Introduction to R for Biologists

Day 4 – Data analysis

Day 4 Outline

- 1. Hypothesis testing
 - 1. Test statistics
 - 2. p-values
 - 3. False discovery rate
- 2. Exploratory analysis
 - A. Dimensionality reduction
 - B. Clustering

Many, many types of statistical tests

Your choice will depend on your experiment:

http://www.biostathandbook.com/testchoice.html

But generally these are the work horses:

Hypothesis Test	Test Statistic
Z-Test	Z-Score
T- Test	T-Score
ANOVA	F-statistic
Chi-Square Test	Chi-square statistic

But they all follow the same pattern

- 1. Calculate a sample statistic (δ) from your real data
 - Mean, difference in means, median, proportion, difference in proportions, chi-squared value, etc
- 2. Use simulation to create a null distribution
- 3. Compare δ to the null distribution how does it fit?
- Calculate probability (p-value) that δ could exist in a null world
- 5. Decide if δ is statistically significant

Technical definition:

 Probability of observing the results by chance given that the null hypothesis is correct

It's not their fault, said Steven Goodman, co-director of METRICS. Even after spending his "entire career" thinking about p-values, he said he could tell me the definition, "but I cannot tell you what it means, and almost nobody can." Scientists regularly get it wrong, and so do most textbooks, he said.

The Presumption of Innocence:

All molecules are innocent until proven guilty beyond a reasonable doubt.

Significance level or p-value cutoff

Biologist The Judge Says

How good is your evidence?

- i.e., how much statistical power does your experiment have?
- Two factors:
 - Effect size
 - Sample size

As the # of comparisons go up \rightarrow probability of a false positive goes up

So if you perform the same test a bunch of times, eventually you're going to get a false positive

 Consider an RNA-seq differential expression experiment in HEK293 cell lines, +/- drug treatment

 You measure 12,000 transcripts in both the control and treated samples

 You perform 12,000 statistical tests for mRNA in control vs treated (p-value <= 0.05)

 Probability of <u>at least</u> 1 false positive increases to essentially 100%

- Active area of research
- No universally accepted approach
- Corrective algorithms span the extremely conservative (e.g., Bonferroni correction) to the less conservative (e.g., Benjamini-Hochberg procedure)

Principal Components Analysis (PCA)

- Dimension reduction
- Useful for exploratory data analysis of highdimensional data sets.

Example: Consider a data set of heights and weights of people

Example: Consider a data set of heights and weights of people

Example: Consider a data set of heights and weights of people

PCA on this data set reframes data in terms of overall size and heavyness

In our earlier example, overall size and heaviness are uncorrelated


```
> pca
Standard deviations:
[1] 1.7083611 0.9560494 0.3830886 0.1439265
```

Rotation:

```
PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971
```

```
> pca
Standard deviations:
[1] 1.7083611 0.9560494 0.3830886 0.1439265
```

Rotation:

```
PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971
```

Squares of the std. devs represent the % variance explained by each PC


```
> pca
Standard deviations:
[1] 1.7083611 0.9560494 0.3830886 0.1439265
```

Rotation:

```
PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971
```

The rotation matrix tells us which variables contribute to which PCs

We can also recover each original observation expressed in PC coordinates

> pca\$x

We can also recover each original observation expressed in PC coordinates

> pca\$x

```
PC1
                            PC2
                                           PC3
                                                         PC4
                                                0.024087508
      -2.25714118
                   -0.478423832
                                  0.127279624
      -2.07401302
                    0.671882687
                                  0.233825517
                                                0.102662845
      -2.35633511
                    0.340766425
                                 -0.044053900
                                                0.028282305
      -2.29170679
                    0.595399863
                                 -0.090985297
                                               -0.065735340
      -2.38186270
                   -0.644675659
                                 -0.015685647
                                               -0.035802870
      -2.06870061
                   -1.484205297
                                 -0.026878250
                                                0.006586116
                   -0.047485118
                                 -0.334350297
                                               -0.036652767
      -2.43586845
      -2.22539189
                   -0.222403002
                                  0.088399352
                                               -0.024529919
      -2.32684533
                    1.111603700
                                               -0.026769540
                                 -0.144592465
      -2.17703491
                    0.467447569
                                  0.252918268
                                               -0.039766068
      -2.15907699
                   -1.040205867
                                  0.267784001
                                                0.016675503
[12,] -2.31836413
                   -0.132633999
                                 -0.093446191
                                               -0.133037725
[13 \ 1 \ -2 \ 21104370]
                    0.726243183
                                  0 230140246
                                                0 002416941
```

Plot of iris plants in PC coordinates reveals differences among species

Species

- setosa
- versicolor
- virginica

These differences are much harder to see in the original variables

Species

- setosa
- versicolor
- virginica

k-means clustering

Method to automatically separate data sets into distinct groups.

Clustering example

Clustering example

k-means clustering algorithm

- 1. Start with *k* randomly chosen means
- 2. Color data points by the shortest distance to any mean
- 3. Move means to centroid position of each group of points
- 4. Repeat from step 2 until convergence

Algorithm example (k = 3)

Step 1: Choose 3 means at random

Algorithm example (k = 3)

Step 2: Color data points by closest distance to any mean

Step 3: Update means to centroid positions

Stop: no further change occurs


```
> km
K-means clustering with 3 clusters of sizes 38, 62, 50
Cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
   6.850000 3.073684 5.742105 2.071053
2 5.901613 2.748387 4.393548 1.433871
3 5.006000 3.428000 1.462000 0.246000
Clustering vector:
 [112] 1 1 2 2 1 1 1 1 2 1 2 1 2 1 2 1 2 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1
[149] 1 2
Within cluster sum of squares by cluster:
[1] 23.87947 39.82097 15.15100
(between SS / total SS = 88.4 %)
```

```
> km
K-means clustering with 3 clusters of sizes 38, 62, 50
Cluster means:
                                      Cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
 6.850000 3.073684 5.742105 2.071053
                                      the location of the
2 5.901613 2.748387 4.393548 1.433871
                                      final centroids
3 5.006000 3.428000 1.462000 0.246000
Clustering vector:
 [112] 1 1 2 2 1 1 1 1 2 1 2 1 2 1 2 1 2 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1
[149] 1 2
Within cluster sum of squares by cluster:
[1] 23.87947 39.82097 15.15100
(between SS / total SS = 88.4 %)
```

```
> km
K-means clustering with 3 clusters of sizes 38, 62, 50
Cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
    6.850000
             3.073684
                       5.742105
                                2.071053
 5.901613 2.748387 4.393548 1.433871
    5.006000
           3.428000 1.462000 0.246000
Clustering vector:
 3 2 2 1 2 2 2 2 2
                      [149] 1 2
         Clustering vector: provides the cluster to which each
                                       observation belongs
Within cluster sum of squares by cluster:
[1] 23.87947 39.82097 15.15100
 (between SS / total SS = 88.4 %)
```

(between SS / total SS = 88.4 %)

```
> km
K-means clustering with 3 clusters of sizes 38, 62, 50
Cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
   6.850000
         3.073684
                 5.742105 2.071053
2 5.901613 2.748387 4.393548 1.433871
3 5.006000 3.428000 1.462000 0.246000
Clustering vector:
 [149] 1 2
       Within cluster sum of squares: measures quality of
Within cluster sum of squares by cluster:
                        the clustering (lower is better)
[1] 23.87947 39.82097 15.15100
```

The clusters mostly but not exactly recapitulate the species assignments

cluster

- 1
- 2
- 3

Species

- setosa
- versicolor
- virginica

How do we determine the right number of means *k*?

- Many different methods, see e.g.: http://stackoverflow.com/a/15376462/4975218
- Simplest: plot within-sum-of-squares against k

A bend in within-sum-of-squares indicates the ideal number of clusters

