Left Side

FLOWCHART:

Use only Pencil for flow chart drawing and writing

OUTPUT:

The code's output has to be printed and copied here.

Right Side

About Yourself using print function

AIM:

Printing 5 lines about myself using *print()*.

TASK:

Write a python code to print 5 lines about myself using 'print' function

CODE:

Python program to print the given text in double quotes

text = ""Hello, my name is Panja Bhoodham, and I am currently studying in 9th grade at T.I.School. I am passionate about science and enjoy learning about how things work in the world around us. In my free time, I like to read books, play sports, and spend time with my friends. My favorite subjects are Mathematics and Physics, and I hope to pursue a career in engineering in the future. I believe in hard work and always strive to improve myself both academically and personally.""

Print the text print(text)

Left Side

FLOWCHART:

Right Side

Calculate energy using formula

AIM:

Use of arithmetic operators

TASK:

Write a python code to calculate energy using this formula: energy=mgh

CODE:

```
# Given constant for acceleration due to gravity (in m/s^2)
g = 9.8
# Acceleration due to gravity in meters per second squared
# Input values from the user
mass = float(input("Enter the mass of the object in kilograms (kg): "))
height = float(input("Enter the height in meters (m): "))
# Calculate energy using the formula: energy = m * g * h
energy = mass * g * height
# Display the result
print(f"The gravitational potential energy is: {energy} joules")
```

Left Side

FLOWCHART:

START

INPUT u, t, a

Use only Pencil for flow chart drawing and writing

Identifiers:

- · Velocity (u)
- Time (t)
- Acceleration (a)

distance = (u x t) + (0.5 x a x t ^ 2)

distance

STOP

OUTPUT:

The code's output has to be printed and copied here.

Right Side

Calculate distance

AIM:

Use of arithmetic operators

TASK:

Write a program to calculate distance using the formula distance=ut+½ at2

CODE:

```
# Python program to calculate distance using the formula:
# Input values from the user
u = float(input("Enter the initial velocity (u) in meters per second (m/s):
"))
t = float(input("Enter the time (t) in seconds (s): "))
```

a = float(input("Enter the acceleration (a) in meters per second squared (m/s^2) : "))

Calculate distance using the formula: distance = ut + (1/2) * a * t^2 distance = (u * t) + (0.5 * a * t**2)

Display the result

print(f"The distance traveled is: {distance} meters")