Regression HD sur les données gasoline

Julien JACQUES

08/02/2024

Chargeons les données gasolines (spectres NIR de 60 essences)

```
library(pls)
data("gasoline")
matplot(t(gasoline$NIR),type='1')
```


Régression linéaire

Residuals

0.00

NaN

Commençons par une régression linéaire classique, sur l'ensemble des variables.

```
model1=lm(octane~NIR,data=gasoline)
print(anova(model1))

## Warning in anova.lm(model1): ANOVA F-tests on an essentially perfect fit are
## unreliable

## Analysis of Variance Table

## Response: octane
## Df Sum Sq Mean Sq F value Pr(>F)
## NIR 59 138.13 2.3411 NaN NaN
```

Comme il y a plus de variables (401) que d'individus (60), la régression linéaire classique n'est pas estimable. Attention, R par défaut présente tout de même des estimations obtenues en coupant arbitrairement les 59

Régression linéaire avec selection forward

Comme on ne peut pas estimer le modèle avec l'ensemble des variables, les techniques de régression de type backward ne sont pas possible. On va réaliser une régression forward. Pour cela, il faut indiquer le modèle minimal de départ (avec juste une constante) et de le modèle complet (avec l'ensemble de variable), sachant qu'on ne peut pas estimer ce modèle complet (il faut juste lui passer la *formule* correspondante).

```
x=cbind(gasoline$NIR,gasoline$octane)
data=data.frame(octane=x[,402],x[,1:401])
min.model <- lm(octane ~ 1, data=data)</pre>
formuletmp="~"
for (n in seq(900,1700,2)) formuletmp=paste(formuletmp, ' + X',n,'.nm',sep='')
model1b <- step(min.model, direction = "forward", scope = (formuletmp), steps=50, trace = F)</pre>
summary(model1b)
##
## Call:
  lm(formula = octane ~ X1208.nm + X1196.nm + X976.nm + X1692.nm +
       X970.nm + X1206.nm + X1056.nm + X1074.nm + X1098.nm + X1686.nm +
##
##
       X1700.nm + X1544.nm + X1546.nm + X1094.nm + X1552.nm + X1274.nm +
##
       X926.nm + X1342.nm + X940.nm + X918.nm + X1026.nm + X1064.nm +
##
       X1600.nm + X1280.nm + X1278.nm + X960.nm + X1104.nm + X1320.nm +
##
       X1588.nm + X900.nm + X1084.nm + X1080.nm + X1622.nm + X1076.nm +
##
       X1318.nm + X1590.nm + X1550.nm + X1680.nm + X1072.nm + X1628.nm +
##
       X1570.nm + X932.nm + X1562.nm + X1240.nm + X1328.nm + X1338.nm +
       X938.nm + X912.nm + X1304.nm + X914.nm, data = data)
##
##
## Residuals:
##
                       1Q
                              Median
                                                        Max
  -2.403e-03 -6.654e-04 -2.852e-05 5.119e-04
                                                 2.370e-03
##
## Coefficients:
                 Estimate Std. Error
                                       t value Pr(>|t|)
                 93.95791
                              0.41417
                                       226.858 < 2e-16 ***
## (Intercept)
## X1208.nm
                 58.68357
                              2.70155
                                        21.722 4.38e-09 ***
## X1196.nm
                              0.70867
                 43.82832
                                        61.846 3.81e-13 ***
## X976.nm
                282.47025
                              5.95384
                                        47.443 4.11e-12 ***
## X1692.nm
                 -6.35868
                              0.04774 -133.201 3.85e-16 ***
## X970.nm
               -145.20891
                             12.06119
                                       -12.039 7.49e-07 ***
## X1206.nm
               -112.98103
                              2.58944
                                       -43.632 8.72e-12 ***
## X1056.nm
               -147.86160
                              8.71903
                                       -16.958 3.87e-08 ***
## X1074.nm
                188.69706
                              8.22859
                                        22.932 2.71e-09 ***
## X1098.nm
                608.35982
                              9.63038
                                        63.171 3.15e-13 ***
## X1686.nm
                 -9.57912
                              0.09472 -101.134 4.58e-15 ***
## X1700.nm
                              0.11672
                                        81.791 3.09e-14 ***
                  9.54631
## X1544.nm
                              5.52940
                                       -12.138 6.99e-07 ***
                -67.11382
                              5.24191
## X1546.nm
                378.07592
                                        72.126 9.57e-14 ***
## X1094.nm
               -616.08611
                              8.23124
                                       -74.847 6.86e-14 ***
## X1552.nm
               -262.06898
                              5.00999
                                       -52.309 1.71e-12 ***
                                       -58.126 6.65e-13 ***
## X1274.nm
               -282.47975
                              4.85978
## X926.nm
                              4.16957
                                       -45.033 6.56e-12 ***
               -187.76911
## X1342.nm
                273.65088
                              7.37360
                                        37.112 3.71e-11 ***
```

```
## X940.nm
                448.88799
                              8.05103
                                        55.755 9.66e-13 ***
## X918.nm
               -278.77900
                              2.45958 -113.344 1.64e-15 ***
## X1026.nm
                195.02443
                              5.76319
                                        33.840 8.47e-11 ***
## X1064.nm
                              8.11150
                                        61.198 4.19e-13 ***
                496.40355
## X1600.nm
               -236.19192
                              2.87998
                                       -82.012 3.02e-14 ***
                                        21.360 5.08e-09 ***
## X1280.nm
                132.07732
                              6.18331
## X1278.nm
                -58.43611
                              5.26078
                                       -11.108 1.48e-06 ***
## X960.nm
               -262.43222
                              6.08237
                                       -43.146 9.63e-12 ***
## X1104.nm
               -270.86228
                             10.56058
                                       -25.648 1.00e-09 ***
## X1320.nm
               -339.27261
                              6.40133
                                       -53.000 1.52e-12 ***
## X1588.nm
                 84.75666
                              4.49798
                                        18.843 1.53e-08 ***
## X900.nm
                -29.28231
                              1.92112
                                       -15.242 9.81e-08 ***
## X1084.nm
               -133.30216
                             13.11668
                                       -10.163 3.13e-06 ***
                233.95072
                              6.78697
## X1080.nm
                                        34.471 7.19e-11 ***
## X1622.nm
                                        49.628 2.75e-12 ***
                 93.24525
                              1.87888
## X1076.nm
               -519.53341
                             14.91602
                                        -34.831 6.55e-11 ***
## X1318.nm
                249.64750
                              7.82555
                                        31.902 1.44e-10 ***
## X1590.nm
                105.94648
                              4.65838
                                        22.743 2.91e-09 ***
                                       -13.797 2.33e-07 ***
## X1550.nm
                -87.44534
                              6.33800
## X1680.nm
                 -1.27874
                              0.07273
                                       -17.583 2.82e-08 ***
## X1072.nm
                176.73360
                              6.80680
                                        25.964 8.99e-10 ***
## X1628.nm
                                       -41.038 1.51e-11 ***
                -31.18749
                              0.75996
## X1570.nm
                -60.26094
                              2.22769
                                        -27.051 6.24e-10 ***
## X932.nm
                -44.19893
                              7.69392
                                        -5.745 0.000278 ***
## X1562.nm
                 63.49092
                              4.97996
                                        12.749 4.59e-07 ***
## X1240.nm
                -32.14533
                              2.11160
                                        -15.223 9.92e-08 ***
## X1328.nm
                 86.97972
                              5.65207
                                        15.389 9.03e-08 ***
## X1338.nm
                -65.47727
                              4.90213
                                       -13.357 3.08e-07 ***
                                          4.110 0.002638 **
## X938.nm
                  23.74105
                              5.77676
## X912.nm
                  33.19357
                              3.40430
                                          9.750 4.41e-06 ***
## X1304.nm
                 25.86886
                              6.14606
                                          4.209 0.002276 **
## X914.nm
                -14.72095
                              4.00124
                                         -3.679 0.005083 **
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.002377 on 9 degrees of freedom
## Multiple R-squared:
                             1,
                                 Adjusted R-squared:
## F-statistic: 4.891e+05 on 50 and 9 DF, p-value: < 2.2e-16
```

On autorise au maximum 50 étapes (donc 50 variables dans le modèle) étant donné qu'on n'a que 60 individus. On pourrait théoriquement autoriser quelques variables de plus, mais cela n'a pas vraiment un grand intérêt. On note que la sélection stepwise a tendance à prendre le maximum de variables autorisées... certainement une signe d'overfitting.

Régression PCR

Effectuons désormais une régression sur composante principale

```
library(pls)
model2=pcr(octane~NIR,data=gasoline,validation='L00')
summary(model2)
## Data: X dimension: 60 401
```

Y dimension: 60 1
Fit method: svdpc

```
## Number of components considered: 58
##
## VALIDATION: RMSEP
## Cross-validated using 60 leave-one-out segments.
          (Intercept) 1 comps 2 comps 3 comps 4 comps
                                                              5 comps
                                                                        6 comps
## CV
                 1.543
                          1.447
                                    1.474
                                              1.255
                                                      0.2501
                                                                0.2503
                                                                          0.2578
                          1.446
                                    1.474
                                              1.255
                                                      0.2496
                                                                0.2500
                                                                          0.2575
## adjCV
                 1.543
##
          7 comps
                    8 comps
                              9 comps
                                      10 comps 11 comps 12 comps
                                                                      13 comps
## CV
           0.2646
                     0.2724
                               0.2474
                                         0.2508
                                                    0.2340
                                                               0.2255
                                                                          0.2293
                     0.2733
                               0.2471
                                         0.2508
                                                    0.2336
                                                               0.2244
                                                                          0.2286
##
  adjCV
           0.2643
          14 comps
                     15 comps
                               16 comps
                                          17 comps
                                                     18 comps
                                                                19 comps
                                                                          20 comps
                                                                  0.2276
## CV
            0.2272
                       0.2298
                                  0.2334
                                             0.2233
                                                       0.2259
                                                                             0.2437
                                                                  0.2270
## adiCV
            0.2266
                       0.2292
                                  0.2337
                                             0.2225
                                                       0.2252
                                                                             0.2430
                                                                26 comps
##
          21 comps
                     22 comps
                                23 comps
                                          24 comps
                                                     25 comps
                                                                           27 comps
## CV
            0.2371
                       0.2364
                                  0.2447
                                             0.2499
                                                       0.2468
                                                                  0.2573
                                                                             0.2543
## adjCV
            0.2363
                       0.2356
                                  0.2439
                                             0.2495
                                                       0.2457
                                                                  0.2565
                                                                             0.2531
##
          28 comps
                     29 comps
                                30 comps
                                          31 comps
                                                     32 comps
                                                                33 comps
                                                                           34 comps
## CV
            0.2707
                       0.2750
                                  0.2707
                                             0.2719
                                                       0.2802
                                                                  0.2828
                                                                             0.2922
            0.2696
                       0.2738
                                  0.2693
                                             0.2704
                                                       0.2787
                                                                  0.2813
                                                                             0.2908
##
  adiCV
##
          35 comps
                     36 comps
                                37 comps
                                          38 comps
                                                     39 comps
                                                                40 comps
                                                                           41 comps
## CV
            0.3171
                       0.3345
                                  0.3337
                                             0.3088
                                                       0.3029
                                                                  0.3459
                                                                             0.4011
## adjCV
            0.3157
                       0.3329
                                  0.3322
                                             0.3066
                                                       0.3009
                                                                  0.3441
                                                                             0.3994
          42 comps
                    43 comps
                                44 comps
                                          45 comps
                                                     46 comps
                                                                47 comps
##
                                                                           48 comps
            0.3670
                       0.3169
                                  0.3058
                                             0.2892
                                                       0.2847
                                                                  0.2842
                                                                             0.2863
## CV
                       0.3143
                                  0.3033
                                             0.2873
                                                                  0.2822
                                                                             0.2844
## adjCV
            0.3639
                                                       0.2824
##
          49 comps
                     50 comps
                                51 comps
                                          52 comps
                                                     53 comps
                                                                54 comps
                                                                           55 comps
## CV
            0.2858
                       0.3013
                                  0.2855
                                            0.2823
                                                       0.2908
                                                                  0.2904
                                                                             0.2747
            0.2839
                       0.2995
                                  0.2840
                                             0.2801
                                                       0.2896
                                                                  0.2883
                                                                             0.2724
## adiCV
                                58 comps
##
          56 comps
                    57 comps
                       0.2686
                                  0.2699
## CV
            0.2702
                       0.2664
## adjCV
            0.2681
                                  0.2682
##
## TRAINING: % variance explained
##
            1 comps
                     2 comps
                                        4 comps
                                                  5 comps 6 comps 7 comps
                              3 comps
                                                                               8 comps
## X
              72.57
                       83.90
                                 90.86
                                           95.46
                                                    96.70
                                                              97.66
                                                                        98.16
                                                                                 98.52
## octane
              18.99
                       19.62
                                 46.50
                                          97.69
                                                    97.78
                                                              97.79
                                                                        97.79
                                                                                 97.79
##
           9 comps
                     10 comps
                                11 comps
                                          12 comps
                                                     13 comps
                                                                14 comps
## X
             98.85
                        99.09
                                   99.29
                                              99.40
                                                        99.51
                                                                   99.60
                                                                              99.68
## octane
             98.33
                        98.38
                                   98.72
                                              98.86
                                                        98.87
                                                                   98.89
                                                                              98.93
##
                                                      20 comps
                                                                            22 comps
            16 comps
                      17 comps
                                 18 comps
                                           19 comps
                                                                 21 comps
## X
               99.73
                         99.79
                                    99.84
                                               99.86
                                                          99.89
                                                                    99.90
                                                                               99.92
## octane
               98.93
                         99.03
                                    99.03
                                               99.03
                                                          99.05
                                                                    99.08
                                                                               99.10
           23 comps
                      24 comps
                                 25 comps
                                           26 comps
                                                      27 comps
                                                                 28 comps
                                                                            29 comps
## X
                                    99.95
                                               99.96
               99.93
                         99.94
                                                          99.96
                                                                    99.97
                                                                               99.97
                          99.13
                                    99.22
                                               99.24
                                                          99.31
                                                                               99.34
## octane
               99.12
                                                                    99.31
##
           30 comps
                      31 comps
                                 32 comps
                                            33 comps
                                                      34 comps
                                                                 35 comps
                                                                            36 comps
                                    99.98
                                               99.98
                                                          99.99
## X
               99.98
                         99.98
                                                                    99.99
                                                                               99.99
## octane
                                    99.41
                                               99.42
                                                          99.42
                                                                    99.43
                                                                               99.47
               99.40
                         99.41
                                                                            43 comps
##
           37 comps
                      38 comps
                                 39 comps
                                           40 comps
                                                      41 comps
                                                                 42 comps
## X
               99.99
                         99.99
                                    99.99
                                               99.99
                                                          99.99
                                                                    99.99
                                                                              100.00
## octane
               99.53
                         99.61
                                    99.63
                                               99.63
                                                          99.66
                                                                    99.81
                                                                               99.83
##
            44 comps
                      45 comps
                                 46 comps
                                           47 comps
                                                      48 comps
                                                                 49 comps
                                                                            50 comps
## X
              100.00
                        100.00
                                   100.00
                                              100.00
                                                        100.00
                                                                   100.00
                                                                              100.00
               99.84
## octane
                         99.85
                                    99.87
                                               99.87
                                                          99.87
                                                                    99.88
                                                                               99.88
```

```
##
           51 comps
                      52 comps
                                 53 comps
                                            54 comps
                                                      55 comps
                                                                 56 comps
                                                                            57 comps
## X
              100.00
                        100.00
                                                         100.00
                                                                              100.00
                                   100.00
                                              100.00
                                                                   100.00
               99.91
                         99.93
                                    99.94
                                               99.97
                                                          99.98
                                                                    99.98
                                                                               99.99
## octane
##
           58 comps
              100.00
## X
## octane
               99.99
plot(RMSEP(model2))
```


Visuellement, 4 composantes semblent le plus efficaces, même si l'erreur par Cross Validation peut quelque peu réduire pour un nombre de composantes plus grand, mais la différence est très faible. Restons sur un modèel parcimonieux à 4 composantes principales.

Le modèle linéaire étant une combinaison linéaire des composantes principales, elles mêmes étant des combinaisons linéaires des variables initiales, on peut remonter aux coefficients des variables initiales. Le fonction suivante permet de les tracer :

```
plot(model2, plottype = "coef", ncomp=4,xaxt='n')
```


variable

A noter que ce qui diffère par rapport à un modèle sur l'ensemble des variables, est que les coefficients ne sont pas estimés par moindres carrés (maximum de vraisemblance).

On remarque que certains longueurs d'onde ont des coefficients relativement importants.

```
par(mfrow=c(2,1),mai=c(.5,.5,.5,.5))
plot(model2, plottype = "coef", ncomp=4,xaxt='n')
matplot(t(gasoline$NIR),type='l')
```


Régression PLS

##

Faisons de même avec une régression PLS

28 comps 29 comps

```
library(pls)
model2=pcr(octane~NIR,data=gasoline,validation='L00')
summary(model2)
## Data:
            X dimension: 60 401
## Y dimension: 60 1
## Fit method: svdpc
## Number of components considered: 58
## VALIDATION: RMSEP
## Cross-validated using 60 leave-one-out segments.
##
                                                            5 comps
          (Intercept)
                       1 comps 2 comps 3 comps 4 comps
## CV
                1.543
                          1.447
                                   1.474
                                            1.255
                                                     0.2501
                                                              0.2503
                                                                       0.2578
                1.543
                          1.446
                                            1.255
                                                              0.2500
                                                                       0.2575
## adjCV
                                   1.474
                                                     0.2496
##
                  8 comps 9 comps 10 comps
                                               11 comps
                                                          12 comps
                                                                     13 comps
          7 comps
## CV
           0.2646
                    0.2724
                              0.2474
                                        0.2508
                                                  0.2340
                                                             0.2255
                                                                       0.2293
                                                   0.2336
                                                             0.2244
                                        0.2508
                                                                       0.2286
##
  adjCV
           0.2643
                    0.2733
                              0.2471
##
          14 comps
                    15 comps
                               16 comps
                                         17 comps
                                                    18 comps
                                                              19 comps
                                                                        20 comps
                                           0.2233
## CV
            0.2272
                      0.2298
                                 0.2334
                                                      0.2259
                                                                0.2276
                                                                           0.2437
## adjCV
            0.2266
                       0.2292
                                 0.2337
                                           0.2225
                                                      0.2252
                                                                0.2270
                                                                           0.2430
##
                    22 comps
                               23 comps
                                         24 comps
                                                    25 comps
                                                              26 comps
          21 comps
                                                                        27 comps
## CV
            0.2371
                      0.2364
                                 0.2447
                                           0.2499
                                                      0.2468
                                                                0.2573
                                                                          0.2543
## adjCV
            0.2363
                      0.2356
                                 0.2439
                                           0.2495
                                                      0.2457
                                                                0.2565
                                                                           0.2531
```

30 comps 31 comps 32 comps 33 comps

34 comps

```
## CV
            0.2707
                      0.2750
                                 0.2707
                                           0.2719
                                                      0.2802
                                                                0.2828
                                                                          0.2922
## adjCV
            0.2696
                      0.2738
                                 0.2693
                                           0.2704
                                                      0.2787
                                                                0.2813
                                                                          0.2908
##
                               37 comps
          35 comps
                   36 comps
                                        38 comps
                                                   39 comps
                                                              40 comps
                                                                        41 comps
            0.3171
                      0.3345
                                 0.3337
                                           0.3088
                                                      0.3029
                                                                0.3459
                                                                          0.4011
## CV
                      0.3329
## adjCV
            0.3157
                                 0.3322
                                           0.3066
                                                      0.3009
                                                                0.3441
                                                                          0.3994
##
          42 comps 43 comps
                              44 comps 45 comps 46 comps
                                                             47 comps 48 comps
## CV
            0.3670
                      0.3169
                                 0.3058
                                           0.2892
                                                      0.2847
                                                                0.2842
                                                                          0.2863
                                                                          0.2844
## adjCV
            0.3639
                      0.3143
                                 0.3033
                                           0.2873
                                                      0.2824
                                                                0.2822
##
          49 comps 50 comps
                               51 comps
                                        52 comps
                                                   53 comps
                                                              54 comps
                                                                        55 comps
## CV
            0.2858
                      0.3013
                                 0.2855
                                           0.2823
                                                      0.2908
                                                                0.2904
                                                                          0.2747
## adjCV
            0.2839
                      0.2995
                                 0.2840
                                           0.2801
                                                      0.2896
                                                                0.2883
                                                                          0.2724
##
          56 comps
                   57 comps
                               58 comps
            0.2702
                      0.2686
                                 0.2699
## CV
                                 0.2682
            0.2681
                      0.2664
## adjCV
##
## TRAINING: % variance explained
##
           1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps
                                                                            8 comps
                      83.90
## X
             72.57
                                90.86
                                         95.46
                                                   96.70
                                                            97.66
                                                                     98.16
                                                                               98.52
## octane
             18.99
                      19.62
                                46.50
                                         97.69
                                                   97.78
                                                            97.79
                                                                     97.79
                                                                               97.79
##
           9 comps 10 comps
                              11 comps
                                         12 comps
                                                   13 comps 14 comps 15 comps
## X
             98.85
                       99.09
                                  99.29
                                            99.40
                                                       99.51
                                                                 99.60
                                                                           99.68
## octane
             98.33
                        98.38
                                  98.72
                                            98.86
                                                       98.87
                                                                 98.89
                                                                           98.93
##
           16 comps 17 comps 18 comps 19 comps 20 comps
                                                               21 comps
                                                                         22 comps
## X
              99.73
                         99.79
                                   99.84
                                             99.86
                                                        99.89
                                                                  99.90
                                                                             99.92
                                   99.03
                                             99.03
                                                                  99.08
## octane
              98.93
                         99.03
                                                        99.05
                                                                             99.10
                                                                         29 comps
##
           23 comps
                     24 comps
                               25 comps
                                          26 comps
                                                    27 comps
                                                               28 comps
## X
              99.93
                         99.94
                                   99.95
                                             99.96
                                                        99.96
                                                                  99.97
                                                                             99.97
## octane
              99.12
                         99.13
                                   99.22
                                             99.24
                                                        99.31
                                                                  99.31
                                                                             99.34
##
                                          33 comps
                                                    34 comps
                                                                         36 comps
           30 comps
                     31 comps 32 comps
                                                               35 comps
## X
              99.98
                         99.98
                                   99.98
                                             99.98
                                                        99.99
                                                                  99.99
                                                                             99.99
              99.40
                         99.41
                                   99.41
                                             99.42
                                                                  99.43
                                                                             99.47
## octane
                                                        99.42
##
           37 comps
                     38 comps
                               39 comps
                                          40 comps
                                                    41 comps
                                                               42 comps
                                                                         43 comps
## X
              99.99
                         99.99
                                   99.99
                                             99.99
                                                        99.99
                                                                  99.99
                                                                           100.00
## octane
              99.53
                         99.61
                                   99.63
                                             99.63
                                                        99.66
                                                                  99.81
                                                                            99.83
                                          47 comps
##
           44 comps
                     45 comps
                               46 comps
                                                    48 comps
                                                               49 comps
                                                                         50 comps
## X
             100.00
                       100.00
                                 100.00
                                            100.00
                                                       100.00
                                                                 100.00
                                                                           100.00
## octane
              99.84
                        99.85
                                   99.87
                                             99.87
                                                        99.87
                                                                  99.88
                                                                             99.88
##
           51 comps
                     52 comps 53 comps
                                          54 comps 55 comps
                                                               56 comps
                                                                         57 comps
## X
             100.00
                       100.00
                                  100.00
                                            100.00
                                                       100.00
                                                                 100.00
                                                                           100.00
              99.91
                        99.93
                                   99.94
                                             99.97
                                                       99.98
                                                                  99.98
                                                                             99.99
## octane
##
           58 comps
## X
             100.00
              99.99
## octane
plot(RMSEP(model2))
```


Là encore 4 composantes semble être le meilleur choix.

On peut aussi utiliser la fonction suivante pour estimer le modèle PLS, qui a l'avantage de permettre des sorties graphiques de type cerles des correlations :

```
library(plsdepot)
model2=plsreg1(x[,1:401],x[,402,drop=F],comps=4,crosval=T)
plot(model2,what='variables',comps=c(1,2))
```

Circle of Correlations

Néanmoins, on ne voit pas grand chose vu le grand nombre de variables, même si on voit que certaines sont corrélées positivement et d'autres négativement avec la première composante PLS.

calcul des VIP

Un indicateur d'importance des variables est les VIPs, qui ne sont pas implémentés dans ce package, mais on peut les calculer à la main

```
VIP=matrix(0,401,4)
for (j in 1:401){
  for (h in 1:4){
    VIP[j,h]=sqrt(401/sum(model2$R2[1:h])*sum(model2$R2[1:h]*(model2$raw.wgs[j,1:h]^2)))
  }
}
rownames(VIP)=colnames(x)[1:401]
```

Un VIP>.8 est généralement signe que la variable a une importance sur la prediction

```
vip4=VIP[,4]
print(sort(vip4,decreasing = T)[1:50])
```

```
1634 nm 1636 nm 1362 nm 1360 nm 1358 nm
                                               1364 nm
                                                       1638 nm
                                                                1208 nm
## 1.985829 1.980566 1.936412 1.932841 1.903980 1.898295 1.884544 1.868716
   1632 nm 1206 nm 1210 nm 1212 nm
                                     1356 nm
                                               1366 nm
                                                       1214 nm
                                                               1204 nm
## 1.865649 1.861631 1.856096 1.815856 1.808414 1.807100 1.800141 1.794316
   1216 nm 1368 nm 1354 nm 1630 nm 1218 nm
                                              1370 nm
                                                       1202 nm
## 1.739823 1.726476 1.724275 1.701620 1.673683 1.665877 1.641676 1.634949
  1640 nm 1374 nm 1220 nm 1352 nm 1376 nm 1378 nm 1222 nm
## 1.625818 1.616627 1.590649 1.579743 1.569869 1.525431 1.491178 1.475534
  1380 nm 1350 nm 1224 nm 1618 nm 1642 nm 1382 nm 1200 nm 1226 nm
## 1.465370 1.424073 1.421166 1.394524 1.366641 1.357942 1.355780 1.327466
```

```
## 1622 nm 1616 nm 1628 nm 1228 nm 1384 nm 1154 nm 1348 nm 1152 nm ## 1.327063 1.291812 1.274749 1.270759 1.253825 1.244840 1.241136 1.238701 ## 1128 nm 1130 nm ## 1.226337 1.218781
```

Beaucoup de variables ont des VIP importants.

Pour ce type de données spectrales, on peut représenter graphiquement la courbe moyenne en mettant en couleur plus ou moins chaude suivant si le VIP est important (rouge = variables importantes)

Régression ridge

Effectuons désormais une régression ridge et cherchons le meilleur lambda suivant l'indicateur de validation croisée (généralisée, GCV)

[1] 9

[1] 0.0006519503

D'après l'indice de validation croisée généralisée (GCV), le labmbda optimal est 9. Ré-éstimons alors le modèle.

model_ridge <- lm.ridge(octane~NIR,data=gasoline,lambda=9)</pre>

Régression lasso

Effectuons désormais une régressoin LASSO

Cherchons le lambda optimal

On peut afficher l'étapte à laquelle le CVMSE est minisiée

```
print(which.min(cv$cv))
```

[1] 45

Pour avoir une solution plus parcimonieuse, on prendra plutôt l'étape qui conduit à la solution la plus parcimonieuse (avec le moins de variables actives, c'est-à-dire le Df (degree of freedom) le plus petit) avec une erreur inférieur à l'erreur minimal + l'erreur d'estimation de cette erreur :

```
tmp=which.min(cv$cv)
step_opt=min(which(cv$cv < cv$cv[tmp]+cv$cv.error[tmp]))
print(step_opt)</pre>
```

[1] 16

```
print(model_lasso$beta[step_opt,])
```

##	900 nm	902 nm	904 nm	906 nm	908 nm	910 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	912 nm	914 nm	916 nm	918 nm	920 nm	922 nm
##	10.2291862	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	924 nm	926 nm	928 nm	930 nm	932 nm	934 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	936 nm	938 nm	940 nm	942 nm	944 nm	946 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	948 nm	950 nm	952 nm	954 nm	956 nm	958 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	960 nm	962 nm	964 nm	966 nm	968 nm	970 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	972 nm	974 nm	976 nm	978 nm	980 nm	982 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	984 nm	986 nm	988 nm	990 nm	992 nm	994 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	996 nm	998 nm	1000 nm	1002 nm	1004 nm	1006 nm

##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1008 nm	1010 nm	1012 nm	1014 nm	1016 nm	1018 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1020 nm	1022 nm	1024 nm	1026 nm	1028 nm	1030 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1032 nm	1034 nm	1036 nm	1038 nm	1040 nm	1042 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1044 nm	1046 nm	1048 nm	1050 nm	1052 nm	1054 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1056 nm	1058 nm	1060 nm	1062 nm	1064 nm	1066 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1068 nm	1070 nm	1072 nm	1074 nm	1076 nm	1078 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1080 nm	1082 nm	1084 nm	1086 nm	1088 nm	1090 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1092 nm	1094 nm	1096 nm	1098 nm	1100 nm	1102 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1104 nm	1106 nm	1108 nm	1110 nm	1112 nm	1114 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1116 nm	1118 nm	1120 nm	1122 nm	1124 nm	1126 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1128 nm	1130 nm	1132 nm	1134 nm	1136 nm	1138 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1140 nm	1142 nm	1144 nm	1146 nm	1148 nm	1150 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1152 nm	1154 nm	1156 nm	1158 nm	1160 nm	1162 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1164 nm	1166 nm	1168 nm	1170 nm	1172 nm	1174 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1176 nm	1178 nm	1180 nm	1182 nm	1184 nm	1186 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1188 nm	1190 nm	1192 nm	1194 nm	1196 nm	1198 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1200 nm	1202 nm	1204 nm	1206 nm	1208 nm	1210 nm
##	0.0000000	0.0000000		-24.0397772	0.0000000	0.0000000
##	1212 nm	1214 nm	1216 nm	1218 nm	1220 nm	1222 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1224 nm	1226 nm	1228 nm	1230 nm	1232 nm	1234 nm
##	-66.9748088	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1236 nm	1238 nm	1240 nm	1242 nm	1244 nm	1246 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1248 nm	1250 nm	1252 nm	1254 nm	1256 nm	1258 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1260 nm	1262 nm	1264 nm	1266 nm	1268 nm	1270 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1272 nm	1274 nm	1276 nm	1278 nm	1280 nm	1282 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1284 nm	1286 nm	1288 nm	1290 nm	1292 nm	1294 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1296 nm	1298 nm	1300 nm	1302 nm	1304 nm	1306 nm
##	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
##	1308 nm	1310 nm	1312 nm	1314 nm	1316 nm	1318 nm
##	0.0000000	0.000000	0.000000	0.000000	0.000000	0.000000
##	1320 nm	1322 nm	1324 nm	1326 nm	1328 nm	1330 nm

##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1332 nm	1334 nm	1336 nm	1338 nm	1340 nm	1342 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1344 nm	1346 nm	1348 nm	1350 nm	1352 nm	1354 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1356 nm	1358 nm	1360 nm	1362 nm	1364 nm	1366 nm
##	0.0000000	0.0000000	2.8561530	72.5753620	0.0000000	0.0000000
##	1368 nm	1370 nm	1372 nm	1374 nm	1376 nm	1378 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1380 nm	1382 nm	1384 nm	1386 nm	1388 nm	1390 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1392 nm	1394 nm	1396 nm	1398 nm	1400 nm	1402 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1404 nm	1406 nm	1408 nm	1410 nm	1412 nm	1414 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1416 nm	1418 nm	1420 nm	1422 nm	1424 nm	1426 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1428 nm	1430 nm	1432 nm	1434 nm	1436 nm	1438 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1440 nm	1442 nm	1444 nm	1446 nm	1448 nm	1450 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1452 nm	1454 nm	1456 nm	1458 nm	1460 nm	1462 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1464 nm	1466 nm	1468 nm	1470 nm	1472 nm	1474 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1476 nm	1478 nm	1480 nm	1482 nm	1484 nm	1486 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1488 nm	1490 nm	1492 nm	1494 nm	1496 nm	1498 nm
##	0.0000000	0.000000	0.000000	0.000000	0.000000	0.000000
##	1500 nm	1502 nm	1504 nm	1506 nm	1508 nm	1510 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1512 nm	1514 nm	1516 nm	1518 nm	1520 nm	1522 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1524 nm	1526 nm	1528 nm	1530 nm	1532 nm	1534 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1536 nm	1538 nm	1540 nm	1542 nm	1544 nm	1546 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1548 nm	1550 nm	1552 nm	1554 nm	1556 nm	1558 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1560 nm	1562 nm	1564 nm	1566 nm	1568 nm	1570 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1572 nm 0.0000000	1574 nm	1576 nm 0.0000000	1578 nm	1580 nm	1582 nm 0.0000000
## ##	1584 nm	0.0000000 1586 nm	1588 nm	0.0000000 1590 nm	0.0000000 1592 nm	1594 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1596 nm	1598 nm	1600 nm	1602 nm	1604 nm	1606 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1608 nm	1610 nm	1612 nm	1614 nm	1616 nm	1618 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1620 nm	1622 nm	1624 nm	1626 nm	1628 nm	1630 nm
##	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
##	1632 nm	1634 nm	1636 nm	1638 nm	1640 nm	1642 nm
##	0.0000000	-6.7811728	-4.8987665	0.0000000	0.0000000	0.0000000
##	1644 nm	1646 nm	1648 nm	1650 nm	1652 nm	1654 nm
	1011 11111	10-10 11111	10-10 11111	1000 11111	1002 11111	1004 11111

```
##
     0.000000
                  0.000000
                              0.0000000
                                           0.0000000
                                                        0.000000
                                                                    0.000000
##
                                 1660 nm
       1656 nm
                    1658 nm
                                             1662 nm
                                                          1664 nm
                                                                      1666 nm
##
     0.000000
                  0.000000
                              0.0000000
                                           0.0000000
                                                        0.000000
                                                                    0.000000
##
       1668 nm
                    1670 nm
                                 1672 nm
                                             1674 nm
                                                          1676 nm
                                                                      1678 nm
##
     0.0000000
                  0.000000
                              0.0000000
                                           0.0000000
                                                        0.000000
                                                                    0.000000
                                1684 nm
                                             1686 nm
##
       1680 nm
                    1682 nm
                                                          1688 nm
                                                                      1690 nm
     0.000000
                  0.000000
                              0.0000000
                                          -0.1074286
                                                        0.0000000
                                                                   -1.0479162
##
##
       1692 nm
                    1694 nm
                                 1696 nm
                                             1698 nm
                                                          1700 nm
##
    -0.6456974
                  0.000000
                              0.0000000
                                           0.0000000
                                                        0.000000
```

Les variables conservées sur les 401 initiales sont:

```
which(abs(model_lasso$beta[step_opt,])>0)
```

```
## 912 nm 1206 nm 1224 nm 1360 nm 1362 nm 1634 nm 1636 nm 1686 nm 1690 nm 1692 nm ## 7 154 163 231 232 368 369 394 396 397
```

On peut les représenter graphiquement

Comparaison des méthodes

Comme les erreurs GCV et CV-MSE ne sont pas comparables directement, on va implémenter à la main une 10-fold CV pour comparer les différents modèles. Pour la PLS, nous utilisons la fonction pour la fonction plsr du package pls qui comporte une fonction perdict associé contrairement à la fonction plsreg1 que l'on a utilisé jusqu'à maintenant.

Pour la régression PLS et PCR, nous gardons les 4 composants sélectionnées sur l'ensemble du data set. Idéalement, il faudrait choisir ce nombre de composantes au sein de chaque fold, mais comme nous l'avons fait visuellement ce n'est pas si simple que cela à implémenter. Pour Ridge et LASSO, nous sélectionnons le lambda au sein de chaque fold, comme fait plus faut. Enfin pour la sélection forward, là encore la sélection de variables est faite au sein de chaque fold

```
library('pls')
x=cbind(gasoline$NIR,gasoline$octane)
```

```
fold=sample(1:10,nrow(gasoline),replace=T)
pred=matrix(0,nrow(gasoline),6)
for (i in 1:10){
  # pls
  model_pls=plsr(octane~NIR,data=data.frame(gasoline[-which(fold==i),]),scale=T,ncomp=4)
  tmp=predict(model_pls,newdata=data.frame(gasoline[which(fold==i),]))
  pred[which(fold==i),1]=tmp[,,4]
  # pcr
  model_pcr=pcr(octane~NIR,data=data.frame(gasoline[-which(fold==i),]),scale=T,ncomp=4)
  tmp=predict(model pcr,newdata=data.frame(gasoline[which(fold==i),]))
  pred[which(fold==i),2]=tmp[,,4]
  # ridge
  tmp <- lm.ridge(octane~NIR,data=data.frame(gasoline[-which(fold==i),]),lambda=seq(1,20,0.1))</pre>
  model_ridge <- lm.ridge(octane~NIR,data=data.frame(gasoline[-which(fold==i),]),</pre>
                          lambda=tmp$lambda[which.min(tmp$GCV)])
  tmp= scale(gasoline$NIR[which(fold==i),], center = model_ridge$xm,
             scale = model_ridge$scales) %*% model_ridge$coef + model_ridge$ym
  pred[which(fold==i),3]=tmp
  # lasso
  cv=cv.lars(gasoline$NIR[-which(fold==i),],gasoline$octane[-which(fold==i)], K = 10,
             trace=F, plot.it=F, se=T,type = c("lasso"),mode='step')
  tmp=which.min(cv$cv)
  step opt=min(which(cv$cv < cv$cv[tmp]+cv$cv.error[tmp]))</pre>
  model_lasso=lars(gasoline$NIR[-which(fold==i),],gasoline$octane[-which(fold==i)],type="lasso",
                   trace=F,normalize=T)
  tmp=predict(model_lasso,gasoline$NIR[which(fold==i),],mode="step",s=step_opt)
  pred[which(fold==i),4]=tmp$fit
  # lasso 2 = regression linéaire sur les variables sélectionnées
  varindex=which((abs(model_lasso$beta[step_opt,])>0))
  data2=data.frame(octane=gasoline$octane[-which(fold==i)],NIRs=gasoline$NIR[-which(fold==i)]
                                                                               ,varindex])
  newdata2=data.frame(octane=gasoline$octane[which(fold==i)],NIRs=gasoline$NIR[which(fold==i)]
                                                                                 ,varindex])
  model_lasso2=lm(octane~NIRs,data=data2)
  tmp=predict(model_lasso2,newdata2)
  pred[which(fold==i),5]=tmp
  # forward
  x=cbind(gasoline$NIR,gasoline$octane)
  data=data.frame(octane=x[,402],x[,1:401])
  min.model <- lm(octane ~ 1, data=data[-which(fold==i),])</pre>
  model1b <- step(min.model, direction = "forward", scope = (formuletmp), steps=40, trace = F)</pre>
  tmp=predict(model1b,data[which(fold==i),])
  pred[which(fold==i),6]=tmp
```

On peut représenter graphiquement les prédictions en fonctions des valeurs réelles, toutes sont très bonnes, si ce n'est la régression forward qui a tendance à faire de l'overfitting comme préssenti.

```
plot(gasoline$octane,pred[,1],col=2,xlab="valeur réelle",ylab="valeur prédite")
points(gasoline$octane,pred[,2],col=3)
points(gasoline$octane,pred[,3],col=4)
points(gasoline$octane,pred[,4],col=5)
points(gasoline$octane,pred[,5],col=6)
points(gasoline$octane,pred[,6],col=7)
```

```
abline(coef = c(0,1))
legend("topleft",legend=c('pls','pcr','ridge','lasso','lasso2','forward'),col=2:7,pch=1)
```


On peut calculer l'erreur quadratique moyenne, mais les trois méthodes sont très proches

```
colnames(pred)=c('pls','pcr','ridge','lasso','lasso2','forward')
colMeans((pred-gasoline$octane)^2)
```

pls pcr ridge lasso lasso2 forward ## 0.05295362 0.07997870 0.04656524 0.05109635 0.04289684 0.30783047