ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

- 8. Załóżmy, że kula o promieniu r_0 ma we wnętrzu pustą kulistą wnękę o promieniu r_w , której środek przypada na centrum kuli. Ładunek Q jest rozłożony jednorodnie w powstałej powłoce, tzn. między $r=r_w$, a $r=r_0$.
 - Obliczyć i narysować wykres natężenia pola elektrycznego w funkcji r dla:
 - a) r<rw
 - b) $r_w < r < r_0$
 - c) $r > r_0$.

"latex article amsmath amssymb

Rozwiazanie zadania

Dane wejściowe:

- Promień kuli: r_0
- Promień wneki: r_w
- Ładunek Qjest rozłożony jednorodnie na powłoce $r_w < r < r_0$

Ogólny wzór:

Prawo Gaussa dla pola elektrycznego:

$$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{wew}}}{\varepsilon_0}$$

Pole elektryczne dla sferycznej symetrii:

$$E(4\pi r^2) = \frac{Q_{\text{wew}}}{\varepsilon_0}$$

Rozwiazanie dla różnych przedziałów:

a) $r < r_w$:

Brak ładunku wewnatrz wneki dla $r < r_w$, czyli $Q_{\text{wew}} = 0$.

$$E(4\pi r^2) = \frac{0}{\varepsilon_0} \implies E = 0$$

b) $r_w < r < r_0$:

Ładunek wewnetrzny Q_{wew} dla $r_w < r < r_0$ jest proporcjonalny do objetości pustego wycinka kuli.

$$Q_{\text{wew}} = \rho \cdot \left(\frac{4}{3}\pi(r^3 - r_w^3)\right)$$

Gdzie ρ jest gestościa ładunku:

$$\rho = \frac{Q}{\frac{4}{3}\pi(r_0^3 - r_w^3)}$$

Podstawiajac ρ :

$$Q_{\text{wew}} = \frac{Q(r^3 - r_w^3)}{r_0^3 - r_w^3}$$

Pole elektryczne:

$$E(4\pi r^2) = \frac{\frac{Q(r^3 - r_w^3)}{r_0^3 - r_w^3}}{\varepsilon_0}$$

$$E = \frac{Q(r^3 - r_w^3)}{4\pi\varepsilon_0 r^2 (r_0^3 - r_w^3)}$$

c)
$$r > r_0$$
:

Ładunek wewnetrzny jest równy całkowitemu ładunkowi Q.

$$E(4\pi r^2) = \frac{Q}{\varepsilon_0}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

Zebrane wyniki:

Dla
$$r < r_w$$
: $E = 0$

Dla
$$r < r_w$$
:
$$E = 0$$

$$E = \frac{Q(r^3 - r_w^3)}{4\pi\varepsilon_0 r^2 (r_0^3 - r_w^3)}$$

$$E = \frac{Q(r^3 - r_w^3)}{4\pi\varepsilon_0 r^2 r_w^3}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

Dla
$$r > r_0$$
:
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$