

Training NN

S.Lan

Gradient
Descent
Optimizatio

Models
Stochastic Gradien

Stochastic Gradient Descents Algorithms with

Algorithms with Adaptive Learning Rates

Lecture 12 Training Neural Networks

Shiwei Lan¹

¹School of Mathematical and Statistical Sciences Arizona State University

STP598 Machine Learning and Deep Learning Fall 2021

Table of Contents

Training NN

S.Lan

Gradient Descent Optimizatio

Models

Stochastic Gradient Descents

Algorithms with Adaptive Learning R Gradient Descent Optimization

2 Training Deep Models Stochastic Gradient Descents Algorithms with Adaptive Learning Rates

Gradient Descent Optimization

Training NN

S.Lan

Gradient Descent Optimizatio

Models

Stochastic Gradien Descents

Algorithms with

- Most deep learning algorithms involve optimization of some sort.
- Training neural network often relies on minimizing some objective (cost/loss) function f(x).
- To minimize f, we would like to find the direction u in which f decreases the fastest by using the directional derivative:

$$\min_{u,\|u\|=1} \frac{\partial}{\partial \alpha} \Big|_{\alpha=0} f(x + \alpha u) = \min_{u,\|u\|=1} u^T \nabla_x f(x) = \|\nabla_x f(x)\|_2 \min_{u,\|u\|=1} \cos \theta$$

- The minimal is achieved when $\theta = \pi$, i.e. the direction $u = -\nabla_x f(x)$ is the steepest descent or gradient descent.
- Then we update the state by

$$x' = x - \varepsilon \nabla_x f(x)$$

where ε is called *learning rate*.

Gradient Descent Optimization

Training NN

S.Lan

Gradient Descent Optimization

Training Dee

Stochastic Gradie Descents

Algorithms with Adaptive Learning Ra

Challenge: Multimodalities

Training NN

S.Lan

Gradient
Descent
Optimizatio

Training Dee Models

Stochastic Gradie Descents

Algorithms with Adaptive Learning F

Other Challenges

Training NN

S.Lan

Gradient Descent Optimization

Models
Stochastic Gradient

Stochastic Gradient Descents

Algorithms with Adaptive Learning Rat

There are other challenges like:

- overflow/underflow, e.g. softmax function.
- ill-conditioning: $f(x) = A^{-1}x$ where $A \in \mathbb{R}^{n \times n}$ with eigenvalues $\{\lambda_i\}$, then condition number is $\max_{i,j} |\lambda_i/\lambda_j|$.
- complex landscape, e.g. plateaus, saddle points, cliffs...
- expensive gradients: large data volume.

Table of Contents

Training NN

S.Lan

Gradient
Descent
Optimizatio

Training Deep Models

Stochastic Gradien Descents

Algorithms with

Gradient Descent Optimization

Training Deep Models Stochastic Gradient Descents Algorithms with Adaptive Learning Rates

Training Deep Models

Training NN

S.Lan

Gradient Descent Optimization

Training Deep Models Stochastic Gradient

Descents

Algorithms with

Algorithms with Adaptive Learning Ra

- Learning \neq pure optimization.
- In most machine learning scenarios, we care about some performance performance measure *P*, defined with respect to test set.
- We reduce a different cost function $J(\theta)$ in the hope that doing so will improve P. This is in contrast to pure optimization with J as the goal.
- Typically, the cost function is defined as an expectation of some loss function $L(\cdot,\cdot)$, namely, risk,

$$J(\theta) = \mathrm{E}_{(x,y) \sim p_{data}} L(f(x;\theta), y)$$

• In reality, we often minimize the an approximate version, empirical risk,

$$\widetilde{J}(\theta) = \mathrm{E}_{(x,y) \sim \widehat{p}_{data}} L(f(x;\theta),y) = \frac{1}{N} \sum_{i=1}^{N} L(f(x^{(i)};\theta),y^{(i)})$$

(Mini)-batch Algorithms

Training NN

S.Lan

Gradient
Descent
Optimizatio

Training Deep Models

Stochastic Gradier Descents

Algorithms with

• Empirical risk minimization is prone to overfitting. In stead, we often consider a surrogate loss function, e.g. negative log-likelihood, i.e.

$$\theta_{ML} = \underset{\theta}{\operatorname{arg max}} \sum_{i=1}^{N} \log p_{model}(x^{(i)}, y^{(i)}; \theta)$$

 To combat the issue of expensive gradients when N is large, a small batch of data size m is (randomly) chosen to approximate the gradient in gradient descent algorithms:

$$\theta' = \theta - \frac{N\varepsilon}{m} \nabla_{\theta} \log p_{model}(x^{(i)}, y^{(i)}; \theta)$$

Challenge: cliff

Training NN

S.Lan

Gradient
Descent
Optimization

Training Deep Models

Descents

Algorithms with

- Like general gradient descent optimization, training neural network also faces the same challenges including cliffs, or exploding gradients.
- To alleviate such issue, gradient clipping is adopted when the norm of gradient $||g|| > \max_n \text{orm}$ for some threshold $\max_n \text{orm}$:

$$g \leftarrow g \frac{\text{max_norm}}{\|g\|}$$

Challenge: compositions in deep models

Training NN

S.Lan

Training Deep

• Very deep models involve the composition of several functions or layers.

- In practice, when we update all of the layers simultaneously, unexpected results can happen because many functions composed together are changed simultaneously, e.g. $\hat{v} = xw_1w_2\cdots w_l$ where $h_i = h_{i-1}w_i$, then the gradient in back-propagation could be either too small or too large.
- To solve this issue, batch normalization is adopted.
- Given a minibatch of activations **H**, we normalize **H**, we replace it with

$$\mathsf{H}' = rac{\mathsf{H} - oldsymbol{\mu}}{oldsymbol{\sigma}}$$

where we have

$$oldsymbol{\mu} = rac{1}{m} \sum_i \mathbf{H}_i, \quad oldsymbol{\sigma} = \sqrt{\delta + rac{1}{m} \sum_i (\mathbf{H} - oldsymbol{\mu})_i^2}, \; \delta pprox 10^{-8}$$

• At test time, μ and σ may be replaced by running averages that were collected during training time.

Stochastic Gradient Descent

Training NN

S.Lan

Gradient Descent Optimizatio

Models
Stochastic Gradient

Stochastic Gradier Descents

Algorithms with Adaptive Learning R Stochastic gradient descent (SGD) and its variants are probably the most used optimization algorithms for machine learning in general and for deep learning in particular.

• In practice, it is common to decay the learning rate ε linearly in the minibatch gradient descent until iteration τ :

$$\varepsilon_k = (1 - \alpha)\varepsilon_0 + \alpha\varepsilon_{\tau}, \quad \alpha = k/\tau.$$

such that the convergence condition, $\sum_{k=1}^{\infty} \varepsilon_k = \infty$, $\sum_{k=1}^{\infty} \varepsilon_k^2 < \infty$, is met.

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ϵ_k .

Require: Initial parameter θ

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$

Momentum

Training NN S.Lan

. ..

Descent Optimizatio

Models
Stochastic Gradient

Stochastic Gradier Descents

Algorithms with Adaptive Learning R

- While stochastic gradient descent remains a very popular optimization strategy, learning with it can sometimes be slow.
- The method of momentum (Polyak, 1964) is designed to accelerate learning, especially in the face of high curvature, small but consistent gradients, or noisy gradients.

$$v \leftarrow \alpha v - \varepsilon g(\theta), \quad \alpha \in [0, 1)$$

Nesterov Momentum

Training NN

S.Lan

Gradient Descent Optimizatio

Models
Stochastic Gradie

Stochastic Gradient Descents

Algorithms with Adaptive Learning Ra Sutskever et al. (2013) introduced a variant of the momentum algorithm that was inspired by Nesterov's accelerated gradient method (Nesterov, 1983, 2004).

$$egin{aligned} \mathbf{v} \leftarrow lpha \mathbf{v} - arepsilon \mathbf{g}(heta + lpha \mathbf{v}), & lpha \in [0, 1) \ heta \leftarrow heta + \mathbf{v} \end{aligned}$$

Figure 1. (Top) Classical Momentum (Bottom) Nesterov Accelerated Gradient

AdaGrad (Duchi et al., 2011)

Training NN

S.Lan

Gradient Descent Optimizatio

Training De Models

Stochastic Gradier Descents

Algorithms with

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ϵ

Require: Initial parameter θ

Require: Small constant δ , perhaps 10^{-7} , for numerical stability

Initialize gradient accumulation variable r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})$

Accumulate squared gradient: $r \leftarrow r + g \odot g$

Compute update: $\Delta \boldsymbol{\theta} \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot \boldsymbol{g}$. (Division and square root applied element-wise)

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$

RMSProp (Hinton, 2012)

Training NN

S.Lan

Gradient Descent Optimizatio

Training De

Stochastic Gradien Descents

Descents

Algorithms with

Algorithms with Adaptive Learning Rates Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ϵ , decay rate ρ .

Require: Initial parameter θ

Require: Small constant δ , usually 10^{-6} , used to stabilize division by small numbers.

Initialize accumulation variables r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $\boldsymbol{v}^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Accumulate squared gradient: $r \leftarrow \rho r + (1 - \rho)g \odot g$

Compute parameter update: $\Delta \boldsymbol{\theta} = -\frac{\epsilon}{\sqrt{\delta + \boldsymbol{r}}} \odot \boldsymbol{g}$. $(\frac{1}{\sqrt{\delta + \boldsymbol{r}}} \text{ applied element-wise})$

Apply update: $\theta \leftarrow \theta + \Delta \theta$

Adam (Kingma and Ba, 2014)

Training NN

S.Lan

Algorithms with Adaptive Learning Rates Algorithm 8.7 The Adam algorithm

Require: Step size ϵ (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1). (Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant δ used for numerical stabilization. (Suggested default: 10^{-8}

Require: Initial parameters θ

Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $\boldsymbol{u}^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

 $t \leftarrow t + 1$

Update biased first moment estimate: $\mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 - \rho_1) \mathbf{g}$

Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$

Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$ Correct bias in second moment: $\hat{r} \leftarrow \frac{1}{1-a^t}$

Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$

A nice list of optimizers implemented in PyTorch

Training NN

S.Lan

Gradient
Descent
Optimization

Training De

Stochastic Gradie

Descents

Algorithms with Adaptive Learning Rates Find more at https://github.com/jettify/pytorch-optimizer