Отчёт по лабораторной работе №1

Имитационное моделирование

Екатерина Канева, НФИбд-02-22

Содержание

1	Цель рабо	ГЫ	5
2	Задание		6
3	Выполнен	ие лабораторной работы	7
	3.0.1	Шаблон	7
	3.0.2	Два узла	7
	3.0.3	Три узла, усложнённая топология	11
	3.0.4	Кольцевая топология	17
	3.0.5	Доработка схемы	23
4	Выводы		32

Список иллюстраций

3.1	Шаблон	7
3.2	Пример 1	8
3.3	Схема 1	9
3.4	Начало работы схемы 1	10
3.5	Конец работы схемы 1	11
3.6	Пример 2	13
3.7	Схема 2	14
3.8	Начало работы схемы 2	15
3.9	Передача из нового узла (схема 2) и потеря пакетов из очереди	16
3.10	Конец работы схемы 2	17
3.11	Пример 3	18
3.12	Схема 3	19
3.13	Начало работы схемы 3	20
2 1/	Разрыв соединения между 1 и 2 и передача по альтернативному	
J.17	тазрыв соединения между т и 2 и передача по альтернативному	
J.17	пути	21
3.15	пути	22
3.15 3.16	пути	22 23
3.15 3.16 3.17	пути	22 23 24
3.15 3.16 3.17 3.18	пути	22 23 24 25
3.15 3.16 3.17 3.18 3.19	пути	22 23 24 25 26
3.15 3.16 3.17 3.18 3.19 3.20	пути	22 23 24 25 26 27
3.15 3.16 3.17 3.18 3.19 3.20 3.21	пути	22 23 24 25 26 27
3.15 3.16 3.17 3.18 3.19 3.20 3.21	пути	22 23 24 25 26 27 28
3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22	пути	22 23 24 25 26 27 28

Список таблиц

1 Цель работы

Приобретение навыков моделирования сетей передачи данных с помощью средства имитационного моделирования NS-2, а также анализ полученных результатов моделирования.

2 Задание

- Создать шаблон для выполнения заданий.
- Смоделировать сеть из двух узлов.
- Смоделировать сеть из трёх узлов.
- Смоделировать кольцевую сеть из 7 узлов.
- Смоделировать кольцевую сеть из 5 узлов и 1 некольцевого узла.

3 Выполнение лабораторной работы

3.0.1 Шаблон

Сначала я создала шаблон для выполнения заданий согласно описанию из лабораторной работы (рис. 3.1):

```
/vbox/mip/lab-ns/shablon.tcl-Mousepad — + ×
Файл Правка Поиск Вид Документ Справка

set ns [new Simulator]
set ns [open out.nam w]
sns namtrace-all $nf
set f [open out.tr w]
sns trace-all $f

proc finish {} {
    global ns f nf
        $ns flush-trace
    close $f
    close $nf
        exec nam out.nam &
        exit 0
}
sns at 5.0 "finish"
sns run
```

Рис. 3.1: Шаблон.

3.0.2 Два узла

Постановка задачи. Требуется смоделировать сеть передачи данных, состоящую из двух узлов, соединённых дуплексной линией связи с полосой пропускания 2 Мб/с и задержкой 10 мс, очередью с обслуживанием типа DropTail. От одного узла к другому по протоколу UDP осуществляется передача пакетов, размером 500 байт, с постоянной скоростью 200 пакетов в секунду.

Для рассмотрения этого примера я создала следующий файл example1.tcl (рис. 3.2):

```
/vbox/mip/lab-ns/example1.tcl - Mousepad
 Файл Правка Поиск Вид Документ Справка
set ns [new Simulator]
set nf [open out.nam w]
$ns namtrace-all $nf
set f [open out.tr w]
$ns trace-all $f
proc finish {} {
     global ns f nf
             $ns flush-trace
close $f
close $nf
              exec nam out.nam &
              exit 0
set N 2
set n($i) [$ns node]
}
$ns duplex-link $n(0) $n(1) 2Mb 10ms DropTail
set udp0 [new Agent/UDP]
$ns attach-agent $n(0) $udp0
set cbr0 [new Application/Traffic/CBR]
$chr0 set nackstize 500
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0
set null0 [new Agent/Null]
$ns attach-agent $n(1) $null0
$ns connect $udp0 $null0
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
$ns at 5.0 "finish"
$ns run
```

Рис. 3.2: Пример 1.

Получилась следующая схема (рис. 3.3):

Рис. 3.3: Схема 1.

Она работала (рис. 3.4 и 3.5):

Рис. 3.4: Начало работы схемы 1.

Рис. 3.5: Конец работы схемы 1.

3.0.3 Три узла, усложнённая топология

Постановка задачи. Описание моделируемой сети: - сеть состоит из 4 узлов (n0, n1, n2, n3); - между узлами n0 и n2, n1 и n2 установлено дуплексное соединение с пропускной способностью 2 Мбит/с и задержкой 10 мс; - между узлами n2 и n3 установлено дуплексное соединение с пропускной способностью 1,7 Мбит/с и задержкой 20 мс; - каждый узел использует очередь с дисциплиной DropTail для накопления пакетов, максимальный размер которой составляет 10; - TCP-источник на узле n0 подключается к TCP-приёмнику на узле n3 (по-умолчанию, максимальный размер пакета, который TCP-агент может генерировать, равняется 1КВуte); - TCP-приёмник генерирует и отправляет АСК пакеты отправителю и откидывает полученные пакеты; - UDP-агент, который

подсоединён к узлу n1, подключён к null-агенту на узле n3 (null-агент просто откидывает пакеты); - генераторы трафика ftp и cbr прикреплены к TCP и UDP агентам соответственно; - генератор cbr генерирует пакеты размером 1 Кбайт со скоростью 1 Мбит/с; - работа cbr начинается в 0,1 секунду и прекращается в 4,5 секунды, а ftp начинает работать в 1,0 секунду и прекращает в 4,0 секунды. Для рассмотрения этого примера я создала следующий файл example2.tcl (рис. 3.6):

```
/vbox/mip/lab-ns/example2.tcl - Mousepad
 Файл Правка Поиск Вид Документ Справка
set ns [new Simulator]
set nf [open out.nam w]
$ns namtrace-all $nf
set f [open out.tr w]
$ns trace-all $f
proc finish {} {
           global ns f nf
           $ns flush-trace
           close $f
           close $nf
           exec nam out.nam &
           exit 0
set N 4
$ns duplex-link $n(0) $n(2) 2Mb 10ms DropTail
$ns duplex-link $n(1) $n(2) 2Mb 10ms DropTail
$ns duplex-link $n(3) $n(2) 2Mb 10ms DropTail
$ns duplex-link-op $n(0) $n(2) orient right-down
$ns duplex-link-op $n(1) $n(2) orient right-up
$ns duplex-link-op $n(2) $n(3) orient right
 set udp0 [new Agent/UDP]
$ns attach-agent $n(0) $udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0
set tcp1 [new Agent/TCP]
$ns attach-agent $n(1) $tcp1
 set ftp [new Application/FTP]
$ftp attach-agent $tcp1
set null0 [new Agent/Null]
$ns attach-agent $n(3) $null0
set sink1 [new Agent/TCPSink]
$ns attach-agent $n(3) $sink1
 $ns connect $udp0 $null0
$ns connect $tcp1 $sink1
 $ns color 1 Blue
 $ns color 2 Red
$udp0 set class_
$tcp1 set class 2
$ns duplex-link-op $n(2) $n(3) queuePos 0.5
$ns queue-limit $n(2) $n(3) 20
$ns at 0.5 "$cbr0 start"
$ns at 0.5 $core start

$ns at 1.0 "$ftp start"

$ns at 4.0 "$ftp stop"
$ns at 4.5 "$cbr0 stop"
 $ns at 5.0 "finish"
$ns run
```

Рис. 3.6: Пример 2.

Получилась следующая схема (рис. 3.7):

Рис. 3.7: Схема 2.

Она работала (рис. 3.8, 3.9 и 3.10):

Рис. 3.8: Начало работы схемы 2.

Рис. 3.9: Передача из нового узла (схема 2) и потеря пакетов из очереди.

Рис. 3.10: Конец работы схемы 2.

3.0.4 Кольцевая топология

Постановка задачи. Требуется построить модель передачи данных по сети с кольцевой топологией и динамической маршрутизацией пакетов: - сеть состоит из 7 узлов, соединённых в кольцо; - данные передаются от узла n(0) к узлу n(3) по кратчайшему пути; - с 1 по 2 секунду модельного времени происходит разрыв соединения между узлами n(1) и n(2); - при разрыве соединения маршрут передачи данных должен измениться на резервный.

Для рассмотрения этого примера я создала следующий файл example3.tcl (рис. 3.11):

```
/vbox/mip/lab-ns/example3.tcl - Mousepad
 Файл Правка Поиск Вид Документ Справка
set ns [new Simulator]
 $ns rtproto DV
 set nf [open out.nam w]
 $ns namtrace-all $nf
set f [open out.tr w]
$ns trace-all $f
proc finish {} {
     global ns f nf
          $ns flush-trace close $f
          close $nf
          exec nam out.nam &
          exit 0
 set N 7
 for {set i 0} {$i < $N} {incr i} {</pre>
          set n($i) [$ns node]
set udp0 [new Agent/UDP]
$ns attach-agent $n(0) $udp0
set cbr0 [new Agent/CBR]
 $ns attach-agent $n(0) $cbr0
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
 set null0 [new Agent/Null]
 $ns attach-agent $n(3) $null0
$ns connect $cbr0 $null0
$ns at 0.5 "$cbr0 start"
$ns rtmodel-at 1.0 down $n(1) $n(2)
$ns rtmodel-at 2.0 up $n(1) $n(2)
$ns at 4.5 "$cbr0 stop"
$ns at 5.0 "finish"
$ns run
```

Рис. 3.11: Пример 3.

Получилась следующая схема (рис. 3.12):

Рис. 3.12: Схема 3.

Она работала (рис. 3.13, 3.14, 3.15 и 3.16):

Рис. 3.13: Начало работы схемы 3.

Рис. 3.14: Разрыв соединения между 1 и 2 и передача по альтернативному пути.

Рис. 3.15: Восстановление соединения и передача по кратчайшему пути.

Рис. 3.16: Конец работы схемы 3.

3.0.5 Доработка схемы

Упражнение. Внесите следующие изменения в реализацию примера с кольцевой топологией сети: - топология сети должна соответствовать представленной на рис. 3.17:

Рис. 3.17: Схема для упражнения.

- передача данных должна осуществляться от узла n(0) до узла n(5) по кратчайшему пути в течение 5 секунд модельного времени;
- передача данных должна идти по протоколу TCP (тип Newreno), на принимающей стороне используется TCPSink-объект типа DelAck; поверх TCP работает протокол FTP с 0,5 до 4,5 секунд модельного времени;
- с 1 по 2 секунду модельного времени происходит разрыв соединения между узлами n(0) и n(1);
- при разрыве соединения маршрут передачи данных должен измениться на резервный, после восстановления соединения пакеты снова должны пойти по кратчайшему пути.

Для выполнения этого упражнения я создала следующий файл task.tcl (рис. 3.18):

```
/vbox/mip/lab-ns/task.tcl - Mousepad
                                                                                - + ×
 Файл Правка Поиск Вид Документ Справка
 set ns [new Simulator]
 $ns rtproto DV
set nf [open out.nam w]
$ns namtrace-all $nf
set f [open out.tr w]
$ns trace-all $f
proc finish {} {
         global ns f nf
          $ns flush-trace
         close $f
         close $nf
         exec nam out.nam &
         exit 0
}
 set N 5
 for {set i 0} {$i < $N} {incr i} {
         set n($i) [$ns node]
 set n5 [$ns node]
$ns duplex-link $n5 $n(1) 1Mb 10ms DropTail
set tcp1 [new Agent/TCP/Newreno]
 $ns attach-agent $n(0) $tcp1
 set ftp [new Application/FTP]
$ftp attach-agent $tcp1
set sink1 [new Agent/TCPSink/DelAck]
$ns attach-agent $n5 $sink1
$ns connect $tcpl $sinkl
$ns at 0.5 "$ftp start"
$ns rtmodel-at 1.0 down $n(0) $n(1)
$ns rtmodel-at 2.0 up $n(0) $n(1)

$ns at 4.5 "$ftp stop"

$ns at 5.0 "finish"
$ns run
```

Рис. 3.18: Упражнение.

Получилась следующая схема (рис. 3.12):

Рис. 3.19: Схема упражнения.

Она работала (рис. 3.20, 3.21, 3.22, 3.23 и 3.24):

Рис. 3.20: Начало работы схемы упражнения.

Рис. 3.21: Начало передачи пакетов.

Рис. 3.22: Разрыв соединения между 1 и 0 и передача по альтернативному пути.

Рис. 3.23: Восстановление соединения и передача по кратчайшему пути.

Рис. 3.24: Конец работы схемы 3.

4 Выводы

Приобрели навыки моделирования сетей передачи данных с помощью средства имитационного моделирования NS-2, проанализировали полученные результаты моделирования и доработали схему.