

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
15. Juli 2004 (15.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/058247 A1

(51) Internationale Patentklassifikation⁷: **A61K 31/381, 9/70**

(21) Internationales Aktenzeichen: PCT/EP2003/014902

(22) Internationales Anmeldedatum:
24. Dezember 2003 (24.12.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 61 696.5 30. Dezember 2002 (30.12.2002) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **SCHWARZ-PHARMA AG [DE/DE]; Alfred-Nobel-Strasse 10, 40789 Monheim (DE).**

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): **BREITENBACH, Armin [DE/DE]; Opladener Strasse 108, 40789 Monheim (DE).**

(74) Gemeinsamer Vertreter: **SCHWARZ-PHARMA AG; z.Hd. Herrn D.W. Schacht, Alfred-Nobel-Strasse 10, 40789 Monheim (DE).**

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, ARIPO Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

(84) Bestimmungsstaaten (*regional*): ARIPO Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärungen gemäß Regel 4.17:

- *hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, ARIPO Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)*
- *hinsichtlich der Berechtigung des Anmelders, die Priorität einer früheren Anmeldung zu beanspruchen (Regel 4.17 Ziffer iii) für alle Bestimmungsstaaten*
- *Erfindererklärung (Regel 4.17 Ziffer iv) nur für US*

Veröffentlicht:

- *mit internationalem Recherchenbericht*

[Fortsetzung auf der nächsten Seite]

(54) Title: DEVICE FOR THE TRANSDERMAL ADMINISTRATION OF A ROTIGOTINE BASE

(54) Bezeichnung: VORRICHTUNG ZUR TRANSDERMALEN VERABREICHUNG VON ROTIGOTIN-BASE

1 A1
WO 2004/058247 A1
(57) Abstract: The invention relates to a polymer matrix suitable for the transdermal administration of rotigotine [(-)-5, 6, 7, 8-tetrahydro-6-[propyl[2-(2-thienyl)ethyl]amino]-1-naphtol], containing a matrix for the transdermal administration of rotigotine [(-)-5, 6, 7, 8-tetrahydro-6-[propyl[2-(2-thienyl)ethyl]amino]-1-naphtol], containing a matrix polymer which is supersaturated with a rotigotine base. Said polymer matrix is characterised in that the part of the rotigotine which is not dissolved in the matrix polymer is dispersed in the matrix polymer as amorphous particles having a maximum mean diameter of 30 µm, and the matrix is free of solubilisers, crystallisation inhibitors and dispersants. The invention also relates to a flat device for the transdermal administration of rotigotine, containing the above-mentioned, preferably silicon-based polymer matrix which is supersaturated with rotigotine, and a rear layer which is impermeable to the active ingredient.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft eine zur transdermalen Verabreichung von Rotigotin [(-)-5, 6, 7, 8-Tetrahydro-6-[propyl[2-(2-thienyl)ethyl]amino]-1-naphtol] geeignete Polymermatrix, enthaltend Matrix zur transdermalen Verabreichung von Rotigotin [(-)-5, 6, 7, 8-Tetrahydro-6-[propyl[2-(2-thienyl)ethyl]amino]-1-naphtol], enthaltend ein mit Rotigotin-Base übersättigtes Matrixpolymer, dadurch gekennzeichnet, dass der nicht im Matrixpolymer gelöste Anteil des Rotigotins als amorphe Partikel mit einem mittleren Durchmesser von maximal 30 µm im Matrixpolymer dispergiert ist und die Matrix frei von Löslichkeitsvermittlern, Kristallisationsinhibitoren und Dispersionsmitteln ist. Ferner betrifft die Erfindung eine flächenförmige Vorrichtung zur transdermalen Verabreichung von Rotigotin, die die oben beschrieben, mit Rotigotin übersättigte, vorzugsweise silikonbasierte Polymermatrix und eine für den Wirkstoff undurchlässige Rückschicht enthält.

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Vorrichtung zur transdermalen Verabreichung von Rotigotin-Base

5 Die vorliegende Erfindung betrifft eine zur transdermalen Verabreichung von Rotigotin
[(-)-5,6,7,8-Tetrahydro-6-[propyl[2-(2-thienyl)ethyl]amino]-1-naphtol] geeignete Matrix, die
frei von Löslichkeitsvermittlern und Dispersionsmitteln ist und die im wenigstens ein
Matrixpolymer und Rotigotin-Base in einer Konzentration oberhalb der Löslichkeitsgrenze
des Matrixpolymers für Rotigotin umfasst, wobei der nicht im Matrixpolymer gelöste Anteil
10 des Rotigotins als amorphe Partikel mit einem mittleren Durchmesser von maximal 30 µm
im Matrixpolymer dispergiert ist.

Ferner betrifft die Erfindung eine flächenförmige Vorrichtung zur transdermalen
Verabreichung von Rotigotin, die die oben beschriebene, mit Rotigotin übersättigte,
15 vorzugsweise silikonbasierte Matrix und eine für den Wirkstoff undurchlässige
Rückschicht enthält.

Aus dem Stand der Technik sind verschiedene silikonbasierte transdermale Systeme zur
Verabreichung von Rotigotin bekannt.

20 WO 94-07468 offenbart ein transdermales System, das ein Wirkstoffsalz in einer
Zweiphasenmatrix enthält. Die Zweiphasenmatrix besteht aus einem hydrophoben
Matrixpolymer mit einem darin dispergierten Silikat zur Aufnahme des hydrophilen
Arzneistoffsalzes, wobei zusätzlich hydrophobe Lösemittel verwendet werden. Die
25 Herstellung der Matrix erfolgt durch Trocknen der Dispersion bei 70°C. Der Gehalt an
Rotigotin in der Matrix beträgt 2-5 Gew%.

Dieses System weist jedoch eine Reihe von Nachteilen auf:

- 30 • Die Herstellung ist mehrstufig und aufwendig. Das Wirkstoffsalz muß gelöst, dann mit
dem Silikat gemischt werden, dann mit einem Emulgator vermengt werden, um die
Lösung schließlich mit dem in einem organischen Lösungsmittel – üblicherweise
Heptan, Ethylacetat oder Toluol - gelösten Matrixpolymer, z.B. in einem Silikonkleber,
zu emulgieren.

- Die resultierende Emulsion ist schwierig zu handhaben.
- 5 • Die Wirkstoffbeladung ist begrenzt durch die Löslichkeit des Rotigotins im jeweiligen Lösungsmittelsystem. Zudem findet beim Entfernen der Lösungsmittel während der Herstellung eine Aufkonzentrierung statt, bei der es zu einer unerwünschten Kristallbildung kommen kann. Auch hierdurch ist die maximale Menge an Wirkstoff, die sich in die Matrix einarbeiten lässt, beschränkt. Eine niedrige Wirkstoffbeladung wiederum begrenzt die Freisetzungskapazität der Matrix pro Zeiteinheit und/oder ihre funktionale Lebenszeit.
- 10 • Das im Pflaster verbleibende Silikat bzw. Siliziumdioxid stellt eine Diffusionsbarriere für den Wirkstoff dar, die die Freigabe des Wirkstoffes negativ beeinflussen kann.
- 15 • Das anorganische Silikat beeinflusst die Wasseraufnahme des Pflasters. Porenbildung durch Herauslösen wasserlöslicher Matrixbestandteile an der Grenzfläche zur Haut können zu einer schlecht kontrollierbaren Freisetzung des Wirkstoffes führen.
- 20 WO 99/49852 beschreibt ein Transdermales Therapeutisches System (TTS) enthaltend ein Haftklebesystem, das auf Acrylat oder Silikon basiert und in dem Rotigotin in Form der freien Base vorliegt. Das offenbare TTS ermöglicht therapeutisch relevante Fluxraten von Rotigotin durch Humanhaut.
- 25 Rotigotin ist in hydrophoben Polymeren, wie z.B. in Silikon, nur schwach löslich. Aus diesen Gründen wird in WO 99/49852 die Zugabe von Zusatzstoffen zur Verbesserung des Lösungsverhaltens des Rotigotins vorgeschlagen. Dabei handelt es sich insbesondere um hydrophile Polymere, wie z.B. Polyvinylpyrrolidon (PVP), Copolymere von Vinylpyrrolidon und Vinylacetat, Polyethylenglycol, Polypropylenglycol, Copolymere aus Ethylen und Vinylacetat sowie um Glycerin und dessen Ester.
- 30

WO 02/089778 und WO 02/089777 beschreiben ebenfalls ein Lösemittel-basiertes transdermales System zur Verabreichung von Rotigotin. Gemäß WO 02/089778 und WO 02/089777 werden ebenfalls oberflächenaktive Substanzen oder amphiphile Substanzen als Kristallisationsinhibitor zugesetzt.

5

- Es war nun die Aufgabe der vorliegenden Erfindung eine Matrix zur Verfügung zu stellen, die einfach aufgebaut ist und möglichst wenige Hilfsstoffe enthält, die aber dennoch die Verabreichung von Rotigotin durch die Haut in therapeutisch relevanten Fluxraten erlaubt, lagerstabil ist und die Einarbeitung von Rotigotin-Base in einem weiten Konzentrationsbereich ermöglicht.

10

Abbildungen:

- Abbildung 1 zeigt eine mikroskopische Aufnahme von amorphen Rotigotin-Partikeln in einer Silikonmatrix, die gemäß Ausführungsbeispiel 2b (Vergleichsbeispiel) im Lösemittelverfahren ohne Dispersionsmittel hergestellt wurde.

- Abbildung 2 zeigt mikroskopische Aufnahmen von amorphen Rotigotin-Partikeln in einer erfindungsgemäßen Silikonmatrix, die gemäß Ausführungsbeispiel 1 durch „tempern“ ohne Dispersionsmittel hergestellt wurde.

- Abbildung 3 zeigt den Vergleich von in-vitro Rotigotin-Fluxraten, die nach Auftrag einer erfindungsgemäßen Vorrichtung (Charge 20204071), einer gemäß Ausführungsbeispiel 2b im Lösemittelverfahren ohne Dispersionsmittel hergestellten Vergleichscharge (Charge 20204074) und einer in WO 99/49852 beschriebenen Vorrichtung (Charge 20107012) auf Mäusehaut erzielt werden.

- Abbildung 4 zeigt den Vergleich von in-vitro Rotigotin-Fluxraten, die nach Auftrag einer erfindungsgemäßen Vorrichtung (Charge 20204071) und einer in WO 99/49852 beschriebenen Vorrichtung (Charge WE11682) auf Humanhaut erzielt werden.

- Abbildung 5 zeigt beispielhaft den Aufbau eines monolithischen TTS mit einer wirkstoffhaltigen Matrix (1), einer wirkstoffundurchlässigen Rückschicht (2) und einer vor Gebrauch entfernbaren Schutzschicht (3).

Abbildung 6 zeigt einen Vergleich der in-vitro Penetrationsraten durch Mäusehaut aus den erfindungsgemäßen transdermalen Vorrichtungen (Charge 20204071, getempert) sowie aus den Vergleichsbeispielen 2a (20107012) und 3 (Charge 20204071, ungetempert) nach 12-monatiger Lagerung.

5

Beschreibung der Erfindung

Rotigotin-Base liegt als Feststoff in Form von Kristallen vor, die in den zur Lösung von Matrixpolymeren geeigneten Lösemitteln, z.B. Hexan, Ethylacetat und Toluol, nahezu 10 unlöslich sind.

Zur Herstellung einer rotigotinhaltigen Matrix werden die Rotigotin-Kristalle daher nach dem Stand der Technik zunächst in Lösemittel, z.B. Ethanol, gelöst und sodann zur Polymerphase, z.B. in Hexan, gegeben. Zur Herstellung einer Feindispersion der 15 wirkstoffhaltigen Phase in der Polymerphase werden Dispersionsmittel, wie z.B. die in WO 99/49852 genannten hydrophilen Polymere, verwendet. Werden bei diesem Verfahren die Dispersionsmittel nicht wie vorgeschlagen, zugesetzt, können sich große Wirkstoffinseln bilden (Abbildung 1). Letztere bergen dann die Gefahr der Hautreizung, der Wirkstoff-Rekristallisation, der verringerten Adhäsion der Klebermatrix und der Schwankung der 20 Wirkstoffbeladung.

Es wurde nun überraschenderweise festgestellt, dass dennoch auf die Verwendung eines zusätzlichen Löse- oder Dispersionsmittels bzw. Kristallisatonsinhibitors verzichtet werden kann, wenn auf das Vorlösen des Rotigotins in Lösemittel, z.B. in Ethanol, vor 25 dem Einbringen in eine Matrix, z.B. in eine Silikonmatrix, verzichtet wird.

In einer Ausführungsform der Erfindung wird beispielsweise die Rotigotin-Base in kristalliner Form in eine Lösung eines Silikonpolymers, z.B. eines amioresistenten Silikonhaftklebers, in Heptan, Toluol oder Ethylacetat eingerührt, die Mischung auf eine 30 Folie, z.B. eine silikonisierte Polyesterfolie, beschichtet und das Lösemittel durch Trocknen bei 50°C entfernt. Anschließend wird die Matrix auf eine Temperatur oberhalb des Schmelzpunkts von Rotigotin, d.h. oberhalb von ca. 74°C, solange erwärmt („getempert“), bis die Rotigotin-Kristalle geschmolzen sind. Schließlich wird auf Raumtemperatur abgekühlt. Das Rotigotin liegt dann in Form amorphen Partikel oder 35 Tröpfchen feinverteilt in der silikonbasierten Matrix vor.

- Bei mikroskopischer Betrachtung zeigte sich, dass die amorphen Rotigotin-Partikel in der Silikonmatrix überraschend feinverteilt sind und eine Größe von maximal etwa 30-40 µm, in der Mehrzahl aber kleiner als 20 µm aufweisen (Abbildung 2). Selbst nach
- 5 sechsmonatiger Lagerung bei Raumtemperatur zeigten die amorphen Rotigotin-Partikel in der Silikonmatrix keine Tendenz zur Rekristallisierung.
- Ferner zeigte sich in in-vitro Permeationsexperimenten an Mäusehaut und Humanhaut, dass transdermale Systeme, die die erfindungsgemäß hergestellten, die amorphen
- 10 Rotigotin-Partikel enthaltenden Silikon-Matrices enthalten, beim Auftrag auf die Haut zu Rotigotin-Permeationsraten führen, die mit den im Lösemittelverfahren gemäß WO 99/49852 hergestellten, therapeutisch einsetzbaren TTS nahezu identisch sind (Abbildungen 3 und 4). Auch nach fünfmonatiger Lagerung bei Raumtemperatur war das Freisetzungerverhalten der erfindungsgemäßen TTS unverändert (Abbildung 4).
- 15 Dies bedeutet, dass der Zusatz eines Lösungsvermittlers/Dispersionsmittels zur Erreichung einer pharmakologisch relevanten Fluxrate von Rotigotin aus Polymermatrices erfindungsgemäß nicht erforderlich ist.
- 20 Vielmehr können überraschenderweise mit einer sehr einfach aufgebauten Matrix therapeutisch relevante Fluxraten erzielt werden, wenn das nicht im Matrixpolymer gelöste Rotigotin feinverteilt in amorphen Partikeln in der Matrix „konserviert“ werden kann.
- 25 Gelingt dies, indem beispielsweise die kristalline Wirkstoff-Form durch Erhitzung der mit Rotigotin übersättigten Matrix in die amorphe Form überführt wird, die dann in der Matrix feinverteilt dispergiert vorliegt, ist der Zusatz von Löslichkeitsvermittlern, Kristallisatinshibitoren und/oder Dispersionsmittel, z.B. in Form polarer innerer-Phase Polymere, nicht erforderlich.
- 30 Da die erfindungsgemäßen übersättigten, vorzugsweise silikonbasierten Matrices keine potentiell peroxidhaltigen hydrophilen Polymere, wie PVP, enthalten, kann auch auf den Zusatz von Additiven zur Peroxidbeseitigung („Peroxidfängern“) verzichtet werden.

Ferner enthält die Matrix auch keine anorganischen Silikate oder Hautpenetrationsverbesserer ("Enhancer").

- Auch nach 12-monatiger Lagerung zeigen die erfindungsgemäßen TTS keine Zeichen der
- 5 Rotigotin-Rekristallisierung oder eine Veränderung der Partikelgröße. Zudem zeigte sich in in-vitro Freisetzungsexperimenten bei den erfindungsgemäßen TTS ein unverändertes und mit dem gemäß Beispiel 2a hergestellten, Kollidon-haltigen TTS vergleichbares Freisetzungsprofil. Im Gegensatz dazu lieferte ein gemäß Ausführungsbeispiel 3 hergestelltes, kristallines Rotigotin enthaltendes TTS, bei dem auf den Schritt des
- 10 Erhitzens über den Schmelzpunkt von Rotigotin verzichtet wurde, eine deutlich geringere Wirkstofffreisetzung.

Schließlich kann auch auf den Einsatz von in Heißschmelzverfahren üblichen Weichmachern zur Senkung der dynamischen Viskosität von Matrixpolymeren verzichtet

15 werden, da das Polymer im Lösemittelverfahren verarbeitet wird.

Ein Gegenstand der Erfindung ist daher eine Matrix zur transdermalen Verabreichung von Rotigotin [(-)-5,6,7,8-Tetrahydro-6-[propyl[2-(2-thienyl)ethyl]amino]-1-naphtol], enthaltend ein mit Rotigotin-Base übersättigtes Matrixpolymer, dadurch gekennzeichnet, dass der

20 nicht im Matrixpolymer gelöste Anteil des Rotigotins als amorphe Partikel mit einem mittleren Durchmesser von maximal 30 µm im Matrixpolymer dispergiert ist und die Matrix frei von Löslichkeitsvermittlern, Kristallisationsinhibitoren und Dispersionsmitteln ist.

Ein weiterer Gegenstand der Erfindung ist eine Rotigotin [(-)-5,6,7,8-Tetrahydro-6-[propyl[2-(2-thienyl)ethyl]amino]-1-naphtol]-haltige Matrix bestehend aus

25

- (a) Matrixpolymer,
- (b) Rotigotin-Base in einer Konzentration oberhalb der Löslichkeitsgrenze des Matrixpolymers, wobei der nicht im Matrixpolymer gelöste Anteil des Rotigotins als
- 30 amorphe Partikel mit einem mittleren Durchmesser von maximal 30 µm im Matrixpolymer dispergiert ist und
- (c) optional einem oder mehreren Antioxidanzien

Die erfindungsgemäße Matrix enthält im allgemeinen mindestens 60 Gew%, bevorzugt 70-95 Gew%, besonders bevorzugt 80-91 Gew% Matrixpolymer, jeweils bezogen auf das Matrixgewicht.

- 5 In einer bevorzugten Ausführungsform der Erfindung ist das Matrixpolymer ein Silikon, vorzugsweise ein amino-resistentes Silikon oder eine Silikon-Mischung.

Ein weiterer Gegenstand der Erfindung ist daher eine Rotigotin [(-)-5,6,7,8-Tetrahydro-6-[propyl[2-(2-theinyl)ethyl]amino]-1-naphtol]-haltige Matrix bestehend aus

- 10 (a) amino-resistentem Silikon,
(b) Rotigotin-Base in einer Konzentration oberhalb der Löslichkeitsgrenze des Silikons, wobei der nicht im Silikon gelöste Anteil des Rotigotins als amorphe Partikel mit einem mittleren Durchmesser von maximal 30 µm im Silikon dispergiert ist und
15 (c) optional einem oder mehreren Antioxidanzien

Unter dem Begriff „Matrix“ wird in dieser Patentanmeldung eine pharmazeutische Formulierung verstanden, die mindestens ein Matrixpolymer umfasst und die ein disperses System bilden kann.

- 20 Unter dem Begriff „Rotigotin-Base“ wird in dieser Anmeldung verstanden, dass weniger als 5 Gew%, bevorzugt weniger als 2 Gew%, besonders bevorzugt weniger als 1 Gew% des Rotigotins in Salzform vorliegt.

- 25 Unter dem Begriff „Partikel“ werden in dieser Patentanmeldung mikroskopisch sichtbare Rotigotin-Ansammlungen, z.B. in Tröpfchen-Form, in der Matrix verstanden.

- Unter dem Begriff „mittlerer Durchmesser“ wird der Durchschnittswert aller Durchmesser (jeweils in den Dimensionen x,y,z) der in einer gegebenen Matrix vorliegenden Rotigotin-
30 Partikel verstanden. Dies kann bestimmt werden, indem die Rotigotin-haltige Matrix mit einem Mikroskop untersucht und das Bild mit der Software Nikon LuciaDi ausgewertet wird.

Unter dem Ausdruck „mit Rotigotin übersättigte Matrix“ wird in dieser Patentanmeldung verstanden, dass zumindestens ein Teil des Rotigotins nicht in im Polymer gelöster Form, sondern als Partikel in der Matrix dispergiert vorliegt.

- 5 Unter dem Begriff „Matrixpolymer“ werden die einem pharmazeutischen Fachmann zur Herstellung von transdermalen Arzneiformen geläufigen Polymere verstanden. Beispiele hierfür sind Silikone, Ethylvinylacetate (EVA), Styrol-Block-Copolymere (SXS), Acrylate und Methacrylate, Polyurethane, Vinylacetate sowie Gummen, insbesondere Polyolefine und Polyterpene, z.B. Polyisobutylene, Polybutadiene, Neoprene oder Polyisoprene sowie geeignete Mischungen dieser Matrixpolymere.
- 10

Unter dem Ausdruck „silikonbasierte Matrix“ wird in dieser Patentanmeldung eine Matrix verstanden, die mindestens 60 Gew%, bevorzugt 70-95 Gew%, besonders bevorzugt 80-91 Gew% Silikon, bezogen auf das Matrixgewicht, enthält.

- 15
- In einer bevorzugten Ausführungsform der Erfindung werden als Matrixpolymere solche verwendet, in denen Rotigotin eine Löslichkeit von weniger als 5 Gew%, besonders bevorzugt weniger als 3 Gew% und ganz besonders bevorzugt weniger als 1 Gew% hat.

- 20 Die mit Rotigotin übersättigte Matrix kann zur Verarbeitung in verschiedenen galenischen Arzneiformen verwendet werden. Die rotigotinhaltige Matrix kann dabei als adhäsive (selbstklebende) oder als nicht-adhäsive Matrix ausgebildet sein.

- 25 Bevorzugt liegen die amorphen Rotigotin-Partikel in einer selbstklebenden Matrix, besonders bevorzugt in einer selbstklebenden Silikonhaftklebermatrix dispergiert vor.

Bevorzugte Silikonhaftkleber zur Verwendung in der erfindungsgemäßen selbstklebenden Silikonhaftklebermatrix sind aminoresistente, drucksensitive Polyorganosiloxankleber.

- 30 Silikonhaftkleber stellen in den meisten Fällen Polydimethylsiloxane dar, allerdings können prinzipiell statt Methylgruppen auch andere organische Reste, wie z.B. Ethyl- oder Phenylgruppen vorhanden sein. Aminoresistente Silikonhaftkleber zeichnen sich im allgemeinen dadurch aus, dass sie keine oder nur wenige freie Silanolfunktionen enthalten, da die Si-OH-Gruppen alkyliert wurden. Solche Kleber sind in der Patentschrift EP 180 377 beschrieben.
- 35

Besonders bevorzugte Kleber sind Kondensate oder Mischungen von Silikonharzen und Polyorganosiloxanen, wie beispielsweise in US RE 35 474 beschrieben.

- 5 Geeignete Polyorganosiloxankleber sind kommerziell bei Dow Corning als sogenannte BIO-PSA-Haftkleber erhältlich. Besonders geeignet sind Haftkleber, die von Dow Corning unter der Bezeichnung Bio-PSA 7-4201 und Bio-PSA 7-4301 vertrieben werden, sowie geeignete Mischungen dieser Kleber. Diese Mischungen von Silikonklebern mit starker und mittlerer Haftkraft („tack“), insbesondere Mischungen im Verhältnis 40:60 bis 60:40
10 von Bio-PSA 7-4201 und Bio-PSA 7-4301, zeichnen sich durch eine besonders günstige Adhesions/Cohesionsbalance aus.

Die Wirkstoffkonzentration der erfindungsgemäßen Matrix unterliegt nicht den verfahrensbedingten Beschränkungen wie die im Lösungsmittelverfahren nach dem Stand
15 der Technik hergestellten Matrices.

- Da im Verfahren nach dem Stand der Technik die kristalline Rotigotin-Base in Ethanol vorgelöst wird, ist die Wirkstoffbeladung durch die Löslichkeit des Rotigotins im verwendeten Lösemittel begrenzt. Eine Matrixbeladung mit mehr als etwa 15 Gew%
20 Rotigotin ist daher im bekannten Lösemittelverfahren schwierig. Diese Beschränkung entfällt bei den erfindungsgemäß hergestellten Matrices, da ein Vorlösen der Rotigotin-Base in Ethanol nicht erforderlich ist.

Aus diesem Grund ist auch die Inkorporation von Rotigotin-Base in Konzentrationen
25 oberhalb von 15 Gew% möglich. Dies ist zum Beispiel besonders hilfreich, wenn eine längere Rotigotin-Freisetzung aus der Matrix zum Beispiel über 5, 6 oder 7 Tage gewünscht ist.

Die Wirkstoffkonzentration in der Matrix kann prinzipiell zwischen 1 und etwa 40 Gew%,
30 bezogen auf das Gesamtgewicht der Matrix, liegen, wobei Rotigotin-Konzentrationen zwischen 5 und 30 Gew% und besonders zwischen 7 und 25 Gew% bevorzugt werden.

Für eine 7 Tage dauernde Freisetzung von Rotigotin aus der Matrix wird eine Rotigotin-Konzentration in der Matrix von mindestens 15 Gew%, besonders von mindestens 20
35 Gew% bevorzugt.

Antioxidanzien werden bevorzugt in einer Gesamtkonzentration bis 2 Gew%, bevorzugt 0,05-0,5 Gew% (bezogen auf das Matrixgewicht) zugesetzt. Bevorzugte Beispiele sind Alpha-Tocopherol, Ascorbylpalmitat und Mischungen davon.

5

In einer bevorzugten Ausführungsform der Erfindung besteht die erfindungsgemäße Matrix aus

- (a) 60-95 Gew% wenigstens eines Matrixpolymers, bevorzugt eines Silikons oder Silikongemischs,
- 10 (b) 1-40 Gew%, bevorzugt 5-30 Gew%, besonders bevorzugt 7-20.Gew% im Matrixpolymer dispergierte amorphe Rotigotin-Base, wobei der nicht im Silikon gelöste Teil des Rotigotins in Form amorpher Partikel mit einem mittleren Durchmesser von maximal 30 µm im Silikon dispergiert ist und
- 15 (c) 0-2 Gew%, bevorzugt 0,05-0,5 Gew% Antioxidans.

Die Größenverteilung der Rotigotin-Partikel in der mit Rotigotin übersättigten, bevorzugt silikonbasierten Matrix sollte möglichst gleichmäßig sein, wobei der mittlere Durchmesser bevorzugt unter 25 µm, besonders bevorzugt unter 20 µm liegen sollte.

20

In einer bevorzugten Ausführungsform ist die erfindungsgemäße Matrix Bestandteil einer Vorrichtung, insbesondere einer flächenförmigen Vorrichtung, zur transdermalen Verabreichung von Rotigotin, wobei die Vorrichtung weitere Bestandteile, wie z.B. eine Schutzschicht, eine Rückschicht, weitere Polymerschichten und/oder eine die Wirkstoffabgabe kontrollierende Membran enthalten kann.

25

In einer besonders bevorzugten Ausführungsform der Erfindung ist die erfindungsgemäße Vorrichtung als sogenanntes monolithisches Pflaster ausgestaltet, das heißt, sie besteht aus einer für den Wirkstoff undurchlässigen Rückschicht (2), einer selbstklebenden, mit Rotigotin übersättigten, vorzugsweise silikonbasierten Matrix (1), in der die freie Base von Rotigotin in amorpher Form dispergiert ist und die keinen Löslichkeitsvermittler enthält sowie einer vor dem Auftrag auf die Haut des Patienten ablösbar Schicht (3), wie in Abbildung 5 dargestellt.

In anderen Ausführungsformen der Erfindung kann das Rotigotin auch in einer nicht-adhäsiven, übersättigten, vorzugsweise silikonbasierten Matrix vorliegen. Die flächenförmige Vorrichtung kann dann eine zusätzliche wirkstofffreie Kleberschicht oder ein sogenanntes „overtape“ aufweisen.

5

Ein Gegenstand der Erfindung ist daher eine flächenförmige Vorrichtung zur transdermalen Verabreichung von Rotigotin [(-)-5,6,7,8-Tetrahydro-6-[propyl[2-(2-theinyl)ethyl]amino]-1-naphtol], enthaltend eine Rotigotin-haltige Matrixschicht und eine für den Wirkstoff undurchlässige Rückschicht, dadurch charakterisiert, dass die

10 Matrixschicht besteht aus

(a) Matrixpolymer, vorzugsweise einem amino-resistenten Silikon oder einer Silikon-Mischung,

(b) Rotigotin-Base in einer Konzentration oberhalb der Löslichkeitsgrenze des

15 Matrixpolymers, wobei der nicht im Matrixpolymer gelöste Anteil des Rotigotins als amorphe Partikel mit einem mittleren Durchmesser von maximal 30 µm im Matrixpolymer dispergiert ist und

(c) optional einem oder mehreren Antioxidanzien.

20 In einer bevorzugten Ausführungsform der Erfindung ist die flächenförmige Vorrichtung als monolithisches System aufgebaut und enthält eine selbstklebende Rotigotin-haltige Matrixschicht, die auf einem aminoresistenten Silikonhaftkleber basiert.

Die Oberfläche der Vorrichtung kann zwischen 5 und ca. 80 cm² groß sein, liegt bevorzugt 25 zwischen 10 und 60 cm² und besonders bevorzugt zwischen 20 und 40 cm².

Die Dicke der Matrixschicht in den erfindungsgemäßen Vorrichtungen liegt üblicherweise im Bereich 40-300 µm, wobei Matrixstärken von 50-200 µm und besonders von 70-150 µm bevorzugt werden. Daraus ergibt sich ein bevorzugtes Matrixgewicht von ca. 40-200 g/m².

Bevorzugte Rotigotin-Konzentrationen in der Matrixschicht der Vorrichtung liegen zwischen 5 und 30 Gew% und besonders bevorzugt zwischen 7 und 25 Gew%, bezogen auf das Gesamtgewicht der Matrix. Ist die Vorrichtung für eine mehr als 5-tägige 5 Applikation vorgesehen, sind in der Regel Konzentrationen des Rotigotins von mehr als

15 Gew%, bevorzugt mehr als 20 Gew% erforderlich. Typische Konzentrationen für 7 Tage-Pflaster liegen bei 20-30 Gew%.

Der Beladungsgrad der Matrix in der erfindungsgemäßen Vorrichtung liegt dabei 5 grundsätzlich zwischen 0,1 und 9 mg Rotigotin/cm² Matrixoberfläche. Der bevorzugte Beladungsgehalt liegt im Bereich 0,3 - 6 mg Rotigotin/cm². Für Vorrichtungen zur täglichen oder 2-tägigen Verabreichung besonders bevorzugt wird eine Rotigotin-Beladung zwischen 0,3 und 1,5 mg Rotigotin/cm², bei 7-Tage-Systemen bei 2,5-6,0 mg/cm².

10

Die nachfolgende Tabelle zeigt Wirkstoffkonzentration und Matrixgewicht der für die Hautpermeationsexperimente (Fig. 2, 3) eingesetzten monolithischen Pflaster.

Chargennummer	Herstellbedingung	Wirkstoff-Konzentration	Matrixgewicht (g/m ²)	Kumulativer Flux durch Humanhaut µg/cm ² /72h	Kumulativer Flux durch Mäusehaut µg/cm ² /72h
20204071	Getempert 90°C, 75 Min	8,87 Gew%	129	850	1030
20107012	Lösungsmittel-verfahren ¹	9 Gew%	110	n.b.	1080
WE 11682	Lösungsmittel-verfahren ¹	9 Gew%	50	900	n.b.

15 ¹= Vergleichsbeispiel entsprechend WO 99/49852; siehe Ausführungsbeispiel 2a
n.b.=nicht bestimmt

Die Größenverteilung der Rotigotin-Partikel in der silikonbasierten Matrix der erfindungsgemäßen Vorrichtungen sollte möglichst gleichmäßig sein und im Mittel unter 20 30 µm liegen, wobei der mittlere Durchmesser bevorzugt unter 25 µm, besonders bevorzugt unter 20 µm liegen sollte.

Bevorzugt sollten zudem in einer gegebenen Matrixschicht keine Partikel vorhanden sein, deren Durchmesser in der größten Dimension (x,y,z) größer ist als 90% der Dicke der 25 jeweiligen Matrixschicht.

Die Rückschicht, auf die die Matrixmasse der erfindungsgemäßen Vorrichtung ausgestrichen wird, sollte für die Inhaltsstoffe der Matrix inert und für Rotigotin

undurchlässig sein. Geeignete Materialien sind beispielsweise Polyester, Polyamide, Polyethylene, Polypropylene, Polyurethane, PVC oder Kombinationen dieser Materialien. Die Folien können silikonsiert sein und/oder mit einer Aluminiumschicht versehen sein. Die Dicke variiert üblicherweise zwischen 10 und 100 µm und liegt bevorzugt zwischen 20
5 und 40 µm.

Die Vorrichtung enthält weiterhin bevorzugt eine Schutzschicht oder Folie, die unmittelbar vor Gebrauch der Vorrichtung, das heißt vor dem Auftrag auf die Haut, entfernt wird. Diese Schutzschicht kann beispielsweise aus Polyester, Polyethylen oder Polypropylen
10 bestehen. Diese Schicht kann zusätzlich mit Aluminium oder Fluorpolymeren beschichtet sein. Die Dicke dieser Schutzschicht liegt üblicherweise zwischen 30 und 200 µm. Zur besseren Entfernung der Schutzschicht unmittelbar vor Gebrauch besteht die Schutzschicht bevorzugt aus zwei getrennten Folien, deren Enden überlappen können. Entsprechende Ausgestaltungen sind von konventionellen Pflastern bekannt.

15 Rotigotin ist ein Dopamin-Agonist. Die erfindungsgemäßen Matrices und Vorrichtungen sind daher insbesondere zur Behandlung von Erkrankungen, die mit einem gestörten Dopamin-Stoffwechsel einhergehen, geeignet.

20 Ein Gegenstand der Erfindung ist daher die Verwendung einer erfindungsgemäßen Vorrichtung oder einer erfindungsgemäßen Matrix in einem Medikament zur Behandlung von Morbus Parkinson, Restless Leg oder Depressionen.

25 Die erfindungsgemäße mit Rotigotin übersättigte, vorzugsweise silikonbasierte Matrix kann in einfacher Weise hergestellt werden, indem die Rotigotin-Base in kristalliner Form in eine Lösung eines entsprechenden Matrixpolymers eingerührt wird, das Lösemittel durch Trocknen bei 50°C entfernt und schließlich die lösungsmittelfreie Matrix auf eine Temperatur oberhalb des Schmelzpunkts von Rotigotin, d.h. oberhalb von ca 74°C, solange erhitzt ("getempert") wird, bis die Rotigotin-Kristalle geschmolzen sind.

30 Anschließend wird auf Raumtemperatur abgekühlt, so dass das Rotigotin schließlich in Form amorpher Partikel oder Tröpfchen in der erfindungsgemäßen Matrix vorliegt. Der Abkühlsschritt wird bevorzugt „passiv“ durchgeführt, das heißt, die Rotigotin-haltige Matrix wird Raumtemperatur ausgesetzt; eine zusätzliche Kühlung ist in der Regel nicht erforderlich.

Ein Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung einer Matrix zur transdermalen Verabreichung von Rotigotin, gekennzeichnet durch die aufeinanderfolgenden Schritte:

- 5 (a) Auflösen des Matrixpolymers, z.B. des Silikons, in einem Lösemittel, z.B. in Heptan, Ethylacetat und Toluol,
- (b) Zugabe von Rotigotin-Base in kristalliner Form in einer Menge oberhalb der Löslichkeitsgrenze des Polymers,
- (c) Entfernen des Lösemittels und Erwärmen der hergestellten Matrixmasse auf eine 10 Temperatur von mindestens 74°C bis das Rotigotin in der Matrixmasse geschmolzen ist,
- (d) Abkühlen, bevorzugt passives Abkühlen der Matrixmasse.

Dabei kann in Schritt (c) die Entfernung des Lösemittels und das Schmelzen des 15 Rotigotins durch kontinuierliche Temperaturerhöhung, z.B. von 50°C auf 90°C, beispielsweise in einer Trockenstrasse, realisiert werden.

Alternativ kann in Schritt (c) zunächst in einem Schritt (c1) das Lösemittel bei einer Temperatur von 40-60 °C entfernt und die lösemittelfreie Matrix in einem Schritt (c2) 20 sodann auf mindestens 74°C erwärmt werden, bis das Rotigotin geschmolzen ist.

Geeignete Prozesstemperaturen für das Schmelzen von Rotigotin liegen beispielsweise bei 75-120°C, bevorzugt bei 80-100°C, besonders bevorzugt bei 90°C.

25 Soll eine erfindungsgemäße Vorrichtung hergestellt werden, die neben der Rotigotinhaltigen Matrix eine Wirkstoff-undurchlässige Rückschicht aufweist, so wird die bei der oben beschriebenen Matrixherstellung in Schritt (b) entstehende Rotigotin-haltige Polymermasse vor der Entfernung des Lösemittels auf eine geeignete Folie, z.B. eine Polyesterfolie ausgestrichen.

30 Ein Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung einer flächenförmigen Vorrichtung zur transdermalen Verabreichung von Rotigotin, umfassend eine Rotigotin-haltige Matrix, gekennzeichnet durch die aufeinanderfolgenden Schritte:

- (a) Auflösen des Matrixpolymers, z.B. des Silikons, in einem Lösemittel,
- (b) Zugabe von Rotigotin-Base in kristalliner Form in einer Menge oberhalb der Löslichkeitsgrenze des Polymers,
- 5 (c) Ausstreichen der Rotigotin-haltigen Polymermasse auf einer geeigneten Folie,
- (d) Entfernen des Lösemittels und Erwärmen der hergestellten Matrixmasse auf eine Temperatur von mindestens 74°C, bis das Rotigotin in der Matrixmasse geschmolzen ist,
- (e) Abkühlen, bevorzugt passives Abkühlen, der Matrixmasse.

10

Dabei kann die Entfernung des Lösemittels und das Schmelzen des Rotigotins gemäß Schritt (d) entweder durch kontinuierliche Temperaturerhöhung z.B. von 50°C auf 90°C erfolgen oder aber stufenweise in zwei separaten Schritten (d1) und (d2) erfolgen, wie bereits weiter oben beschrieben.

15

Vor Zugabe des kristallinen Rotigotins können die in der Regel nadelförmigen Rotigotin-Kristalle gegebenenfalls durch geeignete Vorbehandlung, z.B. durch Mahlen oder Zerstossen und anschliessendes Sieben auf die gewünschte Größe, z.B. 50 µm Länge, reduziert werden.

20

Experimenteller Teil:**1. Herstellung einer erfindungsgemäßen Silikon-basierten Vorrichtung**

- 5 1,8 g kristallines Rotigotin (freie Base) wurden gemahlen und als Puder mit einer Korngröße unter 40 µm zu einer 74%igen (g/g) Lösung von Silikon-Polymeren in Heptan (entspricht 9 g Bio-PSA 7-4201 und 9 g BIO-PSA 7-4301) gegeben. Die Mischung wurde zur Herstellung einer homogenen Dispersion mit einem Ultraturrax bei 10 000 UpM für 1 Minute gerührt. Anschließend wurde die Rotigotin-haltige Silikonmasse auf eine Scotch
10 Pak 1109 Folie ausgestrichen (6 mm/Sec) und für 30 Minuten bei 50°C getrocknet. Schließlich wurde Schutzfolie (MN 19) aufgetragen.

Anschließend wurde für 75 Minuten auf 90°C erhitzt.

15 **2. Vergleichsbeispiele: Herstellung der silikonbasierten Matrix im Lösungsmittelverfahren nach dem Stand der Technik mit (Beispiel 2a) oder ohne (Beispiel 2b) Zusatz von PVP**

- 1,8 g kristallines Rotigotin (freie Base) wurden gemahlen und mit oder ohne 2,4 g Kollidon (PVP) in 4 g Ethanol (96%) gelöst zu einer 74%igen (g/g) Lösung von Silikon-Polymeren
20 in Heptan (entspricht einem Gemisch von 9 g Bio-PSA 7-4201 und 9 g BIO-PSA 7-4301) gegeben. Die Mischung wurde zur Herstellung einer homogenen Dispersion mit einem Ultraturrax bei 10 000 UpM für 1 Minute gerührt. Anschließend wurde die Rotigotin-haltige Silikonmasse auf eine Scotch Pak 1109 Folie ausgestrichen (6 mm/Sec) und für 30 Minuten bei 50°C getrocknet. Schließlich wurde Schutzfolie (MN 19) aufgetragen.

25

3. Beispiel: Herstellung einer Silikon-basierten Matrix ohne Vorlösen und Tempern

- 1,8 g kristallines Rotigotin (freie Base) wurden gemahlen und als Puder mit einer Korngröße unter 40 µm zu einer 74%igen (g/g) Lösung von Silikon-Polymeren in Heptan (entspricht 9 g Bio-PSA 7-4201 und 9 g BIO-PSA 7-4301) gegeben. Die Mischung wurde zur Herstellung einer homogenen Dispersion mit einem Ultraturrax bei 10 000 UpM für 1 Minute gerührt. Anschließend wurde die Rotigotin-haltige Silikonmasse auf eine Scotch Pak 1109 Folie ausgestrichen (6 mm/Sec) und für 30 Minuten bei 50°C getrocknet.
35 Schließlich wurde Schutzfolie (MN 19) aufgetragen.

4. Beispiel: Bestimmung des Wirkstoffflusses im Mäusehautmodell

- 5 Für die Fluxmessungen durch Mäusehaut wurde Bauch und Rückenhaut einer Dicke von ca. 120 bis 150 µm verwendet. Ein TTS mit einer ausgestanzten Fläche von 2,55 cm² wird in einer horizontalen Diffusionszelle auf die Hornschichtseite der Bauch- und Rückenhaut haarloser Mäuse fixiert. Unmittelbar anschließend wird die Akzeptorkammer der Zelle mit auf 32°C vortemperierter Phosphat-Pufferlösung (0,066 molar), pH 6,2, 10 luftblasenfrei befüllt und das Freisetzungsmittel auf 32 ± 0,5°C thermostatisiert. Zu den Probeentnahmestunden wird das Freisetzungsmittel gegen frisches, auf 32 ± 0,5°C thermostatisiertes Medium ausgetauscht. Die Rotigotine-Freisetzung wird per HPLC bestimmt.

15 5. Beispiel: Bestimmung des Wirkstoffflusses im Humanhautmodell

Die Bestimmung des Rotigotinfluxes durch Humanhaut wurde im wesentlichen durchgeführt wie in H. Tanojo et al, J. Control Rel. 45 (1997) 41-47 beschrieben.

- 20 Hierzu wurde Humanhaut in einer Dicke von 250 µm aus dem Abdomen gewonnen. Ein TTS mit einer Fläche von 2,545 cm² wurde auf Humanhaut gleicher Fläche aufgebracht, wobei die Haut zur Akzeptorseite hin auf einer Silikonmembran aufliegt. Als Akzeptorphase wurde PBS (0,066 molar) bei PH 6,2 und einer Temperatur von 32±0,5°C verwendet. Die Experimente wurden mit einem Flux von 5mL/h über 72 Stunden 25 durchgeführt. Zu den Probenentnahmestunden wird das Freisetzungsmittel gegen frisches, auf 32±0,5°C thermostatisiertes Medium ausgetauscht und die Menge des freigesetzten Rotigotins per HPLC gemessen. Die Bestimmung der Fluxrate Q(t) erfolgte bezogen auf die Fläche der Meßzelle (0.552 cm²).

Ansprüche

1. Matrix zur transdermalen Verabreichung von Rotigotin [(-)-5,6,7,8-Tetrahydro-6-

5 [propyl[2-(2-thienyl)ethyl]amino]-1-naphtol], enthaltend ein mit Rotigotin-Base
übersättigtes Matrixpolymer, dadurch gekennzeichnet, dass der nicht im Matrixpolymer
gelöste Anteil des Rotigotins als amorphe Partikel mit einem mittleren Durchmesser
von maximal 30 µm im Matrixpolymer dispergiert ist und die Matrix frei von
Löslichkeitsvermittlern, Kristallisationsinhibitoren und Dispersionsmitteln ist.

10

2. Matrix zur transdermalen Verabreichung von Rotigotin [(-)-5,6,7,8-Tetrahydro-6-[propyl[2-(2-thienyl)ethyl]amino]-1-naphtol], bestehend aus

(a) Matrixpolymer,

15 (b) Rotigotin-Base in einer Konzentration oberhalb der Löslichkeitsgrenze des
Matrixpolymers, wobei der nicht im Matrixpolymer gelöste Anteil des Rotigotins
als amorphe Partikel mit einem mittleren Durchmesser von maximal 30 µm im
Matrixpolymer dispergiert ist und

(c) optional einem oder mehreren Antioxidanzien.

20

3. Matrix nach einem der vorhergehenden Ansprüche, wobei das Matrixpolymer ein
aminoresistentes Silikon oder eine Mischung aminoressistenter Silikone ist.

4. Matrix nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die
25 Matrix selbstklebend ist.

5. Matrix nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die
Matrix besteht aus

30 (a) 60-95 Gew% eines aminoressistenten Silikons oder einer aminoressistenten
Silikomischung,

(b) 5-40 Gew% im Silikon dispergierte amorphe Rotigotin-Base und

(c) 0-2 Gew% Antioxidans.

6. Flächenförmige Vorrichtung zur transdermalen Verabreichung von Rotigotin,
enthaltend eine Matrix nach einem der vorhergehenden Ansprüche sowie eine
5 Rotigotin-undurchlässige Rückschicht.
7. Flächenförmige Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der
Beladungsgrad mit Rotigotin zwischen 0.3 und 6 mg/cm² liegt.
- 10 8. Verwendung einer Vorrichtung oder einer Matrix nach einem der vorhergehenden
Ansprüche zur Herstellung eines Arzneimittels zur Behandlung von Morbus Parkinson
oder dem Restless Leg Syndrom.
- 15 9. Verwendung einer Vorrichtung oder einer Matrix nach einem der vorhergehenden
Ansprüche zur Herstellung eines Arzneimittels zur Behandlung von Depressionen.
- 20 10. Verfahren zur Herstellung einer pharmazeutischen Matrix zur transdermalen
Verabreichung von Rotigotin, gekennzeichnet durch die aufeinanderfolgenden
Schritte:
 - (a) Auflösen von Matrixpolymer in einem Lösemittel,
 - (b) Zugabe von Rotigotin-Base in kristalliner Form in einer Menge oberhalb der
Löslichkeitsgrenze des in (a) verwendeten Matrixpolymers,
 - (c) Entfernen des Lösemittels und Erwärmen der hergestellten Matrixmasse auf eine
25 Temperatur von mindestens 74°C, bis das Rotigotin geschmolzen ist,
 - (d) Abkühlen der Matrixmasse.
- 30 11. Verfahren nach Anspruch 10, wobei die in Schritt (b) entstehende, mit Rotigotin
übersättigte Polymermasse auf einer Rotigotin-undurchlässigen Folie ausgestrichen
wird und sodann, wie in den Schritten (c) und (d) des Anspruchs 10 beschrieben,
weiterbehandelt wird.

12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das Matrixpolymer eine Löslichkeit für Rotigotin von < 3 Gew% hat.
- 5 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das Matrixpolymer ein aminoressistentes Silikon ist.
- 10 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das Matrixpolymer ein aminoressistenter Silikonhaftkleber oder eine Mischung
mehrerer aminoressistenter Silikonhaftkleber ist.

Abbildung 1/6

Matrix mit Rotigotin-Partikeln nach Dispersion ohne Lösungsvermittler, bzw.
5 Emulgator

Abbildung 2/6

Erfindungsgemäße Matrix mit amorphen Rotigotin-Partikeln

5

Abbildung 3/6

- Vergleich der in-vitro Penetrationsraten durch Mäusehaut aus den erfindungsgemäßen transdermalen Vorrichtungen (Charge 20204071) sowie aus den Vergleichsbeispielen 2a (20107012) und 2b (20204074), d.h. mit und ohne löslichkeitsvermittelnde, bzw. dispersiv wirkende Zusätze.

Abbildung 4/6

Vergleich der in-vitro Penetrationsraten durch Humanhaut aus den
erfindungsgemäßen transdermalen Vorrichtungen nach 5-monatiger Lagerung
5 (Charge 20204071) sowie aus den aus WO 99/49852 bekannten TTS (WE11682).

Abbildung 5/6

5

10

15

Beispielhafter schematischer Aufbau eines monolithischen TTS

20

Abbildung 6/6

Vergleich der in-vitro Penetrationsraten durch Mäusehaut aus den
erfindungsgemäßen transdermalen Vorrichtungen (Charge 20204071, getempert)
sowie aus den Vergleichsbeispielen 2a (20107012) und 3 (Charge 20204071,
ungetempert) nach 12-monatiger Lagerung.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/14902

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 A61K31/381 A61K9/70

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
 IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 658 975 A (DURFEE LOREN DEAN ET AL) 19 August 1997 (1997-08-19) examples 1-10 -----	1-14
A	EP 1 256 340 A (LOHMANN THERAPIE SYST LTS ; SANOL ARZNEI SCHWARZ GMBH (DE)) 13 November 2002 (2002-11-13) paragraph '0035! - paragraph '0039! -----	1-14

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

- *&* document member of the same patent family

Date of the actual completion of the International search

20 April 2004

Date of mailing of the International search report

29/04/2004

Name and mailing address of the ISA

 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax (+31-70) 340-3016

Authorized officer

Sindel, U

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 03/14902

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5658975	A 19-08-1997	US	5482988 A	09-01-1996
		CA	2139992 A1	15-07-1995
		DE	69516553 D1	08-06-2000
		DE	69516553 T2	04-01-2001
		EP	0663431 A2	19-07-1995
		JP	7216341 A	15-08-1995
		US	5607721 A	04-03-1997
EP 1256340	A 13-11-2002	EP	1256340 A1	13-11-2002
		AT	246919 T	15-08-2003
		CN	1462185 T	17-12-2003
		DE	60100595 D1	18-09-2003
		DK	1256340 T3	01-12-2003
		WO	02089777 A1	14-11-2002
		EP	1392256 A1	03-03-2004
		EP	1325742 A1	09-07-2003
		HK	1049448 A1	12-12-2003
		HU	0302897 A2	29-12-2003
		PT	1256340 T	31-12-2003
		SI	1256340 T1	31-12-2003
		US	2003027793 A1	06-02-2003
		ZA	200209980 A	24-02-2003

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/14902

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 A61K31/381 A61K9/70

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE, MEDLINE

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 5 658 975 A (DURFEE LOREN DEAN ET AL) 19. August 1997 (1997-08-19) Beispiele 1-10 -----	1-14
A	EP 1 256 340 A (LOHMANN THERAPIE SYST LTS ; SANOL ARZNEI SCHWARZ GMBH (DE)) 13. November 2002 (2002-11-13) Absatz '0035! - Absatz '0039! -----	1-14

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erschaffen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

20. April 2004

Absendedatum des internationalen Recherchenberichts

29/04/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Sindel, U

INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 03/14902

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 5658975	A 19-08-1997	US	5482988 A	09-01-1996
		CA	2139992 A1	15-07-1995
		DE	69516553 D1	08-06-2000
		DE	69516553 T2	04-01-2001
		EP	0663431 A2	19-07-1995
		JP	7216341 A	15-08-1995
		US	5607721 A	04-03-1997
EP 1256340	A 13-11-2002	EP	1256340 A1	13-11-2002
		AT	246919 T	15-08-2003
		CN	1462185 T	17-12-2003
		DE	60100595 D1	18-09-2003
		DK	1256340 T3	01-12-2003
		WO	02089777 A1	14-11-2002
		EP	1392256 A1	03-03-2004
		EP	1325742 A1	09-07-2003
		HK	1049448 A1	12-12-2003
		HU	0302897 A2	29-12-2003
		PT	1256340 T	31-12-2003
		SI	1256340 T1	31-12-2003
		US	2003027793 A1	06-02-2003
		ZA	200209980 A	24-02-2003