Metody optymalizacji Lista 2

Radosław Wojtczak, numer indeksu: $254607\,$

07.05.2023

Spis treści

Zad	anie 1	2
1.1	Wprowadzenie	2
1.2		2
1.3	Wyniki	$\overline{2}$
Zad	anie 2	3
2.1	Wprowadzenie	3
2.2	-	3
		3
		4
		4
2.3	Wyniki	4
Zad	lanie 3	5
3.1	Wprowadzenie	5
3.2	*	5
J		5
		5
		6
3.3	Wyniki	6
	1.1 1.2 1.3 Zad 2.1 2.2 2.3 Zad 3.1 3.2	1.2 Model 1.3 Wyniki Zadanie 2 2.1 Wprowadzenie 2.2 Model 2.2.1 Zmienne decyzyjne 2.2.2 Ograniczenia 2.2.3 Funkcja celu 2.3 Wyniki Zadanie 3 3.1 Wprowadzenie 3.2 Model 3.2.1 Zmienne decyzyjne 3.2.2 Ograniczenia 3.2.3 Funkcja celu

Zadanie 1

1.1 Wprowadzenie

Treść zadania:

Tartak produkuje deski o standardowej szerokości 22 cali (każda deska ma ustaloną długość). Klienci firmy zamawiają jednak deski o mniejszej szerokości (i o tej samej długości, jak deski o standardowej szerokości). Aktualne zamówienia opiewają na 110 desek o szerokości 7 cali, 120 desek o szerokości 5 cali i 80 desek o szerokości 3 cali. Deski o mniejszej szerokości są odcinane z desek o standardowej szerokości. Na przykład firma może podjąć decyzję o przecięciu dużej deski na dwie deski po 7 cali i jedną deskę o szerokości 5 cali. W tym przypadku z deski standardowej tracona jest listwa o szerokości 3 cali. Firma chce wykonać zamówienie w ten sposób, aby zminimalizować ilość odpadów

- 1.2 Model
- 1.3 Wyniki

Zadanie 2

2.1 Wprowadzenie

Celem zadania jest znalezienie odpowiedniego harmonogramu, według którego należy wykonać zadania na jednej maszynie. Problem ów jest znany w literaturze pod nazwą "single machine scheduling". Dokładniej formuując problem, mamy zadany zbiór $J=\{1,..,n\}$ składający się z n zadań. Dla każdego zadania $j\in J$ definiowane są następujące własności:

- Czas potrzebny na wykonanie zadania (p_i)
- Priorytet zadania, określany też jako waga (w_j)
- Moment gotowości zadania (r_i)

Celem programu jest utworzenie harmonogramu minimalizującego iloczyn czasu zakończenia danego zadania oraz jego priorytetu.

2.2 Model

W ramach utworzenia modelu zdefiniowano następujące zmienne:

- $(\max_{T} T = \max_{r} \max_{t} (r) + \sup_{t} (p) + 1)$ $\max_{t} T = \max_{t} \max_{t} \max_{t} (r)$
- ullet jobs = $\{1,...,n\}$ wektor przechowujący indeksy poszczególnych prac
- times = $\{1,...,max_T\}$ wektor przechowujący stany maszyny w danych momentach

To na co należy zwrócić uwagę to fakt, że w ramach rozpatrywanego zadania traktujemy czas w sposób dyskretny. Zdefiniowawszy wszystkie zmienne pomocnicze poniżej przedstawiono definijcę zmiennych decyzyjnych.

2.2.1 Zmienne decyzyjne

$$x_{jt}: j \in jobs, t \in times, x_{jt} \in \{0, 1\}$$

$$(2.1)$$

Zmienną decyzyjną jest macierz przechowująca momenty rozpoczęcia każdego z zadań. Rozpoczęcie zadania oznaczane jest przy pomocy liczby ${\bf 1}$, pozostałe wartości są zerowane.

2.2.2 Ograniczenia

• Każda praca może mieć tylko jeden moment rozpoczęcia

$$\sum_{j \in jobs} \left(\sum_{t \in times} x_{jt} = 1 \right) \tag{2.2}$$

 \bullet j-te zadanie może rozpocząć nie wcześniej, niż wskazuje na to wartość r_j

$$\sum_{j \in jobs} \left(\sum_{t \in times} x_{jt} * t \ge r_j \right) \tag{2.3}$$

• Maksymalnie jedno zadanie może być wykonywane w danej jednostce czasu

$$\sum_{t \in times} \left(\sum_{j \in jobs, s \in max\{0, t-p_j+1\}, t} x_{js} \le 1 \right) \tag{2.4}$$

2.2.3 Funkcja celu

Funkcją celu jest minimalizacja iloczynu czasu zakończenia danego zadania oraz jego priorytetu.

$$\sum_{t \in times, j \in jobs} w_j * (t + p_j) * x_{jt}$$
(2.5)

2.3 Wyniki

Zaimplementowany model został zaimplementowany dla następujących danych:

- n = 6
- p = [2, 3, 4, 1, 3, 2]
- w = [3, 2, 1, 4, 4, 6]
- r = [2, 1, 1, 0, 0, 4]

Wyniki prezentują się w sposób następujący:

Zadanie	Czas rozpoczęcia
1	6
2	8
3	11
4	0
5	1
6	4

Table 2.1: Numer zadania wraz z momentem rozpoczęcia dla wybranego egzemplarza problemu

Ponadto funkcja celu została obliczona i jej wartość wynosi 117.

Zadanie 3

3.1 Wprowadzenie

Zadanie to jest naturalnym rozszerzeniem poprzedniego zadania. Tym razem mając zbiór zadań $J=\{1,..,n\}$ składający się z n zadań, tworząc harmonogram mamy do dyspozycji m maszyn. Ponadto zrezygnowano z wag oraz momentu gotowości zadań na rzecz relacji pierwszeństwa. Jeśli dwa zadania (i,j) są ze sobą w relacji to zadanie j nie może się rozpocząć przed ukończeniem zadania i. Zgodnie z treścią zadania, relacja ta jest oznaczana przy pomocy symbolu \rightarrow $(i \rightarrow j)$. Celem zadania jest znalezienie dopuszczalnego harmonogramu, który minimalizuje całkowity czas potrzebny do wykonania wszystkich zadań. Czas ten oznaczono jako c max.

3.2 Model

W celu wykonania zadania, podobnie jak w poprzednim zadaniu, wprowadzono dodatkowe zmiennej:

- \bullet (max_T = sum(p) + 1) maksymalnie czas pracy maszyny
- \bullet jobs = $\{1,...,n\}$ wektor przechowujący indeksy poszczególnych prac
- times = $\{1, ..., max_T\}$ wektor przechowujący stany maszyny w danych momentach

3.2.1 Zmienne decyzyjne

$$x_{jt}: j \in jobs, t \in times, x_{jt} \in \{0, 1\}$$

$$(3.1)$$

Zmienną decyzyjną jest macierz przechowująca momenty rozpoczęcia każdego z zadań. Rozpoczęcie zadania oznaczane jest przy pomocy liczby ${\bf 1}$, pozostałe wartości są zerowane. Ponadto zmienną decyzyjną jest zmienna $c_{-}max \geq 0$ informująca o czasie niezbędnym do wykoniania wszystkich zadań.

3.2.2 Ograniczenia

• Wymagany czas nie może być mniejszy niż suma rozpoczęcia ostatniej pracy na maszynie oraz czasu jej trwania

$$\sum_{j \in jobs} \left(\sum_{t \in times} x_{jt} * (p_j + t) \right) \le c_m ax$$
(3.2)

• Każda praca może mieć tylko jeden moment rozpoczęcia

$$\sum_{j \in jobs} \left(\sum_{t \in times} x_{jt} = 1 \right) \tag{3.3}$$

• Zachowanie relacji pierwszeństwa między zadaniami

$$(\forall (j, relation) \in precedence)(\forall k \in relation)(\sum_{t \in times} (p_j + t) * x_{jt} \leq \sum_{t \in times} t * x_{kt})$$

$$(3.4)$$

• W jednej jednostce czasu nie może być więcej aktywny zadań niż dostepnych maszyn

$$\sum_{t \in times} \left(\sum_{j \in jobs, s \in max\{0, t-p_j+1\}, t} x_{js} \le m \right) \tag{3.5}$$

3.2.3 Funkcja celu

Funkcją celu jest minimalizacja zmiennej $c_m ax$.

$$minc_m ax$$
 (3.6)

3.3 Wyniki

Działanie programu zostało przetestowane dla następujących danych zaczerpniętych z treści zadania

- \bullet n = 9
- \bullet m = 3
- p = [1, 2, 1, 2, 1, 1, 3, 6, 2]
- precedence = 1 \rightarrow [4], 2 \rightarrow [4,5], 3 \rightarrow [4,5], 4 \rightarrow [6,7], 5 \rightarrow [7,8], 6 \rightarrow [9], 7 \rightarrow [9]