Sistemas Digitais

ET46B

Prof. Eduardo Vinicius Kuhn

kuhn@utfpr.edu.br Curso de Engenharia Eletrônica Universidade Tecnológica Federal do Paraná

Capítulo 7 Contadores e Registradores Universidade Tecnológica Federal do

- 7.1 Contadores assíncronos
- 7.2 Atraso de propagação em contadores assíncronos
- 7.3 Contadores síncronos (paralelos)
- 7.4 Contadores de módulo $< 2^N$
- 7.5 Contadores síncronos crescentes decrescentes
- 7.6 Contadores com carga paralela
- 7.7 Circuitos integrados de contadores síncronos
- 7.8 Decodificando um contador
- 7.9 Análise de contadores síncronos
- 7.10 Projeto de contadores síncronos
- 7.14 Máquinas de estados finitos
- 7.15 Transferência de dados em registradores
- 7.17 Contadores com registradores de deslocamento kunn 87

- Revisitar a operação de contadores assíncronos e introduzir o conceito de contadores síncronos.
- Implementar contadores com **módulo** $\leq 2^N$, crescentes e decrescentes, e com sequências arbitrárias de contagem.
- Conectar contadores em cascata a fim de produzir faixas de contagens e fatores de divisão de frequência maiores.
- Descrever formas para decodificar contadores.
- Apresentar um procedimento geral de projeto de circuitos sequenciais, usando tanto FFs JK quanto FFs D.
- Explicar a forma de operação de diversos tipos de registradores (e.g., PIPO, SISO, PISO e SIPO).

Contadores e registradores, com características específicas, podem ser construídos a partir de FFs e portas lógicas.

PARTE 1 - Contadores

Com respeito à operação de um contador (assíncrono) de módulo 2^N , é importante observar que:

- Os pulsos são aplicados apenas na entrada CLK do FF A.
- ullet A saída do FF A funciona como clock para o FF B e assim por diante.
- Na 16^a borda de descida do *clock*, o contador é "<u>reciclado</u>" e começará um novo ciclo de contagem.

Portanto, em um contador assíncrono (ou contador ondulante), os FFs não mudam de estado com o mesmo pulso de *clock* (i e a em sincronismo).

Contadores assíncronos

As saídas dos FFs D, C, B e A representam um número binário de 4 bits, em que D denota o MSB e A o LSB.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Paraná

Universidade Tecnológica Federal do

Exemplo: Considere que um contador assíncrono de módulo 16 opera com clock de entrada de 16 kHz.

A partir disso, determine a frequência da forma de onda observada nas saídas A, B, C e D.

Exemplo: Considere que um contador assíncrono de módulo 16 opera com *clock* de entrada de 16 kHz.

A partir disso, determine a frequência da forma de onda observada nas saídas $A, B, C \in D$.

R: A forma de onda na saída A tem frequência de 8 kHz, na saída B, de 4 kHz, na saída C, de 2 kHz, e na saída D, de 1 kHz. youtube.com/@eduardokuhn87

Em um contador, o sinal de saída do último FF (MSB) tem frequência igual à do clock de entrada dividida pelo módulo do

contador.

Contadores assíncronos

Paraná

Tecnológica Federal do

Universidade

Exemplo: Um contador é necessário para contar o número de itens que passam por uma esteira de transporte. Uma fotocélula combinada a uma fonte de luz é usada para gerar um único pulso cada vez que um item passa pelo feixe de luz. O contador deve ser capaz de contar 1000 itens. Quantos FFs são necessários?

Exemplo: O primeiro passo envolvido na construção de um relógio digital é obter um sinal de 60 Hz para gerar uma forma de onda de 1 Hz. Essa forma de onda entra em uma série de contadores, que contam os segundos, minutos e horas. Quantos FFs são necessários para implementar um contador de módulo 60?

Exemplo: Um contador é necessário para contar o número de itens que passam por uma esteira de transporte. Uma fotocélula combinada a uma fonte de luz é usada para gerar um único pulso cada vez que um item passa pelo feixe de luz. O contador deve ser capaz de contar 1000 itens. Quantos FFs são necessários?

R: Como $2^{10} = 1024_{10}$, 10 FFs são necessários.

Exemplo: O primeiro passo envolvido na construção de um relógio digital é obter um sinal de 60 Hz para gerar uma forma de onda de 1 Hz. Essa forma de onda entra em uma série de contadores, que contam os segundos, minutos e horas. Quantos FFs são necessários para implementar um contador de módulo 60?

R: Não há potência inteira de 2 que seja igual à 60; logo, 6 FFs são usados para produzirdum contador de móduto 64 dokuhn87

Tecnológica Federal

- Contadores assíncronos têm uma grande desvantagem decorrente do fato que cada FF subsequente é disparado pela transição de saída do FF precedente.
- O atraso entre as respostas de FFs sucessivos (e.g., $t_{\rm pd}$ de 5 a 20 ns por FF) pode ser problemático.
- Os atrasos de propagação se acumulam tal que o N-ésimo FF não muda de estado por um intervalo $N \times t_{\rm pd}$, após a transição do clock de entrada.

Note que a saída do FF A comuta 50 ns, após a borda de descida do clock de cada pulso de entrada; apesar disso, o contador opera "adequadamente" dado que $T_{\rm clock}=1000$ ns.

#1 #2 #5 Entrada 100 ns 150 ns A condição

Caso $T_{\rm clock}=100$ ns, a condição de contagem $CBA=100_2$ nunca ocorrerá, uma vez que a frequência do clock de entrada é muito alta.

100 não ocorre

Devido ao acúmulo de atrasos de propagação dos FFs, é possível mostrar que, para uma operação adequada,

$$T_{
m clock} \ge N imes t_{
m pd}$$

ou, em termos de frequência máxima de operação,

$$f_{\text{max}} \underbrace{\frac{1}{N \times t_{\text{pd}}}}.$$

Note que, à medida que o número de FFs N aumenta, o atraso de propagação total aumenta e $f_{\rm max}$ diminui.

Portanto, a aplicabilidade prática de contadores assíncronos torna-se limitada; especialmente, em sistemas digitais de alta velocidade e/ou com grande número de bits.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Exemplo: Explique como a frequência máxima dos contadores ondulantes diminui à medida que aumenta o número de FFs?

$$f_{\max} \le \frac{1}{N \times t_{\text{pol}}}$$

Exemplo: Determinado FF JK tem um $t_{
m pd}=12$ ns. Qual é o contador de maior módulo que pode ser construído a partir desses FFs que seja capaz operar em uma frequência de até 10 MHz?

Universidade Tecnológica Federal do Paraná

Exemplo: Explique como a frequência máxima dos contadores ondulantes diminui à medida que aumenta o número de FFs?

$$f_{\max} \le \frac{1}{N \times t_{\mathrm{pd}}^{\bullet}}$$

 $f_{\max} \leq \frac{1}{N \times t_{\rm pd}}$ R: Conforme $N \to \infty$, verifica-se que $f_{\max} \to 0$.

Exemplo: Determinado FF JK tem um $t_{
m pd}=12$ ns. Qual é o contador de maior módulo que pode ser construído a partir desses FFs que seja capaz operar em uma frequência de até 10 MHz?

R: Como

Universidade Tecnológica Federal do Paraná

$$N \leq \frac{1}{f_{
m max} \times t_{
m pd}}$$
 < 8.333

verifica-se que o contador pode ter módulo $2^8 = 256 \text{ m} + 256 \text{ m} + 87$

"Restrições de tempo" estão se tornando cada vez mais críticas em sistemas digitais de alta velocidade, inviabilizando assim o uso de determinadas abordagens/soluções.

Em contadores síncronos,

Universidade Tecnológica Federal do

- os FFs são disparados simultaneamente pelo *clock* de entrada.
- \bullet Somente o FF A (LSB) tem entradas $\mathcal{F}=K=1$ (constante).
- As entradas J e K dos FFs subsequentes são acionadas com base nas saídas dos FFs precedentes.

Note que o circuito de um contador síncrono é "mais complexo" kuhn@utfpdocquebo de umorontadopassíncomo:dokuhn87

Tecnológica Federal do Paraná

Universidade

- Por segurança, apenas os FFs que supostamente devem comutar assumem entradas J=K=1.
- Cada FF tem suas entradas J e K conectadas de modo que assumam nível ALTO apenas quando as saídas dos FFs de ordem menor estiverem em nível ALTO.

Como vantagem dos contadores síncronos, tem-se que o tempo total de resposta de um contador síncrono reduz-se à

Atraso total
$$=t_{
m pd}$$
 do FF $+t_{
m pd}$ da porta `AND`

Portanto,

Iniversidade Tecnológica Federal do Paraná

o atraso total não depende do número de FFs do contador

podendo assim operar com frequência de entrada elevada.

Universidade Tecnológica Federal do Paraná

Exemplo: Determine f_{max} para o contador síncrono se o t_{pd} de cada FF for 50 ns e o $t_{\rm pd}$ de cada porta AND for 20 ns. Compare esses valores com $f_{\rm max}$ para um contador assincrono de módulo 16.

Exemplo: O que deve ser feito para mudar o módulo de um contador de 16 para 32?

Exemplo: Determine $f_{\rm max}$ para o contador síncrono se o $t_{\rm pd}$ de cada FF for 50 ns e o $t_{\rm pd}$ de cada porta AND for 20 ns. Compare esses valores com $f_{\rm max}$ para um contador assíncrono de módulo 16.

R: Para o contador síncrono (paralelo)

$$f_{
m max} \leq rac{1}{t_{
m pd} \; {
m do \; FF} + t_{
m pd} \; {
m da \; porta \; AND}} = 14,3 \; {
m MHz}$$

enquanto, para o contador assincrono,

Jniversidade Tecnológica Federal do Paraná

$$f_{\mathrm{max}} \leq \frac{1}{N \times t_{\mathrm{pd}}} = 5 \; \mathrm{MHz}.$$

Exemplo: O que deve ser feito para mudar o módulo de um contador de 16 para 32?

R: Adicionar mais um FF, tal que $2^5=32$, e realizar as conexões. volume com/Geduardokunno/

Como modificar o circuito de um contador para que ele reinicie antes do último estado?

Como modificar o circuito de um contador para que ele reinicie antes do último estado?

Basta incluir um circuito que detecte o estado desejado e realize o reset dos FFs.

Contadores de módulo $< 2^N$

Universidade Tecnológica Federal do Paraná

- O contador síncrono projetado está limitado ao valor do módulo que é igual a 2^N, em que N é o número de FFs.
- Contudo, um contador pode ser modificado para gerar um módulo $< 2^N$, fazendo com que o contador pule estados.

Os FFs A, B e C mudam de estado à medida que os pulsos são aplicados na entrada de clock. kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Paraná

Universidade Tecnológica Federal do

O contador chega ao estado 110, mas se mantém por apenas alguns nanossegundos antes de "reciclar" para 000; logo, o contador vai de 000 (zero) ad 01 (cinco) e então "recicla" pulando os estados 150 e 111.

A forma de onda na saída B contém um spike/glitch causado pela ocorrência momentânea do estado 110 antes do reset. Isso pode provocar problemas, caso a saída B seja usada para acionar outros circuitos externos ao contador.

- Cada círculo representa um dos possíveis estados e as setas indicam transições de estado em resposta ao *clock*.
- Passa por 6 estados diferentes; por isso, trata-se de um contador de módulo 6.

Diagrama de estados de um contador de módulo $< 2^N$

• Não há nenhuma seta entrando no estado 111 porque o contador nunca avançará até esse estado.

Universidade Tecnológica Federal do Paraná

• Caso o estado 111 ocorra indevidamente, o contador é imediatamente "reciclado" para 000 pela lógica do circuito.

Universidade Tecnológica Federal do Paraná

R: Um contador de 4 bits tem módulo 16; entretanto, como o $\it reset$ ocorre em 1110, o módulo do contador fica limitado à 14. Por consequência, a frequência de saída D é

 $\frac{30 \text{ kHz}}{\text{kuhn@utfpr.edu.br}} = \frac{2.14 \text{ kHz}}{14} \text{ youtube.com/@eduardokuhn87}$

Não usar as entradas assíncronas dos FFs (PRESET e CLEAR) elimina a necessidade

de lidar com estados temporários

e a ocorrência de possíveis glitches.

Contadores síncronos decrescentes

- Um contador decrescente síncrono pode ser criado de maneira semelhante, usando as saídas invertidas para controlar as entradas dos FFs de ordem mais alta.
- Os FFs são "pré-setados", tal que DCBA = 1111.

Universidade Tecnológica Federal do

Contadores síncronos decrescentes

Federal

Tecnológica

Universidade

Observe que a sequência de contagem DCBA inicia em 1111 e vai até 0000. kuhnCutrpr.edu.br | youtube.com/CeduardokuhnC7

Como implementar contadores síncronos crescentes/decrescentes no mesmo circuito?

Universidade Tecnológica Federal

Contadores síncronos crescentes/decrescentes

A entrada $\operatorname{Up}/\overline{\operatorname{Down}}$ controla se as entradas J e K dos FFs subsequentes são acionadas pelas saídas

- normais (contagem crescente); ou
- invertidas (contagem decrescente)

dos FFs precedentes (de menor ordem). kuhn@uttpr.edu.br youtube.com/@eduardokuhn87

Con

Paraná

Tecnológica Federal do

Universidade

Contadores síncronos crescentes/decrescentes

Enquanto a entrada Up/Down estiver em nível

- ALTO, as portas AND 1 e 2 estarão habilitadas, e as portas 3 e 4 estarão desabilitadas.
- BAIXO, as portas AND 3 e 4 estarão habilitadas, e as portas 1 e 2 estarão desabilitadas.

Contadores síncronos crescentes/decrescentes

Nos primeiros 5 pulsos de *clock*, $Up/\overline{Down} = 1$ e a contagem é crescente. Por outro lado, para os últimos 5 pulsos, $Up/\overline{Down} = 0$ e a contagem é decrescente.

Contadores síncronos crescentes/decrescentes

Universidade Tecnológica Federal do Paraná

Existem duas setas deixando cada estado, indicando uma transição condicional relacionada a entrada Up/Down.

Como iniciar a contagem em um dado valor?

Como iniciar a contagem em um dado valor?

Inserindo um circuito para realizar o

PRESET/CLEAR dos FFs.

Tecnológica Federal do

Jniversidade

- Alguns contadores podem ser inicializados em um dado valor/estado.
- Esse processo de inicialização, denominado "carga paralela" do contador, pode ser realizado de forma
 - assíncrona, usando as entradas de PRESET e CLEAR dos FFs para definir diretamente os estados dos bits;
 - síncrona, sendo o valor desejado carregado na transição ativa do clock.
- A carga síncrona é preferível em sistemas de alta velocidade, visando evitar problemas com *glitches* bem como garantir sincronismo nas operações.

Paraná

Tecnológica Federal do

Universidade

A carga no contador é realizada da seguinte maneira:

- Aplique a entrada desejada em P_2 , P_1 e P_0 .
- Aplique um pulso na entrada de carga paralela PL. youtube.com/@eduardokuhn87

Universidade Tecnológica Federal do Paraná

Os níveis lógicos de P_2 , P_1 e P_0 são transferidos para Q_2 , Q_1 e Q_0 , respectivamente.

Tecnológica Federal do

Universidade

Quando PL retorna ao nível ALTO, os FFs voltam a responder às entradas de *clock*; assim, o contador pode prosseguir com a contagem a partir do valor carregado.

CIs de contadores síncronos

- Entradas de carga paralela: DCBA
- Saídas: $Q_DQ_CQ_BQ_A$
- Clock: CLK
- Carga paralela: LOAD
- Reset: CLR.
- Habilitar contagem: ENT e ENP
- Indica o estado final: RCO

A saída RCO é tril quando dois ou mais Cls de contadores são conectados em um arranjo de múltiplos estágios para criar contadores maiores.

Como o estado atual de um contador pode

ser decodificado (identificado)?

Decodificando um contador

Tecnológica Federal do

Jniversidade

- Decodificar o conteúdo de um contador significa identificar estados, visando gerar saídas correspondentes.
- Essa operação é fundamental em aplicações onde
 - onde a contagem precisa ser visualizada; ou
 - onde é necessário controlar a temporização ou o sequenciamento de operações.
- Um circuito lógico pode ser usado para decodificar (i.e., identificar) um determinado estado de um contador.
- Uma malha de decodificação é um circuito lógico que gera uma saída diferente para cada estado do contador.

Tecnológica Federal do Universidade

Exemplo de uma malha de decodificação

Em uma malha de decodificação, cada estado do contador é decodificado (com uma porta AND) em uma saída diferente (e.g., $2^3 = 8$ estados/saídas). kuhn utfpr.edu.br youtube.com/@eduardokuhn8/

Decodificando um contador

Universidade Tecnológica Federal do Paraná

Exemplo: Quantas portas AND são necessárias para decodificar completamente todos os estados de um contador de módulo 32?

Exemplo: Quais são as entradas da porta que decodificam a contagem 21 de um contador módulo 32?

Exemplo: Quantas portas AND são necessárias para decodificar completamente um contador de 6 bits?

Decodificando um contador

Universidade Tecnológica Federal do Paraná

Exemplo: Quantas portas AND são necessárias para decodificar completamente todos os estados de um contador de módulo 32? R: Um contador de módulo 32 tem 32 estados possíveis; logo, 32 portas AND são necessárias.

Exemplo: Quais são as entradas da porta que decodificam a contagem 21 de um contador módulo 32?

R: $EDCBA = 10101_2$; logo, $E\overline{D}C\overline{B}A$.

Exemplo: Quantas portas AND são necessárias para decodificar completamente um contador de 6 bits?

R: Como $2^6 = 64$, são necessárias 64 portas AND.

Como analisar e projetar contadores

(síncronos)?

Análise de contadores síncronos

- A análise de um contador é facilitada por meio de uma tabela de estados, a qual relaciona o estado atual ao próximo.
- A partir dessa tabela de estados, torna-se possível elaborar um diagrama de transição de estados e vice-versa.
- Ambas as representações descrevem o comportamento de um contador, i.e., o que ocorrea cada pulso de clock.

Esta	ado AT	UAL	PRÓXIMO estado					
С	В	Α	С	B	Α			
0	0	0	٥	0	1			
0	0	1	0	* 1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			
	(1	ıhn	Outfor 6	od II h	r			

Jniversidade Tecnológica Federal do Paraná

Análise de contadores síncronos

Tecnológica Federal do Paraná

- A partir dessa tabela de estados, é possível definir os sinais de controle para os FFs (a depender do tipo de FF usado).
- Dispositivos lógicos programáveis (e.g., FRGAs) utilizam FFs do tipo D como componentes de memória.
- Por isso, é usual projetar circuitos sequenciais utilizando
 "FFs D", já que isso simplifica a implementação em PLDs.
- O uso de "FFs D" permite obter diretamente as equações de excitação, facilitando a síntese do circuito lógico.

Estado ATUAL		Entra	Entradas de controle			PRÓX	(IMO e	stado		
	С	В	Α	D _C	D_B	D_A	_	С	В	Α
	0	0	0	0	0	1		0	0	1
	0	0	1	0	\mathcal{O}_1	0		0	1	0
	0	1	0	0	1	1		0	1	1
	0	1	1	1	0	0		1	0	0
	1	0	0	1	0	1		1	0	1
	1	0	1	1	1	0		1	1	0
	1	1	0	1	1	1		1	1	1
	1	1	kul	ոո (Հագի	pr.ed	11 9r		V ⁰ ○I	1+91	he0 c

Análise de contadores síncronos

Universidade Tecnológica Federal do Paraná

O circuito de controle de um contador com FFs do tipo D costuma ser mais complexo do que usando FFs JK, mas tem a metade do número de entradas. kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Projeto de contadores síncronos

- Em determinadas situações, um "contador" deve seguir uma sequência arbitrária de contagem, e.g.,
 - 000, 010, 101, 001, 110, 000...
 - 110, 001, 101, 010, 000, 110..._[
 - 1010, 1011, 1110, 1010...
- Diferentes **métodos de projeto** de contadores que sigam sequências arbitrárias estão disponíveis, os quais utilizam
 - FFs JK; ou 🗸

Tecnológica Federal do

Jniversidade

- FFs D (como comumente usado em circuitos sequenciais).
- A mesma técnica de projeto de contadores pode ser adotada para outros tipos de circuitos sequenciais.

Paraná

Tecnológica Federal do

- 1) Determine o número de bits (i.e., FFs) necessários para uma dada sequência de contagem.
- Desenhe o diagrama de transição de estados, contendo todos os estados (inclusive os que não serão utilizados).
- A partir do diagrama de transição de estados, monte a tabela de estados, relacionando os estados atuais aos próximos.
- 4) Escolha o tipo de FF, acrescente colunas na tabela de estados para cada entrada $D \in K$ ou D e defina o sinal de cada entrada de controle para produzir a transição ao próximo estado.
- 5) Obtenha as expressões lógicas descrevendo o sinal de controle de cada entrada J e K ou D.
- 6) Implemente os circuitos lógicos a partir das expressões. kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Metodologia de projeto de circuitos sequenciais Universidade Tecnológica Federal do Paraná

- 1) Determine o número de bits (i.e., FFs) para uma dada sequência de contagem.
- 2) Desenhe o diagrama de transição de estados, contendo todos os estados.

3) A partir do diagrama de transição de estados, mente a tabela de estados, relacionando os estados atuais aos próximos.

					J				
	Esta	ado AT	UAL	PRÓ	PRÓXIMO estado				
	С	В	Α	С	В	Α			
Linha 1	0	0	0	0	0	1			
2	0	0	1	0	1	0			
3	0	1	0	0	1	1			
4	0	1	1	1	0	0			
5	1	0	0	0	0	0			
6	1	0	1	0	0	0			
7	Y	1	0	0	0	0			
8	1	1	1	0	0	0			
V .									

Universidade Tecnológica Federal do Paraná

Jniversidade Tecnológica Federal do Paraná

4) Escolha o tipo de FF, acrescente colunas na tabela de estados para cada entrada J e K e defina o sinal de cada entrada de controle para produzir a transição ao próximo estado.

									-			
	Esta	ado AT	UAL	PRÓX	PRÓXIMO estado							
	С	В	Α	С	В	Α	J_{c}	-K _c	$J_{\rm B}$	$K_{\rm B}$	J_{A}	K_A
Linha 1	0	0	0	0	0	1 .	0	х	0	х	1	Х
2	0	0	1	0	1	0	0	х	1	Х	х	1
3	0	1	0	0	1	1	0	х	х	0	1	Х
4	0	1	1	1	0	0	1	х	х	1	х	1
5	1	0	0	0	,0	0	х	1	0	х	0	Х
6	1	0	1	0 0	0	0	х	1	0	х	х	1
7	1	1	0	Û	0	0	х	1	х	1	0	Х
8	1	1	1	0	0	0	х	1	х	1	х	1

Tabela de transição de estados de FFs JK e D.

a	ibcia de trai	isiçao	uc catau	03 uc		311 C	
	Transição	Q_n	Q_{n+1}	J	K	D	
	$0 \rightarrow 0$	0	0	0	X	0	
	$0 \rightarrow 1$	0	1	1	×	1	
	$1 \rightarrow 0$	1	0	×	1	0	
	$1 \rightarrow 1$	1	1	×	0	1	

Paraná

Universidade Tecnológica Federal do

5) Obtenha as expressões lógicas descrevendo o sinal de controle de cada entrada J e K.

kuhn@utfpr.edu.br/c=BA youtube.co/m=/@eduardokuhn87

6) Implemente os circuitos lógicos a partir das expressões.

Universidade Tecnológica Federal do Paraná

E, o que ocorre quando FFs D são utilizados?

Jniversidade Tecnológica Federal do Paraná

4) Escolha o tipo de FF, acrescente colunas na tabela de estados para <u>cada entrada</u> <u>D</u> e defina o sinal de cada entrada de controle para produzir a transição ao próximo estado.

Metodologia de projeto de circuitos sequenciais

	Estado ATUAL			PRÓXIMO Entradas de controle				
С	В	Α	С	В	Α	D _c	D _B	DA
0	0	0	0	0 1	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	\mathcal{L}_1	0	0	0	0	0	0

Tabela de transição de estados de FFs JK e D.

) (Transição	Q_n	Q_{n+1}	J	K	D
	$0 \rightarrow 0$	0	0	0	X	0
	$0 \rightarrow 1$	0	1	1	X	1
	$1 \rightarrow 0$	1	0	×	1	0

kuhn@utfpr!edu!br | 1 youtube.gom/@@duardokuhn87

5) Obtenha as expressões lógicas descrevendo o sinal de controle de cada entrada D.

Universidade Tecnológica Federal do Paraná

Paraná Tecnológica Federal do Universidade

6) Implemente os circuitos lógicos a partir das expressões.

Metodologia de projeto de circuitos sequenciais

As expressões lógicas são mais complexas, i.e., requerem mais portas; contudo, o projeto é mais simples já que cada FF D tem apenas uma entrada.

O termo máquina de estado refere-se a um circuito que sequencia um conjunto de

estados predeterminados controlados por um *clock* e outros sinais de entrada; logo,

contadores são máquinas de estados.

Sugestão de leitura: Seção 7.14, a qual trata sobre máquinas de estados finitos

(modelos Mealy e Moore).

PARTE 2 - Registradores

Transferência de dados em registradores Tecnológica Federal do

Iniversidade

Os diferentes tipos registradores são classificados de acordo com a maneira pela qual os dados são apresentados ao registrador para armazenamento e pelo modo como saem dele, i.e.,

- entrada paralela/saída paralela (RIPO);
- entrada serial/saída serial (\$1\$0);
- entrada paralela/saída serial (PISO); e
- entrada serial/saída paralela (SIPO).

Vale comentar que:

- O fluxo de dados serial por um registrador é, geralmente, chamado de deslocamento (shifting).
- A entrada paralela de dados é, usualmente, descrita como "carga do registrador". kuhn@utfpr.edu.br youtube.com/@eduardokuhn87

Transferência de dados em registradores

Paraná

Universidade Tecnológica Federal do

Transferência de dados em registradores

Sugestão de leitura: Seção 7.17, a qual trata da implementação de contadores com

registradores de deslocamento.

Tecnológica Federal do

Jniversidade

- Em contadores assíncronos, o clock é aplicado apenas ao FF
 LSB sendo os outros disparados pela saída do FF precedente.
- A frequência máxima f_{\max} de clock para um contador assíncrono diminui à medida que $N \to \infty$.
- O módulo de um contador 2^N define o número de estados de contagem possíveis (e o maior fator de divisão de frequência).
- O módulo de um contador pode ser <u>reduzido</u> acrescentando um circuito que faça a <u>"reciclagem"</u> antes do último estado.
- Os contadores podem ser conectados em cascata para produzir faixas de contagens e fatores de divisão de frequência maiores.
- Em contadores síncronos, todos os FFs são disparados a partir do mesmo glocki de entrada; togo of mas é independente de N.

- Um contador que possui entrada de dados pode ser carregado com um dado valor inicial de contagem.
- Um contador crescente/decrescente permite tanto contar de forma crescente quanto decrescente.
- Portas lógicas podem ser arranjadas para decodificar (identificar) um determinado estado de um contador.
- A sequência de contagem de um contador pode ser determinada com uma tabela de estados.
- Máquinas de estados podem ser implementadas seguindo o procedimento de projeto apresentado.
- Sistemas digitais podem ser subdivididos em módulos/blocos menores que podem ser interconectados de forma hierárquica.

Considerações finais

Exercícios sugeridos:

7.2, 7.3, 7.4, 7.7, 7.12-7.14, 7.16, 7.21, 7.26, 7.31 e 7.43.

de R.J. Tocci, N.S. Widmer, G.L. Moss, Sistemas digitais: princípios e aplicações, 12a ed., São Paulo: Pearson, 2019. → (Capítulo 7)

Para as próximas aulas:

Universidade Tecnológica Federal do

R.J. Tocci, N.S. Widmer, G.L. Moss, Sistemas digitais: princípios e aplicações, 12a ed., São Paulo: Pearson, 2019.

Apresentações → (Capítulos 8, 9, 11 e 12)

Até a próxima aula... =)