Ollis 3, Eirik had / eatherd 4.5 Vis at dispusions religion for the r. e bedger ar. Relosprer: De Broghe; E'= (mc)2+(pc)2 * Es ha & poth * hw = mich + pic w2 = m2c4 + thec2 w= ((me)2 + le2 W) face hostighet v; = w = €. √h. + (mc) V1 = C V7 + (my) Vg = 200 = C. 1 / hi + (mc) - 2 ch/h + (mc) - 2 vg·vj = cle · c Vhi+(mc) = c

c) bølge / pakken persor samlet med en hostighet som vælge front & C, men homponenter av pakken persor i utik hostigheter og bølgere hlir strukket ut Hastighets økninge skyldes resorans. a) En patible and more 19 usherphel DV = 10 kg

Relogar: Oxapsh apstak k=f

 $\Delta x m \Delta V = \frac{h}{h a}$ $\Delta x = \frac{h}{h a} = \frac{2 \cdot 11 \cdot 10}{h \cdot 1}$

() E med Energi 10keV e et amode DX = 0.1 nm

 $\Delta x \Delta p = h$ $\Delta k = \frac{h}{c} \Delta w = \frac{n2aE}{hc}$ $\Delta x = \sqrt{\frac{1}{\Delta k^2}}$

dp = to \\\ \frac{n^2 4 \tilde{7} \tilde{1}}{h^2 C^2} = n.2.67.10^{-24}

c) usharphel

 $\Delta E = \frac{n p^2}{2m} = n.3.914.10$

1.3
$$p(x) = A e^{-A(x-a)^2}$$

a) $los lor A$.

1. $\int p(x) dx$

A $\int e^{-A(x-a)^2} dx$

A $\int e^{-A(x-a)^2}$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A $\int (u \cdot a) = \int x \cdot A e^{-A(x-a)^2} dx$

A \int

Scanned by CamScanner

1.5 Bolge 1. $\forall (x,1) > A \in \lambda | x| = i \omega t$ a) Normalison $\int | \forall (x,1)|^2 dx = 1 \quad \forall (x,1) = 1 \quad$

 $(x^{2})^{2} = \frac{21}{1} \frac{1}{1} \frac{1}{$

6) 03 5 (x17-(x72 = 1/2) -0 0 = 1/2)

69 Yans Ac a[121] a) Los for A. Bruker normaliseres. forst rydder i emaginae holdet. 140x11/2 = 44 x 5) /A12 / e 2 dx , 141 Jak = 1 A = (200) 4 a) potesiel energy tilfrest. Schrödiger. Vas = (2ma) 4 = ame? - 12 2 (xx) Y(x) = E Yor - #2 a / (th - 20 mx?) = - a th - 20 mx? = - a th - 20 mx?) e Eregi. ital = de in E = ha Vus Yes = EYOS +a(t-lamx) = anx / (Yas) Vas 2 ma 2

e)
$$\langle x \rangle = 0$$
 $\langle x^{2} \rangle = \int_{-\infty}^{\infty} x^{2} \psi^{2} dx \Rightarrow |A|^{2} \int_{-\infty}^{\infty} x^{2} e^{-kx^{2}} u \cdot a_{0} x^{2}$
 $|A|^{2} \int_{-\infty}^{\infty} u t e^{-kx^{2}} = \frac{1}{2} \frac{|A|^{2}}{2} \int_{-\infty}^{\infty} u e^{-kx^{2}} dx = 0$
 $\langle p \rangle = -i \hbar \int_{-\infty}^{\infty} \psi^{2} \frac{\partial^{2}}{\partial x} dx = 0$
 $\langle p^{2} \rangle = -i \hbar^{2} \int_{-\infty}^{\infty} \psi^{2} \frac{\partial^{2}}{\partial x} dx = t_{0} \pi$
 $\sigma_{x}^{2} = \langle x^{2} \rangle - \langle x \rangle^{2} = \frac{t_{0}}{2} \int_{-\infty}^{\infty} u \cdot \frac{t_{0$