

Next consider the volume integrated salt balance

Most important terms are

- River flow & 5 removes salt (- ū 5)
- (1) exchange flow x stradification brings Balt in (-u's')

In steady state we can use the salt flux through the mouth $O = -\overline{u}\overline{s} - \overline{u}'\overline{s}' \quad (*)$ to come up with an equation for $\overline{s}(x)$.

... After some algebra we can write (*) as

(10) $L_{E}^{3} = \sum_{x}^{3} - \sum_{z=0}^{3} = 0$ Where $\sum_{z=0}^{3} = \sqrt{s_{in}}$ and $L_{E} = 0.014 c \left(\frac{u}{c}\right)^{-1/3} H^{2}$

and $C = \sqrt{gp Socn H} \sim 2 \times the fastest possible internal wave, with <math display="block">\frac{\Delta P}{P_0} = B Join$

And LE is the scale of the length of the salt intrusion.

Airon Socient

Solving (.), guess
$$\Sigma = \alpha \times^n$$

 $\Sigma_x = n\alpha \times^{n-1}$

In order for the solution to work for all x

we require $3n-3=n \Rightarrow n=\frac{3}{2}$ $\Rightarrow \sum = \alpha \times \frac{3}{2}$

Scaling

LE ~ $C(\frac{u}{c})^{-\frac{1}{3}}$ H

K

, C = Vg & Soontt

DudLE = shorter for more mixing (~ 1)

- Shorter for more river flow

but it is stiff LE 2 Qu

Ue ~ gp Sx H Ht ~ gp Sount H = CT HL

LE K

So $U_{E} \sim C\left(\frac{\bar{u}}{c}\right)^{\frac{1}{3}}$

 $n \left[\frac{u_{\epsilon}}{c} - \left(\frac{\bar{u}}{c} \right)^{\frac{1}{3}} \right]$

-weak dependence on Qr -no de pendence on K (Why?)

Similarly we find

$$\frac{\left[S'\right]}{S_{\delta CN}} \sim \frac{M_E}{L_E} \frac{H^2}{K} \sim \frac{C^2}{L_E^2} \left(\frac{H^2}{K}\right)^2$$

again: independent of K