Rôle du Rein dans l' équilibre acido-basique

Pr. RABHIA

Définitions

Acide :

molécule capable de libérer des ions H⁺

Base :

molécule capable de capter des ions H⁺

Equilibre acido-basique

l'organisme contient des composés acides et des composés basiques qu'il doit maintenir à un état d' équilibre constant

Définitions

 équilibre acido-basique évalué grâce au pH qui reflète la concentration d'ions H⁺ libres dans une solution

Plus le pH est bas plus la solution est acide

B pH neutre

B pH bas pH

pH acide pH neutre pH basique

7

pH sanguin = 7,4

pH < 7 ou pH > 7,8 Incompatible avec la vie

Sources d'acides

- Production de CO₂ = acide volatil
- 13 000 à 20 000 mmol de CO2 sont formées par jour.
- Production d'ions H⁺ = acide non volatil ou métabolique
 - les protéines alimentaires
 - et le métabolisme des phosphodiesters

Production de CO₂

Résulte du métabolisme oxydatif cellulaire

$$H_2O + CO_2 \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3^-$$

• Éliminé par les poumons lors de l'expiration

 Dans des conditions normales: ni gain, ni pertes d'H⁺ à partir de cette source

Production d'ions H⁺

- Proviennent de l'alimentation (sulfates, acide urique, acide lactique...)
- HCl produit par l'estomac
- Substances médicamenteuses
- Élimination par le rein

Régulation du pH

- Systèmes tampons
- Rôle des poumons (régulation immédiate)
- Rôle du rein (régulation non immédiate)

Systèmes tampons

- Le principal : H₂CO₃ (acide carbonique) / HCO₃⁻ (bicarbonate)
- maintient le pH de l'organisme constant en associant les ions H⁺ avec des composés basiques (neutralisation)

Système tampon

- Il existe d'autres systèmes tampons dans l'organisme
 - Protéines plasmatiques
 - Phosphates (rôle mineur)

mposés acides ou basiques

Systèmes globulaires (l'hémoglobine)

Régulation par les poumons

 Rôle: assurer le rejet de CO₂ produit dans l'organisme pour maintenir constante la pCO₂ et donc le pH (la [H⁺] varie avec la pCO₂)

Toute modification du pH entraîne une modification de la ventilation

Régulation par les poumons

 D'après l'équation d'Henderson-Hasselbalch : pH = pK + log ([HCO3-]/[pCO2])

 • pH \square hyperventilation pour \square pCO2

 • pH \square hypoventilation pour \square pCO2

 Cependant efficacité limitée car l'hyperventilation ne peut être augmentée indéfiniment et l'hypoventilation doit rester compatible avec la vie

Régulation par le rein

 Plus longue à réagir en cas de perturbations cependant moyen très efficace de lutte contre l'acidose et l'alcalose

• Le rein peut :

- Réabsorber la quasi totalité des HCO₃ filtrés (acidose) ou les excréter (alcalose)
- Éliminer les ions H⁺ en générant des HCO₃⁻ qui seront réabsorbés

Réabsorption HCO3 par le tube proximal

Sécrétion active de H+ dans la cellule intercalaire

Sécrétion voltage-dépendante des H+ dans la cellule principale du tube collecteur cortical

Régénération des HCO3 -

- Formation d'acidité titrable 1/3
- Formation de NH4 + 2/3

Première étape de la sécrétion de la charge acide : sécrétion des NH4+ par la cellule tubulaire proximale

Deuxième et troisième étapes de la sécrétion de la charge acide

Échanges cellulaires au cours des troubles acido-basique

Les pathologies associées

Déséquilibre acido-basique

Diagramme de DAVENPORT

Diagramme de DAVENPORT

- Anomalie primaire : HCO₃⁻ □
- Réponse immédiate du poumon pour compenser : pCO₂ □
- Réponse rénale plus tardive : ☐ réabsorption HCO₃⁻ et
 - □ excrétion des ions H⁺

Clinique

- Hyperventilation avec dyspnée de Kussmaul
- Selon l'étiologie (acidocétose du diabétique) : odeur acétonique de l'haleine

Biologie

- Hyperkaliémie
- hyperchlorémie

- Étiologie : 2 mécanismes différents
 - Hyperproduction d'ions H⁺ (épuisement secondaire d'HCO₃⁻ en tant que tampon)
 - D'origine endogène
 Corps cétoniques dans l'acidocétose diabétique
 Acide lactique (insuffisance hépatocellulaire, état de choc)
 IR

- Étiologie : 2 mécanismes différents
 - Hyperproduction d'ions H⁺ (épuisement secondaire d'HCO₃⁻ en tant que tampon)
 - D'origine exogène
 Intoxication à l'aspirine, à l'éthylène glycol

- Étiologie : 2 mécanismes différents
 - Perte de HCO₃⁻
 - Diarrhées
 - Perte rénale (tubulopathie)

Calcul du trou anionique car oriente sur l'origine de

l'acidose

accumulation d'acides

• TA = $(Na^+) - (Cl^- + HCO_3^-)$ N = 12 ± 4 mmol/l

- Traitement
 - De la cause
 - Ex : insulinothérapie
 - Symptomatique
 - Perfusion de bicarbonates
 - Favoriser l'hyperventilation

Acidose respiratoire

- Anomalie primaire : pCO₂
- Compensation de l'organisme grâce au rein (réponse tradive) :
 HCO₃⁻ □ en augmentant excrétion d'H⁺

Troubles respiratoires

Acidose respiratoire

Acidose respiratoire

Clinique

Hypoxie voire anoxie ____céphalées, sueurs, tachycardie,
 HTA, troubles neuropsychiatriques (anxiété, délire, confusion)

Biologie

- Hyperkaliémie
- Hypochlorémie
- pH urinaire □

Acidose respiratoire

Étiologie

- Hypoventilation alvéolaire
 - Obstruction voies aériennes supérieures noyade
 - Atteinte des muscles respiratoires tétanos, poliomyélite, myopathie
 - Atteinte du centre respiratoire intoxication (antidépresseurs, anésthésiques, barbituriques)

Acidose respiratoire

- Traitement
 - Favoriser la ventilation pulmonaire
 - Assistance respiratoire
 - Bronchodilatateurs
 - Perfusion de bicarbonates

- Anomalie primaire : HCO₃⁻ □
- Réponse immédiate du poumon pour compenser : pCO₂ □

Clinique

- Hypoventilation pour □ pCO₂
- Hyperexcitabilité neuro-musculaire due à l'hypocalcémie (crampes musculaires, tremblements, tétanie)

Biologie

- Hypokaliémie
- hypochlorémie

Étiologies

- Pertes en H⁺ (cause la plus fréquente)
 - Pertes digestives : vomissements, aspirations gastriques prolongées
 - Pertes rénales : hyperaldostéronisme, diurétiques
- Surcharge en HCO₃-
 - Certains traitements
 - Régimes partculiers

- Traitement
 - ☐ de la cause +++
 - Symptomatique
 - Corriger l'hypokaliémie

- Anomalie primaire : □ pCO₂ (hypocapnie) d'origine respiratoire
- Compensation par le rein : □ HCO₃⁻

Clinique

- Hyperventilation
- Irritabilité, paresthésies et parfois crises de tétanie ou convulsions

Biologie

- pH urinaire □
- Hypokaliémie
- hyperchlorémie

• Étiologies

- Anxiété
- Hyperventilation d'origine centrale
- hypoxies

Traitement

 Ne nécessite pas d'intervention le plus souvent, traitement étiologique en général suffisant

Désordre	рН	[H ⁺] désordre primaire réponse
Acid Met	\	↑ [HCO3 pCO ₂ v
Alc Met	†	THCO3⁻] ↑ pCO2
Acid Resp	\	↑ pCO ₂ ↑ [HCO3-]
Alc Resp	†	<pre> pCO₂</pre>

Troubles avec compensation

Gazométrie

Technique de ponction des gaz du sang

Ponction artérielle à 45° de l'artère radiale (au niveau du poignet)

- 1) Prélèvement analysé **sans délai** (<20 min)
- 2) Prélèvement sur seringue héparinée
- 3) Pas de bulle d'air dans la seringue (anaérobiose stricte)
- 4) Indiquer la **température** du malade

Gaz du sang

- Mesure le pH, la pCO₂ et la pO₂
- La pO₂ est très sensible aux variations de température
- Valeurs physiologiques à 37°C :

	pO ₂	pCO ₂
Sang artériel	80 à 100 mmHg	35 à 45 mmHg
Sang veineux	37 à 40 mmHg	42 à 48 mmHg

Gaz du sang

- Calcul d'HCO₃ et SaO₂ (saturation en oxygène)
- L'oxygène est présent dans le sang sous forme :
 - Liée à l'Hb (SaO₂)
 - Dissout (pO₂)
- SaO₂ = saturation en oxygène de l'Hb dans le sang artériel (HbO₂/Hb totale)

Saturation en oxygène

 Dans les conditions normales, l'Hb du sang artériel est presque totalement saturée en O₂

	SaO ₂
Sang artériel	95 à 100%
Sang veineux	72 à 75%

 La pO₂ est plus sensible que la SaO₂ pour apprécier un trouble respiratoire

Saturation en oxygène

Autres paramètres mesurés avec la gazométrie

Lactates

- Témoin d'une souffrance tissulaire
- Prélevé sur sang artériel ou veineux (acheminement au labo dans le glace)
- N = 0.5 à 2 mmol/l

Calcium ionisé

- Forme active du calcium
- Rôle:
 - Contraction musculaire
 - Metabolisme cellulaire
 - Transmission de l'influx nerveux
 - coagulation
 - Secretion d'hormones stockées sous forme de granules