

Nombre:			
Curso:	3º ESO B	Recuperación 2ª Evaluación	
Fecha:	18 de Abril de 2017	Cada ejercicio vale 1,5 puntos	

- **1.-** La masa de un vaso vacío es 274 g. Se miden, con una probeta graduada, 200 mL de aceite de oliva y se vierten en el vaso. Se pesa el vaso con su contenido, obteniendo un valor de 456 g. ¿Cuál es la densidad del aceite? Exprésala en g/cm³, en kg/L y en unidades del SI.
- **2.-** Un submarinista expulsa una burbuja de aire de 0.4 cm^3 a $37 \text{ }^{\circ}\text{C}$ y 2.5 atm. Si la burbuja no pierde masa, ¿Qué volumen tiene al llegar a la superficie, si allí la temperatura del agua es 300 K y la presión $1.2 \cdot 10^5 \text{ Pa}$?
- **3.-** Se disuelven 50 g de amoniaco en agua hasta obtener 650 mL de disolución. Sabiendo que la densidad de la disolución resultante es 950 kg/m^3 . Indicar la concentración de la misma en: g/L, molaridad y tanto por ciento en masa. Datos: A(H)=1; A(N)=14
- **4.-** Experimentos y Modelo atómico de Thomsom.
- **5.-** Completa la siguiente tabla:

(1 punto - 0,25 por error)

Especie Química	Z	Α	N	Protones	Electrones	Neutrones
¹⁹⁷ Au			118			
Na^{+1}		23	12			
Cl ⁺³	17	35				
Sr ⁺²			50	38		
Sb ^{−3}		122		51		
Te ⁻²			76		50	

- **6.-** Nombra con dos nomenclaturas distintas todos los óxidos que puede formar el Manganeso.
- **7.-** Define brevemente los conceptos:
 - a) Materia

b) Valencia

c) Número atómico

- **d)** Proceso isobaro
- e) Soluto

f) Decantación

Nombre:		
Curso:	3º ESO B	Recuperación 2ª Evaluación
Fecha:	18 de Abril de 2017	Cada ejercicio vale 1,5 puntos

1.- La masa de un vaso vacío es 274 g. Se miden, con una probeta graduada, 200 mL de aceite de oliva y se vierten en el vaso. Se pesa el vaso con su contenido, obteniendo un valor de 456 g. ¿Cuál es la densidad del aceite? Exprésala en g/cm^3 , en kg/L y en unidades del SI.

La densidad viene dada por la expresión:
$$d = \frac{m}{V} = \frac{456g - 274g}{200ml} = \frac{182g}{200ml} = 0,91g \cdot ml^{-1}$$

Por tanto:
$$d = 0.91 \frac{1}{\text{g/m}^3} \cdot \frac{1}{10^3} \cdot \frac{1}{10^3} \cdot \frac{10^3}{1L} = 0.91 \frac{1}{\text{g/m}^3} \cdot \frac{10^3}{1} \cdot \frac{1}{1} = 0.91 \frac{1}{\text{g/m}^3} \cdot \frac$$

2.- Un submarinista expulsa una burbuja de aire de $0.4~\rm cm^3\,a$ 37 °C y $2.5~\rm atm$. Si la burbuja no pierde masa, ¿Qué volumen tiene al llegar a la superficie, si allí la temperatura del agua es 300K y la presión $1.2\cdot10^5~\rm Pa?$

Lo primero es expresar las temperaturas y las presiones en unidades del S.I.

$$T_1 = 37 + 273 = 310K$$
 $P_1 = 1,2\cdot10^5 Pa \cdot \frac{1atm}{101.325Pa} = 1,184atm$

Si utilizamos la ley general de los gases, y despejamos V_2 , llegamos a

$$\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \longrightarrow \frac{V_2}{P_2 \cdot T_1} = \frac{P_1 \cdot V_1 \cdot T_2}{P_2 \cdot T_1} = \frac{2.5 \text{ atm} \cdot 0.4 \text{ cm}^3 \cdot 300 \text{ K}}{1.184 \text{ atm} \cdot 310 \text{ K}} = \frac{0.82 \text{ cm}^3}{1.184 \text{ atm}}$$

3.- Se disuelven 50 g de amoniaco en agua hasta obtener 650 mL de disolución. Sabiendo que la densidad de la disolución resultante es 950 kg/m 3 . Indicar la concentración de la misma en: g/L, molaridad y tanto por ciento en masa. Datos: A(H)=1; A(N)=14

La concentración en gramos por litro, viene dada por la expresión: $C_{g/l} = \frac{m_{soluto}}{V_{Disolución}} = \frac{50g}{0.65L} = 76,92g \cdot l^{-1}$

Para calcular la concentración en % en masa, necesitamos la masa de la disolución: $\%_p = \frac{m_{\text{soluto}}}{m_{\text{Disolución}}} \cdot 100$

Si utilizamos la densidad: $d = \frac{m}{V}$ \rightarrow $m = V \cdot d = 650 \cdot 10^{-6} \, m^3 \cdot 950 \, Kg \cdot m^{-3} = 0,6175 \, Kg = 617,5g$

Si sustituimos en la expresión de la concentración: $\frac{m_p}{m_{Disolución}} \cdot \frac{100}{617.5g} \cdot \frac{50g}{617.5g} \cdot 100 = \frac{50g}{617.5g}$

Para calcular la molaridad, necesitamos primero el número de moles de soluto, que calcularemos mediante:

 $n = \frac{m}{Pm} = \frac{50 \cancel{g}}{17 \cancel{g} \cdot mol^{-1}} = 2,94 mol$, por tanto, y utilizando la expresión de la molaridad:

$$M = \frac{n_{soluto}}{V_{Disol}} = \frac{2,94mol}{0,65L} = 4,52M$$

4.- Experimentos y Modelo atómico de Thomsom. (Consultar los apuntes)

5.- Completa la siguiente tabla:

(1 punto - 0,25 por error)

Especie Química	Z	Α	N	Protones	Electrones	Neutrones
¹⁹⁷ Au	197-118=79	197	118	79	79	118
Na^{+1}	23-12=11	23	12	11	10	12
C1 ⁺³	17	35	18	17	14	18
Sr ⁺²	38	50+38=88	50	38	36	50
Sb^{-3}	51	122	71	51	54	122-51=71
Te ⁻²	48	76+48=124	76	48	50	76

6.- Nombra con dos nomenclaturas distintas todos los óxidos que puede formar el Manganeso.

MnO	Mn ₂ O ₃	MnO ₂	MnO ₃	Mn ₂ O ₇
Monóxido de	Trióxido de	Dióxido de	Trióxido de	Heptóxido de
Manganeso	dimanganeso	Manganeso	Manganeso	dimanganeso
Óxido de	Óxido de	Óxido de	Óxido de	Óxido de
Manganeso (II)	Manganeso (III)	Manganeso (IV)	Manganeso (VI)	Manganeso (VII)

7.- Define brevemente los conceptos:

- a) Materia: Es todo aquello que tiene masa y que ocupa un volumen en el espacio.
- **b)** Valencia: Es el número de electrones que un átomo gana, pierde o comparte cuando se combina con otros átomos para formar un compuesto.
- c) Número atómico: Es el número de protones de un átomo, y se representa por la letra Z.
- d) Proceso Isobaro: Es un proceso en el que la presión permanece constante.
- e) Soluto: En general es la parte que está en menor proporción en una disolución y normalmente es sólido.
- f) **Decantación:** Es un proceso que sirve para separar dos líquidos inmiscibles y de distinta densidad mediante el cual el líquido más denso se sitúa en la parte inferior y el menos denso flotando sobre el anterior. Para la separación de ambos líquidos se utiliza un embudo de decantación.

Nombre:		
Curso:	3º ESO A	Recuperación 2ª Evaluación
Fecha:	18 de Abril de 2017	Cada ejercicio vale 1,5 puntos

1.- La masa de una esfera de vidrio es de 375 g. Si su radio es de 3 cm. ¿Cuál es la densidad del vidrio? Exprésala en g/cm³, en kg/L y en unidades del SI.

Sol: $3,316 \text{ g/cm}^3 = 3,316 \text{Kg/L} = 3316 \text{ Kg/m}^3$

2.- Una masa de aire contaminada ocupa 112 litros en condiciones normales de presión y temperatura. ¿Qué volumen ocupará a una temperatura de -15 °C y a una presión de 1.224 mm de Hg?

Sol: 65,72 litros

3.- Calcula la concentración en g/L, en tanto por ciento en masa, y la molaridad de una disolución de Dicloruro de magnesio, sabiendo que, al evaporar 20 cm³ de la misma, que pesaban 21g, se ha obtenido un residuo de 1,45 g de Dicloruro. Datos: A(Cl)=35,4; A(Mg)=24,3

Sol: C=72.5 g/l; M=0.76 mol/l; $%_p=6.9\%$

- **4.-** Modelo atómico de Rutherford.
- **5.-** Completa la siguiente tabla:

(1 punto - 0,25 por error)

Especie Química	Z	Α	N	Protones	Electrones	Neutrones
¹⁹⁷ Au			118			
Na^{+1}		23	12			
C1 ⁺³	17	35				
Sr^{+2}			50	38		
Sb^{-3}		122		51		
Te^{-2}			76		54	

- **6.-** Nombra en las tres nomenclaturas todos los óxidos que puede formar el Azufre.
- **7.-** Define brevemente los conceptos:
- a) Masa

b) Numero másico

c) Sustancia pura

- **d)** Proceso isotermo
- e) Disolvente

f) Filtración