CSC236 Fall 2023 Problem Set 1

3 Question 3

def q3_a_func(n: int) -> int:
 """Implement a Python function that takes a positive natural number n and returns a_n.

Precondition: n is a positive natural number

"""

if n == 1:
 # From the definition of a_n, when n is 1, return a_n equals to 1.
 return 1

else:
 """ This is the recursion. Aim at returning the recursive value of a_n after reaching the base case when
 a_n equals to 1.
 """
return q3_a_func(math.floor(math.sqrt(n))) * q3_a_func(math.floor(math.sqrt(n))) \

Figure 1: Python function for Q3-a

Firstly, I will import sqrt, floor from math module.

Then, I write a comment to ensure it satisfies the pre-condition.

Besides, I handled the case when n = 1 in the 'if' statement.

+ 2 * q3_a_func(math.floor(math.sqrt(n)))

Moreover, I handled $n \ge 2$ in the 'else' statement, which floor(sqrt(n)) is a positive natural number less than n since $\lfloor \sqrt{n} \rfloor \le \sqrt{n} < n$ as n > 1 (b)

```
20
     def q3_b_func(n: int) -> int:
          """Implement a Python function that takes a positive natural number n and raises an exception if n is 1, otherwise
         it returns a_n.
         Precondition: n is a positive natural number
25
         if n == 1:
             # By question requirement, when n is 1, raises an Exception.
             raise NotImplementedError
          elif n == 2 or n == 3:
             """Since when n equals to 2 or n equals to 3, the floor of square root of n is 1, and, in this function, we
             don't have the value of a_n when n equals 1. Thus, we need to manually add the value of a_n when n equals to 2
             and n equals to 3 to prevent the error when calling the recursive.
             return 3
             """This is the recursion. Aim at returning the recursive value of a_n after reaching the case when a_n equals
             to 2 or a_n equals to 3.
38
             return q3_b_func(math.floor(math.sqrt(n))) * q3_b_func(math.floor(math.sqrt(n))) \
                 + 2 * q3_b_func(math.floor(math.sqrt(n)))
```

Figure 2: Python function for Q3-b

Firstly, I will import sqrt, floor from math module.

Then, I write a comment to ensure it satisfies the pre-condition.

Besides, I handled the case when n=1 in the 'if' statement, and raise NotImplementedError. Next, I handled the case when n=2 or n=3 in the 'elif' statement.

Moreover, I handled the case when $n \ge 4$, which similar to question a that floor(sqrt(n)) is a positive natural number less than n since $\lfloor \sqrt{n} \rfloor \le \sqrt{n} < n$ as n > 1.

CSC236 Fall 2023 Problem Set 1

(c) When $n_0 = 2$, n_0 is the smallest natural n_0 so that a_n is a multiple of 3 for each natural $n \ge n_0$.

If $n_0 = 1$, $a_n = a_1 = 1$ which is not a multiple of 3.

Given statement to prove: $\forall n \in \mathbb{N}, n \geq n_0, P(n), \text{ which } P(n) : a_n \text{ is a multiple of } 3.$

Let $n \in \mathbb{N}$.

Proof: We prove this by complete induction on n.

Base Case: Let $2 \le n < 4$.

$$P(2): a_2 = (a_{\lfloor \sqrt{2} \rfloor})^2 + 2 \cdot a_{\lfloor \sqrt{2} \rfloor}$$

= $a_1^2 + 2 \cdot a_1 = 1^2 + 2 = 3$ is a multiple of 3.

$$P(3): a_3 = (a_{\lfloor \sqrt{3} \rfloor})^2 + 2 \cdot a_{\lfloor \sqrt{3} \rfloor}$$

= $a_1^2 + 2 \cdot a_1 = 1^2 + 2 = 3$ is a multiple of 3.

Thus, I've proved the base case is true.

Induction Step: Let $n \in \mathbb{N}$. Let $n \geq 4$.

Induction Hypothesis: Assume $\forall k, \ 2 \leq k < n, \ P(k)$

Since $n \ge 4$, gives $|\sqrt{n}| < n$.

Since $\lfloor \sqrt{n} \rfloor < n$ and $4 \leq n$, gives $2 \leq \lfloor \sqrt{n} \rfloor$ as 2 is the smallest value of $\lfloor \sqrt{n} \rfloor$, which gives,

$$2 \le |\sqrt{n}| < n$$

Since $\lfloor \sqrt{n} \rfloor$ is an integer which $\lfloor \sqrt{n} \rfloor \geq 2$, from induction hypothesis, we can always find $k' = \lfloor \sqrt{n} \rfloor$, which P(k') is true and $a_{k'} = 3p$, $p \in \mathbb{N}$.

Thus gives,

$$a_n = (\lfloor \sqrt{n} \rfloor)^2 + 2 \cdot a_{\lfloor \sqrt{n} \rfloor}$$

$$= (a_{k'})^2 + 2 \cdot a_{k'}$$

$$= (3p)^2 + 2 \cdot (3 \cdot p)$$

$$= 9 \cdot p^2 + 6 \cdot p$$

$$= 3 \cdot (3 \cdot p^2 + 2p)$$

Let $q = 3 \cdot p^2 + 2 \cdot p$. Since $p \in \mathbb{N}$, gives $q \in \mathbb{N}$, which

$$a_n = 3q, \ q \in \mathbb{N}$$
, where a_n is a multiple of 3.

I've proved that P(n) is true.

To conclude, I've proved when $n_0 = 2$, n_0 is the smallest natural n_0 so that a_n is a multiple of 3 for each natural $n \ge n_0$.