Infinite Products From Primes To Riemann

Tariq Rashid

August 1, 2021

1/27

Infinite Sum

• At school we learn a lot about infinite sums.

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$$

- "Sum" \leftrightarrow "Series".
- What do we really mean by infinite sum?

2 / 27

Infinite Sum

 We say an infinite series converges if limit of partial products tends to a finite value.

$$\lim_{N\to\infty}\sum_{n=1}^N a_n=S$$

Tests exist to check for convergence, eg the ratio test.

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1$$

3 / 27

Infinite Product

At school we don't seem to learn about infinite products.

$$\prod_{n=1}^{\infty} a_n = a_1 \times a_2 \times a_2 \times \dots$$

What do we really mean by infinite product?

Initial Observations

• Easy to see the infinite product diverges. Each factor increases the size of the product.

$$2 \times 3 \times 4 \times 5 \times \dots$$

• Fundamental idea that multiplying by zero causes a product to be zero.

$$2 \times 0 \times 4 \times 5 \times \dots$$

5 / 27

Initial Observations

• Each factor reduces the size of the product.

$$2 \times 0 \times 4 \times 5 \times \dots$$

- Infinite number of such factors, the product \rightarrow 0.
- We have found two different ways an infinite product can be zero.

Definition

 An infinite product is defined, like infinite series, as the limit of a sequence.

$$\prod_{n=1}^{\infty} a_n = \lim_{N \to \infty} \prod_{n=1}^{N} a_n$$

• Does this converge?

$$\prod_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)$$

• Consider partial product.

$$\prod_{n=1}^{N} \left(1 + \frac{1}{n} \right) = \prod_{n=1}^{N} \left(\frac{n+1}{n} \right)$$
$$= \frac{2}{1} \times \frac{3}{2} \times \frac{4}{3} \times \dots \times \frac{N+1}{M}$$
$$= N+1$$

• As $N \to \infty$, product **diverges**.

◆ロ > ◆昼 > ◆差 > ・差 ・ りへで

9 / 27

• Does this converge?

$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{n}\right)$$

• Note *n* starts at 2.

10 / 27

• Again, consider partial product.

$$\prod_{n=2}^{N} \left(1 - \frac{1}{n} \right) = \prod_{n=2}^{N} \left(\frac{n-1}{n} \right)$$

$$= \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \dots \times \frac{N+1}{N}$$

$$= \frac{1}{N}$$

• As $N \to \infty$, product tends to 0, so product **diverges to zero**.

11 / 27

Convergence

- For an infinite series $\sum a_n$ to converge, the terms $a_n \to 0$
 - Intuition: if each term $a_n > \epsilon$, then $\sum a_n > \sum \epsilon = \infty$
 - (see Cauchy criterion more rigour)
- ullet For an infinite product $\prod a_n$ to converge, the terms $a_n o 1$
 - Intuition: if each term $a_n > 1$, the product gets ever larger.
 - If each term $a_n < 1$, the product gets ever smaller towards zero.

Tariq Rashid Infinite Products August 1, 2021 12 / 27

Removing Zero Factors

- A single factor 0 collapses entire product to zero.
- We miss out on understanding potentially interesting behaviour of the rest of the product.
- If an infinite product has a finite number of zero-valued factors, they can be removed and remaining product studied.
- Example:

$$\prod_{n=1} (1 - \frac{1}{n^2}) = 0$$

Removing first factor, leaves an interesting infinite product:

$$\prod_{n=2} (1 - \frac{1}{n^2}) = \frac{1}{2}$$

August 1, 2021

• Having seen how an infinite products terms should \rightarrow 1, useful to write factors as $(1+a_n)$

$$P = \prod (1 + a_n)$$

Turn product into sum by takings logarithm

$$\ln(P) = \ln \prod (1+a_n) = \sum \ln(1+a_n)$$

• Using $1 + x \le e^x$

$$ln(P) \leq \sum a_n$$

This tells us that if the sum is bounded

the product is bounded.

Tariq Rashid Infinite Products August 1, 2021 14 / 27

• If we expand out product $\prod (1+a_n)$ we see another inequality.

$$1+\sum a_n \leq \prod (1+a_n) = P$$

- The expansion creates the terms $1 + \sum a_n$ and many more
- ullet This tells us that if the product converges \Longrightarrow so does the sum.

Tariq Rashid Infinite Products August 1, 2021 15 / 27

• The two results together give us

$$\sum a_n$$
 converges $\Leftrightarrow \prod (1+a_n)$ converges, for $a_n>0$

- This allows us to say:
 - $\prod (1+1/n)$ diverges because $\sum 1/n$ diverges
 - $\prod (1+1/n^2)$ converges because $\sum 1/n^2$ converges.

Divergence To Zero

- The logarithmic view of infinite products has an interesting side effect.
- ullet If the partial products o 0 then the logarithm o $-\infty$
- This is why we say the product diverges to zero.

Tariq Rashid Infinite Products August 1, 2021 17 / 27

- First convergence critera applies to **real** values $a_n > 0$.
- Would be good to have criteria for **complex** a_n .
- To do that we'll need an intermediate result about absolute values $|a_n|$

Tariq Rashid Infinite Products August 1, 2021 18 / 27

• Start by assuming sum $\sum |a_n|$ converges to a finite S

$$S=\sum |a_n|<\infty$$

Consider partial product

$$p_N = \prod^N (1 + |a_n|)$$

• Using $1 + x \le e^x$

$$p_N = \leq e^{\sum^N |a_n|} \leq e^S < \infty$$

• Becayse p_N are monotonically increasing, but always $\leq e^S$, we can say

Tariq Rashid Infinite Products August 1, 2021 19 / 27

• Need to show opposite direction too. Assume product converges

$$P = \prod (1 + |a_n|)$$

- We know $|a_n| \to 0$, so $|a_n| < 2$ for n at least some finite value M
- We can use $e^{x/2} \le 1 + x$ for $0 \le x \le 2$

$$e^{|a_n|/2} \le 1 + |a_n|$$
 for $n \ge M$

Tariq Rashid Infinite Products August 1, 2021 20 / 27

- Set Q to be the infinite product but starting at n = M.
- Q converges because it is P but with a finite number of factors removed.

$$Q=\prod_M(1+|a_n|)$$

• Using $|a_n| < 2$

$$e^{rac{1}{2}\sum_{M}^{N}|a_n|}\leq \prod_{M}^{N}(1+|a_n|)\leq Q<\infty ext{ for } n\geq M$$

• We can see that $\sum_{M}^{N} |a_n| \le 2 \ln(Q) < \infty$, so $\sum |a_n|$ converges.

• We have a new constraint

$$\sum |a_n|$$
 converges $\Leftrightarrow \prod (1+|a_n|)$

• We can use this to show $\prod (1-1/n)$ diverges.

22 / 27

- We're interested in $\prod (1+a_n)$ for complex a_n , not just $\prod (1+|a_n|)$.
- The key:

$$\sum |a_n|$$
 converges $\implies \sum a_n$ converges

Tariq Rashid Infinite Products August 1, 2021 23 / 27

Let's start with two partial products

$$p_N = \prod^N (1+a_n)$$

$$q_N = \prod^N (1 + |a_n|)$$

- We assert $a_n \neq -1$ to ensure no zero-valued factors.
- Should be intuitively clear that

$$|p_N-1|\leq q_N-1$$

• For $N > M \ge 1$, we can compare $|p_N - p_M|$ with $|q_N - q_M|$

$$egin{aligned} |
ho_N -
ho_M| &= |
ho_M| \cdot |rac{
ho_N}{
ho_M} - 1| \ &= |
ho_M| \cdot |\prod_{M=1}^N (1 + a_n) - 1| \ &\leq |q_M| \cdot |\prod_{M=1}^N (1 + |a_n|) - 1| \ &= |q_M| \cdot |rac{q_N}{q_M} - 1| \ &= |q_N - q_M| \end{aligned}$$

• If $|q_N - q_M| < \epsilon$, then so does $|p_N - p_M| < \epsilon$. This is the Cauchy criterion for convergence.

Tariq Rashid Infinite Products August 1, 2021 25 / 27

• Finally we have

$$\sum |a_n|$$
 converges $\implies \prod (1+a_n)$ converges, for $a_n \neq -1$

 This is one way, we can't say the sum comverges if the product converges.

Tariq Rashid Infinite Products August 1, 2021 26 / 27

Summary

• Real a_n

$$\sum a_n$$
 converges $\Leftrightarrow \prod (1+a_n)$ converges, for $a_n>0$

• Complex a_n

$$\sum |a_n|$$
 converges $\Leftrightarrow \prod (1+|a_n|)$

Complex a_n

$$\sum |a_n|$$
 converges $\implies \prod (1+a_n)$ converges, for $a_n \neq -1$

Tariq Rashid Infinite Products August 1, 2021 27 / 27