```
In [7]: import matplotlib.pyplot as plt
   import pandas as pd
   df=pd.read_csv('GlobalLandTemperaturesByCity.csv')
   df
```

Out[7]:

	dt	AverageTemperature	AverageTemperatureUncertainty	City	Country	Latitude	Longitude
0	1743-11-01	6.068	1.737	Århus	Denmark	57 . 05N	10.33E
1	1743-12-01	NaN	NaN	Århus	Denmark	57.05N	10.33E
2	1744-01-01	NaN	NaN	Århus	Denmark	57.05N	10.33E
3	1744-02-01	NaN	NaN	Århus	Denmark	57.05N	10.33E
4	1744-03-01	NaN	NaN	Århus	Denmark	57.05N	10.33E
8599207	2013-05-01	11.464	0.236	Zwolle	Netherlands	52.24N	5.26E
8599208	2013-06-01	15.043	0.261	Zwolle	Netherlands	52.24N	5.26E
8599209	2013-07-01	18.775	0.193	Zwolle	Netherlands	52.24N	5.26E
8599210	2013-08-01	18.025	0.298	Zwolle	Netherlands	52.24N	5.26E
8599211	2013-09-01	NaN	NaN	Zwolle	Netherlands	52.24N	5.26E

8599212 rows × 7 columns

```
In [13]: # Filter data for New York City
         city_data = df[df['City'] == 'New York'].copy()
         # Convert 'dt' to datetime
         city_data['dt'] = pd.to_datetime(city_data['dt'], errors='coerce')
         # Extract the year
         city_data['Year'] = city_data['dt'].dt.year
         # Group by year and calculate mean temperature
         annual = city_data.groupby('Year')['AverageTemperature'].mean().reset_index()
         # Plot the annual average temperature
         plt.figure(figsize=(12, 6))
         plt.plot(annual['Year'], annual['AverageTemperature'], linestyle='-', color='blue',marker='.')
         plt.title('Average Temperature of New York', fontsize=18)
         plt.xlabel('Year', fontsize=16)
         plt.ylabel('Average Temperature', fontsize=16)
         plt.grid(True)
         plt.show()
```



```
In [16]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Group by country and calculate the average temperature
annual = df.groupby('Country')['AverageTemperature'].mean().reset_index()

# Sort by average temperature in descending order
annual_sorted = annual.sort_values(by='AverageTemperature', ascending=False).head(10)

# Plot a bar chart
plt.figure(figsize=(12, 6))
sns.barplot(x='Country', y='AverageTemperature', data=annual_sorted, palette='Reds')
plt.title('Top 10 Countries with Highest Average Temperature', fontsize=18)
plt.xlabel('Country', fontsize=14)
plt.ylabel('Average Temperature', fontsize=14)
plt.xticks(rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```



```
In [20]: import matplotlib.pyplot as plt

# Drop missing or invalid values in AverageTemperature column
temperature_data = df['AverageTemperature'].dropna()

# Plot histogram
plt.figure(figsize=(12, 6))
plt.hist(temperature_data, bins=30, color='purple', edgecolor='black', alpha=0.7)
plt.title('Distribution of Average Temperatures', fontsize=18)
plt.xlabel('Temperature Ranges', fontsize=14)
plt.ylabel('Frequency', fontsize=14)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```


In [25]:


```
In [34]: import matplotlib.pyplot as plt

# Drop rows with missing values in relevant columns
data = df[['AverageTemperature', 'AverageTemperatureUncertainty']].dropna()

# Plot scatter plot
plt.figure(figsize=(12, 6))
plt.scatter(data['AverageTemperature'], data['AverageTemperatureUncertainty'], alpha=0.6, color='blu
plt.title('Correlation Between Average Temperature and Temperature Uncertainty', fontsize=18)
plt.xlabel('Average Temperature', fontsize=14)
plt.ylabel('Temperature Uncertainty', fontsize=14)
plt.grid(True, linestyle='--', alpha=0.7)
plt.show()
correlation = data.corr()
print(correlation)
```


AverageTemperature \
AverageTemperature 1.000000
AverageTemperatureUncertainty -0.228159

AverageTemperatureUncertainty
AverageTemperature -0.228159
AverageTemperatureUncertainty 1.000000

```
In [41]: import matplotlib.pyplot as plt
          # Filter the dataset for the specific country
          country_data = df[df['Country'] == 'Denmark'].dropna()
          # Extract the relevant data: Year and AverageTemperature
          country_data['Year'] = pd.to_datetime(country_data['dt']).dt.year.head(100)
          temperature_data = country_data[['Year', 'AverageTemperature']]
          # Plot boxplot for temperature spread by year
         plt.figure(figsize=(12, 6))
          plt.boxplot(
              [temperature_data[temperature_data['Year'] == year]['AverageTemperature'] for year in temperatur
              labels=temperature_data['Year'].unique(),
              patch artist=True,
              boxprops=dict(facecolor='purple', color='black'),
medianprops=dict(color='yellow', linewidth=1.5),
              flierprops=dict(marker='o', color='red', alpha=0.5),
          )
          plt.title('Spread of Average Temperatures in the Denmark (by Year)', fontsize=18)
          plt.xlabel('Year', fontsize=14)
          plt.ylabel('Average Temperature', fontsize=14)
          plt.xticks(rotation=45)
          plt.grid(axis='y', linestyle='--', alpha=0.7)
          plt.show()
```



```
In [42]: import seaborn as sns
```

In [43]: tips=sns.load_dataset('tips')
tips.head()

Out[43]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

```
In [44]: sns.histplot(data=tips,x='total_bill',kde=True,bins=20,color='skyblue')
plt.title('Distrubution')
plt.show()
```



```
In [45]: sns.histplot(data=tips,x='day',y='total_bill',kde=True,palette='viridis')
plt.title('Average total bill')
plt.show()
```

C:\Users\cvr\AppData\Local\Temp\ipykernel_13652\2739178180.py:1: UserWarning: Ignoring `palette` be cause no `hue` variable has been assigned.

sns.histplot(data=tips,x='day',y='total_bill',kde=True,palette='viridis')


```
In [46]: sns.boxplot(data=tips,x='total_bill',hue='sex',palette='coolwarm')
plt.title('Box plot')
plt.show()
```



```
In [47]: sns.scatterplot(data=tips,x='total_bill',y='tip',hue='day',style='time',palette='deep')
    plt.title('Scatter plot')
    plt.show()
```



```
In [48]: sns.lineplot(data=tips,x='size',y='tip',marker='*',color='green')
plt.title('Line plot')
plt.show()
```



```
In [49]: sns.pairplot(data=tips,hue='sex',palette='husl')
plt.show()
```

C:\Users\cvr\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight


```
In [54]: import seaborn as sns
         import matplotlib.pyplot as plt
         n=tips.select_dtypes(include='number')
         # Compute the correlation matrix
         c =n.corr()
         # Create the heatmap
         plt.figure(figsize=(10, 6))
         sns.heatmap(
             annot=True,
             cmap='coolwarm',
             fmt='.2f',
             linewidths=0.5, # Add gridlines between cells
                             # Ensure cells are square-shaped
         plt.title('Correlation Matrix', fontsize=18)
         plt.xticks(fontsize=12)
         plt.yticks(fontsize=12)
         plt.tight_layout()
         plt.show()
```



```
In [55]: train=pd.read_csv('train.csv')
train.head()
```

Out[55]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
In [56]: sns.barplot(data=train,x='Pclass',y='Survived',errorbar=None)
plt.title('Survival rate')
plt.xlabel('Passenger')
plt.ylabel('Survival rate')
plt.show()
```



```
In [60]: sns.scatterplot(data=train,x='Age',y='Fare',hue='Sex',palette='Reds')
    plt.title('Age')
    plt.xlabel('Fare')
    plt.ylabel('Survival rate')
    plt.show()
```



```
In [68]: import seaborn as sns
   import matplotlib.pyplot as plt

# Subset the DataFrame to include only the relevant columns
subset = train[['Age', 'Fare', 'Pclass', 'Survived']]

# Create the pairplot
sns.pairplot(
    subset,
    hue='Survived', # Use 'Pclass' for color-coding
    palette='coolwarm',
    diag_kind='kde', # Use Kernel Density Estimate for diagonal plots
        # Different markers for each class
)

# Add a title to the pairplot
plt.suptitle('Pairwise Relationships: Age, Fare, and Passenger Class', y=1.02, fontsize=16)
plt.show()
```

C:\Users\cvr\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout ha
s changed to tight
self._figure.tight_layout(*args, **kwargs)


```
In [73]: import seaborn as sns
         import matplotlib.pyplot as plt
         n=train.select_dtypes(include='number')
         # Compute the correlation matrix
         c =n.corr()
         # Create the heatmap
         plt.figure(figsize=(10, 6))
         sns.heatmap(
             С,
             annot=True,
             cmap='coolwarm',
             fmt='.2f',
             linewidths=0.5, # Add gridlines between cells
                              # Ensure cells are square-shaped
         plt.title('Correlation Matrix', fontsize=18)
         plt.xticks(fontsize=12)
         plt.yticks(fontsize=12)
         plt.tight_layout()
         plt.show()
```


In []: