Отчёт по лабораторной работе №5

Дискреционное разграничение прав в Linux. Исследование влияния дополнительных атрибутов

Ярметов Камран НФИбд-01-18

Содержание

1	Цель работы		
2	2.1 2.2	олнение лабораторной работы Подготовка	6
3	3 Выводы		14
Список литературы			

List of Figures

2.1	подготовка к работе	5
2.2	программа simpleid	6
	результат программы simpleid	7
2.4	программа simpleid2	7
2.5	результат программы simpleid2	8
2.6	программа readfile	9
2.7	результат программы readfile	10
2.8	результат программы readfile	10
2.9	исследование Sticky-бита	13

1 Цель работы

Изучение механизмов изменения идентификаторов, применения SetUID и Sticky-битов. Получение практических навыков работы в консоли с дополнительными атрибутами. Рассмотрение работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

2 Выполнение лабораторной работы

2.1 Подготовка

- 1. Для выполнения части заданий требуются средства разработки приложений. Проверили наличие установленного компилятора дсс командой дсс -v: компилятор обнаружен.
- 2. Чтобы система защиты SELinux не мешала выполнению заданий работы, отключили систему запретов до очередной перезагрузки системы командой setenforce 0:
- 3. Команда getenforce вывела Permissive:

```
File Edit View Search Terminal Help

[root@yarmetov ~]# gcc -v
Using built-in specs.

COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/libexec/gcc/x86_64-redhat-linux/4.8.5/lto-wrapper
Target: x86_64-redhat-linux
Configured with: ../configure --prefix=/usr --mandir=/usr/share/man --infodir=/u
sr/share/info --with-bugurl=http://bugzilla.redhat.com/bugzilla --enable-bootstr
ap --enable-shared --enable-threads=posix --enable-checking=release --with-syste
m-zlib --enable__cxa_atexit --disable-libunwind-exceptions --enable-gnu-unique-
object --enable-linker-build-id --with-linker-hash-style=gnu --enable-languages=
c,c++,objc,obj-c++,java,fortran,ada,go,lto --enable-plugin --enable-initfini-arr
ay --disable-libgcj --with-isl=/builddir/build/BUILD/gcc-4.8.5-20150702/obj-x86_64-redhat-linux/cloog-install --enable-gnu-indirect-function --with-tu
ne=generic --with-arch_32=x86-64 --build=x86_64-redhat-linux
Thread model: posix
gcc version 4.8.5 20150623 (Red Hat 4.8.5-44) (GCC)
[root@yarmetov ~]# getenforce
Permissive
[root@yarmetov ~]# getenforce
```

Figure 2.1: подготовка к работе

2.2 Изучение механики SetUID

- 1. Вошли в систему от имени пользователя guest.
- 2. Написали программу simpleid.c.

Figure 2.2: программа simpleid

- 3. Скомпилировали программу и убедились, что файл программы создан: gcc simpleid.c -o simpleid
- 4. Выполнили программу simpleid командой ./simpleid
- 5. Выполнили системную программу id с помощью команды id. uid и gid совпадает в обеих программах

```
guest@yarmetov:~
                                                                                               File Edit View Search Terminal Help
Running transaction
  Installing : 1:mc-4.8.7-11.el7.x86_64
Verifying : 1:mc-4.8.7-11.el7.x86_64
                                                                                                 1/1
  mc.x86_64 1:4.8.7-11.el7
[root@yarmetov ~]# exit
logout
[kyarmetov@yarmetov ~]$
[kyarmetov@yarmetov ~]$ su guest
Password:
[guest@yarmetov kyarmetov]$
[guest@yarmetov kyarmetov]$ cd
[guest@yarmetov ~]$ mcedit simpleid.c
[guest@yarmetov ~]$ gcc simpleid.c -o simpleid
[guest@yarmetov ~]$ ./simpleid
uid=1001, gid=1001
[guest@yarmetov ~]$ id
uid=1001(guest) gid=1001(guest) groups=1001(guest) context=unconfined_u:unconfin
ed_r:unconfined_t:s0-s0:c0.c1023
[guest@yarmetov ~]$
```

Figure 2.3: результат программы simpleid

6. Усложнили программу, добавив вывод действительных идентификаторов.

Figure 2.4: программа simpleid2

7. Скомпилировали и запустили simpleid2.c:

```
gcc simpleid2.c -o simpleid2
./simpleid2
```

8. От имени суперпользователя выполнили команды:

```
chown root:guest /home/guest/simpleid2
chmod u+s /home/guest/simpleid2
```

- 9. Использовали ѕи для повышения прав до суперпользователя
- 10. Выполнили проверку правильности установки новых атрибутов и смены владельца файла simpleid2:
- ls -l simpleid2
 - 11. Запустили simpleid2 и id:
- ./simpleid2

id

Результат выполнения программ теперь немного отличается

12. Проделали тоже самое относительно SetGID-бита.

```
guest@yarmetov:~
                                                                                                                 File Edit View Search Terminal Help
[guest@yarmetov ~]$ gcc simpleid2.c -o simpleid2
[guest@yarmetov ~]$ ./simpleid2
e_uid=1001, e_gid=1001
real_uid=1001, real_gid=1001
[guest@yarmetov ~]$ su
Password:
[root@yarmetov guest]# chown root:guest simpleid2
[root@yarmetov guest]# chmod u+s simpleid2
[root@yarmetov guest]# ./simpleid2
e_uid=0, e_gid=0
c_utats, c_gards
real_uid=0, real_gid=0
[root@yarmetov guest]# id
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r:unconfi
ned_t:s0-s0:c0.c1023
[root@yarmetov guest]# chmod g+s simpleid2
[root@yarmetov guest]# ls -l simpleid2
 rwsrwsr-x. 1 root guest 8616 Feb 17 13:09 simpleid2
[root@yarmetov guest]# exit
[guest@yarmetov ~]$ ./simpleid2
e_uid=0, e_gid=1001
real_uid=1001, real_gid=1001
[guest@yarmetov ~]$
```

Figure 2.5: результат программы simpleid2

13. Написали программу readfile.c

Figure 2.6: программа readfile

14. Откомпилировали её.

```
gcc readfile.c -o readfile
```

15. Сменили владельца у файла readfile.c и изменили права так, чтобы только суперпользователь (root) мог прочитать его, а guest не мог.

```
chown root:guest /home/guest/readfile.c
chmod 700 /home/guest/readfile.c
```

- 16. Проверили, что пользователь guest не может прочитать файл readfile.c.
- 17. Сменили у программы readfile владельца и установили SetU'D-бит.
- 18. Проверили, может ли программа readfile прочитать файл readfile.c
- 19. Проверили, может ли программа readfile прочитать файл /etc/shadow

```
guest@yarmetov:~
                                                                                                _ 0
 File Edit View Search Terminal Help
 [guest@yarmetov ~]$ gcc readfile.c -o readfile
[guest@yarmetov ~]$ su
Password:
[root@yarmetov guest]# chown root:root readfile
[root@yarmetov guest]# chown root:root readfile.c
[root@yarmetov guest]# chmod 700 readfile.c
[root@yarmetov guest]# chmod u+s readfile
[root@yarmetov guest]# exit
exit
[guest@yarmetov ~]$ cat readfile.c
cat: readfile.c: Permission denied
[guest@yarmetov ~]$ rea
                                   readlink
              readcd
readelf
                                                                      readprofile realpath
                                                   readom
readarray
                                   readmult
                                                    readonly
[guest@yarmetov ~]$ ./readfile readfile.c
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
int main (int argc, char* argv[])
     unsigned char buffer[16]:
     size_t bytes_read;
     int fd = open(argv[1], O_RDONLY);
     do
```

Figure 2.7: результат программы readfile

Figure 2.8: результат программы readfile

2.3 Исследование Sticky-бита

1. Выяснили, установлен ли атрибут Sticky на директории /tmp:

```
ls -l / | grep tmp
```

2. От имени пользователя guest создали файл file01.txt в директории /tmp со словом test:

```
echo "test" > /tmp/file01.txt
```

3. Просмотрели атрибуты у только что созданного файла и разрешили чтение и запись для категории пользователей «все остальные»:

```
ls -l /tmp/file01.txt
chmod o+rw /tmp/file01.txt
ls -l /tmp/file01.txt
```

Первоначально все группы имели право на чтение, а запись могли осуществлять все, кроме «остальных пользователей».

4. От пользователя (не являющегося владельцем) попробовали прочитать файл /file01.txt:

```
cat /file01.txt
```

5. От пользователя попробовали дозаписать в файл /file01.txt слово test3 командой:

```
echo "test2" >> /file01.txt
```

6. Проверили содержимое файла командой:

```
cat /file01.txt
```

В файле теперь записано:

Test

Test2

- 7. От пользователя попробовали записать в файл /tmp/file01.txt слово test4, стерев при этом всю имеющуюся в файле информацию командой. Для этого воспользовалась командой echo "test3" > /tmp/file01.txt
- 8. Проверили содержимое файла командой

```
cat /tmp/file01.txt
```

- 9. От пользователя попробовали удалить файл /tmp/file01.txt командой rm /tmp/file01.txt, однако получила отказ.
- 10. От суперпользователя командой выполнили команду, снимающую атрибут t (Sticky-бит) с директории /tmp:

```
chmod -t /tmp
```

Покинули режим суперпользователя командой exit.

11. От пользователя проверили, что атрибута t у директории /tmp нет:

```
ls -l / | grep tmp
```

- 12. Повторили предыдущие шаги. Получилось удалить файл
- 13. Удалось удалить файл от имени пользователя, не являющегося его владельцем.
- 14. Повысили свои права до суперпользователя и вернули атрибут t на директорию /tmp:

```
su
chmod +t /tmp
exit
```

Figure 2.9: исследование Sticky-бита

3 Выводы

Изучили механизмы изменения идентификаторов, применения SetUID- и Sticky-битов. Получили практические навыки работы в консоли с дополнительными атрибутами. Также мы рассмотрели работу механизма смены идентификатора процессов пользователей и влияние бита Sticky на запись и удаление файлов.

Список литературы

- 1. KOMAHДA CHATTR B LINUX
- 2. chattr