	MAC0338 -	analise	DE	ALGOP	SOMTIN
		LISTA 4			
CHECKUST					
entregue [lig [incomplete 🗖	uas augo	ndi [
chinston 7					
		0 0 0 0			• • •
questão 2					
	m o 0				
questão 3					
	Ý) 🔲 🔊 🔲				
questão 4					• • •

Nome: Sabrura franjo da Silva nºUSP: 12566182

MACO338 - ANALISE DE ALGORITMOS

LISTA 1

exercícies 1, 3(a), 3(b), 3(e) e. 4(b)

- 1. Lembre-se que l
gndenota o logaritmo na base 2 de n. Usando a definição de notação
O, prove que
- (a) 3^n não é $\mathcal{O}(2^n)$

para no = 1 e . c = 1 temes que

 $3^n \ge 1.2^n \ge 0$

ou ueja, para $T(n) = 3^n$ e $O(f(n)) = O(a^n)$ não temos que $T(n) \le c f(n)$ para todo $n \ge no$

(b) $\log_{10} n \in O(\lg n)$

para no=1, c=1 e n > no termes que

 $0 \le \log 10 \text{ n} \le 1 \cdot \log n$

(c) $\lg n \in O(\log_{10} n)$

para no = 1, c = 4 e n > no temos que

O. E. Ign . E . 4 . log 10 n.

	2.	U	sar	ıdo	a d	lefin	nição	o de	e no	otaç	ão	Ο,	pro	ve o	que	۰	۰	٠	•	۰	۰	۰	۰	•	•	•	۰	•	۰	۰	۰	۰	۰	۰	۰	۰	٠	۰
																۰	۰	٠	٠	۰	۰	۰	۰	•	•		٠	•	٠	۰	٠	٠	٠	۰	۰	•	٠	۰
0	۰		۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	٠	٠		۰	۰	۰	•			٠	٠	۰	۰	۰	۰	٠	۰	۰	•	٠	۰
0	(0) 1	lø r	n =	= C)(los	g ₁₀ 1	2)				۰					۰	۰			•	۰					٠				۰	۰				•		
	(0	, .	. 6	-	-	-(10)	⊃10 ′	-	•		•	۰			٠	•	•	۰	٠		•	۰					۰	۰	۰	•		٠		•	•	•	۰	
	۰				٠	٠				٠	٠				٠		٠	٠					٠													•		
	۰					٠					٠					٠	٠													٠						•		
						۰	٠				۰	۰			۰	۰	۰	٠			٠								٠	٠						•		
•	۰					٠	•	•	•		•	•	•		٠	•	•	•	•	•		•	•	•	•		•	•	•		•	•	•		•	•	•	
•	۰		•	•	٠	٠	٠	٠	•	۰	٠	٠	٠	۰	٠	٠	٠	٠	•	۰	٠	•	۰	•	•	•	٠	٠	٠	٠	•	•	•	٠	٠	•	•	
۰	۰		٠	•	۰	۰	٠	۰	۰	۰	۰	۰	٠	٠	۰	۰	۰	٠	•	۰	٠	۰	۰	•	•	•	۰	٠	٠	۰	٠	٠	•	۰	۰	•	•	•
0	۰		۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	٠	۰	۰	۰	۰	•	•		۰	۰	۰	۰	٠	٠	٠	۰	۰	•	۰	۰
0	۰		۰			۰	۰	۰		۰	۰	۰	۰	۰	۰	۰	۰	۰	۰		۰	۰	۰				۰	۰	۰	۰	۰	۰	٠		0	•		0
0	۰		۰	۰		۰	۰	۰		۰	۰	۰	۰		۰	۰	۰	۰	۰		۰	۰	۰				۰	•	۰	۰	۰	۰	۰	۰		•	۰	0
•	٠		•	•	۰	۰	•	•	۰	۰	۰	٠	٠	•	٠	۰	۰	٠	٠	۰	٠	•	۰	•	•		٠	٠	٠	۰	•	•		۰	۰	•	٠	
					۰	۰	٠	۰	۰	٠	۰	٠	٠		٠	٠	۰	٠		۰	٠	•	۰				٠		٠	٠				۰	٠	•		
					٠	٠	٠			۰	٠	٠	۰		٠		۰	۰			•						۰	٠	۰	۰				٠		•		
																					0																	
					٠	٠					٠				٠		٠	٠																				
						۰	۰				٠	۰			۰	۰	۰														۰							
															•																							
۰	۰		•	•	•	۰	۰	•	•	•	۰	۰	•	•	۰	۰	۰	•	•	۰	•	۰	•				۰	•	۰	•	۰	۰	•	•	•	۰	•	۰
۰	۰		•	•	۰	۰	٠	۰	•	۰	۰	٠	٠	۰	٠	٠	٠	٠	•	۰	۰	•	۰	•	•	•	٠	٠	٠	۰	•	•	•	۰	٠	•	•	۰
۰	۰		•	•	۰	۰	۰	۰	۰	۰	۰	۰	•	•	۰	۰	۰	•	•	۰	٠	۰	۰	•	•	•	٠	•	•	۰	۰	۰	•	۰	۰	۰	٠	۰
0	۰		۰	۰	۰	۰	۰	0	۰	۰	۰	۰	۰		۰	۰	۰	٠	٠	۰	۰	۰	0	•	•	•	۰	۰	۰	۰	۰	۰	٠	۰	۰	•	۰	0
0	۰		۰	•	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	0	۰	۰	•	•	•	۰	۰	۰	۰	۰	۰	٠	۰	۰	•	۰	0
0	۰		۰	۰		۰	۰	۰		۰	۰	۰	۰		۰	۰	۰	۰	۰		۰	۰	۰				۰	•	۰	۰	۰	۰	۰	۰	•	•	۰	0
•	۰		٠	٠	۰	٠	٠	۰	٠	۰	٠	٠	٠	۰	٠	٠	٠	٠	٠	۰	۰	٠	۰	•	•		٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	
۰	۰		٠	•	۰	۰	٠	۰	۰	٠	۰	٠	٠	٠	٠	۰	۰	٠	٠	۰	٠	•	۰	•	•		٠	٠	٠	٠	٠	•	٠	۰	۰	•	٠	
0	۰		٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	۰	۰	٠	٠	٠	٠	٠	٠	۰	۰	٠	•	•		٠	٠	۰	۰	•	٠	٠	٠	٠	•	٠	۰
0	۰						۰					۰						۰	•		۰	۰					٠	•	۰		۰	۰				•	•	
	۰						۰					۰																			۰	۰				•		
	۰				۰	۰		•	۰	۰	۰	٠	۰		٠	۰	۰	٠	٠	•	۰	•	۰				٠	٠	٠	۰				۰	•	•	٠	
	۰				٠	٠		۰		٠	٠		٠		٠	٠	٠			٠	٠		٠							٠					•	•		
						۰	٠			٠	۰	۰			۰	۰	۰	٠					۰							٠						•		
																					0															0		
							٠																															
					٠	۰				٠	٠				٠	٠	٠				٠		٠							٠						•		
																											•											
																											•											
																											٠											
																											۰											
۰	۰		۰	٠	٠	۰	٠	٠	٠	۰	۰	٠	۰	۰	۰	٠	۰	۰	۰	۰	۰	۰	۰	•	•	•	٠	•	•	۰	۰	۰	٠	۰	۰	•	۰	۰
۰	۰		•	٠	٠	۰	۰	٠	٠	۰	٠	٠	٠	۰	۰	٠	۰	۰	٠	۰	۰	٠	۰	•	•	•	٠	•	٠	۰	۰	۰	•	۰	۰	•	•	۰
۰	۰		•	٠	۰	٠	٠	۰	۰	0	0	۰	٠	۰	۰	۰	0	۰	۰	٠	0	٠	۰		•		٠	•	٠	٠	٠	٠	•	۰	۰	۰	•	۰
			۰	٠	۰	0	۰	٠	٠	۰	۰	۰	۰		۰	۰	۰	۰		۰	۰	۰	۰	•	•		۰	•	۰	۰	۰	۰	٠	۰	۰	•	۰	۰
	۰		•	٠	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	٠	0	۰	۰				۰	۰	۰		۰	۰	•	۰	•	•	۰	
	۰				۰	۰	٠				۰	۰				۰	۰	•		۰		۰							۰	۰	۰	۰				•		

3. Prove ou dê um contra-exemplo para as afirmações abaixo:

(a)
$$\lg \sqrt{n} = O(\lg n)$$
 (la $\sqrt{n} \in O(\lg n)$)

para $no = 1$, $c = 1$ is $n \ge no$ temps que

 $O \le \lg \sqrt{n} \le 1$, $\lg \sqrt{n}$

(b) Se
$$f(n) = \mathcal{O}(g(n))$$
 e $g(n) = \mathcal{O}(h(n))$ então $f(n) = \mathcal{O}(h(n))$.

Sabernes que funções que são O(g(n)) são funções que não crescem mais rapido que g(n), assim como f(n). E, assim, temos que g(n) é uma função que não cresce mais vapido que h(n), pois g(n) = O(h(n)). Portanto, se f(n) cresce mais lentamento que g(n) e g(n) cresce mais lentamente que h(n), f(n) também não cresce mais apido que h(n), $\log p$ f(n) = O(h(n)).

(e) Se
$$f(n) = \mathcal{O}(g(n))$$
 então $2^{f(n)} = \mathcal{O}(2^{g(n)})$.

Sabernes que f(n) e uma função que não cresce mais rápido que g(n). E 2^{∞} é uma função crescente para >> 0. Portanto, Temos que $0 \le 2^{f(n)} \le 2^{g(n)}$ e, assim, $2^{f(n)} = 0$ ($2^{g(n)}$).

4. Prove que

(b)
$$\sum_{i=1}^{n} \frac{i}{2^i} \le 2$$
.

Paxa
$$\sum_{i=1}^{n} \frac{i}{2^{i}}$$
 temos

$$\sum_{i=1}^{n} \frac{i}{2^{i}} = \frac{1}{2} + \frac{2}{2^{2}} + \frac{3}{2^{3}} + \frac{4}{2^{4}} + \frac{5}{2^{6}} + \frac{6}{2^{6}} + \dots + \frac{5}{2^{n}}$$

i els ralar abos axaq «PG sistien me o-abmaxaqer ciratemar o reverse comebaq

boxo
$$i = 7$$
 => $\frac{3}{7}$

• pasa
$$i = 2$$
 => $\frac{1}{2}$ + $\frac{1}{4}$ + $\frac{1}{4}$

• paxa
$$i = 3$$
 $\Rightarrow \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$

Portante para
$$i = n$$
 = $\frac{1}{2}$ + $\frac{1}{4}$ + $\frac{1}$

como o venatório fai dividido em PGs tomos que a renão de cada uma é $\frac{1}{2}$.

Cada PG à uma vérie geométrica de vação $x = \frac{1}{2}$, se x < 1, então a vérie converge para $\frac{a_1}{1-x}$.

• paxa a limba 1 Termes as =
$$\frac{1}{2}$$
, então

$$\sum_{i=1}^{\infty} \frac{1}{2^i} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$

$$\sum_{i=2}^{\infty} \frac{1}{2^i} = \frac{\frac{1}{4}}{1 - \frac{1}{2}} = \frac{1}{2}$$

• para a linha 3 temes
$$a3 = \frac{1}{8}$$
, antão

$$\sum_{\infty}^{i=3} \frac{3}{i} = \frac{1}{i} = \frac{3}{i}$$

$$\sum_{i=N}^{i=N} \frac{\Im_i}{7} = \frac{7}{7} = \frac{3}{7} = \frac{3}{1}$$

Assim, pedemos perceber que usurge uma véxie de tipe:
$$\sum_{i=1}^{\infty} \frac{1}{x^{i-1}}$$
 a partir das

semas das PGs.

Seja a vérie
$$\sum_{i=1}^{\infty} \frac{1}{2^{i-1}} = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \cdots$$

da algebra elementar temos a seguinte propriedade

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + ... + ab^{n-2} + b^{n-1})$$

para a = 1 $a b = \frac{1}{a}$.

vera
$$sm = 1 + \frac{1}{2} + \cdots + \frac{1}{2^{i-1}}$$

$$\Rightarrow \left(1 - \frac{1}{2^n}\right) = \left(1 - \frac{1}{2}\right) \times m = 2\left(1 - \frac{1}{2^n}\right)$$

calculando o limite:

$$\lim_{n\to\infty} \sin = \lim_{n\to\infty} a\left(1 - \frac{1}{2n}\right) = 2$$

Portanto, a vérie $\sum_{i=1}^{n} \frac{1}{2^{i-1}}$ converge a a soma é igual a d.

Assim, podomos concluir que
$$\sum_{i=1}^{N} \frac{i}{2^i} \stackrel{!}{\sim} 2$$