第 4-11 讲: 随机算法

姓名: 朱宇博 **学号:** <u>191220186</u>

评分: _____ 评阅: ____

2021年5月26日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

1 作业(必做部分)

题目 1 (JH 5.2.2.7)

解答:

(i)

 $[2,n^c]$ 中质数近似有 $\frac{n^c}{\ln n^c}$ 个,因此 $c\log_2 n$ 个 bit 足够去实现该随机选择。

因为 $s \le p \le n^c$, 故 $|s| \le c \log_2 n$

综上, the communication complexity of this protocol is $2c \log_2 n$

(ii)

在 $x \le y$ 时,被判定为相等的概率

$$\frac{n-1}{n^c/\ln n^c} \leq \frac{lnn^c}{n^{c-1}}$$

故 Prob ((Rr, Rn) accepts (x, y)) $\geq 1 - \frac{\ln n^c}{n^{c-1}}$

题目 2 (JH 5.2.2.8)

解答:

(i)

反证法。假设存在一种确定性算法,使得 the communication complexity 小于 n。由假设可推得,必然存在 $u,v\in\{0,1\}^n$, $u\not\equiv v$,使得 $\overline{(C_1(u))}=\overline{(C_1(v))}$ 。

所以 $\overline{(C_2(\overline{(C_1(u))},u))} = \overline{(C_2(\overline{(C_1(v))},u))}$ 。

显然 $u \equiv u$, 可得 $u \equiv v$, 这与假设矛盾。

故 for every $n \in \mathbb{N}^+$, that every deterministic one-way protocol computing $Equality_n$ has a communication complexity of at least n.

Random Inequality $(R_{\rm I}, R_{\rm II})$

Input: $x, y \in \{0, 1\}^n$

Step 1: $R_{\rm I}$ chooses uniformly a prime p from the interval $[2, n^2]$ at random. {Note that there are approximately $n^2/\ln n^2$ primes in this interval and so $2\lceil \log_2 n \rceil$ random bits are enough to realize this random choice.}

Step 2: $R_{\rm I}$ computes $s = Number(x) \bmod p$ and sends p and s to $R_{\rm II}$. {The length of the message is $4\lceil \log_2 n \rceil$ ($2\lceil \log_2 n \rceil$ bits for each of p and s). This is possible because $s \le p \le n^2$.

Step 3: R_{II} computes $q = Number(y) \mod p$. If $q \neq s$, then $R_{\rm II}$ outputs 1 ("accept"). TO JECT If q=s, then $R_{\rm II}$ outputs 0 ("reject").accept

采用该算法即可。根据书中的证明,可得:

(1) 在 $x \equiv y$ 时, $Prob((R_I, R_n)accepted(x, y)) = 1.$

(2) 在 $x \neq y$ 时, $Prob((R_I, R_n)accepts(x, y)) \leq \frac{\ln n^2}{n}$ 故 $Prob(A(x) = F(x)) \geq 1 - \frac{\ln n^2}{n} \geq \frac{1}{2} + \epsilon$, 满足题目要求。

(iii)

反证法。假设存在一种 one-sided-error, 使得 the communication complexity 小于 n. 由假设可推得,必然存在 $u,v \in \{0,1\}^n$, $u \neq v$, 使得 $(C_1(u)) = (C_1(v))$.

所以 $\overline{(C_2(C_1(u)), u)} = \overline{(C_2(C_1(v)), u)}$.

显然 $u \equiv u$, 可得 $u \equiv v$, 这与假设中的 one-sided-error 矛盾。

故 one-sided-error 的 communication complexity 至少为 n.

作业(选做部分)

Open Topics

Open Topics 1 (例题 5.2.2.5)

请讲解例题 5.2.2.5, 并说明, 为什么这个随机算法代价好于"任何"确定性算法。

反馈