PMATH 333: Intro to Real Analysis Final Summary

Instructor Benjamin Passer I⁴TEXer Iris Jiang Fall 2019

Some Thoughts

The course starts from generating the real line, using the idea of Dedekind cut. Then it introduces some basic properties about \mathbb{R} , e.g. boundedness, supremum/infimum, and then it introduces sequence and series, (limit points, convergence, completeness). And then move to functions on \mathbb{R} , continuity, differentiability, etc. Note that up until this point, we have two ways to talk about continuity: epsilon-delta definition, and sequence.

The last half is a more general application on \mathbb{R}^n . Starting from topology, we now can also discuss continuity using the idea of topology, which becomes more abstract. Then it introduces the properties of functions on \mathbb{R}^n , pointwise/uniform continuity. And the idea of pointwise/uniform convergence of functions.

1 Named Theorems PreMid

Theorem 1.1. Direct Comparison Test

Suppose $a_k, b_k \in \mathbb{R}$ with $0 \le a_k \le b_k$ for all $k \in \mathbb{Z}$. Then

$$\sum_{k=1}^{\infty} b_k \text{ converge} \Rightarrow \sum_{k=1}^{\infty} a_k \text{ converges}$$

Theorem 1.2. Squeeze Theorem

Let $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, and $(x_n)_{n=1}^{\infty}$ be \mathbb{R} -sequence. Suppose $a_n \leq x_n \leq b_n$ for all n. If $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ converge to the same limit L, then $x_n \to L$ as well

Theorem 1.3. Bolzano-Weierstrass Theorem

Suppose $(\vec{x}_n)_{n=1}^{\infty}$ is a <u>bounded</u> \mathbb{R} -sequence. Then there exists a convergent <u>subsequence</u> $(\vec{x}_{n_k})_{k=1}^{\infty}$

Theorem 1.4. Alternating Series Test

Suppose $(a_k)_{k=1}^{\infty}$ is an \mathbb{R} -sequence with

- $a_k \ge 0$ for all k
- $a_1 \ge a_2 \ge a_3 \ge \cdots$
- $\bullet \lim_{k \to \infty} a_k = 0$

Then the <u>alternating series</u> $\sum_{k=1}^{\infty} (-1)^k a_k$ converges

Theorem 1.5. Rolle's Theorem

Suppose $a, b \in \mathbb{R}$ with a < b. Suppose $g : [a, b] \to \mathbb{R}$ s.t.

- g is differentiable at every $x \in (a, b)$
- \bullet g is continuous at a and b
- $\bullet \ g(a) = g(b)$

Then there is some $c \in (a, b)$ with g'(c) = 0

Theorem 1.6. Mean Value Theorem

Let $a, b \in \mathbb{R}$ with a < b, suppose $f : [a, b] \to \mathbb{R}$ is s.t.

- f is differentiable at every $x \in (a, b)$ and
- \bullet f is continuous at a and b

Then there exists some $c \in (a, b)$ with $f'(c) = \frac{f(b) - f(a)}{b - a}$

Theorem 1.7. Extreme Value Theorem

Let $a, b \in \mathbb{R}$ with $a \leq b$. Suppose $f : [a, b] \to \mathbb{R}$ is continuous at every $x \in [a, b]$. Then the range of f, $\text{Ran}(f) = \{f(x) : x \in [a, b]\}$ is bounded and there is a maximum/minimum value.

Theorem 1.8. Intermediate Value Theorem

Let $a, b \in \mathbb{R}$ and $a \leq b$. Suppose $f : [a, b] \to \mathbb{R}$ is continuous everywhere. If y is between f(a) and f(b), then there exists some $c \in [a, b]$ with f(c) = y

2 Continuity

Definition 2.1. Limit point and Convergence in \mathbb{R}^n

Let $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}^m$, $\vec{\alpha} \in \mathbb{R}^n$, $\vec{L} \in \mathbb{R}^m$. Then $\lim_{\vec{x} \to \vec{\alpha}} f(\vec{x}) = \vec{L}$ means:

- 1. $\vec{\alpha}$ is a limit point of X
- 2. For any $\epsilon > 0$, there exists some $\delta > 0$, such that for all $x \in X$ with $0 < ||\vec{x} \vec{\alpha}|| < \delta$, then $||f(\vec{x}) \vec{L}|| < \epsilon$

Or equivalently,

- 1. There exists some $(X\setminus\{\vec{\alpha}\})$ -sequence $(\vec{x}_k)_{k=1}^{\infty}$ with $\lim_{k\to\infty}\vec{x}_k=\vec{\alpha}$
- 2. For every $(X \setminus \{\vec{\alpha}\})$ -sequence $(\vec{x}_k)_{k=1}^{\infty}$ with $\lim_{k \to \infty} \vec{x}_k = \vec{\alpha}$, it follows $\lim_{k \to \infty} f(\vec{x}) = \vec{L}$

Definition 2.2. Continuity on \mathbb{R}^n

Let $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}^n$, $\vec{x} \in X$

- If $\vec{x} \in X \setminus \text{Lim}(X)$, we say f is continuous at \vec{x} automatically
- If $\vec{x} \in (X \cap \text{Lim}(X))$, we say : f is continuous at $\vec{x} \iff \lim_{\vec{y} \to \vec{x}} f(\vec{y}) = f(\vec{x})$

Theorem 2.1. Let $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}^n$, $\vec{x} \in X$. Then

$$\begin{array}{ll} f \text{ is } \underline{\text{continous}} \text{ at } \vec{x} & \Longleftrightarrow & \text{For any } \epsilon > 0 \text{, there exists some } \delta > 0 \text{, such that} \\ & \vec{y} \in X, ||\vec{x} - \vec{y}|| < \delta \Rightarrow ||f(\vec{x}) - f(\vec{y})|| < \epsilon \\ & \Longleftrightarrow & \text{For } \underline{\text{any }} X\text{-sequnce } (\vec{x}_k)_{k=1}^\infty \text{ which converges to } \vec{x}, \\ & (f(\vec{x}_k))_{k=1}^\infty \text{ converges to } f(\vec{x}) \end{array}$$

Definition 2.3. Uniformly Continuous

Let $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}^m$. Then f is uniformly continuous on X is for any $\epsilon > 0$, there exists a $\delta > 0$, such that for $\underline{\mathrm{ALL}}\ \vec{x}, \vec{y} \in X$ with $||\vec{x} - \vec{y}|| < \delta$, it follows $||f(\vec{x}) - f(\vec{y})|| < \epsilon$

Theorem 2.2. Let $X \subseteq \mathbb{R}^n$ and $f: X \to \mathbb{R}^m$. Then

f is uniformly continuous on
$$X\iff$$
 For any $\epsilon>0$, there exists $\delta>0$, such that for all $\vec{x},\vec{y}\in X$ with $||\vec{x}-\vec{y}||<\delta$, we have $||f(\vec{x})-f(\vec{y})||<\epsilon$ \iff For all X -sequence $(\vec{x}_k)_{k=1}^\infty$ and $(\vec{y}_k)_{k=1}^\infty$ with $\lim_{k\to\infty}||\vec{x}_k-\vec{y}_k||=0$, it holds that $\lim_{k\to\infty}||f(\vec{x}_k)-f(\vec{y}_k)||=0$

Theorem 2.3. Let $X \subseteq \mathbb{R}^n$ and $f: X \to \mathbb{R}^m$, assume f is uniformly continuous on X. For any limit point $\vec{\alpha}$ of X, $\lim_{\vec{x} \to \vec{\alpha}} f(\vec{x})$ exists in \mathbb{R}^m

3 Topology

Definition 3.1. Open Ball

Let $X \in \mathbb{R}^n$ and r > 0, $B_r(\vec{x}) = \{\vec{y} \in \mathbb{R}^n : ||\vec{x} - \vec{y}|| < r\}$ is the <u>open ball</u> of radius r around \vec{x}

Definition 3.2. Openness

Let $X \subseteq \mathbb{R}^n$, then X is open if for every $\vec{x} \in X$, there **exists** some $\epsilon > 0$ such that $B_{\epsilon}(\vec{x}) \subseteq X$

Theorem 3.1. Suppose $\mathcal{O}_1, ..., \mathcal{O}_k \subseteq \mathbb{R}^n$ are finitely many open sets. Then $\bigcap_{j=1}^k \mathcal{O}_j$ is open

Theorem 3.2. Let Λ be an index set of any size. If $\mathcal{O}_{\lambda} \subseteq \mathbb{R}^n$ is open for each $\lambda \subseteq \Lambda$, then $\bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ is open

Definition 3.3. Limit Points

Let $X \in \mathbb{R}^n$, $\vec{\alpha} \in \mathbb{R}^n$, then $\vec{\alpha}$ is called a limit point of X is for every $\epsilon > 0$, there exists some $\vec{x} \in X$ with $0 < ||\vec{\alpha} - \vec{x}|| < \epsilon$

Or equivalently, there exists a $(X \setminus \vec{\alpha})$ -sequence $(\vec{x}_k)_{k=1}^{\infty}$ with $\lim_{k \to \infty} \vec{x}_k = \vec{\alpha}$

Definition 3.4. Closeness

A set $X \subseteq \mathbb{R}^n$ is called closed if every limit point of X is a member of X. (i.e. $\operatorname{Lim}(X) \subseteq X$)

Theorem 3.3. Let $X \subseteq \mathbb{R}^m$

$$X$$
 is closed \iff $R^n \backslash X$ is open X is open \iff $R^n \backslash X$ is closed

Corollary.

- If $C_1, ..., C_k \subseteq \mathbb{R}^n$ are <u>finitely many</u> closed sets, then $\bigcup_{i=1}^k C_j$ is closed
- If $\{C_{\lambda} : \lambda \in \Lambda\}$ is <u>any</u> collection of closed sets $C_{\lambda} \subseteq \mathbb{R}^n$, then $\bigcap_{\lambda \in \Lambda} C_{\lambda}$ is closed
- If $X \subseteq \mathbb{R}^n$, then there exists a **smallest** closed set \mathcal{C} with $X \subseteq \mathcal{C}$. We denote $\mathcal{C} = \overline{X}$ and call it the **closure** of X

Corollary. $\overline{X} = X \cup Lim(X) = \{\vec{\alpha} \in \mathbb{R}^n : \text{ there exists a converget } X \text{-sequence with limit } \vec{\alpha}\}$

Remark. 3 expressions of \overline{X} :

- The smallest closed set containing X
- $X \cup Lim(X)$
- For every convergent X-sequence, the limit is in \overline{X}

Definition 3.5. Preimage

If $f: X \to Y$ and $B \subseteq Y$, then the <u>preimage</u> is $f^{-1}(B) = \{x \in X : f(x) \in B\}$

Corollary. If $X \subseteq \mathbb{R}^n$, then there exists a largest open subset V of X, which we call the *interior* of X and denote as X°

$$X^{\circ} = \bigcup \{W : W \text{ open and } W \subseteq X\}$$

Theorem 3.4. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and let $\vec{x} \in \mathbb{R}^n$, then

$$f$$
 is continous at $\vec{x} \iff$ For every open set $\mathcal{O} \subseteq \mathbb{R}^m$ which includes $f(\vec{x})$, \vec{x} is an interior point of $f^{-1}(\mathcal{O})$

Corollary. Let $f: \mathbb{R}^n \to \mathbb{R}^m$. Then f is continuous on \mathbb{R}^n if and only if for every open set $\mathcal{O} \subseteq \mathbb{R}^m$, $f^{-1}(\mathcal{O})$ is open.

Definition 3.6. Relative Topology

Let $X \subseteq \mathbb{R}^n$ and $Y \subseteq X$

- 1. Y is relatively open in X if $X = X \cap \mathcal{O}$ for some open set $\mathcal{O} \subseteq \mathbb{R}^n$
- 2. Y is relatively closed in X if $X = X \cap \mathcal{C}$ for some closed set $\mathcal{C} \subseteq \mathbb{R}^n$

Theorem 3.5. Let $X \subseteq \mathbb{R}^n$

- \bullet The union of any relatively open subsets of X is relatively open in X
- \bullet The intersection of finitely many open subsets of X is relatively open in X
- If $Y \subseteq X$, then there is a <u>largest</u> subset of Y which is relatively open in X. This is called the relative interior of \overline{Y}

Theorem 3.6. Let $\emptyset \neq X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}^n$. Then

$$f$$
 is continous on $X \iff$ For every open $\mathcal{O} \subseteq \mathbb{R}^m$, $f^{-1}(\mathcal{O})$ is relatively open in X \iff For every closed $\mathcal{C} \subseteq \mathbb{R}^m$, $f^{-1}(\mathcal{C})$ is relatively closed in X

Definition 3.7. Open cover

Let $X \subseteq \mathbb{R}^n$ and let $C = \{\mathcal{O}_{\lambda} : \lambda \in \Lambda\}$ be a collection of subsets of \mathbb{R}^n . Then C is called an open cover of X is

- 1. Each \mathcal{O}_{λ} is open
- $2. \ X \subseteq \bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda} = \bigcup C$

Definition 3.8. Subcover

Let $X \subseteq \mathbb{R}^n$ and let C be an open cover of X. A <u>subcover</u> is a subset $S \subseteq C$ which is still an open cover of X

In particular, a finite subcover is a subcover S which contains only finitely many sets

Definition 3.9. Compact

A set $X \subseteq \mathbb{R}^n$ is called <u>compact</u> if every open cover of X has a finite subcover If $\{\mathcal{O}_{\lambda} : \lambda \in \Lambda\}$ is a collection of open sets such that $X \subseteq \bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$, then there exists $m \in \mathbb{N}^+$ and $\lambda_1, ..., \lambda_m \in \Lambda$ with $X \subseteq (\mathcal{O}_{\lambda_1} \cup \cdots \mathcal{O}_{\lambda_m})$

Lemma. Let $a, b \in \mathbb{R}$ with a < b. Then [a, b] is compact

Theorem 3.7. Extreme Value Theorem

If $X \subseteq \mathbb{R}^n$ is compact and $f: X \to \mathbb{R}^n$ is continuous, then f(X) is compact

Lemma. Let $X \subseteq \mathbb{R}^n$. If X is compact and Y is a <u>closed</u> subset of X, then Y is compact

Lemma. If $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ are compact, then $A \times B \subseteq \mathbb{R}^{n+m}$ is compact

Theorem 3.8. Heine-Borel Theorem

X is compact $\iff X$ is closed and bounded

Theorem 3.9. If $X \subseteq \mathbb{R}^n$ is compact and $f: X \to \mathbb{R}^m$ is continuous, then f is uniformly continuous

Definition 3.10. Separation

Let $X \subseteq \mathbb{R}^n$. A separation of X is a choice of two subsets A and B such that

- $A \neq \emptyset \neq B$
- \bullet $A \cap B = \emptyset$
- \bullet $A \cup B = X$
- Both A and B are relatively open in X

Definition 3.11. Connected and Disconnected

Let $X \subseteq \mathbb{R}^n$. If there exists a separation of X, then X is called <u>disconnected</u>. Otherwise, we say X is connected.

Theorem 3.10. If $X \subseteq \mathbb{R}^n$ is path connected, then X is connected

Remark. There exist connected sets which are NOT path connected

Theorem 3.11. Let $X \subseteq \mathbb{R}^n$, then

X is <u>disconnected</u> \iff There exists a continuous function $f: X \to \mathbb{R}$ with $f(X) = \{0, 1\}$ \iff There exists $C \subseteq X$ such that $\emptyset \neq C \neq X$ and C is both relatively open and relatively closed

Theorem 3.12. Intermediate Value Theorem

If $X \subseteq \mathbb{R}^n$ and X is connected, and $f: X \to \mathbb{R}^m$ is continuous on X, then f(X) is connected.

Definition 3.12. Path Connected

A set $X \subseteq \mathbb{R}^n$ is <u>path connected</u> if for every $\vec{a}, \vec{b} \in X$, there exists a continuous function $\gamma: [0,1] \to X$ such that $\gamma(0) = \vec{a}$ and $\gamma(1) = \vec{b}$

4 Convergence of Functions

Definition 4.1. Pointwise Convergence

Let X be a set and for each $n \in \mathbb{Z}^+$, suppose $f_n : X \to \mathbb{R}^m$. Let $f : X \to \mathbb{R}^m$, then f_n converges to f pointwise means:

For each
$$x \in X$$
, $\lim_{n \to \infty} f_n(x) = f(x)$

Or equivalently,

$$\forall x \in X, \forall \epsilon > 0, \exists N \in \mathbb{Z}^+, \forall n \in \mathbb{Z}^+, n > N \Rightarrow ||f_n(x) - f(x)|| < \epsilon$$

Remark. N can depend on x!

Definition 4.2. Uniform Convergence

Let X be a set and for each $n \in \mathbb{Z}^+$, suppose $f_n : X \to \mathbb{R}^m$. Let $f : X \to \mathbb{R}^m$, then f_n converges to f uniformly means:

$$\forall \epsilon > 0, \exists N \in \mathbb{Z}^+, \forall x \in X, \forall n \in \mathbb{Z}^+, n > N \Rightarrow ||f_n(x) - f(x)|| < \epsilon$$

Or equivalently,

$$\lim_{n \to \infty} (\sup\{||f_n(x) - f(x)|| : x \in X\}) = 0$$

Remark. N CANNOT depend on x! The supremum measures the worst discrepancy between f_n and f

WARNING: The pointwise limit of continuous functions $f_n: X \to \mathbb{R}$ might not be continuous! e.g. $f_n(x) = x^n, f(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}$

Theorem 4.1. Let $X \subseteq \mathbb{R}^n$, $g)n : X \to \mathbb{R}^m$. If each g_n is continuous on X and $g_n \xrightarrow{\text{uniformly}} g$, then $g : X \to \mathbb{R}^m$ is also continuous on X

Theorem 4.2. Let $X \subseteq \mathbb{R}^n$, $g)n: X \to \mathbb{R}^m$. If each g_n is <u>uniformly</u> continuous on X and $g_n \xrightarrow{\text{uniformly}} g$, then $g: X \to \mathbb{R}^m$ is also <u>uniformly</u> continuous on X

Definition 4.3. C([a,b])

Let $a, b \in R$, a < b. Then C([a, b]) is the set of all continuous functions from [a, b] to \mathbb{R}

Definition 4.4. Uniform Norm

Consider the <u>uniform norm</u> for $f \in C([a, b])$,

$$||f||_u = \sup(\{|f(x)| : x \in [a, b]\})$$

For $f_n, f \in C([a, b])$,

$$f_n \xrightarrow{\text{uniformly}} f \iff ||f_n - f||_u \to 0$$

Theorem 4.3. For $f, g \in C([a, b]), \alpha \in \mathbb{R}$

- $||\alpha f||_u = |\alpha|||f||_u$
- $||f + g||_u \le ||f||_u + ||g||_u$
- $\bullet ||fg||_u \le ||f||_u ||g||_u$

Definition 4.5. Uniformly Cauchy

Let $(f_n)_{n=1}^{\infty}$ be a C([a,b])-sequence. Then the sequence is <u>uniformly Cauchy</u> if

$$\forall \epsilon > 0, \exists N \in \mathbb{Z}^+, \forall k, l > N \Rightarrow ||f_k - f_l||_u < \epsilon$$

Or equivalently

$$\forall \epsilon > 0, \exists N \in \mathbb{Z}^+, \forall n > N \Rightarrow ||f_n - f_N||_u < \epsilon$$

Theorem 4.4. Completeness of C[a, b]

Let $(f_n)_{n=1}^{\infty}$ be a C([a,b])-sequence. Then it is uniformly convergent if and only if it is uniformly Cauchy

Theorem 4.5. Weierstrass M-Test

Suppose $f_k \in C([a,b])$, and suppose $M_k \in [0,+\infty)$ have $||f_k||_u \leq M_k$. If $\sum_{k=1}^{\infty} M_k$ converges,

then $f(x) = \sum_{k=1}^{\infty} f_k(x)$ defines a <u>continuous</u> function on [a, b].

In particular, the partial sums converge absolutely, and converge uniformly to f.

5 Power Series

Definition 5.1. Power Series

Let $c \in \mathbb{R}$, then a <u>power series</u> centred at c is an expression $\sum_{n=1}^{\infty} a_n (x-c)^n$ for some \mathbb{R} -sequence $(a_n)_{n=0}^{\infty}$

Definition 5.2. Convergence of Power Series

Suppose $\sum_{n=0}^{\infty} a_n(x-c)^n$ is a power series, and let

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} \in [0, +\infty]$$

Then,

- $\sum_{n=1}^{\infty} a_n(x-c)^n$ converges pointwise, absolutely, for $x \in (c-R, c+R)$
- If $0 \le r < R$ is fixed, $\sum_{n=1}^{\infty} a_n (x-c)^n$ converges uniformly, on [c-r, c+r]
- No information if $x = c \pm R$
- $\sum_{n=1}^{\infty} a_n (x-c)^n$ divergences if |x-c| > R

Remark. By ratio test,

$$R = \frac{1}{\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

Theorem 5.1. Let $f_k \in C([a,b])$ and assume each f_k is differentiable on (a,b). If

- The f'_k converge uniformly on (a, b)
- There exists one point $x_0 \in [a, b]$ such that $f_k(x_0)$ converges as $k \to \infty$

Then f_k converges uniformly on [a, b] to some $f \in C([a, b])$, and f is differentiable on (a, b) with $f'(x) = \lim_{k \to \infty} f'_k(x)$

Corollary. If $\sum_{n=0}^{\infty} a_n(x-c)^n$ is a power series with <u>strictly positive</u> radius of convergence R, then the function $f(x) = \sum_{n=0}^{\infty} a_n(x-c)^n$ is differentiable on (c-R,c+R), with $f'(x) = \sum_{n=0}^{\infty} na_n(x-c)^{n-1}$

Corollary. Power series with R.O.C R > 0 are infinitely differentiable at every $x \in (c - R, c + R)$, with derivative computed term-by-term

Definition 5.3. Taylor Polynomial and Taylor Series

Suppose f is N-times differentiable on an open interval around c. Then the Nth Taylor polynomial (for f around c) is

$$T_N(x) = \sum_{n=0}^{N} \frac{f^{(n)}(c)}{n!} (x-c)^n$$

If f is infinitely differentiable, the Taylor series

$$T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n$$

Theorem 5.2. Upgrade Rolle's Theorem

Let \mathcal{J} be an interval including distinct $a, b \in \mathbb{R}$, let $N \in \mathbb{N}$. Suppose $g: \mathcal{J} \to \mathbb{R}$

- is (N+1)-times differentiable on \mathcal{J}°
- \bullet is continuous at a and b
- g(a) = g(b)
- g has continuous one sided derivatives at a, up to order N, and for $1 \le k \le N$, $g^{(k)}(a) = 0$

Then, $\exists y \in \mathcal{J}^{\circ}$ with $g^{(N+1)}(y) = 0$

Definition 5.4. Taylor's Remainder

The remainder

$$R_N(x) = f(x) - T_N(x)$$

- $0 \le k \le N \Rightarrow R_N^{(k)}(c) = 0$
- $k > N \Rightarrow R_N^{(k)}(c) = f^{(k)}(x)$

Definition 5.5. Taylor's Theorem

Let \mathcal{J} be an interval with distinct $b, c \in \mathcal{J}$. Suppose $f : \mathcal{J} \to \mathbb{R}$ is continuous on \mathcal{J} with

9

- f is (N+1)-times differentiable on \mathcal{J}°
- \bullet f has continuous (possibly one-sided) derivatives at c up to order N

Then $\exists y \in \mathcal{J}^{\circ}$ such that $R_N(b) = \frac{f^{(N+1)}(y)}{(N+1)!}(b-c)^{N+1}$