Sample Lab Observation Note Preparation

LAB NO.: Date:

Title: STRUCTURED QUERY LANGUAGE

1. Implement the Bank Database and execute the given queries/updates

Bank Database Schema:

- ACCOUNT(ACCOUNT NUMBER, BRANCH NAME, BALANCE)
- BRANCH (BRANCH NAME, BRANCH CITY, ASSETS)
- CUSTOMER (CUSTOMER_NAME CUSTOMER_STREET, CUSTOMER_CITY)
- LOAN (LOAN_NUMBER, BRANCH_NAME, AMOUNT)
- DEPOSITOR(CUSTOMER_NAME, ACCOUNT_NUMBER)
- BORROWER(CUSTOMER_NAME, LOAN_NUMBER)

• Creating Tables

CREATE TABLE BRANCH (BRANCH_NAME VARCHAR (15) PRIMARY KEY, BRANCH_CITY VARCAHAR (20), ASSETS NUMBER (10));

CREATE TABLE ACCOUNT (ACCOUNT_NUMBER NUMBER (10) PRIMARY KEY, BRANCH_NAME VARCHAR (15) REFERENCES BRANCH, BALANCE NUMBER (8));

CREATE TABLE CUSTOMER
(CUSTOMER_NAME VARCHAR (20) PRIMARY KEY,
CUSTOMER_STREETVARCHAR (15),
CUSTOMER_CITY VARCHAR (10));

CREATE TABLE LOAN (LOAN_NUMBER NUMBER (10) PRIMARY KEY,

BRANCH_NAME VARCHAR (15)REFERENCES BRANCH, AMOUNT NUMBER (10))

CREATE TABLE BORROWER

(CUSTOMER_NAME VARCHAR(2) REFERENCES CUSTOMER, LOAN_NUMBER NUMBER(10) REFERENCES LOAN, PRIMARY KEY(CUSTOMER_NAME,LOAN_NUMBER));

Queries/Update on Bank Database (Questions followed by SQL statements)

Retrieving records from a table:

- 1. list the information of all account holders (name and account number). Select * from depositor.
- 2. List all branch names and their assets SELECT BRANCH_NAME, ASSETS FROM BRANCH;
- 3. List all accounts of Brooklyn branch SELECT * FROM ACCOUNT WHERE BRANCH NAME= 'BROOKLYN';
- 4. List all loans with amount > 1000. SELECT * FROM LOAN WHERE AMOUNT>1000;

Updating records from a table:

4. Change the assets of Perryridge branch to 340000000. UPDATE BRANCH SET ASSETS=340000000 WHERE BRANCH_NAME='Perryridge';

LAB NO.: 1 Date:

INTRODUCTION TO SQL

Objectives:

In this lab, student will be able to:

• Understand the working of DDL/DML commands.

SQL Statements can be categorized as -

DDL (Data definition language): Are used to define database structure or schema.

DML (Data manipulation language): Are used to change or alter data with the database or schema.

DCL (Data Control Language): Are used to control access or privileges.

TCL (Transaction Control Language): Are used to manage transactions in the database.

Basic Data Types used in SQL:

- CHARACTER [(length)] or CHAR [(length)],
- VARCHAR (length)
- BOOLEAN
- SMALLINT
- INTEGER or INT
- DECIMAL [(p[,s])] or DEC [(p[,s])]
- NUMERIC [(p[,s])]
- REAL
- FLOAT(p)
- DOUBLE PRECISION
- DATE
- TIME
- TIMESTAMP
- CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR LARGE OBJECT [(length)]
- BLOB [(length)] or BINARY LARGE OBJECT [(length)]

DDL COMMANDS:

1. CREATION OF TABLE:

SYNTAX:

create table<tablename>(column_name1 datatype(<size>),column_name2 datatype(<size>) ...);

EXAMPLE:

SQL>

```
create table STUDENT (
reg_no number (5),
stu_name varchar(20),
stu_age number(5),
stu_ dob date,
subject1_marks number (4,2),
subject2_marks number(4,2),
subject3_marks number(4,1));
SQL>insert into STUDENT values (101, 'AAA',16, '03-jul-88',80,90,98);
```

2. Modifying the structure of tables

a) Add new columns

Syntax:

Alter table <tablename>add (<new col><datatype (size),<newcol>datatype(size));

Ex: Add a new column 'Gender' to student table.

alter table student add(Gender char (5));

3. Dropping a column from a table

Syntax: Alter table <tablename> drop column <col>;

Ex: To drop a column 'Gender' from student table.

Alter table student drop column Gender;

4. Modifying existing columns

Syntax: Alter table <tablename> modify (<col><newdatatype>(<newsize>));

Ex: To modify the datatype of stu_age

Alter table student **modify** (stu_age number(3));

5. Renaming the tables

Syntax:

Rename <oldtable> to <new table>;

Ex: Rename student to students;

6. Truncate the table

Syntax: Trunc table <tablename>;

Ex: Trunc table students;

7. Delete the table structure

Syntax: Drop table <tablename>;

Ex: drop table student;

DML commands (ADDITIONAL EXAMPLES):

1. Selecting the information from table(s)

Syntax: Select col1,col2,col3,....., coln from <table_name> where < condition > **Ex:**

- a) List all the students
 - Select * from student:
- b) List age of all students with column aliased as 'student_age' rather stu_age Select stu_age student_age from student;
- c) Find the sum of all three subject marks and name it as tot_marks.

 Select subject1_marks + subject2_marks + subject3_marks tot_marks from student.

2. Inserting Data into Tables:

Syntax: Insert into <tablename> (<col1>,<col2>) values (<exp>,<exp>);

Ex: insert into STUDENT(reg no, stu name) values (102, 'KRISH');

3. Delete operations

a) Removal of specified row/s

Syntax:Delete from <tablename> where <condition>;

Ex: Delete from STUDENT where reg_no=102;

b) Remove all rows

Syntax: Delete from <tablename>;

Ex: Delete from STUDENT;

4. Updating the contents of a table

a) Updating all rows

Syntax:Update <tablename> set <col>=<exp>, <col>=<exp>;

Ex: Update STUDENT set stu name='MANAV';

b) Updating selected records

Syntax:Update <tablename> set <col>=<exp>,<col>=<exp>where <condition>;

Ex: Update STUDENT set stu name='YADAV' where reg no=101;

LAB EXERCISES:

- 1. Create a table employee with (emp_no, emp_name, emp_address)
- 2. Insert five employees information.
- 3. Display names of all employees.
- 4. Display all the employees from 'MANIPAL'.
- 5. Add a column named salary to employee table.
- 6. Assign the salary for all employees.
- 7. View the structure of the table employee using describe.
- 8. Delete all the employees from 'MANGALORE'
- 9. Rename employee as employee1.
- 10. Drop the table employee1.