Подготовительные задачи

- **1.** Дан единичный куб $ABCDA_1B_1C_1D_1$. Найдите расстояния между прямыми: а) AB и DD_1 ; б) A_1A и BD_1 ; в) BD_1 и CB_1 ; г) BA_1 и CB_1 .
- **2.** Рёбра правильного тетраэдра ABCD равны 1. Точки K, M и N середины рёбер BD, AB и AC соответственно. Найдите расстояния между прямыми: а) BD и AC; б) KM и AC; в) AB и KN; г)* DM и BC; д)* AK и CM; е)* AK и BN.
- **3.** Дана правильная четырёхугольная пирамида SABCD с вершиной S. Все рёбра пирамиды равны 1, M середина бокового ребра SD. Найдите расстояния между прямыми: а) SB и AC; б) SA и BC; в) AD и SC; г) SB и CM.
- **4.** Дана правильная треугольная призма $ABCA_1B_1C_1$, все рёбра которой равны 1. Точка M середина AC. Найдите расстояния между прямыми: а) CC_1 и AB; б) AB и CB_1 ; в) AB_1 и BC_1 ; г) BM и AC_1 .
- **5.** Дана правильная шестиугольная призма $ABCDEFA_1B_1C_1D_1E_1F_1$, все рёбра которой равны 1. Найдите расстояния между прямыми: а) AE_1 и DB_1 ; б) BB_1 и EF_1 ; в) AA_1 и CF_1 ; г) AB_1 и CD_1 ; д) BE и DB_1 .
- **6.** Дана правильная шестиугольная пирамида SABCDEF с вершиной S. Сторона основания равна 1, боковое ребро равно 2. Найдите расстояния между прямыми: а) SB и AF; б) SB и AE; в) SB и DF; г) SB и AD.

Задачи на доказательство и вычисление

- **6.1.** Дана правильная треугольная пирамида DABC с вершиной D.
- а) Докажите, что её сечение плоскостью, проходящей через середину ребра AB параллельно прямым AD и BC, прямоугольник.
- б) Найдите расстояние между противоположными рёбрами, если сторона основания равна $6\sqrt{3}$, а боковое ребро равно 10.
- **6.2.** Дана правильная четырёхугольная пирамида SABCD с вершиной S.
- а) Постройте её сечение плоскостью, проходящей через середину ребра AB параллельно прямым SA и BC.
- б) Найдите расстояние между прямыми AB и SC, если сторона основания равна 30, а боковое ребро равно $5\sqrt{34}$.
- **6.3.** Основание прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ квадрат ABCD.
 - а) Докажите, что прямые BD_1 и AC перпендикулярны.
- б) Найдите расстояние между этими прямыми, если стороны основания параллелепипеда равны 3, а боковые рёбра равны 6.

- **6.4.** Основание прямой треугольной призмы $ABCA_1B_1C_1$ прямоугольный треугольник ABC с прямым углом при вершине A, а боковая грань AA_1C_1C — квадрат.
 - а) Докажите, что прямые CB_1 и AC_1 перпендикулярны.
- б) Найдите расстояние между этими прямыми, если AC = 2, $AB_1 = 2\sqrt{3}$.
- **6.5.** Основание пирамиды SABCD ромб ABCD с углом 60° при вершине A. Боковое ребро SD перпендикулярно плоскости основания и равно стороне основания.
 - а) Докажите, что прямые AC и SB перпендикулярны.
- б) Найдите расстояние между этими прямыми, если сторона основания пирамиды равна $2\sqrt{2}$.
- **6.6.** Основание прямой призмы $ABCDA_1B_1C_1D_1$ ромб ABCD с углом 120° при вершине D, а боковые грани призмы квадраты.
 - а) Докажите, что прямые A_1C и BD перпендикулярны.
- б) Найдите расстояние между этими прямыми, если сторона основания призмы равна $8\sqrt{3}$.
- **6.7.** Основание пирамиды SABCD квадрат ABCD. Боковое ребро SA перпендикулярно плоскости основания.
 - а) Докажите, что плоскости ASD и CSD перпендикулярны.
- б) Найдите расстояние между прямыми SC и BD, если сторона основания равна 2, а высота пирамиды равна $2\sqrt{2}$.
- **6.8.** Основание пирамиды SABCD квадрат ABCD. Боковое ребро SA перпендикулярно плоскости основания, а треугольник BSD равносторонний.
 - а) Докажите, что высота пирамиды равна стороне основания.
- б) Найдите расстояние между прямыми SC и BD, если сторона основания равна $2\sqrt{3}$.
- **6.9.** Основание пирамиды DABC треугольник ABC со сторонами AC = 6, BC = 8, AB = 10. Все боковые рёбра равны.
- а) Докажите, что высота пирамиды проходит через середину отрезка AB.
- б) Найдите расстояние между прямыми DM и BC, где DM высота пирамиды DABC.
- **6.10.** Основание пирамиды DABC прямоугольный треугольник ABC с гипотенузой AB. Все боковые рёбра образуют равные углы плоскостью основания.
- а) Докажите, что высота пирамиды проходит через середину отрезка AB.

- б) Известно, что AB = 18, AC = 6. Найдите расстояние между прямыми DM и CH, где DM высота пирамиды DABC, CH высота треугольника ABC.
- **6.11.** Боковая грань правильной четырёхугольной пирамиды SABCD с вершиной S образует с плоскостью основания угол 45° . Точка M середина бокового ребра SD.
- а) Докажите, что противоположные боковые грани пирамиды перпендикулярны.
- б) Найдите расстояние между прямыми AB и CM, если сторона основания пирамиды равна $\sqrt{2}$.
- **6.12.** Боковая грань правильной четырёхугольной пирамиды SABCD с вершиной S образует с плоскостью основания угол 60° . Точка M середина бокового ребра SD.
 - а) Докажите, что плоскости AMB и CSD перпендикулярны.
- б) Найдите расстояние между прямыми AB и CM, если сторона основания пирамиды равна $4\sqrt{3}$.
 - **6.13.** Дан параллелепипед $ABCDA_1B_1C_1D_1$.
 - а) Постройте точку пересечения прямой AC_1 с плоскостью BA_1D .
- б) Найдите расстояние между прямыми BA_1 и CB_1 , если параллелениед прямоугольный, $AA_1 = \sqrt{5}$, $AB = BC = 2\sqrt{10}$.
- **6.14.** Точки M и N середины рёбер соответственно AD и AB куба $ABCDA_1B_1C_1D_1$.
- а) Докажите, что косинус угла между прямыми $D_1 M$ и $A_1 N$ равен $\frac{4}{5}$.
- б) Найдите расстояние между этими прямыми, если ребро куба равно 6.
- **6.15.** Дана правильная шестиугольная пирамида SABCDEF с вершиной S. Точка M середина бокового ребра CS.
 - а) Постройте точку пересечения прямой BM с плоскостью ESF.
- б) Найдите расстояние между прямыми BM и EF, если сторона основания пирамиды равна $2\sqrt{6}$, а высота пирамиды равна $3\sqrt{2}$.
- **6.16.** Дана правильная шестиугольная призма $ABCDEFA_1B_1C_1D_1E_1F_1$. Точка P середина бокового ребра CC_1 .
 - а) Постройте точку пересечения прямой BP с плоскостью AA_1F .
- б) Найдите расстояние между прямыми BP и AB_1 , если сторона основания призмы равна 6, а боковое ребро равно $2\sqrt{3}$.

- **6.17.** Основание прямой четырёхугольной призмы $ABCDA_1B_1C_1D_1$ прямоугольник ABCD. Плоскость α проходит через середину ребра AD перпендикулярно прямой BD_1 .
- а) Докажите, что угол между плоскостью α и плоскостью ABC равен углу между прямыми BD_1 и AA_1 .
- б) Найдите косинус угла между плоскостью основания призмы и плоскостью α , если AB=12, $AD=\sqrt{31}$, а расстояние между прямыми AC и B_1D_1 равно 5.
- **6.18.** Основание прямой четырёхугольной призмы $ABCDA_1B_1C_1D_1$ прямоугольник ABCD. Плоскость α проходит через середину ребра CD перпендикулярно прямой B_1D .
- а) Докажите, что угол между плоскостью α и плоскостью ADD_1 равен углу между прямыми B_1D и AB.
- б) Найдите тангенс угла между плоскостью грани ADD_1 и плоскостью α , если AB=5, $AD=\sqrt{33}$, а расстояние между прямыми A_1C_1 и BD равно $\sqrt{3}$.
- **6.19.** Основание пирамиды SABCD квадрат ABCD, боковое ребро SA перпендикулярно плоскости основания, BC = 2SA. Точка M середина ребра AB.
- а) Докажите, что сечение пирамиды плоскостью, проходящей через прямую SM параллельно BD, равносторонний треугольник.
 - б) Найдите расстояние между прямыми SM и BD, если $AB = 6\sqrt{3}$.
- **6.20.** Основание пирамиды ABCD равносторонний треугольник ABC, боковое ребро AD перпендикулярно плоскости основания, $AD:BC=1:\sqrt{2}$. Точки M и N середины рёбер BC и AB соответственно.
 - а) Докажите, что угол между прямыми AM и DN равен 60° .
 - б) Найдите расстояние между этими прямыми, если $AB = 6\sqrt{2}$.
- **6.21.** Дан параллелепипед $ABCDA_1B_1C_1D_1$. Его основания ABCD и $A_1B_1C_1D_1$ квадраты. Отрезок, соединяющий центр основания ABCD с серединой ребра B_1C_1 , перпендикулярен основаниям.
 - а) Докажите, что грани AA_1B_1B и ABCD перпендикулярны.
- б) Найдите расстояние между прямыми AA_1 и BC, если все рёбра параллелепипеда равны 2.
- **6.22.** Дан параллелепипед $ABCDA_1B_1C_1D_1$. Его основания ABCD и $A_1B_1C_1D_1$ квадраты. Отрезок, соединяющий вершину C с центром основания $A_1B_1C_1D_1$, перпендикулярен основаниям.
 - а) Докажите, что прямые CC_1 и BD перпендикулярны.
- б) Найдите расстояние между прямыми A_1C и AB, если сторона основания параллелепипеда равна 6, а боковое ребро равно $\sqrt{34}$.

- **6.23.** Дан куб $ABCDA_1B_1C_1D_1$. Точка E середина ребра AD. Вершины M и N правильного тетраэдра MNPQ лежат на прямой ED_1 , а вершины P и Q на прямой, проходящей через точку A_1 и пересекающей прямую BC в точке R.
 - а) Докажите, что BR = 2BC.
- б) Найдите расстояние между серединами отрезков MN и PQ, если ребро куба равно a.
- **6.24.** Основание прямой треугольной призмы $ABCA_1B_1C_1$ равнобедренный прямоугольный треугольник с катетами AC = BC. Вершины M и N правильного тетраэдра MNPQ лежат на прямой CA_1 , а вершины P и Q на прямой AB_1 .
 - а) Докажите, что $AA_1 = AC$.
- б) Найдите расстояние между серединами отрезков MN и PQ, если AC=a.