

ЭТИКЕТКА

<u>СЛКН.431271.074 ЭТ</u> Микросхема интегральная 564 ЛН2ТЭП Функциональное назначение – Шесть логических элементов «НЕ»

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход	8	Выход
2	Выход	9	Вход
3	Вход	10	Выход
4	Выход	11	Вход
5	Вход	12	Выход
6	Выход	13	Вход
7	Общий	14	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C) Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма		
тапленование наражегра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B, \; U_{IH} = 5B \\ U_{CC} = 10 \; B \; , \; U_{IH} = 10B$	U _{OL}	-	0,01 0,01	
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5~B,~U_{IL} = 0~B$ $U_{CC} = 10~B,~U_{IL} = 0~B$	Uoн	4,99 9,99	-	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,~U_{IH}=3,5~B,~I_{oL}=20~$ мкA $U_{CC}=10~B,~U_{IH}=7,0~B,~I_{oL}=20~$ мкA	U _{OL max}	-	0,95 2,90	
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5~B,~U_{IL}=1,5~B,~I_{oL}=20~\text{мкA} \\ U_{CC}=10~B,~U_{IL}=3,0~B,~I_{oL}=20~\text{мкA}$	U _{OH min}	3,6 7,2	-	
5 . Входной ток низкого уровня, мкА, при: $U_{CC}=10~B,~U_{IH}=10~B,~U_{IL}=0~B$ $U_{CC}=15~B,~U_{IH}=15~B,~U_{IL}=0~B$	$I_{\rm IL}$	-	/-0,05/ /-0,10/	
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 10 \; B, \; U_{IH} = 10 \; B, \; U_{IL} = 0 \; B \\ U_{CC} = 15 \; B, \; U_{IH} = 15 \; B, \; U_{IL} = 0 \; B$	$ m I_{IH}$	- -	0,05 0,10	

Продолжение таблицы 1			
1	2	3	4
7. Выходной ток низкого уровня, мА, при: U_{CC} = 4,5 B, , U_{IH} = 4,5 B, U_{O} = 0,4 B U_{CC} = 10 B, , U_{IH} = 10 B , U_{O} = 0,5 B	I_{OL}	2,6 8,0	- -
8. Выходной ток высокого уровня, мА, при: $U_{CC}=5~B,~U_{IL}=0~B,~U_{O}=2,5~B\\ U_{CC}=10~B,~U_{IL}=0~B,~U_{O}=9,5~B$	I _{OH}	/-1,25/ /-1,25/	-
9. Ток потребления при низком и высоком уровнях выходного напряжения, мкА, при: $U_{CC}=10~B,~U_{IH}=10~B,~U_{IL}=0~B\\ U_{CC}=15~B,~U_{IH}=15~B,~U_{IL}=0~B$	I _{CCL} I _{CCH}	- -	0,05 0,10
$10.$ Время задержки распространения при включении, нC, при: $U_{CC}=5$ B, $~U_{IH}=5$ B, $U_{IL}=0$ B, $C_L=50$ пФ $U_{CC}=10$ B, $~U_{IH}=10$ B, $U_{IL}=0$ B, $C_L=50$ пФ	t _{PHL}	- -	110 50
11. Время задержки распространения при выключении, нС, при: $U_{CC}=5~B,~U_{IH}=5~B,~U_{IL}=0~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~U_{IH}=10~B,~U_{IL}=0~B,~C_L=50~\pi\Phi$	t _{PLH}	-	120 90
12. Входная емкость, п Φ , при: U_{CC} = 10 В	C _I	-	30

1.2 Содержание драгоценных металлов	в 1	1000 шт.	изделий:
-------------------------------------	-----	----------	----------

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ С не менее 100000 ч, а в облегченном режиме (U_{CC} от 5 до 10B)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости ($T_{C\gamma}$) при $\gamma = 99\%$ при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-02ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ЛН2ТЭП соответствуют техническим условиям АЕЯР.431200.610-02ТУ и признаны годными для эксплуатации.

Приняты по (извещение, акт и др.)	ОТ	(дата)	
Место для штампа ОТК			Место для штампа ВП
Место для штампа «Перепроверка	произведена		» (дата)
Приняты по	ОТ	(дата)	
Место для штампа ОТК			Место для штампа ВП
Цена договорная			

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ