Digital Computer Design - Term Project A Simple 8-Bit Processor

The objective of this project is to design a simple microprocessor with a custom instruction set. The processor should consist of the following four main components:

- A register file
- An Arithmetic and Logic Unit (ALU)
- A read-only instruction memory (IMEM)
- A read/write data memory (DMEM)

Instruction Set and Format

Your processor should implement the following basic instruction set:

Instruction	Opcode/Function	Operation	
add rd, ra, rb	0000 / 000	rd = ra + rb	
sub rd, ra, rb	0000 / 010	rd = ra - rb	
and rd, ra, rb	0000 / 100	rd = ra AND rb	
or rd, ra, rb	0000 / 101	rd = ra OR rb	
addi rd, ra, imm	0100	rd = ra + imm	
lw rd, imm(ra)	1011	rd = DMEM[ra + imm]	
sw rd, imm(ra)	1111	DMEM[ra + imm] = rd	
beq rd, ra, imm	1000	If($ra == rd$) $pc = pc + imm$	
j addr	0010	pc = pc + addr	

TABLE - I: Basic Instruction Set

The program code is stored as 16-bit instructions in the IMEM. The processor implements three types of instruction:

Type	15-12	11-9	8-6	5-3	2-0
R (Register)	Opcode	Rd	Ra	Rb	Func
I (Immediate)	Opcode	Rd	Ra	Imm[5:0]	
J (Jump)	Opcode	Don't care Addr[7-0]]	

TABLE – II: Instruction Format

Data Path Components:

Program Counter: One 8-bit register **Register File:** Holds 8-bit 8 register

Instruction Memory: 8-bit address input, and outputs 16-bit

Data Memory: 8-bit read/write memory

ALU: Performs arithmetic and logical operations

Control Unit: Generates necessary signals to the data-path. Check single-cycle ARM processor design **in the lecture slides** to design the signals and implement the control unit.

<u>Hint:</u> The signals can be defined as MemToReg, MemWrite, RegWrite, ALUSrc, Branch, Jump...

IMPLEMENTATION

Phase 1: Start by providing a **block diagram** of your design. Show all the **connections** and **signals** explicitly.

Phase 2: Implement your design using SystemVerilog.

Phase 3: Simulate your design in **Vivado** by <u>writing a **sample** program and loading it into</u> the instruction memory.

EVALUATION

BE CREATIVE!

Do not limit yourself with the instruction set given in Table I and instruction format in Table II. You should add extra instructions and if necessary you should change the instruction format, as you like.

- The project will be graded as 50% of the final exam.
- However, depending on the number of project submissions, this ratio can be changed to maximize success levels of students.

PRESENTATION

- The projects can be implemented **in pairs** (with your lab group member). However, teams of **up to 4 members** are allowed. So, two lab groups can merge for the projects.
- Projects should be submitted until **08 July 2021 23:59**.
- The project control will be on 09 July 2021 at 12:00 on MS Teams.
- A detailed timetable for project control will be announced on 09 July 2021. Every team member will have 4-5 minutes to present his/her project.