Complejidad Computacional

Santiago Figueira

Departamento de Computación - FCEN - UBA

clase 4

Clase 4

Máquinas no-determinísticas Reducibilidad polinomial Lógica proposicional

Máquinas no-determinísticas

Clase 4

Máquinas no-determinísticas

Reducibilidad polinomial Lógica proposicional

Máquinas determinísticas

Las máquinas que vimos hasta ahora son determinísticas: cada configuración evoluciona de una única forma a partir de la configuración inicial.

Un cómputo de $M=(\Sigma,Q,\delta)$ a partir de x es

$$C_0 \xrightarrow{\delta} C_1 \xrightarrow{\delta} C_2 \xrightarrow{\delta} \dots \xrightarrow{\delta} C_\ell$$

tal que C_{ℓ} es final.

A partir de ahora, las llamamos también **máquinas** determinísticas.

Notación: Máquina determinística

Máquina = máquina determinística

Máquinas no-determinísticas

Las máquinas **no-determinísticas** son triplas (Σ, Q, δ) , como antes, pero con dos diferencias respecto a las determinísticas:

1. la función de transición es

$$\left(\underbrace{\{L,R.S\}}_{\text{entrada}}\times\underbrace{\Sigma^{k-2}\times\{L,R,S\}^{k-2}}_{\text{trabajo}}\times\underbrace{(\Sigma\cup\{S\})}_{\text{salida}}\times Q\right)^{2}$$

Ahora δ especifica una o dos posibles **evoluciones en un paso** a partir de una configuración dada.

 $2.\ Q$ tiene 3 estados distinguidos:

 q_0 , $q_{
m si}$, $q_{
m no}$

Cómputo de una máquina no-determinística

Definición

Una configuración final de una máquina no-determinística $N = (\Sigma, Q, \delta)$ es una en la que el estado es $q_{\rm si}$ o $q_{\rm no}$. Un cómputo de N a partir de $x \in \{0, 1\}^*$ es una secuencia C_0, \ldots, C_ℓ de configuraciones tal que

- 1. C_0 es inicial a partir de x
- 2. C_{i+1} es la evolución de C_i en un paso dado por alguna de las 2 tuplas de δ
- 3. C_{ℓ} está en estado $q_{\rm si}$ o $q_{\rm no}$

Un **cómputo aceptador** es uno en el que C_{ℓ} está en estado q_{si} , y en ese caso a C_{ℓ} lo llamamos configuración **aceptadora** Llamamos **longitud** del cómputo a ℓ .

A diferencia de las máquinas determinísticas, hay posiblemente muchos cómputos a partir de una configuración dada.

Lenguaje aceptado por una máquina no-determinística

Definición

Decimos que la máquina no-determinística N acepta x si existe un cómputo aceptador C_0, \ldots, C_ℓ de N a partir de x. En caso contrario decimos que N rechaza x.

Decimos que N decide el lenguaje \mathcal{L} si para todo $x \in \{0, 1\}^*$,

$$x \in \mathcal{L}$$
 sii N acepta x

Observación

- Las máquinas no-determinísticas no computan funciones; solo aceptan lenguajes (que es una forma de computar funciones valuadas en $\{0,1\}$).
- En las máquinas no-determinísticas la cinta de salida es irrelevante (porque no participa de ninguna definición).

Lenguaje aceptado por una máquina no-determinística

Notación: $N(x), \mathcal{L}(N)$

Sea N una máquina no-determinística. N(x) = 1 si N acepta x;

N(x) = 0 si N rechaza x.

El lenguaje decidido por N es $\mathcal{L}(N)$.

Tiempo de cómputo de una máquina no-determinística

Definición

La máquina no-determinística N corre en tiempo T(n) si para todo $x \in \{0,1\}^*$, todo cómputo de N a partir de x tiene longitud $\leq T(|x|)$.

Definición

La máquina no-determinística N corre en tiempo O(T(n)) si existe una constante c tal que para todo $x \in \{0,1\}^*$, salvo finitos, todo cómputo de N a partir de x tiene longitud $\leq c \cdot T(|x|)$.

La clase NDTIME(T(n))

Clase de complejidad: NDTIME(T(n))

 $\mathbf{NDTime}(T(n))$ es la clase de lenguajes $\mathcal L$ tal que existe una máquina no-determinística N tal que

- N decide \mathcal{L}
- N corre en tiempo O(T(n))

Cómputos en máquinas no-determinísticas

Supongamos la máquina no-determinística $N=(\Sigma,Q,\delta)$ que corre en tiempo T(n). Dada $\delta(q,s)=(a,b)$ definamos

$$\delta_0(q,s) = a$$
 y $\delta_1(q,s) = b$.

Sea $x \in \{0, 1\}^*$ y n = |x|

N acepta x porque existe un cómputo aceptador Codificamos cómputos con secuencias $\{0,1\}^{T(n)}$. 011 es un cómputo aceptador de N(x).

Cómputos en máquinas no-determinísticas

Supongamos la máquina no-determinística $N=(\Sigma,Q,\delta)$ que corre en tiempo T(n). Dada $\delta(q,s)=(a,b)$ definamos

$$\delta_0(q,s) = a$$
 y $\delta_1(q,s) = b$.

Sea $x \in \{0, 1\}^*$ y n = |x|

N rechaza x porque no existe un cómputo aceptador Codificamos cómputos con secuencias $\{0,1\}^{T(n)}$. 011 no es un cómputo aceptador de N(x).

Simulación de una máquina no-determinística

- Sea $N=(\Sigma,Q,\delta)$ una máquina no-determinística
- Podemos simular determinísticamente todos los cómputos de longitud a lo sumo t de N a partir de cualquier x y determinar cuáles de esos son aceptadores.
- A cada cómputo lo codificamos con una palabra de $u \in \{0,1\}^t$
- Hay 2^t tales cómputos
- Para para u, simulamos N como si fuera determinística siguiendo el cómputo u (toma tiempo $O(t \cdot 2^t)$)
- Si N corre en tiempo T(n), podemos decidir si N acepta o rechaza x con una máquina determinística que corre en tiempo $O(2^{T(n)^2})$

Definición alternativa de NP

Teorema

$$\mathbf{NP} = \bigcup_{c \in \mathbb{N}} \mathbf{NDTIME}(n^c).$$

Existe un polinomio $p: \mathbb{N} \to \mathbb{N}$ y una máquina determinística M que corre en tiempo polinomial tal que para todo x,

$$x \in \mathcal{L}$$
 sii
$$existe \ u \in \{0,1\}^{p(|x|)}$$
tal que $M(\langle x,u \rangle) = 1$

Existe una máquina no-determinística N que corre en tiempo polinomial tal que

 $x \in \mathcal{L}$ sii existe un cómputo aceptador de N a partir de x

Supongamos una máquina no-determinística $N=(\Sigma,Q,\delta)$ y un polinomio p tal que N corre en tiempo p y N decide \mathcal{L} .

$$x \in \mathcal{L}$$
 sii existe un cómputo aceptador $C_0, \dots, C_{p(|x|)}$ de N a partir de x .

Supongamos una máquina no-determinística $N=(\Sigma,Q,\delta)$ y un polinomio p tal que N corre en tiempo p y N decide \mathcal{L} .

$$x \in \mathcal{L}$$
 sii existe un cómputo aceptador $C_0, \dots, C_{p(|x|)}$ de N a partir de x .

Ya vimos que podemos codificar cómputos con cadenas binarias. Consideremos $u \in \{0,1\}^{p(|x|)}$ tal que u(i)=0 si se usa la primera componente de δ para pasar de C_i a C_{i+1} y u(i)=1 en caso contrario.

Supongamos una máquina no-determinística $N=(\Sigma,Q,\delta)$ y un polinomio p tal que N corre en tiempo p y N decide \mathcal{L} .

$$x \in \mathcal{L}$$
 sii existe un cómputo aceptador $C_0, \dots, C_{p(|x|)}$ de N a partir de x .

Ya vimos que podemos codificar cómputos con cadenas binarias. Consideremos $u \in \{0,1\}^{p(|x|)}$ tal que u(i)=0 si se usa la primera componente de δ para pasar de C_i a C_{i+1} y u(i)=1 en caso contrario.

Existe una máquina determinística M (verificador) tal que M con entrada $\langle x, u \rangle$ verifica que u (certificado) sea la codificación de un cómputo aceptador de N a partir de x. Si lo es, escribe 1 en la salida y si no escribe 0.

Supongamos una máquina no-determinística $N=(\Sigma,Q,\delta)$ y un polinomio p tal que N corre en tiempo p y N decide \mathcal{L} .

$$x \in \mathcal{L}$$
 sii existe un cómputo aceptador $C_0, \dots, C_{p(|x|)}$ de N a partir de x .

Ya vimos que podemos codificar cómputos con cadenas binarias. Consideremos $u \in \{0,1\}^{p(|x|)}$ tal que u(i)=0 si se usa la primera componente de δ para pasar de C_i a C_{i+1} y u(i)=1 en caso contrario.

Existe una máquina determinística M (verificador) tal que M con entrada $\langle x,u\rangle$ verifica que u (certificado) sea la codificación de un cómputo aceptador de N a partir de x. Si lo es, escribe 1 en la salida y si no escribe 0.

$$x \in \mathcal{L}$$
 sii existe $u \in \{0, 1\}^{p(|x|)}$ tal que $M(\langle x, u \rangle) = 1$.

M corre en tiempo polinomial, por lo tanto $\mathcal{L} \in \mathbf{NP}$.

Supongamos una máquina determinística M que corre en tiempo polinomial y un polinomio $p:\mathbb{N}\to\mathbb{N}$ tal que para todo x,

$$x \in \mathcal{L}$$
 sii existe $u \in \{0,1\}^{p(|x|)}$ tal que $M(\langle x, u \rangle) = 1$

Supongamos una máquina determinística M que corre en tiempo polinomial y un polinomio $p:\mathbb{N}\to\mathbb{N}$ tal que para todo x,

$$x \in \mathcal{L}$$
 sii existe $u \in \{0,1\}^{p(|x|)}$ tal que $M(\langle x, u \rangle) = 1$

Definimos una máquina no-determinística N que con entrada x hace esto:

"inventa" una palabra $u \in \{0,1\}^{p(|x|)}$ en su cinta de trabajo; lo logra con el no-determinismo de δ , que escribe 0 o 1. Esto le toma tiempo p(|x|).

simula M con entrada $\langle x, u \rangle$. Esto le toma tiempo polinomial.

si $M(\langle x,u\rangle)=1$ entonces entra al estado $q_{si};$ si no entra al estado q_{no}

Supongamos una máquina determinística M que corre en tiempo polinomial y un polinomio $p:\mathbb{N}\to\mathbb{N}$ tal que para todo x,

$$x \in \mathcal{L}$$
 sii existe $u \in \{0,1\}^{p(|x|)}$ tal que $M(\langle x, u \rangle) = 1$

Definimos una máquina no-determinística N que con entrada x hace esto:

"inventa" una palabra $u \in \{0,1\}^{p(|x|)}$ en su cinta de trabajo; lo logra con el no-determinismo de δ , que escribe 0 o 1. Esto le toma tiempo p(|x|).

simula M con entrada $\langle x, u \rangle$. Esto le toma tiempo polinomial.

si $M(\langle x, u \rangle) = 1$ entonces entra al estado q_{si} ; si no entra al estado q_{no}

Tenemos

$$x \in \mathcal{L}$$
 sii existe un cómputo aceptador de N a partir de x .

N corre en tiempo polinomial, entonces $\mathcal{L} \in \bigcup_{c \in \mathbb{N}} \mathbf{NDTIME}(n^c)$.

Máquinas no-determinísticas \longleftrightarrow palabras en binario

- análogamente a lo que pasa para las máquinas determinísticas, hay una codificación de máquinas no-determinísticas con palabras en {0,1}*
- toda palabra $x \in \{0,1\}^*$ representa alguna máquina no-determinística
- identificamos máquinas no-determinísticas con palabras $x \in \{0,1\}^*$; hablamos de 'la máquina no-determinística x' o 'la x-ésima máquina no-determinística' para referirnos a la única máquina no-determinística N tal que $\langle N \rangle = x$
- hay una cantidad numerable de máquinas no-determinísticas

La máquina no-determinística universal

Llamemos N_i a la máquina no-determinística tal que $\langle N \rangle = i$.

Teorema

Existe una máquina no-determinística NU que tal que NU acepta $(\langle i, x \rangle)$ sii N_i acepta x y si N_i corre en tiempo T(n) entonces $NU(\langle i, x \rangle)$ decide si N_i acepta o rechaza x en $c \cdot T(|x|)$ pasos, donde c depende solo de i.

Reducibilidad polinomial

Clase 4

Máquinas no-determinísticas Reducibilidad polinomial Lógica proposicional

Reducción polinomial

Definición

 $\mathcal{L} \subseteq \{0,1\}^*$ es Karp reducible polinomialmente o simplemente reducible polinomialmente a $\mathcal{L}' \subseteq \{0,1\}^*$, notado $\mathcal{L} \leq_{\mathrm{p}} \mathcal{L}'$, si existe una función computable en tiempo polinomial $f: \{0,1\}^* \to \{0,1\}^*$ tal que para todo $x \in \{0,1\}^*$

$$x \in \mathcal{L}$$
 sii $f(x) \in \mathcal{L}'$.

f se llama reducción polinomial de \mathcal{L} a \mathcal{L}' . En este caso decimos que $\mathcal{L} \leq_{\mathbf{p}} \mathcal{L}'$ vía f.

Reducción polinomial

Definición

 $\mathcal{L} \subseteq \{0,1\}^*$ es Karp reducible polinomialmente o simplemente reducible polinomialmente a $\mathcal{L}' \subseteq \{0,1\}^*$, notado $\mathcal{L} \leq_{\mathrm{p}} \mathcal{L}'$, si existe una función computable en tiempo polinomial $f: \{0,1\}^* \to \{0,1\}^*$ tal que para todo $x \in \{0,1\}^*$

$$x \in \mathcal{L}$$
 sii $f(x) \in \mathcal{L}'$.

f se llama **reducción polinomial** de \mathcal{L} a \mathcal{L}' . En este caso decimos que $\mathcal{L} \leq_{\mathbf{p}} \mathcal{L}'$ **vía** f.

Clase de complejidad: NP-hard, NP-completo

 \mathcal{L} es NP-hard si $\mathcal{L}' \leq_p \mathcal{L}$ para todo $\mathcal{L}' \in \mathbf{NP}$ \mathcal{L} es NP-completo si $\mathcal{L} \in \mathbf{NP}$ y \mathcal{L} es NP-hard.

Reducción polinomial

Definición

 $\mathcal{L} \subseteq \{0,1\}^*$ es Karp reducible polinomialmente o simplemente reducible polinomialmente a $\mathcal{L}' \subseteq \{0,1\}^*$, notado $\mathcal{L} \leq_{\mathrm{p}} \mathcal{L}'$, si existe una función computable en tiempo polinomial $f: \{0,1\}^* \to \{0,1\}^*$ tal que para todo $x \in \{0,1\}^*$

$$x \in \mathcal{L}$$
 sii $f(x) \in \mathcal{L}'$.

f se llama **reducción polinomial** de \mathcal{L} a \mathcal{L}' . En este caso decimos que $\mathcal{L} \leq_{\mathbf{p}} \mathcal{L}'$ **vía** f.

Clase de complejidad: NP-hard, NP-completo

 \mathcal{L} es NP-hard si $\mathcal{L}' \leq_p \mathcal{L}$ para todo $\mathcal{L}' \in NP$ \mathcal{L} es NP-completo si $\mathcal{L} \in NP$ y \mathcal{L} es NP-hard.

Ejercicio

Si $\mathcal{L} \leq_{p} \mathcal{L}'$ y $\mathcal{L}' \in \mathbf{P}$, entonces $\mathcal{L} \in \mathbf{P}$.

Teorema

La relación \leq_{p} es transitiva.

Demostración.

Supongamos que $\mathcal{L} \leq_{\mathbf{p}} \mathcal{L}'$ via f y $\mathcal{L}' \leq_{\mathbf{p}} \mathcal{L}''$ via g.

$$x \in \mathcal{L}$$
 sii $f(x) \in \mathcal{L}'$ sii $g(f(x)) \in \mathcal{L}''$

Veamos que $g \circ f$ es computable en tiempo polinomial. Supongamos M_f (det.) que computa f en tiempo $O(n^c)$ Supongamos M_g (det.) que computa g en tiempo $O(n^d)$ Definimos M (det.) así: simula M_f con entrada x; si obtiene $M_f(x) = f(x) = y$, entonces simula $M_g(y)$ y escribe el resultado en la cinta de salida.

- M(x) = g(f(x)), o sea M computa $g \circ f$
- $|y| = O(|x|^c)$
- M corre en tiempo $O(n^{cd})$

Entonces $\mathcal{L} \leq_{\mathbf{p}} \mathcal{L}''$ vía $g \circ f$.

Teorema

Si NP-hard \cap P \neq \emptyset , entonces P = NP.

Demostración.

Sea $\mathcal{L} \in \mathbf{NP}$ -hard $\cap \mathbf{P}$.

Como $\mathcal{L} \in \mathbf{NP\text{-}hard}$, tenemos $\mathcal{L}' \leq_p \mathcal{L}$ para todo $\mathcal{L}' \in \mathbf{NP}$.

Fijemos $\mathcal{L}' \in \mathbf{NP}$ cualquiera y veamos que $\mathcal{L}' \in \mathbf{P}$.

Existe una función f computable en tiempo polinomial tal que para todo x

$$x \in \mathcal{L}'$$
 sii $f(x) \in \mathcal{L}$.

Como $\mathcal{L} \in \mathbf{P}$, $\chi_{\mathcal{L}}$ es computable en tiempo polinomial. Entonces

$$x \in \mathcal{L}'$$
 sii $\chi_{\mathcal{L}}(f(x)) = 1$

y $\chi_{\mathcal{L}} \circ f$ es computable en tiempo polinomial. Luego $\chi_{\mathcal{L}'}$ es computable en tiempo polinomial, o sea $\mathcal{L}' \in \mathbf{P}$.

Teorema

Si $\mathcal{L} \in \mathbf{NP\text{-}completo}$, entonces $\mathcal{L} \in \mathbf{P}$ sii $\mathbf{P} = \mathbf{NP}$.

Demostración.

Supongamos $\mathcal{L} \in \mathbf{NP\text{-}completo}$

 \Rightarrow Supongamos $\mathcal{L} \in \mathbf{P}$.

Por hipótesis tenemos $\mathcal{L} \in \mathbf{NP\text{-}completo}$.

Luego $\mathcal{L} \in \mathbf{NP\text{-}completo} \cap \mathbf{P}$.

Entonces $\mathcal{L} \in \mathbf{NP}\text{-hard} \cap \mathbf{P}$.

Por teorema anterior, P = NP.

 \Leftarrow Supongamos P = NP

Por hipótesis $\mathcal{L} \in \mathbf{NP}$, de modo que $\mathcal{L} \in \mathbf{P}$.

Un ejemplo de problema **NP-completo**

Llamemos M_y a la máquina determinística tal que $\langle M \rangle = y$.

Problema: TMSAT

 $\mathsf{TMSAT} = \{ \langle y, x, 1^n, 1^t \rangle \colon \exists u \in \{0, 1\}^n \ M_y(xu) = 1 \ \mathrm{en} \le t \ \mathrm{pasos} \}$

Proposición

 $\mathsf{TMSAT} \in \mathbf{NP\text{-}completo}.$

Un ejemplo de problema NP-completo

Llamemos M_y a la máquina determinística tal que $\langle M \rangle = y$.

Problema: TMSAT

TMSAT =
$$\{\langle y, x, 1^n, 1^t \rangle : \exists u \in \{0, 1\}^n \ M_y(xu) = 1 \text{ en } \le t \text{ pasos} \}$$

Proposición

 $\mathsf{TMSAT} \in \mathbf{NP\text{-}completo}.$

Demostración.

Es claro que TMSAT \in NP. Tomemos $\mathcal{L} \in$ NP y veamos que $\mathcal{L} \leq_{\mathbf{p}}$ TMSAT. Existen polinomios p,q y una máquina determinística M tal que $x \in \mathcal{L}$ sii $\exists u \in \{0,1\}^{\leq p(|x|)}$ M(xu) = 1 y M corre en tiempo q(n).

Un ejemplo de problema NP-completo

Llamemos M_y a la máquina determinística tal que $\langle M \rangle = y$.

Problema: TMSAT

TMSAT =
$$\{\langle y, x, 1^n, 1^t \rangle : \exists u \in \{0, 1\}^n \ M_y(xu) = 1 \text{ en } \le t \text{ pasos} \}$$

Proposición

 $\mathsf{TMSAT} \in \mathbf{NP\text{-}completo}.$

Demostración.

Es claro que TMSAT \in NP. Tomemos $\mathcal{L} \in$ NP y veamos que $\mathcal{L} \leq_{\mathbf{p}}$ TMSAT. Existen polinomios p,q y una máquina determinística M tal que $x \in \mathcal{L}$ sii $\exists u \in \{0,1\}^{\leq p(|x|)}$ M(xu) = 1 y M corre en tiempo q(n). Definimos $f(x) = \langle \langle M \rangle, x, 1^{p(|x|)}, 1^{q(|x|+p(|x|))} \rangle$. f es computable en tiempo polinomial.

$$\begin{split} f(x) \in \mathsf{TMSAT} & \text{ sii } & \langle \langle M \rangle, x, 1^{p(|x|)}, 1^{q(|x|+p(|x|))} \rangle \in \mathsf{TMSAT} \\ & \text{ sii } & \exists u \in \{0,1\}^{p(|x|)} \ M(xu) = 1 \\ & \text{ en } \leq q(|xu|) = q(|x|+p(|x|)) \text{ pasos} \\ & \text{ sii } & x \in \mathcal{L} \end{split}$$

Lógica proposicional

Clase 4

Máquinas no-determinísticas Reducibilidad polinomial Lógica proposicional

Lógica proposicional

Una **fórmula booleana** se forma con la gramática

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi)$$

donde $p \in \mathsf{PROP}$. El **tamaño** de φ es la cantidad de símbolos que contiene.

Una valuación es una función $v: \mathsf{PROP} \to \{0,1\}$. Definimos $v \models \varphi$ por inducción en φ :

- si $p \in \mathsf{PROP}, v \models p \text{ si } v(p) = 1$
- $v \models \neg \varphi \text{ si no } v \models \varphi$
- $v \models \varphi \land \psi \text{ si } v \models \varphi \text{ y } v \models \psi$
- $v \models \varphi \lor \psi \text{ si } v \models \varphi \text{ o } v \models \psi$

Decimos que

- φ es verdadera para v o que v satisface φ si $v \models \varphi$.
- φ es falsa para v o que v no satisface φ si $v \models \varphi$ es falso, notado $v \not\models \varphi$.
- φ es satisfacible si existe una valuación v tal que $v \models \varphi$.
- φ es una **tautología** si $v \models \varphi$ para toda valuación v.

Valuaciones

```
Notación: \varphi(p_1,\ldots,p_n)
```

Notamos $\varphi(p_1, \ldots, p_n)$ para marcar que las variables proposicionales que aparecen en φ están entre p_1, \ldots, p_n .

Proposición

Sea $\varphi(p_1,\ldots,p_n)$ una fórmula. Si v y v' son dos valuaciones tales que $v(p_i)=v'(p_i)$ para $i\in\{1,\ldots,n\}$, entonces $v\models\varphi(p_1,\ldots,p_n)$ sii $v'\models\varphi(p_1,\ldots,p_n)$.

Para saber si $v \models \varphi(p_1, \dots, p_n)$ alcanza con conocer $v \upharpoonright \{p_1, \dots, p_n\}$. Usamos $v \in \{0, 1\}^n$ para referirnos a $\{p_i \mapsto v(i)\}$.

Valuaciones

Notación: $\varphi(p_1,\ldots,p_n)$

Notamos $\varphi(p_1, \ldots, p_n)$ para marcar que las variables proposicionales que aparecen en φ están entre p_1, \ldots, p_n .

Proposición

Sea $\varphi(p_1,\ldots,p_n)$ una fórmula. Si v y v' son dos valuaciones tales que $v(p_i)=v'(p_i)$ para $i\in\{1,\ldots,n\}$, entonces $v\models\varphi(p_1,\ldots,p_n)$ sii $v'\models\varphi(p_1,\ldots,p_n)$.

Para saber si $v \models \varphi(p_1, \ldots, p_n)$ alcanza con conocer $v \upharpoonright \{p_1, \ldots, p_n\}$. Usamos $v \in \{0, 1\}^n$ para referirnos a $\{p_i \mapsto v(i)\}$.

Ejemplo

La valuación parcial $\{p_1\mapsto 0, p_2\mapsto 0, p_3\mapsto 1\}$ se representa como (0,0,1) o como 001.

- $(0,0,1) \models \neg p_1 \land \neg p_2 \land p_3 \text{ o } 001 \models \neg p_1 \land \neg p_2 \land p_3$
- $(0,0,1) \not\models p_1 \lor p_2 \text{ o } 001 \not\models p_1 \lor p_2$

Forma normal conjuntiva

Una fórmula está en **forma normal conjuntiva (CNF)** si es de la forma

$$\underbrace{(a_{11} \vee \cdots \vee a_{1n_1})}_{\text{cláusula}} \wedge \underbrace{(a_{21} \vee \cdots \vee a_{2n_2})}_{\text{cláusula}} \wedge \cdots \wedge \underbrace{(a_{m1} \vee \cdots \vee a_{mn_m})}_{\text{cláusula}}$$

donde a_{ij} es un **literal**, es decir, de la forma p o $\neg p$ para algún $p \in \mathsf{PROP}$.

Una fórmula está en 3CNF si está en CNF y cada cláusula tiene a lo sumo 3 literales.

Representamos una fórmula $\varphi \in \text{CNF}$ con una palabra $\langle \varphi \rangle$ en $\{0,1\}^*$

Forma normal conjuntiva

Una fórmula está en **forma normal conjuntiva (CNF)** si es de la forma

$$\underbrace{(a_{11} \vee \cdots \vee a_{1n_1})}_{\text{cláusula}} \wedge \underbrace{(a_{21} \vee \cdots \vee a_{2n_2})}_{\text{cláusula}} \wedge \cdots \wedge \underbrace{(a_{m1} \vee \cdots \vee a_{mn_m})}_{\text{cláusula}}$$

donde a_{ij} es un **literal**, es decir, de la forma p o $\neg p$ para algún $p \in \mathsf{PROP}$.

Una fórmula está en 3CNF si está en CNF y cada cláusula tiene a lo sumo 3 literales.

Representamos una fórmula $\varphi \in \text{CNF}$ con una palabra $\langle \varphi \rangle$ en $\{0,1\}^*$

Problema: SAT (satisfacción booleana en CNF)

 $\mathsf{SAT} = \{ \langle \varphi \rangle \colon \varphi \in \mathsf{CNF} \text{ es satisfacible} \}$

Problema: 3SAT (satisfacción booleana en 3CNF)

 $\mathsf{3SAT} = \{ \langle \varphi \rangle \colon \varphi \in \mathsf{3CNF} \text{ es satisfacible} \}$

SAT y 3SAT son \mathbf{NP}

Teorema

 $\mathsf{SAT}, \mathsf{3SAT} \in \mathbf{NP}.$

SAT y 3SAT son NP

Teorema.

SAT, 3SAT \in NP.

Demostración.

Alcanza con verlo para SAT. Definimos una máquina determinística M que recibe como entrada $\langle x,u\rangle$ y hace esto:

```
si x no representa una fórmula, rechazar.

si no, supongamos que x = \langle \varphi \rangle y supongamos que \varphi tiene m variables

si |u| < m rechazar

si no, aceptar si u \upharpoonright m \models \varphi y rechazar en caso

contrario.
```

Tenemos

$$\langle \varphi \rangle \in \mathsf{SAT}$$
 sii $\exists u \in \{0,1\}^{|\langle \varphi \rangle|} \ M(\langle x,u \rangle) = 1$

Como M corre en tiempo polinomial, SAT \in NP. El certificado de M es la valuación que hace verdadera a φ : es una palabra en $\{0,1\}^{p(|\langle \varphi \rangle|)}$, donde p(n)=n.

SAT y 3SAT son NP

Ejemplo

Sea

$$\varphi = (\neg p_1 \lor p_2 \lor \neg p_3) \land (p_1 \lor p_2 \lor p_3).$$

u=001 es un certificado para φ porque

$$001 \models \varphi$$

Proposición

Para toda $F: \{0,1\}^{\ell} \to \{0,1\}$ existe una fórmula $\varphi_F(p_1,\ldots,p_{\ell})$ en CNF tal que $v \models \varphi_F$ sii F(v) = 1 para todo $v \in \{0,1\}^{\ell}$. Más aún, φ_F se computa en tiempo polinomial a partir de $\langle F \rangle$ y tiene tamaño $O(\ell 2^{\ell})$.

Proposición

Para toda $F: \{0,1\}^{\ell} \to \{0,1\}$ existe una fórmula $\varphi_F(p_1,\ldots,p_{\ell})$ en CNF tal que $v \models \varphi_F$ sii F(v) = 1 para todo $v \in \{0,1\}^{\ell}$. Más aún, φ_F se computa en tiempo polinomial a partir de $\langle F \rangle$ y tiene tamaño $O(\ell 2^{\ell})$.

Demostración.

$$\varphi = \bigwedge_{v:F(v)=0} \neg \left(\bigwedge_{i:v(i)=1} p_i \wedge \bigwedge_{i:v(i)=0} \neg p_i \right)$$

$$= \bigwedge_{v:F(v)=0} \underbrace{\left(\bigvee_{i:v(i)=1} \neg p_i \vee \bigvee_{i:v(i)=0} p_i \right)}_{\text{tamaño } O(\ell)}$$

Ejemplo

v(0)	v(1)	v(2)	F(v)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$\varphi = (p_1 \lor p_2 \lor p_3) \land (p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2 \lor p_3) \land (\neg p_1 \lor p_2 \lor \neg p_3)$$

Corolario

Para toda $F: \{0,1\}^{\ell} \to \{0,1\}^{k}$ existe una fórmula $\varphi_{F}(p_{1},\ldots,p_{\ell+k})$ en CNF tal que $uv \models \varphi_{F}$ sii F(u) = v para todo $u \in \{0,1\}^{\ell}, v \in \{0,1\}^{k}$. Más aún, φ_{F} se computa en tiempo polinomial a partir de $\langle F \rangle$ y tiene tamaño $O((\ell+k)2^{\ell+k})$.

Corolario

Para toda $F: \{0,1\}^{\ell} \to \{0,1\}^{k}$ existe una fórmula $\varphi_{F}(p_{1},\ldots,p_{\ell+k})$ en CNF tal que $uv \models \varphi_{F}$ sii F(u) = v para todo $u \in \{0,1\}^{\ell}$, $v \in \{0,1\}^{k}$. Más aún, φ_{F} se computa en tiempo polinomial a partir de $\langle F \rangle$ y tiene tamaño $O((\ell+k)2^{\ell+k})$.

Demostración.

Considerar $G:\{0,1\}^{\ell+k} \to \{0,1\}$ definida como

$$G(uv) = 1$$
 sii $F(u) = v$

y aplicar el resultado anterior.