Week 1 Quiz

The diagram for traditional programming had Rules and Data In, but what came out?
Bugs
Machine Learning
Binary
Answers
The diagram for Machine Learning had Answers and Data In, but what came out?
Bugs
Rules
Binary
Models
When I tell a computer what the data represents (i.e. this data is for walking, this data is for running), what is that process called? Learning the Data
Labelling the Data
Programming the Data
Categorizing the Data
What is a Dense?
A layer of connected neurons
Mass over Volume
A single neuron
A layer of disconnected neurons
What does a Loss function do?
Generates a guess
Measures how good the current 'guess' is
Decides to stop training a neural network
Figures out if you win or lose
What does the optimizer do?
Figures out how to efficiently compile your code

Measures how good the current guess is Decides to stop training a neural network Generates a new and improved guess What is Convergence? The bad guys in the next 'Star Wars' movie A dramatic increase in loss The process of getting very close to the correct answer A programming API for AI What does model.fit do? It trains the neural network to fit one set of values to another It makes a model fit available memory It determines if your activity is good for your body It optimizes an existing model Week 2 Quiz What's the name of the dataset of Fashion images used in this week's code? **Fashion Tensors** Fashion MN Fashion Data **Fashion MNIST** What do the above mentioned Images look like? 28x28 Color 100x100 Color 28x28 Greyscale 82x82 Greyscale How many images are in the Fashion MNIST dataset? 70,000

60,000

10,000
42
Why are there 10 output neurons?
To make it classify 10x faster
To make it train 10x faster
There are 10 different labels
Purely arbitrary
What does Relu do?
It only returns x if x is greater than zero
It returns the negative of x
For a value x, it returns 1/x
It only returns x if x is less than zero
Why do you split data into training and test sets?
To make training quicker
To train a network with previously unseen data
To test a network with previously unseen data
To make testing quicker
What method gets called when an epoch finishes?
on_end
On_training_complete
on_epoch_end
on_epoch_finished
What parameter to you set in your fit function to tell it to use callbacks?
callback=
oncallback=
callbacks=
oncallbacks=

Week 3 Quiz

Convolutional layer may even be less efficient than a plain DNN!

Faster

Stay the same

Slower

Week 4 Quiz

Using Image Generator, how do you label images?

TensorFlow figures it out from the contents

It's based on the file name

It's based on the directory the image is contained in

You have to manually do it

What method on the Image Generator is used to normalize the image?

normalize

rescale

Rescale image

normalize image

How did we specify the training size for the images?

The target size parameter on the training generator

The training_size parameter on the training generator

The training_size parameter on the validation generator

The target size parameter on the validation generator

When we specify the input shape to be (300, 300, 3), what does that mean?

There will be 300 images, each size 300, loaded in batches of 3

Every Image will be 300x300 pixels, with 3 bytes to define color

Every Image will be 300x300 pixels, and there should be 3 Convolutional Layers

There will be 300 horses and 300 humans, loaded in batches of 3

If your training data is close to 1.000 accuracy, but your validation data isn't, what's the risk here?

You're overfitting on your training data

You're underfitting on your validation data

You're overfitting on your validation data

No risk, that's a great result

Convolutional Neural Networks are better for classifying images like horses and humans because:

In these images, the features may be in different parts of the frame

There's a wide variety of horses

There's a wide variety of humans

All of the above

After reducing the size of the images, the training results were different. Why?

There was more condensed information in the images

There was less information in the images

We removed some convolutions to handle the smaller images

The training was faster