Measuring the Fed-Information Effect

Ethan Rahman

Northern Illinois University April 13, 2022

Monetary Policy

- Monetary Policy
 - Crucial for stabilizing the business cycle

- Monetary Policy
 - Crucial for stabilizing the business cycle
 - Maximum employment and stable prices

- Monetary Policy
 - Crucial for stabilizing the business cycle
 - Maximum employment and stable prices
 - Faster and more responsive than fiscal policy

- Monetary Policy
 - Crucial for stabilizing the business cycle
 - Maximum employment and stable prices
 - Faster and more responsive than fiscal policy

• Gertler and Karadi (2015)

- Gertler and Karadi (2015)
 - FFR Futures contract prices
 - High frequency identification
 - Unexpected rate changes are the indicator

- Gertler and Karadi (2015)
 - FFR Futures contract prices
 - High frequency identification
 - Unexpected rate changes are the indicator
- Nakamura and Steinsson (2018)

- Gertler and Karadi (2015)
 - FFR Futures contract prices
 - High frequency identification
 - Unexpected rate changes are the indicator
- Nakamura and Steinsson (2018)
 - Presents "Fed-information effect"
 - Private sector forecasters revise RGDP projections upwards in response to unexpected rate hikes
 - Implies Gertler and Karadi indicator has omitted variable bias

- Gertler and Karadi (2015)
 - FFR Futures contract prices
 - High frequency identification
 - Unexpected rate changes are the indicator
- Nakamura and Steinsson (2018)
 - Presents "Fed-information effect"
 - Private sector forecasters revise RGDP projections upwards in response to unexpected rate hikes
 - Implies Gertler and Karadi indicator has omitted variable bias
- Bauer and Swanson (2020)

- Gertler and Karadi (2015)
 - FFR Futures contract prices
 - High frequency identification
 - Unexpected rate changes are the indicator
- Nakamura and Steinsson (2018)
 - Presents "Fed-information effect"
 - Private sector forecasters revise RGDP projections upwards in response to unexpected rate hikes
 - Implies Gertler and Karadi indicator has omitted variable bias
- Bauer and Swanson (2020)
 - Criticizes Fed-information effect
 - Proposes "Fed response to news" channel instead

•

$$i_m = i_m^p(PubInfo_m) + X_m(FedInfo_m)'\alpha + \epsilon_m$$

- i_m^p : Private sector forecast of i_m
- X_m : Vector of state variable forecasts
- ullet ϵ_m : Exogenous monetary policy shock

•

$$i_m = i_m^p(\mathsf{PubInfo}_m) + X_m(\mathsf{FedInfo}_m)'\alpha + \epsilon_m$$

- i_m^p : Private sector forecast of i_m
- X_m : Vector of state variable forecasts
- ϵ_m : Exogenous monetary policy shock
- Can use FFR futures prices to measure i_m^p (Gurkaynak et al., 2011; Gertler and Karadi, 2015; Nakamura and Steinsson, 2018)

•

$$i_m = i_m^p(\mathsf{PubInfo}_m) + X_m(\mathsf{FedInfo}_m)'\alpha + \epsilon_m$$

- i_m^p : Private sector forecast of i_m
- X_m : Vector of state variable forecasts
- ϵ_m : Exogenous monetary policy shock
- Can use FFR futures prices to measure i_m^p (Gurkaynak et al., 2011; Gertler and Karadi, 2015; Nakamura and Steinsson, 2018)

•

$$i_m - i_m^p(\mathsf{PubInfo}_m) = X_m(\mathsf{FedInfo}_m)'\alpha + \epsilon_m$$

 $FS_m = X_m(\mathsf{FedInfo}_m)'\alpha + \epsilon_m$

 FS_m : Change in FFR Futures price over a 30 minute window around FOMC announcement corresponding to meeting m

• The Fed-information effect: FS_m and $X_m(FedInfo_m)$ could be correlated

- The Fed-information effect: FS_m and $X_m(FedInfo_m)$ could be correlated
- Suppose we have some variable y_m ...

$$y_m = \beta_0 + \beta_1 \epsilon_m + v$$

$$y_m = \beta_0 + \beta_1 (FS_m - X_m (FedInfo_m)'\alpha) + v$$

$$y_m = \beta_0 + \beta_1 FS_m - \beta_1 X_m (FedInfo_m)'\alpha + v$$

$$y_m = \beta_0 + \beta_1 FS_m + u$$

$$Cov(FS_m, u) \neq 0$$

• For FS_m , the data for Nakamura and Steinsson (2018) is publicly available.

- For FS_m , the data for Nakamura and Steinsson (2018) is publicly available.
- For X_m , I use the Greenbook Forecasts

- For FS_m , the data for Nakamura and Steinsson (2018) is publicly available.
- For X_m , I use the Greenbook Forecasts
- Model very similar to Romer and Romer (2004):

$$\begin{split} FS_{m} &= \alpha + \sum_{i=0}^{2} \gamma_{i} \widetilde{\Delta y}_{mi} + \sum_{i=0}^{2} \lambda_{i} \left(\widetilde{\Delta y}_{mi} - \widetilde{\Delta y}_{m-1,i} \right) \\ &+ \sum_{i=0}^{2} \phi_{i} \widetilde{\pi}_{mi} + \sum_{i=0}^{2} \theta_{i} \left(\widetilde{\pi}_{mi} - \widetilde{\pi}_{m-1,i} \right) + \rho \widetilde{u}_{m0} + \epsilon_{m} \end{split}$$

- For FS_m , the data for Nakamura and Steinsson (2018) is publicly available.
- For X_m , I use the Greenbook Forecasts
- Model very similar to Romer and Romer (2004):

$$\begin{split} FS_{m} &= \alpha + \sum_{i=0}^{2} \gamma_{i} \widetilde{\Delta y}_{mi} + \sum_{i=0}^{2} \lambda_{i} \left(\widetilde{\Delta y}_{mi} - \widetilde{\Delta y}_{m-1,i} \right) \\ &+ \sum_{i=0}^{2} \phi_{i} \widetilde{\pi}_{mi} + \sum_{i=0}^{2} \theta_{i} \left(\widetilde{\pi}_{mi} - \widetilde{\pi}_{m-1,i} \right) + \rho \widetilde{u}_{m0} + \epsilon_{m} \end{split}$$

• Use $\hat{\epsilon_m}$ as our new indicator

- For FS_m , the data for Nakamura and Steinsson (2018) is publicly available.
- For X_m , I use the Greenbook Forecasts
- Model very similar to Romer and Romer (2004):

$$\begin{split} FS_{m} &= \alpha + \sum_{i=0}^{2} \gamma_{i} \widetilde{\Delta y}_{mi} + \sum_{i=0}^{2} \lambda_{i} \left(\widetilde{\Delta y}_{mi} - \widetilde{\Delta y}_{m-1,i} \right) \\ &+ \sum_{i=0}^{2} \phi_{i} \widetilde{\pi}_{mi} + \sum_{i=0}^{2} \theta_{i} \left(\widetilde{\pi}_{mi} - \widetilde{\pi}_{m-1,i} \right) + \rho \widetilde{u}_{m0} + \epsilon_{m} \end{split}$$

- Use $\hat{\epsilon_m}$ as our new indicator
- For y_m , I follow the methodology of Bauer and Swanson (2020) and use the 24 hour change in the log of the S&P500 stock market index.

• Model 1 (same as Bauer and Swanson, 2020):

$$\Delta \log (S\&P500_m) = \beta_0 + \beta_1 FS_m + u$$

Model 1 (same as Bauer and Swanson, 2020):

$$\Delta \log (S\&P500_m) = \beta_0 + \beta_1 FS_m + u$$

Model 2:

$$\Delta \log (S\&P500_m) = \delta_0 + \delta_1 \hat{\epsilon}_m + w$$

 $H_0: \delta_1$ and β_1 are consistent.

 H_a : δ_1 is consistent but β_1 is inconsistent.

 $H_0: \delta_1$ and β_1 are consistent.

 $H_a: \delta_1$ is consistent but β_1 is inconsistent.

Test statistic:
$$H = \frac{(\hat{\delta}_1 - \hat{\beta}_1)^2}{\operatorname{Var}(\hat{\delta}_1) - \operatorname{Var}(\hat{\beta}_1)} \sim \chi_1^2$$

 $H_0: \delta_1$ and β_1 are consistent.

 $H_a:\delta_1$ is consistent but β_1 is inconsistent.

Test statistic:
$$H = \frac{(\hat{\delta}_1 - \hat{\beta}_1)^2}{\text{Var}(\hat{\delta}_1) - \text{Var}(\hat{\beta}_1)} \sim \chi_1^2$$

$$H = \frac{(-7.154 + 6.518)^2}{2.919^2 - 2.601^2} = .2304$$

 $H_0: \delta_1$ and β_1 are consistent.

 H_a : δ_1 is consistent but β_1 is inconsistent.

Test statistic:
$$H = \frac{(\hat{\delta}_1 - \hat{\beta}_1)^2}{\operatorname{Var}(\hat{\delta}_1) - \operatorname{Var}(\hat{\beta}_1)} \sim \chi_1^2$$

$$H = \frac{(-7.154 + 6.518)^2}{2.919^2 - 2.601^2} = .2304$$

 $P(H \ge .2304) = 63.1\%$, implying that the Fed-information effect is statistically insignificant.

Empirical Analysis: Bootstrapping

Empirical Analysis: Bootstrapping

$$H_0: \delta_1 = \beta_1$$

 $H_a: \delta_1 < \beta_1$

Empirical Analysis: Bootstrapping

$$H_0: \delta_1 = \beta_1$$

 $H_a: \delta_1 < \beta_1$

Bootstrap the distribution of $\delta-\beta$ with 80% of the sample per draw for 10,000 draws.

Empirical Analysis: Bootstrapping

Explanations

- Explanations
 - Private sector forecasts have improved over time

- Explanations
 - Private sector forecasts have improved over time
 - Evidence against Nakamura and Steinsson (2018) and for Bauer and Swanson (2020)

- Explanations
 - Private sector forecasts have improved over time
 - Evidence against Nakamura and Steinsson (2018) and for Bauer and Swanson (2020)
 - Bauer and Swanson argued for "Fed-response to news" channel

- Explanations
 - Private sector forecasts have improved over time
 - Evidence against Nakamura and Steinsson (2018) and for Bauer and Swanson (2020)
 - Bauer and Swanson argued for "Fed-response to news" channel
- Areas for improvement

- Explanations
 - Private sector forecasts have improved over time
 - Evidence against Nakamura and Steinsson (2018) and for Bauer and Swanson (2020)
 - Bauer and Swanson argued for "Fed-response to news" channel
- Areas for improvement
 - Stock market data limited to open and closing prices

- Explanations
 - Private sector forecasts have improved over time
 - Evidence against Nakamura and Steinsson (2018) and for Bauer and Swanson (2020)
 - Bauer and Swanson argued for "Fed-response to news" channel
- Areas for improvement
 - Stock market data limited to open and closing prices
 - Treatment sizes very small for ZLB periods

- Explanations
 - Private sector forecasts have improved over time
 - Evidence against Nakamura and Steinsson (2018) and for Bauer and Swanson (2020)
 - Bauer and Swanson argued for "Fed-response to news" channel
- Areas for improvement
 - Stock market data limited to open and closing prices
 - Treatment sizes very small for ZLB periods
 - Could use longer term interest rate futures to account for QE

- Explanations
 - Private sector forecasts have improved over time
 - Evidence against Nakamura and Steinsson (2018) and for Bauer and Swanson (2020)
 - Bauer and Swanson argued for "Fed-response to news" channel
- Areas for improvement
 - Stock market data limited to open and closing prices
 - Treatment sizes very small for ZLB periods
 - Could use longer term interest rate futures to account for QE
 - Eurodollar futures could be better

- Explanations
 - Private sector forecasts have improved over time
 - Evidence against Nakamura and Steinsson (2018) and for Bauer and Swanson (2020)
 - Bauer and Swanson argued for "Fed-response to news" channel
- Areas for improvement
 - Stock market data limited to open and closing prices
 - Treatment sizes very small for ZLB periods
 - Could use longer term interest rate futures to account for QE
 - Eurodollar futures could be better
- Summary

Explanations

- Private sector forecasts have improved over time
- Evidence against Nakamura and Steinsson (2018) and for Bauer and Swanson (2020)
- Bauer and Swanson argued for "Fed-response to news" channel
- Areas for improvement
 - Stock market data limited to open and closing prices
 - Treatment sizes very small for ZLB periods
 - Could use longer term interest rate futures to account for QE
 - Eurodollar futures could be better
- Summary
 - Main contribution is a way to measure "how important" the Fed information effect is

Explanations

- Private sector forecasts have improved over time
- Evidence against Nakamura and Steinsson (2018) and for Bauer and Swanson (2020)
- Bauer and Swanson argued for "Fed-response to news" channel
- Areas for improvement
 - Stock market data limited to open and closing prices
 - Treatment sizes very small for ZLB periods
 - Could use longer term interest rate futures to account for QE
 - Eurodollar futures could be better
- Summary
 - Main contribution is a way to measure "how important" the Fed information effect is
 - All tests indicate that the effect is weak or non-existent

References

- Bauer, M., & Swanson, E. T. (2020). The Fed's Response to Economic News Explains the "Fed Information Effect". Federal Reserve Bank of San Francisco, Working Paper Series, 01–62. https://doi.org/10.24148/wp2020-06
- Board of Governors of the Federal Reserve System. (2022). Federal funds effective rate [retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/DFF].
- Gertler, M., & Karadi, P. (2015). Monetary policy surprises, credit costs, and economic activity. *American Economic Journal: Macroeconomics*, 7(1). https://doi.org/10.1257/mac.20130329
- Gurkaynak, R. S., Sack, B. P., & Swanson, E. T. (2011). Do Actions Speak Louder Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.633281
- Nakamura, E., & Steinsson, J. (2018). High-frequency identification of monetary non-neutrality: The information effect. *Quarterly Journal of Economics*, 133(3). https://doi.org/10.1093/QJE/QJY004
- Romer, C. D., & Romer, D. H. (2004). A New Measure of Monetary Shocks: Derivation and Implications. *American Economic Review*, *94*(4), 1055–1084. https://doi.org/10.1257/0002828042002651
- U.S. Bureau of Economic Analysis. (2022). Real gross domestic product [retrieved from FRED,
 Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org/series/GDPC1].

 Ethan Rahman (NIU)

 ECON 592: ECONference Presentation

 April 13, 2022

 14/14