Information Te@hnology

Spring Semester

- Mobile and Sensor Networks
- >> Dr. Ahmed Abdelreheem

Lec_9

$$C = mG$$

$$G = [P:I_k] = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1,n-k} & 1 & 0 & \cdots & 0 \\ p_{21} & p_{22} & \cdots & p_{2,n-k} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k1} & p_{k2} & \cdots & p_{k,n-k} & 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$\mathbf{G} = [\mathbf{P} \ \mathbf{I}_k]_{k \times n}$$
 Generator matrix

$$I_k = k \times k$$
 identity matrix

$$\mathbf{P} = k \times (n-k)$$
 Parity matrix

~ NM) Rx 101.1.1

Page 4

Page 5

Page 6

- The generator matrix is a compact description of how codewords are generated from information bits in a linear block code.
- The design goal in linear block codes is to find generator matrices such that
 - the corresponding codes are easy to encode and decode
 - yet have powerful error correction/detection capabilities.
- Tradeoffs between
 - Efficiency
 - Reliability
 - Encoding/Decoding complexity

 Parity Check Matrix: Associated to each (n,k) linear block code there is a parity check matrix H at the decoder.

 $H = \left[I_{n-k} : P^T\right]_{n-k,n}$

 Parity check matrix H has its rows orthogonal to rows of G such that

$$GH^T = 0$$

- The parity check matrix H is used to detect errors in the received code
- C is the codeword in (n,k) block code generated by G iff

$$CH^T = 0$$

- Let R = C + E be the received message where C is the correct code and E is the error
- Decoding operation is done by determining syndrome vector S as

$$S = RH^{T}$$

$$= CH^{T} + EH^{T}$$

$$= EH^{T}$$

- If R is a valid vector then syndrome of received vector S is 0
- Nonzero S indicates that there are errors in transmission
- Thus S is used to detect the errors. It is also used to correct the errors.
- The errors can be corrected at the receiver by comparing S with the rows of H^T and correcting the ith received bit if S matches with the ith row of H^T

Operations of the generator matrix and the parity check matrix

 Example1: For a (6,3)LBC with generator matrix G, find codeword for all the distinct messages.

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

• Example: Block code (6,3)

	Message vector	Codeword
$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$	000 100 010	000000 110100 011010
	110 001 101	101110 101001 011101
	011 111	110011 000111

(n, k) linear block code

n = number of bits in code word

k = number of message bits

(n-k) = number of parity bits or parity check bits

N.B. parity bits are computed from message bits according to encoding rule. Encoding rule decides mathematical structure of the code.

Fig: Structure of a codeword

$$[X]_{1xn} = [M]_{1xk} [G]_{kxn}$$

The generator matrix is dependent on the type of linear block code used:

$$[G] = [I_k \mid P]$$

Where $I_k = kxk$ identity matrix P = kx(n-k) coefficient matrix

For example, (5,3) code:

$$n = 5, k = 3$$

 $(n-k) = (5-3) = 2$

$$I_k = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \\ p_{20} & p_{21} \end{bmatrix}$$

Now parity vector C can be computed as C = MP

$$C = \begin{bmatrix} m_0 & m_1 & m_2 \end{bmatrix} \begin{bmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \\ p_{20} & p_{21} \end{bmatrix}$$

Now solve for c_0 , c_1 , c_2 ... c_{n-k}

$$c_0 = m_0 p_{00} \oplus m_1 p_{10} \oplus m_2 p_{20}$$

$$c_1 = m_0 p_{01} \oplus m_1 p_{11} \oplus m_2 p_{21}$$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 4 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Sol.
$$(n, k) = (6,3)$$

$$n = 6$$
$$k = 3$$

$$k = 3$$

n - k = 6 - 3 = 3 number of parity bits.

Step1:

Separate the identity matrix and coefficient matrix Generator matrix is given by:

$$[G] = [I_k \mid P]$$

$$\therefore I_k = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3x3}$$

$$P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}_{3x3}$$

As the size of message block $k = 3$, there are 8 possible m	essage sequences
---	------------------

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Step 2: Obtain parity vector C = MP

$$: [C] = \begin{bmatrix} c_0 & c_1 & c_2 \end{bmatrix} = \begin{bmatrix} m_0 & m_1 & m_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$c_0 = (m_0.0) \oplus (m_1.1) \oplus (m_2.1)$$

$$=0$$
 \oplus m_1 \oplus m_2

$$= m_1 \oplus m_2$$

$$c_1 = m_0 \oplus m_2$$

$$c_2 = m_0 \oplus m_1$$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Parity bits for message word ($m_0 m_1 m_2 = 0.10$)

$$[C] = \begin{bmatrix} c_0 & c_1 & c_2 \end{bmatrix} = \begin{bmatrix} m_0 & m_1 & m_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$c_0 = m_1 \oplus m_2$$

$$c_1 = m_0 \oplus m_2$$

$$c_2 = m_0 \oplus m_1$$

$$m_0 = 0, m_1 = 1, m_2 = 0$$

$$c_0 = m_1 \oplus m_2 = 1 \oplus 0 = 1$$

$$c_1 = m_0 \oplus m_2 = 0 \oplus 0 = 0$$

$$c_2 = m_0 \oplus m_1 = 0 \oplus 1 = 1$$

Complete codeword for message block (001)

m_0	m_1	m_2	c_0	c_1	\mathbf{c}_2
0	1	0	1	0	1

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Parity bits for message word ($m_0 m_1 m_2 = 0.1.1$)

$$[C] = [c_0 \quad c_1 \quad c_2] = [m_0 \quad m_1 \quad m_2] \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$c_0 = m_1 \oplus m_2$$

$$c_1 = m_0 \oplus m_2$$

$$c_2 = m_0 \oplus m_1$$

$$m_0 = 0, m_1 = 1, m_2 = 1$$

$$c_0 = m_1 \oplus m_2 = 1 \oplus 1 = 0$$

$$c_1 = m_0 \oplus m_2 = 0 \oplus 1 = 1$$

$$c_2 = m_0 \oplus m_1 = 0 \oplus 1 = 1$$

Complete codeword for message block (001)

m_0	m_1	m_2	C ₀	\mathbf{c}_1	c ₂
0	1	1	0	1	1

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Parity bits for message word ($m_0 m_1 m_2 = 110$)

$$[C] = [c_0 \quad c_1 \quad c_2] = [m_0 \quad m_1 \quad m_2] \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$c_0 = m_1 \oplus m_2$$

$$c_1 = m_0 \oplus m_2$$

$$c_2 = m_0 \oplus m_1$$

$$m_0 = 1, m_1 = 1, m_2 = 0$$

$$c_0 = m_1 \oplus m_2 = 1 \oplus 0 = 1$$

$$c_1 = m_0 \oplus m_2 = 1 \oplus 0 = 1$$

$$c_2 = m_0 \oplus m_1 = 1 \oplus 1 = 0$$

Complete codeword for message block (001)

m_0	m_1	m_2	c_0	\mathbf{c}_1	c_2
1	1	0	1	1	0

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Code vectors for (6,3) linear block code

S.No.	Message vectors	Parity bits	Code vectors
1	000	000	000000
2	001	110 -	001110
3	010	101 -	010101
4	011	011	011011
5	100 🗸	011 -	100011
6	101	101	101101
7	110	110	110110
8	111	000	111000

Code vectors for (6,3) linear block code

S.No.	Message vectors	Parity bits	Code vectors
1	000	000	000000
2	001	110	001110
3	010	101	010101
4	011	011	011011
5	100	011	100011
6	101	101	101101
7	110	110	110110
8	111	000	111000

Q. Check linearity of above (6,3) code

Add codewords at S.No. 2 & 3

0	0	1	1	1	0
\oplus	Mo	d-2	additio	on	
0	1	0	1	0	1
= 0	1	1	0	1	1

This codeword exists at S.No. 4

Add codewords at S.No. 7 & 8

1	1	0	1	1	0
\oplus	Mo	d-2	additio	on	
1	1	1	0	0	0
= 0	0	1	1	1	0

This codeword exists at S.No. 2

Q. The parity check matrix of a particular (7,4) linear block code is given by:

- i. Find the generator matrix
- ii. List all the codewords \sim (
- iii. What is the minimum distance between the code vectors?
- iv. How many errors can be detected? How many errors can be corrected?

الجامعة المصرية للتعلم الإلكتروني الأهلية THE EGYPTIAN E-LEARNING UNIVERSITY

THANK YOU FOR WATCHING

QUESTIONS?