Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Кафедра «Телематика (при ЦНИИ РТК)»

Отчет по лабораторной работе

Метод максимального правдоподобия. Проверка гипотезы о распределении по критерию хи-квадрат

По дисциплине «Теория вероятностей и Математическая статистика»

Выполнил Студент гр. 3630201/80101		د	М. Д. Маляренко
Руководитель к.фм.н., доцент			А. Н. Баженов
	<u>*</u>	»	2020r.

Содержание

1	Пос	тановка задачи	4
2	Teo j 2.1 2.2	рия Метод максимального правдоподобия	5 5
3	Pea	лизация	6
4	Pea 34.1 4.2 4.3	ультаты Метод максимального правдоподобия	7
3a	ключ	чение	9
Сп	исок	к литературы	10
Πt	ои.лох	жение А. Репозиторий с исходным колом	11

Список таблиц

1	Вычисление χ^2_B при проверке гипотезы H_0 о законе распределения $N(\hat{\mu},\hat{\sigma})$	
	для выборки распределения $N(0,1)$	7
2	Вычисление χ^2_B при проверке гипотезы H_0 о законе распределения $N(\hat{\mu},\hat{\sigma})$	
	для выборки распределения $U(-\sqrt{3},\sqrt{3})$	8
3	Вычисление χ^2_B при проверке гипотезы H_0 о законе распределения $N(\hat{\mu},\hat{\sigma})$	
	для выборки распределения $L(0,1/\sqrt{2})$	8

1 Постановка задачи

Сгенерировать выборку объёмом 100 элементов для нормального распределения N(0,1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 считать, что сгенерированное распределение имеет вид $N(\hat{\mu},\hat{\sigma})$, где $\hat{\mu}$ и $\hat{\sigma}$ оценки метода максимального правдоподобия. Проверить основную гипотезу, используя критерий согласия χ^2 . В качестве уровня значимости взять $\alpha=0.05$.

Исследовать точность (чувствительность) критерия χ^2 – сгенерировать выборки равномерного распределения и распределения Лапласа из 20 элементов. Проверить их на нормальность, то есть проверить, принимает ли критерий χ^2 гипотезу, что элементы этих выборок распределены по закону $N(\hat{\mu},\hat{\sigma})$.

2 Теория

2.1 Метод максимального правдоподобия

 $L(x_1, ..., x_n, \theta)$ — функция правдоподобия ($\Phi\Pi$), рассматриваемая как функция неизвестного параметра $\theta[1][2]$:

$$L(x_1, \dots, x_n, \theta) = f(x_1, \theta) \dots f(x_n, \theta). \tag{1}$$

Оценка максимального правдоподобия:

$$\hat{\theta}_{\text{M}\Pi} = \arg\max L(x_1, \dots, x_n, \theta) \tag{2}$$

Система уравнений правдоподобия (в случае дифференцируемости функции правдоподобия):

$$\frac{\partial L}{\partial \theta_k} = 0$$
 или $\frac{\partial \ln L}{\partial \theta_k} = 0, \ k = 1, \dots, m.$ (3)

2.2 Проверка гипотезы о законе распределения. Метод χ^2

Выдвинута гипотеза H_0 о генеральном законе распределения с функцией распределения F(x).

Рассматриваем случай, когда гипотетическая функция распределения F(x) не содержит неизвестных параметров.

Правило проверки гипотезы о законе распределения по методу $\chi^2.[1]$

- 1. Выбираем уровень значимости α .
- 2. Находим квантиль $\chi^2_{1-lpha}(k-1)$ распределения χ^2 с k-1 степенями свободы порядка 1-lpha.
- 3. С помощью гипотетической функции распределения F(x) вычисляем вероятности $p_i = P(X \in \Delta_i), i = 1, \dots, k.$
- 4. Находим частоты n_i попадания элементов выборки в подмножества $\Delta_i, i=1,\ldots,k$.
- 5. Вычисляем выборочное значение статистики критерия χ^2 :

$$\chi_B^2 = \sum_{i=1}^n \frac{(n_i - np_i)^2}{np_i}.$$

- 6. Сравниваем χ_B^2 и квантиль $\chi_{1-lpha}^2(k-1).$
 - а) Если $\chi_B^2 < \chi_{1-lpha}^2(k-1)$, то гипотеза H_0 на данном этапе проверки принимается.
 - б) Если $\chi_B^2 \ge \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 отвергается, выбирается одно из альтернативных распределений, и процедура проверки повторяется.

Количество интервалов k можно определить с помощью эвристики:

$$k \approx 1.72 \cdot \sqrt[3]{n} \tag{4}$$

3 Реализация

Расчёты проводились в среде аналитических вычислений Махіта. Были написаны функции для нахождения количества промежутков разбиения с помощью эвристики 4, нахождения границ промежутков разбиения, вычисления теоретической вероятности на промежутках с помощью встроенной реализации функции нормального распределения, вычисления относительной частоты попадания элементов выборки в промежутки разбиения. Полный текст скрипта представлен в репозитории GitHub.

4 Результаты

4.1 Метод максимального правдоподобия

По методу максимального правдоподобия были получены следующие оценки параметров выборки, распределённой по закону N(0,1):

$$\hat{\mu} \approx -0.035, \quad \hat{\sigma} \approx 0.992$$

4.2 Критерий согласия χ^2 для нормального распределения

- Количество промежутков k = 8 (4)
- Уровень значимости $\alpha=0.05$
- ullet Квантиль $\chi^2_{1-lpha}(k-1)=\chi^2_{0.95}(7)=14.0671$

В Таблице 1 представлены этапы вычисления критерия хи-квадрат для проверки гипотезы о законе распределения.

Таблица 1: Вычисление χ^2_B при проверке гипотезы H_0 о законе распределения $N(\hat{\mu},\hat{\sigma})$ для выборки распределения N(0,1)

i	Δ_i	n_i	p_i	$n_i p_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty, -1.49)$	8	0.070	7.02	0.01
2	[-1.49, -1.05)	9	0.084	8.35	0.04
3	[-1.05, -0.59)	7	0.132	13.16	2.91
4	[-0.59, -0.15)	20	0.169	16.94	0.57
5	[-0.15, 0.3)	18	0.178	17.82	0.00
6	[0.3, 0.75)	17	0.153	15.31	0.18
7	[0.75, 1.2)	13	0.108	10.75	0.45
8	$[1.20,\infty)$	8	0.106	10.62	0.64
\sum	_	100	1.000	100.0	$4.92 = \chi_B^2$

Табличное значение $\chi^2_{0.95}(7)=14.0671$ больше, чем выборочное $\chi^2_B=4.92$, это значит, что на данном этапе гипотезу H_0 можно принять.

4.3 Проверка чувствительности критерия согласия χ^2

4.3.1 Для равномерного распределения

- Количество промежутков k=5
- Уровень значимости $\alpha=0.05$
- Квантиль $\chi^2_{1-\alpha}(k-1) = \chi^2_{0.95}(4) = 9.487$

В Таблице 2 представлены этапы вычисления критерия хи-квадрат для проверки гипотезы о законе распределения.

Таблица 2: Вычисление χ^2_B при проверке гипотезы H_0 о законе распределения $N(\hat{\mu},\hat{\sigma})$ для выборки распределения $U(-\sqrt{3},\sqrt{3})$

i	Δ_i	n_i	p_i	$n_i p_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty, -0.88)$	5	0.171	3.42	0.73
2	[-0.88, -0.18)	2	0.207	4.13	1.10
3	[-0.18, 0.52)	4	0.250	5.00	0.20
4	[0.52, 1.22)	4	0.204	4.09	0.00
5	$[1.22,\infty)$	5	0.167	3.34	0.82
\sum	_	20	1.000	20.0	$2.86 = \chi_B^2$

Табличное значение $\chi^2_{0.95}(7)=9.487$ больше, чем выборочное $\chi^2_B=2.86$, это значит, что на данном этапе гипотезу H_0 можно принять.

4.3.2 Для распределения Лапласа

- Количество промежутков k=5
- Уровень значимости $\alpha=0.05$
- \bullet Квантиль $\chi^2_{1-\alpha}(k-1)=\chi^2_{0.95}(4)=9.487$

В Таблице 3 представлены этапы вычисления критерия хи-квадрат для проверки гипотезы о законе распределения.

Таблица 3: Вычисление χ_B^2 при проверке гипотезы H_0 о законе распределения $N(\hat{\mu},\hat{\sigma})$ для выборки распределения $L(0,1/\sqrt{2})$

i	Δ_i	n_i	p_i	$n_i p_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty, -0.83)$	5	0.184	3.68	0.47
2	[-0.83, -0.31)	3	0.182	2.98	0.00
3	[-0.31, 0.20)	5	0.128	3.64	0.50
4	[0.20, 0.72)	2	0.179	3.58	0.69
5	$[0.72,\infty)$	5	0.306	6.11	0.20
\sum	_	20	1.000	20.0	$1.88 = \chi_B^2$

Табличное значение $\chi^2_{0.95}(4)=9.487$ больше, чем выборочное $\chi^2_B=1.88$, это значит, что на данном этапе гипотезу H_0 можно принять.

Заключение

В результате выполнения лабораторной работы была изучена оценка параметров распределения по выборке распределённой согласно закону N(0,1) с помощью метода максимального правдоподобия. Выяснено, что о.м.п. матожидания нормального распределения равна средневыборочному значению, а о.м.п. среднеквадратического отклонения вычисляется как стандартное выборочное отклонение.

Также были проанализированы результаты оценки гипотез о распределения выборочных элементов по критерию хи-квадрат. Для нормального распределения по закону N(0,1) критерий хи-квадрат не отверг гипотезу о том, что выборка распределена по закону $N(\hat{\mu},\hat{\sigma})$, где $\hat{\mu}$ - о.м.п. матожидания, $\hat{\sigma}$ – о.м.п. среднеквадратического отклонения.

Проверка чувствительности критерия хи-квадрат на малых выборках показала, что этот критерий может давать неверные результаты, то есть является не чувствительным на малых выборках, так как он не отверг гипотезу о нормальлности распределения $U(-\sqrt{3},\sqrt{3})$ и $L(0,1/\sqrt{2})$

Список литературы

- [1] Теоретическое приложение к лабораторным работам №5-8 по дисциплине «Математическая статистика». СПб.: СПбПУ, 2020. 22 с
- [2] Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей: учеб. пособие / Ю.Д. Максимов; под ред. В.И. Антонова. СПб.: Изд-во Политехн. ун-та, 2009. 395 с. (Математика в политехническом университете).

Приложение А. Репозиторий с исходным кодом

Исходный код скрипта для среды аналитических вычислений Maxima находится в репозитории GitHub-URL https://github.com/malyarenko-md/TeorVer