

GEOMETRY

Capítulo 22

1th secondary

Área de regiones cuadrangulares

@ SACO OLIVEROS

MOTIVATING | STRATEGY

REGIÓN CUADRANGULAR

Región cuadrangular es aquella región limitada por un cuadrilátero.

Región cuadrangular ABCD

Región cuadrangular

$$S_{ABCD} = \frac{(AC)(BD)}{2}$$
.Sen α

HELICO | THEORY

Región Paralelográmica

Su área se calcula multiplicando la longitud de un lado con la altura relativa a dicho lado.

Su área se calcula multiplicando las longitudes de sus dos dimensiones

Región Cuadrada

Su área se calcula elevando al cuadrado la longitud de uno de sus lados.

$$S_{ABCD} = \ell^2$$

$$S_{ABCD} = \frac{d^2}{2}$$

Región Rombal

Su área se calcula multiplicando las longitudes de sus dos diagonales y dividiéndolas entre dos.

$$S_{ABCD} = \frac{(a)(b)}{2}$$

Región Trapecial

Su área se calcula multiplicando la semisuma de las longitudes de sus dos bases con la longitud de su altura.

$$S_{ABCD} = \frac{(a+b)}{2}(h)$$

1. En la figura, se muestra un cuadrado. Halle el área de la región que limita dicho cuadrado.

<u>RESOLUCIÓN</u>

Aplicando el teorema:

$$S = 5^2$$

$$S = 25 u^2$$

HELICO | PRACTICE

2. En el gráfico ABCD es un cuadrilátero. Halle el área de la región

limitada por dicha región.

$$S_{ABCD} = \frac{(AC)(BD)}{2}$$
.sen α

RESOLUCIÓN

Piden: S_{ABCD}

$$S_{ABCD} = \frac{(8)(6)}{2}$$
. Sen 60°

$$S_{ABCD} = (24)(\frac{\sqrt{3}}{2})$$

$$S_{ABCD} = 12\sqrt{3} m^2$$

3. Las longitudes de las bases de un trapecio son de 3 m y 9 m. Si la altura mide 6 m, calcule el área de la región limitada por el trapecio.

RESOLUCIÓN

Piden: S_{ABCD}

$$S_{ABCD} = \frac{(3+9)}{2}(6)$$

$$S_{ABCD} = (6)(6)$$

$$S_{ABCD} = 36 \text{ m}^2$$

4. Si el área de la región rectangular es 63 cm², halle el valor de x.

RESOLUCIÓN

Piden: x

Por dato:

$$S_{ABCD} = 63 \text{ cm}^2$$

$$(9)(x) = 63$$

$$x = 7 cm$$

5. En un rombo ABCD, las diagonales se intersecan en O. Si OB = 4 m y OC = 5m, calcule el área de la región ABCD.

RESOLUCIÓN

$$S_{ABCD} = \frac{(10)(8)}{2}$$

$$S_{ABCD} = 40 \text{ m}^2$$

6. Se quiere vender un terreno de forma rectangular, si el metro cuadrado cuesta S/ 4000. Indique el precio de dicho terreno.

RESOLUCIÓN

- Piden: El precio del terreno (x)
- Aplicando el teorema:

$$S_{ABCD} = (5)(3)$$

 $S_{ABCD} = 15 \text{ m}^2$

$$1 \text{ m}^2$$
 — s/. 4000
 15 m^2 — s/. x
 $x = 15.(4000)$

$$x = S/.60000$$

7. Se desea comprar un terreno y nos presentan dos posibilidades, el terreno A y el terreno B. ¿Qué terreno tiene la mayor área?

RESOLUCIÓN

Piden: El área del mayor terreno

$$S_A = \frac{(4)^2}{2}$$
 $S_B = (4)(3)$

$$S_A = 8 \text{ m}^2$$
 $S_B = 12 \text{ m}^2$

ÁREA DEL MAYOR TERRENO: B