Data Storage

What is stored: Schemas, Relation metadata (e.g. indexes, statistical info), Log files

Secondary Storage

- DBMS storage includes:
 - Data: Stored in disk blocks/pages
 - File layer: Organisation and data retrieval
 - Buffer manager: Reading/writing of disk pages
 - Disk space manager: Keeps track of pages used by file layer

Magnetic Hard-Disk Drive (HDD)

- Disk Access time:
 - 1. Command Processing time (negligible)
 - 2. Seek time: Move disk head on track
 - 3. Rotational delay: Rotate to put head on start of correct sector
 - a. Avg rotational delay = time for $\frac{1}{2}$ revolution = $\frac{1}{2} \times \frac{60}{RPM}$ s
 - 4. Transfer time: Rotate along the correct sector(s) to move data to/from disk = $\frac{\text{\# sectors read}}{\text{Total \# sectors on track}} \times \frac{60}{\text{RPM}} \text{ s}$
- Sequential I/O:
 - Pages stored contiguously on one track, then move on to next surface of the cylinder (i.e. same track across different surfaces), then move on to next cylinder
- Solid-State Drive (SDD)
 - Per block: Avg seek time + Avg rotational delay + Transfer time

Buffer Manager

- Maintains a buffer pool in RAM (memory allocated for DBMS) for caching. Each unit of memory is called a frame
 - Each frame has:
 - 1. Pin count: # clients using the page
 - 2. Dirty flag: Whether page has been modified but not updated on
- Disk pages are fetched into/release from the buffer pool
- Page request procedure:
 - 1. Client requests page P
 - 2. Is page P already in memory?
 - a. Yes: Pin frame F. Return address of F. End
 - b. No: continue to 3
 - 3. Find free frame or evict a page if buffer pool is full (i.e. Find some frame F.pin = 0)
 - 4. Pin frame F
 - Write frame F into disk if F is dirty
 - Return address of frame F

Page Replacement Policies

Clock Replacement Policy

- Each frame has an additional reference bit
- Pointer moves in FIFO manner
- Only frame with reference bit = 0 AND pin = 0 will be replaced
- Reference bit set to 0 when pin drops to 0

Clock replacement procedure:

DO NOT increment pointer after each successful page replacement

Page/Record Format

Fixed-length Records

- Each record is of fixed length.
- Each record is idenfitied by a RID = (page id, slot #)
- Packed: Contiguous; Unpacked: Not Contiguous
- Record Format: Fields in a recor

Variable-length Records (Slotted Page Organisation)

- Slot directory:
 - o Pointer to start of free space: Memory location for next record to be inserted
 - Number of slots: Increments whenever a new record is inserted
 - Pointers to each record: Address to the start of a record in the page + size of the record (byte offset)
- - Delimit fields with special symbols (e.g. F1 \$ F2 \$ \$ Fn)
 - Use an array of field offsets

Tree-based Indexing

- **Index**: Data structure to speed up data retrieval; stored as a file.)
- **Search key:** Sequence of k data attributes e.g. (name, age)
- Unique index: Search key is a candidate key
- Data entry: (Key Value, RID), stored in index

B+ Tree Index

- Leaf nodes store data entries. Leaf nodes are doubly-linked and all of them are on the same level
- Height h: # levels of internal nodes (root is level 0). Leaf nodes are at
- **Internal nodes** store index entries in the form $(p_0, k_1, p_1, k_2, p_2, ...p_n)$
- Order of a B+ Tree, d: Root node must contain [1, 2d] entries and non-root nodes must contain [d, 2d] entries
- A B+ Tree with n level of internal nodes has with order d has $2(d+1)^{n-1} \le \# \text{ leafs} \le (2d+1)^n$

Search

- 1. At each internal node, find largest k_i s.t. target $k_i \le k$.
 - a. Search subtree at p_i . if k_i exists
 - b. Otherwise, search subtree at p_0
- 2. Continue until leaf node and return all entries with search key = k.
 - a. If range search, traverse along leaf nodes and return all entries within the bound

Insert (Handling overflows)

Node splitting

Overflowing leaf node

- 1. Distribute the d+1 largest entries into new leaf node
- 2. Create and insert new index entry using smallest key in new leaf node into parent node
- 3. If parent node overflows, split parent node

o Overflowing internal node

- 1. Split at the middle key, and push it up to the parent node
- 2. Propagate node splitting until no overflows/reached root

Redistribution of data entries

- 1. Redistribute entries in overflowed leaf node N by putting the largest /smallest entry (among the 2d + 1 entries) into adjacent right/left
- 2. Then, update the separating key in parent

Delete (Handling underflows)

Node Merging

- o Underflowing leaf node
- 1. Merge underflowed leaf node N with adjacent sibling N' by moving all entries from N' to N.
- 2. Then, delete N' and the separating key in parent
- 3. Update parent index if needed
- **Underflowing internal node** (Pre-condition: N' must have d entries)
 - 1. Merge underflowed internal node N with adjacent sibling N' by pulling down separating key in parent, combining N and N'
 - 2. Propagate node merging until no underflows/reached root
- **Redistribution of data entries** (Pre-condition: N' must have > d entries)
 - 1. Redistribute entries by moving the data entry with the smallest/largest key from right/left sibling N' to underflowing leaf node N
 - 2. Update separating key in parent with the smallest key in N'

Redistribution of internal entries

- 1. Merge leaf nodes, causing internal node N to be underflowed
- 2. "Pull down" the separating parent key K between N and sibling N' and join with N
- 3. Then, replace the K in the affected index entry in parent node with $N'.k_i$ (i.e. left/right-most key in right/left sibiling)
- 4. Remove k_i from sibiling

Data Formats

- Format-1: Leaves store data records
- Format-2: Leaves store (k, rid)
- Format-3: Leaves store (k, rid-list)

Bulk Loading

- 1. Sort data entries to be inserted by search key
- 2. Load the leaf pages with those sorted entries
- 3. Initialize the B+ tree with an empty root page
- 4. For each leaf page (in sequential order), insert its index entry into the rightmost parent-of-leaf level page of the B+ tree
- Advantages:
 - o Efficient construction
 - Leaf pages are allocated sequentially

Hash-based Indexing

Numbers in the buckets are the HASH VALUES, NOT THE KEY VALUES

Linear Hashing

- N_0 = initial # of buckets = 2^m
- N_i = # buckets in at start of level $i = 2^i N_0 = 2^{m+i}$
- Split image of B_j = B_{j+N_i}

Insert

Hash function: $h_i(k) = h(k) \mod N_i$ (look at the last m + i bits)

Bucket # =
$$\begin{cases} h_i(k), & h_i(k) \ge next \\ h_{i+1}(k), & otherwise \end{cases}$$

- Splitting: occurs when any bucket overflows:
 - Split the bucket B_i pointed to by 'next'
 - o Redistribute entries:
 - Entries in $B_i: (m+i+1)^{th}$ bit is **0**
 - Entries in B_{i+N_i} : $(m+i+1)^{th}$ bit is **1**

Delete

- If last bucket B_{N_i+next} is empty:
 - If next > 0
 - 1. Decrement next
 - 2. Delete last bucket
 - o If next = 0 and level > 0
 - 1. Decrement level
 - 2. Update next to point to last bucket in previous level $(B_{N_{i-1}-1})$
- Delete overflow pages that become empty after redistribution

Performance

- Best case: No overflow pages 1 disk I/O per insertion
- Worst case: All hashed to the same bucket linear I/O cost
- Average: 1.2 disk I/O per insertion

Extendible Hashing

- Global depth (directory) = d; # directory entries = 2^d
- Local depth (bucket) = $l \le d$
- Directory entry # =last d bits of h(k); points to bucket
- All entries in a bucket have same l bits in their h(k)
- Corresponding entries: differ only by the dth bit (indexed 1)
- # directory entries pointing to a bucket = 2^{d-l}
- **Splitting**: occurs when target bucket B_i overflows
 - 1. Increment l of B_i
 - 2. Allocate new bucket B_i (split image) with same l
 - 3. Redistribute:
 - Entries in B_i : l^{th} bit is 0
 - Entries in $B_i: l^{th}$ bit is 1
 - 4. Using the last l bits, redistribute pointer(s) between B_i and B_j

- Bucket *B_i* overfows:
 - \circ If l = d
 - 1. Increment d and l of B_i
 - Double the number of directory entries
 - 3. Split B_i ; redistribute
 - 4. Redistribute pointer(s)
 - o If $l \le d$
 - 1. Increment l of B_i
 - 2. Split B_i ; redistribute
 - 3. Redistribute pointer(s)

Treased of the ETH of (v). The product of (v). The product of the ETH of (v). The product of (v). The pr

Delete

- If entries in B_i and B_i (corresponding entry) can fit into 1 bucket:
 - 1. Merge B_i and B_i into one bucket e.g. B_i
 - 2. Delete B_i
 - 3. Decrement l of B_i
 - 4. Move directory entries pointing to B_i to point to B_i
 - 5. If each pair of corresponding entries point to the same bucket, decrement d and halve the directory

Performance

At most 2 disk I/O per insertion

Index Formats

Clustered vs Unclustered

- Clustered: Order of data records is close to order of the data entries
- Format-1 index is a clustered index
- Cost of RID lookups become 0 (format-1) or $\|\sigma(R)\|/b_d$
- Each relation can have at most one clustered index

Dense vs Sparse

- Dense: There is an index record for every search key value; otherwise, it is sparse
- Unclustered index must be dense
- Format-1 B+ Tree index is sparse

Query Evaluation: Sort

External Mergesort

- Assume N data records need to be sorted
- Assume that data records are on the disk
- Only B memory pages are allocated for sorting
 - o 1 page is allocated for output
 - o B-1 pages are allocated for **input**
- 1. Read the N data records into $\lceil N/B \rceil$ initial sorted runs
- 2. Recursively merge the sorted runs in a B-1 way merge
 - a. With B-1 input pages, we can sort B-1 sorted runs by allocating one page for each of the B-1 sorted runs
 - b. Each input pages has a pointer to the current smallest value
 - c. When output page is full, write the page back to disk

Analysis

- N_0 = # sorted runs in initial pass (pass 0) = [N/B]
- Total # passes = $[log_{B-1}(N_0)] + 1$
- Total # I/O = $2N([log_{B-1}(N_0)] + 1)$
 - o Each pass has N reads and writes

External Mergesort with Blocked I/O

- Instead or reading/writing one page at a time, read/write in units of buffer blocks of b_i and b_o pages respectively
 - o This allows for sequential I/O over random I/O
 - Assume B memory pages are allocated for sorting
 - Output block size = b_0 pages; Input block size = b_i pages
 - \circ 1 block is allocated for **output**; $\left|\frac{B-b_o}{b_i}\right|$ blocks are allocated for **input**
- 1. Read the N data records into $\lceil N/B \rceil$ sorted runs
- 2. Recursively merge the sorted runs in a $\left| \frac{B-b_o}{b_i} \right|$ way merge
 - a. With $\left\lfloor \frac{B-b_0}{b_i} \right\rfloor$ input blocks, we can sort $\left\lfloor \frac{B-b_0}{b_i} \right\rfloor$ sorted runs by allocating one block for each of the sorted runs
 - b. When output block is full, write the block back to disk

Analysis

- $N_0 = \#$ sorted runs in initial pass (pass 0) = [N/B]
- F = # sorted runs that can be merged at each merge pass = $\left| \frac{B b_0}{b_i} \right|$
- Total # passes = $[log_E(N_0)] + 1$
- Reduced merge factor, but more sequential I/O

Query Evaluation: Select σ

- Access paths:
 - o Table scan: Scan all data pages
 - Index scan: Scan index pages + RID lookup (if needed)
 - Index intersection: Combine results from multiple index scans + RID lookup (if needed)
- More selective access path → fewer pages need to be accessed
- Include Columns: Specify the attributes whose values are also stored in the data entries of the index, on top of the index key. Can be used to avoid RID lookups
- Covering Index: Index I is a covering index for query Q if all attributes rein
 Q are part of the key or include columns(s) of I
 - Then, O is evaluated with index-only plan

Matching Predicates

B+Tree: $I = (K_1, K_2, ..., K_n)$. I matches predicate p if p is in the form:

$$(K_1=c_1) \land \dots \land (K_{i-1}=c_{i-1}) \land (K_i \ op_i \ c_i), \quad i \in [1,n]$$
 \circ Prefix key with all equality operator, and at most one non-equality

operator on last attribute of prefix

Hash Index: $I = (K_1, K_2, ..., K_n)$. I matches predicate p if p is in the form:

 $(K_1 = c_1) \wedge (K_2 = c_2) \wedge \dots \wedge (K_n = c_n)$

o All attributes must appear in p and only equality operator

Primary Conjuncts p'

• The subset of conjuncts in *p* that *I* matches

Covered Conjuncts p_c

 The subset of conjuncts p_c in p such that all attributes in p_c appear in the key or include column(s) of I

Cost Evaluation

B+ Tree Index

$$\textit{Cost}_{internal} = \left\{ \begin{array}{c} \left\lceil \log_F \left\lceil \frac{\|R\|}{b_d} \right\rceil \right\rceil, \; \text{format} - 1 \\ \left\lceil \log_F \left\lceil \frac{\|R\|}{b_i} \right\rceil \right\rceil, \; \text{otherwise} \end{array} \right.$$

$$Cost_{leaf} \quad = \left\{ \begin{array}{l} \left\lceil \frac{\left\| \sigma_{pr}(R) \right\|}{b_d} \right\rceil, \; \text{format} - 1 \\ \left\lceil \frac{\left\| \sigma_{pr}(R) \right\|}{b_i} \right\rceil, \; \text{otherwise} \end{array} \right.$$

$$\textit{Cost}_{\textit{RID}} \qquad = \left\{ \begin{array}{ll} 0, & \text{format} - 1 \text{ or covering} \\ \left\| \sigma_{p_c}(R) \right\|, & \text{otherwise (worst case)} \\ \frac{\left\| \sigma_{p_c}(R) \right\|}{b_d}, & \text{otherwise (clustered)} \end{array} \right.$$

$$Cost_{total} = Cost_{internal} + Cost_{leaf} + Cost_{RID}$$

Hash Index

- Ranged query: Table scan = |R|

$$\circ \quad Cost_{total} = Cost_{records} \ge \left\lceil \frac{\|\sigma_{pr}(R)\|}{b_d} \right\rceil$$

- - $\begin{array}{l} \circ \quad \textit{Cost}_{entries} \geq \Big\lceil \frac{\|\sigma_{p_I}(R)\|}{b_i} \Big\rceil \text{, due to possible long overflow chain} \\ \circ \quad \textit{Cost}_{records} = \left\{ \begin{array}{l} 0, \ I \text{ is covering index} \\ \|\sigma_{p_c}(R)\|, \text{ otherwise} \end{array} \right.$
 - \circ $Cost_{total} = Cost_{records} + Cost_{entrie}$

Query Evaluation: Project π

• $\pi_L(R)$ – No duplicates (select DISTINCT); $\pi_L^*(R)$ – Keep duplicates

Sort-Based Projection

Unoptimized Approach

- Extract attributes L from records $R \rightarrow \pi_I^*(R)$
- Sort $\pi_L^*(R)$ using L as sort key \rightarrow sorted $\pi_L^*(R)$ [External Mergesort]
- Scan $\pi_i^*(R)$ to remove duplicates $\rightarrow \pi_i(R)$
- Analysis
- 1. Read I/O (table scan) = |R|; Write I/O = $|\pi_L^*(R)| \rightarrow |R| + |\pi_L^*(R)|$
- 2. Given B buffer pages for sorting:
 - Merge factor = B-1; $N_0 = [\pi_L^*(R)/B]$
 - Step 2 total = $2|\pi_L^*(R)|(log_{R-1}N_0 + 1)$
- 3. Step 3 total = $|\pi_L^*(R)|$ (ignore write I/O as cost)
- 4. Total = $|R| + 2|\pi_L^*(R)|(log_{R-1}N_0 + 2)$

Optimized Approach

- 1. Create sorted runs with attributes L
 - Write only attributes L to output page
- 2. Merge sorted runs and remove duplicates simultaneously
- 1. Read I/O = |R|; Write I/O = $|\pi_I^*(R)| \rightarrow \text{Step 1 total} = |R| + |\pi_I^*(R)|$
- 2. Given B buffer pages for sorting:
 - Merge factor = B 1; $N_0 = [\pi_L^*(R)/B]$
 - Step 2 total = $2|\pi_L^*(R)|(log_{R-1}N_0) |\pi_L^*(R)|$
- 3. Total = $|R| + 2|\pi_L^*(R)|(log_{B-1}N_0)$

- If $B > \sqrt{|\pi_L^*(R)|}$,
 - o # initial sorted runs = $\left\lceil \frac{|R|}{R} \right\rceil \approx \sqrt{|\pi_L^*(R)|}$
 - o # merging passes = $log_{R-1}(\sqrt{|\pi_L^*(R)|}) \approx 1$
 - o Total = $|R| + 2|\pi_L^*(t)|$

Hash-Based Projection

- 1. **Partition** all the tuples in R into $R_1, R_2, ..., R_{B-1}$
 - Only B memory pages are allocated for hash table
 - o 1 page is allocated for input buffer
 - o B-1 pages for **output** buffers/partitions $R_1, R_2, ..., R_{B-1}$
 - For each t in R,
 - 1.1 $h(\pi_L(t))$, then output $\pi_L(t)$ into output buffer $R_{h(\pi_L(t))}$
 - 1.2 If $R_{h(\pi_L(t))}$ is full, flush to disk.
 - Output of partition phase is $\pi_L^*(R_1), \pi_L^*(R_2), ..., \pi_L^*(R_{B-1})$
- 2. **Duplicate Elimination**: For each $\pi_L^*(R_i)$,
 - 2.1 Initialize hash table T of size B-1
 - 2.2 For each tuple t in $\pi_L^*(R_i)$:
 - 2.2.1 Perform h'(t) = j (NOTE: $h' \neq h$)
 - 2.2.2 If t not in B_i , then insert t into B_i
 - 2.3 Output all the tuples in T as $\pi_L(R_i)$
- 3. Combine all $\pi_1(R_i)$
- Entire T must fit in main memory. If not, recursively partition $\pi_i^*(R_i)$ into $\pi_L^*(R_{i_1}), ..., \pi_L^*(R_{i_{R-1}})$

Analysis

- Assuming no partition overflow:
 - 1. Partitioning = $|R| + |\pi_L^*(R)|$
 - Read I/O (table scan) = |R|.
 - Each t is projected before writing. So, write I/O = $|\pi_L^*(R)|$.
 - 2. Duplicate elimination = $|\pi_L^*(R)|$
 - Each of the projected tuples is read once. Ignore write I/O
 - 3. Total = $|R| + 2|\pi_L^*(t)|$
- If $B > \sqrt{f|\pi_I^*(R)|}$, then there will not be partition overflow
 - 1. Assume h hashes every t in R uniformly
 - 2. Each R_i will have $\approx \frac{|\pi_L^*(R)|}{R-1}$ pages $\Rightarrow B > f \frac{|\pi_L^*(R)|}{R-1} \approx \sqrt{f|\pi_L^*(R)|}$

Indexing

- If there is a covering index *I* for the projection, then replace table scan (i.e. read I/O = |R|) in the both projection schemes with index
- If index is ordered (e.g. B+-tree) whose search key (e.g. (A, B, C) includes wanted attributes (e.g. $\pi_{AB}(R)$) as a prefix
 - 1. Scan all the data entries in order
 - 2. Compare adjacent data entries for duplicates

Query Evaluation: Join ⋈

• In general, the smaller relation should be the outer relation

Tuple-based Nested Loop Join

- For each tuple r in R, for each tuple s in S, check if r matches sAnalysis
- Scan R = |R|; Scan $S = ||R|| \times |S|$
- Total = $|R| + ||R|| \times |S|$

Page-based Nested Loop Join

• For each page P_r in R, for each page P_s in S, for each tuple r in P_r , for each tuple s in P_s , check if r matches s

Analysis

- Scan R = |R|; Scan $S = |R| \times |S|$
- Total = $|R| + |R| \times |S|$

Block Nested Loop Join

- Allocate 1 buffer page for output, 1 buffer page for S and B-2 buffer pages for R. Read pages from R in blocks of B-2
- For each block B_i from R, for each page P_s in S, for each tuple r in B_i , for each tuple s in P_s , check if r matches s

- Scan R = |R|; Scan $S = \left[\frac{|R|}{R-2}\right] \times |S|$
- Total = $|R| + \left[\frac{|R|}{R}\right] \times |S|$

Index Nested Loop Join

- Precondition: There is an index on the join attribute(s) of **inner** relation
- For each tuple r in R, use r to probe S's index to find matching tuples
- Assuming uniform distribution, one tuple in R matches with $\left[\frac{\|S\|}{\|\pi_{R(R)}\|}\right]$ tuples
- Scan R = |R|; Scan $S = ||R|| \times \left(log_F \left[\frac{||S||}{h_A}\right] + \left[\frac{||S||}{h_A||\pi_{SC}||}\right]\right)$
- Total = $|R| + ||R|| \times \left(log_F \left[\frac{||S||}{h_F} \right] + \left[\frac{||S||}{h_F ||G_F|} \right] \right)$

Sort-Merge Join

• Assume $|R| \le |S|$; R is outer relation

Unoptimized Approach

- 1. **Sort**: Sort both R and S based on \bowtie attributes
 - This partitions R into $R_1, ..., R_k$ and S into $S_1, ..., S_l$ each containing tupls with the same join attribute value(s)
- 2. Merge:
 - 2.1. Initialize pointers p_r and p_s for R and S, each pointing to the first tuple. Let r and s be the tuples pointed to by p_r and p_s
 - 2.2. r and s do not match: Advance smaller pointer
 - 2.2.1 If p_r is advanced and r matches s at p_s' , rewind: $p_s \leftarrow p_s'$
 - 2.3. *r* and *s* match:
 - 2.3.1 Remember position $p_s: p_s' \leftarrow p_s$
 - 2.3.2 Output $r \bowtie s$ and advance p_s until r and s do not match

Analysis

- Sort R and S:
 - External Mergesort = $2|R|(log_m(N_R) + 1) + 2|S|(log_m(N_S) + 1)$
 - Internal Mergesort = |R| + |S|
- o Merge:
 - Best case: No rewinds = |R| + |S|
 - Worst case: All tuples in R and S match = $|R| + ||R|| \times |S|$

Optimized Approach

- Start merging as soon as sorted runs from R and S can fit into memory
 B > N(R,i) + N(S,i), i, i = # passes from sorting R, S
- 1. Create sorted runs of R and merge partially to get (R, i)
- 2. Create sorted runs of S and merge partially to get (S, j)
- 3. Merge (R, i) and (S, j)
- Analysis: If $B > \sqrt{2|S|}$
 - # initial sorted runs of $S < \sqrt{\frac{|S|}{2}}$
 - Total # initial sorted runs of R and $S < \sqrt{2|S|}$
 - $\circ\quad$ 1 pass is sufficient to merge and join the initial sorted runs

Grace Hash Join

- Assume R = build relation, S = probe relation
- 1. Partition R into $R_1, ..., R_{B-1}$ by h
- 2. Partition S using same h into $S_1, ..., S_{B-1}$
- 3. For each R_i , build hashtable
 - 3.1. Allocate 1 buffer page for input, 1 page for output and B-2 pages for hashtable ${\cal T}$
 - 3.2. For each tuple r in R_i , read it into input buffer and hash it into T using h', $h \neq h'$
 - 3.3. For each tuple s in S_i , read it into input buffer and **probe** T: If s matches with any r in bucket h'(s), write $r \bowtie s$ into output buffer

Analysis

- By UHA: $|R_i| = \frac{|R|}{B-1}$. Let size of T be $f \times \frac{|R|}{B-1}$, f = fudge factor
 - o Hence, $B > \frac{f|R|}{B-1} + 2 \approx \sqrt{f|R|}$ (1 input buffer, 1 output buffer) to prevent partition overflow
- Assuming no partition overflow:
 - 1. Partitioning = 2(|R| + |S|)
 - 2. Probing = |R| + |S|
 - Read each page of R_i to build T
 - Read each page of S_i to probe
 - 3. Total = 3(|R| + |S|)

Query Evaluation: Misc Operations

Set Operations

- Intersection R ∩ S
 - o Join with join predicate involving all columns of R and S
- Cross Product $R \times S$
 - Join with join predicate = true (trivial)

■ Union $R \cup S$

- Sorting approach:
 - 1. Sort R, sort S (on all attrs)
 - 2. Combine R and S and removing duplicates
- Hashing approach: ≈ Grace Hash Join
- 1. Partition (on all attrs) R into $R_1, ..., R_{R-1}$,
- 2. Partition S into $S_1, ..., S_{R-1}$
- 3. Build hash table T_i for each R_i (suppose R is build relation)
- 4. For each $t \in S_i$, probe T_i and insert only if t not in T_i
- Difference R S
 - o Sorting approach: ≈ Sort-Merge Join using *R* as outer relation
 - 1. Sort R. sort S (on all attrs)
 - 2. Remove $t \in R$ if $t \in S$
 - Hashing approach: \approx Grace Hash, using R as build relation
 - 1. Partition (on all attrs) R into $R_1, ..., R_{B-1}$,
 - 2. Partition S into $S_1, ..., S_{R-1}$
 - 3. Build hash table T_i for each R_i
 - 4. For each $t \in S_i$, probe T_i and discard t from T_i if t in T_i

Aggregate Operations

- Simple Aggregation: Maintain running info while scanning table
 - o Valid for SUM, COUNT, AVG, MIN, MAX

Group-by Aggregation

- o Sorting approach
 - 1. Sort relation by 'GROUP BY' attributes
 - 2. Scan relation and compute aggregate for each group
- o Hashing approach
 - 1. Scan relation to build hash table on 'GROUP BY' attributes
 - 2. Maintain running info for each group

Using Index

 Use index I over table scan if I is a covering index for aggregation operation

Query Evaluation Approaches

Materialized evaluation

- An operator is evaluated only when all of its operands has been completely evaluated/materialized
- o Materialize intermediate results to disk

Pipelined evaluation

- o Pass the output directly to its parent operator (no materialize)
- o Execution of operators is interleaved
- Blocking operator: Operator that is unable to produce any output until it has received all the tuples from its child operators

Iterator Interface of Pipelined evaluation

- 1. open initialization; allocates resources and operators' args
- 2. getNext generates next output tuple/null if no more output
- 3. close: deallocate state information

Query Optimization

Join Plan Notation:

Commutative	Commutating σ with π
1.1. $R \times S \equiv S \times R$	4.1. $\pi_L(\sigma_p(R)) \equiv \pi_L(\sigma_p(\pi_{L\cup attr(p)}(R)))$
1.2. $R \bowtie S \equiv S \bowtie R$	
Associative	Commutating σ with \times/\bowtie
2.1. $(R \times S) \times T \equiv R \times (S \times T)$	5.1. $\sigma_v(R \times S) \equiv \sigma_v(R) \times S$,
2.2. $(R \bowtie S) \bowtie T \equiv R \bowtie (S \bowtie T)$	$attr(p) \subseteq attr(R)$
	5.2. $\sigma_p(R \bowtie_q S) \equiv \sigma_p(R) \bowtie_q S$,
	$attr(p) \subseteq attr(R)$
	5.3. $\sigma_p(R \cup S) \equiv \sigma_p(R) \cup \sigma_p(S)$
Idempotence	Commutating π with \times/\bowtie
3.1. $\pi_A(\pi_B(R)) \equiv \pi_A(R)$,	6.1. $\pi_L(R \times S) \equiv \pi_{L_R}(R) \times \pi_{L_S}(S)$
$A \subseteq B \subseteq \operatorname{attr}(R)$	6.2. $\pi_L(R \bowtie_p S) \equiv \pi_{L_R}(R) \bowtie_p \pi_{L_S}(S)$,
3.2. $\sigma_{p_1}(\sigma_{p_2}(R)) \equiv \sigma_{p_1 \wedge p_2}(R)$	$\operatorname{attr}(p) \cap \operatorname{attr}(R) \subseteq \operatorname{L}_{\operatorname{R}} \& \operatorname{attr}(p) \cap \operatorname{attr}(S) \subseteq \operatorname{L}_{\operatorname{S}}$
11 (11)	6.3. $\pi_L(R \cup S) \equiv \pi_L(R) \cup \pi_L(S)$
Ought Blan Troops	

Query Plan Trees:

- o Linear: At least 1 operand for each join operation is a base relation
- o Bushy: There is a join operation where no operand is a base relation
- Left-deep: Every right join operand is a base relation
- Right-deep: Every left join operand is a base relation

Query Plan Enumeration

- Uses a bottom-up Dynamic Programming approach starting with size-1 relations and memoizing the best plan Input: A SPJ query q on relations B₁, B₂, ..., B_n
- For every possible combination S of R_i, for every possible pair of paritions S_i and S_j in S, find the optPlan(S) of joining S_i and S_j using the memoized optPlan(S_i) and optPlan(S_i)

System R Optimizer

- Uses an enhanced Dynamic Programming approach that also considers sort order of query plan's output
 - Maintains optPlan (S_i, o_i) , o_i = sort order of output by query plan wrt S_i
 - \circ $o_i = \text{null}$ if output is unordered or a sequence of attributes
- Prunes search space:
 - o Considers only left-deep query plans
 - Avoids cross-product query plans
 - Considers early selections and projections

Query Plan Cost Estimation

Reduction factor $rf(t_i)$: fraction of tuples in e that satisfy t_i i.e. $rf(t_i) = \frac{\|\sigma_{t_i}(e)\|}{\|e\|}$

Assumptions						
Uniformity	Independence	Inclusion				
Uniform distribution	Independent distribution	For $R \bowtie_{R.A=S.B} S$,				
of attribute values	of values in diff attributes	if $ \pi_A(R) \le \pi_B(S) $, then				
		$\pi_A(R) \subseteq \pi_B(S)$				
$rf(A-c) \approx \frac{1}{c}$	$rf(t_i \wedge t_j) \approx rf(t_i) \times rf(t_j)$	rf(R.A = S.B)				
$rf(A=c) \approx \frac{1}{\ \pi_A(R)\ }$		≈				
		$max\{ \pi_A(R) , \pi_B(S) \}$				

Equiwidth Histogram

- Each bucket has almost equal number of values
- All buckets have the same width/range size of B

•
$$\|\sigma_{A=c}(R)\| = \frac{\|b_i\|}{R}$$

$$\|\sigma_{A=c}(R)\| = \frac{\|b_i\|}{B}$$

$$\|\sigma_{A\in[x,y]}(R)\| = \frac{f_1\|b_i\|}{B} + \|b_{i+1}\| + \dots + \frac{f_2\|b_{i+k}\|}{B}$$

Equidepth Histogram

- Each bucket has almost equal number of tuples. Let B_i denote the width of bucket b_i
- A value can be contained in multiple buckets
- $\|\sigma_{A=c}(R)\| = \frac{f_1\|b_i\|}{b_i} + \frac{f_2\|b_{i+1}\|}{B_{i+1}} + \dots + \frac{f_k\|b_{i+k}\|}{B_{i+k}}, \text{ for all } b_j \text{ containing } c$ $\|\sigma_{A\in[x,y]}(R)\| = \frac{f_1\|b_i\|}{B_i} + \frac{f_2\|b_{i+1}\|}{B_{i+1}} + \dots + \frac{f_k\|b_{i+k}\|}{B_{i+k}}$

Histogram with MCV

 Separately keep tract of the frequencies of the top-k most common values and exclude them from the histogram