term_term_pr_distr_and_inference-multinomial-min_df-3-size-150-max

December 8, 2020

autoreload modules and utilities

[1]: %load_ext autoreload %autoreload 2

import all necessary libraries/packages

Utility functions

```
[3]: ## utilities
# from utils import clean_text

import string
from sklearn.base import TransformerMixin

import nltk
from nltk import word_tokenize
from nltk.stem import WordNetLemmatizer
```

```
nltk.download('stopwords')
nltk.download('wordnet')
def clean_text(text: str, lemmatizer = lambda x: x) -> str:
          # removes upper cases
         text = text.lower().strip()
         # removes punctuation
         for char in string.punctuation:
                   text = text.replace(char, " ")
         #lematize the words and join back into string text
         text = " ".join([lemmatizer(word) for word in word_tokenize(text)])
         return text
def data isvalid(text, analyser, min_character_size, max_character_size):
         return min_character_size <= len(analyser(text)) <= max_character_size</pre>
def get_pipeline(vectorizer_type, classifier, use_t2pi, min_df=3,_
  →stop_words=None, lemmatizer = lambda x: x):
         vectorizer = CountVectorizer if vectorizer_type == "count" else_
  \hookrightarrowTfidfVectorizer
         models = [
                   ('clean text', CleanTextTransformer(lemmatizer)),
                   ("vectorizers", FeatureUnion([
                             ('count_binary', CountVectorizer(stop_words=stop_words,_
  →binary=True, min_df=min_df)),
                             ("count", vectorizer(stop_words=stop_words, min_df=min_df))
                  ])),
         1
         if use_t2pi:
                  models.append(('t2pi_transformer', T2PITransformer()))
         models.append(('classifier', classifier))
         return Pipeline(models)
def plot_bars(df, ylabel, ymin=0.77):
         xlabels = ["count_model", "count_sw_model", "tfidf_model", "tfidf_sw_model"]
         accuracy_means = df[["count_model", "count_sw_model", "tfidf_model", "
  t2pi_accuracy_means = df[["t2pi_count_model", "t2pi_count_sw_model", "t2pi_count_sw_model",

¬"t2pi_tfidf_model", "t2pi_tfidf_sw_model"]].loc["mean"]
```

```
xvalues = np.arange(len(xlabels)) # the label locations
   width = 0.35 # the width of the bars
   fig, ax = plt.subplots()
   rects1 = ax.bar(xvalues - width/2, accuracy_means, width, label='Baseline')
   rects2 = ax.bar(xvalues + width/2, t2pi_accuracy_means, width, label='T2PI')
   # Add some text for labels, title and custom x-axis tick labels, etc.
   ax.set_ylabel(ylabel.capitalize())
   ax.set_title(f'{ylabel.capitalize()} of Baseline and T2PI')
   ax.set_ylim(ymin=ymin)
   ax.set_xticks(xvalues)
   ax.set_xticklabels(xlabels)
   ax.legend()
   plt.show()
class CleanTextTransformer(TransformerMixin):
   def __init__(self, lemmatizer):
       self._lemmatizer = lemmatizer
   def fit(self, X, y=None, **fit_params):
       return self
   def transform(self, X, y=None, **fit_params):
        return np.vectorize(lambda x: clean text(x, self. lemmatizer))(X)
   def __str__(self):
       return "CleanTextTransformer()"
   def __repr__(self):
       return self.__str__()
class T2PITransformer(TransformerMixin):
   Ostaticmethod
   def _max_weight(x, pbar, word_word_pr):
       pbar.update(1)
       return (word_word_pr.T * x).max(0)
   def fit(self, X, y=None, **fit_params):
       X = X[:, :int(X.shape[1]/2)].toarray()
       print("creating term-term co-occurence pr matrix")
       terms = np.arange(X.shape[1])
       X = pd.DataFrame(X, columns=terms)
```

```
self.word_word_pr_distr = pd.DataFrame(data=0.0, columns=terms,_
 →index=terms)
        for term in tqdm(terms):
            self.word_word_pr_distr[term] = X[X[term] > 0].sum(0) / X.sum(0)
        return self
    def transform(self, X, y=None, **fit_params):
        X = X[:, int(X.shape[1]/2):].toarray()
        X = pd.DataFrame(X, columns=self.word_word_pr_distr.columns)
        print("transforming ...")
        with tqdm(total=X.shape[0]) as pbar:
            X = X.apply(self._max_weight, axis=1, args=(pbar, self.
 →word_word_pr_distr))
        return X
    def __str__(self):
        return "T2PITransformer()"
    def __repr__(self):
        return self.__str__()
[nltk_data] Downloading package stopwords to
```

1 Load Data

```
[5]: print(all_docs.data[0])
```

I think that domestication will change behavior to a large degree. Domesticated animals exhibit behaviors not found in the wild. I don't think that they can be viewed as good representatives of the wild animal kingdom, since they have been bred for thousands of years to produce certain behaviors, etc.

1.0.1 Create Dataframe

```
[6]: text label

0 \n\nI think that domestication will change beh... 0

1 \nI don't like this comment about "Typical" th... 3

2 \n<apparently you're not a woman - my husband ... 1

3 While not exactly a service incident, I had a ... 1

4 \n\nI think I can. Largely as a result of effo... 2
```

1.0.2 Label Frequency

```
[7]: print(data["label"].value_counts())
    print()

barlist = plt.bar(categories, data["label"].value_counts())

plt.title("Frequency of documents")
    plt.xticks(categories, list(map(lambda x: x.split(".")[1], categories)))
    plt.ylabel('Number of documents')
    plt.xlabel('Sentiment expressed in Reviews')

barlist[0].set_color('red')
    barlist[1].set_color('green')
    barlist[2].set_color('blue')
    barlist[3].set_color('grey')
    plt.show()
```

- 1 594
- 2 593
- 3 564
- 0 480

Name: label, dtype: int64

The Dataset labels needs to be balanced

1.0.3 Parameters

```
[15]: min_df = 3
    stop_words = "english"

def get_classifier():
    # return GaussianNB()
    return MultinomialNB()

def get_lemmatizer():
    # return lambda x: x
    return WordNetLemmatizer().lemmatize
```

2 Select Valid Data

```
[16]: max_size_per_class = 150
# remove long text
```

I think that domestication will change behavior to a large degree. Domesticated animals exhibit behaviors not found in the wild. I don't think that they can be viewed as good representatives of the wild animal kingdom, since they have been bred for thousands of years to produce certain behaviors, etc.

```
[18]: print(data["label"].value_counts())
    print()

barlist = plt.bar(categories, data["label"].value_counts())

plt.title("Frequency of documents")
    plt.xticks(categories, list(map(lambda x: x.split(".")[1], categories)))
    plt.ylabel('Number of documents')
    plt.xlabel('Sentiment expressed in Reviews')

barlist[0].set_color('red')
    barlist[1].set_color('green')
```

```
barlist[2].set_color('blue')
barlist[3].set_color('grey')
plt.show()
```

3 150 2 150 1 150 0 150

Name: label, dtype: int64

2.0.1 initialize input and output

```
[39]: X = data["text"]
y = data['label']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, □
→random_state=42)
```

2.0.2 initialize recursive word infer model

```
[40]: # initialize model
      t2pi_model = get_pipeline("count", get_classifier(), use_t2pi=True,_u
       →min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
      t2pi model
[40]: Pipeline(steps=[('clean_text', CleanTextTransformer()),
                      ('vectorizers',
                       FeatureUnion(transformer_list=[('count_binary',
                                                       CountVectorizer(binary=True,
                                                                        min_df=3)),
                                                       ('count',
                                                       CountVectorizer(min df=3))])),
                      ('t2pi_transformer', T2PITransformer()),
                      ('classifier', MultinomialNB())])
[41]: # fit model
      t2pi_model.fit(X_train, y_train)
     creating term-term co-occurence pr matrix
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1136.0),
      →HTML(value='')))
     transforming ...
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=450.0),
      →HTML(value='')))
[41]: Pipeline(steps=[('clean_text', CleanTextTransformer()),
                      ('vectorizers',
                       FeatureUnion(transformer_list=[('count_binary',
                                                       CountVectorizer(binary=True,
                                                                        min_df=3)),
                                                       ('count',
                                                       CountVectorizer(min_df=3))])),
                      ('t2pi_transformer', T2PITransformer()),
                      ('classifier', MultinomialNB())])
[42]: y pred = t2pi model.predict(X test) #predict testing data
      print(classification_report(y_test, y_pred))
     transforming ...
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=150.0),
      →HTML(value='')))
```

support	f1-score	recall	precision	
45	0.69	0.67	0.71	0
37	0.77	0.78	0.76	1
32	0.64	0.56	0.75	2
36	0.71	0.81	0.63	3
150	0.71			accuracy
150	0.70	0.70	0.71	macro avg
150	0.70	0.71	0.71	weighted avg

[43]: print(confusion_matrix(y_test, y_pred))

[[30 2 2 11] [3 29 3 2] [3 7 18 4] [6 0 1 29]]

2.0.3 Initialize models

```
[23]: # normal model
      count_model = get_pipeline("count", get_classifier(), use_t2pi=False,__
      →min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
      count_sw_model = get_pipeline("count", get_classifier(), use_t2pi=False,_u

_min_df=min_df, stop_words=stop_words, lemmatizer = get_lemmatizer())

      tfidf_model = get_pipeline("tfidf", get_classifier(), use_t2pi=False,_u
      →min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
      tfidf_sw_model = get_pipeline("tfidf", get_classifier(), use_t2pi=False,_u
       →min_df=min_df, stop_words=stop_words, lemmatizer = get_lemmatizer())
      t2pi_count_model = get_pipeline("count", get_classifier(), use_t2pi=True,_u
      →min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
      t2pi_count_sw_model = get_pipeline("count", get_classifier(), use_t2pi=True,_

_min_df=min_df, stop_words=stop_words, lemmatizer = get_lemmatizer())

      t2pi_tfidf_model = get_pipeline("tfidf", get_classifier(), use_t2pi=True,_u
      min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
      t2pi_tfidf_sw_model = get_pipeline("tfidf", get_classifier(), use_t2pi=True,__

min_df=min_df, stop_words=stop_words, lemmatizer = get_lemmatizer())

      models = {
          "count_model": count_model,
          "count_sw_model": count_model,
```

```
"tfidf_model": tfidf_model,
    "tfidf_sw_model": tfidf_sw_model,
    "t2pi_count_model": t2pi_count_model,
    "t2pi_count_sw_model": t2pi_count_sw_model,
    "t2pi_tfidf_model": t2pi_tfidf_model,
    "t2pi_tfidf_sw_model": t2pi_tfidf_sw_model
}
```

2.0.4 Running Cross validation on all Models

```
[24]: split_size = 7
      skf = StratifiedKFold(n_splits=split_size, shuffle=True, random_state=100)
      index = 0
      macro_f1_scores, weighted_f1_scores, accuracies = [], [], []
      for train index, test index in skf.split(X, y):
          index += 1
          x_train_fold, x_test_fold = X.iloc[train_index], X.iloc[test_index]
          y_train_fold, y_test_fold = y.iloc[train_index], y.iloc[test_index]
          accuracies.append([])
          macro f1 scores.append([])
          weighted_f1_scores.append([])
          for model_name, model in models.items():
              print(f' \rightarrow \{index\}. \{model_name\} \n{"="*100}\n')
              model.fit(x_train_fold, y_train_fold)
              y_pred = model.predict(x_test_fold)
              accuracy = accuracy_score(y_test_fold, y_pred)
              weighted_f1_score = calculate_f1_score(y_test_fold, y_pred,__
       →average='weighted')
              macro_f1_score = calculate_f1_score(y_test_fold, y_pred,__
       →average='macro')
              weighted_f1_scores[-1].append(weighted_f1_score)
              macro_f1_scores[-1].append(macro_f1_score)
              accuracies[-1].append(accuracy)
```

-> 1. count_model

-> 1. count sw model

```
-> 1. tfidf_model
_____
-> 1. tfidf sw model
______
-> 1. t2pi_count_model
_____
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1273.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 1. t2pi_count_sw_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1059.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0), __
```

→HTML(value='')))

```
-> 1. t2pi_tfidf_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1273.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 1. t2pi_tfidf_sw_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1059.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 2. count_model
_____
-> 2. count_sw_model
______
______
```

```
-> 2. tfidf_model
_____
-> 2. tfidf sw model
______
==============
-> 2. t2pi_count_model
==============
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1275.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 2. t2pi_count_sw_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1056.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 2. t2pi_tfidf_model
```

```
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1275.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 2. t2pi tfidf sw model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1056.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 3. count_model
______
-> 3. count_sw_model
______
===============
-> 3. tfidf_model
_____
```

```
-> 3. tfidf_sw_model
_____
              _____
-> 3. t2pi_count_model
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1274.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 3. t2pi_count_sw_model
_____
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1057.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 3. t2pi_tfidf_model
______
```

```
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1274.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 3. t2pi_tfidf_sw_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1057.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 4. count_model
_____
-> 4. count_sw_model
_____
-> 4. tfidf_model
______
_____
```

```
-> 4. tfidf_sw_model
______
-> 4. t2pi count model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1274.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 4. t2pi_count_sw_model
  .-----
================
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1057.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 4. t2pi_tfidf_model
______
creating term-term co-occurence pr matrix
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1274.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 4. t2pi_tfidf_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1057.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 5. count_model
______
-> 5. count sw model
______
______
-> 5. tfidf model
______
-> 5. tfidf_sw_model
______
```

```
-> 5. t2pi_count_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1264.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 5. t2pi_count_sw_model
_______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1044.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 5. t2pi_tfidf_model
_____
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1264.0),
→HTML(value='')))
```

```
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 5. t2pi_tfidf_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1044.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 6. count model
-> 6. count_sw_model
______
______
-> 6. tfidf_model
_____
-> 6. tfidf_sw_model
______
-> 6. t2pi_count_model
```

```
_____
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1292.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 6. t2pi count sw model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1073.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 6. t2pi_tfidf_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1292.0),
→HTML(value='')))
transforming ...
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 6. t2pi_tfidf_sw_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1073.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0), __
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 7. count_model
_____
-> 7. count_sw_model
______
===============
-> 7. tfidf_model
______
-> 7. tfidf_sw_model
______
-> 7. t2pi_count_model
______
================
```

```
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1287.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 7. t2pi_count_sw_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1069.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 7. t2pi_tfidf_model
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1287.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
      →HTML(value='')))
     -> 7. t2pi_tfidf_sw_model
     ______
     =============
     creating term-term co-occurence pr matrix
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1069.0),
     →HTML(value='')))
     transforming ...
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
     →HTML(value='')))
     transforming ...
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
     →HTML(value='')))
[25]: model_names = list(models.keys())
     accuracy = pd.DataFrame(data=np.array(accuracies), columns=model_names)
     weighted_f1_score = pd.DataFrame(data=np.array(weighted_f1_scores),__
      macro_f1_score = pd.DataFrame(data=np.array(macro_f1_scores),__

→columns=model_names)
     accuracy.loc["mean"] = accuracy.mean(0)
     weighted_f1_score.loc["mean"] = weighted_f1_score.mean(0)
     macro_f1_score.loc["mean"] = macro_f1_score.mean(0)
[26]: accuracy.head(split_size+1)
[26]:
           count_model count_sw_model tfidf_model tfidf_sw_model \
     0
             0.790698
                            0.790698
                                         0.790698
                                                        0.813953
     1
             0.848837
                            0.848837
                                         0.790698
                                                        0.813953
     2
             0.767442
                            0.767442
                                         0.720930
                                                        0.779070
     3
             0.755814
                            0.755814
                                         0.744186
                                                        0.744186
     4
             0.639535
                            0.639535
                                        0.651163
                                                        0.755814
             0.705882
                             0.705882
                                         0.717647
                                                        0.729412
```

transforming ...

```
6
         0.694118
                          0.694118
                                        0.705882
                                                         0.694118
         0.743189
                          0.743189
                                        0.731601
                                                          0.761501
mean
                         t2pi_count_sw_model
                                               t2pi_tfidf_model
      t2pi_count_model
0
               0.779070
                                     0.837209
                                                         0.790698
               0.848837
                                     0.860465
                                                        0.837209
1
2
               0.755814
                                     0.767442
                                                        0.755814
3
               0.744186
                                                        0.732558
                                     0.732558
4
                                                        0.662791
               0.639535
                                     0.732558
5
               0.729412
                                     0.729412
                                                        0.729412
6
               0.670588
                                     0.694118
                                                        0.694118
               0.738206
                                     0.764823
                                                        0.743228
mean
      t2pi_tfidf_sw_model
0
                  0.825581
                  0.848837
1
2
                  0.790698
3
                  0.720930
4
                  0.744186
5
                  0.764706
6
                  0.705882
                  0.771546
mean
```

[34]: plot_bars(accuracy, ylabel="accuracy", ymin=0.72)


```
[35]: weighted_f1_score.head(split_size+1)
[35]:
            count_model
                          count_sw_model
                                           tfidf_model
                                                         tfidf_sw_model
      0
               0.793588
                                0.793588
                                              0.792005
                                                               0.813405
      1
               0.848491
                                0.848491
                                              0.791508
                                                               0.813069
      2
               0.765940
                                0.765940
                                              0.717751
                                                               0.775940
      3
               0.755232
                                 0.755232
                                              0.742546
                                                               0.744384
      4
               0.633116
                                0.633116
                                              0.644383
                                                               0.751040
      5
               0.703328
                                0.703328
                                              0.715738
                                                               0.730247
      6
               0.693308
                                 0.693308
                                              0.704881
                                                               0.693997
               0.741857
                                              0.729830
                                0.741857
                                                               0.760297
      mean
                               t2pi_count_sw_model t2pi_tfidf_model
            t2pi_count_model
                                                              0.790735
                     0.780646
                                           0.838026
      0
      1
                     0.848610
                                           0.860938
                                                              0.837316
      2
                     0.752918
                                           0.762584
                                                              0.752351
      3
                     0.744013
                                           0.731442
                                                              0.733177
      4
                     0.633116
                                           0.731213
                                                              0.660776
      5
                     0.727592
                                           0.729392
                                                              0.727805
      6
                     0.669074
                                           0.694041
                                                              0.694385
      mean
                     0.736567
                                           0.763948
                                                              0.742363
            t2pi_tfidf_sw_model
      0
                        0.825307
      1
                        0.848837
      2
                        0.787803
      3
                        0.717978
      4
                        0.739650
      5
                        0.765708
      6
                        0.705617
                        0.770129
      mean
[36]: plot_bars(weighted_f1_score, ylabel="weighted_f1_score", ymin=0.72)
```


7]: macr	o_f1_score.head(s	plit_size+1)			
7]:	count_model cou	int_sw_model	tfidf_mode	l tfidf_sw_model	\
0	0.793105	0.793105	0.79167	4 0.813710	
1	0.848370	0.848370	0.79158	8 0.812626	
2	0.766720	0.766720	0.71840	1 0.775478	
3	0.754968	0.754968	0.74240	5 0.743709	
4	0.632754	0.632754	0.64396	3 0.751143	
5	0.702384	0.702384	0.71473	5 0.730082	
6	0.693096	0.693096	0.70466	1 0.693601	
mean	0.741628	0.741628	0.72963	2 0.760050	
	t2pi_count_mode	l t2pi_count	_sw_model	t2pi_tfidf_model	\
0	0.780392	2	0.838588	0.791070	
1	0.848722	2	0.860613	0.837459	
2	0.753387	7	0.762010	0.752624	
3	0.743818	3	0.730341	0.733305	
4	0.632754	1	0.731071	0.660436	
5	0.726937	7	0.729081	0.726503	
6	0.669103	3	0.693838	0.694186	
mean	0.73644	5	0.763649	0.742226	
	t2pi_tfidf_sw_mo	odel			
0	0.825				

```
1 0.848787
2 0.787701
3 0.716959
4 0.739606
5 0.765829
6 0.705514
mean 0.770042
```

[38]: plot_bars(macro_f1_score, ylabel="macro_f1_score", ymin=0.72)

[]: