Séquence 06 - TP01 - Îlot 01

Lycée Dorian Renaud Costadoat Françoise Puig

La cinématique des mécanismes

Référence S06 - TP01 - I01

Compétences Mod2-C10-1: Modèle de solide indéformable

Mod2-C11: Modélisation géométrique et cinématique des mouvements

entre solides indéformables

Rés-C1: Loi entrée sortie géométrique et cinématique

Rés-C6: Utilisation d'un solveur ou d'un logiciel multi physique Com1-C1: Différents descripteurs introduits dans le programme

Com2-C4: Outils de communication

Description Lois E/S de fermeture géométrique et cinématique. Simulation du com-

portement de modèles. Proposer des lois de commande en fonction d'exi-

gences. Présenter les modèles acausaux

Système Maxpid

Objectif du TP:

Modéliser la loi d'entrée/sortie cinématique d'un système

La démarche de l'ingénieur permet :

- De vérifier les performances attendues d'un système, par évaluation de l'écart entre un cahier des charges et les réponses expérimentales (écart 1),
- De proposer et de valider des modèles d'un système à partir d'essais, par évaluation de l'écart entre les performances mesurées et les performances simulées (écart 2),
- De prévoir le comportement à partir de modélisations, par l'évaluation de l'écart entre les performances simulées et les performances attendues du cahier des charges (écart 3).

Pour ce TP, vous aurez besoin :

— de la procédure d'utilisation de Simscape disponible à la page ??,

1 Détermination de la loi d'entrée/sortie géométrique

L'objectif de cette partie est de déterminer les équations liant les paramètres géométriques du système Maxpidet de les comparer avec celles obtenues par simulation Matlab/Simscape.

Question 1 Modéliser Déterminer θ_m et θ_3 en fonction de θ_1 et des dimensions géométriques du système en utilisant la loi de fermeture géométrique. Les dimensions seront mesurées sur le système.

Question 2 Résoudre Compléter le modèle Simscape avec ces équation comme sur la procédure ?? et vérifier que les résultats correspondent.

Question 3 Résoudre A l'aide d'un script python, faire varier θ_1 de 0 à $\frac{\pi}{2}$. Et tracer θ_m et θ_3 .

Question 4 Expérimenter

Proposer un protocole permettant de mesurer les valeurs extrêmes (qui correspondent à la variation de θ_1 de 0 à $\frac{\pi}{2}$) de θ_m et θ_3 .

Question 5Analyser

Vérifier que le résultat de la question 2 correspond à celui de la question 3.

2 Détermination de la loi d'entrée/sortie cinématique

L'objectif de cette partie est de déterminer les équations liant les paramètres cinématiques du système Maxpidet de les comparer avec celles obtenues par simulation Matlab/Simscape.

On aura ainsi:

$$\begin{aligned} & - \omega_1 = \dot{\theta_1}, \\ & - \omega_m = \dot{\theta_m} \text{ et } \omega_3 = \dot{\theta_3}. \end{aligned}$$

Question 6 Modéliser Déterminer ω_m et ω_3 en fonction de ω_1 et des paramètres géométriques du système, en utilisant la loi de fermeture cinématique. Les dimensions seront mesurées sur le système afin d'effectuer l'application numérique.

Question 7 Résoudre Compléter le modèle Simscape avec ces équation comme sur la procédure ?? et vérifier que les résultats correspondent.

L'objectif est d'obtenir le profil suivant pour la vitesse de rotation ω_1 .

Données : $t_1 = 2s$, $t_2 = 8s$, $t_3 = 10s$.

Question 8

Déterminer ω_{max} afin d'obtenir la variation de θ_1 de 0 à $\frac{\pi}{2}$.

Modéliser

A l'aide d'un script python, déterminer le profil de vitesse à imposer à ω_m .

Question 9 Modéliser

3 Vérification à l'aide de relevé expérimentaux

Le fichier contient des relevés expérimentaux issus du système réel.

Question 10 Ouvrir l'ensemble des fichiers présents dans le dossier compressé et Expérimenter analyser leur contenu.

Question 11 Expliquer en quelques lignes le protocole expérimental mis en œuvre.

Expérimenter

Question 12 Déterminer les écarts (et leurs origines) entre les résultats des la simula-Expérimenter tion (parties 1 et 2) et ceux issus de la partie expérimentale.

4 Préparation d'une présentation

Question 13 Préparer une présentation à l'aide de quelques slides pour présenter communiquer votre travail.

5 Correction

5.1 Fermeture géométrique

$$\begin{array}{l} \overrightarrow{OB} + \overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AO} = \overrightarrow{0} \\ \left\{ \begin{array}{l} b + l_1.cos\theta_1 - l(t).cos\theta_3 = 0 \\ l_1.sin\theta_1 - l(t).sin\theta_3 - a = 0 \end{array} \right. \\ l(t) = l_0 + \frac{p.\theta_m}{2.\pi} \\ \left\{ \begin{array}{l} l(t).cos\theta_3 = b + l_1.cos\theta_1 \\ l(t).sin\theta_3 = l_1.sin\theta_1 - a \end{array} \right. \\ \mathbf{Donc}_{\mathbf{c}}l(t) = \sqrt{(b + l_1.cos\theta_1)^2 + (l_1.sin\theta_1 - a)^2} \ \mathbf{et} \ \theta_m = (l(t) - l_0).\frac{2.\pi}{p}. \\ \mathbf{Et} \ \theta_3 = \frac{b + l.cos\theta_1}{l(t)} \end{array}$$

5.2 Fermeture cinématique

$$\begin{cases} V_{1/0} \rbrace = \begin{cases} 0 & 0 \\ 0 & 0 \\ \omega_b & 0 \end{cases}_B = \begin{cases} 0 & 0 \\ 0 & l_1.\omega_b \\ \omega_b & 0 \end{cases}_{C,R_1} = \begin{cases} 0 & -sin(\theta_1).l_1.\omega_b \\ 0 & cos(\theta_1).l_1.\omega_b \\ \omega_b & 0 \end{cases}_{C,R_0}$$

$$\begin{cases} V_{1/0} \rbrace = \begin{cases} 0 & \frac{p*\omega_m}{2.\pi} \\ 0 & 0 \\ 0 & 0 \end{cases}_{C,R_3} = \begin{cases} 0 & cos(\theta_3).\frac{p*\omega_m}{2.\pi} \\ 0 & sin(\theta_3).\frac{p*\omega_m}{2.\pi} \\ 0 & 0 \end{cases}_{C,R_0}$$
 Donc,
$$\begin{cases} -sin(\theta_1).l_1.\omega_b = cos(\theta_3).\frac{p*\omega_m}{2.\pi} \\ cos(\theta_1).l_1.\omega_b = sin(\theta_3).\frac{p*\omega_m}{2.\pi} \end{cases}_{C,R_0}$$
 Donc,
$$\omega_m = \frac{2.\pi}{p}.\frac{-sin(\theta_1).l_1}{cos(\theta_3)}.\omega_b$$

