

MACHINE LEARNING LABORATORY RECORD BOOK

Sahyadri College of Engineering & Management Mangaluru

Name:		
USN:		
BE Semester:		
Branch:	Section:	•••••
Subject Code:		

Empowering Young Minds

Vision

To be a premier institution in Technology and Management by fostering excellence in education, innovation, incubation and values to inspire and empower the young minds.

Mission

ME1: Creating an academic ambience to impart holistic education focusing on individual growth, integrity, ethical values and social responsibility.

ME2: Develop skill based learning through industry-institution interaction to enhance competency and promote entrepreneurship.

ME3: Fostering innovation and creativity through competitive environment with state-of-the-art infrastructure.

Goal

Good Governance & Administration Residential Campus & Township Establishment

- Attracting best talented students
- Best Placements
- Alumni Leveraging
- Attraction, Development and retention of best faculty
- Best teaching, learning and evaluation systems
- Establishing Research & Innovation Center
- Industry Institute relationships & Consultancy
- MOUs with higher learning universities / institutions / R&D Centers
- Autonomous / University Status
- NBA ABET / NAAC Accreditation
- Social extension / village

SAHYADRI

College of Engineering & Management (Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

CERTIFICATE

This is to certify that

for the year 2021-2022

Date:

Head of the Department

Marks

Signature of the Staff Member In-Charge of the Batch

CONTENTS					
C.N. D.A.			n	Marks	
S.No.	Date	Experiments	Pages	Max	Awarded
1					
2					
3					
4					
5					
6					
7					
8					
9					

Experiment:1 Implement A* Search algorithm.

```
.def aStarAlgo(start_node, stop_node):
          open_set = set(start_node)
    closed\_set = set()
    g = \{\} #store distance from starting node
    parents = {}# parents contains an adjacency map of all nodes
    #ditance of starting node from itself is zero
    g[start\_node] = 0
    #start_node is root node i.e it has no parent nodes
    #so start_node is set to its own parent node
    parents[start_node] = start_node
          while len(open\_set) > 0:
       n = None
       #node with lowest f() is found
       for v in open_set:
         if n == N one or g[v] + heuristic(v) < g[n] + heuristic(n):
            n = v
       if n == stop\_node or Graph\_nodes[n] == None:
         pass
       else:
         for (m, weight) in get_neighbors(n):
           #nodes 'm' not in first and last set are added to first
            #n is set its parent
            if m not in open_set and m not in closed_set:
              open_set.add(m)
              parents[m] = n
              g[m] = g[n] + weight
               #for each node m,compare its distance from start i.e g(m) to the
            #from start through n node
            else:
              if g[m] > g[n] + weight:
                 #update g(m)
                 g[m] = g[n] + weight
                 #change parent of m to n
                 parents[m] = n
                 #if m in closed set,remove and add to open
                 if m in closed_set:
                    closed_set.remove(m)
                    open_set.add(m)
```

```
if n == None:
          print('Path does not exist!')
          return None
       # if the current node is the stop_node
       # then we begin reconstructin the path from it to the start_node
       if n == stop\_node:
          path = []
          while parents[n] != n:
            path.append(n)
            n = parents[n]
          path.append(start_node)
          path.reverse()
          print('Path found: {}'.format(path))
          return path
        # remove n from the open_list, and add it to closed_list
       # because all of his neighbors were inspected
       open_set.remove(n)
       closed_set.add(n)
     print('Path does not exist!')
     return None
#define fuction to return neighbor and its distance
#from the passed node
def get_neighbors(v):
  if v in Graph_nodes:
     return Graph_nodes[v]
  else:
    return None
#for simplicity we ll consider heuristic distances given
#and this function returns heuristic distance for all nodes
def heuristic(n):
     H_dist = {
       'A': 10,
       'B': 8,
       'C': 5,
       'D': 7,
       'E': 3,
```

```
'F': 6,
         'G': 5,
        'H': 3,
        'I': 1,
         'J': 0
      }
     return H_dist[n]
#Describe your graph here
Graph_nodes = {
  'A': [('B', 6), ('F', 3)],
  'B': [('C', 3), ('D', 2)],
  'C': [('D', 1), ('E', 5)],
  'D': [('C', 1), ('E', 8)],
  'E': [('I', 5), ('J', 5)],
  'F': [('G', 1),('H', 7)],
  'G': [('I', 3)],
  'H': [('I', 2)],
  T': [('E', 5), ('J', 3)],
aStarAlgo('A',\,'J')
OUTPUT:
Path found: ['A', 'F', 'G', 'I', 'J']
['A', 'F', 'G', 'I', 'J']
```

Experiment:2 Implement AO* Search algorithm.

```
def recAOStar(n):
  global finalPath
  print("Expanding Node:",n)
  and_nodes = []
  or nodes =[]
  if(n in allNodes):
    if 'AND' in allNodes[n]:
       and_nodes = allNodes[n]['AND']
    if 'OR' in allNodes[n]:
       or_nodes = allNodes[n]['OR']
  if len(and nodes)==0 and len(or nodes)==0:
    return
    solvable = False
  marked = \{ \}
    while not solvable:
    if len(marked)==len(and_nodes)+len(or_nodes):
       min_cost_least,min_cost_group_least = least_cost_group(and_nodes,or_nodes,{})
       solvable = True
       change_heuristic(n,min_cost_least)
       optimal_child_group[n] = min_cost_group_least
       continue
    min_cost,min_cost_group = least_cost_group(and_nodes,or_nodes,marked)
    is\_expanded = False
    if len(min_cost_group)>1:
       if(min_cost_group[0] in allNodes):
         is_expanded = True
         recAOStar(min cost group[0])
       if(min_cost_group[1] in allNodes):
         is_expanded = True
         recAOStar(min_cost_group[1])
    else:
       if(min_cost_group in allNodes):
         is_expanded = True
         recAOStar(min_cost_group)
    if is_expanded:
       min_cost_verify, min_cost_group_verify = least_cost_group(and_nodes, or_nodes,
{})
       if min_cost_group == min_cost_group_verify:
         solvable = True
         change_heuristic(n, min_cost_verify)
         optimal_child_group[n] = min_cost_group
    else:
       solvable = True
       change_heuristic(n, min_cost)
```

```
optimal_child_group[n] = min_cost_group
    marked[min_cost_group]=1
  return heuristic(n)
def least_cost_group(and_nodes, or_nodes, marked):
  node_wise_cost = {}
  for node_pair in and_nodes:
    if not node_pair[0] + node_pair[1] in marked:
       cost = 0
       cost = cost + heuristic(node\_pair[0]) + heuristic(node\_pair[1]) + 2
       node_wise_cost[node_pair[0] + node_pair[1]] = cost
  for node in or nodes:
    if not node in marked:
       cost = 0
       cost = cost + heuristic(node) + 1
       node_wise_cost[node] = cost
  min cost = 999999
  min_cost_group = None
  for costKey in node_wise_cost:
    if node wise cost[costKey] < min cost:
       min_cost = node_wise_cost[costKey]
       min\_cost\_group = costKey
  return [min_cost, min_cost_group]
def heuristic(n):
  return H_dist[n]
def change_heuristic(n, cost):
  H_{dist}[n] = cost
  return
def print_path(node):
  print(optimal_child_group[node], end="")
  node = optimal_child_group[node]
  if len(node) > 1:
    if node[0] in optimal_child_group:
       print("->", end="")
       print_path(node[0])
    if node[1] in optimal_child_group:
       print("->", end="")
       print_path(node[1])
  else:
    if node in optimal_child_group:
       print("->", end="")
       print_path(node)
H_dist = {
'A': -1,
'B': 4,
'C': 2,
'D': 3,
```

```
'E': 6,
'F': 8,
'G': 2,
'H': 0,
'I': 0,
'J': 0
}
allNodes = {
'A': {'AND': [('C', 'D')], 'OR': ['B']},
'B': {'OR': ['E', 'F']},
'C': {'OR': ['G'], 'AND': [('H', 'I')]},
'D': {'OR': ['J']}
optimal_child_group = {}
optimal_cost = recAOStar('A')
print('Nodes which gives optimal cost are')
print_path('A')
print('\nOptimal Cost is :: ', optimal_cost)
Output
Expanding Node: A
Expanding Node: B
Expanding Node: C
Expanding Node: D
Nodes which gives optimal cost are
CD->HI->J
Optimal Cost is :: 5
```

Experiment 3: Candidate-Elimination Algorithm.

Aim: For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

```
from pandas import DataFrame
data=DataFrame.from_csv('EnjoySport.csv')
concepts=data.values[:,:-1]
target=data.values[:,-1]
def learn(concepts, target):
  specific_h = concepts[0].copy()
  general_h = [['?' for i in range(len(specific_h))] for i in range(len(specific_h))]
  for i, h in enumerate(concepts):
    if target[i] == "yes":
       #print(target[i])
       for x in range(len(specific_h)):
         if h[x] != specific h[x]:
            specific_h[x] = '?'
            general_h[x][x] = '?'
    if target[i] == "no":
       for x in range(len(specific_h)):
if h[x] != specific_h[x]:
            general_h[x][x] = specific_h[x]
         else:
            general_h[x][x] = '?'
  indices = [i for i,val in enumerate(general_h) if val==['?' for i in range(len(specific_h))]]
  for i in indices:
    general_h.remove(['?' for i in range(len(specific_h))])
  return specific_h, general_h
s_final, g_final = learn(concepts, target)
print("Final S:", s final)
print("Final G:", g_final)
Output:
Final S: ['sunny' 'warm' '?' 'strong' '?' '?']
Final G: [['sunny', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?', '?']]
```

	sky	airTemp	humidity	wind	water	forecast	enjoySport
S1.No							
0	sunny	warm	normal	strong	warm	same	yes
1	sunny	warm	high	strong	warm	same	yes
2	rainy	cold	high	strong	warm	change	no
3	sunny	warm	high	strong	cool	change	yes

Experiment 4: Decision Tree based ID3 Algorithm.

Aim: Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
def infoGain(P, N):
  import math
  return -P / (P + N) * math.log2(P / (P + N)) - N / (P + N) * math.log2(N / (P + N))
def insertNode(tree, addTo, Node):
  for k, v in tree.items():
     if isinstance(v, dict):
       tree[k] = insertNode(v, addTo, Node)
  if addTo in tree:
     if isinstance(tree[addTo], dict):
       tree[addTo][Node] = 'None'
     else:
       tree[addTo] = {Node:'None'}
  return tree
def insertConcept(tree, addTo, Node):
  for k, v in tree.items():
     if isinstance(v, dict):
       tree[k] = insertConcept(v, addTo, Node)
  if addTo in tree:
     tree[addTo] = Node
  return tree
def getNextNode(data, AttributeList, concept, conceptVals, tree, addTo):
  Total = data.shape[0]
  if Total == 0:
     return tree
  countC = \{\}
  for cVal in conceptVals:
     dataCC = data[data[concept] = = cVal]
     countC[cVal] = dataCC.shape[0]
  if countC[conceptVals[0]] = = 0:
     tree = insertConcept(tree, addTo, conceptVals[1])
     return tree
  if countC[conceptVals[1]] = = 0:
     tree = insertConcept(tree, addTo, conceptVals[0])
     return tree
```

```
ClassEntropy = infoGain(countC[conceptVals[1]],countC[conceptVals[0]])
  Attr = \{\}
  for a in AttributeList:
     Attr[a] = list(set(data[a]))
  AttrCount = {}
  EntropyAttr = {}
  for att in Attr:
     for vals in Attr [att]:
       for c in conceptVals:
          iData = data[data[att] = = vals]
          dataAtt = iData[iData[concept] = = c]
          AttrCount[c] = dataAtt.shape[0]
       TotalInfo = AttrCount[conceptVals[1]] + AttrCount[conceptVals[0]]
       if AttrCount[conceptVals[1]] = = 0 or AttrCount[conceptVals[0]] = = 0:
          InfoGain=0
       else:
          InfoGain = infoGain(AttrCount[conceptVals[1]], AttrCount[conceptVals[0]])
       if att not in EntropyAttr:
          EntropyAttr[att] = ( TotalInfo / Total ) * InfoGain
       else:
          EntropyAttr[att] = EntropyAttr[att] + ( TotalInfo / Total ) * InfoGain
  Gain = \{\}
  for g in EntropyAttr:
     Gain[g] = ClassEntropy - EntropyAttr[g]
  Node = max(Gain, key = Gain.get)
  tree = insertNode(tree, addTo, Node)
  for nD in Attr[Node]:
     tree = insertNode(tree, Node, nD)
     newData = data[data[Node] = = nD].drop(Node, axis = 1)
     AttributeList=list(newData)[:-1] #New Attribute List
     tree = getNextNode(newData, AttributeList, concept, conceptVals, tree, nD)
  return tree
def main():
  from pandas import DataFrame
  data = DataFrame.from_csv('PlayTennis.csv')
  print(data)
  AttributeList = list(data)[:-1]
  concept = str(list(data)[-1])
  conceptVals = list(set(data[concept]))
  tree = getNextNode(data, AttributeList, concept, conceptVals, {'root':'None'}, 'root')
  print(tree)
```

main()

Output:

```
{'root': {'Outlook': {'Sunny': {'Humidity': {'Normal': 'Yes', 'High': 'No'}},
   'Rain': {'Wind': {'Strong': 'No', 'Weak':'Yes'}}, 'Overcast': 'Yes'}}}
```

	Outlook	Temperature	Humidity	Wind	PlayTennis
slno					
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2	Overcast	Hot	High	Weak	Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Rain	Cool	Normal	Strong	No
6	Overcast	Cool	Normal	Strong	Yes
7	Sunny	Mild	High	Weak	No
8	Sunny	Cool	Normal	Weak	Yes
9	Rain	Mild	Normal	Weak	Yes
10	Sunny	Mild	Normal	Strong	Yes
11	Overcast	Mild	High	Strong	Yes
12	Overcast	Hot	Normal	Weak	Yes
13	Rain	Mild	High	Strong	No

Experiment 5: Artificial Neural Network using Back propagation Algorithm.

Aim: Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.

```
import numpy as np
X = \text{np.array}(([2, 9], [1, 5], [3, 6]), \text{dtype=float})
y = np.array(([92], [86], [89]), dtype=float)
X = X/np.amax(X,axis=0)
y = y/100
def sigmoid (x):
  return 1/(1 + np.exp(-x))
def derivatives_sigmoid(x):
  return x * (1 - x)
epoch=7000
learning_rate=0.1
inputlayer\_neurons = 2
hidden layer_neurons = 3
output\_neurons = 1
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wo=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bo=np.random.uniform(size=(1,output_neurons))
for i in range(epoch):
  net_h=np.dot(X,wh) + bh
  sigma_h= sigmoid(net_h)
  net_o= np.dot(sigma_h,wo)+ bo
  output = sigmoid(net_o)
  deltaK = (y-output)* derivatives_sigmoid(output)
  deltaH = deltaK.dot(wo.T) * derivatives_sigmoid(sigma_h)
  wo = wo + sigma_h.T.dot(deltaK) *learning_rate
  wh = wh + X.T.dot(deltaH) *learning_rate
print("Input: \n'' + str(X))
print("Actual Output: \n" + str(y))
print("Predicted Output: \n" ,output)
```

Experiment 6: Naïve Bayes Classifier.

Aim: Write a program to implement the Naïve Bayes classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

```
def probAttr(data,attr,val):
  Total=data.shape[0]
  from collections import Counter
  cnt=Counter(x for x in data[attr])
  return cnt[val],cnt[val]/Total
def probAttrConcept(data,attr,val,concept,cVal,countConcept):
  count={}
  prob={ }
  C = data[concept]
  A = data[attr]
  for a in range(len(data[attr])):
     for v in val:
       if(A[a] == v and C[a] == cVal):
          if v not in count:
            count[v]=1
          else:
            count[v]=count[v]+1
  for a in count:
     prob[a] = count[a]/countConcept
  return prob
def train(data,AttributeList,concept):
  Attr={}
  probability_list={ }
  #Get attribute values
  for a in AttributeList:
     Attr[a] = list(set(data[a]))
  conceptVals = list(set(data[concept]))
  conceptProbs = {}
  countConcept={ }
  AttrConcept = {}
  for cVal in conceptVals:
     countConcept[cVal],conceptProbs[cVal] = probAttr(data,concept,cVal)
  for val in Attr:
     probability_list[val]={ }
     AttrConcept[val] = {}
     for v in Attr[val]:
       a,probability_list[val][v]=probAttr(data,val,v)
     for cVal in conceptVals:
```

```
AttrConcept[val][cVal]=probAttrConcept(data,val,Attr[val],concept,cVal,countConcept[cVal
1)
  print("P(A): ",conceptProbs,"\n")
  print("P(X/A) : ",AttrConcept,"\n")
  print("P(X): ",probability_list,"\n")
  return conceptProbs,AttrConcept,probability_list
def
test(examples, AttributeList, conceptProbs, AttrConcept, probability_list, data, concept_list, Total
):
  misclassification count=0
  Total1 = len(examples)-1
  for ex in range(1,len(examples)):
    px=\{\}
    for c in concept_list:
       for x in range(1,len(examples[ex])-1):
         for a in AttributeList:
            if examples[ex][x] in AttrConcept[a][c]:
              if c not in px:
                 px[c] =
1*AttrConcept[a][c][examples[ex][x]]/probability_list[a][examples[ex][x]]
              else:
                 px[c] =
px[c]*AttrConcept[a][c][examples[ex][x]]/probability_list[a][examples[ex][x]]
       px[c] = px[c]*conceptProbs[c]
    print(px)
    classification = max(px,key=px.get)
    print("Classification:",classification,"Expected:",examples[ex][-1])
    if(classification!=examples[ex][-1]):
       misclassification_count+=1
  misclassification_rate=misclassification_count*100/Total1
  accuracy=100-misclassification_rate
  print("Misclassification Count={}".format(misclassification_count))
  print("Misclassification Rate={}%".format(misclassification rate))
  print("Accuracy={}%".format(accuracy))
def main():
  import pandas as pd
  from pandas import DataFrame
  from collections import Counter
  data = DataFrame.from_csv('PlayTennis_train1.csv')
  AttributeList=list(data)[:-1]
  num of attributes=len(AttributeList)
  concept=str(list(data)[-1])
  Total=data.shape[0]
```

```
conceptProbs,AttrConcept,probability_list = train(data,AttributeList,concept)
  import csv
  with open('PlayTennis_test1.csv') as csvFile:
     examples = [list(line) for line in csv.reader(csvFile)]
  concept_list =list(Counter(x for x in data[concept]))
test(examples, AttributeList, conceptProbs, AttrConcept, probability_list, data, concept_list, Total
)
main()
Output:
P(A): {'No': 0.35714285714285715, 'Yes': 0.6428571428571429}
'Sunny': {'No': 0.6, 'Yes': 0.2222222222222}},
'Temperature': {'Cool': {'No': 0.2, 'Yes': 0.3333333333333333}, 'Hot': {'No': 0.4, 'Yes': 0.22222222222222},
                        'Mild': {'No': 0.4, 'Yes': 0.44444444444444}},
 'Humidity': {'Normal': {'No': 0.2, 'Yes': 0.6666666666666666666}, 'High': {'No': 0.8, 'Yes': 0.333333333333333}},
     'Wind': {'Strong': {'No': 0.6, 'Yes': 0.33333333333333}, 'Weak': {'No': 0.4, 'Yes': 0.66666666666666}}}
P(X): {'Outlook': {'Rain': 0.35714285714285715, 'Overcast': 0.2857142857142857, 'Sunny': 0.35714285714285715},
        'Temperature': {'Cool': 0.2857142857142857, 'Hot': 0.2857142857142857, <sup>'</sup>Mild': 0.42857142857142855}, 'Humidity': {'Normal': 0.5, 'High': 0.5},
        'Wind': {'Strong': 0.42857142857142855, 'Weak': 0.5714285714285714}}
{'No': 0.9408000000000001, 'Yes': 0.24197530864197522}
Classification : No Expected : No
Misclassification Count=0
Misclassification Rate=0.0%
Accuracy=100.0%
```

Training Set

	Outlook	Temperature	Humidity	Wind	PlayTennis
slno					
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2	Overcast	Hot	High	Weak	Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Rain	Cool	Normal	Strong	No
6	Overcast	Cool	Normal	Strong	Yes
7	Sunny	Mild	High	Weak	No
8	Sunny	Cool	Normal	Weak	Yes
9	Rain	Mild	Normal	Weak	Yes
10	Sunny	Mild	Normal	Strong	Yes
11	Overcast	Mild	High	Strong	Yes
12	Overcast	Hot	Normal	Weak	Yes
13	Rain	Mild	High	Strong	No

Testing example

	Outlook	Temperature	Humidity	Wind	PlayTennis
slno					
0	Sunny	Cool	High	Strong	No

Experiment 7: Clustering using EM Algorithm & k-Means Algorithm.

Aim: Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

```
from sklearn.cluster import KMeans
from sklearn import preprocessing
from sklearn.mixture import GaussianMixture
from sklearn.datasets import load_iris
import sklearn.metrics as sm
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dataset=load_iris()
X=pd.DataFrame(dataset.data)
X.columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']
y=pd.DataFrame(dataset.target)
y.columns=['Targets']
plt.figure(figsize=(14,7))
colormap=np.array(['red','lime','black'])
#REAL PLOT
plt.subplot(1,3,1)
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y.Targets],s=40)
plt.title('Real')
#KMeans -PLOT
plt.subplot(1,3,2)
model=KMeans(n_clusters=3)
model.fit(X)
predY=np.choose(model.labels ,[0,1,2]).astype(np.int64)
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[predY],s=40)
plt.title('KMeans')
#GMM PLOT
scaler=preprocessing.StandardScaler()
scaler.fit(X)
xsa=scaler.transform(X)
xs=pd.DataFrame(xsa,columns=X.columns)
gmm=GaussianMixture(n_components=3)
gmm.fit(xs)
y_cluster_gmm=gmm.predict(xs)
plt.subplot(1,3,3)
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y_cluster_gmm],s=40)
```

plt.title('GMM Classification')

Output

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width
Ø	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1
10	5.4	3.7	1.5	0.2
11	4.8	3.4	1.6	0.2
12	4.8	3.0	1.4	0.1
13	4.3	3.0	1.1	0.1
14	5.8	4.0	1.2	0.2
15	5.7	4.4	1.5	0.4
16	5.4	3.9	1.3	0.4
17	5.1	3.5	1.4	0.3
18	5.7	3.8	1.7	0.3
19	5.1	3.8	1.5	0.3
20	5.4	3.4	1.7	0.2
21	5.1	3.7	1.5	0.4
22	4.6	3.6	1.0	0.2
23	5.1	3.3	1.7	0.5
24	4.8	3.4	1.9	0.2
25	5.0	3.0	1.6	0.2
26	5.0	3.4	1.6	0.4
27	5.2	3.5	1.5	0.2
28	5.2	3.4	1.4	0.2
29	4.7	3.2	1.6	0.2
• •			• • •	• • • •
136	6.3	3.4	5.6	2.4
137	6.4	3.1	5.5	1.8
138	6.0	3.0	4.8	1.8
139	6.9	3.1	5.4	2.1
140	6.7	3.1	5.6	2.4
141	6.9	3.1	5.1	2.3
142	5.8	2.7	5.1	1.9
143	6.8	3.2	5.9	2.3
144	6.7	3.3	5.7	2.5
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

Experiment 8: K-Nearest Neighbour Algorithm.

Aim: Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
dataset=load_iris()
X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=
0)
clf=KNeighborsClassifier(n_neighbors=1)
clf.fit(X_train,y_train)
for i in range(len(X_test)):
    x=X_test[i]
    x_new=np.array([x])
    prediction=clf.predict(x_new)

print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction])
print(clf.score(X_test,y_test))
```

Output:

```
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
```

```
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [2] ['virginica']
```

0.973684210526

	Sepal Length	Sepal Width	Petal Length	Petal Width
Ø	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1
10	5.4	3.7	1.5	0.2
11	4.8	3.4	1.6	0.2
12	4.8	3.0	1.4	0.1
13	4.3	3.0	1.1	0.1
14	5.8	4.0	1.2	0.2
15	5.7	4.4	1.5	0.4
16	5.4	3.9	1.3	0.4
17	5.1	3.5	1.4	0.3
18	5.7	3.8	1.7	0.3
19	5.1	3.8	1.5	0.3
20	5.4	3.4	1.7	0.2
21	5.1	3.7	1.5	0.4
22	4.6	3.6	1.0	0.2
23	5.1	3.3	1.7	0.5
24	4.8	3.4	1.9	0.2
25	5.0	3.0	1.6	0.2
26	5.0	3.4	1.6	0.4
27	5.2	3.5	1.5	0.2
28	5.2	3.4	1.4	0.2
29	4.7	3.2	1.6	0.2
		5.2	1.0	
136	6.3	3.4	5.6	2.4
137	6.4	3.1	5.5	1.8
138	6.0	3.0	4.8	1.8
139	6.9	3.1	5.4	2.1
140	6.7	3.1	5.6	2.4
141	6.9	3.1	5.1	2.3
142	5.8	2.7	5.1	1.9
143	6.8	3.2	5.9	2.3
144	6.7	3.3	5.7	2.5
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8
1-17	2.3	5.0	2.1	1.0

Experiment 9: Locally Weighted Regression Algorithm.

Aim: Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
from math import ceil
import numpy as np
from scipy import linalg
def lowess(x, y, f, iterations):
  n = len(x)
  r = int(ceil(f * n))
  h = [np.sort(np.abs(x - x[i]))[r]  for i in range(n)]
  w = np.clip(np.abs((x[:, None] - x[None, :]) / h), 0.0, 1.0)
  w = (1 - w ** 3) ** 3
  yest = np.zeros(n)
  delta = np.ones(n)
  for iteration in range(iterations):
     for i in range(n):
       weights = delta * w[:, i]
       b = np.array([np.sum(weights * y), np.sum(weights * y * x)])
       A = np.array([[np.sum(weights), np.sum(weights * x)],[np.sum(weights * x),
np.sum(weights * x * x)]])
       beta = linalg.solve(A, b)
       yest[i] = beta[0] + beta[1] * x[i]
     residuals = y - yest
     s = np.median(np.abs(residuals))
     delta = np.clip(residuals / (6.0 * s), -1, 1)
     delta = (1 - delta ** 2) ** 2
  return yest
def main():
  import math
  n = 100
  x = np.linspace(0, 2 * math.pi, n)
  y = np.sin(x) + 0.3 * np.random.randn(n)
  f = 0.25
  iterations=3
  yest = lowess(x, y, f, iterations)
  import matplotlib.pyplot as plt
  plt.plot(x,y,"r.")
  plt.plot(x,yest,"b-")
main()
```

Output:

