The following notes try to show that for $0 , <math>\lim_{n \to \infty} \frac{1}{n^p} = 0$.

Step 1:
$$\lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) = \infty$$

First, we prove by mathematical induction that

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^m} \ge 1 + \frac{m}{2} \quad \forall m \in \mathbb{N}$$

$$m = 1$$
, LHS = $1 + \frac{1}{2}$; RHS = $1 + \frac{1}{2}$. ::LHS \ge RHS

It is true for m = 1

Suppose that
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^k} \ge 1 + \frac{k}{2}$$
 for some $k \in \mathbb{N}$,

$$m = k + 1$$
, LHS = $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^{k}} + \underbrace{\frac{1}{2^{k} + 1} + \dots + \frac{1}{2^{k+1}}}_{2^{k} \text{ terms}}$
 $\ge 1 + \frac{k}{2} + \underbrace{\frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} + \dots + \frac{1}{2^{k+1}}}_{2^{k} \text{ equal terms}}$

$$\geq 1 + \frac{k}{2} + \frac{2^{k}}{2^{k+1}}$$

$$= 1 + \frac{k}{2} + \frac{1}{2}$$

$$= 1 + \frac{k+1}{2} = \text{RHS}$$

It is also true for m = k + 1 if it is true for m = k.

By the principle of mathematical induction, $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^m} \ge 1 + \frac{m}{2} \quad \forall m \in \mathbb{N}$

Now for n > 1, $\exists m \in \mathbb{N}$ such that $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ge 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^m} \ge 1 + \frac{m}{2}$

$$\lim_{m\to\infty} \left(1+\frac{m}{2}\right) = \infty$$

$$\therefore \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) = \infty$$

Step 2: $\lim_{n\to\infty} \log n = \infty$

Proof: Consider the curve $y = \frac{1}{x}$ for $1 \le x \le n$.

Area under the curve ≥ sum of areas of rectangles width = 1 under the curve

$$\int_{1}^{n} \frac{1}{x} dx \ge \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$\ln x \Big|_{1}^{n} \ge \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$\ln n \ge \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$\therefore \lim_{n \to \infty} \log n \ge \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) - 1 = \infty$$

Step 3: For
$$0 , $1 \le x \le n$$$

$$x^{p} \ge 1$$

$$\frac{x^{p}}{x} \ge \frac{1}{x}$$

$$\frac{1}{x^{1-p}} \ge \frac{1}{x} \text{ for } 1 \le x \le n$$

$$\int_{1}^{n} \frac{1}{x^{1-p}} dx \ge \int_{1}^{n} \frac{1}{x} dx$$

$$\frac{x^{p}}{p} \Big|_{1}^{n} \ge \ln x \Big|_{1}^{n}$$

$$\frac{n^{p} - 1}{p} \ge \ln n$$

$$n^{p} \ge p \ln n + 1$$

$$\therefore \lim_{n\to\infty} (p\ln n + 1) = \infty$$

$$\therefore \lim_{n\to\infty} n^p = \infty$$

$$\therefore \lim_{n\to\infty} \frac{1}{n^p} = \frac{1}{\infty} = 0$$