Package 'MN'

May 22, 2024

Type Package

Title Matrix Normal Distribution				
Version 1.0				
Date 2024-05-21				
Author Michail Tsagris [aut, cre], Alzeley Omar [ctb]				
Maintainer Michail Tsagris <mtsagris@uoc.gr></mtsagris@uoc.gr>				
Depends R (>= 4.0)				
Imports Rfast				
Description Density computation, random matrix generation and maximum likelihood estimation of the matrix normal distribution. References: Pocuca N., Gallaugher M. P., Clark K. M. & McNicholas P. D. (2019). Assessing and Visualizing Matrix Variate Normality. doi:10.48550/arXiv.1910.02859 > and the relevant wikipedia page.				
License GPL (>= 2)				
NeedsCompilation no				
Repository CRAN				
Date/Publication 2024-05-22 12:20:10 UTC				
R topics documented:				
•				
MN-package Density of the matrix normal distribution Distance-Distance Plot Kolmogorov-Smirnov test for matrix normality Maximum likelihood estimation of the the matrix normal distribution Random matrices simulation from the matrix normal distribution				
Index				

MN-package

Matrix Normal Distribution

Description

Density computation, random matrix generation and maximum likelihood estimation of the matrix normal distribution. For references see: Pocuca N., Gallaugher M. P., Clark K. M. & McNicholas P. D. (2019). Assessing and Visualizing Matrix Variate Normality. arXiv:1910.02859 and the relevant wikipedia page.

Details

Package: MN
Type: Package
Version: 1.0
Date: 2024-05-21

Maintainers

Michail Tsagris <mtsagris@uoc.gr>.

Author(s)

Michail Tsagris <mtsagris@uoc.gr> and Omar Alzeley <oazeley@uqu.edu.sa>

References

Pocuca, N., Gallaugher, M. P., Clark, K. M., & McNicholas, P. D. (2019). Assessing and Visualizing Matrix Variate Normality. arXiv:1910.02859.

Density of the matrix normal distribution

Density of the matrix normal distribution

Description

Density of the matrix normal distribution.

Usage

```
dmn(X, M, U, V, logged = FALSE)
```

Arguments

X	A list with k elements, k matrices of dimension $n\ timesp$ each. In the case of one matrix only, this may be given as a numerical matrix and not as an element in a list.
М	The mean matrix of the distribution, a numerical matrix of dimensions $n \times p$.
U	The covariance matrix associated with the rows, a numerical matrix of dimensions $n \times n$.
V	The covariance matrix associated with the columns, a numerical matrix of dimensions $p \times p$.
logged	Should the logarithm of the density be computed?

Value

A numeric vector with the (logged) density values.

Author(s)

Omar Alzeley.

 $R\ implementation\ and\ documentation:\ Omar\ Alzeley\ \verb|<oazeley@uqu.edu.sa>|.$

References

https://en.wikipedia.org/wiki/Matrix_normal_distribution#Definition

Pocuca, N., Gallaugher, M. P., Clark, K. M., & McNicholas, P. D. (2019). Assessing and Visualizing Matrix Variate Normality. arXiv:1910.02859.

See Also

```
rmn, mn.mle, ddplot
```

Examples

```
M <- as.matrix(iris[1:8, 1:4])
U <- cov( matrix( rnorm(100 * 8), ncol = 8 ) )
V <- cov( iris[1:50, 1:4] )
X <- rmn(10, M, U, V)
dmn(X, M, U, V, TRUE)</pre>
```

4 Distance-Distance Plot

Distance-Distance Plot

Distance-Distance Plot

Description

Distance-Distance Plot

Usage

```
ddplot(X, M, U, V)
```

Arguments

X	A list with k elements, k matrices of dimension $n\ timesp$ each. In the case of one matrix only, this may be given as a numerical matrix and not as an element in a list.
М	The mean matrix of the distribution, a numerical matrix of dimensions $n \times p$.
U	The covariance matrix associated with the rows, a numerical matrix of dimensions $n\times n$.
V	The covariance matrix associated with the columns, a numerical matrix of dimensions $p\times p$.

Details

The distance-distance plot is produced. This is a scatter plot of the Mahalanobis distances computed using the estimated parameters from the multivariate normal and matrix normal distribution. See Pocuca et al. (2019) for more details.

Value

A scatter plot of the Mahalanobis distances.

Author(s)

Michail Tsagris and Omar Alzeley.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Omar Alzeley <oazeley@uqu.edu.sa>.

References

Pocuca N., Gallaugher M. P., Clark K. M. & McNicholas P. D. (2019). Assessing and Visualizing Matrix Variate Normality. arXiv:1910.02859.

See Also

```
rmn, mn.mle, dmn, ddkstest
```

Examples

```
M <- as.matrix(iris[1:8, 1:4])
U <- cov( matrix( rnorm(100 * 8), ncol = 8 ) )
V <- cov( iris[1:50, 1:4] )
X <- rmn(100, M, U, V)
ddplot(X, M, U, V)</pre>
```

Kolmogorov-Smirnov test for matrix normality $Kolmogorov-Smirnov \; test \; for \; matrix \; normality$

Description

Kolmogorov-Smirnov test for matrix normality

Usage

```
ddkstest(X, M, U, V, alpha = 0.05)
```

Arguments

X	A list with k elements, k matrices of dimension $n\ timesp$ each. In the case of one matrix only, this may be given as a numerical matrix and not as an element in a list.
М	The mean matrix of the distribution, a numerical matrix of dimensions $n \times p$.
U	The covariance matrix associated with the rows, a numerical matrix of dimensions $n \times n$.
V	The covariance matrix associated with the columns, a numerical matrix of dimensions $p \times p$.
alpha	The significance level for the test, set by default equal to 0.05.

Details

The Kolmogorov-Smirnov test for matrix normality is performed. See Pocuca (2019) for more details.

Value

A message. If the Kronecker product covariance structure is not present, the message reads "Reject" and "Not reject otherwise".

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Pocuca N., Gallaugher M. P., Clark K. M. & McNicholas P. D. (2019). Assessing and Visualizing Matrix Variate Normality. arXiv:1910.02859.

See Also

```
rmn, mn.mle, dmn, ddplot
```

Examples

```
M <- as.matrix(iris[1:8, 1:4])
U <- cov( matrix( rnorm(100 * 8), ncol = 8 ) )
V <- cov( iris[1:50, 1:4] )
X <- rmn(200, M, U, V)
ddkstest(X, M, U, V)</pre>
```

Maximum likelihood estimation of the the matrix normal distribution $Maximum\ likelihood\ estimation\ of\ the\ the\ matrix\ normal\ distribution$

Description

Maximum likelihood estimation of the the matrix normal distribution.

Usage

```
mn.mle(X)
```

Arguments

Χ

A list with k elements (k is the sample size), k matrices of dimension $n\ timesp$ each.

Value

A list including:

runtime	The runtime required for the whole fitting procedure.
iters	The number of iterations required for the estimation of the U and V matrices.
М	The estimated mean matrix of the distribution, a numerical matrix of dimensions $n \times p$.
U	The estimated covariance matrix associated with the rows, a numerical matrix of dimensions $n\times n$.
V	The estimated covariance matrix associated with the columns, a numerical matrix of dimensions $p\times p$.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

https://en.wikipedia.org/wiki/Matrix_normal_distribution#Definition

Pocuca N., Gallaugher M. P., Clark K. M. & McNicholas P. D. (2019). Assessing and Visualizing Matrix Variate Normality. arXiv:1910.02859.

See Also

```
dmn, rmn, ddplot
```

Examples

```
M <- as.matrix(iris[1:8, 1:4])
U <- cov( matrix( rnorm(100 * 8), ncol = 8 ) )
V <- cov( iris[1:50, 1:4] )
X <- rmn(200, M, U, V)
mod <- mn.mle(X)</pre>
```

Random matrices simulation from the matrix normal distribution

Random matrices simulation from the matrix normal distribution

Description

Random matrices simulation from the matrix normal distribution.

Usage

```
rmn(k, M, U, V)
```

Arguments

k	The sample size, the number of matrices to simulate.
М	The mean matrix of the distribution, a numerical matrix of dimensions $n \times p$.
U	The covariance matrix associated with the rows, a numerical matrix of dimensions $n \times n$.
V	The covariance matrix associated with the columns, a numerical matrix of dimensions $p \times p$.

Value

A list with k elements, k matrices of dimension n timesp each. These are the random matrices drawn from a matrix normal distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

https://en.wikipedia.org/wiki/Matrix_normal_distribution#Definition

See Also

```
dmn, mn.mle, ddplot
```

Examples

```
M <- as.matrix(iris[1:8, 1:4])
U <- cov( matrix( rnorm(100 * 8), ncol = 8 ) )
V <- cov( iris[1:50, 1:4] )
X <- rmn(10, M, U, V)</pre>
```

Index

```
ddkstest, 4
ddkstest (Kolmogorov-Smirnov test for
        matrix normality), 5
ddplot, 3, 6–8
ddplot (Distance-Distance Plot), 4
Density of the matrix normal
        distribution, 2
Distance-Distance Plot, 4
dmn, 4, 6–8
dmn (Density of the matrix normal
        distribution), 2
Kolmogorov-Smirnov test for matrix
        normality, 5
Maximum likelihood estimation of the
        the matrix normal
        distribution, 6
MN-package, 2
mn.mle, 3, 4, 6, 8
mn.mle(Maximum likelihood estimation
        of the the matrix normal
        distribution), 6
Random matrices simulation from the
        matrix normal distribution, 7
rmn, 3, 4, 6, 7
rmn (Random matrices simulation from
        the matrix normal
        distribution), 7
```