

Algebra Linear LCC Teste 2 Duração: 1h45 [Teste modelo B] Número: Nome: Grupo I Em cada questão deste grupo deve ser assinalada apenas uma das opções de resposta. A uma resposta correta é atribuída uma cotação de 1.25 valores (apenas uma resposta está correta) e a uma resposta errada é atribuída uma cotação de -0.25 valores. A cotação mínima total deste grupo é de 0 valores. 1. Sejam V um espaço vetorial real de dimensão 3 e v_1, v_2 e v_3 três vetores de V linearmente independentes. Então $\{v_1, v_2\}$ é um conjunto linearmente $\{v_1, v_2, v_1 + v_3\}$ é um conjunto linearmente dependente. dependente. $\{\boldsymbol{v_1},\boldsymbol{v_2},\boldsymbol{v_3}\}$ é um conjunto gerador de $\{v_1, v_2, v_3, 2v_1 + v_3\}$ é um conjunto linearmente independente. 2. Os seguintes vetores formam uma base de \mathbb{R}^3 . (1, 1, -1), (2, 3, 4), (1, -2, 3), (2, 1, 1).(1,1,0), (0,2,3), (-2,0,1).(-1,2,1),(3,2,2),(2,4,3).(1,2,0),(0,1,-1).3. Seja $S = \langle (1,1,0), (0,2,0), (4,3,0) \rangle$. Então $\dim(S) = 3.$ $(2,3,0) \in S$.

4. Seja $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ uma aplicação linear tal que dim $\left(Im(T)\right) = 2$. Então			
\square $Nuc(T) = \{0\}$	\mathbb{R}^4 .	$ (0,0,0,0) \notin Nuc(T$	·).
$\begin{array}{c} \boxed{\qquad} Nuc(T) \not\in \mathrm{um} \\ \mathrm{dimens\~ao}\ 2. \end{array}$	subespaço de \mathbb{R}^4 com	Nuc (T) é um suberdimensão 1.	spaço de \mathbb{R}^3 com
5. Seja G uma aplica	ção linear cuja representaç	ão matricial é $A_G = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 1 & 0 \\ -3 & 3 \end{bmatrix}$.

6. Seja A uma matriz de ordem 3 cujo polinómio característico é $p(\lambda)=(1-\lambda)(\lambda^2-4)$. Então

o sistema $(A - 2I_3)x = 0$ é possível e $A^T - I_3$ é invertível. determinado.

Grupo II

Neste grupo as respostas a todos as questões devem ser devidamente justificadas.

1. [1 valor] Considere, no espaço vetorial \mathbb{R}^3 , o conjunto de vetores

$$W = \{(1,0,2), (-1,2,-3), (1,4,k)\}, k \in \mathbb{R}.$$

Determine os valores de k para os quais W é uma base de \mathbb{R}^3 .

2. [2 valores] Determine uma base e a dimensão dos seguintes subespaços de \mathbb{R}^4 :

(a)
$$U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 = x_3 + x_4\};$$

(b)
$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 = x_3\} \cap \{(x_1, 0, x_1, 0) \in \mathbb{R}^4 : x_1 \in \mathbb{R}\}.$$

3. [3 valores] Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ a aplicação linear definida por

$$T(x, y, z) = (x + 2y - z, y + 2z, 2x + 5y, x + 3y + z).$$

- (a) Determine a representação matricial de T relativamente às bases canónicas.
- (b) Calcule, de duas formas distintas, T(1,2,3).
- (c) Determine Nuc(T) e uma sua base.
- (d) Indique uma base para Im(T).
- 4. [2 valores] Seja $G: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ a aplicação linear tal que

$$G(2,1) = (1,-1,3)$$
 e $G(1,1) = (1,1,2)$.

Determine G(x, y) para qualquer $(x, y) \in \mathbb{R}^2$.

5. [2.5 valores] Considere a matriz

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & -1 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 4 & 2 \end{bmatrix}$$

- (a) Determine os valores próprios de A.
- (b) Determine o subespaço próprio associado ao maior valor próprio de A.
- 6. [2 valores] Sejam A uma matriz real quadrada de ordem n tal que $A^2 = I_n$ e \boldsymbol{u} um vetor não nulo que não é vetor próprio de A.
 - (a) Mostre que se λ é um valor próprio de A, então $\lambda \in \{-1, 1\}$.
 - (b) Mostre que os vetores v = u + Au e w = u Au são vetores próprios de A e diga a que valores próprios estão associados.