Class 13

Marina Puffer (PID: A16341339)

The data for this session comes from a published RNA-seq experiment where airway smooth muscle cells were treated with dexomethasone, a synthetic glucocorticoid steroid with anti-inflammatory effects.

3. Import countData and colData

```
counts <- read.csv("airway_scaledcounts.csv", row.names = 1)
metadata <- read.csv("airway_metadata.csv")
head(counts)</pre>
```

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG00000000003	723	486	904	445	1170
ENSG00000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318
ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG000000000003		SRR1039520 806			
ENSG00000000003	1097	806	604		
ENSG0000000005	1097	806	604		
ENSG00000000005 ENSG00000000419	1097 0 781	806 0 417	604 0 509		
ENSG00000000005 ENSG00000000419 ENSG000000000457	1097 0 781 447	806 0 417 330	604 0 509 324		
ENSG00000000005 ENSG00000000419	1097 0 781	806 0 417	604 0 509		

head(metadata)

```
id dex celltype geo_id
1 SRR1039508 control N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
```

Q1. How many genes are in this dataset?

```
nrow(counts)
[1] 38694
```

38694 genes in the dataset.

Q2. How many 'control' cell lines do we have?

```
table(metadata [,2])

control treated
4 4
```

There are 4 control cell lines

4. Toy differential gene expression

Some exploratory differential gene expression analysis: First find the sample id for those labeled control, then canculate the mean counts per gene across these samples. The values of the mean counts are sored in control.mean.

```
# find the sample IDs for those labeled control
control <- metadata[metadata[,"dex"]=="control",]
# take counts of number of genes
control.counts <- counts[ ,control$id]
# summarize the amount of expression for each gene and stored as control.mean</pre>
```

```
control.mean <- rowSums( control.counts )/4</pre>
  head(control.mean)
ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
         900.75
                            0.00
                                          520.50
                                                           339.75
                                                                             97.25
ENSG00000000938
           0.75
Alternative is to use dplyr to do the same thing:
  library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  control <- metadata %>% filter(dex=="control")
  control.counts <- counts %>% select(control$id)
  control.mean <- rowSums(control.counts)/4</pre>
  head(control.mean)
ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
         900.75
                            0.00
                                          520.50
                                                           339.75
                                                                             97.25
ENSG00000000938
           0.75
```

Q3. How would you make the above code in either approach more robust? Is there a function that could help here?

```
rowMeans <- rowMeans(control.counts)
head(rowMeans)</pre>
```

```
ENSG0000000003 ENSG000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
900.75 0.00 520.50 339.75 97.25
ENSG00000000938
0.75
```

Can find the mean of each gene by using the function rowMeans. This will allow the third line of code to be simplified and allows for a change in the total number of control samples without causing an error.

Q4. Follow the same procedure for the treated samples (i.e. calculate the mean per gene across drug treated samples and assign to a labeled vector called treated.mean)

```
treated <- metadata[metadata[,"dex"]=="treated",]
treated.counts <- counts[ ,treated$id]
treated.mean <- rowMeans( treated.counts )
head(treated.mean)</pre>
```

```
ENSG00000000003 ENSG0000000005 ENSG000000000419 ENSG000000000457 ENSG000000000460
658.00 0.00 546.00 316.50 78.75
ENSG00000000938
0.00
```

Combine the meancount data into a data frame

```
meancounts <- data.frame(control.mean, treated.mean)</pre>
```

The sum of mean counts across all genes for each group

```
colSums(meancounts)

control.mean treated.mean
23005324 22196524
```

Q5 (a). Create a scatter plot showing the mean of the treated samples against the mean of the control samples. Your plot should look something like the following.

```
plot(meancounts, xlab="Control", ylab="Treated")
```


Q5 (b). You could also use the ggplot2 package to make this figure producing the plot below. What geom_?() function would you use for this plot?

The geom_point function should be used.

```
library(ggplot2)
ggplot(meancounts)+aes(control.mean, treated.mean)+geom_point(alpha=0.2)
```


Q6. Try plotting both axes on a log scale. What is the argument to plot() that allows you to do this?

The argument log=xy allows both axes to be on the log scale.

```
plot(meancounts, log="xy", xlab="logControl", ylab="logTreated")
```

Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted from logarithmic plot

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted from logarithmic plot

We find candidate differentially expressed genes by looking for genes with a large change between control and dex=treated samples. Log transformations are useful when the data is skewed and measured over a long range like this We can use different log transformations, such as the log2 of the fold change, because this has better mathmatical properties.

```
#Treated/Control
log2(10/10)

[1] 0

#Treated/Control
log2(20/10)
```

[1] 1

 $1\ \mathrm{when}\ \mathrm{doubled}\ \mathrm{fold}\ \mathrm{change}$

```
#Treated/Control
log2(10/20)
```

```
[1] -1
```

-1 when halved

```
log2(40/10)
```

[1] 2

```
log10(40/10)
```

[1] 0.60206

Overall, log2 units are much easier to understand than other log transformations.

Calculate the log2foldchange and add it to the meancounts data frame:

```
meancounts$log2fc <- log2(meancounts$treated.mean/meancounts$control.mean)
head(meancounts)</pre>
```

	control.mean	treated.mean	log2fc
ENSG00000000003	900.75	658.00	-0.45303916
ENSG00000000005	0.00	0.00	NaN
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805
ENSG00000000460	97.25	78.75	-0.30441833
ENSG00000000938	0.75	0.00	-Inf

Negative values = downregulated Positive values = upregulated

A couple of odd things here: NaN which is returned when you divide by 0 and take a log, and -Inf which is returned when you try to take the log of 0. This is because there are a lot of genes with 0 expression in the dataset. We need to filter the data to remove those genes.

```
#meancounts[,1:2] identifies values in first 2 columns
#==0 returns TRUE/FALSE
#with rowSums, all values above 0 are genes that have at least some expression.
to.rm.inds <- rowSums(meancounts[,1:2]==0) > 0
# use a `!` to flip the trues and falses
mycounts <- meancounts[!to.rm.inds,]</pre>
```

```
dim(mycounts)
```

[1] 21817 3

head(mycounts)

	${\tt control.mean}$	${\tt treated.mean}$	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805
ENSG00000000460	97.25	78.75	-0.30441833
ENSG00000000971	5219.00	6687.50	0.35769358
ENSG0000001036	2327.00	1785.75	-0.38194109

Confirmed this worked, the second gene with 0 expression is gone.

Common threshold for calling something differentially expressed is a log2(FoldChange) of greater than 2 or less than -2. Let's filter the dataset both ways to see how many genes are up or down-regulated.

```
up.ind <- mycounts$log2fc > 2
down.ind <- mycounts$log2fc < (-2)</pre>
```

Q8. Using the up.ind vector above can you determine how many up regulated genes we have at the greater than 2 fc level?

```
sum(up.ind)
```

[1] 250

Q9. Using the down.ind vector above can you determine how many down regulated genes we have at the greater than 2 fc level?

```
sum(down.ind)
```

[1] 367

Q10. Do you trust these results? Why or why not?

The fold change of 2 and -2 are kind of arbitrary thresholds, we don't actually know if those fold changes as statistically significant. So, I don't trust those numbers yet.

5. Setting up for DESeq

We will use the DESeq2 package to do the analysis properly.

```
library(DESeq2)
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:dplyr':
    combine, intersect, setdiff, union
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
    table, tapply, union, unique, unsplit, which.max, which.min
```

Attaching package: 'S4Vectors'

```
The following objects are masked from 'package:dplyr':
    first, rename
The following object is masked from 'package:utils':
    findMatches
The following objects are masked from 'package:base':
    expand.grid, I, unname
Loading required package: IRanges
Attaching package: 'IRanges'
The following objects are masked from 'package:dplyr':
    collapse, desc, slice
Loading required package: GenomicRanges
Loading required package: GenomeInfoDb
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats
Attaching package: 'matrixStats'
The following object is masked from 'package:dplyr':
    count
```

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
citation("DESeq2")
To cite package 'DESeq2' in publications use:
  Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change
  and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550
  (2014)
A BibTeX entry for LaTeX users is
  @Article{,
    title = {Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    author = {Michael I. Love and Wolfgang Huber and Simon Anders},
    year = \{2014\},\
    journal = {Genome Biology},
    doi = \{10.1186/s13059-014-0550-8\},\
    volume = \{15\},
    issue = \{12\},
    pages = \{550\},
Set up the input object resady for DESeq
  dds <- DESeqDataSetFromMatrix(countData=counts,</pre>
                                  colData=metadata,
                                  design=~dex)
converting counts to integer mode
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
  # ~ means go to column dex
  dds
```

class: DESeqDataSet

metadata(1): version
assays(1): counts

dim: 38694 8

rownames(38694): ENSG0000000003 ENSG0000000005 ... ENSG00000283120 ENSG00000283123 rowData names(0): colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521 colData names(4): id dex celltype geo_id Run the DESeq analysis dds <- DESeq(dds)</pre> estimating size factors estimating dispersions gene-wise dispersion estimates mean-dispersion relationship final dispersion estimates fitting model and testing Get results back from dds object res <- results(dds) head(res) log2 fold change (MLE): dex treated vs control Wald test p-value: dex treated vs control DataFrame with 6 rows and 6 columns baseMean log2FoldChange lfcSE stat <numeric> <numeric> <numeric> <numeric> <numeric> -0.3507030 0.168246 -2.084470 0.0371175 ENSG00000000003 747.194195 ENSG00000000005 0.000000 NA NAENSG00000000419 520.134160 0.2061078 0.101059 2.039475 0.0414026 ENSG00000000457 322.664844 0.0245269 0.145145 0.168982 0.8658106 ENSG00000000460 87.682625 -0.1471420 0.257007 -0.572521 0.5669691 -1.7322890 3.493601 -0.495846 0.6200029 ENSG00000000938 0.319167 padj

padj = adjusted P value P value threshold is 5%, when dealing with these large datasets, 5% error becomes a very large population, which is not acceptable. So, the adjusted P value increases the P values and decreases the amount that are below the 5% threshold.

A summary results plot

Volcano plot This is a common type of summary figure that keeps both our inner biologist and inner stats nerd happy. It shows both P value and Log2(Fold-changes)

```
#custom colors
mycols <- rep("gray", nrow(res))
mycols[ abs(res$log2FoldChange) > 2 ] <- "purple"

inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "red"

plot(res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(FoldChange)", ylab=
```


On this plot, the purple points are the ones scientists should investigate, they have both low p-value and high fold change.

Save our results to date

```
write.csv(res,file="deseq_results.csv")
```

8. Adding annotation data

library("AnnotationDbi")

The results table only contains the gene IDs, but alternative gene names and extra annotation are usually required for informative interpretation of our results.

```
Attaching package: 'AnnotationDbi'

The following object is masked from 'package:dplyr':

select
```

```
library("org.Hs.eg.db")
  columns(org.Hs.eg.db)
 [1] "ACCNUM"
                     "ALIAS"
                                    "ENSEMBL"
                                                    "ENSEMBLPROT"
                                                                   "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                    "EVIDENCE"
                                                    "EVIDENCEALL"
                                                                   "GENENAME"
[11] "GENETYPE"
                     "GO"
                                    "GOALL"
                                                    "IPI"
                                                                   "MAP"
[16] "OMIM"
                     "ONTOLOGY"
                                    "ONTOLOGYALL" "PATH"
                                                                   "PFAM"
[21] "PMID"
                                    "REFSEQ"
                                                    "SYMBOL"
                                                                   "UCSCKG"
                     "PROSITE"
[26] "UNIPROT"
The main function we will use here is called mapIds()
The current IDs are here
  #mapIds
  head(row.names(res))
[1] "ENSG00000000003" "ENSG0000000005" "ENSG000000000419" "ENSG00000000457"
[5] "ENSG0000000460" "ENSG00000000938"
These are in ENSEMBLE format, I want "SYMBOL" IDs.
  res$symbol <- mapIds(org.Hs.eg.db,
                        keys=row.names(res), # Our genenames
                        keytype="ENSEMBL",# The format of our genenames
                        column="SYMBOL",# The new format we want to add
                        multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res$symbol)
ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
       "TSPAN6"
                          "TNMD"
                                          "DPM1"
                                                          "SCYL3"
                                                                          "FIRRM"
ENSG00000000938
```

"FGR"

```
Now have gene symbols associated with the ENSEMBLE IDs. Let's add GENENAME
```

```
res$genename <- mapIds(org.Hs.eg.db,</pre>
                        keys=row.names(res),
                        keytype="ENSEMBL",
                        column="GENENAME",
                        multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res$genename)
                                               ENSG00000000003
                                               "tetraspanin 6"
                                               ENSG0000000005
                                                  "tenomodulin"
                                               ENSG00000000419
"dolichyl-phosphate mannosyltransferase subunit 1, catalytic"
                                               ENSG0000000457
                                    "SCY1 like pseudokinase 3"
                                               ENSG00000000460
  "FIGNL1 interacting regulator of recombination and mitosis"
                                               ENSG00000000938
             "FGR proto-oncogene, Src family tyrosine kinase"
Now add entrez
  res$entrez <- mapIds(org.Hs.eg.db,</pre>
                        keys=row.names(res),
                        keytype="ENSEMBL",
                        column="ENTREZID",
                        multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res$entrez)
ENSG00000000003 ENSG0000000005 ENSG000000000419 ENSG000000000457 ENSG00000000460
         "7105"
                        "64102"
                                         "8813"
                                                          "57147"
                                                                          "55732"
ENSG00000000938
         "2268"
```

10. Pathway analysis

Use the **gage** package along with **pathview** here to do geneset enrichment (aka pathway analysis) and figure generation respectively.

Let's look at the first 2 pathways in KEGG

```
library(pathview)
  library(gage)
  library(gageData)
  data(kegg.sets.hs)
  # Examine the first 2 pathways in this kegg set for humans
  head(kegg.sets.hs, 2)
$`hsa00232 Caffeine metabolism`
[1] "10"
          "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
             "1066"
                      "10720" "10941" "151531" "1548"
                                                           "1549"
                                                                    "1551"
             "1576"
 [9] "1553"
                      "1577"
                                "1806"
                                         "1807"
                                                  "1890"
                                                           "221223" "2990"
[17] "3251"
             "3614"
                      "3615"
                               "3704"
                                         "51733" "54490"
                                                           "54575"
                                                                    "54576"
[25] "54577"
             "54578"
                      "54579" "54600"
                                         "54657"
                                                  "54658"
                                                           "54659"
                                                                    "54963"
[33] "574537" "64816"
                      "7083"
                               "7084"
                                         "7172"
                                                  "7363"
                                                           "7364"
                                                                    "7365"
[41] "7366"
             "7367"
                       "7371"
                                "7372"
                                         "7378"
                                                  "7498"
                                                           "79799"
                                                                    "83549"
                       "9"
[49] "8824"
             "8833"
                                "978"
```

What we need for gage() is our genes in ENTREZ ID format with a measure of their importance.

It wants a vector of e.g. fold changes.

```
foldchanges <- res$log2FoldChange
head(foldchanges)

[1] -0.35070302

NA 0.20610777 0.02452695 -0.14714205 -1.73228897
```

Add ENTREZ IDs as names() to my foldchanges vector

```
names(foldchanges) <- res$entrez
head(foldchanges)</pre>
```

```
7105 64102 8813 57147 55732 2268
-0.35070302 NA 0.20610777 0.02452695 -0.14714205 -1.73228897
```

Now we can run gage() with this input vector and the geneset we want to examine for overlap/enrichment.

```
p.geomean stat.mean p.val
hsa05332 Graft-versus-host disease 0.0004250461 -3.473346 0.0004250461
hsa04940 Type I diabetes mellitus 0.0017820293 -3.002352 0.0017820293
hsa05310 Asthma 0.0020045888 -3.009050 0.0020045888
q.val set.size exp1
hsa05332 Graft-versus-host disease 0.09053483 40 0.0004250461
hsa04940 Type I diabetes mellitus 0.14232581 42 0.0017820293
hsa05310 Asthma 0.14232581 29 0.0020045888
```

We can view these pathways with our geneset genes highlighted using the pathview() function. Ex: for asthma I will use the pathway ID hsa05310 as seen above.

```
pathview(gene.data=foldchanges, pathway.id="hsa05310")
```

^{&#}x27;select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/marin/Desktop/BIMM 143/class13

Info: Writing image file hsa05310.pathview.png

Figure 1: Genes involveed in asthma pathway