Your name:	Dolutions		
Rec. Instr.:		Rec. Time:	

Show all your work in the space provided under each question. Please write neatly and present your answers in an organized way. You may use your one sheet of notes, but no books or calculators. This exam is worth 60 points. The chart below indicates how many points each problem is worth.

Problem	1	2	3	4
Points	/14	/9	/9	/10
Problem	5	6		Total
Points	/9	/9		/60

1. Evaluate the integrals.

$$\int x^{2} \cos(x^{3}) dx \qquad \text{Substitution} \quad u = \chi^{3}$$

$$\int u^{2} \cos(x^{3}) dx \qquad \text{Substitution} \quad u = \chi^{3}$$

$$\int u = 3\chi^{2} d\chi$$

$$= \frac{1}{3} \sin(\chi^{3}) + C$$

$$= \frac{1}{3} \sin(\chi^{3}) + C$$

(b)
$$\int x^{2} \cos(x) dx \qquad \text{Integration by Parts} \quad (\text{twice})$$

$$u = \chi^{2} \quad dV = \cos(\chi) d\chi$$

$$du = 2x d\chi \quad V = \sin(\chi)$$

$$(\chi^{2} \cos(\chi)) d\chi = \chi^{2} \sin(\chi) - (2\chi \sin(\chi)) d\chi$$

$$(\chi^{2} \cos(\chi)) d\chi = \chi^{2} \sin(\chi) - (2\chi \sin(\chi)) d\chi$$

$$u = -2\chi \quad dV = \sin(\chi) d\chi$$

$$du = -2d\chi \quad V = -\cos(\chi)$$

$$\int x^{2} \cos(x) dx = x^{2} \sin(x) + 2x \cos(x) - \int 2\cos(x) dx$$

$$= \left[x^{2} \sin(x) + 2x \cos(x) - 2\sin(x) + C \right]$$

2. Use a substitution to evaluate the integral.

$$\int \frac{\sin^3(x)}{\cos^4(x)} dx \qquad u = \cos(\pi)$$

$$du = -\sin(\pi) dx$$

Also need Pythagorean's Theorem
$$\sin^2(x) = 1 - \cos^2(x) = 1 - u^2$$

$$\int \frac{\sin^3(x)}{\cos^4(x)} dx = \int \frac{(1-\cos^2(x))\sin(x)}{\cos^4(x)} dx$$

$$= \left(\frac{(1-u^2)(-du)}{u^4} = \left(\frac{-1+u^2}{u^4}\right) du$$

$$= \int -u^{-4} u^{-2} du = \frac{-u^{-3}}{-3} + \frac{u^{-1}}{-1} + C$$

$$= \frac{1}{3\cos(x)} - \frac{1}{\cos(x)} + C$$

3. Use partial fractions to evaluate the integral.

$$\int \frac{x+12}{x^3+3x^2} dx \qquad x^3+3x^2 = x^2(x+3)$$

$$\frac{x+12}{x^3+3x^2} = \frac{Ax+B}{x^2} + \frac{C}{x+3} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+3}$$

$$x+12 = Ax(x+3) + B(x+3) + Cx^2$$

$$x+12 = Ax(x+3) + Ax(x+3) + Ax(x+3) + Cx^2$$

$$x+12 = Ax(x+3) + Ax(x+3) + Ax(x+3) + Cx^2$$

$$x+12 = Ax(x+3) + Ax(x+3) + Ax(x+3) + Cx^2$$

$$x+12 = Ax(x+3) + Ax(x+3) + Ax(x+3) + Cx^2$$

$$x+12 = Ax(x+3) + Ax(x+3) + Ax(x+3) + Cx^2$$

$$x+12 = Ax(x+3) + Ax(x+3) + Ax(x+3) + Cx^2$$

$$x+12 = Ax(x+3) + Ax(x+3) + Ax(x+3) + Cx^2$$

$$x+12 = Ax(x+3) + Ax($$

$$= \left| \ln \left| \frac{\chi + 3}{\chi} \right| - \frac{4}{\chi} + C.$$

4. Use a trigonometric substitution to evaluate the integral.

Hint: $2x - x^2 = 1 - (x - 1)^2$.

just use
$$\int \sqrt{2x-x^2} dx$$
 Either substitute $u=x-1$ first, or $\int \sqrt{2x-x^2} dx$ Either substitute $u=x-1$ first, or $\int \sqrt{2x-x^2} dx$ so that $x-1=\sin(\Theta)$ $\int \sqrt{2x-x^2} dx = \cos(\Theta) d\Theta$ and $\int \sqrt{2x-x^2} = \cos(\Theta)$

$$= \frac{9}{2} + \frac{\sin(2\theta)}{4} + C = \frac{9}{2} + \frac{\sin(\theta)\cos(\theta)}{2} + C$$

$$= \left[\frac{1}{2}\sin(\chi-1) + \frac{1}{2}(\chi-1)\cdot\sqrt{2\chi-\chi^2} + C\right]$$

5. Write the improper integral as a limit, and evaluate.

$$\int_{0}^{1} \frac{x^{4}}{\sqrt{1-x^{5}}} dx \qquad \text{Substitution} \quad u = 1-x^{5}$$

$$du = -5x^{4} dx$$

$$R \to 1 \left(\int_{0}^{\infty} \frac{x^{4}}{\sqrt{1-x^{5}}} dx \right) \qquad -\frac{1}{5} du = x^{4} dx$$

$$\left(\int_{0}^{\infty} \frac{x^{4}}{\sqrt{1-x^{5}}} dx \right) = -\frac{1}{5} \left(\int_{0}^{\infty} \frac{du}{\sqrt{1-x^{5}}} dx \right) + C$$

$$= -\frac{3}{10} \left(1-x^{5} \right)^{\frac{2}{3}} \right) R$$

$$= \lim_{R \to 1} \left[-\frac{3}{10} \left(1-R^{5} \right)^{\frac{2}{3}} - \left(-\frac{3}{10} \right) \right]$$

$$= 0 + \frac{3}{10} = \left[\frac{3}{10} \right]$$

$$y = \sqrt{x^2 + 1} \text{ for } 0 \le x \le 1.$$

Cylindrical Shells
$$dV = 2\pi R H dx$$

$$R = x, H = y = \sqrt{x^2 + 1}$$

$$2\pi \times \sqrt{x^2 + 1} dx = \pi \int \sqrt{u} du = \pi \left(\frac{2}{3}u\right)^2$$

$$Substitution u = x^2 + 1$$

$$du = 2x dx$$

$$= \frac{2\pi}{3}(2\sqrt{2} - 1)$$

or could use disks/washers
$$dV = \pi(R^2 - r^2) dy$$

$$y^2 = \chi^2 + 1$$

$$1 - \chi^2 = 2 - y^2$$

$$\pi + \pi \left(2y - \frac{y^3}{3}\right)^{\frac{1}{2}} = \pi + \pi \left(2\sqrt{2} - \frac{2\sqrt{2}}{3} - \left(2 - \frac{1}{3}\right)\right)$$

$$= \frac{4\sqrt{2}}{3}\pi - \frac{2}{3}\pi$$