

Politechnika Bydgoska im. J. J. Śniadeckich Wydział Telekomunikacji, Informatyki i Elektrotechniki **Zakład Systemów Teleinformatycznych**

			•
Przedmiot	Przetwarzanie obrazów		
Prowadzący	mgr inż. Grzegorz Czeczot		
Temat	Filtry		
Student			
Nr lab.	5	Data wykonania	
Ocena		Data oddania spr.	

1. Cel ćwiczenia

Podczas laboratorium zostanie wykonana seria zadań polegających na nałożeniu na obraz różnych filtrów, które pozwalają na zmniejszenie szumów lub podkreślenie pożądanych cech obrazu.

2. Wstęp teoretyczny

Filtry w przetwarzaniu obrazów mogą zostać wykorzystane do redukcji szumów bądź do zmiany wyglądu obrazu (wyostrzenie lub rozmycie). Każdy z filtrów wykorzystywanych na zajęciach posiada element strukturalny, który określa np. wielkość rozmycia.

3. Zadania do samodzielnego wykonania

3.1. Zadanie 1.

Utworzyć nowy projekt w NetBeans lub wykorzystać projekt z poprzednich zajęć. Zmienić kod programu tak, aby wczytywał obraz, a następnie wykonywał na nim rozmycie filtrem Gaussa. Sprawdzić wygląd obrazka dla trzech różnych wielkości elementu rozmywającego.

3.2. Zadanie 2.

Zmienić kod programu tak, aby wczytywał obraz, a następnie wykonywał na nim rozmycie filtrem medianowym. Sprawdzić wygląd obrazka dla trzech różnych wielkości elementu rozmywającego. Jak działa ten filtr?

3.3. Zadanie 3.

Zmienić kod programu tak, aby wczytywał obraz, a następnie wykonywał na nim rozmycie filtrem bilateralnym. Sprawdzić wygląd obrazka dla trzech różnych wielkości elementu rozmywającego. Jaka jest różnica w wynikach między filtrem medianowym i bilateralnym?

3.4. Zadanie 4.

Stworzyć własny filtr. Zmienić kod programu tak, aby wczytywał obraz, a następnie wykonywał na nim rozmycie stworzonym przez siebie filtrem.

3.5. Zadanie 5.

Zmienić kod programu tak, aby o czytaniu obrazu wykonał wyostrzenie. Przedstawić 3 różne rozwiązania.

3.6. Zadanie 6.

Korzystając z metod dostępnych w OpenCV wygenerować na obrazie szum "salt and pepper", który objawia się pojawieniem się białych i czarnych pikseli w dowolnych miejscach na obrazie. Sprawdzić filtry: Gaussa, medianowy i bilateralny. Który z nich najlepiej usunie szum z obrazu?

3.7. Zadanie 7.

Korzystając z metod dostępnych w OpenCV wygenerować na obrazie szum Gaussa, który objawia się dodaniem losowych wartości do różnych pikseli obrazu. Sprawdzić filtry: Gaussa, medianowy i bilateralny. Który z nich najlepiej usunie szum z obrazu?

4. Sprawozdanie

W sprawozdaniu należy zawrzeć:

- wypełnioną tabelę z początku instrukcji;
- skopiowane <u>istotne</u> części kodu programów napisanych w trakcie zajęć;
- opis wykonanych zadań ze zrzutami ekranu;
- <u>własne</u> spostrzeżenia jako wnioski.