# Assignment 2

## Aleksandr Salo

### Due September 16, 2014

# 1 Designing FSA

Assume  $\Sigma = \{0,1,\}$ 

1.  $L_1 = \{w | w \text{ contains an unequal number of 01 and 10 substrings}\}$ 



**2.**  $L_2 = \{w | w \text{ contains substring } 101 \text{ but no } 001\}$ 



### 2 Proof of regularity

- **1.36** Let  $B_n = \{a^k | k \text{ is a multiple of n}\}$ . Show that for each  $n \ge 1$ , the language  $B_n$  is regular. **Proof (by construction)**
- 1. The language is regular if there exists a DFA that recognizes it.
- 2. The alphabet  $\Sigma$  for any of the languages  $B_n$  is  $\{a\}$ .
- 3. Let us for any n construct the DFA in the following fashion:

$$\begin{array}{l} Q = \{q_i | i \text{ is an integer in } [0,n-1] \} \\ \Sigma = \{a\} \\ \delta \cdot \end{array}$$

$$\delta(q_i,s) = \begin{cases} q_{i+1} | \text{ for any integer } i \text{ in } [0,n-2] \\ q_0 | \text{for } i = n-1 \end{cases}$$

$$q_0 = q_0$$
$$F = \{q_0\}.$$

4. Note, that this DFA would accept empty string as it is a multiple of anything. Besides it will accept k input symbols (making k transitions) if the k equals to n. Then, DFA, consuming next symbols, will go to its following states  $q_i$ , and it will take exactly k - 1 symbols (and transitions) to go to the state labeled as  $q_{n-1}$ . Then, on k-th symbol DFA will return to its initial and accepting state. That will repeat. Hence, only providing k is multiple of n that constructed above DFA will ever accept thus making the language  $B_n$  regular language.

#### Illustration



### 3 Proving languages to be non-regular

1. Prove that  $L_{abb}$  is not R.L.

#### Proof (by contradiction):

- 1. Assume  $L_{abb}$  is a regular language (for the sake of the following contradiction).
- 2. Thus pumping lemma applies, let p be the pumping length for  $L_{abb}$ .
- 3. Let  $s = a^{2p}b^{4p}$  ( $|s| \ge p, s \in L$  conditions of P.L. are satisfied)
- 4. Show there is **no way** to divide s into three parts in a way that fulfills the P.L. conditions.
- 4.1. By applying  $3^{rd}$  condition of P.L. we conclude that xy must not contain any b
- 4.2. By applying  $2^{nd}$  condition of P.L. we conclude that y must contain at least one a
- 4.3. Consider string  $xy^2z = xyyz$ , which has more number of a that half the number of b.
- 5. That leads us to contradiction because xyyz is not in  $L_{abb}$ .
- 6. Hence there is no way to divide  $s = a^{2p}b^{4p}$  into three parts in a way that fulfills the P.L. conditions.
- 7. Therefore  $L_{abb}$  is **not** a regular language.

2.

1.46 Prove language is not a R.L. using P.L. and the closure property.

**a.**  $L_a = \{0^n 1^m 0^n | m, n \ge 0\}$ 

### Proof (by contradiction):

- 1. Assume  $L_a$  is a regular language (for the sake of the following contradiction).
- 2. Thus pumping lemma applies, let p be the pumping length for  $L_a$ .
- 3. Let  $s = 0^p 1^p 0^p$  ( $|s| \ge p, s \in L$  conditions of P.L. are satisfied)
- 4. Show there is **no way** to divide s into three parts in a way that fulfills the P.L. conditions.
- 4.1. By applying  $3^{rd}$  condition of P.L. we conclude that xy must not contain any 1
- 4.2. By applying  $2^{nd}$  condition of P.L. we conclude that y must contain at least one 0
- 4.3. Consider string  $xy^2z = xyyz$ , which has more number of 0 before the 1 than after the 1.
- 5. That leads us to contradiction because xyyz is not in  $L_a$ .
- 6. Hence there is no way to divide  $s = 0^p 1^p 0^p$  into three parts in a way that fulfills the P.L. conditions.
- 7. Therefore  $L_a$  is **not** a regular language.

**c.**  $L_c = \{w | w \in \{0, 1\}^* \text{ is not a palindrome}\}$ 

#### Proof outline

- 1. Show that regular languages are closed under complement operation.
- 2. Prove with P.L. that  $\overline{L_c}$  (complement) is not a regular language.
- 3. Derive that  $L_c$  itself not regular language.

#### Proof (by contradiction):

- 1. By definition, the complement of a language L (with respect to an alphabet  $\Sigma$  such that  $\Sigma^*$  contains L) is  $\Sigma^*$  L.
- 2. Since  $\Sigma^*$  is regular (closure under star operator), the complement of a regular language is always regular as it consist of  $\Sigma^*$  without L.
- 3. Let us prove (using P.L.) that complement language  $\overline{L_c}$  is not regular (that will prove that  $L_c$  itself is not regular).
- 4. Deriving the complement we found, that  $\overline{L_c} = \{w|w \text{ is binary palindrome}\}.$
- 5. Assume  $\overline{L_c}$  is a regular language (for the sake of the following contradiction).
- 6. Thus pumping lemma applies, let p be the pumping length for  $\overline{L_c}$ .
- 7. Let  $s = 0^p 1^p 0^p$  ( $|s| \ge p, s \in \overline{L_c}$  conditions of P.L. are satisfied)
- 8. Show there is **no way** to divide s into three parts in a way that fulfills the P.L. conditions.
- 8.1. By applying  $3^{rd}$  condition of P.L. we conclude that xy must not contain any 1
- 8.2. By applying  $2^{nd}$  condition of P.L. we conclude that y must contain at least one 0
- 8.3. Consider string  $xy^2z = xyyz$ , which has more number of 0 before the 1 than after the 1.

- 9. That leads us to contradiction because xyyz is not in  $\overline{L_c}$ .
- 10. Hence there is no way to divide  $s = 0^p 1^p 0^p$  into three parts in a way that fulfills the P.L. conditions.
- 11. Therefore  $\overline{L_c}$  is **not** a regular language.
- 12. We already proved that regular languages are closed under the complement operations. Thus, given  $\overline{L_c}$  is not regular,  $L_c$  could not be regular.
- **1.53:** Let  $\Sigma = \{0, 1, +, =\}$  and  $ADD = \{x = y + z | x, y, z \text{ are binary integers, and x is the sum of y and z}. Show that ADD is not R.L.$

### Proof: (by contradiction)

- 1. Assume ADD is a regular language (for the sake of the following contradiction).
- 2. Let p be the pumping length for ADD.
- 3. Let s = abc.
- 4. Note that + and = may appear once once each in s. Hence b cannot contain + nor = because it would lead to the trivial contradiction (we could not pump more equal signs into equation).
- 5. Let choose s as  $1^p = 1^p + 0^p$ . In words, let x and y not contain zeros at the beginning and z equal to zero.
- 6. Let us show that there is no way to divide s into 3 parts in a way that fulfills the pumping lemma conditions.
  - (a) Applying pumping lemma condition |ab| < p, ab must not contain only 1's.
  - (b) Applying pumping lemma condition |b| > 0, b must contain at least one 1.
  - (c) Applying pumping lemma condition  $\forall i \geq 0, ab^ic \in ADD$ , consider  $ab^2c$  which has changed the x-value without changing any of either y or z values. Hence equation (x = y + z) doesn't hold true anymore (we deliberately chose x not to contain leading zeros, so it's values must change with any new symbol replicated).
- 7. Thus, there is no way to divide s as  $1^p = 1^p + 0^p$  into 3 parts that satisfy the pumping lemma conditions. This is contradiction. ADD must not be regular.