CSCE 509 Pattern Recognition

Time and Place

MW 8:30-9:45 a.m.; Oliver 113

Instructor

C.H. Chu

chu@louisiana.edu

Oliver 304

Hours: Mon, Wed 10-11 a.m.; or by appointment

I have another office at Abdalla Hall Please do not come to Abdalla Hall without an appointment. If I am there I usually have meetings already set up

References

- Y.S. Abu-Mostafa, M. Magdon-Ismail, H.-T. Lin, Learning from Data, AMLbook.com, 2012.
- C.M. Bishop, *Pattern Recognition and Machine Learning*, Springer, New York, 2006.
- R. O. Duda, P. E. Hart, and D. G. Stork, *Pattern Classification*, 2nd ed., Wiley, New York, 2001.
- B. D. Ripley, *Pattern Recognition and Neural Networks*, Cambridge University Press, Cambridge, U.K., 1996.

Prerequisites

- Understanding of
 - Linear algebra
 - Vector/matrix notations and manipulation methods
 - Concepts of probability theory

Class Policy

- Academic honesty is expected
- Attendance
 - You are responsible for everything covered in class
 - I shall be happy to clarify lecture material during the lecture, during my office hours, or by email
 - But do not expect me to repeat the lectures at your convenience or when the assignments are due

Class Policy

- Powerpoint presentations, if used, will be posted in Moodle
- Assignments will be announced in class and posted in Moodle

What is Pattern Recognition?

"The field of pattern recognition is concerned

- with the automatic discovery of regularities in data through the use of computer algorithms and
- with the use of these regularities to take actions such as classifying the data into different categories"

Topics

Supervised learning

				Supervised rearring
<u>Mon</u>	<u>Wed</u>	<u>Module</u>	<u>Topic</u>	
-	15-Jan	0	Syllabus. Class policy	Parametric Non-
20-Jan	22-Jan	1	Introduction	method parametric
27-Jan	29-Jan	2	Optimal decision rule for classification problem	method
3-Feb	5-Feb	5	linear classifier: perceptron. LMS	-
10-Feb	12-Feb	3, 4	learning problem. Cross validation; Bias vs variance	
17-Feb	19-Feb	6	python implementation	
24-Feb	26-Feb	7	neural networks	—
3-Mar	5-Mar	-	Mardi Gras	
10-Mar	12-Mar	8	Support vector machines	-
17-Mar	19-Mar	9	K-nearest neighbors	←
24-Mar	26-Mar	10	decision tree. Random forest. Xgboost	Ensemble
31-Mar	2-Apr	11, 12	pca, projections; k-means	learning
7-Apr	9-Apr	13	hierarchical. Dendrogram	Unsupervised learning
14-Apr	16-Apr	14	dbscan	
21-Apr	23-Apr	-	Spring Break	
28-Apr	30-Apr	-	Review	

January February March
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 1

2 3 4 5 6 7 8 2 3 4 5 6 7 8

15 16 17 18 9 10 11 12 13 14 15 9 10 11 12 13 14 15

19 20 21 22 23 24 25 16 17 18 19 20 21 22 16 17 18 19 20 21 22

26 27 28 29 30 31 23 24 25 26 27 28 23 24 25 26 27 28 29

30 31

April May
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 2 3 4 5 1 2 3
6 7 8 9 10 11 12 4 5 6 7 8 9 10
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

#lecture days = 26

January February March
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 1

2 3 4 5 6 7 8 2 3 4 5 6 7 8

15 16 17 18 9 10 11 12 13 14 15 9 10 11 12 13 14 15

19 20 21 22 23 24 25 16 17 18 19 20 21 22 16 17 18 19 20 21 22

26 27 28 29 30 31 23 24 25 26 27 28 23 24 25 26 27 28 29

30 31

April May
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 2 3 4 5 1 2 3
6 7 8 9 10 11 12 4 5 6 7 8 9 10
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

#in-class lecture days = 20 #recorded lecture days = 6

Assignments

- All implementation assignments require a written report describing your work
- You must include
 - a report as a PDF file
 - a zip file of your code, screenshots, etc
 as separate files when submitting your work in Moodle
- Simply turning in your code will not earn full credit

Assignments

- Must use Python 3.0 or above
 - No R, matlab, Java, Javascript, etc.
- Available in the CSCE/Swamp lab on the 3rd floor
- You may use your own computer but will be on your own