

Course Title: Big Data Analytics								
Course Code : 21CST701	No. of Credits: 3: 0: 0 (L-T-P)	No. of lecture hours/week: 3						
Exam Duration : 3 hours	CIE+ Assignment + SEE = 45+5+50=100	Total No. of Contact Hours: 42						

Course	Description						
Objectives:	 To know the fundamental concepts of big data and analytics. Apply analytics on Structured and Unstructured Data. Fundamentals of python/R programming languages To explore tools and practices for working with big data 						

	-1									
Unit No	Syllabus Content									
1	Types of Digital Data: Classification of Digital data: Structured Data, Semi Structured Data, Unstructured Data; Introduction to Big Data: Characteristics of Data, Evolution of Big Data, Definition of Big Data, Challenges of Big Data, What is Big Data? Why Big Data? Traditional Business Intelligence versus Big Data, A Typical Data Warehouse Environment, A Typical Hadoop Environment, and Coexistence of Big Data and Data Warehouse.	9								
2	Hadoop: Features, Advantages of Hadoop, Versions of Hadoop, Hadoop ecosystem, Hadoop distributions, Hadoop Vs SQL. Introduction to Hadoop: Why Hadoop? RDBMS Vs Hadoop, Distributed computing challenges, History of Hadoop, Hadoop overview, use case of Hadoop, HDFS, Processing data with Hadoop, Managing resources and applications with Hadoop YARN.									
3	Introduction to Map Reduce Programming: Introduction, Mapper, Reducer, Combiner, Partitioner, Searching, sorting, compression. Big Data Analytics: Big Data Analytics. Classification of Analytics, Greatest challenges on Big Data, Big Data Analytics importance, Data Science, Terminologies in Big Data.	8								
4	Introduction to HIVE: Introduction, HIVE architecture, HIVE data types, HIVE file formats, HIVE query language, RCFile implementation, SerDe, User Defined Functions (UDF) Introduction to PIG: Anatomy of PIG, PIG	8								

		an	Hadoop, PIG philosophy, overview of PIG, Data types in PIG, Running d execution modes of PIG, HDFS commands, Relational operators, Evaluation, Complex Data types.	
=	5	Sp Ar Sp an fir	troduction to Apache Spark: Introduction to Apache Spark: The genesis of ark, Hadoop at Yahoo and Spark early years, What is Apache Spark, Unified halytics, Apache Spark's Distributed Execution, Spark Application and ark session, Spark Jobs, Spark stages, Spark tasks, Transformation, Actions d Lazy Evaluation, Narrow and wide transformation, The Spark UI, Your standalone application.	8
ſ				

Course Outcomes	Description					
CO1	Describe Big Data and its importance with its applications.	L2				
CO2	Differentiate various big data technologies like Hadoop MapReduce, Pig, Hive, Hbase and No-SQL.	L4				
CO3	Apply tools and techniques to analyze Big Data.	L4				
CO4	Design a solution for a given problem using suitable Big Data Techniques	L3				

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	P06	PO 7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2					2	2		3
CO2	3	3	3	3	2				2	2		3
CO3	3	3	2	2	2				2	2		3
CO4	2	2	2		2				2	2		3

Strong -3 Medium -2 Weak -1

TEXTBOOKS:

- 1. Big Data and Analytics by Seema Acharya, SubhasiniChellappan , Wiley Publications, 2015
- 2. Jules S. Damji, Brooke Wenig, Tathagata Das & Denny Lee Foreword by Matei Zaharia, "Learning Spark: Lightning-Fast Big Data Analysis", O'Reilly, 2020, Second Edition

REFERENCE BOOKS:

- 1. Illustrateing Big data, Chris Eaton, Dirkderooset al, McGraw Hill, 2012
- 2. Professional Hadoop Solutions, Boris lublinsky, Kevin T. Smith, Alexey Yakubovich, Wiley, ISBN:9788126551071, 2015

SELF STUDY REFERENCES / WEBLINKS:

- 1. http://www.bigdatauniversity.com/
- 2. https://www.coursera.org/specializations/big-data
- 3. https://www.ibm.com/topics/big-data-analytics

COURSE COORDINATOR:

Yashaswini H M