## A 180 GFLOP/s, 15 GFLOP/W, 500 million transistor FPGA in 90nm CMOS

### Functional Vx200 FPGA silicon



TSMC 90nm process; Large die with 500M transistors

Highest monolithic compute power: 180 Single Precision GFLOPs

Memory Bandwidth: 40GB/s external, >1TB/s internal

Silicon proven with ATE and in lab

| Velogix FPGA FPU Family - Preliminary Data Sheet |       |  |  |
|--------------------------------------------------|-------|--|--|
| Velogix FPGA                                     | VX200 |  |  |
| Logic and Routing Cells                          | 41440 |  |  |
| Equivalent Logic Cells                           | 49728 |  |  |
| Total Flip-Flops                                 | 82880 |  |  |
| VxSPE - Velogix Signal Processing Elements       | 204   |  |  |
| 32x24 2-port Register Files                      | 816   |  |  |
| 24K Dual Port Block Mem                          | 408   |  |  |
| Total RAM MegaBits                               | 10.42 |  |  |
| PLLs                                             | 24    |  |  |
| User IOs                                         | 830   |  |  |





## Velocity VX RTL Design Software Solution





### Complete RTL-to-bitstream software solution

Integrated Physical Synthesis and routing provides 5x faster timing convergence

Multi-million gate designs routed

User-friendly push-button design flow with industry standard constraints

Tested on >100 design regression suite

Inference and instantiation of hard macro units including floating point units

Zero "failed to route" designs

### Minimal switching cost

Accepts existing FPGA designs



## Real Problems, Real Solutions, Real Value

| Market Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Key Problems                                                        | blems Current Break-through goal   |                                                           | Breakthrough requirement        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|---------------------------------|--|
| HPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CFD simulation too<br>slow- \$1B/yr<br>turbine blade<br>maintenance | Simulate one fan blade in 46 hours | Simulate full<br>turbine in<br>minutes- save<br>\$100M/yr | >100 Single<br>Precision GFLOPS |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Black-Scholes evaluation                                            | 5K trades/sec                      | 50K+ trades/sec                                           | >100 Single<br>Precision GFLOPS |  |
| Imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | View internal organs during surgery                                 | Snapshots<br>every few<br>seconds  | Real time video of internal organs                        | 200 Single Precision<br>GFLOPS  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAR to see through fog, clouds & foliage                            | Snapshots<br>every few<br>seconds  | Real time video rate imagery                              | 100 Single Precision<br>GFLOPS  |  |
| Industrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RET simulation                                                      | Low accuracy simulation in hours   | Full simulation in minutes                                | 100 Single Precision<br>GFLOPS  |  |
| The second and the se | Wafer Inspection                                                    | Inspection interrupts processing   | Real time<br>Inspection                                   | 160 Fixed-point<br>GOPS         |  |

100-200 GFLOPs is the disruptive performance barrier



### Velogix Programmable Logic Architecture – Powerful Fabric + Market Optimized engines

### **Next generation** programmable logic fabric



- **Push-button timing driven routability** for full chip multi-million gate designs
- Interconnect architecture tuned for higher clock frequencies
- Offers 2x performance for select data path intensive designs

### **Embedded Signal Processing Engine (SPE)**



- **Processing Units integrate compute** (FPU/MAC) and storage (memory, register file) blocks
- Two-dimensional bus-based interconnect between integrated processing engines offer predictable performance of 450 MHz
- 17x12 (204) engines in Vx200 offer 180 **Single Precision GFLOPs lelogix**

## **GFLOP Performance Comparison**





## Full Chip Design Performance

|                   | Туре        | Performance | Logic<br>Cells<br>Used | Logic<br>Utilization | Compute<br>Units<br>Used | Compute<br>Unit<br>Utilization |
|-------------------|-------------|-------------|------------------------|----------------------|--------------------------|--------------------------------|
| FIR               | Floating    | 180 GFLOPs  | 12,740                 | 26%                  | 200                      | 98%                            |
| IIR               | Floating    | 154 GFLOPs  | 7,350                  | 15%                  | 175                      | 86%                            |
| Polynomial        |             |             |                        |                      |                          |                                |
| <b>Evaluation</b> | Floating    | 180 GFLOPs  | 16,170                 | 33%                  | 200                      | 98%                            |
| 256x256-2D        |             | 407.051.05  |                        | 4=04                 |                          |                                |
| FFT               | Floating    | 137 GFLOPs  | 7,350                  | 15%                  | 175                      | 86%                            |
| SSG               | 8-bit Fixed | 400 GOPs    | 40,670                 | 83%                  | 800                      | 98%                            |
|                   |             |             |                        |                      |                          |                                |

High Performance maintained even with high utilization



## **Power Efficiency Comparison (1-D FFT)**

|               | Performance<br>(SP GFLOPS) | Power dissipation (W) | Power<br>efficiency<br>(SP GFLOP/W) |
|---------------|----------------------------|-----------------------|-------------------------------------|
| Vx200         | 120                        | 8                     | 15                                  |
| Quad core x86 | 22                         | 105                   | 0.21                                |
| GPUs          | 52                         | 100                   | 0.52                                |
| Xilinx LX 220 | 40                         | 15                    | 2.7                                 |
| Cell          | 91                         | 100                   | 0.91                                |



## Standardized timing and verification flow



Standardized SDC based timing and model based verification flow

## Vx200 Chip Architecture



# Next Generation Programmable Logic Fabric



Implemented on CMOS 90GT with 9 layers of metal

Complex logic and routing cells with global and local routes

Optimized for push-button routability and more performance for the same area

Optimized local connections for critical path delays

Seamless integration of hard macro blocks
Symmetric fabric connection across
hard macro blocks



|    | Configurable options for Logic and Routing Cell                                                                                                                                                     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | 2 independent 4-input Look-Up Tables                                                                                                                                                                |
| 2  | 5 4-input Look-Up Tables with 4 having common inputs                                                                                                                                                |
| 3  | 2 5-input Look-Up Tables with 4 common inputs                                                                                                                                                       |
| 4  | 1 6 input Look-Up Table                                                                                                                                                                             |
| 5  | Large set of 8 input Functions                                                                                                                                                                      |
| 6  | 2 4-to-1 multiplexers with common select lines                                                                                                                                                      |
| 7  | 1 8-to-1 multiplexer                                                                                                                                                                                |
| 8  | 1 8-input AND or OR or XOR or other symmetric functions                                                                                                                                             |
| 9  | 1 4-bit arithmetic adder/subtractor/accumulator with output registers                                                                                                                               |
| 10 | 1 8-bit priority encoder                                                                                                                                                                            |
| 11 | 1 4-bit loadable shift register                                                                                                                                                                     |
| 12 | Four sequential elements configurable as latch/masterslave and with configurable active high/low clock, load, data enable and synchronous set/clear inputs. An asynchronous reset is also provided. |

**/elogix** 

## Signal Processing Engine



### **Signal Processing Unit Integrates**

### **Computational Element**

IEEE Single or Extended Single Floating Point Multiply ADD or,

Fixed Point Multiply Accumulate

(1 36bit, 2 18bit and 4 9bit modes of operation)

#### **Memory Elements –**

Two 24Kb Block RAM configurable as memory or FIFO

Four 32x24 Register file configurable as memory, FIFO or Delay Chain

Two-dimensional bus based Interconnect between Processing Units enables predictable 450MHz performance

Silicon Proven



# Highly Configurable High Speed IO Banks

|                                     | Bank 0 BC0 BC1 Bank 1                                                                                                                                                                                                                                                                                                          |                                     |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| B<br>a<br>n<br>k<br>9<br>BC9<br>BC8 | Banks 0,1,4,5 LVDS Banks Supports high speed LVDS/single ended IO standards such as LVDS,LVTTL,LVCMOS,PCI,PCIX,HSTL,SSTL Banks 2,3,8,9 Single Ended Banks Supports high speed single ended IO standards such as LVTTL, LVCMOS,PCI,PCIX,HSTL,SSTL BC 0,1,2,3,4,5,8,9 Clock Banks Supports differential/single ended clock input | B<br>a<br>n<br>k<br>2<br>BC2<br>BC3 |
| B<br>a<br>n<br>k                    | allows to be used as user IO pins  Bank 6 Dedicated IO Banks  Dedicated configuration/JTAG bank  ank 6 Bank 5 BC5 BC4 Bank 4                                                                                                                                                                                                   | B<br>a<br>n<br>k                    |

### **Single Ended Banks**

SSTL, HSTL, PCI, PCI-X, LVCMOS, LVTTL Buffers

#### **LVDS Banks**

LVDS up to 1.2 Gbps SSTL, HSTL, PCI, PCI-X, LVCMOS, LVTTL at slower speeds

### Four 400 MHz DDR2 Interfaces on single chip

112 DLLs and dedicated IO clock tree provide configurable strobe clocking for x8,x16,x32,x64

DDR flops, per bit delay element for each pads

QDR2 SRAM interface using PLLs and IO banks
Support for high speed source synchronous LVDS Bus



## Highly configurable clock subsystem



#### **PLL**



**Output Synthesizer** 

Less than 250 ps of full-chip skew

- 24 high speed, low jitter, wide range, area efficient phase locked loops (PLL) on chip
- 16 output synthesizers provide variable frequency, phase and duty cycle with dynamic phase adjustment
- 16 H-tree global clock network with support for multiple independent clock domains
- Low skew, low jitter hierarchical clock network with flexible local/regional clock network provide up to 24 clock domains
- IO clock and regional clock network allows support for high speed system and memory interfaces



### PCBs – Load board and Customer Boards



Load board for use with Agilent 93K Tester Designed with SMA connectors for clock/IO characterizations

Used in lab to bring up FPGA using JTAG

interface (via USB or Ethernet)
Fabric functional at 750MHz

14-layer Customer board designed for Application
Accelerator Applications
Accelerate compute part using Vx200 through PCIExpress Interface
Vx200 provides 180 GFLOP compute density
High memory bandwidth
Four DDR2 x64 and two QDR2 x36 Interfaces

