Exercise 2

Let's use the dataset we discussed in Assignment 1 (TeleCustomers.xlsx, copyright © IBM Academic Initiative Program). The dataset contains the following fields describing the customers.

ID	Customer reference number			
Sex	Gender			
Status	Marital status			
Children	Number of Children			
Est_Income	Estimated income			
Car_Owner	Car owner			
Usage	Time spent on calls in total per month			
Age	Age			
RatePlan	Chosen rate plan (1, 2,)			
LongDistance	Time spent on long distance calls per month			
International	Time spent on international calls per month			
Local	Time spent on local calls per month			
Dropped	Number of dropped calls			
Payment	Payment method of the monthly telephone bill			
LocalBillType	Tariff for locally based calls			
LongDistanceBillType	Tariff for long distance calls			
CHURNED	Current vs. Cancelled			

1. (10 points) Plot gender-based histograms to compare the "Estimated income" and "Usage" respectively.

1. Plotting gender-based histograms to compare the "Estimated income" and "Usage" respectively.

Gender-based histograms to compare the Estimated income

```
n [42]: 1 ggplot(data=data, aes(Est_Income, fill=Sex)) + geom_histogram(bins = 30, position = position_dodge())
2 +xlab("estimate income")+ ggtitle(" gender-based histogram for income")
```


According to the graph we can see there are a greater number of females with estimated salary between 0 to 85k, whereas more males with salary range of 90k+

2. (10 points) Plot CHURNED-based histograms to compare the "Estimated income" and "Usage" respectively.

2. Plotting CHURNED-based histograms to compare the "Estimated income" and "Usage" respectively.

CHURN-based histogram for income

1 ggplot(data=data, aes(Est_Income, fill=CHURN)) + geom_histogram(bins =30,position = position_dodge())+xlab("Estimate Income"

In general we can conculed for 20k to 60k estimate income the number of cancelled users/ churned users are quite low

From this we CANNOT conclude that more or lesser the usage more the churn ratio

3. (10 points) Use scatterplots in matrix form to show CHRUNED vs Usage for each combination Sex and RatePlan (please refer to Figure 3.2.2).

3. scatterplots in matrix form to show CHRUNED vs Usage for each combination Sex and RatePlan $\,$

rateplan 1 and 3 have more scattered usage in females than in males for people who are still currently using the services

4. (10 points) Use boxplot to show CHRUNED vs Usage (please refer to Figure 3.2.3).

4. boxplot to show CHRUNED vs Usage

From usage alone it is tough to infer if the customer will churn or not as their is not a huge difference between the

Please use second Excel file (Hackathon) to create a data frame. Loan_Status indicates the approval of each loan application: Y for approved and N for declined.

Credits: https://www.analyticsvidhya.com/blog/2017/02/introduction-to-ensembling-along-with-implementation-in-r/

Ref: Caret => https://topepo.github.io/caret/index.html

#Loading the required libraries
library('caret')

#Seeting the random seed
set.seed(100)

#Loading the hackathon dataset
data_loanapp<-read.csv(url('https://datahack-prod.s3.ap-south1.amazonaws.com/train_file/train_u6lujuX_CVtuZ9i.csv')) #Load directly from the URL
OR
2. Download the Hackathon file in your Directory and load it to a data frame

#Let's check the data structure of the loaded dataset
str(data_loanapp)

5. (12) Explore the data frame, identify and report the missing data. How will you deal with the missing data?

5. Exploring the Hackathon dataset

Dimensions of dataset

```
]: 1 dim(d2)
614 14
```

Lets glimplse over all the different type of values in each column

Summary indicates the lenght class min max median and quartilies of each column

Identifying the missing data

Checking class distribution(Gender) wrt to loanamount

Gender class is highly skewed hence we cannot impute the missing gender categorical values with Mode

We can deal with the missing values in multiple ways:

- 1. Deleting the rows with missing values if the total number of rows are far higher than the missing value rows
- 2. Deleting the entire column if the number of missing values in a column is very high (close to number of total rows)
- Replacing the missing values with mean/median/mode- The choice should be made after checking the central tendency and the skewness. For example use mean only when the data is not skewed or else use median.
- 4. By predictive algorithms by taking the rest of the non-missing values as features and missing value as the target.
- 5. Assigning a new category value for NAN Values. It preserves the variance, but might give high random data when missing values are in large quantity.
- 6. By using unsupervised algorithms like k-mean clustering

#install.packages("mice") library(mice) mice.impute.logreg(d2 Married, d2LoanAmount)

Assigning a new category value for NAN Values in categorical columns for future analysis

```
[56]: 1 d2$Gender[is.na(d2$Gender)] = "unkown"
2 d2$Married[is.na(d2$Married)] = "unkown"
3 d2$Dependents[is.na(d2$Dependents)] = "unkown"
4 d2$Self_Employed[is.na(d2$Self_Employed)] = "unkown"
5 d2$Credit_History[is.na(d2$Credit_History)] = "unkown"
```

For numerical variables we compute missing value with median here as we cannot use mean for skewed variables

```
[73]: 1 #instalL.packages('moments')

[74]: 1 print(skewness(d2$LoanAmount))

[1] 2.736347

[75]: 1 print(skewness(d2$Loan_Amount_Term))

[1] -2.39624
```


As stated loan Amount is left skewed hence mean imputation would not be right

- 6. (12) Create the variable "aggregatedInocme" for each loan application.
 - 6. Creating the variable aggregatedInocme

d2\$aggregatedIncome <- d2\$ApplicantIncome + d2\$CoapplicantIncome head(d2)											
ducation	Self_Employed	Applicantincome	Coapplicantincome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status	aggregatedIncome		
Graduate	No	5849	0	128	360	1	Urban	Υ	5849		
Graduate	No	4583	1508	128	360	1	Rural	N	6091		
Graduate	Yes	3000	0	66	360	1	Urban	Υ	3000		
Not Fraduate	No	2583	2358	120	360	1	Urban	Y	4941		
Graduate	No	6000	0	141	360	1	Urban	Y	6000		
Graduate	Yes	5417	4196	267	360	1	Urban	Y	9613		
4									P		

- 7. (12) Define and create your own three categories of "aggregatedIncome": high, medium, and low.
 - 7. three categories of aggregatedIncome--> high, medium, and low.

- 8. (12) In each your defined categories of "aggregatedIncome", what percentage of applications received their loan approvals?
 - 8. Based on category percentage of applications received their loan approvals

We can observe that the medium percent has highest percentage of loan approvals

9. (12) Comparing with loan sizes, will you conclude any insight?

9. Conclusion based on loan sizes

As we selected only those columns where the loans were approved, we can see the distribution of loan amount approval for the 3 different income categories.

From this we can conclude that Higher income category more is the sanctioned loan amount. That does hold true as more a customers income more the bank can trust in loaning a larger amount to the customer.