MAT335 - Chaos, Fractals, and Dynamics

Another Doubling Function. In the textbook he defines a new doubling function called D. We will call it $D_2(z)$ because it is the square function applied to a complex variable z.

- 1. Let $\mathbb{S}^1 = \{ z \in \mathbb{C} : |z| = 1 \}$
- **2.** Define $D_2: \mathbb{S}^1 \to \mathbb{S}^1$ by $D_2(z) = z^2$
- **3.** The orbit of z = i under D_2 is eventually fixed: $i, -1, 1, 1, \ldots$
- **4.** The orbit of $z = \frac{1+\sqrt{3}i}{2}$ under D_2 is eventually a 2-cycle:

i_orbit_D2(0.5*(1+sqrt(3)*1j),5)

Q. Why does Devaney call it a doubling function?

If $z = \cos \theta + i \sin \theta$, then $z^2 = \cos(2\theta) + i \sin(2\theta)$. So the argument (angle) of z is doubling.

Try running: i_orbit_D2(cos(pi/180)+1j*sin(pi/180),500)

Now consider $B:\mathbb{S}^1\to [-2,2]$ defined by $B(z)=2\mathrm{Re}(z).$ Check that $B\circ D_2=Q_{-2}\circ B$:

$$Q_{-2}(B(z)) = Q_{-2}(2\cos\theta) = 4\cos^2\theta - 2 = 2\cos(2\theta) = B(z^2)$$

$$\begin{array}{c|c}
\mathbb{S}^1 & \xrightarrow{D_2} & \mathbb{S}^1 \\
B \downarrow & & \downarrow B \\
[-2,2] & \xrightarrow{Q_{-2}} & [-2,2]
\end{array}$$

Since B is two-to-one, B is a semiconjugacy and we can use it to show that D_2 is chaotic on \mathbb{S}^1 , because Q_{-2} is chaotic on [-2, 2].

 \triangle We need to use B^{-1} (but it is not a function) to get information about D_2 from Q_{-2} . We need to define $B^{-1}(z) = \{z, \overline{z}\}$ to obtain that extra information.

Note. z is a periodic point for D_2 iff \overline{z} is (and $B(z) = B(\overline{z})$).