours

h₄ = collected part hours for each part type

$$\lambda$$
 factor = $\frac{\lambda_{bi}}{\lambda_{b}}$ ref

Q factor =
$$\frac{\pi_{Qi}}{\pi_{Q ref}}$$

 λ_{bi} = the MIL-HDBK-217 tabular value of base failure rate (λ_{b}) for the temperature and stress ratio of the collected data

b ref = the MIL-HDBK-217 tabular value of base failure rate for the reference temperature and stress ratio

 m_{Qi} = the MIL-HDBK-217 tabular value for the quality level (m_{Q}) of the collected data

Q ref = the MIL-HDBK-217 tabular value for the reference quality level. The other influence factors which were represented in the confected failure rate data were considered individually to determine if normalization was necessary. In some cases the value of the factor was equal to (or near) unity and normalization was not required. In some cases, the range of the factor value was small and a nominal value was used to normalize the data. In a few cases, the failure rate data were analyzed to select appropriate values for normalization.

The modified part hours (H_i) and the associated number of failures for the line entries were summed by environments for each part type. The failure rates were then calculated at the upper single-sided 60 percent confidence level. Prior to calculating the confidence levels, it had to be determined whether the component data were time or failure truncated. Since no known instances of failure truncated information were reported, received, or documented, it was assumed that the data were time truncated. The upper 50 percent confidence level failure rate can be calculated by using the component part hours and the Chi square (χ^2) value at 2r+2 degrees of freedom at the 40 percent level of significance point. If the data had been failure truncated, the value would be obtained at 2r degrees of freedom. The following general equation was used for calculating the failure rate:

$$\frac{\chi^2(\alpha, 2r+2)}{26i} = \lambda_{\Gamma.60}$$

where:

r = Number of failures and determines the degree of freedom coordinate used in determining x^2

2r + 2 = Total number of degrees of freedom

a = Acceptable risk of error (40 percent in this study)

1-a = Confidence level (60 percent in this study)

H_i = Total number of modified part hours for the part type.

Since the statistical tables used were limited to χ^2 —ues up to 100 degrees of freedom, it was necessary to calculate an estimate of the χ^2 percentile points whenever more than 49 failures were observed in the data. Therefore, with degrees of freedom >100, the Chi Square Approximation equation was used:

$$\chi_p^2 = 1/2 (z_p + \sqrt{2f - 1})^2$$

where:

 χ_p^2 = Approximated χ^2 value

- f = Total number of degrees of freedom
- $z_p = 0.25335$ and is the value of the standard normal variable at the 60 percent significance level

and

$$\lambda_{p.60} = \frac{\chi_p^2}{2H_1}.$$

The ground benign failure rates resulting from the analysis of the raw data showed good agreement with the reference level base failure rates (λ_b) in most of the existing MIL-HDBK-217 tables. The exceptions to this rule were the ground benign failure rates for transistors, Group I, silicon, NPN; transistors, Group I, silicon, PNP; diodes, Group IV, silicon; and zener diodes, Group V (MIL-HDBK-217 Tables 2.2.1-7, 2.2.1-8, 2.2.4-7, and 2.2.5-4 respectively). Accordingly, these tables were updated to reflect the latest "state-of-the-art" and are contained in Appendix E to this report.

5.3 Computation Procedure

When a failure rate for an environmental mode ($\lambda_{p.60}$) was calculated from a statistically significant quantity of part hours (typically > 100 x 10^6) it was ratioed to the ground benign reference failure rate to determine a revised π_E value for the mode:

$$\pi_{\rm E} = \frac{\lambda_{\rm p.60}}{\lambda_{\rm brefGB}}$$

The quantity of part hours collected for some part types in environmental modes presently considered by MIL-HDBK-217C was not adequate for this calculation. In this case, new environmental factors were computed by averaging the value from the survey (see Section 2.0) and the present MIL-HDBK-217C factor. The rationale behind this method is as follows. The old tables were based on data. The survey numbers reflect new experience, both intuitive and factual. The average was taken to provide equal weight to the old data and the survey which was based partly on judgement and partly on new data. Had the survey reflected all new data, it would have received greater weight.

The Fleet Reliability Assessment Program (FRAP) provided one of the few sources of controlled data from identical equipment which had been operated in more than one environment. The close correlation between this information and the survey results can be seen in Table 5.3-I below.

TABLE 5.3-1 COMPARISON OF FRAP VERSUS SURVEY DATA

FRAP SYSTEMS	ENVIRON- MENT	FAILURES	System Hours	FAILURE RATE
URC-62, WSC-3, UYK-20 and WFR-7	NS	68	155852	0.000436
URC-62, WSC-3, UYK-20 and WRR-7	NSB	24	64476	0.000372

$$\frac{\lambda_{\rm NSB}}{\lambda_{\rm NS}} = \frac{0.000372}{0.000436} = 0.85$$

Survey
$$\pi_{E_{NSB}} = \frac{6.042}{7.300} = 0.83$$

Systems Used

URC-62 - AN/URC-62 VLF Fleet "Toadcast System

WSC-3 = AN/WSC-3 Satellite .o. unication Set

UYK-20 = AN/UYK-20 Computer, Pigital Data, Combat System

WRR-7 = AN/WRR-7 VERDIN Receiver

In some cases, an inadequate quantity of part hours was collected for part types in new environmental modes not presently included in MIL-HDBK-217C. The predominant information available was the $n_{\rm E}$ suggested by the survey, all of which are scaled to a Ground Benign ($G_{\rm B}$) factor of 1.0. However, the survey yielded general environmental factors which are not tailored to any specific part type. Therefore, a formula was derived to adjust the range of these survey factors to the range of factors for specific part types as given in MIL-HDBK-217C, Notice 1. The Missile Launch ($M_{\rm L}$) environment, which is the most severe environment in the existing handbook was selected as the ranging parameter in the formula:

$$\pi_E = \text{Survey } \pi_E \cdot \frac{\hat{\pi}_E \ (M_L)}{\text{Survey } \pi_E \ (M_L)}$$

where:

Survey π_E = Survey value for environment of interest

Survey $\pi_{E(M_T)}$ = Survey value for M_L mode

 $\hat{\pi}_E$ (M_L) = Average of the survey value and existing MIL-HDBK-217C value for M_L

The M_L values were used for ordering within the range because this mode has the highest numbers in the MIL-HDBK-217C π_E tables. The synthesizing procedure assumes a constant survey bias which results in slightly conservative predictions.

In some instances, the operating π_E values for space flight, which had been calculated from data with large quantities of part hours (>100 x 100) were in the range of 0.1 to 1.0. It would have been possible to equate this value to the base I and ratio the remaining π_E 's accordingly. This approach was not used because the base failure rate (λ_b) tables reflect ground benigh conditions. Revision of some of these tables to reflect space flight conditions would have resulted in M_L π_E 's some 5 to 10 times higher than the present values. In the interests of consistency the space flight π_E values were therefore allowed to drop below 1 when calculated from 2 large data base and the corresponding λ_b tables were not changed so they continue to reflect ground benigh conditions.

Nonoperating failure data were collected analyzed in a manner similar to the operating failure data. Since no electrical stress is applied in the nonoperating mode and most of the collected data reflected ground conditions approximately 25°C, it was not necessary to normalize the nonoperating data for stress. The operating mathematical model for each part was revised as necessary by deleting terms which were not appropriate for the nonoperating mode. The model was then evaluated and solved for nonoperating environmental factors (meno) by substituting the appropriate π 's and the table value for λ_h at 25°C and 10 percent stress ratio since that value most closely approximated the nonoperating fixed ground conditions. The nonoperating failure rate calculated from the collected new data provided the λ_{PNO} term. In most cases, the π_{ENO} calculated for each part type was recorded under the ground fixed (Gr) mode since this was the environment from which the majority of the nonoperating data were collected. The remaining #ENC factors for the other modes were synthesized from the relationship between the operating mg factors.

The nonoperating failure rates are used in reliability calculations to reflect stability degradation during periods of dormancy or storage. The ground benign (G_B) and ground fixed (G_F) π_{ENO} factors are applied when the equipment is either in storage or assembled into an all-up system but not operating. When the equipment is stored, or otherwise in a non-operating mode, in an environment that experiences relatively nominal conditions or controlled environments, the π_{ENO} factors for ground benign (G_B) are appropriate. Storage in a factory or air conditioned storeroom would be examples of ground benign conditions. Uncontrolled or "field" conditions are appropriate for ground fixed π_{ENO} conditions. The remaining π_{ENO} factors are utilized primarily when equipment is involved in a mission, but is not operating, such as aircraft captive carry to and from the target.

The data base used for this study is contained in the Collected Failure Data Summary, Appendix G. Line items for certain environmental utilization modes such as M_L , A_{RW} , and N_U have numerous entries with relatively small quantities of part hours and zero failures. These entries should not be used for analytical studies unless they are supplemented with enough additional data to obtain statistically significant results.

5.4 Histograms

The collected operating data was analyzed in histogram form to study the distribution of temperature and quality level within each group of parts. This was necessary to select the reference levels that represent the largest quantity of data as discussed in Section 5.2. These histograms for the major portion of the data base are shown in Figures 5.4-1 through 5.4-17.

Figure 5.4-1. Microelectronic Devices Temperature Histogram

REFERENCE LEVEL: 30°C/STRESS RATIG = 0.2

F e 5.4-2. Discrete Semiconductors Temperature/Stress Histogram

Figure 5.4-3. Tubes Temperature Histogram

Figure 5.4-4. Resistors Temperature/Stress Histogram

REFERENCE LEVEL: 30°C/STRESS RATIO = 0.2

REFERENCE LEVEL: 35°C

Figure 5.4-6. Inductive Devices Temperature Histogram

Figure 5.4-7. Rotating Devices Temperature Histogram

TEMPERATURE DEGREES CENTIGRADE

REFERENCE LEVEL: 25°C

TEMPERATURE DEGREES CENTIGRADE
REFERENCE LEVEL: 30°C/STRESS RATIO = 0.2

TEMPERATURE DEGREES CENTIGRADE

REFERENCE LEVEL: 40°C/STRESS RATIO . 0.2

Figure 5.4-9. Switches Temperature/Stress Histogram

REFERENCE LEVEL: 25°C

Figure 5.4-10. Connectors Temperature Histogram

Figure 5.4-11. Printed Wiring Boards Temperature Histogram

REFERENCE LEVEL: 30°C

Figure 5.4-12. Connection Temperature Histogram

Figure 5.4-13. Microelectronic Devices Quality Level Histogram

Figure 5.4-14. Discrete Semiconductors Quality Level Histogram

Figure 5.4-15. Resistors Quality Level Histogram

Figure 5.4-16. Capacitors Quality Level Histogram

Figure 5.4-17. Inductive Devices Quality Level Ristogram

5.5 Special Techniques for Microelectronics

The general equation for microelectronics failure rates (per MIL-HDBK-217C, proposed Notice I) is

$$\lambda \rho = \pi_Q \, \pi_L \, (C_1 \pi_L \pi_V + (C_2 + C_3) \, \pi_E).$$

The π_L term is a learning factor. π_V is a voltage denating stress factor. For purposes of this study, π_V and π_L are assumed to be 1. Solving for π_E , the environmental factor, the equation becomes

$$\pi_{\mathbf{E}} = \frac{\frac{\lambda \rho}{\pi_{\mathbf{Q}}} - c_1 \pi_{\mathbf{T}}}{c_2 + c_3}$$

The part failure rate, $\lambda_{\rm p}$, is the number of failures divided by the part hours. For purposes of this study, the failure rates calculated at 60 percent confidence level were used for $\lambda_{\rm p}$. C₁ and C₂ are factors which are dependent upon device complexity and technology. C₃ is a packaging factor. $\pi_{\rm T}$ is dependent upon device technology and junction temperature. Therefore, an estimate of $\lambda_{\rm p}$ requires knowledge of complexity, packaging and other device characteristics. $\pi_{\rm Q}$ is the quality factor for the device.

Approximately 39 percent of the operating hours utilized for microelectronic devices were detailed by device complexity and technology. There were 103 different classifications comprising the detail data. Five of these classes had operating hours greater than 75 x 10^6 part hours. Eighty-nine classes had operating hours less than 10×10^6 part hours, and 70 percent of these had no failures reported. Low hours combined with no reported failures, when used in the above equation, results in poor estimates of π_E .

The other 61 percent of the operating hours were classified as digital, linear, LSI, or memory, with quality ratings and junction temperature provided. To obtain more realistic π_E 's, the data for which device complexity and technology data was available was grouped into the classes of digital, linear, LSI, or memory. This provided a larger quantity of part hours for analysis purposes. Table 5.5-1 displays the microelectronic field data which was utilized in this study. The data is divided into the environments of ground benign (G_B) , space flight (S_P) , ground fixed (G_P) , Naval submarine (N_{SB}) , and nonoperating ground fixed $(G_P-Nonoperating)$. The source of the data is indicated by a number. (Note: Source 1 for G_B is the same source as source 1 for G_P , etc.) The total operating hours collected for each environment is indicated. Ground benign had the largest number of operating hours collected, more than 79 billion part hours. The total number of microelectronic hours collected for all environments is more than 102 billion part hours.

TABLE 5.5-1 MICROELECTRONICS FIELD DATA

				QUALITY		
			PART HOURS	ADJUSTED		
ENVIRONMENT	SOURCE	TYPE	×106	PART HOURS	FAILURES	àE
C ^B	i	Digital LSI	63.693 69.318	1473.578 212 7.265	19 95	2.400 5.823
		Memory	1982.505	51123.835	1148	2.172
	2		57707.211			
	4	Digital Linear	19403.618	28853.605 38807.236	84 35	0.412
Total			79226.345	300077433	3,5	0.380
10.01			77220.343			0.360
Sy	3	Digital	505.050	505.050	0	0.199
		Linear	101.530	101.530	0	0.296
	4	Digital	193.000	193.000	2	2.748
		Linear	5.610	5.610	0	11.638
Total			805.190			0.902
Gp	1	Digital	738.509	15744.171	315	3.265
-r	•	Memory	108.074	5073.315	124	2.561
		LSI	25.370	579.950	20	4.754
	5	Digital	450.833	450.833	6	2.749
		Linear	90.740	90.740	2	1.946
		Hemory	19.601	19.601	0	3.373
	6	Digital	7977.363	11017.246	164	2.473
		Linear	712.941	1163.165	45	2.151
Total			10195.431			2.506
NSB	1	Digital	272.294	2476,981	0	0.028
35	•	Memory	17.549	52.647	Ö	3.141
	7	Digital	2637.022	2637.022	72	4.924
	,	Linear	8.808	8.808	1	16.495
Total			2935.673			4.494
G _F -	3	Digital	945.040	945.040	1	0.257
Nonoperating	3	Linear	200.340	200.340	3	1.165
						0,285
	8	Digital Linear	5863.763 2505.254	3199.635 1370.394	6	0.283
		CTHEAT		1370.374	,	
Total			9514.370			0.248

Total Hours: 102677.009 x 106

The mathematical model for microelectronic device failure rate does not allow the same procedure to be employed in solving for *g as in other sections of NIL~HDBK~217. The other sections have an equation for *g that is totally multiplicative. Therefore, summations of all operating hours for that section can be used to obtain an overall *g for that section. For microelectronics, however, the hours cannot be added, due to the additive nature of the complexity factors. A *g must be obtained for each entry in Table 5.5-1.

A median value π_T , C_1 , C_2 , and C_3 , was calculated for each device type (...e., digital, linear, LSI, memory) at the junction temperature for each entry. The part hours for each quality level was adjusted to the quality level for Class B devices. The method for quality factor adjustment is the same as that described in section 5.2. For each entry a π_E can be calculated, using the adjusted part hours.

After these calculations have been done for each entry in Table 5.5-1, there exists a range of $\,_{\rm E}$ terms for each environment. For example; for ground benign there is a range of .076 to 5.823 for $\pi_{\rm E}$. An overall $\pi_{\rm E}$ must be calculated for each environment that gives the appropriate weighing to each individual $\pi_{\rm E}$. The original part hours for each $\pi_{\rm E}$ is used to weight the $\pi_{\rm E}$ according to actual experience data in calculating an overall $\pi_{\rm E}$.

$$n_{\rm E} = \frac{\sum_i \mu_i}{\sum_i \mu_i}$$

This equation was applied to each environment which had adequate data. The resulting m_E appears in Table 5.5-1.

These new *E's for each environment were used as the actual environmental factors derived from field data. These *E's are for four of the sixteen operating environments (excluding airborne fixed wing environments). There was very little data for the other twelve environments. A method of calculating a synthesized *E for these environments was devised.

There were four environments (NS, $G_{\rm H}$, NU and NL) being analyzed which appeared in the MIL-HDBK-217C. The $\pi_{\rm E}$'s for these environments, as in the proposed Notice 1 to HIL-HDBK-217C, are listed in Table 5.5-2. During the course of this study surveys were sent to various individuals throughout government and industry, (see Section 2.0). The resultant overall factors for each environment are listed in Table 5.5-2 in the survey column.

The four environments (N_S, $G_{\rm H}$, N_U and M_L) which appear in MIL-HDBK-217 had new environmental factors calculated by averaging the adjusted survey number and the present MIL-HDBK-217C, Notice 1, factor. The original survey numbers were adjusted to the newly calculated ground benign base of 0.38. These new factors are listed in Table 5.5-2 in the calculated column. The rationale behind this method is as follows. The old tables were based on data. The survey factors reflect new

TABLE 5.5-2 ENVIRONMENTAL FACTORS FOR MICROZLECTRONICS

		TE OPERATING					
environment	217C NOTICE 1	ADJUSTED SURVEY	CALCULATED	TE NONOPERATING			
G _B	1	0.380	0.380*	0.038			
s _r	1	0.828	0.902*	0.089			
G _F	2.5	1.054	2.506*	0.248*			
N _{SB}	- •	2.296	4.494*	0.445			
N _S	4	2,774	3.387	0.335			
G _M	4	4.370	4.185	9.414			
М _Р	-	4.750	3.838	0.380			
H _{FF}	-	4.788	3. 005	0.383			
N _U	5	6.410	5.,05	0.565			
H _{FA}	-	6.688	5.404	0.535			
N _H	-	7.296	5.895	0.583			
טט	-	7.853	ა.345	0.628			
A _{RW}	-	10.495	8.480	0.839			
U _{SL}	-	14.098	11.391	1.127			
H	10	16.234	13.117	1.298			
c _L	-	273.853	.221.272	21.897			
AIT	3.5	-	-	-			
Aur	4	-	_	-			
A _{IF}	7	-	-	-			
A _{UF}	8	-	-	-			

^{*}Based on Field Failure data. See Table 5.5-1.

experience, both intuitive and factual. The average was taken to provide equal weight to the old data and the survey which was based partly on judgement and partly on new data. Had the survey reflected all new data it would have received greater weight.

There are eight environments (Mp, Mpp, MpA, NH, ARW, UL, NUU, and CL) for which inadequate data were collected and which had not previously appeared in MIL-HDBK-217. The predominant information available was the π_E 's suggested by the survey, which are scaled to a ground benign (GB) factor of 0.38 in Table 5.5-2. The formula described in section 5.3 was used to adjust the range of the survey factors to the range of microelectronics factors given in MIL-HDBK-217C, Notice 1. The missile launch (ML) environment, which is the most severe environment in the existing handbook, was selected as the ranging parameter in the formula:

$$\pi_E = \text{Survey } \pi_E = \frac{\hat{\pi}_E(M_L)}{\text{Survey } \pi_E(M_L)}$$
.

Table 5.5-2 shows the π_E for M_L is calculated as the average of the adjusted survey and the handbook π_E , or 13.117. The survey number for M_L is 16.234. Therefore, π_E 's for the eight "new" environments are equal to 13.117 times the survey number for each environment divided by 16.234 or π_E = 0.808 · Survey π_E . Table 5.5-2 lists, in the calculated column, the π_E factors for these eight environments as calculated by the above formula.

The nonoperating field data was analyzed in much the same way as the operating data. There was only one environment for which adequate nonoperating data was obtained, and that is ground fixed. The data collected for the Gp environment is tabulated in Table 5.5-1. More than 9.5 billion part hours were collected in this effort. The overall non-operating π_E factor for Gp environment determined from this data was 0.248.

The ratio of the operating π_E for GF to the nonoperating π_E for GF is 10.105. This ratio is applied to all other environments' operating π_E 's to obtain nonoperating π_E 's for these environments for which insufficient data was collected. The following equation is used:

$$\pi_E$$
 Nonop = $\frac{\pi_E}{10.105}$

The numbers calculated in this operation are listed in Table 5.5-2 in the column titled " $\pi_{\rm E}$ Nonoperating."

The environmental factors for hybrids, which are given in Table 2.1.7-5 in Appendix F, were calculated in the same manner as those for microcircuits.

5.6 Environmental Matrix Approach

An early approach was investigated which would have taken advantage of the vast experience that has been accumulated in the many released military specifications defining environmental design requirements. This approach would have addressed the establishment of π_E factors for the black box level since that is the lowest level of environment most widely described in the specifications. The intent was that the predicted failure rates of parts would be established as in the past except that π_E influences would not be applied. After the part failure rates were summed to establish the black box failure rate, a new π_E factor established by this new approach, covering the overall influence of environment on the prediction, would be applied. The reasons for taking this approach were as follows:

- It was felt that the majority of data available where environmental severity could be directly related to field operations utilization modes was available from existing specifications.
- There is almost no readily available data on the actual level of environments seen by the parts in the field operational utilization modes.
- 3 If an approach was taken to establish the part environment in a particular utilization mode, an insurmountable problem could be anticipated. This problem was that if a large number of the same types of parts were used in the same black box in a particular utilization environment, the number of physical transfer functions pertinent to each of the same type of parts would be quite diverse. This would have created a confounding of the oltimately derived π_E factor for that part in the mode of use which would have created a lack of confidence in the derived factor.

The black box π_E approach considered the establishment of a weighing matrix such as is shown in Figure 5.6-1. The row vectors represented an expanded breakdown of the various service environmental modes deemed applicable. The column vectors represented the influence factors considered pertinent to failure rates of military equipment. The establishment of the environments and associated influence factors were supported by industry and government agency information expressed in the results of the survey (see Section 2.0).

Once the matrix structure was established, it was intended that each matrix element would have initially been filled with a numerical value of the applicable military specification design or test level appropriate to the environment and influence factor of concern. An abbreviated example would be:

	VIBRATION
GROUND BENIGN	N/A
GROUND MOBILE WHEELED	ACCEL <u>+2g</u> peak £f 200 Hz <u>At 6 Hours</u> V _H = 400
AIRBORME IMHAB- ITED FIGHTER	ACCEL ±5g peak of 2000 Hz ot 6 Hours VH = 10,000

VIBRATION ENVIRONMENT WEIGHING FACTORS
ACCEL = 1.0
af = 3.0
at # 0.5
${}^{4}V_{11} = \frac{2}{1} \times \frac{200}{3} \times \frac{6}{0.5} = 400$ ${}^{4}V_{11} = \frac{5}{1} \times \frac{2000}{3} \times \frac{6}{0.5} = 10,000$

Figure 5.6-1. Weighing Matrix

The value of the numerical quantity would involve one or more parameters depending on the nature of the influence factor stress as it affects the box reliability. For example, vibration would involve frequency bandwidth, acceleration level, and time of exposure. These three parameters would be weighed and combined to arrive at the specific numerical value (VN) for the matrix element in question. The parametric values would be derived from direct reference to specifications such as MIL-STD-810, MIL-E-16400, MIL-STD-210, AR 78-35, etc. In cases such as the submarine environment, direct contact would be made with past and present developing agencies and firms to ferret out the appropriate data.

After extensive specification research to complete the matrix element entries, the influence factor stress column vectors would be normalized with respect to the highest numerical value entered. This would then provide for each influence factor a rank by stress severity for each of the environments.

At this point, the results of the survey would be melded into the matrix to incorporate the present day line of thought as expressed in the results of the industry/government survey. The survey addressed in part a determination of the relative severity of the influence factors for the various environments, i.e., matrix row vectors. This information is statistically analyzed and consolidated to derive what is essentially a field experience weighing value for the severity of individual influence factors as they pertain to a specific environment. It was intended that this weighing value be multiplied by the normalized environmental stress numerical values to reflect present experience obtained from industry/government respondents to the survey. An example is shown below: (Figure 5.6-2)

	TEMPERATURE	HUMIDITY	VIBRATION
GROUND BENIGH	0.02	0.03	N/A
SURVEY	2	3	l
WORMALIZED ENVIRONMENT	0.01	0.01	N/A
GROUND MOBILE WHEELED	0.32	6	0,12
SURVEY	4	6	3
MORMALIZED ENVIRONMENT	0.8	1	0.04
AIRBORME IMMABITED FIGHTER	5	0.24	8
SURVEY	5	3	8
MORMALIZED ENVIRONMENT	1	0.8	1

Figure 5.6-2. Composite Matrix

Once the matrix was completed with the influence factor stress value resulting from combining the survey and normalized specification criteria, the row elements (environments) would be added to obtain a combined stress value for each mode that represented the combined effect of the influence factors encountered. These combined stress values would then be normallized to the ground benign environment to rank the list of modes by order of stress severity. See example below: (Figure 5.6-3)

	TEMPERATURE	HUMIDITY	VIBRATION	ROW	NORMALIZED COMBINED STRESS SURVEY
GROUND BENIGH	0.02	0.03	N/A	1.8	1
GROUND MORILE WHEELED	0.32	6	0.12	10.0	5.6
AIRBORNE INHABITED FIGHTER	5	0.51	8	50.0	27.8

Figure 5.6-3. Rank Order Matrix

Using field data on black box environmentally induced failure rates for the various environmental modes, it was intended that an attempt be made to crosscorrelate the matrix results with the reported field results. If such a correlation was verified, it would be assumed that the newly derived normalized combined stress severity factors were in fact a good approximation to the wg factors desired for the black box level of failure rate prediction.

The feasibility of the systems level environmental matrix approach was investigated during this study but it was not implemented for the reasons advanced in Section 5.1.

6.0 ENVIRONMENTAL MODES

Eleven different nominal environmental conditions were previously identified and quantified in MIL-HDBK-217C. This list has been expanded by adding 10 new modes for a grand total of 21. However, consideration of avionics was beyond the scope of the present study so four modes, airborne inhabited transport (AIT), airborne inhabited fighter (AIF), airborne uninhabited transport (AUT) and airborne uninhabited fighter, (AUF) were not evaluated. As a result, field failure rate data were collected and data survey results were analyzed to determine new mg factors for the 17 environmental modes described in more detail in the following sections. Appendix F contains a complete list of the definitions for each mode and typical equipment types which fall into each mode category.

Table 6.0-1 compares the averages of the environmental factors contained in MIL-HDBK-217C Notice 1 with the average factors from this study survey and from the recommended revised factors for the Handbook. As indicated by the table, the averages of the recommended revisions do not markedly differ from those of the existing Handbook. The greatest change is the Naval sheltered average which increases from 5.4 to 6.5.

6.1 Ground Benign

MIL-HDBK-217A made no attempt to distinguish between the ground benign and ground fixed environments. Data analysis which was conducted to prepare the "B" revision indicated that a breakout was required and a new category called laboratory zero (Lo) was added. The nominal environmental conditions for this category was nearly zero environmental stress with optimum engineering operation and maintenance. When MIL-HDBK-217B was released, the identification laboratory zero was changed to ground benign (GR) but the description has been carried over into MIL-HDBK-217C. To avoid misconceptions, it is proposed to change the definition to "non-mobile, laboratory environment readily accessible to maintenance". Typical examples of hardware which would fall into the ground benign environmental utilization mode are laboratory instruments, test equipment used in laboratories, medical electronic equipment used in hospitals, and most large business/scientific computer complexes. Data sources for this kind of hardware were used to calculate ground benign πE factors. Temperature and humidity must be closely controlled for equipment to be categorized in this mode.

6.2 Space Flight

The Reliability Notebook, RADC-.R-67-108, first added satellite orbit ($S_{\rm O}$) to the list of environmental service conditions. The definition of this category assumed "laboratory zero conditions without access for maintenance". MIL-HDBK-217B, as originally proposed, changed the

TABLE 6.0-1 COMPARISON OF AVERAGE ENVIRONMENTAL FACTORS

			AVERAGE ENVIR MENTAL FAC				
environ men t	SYMBOL	PART TYPES AVERAGED	217C AND NOTICE 1	SURVEY	REVISED VALUE		
Ground Benign	G _B	60	1.03	1.0	1.01		
Space Flight	s _F	59	1.01	2.1	0.97		
Ground Fixed	G _p	60	2.76	2.7	2,74		
Naval Submarine	N _{SB}	57	N/A	6.0	6.6		
Naval Sheltered	N _S	60	5.4	7.3	6.5		
Ground Mobile	GM	60	11.1	11.5	11.7		
Manpack	M _P	57	N/A	12.5	13.7		
Missile Free Flight	MFF	54	n/a	12.6	13.7		
Naval Unsheltered	NU	58	15.7	16.8	16.4		
Airbreathing Missile, Flight	M _{FA}	54	N/A	17.6	19.0		
Naval Hydrofoil	N _H	57	N/A	19.2	21.1		
Naval, Undersea, Unsheltered	^N บบ	57	n/a	20.6	22.6		
Airborne, Rotary Winged	A _{RW}	57	N/A	27.6	30.4		
Undersea Launch	U _{SL}	54	n/a	37.1	40.3		
Missile Launch	МĽ	55	47.5	42.7	47.1		
Cannon Launch	c _r	53	N/A	721	719		

category from satellite orbit to space flight (S_F) but retained the earlier definition. When the "B" revision was released, the description was reworded to encompass earth orbital conditions approaching ground benign without access for maintenance. The related vehicle was neither under powered flight nor in atmospheric reentry. This definition was retained in MIL-HDBK-217C and the present study proposed to allow the existing identification to remain intact. The data survey showed that solar radiation and low ambient pressure were the major influence factors affecting reliability in this mode. Data collected to quantify space flight me values came from the W71 orbital sensor, SMS, ALSEP, C System and synchronous earth orbit satellites together with the Apollo transponder, ATS-F, communication subsystem, TIROS-N subsystem, and the ETS-2 satellite.

6.3 Ground Fixed

The original definition of ground fixed (Gr) environmental service assumed conditions less than ideal including installation in permanent racks with adequate cooling air, no vibration or shock, maintenance by military personnel and possible installation in unheated buildings. The phrase, "no-vibration or shock," was dropped out of the MIL-HDBK-217B and 217C description because a ground fixed installation might be subject to low level vibration or shock from adjacent equipment. This study proposes to eliminate the phrase, "by military personnel" from the definition. The reason for this is that equipment in the ground fixed mode could be maintained by military or civilian personnel with equivalent skill levels. Examples of hardware in the ground fixed environmental mode would be permanent installations of air traffic control, radar and communications facilities as well as most missile silo ground support equipment. The survey indicated that humidity was the influence factor which affected reliability the most in this mode. Typical data collected to quantify ground fixed mg values came from Safeguard perimeter acquisition and missile site radars, Minuteman III ground support equipment, ground based VHF/UHF communication systems and small ground fixed weapon system computers together with several different air traffic control equipments.

6.4 Ground Mobile

The vehicle mounted ground category was originally considered in MIL-HDBK-217A, however airborne application "K" factors were used because of the lack of pertinent data. The Reliability Notebook RADC-TR-67-108 had a specific ground mobile (GM) environmental service mode which assumed conditions more severe than ground fixed, mostly for vibration and shock. The cooling air supply was also considered more limited and maintenance less uniform. MIL-HDBK-217B changed the category to Grouma, Mobile (and Portable) but the (and Portable) was dropped out again in MIL-HDBK-217C. The description of the mode has remained the same as it was in the Reliability Notebook. This study proposed to separate the mode into Ground Mobile-Tracked and Ground Mobile-Wheeled, however the survey indicated that there was no significant difference between the two. In addition, no data could be found at Aberdeen Proving Ground which showed a significant difference in failure rate between equipments transported on wheeled vehicles versus tracked vehicles. A probable cause for this is that the equipment was designed to withstand its intended application. Therefore, it was decided to retain the original ground mobile category without breakout. The survey found shock and vibration together with sand and dust to be primary reliability influence factors in the ground mobile environmental mode. Data to quantify mg factors in this mode came from sources such as Pershing Ia ground support equipment and other tactical fire direction systems.

6.5 Naval Sheltered

The naval sheltered (Ng) environmental mode was first quantified in MIL-HDBK-2178 (Proposed) where it was defined as conditions similar to ground fixed but subject to occasional high shock and vibration. This description was reworded when the "B" revision was released so that it applied to surface ship conditions. The same definition was retained in MIL-HDBK-217C but it now proposed to describe sheltered or below deck conditions, protected from elements of weather. The survey revealed that humidity was the influence factor most affecting reliability in this mode. Data sources used to calculate naval sheltered $\pi_{\rm E}$'s included surface ship transmitters, transceivers, computers, sonars, and radar equipment.

6.6 Naval Submarine

Naval submarine (NSB) is a newly identified environmental mode which has been added to account for this increasingly important category. This mode is described simply as appropriate for "equipment installed in submarines." The survey results showed that humidity, salt fog, and sine vibration were the primary influence factors affecting reliability in the submarine mode. Major data sources used to calculate naval submarine π_E factors were the ship's inertial navigation system, the C-3 flight control systems, the electrostatic gyro monitor, the central navigation computer, the digital data combat computer, the satellite communications set and the VLF fleet broadcast system.

6.7 Naval Unsheltered

The naval unsheltered (N_U) environmental mode was first described in MIL-HDBK-217B (Proposed) as "nominal shipborne conditions but with repetitive high levels of shock and vibration." Nearby gunfire was considered the primary source of these dynamic stresses. When the "B" revision was released, the definition was modified to apply specifically to surface ships. This nominal description was retained by MIL-Handbook-217C but it is now proposed to revise it as follows: "Nonprotected shipboard equipment exposed to climatic conditions." The reason for this change is that gunfire no longer appears to be a significant reliability influence factor on most ships in the modern Navy. The survey showed salt fog, humidity and immersion to be the factors of primary importance. Typical equipment which would fall into the naval unsheltered mode are mast mounted radar electronics and missile/projectile fire control equipment such as SEAFIRE.

6.8 Missile Launch/Re-entry

A "K" factor for the missile environment was originally contained in MIL-HDBK-217A. The Reliability Notebook, RADC-TR-67-108 defined this environment as severe conditions of noise, vibration and other environments associated with small surface to air missiles and other tactical rocket weapons being fired. The Notebook went on to point out that these

missile conditions may also apply to installations near main rocket engives during satellite launch. The description of the Missile Launch (ML) category was changed slightly in MIL-Handbook-217B and -217C to read, "severe conditions of noise, vibration, and other environments related to missile launch, and space vehicle boost into orbit, vehicle re-entry and landing by parachute. Conditions may also apply to installation near main rocket engines during launch operations". When the present study was initiated, it was proposed to break Missile Launch into four categories shown in Table 6.8-1. In addition a fifth related new category, Missile Free Flight (Mpp), was proposed for non-powered flight. Insufficient data were collected to make a distinction between tactical and strategic missile launch so these two categories are as originally, combined into a single Missile Launch environmental mode. Data sources used to calculate missile launch mg's included electronic flight controllers for liquid rocket engines, the C-3 Missile computer as well as Patriot and Pershing Guidance and Control Systems.

TABLE 6.8-1 MISSI! E CATEGORIES

Environment	Symbol	Description						
Missile, Launch/ Re-entry	M _{LR}	Sovere conditions related to strategic missile launch, and space vehicle boost into orbit, vehicle re-entry and landing by parachute. Conditions may also apply to rocket propulsion powered flight.						
Tactical Missile, Launch	TML	Severe conditions related to tactical missile launch. May also apply to rocket propulsion powered flight.						
Undersea, Launch	USL	Conditions related to undersea torpedo/missile launch.						
Missile, Free Flight	MFF	Non-powered free flight.						
Airbreathing Miss'le, Flight	M _{FA}	Conditions related to powered flight of airbreathing missile.						

6.9 Cannon Launch

This study proposes to add a Cannon Launch (C_L) environment to account for the new family of cannon launch guided projectiles and other weapon systems being added to the defense inventory. The mode is described as "extremely severe conditions related to cannon launch". Launch shocks in the neighborhood of 9000 g's may be experienced and this influence factor is the major contributor to unreliability. Data to quantify and validate π_E factors for this mode were obtained from the Copperhead guided projectile.

6.10 Miscellaneous Modes

Four new miscellaneous environmental modes have been added to the mg tables. These modes are defined in Table 6.10-1. Portable field communications equipment is a typical example of hardware used in the Manpack (Mp) environment where the survey showed that immersion and temperature shock/cycling were the primary factors influencing reliability. Sonar sensors and other ASW equipments fall into the naval undersea unsheltered (Nyy) mode where humidity, leakage and salt atmosphere are of major significance. The survey also determined that salt, fog, immersion, humidity and random vibration were important influence factors in the naval hydrofoil (NH) mode. Data from captive carried and cockpit mounted material were used to evaluate the airborne, rotary winged (ARW) mode. The survey indicated that random/sine vibration and temperature shock/cycling were the main contributors to unreliability in this environment.

TABLE 6.10-1 MISCELLANEOUS CATEGORIES

Environment	Symbol	Description						
Manpack	Мр	Portable electronic equipment being manually transported while in the operational mode.						
Naval, Undersea, Unsheltered	พบบ	Equipment immersed in salt water.						
Naval, Hydrofoil	N _H	Equipment installed in a hydrofoil vessel.						
Airborne, Rotary Winged	ARW	Equipment installed on helicopters.						

6.11 Nonoperating

It is proposed to add the nonoperating category (N₀) to MIL-Handbook-217 in order to account for the dormancy and storage conditions which have a major impact on the reliability of many electronic equipments and weapons systems. This mode is particularly significant for those systems which can not be subjected to periodic functional tests to attain a high level of operational readiness. Some of the terms used in the Handbook part failure rate models are not appropriate to calculate nonoperating failure rates so revised models have been provided for this purpose. The survey showed that humidity as well as sand and dust can have an important influence on reliability under nonoperating conditions. The nonoperating mode is usually found in more than one phase of a system's segmented mission. Major sources for nonoperating data were two different surface to air missile systems and several satellite programs.

7.0 COMPLEX MISSION ENVIRONMENTS

Complex missions usually involve several environmental modes. In these cases, the mission profile must be examined to determine proper segmentation. For example, a space flight might consist of a period of nonoperation following the last functional test, a boost phase, an orbital phase, and a re-entry phase. In such a case, the reliability analysis should be segmented using appropriate $\pi_{\underline{E}}$ factors to calculate failure rates for ground fixed nonoperation (NO) prior to launch, missile launch (ML) conditions during boost and return from orbit, and space flight (Sp) while in orbit. The $\pi_{\underline{E}}$ factors are quantified within each part failure rate model and the resulting part failure rates are summed to obtain system failure rates. A simple model for this mission reliability (RM) would appear as follows:

$$R_{M} = (\lambda_{NO} t_{NO} + \lambda_{ML} t_{ML} + \lambda_{SF} t_{SF})$$

where

 λ_{NO} * system ground fixed nonoperating failure rate

 λ_{MI} = system missile launch/re-entry failure rate

 λ_{SF} = system space flight failure rate

 t_{NO} = nonoperating time period prior to launch

t_{ML} = missile launch/re-entry time period

t_{SF} = space flight time period.

Another example involves a tactical artillery missile fired from a wheeled vehicle capable of traversing rough terrain. The missile would be removed from depot storage and subjected to a functional test. It would then be carried by truck to the ammunition supply point for loading into the mobile launcher. The launcher travels cross country to the forward edge of the battle area and when a fire mission is received, power is turned on in the missile and shortly thereafter it is launched and proceeds to the target. As before, the appropriate mg factors should be quantified within each part failure rate model and the resulting part failure rates are summed to obtain system failure rates for each segment of the mission. A model for this mission is shown below:

$$= e^{-\left[(1-a)\left(^{\lambda}NO_{GF}\right)^{t}NO_{GF} + \lambda_{NO_{GM}}^{t}NO_{CM}^{t} + A_{CM}^{t}C_{M}^{t} + \lambda_{ML}^{t}L_{ML}\right]}$$

$$R_{M} = e^{-\left[(1-a)\left(^{\lambda}NO_{GF}\right)^{t}NO_{GF} + \lambda_{NO_{GM}}^{t}C_{M}^{t} + A_{CM}^{t}C_{M}^{t}\right]}$$

where

- a = functional test efficiency (percent of failures detected)
- $\lambda_{NO_{GF}}$ = system ground fixed nonoperating failure rate
- $\lambda_{\substack{NO_{G_{\underline{M}}}}}$ = system ground mobile nonoperating failure rate
 - $\lambda_{G_{i,j}}$ = system ground mobile operating failure rate
 - λ_{ML} = system missile launch failure rate
- t_{NOGF} = depot storage time period
- $t_{NO_{G_M}}$ = ground mobile nonoperating time period
 - $t_{G_{\underline{M}}}$ = ground mobile operating time period
 - t_{ML} = missile launch and flight time period

3.0 ENVIRONMENTAL STRESS METHOD

The scope of work for the revision of MIL-HDBK-217 environmental factors suggested the study of alternate methods for calculating the effects of environments on the reliability of electronic equipment. Accordingly, the feasibility of the environmental stress method described in this section was reviewed and evaluated.

As early as 1965, MIL-HDBK-217A recognized that, "more accuracy would be attained by developing failure rates around each environmental factor (humidity, vibration, etc.) and to a degree around the specific level for each environmental factor." Lack of resources has prevented a comprehensive investigation of the feasibility of this supplemental approach. The effects of temperature are already well quantified by the λ_b tables in MIL-HDBK-217. It would also be possible to predict the reliability of systems and electronic parts in specific levels of shock, vibration, humidity, and other pertinent environments. In other words, how well is the part or system designed to withstand a specified level/duration of shock or vibration? Draft MIL-STD-XXX, Procedure for Performing a Reliability Stress Analysis of Mechanical Equipment could be used to answer this question since it contains appropriate methodology for calculation of stress/ strength safety margins that can be easily converted into probability values. The trouble is that the manpower required to perform this task on a typical system would be orders of magnitude greater than are presently allocated to reliability prediction. In addition, specific guidelines would be required to standardize the technique. A side benefit world be early identification of unreliable parts and or systems before the test programs are initiated. For example, testing has shown that metallurgically bonded diodes are much more reliable in a high shock environment than are the spring loaded contact type. The supplemental approach to reliability prediction suggested in this section would uncover this type of problem very early in the engineering development phase of a program

Figure 8.0-1 contains preliminary data showing ranges of operational influence factor levels for environment mode. This type of information would facilitate analyses by dynamicists and materials engineers to determine mechanical stress/strength probability relationships, corrosion rates, fatigue, and ultimately a measure of system reliability in the various environments of a mission. A possible drawback to this approach is the fact that input levels of shock and vibration are either attenuated or amplified by the equipment design, so that the electronic parts may see much higher or much lower levels than the input to the assembly. Extensive system level calculations would be a prerequisite to part level analysis in order to quantify the levels actually seen by parts.

In summary, it appears that the environmental stress method described above is technically feasible. However, a study should be made to determine if commitment of the resources necessary to implement such a program could be justified when traded off against the benefits to be obtained.

		·	T	γ		Υ	T		T	T	_
☑ = NOT APPLICABLE ☐ = NO DATA	ALTITUDE	DUST/SAND	LOW TEMPERATURE	TEMPERATURE SHOCK/CYCLING	TEMPERATURE - ALT	SOLAR RADIATION	PYROTECHNIC SHOCK	LOADS SHOCK	FUNGUS/MICROBES	SALT FOG	
GROUND, BENIGN	X	X	10°C 0°C non op	71°C — -54°C 5 min transfor 4 hr oxposure to tomporature (3 cyclos) (8-A1)	X	X	X			X	
GROUND, FIXED	X	X	-40"C op -66"C non op -61"C (99%) -40"C op -62"C non op	71 C = -54°C 5 min transfer 4 for exposure to remperature (3 cycles) (5 A1)	X	360 STU's/sq N/hr	X			15 lb/scro/yr	5 3k 19 3 6
GROUND, MOBILE, TRACKED	\times	and worst for large stand sand (happing particles)	-40°C op -45°C non op -40°C op -54°C non op cond fresze/frest -61°C (99%)	71°C — -54°C 5 min transfer 4 tr exposure to temperature (3 system) (6 A1)	X	.380 BTU's/sq ft/hr	X	15-90g, 11M		15 th/acre/yr	6-1/ Co. 8-1- 30/ do: 5.2-
GROUND, MOBILE, WHEELED	X	3rd for lorge particles	-40°C op -65°C non op -40°C og -65°C non op sond fraste/frast -61°C (90%)	71°C = ~54°C 5 min transfer 4 hr exposure to temperature (3 cyalos) (8-A.1)	X	360 STU's/sq ft/hr	X	15-90g, 11M anc		15 lb/scra/yr	5.1 Cor 5.5 301 dev 5.2
MANPACK	X	X		71°C = -64°C 5 mm transfer 4 br expessors to temperature (3 eyeles) (6-A1)	X	360 STU's/eq fi/hr	X			16 lb/sem/yr	
NAVAL, SHELTERED	\times	X	-45°C OP -45°C NON OP -55° NAVY -63°C NON OP 6°C OP 6°T O 50°C OP -42°T O 72°C NON OP	71°C — -64°C 5 min transfer 4 hr dependers to temperature 13 cyclesi 18-A11	X	X	30 rounds of 9.5 lb/in ² g Peak	1-10g 100M sec grade a, class a type t (90i)	810C test 508	Shall withstend 62.5 to 375 milm3/hr for 16 hours, 4-8% NaCl sel	10 30 49 10
NAVAL, UNSHELTERED	\times	\times	-45 C op -65 C non op to -30 navy -62 C storage -28 op cond freeze/frest -34 C (99%) -28 op -62 non op	71°C = -54° 5 min transfer 4 hr espueiro te temperature (3 cycles) (6 A1)		104 r 4 wets/ft2 48 hours 50-72 watts for IR 4-7 for UV Remeinder visible proc II 8 IOC 360 8TU's/eq ft/hr	30 rounds of 9.5 lb/m² peak	1-10g 100M sec grade a, clear a type i (901)	810C test 508	Shell withstand 82.5 to 375 ml/m ² /hr for 16 hours 4-8% NoCl sel	10 free 30r de ion de
NAVAL, UNDERSEA UNSHELTERED	\times	\times	-28 C -65 op -62 C +71 C non op	71'C = -64°C 5 min transfer 4 hr comparature to temperature (3 cycles) (8-A1)		X	30 rounds of 9.5 tb/in ² peak	Grade a, class a \$10C type I, (901)	810C test 508	Shall writhstand 62.8 to 376 ml/si3/hr far 16 hours, 4-8% NoCl sol	
NAVAL, BENIGN, SUBMARINE	\times	\times	ರ್ ೮ ಎಕ್	X	X	X	30 rounds of 9.5 lb/in ² peek	50-100g regigible grade a, class a type 1 (901)	Low 810C tost 508	shall withstand 62,5 = 375 ml/ m3/hr for 16 hrs, 4-6% NaCl sol negligible	5.91 des: 40.1
NAVAL, HYDROFOIL	\times	\times	0 С ор	71 C = -54 C 5 min transfer 4 tr exposure : to (emperature 13 cycles) (B A 1)	X	104 r watts ft ² 48 hours, 50-72 watts in 4-7 watts uv remainder visible pror H 810C	30 rounds of 9.5 lb/in ² peak	Grade a, class a 810C type I, (901)	610C test 508	62 5 to 376 mi/m ³ /hr for 16 hours, 4 6% NoCl set	30 h of c low do
AIRBORNE, INHABITED, TRANSPORT	Presidure I, method 900 of MIL STD 810 (8-A1)	2 19 gm/m3 if an unpavad runwsy	-46" C op -46" C noh op -54" C noh op	7 C = -54 C 5 min transfer 4 hr exposure to temperature (2 cycles) (8 A1)		X	X	15-75g, 11 ms secondarity 1500g for h ms 4H g's; side feeds of 2 g's; vert ldh of 2h g's	810 lungus sest Im procedure I method 508 1	X	
AIRBORNE, INHABITED, FIGHTER		X	-45°C ap -66°C non op -54°C non op cond freeze/frost	71 C54 C 5 min transfer 4 hr exposure to temperature (U cycles) (5 A1)				5-75g 11 ms ontoneon; lly 1500 for 14 ms	0 lungus test 1 - procedure f w third 508 1		, ·

Figure 8.0-1. Environmental Matrix 50

FUNGUS/MICROBES	SALT FOG	HUMIDITY	EXPLOSIVE ATMOSPHERE	LEAKAGE (IMMERSION)	ACCELERATION	RANDOM VIBRATION	SINE VIBRATION	ACOUSTICAL NOISE	PRESSURE SHOCK	SPACE SIMULATION	TEMPERATURE - HUMIDITY - ALTITUDE	ELECTROMACAETIC
	X	5.64	X	X	X	oa	0.6	X	27 31" He	X	X	
	15 lb/sero/ye	5-95 30K ppm (99%) dow pt 31°C 6.24 ppm tow	\times	\times	X	240 Hi 9-50	240 Hz 0-5G 20-60 Hs single \(\chi\)	X	15 30" Hg	X	\times	
	15 th/scro/yr	5-100 Condensation & freet/frees T. 30K ppm (90%) dee pt 31°C E.24 ppm tous		·	\times	10-200 Hz 1-10g	lag rwoop 5-500 Mz		15 30" Hg	\times		
	15 lb/cors/ys	5-100 Condensation 8-hosy/fress Y. 20K ppm (99%) daw pt 37°C 5-24 ppm low	\times		X	16-300 Mz 1-10g	log sweep 8-500 Hz		15:30" Hg			
	16 th/sers/yr		\times		X			X	X	X	X	
818C see 508	Shall withstand 62.5 to 375 miles?/fire for 16 hours, 4-6% NeCl sel	10-100 (RH) 30K ppm (99%) dp 31°C high low 87 ppm -38°C		\times		3-80 Hz, 1-10G	tine sweep-gent ase mil-std 187		\times		\times	Field of 20 persteds
810C tops 500	Shell withstand 62.5 to 376 ablas/fire for 16 hours 4-85. NaCl sel	19-100 Cand frozen/rost 30K ppm (90%) dp 31 °C low 133 ppm do -32 °C (190%) dough to 10%		·		3-80 Hz, 1-20G	sine sweep-cent see mil-std *97		27-31" Hg	\times	\times	Field of 20 cersteds
210C tour 506	Shall withstand 62.5 to 375 miles?/he for 16 hours, 4-6% ReCl sel		\times		\times				27 31" Hg	\times	\times	Field = 20 persteds
610C test 508	shalf unthetand 62.5 - 375 ml/ m ³ /hr for 18 hrs. 6 6% NaCl ad negligable	5.96% RM design to 96% 40.60%		\times	\times	6-33 Hz 0-1 Sg neglible	S-33 Mg O-1.Ng negligible		10 30" Hg	\times	X	Field - 20 cersteds
810C legs 508	62 5 to 375 mat/set /for for 16 Newt, 4 6% NaCl set	30K p _e m high of do 31°C low 133 pam do + -32°C design to 95%	X							\times		Field - 20 persteds
810 humaus inse se pracedure i semant 508 1		5 -100	\times		Alli std 8108 fest method \$13 2 procedure 1 and 2	10 2000 Hz 2 30e 20 2000 Hz zon cont 25 100 Hz & H from guns	10 2000 Hr 7 30G	140 dhi 30 minutes exposure timy	30 15 Hy			
0 fungus rest gengamura a mad 508 f		5 100 Cund Irabza Fost	X		Mil sid 8108 fest method 513 2 procedure 1 and 2	10 2000 My 2 30g 20 2000 cent random 25 100 Hz = a ti from guns	10 2000 Hy 7 30G :	140 din 10 monto. expusore tono	JD 15 Hg	X		

1

orthography

☑ = NOT APPLICABLE □ = NO DATA	ALTITUDE	DUST/SAND	LOW TEMPERATURE	TEMPERATURE SHOCK/CYCLING	TEMPERATURE - ALT	SOLAR RADIATION	PYROTECHNIC SHOCK	LOADS SHOCK	FUNGUS/MICROBES	SALT FOG
AIRBORNE, UNINHABITED, TRANSPORT	80,000 ft 1.65 in. Hg 198%; Protesture 1. method 500 of MIL-STD- 810 IB-A11	shumah st eu nubenag \$ 18 8m/m ₃	-64°C ap -66°C non ap -64°C non ap -64°C non ap -64°C non ap -60°C non ap -40°C ap	71°C = -54°C 5 min transfer 4 hr exposure to temperature (3 systes) (8-A1)	-85°C (98%)		X	5.75g @ 11 F.7 eccanonally: 1500 for 'N ms (equip crash) arety 30g @ 11 ms	8 I fungus tess fi procedure i m had 508 1	
AIRBORNE, UNINHABI [*] , ED, FIGHTER	70.00(h H 856 1N Mg (89%)	X	-64°C op -66°C non op -64°C non op tresze/fræt cond -64°C (86%)	71°C ~ -54 C 5 min transfer 4 hr exposure to temperature (3 cycles) (6-A1)	-85°C (89%)		X	5 75g @ 11 ms ecas, 1500 for 3; ms	810 ungus test tur j ecedure l mett at 608 t	
AIRBORNE, ROTARY WING	13,000 N 16.2 IN He (99%)	Warst for Nascus portides	-64°C non op -48°C 199%)	71°C 84°C 5 min transfer 4 hr en posure 10 temperature (3 systee) (8-A1)	-46°C (90%)	X	X		810 turrigus teet for ptr educe I metho 508,1	
MISSILE, LAUNCH/REENTRY		\times	-65°C op & nen op	71°C = "54°C 5 min transfer 4 for deposition to temperature (3 cycles) (8-A1)		X		45-100g for 11 ms eassonably: 1500 for 3/ ms 15p-11 + 1 ms	\times	\times
TACTICAL MISSILE LAUNCH		\times		71°C = -84°C 5 min transfer 4 hr depositor to temperature (3 cycles) (8-A1)		X		15g-11 + 1 ms	X	X
CANNON, LAUNCH		0.01 MM.—1.00 MM with winds 30 k ness 5-ze 0.0001 MM.— 0.01 MM dis with density of 6 x 10-9 pm/M3 with winds : 26 k ness		Method 603.1 of MIL-SYD-810C lear temp shall be -80° F	,	380 SYU/h ² /hr © 125° F with wind < 5 h mes for 4 hrs		mil-std-810C method 516.2 procedure II	Specified . mil-std-81-C, method 5t < 1, duration o 90 days	See solt follout in excess of 25 flui/acre/yr
UNDERSEA, LAUNCH		X		Résched 903.1 of MIL-STD-810C low temp shell be -60° F		X		15g-11 + 1 ms		
MISSILE, FREE FLIGHT		X	-65°C op & non op	Mothed 803.1 of MIL-STD-810C law temps shall be -60°F		X	X		X	X
AIRBREATHING MISSILE, FLIGHT		X		Method 503.1 of MH. STD-810C low temp shall be -60' F			X	transfer . 10 /sec = 19" drop handling 15g, 75 ms N sine Captive . 25g, 20 ms . N sine	X	X
SPACE, FLIGHT			-54 C as -65 C non as	Method 503.1 of MIL STO-B10C low temp shall be -50' F	- Ingress	Reported 10 TO THE REVIEW TO THE REVIEW TO THE REVIEW TO THE THE REVIEW TO THE REVIEW THE REVIEW TO THE REVIEW THE REVIEW TO THE	X	X	X	X
NONOPERATING			-62 + -67 C for 24 hours	Method 503 1 of MIL STD-810C low temp shall be ~50' F		360 STU's/sq H/hr				

A

FUNGUS/MICROBES	SALT FOG	HUMIDITY	EXPLOSIVE ATMOSPHERE	LEAKAGE (IMMERSION)	ACCELERATION	RANDOM VIBRATION	SINE VIBRATION	ACOUSTICAL NOISE	PRESSURE SHOCK	SPACE SIMULATION	TEMPERATURE – HUMIDITY – ALTITUDE	ELECTROMAGNETIC
Fungus test procedure t had 508 8		5-100% RM .08K ppm, dp =50° C		X	Mil-std-8108 test method 513.2, procedure 1 and 2	20 2000 cent ran 25 100 Hr 8 ft random cont 25 100 Hr 8 ft from guns	20-2000 Hz 5-40g	160 dB1/ 30 minutes exposure time	043"-30 Hz	\times		
- ungus test seedure t -ii al 500 1		5 100% RH cond freeze/freez .19K ppm, ip + -56" C		X	mil-std-8108 test method \$13:2 presedure 1 and 2	20-2000 cont ren 25-100 Hz + 8H from gunu		160 dB1. 30 minutes exposure time	043'' 30'' Hy	\times		
full gars held or selected 1 no. 500, 8		18K ppm, dp 18 C low 19 ppm, dp -56 C	X	X	The mil-std 8106 test method 513:2 procedure 1 and 2	A priots seal = +0.4g or 4 times levels existing in unaccelerated flight (g) 25-100 Hz B ft from guns	ына гибер 8-2000 Mz 5-33 Mz + 2g 33-2K Mz + 5g			\times		
\times	\times	1 100% AM		\times		16-2000 Mr 5-60g	10-2000 Hz 5- 60g	0.0002 dyne/ cm²	10 ⁻¹⁰ to 31" Hg	\times		
\times	\times			\times				0.0002 dyne/ cm²				
micrises	See saft fallout in erasts of 25 lbs/scrn/yr	-50' F = 160' F (100%) -25' F = 145' F (100%) 70' F = 160' F (5%) 70' F = 146' F (6%)	X	Method 512 1 of mil-std 880C, pressdure I		Mili-Std-810C Method 514 2, procedure X				·		
			\times									
\times	\times		\times	\times								-
	X		X	X								
	X	X	X	X	X		X					

Figure 8.0-1 (Continued)

9.0 CONCLUSIONS AND RECOMMENDATIONS

The revised and updated π_E factors resulting from this study program are indicative of actual field experience and should facilitate more realistic reliability predictions. To further support this objective, 10 new environmental modes have been quantified and added to the π_E tables. The factors for five environments, (Nyu, Ny, USL, MyA, and Myr) were completely synthesized using the survey results because an inadequate quantity of field data was available to calculate factors. It may be premature to initiate widespread use of these synthesized factors, but they are recommended as guidelines until additional data become available.

It appears that a study effort should be considered to develop guidelines for the supplemental environmental stress method discussed in Section 8 of this report.

Collection of field failure rate data from the 21 environmental modes should be continuously maintained in order to provide a statistically significant data base for periodic revision of the MIL-HDBK-217 π_E tables.

10.0 BIBLIOGRAPHY

BIBLIOGRAPHY

- Air Force Cambridge Research Laboratories, "Handbook of Geophysics and Space Fryironments", 1965.
- 2 AR 70-38, "Research and Development Test and Evaluation of Material for Extreme Climatic Conditions", 5 May 1969.
- 3 American Power Jet Company, Ridgefield, New Jersey, "Flight Vehicle Power Systems Reliability Criteria", for Air Force Systems Command, AD 277126, March 1962
- Apulied Physics Laboratory, The Johns Hopkins University, "Satellite Testing Procedures Including Environmental Conditions for Payload Equipment and Assembled Payloads", AD 424460, October 1963.
- 5 Aufderhar, John D., "Test and Evaluation Directorates Support to the TOW Project Office, FY 75", Technical Report RT-76-1, AD B007752, 4 August 1975.
- 6 RCOZ Allen Applied Research, "Veliability Estimating Procedures for Electric and Thermochemical Propulsion Systems", Final Report AFRPL-TR-76-99.
- British Aerospace Dynamics Group, "Micro-Electronic Systems Reliability Prediction", Stevenage-Bristol Division, Stevenage, ".V.
- 8 Bryan, J. C., Calderon, J. M., Fradel, M. A., "Methodology Investigation, Reliability and Maintainability of Materiel in the Tropics", ". S. Army Tropic Test Center, ADRO23869, June 1976.
- Bunch, Howard M., Wolfe, E. J., "I'. S. Army Envanal Charts Automotive Materiel, Desert", Southwest Research Institute, AD 407170, December 1962.
- Collins Radio Company, "Reliability Analysis and "TBF Prediction for VERDIN, Digital Data Communications System, AM/URC-62-Revision B", Volume 1, 20 May 1971 for Naval Flectronic Systems Command.
- Computer Applications Incorporated, "RADC Reliability Notebook Volume I", Technical Report No. RADC-TR-67-108, November 1968, 845304.
- De Ruberis, John, "Final Report on Military Potential Test of Swiss, 18-Ton, Full-Tracked, Armored Personnel Carrier, Pi RAT 14" Aberdeen Proving Ground, AD825067, January 1968.

- 13 DOD-E-8983C, "Military Specification, Electronic Equipment, Aerospace, Extended Space Environment, General Specification for", 29 December 1977.
- 14 Feduccia, A. J., "LSI/Microprocessor Reliability Status Report Number 4", Rome Air Development Center, 10 May 1979.
- Filer, Nobert E., Major, "Arctic Service Test of ON-58A "elicopter/XM27El Armament Subsystem Final Report", ". S. Army Arctic Test Center, AD 875563, April 1979.
- 16 Flinn, Richard A., Trojan, Paul K., "Engineering Materials and Their Applications", published by Houghton Mifflin Company/Boston.
- Heck, J. C., Hicks, P. T., "Lightweight Surveillance RADAR AN/PPS-9", Quarterly Report No. 5, ECCM-0333-5, AD 864229, November 1969.
- Hughes, Aerospace Group, Culver City, California, "Advanced Interceptor Technology Wolume I" Degradation Mechanisms at an Altitude of 250 km", AD 289255, 25 October 1962.
- Hughes Aircraft Company, "Study of Reliability Prediction Techniques for Conceptual Phases of Development", Prepared for Rome Air Development Center, AD/A-091 919, October 1974.
- Hughes Aircraft Company, "RADC Reliability Notebook Volume 31", Technical Report No. RADC-TR-67-108, September 1967.
- 21 Hughes, "Operational Influences on Reliability", RADC-TR-76-366, A035016.
- Institute of Environmental Sciences, "Operational Peliability and Reliability Testing", DX-433-1 (1978).
- Institute of Environmental Sciences, "Learning to "se Our Environment", 25th Annual Technical Meeting, 1979.
- Jervis, E.R., "Study of Factors Affecting Systems Reliability Final Report", ARING Research Corp. for ARPA, An 272191, July 17, 1961.
- Katz, Israel, "Environmental Testing, Operational Environments", Electromechanical Design Vol. 8, July 1964.
- Krajeck, Philip A., Captain, "SAF, "Category II Low Temperature Evaluation of the CH-3C Helicopter in the Arctic", Technical Report ASD-TR-65-17, AD-482 622L C.1, January 1966.

- 27 Kujawski, George F., and Rypka, Fdward A., "Effects of 'On-Off' Cycling on Equipment Reliability", Annual Proceedings, Reliability and Maintainability Symposium, 1978.
- 28 Martin Marietta Corporation, "Copperhead Reliability Program Review", OA 8406, 6 June 1979, 821988.
- 29 Martin Marietta Corporation, "Normant Operating and Storage Effects on Electronic Equipment and Part Reliability", RADC-TR-67-307, Final Report July 1967.
- Martin Marietta Aerospace, "Pormancy and Power On-Off Cycling on Electronic Equipment and Part Reliability", Final Report RADC-TR-73-248, August 1973, 76861919.
- Martin Marietta Aerospace, "Fffects of Dormancy on Nonelectronic Components and Materials", for Rome Air Development Center, RADC-TR-74-269, October 1974, A002838.
- Martin Marietta Aerospace, "Dormant Operating and Storage Effects on Electronic Equipment and Part Reliability," RADC-TR-65-323, November 1965, 474614.
- 33 Martin Marietta Corporation, "Development of Non-Electric Part Cycling Failure Rates", for Rome Air Development Center, RADC-TR-77-417, November 1977, A050678.
- Martin Marietta Aerospace, "Passive Device Failure Rate Models for MIL-HDBK-217B", for Rome Air Development Center, Final Report RADC-TR-77-432, November 1977, A050180.
- Martin Marietta Corporation, "Quantification of Printed Circuit Board (PCB) Connector Reliability", for Rome Air Development Center, RADC-TR-77-433, November 1977, A049980.
- Martin Marietta Carporation, "Failure Rate Mathematical Models for Discrete Semiconductors", PADC-TR-78-3, January 1978, A050181.
- 37 Wartin Marietta Corporation, "Crimp Connection Peliability", RADC-TR-78-15, November 1977, A050505.
- 38 "artin Marietta Corporation, "Reliability Prediction Models for Microwave Solid State Devices', RADC-TR-79-50, Final Technical Report, April 1979, A069386.

- Martin Mariette Corporation, "Long-Life Assurance Study for Manned Spacecraft Long-Life Hardware," for NASA, MCR-72-169, December 1972.
- 40 Martin Marietta Aerospace, "Laser Reliability Prediction," Final Report, RADC-TR-75-210, August 1975, A016437.
- Makowsky, Lawrence C., "Reliability Analysis and Evaluation of Contractor and Government Testing of Radio Set AM/PRC-79 During the Engineering Development Phase", Research and Development Technics Report, ECOM-4479, March 1977.
- 42 Messenger, George C., "Radiation Effects Comparison of I21, and CMOS/SOS Including Other VMSI Technologies", Litton Guidance and Control Systems, 15 March 1979.
- Moravec, P. O., "Desert Test, 1961, of Peavy Equipment Transports, Consisting of Truck, Tractor, 25-Ton, XM 523 and Semitrailer, Low-Bed, Heavy Equipment Transporter, 55-Ton, VM 524", for Aberdeen Proving Ground, AD 286826, May 1962.
- 44 Melbourne, University, "Effects of Chemical University on Tracture Processes", Third Tewksbury Symposium 1974.
- 45 Motorola, Inc., "Reliability Prediction Report for Receiving Set, Satellite Signal AN/SSR-1", Dwg. No. 12-000425F January 1974.
- 46 MIL-MDBK-251, "Reliability/Design Thermal Applications', 10 January 1978.
- 47 MIL-HDBK-217C, "Military Standardization Mandbook, Reliability Prediction of Electronic Equipment", 9 April 1979, and Draft Notice 1 dated 14 May 1979.
- 48 MIL-HDBX-246. "Program Managers Guide for the Standard Plectronic Modules Program", 10 March 1978.
- 49 MIL-STD-2108, "Military Standard Climatic Extremes for Military Equipment", 15 December 1973.
- 50 MIL-STD-810C, "Environmental Test Methods", 1º March 1975.
- 51 MIL-STD-1670A, "Military Standard, Environmental Criteria and Guidelines for Air-Launched Meapons", 30 July 1976.
- MIL-E-4158F (MSAF), "Military Specification, Electronic Equipment, Ground; General Requirements for", 11 January 1973 and Amendment 2, 12 July 1977.

- 53 "IL-2-5400R, ""ilitary Specification, Flectronic "quipment, Airborne, General Specification for", 31 October 1975.
- 54 MIL-E-63241 (AR), ""ilitary Specification, Electronic Assembly, for "ines, M718/"741 System", 1 March 1978 and Amendment 1, 27 June 1978.
- MIL-E-8189H, "Military Specification, Electronic Equipment, Missiles, Boosters and Allied Vehicles, General Specification for", 31 October 1975.
- MIL-E-81910A (AS), "Military Specification, Electrical Power Generating and Control Equipment, Aircraft, General Specification for", 21 November 1977 and Amendment 1, 23 June 1978.
- MIL-E-16400G, "Electronic, Interior Communication and Navigation Equipment, Naval Ship and Shore: General Specification for", 24 December 1974.
- MIL-E-11991D (MI), "Military Specification Electronic, Electrical, and Electro-mechanical Equipment, Guided Missile and Associated Weapon Systems, General Specification for", 27 February 1976.
- 59 MIL-M-38510D, "Military Specification, Microcircuits, General Specification for", includes Supplement ID, 31 May 1979.
- 60 MIL-S-19500 F, "Military Specification Semiconductor Devices, General Specification for", 2 February 1979.
- Naval Weapons Support Center, Crane, Indiana, "Fleet Reliability Assessment Program",
 - Volume 1 General Program
 - Volume 2 AN/SSR-1 Equipment Report
 - Volume 3 AN/WSC-3 Equipment Report
 - Volume 4 AN/URC-85 Equipment Report
 - Volume 5 AN/URC-62 Equipment Report
 - Volume 6 AN/UYK-20 Equipment Report
 - Volume 7 Appendixes
 - For Naval Electronics Systems Command, 1 September 1977.
- Roberts, D. L. and Dowling, E., "USAYPG Report 195, Development Test II, Desert Environmental Phase of Tank, Combat, Full-Tracked, 105-MM Gun, M60AlE3, Final Report (Volume I of II)", AD 922195, July 1974.

- Roberson, Carlton, F., Major; Nesbitt, Frank H., Captain; Mantyk, Gerald J., SP5; "Methodology Study of Aircraft and Aircraft Component Service Test Flight Profiles", Final Report, AD-904 553L C.1, June 1972.
- R.C.A. Defense Electronic Products Aerospace Systems Division,
 "Second Quarterly Interim Technical Report ATE-MTE-L-17, Volume 2",
 AD 362281, 30 April 1965.
- Rome Air Development Center, "Development of Failure-Rate Models for Semiconductor Optoelectronic Devices", FAA-RD-76-134, July 1976.
- Space-General Corporation, "Development of an Analytical Model for Environmental Resistance Inherent on Equipment (Project FRIE) for A. F. Flight Dynamics Laboratory", AD 428038, January 1964.
- Sperry Univac, "Reliability Analysis for the AN/UYK-20 (V) APE Configuration Data Processing Set", Report No. 20299-BOOA-OO1, 27 August 1973.
- Shaker Research Corporation, "Electric Motor Reliability Model", RADC-TR-77-48, A038834.
- 69 Singer Kearfott Co., "Ouick Way to Predict Random Vibration Failures," 6 April 1978.
- 70 The Boeing Company, "F-4D Field Experience Part IV Summary", AFFDL-TR-72-2, Part IV, February 1972.
- 71 The Institute of Electrical and Electronics Engineers, Inc.,
 "IEEE Guide to the Collection and Presentation of Flectrical,
 Electronic, and Sensing Component Reliability Data for Nuclear-Power Generating Stations", IEEE Std 500-1977, 30 June 1977.
- Thurbee, Lee A., Captain, "Service Test (Temperate Climate Phase) of the XM755 Vehicle with 81-MM Mortar Mounted, Final Report", AD 382465, 27 June 1967.
- 73 Timmins, A. R., "A Study of Total Space Life Performance of GSFC Spacecraft", (NASA-TN-D-8017), July 1975.
- Timmins, A. R., and Norris, H. P., "Failure Rate Analysis of Goddard Space Flight Center Spacecraft Performance During Orbital Life", (NASA-TN-D-8272), July 1976.

- 75 TRW Space Technology Laboratories, Inc., Redondo Beach, California, "Quarterly Reliability Apportionment Assessment and Analysis Report 698 AM Program", for ARPA, AD 359503, 1 June 1962.
- 76 Turner, Timothy E., "Hybrid Microcircuit Failure Rate Prediction", Final Technical Report RADC-TR-78-97, April 1978, A055756.
- U. S. Army Armament Command, Munitions Development and Engineering Directorate, "Test Summary of the XM 712 Cannon Launched Guided Projectile Safing and Arming Mechanism", ADB003977, January 1975.
- 78 U. S. Army Arctic Test Center, "Fins) Test Report for Service Test of the CH-47A Helicopter under Arctic Winter Conditions", AD 451633, 1 September 1964.
- 79 University of Michigan, "Reliability Prediction Mechanical Stress/Strength Interference", Final Report, RADC-TR-66-710, March 1967, 813574.
- Wagner, Louis C., Jr., "Arctic Winter Integrated Engineering and Service Test of Combat Engineering Vehicle, 4728 Final Report", U. S. Army Arctic Test Center, AD 384583, 19 May 1967.
- 81 WQEC, WPNSTA, Concord, California, "Surface Warfare Weapon Systems, Reliability - Maintainability - Availability Summary Report", January 1977-January 1978.
- 82 WQEC, WPNSTA, Concord, California, "Surface Warfare Weapons Systems, Reliability - Maintainability - Availability - Summary Report", July 1974-January 1976.
- WQEC, WPNSTA, Concord, California, "Surface Warfare Weapons Systems, Reliability - Maintainability - Availability" Summary Report, April 1976-March 1978.

APPENDIX A
FIRST SURVEY

MIL-HDBK-217B ENVIRONMENTAL FACTORS DATA SURVEY

Participants will be mailed a copy of the survey results. Complete the following: NAME ADDRESS PHONE NO. () 1 In the following space please list any improvements in order of priority that you may wish to see incorporated into the present environmental factors in MIL-HDBK-217B. Disregard this question if you are not acquainted with MIL-HDBK-217B or if you have no inputs. 2 Do you wish $t \in \mathbb{R}^n$ an environmental model for MIL-HDBK-217B with the basis being par evel, systems level, or another level or combination? Part Level Systems Level Subassemblies

Do you kno	other	persons	or	sources (of	information	who	should	be
				,,		,			

4 In the following matrix, indicate with an "X" the influence factors you believe are of major importance to a particular environment. Please answer only for the environmental categories with which you are familiar. It is not necessary to rate the importance of each factor. You may limit the influence factors for each selected environment to five or six. If you believe that a certain environmental category should be deleted from the list or any environments combined, indicate so. If there are environments or influences factors you wish to add, do so in the allocated spaces. Some other possible influence factors have been listed below. Do not base your selections on laboratory test results since this is a survey of field environments for operating equipment. Below are descriptions for each of the environmental categories. Influence factors have been purposely deleted from these descriptions. Your responses will be considered in defining these categories. If you add an environment, please give a description at the bottom of this list. Your comments on these descriptions will also be appreciated. Use extra sheets if required.

OTHER INFLUENCE FACTORS

Rain Corrosive Atmosphere
Snow Gunfire Vibration
Ice Vibration-Temperature
Wind
Dust-Sand

ENVIRONMENT

DESCRIPTION

Ground, Benign

Nonmobile, laboratory environment readily accessible to maintenance.

Ground, Fixed

Conditions less than ideal to include installation in permanent racks with adequate cooling air, maintenance by military personnel and possible installation in unheated buildings.

Ground, Mobile, Wheeled Mobile equipment installed upon wheeled vehicles. Maintenance less uniform than ground fixed conditions.

Ground Mobile, Tracked Mobile equipment installed upon tracked vehicles. Maintenance less uniform than ground fixed conditions.

Manpack

Portable electronic equipment being manually transported while in the operational mode.

Naval, Sheltered

Sheltered or below deck conditions, protected from elements of weather.

Naval, Unsheltered

Nonprotected shipboard equipment exposed to climatic conditions.

Naval, Undersea, Unsheltered Equipment immersed in salt water.

Naval, Benign, Submarine Equipment installed in submarine.

Naval, Hydrofoil

Equipment installed in a hydrofoil vessel.

Airborns, Inhabited, Transport Typical conditions in transport or bomber compartments occupied by aircrew and installed on long mission aircraft such as transports and bombers.

Airborne, Inhabited Fighter Same as airborne inhabited transport but installed on high performance aircraft such as fighters and intercepters.

Airborne, Uninhabited, Transport Bomb bay, equipment bay, tail, or wing installations on long mission aircraft such as transports and bombers.

Airborne, Uninhabited, Fighter

Same as airborne uninhabited transport but installed on high performance aircraft such as fighters and intercepters.

Airborne, Rotary Winged Equipment installed in or on helicopter.

Missile, Launch

Severe conditions related to missile launch, and space vehicle boost into orbit, vehicle re-entry and landing by parachute. Conditions may also apply to installation near main rocket engines during launch operations.

Cannon Launch

Extremely severe conditions related to cannon

launch.

Missile Free Flight Non-powered atmospheric free flight.

Space, Flight

Earth orbital. Approaches Ground, Benign conditions without access for maintenance. Vehicle neither under powered flight nor in atmospheric

re-entry.

Additional Environments:

╶╏╏╏╏

-}-}-}
╶ ┼╀╀╀┼┼┼┼┼┼┼┼
╶┼╂╂╂╃╇╂╂┼┼┤┤┼┼┼
╶┩╃╃╃╃╂┼┼┼┼┼┼
╌╃╃╃╂╃╃╂┼┼┼┼┼┼┼

*tnvironments significantly different from definition in ML-MDBK-217.

APPENDIX B SURVEY PARTICIPANTS

SURVEY PARTICIPANTS

Boeing Aerospace Co. Houston, TX Seattle, WA

Boeing Co. Seattle, WA

Boeing Vertol Co. Philadelphia, PA

British Aerospace Corp. Hertfordshire, UK

FMC/NOD Minneapolis, MN

General Dynamics Ft. Worth, TX Pomona, CA

General Dynamics Convair Division San Diego, CA

General Electric Evendale, OH

General Electric Lynn, MA

Grumman Aerospace Corp. Bethpage, NY

Hughes Aircraft Co. Canoga Park, CA Culver City, CA Fullerton, CA Los Angeles, CA

Lockheed Electronics Co. Plainfield, NJ

Lockheed - Georgia Co. Marietta, GA

Lockheed Missiles and Space Co. Sunnyvale, CA

Martin Marietta Aerospace Orlando, FL

Martin Marietta Arrospace Denver, CO

Pan American Janaica, NY

Pratt & Whitney Aircraft West Palm Beach, FL

Raytheon Co. Lexington, MA

RCA Camden, NJ

Rockwell International Columbus, OH

Sandia Laboratories Albuquerque, NM

Sperry Flight Systems Phoenix, AZ

Sperry-Univac St. Paul, HN

Telcom Systems, Inc. Arlington, VA

United Airlines San Francisco, CA

Vought Corp. Dallas, TX

The Hans W. Wynholds Co. Washington, DC

Air Force Flight Dynamics Lab Wright Patterson AFB, OH

Federal Aviation Administration Washington, DC

Fleet Analysis Center Corona, CA

MMCM Hill AFB, UT

NASA Headquarters Washington, DC

NASA Langley Research Ctr. Hampton, VA

Naval Ordnance Station Louisville, KY

Naval Sea Systems Command Washington, DC

Naval Ship Engineering Ctr. Norfolk, VA

Naval Surface Weapons Ctr. Dahlgren Laboratory Dahlgren, VA

Naval Weapons Engineering Support Activity Navy Yard Washington, DC

Naval Weapons Support Center Crane, IN

Naval Underwater Systems Ctr. New London, CT

USAADTA Ft. Rucker, AL

U.S. Army Communications Research & Development CMD.
Ft. Monmouth, NJ

HQ, U.S. Army Test & Evaluation CMD. Aberdeen Proving Ground, MD

USA Meradcom Ft. Belvoir. VA

U.S. Army Canal Zone Aerojet Electronics Azusa, CA

Aerospace Corporation El Segundo, CA

Autonetics Anaheim, CA

AVCO Wilmington, MA

Charles Stark Draper Labs Cambridge, MA

Ford Aerospace Palo Alto, CA

GTE Needham, MA

Harris Electronics Syosset, NY

ITT Gilfillan Van Nuys, CA

Litton Industries Van Nuys, CA Woodland Hills, CA

Naval Ocean Systems Center San Diego, CA

Naval Strategic Systems Project Office Washington, DC

NAVELEX Crystal City, VA

Raytheon Co-Andover, MA Sudbury, MA

Rocketdyne Canoga Park, CA

Sperry Systems Management Great Neck, NY

APPENDIX C
SECOND SURVEY

MIL-HDBK-217B ENVIRONMENTAL FACTORS DATA SURVEY #2

Participants will be mailed a copy of the survey results. Complete the following:

name	
ADDRESS	
PHONE ()

In the following matrix, the influence factors which were indicated as being significant in the first survey are represented by an open square. Twenty percent or more of the first survey respondents for each environment determined that the influence factor was significant for that environment. Write-in environments or factors were not subject to this rule. A "crossed-out" square indicates that most of the survey respondents did not consider the influence factor to be of major importance to that environment. High temperature has been omitted from the influence factors as it is already considered in the base failure rate model. If you wish to comment on the matrix, do so on Page C-4. Please rate the importance of each factor for the environment using a scale of 1 to 10. A rating of 10 represents the highest severity level (i.e., most critical or highly significant influence factor). A rating of l indicates minor significance of the influence factor to that particular environment. The same rating can be assigned to more than one influence factor for an environment. The same rating can be assigned to more than one influence factor for an environment. The results of this survey will be used to construct preliminary ratios of the severity of influence factors for a given environmental category. On the far left of the matrix is a column for you to rate the relative severity of each environment as compared to ground, benign. In the example on the bottom of Page C-5, a weighing factor of 1800 has been assigned to environment XYZ, meaning XYZ is 1800 times as severe as ground, benign. The example has been chosen to illustrate that there is no restriction to the magnitude of the ratings you assign.

In analyzing your weightings, it will be helpful for us to know the basis for your selection of each environment for which you answer. We would appreciate your assigning a 1, 2, or 3 to each of your selected environmental categories in the provided box on the left side of the table. One indicates a moderate level of familiarity with the environment: 2 indicates a high level of expertise in this area; and 3 indicates that your

selection was based upon recorded failure rate data. If you have recorded data, indicate a "3" regardless of your familiarity level. See the example on the bottom of Fage 4. Do not base your selections on laboratory test results since this is a survey of field environments. Following are the descriptions for each of the environmental categories.

ENVIRONMENT	DESCRIPTION
Ground, Benign	Nonmobile, laboratory environment readily accessible to maintenance.
Ground, Fixed	Conditions less than ideal to include installation in permanent racks with adequate cooling air and possible installation in unheated buildings.
Ground, Mobile, Wheeled	Mobile equipment installed upon wheeled vehicles.
Ground Mobile, Tracked	Mobile equipment installed upon tracked vehicles.
Manpack	Portable electronic equipment being manually transported while in the operational mode.
Naval, Sheltered	Sheltered or below deck conditions, protected from elements of weather.
Naval, Unsheltered	Nonprotected shipboard equipment exposed to climatic conditions.
Naval, Undersea, Unsheltered	Equipment immersed in salt water.
Naval, Benign, Submarine	Equipment installed in submarine.
Naval, Hydrofoil	Equipment installed in a hydrofoil vessel.
Airborne, Inhabited, Transport	Typical conditions in transport or bomber compartments occupied by aircrew and installed on long mission aircraft such as transports and bombers.
Airborne, Inhabited, Flighter	Same as airborne inhabited transport but in- stalled on high performance aircraft such as fighters and intercepters.
Airborne, Uninhabited, Transport	Bomb bay, equipment bay, tail, or wing installations on long mission aircraft such as transports and bombers.

Airborne, Uninhabited Same as airborne uninhabited transport but installed on high performance aircraft such Fighter as fighters and intercepters. Airborne, Rotary Equipment installed in or on helicopters. Winged Missile, Launch/ Severe conditions related to strategic missile Re-entry launch, and space vehicle boost into orbit, vehicle re-entry and landing by parachute. Conditions may also apply to rocket propulsion powered flight. Tactical Missile, Severe conditions related to tactical missile Launch launch. May also apply to rocket propulsion power flight. Cannon, Launch Extremely severe conditions related to cannon launch. Conditions related to undersea torpedo/missile Undersea, Launch launch. Non-powered atmospheric free flight. Missile, Free Flight Conditions related to powered flight of air-Airbreathing Missile, breathing missile. Flight Earth orbital. Approaches Ground, Benign Space, Flight conditions without access for maintenance. Vehicle neither under powered flight nor in atmospheric re-entry. Dormancy/storage conditions of equipment. Nonoperating COMMENTS:

sized noil>af	INTUENCE FACTORS	Spn3 () (puts/1sa	رد ورمونده وساور در ورمونده وساور	Suj (DA 2/4 > Sug	erperature-allitude	yrotechnic shock	ongs spory (uidu (tindouth))	eadors/Microbes	80) 1145	Karpinne	anaditomis avizotas	(notename) apatent	nollteninia.	Andrew wobset	Sine vibration	Ation leathway	Pressure shock	Space claulation lenger sture-hundal	213angan013>s13
Դ-		_	+	N.	Ť	-K-	4		+-	X		X	X	+	攵	攵	校	₩	\leftrightarrow	\forall
+	2,0015	$\mathring{\mathbb{Q}}$	À	才	¥	λ	X	X	Ļ			1 X	D.	X	*	欠	Ŕ	€		$\overline{}$
+	24 4 4 7 C 8 4 1 2	$\langle V \rangle$	ナ	+	¥	X	χ	X-	上	_		X	1	友	1	1		\Diamond	$\langle \cdot \rangle$	
+		1	T	1	¥		X	Ļ.	-			X		欠	† -	<u> </u>	6	令	$\left \cdot \right\rangle$	∇
<u> </u>		Δ	ţ	+	Y	∜	X	<u> </u>	 _		Ĺ	X	T	X	-		Ŷ	0	$\langle \rangle$	∇
+	できること できる 一番		*	k	£	X	K	-	 	Ĺ		Γ	X		-	-		$\widehat{\nabla}$	\Diamond	∇
+		\bigcirc	\Diamond	1	۲	\star	¥	\mathbf{k}	L	1_					1-	-	-	K	$\langle \rangle$	∇
┿		$\sqrt{2}$	X	十	쒸	松	X	 	-			X		X	-	د ۲	X		$\langle \rangle$	\forall
+		$\langle X \rangle$	X	+	公	粉	K	 下	L	_			X	Z,	-	-		X	(),	V.
+-		X	X	T		V	X	L		<u> </u>		X						\triangle	J	\dashv
╀	Assterne, tonatition, transport	1	水	十	+	₽	K	1	L	X		X	X	П	H			\Diamond		
╀	fre 251 te 2.		太	T	f	伶	K		L	X		X	X					\Diamond	A	-
+-	dichorne, unionabitot, transport		X	-	H	-	X						X		1	1	4	$\widehat{\nabla}$		┪
╀	1.		X	-	-	-							X		-	_	-	4	V	\dashv
╀╌			1	T	f	14	K	1.7	_	L		X	X	-			4	Θ	V	-
+	17		X	T	-	台	V	1	X	X			X			-			M	\dashv
╀	1 -		X		 			H	X	X			X		1	1	7	-	-	\dashv
╁	14 unch	X	X		-	Α				X		X	X		1	一	7	4	깢	+
╁	Uncertain aunch	įΧ	A		+		V	-			_	X				7	-		5	+
+	1-		X	T		4	\Diamond	∇	Δ	X		X	X					-		1
+-			X	Ţ	+	-		\forall	Δ	X		X	X			1		-	-	┪
╁			X	П	H	Н	4	Ą	Ş	X	X	X	凶	X	1	K	Ŕ	X	4	4
╁	Koncoerating	Ĺ			-	┝		_	_		-				-		_	_	-	_

Environment AVZ (TANDLE

APPENDIX D PRESENTATION TO POTENTIAL DATA CONTRIBUTORS

PRESENTATION TO POTENTIAL DATA CONTRIBUTORS

- Rome Air Development Center (RADC) has contracted with Martin Marietta Corporation to evaluate and revise the current mg factors in MIL-HDBK-217 for Reliability Prediction of Electronic Equipment. Our government program manager is Mr. Lester Gubbins. This task is being led at Martin Marietta at Orlando by Mr. Ed Kimball, under the direction of our Manager of Reliability and Maintainability, Mr. Bert F. Kremp.
- Our contract objectives are to update the factors for environment now listed in MIL-HDBK-217, and to create factors for any newly defined environments. Our scope of work involves analysis of collected field data, augmented by a survey of industrial experts and an evaluation of the severity ratios of the influence factors for a given environment. The purpose of the survey is to determine the consensus of the industry as to the appropriate categorizations and significance of environments in the Handbook. Previous studies conducted by Martin Marietta provide information that can be used as building blocks in the overall data base. There exists the need for additional data in the area of Cruise missiles, and satellites. Review of various suggestions to RADC indicates that the previously mentioned environments should be researched to obtain more representative environmental factors.
- Currently, 11 environments are presented in MIL-HDBK-217C. There are indications in the industry that the environmental categories should be expanded. This list of 23 environments was circulated during our first survey. Of special concern to us are the additions made in the naval, manpack, and the missile areas.
- We have completed our second survey. Responses have been analyzed and a severity ranking of the proposed environments, as well as significance ranking of environmental influence factors have been determined. These influence factors would be conditions such as vibratin, temperature shock, humidity, dust/sand, which an electronic equipment might experience within a given environmental utilization mode.

We intend to analyze the survey results, which represent the opinion of the industry, the factors the found in the MIL-HDBK, and the field data we collect. Martin Marietta recognizes the difficulties involved with collecting statistically significant quantities of usable data in all desired field environments. It is anticipated that, even with follow-up data collection efforts, there will be a few areas of interest with insufficient field data to apply direct analytical techniques. However, the collected field data will be the primary means for decision making during the final evaluation of the MIL-HDBK-217 $\pi_{\rm E}$ factors.

We are looking for data in all of the environments we have categorized in the expanded listing, but this data must specifically be field data. Laboratory or test data, because of the contrived nature of the effects equipment sees in such environments, is not of use to us at this time. Operating hours or estimates of hours are necessary, due to the importance of investigation of parts degradation over time. We would prefer data at the parts level, primarily because MIL-HDBK-217 is currently organized at that level and is intended for reliability prediction by parts stress analysis. Systems level data could be useful, however, if parts mix or parts lists can be obtained. Especially useful would be an environmental profile of the conditions your equipment experienced.

VIEWGRAPH PRESENTATION

RELIABILITY SECTION
PRODUCT ENGINEERING LABORATORY
MARTIN MARIETTA AEROSPACE
ORLANDO, FLORIDA

REVISION OF ENVIRONMENTAL FACTORS FOR MIL-HDBK-217B

CONTRACT F30602-78-C-0227
ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
GRIFFISS AIR FORCE BASE, NEW YORK

GOVERNMENT PROGRAM MANAGER - MR. LESTER GUBBINS

ENVIRONMENTAL CATEGORIES

GROUND, BENIGN
GROUND, FIXED
GROUND, MOBILE*
NAVAL, SHELTERED
NAVAL, UNSHELTERED
AIRBORNE, INHABITED, TRANSPORT
AIRBORNE, INHABITED, FIGHTER
AIRBORNE, UNINHABITED, TRANSPORT
AIRBORNE, UNINHABITED, FIGHTER
MISSILE, LAUNCH/REENTRY
SPACE, FLIGHT

MANPACK
NAVAL, UNDERSEA, UNSHELTERED
NAVAL, BENIGN, SUBMARINE
NAVAL, HYDROFOIL
AIRBORNE, ROTARY WING
TACTICAL MISSILE, LAUNCH
CANNON, LAUNCH
UNDERSEA, LAUNCH
MISSILE, FREE FLIGHT
AIRBREATHING MISSILE, FLIGHT
NONOPERATING

*GROUND, MOBILE HAS BEEN EXPANDED TO GROUND, MOBILE, WHEELED AND GROUND, MOBILE, TRACKED DURING THIS STUDY.

ENVIRONMENTAL SURVEY

2-ROUND SURVEY OF INDUSTRY EXPERTS

STATISTICAL ANALYSIS OF RESPONSE

- SEVERITY RANKING OF ENVIRONMENTS
- SIGNIFICANCE RANKING OF INFLUENCE FACTORS

CONTRACT OBJECTIVES

- UPDATE FACTORS FOR ENVIRONMENTS IN MIL HDBK-217B
- CREATE FACTORS FOR NEW ENVIRONMENTS

APPENDIX E

REVISED SEMICONDUCTOR BASE FAILURE RATE TABLES

TABLE 2.2.1-7 MIL-S-19500 TRANSISTORS, GROUP I, SILICON, NPN BASE FAILURE RATE, λ_b , IN FAILURES PER 10^6 HOURS

T		S								
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	. 9	1.,0
0 10	.00050 .00056	.00060	.00070	.00084	.00098 .0011	.0012	.0014	.0016	.0021	.0026 .0034
20 25	.00063	.00075	.00088 .00094	.0010 .0011	.0012 .0013	.0015	.0018	.0022 .0025	.0029	.0043 .0048
30 40	.00070 .00079	.00084 .00094	.00098 .0011	.0012 .0013	.0014	.0016	.0021	.0026 .0034	.0037 .0048	
50 55	.00088 .00094	.0010 .0011	.0012	.0015 .0015	.0018	.0022	.0029	.0043 .0048		
60 65	.00098	.0012	.0014	.0016	.0021 .0022	.0026	.0037 .0043			
70 75	.0011 .0012	.0013	.0015 .0016	.0019	.0025 .0026	.0034	.0048			
80 85	.0012 .0013	.0015 .0015	.0018 .0019	.0022 .0025	.0029 .0034	.0043 .0048				
90 95	.0014	.0016 .0018	.0021	.0026	.0037	-				
100 105	.0015 .0016	.0019	.0025 .0026	.0034 .0037	.0048	1.				
110 115	.0018	.0022 .0025	.0029	.0043 .0048						
120 125	.0021 .0022	.0026 .0029	.0037							
130 135	.0025 .0026	.0034 .0037	.0048							
140 145	.0029 .0034	.0043 .0048								
150 155	.0037 .0043									
160	.0048									

TABLE 2.2.1-8 MIL-S-19500 TRANSISTORS, GROUP 1, SILICON, PNP BASE FAILURE RATE, λ_b , IN FAILURES FOR 10^6 Hours

T		S								
(°C)	.1	. 2	. 3	.4	.5	.6	.7	.8	.9	1.0
0 10	.00065 .00077	00083 .\\0095	.0010	.0012	.0015 .0016	.0017	.0020	.0026	.0032	.0044
20 25	.00099 .00095	.0011	.0013	.0015	.0019 .0019	.0022 .0023	.0028	.0035	.0049 .0057	.0077
30 40	.0010 .0012	.0012 .0014	.0015 .0016	.0017	.0020	.0026 .0031	.0032	.0044	.0065	
50 55	.0013 .0014	.0015	.0019	.0022	.0028 .0031	.0035	.0049 .0057	.0077		
60 65	.0015 .0015	.0017 .0019	.0020	.0026	.0032 .0035	.0044	.0065			
70 75	.0016 .0017	.0019 .0020	.0023	.0031	.0039 .0044	.0057 .0065	.0092			
80 85	.0019 .0019	.0022	.0028	.0035	.0049 .0057	.0077 .0092				
90 95	.0020 .0022	.0026 .0028	.0032 .0035	.0044 .0049	.0065 .0077					
100 105	.0023 .0026	.0031	.0039 .0044	.0057 .0065	.0092					
110 115	.0028 .0031	.0035 .0039	.0049 .0057	.0077 .0092						
120 125	.0032	. 0044 . 0049	.0065							
130 135	.0039 .0044	.0057 .0065	.0092							
140 145	.0049 .0057	.0077								
150 155	.0065 .0077									
160	.0092									

TABLE 2.2.4-7 HIL-S-19500 DICDES, GROUP IV, SILICON BASE FAILURE RATE, λ_b , IN FAILURES PER 106 HOURS

		S								
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
0 10	.00010 .00012	.00014	.00020	.00027	.00037	.00049 .00059	.00065	.00085 .0010	.0011	.0016 .0022
20 25	.00016	.00023	.00031	.00041	.00053	.00070	.00092 .0010	.0013 .0014	.0019	.0031 .0039
30 40	.00020	.00027	.00037	.00049	.00%5 .00076	.00085 .0010	.0017	.0016	.0025	
50 55	.00031	.00041	.00053	.00070	.00092 .0010	.0013 .0014	.0019	.0031 .0039		
60 65	.00037 .00041	.00049	.00065	.00085	.0011	.0016 .0019	.0025			
70 75	.00045	.00059 .00065	.00076 .00085	.0010 .0011	.0014 .0016	.0022	.0039			
80 85	.00053	.00070	.00092	.0013	.0019	.0031				
90 95	.00065 .00070	.00085 .00092	.0013	.0016	.0025					
100 105	.00075	.0010 .0011	.0014	.0022	.0039					
110 115	.00092 .0010	.0013 .0014	.0019	.0031						
129 121	.0011 .0013	.0016	.0025							
130 135	.0014 .0016	.0022 0025	.0039							
140 145	.0019 .0022	.ŭû31 .0039								
150 155	.0025 .0031									
160	.0039			,			,			

TABLE 2.2.5-4 MIL-S-19500 ZENER DIODES, GROUP V BASE FAILURE RATE, λ_b , IN FAILURES PER 10^6 HOURS

		S							^	
(°C)	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.5
0 10	.00041	.00048	.00055	.00061	.00070	.00078	.00089	.0010	.0012	.0016 .0019
20 25	.00049	.00056	.00065	.00072	.00082	.00094	.0011	.0013	.0017	.0026 .0031
30 40	.00055	.00061	.00070	.00078	.00089	.0010	.0012	.0016	.0022	
50 55	.00065	.00072	.00082	.00094	.0011	.0013	.0017	.0026	,	
60 65	.00070	.00078	.00089	.0010	.0012	.0016	.0022	. 003.		
70 75	.00072	.00085 .00089	.00099	.0012	.0015	.0017	.0031			
80 85	.00078	.00094	.0010	.0013	.0017	.0026			-	
90 95	.00089	.0010	.0012	.0013	.0022 .0026	.0031				
100 105	.00099	.0012	.0015	.0019	.0031					
110	.0011	.9013	.0017	.0026						
120 125	.0012	.0016	.0022	.0031						
130 135	.0015	.0017	.0031							
140 145	.0017	.0026								
150	.0022	.0031								
155 160	.0026					· · · · · · · · · · · · · · · · · · ·				

MIL-HDBK-217C

DISCRETE SEMICONDUCTORS

TABLE 2.2-2
DISCRETE SEMICONDUCTOR BASE RAILURE RATE PARAMETERS

			λ _b Cons	tants		
Group	Part Type	A	N _T	TM	P	ΔŢ
Transistors						
1	Si, NPN Si, PNP Ge, PNP Ge, NON	0.0189 0.0648 6.5	-1052 -1324 -2142 -2221	448 448 373 373	10.5 14.2 20.8 19	150 150 75 75
11	FET	0.52	-1162	448	13.8	
. 111	Unijunction	3.12	-1779	448	13.8	150
Diodes IV	Si, Gen. Purp. Ge, Gen. Purp.	0.172 126	-2138 -3568	448 373	17.7 22.5	150 75
٧	Zener/Avalanche	0.0068	-800	448	14	150
AI	Thryistors	0.82	-2 0 50	448	9.6	150
A11	Microwave Ge, Detectors Si, Detectors Si, Schottky Det. Ge, Mixers Si, Fixers	0.33 0.14 0.005 0.56 0.19	-477 -392 -392 -477 -394	343 423 423 343 423	15.6 16.6 16.6 15.6 15.6	45 125 125 45 125
A711	IMPATT, Gunn, Varactor, PlN, Step Recovery & Tunnel	0.93	-1162	448	13.8	150
Transistors IX	Microwave		See Secti	on 2.2	2.9	
X Opto-electronic	LED's, Isolators and Displays	126	-3734	398	22.5	100

Supersedes page 2.2-3, 9 April 1979.

APPENDIX F
REVISION SHEETS FOR MIL-HDBK-217

Use Environment

All part reliability models include the effects of environmental stresses through the factor, π_E . The definitions of these environments are shown in Table 2-3. The π_E factor is quantified within each part failure rate model. These environments encompass the major areas of equipment use. Most equipment will experience more than one environment during its normal use, particularly since the nonoperating mode has been added to the models. To utilize both the operating and nonoperating models with one or more environments, the reliability analysis should be segmented. This is illustrated by the following example.

Consider a tactical artillery missile fired from a wheeled vehicle capable of traversing rough terrain. The missile would be removed from depot storage in an uncontrolled environment and subjected to a functional test. It would then be carried by truck to the ammunition supply point for loading into the mobile launcher. The launcher travels cross country to the forward edge of the battle area and when a fire mission is received, power is turned on in the missile and shortly thereafter it is launched and proceeds to the target. As before, the appropriate $\pi_{\rm E}$ factors should be quantified within each part failure rate model and the resulting part failure rates are summed to obtain system failure rates for each segment of the mission. A model for this mission is shown below:

$$R_{M} = e^{-\left[\left(1-a\right)\left(\lambda_{NO_{GF}} t_{NO_{GF}}\right) + \lambda_{NO_{G_{M}}} t_{NO_{G_{M}}} + \lambda_{G_{M}} t_{G_{M}} + \lambda_{ML} t_{ML}\right]}$$

where

a = functional test efficiency (percent of failures detected)

 $^{\lambda}_{\mbox{NO}_{\mbox{GF}}}$ = system ground fixed nonoperating failure rate

 $\lambda_{\mbox{NO}_{G_{\mbox{\scriptsize M}}}}$ = system ground mobile nonoperating failure rate

 $^{\lambda}_{G_{M}}$ = system ground mobile operating failure rate

 λ_{ML} = system missile launch failure rate

 $t_{NO_{GF}}$ = depot storage time period

 $t_{NO_{G_M}}$ * ground mobile nonoperating time period

 $\mathbf{t}_{\mathbf{G}_{\mathbf{M}}}$ ground mobile operating time period

 t_{ML} = missile launch and flight time period

TABLE 2-3 ENVIRONMENTAL SYMBOL IDENTIFICATION AND DESCRIPTION

ENVIRONMENTAL MODE	^π E SYMBOL	DESCRIPTION
Ground, Benign	GB	Nonmobile, laboratory environment readily accessible to maintenance.
Ground, Fixed	GF	Conditions less than ideal to in- clude installation in permanent racks with adequate cooling air and possible installation in unheated buildings.
Ground, Mobile	G _M	Mobile equipment installed upon wheeled or tracked vehicles.
Space, Flight	SF	Earth orbital. Approaches Ground, Benign conditions without access for maintenance. Vehicle neither under powered flight nor in atmospheric re-entry.
Nonoperating	NO	Dormancy/storage conditions of equipment.
Manpack	Мр	Portable electronic equipment being manually transported while in the operational mode.
Naval, Sheltered	NS	Sheltered or below deck conditions, protected from elements of weather.
Naval, Unsheltered	NU	Nonprotected shipboard equipment exposed to climatic conditions.
Naval, Undersea, Unsheltered	N _{UU}	Equipment immersed in salt water.
Naval, Submarine	N_{SB}	Equipment installed in submarine.
Maval, Hydrofoil	и́Н	Equipment installed in a hydrofoil vessel.
Airborne, Inhabited, Transport	AIT	Typical conditions in transport or bomber compartments occupied by aircrew without environmental extremes of pressure, temperature, shock and vibration, and installed on long mission aircraft such as transports and bombers.
Airborne, Inhabited, Fighter	AIF	Same as AIT but installed on high performance aircraft such as fighters and intercepters.

TABLE 2-3 (Continued)

ENVIRONMENTAL MODE	"E SYMBOL	DESCRIPTION
Airborne, Uninhabited, Transport	Aut	Bomb bay, equipment bay, cail, or where extreme pressure, vibration, and temperature cycling may be aggravated by contamination from oil, hydraulic fluid and engine exhaust. Installed on long mission aircraft such as transports and bombers.
Airborne, Uninhabited, Fighter	AUF	Same as A _{UT} but installed on high performance aircraft such as fighters and intercepters.
Airborne, Rotary Hinged	A _{RW}	Equipment installed in or on helicopters.
Missile, Launch	ML	Severe conditions related to missile launch (air and ground), and space behicle boost into orbit, vehicle reentry and landing by parachute. Conditions may also apply to rocket propulsion powered flight.
Cannon, Launch	СĹ	Extremely severe conditions related to cannon launch.
Undersea, Launch	ՍՏՐ	Conditions related to undersea torpedo mission/missile launch.
Missile, Free Flight	MFF	Non-powered free flight.
Airbreathing Missile, Flight	MFA	Conditions related to powered flight of airbreathing missile.

TABLE 2-3A TYPICAL EQUIPMENT USAGE

ENVIRONMENTAL MODE	TYPICAL EQUIPMENTS IN MODE
Ground, Benian	Laboratory instruments, laboratory test equip- ment, medical electronic equipment, large business/scientific computer complexes.
Ground, Fixed	Permanent installation of air traffic control, radar and communications facilities, missile silo ground support equipment.
Ground, Mobile	Tactical missiles and associated ground support equipment, mobile communications equipment, tactical fire direction systems.
Space Flight	Satellites, space probes, shuttles.
Nonoperating	Systems in dormancy/storage conditions.
Manpack	Portable field communications equipment and laser designators/rangefinders.
Naval, Sheltered	Surface ships communications equipment, computers, sonars.
Naval, Unsheltered	Mast mounted radar electronics, missile/ projectile fire concrol equipment.
Naval, Undersea, Unsheltered	Sonar sensors, special purpose ASW equipment
Naval, Submarine	SINS, launch control systems, strategic missiles.
Naval, Hydrofoil	Communications equipment.
Airborne, Rotary Winged	Tactical missiles, laser designators, fire con- trol systems.
Missile, Launch	Missiles in conditions described by Table 2-3.
Cannon, Launch	155 mm and 5 inch guided projectiles.
Undersea, Launch	Torpedoes, strategic missiles.
Missile, Free Flight	Missiles in conditions described by Table 2-3.
Airbreathing Missile, Flight	Cruise missiles.

2.1.1 Monolithic Bipolar and MOS Digital SSI/MSI Devices (less than 100 gates).

Part operating failure rate model (λ_{o}) :

$$\lambda_p = \pi_Q \left[c_1 \pi_T \pi_V + (c_2 + c_3) \pi_E \right] \pi_L$$
 Failures/10⁶ hours

where:

 λ_2 is the device failure rate in F/10⁶ hours

 m_0 is the quality factor, Table 2.1.5-1

 $\%_T$ is the temperature acceleration factor, based on technology (Table 2.1.5-4) and is found in Tables 2.1.5-5 thru 2.1.5-13

 π_{V} is the voltage denating stress factor, Table 2.1.5-14

 $\pi_{\mbox{\scriptsize F}}$ is the application environment factor, Table 2.1.5-3

 c_1 & c_2 are the circuit complexity failure rates based upon gate count and are found in Tables 2.1.5-17 and 2.1.5-18. (See Tables 2.1.5-27 and 2.1.5-28 for gate count determination)

 C_3 is the package complexity failure rate, Table 2.1.5-26

 π_{\parallel} is the device learning factor. Table 2.1.5-2

Part non-operating failure rate model (λ_{PNO}):

$$\lambda_{PNO} = \pi_{Q} \left[0.1 \, C_{1} + (C_{2} + C_{3}) \, \pi_{ENO} \right]$$
 Failures/10⁶ hours

wnere:

 π_0 , C_1 , C_2 , C_3 are as described for λ_p

 πE_{NO} is the application environment factor, Table 2.1.5-3

2.1.2 Monolithic Ripolar and MOS Linear Devices

Part operating failure rate model (λ_c):

$$^{\lambda}_{p} = ^{\pi}_{Q} \left[^{C}_{1}^{\pi}_{T}^{\pi}_{V} + (^{C}_{2} + ^{C}_{3})_{\pi}_{E} \right] ^{\pi}_{L}$$
 Failures/10⁶ hours

where:

 $\lambda_{\rm p}$ is the device failure rate in F/10⁶ hours

 π_0 is the quality factor, Table 2.1.5-1

 π_{T} is the temperature acceleration factor, based on technology (Table 2.1.5-4) and is found in Tables 2.1.5-5 thru 2.1.5-13

 $\pi_{\rm V}$ is the voltage derating stress factor, Table 2.1.5-14

 π_{E} is the application environment factor, Table 2.1.5-3

C₁ & C₂ are the circuit complexity failure rates based upon gate count and are found in Tables 2.1.5-17 and 2.1.5-18. (See Tables 2.1.5-27 and 2.1.5-28 for gate count determination)

 C_3 is the package complexity failure rate, Table 2.1.5-26

 π_L is the device learning factor, Table 2.1.5-2

Part non-operating failure rate model (λ_{PNO}):

$$\lambda_{PNO} = \pi_{Q} \left[0.1 \ C_{1} + (C_{2} + C_{3}) \ \pi_{ENO} \right]$$
 Failures/10⁶ hours

wnere:

 π_Q , C_1 , C_2 , C_3 are as described for λ_p

 $\pi \epsilon_{NO}$ is the application environment factor, Table 2.1.5-3

2.1.3 Monolithic Bipolas and MOS Random Logic LSI and Microprocessor Devices (equal to or greater than 100 gates)

Part sperating failure rate model (v_p) :

$$\lambda_p = \pi_Q \left[C_1 \pi_T \pi_V + (C_2 + C_3) \pi_E \right] \pi_L$$
 Failure:/106 hours

where:

 λ_p is the device failure rate in F/10 6 hours

 π_0 is the quality factor, Table 2.1.5-1

 π_{T} is the temperature acceleration factor, based on technology (Table 2.1.5-4) and is found in Tables 2.1.5-5 thru 2.1.5-13

 π_V is the voltage derating stress factor, Table 2.1.5-14

 π_{F} is the application environment factor, Table 2.1.5-3

C₁ & C₂ are the circuit complexity failure rates based upon gate count and are found in Tables 2.1.5-17 and 2.1.5-18. (See Tables 2.1.5-27 and 2.1.5-28 for gate count determination)

 C_2 is the package complexity failure rate, Table 2.1.5-26

 π_1 is the device learning factor. Table 2.1.5-2

Part non-operating failure rate model (λ_{PNO}):

$$\lambda_{PNO} = \pi_Q \left[0.1 \ C_1 + (C_2 + C_3) \ \pi_{ENO} \right]$$
 Failures/10⁶ hours

wnere:

 $^{\pi}\text{Q}\text{, }\text{C}_{1}\text{, }\text{C}_{2}\text{, }\text{C}_{3}\text{ are as described for }\lambda_{p}$

 πE_{NO} is the application environment factor, Table 2.1.5-3

2.1.4 Honolithic MOS and Bipolar Memories

2.1.4.1 Random Access Homories (RAMs)

Part operating failure rate model (λ_n) :

$$\lambda_p = \pi_Q \left[C_1 \pi_T \pi_V + (C_2 - C_3) \pi_E \right] \pi_L$$
 Failures/10⁶ hours

where:

 λ_p is the device failure rate in F/10 6 hours

 π_0 is the quality factor, Table 2.1.5-1

 π_T is the temperature acceleration factor, based on technology (Table 2.1.5-4) and is found in Tables 2.1.5-5 thru 2.1.5-13

 π_V is the voltage derating stress factor, Table 2.1.5-14

 $\pi_{\rm F}$ is the application environment factor, Table 2.1.5-3

C₁ & C₂ are the circuit complexity failure rates based upon gate count and are found in Tables 2.1.5-17 and 2.1.5-18. (See Tables 2.1.5-27 and 2.1.5-28 for gate count determination)

 C_3 is the package complexity failure rate, Table 2.1.5-26

 π_L is the device learning factor, Table 2.1.5-2

Part non-operating failure rate model (λ_{PNO}):

$$\lambda_{PNO} = \pi_Q \left[0.1 \, C_1 + (C_2 + C_3) \, \pi_{ENO} \right]$$
 Failures/10⁶ hours

wnere:

 π_Q , C_1 , C_2 , C_3 are as described for λ_p

 $\pi E_{\mbox{\footnotesize{NO}}}$ is the application environment factor, Table 2.1.5-3

2.1.4.2 Read-Only Memories (ROMs) and Programmable Read-Only Memories (PROMs)

Part operating failure rate model (z_n) :

$$\lambda_p = \pi_Q \left[C_1 \pi_T \pi_V + (C_2 + C_3) \pi_E \right] \pi_L$$
 Failures/10⁶ hours

where:

 $\lambda_{\rm p}$ is the device failure rate in F/10⁶ hours

 π_0 is the quality factor, Table 2.1.5-1

*T is the temperature acceleration factor, based on technology (Table 2.1.5-4) and is found in lables 2.1.5-5 thru 2.1.5-13

 π_{ν} is the voltage derating stress factor, Table 2.1.5-14

 $\pi_{\rm F}$ is the application environment factor. Table 2.1.5-3

C₁ & C₂ are the circuit complexity failure rates based upon gate count and are found in Tables 2.1.5-17 and 2.1.5-18. (See Tables 2.1.5-27 and 2.1.5-28 for gate count determination)

 C_3 is the package complexity failure rate, Table 2.1.5-26

 π_i is the device learning factor, Table 2.1.5-2

Part non-operating failure rate model (λ_{PNO}):

$$\lambda_{PNO} = \pi_{Q} \left[0.1 \, C_{1} + (C_{2} + C_{3}) \, \pi_{ENO} \right]$$
 Failures/10⁶ hours

wnere:

 π_0 , C_1 , C_2 , C_3 are as described for Λ_0

 πE_{NO} is the application environment factor, Table 2.1.5-3

MICROELECTRONIC DEVICES MONOLITHIC

TABLE 2.1.5-2. IL LEARNING FACTORS

The learning factor n_1 is 10 under any of the following conditions:

(1) New device in initial production.

(2) Where major changes in design or process have occurred.

(3) Where there has been an extended interruption in production or a change in line personnel (radical expansion).

The factor of 10 can be expected to apply until conditions and controls have stabilized. This period can extend for as much as six months of continuous production.

 τ_L is equal to 1.0 under all production conditions not stated in (1), (2) and (3) above.

TABLE 2.1.5-3. Application Environment Factor $\mathbf{w}_{\mathbf{p}}$

<u> </u>		
<u> </u>	18	
Environment	Operating	Nonoperating
SF	0.90	0.09
G _B	0.38	9.04
G _B	2.5	0.85
N _{SB}	4.5	0.45
	3.4	0.34
N _S M _P GM M _{FF}	3.8	0.38
G _{ra}	4.2	0.41
M _{ee}	3.9	0.38
AIT	3.5	-
MFA	5.4	0.54
NU	5.7	0.57
AUT	4.0	•
N _H	5.9	0.58
NUU	6.3	0.63
ARW	8.5	0.84
AIF	7.0	-
USL	11.	1.1
A _{UF}	8.0	-
ML	13.	1.3
ະ້	220.	22.

Supersedes page 2.1.5-2, 9 April 1979

AND THE RESIDENCE OF THE PARTY OF THE PARTY

2.1.6 EXAMPLE FAILURE RATE CALCULATIONS FOR MONOLITHIC DEVICES

Example One

Description: An 8192 bit N-channel MOS UV-EPROM in a Ground, fixed application, junction temperature of 55°C, procured to vendor equivalent 8-2 quality level. The production line has been in continuous production. The device is a ceramic/metal DIP, solar seal hermetic package with 24 pins.

From Section 2.1.4.2, the operating failure rate model is:

$$\lambda_{p} = \pi_{Q} \left[C_{1} \pi_{T} \pi_{V} \pi_{PT} + (C_{2} + C_{3}) \pi_{E} \right] \pi_{L}$$

Table 2.1.5-1 Quality Level B-2; $*_0$ = 6.5

Table 2.1.5-3 Ground, Fixed Environment: $*_{E} = 2.5$

Table 2.1.5-4 NMOS, Hermetic Package: corresponding to π_{T} Table 2.1.5-8; π_{T} = 0.71

Table 2.1.5-14 $\pi_V = 1.0$

Table 2.1.5-24 8192 bits; $C_1 = 0.055$, $C_2 = 0.0024$

Table 2.1.5-25 $\pi_{PT} = 1.56$

Table 2.1.5-26 24 pin Hermetic DIP solder seal; $C_3 = 0.009$

Table 2.1.5-2 $\pi_L = 1$

 $x_p = 6.5 \quad [(0.055)0.71(1.0)(1.56) + (0.0024 + 0.009)2.5] 1.0$ $x_p = 0.59/10^6 \text{ hours}.$

From Section 2.1.4.2, the non-operating failure rate model is:

$$1_{PNO} = \pi_Q \left[0.1 \ C_1 + (C_2 + C_3) \ \pi_{ENO} \right]$$

Table 2.1.5-3 Ground, Fixed Environment: $\pi E_{NO} = 0.25$

 $\lambda_{PNO} = 6.5 [(0.1)(0.055) + (0.0024 \times 0.009) 0.25]$

 $\lambda_{PNP} = 0.036/10^6$ hours.

M7L-HD8X-217C

MICROELECTRONIC DEVICES MONOLITHIC

Example Two

Description: Device type M33510/01801 is being used in an airborne inhabited, transport environment. The device is procured as quality level 8-2 and has been in continuous production. The device is in a 16 pin, glass seal hermetic C-DIP package. The device has a worst case power dissipation of 0.77 watts.

tipe type number shows that the device is included in MIL-M-38510, described in slash sheet 18, type 01. The device is fabricated using TTL digital bipolar technology.

Table 2.1.5-26 shows a 100 gate complexity for this device. Since the device complexity is equal to 100 gates, the random logic LSI digital model in Section 2.1.3 applies. The operating failure rate equation is:

$$y^b = a^6 \left[c^1 a^1 a^A + (c^5 + c^3) a^E \right] a^F$$

Table 2.1.5-1 Quality Level B-2; *Q * 6.5

Table 2.1.5-3 Airborne, Inhabited, Transport Environment, $\pi_F = 3.5$

Table 2.1.5-4 TTL, Hermetic Package, corresponding to *Table 2.1.5-5

$$T_J = T_C + \theta_{JC}P_{max} = 60 + 30(0.77) = 83 \cdot C$$

From Table 2.1.5-5, $w_T = 1.3$

Table 2.1.5-14 $\pi_{V} = 1.0$

Table 2.1.5-20 100 gate complexity; $C_1 = 0.015$, $C_2 = 0.0012$

Table 2.1.5-26 16 pin hermetic DIP, glass seel, $C_3 = 0.0059$

Table 2.1.5-2 $w_1 = 1.0$

 $\lambda_{\rm p} = 6.5 \ [(0.015)1.3(1.0) + (0.0012 + 0.0059)3.5] 1.0$

 $\lambda_n = 6.5 [0.020 + 0.025]$

 $\lambda_{\rm p} = 0.29/10^6 \text{ hrs.}$

2.1.7 HYBRID MICROCIRCUIT

The hybrid operating failure rate model is:

$$\lambda_{p} = \left\{ \frac{2N_{C}}{C} \frac{\lambda_{C}}{C} \frac{\pi_{G} + [N_{R} \lambda_{R} + 2N_{I} \lambda_{I} + \lambda_{S}]}{\pi_{F} \pi_{E}} \right\} \frac{\pi_{Q}}{D}$$
(failures/10⁶ hour)

where:

The hybrid non-operating failure rate model is:

$$\lambda_{\text{PNO}} = \begin{cases} \Sigma N_{\text{C}} \lambda_{\text{C}} \pi_{\text{G}} + [0.0001 \ N_{\text{R}} + 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \text{Failures/10}^6 \text{ hours} \end{cases} \pi_{\text{R}} + 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma N_{\text{I}} + \lambda_{\text{S}} \\ \Sigma_{\text{S}} = 0.000174 \ \Sigma_{\text{I}} + \lambda_{\text{I}} \\ \Sigma_{\text{I}} = 0.000174 \ \Sigma_{\text{I}} + \lambda_{\text{I}} + \lambda_{\text{I}} \\ \Sigma_{\text{I}} = 0.000174 \ \Sigma_{\text{I}} + \lambda_{\text{I}} + \lambda_{\text{I}} \\ \Sigma_{\text{I}} = 0.0001$$

where:

 $^{\Sigma N}{_C}~^{\lambda}{_C}~^{\pi}{_G},~^{N}{_R},~^{\Sigma N}{_I},~^{\pi}{_Q},~^{\pi}{_D}$ are applied in the same manner as in the operating failure rate model

AS25°C is the failure rate contribution of the hybrid package at 25°C (70°F), (Table 2.1.7-4)

 $^{\pi E}N0$ is the environmental factor for the film resistors, interconnections and package from Table 2.1.7-5

MIL-HDBK-217C 9 April 1979 MICROELECTRONICS HYBRID

TABLE 2.1.7-5

Environmental Factor for Resistors,
Interconnections and Packages

	"E	
Environment	Operating	Monoperating
SF	0.32	0.18
G _B	0.20	0.12
G _F	0.78	0.45
NSB	0.99	0.57
N _S	1.7	0.98
Mp	2.0	1.2
G _M	2.2	1.3
M _{FF}	2.1	1.2
A _{IT}	1.4	-
M _{FA}	2.9	1.7
N _U	3.2	1.8
A _{UT}	2.1	-
NH	3.1	1.8
N _{UU}	3.4	2.0
A _{RW}	4.5	2.6
A _{IF}	2.8	-
USL	6.1	3.5
A _{UF}	4.2	-
M	7.0	4-G
c _L	120.	69.

Si NPN transistor die, 60% stress ratio, page 2.2.1-1

$$^{\lambda}b^{(\Pi_{E} \Pi_{A} \Pi_{Q} \Pi_{R} \Pi_{S2} \Pi_{C})}\Pi_{G}$$
(.02) 25 (1.5) 0.12 (1.0) 0.88 (1.0) 0.4 = 0.0316

Si general purpose diode die, 60% stress ratio, page 2.2.4-1

$$^{1}b$$
 (^{1}E ^{1}Q ^{1}R ^{1}A $^{1}S2$ ^{1}C) ^{1}G (.0095) 25 (.15) 1.0 (1.0) 0.7 (1.0) .2 = 0.005

Ceramic chip capacitor, 60% stress ratio, 1000 pf., page 2.6.4-1

$$^{\lambda}_{b}$$
 ($^{\Pi}_{E}$ $^{\Pi}_{Q}$ $^{\Pi}_{CV}$) $^{\Pi}_{G}$ (.0063) 8.0 (1.0) 1.0 (.8) - 0.0403

Package - Table 2.1.7-4, seal perimeter = 4.2 in.
$$\lambda_S$$
 = .108

Interconnection - Table 2.1.7-3

Au-Al: .00130 Solder: .000871

 $\pi_F = 3.2$ Table 2.1.7-5

 $_{Q}^{\pi}$ = 1.0 Table 2.1.7-6 Density = 38/(.563 + .10) = 57.3

 $\pi_{\rm D}$ = 1.34 Table 2.1.7-1

 $\pi_{\rm F}$ = 1.25 (for linear application, page 2.1.7-1)

$$\lambda_{p} = \begin{cases} .0864 + .1206 + 2 (.0316) + 2 (.0539) + 2 (.005) + 2 (.0403) + \\ [17(.00015) + 34 (.00130) + 4 (.00087) + .108] (1.25) 3.2 \end{cases} 1.0 (1.34)$$

$$\lambda_p = 1.48$$

MIL-HDBK-217C MICROELECTRONICS HYBRID

The model for the non-operating failure rate is:

$$\lambda_{\rho_{NO}} = \left\{ \Sigma N_{C} \lambda_{C} \Pi_{G} + [0.0001 \ N_{R} + 0.000174 \ \Sigma N_{I} + \lambda_{S_{25 \bullet c}}] \, \epsilon_{NO} \right\}^{-\eta_{O} - \eta_{D}}$$

Package - Table 2.1.7-4, seal perimeter = 4.2 in., temperature = 25°c

$$^{\lambda}S_{25*c} = 0.014$$

$$\pi_{E_{NO}}$$
 = 1.8 Table 2.1.7-5

$$\lambda_{PNO} = \begin{cases} 0.0864 + 0.1206 + 2(0.0316) + 2(0.0539) + 2(.005) + 2(0.0403) \\ + [77(0.0001) + 34(0.000174) + 4(0.000174) + 0.014] & 1.8 \end{cases} (1.0)(1.34)$$

$$\lambda_{P_{NO}} = 0.68$$

DISCRETE SEMICONDUCTORS CONVENTIONAL TRANSISTORS

2.2.1 Transistors, Group J

SPECIFICATION	STYLE	DESCRIPTION
MIL-S-19500		Si, NPN
		Si, PNP
		Ge, PNP
		Ge, NPN

Part operating failure rate model (λ_p):

$$\lambda_p = \lambda_1 (\pi_E \times \pi_A \times \pi_Q \times \pi_R \times \pi_{S_2} \times \pi_C)$$
 Failures/10⁶ hours

where the factors are shown in Tables 2.2.1-1 through 10.

Part non-operating failure rate model ($\lambda p_{\mbox{\scriptsize NO}})$:

$$\lambda_{PNO} = \lambda_b \times \pi_{E_{no}} \times \pi_Q \times \pi_C$$
 Failures/10⁶ hours

Where $\lambda_{\mbox{\scriptsize b}}$ is the Table value at 25° and 0.1 stress ratio

TABLE 2.2.1-1

Group I Transiscors
Environmental Mode Factors

Environment	πE	"ENO
$c_{\mathtt{B}}$	1	0.09
SF	0.4	0.04
$G_{\mathbf{F}}$	5.8	0.54
NSB	11	1
NS	8.6	0.81
AIT	12	-
Mp	12	1.1
$M_{\mathbf{F}\mathbf{F}}$	12	1.1
MFA	17	1.6
GM	18	1.7
NH	19	1.7
NUU	20	1.9
AUT	20	-
иli	21	2.0
AIF	25	-
ARW	27	2.5
LSL	36	3.3
AUF	40	_
ML	41	3.9
C _L	690	66

TABLE 2.2.1-2 $\pi_{\mbox{\scriptsize A}}$ FOR GROUP I TRANSISTORS

Application	π _A
Linear Switch Si, low noise, r. f., <lw.< th=""><th>1.5 0.7 15.0</th></lw.<>	1.5 0.7 15.0

DISCRETE SEMICONDUCTORS CONVENTIONAL TRANSISTORS

TABLE 2.2.1-3 TO QUALITY FACTOR

Quality Level	πQ
JANTXV	0.12
JANTX	0.24
JAN	1.2
Lower*	6.0
Plastic**	12.0

*Hermetic packaged devices.

**Devices sealed or encapsulated
with organic materials.

TABLE 2.2.1-4 π_R FOR GROUP I TRANSISTORS

Power Rating (watts)	πR
<pre>< 1 > 1 to 5 > 5 to 20 > 20 to 50 > 50 to 200</pre>	1 1.5 2.0 2.5 5.0

DISCRETE SEMICONDUCTORS

2.2.? Transistors, Group II

SPECIFICATION

STYLE

DESCRIPTION

MIL-S-19500

Silicon Field Effect Transistors, Gallium Arsenide PET

Part operating failure rate model (λ_p) :

 $\lambda_{\rm i} = \lambda_{\rm b} (\pi_{\rm E} \times \pi_{\rm A} \times \pi_{\rm Q} \times \pi_{\rm C}) \ \, {\rm Failures/10}^6 \ \, {\rm hours}$ where the factors are shown in Tables 2.2.2-1 through 5.

Part non-operating failure rate model (λp_{NO}):

$$\lambda_{P_{NO}} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q \times \pi_C$$
 Failures/10⁶ hours

Where $\lambda_{\mbox{\scriptsize b}}$ is the Table value at 25° and 0.1 stress ratio

TABLE 2.2.-1

Group II Transistors
Environmental Mode Factors

Environment	πE	πE _{NO}
GB	1	0.4
SF	0.6	0.24
$G_{\mathbf{F}}$	4.0	1.6
NSB	6	2.4
NS	8.6	3.4
AIT	12	-
Mp	12	4.8
MFF	12	4.8
MFA	17	6.7
GM	18	7.2
NH	19	7.4
Nuu	20	7.9
AUT	20	_
NU	21	8.3
AIF	25	_
ARW	27	11
USL	36	14
AUF	40	-
ML	41	16
$c_{ m L}$	590	280

TABLE 2.2.2-2 π_{A} FOR GROUP II TRANSISTORS

Application	πA
Silicon Linear Switch High Frequency (>400 HMz. & aver. power < 300 mW.)	1.5 0.7 5.0
GaAs Low Noisc Driver (≤ 100 mW.)	7.0 50. 0

DISCRETE SEMICONDUCTORS FET

TABLE 2.2.2-3 $\pi_{\tilde{C}}$ FOR GROUP II TRANSISTORS

Complexity	™ C
Single Device Dual Unmatched Dual Matched Dual Complementary	1.6 0.7 1.2 0.7
Tetrode	1.1

TABLE 2.2.2-4 TO FOR GROUP II TRANSISTORS

" 1 1 0 W 0 W 0 O V 1 T 1	
Quality Level	πQ
Silicon	0.12
JANTXV JANTX	0.12
JAN	1.2
LOWER*	6.0
PLASTIC**	12.0
GaAs	1.0

hermetic packaged devices devices sealed or encapsulated with organic materials

DISCRETE SEMICONDUCTORS UNIJUNCTION

2.2.3 Transistors, Croup III

SPECIFICATION

STYLE

DESCRIPTION

MIL-STD-19500

Unijunction

Part operating failure rate model (λ_p) :

 $\lambda_{p} = \lambda_{b} \times \pi_{E} \times \pi_{Q}$ failures/10⁶ hours

where the factors are shown in Tables 2.2.3-1 through 3.

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{MO}} = 0.01 \, \pi_{E_{NO}} \times \pi_{O} \text{ failures/10}^6 \text{ hours}$

TABLE 2.2.3-1

Group III Transistors Environmental Mode Factors

Environment	π _E	^π E _{NO}
GB	1	1
SF	1	1
G _F	1	1
NSB	10	10
NS	8.6	8.6
AIT	12	
Mp	12	12
MFF	12	1.2
MFA	17	17
CM.	18	18
NH	19	19
Nuu	20	20
AUT	20	
ν _U	21	21
AIF	25	
ARW	27	27
v_{SL}	36	36
AUF	40	
MT.	41	41
c_L	690	690

TABLE 2.2.3-2 π_Q , QUALITY FACTOR

Quality Level	πQ
JANTXV	0.5
JANTX	1.0
JAN	5.0
Lowers	25.0
Plastic**	50. U

*Hermetic packaged devices.

**Devices sealed or encapulated
with organic material.

DISCRETE SEMICONDUCTORS DIODES, GENERAL PURPOSE

2.2.4 Diodes, Group IV

SPECIFICATION

STYLE

DESCRIPTION

MIL-S-19500

Silicon, General Purpose Germanium, General Purpose

Part operating failure rate model (λ_p) :

 $^{\lambda}_{p}$ = $^{\lambda}_{b}$ ($^{\pi}_{E}$ × $^{\pi}_{Q}$ × $^{\pi}_{K}$ × $^{\pi}_{A}$ × $^{\pi}_{S_{2}}$ × $^{\pi}_{C}$) failures/10⁶ hours where the factors are shown in Tables 2.2.4-1 through 8.

Part non-operating failure rate model (λp_{NO}) :

$$\lambda p_{NO} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q \times \pi_C$$
 failures/10⁶ hours

Where λ_{b} is the Table value at 25° and 0.1 stress ratio

TABLE 2.2.4-1

Group IV Diodes
Environmental Mode Factors

Environment	πE	πENO
GB	1	0.71
SF	1	0.71
G F	3.9	2.8
NSB	4.9	3.5
NS	4.7	3.3
ATT	12	-
Mp	12	8.6
MFF	12	8.7
MFA	17	12
Gм	18	13
NH	19	13
ทบบ	20	14
AUT	20	-
NU	21	15
AIF	25	-
ARW	27	19
v_{SL}	36	25
AUF	40	-
M_{L}	41	29
C,	690	[49n

TABLE 2.2.4-2
TO, QUALITY FACTOR

£) 40:m=11 11/01/01/		
Quality Level	πQ	
JANTXV	0.15	
JANTX	0.3	
JAN	1.5	
Lower* Plastic**	7.5 15.0	

*Hermetic packaged devices.

**Devices sealed or encapsulated
with organic material.

TABLE 2.2.4-3 π_R FOR GROUP IV DIODES

Current Rating (amps.)	#R
<pre> ≤ 1 > 1 to 3 > 3 to 10 >10 to 20 >20 to 50</pre>	1 1.5 2.0 4.0 10.0

HIL-HOBK-2170

DISCRETE SEHICONDUCTORS ZENEP AND AVALANCEE DIODES

2.2.5 Diodes, Group V

SPECIFICATION

STYLE

DESCRIPTION

MIL-STD-19500

Voltage Regulator and Voltage Reference (Avalanche and ZENER)

Part operating failure rate model (λ_p) :

 $\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{A} \times \pi_{Q})$ Failures/10⁶ hours

where the factors are shown in Tables 2.2.5-1 through 4.

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{NO}}$ = 0.00031 $\pi_{E_{NO}}$ x π_{Q} failures/10⁶ hours

TABLE 2.2.5-1

Group V Diodes
Environmental Mode Factors

Environment	πE	"ENO
G _B	1	0.37
SF	1	0.37
$G_{\mathbf{F}}$	3.9	1.5
NSB	5.8	2.2
N _S	8.7	3.3
AIT	12	-
Mp	12	4.5
$M_{\mathbf{FF}}$	12	4.5
MFA	17	6.3
GM	18	6.8
ИН	19	6.8
טטא	20	7.4
AUT	20	-
NU	21	7,8
AIF	25	-
ARW	27	9.9
USL	36	13
AUF	40	-
ΜĽ	41	15
C	690	260

TABLE 2.2.5-2

**A FOR GROUP V DIODES

Application	# A
Voltage Regulator	1.0
Voltage Reference (Temp. Compensated)	1.5

DISCRETE SEMICONDUCTORS ZENER AND AVALANCHE DIODES

TABLE 2.2.5-3

Quality Level	πQ
JANTXV	0.3
Jantx	0.6
JAN	3.0
Lower# Plastic##	15.0 30.0

*Hermetic packaged devices.

^{**}Devices sealed or encapsulated with organic materials.

DISCRETE SEMICONDUCTORS
THYRISTOR

2.2.6 Diodes, Group VI

SPECIFICATION MIL-STD-19500 STYLE

DESCRIPTION Thyristors

Part operating failure rate model (λ_p) : $\lambda_p = \lambda_b \times \pi_Q \times \pi_E \times \pi_R \text{ failukes/10}^6 \text{ hours}$

where the factors are shown in Tables 2.2.6-1 through 4.

Part non-operating failure rate model ($\lambda_{\Gamma_{NO}}$):

 $\lambda_{P_{NO}} = 0.0012 \pi_{Q} \times \pi_{E_{NO}}$ failures/10⁶ hours

TABLE 2.2.6-1

Group VI Diodes
Environmental Hode Factors

Environment	πE	EENO
C _B	1	1.1
SF	1	1.1
G _F	3.9	4.2
NSB	5.8	6.2
NS	8.7	9.3
i Arr	12	-
Mp	12	13
MFF	12	13
MPA	17	18
GM	18	19
MH	19	20
טטא	20	21
AUT	20	-
บห	21	22
AIF	25	-
ARW	27	29
USL	36	28
AUF	40	-
ML	41	44
CL	690	740

TABLE 2.2.6-2 TQ, Quality Funtor

Quality Level	₹Q
JANIXV	.5
JANTX	1.0
jan	5.0
Lower* Plastic**	25. 30.

"Hermetic packaged devices.
##Pevices sealed or encapsulated
with organic material.

TABLE 2.2.6-3
TR FOR GROUP VI THYRISTORS

Rated Average Forward Anode Current (amps.)	*R
≤1 >1 to 5	1 3
> 5 to 25	10
> 25 to 50	15

DISCRETE SENICONDUCTORS

2.2.7 Diode -, Group VII

3PECIFICATION

STYLE

DESCRIPTION

MX1-S-19500

Microwave Detectors and Mixers, Silicon and Germanium Silicon Schottky Detectors

Part operating failure rate model (λ_0) :

 $\lambda p = \lambda_b \times \pi_E \times \pi_Q$ failures/10⁶ hours

where the factors are shown in Tables 2.2.7-1 through -7.

Part non-operating failure rate model (ApNO):

$$\lambda_{PNO} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q$$
 failure: /10⁶ hours

Where λ_{b} is the Table value at 25° and 0.1 stress ratio

TABLE 2.2.7-1

Group VII Diodes
Environmental Fode Factors

Environment	*E	*ENO
GB	1	0.04
SF	1	0.04
G _F	6.4	0.26
NSB	8	0.32
NS	11	0.44
ATT	25	-
Mp	35	1.4
Мур	36	1.4
HFA	50	2
GM	31	1.2
NH	54	2.2
אטט	58	2.3
AUT	40	-
NU	33	1.3
AIF	50	-
ARW	78	3.1
USL	110	4.2
AUF	80	-
HE	120	4.9
CL	2000	82

TABLE 2.2.7-2
To. QUALITY FACTOR

Quality Level	™ Q
JANTX7	1
Jantx	2
JAN	3.5
Lower #	5.

"Hermetic packaged devices.

DISCRETE SEMICONDUCTORS
VARACTOR, STEP RECOVERY, TUNNEL

2.2.8 Diodes, Group VIII

SPECIFICATION

STYLE

DESCRIPTION

MIL-S-19500

Varactor, PIN, IMPATT Step Recovery, Tunnel & Gunn

Part operating failure rate model (λ_p) :

$$\lambda_{\rm p} = \lambda_{\rm b} \times \pi_{\rm E} \times \pi_{\rm \gamma} \times \pi_{\rm R} \times \pi_{\rm A} \text{ failures/10}^6 \text{ hours}$$

where: $\lambda_b=0.5$ for IMPATT, 0.7 for Gunn, Table 2.2.8-5 for others and remaining factors are in Tables 2.2.8-1 through -4. Part non-operating failure rate model ($\lambda_{P_{NO}}$):

$$\lambda P_{NO} = 0.022 m_{E_{NO}} \times m_{Q}$$
 failures/10⁶ hours

TABLE 2.2.8-1

Group VIII biodes
Environmental Mode Factors

Environment	πE	"ENO
		0.02
GB	1	
S _F	1	0.02
GF	3.9	0.06
NSB	5.8	0.1
N_S	8.7	0.15
AIT	12	-
Mp	12	0.2
M_{FF}	12	0.2
M_{FA}	17	0.28
GM	18	0.3
NH	19	0.3
Nuu	20	0.32
AUT	20	-
ИU	21	0.34
AIT	25	-
ARW	27	0.44
USL	36	0.59
AUF	40	-
ML	41	0.67
$c_{ m L}$	690	11

TABLE 2.2.8-2

Quality Level	πŋ
GUNN & IMPATT All other diodes	1,0
JANTXV	0.5
JANTX Jan	1.0
LOWER*	25.0

^{*}Hermetic packaged devices

DISCRETE SEMICONDUCTORS VARACTOR, STEP RECOVERY, TUNNEL

TABLE 2.2.8-3 π_R , POWER RATING FACTOR

Power Rating	πR
PIN Diodes	
<10W.	0.5
100W.	* 1.3
1000W.	* 2.0
3000W.	* 2.4
All other Diode	s 1.0

* - π_R = .325(ln P) - .25 for 10 \leq P \leq 3000W.

TABLE 2.2.8-4 $\pi_{\mbox{\scriptsize A}}, \mbox{ APPLICATION FACTOR}$

APPLICATION	πA
Varactors Voltage Control Multiplier All other diodes	0.5 2.5 1.0

DISCRETE SEMICONDUCTORS MICROWAVE TRANSISTORS

2.2.9 Microwave Transistors, Group IX

SPECIFICATION

DESCRIPTION

MIL-S-19500

Bipolar microwave power transistor for frequencies above 200 MHz and average power > 1 watt.

Part operating failure rate model (λ_p) :

$$\lambda_{\mathbf{p}} = \lambda_{\mathbf{B}} \pi_{\mathbf{Q}} \pi_{\mathbf{A}} \pi_{\mathbf{F}} \pi_{\mathbf{T}} \pi_{\mathbf{M}} \pi_{\mathbf{E}}$$

where:

 $\lambda_{\rm B}$ = 0.10 failures/10⁶ hours

To = quality factor, Table 2.2.9-1

" = application factor, Table 2.2.9-2

 $\pi_{\rm p}$ = factor for frequency and peak operating power, Table 2.2.9-3

#T = temperature factor, Table 2.2.9-4

 $\pi_{\rm M}$ = matching network factor, Table 2.2.9-5

 $\pi_{\rm E}$ = environmental factor, Table 2.2.9-6

See bibliography items 42-46 for the model background.

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{NO}} = 0.1 \times \pi_{Q} \times \pi_{ENO}$ failures/10⁶ hours

DISCRETE SEMICONDUCTORS MICROWAVE TRANSISTORS

TABLE 2.2.9-1 $^{\rm H}_{\rm O}$, QUALITY FACTOR

QUALITY LEVEL*	π q *
JANTXV with IR scan for die attach and screen for barrier layer pinholes on gold metallized devices	1
JANTX or Equivalent	2
JAN or Equivalent	4
LOWER QUALITY	10

^{*} These quality values apply to hermetically sealed devices only, and \underline{do} not apply to devices sealed or encapsulated with organic materials.

TABLE 2.2.9-5
TM, MATCHING NETWORK FACTOR

INTERNAL MATCHING	π _M
Input & Output	1
Input Only	2
No Matching	4

TABLE 2.2.9-6
Finvironmental Mode Factors

Environment	πE	π _{ENO}
$G_{\mathbf{B}}$	1	0.15
SF	1	0.15
$G_{\mathbf{F}}$	2	0.3
N_{SB}	3.6	0.53
$N_{\mathbf{S}}$	4.7	0.69
AIT	3	
$M_{ m P}$	7.4	1.1
M_{FF}	7.5	1.1
$M_{\mathbf{FA}}$	11	1.5
GM	7.8	1.2
NH	11	1.7
Nuu	12	1.8
AUT	4	-
NU	11	1.7
AIF	6	-
A_{RW}	16	2.4
USL	22	3.3
AUF	8	-
$M_{ m L}$	25	3.7
c_L	250	38

DISCRETE SEMICONDUCTORS OPTO-ELECTRONIC DEVICES

2.2.10 Opto-electronic Semiconductor Devices, Group X.

SPECIFICATION

DESCRIPTION

MIL-S-19500 MIL-S-19500

None

Light Emitting Diode (LED) Opto-electronic Coupler (Isolator) LED Alpha-numeric Display

Part operating failure rate model (λ_p):

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm C} \pi_{\rm E} \pi_{\rm Q}$$
 failures/10⁶ hours

where:

 λ_b = base failure rate in failures/10⁶ hrs., Table 2.2.10-4.

 π_{C} = complexity factor, Table 2.2.10-3. π_{E} = environmental factor, Table 2.2.10-1. π_{Q} = quality factor, Table 2.2.10-2.

The above model includes all failures except degradation of output light from the light emitting elements. For model background and guidance concerning light degradation, see Bibliography Item No. 49.

Part non-operating failure rate model (λp_{NO}):

 $\lambda p_{NO}^{}$ =0.0006 $\pi_{C}^{}$ x $\pi_{E_{NO}}^{}$ x $\pi_{Q}^{}$ failures/10⁶ hours

TABLE 2.2.10-1
Environmental Mode Factors

Environment	πE	πENO
$G_{\mathbf{B}}$	1	0.17
SF	1	0.17
GF	2.4	0.42
NSB	3.7	0.64
NS	5.7	0.99
AIT	2.8	-
Mp	7.7	1.3
MFF	7.8	1.4
MFA	11	1.9
GM	7.8	1.4
NH	12	2.1
NUU	13	2.2
AUT	4.2	-
NU	11	1.9
AIF	5.6	-
ARW	17	3
USL	23	4
AUF	8.4	_
ML	26	4.6
$c_{ m L}$	450	77

TABLE 2.2.10-2 π_Q , QUALITY FACTOR

Quality Level	πQ
JANTXV	1
JANTX	2
JAN	10
LOHER*	50
PLASTIC**	100

*-Applies to all hermetic packaged alpha-numeric displays and to NON-JAN hermetic packaged LED's and isolators.

**-Applies to all devices encapsulated with organic materials.

2.3 TUBES, ELECTRONIC VACUUM

The tube failure rate model is $\lambda_{p} = \lambda_{b} \pi_{F} \pi_{i}$

where:

 λ_p = tube failure rate in failures/10⁶ hr. λ_b = base failure rate in failures/10⁶ hr. and is a function of tube type and operating parameters (see Table 2.3-1). π_E * environmental factor (see Table 2.3-4).

 π_L = learning factor (see Table 2.3-5).

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{NO}} = \lambda_b \times \pi_{E_{NO}}$ failures/10⁶ hours

where:

 λP_{NO} for magnetrons = 0.12 failures/106 hours

Otherwise, λ_b is determined as follows:

Per Table 2.3-1 with the following clarifications Transmitting tubes: $\lambda_b = 75$ failures/106 hours TWT: λ_b per peak power < 10 watts unless listed otherwise

Table 2.3-2: $\lambda b = 29$ failures/106 hours Table 2.3-3: $\lambda b = 66$ failures/106 hours

TABLE 2.3-1 Ab. BASE FAILURE RATE FOR TUEES (includes both random and wearout failures)

TUBE TYPE	16 (f./106 hr.
RECEIVER	
Triode, Tetrode, Pentode	5
Power Rectifier	10
CRT	15
THYRATRON	50
CROSSED FIELD AMPLIFIER	30
OK68)	1
\$FD261	260 150
PULSED GRIDDED	
204)	Ì
6952	140 390
7835	140
TRANSMITTING	}
Triode Peak Pur 200 kH, Freq. 200 Htz.	75
Tetrode & Pentode Aver Pur52 kW	100
If any of above limits are exceeded	250
TVT	
M5768 v	310
MA2001A	170
VA138D VA643	50
VTR5210A1	90
WJ3751	150
ZN3167	90
If TWT of interest is not listed above, use:	90
Peak Power <10 watts	
Peak Power ≥10 matts, <100 matts	20
Peak Power >100 watte <10 000 watte	50 150
Peak Power 210,000 watts	400

TABLE 2.3-4

Environmental	Mode	Factors
Mit A T T Church Incom		

Environment	π _F ,	"ENO	
GB	0.5	0.0008	
SF	0.5	0.0008	
GF	1.0	0.0016	
NSB	8.6	0.0069	
Ns	6.9	0.0055	
AIT	4.6	-	
Mp	18	0.014	
MFF	18	0.015	
MFA	25	0.02	
GM	13	0.0074	
SH	28	0.022	
NUU	30	0.024	
AUT	5.7	-	
NU	13	0.011	
AIF	, 9	-	
ARW	40	0.032	
USL	53	0.043	
AUF	11	-	
ML	61	0.049	
$c_{\rm L}$	1000	0.83	

TABLE 2.3-5 $\pi_{\rm L}$, LEARNING FACTOR FOR ALL TUBES*

t (Yrs.)	1	2	3
πL	10	2.3	1

* -
$$\pi_L = 10(t)^{-2.1}$$
 for $1 \le t \ge 3$
= 10 for $t < 1$
= 1 for $t > 3$

Where t = number of years since introduction to military field use.

LASERS

2.4.7 Tables and Figures for Laser Model Parameters.

This section presents the tables and figures for quantifying the parameters of the laser failure rate models in Sections 2.4.1 through 2.4.6.

TABLE 2.4.7-1

Environmental Mode Factors

Environment	ηE	"ENO
GB	0.2	
SF	0.2	
G _F	1	
NSB	1.1	See
NS	5	Note
AIT	3.5	1
Mp	2.3	
MFF	2.4	
MFA	3.3	
GM	5	
NH	3.6	
NUU	3.9	
AUT	5.7	
NU	5	
AIF	7	İ
ARW	5.2	
USL	7.0	
AUF	11	
ML	8	1
CL	N/A	

Note 1: For nonoperating wear-out information, see Bibliography item 40, pages 64-65.

TABLE 2.4.7-2

GAS OVERFILL FACTOR, #0 ##

*0
1.00
0.75
0.50

*Overfill percent is based on the percent increase over the optimum CO₂ partial pressure which is normally in the range of 1.5 to 3 Torr for most sealed CO₂ lasers.

**The equation for π_0 is: $\pi_0 = -0.01$ (% overfill) + 1.

TABLE 2.4.7-3

DALLAST FACTOR, WB **

PERCENT OF BALLAST VOLUMETRIC INCREASE	πB
0	1.0
50	0.55
100	0.33
150	0.19
200	0.11

•The equation for π_B is: $\pi_B = \begin{pmatrix} \frac{2}{3} & \text{Vol. Inc.} \\ \frac{1}{3} & \frac{100}{3} \end{pmatrix}$

RESISTORS

MIL-R-39008, RCR; MIL-R-11, RC

2.5.1 Composition Resistors

SPECIFICATION

STYLE

DESCRIPTION

MIL-R-39008

MIL-R-11

RCR Insulated Fixed Composition Est. Rel.

Insulated Fixed Composition KC

Part operating failure rate model (λ_p) :

 $\lambda_p = \lambda_b \times (\pi_E \times \pi_R \times \pi_Q)$ (failures/10⁶ hours)

where the factors are shown in Tables 2.5.1-1 through -4.

Part non-operating failure rate model (λp_{NO}) :

 $\lambda_{P_{NC}}$ = 0.00018 $\pi_{E_{NO}} \times \pi_{Q}$ failures/106 hours

TABLE 2.5.1-1 Environmental Mode Factors

	المراجعة المستحددية	
Environment	яE	#ENO
GB	1	0.19
SF	1	0.19
i G _F	2.9	0.56
NSB	4.0	0.77
NS	5.2	1
AIT	2.8	-
Mp	8.5	1.6
MFF	8.6	1.6
MFA	13	2.5
GM	8.3	1.6
NH	13	2.5
Nuu	14	2.7
AUT	5.7	_
NU	12	2.3
AIF	5.7	_
ARW	19	3.6
v_{SL}	25	4.8
AUF	11	-
Mj.	29	5.5
C _L	490	94

TABLE 2.5.1-2 π_p, Resistance Factor

Resistance Kange (ohms)	*R
Up to 100 K	1.0
>0.1MΩ to 1 MΩ	1.1
>1.0MΩ to 10 MΩ	1.6
>10MΩ	2.5

TABLE 2.5.1-3 , Quality Factor

Failure Rate Level	¹Q
S	0.03
R	0.1
P	0.3
H	1.0
MIL-R-11	5.0
LOWER	15.

1111-HDBK-217C

RESISTORS

HIL-R-39017, RLR; MIL-R-55182, RNR MIL-R-22084, RL; MIL-R-10509, RN

2.5.2 Film Resistors

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39017 MIL-R-22684 MIL-R-55182 MIL-R-10509	RLR RL RN(R, C, or N RN	Fixed Film, Insulated, Est. Rel. Fixed Film, Insulated 1) Fixed Film, Est. Rel. Fixed Film, Insulated

Part operating failure rate model (λ_p):

$$\lambda_p = \lambda_b (\pi_E \times \pi_R \times \pi_Q)$$
 (failures/10⁶ hours)

where the factors are shown in Tables 2.5.2-1 through -5.

Part non-operating failure rate model (λp_{NO}):

$$\lambda_{P_{NO}} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q$$
 failures/10⁶ hours

Where λ_b is the Table value at 25° and 0.1 stress ratio

TABLE 2.5.2-1
Environmental Mode Factors

Environment	a.E	*ENO
C _B	1	0.46
SF	0.4	0.18
G _F	2.4	1.1
NSB	4.2	1.9
Ns	4.7	2.2
AIT	2.8	-
Mp	8.8	4.1
MFF	8.9	4.1
MFA	12	5.7
GM	7.8	3.6
NH	14	6.3
טטא	15	6.7
AUT	8.5	-
NU	14	6.4
AIF	5.7	-
ARW	19	9
USL	26	12
AUF	17	-
ML	30	1 14
CL	i10	230

RESISTORS
HIL-R-39017, RLR; HIL-R-55182, RNR
HIL-R-22684, RL; HIL-R-10509, RN

TABLE 2.5.2-2
**R* RESISTANCE FACTOR

Resistance Range (ohms)	π _R
Up to 100 K	1.0
>0.1 M to 1 M	1.1
>1.0 M to 10 M	1.6
>10 4	2,5

TABLE 2.5.2-3
7Q, QUALITY FACTOR

Failure Rate Level	³ Q
S	0.03
Ř	0.1
P	ນ.3
M	1.0
MIL-R-10509	5.0
MIL-R-22684	5.0

RESISTORS MIL-R-11804, RD

Prver 7119

SPECIFICATION STYLE DESCRIPTION
HIL-R-11804 RD Power Film

Part operating failure rate model (λ_p) :

$$\lambda_{p} = \lambda_{b}(\pi_{E} \times \pi_{R} \times \pi_{Q})$$
 (failures/10⁶ hours)

where the factors are shown in Tables 2.5.2-6 through -9.

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{NO}} = 0.0093 *_{E_{NO}} \times *_{Q} failures/10^6 hours$

TABLE 2.5.2-6
Environmental Mode Pactors

Environment	*E	*ENO
GB	1	0.12
SF	1	0.12
C _F	2.4	0.29
NSB	5.5	0.66
NS	4.7	0.56
AIT	6.2	-
Мр	11	1.3
MFF	12	1.4
MFA	16	1.9
GM	8.8	1.1
NH	18	2.2
พบบ	19	2.3
AUT	11	-
NU	15	1.8
AIF	8.5	-
ARW	25	3
USL	34	4.1
AUF	21	-
ML	39	4.7
C ₁	660	79

TABLE 2.5.2-7
*O, QUALITY FACTOR

Failure Rate Level	™ Q
MIL-SPEC	1.0
Lover	3.0

TABLE 2.5.2-8 RESISTANCE FACTOR, π_{R} , FOR MIL-R-11804

Resistance Ronge (ohms)	"R
10 to <100	1.2
100 to <160 K	1.0
100 K to <1 meg	1.3
≥1 meg	3.5

RESISTORS MIL-R-83401, RZ

2.5.3 Resistor Network

SPECIFICATION

STYLE

DESCRIPTION

MIL-R-83401

RZ

Resistor Networks, Fixed, Film

Part operating failure rate model (λ_p) :

$$\lambda_{\rm P}$$
 = .00066 (N_R x N_T x N_E x N_O) failures/10⁶ hours

where:

 $N_{\tilde{R}}$ is the number of film resistors in use (40 not include resistors that are not used)

 N_{τ} is the temperature factor, Table 2.5.3-1

 $\Pi_{\mbox{\scriptsize E}}$ is the environmental factor, Table 2.5.3-2

 II_0 is the quality factor, Table 2.5.3-3

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{NO}} = .00066 (N_R \times \pi_{E_{NO}} \times \pi_Q) \text{ failures/10}^6 \text{ hours}$

TABLE 2.5.3-1. Temperature Factor, Π_{T}^{*}

T _p (°C.)	π _τ	T _p (°C.)	n _T	T _p (°C.)	п
25	7.0	60	4.2	95	13.3
30	1.25	65	5.0	100	15.4
35	1.56	79	5.9	105	17.8
40	1.92	75	7.1	110	20.
45	2.4	80	8.3	115	24.
50	2.9	85	9.8	120	27.
55	3.5	90	11.4	1 25	31.

* - $I_T = Exp \left[-4056 \left(\frac{1}{T_p + 273} - \frac{1}{298} \right) \right]$

where T_p is package temperature in °C. If T_p is unknown, it can be estimated using $T_p = T_A + 55$ S. T_A is ambient temperature (°C.) and S is the ratio of total operating power/package rated power. Any device operating at $T_p > 125$ °C. is over-stressed.

TABLE 2.5.3-2

Environmental Mode Factors

Environment	πE	*ENO
GB	1	0.004
SF	1 1	0.004
G _F	2.4	0.010
NSB	4.2	0.017
NS	4.7	0.019
AIT	2.8	-
Mp	8.8	0.035
MFF	8.9	0.036
MFA	12	0.050
GM	7.8	0.031
NH	14	0.054
ทบบ	15	0.058
AUT	8.5	-
ทุบ	14	0.056
AIF	5.7	-
ARW	19	0.078
USL	26	0.10
AUF	1.7	-
$M_{ m L}$	30	0.012
CL	510	2.0

TABLE 2.5.3-3. Quality Factor, Π_0

QUALITY LEVEL	π _Q
MIL-SPEC	1
Lower	3

RESISTORS

MIL-R-39005, RBR; MIL-R-93, RB

2.5.4 Wirewound Resistors

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39005	RBR	Accurate Fixed Wirewound, ER
MIL-R-93	ŔB	Accurate Fixed Wirewound

Part operating failure rate model (λ_p):

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{R} \times \pi_{Q}) \text{ (failures/10}^{6} \text{ hours)}$$

where the factors are shown in Tables 2.5.4-1 through 4.

Part non-operating failure rate model (λp_{NO}):

$$\lambda_{P_{NO}}$$
 = 0.0034 $\pi_{E_{NO}} \times \pi_{Q}$ failures/106 hours

TABLE 2.5.4-1
Environmental Mode Factors

Environment	πE	"ENO
GB	1	0.24
SF	1.5	0.27
$G_{\mathbf{F}}$	2.4	0.59
NSB	5.8	1.4
N_{S}	4.7	1.2
AIT	6	-
Mp	12	2.9
MFF	12	2.9
MFA	17	4.1
GM	9.8	2.4
NH	18	4.5
NUU	20	4.9
AUT	20	-
NU	16	3.9
AIF	12	-
ARW	27	6.5
v_{SL}	36	8.7
AUF	40	-
ML	41	10
c_L	610	150

TABLE 2.5.4-2 $\pi_{\rm p}$, Resistance Factor

Resistance Range (ohms)	πR
Up to 10 K	1.0
>10 K to 100 K	1.7
>100 K to 1 M	3.0
>1 M	5.0

TABLE 2.5.4-3 π_0 , Quality Factor

Failure Rate Level	πQ
S	0.03
R	0.1
P	0.3
м	1.0
MIL-R-93 LOWER	5.0 15.

RESISTORS

MIL-R-39007, RWR; MIL-R-26, RW

SPECIFICATION	ICATION STYLE DESCRIP			
MIL-R-39007	RWR	Power Type,	Fixed	Wirewound
MIL-R-26	RW	Power Type,	Fixed	Wirewound

Part operating failure rate model (λ_p) :

$$\lambda_{\rm p} = \lambda_{\rm b} (\pi_{\rm E} \times \pi_{\rm R} \times \pi_{\rm Q})$$
 failures/10⁶ hours

where the factors are shown in Tables 2.5.4-5 through -8.

Part non-operating failure rate model ($\lambda p_{\mbox{NO}}$):

$$\lambda_{\rm p_{NO}}$$
 = 0.005 $\pi_{\rm E_{NO}}$ x $\pi_{\rm Q}$ failures/10⁶ hours

TABLE 2.5.4-5
Environmental Mode Factors

Environment	πE	πENO_
GB	1	0.13
SF	0.6	0.08
G _F	1.5	0.20
NSB	5	0.67
NS	4.7	0.63
AIT	4	-
Mp	11	1.4
$M_{\mathbf{FF}}$	11	1.4
MFA	15	2.0
GM	8.3	1.1
NH	16	2.2
NUU	17	2.3
AUT	8.5	-
NU	14	1.8
AIF	8	-
ARW	23	3.1
USL	31	4.2
AUF	1.7	-
$M_{\rm L}$	36	4.9
c_{L}	610	31

TABLE 2.5.4-6

m_O, Quality Factor

<u> </u>	
Failure Rate Level	[#] Q
S	0.03
R	0.1
P	0.3
м	1.0
MIL-R-26	5.0
LOWER	15.

RESISTORS
MIL-R-39007, RWR; MIL-R-26, RW

TABLE 2.5.4-7 RESISTANCE FACTOR, π_R

MIL-R-	Resistance Range (ohms)							
39007 Style	Up to 500	>500 to 1K	>1K . to 5K	>5K to 7.5	>7.5K to 10K	>10K to 15K	>15K to 20K	>20K
RWR 71	1.0	1.0	1.2	1.2	1.6	1.6	1.6	NA
RWR 74	1.0	1.0	1.0	1.2	1.6	1.6	NA	NA
RWR 78	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.6
RWR 80	1.0	1.2	1.6	1.6	NA	NA.	NA	N.A
RWR 81	1.0	1.6	NA	NA	NA	NA.	NA	NA
RWR 84	1.0	1.0	1.1	1.2	1.2	1.6	NA	NA
RWF. 89	1.0	1.0	1.4	NA	NA	NA.	NA	NA

RESISTORS

MIL-R-39009, RER: MIL-R-18546, RE

SPECIFICATION	STYLE	DESCRIPTION	
MIL-R-39009	RER	Power Types, Chassis Mounted, Fixed Wirewound	
MIL-R-18546	RE	Power Type, Chassis Mounted,	
		Fixed Wirewound	

Part operating failure rate model (λ_p) :

$$\lambda_p = \lambda_b \times (\pi_E \times \pi_R \times \pi_Q)$$
 failures/10⁶ hours

where the factors are shown in Tables 2.5.4-9 through -12.

Part non-operating failure rate model (λp_{NO}):

$$\lambda P_{NO} = 0.00265 \pi_{E_{NO}} \times \pi_{Q} \text{ failures/10}^6 \text{ hours}$$

TABLE 2.5.4-9

Environmental Mode Factors

Environment	πE	πENO
GB	1	0.19
SF	1	0.19
G _F	2.4	0.45
NSB	5	0.94
NS	4.7	0.89
AIT	4	-
Mp	11	2.0
$M_{\mathbf{FF}}$	11	2.0
MFA	15	2.8
GM	8.3	1.6
NH	16	3.1
NUU	17	3.3
AUT	8.5	-
ทบ	14	2.6
AIF	8	-
ARW	23	5.0
USL	31	5.9
AUF	17	-
ML	36	6.9
CL	610	120

TABLE 2.5.4-10 TQ, Quality Factor

Failure Rate Level	₹Q
s	0.03
R	0.1
P	0.3
н	1.0
MIL-R-18546	5.0
LOWER	15.

RESISTORS MIL-T-23648, RTH

2.5.5 Thermistors

SPECIFICATION

STYLE

DESCRIPTION

MIL-T-23648

RTH

Bead, Disk and Rod Type

The predicted failure rate is given as follows:

Environmental Mode Factors

	Predicted Failure Rate (Failures/10 ⁶ Hrs)					
	Bead Type Style RTH 24, 26, 28, 30,		Disk Type Style RTH 6,		Rod Type Style RTH 12, 14, 16,	
Environment		6, 38 to 40	8, 10		18, 20, 22, 42	
	у ОБ	^λ no	λ ор	λ NO	λ op	^λ no
G ₃	0.021	0.0063	0.065	0.0195	0.105	0.0315
S _F	0.021	0.0063	0.065	0.0195	0.105	0.0315
$G_{\mathbf{F}}$	0.100	0.0300	0.310	0.0930	0.500	0.1500
NSB	0.169	0.0507	0.506	0.1518	0.843	0.2529
NS	0.300	0.0900	0.900	0.2700	1.500	0.4500
AIT	0.250	-	0.750	-	1.250	-
Mp	0.351	0.1053	1.054	0.3162	1.756	0.5268
$M_{\mathbf{FF}}$	0.354	0.1062	1.062	0.3186	1.770	0.5310
M_{FA}	0.495	0.1485	1.484	0.4452	2.473	0.7419
$G_{\mathbf{M}}$	0.520	0.1560	1.600	0.4800	2.600	0.7800
N_{H}	0.540	0.1620	1.619	0.4857	2.698	0.8094
N _{UU}	0.579	0.1737	1.737	0.5211	2.895	0.8685
A _{UT}	0.340	-	1.000	-	1.700	-
NU	0.400	0.1200	1.200	0.3600	2.000	0.6000
A_{IF}	0.500	-	1.500	-	2.250	-
ARW	0.776	0.2328	2.327	0.6981	3.878	1.1634
USL	1.043	0.3129	3.128	0.9384	5.213	1.5639
A_{UF}	0.680	-	2.000	-	3.400	_
ML	1.200	0.3600	3.600	1.0800	6.000	1.8000
$c_{ m L}$	20.20	6.06	60.79	18.21	101.30	30.40

RESISTORS

MIL-R-39015, RTR; MIL-R-27208, RT

2.5.6 Variable Resistor, Wirewound

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39015	RTR	abie lead Screw Activated
MIL-R-27208	RT	wirewound, Established Reliability Variable Lead Screw Activated Wirewound

Part operating failure rate model $(\ensuremath{\mathcal{N}}_p)$:

$$\lambda_{p} = \lambda_{b} \times \pi_{TAPS} (\pi_{E} \times \pi_{E} \times \pi_{Q} \times \pi_{V})$$
 failures/10⁶ hours

where the factors are shown in Tables 2.5.6-1 through -5 and 2.5.8-5.

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{\text{NO}}} = 0.01 \; \pi_{\text{TAPS}} \times \pi_{E_{\text{NO}}} \times \pi_{Q} \; \text{failures/10}^6 \; \text{hours}$

TABLE 2.5.6-1
Environmental Mode Factors

Environment	πE	TENO
GB	1	0.60
SF	1	0.69
G _F	2.4	1.7
NSB	7.2	5.0
NS	5.7	4.0
TIA	4.2	-
Mp	15	10
M_{FF}	15	10
M_{FA}	21	15
GM	9.8	6.8
NH	23	16
Ngg	25	17
AUT	8.5	-
NU	13	9.3
AIF	8,5	-
ARW	33	23
USL	45	31
Aur	17	-
ML	51	36
CL	870	600

TABLE 2.5.6-2 π_R , Resistance Factor

Resistance Range (ohms)	₹R.
10 to 2K	1.0
>2K to SK	1.4
>5K to 20K	2.0

RESISTORS
MIL-R-39015, RTR; MIL-R-27208, RT

TABLE 2.5.6-3

Failure Rate Level	₹Q
S	.02
R	.06
2	.2
×	.6
MIL-R-27208	3.
LOWER	10.

TABLE 2.5.6-4

Ratio of Applied * Voltage to Rated Voltage	s.A
1.0	2.00
0.9	1.40
0.8	1.22
9.7	1.10
0.6 to 0.3	1.00
0.2	1.05
0.1	1.10

Applied = APPLIED
R-total pot. resistance.

VRATED 40v. for RT26
6 27.

= 90v. for RTR12,
22 5 24;
RT12
4 22.

RESISTORS MIL-R-12934, RR

WIREWOUND, PRECISION

SPECIFICATION

STYLE

DESCRIPTION

MIL-R-12934

RR

Precision Wirewound

Part operating failure rate model (λ_p) :

 $\lambda_{p} = \lambda_{b} \times _{TAPS} \times \pi_{Q} (\pi_{R} \times \pi_{V} \times \pi_{C} \times \pi_{E})$ (failures/10⁶ hours)

where the factors are shown in Tables 2.5.6-6 through -11 and 2.5.8-5.

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{NO}} = 0.12 \pi_{TAPS} \times \pi_{Q} \times \pi_{E}$ failures/10⁶ hours

TABLE 2.5.6-6
Environmental Mode Factors

Environment	a£	ENO
GB	1	0.0006
SF	1	0.0006
GF	2.4	0.0014
NSB	11	0.0065
NS	5.7	0.0036
AIT	5	-
Мp	24	0.014
MFF	24	0.043
MFA	34	0.020
GM	11	0.0066
NH	37	0.022
NUU	39	0.023
AUT	11	-
NU	14	0.0084
AIF	10	-
ARW	53	0.032
USL	71	0.043
AUF	21	-
ML	81	0.049
C _L	1400	0.80

Table 2.5.6-7
W_Q, Quality Factor

Failure Rate Level	™ Q
MIL-SPEC	2.5
Lower	5.0

411-HDBK-217C

RESISTORS

MIL-R-19, RA & MIL-R-39002, RK

WIREWOOD, SEMIPRECISION

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-19	ra	Semiprecision
MIL-R-39002	RK	Semiprecision

(Note: MIL-R-39002 is not an established reliability potentiometer.) Part operating failure rate model $\{i_p\}$:

$$_{p}^{\lambda} = _{b}^{\kappa} = _{TAPS} (\pi_{R} \times \pi_{V} \times \pi_{Q} \times \pi_{E})$$
 (failures/10⁶ hours)

where the factors are shown in Tables 2.5.6-12through -16 and 2.5.8-5.

Part non-operating failure rate model (λp_{NO}) :

 $\lambda_{P_{NO}} = 0.066\pi_{TAPS} \times \pi_{Q} \times \pi_{E_{NO}}$ (failures/10⁶ hours)

TABLE 2.5.6-12

Environmental Mode Factors

Environment	πE	"ENO
GB	1	0.16
3₽	1	0.16
Gr	2.4	0.38
NSB	8.4	1.3
N _S	5.7	0.9
AIT	5	_
Mp	17	2.7
MpF	N/A	N/A
MFA	N/A	N/A
GM	16	2.5
NH	27	4.2
NGC	29	4.5
AUT	N/A	N/A
₩ij	N/A	N/A
AIF	10	_
ARW	38	6.1
USL	N/A	N/A
AUF	N/A	N/A
MT	N/A	N/A
$c_{\rm L}$	N/A	N/A

TABLE 2.5.6-13
TO. Quality Factor

Failure Rete Level	₹ _Q
MIL-SPEC	2.0
LOWER	4.0

HIL-HOBK-217C

RESISTORS MIL-R-22, RP

WIREWOUND, POWER

SPECIFICATION

STYLE

DESCRIPTION

MIL-R-72

RP

High Power

Part operating failure rate model (λ_p):

 $\lambda_p = \lambda_b \times \pi_{APS} \times \pi_Q(\pi_R \times \pi_V \times \pi_C \times \pi_E)$ (failures/10⁶ hours) where the factors are shown in Tables 2.5.6-17 through -22 and 2.5.8-5.

Part non-operating failure rate model (λp_{NO}) :

 $\lambda_{P_{NO}} = 0.073 *_{TAPS} * *_{Q} * *_{E_{NO}} * *_{C} failures/10^6 hours$

TABLE 2.5.6-17
Environmental Mode Factors

Environment	#E	*ENO
GB	1	0.019
SF	1	0.019
G _F	3.0	0.058
NSB	8.4	0.16
Ns	5.7	0.11
AIT	5	-
Mp	17	C.34
MFF	N/A	N/A
MFA	N/A	N/A
GM	16	0.31
NH	27	0.52
NUU	29	0.56
AUT	A/K	H/A
NU	N/A	N/A
AIF	10	-
ARW	38	0.74
USL	N/A	N/A
AUF	N/A	N/A
ML	N/A	N/A
C _L	N/A	N/A

TABLE 2.5.6-jg

" 0
2.0
4.0

RESISTORS MIL-R-22097, RJ MIL-R-39035, RJR

2.5.7 Variable Honwirewound Resistors Nonwirewound Trismer Resistors

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-22097	RJ	Trimmer
MIL-R-39C35	RJR	Trimmer

Part operating failure rate model (λ_p) :

 $\lambda_b \times \pi_{TAPS}(\pi_R \times \pi_V \times \pi_Q \times \pi_E)$ (failures/10⁶ hours) where the factors are shown in Tables 2.5.7-1 through 5 and 2.5.8-5 Part non-operating failure rate model (λp_{NO}):

$$\lambda p_{NO} = 0.022 *_{TAPS} * *_{E_{NO}} * *_{Q} failures/10^6 hours$$

TABLE 2.5.7-1
Environmental Mode Factors

Environment	#E	3 ENO
GB	1	0.76
SF	1	0.76
G _F	2.9	2.2
NSB	10	7.6
NS	5.7	4.3
AIT	ا ذ	-
qк	18	14
Mpp	18	14
MFA	25	19
GM	11	8.2
NIA	27	21
NUบ	29	22
AUT	11	-
NU	15	11
٨IF	10	-
ARW	39	30
USL	53	40
AUF	21	-
ML	61	47
C _L	1000	780

TABLE 2.5.7-2

WQ, Quality Factor

Failure Rate Level	™ Q
S	.02
R	.06
P	.2
н	.6
HIL-R-22097 LOWER	3 . 10.

RESISTORS MIL-R-94, PV

Variable Composition Resistors

SPECIFICATION MIL-R-94

STYLE

DESCRIPTION Low Precision

Part operating failure rate model (λ_p) :

 $\lambda p = \lambda_b \times \pi_{TAPS} (\pi_R \times \pi_V \times \pi_Q \times \pi_E)$ failures/10⁶ hours where the factors are shown in Tables 2.5.7-6 through -10 and 2.5.8-5.

Part non-operating failure rate model (λp_{NO}):

$$\lambda p_{NO} = 0.03 \pi_{TAPS} \times \pi_{E_{NO}} \times \pi_{Q}$$
 failures/10⁶ hours

TABLE 2.5.7-6
Environmental Mode Factors

Environment	#E	₹ E¾O
C _B	1	0.37
SF	1	0.37
Gr	1.8	0.67
ИSВ	10	3.7
Ns	5.9	2.2
AIT	6	-
Mp	21	7.7
MFF	21	7.8
MFA	29	11
GM	17	6.4
ИН	32	12
พียย	34	13
TJA	27	-
NU	21	7.8
AIF	12	-
ARW	46	17
ÜSL	62	23
Aur	54	-
N _L	71	26
СL	1200	440

TABLE 2.5.7-7

To: Quality Factor

Failure Rate Level	™ Q
MIL-SPEC	2.5
LOWER	5.0

MIL-HDBK-2170

KESISTORS MIL-R-23285, RVC MIL-R-39023, RQ

Variable Film and Precision Resistors

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39023 MIL-R-23285	RQ RVC	Nonwirewound, Precision Film

Part operating failure rate model (λ_p) :

 $\lambda p = \lambda_b \times \pi_{TAPS} (\pi_R \times \pi_V \times \pi_Q \times \pi_E)$ (failures/10⁶ hours) where the factors are shown in Tables 2.5.7-11 through -16 and 2.5.8-5 Part non-operating failure rate model (λp_{NO}):

$$\lambda_{PNO} = \lambda_b \times \pi_{TAPS} \times \pi_Q \times \pi_{E_{NO}}$$
 failures/106 hours

Where λ_b is the Table value at 25° and 0.1 stress ratio

TABLE 2.5.7-11
Environmental Mode Factors

Environment	πE	πENO
GB	1	0.29
SF	1	0.29
G _F		າ.83
NSB		5
NS	1	1.6
AIT	5	-
Mp	18	1
MFF	18	1
MFA	25	7.3
CM	11	3.1
NH	27	7.9
Nuu	29	8.4
TUA	15	
NU	15	4.2
AIF	10	-
ARW	39	11
USL	53	15
AUF	30	i -
M _L	61	18
C _L	1000	300

TABLE 2.5.7-12

#Q. Quality Factor

Failure Rate Level	™ Q
MIL-SPEC	2
Lower	4
	<u> </u>

CAPACITORS
MIL-C-25, CP;
HIL-C-12889, CA

2.6.1 Paper and Plastic Film Capacitors

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-25		Paper
MIL-C-12889	•	Paper, RFI Bypass

Part operating failure rate model (*p):

$$\lambda p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$$
 failures/10⁶ hrs

where the factors are shown in Tables 2.6.1-1 through -6

Part non-operating failure rate model (λp_{NO}):

$$\lambda p_{NO} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q$$
 failures/10⁶ hours

Where λ_b is the Table value at 25° and 0.1 stress ratio

TABLE 2.5.1-1
Environmental Mode Factors

Environment	πE	"ENO
GB	1	0.59
SF	1	0.59
G _F	1.9	1.1
NSB	4.8	2.8
NS	5.7	3.3
AIT	5	~
Mp	10	5.9
MFF	10	5.9
MFA	14	8.2
GM	8.3	4.9
NH	15	9.0
Nuu	16	9.6
AUT	13	-
NU	14	8.1
AIF	10	-
ARW	22	13
USI,	30	17
AUF	25	-
ML	34	20
CL	570	340

TABLE 2.6.1-2
Base Failure Rate Tables for Capacitor
Spec and Style

Spec and Style		
Spec MIL-C	Style	λ_b Table No.
12889	All	2.6.1-5
25	CP04, 5, 8, 9, 10, 11, 12, 13; Char K	2.6.1-6
	CP25, 26, 27, 28, 29, 40, 41, 67, 69, 70, 72, 75, 76, 77, 78, 80, 81, 82; Char E, F	2.6.1-5

CAPACITORS
MIL-C-25, CP;
MIL-C-12889, CA

TABLE 2.6.1-3
wQ, Quality Factor

₹Q
3
7

TABLE 2.6.1-4

#CV, Capacitance Factor

Capacitance *	#CA
MIL-C-25 *: .0034uF. .15 * 2.3 * 16. *	0.7 1.0 1.3 1.6
MIL-C-12889 All	1.0

* - π_{CV} = 1.20.095 where C is μ F.

CAPACITORS MIL-C-11693 CZ

SPECIFICATION

STYLE

DESCRIPTION

MIL-C-11693

CZ

Paper, Metallized Paper Metallized Plastic, RFI Feed-Thru, ER and Non-ER

Part operating failure rate model (λ_p) :

$$\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$$
 failures/10⁶ hours

where the factors are shown in Tables 2.6.1-7 through 13.

Part non-operating failure rate model (λp_{NO}):

πENO

$$\lambda P_{NO} = \lambda_p \times \pi_{E_{NO}} \times \pi_Q$$
 failures/10⁶ hours

Where λ_b is the Table value at 25° and 0.1 stress ratio

TABLE 2.6.1-7

Environment TE

Environmental Mode Factors

.		2780
G _B	1	0.35
SF	1	0.35
G _F	2.4	0.84
NSB	4.8	1.7
NS	8.8	3.1
AIT	5	-
MP	10	3.5
MFF	10	3.5
MFA	14	4.9
GM	8.3	2.9
NH	15	5.3
ทบบ	16	5.6
AUT	13	-
NU	14	4.9
AIF	10	-
ARW	22	7.7
USL	30	11
AUF	25	-
		•

34

570

12

200

Table 2.6.1-8
Base Failure Rate Tables
for Capacitor Spec. and Style

Spec. MIL-C	Style	λ _b Table No.
11693	Characteristic E, W	2.6.1-11
	Characteristic K	2.6.1-12
	Characteristic P	2.6.1-13

Table 2.6.1-9 π_{G} , Quality Factor

Feilure Rate Level	₹Q.
H	1.0
Non-ER	3.0
LOWER	10.

Table 2.6.1-10 *CV, Capacitance Factor

Capacitance *	*CV
0.0031 µF.	0.7
0.061 µF.	1.0
1.8 µF.	1.5

*-\pi_CV=1.4C^{0.12}

where C is uf.

ML

CAPACITORS
MIL-C-14157, CPV;
MIL-C-19978, CQ AND CQR

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-14157 MIL-C-19978	CPV CQ and CQR	Paper and Plastic Film, Est. Rel. Paper and Plastic Film, ER and Non-ER

Part operating failure rate model (λ_p) :

$$\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$$
 failures/10⁶ hours

where the factors are shown in Tables 2.6.1-14 through 21.

Part non-operating failure rate model (λp_{NO}):

$$\lambda p_{NO} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q$$
 failures/10⁶ hours

Where λ_{b} is the Table value at 25° and 0.1 stress ratio

TABLE 2.6.1-14
Environmental Mode Factors

Environment	πE	"ENO
GB	1	0.005
SF	1	0.005
$G_{\mathbf{F}}$	2.4	0.013
NSB	4.4	0.023
NS	5.7	0.030
AIT	4	-
Mp	9.2	0.046
M_{FF}	9.3	0.047
MFA	13	0.065
GM	7.8	0.041
NH	14	0.071
Nuc	15	0.076
AUT	11	-
หบ	13	0.067
AIF	8	-
ARW	20	0.11
USL	27	0.14
AUF	21	-
ML	31	0.16
CL	530	2.6

Table 2.6.1-15
Base Failure Rate Tables
for Capacitor Spec and Style

Spec MIL-C	Style	λ _b Table No.
14157	CPV07 CPV09 CPV17	2.6.1-18 2.6.1-20 2.6.1-19
19978	Char. P, L Char. E, F, G, M Char. K, Q, S Char. T	2.6.1-18 2.6.1-19 2.6.1-20 2.6.1-21

CAPACITORS
MIL-C-14157, CPV;
MIL-C-19978, CQ and CQR

Table 2.6.1-16 TQ, Quality Factor

Failure Rate Level	πQ
S R P M L MIL-C-19978 Non-ER LOWER	0.03 0.1 0.3 1.0 3.0 10.0 30.

Table 2.6.1-17 π_{CV} , Capacitance Factor

Capacitance	#C1	
MIL-c-14157: * .0017 µF027 " .20 " 1.0 " MIL-c-19978:**	0.7 1.0 1.3 1.6	*-π _{CV} =1.6C ^{0.13} **-π _{CV} =1.3C ^{0.077} where C is μF.
.00032 .033 1.0 15.0	0.7 1.0 1.3 1.6	

CAPACITORS
MIL-C-18312, CH;
MIL-C-39022, CHR

SPECIFICATION

STYLE

DESCRIPTION

MIL-C-18312 MIL-C-39022

CH CHR

Metallized Paper, Paper-Plastic, Plastic

Metallized Paper, Est. Rel

Part operating failure rate model (λ_p) :

 $\lambda_{\rm p} = \lambda_{\rm b} (\pi_{\rm E} \times_{\rm Q} \times \pi_{\rm CV})$ failures/10⁶ hrs.

where the factors are shown in Tables 2.6.1-22 through -27.

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{NO}} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q$ failures/10⁶ hours.

Where λ_b is the Table value at 25° and 0.1 stress ratio

TABLE 2.6.1-22
Environmental Mode Factors

Environment	πE	#ENO
GB	1	0.23
SF	1	0.23
G _F	2.4	0.55
NSB	4.4	1.0
NS	5.7	1.3
ATT	4	-
MP	9.2	2.1
MFF	9.3	2.1
MFA	13	3.0
GM	7.8	1.8
NH	14	3.2
Nuu	15	3.5
AUT	11	-
NU	13	3.0
AIF	8	-
ARW	20	4.6
USL	27	6.2
AUF	21	-
ML	31	7.1
CL	530	120

Table 2.6.1-23
Base Failure Rate Tables
for Capacitor Spec and Style

Spec MIL-C	Style	λ _b Table No.
39022	CHR09 and CHR12 (50V rated), CHR49	2.6.1-26
	CHR09,12 (above 50 volt rated), CHR01, 10, 19, 29, 59	2.6.1-27
18312	Char R Char N	2.6.1-26 2.6.1-27

CAPACITORS
HIL-C-18312, CH;
MIL-C-39022, CHR

Table 2.6.1-24 mQ, Quality Factor

Failure Rate Level	₹Q
S	0.03
R	0.1
P	0.3
H	1.0
I,	3.0
MIL-C-18312	
Non-ER	7.0
LOHER	20.

Table 2.6.1-25 Table Pactor

Capacitance *	≖C7
0.0029 µF.	0.7
2.4 "	1.3

* - π_{CV} = 1.2 $c^{0.092}$ where C is μ F.

CAPACITORS
MIL-C-55514, CFR

SPECIFICATION

STYLE

DESCRIPTION

MIL-C-55514

CFR

Plastic, Metallized Plastic, ER

Part operating failure rate model (λ_p):

$$\lambda_p = \lambda_b (\pi_E \times \pi_0 \times \pi_{CV})$$
 failures/10⁶ hrs.

where the factors are shown in Tables 2.6.1-28 through -33.

Part non-operating failure rate model (λp_{NO}):

$$\lambda_{\rm P_{NO}} = \lambda_{\rm b} \times \pi_{\rm E_{NO}} \times \pi_{\rm Q}$$
 failures/10⁶ hours.

Where λ_b is the Table value at 25° and 0.1 stress ratio

TABLE 2.6.1-28

Environmental Mode Factors

F		
Environment	*E	"ENO
GB	1	0.75
SF	1	0.75
G _F	1.9	1.4
NSB	5	3.8
NS	5.7	4.3
AIT	5	-
Mp	11	7.9
MFF	11	8
MFA	15	11
GM	9.3	7
NН	16	12
Nuu	17	13
TUA	14	-
บเ	16	12
AIF	10	-
Arw	23	18
USL	31	24
AUF	28	-
ML	36	27
C1.	610	460

Table 2.6.1-29
Base Failure Rate Tables
for Capacitor Spec and Style

Spec MIL-C	Style	^l b Table Number
55514	Char. M. N	2.6.1-32
	Char. Q, R, S	2.6.1-33

CAPACITORS NIL-C-55514, CFR

Table 2.6.1-31 M_{CV}, Capacitance Factor

Capacitance*	π _{CV}
.0049 µF.	.7
0.33 µF.	1.0
7.1 µF.	1.3
50. µF.	1.5

* -
$$\pi_{CV}$$
 = 1.1c^{0.085}
where C is μF .

CAPACITORS
MIL-C-83421, CRH

SPECIFICATION

STYLE

DESCRIPTION

MIL-C-83421

CRH

Super-Metallized Plastic, ER

Part operating failure rate model (λ_p) :

 $\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$ failure/10⁶ hrs.

where the factors are shown in Tables 2.6.1-34 through -37.

Part non-operating failure rate model (λp_{NO}):

 $\lambda p_{NO} = 0.00056 \pi_{E_{NO}} \times \pi_{Q}$ [milures/10⁶ hours

TABLE 2.6.1-34

Environmental Mode Factors

		سنفسح والتقالي
Environment	#E	"ENO
GB	1	0.24
SF	1	0.24
GF	3.7	0.89
NSB	4.4	1.1
Ns	5.7	1.4
AIT	4	-
ďρ	9.2	2.2
MFF	9.3	2.2
MFA	13	3.1
GM	7.8	1.9
NH	14	3.4
אטט	15	3.6
AUT	11	
Νυ	13	3.1
AIF	8	-
ARW	20	4.9
USL	27	6.6
AUF	21	-
ML	31	7.6
C7.	530	130

Table 2.6.1-35

Failure Rate Level	По
8	0.03
R	0.1
P	0.3
Ж	1.0
LOWER	10.0

Table 2.6.1-36 n_{CV}.Capacitance Factor

٠.,	*CY	-1	.2C	0.092	•

Capacitance *	I CV
.0029 µF.	.7
.14 µF.	1.0
2.4 uf.	1.3
23.0 uF.	1.6

CAPACITORS MIL-C-5, CM, MIL-C-39001, CHR

2.6.2 MiCA Capacitors

SPECIFICATION	STYLE	DESCRIPTION
NIL-C-5	CH	MICA
MIL-C-39001	CMR	MICA (Dipped), Est. Rel.

Part operating failure rate model (λ_n) :

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{Q} \times \pi_{CV}) \text{ failures/10}^{6} \text{ hrs.}$$

where the factors are shown in Tables 2.6.2-1 through 8.

Part non-operating failure rate model (λp_{NO}):

$$\lambda_{P_{NO}} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q$$
 failures/10⁶ hours

Where λ_{b} is the Table value at 25° and U.1 stress ratio

TABLE 2.6.2-1

Environmenta	1 Hode	Factors
Environment	TE.	ENO

Environ se nt	TE.	ENO
GB	1	0.53
SF	1	0.50
Gr	1	0.53
NSB	5	2.7
NS	6.2	3.3
ATT	4.2	-
Mp	11	5.8
MFF	11	5.8
MyA	15	8.0
GM	8.8	4.7
NH	16	8.5
טעא	17	9.0
AUT	17	-
NU	15	8.0
AIF	8.5	-
ARW	23	12
UŞL	31	16
AUF	34	-
ML	36	19
CL	610	320

Table 2.6.2-2 Base Failure Rate Tables for Capacitor Spec and Style

Spec MIL-C	Style	λ _b Table Number
5	Temp. range M	2.6.2-5
	Temp.Range M	2.6,2-6
	Temp.Range O	2.6.2-7
	Temp.Range ?	2.6.2-8
J9001	Temp.Range 0	2.6.2-7
	Temp.Range P	2.6.2-8

HIL-HDBK-217G

CAPACITORS HIL-C-5, CM, HIL-C-39001, CMR

Table 2.6.2-3 H_Q, Quality Factor

Failure Rate Level	π _Q
7	0.01
\$	0.03
1 2	0.1
	0.3
H	1.5
Non-ER Dipped	3
Non-ER Molded	6
LOWER	15.

Table 2.6.2-4 R_{CV}, Capacitance Factor

n _{CA}
.5
1.0
1.6
1.9

*-*CV = 0.45C where C

CAPACITORS MIL-C-10950, CB

SPECIFICATION MIL-C-10950

STYLE

DESCRIPTION
Button Mica

Part operating failure rate model (λ_p) : $\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV})$ failures/10⁶ hra

where the factors are shown in Tables 2.6.2-9 through 14.

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{NO}} = \lambda_{b} \times *_{E_{HO}} \times *_{Q}$ failures/10⁶ hours.

Where λ_b is the Table value at 25° and 0.1 stress ratio

TABLE 2.6.2-9

Environmental Mode Factors

Environment	#E	2 ENO
GB	1	0.036
Sp	1	0.036
Gp	2.4	0.087
NSB	5	0.18
NS	5.2	0.19
AIT	4.2	-
Мp	11	0.38
MF	11	0.38
MFA	15	0.53
CM	8.8	0.32
NH	16	0.58
Noc	17	0.63
AUT	17	-
NU	15	0.54
AIF	8.5	-
ARW	23	0.84
USL	31	1.1
AUF	34	-
ML	36	1.3
CĮ.	610	22

Table 2.6.2-10
Base Failure Rate Tables
for Capacitor Spec & Style

Spec MIL-C	Style	A Table Number
10950	CB50	2.6.2-13
	Other	2.6.2-14

Table 2.6.2-12 II_{CV}. Capacitance Factor

Capacitance	n CA
8.0 pF.	.5
47. *	.75
162. *	1.0
509. "	1.3
1260. *	1.6
2650. "	1.9
5010. "	2.2

* - TCV = .31C0.23

where C is pF.

CAPACITORS MIL-C-10950, CB

Table 2.6.2-11 R Q, Quality Factor

Failure Rate Level	Π _Q
MIL-SPEC	5.0
Lower	15.0

CAPACITORS

MIL-C-11272, CY;

MIL-C-23269, CYR

2.6.3 Glass Capacitors

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-11272	CY	Glass Capacitors
MIL-C-23269	CYR	Glass Capacitors, Est. Rel

Part operating failure rate model (λ_D) :

$$\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_{CV}) \text{ failures/10}^6 \text{ hrs.}$$

where the factors are shown in Tables 2.6.3-1 through 6.

Part non operating failure rate model ()PNO:

$$\lambda_{P_{NO}} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q$$
 failures/10⁶ hours

Where λ_b is the Table value at 25° and 0.1 stress ratio

TABLE 2.6.3-1

Table 2.6.3-2 Base Failure Rate Tables for Capacitor Spec and Style

Environmental Mode Factors		
Environment	ΉE	"ENO
GB	1	0.36
SF	1	0.36
G _F	1.4	0.51
NSB	١ >	1.8
Ns	6.2	2.2
AIT	4.2	-
MP	11	4.0
M_{FF}	11	4.0
MFA	15	5.4
GM	8.8	3.2
NH	16	5.8
ท _{ี่บับ}	17	6.1
AUT	17	-
$\aleph_{\mathbf{U}}$	15	5.4
AIF	8.5	-
ARI;	23	8.3
USL	31	11
AUF	34	-
ML	36	13
CL	61⊕	220

Spec MIL-U	Style	й, Table Number
23269	All	2.6.3-5
11272	Temp. Range C	2.6.3-5
11272	Temp. Range D	2.6.3-6

Failure Rate Level | IIQ | S | 0.03 | R | 0.3 | N | 1.0 | L | 3 | 1.0 | L | 1.0 |

Table 2.6.3-4 To Capacitance Factor

Capacitance *	II CA
.22 pF.	.5
3.9	.75
30. "	1.0
200. "	1.3
870.	1.6
3000. "	1.9
3500.	2.2

* - *CV = 0.6200.14

where C is pf.

CAPACITORS
MIL-C-11015, CK;
MIL-C-39014, CKR

2.6.4 Ceramic Capacitors

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-i1015	CK	Ceramic, General Purpose
MIL-C-39014	CKR	Ceramic, General Purpose, Est. Rel.

Part operating failure rate model (λ_p):

$$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{Q} \times \pi_{CV})$$
 failures/10⁶ hrs.

where the factors are shown in Tables 2.6.4-1 through 6.

Part non-operating failure rate model (λp_{NO}) :

$$^{\lambda p}_{NO} = ^{\lambda}_{b} \times ^{\pi}_{E_{NO}} \times ^{\pi}_{Q}$$
 failures/10⁶ hours

Where λ_b is the Table value at 25° and 0.1 stress ratio

TABLE 2.6.4-1
Environmental Mode Factors

Environment	тE	*ENO
$G_{\mathbf{B}}$	1	0.43
SF	0.8	0.34
G F	1.6	0.69
NSB	5	2.2
Ns	5.5	2.4
AIT	8.5	-
Mp	11	4.7
MFF	11	4.7
MFA	15	6.5
GM	7.8	3.4
NH	16	6.9
Nuu	18	7.7
AUT	17	-
NU	12.4	5.3
AIF	17	-
ARU	24	10
USL	32	14
AUF	34	-
ML	36	15
$c_{ m L}$	610	260

Table 2.6.4-2 Quality Factor

Failure Rate Level	I Q
S	0.03
R	0.1
P	0.3
н	1.0
L	3
Non-ER	į 3
LOWER	10.

Table 2.6.4-3

H CV. Capacitance Factor

Capacitance *	II CV
6.1 pF.	.5
240. "	.75
3300. "	1.0
.036 µF.	1.3
.24 "	2.6
1.1 "	1.9
4.3 "	2.2

*- *_{CV} * .41C^{0.11} where C is pF.

CAPACITORS
MIL-C-20, CC/CCR

SPECIFICATION

STYLE

DESCRIPTION

MIL-C-20

CC/CCR

Ceramic, Temperature Compensating

Fart operating failure rate model (λ_D) :

$$\lambda_p = \lambda_b \times (\pi_E \times \pi_Q \times \pi_{CV})$$
 failures/10⁶ hours

where the factors are shown in Tables 2.6.4-7 through 12.

Part non-operating failure rate model (λp_{NO}):

$$\lambda p_{NO} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q$$
 failures/10⁶ hours.

Where λ_b is the Table value at 25° and 0.1 stress ratio

Table 2.6.4-8

Base Failure Kate Tables
for Capacitor Spec and Style

TABLE 2.6.4-7
Environmental Mode Factors

Environment	πE	"ENO
G _B	1	0.21
SF	1	0.21
6 _F	2.4	0.5
NSB	1	0.21
N _S	5	1
AIT	4.2	A
Mp	11	2.2
MFF	11	2.2
MFA	15	3.1
GM	8.8	1.8
NH	16	3.4
Nuu	18	3.6
AUT	17	-
Nu	1.7	3.5
AIF	8.5	-
ARW	24	4.8
v_{SL}	32	6.5
AUF	34	-
ML	36	7.6
CL	610	130

Spec MIL-C	Style	λ _b Table Number
20	CC 20,25,30,32,35,45, 85,95-97	2.6.4-11
	CC 5-9,13-19,21,22,26, 27,31,33,36,37,47, 50-57,75-79,81-83	
	CCR 05-09,13-19,54-57, 75-79,81-83,90	

Table 2.6.4-9

No. Quality Factor

Failure Rate Level	щЗ
S	0.03
R	0.1
P	0.3
M	1.0
Non-ER	3
LOWER	10.

Table 2.6.4-10 M_{CV}, Capacitor Factor

_TCY
.5 .75 1.0 1.3 1.6 1.9

* - ICV # .59C0.12

where C is pF.

CAPACITORS MIL-C-39003, CSR

2.6.5 Tantalum Electrolytic Capacitors

SPECIFICATION MIL-C-39003

STYLE

DESCRIPTION

Tantalum Electrolytic (solid), Est. Rel.

Part operating failure rate model (λ_D) :

 $\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{SR} \times \pi_{Q} \times \pi_{CV})$ failures/10⁶ hours

where the factors are shown in Tables 2.6.5-1 through 5.

Part non-operating failure rate model (λp_{NO}):

 $\lambda_{P_{NO}} = 0.0046 \pi_{E_{NO}} \times \pi_{Q}$ failures /10⁶ hours

TABLE 2.6.5-1
Environmental Mode Factors

Environment	πE	"ENO
GB	1	0.09
SF	0.8	0.07
C _F	2.4	0.22
NSB	4.4	0.4
NS	4.9	0.45
AIT	6	_
Mp	9.2	0.84
MFF	9.3	0.85
HFA	13	1.2
GM	7.8	0.71
ИН	14	1.3
Nuu	15	1.4
AUT	11	- 1
МU	13	1.2
AIF	12	-
ΛRW	20	1.8
USL	27	2.5
Αυ'.	21	- 1
ML	31	2.9
CL	530	48

Table 2.6.5-2 Series Resistance, *SR for MIL-C-39003

Circuit Resistance (ohms/wolt)	*SR
<u>></u> 3.0	0.07
2.0	0.10
1.0	0.20
0.8	0.30
0.6	0.40
0.4	0.60
0.2	0.80
0.1	1.0

Table 2.6.5-4 To, Quality Factor

Failure Rate Level	₹Q
S	0.03
1	0.1
P	0.3
ж	1.0
ŕ	1.5
I OMER	110.

Table 2.6.5-3
7CV, Capacitance Factor

Capacitance*		*cv
.003	υF.	0.5
.091	•	0.75
1.0		1.0
8.9	•	1.3
50.		1.6
210.	•	1.9
'710.	•	2.2

- = 1.cc^{0.12}

where D is uf.

CAPACITORS
MIL-C-3965, CL;
MIL-C-39006, CLR

SPECIFICATION

MIL-C-3965

MIL-C-39006

CL Tantalum, Electrolytic (Non-solid)

Est. Rel.

Part operating failure rate model (λ_p) :

$$\lambda_p = \lambda_h (\pi_E \times \pi_C \times \pi_Q \times \pi_{CV})$$
 failures/10⁶ hours.

where the factors are shown in Tables 2.6.5-6 through -13.

Part non-operating failure rate model (λp_{NO}):

$$\lambda_{P_{NO}} = \lambda_{b} \times \pi_{E_{NO}} \times \pi_{Q}$$
 failures/10⁶ hours

Where $\lambda_{\boldsymbol{b}}$ is the Table value at 25° and 0.1 stress ratio

TABLE 2.6.5-6

Environmental Mode Factors

Environment	πE	"ENO
GB	1	0.33
SF	1	0.33
G _F	1.4	0.46
NSB	5	1.6
NS	6.7	2.2
AIT	11	-
Mp	11	3.4
MFF	11	3.4
MFA	15	4.8
GM	10	3.3
NH	16	5.3
Nec	17	5.7
AUT	14	-
NU	15	5.0
AIF	21	-
ARW	23	7.6
USL	31	10.2
AUF	28	-
ML	36	11.8
CL	610	200

TABLE 2.6.5-7
BASE FAILURE RATE TABLES FOR CAPACITOR
SPECIFICATION AND STYLE

Prec MIL-C	Style	λ _b Table No.
3965	CL24, 25, 26, 27, 34, 35, 36, 37	2.6.5-11
	CL20, 21, 22, 23, 30, 31, 32, 33, 40, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 64, 65, 66, 67, 70, 71, 72, 73	
	CL14, 16, 10, 13, 17, 18,	2.6.5-13
39006	all	2.6.5-12

CAPACITORS
MIL-C-3965, CL;
MIL-C-39006, CLR

TABLE 2.6.5-8
* Q, QUALITY FACTOR

Failure Rate Level	³Q
S	J.03
R	0.1
P	0.3
M	1.0
L	1.5
Non-ER LONER	3 10.

TABLE 2.6.5-3

* GV, CAPACITANCE FACTOR

C	spacitance *	*cv
.09	l uf.	0.7
20.	H	1.0
1100.	•	1.3

" - "_{CV} " .82C^{0.065} where C is μF.

CAPACITORS
MIL-C-39018, CU

2.6.6 Aluminum Electrolytic Capacitors

SPECIFICATION STYLE DESCRIPTION

MIL-C-39018 CU Aluminum Oxide Electrolytic

Part operating failure rate model ('n):

 $\lambda_{\rm p} = \lambda_{\rm b} \times \pi_{\rm E} \times \pi_{\rm Q} \times \pi_{\rm CV}$ failures/10⁶ hours.

where the factors are shown in Tables 2.6.6-1 through 4.

Part non-operating failure rate model (λp_{NO}):

$$\lambda_{P_{NO}}$$
 = 0.0085 $\pi_{E_{NO}}$ × π_{Q} × π_{CV} failures/10⁶ hours

TABLE 2.6.6-1
Environmental Mode Factors

Environment	яE	"ENO
G _B	1	0.16
SF	1	0.16
G _F	2.4	0.38
NSB	5.8	0.93
NS	6.7	1.1
AIT	8.5	-
Мp	12	1.9
MFF	12	1.9
HFA	17	2.7
GM	12	1.9
NН	19	0.ڌ
Nuu	20	3.2
AUT	21	-
พย	13	2.1
AIF	1.7	-
ARL	27	4.2
USL	36	5.7
AUF	42	-
ML	41	6.6
CL	690	110

TABLE 2.6.6-2 TO, QUALITY FACTOR

Quality 1/:wel	*Q
MIL-Spec	3
Lower	10

TABLE 2.6.6-3

CV CAPACITANCE FACTOR

Capacitance*	*cv
2.5 µF.	0.4
55. **	0.7
400. "	1.0
1700. "	1.3
5500. "	1.6
14,000.	1.9
32,00v. "	2.2
65,000. *	2.5
120,000.	2.8

 $* - \pi_{CV} = .34c^{0.12}$ where C is μF .

CAPACITORS MIL-C-62, CE

2.6.6 Aluminum Electrolytic Capacitors

SPECIFICATION	STYLE	DESCRIPTION
HIL-C-62	CE	Aluminum, Dry Electrolyte

Part operating failure rate model (λ_p) :

 $\lambda_p = \lambda_b \times \pi_E \times \pi_Q \times \pi_{CV}$ failures/10⁶ hours where the factors are shown in Tables 2.6.6-5 through 8.

Part non-operating failure rate model $(\lambda_{P_{\mbox{NO}}})$:

 $^{\lambda}P_{NO} = 0.011 \times \pi_{E_{NO}} \times \pi_{Q}$ failures/10⁶ hours.

TABLE 2.6.6-5
Environmental Mode Factors

Environment	μE	ENO
GE	1	1.3
SF	1	1.3
GF	2.4	3
NSB	5.8	7.3
NS	6.7	8.5
AII	8.5	-
Mp	12	15
MFF	12	15
MFA	17	21
GM	12	15
NH	19	23
Nuc	20	25
AUT	21	-
NU	13	17
AIF	17	-
ARW	27	33
USL	36	45
AUF	42	
ML	41	52
CF	690	870

TABLE 2.6.6-6
*Q, QUALITY FACTOR

" Q
3
10

CAPACITORS MIL-C-62, CE

TABLE 2.6.6-7
TCV: CAPACITANCE FACTOR

	Capacitance	"cv
3,2	μF.	0.4
62.	*	0.7
400.	•	1.0
1600.	•	1.3
4800.	•	1.6
12,000.	•	1.9
26,000.		2.2
50,000.	•	2.5
91,000.		2.8

 $= - *_{CV} = .320^{0.19}$ where C is μF .

CAPACITORS MIL-C-81, CV

2.6.7 Variable Ceramic Capacitors

 SPECIFICATION
 STYLE
 DESCRIPTION

 MIL-C-81
 CV
 Variable Ceramic

Part operating :ailure rate model (λ_p) :

$$\lambda_p = \lambda_b \times (\pi_E \times \pi_Q)$$
 failures/10⁶ hours

where the factors are covered by Tables 2.6.7-1 through -5. Part non-operating failure rate model (λp_{NO}):

$$^{1}p_{NO} = \lambda_{b} \times \pi_{E_{NO}} \times \pi_{Q}$$
 failures/10⁶ hours

Where No is the Table value at 25° and 0.1 stress ratio

TABLE 2,6,7-1

Environmental Mode Factors

Environment	ä.E	TENC
C _B	1	0.18
SF	0.8	0.14
G _F	3.4	0.6
NSB	7.9	1.4
NS	7.7	1.4
AIT	5.7	-
Мр	17	2.9
HFF	17	2.9
MFA	23	4.1
GM	9.8	1.7
NH	25	4.5
Nuu	27	-
AUT	35	6.2
No	20	3.6
AIF	11	_
ARW	36	6.4
USL	49	8.6
AUF	70	-
ML	56	10
Cl.	950	170

TABLE 2.6.7-2
BASE FAILURE RATE TABLES FOR

CAPACITUS SPECIFICATION AND STILE		
Spec MIL-C	Style	h Table No.
81	CV11,14,21/31, 32,34,40,41	2.6.7-4
	CV35, 36	2.6.7-5

TABLE 2.6.7-3

Quality Level	" Q
HIL-Spec	4
Lover	20
	<u> </u>

2 6.7-1

NIL-HDBK-2170

CAPACITORS MIL-C-14409, FC

2.6.8 Variable Piston Type Capacitors

SPECIFICATION

STYLE

DESCRIPTION

NIL-7-14409

',C

Variable, Piston Type Tubular Trimmer

Part operating failure rate model (4p):

$$\lambda_p = \lambda_b \times (\pi_E \times \pi_Q)$$
 failures/10⁶ hours

where the factors are shown in Tables 2.6.8-1through 5.

Part non-operating failure rate model (ApNG):

$$\lambda_{PNO} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q$$
 failures/10⁶ hours

Where β_0 is the facts value at 25° and 0.1 stress ratio

TABLE 2.6.8-1
Environmental Mode Factors

Envi rensent	ΞE	76.20
G ₅	1	0.44
\$ F	1	0.44
G _F	2.9	1.3
NSB	6.9	3
NS	7.2	3.?
Ait	5.7	-
Мр	14	6.4
Mpp	15	6.5
NFA.	20	9
GM	9.3	4
N4;	. 22	9.8
Ni:	24	11
AUT	28	-
X;	8.4	3.7
AIF	11	-
ARW	32	14
USL	43	19
AUF	56	-
Si.	49	22
CL	830	370

TABLE 2.6.8-2
BASE FAILURE RATE TABLES FOR
CAPACITOR SPECIFICATION AND STYLE

Spec HIL-C	Style	h Table No.
14409	G. H. J. L. T	2.6.8-4
	Char. Q	2.6.8-5

TABLE 2.6.8-3

Q QUALITY FACTOR

Quality Level	* Q
MIL-Spec	3
Lower	10

CAPACITORS

1111-C-92, CT

2.6.9 Variable Air Triamer Capacitors

SPECIFICATION

STYLE

DESCRIPTION

MIL-C-92

CT

Variable, Air, Trimmer

Part operating failure rate model ()p):

$$\lambda_p = \lambda_b \times (\pi_E \times \tau_Q)$$
 failures/10⁶ hours

where the factors are shown in Tables 2.6.9-1 through 3.

Part non-operating failure rate model (\pNO):

$$\lambda_{P_{NO}} = 0.016 \pi_{E_{NO}} \times \pi_{Q}$$
 failures/10⁶ hours

TABLE 2.6.9-1
Environmental Mode Factors

/ironment	*E	*ENO
GB	1	0.037
SF	1	0.037
G _F	3.4	0.13
NSB	7.9	0.29
NS	7.7	0.28
AIT	5.7	-
НP	17	0.61
HFF	17	0.61
MFA	23	0.86
GM	9.8	0.36
NH	25	0.94
Nuu	27	1.0
AUT	35	-
NU	20	0.76
AIF	11	-
ARW	36	1.3
USL	49	1.8
AUF	70	-
HL	56	2.1
CL	950	35

Table 2.6.9-2 v_{Δ} . Quality Factor

Failure Rate Level 1	
HIL-Spec	5
Lover	20

CAPACITORS NIL-C-23183, CG

2.6.10 Vacuum or Gas Capacitors

SESCIE & ATION

STYLE

DESCRIPTION

MIL-C-23183

CG

Vacuum or Gas, Fixed and Variable

Part operation tailore rate model (λ_p): $\lambda_p = \lambda_b \times (\pi_E \times \pi_Q \times \pi_{CP})$ failures/10⁶ hours

where the factors are shown in Tables 2.6.10-1 through 7.

Part non-operating failure rate model (ApNO):

$$\lambda_{PNO} = \lambda_b \times \pi_{E_{NO}} \times \pi_Q \times \pi_{CF}$$
 failures/10⁶ hours

Where b is the Table value at 25" and 0.1 stress ratio

TABLE 2.6.10-1

Environmental Mode Factors

Environment	E	, NO
C _B	1	0.22
SF	1	0.22
G _F	3.4	0.75
NSB	8.7	1.9
XS	7.7	1.7
ALT	8.5	-
Мp	18	4
Mer	N/A	N/A
*FA	N/A	N/A
GM	10	2.2
NH	28	6.2
Sec	30	6.6
AUT	53	-
Νť	24	5.4
λIF	17	_
ARW	40	8.9
ÜSL	N/A	N/A
AUF	110	-
Mi	NA	N/A
ci	1000	230

Table 2.6.10-2

Base Failure Rate Tables for MIL-C-23183

Capacitor Styles

Style	h Table No-
CG 20,21,30,31,32,40,41,42, 43,44,51,60,61,62,63,64,67	2.6.10-5
CG 65,66	2.6.10-6
CG 50	2.6.10-7

Table 2.6.10-3

[] Quality Factor

Failure Rate Level	₹Q
MIL-Spec	3
Lover	20

2.6.10-1

CAPACITORS
MIL-C-23183, CG

Table 2.6.10-4 $\pi_{\rm CF}$, Configuration Factor

Configuration	πСΕ
Fixed	0.1
Variable	1.0

INDUCTIVE DEVICES
MIL-T-27, MIL-T-21038,
MIL-T-55631

2.7.1 Transformers

\$277.13.10.12.2Y	STAR	DESCRIPTION
MIL-T-27	TF	Audio, Power, and High Power Pulse
MIL-T-21038	TP	Low Power Pulse
MIL-T-55631	-	IF, RF, and Discriminator

The general model for these devices is as follows:

$$\lambda_p = \lambda_b (\pi_E \times \Pi_Q)$$

 $\lambda_{\rm p} = \text{failures/10}^6 \text{ hours}$

 λ_{k} = base failure rate

 $\pi_E = environmental factor$

 $I_0 = quality factor$

The general model for the base failure rate:

$$\lambda_b = Ae^x$$
 where $x = \left(\frac{T_{HS} + 273}{N_T}\right)^G$

THS = Hot spot temperature in degrees C and e is natural logarithm base, 2.718.

 N_{T} = Temperature constant

G = Acceleration constant

A = Adjustment factor for different insulation classes

See Tables 2.7.1-1 thru 2.7.1-4 for equation constants. The models are valid only if $T_{\rm HS}$ is not above the temperature rating for a given insulation class.

Part non-operating failure rate model (λp_{NO}):

$$\langle v_{Ni} \rangle = 0.002 \pi_{E_{NO}} \times \pi_{Q}$$

INDUCTIVE DEVICES
MIL-T-27, MIL-T-21038,
MIL-T-55631

TABLE 2.7.1-1
Transformer Base Failure Pate Model Constants versus Insulation Class

SPECIFICATION		Insulation Class				
MIL-T-27	Q	R	S	V	T	บ
MIL-T-21638	Q	R	s	T	υ	V
MIL-T-55631	0	A	В	С	_	_
Model	Maximum Operating Temperature					
Constants	85°C	105°C	130°C	155°C	170°C	>170°C
A	0.00159	0.0018	0.00152	0.00458	0.00508	0.0065
N _T	329	352	364	409	398	477
G	15.6	14.0	8.7	10.0	3.8	8.4

TABLE 2.7.1-2 Quality Factor, π_{Q}

Family Type	Mil-Spec.	Lower
Pulse Transformers	1.5	5.0
Audio Transformers	3.0	7.5
Power Transformers and Filters	8.0	30.0
RF Transformers	12.0	30.0

MIL-HDBK-2173

INDUCTIVE DEVICES
MIL-T-27, MIL-T-21038,
MIL-T-55631

TABLE 2.7.1-3
Environmental Mode Factors

Environment	μĒ	"ENO
GB	1	0.15
SF	1	0.15
GF	5.7	0.83
NSB	5.1	0.75
NS	5.7	0.83
AIT	11	-
Mp	11	1.6
MFF	11	1.6
MFA	15	2.2
GM	12	1.7
NH	16	2.4
NUU	18	2.6
AUT	14	-
NU	14	2.1
AIF	21	-
ARW	24	3.4
USL	32	4.6
AUF	28	-
ML	36	5.3
CL	610	90

and the second s

INDUCTIVE DEVICES MIL-C-15305 MIL-C-39010

2.7.2 Coils

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-153G5	_	Fixed and Variable, RF
MIL-C-39010	-	Mclded, RF, ER

The general operating model for these devices is as follows:

$$\lambda_p = \lambda_b (\pi_E \times \pi_Q \times \pi_C)$$

where: λ_{p} = Total failure rate in failures/10⁶ hours

 λ_h = Base failure rate

 $\pi_{\rm E}$ = Environmental factor

 $\pi_0 = Quality factor$

 π_C^2 = Construction factor (fixed or variable).

The general model for the base failure rate:

$$\lambda_b = Ae^x$$
 where $x = \left(\frac{T_{HS} + 273}{N_T}\right)^G$

where: $T_{HS} = Hot$ spot temperature in degrees C and e is natural logarithm base, 2.718.

 N_T = Temperature Constant

G = Acceleration Constant

A - Adjustment factor for different insulation classes.

See Tables 2.7.2-1 thru 2.7.2-5 for equation constants. The models are valid only if $T_{\rm HS}$ is not above the temperature rating for a given insulation class.

Part non-operating failure rate model ($\lambda_{P_{NO}}$):

$$^{1}P_{NO} = 0.0004 \, ^{1}E_{NO} \times ^{1}Q \times ^{1}C$$

INDUCTIVE DEVICES MIL-C-15305 MIL-C-39010

TABLE 2.7.2-1
Coil Base Failure Rate Model Constants
versus Insulation Class

Specification	Insulation Class			
MTL-C-15305	0	A	В	С
MIL+C+39010	<u></u>	Λ	В	F
Model Constants	Maximum Operating Temperature			
(.Discalls	85°C	105°C	125°C	150°C
A	3.35×10^{-4}	3.79 x 10 ⁻⁴	3.19 x 10 ⁻⁴	9.63 x 10 ⁻⁴
N _T	329	352	364	409
G	15.6	14.0	8.7	10.0

TABLE 2.7.2-2 Quality Factor, $^{\rm F}{\rm Q}$

Failure Rate Level	Ψ _Q Factor
S	0.03
R	0.1
P	0.3
м	1.0
MIL-C-15305	4.0
Lower	20.0

MIL-HDBY.-217C

INDUCTIVE DEVICES MIL-C-15305 MIL-C-39010

TABLE 2.7.1-3
Environmental Mode Factors

Environment	яE	ENO
C _B	1	0.86
SF	1	0.86
GF	3.6	3.1
NSB	5.1	4.4
NS	5.7	4.9
AIT	11	-
Mp	11	9.5
MFF	11	9.5
HFA	15	13
GM	12	10
NH	16	14
טטא	18	15
AUT	14	-
ทบ	14	12
AIF	21	-
ARW	24	21
USL	32	28
AUF	28	-
ML	36	31
CL	610	520

TABLE 2.7.2-4 Construction Factor, #C

Construction	°с
lixed	1
Variable	2

MIL-HDBK-217C 9 April 1979 HOTORS

The failure rate model is:

$$\lambda_{\rm p} = \left(\frac{{\rm c}^2}{\alpha_{\rm B}^3} + \frac{1}{\alpha_{\rm W}}\right) \times 10^6 \text{ (failures/10}^6 \text{ hours)}$$

where

 $\lambda_{\rm D}$ = the average failure rate (failures/10⁶ hours)

t = motor operating time period, selected by the user, for which average failure rate is calculated (hours). Each motor must be replaced when it reaches the end of this operating period to make the calculated $\lambda_{\rm D}$ valid.

Bearing Weibuil Characteristic Life as determined from Table
 2.8.1-1 for constant ambient temperature operation or
 Section 2.8.1.1 for cycled temperature.

λ_W = Winding Weibull Characteristic Life as determined from Table 2.8.1-1 for constant ambient temperature operation or Section 2.8.1.2 for cycled temperature.

Part nonoperating failure rates:

AC Motor
$$\lambda_{\text{PNO}} = 0.02 \text{ (failures/10}^6 \text{ hours)}$$
DC Motor $\lambda_{\text{PNO}} = 0.05 \text{ (failures/10}^5 \text{ hours)}$

SYNCHROS & RESOLVERS

2.8.2 SYNCHROS & RESOLVERS

The part failure rate model (λ_p) is:

$$\lambda_{\rm p} = \lambda_{\rm q} \ (\Pi_{\rm S} \times \Pi_{\rm N} \times \Pi_{\rm E})$$
 failures/10⁶ hours

where the factors are shown in Tables 2.8.2-1 thru 2.8.2-4 Synchros and resolvers are predominatly used in service requiring only slow and infrequent motion. Mechanical wearout problems are not serious so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

TABLE 2.8.2-1 Ab FOR RESOLVERS & SYNCHROS VS. FRAME TEMPERATURE*

T(°C)	λb(f/10 ⁶ hrs)	T(*C)	^{\(\lambda\)} b(f/10 ⁶ hrs)
30	.0083	85	.0325
30 35 40 45 50 55 60 65 70 75 80	.0088	90	.0407
40	.0095	95	.0523
45	.0103	100	. 0690
50	.0114	105	.0937
55	.0126	110	.131
60	. 0142	115	. 191
65	.0162	120	. 288
70	.0187	125	.453
75	.0221	130	.744
80	. 0265	135	1.28

* - λ_b = .00535 e $\left(\frac{1+273}{334}\right)^{8.5}$

where T = frame temperature (°C) and e = natural logarithm base, 2.718. If frame temperature is unknown, assume T = 40 + ambient temperature.

Part non-operating failure rate model (λp_{NO}):

$$t_{P_{NO}} = 0.0078 \text{ m}_{S} \times t_{N} \times t_{E_{NO}} \text{ failures/10}^6 \text{ hours}$$

TABLE 2.8.2-2 π_{S} FOR SYNCHROS AND RESOLVERS, BASED UM TYPE AND SIZE

	¹¹ 5			
DEVICE TYPE	Size 8 or Smaller	Size 10-16	Size 78 or Larger	
Synchro	2	1.5	1	
Resolver	3	2.25	1.5	

TABLE 2.8.2-3 $~\Pi_{\mbox{\scriptsize N}}$ FOR SYNCHROS AND RESOLVERS, BASED ON NUMBER OF BRUSHES

Number of Brushes	π _N
2	1.4
3	2.5
4	3. 2

MIL-HD&K-2170

SYNCHROS & RESCLVERS

TABLE 2.8.2-4

Environment	\$E	ENO
C _B	1.2	1.1
SF	N/A	N/A
CF	2.3	2.1
NSB	5.6	5.1
NS	8.1	7.4
ATT	3	-
Mp	12	11
MFF	12	11
MFA	17	16
Gy	12	11.
NH	18	17
See	19	17
AUT	13	-
NU	16	15
AIF	6	-
ARW	26	24
USL	35	32
AUF	25	-
ML	N/A	R/A
CL	680	620

E. T. METERS

2.8.3 ELAPSED TIME METERS

The part operating failure rate model (x_p) is:

 $\lambda_p = \lambda_b \, (E_T \times E_E)$ failure/ 10^6 hours where the factors are shown in Tables 2.8.3-1 thru 2.8.3-3

Part non-operating failure rate model (1 p.):

 $\lambda_{\mathbf{b}}$ is shown in Table 2.8.3.-1.

TABLE 2.8.3-1 λ_{b} FOR E. T. METERS

) YPE	λ _b (f./10 ⁶ hr.)
A.C.	20
Inverter Driven	30
Commutator D.C.	80

TABLE 2.8.3-2 Π_{Υ} FOR E. T. METERS

Operating T (°C.) RATED T (°C.)	π _₹
0 to .5	.5
.6	.6
.8	.8
1.0	1.0

TABLE 2.8.3-3

Environmental Mode Factors

Environment	#E	*ENO
CB.	1	0.0004
Sp	1	0.0004
G _F	2.5	0.0010
NSB	5.6	0.0023
NS	8.8	0.0035
AIT	3.9	-
Мp	1.7	0.0047
MFF	N/A	N/A
M _{FA}	N/A	N/A
GM	12	0.0047
NH	18	0.0072
NUU	19	0.0078
AUT	13	1 - 1
Ng	16	0.0063
AIF	7.7	-
Arw	26	.01
USL	N/A	N/A
AUF	25	-
ML	N/A	N/A
CL	N/A	N/A

2.9 RELAYS

Table 2.9-1. Prediction Procedure for Relays

Part Specifications Covered

Military Specifications

1. MIL-R-5757

3 MIL-R-19523

5. MIL-R-19648

2. MIL-R-6015

4. MIL-R-39016

6. MIL-R-83725

7. MIL-R-83726*

Part failure rate model (Ap)

 $(\lambda_p) = \lambda_b (\pi_E \times \pi_c \times \pi_{cyc} \times \pi_F \times \pi_Q)$ (failures/106 hours)

where the factors are shown in these tables:

Er - Table 2.9-4

*c - Table 2.9-5

Tr - Table 2.9-7

*cyc - Table 2.9-6

=0 - Table 2.9-8

Note - Values of $\pi_{\rm CyC}$ for cycling rates beyond the basic design limitations of the relay are not valid. Design Specifications should be consulted prior to evaluation of $\pi_{\rm CyC}$.

Part non-operating failure rate model (λp_{NG}):

 $^{1}\text{P}_{\text{NO}}$ = 9.006 $^{\circ}\text{E}_{\text{NO}}$ x $^{\circ}\text{Q}$ x $^{\circ}\text{C}$ failures/106 hours

 Prediction procedure does not apply to Class C (solid state) relays of this specification. RELAYS

MIL-SPEC
Environmental Mode Factors

Environmental rode ractors		
Environment	πE	π _{ENO}
G_B	1	0.29
SF	1	0.29
$G_{\mathbf{F}}$	2.3	0.67
NSB	10	2.9
NS	6.1	1.8
AIT	4.0	-
$M_{\mathbf{P}}$	21	6.1
M_{FF}	21	6.1
M_{FA}	29	8.4
GM	8.2	2.4
N_{H}	32	9.3
Nuu	34 .	9.9
AUT	12	_
N_{U}	14	4.1
AIF	8.0	-
ARW	46	13
ΰSL	62	18
AUF	24	_
$M_{ m L}$	71	21
$c_{\mathtt{L}}$	N/A	N/A

TABLE 2-9.4

Lower Quality
Environmental Mode Factors

Environment	πE	π _{ENO}
G _B	2	0.58
SF	_	0.58
$G_{\mathbf{F}}$	4.6	1.3
NSB	30	8.7
NS	18	5.2
AIT	8.0	-
Mp	63	18
MFF	63	18
MFA	82	24
GM	25	7.3
NH	96	28
NUU	100	29
AUT	30	
NU	38	11
۸ _{IF}	16	-
ARW	140	41
USL	190	55
AUF	60	_
ΜΓ	210	61
$_{ m C_L}$	N/A	N/A

Table 2.9-5. π_{C} Factor For Contact Form

Contact Form	πC
SPST DPST SPDT 3PST 4PST DPDT 3PDT 4PDT 6PDT	1.00 1.50 1.75 2.00 2.50 3.00 4.25 5.50 8.00

This table applies to active conducting contacts.

2.10 SWITCHES

Toggle or pushbutton (single body)

TABLE 2.10-1

Prediction Procedures for Toggle or Pushbutton Switches

Part specifications covered	Description
1. MIL-S-3950 2. MIL-S-8805	Snap-action toggle or pushbutton
Part operating failure rate model	•
$\lambda_{p} = \lambda_{b} (\pi_{E} \times \pi_{c} \times \pi_{cyc} \times \pi_{L})$	failures/10 ⁶ hours
where factors are shown in:	
т _Е - Table 2.10-4	
π _C - Table 2.10-5	
# _{Cyc} - Table 2.10-6	
π _L - Table 2.10-7	

Part non-operating failure rate model (
$$\lambda_{PNO}$$
):

$$\lambda_{PNO} = \lambda_{b} \times \pi_{ENO} \times \pi_{C} \text{ failures/10}^{6} \text{ hours}$$

Base failure rate model (λ_b)

	λ _b	
Description	MIL-SPEC	Lower Quality
Snap-action	0.00045	0.034
Non-snap action	0.0027	0.04

SW1TCHES

Basic sensitive

Table 2.10-2. Prediction Procedure for Basic Sensitive Switch

Part specifications covered	Description	
MIL-S-8805	Basic sensitive	
Part operating failure rate model (\(\lambda_p\))		
$\lambda_p = \lambda_b \left(\tau_E \times \pi_{cyc} \times \pi_L \right)$ failur	es/10 ⁶ hours	
where factors are shown in:		
π _E – Table 2.10-4		
т _{сус} - Table 2.10-6		
π ₁ - Table 2.10-7		

Part non-operating failure rate model (λ_{PN0}) :

$$^{\lambda}P_{NO} = ^{\lambda}b ^{\pi}E_{NO}$$

Base failure rate model (λ_b)

 $\lambda_b = \lambda_{bE} + n \lambda_{bC}$ (if actuation differential is >0.002 inches)

 $\lambda_{b} = \lambda_{bE} + n \lambda_{bD}$ (if actuation differential is <0.002 inches)

where n = 1/2 the number of active contacts, e.g., 1PST has two contacts, 1PDT has four contacts.

	Trui ilas i	Our Contacts.
Description	MIL-SPEC	Lower Quality
^λ bE	0.1	0.1
урС	0.0009	0.45
ÀbD	0.0018	1.25

Rotary (water)

Table 2.10-3. Prediction Procedure for Rotary Switches

Part specification covered	Description
M1L-S-3786	Rotary, ceramic or glass wafer, silver alloy contacts
Part operating failure rate mode	el (λ _p)
$\lambda_{p} = \lambda_{b} \left(\pi_{E} \times \pi_{cyc} \times \pi_{L} \right) f_{e}$	ailures/10 ⁶ hours
where factors are shown in:	
ⁿ E - Table 2.10-4	
ⁿ cyc - Table 2.10-6	
т _L - Тэble 2.10-7	

Part non-operating failure rate model (λ_{PNO}) :

$$^{\lambda}P_{NO}^{}$$
 = $^{\lambda}b$ $^{\pi}E_{NO}$

Base failure rate model (x_b)

 $^{\lambda}_{b}$ = $^{\lambda}_{bE}$ + n $^{\lambda}_{bF}$ (for ceramic RF wafers) $^{\lambda}_{b}$ = $^{\lambda}_{bE}$ + n $^{\lambda}_{bG}$ (for rotary switch medium power wafers)

where n is the number of active contacts

Description	MIL-SPEC	Lower Quality
,pE	0.0067	0.1
^λ bF	0.00003	0.02
^λ bG	0.00003	0.06

SWITCHES

TABLE 2.10-4

Environmental Mode Factors

Environment	T _E	"ENO
GB	1	2.412
Sp	ı	2.412
G _F	2.9	6.995
NSB	10	24.120
NS	5.7	13.748
AIT	5	_
Mp	21	50.411
MFF	21	50.893
MFA	29	70.913
GM	14	34.492
NH	32	77.908
NUU	34	82,973
AUT	50	-
NU	20	47.999
AIF	10	_
ARW	46	111.193
v _{si.}	63	151.474
AUF	100	-
M _l	71	172.217
c_L	1200	2904

2.11 CONNECTOR

2.11.1 Connector, general (except printed circuit board types)
TABLE 2.11.1-1. Prediction Procedure for Connectors

Туре	MIL-C-SPEC	Type	MIL-C-SPEC
Rack and panel	24308 28748 83733	Coaxial, RF	3607 3643 3650 3655 25516 39012
Circular	5015 26482 38999 81511 83723	Power	3767

The failure rate model (λ_p) is for a mated pair of connectors. For a single connector, divide λ_p by two.

$$\lambda_p = \lambda_b (\pi_E \times \pi_p \times \pi_K)$$
 is flures/10⁶ hours

where:

$$\pi_{\rm F}$$
 - Table 2.11.1-6

$$\pi_{\rm D}$$
 - Table 2.11.1-7

$$\pi_{K}$$
 - Table 2.11.1-8

Part non-operating failure rate model (λp_{N0}):

$$\lambda_{p_{NO}} = \lambda_{b} \times \pi_{E_{NO}} \times \pi_{p}$$
 failures/10⁶ hours

where $\lambda_{b} = 20$ °C and appropriate insert material

CONNECTORS

TABLE 2.11.1-6

MIL-SPEC Environmental Mode Factors

Environment	*E	*ENO
G _B	1	0.12
SF	1	0.12
Gr	1.2	0.14
NSB	4.1	0.49
NS	5.3	0.64
AIT	5.0	_
Mp	8.5	1.0
MFF	8.5	1.0
MFA	12	1.4
GM	8.3	1.0
NH	13	1.6
NUU	14	1.7
AUT	5	_
NU	13	1.6
AIF	10	-
ARW	19	2.3
USL	25	3
AUF	10	-
ML	29	3.5
CL	490	59

PABLE 2.11.1-6

Environmental Mode Factors

Fritronment	*E	*ENO
Gg.	1.5	0.18
SF	1.5	0.18
$\mathbf{c}^{I_{i}}$	4.7	0.56
BSK	8.1	0.97
NS	11	1.3
AIT	15	-
Mp	17	2.0
H _{FF}	17	2.0
MFA	24	2.9
CM	25	3.0
NH	26	3.1
Nuu	28	3.4
AUT	15	- 1
NU	27	3.2
AIF	30	-
ARW	37	4.4
v_{SL}	50	6.0
ΑυF	30	-
ML	58	7.0
C _{I.}	970	120

PCB CONNECTORS

2.11.2 PRINTED CIRCUIT BOARD CONNECTOR

Table 2.11.2-1 Prediction Procedure for PCB Connectors

Specification	<u>Description</u>
MIL-C-21097 MIL-C-55302	One-Piece Connector Two-Piece Connector
Part Failure	Rate Model (λ_p)
1	rate, λ_p , is for a mating pair of connectors and is: $\mathbb{I}_E \times \mathbb{I}_p \times \mathbb{I}_K$) failures/10 ⁶ hours exertions are:
П _E Т	able 2.11.2-4
n _p te	able 2.11.2-5
Π _K Ta	able 2.11.2-6

Base Failure Rate (λ_b)

$$\lambda_b = Ae^X$$
where $x = (\frac{N_T}{T + 273}) + (\frac{T + 273}{T_0})^P$

e = 2.718, natural logarithm base

T = operating temperature (°C)

T = ambient + temperature rise (Table 2.11.2-2)

 λ_b values are shown in Table 2.11.2-3.

Part non-operating failure rate model $(\lambda_{p_{NO}})$:

$$\lambda_{\text{p}_{\text{NO}}} = 0.00021 \, \pi_{\text{E}_{\text{NO}}} \times \pi_{\text{p}} \, \text{failures/10}^6 \, \text{hours}$$

Table 2.11.2-4 based on Environmental Service

TABLE 2.11.2-4

MIL-SPEC Environmental Mode Factors

Environment	äΕ	"ENO
GB	1	0.65
SF	1	0.65
G _F	3.4	2.2
NSB	4.1	2.7
N _S	5.7	3.7
AIT	5	-
Мр	8.5	5.5
MFF	8.5	5.5
MFA	12	7.8
GM	8.3	5.4
NH	13	8.5
NUU	13	8.5
AUT	5	-
NU	13	8.5
AIF	10	-
ARW	19	12
USL	25	16
AUF	10	_
ML	29	19
C _L	490	320

TABLE 2.11.2-4

Lower Quality
Environmental Mode Factors

Environment	цЕ	*ENO
GB	1.5	0.98
Sr	1.5	0.98
G _F	6.8	4.4
NSB	8.2	5.3
NS	12	7.8
AIT	10	-
Mp	17	11
MFF	17	11
MFA	24	16
GM	17	11
NH	26	17
ทบบ	26	17
AUT	10	-
NU	27	18
AIF	20	-
ARW	37	24
USL	50	32
AUF	20	-
ML	58	38
CL	970	630

2.12 PRINTED WIRING BOARDS

The specifications applicable to printed wiring boards are:

MIL-P-55110 Printed Wiring Boards

Part non-operating failure rate model ($\parbox{$N_{
m PNO}$}$):

The operating rate model for printed wiring boards is:

$$\lambda p = \lambda_b N \pi_F$$

where: $\lambda_p = \text{board failure rate in f./10}^6 \text{ hr.}$

 $\lambda_{\rm b}$ = 6(10)⁻⁶ failures/10⁶ hr. for two-sided boards

= $5(10)^{-4}$ failures/ 10^6 hr. for multi-layer boards

N = number of plated-through holes

 $\pi_{\mathbf{F}}$ = (see Table 2.12)

 $^{\pi}ENO = (see Table 2.12)$

The above model is applicable only to high quality boards that have received screening and burn-in and that use G-10 or equivalent epoxy materials.

P. W. BOARDS

TABLE 2.12
Environmental Mode Factors

Environment	a.E	*ENO
GB	1	0.48
SF	1	0.48
Gr	2.4	1.1
NSB	4.4	2.1
N _S	5.7	2.7
AIT	4.2	-
Mp	6.7	3.2
Mpp	9.3	4.4
MFA	13	6.1
GM	7.8	3.7
NH	14	6.7
N _{UU}	15	7.2
AUT	10	-
Nu	1.3	6.4
AIF	8.4	-
ARW	20	9.6
USL	27	13
AUF	20	-
ML	31	15
C _L	530	250

2.12-1

CONNECTIONS

2.13 CONNECTIONS

The part operating failure rate model $\{\lambda_p\}$ is:

$$\lambda_p = \lambda_b (\Pi_E \times \Pi_T \times \Pi_Q)$$
 failures/10⁶ hours where:

 λ_b = base failure rate (Table 2.13-1)

 $\Pi_{\rm F}$ = environmental factor (Table 2.13-2)

 H_T = tool type factor (Table 2.13-3 for crimp type)

= 1 for all types except crimp

 Π_n = quality factor (Table 2.13-4 for crimp type)

= ' for ill types except crimp

TABLE 2.13-1 BASE FAILURE RATE, Ab

λ _b (F/10 ⁶ HR.)
.0000025
.00008
.00029
.0026
.00026
.0013

Part non-operating failure rate model (λp_{NO}):

$$\lambda_{P_{NO}} = \lambda_{b} \times \pi_{E_{NO}} \times \pi_{T} \times \pi_{Q}$$

 λ_{b} is covered in Table 2.13-1.

TABLE 2.13-2

CONNECTIONS

Environmental Mode Factors

Environment	3.5	"ENO
GB	1	0.33
SF	1	0.33
C _F	2.1	0.69
NSB	3.5	1.2
NS	4.4	1.4
ATT	3.0	_
Мp	7.3	2.4
Mer	7.3	2.4
HFA	10	3.4
GM	7.3	2.4
ХH	11	3.7
See	12	3.9
ALT	4	_
Χu	9.9	3.3
۸1F	ó	ρ.
Ark	16	5.3
r _{si.}	22	7.1
AUF	8	-
ИL	25	8.2
C·.	420	140

TABLE 2.13-3. TOOL TYPY: FACTORS (π_T) FOR CRIMP CONNECTIONS

TOOL TYPE	E _T	
Automated	1	
Manua 1	2	
Notes: 1	Automated encompasses all powered tools not handheld.	
2	Manual includes all hand- held tools.	

TABLE 2.13-4. QUALITY FACTORS (110) FOR CRIMP CONNECTIONS

QUALITY GRADE	η _Q	COMMENTS
Automated Tools Manual Tools:	1.0	Dai'y pull tests recommended.
Upper	0.5	Only HIL-SPEC or approved equivalent tools and terminals, pull test at beginning and end of each shift, color coded tools and terminations.
Standard	1.0	Only MIL-SPEC tools, pull test at beginning of each shift.
Lower	10.0	Anything less than standard criteria.

TABLE 2.14-1
FAILURE RATES FOR MISCELLANEOUS PARTS (FAILURES/10⁶ HOURS)

PART TYPE	FAILURE RATE
Microwave Ferrite Devices	
isolators & Circulators (< 100W.)	0.1 x π _{El}
Isolators & Circulators (> 100W.)	0.2 x π _{E1}
Phase Shifter (latching)	0.1 × π _E
Dummy Loads	
< 100W.	0.01 x π _{E2}
100W. to <u><</u> 1000W.	0.03 x π _{E2}
> 1000W.	0.1 × π _{E2}
Terminations (thin or thick film loads used in stripline and thin film circuits	0.03 x V _{E2}

Note: # approaches zero for these parts, therefore not applicable

Environmental Mode Factors

Environment	π _{E 1}
	E
GB	1
Sr	1
G _F	2.4
NSB	3.7
NS	6.2
AIT	5
Мp	7.7
MFF	7.8
HFA	11
GM	8.8
NH	12
พบบ	13
AUT	6
NU	12
AIF	7
ARW	17
USL	23
AUF	10
ML	26
c <u>l</u>	450

Environmental Mode Factors

Environment	"E 2
GB	1
SF	1
G _F	2.4
NSB	5.5
NS	4.7
AIT	4.2
Кp	11
MFF	12
MFA	16
I GM	8.8
NH	18
พบบ	19
TUA	11
NU	15
AIF	8.5
ARW	25
USL	34
AUF	21
ML	39
Ել	660

APPENDIX G
DATA SUMMARY TABLES

TABLE G-1
Primary Types of Equipment Represented by Data

Environmental Category	Equipment Type
Ground	Laboratory Test Equipment, Computer Complexes, SAFEGUARD Perimeter Acquisition and Missile Site Radars, Minuteman III GSE, VHF/UHF Communications Systems, Air Traffic Control Equipment, Pershing Ia GSE, Tactical Fire Direction Systems, Pershing Azimuth Laying Equipment
Submarine/Ship	Surface Ship Transmitters, Transceivers, Computers, Sonars, and Radir Equipment; C-3 Flight Control Systems, SINS, Electrostatic Gyro Monitor, AN/UYK-20 Digital Data Combat Computer, AN/WSC-3 Satellite Communications Set, AN/URC-62 VLF Fleet Broadcast System
Space Flight	W71 Orgital Sensor, SMS, ALSEP, C System, Apollo Transponder; AT:-F, TIPOS-N, ETS-2 Satellites
Airborne, Rotary Wing Missile	TADS/PNVS System C-3 Missile Computer, Patriot G&C System, Pershing C&C System, Liquid Rocket Engine Electronic Flight Controllers, Copperhead Guided Projectile

TABLE G-2 MICROELECTRONICS OPERATING/NONOPERATING DATA SUMMARY

				PART HOURS	FAILURE RATE*
PART TYPE	envi ronment	QUALITY	FAILURES	(x 106)	(FAIL/10 HRS)
Digital	Gr	D	13	55.235	0.2643
	•	D-1	298	403.403	0.7529
		В	171	8520.348	0.0206
ŀ	•	B-1	2	186.796	0.0166
	G _F	B-2	1	0.910	2.2201
	N_0/G_F^{**}	S	5	5328.202	0.0012
	No/GF**	В	4	1480.574	0.0035
	Мр	В	0	0.480	1.9064
	NSB	B-1	Ö	106.284	0.0386
	ARW	В	Ö	0.012	78.205i
	NSB	C-1	Ö	166,010	0.0055
	NU	В	ō	0.0027	338.8888
	NSB	В	72	2637.022	0.0283
	SF	В	2	698.050	0.0044
1	G _B	S	1133	112623.990	0.0102
	D	D	4	43.182	0.1216
Digital	G _B	D~1	15	20.511	0.8142
Linear	NSB	В	1	8.808	0.2293
Dinear	Ny	В	Ö	0.0031	295.1612
	ARW	В	Ö	0.0031	50.8333
	1fp	В	Ö	0.438	2.0880
	NO/GF**	S	5	2269.720	0.0028
	No/GF**	B	5	435.574	0.0028
	G _B	S	35	19403.618	0.00017
	S _F	В	ő	107.140	0.0085
*	G _F	В	37	721.824	0.0544
Linear	G _F	Š	10	81.859	0.1405
Mamanus	_	D-1	610		ì
Memory	G _B	D D-1	610 538	938.857 1043.648	0.6586 0.5230
	G _B	B-1	920		1
	G _₹	D D	33	10.440 51.154	0.0876
		D-1	95	120.450	0.6871
	Cn	B B	0	19.601	0.8137
	GF	В	0	0.0018	0.0467 508.3333
•	Nυ	В	Ö	0.0018	157,7586
Memory	A _{RW} Nsb	B-1	Ŏ	17.549	0.0521
			_		
LSI	G _B	D	10	17.078	0.6734
1 1	G _B	D-1	78	52.240	1.5445
T	$G_{\mathbf{F}}$	D	14	17.600	0.8892
LSI	GF	D-1	6	7.770	0.9459
Totals	_		3197	157596.507	

^{*}All failure rates are calculated at upper single-sided () percent confidence level

^{**}Nonoperating ground fixed

TABLE G-3
Transistor Operating/Nonoperating Data Summary

PART TYPE	ENV I ROMMENT	QUALITY	FAILURES	PART HOURS (x 106)	FAILURE RATE* (FAIL/106 HRS)
MIL-S-19500	G _F	JANTXV	O	7.412	0.1234
Group I	GF	JANTX	715	37471.170	0.0193
	GF	JAN	494	5155.152	0.0973
1 1	Cr	Lower	388	363.460	1.0856
	GB	JANTX	15	21.800	0.7660
] }	GB	Lower	2740	8059.000	0.3423
1	SF	JANTX	0	452.460	0.0020
1 1	NS	JANTX	36	61.600	0.620.1
1	NS	JAN	6	92.191	0.0369
1 1	Mp	JAN	1	0.501	4.0333
	NO/GF**	Lower	13	30800.000	0.0004
]	No/GF**	JANTX	33	28697.080	0.0012
	No/SF***	JANTX	0	29.910	0.0305
]	NSB	JAN	203	20.990	9.8919
	NSB	Lower	1198	8281.588	0.1461
1 1	ML	JAN	0	0.033	27.9347
]	GM	JAN	0	5.229	0.1750
	GM	JANTX	0	0.195	4.6923
1 1	GM	Lower	0	0.348	2.6293
Y	ARW	JANTX	0	0.0304	30.1316
MIL-S-19500	NII	JANTX	0	0.0056	163.5714
Group I					
MIL-S-19500	G _F	Lower	8	28.980	0.3261
Group II	GF	JANTX	1	222.180	0.0091
ì	GF	JAN	2	3.190	0.9734
	NS	JAN	Ō	0.406	2,2537
	SF	JANTX	3	1008.151	0.0041
	No/Gr**	Lower	4	11340.000	0.000040
	No/GF**	JAN	41	6264.000	0.0069
	No/GF**	JANTX	6	17905.600	0.00040
	NSB	JAN	4	2.200	2.3864
l i	GB	Lower	408	594,000	0.6983
	GB	JAN	1	20.800	0.0971
	$M_{ m L}$	JAN	Ö	0.00025	3750.0000
l L	GH	Lower	1	0.021	0.0840
7	ARW	JANTX	Ō	0.00045	2033.3333
MIL-S-19500	N·1	JANTX	0	0.00040	2287.5000
Group II	<u> </u>				

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed

^{***}Nonoperating space flight

TABLE G-3 (Continued)

PART TYPE	ENV1 RONMENT	QUALITY	FAILURES	PART HOURS (x 106)	FAILURE RATE* (FAIL/106 HRS)
MIL-S-19500	GF	JANTX	4	67.800	0.0774
Group III	SF	Janty.	. 0	2.320	0.0130
	NS	JANTX	1	0.170	11.8824
	NSB	JAN	0	1.763	0.5190
	ML	JAN	0	0.00073	2496.5893
	GM	Lower	0	0.031	29.3269
1 1	Mo/SF**	JANTX	0	0.554	1.6520
T	ARW	JANTX	0	0.0040	228.7500
MIL-S-19500	ทบ	JANTX	0	0.0004	2287.5000
Group III			1		
Totals			6326	156982,327	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating space flight

TABLE G-4
Diode Operating/Nonoperating Data Summary

PART TYPE	ENV I RONMENT	QUALITY	FAILURES	PART HOURS (x 106)	FAILURE RATE* (FAIL/106 HRS)
	_	_			
MIL-S-19500	GF	Lower	17	306.940	0.0611
Group IV	GF	JANTXV	Ú	48.500	0.0026
1	GF	JANTX	0	10716.500	0.000085
	G _F	JAN	96	9998.874	0.0099
	SF	JANTXV	0	447.800	0.0020
	SF	JANTX	0	114.315	0.0080
	GB	JAN	621	7690.700	0.0818
	Mp	JAN:	0	0.501	1.8270
	NS	JAN	5	238.964	0.0264
	NSB	JANTXV	190	91.220	2.1318
	NSB	JAN	113	17066.809	0.0068
	ML	JAN	0	0.036	25.7268
	NoGF**	JANTX	0	19700.000	0.000040
	NOSF***	JANTX	0	20.220	0.0452
•	NU	JANTX	0	0.012	76.2500
₹	Mp	JAN	4	2.609	2.0127
Group IV	ARW	JANTX	0	0.049	18.6734
Group V	G _F	Lower	91	78.590	1.1953
1	GF	JANTXV	1	535.850	0.0038
	GF	JAN	18	374.020	0.0556
	G _F	JANTX	9	540507.000	0.000019
	SF	JANTXV	0	29.700	0.0308
	SF	JANTX	0	35.926	0,0255
İ	NSB	JANTXV	26	5.480	5.1095
	NSB	JAN	19	229.904	0.0905
	GB	Lower	229	1389.000	0.1684
	GB	JAN	6	3.100	0.9074
	NS	JAN	4	21.225	0.2473
	NO/GF**	JANTX	2	2521.000	0.0012
	1 .	JAN	0	607.000	0.0015
	M _{I.}	JAN	0	0.017	53.4744
	No/SF***	JANIX	0	3,930	0.2328
1	NU	JANTX	Ō	0.0044	207.9545
7	ARW	JANTX	lŏ	0.015	59.8039
Group V	ARW	JAN	ő	0.004	228.7500
MIL-S-19500	V.W		<u> </u>	3.00.	
· 					

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level.

^{**}Nonoperating ground fixed

^{***}Nonoperating space flight

TABLE G-4 (Continued)

PART TYPE	ENVIRONMENT	QUALITY	FAILURES	PART HOURS (x 106)	FAILURE RATE* (FAIL/106 HRS)
MIL-S-19500	G _F	JANTXV	8	190.600	0.0496
Group VI	GF	JAN	0	31.800	0.0280
1	Mp	JAN	0	0.021	43.8470
	GB.	Lower	68	820.000	G.U859
	NSB	JANTXV	0	0.077	11.8830
1	NSB	JAN	2	44.911	0.0691
₹ 7	NS	JAN	0	0.350	2.6143
Group VI	ML	JAN	0	0.00024	3750.0000
Group V11	G _F	Lower	1	31.160	0.0648
	SF	JANTX	0	29.255	0.0313
1 1	NS	JAN	0	0.015	62.2449
▼	NSB	JANTX	Ú	5.5 9 0	0.1639
Group VII	No/GF**	JANTX	0	937.300	0.0009
Group VIII	GF	JANTX	1298	7676.000	0.1707
	SF	JANTX	0	19.997	0.0458
1	Ns	JAN	0	21.582	0.0424
. ▼	ARW	JANEX	0	0.049	18.6734
Group VIII	NU	JANTX	0	0.00020	4575.0000
MTL-S-19500					
Totals			2828	621596.180	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed

TABLE G-5
Tube Operating Data Summary

PART TYPE	ENVIRONMENT	QUALITY	FAILURES	PART HOURS (X 106)	FAILURE RATE* (FAIL/106 HRS)
RECEIVER	NSB	-	20	0.133	164.2857
TRANSMITTER	NSB	-	18	0.279	70.9677
TOTALS			38	0.412	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level.

TABLE G-6
Resistor Operating/Nonoperating Data Summary

PART TYPE	ENVI RONMENT	QUALITY	FAILURES	PART HOURS (X 10 ⁶)	FAILURE KATE* (FAIL/106 HRS)
MIL-R-11 RC	Gr	MIL	0	26.250	0.0349
MIL-R-19 RA	G _F	MIL	i	4.220	0.4810
MIL-R-22 RP	G _F	MIL	1	6.100	0.3311
		MIL	4	41.520	0.1264
1	G _F	1	o	0.167	5.4869
MIL-R-26 RW	Мр	MIL	0	3.202	0.2860
MIL-R-26 RW	G _M	MIL		186.760	0.0616
MIL-R-94 RV	GF	MIJ.	10	E .	
MIL-R-94 RV	NS	MIL	0	1.060	0.8632
MIL-R-94 RV	G _M	MIL	3	2.035	2.0516
MIL-R-10509 RN	G _M	MIL	0	10.743	0.0852
MIL-R-1050S RN	No/GF**	MIL	0	3296.100	0.00028
MIL-R-10509 RN	$G_{\mathbf{F}}$	MIL	3	42.420	0.0984
MIL-R-12934	No/GF**	MIL	2	868.000	0.0035
MIL-R-22097 RJ	$G_{\mathbf{F}}$	MIL	10	32.140	0.3578
MIL-R-27208	G _B	MIL	0	3.900	0.2346
RT MIL-R-27208	NS	MIL	6	77.120	0.0953
RT MIL-R-39002	G _F	Lower	5	84.970	0.0741
RK MIL-R-39005	$G_{\mathbf{F}}$	s	0	16885.000	0.000054
RBR MIL-R-59005	s _f	s	0	155.269	0.0059
RBR MIL-R-39005	N _O /G _F **	s	12	5475.000	0.0024
RBR MIL-R-39005	N _O /S _F **	м	0	10.860	0.0842
RBR MIL-R-39007	$e^{\mathbf{B}}$	s	0	0.660	1.3864
RWR	c.	_v	_	51.100	0.0179
MIL-R-39007	S _F	M S	0 484	38445.168	0.0179
RWR	G _F	S	0	155.269	0.0059
	S _F	\$		23.340	0.0865
	N _S b	S	0	0.083	10.9618
	Mp N-	R	•	29.031	0.0315
	NS	S	0		0.000025
	ML	S	0	37155.000	
	G _M	M	0	0.028	32.6786
]]	GM	P	0	0.250	3.6600
V	G _M	R	6	0.374	2.4465
MIL-R-39007	ท _บ	М	0	0.0029	315.5170
RWR				simple-mided 60	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed

^{***}Nonoperating space flight

TABLE G-6 (Continued)

PART TYPE	ENVIRONMENT	QUALITY	FAILURES	PART HOURS (X 10 ⁶)	FAILURE RATE* (FAIL/106 HRS)
MIL-R-39007	A _{RW}	М	0	0,017	55.1204
RWR MIL-R-39008 RCR	G _F	s	163	29060.740	0.0058
NON	Mp	s	0	0.083	10.9618
	S _F	s	ŏ	2984.029	0.00031
	NSB	s	159	9569.470	0.00031
	G _B	S	0	12.000	0.0763
		M	0	0.00045	
1	ARW	S	, -	1	2033.3333
MTI P 20000	N _S	1 -	17	393.980	0.0476
MIL-R-39008 RCR	ML	S	0	0.020	44.8288
MIL-R-39009 RER	G _F	S	0	790.200	0.0012
	NS	S	1	2.410	0.8382
	GM	М	0	0.378	2.4206
₩	A _{RW}	P	0	0.0013	703.8461
MIL-R-39009 RER	MP	P	1	0.083	24.1997
MIL-R-39015 RTR	G _M	М	0	0.642	1.4250
MIL-R-39017	Δ	R	0	0.326	2.8050
RLR	A _{RW} N _U	R	ŏ	0.814	1.1240
MIL-R-39035 RJR	G _B	s	ŏ	9.800	0.0934
1.5.1	Ns	3	2	1,240	2.5040
i	N _O /s _F ***	5	ō	93.530	0.0097
	NU	м	Ö	0.0020	457.5000
		M	ő	0.0020	145.2380
M7L-R-39035	A _{RW} G _F	S	33	104834.840	0.00034
RJR MIL-R-55182	۱ ,	١,	_	2122 200	0 00042
,	S _F	R	0	2183.000	0.00042
RNR	ARW	S	0	0.031	29.9019
	SF	S	0	1336.920	0.00068
	G_{B}	s	2	199.000	0.0156
	NSB	S	12	170.420	0.0798
	NS	S	9	297592.630	0.000035
	ML	S	0	0.215	4.2513
	NO/GF**	S	2	149344.000	0.000020
MIL-R-55182 RNR	No/SF***	R	0	34.080	0,0268
MIL-R-55182 RNC	ARW	М	0	0.0013	703.8461

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed
***Nonoperating space flight

TABLE G-6 (Continued)

PART TYPE	ENVIRONMENT	QUALITY	FAILURES	PART HOURS (X 106)	FAILURES RATE* (FAIL/106 HRS)
MIL-R-55182 RNC	Mp	S	0	2.316	0.3950
BETWORKS	G _F	MIL	4	217.354	0.0242
NETWORKS	G _B	MIL	0	0.138	ń.6304
THERMISTOR	G _F	l -	4	3.940	0.2322
THERMISTOR	GB	-	Ú	0.060	15.2500
THERMISTOR	ML	-	0	0.0029	98.0707
THERMISTOR	No/GF **	-	0	154.000	0.0063
TOTALS			947	70210.255	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed

TABLE C-7
Capacitor Operating/Nonuperating Data Summary

PART TYPE	env i ronment	QUALITY	FAILURES	PART HOURS (± 106)	FAILURE RATE* (FAIL/106 HRS)
MIL-C-5 CM	GF	MIL.	0	1.709	0.5354
AIL-C-5 CM	No/GF##	MIL	2	6169.000	0.0005
MIL-C-20 CC	NO/GF**	MIL	1	31870.000	0.000060
MIL-C-25 CP	GF	MIL	υ	1226.356	0.00075
	NSB	MIL	0	13.550	0.0675
	NS	MIL	114	374.657	0.3132
	No/GF##	MIL	5	3392.800	0.0018
MIL-C-25 CP	ML	MIL	0	0.0093	98.5036
MIL-C-81 CV	GF	MIL	11	154.200	0.0314
	NSB	MIL.	0	2.080	0.4399
	SF	MIL	0	155.269	0.0059
	NS	MIL	1	1.970	1.0254
MIL-C-81 CV	NO/GF**	MIL	0	762.000	0.0012
M1L-C-10950 CB	NU	MIL	1	5.262	0.3839
MIL-C-11272 CY	No/SF***	MIL	0	34.080	0.0263
KIL-C-11693 CZ	NS	н	0	20.158	0.0454
MIL-C-11693 CZ	GF	S	15	188.799	0.0885
MIL-C-14157 CPV	G _B	L	0	0.300	3.0500
MIL-C-14157 CPV	SF	L	0	0.014	65.3571
MIL-C-14157 CPV	ARW	М	0	0.0027	338.8880
MIL-C-14409	GB	MIL	0	0.076	12.0395
MIL-C-14409	G _F	HIL	0	7.118	0.1285
MIL-C-19978 CQ	Мp	н	1	0.042	48.310
MIL-C-19978 CQ	GF	MIL	12	746.095	0.018
MIL-C-19978	NS	HIL	15	619.138	0.027
MIL-C-39001	G _F	s	0	776.363	0.0018
CH/IR	NSB	S	o	0.128	7.1484

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed

^{***}Nonoperating space flight

TABLE G-7 (Continued)

PART TYPE	EMIRONMENT	QUALITY	FA1 LURES	PART HOURS (x 106)	FAILURE RATE* (FAIL/106 HRS)
NIL-C-39001	SF	S	3	0.195	4.6923
CMR	GB	S	0	6.300	0.1452
	Ng	S	ì	70.386	0.0287
	No/GF##	ĸ	0	8.800	0.1040
	H _L	5	0	0.0029	311.9673
	ARW	В	0	0.0027	238.888
MIL-C-39601 CMR	NU	М	0	0.0052	175.9615
MIL-C-39003	GF	L	2	83.830	0.0370
CSP	Ge	S	3	20868.155	0.00020
	5¥	S	1	515.80C	0.0039
	GR	S	7	22.600	0.3717
	NS	5	2	27.190	0.1142
	No/Sp**	p	0	33.1∌0	0.0275
	ARM	м	0	0.026	35.7421
	Mp	н	1	0.167	12.0999
MIL-C-39003 CSR	NU	н	0	0.0075	122.0000
MIL-C-39006 CLR	No/Gr##	5	0	3435.000	C. 0002
MIL-C-39006 GLR	G _F	S	20	4855.000	0.0045
MIL-C-39006 CLR	No/GF**	HI-kel	7	5216.500	0.0016
MIL-C-39014 CKR	Мр	н	4	1.274	4.0578
M1L-C-39014 CKR	SF	ĸ	0	7.480	0.1223
M1L-C-39014 CKR	ARW	н	0	0.097	4135
MIL-C-39014 CKR	NU	н	0	0.022	381.2500
MIL-C-39018	NSB	HIL	563	1969.550	0.2899
CU	C. C. B.	MIL	.91	946.451	0.7395
	N _S	HIL	1	75.143	0.0269
	HL HL	MIL	3	0.016	254.9310
	ARW	MIL	ő	0.0067	136.5671
MIL-C-39018 CU	N _U	HIL	ŏ	6.0021	435.7142

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground (ixed

^{***}Nonoperating space flight

TABLE G-7 (Continued)

FART TYPE	ENVIRONMENT	QUALITY	FAILURES	PART HOURS (x 106)	FAILURE RATE* (FAIL/106 HRS)
MIL-C-39022 CHR	N _S	s	1	243.930	0.0038
MIL-C-3965 CL	No/GF**	MIL	2	8.400	0.3696
MIL-C-55514 CPR	Gp	S	0	424.006	9.0022
MIL-C-83421 CRH	Sy	S	0	1.165	0.7854
MIL-C-83421 CRH	NU	M	0	0.0052	175.9615
MIL-C-83421 CRH	ARW	М	0	0.0027	338.8888
MIL-C-83421 CRH	ARW	P	0	0.0013	703.8461
Total			1459	85341.899	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed

TABLE G-8

Inductive Device Operating/Non-Operating Data Summary

PART TYPE	ENVI RONMENT	QUALITY	FATLURES	PART HOURS (X 196)	FAILURES RATE* (FAIL/106 HRS)
MIL-C-15305	No/Gr **	S	5	4008.000	0.0015
MIL-C-15305	NU T	м	0	0.00080	1143.7500
MIL-C-15305	ARW	М	0	0.0067	136.5671
MIL-C-39010	G _F	S	4	3661.533	0.0014
	NS	S	4 3	11.036	0.3783
	NSB	S	0	0.154	5.5916
MIL-C-39010	G _B	S	0	0.224	4.0794
MIL-T-27	G _F	MIL	9	874.401	0.0120
1	S _F	MIL	0 2	166.580	0.0055
	GB	MIL	2	4.200	0.7393
	NSB	MIL	0	0.154	5.9416
	NO/GF **	MIL	0 0	1003.C00	0.0009
	No/SF***	MIL		12.580	0.0727
]	40	MIL	0	0.0016	576.196
1	ļ.	MIL	0	26.877	0.0340
	ήР	MIL	1	0.042	48.3995
1	ARW	MIL	0	0.0018	508.3333
MIL-T-27	NU	MIL	0	0.00050	1830.0000
TOTALS			24	9769.168	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

The state of the s

^{**}Nonoperating ground fixed

^{***}Nonoperating space flight

TABLE G-9
Rotating Devices Operating/Non-Operating Data Summary

PART TYPE	ENVIRONMENT	QUALITY	FAILURES	PART HOURS (X 10 ⁶)	FAILURES RATE* (FAIL/106 HRS)
MOTORS SYNCHROS AND RESOLVERS	G _F G _F	-	19 2	11.700 6.800	1.3376 0.4566
TOTALS			21	18.500	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

TABLE G-10
RELAY OPERATING/NON-OPERATING DATA SUMMARY

PART TYPE	ENVIRONMENT	QUALITY	FAILURES	PART HOURS (X 10 ⁶)	FAILURE RATE* (FAIL/106 HRS)
MIL-R-39016	N _O /G _F **	MIL	0	0.193	4.7409
	G _F N _S	MIL	3	18.100 5.014	0.2762 0.8327
∀ MIL-R-39016	S _F GB	MIL	0	0.258 4.800	3.5465 0.1906
MIL-R-5757	Mp	MIL	2	0.125	24.8400
MIL-R-6016 MIL-R-83736	S _F G _F	MIL	0	4.875 0.190	0.1877 4.8158
TOTALS			9	33.555	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed

TABLE G-11
SWITCH OPERATING/NON-OPERATING DATA SUMMARY

PART TYPE	ENVIRONMENT	QUALITY	FAILURES	PART HOURS (X 10 ⁶)	FAILURE RATE* (FAIL/106 HRS)
MIL-S-3950	Gr	MIL	5	38.690	0.1628
	NO/GF**	MIL	8	333.564	0.0283
	SF	MIL	0	0.141	6.4802
•	GB	MIL	2	17.000	0.1826
MIL-S-3950	NS	MIL	10	13.393	0.8587
MIL-S-3786	G _F	Lower	3	19.549	0.2136
MIL-S-3786	S _F	Lower	0	1.290	0.7093
MIL-S-3786	NS	Lower	1	0.530	3.8113
TOTAL			29	424.157	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed

TABLE G-12

CONNECTOR OPERATING/NON-OPERATING DATA SUMMARY

PART TYPE	ENVIKONMENT	QUALITY	FAI LURES	PART HOURS (X 10 ⁶)	FAILURE RATE* (FAIL/106 HRS)
MIL-C-21097	G _F	LOWER	0	5.295	0.1728
MIL-C-24308	GF	řiIL	5	45.930	0.1372
MIL-C-24308	ARW	MIL	0	0.0040	228.7500
MIL-C-24308	$\mathtt{M}_{\mathbf{P}}$	MIL	1	0.125	16.1497
MIL-C-25516	$N_{\mathbf{S}}$	LOWER	0	1.910	0.4791
MII-C-28748	$G_{\mathbf{F}}$	I OWER	1	61,290	0.0330
	NO/GF**	LOWER	0	48.770	0.0188
	No/Sr***	LOWER	0	1.330	0.6879
	$s_{\mathbf{r}}$	LOWER	0	82.495	0.0111
	G _B	LOWER	0	0.298	3.0705
4	NS	LOWER	0	2,660	0.3440
NIL-C-28748	NSB	LOWER	0	0.126	7.2619
MIL-C-3607	$G_{\mathbf{F}}^{-}$	MIL	4	138.500	0.0379
MIL-C-3607	GF	LOWER	17	5.468	3.4290
MIL-C-3607	SF	LOWER	0	6.338	0.1444
MIL-C-3787	G _F	MII.	0	6.740	0.1358
MIL-C-5015	ARW	MIL	0	0.0049	186.7346
MIL-C-5015	$G_{\mathbf{F}}$	MIL	1	37.590	0.0537
MIL-C-55302	NU	MIL	0	0.0010	915.0000
MIL-C-55302	A _{RW}	MIL	0	0.0135	67.7777
MIL-C-55302	Мp	MIL	1	0.042	48.3995
TOTALS			30	444.930	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed

^{***}Nonoperating space flight

TABLE G-13

CONNECTION OPERATING/NON-OPERATING DATA SUMMARY

PART TYPE	ENVIRONMENT	QUALITY	FAILURES	PART HOURS (X 106)	FAILURE RATE* (FAIL/106 HRS)
CONNECTIONS	N _O /G _F **	LOWER	10	55472.770	0.00021
TOTALS			10	55472.770	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed

TABLE G-14

PRINTED WIRING BOARD OPERATING/NON-OPERATING DATA SUMMARY

PART TYPE	ENVIRONMENT	QUALITY	FAILURES	PART HOURS (X 10 ⁶)	FAILURE RATE* (FAIL/106 HRS)
MIL-P-55110 MIL-P-55110	G _F	LOWER LOWER	1 0	88.880 0.710	0.0227 1.2887
TOTALS		<u> </u>	1	89.590	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

TABLE G-15 MISCELLANEOUS PARTS OPERATING/NON-OPERATING DATA SUMMARY

PART TYPE	ENV I RONMENT	QUALITY	FATLURES	PART HOURS (X 106)	FAILURE RATE* (FAIL/106 HRS)
METERS	$G_{ m F}$	-	3	11.032	0.3784
QUARTZ CRYSTALS	G _F	-	0	0.611	1.4975
	G _B	1 -	0	0.200	4.5750
	No/GF**	1 -	4	232.000	0.0226
	No/Gr**	-	0	1.500	0.6100
	N _O /G _F **	-	0	3.400	0.2691
. ♦	No/Sp***	! -	0	0.554	1.6516
QUARTZ CRYSTALS	M _L	-	0	0.00086	1090.1754
FUSES	G _F	-	0	0.040	22.8750
	NC/SF***	-	0	2.770	0.3303
LAMPS INCAN- DESCENT	G _r	-	0 3	39.820	0.1048
LAMPS INCAN- DESCENT	N ₅	-	0	3.180	0.2877
TOTALS			10	295.108	

^{*}All failure rates are calculated at upper single-sided 60 percent confidence level

^{**}Nonoperating ground fixed
***Nonoperating space flight

MISSION of

Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C³I) activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology. ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.