מבחן מבוא לראייה ממוחשבת - 22928

.1

נתונה תמונה x(m,n), חשבו את גרעין הקונבולוציה (הפילטר) לקירוב הנגזרת האופקית מסדר x(m,n), ע"י שימוש בקירוב הבא לנגזרת הראשונה:

$$e(m,n) = \frac{1}{2} (x(m+1,n) - x(m-1,n))$$

(b) נתונה התמונה הבאה:

חשבו את תמונת התוצאה של קונבולוציה של התמונה עם הגרעין שחושב בסעיף 1. הניחו כי מחוץ לגבולות התמונה, הערכים הינם אפסים. היכן נקודות המקסימום בערך-מוחלט של התוצאה? היכן יסומנו השפות במקרה של גילוי שפות לפי קריטריון מקס' ערך מוחלט?

- נתון שתמונת הנגזרת הראשונה היא e(m,n), חשבו את גרעין הקונבולוציה (הפילטר) לחישוב (כe(m,n) הנגזרת האופקית מסדר שני ע"י הפעלה נוספת של אופרטור הנגזרת מסעיף 1.
- מסדר מסעיף 2 עם גרעין הנגזרת האופקית מסדר (d הציגו את תמונת התוצאה של קונבולוציה של התמונה מסעיף 2 עם גרעין הנגזרת האופקית מסדר שני. איזו תכונה של התוצאה משמשת לגילוי שפות? היכן יסומנו השפות במקרה זה?
- איזוטרופי (כלל-כיווני) לעומת גרעין בגילוי שפות ע"י שימוש בגרעין בגילוי שפות ע"י שימוש בגרעין (ce נגזרת חד-כיווני מבחינת חסינות לרעש?
- 2. קוביות המונחות על המישור במיקומים ובסיבובים אקראיים נצפות באופן פרספקטיבי מנקודת מבט 2K .2. סללית. מה מספר ה-vanishing points המקסימלי? והמינימלי? הסבר.

.3

- מהי טרנספומציה האפינית (affine transform) מהי טרנספורמציה אפינית שממפה נקודות (מ $\mathbf{x}'=(x',y')$ ל- $\mathbf{x}=(x,y)$
- $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ כך ש- $\{\mathbf{x}_1',\dots,\mathbf{x}_n'\}$ ו נתונות שתי קבוצות של נקודות מתאימות במישור במישור $\{\mathbf{x}_1,\dots,\mathbf{x}_n\}$ ו- $\{\mathbf{x}_1,\dots,\mathbf{x}_n'\}$ כך ש- לכל $\{\mathbf{x}_1,\dots,\mathbf{x}_n'\}$ האפינית בין שתי הקבוצות ע"פ עיקרון $\{\mathbf{x}_1,\dots,\mathbf{x}_n\}$

- squares. מה מספר ההתאמות המינימליות הדרוש לצורך השיערוך?
- c) בהנחה ש-30% מההתאמות אינו נכונותן, תאר אלגוריתם לשיערוך הטרנספומציה במצב זה. מה מספר ההתאמות הדרושות כדי לקבל שיערוך נכון בהסתברות של 0.95?
 - 4. השאלות הבאות הן על זיהוי אובייקטים:
 - .(sliding window) תאר מהו אלגוריתם זיהוי על בסיס חלון זז (sliding window).
 - . תאר אלגוריתם לזיהוי פנים המבוסס על זיהוי על בסיס חלון זז שנלמד בקורס.
 - .Bag-of-Words בשיטת (object recognition) תאר בקצרה את השלבים לזיהוי (c
 - .BoW נתח את היתרונות והחסרונות של זיהוי ע"י סיווג חלון זז לעומת זיהוי ע"י (d
 - 5. נתונה המטריצה הבאה:

$$P = \left[\begin{array}{cccc} 5 & -14 & 2 & 17 \\ -10 & -5 & -10 & 50 \\ 10 & 2 & -11 & 19 \end{array} \right]$$
 $X = \left[\begin{array}{cccc} 0 & 2 & 2 & 1 \end{array} \right]^T$ ונקודה במרחב תלת-מימדי בקורדינטות הומוגניות:

- (a מהן הקורדינטות הקרטזיות של הנקודה ב-3D?
- מה הקורדינטות הקרטזיות (u,v) של ההטלה של X למישור התמונה? (b
- .5mm של (focal length) בעלת מרחק מוקד (ideal pinhole camera) של c) הוא בפיקסל (principal point) ומרכז הצילום (0.02mm imes 0.02mm) הוא בפיקסל הוא 500,500). קואורדינטות התמונה מתחילות בפינה השמאלית עליונה ב-(0,0).
 - 1. מה היא מטריצת הקאליברציה מגודל 3×3 , למצלמה זו?
 - 2. בהנחה שמרכז (origin) של מערכת הקורדינטות של העולם נמצא בחריר של המצלמה והצירים מתאימים (align), מה המטריצה שמייצגת את ההתמרה מקורדינטות העולם לקורדינטות התמונה?
 - 3. בצירוף התשובות לסעיפים הקודמים, מה יהיה המיקום בתמונה של ההטלה של הנקודה ? (100, 150, 800)