Auburn-USDA ML for Mosquito Feeding Classification

Background and Motivation

- Agricultural production is under constant threat from pests like mosquitoes.
- Understanding mosquito feeding is crucial for protecting livestock yields.
- A powerful technique for studying insect feeding is electropenetography (EPG).
- Labeling EPG waveforms is slow, so we implemented machine learning models to automate the process and an interface to use them.

How EPG Works Faraday cage Control box Voltage source 2" circuit Waveforms

Machine Learning

Initial Segmentation

Model	Accuracy (%)	F1
UNet	84	0.66
Random Forests	77	0.39
Fully Convolutional Network	79	0.37
Segmentation Transformer	74	0.39

Data Distribution 5 Eta Joseph Jose

Post Processing

Final Segmentation

Next Steps

- Expand these models to other insect species
- Add the ability to train models within SCIDO
- Work will be continued by two HMC interns over the summer

Citations

Pipeline

Cooper, Anastasia M. W., Samuel B. Jameson, Victoria Pickens, Cameron Osborne, Elaine A. Backus, Kristopher Silver, and Dana N. Mitzel. 2024. An electropenetrography waveform library for the probing and ingestion behaviors of culex tarsalis on human hands. Insect Science 31(4):1165–1186. doi:10.1111/1744-7917.1329

Team Members: Mehrezat Abbas (Fall TL), Devanshi Guglani, Milo Knell, Zachary Traul (Spring TL), Lillian Vernooy Advisor: Prof. Gabriel Hope Liaisons: Dr. Cooper (Auburn), Dr. Reif (Auburn), Dr. Backus (USDA)

Funding: USDA (58-2034-3-445), USDA (58-3022-4-034), NSF (DBI - 2304787)