Experiment Name: To determine the value of J, the mechanical equivalent of heat by electric method.

Experimental Data:

Mass of the calorimeter $m_1 = 71.03$ gm

Mass of the calorimeter and water m = 248.1 gm

Mass of water $m_2 = (m - m_1)_{=177.07}$ gm

Mass of the stirrer, $m_3 = 21 \text{ gm}$

Specific heat of the material of the calorimeter $S_1 = 0.0909$ cal / gm - $^{\circ}$ C

Specific heat of water $S_2 = 1$ cal / gm $- {}^{\circ}C$

Specific heat of the material of the stirrer $S_3 = 0.089$ cal / gm - o C

Table1: Readings of current-voltage-temperature

No.	Time	Curre	Voltag	Temp	No.	Time	Curre	Voltag	Temp-
of		nt	e	_	of		nt	e	erature
Obs.	Minut	I	V	eratur	Ob	Minut	I	\mathbf{V}	° C
	e	amp.	volts	e	S	e	amp.	volts	
				°C					
1	0	0.00	0.00	21	11	10	1.12	7.1	25
2	1	1.12	7.1	22	12	11	1.12	7.1	26
3	2	1.12	7.1	22	13	12	1.12	7.1	26
4	3	1.12	7.1	22	14	13	0	0	27
5	4	1.12	7.1	22	15	14	0	0	28
6	5	1.12	7.1	22	16	28	0	0	27.5
7	6	1.12	7.1	23	17				
8	7	1.12	7.1	23	18				
9	8	1.12	7.1	23	19				
10	9	1.12	7.1	24	20				

Recordings of time and temperature with radiation correction:

Initial temperature of the calorimeter + contents, θ_1 = 21 ° C

Final temperature, $\theta_2 = 28 \, ^{\circ} \, \text{C}$

Time during which the current is passed, t = 12 Min = 720 sec

Mean current during the interval, I = 1.12 amp

Mean voltage during the interval, V = 7.2 volt

Rise of temperature, $\Delta\theta' = \theta_2 - \theta_1 = 7 \,^{\circ} \,^{\circ}$

CALCULATION:

The mechanical equivalent of heat,

$$J = \frac{VIt}{(m_1S_1 + m_2S_2 + m_3S_3)\Delta\theta}$$

$$= \frac{(7.1*1.12*720)}{((71.03*0.0909)+(1.7*0.07*1)+(21*0.08))}$$

$$= 4.2596 \quad J/cal$$

Result:

From the experiment we have got the value of mechanical equivalent of heat as

$$J = 4.2596$$
 J/cal