Chapter 10—Two-Sample Tests

10.1
$$df = n_1 + n_2 - 2 = 12 + 15 - 2 = 25$$

10.2 (a)
$$S_{p}^{2} = \frac{(n_{1} - 1) \cdot S_{1}^{2} + (n_{2} - 1) \cdot S_{2}^{2}}{(n_{1} - 1) + (n_{2} - 1)} = \frac{(7) \cdot 4^{2} + (14) \cdot 5^{2}}{7 + 14} = 22$$

$$t_{STAT} = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{S_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} = \frac{(42 - 34) - 0}{\sqrt{22\left(\frac{1}{8} + \frac{1}{15}\right)}} = 3.8959$$

- (b) $d.f. = (n_1 1) + (n_2 1) = 7 + 14 = 21$
- (c) Decision rule: d.f. = 21. If $t_{STAT} > 2.5177$, reject H_0 .
- (d) Decision: Since t = 3.8959 is greater than the critical bound of 2.5177, reject H_0 . There is enough evidence to conclude that the first population mean is larger than the second population mean.
- 10.3 Assume that you are sampling from two independent normal distributions having equal variances.

$$\left(\overline{X}_{1} - \overline{X}_{2}\right) \pm t \sqrt{S_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)} = \left(42 - 34\right) \pm 2.0796 \sqrt{22 \left(\frac{1}{8} + \frac{1}{15}\right)}$$

$$3.7296 \le \mu_{1} - \mu_{2} \le 12.2704$$

10.5
$$df = n_1 + n_2 - 2 = 5 + 4 - 2 = 7$$

10.6 PHStat output:

Data	
Hypothesized Difference	0
Level of Significance	0.01
Population 1 Sample	
Sample Size	5
Sample Mean	42
Sample Standard Deviation	4
Population 2 Sample	
Sample Size	4
Sample Mean	34
Sample Standard Deviation	5

Difference in Sample Means	8
Pooled Variance	19.85714
Total Degrees of Freedom	7
Population 2 Sample Degrees of Freedom	3
Population 1 Sample Degrees of Freedom	4
Intermediate Calculations	

Upper-Tail Test	
Upper Critical Value	2.997949
<i>p</i> -Value	0.015856
Do not reject the null hypothesis	

Test statistic:
$$t_{STAT} = \frac{H_1: \mu_1 > \mu_2}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = 2.6762$$

Decision: Since $t_{STAT} = 2.6762$ is smaller than the upper critical bounds of 2.9979, do not reject H_0 . There is not enough evidence of a difference in the means of the two populations.

536 Chapter 10: Two-Sample Tests

- 10.7 (a) H_0 : $\mu_1 \le \mu_2$ The mean amount spent is no higher for men than women. H_1 : $\mu_1 > \mu_2$ The mean amount spent is higher for men than women.
 - (b) Type I error is the error made in concluding that the mean amount spent is higher for men than women when the mean amount spent is in fact no higher for men than women.
 - (c) Type II error is the error made in concluding that the mean amount spent is no higher for men than women when the mean amount spent is in fact higher for men than women.
 - (d) PHStat output:

Separate-Variances t Test for the Diff	erence Retween Two Means	
Separate-Variances t Test for the Difference Between Two Means (assumes equal population variances)		
Data		
Hypothesized Difference	0	
Level of Significance	0.01	
Population 1	V	
Sample Size	600	
Sample Mean	2401	
Sample Standard Deviation	1200	
Population 2		
Sample Size	700	
Sample Mean	1527	
Sample Standard Deviation	1000	
•		
Intermediate Ca	culations	
Numerator of Degrees of Freedom	14657959.1837	
Denominator of Degrees of Freedom	12535.6495	
Total Degrees of Freedom	1169.3019	
Degrees of Freedom	1169	
Separate Variance Denominator	61.8755	
Difference in Sample Means	874	
Separate-Variance t Test Statistic	14.1251	
Upper-Tail		
Upper Critical Value	2.3263	
<i>p</i> -Value	0.0000	
Reject the null hypothesis		

$$t_{STAT} = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} = 14.1251$$

Decision: Since $t_{STAT} = 14.1251$ is greater than he critical bound of 2.3263, reject H_0 . There is evidence that the mean amount spent is higher for men than for women.

10.8 (a) PHStat output:			
Pooled-Variance <i>t</i> Test for the Difference I	Between Two Mean	s	
(assumes equal population variances)			
Data	_	Confidence Interva	al Estimate
Hypothesized Difference	0	for the Difference Betw	een Two Means
Level of Significance	0.05		
Population 1 Sample		Data	•
Sample Size	59	Confidence Level	95%
Sample Mean	28.5		
Sample Standard Deviation	8.6	Intermediate Calculations	
Population 2 Sample		Degrees of Freedom	116
Sample Size	59	t Value	1.980625937
Sample Mean	19.7	Interval Half Width	3.01117417
Sample Standard Deviation	7.9		
		Confidence Interval	
Intermediate Calculations		Interval Lower Limit	5.78882583
Population 1 Sample Degrees of Freedom	58	Interval Upper Limit	11.81117417
Population 2 Sample Degrees of Freedom	58		
Total Degrees of Freedom	116		
Pooled Variance	68.185		
Difference in Sample Means	8.8		
t Test Statistic	5.788276		
Upper-Tail Test			
Upper Critical Value	1.658096		
p-Value	3.09E-08		
Reject the null hypothesis			

$$H_0: \mu_1 \leq \mu_2$$

$$H_1$$
: $\mu_1 > \mu_2$

where population 1 = children who watched food ads

population 2 = children who do not watch food ads

Decision rule: If p-value < 0.05, reject H_0 .

Test statistic:
$$t_{STAT} = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = 5.7883, df = 116$$

p-value is virtually 0.

Decision: Since the p-value is smaller than 0.05, reject H_0 . There is enough evidence that the mean amount of Goldfish crackers eaten was significantly higher for the children who watched food ads.

(b)
$$\left(\overline{X}_1 - \overline{X}_2\right) \pm t_{\alpha/2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \left(28.5 - 19.7\right) \pm 1.9806 \sqrt{68.185 \left(\frac{1}{59} + \frac{1}{59}\right)}$$

$$5.7888 \le \mu_1 - \mu_2 \le 11.8112$$

The results cannot be compared because (a) is a one-tail test and (b) is a confidence (c) interval that is comparable only to the results of a two-tail test.

10.9 (a) $H_0: \mu_1 = \mu_2$ Mean times to clear problems at Office I and Office II are the same. $H_1: \mu_1 \neq \mu_2$ Mean times to clear problems at Office I and Office II are different. PHStat output:

t Test for Differences in Two Means			
Data			
Hypothesized Difference			
Level of Significance	0.05		
Population 1 Sample			
Sample Size	20		
Sample Mean	2.214		
Sample Standard Deviation	1.718039		
Population 2 Sample			
Sample Size	20		
Sample Mean	2.0115		
Sample Standard Deviation	1.891706		
Intermediate Calculations			
Population 1 Sample Degrees of Freedom	19		
Population 2 Sample Degrees of Freedom	19		
Total Degrees of Freedom	38		
Pooled Variance	3.265105		
Difference in Sample Means	0.2025		
t-Test Statistic	0.354386		
Two-Tailed Test			
Lower Critical Value -2.0243			
Upper Critical Value 2.0243			
p-Value	0.725009		
Do not reject the null hypothesis			

Since the p-value of 0.725 is greater than the 5% level of significance, do not reject the null hypothesis. There is not enough evidence to conclude that the mean time to clear problems in the two offices is different.

- (b) p-value = 0.725. The probability of obtaining a sample that will yield a t test statistic more extreme than 0.3544 is 0.725 if, in fact, the mean waiting times between Office 1 and Office 2 are the same.
- (c) We need to assume that the two populations are normally distributed.

(d)
$$(\overline{X}_1 - \overline{X}_2) + t \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = (2.214 - 2.0115) + 2.0244 \sqrt{3.2651 \left(\frac{1}{20} + \frac{1}{20}\right)} -0.9543 \le \mu_1 - \mu_2 \le 1.3593$$

Since the Confidence Interval contains 0, we cannot claim that there's a difference between the two means.

10.10 (a) H_0 : $\mu_1 = \mu_2$ where Populations: 1 = Males, 2 = Females

Mean computer anxiety experienced by males and females is the same.

 H_1 : $\mu_1 \neq \mu_2$

Mean computer anxiety experienced by males and females is different.

Decision rule: d.f. = 170. If $t_{STAT} < -1.974$ or $t_{STAT} > 1.974$, reject H_0 . Test statistic:

$$S_{p}^{2} = \frac{(n_{1} - 1) \cdot S_{1}^{2} + (n_{2} - 1) \cdot S_{2}^{2}}{(n_{1} - 1) + (n_{2} - 1)} = \frac{(99) \cdot 13.35^{2} + (71) \cdot 9.42^{2}}{99 + 71} = 140.8489$$

$$t_{STAT} = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{S_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} = 1.859$$

Decision: Since $t_{STAT} = 1.859$ is between the lower and upper critical bound of -1.974and 1.974, do not reject H_0 . There is not enough evidence to conclude that the mean computer anxiety experienced by males and females is different.

- (b) Using PHStat, the p-value = 0.0648. The probability of obtaining a sample that yields a t test statistic farther away from 0 in either direction is 0.0648 if there is no difference in the mean computer anxiety experienced by males and females.
- In order to use the pooled-variance t test, you need to assume that the populations are (c) normally distributed with equal variances.

10.11 (a) PHStat output:

Pooled-Variance t Test for the Difference B	Between Two Mean	is .	
(assumes equal population variances)			
Data		Confidence Interv	al Estimate
Hypothesized Difference	0	for the Difference Between Two Mear	
Level of Significance	0.05		
Population 1 Sample		Data	<u>'</u>
Sample Size	29	Confidence Level	95%
Sample Mean	234.6552		
Sample Standard Deviation	49.20676	Intermediate Calculations	-
Population 2 Sample	-	Degrees of Freedom	43
Sample Size	16	t Value	2.016692173
Sample Mean	303.125	Interval Half Width	48.45314711
Sample Standard Deviation	111.9952		
		Confidence Interval	
Intermediate Calculations		Interval Lower Limit	-116.9229747
Population 1 Sample Degrees of Freedom	28	Interval Upper Limit	-20.01668047
Population 2 Sample Degrees of Freedom	15		
Total Degrees of Freedom	43		
Pooled Variance	5952.1		
Difference in Sample Means	-68.4698		
t Test Statistic	-2.84982		
Two-Tail Test			
Lower Critical Value	-2.01669		
Upper Critical Value	2.016692		
p-Value	0.00669		
Reject the null hypothesis	0.00007		

H₀: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$ where Populations: 1 = subcompact, 2 = compact Decision rule: d.f. = 43. If $|t_{STAT}| > 2.0167$, reject H_0 .

$$t_{STAT} = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} = -2.8498$$

Decision: Since $t_{STAT} = -2.8498$ is smaller the lower critical value of -2.0167, reject H_0 . There is enough evidence of a difference in the mean battery life between the two types of digital cameras.

(b) p-value = 0.0067. The probability of obtaining a sample that yields a t test statistic farther away from 0 in either direction is 0.0067 if there is no difference in the mean battery life between the two types of digital cameras.

cont.
$$\left(\overline{X}_1 - \overline{X}_2\right) \pm t_{\alpha/2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \left(234.6552 - 303.125\right) \pm 2.0167 \sqrt{5952.1 \left(\frac{1}{29} + \frac{1}{16}\right)}$$

$$-116.9230 \le \mu_1 - \mu_2 \le -20.0167$$

You are 95% confident that the difference between the population mean battery life of the two types of digital cameras is somewhere between -116.9230 and -20.0167.

Mean waiting times of Bank 1 and Bank 2 are the same. 10.12 (a) $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$ Mean waiting times of Bank 1 and Bank 2 are different.

PHStat output:

0
0.05
15
4.286667
1.637985
•
15
7.114667
2.082189
14
14
28
3.509254
-2.828
-4.13431
-2.04841
2.048409
0.000293

Since the *p*-value of 0.000293 is less than the 5% level of significance, reject the null hypothesis. There is enough evidence to conclude that the mean waiting time is different in the two banks.

- p-value = 0.000293. The probability of obtaining a sample that will yield a t test (b) statistic more extreme than -4.13431 is 0.000293 if, in fact, the mean waiting times of Bank 1 and Bank 2 are the same.
- We need to assume that the two populations are normally distributed. (c)

(d)
$$\left(\overline{X}_1 - \overline{X}_2\right) + t\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \left(4.2867 - 7.1147\right) + 2.0484\sqrt{3.5093 \left(\frac{1}{15} + \frac{1}{15}\right)} -4.2292 \le \mu_1 - \mu_2 \le -1.4268$$

You are 95% confident that the difference in mean waiting time between Bank 1 and Bank 2 is between -4.2292 and -1.4268 minutes.

 $H_0: \mu_1 = \mu_2$ 10.13 Mean waiting times of Bank 1 and Bank 2 are the same. $H_1: \mu_1 \neq \mu_2$ Mean waiting times of Bank 1 and Bank 2 are different.

PHStat output:

Separate-Variances t Test for the Difference Between Two Means		
(assumes unequal population variances)		
Data		
Hypothesized Difference	0	
Level of Significance	0.05	
Population 1 Sample	•	
Sample Size	15	
Sample Mean	4.286666667	
Sample Standard Deviation	1.637985115	
Population 2 Sample		
Sample Size	15	
Sample Mean	7.114666667	
Sample Standard Deviation	2.082189324	
Intermediate Calculations		
Numerator of Degrees of Freedom	0.2189	
Denominator of Degrees of Freedom	0.0083	
Total Degrees of Freedom	26.5293	
Degrees of Freedom	26	
Separate Variance Denominator	0.6840	
Difference in Sample Means	-2.828	
Separate-Variance t Test Statistic	-4.1343	
Two-Tail Test		
Lower Critical Value	-2.0555	
Upper Critical Value	2.0555	
<i>p</i> -Value	0.0003	
Reject the null hypothesis		

Since the *p*-value of 0.00031 is less than the 5% level of significance, reject the null hypothesis. There is enough evidence to conclude that the mean waiting times are different in the two banks.

Both *t* tests yield the same conclusion.

10.14 (a)	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$		
	Excel output:		
	t-Test: Two-Sample Assuming Equal	Untreated	Treated
	Variances		
	Mean	165.0948	155.7314
	Variance	41.6934168	62.4141
	Observations	20	20
	Pooled Variance	52.05375826	
	Hypothesized Mean Difference	0	
	df	38	
	t Stat	4.104023608	
	P(T<=t) one-tail	0.000103572	
	t Critical one-tail	1.685953066	
	P(T<=t) two-tail	0.000207144	
	t Critical two-tail	2.024394234	

Decision: Since $t_{STAT} = 4.104$ is greater than the upper critical bound of 2.024, reject H_0 . There is evidence that the mean surface hardness of untreated steel plates is different from the mean surface hardness of treated steel plates.

- p-value = 0.0002. The probability of obtaining two samples with a mean difference (b) of 9.3634 or more is 0.0002 if the mean surface hardness of untreated steel plates is not different from the mean surface hardness of treated steel plates
- Since both sample sizes are smaller than 30, you need to assume that the population (c) of hardness of both untreated and treated steel plates is normally distributed.

(d)
$$(\overline{X}_1 - \overline{X}_2) + t \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

$$= (165.0948 - 155.7314) + 2.0244 \sqrt{52.0538 \left(\frac{1}{20} + \frac{1}{20}\right)}$$

$$4.7447 \le \mu_1 - \mu_2 \le 13.9821$$

You are 95% confident that the difference in the mean surface hardness between untreated and treated steel plates is between 4.7447 and 13.9821.

544 Chapter 10: Two-Sample Tests

 H_0 : $\mu_1 = \mu_2$ PHStat output: 10.15 $H_1: \mu_1 \neq \mu_2$

PHStat output:	Defenses Torre Mesers			
Separate-Variances t Test for the Difference	Between Two Means			
(assumes unequal population variances)				
Data				
Hypothesized Difference	0			
Level of Significance	0.05			
Population 1 Sam	ple			
Sample Size	20			
Sample Mean	165.0948			
Sample Standard Deviation	6.457043968			
Population 2 Sam	ple			
Sample Size	20			
Sample Mean	155.73135			
Sample Standard Deviation	7.900259471			
Intermediate Calculations				
Numerator of Degrees of Freedom	27.0959			
Denominator of Degrees of Freedom	0.7413			
Total Degrees of Freedom	36.5520			
Degrees of Freedom	36			
Separate Variance Denominator	2.2815			
Difference in Sample Means	9.36345			
Separate-Variance t Test Statistic	4.1040			
Two-Tail Test	Two Toil Toot			
Lower Critical Value	-2.0281			
Upper Critical Value	2.0281			
p-Value	0.0002			
Reject the null hypothesis				

Decision: Since $t_{STAT} = 4.104$ is greater than the upper critical bounds 2.0281, reject H_0 . There is evidence of a difference in the mean surface hardness between untreated and treated steel plates.

The value of pooled-variance t test statistic and the separate-variance t test statistic are almost identical while the critical bound of the pooled-variance t test is slightly smaller than that of the separate-variance t test because the degrees of freedom of the pooled-variance t test is two more than that of the separate-variance t test.

10.16 (a) PHStat output:

10.16 (a) PHStat output:			
Pooled-Variance t Test for the Difference I	Between Two Means	S	
(assumes equal population variances)			
Data		Confidence Interv	al Estimate
Hypothesized Difference	0	for the Difference Between Two Means	
Level of Significance	0.05		
Population 1 Sample			
Sample Size	50	Confidence Level	95%
Sample Mean	137		
Sample Standard Deviation	51.7	Intermediate Calculations	
Population 2 Sample		Degrees of Freedom	98
Sample Size	50	t Value	1.984467404
Sample Mean	231	Interval Half Width	23.88403599
Sample Standard Deviation	67.6		
_		Confidence Interval	
Intermediate Calculations		Interval Lower Limit	-117.884036
Population 1 Sample Degrees of Freedom	49	Interval Upper Limit	-70.11596401
Population 2 Sample Degrees of Freedom	49		
Total Degrees of Freedom	98		
Pooled Variance	3621.325		
Difference in Sample Means	-94		
t Test Statistic	-7.81024		
Two-Tail Test			
Lower Critical Value	-1.98447		
Upper Critical Value	1.984467		
p-Value	6.43E-12		
Reject the null hypothesis			

$$H_0$$
: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

where Populations: 1 = users under 12 years of age; 2 = users 13 to 17 years of age Decision rule: d.f. = 98. If $t_{STAT} < -1.9845$ or $t_{STAT} > 1.9845$, reject H_0 .

Test statistic:

$$t_{STAT} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(137 - 231) - 0}{\sqrt{3621.325 \left(\frac{1}{50} + \frac{1}{50}\right)}} = -7.8102$$

Decision: Since $t_{STAT} = -7.8102$ is below the lower critical bound of -1.9845, reject H_0 . There is enough evidence of a difference in the mean cellphone usage between cellphone users under 12 years of age and cellphone users 13 to 17 years of age.

(b) You must assume that each of the two independent populations is normally distributed.

10.17 (a)
$$H_0: \mu_1 \ge \mu_2$$

where Populations: 1 = unflawed, 2 = flawed

 H_1 : $\mu_1 < \mu_2$

Decision rule: d.f. = 56. If t < -1.6725, reject H_0 .

Test statistic:

$$S_p^2 = \frac{(n_1 - 1) \cdot S_1^2 + (n_2 - 1) \cdot S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(17) \cdot 0.0219^2 + (39) \cdot 0.0840^2}{17 + 39} = 0.0051$$

$$t_{STAT} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = -2.9047$$

Decision: Since $t_{STAT} = -2.9047$ is less than the lower critical bound of -1.6725, reject H_0 . There is enough evidence to conclude that the mean crack size is smaller for the unflawed specimens than for the flawed specimens.

(b)
$$H_0: \mu_1 \ge \mu_2$$

where Populations: 1 = unflawed, 2 = flawed

 H_1 : $\mu_1 < \mu_2$

Decision rule: d.f. = 49. If t < -1.6766, reject H_0 .

t-Test: Two-Sample Assuming Unequal Variances

	Unflawed	flawed
Mean	0.035944	0.0946
Variance	0.000481	0.007059
Observations	18	40
Hypothesized Mean Difference	0	
df	49	
t Stat	-4.11472	
P(T<=t) one-tail	7.4E-05	
t Critical one-tail	1.676551	
P(T<=t) two-tail	0.000148	
t Critical two-tail	2.009574	

Since p-value is virtually zero and is smaller than 0.05, reject H_0 . There is enough evidence to conclude that the mean crack size is lower for the unflawed specimens than for the flawed specimens.

(c) The conclusions in (a) and (b) are the same. Since the sample variance of the flawed sample is almost 15 times as big as that of the unflawed sample, the test in (b) is the appropriate test to perform assuming that both samples are drawn from normally distributed populations.

10.18
$$d.f. = n - 1 = 20 - 1 = 19$$
, where $n =$ number of pairs of data

10.19
$$d.f. = n - 1 = 15 - 1 = 14$$
, where $n =$ number of pairs of data

10.20 Excel output:

t-Test: Paired Two Sample for Means

	Α	В
Mean	24	25.5555556
Variance	7	3.527777778
Observations	9	9
Pearson Correlation	0.85524255	
Hypothesized Mean Difference	0	
Df	8	
t Stat	-3.277152121	
P(T<=t) one-tail	0.00561775	
t Critical one-tail	1.859548033	
P(T<=t) two-tail	0.011235501	
t Critical two-tail	2.306004133	

(a) Define the difference in summated rating as the rating on brand A minus the rating on brand B.

$$H_0: \mu_D = 0$$
 vs. $H_1: \mu_D \neq 0$
Test statistic: $t_{STAT} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = -3.2772, p$ -value = 0.0112

Decision: Since the p-value = 0.0112 < 0.05, reject H_0 . There is enough evidence of a difference in the mean summated ratings between the two brands.

- (b) You must assume that the distribution of the differences between the two ratings is approximately normal.
- p-value is 0.0112. The probability of obtaining a mean difference in ratings that (c) gives rise to a test statistic that deviates from 0 by 3.2772 or more in either direction is 0.0112 if there is no difference in the mean summated ratings between the two

(d)
$$\overline{D} \pm t \frac{s_D}{\sqrt{n}} = -1.5556 \pm 2.3060 \frac{1.4240}{\sqrt{5}}$$
 -2.6501 $\leq \mu_D \leq$ -0.4610 You are 95% confident that the mean difference in summated ratings between brand

A and brand B is somewhere between -2.6501 and -0.4610.

548 Chapter 10: Two-Sample Tests

10.21 (a)
$$H_0: \mu_D = 0$$
 vs. $H_1: \mu_D \neq 0$

Excel Output:

t-Test: Paired Two Sample for Means

In-Line	Analytical lab
6.490833	6.49375
1.179912	1.247928804
24	24
0.994239	
0	
23	
-0.11692	
0.453968	
1.71387	
0.907937	
2.068655	
	6.490833 1.179912 24 0.994239 0 23 -0.11692 0.453968 1.71387 0.907937

Test statistic:
$$t_{STAT} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = -0.1169$$

Decision: Since $t_{STAT} = -0.1169$ falls between the lower and upper critical values ± 2.0687 , do not reject H_0 . There is not enough evidence to conclude that there is a difference in the mean measurements in-line and from an analytical lab.

(b) You must assume that the distribution of the differences between the mean measurements is approximately normal.

(c)

Box-and-whisker Plot

The distributions appear to be right skewed.

$$\overline{D} \pm t \frac{S_D}{\sqrt{n}} = -0.0029 \pm 2.0687 \frac{0.1222}{\sqrt{24}}$$
 $-0.0545 \le \mu_D \le 0.0487$

You are 95% confident that the difference in the mean measurements in-line and from an analytical lab is somewhere between -0.0545 and 0.0487.

10.22 (a) Define the difference in price as the price of Costco minus the price of store-brands. PHStat output:

t-Test: Paired Two Sample for Means

	Costco	Store Brand
Mean	6.049	6.025
Variance	34.17881	28.75756111
Observations	10	10
Pearson Correlation	0.920273316	
Hypothesized Mean Difference	0	
df	9	
t Stat	0.033176962	
P(T<=t) one-tail	0.487128804	
t Critical one-tail	1.833112923	
P(T<=t) two-tail	0.974257608	
t Critical two-tail	2.262157158	

 H_0 : $\mu_{\overline{D}} = 0$ There is no difference between the mean price of Costco purchases and store brand purchases.

 H_1 : $\mu_{\overline{D}} \neq 0$ There is a difference between the mean price of Costco purchases and store brand purchases.

Decision rule: If $t_{STAT} < -2.2622$ or $t_{STAT} > 2.2622$, reject H_0 .

Test statistic:
$$t_{STAT} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = 0.0332$$

Decision: Since $t_{\text{STAT}} = 0.0332$ falls between the lower and upper critical bound, do not reject H_0 . There is not enough evidence to conclude that there is a difference between the mean price of Costco purchases and store brand purchases.

(b) You must assume that the distribution of the differences between the price of Costco and price of store band is approximately normal.

(c)
$$\bar{D} \pm t_{a/2} \frac{S_D}{\sqrt{n}} = 0.02 \pm 2.2622 \left(\frac{2.2876}{\sqrt{10}}\right)$$
 \$ -1.61 \le \mu_D \le \\$ 1.66

You are 95% confident that the mean difference between the prices is between \$-1.61 and \$1.66.

550 Chapter 10: Two-Sample Tests

10.22 (d) The results in (a) and (c) are the same. The hypothesized value of 0 for the difference between the mean price of Costco purchases and store brand purchases is not inside the 95% confidence interval and, hence, the null hypothesis that there is no difference between the mean price of Costco purchases and store brand purchases should not be rejected.

10.23 (a) Define the difference to be the number of pages devoted to advertisements in May 2008 minus the number of pages devoted to advertisement in May 2009.

$$H_0: \mu_D \le 0$$
 vs. $H_1: \mu_D > 0$

Excel output:

Exect output.		
t-Test: Paired Two Sample for Means		
	2008	2009
Mean	107.1975	85.90583333
Variance	3199.168366	4145.798154
Observations	12	12
Pearson Correlation	0.884928463	
Hypothesized Mean Difference	0	
df	11	
t Stat	2.459363538	
P(T<=t) one-tail	0.015857275	
t Critical one-tail	1.795884814	
P(T<=t) two-tail	0.031714549	
t Critical two-tail	2.200985159	

Test statistic:
$$t_{STAT} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = 2.4594$$

Decision: Since $t_{STAT} = 2.4594$ is greater than the critical value of 1.7959, reject H_0 .

There is enough evidence to conclude that the mean number of pages devoted to advertisements in Men's Magazines is higher in May 2008 than in May 2009.

(b) The differences are assumed to be normally distributed.

(c)

The normal probability plot does not indicate severe departure from normality.

10.23 (d)
$$\bar{D} \pm t_{a/2} \frac{S_D}{\sqrt{n}} = 21.2917 \pm 2.2010 \frac{29.9901}{\sqrt{12}}$$
 2.24 $\leq \mu_D \leq 40.35$

You are 95% confident that the difference in the mean number of pages devoted to cont. advertisements in Men's Magazines between May 2008 and May 2009 is somewhere between 2.24 and 40.35.

10.24 (a) Define the difference in bone marrow microvessel density as the density before the transplant minus the density after the transplant and assume that the difference in density is normally distributed.

$$H_0: \mu_D \le 0$$
 vs. $H_1: \mu_D > 0$

Excel output:

t-Test: Paired Two Sample for Means

	Before	After
Mean	312.1429	226
Variance	15513.14	4971
Observations	7	7
Pearson Correlation	0.295069	
Hypothesized Mean Difference	0	
df	6	
t Stat	1.842455	
P(T<=t) one-tail	0.057493	
t Critical one-tail	1.943181	
P(T<=t) two-tail	0.114986	
t Critical two-tail	2.446914	

Test statistic:
$$t_{STAT} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = 1.8425$$

Decision: Since $t_{STAT} = 1.8425$ is less than the critical value of 1.943, do not reject H_0 . There is not enough evidence to conclude that the mean bone marrow microvessel density is higher before the stem cell transplant than after the stem cell

p-value = 0.0575. The probability of obtaining a mean difference in density that (b) gives rise to a t test statistic that deviates from 0 by 1.8425 or more is .0575 if the mean density is not higher before the stem cell transplant than after the stem cell

(c)
$$\bar{D} \pm t \frac{S_D}{\sqrt{n}} = 86.1429 \pm 2.4469 \frac{123.7005}{\sqrt{7}}$$
 $-28.26 \le \mu_D \le 200.55$

You are 95% confident that the mean difference in bone marrow microvessel density before and after the stem cell transplant is somewhere between -28.26 and 200.55.

You must assume that the distribution of differences between the mean density of (d) before and after stem cell transplant is approximately normal.

- 10.25 From the descriptive statistics provided in the Microsoft Excel output there does not seem to be any violation of the assumption of normality. The mean and median are similar and the skewness value is near 0. Without observing other graphical devices such as a stem-and-leaf display, boxplot, or normal probability plot, the fact that the sample size (n = 35) is not very small enables us to assume that the paired t test is appropriate here. The Microsoft Excel output for the paired t test indicates that a significant improvement in mean performance ratings has occurred. The calculated t statistic of -2.699 falls far below the one-tailed critical value of -1.6909 using a 0.05 level of significance. The *p*-value is 0.005376.
- 10.26 $H_0: \mu_{\bar{D}} \ge 0$ (a) H_1 : $\mu_{\bar{D}} < 0$

Decision rule: d.f. = 39. If $t_{STAT} < -2.4258$, reject H_0 .

Test statistic:
$$t_{STAT} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = -9.372$$

Decision: Since $t_{STAT} = -9.372$ is less than the critical bound of -2.4258, reject H_0 . There is enough evidence to conclude that the mean strength is lower at two days than at seven days.

- (b) You must assume that the distribution of the differences between the mean strength of the concrete is approximately normal.
- p-value is virtually 0. The probability of obtaining a mean difference that gives rise (c) to a test statistic that is -9.372 or less when the null hypothesis is true is virtually 0.

10.27 (a)
$$p_1 = \frac{X_1}{n_1} = \frac{50}{100} = 0.50, \quad p_2 = \frac{X_2}{n_2} = \frac{30}{100} = 0.30,$$

and $\overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{50 + 30}{100 + 100} = 0.40$

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ Decision rule: If $Z_{STAT} < -1.96$ or $Z_{STAT} > 1.96$, reject H_1

Test statistic:
$$Z_{STAT} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \frac{(0.50 - 0.30) - 0}{\sqrt{0.40(1 - 0.40)\left(\frac{1}{100} + \frac{1}{100}\right)}} = 2.89$$

Decision: Since $Z_{STAT} = 2.89$ is above the critical bound of 1.96, reject H_0 . There is sufficient evidence to conclude that the population proportions differ for group 1 and group 2.

(b)
$$(p_1 - p_2) \pm Z \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}} = 0.2 \pm 1.96 \sqrt{\frac{.5(.5)}{100} + \frac{.3(.7)}{100}}$$

 $0.0671 \le \pi_1 - \pi_2 \le 0.3329$

10.28 (a)
$$p_1 = \frac{X_1}{n_1} = \frac{45}{100} = 0.45, \quad p_2 = \frac{X_2}{n_2} = \frac{25}{50} = 0.50,$$

and $\overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{45 + 25}{100 + 50} = 0.467$

 $H_0: \pi_1 = \pi_2 \quad H_1: \pi_1 \neq \pi_2$

Decision rule: If Z < -2.58 or Z > 2.58, reject H_0 .

$$Z_{STAT} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \frac{(0.45 - 0.50) - 0}{\sqrt{0.467(1 - 0.467)\left(\frac{1}{100} + \frac{1}{50}\right)}} = -0.58$$

Decision: Since $Z_{STAT} = -0.58$ is between the critical bound of ± 2.58 , do not reject H_0 . There is insufficient evidence to conclude that the population proportion differs for group 1 and group 2.

(b)
$$(p_1 - p_2) \pm Z \sqrt{\left(\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}\right)} = -0.05 \pm 2.5758 \sqrt{\left(\frac{.45(.55)}{100} + \frac{.5(.5)}{50}\right)}$$
$$-0.2727 \le \pi_1 - \pi_2 \le 0.1727$$

10.29 (a)
$$p_1 = \frac{X_1}{n_1} = \frac{136}{240} = 0.567, \quad p_2 = \frac{X_2}{n_2} = \frac{224}{260} = 0.862,$$
 and $\overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{136 + 224}{240 + 260} = 0.72$

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where Populations: 1 = males, 2 = females

Decision rule: If $Z_{STAT} < -2.58$ or $Z_{STAT} > 2.58$, reject H_0 .

$$Z_{STAT} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\overline{p}\left(1 - \overline{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \frac{\left(0.567 - 0.862\right) - 0}{\sqrt{0.72\left(1 - 0.72\right)\left(\frac{1}{240} + \frac{1}{260}\right)}} = -7.34$$

Decision: Since $Z_{STAT} = -7.34$ is well below the lower critical bound of -2.58, reject H_0 . There is sufficient evidence to conclude that a significant difference exists in the proportion of males and females who enjoy shopping for clothing.

p-value = virtually zero. The probability of obtaining a difference in two sample (b) proportions of 0.295 or more when the null hypothesis is true is virtually zero.

(c)
$$(p_1 - p_2) \pm Z \sqrt{\left(\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}\right)} = -0.2949 \pm 2.5758 \sqrt{\left(\frac{.5667(.4333)}{240} + \frac{.8615(.1385)}{260}\right)} -0.3940 \le \pi_1 - \pi_2 \le -0.1957$$

You are 99% confident that the difference in the proportions of males and females who enjoy shopping for clothing is between -0.3940 and -0.1957.

10.29 (d) (a)

cont.

$$p_1 = \frac{X_1}{n_1} = \frac{206}{240} = 0.858, \quad p_2 = \frac{X_2}{n_2} = \frac{224}{260} = 0.862, \quad \overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = 0.86$$

$$H_0: \pi_1 = \pi_2 \quad H_1: \pi_1 \neq \pi_2$$

Decision rule: If $Z_{STAT} < -2.58$ or $Z_{STAT} > 2.58$, reject H_0 .

$$Z_{STAT} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \frac{(0.858 - 0.862) - 0}{\sqrt{0.86(1 - 0.86)\left(\frac{1}{240} + \frac{1}{260}\right)}} = -0.103$$

Decision: Since $Z_{STAT} = -0.103$ is between the critical bounds of ± 2.58 , do not reject H_0 . There is insufficient evidence to conclude that a significant difference exists in the proportion of males and females who enjoy shopping for clothing.

(b) p-value = 0.9178. The probability of obtaining a difference in two sample proportions of 0.004 or more when the null hypothesis is true is 0.9178

(c)
$$(p_1 - p_2) \pm Z \sqrt{\frac{p_1(1 - p_2)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

= $-0.0032 \pm 2.5758 \sqrt{\frac{.8583(.1417)}{240} + \frac{.8615(.1385)}{260}}$

$$-0.0832 \le \pi_1 - \pi_2 \le 0.0768$$

You are 99% confident that the difference in the proportions of males and females who enjoy shopping for clothing is between –0.0832 and 0.0768.

10.30 (a) H_0 : $\pi_1 \le \pi_2$ H_1 : $\pi_1 > \pi_2$

Population 1 = 2009, 2 = 2008

(b) PHStat output:

Z Test for Differences in Two Pro	portions	
Data		
Hypothesized Difference	0	
Level of Significance	0.05	
Group 1		
Number of Items of Interest	39	
Sample Size	100	
Group 2		
Number of Items of Interest	7	
Sample Size	100	
Intermediate Calculations		
Group 1 Proportion	0.39	
Group 2 Proportion	0.07	
Difference in Two Proportions	0.32	
Average Proportion	0.23	
Z Test Statistic	5.376822502	
Upper-Tail Test		
Upper Critical Value	1.644853627	
p-Value	3.79059E-08	
Reject the null hypothesis		

Decision rule: If $Z_{STAT} > 1.6449$, reject H_0 . 10.30 (b) cont. Test statistic:

$$\overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{39 + 7}{100 + 100} = 0.23$$

$$Z_{STAT} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\overline{p}\left(1 - \overline{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \frac{\left(0.39 - 0.07\right) - 0}{\sqrt{0.23\left(1 - 0.23\right)\left(\frac{1}{100} + \frac{1}{100}\right)}} = 5.3768$$

Decision: Since $Z_{STAT} = 5.3768$ is greater than the critical bound of 1.6449, reject H_0 . There is sufficient evidence to conclude that it takes more time to be removed from an e-mail list than it used to.

Yes, the result in (b) makes it appropriate to claim that it takes more time to be (c) removed from an email list than it used to.

10.31 (a) PHStat output:

Z Test for Differences in Two Pro	oportions
Data	
Hypothesized Difference	0
Level of Significance	0.05
Group 1	
Number of Items of Interest	22
Sample Size	50
Group 2	
Number of Items of Interest	3
Sample Size	50
Intermediate Calculations	
Group 1 Proportion	0.44
Group 2 Proportion	0.06
Difference in Two Proportions	0.38
Average Proportion	0.25
Z Test Statistic	4.387862046
Two-Tail Test	
Lower Critical Value	-1.959963985
Upper Critical Value	1.959963985
<i>p</i> -Value	1.1447E-05
Reject the null hypoth	nesis

(a)
$$p_1 = \frac{22}{50} = 0.44$$

(b) $p_2 = \frac{3}{50} = 0.06$

(b)
$$p_2 = \frac{3}{50} = 0.06$$

10.31 (c) H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where Populations: 1 = Concert, 2 = PDA cont. Decision rule: If $Z_{STAT} < -1.96$ or $Z_{STAT} > 1.96$, reject H_0 . Test statistic:

$$Z_{STAT} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\overline{p}\left(1 - \overline{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \frac{\left(0.44 - 0.06\right) - 0}{\sqrt{0.25\left(1 - 0.25\right)\left(\frac{1}{50} + \frac{1}{50}\right)}} = 4.3879$$

Decision: Since $Z_{STAT} = 4.3879$ is greater than the upper critical bound of 1.96, reject H_0 . There is evidence of a significant difference in the proportion willing to delay the date of the concert and the proportion willing to delay receipt of a new PDA.

10.32 (a) PHStat output:

PHStat output:	
Z Test for Differences in Two Pr	oportions
Dodo	
Data	
Hypothesized Difference	0
Level of Significance	0.01
Group 1	-
Number of Items of Interest	707
Sample Size	1000
Group 2	
Number of Items of Interest	536
Sample Size	1000
_	
Intermediate Calculations	
Group 1 Proportion	0.707
Group 2 Proportion	0.536
Difference in Two Proportions	0.171
Average Proportion	0.6215
Z Test Statistic	7.883654882
Two-Tail Test	
Lower Critical Value	-2.575829304
Upper Critical Value	2.575829304
p-Value	3.10862E-15
Reject the null hypot	hesis

$$H_0: \pi_1 = \pi_2 \quad H_1: \pi_1 \neq \pi_2$$

Population: 1 = users over 70 years of age; 2 = users 12 to 50 years of age.

Decision rule: If $|Z_{STAT}| > 2.5758$, reject H_0 .

Test statistic

$$Z_{STAT} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\sqrt{\overline{p}\left(1 - \overline{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\left(0.707 - 0.536\right) - 0}{\sqrt{0.6215\left(1 - 0.6215\right)\left(\frac{1}{1000} + \frac{1}{1000}\right)}} = 7.8837$$

Decision: Since $Z_{STAT} = 7.8837$ is greater than the upper critical bound of 2.5758, reject H_0 . There is sufficient evidence of a significant difference between the two age groups who believe that e-mail messages should be answered quickly.

10.32 (b) p-value is virtually 0. The probability of obtaining a difference in proportions that gives rise to a test statistic that deviates from 0 by 7.8847 or more in either direction cont.. is virtually 0 if there is no difference between the two age groups who believe that email messages should be answered quickly.

PHStat output: 10.33 (a)

Z Test for Differences in Two Pro	oportions
D. C.	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Group 1	1
Number of Items of Interest	273
Sample Size	665
Group 2	
Number of Items of Interest	252
Sample Size	500
Intermediate Calculations	
Group 1 Proportion	0.410526316
Group 2 Proportion	0.504
Difference in Two Proportions	-0.093473684
Average Proportion	0.450643777
Z Test Statistic	-3.173792352
Two-Tail Test	•
Lower Critical Value	-1.959963985
Upper Critical Value	1.959963985
p-Value	0.001504613
Reject the null hypot	hesis

$$H_0: \pi_1 = \pi_2 \quad H_1: \pi_1 \neq \pi_2$$

Decision rule: If $|Z_{STAT}| > 1.96$, reject H_0 .

(b)

$$\overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{273 + 252}{665 + 500} = 0.4506$$

$$Z_{STAT} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\sqrt{\overline{p}\left(1 - \overline{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\left(0.4105 - 0.504\right) - 0}{\sqrt{0.4506\left(1 - 0.4506\right)\left(\frac{1}{665} + \frac{1}{500}\right)}} = -3.1738$$

Decision: Since $|Z_{STAT}| = 3.1738$ is larger than 1.96, reject H_0 . There is sufficient

evidence of a difference between consumer magazines and newspapers in the proportion of online-only content that is copy-edited as rigorously as print content. p-value = 0.0015. The probability of obtaining a difference in proportions that gives rise to a test statistic that is 3.1738 or more away from 0 in either direction is 0.0015 if there is not a difference between consumer magazines and newspapers in the proportion of online-only content that is copy-edited as rigorously as print content.

10.33 (c) PHStat output: cont.

Z Test for Differences in Two Pr	oportions
Data	
Hypothesized Difference	0
Level of Significance	0.05
Group 1	
Number of Items of Interest	379
Sample Size	665
Group 2	
Number of Items of Interest	296
Sample Size	500
Intermediate Calculations	
Group 1 Proportion	0.569924812
Group 2 Proportion	0.592
Difference in Two Proportions	-0.022075188
Average Proportion	0.579399142
Z Test Statistic	-0.755463126
Two-Tail Test	
Lower Critical Value	-1.959963985
Upper Critical Value	1.959963985
p-Value	0.449971149
Do not reject the null hy	******

$$H_0: \pi_1 = \pi_2 \quad H_1: \pi_1 \neq \pi_2$$

Decision rule: If $|Z_{STAT}| > 1.96$, reject H_0 .

Test statistic:

$$\overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{379 + 296}{665 + 500} = 0.5794$$

$$Z_{STAT} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\sqrt{\overline{p}\left(1 - \overline{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\left(0.5699 - 0.592\right) - 0}{\sqrt{0.5794\left(1 - 0.5794\right)\left(\frac{1}{665} + \frac{1}{500}\right)}} = -0.7555$$

Decision: Since $|Z_{STAT}| = 0.7555$ is smaller than 1.96, do not reject H_0 . There is not sufficient evidence of a difference between consumer magazines and newspapers in the proportion of online-only content that is fact-checked as rigorously as print content.

(d) p-value = 0.45. The probability of obtaining a difference in proportions that gives rise to a test statistic that is 0.7555 or more away from 0 in either direction is 0.45 if there is not a difference between consumer magazines and newspapers in the proportion of online-only content that is fact-checked as rigorously as print content.

10.34	(a)	H_0 : $\pi_1 = \pi_2$	H_1 : π_1	≠ <i>i</i>	$\overline{\tau}_2$
-------	-----	-------------------------	-----------------	------------	---------------------

Z Test for Differences in Two Proportions	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Group 1	
Number of Items of Interest	670
Sample Size	1000
Group 2	
Number of Items of Interest	510
Sample Size	1000
Intermediate Calculations	
Group 1 Proportion	0.67
Group 2 Proportion	0.51
Difference in Two Proportions	0.16
Average Proportion	0.59
Z Test Statistic	7.274230368
Two-Tail Test	
Lower Critical Value	-1.959963985
Upper Critical Value	1.959963985
p-Value	3.4838E-13
Reject the null hypothesis	

Decision rule: If $|Z_{STAT}| > 1.96$, reject H_0 .

Test statistic:

$$Z_{STAT} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = 7.2742$$

Decision: Since $|Z_{STAT}| = 7.2742$ is greater than 1.96, reject H_0 . There is sufficient evidence of a difference between adult Internet users and Internet users age 12 - 17 in the proportion who oppose ads.

p-value is virtually 0. The probability of obtaining a difference in proportions that (b) gives rise to a test statistic that deviates from 0 by 7.2742 or more in either direction is virtually 0 if there is not a difference between adult Internet users and Internet users age 12 - 17 in the proportion who oppose ads.

10.35 (a)
$$H_0$$
: $\pi_1 = \pi_2$ where Populations: 1 = under age 50, 2 = age above 50 H_1 : $\pi_1 \neq \pi_2$

Z Test for Differences in Two Pro	portions
	1
Data	
Hypothesized Difference	0
Level of Significance	0.05
Group 1	
Number of Items of Interest	470
Sample Size	1000
Group 2	
Number of Items of Interest	134
Sample Size	891
Intermediate Calculations	_
Group 1 Proportion	0.47
Group 2 Proportion	0.150392817
Difference in Two Proportions	0.319607183
Average Proportion	0.319407721
Z Test Statistic	14.87967361
Two-Tail Test	
Lower Critical Value	-1.959963985
Upper Critical Value	1.959963985
<i>p</i> -Value	0
Reject the null hypot	thesis

Decision rule: If $|Z_{STAT}| > 1.96$, reject H_0 .

Test statistic:

$$Z_{STAT} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = 14.8797$$

Decision: Since $|Z_{STAT}| = 14.8797$ is greater than 1.96, reject H_0 . There is sufficient evidence of a significant difference in the proportion of users under age 50 and users 50 years and older that accessed the news on their cellphones.

(b) *p*-value is virtually 0. The probability of obtaining a difference in proportions that gives rise to a test statistic that deviates from 0 in either direction by 14.8797 or more in either direction is virtually 0 if there is no difference in the proportion of users under age 50 and users 50 years and older that accessed the news on their cellphones.

(c)
$$(p_1 - p_2) \pm Z \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

$$= (0.47 - 0.1504) \pm 1.96 \sqrt{\frac{0.47(1 - 0.47)}{1000} + \frac{0.1504(1 - 0.1504)}{891}}$$

$$= 0.2808 \le \pi_1 - \pi_2 \le 0.3584$$

(b)
$$\alpha = 0.05, n_1 = 16, n_2 = 21, F_{0.05/2} = 2.57$$

(c)
$$\alpha = 0.01, n_1 = 16, n_2 = 21, F_{0.01/2} = 3.50$$

10.37 (a)
$$\alpha = 0.05$$
, $n_1 = 16$, $n_2 = 21$, $F_{0.05} = 2.20$

(b)
$$\alpha = 0.01, n_1 = 16, n_2 = 21, F_{0.01} = 3.09$$

10.38 (a) You place the larger sample variance $S^2 = 25$ in the numerator of F_{STAT} .

(b)
$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{25}{16} = 1.5625$$

10.39
$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{161.9}{133.7} = 1.2109$$

10.40 The degrees of freedom for the numerator is 24 and for the denominator is 24.

10.41
$$\alpha = 0.05$$
, $n_1 = 25$, $n_2 = 25$, $F_{0.05/2} = 2.27$

10.42 Since $F_{STAT} = 1.2109$ is lower than $F_{0.05/2} = 2.27$, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different.

10.43 In testing the equality of two population variances, the *F*-test statistic is very sensitive to the assumption of normality for each population. If the populations are very right-skewed, the *F*-test should not be used.

10.44 (a) H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

Decision rule: If $F_{STAT} > 3.18$ reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{47.3}{36.4} = 1.2995$$

Decision: Since $F_{STAT} = 1.2995$ is less than $F_{\alpha/2} = 3.18$, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different.

Chapter 10: Two-Sample Tests 562

 H_0 : $\sigma_1^2 \le \sigma_2^2$ The variance for population 1 is less than or equal to the variance for 10.44 cont.

population 2. H_1 : $\sigma_1^2 > \sigma_2^2$ The variance for population 1 is greater than the variance for population 2.

Decision rule: If $F_{STAT} > 2.62$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{47.3}{36.4} = 1.2995$$

Decision: Since $F_{STAT} = 1.2995$ is less than the critical bound of $F_{\alpha} = 2.62$, do not reject H_0 . There is not enough evidence to conclude that the variance for population 1 is greater than the variance for population 2.

10.45 (a) PHStat output:

rnstat output.	, in
F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	11
Sample Standard Deviation	0.012
Smaller-Variance Sample	
Sample Size	16
Sample Standard Deviation	0.005
Intermediate Calculations	
F Test Statistic	5.76
Population 1 Sample Degrees of Freedom	10
Population 2 Sample Degrees of Freedom	15
Upper-Tail Test	
Upper Critical Value	2.543719
p-Value	0.001333
Reject the null hypothesis	
<u> </u>	

$$H_0$$
: $\sigma_1^2 \le \sigma_2^2$ where Populations: 1 = Line A, 2 = Line B
 H_1 : $\sigma_1^2 > \sigma_2^2$
Decision rule: If $F_{STAT} > 2.5437$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{0.012^2}{0.005^2} = 5.76$$

Decision: Since $F_{STAT} = 5.76$ is greater than the critical bound of $F_{\alpha} = 2.5437$, reject H_0 . There is enough evidence that the variance in line A is greater than the variance in line B.

p-value = 0.001333 (b)

The probability of obtaining a test statistic of 5.76 or larger is 0.001333 when the null hypothesis is true.

The test assumes that the two populations are both normally distributed. (c)

 H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. Decision rule: If $F_{STAT} > 1.556$, reject H_0 . 10.46 (a)

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{13.35^2}{9.42^2} = 2.008$$

Decision: Since $F_{STAT}=2.008$ is greater than $F_{\alpha/2}=1.556$, reject H_0 . There is enough evidence to conclude that the two population variances are different.

- (b) p-value = 0.0022. The probability of obtaining a sample that yields a test statistic more extreme than 2.008 is 0.0022 if the null hypothesis that there is no difference in the two population variances is true.
- The test assumes that the two populations are both normally distributed. (c)
- Based on (a) and (b), a separate variance t test should be used. (d)
- H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. 10.47

Decision rule: If
$$F_{STAT} > 2.9786$$
, reject H_0 .
Test statistic: $F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{2.0822^2}{1.6380^2} = 1.6159$

Decision: Since $F_{STAT} = 1.6159$ is below the upper critical bound of $F_{\alpha/2} = 2.9786$, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different.

- p-value = 0.715. The probability of obtaining a sample that yields a test statistic (b) more extreme than 1.6159 is 0.715 if the null hypothesis that there is no difference in the two population variances is true.
- (c) The test assumes that the two populations are both normally distributed.

Normal Probability Plot of Waiting Time (Bank 1)

10.47 (c) cont.

Box-and-whisker Plot of Waiting Time

Normal Probability Plot of Waiting Time (Bank 2)

10.47 (c) cont.

Waiting Time (Bank 1)		Waiting Time (Bank2)
Mean	4.286666667	7.114666667
Standard Error	0.422925938	0.537618972
Median	4.5	6.68
Mode	#N/A	#N/A
Standard Deviation	1.637985115	2.082189324
Sample Variance	2.682995238	4.335512381
Kurtosis	0.832925217	-1.056273871
Skewness	-0.832946775	0.072493057
Range	6.08	6.67
Minimum	0.38	3.82
Maximum	6.46	10.49
Sum	64.3	106.72
Count	15	15
Interquartile range	2.35	3.09
1.33 * std dev	2.178520203	2.769311801
Range	6.08	6.67
6 * std dev	9.827910692	12.49313594

Both the normal probability plots and the boxplots suggest that the waiting times for both branches do not appear to be normally distributed. Waiting times for Bank 1 appear to be skewed to the left while the waiting times for Bank 2 are slightly skewed to the right. Hence, the F test for the difference in variances, which is sensitive to departure from the normality assumption, should not be used to test the equality of two variances. From the boxplots and the summary statistics, the two samples appear to have about the same amount of dispersion. Since the pooled-variance t test is robust to departure from the normality assumption, it can be used to test for the difference in means.

(d) Based on the results of (a), it is appropriate to use the pooled-variance t-test to compare the means of the two branches.

Chapter 10: Two-Sample Tests 566

10.48 (a) PHStat output:

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	16
Sample Standard Deviation	111.9952
Smaller-Variance Sample	
Sample Size	29
Sample Standard Deviation	49.20676
Intermediate Calculations	
F Test Statistic	5.180229
Population 1 Sample Degrees of Freedom	15
Population 2 Sample Degrees of Freedom	28
Two-Tail Test	
Upper Critical Value	2.343847
<i>p</i> -Value	0.000181
Reject the null hypothesis	

 $\overline{H_0: \sigma_1^2 = \sigma_2^2}$ The population variances are the same.

 H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. Decision rule: If $F_{STAT} > 2.3438$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = 5.1803$$

Decision: Since $F_{STAT} = 5.1803$ is greater than the upper critical value of 2.3438, reject H_0 . There is enough evidence of a difference in the variability of the battery life between the two types of digital cameras.

p-value = 0.0002. The probability of obtaining a sample that yields a test statistic (b) greater than 5.1803 is 0.0002 if the null hypothesis that there is no difference in the two population variances is true.

The test assumes that the two populations are both normally distributed. 10.48 (c) cont.

The probability plots do not indicate any departure from the normality assumption.

(d) Based on (a), a separate-variance *t* test should be used.

10.49 (a) PHStat output:

Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	50
Sample Standard Deviation	67.6
Smaller-Variance Sample	
Sample Size	50
Sample Standard Deviation	51.7
Intermediate Calculations	
F Test Statistic	1.70967
Population 1 Sample Degrees of Freedom	49
Population 2 Sample Degrees of Freedom	49
Two-Tail Test	
Upper Critical Value	1.762189
p-Value	0.063376
Do not reject the null hypothesis	

Chapter 10: Two-Sample Tests 568

 H_0 : $\sigma_1^2 = \sigma_2^2$ where Populations: 1 = users 13 to 17 years of age, 10.49 2 = users under 12 years of age cont.

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

 H_1 : $\sigma_1^2 \neq \sigma_2^2$ Decision rule: If $F_{STAT} > 1.7622$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{67.6^2}{51.7^2} = 1.7097$$

Decision: Since $F_{STAT} = 1.7097$ is smaller than the upper critical bound of $F_{\alpha/2} =$ 1.7622, do not reject H_0 . There is not enough evidence of a difference between the variances in cellphone usage between cellphone users under 12 years of age and cellphone users 13 to 17 years of age.

Assuming the underlying normality in the two populations is met, based on the (b) results obtained in part (a), it is more appropriate to use the pooled-variance t-test.

DUCtot output: 10.50

PHStat output:	
F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	25
Sample Standard Deviation	0.315053
Smaller-Variance Sample	
Sample Size	25
Sample Standard Deviation	0.189352
Intermediate Calculations	
F Test Statistic	2.768403
Population 1 Sample Degrees of Freedom	24
Population 2 Sample Degrees of Freedom	24
Two-Tail Test	
Upper Critical Value	2.269277
p-Value	0.015584
Reject the null hypothesis	

 H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same.

 H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

Decision rule: If $F_{STAT} > 2.2693$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = 2.7684$$

Decision: Since $F_{STAT} = 2.7684$ is larger than the upper critical value of 2.2693, reject H_0 . There is evidence of a difference in the variance of the yield of five-year CDs on March 29, 2010 and August 23, 2010.

- Among the criteria to be used in selecting a particular hypothesis test are the type of data, whether the samples are independent or paired, whether the test involves central tendency or variation, whether the assumption of normality is valid, and whether the variances in the two populations are equal.
- 10.52 The pooled variance t-test should be used when the populations are approximately normally distributed and the variances of the two populations are equal.
- The F test can be used to examine differences in two variances when each of the two populations is assumed to be normally distributed.
- 10.54 With independent populations, the outcomes in one population do not depend on the outcomes in the second population. With two related populations, either repeated measurements are obtained on the same set of items or individuals, or items or individuals are paired or matched according to some characteristic.
- Repeated measurements represent two measurements on the same items or individuals, while 10.55 paired measurements involve matching items according to a characteristic of interest.
- 10.56 They are two different ways of investigating the concern of whether there is significant difference between the means of two independent populations. If the hypothesized value of 0 for the difference in two population means is not in the confidence interval, then, assuming a two-tailed test is used, the null hypothesis of no difference in the two population means can be rejected.
- 10.57 When you have obtained data from either repeated measurements or paired data.
- 10.58 (a) Stores that priced the small coffee at \$0.59 $H_0: \mu \le 900 \text{ vs. } H_1: \mu > 900$

t Test for Hypothesis of the Mean	
Data	
Null Hypothesis μ=	900
Level of Significance	0.05
Sample Size	15
Sample Mean	964
Sample Standard Deviation	88
Intermediate Calculations	
Standard Error of the Mean	22.7215023
Degrees of Freedom	14
t Test Statistic	2.816715161
Upper-Tail Test	
Upper Critical Value	1.761310115
p-Value	0.006860614
Reject the null hypothesis	

Since the p-value = 0.0069 < 0.05, reject H_0 . There is evidence that reducing the price of a small coffee to \$0.59 increases per store average daily customer count.

10.58 (a) **Stores that priced the small coffee at \$0.79** cont. $H_0: \mu \le 900 \text{ vs. } H_1: \mu > 900$

t Test for Hypothesis of the Mean		
Data		
Null Hypothesis μ=	900	
Level of Significance	0.05	
Sample Size	15	
Sample Mean	941	
Sample Standard Deviation	76	
Intermediate Calculations		
Standard Error of the Mean	19.62311562	
Degrees of Freedom	14	
t Test Statistic	2.089372595	
Upper-Tail Test	Upper-Tail Test	
Upper Critical Value	1.761310115	
p-Value	0.027705582	
Reject the null hypothesis		

Since the p-value = 0.0277 < 0.05, reject H_0 . There is evidence that reducing the price of a small coffee to \$0.79 increases per store average daily customer count.

(b)
$$H_0: \sigma_1^2 = \sigma_2^2$$
 vs. $H_1: \sigma_1^2 \neq \sigma_2^2$

110.01 02 13.111.01 7 02	
F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	15
Sample Standard Deviation	88
Smaller-Variance Sample	
Sample Size	15
Sample Standard Deviation	76
Intermediate Calculations	
F Test Statistic	1.34072
Population 1 Sample Degrees of Freedom	14
Population 2 Sample Degrees of Freedom	14
Two-Tail Test	
Upper Critical Value	2.978588
p-Value	0.590648
Do not reject the null hypothesis	

Since the p-value = 0.5906 > 0.05, do not reject H_0 . There is not enough evidence that the two variances are different. Hence, a pooled-variance t test is appropriate.

 $H_0: \mu_1 = \mu_2 \text{ vs. } H_1: \mu_1 \neq \mu_2$ 10.58 (a) cont.

Pooled-Variance t Test for the Difference Between Two			
Means			
(assumes equal population variances)			
Data			
Hypothesized Difference	0		
Level of Significance	0.05		
Population 1 Sample			
Sample Size	15		
Sample Mean	964		
Sample Standard Deviation	88		
Population 2 Sample			
Sample Size	15		
Sample Mean	941		
Sample Standard Deviation	76		
Intermediate Calculations			
Population 1 Sample Degrees of Freedom	14		
Population 2 Sample Degrees of Freedom	14		
Total Degrees of Freedom	28		
Pooled Variance	6760		
Difference in Sample Means	23		
t Test Statistic	0.766099		
Two-Tail Test			
Lower Critical Value	-2.04841		
Upper Critical Value	2.048407		
p-Value	0.450028		
Do not reject the null hypothesis			

Since the p-value = 0.45 > 0.05, do not reject H_0 . There is not enough evidence of a difference in the per store daily customer count between stores in which a small coffee was priced at \$0.59 and stores in which a small coffee was priced at \$0.79 for a 12 ounce cup.

(c) Since there is not enough evidence of a difference in the per store mean daily customer count between stores in which a small coffee was priced at \$0.59 and stores in which a small coffee was priced at \$0.79 for a 12 ounce cup, you will recommend that a small coffee should be priced at \$0.79 since that will bring in more profit per cup.

10.59 (a) $H_0: \pi_1 \le \pi_2$ $H_1: \pi_1 > \pi_2$

Population: 1 = Democrats, 2 = Republicans

- (b) Type I Error: Rejecting the null hypothesis that the proportion of Democrats trusting the government more than business is no greater than the proportion of Republicans trusting the government more than business when the proportion of Democrats trusting the government more than business is indeed no greater than the proportion of Republicans trusting the government more than business.
- (c) Type II Error: Failing to reject the null hypothesis that the proportion of Democrats trusting the government more than business is no greater than the proportion of Republicans trusting the government more than business when the proportion of Democrats trusting the government more than business is indeed greater than the proportion of Republicans trusting the government more than business.
- 10.60 (a) H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

1 2	
PHStat output:	
F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	219
Sample Standard Deviation	20955
Smaller-Variance Sample	
Sample Size	34
Sample Standard Deviation	18137
Intermediate Calculations	
F Test Statistic	1.334887
Population 1 Sample Degrees of Freedom	218
Population 2 Sample Degrees of Freedom	33
Two-Tail Test	<u>.</u>
Upper Critical Value	1.778739
p-Value	0.32362

Do not reject the null hypothesis
Decision rule: If $F_{STAT} > 1.7787$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = 1.3349$$

Decision: Since $F_{STAT} = 1.3349$ is smaller than the upper critical bound of 1.7787, do not reject H_0 . There is not enough evidence of any difference in the variability of salaries between green belt and black belts.

(b) Since there is not enough evidence of any difference in the variability of salaries between green belts and black belts, a pooled-variance *t* test should be used.

10.60 (c) H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$ cont.

Pooled-Variance <i>t</i> Test for the Difference Between Two		
Means		
(assumes equal population variances)		
Data		
Hypothesized Difference	0	
Level of Significance	0.05	
Population 1 Sample		
Sample Size	219	
Sample Mean	87342	
Sample Standard Deviation	20955	
Population 2 Sample		
Sample Size	34	
Sample Mean	65679	
Sample Standard Deviation	18137	
Intermediate Calculations		
Population 1 Sample Degrees of Freedom	218	
Population 2 Sample Degrees of Freedom	33	
Total Degrees of Freedom	251	
Pooled Variance	4.25E+08	
Difference in Sample Means	21663	
t Test Statistic	5.703155	
Two-Tail Test		
Lower Critical Value	-1.96946	
Upper Critical Value	1.96946	
p-Value	3.3E-08	
Reject the null hypothesis		

Decision rule: If $|t_{STAT}| > 1.9695$, reject H_0 .

Decision: Since $|t_{STAT}| = 5.7032$ is greater than 1.9695, reject H_0 . There is enough evidence of a difference between the mean salary of green belt and the mean salary of black belts.

10.61 (a) H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

F Test for Differences in Two Variances		
Data		
Level of Significance	0.05	
Larger-Variance Sample		
Sample Size	20	
Sample Standard Deviation	5.714421	
Smaller-Variance Sample		
Sample Size	38	
Sample Standard Deviation	5.406387	
Intermediate Calculations		
F Test Statistic	1.117198	
Population 1 Sample Degrees of Freedom	19	
Population 2 Sample Degrees of Freedom	37	
Two-Tail Test		
Upper Critical Value	2.11685	
p-Value	0.749246	
Do not reject the null hypothesi	S	

Decision rule: If $F_{STAT} > 2.1169$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{(5.7144)^2}{(5.4064)^2} = 1.1172$$

Decision: Since $F_{STAT} = 1.1172$ is smaller than the upper critical bound of 2.1169, do not reject H_0 . There is not enough evidence of any difference in the variance of the study time for male students and female students.

(b) Since there is not enough evidence of any difference in the variance of the study time for male students and female students, a pooled-variance *t* test should be used.

10.61 (c) H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$ Decision rule: d.f. = 56. If $t_{STAT} < -2.0032$ or $t_{STAT} > 2.0032$, reject H_0 . cont.

Pooled-Variance <i>t</i> Test for the Difference Between Two	
Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	20
Sample Mean	16.625
Sample Standard Deviation	5.714421
Population 2 Sample	
Sample Size	38
Sample Mean	11.02632
Sample Standard Deviation	5.406387
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	19
Population 2 Sample Degrees of Freedom	37
Total Degrees of Freedom	56
Pooled Variance	30.39127
Difference in Sample Means	5.598684
t Test Statistic	3.676244
Two-Tail Test	
Lower Critical Value	-2.00324
Upper Critical Value	2.003241
<i>p</i> -Value	0.000532
Reject the null hypothesi	S

Decision: Since $t_{STAT} = 3.6762$ is larger than the upper critical bound of 2.0032, reject

(d) There is enough evidence of a difference in the mean study time for male and female students.

10.62 (a) H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. Decision rule: If $F_{STAT} > 1.6275$, reject H_0 .

Test statistic: $F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{(6.29)^2}{(1.32)^2} = 22.7067$

Decision: Since $F_{STAT} = 22.7067$ is greater than the upper critical bound of 1.6275, reject H_0 . There is enough evidence to conclude that there is a difference between the variances in age of students at the Western school and at the Eastern school.

- (b) Since there is a difference between the variances in age of students at the Western school and at the Eastern school, schools should take that into account when designing their curriculum to accommodate the larger variance in age of students in the state university in the "Western" U.S.
- (c) It is more appropriate to use a separate-variance *t* test.
- (d) H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

Decision rule: If $F_{STAT} > 1.6275$, reject H_0 .

Test statistic: $F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{(2.4)^2}{(2.1)^2} = 1.3061$

Decision: Since $F_{STAT} = 1.3061$ is lower than the upper critical bound 1.6275, do not reject H_0 . There is not enough evidence to conclude that there is a difference between the variances in years of spreadsheet usage of students at the Western school and at the Eastern school.

(e) H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$ Decision rule: d.f. = 226. If $t_{STAT} < -2.5978$ or $t_{STAT} > 2.5978$, reject H_0 .

$$S_{p}^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{(n_{1} - 1) + (n_{2} - 1)} = \frac{(93 - 1)(2.4)^{2} + (135 - 1)(2.1)^{2}}{(93 - 1) + (135 - 1)} = 4.9596$$

$$t_{STAT} = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{S_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} = \frac{(2.6 - 4) - 0}{\sqrt{4.9596 \left(\frac{1}{93} + \frac{1}{135}\right)}} = -4.6650$$

Decision: Since $t_{STAT} = -4.6650$ is smaller than the lower critical bound of -2.5978, reject H_0 . There is enough evidence of a difference in the mean years of spreadsheet usage of students at the Western school and at the Eastern school.

10.63 **Food:**

From the boxplots and normal probability plots, you saw that the distribution of the food rating was quite normal for the suburban restaurants and the city restaurants. results from the F test on the difference in variances to determine whether the pooled-variance t test or separate variance t test is more appropriate for the difference in means is reliable.

10.63 H_0 : $\sigma_1^2 = \sigma_2^2$ H_1 : $\sigma_1^2 \neq \sigma_2^2$ Let Population 1 = suburban, 2 = city cont.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	50
Sample Standard Deviation	2.52336
Smaller-Variance Sample	
Sample Size	50
Sample Standard Deviation	2.267877
Intermediate Calculations	
F Test Statistic	1.237997
Population 1 Sample Degrees of Freedom	49
Population 2 Sample Degrees of Freedom	49
Two-Tail Test	
Upper Critical Value	1.762189
p-Value	0.457646
Do not reject the null hypothesis	

Since the p-value = 0.45 > 0.05, do not reject H_0 . At 5% level of significance, there is insufficient evidence to conclude that the two variances are not the same. Hence, a pooled variance t test is more appropriate.

10.63 H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

cont.

Pooled-Variance <i>t</i> Test for the Difference Betw	veen Two Means
(assumes equal population variances)	ten i wo weans
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	0.00
Sample Size	50
Sample Mean	21.4
Sample Standard Deviation	2,52336
Population 2 Sample	
Sample Size	50
Sample Mean	21.14
Sample Standard Deviation	2.267877
•	
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	49
Population 2 Sample Degrees of Freedom	49
Total Degrees of Freedom	98
Pooled Variance	5.755306
Difference in Sample Means	0.26
t Test Statistic	0.541888
Two-Tail Test	
Lower Critical Value	-1.98447
Upper Critical Value	1.984467
p-Value	0.589126
Do not reject the null hypothes	is

10.63 Since the p-value = 0.5891 is greater than the 5% level of significance, do not reject H_0 .

There is not enough evidence to conclude that the mean food rating between suburban and city restaurants is different.

From the boxplots and normal probability plots, you saw that the distribution of the decor rating was quite normal for both the suburban restaurants and the city restaurants. Hence, it is appropriate to perform the F test on the difference in variances to determine whether the pooled-variance t test or separate variance t test is more appropriate for the difference in means.

10.63 H_0 : $\sigma_1^2 = \sigma_2^2$ H_1 : $\sigma_1^2 \neq \sigma_2^2$ Let Population 1 = city, 2 = suburban cont.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	•
Sample Size	50
Sample Standard Deviation	3.81859
Smaller-Variance Sample	
Sample Size	50
Sample Standard Deviation	3.397538
Intermediate Calculations	
F Test Statistic	1.263216
Population 1 Sample Degrees of Freedom	49
Population 2 Sample Degrees of Freedom	49
Two-Tail Test	
Upper Critical Value	1.762189
p-Value	0.416372
Do not reject the null hypothesis	S

Since the p-value = 0.4164 is greater than the 5% level of significance, do not reject H_0 . There is not enough evidence to conclude that the variances are different. Hence, a pooledvariance t test is appropriate.

10.63 H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

cont.

l.	
Pooled-Variance <i>t</i> Test for the Difference Between Two	
Means	П
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	50
Sample Mean	18.1
Sample Standard Deviation	3.81859
Population 2 Sample	•
Sample Size	50
Sample Mean	17.74
Sample Standard Deviation	3.397538
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	49
Population 2 Sample Degrees of Freedom	49
Total Degrees of Freedom	98
Pooled Variance	13.06245
Difference in Sample Means	0.36
t Test Statistic	0.498035
Two-Tail Test	
Lower Critical Value	-1.98447
Upper Critical Value	1.984467
p-Value	0.619575
Do not reject the null hypothesis	

10.63 cont.

> Since the p-value = 0.6196 is greater than the 5% level of significance, do not reject H_0 . There is not enough evidence to conclude that the mean décor rating between city restaurants and suburban restaurants is different.

From the boxplots and normal probability plots, you saw that the distribution of the service rating was quite normal for both the suburban restaurants and the city restaurants. Hence, it is appropriate to perform the F test on the difference in variances to determine whether the pooled-variance t test or separate variance t test is more appropriate for the difference in means.

10.63 H_0 : $\sigma_1^2 = \sigma_2^2$ H_1 : $\sigma_1^2 \neq \sigma_2^2$ Let Population 1 = city, 2 = suburban cont.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	50
Sample Standard Deviation	2.454151
Smaller-Variance Sample	
Sample Size	50
Sample Standard Deviation	2.20102
Intermediate Calculations	
F Test Statistic	1.243239
Population 1 Sample Degrees of Freedom	49
Population 2 Sample Degrees of Freedom	49
Two-Tail Test	
Upper Critical Value	1.762189
p-Value	0.448811
Do not reject the null hypothesis	

Since the p-value = 0.4488 is greater than the 5% level of significance, do not reject H_0 . There is not enough evidence to conclude that the variances are different. Hence, a pooled-variance t test is appropriate.

10.63 H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

cont.

Pooled-Variance <i>t</i> Test for the Difference Between Two	
Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	50
Sample Mean	19.24
Sample Standard Deviation	2.454151
Population 2 Sample	
Sample Size	50
Sample Mean	19.82
Sample Standard Deviation	2.20102
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	49
Population 2 Sample Degrees of Freedom	49
Total Degrees of Freedom	98
Pooled Variance	5.433673
Difference in Sample Means	-0.58
t Test Statistic	-1.24409
Two-Tail Test	
Lower Critical Value	-1.98447
Upper Critical Value	1.984467
p-Value	0.216434
Do not reject the null hypothesis	

10.63 Since the p-value = .2164 is larger than the 5% level of significance, do not reject H_0 . cont. There is not enough evidence to conclude that the mean service rating between city restaurants and suburban restaurants is different.

From the boxplots and normal probability plots, you saw that the distribution of the price was quite normal for both the suburban restaurants and the city restaurants. Hence, it is appropriate to perform the F test on the difference in variances to determine whether the pooled-variance t test or separate variance t test is more appropriate for the difference in means.

10.63 H_0 : $\sigma_1^2 = \sigma_2^2$ H_1 : $\sigma_1^2 \neq \sigma_2^2$ Let Population 1 = city, 2 = suburban cont.

0.05	
Level of Significance 0.05 Larger-Variance Sample	
50	
14.37407	
Smaller-Variance Sample	
50	
10.18685	
1.99104	
49	
49	
Two-Tail Test	
1.762189	
0.017546	
Reject the null hypothesis	

Since the p-value = 0.0175 is smaller than the 5% level of significance, reject H_0 . There is enough evidence to conclude that the variances are different. Hence, a separate-variance t test is appropriate.

10.63 H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$ cont.

Separate-Variances t Test for the Difference Means	Between Two
(assumes unequal population variances)	
Data	1
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	50
Sample Mean	47.28
Sample Standard Deviation	14.37406962
Population 2 Sample	
Sample Size	50
Sample Mean	42.06
Sample Standard Deviation	10.18684626
Intermediate Calculations	
Numerator of Degrees of Freedom	38.5357
Denominator of Degrees of Freedom	0.4364
Total Degrees of Freedom	88.3055
Degrees of Freedom	88
Separate Variance Denominator	2.4915
Difference in Sample Means	5.22
Separate-Variance t Test Statistic	2.0951
Two-Tail Test	
Lower Critical Value	-1.9873
Upper Critical Value	1.9873
<i>p</i> -Value	0.0390
Reject the null hypothesis	S

Since the p-value = 0.039 is smaller than the 5% level of significance, reject H_0 .

There is enough evidence to conclude that the mean price between city restaurants and suburban restaurants is different.

10.64 (a) H_0 : $\mu \le 10$ minutes. Introductory computer students required no more than a mean of 10 minutes to write and run a program in Visual Basic.

 H_1 : $\mu > 10$ minutes. Introductory computer students required more than a mean of 10 minutes to write and run a program in Visual Basic.

Decision rule: d.f. = 8. If $t_{STAT} > 1.8595$, reject H_0 .

Test statistic:
$$t_{STAT} = \frac{\overline{X} - \mu}{S / \sqrt{n}} = \frac{12 - 10}{1.8028 / \sqrt{9}} = 3.3282$$

Decision: Since $t_{STAT} = 3.3282$ is greater than the critical bound of 1.8595, reject H_0 . There is enough evidence to conclude that the introductory computer students required more than a mean of 10 minutes to write and run a program in Visual Basic.

(b) H_0 : $\mu \le 10$ minutes. Introductory computer students required no more than a mean of 10 minutes to write and run a program in Visual Basic.

 H_1 : $\mu > 10$ minutes. Introductory computer students required more than a mean of 10 minutes to write and run a program in Visual Basic.

Decision rule: d.f. = 8. If $t_{STAT} > 1.8595$, reject H_0 .

Test statistic:
$$t_{STAT} = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} = \frac{16 - 10}{13.2004 / \sqrt{9}} = 1.3636$$

Decision: Since $t_{STAT} = 1.3636$ is less than the critical bound of 1.8595, do not reject H_0 . There is not enough evidence to conclude that the introductory computer students required more than a mean of 10 minutes to write and run a program in Visual Basic.

- (c) Although the mean time necessary to complete the assignment increased from 12 to 16 minutes as a result of the increase in one data value, the standard deviation went from 1.8 to 13.2, which in turn brought the t-value down because of the increased
- $H_0: \ \sigma_{IC}^{\ 2} = \sigma_{CS}^{\ 2}$ $H_1: \ \sigma_{IC}^{\ 2} \neq \sigma_{CS}^{\ 2}$ Decision rule: If $F_{STAT} > 3.8549$, reject H_0 . (d)

Test statistic:
$$F_{STAT} = \frac{S_{IC}^2}{S_{CS}^2} = \frac{2.0^2}{1.8028^2} = 1.2307$$

Decision: Since $F_{STAT} = 1.2307$ is lower than the critical bound 3.8549, do not reject H_0 . There is not enough evidence to conclude that the population variances are different for the Introduction to Computers students and computer majors. Hence, the pooled variance t test is a valid test to see whether computer majors can write a Visual Basic program (on average) in less time than introductory students, assuming that the distributions of the time needed to write a Visual Basic program for both the Introduction to Computers students and the computer majors are approximately normal.

10.64 (d) H_0 : $\mu_{IC} \leq \mu_{CS}$ The mean amount of time needed by Introduction to Computers students is not greater than the mean amount of time needed by computer majors. H_1 : $\mu_{IC} > \mu_{CS}$ The mean amount of time needed by Introduction to Computers students is greater than the mean amount of time needed by computer majors. PHStat output:

Pooled-Variance t Test for the Difference Between Two	
Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	9
Sample Mean	12
Sample Standard Deviation	1.802776
Population 2 Sample	
Sample Size	11
Sample Mean	8.5
Sample Standard Deviation	2
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	8
Population 2 Sample Degrees of Freedom	10
Total Degrees of Freedom	18
Pooled Variance	3.666667
Difference in Sample Means	3.5
t Test Statistic	4.066633
Upper-Tail Test	
Upper Critical Value	1.734064
<i>p</i> -Value	0.000362

Decision rule: d.f. = 18. If $t_{STAT} > 1.7341$, reject H_0 . Test statistic:

$$S_{p}^{2} = \frac{(n_{IC} - 1) \cdot S_{IC}^{2} + (n_{CS} - 1) \cdot S_{CS}^{2}}{(n_{IC} - 1) + (n_{CS} - 1)} = \frac{9 \cdot 1.8028^{2} + 11 \cdot 2.0^{2}}{8 + 10} = 3.6667$$

$$t_{STAT} = \frac{\left(\overline{X}_{IC} - \overline{X}_{CS}\right) - \left(\mu_{IC} - \mu_{CS}\right)}{\sqrt{S_{p}^{2} \left(\frac{1}{n_{IC}} + \frac{1}{n_{CS}}\right)}} = \frac{12.0 - 8.5}{\sqrt{3.6667 \left(\frac{1}{9} + \frac{1}{11}\right)}} = 4.0666$$

Decision: Since $t_{STAT} = 4.0666$ is greater than 1.7341, reject H_0 . There is enough evidence to support a conclusion that the mean time is higher for Introduction to Computers students than for computer majors.

10.64 (e) p-value = 0.0052. If the true population mean amount of time needed for cont. Introduction to Computer students to write a Visual Basic program is indeed no more than 10 minutes, the probability for observing a sample mean greater than the 12 minutes in the current sample is 0.0052, which means it will be a quite unlikely event. Hence, at a 95% level of confidence, you can conclude that the population mean amount of time needed for Introduction to Computer students to write a Visual Basic program is more than 10 minutes.

> As illustrated in part (d) in which there is not enough evidence to conclude that the population variances are different for the Introduction to Computers students and computer majors, the pooled variance t test performed is a valid test to determine whether computer majors can write a Visual Basic program in less time than in introductory students, assuming that the distributions of the time needed to write a Visual Basic program for both the Introduction to Computers students and the computer majors are approximately normal.

Population 1 = 18 to 24 year olds, 2 = 45 to 54 year olds

 H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

F Test for Differences in Two Variances		
Level of Significance	0.05	
Larger-Variance Sample		
Sample Size	100	
Sample Standard Deviation	100	
Smaller-Variance Sample		
Sample Size	100	
Sample Standard Deviation	90	
Intermediate Calculations		
F Test Statistic	1.234568	
Population 1 Sample Degrees of Freedom	99	
Population 2 Sample Degrees of Freedom	99	
Two-Tail Test		
Upper Critical Value	1.486234	
p-Value	0.296154	
Do not reject the null hypothesis		

Since the p-value = 0.296154 is greater than the 5% level of significance, do not reject H_0 . There is not enough evidence to conclude that the variances for phone calls are different. Hence, a pooled-variance t test is appropriate.

10.65 (b) H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$ cont.

Pooled-Variance t Test for the Difference Between Two Means		
(assumes equal population variances)		
Data		
Hypothesized Difference	0	
Level of Significance	0.05	
Population 1 Sample		
Sample Size	100	
Sample Mean	290	
Sample Standard Deviation	100	
Population 2 Samp	ole	
Sample Size	100	
Sample Mean	194	
Sample Standard Deviation	90	
Intermediate Calculations		
Population 1 Sample Degrees of Freedom	99	
Population 2 Sample Degrees of Freedom	99	
Total Degrees of Freedom	198	
Pooled Variance	9050	
Difference in Sample Means	96	
t Test Statistic	7.135624	
Two-Tail Test		
Lower Critical Value	-1.97202	
Upper Critical Value	1.972017	
p-Value	1.78E-11	
Reject the null hypothesis		

(b) Since the *p*-value is virtually zero, reject H_0 . There is enough evidence of a difference in the mean number of cell phone calls per month for 18 to 24 year olds and 45 to 54 year olds.

(c)
$$\left(\overline{X}_{1} - \overline{X}_{2}\right) \pm t_{\alpha/2} \sqrt{S_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)} = (290 - 194) \pm 1.9720 \sqrt{9050 \left(\frac{1}{100} + \frac{1}{100}\right)}$$

$$69.4692 \le \mu_{1} - \mu_{2} \le 122.5308$$

 H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. 10.65 cont.

F Test for Differences in Two Variances		
Data		
Level of Significance	0.05	
Larger-Variance Sample		
Sample Size	100	
Sample Standard Deviation	90	
Smaller-Variance Sample		
Sample Size	100	
Sample Standard Deviation	77	
Intermediate Calculations		
F Test Statistic	1.366166	
Population 1 Sample Degrees of Freedom	99	
Population 2 Sample Degrees of Freedom	99	
Two-Tail Test		
Upper Critical Value	1.486234	
p-Value	0.1223	
Do not reject the null hypothesis		

Since the p-value = 0.1223 is greater than the 5% level of significance, do not reject H_0 . There is not enough evidence to conclude that the variances for text messages are different. Hence, a pooled-variance t test is appropriate.

(e) H_0 : $\mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$

Pooled-Variance t Test for the Difference Bety	veen Two Means
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	100
Sample Mean	290
Sample Standard Deviation	90
Population 2 Sample	
Sample Size	100
Sample Mean	57
Sample Standard Deviation	77
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	99
Population 2 Sample Degrees of Freedom	99
Total Degrees of Freedom	198
Pooled Variance	7014.5
Difference in Sample Means	233
t Test Statistic	19.67173
Two-Tail Test	
Lower Critical Value	-1.97202
Upper Critical Value	1.972017
p-Value	1.84E-48
Reject the null hypothesis	

10.65 (e) Since the p-value is virtually zero, reject H_0 . There is enough evidence of a cont. difference in the mean number of text messages per month for 18 to 24 year olds and 45 to 54 year olds.

(f)
$$\left(\overline{X}_1 - \overline{X}_2\right) \pm t_{\alpha/2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = (290 - 57) \pm 1.9720 \sqrt{7014.5 \left(\frac{1}{100} + \frac{1}{100}\right)}$$

 $209.6426 \le \mu_1 - \mu_2 \le 256.3574$

(g) There is enough evidence of a difference in the mean number of cell phone calls per month for 18 to 24 year olds and 45 to 54 year olds. There is also enough evidence of a difference in the mean number of text messages per month for 18 to 24 year olds and 45 to 54 year olds. You are 95% confident that the difference in the mean number of cell phone calls per month for 18 to 24 year olds and 45 to 54 year olds is somewhere between 69 and 123 while the difference in the mean number of text messages per month for 18 to 24 year olds and 45 to 54 year olds is somewhere between 210 and 256.

10.66

	Manufacturer A	Manufacturer B
Minimum	684	819
First Quartile	852	943
Median	916.5	1015.5
Third Quartile	972	1096
Interquartile Range	120	153
Maximum	1093	1230
Range	409	411
Mean	909.65	1018.35
Median	916.5	1015.5
Mode	926	1077
Standard Deviation	94.3052	96.9014
Sample Variance	8893.4641	9389.8744
Count	40	40

Box-and-whisker Plot

From the box plot and the summary statistics, both data seem to have come from rather symmetrical distributions that are quite normally distributed.

The following F test for any evidence of difference between two population variances suggests that there is insufficient evidence to conclude that the two population variances are significantly different at 5% level of significance.

10.66

cont. PHStat output:

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	40
Sample Standard Deviation	96.90136
Smaller-Variance Sample	
Sample Size	40
Sample Standard Deviation	94.30516
Intermediate Calculations	
F Test Statistic	1.055817
Population 1 Sample Degrees of Freedom	39
Population 2 Sample Degrees of Freedom	39
Two-Tail Test	
Upper Critical Value	1.890719
p-Value	0.866186
Do not reject the null hypothesis	

Since both data are drawn from independent populations, the most appropriate test for any difference in the life of the bulbs between the two manufacturers is the pooled-variance t test. PHStat output:

D. I. IV. 1 (F. 10 Dies 1 F. 16	
Pooled Variance t Test for Differences in Two Means	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Samp	
Sample Size	40
Sample Mean	909.65
Sample Standard Deviation	94.3052
Population 2 Sample	
Sample Size	40
Sample Mean	1018.35
Sample Standard Deviation	96.9014
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	39
Population 2 Sample Degrees of Freedom	39
Total Degrees of Freedom	78
Pooled Variance	9141.676
Difference in Sample Means	-108.7
t-Test Statistic	-5.08431
Two-Tailed Test	
Lower Critical Value	-1.99085
Upper Critical Value	1.990848
<i>p</i> -Value	2.47E-06
Reject the null hypothesis	

Since the p-value is virtually zero, at the 5% level of significance, there is sufficient evidence to reject the null hypothesis of no difference in the mean life of the bulbs between the two manufacturers. You can conclude that there is significant difference in the mean life of the bulbs between the two manufacturers.

Based on the above analyses, you can conclude that there is significant difference in the life of the bulbs between the two manufacturers.

10.67 Population 1 = Wing A, 2 = Wing B $H_0: \sigma_1^2 = \sigma_2^2$ The population variances are the same. $H_1: \sigma_1^2 \neq \sigma_2^2$ The population variances are different.

Decision rule: If $F_{STAT} > 2.5265$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{{S_1}^2}{{S_2}^2} = \frac{(1.4172)^2}{(1.3700)^2} = 1.0701$$

Decision: Since $F_{STAT} = 1.0701$ is lower than the critical bound of $F_{\alpha/2} = 2.5265$, do not reject H_0 . There is not enough evidence to conclude that there is a difference between the variances in Wing A and Wing B. Hence, a pooled-variance t test is more appropriate for determining whether there is a difference in the mean delivery time in the two wings of the

$$H_0$$
: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

Decision rule: d.f. = 38. If $t_{STAT} < -2.0244$ or $t_{STAT} > 2.0244$, reject H_0 .

$$S_{p}^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{(n_{1} - 1) + (n_{2} - 1)} = \frac{(20 - 1)(1.3700)^{2} + (20 - 1)(1.4172)^{2}}{(20 - 1) + (20 - 1)} = 1.9427$$

$$t_{STAT} = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{S_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} = \frac{(10.40 - 8.12) - 0}{\sqrt{1.9427 \left(\frac{1}{20} + \frac{1}{20}\right)}} = 5.1615$$

Decision: Since $t_{STAT} = 5.1615$ is greater than the upper critical bound of 2.0244, reject H_0 . There is enough evidence of a difference in the mean delivery time in the two wings of the hotel.

10.68 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where Populations: 1 = Men, 2 = Women

Decision rule: If *p*-value < 0.05, reject H_0 . Played a game on a video game system:

PHStat output:

PHStat output:		
Z Test for Differences in Two Proportions		
Data		
_ *****	0	
Hypothesized Difference	0	
Level of Significance	0.05	
Group 1	T	
Number of Items of Interest	498	
Sample Size	600	
Group 2		
Number of Items of Interest	243	
Sample Size	623	
_		
Intermediate Calculations		
Group 1 Proportion	0.83	
Group 2 Proportion	0.390048154	
Difference in Two Proportions	0.439951846	
Average Proportion	0.605887163	
Z Test Statistic	15.74002429	
Two-Tail Test		
Lower Critical Value	-1.959963985	
Upper Critical Value	1.959963985	
<i>p</i> -Value	0	
Reject the null hypothesis		

Test statistic:
$$Z_{STAT} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\overline{p}\left(1 - \overline{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = 15.74$$
, p-value is virtually 0.

Decision: Since the p-value is smaller than 0.05, reject H_0 . There is enough evidence that there is a difference between boys and girls in the proportion who played a game on a video game system.

10.68 **Read a book for fun:**

cont. PHStat output:

f			
Z Test for Differences in Two Proportions			
_			
Data			
Hypothesized Difference	0		
Level of Significance	0.05		
Group 1			
Number of Items of Interest	276		
Sample Size	600		
Group 2			
Number of Items of Interest	324		
Sample Size	623		
Intermediate Calculations	Intermediate Calculations		
Group 1 Proportion	0.46		
Group 2 Proportion	0.520064205		
Difference in Two Proportions	-0.060064205		
Average Proportion	0.490596893		
Z Test Statistic	-2.10053037		
Two-Tail Test			
Lower Critical Value	-1.959963985		
Upper Critical Value	1.959963985		
p-Value	0.035682212		
Reject the null hypothesis			

Test statistic:
$$Z_{STAT} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\overline{p}(1 - \overline{p})(\frac{1}{n_1} + \frac{1}{n_2})} = -2.1005, p\text{-value} = 0.0357$$

Decision: Since the p-value = 0.0357 is smaller than 0.05, reject H_0 . There is enough evidence that there is a difference between boys and girls in the proportion who read a book for fun.

Gave product advice to parents:

PHstat output: cont.

Z Test for Differences in Two Pr	oportions		
D. (
Data	1		
Hypothesized Difference	0		
Level of Significance	0.05		
Group 1			
Number of Items of Interest	of Interest 186		
Sample Size	600		
Group 2			
Number of Items of Interest	181		
Sample Size	623		
Intermediate Calculations			
Group 1 Proportion	0.31		
Group 2 Proportion	0.290529695		
Difference in Two Proportions	0.019470305		
Average Proportion	0.300081766		
Z Test Statistic	0.742738125		
Two-Tail Test			
Lower Critical Value	-1.959963985		
Upper Critical Value	1.959963985		
p-Value	0.457640243		
Do not reject the null hy	pothesis		

Test statistic:
$$Z_{STAT} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\overline{p}(1 - \overline{p})(\frac{1}{n_1} + \frac{1}{n_2})} = 0.7427$$
, p -value = 0.4576

Decision: Since the p-value = 0.4576 is larger than 0.05, do not reject H_0 . There is not enough evidence that there is a difference between boys and girls in the proportion who gave product advice to parents.

10.68 **Shopped at a mall:**

cont. PHStat output:

Z Test for Differences in Two Proportions			
Data			
Hypothesized Difference	0		
Level of Significance	0.05		
Group 1			
Number of Items of Interest	144		
Sample Size	600		
Group 2			
Number of Items of Interest	262		
Sample Size	623		
Intermediate Calculations			
Group 1 Proportion	0.24		
Group 2 Proportion	0.420545746		
Difference in Two Proportions	-0.180545746		
Average Proportion	0.331970564		
Z Test Statistic	-6.702643071		
Two-Tail Test			
Lower Critical Value	-1.959963985		
Upper Critical Value	1.959963985		
<i>p</i> -Value	2.04683E-11		
Reject the null hypothesis			

Reject the null hypothesis

Test statistic:
$$Z_{STAT} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\overline{p}\left(1 - \overline{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = -6.7026$$
, p-value is virtually 0.

Decision: Since the p-value is smaller than 0.05, reject H_0 . There is enough evidence that there is a difference between boys and girls in the proportion who shopped at a mall.

10.69

Normal Probability Plot

Normal Probability Plot

The normal probability plots suggest that the two populations are not normally distributed so an F test is inappropriate for testing the difference in two variances. The sample variances for Boston and Vermont shingles are 1204.992 and 2185.032, respectively. It appears that a separate variance t test is more appropriate for testing the difference in means.

10.69 $H_0: \mu_B = \mu_V$ Mean weights of Boston and Vermont shingles are the same. cont. $H_1: \mu_B \neq \mu_V$ Mean weights of Boston and Vermont shingles are different.

Separate-Variances t Test for the Difference	Between Two Means
(assumes unequal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sa	mple
Sample Size	368
Sample Mean	3124.214674
Sample Standard Deviation	34.71299377
Population 2 Sa	mple
Sample Size	330
Sample Mean	3704.042424
Sample Standard Deviation	46.74432189
Intermediate Calculations	
Numerator of Degrees of Freedom	97.9257
Denominator of Degrees of Freedom	0.1625
Total Degrees of Freedom	602.7216
Degrees of Freedom	602
Separate Variance Denominator	3.1457
Difference in Sample Means	-579.8277503
Separate-Variance t Test Statistic	-184.3210
Two-Tail Te	st
Lower Critical Value	-1.9639
Upper Critical Value	1.9639
<i>p</i> -Value	0.0000
Reject the null hyp	oothesis

Since the p-value is essentially zero, reject H_0 . There is sufficient evidence to conclude that the mean weights of Boston and Vermont shingles are different.

Normal Probability Plot

Normal Probability Plot

The normal probability plots suggest that the two populations are not normally distributed so an F test is inappropriate for testing the difference in two variances. The sample variances for Boston and Vermont shingles are 0.0203 and 0.015, respectively, which are not very different. It appears that a pooled-variance t test is appropriate for testing the difference in means.

 $H_0: \mu_B = \mu_V$ Mean granule loss of Boston and Vermont shingles are the same.

 $H_1: \mu_B \neq \mu_V$ Mean granule loss of Boston and Vermont shingles are different.

Excel output:

t-Test: Two-Sample Assuming Equal Variances

	Boston	Vermont
Mean	0.264059	0.218
Variance	0.020273	0.015055
Observations	170	140
Pooled Variance	0.017918	
Hypothesized Mean Difference	0	
Df	308	
t Stat	3.014921	
P(T<=t) one-tail	0.001392	
t Critical one-tail	1.649817	
P(T<=t) two-tail	0.002784	
t Critical two-tail	1.967696	

Since the p-value = 0.0028 is less than the 5% level of significance, reject H_0 . There is sufficient evidence to conclude that there is a difference in the mean granule loss of Boston and Vermont shingles.

10.71 Since the sample size is small, you have to assume that the 3-year return, 5-year return, 10-year return and expense ratio are all normally distributed to perform the following tests.

3-year return:

Populations: 1 = large cap value, 2 = large cap growth H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. PHstat output:

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	10
Sample Standard Deviation	3.569454
Smaller-Variance Sample	
Sample Size	10
Sample Standard Deviation	1.27349
Intermediate Calculations	
F Test Statistic	7.856193
Population 1 Sample Degrees of Freedom	9
Population 2 Sample Degrees of Freedom	9
Two-Tail Test	
Upper Critical Value	4.025994
p-Value	0.005161
Reject the null hypothesis	

Decision: Since p-value < 0.05, reject H_0 . There is enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the separate-variance t test.

10.71 Populations: 1 = large cap value, 2 = large cap growth

 H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$ PHStat output: cont.

PHStat output:		
Separate-Variances t Test for the Diffe	rence Between T	
(assumes unequal population variances)		
Data		
Hypothesized Difference	0	
Level of Significance	0.05	
Population 1 Sample		
Sample Size	10	
Sample Mean	2.11	
Sample Standard Deviation	3.56945374	
Population 2 Sample		
Sample Size	10	
Sample Mean	0.42	
Sample Standard Deviation	1.273490392	
Intermediate Calculation		
Numerator of Degrees of Freedom	2.0629	
Denominator of Degrees of Freedom	0.1833	
Total Degrees of Freedom	11.2547	
Degrees of Freedom	11	
Separate Variance Denominator	1.1984	
Difference in Sample Means	1.69	
Separate-Variance t Test Statistic	1.4102	
Two-Tail Test		
Lower Critical Value	-2.2010	
Upper Critical Value	2.2010	
ρ-Value	0.1861	
Do not reject the null hypothesis		

Decision: Since the *p*-value = 0.1861 is larger than 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean 3-year return is different between the large cap value and large cap growth mutual funds.

10.71 **5-year return:**

cont.

Populations: 1 = large cap growth, 2 = large cap value H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. PHstat output:

F Test for Differences in Two Variances	ì
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	10
Sample Standard Deviation	2.08444
Smaller-Variance Sample	
Sample Size	10
Sample Standard Deviation	1.863837
_	
Intermediate Calculations	
F Test Statistic	1.250728
Population 1 Sample Degrees of Freedom	9
Population 2 Sample Degrees of Freedom	9
Two-Tail Test	
Upper Critical Value	4.025994
p-Value	0.744361
Do not reject the null hypothesis	

Decision: Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

10.71 Populations: 1 = large cap growth, 2 = large cap value $H_1: \mu_1 \neq \mu_2$ cont. H_0 : $\mu_1 = \mu_2$

PHStat output:

Filstat Output.	
Pooled-Variance t Test for the Differen	ce Betwee
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	10
Sample Mean	4.64
Sample Standard Deviation	2.08444
Population 2 Sample	
Sample Size	10
Sample Mean	4.95
Sample Standard Deviation	1.863837
•	
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	9
Population 2 Sample Degrees of Freedom	9
Total Degrees of Freedom	18
Pooled Variance	3.909389
Difference in Sample Means	-0.31
t Test Statistic	-0.35058
Two-Tail Test	
Lower Critical Value	-2.10092
Upper Critical Value	2.100922
p-Value	0.72997
Do not reject the null hypothes	is

Decision: Since the p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean 5-year return is different between the large cap value and large cap growth mutual funds.

10.71 **10-year return:**

cont.

Populations: 1 = large cap value, 2 = large cap growth H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. PHstat output:

F Test for Differences in Two Variances	;
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	10
Sample Standard Deviation	2.897585
Smaller-Variance Sample	
Sample Size	10
Sample Standard Deviation	1.262317
Intermediate Calculations	
F Test Statistic	5.269089
Population 1 Sample Degrees of Freedom	9
Population 2 Sample Degrees of Freedom	9
Two-Tail Test	
Upper Critical Value	4.025994
ρ-Value	0.021064
Reject the null hypothesis	

Decision: Since p-value < 0.05, reject H_0 . There is enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the separate-variance t test.

10.71 Populations: 1 = large cap value, 2 = large cap growth

 H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$ PHStat output: cont.

PHStat output:	
Separate-Variances t Test for the Diffe	rence Between T
(assumes unequal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	10
Sample Mean	6.06
Sample Standard Deviation	2.897585202
Population 2 Sample	
Sample Size	10
Sample Mean	2.37
Sample Standard Deviation	1.262317093
Intermediate Calculation	
Numerator of Degrees of Freedom	0.9979
Denominator of Degrees of Freedom	0.0811
Total Degrees of Freedom	12.2974
Degrees of Freedom	12
Separate Variance Denominator	0.9995
Difference in Sample Means	3.69
Separate-Variance t Test Statistic	3.6919
Two-Tail Test	
Lower Critical Value	-2.1788
Upper Critical Value	2.1788
p-Value	0.0031
Reject the null hypothes	sis

Decision: Since the p-value < than 0.05, reject H_0 . There is sufficient evidence to conclude that the mean 10-year return is different between the large cap value and large cap growth mutual funds.

10.71 Expense ratio:

cont.

Populations: 1 = large cap value, 2 = large cap growth H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. PHstat output:

F Test for Differences in Two Variances	;
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	10
Sample Standard Deviation	0.400866
Smaller-Variance Sample	
Sample Size	10
Sample Standard Deviation	0.239574
Intermediate Calculations	
F Test Statistic	2.799752
Population 1 Sample Degrees of Freedom	9
Population 2 Sample Degrees of Freedom	9
<u> </u>	
Two-Tail Test	
Upper Critical Value	4.025994
p-Value	0.141114
Do not reject the null hypothesis	

Decision: Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

10.71 Populations: 1 = large cap value, 2 = large cap growth $H_1: \mu_1 \neq \mu_2$ cont. H_0 : $\mu_1 = \mu_2$

PHStat output:

rnsiai output.	
Pooled-Variance t Test for the Different	ce Betwee
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	10
Sample Mean	1.206
Sample Standard Deviation	0.400866
Population 2 Sample	
Sample Size	10
Sample Mean	0.972
Sample Standard Deviation	0.239574
·	
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	9
Population 2 Sample Degrees of Freedom	9
Total Degrees of Freedom	18
Pooled Variance	0.109044
Difference in Sample Means	0.234
t Test Statistic	1.584525
Two-Tail Test	
Lower Critical Value	-2.10092
Upper Critical Value	2.100922
ρ-Value	0.130486
Do not reject the null hypothes	is

Decision: Since the p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean expense ratio is different between the large cap value and large cap growth mutual funds.

10.73 It is reasonable to think that those bond funds with fees will have to be compensated with higher mean return. Hence, you will like to find out if there is evidence that bond funds with fees have a higher mean return than those without fees.

2009 return:

Populations: 1 = with fees, 2 = without fees H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. PHstat output:

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	54
Sample Standard Deviation	6.912137
Smaller-Variance Sample	
Sample Size	130
Sample Standard Deviation	5.741261
Intermediate Calculations	
F Test Statistic	1.449473
Population 1 Sample Degrees of Freedom	53
Population 2 Sample Degrees of Freedom	129
Two-Tail Test	
Upper Critical Value	1.543727
p-Value	0.094045
P 1 4.1 5.1 5	

Decision: Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Populations: 1 = with fees, 2 = without fees10.73

 $H_0: \mu_1 \leq \mu_2$ $H_1: \mu_1 > \mu_2$ cont.

PHStat output:

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	-
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	54
Sample Mean	6.916667
Sample Standard Deviation	6.912137
Population 2 Sample	
Sample Size	130
Sample Mean	7.266923
Sample Standard Deviation	5.741261
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	53
Population 2 Sample Degrees of Freedom	129
Total Degrees of Freedom	182
Pooled Variance	37.2765
Difference in Sample Means	-0.35026
t Test Statistic	-0.35435
Lower-Tail Test	
Lower Critical Value	-1.65327
p-Value	0.361745
Do not reject the null hypothesis	

Decision: Since the p-value is larger than 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean 2009 return is higher for bond funds with fees than those without fees.

10.73 **3-year return:**

cont.

Populations: 1 = without fees, 2 = with fees H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHStat output:

F Test for Differences in Two Variances		
Data		
Level of Significance	0.05	
Larger-Variance Sample		
Sample Size	130	
Sample Standard Deviation	2.618265	
Smaller-Variance Sample		
Sample Size	54	
Sample Standard Deviation	2.269859	
Intermediate Calculations		
F Test Statistic	1.330544	
Population 1 Sample Degrees of Freedom	129	
Population 2 Sample Degrees of Freedom	53	
	Two-Tail Test	
Two-Tail Test		
Two-Tail Test Upper Critical Value	1.612929	
	1.612929 0.239508	

Decision: Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

10.73 Populations: 1 = without fees, 2 = with fees

 H_1 : $\mu_1 < \mu_2$ $H_0: \mu_1 \geq \mu_2$ cont.

PHStat output:

Pooled-Variance <i>t</i> Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	130
Sample Mean	4.606154
Sample Standard Deviation	2.618265
Population 2 Sample	
Sample Size	54
Sample Mean	4.798148
Sample Standard Deviation	2.269859
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	129
Population 2 Sample Degrees of Freedom	53
Total Degrees of Freedom	182
Pooled Variance	6.359368
Difference in Sample Means	-0.19199
t Test Statistic	-0.47026
Lower-Tail Test	
Lower Critical Value	-1.65327
p-Value	0.319365
Do not reject the null hypothesis	

Decision: Since p-value is larger than 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean 3-year return is higher for bond funds with fees than those without fees.

10.73 **5-year return:**

cont.

Populations: 1 = without fees, 2 = with fees $H_0: \sigma_1^2 = \sigma_2^2$ The population variances are the same. $H_1: \sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHStat output:

1 Hotat output.	
F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	130
Sample Standard Deviation	1.566466
Smaller-Variance Sample	
Sample Size	54
Sample Standard Deviation	1.282251
Intermediate Calculations	
F Test Statistic	1.492436
Population 1 Sample Degrees of Freedom	129
Population 2 Sample Degrees of Freedom	53
Two-Tail Test	
Upper Critical Value	1.612929
p-Value	0.099584
Do not reject the null hypothesi	s

Decision: Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

10.73 Populations: 1 = without fees, 2 = with fees

 $H_0: \mu_1 \geq \mu_2$ H_1 : $\mu_1 < \mu_2$ cont.

p-Value

PHStat output:

Tristat Output.	
Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	130
Sample Mean	3.985385
Sample Standard Deviation	1.566466
Population 2 Sample	
Sample Size	54
Sample Mean	3.987037
Sample Standard Deviation	1.282251
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	129
Population 2 Sample Degrees of Freedom	53
Total Degrees of Freedom	182
Pooled Variance	2.218039
Difference in Sample Means	-0.00165
t Test Statistic	-0.00685
Lower-Tail Test	
Lower Critical Value	-1.65327

Do not reject the null hypothesis

Decision: Since p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean 5-year return is higher for bond funds with fees than those without fees.

-1.65327 0.49727

10.73 Expense Ratio:

cont.

Populations: 1 = without fees, 2 = with fees H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. PHStat output:

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	•
Sample Size	130
Sample Standard Deviation	0.243789
Smaller-Variance Sample	
Sample Size	54
Sample Standard Deviation	0.14039
Intermediate Calculations	
F Test Statistic	3.015452
Population 1 Sample Degrees of Freedom	129
Population 2 Sample Degrees of Freedom	53
Two-Tail Test	
Upper Critical Value	1.612929
p-Value	1.52E-05
Reject the null hypothesis	

Decision: Since p-value < 0.05, reject H_0 . There is enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the separate-variance t test.

10.73 Populations: 1 = without fees, 2 = with fees

 H_0 : $\mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$ cont.

PHStat output:

Comments Marianas (Tart for the Difference Date of Tart Maria	
Separate-Variances t Test for the Difference Between Two Means	
(assumes unequal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	130
Sample Mean	0.625307692
Sample Standard Deviation	0.243788536
Population 2 Sample	
Sample Size	54
Sample Mean	0.92
Sample Standard Deviation	0.140390292
•	
Intermediate Calculations	
Numerator of Degrees of Freedom	0.0000
Denominator of Degrees of Freedom	0.0000
Total Degrees of Freedom	163.5206
Degrees of Freedom	163
Separate Variance Denominator	0.0287
Difference in Sample Means	-0.294692308
Separate-Variance t Test Statistic	-10.2775
•	
Two-Tail Test	ž.
Lower Critical Value	-1.9746
Upper Critical Value	1.9746
p-Value	0.0000
Reject the null hypothesis	•

Decision: Since the p-value is virtually zero, reject H_0 . There is sufficient evidence to conclude that the mean expense ratio is different between bonds funds with fees and those without fees.

10.74 **2009 return:**

Populations: 1 = short term corporate, 2 = intermediate government H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHstat output:

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	97
Sample Standard Deviation	5.686734
Smaller-Variance Sample	
Sample Size	87
Sample Standard Deviation	5.360641
Intermediate Calculations	
F Test Statistic	1.125362
Population 1 Sample Degrees of Freedom	96
Population 2 Sample Degrees of Freedom	86
Two-Tail Test	
Upper Critical Value	1.516688
<i>p</i> -Value	0.577999
Do not reject the null hypothes	•

Decision: Since p-value > 0.05, reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Populations: 1 = short term corporate, 2 = intermediate government 10.74 cont. H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

PHStat output:

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	.•
Sample Size	97
Sample Mean	9.595876
Sample Standard Deviation	5.686734
Population 2 Sample	
Sample Size	87
Sample Mean	4.452874
Sample Standard Deviation	5.360641
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	96
Population 2 Sample Degrees of Freedom	86
Total Degrees of Freedom	182
Pooled Variance	30.63668
Difference in Sample Means	5.143003
t Test Statistic	6.292635
Two-Tail Test	
Lower Critical Value	-1.97308
Upper Critical Value	1.973084
p-Value	2.27E-09
Reject the null hypothesis	

Decision: Since the p-value is virtually zero, reject H_0 . There is sufficient evidence to conclude that the mean 2009 return is different between the short term corporate bond funds and the intermediate government bond funds.

10.74 **3-year return:**

cont.

Populations: 1 = short term corporate, 2 = intermediate government H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHstat output:

F Test for Differences in Two Variances	3
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	97
Sample Standard Deviation	2.888542
Smaller-Variance Sample	
Sample Size	87
Sample Standard Deviation	1.570289
Intermediate Calculations	
Intermediate Calculations F Test Statistic	3.383748
F Test Statistic	96
F Test Statistic Population 1 Sample Degrees of Freedom	3.383748 96
F Test Statistic Population 1 Sample Degrees of Freedom	96
F Test Statistic Population 1 Sample Degrees of Freedom Population 2 Sample Degrees of Freedom	96
F Test Statistic Population 1 Sample Degrees of Freedom Population 2 Sample Degrees of Freedom Two-Tail Test	96

Decision: Since p-value < 0.05, reject H_0 . There is enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the separate-variance t test.

Populations: 1 = short term corporate, 2 = intermediate government 10.74

cont. H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

PHStat output:

Separate-Variances t Test for the Difference Between Two Means	
(assumes unequal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	97
Sample Mean	3.819587629
Sample Standard Deviation	2.88854199
Population 2 Sample	
Sample Size	87
Sample Mean	5.602298851
Sample Standard Deviation	1.570289339
Intermediate Calculations	
Numerator of Degrees of Freedom	0.0131
Denominator of Degrees of Freedom	0.0001
Total Degrees of Freedom	151.3445
Degrees of Freedom	151
Separate Variance Denominator	0.3382
Difference in Sample Means	-1.782711222
Separate-Variance t Test Statistic	-5.2716
Two-Tail Test	
Lower Critical Value	-1.9758
Upper Critical Value	1.9758
<i>p</i> -Value	0.0000
Reject the null hypothesis	

Decision: Since the p-value is virtually zero, reject H_0 . There is sufficient evidence to conclude that the mean 3-year return is different between the short term corporate bond funds and the intermediate government bond funds.

10.74 **5-year return:**

cont.

Populations: 1 = short term corporate, 2 = intermediate government H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHstat output

F Test for Differences in Two Variances	5
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	97
Sample Standard Deviation	1.668427
Smaller-Variance Sample	
Sample Size	87
Sample Standard Deviation	0.979634
Intermediate Calculations	
F Test Statistic	2.900596
Population 1 Sample Degrees of Freedom	96
Population 2 Sample Degrees of Freedom	86
Two-Tail Test	
Upper Critical Value	1.516688
p-Value	9.72E-07

Decision: Since p-value < 0.05, reject H_0 . There is enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the separate-variance t test.

10.74 Populations: 1 = short term corporate, 2 = intermediate government $H_1: \mu_1 \neq \mu_2$ $H_0: \mu_1 = \mu_2$ cont.

$H_0. \ \mu_1 - \mu_2 \qquad \qquad H_1. \ \mu_1 \neq \mu_2$	
Separate-Variances t Test for the Difference Between Two Means	
(assumes unequal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	97
Sample Mean	3.473195876
Sample Standard Deviation	1.66842712
Population 2 Sample	
Sample Size	87
Sample Mean	4.557471264
Sample Standard Deviation	0.979633556
Intermediate Calculations	
Numerator of Degrees of Freedom	0.0016
Denominator of Degrees of Freedom	0.0000
Total Degrees of Freedom	157.9370
Degrees of Freedom	157
Separate Variance Denominator	0.1993
Difference in Sample Means	-1.084275388
Separate-Variance t Test Statistic	-5.4399
Two-Tail Test	
Lower Critical Value	-1.9752
Upper Critical Value	1.9752
p-Value	0.0000
Reject the null hypothesis	
Upper Critical Value p-Value	1.97

Decision: Since the p-value is virtually zero, reject H_0 . There is sufficient evidence to conclude that the mean 5-year return is different between the short term corporate bond funds and the intermediate government bond funds.

10.74 Expense Ratio:

cont.

Populations: 1 = intermediate government, 2 = short term corporate H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHStat output:

Upper Critical Value

p-Value

1 Hotat Output.	
F Test for Differences in Two Variances	5
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	87
Sample Standard Deviation	0.300741
Smaller-Variance Sample	
Sample Size	97
Sample Standard Deviation	0.201476
Intermediate Calculations	
F Test Statistic	2.228129
Population 1 Sample Degrees of Freedom	86
Population 2 Sample Degrees of Freedom	96

Reject the null hypothesis

Decision: Since p-value < 0.05, reject H_0 . There is enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the separate-variance t test.

1.509473

0.000153

10.74 Populations: 1 = short term corporate, 2 = intermediate government

cont. H_0 : $\mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$

PHStat output:

Separate-Variances t Test for the Difference Between Two Means	
(assumes unequal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	97
Sample Mean	0.670515464
Sample Standard Deviation	0.201475656
Population 2 Sample	
Sample Size	87
Sample Mean	0.757816092
Sample Standard Deviation	0.300741043
Intermediate Calculations	
Numerator of Degrees of Freedom	0.0000
Denominator of Degrees of Freedom	0.0000
Total Degrees of Freedom	147.7279
Degrees of Freedom	147
Separate Variance Denominator	0.0382
Difference in Sample Means	-0.087300628
Separate-Variance t Test Statistic	-2.2863
Two-Tail Test	
Lower Critical Value	-1.9762
Upper Critical Value	1.9762
p-Value	0.0237
Reject the null hypothesis	0.0201
. La justi and . La right and de	

Decision: Since p-value < 0.05, reject H_0 . There is sufficient evidence to conclude that the mean expense ratio is different between the short term corporate bond funds and the intermediate government bond funds.

10.75 (a) **GPA:**

Population 1 = males, 2 = females H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	29
Sample Standard Deviation	1.536902
Smaller-Variance Sample	
Sample Size	33
Sample Standard Deviation	1.354706
Intermediate Calculations	
F Test Statistic	1.287072
Population 1 Sample Degrees of Freedom	28
Population 2 Sample Degrees of Freedom	32
Two-Tail Test	
Upper Critical Value	2.058973
p-Value	0.488273
Do not reject the null hypothes	is

Since the *p*-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = males, 2 = females H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

10.75 (a) PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	29
Sample Mean	21.17241
Sample Standard Deviation	1.536902
Population 2 Sample	
Sample Size	33
Sample Mean	21.09091
Sample Standard Deviation	1.354706
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	28
Population 2 Sample Degrees of Freedom	32
Total Degrees of Freedom	60
Pooled Variance	2.081087
Difference in Sample Means	0.081505
t Test Statistic	0.221972
Two-Tail Test	
Lower Critical Value	-2.0003
Upper Critical Value	2.000298
<i>p</i> -Value	0.82509
Do not reject the null hypothesis	

Do not reject the null hypothesis

Decision: Since the p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean GPA is different between males and females.

Expected Salary:

Population 1 = females, 2 = males $H_0: \sigma_1^2 = \sigma_2^2$ The population variances are the same. $H_1: \sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.75 (a) PHstat output: cont.

F Test for Differences in Two Variances	5
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	33
Sample Standard Deviation	13.2724
Smaller-Variance Sample	
Sample Size	29
Sample Standard Deviation	10.79317
Intermediate Calculations	
F Test Statistic	1.512171
Population 1 Sample Degrees of Freedom	32
Population 2 Sample Degrees of Freedom	28
Two-Tail Test	
Upper Critical Value	2.096283
p-Value	0.269804
Do not reject the null hypothes	is

Since the p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = males, 2 = females
$$H_0: \ \mu_1 = \mu_2 \qquad \qquad H_1: \ \mu_1 \neq \mu_2$$

PHStat output: 10.75 (a) cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	29
Sample Mean	48.27586
Sample Standard Deviation	10.79317
Population 2 Sample	
Sample Size	33
Sample Mean	48.78788
Sample Standard Deviation	13.2724
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	28
Population 2 Sample Degrees of Freedom	32
Total Degrees of Freedom	60
Pooled Variance	148.3135
Difference in Sample Means	-0.51202
t Test Statistic	-0.16518
Two-Tail Test	
Lower Critical Value	-2.0003
Upper Critical Value	2.000298
<i>p</i> -Value	0.869359
Do not reject the null hypothesis	

Since the *p*-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean expected salary is different between males and females.

Social Networking:

Population 1 = males, 2 = females $H_0: \sigma_1^2 = \sigma_2^2$ The population variances are the same. $H_1: \sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.75 (a) PHstat output: cont.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	29
Sample Standard Deviation	0.941647
Smaller-Variance Sample	
Sample Size	33
Sample Standard Deviation	0.751262
Intermediate Calculations	
F Test Statistic	1.571065
Population 1 Sample Degrees of Freedom	28
Population 2 Sample Degrees of Freedom	32
Two-Tail Test	
Upper Critical Value	2.058973
p-Value	0.217459
p-value	0.217-100

Since the *p*-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = males, 2 = females

$$H_0$$
: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

10.75 (a) PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	29
Sample Mean	1.62069
Sample Standard Deviation	0.941647
Population 2 Sample	
Sample Size	33
Sample Mean	1.424242
Sample Standard Deviation	0.751262
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	28
Population 2 Sample Degrees of Freedom	32
Total Degrees of Freedom	60
Pooled Variance	0.714803
Difference in Sample Means	0.196447
t Test Statistic	0.912878
Two-Tail Test	
Lower Critical Value	-2.0003
Upper Critical Value	2.000298
<i>p</i> -Value	0.36496
Do not reject the null hypothesis	

Since the *p*-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean number of social networking sites registered for is different between males and females.

Age:

Population 1 = males, 2 = females H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.75 (a) PHstat output: cont.

F Test for Differences in Two Variances	8
_	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	29
Sample Standard Deviation	1.536902
Smaller-Variance Sample	
Sample Size	33
Sample Standard Deviation	1.354706
Intermediate Calculations	
F Test Statistic	1.287072
Population 1 Sample Degrees of Freedom	28
Population 2 Sample Degrees of Freedom	32
Two-Tail Test	
Upper Critical Value	2.058973
p-Value	0.488273
Do not reject the null hypothes	is

Since the *p*-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = males, 2 = females

$$H_0$$
: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

PHStat output: 10.75 (a) cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	•
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	29
Sample Mean	21.17241
Sample Standard Deviation	1.536902
Population 2 Sample	
Sample Size	33
Sample Mean	21.09091
Sample Standard Deviation	1.354706
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	28
Population 2 Sample Degrees of Freedom	32
Total Degrees of Freedom	60
Pooled Variance	2.081087
Difference in Sample Means	0.081505
t Test Statistic	0.221972
Two-Tail Test	
Lower Critical Value	-2.0003
Upper Critical Value	2.000298
<i>p</i> -Value	0.82509
Do not reject the null hypothesis	
	1 ,

Since the p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean age is different between males and females.

Spending:

Population 1 = males, 2 = females $H_0: \sigma_1^2 = \sigma_2^2$ The population variances are the same. $H_1: \sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.75 (a) PHstat output: cont.

F Test for Differences in Two Variances	5
Data	
Level of Significance	0.0
Larger-Variance Sample	
Sample Size	2
Sample Standard Deviation	239.24
Smaller-Variance Sample	
Sample Size	3
Sample Standard Deviation	204.584
Intermediate Calculations	
F Test Statistic	1.36754
Population 1 Sample Degrees of Freedom	2
Population 2 Sample Degrees of Freedom	3
Two-Tail Test	
Upper Critical Value	2.05897
p-Value	0.39110
Do not reject the null hypothes	is

Since the p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = males, 2 = females

$$H_0$$
: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

PHStat output:

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	29
Sample Mean	516.0345
Sample Standard Deviation	239.245
Population 2 Sample	
Sample Size	33
Sample Mean	452.1212
Sample Standard Deviation	204.5843

Intermediate Calculations	
Population 1 Sample Degrees of Freedom	28
Population 2 Sample Degrees of Freedom	32
Total Degrees of Freedom	60
Pooled Variance	49033.67
Difference in Sample Means	63.91327
t Test Statistic	1.133976

Two-Tail Test	
Lower Critical Value	-2.0003
Upper Critical Value	2.000298
p-Value	0.261315
Do not reject the null hy	pothesis

Since the p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean spending is different between males and females.

10.75 (a) **Text Messages:**

cont.

Population 1 = males, 2 = females H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHstat output:

p-Value

F Test for Differences in Two Variances	
0.05	
29	
219.0672	
33	
213.348	

Intermediate Calculations	
F Test Statistic	1.054333
Population 1 Sample Degrees of Freedom	28
Population 2 Sample Degrees of Freedom	32
Two-Tail Test	
Upper Critical Value	2.058973

Do not reject the null hypothesis

Since the p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance *t* test.

0.879489

Population 1 = males, 2 = females

 H_0 : $\mu_1 = \mu_2$

 $H_1: \mu_1 \neq \mu_2$

10.75 (a) PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	29
Sample Mean	256.2069
Sample Standard Deviation	219.0672
Population 2 Sample	
Sample Size	33
Sample Mean	237.4242
Sample Standard Deviation	213.348
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	28
Population 2 Sample Degrees of Freedom	32
Total Degrees of Freedom	60
Pooled Variance	46671.48
Difference in Sample Means	18.78265
t Test Statistic	0.341579
Two-Tail Test	
Lower Critical Value	-2.0003
Upper Critical Value	2.000298
p-Value	0.733861
Do not reject the null hypothesis	

Since the p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean text messages sent in a week is different between males and females.

Wealth:

Population 1 = males, 2 = females H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHstat output: 10.75 (a) cont.

F Test for Differences in Two Variances	5	
Data		
Level of Significance	0.05	
Larger-Variance Sample		
Sample Size	29	
Sample Standard Deviation	27.34992	
Smaller-Variance Sample		
Sample Size	33	
Sample Standard Deviation	5.360431	
Intermediate Calculations		
F Test Statistic	26.0323	
Population 1 Sample Degrees of Freedom	28	
Population 2 Sample Degrees of Freedom	32	
Two-Tail Test		
Upper Critical Value	2.058973	
<i>p</i> -Value	7.69E-15	
Reject the null hypothesis		

Since the *p*-value < 0.05, reject H_0 . There is enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the separate-variance *t* test.

Population 1 = males, 2 = females
$$H_0: \ \mu_1 = \mu_2 \qquad \qquad H_1: \ \mu_1 \neq \mu_2$$

10.75 (a) PHStat output: cont.

Separate-Variances t Test for the Difference Between Two Means	
(assumes unequal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	29
Sample Mean	12.55344828
Sample Standard Deviation	27.34991816
Population 2 Sample	
Sample Size	33
Sample Mean	2.403787879
Sample Standard Deviation	5.360431278
Intermediate Calculations	
Numerator of Degrees of Freedom	710.9934
Denominator of Degrees of Freedom	23.7850
Total Degrees of Freedom	29.8925
Degrees of Freedom	29
Separate Variance Denominator	5.1638
Difference in Sample Means	10.1496604
Separate-Variance t Test Statistic	1.9656
Two-Tail Test	
Lower Critical Value	-2.0452
Upper Critical Value	2.0452
<i>p</i> -Value	0.0590
Do not reject the null hypothesis	

Since the p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean wealth needed to feel rich is different between males and females.

10.75 (b) cont.

GPA:

Population 1 = do not plan to go to graduate school, 2 = plan to go to graduate school H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHStat output:		
F Test for Differences in Two Variances		
Data		
Level of Significance	0.05	
Larger-Variance Sample		
Sample Size	12	
Sample Standard Deviation	0.425245	
Smaller-Variance Sample		
Sample Size	28	
Sample Standard Deviation	0.379252	
Intermediate Calculations		
F Test Statistic	1.257251	
Population 1 Sample Degrees of Freedom	11	
Population 2 Sample Degrees of Freedom	27	
Two-Tail Test		
Upper Critical Value	2.514294	
<i>p</i> -Value	0.599929	
Do not reject the null hypothesis		

Decision rule: If $F_{STAT} > 2.5143$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = 1.2573$$

Decision: Since $F_{STAT} = 1.2573$ is lower than 2.5143, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = do not plan to go to graduate school, 2 = plan to go to graduate school $H_1: \mu_1 \neq \mu_2$ H_0 : $\mu_1 = \mu_2$

10.75 (b) PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	12
Sample Mean	3.141667
Sample Standard Deviation	0.425245
Population 2 Sample	
Sample Size	28
Sample Mean	3.077857
Sample Standard Deviation	0.379252
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	11
Population 2 Sample Degrees of Freedom	27
Total Degrees of Freedom	38
Pooled Variance	0.154543
Difference in Sample Means	0.06381
t Test Statistic	0.470436
Two-Tail Test	
Lower Critical Value	-2.02439
Upper Critical Value	2.024394
<i>p</i> -Value	0.640733
Do not reject the null hypothesis	1

Decision: Since $t_{STAT} = 0.4704$ is in between the upper critical bound of 2.0244 and the lower critical bound of -2.0244, do not reject H_0 . There is insufficient evidence to conclude that the mean GPA is different between those students who plan to go to graduate school and those students who do not plan to go to graduate school.

Expected Salary:

Population 1 = do not plan to go to graduate school, 2 = plan to go to graduate school H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.75 (b) PHstat output: cont.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	12
Sample Standard Deviation	12.05386
Smaller-Variance Sample	
Sample Size	28
Sample Standard Deviation	10.13942
Intermediate Calculations	
F Test Statistic	1.413272
Population 1 Sample Degrees of Freedom	11
Population 2 Sample Degrees of Freedom	27
Two-Tail Test	
Upper Critical Value	2.514294
p-Value	0.446767
Do not reject the null hypothesis	<u> </u>

Decision rule: If $F_{STAT} > 2.5143$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = 1.4133$$

Decision: Since $F_{STAT} = 1.4133$ is lower than 2.5143, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

$$H_0$$
: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

10.75 (b) PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	12
Sample Mean	42.25
Sample Standard Deviation	12.05386
Population 2 Sample	
Sample Size	28
Sample Mean	48.125
Sample Standard Deviation	10.13942
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	11
Population 2 Sample Degrees of Freedom	27
Total Degrees of Freedom	38
Pooled Variance	115.1069
Difference in Sample Means	-5.875
t Test Statistic	-1.58707
Two-Tail Test	į.
Lower Critical Value	-2.02439
Upper Critical Value	2.024394
p-Value	0.120784
Do not reject the null hypothesis	

Decision: Since $t_{STAT} = -1.5871$ is between the lower critical bound of -2.0244 and the upper critical bound of 2.0244, do not reject H_0 . There is insufficient evidence to conclude that the mean expected salary is different between those students who plan to go to graduate school and those students who do not plan to go to graduate school.

Number of Social Networking:

Population 1 = plan to go to graduate school, 2 = do not plan to go to graduate school H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.75 (b) PHstat output: cont.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	28
Sample Standard Deviation	0.922958
Smaller-Variance Sample	
Sample Size	12
Sample Standard Deviation	0.514929
Intermediate Calculations	
F Test Statistic	3.212698
Population 1 Sample Degrees of Freedom	27
Population 2 Sample Degrees of Freedom	11
Two-Tail Test	
Upper Critical Value	3.142182
p-Value	0.046019
Reject the null hypothesis	

Decision rule: If $F_{STAT} > 3.1422$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = 3.2127$$

Decision: Since F_{STAT} = 3.2127 is larger than the upper critical bound of 3.1422, reject H_0 . There is enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the separatevariance t test.

Population 1 = plan to go to graduate school, 2 = do not plan to go to graduate school H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

10..75 (b) Excel output: cont.

Separate-Variances t Test for the Difference Between	ween Two Means
(assumes unequal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	28
Sample Mean	1.5
Sample Standard Deviation	0.922958207
Population 2 Sample	
Sample Size	12
Sample Mean	1.416666667
Sample Standard Deviation	0.514928651
Intermediate Calculations	
Numerator of Degrees of Freedom	0.0028
Denominator of Degrees of Freedom	0.0001
Total Degrees of Freedom	35.0634
Degrees of Freedom	35
Separate Variance Denominator	0.2292
Difference in Sample Means	0.083333333
Separate-Variance t Test Statistic	0.3636
Two-Tail Test	
Lower Critical Value	-2.0301
Upper Critical Value	2.0301
p-Value	0.7183
Do not reject the null hypoth	esis

Decision: Since $t_{STAT} = 0.3636$ is between the lower critical bound of -2.0301 and the upper critical bound of 2.0301, do not reject H_0 . There is insufficient evidence to conclude that the mean number of social networking sites registered for is different between those students who plan to go to graduate school and those students who do not plan to go to graduate school.

Population 1 = plan to go to graduate school, 2 = do not plan to go to graduate school H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHstat output:

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	ľ
Sample Size	28
Sample Standard Deviation	1.634208
Smaller-Variance Sample	
Sample Size	12
Sample Standard Deviation	0.792961
Intermediate Calculations	
F Test Statistic	4.247275
Population 1 Sample Degrees of Freedom	27
Population 2 Sample Degrees of Freedom	11
Two-Tail Test	
Upper Critical Value	3.142182
<i>p</i> -Value	0.015281
Reject the null hypothesis	•

Decision rule: If $F_{STAT} > 3.1422$, reject H_0 .

Test statistic: $F_{STAT} = \frac{S_1^2}{S_2^2} = 4.2473$

Decision: Since $F_{STAT} = 4.2473$ is greater than 3.1422, reject H_0 . There is enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the separate-variance t test.

10.75 (b) Population 1 = plan to go to graduate school, 2 = do not plan to go to graduate school cont. H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

Excel output:

Separate-Variances <i>t</i> Test for the Difference Means	Between Two
(assumes unequal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	28
Sample Mean	21.32142857
Sample Standard Deviation	1.634207735
Population 2 Sample	
Sample Size	12
Sample Mean	20.91666667
Sample Standard Deviation	0.792961461
Intermediate Calculations	
Numerator of Degrees of Freedom	0.0218
Denominator of Degrees of Freedom	0.0006
Total Degrees of Freedom	37.2327
Degrees of Freedom	37
Separate Variance Denominator	0.3844
Difference in Sample Means	0.404761905
Separate-Variance t Test Statistic	1.0529
Two-Tail Test	
Lower Critical Value	-2.0262
Upper Critical Value	2.0262
<i>p</i> -Value	0.2992
Do not reject the null hypoti	hesis

10.75 (b) cont.

Decision: Since $t_{STAT} = 1.0529$ is between the lower critical bound of -2.0262 and the upper critical bound of 2.0262, do not reject H_0 . There is insufficient evidence to conclude that the mean age is different between those students who plan to go to graduate school and those students who do not plan to go to graduate school.

Spending:

Population 1 = plan to go to graduate school, 2 = do not plan to go to graduate school H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHstat output:

F Test for Differences in Two Variances	
1 Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	-
Sample Size	28
Sample Standard Deviation	269.1621
Smaller-Variance Sample	
Sample Size	12
Sample Standard Deviation	228.7565
Intermediate Calculations	
F Test Statistic	1.384462
Population 1 Sample Degrees of Freedom	27
Population 2 Sample Degrees of Freedom	11
Two-Tail Test	
Upper Critical Value	3.142182
<i>p</i> -Value	0.584208
Do not reject the null hypothesis	·

Decision rule: If
$$F_{STAT} > 3.1422$$
, reject H_0 .
Test statistic: $F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{152.5941^2}{75.7109^2} = 1.3845$

Decision: Since $F_{STAT} = 1.3845$ is smaller than 3.1422, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = plan to go to graduate school, 2 = do not plan to go to graduate school H_0 : $\mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$

10.75 (b) Excel output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	28
Sample Mean	500.8929
Sample Standard Deviation	269.1621
Population 2 Sample	
Sample Size	12
Sample Mean	487.5
Sample Standard Deviation	228.7565
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	27
Population 2 Sample Degrees of Freedom	11
Total Degrees of Freedom	38
Pooled Variance	66624.41
Difference in Sample Means	13.39286
t Test Statistic	0.150382
Two-Tail Test	
Lower Critical Value	-2.02439
Upper Critical Value	2.024394
<i>p</i> -Value	0.881259
Do not reject the null hypothesis	•

Decision: Since $t_{STAT} = 0.1504$ is in between the lower critical bound of -2.0244 and the upper critical bound of 2.0244, do not reject H_0 . There is insufficient evidence to conclude that the mean spending is different between those students who plan to go to graduate school and those students who do not plan to go to graduate school.

10.75

cont. Text messages sent:

Population 1 = do not plan to go to graduate school, 2 = plan to go to graduate school H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. PHstat output:

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	_
Sample Size	12
Sample Standard Deviation	253.776
Smaller-Variance Sample	
Sample Size	28
Sample Standard Deviation	207.5808
Intermediate Calculations	
F Test Statistic	1.494607
Population 1 Sample Degrees of Freedom	11
Population 2 Sample Degrees of Freedom	27
Two-Tail Test	
Upper Critical Value	2.514294
p-Value	0.38163
Do not reject the null hypothesis	

Decision rule: If $F_{STAT} > 2.5143$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = 1.4946$$

Decision: Since $F_{STAT} = 1.4946$ is lower than 2.5143, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = do not plan to go to graduate school, 2 = plan to go to graduate school H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

10.75 (b) PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	<u>.</u>
Sample Size	12
Sample Mean	292.5
Sample Standard Deviation	253.776
Population 2 Sample	·
Sample Size	28
Sample Mean	252.6786
Sample Standard Deviation	207.5808
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	11
Population 2 Sample Degrees of Freedom	27
Total Degrees of Freedom	38
Pooled Variance	49259.19
Difference in Sample Means	39.82143
t Test Statistic	0.520011
Two-Tail Test	
Lower Critical Value	-2.02439
Upper Critical Value	2.024394
<i>p</i> -Value	0.606072
Do not reject the null hypothesis	•

Decision: Since $t_{STAT} = 0.5200$ is in between the upper critical bound of 2.0244 and the lower critical bound of -2.0244, do not reject H_0 . There is insufficient evidence to conclude that the mean text messages sent in a week is different between those students who plan to go to graduate school and those students who do not plan to go to graduate school.

Wealth:

Population 1 = plan to go to graduate school, 2 = do not plan to go to graduate school H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.75 (b) PHstat output: cont.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	28
Sample Standard Deviation	28.27505
Smaller-Variance Sample	
Sample Size	12
Sample Standard Deviation	1.578165
Intermediate Calculations	
F Test Statistic	320.9975
Population 1 Sample Degrees of Freedom	27
Population 2 Sample Degrees of Freedom	11
Two-Tail Test	
Upper Critical Value	3.142182
p-Value	2.99E-12
Reject the null hypothesis	•

Decision rule: If $F_{STAT} > 3.1422$, reject H_0 .

Test statistic:
$$F_{STAT} = \frac{S_1^2}{S_2^2} = 320.9975$$

Decision: Since $F_{STAT} = 320.9975$ is greater than 3.1422, reject H_0 . There is enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the separate-variance t test.

Population 1 = plan to go to graduate school, 2 = do not plan to go to graduate school H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

10.75 (b) Excel output: cont.

Separate-Variances <i>t</i> Test for the Difference Means	Between Two
(assumes unequal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	28
Sample Mean	12.70535714
Sample Standard Deviation	28.27504573
Population 2 Sample	•
Sample Size	12
Sample Mean	1.716666667
Sample Standard Deviation	1.57816541
Intermediate Calculations	
Numerator of Degrees of Freedom	827.1574
Denominator of Degrees of Freedom	30.1988
Total Degrees of Freedom	27.3904
Degrees of Freedom	27
Separate Variance Denominator	5.3629
Difference in Sample Means	10.98869048
Separate-Variance t Test Statistic	2.0490
Two-Tail Test	
Lower Critical Value	-2.0518
Upper Critical Value	2.0518
p-Value	0.0503
Do not reject the null hypothe	esis

Decision: Since $t_{STAT} = 2.0490$ is between the lower critical bound of -2.0518 and the upper critical bound of 2.0518, do not reject H_0 . There is insufficient evidence to conclude that the mean wealth needed to feel rich is different between those students who plan to go to graduate school and those students who do not plan to go to graduate school.

10.77 **Undergrad GPA:**

Population 1 = Females, 2 = Males H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different. PHstat output:

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	19
Sample Standard Deviation	0.316597
Smaller-Variance Sample	
Sample Size	25
Sample Standard Deviation	0.308869
Intermediate Calculations	
F Test Statistic	1.05067
Population 1 Sample Degrees of Freedom	18
Population 2 Sample Degrees of Freedom	24
Two-Tail Test	
Upper Critical Value	2.364797
p-Value	0.894969

Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = Males, 2 = females H_0 : $\mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$

PHStat output: 10.77 cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	
Level of Significance	0.05
Population 1 Sample	
Sample Size	19
Sample Mean	3.463158
Sample Standard Deviation	0.316597
Population 2 Sample	
Sample Size	25
Sample Mean	3.296
Sample Standard Deviation	0.308869
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	18
Population 2 Sample Degrees of Freedom	24
Total Degrees of Freedom	42
Pooled Variance	0.097472
Difference in Sample Means	0.167158
t Test Statistic	1.759171
Two-Tail Test	
Lower Critical Value	-2.01808
Upper Critical Value	2.018082
p-Value	0.085832
Do not reject the null hypothesis	•

Since p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean undergraduate GPA is different between males and females.

Graduate GPA:

Population 1 = Females, 2 = Males $H_0: \sigma_1^2 = \sigma_2^2$ The population variances are the same. $H_1: \sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.77 PHstat output: cont.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	19
Sample Standard Deviation	0.419412
Smaller-Variance Sample	
Sample Size	25
Sample Standard Deviation	0.399917
Intermediate Calculations	
F Test Statistic	1.099873
Population 1 Sample Degrees of Freedom	18
Population 2 Sample Degrees of Freedom	24
Two-Tail Test	
Upper Critical Value	2.364797
<i>p</i> -Value	0.814295
Do not reject the null hypothesis	

Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance *t* test.

Population 1 = Males, 2 = females

$$H_0$$
: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

10.77 PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	(
Level of Significance	0.05
Population 1 Sample	
Sample Size	25
Sample Mean	3.308
Sample Standard Deviation	0.399917
Population 2 Sample	
Sample Size	19
Sample Mean	3.357895
Sample Standard Deviation	0.419412
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	24
Population 2 Sample Degrees of Freedom	18
Total Degrees of Freedom	42
Pooled Variance	0.166779
Difference in Sample Means	-0.04989
t Test Statistic	-0.40143
Two-Tail Test	
Lower Critical Value	-2.01808
Upper Critical Value	2.018082
p-Value	0.690142
Do not reject the null hypothesis	-

Since the p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean graduate GPA is different between males and females.

Age:

Population 1 = Females, 2 = Males H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.77 PHstat output: cont.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	19
Sample Standard Deviation	5.919044
Smaller-Variance Sample	
Sample Size	25
Sample Standard Deviation	4.982302

Intermediate Calculations	
F Test Statistic	1.411377
Population 1 Sample Degrees of Freedom	18
Population 2 Sample Degrees of Freedom	24

Two-Tail Test	
Upper Critical Value	2.364797
p-Value	0.425058
Do not reject the null hypothesis	

Since the *p*-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = Males, 2 = females H_1 : $\mu_1 \neq \mu_2$ H_0 : $\mu_1 = \mu_2$

10.77 PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	
Level of Significance	0.05
Population 1 Sample	•
Sample Size	25
Sample Mean	26.36
Sample Standard Deviation	4.982302
Population 2 Sample	-
Sample Size	19
Sample Mean	26.57895
Sample Standard Deviation	5.919044
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	24
Population 2 Sample Degrees of Freedom	18
Total Degrees of Freedom	42
Pooled Variance	29.1998
Difference in Sample Means	-0.21895
t Test Statistic	-0.13313
Two-Tail Test	
Lower Critical Value	-2.01808
Upper Critical Value	2.018082
p-Value	0.894728
Do not reject the null hypothesis	_

Since the *p*-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean age is different between males and females.

Expected Salary:

Population 1 = Males, 2 = females $H_0: \sigma_1^2 = \sigma_2^2$ The population variances are the same. $H_1: \sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.77 PHstat output: cont.

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	25
Sample Standard Deviation	51.06574
Smaller-Variance Sample	
Sample Size	19
Sample Standard Deviation	34.6125
Intermediate Calculations	

Intermediate Calculations	
F Test Statistic	2.176674
Population 1 Sample Degrees of Freedom	24
Population 2 Sample Degrees of Freedom	18

Two-Tail Test	
Upper Critical Value	2.502697
p-Value	0.094729
Do not reject the null hypothesis	

Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = Males, 2 = females

$$H_0$$
: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

10.77 PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	C
Level of Significance	0.05
Population 1 Sample	
Sample Size	25
Sample Mean	86.72
Sample Standard Deviation	51.06574
Population 2 Sample	
Sample Size	19
Sample Mean	78.05263
Sample Standard Deviation	34.6125
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	24
Population 2 Sample Degrees of Freedom	18
Total Degrees of Freedom	42
Pooled Variance	2003.559
Difference in Sample Means	8.667368
t Test Statistic	0.636219
Two-Tail Test	
Lower Critical Value	-2.01808
Upper Critical Value	2.018082
<i>p</i> -Value	0.528086
Do not reject the null hypothesis	

Since p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean expected salary is different between males and females.

10.77 **Spending:**

cont.

Population 1 = Males, 2 = Females H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHstat output:

F Test for Differences in Two Varian	nces
Data	·
Level of Significance	0.05
Larger-Variance Sampl	е
Sample Size	25
Sample Standard Deviation	407.3448
Smaller-Variance Samp	le
Sample Size	19
Sample Standard Deviation	296.0216

Intermediate Calculations	
F Test Statistic	1.893553
Population 1 Sample Degrees of Freedom	24
Population 2 Sample Degrees of Freedom	18
Two-Tail Test	
Upper Critical Value	2.502697
p-Value	0.168423
Do not reject the null hypothesis	

Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = Males, 2 = females

 H_0 : $\mu_1 = \mu_2$

 $H_1: \mu_1 \neq \mu_2$

10.77 PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	25
Sample Mean	361.2
Sample Standard Deviation	407.3448
Population 2 Sample	
Sample Size	19
Sample Mean	367.3684
Sample Standard Deviation	296.0216
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	24
Population 2 Sample Degrees of Freedom	18
Total Degrees of Freedom	42
Pooled Variance	132372.2
Difference in Sample Means	-6.16842
t Test Statistic	-0.05571
Two-Tail Test	
Lower Critical Value	-2.01808
Upper Critical Value	2.018082
p-Value	0.955841
Do not reject the null hypothesis	

Since p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean spending is different between males and females.

10.77 **Text Messages:**

cont.

Population 1 = Females, 2 = Males H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

PHstat output:

F Test for Differences in Two Variano	ces
Data	
Level of Significance	0.05
Larger-Variance Sample	,
Sample Size	19
Sample Standard Deviation	323.4155
Smaller-Variance Sample	е
Sample Size	25
Sample Standard Deviation	278.349

Intermediate Calculations	
F Test Statistic	1.350027
Population 1 Sample Degrees of Freedom	18
Population 2 Sample Degrees of Freedom	24

Two-Tail Test	
Upper Critical Value	2.364797
p-Value	0.485676
Do not reject the null hypothesis	

Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance *t* test.

Population 1 = Males, 2 = females

$$H_0$$
: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

10.77 PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	25
Sample Mean	203.6
Sample Standard Deviation	278.349
Population 2 Sample	
Sample Size	19
Sample Mean	270.4211
Sample Standard Deviation	323.4155
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	24
Population 2 Sample Degrees of Freedom	18
Total Degrees of Freedom	42
Pooled Variance	89100.78
Difference in Sample Means	-66.8211
t Test Statistic	-0.73552
Two-Tail Test	
Lower Critical Value	-2.01808
Upper Critical Value	2.018082
<i>p</i> -Value	0.466112
Do not reject the null hypothesis	

Since p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean number of text messages sent in a week is different between males and females.

Wealth:

Population 1 = Females, 2 = Males H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same. H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

10.77 PHstat output: cont.

F Test for Differences in Two Variances	3
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	19
Sample Standard Deviation	24.26602
Smaller-Variance Sample	
Sample Size	25
Sample Standard Deviation	21.2986
Intermediate Calculations	
F Test Statistic	1.298061
Population 1 Sample Degrees of Freedom	18
Population 2 Sample Degrees of Freedom	24
Two-Tail Test	
Upper Critical Value	2.364797
p-Value	0.542857
Do not reject the null hypothes	is

Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test.

Population 1 = Males, 2 = females

$$H_0$$
: $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

10.77 PHStat output: cont.

Pooled-Variance t Test for the Difference Between Two Means	
(assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	25
Sample Mean	10.576
Sample Standard Deviation	21.2986
Population 2 Sample	
Sample Size	19
Sample Mean	10.72632
Sample Standard Deviation	24.26602
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	24
Population 2 Sample Degrees of Freedom	18
Total Degrees of Freedom	42
Pooled Variance	511.5772
Difference in Sample Means	-0.15032
t Test Statistic	-0.02184
Two-Tail Test	
Lower Critical Value	-2.01808
Upper Critical Value	2.018082
p-Value	0.982682
Do not reject the null hypothesis	•

Since p-value > 0.05, do not reject H_0 . There is insufficient evidence to conclude that the mean wealth needed to feel rich is different between males and females.