

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 7: C08K 5/00, C09D 183/06, C08J 7/04

A1

(11) Numéro de publication internationale:

WO 00/59992

(43) Date de publication internationale: 12 octobre 2000 (12.10.00)

(21) Numéro de la demande internationale:

PCT/FR00/00861

(22) Date de dépôt international:

5 avril 2000 (05.04.00)

(30) Données relatives à la priorité:

99/04421

6 avril 1999 (06.04.99)

FR

(71) Déposant (pour tous les Etats désignés sauf US): RHO-DIA CHIMIE [FR/FR]; 25, quai Paul Doumer, F-92408 Courbevoie (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): BERTRY, Jean-Louis [FR/FR]; 113, rue de Montagny, F-69008 Lyon (FR). FRANCES, Jean-Marc [FR/FR]; 1, rue des Flandres, F-69330 Meyzieu (FR). BOHIN, Fabrice [FR/FR]; 41, avenue Georges Pompidou, F-92300 Levallois Perret (FR). PRIOU, Christian [FR/US]; 5, Wood Hollow Road, West Windsor, NJ 08550 (US).
- (74) Mandataire: FLEURANCE, Raphaël; Cabinet Plasseraud, 27, rue de la Villette, F-69003 Lyon (FR).

(81) Etats désignés: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE. ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

- (54) Title: SILICONE COMPOSITION USED IN THE PRODUCTION OF ANTIFRICTION VARNISHES, METHOD FOR THE APPLICATION OF SAID VARNISHES TO A SUPPORT AND SUPPORT THUS TREATED
- (54) Titre: COMPOSITION SILICONE UTILE NOTAMMENT POUR LA REALISATION DE VERNIS ANTI-FRICTION, PROCEDE D'APPLICATION DE CE VERNIS SUR UN SUPPORT ET SUPPORT AINSI TRAITE

(57) Abstract

The invention relates to silicone compositions that are used in the production of varnishes that can be applied to supports in order to reduce the friction coefficient. The inventive composition comprises at least one polyorganosiloxane A (POS) which can be cationically and radically cross-linked by functional cross-linking groups (GFR) and a primer C chosen from onium borates, charcterised in that the inventive composition also comprises molecules (POS D) which are substituted by secondary functional groups (GFS) carried by silicon atoms and selected from those that include at least one alkoxy and/or epoxy and/or carboxy motif and optionally a charge (e.g. silica). The invention can be used with anti-friction vamishes for RTV silicone

POS D = (CH₃), Si-O
$$\begin{bmatrix} CH_1 \\ 1 \\ CH_2 \end{bmatrix}$$
 SiO $\begin{bmatrix} CH_3 \\ 1 \\ CH_3 \end{bmatrix}$ SiO $\begin{bmatrix} CH_3 \\ 1 \\ SiO \end{bmatrix}$ Si(CH₃),

$$c =$$
 $\rightarrow c$ $\rightarrow c$

coatings for material used in air bags, thermal transfer ribbons or packing films.

(57) Abrégé

L'invention concerne des compositions silicones utiles notamment pour la réalisation de vernis applicables sur des supports, dont on cherche à diminuer le coefficient de friction. La composition selon l'invention comprend au moins un polyorganosiloxane A (POS) réticulable par l'intermédiaire de groupements fontionnels de réticulation (GFR) par voie cationique et/ou radicalaire et un amorceur C choisi parmi les borates d'onium, caractérisée en ce qu'elle comporte en outre des molécules (POS D) substituées par des groupements fonctionnels secondaires (GFS) portés par des atomes de silicium et sélectionnées parmi ceux comprenant au moins un motif alcoxy et/ou époxy et/ou carboxy, éventuellement une charge (e.g. silice). Application: Vernis anti-friction pour revêtements silicone RTV de tissu pour "air bag", de rubans à transfert thermique ou de films d'emballage.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	Si	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquic
ΑT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaidjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	LT	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israči	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italic	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande	211	Zillodowe
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan Ge Russie		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		
				-	a		

COMPOSITION SILICONE UTILE NOTAMMENT POUR LA REALISATION DE VERNIS ANTI-FRICTION, PROCEDE D'APPLICATION DE CE VERNIS SUR UN SUPPORT ET SUPPORT AINSI TRAITE

5

15

20

25

30

DOMAINE TECHNIQUE

Le domaine général de l'invention est celui des revêtements ou vernis 10 polymères aptes à conférer à des substrats, des propriétés anti-friction. Plus précisément, l'invention concerne des compositions silicones utiles notamment

pour la réalisation de vernis applicables sur des supports, dont on cherche à diminuer le coefficient de friction. Les supports concernés sont divers et peuvent être notamment constitués :

- > par des substrats fibreux, tissés ou non, revêtus d'au moins une couche de protection ou de renfort mécanique, à base de polymère d'enduction, du type élastomère silicone, par exemple;
 - > par des substrats polymères, en particulier des films plastiques, comme par exemple :

- des rubans de transfert thermique utilisables notamment comme support d'encre dans des imprimantes à transfert thermique.

- ou des films d'emballage de protection,

La présente invention vise également les procédés d'application du vernis anti-friction qu'elle concerne, sur différents supports.

Enfin, l'invention a pour objet les supports revêtus de tels vernis antifriction et, en particulier :

- les toiles textiles revêtues d'une couche d'élastomère sur laquelle est appliqué le vernis anti-friction, de telles toiles étant susceptibles d'être utilisées pour la fabrication de coussins de protection individuelle d'occupants de véhicules, dénommés également "airbag",
- > les rubans de transfert thermique, par exemple constitués par des films plastiques (e.g. en polyester) porteurs d'encre et utilisables dans des imprimantes à transfert thermique,
- les films d'emballage de protection.

35

ART ANTERIEUR

- La problématique générale à la base de l'invention est la mise au point d'un vernis silicone anti-friction. Ce problème de diminution des coefficients de friction, se pose avec une acuité particulière pour des substrats enduits de revêtements silicones élastomères réticulés. En effet, il est bien connu de l'homme de l'art que les couches d'enduction en silicone élastomère ont un toucher collant qui est pénalisant pour de nombreuses applications.
- S'agissant plus précisément de l'application "airbag", on sait que ces coussins gonflables de protection individuelle d'occupants de véhicules, sont réalisés à partir d'une toile en fibre synthétique, par exemple en polyamide (nylon[®]), recouverte sur au moins l'une de ses faces d'une couche d'un élastomère qui peut être un élastomère silicone réticulable ou vulcanisable à froid par polyaddition (EVFII),

10

15

20

25

polycondensation (EVFI), d'un élastomère silicone réticulable ou vulcanisable à chaud par polycondensation au peroxyde ou par polyaddition (EVC) ou d'un élastomère silicone visqueux réticulable ou vulcanisable par polyaddition du type LSR.

Ce revêtement de protection par exemple en silicone est au moins interne et permet de se prémunir des effets de l'explosion de gonflage du coussin. Le fait que le revêtement silicone élastomère ait un toucher collant constitue un frein au déploiement du coussin. L'amélioration de l'efficacité des "airbags" passe donc par leur réalisation en matériau enduit à faible coefficient de friction.

Pour plus de détails sur les coussins de protection individuelle, on peut se référer notamment au brevet français N° 2 668 106 et plus spécialement au brevet français N° 2 719 598 pour les "airbags" revêtus d'un élastomère silicone RTV réticulable par polyaddition.

Cette recherche de faible coefficient de friction pour des revêtements de substrats enduits ou non d'élastomère silicone, est également un souci dans d'autres applications comme,, par exemple, les revêtements pour rubans à transfert thermique (e.g. en polyester) ou bien encore les films d'emballage de protection (e.g. en polyéthylène ou en polypropylène.

Les rubans de transfert thermique sont utilisables dans des imprimantes à transfert thermique. Ces rubans de transfert thermique sont très fins (quelques microns) et sont revêtus, sur l'une de leurs faces, d'une couche d'encre (cires ou résines) et sur l'autre de leurs faces, d'un revêtement de protection. On utilise en général un revêtement de protection très fin d'épaisseur comprise entre 0,1 et 1 micromètre pour protéger la surface du film et améliorer l'impact de la tête d'impression sans déformer le transfert de l'encre sur le support appliqué.

Dans des imprimantes dont la vitesse d'impression est comprise entre 150 et 300 mm/s, il est très important que la tête d'impression (plate ou en coin), lorsqu'elle frappe le revêtement de protection du ruban, puisse glisser sur la surface du revêtement, à une température élevée comprise entre 100 et 200 °C.

S'agissant des films d'emballage de protection, on prévoit parfois de leur appliquer un sur-vernissage à base de silicone, afin de leur conférer des propriétés d'anti-adhérence. Mais il convient que ce sur-vernissage possède un glissant au moins équivalant à celui du film plastique de départ (imprimé ou non).

BREF EXPOSE DE L'INVENTION

Face à cette problématique, l'un des objectifs essentiels de la présente invention est de proposer de diminuer le coefficient de friction de substrat éventuellement revêtu de couche d'enduction, par exemple en silicone, à l'aide d'un vernis anti-friction.

Un autre objectif essentiel de la présente invention est de fournir un vernis antifriction applicable aisément sur divers types de substrats.

Un autre objectif essentiel de l'invention est de fournir un vernis antifriction réticulable, facile à mettre en oeuvre et économique.

Un autre objectif essentiel de l'invention est de fournir une composition silicone utilisable notamment pour la réalisation de vernis anti-friction du type de ceux sus-évoqués.

Un autre objectif essentiel de la présente invention est de fournir une

35

40

45

10

15

20

25

35

40

45

composition silicone utile notamment pour la réalisation de vernis anti-friction, cette composition se devant d'être d'un coût de revient raisonnable et simple à préparer.

Un autre objectif essentiel de l'invention est de fournir un vernis antifriction constitué par une composition silicone réticulable, apte à réduire significativement le coefficient de friction de divers types de substrats enduits ou non.

Un autre objectif de l'invention est de fournir un procédé d'application simple et économique d'un vernis anti-friction à base d'une composition silicone, sur différents supports formés, par exemple, par des substrats fibreux tissés ou non et éventuellement enduits, par exemple, d'une couche d'élastomère silicone réticulé.

Un autre objectif essentiel de l'invention est de fournir une toile enduite d'élastomère silicone réticulé destiné à la fabrication "d'airbags", une telle toile se devant de présenter un faible coefficient de friction.

Un autre objectif essentiel de l'invention est de fournir une toile enduite de silicone élastomère réticulé pour la fabrication "d'airbags", revêtue d'un vernis anti-friction à base d'une composition silicone.

Un autre objectif essentiel de l'invention est de proposer un support fibreux, par exemple un tissu, enduit d'un revêtement élastomère réticulé et doté d'un coefficient de friction statique (Ks) correspondant à l'effort nécessaire pour initier le déplacement d'une masse rectangulaire recouverte du tissu concerné sur un support plan en verre à une valeur Ks ≤ 1 , pour un dépôt d'enduction toutes couches confondues $D < 20 \text{ g/m}^2$.

Ces objectifs, parmi d'autres, sont atteints par la présente invention qui concerne, en premier lieu, une composition silicone utile notamment pour la réalisation de vernis ayant en particulier des propriétés anti-friction, cette composition étant du type de celles comprenant au moins un polyorganosiloxane (POS) réticulable par l'intermédiaire de groupements fonctionnels de réticulation (GFR) par voie cationique et/ou radicalaire et une quantité efficace de système amorceur cationique comprenant comme amorceur thermique et/ou photoamorceur, un produit choisi parmi les sels d'onium d'un élément des groupes 15 à 17 de la classification périodique [Chem & Eng. News, vol. 63, N° 5, 26 du 4 février 1985] ou d'un complexe organométallique d'un élément des groupes 4 à 10 de la classification périodique [même référence],

Δ dont l'entité cationique est sélectionnée parmi :

- 1) les sels d'onium de formule (I) :

$$[({\mathbb R}^1)_n - {\mathbb A} - ({\mathbb R}^2)_m]^+({\mathbf I})$$

formule dans laquelle:

- A représente un élément des groupes 15 à 17 tel que par exemple : I, S, Se, P ou N,
- R¹ représente un radical aryle carbocyclique ou hétérocyclique en C6-C20, ledit radical hétérocyclique pouvant contenir comme hétéroéléments de l'azote ou du soufre;
- R² représente R¹ ou un radical alkyle ou alkényle linéaire ou ramifié en C₁-C₃₀; lesdits radicaux R¹ et R² étant

10

15

20

25

30

éventuellement substitués par un groupement alcoxy en C₁-C₂₅, alkyle en C₁-C₂₅, nitro, chloro, bromo, cyano, carboxy, ester ou mercapto;

- n est un nombre entier allant de 1 à v + 1, v étant la valence de l'élément A,
- m est un nombre entier allant de 0 à v 1 avec n + m = v + 1,
- 2) Les sels d'oxoisothiochromanium décrits dans la demande de brevet WO 90/11303, notamment le sel de sulfonium du 2éthyl-4-oxoisothiochromanium ou de 2-dodécyl-4oxoisothio-chromanium,
- 3) les sels de sulfonium dans lesquelles l'entité cationique comprend :
- → 3.1. au moins une espèce polysulfonium de formule III.1.

$$Ar^{1} - \stackrel{+}{\underset{Ar^{2}}{\bigvee}} Ar^{3} - \stackrel{+}{\underset{Ar^{2}}{\bigvee}} Ar^{3} - \stackrel{+}{\underset{Ar^{2}}{\bigvee}} Ar^{1}$$
 (III.1)

dans laquelle:

- les symboles Ar¹, qui peuvent être identiques ou différents entre-eux, représentent chacun un radical monovalent phényle ou naphtyle, éventuellement substitué avec un ou plusieurs radicaux choisis parmi : un radical alkyle linéaire ou ramifié en C₁ C₁₂, de préférence en C₁-C₆, un radical alkoxy linéaire ou ramifié en C₁ C₁₂, de préférence en C₁-C₆, un atome d'halogène, un groupe -OH, un groupe -COOH, un groupe ester COO-alkyle où la partie alkyle est un reste linéaire ou ramifié en C₁ C₁₂, de préférence en C₁-C₆, et un groupement de formule -Y⁴-Ar² où les symboles Y⁴ et Ar² ont les significations données juste ci-après,
- les symboles Ar², qui peuvent être identiques ou différents entre eux ou avec Ar¹, représentent chacun un radical monovalent phényle ou naphtyle, éventuellement substitué avec un ou plusieurs radicaux choisis parmi : un radical alkyle linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆, un radical alkoxy linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆, un atome d'halogène, un groupe -OH, un groupe -COOH, un groupe ester -COO-alkyle où la partie alkyle est un reste linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆,
- les symboles Ar³, qui peuvent être identiques ou différents entre eux, représentent chacun un radical divalent phénylène ou naphtylène, éventuellement substitué avec un ou plusieurs radicaux choisis parmi : un radical alkyle linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆, un radical alkoxy linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆, un atome d'halogène, un groupe -OH, un groupe -COOH, un groupe ester -COO-alkyle où la partie alkyle est un reste linéaire ou ramifié en C₁-C₁₂,

de préférence en C₁-C₆,

- t est un nombre entiers égal à 0 ou 1, avec les conditions supplémentaires selon lesquelles :

+ quand t = 0, le symbole Y est alors un radical monovalent Y¹ représentant le groupement de formule :

$$Y^1: \qquad \begin{array}{c} + \\ - S - Ar^1 \\ Ar^2 \end{array}$$

où les symboles Ar¹ et Ar² possèdent les significations données ciavant,

+ quand t = 1:

• d'une part, le symbole Y est alors un radical divalent ayant les significations Y² à Y⁴ suivantes :

• Y²: un groupement de formule:

où le symbole Ar² possède les significations données ci-avant,

• Y³: un lien valentiel simple,

• Y⁴: un reste divalent choisi parmi:

un reste alkylène linéaire ou ramifié en C₁-C₁₂, de préférence en

 C_1 - C_6 , et un reste de formule — $Si(CH_3)_2O$ —,

d'autre part, dans le cas uniquement où le symbole Y représente Y³ ou Y⁴, les radicaux Ar¹ et Ar² (terminaux) possèdent, outre les significations données ci-avant, la possibilité d'être reliés entre eux par le reste Y' consistant dans Y'¹ un lien valentiel simple ou dans Y'² un reste divalent choisi parmi les restes cités à propos de la définition de Y⁴, qui est installé entre les atomes de carbone, se faisant face, situés sur chaque cycle aromatique en position ortho par rapport à l'atome de carbone directement relié au cation S⁺;

→ 3.2. et/ou au moins une espèce monosulfonium possédant un seul centre cationique S⁺ par mole de cation et consistant dans la plupart des cas dans des espèces de formule :

$$Ar^1 \xrightarrow{} \stackrel{\dagger}{S} - Ar^1$$
 (III.2)

dans laquelle Ar¹ et Ar² ont les significations données ci-avant à propos de la formule (III.1), incluant la possibilité de relier directement entre eux un seul des radicaux Ar¹ à Ar² selon la

15

5

10

20

25

30

WO 00/59992

manière indiquée ci-avant à propos de la définition de la condition supplémentaire en vigueur quand t = 1 dans la formule (II), faisant appel au reste Y';

5

10

15

20

- 4) les sels organométalliques de formule (IV) :

 $(L^{1}L^{2}L^{3}M)^{+q}$ (IV)

formule dans laquelle:

- M représente un métal du groupe 4 à 10, notamment du fer, manganèse, chrome, cobalt...
- L¹ représente 1 ligand lié au métal M par des électrons π, ligand choisi parmi les ligands η³-alkyl, η⁵- cyclopendadiènyl et η² cycloheptratriènyl et les composés η⁶ aromatiques choisis parmi les ligands η⁶-benzène éventuellement substitués et les composés ayant de 2 à 4 cycles condensés, chaque cycle étant capable de contribuer à la couche de valence du métal M par 3 à 8 électrons π;
- L^2 représente un ligand lié au métal M par des électrons π , ligand choisi parmi les ligands η^7 -cycloheptatriènyl et les composés η^6 -aromatiques choisis parmi les ligands η^6 benzène éventuellement substitués et les composés ayant de 2 à 4 cycles condensés, chaque cycle étant capable de contribuer à la couche de valence du métal M par 6 ou 7 électrons π ;
- •L³ représente de 0 à 3 ligands identiques ou différents liés au métal M par des électrons σ, ligand(s) choisi(s) parmi CO et NO₂⁺; la charge électronique totale q du complexe à laquelle contribuent L¹, L² et L³ et la charge ionique du métal M étant positive et égale à 1 ou 2;
- △ l'entité anionique ayant pour formule :

$$[X^1X^2_a R_b]^-$$

30

35

25

formule dans laquelle:

- a et b sont des nombres entiers allant pour a de 0 à 6 et pour b de 0 à 6 avec $a + b \ge 2$;
- les symboles X^I représentent des éléments choisis dans les colonnes IIIA, IVA, VA de la classification périodique, de préférence dans le groupe comprenant : B, P et Sb;
- les symboles X² représentent :
 - * un atome d'halogène (chlore, fluor) avec a = 0 à 3,
 - * une fonction OH avec a = 0 à 2,
- les symboles R sont identiques ou différents et représentent :
 - □ un radical phényle substitué par au moins un groupement électroattracteur tel que par exemple OCF₃, CF₃, NO₂, CN, et/ou par au moins 2 atomes d'halogène (fluor tout particulièrement), et ce lorsque l'entité cationique est un onium d'un élément des groupes 15 à 17,
 - ▷ un radical phényle substitué par au moins un élément ou un

40

groupement électroattracteur notamment atome d'halogène (fluor tout particulièrement), CF₃, OCF₃, NO₂, CN, et ce lorsque l'entité cationique est un complexe organométallique d'un élément des groupes 4 à 10

5

un radical aryle contenant au moins deux noyaux aromatiques tel que par exemple biphényle, naphtyle, éventuellement substitué par au moins un élément ou un groupement électroattracteur,

notamment, un atome d'halogène (fluor tout particulièrement), OCF₃, CF₃, NO₂, CN, quelle que soit l'entité cationique;

10

cette composition étant caractérisée en ce qu'elle comporte en outre des molécules substituées par des groupements fonctionnels secondaires (GFS) portés par au moins un atome de silicium par molécule et sélectionnés, de préférence, parmi ceux comprenant au moins un motif alcoxy et/ou époxy et/ou carboxy.

15

20

25

La composition de vernis silicone selon l'invention est avantageuse en ce qu'elle est aisément et industriellement réticulable par voie cationique et/ou radicalaire, par exposition à un faisceau d'électrons et/ou à un rayonnement actinique du type UV et/ou par activation thermique. Une fois appliqué et réticulé sur un support, ce vernis lui confère des caractéristiques anti-friction significatives.

Ces résultats intéressants résultent de la sélection judicieuse d'une composition de vernis silicone comprenant des composés dont les atomes de silicium (POS-silanes) sont porteurs de groupements fonctionnels de réticulation GFR ainsi que de groupements fonctionnels GFS, avantageusement de type alcoxy et/ou énoxy et/ou carboxy. Les GFS ont une part non négligeable dans l'apport de propriétés antifiction à la composition de revêtement. Le fait que cette composition de vernis silicone soit facilement applicable et réticulable sur un support, par exemple, un tissu ou un film plastique, découle également de la mise en oeuvre d'une famille spécifique de photoamorceur du type de ceux décrits dans la demande de brevet français N° 96 16 237. De tels photoamorceurs permettent une photoréticulation rapide et complète du vernis.

35 EXPOSE DETAILLE DE L'INVENTION

Selon un premier mode de réalisation de l'invention, la composition de vernis silicone comprend :

- 40
- A au moins un POS porteur de GFR, ces derniers étant, de préférence, choisis parmi les groupements comprenant au moins une fonction éthyléniquement insaturée avantageusement acrylate et/ou alcényléther et/ou époxyde et/ou oxéthane;
- 45
- B au moins un silane et/ou un POS porteur de GFS, ces derniers représentant de préférence au moins 0,5 % et plus préférentiellement encore au moins 1 % en poids de B;
- C au moins un système photoamorceur tel que défini supra.

Dans ce premier mode de réalisation les GRF, d'une part, et les GFS, d'autre part, sont portés par des molécules ou macromolécules à base de silicium, différentes.

8

L'alternative qui correspond au second mode de réalisation de l'invention, est que ces molécules à base de silicium soient substituées à la fois par des groupements GRF et par des groupements GFS. Dans ce cas, la composition vernis silicone selon l'invention comprend:

- D - au moins un système photoamorceur tel que défini supra,

- E - au moins un POS porteur de GRF et de GFS,

les GRF étant de préférence choisis parmi les groupements comprenant au moins une fonction éthyléniquement insaturée - avantageusement acrylate et/ou alcényléther - et/ou époxyde et/ou oxéthane;

Naturellement, il n'est pas à exclure que la composition selon l'invention comprenne les POS et/ou les silanes A, B, D, ensemble.

Ces compositions de vernis durcissantes (par exemple sous UV et/ou sous faisceau d'électrons) et apportant des propriétés anti-friction de surface, peuvent comprendre en outre :

20

25

5

10

15

- F éventuellement au moins un diluant réactif organique choisi parmi les résines organiques de type époxyde et/ou vinyléther et/ou oxéthane;
- G éventuellement au moins un pigment organique ou inorganique ;
- H éventuellement une charge, de préférence silicique ;

- I - éventuellement au moins un photosensibilisateur, de préférence sélectionné parmi les (poly)aromatiques (éventuellement métalliques) et/ou les hétérocycliques.

En entrant dans le détail sur la nature des différents constituants de la composition de vernis silicone selon l'invention, on précisera, s'agissant des POS A, que ce sont, de préférence, des époxysilicones et/ou des vinyléthersilicones qui sont :

- → soit linéaires ou sensiblement linéaires et constitués de motifs de formule
 (I), terminés par des motifs de formule (II),
- → soit cycliques et constitués par des motifs de formule (II) :

formules dans lesquelles:

40

45

- les symboles R¹ sont semblables ou différents et représentent :
- soit un radical alkyle linéaire ou ramifié en C_1 - C_6 , éventuellement substitué, avantageusement par un ou des halogènes, les radicaux alkyles éventuellement substitués préférés étant : méthyle, éthyle, propyle, octyle et 3,3,3 trifluoropropyle,
 - soit un radical cycloalkyle en C5-C8, éventuellement substitué,

10

- soit un radical aryle ou aralkyle, éventuellement substitué :
- . notamment par des halogènes et/ou des alcoxyles,
- . les radicaux phényle, xylyle, tolyle et dichlorophényle étant tout particulièrement sélectionnés,
- et, plus préférentiellement encore, au moins 60 % molaire des radicaux R^3 étant des méthyles,
- les symboles Z sont semblables ou différents et représentent :
 - soit le radical R¹,

- soit un groupement GFR correspondant à un reste époxyde ou vinyléther relié au silicium par l'intermédiaire d'un radical divalent contenant, avantageusement, de 2 à 20 atomes de carbone comportant, éventuellement, un hétéroatome,

l'un au moins des symboles Z correspondant à un groupement GRF.

Comme exemples de groupements organofonctionnels GRF du type époxy, on peut citer ceux de formule suivante :

$$-CH_{2}-CH_{2}$$

$$-CH_{2}-CH_{2}$$

$$-CH_{2}-CH_{2}$$

$$-CH_{3}-CH_{3}$$

$$-(CH_{2})_{3}-O-CH_{2}-CH_{2}$$

$$-(CH_{2})_{3}-O-CH_{2}-CH_{2}$$

$$-(CH_{2})_{3}-O-CH_{2}-CH_{2}$$

S'agissant des groupements organofonctionnels GRF du type vinyléther, 20 on peut mentionner, e. g., ceux contenus dans les formules suivantes :

$$-(CH_2)_3 - C - C = CH_2$$
; $-(CH_3)_2 - C - R^{40} - C - C = CH_2$ $-(CH_2)_3 - C - CH = CH - R^{50}$

 \square avec \mathbb{R}^{40} =

- alkylène linéaire ou ramifié en C₁-C₁₂, éventuellement substitué,

- ou arylène, de préférence phénylène, éventuellement substitué, de préférence par un à trois groupements alkyles en C₁-C₆;

 \square avec \mathbb{R}^{50} = alkyle linéaire ou ramifié en \mathbb{C}_1 - \mathbb{C}_6 .

Les polyorganosiloxanes époxy ou vinyloxyfonctionnels préférés sont décrits notamment dans les brevets DE-A-4 009 889 ; EP-A-0 396 130 ; EP-A-0 355 381 ; EP-A-0 105 341 ; FR-A-2 110 115 ; FR-A-2 526 800.

Les polyorganosiloxanes époxy fonctionnels peuvent être préparés par réaction d'hydrosilylation entre des huiles à motifs Si-H et des composés époxyfonctionnels, tels que vinyl-4 cyclohexèneoxyde, allylglycidyléther...

Les polyorganosiloxanes vinyloxyfonctionnels peuvent être préparés par réaction d'hydrosilylation entre des huiles à motifs Si-H et des composés vinyloxyfonctionnels, tels que l'allylvinyléther, l'allyl-vinyloxyéthoxybenzène...

Plus préférentiellement encore, les POS A sont des époxysilicones de formules (A.I) (A.II) suivantes :

35

$$\begin{array}{c|c} CH_3 & CH_3 & CH_3 \\ \hline \\ CH_3 & SI-O \\ \hline \\ CH_3 & X \end{array} \begin{array}{c} CH_3 \\ \hline \\ SI-O \\ \hline \\ a_1 & CH_3 \\ \hline \\ CH_3 & CH_3 \\$$

avec $X = CH_3$; Phényle; Cycloalkyle; alkyle $C_1 - C_{18}$; alcényle; -OH; H; CH_2 - CH_2 - CH_2 -OH; CH_2 - CH_2 - CF_3 ; - $(CH_2)_n$ - CF_3 , n = 1 à 20;

5

10

15

- a₁, a₂ et b₁, b₂ étant définis comme suit dans ces formules (A.I) et (A.II)

 $1 \leq a_1, a_2$ $1 \leq b_1, b_2$

de préférence $1 \le a_1, a_2 \le 5000$ $1 \le b_1, b_2 \le 500$

et plus préférentiellement encore $1 \le a_1, a_2 \le 1000$ $1 \le b_1, b_2 \le 100$;

- a₂, b₂ étant = 0 dans la formule (A.II) pour donner le disiloxane époxydé (A.III)

Selon une autre caractéristique avantageuse de l'invention, le ou les POS

(A) a (ont) une viscosité η (exprimée en mPa.s à 25° C) comprise entre :

 \rightarrow 200 et 3000,

→ de préférence 300 et 2000,

→ et plus préférentiellement encore entre 400 et 900.

Ces valeurs de viscosité concernent aussi bien les POS linéaires que les POS cycliques susceptibles d'être mis en oeuvre conformément à l'utilisation selon l'invention.

20

La viscosité dynamique à 25° C, de tous les polymères silicones considérés dans le présent exposé, peut être mesurée à l'aide d'un viscosimètre BROOKFIELD, selon la norme AFNOR NFT 76 102 de février 1972.

La viscosité dont il est question dans le présent exposé est la viscosité dynamique à 25° C, dite "Newtonienne", c'est-à-dire la viscosité dynamique qui est mesurée, de manière connue en soi, à un gradient de vitesse de cisaillement suffisamment faible pour que la viscosité mesurée soit indépendante du gradient de vitesse.

25

Conformément à l'invention, il est parfaitement envisageable de mettre en oeuvre un mélange de différents POS A à motifs de formule (I) et (II), tels que définis ci-dessus (linéaires et/ou cycliques).

30

Concernant le (ou les) composé(s) B, il est avantageux conformément à l'invention qu'il(s) soi(en)t choisi(s) parmi celui (ou ceux) de formule B suivante :

```
R^2_x[GFS]_ySiO_{4-(x+y)/2}
                      (B)
                      dans laquelle:
                         - x = 0, 1, 2 \text{ ou } 3
                         -y=1, 2, 3 \text{ ou } 4
                         - les radicaux R<sup>2</sup> sont identiques ou différents entre eux et
 5
                             correspondent à un alkyle linéaire ou ramifié, un cycloalkyle, un
                             hydroxyle, un hydrogène, un vinyle, un -CF<sub>3</sub>, un -(CH<sub>2</sub>)<sub>m</sub>-CF<sub>3</sub> avec
                             m = 1 à 50,
                             les GFS sont identiques ou différents entre eux et correspondent à
                             o un alcoxy, de préférence : -OR3 avec R3 représentant un alkyle
10
                                 linéaire ou ramifié en C1-C30 ou un cycloalkyle;
                             -(OR^4)_p - OR^5; -(R^6)_q - Si(OR^7)_t (R^8)_t
                                 avec R<sup>4</sup>, R<sup>7</sup>, R<sup>8</sup> identiques ou différents entre eux et répondant à
                                 la même définition que celle donnée ci-dessus pour R<sup>3</sup> et avec
                                 R<sup>6</sup> identiques ou différents entre eux et correspondant de
15
                                 préférence à un alkylène (avantageusement un méthylène);
                                 p, q = 1 à 50, de préférence 1 à 10;
                                 r = 1, 2 \text{ ou } 3 \text{ et } t = 0, 1 \text{ ou } 2;
                                 ° un énoxy, de préférence :
                                 -O-CH = CH-R^8;
20
                                 -(R^9)_u-Si(OCH = CHR<sup>10</sup>)<sub>v</sub>(R<sup>11</sup>)<sub>w</sub>;
                                 avec R<sup>8</sup>, R<sup>10</sup>, R<sup>11</sup> identiques ou différents entre eux et répondant
                                 à la même définition que celle donnée ci-dessus pour R3, et avec
                                 R<sup>9</sup> répondant à la même définition que celle donnée ci-dessus
                                 pour R<sup>6</sup>;
25
                                 u = 1 à 50 de préférence 1 à 10,
                                 v = 1, 2 \text{ ou } 3 \text{ et } w = 0, 1 \text{ ou } 2;
                                 ° un carboxy, de préférence :
                                 -OCOR<sup>12</sup>;
                                  -(R^{13})_z-Si(OCOR<sup>14</sup>)<sub>z1</sub>(R<sup>15</sup>)<sub>z2</sub>;
30
                                 avec R^{12}, R^{14} tels que définis ci-dessus pour R^8, R^{10}, R^{11};
                                 R<sup>13</sup> tels que définis ci-dessus pour R<sup>9</sup>;
                                 z = 1 à 50 de préférence 1 à 10,
35
                                 z_1 = 1, 2 ou 3 et z_2 = 0, 1 ou 2;
        A titre d'exemple de POS B, on peut citer :
```

WO 00/59992 12 PCT/FR00/00861

$$(CH_3)_3Si-O = CH_3 = CH_3 = CH_3$$

$$CH_3 = Si-O = Si(CH_3)_3$$

$$CH_3 = CH_3 = CH_3$$

$$CH_3 = CH_3$$

avec Et = éthyle.

5 A titre d'exemple de silane B, on peut citer :

MeSi(OEt)₃; Si(OEt)₄; PrSi(OEt)₃; OctSi(OMe)₃; PrSi(OMe)₃; ...

avec $Me = m\acute{e}thyle$; $Et = \acute{e}thyle$; Pr = propyle, Oct = octyle.

Conformément au deuxième mode de réalisation, on met en oeuvre des POS D mixtes comprenant à la fois des GRF et GFS. Sans que cela ne soit limitatif, il s'avère que l'on privilégie plus spécialement ce deuxième mode de réalisation. Ainsi, les POS D mis en oeuvre comprennent avantageusement des GFS tels que définis supra et des GRF de type époxyde.

Plus préférentiellement encore, ledit POS D correspond aux POS de formules ($\mathbf{D'}$, $\mathbf{D''}$, $\mathbf{D'''}$) suivantes :

15

10

avec

20 $0 \le d_1 \qquad 1 \le d_2 \qquad 1 \le d_3$ de préférence $0 \le d_1 \le 5000 \qquad 1 \le d_2 \le 500 \qquad 1 \le d_3 \le 500$ et plus préférentiellement encore $0 \le d_1 \le 1000 \qquad 1 \le d_2 \le 100 \qquad 1 \le d_3 \le 100$

avec Me= méthyle; Et = éthyle

10

0 ≤ e

de préférence

 $0 \le e \le 5000$

et plus préférentiellement encore 0 ≤ e≤ 1000

Dans le cas où le composé D est un silane comprenant à la fois des GRF de type (Meth)acrylate et/ou vinyléther et/ou époxyde et/ou oxéthane - de préférence époxyde - ainsi que des GFS - de préférence de type alcoxy -, il peut s'agir par exemple des composés suivants :

15

Suivant une caractéristique préférée de l'invention, les amorceurs C sont e.g.: les borates d'onium décrits dans la demande de brevet européen N° 0 562 922. Plus précisément encore, on peut mettre en oeuvre en pratique l'amorceur de formule suivante:

20

En pratique, les amorceurs de l'utilisation suivant l'invention sont préparés de manière très simple par dissolution du borate d'onium ou de complexe organométallique, de préférence d'onium, se présentant sous forme solide (poudre) dans un solvant.

25

30

Selon une alternative concernant le borate d'onium, ce dernier peut être préparé directement dans le solvant, à partir d'un sel (e.g. chlorure) du cation (iodonium) et d'un sel (par exemple de potassium) de l'anion borate.

De préférence, il est prévu conformément à l'utilisation selon l'invention que l'amorceur (PA) est employé en solution dans un solvant organique, de préférence choisi parmi les solvants donneurs de protons et plus préférentiellement encore parmi le groupe suivant : alcool isopropylique, alcool

benzylique, diacétone-alcool, lactate de butyle, esters, et leurs mélanges. Comme cela est revendiqué dans le brevet français N° 2 724 660, les solvants organiques donneurs de protons et à caractère aormatique (alcool benzylique), se comportent comme des accélérateurs de réticulation. Il est donc avantageux de s'en servir pour mettre en solution, le photoamorceur.

Il convient de préciser que par quantité catalytique efficace de PA, on entend, au sens de l'invention, la quantité suffisante pour amorcer la réticulation.

Dans la mesure où en pratique, - comme indiqué supra -, le photoamorceur ou photoinitiateur est avantageusement dissous dans un solvant polaire, en quantité telle que son titre à la solution obtenue soit compris entre 1 et 50 % en poids, de préférence entre 10 et 30 % en poids, et plus préférentiellement encore entre 15 et 25 % en poids.

Selon une modalité avantageuse de l'utilisation selon l'invention, l'incorporation du PA en solution dans la composition comprenant le POS à teneur molaire en GRF donnée, se fait à raison de 0,1 à 10 % en poids de solution par rapport au mélange final, de préférence 0,5 à 5 % en poids et plus préférentiellement de l'ordre de 1 % en poids.

Selon une variante de l'utilisation conforme à l'invention, on peut mettre en oeuvre des inhibiteurs de réticulation, de préférence choisis parmi les produits alcalins, et plus préférentiellement encore parmi les produits alcalins de type aminé, par exemple du type de ceux consistant en un silicone sur lequel est greffé au moins un groupement amine, de préférence tertiaire.

S'agissant des additifs facultatifs, on peut indiquer à propos de l'éventuel diluant réactif E, que les composés de formule E' (époxyde) et E'' (vinyléther) sont des exemples parmi d'autres :

30

35

5

10

15

20

25

Les éventuels pigments inorganiques ou organiques F sont ajoutés pour donner une teinte au vernis silicone selon l'invention. En particulier, cette teinte permet de reconnaître un tissu non vernis d'un tissu vernis par simple coût d'oeil.

A titre d'exemples de pigments, on peut citer le noir de carbone; le dioxyde de titane; la phtalocyanine; la benzimidazolone; les naphtols (BONA pigment lakes); les diazopyrazolones; les pigments jaunes diarylides ou monoarylides ...

Les charges G et en particulier les charges siliciques peuvent être par exemple des silices de combustion traitées à l'hexaméthyldisilasanes ou à l'octaméthylcyclotétrasiloxanes (surface spécifique 300 m²/g), silice fumée.

Ces charges peuvent être minérales ou non, e.g. : fibre synthétique ou naturelle (polymères) broyés, carbonate de calcium, talc, argile, dioxyde de titane...

Concernant les éventuels photosensibilisateurs H, ils peuvent être sélectionnés parmi les produits (poly)aromatiques -éventuellement métalliques- et les produits hétérocycliques, et de préférence dans la liste de produits suivants : phénothiazine, tétracène, pérylène, anthracène, diphényl-9,10-anthracène, thioxanthone, benzophénone, acétophénone, xanthone, fluorénone, anthraquinone, 9,10-diméthylanthracène, 2-éthyl-9,10-diméthyloxyanthracène, 2,6-diméthylnaphtalène, 2,5-diphényl-1-3-4-oxadiazole, xanthopinacol, 1,2-benzanthracène, 9-nitro-anthracène, et leurs mélanges.

Plus spécialement, il peut s'agir d'un produit H à base de thioxanthone :

5

15

20

25

30

35

Compte tenu de sa facilité d'obtention de son faible coût et de ses propriétés anti-friction, le vernis silicone selon l'invention est susceptible d'avoir des débouchés dans de nombreux domaines d'application et en particulier dans le domaine de l'enduction des supports fibreux tissés ou non.

D'où il s'ensuit que l'invention concerne selon un autre de ses aspects, l'application de la composition telle que décrite ci-dessus à titre de vernis anti-friction sur un support, ce support comportant de préférence, un substrat - avantageusement fibreux (et plus spécialement textile) - éventuellement revêtu d'au moins une couche d'élastomère silicone au moins partiellement réticulée.

Avantageusement, ce procédé d'application consiste essentiellement :

- à enduire un support à l'aide de la composition de vernis tel que défini ci-dessus,
- et à exposer la surface ainsi enduite à des rayonnements actiniques et/ou à un faisceau d'électrons et/ou à la chaleur, de manière à faire réticuler la couche de vernis.

Les moyens d'application de la couche de vernis non réticulé sur le support sont du type de ceux connus et appropriés à cette fin (barre ou cylindre d'enduction). Il en va de même en ce qui concerne les moyens d'exposition, par exemple, aux rayonnements UV et/ou aux faisceaux d'électrons.

D'autres détails seront donnés à cet égard dans les exemples qui suivent.

La présente invention concerne également le support vernis doté de propriétés antifrictions, telles qu'obtenues par l'application sus-définie.

Selon un mode de réalisation préféré de ce support vernis, celui-ci comprend un substrat - de préférence textile - revêtu sur au moins une de ses faces d'au moins une couche d'élastomère silicone réticulable ou au moins partiellement réticulé de préférence choisi parmi :

- les silicones RTV polyaddition ou polycondensation,
- et/ou les silicones EVC au peroxyde,
- et/ou les silicones LSR polyaddition,

le vernis anti-friction obtenu à partir de la composition, telle que définie supra, étant appliqué sur la (ou les) couche(s) (supérieure(s)) d'élastomère silicone. Les expressions RTV, LSR, EVC sont bien connues de l'homme du métier : RTV est l'abréviation de "room temperature vulcanising" ; LSR est l'abréviation de "Liquid silicon rubber" ; EVC est l'abréviation de : "Elastomère vulcanisable à chaud".

En pratique, l'invention vise plus précisément les supports (par exemple textiles tels que ceux utilisés pour la fabrication "d'airbags") revêtus sur l'une et/ou l'autre de leurs faces d'une couche d'élastomère silicone réticulé RTV, EVC ou LSR, elle-même enduite d'un revêtement de vernis silicone anti-friction tel que défini ci-dessus.

Le problème de l'apport de propriétés anti-friction est particulièrement aigu s'agissant de ces enductions élastomères silicones réticulées, puisque comme cela a déjà été indiqué ci-dessus, ces dernières ont pour caractéristique d'avoir un toucher collant.

Les polyorganosiloxanes, constituants principaux des couches collantes d'élastomères réticulés sur lesquelles le vernis selon l'invention peut être appliqué, peuvent être linéaires, ramifiés ou réticulés, et comporter des radicaux hydrocarbonés et/ou des groupements réactifs comme par exemple des groupes hydroxyles, des groupements hydrolysables, des groupements alkényles et des atomes d'hydrogène. A noter que les compositions polyorganosiloxanes sont amplement décrites dans la littérature et notamment dans l'ouvrage de Walter NOLL: "Chemistry and Technology of Silicones", Academic Press, 1968, 2ème édition, pages 386 à 409.

25

20

5

10

15

Plus précisément, ces polyorganosiloxanes vernissables sont constitués de motifs siloxyles de formule générale :

$$R^{\circ}_{n_1} SiO_{\frac{4-n_1}{2}}$$
 (1')

30

et/ou de motifs siloxyles de formule :

$$Z^{\circ}_{x_1} R^{\circ}_{y_1} SiO_{\underline{4-x_1-y_1}}$$

35

40

45

(II')

formules dans lesquelles les divers symboles ont la signification suivante :

- les symboles R°, identiques ou différents, représentent chacun un groupement de nature hydrocarbonée non hydrolysable, ce radical pouvant être :
 - ★ un radical alkyle, halogénoalkyle ayant de 1 à 5 atomes de carbone et comportant de 1 à 6 atomes de chlore et/ou de fluor,
 - ★ des radicaux cycloalkyles et halogénocycloalkyles ayant de 3 à 8 atomes de carbone et contenant de 1 à 4 atomes de chlore et/ou de fluor,
 - ★ des radicaux aryles, alkylaryles et halogénoaryles ayant de 6 à 8 atomes de carbone et contenant de 1 à 4 atomes de chlore et/ou de fluor,
 - ★ des radicaux cyanoalkyles ayant de 3 à 4 atomes de carbone ;
- les symboles Z°, identiques ou différents, représentent chacun un atome

d'hydrogène, un groupement alkényle en C₂-C₆, un groupement hydroxyle, un atome hydrolysable, un groupement hydrolysable;

- $n_1 = un$ nombre entier égal à 0, 1, 2 ou 3;
- x_1 = un nombre entier égal à 0, 1, 2 ou 3;
- 5 $y_1 = un$ nombre entier égal à 0, 1, ou 2;

10

15

20

25

30

35

40

45

- la somme x + y est comprise entre 1 et 3.

A titre illustratif, on peut citer parmi les radicaux organiques R^o directement liés aux atomes de silicium : les groupes méthyle ; éthyle ; propyle ; isopropyle ; butyle ; isobutyle ; n-pentyle ; t-butyle ; chlorométhyle ; dichlorométhyle ; α -chloroéthyle ; α,β -dichloroéthyle ; fluorométhyle ; difluorométhyle ; α,β -difluoroéthyle ; trifluoro-3,3,3 propyle ; trifluoro cyclopropyle; trifluoro-4,4,4 butyle ; hexafluoro-3,3,4,4,5,5 pentyle ; β -cyanoéthyle ; γ -cyanopropyle ; phényle : p-chlorophényle ; m-chlorophényle ; dichloro-3,5 phényle; trichlorophényle ; tétrachlorophényle ; o-, p- ou m-tolyle ; α,α,α -trifluorotolyle ; xylyle comme diméthyl-2,3 phényle, diméthyl-3,4 phényle.

Préférentiellement, les radicaux organiques R° liés aux atomes de silicium sont des radicaux méthyle, phényle, ces radicaux pouvant être éventuellement halogénés ou bien encore des radicaux cyanoalkyle.

Les symboles Z° peuvent être des atomes d'hydrogène, des atomes hydrolysables tels que des atomes d'halogène, en particulier des atomes de chlore, des groupements vinyles, hydroxyles ou des groupements hydrolysables tels que par exemple : amino, amido, aminoxy, oxime, alkoxy, alkényloxy, acyloxy.

La nature du polyorganosiloxane et donc les rapports entre les motifs siloxyles (I') et (II'') et la répartition de ceux-ci est, comme on le sait, choisie en fonction du traitement de réticulation qui sera effectué sur la composition durcissable (ou vulcanisable) en vue de sa transformation en élastomère.

Il est possible d'utiliser une grande variété de compositions monocomposantes ou bicomposantes réticulant par des réactions de polyaddition ou de polycondensation, en présence d'un catalyseur métallique et éventuellement d'une amine et d'un agent de réticulation.

Les compositions polyorganosiloxanes bicomposantes ou monocomposantes réticulant à température ambiante (RTV) ou à la chaleur (EVC) par des réactions de polyaddition, essentiellement par réaction de groupements hydrogénosilylés sur des groupements alkénylsilylés, en présence généralement d'un catalyseur métallique, de préférence au platine, sont décrites par exemple dans les brevets US-A-3 220 972, 3 284 406, 3 436 366, 3 697 473 et 4 340 709. Les polyorganosiloxanes entrant dans ces compositions sont en général constitués par des couples à base d'une part d'un polysiloxane linéaire, ramifié ou réticulé constitué de motifs (II) dans lesquels le reste Z° représente un groupement alkényle en C_2 - C_6 et où x_1 est au moins égal à 1, éventuellement associés à des motifs (I'), et d'autre part d'un hydrogénopolysiloxane linéaire, ramifié ou réticulé constitué de motifs (II') dans lesquels le reste Z° représente alors un atome d'hydrogène et où x_1 est au moins égal à 1, éventuellement associés à des motifs (I').

Les compositions polyorganosiloxanes bicomposantes ou monocomposantes réticulant à température ambiante (RTV) par des réactions de polycondensation sous l'action de l'humidité, en présence généralement d'un catalyseur métallique, par exemple un composé de l'étain sont décrites par exemple pour les compositions monocomposantes dans les brevets US-A-3 065 194,

3 542 901, 3 779 986, 4 417 042, et dans le brevet FR-A-2 638 752, et pour les compositions bicomposantes dans les brevets US-A-3 678 002, 3 888 815, 3 933 729 et 4 064 096. Les polyorganosiloxanes entrant dans ces compositions sont en général des polysiloxanes linéaires, ramifiés ou réticulés constitués de motifs (II') dans lesquels le reste Z° est un groupement hydroxyle ou un atome ou groupement hydrolysable et où x_1 est au moins égal à 1, avec la possibilité d'avoir au moins un reste Z° qui est égal à un groupement hydroxyle ou à un atome ou à un groupement hydrolysable et au moins un reste Z° qui est égal à un groupement alkényle quand x_1 est égal à 2 ou 3, lesdits motifs (II') étant éventuellement associés à des motifs (I'). De pareilles compositions peuvent contenir en outre un agent de réticulation qui est notamment un silane portant au moins trois groupements hydrolysables comme par exemple un silicate, un alkyltrialkoxysilane ou un aminoalkyltrialkoxysilane.

10

15

20

25

30

35

40

45

Ces compositions polyorganosiloxanes RTV qui réticulent par des réactions de polyaddition ou de polycondensation, présentent avantageusement une viscosité à 25°C au plus égale à 100 000 mPa.s et, de préférence, comprise entre 10 et 50 000 mPa.s.

Il est possible de mettre en oeuvre des compositions RTV réticulant à température ambiante par des réactions de polyaddition ou de polycondensation, ayant une viscosité à 25°C supérieure à 100 000 mPa.s, comme celle se situant dans l'intervalle allant d'une valeur supérieure à 100 000 mPa.s à 300 000 mPa.s; cette modalité est recommandée lorsque l'on souhaite préparer des compositions durcissables chargées dans lesquelles la (ou les) charge(s) utilisée(s) a (ont) tendance à se séparer par sédimentation.

Il est également possible de mettre en oeuvre, des compositions réticulant à la chaleur par des réactions de polyaddition et plus précisément de compositions dites de type EVC de polyaddition, ayant une viscosité à 25°C au moins égale à 500 000 mPa.s et, de préférence comprise entre 1 million de mPa.s et 10 millions de mPa.s et même davantage.

Il peut aussi s'agir de compositions durcissables à température élevée sous l'action de peroxydes organiques tels que le peroxyde de dichloro-2,4 benzoyle, le peroxyde de benzoyle, le peroxyde de t-butyle, le peroxyde de cumyle, le peroxyde de di-t-butyle. Le polyorganosiloxane ou gomme entrant dans de telles compositions (dénommées simplement de type EVC) est alors constitué essentiellement de motifs siloxyles (I'), éventuellement associés à des motifs (II') dans lesquels le reste Z° représente un groupement alkényle en C₂ - C₆ et où x est égal à 1. De tels EVC sont par exemple décrits dans les brevets US-A-3 142 655, 3 821 140, 3 836 489 et 3 839 266). Ces compositions présentent avantageusement une viscosité à 25°C au moins égale à 1 million de mPa.s et, de préférence, comprise entre 2 millions et 10 millions de mPa.s et même davantage.

D'autres compositions polyorganosiloxanes vernissables par la composition de vernis silicone selon l'invention sont celles, monocomposantes ou bicomposantes, réticulant à la chaleur par des réactions de polyaddition, appelées compositions LSR. Ces compositions répondent aux définitions données ci-avant à propos des compositions préférées appelées RTV, sauf en ce qui concerne leur viscosité qui se situe cette fois dans l'intervalle allant d'une valeur supérieure à 100 000 mPa.s à 500 000 mPa.s.

Sans que cela ne soit limitatif, les revêtements silicones élastomères sur lesquels le vernis selon l'invention peut être appliqué pour diminuer leur coefficient de friction, sont plus spécialement des revêtements obtenus à partir de compositions

élastomères silicones vulcanisables à froid RTV, en particulier de type bicomposant (RTV 2), par polyaddition.

De manière plus préférée encore, ces couches élastomères silicones d'enduction sont mises en oeuvre dans le revêtement de toile textile pour coussin gonflable de protection individuelle d'occupant de véhicule ("airbag").

Il en résulte qu'un autre objet de l'invention est constitué par le support vernis tel que défini ci-dessus caractérisé en ce qu'il est destiné à être utilisé pour la fabrication de coussins gonflables de protection individuelle d'occupants de véhicule.

Selon un autre de ces objets, la présente invention vise également un coussin gonflable de protection individuelle d'occupant de véhicule caractérisé en ce qu'il est réalisé à partir du susdit support.

Dans le cadre de cette application "airbag", les revêtements silicones élastomères RTV plus particulièrement concernés, peuvent être ceux appartenant aux quatre groupes (i) (ii) (iii) (iv) tels que définis ci-après.

15

20

25

5

10

(i) composition élastomère silicone d'enduction de type RTV 2 comprenant au moins un POS I de type SiVi, au moins un POS II de type SiH, un catalyseur d'hydrosilylation au platine III, un promoteur d'adhérence IV comprenant au moins un organosilane alcoxylé IV.1 contenant par molécule au moins un groupe vinyle (vinyltriméthoxysilane), au moins un composé IV.2 organosilicié comprenant au moins un radical époxy (3-glycidoxypropyl triméthoxysilane (GLYMO) et au moins un chélate IV.3 de métal M et/ou un alcoxyde métallique (titanate de butyle).

Ces enductions silicones RTV de polyaddition pour airbag sont décrites dans le brevet français N° 2 719 598 (N° 94 05 652).

(ii) Elastomère silicone RTV 2 polyaddition obtenu à partir d'une composition comprenant des POS de type I SiVi et des POS de type II SiH, ainsi qu'une charge particulaire obtenue par traitement à l'aide d'un agent de compatibilisation introduit dans le milieu de préparation: d'une part, avant et/ou sensiblement simultanément à la mise en présence d'une partie de l'huile silicone mise en oeuvre avec une partie de la charge particulaire, cette introduction d'agent de compatibilisation s'opérant en une ou plusieurs fois pour une fraction d'agent de compatibilisation représente au plus 8 % en poids sec de la charge totale particulaire;

et, d'autre part, après cette mise en présence POS / charge. L'agent de compatibilisation est l'hexaméthyldisilasane HMDZ. L'huile SiVi est une polydiméthylsiloxane α,ω -divinylé et l'huile II SiH est une polydiméthylsiloxane α,ω -dihydrogéno et une huile PDMS polyhydrogéno. Cette composition élastomère (ii) RTV réticulable par polyaddition et comprenant une charge particulaire compatibilisée de manière particulière à l'HMDZ, est décrite en détail dans la demande de brevet français N° 97 08 171.

45

40

(iii) Revêtement élastomère silicone RTV réticulé par polycondensation et comprenant une charge particulaire silicique traitée à l'aide d'un agent de compatibilisation introduit dans le milieu de préparation,

d'une part, avant et/ou sensiblement simultanément à la mise en présence d'une partie de l'huile silicone mise en oeuvre avec une partie de la charge particulaire, cette introduction d'agent de compatibilisation s'opérant en une ou plusieurs fois pour une fraction 5 d'agent de compatibilisation représente au plus 8 % en poids sec de la charge totale particulaire; et, d'autre part, après cette mise en présence POS / charge. L'agent de compatibilisation est l'hexaméthyldisilasane HMDZ. Ces revêtements silicones RTV polycondensation dont la charge est 10 traitée de manière spécifique à l'HMDZ, qui sont destinés notamment à l'enduction de toile textile pour airbag, sont décrits dans la demande de brevet français N° 98 16 467 décrivant des compositions comprenant: 1- au moins un POS réactif linéaire portant à chaque extrémité de 15 chaîne au moins deux groupes condensables (autres que OH) ou hydrolysable, ou un seul groupe hydroxy, 2- éventuellement au moins un POS non réactif linéaire ne portant pas de groupe condensable, hydrolysable ou hydroxy, 3- éventuellement de l'eau. 20 4- une charge renforçante particulaire à base de silice traitée à l'aide de compatibilisation (hexaméthyldisilazane), cet agent compatibilisation étant introduit dans la composition avant et après l'incorporation de la charge renforçante dans au moins une partie de la matière silicone, la fraction d'agent de compatibilisation introduite 25 avant l'incorporation de la charge représentant de 8 à 30 % en poids de la charge renforçante utilisée. (POS 1 = polydiméthylsiloxane α , ω -(CH₃)₃SiO_{1/2}; POS 2 = polydiméthylsiloxane α , ω -(CH₃)₂OHSiO_{1/2}); 30 (iv) revêtement élastomère silicone RTV réticulé par polyaddition et obtenu à partir d'une composition d'enduction comprenant : (1) au moins un polyorganosiloxane présentant, par molécule, au moins deux groupes alcényles, en C2-C6 liés au silicium (e.g. PolyDiméthylSiloxane(PDMS-α,ω vinylée); 35 (2) au moins un polyorganosiloxane présentant, par molécule, au moins deux atomes d'hydrogène liés au silicium (e.g. PDMS α.ω dihydrogéno et PDMS polyhydrogéno), (3) une quantité catalytiquement efficace d'au moins un catalyseur, composé d'au moins un métal appartenant au groupe du platine 40 (e.g.: KARSTEDT 10 % Pt) (4) un promoteur d'adhérence ternaire consistant en : (4.1.) au moins un organosilane alcoxylé contenant, par molécule, au moins un groupe alcényle en C₃-C₆, (e.g. : triméthoxysilane y méthacryloxypropylé)

(4.2.) au moins un composé organosilicié comprenant au moins un

(4.3.) au moins un chélate de métal M et/ou un alcoxyde métallique de formule générale : M(OJ)n, avec n = valence

: triméthoxysilane

(e.g.

radical

époxy,

glycidoxypropyle)

10

15

25

30

35

40

45

de M et J = alkyle linéaire ou ramifié en C₁-C₈, M étant choisi dans le groupe formé par : Ti, Zr, Ge, Li, Mn, Fe, Al et Mg (e.g. : titanate de butyle).

- (5) une charge siliceuse renforçante traitée in situ par un agent de compatibilisation (e.g.: HMDZ) en présence de polyorganosiloxane (1),
- (6) un polyorganosiloxane qualifié d'allongeur et présentant des motifs siloxyles terminaux à fonctions hydrogéno, (e.g. PDMS α,ω hydrogéno - RHODORSIL[®] 620 de RHODIA CHIMIE)
- (7) éventuellement un neutralisant,
- (8) éventuellement un inhibiteur de réticulation et/ou autre(s) additif(s) en usage dans ce type de compositions (e.g.: éthynylcyclohexanol).
- (9) et éventuellement des charges microsphériques creuses inorganiques expansées ou expansables, procédé dans lequel on prépare une suspension de charge siliceuse renforçante en mettant en présence cette charge siliceuse avec de l'agent de compatibilisation et du polyorganosiloxane (1), ce qui constitue le traitement in situ de la charge.

Toutes ces compositions silicones élastomères RTV réticulables et/ou réticulées sont préparées de manière classique (système précurseur bicomposant) et sont décrites par exemple dans le brevet français N° 2 719 598, pour ce qui concerne les RTV(iv).

Une fois l'empatage bi-composant réalisé, il est appliqué sur le support par tout moyen d'enduction approprié, par exemple racle ou cylindre. La réticulation de la couche enduite sur le support peut être provoquée, par exemple, par voie thermique et/ou par rayonnement UV.

Le support ainsi revêtu peut être un matériau souple tel que, par exemple, un support fibreux avantageusement tissé en fibres synthétiques e.g. polyester ou polyamide. De tels tissus enduits peuvent être utilisés pour la fabrication par couture de coussin gonflable pour automobile (airbag).

Une fois le support revêtu de la couche élastomère RTV réticulée, on procède conformément à l'invention à l'application du vernis silicone anti-friction puis à la réticulation dudit vernis par exposition à des rayonnements actiniques ou à des faisceaux d'électrons.

Outre les supports textiles revêtus de silicone, le vernis anti-friction selon l'invention peut être appliqué :

- > sur des films plastiques (e.g. en polyester) que sont les rubans de transfert thermique pour les imprimantes de même nom,
- > ou sur des films plastiques d'emballage de protection (e.g. en polyéthylène ou en polypropylène).

Dans ces deux applications, le vernis antifriction selon l'invention va promouvoir le glissement d'au moins l'une des faces du film plastique, cette face pouvant être revêtue d'au moins une couche silicone.

Les exemples qui suivent décrivent :

- > la préparation des compositions de vernis anti-friction selon l'invention,
- 5 > l'application de ces dernières :
 - sur des supports en tissu revêtus d'un élastomère silicone réticulé RTV polyaddition,
 - sur des rubans de transfert thermique comprenant un film polyester de quelques microns,
 - et sur des films d'emballage en polyéthylène.
 - > et l'évaluation des échantillons ainsi obtenus en terme de coefficient de friction,

15

10

EXEMPLES:

Dans les exemples qui suivent, on décrit l'obtention de formulations directement exploitables pour la réalisation de vernis UV pour "Air-bags".

Exemples 1 à 14

25

On réalise des formulations de vernis photoréticulables à partir des polymères suivants :

30 A/

 A_1 / SILCOLEASE ® UV POLY200 : x=CH₃ ; a =70 ; b=7

35

A₂ / SILCOLEASE ® UV POLY201; x=CH₃; a =444; b=35

 $D_1/$

 $D_2/$

$$(CH_3)_3Si-O = CH_3 =$$

 $\mathbb{C}_{2}/$

5

20

25

30

10 Photoamorceur SILCOLEASE® UV CATA 211

G2/ Silice Aérosil de surface spécifique 300 m²/g de DEGUSSA traité à l'octaméthylcyclotétrasiloxane Red 22 / pigment rouge commercialisé par SUN
 CHEMICAL.

Ces compositions sont ensuite appliquées à l'aide de barres d'enduction numérotées différemment de 0 à 6 pour déposer de 1 à 20g/m² sur un rectangle de tissu polyamide comprenant un élastomère silicone à la surface du type RTV polyaddition réticulé (140g/m²).

Dans un mélangeur à bras de 100 l on introduit 40 kg d'une huile de silicone α,ω divinylée de viscosité 1,5 Pa.s qui titre 0,1 meq de vinyle (Vi) par gramme d'huile, 0,24 kg d'eau potable et 0,24 kg d'hexaméthyldisilazane. Après homogénéisation on rajoute par portions en a peu près 2 heures 13,9 kg d'une silice de combustion caractérisée par sa surface spécifique de 200 m²/g. Après environ 1 heure de mélangeage, on rajoute en à peu près 1 heure 2,27 kg d'hexaméthyldisilazane. 2 heures plus tard on commence une phase de chauffage au cours de laquelle le mélange est placé sous courant d'azote (30 m³/h); le chauffage continue jusqu'à atteindre environ 140° C, température palier qui est maintenue

15

20

25

pendant 2 heures afin d'évacuer les matières volatiles de la composition. La suspension est alors laissée à refroidir.

Partant de cette suspension, on formule une partie A et une partie B dans des réacteurs appropriés.

La partie A contient:

- 320 g de la suspension,
- 111 g d'une huile α,ω divinylée de viscosité 100 Pa.s qui titre 0,03 meq Vi par gramme d'huile,
- 35 g de quartz broyé de granulométrie moyenne (d50) proche de 2,5 μm,
- 12 g d'une huile polyhydrogéno de viscosité 0,3 Pa.s qui titre 1,6 meq SiH par gramme d'huile,
- 12 g d'une huile α,ω dihydrogéno qui titre 1,9 meq SiH par gramme d'huile,
- 5 g de triméthoxysilane de γ méthacryloxypropyle,
- 5 g de triméthoxysilane de γ glycidoxypropyle,
- 0,7 g d'éthynylcyclohexano.

La partie B contient:

- 480 g de la suspension
- 20 g d'orthotitanate de butyle
- 1,1 g d'un catalyseur de Karstedt dosé à 10 % de platine.

On mélange ensuite 100 parties en poids de A et 10 parties en poids de B.

La réticulation s'effectue sur un convoyeur de laboratoire par exposition à une vitesse définie sous deux lampes à électrodes de 200W/cm.

Selon les conditions expérimentales une ou deux lampes sont en fonctionnement.

Les lampes sont des lampes traditionnelles à spectre d'émission du mercure ou de mercure dopé par exemple au fer ou au gallium ou au plomb ...

On mesure les coefficients de friction après exposition à l'aide d'un patin de 200g relié à un dynamomètre pouvant exercer une force de 10N pour déplacer le patin. Pour faire la mesure on installe le bout de tissu sur le patin face recouverte de vernis silicone côté vitre. Un blanc est réalisé avec un tissu enduit de RTV réticulé sans vernis. L'ensemble des résultats obtenus pour les exemples de 1 à 14 sont rassemblés dans le tableau suivant.

Compositions photoréticulables pour le vernissage des Air-Bags

										L					
	$ \mathbf{T} $	1	7	6	4	2	9	7	∞	6	10	11	12	13	14
A ₁ parts	0	100	06	0	0	0	0	0	0	0	20	20	0	20	20
A ₂ parts	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0
D ₁ parts	0	0	0	100	06	0	0	0	45	45	90	30	95	7.5	72
D ₂ parts	0	0	0	0	0	100	100	90	45	45	0	0	0	0	0
C ₂ parts	0	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
G ₂ parts	0	0	10	0	10	0	0	10	10	01	0	0	0	8	8
Red22 parts	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.4
lampe IIg 200W/cm	0	1	_	_	1	_	1		0	0	1	1	I	2	1
lampHg/Ca 200W/cm	0	_	_	_	_	0	0	0	0	0	1	1	_	0	0
lampHg/Ga 80W/cm	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0
Vitesse m/min	0	15	15	15	15	2	5	5	2	5	5	15	15	10	5
dépôt g/m²	0	4	6	5	7.8		6.9	8	4.5	1.8	6	6.4	5.6	6.4	5
Coef. fric. Ks	3.2	4	4	2	9.0	2.6	1.5	0.3	0.3	0.5			4.5	0.5	8.0

Les meilleures performances sont obtenues avec les polymères de type B₂/ en présence d'une charge à base de silice. Les résultats varient selon les conditions d'irradiation; En particulier les valeurs obtenues à faible puissance exemples 8 et 9 sont très intéressantes. On peut rajouter du polymère de type A/ sans trop affecter les résultats de Ks.

Exemple 15:

Des essais d'application en continu de la formule décrite exemple 13 sont réalisés sur une machine représentative d'un équipement industriel (pilote ROTOMEC) à 25m/min sur une laize de tissu recouvert de RTV de 30cm.

Les conditions d'irradiation sont obtenues avec une lampe de la société Fusion avec un bulbe de type « H⁺ » de puissance 80W/cm.

15 3 dépôts sont réalisés.

Les coefficients de friction sont ensuite mesurés sur verre.

On obtient:

 $3.5 \text{ g/m}^2 \text{ de vernis correspond à un Ks} = 1.4$

 6.0 g/m^2 de vernis correspond à un Ks = 0.8

20 9,0 g/m² de vernis correspond à un Ks = 0.5

On retrouve bien les performances attendues pour cette formulation à dépôt comparable.

Exemple 16:

25

Préparation de B₂

La synthèse s'effectue en deux étapes à partir d'une huile polyméthylhydrogénodiméthylsiloxane α - ω triméthylsilyle.

La synthèse s'effectue selon le schéma réactionnel décrit ci-après.

$$(CH_{3})_{s}Si-O \begin{bmatrix} CH_{3} \\ \vdots \\ CH_{3} \end{bmatrix}_{a} \begin{bmatrix} CH_{3} \\ \vdots \\ Si-O \\ H \end{bmatrix}_{b} Si(CH_{3})_{3} + c ViSi(OEt)_{3} \xrightarrow{60^{\circ}C} (CH_{3})_{3}Si-O \begin{bmatrix} CH_{3} \\ \vdots \\ CH_{3} \end{bmatrix}_{a} \begin{bmatrix} CH_{3} \\ \vdots \\ CH_{3} \end{bmatrix}_{b} \begin{bmatrix} CH_{3} \\ \vdots \\ Si-O \\ H \end{bmatrix}_{b} Si(OEt)_{3} = Ci(CH_{3})_{3}$$

$$(CH_{i})_{i}Si-O \begin{bmatrix} CH_{i} \\ Si-O \\ CH_{i} \end{bmatrix} \begin{bmatrix} CH_{i} \\ Si-O \\ CH_{i} \end{bmatrix} \begin{bmatrix} CH_{i} \\ Si-O \\ Si-O \end{bmatrix} \begin{bmatrix} CH_{i} \\ Si-O \\ Si-O \end{bmatrix} \begin{bmatrix} CH_{i} \\ Si-O \\ Si-O \end{bmatrix} \begin{bmatrix} CH_{i} \\ Si-O \\ CH_{i} \end{bmatrix} \begin{bmatrix} CH_{i}$$

Dans un réacteur tricol muni d'une pale d'agitation centrale et de capacité 1 litre on charge 50 g de toluène et 28,8 mg d'un complexe du platine au degré d'oxydation zéro complexé par du divinyltétraméthyldisiloxane à 11,5 % en platine soit 3,31 mg de platine. On coule alors en 120 minutes 200g du polymère siloxane hydrogéné à 0,374% soit 0,748 moles H mélangé à 70,97g de vinyltriéthoxysilane (soit 0,372 moles) à 25°C puis on chauffe à 60°C la masse réactionnelle pendant deux heures. Le taux de conversion des motifs SiH est de 50% soit 0,372 moles.

On rajoute alors l'oxyde de vinylcyclohexène fraîchement distillé à raison de 57g (0,459 moles) et on porte la température de réaction à 80°C pendant trois heures et on rajoute 40 mg du complexe du platine pendant la dernière heure.

On laisse revenir à température ambiante. Le taux de conversion des motifs SiH est de 98,3%. On chauffe à 100°C et on rajoute 40 mg de complexe du platine supplémentaire puis on laisse à 100°C pendant trois heures. Le taux de conversion des motifs SiH est de 99,8 %. On soutire la masse réactionnelle dans un ballon de 500 ml (360,2 g) et on rajoute 0,3g de 2,2 thiodiéthanol puis on fait le vide et on entraîne sous balayage d'argon le toluène à 97°C dans la masse réactionnelle et 30 à 40°C en tête de colonne. Après avoir arrêté le vide et refroidi à 40°C on rajoute 1,47g de polyvinylpyridine (Reillex) et 1,53g d'eau oxygénée (Prolabo).

On chauffe à 80°C pendant deux heures et on rajoute 4,72g de sulfate de 0 magnésium à la masse réactionnelle. On effectue alors une filtration sur carton de l'huile obtenue décolorée et le rendement massique total de la synthèse est de 86% soit 272 g.

La viscosité de l'huile est de 55 mm²/s.

La masse moléculaire moyenne en nombre est d'environ 1300 déterminée par gel perméation chromatographie.

La RMN ²⁹Si permet d'identifier et de quantifier les motifs.

La référence est du tétraméthylsilane.

Me₂SiO_{1/2} δ =7ppm soit deux motifs Me₂SiO_{2/2} et MeRSiO δ =22ppm soit 13 motifs 30 R'Si(OEt)₃ δ =-45/-46ppm soit deux motifs

La RMN¹ H complète l'analyse du produit et confirme la structure attendue du polymère B₂.

Exemple 17:

35

10

15

Exemple de formulation permettant de réaliser les formules décrites exemple 1à 14

Exemple 17.1:

On réalise la formule décrite exemple 1.

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant un quart d'heure à température ambiante (Agitateur IKA20 muni d'une tige tripale)

100 parts de A₁ Silcolease UV[®] POLY200 de viscosité 350 mPa.s avec 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil[®]

45 Photoinitiator 2074.

Exemple 17.2:

On réalise la formule décrite exemple 2.

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous

agitation mécanique vigoureuse pendant une demi heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).

28

90 parts de Silcolease UV® POLY200 A₁ de viscosité 350 mPa.s avec 10 parties de silice G₂. Lorsque le mélange est bien homogène et que la silice est incorporée on rajoute alors 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil® Photoinitiator 2074 et on agite vigoureusement quinze minutes supplémentaires.

Exemple 17.3:

10 On réalise la formule décrite exemple 3

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant un quart d'heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).

100 parts de silane triéthoxysilyle à fonctionnalité époxycyclohexyle B₁ de viscosité 10 mPa.s avec 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil[®] Photoinitiator 2074.

Exemple 17.4:

On réalise la formule décrite exemple 4

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant une demi heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).

90 parts de Silane B₁ de viscosité 10 mPa.s avec 10 parties de silice G₂. Lorsque le mélange est bien homogène et que la silice est incorporée on rajoute alors 2,5 parties

de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil[®] Photoinitiator 2074 et on agite vigoureusement quinze minutes supplémentaires.

Exemple 17.5 et 17.6 :

On réalise la formule décrite exemples 5 et 6

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant un quart d'heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).

100 parts de polymère B₂ de viscosité 55 mPa.s dont on vient de décrire la synthèse exp: 17 avec 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil[®] Photoinitiator 2074.

Exemple 17.7:

35

On réalise la formule décrite exemple 7

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant une demi heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).

90 parts de polymère B₂ de viscosité 55 mPa.s dont nous venons de décrire la synthèse exp.17 avec 10 parties de silice G₂. Lorsque le mélange est bien homogène et que la silice est incorporée on rajoute alors 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil[®] Photoinitiator 2074

dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil® Photoi et on agite vigoureusement quinze minutes supplémentaires.

Exemple 17.8 et 17.9

On réalise la formule décrite exemples 8 et 9.

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant une demi heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).

45 parts de silane B₁ et 45 parts de polymère B₂ de viscosité 55 mPa.s dont nous venons de décrire la synthèse exp.17 avec 10 parties de silice G₂. Lorsque le mélange est bien homogène et que la silice est incorporée on rajoute alors 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil[®] Photoinitiator 2074 et on agite vigoureusement quinze minutes supplémentaires.

10 Exemple 17.10:

On réalise la formule décrite exemple 10

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant un quart d'heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).

50 parts de silane B₁ et 50 parts de polymère A₁ de viscosité 350 mPa.s. On rajoute alors 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil[®] Photoinitiator 2074 et on agite vigoureusement cinq minutes supplémentaires.

20 Exemple 17.11:

On réalise la formule décrite exemple 11.

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant un quart d'heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).

30 parts de silane B₁ et 70 parts de polymère A₁ de viscosité 350 mPa.s.
On rajoute alors 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil[®] Photoinitiator 2074 et on agite vigoureusement cinq minutes supplémentaires.

30 Exemple 17.12:

On réalise la formule décrite exemple 12.

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant une demi heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).

50 parts de silane B₁ et 50 parts de polymère A₂ de viscosité 5000 mPa.s.
On rajoute alors 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil[®] Photoinitiator 2074 et on agite vigoureusement cinq minutes supplémentaires.

40 Exemple 17.13

On réalise la formule décrite exemple 13.

Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant une demi heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).

72 parts de silane B₁ et 20 parts de SILCOLEASE® UV POLY200 A₁ de viscosité 55 mPa.s dont nous venons de décrire la synthèse exp.17 avec 10 parties de silice G₂. Lorsque le mélange est bien homogène et que la silice est incorporée on rajoute alors 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil® Photoinitiator 2074 et on agite vigoureusement quinze minutes

supplémentaires.

Exemple 17.14

On réalise la formule décrite exemple 14.

- Dans un flacon en polyéthylène haute densité étanche à la lumière on mélange sous agitation mécanique vigoureuse pendant une demi heure à température ambiante (Agitateur IKA20 muni d'une tige tripale).
 - 72 parts de silane B₁ et 20 parts de SILCOLEASE[®] UV POLY200 A₁ de viscosité 55 mPa.s dont nous venons de décrire la synthèse exp.17 avec 10 parties de silice
- G₂. Lorsque le mélange est bien homogène et que la silice est incorporée on rajoute alors 0,4 parties de pigment rouge Red22 commercialisé par Sun chemical et on agite vigoureusement jusqu'à parfaite dilution du pigment qui se traduit par l'obtention d'une formulation rouge clair transparente. On rajoute alors 2,5 parties de C₂ soit une dilution dans l'isopropanol à 18% de photoinitiateur Rhodorsil[®] Photoinitiator 2074 et on agite vigoureusement quinze minutes supplémentaires.

Exemple 18:

- Les rubans de transfert thermique sont utilisés par exemple dans l'impression des étiquettes. Ils sont mis en œuvre dans des imprimantes dont la vitesse d'impression varie entre 150 et 300mm/s. Il est très important que la tête d'impression (plate ou en coin) qui vient frapper l'autre côte de la surface contenant l'encre (cires ou résines) puisse glisser sur cette surface à température élevée comprise entre 100 et 200°C.
- On utilise en général un revêtement de protection très fin compris entre 0,1 et 1 micromètre pour protéger la surface du film et améliorer l'impact de la tête d'impression sans déformer le transfert de l'encre sur le support appliqué.
 - Le film plastique utilisé pour transférer l'encre est à base de polyester très fin de quelques microns d'épaisseur.
- Une bonne mesure de la qualité du revêtement de protection se fait par l'aptitude au glissant de ce revêtement.
 - On mesure alors le coefficient de friction après exposition à l'aide d'un patin de 200g relié à un dynamomètre pouvant exercer une force de 10N pour déplacer le patin.
- Pour faire la mesure on installe le film de polyester recouvert d'une couche de revêtement protecteur à base de silicone photoréticulé de préférence de moins de un micromètre. Un blanc est réalisé avec le film de polyester ne contenant pas de silicone.
- Les résultats obtenus sont rassemblés dans le tableau suivant pour des compositions renfermant différentes parts de :

A₁/ SILCOLEASE® UV POLY200 A₂/ SILCOLEASE® UV POLY201 $C_2/$

en solution isopropanolique à 18%.

G₂/Silice Aerosil 300m²/g

Les films polyesters sont enduits de silicone sur une tête 5 cylindre, à une vitesse de $50\text{m/min} (0.5\text{g/m}^2)$ puis photoréticulés avec une lampe de 120W/cm.

Les valeurs de coefficient de glissement ou de friction dynamique obtenues telles que décrit précédemment sont rapportées dans le tableau ci-dessous.

10

20

25

30

Formulations silicone:

	Témoin	1'	2'	3'	4'	5'
A _t parts	0	100	100	75	22	60
D ₁ parts	0	0	0	25	75	35
C ₂ parts	0	2.5	3	2.5	2.5	2.5
C ₂ parts G ₂ parts Coef.fric.Kd	0	0	0	0	3	5
Coef.fric.Kd	0.3	3	1	0.3	0.25	0.4

15 **Exemple 19**:

On peut également chercher à obtenir des films plastiques principalement à base des polyéthylène ou de polypropylène destinés à l'emballage pour protéger des valeurs marchandes. Dans ce cas on peut rechercher à avoir un survernissage à base de silicone pour garder des propriétés d'anti-adhérence.

On demande en plus à ce type de revêtement de garder un glissant au moins équivalent au film plastique de départ imprimé ou pas.

On a réalisé les essais d'application de couches silicones à moins de 1 micromètre à 50 m/min sur film polyéthylène traité coronna (décharge électrique qui permet d'augmenter la tension superficielle du film et d'assurer un bon accrochage du silicone photoréticulable sur cette surface). Le silicone est photoréticulé en présence d'une lampe mercure de 120W/cm. On a utilisé deux supports. Un support vierge, et un support imprimé avec une encre flexo® cationique bleue d'épaisseur 3µm.

Dans les deux cas on applique $0.5g/m^2$ de silicone de la formulation 5' selon l'exemple 18 précédemment décrite.

Dans les deux cas, on obtient une couche de silicone parfaitement réticulée dont le coefficient de friction est voisin de 0,4.

On peut appliquer les compositions silicones prémélangées à l'avance sous la forme de compositions monocomposantes ou faire le mélange silicone

35 photoamorceur au dernier moment.

10

15

20

25

30

35

REVENDICATIONS:

1 - Composition silicone utile notamment pour la réalisation de vernis ayant en particulier des propriétés anti-friction, cette composition étant du type de celles comprenant au moins un polyorganosiloxane (POS) réticulable par l'intermédiaire de groupements fonctionnels de réticulation (GFR) par voie cationique et/ou radicalaire et une quantité efficace de système amorceur cationique comprenant comme amorceur et/ou photoamorceur, un produit choisi parmi les sels d'onium d'un élément des groupes 15 à 17 de la classification périodique [Chem & Eng. News, vol. 63, N° 5, 26 du 4 Février 1985] ou d'un complexe organométallique d'un élément des groupes 4 à 10 de la classification périodique [même référence],

Δ dont l'entité cationique est sélectionnée parmi :

- 1) les sels d'onium de formule (I):

$$[(R^1)_n - A - (R^2)_m]^+$$
 (I)

formule dans laquelle:

- A représente un élément des groupes 15 à 17 tel que par exemple : I, S, Se, P ou N,
- \bullet R¹ représente un radical aryle carbocyclique ou hétérocyclique en C₆-C₂₀, ledit radical hétérocyclique pouvant contenir comme hétéroéléments de l'azote ou du soufre ;
- \bullet R² représente R¹ ou un radical alkyle ou alkényle linéaire ou ramifié en C₁-C₃₀; lesdits radicaux R¹ et R² étant éventuellement substitués par un groupement alcoxy en C₁-C₂₅, alkyle en C₁-C₂₅, nitro, chloro, bromo, cyano, carboxy, ester ou mercapto;
- n est un nombre entier allant de 1 à v + 1, v étant la valence de l'élément A,
 - m est un nombre entier allant de 0 à v 1 avec n + m = v + 1,
- 2) Les sels d'oxoisothiochromanium décrits dans la demande de brevet WO 90/11303, notamment le sel de sulfonium du 2-éthyl-4oxoisothiochromanium ou de 2-dodécyl-4-oxoisothio-chromanium,
- 3) les sels de sulfonium dans lesquelles l'entité cationique comprend:
 → 3.1. au moins une espèce polysulfonium de formule III.1.

dans laquelle:

les symboles Ar¹, qui peuvent être identiques ou différents entre-eux, représentent chacun un radical monovalent phényle ou naphtyle, éventuellement substitué avec un ou plusieurs radicaux choisis parmi : un radical alkyle linéaire ou ramifié en C₁ - C₁₂, de préférence en C₁-C₆, un

10

15

20

25

30

35

radical alkoxy linéaire ou ramifié en C_1 - C_{12} , de préférence en C_1 - C_6 , un atome d'halogène, un groupe -OH, un groupe -COOH, un groupe ester -COO-alkyle où la partie alkyle est un reste linéaire ou ramifié en C_1 - C_{12} , de préférence en C_1 - C_6 , et un groupement de formule -Y⁴-Ar² où les symboles Y⁴ et Ar² ont les significations données juste ci-après,

- les symboles Ar², qui peuvent être identiques ou différents entre eux ou avec Ar¹, représentent chacun un radical monovalent phényle ou naphtyle, éventuellement substitué avec un ou plusieurs radicaux choisis parmi : un radical alkyle linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆, un radical alkoxy linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆, un atome d'halogène, un groupe -OH, un groupe -COOH, un groupe ester -COO-alkyle où la partie alkyle est un reste linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆,
- les symboles Ar, qui peuvent être identiques ou différents entre eux, représentent chacun un radical divalent phénylène ou naphtylène, éventuellement substitué avec un ou plusieurs radicaux choisis parmi : un radical alkyle linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆, un radical alkoxy linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆, un atome d'halogène, un groupe -OH, un groupe -COOH, un groupe ester -COO-alkyle où la partie alkyle est un reste linéaire ou ramifié en C₁-C₁₂, de préférence en C₁-C₆,
 - t est un nombre entier égal à 0 ou 1, avec les conditions supplémentaires selon lesquelles :

+quand t = 0, le symbole Y est alors un radical monovalent Y^1 représentant le groupement de formule :

$$Y^1: \qquad \begin{array}{c} + \\ --S - Ar^1 \\ Ar^2 \end{array}$$

où les symboles Ar et Ar possèdent les significations données ciavant,

- + quand t = 1:
- O d'une part, le symbole Y est alors un radical divalent ayant les significations Y² à Y⁴ suivantes :
 - Y²: un groupement de formule:

où le symbole Ar² possède les significations données ci-avant,

- Y³: un lien valentiel simple,
 - Y : un reste divalent choisi parmi :

$$-0-$$
 , $-s-$, $-s-$, $-c-$

un reste alkylène linéaire ou ramifié en C₁-C₁₂, de préférence en

C₁-C₆, et un reste de formule —Si(CH₃)₂O—,

- ou Y⁴, les radicaux Ar¹ et Ar² (terminaux) possèdent, outre les significations données ci-avant, la possibilité d'être reliés entre eux par le reste Y' consistant dans Y'¹ un lien valentiel simple ou dans Y'² un reste divalent choisi parmi les restes cités à propos de la définition de Y⁴, qui est installé entre les atomes de carbone, se faisant face, situés sur chaque cycle aromatique en position ortho par rapport à l'atome de carbone directement relié au cation S⁺;
 - → 3.2. et/ou au moins une espèce monosulfonium possédant un seul centre cationique S⁺ par mole de cation et consistant dans la plupart des cas dans des espèces de formule :

$$Ar^{1} \xrightarrow{f} Ar^{1} \qquad (III.2)$$

$$Ar^{2}$$

dans laquelle Ar^1 et Ar^2 ont les significations données ci-avant à propos de la formule (III.1), incluant la possibilité de relier directement entre eux un seul des radicaux Ar^1 à Ar^2 selon la manière indiquée ci-avant à propos de la définition de la condition supplémentaire en vigueur quand t=1 dans la formule (II), faisant appel au reste Y';

- 4) les sels organométalliques de formule (IV):

 $(L^{1}L^{2}L^{3}M)^{+q}$ (IV) formule dans laquelle:

- M représente un métal du groupe 4 à 10, notamment du fer, manganèse, chrome, cobalt..
- L¹ représente 1 ligand lié au métal M par des électrons π, ligand choisi parmi les ligands η³-alkyl, η⁵- cyclopendadiènyl et η² cycloheptratriènyl et les composés η⁶ aromatiques choisis parmi les ligands η⁶-benzène éventuellement substitués et les composés ayant de 2 à 4 cycles condensés, chaque cycle étant capable de contribuer à la couche de valence du métal M par 3 à 8 électrons π
- L2 représente un ligand lié au métal M par des électrons π, ligand choisi parmi les ligands η7-cycloheptatriènyl et les composés η6-aromatiques choisis parmi les ligands η6-benzène éventuellement substitués et les composés ayant de 2 à 4 cycles condensés, chaque cycle étant capable de contribuer à la couche de valence du métal M par 6 ou 7 électrons π;
- L3 représente de 0 à 3 ligands identiques ou différents liés au métal M par des électrons σ, ligand(s) choisi(s) parmi CO et NO2+; la charge électronique totale q du complexe à laquelle

5

10

15

20

25

30

35

contribuent L^1 , L^2 et L^3 et la charge ionique du métal M étant positive et égale à 1 ou 2;

Δ l'entité anionique ayant pour formule :

 $[X^1X^2_aR_b]^{-1}$

formule dans laquelle:

- a et b sont des nombres entiers allant pour a de 0 à 6 et pour b de 0 à 6 avec $a + b \ge 2$;
- les symboles X¹ représentent des éléments choisis dans les colonnes IIIA, IVA, VA de la classification périodique, de préférence dans le groupe comprenant : B, P et Sb ; les symboles X² représentent :
 - * un atome d'halogène (chlore, fluor) avec a = 0 à 3,
 - * une fonction OH avec a = 0 à 2,

- les symboles R sont identiques ou différents et représentent :

⊳ un radical phényle substitué par au moins un groupement électroattracteur tel que par exemple OCF₃, CF₃, NO₂, CN, et/ou par au moins 2 atomes d'halogène (fluor tout particulièrement), et ce lorsque l'entité cationique est un onium d'un élément des groupes 15 à 17

⊳ un radical phényle substitué par au moins un élément ou un groupement électroattracteur notamment atome d'halogène (fluor tout particulièrement), CF₃, OCF₃, NO₂, CN, et ce lorsque l'entité cationique est un complexe organométallique d'un élément des groupes 4 à 10

> un radical aryle contenant au moins deux noyaux aromatiques tel que par exemple biphényle, naphtyle, éventuellement substitué par au moins un élément ou un groupement électroattracteur,

notamment un atome d'halogène (fluor tout particulièrement), OCF₃, CF₃, NO₂, CN, quelle que soit l'entité cationique;

cette composition étant caractérisée en ce qu'elle comporte en outre des molécules substituées par des groupements fonctionnels secondaires (GFS) portés par au moins un atome de silicium par molécule et sélectionnés, de préférence, parmi ceux comprenant au moins un motif alcoxy et/ou époxy et/ou carboxy.

- 2 Composition selon la revendication 1, caractérisée en ce qu'elle comprend :
 - A au moins un POS porteur de GFR, ces derniers étant de préférence choisis parmi les groupements comprenant au moins une fonction éthyléniquement insaturée avantageusement acrylate et/ou alcényléther et/ou époxyde et/ou oxéthane;
 - B au moins un silane et/ou un POS porteur de GFS, ces derniers représentant de préférence au moins 0,5 % et plus préférentiellement encore au moins 1 % en poids de B;
 - C au moins un système photoamorceur tel que défini dans la

10

5

15

20

25

30

40

35

45

5

10

15

20

30

35

revendication 1.

- 3 Composition selon la revendication 1, caractérisée en ce qu'elle comprend :
 - C au moins un système photoamorceur tel que défini dans la revendication l
 - D au moins un POS porteur de GRF et de GFS.

les GRF étant de préférence choisis parmi les groupements comprenant au moins une fonction éthyléniquement insaturée - avantageusement acrylate et/ou alcényléther - et/ou époxyde et/ou oxéthane.

- 4 Composition selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'elle comprend en outre :
 - E éventuellement au moins un diluant réactif organique choisi parmi les résines organiques de type époxyde et/ou vinyléther et/ou oxéthane;
 - F éventuellement au moins un pigment organique ou inorganique;
 - G éventuellement une charge, de préférence silicique ;
 - H éventuellement au moins un photosensibilisateur, de préférence sélectionné parmi les (poly)aromatiques (éventuellement métalliques) et/ou les hétérocycliques.
- 5 Composition selon l'une quelconque des revendications 1, 2, 4
 25 caractérisée en ce que les POS A sont des époxysilicones et/ou des vinyléthersilicones qui sont :
 - → soit linéaires ou sensiblement linéaires et constitués de motifs de formule (I), terminés par des motifs de formule (II),
 - → soit cycliques et constitués par des motifs de formule (II) :

 $\begin{array}{cccc}
R^{1} & & & R^{1} \\
 & | & & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & & \\
 & | & &$

formules dans lesquelles:

- les symboles R¹ sont semblables ou différents et représentent :
- soit un radical alkyle linéaire ou ramifié en C₁-C₆, éventuellement substitué, avantageusement par un ou des halogènes, les radicaux alkyles éventuellement substitués préférés étant : méthyle, éthyle, propyle, octyle et 3,3,3 trifluoropropyle,
 - soit un radical cycloalkyle en C5-C8, éventuellement substitué,
- soit un radical aryle ou aralkyle, éventuellement substitué :
 - . notamment par des halogènes et/ou des alcoxyles,
 - . les radicaux phényle, xylyle, tolyle et dichlorophényle étant tout particulièrement sélectionnés,
 - et, plus préférentiellement encore, au moins 60 % molaire des radicaux R³

5

étant des méthyles,

- les symboles Z sont semblables ou différents et représentent :
- soit le radical R¹.
- soit un groupement GFR correspondant à un reste époxyde ou vinyléther relié au silicium par l'intermédiaire d'un radical divalent contenant, avantageusement, de 2 à 20 atomes de carbone comportant, éventuellement, un hétéroatome,

l'un au moins des symboles Z correspondant à un groupement GRF.

10 6 - Composition selon l'une quelconque des revendications 1, 2, 4 caractérisée en ce que les POS A sont des époxysilicones de formules (A.I) (A.II) suivantes:

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline \\ CH_3 & \\ \hline \\ Si-O \\ \hline \\ Si-O \\ \hline \\ Si-O \\ \hline \\ Si-O \\ \hline \\ CH_3 \\ \hline \\ (A.I) \\ \end{array}$$

15 avec $X = CH_3$; Phényle; Cycloalkyle; alkyle C_1 - C_{18} ; alcényle; -OH; H; CH_2 - CH_2 - CH_2 -OH; CH_2 - CH_2 - CH_3 ; -(CH_2) CH_3 ; -(CH_3)C

20 - a₁, a₂ et b₁, b₂ étant définis comme suit dans ces formules (A.I) et (A.II)

 $1 \le a_1, a_2$ $1 \le b_1, b_2$

de préférence

 $1 \le a_1, a_2 \le 5000$

 $1 \le b_1, b_2 \le 500$

et plus préférentiellement

encore

 $1 \le a_1, a_2 \le 1000$

 $1 \le b_1, b_2 \le 100$;

- 25 a_2 , b_2 étant = 0 dans la formule (A.II) pour donner le disiloxane époxydé (A.III).
 - 7 Composition selon l'une quelconque des revendications 1, 2, 4 à 6 caractérisée en ce que le (ou les) composé(s) B est (sont) choisi(s) parmi celui (ou ceux) de formule B suivante:
- 30 (B) $R^2_x[GFS]_ySiO_{4-(x+y),2}$ dans laquelle:

```
-x = 0, 1, 2 \text{ ou } 3
                            -y=1, 2, 3 \text{ ou } 4
                            - les radicaux R<sup>2</sup> sont identiques ou différents entre eux et
                                correspondent à un alkyle linéaire ou ramifié, un cycloalkyle, un
 5
                                hydroxyle, un hydrogène, un vinyle, un -CF3, un -(CH2)m-CF3 avec
                                m = 1 à 50,
                               les GFS sont identiques ou différents entre eux et correspondent à
                                ° un alcoxy, de préférence : -OR³ avec R³ représentant un alkyle
                                   linéaire ou ramifié en C<sub>1</sub>-C<sub>30</sub> ou un cycloalkyle;
                               -(OR<sup>4</sup>)<sub>p</sub>-OR<sup>5</sup>; -(R<sup>6</sup>)<sub>q</sub>-Si(OR<sup>7</sup>)<sub>r</sub>(R<sup>8</sup>)<sub>t</sub>
avec R<sup>4</sup>, R<sup>7</sup>, R<sup>8</sup> identiques ou différents entre eux et répondant à
10
                                   la même définition que celle donnée ci-dessus pour R<sup>3</sup> et avec
                                   R<sup>6</sup> identiques ou différents entre eux et correspondant de
                                   préférence à un alkylène (avantageusement un méthylène);
15
                                   p, q = 1 à 50, de préférence 1 à 10;
                                   r = 1, 2 \text{ ou } 3 \text{ et } t = 0, 1 \text{ ou } 2;
                                    o un énoxy, de préférence :
                                    -O-CH = CH-R^8;
                                    -(R^9)_u-Si(OCH = CHR<sup>10</sup>)<sub>v</sub>(R<sup>11</sup>)<sub>w</sub>;
                                    avec R<sup>8</sup>, R<sup>10</sup>, R<sup>11</sup> identiques ou différents entre eux et répondant
20
                                    à la même définition que celle donnée ci-dessus pour R<sup>3</sup>, et avec
                                   R<sup>9</sup> répondant à la même définition que celle donnée ci-dessus
                                   pour R<sup>6</sup>;
                                   u = 1 à 50 de préférence 1 à 10,
25
                                    v = 1, 2 \text{ ou } 3 \text{ et } w = 0, 1 \text{ ou } 2;
                                    o un carboxy, de préférence :
                                    -OCOR<sup>12</sup>;
                                    -(R^{13})_z-Si(OCOR<sup>14</sup>)<sub>z1</sub>(R<sup>15</sup>)<sub>z2</sub>;
                                    avec R<sup>12</sup>, R<sup>14</sup> tels que définis ci-dessus pour R<sup>8</sup>, R<sup>10</sup>, R<sup>11</sup>;
                                    R<sup>13</sup> tels que définis ci-dessus pour R<sup>9</sup>;
30
                                    z = 1 à 50 de préférence 1 à 10,
                                    z_1 = 1, 2 \text{ ou } 3 \text{ et } z_2 = 0, 1 \text{ ou } 2.
35
                        8 - Composition selon l'une quelconque des revendications 1, 3
        caractérisée en ce que le POS ou le silane D comprend des GFS tels que définis dans
```

la revendication 7 et des GRF de type (méth)acrylate et/ou vinyléther et/ou époxyde et/ou oxéthane,

ce POS ou le silane D comprenant de préférence des GFS de type alcoxy et des GRF 40 de type époxyden,

ledit POS D correspondant plus préférentiellement encore aux POS de formules (D', D", D"') suivantes:

$$(CH_3)_3Si-O\begin{bmatrix}CH_3\\I\\Si-O\\CH_3\end{bmatrix}\begin{bmatrix}CH_3\\I\\Si-O\\d2\end{bmatrix}Si(OEt)_3-d3$$
(D')

avec

avec Me= méthyle; Et = éthyle

0 ≤ e

10 de préférence

15

20

25

0≤ e ≤ 5000

et plus préférentiellement encore $0 \le e \le 1000$

- 9 Application de la composition selon l'une quelconque des revendications 1 à 8 à titre de vernis anti-friction sur un support, comportant de préférence un substrat, éventuellement revêtu d'au moins une couche d'élastomère silicone.
- 10 Application selon la revendication 9, caractérisé en ce qu'elle consiste essentiellement :

- à enduire un support à l'aide de la composition selon l'une quelconque des revendications 1 à 8,

- et à exposer la surface ainsi enduite à des rayonnements actiniques et/ou à un faisceau d'électrons et/ou à la chaleur, de manière à faire réticuler la couche de vernis.
- 11 Support vernis ayant des propriétés anti-friction, telles qu'obtenues par l'application selon la revendication 9 ou 10.
- 30 12 Support vernis selon la revendication 11, caractérisé en ce qu'il comprend un substrat, revêtu sur au moins une de ses faces d'au moins une couche

d'élastomère silicone réticulable ou au moins partiellement réticulé de préférence choisi parmi :

- les silicones RTV polyaddition ou polycondensation,
- et/ou les silicones EVC au peroxyde,

5

15

25

- et/ou les silicones LSR polyaddition,

le vernis anti-friction obtenu à partir de la composition selon l'une quelconque des revendications 1 à 8 étant appliqué sur la (ou les) couche(s) (supérieure(s)) d'élastomère silicone.

- 13 Support selon la revendication 12, caractérisé en ce qu'il est destiné à être utilisé pour la fabrication de coussins gonflables de protection individuelle d'occupant de véhicule, de rubans à transfert thermique, ou de films d'emballage de protection.
- 14 Coussin gonflable de protection individuelle d'occupant de véhicule caractérisé en ce qu'il est réalisé à partir du support selon la revendication 12.
- 20 15 Ruban à transfert thermique caractérisé en ce qu'il est réalisé à partir du support selon la revendication 12.
 - 16 Film d'emballage caractérisé en ce qu'il est réalisé à partir du support selon la revendication 12.

INTERNATIONAL SEARCH REPORT

Interna unal Application No
PCT/FR 00/00861

A CLASS	FIG. 27.011 OF CUID 15.05 111.	·	
IPC 7	FICATION OF SUBJECT MATTER C08K5/00 C09D183/06 C08J7/0	4	
According to	o International Patent Classification (IPC) or to both national classific	eation and IPC	
	SEARCHED		
Minimum do	ocumentation searched (classification system followed by classificat COSK CO9D CO9J COSJ	ion symbots)	
	tion searched other than minimum documentation to the extent that s		
	ata base consulted during the international search (name of data ba	ase and. where practical, search terms used	i)
WPI Da	ta, PAJ, EPO-Internal		
	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rel	levant passages	Relevant to claim No.
Υ	FR 2 757 870 A (RHODIA CHIMIE) 3 July 1998 (1998-07-03) claims 1-13 page 1, line 6 - line 12 page 1, line 30 -page 2, line 5 page 22, line 29 -page 23, line 1	12	1
Υ	WO 95 19394 A (MINNESOTA MINING 8 20 July 1995 (1995-07-20) claim 1	& MFG)	1
Y	EP 0 903 385 A (GEN ELECTRIC) 24 March 1999 (1999-03-24) claims 1-10 page 2, line 38 - line 41		1
		-/	
		•	
	er documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
	regaries of cited documents:	"T" later document published after the inte	mational filing date
"A" docume conside	nt defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or the invention	the application but eory underlying the
"E" earlier d filing da	ocument but published on or after the international ate	"X" document of particular relevance; the o	laimed invention
which i	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another	cannot be considered novel or cannot involve an inventive step when the do	current is taken alone
"O" docume	or other special reason (as specified) of referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the c cannot be considered to involve an in- document is combined with one or mo	ventive step when the
other n	nt published prior to the international filing date but	ments, such combination being obvious in the art.	us to a person skilled
	an the priority date claimed	"&" document member of the same patent	
	July 2000	Date of mailing of the international sea	ігся героп
Name and m	ailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Depijper, R	

INTERNATIONAL SEARCH REPORT

Interna, anal Application No
PCT/FR 00/00861

2.0		PCT/FR 00/00861		
Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	FR 2 724 660 A (RHONE POULENC CHIMIE) 22 March 1996 (1996-03-22)	1		
	claims 1,3,8,11-13 page 9, line 31 -page 10, line 11			
A	EP 0 562 922 A (RHONE POULENC CHIMIE) 29 September 1993 (1993-09-29) cited in the application claim 1	1		
A	EP 0 702 106 A (TAKATA CORP ;SHINETSU CHEMICAL CO (JP)) 20 March 1996 (1996-03-20) claims 1,12	1		
A	FR 2 719 598 A (RHONE POULENC CHIMIE) 10 November 1995 (1995-11-10) claims 1,16,17	1		
. !				

1

INTERNATIONAL SEARCH REPORT

Information on patent family members

Interi. Inal Application No PCT/FR 00/00861

						00/0001
	tent document in search report		Publication date		Patent family member(s)	Publication date
FR	2757870	Α	03-07-1998	AU	5769198 A	31-07-1998
				EP	0948566 A	13-10-1999
				WO	9829498 A	09-07-1998
				PL	334366 A	28-02-2000
	0510004					
WU	9519394	Α	20-07-1995	US	5468815 A	21-11-1995
				DE	69414606 D	17-12-1998
				DE	69414606 T	22-04-1999
				EP	0739384 A	30-10-1996
				JP	9507523 T	29-07-1997
				US	5520978 A	28-05-1996
EP	0903385	Α	24-03-1999	US	5942557 A	24-08-1999
			•	JP	11199831 A	27-07-1999
FR	2724660	Α	22-03-1996	BR	9504690 A	08-10-1996
				CA	2158405 A	17-03-1996
				EP	0703236 A	27-03-1996
				FI	954350 A	17-03-1996
				JP	2780084 B	23-07-1998
				JP	8104706 A	23-04-1996
				NO	953622 A	18-03-1996
				US	5693688 A	02-12-1997
EP	0562922	A	29-09-1993	FR	2688790 A	24-09-1993
		••	20 03 2330	AU	3538993 A	30-09-1993
				CA	2092137 A	24-09-1993
				DE	69310797 D	26-06-1997
				DE	69310797 T	04-12-1997
				ES	2102616 T	01-08-1997
				FI	931254 A	24-09-1993
				ĴР	2623426 B	25-06-1997
				ĴΡ	6041433 A	15-02-1994
				ÜS	5340898 A	23-08-1994
	0702106	Α	20-03-1996		0005405	
C.F	0/02100	М	20-03-1996	JP	8085405 A	02-04-1996
				US	5705445 A	06-01-1998
FR	2719598	Α	10-11-1995	EP	0681014 A	08-11-1995
				ÜS	5658674 A	19-08-1997
				UJ	30300/4 A	

RAPPORT DE RECHERCHE INTERNATIONALE

Dem. a Internationale No PCT/FR 00/00861

		PCI/FR 00	/00861
A. CLASSE CIB 7	MENT DE L'OBJET DE LA DEMANDE CO8K5/00 CO9D183/06 CO8J7/04		
Selon la cla	ssification internationale des brevets (CIB) ou à la fois selon la classifi	cation nationale et la CIB	
	NES SUR LESQUELS LA RECHERCHE A PORTE		
CIR /	tion minimate consultée (système de classification suivi des symboles COSK CO9D CO9J COSJ		
	tion consultée autre que la documentation minimale dans la mesure où nnées électronique consultée au cours de la recherche internationale (
	ta, PAJ, EPO-Internal	TOTAL SE LA SECONO CE SELLINOSO, EL CALICAMA	не, сеттича он геспетстве иливеву
C. DOCUME	ENTS CONSIDERES COMME PERTINENTS		
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication	des passages perlinents	no, des revendications visées
Y	FR 2 757 870 A (RHODIA CHIMIE) 3 juillet 1998 (1998-07-03) revendications 1-13 page 1, ligne 6 - ligne 12 page 1, ligne 30 -page 2, ligne 5 page 22, ligne 29 -page 23, ligne	12	1
Υ	WO 95 19394 A (MINNESOTA MINING & 20 juillet 1995 (1995-07-20) revendication 1	MFG)	1
Y	EP 0 903 385 A (GEN ELECTRIC) 24 mars 1999 (1999-03-24) revendications 1-10 page 2, ligne 38 - ligne 41		1
	-/	/	
	•		
<u> </u>		Les documents de familles de bre	evets sont indiqués en annexe
° Catégories	spéciales de documents cités:	la date	de dépôt international ou la
	nt définissant l'état général de la technique, non éré comme particulièrement pertinent	date de priorité et n'appartenenant pa technique pertinent, mais cité pour co ou la théorie constituant la base de l'in	us à l'état de la Imprendre le principe
	nt antérieur, mais publié à la date de dépôt international "X	(* document particulièrement pertinent; fi	inven tion revendiquée ne peut
priorité	nt pouvant jeter un doute sur une revendication de ou cité pour déterminer la date de publication d'une	être considérée comme nouvelle ou c inventive par rapport au document con	nsidéré isotément
autre ci	itation ou pour une raison spéciate (telle qu'indiquée) nt se référant à une divulgation orale, à un usage, à	document particulièrement pertinent; l'i ne peut être considérée comme implie lorsque le document est associé à un	guant une activité inventive
une ex	position ou tous autres moyens nt publié avant la date de dépôt international, mais	documents de même nature, cette compour une personne du métier	mbinaison étant évidente
postério	eurement à la date de priorité revendiquée -8	document qui fait partie de la même fai	mille de brevets
Date à laque	lle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport d	le recherche internationale
	juillet 2000	20/07/2000	
Nom et adres	se postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2	Fonctionnaire autorisé	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.	Danidaan D	
	Fax: (+31-70) 340-3016	Depijper, R	

RAPPORT DE RECHERCHE INTERNATIONALE

PCT/FR 00/00861

<u> </u>	PCT/FR 00/00861						
C.(suite) D	C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS						
Categorie	Identification des documents cités, avec,le cas échéant, l'indicationdes passages pertinents	no. des revendications visées					
A	FR 2 724 660 A (RHONE POULENC CHIMIE) 22 mars 1996 (1996-03-22) revendications 1,3,8,11-13 page 9, ligne 31 -page 10, ligne 11	1					
A	EP 0 562 922 A (RHONE POULENC CHIMIE) 29 septembre 1993 (1993-09-29) cité dans la demande revendication 1	1					
4	EP 0 702 106 A (TAKATA CORP ;SHINETSU CHEMICAL CO (JP)) 20 mars 1996 (1996-03-20) revendications 1,12	1					
A	FR 2 719 598 A (RHONE POULENC CHIMIE) 10 novembre 1995 (1995-11-10) revendications 1,16,17	1					

RAPPORT DE RECHERCHE INTERNATIONALE

. Renseignements relatifs aux membres de families de brevets

Dema, Internationale No PCT/FR 00/00861

Document brevet cité			Data da			00/0001
	oport de rechero		Date de publication		embre(s) de la iille de brevet(s)	Date de publication
FR	2757870	Α	03-07-1998	AU	5769198 A	31-07-1998
				EP	0948566 A	13-10-1999
				WO	9829498 A	09-07-1998
				PL	334366 A	28-02-2000
WO	9519394	Α	20-07-1995	US	5468815 A	21-11-1995
				DE	69414606 D	17-12-1998
				DE	69414606 T	22-04-1999
				EP	0739384 A	30-10-1996
				JP	950 75 23 T	29-07-1997
				US 	5520978 A	28-05-1996
EP	0903385	Α	24-03-1999	US	5942557 A	24-08-1999
				JP 	11199831 A	27-07-1999
FR	2724660	Α	22-03-1996	BR	9504690 A	08-10-1996
				CA	2158405 A	17-03-1996
				EP	0703236 A	27-03-1996
				FI	954350 A	17-03-1996
				JP	2780084 B	23-07-1998
				JP	8104706 A	23-04-1996
				NO	953622 A	18-03-1996
				US	5693688 A	02-12-1997
ΕP	0562922	Α	29-09-1993	FR	2688790 A	24-09-1993
				AU	3538993 A	30-09-1993
				CA	2092137 A	24-09-1993
				DE	69310797 D	26-06-1997
				DE	69310797 T	04-12-1997
				ES	2102616 T	01-08-1997
				FI	931254 A	24-09-1993
				JP	2623426 B	25-06-1997
				JP	6041433 A	15-02-1994
				US 	5340898 A	23-08-1994
EP	0702106	Α	20-03-1996	JP	8085405 A	02-04-1996
				US	5705445 A	06-01-1998
FR	2719598	Α	10-11-1995	EP	0681014 A	08-11-1995
				US	5658674 A	19-08-1997
				US	5783311 A	21-07-1998