Travaux Pratiques 3 Test d'intrusion d'un serveur Web

RSX112 - SÉCURITÉ DES RÉSEAUX STÉPHANE LARCHER

Test d'intrusion d'un serveur Web

Principe du test d'intrusion

Un test d'intrusion permet de :

- i. Vérifier si un système est vulnérable.
- ii. Comprendre comment ces vulnérabilités peuvent être découvertes et exploitées (et le cas échéant, en combien de temps).
- iii. Faire des recommandations pour mieux protéger le système.

Préparation de l'environnement de test

"Que l'on me donne six heures pour couper un arbre, j'en passerai quatre à préparer ma hache." Abraham Lincoln...

Installation de l'outil KALI

- i. Téléchargez la machine virtuelle ici (kali/kali),
- ii. Changez le clavier :
 - a. \$ setxkbmap -layout fr
 - b. \$ azerty
 - c. \$ sudo dpkg-reconfigure keyboard-condifuration

Sinon, prenez le matériel : « Generic 104 key » et le format « français : french – french AZERTY »

Recherche des informations sur la cible avec Google

On va utiliser google pour trouver:

- i. Des vulnérabilités,
- ii. Des données sensibles,
- iii. Avec le robot « Googlebot »
 - a. Filtrage précis des résultats
 - b. Ne permet pas d'avoir accès à des informations interdites (ce n'est pas magique...)
- iv. Grace à Google
 - a. C'est ce qu'on appelle un Google Dork (ou du "Google hacking").
 - b. Cette activité existe depuis le début des années 2000 et a été popularisée par Johnny Long lors de <u>sa conférence</u> (diapositives en anglais) à la Black Hat 2005 (une des plus grosses conférences de cybersécurité au monde). Il a également écrit <u>des livres sur le sujet</u>.

La recherche

Recherche tous les documents PDF indéxés sur le site "root-me.org", contenant les mots :

- i. "pass"
- ii. "password"
- iii. "mot de passe"

Dans la barre de recherche : "root-me.org ext:"extension des fichiers recherchés" "mot recherché", vous pouvez exclure aussi avec l'option "-filetype : "extension"

Le Challenge

Petite précision : « Root Me » est prévu expressément pour les tests donc sans risque légale...

Attention!

Le site <u>Exploit-DB</u> (en anglais) recense une liste de Google Dorks dans ce qu'ils appellent la <u>Google Hacking DataBase (GHDB)</u>.

C'est à utiliser avec précaution et sur un périmètre pour lequel vous êtes autorisé. Sinon, vous risquez de vous retrouver dans <u>la même situation que ce</u> <u>bloqueur</u>, qui a écopé d'une amende de 3 000 € pour avoir téléchargé des documents indexés par Google!

Donc le but est de trouver la requête pour faire une recherche sur un article écrit par une personne se nommant « Lebrun », présent sur le site de « Root Me », peut-être est-ce un PDF.

Autres recherches

Pour bien mener votre reconnaissance passive, c'est-à-dire sans toucher directement l'application de healthtech pour le moment, il vous faut chercher le maximum d'informations :

- i. Qui sont les employés de l'entreprise éditrice de example.com, et quelles sont leurs adresses électroniques ?
- ii. Est-ce que ces adresses électroniques auraient été utilisées dans une base de données qui a fuité ?
- iii. Est-ce que l'entreprise dispose d'un dépôt de code sur GitHub ou GitLab, par exemple ?
- iv. Est-ce que des messages relatifs à l'application cible ont été postés sur des forums spécialisés ?

Sur la machine virtuelle Kali, lancer la commande :

\$ the Harvester -d root-me.org -b all

Qu'enseigne cette commande, quel est le résultat?

La reconnaissance active

Il s'agit ici de trouver des cibles connexes comme :

- i. Énumération de noms de domaine et de sous-domaine, à partir d'une liste que vous aurez définie ;
- ii. Le *scraping* de la cible principale, pour trouver des références à des sousdomaines dans le contenu de la cible ; (scraping : parcourir les pages d'un site de manière automatique)
- iii. Lecture des certificats TLS (Transport Layer Security), qui sont parfois utilisés pour plusieurs sites ;
- iv. Registres whois;
- v. Historique DNS...

On utilise ici l'outil « amass » pour l'énumération des domaines :

\$ amass enum -d root-me.org -active

Pouvez-vous donc cartographier le site « root-me.org « ?

Identification des points d'entrée

Le scan des ports

Utilisation de l'outil « nmap »:

\$nmap root-me.org -p XXX-YYY

En décrire le résultat

Scanner avec cet outil les ports de 0 à 65535 (toute la plage donc)

Pratique

Pour participer à ce challenge, il faut posséder un compte sur Root Me, c'est gratuit.

Connectez-vous à Root Me.

- i. Rendez-vous sur la page de connexion root-me <u>ici</u> pour démarrer ou rejoindre l'environnement.
- ii. Une fois sur la page, attendez qu'un cartouche vert apparaisse :

L'environnement virtuel à attaquer est disponible à cette adresse : ctfXX.root-me.org

iii. L'adresse à scanner y sera indiquée.

- iv. Vos objectifs sont les suivants :
 - a. Scanner la machine pour identifier son exposition et trouver le nombre de ports qui sont ouverts ;
 - b. Trouver quel est le service en écoute sur le port 2121.
 - c. En trouver ses vulnérabilités
- v. Pour cela:
 - a. Renseigner dans la fenêtre de recherche « Google » : WordPress 3.5.1 vulnérability.(un example)

Vérification du chiffrement des échanges

Les points d'attention :

- i. La taille de clé du certificat,
- ii. L'algorithme de hachage
- iii. Avec les outils suivants :
 - a. Certains en ligne comme SSLlabs de la société Qualys ;
 - b. Et d'autres, locaux et en CLI (ligne de commande), comme SSLscan et testssl.sh.

N.B: Utilisation de testssl.sh:

- i. \$ git clone https://github.com/drwetter/testssl.sh
- ii. \$ cd testssl.sh
- iii. \$ chmod +x testssl.sh
- iv. \$./testssl.sh.ctfXXX.root-me.org

Pratique

- i. Comme pour l'exercice précédent, connectez-vous à Root Me.
- ii. Une fois sur la page, attendez qu'un cartouche vert apparaisse

L'environnement virtuel à attaquer est disponible à cette adresse : ctfXX.root-me.org

- iii. Vos **objectifs** sont de vérifier les points suivants de la configuration SSL du service :
 - a. La qualité du certificat utilisé :
 - i. Est-ce que le CN ou le SAN du certificat correspond au nom de domaine du site ?
 - ii. Quelle est la taille de la clé?
 - iii. Quel est l'algorithme de signature ?
 - b. Les protocoles proposés par le serveur.
 - c. Les suites de chiffrement supportées.
 - d. La présence de vulnérabilités connues dans la librairie utilisée. Utilisez testssl.sh.
 - e. Pouvez-vous en faire un bilan?

Contrôle des requêtes avec un proxy d'interception web

Quand vous consultez une application Web, Pour visualiser les données qui sont échangées entre vous et celle-ci, nous allons utiliser « Burp Suite Community »

On va configurer notre PC pour que les flux web soient envoyés à ce proxy, et ce proxy va ensuite les relayer aux serveurs web. La différence avec le proxy d'entreprise, c'est que nous avons la main sur le proxy pour intercepter, modifier et rejouer les requêtes.

Installation

\$ sudo apt update (comme toujours...)

\$ sudo apt install burpsuite -y

- i. Lancer Burp.
- ii. Configurer le proxy, pour définir comme proxy votre navigateur
- iii. Configurer le magasin de certificats.