Section 2.10 — RISC Architecture in ARM (Mazidi)

2025-09-01

Chapter 2 · Section 2.10 — Exercises (Mazidi)

Problems are paraphrased to respect copyright. For background, see Mazidi, Ch. 2 §2.10.

63) What d	lo RISC and CISC stand for?
Answer: RISC = Reduced Instruction Set Computer; CISC = Complex Instruction Set Computer.	
64) In instruction	(RISC, CISC) architecture we can have 1-, 2-, 3-, or 4-byte
Answer: CISC Why: CISC ISA	C. As typically use variable-length encodings (e.g., 1–15 bytes in x86).
65) In	(RISC, CISC) architecture instructions are fixed in size.
	As prefer fixed-length instructions (e.g., ARM/A32 uses 32-bit fixed; Thumb uses fixed 16-bit with codings within that mode).
66) In or two cycl	(RISC, CISC) architecture instructions are mostly executed in one es.
Answer: RISC Why: RISC des	C. signs emphasize simple, pipelined, single-cycle operations and load/store memory access.
	(RISC, CISC) architecture we can have an instruction to ADD a external memory.
Answer: CISC Why: CISC allo load → operat	ows ALU operations directly on memory operands (e.g., ADD [mem], reg), whereas RISC requires
68) True o	r False. Most instructions in CISC are executed in one or two cycles.
-	extructions often have variable cycle counts depending on addressing mode/memory access; they are ntly 1–2 cycles in the classic model.

Notes for learners

- **ARM** is a **RISC** architecture: fixed-size instruction encodings per mode, **load/store** design, simple addressing in ALU ops.
- CISC favors rich addressing modes and variable-length encodings, enabling memory operands in ALU instructions.

ARM Mazidi Solutions

Page [page]/[toPage]