Email: sohamc@cmi.ac.in

Course: Quantum Algorithmic Thinking

Assignment - 1

Roll: BMC202175 Date: October 20, 2023

Problem 1

Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices.

Solution: Pauli matrices are

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\sigma_y = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$ $\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

For I for all vectors v Iv = v. So every vector is an eigenvector and its eigenvalue is 1. Since I is already in its diagonal representation I's diagonal representation is I itself.

Since
$$\sigma_x \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 and $\sigma_x \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ we have

$$\sigma_{\scriptscriptstyle \mathcal{X}}\left(\begin{bmatrix}1\\0\end{bmatrix}+\begin{bmatrix}0\\1\end{bmatrix}\right)=\begin{bmatrix}0\\1\end{bmatrix}+\begin{bmatrix}1\\0\end{bmatrix}\quad\sigma_{\scriptscriptstyle \mathcal{X}}\left(\begin{bmatrix}1\\0\end{bmatrix}-\begin{bmatrix}0\\1\end{bmatrix}\right)=\begin{bmatrix}0\\1\end{bmatrix}-\begin{bmatrix}1\\0\end{bmatrix}=-\left(\begin{bmatrix}1\\0\end{bmatrix}-\begin{bmatrix}0\\1\end{bmatrix}\right)$$

So the for the eignevalue 1 the corresponding eignevector is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and for the eigenvalue -1 the corresponding eignevector is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

ing eigenvalue is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Since
$$\sigma_y \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -i \end{bmatrix}$$
 and $\sigma_y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} i \\ 0 \end{bmatrix}$ we have

$$\sigma_y\left(\begin{bmatrix}1\\0\end{bmatrix}+i\begin{bmatrix}0\\1\end{bmatrix}\right)=\begin{bmatrix}0\\-i\end{bmatrix}+i\begin{bmatrix}i\\0\end{bmatrix}=-1\left(i\begin{bmatrix}0\\1\end{bmatrix}+\begin{bmatrix}1\\0\end{bmatrix}\right) \quad \sigma_y\left(\begin{bmatrix}1\\0\end{bmatrix}-i\begin{bmatrix}0\\1\end{bmatrix}\right)=\begin{bmatrix}0\\-i\end{bmatrix}-i\begin{bmatrix}i\\0\end{bmatrix}=-i\begin{bmatrix}0\\1\end{bmatrix}+\begin{bmatrix}1\\0\end{bmatrix}$$

So the for the eigenvalue 1 the corresponding eigenvector is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} - i \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and for the eigenvalue -1 the corresponding eigenvalue is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + i \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Since $\sigma_z \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\sigma_y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. So the for the eignevalue 1 the corresponding eignevector is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

and for the eigenvalue -1 the corresponding eigenvalue is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Now σ_x , σ_y , σ_z has eigenvalues 1 and -1. So if we write in their corresponding eigenbasis then we will obtain the same diagonalized matrices where all the eigenvalues are in the diagonal positions i.e. $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Problem 2

Show that a normal matrix is Hermitian if and only if it has real eigenvalues. Show that a positive operator is necessarily Hermitian.

Solution: Let A is normal and it is hermitian. Then $A=A^{\dagger}$. Let v be an eigenvector of A with eigenvalue λ . Then $v^{\dagger}Av=v^{\dagger}\lambda v=\lambda|v|^2$. Also $v^{\dagger}Av=v^{\dagger}A^{\dagger}v=(Av)^{\dagger}v=\lambda^{\dagger}v^{\dagger}v=\lambda^{\dagger}|v|^2$. So we have $\lambda=\lambda^{\dagger}$. Which implies λ is real. Hence all eigenvalues of A are real.

For the opposite direction we need some lemmas.

Lemma 1: The product of two unitary matrices is unitary

Proof: Let U, V are two unitary matrices then $(UV)^{\dagger} = V^{\dagger}U^{\dagger}$. Now $(UV)(UV)^{\dagger} = U(VV^{\dagger}U^{\dagger}) = UIU^{\dagger} = I$.

Lemma 2: If A is any square complex matrix then there is an upper triangular complex matrix T and a unitary matrix U so that $A = UTU^{\dagger}$

Proof: Let A is a $n \times n$ matrix. Let v_1 be a eigenvector of A with the corresponding eigenvalue λ_1 . We can take x_1 to be of unit length. Now by Gram-Schmidt process we can extend x_1 to an orthonormal basis $\{x_1, v_2, \ldots, v_n\}$; Let $S_0 = \begin{bmatrix} x_1 & v_2 & \cdots & v_n \end{bmatrix}$ then S_0 is unitary and

$$S_0^{\dagger} A S_0 = \begin{bmatrix} \lambda_1 & * \\ 0 & A_1 \end{bmatrix}$$

where A_1 is an $(n-1) \times (n-1)$ matrix. Again suppose x_2 is an eigenvector of A_1 and the corresponding eigenvalue is λ_2 . Then again for A_1 we extend x_2 to an orthonormal basis $\{x_2, \tilde{v}_2, \ldots, \tilde{v}_{n-1}\}$ and take $\hat{S}_1 = \begin{bmatrix} x_2, \tilde{v}_2, \cdots, \tilde{v}_{n-1} \end{bmatrix}$ then S_1 is also unitary and we have $\hat{S}_1^{\dagger} A_1 \hat{S}_1 = \begin{bmatrix} \lambda_2 & * \\ 0 & A_2 \end{bmatrix}$ where A_2 is a $(n-2) \times (n-2)$

matrix. So we take $S_1 = S_0 \begin{bmatrix} 1 & 0 \\ 0 & \hat{S}_1 \end{bmatrix}$. Then

$$S_1^{\dagger} A S_1 = \begin{bmatrix} \lambda_1 & * & * \\ 0 & \lambda_2 & * \\ 0 & 0 & A_2 \end{bmatrix}$$

We continue like this letting $S_k = S_{k-1} \begin{bmatrix} I_k & 0 \\ 0 & \hat{S}_k \end{bmatrix}$ thus at the end we obtain $U := S_n$ such that $U^{\dagger}AU = T$ which is an upper triangular matrix. Hence we have $A = UTU^{\dagger}$

Lemma 3: A matrix A is diagonalizable with a unitary matrix if and only if A is normal

Proof: Let A is normal. Then by Lemma 2 there is a unitary matrix U and a upper traingular matrix T such that $A = UTU^{\dagger}$. Then

$$TT^{\dagger} = U^{\dagger}AU(U^{\dagger}AU)^{\dagger} = U^{\dagger}AUU^{\dagger}A^{\dagger}U = U^{\dagger}AA^{\dagger}U$$

= $U^{\dagger}A^{\dagger}AU = U^{\dagger}A^{\dagger}UU^{\dagger}AU = (U^{\dagger}AU)^{\dagger}U^{\dagger}AU = T^{\dagger}T$

Now let $T+(t_{i,j})_{1\leq i,j\leq n}$. Then the first diagonal entry of TT^{\dagger} is

$$\sum_{i=1}^{n} t_{1,i} \overline{t_{1,i}} = \sum_{i=1}^{n} |t_{1,i}|^{2}$$

Now the first diagonal entry of $T^{\dagger}T$ is $t_{1,1}\overline{t_{1,1}}=|t_{1,1}|^2$. These two are equal. Hence for all $2\leq i\leq n$ we have $t_{1,i}=0$. Similarly comparing the second diagonal entry of TT^{\dagger} and $T^{\dagger}T$ we have that all the nondiagonal entries of second row of T is 0. Continuing like this we have that T is diagonal.

Now suppose that A is any matrix such that there exists an unitary matrix U such that $U^{\dagger}AU = D$ where D is diagonal. Then

$$AA^{\dagger} = UDU^{\dagger}(UDU^{\dagger})^{\dagger} = UDU^{\dagger}UD^{\dagger}U^{\dagger} = UDD^{\dagger}U^{\dagger}$$
$$= UD^{\dagger}DU^{\dagger} = UD^{\dagger}U^{\dagger}UDU^{\dagger} = (UDU^{\dagger})^{\dagger}UDU^{\dagger} = A^{\dagger}A$$

So A is normal.

Now coming back to the original question we have that the eigenvalues of A are real. A is normal. Then there exists an unitary matrix U such that $U^{\dagger}AU = D$ where D is diagonal. Since all eigenvalues of A are real $D^{\dagger} = D$. Then we have

$$A^{\dagger} = (U^{\dagger}DU)^{\dagger} = U^{\dagger}D^{\dagger}U = U^{\dagger}DU = A$$

So *A* is hermitian

Now suppose A is positive operator. Then for all $v \in V$ we have

$$v^{\dagger}Av \ge 0 \implies v^{\dagger}Av = (v^{\dagger}Av)^{\dagger} = v^{\dagger}A^{\dagger}v \ge 0 \implies v^{\dagger}(A - A^{\dagger})v = 0$$

Now also we have

$$(A - A^{\dagger})(A - A^{\dagger})^{\dagger} = (A - A^{\dagger})(A^{\dagger} - A) = AA^{\dagger} - A^{\dagger}A^{\dagger} - AA + A^{\dagger}A$$
$$= (A^{\dagger} - A)(A - A^{\dagger}) = (A - A^{\dagger})^{\dagger}(A - A^{\dagger})$$

So $A - A^{\dagger}$ is a normal operator. Hence by Lemma 3 there exists an unitary matrix U such that $U^{\dagger}(A - A^{\dagger})U = D$ where D is a diagonal matrix. Now for standard basis for any e_i

$$e_i^{\dagger} D e_i = e^{\dagger} U^{\dagger} (A - A^{\dagger}) U e_i = (U e_i)^{\dagger} (A - A^{\dagger}) (U e_i) = 0$$

Now $e_i^{\dagger}De_i$ is the *i*-th diagonal element of D which we got is 0. Since this is true for all $i \in [n]$ we have D is a null matrix. So

$$U^{\dagger}(A - A^{\dagger})U = 0 \iff A - A^{\dagger} = U0U^{\dagger} = 0 \iff A = A^{\dagger}$$

Hence A is hermitian.

Problem 3

Suppose that A and B are Hermitian operators. Then show that the commutator [A, B] = 0 if and only if there exists an orthonormal basis such that both A and B are diagonal with respect to that basis.

Solution: If there exists an orthonormal basis such that both A and B are diagonal with respect to that basis then let we have $P^{\dagger}AP = D_A$ and $P^{\dagger}P - D_B$. Then

$$AB - BA = PD_A P^{\dagger} PD_B P^{\dagger} - PD_B P^{\dagger} PD_A P^{\dagger} = PD_A D_B P^{\dagger} - PD_B D_A P^{\dagger} = P(D_A D_B - S_B D_A) P^{\dagger} = 0$$

The last equality comes because D_A and D_B are diagonal matrices so $D_AD_B = D_BD_A$.

For the opposite direction suppose v be an eigenvector with corresponding eigenvector λ of A then $Av = \lambda v$. Now

$$A(Bv) = BAv = B\lambda v = \lambda Bv$$

Hence for any eigenvector v of A Bv is also an eigenvector and if Bv is zero then still it is an eigenvector of A for same eigenvalue.

Let $\lambda_1,\ldots,\lambda_k$ be the eigenvalues of A. Then the corresponding eigenspaces of A are V_{λ_i} for $i\in[k]$. Then we have $B(V_{\lambda_i})\subseteq V_{\lambda_i}$ for all $i\in[k]$. Now let β be an eigenvalue of B with corresponding eigenvector is y. Then for any $i\in[k]$ we can think $y=y_1+y_2$ where $y_1\in V_{\lambda_i}$ and and $y_2\in\bigoplus_{j\neq i}V_{\lambda_j}$. Then $By=\beta y=\beta y_1+\beta y_2$. also we have $By=By_2+By_2$. Since $B(V_{\lambda_i})\subseteq V_{\lambda_i}$ and $B\left(\bigoplus_{j\neq i}V_{\lambda_j}\right)\subseteq\bigoplus_{j\neq i}V_{\lambda_j}$ we can say $By_1=\beta y_1$ and $By_2=\beta y_2$. Now if the V_{β} is the corresponding eigenspace fo the eigenvalue β then

$$V_eta = ig[V_eta \cap V_{\lambda_i}ig] \oplus igg[V_eta \cap igoplus_{j
eq i} V_{\lambda_j}igg] = igoplus_{i=1}^k V_{\lambda_i} \cap V_eta$$

Now if β_1, \ldots, β_l are the eigenvalues of *B* then we have

$$\bigoplus_{i=1}^{l} V_{\beta_i} = \bigoplus_{i=1}^{l} \left(\bigoplus_{j=1}^{k} V_{\lambda_j} \cap V_{\beta_i} \right) = \bigoplus_{\substack{1 \le i \le l \\ 1 \le j \le k}} V_{\beta_i} \cap V_{\lambda_j}$$

Let us denote $V_{i,j} = V_{\beta_i} \cap V_{\lambda_j}$ then for each $V_{i,j}$ we take an orthogonal basis for all i, j. Then taking union of all of them we have an orthogonal basis for both A and B such that both A and B are diagonal. Now for each vector in the basis after normalizing we get an orthonormal basis such that both A and B are diagonal with respect to that basis.

Problem 4

Prove that a state $|\psi\rangle$ of a composite system AB is a product state if and only if it has Schmidt number 1. Prove that $|\psi\rangle$ is a product state if and only if the reduced density matrices ρ_A and ρ_B are pure states.

Solution:

• Let the $|\psi\rangle$ is a product state. Then $\exists |\psi_1\rangle \in A$, $|\psi_2\rangle \in B$ such that $|\psi\rangle = |\psi_1\rangle |\psi_2\rangle$. Now by Schmidt Decomposition there exists an orthonormal basis $\{|i_A\rangle\}$ for system A and orthonormal basis $\{|i_B\rangle\}$ for system B such that

$$|\psi\rangle = \sum_{i=1}^{n} \lambda_i |i_A\rangle |i_B\rangle$$

where $\lambda_i \in \mathbb{R}$ such that $\sum_{i=1}^n \lambda_i^2 = 1$. We have there exists at least one $\lambda_i \neq 0$. WLOG $\lambda_1 \neq 0$ Now we also have

$$\ket{\psi_1} = \sum_{i=1}^n \lambda_{i,A} \ket{i_A} \qquad \ket{\psi_2} = \sum_{i=1}^n \lambda_{i,B} \ket{i_B}$$

then we have

$$\sum_{i=1}^{n} \lambda_{i} \ket{i_{A}} \ket{i_{B}} = \ket{\psi} = \left(\sum_{i=1}^{n} \lambda_{i,A} \ket{i_{A}}\right) \left(\sum_{i=1}^{n} \lambda_{i,B} \ket{i_{B}}\right) = \sum_{1 \leq i,j \leq n} \lambda_{i,A} \lambda_{j,B} \ket{i_{A}} \ket{j_{B}}$$

Comparing the coefficients we have $\lambda_i = \lambda_{i,A}\lambda_{i,B}$ and for all $\lambda_{i,A}\lambda_{j,B} = 0$ where $i \neq j$. Since $\lambda_1 \neq 0$ we have $\lambda_{1,A}$, $\lambda_{1,B} \neq 0$. Since for all $j \neq 1$, $\lambda_{1,A}\lambda_{j,B} = 0$ we have $\lambda_{j,B} = 0$ for all $2 \leq j \leq n$. Similarly since for all $i \neq 1$, $\lambda_{i,A}\lambda_{1,B} = 0$ we have $\lambda_{i,A} = 0$ for all $2 \leq i \leq n$. So we have $\lambda_i = 0$ for all $2 \leq i \leq n$. So $|\psi\rangle = \lambda_1 |i_A\rangle |i_B\rangle$. Hence $|\psi\rangle$ has Schmidt Number 1.

For the opposite direction $|\psi\rangle$ has Schmidt Number 1. So $|\psi\rangle = |i_A\rangle |i_B\rangle$ Here are $|i_A\rangle$ is a state of system A and $|i_B\rangle$ is a state of system B. Hence $|\psi\rangle$ is already in a product state. Hence $|\psi\rangle$ is a product state of the composite system AB.

Problem 5

Write a self-contained proof that single qubit gates and CNOT gates are universal.

Solution:

Problem 6

Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices.

Solution: