

AlexNet

Leon Friedrich, INFM

Agenda

- Convolution
- AlexNet
 - Why AlexNet?
 - Architecture
- Practical Part
 - Visualization of learned Kernels
 - Visualization of Convolution

- Mathematical operation: *
- 2D convolution in image processing:
 - Image I[u, v]
 - Kernel K with size [2a+1, 2b+1]
 - Output O[u, v]

$$O[u, v] = I[u, v] * K = \sum_{s=-a}^{a} \sum_{t=-b}^{b} I[u - s, v - t]K[s, t]$$

$$O[u, v] = I[u, v] * K = \sum_{s=-a}^{a} \sum_{t=-b}^{b} I[u - s, v - t] K[s, t]$$

9 0	8 0	7	0	0	0	0
6 0	5 ₀	4 0	0	0	0	0
3 0	2 0	1 0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

9 0	8 0	7 0	0	0	0	0
6 0	5 0	4 0	0	0	0	0
3 0	2 0	1 0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$O[1,1] = 9 \cdot 0 + 8 \cdot 0 + 7 \cdot 0 + 6 \cdot 0 + 5 \cdot 0 + 4 \cdot 0 + 3 \cdot 0 + 2 \cdot 0 + 1 \cdot 0 = 0$$

0			
	0		

Q	9 0	8 0	7 0	0	0	0
Q	6 0	5 0	4 0	0	0	0
Q	3	2 0	1 0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$O[1,2] = 9 \cdot 0 + 8 \cdot 0 + 7 \cdot 0 + 6 \cdot 0 + 5 \cdot 0 + 4 \cdot 0 + 3 \cdot 0 + 2 \cdot 0 + 1 \cdot 0 = 0$$

0	0		

0	Q	0	8 0	7 0	0	0
0	Q	6 0	5 0	4	0	0
0	0	3 0	2 0	1 0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$O[1,3] = 9 \cdot 0 + 8 \cdot 0 + 7 \cdot 0 + 6 \cdot 0 + 5 \cdot 0 + 4 \cdot 0 + 3 \cdot 0 + 2 \cdot 0 + 1 \cdot 0 = 0$$

0	0	0		
	0			

0	0	Q	0	8 0	7 0	0
0	0	0	6	5 0	4 0	0
0	0	0	3 0	2 0	1 0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$O[1,4] = 9 \cdot 0 + 8 \cdot 0 + 7 \cdot 0 + 6 \cdot 0 + 5 \cdot 0 + 4 \cdot 0 + 3 \cdot 0 + 2 \cdot 0 + 1 \cdot 0 = 0$$

0	0		
	0 0	0 0	0 0

0	0	0	0	9 0	8 0	7 0
0	0	0	0	6	5 0	4 0
0	0	0	0	3 0	2 0	1 0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$O[1,5] = 9 \cdot 0 + 8 \cdot 0 + 7 \cdot 0 + 6 \cdot 0 + 5 \cdot 0 + 4 \cdot 0 + 3 \cdot 0 + 2 \cdot 0 + 1 \cdot 0 = 0$$

0	0	0	0	0	
	0				

		0	0	0	0	0	0
	<u> </u>			U	U	U	
9 () {	3 0	0	0	0	0	0
6) [5	0	4 0	0	0	0	0
3		2 0	1 0	1	0	0	0
C)	0	0	0	0	0	0
C)	0	0	0	0	0	0
C)	0	0	0	0	0	0

$$O[2,1] = 9 \cdot 0 + 8 \cdot 0 + 7 \cdot 0 + 6 \cdot 0 + 5 \cdot 0 + 4 \cdot 0 + 3 \cdot 0 + 2 \cdot 0 + 1 \cdot 0 = 0$$

	0	0	0	0	0	
	0					

0	0	0	0	0	0	0
0	0	8 0	7 ₀	0	0	0
0	6 0	5 ₀	4 0	0	0	0
0	3 0	2 0	1 1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

 $O[2,2] = 9 \cdot 0 + 8 \cdot 0 + 7 \cdot 0 + 6 \cdot 0 + 5 \cdot 0 + 4 \cdot 0 + 3 \cdot 0 + 2 \cdot 0 + 1 \cdot 1 = 1$

	0	0	0	0	0	
	0	1				

I[u, v]

O[u, v]

Convolution IV

1	2	3
4	5	6
7	8	9

*

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

I[u, v]

O[u, v]

Convolution V

<mark>-</mark>	-2	-
0	0	0
1	2	1

*

I[u, v]

O[u, v]

AlexNet - Why AlexNet?

Alex Krizhevsky et al. (2012)

- Winner ILSVRC-2012
 - Top-5 test error rate: 15.3%

Key to success: Faster training

By Gkrusze - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=69750373

AlexNet - Architecture I

- 5 convolutional, 3 fully-connected
- Multiple GPUs
- ReLU: f(x) = max(0, x)

AlexNet - Reduce Overfitting

• 60 Mio. parameters

Data Augmentation

Dropout

Overlapping Pooling

Non-overlapping pooling

Overlapping pooling

Source: https://bskyvision.com/421

Practical Part - AlexNet

Manually implemented:

```
AlexNet(
(features): Sequential(
  (0): Conv2d(3, 96, kernel_size=(11, 11), stride=(4, 4))
  (1): ReLU()
  (2): LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2)
  (3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (4): Conv2d(96, 256, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (5): ReLU()
  (6): LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2)
  (7): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (8): Conv2d(256, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (9): ReLU()
  (10): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (11): ReLU()
  (12): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (13): ReLU()
  (14): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(classifier): Sequential(
  (0): Dropout(p=0.5, inplace=True)
  (1): Linear(in_features=256, out_features=4096, bias=True)
  (2): ReLU()
  (3): Dropout(p=0.5, inplace=True)
  (4): Linear(in_features=4096, out_features=4096, bias=True)
  (5): ReLU()
  (6): Linear(in_features=4096, out_features=8, bias=True)
```

Pytorch version:

```
AlexNet(
(features): Sequential(
  (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
  (1): ReLU(inplace=True)
  (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (3): Conv2d(64, 192, kernel size=(5, 5), stride=(1, 1), padding=(2, 2))
  (4): ReLU(inplace=True)
  (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (7): ReLU(inplace=True)
  (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (9): ReLU(inplace=True)
  (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (11): ReLU(inplace=True)
  (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
(classifier): Sequential(
  (0): Dropout(p=0.5, inplace=False)
  (1): Linear(in_features=9216, out_features=4096, bias=True)
  (2): ReLU(inplace=True)
  (3): Dropout(p=0.5, inplace=False)
  (4): Linear(in_features=4096, out_features=4096, bias=True)
  (5): ReLU(inplace=True)
  (6): Linear(in_features=4096, out_features=1000, bias=True)
```


Accuracy and Loss

Manual Implementation

Pytorch not pretrained

Pytorch pretrained

Wrongly Classified Images

Learned Kernels - Not Pretrained

Learned Kernels - Pretrained

Thank you!

Sources

Paper:

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Gitlab Repo with slides, notebook and paper:

https://github.com/MumenRaida/SeminarDeepLearningAlexNet.git

Further sources:

https://en.wikipedia.org/wiki/AlexNet

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

https://en.wikipedia.org/wiki/Kernel_(image_processing)

