TABLE OF CONTENTS

ABSTRACT		
ACKNOWLEDGMENT	ii	
TABLE OF CONTENTS	iii	
LIST OF FIGURES	v	
LIST OF TABLES	vii	
LIST OF ABBREVIATIONS	viii	
1. INTRODUCTION	1	
1.1 Background	2	
1.2 Existing Systems and their Drawbacks	3	
1.3 Proposed System	4	
1.4 Advantages of the Proposed System	8	
2. LITERATURE REVIEW	10	
3. ANALYSIS		
3.1 Problem Identification	17	
3.2 Objectives	18	
3.3 Methodology	20	
3.4 System Requirement Specification	24	
3.4.1 Software Requirement Specification	25	
3.4.2 Hardware Requirement Specification	25	
3.4.3 Functional Requirement	25	
3.4.4 Non-Functional Requirement	25	
4. SYSTEM DESIGN	26	
4.1 System Architecture	26	
4.2 Detailed Design	27	

	REFERENCES	60
8.	CONCLUSION AND FUTURE ENHANCEMENT	59
7.	DISCUSSION OF RESULTS	55
	6.6 User Acceptance Testing	54
	6.5 Validation Testing	53
	6.4 System Testing	52
	6.3 Integration Testing	52
	6.2 Unit Testing	50
	6.1 Introduction	48
6.	TESTING	48
	5.5 Implementation Support	46
	5.4 Pseudocode	44
	5.3 Algorithms	36
	5.2 Implementation Steps	34
	5.1 Overview	33
5.	IMPLEMENTATION	33
	4.6 Class Diagram	32
	4.5 Sequence Diagram	31
	4.4 Use Case Diagram	30
	4.3 Data Flow Diagram	29

LIST OF FIGURES

Figure no.	Description	Page No
Figure 1.1	Face regions automatically obtained in an aligned face image	5
Figure 1.2	Architecture of WRN	6
Figure 1.3	Structure of residual network	7
Figure 1.4	Implementation of Binary Classification	8
Figure 3.2	Preprocessing stage	22
Figure 3.3	Feature Extraction	23
Figure 3.4	Normalization	23
Figure 4.1	Flowchart of overall system design	26
Figure 4.2	System architecture	27
Figure 4.3	Geometric Normalization	28
Figure 4.4	Data Flow Diagram	30
Figure 4.5	Use Case Diagram	30
Figure 4.6	Sequance Diagram	31
Figure 4.7	Class Diagram	32
Figure 5.1	Proposed block diagram	33
Figure 5.2	An overview of how it works	34
Figure 5.3	Structure of CNN	37

Figure 5.4	Binary Classification Data flow Diagram	40
Figure 6.1	Levels of Testing	50
Figure 7.1	One face detection where gender is female and age group is in between 19-35	55
Figure 7.2	One face detection where gender is male and age group is in between 19-35	56
Figure 7.3	Detection of two faces of two different age group and gender	57
Figure 7.4	Detection of two faces where one face is detected from the picture	57
Figure 7.5	Detection of three faces at a time	58

LIST OF TABLES

Table NO	Description	Page No
Table 6.1	Unit Testing	51
Table 6.2	System Testing	52
Table 6.3	Integration Testing	53
Table 6.4	Validation Testing	53
Table 6.5	User Acceptance Testing	54

ABBREVIATIONS

CNN Convolution Neural Networks

HOG Histograms of Oriented Gradient

HCI Human Computer Interaction

ICA Independent Component Analysis

LBP Local Binary Pattern

LDP Local Directional Pattern

PCA Principal Component Analysis

RoR Residual networks of Residual networks

SVM Support Vector Machine

WRNs Wide Residual Networks