Machine Learning for Graphs and Sequential Data

Deep Generative Models - Variational Autoencoders

Lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2023

Roadmap

- Deep Generative Models
 - 1. Introduction
 - 2. Normalizing Flows
 - 3. Variational Inference
 - 4. Variational Autoencoder
 - 5. Generative Adversarial Networks
 - 6. Denoising Diffusion

Recap: Latent Variable Models

We define a generative model with latent variables

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \int p_{\theta}(\mathbf{x}|\mathbf{z}) p_{\theta}(\mathbf{z}) d\mathbf{z}$$

- This latent structure allows us to define a complex distribution $p_{\theta}(x)$, even though $p_{\theta}(z)$ and $p_{\theta}(x|z)$ are "relatively simple"
- Since the log-likelihood is intractable, we maximize the ELBO instead $\log p_{\boldsymbol{\theta}}(\boldsymbol{x}) \geq \mathbb{E}_{\boldsymbol{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z})} \big[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}) \log q_{\boldsymbol{\phi}}(\boldsymbol{z})\big] =: \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi})$
- How do we actually define and learn such models in practice?

Designing an LVM

In variational inference, our optimization problem is

$$\max_{\boldsymbol{\theta}, \boldsymbol{\phi}} \mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\mathbf{z})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) + \log p_{\boldsymbol{\theta}}(\mathbf{z}) - \log q_{\boldsymbol{\phi}}(\mathbf{z}) \right]$$

- To define a latent variable model, we need to answer several questions
 - 1. What are our latent variables z?
 - 2. What is the data x?
 - 3. What is the prior $p_{\theta}(\mathbf{z})$ on the latent variables?
 - 4. What is the conditional likelihood $p_{\theta}(x|z)$ of the data given the latent variables?
 - 5. What is the variational distribution $q_{\phi}(z)$?
- These choices (especially 3, 4, 5) are to some degree arbitrary different choices will produce different models
- We will learn about the most popular models used in practice but many other choices are also possible!

Choosing $p_{\theta}(z)$

We usually choose z to be continuous

$$\mathbf{z} \in \mathbb{R}^L$$

- The main advantage of making z continuous is that it's easier to sample with reparameterization from continuous distributions (i.e. q(z))
- We pick the simplest possible prior on z standard normal distribution $p(z) = \mathcal{N}(z|\mathbf{0}, I)$
 - Note that we don't write $p_{m{ heta}}({m{z}})$ anymore since there are no learnable parameters ${m{ heta}}$
- We will introduce complexity to our model when designing $p_{\theta}(x|z)$
- Picking a simple prior will significantly simplify some calculations later

Representing the Data

The data x depends on our application, e.g. color images are often represented as real-valued vectors

$$\boldsymbol{x} \in \mathbb{R}^D$$

- Black-and-white images can be represented as binary vectors $x \in \{0,1\}^D$
- Most examples in this week's lecture (and online) deal with images because
 - It's a popular topic well-studied, we know what works well, code available
 - We can show pretty pictures of the results
- However, we can apply these methods across many domains music, text, graphs, time series, data from the Large Hadron Collider, ...

Choosing $p_{\theta}(x|z)$

- The choice of $p_{\theta}(x|z)$ depends on what data x we are modeling
- For every $z \in \mathbb{R}^L$, we need to obtain a probability distribution over x
- Idea: Pick a parametric distribution $p_{\theta}(x|z)$ whose parameters are produced by some function f_{ψ} that takes z as input
- For example, for $x \in \mathbb{R}^D$ we could choose

$$p_{\theta}(x|z) = \mathcal{N}(x|\mu = f_{\psi}(z), I)$$

where $f_{\pmb{\psi}}:\mathbb{R}^L o \mathbb{R}^D$ is some nonlinear function (a neural network)

and $\boldsymbol{\theta} = \boldsymbol{\mu} \in \mathbb{R}^D$ are the parameters of $p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})$

Choosing $p_{\theta}(x|z)$

• Choice of $p_{\theta}(x|z)$ involves a trade-off between expressiveness and efficiency

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu} = f_{\boldsymbol{\psi}}(\boldsymbol{z}), \boldsymbol{I}) = \prod_{j=1}^{D} \mathcal{N}(x_{j}|\boldsymbol{\mu} = f_{\boldsymbol{\psi}}(\boldsymbol{z})_{j}, 1)$$

- Each pixel x_j is conditionally independent of the others given z (but they become dependent if we marginalize out z)
- We could have a more expressive $p_{\theta}(x|z)$ (e.g. full covariance, normalizing flow) but that would make the evaluation less efficient
- Different data types require different likelihoods.
 - E.g., for a binary $x \in \{0,1\}^D$ we could use

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}) = \prod_{j=1}^{D} \text{Bernoulli}(x_j | \sigma(f_{\boldsymbol{\psi}}(\boldsymbol{z})_j))$$

The Decoder f_{ψ}

The neural network f_{ψ} is often called "the decoder", since it converts the latent variable z (a.k.a. the latent code) into the parameters θ of $p_{\theta}(x|z)$

- We use different decoder architectures for different data types
 - E.g., a popular choice of $f_{m{\psi}}$ for images is <u>transposed convolution</u>

Choosing $q_{\phi}(z)$

- We have specified $p_{\theta}(x|z)$ and p(z), the last missing component is the variational distribution $q_{\phi}(z)$
- Our dataset consists of N (i.i.d.) samples $\mathbf{x}^{(i)} \in \mathbb{R}^D$
- lacktriangledown Each sample $oldsymbol{x}^{(i)}$ corresponds to a separate latent variable $oldsymbol{z}^{(i)}$
 - Our variational distribution is over all $\mathbf{z}^{(i)}$'s: $q_{m{\phi}}(\mathbf{z}^{(1)},...,\mathbf{z}^{(N)})$
- For simplicity, we use the mean field assumption

$$q_{\boldsymbol{\phi}}(\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(N)}) = \prod_{i=1}^{N} q_{\boldsymbol{\phi}^{(i)}}(\mathbf{z}^{(i)})$$

Choosing $q_{\phi}(z)$

Mean field assumption

$$q_{\boldsymbol{\phi}}(\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(N)}) = \prod_{i=1}^{N} q_{\boldsymbol{\phi}^{(i)}}(\mathbf{z}^{(i)})$$

- How should we model each $q_{oldsymbol{\phi}^{(i)}}(\mathbf{z}^{(i)})$?
- Simple choice multivariate normal

$$q_{\boldsymbol{\phi}^{(i)}}(\mathbf{z}^{(i)}) = \mathcal{N}(\mathbf{z}^{(i)}|\boldsymbol{\mu}^{(i)}, \boldsymbol{\Sigma}^{(i)})$$
 where $\boldsymbol{\phi}^{(i)} = \{\boldsymbol{\mu}^{(i)}, \boldsymbol{\Sigma}^{(i)}\}$

- Usually $\Sigma^{(i)}$ is diagonal
- Another popular option normalizing flows with forward parametrization

Why is Normal $q_{\phi}(z)$ a Good Choice?

• ELBO for a single instance x

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\mathbf{z})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\boldsymbol{\phi}}(\mathbf{z}) \right]$$
$$= \mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\mathbf{z})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) \right] - \mathbb{KL} \left(q_{\boldsymbol{\phi}}(\mathbf{z}) || p(\mathbf{z}) \right)$$

- Recall that $p(z) = \mathcal{N}(z|\mathbf{0}, I)$ and $q_{\phi}(z) = \mathcal{N}(z|\mu, \Sigma)$
- We can compute the KL divergence between two multivariate normal distributions in closed form

$$\mathbb{KL}\left(q_{\phi}(\mathbf{z})||p(\mathbf{z})\right) = \frac{1}{2}(\operatorname{tr}(\mathbf{\Sigma}) + \boldsymbol{\mu}^{T}\boldsymbol{\mu} - \log(\det(\mathbf{\Sigma})) - L)$$

• Even simpler for diagonal covariance $\Sigma = \mathrm{diag}(\sigma^2)$ (where $\sigma^2 \in \mathbb{R}_+^L$)

$$\mathbb{KL}\left(q_{\phi}(\mathbf{z})||p(\mathbf{z})\right) = \frac{1}{2} \left(\sum_{j=1}^{L} \left(\sigma_{j}^{2} + \mu_{j}^{2} - \log \sigma_{j}^{2} - 1\right)\right)$$

ELBO for Multiple Samples

ELBO for a single instance x

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\mathbf{z})}[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})] - \mathbb{KL}(q_{\boldsymbol{\phi}}(\mathbf{z})||p(\mathbf{z}))$$

• ELBO for the entire dataset $\{x^{(1)}, ..., x^{(N)}\}$

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{i}(\boldsymbol{\theta}, \boldsymbol{\phi}^{(i)})$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[\mathbb{E}_{\mathbf{z}^{(i)} \sim q_{\boldsymbol{\phi}^{(i)}}(\mathbf{z}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \mathbf{z}^{(i)}) \right] - \mathbb{KL}\left(q_{\boldsymbol{\phi}^{(i)}}(\mathbf{z}^{(i)}) || p(\mathbf{z})\right) \right]$$

- We have to learn a separate parameter $oldsymbol{\phi}^{(i)}$ for each instance i
 - If the number of samples N is large, this is extremely expensive
- What if we are interested in the latent features of a new sample x^{new} ?
 - We will need to learn $oldsymbol{\phi}^{ ext{new}}$ from scratch
- Can we do better than this?

Amortized Inference

- We need to find the optimal parameter $m{\phi}_{ ext{optimal}}^{(i)}$ for every sample $m{x}^{(i)}$
- Standard approach: Solve the optimization problem for each i=1,...,N $\boldsymbol{\phi}_{\text{optimal}}^{(i)} = \operatorname*{argmax}_{\boldsymbol{\phi}^{(i)}} \mathcal{L}_i \big(\boldsymbol{\theta}, \boldsymbol{\phi}^{(i)} \big)$
- Better idea: Train a neural network $g_{\pmb{\lambda}}$ that tries to map <u>every</u> $\pmb{x}^{(i)}$ in the training set to its optimal parameters $\pmb{\phi}_{
 m optimal}^{(i)}$

$$\max_{\lambda} \frac{1}{N} \sum_{i}^{N} \mathcal{L}_{i} \left(\boldsymbol{\theta}, g_{\lambda}(\boldsymbol{x}^{(i)}) \right)$$

• We use the same g_{λ} for every sample $x^{(i)}$, and can even use for new samples that we haven't seen during training

The Encoder g_{λ}

• We call the NN g_{λ} "the encoder", since it converts a data point x into the parameters ϕ that define the distribution $q_{\phi}(z)$ over the latent code z

- We use different encoder architectures for different data types
 - E.g., a popular choice of g_{λ} for images are convolutional NNs

Putting Everything Together

ELBO for a single sample

$$\mathcal{L}(\boldsymbol{\psi}, \boldsymbol{\lambda}) \coloneqq \mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\mathbf{z})}[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})] - \mathbb{KL}\left(q_{\boldsymbol{\phi}}(\mathbf{z})||p(\mathbf{z})\right)$$
where $\boldsymbol{\theta} = f_{\boldsymbol{\psi}}(\mathbf{z})$ and $\boldsymbol{\phi} = g_{\boldsymbol{\lambda}}(\mathbf{x})$

- Recipe for optimizing the ELBO
 - 1. Compute $\boldsymbol{\phi} = g_{\lambda}(\boldsymbol{x})$
 - 2. Compute an MC estimate of ELBO; often done using a single sample, i.e.
 - a) Draw $\mathbf{z}' \sim q_{\phi}(\mathbf{z})$ with reparameterization
 - b) Compute $\boldsymbol{\theta} = f_{\boldsymbol{\psi}}(\boldsymbol{z}')$
 - c) ELBO: $\mathcal{L}(\boldsymbol{\psi}, \boldsymbol{\lambda}) \approx \log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}') \mathbb{KL}(q_{\boldsymbol{\phi}}(\boldsymbol{z})||p(\boldsymbol{z}))$
 - 3. Backpropagate (compute $\nabla_{\psi} \mathcal{L}(\psi, \lambda)$ and $\nabla_{\lambda} \mathcal{L}(\psi, \lambda)$)
 - 4. Update the NN weights ψ and λ using gradient ascent

Recall: Reparameterization Trick

Our expectation depends on the parameters that we are optimizing

$$\mathcal{L}(\boldsymbol{\psi}, \boldsymbol{\lambda}) \coloneqq \mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\mathbf{z})}[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})] - \mathbb{KL}\left(q_{\boldsymbol{\phi}}(\mathbf{z})||p(\mathbf{z})\right)$$
where $\boldsymbol{\theta} = f_{\boldsymbol{\psi}}(\mathbf{z})$ and $\boldsymbol{\phi} = g_{\boldsymbol{\lambda}}(\mathbf{x})$

- lacktriangle This means that we need to sample from $q_{oldsymbol{\phi}}(oldsymbol{z})$ with reparameterization
 - 1. $\epsilon \sim b(\epsilon)$
 - 2. $\mathbf{z}' = T(\boldsymbol{\epsilon}, \boldsymbol{\phi})$
- E.g., for $q_{\phi}(z)$ multivariate normal with diagonal covariance (Slide 98)

$$q_{\phi}(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \operatorname{diag}(\boldsymbol{\sigma}^2))$$

- 1. $\epsilon \sim \mathcal{N}(\epsilon | \mathbf{0}, I)$
- 2. $\mathbf{z}' = \boldsymbol{\sigma} \odot \boldsymbol{\epsilon} + \boldsymbol{\mu}$

Variational Autoencoder (VAE)

$$\mathcal{L}(\boldsymbol{\psi}, \boldsymbol{\lambda}) \coloneqq \mathbb{E}_{\boldsymbol{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})] - \mathbb{KL}\left(q_{\boldsymbol{\phi}}(\boldsymbol{z})||p(\boldsymbol{z})\right)$$
where $\boldsymbol{\phi} = g_{\boldsymbol{\lambda}}(\boldsymbol{x})$ and $\boldsymbol{\theta} = f_{\boldsymbol{\psi}}(\boldsymbol{z})$

VAE with Gaussian $p_{\theta}(x|z)$ and $q_{\phi}(z)$

• Using our choices of $p_{\theta}(x|\mathbf{z})$ and $q_{\phi}(\mathbf{z})$ from Slides 94 & 98

Standard Autoencoders

$$\ell(\boldsymbol{\psi}, \boldsymbol{\lambda}) = \log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}')$$

where $\boldsymbol{z}' = g_{\boldsymbol{\lambda}}(\boldsymbol{x})$ and $\boldsymbol{\theta} = f_{\boldsymbol{\psi}}(\boldsymbol{z}')$

• When $\log p_{\theta}(x|z')$ is Gaussian distribution, we get

- Standard AE are not generative models they can only reconstruct the data
- Standard AE learns a single $m{z}'$ for each $m{x}$, while VAE learns a distribution $q_{m{\phi}}(m{z})$

Generating Data with a VAE

- Remember: Once we have trained our generative model (i.e. we know the parameters ψ of our decoder) we can use it to generate new data
 - 1. Sample $\mathbf{z}' \sim p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I})$
 - 2. Sample $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z}') = \mathcal{N}(\mathbf{x}|f_{\psi}(\mathbf{z}'), \mathbf{I})$
- Note that we don't need the encoder when sampling new data

Source: Razavi et al., 2019 Generating Diverse High-Fidelity Images with VQ-VAE-2

Questions – VAE

- 1. Assume that each data point is represented by a vector $\mathbf{x} \in \{1, 2, ..., C\}^D$. What distribution would you pick for $p_{\theta}(\mathbf{x}|\mathbf{z})$? How can we parametrize this distribution with a neural network?
- 2. Assume that each datapoint x is represented by a variable-length sequence of real numbers $x_i \in \mathbb{R}^{D_i}$ (D_i might be different for different i's). What NN architecture could we use for the encoder g_{λ} in this case?
- 3. Slide 94: Assume that we choose to model $p_{\theta}(x|\mathbf{z})$ with a normalizing flow. Should we use forward or reverse parametrization? Why?
- 4. Slide 97: Assume that we choose to model $q_{\phi}(\mathbf{z})$ with a normalizing flow. Should we use forward or reverse parametrization? Why?
- 5. Slide 106: How can we ensure that the vector σ produced by the encoder g_{λ} is always positive?

Reading Materials

- Sections 1.2 1.7 and 2.1 2.6 of the PhD thesis of Diedrik P. Kingma cover essentially the same content as our lecture
 - https://pure.uva.nl/ws/files/17891313/Thesis.pdf

Machine Learning for Graphs and Sequential Data

Deep Generative Models - Variational Autoencoders

Lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2023

