Linguistics unfolded

Ralph Debusmann

Programming Systems Lab
Saarland University, Saarbrücken

Grammar formalisms

- should be able to modularize the different dimensions of linguistic description, i.e. to unfold a linguistic description,...
- ...and at the same time, be able to treat the linguistic description in an integrative way.
- existing grammar formalisms are unable to do both
- we will introduce Extensible Dependency Grammar (XDG), which can do both

Why modularize?

- consider Jeder Mann liebt eine Frau.
- jeder Mann is the surface subject, eine Frau is the surface object
- jeder Mann is in the Vorfeld, eine Frau is in the Mittelfeld
- jeder Mann is the deep subject, eine Frau is the deep object
- generalizations:
 - surface subjects=Vorfeld
 - surface objects=Mittelfeld
 - surface subjects=deep subjects
 - surface objects=deep objects

Topicalization

- consider Eine Frau liebt jeder Mann.
- jeder Mann is the surface subject, eine Frau is the surface object
- jeder Mann is in the Mittelfeld, eine Frau is in the Vorfeld
- jeder Mann is the deep subject, eine Frau is the deep object
- generalizations:
 - surface subjects=Vorfeld
 - surface objects=Mittelfeld
 - surface subjects=deep subjects
 - surface objects=deep objects

Topicalization

- consider Eine Frau liebt jeder Mann.
- jeder Mann is the surface subject, eine Frau is the surface object
- jeder Mann is in the Mittelfeld, eine Frau is in the Vorfeld
- jeder Mann is the deep subject, eine Frau is the deep object
- generalizations:
 - surface subjects=Vorfeld
 - surface objects=Mittelfeld
 - surface subjects=deep subjects
 - surface objects=deep objects

Topicalization

- consider Eine Frau liebt jeder Mann.
- jeder Mann is the surface subject, eine Frau is the surface object
- jeder Mann is in the Mittelfeld, eine Frau is in the Vorfeld
- jeder Mann is the deep subject, eine Frau is the deep object
- generalizations:
 - surface subjects=Vorfeld
 - surface objects=Mittelfeld
 - surface subjects=deep subjects
 - surface objects=deep objects

Passive

- consider Von jedem Mann wird eine Frau geliebt.
- von jedem Mann is the surface object, eine Frau is the surface subject
- von jedem Mann is in the Vorfeld, eine Frau is in the Mittelfeld
- jedem Mann is the deep subject, eine Frau is the deep object
- generalizations:
 - surface subjects=Vorfeld
 - surface objects=Mittelfeld
 - surface subjects=deep subjects
 - surface objects=deep objects

Passive

- consider Von jedem Mann wird eine Frau geliebt.
- von jedem Mann is the surface object, eine Frau is the surface subject
- von jedem Mann is in the Vorfeld, eine Frau is in the Mittelfeld
- jedem Mann is the deep subject, eine Frau is the deep object
- generalizations:
 - surface subjects=Vorfeld
 - surface objects=Mittelfeld
 - surface subjects=deep subjects
 - surface objects=deep objects

Passive

- consider Von jedem Mann wird eine Frau geliebt.
- von jedem Mann is the surface object, eine Frau is the surface subject
- von jedem Mann is in the Vorfeld, eine Frau is in the Mittelfeld
- jedem Mann is the deep subject, eine Frau is the deep object
- generalizations:
 - surface subjects=Vorfeld
 - surface objects=Mittelfeld
 - surface subjects=deep subjects
 - surface objects=deep objects

Modularize!

- simple generalizations will backfire when confronted with more complicated constructions
- so don't make them
- instead, properly modularize the different dimensions of linguistic description

Why integrate?

- consider Peter sieht die Frau mit dem Teleskop
- PP can either attach to sieht or to Frau
- additional information needed for disambiguation
- information may come from any source, i.e. also from semantics (e.g. a database of world knowledge)

 a non-integrated system cannot make use of information from semantics early on:

Peter sieht die Frau mit dem Teleskop

• in an *integrated* system, disambiguating information can come in from any dimension, and can immediately disambiguate the others:

Peter sieht die Frau mit dem Teleskop

 in an integrated system, disambiguating information can come in from any dimension, and can immediately disambiguate the others:

 in an integrated system, disambiguating information can come in from any dimension, and can immediately disambiguate the others:

 in an integrated system, disambiguating information can come in from any dimension, and can immediately disambiguate the others:

grammar formalisms

grammar formalisms

XDG dimensions

- XDG can be instantiated with any number of dimensions
- dimensions fold out the linguistic dimensions
- in the following, we show an instantiation with three dimensions: surface syntax, deep syntax, and topological fields

Example surface syntax analysis

 von jedem Mann is the surface object (of geliebt), eine Frau is the surface subject (of wird):

Example topological fields analysis

• von jedem Mann is in the Vorfeld, eine Frau is in the Mittelfeld of wird:

Example deep syntax analysis

 jedem Mann is the deep subject, eine Frau is the deep object of geliebt:

XDG principles

- an XDG grammar makes use of any number of principles to restrict the well-formedness conditions of analyses
- principles can be either one-dimensional (only restrict one dimension) or multi-dimensional (restrict the relation of two or more dimensions)
- principles can be either lexicalized or not
- the lexicon can be conveniently built up using abstractions like lexical inheritance and crossings (Candito 1996)

Tree principle (surface syntax)

Tree principle (surface syntax)

Tree

Tree principle (topological fields)

Tree principle (topological fields)

Tree

DAG principle (deep syntax)

DAG principle (deep syntax)

DAG

Valency principle (surface syntax)

Valency principle (surface syntax)

Valency principle (surface syntax)

Valency principle (topological fields)

Valency principle (topological fields)

Valency principle (topological fields)

Valency principle (deep syntax)

Valency principle (deep syntax)

Valency principle (deep syntax)

Climbing principle

Climbing principle

Climbing principle

Syntactic linking

Syntactic linking

Syntactic linking

Representing semantics

- Von jedem Mann wird eine Frau geliebt.
- semantics (weak reading): $\forall x. man(x) \rightarrow \exists y. woman(y) \land love(x, y)$
- two dimensions: predicate-argument structure and scope
- in XDG, we can use the same ideas also to represent semantics

```
\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)
```

```
\forall x \ man(x) \Rightarrow \exists y \ woman(y) \land love(x,y)
\forall x \ man(x) \qquad \exists y \ woman(y) \ love(x,y)
```

```
\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)
```


$$\forall x \ man(x) \Rightarrow \exists y \ woman(y) \land love(x,y)$$


```
\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)
```


$$\forall x \ man(x) \Rightarrow \exists y \ woman(y) \land love(x,y)$$


```
\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)
```

$$\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)$$

$$\forall x \bullet \Rightarrow \bullet \quad man(x) \quad \exists y \bullet \land \bullet \quad woman(y) \quad love(x,y)$$

$$\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)$$

$$\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)$$

$$\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)$$

$$\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)$$

 $\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)$

 $\forall x \ \text{man}(x) \Rightarrow \exists y \ \text{woman}(y) \land \text{love}(x,y)$

DAG principle (predicate-argument)

DAG principle (predicate-argument)

DAG

Tree principle (scope)

Tree principle (scope)

Tree

Semantic linking

Semantic linking

Semantic linking

Contra-dominance

Contra-dominance

Contra-dominance

Modularity and integration

- XDG is modular and integrated
- modularity by unfolding the dimensions of linguistic description, one-dimensional principles
- integration by multi-dimensional principles
- integration: inferences can flow from any dimension to any other

Inferences from syntax to semantics

Inferences from syntax to semantics

Inferences from syntax to semantics

Inferences from semantics to syntax

Inferences from semantics to syntax

Inferences from semantics to syntax

Conclusions

- it is important to distinguish the different dimensions of linguistic description,...
- ...and at the same time to integrate them.
- existing grammar formalisms cannot do both
- XDG can

Related work

- handwritten grammars for Arabic, Dutch, German, English (Duchier/Debusmann ACL 2001, Debusmann Diplom 2001, Duchier/Debusmann 2002, Bader/Foeldesi/Pfeiffer/Steigner Softwareprojekt 2004, Odeh Fopra 2004)
- syntax-semantics interface (Korthals/Debusmann COLING 2002, Debusmann PASSI 2003, Debusmann/Duchier/Koller/Kuhlmann/Smolka/Thater COLING 2004, Debusmann/Duchier/Kruijff COLING 2004 DG Workshop)
- interface to Information structure (Kruijff/Duchier EACL 2003)
- grammar induction (NEGRA (German): Korthals Diplom 2003, Möhl Fopra 2004, PDT (Czech): Bojar 2004)
- TAG to XDG encoding (generation: Koller/Striegnitz ACL 2002, parsing: Debusmann/Duchier/Kuhlmann/Thater TAG+7 2004)

Future work

- obtain large-scale grammars
- find out how to parse them efficiently with XDG
- many many more issues to solve (e.g. coordination, incremental parsing...)
- but before all that: start writing the dissertation ;-)

Thank you!