#### POLITECNICO DI TORINO

#### DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING

Master of Science in Computer Engineering

Master Degree Thesis

#### Deep Learning on Polito Knowledge Graph

Leveraging Relational GCN for link prediction between nodes of a newly built publications graph



Supervisors

Prof. Antonio Vetrò

Prof. Juan Carlos De Martin

Candidate

Giovanni Garifo

ACADEMIC YEAR 2018-2019

To Monia To my Grandfather

### Abstract

Summary here, one page

## Acknowledgements

Acknowledgements here, half page

### Contents

| Li | st of                          | Tables   | 8            |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 8  |
|----|--------------------------------|----------|--------------|------|--|--|--|---|--|--|----|----|----|--|---|--|---|----|
| Li | st of                          | Figure   | es           |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 9  |
| 1  | Inti                           | roducti  | on           |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 11 |
|    | 1.1                            | Motiva   | ation        |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 11 |
|    | 1.2                            | Thesis   | structure.   |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 12 |
|    |                                | 1.2.1    | Chapter 2    |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 12 |
|    |                                | 1.2.2    | Chapter 3    |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 12 |
|    |                                | 1.2.3    | Chapter 4    |      |  |  |  |   |  |  |    | •  |    |  | • |  | • | 12 |
| 2  | Bac                            | kgrour   | nd           |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 13 |
|    | 2.1                            | a secti  | on           |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 13 |
|    |                                | 2.1.1    | a subsection | on . |  |  |  | • |  |  |    |    |    |  | • |  | • | 13 |
| 3  | Sta                            | te of th | ne art       |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 15 |
| 4  | Approach and Methodology       |          |              |      |  |  |  |   |  |  |    | 17 |    |  |   |  |   |    |
| 5  | Development and Implementation |          |              |      |  |  |  |   |  |  |    |    | 19 |  |   |  |   |    |
| 6  | 6 Evaluation                   |          |              |      |  |  |  |   |  |  |    | 21 |    |  |   |  |   |    |
| 7  | 7 Conclusions                  |          |              |      |  |  |  |   |  |  | 23 |    |    |  |   |  |   |    |
| Bi | bliog                          | graphy   |              |      |  |  |  |   |  |  |    |    |    |  |   |  |   | 25 |

### List of Tables

# List of Figures

#### Introduction

#### 1.1 Motivation

Graphs are used to empower some of the most complex IT services available today. They can be used to represent almost any kind of information, and they are particurlarly capable of representing the structure of complex system, thus to express the relations between its elements.

In the past ten years, a lot of effort has been put into trying to leverage the power of graphs to represent human knowledge and to build search tools capable of query and understand the semantic relations inside such graphs. RDF graphs are a particular class of graphs that can be used to build knowledge repositories. Given a domain and an ontology, they allows to build a structured representation of the knowledge of such domain.

Modern machine learning techniques can be used to mine latent informations from such graphs. One of the main challenges in this field is how to learn meaningful representations of the graph nodes that embed the underlying knowledge. Such representations can be then used to evaluate new links inside the graph, task commonly known as link prediction, or to classify unseen nodes. Deep learning techniques have proved to be first class citizens when dealing with representation learning tasks, being able to learn the latent representation of nodes without any prior knowledge other than the graph structure, so as not to require any feature engineering.

#### 1.2 Thesis structure

- 1.2.1 Chapter 2
- 1.2.2 Chapter 3
- 1.2.3 Chapter 4

## Background

- 2.1 a section
- 2.1.1 a subsection

# Chapter 3 State of the art

# Approach and Methodology

# Development and Implementation

# Chapter 6 Evaluation

## Conclusions

### Bibliography

- [1] G. Galilei, Nuovi studii sugli astri medicei, Manuzio, Venetia, 1612.
- [2] E. Torricelli, in "La pressione barometrica", *Strumenti Moderni*, Il Porcellino, Firenze, 1606.
- [3] E. Torricelli e A. Vasari, in "Delle misure", Atti Nuovo Cimento, vol. III, n. 2 (feb. 1607), p. 27–31.
- [4] Duane J.T., Learning Curve Approach To Reliability Monitoring, IEEE Transactions on Aerospace, Vol. 2, pp. 563-566, 1964