Machine Learning in Practice: a Crash Course

Lecture 4: Linear Regression & Bias-Variance

胡津铭 DolphinDB

Recap

- Our goal (supervised learning):
 - To learn a set of discriminant functions
- Bayesian framework
 - We could design an optimal classifier if we knew:
 - $P(y_i)$: priors and $P(x | y_i)$: likelihodd
 - Using training data to estimate $P(y_i)$ and $P(x | y_i)$
 - $P(y_i|x)$ is computed and be used as the discriminant functions
- Other possible ways?
 - Directly learning discriminant functions from the training data

Today

• Linear Regression

Overfitting

• Bias-Variance

Classification VS Regression

- Both are supervised learning methods
 - Goal: learn a mapping from inputs x to outputs y

- Classification (Categorization, Decision making…)
 - y is a categorical variable
- Regression
 - y is real-valued

Linear model

- Sample: $\mathbf{x} \in R^d$, $\mathbf{x} = [x_1, x_2, \cdots x_d]^T$
- Finds a linear function $\mathbf{w} = [w_1, w_2, \cdots, w_d]^T \in \mathbb{R}^d$, b
- Representation: $f(x) = w^T x + b$ $f(x) = w^T x$

$$\mathbf{x} = [x_1, x_2, \cdots x_d, 1]^T \in \mathbb{R}^{d+1}$$

$$\mathbf{w} = [w_1, w_2, \cdots w_d, b]^T \in \mathbb{R}^{d+1}$$

Polynomial Curve Fitting

$$f(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Oth Order Polynomial

$$f(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{i=0}^{\infty} w_i x^{i}$$

1st Order Polynomial

$$f(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{i=0}^{\infty} w_i x^{i}$$

3rd Order Polynomial

$$f(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{i=0}^{M} w_i x^i$$

Sum-of-Squares Error Function

- Training data:
 - $(x_1, y_1), (x_2, y_2), \cdots (x_n, y_n)$
- To learn f which f(x) = y
- Evaluation & Loss: $MSE(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i, w))^2$

Linear Regression Model

- Training data: (x_i, y_i)
- $f(x) = w_0 + \sum_{i=1}^d w_i x_i = w_0 + \mathbf{w}^T x$
 - $\mathbf{w} = [w_1, \dots, w_d]^T$ and w_0 : unknown parameters or coefficients
 - x: Feature vector, the outcome of feature engineering/extraction.
- Minimize the **mean-squared error**:

$$J = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

How to learn the parameters?

Optimize against the loss function!

• How to?
$$J = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 1. Least Square Error Solver
- 2. Gradient Descent

Least Square Errors Solver

$$J = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

• Using matrix notation for convenience

$$X = [x_1, \cdots, x_n], \qquad \mathbf{y} = [y_1, \cdots, y_n]^T$$

- Loss(\boldsymbol{w}) = $(\boldsymbol{y} \boldsymbol{X}^T \boldsymbol{w})^T (\boldsymbol{y} \boldsymbol{X}^T \boldsymbol{w})$
- Computing the gradient/derivative gives:

$$\nabla J = -2X(\mathbf{y} - X^T \mathbf{w})$$

• Setting the gradient to zero

$$XX^T w = Xy$$
$$w = (XX^T)^{-1}Xy$$

Geometry of least-squares fitting

- It can find a local minimum of a function
- One takes steps proportional to the negative of the gradient (or of the approximate gradient) of the function at the current point.

Algorithm 1 (Basic gradient descent)

```
1 begin initialize \mathbf{a}, criterion \theta, \eta(\cdot), k = 0
2 do k \leftarrow k + 1
3 \mathbf{a} \leftarrow \mathbf{a} - \eta(k) \nabla J(\mathbf{a})
4 until \eta(k) \nabla J(\mathbf{a}) < \theta
5 return \mathbf{a}
6 end
```


Algorithm 1 (Basic gradient descent)

```
1 <u>begin initialize</u> a, criterion \theta, \eta(\cdot), k = 0

2 <u>do</u> k \leftarrow k + 1

3 \mathbf{a} \leftarrow \mathbf{a} - \eta(k) \nabla J(\mathbf{a})

4 <u>until</u> \eta(k) \nabla J(\mathbf{a}) < \theta

5 <u>return</u> a

6 end
```


- Time complexity: O(ndt)
- Stochastic Gradient Descent(SGD)
 - Randomly select b(often called batch size) samples from the data
 - Time complexity: O(bdt)
- SGD(and its variants) are widely used, especially in deep learning

Convex Optimization

- Least Square Error is a so-called convex problem
- There are a bunch of optimization methods for such problems, called convex optimization

- Gradient Descent: first-order
- Newton's method: second-order
- Quasi Newton's methods
-
- If the problem is nonconvex, then can only find the local minimum/optima

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Overfitting

Model complexity

Issues with MSE Criterion

- Coefficients
- Overfit the noise in the data!

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Ridge Regression

• How to control the size of the coefficients in Regression?

•
$$\mathbf{w}^* = \arg\min \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \sum_{j=1}^{p} w_j^2$$

Local smoothness

Regularization

- Some of our priors to the model
- Reduce the size of hypothesis space
- Some good models may not be learned, but avoid learning some bad models

Model complexity

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

9th Order Polynomial

Regularization ($\ln \lambda = -18$)

Regularization ($\ln \lambda = 0$)

Regularization

Model complexity

Bias & Variance Decomposition

$$(y - f(x))^{2} = (y - E(y|x) + E(y|x) - f(x))^{2}$$

$$= (y - E(y|x))^{2} + (E(y|x) - f(x))^{2} + 2(y - E(y|x))(E(y|x) - f(x))$$

Expected Prediction Error:

$$EPE(f) = \int (f(x) - E(y|x))^2 p(x) dx + \int var(y|x) p(x) dx$$

$$[f(\mathbf{x};D) - E_D(f(\mathbf{x};D)) + E_D(f(\mathbf{x};D)) - E(\mathbf{y}|\mathbf{x})]^2$$

$$\left(f(\boldsymbol{x};D) - E_D(f(\boldsymbol{x};D))\right)^2 + \left(E_D(f(\boldsymbol{x};D)) - E(y|\boldsymbol{x})\right)^2 + 2\left(f(\boldsymbol{x};D) - E_D(f(\boldsymbol{x};D))\right)\left(E_D(f(\boldsymbol{x};D)) - E(y|\boldsymbol{x})\right)$$

$$E_{D}\left\{\left[f(\boldsymbol{x};D)-E_{D}(f(\boldsymbol{x};D))\right]^{2}\right\}+\left\{E_{D}(f(\boldsymbol{x};D))-E(\boldsymbol{y}|\boldsymbol{x})\right\}^{2}$$
Variance (Bias)²

- Through some derivations
- Prediction Error = bias + variance + noise

• Example: varying the degree of regularization for some dataset, λ

The Bias-Variance Trade-off

- Over-regularized model (large λ) → high bias
- Under-regularized model (small λ) → high variance.

Underfitting VS Overfitting

- high bias, low variance → underfitting
- high variance, low bias → overfitting
- low bias, low variance → what we want
- Bias: the training error
- Variance: the difference between training error and test error

Underfitting VS Overfitting

Model complexity

How to avoid underfitting/overfitting?

- Underfitting: lower the bias
 - Add more features
 - Use more complex models
 - Decrease the regularization part
- Overfitting: lower the variance
 - Decrease some feature
 - Use simpler models
 - Add more regularizations
 - Add more data

Make choice against the test data

- There are many choices in ML models
 - Features
 - Regularization terms
 - Learning rate
 - Different models
 -
- How to decide which choice is the best?
 - Look at the training error?
 - Look at the testing error?
- If we make a lot of choices against the test data
 - Can the test performance represent the real-world performance?
 - Overfit the test data!

Train Val Test Split

- Split the dataset into three parts:
 - Train: train the model
 - Val: make choices
 - tune hyperparameters
 - choose models
 - choose features
 - Test: evaluate the final model
- K-Fold Cross-Validation

1	2	3	4	5
Train	Train	Validation	Train	Train

Question?

Thanks and welcome to give us suggestions and feedbacks afterwards.