Krzysztof Czarnowus	zadanie NUM2	grupa 3

1. Wstęp teoretyczny

Rozwiązywanie układów równań macierzowych za pomocą maszyn cyfrowych obarczone jest błędem przybliżenia reprezentacji niektórych liczb. Nie każde równanie jest jednakowo wrażliwe na te błędy, w skrajnych przypadkach mogą one jednak w bardzo znaczący sposób wpływać na dokładność uzyskanych wyników. Miarą błędu względnego wyniku obliczeń numerycznych może być współczynnik uwarunkowania, charakterystyczny dla każdego rozważanego problemu.

Napisano program, którego celem było wyliczenie wektora rozwiązań dla równania macierzowego:

$$A_i y = b (1)$$

gdzie A_i jest macierzą współczynników, b wektorem wartości własnych, a y wektorem rozwiązań. Zbadano dwie macierze:

$$\mathbf{A}_1 = \begin{pmatrix} 2.554219275 & 0.871733993 & 0.052575899 & 0.240740262 & 0.316022841 \\ 0.871733993 & 0.553460938 & -0.070921727 & 0.255463951 & 0.707334556 \\ 0.052575899 & -0.070921727 & 3.409888776 & 0.293510439 & 0.847758171 \\ 0.240740262 & 0.255463951 & 0.293510439 & 1.108336850 & -0.206925123 \\ 0.316022841 & 0.707334556 & 0.847758171 & -0.206925123 & 2.374094162 \end{pmatrix}$$

oraz

$$\mathbf{A}_2 = \left(\begin{array}{ccccc} 2.645152285 & 0.544589368 & 0.009976745 & 0.327869824 & 0.424193304 \\ 0.544589368 & 1.730410927 & 0.082334875 & -0.057997220 & 0.318175706 \\ 0.009976745 & 0.082334875 & 3.429845092 & 0.252693077 & 0.797083832 \\ 0.327869824 & -0.057997220 & 0.252693077 & 1.191822050 & -0.103279098 \\ 0.424193304 & 0.318175706 & 0.797083832 & -0.103279098 & 2.502769647 \end{array} \right)$$

a także wektor wyrazów wolnych:

$$b = (-0.642912346, -1.408195475, 4.595622394, -5.073473196, 2.178020609)^{T}$$

Za pomocą biblioteki numerycznej NumPy obliczono wartości wektorów rozwiązań równań macierzowych y₁ oraz y₂. Aby zasymulować wpływ niedokładnej reprezentacji liczb na maszynach cyfrowych, napisany program generuje losowy wektor, który następnie skaluje tak, aby jego norma

wynosiła ok. 10⁻⁶, po czym dodaje do wektora wartości własnych b i rozwiązuje nowe równanie macierzowe.

2. Opracowanie wyników

Otrzymane dla macierzy A_1 rozwiązanie niezaburzone oraz rozwiązania policzone dla dwóch różnych wygenerowanych zaburzeń przedstawiono w tabeli 1. Analogiczne wartości przy użyciu w obliczeniach macierzy A_2 zestawiono w tabeli 2.

Tabela 1. Zestawienie rozwiązań dla wektora b podanego w zadaniu oraz dwóch różnych niewielkich zaburzeń dodanych do niego dla macierzy A_1 .

wektor b	wektor y ₁	wektor $b + \delta b_a$	wektor y _{1, a}	wektor $b + \delta b_b$	wektor y _{1, b}
-0.642912346	0.22508493	-0.64290525	2839.31392029	-0.64290603	3317.31447745
-1.408195475	-0.00602226	-1.40819356	-10214.03771773	-1.40819494	-11933.71368742
4.595622394	1.84183182	4.59562410	-1328.17882438	4.59562762	-1552.10651679
-5.073473196	-5.15344244	-5.07346794	2715.18503652	-5.07346947	3173.19229797
2.178020609	-0.21762250	2.17802454	3377.05487166	2.17802493	3945.6662209

Tabela 2. Zestawienie rozwiązań dla wektora b podanego w zadaniu oraz dwóch różnych niewielkich zaburzeń dodanych do niego dla macierzy A₂.

wektor b	wektor y ₂	wektor $b + \delta b_a$	wektor y _{2, a}	wektor $b + \delta b_b$	wektor y _{2, b}
-0.642912346	0.57747172	-0.64290525	0.57747359	-0.64290603	0.57747371
-1.408195475	-1.27378458	-1.40819356	-1.27378418	-1.40819494	-1.27378509
4.595622394	1.67675008	4.59562410	1.67674994	4.59562762	1.67675115
-5.073473196	-4.8157949	-5.07346794	-4.81579083	-5.07346947	-4.81579247
2.178020609	0.20156347	2.17802454	0.20156489	2.17802493	0.20156469

3. Dyskusja

Można zaobserwować, że dwie zbadane macierze mają bardzo różną czułość na obecność niewielkich zaburzeń, mających symulować przybliżanie liczb przez maszyny cyfrowe. Niewielka zmiana wektora wyrazów wolnych na pozycjach $10^{-5} - 10^{-6}$ przekładała się na zmianę rozwiązań w podobnym zakresie dla macierzy A_2 oraz na zmianę wartości o $10^3 - 10^4$ dla macierzy A_1 . Pokazuje to, że pierwsza badana macierz jest bardzo źle uwarunkowana numerycznie, a praktycznie wszystkie wykonane z jej użyciem obliczenia mogą obarczone być wyjątkowo dużym błędem względnym, podczas gdy druga charakteryzuje się dobrym uwarunkowaniem.