BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – UNE MÉTHODE EFFICACE

CHRISTOPHE BAL

Document, avec son source LATEX, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

- Et après?
 Sources utilisées
 AFFAIRE À SUIVRE...
 3

1. Application au cas de 5 facteurs

Supposons que $\pi_n^4 = n(n+1)(n+2)(n+3)(n+4) \in {}^2_*\mathbb{N}$. Nous avons alors les tableaux de Vogler partiels suivants pour $p \in \mathbb{P}_{>4}$ divisant π_n^4 .

Pour p=2, nous avons les tableaux de Vogler partiels relatifs à 2 donnés ci-après.

$n + \bullet$	0	1	2	3	4
2	1	1	1	1	1
	2	1	2	1	1
	2	1	1	1	2
	1	2	1	2	1
	1	1	2	1	2

Pour p=3, nous obtenons les tableaux de Vogler partiels relatifs à 3 donnés ci-après.

$n + \bullet$	0	1	2	3	4
3	1	1	1	1	1
	3	1	1	3	1
	1	3	1	1	3

La multiplication de tous les tableaux de Vogler partiels précédents donne les 15 cas suivants.

Date: 25 Jan. 2024 - 7 Fév. 2024.

n+ ullet	$egin{bmatrix} 0 & 1 & 2 & 3 & 4 \end{bmatrix}$	n+ullet	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$+ \bullet$	$egin{array}{c c c c c c c c c c c c c c c c c c c $
	1 1 1 1 1		3 1 1 3 1		1 3 1 1 3
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$2 \mid 3 \mid 2 \mid 1 \mid 3$
	$egin{bmatrix} 2 & 1 & 1 & 1 & 2 \end{bmatrix}$		$\begin{bmatrix} 6 & 1 & 1 & 3 & 2 \end{bmatrix}$		2 3 1 1 6
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{bmatrix} 3 & 2 & 1 & 6 & 1 \end{bmatrix}$		1 6 1 2 3
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{bmatrix} 3 & 1 & 2 & 3 & 2 \end{bmatrix}$		1 3 2 1 6

Comme $\pi_n^3 = n(n+1)(n+2)(n+3) \notin {}^2\mathbb{N}$ et $\pi_{n+1}^3 = (n+1)(n+2)(n+3)(n+4) \notin {}^2\mathbb{N}$ d'après la section ??, nous pouvons ignorer tous les tableaux commençant, ou finissant, par une valeur 1 d'après le fait ??. Cela laisse les tableaux de Vogler ci-après, mais ces derniers sont rejetés par le fait ??.

$n + \bullet$	0	1	2	3	4
	2	1	1	1	2
	6	1	1	3	2
	3	1	2	3	2
	2	3	2	1	3
	2	3	1	1	6

Remarque 1.1. Notons qu'un cas comme $6 \cdot 1 \cdot 1 \cdot 3 \cdot 2$, c'est-à-dire $n = 6A^2$, $n+1=B^2$, $n+2=C^2$, $n+3=3D^2$ et $n+4=2E^2$ où $(A,B,C,D,E) \in (\mathbb{N}^*)^4$ peut se traiter de façon analogue à ce qui a été fait dans la section $\ref{eq:condition}$ via $x-2=6A^2$, $x-1=B^2$, $x=C^2$, $x+1=3D^2$ et $x+2=2E^2$ qui donnent $x^2-4=3F^2$ et $x^2-1=3G^2$ où $(F,G) \in (\mathbb{N}^*)^4$.

2. Et après?

La méthode présentée ci-dessus permet de faire appel à un programme pour ne traiter à la main, et à la sueur des neurones, que certains tableaux de Vogler problématiques comme nous avons dû le faire dans la section ??. Expliquons cette tactique semi-automatique en traitant le cas de 6 facteurs.

- (1) On raisonne par l'absurde en supposant que $\pi_n^6 \in {}_*^2\mathbb{N}$.
- (2) On fabrique la liste \mathcal{P} des diviseurs premiers stricts de 6 : nous avons juste 2, 3 et 5. Notons qu'avec 7 facteurs, nous n'aurions pas garder 7 car il est forcément de valuation paire dans chaque facteur (n+i) de π_n^7 si $\pi_n^7 \in {}_*^2\mathbb{N}$.
- (3) Pour chaque élément p de \mathcal{P} , on construit la liste \mathcal{V}_p des tableaux de Vogler partiels relatifs à p et $\pi_n^6 \in {}_*^2\mathbb{N}$.
- (4) Via les listes \mathcal{V}_p , on calcule toutes les multiplications de tous les tableaux de Vogler partiels relatifs à tous les nombres p différents, et pour chacune d'elles, on ne la garde que si elle ne vérifie aucune des conditions suivantes, celles du dernier cas devant être indiquées à la main au programme.
 - (a) Le tableau « produit » commence, ou se termine, par la valeur 1. Dans ce cas, on sait par récurrence que le tableau produit n'est pas possible (voir le fait ??).
 - (b) L'une des interdictions du fait ?? est validée par le tableau « produit » .
 - (c) Le tableau « produit » contient un sous-tableau que nous savons impossible suite à un raisonnement humain fait *localement*, c'est-à-dire que seul les facteurs indiqués dans le sous-tableau, et le sous-tableau lui-même sont utilisés pour raisonner. Comme c'est ce qui a été fait en fin de section ??, nous pouvons indiquer les deux sous-tableaux impossibles suivants.

m+ ullet	0	1	2	3
	6	1	2	3
	3	2	1	6

Deux sous-tableaux de Vogler impossibles.

YAPLUKA!

Dans le dépôt en ligne associé à ce document est placé un programme nommé vogler-6.py qui nous fournit les informations suivantes.

3. Sources utilisées

Ce document n'aurait pas vu le jour sans la source suivante.

(1) Une discussion archivée consultée le 28 janvier 2024 : https://web.archive.org/web/20171110144534/http://mathforum.org/library/drmath/view/65589.html.

Cette discussion utilise ce que nous avons nommé les tableaux de Vogler, mais le côté semi-mécanisable de leur utilisation n'est pas souligné.

4. AFFAIRE À SUIVRE...