Cours NSI

Thème : Algorithme

Qu'est-ce qu'un algorithme ?

Exercice 1. Leet Speak

Le leet speak est un système d'écriture utilisant les caractères d'une manière peu compréhensible pour le néophyte pour s'en démarquer.

Soit la table simplifiée, notée L, du système leet speak :

Caractères du texte	a	е	i	0	S	t
Caractères de substitution	4	3	1	0	5	7

Soit l'algorithme leetSpeak qui prend en entrée un texte t et renvoie le texte t en leet speak.

```
Algorithme : Leet Speak
  Entrées : t un texte
  Sorties: t en leet speak
  début
     t\_resultat \leftarrow "" /* t\_resultat est initialisé avec un texte
          vide
      pour chaque lettre \in t faire
2
         si\ lettre \in L\ alors
3
             t\_resultat \leftarrow t\_resultat + caractère de substitution
4
               correspondant à lettre
             t\_resultat \leftarrow t\_resultat + lettre
5
         fin
      _{\rm fin}
     retourner tresultat
  fin
```

 \angle À Faire : Que vaut t-result at à la fin de l'algorithme pour une entrée t valant "leet speak" ?

ot K À Faire : Que vaut $t_result at$ à la fin de l'algorithme pour une entrée t valant votre prénom ?

 \angle À Faire : Écrire l'algorithme inverseLeetSpeak qui prend en entrée un texte t en leet speak et renvoie le texte en langage naturel ?

Cours NSI

Thème : Algorithme

Qu'est-ce qu'un algorithme?

Exercice 2. Code PIN d'un téléphone

Cahier des charges: Nous souhaitons écrire un algorithme demandant à l'utilisateur du smartphone de saisir son code PIN, et s'il échoue 3 fois, bloquer le téléphone.

Deux élèves proposent les versions d'algorithmes suivants :

Version 1	Version 2		
Répéter 3 fois :	Demander le code PIN		
Demander le code PIN	essai ← 1		
Si le code PIN est erroné alors :	Tant que code PIN est incorrect et		
Bloquer le téléphone	essai < 3 :		
Sinon	Demander le code PIN		
# Passer	essai ← essai + 1		
	Si essai < 3 alors :		
	Bloquer le téléphone		
	Sinon		
	# Passer		

À Faire: Quelle version correspond le mieux au cahier des charges?

Á Faire : Compléter l'algorigramme de la version la plus adaptée au cahier des charges.

Exercice 3. Résolution d'une équation du second degré

Une équation du second degré est une équation du type $ax^2+bx+c=0$ où $a,b,c\in\mathbb{R}$ et $a\neq 0$

Les solutions de l'équation $ax^2+bx+c=0$ sont les racines de la fonction polynôme $f(x)=ax^2+bx+c$.

Pour déterminer les racines de f, il est possible de calculer le discriminant Δ du polynôme, où $\Delta=b^2-4ac$.

- Si Δ < 0, alors cette équation n'admet pas de solutions réelles,
- Si Δ = 0, alors cette équation admet une solution unique : $x=\frac{-b}{2a}$,
- Si Δ > 0, alors cette équation admet deux solutions distinctes : $x_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b+\sqrt{\Delta}}{2a}$

Á Faire : Compléter l'algorithme RésoudrePolynome, qui calcule et renvoie les racines d'une équation du second degré dont les termes sont donnés en entrée.

<u>Instructions disponibles</u>: Algorithme : Résoudre polynôme Entrées : a un réel b un réel si delta = 0 alorsc un réel Sorties : Un ensemble de solutions début $\overline{solutions} \leftarrow solutions \cup x$ $solutions \leftarrow \{\emptyset\}$ 1 2 3 $si\ delta < 0\ alors$ 4 $delta \leftarrow b^2 - 4ac$ sinon si delta > 0 alors6 7 N.B: Une instruction peut être utilisée plusieurs fois. 10 fin 11 retourner solutions fin

Cours NSI

Thème : Algorithme

Qu'est-ce qu'un algorithme ?

Exercice 4. Places de cinéma

Un cinéma pratique la grille tarifaire en fonction de l'âge des spectateurs suivante :

Une règle particulière s'applique pour les groupes de 5 spectateurs et plus.

Dans ce cas, il y a une réduction globale de 25 % sur le coût total des billets.

Exemple: Soit le groupe de spectateurs composé d'une personne de 13 ans, une de 14 ans et une de 30 ans, noté g valant $\{13, 14, 30\}$. Le coût total des billets est $6,50 + 9,90 + 13,90 = 30,3 \in$.

Tarif -14 ans 6,50 € Tarif -26 ans

9,90€

Normal 13,90 €

Á Faire: Compléter l'algorithme CalculCoût, qui calcule et renvoie le coût total des billets de cinéma d'un groupe de spectateurs donné en entrée.

Algorithme : Calcul coût cinéma				
Entrées :				
Sorties:				
début				
$1 \mid total \leftarrow 0$				
pour chaque $spectateur \in g$ faire				
3				
4				
5				
6				
7				
8				
9				
10				
11				
fin				
12				
13				
4				
15 retourner total				
fin				