Descriptive Statistics With R Software

Association of Variables

• •

Measures of Association for Discrete and Counting Variables: Bivariate Frequency and Contingency Tables

Shalabh

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Example: Suppose we want to know if boys and girls have any inclination to choose between mathematics and biology.

If there is no discrimination, we expect that the total number of boys and girls opting for mathematics and biology should be nearly the same.

Data on such issues are obtained as frequency.

A measure based on frequency data or summarized frequency data is needed to study the association between two such variables.

Suppose the data is obtained as follows:

Student number	1	2	3	4	5	6	7	8	9	10
Gender M: male F: female	M	F	M	M	F	F	F	M	M	F
Subject Math: Mth Biology: Bio	Bio	Bio	Mth	Mth	Mth	Bio	Bio	Mth	Mth	Mth

Data can be summarized as follows

Male Students Math $n_{11} = 4$		Female Students	Total (Rows)	Students	
		n ₁₂ = 2	<i>n</i> ₁₊ = 6 ←	preferring maths	
Biology $n_{21} = 1$		n ₂₂ = 3	<i>n</i> ₂₊ = 4 ←	Students preferring	
Total (Columns)	<i>n</i> ₊₁ = 5	n ₊₂ = 5	<i>n</i> = 10	biology	
Male Students preferring maths and biology		Female Students preferring maths and biology			

This is a 2 x 2 contingency table.

 n_{ii} : Frequency in (i, j)th cell

$$n_{1+} = n_{11} + n_{12}$$
: Row total (1st row of data)

$$n_{2+} = n_{21} + n_{22}$$
: Row total (2nd row of data)

$$n_{+1} = n_{11} + n_{21}$$
: Column total (1st column of data)

$$n_{+2} = n_{12} + n_{22}$$
: Column total (2nd column of data)

$$n = n_{11} + n_{12} + n_{21} + n_{22} = n_{1+} + n_{2+} = n_{+1} + n_{+2} = \text{Total frequency}$$

In general, let X and Y be two discrete variables

$$x_1, x_2, ..., x_k$$
: k classes of X

$$y_1, y_2, ..., y_l : I$$
 classes of Y

 n_{ij} : Frequency of $(i, j)^{th}$ cell corresponding to $(x_{i, j})^{th}$

$$i = 1,2,...,k;$$
 $j = 1,2,...,l;$

This frequencies can be presented in the following *k* x *l* contingency table.

Association between Two Discrete Variables k x l Contingency Table

				Y			Total	
			•••	y _j	•••	y _I	(Rows)	D. Garantina al
	X ₁	n ₁₁	•••	n _{1j}	•••	n _{1/}	n ₁₊	Marginal frequency
	•		•.		••	ŧ	:	l
X	X _i	n _{i1}	•••	n _{ij}	•••	n _{il}	n_{i+}	$$ $n_{i+} = \sum_{j=1} n_{ij}$
7.	•	•	٠.	•	••	:	•	
	X _k	n _{k1}	•••	n _{kj}	•••	n _{kl}	<i>n</i> _{k+}	
Total (Columns) $n_{+1} \cdots n_{+j} \cdots$				n _{+/}	n			
$\begin{array}{ c c }\hline \textbf{Marginal} & n_{+j} = \sum_{i=1}^k n_{ij} \\ \hline \textbf{frequency} & n_{+j} = \sum_{i=1}^k n_{ij} \\ \hline \end{array}$					$n = \sum_{i=1}^{k} n_{i+} = \sum_{j=1}^{l} n_{+j} = \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij}$			
i=1					Total frequency 7			

When the data on two variables are summarized in a contingency table, there are several characteristics of the data can be studied.

$$n_{i+} = \sum_{j=1}^{l} n_{ij}, \quad n_{+j} = \sum_{i=1}^{k} n_{ij}, \quad n = \sum_{i=1}^{k} n_{i+} = \sum_{j=1}^{l} n_{+j} = \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij}$$

 n_{ii} : Absolute frequencies

: Represents joint frequency distribution of X and Y

Joint frequency distribution tells how the values of both the variables behave jointly.

 n_{i+} : Represents marginal frequency distribution of X

 n_{+i} : Represents marginal frequency distribution of Y

Marginal frequency distribution tells how the values of one variable behave in the joint distribution.

If <u>relative frequency</u> is used instead of absolute frequency, then the similar information is provided by the

- joint relative frequency distribution,
- marginal relative frequency distribution, and
- conditional relative frequency distribution.

 $f_{ij} = \frac{n_{ij}}{n}$: Relative frequency

: Represents joint relative frequency distribution of X and Y.

$$f_{i|j}(X|Y=y_j) = \frac{n_{ij}}{n_{+j}}$$
: Conditional frequency distribution of X given Y= y_j

$$f_{j|i}(Y|X=x_i) = \frac{n_{ij}}{n_{i+}}$$
: Conditional frequency distribution of Y given $X=x_i$

<u>Conditional frequency distribution</u> tells how the values of one variable behave when another variable is kept fixed.

$$f_{i+} = \sum_{i=1}^{l} f_{ij}$$
 : Marginal relative frequency distribution of X

$$f_{+j} = \sum_{i=1}^{k} f_{ij}$$
 : Marginal relative frequency distribution of Y

$$f_{i|j}(X\mid Y)$$
 : Conditional relative frequency distribution of X given $Y=y_j$

$$f_{j|i}(Y \mid X)$$
 : Conditional relative frequency distribution of Y given $X = x_i$

Example:

A soft drink was served to children, young persons and elder persons and its taste was recorded as good or bad. The following 2 X 3 contingency table was formed by compiling the data.

	Person	Children	Young	Elder	Total
			persons	persons	(Rows)
	Good	20	30	10	60
Taste	Bad	10	15	15	40
	Total (Columns)	30	45	25	100

The same contingency table can also be formed by relative frequencies.

	Person	Children	Young persons	Elder persons	Total (Rows)
	Good	20/100	30/100	10/100	60/100
Taste	Bad	10/100	15/100	15/100	40/100
	Total (Columns)	30/100	45/100	25/100	1

Interpretations

Joint frequency distribution tells how the values of both the variables behave jointly.

Marginal frequency distribution:

- 60 (or 60%) persons said that the drink is good.
- 40 (or 40%) persons said that the drink is bad.
- Drink was tasted by 30 (or 30%) children, 45 (or 45%) young persons and 25 (or 25%) elder persons.

Interpretations

Conditional frequency distribution tells how the values of one variable behave when another variable is kept fixed.

20/60 = 33.3% children said that the drink is good.

• 10/40 = 25% children said that the drink is bad.

• 30/60 = 50% young persons said that the drink is good.

• 15/40 = 37.5% young persons said that the drink is bad etc.