Tutorial: Multi-Objective Optimization and Recommendations

Yong Zheng, Illinois Institute of Technology, USA David (Xuejun) Wang, Morningstar, Inc., USA

at the IEEE International Conference on Data Mining (ICDM) 2022

Tutorial Schedule

- Part 1: Multi-Objective Optimization (MOO)
 - Presenter: Dr. David (Xuejun) Wang
 - Time: 10:30 AM 12:00 PM
 - ----- Lunch: 12:00 1:00 PM ---
- Part 2: Recommender Systems with MOO
 - Presenter: Dr. Yong Zheng
 - Time: 1:00 PM 3:00 PM
- Website: https://moorecsys.github.io/

Part 2: Recommender Systems with Multi-Objective Optimization

Yong Zheng
Illinois Institute of Technology, USA

Time: 1:00 - 3:00 PM

https://moorecsys.github.io/

Agenda

Agenda

Recommender Systems (RecSys)

Item recommendations tailored to user preferences

How it works

User Preferences on the items

How it works

ILLINOIS TECH

Traditional Recommender Systems

- User demographic information + Item features
- Users' preferences on the items

Different Types of Recommender Systems

Context-Aware RecSys Incorporate context info (time, location, etc) into RecSys

Group RecSys

Recommend items to a group of users, e.g., group dinning

Multi-Stakeholder RecSys Produce recommendations by considering multiple stakeholders, e.g., buyers and sellers on eBay

Multi-Task RecSys Build joint learning model by considering multiple tasks, e.g., RecSys + opinion texts

Recommendation Algorithms

- Memory-Based Approaches
 - User-Based & Item-Based Collaborative Filtering
- Model-Based Approaches
 - Optimize objectives by machine learning
 - E.g., matrix factorization, deep learning models
- Content-Based Models
- Hybrid Models

Agenda

Single-Objective Recommender Systems

- Model-Based RecSys
 - It is usually a process of single-objective optimization
 - Example: Minimizing errors in rating predictions

$$\min_{q^*,p^*} \sum_{(u,i)\in\kappa} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$
Sum of squared errors regularization term

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.

Single-Objective Recommender Systems

- Model-Based RecSys
 - It is usually a process of single-objective optimization
 - Example: Maximizing ranking in *learning-to-rank*

$$\min \sum_{(u,i,j) \in D_S} -\ln \sigma(p_u^T q_i - p_u^T q_j) + \lambda(||p_u||^2 + ||q_i||^2)$$
Pairwise ranking loss regularization term

Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618.

Why MOO in RecSys

- There is an emerging demand in MOO
 - Traditional RecSys
 - Example: RecSys balancing multiple metrics, e.g., news

Why MOO in RecSys

- There is an emerging demand in MOO
 - New Types of RecSys
 - Example: Multi-stakeholder RecSys, e.g., marketplace

Motivations of Using MOO in RecSys

- 1) Finding a balance among multiple objectives
 - Considering multiple RecSys metrics
 - Considering objectives from multiple stakeholders
 - Looking for improvements on multiple tasks

2) Improve RecSys by considering multiple objectives

- Improving Group RecSys by considering diff objectives
- Improving RecSys by considering objs in pre-processing

How to use MOO/its Knowledge in RecSys

- Recommendation Task as a MOO Process
 - A MOO is involved in recommendation process
 - MOO techniques introduced by David can be reused to serve in recommender systems
- 2) Enhanced RecSys with Dominance Relations
 - There are is multi-objective optimization process
 - Knowledge or skills (e.g., dominance relations) from MOO can be reused to improve recommendations

Agenda

How to use MOO/its Knowledge in RecSys

- Recommendation Task as a MOO Process
 - A MOO is involved in recommendation process
 - MOO techniques introduced by David can be reused to serve in recommender systems
- 2) Enhanced RecSys with Dominance Relations
 - There are is multi-objective optimization process
 - Knowledge or skills (e.g., dominance relations) from MOO can be reused to improve recommendations

- How to use MOO/its Knowledge in RecSys
 - 1) Recommendation Task as a MOO Process
 - A MOO is involved in recommendation process
 - MOO techniques introduced by David can be reused to serve in recommender systems
 - 2) Enhanced RecSys with Dominance Relations
 - There is no multi-objective optimization process
 - Knowledge or skills (e.g., dominance relations) from MOO can be reused to improve recommendations

Contexts in which we need MOO in RecSys

Rcap: MOO methods

- Scalarization
 - Weighting Methods
 - ϵ -Constraint Method
 - Normal Constraint (NC)
 - •
- Multi-objective evolutionary algorithms (MOEA)
 - GA-based MOEA
 - PSO-based MOEA
 - •

Contexts in which we need MOO in RecSys

For each category

Contexts in which we need MOO in RecSys

- Why we need MOO in this context
 - Relevance or accuracy is not the only focus
 - For example, news and music recommendations
 - Boring if always recommending the same types of items
 - Diversity: try something different
 - Novelty: try something never experienced before
 - For example, item recommendations in e-commerce
 - Co-sales
 - Bundle sales

- Objective definitions in this context
 - Optimize more metrics in addition to accuracy

Accuracy

Relevance of recommendations e.g., precision, recall, NDCG, etc

Novelty

Unknown to the user. but potentially interested in

Diversity

Recommend something different, e.g., different item categories

Coverage

User coverage & item coverage

Kaminskas, M., & Bridge, D. (2016). Diversity, serendipity, novelty, and coverage: a survey and empirical analysis of beyond-accuracy objectives in recommender systems. ACM TIIS, 7(1), 1-42.

Goals

- Improve other metrics at no loss or acceptable/limited loss on accuracy
- Challenges
 - No clear rules to define the "acceptable/limited" loss, without more work in user studies

Case Studies

Using MOEA in MOO process

Ribeiro, M. T., Lacerda, A., Veloso, A., & Ziviani, N. (2012). Pareto-efficient hybridization for multi-objective recommender systems. In ACM RecSys 2012. Decision variables: weights in aggregations

Using MOEA in MOO process

Chai, Z., Li, Y., & Zhu, S. (2021). P-MOIA-RS: a multi-objective optimization and decision-making algorithm for recommendation systems. Journal of Ambient Intelligence and Humanized Computing, 12, 443-454.

Decision variables: recommended items

Note: most of the research in this category utilized MOEA as the MOO method

Case Study 1: Hybrid Recommender

Ribeiro, M. T., Lacerda, A., Veloso, A., & Ziviani, N. (2012). Pareto-efficient hybridization for multi-objective recommender systems. In ACM RecSys 2012.

- Application: balancing accuracy, novelty, diversity
- Recommendation Framework

Case Study 1: Hybrid Recommender

Ribeiro, M. T., Lacerda, A., Veloso, A., & Ziviani, N. (2012). Pareto-efficient hybridization for multi-objective recommender systems. In ACM RecSys 2012.

MOEA as the MOO Method

- Consider accuracy, diversity, novelty as objectives
- Use Strength Pareto Evolutionary Algorithm as MOEA optimizer
 - Encoding/Decision variables: the weights in the hybrid model

 $\underset{i \in P}{arg \ max} \sum_{i=1}^{r-1} Q_j O_{ij}$

- Output: a Pareto optimal set
- Select the best single solution from Pareto set
 - Use a weighted sum on the three objectives
 - Try different set of weights (Q_i) manually
- Results: balancing multiple metrics

Case Study 2: Learn recommendations by MOEA

Chai, Z., Li, Y., & Zhu, S. (2021). P-MOIA-RS: a multi-objective optimization and decision-making algorithm for recommendation systems. Journal of Ambient Intelligence and Humanized Computing, 12, 443-454.

Recommendation Model

Notes: Using IBCF to produce top-K list is an optional step

Summary

- Most of the research in this category utilized MOEA to balance accuracy, diversity, novelty, etc
- The method in case study #2 is more general —> learning the recommendation list directly
- The method in case study #1 is a special case to be applied on hybrid recommender systems

Contexts in which we need MOO in RecSys

User-based Collaborative Filtering (UBCF)

- Why we need MOO in this context
 - Assumption: the issue of accuracy and diversity in the recommendations by UBCF is relevant with the neighborhood selection in UBCF
 - Considering both user-user similarities and diversity may deliver more diverse recommendations

User-based Collaborative Filtering (UBCF)

Objective definitions

- Similarity (u, N_{...}), while N_{...} is set of user neighbors
- Diversity (N_u) = intra-group diversity of neighbors

Goals

Improve or balance accuracy and diversity

User-based Collaborative Filtering

Case Study: Using scalarization as the MOO method

Karabadji, N. E. I., Beldjoudi, et al. (2018). Improving memory-based user collaborative filtering with evolutionary multi-objective optimization. Expert Systems with Applications, 98, 153-165.

Scalarization method + optimization by using GA

- MOO is used for neighbor selection only
- GA is used as a single-objective optimizer

User-based Collaborative Filtering (UBCF)

Summary

- These work aimed to improve accuracy and diversity but were designed for UBCF specifically
- Drawback: the assumption that the diversity of the neighbors resulting in diversity in recommendations may not be always true

RecSys with MOO

Contexts in which we need MOO in RecSys

- Why we need MOO in this context
 - Unsupervised learning may be used as the intermediate process in some recommendation models
 - Clustering to be used to create user or item clusters
 - Association rules to be produced in order to assist rulebased recommendation models
 - Using MOO to produce better outputs which can assist RecSys

- Objective definitions
 - Clustering, e.g.,
 - Intra-cluster distance to get a dense cluster
 - Inter-cluster distance to separate with other clusters

ILLINOIS TECH

- Objective definitions
 - Association Rules, e.g.,
 - Support to produce frequent item sets
 - Confidence to generate useful rules

$$Supprt = \frac{Frequency(X,Y)}{N}$$

$$Rule: X \Rightarrow Y \longrightarrow Confidence = \frac{Frequency(X,Y)}{Frequency(X)}$$

$$Lift = \frac{Support}{Support(X) \times Support(Y)}$$

better outputs to assist RecSys

- Case Study: Using scalarization in association rules
 - Application: produce rules like $(T_1, T_2) \rightarrow T_3$. If a user likes T_1 and T₂, it infers that T₃ is a good recommendation candidate

Results: better than using MOPSO (a MOEA method)

Neysiani, B. S., Soltani, N., Mofidi, R., & Nadimi-Shahraki, M. H. (2019). Improve performance of association rule-based collaborative filtering recommendation systems using genetic algorithm. Int. J. Inf. Technol. Comput. Sci, 11(2), 48-55.

Summary

- MOO for preprocessing or unsupervised learning (clustering, rule mining, etc.) were well-developed
- The number of these applications in RecSys is limited

RecSys with MOO

Contexts in which we need MOO in RecSys

- Why we need MOO in this context
 - Group RecSys: produce item recommendations to a group of users, such as group dinner or travel
 - Key factors
 - Individual tastes
 - Group satisfaction

- Objective definitions
 - Individual satisfaction
 - Group fairness/satisfaction
- Goals
 - Produce better group recommendations

Case Study: Using scalarization

Xiao, L., Min, Z., Yongfeng, Z., Zhaoquan, G., Yiqun, L., & Shaoping, M. (2017, August). Fairness-aware group recommendation with pareto-efficiency. In ACM RecSys, 2017

individual satisfaction $U(u, I) = \frac{1}{K \times rel_{max}} \sum_{i \in I} rel(u, i)$

I = a set of K recommended items u = a member in the group g

$$SW(g,I) = \frac{1}{|g|} \sum_{u \in g} U(u,I), \forall g, I$$

Objective 2: group fairness

Least Misery:
$$F_{LM}(g, I) = \min\{U(u, I), \forall u \in g\}$$

$$Min - Max \ Ratio: \ F_M(g, I) = \frac{\min\{U(u, I), \forall u \in g\}}{\max\{U(u, I), \forall u \in g\}}$$

Case Study: Using scalarization

Xiao, L., Min, Z., Yongfeng, Z., Zhaoquan, G., Yiqun, L., & Shaoping, M. (2017, August). Fairness-aware group recommendation with pareto-efficiency. In ACM RecSys, 2017

- MOO methods
 - Scalarization $\lambda \cdot SW(g,I) + (1-\lambda) \cdot F(g,I)$
 - Optimization: greedy search/integer programming
- Results
 - By considering group fairness, it is able to improve group recommendations in terms of F₁ and NDCG

Summary

- Using MOO in Group RecSys is promising, but the number of research work is limited in the current stage
- The goal is to improve group RecSys, by taking multiple objectives into considerations

RecSys with MOO

Contexts in which we need MOO in RecSys

- Why we need MOO in this context
 - The end user is not the only stakeholder

 RecSys should be built by considering the item utility from the perspective of different stakeholders

Objective definitions

- It varies from domains to domains
- For each stakeholder, there's at least one objective
 - E-Commerce or Marketplace
 - Buyer: user preferences on items, budget
 - Seller: profits
 - Platform: commission fees
 - Delivery company: costs and profits
 - Job seeking
 - Job seeker: user preferences
 - Recruiter: talent requirements

Goals

- Deliver item recommendations by balancing the needs of multiple stakeholders
- With acceptable loss on the consumer side
- Challenges
 - Which stakeholders should be considered
 - How to define and achieve the "balance"
 - No clear rules to define the acceptable loss

Case Studies

Using scalarization as the MOO method

Lin, X., Chen, H., Pei, C., et al. (2019). A pareto-efficient algorithm for multiple objective optimization in e-commerce recommendation. In ACM RecSys, 2019.

Using MOEA as the MOO method

Zheng, Y., Ghane, N., & Sabouri, M. (2019). Personalized educational learning with multi-stakeholder optimizations. In Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization (pp. 283-289).

Case Study 1: Using scalarization in E-Commerce

- Objectives
 - CTR (Click Through Rate)
 - **GMV** (Gross Merchandise Volume)

Lin, X., Chen, H., Pei, C., et al. (2019). A pareto-efficient algorithm for multiple objective optimization in e-commerce recommendation. In ACM RecSys, 2019.

Figure 1: The trade-off between CTR and GMV. The Pearson **Correlation Coefficient is -0.343086, with** p < 0.01.

Case Study 1: Using scalarization in E-Commerce

- MOO Method
 - Define a loss function for each objective

CTR
$$\mathcal{L}_{CTR}(\theta, x, y, z) = -\frac{1}{N} \sum_{j=1}^{N} log(P(y_j | \theta, x_j))$$
, i.e., point-wise learning-to-rank

GMV
$$\mathcal{L}_{GMV}(\theta, \mathbf{x}, y, z) = -\frac{1}{N} \sum_{j=1}^{N} h(price_j) \cdot log(P(z_j = 1 | \theta, \mathbf{x}_j))$$

x: impression, y: clicks, z: purchases

 Use weighted sum as the scalarization Joint Loss = $\omega \cdot L_{CTR} + (1 - \omega) \cdot L_{GMV}$

Case Study 1: Using scalarization in E-Commerce

- MOO Method
 - Use weighted sum as the scalarization Joint Loss = $\omega \cdot L_{CTR} + (1 - \omega) \cdot L_{GMV}$
 - Try different weights to get Pareto Set
 - Select a single best solution by using Least Misery strategy, i.e., minimizing the highest loss function of the objectives

```
\min \max\{\mathcal{L}_1, \mathcal{L}_2, \dots, \mathcal{L}_K\}
```

Case Study 1: Using scalarization in E-Commerce

Results

 Present improved NDCG and other metrics (e.g., GMV,) in both offline and online experiments

Approaches	CTR	IPV	PAY	GMV
CXR-RL	13.68	20.60	-1.027	-3.197
PO-EA	4.442	8.957	3.399	-3.038
PE-LTR	13.80*	23.76*	20.09*	3.623*

Three-days online experiments

Table presents improvement ratio over a same baseline

CTR (Click Through Rate) IPV (Individual Page View) PAY (number of payments) **GMV** (Gross Merchandise Volume)

Case Study 2: Using MOEA in Education

- Application: recommending Kaggle data sets to students for their data science projects
- Data: both instructors and students had multicriteria ratings on the data, and their expectations in shape of the multi-criteria rating too

Table 1: Example of The Educational Data

User	Item	Overall Rating	App	Data	Ease
10	41	4	4	4	4
10	60	2	2	2	2
12	21	4	4	5	4
•••	•••		•••	•••	•••

Table 2: User Expectation Data

User	App	Data	Ease
10	5	4	3
12	4	4	4

Case Study 2: Using MOEA in Education

Conflicting Interests

- Instructors: do not expect students to select projects that are too easy, but also give them the chance to select their preferred ones
- Students: someone prefer challenging ones; someone like easy ones

Objectives

- Maximizing item utility from perspective of students
- Maximizing item utility from perspective of instructors
- Maintaining limited loss in recommendations, e.g., NDCG

Zheng, Y., Ghane, N., & Sabouri, M. (2019). Personalized educational learning with multi-stakeholder optimizations. In Adjunct Publication of the 27th Conference on UMAP (pp. 283-289).

Case Study 2: Using MOEA in Education

- A utility-based recommendation model
 - Utility can be denoted by similarity between multi-criteria rating vector (R) and expectation vectors (E)
 - Student, $U_{s,t} = similarity (E_{s,t}, R_{s,t})$
 - Instructor, $U_{p,t} = similarity (E_p, R_{p,t})$
 - Ranking score to sort items = $\alpha \times U_{s,t} + (1 \alpha) \times U_{p,t}$

Utility-Based Multiple Stakeholder Recommendation

Case Study 2: Using MOEA in Education

Case Study 2: Using MOEA in Education

- MOO methods
 - Using MOEA as the multi-objective optimizer
 - Open-Source MOEA, http://moeaframework.org
 - Demo, https://github.com/irecsys/Tutorial MSRS
 - MOEA will produce a Pareto set
 - Select the single best solution based on TOPSIS
 - Calculate the maximal objectives by using single-objective recommendation model, e.g. maximizing recommendation qualities by considering students/instructors only
 - Then calculate the average loss of the objectives
 - The solution with minimal loss is the best one

- Case Study 2: Using MOEA in Education
 - Results
 - Balancing the needs of instructors and students at a small loss at recommendations (NDCG & F₁)

	U _{S,L}	U _{P,L}	F ₁	NDCG	Loss
UBRec	0.181	0.134	0.085	0.126	0.180
Rank _p	0.072	0.298	0.027	0.039	0.425
MSRS	0.199	0.251	0.074	0.107	0.063

 UBRec: the best model considering students only Rank_p: the best model considering instructors only

Summary

- The nature of multi-stakeholder RecSys is involved with a process of multi-objective optimization
- Multi-stakeholder and multi-task RecSys are two major applications of using MOO in RecSys

RecSys with MOO

Contexts in which we need MOO in RecSys

Why we need MOO in this context

- Multi-task RecSys refer to the recommender systems which optimize multiple tasks by a joint learning process
- Joint learning is not novel, but multi-task RecSys usually share some common representations
 - Latent factors
 - Feature spaces
 - Neural network layers

- Objective Definitions
 - It varies from tasks to tasks

Others: classifications, regressions, etc

College of Computing

Others: classifications, regressions, etc

Goals

- Improve tasks by a joint learning process
- Assumption: the improvement is dependent with the correlation of the tasks and the power of the shared representations

Case Studies

Using Scalarization in Multiple RecSys tasks

Hadash, G., Shalom, O. S., & Osadchy, R. (2018). Rank and rate: multi-task learning for recommender systems. In ACM RecSys 2018.

Using Scalarization in RecSys + Text tasks

Li, P., Wang, Z., Ren, Z., Bing, L., & Lam, W. (2017). Neural rating regression with abstractive tips generation for recommendation. In ACM SIGIR 2017.

Case Study 1: Scalarization in RecSys Tasks

Hadash, G., Shalom, O. S., & Osadchy, R. (2018). Rank and rate: multi-task learning for recommender systems. In ACM RecSys 2018.

- Application: build a joint learning model which optimize the rating prediction and ranking tasks
- Why?
 - The results in the rating prediction task are not always consistent with the results in ranking

Case Study 1: Scalarization in RecSys Tasks

Hadash, G., Shalom, O. S., & Osadchy, R. (2018). Rank and rate: multi-task learning for recommender systems. In ACM RecSys 2018.

Recommendation Models

- A multi-task framework
- Share user & item embeddings
- A joint learning process
 Loss = weighted sum of L_R & L_P

$$O = \min_{U,I} \alpha \cdot L_R(\mathcal{R}, D; U, I) + (1 - \alpha) \cdot L_P(\mathcal{P}, D; U, I) + \lambda(\|U\|^2 + \|I\|^2).$$

 Tune up α and λ to find the best model by observing the recommendation metrics

Case Study 2: Scalarization in RecSys + Text Tasks

Li, P., Wang, Z., Ren, Z., Bing, L., & Lam, W. (2017). Neural rating regression with abstractive tips generation for recommendation. In ACM SIGIR 2017.

 Application: optimize rating prediction and generate corresponding tips according to user's reviews

Case Study 2: Scalarization in RecSys + Text Tasks

Li, P., Wang, Z., Ren, Z., Bing, L., & Lam, W. (2017). Neural rating regression with abstractive tips generation for recommendation. In ACM SIGIR 2017.

Case Study 2: Scalarization in RecSys + Text Tasks

Li, P., Wang, Z., Ren, Z., Bing, L., & Lam, W. (2017). Neural rating regression with abstractive tips generation for recommendation. In ACM SIGIR 2017.

Scalarization in the joint learning process

$$\mathcal{J} = \min_{\mathbf{U}, \mathbf{V}, \mathbf{E}, \Theta} (\lambda_r \mathcal{L}^r + \lambda_c \mathcal{L}^c + \lambda_s \mathcal{L}^s + \lambda_n (\|\mathbf{U}\|_2^2 + \|\mathbf{V}\|_2^2 + \|\Theta\|_2^2))$$

Rating loss
$$\mathcal{L}^r = \frac{1}{2|X|} \sum_{u \in \mathcal{U}, i \in I} (\hat{r}_{u,i} - r_{u,i})^2$$

Review loss
$$\mathcal{L}^c = -\sum_{k=1}^{|\mathcal{V}|} \mathbf{c}^{(k)} \log \hat{\mathbf{c}}^{(k)}$$

Tips loss
$$\mathcal{L}^{s} = -\sum_{w \in Tips} \log \hat{\mathbf{s}}^{(I_w)}$$

Case Study 2: Scalarization in RecSys + Text Tasks

Li, P., Wang, Z., Ren, Z., Bing, L., & Lam, W. (2017). Neural rating regression with abstractive tips generation for recommendation. In ACM SIGIR 2017.

- Results: improve both tasks
 - Tune up the weights in the joint loss function
 - Observing metrics for two tasks
 - Rating prediction task $MAE = \frac{1}{N} \sum_{i,j} |r_{u,j} \hat{r}_{u,j}|$
 - Tips generation $ROUGE-N(s) = \sum_{g_n \in S_h} C_m(g_n) / \sum_{g_n \in \tilde{S}} C(g_n)$ Measuring the overlapping between generated tips and true tips based on the co-occurrence on the n-grams

Summary

- The nature of a multi-task RecSys is involved a process of joint learning which is a stage of multiobjective optimization
- Weighted sum is the most common scalarization method in these work

Summary

- However
 - Tune up parameters as long as it can beat baselines But there could be better solutions potentially missed in the solution search

RecSys with MOO

How to use MOO/its Knowledge in RecSys

- 1) Recommendation Task as a MOO Process
 - A MOO is involved in recommendation process
 - MOO techniques introduced by David can be reused to serve in recommender systems

2) Enhanced RecSys with Dominance Relations

- There are is multi-objective optimization process
- Knowledge or skills (e.g., dominance relations) from MOO can be reused to improve recommendations

ILLINOIS TECH College of Computing 81

Case Studies

RecSys Using Non-dominated Neighbors

- Özsoy, et al. "Multi-objective optimization based location and social network aware recommendation." 10th IEEE International Conference on Collaborative Computing. IEEE, 2014.
- Zheng, Yong. "Non-dominated differential context modeling for context-aware recommendations." Applied Intelligence (2022): 1-14.

RecSys Using Pareto Ranking

- Ribeiro, Marco Tulio, et al. "Multi-objective pareto-efficient approaches for recommender systems." ACM Transactions on Intelligent Systems and Technology (TIST) 5.4 (2014): 1-20.
- Zheng, Yong, and David Wang. "Multi-Criteria Ranking: Next Generation of Multi-Criteria Recommendation Framework." IEEE Access 10 (2022)

ILLINOIS TECH College of Computing 82

- Case Study 1: RecSys Using Non-dominated Neighbors
- Recap: What is dominance relation?

A solution x is said to be Dominated by x^* if and only if

$$\min_{x}(f_1,f_2)$$

$$f_m(x^*) \le f_m(x)$$
 for all $m = 1, 2, ..., M$

and there exists at least one m' such that:

$$f_{m'}(x^*) < f_{m'}(x)$$

A and B dominate C, D is only dominated by A.

A and B: no dominance relationship

D and B: no dominance relationship

Case Study 1: RecSys Using Non-dominated Neighbors

• Özsoy, et al. "Multi-objective optimization based location and social network aware recommendation." IEEE Conference on Collaborative Computing. IEEE, 2014.

Steps to find Non-Dominated Ngbrs

- Calculate user-user sims based on multiple features (F1, F2, F3,..), e.g., co-ratings, locations, demographic information, etc
- Given a user u0, build a dominance matrix for potential neighbors based on dominance relations
- ND-Ngbrs = users with colsum = 0

$$dom(u,v) = \left\{ \begin{array}{ll} 1.0 & \quad \forall f u(f) \geq v(f) \\ 0.0 & \quad \text{otherwise} \end{array} \right.$$

- Case Study 2: RecSys Using Pareto Ranking
- Recap: Pareto ranking in MOEA

Rank (A) = 2, Rank (B) = 1 Rank (D) = 1, Rank (C) = 0 Pareto ranking = sort and rank solutions in MOEA according to the power of dominance

- Belegundu's ranking
 Non-dominated solutions with rank 0
 Other solutions with rank 1
- Goldberg's ranking
 Rank 1 to non-dominated solutions
 Remove these solutions
 Rank 2 to the non-dominated sols in remaining set
 Remove these solutions
 Rank 3, 4, 5,
- Fonseca & Fleming's ranking (revised/adapted)
 Rank = number of dominated solutions (example left)

Case Study 2: RecSys Using Pareto Ranking

Zheng, Yong, and David Wang. "Multi-Criteria Ranking: Next Generation of Multi-Criteria Recommendation Framework." IEEE Access 10 (2022)

User	Item	Rating	Food	Service	Ambience
U_1	T ₃	4	4	3	4
U_2	T_2	3	3	3	3
U_3	T_1	?	?	?	?

Figure 1: Ratings on OpenTable.com

Table 1: Example of Data

Multi-Criteria Recommendation Systems (MCRS)

- We have users' overall and multi-criteria ratings in the data set
- **How MCRS works**
 - Predict multi-criteria ratings by given a user and an item
 - Aggregate the ratings above to estimate the overall rating

ILLINOIS TECH College of Computing 86

Case Study 2: RecSys Using Pareto Ranking

Zheng, Yong, and David Wang. "Multi-Criteria Ranking: Next Generation of Multi-Criteria Recommendation Framework." IEEE Access 10 (2022)

Item	Rating	Food	Service	Ambience
T_1	?	5	5	5
T ₂	?	4	4	4
T ₃	?	3	3	3
T_4	?	4	3	3
T ₅	?	4	5	3.5

Item	Rating	Ranking Score
T_1	?	4
T ₂	?	2
T ₃	?	0
T_4	?	1
T_5	?	2

Table 2: Item Candidates to be Ranked

Table 3: Ranking Scores for Item Candidates

Ranking score = the number of items that an item T can dominate We can utilize this ranking score to sort and rank items for top-N recommendations

Agenda

ILLINOIS TECH College of Computing

Summary

Motivations of Using MOO in RecSys

- 1) Finding a balance among multiple objectives
 - Considering multiple RecSys metrics
 - Considering objectives from multiple stakeholders
 - Looking for improvements on multiple tasks

2) Improve RecSys by considering multiple objectives

- Improving Group RecSys by considering diff objectives
- Improving RecSys by considering objs in pre-processing

Summary

How to use MOO/its Knowledge in RecSys

- 1) Recommendation Task as a MOO Process
 - A MOO is involved in recommendation process
 - MOO techniques introduced by David can be reused to serve in recommender systems
- 2) Enhanced RecSys with Dominance Relations
 - There are is multi-objective optimization process
 - Knowledge or skills (e.g., dominance relations) from MOO can be reused to improve recommendations

LLINOIS TECH College of Computing 90

1). Recommendation Task as a MOO Process

Multi-objective RecSys utilize MOO to solve the multi-objective problems in RecSys

ILLINOIS TECH College of Computing

2). Enhanced RecSys with Dominance Relations

Examples

RecSys Using Non-dominated Neighbors

- Özsoy, et al. "Multi-objective optimization based location and social network aware recommendation." 10th IEEE International Conference on Collaborative Computing. IEEE, 2014.
- Zheng, Yong. "Non-dominated differential context modeling for context-aware recommendations." Applied Intelligence (2022): 1-14.

RecSys Using Pareto Ranking

- Ribeiro, Marco Tulio, et al. "Multi-objective pareto-efficient approaches for recommender systems." ACM Transactions on Intelligent Systems and Technology (TIST) 5.4 (2014): 1-20.
- Zheng, Yong, and David Wang. "Multi-Criteria Ranking: Next Generation of Multi-Criteria Recommendation Framework." IEEE Access 10 (2022)

Summary

Suggested Workflow

ILLINOIS TECH College of Computing 93

Challenges in RecSys with MOO

- Challenges
 - Scalarization or MOEA?
 Do we have weights on objectives? Usually No
 - Who is the decision maker?
 - The end user
 - Different stakeholders
 - The system designer/developer/ provider of recommendation services?

Challenges in RecSys with MOO

- Using Scalarization (e.g., multi-task)
 - Hyperparameters tuning v.s. Grid/Extensive Search
- More comparisons needed
 - Different ways to select a single optimal solution from the Pareto set
 - Different MOO methods, e.g., weighted sum is the most popular scalarization, how about others?
 - Compare multiple objectives, even if the final goal is to improve RecSys only, e.g., GroupRecSys

ILLINOIS TECH College of Computing 95

Challenges in RecSys with MOO

- How to achieve a balance
 - Offline experiments vs online studies
 - The balance requires user studies
 - Balance among multiple metrics
 What are the acceptable loss in the metrics
 - Balance among multiple stakeholders
 How about the satisfaction by other stakeholders

•

96

Summary

Our Tutorial

- Website: https://moorecsys.github.io/
- Slide: https://github.com/moorecsys/moorecsys.github.io
- Supplementary materials:
 - Yong Zheng, David (Xuejun) Wang. "Multi-Objective" Recommendations: A Tutorial". CoRR abs/2108.06367. Aug, 2021. https://arxiv.org/abs/2108.06367
 - Yong Zheng, David (Xuejun) Wang. "A Survey of Recommender Systems with Multi-Objective Optimization", Neurocomputing, Elsevier, 2022. https://doi.org/10.1016/j.neucom.2021.11.041

Tutorial: Multi-Objective Recommendations

Yong Zheng, Illinois Institute of Technology, USA David (Xuejun) Wang, Morningstar, Inc., USA

at the IEEE International Conference on Data Mining (ICDM) 2022