Conjuntos finitos e infinitos

Análisis Real

Un Conjunto A se denomina finito si $A=\emptyset$ o si existe una función biyectiva $f:A\to\{1,...,n\}$ para algún $n\in\mathbb{Z}_+$.

Un Conjunto A se denomina finito si $A=\emptyset$ o si existe una función biyectiva $f:A\to\{1,...,n\}$ para algún $n\in\mathbb{Z}_+$. En el primer caso se dice que A tiene cardinal 0 y en el segundo caso se dice A tiene cardinal n.

Un Conjunto A se denomina finito si $A=\emptyset$ o si existe una función biyectiva $f:A\to\{1,...,n\}$ para algún $n\in\mathbb{Z}_+$.

En el primer caso se dice que A tiene cardinal 0 y en el segundo caso se dice A tiene cardinal n.

Ejemplo

Sea $n \in \mathbb{Z}_+$, el conjunto $\{1,...,n\}$ es finito

Sea n un entero positivo, A un conjunto y a_0 un elemento de A. Existe una correspondencia biyectiva $f:A \to \{1,...,n+1\}$ sí y solo si existe una correspondencia biyectiva $g:A-\{a_0\}\to \{1,...,n\}$

Sea n un entero positivo, A un conjunto y a_0 un elemento de A. Existe una correspondencia biyectiva $f:A \to \{1,...,n+1\}$ sí y solo si existe una correspondencia biyectiva $g:A-\{a_0\}\to \{1,...,n\}$

Sea A un conjunto y suponga que existe una biyección $f:A \to \{1,...,n\}$ para algún $n \in \mathbb{Z}_+$. Sea B un un subconjunto propio no vacío de A. Entonces:

- 1. No existe biyección $g: B \to \{1, ..., n\}$
- 2. Existe una biyección : $B \rightarrow \{1,...,m\}$ para algún m < n

Sea A un conjunto y suponga que existe una biyección $f:A \to \{1,...,n\}$ para algún $n \in \mathbb{Z}_+$. Sea B un un subconjunto propio no vacío de A. Entonces:

- 1. No existe biyección $g: B \to \{1, ..., n\}$
- 2. Existe una biyección : $B \rightarrow \{1,...,m\}$ para algún m < n

Corolario

- 1. Si A es un conjunto finito no existe una biyección entre A y un subconjunto propio de A
- 2. \mathbb{Z}_+ no es finito
- 3. El cardinal de un conjunto finito es único
- 4. Un subconjunto de un conjunto finito es finito

Corolario

Sea A un conjunto no vacío, las siguientes proposiciones son equivalentes:

- 1. A es finito
- 2. Existe una función sobreyectiva $f: \{1,...,n\} \rightarrow A$ para algún $n \in \mathbb{Z}_+$
- 3. Existe una función inyectiva $g: A \rightarrow \{1, ..., m\}$ para algún $m \in \mathbb{Z}_+$

Ejercicios

- 1. Muestre que la unión finita de conjuntos finitos es un conjunto finito
- 2. Muestre que la intersección de conjuntos finitos es un conjunto finito
- 3. Muestre que el producto cartesiano de dos conjuntos finitos es finito

Un conjunto ${\cal A}$ se denomina infinito si no es finito

Un conjunto A se denomina infinito si no es finito

Ejemplo

 \mathbb{Z}_+ es infinito

Un conjunto A se denomina infinito si no es finito

Ejemplo

 \mathbb{Z}_+ es infinito

Teorema

Un conjunto A es infinito sí y solo si existe una función biyectiva entre A y un subconjunto propio de A

Un conjunto A se denomina infinito si no es finito

Ejemplo

 \mathbb{Z}_+ es infinito

Teorema

Un conjunto A es infinito sí y solo si existe una función biyectiva entre A y un subconjunto propio de A

Ejemplo

 $\mathbb R$ es infinito. La función $f:(-1,1)\to\mathbb R$ definida por $f(x)=\frac{x}{1-x^2}$ es biyectiva

Teorema (Intervalos Encajados de Cantor)

Sean $I_1,I_2,I_3,...,I_n,...;n\in\mathbb{Z}_+$ intervalos cerrados, acotados y encajados entonces $\bigcap_{n\in\mathbb{Z}_+}I_n\neq\emptyset$

MACC Matemáticas Aplicadas y Ciencias de la Computación

