WHAT IS CLAIMED IS:

1. A method of preparing a compound having a quaternary carbon atom of desired stereoselectivity comprising reacting a compound having a structural formula (I)

with a nitroolefin of structural formula
(II)

$$R_4$$
(II)

to form a nitro compound of structural formula (III) or its enantiomer

$$\begin{array}{c}
R^{4} \\
& \\
\hline
R^{3}
\end{array}$$
NO₂

(III)

wherein A is selected from the group consisting of $C(=0) \, OR^1$, $C(=0) \, N \, (R^5)_2$, $C(=0) \, SR^5$, CN, NO_2 , and SO_2R^5 ; B is selected from the group consisting of $C(=0) \, OR^2$, $C(=0) \, N \, (R^5)_2$, $C(=0) \, SR^5$, and CN; R^1 is selected from the group consisting of $C_{1-4}alkyl$, hydro, and M; R^2 is selected from the group consist-

ing of hydro, M, alkoxyalkyl, alkyl, cycloalkyl, aryl, C₁₋₃alkylenearyl, heteroaryl, and C₁₋₃alkylene-heteroaryl; R³ is selected from the group consisting of C₁₋₄alkyl, alkoxy, acylamino, halo, alkylthio, allyl, C₁₋₃alkylenearyl, and cyanoC₁₋₃alkyl; R₄ is selected from the group consisting of unsubstituted or substituted aryl and heteroaryl; R⁵, independently, is selected from the group consisting of hydro, C₁₋₄alkyl, cycloalkyl, aryl, C₁₋₃alkylenearyl, heteroaryl, and C₁₋₃alkyleneheteroaryl; and M is an alkalimetal cation or an alkaline earth metal cation; and said reaction performed in the presence of

a base and a catalyst complex comprising a ligand and a metal complex.

2. A method of preparing a compound having a quaternary carbon atom of desired stereoselectivity comprising reacting an α -substituted β -dicarbonyl compound of structural formula (Ia)

$$\mathbb{R}^6$$
 \mathbb{R}^3
(Ia)

with a nitroolefin of structural formula
(II)

to form a nitro compound of structural formula (IIIa) or its enantiomer

$$R^4$$
 R^6
 R^3
 R^7
 R^7
(IIIa)

wherein R^6 is alkoxy; R^7 is selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, cycloalkyl, aryl, C_{1-3} alkylenearyl, heteroaryl, C_{1-3} alkyleneheteroaryl; R^3 is selected from the group consisting of C_{1-4} alkyl, alkoxy, acylamino, halo, alkylthio, allyl, C_{1-3} alkylenearyl, and cyano- C_{1-3} alkyl; and R^4 is selected from the group consist-

WO 2004/096764 PCT/US2004/012128

- 53 -

ing of unsubstituted or substituted aryl and heteroaryl;

said reaction performed in the presence of a base and a catalyst complex comprising a ligand and a metal complex.

3. The method of claim 1 or 2 wherein the ligand has a structural formula (VI)

wherein R^9 and R^{10} , independently, are selected from the group consisting of hydro, alkyl, aryl, and C_{1-3} alkylenearyl, or R^9 and R^{10} are taken together to form a 3-, 4-, 5-, or 6-membered cycloalkyl ring or a bicyclic ring;

X and X', independently, are selected from the group consisting of oxygen, sulfur, and nitrogen;

 R^{11} and R^{12} , independently, are selected from the group consisting of hydro, alkyl, C_{1-3} alkylenearyl, and aryl, or R^{11} and R^{12} are taken together with the ring to which they are attached to form a bicyclic or tricyclic fused ring; and

 R^{13} or R^{14} , independently, are selected from the group consisting of hydro, alkyl, C_{1-3} alkylenearyl, and aryl, or R^{13} and R^{14} are taken together with the ring to which they are attached to form a bicyclic or tricyclic fused ring;

or has a structural formula (VII),

$$R^{15}$$
 N
 N
 R^{16}
 (VII)

wherein n is 1-3, and R^{15} and R^{16} , independently, are selected from the group consisting of alkyl, aryl, and C_{1-3} alkylenearyl.

- 4. A method of claim 1 or 2 wherein the metal complex is selected from the group consisting of magnesium perchlorate, magnesium trifluoromethanesulfonate, copper trifluoromethanesulfonate, zinc trifluoromethanesulfonate, lanthanum trifluoromethanesulfonate, nickel trifluoromethanesulfonate, magnesium bromide, copper bromide, zinc promide, nickel bromide, magnesium iodide, copper iodide, zinc iodide, nickel iodide, magnesium acetylacetonate, copper acetylacetonate, zinc acetylacetonate, nickel acetylacetonate, and mixtures thereof.
- 5. The method of claim 4 wherein the metal complex comprises magnesium trifluoromethanesulfonate.
- 6. The method of claim 1 or 2 wherein the base is selected from the group consisting of triethylamine, diisopropylethylamine, 2,6-lutidine, N-methylmorpholine, N-ethylpiperidine, imidiazole, and 5,6-dimethylbenzimidazole.

7. The method of claim 1 or 2 wherein the ligand has a structure

or its enantiomer.

- 8. The method of claim 2 wherein \mathbb{R}^6 and \mathbb{R}^7 are alkoxy.
- 9. The method of claim 8 wherein \mathbb{R}^6 and \mathbb{R}^7 , independently, are methoxy or ethoxy, and \mathbb{R}^3 is methyl or ethyl.

10. The method of claim 1 wherein the compound of structural formula (I) has a structural formula

$$HO \xrightarrow{O \quad O \quad O} OR^2$$

$$O_2N$$
 O_2 O_2 O_2

$$MO \xrightarrow{0 \\ R^3} OR^2$$

$$R^5S$$
 R^3 SR^5

$$(R^5)_2N$$
 $N(R^5)_2$

$$\mathbb{R}^{5}$$
 \mathbb{R}^{3}
 \mathbb{R}^{3}

11. The method of claim 2 wherein the $\alpha-$ substituted $\beta-\text{carbonyl}$ compound has a structural formula:

$$\mathsf{CH_3CH_2O} \xrightarrow{\mathsf{O}} \mathsf{OCH_2CH_3}$$

$$\mathsf{CH_3CH_2O} \overset{\mathsf{O}}{\underbrace{\hspace{1cm}}} \mathsf{OCH_2CH_3}$$

$$\mathsf{CH_2})_{1-3}\mathsf{CN},$$

- 12. The method of claim 1 or 2 wherein $\ensuremath{\mathbb{R}}^4$ is aryl.
- 13. The method of claim 12 wherein \mathbb{R}^4 is substituted phenyl.
- 14. The method of claim 1 or 2 wherein \mathbb{R}^4 is

wherein R^a and R^b , independently, are selected from the group consisting of C_{1-4} alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, C_{1-3} alkylenearyl, and hetero C_{1-3} alkylenearyl.

15. The method of claim 1 further comprising the steps of converting the nitro group of nitro compound (III) to form an amino compound (IV)

(VI)

followed by an intramolecular cyclization reaction to form a compound (V)

(V)

16. The method of claim 2 further comprising the steps of converting the nitro group of nitro compound (IIIa) to form an amino compound (IVa)

(IVa)

followed by an intramolecular cyclization reaction to form a compound (Va)

17. The method of claim 16 wherein compound (IIIa) has a structure

wherein Me is methyl and Bn is benzyl.

18. The method of claim 16 wherein compound (IIIa) has a structure

wherein Et is ethyl.

19. The method of claim 16 wherein compound (Va) has a structure

wherein Me is methyl and Bn is benzyl.

20. A compound prepared by the method of any of claims 1 through 19.

21. A compound having a structural formula (III)

(III)

wherein A is selected from the group consisting of $C(=0)OR^1$, $C(=0)N(R^5)_2$, $C(=0)SR^5$, CN, NO_2 , and SO_2R^5 ; B is selected from the group consisting of $C(=0)OR^{2}$, $C(=0)N(R^{5})_{2}$, $C(=0)SR^{5}$, and CN; R^{1} is selected from the group consisting of C1-4alkyl, hydro, and M; R^2 is selected from the group consisting of hydro, M, alkoxyalkyl, alkyl, cycloalkyl, aryl, C_{1-3} alkylenearyl, heteroaryl, and C_{1-3} alkyleneheteroaryl; R^3 is selected from the group consisting of C1-4alkyl, alkoxy, acylamino, halo, alkylthio, allyl, C_{1-3} alkylenearyl, and cyano C_{1-3} alkyl; R_4 is selected from the group consisting of unsubstituted or substituted aryl and heteroaryl; R5, independently, is selected from the group consisting of hydro, C₁₋₄alkyl, cycloalkyl, aryl, C₁₋₃alkylenearyl, heteroaryl, and C_{1-3} alkyleneheteroaryl; and M is an alkali metal cation or an alkaline earth metal cation;

said compound (III) prepared by a method comprising reacting a compound having a structural formula (I)

WO 2004/096764 PCT/US2004/012128

- 67 -

with a nitroolefin of structural formula (II),

$$R_4$$
(II)

said reaction performed in the presence of a base and a catalyst complex comprising a ligand and a metal complex.

22. A compound having a structural formula (V)

(V)

wherein A is selected from the group consisting of $C(=0)OR^1$, $C(=0)N(R^5)_2$, $C(=0)SR^5$, CN, NO_2 , and SO_2R^5 ; R^1 is selected from the group consisting of C_{1-4} alkyl, hydro, and M; R^3 is selected from the group consisting of C_{1-4} alkyl, alkoxy, acylamino, halo, alkylthio, allyl, C_{1-3} alkylenearyl, and cyano- C_{1-3} alkyl; R_4 is selected from the group consisting of unsubstituted or substituted aryl and heteroaryl; R^5 , independently, is selected from the group consisting of hydro, C_{1-4} alkyl, cycloalkyl, aryl, C_{1-3} alkylenearyl, heteroaryl, and C_{1-3} alkyleneheteroaryl; and M^6 is an alkali metal cation or an alkaline earth metal cation;

said compound (V) prepared by a method
comprising the steps of:

(a) reacting a compound of structural
formula (I)

wherein B is selected from the group consisting of $C(=0)OR^2$, $C(=0)N(R^5)_2$, $C(=0)SR^5$, CN, and

 NO_2 ; and R^2 is selected from the group consisting of hydro, M, alkoxyalkyl, alkyl, cycloalkyl, aryl, C_{1-3} alkylenearyl, heteroaryl, and C_{1-3} alkyleneheteroaryl;

with a nitroolefin of structural formula (II)

$$R_4$$
NO₂

said reaction performed in the presence of a base and a catalyst complex comprising a ligand and a metal complex to form a compound having a structural formula (III)

(III)

(b) converting the nitro group of compound (III) to form an amino compound (IV)

$$\begin{array}{c} R^4 \\ \\ \\ A \\ \\ R^3 \end{array}$$
 NH₂

(IV)

followed by (c) an intramolecular cyclization reaction to form the compound (V).

23. A compound having a structural formula (IIIa)

$$\begin{array}{c|c}
R^4 & & \\
& & \\
R^6 & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

(IIIa)

wherein R⁶ is alkoxy, amino, or thio; R⁷ is selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, cycloalkyl, aryl, C₁₋₃alkylene-aryl, heteroaryl, and C₁₋₃alkyleneheteroaryl; R³ is selected from the group consisting of C₁₋₄alkyl, alkoxy, acylamino, halo, alkylthio, allyl, C₁₋₃alkylenearyl, and cyanoC₁₋₃alkyl; and R⁴ is selected from the group consisting of unsubstituted or substituted aryl and heteroaryl;

said compound (IIIa) prepared by a method comprising the step of reacting an α -substituted β -dicarbonyl compound of structural formula (Ia)

$$\mathbb{R}^6$$
 \mathbb{R}^7 \mathbb{R}^7

(Ia)

with a nitroolefin of structural formula (II),

WO 2004/096764 PCT/US2004/012128

- 71 -

$$R_4$$
NO₂

said reaction performed in the presence of a base and a catalyst complex comprising a ligand and a metal complex.

24. A compound having a structural formula (Va)

wherein R^6 is alkoxy, amino, or thio; R^3 is selected from the group consisting of C_{1-4} alkyl, alkoxy, acylamino, halo, alkylthio, allyl, C_{1-3} alkylenearyl, and cyano C_{1-3} alkyl; and R^4 is selected from the group consisting of unsubstituted or substituted aryl and heteroaryl;

said compound (Va) prepared by a method
comprising the steps of:

(a) reacting an α -substituted β -dicarbonyly compound of structural formula (Ia)

$$\mathbb{R}^6$$
 \mathbb{R}^7

(Ia)

wherein R^7 is selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, cycloalkyl, aryl, C_{1-3} alkylenearyl, heteroaryl, and C_{1-3} alkyleneheteroaryl; with a nitroolefin of structural formula (II)

$$R_4$$
 NO₂ (II)

said reaction performed in the presence of a base and a catalyst complex comprising a ligand and a metal complex to form a compound having a structural formula (IIIa)

(IIIa)

(b) converting the nitro group of compound (IIIa) to form an amino compound (IVa)

followed by (c) an intramolecular cyclization reaction to form the compound (Va).