DERIVABILIDAD

Unidad IV

Repaso de Análisis I

• Sea f: $A \subseteq \mathbb{R} \to \mathbb{R}$ y x_0 un punto interior de A. Definimos como la derivada de f en x_0 y anotamos f' (x_0) al límite del cociente incremental

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

siempre que exista y sea finito.

 Interpretación geométrica: La derivada de una función en un punto x₀ representa la pendiente de la recta tangente a la gráfica de f en el punto (x₀;f(x₀))

Derivadas de funciones vectoriales

• Definición: Dada la función vectorial $\vec{g}: A \subseteq \mathbb{R} \to \mathbb{R}^n$ y t_0 un punto interior de A, llamamos derivada de \vec{g} en t_0 al siguiente límite (siempre que exista y sea finito)

$$\lim_{\Delta t \to 0} \frac{\vec{g}(t_0 + \Delta t) - \vec{g}(t_0)}{\Delta t} = \lim_{t \to t_0} \frac{\vec{g}(t) - \vec{g}(t_0)}{t - t_0}$$

• Notación: Utilizamos cualquiera de las siguientes expresiones:

$$\vec{g}'(t_0)$$
 $\frac{d\vec{g}}{dt}(t_0)$ Demostración

¿Cómo calcular el vector derivado de $\vec{g}(t)$?

• Por ejemplo, si $\vec{g}(t) = (x(t), y(t), z(t))$ donde x, y y z son funciones derivables, entonces resulta que:

$$\overrightarrow{g}'(t) = (x'(t), y'(t), z'(t))$$

• Las fórmulas de derivación para funciones escalares tienen sus similares para funciones vectoriales.

Ejemplos

Geogebra

Interpretaciones geométricas y físicas

- $\Delta t \to 0$ el vector del cociente incremental se aproxima a un vector que se encuentra sobre la recta tangente a la curva definida por $\vec{g}(t)$ en el punto $\vec{g}(t_0)$.
- Decimos que si $\overrightarrow{g'}(t_0)$ existe y $\overrightarrow{g'}(t_0) \neq \overrightarrow{0}$ es un vector tangente a dicha curva.
- Físicamente, si $\vec{g}(t)$ representa la posición de un móvil en función del tiempo, $\overrightarrow{g'}(t)$ nos da el vector velocidad instantánea y $\overrightarrow{g''}(t)$ el vector aceleración

Curvas en \mathbb{R}^2

Dada la función vectorial \vec{g} : $A \subseteq \mathbb{R} \to \mathbb{R}^2$, $\vec{g}(t)=(x(t),y(t))$ y t_0 un punto interior de A, la curva imagen de \vec{g} tiene recta tangente y recta normal.

• Ecuación de la recta tangente: $(x,y)=\vec{g}(t_0) + \lambda \vec{g}'(t_0)$

• Ecuación de la recta normal: $(x,y)=\vec{g}(t_0) + \lambda (-y'(t_0),x'(t_0))$

Ejemplo

Geogebra

- 9. Encontrar los puntos de la curva imagen de $\vec{f}(t) = (2t^2 + 1; 3t 2)$ en los que las rectas tangentes sean paralelas a la recta $y = -\frac{1}{2}x + 3$.
- 10. Un móvil se desplaza según $\vec{f}(t) = (t^2 6t; 5t)$. Calcular el instante en el que la rapidez es mínima.

Curvas en \mathbb{R}^3

Dada la función vectorial \vec{g} : $A \subseteq \mathbb{R} \to \mathbb{R}^3$, $\vec{g}(t)=(x(t),y(t),z(t))$ y t_0 un punto interior de A, la curva imagen de \vec{g} tiene recta tangente y plano normal.

- Ecuación de la recta tangente: $(x,y,z)=\vec{g}(t_0) + \lambda \vec{g}'(t_0)$
- Ecuación del plano normal: $((x,y,z)-\vec{g}(t_0))$. $\vec{g}'(t_0)=0$

Geogebra y ejemplo

- 01) Definida la curva C como intersección de dos superficies S_1 y S_2 ($C = S_1 \cap S_2$):
 - parametrícela convenientemente y halle una ecuación para la recta tangente a $\,C\,$ en $\,\overline{A}\,$,
 - halle una ecuación cartesiana y una ecuación vectorial para el plano normal a C en \overline{A} ,
 - analice si C es una curva plana o alabeada.
 - a) $S_1: y = x^2$ $S_2: y + z = 5$ $\overline{A} = (2,4,1)$.
 - b) $S_1: z = x^2 y^2$ $S_2: z = x + y$ $\overline{A} = (2,1,3)$.
 - c) $S_1: x^2 + y^2 + z^2 = 8$ $S_2: z = \sqrt{x^2 + y^2}$ $\overline{A} = (0, 2, 2)$.
- 02) Dada C de ecuación $\overline{X} = (u^2, u-2, u+3)$ con $u \in \Re$, analice si su recta tangente en el punto (9,1,6) interseca ...
 - a) ... al eje z.
 - b) ... a la superficie Σ de ecuación $z = x 2y^2$.
 - c) ... a la línea de ecuación $\overline{X} = (v, 2v, 32v^{-1})$ con $v \neq 0$.

6. Sea C=
$$\begin{cases} x^2 + z^2 = 16 \\ y = x \end{cases}$$

- a) Determinar una parametrización de C y graficar la curva.
- b) Encontrar los puntos en los que la recta tangente a C es perpendicular al eje z.
- 7. Determinar los puntos de intersección entre la curva definida por $\vec{g}(t) = (t + 2.2t + 5, t + 1)$ con la superficie $x^2 + (y 3)^2 z^2 = 1$ y determinar una ecuación para la recta tangente a la curva en dichos puntos.

DERIVADAS DE CAMPOS ESCALARES

• La **derivada direccional** de $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ en P_0 (punto de A) en la dirección y sentido del versor \check{v} es el siguiente límite, siempre que exista y sea finito:

$$\lim_{h\to 0} \frac{f(P_0 + h\check{v}) - f(P_0)}{h}$$

• Notación: $f'(P_0; \check{v})$ $f'_{\check{v}}(P_0)$ $\frac{\partial f}{\partial \check{v}}(P_0)$

Ejemplos

• También se puede definir la **derivada en la dirección y sentido de un vector** \vec{v} de $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ en P_0 (punto de A) que es el límite, siempre que exista y sea finito:

$$\lim_{h\to 0} \frac{f(P_0 + h\vec{v}) - f(P_0)}{h}$$

Propiedad: Si $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ y \vec{v} vector tal que existe $f'(P_0, \vec{v})$, entonces: $f'(P_0, \vec{v}) = ||\vec{v}||$. $f'(P_0; \vec{v})$ con \vec{v} el versor asociado a \vec{v} .

Demostración

06) Dada
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
 a) Pruebe que f no es continua en $(0,0)$.
b) Pruebe que $f'(\overline{0}, \check{r})$ sólo queda definida para $\check{r}: (1,0), (-1,0), (0,1)$ y $(0,-1)$.

- a) Pruebe que f no es continua en (0,0).

07) Dada
$$g(x,y) = \begin{cases} \frac{x^3 y}{x^6 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Demuestre que para todo $\check{r} \in \Re^2$ la función es derivable en el origen, aun cuando g es discontinua en (0,0).

11) Estudie la derivabilidad en distintas direcciones en el punto \overline{A} que se indica en cada caso.

b)
$$f(x,y) = \begin{cases} \frac{y^2}{x} & \text{si } (x,y) \neq (0,y) \\ 0 & \text{si } (x,y) = (0,y) \end{cases}$$
, $\overline{A} = (0,0)$.

14) Sea $L: \mathbb{R}^n \to \mathbb{R}$ (n > 1) una transformación lineal, aplicando la definición de derivada directional demuestre que $L'(\overline{A}, \check{r}) = L(\check{r}) \ \forall \overline{A}, \check{r} \in \mathbb{R}^n$.

Interpretación geométrica para campos de 2 variables

La derivada direccional del campo escalar f en $(x_0; y_0)$ en la dirección y sentido del versor $\check{v} = (a; b)$ representa geométricamente la pendiente de la recta tangente a la curva intersección entre la gráfica de f y el plano vertical que pasa por $(x_0; y_0; f(x_0; y_0))$ y sigue la dirección de (a; b; 0)

Geogebra

Derivadas parciales

Si en particular consideramos los versores \check{e}_i =(0,0,0,...,1,0,....0) (un 1 en el lugar i y el resto 0) obtendríamos lo que llamamos **derivadas parciales**.

La derivada parcial de f respecto de x_i en un punto P_0 es igual al siguiente límite (siempre que exista y sea finito)

$$\lim_{h\to 0} \frac{f(P_0 + h\check{e}_i) - f(P_0)}{h}$$

Notación: Utilizamos cualquiera de las siguientes expresiones:

$$f'_{x_i}(P_0)$$
 $\frac{\partial f}{\partial x_i}(P_0)$

Derivadas parciales para campos de 2 variables

- Si en particular consideramos el versor $\check{t}=(1;0)$ o $\check{j}=(0;1)$ obtendríamos lo que llamamos derivadas parciales.
- La derivada parcial de f(x,y) respecto de x en un punto $(x_0;y_0)$ es igual al siguiente límite (siempre que exista y sea finito)

$$\lim_{h \to 0} \frac{f(x_0 + h; y_0) - f(x_0; y_0)}{h}$$

• Notación: Utilizamos cualquiera de las siguientes expresiones:

$$f'_{x}(x_0; y_0)$$
 $\frac{\partial f}{\partial x}(x_0; y_0)$

• La derivada parcial de f(x,y) respecto de y en un punto $(x_0;y_0)$ es igual al siguiente límite (siempre que exista y sea finito)

$$\lim_{k \to 0} \frac{f(x_0; y_0 + k) - f(x_0; y_0)}{k}$$

• Notación: Utilizamos cualquiera de las siguientes expresiones:

$$f'_{y}(x_0; y_0)$$
 $\frac{\partial f}{\partial y}(x_0; y_0)$

Interpretación geométrica de f'_x

La derivada parcial de f con respecto a x en el punto $(x_0;y_0)$ representa geométricamente la pendiente de la recta tangente a la curva intersección entre la superficie gráfica de f y el plano $y=y_0$ en el punto $(x_0;y_0;f(x_0;y_0))$

recta tangente a la curva en

Interpretación geométrica de f'y

La derivada parcial de f con respecto de y en el punto $(x_0;y_0)$ representa geométricamente la pendiente de la recta tangente a la curva intersección entre la superficie gráfica de f y el plano $x=x_0$ en el punto $(x_0;y_0;f(x_0;y_0))$

Regla práctica

04) Halle las funciones derivadas parciales de 1º orden de las siguientes funciones.

a)
$$f(x,y) = x^4 + 2xy + xy^3 - 1$$
.

b)
$$f(x, y, z) = y e^{2x} + z e^{3y}$$
.

c)
$$f(x,y) = x e^{x^2 + y^2}$$
.

Gradiente de un campo escalar

• Si F: $A \rightarrow \mathbb{R}$, con $A \subseteq \mathbb{R}^n \land n \ge 2$ tiene derivadas parciales en un punto P_0 se llama **gradiente** de F en P_0 al vector que tiene por componentes a las derivadas parciales de F en P_0 .

$$\vec{\nabla} F \Big|_{P_0} = \left(\frac{\partial F}{\partial x_1} \Big|_{P_0}, \frac{\partial F}{\partial x_2} \Big|_{P_0}, \dots, \frac{\partial F}{\partial x_n} \Big|_{P_0} \right)$$

Matriz jacobiana o matriz diferencial

• Sea F: $A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $F(x_1, x_2, ..., x_n) = (F_1(X), F_2(X), ..., F_m(X))$

$$\mathbf{D}[\vec{F}(\vec{\mathbf{X}})] = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \dots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \dots & \frac{\partial F_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1} & \frac{\partial F_m}{\partial x_2} & \dots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}$$

Ejemplos. Rel. Grad y vector derivado

Derivadas sucesivas

- Sea F: $A \rightarrow \mathbb{R}$ con $A \subseteq \mathbb{R}^n$ tal que las derivadas parciales de F están definidas para todo punto de B \subseteq A. Por lo tanto, para cada una de dichas funciones podrá analizarse la existencia de sus derivadas parciales que, si existen, serán las **derivadas segundas** de F.
- Así sucesivamente, podrán definirse las derivadas n- ésimas de F.
- Un campo escalar de n variables puede tener n derivadas primeras y en consecuencia n² derivadas segundas, n³ derivadas terceras,...., n^k derivadas k-ésimas. Bajo ciertas condiciones, algunas de las derivadas iteradas resultan iguales.

Teorema de Schwarz

• Consideremos un campo escalar de dos variables f: $A \subseteq \mathbb{R}^2 \to \mathbb{R}$ tal que existan f'_x , f'_y y f''_{xy} en un entorno de P_0 punto interior de A. Entonces, si f''_{xy} es continua en P_0 , existe f''_{yx} y se cumple que $f''_{yx}(P_0) = f''_{xy}(P_0)$.

- Vale para cualquier número de variables.
- Vale para derivadas sucesivas de orden superior.

12) Determine los dominios en los que quedan definidas las derivadas parciales de 1° y 2° orden de las siguientes funciones:

a)
$$f(x, y) = \ln(x^2 + y^2)$$
.

b)
$$\bar{f}(x, y) = (x \ln(y), y/x)$$
.