- 1) .
- a. Von Neumann's definition of ordinal: An *ordinal* is a set *y* that is transitive, connected, and well founded.
- b. Claim: the ordinals are well ordered by ∈.
 Proof: For a set to be well ordered, every non-empty subset has to have a least element, which in our case is an ∈-minimal element. This is well foundedness.
 Consider any nonempty set A of ordinals. Let a ∈ A be an arbitrary element of A. If a ∩ A = Ø, then a is an ∈-minimal element of A and we're done; if not, we need to show A has an ∈-minimal element. We consider B = a⁺ ∩ A, where a⁺ = a ∪ {a} is the immediate successor of a. We know that a⁺ is also an ordinal (Proposition 9.1). We know that there's an ∈-minimal b element in B because a⁺ is an ordinal, and we claim that b is also the ∈-minimal element in A. So, we need to prove that ∀a' ∈ A, either b = a' or b ∈ a'. Regarding a⁺ and a', we know that it's one of three cases: a' ∈ a⁺, a⁺ = a', or a⁺ ∈ a'. If a' ∈ a⁺, then we know a' ∈ B, so either b = a' or b ∈ a' because b is the ∈-minimal element of B. For other two cases of if a⁺ = a' or a⁺ ∈ a', then a⁺ ⊆ a' due to transitivity of an ordinal, and because b ∈ a⁺, it is so that b ∈ a'. QED.

Claim: the ordinals are not a set.

Proof: Assume for the sake of contradiction that there were a set O of all ordinals, then O would be an ordinal itself (Theorem 8.5), so $O \in O$, violating the well foundedness of ordinals, which is a contradiction.

- 2) .
- a. Axiom of choice: For every set A of nonempty sets there is a function f with domain A such that $\forall x \in A$, $f(x) \in x$.
- b. The 1-1 mapping $g: \alpha \to A$, where α is an ordinal and A is any set. Let us set z to some set not in A. By the Axiom of Choice, there is a choice function $f: P(A) \to \bigcup P(A)$ (where P(A) is the power set of A) such that, for all nonempty $B \subseteq A$, $f(B) \in B$. The functional property will be defined inductively (transfinite induction).

Base case: g(0) = f(A).

Inductive case: Suppose $g(\beta)$ has been defined for all $\beta \in \alpha$. If $A \setminus \{g(\beta) | \beta \in a\}$ is empty, then $g(\alpha) = z$; otherwise $g(\alpha) = f(A \setminus \{g(\beta) | \beta \in a\})$. It is clear that $\forall \alpha \in A$, there exists at most one ordinal α such that $g(\alpha) = a$. Thus, g is 1-1.

3) Consider if g's domain was the collection of all ordinals, then g would be a 1-1 mapping from the collection of all ordinals into A. If there were no α such that $g(\alpha) = z$, then g^{-1} (the inverse of g) would be a 1-1 mapping from A into the collection of all ordinals, making the collection of all ordinals a set by the Replacement Axiom, contradicting what we proved in question 1 part b.

4) Thus, there must exist an α who is the least ordinal such that $g(\alpha)=z$. We already proved in question 2 that $g|_{\alpha}$ (restriction of g to α) is 1-1. We now claim that g's range is all of A as required to prove the initial claim that every set A is well orderable. If g's range does not include all of A (assuming that for the sake of contradiction), then $A \setminus \{g(\beta)|\beta\in\alpha\}$ is not empty, and according to how we defined g earlier, $g(\alpha)=f(A\setminus \{g(\beta)|\beta\in\alpha\})$, which is an element of A, a contradiction.

Since there's some ordinal mapped 1-1 onto A, and ordinals are well ordered A can be well ordered. QED.