« Révision 02 - Corrigé »

Bac 2023 La Réunion Jour 1

Exercice 3 - EXTRACTION DU GAZ DE SCHISTE PAR ÉLECTRO-FRACTURATION (6 points)

PARTIE A : Charge du condensateur équivalent

A.1. D'après la loi d'additivité des tensions (ou loi des mailles) : $E = u_{R} + u_{Ceq}$

A.2. D'après la loi d'Ohm : $u_{R_1} = R_1 \times I$

De plus,
$$\begin{cases} \mathbf{i} = \frac{d\mathbf{q}}{dt} \\ \mathbf{q} = C_{eq} \times u_{C,eq} \end{cases} \Rightarrow \mathbf{i} = \frac{d(C_{eq} \times u_{C,eq})}{dt} = \mathbf{C}_{eq} \times \frac{du_{C,eq}}{dt} \text{ car } C_{eq} \text{ constante }.$$

Donc
$$E = R_1 \times \frac{du_{C,eq}}{dt} + u_{C,eq}$$

Donc
$$E = R_1 \times \frac{du_{C,eq}}{dt} + u_{C,eq}$$

$$\Leftrightarrow \frac{du_{C,eq}}{dt} + \frac{1}{R_1 \times C_{eq}} \times u_{C,eq} = \frac{E}{R_1 \times C_{eq}}$$
 (équation différentielle du 1^{er} ordre).

A.3. Méthode 1 : résolution de l'équation différentielle

On écrit l'équation différentielle sous la forme y' = a.y + b qui admet des solutions de la

forme
$$y = K.e^{a.x} - \frac{b}{a}$$
:
$$\frac{du_{c,eq}}{dt} = -\frac{1}{R_1 \times C_{eq}} \times u_{c,eq} + \frac{E}{R_1 \times C_{eq}}$$

Par analogie,
$$a = -\frac{1}{R_1 \times C_{eq}}$$
 et $b = \frac{E}{R_1 \times C_{eq}}$ donc $-\frac{b}{a} = -\left(\frac{\frac{E}{R_1 \times C_{eq}}}{-\frac{1}{R_1 \times C_{eq}}}\right) = E$

ainsi les solutions sont de la forme $u_{Ceq}(t) = K.e^{-\frac{1}{R_1 \times C_{eq}}} + E$

En tenant compte des conditions initiales : $u_{Ceq}(0) = 0 = K.e^{0} + E$ donc K = -E

Finalement on trouve la solution :
$$u_{c,eq}(t) = E \times \left(1 - e^{-\frac{t}{R_i \times c_{eq}}}\right)$$
.

Par analogie avec $u_{C,eq}(t) = E \times \left(1 - e^{-\frac{t}{\tau_{charge}}}\right)$, on en déduit que $\tau_{charge} = R_1 \times C_{eq}$.

Méthode 2 : On part de la solution proposée et on la remplace dans l'équation différentielle

$$\frac{du_{C,eq}}{dt} + \frac{1}{R_1 \times C_{eq}} \times u_{C,eq} = \frac{E}{R_1 \times C_{eq}} \text{ avec } u_{C,eq}(t) = E \times \left(1 - e^{-\frac{t}{\tau_{charge}}}\right)$$

Donc
$$\frac{d\left(E \times \left(1 - e^{-\frac{t}{\tau_{\text{charge}}}}\right)\right)}{dt} + \frac{1}{R_1 \times C_{eq}} \times E \times \left(1 - e^{-\frac{t}{\tau_{\text{charge}}}}\right) = \frac{E}{R_1 \times C_{eq}}$$

$$\Leftrightarrow E \times \left(0 - \left(-\frac{1}{\tau_{\text{charge}}}\right) \times e^{-\frac{t}{\tau_{\text{charge}}}}\right) + \frac{E}{R_1 \times C_{eq}} \times \frac{E}{R_1 \times C_{eq}} \times e^{-\frac{t}{\tau_{\text{charge}}}} = \frac{E}{R_1 \times C_{eq}}$$

$$\Leftrightarrow \frac{E}{\tau_{\text{charge}}} \times e^{-\frac{f}{\tau_{\text{charge}}}} - \frac{E}{R_1 \times C_{eq}} \times e^{-\frac{f}{\tau_{\text{charge}}}} = 0$$

$$\Leftrightarrow E \times e^{-\frac{t}{\tau_{\text{charge}}}} \times \left(\frac{1}{\tau_{\text{charge}}} - \frac{1}{R_{\text{1}} \times C_{\text{eq}}}\right) = 0 \quad \text{quel que soit } t \quad \text{alors} \quad \left(\frac{1}{\tau_{\text{charge}}} - \frac{1}{R_{\text{1}} \times C_{\text{eq}}}\right) = 0 \quad \text{donc}$$

$$\tau_{\text{charge}} = R_{\text{1}} \times C_{\text{eq}}$$

A.4. Méthode 1 (en bleu): lors de la charge d'un circuit RC, la tension uc.eq atteint 63% de sa valeur finale pour $t = \tau_{charge}$

Méthode 2 (en vert) : la tangente à l'origine coupe l'asymptote horizontale pour $t = \tau_{\text{charge}}$

Graphiquement, on trouve $\tau_{\text{chame}} = 0.10 \text{ s}$

Or
$$\tau_{\text{charge}} = R_1 \times C_{\text{eq}} \Leftrightarrow C_{\text{eq}} = \frac{\tau_{\text{charge}}}{R_1} \text{ donc } C_{\text{eq}} = \frac{0.10}{160 \times 10^3} = 6.25 \times 10^{-7} \text{ F} = 625 \text{ nF}$$

A.5. Chaque condensateur ayant une capacité de 200 nF, on en déduit que 3 condensateurs ont été utilisés lors de l'expérimentation.

Remarque: l'écart entre 625 nF et 600 nF s'explique par la précision de la détermination araphique: $C_{eq} = 600 \text{ nF}$

$$\tau_{\rm change} = R_{\rm 1} \times C_{\rm eq} = 160 \times 10^3 \times 600 \times 10^{-9} = 0.096 \; \rm S \approx 0.10 \; \rm S$$

A.6. D'après l'énoncé,
$$W = \frac{1}{2} \times C_{eq} \times u_{Ceq}^2$$

Ainsi,
$$W_{\text{max}} = \frac{1}{2} \times 600 \times 10^{-9} \times (40 \times 10^3)^2 = 480 \text{ J (en prenant la valeur « réelle » de } G_{eq}$$
)

PARTIE B : Décharge du condensateur équivalent

B.1. D'après l'énoncé :
$$u_{C,eq}(t) = E \times e^{-\frac{t}{R_2 \times C_{eq}}} \text{donc } u_{C,eq}(t = \Delta t) = E \times e^{-\frac{\Delta t}{R_2 \times C_{eq}}}$$

Soit $u_{C,eq}(t = \Delta t) = 40 \times 10^3 \times e^{-\frac{12 \times 10^{-6}}{100 \times 600 \times 10^{-9}}} = 3,3 \times 10^4 \text{ V} = 33 \text{ kV}.$

B.2. D'après l'énoncé,
$$W = \frac{1}{2} \times C_{eq} \times u_{C,eq}^2$$
 donc $W_{arc} = \frac{1}{2} \times C_{eq} \times u_{C,eq}^2 (t = \Delta t)$
Soit $W_{arc} = \frac{1}{2} \times 600 \times 10^{-9} \times (3.3 \times 10^4)^2 = 322 \text{ J}$ (calcul fait avec la valeur non arrondie de $u_{C,eq}$).

B.3. D'après l'énoncé :
$$\eta = \frac{E_{utile}}{E_{consommée}}$$
 soit ici $\eta = \frac{W_{arc}}{W_{max}}$.

Donc $\eta = \frac{322}{480} = 0.67 = 67$ % ce qui est relativement correct, bien qu'on puisse regretter que 33% de l'énergie fournie ne soit pas utile.

	Polynésie 2024 Sujet 1
CORRECTION	
CLASSE: Terminale	EXERCICE 3: 6 points
VOIE: ⊠ Générale	ENSEIGNEMENT : physique-chimie
DURÉE DE L'ÉPREUVE : 1h03	CALCULATRICE AUTORISÉE: Oui sans mémoire, « type collège »

EXERCICE 3 Une jeune astronome

Vérification des caractéristiques commerciales de la lunette.

Q1.

Un système optique est dit afocal s'il donne d'un objet à l'infini une image à l'infini.

Q2.

 L_1 : l'objectif car c'est une lentille convergente possédant une grande distance focale. C'est la lentille placée vers l'objet.

 L_2 : l'oculaire car c'est une lentille convergente possédant une petite distance focale. C'est la lentille où on place l'œil.

Q3.

Le rayon lumineux issu de B pénétrant dans la lunette par le centre optique O_1 de la lentille L_1 n'est pas dévié.

Position de B_1 image intermédiaire de B: Comme l'objet $A_{\infty}B_{\infty}$ est à l'infini, son image A_1B_1 est dans le plan focal image de l'objectif L_1 .

L'autre rayon lumineux issus de B, sort de L₁ en passant par B₁.

Pour le rayon émergeant de la lentille L₂ :

- ➤ On trace un rayon issu de B₁ passant par O₂. Ce rayon ne sera pas dévié.
- ➤ De plus nous savons que l'image d'un objet situé dans le plan focal objet d'une lentille se forme à l'infini. Ainsi les rayons émergeants de la lentille L₂ issue de B₁ seront parallèles à ce rayon tracé.

Q4.

Q5

Le grossissement G d'une lunette astronomique est défini par :

$$G = \frac{\theta'}{\theta} = \frac{\frac{A_1 B_1}{f_2'}}{\frac{A_1 B_1}{f_2'}} = \frac{A_1 B_1}{f_2'} \times \frac{f_1'}{A_1 B_1} = \frac{f_1'}{f_2'}$$

Vérifions que les grossissements annoncés par le fabricant sont corrects :

Avec l'oculaire de distances focales $f'_2 = 4 \text{ mm}$

$$G = \frac{60,0 \times 10^{-2}}{4 \times 10^{-3}}$$

$$G = 150$$

Avec l'oculaire de distances focales $f'_2 = 20 \text{ mm}$

$$G = \frac{f_1'}{f_2'}$$

$$G = \frac{60.0 \times 10^{-3}}{20 \times 10^{-3}}$$

$$G = 30$$

Ainsi, les grossissements annoncés par le fabricant (x30 et x150) sont corrects.

Visibilité de la grande tache rouge de Jupiter.

Q6.

La meilleure situation pour observer Jupiter est la position dans laquelle Jupiter est la plus proche : quand elle est en opposition.

$$\begin{split} &D_{TJ} = D_{JS} - D_{TS} \\ &D_{TJ} = 7.8 \times 10^8 - 1.5 \times 10^8 \\ &D_{TJ} = 6.3 \times 10^8 \text{ km} \end{split}$$

Figure 2. Positions de Jupiter sur son orbite en opposition et en conjonction.

Données :

- Distance Terre-Soleil: D_{TS} = 1,5×10⁸ km;
- ➤ Distance Jupiter-Soleil : D_{JS} = 7,8×10⁸ km.

Q7.

Calculons le diamètre apparent θ de la grande tache rouge vue à l'œil nu.

Pour des angles très petits, exprimés en radian : $\tan \theta \approx \theta$

$$\theta \approx \tan \theta = \frac{\text{opposé}}{\text{adjacent}}$$

$$\theta = \frac{D}{D_{TJ}}$$

$$\theta = \frac{1.5 \times 10^4}{6.3 \times 10^8}$$

$$\theta = 2.4 \times 10^{-5} \text{ rad}$$

Q8.

Calculons la valeur du diamètre apparent θ' de la grande tache rouge vue à travers la lunette avec le plus petit grossissement de la lunette.

$$G = \frac{\theta'}{\theta}$$

$$\frac{\theta'}{\theta} = G$$

$$\theta' = G \times \theta$$

$$\theta' = 30 \times 2.4 \times 10^{-5}$$

$$\theta' = 7.2 \times 10^{-4} \text{ rad}$$

Q9

Un œil humain ne peut pas distinguer deux points si l'angle apparent θ' entre les deux points est inférieur à 2.9×10^{-4} rad.

 $\theta'=7.2\times10^{-4}>2.9\times10^{-4}$ rad : l'élève pourra voir la grande tache rouge avec cette lunette au plus petit grossissement.

Q10

La diffraction est un phénomène optique susceptible de dégrader la visibilité de la grande tache rouge.