Justificar cada respuesta. El examen esta pensado para que no haga falta usar una calculadora.

Ejercicio	1	2	3	Nota
Puntaje máximo	4	4	2	10
Puntaje obtenido				

Si se traban con algún ejercicio, pasen al siguiente y vuelvan a intentar mas tarde con el que dejaron.

1. (4 Puntos)Resolver:

Nombre:

a)
$$log(1000) - log_{\frac{1}{2}}(1)$$

Sabiendo que $log_5(3) \simeq 0,68$, calcular:

- d) $log_5(15)$
- b) $3^2.log_3(7)$ e) $log_3(5)$
- c) $log_3(\frac{1}{27})$ f) $log_5(9)$

2. (4 Puntos)Encontrar, si es posible, el valor de x :

- a) log(x) = 3.log(3)
- b) $log_8(2.x-4)=1$
- c) $9.3^x 5.3^x = 36$

3. (2 Puntos) Gráficos: Cada ítem vale 1 punto.

a) Graficar $y = log_2(x-2)$. (Basta con completar la tabla, y unir los puntos.) Indicar en que valor de x esta la asíntota vertical.

x	3	4	6	10	5/2	9/4
y						

b) Encontrar a y b, a partir del gráfico de $y = log_a(x - b)$.

Figura 1: Encontrar a y b, a partir del gráfico de $y = log_a(x - b)$. Los puntos marcados con asterisco, son los valores de y cuando x vale -2,000001;-1;0;1;2;3...

Pista: Analizar que pasa en (-1,0) y en (1,1). Que tienen que cumplir a y b para que sea posible que la función tome estos valores?

4. (bonus)**Extra:** Si ya terminaste los demás, este ejercicio sirve como un bonus para darte un empujón si estas cerca de aprobar, o para redondear la nota para arriba.

Sabiendo que, por definición, $x = a^{\log_a(x)}$; y $x = c^{\log_c(x)}$. Demostrar que $\log_a(x) = \frac{\log_c(x)}{\log_c(a)}$.

"There's as many atoms in a single molecule of your DNA as there are stars in the typical galaxy. We are, each of us, a little universe." Neil deGrasse Tyson, Cosmos