UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA DEPARTAMENTO DE FÍSICA

Síntesis de Grafeno por medios químicos y construcción de supercondensadores basados en grafeno

Carlos Javier Eugenio Herrera

Tesis para optar al Título Profesional de Ingeniero Físico

Profesor Guía: DINESH PRATAP SINGH

Santiago - Chile 2017

© Carlos Javier Eugenio Herrera, 2017 Licencia Creative Commons Atribución-NoComercial Chile 3.0

Dedicado a...

Agradecimientos

Índice general

Resumen				
Introducción				
1.	Nanomateriales	1		
	1.1. Síntesis	1		
	1.2. Caracterización	1		
	1.3. Aplicaciones	2		
2.	Grafeno	3		
	2.1. Óxido reducido de grafeno (rGO)	4		
	2.2. Síntesis de rGO	4		
	2.3. Aplicaciones	5		
3.	Supercondensadores	6		
	3.1. El condensador ideal	6		
	3.2. El condensador real	7		
	3.3. ¿Qué hace a un supercondensador super?	10		
	3.4. Mediciones en supercondensadores	11		
4.	Síntesis de óxido de grafeno	12		
	4.1. Procedimiento experimental	12		
	4.2. Resultados	12		
5.	Reducción del óxido de grafeno	13		
	5.1. Materiales	13		

	5.2. Procedimiento	_
6.	Construcción de supercondensadores	14
	6.1. Celda de pruebas de supercondensador	14
	6.2. Resultados	14
Co	16	

Índice de cuadros

Índice de figuras

1.	Comparativa de ódenes de magnitud de metros a picometros	X
2.	Alótropos del carbono como representación de las diferentes di-	
	mensionalidades en los nanomateriales. De izquierda a derecha:	
	Grafito, no es un material nanoestructurado, a pesar de estar	
	formado por varios capas de grafeno. Grafeno, solo un átomo de	
	espesor, es un material 2D. Nanotubo de carbono, es un material	
	1D. Fulereno, es un material 0D	ΧI
3.	Densidad de estados diferentes dimensiones. Para materiales	
	3D (no nanoestructurados), la densidad de estados es continua.	
	En nanomateriales 2D, la densidad de estado forma escalones.	
	Para materiales 1D, ésta es	ΧI
4.	Secuencia de divisiones de un cubo conservando el volumen	
	(cantidad de material). Si se comienza con un cubo de 1 cm de	
	lado y se subdivide hasta tener cubos de 100 nm de lado, el área	
	superficial total pasaría de 6 cm² a 60 m²	XII
3.1.	Ragone plot	7
3.2.	Carga y descarga de un condensador ideal a corriente constante.	8
3.3.	Carga y descarga de un condensador evidenciando el efecto de	
	una ESR	9
3.4.	Esquema de un supercondensador mostrando una doble capa	
	electrónica de Helmholtz en cada electrodo	10
6.1.		15

Resumen

asdasdasddddddddddddddddddddd

Introducción

El prefijo nano deriva del griego nanos, que significa literalmente "enano". En el sistema internacional de unidades, el prefijo nano representa un factor de 10⁻⁹, o una mil millonésima. Al añadir el prefijo a la unidad de longitud, obtenemos "nanómetro" (nm), o una mil millonésima parte de un metro. Así la nanotecnología se define como la ciencia, tecnología, e ingeniería que trata sistemas en el rango aproximado de 1-100 nanómetros. (Haick, 2013; Greßler and Gazsó, 2013). Se ha de tener claro en que rango de dimensiones se encuentra la escala nanométrica, los seres humanos estamos acostumbrados a escalas grandes, se nos hace fácil entender las comparaciones de kilómetros con metros, o milímetros con metros, pero al reducir el tamaño a micrómetros nos cuesta, pues son escalas que se escapan de nuestros sentidos. Un micrómetro es a un metro como un kilómetro es a un milímetro, teniendo eso en cuenta, un nanómetro es a un milímetro, como un micrómetro es a un kilómetro. La figura ?? muestra una escala de tamaños con varios ejemplos desde la escala humana hasta la atómica, la nanoescala comprende aproximadamente desde los cientos de nanómetros hasta fracciones de nanómetros.

La idea de la nanotecnología fue vislumbrada por el físico Richard Feynman y expuesta en su charla "There is plenty room at the bottom" (Feynman, 1960). Aquí Feynman plantea que no existen barreras físicas que impidan manipular sistemas nanométricos, moléculas, o átomos. La era moderna de la nanotecnología comienza con el desarrollo del microscopio de efecto túnel por Binning y Rohrer en 1981 (Binnig and Rohrer, 1982), que les hizo ganar el Premio Nobel de Física en 1986. Un microscopio de efecto túnel (STM por sus siglas en inglés *Scanning Tunneling Microscope*), puede superar resoluciones de 0,1 nm de

Figura 1: Comparativa de órdenes de magnitud. De izquierda a derecha: Escala humana 1-2 m. Insectos 10 cm - 1 mm. Glóbulos rojos 6 μ m. Longitud de onda de luz visible . ADN. Radio de un átomo de helio.

resolución lateral, y 0,01 nm en profundidad, y trabajar en variadas condiciones, sin necesidad de alto vacío o bajas temperaturas. Además de poder resolver átomos, el STM también puede manipularlos (Chen, 2008).

La física de sistemas nanométricos

Al reducir las dimensiones a escalas nanométricas, surgen efectos de confinamiento cuántico al restringir el movimiento de los electrones en el material, esto conlleva a la discretización de los niveles de energía de los electrones y al cambio de la densidad de estados del material.

Dependiendo de cuantas dimensiones son llevadas a la nanoescala, es como se ve afectada la densidad de estados.

Al dividir un volumen en partículas más pequeñas, el área superficial aumenta. Por ejemplo, en la secuencia de la figura 4, el volumen total en cada división no cambia, pero el área superficial se dobla ¹, siguiendo está lógica, al reducir un cubo de lado 1 cm a 100 nm, el área total habrá aumentado 100.000 veces. El aumento del área superficial aumenta la reactividad del material, ya que hay más lugar para, por ejemplo, reacciones químicas.

Si en la secuencia de la figura 4 el cubo más grande tiene lado I, su área superficial es $6 \times I_{\mathbf{Y}}^2$.

Figura 2: Alótropos del carbono como representación de las diferentes dimensionalidades en los nanomateriales. De izquierda a derecha: Grafito, no es un material nanoestructurado, a pesar de estar formado por varios capas de grafeno. Grafeno, solo un átomo de espesor, es un material 2D. Nanotubo de carbono, es un material 1D. Fulereno, es un material 0D.

Figura 3: Densidad de estados diferentes dimensiones. Para materiales 3D (no nanoestructurados), la densidad de estados es continua. En nanomateriales 2D, la densidad de estado forma escalones. Para materiales 1D, ésta es

en la primera división, el lado de cada cubo es I/2 y el área de cada uno es $6(I/2)^2$, que en total hacen $6(I/2)^2 \times 8$, en la segunda división el área total es $6(I/4)^2 \times 8 \times 8$, así, en la n-ésima división el área es $6I^2(1/2^n)^2 \times 8^n$ o $6I^2 \times 2^n$. Así, el área superficial se dobla con cada división.

Figura 4: Secuencia de divisiones de un cubo conservando el volumen (cantidad de material). Si se comienza con un cubo de 1 cm de lado y se subdivide hasta tener cubos de 100 nm de lado, el área superficial total pasaría de 6 cm² a 60 m².

1 Nanomateriales

Generalmente la denominación nano es atribuida a materiales en que algunas de sus dimensiones estén en la escala nanométrica, entre 1-100 nm (Greßler and Gazsó, 2013). Esta definición es práctica pero poco precisa en el sentido que algunos materiales exhiben características propias de los nanomateriales fuera de este rango (> 100 nm). Por esta razón es preferible hablar de nanomateriales cuando se comienzan a mostrar estas nuevas características. El momento en cual aparecen estos cambios, es propio de cada material, y está asociado a alguna longitud característica de éste, como por ejemplo, el camino libre medio del electrón.

1.1 Síntesis

Dependiendo de la vía de aproximación a la nanoescala, se distinguen dos formas de síntesis, por un lado, si partimos de la forma macro de un material y de algún modo se reducen sus dimensiones hacia la nanoescala, se habla de un proceso *top-down*. Por ejemplo, la exfoliación del grafito (*bulk material*) para obtener grafeno (nanomaterial) (Novoselov et al., 2004). Por otro lado, sintetizar un nanomaterial a partir de átomos o moléculas es un proceso *bottom-up*, un ejemplo es la síntesis de nanopartículas de oro a partir de un precursor como el ácido tetracloroaúrico (Daniel and Astruc, 2004).

1.2 Caracterización

Existen distintos tipos de caracterización de nanomateriales, microscopía espestroscoía electroquímica

1.3 Aplicaciones

2 Grafeno

El grafeno es un nanomaterial 2-dimensional, formados por átomos de carbono hibridizados sp2, en una estructura de panal de abeja, esta estructura no es una red de Baravais pero puede ser descrita por una red hexagonal con una base de dos átomos de carbono. El primero en tratar con este material fue probablemente Brodie (Brodie, 1859) que al exponer grafito a ácidos fuertes, creyó descubrir una nueva forma de carbono a la que llamó grafón, ahora se sabe que lo que observó fue óxido de grafeno, esto es, laminas de grafeno recubiertas por grupos epóxi e hidroxilo (Geim, 2012). Wallace, dio con los primeros estudios teóricos sobre el grafeno al estudiar la estructura de bandas del grafito, pero como una simplificación de la estructura del grafito (Wallace, 1947). Fue Boehm quien le dio el nombre al crear la nomenclatura y terminología para compuestos de grafito intercalado (Boehm et al., 1986). No fue hasta 2004 que Novoselov, Geim y otros, lograron aislar grafeno por medios mecánicos (Novoselov et al., 2004), por lo que les fue otorgado el Premio Nobel de Física en 2010.

El grafeno presenta propiedades extraordinarias, como ha sido demostrado en numerosos experimentos: movilidad electrónica de 200.000 cm²V⁻¹s⁻¹(Bolotin et al., 2008), tensión de ruptura de 130 GPa, y módulo de Young de 1.0 TPa (Lee et al., 2008), conductividad térmica entre 600 a 5000 W mK⁻¹ (Balandin, 2011), opacidad de 2,3 % y reflectacia menor al 0,1 % (Nair et al., 2008), impermeable totalmente a gases estándar (Bunch et al., 2008), resistir densidades de corriente muy grandes de hasta 10⁸A cm⁻² sin sufrir daños (Moser et al., 2007), y puede ser funcionalizado fácilmente (Loh et al., 2010). Es importante notar que estos resultados se han obtenido en muestras muy puras de gra-

feno exfoliado mecánicamente (Novoselov et al., 2004) y están lejos de ser replicables a gran escala, se hace necesario encontrar métodos de síntesis que entreguen material de buena calidad (que sus propiedades se acerquen a las citadas anteriormente), y sean escalables a niveles industriales (Novoselov et al., 2012).

2.1 Óxido reducido de grafeno (rGO)

Una de las formas de obtener grandes cantidades de grafeno es mediante la llamada ruta del "óxido de grafeno". El óxido de grafeno es grafeno decorado densamente por grupos epóxi, hidroxilo, y carboxilo (Dreyer et al., 2010). Los grupos ricos en oxígeno presentes en la red del grafeno se presentan como defectos en éste, cambiando sus propiedades drásticamente. El óxido de grafeno es sintetizado a partir de grafito natural, exponiéndolo a agentes oxidantes fuertes, esto introduce grupos funcionales ricos en oxígeno en los espacios entre los planos de grafeno del grafito, aumentado la distancia interplanar, y disminuyendo la fuerza entre láminas. Esto facilita la separación de las láminas de grafeno (ahora óxido de grafeno). La mayoría de los métodos de síntesis del óxido de grafeno están basados en alguno de estos tres métodos: método de Brodie (Brodie, 1859), método de Staudenmaier (Staudenmaier, 1898), o método de Hummers (Hummers and Offeman, 1958).

2.2 Síntesis de rGO

Los grupos funcionales presentes en el óxido de grafeno pueden ser removidos para volver a la estructura del grafeno como tal. Existen muchas formas de reducir el óxido de grafeno, por medios químicos, térmicos, o electroquímicos. En los métodos de reducción química, el óxido de grafeno es expuestos a diferentes agentes reductores, cuyo mecanismo de reducción es sabido, se prueba esperando el efecto deseado (Chua and Pumera, 2015). Por otro lado, la reducción térmica contempla la exposición del óxido de grafeno a altas temperaturas en un horno convencional, reducción por microondas en un horno microondas

comercial (Zhu et al., 2010), reducción por láser (El-Kady and Kaner, 2013), plasma (Lee et al., 2012), o luz solar concentrada (Mohandoss et al., 2017). La reducción electroquímica se realiza en presencia de un solvente, el óxido de grafeno puede estar disperso en el solvente (Liu et al., 2011), depositado en un electrodo (Harima et al., 2011; Toh et al., 2014), o bien actuar como electrodo por sí mismo (Feng et al., 2016). Una gran ventaja de los métodos electroquímicos es la facilidad de realizar electrodeposición del rGO en otro electrodo y la combinación con otros nanomateriales, por ejemplo, en una síntesis *in-situ* (Liu et al., 2011; Xie et al., 2014).

2.3 Aplicaciones

3 Supercondensadores

El almacenar energía eléctrica es uno de los mayores problemas a la hora de diseñar sistemas electrónicos tanto móviles como estacionarios, los requerimientos varían de acuerdo a las necesidades de cada uno, en general es un trade-off entre densidad de energía (cuánta energía se puede almacenar) y densidad de potencia (que tan rápido puede ser entregada la energía almacenada). Las celdas de combustible (Fuel Cells), entregan la mayor densidad de energía, pero son complicadas, mientras que las baterías poseen mayor densidad de potencia, pierden capacidad con los ciclos de carga y descarga. Los supercondensadores van un paso más allá, aumentado la densidad de potencia y aportando mayor vida útil, entregando una nueva posibilidad a la hora de diseñar sistemas eléctricos, ya como fuente de energía por sí mismo, o en sistemas híbridos combinados con otras tecnologías(Thounthong et al., 2009).

3.1 El condensador ideal

Generalmente un condensador se modela como un par de placas paralelas separadas por un dieléctrico, es definido por su capacitancia, la que refleja la capacidad de almacenar energía. Del modelo de placas paralelas se desprende la definición de capacitancia C como la razón entre la magnitud de carga en cada placa Q y el voltaje entre los terminales V:

$$C = \frac{Q}{V} \tag{3.1}$$

Para fines prácticos, el condensador ideal como componente electrónico es

Figura 3.1: Ragone plot

modelado por la ecuación que relaciona la corriente con el voltaje, considerando que i = dq/dt:

$$i(t) = C \frac{dv(t)}{dt} \tag{3.2}$$

Para corrientes constantes, el voltaje varía linealmente como en el gráfico de carga y descarga de la figura 3.2.

3.2 El condensador real

Un condensador ideal almacenaría energía al cargase y la entregaría al descargarse sin ninguna disipación, es decir, su eficiencia sería del 100 %, podría soportar cualquier voltaje aplicado o cargarse y descargarse por una corriente cuan grande se desee. En realidad, los condensadores sí disipan energía, poseen voltajes de operación y corrientes máximas de carga y descarga. Todo esto depende de como fue construido y qué materiales se utilizaron, pensando en su propósito.

3.2.1 Breakdown voltage

Los condensadores convencionales construidos con materiales dieléctricos están sujetos a un voltaje máximo de operación determinado por la tensión

Figura 3.2: Carga y descarga de un condensador ideal a corriente constante.

de ruptura (*Breakdown voltage*), voltaje al cual se pierden las propiedades dieléctricas del material ocasionando cortocircuito al interior del dispositivo, está determinado por la fuerza dieléctrica del material y el espesor de este. En los condensadores electrolíticos la tensión de ruptura es determinada por otros mecanismos(Yahalom and Zahavi, 1971). En lo que respecta a los supercondensadores, el voltaje máximo de carga depende fundamentalmente de electrolíto usado, principalmente por las reacciones que ocurren a ciertos potenciales.

3.2.2 Circuito equivalente

El comportamiento de los condensadores reales son modeladas por un circuito equivalente, donde se introducen componentes que representan las imperfecciones del funcionamiento del condensador real.

3.2.3 Resistencia en serie equivalente (ESR)

Las imperfecciones en la construcción de los electrodos, y la naturaleza de los materiales utilizados (e.g. resistencia no cero), disipan energía durante la carga y descarga como si se tratase de una resistencia en serie al condensador, esto se ve reflejado como una caída de voltaje en los terminales del dispositivo (figura 3.3), y disminuye la eficiencia de éste.

Figura 3.3: Carga y descarga de un condensador evidenciando el efecto de una ESR.

3.2.4 Corriente de fuga (*leakage current*)

Entre los electrodos del condensador fluye una corriente no deseada cuando existe una diferencia de potencial entre los electrodos (cuando el condensador está cargado), esta corriente descarga al condensador incluso si está desconectado.

3.3 ¿Qué hace a un supercondensador super?

La densidad de energía de un supercondensador comparada a la de un condensador convencional es varios órdenes de magnitud superior, a modo de comparación, generalmente se utilizan microfaradios (10⁻⁶ Faradios), para medir la capacidad de un condensador convencional, mientras que en un supercondensador es común ver capacidades de cientos de Faradios. Esta característica le otorga el grado de super a los supercondensadores.

3.3.1 Doble capa electrostática de Helmholtz

La gran densidad de energía de un supercondensador tiene que surgir de algún mecanismo de almacenamiento de cargas. A diferencia de las baterías, este mecanismo es puramente físico, pues no hay reacciones químicas en los electrodos, las cargas son separadas en lo que Helmholtz llamó *Doble capa electrónica* (Frackowiak and Béguin, 2001), así, los supercondensadores también son llamados EDLCs (del inglés *Electric Double Layer Capacitor*).

Figura 3.4: Esquema de un supercondensador mostrando una doble capa electrónica de Helmholtz en cada electrodo.

3.3.2 Pseudocapacitancia

Cuando en un supercondensador existe intercambio de electrones entre los electrodos y el electrolítico (reacciones farádicas), se habla de pseudocapacitancia. El intercambio de electrones

3.4 Mediciones en supercondensadores

3.4.1 Voltametría cíclica

En una voltametría cíclica convencional, se varía el potencia entre los electrodos de manera lineal y se registra la corriente, típicamente el barrido de voltaje se realiza entre dos voltajes fijos, y el recorrido se hace de ida y vuelta. Los parámetros importantes en la voltametría cíclica son: voltajes límite inferior y superior, velocidad de barrido.

3.4.2 Espectroscopía de impedancia electroquímica

3.4.3 Carga y descarga cíclica

Generalmente la carga y descarga ser realizan a corriente constante hasta alcanzar cierto voltaje umbral. La cantidad de ciclos puede llegar hasta 100.000 para estudiar la retención de la capacidad inicial del dispositivo.

4 Síntesis de óxido de grafeno

El método de síntesis utilizado está basado en el propuesto por Hummers (Hummers and Offeman, 1958), y es descrito en (Abdolhosseinzadeh et al., 2015).

4.1 Procedimiento experimental

En una síntesis normal 3 g de grafito en polvo (Sigma-Aldrich >99%) o en hojuelas (Superior Graphite >80%), tal como viene envasado, se añaden a 150 ml de ácido sulfúrico (H_2SO_4 , Baker 97.8%) en un vaso precipitado de 250 ml previamente puesto en un baño de hielo sobre un agitador magnético, la mezcla se deja agitar por 5 minutos. Una vez el grafito se ha dispersado en el ácido sulfúrico se agregan 9 g de permanganato de potasio (KMnO₄, Chemix 99.44%), lentamente, manteniendo la temperatura de la mezcla bajo los 10 C y así evitar la explosión del permanganato. Luego de 15 minutos de agitación, se quita del baño de hielo y se agita 25 minutos más a temperatura ambiente, seguido de 5 minutos en un baño ultrasónico (99% de potencia, SB-3200DTD Ultrasonic Cleaner), este proceso de agitación-sonicación es repetido 12 veces en total, tomando un total de 6 horas en completarse. 200 ml de agua destilada, reacción exotérmica con evolución de gases.

4.2 Resultados

5 Reducción del óxido de grafeno

5.1 Materiales

Como precursor se usa el óxido de grafeno sintetizado con anterioridad mediante el método de Hummers

5.2 Procedimiento

5.3 Resultados

6 Construcción de supercondensadores

Un supercondensadores es armado simplemente haciendo un sándwich electrodo-separador-electrodo, el electrodo puede ser una lámina de material o estar depositado en un sustrato metálico, cualquiera sea el caso, el sándwich es introduce en la celda de prueba (Figura ??).

6.1 Celda de pruebas de supercondensador

Se diseña una celda para realizar las pruebas de supercondensadores con los materiales sintetizados. La celda (Figura ??) consta de dos colectores de corriente de acero inoxidable, entre los que se ubica el condensador como tal. Los colectores de corriente tienen sellos que impiden la fuga del electrolíto o la evaporación del agua en él, permitiendo una operación estable en el tiempo. Los colectores de corriente se apoyan en bloques de acero que cierran la celda con pernos y permitan conectar los terminales de potenciómetro a la celda

6.2 Resultados

Los supercondensadores son sometidos a pruebas electroquímicas para estudiar su desempeño, estás pruebas incluyen: voltametría cíclica (CV), ciclos de carga y descarga a corriente constante, espectroscopía de impedancia electroquímica (EIS).

Figura 6.1

Conclusiones

Bibliografía

- Abdolhosseinzadeh, S., Asgharzadeh, H., and Seop Kim, H. (2015). Fast and fully-scalable synthesis of reduced graphene oxide. *Scientific Reports*, 5:10160.
- Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. *Nature Materials*, 10(8):569–581.
- Binnig, G. and Rohrer, H. (1982). Scanning tunneling microscopy. *Surface Science*, 126(126):236–244.
- Boehm, H. P., Setton, R., and Stumpp, E. (1986). Nomenclature and terminology of graphite intercalation compounds. *Carbon*, 24(2):241–245.
- Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. *Solid State Communications*, 146(9-10):351–355.
- Brodie, B. C. (1859). On the Atomic Weight of Graphite. *Philosophical Transactions of the Royal Society of London*, 149(9):249–259.
- Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Parpia, J. M., Craighead,H. G., and McEuen, P. L. (2008). Impermeable Atomic Membranes fromGraphene Sheets. *Nano Letters*, 8(8):2458–2462.
- Chen, C. J. (2008). *Introduction to Scanning Tunneling Microscopy Second Edition*. Oxford.

- Chua, C. K. and Pumera, M. (2015). Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction. ACS Nano, 9(4):4193–4199.
- Daniel, M. C. M. and Astruc, D. (2004). Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size Related Properties and Applications toward Biology, Catalysis and Nanotechnology,. *Chemical Reviews*, 104(1):293–346.
- Dreyer, D., Park, S., Bielawski, C., and Ruoff, R. (2010). The chemistry of graphene oxide. *Chemical Society Reviews*, 39:228–240.
- El-Kady, M. F. and Kaner, R. B. (2013). Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. *Nature communications*, 4:1475.
- Feng, X., Chen, W., and Yan, L. (2016). Electrochemical reduction of bulk graphene oxide materials. *RSC Adv.*, 6(83):80106–80113.
- Feynman, R. (1960). There's plenty of room at the bottom. *Engeneering and Science*, pages 22–36.
- Frackowiak, E. and Béguin, F. (2001). Carbon materials for the electrochemical storage of energy in capacitors. *Carbon*, 39(6):937–950.
- Geim, A. K. (2012). Graphene prehistory. Physica Scripta, T146:014003.
- Greßler, S. and Gazsó, A. (2013). Definition of the term "nanomaterial". *ITA Nanotrust Dossiers*.
- Haick, H. (2013). Nanotechnology and Nanosensors. Technion.
- Harima, Y., Setodoi, S., Imae, I., Komaguchi, K., Ooyama, Y., Ohshita, J., Mizota,
 H., and Yano, J. (2011). Electrochemical reduction of graphene oxide in organic solvents. *Electrochimica Acta*, 56(15):5363–5368.
- Hummers, W. S. and Offeman, R. E. (1958). Preparation of Graphitic Oxide. *Journal of the American Chemical Society*, 80(6):1339–1339.

- Lee, C., Wei, X., Kysar, J. W., and Hone, J. (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. *Science*, 321(18 July 2008):385–388.
- Lee, S. W., Mattevi, C., Chhowalla, M., and Sankaran, R. M. (2012). Plasmaassisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications. *Journal of Physical Chemistry Letters*, 3(6):772–777.
- Liu, C., Wang, K., Luo, S., Tang, Y., and Chen, L. (2011). Direct electrode-position of graphene enabling the one-step synthesis of graphene-metal nanocomposite films. *Small*, 7(9):1203–1206.
- Loh, K. P., Bao, Q., Ang, P. K., and Yang, J. (2010). The chemistry of graphene. *Journal of Materials Chemistry*, 20(12):2277.
- Mohandoss, M., Gupta, S. S., Nelleri, A., Pradeep, T., and Maliyekkal, S. M. (2017). Solar mediated reduction of graphene oxide. *RSC Adv.*, 7(2):957–963.
- Moser, J., Barreiro, A., and Bachtold, A. (2007). Current-induced cleaning of graphene. *Applied Physics Letters*, 91(163513).
- Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., and Geim, A. K. (2008). Fine Structure Constant Defines Visual Transparency of Graphene. *Science*, 320(5881):1308–1308.
- Novoselov, K. S., Fal'ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K. (2012). A roadmap for graphene. *Nature*, 490(7419):192–200.
- Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. *Science*, 306(5696):666–669.
- Staudenmaier, L. (1898). Verfahren zur Darstellung der Graphitsäure. *Berichte der deutschen chemischen Gesellschaft*, 31(2):1481–1487.

- Thounthong, P., Raël, S., and Davat, B. (2009). Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. *Journal of Power Sources*, 193(1):376–385.
- Toh, S. Y., Loha, K. S., Kamarudin, S. K., and Dauda, W. R. W. (2014). Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. *Chemical Engineering Journal*, 251:422–434.
- Wallace, P. R. (1947). The band theory of graphite. *Physical Review*, 71(9):622–634.
- Xie, G., Forslund, M., and Pan, J. (2014). Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties. *ACS Applied Materials and Interfaces*, 6(10):7444–7455.
- Yahalom, J. and Zahavi, J. (1971). Experimental evaluation of some electrolytic breakdown hypotheses. *Electrochimica Acta*, 16(5):603–607.
- Zhu, Y., Murali, S., Stoller, M. D., Velamakanni, A., Piner, R. D., and Ruoff, R. S. (2010). Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. *Carbon*, 48(7):2118–2122.