UMA204: Introduction to Basic Analysis

Naman Mishra

January 2024

Contents

Lecture 01: Mon 01 Jan '24

The course

{chp:course}

Instructor: Prof. Purvi Gupta

Office: L-25

Office hours: Wed 17:00–18:00

Lecture hours: MW 12:00–12:50, Thu 9:00–9:50

Tutorial hours: Fri 12:00–12:50

We assume the following.

• Basics of set theory

• Existence of $\mathbb{N} = \{0, 1, 2, \ldots\}$ with the usual operations + and \cdot

For a recap, refer lectures 1 to 3 of UMA101.

Chapter 1

Number Systems

{chp:number_systems}

 $\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$

1.1 The Naturals

{sec:naturals}

(Recall from UM101) N is the unique minimal inductive set granted by the ZFC axioms. Addition and multiplication are defined by the recursion principle and we showed that they

- are associative and commutative,
- admit identity elements 0 and 1 respectively,
- satisfy the distributive law,
- satisfy cancellation laws,
- but do not admit inverses.

1.2 Relations

{sec:relations}

(Recall) A relation on a set A is a subset $R \subseteq A \times A$. We write a R b to denote $(a, b) \in R$.

{def:relations:partial_order}

Definition 1.1 (Partial order). A relation R on A is called a partial order if it is

- reflexive a R a for all $a \in A$;
- antisymmetric if a R b and b R a then a = b for all $a, b \in A$;
- transitive if a R b and b R c then a R c for all $a, b, c \in A$.

Additionally, if for all $x, y \in A$, x R y or y R x, then R is called a total order.

A set A equipped with a partial order \leq is called a partially ordered set (or poset).

A set A equipped with a total order \leq is called a totally ordered set or simply an ordered set.

Examples.

- (\mathbb{N}, \leq) where we say that $a \leq b$ if $\exists c \in \mathbb{N}$ such that a + c = b.
- $(\mathbb{N}, |)$ where we say that a | b if $\exists c \in \mathbb{N}$ such that $a \cdot c = b$.

In UMA101, we defined order slightly differently, where we said that either a < b or b < a but never both. This is a "strict order". We will denote a weak partial order by \leq and a strict partial order by <. (the notation is suggestive of how to every order there is a corresponding strict order and vice versa).

{def:relations:equivalence}

Definition 1.2 (Equivalence). An equivalence relation on a set A is a relation R satisfying

- reflexivity;
- symmetry if a R b then b R a for all $a, b \in A$;
- transitivity.

Notation. We write $[x]_R$ to denote the set $\{y \in A \mid x R y\}$.

Proposition 1.3. The collection $\mathscr{A} = \{[x]_R \mid x \in A\}$ partitions A under any equivalence relation R on A.

Proof. For every $x \in A$, $x \in [x]_R$ and so $\bigcup \mathscr{A} = A$.

Let $[x]_R \cap [y]_R \neq \emptyset$, where $x, y \in A$. Then there exists $z \in A$ such that

x R z and y R z, from which it follows that x R y and $[x]_R = [y]_R$.

1.3 The Integers

{sec:integers}

We cannot solve 3 + x = 2 in \mathbb{N} . We introduce \mathbb{Z} to solve this problem.

Consider the relation R on $\mathbb{N} \times \mathbb{N}$ given by

$$(a,b) R (c,d) \iff a+d=b+c.$$

(check that this is an equivalence relation trivial).

Definition 1.4. We define \mathbb{Z} to be the set of equivalence classes of R, notated $\mathbb{N} \times \mathbb{N}/R$.

{def:integers}

Further, define

- $[(a,b)] +_{\mathbb{Z}} [(c,d)] := [(a+c,b+d)];$
- $[(a,b)] \cdot_{\mathbb{Z}} [(c,d)] := [(ac+bd,ad+bc)].$
- $z_1 \leq_{\mathbb{Z}} z_2$ iff there exists $n \in \mathbb{N}$ such that $z_1 +_{\mathbb{Z}} [(n,0)] = z_2$ (alternatively, $[(a,b)] \leq_{\mathbb{Z}} [(c,d)]$ iff $a+d \leq b+c$).

We need to check that these are well-defined. What does this mean? Consider

$$[(1,2)] +_{\mathbb{Z}} [(3,4)] = [(4,6)]$$
$$[(3,4)] +_{\mathbb{Z}} [(3,4)] = [(6,8)]$$

Our definition must ensure that [(4,6)] = [(6,8)].

In general, the definitions are well-defined if they are independent of the choice of representatives. Throughout this section, we will omit the parentheses in [(a,b)] and write it as [a,b].

Lecture

02: Tue
{thm;Z;well-defined}

Proposition 1.5. The operations $+_{\mathbb{Z}}$, $\cdot_{\mathbb{Z}}$ and the relation $\leq_{\mathbb{Z}}$ are well-defined.

Proof. Suppose
$$x = [a, b] = [a', b']$$
 and $y = [c, d] = [c', d']$. Then
$$a + b' = a' + b$$
$$c + d' = c' + d$$
$$(a + c) + (b' + d') = (a' + c') + (b + d)$$
$$(a + c, b + d) R (a' + c', b' + d')$$
$$[a + c, b + d] = [a' + c', b' + d']$$

Since $\leq_{\mathbb{Z}}$ is defined in terms of $+_{\mathbb{Z}}$, it is also well-defined. For multiplication,

$$(a+b')c + (a'+b)d = (a'+b)c + (a+b')d$$

$$(ac+bd) + (a'd+b'c) = (a'c+b'd) + (ad+bc)$$

$$[ac+bd, ad+bc] = [a'c+b'd, a'd+b'c]$$

and symmetrically

$$[a'c + b'd, a'd + b'c] = [a'c' + b'd', a'c' + b'd']$$

so by transitivity

$$[ac + bd, ad + bc] = [a'c' + b'd', a'c' + b'd']$$

Proposition 1.6. The relation $\leq_{\mathbb{Z}}$ is a total order on \mathbb{Z} .

Proof. Let $x = [a, b], y = [c, d] \in \mathbb{Z}$. Since $x +_{\mathbb{Z}} [0, 0] = [a + 0, b + 0] = x, <math>x \leq_{\mathbb{Z}} x$.

Suppose $x \leq_{\mathbb{Z}} y$ and $y \leq_{\mathbb{Z}} x$. Then there exist $m, n \in \mathbb{N}$ such that x+[m,0] = y and $y +_{\mathbb{Z}} [n,0] = x$. Thus $x +_{\mathbb{Z}} [m,0] +_{\mathbb{Z}} [n,0] = [a+m+n,b] = [a,b]$. This gives a+m+n+b=a+b and so m+n=0. This can only be when m=n=0 and so x=y.

Now suppose $x \leq_{\mathbb{Z}} y$ and $y \leq_{\mathbb{Z}} z$. Then there exist $m, n \in \mathbb{N}$ such that x + [m, 0] = y and $y +_{\mathbb{Z}} [n, 0] = z$. This immediately gives x + [m + n, 0] = z and so $x \leq_{\mathbb{Z}} z$.

For trichotomy, note that either $a+d \leq b+c$ or $b+c \leq a+d$ by trichotomy of (\mathbb{N}, \leq) . In the first case, a+d+n=b+c for some $n \in \mathbb{N}$, so $[a,b]+_{\mathbb{Z}}[n,0]=[c,d]$. Thus $x \leq_{\mathbb{Z}} y$. Similarly, in the second case, $y \leq x$. \square

{def:ring} **Definition 1.7** (Ring). A ring is a set S with two binary operations + and \cdot such that for all $a, b, c \in S$, (R1) addition is associative, {def:ring:asso} (R2) addition is commutative, {def:ring:comm} (R3) there exists an additive identity 0, {def:ring:zero} (R4) there exists an additive inverse -a, {def:ring:inverse} (R5) multiplication is associative, {def:ring:mult_asso} (R6) there exists a multiplicative identity 1, {def:ring:one} (R7) multiplication is distributive over addition (on both sides). {def:ring:dist} For a commutative ring, we require additionally that (CR1) multiplication is commutative. {def:ring:mult_comm}

Note that inverses are unique, since if a + b = 0 and a + b' = 0, then b = (b' + a) + b = b' + (a + b) = b'.

Definition 1.8 (Ordered Ring). An ordered ring is a ring S with a total order \leq such that for all $a, b, c \in S$,

(OR1) $a \le b$ implies $a + c \le b + c$,

(OR2) $0 \le a$ and $0 \le b$ implies $0 \le ab$.

 $\{ exttt{def:ordered_ring} \}$

 $\{ \mathtt{def:ordered_ring:sum} \}$

{def:ordered_ring:prod}

Theorem 1.9.

- $(\mathbb{Z}, +_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, \leq_{\mathbb{Z}})$ is an ordered (commutative) ring.
- The map $f = n \mapsto [n, 0]$ from \mathbb{N} to \mathbb{Z} is an injective map that respects +, \cdot and \leq . That is, for all $n, m \in \mathbb{N}$,
 - (i) $f(n+m) = f(n) +_{\mathbb{Z}} f(m)$,
 - (ii) $f(nm) = f(n) \cdot_{\mathbb{Z}} f(m)$,
 - (iii) $n \le m \iff f(n) \le_{\mathbb{Z}} f(m)$.

In other words, f is an isomorphism onto a subset of \mathbb{Z} .

Proof. For the first part of the theorem, we check all commutative ring axioms. We omit the subscripts on + and \cdot for brevity.

(R1) Addition is associative:

$$([a,b] + [c,d]) + [e,f] = [a+c,b+d] + [e,f]$$

$$= [a+c+e,b+d+f]$$

$$= [a,b] + [c+e,d+f]$$

$$= [a,b] + ([c,d] + [e,f])$$

- (R2) Addition is commutative: immediate from commutativity of + on \mathbb{N} .
- (R3) Additive identity: [a, b] + [0, 0] = [a + 0, b + 0] = [a, b].
- (R4) Additive inverse: [a, b] + [b, a] = [a + b, b + a] = [0, 0] since a + b + 0 = b + a + 0.
- (R5) Multiplication is associative:

$$([a,b] \cdot [c,d]) \cdot [e,f] = [ac+bd, ad+bc] \cdot [e,f]$$

$$= [ace+bde+adf+bcf, ade+bce+acf+bdf]$$

$$= [a(ce+df)+b(cf+de), a(cf+de)+b(ce+df]$$

$$= [a,b] \cdot [ce+df, cf+de]$$

$$= [a,b] \cdot ([c,d] \cdot [e,f])$$

- (R6) Multiplicative identity: $[a, b] \cdot [1, 0] = [a, b]$.
- (R7) Multiplication distributes over addition:

$$[a,b] \cdot ([c,d] + [e,f]) = [a,b] \cdot [c+e,d+f]$$

$$= [ac+ae+bd+bf,ad+af+bc+be]$$

$$= [ac+bd,ad+bc] + [ae+bf,af+be]$$

$$= [a,b] \cdot [c,d] + [a,b] \cdot [e,f]$$

Distributivity on the other side follows from commutativity proved below.

For commutativity of multiplication,

$$[a,b] \cdot [c,d] = [ac+bd,ad+bc]$$
$$= [ca+db,cb+da]$$
$$= [c,d] \cdot [a,b]$$

?? follows immediately from the definition. For ??, suppose $0 \le x, y \in \mathbb{Z}$. Then x = [n, 0] and y = [m, 0] for some $n, m \in \mathbb{N}$. Thus xy = [nm, 0] and so $0 \le xy$.

The second part is again yawningly brute force.

- (i) $f(n+m) = [n+m,0] = [n,0] + [m,0] = f(n) +_{\mathbb{Z}} f(m)$.
- (ii) $f(nm) = [nm, 0] = [n, 0] \cdot [m, 0] = f(n) \cdot_{\mathbb{Z}} f(m)$.
- (iii) $n \le m \iff \exists k \in \mathbb{N}(n+k=m) \iff \exists k \in \mathbb{N}([n,0]+[k,0]=[m,0]) \iff f(n) \le_{\mathbb{Z}} f(m).$

Thus, we may view $(\mathbb{N}, +, \cdot, \leq)$ as a subset of $(\mathbb{Z}, +_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, \leq_{\mathbb{Z}})$, denote [n, 0] as n and drop \mathbb{Z} in the subscript. We further define -[a, b] := [b, a] and $z_1 - z_2 := z_1 + (-z_2)$.

Moreover, we have the following properties.

{thm:Z:prop}

Proposition 1.10.

- There are no zero divisors in \mathbb{Z} . That is, for all $x, y \in \mathbb{Z}$, xy = 0 implies x = 0 or y = 0.
- The cancellation laws hold: for all $x, y, z \in \mathbb{Z}$, x + y = x + z implies y = z, and xy = xz implies x = 0 or y = z.
- (trichotomy) For all $z \in \mathbb{Z}$, z = n or z = -n for some $n \in \mathbb{N}$.

Proof. • From trichotomy proven below, we have x = n or x = -n and y = m or y = -m for some $n, m \in \mathbb{N}$. In any case xy = nm or xy = -nm. Since there are no zero divisors in \mathbb{N} , xy = 0 implies n = 0 or m = 0, which in turn implies x = 0 or y = 0.

• The first cancellation law follows from the fact that additive inverses exist. For the second, note that $xy = xz \iff x(y-z) = 0$ and invoke the fact that there are no zero divisors.

Here we have also used that -xz = x(-z), since $-\tilde{z} = -1 \cdot \tilde{z}$ for all $\tilde{z} \in \mathbb{Z}$, and multiplication is associative and commutative.

• Let z = [a, b]. From trichotomy of \leq on \mathbb{N} we know that either a + n = b or a = b + n for some $n \in \mathbb{N}$. (which \mathbb{N} ?) That is, either z = [0, n] = -n, or z = [n, 0] = n.

1.4 The Rationals

{sec:rationals}

We cannot solve 3x = 2 in \mathbb{Z} .

Proof. Suppose 3x = 2 for some $x = [a, b] \in \mathbb{Z}$. Then

$$3x = 2$$

$$[3,0] \cdot [a,b] = [2,0]$$

$$[3a,3b] = [2,0]$$

$$3a = 3b + 2$$

What now?

We define \mathbb{Z}^* to be $\mathbb{Z}\setminus\{0\}$ and define the relation R on $\mathbb{Z}\times\mathbb{Z}^*$ by (a,b)R(c,d) if ad=bc. Then R is an equivalence relation on $\mathbb{Z}\times\mathbb{Z}^*$.

Definition 1.11. We define \mathbb{Q} to be the set of equivalence classes of R, notated $\mathbb{Z} \times \mathbb{Z}^*/R$.

We define operations $+_{\mathbb{Q}}$ and $\cdot_{\mathbb{Q}}$ on \mathbb{Q} by

$$\begin{split} [(a,b)] +_{\mathbb{Q}} [(c,d)] &\coloneqq [(ad+bc,bd)] \\ [(a,b)] \cdot_{\mathbb{Q}} [(c,d)] &\coloneqq [(ac,bd)] \end{split}$$

Since there are no zero divisors in \mathbb{Z} , $bd \neq 0$.

We define an order $\leq_{\mathbb{Q}}$ on \mathbb{Q} by

$$[(a,b)] \leq_{\mathbb{Q}} [(c,d)] \iff (ad-bc)bd \leq 0.$$

We will again omit the parentheses in this section.

{thm:Q:well-defined}

Proposition 1.12. The operations $+_{\mathbb{Q}}$, $\cdot_{\mathbb{Q}}$ and the relation $\leq_{\mathbb{Q}}$ are well-defined.

Proof. Suppose
$$[a,b] = [a',b']$$
 and $[c,d] = [c',d']$. Then

$$ab' = a'b$$

$$cd' = c'd$$

$$(ad + bc)(b'd') = (a'd' + b'c')(bd)$$

$$[ad + bc, bd] = [a'd' + b'c', b'd']$$

For multiplication,

$$(ac)(b'd') = (a'c')(bd)$$
$$[ac, bd] = [a'c', b'd']$$

For order,

$$(ad - bc)bd \le 0$$

$$\iff (b'd')(ad - bc)bd(b'd') \le 0$$

$$\iff (ab'dd' - bb'cd')bdb'd' \le 0$$

$$\iff (a'bdd' - bb'c'd)bdb'd' \le 0$$

$$\iff (bd)^{2}(a'd' - b'c')b'd' \le 0$$

$$\iff (a'd' - b'c')b'd' \le 0$$

since $bd \neq 0 \neq b'd'$. Thus $+_{\mathbb{Q}}$, $\cdot_{\mathbb{Q}}$ and $\leq_{\mathbb{Q}}$ are well-defined.

Proposition 1.13. The relation $\leq_{\mathbb{Q}}$ is a total order on \mathbb{Q} .

Proof. Transitivity: Suppose $(ad - bc)bd \le 0$ and $(cf - de)df \le 0$. Then $(adf - bcf)bdf \le 0$ and $(bcf - bde)bdf \le 0$. Adding these gives $(adf - bde)bdf \le 0$ and so $(af - be)bf \le 0$.

Antisymmetry: Suppose $(ad - bc)bd \le 0$ and $(cb - da)db \le 0$. Then (ad - bc)bd = 0 which gives ad = bc so x = y.

Theorem 1.14.

- $(\mathbb{Q}, +_{\mathbb{Q}}, \cdot_{\mathbb{Q}}, \leq_{\mathbb{Q}})$ is an ordered field.
- The map $f = z \mapsto [z, 1]$ from \mathbb{Z} to \mathbb{Q} is an injective map that respects +, \cdot and \leq . That is, for all $z_1, z_2 \in \mathbb{Z}$,
 - (i) $f(z_1 + z_2) = f(z_1) +_{\mathbb{Q}} f(z_2)$,
 - (ii) $f(z_1 z_2) = f(z_1) \cdot_{\mathbb{Q}} f(z_2)$,
 - (iii) $z_1 \leq z_2 \iff f(z_1) \leq_{\mathbb{Q}} f(z_2)$.

In other words, f is a commutative ring isomorphism into \mathbb{Q} .

Proof. For the first part, we check all ordered field axioms. We again omit the subscripts on + and \cdot for brevity. Numbering is from UMA101.

- (F1) + and \cdot are commutative: immediate from commutativity of + and \cdot on \mathbb{Z} .
- (F2) + and \cdot are associative:

$$([a,b] + [c,d]) + [e,f] = [ad + bc,bd] + [e,f]$$

$$= [(ad + bc)f + bde,bdf]$$

$$= [adf + b(cf + de),bdf]$$

$$= [a,b] + [cf + de,df]$$

$$= [a,b] + ([c,d] + [e,f])$$

Associativity of \cdot is immediate from associativity on \mathbb{Z} .

(F3) Distributivity:

$$[a,b] \cdot ([c,d] + [e,f]) = [a,b] \cdot [cf + de, df]$$

$$= [acf + ade, bdf]$$

$$= [abcf + abde, b^2df] \qquad (b \text{ is nonzero})$$

$$= [(ac)(bf) + (bd)(ae), (bd)(bf)]$$

$$= [ac, bd] + [ae, bf]$$

- (F4) Identities: $[0,1] \neq [1,1]$, [a,b] + [0,1] = [a,b] and $[a,b] \cdot [1,1] = [a,b]$.
- (F5) Additive inverse: [a, b] + [-a, b] = [0, 1].
- (F6) Multiplicative inverse: $[a, b] \cdot [b, a] = [1, 1]$ for $a \neq 0 \iff [a, b] \neq [0, 1]$. For the second part,

(i)
$$f(z_1 + z_2) = [z_1 + z_2, 1] = [z_1, 1] + [z_2, 1].$$

(ii)
$$f(z_1z_2) = [z_1z_2, 1] = [z_1, 1] \cdot [z_2, 1].$$

(iii)
$$f(z_1) \le f(z_2) \iff (z_1 - z_2) \le 0 \iff z_1 \le z_2.$$

We now introduce the division operation $/: \mathbb{Q} \times \mathbb{Q}^* \to \mathbb{Q}$ by $a/b = \frac{a}{b} = ab^{-1}$.

Notation. Note that every rational number x = [a, b] can be written as x = a/b. We thus largely drop the notation [a, b] and write a/b instead.

We will now accept basic algebraic manipulations of rational numbers without justification.

Lecture 03: Wed 03 Jan '24

{def:exponentiation}

Definition 1.15 (Exponentiation). The recursion principle guarantees the existence of pow : $\mathbb{Z} \times \mathbb{N} \to \mathbb{N}$ such that for all $n, m \in \mathbb{N}$,

$$pow(m, 0) = 1$$
$$pow(m, n + 1) = m \cdot pow(m, n)$$

We extend this to pow : $\mathbb{Q}^* \times \mathbb{Z} \to \mathbb{Q}$ as follows.

$$\operatorname{pow}\left(\frac{a}{b},m\right) \coloneqq \begin{cases} a^m/b^m & \text{if } m \in \mathbb{N} \\ b^m/a^m & \text{if } -m \in \mathbb{N} \end{cases}$$

We write z^n to denote pow(z, n).

Remark. Note that we have defined 0^0 to be 1, but we don't really care.

Proposition 1.16. Exponetiation is well-defined.

Proof. Let $a/b = \tilde{a}/\tilde{b} \in \mathbb{Q}$. That is, $a\tilde{b} = b\tilde{a} \in \mathbb{Z}$. For $m \in \mathbb{N}$, thus $a^m \tilde{b}^m = b^m \tilde{a}^m$ (easily proved by induction).

Similarly if $-m \in \mathbb{N}$.

{thm:Q:no_rational_square_root_of

Theorem 1.17. There exists no $x \in \mathbb{Q}$ such that $x^2 = 2$.

We first make note of the following lemma.

{thm:positive_denominator}

Lemma 1.18. Let $x \in \mathbb{Q}$. Then there exists $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ such that x = p/q.

In particular, if x > 0, then x = p/q for some $p \in \mathbb{N}$, $q \in \mathbb{N}^*$.

Proof. Let x = a/b. If $b \in \mathbb{N}$, we are done. Otherwise, x = -a/-b and $-b \in \mathbb{N}$.

We will make use of the well-ordered property of (\mathbb{N}, \leq) proved below in ??.

Proof of ??. Suppose there exists such an x. By the field properties, $(-x)^2 = x^2$. Thus we may assume $x \ge 0$. Let x = p/q for some $q \in \mathbb{N}^*$. Since $x \ge 0$, we have $p \ge 0 \iff p \in \mathbb{N}$.

Let $A = \{q \in \mathbb{N}^* \mid x = p/q \text{ for some } p \in \mathbb{N}\}$. A is non-empty.

By the well-ordering principle, A has a least element q_0 . Let $p_0 \in \mathbb{N}$ such that $x = p_0/q_0$.

We know that 1 < x < 2 [why? because $(\cdot)^2$ is an increasing function on positive rationals (why? difference of squares)] and so $0 < p_0 - q_0 < q_0$. Now

$$\frac{2q_0 - p_0}{p_0 - q_0} = \frac{2 - x}{x - 1}$$

$$= \frac{(2 - x)(x + 1)}{x^2 - 1}$$

$$= 2x + 2 - x^2 - x$$

$$= x,$$

in contradiction to the minimality of q_0 .

Theorem 1.19 (Well-ordering principle). Every non-empty subset of $\mathbb N$ has a least element.

{thm:well-ordering}

Proof. Let $S \subseteq \mathbb{N}$ be non-empty. We define P(n) to be "if $n \in S$, then S has a least element". Clearly P(0) holds.

Suppose P(k) holds for all $k \leq n \in \mathbb{N}$.

If $n+1 \notin S$, P(n+1) holds vacuously.

If $\exists m \in S(m < n + 1)$, then P(n + 1) holds by virtue of P(m).

Otherwise $n+1 \in S$ and $\forall m \in S(n+1 \leq m)$, so that n+1 is the least element of S.

In any case, P(n+1) holds.

{thm:Q:root2_approximation}

Theorem 1.20. Let

$$A = \{x \in \mathbb{Q} \mid x^2 < 2\}$$

$$B = \{x \in \mathbb{Q} \mid x^2 > 2, x > 0\}$$

Then A has no largest element and B has no smallest element.

Proof. Let $a \in A$. a > -2 since otherwise $a^2 \ge 4$. Let $c = a + \frac{2-a^2}{2+a}$. Clearly

c > a. Now

$$c = \frac{2a+2}{2+a}$$

$$c^2 = \frac{4a^2+8a+4}{4+4a+a^2}$$

$$c^2 - 2 = \frac{2a^2-4}{(2+a)^2} < 0$$

Thus $c \in A$.

For
$$B$$
, let $c = b + \frac{2-b^2}{2+b} = \frac{2b+2}{2+b}$. Clearly $0 < c < b$ and $c^2 - 2 = \frac{2b^2 - 4}{(2+b)^2} > 0$. Thus $c \in B$.

Corollary 1.21. (\mathbb{Q}, \leq) does not have the least upper bound property.

Proof. Let b be an upper bound of A. Clearly b > 0. b cannot be in A since A has no largest element. b cannot have square 2 by ??. Thus $b \in B$. But since B has no smallest element, there is a $b' \in B$ which is less than b.

For any $a \in A$, if a < 0 then a < b'. Otherwise, $0 < (b')^2 - a^2 = (b' - a)(b' + a)$ and so a < b'. Thus b' is an upper bound of A which is less than b.

Since b was arbitrary, A cannot have a least upper bound. \Box

1.5 Ordered Fields with LUB

{sec:ordered_fields_with_lub}

(Recall from UMA101 Lecture 6) Given an ordered set (X, \leq) , a subset $S \subseteq X$ is said to be bounded above (resp. below) if there exists $x \in X$ such that for all $s \in S$, $s \leq x$ (resp. $x \leq s$), and any such x is called an upper (resp. lower) bound of S.

A (The) supremum or least upper bound of S is an element $x \in X$ such that x is an upper bound of S and for all upper bounds y of S, $x \leq y$. Similarly, infimum or greatest lower bound.

 (X, \leq) is said to have the least upper bound property if every non-empty bounded above subset of X admits a supremum.

Proposition 1.22. (\mathbb{Q}, \leq) does not have the least upper bound property.

Proof. From ??, we know that A has no largest element and B has no smallest element.

Let s be a supremum of A. Since there is no largest element in $A, s \notin A$. From ??, we know that $s^2 \neq 2$. Thus by trichotomy, $s^2 > 2$ and so $s \in B$. But then there is an $s' \in B$ which is less than s but also an upper bound of A. This is a contradiction.

Theorem 1.23. Every ordered field F "contains" \mathbb{Q} , *i.e.*, there exists an injective map $f:\mathbb{Q}\to F$ that respects +, \cdot and \leq .

We will notate this statement as $\mathbb{Q} \subseteq F$.

Proof. Let $f: \mathbb{Z} \to F$ be defined as

$$f(n) = \begin{cases} 0_F & \text{if } n = 0\\ \underbrace{1_F + \dots + 1_F}_{n \text{ times}} & \text{if } n > 0\\ \underbrace{(-1_F) + \dots + (-1_F)}_{m \text{ times}} & \text{if } n = -m, m > 0 \end{cases}$$

Note that f(-n) = -f(n) for all $n \in \mathbb{N}$. Let us show that f(n+m) = f(n) + f(m) for all $n, m \in \mathbb{Z}$.

Case 1: n = 0 or m = 0. Immediate.

Case 2: n > 0 and m > 0. Then

$$f(n+m) = \underbrace{1_F + \dots + 1_F}_{n+m \text{ times}}$$

$$= \underbrace{1_F + \dots + 1_F}_{n \text{ times}} + \underbrace{1_F + \dots + 1_F}_{m \text{ times}}$$

$$= f(n) + f(m)$$

Case 3: n < 0 and m < 0. Then f(n+m) = -f((-n) + (-m)) = -(f(-n) + f(-m)) = f(n) + f(m).

Case 4: nm < 0. WLOG, let m < 0 < n. Suppose 0 < n + m. Then f(n+m)+f(-m)=f(n+m-m)=f(n) from case 2. Now suppose n+m < 0. Then f(n)+f(-n-m)=f(n-n-m)=-f(m) from case 3. In either case, f(n+m)=f(n)+f(m).

Now consider f(nm). If nm = 0, then $f(nm) = 0_F = f(n)f(m)$. If

0 < n, m, then

$$f(nm) = \overbrace{1_F + \dots + 1_F}^{n \text{ times}}$$

$$= \underbrace{(1_F + \dots + 1_F)}_{n \text{ times}} + \dots + \underbrace{(1_F + \dots + 1_F)}_{m \text{ times}}$$

$$= \underbrace{(1_F + \dots + 1_F)}_{n \text{ times}} \cdot \underbrace{(1_F + \dots + 1_F)}_{m \text{ times}}$$

$$= f(n) f(m)$$

If either of n, m is negative, then we take the negative sign out and use the above case.

Thus f respects + and \cdot .

Suppose that m < n. Then $f(n) - f(m) = f(n) + f(-m) = f(n-m) = (n-m)1_F$ (where $z1_F$ is notation for 1_F added z times). n-m is positive, but 1_F added to itself a positive number of times must be positive. This is because $0_F < 1_F$ (UMA101) and so $k1_F < (k+1)1_F$ for all $k \in \mathbb{N}^+$. Induction gives $0_F < k1_F$ for all $k \in \mathbb{N}^+$. Thus f(m) < f(n) and so f respects < (and hence \le).

Finally, injectivity of f follows from order preservation.

We extend f to \mathbb{Q} by defining $f(a/b) = f(a)f(b)^{-1}$. This continues to be an isomorphism.

Definition 1.24 (Archimedean property). An ordered field F is said to have the *Archimedean property* if for every x, y > 0, there exists an $n \in \mathbb{N} \subseteq F$ such that nx > y.

Lecture def:archimedean} **04:** Wed 10 Jan '24

{thm:Q:archimedean}

Theorem 1.25. \mathbb{Q} has the Archimedean property.

Proof. Let x, y > 0 be rationals. If x > y, n = 1 works. Suppose $x \le y$. It suffices to show that $\exists n \in \mathbb{N}(nr > 1)$, where r = x/y. Since r is positive, we have $p, q \in \mathbb{N}^*$ such that r = p/q. Let n = 2q. This gives nr > 1. \square

Remark. Not all ordered fields have the Archimedean property.

Theorem 1.26. Let F be an ordered field with the LUB property. Then F has the Archimedean property.

Proof. Let x, y > 0. Suppose $\forall n \in \mathbb{N} (nx \leq y)$. Let $A = \{nx \mid n \in \mathbb{N}\}$. Clearly A is non-empty and bounded above. Then $\sup A$ exists and so there exists an $m \in \mathbb{N}$ such that $\sup A - x < mx$. Thus $\sup A < (m+1)x \in A$, a contradiction.

Theorem 1.27. Let F be an ordered field with the LUB property. Then \mathbb{Q} is dense in F, *i.e.*, given $x < y \in F$, there exists a rational $r \in \mathbb{Q}$ such that x < r < y.

Proof. Follows from ?? and problem 4 on assignment 1.

1.6 The Reals

{thm:R:unique}

Theorem 1.28 (Dedekind/Cauchy). There exists a unique (up to isomorphism) ordered field with the LUB property.

We first recover some properties of supremums.

{thm:R:sup}

Lemma 1.29. Let F be an ordered field with the LUB property. Let A and B be non-empty bounded above subsets of F. Then $\sup A + \sup B = \sup(A+B)$. Further, if all elements of A and B are non-negative, then $\sup A \sup B = \sup(AB)$.

Here $A+B \coloneqq \{a+b \mid a \in A, b \in B\}$ and $AB \coloneqq \{ab \mid a \in A, b \in B\}$.

Proof. Let $\alpha = \sup A$ and $\beta = \sup B$. For all $a \in A$ and $b \in B$, $a+b \le \alpha+\beta$. Thus $\alpha + \beta$ is an upper bound of A + B.

Let $c < \alpha + \beta$. Since $c - \beta < \alpha$, there exists an $a \in A$ larger than $c - \beta$. Then $c - a < \beta$ and so there exists a $b \in B$ larger than c - a. Thus $c < a + b \in A + B$ and so $\alpha + \beta = \sup(A + B)$.

Now suppose all elements of A and B are non-negative. If $\alpha = 0$ or $\beta = 0$, then $\alpha\beta = 0$ and so $\alpha\beta = \sup(AB)$.

For all $a \in A$ and $b \in B$, $ab \le \alpha\beta$. Let $c < \alpha\beta$. Since $c/\beta < \alpha$, there exists an $a \in A$ larger than c/β . Then $c/a < \beta$ and so there exists a $b \in B$ larger than c/a. Thus $c < ab \in AB$ and so $\alpha\beta = \sup(AB)$.

Proof of uniqueness. Let F and G be OFWLUB. Let h be identity on

 $\mathbb{Q} \subseteq F, G$. For $z \in F$ let

$$A_z = \{ w \in \mathbb{Q} \mid w <_F z \}.$$

Claim: A_z is non-empty and bounded above when viewed as a subset of G, and therefore has a supremum in G.

First, A_z is non-empty by density applied to $(z - 1_F, z)$ or Archimedean applied to -z. Secondly, by Archimedean (or density) there exists a rational upper bound q of A_z in F. This q is also an upper bound of A_z in G.

By LUB, A_z has a supremum in G.

We define $h(z) := \sup_G A_z$. For this we need to show that h(r) = r for all $r \in \mathbb{Q}$, so that the definitions coincide. Let $r \in \mathbb{Q}$ so that $A_r = \{w \in \mathbb{Q} \mid w <_F r\}$. Clearly r is an upper bound of A_r in G. For any $g \in G$, there is some $q \in \mathbb{Q}$ such that $g <_G q <_G r$ (by density of \mathbb{Q} in G). Thus g cannot be an upper bound of $A_r \subseteq G$. Thus $r = \sup_G A_r = h(r)$.

Claim: h preserves order.

Let $z < w \in F$. By density of \mathbb{Q} in F, there exist rationals r, s, t such that z < r < s < t < w. Then $A_z \subsetneq A_w$ as subsets of F and hence of G. Thus

$$h(z) = \sup_{G} A_z \le_G r < s < t \le_G \sup_{G} A_w = h(w).$$

Claim: h preserves addition.

It is sufficient to show that $A_{x+y} = A_x + A_y$, where set addition is defined pairwise. If a rational $q \in A_x + A_y$, then clearly $q <_F x + y$ and so $q \in A_{x+y}$. Let $q \in A_{x+y} \iff q <_F x + y$. Then $q - x \in A_y$. Since A_y has no largest element (by density), there exists an $r \in A_y$ with q - x < r < y. Then q - r < x and so $q - r \in A_x$. Thus $q = (q - r) + r \in A_x + A_y$ which gives equality of the sets.

From the previous lemma, $\sup A_x + \sup A_y = \sup(A_x + A_y) = \sup A_{x+y}$ and so h preserves addition.

Claim: h preserves multiplication.

Let $0 < x, y \in F$. Let $A_z^+ = \{w \in \mathbb{Q} \mid 0 < w <_F z\}$. We will show that $A_{xy}^+ = A_x^+ A_y^+$, where set product is defined pairwise. If a rational $q \in A_x^+ A_y^+$, then clearly $0 < q <_F xy$ and so $q \in A_{xy}^+$. Let $q \in A_{xy}^+ \iff 0 < q <_F xy$. Then $q/x \in A_y^+$. Since A_y^+ has no largest element, there exists an $r \in A_y^+$ with q/x < r < y. Then q/r < x and so $q/r \in A_x^+$. Thus $q = (q/r) \cdot r \in A_x^+ A_y^+$ which gives equality of the sets.

From the previous lemma, $\sup A_x^+ \sup A_y^+ = \sup(A_x^+ A_y^+) = \sup A_{xy}^+$ and so h preserves multiplication of positive elements.

Since h preserves addition, h preserves additive inverses. So h preserves multiplication of all elements.

1<u>.6.1 Dedekind's Construction</u>

 $\{ def \{ slecdedelleithedkinnat \} \}$

Definition 1.30 (Dedekind cut). A *Dedekind cut* is a non-empty proper subset $A \subseteq \mathbb{Q}$ such that

- (i) if $a \in A$, then $b \in A$ for all $b \in \mathbb{Q}$ with b < a.
- (ii) if $a \in A$, then there exists a $c \in A$ such that a < c.

{def:R:dedekind}

Definition 1.31 (\mathbb{R}). We define

$$\mathbb{R} := \{ A \in 2^{\mathbb{Q}} \mid A \text{ is a Dedekind cut} \}.$$

Further,

- (i) $A \leq B \iff A \subseteq B$;
- (ii) $A + B = \{a + b \mid a \in A, b \in B\}.$
- (iii) for A, B > 0,

$$A \cdot B = \{ q \in \mathbb{Q} \mid q \le rs \text{ for some } r \in A, s \in B \}.$$

If A < 0 but B > 0, then $A \cdot B = -((-A) \cdot B)$. If B < 0 but A > 0, then $A \cdot B = -(A \cdot (-B))$. If A < 0 and B < 0, then $A \cdot B = (-A) \cdot (-B)$.

{thm:R:dedekind:negative}

Proposition 1.32. $O = \{z \in \mathbb{Q} \mid z < 0\}$ is the additive identity of \mathbb{R} . For any $A \in \mathbb{R}$,

$$B = \{ x \in \mathbb{Q} \mid \exists \, r \in O(r - x \notin A) \}$$

is an additive inverse of A.

Proof. Let $A \in \mathbb{R}$. For all $a \in A$, there exists $a' \in A$ larger than a. So

 $a - a' \in O$ and thus $a' + (a - a') = a \in A + O$.

For all $a \in A + O$, there exists $a' \in A$ and $o \in O$ such that a = a' + o. But then a' > a, so $a \in A$. Thus A + O = A.

Let B be as defined. Let $a+b \in A+B$ where $a \in A$ and $b \in B$. Then there exists $r \in O$ such that $r-b \notin A$. So r-b>a and thus a+b < r < 0.

Now let $o \in O$. Since O has no largest element, there exists an $o' \in O$ such that o' > o. Let $a \in A$. Consider the set $\alpha = \{n \in \mathbb{Z} \mid a + n(o' - o) \in A\}$. By archimedean property of \mathbb{Q} , α is bounded. It is obviously non-empty fucker. Thus it has a supremum n. Let a' = a + n(o' - o). $a' + (o' - o) = o' - (o - a') \notin A$ because n was supremum. This gives $o - a' \in B$. Thus $o \in A + B$.

Theorem 1.33. \mathbb{R} has the least upper bound property.

Lecture 05: Thu 11 Jan '24

Proof. Let α be a non-empty subset of \mathbb{R} that is bounded above. We claim that $S = \bigcup_{A \in \alpha} A$ is the supremum of α .

s is a cut: Since S is a union of a non-empty set of non-empty sets, it is non-empty. Since S is bounded above, say by some cut C, we have $S \subseteq C \subsetneq \mathbb{Q}$ and so $S \neq \mathbb{Q}$. If $a \in S$, then $a \in A$ for some $A \in \alpha$. Since A is a cut, every rational smaller than a is contained in A and thereby in S. Moreover, there exists an $a' \in A$ which is larger than a. Thus $a' \in S$ is larger than a.

upper bound: $A \subseteq S$ for all $A \in \alpha$.

least upper bound: For any $D \subsetneq S$, let $b \in S \setminus D$. But since $b \in A$ for some $A \in \alpha$, D is not an upper bound of α .

Dedekind's construction is an "order completion". Thus all the order properties (LUB, density) are nice, but arithmetic is ugly.

1.6.2 Cauchy's Construction

{sec:cauchy}

There seem to be sequences in \mathbb{Q} that "should" have a limit (e.g., a monotone and bounded sequence) but do not (within \mathbb{Q}). We construct equivalence classes of sequences which "converge" to the same number, and define reals by those classes.

Definition 1.34 (Sequence). A sequence of rational numbers is a $f: \mathbb{N} \to \mathbb{Q}$. We usually denote f(k) by a_k and call it the k-th term of the sequence. The function f is usually written as $(a_k)_{k \in \mathbb{N}}$.

Definition 1.35. A sequence $(a_k)_{k\in\mathbb{N}}\subseteq\mathbb{Q}$ is said to be

- (i) \mathbb{Q} -bounded if there exists an $M \in \mathbb{Q}$ such that $|a_k| \leq M$ for all $k \in \mathbb{N}$.
- (ii) Q-Cauchy if for every rational $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_m a_n| < \epsilon$ for all $m, n \geq N$.
- (iii) convergent in \mathbb{Q} if there exists an $L \in \mathbb{Q}$ such that for all (rational) $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_n L| < \varepsilon$ for all $n \geq N$.

Exercise 1.36. Show that if a sequence is convergent in \mathbb{Q} , then it is \mathbb{Q} -Cauchy, and if it is \mathbb{Q} -Cauchy, then it is \mathbb{Q} -bounded.

Remark. From UMA101, we know that if a sequence is convergent in \mathbb{Q} , the limit is unique. We also know arithmetic laws of limits (which we proved over \mathbb{R} , but they hold over \mathbb{Q} as well).

Definition 1.37. Two sequences $a = (a_n)_{n \in \mathbb{N}}$ and $b = (b_n)_{n \in \mathbb{N}}$ are said to be *equivalent* if their difference converges to 0.

Proposition 1.38. Let \mathcal{C} denote the space of \mathbb{Q} -cauchy sequences. Then \sim given by $a \sim b$ if a and b are equivalent (as per the previous definition) is an equivalence relation.

Proof. Reflixivity and symmetry are immediate. Transitivity follows from the triangle inequality. \Box

{def:R:cauchy}

Definition 1.39 (\mathbb{R}). We define

$$\mathbb{R} := \mathcal{C}/\sim$$
.

Further,

- (i) $[a] +_{\mathbb{R}} [b] := [a+b].$
- (ii) The additive identity $0 = [(0)_{n \in \mathbb{N}}].$
- (iii) $[a] \cdot_{\mathbb{R}} [b] \coloneqq [a \cdot b].$
- (iv) $[a] >_{\mathbb{R}} 0$ if there exists a rational c > 0 and an $N \in \mathbb{N}$ such that $a_n > c$ for all $n \geq N$. From positivity, we can define order as $[a] >_{\mathbb{R}} [b]$ iff there is some [d] > 0 such that [a] + [d] = [b].

Proposition 1.40. The operations $+\mathbb{R}$ and $\cdot_{\mathbb{R}}$ and the relation $>_{\mathbb{R}}$ are well-defined.

Proof. Let $a \sim a'$ and $b \sim b'$. Then $a+b-(a'+b')=(a-a')+(b-b')\to 0$.

Lecture 06: Mon 15 Jan '24

We define an isomorphism from \mathbb{Q} into \mathbb{R} as

$$r \in \mathbb{Q} \mapsto [(r, r, \dots)] \in \mathbb{R}.$$

Theorem 1.41. $(\mathbb{R}, +, \cdot, \leq)$ satisfies the Archimedean property.

Proof. Let [a], [b] > 0 be in \mathbb{R} . Since [b] is \mathbb{Q} -Cauchy, there exists a positive $M \in \mathbb{Q}$ such that $b_n < M$ for all $n \in \mathbb{N}$.

Since [a] > 0, let $c \in \mathbb{Q}^+$ and $N \in \mathbb{N}$ be such that $a_n > c$ for all $n \ge N$. By the Archimedean property of \mathbb{Q} , there exists an $m \in \mathbb{N}$ such that mc > M. Thus $b_n < M < mc < ma_n$ for all $n \ge N$. Thus $(m+1)a_n - b_n > ma_n - b_n + c > c$ for all $n \ge N$ and so [m+1][a] > [b].

Theorem 1.42. $(\mathbb{R}, +, \cdot, \leq)$ satisfies the LUB property.

Proof. Let $A \subseteq \mathbb{R}$ be a non-empty bounded above set.

For $n \in \mathbb{N}^*$, let $U_n = \{m \in \mathbb{Z} : \frac{m}{n} \text{ is an upper bound of } A\}$. From the Archimedean property of \mathbb{R} , U_n is non-empty and bounded below. By well-ordering, U_n has a minimum m(n). Let $a_n = \frac{m(n)}{n}$ for each $n \in \mathbb{N}^*$.

Claim: $(a_n)_{n\in\mathbb{N}^*}$ is \mathbb{Q} -Cauchy.

Let ε be a positive rational number. By Archimedean, there $\frac{1}{n} < \varepsilon$ for all n above some N in \mathbb{N} . Note that for any $n \in \mathbb{N}^*$, a_n is an upper bound of A, and $a_n - \frac{1}{n}$ is not an upper bound of A.

Thus for any $n, n' \geq N^*$, we have

$$\frac{m(n)}{n} > \frac{m(n')}{n'} - \frac{1}{n'} \qquad \frac{m(n')}{n'} > \frac{m(n)}{n} - \frac{1}{n}$$

$$a_n - a_{n'} > -\frac{1}{n'} \qquad a_n - a_{n'} < \frac{1}{n}$$

and so $|a_n - a_{n'}| < \max\{\frac{1}{n}, \frac{1}{n'}\} < \varepsilon$.

Claim: $[(a_n)]$ is an upper bound of A.

Suppose there exists some [x] > [a]. That is, there is some positive rational c such that $c < x_n - a_n$ for all n larger than some $N_1 \in \mathbb{N}^*$. Since (x_n) is \mathbb{Q} -Cauchy, $-c/2 < x_n - x_m < c/2$ for all n, m larger than some $N_2 \in \mathbb{N}^*$. \square

Lecture 07: Wed
17 Jan
'24sec:C}

1.7 The Complex Numbers

Definition 1.43. A *complex number* is an ordered pair of real numbers. We define operations on the set \mathbb{C} of complex numbers as follows.

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b) \cdot (c,d) = (ac-bd,ad+bc)$
 $|(a,b)| = \sqrt{a^2 + b^2}$

We further define i to be (0,1).

Remark. These operations make \mathbb{C} a normed field.

Theorem 1.44. The map $f: \mathbb{R} \to \mathbb{C}$ given by f(x) = (x, 0) is an isomorphism into \mathbb{C} .

This allows us to identify $x \in \mathbb{R}$ with $(x,0) \in \mathbb{C}$.

Remark. (a,b) = a + ib for any $a,b \in \mathbb{R}$. $i^2 = -1$.

0 is the additive identity and (-a) + i(-b) is the additive inverse of a + ib.

1 is the multiplicative identity and for $a+ib \neq 0$, $\frac{a}{a^2+b^2}+i\frac{-b}{a^2+b^2}$ is the multiplicative inverse of (a,b).

{thm:C:cs}

Theorem 1.45 (Cauchy-Schwarz inequality). Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be real numbers. Then

$$\left|\sum_{j=1}^{n} a_j \overline{b_j}\right|^2 \le \left(\sum_{j=1}^{n} |a_j|^2\right) \left(\sum_{j=1}^{n} |b_j|^2\right).$$

Proof. Let $\lambda = u + iv \in \mathbb{C}$.

$$0 \leq \sum_{j=1}^{n} (a_j + \lambda b_j) \overline{(a_j + \lambda b_j)}$$

$$= \sum_{j=1}^{n} (a_j \overline{a_j} + \overline{\lambda} a_j \overline{b_j} + \lambda b_j \overline{a_j} + |\lambda|^2 b_j \overline{b_j})$$

$$= \sum_{j=1}^{n} |a_j|^2 + 2[u\Re(A) + v\Im(A)] + (u^2 + v^2)B$$

where $A = \sum_{j=1}^{n} a_j \overline{b_j}$ and $B = \sum_{j=1}^{n} |b_j|^2$.

Let the right hand expression be F(u, v). Then $F_u(u, v) = 2\Re(A) + 2uB$ and $F_v(u, v) = 2\Im(A) + 2vB$. Setting both to be 0 gives $u = -\frac{\Re(A)}{B}$ and $v = -\frac{\Im(A)}{B}$. These values of u and v give $\lambda = -A/B$. Thus

$$F(u,v) = \sum_{j=1}^{n} |a_j|^2 - \frac{2|A|^2}{B} + \frac{|A|^2}{B}$$

and so

$$|A|^2 \le \sum_{j=1}^n |a_j|^2 \sum_{j=1}^n |b_j|^2.$$

Chapter 2

Metric Spaces

{chp:metric}

{def(smeetndecfn)}

2.1 Definitions & examples

Definition 2.1. A metric space is a pair (X, d) consisting of a set X and a "distance function" $d: X \times X \to [0, \infty)$ such that

(M1) d(x,y) = 0 iff x = y,

 $(M2) \ d(x,y) = d(y,x),$

(M3) $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

 $\{def:metric:positivity\}$

 $\{ exttt{def:metric:symmetry} \}$

 $\{ def: metric: triangle \}$

Examples.

- $X = \mathbb{R}$, d(x, y) = |x y|.
- (Real Euclidean space) $X = \mathbb{R}^n$. The inner product $\langle x, y \rangle = \sum_{j=1}^n x_j y_j$ gives the Euclidean distance $d(x,y) = \sqrt{\langle x-y, x-y \rangle}$.
- (Discrete metric) Let X be any set. Then $[x \neq y]$ is a distance function on X.
- $X = \mathbb{R}^n$, $p \in [1, \infty]$. For $p \neq \infty$,

$$d_p(x,y) = \left(\sum_{j=1}^n |x_j - y_j|^p\right)^{1/p}$$

and

$$d_{\infty}(x,y) = \max_{1 \le j \le n} |x_j - y_j|.$$

If $p \neq 2$, then d_p is not induced by an inner product.

• For any metric space (X, d) and a subset $Y \subseteq X$, the restriction of d to $Y \times Y$ is a distance on Y.

Proposition 2.2. Given $a, b \in \mathbb{R}^n$,

$$|||a|| - ||b||| \le ||a + b|| \le ||a|| + ||b||.$$

Proof. From Cauchy-Schwarz,

$$||a + b||^{2} = \langle a + b, a + b \rangle$$

$$= ||a||^{2} + 2\langle a, b \rangle + ||b||^{2}$$

$$\leq ||a||^{2} + 2||a|| ||b|| + ||b||^{2}$$

$$= (||a|| + ||b||)^{2}.$$

2.2 Metric Topology

Definition 2.3. Let (X, d) be a metric space.

(i) The open ball centered at p or radius $\varepsilon > 0$ is the set

$$B_d(p;\varepsilon) := \{x \in X : d(p,x) < \varepsilon\}$$

This set is also called the ε -neighborhood of p. Similarly, the closed ball centered at p or radius $\varepsilon > 0$ is the set

$$\{x\in X: d(p,x)\leq \varepsilon\}$$

- (ii) Given a set $E \subseteq X$ and $p \in X$, p is an interior point of E if there exists some $\varepsilon > 0$ such that the ε -neighborhood B(p; e) is contained in E. The collection of all interior points of E, denoted E° , is called the interior of E.
- (iii) A set $E \subseteq X$ is said to be open if it is equal to its interior.
- (iv) The collection of all open sets of (X, d) is called the d-topology on X.

Remark. The empty set is always open.

Examples.

• The open ball on \mathbb{R} is an interval $(p - \varepsilon, p + \varepsilon)$.

•

Lecture
08: Thu
18 Jan
'{\frac{4}{5}\text{ec:topology}}

• For the discrete metric,

$$B_d(p;\varepsilon) = \begin{cases} \{p\} & \varepsilon < 1 \\ X & \varepsilon \ge 1 \end{cases}$$

Every set is open, by taking any $\varepsilon = 1$.

Proposition 2.4. Every open ball is an open set.

Proof. Let (X, d) be the metric. Let $p \in X$, $\varepsilon > 0$, and $q \in B(p; \varepsilon)$. Choose $\delta = \varepsilon - d(p, q) > 0$ works. We show that $B(q; \delta) \subseteq B(p; \varepsilon)$. Let $r \in B(q; \delta)$. Then from the triangle inequality,

$$d(p,r) \le d(p,q) + d(q,r)$$

$$< d(p,q) + \delta$$

$$= \varepsilon$$

Proposition 2.5. The union of any collection of open sets is open, and the intersection of any finite collection of open sets is open.

Proof. Let \mathscr{U} be a collection of open sets. Let $E = \bigcup_{U \in \mathscr{U}} U$. For any $p \in E$, p is contained in some $U \in \mathscr{U}$. Then there exists some $\varepsilon > 0$ such that $B(p; \varepsilon) \subseteq U \subseteq E$.

Let U_1, \ldots, U_n be open sets and let $E = \bigcap_{i=1}^n U_i$. For any $p \in E$, $p \in U_i$ for all i. Then there exist $\varepsilon_1, \ldots, \varepsilon_n > 0$ such that $B(p; \varepsilon_i) \subseteq U_i$ for all i. Letting ε be the minimum of the ε_i 's, we have $B(p; \varepsilon) \subseteq U_i$ for all i. So $B(p; \varepsilon) \subseteq E$.

Definition 2.6. Let (X, d) be a metric space and $E \subseteq X$.

- (i) Given $p \in X$, we say that p is an accumulation point of E if for every $\varepsilon > 0$, $B(p; \varepsilon)$ contains a point $q \in E$ such that $q \neq p$.
- (ii) A point $p \in E$ is said to be isolated in E if it is not an accumulation point of E.

Examples.

- In the discrete metric, every point is isolated in every subset.
- Finite subsets have no accumulation points.

Remarks.

- p need not lie in E to be an accumulation point.
- If p is an accumulation point of E, then every neighborhood of p contains infinitely many points of E.

2.3 Compactness

Definition 2.7. A subset $E \subseteq (X, d)$ is said to be bounded if there exists a $p \in X$ and M > 0 such that $E \subseteq B(p; M)$.

09: Mon 21 Jan '24 {defsecumomempactness} Lecture 10: Wed 24 Jan '24

Lecture

Consider $E = \{p \in \mathbb{Q} : 2 < p^2 < 3\}$. Then E is both closed and bounded in $(\mathbb{Q}, |\cdot|)$. However, continuous functions on E are neither uniformly continuous nor bounded. $\{def: open_cover\}$

Definition 2.8. Let $E \subseteq (X, d)$. An open cover $\{\mathcal{U}_{\alpha}\}_{{\alpha} \in \Lambda}$ of E in X is a collection of open sets \mathcal{U}_{α} such that $E \subseteq \bigcup_{{\alpha} \in \Lambda} \mathcal{U}_{\alpha}$.

{def:compact}

Definition 2.9. A subset $E \subseteq (X, d)$ is said to be compact if any open cover $\mathcal{U} = \{\mathcal{U}_{\alpha}\}_{{\alpha} \in \Lambda}$ of E in X admits a finite subcover of E, *i.e.*, there exist $\alpha_1, \ldots, \alpha_k \in \Lambda$ such that $E \subseteq \bigcup_{i=1}^k \mathcal{U}_{\alpha_i}$.

Examples.

- $E \subseteq (X, d)$ is finite. Let \mathcal{U} be an open cover of $E = \{p_1, \ldots, p_n\}$. Then for each $p_j \in E$, there exists $\alpha_j \in \Lambda$ such that $p_j \in \mathcal{U}_{\alpha_j}$. Then $E \subseteq \bigcup_{j=1}^n \mathcal{U}_{\alpha_j}$.
- E = (0,1) is not compact in $(\mathbb{R}, |\cdot|)$.

Proof. Let $\mathcal{U}_n = (\frac{1}{n+2}, \frac{1}{n})$ for $n \in \mathbb{N}^*$. Then $\mathcal{U} = \{\mathcal{U}_n\}_{n \in \mathbb{N}^*}$ is an open cover of E. However, \mathcal{U} does not admit a finite subcover of E. For any finite $\{\mathcal{U}_{n_1}, \ldots, \mathcal{U}_{n_k}\}$, let $n_0 = \max\{n_j : 1 \leq j \leq k\}$. Then $\bigcup \mathcal{U}_{n_j} \subseteq (\frac{1}{n_0+2}, 1)$ and thus is not a cover of E.

• E = [0, 1] is compact in $(\mathbb{R}, |\cdot|)$. In fact, all rectangles (sets of the form $[a_1, b_1] \times \cdots \times [a_n, b_n]$) are compact in $(\mathbb{R}^n, ||\cdot||)$.

{thm:compactness}

Theorem 2.10. Let $E \subseteq (\mathbb{R}^n, \|\cdot\|)$. Then the following are equivalent:

- (1) E is compact.
- (2) E is closed and bounded.
- (3) Every infinite subset of E admits a limit point in E.

Proof. We show (1) \Longrightarrow (2) in a general metric space (X, d). Let $E \subseteq X$ be compact. Let $z \in E^c$. For any $y \in E$, let $\delta_y = d(y, z)/2$. Note that $B(z, \delta_y) \cap B(y, \delta_y) = \emptyset$.

Then $\mathcal{U} = \{B(y; \delta_y) : y \in E\}$ is an open cover of E. Since E is compact, \mathcal{U} admits a finite subcover of E. That is, there exist $y_1, \ldots, y_k \in E$ such that $E \subseteq \bigcup_{i=1}^k B(y_i; \delta_{y_i})$. Let $\delta = \min\{\delta_{y_i}\}$. Then $B(z; \delta) \cap \bigcup_{i=1}^k B(y_i; \delta_{y_i}) = \emptyset$, so $B(z; \delta) \subseteq E^c$.

For boundedness, take the largest ball in the finite subcover of $\bigcup_{R>0} B(p;R)$ for some $p \in E$.

We show (2) \Longrightarrow (1) in $(\mathbb{R}^n, \|\cdot\|)$. We first show that for any $R \in \mathbb{R}$, the set $[-R, R]^n$ is compact. WLOG let R = 1.

Lecture 11: Thu 25 Jan '24

Theorem 2.11. Let $\{K_{\alpha}\}_{{\alpha}\in\Lambda}$ be a collection of compact sets in (X,d) such that any non-empty finite subcollection has non-empty intersection. Then $\bigcap_{{\alpha}\in\Lambda}K_{\alpha}\neq\varnothing$.

Proof. Suppose $\bigcap_{\alpha \in \Lambda} K_{\alpha} = \emptyset$. No element in K_1 is in every other K_{α} . Let $\mathcal{U}_{\alpha} = K_{\alpha}^c$ for each α . Any point in K_1 is in at least one \mathcal{U}_{α} . Then \mathcal{U}_{α} is an open cover of K_1 . But since K_1 is compact, there is a finite subcover $\mathcal{U}_{\alpha_1}, \ldots, \mathcal{U}_{\alpha_n}$. But then $K_1 \subseteq (K_{\alpha_1} \cap \cdots \cap K_{\alpha_n})^c$, so $K_{\alpha_1} \cap \cdots \cap K_{\alpha_n} = \emptyset$. Contradiction.

Theorem 2.12. Every closed subset of a compact set is compact.

Proof. Let $E \subseteq Y \subseteq (X, d)$ where Y is compact and E is closed. Let \mathcal{U} be an open cover of E in X. Then $\mathcal{U} + E^c$ is an open cover of Y. Let \mathcal{V} be a finite subcover of $\mathcal{U} + E^c$. Then $\mathcal{V} - E^c$ is a finite subcover of \mathcal{U} . This is because for any $x \in E$, $x \in \mathcal{V}$ (because $x \in Y$) but $x \notin E^c$, so $x \in \mathcal{V} - E^c$.

Theorem 2.13. Every infinite subset of a compact set has a limit point in the compact set.

Proof. Suppose $E \subseteq (X, d)$ is compact and $F \subseteq E$ is infinite. Suppose F has no limit point in E. Then for every $z \in E$, let $B(z, \varepsilon_z)$ be a neighbourhood of z that contains no point of F (except possibly z). Then $\{B(z, \varepsilon_z)\}_{z \in E}$ is an open cover of E. However, since E is compact, there is a finite subcover. Since each $B(z, \varepsilon_z)$ contains at most one point of F, there are only finitely many points of F. Contradiction.

Proof that (3) \Longrightarrow (2). Suppose (3) holds on some $E \subseteq (\mathbb{R}^n, \|\cdot\|)$ but E is not bounded. Let $x_0 \in E$. We can produce a sequence $(x_n)_{n \in \mathbb{N}} \subseteq E$ such that

$$||x_{n+1}|| > ||x_n|| + 1$$
 for all $n \in \mathbb{N}$.

Now suppose (3) holds on E but E is not closed. Then there exists a $z \in E^c$ such that z is a limit point of E. Then there exists a sequence $(x_n)_{n \in \mathbb{N}} \subseteq E$ such that $||x_j - z|| < \frac{1}{j}$ for all $j \in \mathbb{N}$. The set $F = \{x_n\}_{n \in \mathbb{N}}$ is infinite (otherwise, the minimum distance is the infimum, which is zero, but $z \notin E$). Then F must have a limit point in E.

For any $y \in \mathbb{R}^n$,

$$||x_j - y|| \ge ||z - y|| - ||x_j - z||$$

 $\ge ||z - y|| - \frac{1}{i}.$

If ||z - y|| is positive, then there are only finitely many x_j within a distance ||z - y|| of y. Hence y can be a limit point of F only if y = z.

Theorem 2.14. Let $E \subseteq Y \subseteq (X, d)$ where Y is compact in X. Then E is compact in Y if and only if it is compact in X.

2.4 Connected Sets

Lecture
12: Mon
29 Jan
'24sec:connected}

{def:connected}

Definition 2.15.

- (a) Let (X, d) be a metric space. A pair of sets $A, B \subseteq X$ are said to be separated in X if $\overline{A} \cap B = A \cap \overline{B} = \emptyset$.
- (b) A set $E \subseteq X$ is said to be disconnected if it is the union of two separated sets in X.
- (c) E is connected if it is not disconnected.

Examples.

• Sets A = (-1,0) and B = (0,1) are separated in \mathbb{R} . Note that sgn is continuous on $A \cup B$ but does not satisfy the intermediate value property.

However, if A = (-1, 0] instead, then all continuous functions on $A \cup B$ satisfy the intermediate value property.

- The empty set is connected.
- \mathbb{Q} is disconnected in \mathbb{R} . The partition $\{\mathbb{Q} \cap (-\infty, \sqrt{2}), \mathbb{Q} \cap (\sqrt{2}, \infty)\}$ separates \mathbb{Q} .
- \mathbb{Q} is disconnected even in \mathbb{Q} .

Exercise 2.16. Let $E \subseteq Y \subseteq (X, d)$. Then E is connected relative to Y iff E is connected in X.

Theorem 2.17. Let $E \subseteq \mathbb{R}$. Then E is connected iff E is convex, *i.e.*, for all $x < y \in E$, $[x, y] \subseteq E$.

Proof. Suppose E is connected, but not convex, *i.e.*, there exist $x < y \in E$ and some $r \in (x, y)$ that is not in E. Then $A = (-\infty, r] \cap E$ and $B = [r, \infty) \cap E$ separate E.

Conversely, suppose E is convex but not connected. Then there exist $A, B \subseteq E$ that separate E. Let $x \in A$ and $y \in B$ and suppose WLOG that x < y. Note that $A \cap [x, y]$ is non-empty and bounded. Let $r = \sup(A \cap [x, y])$.

By the lemma below, $r \in \overline{A \cap [x,y]} \subseteq \overline{A} \cap [x,y]$ so $r \in \overline{A}$. Disconnectedness forces that $r \notin B \iff r \in A$ so $x \le r < y$.

But since r is the supremum of $A \cap [x, y]$, $(r, y) \subseteq B$. This gives $r \in \overline{B}$, violating the separation of A and B.

2.5 The Cantor Set

{defsecricentosetet}

Definition 2.18 (Perfect set). A set $E \subseteq (X, d)$ is said to be *perfect* if every point of E is a limit point of E.

Note that E = [0, 1] is perfect in \mathbb{R} . Can we produce a "sparse" perfect set? Throwing away isolated points makes the set open. Throwing away a finite number of open sets preserves perfectness, but there are still *intervals of positive length*.

Can we produce a perfect set such that

- (i) it contains no intervals of positive length?
- (ii) E is nowhere dense, i.e., $(\overline{E})^{\circ} = \varnothing$?

Note that the second condition implies the first.

Definition 2.19 (Ternary expansion). Let $x \in [0,1]$. A ternary expansion of x is a sequence $(d_1, d_2, \dots) \subseteq \{0, 1, 2\}$ such that

$$x = \sup \left\{ D_k = \sum_{j=1}^{k-1} \frac{d_j}{3^j} : k \ge 1 \right\}$$

which is equivalent to

$$\sum_{j=1}^{\infty} \frac{d_j}{3^j} = x$$

We write $x = 0.d_1d_2d_3...$ to denote this.

Example. For $x = \frac{1}{3}$, we have both x = 0.1000... and x = 0.0222..., so ternary expansions are not unique.

Let $I_0 = [0, \frac{1}{3}]$, $I_1 = [\frac{1}{3}, \frac{2}{3}]$ and $I_2 = [\frac{2}{3}, 1]$. Let $x \in [0, 1]$. Choose $d_1 = j$ such that $x \in I_j$ (in ambiguous cases, pick any one). Then

$$x \in \left[\frac{d_1}{3}, \frac{d_1 + 1}{3}\right]$$

$$\implies 0 \le x - \frac{d_1}{3} \le \frac{1}{3}$$

$$\implies D_1 \le x \le D_1 + \frac{1}{3}$$

Lecture {def3: Wedry_expansion}
31 Jan
'24

0	1	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{4}{9}$	$\frac{1}{2}$
A 0.000 B	0.222	0.100	0.200	0.1100	0.111

Table 2.1: Scheme A vs Scheme B

{tab:ternary_expansion}

Let I_{j0}, I_{j1}, I_{j2} be the subdivisions of I_j . Choose $d_2 = l$, where $x \in I_{jl}$ iff

$$x \in \left[\frac{d_1}{3} + \frac{d_2}{9}, \frac{d_1}{3} + \frac{d_2 + 1}{9}\right]$$

 $\implies D_2 \le x \le D_2 + \frac{1}{9}$

How do we break ties?

Scheme A If at the k^{th} state, $x \in [0,1)$ is an endpoint of 2 intervals, pick the right interval. This gives a unique expansion. That is, pick d_k such that $D_k \leq x < D_k + \frac{1}{3}$.

Scheme B For $x \in (0,1]$, always pick the left interval. That is, pick d_k such that $D_k < x \le D_k + \frac{1}{3}$.

We make the following observations:

- Ambiguity only occurs at endpoints of "middle thirds".
- Say x is an endpoint of a middle third. Let k be the first stage where ambiguity occurs. Then if x is the left endpoint, scheme A gives x = $0.d_1d_2...d_{k-1}1000...$ and scheme B gives $x = 0.d_1d_2...d_{k-1}0222...$ If x is the right endpoint, scheme A gives $x = 0.d_1d_2...d_{k-1}2000...$ and scheme B gives $x = 0.d_1d_2...d_{k-1}1222...$

Note that this ambiguity can be resolved by a scheme C, which picks the expansion which has no 1 starting from the point of ambiguity.

{thm:cantor_set}

Theorem 2.20. There exists a non-empty $E \subseteq [0,1]$ such that

- (i) E is compact.
- (ii) $E = \{ \text{limit points of } E \}.$
- (iii) $E^{\circ} = \overline{E}^{\circ} = \varnothing$.
- (iv) E is uncountable.

Proof.

$$E = \{x \in [0, 1] : x \text{ admits at least one ternary}$$

expansion with only 0's and 2's}

We can construct this set by removing the middle thirds.

$$E_{0} = [0, 1]$$

$$E_{1} = E_{0} \setminus \left(\frac{1}{3}, \frac{2}{3}\right)$$

$$= \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

$$E_{2} = E_{1} \setminus \left[\left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{4}{9}, \frac{5}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right)\right]$$

$$E_{m} = E_{m-1} \setminus \bigcup_{k=0}^{3^{m-1}-1} \left(\frac{3k+1}{3^{m}}, \frac{3k+2}{3^{m}}\right)$$

We claim that $E = \bigcap_{m=1}^{\infty} E_m$ satisfies the conditions of the theorem. We have that E is non-empty.

Since E is the intersection of closed sets, E is closed. Since E is bounded, E is compact.

We have that $E^{\circ} = \emptyset$ since E does not contain any open intervals. Formally, we will show that for any interval (a, b), there exist k and m such that $\left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right)$ is contained in (a, b).

Heuristically, we see that the length of the removed intervals is $\frac{1}{3} + \frac{1}{9} + \cdots = 1$, so that the remaining set cannot contain any interval of positive length.

Uncountability is by a diagonal argument.

Lecture 14: Thu 01 Feb '24

Chapter 3

Sequences & Series

3.1 Sequences & Subsequences

Definition 3.1. Let (X, d) be a metric space. A squence in X is a function $f: \mathbb{N} \to X$, more commonly written as $(f(k))_{k \in \mathbb{N}} \subseteq X$.

{sec:seq}

We say that a sequence $(x_n)_{n\in\mathbb{N}}$ converges in X if there exists an $x\in X$ such that for every $\varepsilon>0$ there exists an $N\in\mathbb{N}$ such that for all $n\geq N$, $d(x_n,x)<\varepsilon$. In this case, we call x a limit of $(x_n)_{n\in\mathbb{N}}$ and write

$$\lim_{k \to \infty} x_k = x \quad \text{or} \quad x_k \to x \text{ as } k \to \infty.$$

If $(x_n)_{n\in\mathbb{N}}$ does not converge, we say that it diverges.

Examples.

- When $(X,d) = (\mathbb{R}, |\cdot|)$, this definition reduces to the definition in UMA101.
- Let $x_n = (\frac{1}{n}, \frac{2}{n^2}) \in (\mathbb{R}^2, ||\cdot||)$ for each $n \ge 1$. We claim that $\lim_{n \to \infty} x_n = (0, 0)$.

Proof. Let $\varepsilon > 0$. Choose an $N > \frac{\sqrt{5}}{\varepsilon}$. Then for all $n \ge N$,

$$\left\| \left(\frac{1}{n}, \frac{2}{n^2} \right) \right\|^2 = \frac{1}{n^2} + \frac{4}{n^4}$$

$$\leq \frac{5}{n^2}$$

$$< \varepsilon.$$

• Let $x = (\frac{1}{n}, (-1)^n)_{n \in \mathbb{N}^*}$ with standard norm. Then $(x_n)_{n \in \mathbb{N}^*}$ diverges.

Theorem 3.2. Let (X, d) be a metric space.

- (i) Let $(x_n)_{n\in\mathbb{N}}\subseteq X$. Then, $\lim_{n\to\infty}x_n=x$ iff every ε -ball centred at x contains all but finitely many terms of (x_n) .
- (ii) Suppose $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} x_n = y$. Then x = y.
- (iii) If $(x_n)_{n\in\mathbb{N}}\subseteq X$ converges, then $\{x_n:n\in\mathbb{N}\}$ is a bounded set in (X,d).
- (iv) Let $E \subseteq X$. Then $x \in \overline{E}$ iff there exists a sequence $(x_n) \subseteq E$ such that $\lim_{n\to\infty} x_n = x$.

Proof.

- (i) Let (x_n) be convergent to x. Then all terms except the first N lie inside the ε neighborhood of x. The converse is similarly true.
- (ii) Let x and y be distinct limits of (x_n) . Choose $\varepsilon = \frac{d(x,y)}{2} > 0$. Then for large enough n,

$$d(x,y) \le d(x,x_n) + d(x_n,y)$$

$$< \varepsilon + \varepsilon$$

$$= d(x,y).$$

- (iii) Let (x_n) be convergent to x. Let N be such that for all $n \geq N$, $d(x_n, x) < 1$. Then $\rho = \sum_{k=0}^N d(x_k, x) + 1$ works as a radius for $B(x, \rho) \supseteq \{x_n : n \in \mathbb{N}\}.$
- (iv) Let $x \in \overline{E}$. Then every ε -neighborhood of x intersects E. By the axiom of choice, we can choose a sequence $(x_n) \subseteq E$ such that $d(x_n, x) < \frac{1}{n}$. This converges to x.

Conversely if there exists a sequence $(x_n) \to x$ within E, then every ε -neighborhood of x intersects E.

Definition 3.3. Let $(x_n)_{n\in\mathbb{N}}\subseteq X$. Let $(n_k)_{k\in\mathbb{N}}$ be a strictly incresing sequence in \mathbb{N} . Then $(x_{n_k})_{k\in\mathbb{N}}$ is called a *subsequence* of (x_n) .

Any limit of a subsequence of (x_n) is called a subsequential limit of (x_n) .

Lecture 15: Mon 05 Feb '24 Example. Let $x_n = (\frac{1}{n}, (-1)^n) \subseteq \mathbb{R}^2$ for $n \ge 1$. Then (x_n) is not convergent, but has subsuential limits (0,1) and (0,-1) corresponsing to the subsequences (x_{2n}) and (x_{2n-1}) respectively.

Theorem 3.4. Let $(x_n)_{n\in\mathbb{N}}\subseteq (X,d)$. Then $\lim_{n\to\infty}x_n=x$ iff every subsequence converges to x.

Proof. Suppose (x_n) is convergent. Let $(y_k) = (x_{n_k})$ be a subsequence. Then for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $d(x_n, x) < \varepsilon$ for all $n \geq N$. But this same N works for the subsequence, since $n_k \geq k$. Thus each subsequence converges to x.

Now suppose every subsequence converges to x. Since the sequence itself is a subsequence, it converges to x.

{thm:compact:subsequential_limit

Theorem 3.5. Let $E \subseteq (X, d)$. Then the following are equivalent.

- (1) E is compact.
- (2) Every infinite subset of E has a limit point in E.
- (3) Every sequence in E has a subsequential limit in E.
- $(1) \iff (2) \text{ is by } ??. \text{ We prove } (2) \iff (3).$

Proof of $(2) \Rightarrow (3)$. Suppose every infinite subset of E has a limit point in E. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in E, and let S be the set of all x_n .

If S is finite, then by the Pigeonhole Principle, there exists some $x \in S$ such that $x_n = x$ for infinitely many n. Then the constant sequence (x) is a subsequence of (x_n) , whose limit x is in E.

If not, then S is infinite, so it has a limit point $p \in E$. Thus for every $k \in \mathbb{N}$, there exists an $N_k \in \mathbb{N}$ such that $x_{N_k} \neq p \in B(p; \frac{1}{k})$.

Let n_1 be such that $d(x_{n_1}, p) < 1$. For n_{k+1} , consider $S \setminus \{x_0, \ldots, x_{n_k}\}$. p is also a limit point of this set (why?), so there exists an $n_{k+1} > n_k$ such that $d(x_{n_{k+1}}, p) < \frac{1}{k+1}$. Then $(x_{n_k})_k$ is a subsequence of $(x_n)_n$, and $\lim_{k \to \infty} x_{n_k} = p \in E$.

Corollary 3.6. Let $(x_n)_{n\in\mathbb{N}}\subseteq (\mathbb{R}^k,\|\cdot\|)$ be a bounded sequence. Then (x_n) has a convergent subsequence.

Proof. Let $p \in \mathbb{R}^k$ and R > 0 be such that $(x_n) \subseteq B(p; R) \subseteq \overline{B(p; R)}$ which is compact (why?). Then by the previous theorem, (x_n) has a convergent subsequence.

Lecture 16: Wed 07 Feb '24

Proof of (3) \Rightarrow (2). Let $S \subseteq E$ be an infinite set. Thus there exists a sequence $(x_n)_n \subseteq S$ of distinct elements.

By (3), there exists a subsequence $(x_{n_k})_k$ of $(x_n)_n$ such that $(x_{n_k})_k$ is convergent to some $x \in E$. By the sequential characterization of closures, $x \in \overline{S}$.

Thus for all $\varepsilon > 0$, there exists a $k_{\varepsilon} \in \mathbb{N}$ such that for all $k \geq k_{\varepsilon}$, we have that $d(x_{n_{\varepsilon}}, x) < \varepsilon$. Thus x is a limit point of S in E.

3.2 Cauchy Sequences & Completeness

{sec:cauchy}

Recall the HW2 problem to show that the sequence $(x_n)_n$ given by

$$x_n = \begin{cases} 2 & \text{if } n = 0\\ x_{n-1} - \frac{x_{n-1}^2 - 2}{2x_{n-1}} & \text{if } n \ge 1 \end{cases}$$

is \mathbb{Q} -Cauchy but not convergent in \mathbb{Q} . This is an application of the Newton-Raphson method.

3.2.1 Newton-Raphson Method (Informal)

{sec:newton-raphson_method}

Given a function $f: \mathbb{R} \to \mathbb{R}$, we want to find a root of f. We pick some initial guess $x_0 \in \mathbb{R}$, and iterate via

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}.$$

Under some assumptions on f and $x_0, (x_n)_n$ is Cauchy. Then

$$f(x_{n-1}) = f'(x_{n-1})(x_{n-1} - x_n) \to 0$$

If $\lim_{n\to\infty} x_n = l$, and f is continuous, then

$$f(l) = \lim_{n \to \infty} f(x_n) = 0.$$

{def:cauchy:sequence}

Definition 3.7 (Cauchy sequence). Let $(x_n)_{n\in\mathbb{N}}\subseteq (X,d)$. We say that (x_n) is a Cauchy sequence if for every $\varepsilon>0$, there exists an $N\in\mathbb{N}$ such that whenever $n,m\geq N,$ $d(x_n,x_m)<\varepsilon$.

{def:cauchy:completeness}

Definition 3.8 (Completeness). (X, d) is said to be a *complete* metric space if every Cauchy sequence in (X, d) is convergent.

Theorem 3.9.

- (a) Every convergent sequence is Cauchy.
- (b) Every Cauchy sequence is bounded.

Proof. Trivial.

Theorem 3.10. Every compact metric space is complete.

Proof. Let (X,d) be compact and let $(x_n)_n$ be a Cauchy sequence in X. Since X is compact, $(x_n)_n$ has a convergent subsequence $(x_{n_k})_k$ converging to some $x \in X$ (by ??).

Then $(x_n)_n$ also converges to x by the triangle inequality. For large enough n, $d(x_n, x) \leq d(x_n, x_{n_n}) + d(x_{n_n}, x) < 2\varepsilon$.

Theorem 3.11. $(\mathbb{R}^d, \|\cdot\|)$ is complete.

Proof. Let $(x_n)_n$ be a Cauchy sequence in \mathbb{R}^d . Then it must be bounded. Take a closed ball B centered at x_0 containing all elements of $(x_n)_n$. This is compact, and so the above theorem applies to give that $(x_n)_n$ has a limit in $B \subseteq \mathbb{R}^d$.

Exercise 3.12. Every increasing and bounded above sequence in $\mathbb Q$ or $\mathbb R$ is Cauchy.

Proof. Suppose not. Then there exists an $\varepsilon > 0$ such that for all $N \in \mathbb{N}$, there exist $n(N) > m(N) \ge N$ such that $|x_{n(N)} - x_{m(N)}| \ge \varepsilon$.

Let $m_0 = m(0)$ and $n_0 = n(0)$. For $k \ge 1$, let $m_k = m(n_{k-1})$ and $n_k = n(n_{k-1})$. Then

$$x_{n_k} \ge x_{m_k} + \varepsilon$$
$$\ge x_{n_{k-1}} + \varepsilon$$

and so $(x_{n_k})_k$ is a subsequence with each term at least ε more than the last. Thus $x_{n_k} \geq x_0 + k\varepsilon$ for all $k \in \mathbb{N}$, which contradicts boundedness.

Lecture 17: Thu 08 Feb {defsecqsequescleseldended}

3.3 Sequences in \mathbb{R}

Definition 3.13 (The Extended Reals). The extended real line is the set of real numbers along with 2 formal sumbols $+\infty$ and $-\infty$, denoted by

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}.$$

 $\overline{\mathbb{R}}$ will be endowed with the order

$$-\infty < x < \infty$$
 for all $x \in \mathbb{R}$,

along with the usual order on \mathbb{R} . We extend the algebraic operations on \mathbb{R} to $\overline{\mathbb{R}}$.

- $x + \infty = +\infty$, $x \infty = -\infty$ for all $x \in \mathbb{R}$.
- $x \cdot (+\infty) = +\infty$, $x \cdot (-\infty) = -\infty$ for all $x \in \mathbb{R}$, x > 0.
- $x \cdot (+\infty) = -\infty$, $x \cdot (-\infty) = +\infty$ for all $x \in \mathbb{R}$, x < 0.
- $\frac{x}{+\infty} = \frac{x}{-\infty} = 0$, for all $x \in \mathbb{R}$.

If $E \subseteq \mathbb{R}$ is not bounded above in \mathbb{R} , we say $\sup E = +\infty$.

When constructing \mathbb{R} through Dedekind cuts, $\overline{\mathbb{R}}$ can be constructed by relaxing the condition that a cut must be neither empty nor the whole of \mathbb{Q} . Then \emptyset is a Dedekind cut represented as $-\infty$, and \mathbb{Q} is a Dedekind cut represented as $+\infty$.

Definition 3.14. Let $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$. Suppose that for all $M\in\mathbb{R}$, there is an $N\in\mathbb{N}$ such that for all $n\geq N, x_n\geq M$. Then we say that $x_n\to+\infty$. If $-x_n\to+\infty$, we say that $x_n\to-\infty$.

Definition 3.15. Let $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$. Let $E\subseteq\overline{\mathbb{R}}$ denote the set of subsequential limits of $(x_n)_n$ in the extended real line. The supremum of E is called the *upper limit* or *limit superior* of $(x_n)_n$, and is denoted by $\limsup_{n\to\infty}x_n$.

The infimum of E is called the lower limit or limit inferior of $(x_n)_n$, denoted $\liminf_{n\to\infty} x_n$.

Example. Let $(x_n = (-1)^n)_{n \in \mathbb{N}}$. Then $E = \{-1, +1\}$ so $\limsup_{n \to \infty} x_n = 1$ and $\liminf_{n \to \infty} x_n = -1$.

{thm:sequences:R:limsup}

Theorem 3.16. Let $(x_n)_n \subseteq \mathbb{R}$ be a sequence and E be the set of subsequential limits of E in $\overline{\mathbb{R}}$.

- (1) E is non-empty.
- (2) $\sup E$ and $\inf E$ are contained in E.
- (3) If $x > \sup E$ (resp. $x < \inf E$), then there is an $N \in \mathbb{N}$ such that for all $n \ge N$, $x_n < x$ (resp. $x_n > x$).
- (4) $\sup E$ (resp. $\inf E$) is the only element of $\overline{\mathbb{R}}$ statisfying both (2) and (3).

Proof. (1) If $(x_n)_n$ is bounded, then E is non-empty by ??.

Let $(x_n)_{n\in\mathbb{N}}$ be unbounded above. Let $n_0=0$, and for $k\geq 0$, let

$$n_{k+1} = \min\{n > n_k \mid x_n > x_{n_k}\}$$

This exists since $(x_n)_n$ is unbounded above.

Suppose $m \notin (n_k)_{k \in \mathbb{N}}$. Let k be such that $n_k < m < n_{k+1}$. $x_m > x_{n_k}$ would imply $n_{k+1} \le m$, so $x_m \le x_{n_k}$. This shows that each x_m not in the subsequence is bounded above by some element of the subsequence.

Thus $(x_{n_k})_k$ is unbounded above, for if it weren't, all of $(x_n)_n$ would be bounded above. So for every $M \in \mathbb{R}$, there is a K such that $x_{n_K} > M$, but since the subsequence is increasing, $x_{n_k} > M$ for all $k \geq K$. Thus $\lim x_{n_k} = +\infty$.

(2) If $\sup E = +\infty$, then for all $M \in \mathbb{R}$, there is an $e_M \in E$ larger than M+1, so there is some x_n larger than M. Thus $(x_n)_n$ is unbounded above, so by the previous argument, $+\infty \in E$.

Now suppose $\sup E = x \in \mathbb{R}$. Let $\varepsilon_n = \frac{1}{2n}$. Let $n_0 = 0$. For k > 0, let

 e_k be an element of E larger than $x - \varepsilon_k$. Let $n_k > n_{k-1}$ be such that $x_{n_k} \in (e_k - \varepsilon_k, e_k + \varepsilon_k)$. Then $|x_{n_k} - x| < 2\varepsilon_k = \frac{1}{k}$. Thus $x_{n_k} \to x$, so $x \in E$.

Example. Let $(x_n)_{n\in\mathbb{N}}$ be an enumeration of \mathbb{Q} . Then $E=\overline{\mathbb{R}}$.

Proof. Let $x \in \mathbb{R}$. Then for any $\varepsilon > 0$, there are infinitely many rationals that are ε -close to x. Thus $x \in E$.

Theorem 3.17.

- (1) Suppose $x_n \leq y_n$ for all $n \in \mathbb{N}$. Then $\lim \inf x_n \leq \lim \inf y_n$ and $\lim \sup x_n \leq \lim \sup y_n$.
- (2) $\lim x_n = x$ iff $\lim \sup x_n = \lim \inf x_n = x$.

Proof of ?? (continued). Let $\alpha^* = \sup E$.

Lecture 18: Mon 12 Feb '24

- (3) Suppose not. Let $x > \sup E$ such that for every $k \in \mathbb{N}$, there exists an $m(k) \geq k$ such that $x_{m(k)} \geq x$. Let $n_0 = m(0)$, and for $l \geq 1$, let $n_k = m(n_{k-1} + 1)$. Then $n_0 < n_1 < n_2 < \cdots$ and $x_{n_k} \geq x$ for all k. Thus $\gamma = (x_{n_k})_k$ is a subsequence of $(x_n)_n$, but all subsequential limits of γ are at least $x > \sup E$. But a subsequential limit of γ is a subsequential limit of $(x_n)_n$, so $\sup E \geq x$, a contradiction.
- (4) Suppose y < z in $\overline{\mathbb{R}}$ satisfy both (2) and (3). That is, both y and z are sequential limits of $(x_n)_n$, and if x > y (or x > z), then there exists an $N \in \mathbb{N}$ such that $x_n < x$ for all $n \ge N$.

Choose

$$x = \begin{cases} 0 & \text{if } y = -\infty, z = +\infty \\ z - 1 & \text{if } y = -\infty, z \in \mathbb{R} \\ y + 1 & \text{if } y \in \mathbb{R}, z = +\infty \\ \frac{y + z}{2} & \text{if } y, z \in \mathbb{R} \end{cases}$$

In each case, y < x < z. By (3) applied to x, all but finitely many x_n are less than x. By (2) applied to z, infinitely many x_n are greater than x. Contradiction.

Theorem 3.18.

(1) The following sequences admit limits in $\overline{\mathbb{R}}$.

$$y_n = \sup\{x_k : k \ge n\}$$
$$z_n = \inf\{x_k : k \ge n\}$$

(2) Moreover,

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} y_n$$
$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} z_n$$

where limits are taken in $\overline{\mathbb{R}}$.

Remark. Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of subsets of X. Define

$$A^* = \limsup_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k$$
$$A_* = \liminf_{n \to \infty} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} A_k$$

Then $x \in A^*$ iff x is in infinitely many A_n , and $x \in A_*$ iff x is in all but finitely many A_n .

We say that $(A_n)_{n\in\mathbb{N}}$ converges if $A^* = A_*$.

We can characterize this using indicator functions.

$$egin{aligned} \mathbf{1}_{A^*} &= \limsup_{n o \infty} \mathbf{1}_{A_n} \ \mathbf{1}_{A_*} &= \liminf_{n o \infty} \mathbf{1}_{A_n} \end{aligned}$$

which is to say that for each $x \in X$,

$$\mathbf{1}_{A^*}(x) = \limsup_{n \to \infty} \mathbf{1}_{A_n}(x)$$
$$\mathbf{1}_{A_*}(x) = \liminf_{n \to \infty} \mathbf{1}_{A_n}(x)$$

Proof. $(y_n)_n$ is a decreasing sequence, so it has a limit in $\overline{\mathbb{R}}$, since if it is not bounded, it converges to $-\infty$.

Let $y = \lim_{n \to \infty} y_n$. Since (y_n) is decreasing, given $k \in \mathbb{N}$, there exists an $N(k) \in \mathbb{N}$ such that for all $n \geq N(k)$,

$$y \le y_n < y + \frac{1}{k}.$$

But $y_n = \sup\{x_i : i \ge n\}$, so for all $n \ge N(k)$, there exists an m(k,n) such that $y_n - \frac{1}{k} < x_{m(k,n)} \le y_n$.

Let

$$\begin{split} n_1 &= m(1,N(1)) \\ n_2 &= m(2,n_1 \vee N(2)+1) > n_1 \vee N(2) \\ &\vdots \\ n_k &= m(k,n_{k-1} \vee N(k)+1) > n_{k-1} \vee N(k) \end{split}$$