

Olimpiada Departamental de Física 2018 2Da Ronda - Nivel II

Nombre:	
Fecha de Nacimiento:	
Dirección:	
Departamento:	
Teléfono:	
INSTITUCIÓN EDUCATIVA:	

Problema 1: Cuatro cargas puntuales de igual magnitud $q = 2\mu C$, se colocan en los vértices de un cuadrado de lado a = 5 cm. Calcular la magnitud y dirección del campo eléctrico en el punto P, situado en el centro del cuadrado, luego la fuerza que experimenta una carga $Q = -3\mu C$, en el punto P.

Problema 2: Una carga puntual q positiva, se encuentra centrada dentro de un cubo, encontrar el flujo de campo eléctrico neto a través de la superficie del cubo, luego determinar el flujo eléctrico por una de las caras del cubo, tal y como se muestra en la figura. *Nota:* $\epsilon_0 = 8.854 \times 10^{-12} \, C^2/Nm^2$.

Problema 3: Un dipolo eléctrico posee cargas de magnitud $q=2\mu C$, separadas una distancia l=1 mm. El dipolo se encuentra dentro de un campo eléctrico cuya magnitud vale E=300 N/C.

- a) Encontrar la magnitud del momento dipolar eléctrico(en unidades SI).
- b) Sí inicialmente el momento dipolar se encuentra a 90° del campo eléctrico, gira y al pasar en la misma dirección del campo, calcule, el trabajo realizado sobre el dipolo en (J).
- c) Sí en un instante dado, la magnitud del torque que se ejerce sobre el dipolo es de $3 \times 10^{-7} Nm$, ¿el ángulo en grados entre el dipolo y el campo eléctrico vale?

Problema 4: Cuentan que para descongelar hielo en Olancho, necesitan apenas una bala y un bloque de madera colgado a una cuerda. La bala de masa m es disparada a una velocidad v_0 contra el bloque de madera, de masa M, incrustándose en el bloque una distancia d y elevándolo a una distancia máxima H. En este punto, el bloque se libera, cayendo verticalmente sobre un cubo de hielo a temperatura $0^{\circ}C$. Sabiendo que mediante este método solamente 1/8 de la energía es aprovechada, usted encuentra que el calor de fusión del agua es $L_f = v_0 - \mu_k gd$. Sí μ_k es el coeficiente de fricción dinámica entre la bala y el bloque de madera. Hallar:

- a) Cuanto hielo se descongeló.
- **b)** Una expresión para el porcentaje de eficiencia energética de este sistema de descongelamiento netamente Hondureño.

Tiempo: 4 horas Cada problema vale: 7 puntos