Variedades Complejas (tarea 1)

Eduardo León (梁遠光)

Setiembre 2020

Ejercicio. Sean a_0, \ldots, a_n enteros positivos tales que $\gcd(a_0, \ldots, a_n) = 1$. Sea \mathbb{C}^{n+1} con coordenadas complejas z_0, \ldots, z_n . Considere la acción de \mathbb{C}^* sobre $\mathbb{C}^{n+1} - \{0\}$ vía reescalamientos ponderados

$$\lambda \cdot (z_0, \dots, z_n) = (\lambda^{a_0} z_0, \dots, \lambda^{a_n} z_n)$$

El espacio proyectivo ponderado $\mathbb{CP}^n[a_0,\ldots,a_n]$ es el espacio de órbitas de esta acción.

- a) Pruebe que $\mathbb{CP}^n[a_0,\ldots,a_n]$ es un espacio compacto y Hausdorff.
- b) Observe que $\mathbb{CP}^n[1,\ldots,1]$ es el espacio proyectivo complejo usual \mathbb{CP}^n . Por tanto, los espacios proyectivos ponderados determinan una familia de espacios que generalizan las variedades complejas \mathbb{CP}^n . Muestre que los espacios proyectivos ponderados $\mathbb{CP}^n[a_0,\ldots,a_n]$ no son variedades complejas (manifolds) de manera genérica. De hecho, estos espacios son ejemplos de *orbifolds* (o V-manifolds).
- c) Si a_0 y a_2 no fuesen primos relativos, ¿podría encontrar alguna vecindad del punto $[1:0:1:0:\cdots:0]$ que sea homeomorfa a algún abierto de \mathbb{C}^n ?
- d) ¿Podría usted encontrar condiciones sobre los pesos a_i que determinen si ciertas vecindades son homeomorfas a abiertos de \mathbb{C}^n ?

Solución.

a) Sea $U = \mathbb{C}^{n+1} - \{0\}$ con coordenadas $z_k = x_k + iy_k$ para $k = 0, \dots, n$. Para enfatizar la acción de \mathbb{C}^* por reescalamientos ponderados, escribiremos U[a], indicando los pesos $a = (a_1, \dots, a_n)$. Observemos que la aplicación identidad id: $U[a] \to U[b]$ sólo es \mathbb{C}^* -equivariante cuando a = b.

Factoricemos $\mathbb{C}^* = \mathbb{R}^+ \times S^1$ y restrinjamos nuestra atención a la acción del factor \mathbb{R}^+ . Consideremos el homeomorfismo $\varphi : U[1] \to U[a]$ definido por

$$\varphi(\ldots,x_k+iy_k,\ldots)=(\ldots,f_k(x_k)+if_k(y_k),\ldots)$$

donde $f_k(x) = \operatorname{sign}(x) \cdot |x|^{a_n}$. Este homeomorfismo es \mathbb{R}^+ -equivariante, pues

$$\lambda^{a_k} f_k(x) = f_k(\lambda x),$$
 para todo $x \in \mathbb{R}, \lambda \in \mathbb{R}^+$

Por ende, ambas acciones de \mathbb{R}^+ tienen espacios de órbitas homeomorfos

$$\frac{U[1]}{\mathbb{P}^+} \cong \frac{U[a]}{\mathbb{P}^+} \cong S^{2n+1}$$

El segundo factor de \mathbb{C}^* , el círculo S^1 , actúa sobre la esfera S^{2n+1} vía rotaciones ponderadas

$$\lambda \cdot (z_0, \dots, z_n) = (\lambda^{a_0} z_0, \dots, \lambda^{a_n} z_n)$$

El espacio de órbitas resultante es $\mathbb{CP}^n[a]$. Este espacio es compacto, porque es la imagen de S^{2n+1} bajo la proyección canónica, y Hausdorff, porque la acción de S^1 es propia, ya que S^1 es compacto.

d) Tomemos un punto arbitrario $[b_0:\dots:b_n]\in\mathbb{CP}^n[a_0,\dots,a_n]$. Tras una permutación de coordenadas, podemos suponer que $b_i\neq 0$ para todo $i=0,\dots,k$, mientras que $b_i=0$ para todo $i=k+1,\dots,n$. Nuestro objetivo es determinar bajo qué condiciones el punto dado es regular (i.e., tiene vecindades suaves) o posee una singularidad de tipo orbifold. Para ello, construiremos una carta en el abierto de $\mathbb{CP}^n[a_0,\dots,a_n]$ cuya preimagen bajo la proyección canónica es $(\mathbb{C}^*)^{k+1}\times\mathbb{C}^{n-k}$.

Sea $U = (\mathbb{C}^*)^{k+1}$, equipado con la acción de \mathbb{C}^* por reescalamientos ponderados:

$$\lambda \cdot (z_0, \dots, z_k) = (\lambda^{a_0} z_0, \dots, \lambda^{a_k} z_k)$$

Sea $V = \mathbb{C}^{n-k}$, equipado con la acción de \mathbb{C}^* por reescalamientos ponderados:

$$\mu \cdot (z_{k+1}, \dots, z_n) = (\mu^{a_{k+1}} z_{k+1}, \dots, \mu^{a_n} z_n)$$

Sea $G \subset \mathbb{C}^*$ el grupo de raíces a-ésimas de la unidad, donde $a = \gcd(a_0, \ldots, a_k)$. Observemos que G estabiliza a U, de modo que el verdadero grupo actuante sobre U es \mathbb{C}^*/G . Por otro lado, G actúa de manera efectiva sobre V, así que nuestro siguiente paso será trivializar la acción de G.

Sea $W = \mathbb{C}^n/G$, equipado con la acción trivial de \mathbb{C}^* . Definamos $\varphi: U \times V \to U \times W$ por

$$\varphi(z_0,\ldots,z_n) = (z_0,\ldots,z_k,\mu^{a_{k+1}}z_{k+1},\ldots,\mu^{a_n}z_n)$$

donde la variable auxiliar $\mu \in \mathbb{C}^*/G$ satisface $\mu^a z_0 = 1$. Por cálculo directo, tenemos

$$\lambda \circ \varphi(z_0, \dots, z_n) = \varphi \circ \lambda(z_0, \dots, z_n) = (\lambda^{a_0} z_0, \dots, \lambda^{a_k} z_k, \mu^{a_{k+1}} z_{k+1}, \dots, \mu^{a_n} z_n)$$

así que φ es una aplicación \mathbb{C}^* -equivariante.

Ahora consideremos la aplicación inducida por φ entre los espacios de órbitas

$$\tilde{\varphi}: \frac{U \times V}{\mathbb{C}^{\star}} \longrightarrow \frac{U \times W}{\mathbb{C}^{\star}}$$

La acción de \mathbb{C}^* es localmente libre sobre U y es trivial sobre W, así que

$$\frac{U \times W}{\mathbb{C}^{\star}} \cong (\mathbb{C}^{\star})^k \times W$$

Demostraremos que $\tilde{\varphi}$ es un isomorfismo. Por construcción, φ es sobreyectiva, así que $\tilde{\varphi}$ también es sobreyectiva. Sin embargo, φ no es necesariamente inyectiva. Para superar este obstáculo, observemos que toda órbita en $U \times V$ pasa por puntos de la forma $(1, z_1, \ldots, z_n)$, que llamaremos representantes canónicos¹. Escribamos explícitamente

$$\varphi(1,z_1,\ldots,z_n)=(1,z_1,\ldots,z_k,\eta z_{k+1},\ldots,\eta z_n)$$

donde $\eta \in \mathbb{C}^*/G$ es el elemento identidad. Por construcción, a divide a a_0 , así que las raíces a-ésimas de la unidad también son raíces a_0 -ésimas de la unidad. Entonces, dos representantes canónicos que son enviados a la misma órbita en $U \times W$ difieren a lo más por una rotación ponderada por una raíz a_0 -ésima de la unidad. Por ende, $\tilde{\varphi}$ es inyectiva.

En conclusión, el punto $[b_0 : \cdots : b_n]$ admite vecindades localmente isomorfas a abiertos de \mathbb{C}^n si y sólo si G actúa de manera trivial sobre V, si y sólo si G es el grupo trivial, si y sólo si los pesos a_i correspondientes a las coordenadas no nulas $b_i \neq 0$ tienen máximo común divisor igual a 1.

- b) En base al análisis del ítem d), el punto $[1:0:\cdots:0]$ admite una vecindad isomorfa a \mathbb{C}^n si y sólo si el peso correspondiente a la coordenada b_0 es $a_0=1$. En particular, $\mathbb{CP}^n[a_0,\ldots,a_n]$ es una variedad compleja suave si y sólo si todos los pesos son $a_0=\cdots=a_n=1$.
- c) En base al análisis del ítem d), el punto $[1:0:1:0:\cdots:0]$ admtie una vecindad isomorfa a un abierto de \mathbb{C}^n si y sólo si los pesos a_0, a_2 correspondientes a las coordenadas b_0, b_2 satisfacen $\gcd(a_0, a_2) = 1$, lo cual no ocurre si dichos pesos no son primos relativos.

 $^{^1}$ Los representantes canónicos no son tan canónicos: toda órbita en $U \times V$ tiene a_0 de ellos, no sólo uno.