- 1. Formalize o seguinte argumento e use tabela verdade para mostrar a sua validade:
 - a) Se chover eu vou ao cinema. Não está chovendo, dessa forma, não fui ao cinema

A: Esta chovendo

B: Eu vou ao cinema

Argumento: A →B, ¬ B ⊢ ¬ A

А	В	A →B	¬ B	¬ A
V	V	V	F	F
V	F	F	V	F
F	V	V	F	V
F	F	V	V	V

Argumento não é válido

2. Provar usando dedução natural:

5. || S

a)
$$R \rightarrow Q$$
, $P \rightarrow S + P \lor \neg Q \rightarrow S \lor \neg R$

1. R→Q Premissa

2. $P \rightarrow S$ Premissa

3. | P v¬Q Hipótese - Introdução →

4. | | P Hipótese - Introdução →

Tipotose introdução

4, 2, Eliminação →

6. || Sv¬R 5, Introdução v

7. | P → (Sv¬R) 4-6 Introdução →

8. | | ¬Q Hipótese - Introdução →

9. | | ¬R 1, 8, Modus Tollens

10. | | Sv¬R 9, Introdução v

11. $| \neg Q \rightarrow (SV \neg R)$ 8-10 Introdução \rightarrow

12. | S∨¬R 3, 7, 11, Eliminação do ∨

13. P v¬Q→Sv¬R 3 - 12, Introdução →

b)
$$\neg P \leftrightarrow A \vdash P \land Q \rightarrow \neg A$$

3. Explicitar as regras que foram usadas na seguinte prova de dedução natural:

a)
$$P \rightarrow Q \vdash \neg P \lor Q$$

4. Provar usando árvore de refutação

$$\vdash \neg(A \lor B) \rightarrow (\neg A \land \neg B)$$

- 1. ¬(¬(A∨B)→(¬A∧¬B)) Hipótese
- 2. ¬(A∨B)

- 1. ¬→
- 3. ¬(¬A∧¬B)
- 1. ¬→

4. ¬A

3. ¬∨

5. ¬B

- 3. ¬∨
- 6. ¬¬A ¬¬B
- 3. ¬∧

- X 4,6 X 5,6

5. Mostrar usando regras de equivalência que

$$(P \rightarrow Q) \wedge P \leftrightarrow P \wedge Q$$

- (P →Q)∧P ⇔ (implicação)
- (¬PvQ) ∧P ⇔ (distributividade)
- $(\neg P \land P) \lor (P \land Q)$ \Leftrightarrow (complemento)
- F v (P∧Q) ⇔ (elemento neutro)
- (P_AQ)