

MACHINE LEARNING LESSON 4: Training

CARSTEN EIE FRIGAARD

RESUMÉ: Classification vs. Regression

Given the following

$$h: \mathbf{x} \to \mathbf{y}$$

- if y is discrete/categorical variable, then this is classification probl
- if y is real number/continuous, then this is a regression problem.

RESUMÉ: Classification

Decision Boundaries for different Models and Datasets

Souce code: L03/Extra/plot_classifier_comparison.ipynb in [GITMAL].

RESUMÉ: The Scikit-learn Fit-Predict Interface

learn

- module private: one underscore
- class-private: two underscores

via mangled names.

- ...NOTE: no virtual void fit() = 0; declaration in python!
- ...for modules, private funs can still be accessed via a hack?!
- ...src file: /opt/anaconda3/pkgs/.../sklearn/base.py

RESUMÉ: Exercise:

L03/dummy_classifier.ipynb

A dummy classifier for the fit-predict interface, plus intro to a Stochastic Gradient Decent method (SGD)

Qb Implement a dummy binary classifier

Follow the code found in [HOML], p84, but name you estimator $\mbox{DummyClassifier}$ instead of $\mbox{Never5Classifyer}$.

Here our Python class knowledge comes into play. The estimator class hierarchy looks like

All Scikit-learn classifiers inherit form BaseEstimator (and possible also ClassifierMixin), and they must have a fit-predict function pair (strangely not in the

Nomenclature

For a binary classifier

NAME	SYMBOL	ALIAS
true positives	TP	
true negatives	TN	
false positives	FP	type I error
false negatives	FN	type II error

and $N = N_P + N_N$ being the total number of samples and the number of positive and negative samples respectively.

true negatives

false negatives

[https://en.wikipedia.org/wiki/Precision_and_recall]

Precision, recall and accuracy, F_1 -score, and confusion matrix

precision,
$$p = \frac{TP}{TP+FP}$$
recall (or sensitivity),
$$r = \frac{TP}{TP+FN}$$
accuracy,
$$a = \frac{TP+TN}{TP+TN+FP+FN}$$

$$F_1\text{-score}, \qquad F_1 = \frac{2pr}{p+r}$$

Confusion Matrix,	M _{confusion}	=	
	actual	actual	
	true	false	
predicted true	TP	FP	
predicted false	FN	TN	

Precision =

NOTE₀: you can *compare* precision...*F*₁-score, but not necessarily the cost, *J*. NOTE₁: beware of matrix transpose and interpretation of *TP/TN*!

Nomenclature for the Confusion Matrix

Mr. Itmal

prevalence, positive predictive value, etc. not important to know in detail!

Accuracy Paradox...

```
class ParadoxClassifier(BaseEstimator):
         def fit(self, X, y=None):
             pass
         def predict(self, X):
             return np.ones(len(X),dtype=bool)
5
    Test via the breast cancer Wisconsin dataset...
    X, y_true = load_breast_cancer(return_X_y=True)
2
3
    print(f" X.shape={X.shape}, y_true.shape={y_true.shape}")
    X_train, X_test, y_train, y_test = train_test_split(X, y_true,
         test_size = 0.2, shuffle = True, random_state= 42)
5
    clf = ParadoxClassifier()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
8
9
    a = accuracy_score(y_pred, y_test)
10
    print(' acc=', a, ', N=', y_pred.shape[0])
11
    prints: acc= 0.6228070175438597, N= 114
    NOTE<sub>0</sub>: for MNIST, a dum classify as '5' \sim a = 10\%
    NOTE<sub>1</sub>: for MNIST, a dum classify not-as '5' \sim a = 90\%
```

In one dimension

The well know linear equation

$$y(x) = \alpha x + \beta$$

or changing some of the symbol names, so that $h(\mathbf{x}; \mathbf{w})$ means the **predicted** value from x for a parameter set \mathbf{w} , via the hypothesis function

Question: how do we find the \mathbf{w}_n 's?

In N-dimensions

For 1-D:

$$h(x^{(i)}; w) = w_0 + w_1 x^{(i)}$$

The same for N-D:

$$h(\mathbf{x}^{(i)}; \mathbf{w}) = \mathbf{w}^{\top} \begin{bmatrix} 1 \\ \mathbf{x}^{(i)} \end{bmatrix}$$
$$= w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_d x_d^{(i)}$$

and to ease notation we always prepend ${\bf x}$ with a 1 as

$$\begin{bmatrix} 1 \\ \mathbf{x}^{(i)} \end{bmatrix} \mapsto \mathbf{x}^{(i)}$$
, by convention in the following...

yielding the vector form of the hypothesis function

$$h(\mathbf{x}^{(i)}; \mathbf{w}) = \mathbf{w}^{\top} \mathbf{x}^{(i)}$$

Loss or Objective Function - Formulation for Linear Regression

Individual loss, via a square difference

$$L^{(i)} = (h(\mathbf{x}^{(i)}; \mathbf{w}) - y^{(i)})^{2}$$
$$= (\mathbf{w}^{\top} \mathbf{x}^{(i)} - y^{(i)})^{2}$$

and to minimize all the $L^{(i)}$ losses (or indirectly also the MSE or RMSE) is to minimize the sum of all the individual costs, via the total cost function J

MSE(**X**, **y**; **w**) =
$$\frac{1}{n} \sum_{i=1}^{n} L^{(i)}$$

= $\frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}^{(i)} - y^{(i)})^{2}$
= $\frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}$

Ignoring constant factors, this yields our linear regression cost function

$$J = \frac{1}{2}||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$$

$$\propto \mathsf{MSE}$$

Minimizing: The argmax concept

Our linear regression cost function was

$$J(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 \quad \uparrow$$

and training amounts to finding a value of \mathbf{w} , that minimizes J. This is denoted as

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} J(\mathbf{X}, \mathbf{y}; \mathbf{w})$$

= $\operatorname{argmin}_{\mathbf{w}} \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$

and by minima, we naturally hope for

thought for non-linear models this cannot be guarantied, hitting some

local minimum

Exercise: L04/linear_regression_1.ipynb

Training: The Closed-form Linear-Least-Squares Solution

To solve for \mathbf{w}^* in closed form, we find the gradient of J with respect to \mathbf{w} .

$$\nabla_{\mathbf{w}} J = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \dots, \frac{\partial J}{\partial w_m} \right]^{\top}$$

Taking the partial deriverty $\partial/\partial_{\mathbf{w}}$ of the J via the gradient (nabla) operator

$$\nabla_{\mathbf{w}} J(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \mathbf{X}^{\top} (\mathbf{X} \mathbf{w} - \mathbf{y}) = 0$$
$$0 = \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \mathbf{X}^{\top} \mathbf{y}$$

with a small amount of matrix algegra, this gives the closed-form solution

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$$

= $(\mathbf{X}^{\top}\mathbf{X})^{-1} \mathbf{X}^{\top}\mathbf{y}$

Exercise: L04/linear_regression_2.ipynb

Python class: MyRegressor

Exercise: create a linear regressor, inheriting from Base-Estimator, and implementing score() and mse().

NOTE: no inhering from ClassifierMixin.