Inferring population history

Feb 13th 2019

Rasmus Heller

Session overview

9.15-10.00: Theory behind population history inference.

---BREAK---

10.15-12.00: Simulations and population history lab.

---LUNCH BREAK---

13.15-14.00: Effective population size introduction.

Population history

A classic example

MHC genes diversity

Human influence on wild species

Different approaches

How do we get from data to population history?

Different approaches

How do we get from data to population history?

- **Simple measures:** θ, Tajima's D, site frequency spectrum etc.
- **Tree inference**: estimate history from coalescent trees.
- Coalescent simulations: Simulation lab.
- Maximum likelihood/Bayesian methods

All of these rely on the coalescent

Simple measures

What do they tell us about population history?

Statistics to estimate N

Two simple statistics:

$$\pi$$
 = average pairwise differences S = segregating sites

We defined $\theta = 4N\mu$.

Two commonly used estimates of θ :

Tajimas:
$$\hat{\theta}_T = \pi$$
Wattersons: $\hat{\theta}_W = \frac{S}{\sum_{k=1}^{n-1} \frac{1}{L_k}}$

Sequence 1 AATGTCAACG
Sequence 2 AATGTCAACG
Sequence 3 ATTGTCAACG
Sequence 3 ATTGTCAACG
Sequence 4 ATTGTCAACG
Site number

Segregating sites (S and p_S):

Sites 2, 6, and 8 have variable base pairs among the four sequences (columns marked with *). These are segretating sites. Therefore, for these sequences S = 3 segregating sites and $p_S = 3/10 = 0.3$ segregating sites per nucleotide site examined.

Nucleotide diversity (π):

1 AATGTCAACG 4 ATTGTGATCG d₁₄=3

1 AATGTCAACG $d_{12}=0$ Nucleotide diversity = 1.67 1 AATGTCAACG $d_{13}=1$ 2 AATGTCAACG $d_{23}=1$ 3 ATTGTCAACG $d_{13}=1$ 3 ATTGTCAACG $d_{23}=1$

2 AATGTCAACG
$$d_{24}=3$$
 3 ATTGTCAACG $d_{34}=$

$$\Sigma d_{ii} = 0 + 1 + 3 + 1 + 3 + 2 = 10$$

Number of pairs of sequences compared = [n(n-1)]/2 = [4(3)]/2 = 6 $\hat{\pi} = 10$ differences/6 pairs = 1.67 average pairwise differences $\hat{\pi} = 1.67$ avg. differences/10 sites = 0.167 pairwise differences per site

"Internal" mutations contribute more to π than "external" ones.

 π is higher under decreasing population size..

Tajima's D

Theta estimated by average pairwise difference

(9.1)
$$\hat{\theta}_W = S / \left(\sum_{i=1}^{n-1} 1 / i \right) \text{ and } \hat{\theta}_T = \frac{\sum_{(i,j):i < j} d_{ij}}{n(n-1)/2}$$

Theta estimated by # segregating sites

(9.2) Tajima's
$$D = \frac{\hat{\theta}_T - \hat{\theta}_W}{\sqrt{\hat{V}(\hat{\theta}_T - \hat{\theta}_W)}}$$

INTRODUCTION TO POPULATION GENETICS, Equations 9.1–9.2 © 2013 Sinauer Associates, Inc.

Tajima's D = 0 in a constant population.

Site frequency spectrum

Can you draw the site frequency spectrum?

How would SFS'es tend to differ?

The SFS reveals population history

Population history through tree inference

Coalescent intervals and tree shapes

Tree "shapes" are connected to demography

Changing population size: skyline plots

The expected time between coalescence events:

$$E(u_k) = \frac{4N}{k(k-1)}$$

$$N = \frac{k(k-1)}{4}u_k$$

Changing population size: skyline plots

$$\hat{N}_k = \frac{k(k-1)}{4} t_k$$

Changing population size: skyline plots

Conclusions so far

- Many simple data measures contain information about population history.
- More sophisticated information can be extracted from simulations or modeling.
- Knowing population history helps interpretation of genetic data (e.g. selection).