Complex Analysis: Midterm Examination 10:20 AM - 12:00 PM, April 14, 2009.

[1] (10 %) Find all values of $\left(-8 - i8\sqrt{3}\right)^{1/4}$ in the form of a + ib.

[2] (10 %) Prove $f(z) = e^y e^{ix}$ is nowhere analytic, where z = x + iy.

[3] (15 %) True or false (If it is false, explain briefly why it isn't true)

? (a) (5 %) If f(z) is analytic on a closed contour C, then $\oint f(z)dz = 0$.

(b) (5 %) If f(z) is differentiable at a point z_0 and at every point in some neighborhood of z_0 , then f(z) is an entire function.

(c) (5 %) $S = \{z \mid \text{Re}(z) \neq 3\}$ is a domain (open connected set).

[4] (15%) Verify that $u(x,y) = e^x (x \cos y - y \sin y)$ is harmonic. Find v(x,y), the conjugate harmonic function of u(x,y).

[5] (10 %) Evaluate $\int_C \frac{1}{z} dz$ in the form of a+ib, where C is the arc of the circle $z=4e^{it}$ with $-\pi/2 \le t \le \pi/2$.

[6] (10 %) Evaluate $\oint_C \left(\frac{3}{z+2} - \frac{1}{z-2i}\right) dz$, where C is the circle |z| = 5.

7 [7] (10 %) Expand $f(z) = \frac{1+z}{1-z}$ in the Taylor series centered at $z_0 = i$, and give the radius of convergence of this series.

[8] (10 %) Let f(z) = u(x,y) + iv(x,y) where the first partial derivatives of u(x,y) and v(x,y) are continuous. Prove that f(z) is analytic at z if and only if

$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

[9] (10 %) Assume f(z) is analytic in a domain D, and C is a closed contour lying entirely in D. Use the fact that $f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^2} dz$, with z_0 within C, to prove

$$f''(z_0) = \frac{2!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^3} dz.$$

Hint: $f''(z_0) = \lim_{\Delta z \to 0} \frac{f'(z_0 + \Delta z) - f'(z_0)}{\Delta z}$.