МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3344	Анахин Е.Д
Преподаватель	Иванов Д.В.

Санкт-Петербург 2023

Цель работы

Изучить принцип машины Тьюринга и научиться имитировать ее работу на языке программирования Python.

Задание.

Вариант 1

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

Напишите программу, которая удаляет в исходной строке два символа, следующих за первым встретившимся символом 'b'. Если первый встретившийся символ 'b' – последний в строке, то удалить его. Если первый встретившийся символ 'b' – предпоследний в строке, то удалить один символ, следующий за ним, т. е. последний в строке. Если в строке символ 'b' отсутствует, то удалить самый первый символ строки. После удаления в строке не должно оставаться пробелов и пустых мест!

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

На ленте находится последовательность латинских букв из алфавита {a, b, c}. Напишите программу, которая заменяет в исходной строке символ, идущий после последних двух встретившихся символов 'a', на предшествующий им символ(гарантируется, что это не пробел). Наличие в строке двух подряд идущих символов 'a' гарантируется.

Алфавит:

a

b

C

" " (пробел)

Соглашения:

1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).

- 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
- 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Выполнение работы

Был объявлены константы LEFT, RIGHT, STOP, которые обозначают шаги, на сколько нужно сместиться по ленте. Далее был создан словарь states, который включал в себя все состояния, представленные в виде таблицы. Далее было произведено считывание строки значений ленты. Далее, пока состояние не становится 'finished' происходит имитация работы машины Тьюринга с помощью цикла while. Данный цикл работал до того, как состояние не переходило в 'finished'. Из словаря состояний считывались символов, смещение и состояние, в которое нужно будет перейти после выполнения.

Состояния:

q0 – начальное состояние, которое действует до тех пор, пока не будет найден первый значащий символ

q1 – состояние поиска символа b

b found - состояние, при котором найдем первый символ b

first_deleted - состояние, когда удален один символ после b

b_last - состояние, при котором b - последний символ строки

b_not_found - состояние, при котором не было найдено ни одного символа b

first_word - состояние, при котором нужно удалить первый символ строки, если не было символов b

finished - состояние, которое повествует о том, что машина Тьюринга закончила свою работу

Таблица состояний представлена в табл. 1

Таблица 1 — Таблица состояний

	6)	ʻa'	'b'	ʻc'
q0	'', 1, q0	'a', 1, q1	'b', 1, q1	'c', 1, q1
q1	' ', -1,	'a', 1, q1	'b', 1, b_found	'c', 1, q1
	b_not_found			
b_found	'', -1, b_last	' ', 1,	'b', 1,	'c', 1,

		first_deleted	first_deleted	first_deleted
first_deleted	'', 0, finished	' ', 0, finished	'', 0, finished	'', 0, finished
b_last			'', 0, finished	
b_not_found	· · · · · 1,	'a', -1,		'c', -1,
	first_word	b_not_found		b_not_found
first_word		'', 0, finished		'', 0, finished

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	abcabc	abbc	-
2.	ccbbaa	ccba	-

Выводы

Был получен навык составления таблиц для машины Тьюринга. Было получено знание о работе машины Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: Anakhin Egor lb3.py
LEFT, STOP, RIGHT = -1, 0, 1
states = {
        ("q0", " "): (' ', RIGHT, "q0"),
("q0", "a"): ('a', STOP, "q1"),
("q0", "b"): ('b', RIGHT, "b_found"),
("q0", "c"): ('c', STOP, "q1"),
        ("q1", " "): (' ', LEFT, "b_not_found"),
("q1", "a"): ('a', RIGHT, "q1"),
("q1", "b"): ('b', RIGHT, "b_found"),
("q1", "c"): ('c', RIGHT, "q1"),
        ("b_found", " "): (' ', LEFT, "b_last"),
("b_found", "a"): (' ', RIGHT, "first_deleted"),
("b_found", "b"): (' ', RIGHT, "first_deleted"),
("b_found", "c"): (' ', RIGHT, "first_deleted"),
        ("first_deleted", " "): (' ', STOP, "finished"),
("first_deleted", "a"): (' ', STOP, "finished"),
("first_deleted", "b"): (' ', STOP, "finished"),
("first_deleted", "c"): (' ', STOP, "finished"),
        ("b_last", "b"): (' ', STOP, 'finished'),
        ("b_not_found", " "): (' ', RIGHT, "first_word"), ("b_not_found", "a"): ('a', LEFT, "b_not_found"), ("b_not_found", "b"): ('b', LEFT, "b_not_found"), ("b_not_found", "c"): ('c', LEFT, "b_not_found"),
        ("first_word", "a"): (' ', STOP, 'finished'), ("first_word", "c"): (' ', STOP, 'finished'),
}
string = list(' ' + input() + ' ')
position = 0
state = 'q0'
while state != 'finished':
        symbol, move, state_after = states[(state, string[position])]
        string[position] = symbol
        position += move
        state = state_after
print(''.join(string).replace(" ", ""))
```