User Manual for

QTL.gCIMapping

QTL genome-wide Composite Interval Mapping

(version 3.2)

Zhang Ya-Wen, Wen Yang-Jun, Wang Shi-Bo, Zhang Yuan-Ming (soyzhang@mail.hzau.edu.cn)

Last updated on November 10, 2019

Disclaimer: While extensive testing has been performed by Yuan-Ming Zhang's Lab (Statistical Genomics Lab) at Huazhong Agricultural University, the results are, in general, reliable, correct or appropriate. However, results are not guaranteed for any specific datasets. We strongly recommend that users validate the GCIM results with other software packages, such as Windows QTL Cartographer V2.5_011 (https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm) and QTL IciMapping V4.1 (http://www.isbreeding.net/software/?type=detail&id=18).

Download website:

https://cran.r-project.org/web/packages/QTL.gCIMapping/index.html

References

- 1 Wang Shi-Bo, Wen Yang-Jun, Ren Wen-Long, Ni Yuan-Li, Zhang Jin, Feng Jian-Ying, Zhang Yuan-Ming*. Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology. *Scientific Reports* 2016, 6: 29951.
- Wen Yang-Jun, Zhang Ya-Wen, Zhang Jin, Feng Jian-Ying, Jim M. Dunwell, Zhang Yuan-Ming*. An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F₂. *Briefings in Bioinformatics*, 2018, doi: 10.1093/bib/bby058
- 3 Zhang Ya-Wen, Jim M. Dunwell, Zhang Yuan-Ming*. QTL.gCIMapping.GUI v2.0: An R software for detecting small-effect and linked QTLs for quantitative traits in bi-parental segregation populations. Computational and Structural Biotechnology Journal, in revision

Quantitative Trait Loci

Funding

The works were supported by the National Natural Science Foundation of China (31571268, 31871242, 31701071 and U1602261), Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (Program No. 2014RC020), and State Key Laboratory of Cotton Biology Open Fund (CB2017B01 and CB2019B01).

INTRODUCTION

1.1 Why GCIM?

QTL.gCIMapping v3.2 (**QTL** Genome-wide Composite Interval Mapping) is an R package for multi-QTL mapping of quantitative traits in bi-parental segregation populations, including backcross (BC), doubled haploid (DH) lines, recombinant inbred lines (RIL), F₂, and immortalized F₂ (IF₂). QTL.gCIMapping v3.2 works well on the R environment on Windows, Linux (desktop) and MacOS.

1.2 Getting started

The software package QTL.gCIMapping v3.2 can be freely downloaded from https://cran.r-project.org/web/packages/QTL.gCIMapping/index.html, or request from the maintainer, Dr Yuan-Ming Zhang at Crop Information Center, College of Plant Science & Technology, Huazhong Agri Univ (soyzhang@mail.hzau.edu.cn).

1.2.1 One-Click online installation

On R environment and network connection, the command, install.packages(pkgs="QTL.gCIMapping") is used to directly install the software package QTL.gCIMapping v3.2.

1.2.2 Step-by-step offline installation

1.2.2.1 Install the add-on packages

First, users download twenty-seven R packages, including "cmprsk", "corpcor", "data.table", "doParallel", "Epi", "etm", "fdrtool", "foreach", "GeneN et", "glmnet", "iterators", "longitudinal", "magrittr", "MASS", "numDeriv", "openxlsx", "p arcor", "plyr", "ppls", "qtl", "Rcpp", "stringi", "stringr", "testthat", "utf8", "zip", "zoo" from CRAN, github (https://github.com/), or google search.

On the R environment, then, users select all the 27 packages and install them offline.

1.2.2.2 Install QTL.gCIMapping v3.2

On R GUI environment, users first select "Packages"—"Install package(s) from local files...", then find the software package QTL.gCIMapping v3.2 on user's desktop computer or mobile device, and launch QTL.gCIMapping v3.2.

1.2.3 Run QTL.gCIMapping v3.2

Once the software package QTL.gCIMapping v3.2 is installed, users may run it using two commands:

library(QTL.gCIMapping)

QTL.gCIMapping(***) (***: please see §2 Example)

If users re-use the software QTL.gCIMapping v3.2, users use the above two commands as well.

User Manual file Users can decompress the QTL.gCIMapping.GUI package and find the User Manual file (name: **Instruction.pdf**) in the folder of ".../QTL.gCIMapping.GUI/inst/doc".

2. Parameter settings

Parameter	Meaning	File format	Note	
file	File path & name in your computer, i.e., file="D:/Users/GCIM_Format_DH.csv"	*.csv; *.txt	Table 1	
fileFormat	Format for input file: GCIM (QTL.gCIMapping), ICIM (QTL IciMapping) and Cart (WinQTLCart)			
fileICIMcov	File path & name in your computer, i.e., fileICIMcov="D:/Users/GCIM_Cov.csv" or fileICIMcov=NULL	*.csv; *.txt (Covariate values: Row: individual; Column: covariate name)	Table 3	
Population	BC1 (F1×P1), BC2 (F1×P2), DH, RIL, F2, i.e., Population="BC1"			
Model	Random (random model) or Fixed (fixed model) for QTL effects, i.e., Model="Random"			
WalkSpeed	Walk speed for Genome-wide Scanning (centi-Morgan, cM), i.e., WalkSpeed=1			
CriLOD	Critical LOD scores for significant QTL. CriLOD=2.5: the critical LOD score for significant QTL is set at 2.5			
Likelihood	This parameter is only for F2 population, including restricted maximum likelihood (REML) and maximum likelihood (ML). Likelihood="REML" or Likelihood="ML"			
flagrqtl	This parameter is only for F2 population, flagrqtl ="FALSE" in the first running. If the other software detects only one QTL in a neighborhood but this software finds two linked QTLs (one with additive effect and another with dominant effect) in the region, let flagrqtl ="TRUE"			
DrawPlot	This parameter is for all the populations, including FALSE and TRUE. DrawPlot=FALSE indicates no figure output; DrawPlot=TRUE: the LOD score [or $-\log_{10}(P\text{-value})$] figure against genome position.			
Plotformat	*.jpeg, *.png, *.tiff and *.pdf. For example, Plotformat="jpeg" indicates the *.jpeg format of the figure file.			
Resolution	Low or High. Resolution="Low" indicates the low resolution of the figure file.			
Trait	Trait=1:3 indicates the analyses from the first trait to the third trait.			
dir	Save path in your computer,i.e.,"D:/Users"			

Example

The full codes

QTL.gCIMapping(file="D:/Users/GCIM_Format_DH.csv",fileFormat="GCIM",fileICIMcov=NULL,Population="DH",Model="Random",WalkSpeed=1,CriLOD=2.5,Likelihood="REML",flagrqtl="FALSE",DrawPlot="TRUE",PlotFormat="png",Resolution="Low",Trait=1:1,dir="D:/Users")

The reduced codes

QTL.gCIMapping(file="D:/Users/GCIM_Format_F2.csv",Population="F2",WalkSpeed=1,CriLOD=2.5,Trait=1,dir="D:/Users")

It should be noted that users must set "file", "Population", "WalkSpeed", "CriLOD", "Trait" and "dir", and the other eight parameters can be default in function, including fileFormat="GCIM"; fileICIMcov=NULL; Model="Random"; Likelihood="REML" and flagrqtl="FALSE" only for F2 population; DrawPlot=TRUE; Plotformat= "jpeg"; Resolution= "Low".

Dataset format

GCIM format for Dataset The first three columns, named "marker", "chr" and "pos", stand for marker name, chromosome and marker position (cM) on the chromosome, respectively. Among the remaining columns, each column lists all the genotypes of one individual or line, while the first row shows the name of the individual or line. For the genotypes of each marker, the coding criteria are shown as Table 1.

Table 1. Coding criteria for GCIM format

Genotype	Code	Meaning	
AA	A	Homozygous genotype (P ₁)	
Aa	Н	Heterozygous genotype (F ₁)	
aa	В	Homozygous genotype (P ₂)	
AA + Aa (Not aa)	D	Dominance to P ₁	
Aa + aa (Not AA)	С	Dominance to P ₂	
Missing	-	Missing or unclear genotype	

The genotypic, phenotypic and covariate datasets are located on the upper, middle, lower sections, and each covariate or trait is presented on one row. On each row, the first column is empty followed by "trait1", "real trait name", and "phenotypic values for all the individuals or lines". If there are multiple traits, these traits occupy multiple

lines. If there are covariates, the content lies below the trait dataset. The format is seen in Table 2. If there is no covariate, users should delete the last row in Table 2.

The format of ICIM dataset If users have the QTL IciMapping dataset, these files are also available in our software. Details can be found in the folder of ".../QTL.gCIMapping.GUI/inst/extdata", i.e., WheatDH_QTLIciMapping_Format.xlsx.

The format of WinQTLCart dataset If users have the WinQTLCart dataset, its file is also available in our software. Details can be found in the folder of ".../QTL.gCIMapping.GUI/inst/extdata", i.e., env1-jun3_WinQTLCart_Format.mcd.

Table 2. The GCIM format of the dataset

marker	chr	pos	DH6-10	DH6-101	DH6-102
RGA3(1)	1	0	В	-	В
wPt-6358	1	3.034	В	-	-
Hplc2	1	8.8291	A	A	В
wPt-9752	1	10.1452	A	-	-
abc156a	1	41.3408	A	A	В
:	:	:	:	:	:
gwm437	21	162.5218	A	В	-
gwm121	21	180.2878	A	В	-
wmc157	21	197.9196	A	В	A
*stm1actc	21	200.4216	-	-	-
	trait1	T19	75.33	105	96.33
	trait2	T191	74	105.68	97.16
	trait3	T192	75.37	104.67	95.55
	Covar1	CovarName	A	В	В

The format of ICIM covariate dataset If users use the ICIM dataset and there are covariates, users need to input a covariate file. In the file, the first column indicates individual name and the second column is the covariate information (Table 3). In Table 3, the covariate values are indicated by such as A, B and C.

Table 3. The covariate file format

Individual ID	Covariate	
DH6-10	A	
DH6-101	A	
DH6-102	A	
DH6-104	A	
DH6-164	В	
DH6-165	В	
DH6-166	С	
DH7-124	С	

3. Result

For BC1, BC2, DH and RIL populations, the **Results** file has ten columns, as shown below.

Trait: The trait name analyzed.

Chr: Chromosome, represented by an integer number.

Position (cM): The QTL position (cM) on the chromosome.

Additive Effect: Additive effect for significant QTL.

LOD: LOD score for significant QTL.

Left_Marker: Left flanking marker name for significant QTL.

Right_Marker: Right flanking marker name for significant QTL.

Var_Genet: Genetic variance for each significant QTL.

r² (%): Proportion of phenotypic variance explained by single QTL.

Var_Error: residual variance for the full model.

Var_Phen (total): Phenotypic variance in the analyzed population.

For F_2 population, the **Results** file has eleven columns. Trait, Chr, Position (cM), Left_Marker, Right_Marker, Var_Genet, LOD, r^2 (%), Var_Error and Var_phen are same as those in the above populations. In F_2 population, QTL effects include additive (**Effect.a**) and dominant (**Effect.d**) effects