NAME AND UCLA ID:

Task 1: Read Sections 12 and 13.

Exercise 1: Let $\varphi: G \to H$ a group homomorphism. Prove that

- 1. $\ker(\varphi) \subseteq G$ and $\operatorname{im}(\varphi) \subseteq H$ are subgroups.
- 2. φ is an isomorphism if and only if φ is bijective.

Exercise 2: Besides itself, to what other group is $ST_2(\mathbb{R})$ isomorphic? Prove your claim.

Exercise 3: Let $p \in \mathbb{Z}$, p > 1. Wilson's Theorem states that p is prime if and only if $(p-1)! \equiv -1 \mod p$. Prove Wilson's Theorem. Hint: Let $1 \leq j \leq p-1$, when do we have $j^2 \equiv 1 \mod p$?

Exercise 4: Let G be a group, H and K subgroups of G. Prove the following:

- 1. If $H \subseteq K \subseteq G$ and K has finite index in G, then [G:H] = [G:K][K:H].
- 2. Let $HK = \{hk | h \in H, k \in K\}$. Then $H/(H \cap K)$ is a subset of $G/(H \cap K)$ and (HK)/K is a subset of G/K. Show that $f: H/(H \cap K) \to (HK)/K$ given by $f(h(H \cap K)) = hK$ for all $h \in H$ is a well-defined bijection.
- 3. If both H and K have finite index in G, then $H \cap K$ has finite index in G.

Exercise 5: Prove that $\operatorname{Aut}(G)$ is a group and $\operatorname{Inn}(G) \subseteq \operatorname{Aut}(G)$. For G a cyclic group, determine $\operatorname{Aut}(G)$ and $\operatorname{Inn}(G)$ up to isomorphism as groups that we know.

Exercise 6: Show that a subgroup $H \subseteq G$ is normal if and only if gH = Hg for all $g \in G$. If H is not normal, is it true that for each $g \in G$ there is an $a \in G$ with gH = Ha?

Exercise 7: Find all subgroups of S_3 and determine which ones are normal.

Exercise 8: Let G be a group of order p^n for $p \in \mathbb{Z}^+$ prime and $n \in \mathbb{Z}^+$. Prove that there exists an element of order p in G.

Exercise 9: Prove that a group of order 30 can have at most 7 subgroups of order 5.