

Scientific Computing Lab

Ordinary Differential Equations
Implicit Discretization

Tobias Neckel

• Vector field of ODE $\dot{y}(t) = -k \cdot y(t)$

• Vector field of ODE $\dot{y}(t) = -k \cdot y(t)$

Exlicit Euler, time step size: 1

• Exlicit Euler, time step size: 1.5

• Exlicit Euler, time step size: 2.5

• Exlicit Euler, timestep-size: 3.0

• Exlicit Euler, time step size: 4.0

• Exlicit Euler, time step size: 5.0

• Exlicit Euler, time step size: 6.0

- stiff equations
 - instabilities if dt does not obey restrictions
 - "all explicit SSM with stable dt provide very small local errors"
 - examples: damped mech. systems, parabolic PDE, chem. reaction kinetics
- remedy: (special) implicit methods

Stiff Equations

- Example: Dahlquist's test equation: $\dot{y}(t) = \lambda \cdot y(t)$
 - stable analyt. solution
 - explicit methods:

$$\Delta t \leq |c/\lambda|$$
 also in

steady phase (c depending on the method)

 $\Delta~t~$ limited by stability & accuracy

 Δt limited by stability only!

Implicit Methods

- implicit Euler
- 2nd-order Adams Moulton

$$> y_{n+1} = F(y_{n+1}, t_n, \Delta t)$$

Implicit Methods

• implicit Euler (1st-order method)

Implicit Methods

2nd-order Adams Moulton (Trapezoidal Rule)

Implicit method may result in complex expressions:

ODE

$$f(t,y(t)) = -\log(y(t))$$

implicit Euler:

$$y_{n+1} = y_n + \Delta t \cdot \dot{y}_{n+1}$$

$$= y_n + \Delta t \cdot f(t_{n+1}, y_{n+1})$$

$$= y_n - \Delta t \cdot \log(y_{n+1})$$

 Implicit method may result in complex expressions: implicit Euler:

$$y_{n+1} = y_n - \Delta t \cdot \log(y_{n+1})$$

needs to be solved:

$$y_{n+1} + \Delta t \cdot \log(y_{n+1}) - y_n = 0$$

Can (only) be solved numerically!

Numerical approach to find roots of functions

$$G(x)=0$$

Numerical approach to find roots of functions

$$G(x)=0$$

Numerical approach to find roots of functions

$$G(x)=0$$

$$x_{i+1} = x_i - \frac{G(x_i)}{G'(x_i)}$$

- Numerical approach to find roots of functions
- In our case we get

$$G(y_{n+1})=0$$

• Thus, we need $G'(y_{n+1})$

• Initial example: $y_{n+1} = y_n - \Delta t \cdot \log(y_{n+1})$

$$G(y_{n+1}) = y_{n+1} + \Delta t \cdot \log(y_{n+1}) - y_n$$

$$G'(y_{n+1}) = 1 + \frac{\Delta t}{y_{n+1}}$$

 Convergence examples of the Newton iteration (cf. separate file)

Explicit versus Implicit

- explicit:
 - cheap time steps
 - many time steps
- implicit:
 - expensive/impossible time steps
 - less time steps