ФЕЛ

В. П. Бригінець, О. О. Гусєва

РОЗРАХУНКОВА РОБОТА:

«Електричне поле зарядів у вакуумі»

Умова

Електричне поле створюється у вакуумі (діелектрична проникність $\varepsilon = 1$) зарядом, який розподілений:

- **a**) із густиною $\rho(r)$ по об'єму кулі, r відстань від центра;
- **б**) із густиною $\rho(r)$ по об'єму кульового шару, r відстань від центра;
- в) із густиною $\rho(r)$ по об'єму кулі та з густиною σ по поверхні концентричної сфери, r відстань від центра;
- г) із густиною ho(r) по об'єму кульового шару, в центрі якого знаходиться точковий заряд q , r відстань від центра;
- **д**) із густиною ho(r) по об'єму нескінченного циліндра, r відстань від осі;
- **e**) із густиною $\rho(r)$ по об'єму нескінченного циліндричного шару, r відстань від осі;
- ж) із густиною ho(r) по об'єму нескінченного циліндричного шару та з густиною λ по нескінченній нитці, що проходить по осі системи, r відстань від осі.

У відповідності до таблиці варіантів (варіант і рівень складності призначається викладачем індивідуально) виконати наступні завдання.

- 1. За допомогою теореми Гауса аналітично визначити вирази (вивести формули) $\vec{E}(r)$ залежності напруженості електричного поля системи від відстані r у всіх областях простору;
- 2. За напруженістю $\vec{E}(r)$ аналітично визначити вирази (вивести формули) $\varphi(r)$ залежності потенціалу електричного поля системи від відстані r у всіх областях простору;
- 3. Записати числові формули, розрахувати й подати таблиці значень та за ними побудувати графіки залежностей $E_r(r)$ і $\varphi(r)$.

Порядок виконання та оформлення завдання

- 1. Завдання оформлюється на папері формату А-4 з одного боку. На титульному аркуші обов'язково вказується:
 - тема роботи;
 - група та ПІБ студента;
 - варіант і рівень складності завдання.
- 2. Записати умову завдання ∂ ля свого варіанту та записати параметри задачі (згідно з таблицею варіантів).

- 3. Зробити рисунок, на якому відобразити замкнену поверхню S, що буде використана для розрахунку, елементарну площадку $\mathrm{d} s$, орт нормалі \vec{n} і вектор \vec{E} на цій площадці.
 - 4. Отримати аналітичні вирази E(r) для кожної з областей;
- 5. Отримати аналітичні вирази для $\varphi(r)$, вибравши нульовий рівень (початок відліку) потенціалу залежно від типу системи: для (**a**, **б**, **в**, **r**) на нескінченності $(\varphi(\infty)=0)$; для (**д**, **e**, **є**, **ж**) на поверхні $r=R_2$ $(\varphi(R_2)=0)$;
- 6. Записати числові вирази для $E_r(r)$ і $\varphi(r)$, задля чого підставити числові дані (в основних одиницях СІ) в отримані в пп. 4 і 5 формули та виконати обчислення.
- 7. Розрахувати із кроком 1,0 см числові значення $E_r(r)$ і $\varphi(r)$ у діапазонах r=[0;15] см за відсутності зарядів у центрі або на осі системи, та r=[3;15] см при наявності таких зарядів (${\bf r},{\bf ж}$). Результати розрахунків звести у таблицю й подати її в тексті роботи.

<u>Зауваження</u>: 1) в системах (**д, е**) на зарядженій поверхні $(r = R_2)$ треба обчислювати $\partial \mathcal{B} a$ значення напруженості за формулами для суміжних областей. 2) Якщо в залежностях $E_r(r)$ і $\varphi(r)$ є точки екстремумів або перетину з віссю абсцис, треба окремо розрахувати та занести до таблиці координати цих точок та екстремальні значення величин.

- 8. За даними таблиці значень побудувати графіки $E_r(r)$ і $\varphi(r)$, згідно із такими вказівками:
 - графіки виконати на одному аркуші міліметрового паперу формату
 А-4 один над одним, розмістивши осі ординат на одній вертикалі та вибравши однакові масштаби по осях абсцис;
 - масштаби по осях ординат підібрати так, аби було зручно відкладати точки і кожен із графіків займав приблизно половину аркуша;
 - розмітити координатні осі та вказати одиниці вимірювання величин;
 - штриховими лініями показати на графіках межі областей.

Таблиця варіантів для груп ДЕ, ДП, ДС

Вар.	Розподіл	$\rho(r)$	σ , н K л $/$ м 2
1	а	$\rho_0 \left(1 - \left(2r/3R_2 \right) \right)$	
2	б	$ ho_0(R_1/r)$	
3	В	$ ho_0$	1,0
4	Д	$\rho_0 \over \rho_0 \left(1 - \left(2r/R_2\right)\right)$	
5	е	$\rho_0(R_2/r)$	
6	E	ρ_0	-3,0
7	а	$\rho_0 \left(1 - \left(5r/3R_2 \right) \right)$	
8	б	$\rho_0(r/R_1)$	
9	В	$ ho_0$	1,5
10	Д	$\frac{\rho_0}{\rho_0 \left(1 - \left(7r/4R_2\right)\right)}$	
11	е	$\rho_0(r/R_2)$	
12	€	$ ho_0$	-4,5
13	а	$\rho_0 \left(1 - \left(r/R_2 \right) \right)$	
14	б	$\rho_0(R_2/r)$	
15	В	$ ho_0$	-1,0
16	Д	$\rho_0\left(1-\left(5r/4R_2\right)\right)$	
17	е	$ ho_0(R_1/r)$	
18	€	$ ho_0$	2,0
19	а	$\rho_0 \left(1 - \left(2r/R_2 \right) \right)$	
20	б	$\rho_0(r/R_2)$	
21	В	$ ho_0$	-1,5
22	Д	$\rho_0 \\ \rho_0 \left(1 - \left(r/R_2 \right) \right)$	
23	е	$\rho_0(r/R_1)$	
24	€	$ ho_0$	2,5

Для всіх варіантів $\rho_0 = 0.5$ мкКл/м³; $R_1 = 5$ см, $R_2 = 10$ см. 1 мкКл = 10^{-6} Кл, 1 нКл = 10^{-9} Кл.

Вказівки з виконання розрахунків

Розрахунок напруженості поля за теоремою Гауса

Перед початком розрахунку напруженості поля обов'язково необхідно вивчити теоретичний матеріал і розібрати приклади розрахунку полів за одним із підручників:

- 1. Иродов И.Е. Электромагнетизм. Основные законы, М, 2002 (або 1983), §§ 1.2, 1.3 (примеры 4, 5, 6);
- 2. Кучерук І.М., Горбачук І.Т., Луцик П.П. Загальний курс фізики, т. 2, Електрика і магнетизм, К, 2001, § 1.7, (приклад 4).
 - 3. Савельев И.В. Курс физики, т.2, М, 1989, § 5 (ст.15-23), §§ 6,7,8.

Згідно з теоремою Гауса, у вакуумі потік напруженості електричного поля крізь замкнену поверхню будь-якої форми та розмірів визначається як

$$\oint E_n ds = \frac{q}{\varepsilon_0} \tag{1}$$

де E_n – проекція вектора \vec{E} на зовнішню нормаль до елементарної ділянки поверхні $\mathrm{d} s$, і q – сумарний заряд, який зосереджений всередині замкненої поверхні.

Оскільки вектор \vec{E} в кожній точці поля напрямлений по нормалі до еквіпотенціальної поверхні (поверхні сталого значення потенціалу $\varphi=const$), що проходить через цю точку, то $|E_n|=|\vec{E}|$. Для зручності надалі позначатимемо $E_n=E$ (знак E залежить від напряму вектора \vec{E} відносно нормалі до еквіпотенціальної поверхні), відтак для потоку поля крізь будь-яку еквіпотенціальну поверхню можна записати $\int\limits_S \vec{E} \, \mathrm{d} \vec{s} = \int\limits_S E \, \mathrm{d} s$. При цьому для полів високої симетрії в усіх точках еквіпотенціальної поверхні E=const, тому потік через площу S еквіпотенціальної поверхні дорівнює:

$$\int_{S} E ds = ES$$

Якщо замкнена поверхня є замкненою еквіпотенціальною поверхнею з площею S , або складається з еквіпотенціальної поверхні площі S , та інших поверхонь, крізь які потік дорівнює нулю, то

$$\oint E ds = ES = \frac{q}{\varepsilon_0} \implies E = \frac{q}{\varepsilon_0 S},$$
(2)

Величина S у випадку симетричних поверхонь визначається за відомими простими формулами, тому задача зводиться до визначення сумарного заряду q всередині заданої замкненої поверхні. Це також не становить прин-

ципових труднощів, оскільки симетричне поле створюється відповідним симетричним розподілом заряду в просторі.

Придатними для розрахунку за теоремою Гауса полями, зокрема, є:

- центральне (сферично симетричне) поле, яке скрізь напрямлене радіально і в якому напруженість E та потенціал φ залежать тільки від відстані до центра симетрії. То ж еквіпотенціальними поверхнями центрального поля є концентричні сфери. У даній розрахунковій роботі такі поля створюють системи (**a**, **б**, **в**, **r**).
- аксіально симетричне поле, яке скрізь напрямлене перпендикулярно до заданої осі й напруженість E та потенціал φ залежать тільки від відстані r до неї. Еквіпотенціальними поверхнями такого поля ε коаксіальні із віссю симетрії нескінченні циліндричні поверхні. У даній роботі подібні поля створюють системи (\mathbf{q} , \mathbf{e} , $\mathbf{\varepsilon}$, \mathbf{w}).

Визначення потенціалу за відомою напруженістю поля

Перед початком розрахунку потенціалу поля обов'язково необхідно вивчити теоретичний матеріал за одним із підручників:

- 1. Иродов И.Е. Электромагнетизм. Основные законы, М, 2002 (1983), §§ 1.5, 1.6;
- 2. Кучерук І.М., Горбачук І.Т., Луцик П.П. Загальний курс фізики, т. 2, Електрика і магнетизм, К, 2001, § 1.10, 1.11.
 - 3. Савельев И.В. Курс физики, т.2, М, 1989, §§ 8,9.

При переміщенні заряду q в неоднорідному електричному полі $\vec{E}(\vec{r})$ на нього діє змінна сила $\vec{F}=q\vec{E}(\vec{r})$, тому робота поля на шляху між якимось точками 1 і 2 визначається криволінійним інтегралом уздовж траєкторії переміщення:

$$A_{12} = q \int_{1}^{2} \vec{E} \, \mathrm{d}\vec{r} .$$

Оскільки поле зарядів є потенціальним, ця робота не залежить від траєкторії і може бути виражена через різницю потенціалів у точках 1 і 2:

$$A_{12} = q(\varphi_1 - \varphi_2).$$

Прирівнюючи праві частини цих виразів отримуємо:

$$\varphi_1 - \varphi_2 = \int_1^2 \vec{E} \, d\vec{r} .$$

Якщо поле \vec{E} відоме, то цей вираз дозволяє знайти різницю потенціалів між будь-якими двома точками поля. Для визначення функції потенціалу $\phi(\vec{r})$ інтегрування треба вести від довільної точки \vec{r} до нульової точки \vec{r}_0^{-1} , тоді

$$\varphi(\vec{r}) = \int_{\vec{r}}^{\vec{r}_0} \vec{E}(\vec{r}) d\vec{r}.$$

Наведені інтеграли не залежать від форми траєкторії, тому в даній розрахунковій роботі найзручніше інтегрувати вздовж силових ліній поля, тобто вздовж радіальних прямих, які виходять із центра (або осі) симетрії поля. В такому разі вирази для $\varphi_1 - \varphi_2$ та φ спрощуються:

$$\varphi_1 - \varphi_2 = \int_1^2 E(r) \, \mathrm{d}r \tag{3}$$

$$\varphi(r) = \int_{r}^{r_0} E(r) \, \mathrm{d}r \,, \tag{4}$$

де r, r_0 – відстань від центра (осі) симетрії до даної та до нульової точки.

Приклади розрахунку поля

Приклад 1. Поле створюється кулею, що заряджена з об'ємною густиною $\rho = \rho_0 r^2 / R^2$ (розподіл **a**)

1.1 <u>Визначення напруженості.</u> Дане поле є центрально симетричним, отже для розрахунку за теоремою Гауса використовуємо вираз (2) й обираємо сферичні замкнені поверхні, для яких $S = 4\pi r^2$, де r — відстань від центра кулі до точки, в якій шукаємо напруженість поля. Отже,

$$E(r) = \frac{q}{4\pi\varepsilon_0 r^2},\tag{1.1}$$

де q — сумарний заряд всередині сфери радіуса r, який визначається як інтеграл від елементарних зарядів $\mathrm{d}q$ усіх нескінченно малих областей $\mathrm{d}V$ всередині даної замкненої поверхні:

$$q = \int dq = \int_{V} \rho \, dV \tag{1.2}$$

<u>Примітка 1</u>. При однорідному розподілі заряду $(\rho = const)$ очевидно, що $q = \rho V$ і записувати вираз (1.2) немає потреби.

<u>Примітка 2</u>. При визначенні поля всередині кулі радіус сферичної поверхні в (1.1) r < R, і заряд, який потрапляє в неї, залежить від величини r: q = q(r). Якщо ж поле визначається поза кулею $(r \ge R)$, то при будь-якій величині r всередині сферичної поверхні опиняється весь заряд кулі q = Q.

 $^{^1}$ Нульова точка (нульовий рівень) потенціалу — це точка (або множина точок) в якій потенціал приймається рівним нулю: $\varphi(\vec{r_0}) = 0$. У даній роботі для кожної системи нульова точка задана в тексті завдання.

Тому подальший розрахунок напруженості за формулою (1.1) треба проводити окремо для кожної з указаних областей.

<u>Область 1</u> $(0 \le r \le R)$. Для спрощення викладок при обчисленні заряду q в інтегралі (1.2) за $\mathrm{d}V$ беруть не гранично малий кубик $\mathrm{d}x\mathrm{d}y\mathrm{d}z$, а всю елементарну область, в якій густина заряду $\rho(r)$ має однакову величину. Конфігурація такої області відповідає симетрії розподілу заряду, і в даному прикладі — це нескінченно тонкий кульовий шар радіуса r і товщини $\mathrm{d}r$, об'єм якого дорівнює $\mathrm{d}V = 4\pi r^2\mathrm{d}r$. Відтак, згідно з (1.2) і умовою завдання, маємо:

$$q = \int_{0}^{r} \rho_0 \frac{r^2}{R^2} \cdot 4\pi r^2 dr = \frac{4\pi \rho_0}{R^2} \int_{0}^{r} r^4 dr = \frac{4\pi \rho_0 r^5}{5R^2}.$$
 (1.2')

Підставивши цей результат у (1.1), отримаємо вираз напруженості поля всередині кулі як функцію відстані від центра:

$$E_1(r) = \frac{\rho_0 r^3}{5\varepsilon_0 R^2}.$$
 (1.3)

<u>Область 2</u>. $(r \ge R)$. У цьому випадку при будь-якій величині r в формулі (1.1) фігурує весь заряд кулі Q, який отримаємо, підставивши в (1.2') значення r=R:

$$Q = \frac{4\pi\rho_0 R^3}{5}.$$

Відповідно, напруженість поля у зовнішній області простору

$$E_2(r) = \frac{\rho_0 R^3}{5\varepsilon_0 r^2}. ag{1.4}$$

Відмітимо, що на поверхні зарядженої кулі (r = R) вирази (1.3) і (1.4) дають однаковий результат

$$E_1(R) = E_2(R) = \frac{\rho_0 R}{5\varepsilon_0}.$$
 (1.5)

Це корисно використовувати для контролю правильності розрахунків.

1.2 <u>Визначення потенціалу.</u> Після визначення напруженості поля E(r) за допомогою співвідношень (3) і (4) можна знайти функцію потенціалу поля $\varphi(r)$, урахувавши, що за умовою завдання нульова точка потенціалу розташована на нескінченності.

Оскільки напруженість поля всередині та назовні кулі виражається різними функціями (1.3) і (1.4), розрахунок потенціалу теж треба проводити окремо для кожної області, і починати зручніше з області 2, яка включає нульову точку.

<u>Область 2</u>. (r > R). Підставивши в (4) вираз (1.4) і умову $r_0 = \infty$, отримаємо:

$$\varphi_2(r) = \int_{r}^{\infty} \frac{\rho_0 R^3}{5\varepsilon_0 r^2} dr = \frac{\rho_0 R^3}{5\varepsilon_0} \int_{r}^{\infty} \frac{dr}{r^2} = \frac{\rho_0 R^3}{5\varepsilon_0} \left(-\frac{1}{r}\right)_{r}^{\infty}.$$

Підставивши границі, отримуємо остаточний результат:

$$\varphi_2(r) = \frac{\rho_0 R^3}{5\varepsilon_0 r} \tag{1.6}$$

Визначаємо також потенціал на межі областей (поверхня зарядженої кулі), поклавши в (1.6) r=R:

$$\varphi_2(R) = \frac{\rho_0 R^2}{5\varepsilon_0}. ag{1.7}$$

<u>Область 1</u> $(0 \le r \le R)$. Потенціал $\varphi_1(r)$ усередині зарядженої кулі визначаємо за допомогою співвідношення (3), врахувавши неперервність функції потенціалу². Завдяки цьому на поверхні кулі $\varphi_1(r) = \varphi_2(r)$, отже, згідно з (3) маємо:

$$\varphi_1(r) - \varphi_2(R) = \int_r^R E_1(r) dr$$

Підставивши сюди вирази (1.3) і (1.7), знайдемо шукане:

$$\varphi_{1}(r) - \frac{\rho_{0}R^{2}}{5\varepsilon_{0}} = \int_{r}^{R} \frac{\rho_{0}R^{3}}{5\varepsilon_{0}r^{2}} dr = \frac{\rho_{0}R^{2}}{5\varepsilon_{0}} \int_{r}^{R} r^{3} dr = \frac{\rho_{0}R^{2}}{5\varepsilon_{0}} \left(\frac{r^{4}}{4}\right)_{r}^{R} = \frac{\rho_{0}R^{2}}{5\varepsilon_{0}} \cdot \frac{R^{4} - r^{4}}{4}$$

Звідси після елементарних викладок отримаємо:

$$\varphi_1(r) = \frac{\rho_0(5R^4 - r^4)}{20\varepsilon_0 R^2}.$$
 (1.8)

Цей вираз при r=R дає величину (1.7), що вказує на відсутність помилок у викладках. Остаточно правильність отриманих результатів (1.6) і (1.8) перевіряємо за допомогою співвідношення між напруженістю та потенціалом, яке для розрахованого поля має вигляд:

$$E = -\frac{\mathrm{d}\varphi}{\mathrm{d}r}.\tag{1.9}$$

Підставивши під знак похідної функції (1.6) і (1.8) і виконавши диференціювання, отримаємо, відповідно, вирази (1.3) і (1.4), що засвідчує правильність розрахунку потенціалу.

1.3. <u>Числові формули</u>. Для розрахунку таблиць значень і побудови графіків необхідно записати числові формули залежностей (1.3), (1.4), (1.6), (1.8). Для цього в аналітичні вирази треба підставити задані значення параметрів та констант (обов'язково в основних одиницях СІ) і виконати обчис-

 $^{^2}$ Розрив потенціалу в будь-якій точці означав би нескінченне значення напруженості поля в цій точці, що позбавлено змісту.

лення. В даному прикладі, згідно з умовою, $\rho_0=50~\mathrm{HK}\pi/\mathrm{M}^3=5\cdot 10^{-8}~\mathrm{K}\pi/\mathrm{M}^3,$ $R=5~\mathrm{cm}=5\cdot 10^{-2}~\mathrm{m},~\varepsilon=8,85\cdot 10^{-12}~\mathrm{Ф/m},$ отже $E_1=\frac{5\cdot 10^{-8}}{5\cdot 8,85\cdot 10^{-12}\cdot 25\cdot 10^{-4}}r^3=4,52\cdot 10^5\cdot r^3~\mathrm{B/m}$ $E_2=\frac{5\cdot 10^{-8}\cdot 125\cdot 10^{-6}}{5\cdot 8,85\cdot 10^{-12}}\cdot \frac{1}{r^2}=\frac{0,141}{r^2}~\mathrm{B/m}$ $\varphi_1=\frac{5\cdot 10^{-8}\cdot (5\cdot 6,25\cdot 10^{-6}-r^4)}{20\cdot 8,85\cdot 10^{-12}\cdot 25\cdot 10^{-4}}=1,13\cdot 10^5\left(3,13\cdot 10^{-5}-r^4\right)\mathrm{B}$ $\varphi_2=\frac{5\cdot 10^{-8}\cdot 1,25\cdot 10^{-4}}{5\cdot 8.85\cdot 10^{-12}}\frac{1}{r}=\frac{0,14}{r}~\mathrm{B}$

Приклад 2. Поле створюється нескінченним циліндричним шаром із радіусами R_1 і R_2 , зарядженим із заданою залежністю об'ємної густини заряду від відстані до осі $\rho = \rho(r)$, (розподіл **e**).

2.1 <u>Визначення напруженості</u>. Для даної та подібних систем (заряд розподілений по об'єму циліндра або по циліндричній поверхні) є характерною осьова симетрія електричного поля. Відповідно, еквіпотенціальними поверхнями є *нескінченні* циліндри з віссю на осі симетрії системи. Тому при розрахунку залежності E = E(r) за теоремою Гауса замкнену поверхню беремо у вигляді прямого циліндра радіуса r із довільною висотою h. При цьому основи циліндра не є еквіпотенціальними. Проте вектор \vec{E} напрямлений радіально (паралельно до основи), то ж на торцях циліндра нормальна проекція напруженості $E_n = 0$, і потік створюється тільки крізь бічну поверхню $S = 2\pi rh$. Тому, згідно з (2).

$$E = \frac{q}{2\pi\varepsilon_0 h r},\tag{2.1}$$

Може здатися, що результат розрахунку залежить від невідомої величини h, але це не так, бо величина заряду q в (2.1) є прямо пропорційною висоті вибраної циліндричної поверхні, і величина h при обчисленнях скорочується. Ця задача є відмінною від попередньої (**Приклад 1**) ще тим, що при розподілі заряду по циліндричному шару створюється додаткова область $r < R_1$ (порожнина), яка потребує окремого розгляду. Тому при застосуванні теореми Гауса треба використовувати циліндри з радіусами, що потрапляють в кожну з трьох областей. Останнє зауваження стосується також розподілу **б**, в якому заряд зосереджений у кульовому шарі.

В іншому порядок розрахунку є аналогічним до розглянутого раніше (Приклад 1). А саме.

<u>Область 1</u> $(r < R_1)$. Очевидно, що всередині циліндра висоти h і будьякого радіуса $r < R_1$ заряд $q_1 = 0$. Отже, згідно з (1), потік теж дорівнює нулю:

 $E_1 S = 0$. Це означає, що $E_1 = 0$, тобто в порожнині електричне поле не створюється.

<u>Область 2</u> $(R_1 \le r \le R_2)$. Для визначення заряду всередині замкненої поверхні вибираємо елементарний об'єм у вигляді нескінченно тонкого циліндричного шару радіуса r і товщини $\mathrm{d} r$ з об'ємом $\mathrm{d} V = 2\pi r h \, \mathrm{d} r$. Отже, згідно з (1.2),

$$q_2 = \int_{R_1}^{r} \rho(r) 2\pi r h \, dr = 2\pi h \int_{R_1}^{r} \rho(r) r \, dr = 2\pi h (F(r) - F(R_1)), \qquad (2.2)$$

і у відповідності до (2.1),

$$E_2 = \frac{F(r) - F(R_1)}{\varepsilon_0 r}. (2.3)$$

Тут F(r) і $F(R_1)$ – значення первісної

$$F(r) = \int \rho(r) r \, \mathrm{d}r \tag{2.4}$$

від підінтегральної функції в (2.2) на межах області інтегрування.

<u>Область 3</u> $(r > R_2)$. У цій області замкнена поверхня охоплює весь заряд Q ділянки шару всередині замкненого циліндра висотою h:

$$q_3 = Q = 2\pi h \int_{R_1}^{R_2} \rho(r) r \, dr = 2\pi h \left(F(R_2) - F(R_1) \right). \tag{2.5}$$

Відповідно, напруженість

$$E_3 = \frac{F(R_2) - F(R_1)}{\varepsilon_0 r}.$$
 (2.6)

Для отримання з (2.3) і (2.6) розгорнутих виразів напруженості E(r) треба спочатку підставити в (2.4) задану залежність $\rho(r)$ і провести інтегрування.

<u>2.2 Визначення потвенціалу.</u> Після отримання залежності E(r) для кожної з областей, за допомогою (3) або (4) визначають функцію потенціалу $\varphi(r)$ у кожній області. У завданнях із осесиметричним розподілом заряду (**д**, **e**, **є**, **ж**) вибір нульовий рівень потенціалу встановюється на циліндричній поверхні радіуса R_2 , отже, в (4) $r_0 = R_2$.

Спочатку визначаємо $\varphi(r)$ в областях 2 і 3, які прилягають до еквіпотенціальної поверхні.

<u>Область 3</u> $(r > R_2)$. Згідно з (4),

$$\varphi_3(r) = \int_r^{R_2} E_3(r) \, \mathrm{d}r.$$

Область 2 $(R_1 \le r \le R_2)$:

$$\varphi_2(r) = \int_r^{R_2} E_2(r) \, \mathrm{d}r.$$

Отримавши вираз $\, \varphi_2(r) \,$, знаходимо потенціал $\, \varphi_2(R_{\!_1}) \,$ на внутрішній поверхні шару $\, r = R_{\!_1} \,$.

<u>Область 1</u> ($r < R_1$). Через неперервність функції потенціалу $\varphi_1(R_1) = \varphi_2(R_1)$, що дозволяє визначити потенціал $\varphi_1(r)$ в області 1 за допомогою співвідношення (3):

$$\varphi_1(r) - \varphi_2(R_1) = \int_r^{R_1} E_1 dr \implies \varphi_1(r) = \varphi_2(R_1) + \int_r^{R_1} E_1 dr.$$

У даному прикладі $E_{\rm l}=0$, отже, у порожнині потенціал скрізь однаковий:

$$\varphi_1(r) = \varphi_2(R_1) = const$$
.