Chapter 14

Database Design Theory-Introduction to Normalization using Functional Dependencies and Multivalued Dependencies

Relational Schema Quality

Chapter Outline

- 1. Informal Design Guidelines for Relational Databases
- 2. Functional Dependencies (FDs)
- 3. Normal Forms Based on Primary Keys
- 4. General Normal Form Definitions (For Multiple Keys)
- 5. BCNF (Boyce-Codd Normal Form)
- 6. Multivalued Dependency and Fourth Normal Form
- 7. Join Dependencies and Fifth Normal Form

Informal Design Guidelines

- What is relational database design?
 The grouping of attributes to form "good" relation schemas
- Two levels of relation schemas
 - The logical "user view" level
 - The storage "base relation" level
- Design is concerned mainly with base relations
- What are the criteria for "good" base relations?

Informal Design Guidelines

- 1. Semantics of the Relation Attributes
- 2. Redundant Information in Tuples and Update Anomalies
- 3. Null Values in Tuples
- 4. Spurious Tuples

Semantics of the Relation Attributes

GUIDELINE 1

Informally, each tuple in a relation should represent one entity or relationship instance. (Applies to individual relations and their attributes).

- Attributes of different entities (EMPLOYEEs, DEPARTMENTS, PROJECTs) should not be mixed in the same relation
- Only foreign keys should be used to refer to other entities
- Entity and relationship attributes should be kept apart as much as possible.

Bottom Line: Design a schema that can be explained easily relation by relation. The semantics of attributes should be easy to interpret.

A simplified COMPANY relational database schema

EMPLOYEE

ENAME	SSN	BDATE	ADDRESS	DNUMBER
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4
Narayan, Remesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTMENT

DNAME	DNUMBER	DMGRSSN	
Research	5	333445555	
Administration	4	987654321	
Headquarters	1	888665555	

WORKS_ON

SSN	PNUMBER	HOURS	
123456789	1	32.5	
123456789	2	7.5	
666884444	3	40.0	
453453453	1	20.0	
453453453	2	20.0	
333445555	2	10.0	
333445555	3	10.0	
333445555	10	10.0	
333445555	20	10.0	
999887777	30	30.0	
999887777	10	10.0	
987987987	10	35.0	
987987987	30	5.0	
987654321	30	20.0	
987654321	20	15.0	
888665555	20	null	

DEPT_LOCATIONS

DNUMBER	DLOCATION
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

PROJECT

PNAME	PNUMBER	PLOCATION	DNUM	
ProductX	1	Bellaire	5	
ProductY	2	Sugarland	5	
ProductZ	3	Houston	5	
Computerizatio	n 10	Stafford	4	
Reorganization	20	Houston	1	
Newbenefits	30	Stafford	4	

Each tuple in a relation should represent **one entity** or **relationship instance**.

FIGURE 14.3

Two relation schemas suffering from update anomalies.

Bad design:

Violate Guideline 1 by mixing attributes from distinct real-world entities.

Redundant Information in Tuples and Update Anomalies

- Mixing attributes of multiple entities may cause problems
 - Information is stored redundantly wasting storage
 - Problems with update anomalies
 - Insertion anomalies
 - Deletion anomalies
 - Modification anomalies

Modification Anomaly:

Changing the name of project number P1 from "ProductX" to "Customer-Accounting" may cause this update to be made for all 100 employees working on project P1.

FUD DDO.		re	edundancy	redu	ndancy
EM	IP_PROJ				
SSN	PNUMBER	HOURS	ENAME	PNAME	PLOCATION
123456789	1	32.5	Smith,John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan,Ramesh K.	ProductZ	Houston
453453453	1	20.0	English,Joyce A.	ProductX	Bellaire
153453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
99887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston
888665555	20	null	Borg, James E.	Reorganization	Houston

Insert Anomaly:

- Cannot insert a project unless an employee is assigned to.
- Inversely cannot insert an employee unless an he/she is assigned to a project.

Delete Anomaly:

- When a project is deleted, it will result in deleting all the employees who work on that project.
- Alternately, if an employee is the sole employee on a project, deleting that employee would result in deleting the corresponding project.

EMP_PROJ			edundancy	rec	lundancy
SSN	PNUMBER	HOURS	ENAME	PNAME	PLOCATION
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston

Guideline to Redundant Information

GUIDELINE 2:

Design a schema that does not suffer from the insertion, deletion and update anomalies. If there are any present, then note them so that applications can be made to take them into account

PROJECT

PNAME	PNUMBER	PLOCATION	DNUM	
ProductX	1	Bellaire	5	
ProductY	2	Sugarland	5	
ProductZ	3	Houston	5	
Computerization	n 10	Stafford	4	
Reorganization		Houston	1	
Newbenefits	30	Stafford	4	

- Change P1's name
- Insert a new project without assigning any worker yet
- Delete a project or an employee

EMPLOYEE

ENAME	SSN	BDATE	ADDRESS	DNUMBER
Smith,John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4
Narayan, Remesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg,James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

Guideline to Redundant Information

GUIDELINE 3:

- Relations should be designed such that their tuples will have as few NULL values as possible
- Attributes that are NULL frequently could be placed in separate relations (with the primary key)
- Reasons for nulls:
 - attribute not applicable or invalid (e.g. office phone no. of a student)
 - attribute value unknown (may exist) (e.g. name of spouse)
 - value known to exist, but unavailable (e.g. weight of a female)

Spurious Tuples

- Bad designs for a relational database may result in erroneous results for certain JOIN operations
- The "lossless join" property is used to guarantee meaningful results for join operations

GUIDELINE 4

The relations should be designed to satisfy *the lossless join condition*:

No spurious tuples should be generated by doing a natural-join of any relations.

FIGURE 14.5 Particularly poor design for the EMP_PROJ relation of Figure 14.3b.

- (a) The two relation schemas EMP LOCS and EMP PROJ1.
- (b) The result of projecting the extension of EMP_PROJ from Figure 14.4 onto the relations EMP LOCS and EMP PROJ1.

EMP_PROJ

SSN	PNUMBER	HOURS	ENAME	PNAME	PLOCATION
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan,Ramesh K.	ProductZ	Houston

decompose

FIGURE 14.5 (continued)

The result of projecting the extension of EMP_PROJ from Figure 14.4 onto the relations EMP_LOCS and EMP_PROJ1.

EMP_PROJ

SSN	PNUMBER	HOURS	ENAME	PNAME	PLOCATION
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan,Ramesh K.	ProductZ	Houston

EMP_PROJ1

EMP_LOCS

SSN	PNUMBER	HOURS	PNAME	PLOCATION	ENAME	PLOCATION
123456789 123456789 666884444 453453453 453453453 333445555 333445555 333445555	1 2 3 1 2 2 3 10 20	32.5 7.5 40.0 20.0 20.0 10.0 10.0 10.0	Product X Product Y Product Z Product X Product Y Product Y Product Z Computerization Reorganization	Bellaire Sugarland Houston Bellaire Sugarland Sugarland Houston Stafford Houston	Smith, John B. Smith, John B. Smith, John B. Narayan, Ramesh K. English, Joyce A. English, Joyce A. Wong, Franklin T. Wong, Franklin T. Wong, Franklin T.	Bellaire Sugarland Houston Bellaire Sugarland Sugarland Houston Stafford
999887777 999887777 987987987 987987987 987654321 987654321 888665555	30 10 10 30 30 20 20	30.0 10.0 35.0 5.0 20.0 15.0 null	Newbenefits Computerization Computerization Newbenefits Newbenefits Reorganization Reorganization	Stafford Stafford Stafford Stafford Stafford Houston Houston	Zelaya, Alicia J. Jabbar, Ahmad V. Wallace, Jennifer S. Wallace, Jennifer S. Borg,James E.	Stafford Stafford Stafford Houston Houston
				na	atural ioint	10

FIGURE 14.6

Result of applying NATURAL JOIN to the tuples above the dotted lines in EMP_PROJ1 and EMP_LOCS of Figure 14.5.

Generated spurious tuples are marked by asterisks (*).

SSN	PNUMBER	HOURS	PNAME	PLOCATION	ENAME
123456789	1	32.5	ProductX	Bellaire	Smith,John B.
*123456789	1	32.5	ProductX	Bellaire	English, Joyce A.
123456789	2	7.5	ProductY	Sugarland	Smith, John B.
*123456789	2	7.5	ProductY	Sugarland	English, Joyce A.
*123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.
666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.
* 666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.
453453453	1	20.0	ProductX	Bellaire	Smith, John B.
*453453453	1	20.0	ProductX	Bellaire	English, Joyce A.
453453453	2	20.0	ProductY	Sugarland	Smith, John B.
453453453	2	20.0	ProductY	Sugarland	English, Joyce A.
*453453453	2	20.0	ProductY	Sugarland	Wong, Franklin T.
*333445555	2	10.0	ProductY	Sugarland	Smith, John B.
* 333445555	2	10.0	ProductY	Sugarland	English, Joyce A.
* 333445555	2	10.0	ProductY	Sugarland	Wong, Franklin T.
333445555	3	10.0	ProductZ	Houston	Narayan,Ramesh K.
*333445555	3	10.0	ProductZ	Houston	Wong, Franklin T.
333445555	10	10.0	Computerization	Stafford	Wong, Franklin T.
333445555	20	10.0	Reorganization	Houston	Narayan, Ramesh K.
*333445555	20	10.0	Reorganization	Houston	Wong,Franklin T.

•

Quality of Database Schema

Functional Dependencies and Normal Forms

- 2. Functional Dependencies (FDs)
- 3. Normal Forms Based on Primary Keys
 - 3.1 Normalization of Relations
 - 3.2 Practical Use of Normal Forms
 - 3.3 Definitions of Keys and Attributes Participating in Keys
 - 3.4 First Normal Form
 - 3.5 Second Normal Form
 - 3.6 Third Normal Form
- 4. General Normal Form Definitions (For Multiple Keys)
- 5. BCNF (Boyce-Codd Normal Form)

Examples of Functional Dependency

Social security number determines employee name

```
SSN \rightarrow ENAME

ENAME \rightarrow SSN (?)
```

Project number determines project name and location

```
PNUMBER → {PNAME, PLOCATION}
PNUMBER → PNAME (?)
```

• Employee ssn and project number determines the hours per week that the employee works on the project

```
\{SSN, PNUMBER\} \rightarrow HOURS
SSN \rightarrow HOURS (?)
```


- An FD is a property of the attributes in the schema R
- The constraint must hold on *every relation instance* r(R)

Functional Dependencies 功能相依

- $X \rightarrow Y$ holds
 - If whenever two tuples have the same value for X, they must
 have the same value for Y

```
e.g. {StudentID} → {Name}

{SSN} → {Address}

{Name, Birthday} → {Address, Dept., Sex}
```

- For any two tuples t1 and t2 in any relation instance r(R)If t1[X] = t2[X], then t1[Y] = t2[Y]
- X → Y in R specifies a *constraint* on all relation instances r(R)
- FDs are derived from the real-world constraints on the attributes

Definition of Functional Dependency

$$X \rightarrow Y$$

- A set of attributes X *functionally determines* a set of attributes Y if the value of X determines a unique value for Y.
- If t1[X] = t2[X], then t1[Y] = t2[Y]

A relation state of TEACH with

A *possible* functional dependency $TEXT \rightarrow COURSE$.

However, **TEACHER** → **COURSE** is ruled out. (Smith違反)

Functional Dependencies

- Functional dependencies (FDs) are used to specify *formal measures* of the "goodness" of relational designs
- FDs and keys are used to define **normal forms** for relations
- FDs are **constraints** that are derived from the *meaning* and *interrelationships* of the data attributes

EMPLOYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
,	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	м	30000	333445555	5
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	M	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	null	1

					DEPT_LOCATIONS	DNUMBER	DLOCATION
						1	Houston
DEPARTMENT	DNAME	DNUMBER	MGRSSN	MGR	STARTDATE	4	Stafford
ha)	Research	5	333445555	1	988-05-22	5	Bellaire
	Administration	4	987654321	1	995-01-01	5	Sugarland
	Headquarters	1	888665555	1	981-06-19	5	Houston

WORKS_ON	ESSN	PNO	HOURS
	123456789	1	32.5
	123456789	2	7.5
	666884444	3	40.0
	453453453	1	20.0
	453453453	2	20.0
	333445555	2	10.0
	333445555	3	10.0
	333445555	10	10.0
	333445555	20	10.0
	999887777	30	30.0
	999887777	10	10.0
	987987987	10	35.0
	987987987	30	5.0
	987654321	30	20.0
	987654321	20	15.0
	888665555	20	null

PROJECT	PNAME	PNUMBER	PLOCATION	DNUM
	ProductX	1	Bellaire	5
[ProductY	2	Sugarland	5
[ProductZ	3	Houston	5
[Computerization	10	Stafford	4
[Reorganization	20	Houston	1
]	Newbenefits	30	Stafford	4

- If K is a key of R, then K functionally determines all attributes in R (since we never have two distinct tuples with t1[K] = t2[K])
- The FD constraint must hold on *every relation instance* r(R)

$\{ESSN, DEPENDENT NAME\} \rightarrow \{SEX, BDATE, RELATIONSHIP\}$

DEPENDENT	ESSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP
	333445555	Alice	F	1986-04-05	DAUGHTER
	333445555	Theodore	M	1983-10-25	SON
	333445555	Joy	F	1958-05-03	SPOUSE
	987654321	Abner	M	1942-02-28	SPOUSE
	123456789	Michael	M	1988-01-04	SON
	123456789	Alice	F	1988-12-30	DAUGHTER
	123456789	Elizabeth	F	1967-05-05	SPOUSE

key

3 Normal Forms Based on Primary Keys

- 3.1 Normalization of Relations
- 3.2 Practical Use of Normal Forms
- 3.3 Definitions of Keys and Attributes Participating in Keys
- 3.4 First Normal Form
- 3.5 Second Normal Form
- 3.6 Third Normal Form

14.3.1 Normalization of Relations

• Normalization:

 The process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations

• Normal form:

- Condition using keys and FDs of a relation to certify whether a relation schema is in a particular normal form
- 2NF, 3NF, BCNF based on keys and FDs of a relation schema
- 4NF based on keys and multi-valued dependencies (MVD)
- 5NF based on keys and join dependencies (JD)

14.3.2 Practical Use of Normal Forms

- Normalization is carried out in practice so that the resulting designs are of high quality and meet the desirable properties
- The practical utility of these normal forms becomes questionable when the constraints on which they are based are **hard to understand** or to **detect**
- The database designers *need not* normalize to the highest possible normal form. (usually up to 3NF, BCNF or 4NF)

Denormalization:

 the process of storing the join of higher normal form relations as a base relation—which is in a lower normal form

14.3.3 Definitions of Keys and Attributes Participating in Keys (1)

- A superkey of a relation schema $R = \{A_1, A_2, ..., A_n\}$
 - a set of attributes S <u>subset-of</u> R with the property that no two tuples t_1 and t_2 in any legal relation state r of R will have $t_1[S] = t_2[S]$
- A **key** *K* is a superkey with the *additional property* that removal of any attribute from *K* will cause *K* not to be a superkey any more.
- If a relation schema has more than one key, each is called a **candidate key.** One of the candidate keys is *arbitrarily* designated to be the **primary key**, and the others are called *secondary keys*.
- A Prime attribute must be a member of some candidate key.
- A **Nonprime attribute** is not a prime attribute. that is, it is not a member of any candidate key.

- {SSN, EID, ADDRESS}
- {SSN}
- {EID}
- {DNUMBER}

14.3.4 First Normal Form

• 1NF disallows composite attributes, multivalued attributes, and nested relations; attributes whose values for an individual tuple are non-atomic

DEPARTMENT DNAME DNUMBER **DMGRSSN** DLOCATIONS Research 333445555 {Bellaire, Sugarland, Houston} Administration 987654321 {Stafford} Headquarters 888665555 {Houston} EMP PROJ Multivalued Nested **PROJS** SSN attribute **ENAME** relation **PNUMBER HOURS** Smith, John B. 32.5 123456789 7.5 Narayan, Ramesh K. 40.0 666884444 English, Joyce A. 20.0 453453453 20.0

Normalization into 1NF

Figure 14.8 Normalization into 1NF. (a) Relation schema that is not in 1NF. (b) Example relation instance. (c) 1NF relation with redundancy.

Normalization nested relations into 1NF

Figure 14.9 Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ relation with a "nested relation" PROJS. (b) Example extension of the EMP_PROJ relation showing nested relations within each tuple. (c) Decomposing EMP_PROJ into 1NF relations EMP_PROJ1 and EMP_PROJ2 by propagating the primary key.

Full Functional Dependency

- Uses the concepts of **primary key** and **FD**s
- Prime attribute
 - attribute that is member of the primary key K
- Full functional dependency
 - a FD Y → Z where removal of any attribute from Y means the FD does not hold any more

Examples:

- {SSN, PNUMBER} → ENAME is not a full FD since SSN → ENAME also holds (it is called a partial dependency)
- {SSN, PNUMBER} → HOURS is a full FD since neither SSN →HOURS nor PNUMBER → HOURS hold

Second Normal Form

- A relation schema R is in **second normal form (2NF)**
 - if every non-prime attribute A in R is fully functionally dependent on the primary key
- R can be decomposed into 2NF relations via the process of 2NF normalization

Transitive Functional Dependency

Definition:

- Transitive functional dependency
 - a FD X \rightarrow Z that can be derived from two FDs X \rightarrow Y and Y \rightarrow Z

Examples:

- SSN→DMGRSSN is a *transitive* FD since SSN→DNUMBER and DNUMBER→DMGRSSN hold
- SSN \rightarrow ENAME is *non-transitive* since there is no set of attributes X where SSN \rightarrow X and X \rightarrow ENAME

Third Normal Form

- A relation schema R is in third normal form (3NF)
 - if it is in 2NF and **no** non-prime attribute A in R is transitively dependent on the primary key
- R can be decomposed into 3NF relations via the process of 3NF normalization

 SSN→DNUMBER

∴ SSN→DMGRSSN is a transitive FD (b) EMP DEPT **ENAME** SSN BDATE **ADDRESS DNUMBER DMGRSSN** DNAME DMGRSSN is a nonprime attribute and transitively dependent on the primary key. 3NF NORMALIZATION ED1 ED2 **ENAME BDATE ADDRESS DNUMBER** DNAME **DMGRSSN** SSN **DNUMBER**

DNUMBER→DMGRSSN

4. General Normal Form Definitions (For Multiple Keys)

- The previous definitions consider the primary key only
- The following more general definitions take into account relations with multiple candidate keys
- Superkey of relation schema R
 - a set of attributes S of R that contains a key of R
- Second normal form (2NF) R:
 - if every non-prime attribute A in R is fully functionally dependent on *every key* of R
- Third normal form (3NF) R:
 - if whenever a FD $X\rightarrow Y$ holds in R, then either:
 - (a) X is a superkey of R, or
 - (b) Y is a prime attribute of R

Example of General Third Normal Form

Example

In $X \to Y$ and $Y \to Z$, with X as the primary key, we consider this a problem only if Y is *not* a superkey.

When Y is a superkey, there is no problem with the transitive dependency.

E.g., Consider EMP(<u>SSN</u>, Emp#, Salary).

 $SSN \rightarrow Emp\#$; $Emp\# \rightarrow Salary$

Here, SSN \rightarrow Salary (no problem, since **Emp#** is a **superkey**) The relation is in 3rd normal form.

FIGURE

Normalization into 2NF and 3NF.

- (a) the LOTS relation with its functional dependencies FD1 though FD4.
- (b) Decomposing into the 2NF relations LOTS1 and LOTS2.
- (c) Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B.
- (d) Summary of the progressive normalization of LOTS.

In (a) PROPERTY ID# is a primary key.

{COUNTY NAME, LOT#} is a candidate key.

5 BCNF (Boyce-Codd Normal Form)

- A relation schema R is in **Boyce-Codd Normal Form (BCNF)**
 - if whenever an FD $X\rightarrow Y$ holds in R, then X is a superkey of R

Example: R in 3NF but not in BCNF

- Each normal form is strictly stronger than the previous one
 - Every 2NF relation is in 1NF
 - Every 3NF relation is in 2NF
 - Every BCNF relation is in 3NF
- There exist relations that are in 3NF but not in BCNF
- DB design goal is to have each relation in BCNF (or 3NF)

3NF whenever a FD X→Y holds in R (a) X is a superkey of R, or (b) Y is a prime attribute of R

Boyce-Codd Normal Form

Figure 14.12 Boyce-Codd normal form. (a) BCNF normalization with the dependency of FD2 being "lost" in the decomposition. (b) A relation *R* in 3NF but not in BCNF.

3NF whenever a FD X→Y holds in R (a) X is a superkey of R, or (b) Y is a prime attribute of R
BCNF whenever a FD X→Y holds in R then X is a superkey of R

Figure a relation TEACH that is in 3NF but not in BCNF

Navathe

FD1: STUDENT COURSE →

INSTRUCTOR

Zelaya

FD2: INSTRUCTOR→COURSE

Database

3NF whenever a FD X→Y holds in R (a) X is a superkey of R, or (b) Y is a prime attribute of R

BCNF whenever a FD X→Y holds in R then X is a superkey of R

Achieving the BCNF by Decomposition (2)

- Three possible decompositions for relation TEACH
 - 1. {student, instructor} and {student, course}
 - 2. {course, <u>instructor</u> } and {<u>course, student</u>}
 - 3. {instructor, course } and {instructor, student}
- All three decompositions will lose FD1. We have to settle for sacrificing the functional dependency preservation. But we **cannot** sacrifice the **non-additivity** property (i.e., lossless joint property) after decomposition.
- Out of the above three, only the 3rd decomposition will not generate spurious tuples after join. (and hence has the non-additivity property).
- A test to determine whether a <u>binary decomposition</u> (decomposition into two relations) is nonadditive (lossless) is discussed in section 15.2.4 under Property LJ1. Verify that the third decomposition above meets the property.

6. Multivalued Dependencies and Fourth Normal Form

- (a) The EMP relation with two MVDs: ENAME —>> PNAME and ENAME —>> DNAME.
- (b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and EMP_DEPENDENTS.

(a) EMP

ENAME	PNAME	DNAME
Smith	X	John
Smith	Υ	Anna
Smith	Х	Anna
Smith	Υ	John

Different from F.D.: SSN→ENAME

(b) **EMP_PROJECTS**

ENAME	PNAME
Smith	X
Smith	Υ

EMP_DEPENDENTS

ENAME	DNAME
Smith	John
Smith	Anna

Multivalued Dependencies and Fourth Normal Form

Decomposing a relation state of EMP that is not in 4NF.

- (a) EMP relation with additional tuples.
- (b) Two corresponding 4NF relations EMP_PROJECTS and EMP_DEPENDENTS.

EMP

ENAME	PNAME	DNAME
Smith	Х	John
Smith	Υ	Anna
Smith	X	Anna
Smith	Υ	John
Brown	W	Jim
Brown	X	Jim
Brown	Υ	Jim
Brown	Z	Jim
Brown	W	Joan
Brown	X	Joan
Brown	Υ	Joan
Brown	Z	Joan
Brown	W	Bob
Brown	X	Bob
Brown	Υ	Bob
Brown	Z	Bob

(b) **EMP_PROJECTS**

ENAME	PNAME
Smith	Х
Smith	Υ
Brown	W
Brown	X
Brown	Y
Brown	Z

EMP_DEPENDENTS

ENAME	DNAME
Smith	Anna
Smith	John
Brown	Jim
Brown	Joan
Brown	Bob

Multivalued Dependencies

• A multivalued dependency (MVD) $X \longrightarrow Y$ specified on relation schema R, where X and Y are both subsets of R, specifies the following constraint on any relation state r of R:

If two tuples t_1 and t_2 exist in r such that $t_1[X] = t_2[X]$, then two tuples t_3 and t_4 should also exist in r with the following properties, where we use Z to denote $(R - (X \cup Y))$:

$$t_3[X] = t_4[X] = t_1[X] = t_2[X].$$

 $t_3[Y] = t_1[Y] \text{ and } t_4[Y] = t_2[Y].$
 $t_3[Z] = t_2[Z] \text{ and } t_4[Z] = t_1[Z].$

ENAME —>> **PNAME**

EMP X	Y	Z	
ENAME	PNAME	DNAME	
Smith	Х	John	
Smith	Y	Anna	
Smith	Х	Anna	
Smith	Υ	John	

Fourth Normal Form

• A relation schema *R* is in 4NF with respect to a set of dependencies *F* (including functional dependencies and multivalued dependencies)

If, for every *nontrivial* multivalued dependency $X \longrightarrow Y$ in F^+, X is a superkey for R.

EMP

ENAME	PNAME	DNAME
-------	-------	-------

ENAME —>> **PNAME**

- Note:
 - An MVD $X \longrightarrow Y$ in R is called a **trivial MVD** if (a) Y is a subset of X, or (b) $X \cup Y = R$.
 - $-F^+$ is the (complete) set of all dependencies (functional or multivalued) that will hold in every relation state r of R that satisfies F. It is also called the **closure** of F.

EMP_PROJECTS

	ENAME	PNAME
--	-------	-------

ENAME —>> **PNAME**

4. Join Dependencies and Fifth Normal Form

- A join dependency (JD), denoted by $JD(R_1, R_2, ..., R_n)$, specified on relation schema R,
 - Every legal state r of R should have a non-additive join decomposition into $R_1, R_2, ..., R_n$;
 - that is, for every such r we have

*
$$(\pi_{R1}(r), \pi_{R2}(r), ..., \pi_{Rn}(r)) = r$$

Note: an MVD is a special case of a JD where n = 2.

• A join dependency $JD(R_1, R_2, ..., R_n)$, specified on relation schema R, is a **trivial JD** if one of the relation schemas R_i in $JD(R_1, R_2, ..., R_n)$ is equal to R.

Join Dependencies and Fifth Normal Form

• A relation schema R is in **fifth normal form** (**5NF**) (or **Project-Join Normal Form** (**PJNF**)) with respect to a set F of functional, multivalued, and join dependencies

if, for every nontrivial join dependency $JD(R_1, R_2, ..., R_n)$ in F^+ (that is, implied by F), every R_i is a superkey of R.

(c) SUPPLY

SNAME	PARTNAME	PROJNAME
Smith	Bolt	ProjX
Smith	Nut	ProjY
Adamsky	Bolt	ProjY
Walton	Nut	ProjZ
Adamsky	Nail	ProjX
Adamsky	Bolt	ProjX
Smith	Bolt	ProjY

- (c) The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the JD(R1, R2, R3).
- (d) Decomposing the relation SUPPLY into the 5NF relations R1, R2, and R3.

(d)	R1		R2			R3		
	SNAME	PARTNAME	SNAME	PROJNAME		PARTNAME	PROJNAME	
	Smith	Bolt	Smith	ProjX		Bolt	ProjX	
	Smith	Nut	Smith	ProjY		Nut	ProjY	
	Adamsky	Bolt	Adamsky	ProjY		Bolt	ProjY	
	Walton	Nut	Walton	ProjZ		Nut	ProjZ	
	Adamsky	Nail	Adamsky	ProjX		Nail	ProjX	