Paper Review

[ICLR 2021] Free Lunch for Few-Shot Learning: Distribution Calibration

Dept. of Computer Science & Engineering Artificial Intelligence and Data Mining Lab(AIDML) 202122029 Meeyun Kim

2022. 11. 14.

Contents

- 1. Introduction
- 2. Method
- 3. Experiments & Results
- 4. Conclusion

1. Introduction

What is Meta Learning?

- Learning to Learn.
- Train machine learning model well with small amounts of data.
- Matching Net (Vinyals et al. (2016)), MAML (Finn et al. (2017)), ... etc.

Example of Meta Learning (Matching Networks)

Example of Meta Learning (Cont'd)

N-way K-shot task

Limitations of Few-show Learning?

Classifier trained with few-shot features

Classifier trained with features sampled from calibrated distribution

- Each features for few-shot learning is only a small fraction of the ground truth distribution.
- Thus, model tends to overfit on these few samples.

To Resolve Overfitting...

	Arctic fox		
	mean sim	var sim	
white wolf	97%	97%	
malamute	85%	78%	
lion	81%	70%	
meerkat	78%	70%	
jellyfish	46%	26%	
orange	40%	19%	
beer bottle	34%	11%	

- Obtain distribution from classes with sufficient data.
- Distribution is transferred to other classes based on the similarity.

→ Distribution Calibration!

2. Method

Problem Definition

Few Shot Learning

$$D = \{(\boldsymbol{x}_i, y_i)\}$$
 $\boldsymbol{x}_i \in \mathbb{R}^d$ $y_i \in C$, $C_b \cap C_n = \emptyset$, $C_b \cup C_n = C$ Base classes C_b , Novel classes C_n

- Train a model on the data from the **base classes** so that the model can **generalize** well on tasks sampled from the **novel classes**.

Distribution Calibration

Introduction

Classifier trained with few-shot features

Classifier trained with features sampled from calibrated distribution

	Arctic fox		
	mean sim	var sim	
white wolf	97%	97%	
malamute	85%	78%	
lion	81%	70%	
meerkat	78%	70%	
jellyfish	46%	26%	
orange	40%	19%	
beer bottle	34%	11%	

- If the feature distribution is Gaussian, the **mean** and **variance** with respect to each class are correlated to the **semantic similarity** of each class.
- The statistics can be **transfer**red!

Distribution Calibration

Statistics of the Base Classes

$$\mu_i = \frac{\sum_{j=1}^{n_i} x_j}{n_i}$$
 $\Sigma_i = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (x_j - \mu_i) (x_j - \mu_i)^T$

- The authors assume the feature distribution of base classes is Gaussian.
- Mean vector & Covariance matrix for the features from a base class i

Calibrating Statistics of the Novel Classes

• *support set*
$$S = \{(x_i, y_i)\}_{i=1}^{N \times K}$$

• query set
$$Q = \{(x_i, y_i)\}_{i=N\times K+1}^{N\times K+N\times q}$$

Calibrating Statistics of the Novel Classes (Cont'd)

$$\tilde{x} = \begin{cases} x^{\lambda}, & \lambda \neq 0 \\ \log(x), & \lambda = 0 \end{cases}$$

- Use Tukey's Ladder of Powers transformation.
- It makes the feature distribution more Gaussian-like.

Calibration through Statistics Transfer

$$S_{d} = \{-\|\boldsymbol{\mu}_{i} - \tilde{x}\|^{2} \mid i \in C_{b}\}$$

$$S_{N} = \{i \mid -\|\boldsymbol{\mu}_{i} - \tilde{x}\|^{2} \in topk(S_{d})\}$$

$$S_{N} = \{i \mid -\|\boldsymbol{\mu}_{i} - \tilde{x}\|^{2} \in topk(S_{d})\}$$

$$S_{N} = \{(\boldsymbol{\mu}'_{1}, \boldsymbol{\Sigma}'_{1}), \dots, (\boldsymbol{\mu}'_{K}, \boldsymbol{\Sigma}'_{K})\}$$

$$S_{N} = \{(\boldsymbol{\mu}'_{1}, \boldsymbol{\Sigma}'_{1}), \dots, (\boldsymbol{\mu}'_{K}, \boldsymbol{\Sigma}'_{K})\}$$

- ① Select the top k base classes with the closest distance to the feature of sample $\tilde{\mathbf{x}}$ from the support set.
- 2 Stores the k nearest base classes with respect to feature vector $\tilde{\mathbf{x}}$.
- 3 Distribution is calibrated by the statistics from the nearest base classes.
- 4 For few-shot learning, calibration should be undertaken multiple times with each feature vector.

Sample Features from the Calibrated Distribution

- Generate a set of feature vectors with label y by sampling from calibrated Gaussian distributions:

$$D_{y} = \{(x, y) | x \sim N(\mu, \Sigma), \forall (\mu, \Sigma) \in S_{y} \}$$

- Generated per class is a hyperparameter and they are equally distributed for every calibrated distribution in S_{ν} .

$$S_y = \{(\boldsymbol{\mu}_1', \boldsymbol{\Sigma}_1'), \dots, (\boldsymbol{\mu}_K', \boldsymbol{\Sigma}_K')\}$$

•

$$\begin{array}{ccc}
\tilde{\chi}_K^{cat} & & & \\
\mu_a & & & \\
\mu_b & & \mu_c
\end{array}$$

$$(\mu_K', \Sigma_K')$$

3. Experiments & Results

Dataset for Evaluation

- miniImageNet: 64 base classes, 16 validation classes, and 20 novel classes. 600 samples per class.
- CUB: 200 different classes of birds with a total of 11,788 images.

 100 base classes, 50 validation classes, and 50 novel classes.
- *tiered*ImageNet: 608 classes sampled from hierarchical category structure. In this paper, researchers used **351, 97,** and **160** classes for training, validation, and test, respectively.

Feature Extractor

- WideResNet trained by base classes and test performance using novel classes.
- Feature representation is extracted from penultimate layer with **ReLU**.

5way1shot and 5way5shot Classification Accuracy

Methods	<i>mini</i> ImageNet		CUB	
Methods	5way1shot	5way5shot	5way1shot	5way5shot
Optimization-based				
MAML (Finn et al. (2017))	48.70 ± 1.84	63.10 ± 0.92	50.45 ± 0.97	59.60 ± 0.84
Meta-SGD (Li et al. (2017))	50.47 ± 1.87	64.03 ± 0.94	53.34 ± 0.97	67.59 ± 0.82
LEO (Rusu et al. (2019))	61.76 ± 0.08	77.59 ± 0.12	-	-
E3BM (Liu et al. (2020c))	63.80 ± 0.40	80.29 ± 0.25	-	-
Metric-based				
Matching Net (Vinyals et al. (2016))	43.56 ± 0.84	55.31 ± 0.73	56.53 ± 0.99	63.54 ± 0.85
Prototypical Net (Snell et al. (2017))	54.16 ± 0.82	73.68 ± 0.65	72.99 ± 0.88	86.64 ± 0.51
Baseline++ (Chen et al. (2019a))	51.87 ± 0.77	75.68 ± 0.63	67.02 ± 0.90	83.58 ± 0.54
Variational Few-shot(Zhang et al. (2019))	61.23 ± 0.26	77.69 ± 0.17	-	-
Negative-Cosine(Liu et al. (2020a))	62.33 ± 0.82	80.94 ± 0.59	72.66 ± 0.85	89.40 ± 0.43
Generation-based				
MetaGAN (Zhang et al. (2018))	52.71 ± 0.64	68.63 ± 0.67	-	-
Delta-Encoder (Schwartz et al. (2018))	59.9	69.7	69.8	82.6
TriNet (Chen et al. (2019b))	58.12 ± 1.37	76.92 ± 0.69	69.61 ± 0.46	84.10 ± 0.35
Meta Variance Transfer (Park et al. (2020))	-	67.67 ± 0.70	-	80.33 ± 0.61
Maximum Likelihood with DC (Ours)	66.91 ± 0.17	80.74 ± 0.48	77.22 ± 0.14	89.58 ± 0.27
SVM with DC (Ours)	67.31 ± 0.83	82.30 ± 0.34	79.49 ± 0.33	90.26 ± 0.98
Logistic Regression with DC (Ours)	68.57 ± 0.55	$\textbf{82.88} \pm \textbf{0.42}$	$\textbf{79.56} \pm \textbf{0.87}$	90.67 ± 0.35

5way5shot Classification Accuracy

Methods	<i>tiered</i> ImageNet			
IVICUIOUS	•	5way5shot		
Matching Net (Vinyals et al. (2016))	68.50 ± 0.92	80.60 ± 0.71		
Prototypical Net (Snell et al. (2017))	65.65 ± 0.92	83.40 ± 0.65		
LEO (Rusu et al. (2019))	66.33 ± 0.05	82.06 ± 0.08		
E3BM (Liu et al. (2020c))	71.20 ± 0.40	85.30 ± 0.30		
DeepEMD (Zhang et al., 2020)	71.16 ± 0.87	86.03 ± 0.58		
Maximum Likelihood with DC (Ours)	75.92 ± 0.60	87.84 ± 0.65		
SVM with DC (Ours)	$\textbf{77.93} \pm \textbf{0.12}$	$\textbf{89.72} \pm \textbf{0.37}$		
Logistic Regression with DC (Ours)	$\textbf{78.19} \pm \textbf{0.25}$	$\textbf{89.90} \pm \textbf{0.41}$		

Visualization of Generated Samples

' \bigstar ': support set features, 'x' in figure (d): query set features, ' \blacktriangle ' in figure (b)(c): generated features.

- **t-SNE analysis** is conducted.
- Training with these generated features can alleviate the mismatch.

Effects of Hyperparameters

Effects of Hyperparameters (Cont'd)

4. Conclusion

- Researchers proposed simple and effective distribution calibration strategy.
- Achieve **better performance** than other meta learning models.
- Distribution calibration in a variety of problem environments will be studied.

References

- O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., "Matching networks for one shot learning," Advances in neural information processing systems, vol. 29, 2016.
- https://en.wikipedia.org/wiki/Arctic_fox
- https://en.wikipedia.org/wiki/Arctic_wolf
- https://en.wikipedia.org/wiki/Jellyfish
- https://en.wikipedia.org/wiki/Beer_bottle
- https://blog.si-analytics.ai/3
- J. W. Tukey et al., Exploratory data analysis, vol. 2. Reading, MA, 1977.