# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

# Липецкий Государственный Технический Университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

# Лабораторная работа по основам электроники и схемотехники №2 "Полупроводниковые элементы"

| Студент      |                 | Станиславчук С. М. |
|--------------|-----------------|--------------------|
|              | (подпись, дата) | Группа АС-21-1     |
|              |                 |                    |
|              |                 |                    |
|              |                 |                    |
| Руководитель |                 | Болдырихин О. В.   |
|              | (подпись, дата) |                    |
|              |                 | Доцент, к.т.н      |

#### Цель работы

Цель работы — изучение свойств и характеристик основных полупроводниковых элементов: диода и транзистора. Исследование режимов работы транзистора, построение и исследование комбинационных и последовательностных схем из транзисторов.

#### Задание кафедры

Вариант 41, ИЛИ-НЕ, NJFET, MR751

Задание 1. Исследование односторонней проводимости рп-перехода.

Создать схему последовательного соединения диода и резистора и исследовать ее с помощью осциллографа.

Задание 2. Построение вольтамперной характеристики диода.

Создать схему для построения вольтамперной характеристики диода. Произвести измерения силы тока и напряжения. Построить вольтамперную характеристику диода. Рассчитать статическое и динамическое сопротивление диода в зависимости от напряжения. Результаты оформить в виде таблицы и графиков.

Задание 3. Исследование режимов работы транзистора.

Создать схему включения транзистора с общим эмиттером (истоком) с резисторами в цепях базы (затвора) и коллектора (стока).

Исследовать работу схемы с помощью осциллографа в линейном режиме и в режимах насыщения и отсечки.

Задание 4. Построение характеристик транзистора.

Создать схему для построения характеристик транзистора.

Произвести измерения и построить характеристики транзистора: входную (для биполярного транзистора -  $I_{E}(U_{E9})$  при нескольких фиксированных значениях  $U_{K9}$ , выходную (для биполярного транзистора -  $I_{C}(U_{C0})$  при нескольких фиксированных значениях  $U_{E9}$ , полевого -  $I_{C}(U_{C0})$  при нескольких фиксированных значениях  $U_{30}$  и передаточную (для биполярного транзистора -  $I_{C}(U_{E9})$  при нескольких фиксированных значениях  $U_{C0}$ , полевого -  $I_{C}(U_{C0})$  при нескольких фиксированных значениях  $I_{C0}$ .

Результаты оформить в виде таблиц и графиков.

Задание 5. Создание логического элемента из транзисторов.

Создать из транзисторов схему заданного логического элемента. Исследовать работу схемы с помощью осциллографа.

Задание 6. Создание триггера из транзисторов.

Создать из двух транзисторов схему триггера. Исследовать его работу. Составить таблицу истинности.

## Ход работы

#### 1. Задание 1

1.1. Схема для исследования односторонней проводимости pn-перехода Схема для исследования односторонней проводимости pn-перехода представлена на рисунке 1.



Рисунок 1 — Схема для первого задания

### 1.2. Осциллограмма

Осциллограмма представлена на рисунке 2.



Рисунок 2 — Осциллограмма

В проводящий полупериод диод обладает малым сопротивлением и пропускает ток, во второй полупериод ток диод обладает большим сопротивлением и ток через сопротивление не течет.

2.1. Схема для построения вольтамперной характеристики диода

Схема для построения вольтамперной характеристики диода представлена на рисунке 3.



Рисунок 3 — Схема для второго задания

2.2. Таблица с результатами измерений силы тока и напряжения, расчета статического и динамического сопротивлений диода.

Результаты измерений представлены в таблице 1.

Таблица 1 — Результаты измерений

| Время от начала процесса t, с | Напряжение<br>на диоде U, B | Сила тока в<br>цепи I, A | Статическое сопротивлени е диода RS, Ом | Динамическое сопротивлени е диода Rd, Ом |
|-------------------------------|-----------------------------|--------------------------|-----------------------------------------|------------------------------------------|
| 0,0                           | 0,00                        | 0,0000                   | -                                       | -                                        |
| 0,8                           | 0,08                        | 0,0000                   | -                                       | -                                        |
| 1,6                           | 0,17                        | 0,0000                   | -                                       | -                                        |
| 2,4                           | 0,25                        | 0,0000                   | -                                       | -                                        |

| 3,2  | 0,33 | 0,0000 | -        | -        |
|------|------|--------|----------|----------|
| 4,0  | 0,41 | 0,0000 | -        | -        |
| 4,8  | 0,48 | 0,0000 | -        | -        |
| 5,6  | 0,55 | 0,0000 | -        | -        |
| 6,4  | 0,62 | 0,0000 | -        | -        |
| 7,2  | 0,68 | 0,0068 | 100,0000 | 100,0000 |
| 8,0  | 0,74 | 0,0300 | 24,6667  | 2,5862   |
| 8,8  | 0,8  | 0,1000 | 8,0000   | 0,8571   |
| 9,6  | 0,84 | 0,2500 | 3,3600   | 0,2667   |
| 10,4 | 0,89 | 0,5100 | 1,7451   | 0,1923   |
| 11,2 | 0,92 | 0,8300 | 1,1084   | 0,0938   |
| 12,0 | 0,95 | 1,1600 | 0,8190   | 0,0909   |
| 12,8 | 0,97 | 1,4500 | 0,6690   | 0,0690   |
| 13,6 | 0,99 | 1,6700 | 0,5928   | 0,0909   |
| 14,4 | 1,00 | 1,8000 | 0,5556   | 0,0769   |
| 15,2 | 1,00 | 1,8300 | 0,5464   | 0,0000   |
| 16,0 | 0,99 | 1,7500 | 0,5657   | 0,1250   |
| 16,8 | 0,98 | 1,5700 | 0,6242   | 0,0556   |
| 17,6 | 0,96 | 1,3100 | 0,7328   | 0,0769   |
| 18,4 | 0,94 | 1,0000 | 0,9400   | 0,0645   |
| 19,2 | 0,90 | 0,6600 | 1,3636   | 0,1176   |
| 20,0 | 0,87 | 0,3700 | 2,3514   | 0,1034   |

# 2.3. Графики вольтамперной характеристики, статического и динамического сопротивлений диода

График вольтамперной характеристики диода представлен на рисунке



Рисунок 4 — Вольтамперная характеристика диода

Графики зависимости статического и динамического сопротивлений диода от напряжения представлены на рисунке 5.



Рисунок 5 — Статическое и динамическое сопротивления диода

#### 3.1. Схема для исследования режимов работы транзистора

Схема включения транзистора с общим эмиттером (истоком) с резисторами в цепях базы (затвора) и коллектора (стока) представлена на рисунке 6.



Рисунок 6 — Схема для третьего задания

#### 3.2. Осциллограмма для линейного режима

Осциллограмма для исследования транзистора в линейном режиме представлена на рисунке 7.



Рисунок 7 — Осциллограмма для транзистора в линейном режиме

#### 3.3. Осциллограмма для режимов насыщения и отсечки

Осциллограмма для исследования транзистора в режимах насыщения и отсечки представлена на рисунке 8.



Рисунок 8 — Осциллограмма для транзистора в режимах насыщения и отсечки

## 4.1. Схема для построения характеристик транзистора

Схема для построения характеристик транзистора представлена на рисунке 9.



Рисунок 9 — Схема для четвертого задания

# 4.2. Таблица с результатами измерений

Результаты измерений ВАХ представлены в таблице 2.

Таблица 2 — Результаты измерений ВАХ

| Передаточная ВАХ |       | Выходная ВАХ |     |        |       |      |      |
|------------------|-------|--------------|-----|--------|-------|------|------|
|                  | Іс, м | кА           |     |        | Іс, м | кА   |      |
| Uси, B           | 1,00  | 1,5          | 2,0 | Uзи, B | 0,8   | 0,9  | 1    |
| Uзи, B           |       |              |     | Uси, B |       |      |      |
| 50               | 310   | 390          | 420 | 0,4    | 0,21  | 0,21 | 0,23 |
| 100              | 320   | 405          | 440 | 0,6    | 0,3   | 0,31 | 0,32 |
| 150              | 330   | 420          | 460 | 0,8    | 0,38  | 0,4  | 0,42 |
| 200              | 340   | 435          | 480 | 1      | 0,46  | 0,48 | 0,5  |
| 250              | 350   | 450          | 500 | 1,2    | 0,53  | 0,55 | 0,58 |
| 300              | 360   | 465          | 520 | 1,4    | 0,59  | 0,62 | 0,64 |
| 350              | 370   | 480          | 540 | 1,6    | 0,64  | 0,67 | 0,7  |
| 400              | 380   | 495          | 560 | 1,8    | 0,68  | 0,72 | 0,76 |
| 450              | 390   | 510          | 580 | 2      | 0,72  | 0,76 | 0,8  |
| 500              | 400   | 525          | 600 | 2,2    | 0,75  | 0,79 | 0,84 |

# 4.3. Графики выходной и передаточной характеристик График передаточной ВАХ представлен на рисунке 10.



 $\label{eq:2.2} \mbox{Рисунок 10} \mbox{$-$\sc\sc\sc} \mbox{График передаточной ВАХ}$  График выходной ВАХ представлен на рисунке 11.



### 5.1. Схема заданного логического элемента

Схема логического элемента «ИЛИ-НЕ» представлена на рисунке 12.



Рисунок 12 — Схема для пятого задания

# 5.2. Осциллограмма работы схема

Осциллограмма работы схемы представлена на рисунке 13.



Рисунок 13 — Осциллограмма работы схемы

### Задание 6

### 6.1. Схема триггера

Схема триггера представлена на рисунке 14.



Рисунок 14 — Схема для шестого задания

### 6.2. Таблица истинности триггера

Результаты исследования для задания 6 представлены в таблице 3.

Таблица 3 — Таблица истинности триггера

| IN1 | IN2 | OUT1          | OUT2          |
|-----|-----|---------------|---------------|
| 0   | 0   | Хранение бита | Хранение бита |
| 0   | 1   | 1             | 0             |
| 1   | 0   | 0             | 1             |
| 1   | 1   | Недопустимо   | Недопустимо   |

# 6.3. Схема конечного автомата (диаграмма состояний).

Диаграмма состояний представлена на рисунке 15.



Рисунок 15 – Диаграмма состояний триггера

# Вывод

По итогу выполнения лабораторной работы, ознакомился с принципами работы таких полупроводниковых элементов как диод и транзистор, а также создал триггер.