LinAlgDM I. 19-21. gyakorlat: Vektortér, altér, lineáris függetlenség, bázis, generátorrendszer

2023. november 30-december 1.

1 Vektortér, altér

Definition 1. Vektortér (más néven: lineáris tér)

A V nemüres halmazt **vektortér**nek nevezzük az \mathbb{R} **test** fölött, ha

- 1. a V halmazon értelmezhető egy összeadás nevű művelet, amely két tetszőleges V-beli elemhez hozzárendel egy V-beli elemet úgy, hogy teljesíti a következő axiómákat:
 - zártság: $\forall \underline{v}_1, \underline{v}_2 \in V$ esetén $\underline{v}_1 + \underline{v}_2 \in V$,
 - kommutativitás: $\forall \underline{v}_1, \underline{v}_2 \in V$ esetén $\underline{v}_1 + \underline{v}_2 = \underline{v}_2 + \underline{v}_1$,
 - asszociativitás: $\forall \underline{v}_1, \underline{v}_2, \underline{v}_3 \in V$ esetén $\underline{v}_1 + (\underline{v}_2 + \underline{v}_3) = (\underline{v}_1 + \underline{v}_2) + \underline{v}_3$,
 - létezik az összeadás egységeleme: $\exists \underline{0} \in V$ amire igaz, hogy $\forall \underline{v} \in V$ esetén $\underline{0} + \underline{v} = \underline{v}$ (ezt hívjuk a vektortér nullvektorának),
 - létezik az összeadásra vonatkozó inverz elem: $\forall \underline{v} \in V$ -re $\exists (-\underline{v}) \in V$, amelyre $(-\underline{v}) + \underline{v} = \underline{0}$,
- 2. a V halmaz és $\mathbb R$ között értelmezhető a skalárral való szorzás nevű művelet, amely egy tetszőleges V-beli elemhez és egy R-beli számhoz (vagyis skalárhoz) hozzárendel egy V-beli elemet úgy, hogy teljesíti a következő axiómákat:
 - zártság: $\forall \lambda \in \mathbb{R}$ és $\forall \underline{v} \in V$ esetén $\lambda \underline{v} \in V$,
 - vegyes disztributivitás V-re: $\forall \lambda \in \mathbb{R}$ és $\forall \underline{v}_1, \underline{v}_2 \in V$ esetén $\lambda(\underline{v}_1 + \underline{v}_2) = \lambda \underline{v}_1 + \lambda \underline{v}_2$,
 - vegyes disztributivitás \mathbb{R} -re: $\forall \lambda_1, \lambda_2 \in \mathbb{R}$ és $\forall \underline{v} \in V$ esetén $(\lambda_1 + \lambda_2)\underline{v} = \lambda_1\underline{v} + \lambda_2\underline{v}$,
 - vegyes asszociativitás \mathbb{R} -re: $\forall \lambda_1, \lambda_2 \in \mathbb{R}$ és $\forall \underline{v} \in V$ esetén $\lambda_1(\lambda_2 \underline{v}) = (\lambda_1 \lambda_2)\underline{v}$,
 - $\forall \underline{v} \in V$ esetén $1\underline{v} = \underline{v}$, ahol $1 \in \mathbb{R}$ a valós számtest egységeleme.

A fent tárgyalt két műveletet közösen vektorműveleteknek nevezzük.

Megjegyzés 1. A skalárral (vagyis számmal) való szorzást ne tévesszük össze a skaláris szorzattal! A skalárral való szorzás egy számmal szoroz meg egy vektort (pl. $3 \cdot v$), a skaláris szorzat viszont két vektort szoroz össze (pl. $v \cdot w$).

Megjegyzés 2. A valós számtest egységeleme az 1 valós szám.

Definition 2. Altér (más néven: lineáris altér)

Tekintsük az \mathbb{R} feletti V vektorteret. A $W \subseteq V$ halmazt a V (lineáris) alterének nevezzük, ha W szintén \mathbb{R} feletti vektortér a V-n értelmezett műveletekre nézve.

Megjegyzés 3. Egy altér maga is vektortér!

Megjegyzés 4. Ebből következik, hogy az üres halmaz nem altér, mivel egy vektortér nem lehet üres halmaz.

Megjegyzés 5. A definícióban tartalmazás szerepel (és nem valódi tartalmazás), így minden vektortér altere önmagának.

Theorem 3. Altér zártsága

W altere V-nek akkor és csak akkor, ha W zárt az összeadásra és a skalárral való szorzásra nézve, vagyis:

- 1. $\forall \underline{v}_1, \underline{v}_2 \in W$ esetén $\underline{v}_1 + \underline{v}_2 \in W$,
- 2. $\forall \lambda \in \mathbb{R}$ és $\forall \underline{v} \in W$ esetén $\lambda \underline{v} \in W$.

Megjegyzés 6. E két tulajdonságot egyszerre is megvizsgálhatjuk: W altere V-nek akkor és csak akkor, ha

$$\forall \lambda \in \mathbb{R} \text{ \'es } \forall \underline{v}_1,\underline{v}_2 \in W \text{ eset\'en } \underline{v}_1 + \lambda \underline{v}_2 \in W.$$

Megjegyzés 7. Az összeadás és a skalárral való szorzás tulajdonságait a W altér a V vektortértől "örökli".

1.1Feladatok

Feladat 1. Tekintsük az $A = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$ alakú valós elemű mátrixok V halmazát.

(a) Bizonyítsuk be, hogy V vektortér a valós számok halmaza felett, a mátrixok összeadására és a mátrixok számszorosára nézve!

Megoldás.

$$V = \left\{ A = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

 $\textit{Vizsgáljuk a zártságot (egyszerre az összeadásra és a skalárral való szorzásra): legyen } \lambda \in \mathbb{R} \textit{ és } A =$ $\begin{bmatrix} a & b \\ c & 0 \end{bmatrix}, B = \begin{bmatrix} d & e \\ f & 0 \end{bmatrix} \in V \text{ tetszőleges. Ekkor}$

$$A + \lambda B = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} + \lambda \begin{bmatrix} d & e \\ f & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} + \begin{bmatrix} \lambda d & \lambda e \\ \lambda f & 0 \end{bmatrix} = \begin{bmatrix} a + \lambda d & b + \lambda e \\ c + \lambda f & 0 \end{bmatrix} \in V.$$

A mátrixok összeadása és skalárral való szorzása tulajdonságaikból adódóan teljesítik az összes többi vek $tort\acute{e}r$ -axiómát: legyen $A,A_1,A_2\in V,\ \lambda,\lambda_1,\lambda_2\in \mathbb{R}.$ Ekkor az összeadás műveletre teljesül, hogy

- $A_1 + A_2 = A_2 + A_1$, mert a mátrixok összeadása kommutatív,
- $A_1 + (A_2 + A_3) = (A_1 + A_2) + A_3$, mert a mátrixok összeadása asszociatív,
- a vektortér "nullvektora" a (2×2) -es nullmátrix: $\mathbb{O}_{2 \times 2} \in V$, mert $\forall A \in V$ esetén $\mathbb{O}_{2 \times 2} + A = A$,
- $\bullet \ \ minden \ A = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} hoz \ l\'etezik \ inverz \ elem, \ \'es \ ez \ a \ (-A) = \begin{bmatrix} -a & -b \\ -c & 0 \end{bmatrix}, \ mert \ (-A) + A = \mathbb{O}_{2\times 2},$

továbbá a skalárral való szorzás műveletre teljesül, hogy

- $\lambda(A_1 + A_2) = \lambda A_1 + \lambda A_2$,

- (λ₁ + λ₂)A = λ₁A + λ₂A,
 λ₁(λ₂A) = (λ₁λ₂)A,
 Legyen 1 ∈ ℝ a valós számtest egységeleme, ekkor 1A = A.

Tehát a V vektorteret alkot \mathbb{R} felett a mátrixok összeadása és számszorosa vektorműveletekkel. A V vektortér "vektorai" az $\begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$ alakú valós elemű mátrixok.

(b) (Lineáris) alteret alkot-e V-ben a $\begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix}$ alakú mátrixok halmaza?

Megoldás. Ehhez a zártságot kell megvizsgálnunk az összeadásra és a számszorosra nézve is. Ezt a Megjegyzés 6 alapján megtehetjük egyszerre: legyen $\lambda \in \mathbb{R}$ és $A = \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix} \in W$, $B = \begin{bmatrix} 0 & e \\ f & 0 \end{bmatrix} \in W$ tetszőleges.

$$A + \lambda B = \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix} + \lambda \begin{bmatrix} 0 & e \\ f & 0 \end{bmatrix} = \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix} + \begin{bmatrix} 0 & \lambda e \\ \lambda f & 0 \end{bmatrix} = \begin{bmatrix} 0 & b + \lambda e \\ c + \lambda f & 0 \end{bmatrix} \in W.$$

Feladat 2. Tekintsük a (3×5) -ös valós elemű mátrixokat!

(a) Vektorteret alkotnak-e R felett, a mátrixok szokásos összeadására és a mátrixok számszorosára nézve?

2

Megoldás. Az előző feladathoz hasonlóan bizonyítható, hogy bármely (de rögzített) $m, n \in \mathbb{N}^+$ -ra az $(m \times n)$ -es valós elemű mátrixok vektorteret alkotnak \mathbb{R} felett a fent értelmezett műveletekkel. Így $\mathbb{R}^{3 \times 5}$ vektortér \mathbb{R} felett a mátrixok összeadása és valós számmal való szorzása műveletekre nézve.

(b) A (3×5) -ös nullmátrix alteret alkot-e $\mathbb{R}^{3 \times 5}$ -ben?

Megoldás. Az altér-jelöltünk a (3×5) -ös nullmátrixot tartalmazó egyelemű halmaz:

Vegyünk két tetszőleges elemet ebből a halmazból! Mivel mindkettő csak a (3×5) -ös nullmátrix lehet, ezért ezek összege is a nullmátrix lesz, illetve ezek bármely valós számmal való szorzása szintén a nullmátrixot eredményezi. Mivel zárt a vektorműveletekre, a (3×5) -ös nullmátrix alteret alkot $\mathbb{R}^{3 \times 5}$ -ben.

(c) Az egész elemű (3×5)-ös mátrixok alteret alkotnak-e $\mathbb{R}^{3 \times 5}$ -ben?

Megoldás. Ha pl. irracionális számmal szorzunk olyan mátrixokat, amelyek csak egész számokat tartalmaznak, akkor eredményül irracionális számokat (és nullákat) tartalmazó mátrixokat kapunk. Tehát az egész elemű mátrixok halmaza nem zárt a valós számmal való szorzásra nézve, és így nem altere $\mathbb{R}^{3\times 5}$ -nek.

(d) A (99×99) -es valós mátrixok alteret alkotnak-e a (100×100) -as valós mátrixok vektorterében?

Megoldás. Nem, a két térnek semmi köze egymáshoz. A (100×100) -as mátrixok vektorterének alterében csak (100×100) -as mátrixok lehetnek!

Feladat 3. Vektorteret alkotnak-e a valós (vagyis az \mathbb{R} -ből \mathbb{R} -be képező, máshogy megfogalmazva: $\mathbb{R} \to \mathbb{R}$ típusú) függvények \mathbb{R} felett, a függvények szokásos összeadására és számmal való szorzására nézve?

Megoldás. A halmaz, amit megvizsgálunk, hogy vektortér-e:

$$V = \{ f : \mathbb{R} \to \mathbb{R} \} ,$$

Legyen $f, g \in V$. Két valós függvény összegén az alábbi függvényt értjük:

$$f+g: \mathbb{R} \to \mathbb{R}, \quad (f+g)(x) = f(x) + g(x), \quad \forall x \in \mathbb{R} \ eset\'{e}n.$$

Ennek segítségével megadhatjuk a "+"-szal jelölt **valós függvények összeadása** műveletet, ami az alábbi függvény lesz:

$$+: V \times V \rightarrow V, \quad +(f,g) = f + g$$

Ez teljesíti az alábbi axiómákat:

- zártság: a fenti definícióból láthatjuk, hogy két valós (azaz ℝ-ből ℝ-be képező) függvény összege is valós (ℝ-ből ℝ-be képező) függvény lesz, tehát ha f, g ∈ V, akkor f + g ∈ V, ami azt jelenti, hogy a függvények összeadása nem vezet ki V-ből,
- kommutativitás: Tetszőleges, rögzített $x \in \mathbb{R}$ érték esetén f(x) és g(x) egy-egy valós szám lesz. Mivel a valós számok összeadása kommutatív, ezért f(x) + g(x) = g(x) + f(x). Mivel ez az összefüggés külön-külön igaz lesz minden egyes rögzített x esetén, így x-től függetlenül mindig teljesül, vagyis f + g = g + f.
- asszociativitás: rögzített $x \in \mathbb{R}$ esetén f(x), g(x) és h(x) egy-egy valós szám lesz, a valós számok összeadása pedig asszociatív, így f(x) + (g(x) + h(x)) = (f(x) + g(x)) + h(x). Mivel ez igaz minden rögzített $x \in \mathbb{R}$ esetén, ezért x-től függetlenül teljesül, tehát f + (g + h) = (f + g) + h,

- a vektortér nullvektora az azonosan nulla függvény lesz (ami minden valós számhoz a 0-t rendeli: $0_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}, \ 0_{\mathbb{R}}(x) = 0$. Ez teljesíti azt a feltételt, hogy $\forall f \in V$ esetén $f + 0_{\mathbb{R}} = f$, mert $f(x) + 0_{\mathbb{R}}(x) = f(x) + 0 = f(x)$ minden $x \in \mathbb{R}$ -re. Vagyis ez lesz az összeadás egységeleme,
- minden $f \in V$ -hez létezik az összeadásra vonatkozó, (-f)-fel jelölt inverz elem, és ennek hozzárendelési szabálya: (-f)(x) = -f(x). Ugyanis $\forall x \in \mathbb{R}$ esetén (-f)(x) + f(x) = 0 teljesül, vaqyis x-től függetlenül igaz, hogy $(-f) + f = 0_{\mathbb{R}}$.

Egy valós függvény számszorosa alatt az alábbi függvényt értjük:

$$\lambda f: \mathbb{R} \to \mathbb{R}, \ (\lambda f)(x) = \lambda \cdot f(x), \ \forall x \in \mathbb{R} \ eset\'{e}n.$$

Ennek segítségével értelmezhető a "·"-tal jelölt **valós függvény számmal való szorzása** művelet, ami az alábbi függvény lesz:

$$: V \times \mathbb{R} \to \mathbb{R}, \quad \cdot (f, \lambda) = \lambda \cdot f$$

- zártság: valós függvény számszorosa is valós függvény lesz: ha $f \in V$, akkor $\lambda \cdot f \in V$, vagyis a függvények számmal való szorzása nem vezet ki V-ből,
- vegyes disztributivitás V-re: Rögzített $x \in \mathbb{R}$ esetén f(x) és g(x) egy-egy valós szám. A valós számokra teljesül, hogy $\forall \lambda, f(x), g(x) \in \mathbb{R}$ esetén $\lambda(f(x) + g(x)) = \lambda f(x) + \lambda g(x)$. Mivel ez az összefüggés minden rögzített x esetén teljesül, ezért x-től függetlenül is igaz lesz, vagyis $\forall f, g \in V$ és $\lambda \in \mathbb{R}$ esetén $\lambda(f+g) = \lambda f + \lambda g$,
- vegyes disztributivitás \mathbb{R} -re: $\forall \lambda_1, \lambda_2 \in \mathbb{R}$ és $\forall f \in V$ esetén $(\lambda_1 + \lambda_2)f = \lambda_1 f + \lambda_2 f$: ez az előzőhöz hasonlóan bizonyítható,
- vegyes asszociativitás \mathbb{R} -re: $\forall \lambda_1, \lambda_2 \in \mathbb{R}$ és $\forall f \in V$ esetén $\lambda_1(\lambda_2 f) = (\lambda_1 \lambda_2) f$: ez szintén az előzőekhez hasonlóan bizonyítható,
- $\forall f \in V$ esetén teljesül, hogy $(1f)(x) = 1 \cdot f(x) = f(x)$, ahol $1 \in \mathbb{R}$ a valós számtest egységeleme. Mivel ez minden rögzített $x \in \mathbb{R}$ esetén igaz, így x-től függetlenül is igaz lesz, azaz $\forall f \in V$ esetén teljesül, hogy $(1 \cdot f) = f$.

Tehát a valós függvények vektorteret alkotnak $\mathbb R$ felett a fent értelmezett két művelettel. Ebben a vektortérben a "vektorok" a valós függvények lesznek. Például a vektortér két vektora: $\underline{v}_1 = \cos(x)$, $\underline{v}_2 = x^2 + e^x$. Ezek összege: $\underline{v}_1 + \underline{v}_2 = \cos(x) + x^2 + e^x$, az első vektor 5-szöröse: $\underline{5v}_1 = 5\cos(x)$.

Feladat 4. Tekintsük a legfeljebb másodfokú polinomok terét:

$$P_2 = \{ p(x) = ax^2 + bx + c \mid a, b, c \in \mathbb{R} \}$$
 (1)

(a) Igazoljuk, hogy P_2 a szokásos összeadásra és számszorosra nézve vektorteret alkot a valós számtest felett!

Megoldás. Zártság: legyen $p, q \in P_2$ és $\lambda \in \mathbb{R}$ tetszőleges, ahol

$$\begin{cases} p(x) = ax^2 + bx + c \\ q(x) = dx^2 + cx + e \end{cases}$$

Ekkor:

$$(p+q)(x) = (a+d)x^2 + (b+c)x + (c+e) \in P_2$$
$$\lambda \cdot p(x) = \lambda ax^2 + \lambda bx + \lambda c \in P_2$$

vagyis két legfeljebb másodfokú polinom összege is egy legfeljebb másodfokú polinom, illetve egy legfeljebb másodfokú polinom számszorosa is egy legfeljebb másodfokú polinom. Tehát a fenti műveletek nem vezetnek $ki\ P_2$ -ből.

Mivel a másodfokú polinomok valós függvények, és a valós függvények teljesítik a vektortér további 8 tulajdonságát, a másodfokú polinomokra is igazak lesznek ezek a tulajdonságok. A vektortér nullvektora az azonosan nulla polinom, míg a $p(x) = ax^2 + bx + c$ polinomhoz tartozó, összeadásra vonatkozó inverz elem a $(-p)(x) = -ax^2 - bx - c$ lesz. A konstanssal való szorzás egységeleme itt is az $1 \in \mathbb{R}$.

A P_2 vektortér vektorai tehát a legfeljebb másodfokú polinomok lesznek, Ilyenek például $\underline{v}_1=3x^2-3x+6$ és $\underline{v}_2=-7x$. A két vektor összege $\underline{v}_1+\underline{v}_2=3x^2-3x+6-7x=3x^2-10x+6$, a \underline{v}_2 vektor 3-szorosa: $3\cdot\underline{v}_2=-21x$

(b) Igazoljuk, hogy P_2 altere a valós függvények vektorterének!

Megoldás. Az előbb beláttuk, hogy a legfeljebb másodfokú polinomok tere zárt az összeadásra és a számmal való szorzásra nézve. Mivel a legfeljebb másodfokú polinomok valós függvények, ezért P_2 a zártság miatt altere lesz a valós függvények vektorterének.

(c) A legfeljebb elsőfokú polinomok tere (P_1) altere-e P_2 -nek?

Megoldás. Mivel a P_1 -beli függvények benne vannak P_2 -ben is, továbbá a P_1 -beli függvények összege és számszorosa is P_1 -beli (vagyis a zártság teljesül), P_1 altere P_2 -nek.

(d) P_2 altere-e önmagának?

Megoldás. Igen, minden vektortér altere önmagának (az altér definíciójában tartalmazás szerepel, nem pedig valódi tartalmazás).

(e) A másodfokú polinomok alteret alkotnak-e P_2 -ben?

Megoldás. Nem, mert a másodfokú polinomok halmaza nem zárt a vektorműveletekre $(+,\cdot)$. Például: $\underline{v}_1 = x^2 + x$, $\underline{v}_2 = -x^2 + 3x + 2$ másodfokú polinomok, de $\underline{v}_1 + \underline{v}_2 = 4x + 2$ nem másodfokú polinom. Ez másképpen is igazolható: másodfokú polinom $0 \in \mathbb{R}$ -val való szorzása nulladfokú polinomot ad, ami nem másodfokú polinom.

(f) Vektorteret alkotnak-e a másodfokú polinomok \mathbb{R} felett a szokásos műveletekre nézve?

Megoldás. Ahogy az előző válaszból láttuk, az axiómák közül a zártságra vonatkozóak nem teljesülnek, így nem alkotnak vektorteret. (Ellenben a legfeljebb másodfokú polinomokkal, mert itt megengedtük az első- és nulladfokú polinomokat is.)

Feladat 5. Jelöljük D-vel az $(n \times n)$ -es mátrixok halmazából azon mátrixokat, amelyeknek minden eleme nulla, kivéve a főátlót, ahol bármely pozitív valós szám állhat. Lineáris tér-e (vektortér-e) D a valós számtest felett, ha D-ben az összeadást és a valós számmal való szorzást a mátrixoknál szokásos módon értelmezzük?

$$D = \left\{ A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \middle| a_{11}, a_{22}, \dots, a_{nn} \in \mathbb{R}^+ \right\}.$$

ahol R^+ a pozitív valós számok halmazát jelöli.

Megoldás. D nem altér \mathbb{R} fölött, mert nem zárt a valós számmal való szorzásra nézve. Például $\lambda = -1 \in \mathbb{R}$ esetén $\lambda A \notin D$. (Az axiómákat az összeadás vektorművelet sem teljesíti: nincs egységelem az összeadásra nézve, mert $\mathbb{O} \notin D$. Ennél fogva nem létezhet az összeadás inverz eleme sem.)

Feladat 6. Igazoljuk, hogy a (3×3) -as diagonális mátrixok alteret alkotnak a (3×3) -as mátrixok terében!

Megoldás. Jelölje L a (3 × 3)-as diagonális mátrixok terét. A mátrixok összeadása és skalárral való szorzása - korábbi példánkhoz hasonlóan - teljesíti a vektortér-axiómákat, egyedül azt kell belátnunk, hogy az összeadás és a skalárral való szorzás nem vezet ki L-ből (zártság). Tudjuk, hogy bármely két diagonális mátrix összege is diagonális mátrix lesz. Tudjuk azt is, hogy ha egy skalárral megszorzunk egy diagonális mátrixot, az szintén

diagonális mátrix lesz. Így L zárt az összeadásra és a skalárral való szorzásra, vagyis altér a (3×3) -as mátrixok terében.

Feladat 7. A pozitív számok halmaza, $V = \mathbb{R}^+$ vektorteret alkot-e \mathbb{R} felett a következő (bekarikázással jelölt) műveletekre?

$$\underline{a} \oplus \underline{b} = \underline{a} \cdot \underline{b}$$
$$\lambda \odot a = a^{\lambda}$$

ahol $\underline{a},\underline{b} \in \mathbb{R}^+$ és $\lambda \in R$, továbbá a "hagyományosan" jelölt szorzás és hatványozás a valós számok halmazán értelmezett szorzás és hatványozás.

Megoldás. Tehát a "vektoraink" a pozitív valós számok. A két, $V = \mathbb{R}^+$ -on értelmezett "speciális" műveletet \oplus és \odot jelöli, míg a "hagyományos" \cdot a valós számokon értelmezett szorzást, a szokásosan jelölt hatványozás pedig a valós számok hatványozását reprezentálja.

 $Ellenőrizzük \ a \oplus műveletre \ vonatkozó \ axiómákat:$

- $z \acute{a}rts \acute{a}g: \forall \underline{a}, \underline{b} \in \mathbb{R}^+ \ eset \acute{e}n \ \underline{a} \oplus \underline{b} = \underline{a} \cdot \underline{b} \in \mathbb{R}^+,$
- kommutativitás: $\forall \underline{a}, \underline{b} \in \mathbb{R}^+$ esetén $\underline{a} \oplus \underline{b} = \underline{a} \cdot \underline{b} = \underline{b} \oplus \underline{a}$, mert a valós számok szorzása kommutatív,
- asszociativitás: $\forall \underline{a}, \underline{b}, \underline{c} \in \mathbb{R}^+$ esetén $\underline{a} \oplus (\underline{b} \oplus \underline{c}) = \underline{a} \cdot (\underline{b} \cdot \underline{c}) = (\underline{a} \cdot \underline{b}) \cdot \underline{c} = (\underline{a} \oplus \underline{b}) \oplus \underline{c}$, mert a valós számok szorzása asszociatív,
- létezik az összeadás egységeleme: $\exists \underline{0} = 1 \in \mathbb{R}^+$ amire igaz, hogy $\forall \underline{a} \in \mathbb{R}^+$ esetén $\underline{0} \oplus \underline{a} = 1 \cdot \underline{a} = \underline{a}$. Tehát $\underline{0} = 1$ lesz a tér **nullvektora**,
- létezik az összeadásra vonatkozó inverz elem: $\forall \underline{a} \in \mathbb{R}^+$ -ra $\exists (-\underline{a}) = \frac{1}{\underline{a}} \in \mathbb{R}^+$, amelyre $(-\underline{a}) \oplus \underline{a} = \frac{1}{\underline{a}} \cdot \underline{a} = 1 = \underline{0}$,

 $Az \odot m$ űveletre vonatkozó axiómákat is tudjuk ellenőrizni, felhasználva a valós számok hatványozásának ismert azonosságait:

- $z'arts'ag: \forall \lambda \in \mathbb{R} \ \'es \ \forall \underline{a} \in \mathbb{R}^+ \ eset\'en \ \lambda \odot \underline{a} = \underline{a}^\lambda \in \mathbb{R}^+ \ mert \ egy \ pozit\'ev \ sz\'am \ b\'armely \ val\'os \ hatv\'anya \ pozit\'ev,$
- vegyes disztributivitás \mathbb{R}^+ -ra: $\forall \lambda \in \mathbb{R}$ és $\forall \underline{a}, \underline{b} \in \mathbb{R}^+$ esetén $\lambda \odot (\underline{a} \oplus \underline{b}) = (\underline{a} \cdot \underline{b})^{\lambda} = \underline{a}^{\lambda} \cdot \underline{b}^{\lambda} = (\lambda \odot \underline{a}) \oplus (\lambda \odot \underline{b})$,
- vegyes disztributivitás \mathbb{R} -re: $\forall \lambda_1, \lambda_2 \in \mathbb{R}$ és $\forall \underline{a} \in \mathbb{R}^+$ esetén $(\lambda_1 \oplus \lambda_2) \odot \underline{a} = \underline{a}^{\lambda_1 \cdot \lambda_2} = \underline{a}^{\lambda_1} \cdot \underline{a}^{\lambda_2} = (\lambda_1 \odot \underline{a}) \oplus (\lambda_2 \odot \underline{a}),$
- vegyes asszociativitás \mathbb{R} -re: $\forall \lambda_1, \lambda_2 \in \mathbb{R}$ és $\forall \underline{a} \in \mathbb{R}^+$ esetén $\lambda_1 \odot (\lambda_2 \odot \underline{a}) = (\underline{a}^{\lambda_2})^{\lambda_1} = \underline{a}^{\lambda_1 \cdot \lambda_2} = (\lambda_1 \cdot \lambda_2) \odot \underline{a}$,
- $\forall \underline{v} \in \mathbb{R}^+$ esetén $1 \odot \underline{a} = \underline{a}^1 = \underline{a}$, ahol $1 \in \mathbb{R}$ a valós számtest egységeleme.

Tehát $V = \mathbb{R}^+$ valóban \mathbb{R} feletti vektortér a fenti két "karikás" műveletre nézve, "vektorai" pedig a pozitív valós számok.

2 Lineáris kombináció

A lineáris kombináció a vektorok lineáris függetlenségének vizsgálatánál is meghatározó szerepet játszik.

Definition 4. Lineáris kombináció

A $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n$ vektorok lineáris kombinációján a következő kifejezést értjük:

$$\lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \dots + \lambda_n \underline{v}_n$$

ahol $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$. Azt mondjuk, hogy a \underline{v} vektor a $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_n$ vektorok lineáris kombinációja (avagy a \underline{v} vektor előáll a $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_n$ vektorok lineáris kombinációjaként), ha léteznek olyan $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ számok, amelyekre

$$\underline{v} = \lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \dots + \lambda_n \underline{v}_n.$$

Egy lineáris kombináció **triviális**, ha minden λ_i skalár együttható 0. Ha van olyan skalár, ami nem nulla, a lineáris kombináció **nem triviális**.

Megjegyzés 8. Nyilvánvaló, hogy bármely triviális lineáris kombináció a nullvektort adja.

2.1 Feladatok

Feladat 8. Tekintsük a (2×2) -es mátrixok vektorterét. Ennek "vektorai" a (2×2) -es mátrixok. Állítsuk elő a $\underline{v} = \begin{bmatrix} 0 & 8 \\ 2 & 1 \end{bmatrix}$ "vektort" a $\underline{v}_1 = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$, $\underline{v}_2 = \begin{bmatrix} -1 & 3 \\ 1 & 2 \end{bmatrix}$, $\underline{v}_3 = \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$ "vektorok" lineáris kombinációjaként!

Megoldás. Az alábbi egyenlet megoldását keressük $\lambda_1, \lambda_2, \lambda_3$ -ra:

$$\begin{bmatrix} 0 & 8 \\ 2 & 1 \end{bmatrix} = \lambda_1 \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} -1 & 3 \\ 1 & 2 \end{bmatrix} + \lambda_3 \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$

Két mátrix akkor egyenlő, ha a megfelelő elemeik megegyeznek. Ezért a fenti mátrixegyenletünk az alábbi, 4 db egyenletből álló egyenletrendszerrel ekvivalens:

$$0 = 0\lambda_1 - 1\lambda_2 - 2\lambda_3$$

$$8 = 2\lambda_1 + 3\lambda_2 + 0\lambda_3$$

$$2 = 1\lambda_1 + 1\lambda_2 + 1\lambda_3$$

$$1 = 0\lambda_1 + 2\lambda_2 + 3\lambda_3$$

Oldjuk meg ezt Gauss-Jordan eliminációval:

$$\begin{pmatrix} 0 & -1 & -2 & | & 0 \\ 2 & 3 & 0 & | & 8 \\ 1 & 1 & 1 & | & 2 \\ 0 & 2 & 3 & | & 1 \end{pmatrix} \sim \begin{pmatrix} \boxed{1} & 1 & 1 & | & 2 \\ 2 & 3 & 0 & | & 8 \\ 0 & -1 & -2 & | & 0 \\ 0 & 2 & 3 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 0 & \boxed{1} & -2 & | & 4 \\ 0 & -1 & -2 & | & 0 \\ 0 & 2 & 3 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 0 & 1 & -2 & | & 4 \\ 0 & 0 & 7 & | & -7 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 0 & 1 & -2 & | & 4 \\ 0 & 0 & \boxed{1} & | & -1 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 0 & \boxed{1} & 0 & | & 3 \\ 0 & \boxed{1} & 0 & | & 3 \\ 0 & \boxed{1} & 0 & | & 2 \\ 0 & 0 & 1 & | & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -1 \end{pmatrix}$$

Innen kiolvashatjuk, hogy $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = -1$, azaz a mátrixegyenlet megoldása az alábbi lesz:

$$\begin{bmatrix} 0 & 8 \\ 2 & 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} + 2 \cdot \begin{bmatrix} -1 & 3 \\ 1 & 2 \end{bmatrix} + (-1) \cdot \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$

Tehát \underline{v} valóban előáll \underline{v}_1 , \underline{v}_2 és \underline{v}_3 lineáris kombinációjaként:

$$\underline{v} = 1 \cdot \underline{v}_1 + 2 \cdot \underline{v}_2 - 1 \cdot \underline{v}_3$$

Feladat 9. Tekintsük a legfeljebb másodfokú polinomok vektorterében a következő "vektorokat":

$$p(x) = 4x^{2} + 5x + 5$$

$$p_{1}(x) = x^{2} + 2x + 3$$

$$p_{2}(x) = -x^{2} + x + 4$$

$$p_{3}(x) = 3x^{2} + 3x + 2$$

Előállítható-e a p(x) "vektor" a többi lineáris kombinációjaként?

Megoldás. A keresett lineáris kombinációban a skalárok ismeretlenek:

$$p(x) = c_1 p_1(x) + c_2 p_2(x) + c_3 p_3(x)$$

Két polinom akkor egyenlő, ha az azonos hatványon szereplő tagokhoz tartozó együtthatóik egyenlőek. Ezért:

$$\begin{pmatrix} 4 \\ 5 \\ 5 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix} + c_3 \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix},$$

Vagyis az alábbi lineáris egyenletrendszert kell megoldani:

$$A \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 3 \\ 3 & 4 & 2 \end{bmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 5 \end{pmatrix}$$

Megoldjuk az egyenletrendszert Gauss-Jordan eliminációval:

$$\begin{pmatrix} \boxed{1} & -1 & 3 & | & 4 \\ 2 & 1 & 3 & | & 5 \\ 3 & 4 & 2 & | & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 3 & | & 4 \\ 0 & 3 & -3 & | & -3 \\ 0 & 7 & -7 & | & -7 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 3 & | & 4 \\ 0 & \boxed{1} & -1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & | & 3 \\ 0 & 1 & -1 & | & -1 \end{pmatrix}$$

Az egyenletrendszernek végtelen sok megoldása van:

$$\begin{cases} c_1 + 2c_2 = 3 \\ c_2 - c_3 = -1 \\ c_3 = u \end{cases} \Rightarrow \begin{cases} c_1 = 3 - 2u \\ c_2 = u - 1 \\ c_3 = u \end{cases}, \quad u \in \mathbb{R}$$

vagyis a p(a) "vektor" végtelen sokféleképpen előáll többi "vektor" lineáris kombinációjaként:

$$p(x) = (3-2u)p_1(x) + (u-1)p_2(x) + up_3(x), u \in \mathbb{R}$$

Vagyis p(x) előállítható $p_1(x)$ és $p_2(x)$ lineáris kombinációjaként is, nem szükséges $p_3(x)$ -at is bevonni (lásd az u=0 esetet).

3 Lineáris függetlenség

Definition 5. Lineáris függetlenség

A $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n$ vektorok lineárisan függetlenek, ha $\sum_{i=1}^n \lambda_i \underline{v}_i = \underline{0}$ csak úgy lehetséges, ha minden $\lambda_i = 0$, vagyis a nullvektort csak triviális lineáris kombinációval állítják elő.

A $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n$ vektorok **lineárisan összefüggőek**, ha a $\sum_{i=1}^n \lambda_i \underline{v}_i = \underline{0}$ lineáris kombinációban lehet nullától különböző λ_i együttható, vagyis a nullvektort nemtriviális lineáris kombinációval **is** előállítják.

3.1 Feladatok

Feladat 10. Döntsük el, lineárisan összefüggő-e a alábbi vektorrendszer \mathbb{R}^2 -en: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Megoldás. Azt kell megvizsgálni, miként állítható elő a <u>0</u> vektor.

$$\lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 - \lambda_2 = 0 \end{cases} \Rightarrow \lambda_1 = \lambda_2 = 0$$

Mivel csak a triviális megoldás létezik, ezért az adott vektorok lineárisan függetlenek.

Feladat 11. Döntse el, lineárisan függetlenek-e az alábbi vektorok!

$$\underline{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \ \underline{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \ \underline{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Megoldás. A három vektor által meghatározott paralelepipedon előjeles térfogata nem nulla:

$$(\underline{v}_1 \times \underline{v}_2) \cdot \underline{v}_3 = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 0 & 2 \end{vmatrix} = 3 \neq 0,$$

vagyis a vektorok nem egysíkúak. Ennek következtében a három vektor lineárisan független.

3.2 Lineáris függetlenség kapcsolata a determinánssal és az előállítás egyértelműségével

Theorem 6. Lineáris függetlenség vizsgálata determinánssal

Tetszőleges n db \mathbb{R}^n -beli vektor lineárisan független pontosan akkor, ha a belőlük képzett determináns nem nulla (és lineárisan összefüggő pontosan akkor, ha a determináns nulla).

Megjegyzés 9. Ugyanis, ha azt vizsgáljuk, hogy $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n \in \mathbb{R}^n$ függetlenek-e, akkor a

$$\lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \dots + \lambda_n \underline{v}_n = \underline{0}$$

homogén lineáris egyenletrendszer megoldásainak számát vizsgáljuk (homogén esetben mindig van megoldás: vagy 1 vagy ∞ sok). A megoldások száma 1 - ami a triviális megoldás: $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$ - akkor és csak akkor, ha a vektorok lineárisan függetlenek. Ellenben, végtelen sok megoldás akkor és csak akkor van, ha a vektorok lineárisan összefüggőek. A fenti egyenletet felírhatjuk mátrixos alakban is, ahol az A mátrix oszlopai a \underline{v}_i vektorok:

$$A \cdot \underline{\lambda} = \underline{0} , \quad A = \begin{bmatrix} \underline{v}_1 \mid \underline{v}_2 \mid \dots \mid \underline{v}_n \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad \underline{\lambda} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Az egyenletrendszernek pontosan akkor lesz végtelen sok megoldása, ha a felsőháromszög-mátrix kialakítása során - amit Gauss-eliminációval végzünk - azonosan nulla sor keletkezik benne (mert ekkor e sor elhagyásával az A sorainak száma (r) csökken, és mivel r < n, a szabadsági fok $szf = n - r \ge 1$, ami legalább egy szabad paramétert jelent a megoldásban). Ez pedig pontosan akkor lehetséges, ha $\det(A) = 0$.

Megjegyzés 10. A determináns tulajdonságaiból adódik, hogy a vizsgált vektorok lineáris függetlenségét nem befolyásolja sem a vektorok sorrendje (mivel egy sorcsere vagy oszlopcsere a determináns értékének csak az előjelét változtatja meg), sem az, hogy sor- vagy oszlopvektorként szerepelnek a determinánsban (mivel $\det(A) = \det(A^T)$).

 $\mathbf{Megjegyz}$ és 11. A determinánsos módszer csak n db n komponensű vektor lineáris függetlenségének vizsgálatára alkalmas, mert egy determináns sorainak és oszlopainak száma egyenlő.

Theorem 7. Vektorok egyértelmű előállítása

A \underline{v} vektor $\underline{v} = \sum_{i=1}^{n} \lambda_i \underline{v}_i = \lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \dots + \lambda_n \underline{v}_n$ előállítása akkor és csak akkor egyértelmű, ha $\underline{v}_1, \, \underline{v}_2, \, \dots, \, \underline{v}_n$ lineárisan független rendszer.

3.3 Feladatok

Feladat 12. Tekintsük a legfeljebb másodfokú polinomok vektorterét! Lineárisan függetlenek-e a

$$p_1(x) = x^2 + 2x + 3$$
$$p_2(x) = -x^2 + x + 4$$
$$p_3(x) = 3x^2 + 3x + 2$$

"vektorok"?

Megoldás. Nem, hiszen láttuk a Feladat 9 megoldásában, hogy a $p(x) = 4x^2 + 5x + 5$ "vektor" végtelen sokféleképpen előáll a $p_1(x)$, $p_2(x)$ és $p_3(x)$ lineáris kombinációjaként. Ha függetlenek lennének, akkor az előállítás egyértelmű lenne!

Feladat 13. Tekintsük a 2 × 2-es mátrixok vektorterét. Lineárisan függetlenek-e az alábbi "vektorok"?

$$\underline{v}_1 = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}, \ \underline{v}_2 = \begin{bmatrix} -1 & 3 \\ 1 & 2 \end{bmatrix}, \ \underline{v}_3 = \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$

Megoldás. A Feladat 8 megoldásában láthattuk, hogy az előállítás egyértelmű volt, ezért lineárisan függetlenek.

Feladat 14. Lineárisan függetlenek-e az alábbi vektorok?

$$\underline{a} = \begin{pmatrix} 4 \\ -2 \\ -4 \\ -1 \end{pmatrix}, \ \underline{b} = \begin{pmatrix} -4 \\ 3 \\ 5 \\ 1 \end{pmatrix}, \ \underline{c} = \begin{pmatrix} -2 \\ -3 \\ -5 \\ 3 \end{pmatrix}, \ \underline{d} = \begin{pmatrix} -16 \\ 5 \\ -5 \\ 4 \end{pmatrix} \in \mathbb{R}^4$$

Megoldás. Mivel 4 db \mathbb{R}^4 -beli vektorunk van, determináns segítségével is vizsgálhatjuk a függetlenséget. Felírjuk a determinánst (ezúttal oszlopvektorként kezelve a vektorokat):

$$\begin{vmatrix} 4 & -4 & -2 & -16 \\ -2 & 3 & -3 & 5 \\ -4 & 5 & -5 & -5 \\ \hline{-1} & 1 & 3 & 4 \end{vmatrix} \stackrel{elim.\uparrow}{=} \begin{vmatrix} 0 & 0 & 10 & 0 \\ 0 & 1 & -9 & -3 \\ 0 & 1 & -17 & -21 \\ -1 & 1 & 3 & 4 \end{vmatrix} = -(-1) \begin{vmatrix} 0 & 10 & 0 \\ 1 & -9 & -3 \\ 1 & -17 & -21 \end{vmatrix} = -(-1)(-10) \begin{vmatrix} 1 & -3 \\ 1 & -21 \end{vmatrix} = -(-1)(-10)(-21 + 3) = 180 \neq 0.$$

Mivel a determináns értéke nem 0, a vektorok lineárisan függetlenek.

Feladat 15. Milyen $p \in \mathbb{R}$ paraméter esetén lesznek az

$$\underline{a} = \begin{pmatrix} 2 \\ -6 \\ 10 \end{pmatrix}, \ \underline{b} = \begin{pmatrix} 1 \\ -2 \\ 7 \end{pmatrix}, \ \underline{c} = \begin{pmatrix} 0 \\ 3 \\ p \end{pmatrix}$$

vektorok lineárisan összefüggőek?

Megoldás. Felírjuk a determinánst, és egyenlővé tesszük nullával:

$$\begin{vmatrix} 2 & 1 & 0 \\ -6 & -2 & 3 \\ 10 & 7 & p \end{vmatrix} = -3(14 - 10) + p(-4 + 6) = 2p - 12 = 0 \quad \Rightarrow \quad p = 6.$$

4 Generátorrendszer, bázis, dimenzió

Definition 8.

Generátum: A $\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_k\in V$ vektorok generátumának nevezzük és $<\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_k>$ -val jelöljük a $\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_k$ összes lehetséges lineáris kombinációjával előállítható vektorok halmazát. Ez a halmaz alteret képez V-ben. A $\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_k$ generátumát nevezik a $\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_k$ vektorok által kifeszített altérnek is, és $span\{\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_k\}$ -val is jelölik.

Generátorrendszer: Azok a vektorok, melyek lineáris kombinációjaként a vektortér minden eleme előáll, generátorrendszert alkotnak. (Vagyis egy generátorrendszer generátuma a vektortér lesz.)

Bázis: A V vektortérbeli $\underline{b}_1, \underline{b}_2, \dots b_n$ vektorok a V **bázisát** alkotják, ha

- minden V-beli vektor előáll a lineáris kombinációjukként és
- a $\underline{b}_1, \underline{b}_2, \dots \underline{b}_n$ vektorok lineárisan függetlenek.

Másképp megfogalmazva: a bázis lineárisan független vektorokból álló generátorrendszer.

Dimenzió: Egy V vektortér bázisainak elemszáma állandó. Ezt a számot a vektortér **dimenziójának** nevezzük, és $\dim(V)$ -vel jelöljük.

Koordináták, koordináta mátrix: Legyen $\underline{b}_1,\underline{b}_2,\ldots,\underline{b}_n$ a V vektortér egy bázisa. A vektortér bármely $\underline{v}\in V$ vektora egyértelműen előáll a bázisvektorok lineáris kombinációjaként: $\underline{v}=\lambda_1\underline{b}_1+\lambda_2\underline{b}_2+\cdots+\lambda_n\underline{b}_n$. Ekkor a $\lambda_1,\lambda_2,\ldots,\lambda_n\in\mathbb{R}$

számokat a \underline{v} vektor $\underline{b}_1,\underline{b}_2,\ldots,\underline{b}_n$ bázisra vonatkozó **koordinátáinak** nevezzük, a $\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}_{[\underline{b}_1,\underline{b}_2,\ldots,\underline{b}_n]}$ vektort pedig a \underline{v}

vektor $\underline{b}_1,\underline{b}_2,\dots,\underline{b}_n$ bázisra vonatkozó **koordinátamátrixának** hívjuk.

Megjegyzés 12. A $\underline{v} \in V$ vektor koordinátamátrixa egy vektor!

Megjegyzés 13. A $\underline{v} \in V$ vektor koordinátamátrixának annyi komponense van, ahány dimenziós a V vektortér.

Megjegyzés 14. Minden bázis generátorrendszer, de nem minden generátorrendszer bázis. (De egy lineárisan összefüggő generátorrendszer bázissá tehető a megfelelő vektorok elhagyásával.)

Theorem 9. Bázis megadása n-dimenziós vektortérben

Legyen $\dim(V) = n$. Ekkor bármely n db lineárisan független V-beli vektor bázist alkot V-ben.

4.1 Feladatok

Feladat 16. Igazoljuk, hogy a $\underline{g}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\underline{g}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\underline{g}_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ vektorok az \mathbb{R}^2 egy generátorrendszerét alkotják! Bázist alkotnak-e ezek a vektorok \mathbb{R}^2 -en?

 $\textbf{Megoldás.} \ \textit{Azt kell bizonyítani, hogy bármely} \ \underline{v} = \begin{pmatrix} a \\ b \end{pmatrix} \ \textit{vektor felírható a} \ \underline{g}_1, \underline{g}_2, \underline{g}_3 \ \textit{lineáris kombinációjaként:}$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda_3 \begin{pmatrix} -1 \\ -1 \end{pmatrix},$$

Gauss eliminációval megoldva:

$$\begin{pmatrix} \boxed{1} & 1 & -1 & | & a \\ 1 & -1 & -1 & | & b \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & | & a \\ 0 & -2 & 0 & | & b-a \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & | & a \\ 0 & 1 & 0 & | & \frac{a-b}{2} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & | & \frac{a+b}{2} \\ 0 & 1 & 0 & | & \frac{a-b}{2} \end{pmatrix}$$

Tehát a megoldás:

$$\begin{cases} \lambda_1 = \frac{a+b}{2} + \lambda_3 \\ \lambda_2 = \frac{a-b}{2} \\ \lambda_3 \in \mathbb{R} \end{cases}$$

 $Vagyis\ az\ \mathbb{R}^2\ tetszőleges\ vektora\ (végtelen\ sokféleképpen)\ előáll\ g_1,\ g_2\ és\ g_3\ lineáris\ kombinációjaként:$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \left(\frac{a+b}{2} + \lambda_3\right) \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{a-b}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda_3 \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \quad \lambda_3 \in \mathbb{R}.$$

 $P\'eld\'aul~az \begin{pmatrix} 5 \\ 1 \end{pmatrix}$ vektor előállításainak száma is végtelen. Két ilyen előállítás:

$$\begin{array}{ll} \textit{egyik:} & \begin{cases} \lambda_1 = 3 \\ \lambda_2 = 2 \\ \lambda_3 = 0 \end{cases} \Rightarrow \begin{pmatrix} 5 \\ 1 \end{pmatrix} = 3\underline{g}_1 + 2\underline{g}_2 + 0\underline{g}_3 = 3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\ \textit{másik:} & \begin{cases} \lambda_1 = 4 \\ \lambda_2 = 2 \\ \lambda_3 = 1 \end{cases} \Rightarrow \begin{pmatrix} 5 \\ 1 \end{pmatrix} = 4\underline{g}_1 + 2\underline{g}_2 + 1\underline{g}_3 = 4 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix} \\ \end{cases}$$

 $\label{eq:model} \textit{Mivel bármely} \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2 \ \textit{vektor előáll a} \ \underline{g}_1 \ \underline{g}_2 \ \textit{\'es} \ \underline{g}_3 \ \textit{vektorok line\'aris kombinációjaként, ezért ezek generátorrendszert alkotnak} \ \mathbb{R}^2\text{-en.} \ \textit{Mivel ez az előállítás nem egyértelmű,} \ \underline{g}_1 \ \underline{g}_2 \ \textit{\'es} \ \underline{g}_3 \ \textit{line\'arisan \"osszefüggőek, \'igy nem alkotnak bázist} \ \mathbb{R}^2\text{-en.} \ \textit{(Megjegyz\'es: ha} \ \underline{g}_1 \ \textit{\'es} \ \underline{g}_3 \ \textit{k\"oz\"{u\'el valamelyiket elhagyjuk, bázis kapunk, mert az előállítás \'igy már egyértelmű lesz.)}$

Feladat 17. Adjuk meg a következő vektorok által generált alteret!

$$\underline{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \underline{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \underline{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Megoldás. Ezek a vektorok \mathbb{R}^3 kanonikus bázisának vektorai.

$$\begin{aligned}
\langle \underline{e}_1, \underline{e}_2, \underline{e}_3 \rangle &= \left\{ \lambda_1 \underline{e}_1 + \lambda_2 \underline{e}_2 + \lambda_3 \underline{e}_3 \mid \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \right\} = \left\{ \lambda_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \mid \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \right\} = \\
&= \left\{ \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} \in \mathbb{R}^3 \mid \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \right\} = \mathbb{R}^3.
\end{aligned}$$

Az eredmény nem meglepő, hiszen a térbeli felbontási tételből is adódik, amennyiben az \underline{i} , \underline{j} , \underline{k} vektorokat tekintjük az adott, páronként nem párhuzamos és nem egysíkú vektorainak.

Feladat 18. Tekintsük a következő vektorokat:

$$\underline{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \ \underline{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \ \underline{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Igaz-e, hogy

- (a) lineárisan függetlenek?
- (b) generátumuk megegyezik-e \mathbb{R}^3 -mal, vagyis $\langle \underline{v}_1, \underline{v}_2, \underline{v}_3 \rangle = \mathbb{R}^3$?
- (c) bázis alkotnak?

Megoldás. Ha a (b) kérdésre igen a válasz, akkor minden $\underline{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$ -hoz léteznek olyan λ_1 , λ_2 , λ_3 valós számok, amelyekre

$$\underline{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \lambda_3 \underline{v}_3$$

vagyis

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Gauss-Jordan eliminációval kiszámoljuk az egyenletrendszer megoldását:

$$\begin{pmatrix}
\mathbf{1} & 1 & 1 & | & a \\
2 & 0 & 1 & | & b \\
1 & 2 & 0 & | & c
\end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & | & a \\
0 & -2 & -1 & | & b - 2a \\
0 & 1 & -1 & | & c - a
\end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & | & a \\
0 & \mathbf{1} & -1 & | & c - a \\
0 & -2 & -1 & | & b - 2a
\end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & | & a \\
0 & 1 & -1 & | & c - a \\
0 & 0 & \mathbf{-3} & | & b - 4a + 2c
\end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & | & a \\
0 & 1 & -1 & | & c - a \\
0 & 0 & \mathbf{1} & | & \frac{4}{3}a - \frac{1}{3}b - \frac{2}{3}c
\end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & | & -\frac{1}{3}a + \frac{1}{3}b + \frac{2}{3}c \\
0 & \mathbf{1} & 0 & | & \frac{1}{3}a - \frac{1}{3}b + \frac{1}{3}c \\
0 & 0 & 1 & | & \frac{4}{3}a - \frac{1}{3}b - \frac{2}{3}c
\end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & -\frac{2}{3}a + \frac{2}{3}b + \frac{1}{3}c \\
0 & 1 & 0 & | & \frac{1}{3}a - \frac{1}{3}b + \frac{1}{3}c \\
0 & 0 & 1 & | & \frac{4}{3}a - \frac{1}{3}b - \frac{2}{3}c
\end{pmatrix}$$

A megoldás létezik és egyértelmű, vagyis az a, b, c paraméterekkel mindegyik együttható egyértelműen kifejezhető:

$$\begin{cases} \lambda_1 = \frac{-2a + 2b + c}{3} \\ \lambda_2 = \frac{a - b + c}{3} \\ \lambda_3 = \frac{4a - b - 2c}{3} \end{cases}$$

Tehát minden \mathbb{R}^3 -beli vektor felírható a \underline{v}_1 , \underline{v}_2 , \underline{v}_3 vektorok lineáris kombinációjaként, ezért ezek a vektorok generátorrendszert alkotnak \mathbb{R}^3 -ban. Mivel az előállítás egyértelmű, ezért e vektorok lineárisan függetlenek is. Ennek következtében ez a lineárisan független generátorrendszer bázist alkot \mathbb{R}^3 -ban.

A feladatot úgy is meg lehet oldani, hogy determináns segítségével állapítjuk meg a lineáris függetlenséget (lásd Feladat 11). Tétel 9 alapján tudjuk azt is, hogy 3 db lineárisan független vektor \mathbb{R}^3 -ban bázist alkot, a bázis pedig egyben generátorrendszer is. A generátorrendszer generátuma pedig maga a vektortér, vagyis \mathbb{R}^3 .

Feladat 19. Tekintsük a következő \mathbb{R}^4 -beli vektorokat:

$$\underline{a} = \begin{pmatrix} 0 \\ 3 \\ 1 \\ -2 \end{pmatrix}, \ \underline{b} = \begin{pmatrix} 3 \\ -3 \\ -2 \\ 1 \end{pmatrix}, \ \underline{c} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix}, \ \underline{d} = \begin{pmatrix} 3 \\ 3 \\ 2 \\ -1 \end{pmatrix}.$$

(a) Bázist alkotnak-e \mathbb{R}^4 -ben?

Megoldás.

$$\begin{vmatrix} 0 & 3 & 1 & 3 \\ 3 & -3 & 2 & 3 \\ 1 & -2 & 2 & 2 \\ -2 & 1 & 1 & \boxed{-1} \end{vmatrix} = \begin{vmatrix} -6 & 6 & 4 & 3 \\ -3 & 0 & 5 & 3 \\ -3 & 0 & 4 & 2 \\ 0 & 0 & 0 & -1 \end{vmatrix} = (-6) \cdot \begin{vmatrix} -3 & 5 & 3 \\ -3 & 4 & 2 \\ 0 & 0 & -1 \end{vmatrix} = (-6) \cdot (-1) \cdot \begin{vmatrix} -3 & 5 \\ -3 & 4 \end{vmatrix} = 6 \cdot (-12 + 15) = 18 \neq 0$$

Igen, mert a determináns értéke nem nulla, így a vektorok lineárisan függetlenek, és Tétel 9 alapján tudjuk, hogy 4 db lineárisan független vektor \mathbb{R}^4 -ben bázist alkot.

(b) Állítsuk elő a $\underline{v} = \begin{pmatrix} -1 \\ 4 \\ 0 \\ -5 \end{pmatrix}$ vektort az $\underline{a}, \underline{b}, \underline{c}, \underline{d}$ vektorok lineáris kombinációjaként! Adjuk meg a \underline{v} vektor $\{\underline{a}, \underline{b}, \underline{c}, \underline{d}\}$ bázisra vonatkozó koordinátamátrixát!

Megoldás. Keressük az $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ konstansokat, amelyekre $\alpha \underline{a} + \beta \underline{b} + \gamma \underline{c} + \delta \underline{d} = \underline{v}$. Ez egy lineáris

egyenletrendszerhez vezet, melyet most Gauss-Jordan eliminációval oldunk meg:

$$\begin{pmatrix} 0 & 3 & 1 & 3 & | & -1 \\ 3 & -3 & 2 & 3 & | & 4 \\ 1 & -2 & 2 & 2 & | & 0 \\ -2 & 1 & 1 & -1 & | & -5 \end{pmatrix} \text{ sorcsere } \begin{pmatrix} \boxed{1} & -2 & 2 & 2 & | & 0 \\ 3 & -3 & 2 & 3 & | & 4 \\ 0 & 3 & 1 & 3 & | & -1 \\ -2 & 1 & 1 & -1 & | & -5 \end{pmatrix} \text{ elim.} \downarrow \begin{pmatrix} 1 & -2 & 2 & 2 & | & 0 \\ 0 & \boxed{3} & -4 & -3 & | & 4 \\ 0 & 0 & 5 & 6 & | & -5 \\ 0 & 0 & 1 & 0 & | & -1 \end{pmatrix} \text{ sorcsere } \begin{pmatrix} 1 & -2 & 2 & 2 & | & 0 \\ 0 & 3 & -4 & -3 & | & 4 \\ 0 & 0 & \boxed{1} & 0 & | & -1 \\ 0 & 0 & 5 & 6 & | & -5 \end{pmatrix} \text{ elim.} \downarrow \begin{pmatrix} 1 & -2 & 2 & 2 & | & 0 \\ 0 & 3 & -4 & -3 & | & 4 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & \boxed{6} & | & 0 \end{pmatrix}$$
 skálázás.
$$\begin{pmatrix} 1 & -2 & 2 & 2 & | & 0 \\ 0 & 3 & -4 & -3 & | & 4 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & \boxed{1} & 0 & | & 4 \\ 0 & 0 & \boxed{1} & 0 & | & 4 \\ 0 & 0 & \boxed{1} & 0 & | & -1 \\ 0 & 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & |$$

Feladat 20. (a) Határozzuk meg az összes megoldását az alábbi egyenletnek!

$$x \cdot \underbrace{\begin{pmatrix} 2 \\ 1 \\ -1 \\ -7 \end{pmatrix}}_{\underline{a}_1} + y \cdot \underbrace{\begin{pmatrix} -4 \\ -1 \\ -1 \\ -3 \end{pmatrix}}_{\underline{a}_2} + z \cdot \underbrace{\begin{pmatrix} 3 \\ -1 \\ 6 \\ 32 \end{pmatrix}}_{\underline{a}_3} + u \cdot \underbrace{\begin{pmatrix} 3 \\ 0 \\ 3 \\ 15 \end{pmatrix}}_{\underline{a}_4} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Megoldás.

Az egyenletrendszer megoldása:

$$\begin{cases} u = 2s \\ z = 2t \\ y = 5t + 3s \\ x = 7t + 3s \end{cases} \Rightarrow \begin{pmatrix} x \\ y \\ z \\ u \end{pmatrix} = s \cdot \begin{pmatrix} 3 \\ 3 \\ 0 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 7 \\ 5 \\ 2 \\ 0 \end{pmatrix}$$

ahol $s, t \in \mathbb{R}$.

A végtelen sok megoldásból rögtön következik, hogy \underline{a}_1 , \underline{a}_2 , \underline{a}_3 , \underline{a}_4 lineárisan összefüggőek.

(b) Hány lineárisan független vektor választható ki az egyenlet bal oldalán álló vektorokból?

Megoldás. A Gauss elimináció végén zöld színnel jelölt egységmátrix oszlopainak megfelelően az első két

vektort egész biztos válaszhatjuk mint lineárisan független vektorokat:

$$\underline{a}_1 = \begin{pmatrix} 2\\1\\-1\\-7 \end{pmatrix}, \ \underline{a}_2 = \begin{pmatrix} -4\\-1\\-1\\-3 \end{pmatrix}.$$

(c) Adjuk meg a négy vektor által generált alteret!

 $\label{eq:Megoldás.} \begin{tabular}{ll} \textbf{Megoldás.} & \textit{Mivel a két lineárisan független vektor: $\underline{a}_1,\underline{a}_2$ előállítja a másik két vektort is, ezért \\ & span\{\underline{a}_1,\underline{a}_2,\underline{a}_3,\underline{a}_4\} = span\{\underline{a}_1,\underline{a}_2\} = \big\{\underline{v} \in \mathbb{R}^4 \big| \ \underline{v} = \lambda_1\underline{a}_1 + \lambda_2\underline{a}_2, \quad \lambda_1,\lambda_2 \in \mathbb{R} \big\}. \\ & vagyis a generált altér a \underline{a}_1 és \underline{a}_2 vektorok által kifeszített kétdimenziós \mathbb{R}^4-beli hipersík lesz. \\ \end{tabular}$

$$span\{\underline{a}_1,\underline{a}_2,\underline{a}_3,\underline{a}_4\} = span\{\underline{a}_1,\underline{a}_2\} = \{\underline{v} \in \mathbb{R}^4 | \underline{v} = \lambda_1\underline{a}_1 + \lambda_2\underline{a}_2, \ \lambda_1,\lambda_2 \in \mathbb{R}\}$$

Feladat 21. Tekintsük az $A = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$ alakú valós elemű mátrixok vektorterét:

$$V = \left\{ A = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}.$$

(a) Adjuk meg a vektortér egy bázisát! Adjuk meg az $\begin{vmatrix} a & b \\ c & 0 \end{vmatrix}$ "vektor" e bázisra vonatkozó koordinátamátrixát

Megoldás. Legyen $\underline{b}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\underline{b}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ és $\underline{b}_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Ezek lineárisan függetlenek, mert a vektortér nullvektora, vagyis a (2x2)-es nullmátřix csak a třiviális lineáris kombinációjukkal állítható elő. Továbbá generátorrendszert is alkotnak, mert a V vektortér összes vektorát előállítják. Tehát $\{\underline{b}_1,\underline{b}_2,\underline{b}_3\}$ bázis, mivel lineárisan független generátorrendszer.

 $Tehát \ egy \ tetszőleges \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \ mátrix \ felírható \ a \ fenti \ bázisvektorok \ egyértelmű \ lineáris \ kombinációjaként,$ amiből adódik a koordinátamátrix:

$$\begin{bmatrix} a & b \\ c & 0 \end{bmatrix} = a \cdot \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}}_{\underline{b}_1} + b \cdot \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}}_{\underline{b}_2} + c \cdot \underbrace{\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}}_{\underline{b}_3} = a\underline{b}_1 + b\underline{b}_2 + c\underline{b}_3 = \underbrace{\begin{pmatrix} a \\ b \\ c \end{pmatrix}}_{[\underline{b}_1,\underline{b}_2,\underline{b}_3]}$$
(2)

(b) Igaz-e, hogy a $B = \begin{bmatrix} 1 & e \\ \pi & 0 \end{bmatrix}$ mátrix az előző alpontban megadott bázisra vonatkoztatott koordinátamátrixa egy 3-dimenziós vektor?

Megoldás. Igaz:

$$B = \begin{bmatrix} 1 & e \\ \pi & 0 \end{bmatrix} = \begin{pmatrix} 1 \\ e \\ \pi \end{pmatrix}_{\left[\underline{v}_1, \underline{v}_2, \underline{v}_3\right]}$$

(c) (Lineáris) alteret alkot-e V-ben az $\begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix}$ alakú mátrixok halmaza? Ha altér, adjunk meg egy bázist! Hány dimenziós ez az altér?

Megoldás. Vizsgáljuk a zártságot: legyen $\lambda \in \mathbb{R}$ és $A = \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & e \\ f & 0 \end{bmatrix} \in W$ tetszőleges. Ekkor

$$A+\lambda B=\begin{bmatrix}0&b\\c&0\end{bmatrix}+\lambda\begin{bmatrix}0&e\\f&0\end{bmatrix}=\begin{bmatrix}0&b\\c&0\end{bmatrix}+\begin{bmatrix}0&\lambda e\\\lambda f&0\end{bmatrix}=\begin{bmatrix}0&b+\lambda e\\c+\lambda f&0\end{bmatrix}\in W.$$

Vagyis altere V-nek, mert zárt az összeadásra és a skalárral való szorzásra. Egy lehetséges bázisa pedig

 $\{\underline{b}_2,\underline{b}_3\}$, ahol a bázisvektorokat már a (2) egyenletben definiáltuk. Az altér (ami maga is egy vektortér) dimenziója pedig a bázisának elemszáma, azaz 2.

Feladat 22. Tekintsük a legfeljebb másodfokú polinomok terét:

$$P_2 = \{p(x) = ax^2 + bx + c \mid a, b, c \in \mathbb{R}.\}$$

Adjunk meg egy bázist ebben a vektortérben! Adott bázisra vonatkozó koordinátákhoz mely polinom tartozik? Adjuk meg P_2 dimenzióját!

Megoldás. A bázisvektoraink lehetnek például: $\underline{v}_1 = x^2$, $\underline{v}_2 = x$, $\underline{v}_3 = 1$, mert ezek lineárisan függetlenek (mivel az azonosan nulla polinomot csak triviális lineáris kombinációval állítják elő), és előállítják a vektortér tetszőleges p(x) elemét:

$$p(x) = a \cdot \underline{v}_1 + b \cdot \underline{v}_2 + c \cdot \underline{v}_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}_{[\underline{v}_1, \underline{v}_2, \underline{v}_3]}$$

Ámde választhatunk más bázisvektorokat is. Legyen pl. $\underline{w}_1 = x^2 + x + 2$, $\underline{w}_2 = x + 1$, $\underline{w}_3 = 1$. Ekkor:

$$p(x) = a(x^2+x+2) + (b-a)(x+1) + (c-b-a) = a \cdot \underline{w}_1 + (b-a) \cdot \underline{w}_2 + (c-b-a) \cdot \underline{w}_3 = \begin{pmatrix} a \\ b-a \\ c-b-a \end{pmatrix}_{[\underline{w}_1,\underline{w}_2,\underline{w}_3]}.$$

 P_2 dimenzióját a bázisainak elemszáma határozza meg: $\dim(P_2)=3$.

Feladat 23. Igazoljuk, hogy az \mathbb{R}^3 vektortér $\underline{v} = \begin{pmatrix} 0 \\ c \\ 3c \end{pmatrix}$, $c \in \mathbb{R}$ típusú vektorai a vektortér egy alterét alkotják! Mely vektorok feszítik ki az alteret? Írjuk fel a $\underline{w} = \begin{pmatrix} 0 \\ 8 \\ 24 \end{pmatrix}$ vektort az altér egy bázisában!

Megoldás. Az altér-jelöltünk:

$$L = \left\{ \underline{v} = \begin{pmatrix} 0 \\ c \\ 3c \end{pmatrix} \in \mathbb{R}^3 \mid c \in \mathbb{R} \right\}$$

Zártság:

$$\underline{v} + \lambda \underline{w} = \begin{pmatrix} 0 \\ c + \lambda d \\ 3c + 3\lambda d \end{pmatrix} = (c + \lambda d) \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \in L \text{ minden } \lambda \in \mathbb{R} \text{ \'es minden } \underline{v}, \underline{w} \in L \text{ eset\'en}.$$

 $\textit{Tehát L egy altér \mathbb{R}^3-ban. Mivel $L=\langle \begin{pmatrix} 0\\1\\3 \end{pmatrix} \rangle = span\Big\{ \begin{pmatrix} 0\\1\\3 \end{pmatrix} \Big\}, \textit{ ezért egy lehetséges bázisa:}$

$$\{\underline{b}\}, \ ahol \ \underline{b} = \begin{pmatrix} 0\\1\\3 \end{pmatrix}.$$

 $A \underline{w}$ koordinátamátrixos alakja a következőképpen adható meg:

$$\underline{w} = \begin{pmatrix} 0 \\ 8 \\ 24 \end{pmatrix} = 8 \cdot \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} = 8 \cdot \underline{b} = (8)_{[\underline{b}]}.$$

Látható, hogy a koordinátamátrix az egydimenziós L altér esetén egy egydimenziós vektor (azaz egy skalár) lesz.