

Hawk-i HPC CLoud Benchmark Tool

Author's Name

July 19, 2012

MSc in High Performance Computing
The University of Edinburgh
Year of Presentation: 2012

Abstract This is the bit where you summarise what is in your thesis.

Contents

1	Introduction			1	
2	Background				
	2.1	_	Computing	2	
		2.1.1	Why Cloud Computing?	2	
		2.1.2	Cloud Computing service models	3	
		2.1.3	Cloud Computing Deployment models	3	
	2.2	Amazo	on Web Service	3	
		2.2.1	Amazon Machine Instance	3	
		2.2.2	Types of Instances	3	
		2.2.3	EC2	3	
	2.3	HPC in	n the cloud	3	
		2.3.1	Advantages	4	
		2.3.2	Limitation	4	
		2.3.3	Amazon Cluster compute	4	
	2.4	Applic	ations and 13 Dwarfs	4	
		2.4.1	N-Body Methods	4	
		2.4.2	Spectral Methods	4	
3	Live Benchmark Tool design				
	3.1	Sun Grid Engine Cluster			
	3.2	Cluster	ring in Amazon cloud	5	
	3.3		iterface	5	
		3.3.1	Admin panel	5	
		3.3.2	User Dashboard	5	
4	Resu	Results and Analysis			
5	Con	Conclusions			
A	Clus	Cluster Computing Setup			
В	Stuf	Stuff which no-one will read			

List of Tables

List of Figures

Introduction

Stating the problem and

Background

2.1 Cloud Computing

2.1.1 Why Cloud Computing?

Resource on-demand

easy, accesibility

Maintenance and Upgradation				
Eco-friendly				
2.1.2 Cloud Computing service models				
IaaS				
PaaS				
Saas				
2.1.3 Cloud Computing Deployment models				
Private Cloud				
Public Cloud				
Hybrid Cloud				
Community Cloud				
2.2 Amazon Web Service				
2.2.1 Amazon Machine Instance				
2.2.2 Types of Instances				

different instances chart and limitations of microinstance.

EC2 cluster compute

2.2.3 EC2

Pay as you go

2.3 HPC in the cloud

Introduction Paragraph, comparison with Clusters

2.3.1 Advantages

2.3.2 Limitation

Network Limitations, Availability, Stability of performance Benifits

2.3.3 Amazon Cluster compute

2.4 Parallel Applications and 13 Dwarfs

Explain the 13 dwarfs and under the two sections explain N-body and FFT

2.4.1 N-Body Methods

MD, About the dwarf and application types optimisation, n² and nlognCommunication pattern!!!

2.4.2 Spectral Methods

FFT, About the dwarf and application types Communication pattern!!!

Live Benchmark Tool Setup

- 3.1 System Design
- 3.1.1 Architecture
- 3.1.2 Sequence diagram
- 3.1.3 Database Design
- 3.2 Instance types Used

Refer to graph in Background Why these types?

3.3 Sun Grid Engine Cluster

Why sungrid Engine

3.4 SGE Clustering in Amazon cloud

benchmark to show how cluster instances are faster than normal high cpu instances

3.5 Web interface

Describe in detail

- 3.5.1 Admin panel
- 3.5.2 User Dashboard

Results and Analysis

4.1 Serial

for each instance type time to result, execution time, increasing problem size N-body and FFT

4.2 Parallel program

execution time, increasing problem size, number of cores N-body and FFT

4.3 Stability of results

History of execution, snapshot from dashboard

Conclusions

Appendix A

Cluster Computing Setup

- A.0.1 Using Starcluster
- A.0.2 Cluster Management package
- **A.0.3** Using Sun Grid Engine
- A.0.4 Creating Dashboard

Appendix B

Benchmarking programs

Bibliography

- [1] L.Lamport. 1986 Latex User's Guide and Reference Manual. Addison Wesley. pp242.
- [2] F.Bloggs. 1993 Latex Users do it in Environments Int. Journal of Silly Findings. pp 23-29.