Dispense 3MQ

Gennaio 2025

Le dimostrazioni segnate con * non sono state svolte a lezione e alle volte richiederanno teoremi e metodi non visti, a meno che non sia specificato diversamente è possibile trovare tutto in [1]. $\mathfrak{B}(\mathcal{H})$ $C_c^{\infty}(\mathbb{R}^n)$ $S(\mathbb{R}^n)$

Indice

1	Mo	Monaco		
	1.1	Sistemi invarianti per rotazioni	3	
	1.2	Stati puri e stati misti	6	

Capitolo 1

Monaco

Definizione 1.0.1. Sia T operatore nello spazio di Hilbert \mathcal{H} :

- 1. Chiameremo insieme risolvente di T l'insieme $\rho(T)$ dei numeri complessi z tali che:
 - $T z \mathbb{1}$ è iniettivo.
 - Ran $(T-z \mathbb{1})$ è denso in \mathcal{H} .
 - $(T-z\,\mathbb{1})^{-1}$ è limitato.
- 2. Chiameremo risolvente di T l'operatore $(T-z\,1)^{-1}$ per $z\in\rho(T)$.
- 3. Chiameremo spettro di T l'insieme $\sigma(T) := \mathbb{C} \setminus \rho(T)$. Lo spettro è unione disgiunta di tre insiemi:
 - Spettro puntuale $\sigma_p(T)$ formato dai $\lambda \in \mathbb{C}$ tali che $T \lambda \mathbb{1}$ non è iniettivo.
 - Spettro continuo $\sigma_c(T)$ formato dai $\lambda \in \mathbb{C}$ tali che $T \lambda \mathbb{1}$ è iniettivo, $\operatorname{Ran}(T \lambda \mathbb{1})$ è denso in \mathcal{H} ma $(T \lambda \mathbb{1})^{-1}$ non è limitato.
 - Spettro residuale $\sigma_c(T)$ formato dai $\lambda \in \mathbb{C}$ tali che $T \lambda \mathbb{1}$ è iniettivo e $\operatorname{Ran}(T \lambda \mathbb{1})$ non è denso in \mathcal{H} .

1.1 Sistemi invarianti per rotazioni

Modellizzazione matematica dell'atomo di idrogeno

Studieremo la dinamica di una particella quantistica carica e^- sotto l'azione del campo di forze elettrostatiche generato dal nucleo:

$$-\nabla V(\mathbf{r}) = \mathbf{F}(\mathbf{r}) = \frac{\gamma}{|\mathbf{r}|^3} \mathbf{r}, \quad V(\mathbf{r}) = \frac{-e^2}{|\mathbf{r}|}$$

Il modello quantistico ha per hamiltoniana:

$$H = H_0 + V = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r})$$

Più in generale, $H = H_0 + V$, che sono sistemi invarianti per rotazioni quindi

$$G = SO(3) = \{ R \in M_{3 \times 3}(\mathbb{R}) : R^T R = I, \det R = 1 \}$$

è il gruppo di simmetrie dinamiche del sistema.

Per descrivere SO(3) possiamo specificare:

- Asse di rotazione $\hat{n} \in S^2$;
- Angolo di rotazione $\alpha \in [\pi, \pi]$.

Prendere un tale α in tale dominio è ridondate poichè $R(\alpha, \hat{n}) = R(-\alpha, -\hat{n})$ ma tale scelta ci sarà utile in seguito.

Esempio:

$$R(\alpha, \hat{e_3}) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Per questa lezione lavoreremo nel costesto $\mathcal{H} = L^2(\mathbb{R}^3)$ facendo agire SO(3) sul sistema quantistico come:

$$SO(3) \to \mathcal{U}(\mathcal{H}) \quad R \mapsto (U_R \psi)(\mathbf{r}) := \psi(R^{-1}\mathbf{r})$$

Diciamo che H descrive un sistema quantistico invariante per rotazioni se vale $U_R^{-1}HU_R = H$ per ogni $R \in SO(3)$ dal teorema di Noether $U_R^{-1}HU_R = H$ se e solo se $[H, L_i] = 0$ dove L_i sono i generatori infinitesimali di SO(3).

Da Stone:

$$U(\alpha, \hat{e_i}) = e^{\frac{-i\alpha L_i}{\hbar}}, \quad L_i = L_i^*, \mathbf{L} = (L_1, L_2, L_3)$$

Dove L_1, L_2, L_3 sono gli operatori momento angolare, infatti

Proposizione 1.1.1. L sono gli operatori momento angolare. Quindi $L = x \times p$.

Dimostrazione. Per brevità dimostreremo che $L_3 = x_1p_2 - x_2p_1 = -i\hbar(x_1\partial_2 - x_2\partial_1)$:

Proposizione 1.1.2. Gli operatori momento angolare soddisfano le regole di commutazione dell'algebra di Lie $\mathfrak{so}(3)$:

$$[L_1, L_2] = i\hbar L_3,$$

 $[L_3, L_1] = i\hbar L_2,$
 $[L_2, L_3] = i\hbar L_1.$

Dimostrazione. Anche qui per brevità dimostreremo solo il primo commutatore:

$$[L_1, L_2] = [x_2p_3 - x_3p_2, x_3p_1 - x_1p_3] =$$

$$= [x_2p_3, x_3p_1] - [x_2p_3, x_1p_3] - [x_3p_2, x_3p_1] + [x_3p_2, x_1p_3] =$$

$$= i\hbar(x_1p_2 - x_2p_1) = i\hbar L_3$$

Definiamo l'operatore di Casimir:

$$\mathbf{L}^2 = L_x^2 + L_y^2 + L_z^2$$

Proposizione 1.1.3. L'operatore di Casimir commuta con ogni componente di L:

$$[\mathbf{L}^2, L_i] = 0 \quad \forall i \in \{x, y, z\}$$

4

Dimostrazione. Dimostriamo che $[\mathbf{L}^2, L_3] = 0$:

$$\begin{aligned} [\mathbf{L}^2, L_3] = & [L_1^2 + L_2^2 + L_3^2, L_3] = \\ = & [L_1^2, L_3] + [L_2^2, L_3] = L_1[L_1, L_3] + [L_1, L_3]L_1 + L_2[L_2, L_3] + [L_2, L_3]L_2 = \\ = & i\hbar L_1 L_2 - i\hbar L_2 L_1 - i\hbar L_1 L_2 + i\hbar L_2 L_1 = 0 \end{aligned}$$

Passiamo ora in coordinate sferiche per sfruttare la simmetria del sistema:

Lemma 1.1.4. Esiste un isomorfismo unitario:

$$\mathcal{R}: L^2(\mathbb{R}_+) \,\hat{\otimes}\, L^2(\mathbb{S}^2) \to L^2(\mathbb{R}^3)$$

$$(r, \theta, \phi) \mapsto f(r, \theta, \phi) := \frac{1}{r} R(r) Y(\theta, \phi)$$

Dimostrazione.

$$\begin{split} \|f\|^2 &= \int_{\mathbb{R}^3} |f(\mathbf{x})|^2 \mathrm{d}^3 x = \\ &= \int_{\mathbb{R}_+ \times \mathbb{S}^2} r^2 sint\theta \left| \frac{1}{r} R(r) Y(\theta, \phi) \right|^2 \mathrm{d}r \mathrm{d}\theta \mathrm{d}\phi = \\ &= \int_{\mathbb{R}_+} |R(r)|^2 \mathrm{d}r \int_{\mathbb{S}^2} |Y(\theta, \phi)|^2 \mathrm{d}\theta \mathrm{d}\phi =: \|R \otimes Y\|^2 \end{split}$$

f allora si estende ad un isomorfismo unitario.

Ora per coloro che studiano matematica piccola digressione sul motivo formale per cui è interessante studiare l'operatore di Casimir, è immediato vedere come l'operatore di Casimir cosí definito sia un elemento del centro dell'algebra inviluppante universale di $\mathfrak{so}(3) \simeq \mathfrak{sl}(2)$ e quindi agirà come moltiplicazione per uno scalare sui moduli di Verma associati, ora è possibile dimostrare che è anche l'unico elemento del centro (per cui definisce univocamente il carattere associato al modulo di Verma) per cui per il teorema di Harish-Chandra basterà studiare la sua azione per conoscere completamente il modulo irriducibile associato. Per maggiori informazioni sulle rappresentazioni di $\mathfrak{so}(3)$ (che espande leggermente quello che vedremo tra poco) si veda [4] Sezione 7, per una esaustiva trattaziona del teorema di Harish-Chandra, che esula dagli argomentri trattati in questo corso, si veda sempre [4] Sezione 23.

Per un sistema quantistico con simmetria rotazionale, lo spettro dell'operatore di Casimir è discreto:

$$\mathbf{L}^2 Y_{\ell m} = \hbar^2 \ell (\ell + 1) Y_{\ell m}$$

dove $\ell \in \mathbb{N}$ e $m \in \{-\ell, \dots, \ell\}$.

Conclusione

La simmetria del gruppo SO(3) permette di caratterizzare le proprietà dell'atomo di idrogeno e degli operatori associati.

Definizione 1.1.5. Un operatore Hermitiano V è detto H_0 -limitato se $\mathcal{D}(V) \supset \mathcal{D}(H_0)$ e esistono C, D > 0 tali che $||V\psi|| \leq C||H_0\psi|| + D||\psi||$ per ogni $\psi \in \mathcal{D}(H_0)$.

È possibile dimostrare che V è H_0 -limitato se e solo se $\mathcal{D}(V) \subset \mathcal{D}(H_0)$ e $V(H_0 - z \mathbb{1})^{-1} \in \mathfrak{B}(\mathcal{H})$ per ogni $z \in \rho(H_0)$. Definiamo inoltre il limite di V rispetto a H_0 come $H_0 \lim(V) = \sup_{z \in \rho(H_0)} \|V(H_0 - z \mathbb{1})^{-1}\|$.

Teorema 1.1.6 (Katô-Rellich). Sia V un operatore hermitiano H_0 -limitato con $H_0 \lim(V) < 1$ allora $H = H_0 + V$ è autoaggiunto su $\mathcal{D}(H_0)$.

Definizione 1.1.7. Un operatore Hermitiano V è detto H_0 -compatto se $\mathcal{D}(V) \supset \mathcal{D}(H_0)$ e $V(H_0 - z \mathbb{1})^{-1} \in \mathfrak{B}_{\infty}(\mathcal{H})$.

Se V è H_0 -compatto allora V è H_0 -limitato e $H_0 \lim(V)=0$, inoltre H_0+V è essenzialmente autoaggiunto.

Teorema 1.1.8 (Weyl). Perturbazioni V H_0 -compatte di un operatore autoaggiunto H_0 sono tali che $\sigma_{ess}(H_0 + V) = \sigma_{ess}(H_0)$.

1.2 Stati puri e stati misti

Chiameremo $\mathfrak{B}_{\infty}(\mathcal{H})$ l'insieme degli operatori compatti su \mathcal{H} .

Definizione 1.2.1. Sia \mathcal{H} con la norma indotta $\|\|$ dal prodotto scalare, diremo che $A \in \mathfrak{B}(\mathcal{H})$ è un operatore di Hilber-Schmidt se esiste una base hilbertiana $\{u_k\}$ tale che $\sum \|Au_k\| < \infty$.

Indicheremo la classe di operatori di Hilber-Schmidt su \mathcal{H} come $\mathfrak{B}_2(\mathcal{H})$, è possibile inoltre dimostrare che $\mathfrak{B}_2(\mathcal{H}) \subset \mathfrak{B}_{\infty}(\mathcal{H})$ è uno *-ideale bilatero.

Proposizione 1.2.2. Sia \mathcal{H} spazio di Hilbert, $T \in \mathfrak{B}(\mathcal{H})$. I seguenti tre fatti sono equivalenti:

- 1. Esiste N base hilbertiana tale che $\{\langle u, |T|u \rangle\}$ ha somma finita.
- 2. $\sqrt{T^*T}$ è di Hilbert-Schmidt.
- 3. T è compatto e la successione degli autovalori $\{m_n\}$ di $\sqrt{T^*T}$ contati con molteplicità ha somma finita.

Definizione 1.2.3. Sia \mathcal{H} spazio di Hilbert, $T \in \mathfrak{B}(\mathcal{H})$ è detto operatore classe traccia se vale una delle tre condizioni equivalenti della proposizione precedente. L'insieme degli operatori classe traccia su \mathcal{H} sarà indicato con $\mathfrak{B}_1(\mathcal{H})$, infine se $T \in \mathfrak{B}_1(\mathcal{H})$ allora definiamo $||T||_1 = ||\sqrt{T^*T}||_2^2 = \sum m_n$.

Come per gli operatori di Hilbert-Schmidt $\mathfrak{B}_1(\mathcal{H})$ è uno *-ideale bilatero di $\mathfrak{B}(\mathcal{H})$. Inoltre $\mathfrak{B}_1(\mathcal{H}) \subset \mathfrak{B}_2(\mathcal{H}) \subset \mathfrak{B}_{\infty}(\mathcal{H}) \subset \mathfrak{B}(\mathcal{H})$. Infine dato $A \in \mathfrak{B}_1(\mathcal{H})$ esistono $B, C \in \mathfrak{B}_2(\mathcal{H})$ tali che A = BC, viceversa se $B, C \in Hs$ allora $BC \in \mathfrak{B}_1(\mathcal{H})$.

Definizione 1.2.4. Sia \mathcal{H} spazio di Hilbert, $T \in \mathfrak{B}_1(\mathcal{H})$, il numero $\mathbb{C} \ni \operatorname{Tr} T = \sum \langle u, Tu \rangle$ è detto traccia di T.

Ora enunceremo un teorma con una serie di proprietà delle tracce, che non dimostreremo per brevità ma che si possono trovare in [1].

Teorema 1.2.5. Sia \mathcal{H} spazio di Hilbert, $T \in \mathfrak{B}_1(\mathcal{H})$ allora valgono le seguenti:

- $|T| \in \mathfrak{B}_1(\mathcal{H}) \ e \ \text{Tr} \ |T| = \sum |m_n| = ||T||_1.$
- Se $S \in \mathfrak{B}(\mathcal{H})$ allora Tr(ST) = Tr(TS).
- Se \mathcal{H} è complesso allora $\operatorname{Tr}(T^*) = \overline{\operatorname{Tr}(T)}$.
- Se $T \in \mathfrak{B}_1(\mathcal{H})$ e $T = \sum T_i$ con $T_i \in \mathfrak{B}_1(\mathcal{H})$ allora $\mathrm{Tr}(T) = \sum \mathrm{Tr}(T_i)$.
- Se \mathcal{H} è complesso allora $\operatorname{Tr}(T) = \sum_{\lambda \in \sigma_p(T)} \lambda$, dove i λ sono contati con molteplicità geometrica.

La dimostrazione dell'ultimo punto è interessante ma piuttosto articolata e puó essere trovata in [3].

Definizione 1.2.6. Una mappa lineare $\mathbb{E}:\mathfrak{B}(\mathcal{H})\to\mathbb{C}$ è detta una famiglia di valori attesi se valgono le seguenti:

- $\mathbb{E}(1) = 1$.
- $\mathbb{E}(A)$ è reale quando A è autoaggiunto.
- $\mathbb{E}(A)$ è positivo quando A è autoaggiunto e positivo.
- Per ogni successione $A_n \in \mathfrak{B}(\mathcal{H})$ se $||A_n\psi A\psi|| \to 0$ per tutti $\psi \in \mathcal{H}$ allora $\Phi(A_n) \to \Phi(A)$.

Definizione 1.2.7. Un operatore $\rho \in \mathfrak{B}_1(\mathcal{H})$ è una matrice densità se ρ è autoaggiunto, non negativo e vale Tr $\rho = 1$.

Definizione 1.2.8. Siano $\mathcal{H}_1, \mathcal{H}_2$ spazi di Hilber definiremo il *prodotto tensore tra due* spazi di Hilbert $\mathcal{H}_1 \, \hat{\otimes} \, \mathcal{H}_2$ come il completamento di $\mathcal{H}_1 \otimes \mathcal{H}_2$ rispetto al prodotto: $(u_1 \otimes v_1, u_2 \otimes v_2) = (u_1, u_2)_1(v_1, v_2)_2$.

È naturale definire il prodotto tensore tra operatori, siano $A_1 \in \mathfrak{B}(\mathcal{H}_1)$ e $A_2 \in \mathfrak{B}(\mathcal{H}_2)$ definiremo $A_1 \otimes A_2 \in \mathfrak{B}(\mathcal{H})(\mathcal{H}_1 \hat{\otimes} \mathcal{H}_2)$ come $A_1 \otimes A_2(u_1 \otimes u_2) = A_1u_1 \otimes A_2u_2$. A questo punto sia ρ matrice dentià su $\mathcal{H}_1 \hat{\otimes} \mathcal{H}_2$ allora $\rho^{(1)}$ e $\rho^{(2)}$ sono le matrici densità ridotte su \mathcal{H}_1 e \mathcal{H}_2 rispettivamente definite come le uniche tali che $\operatorname{tr}(\rho(A \otimes \mathbb{I})) = \operatorname{tr}(\rho^{(1)}A)$ e $\operatorname{tr}(\rho(\mathbb{I} \otimes B)) = \operatorname{tr}(\rho^{(2)}B)$ per ogni $A \in \mathfrak{B}(\mathcal{H}_1)$ e $B \in \mathfrak{B}(\mathcal{H}_2)$. Esistenza e unicità di tali matrici densità è dimostrata ad esempio in [2] Theorem 19.13.

Proposizione 1.2.9. L'applicazione $L^2(X_1, \mu_1) \, \hat{\otimes} \, L^2(X_2, \mu_2) \to L^2(X_1 \times X_2, \mu_1 \times \mu_2) \, \hat{e}$ un isomorfismo.

Per la dimostrazione di veda [2].

Se ho n sistemi quantistici composti descritti da $\mathcal{H}_1, \ldots, \mathcal{H}_n$ allora il sistema composto è descritto dallo spazio di hilber $\mathcal{H} = \mathcal{H}_1 \hat{\otimes} \ldots \hat{\otimes} \mathcal{H}_n$. Per cui un sistema quantistico di n particelle puó essere descritto da $L^2(\mathbb{R}^{nd}) = L^2(\mathbb{R}^n) \hat{\otimes} \ldots \hat{\otimes} L^2(\mathbb{R}^n)$. Ora vogliamo generalizzare gli operatori a questi spazi tensore, siano $A_i^* = A_i \in \mathfrak{B}(\mathcal{H}_1)$ definiremo l'osservabile del sistema composto come $A(\psi_1 \otimes \cdots \otimes \psi_n) = A_1 \psi_1 \otimes \cdots \otimes A_n \psi_n$. In particolare:

- 1. Se $A_i^* = A_i \in \mathfrak{B}(\mathcal{H}_i)$ definisco $\mathfrak{B}(\mathcal{H}) \ni A^{(i)} := \mathbb{1} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes A_i \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}$.
- 2. Se $I = \{i_1, \dots, i_k\} \subset \{1, \dots, n\}$ e $A \in \mathfrak{B}(\mathcal{H}_{i_1} \hat{\otimes} \dots \hat{\otimes} \mathcal{H}_{i_k})$ allora $A^{(I)} \in \mathfrak{B}(\mathcal{H})$ agisce sui sottosistemi associati.

Teorema 1.2.10. Se $\rho^* = \rho \geq 0$ Tr $(\rho) = 1$ matrice densità su \mathcal{H} allora siste una matrice densità $\rho^{(I)}$ su $\mathfrak{B}(\mathcal{H}_{i_1} \hat{\otimes} \dots \hat{\otimes} \mathcal{H}_{i_k})$ tale che $\mathbb{E}_{\rho}(A^{(I)}) = \mathbb{E}_{\rho^{(I)}}(A)$, con $\rho^{(I)}$ lo stato indotto da ρ sul sottosistema I chiamato matrice dentià ridotta e $\mathbb{E}_{\rho}^{(I)}$ è detta traccia parziale della famiglia \mathbb{E}_{ρ} .

Dimostrazione.

Bibliografia

- [1] V. Moretti (2012) Teoria spettrale e meccanica quantistica, Springer.
- [2] Brian C. Hall (2013) Quantum Theory for Mathematicians, Springer New York.
- [3] Birman, M.S., Solomjak, M.Z. (1987) Spectral Theory of Self-Adjoint Operators in Hilbert Space, D. Reidel Publishing Company, Dordrecht.
- [4] James E. Humphreys (1972) Introduction to Lie Algebras and Representation Theory, Springer.