Hamiltonian Neural Flows¹

Gaspard Beugnot

March 17th, 2020

1 / 17

Gaspard B. HNF March 17th, 2020

Introduction

- À partir d'une séquence vidéo, apprendre l'Hamiltonien d'un système
 - État = position + variable latente
 - ▶ Position = image
 - Permet déroulement temporel en avant, en arrière, accéléré
- Adapté au problème d'évaluation de densité:
 - État = échantillon + variable latente
 - ► Entraînement sur des échantillons tirés d'une loi
 - Permet de transformer une loi simple en une loi complexe (Variational Inference with Normalizing Flows)

Implémentation sur:

github.com/gaspardbe/HamiltonianGenerativeNetworks.

État de l'art

- 📵 État de l'art
 - Inférence Variationelle
 - Normalizing Flows
 - Normalizing Flows
 - Normalizing Flows
 - Normalizing Flows
 - Hamiltonian Monte Carlo
 - Hamiltonian Monte Carlo
 - HMC avec NN
 - Schémas numériques

Inférence variationnelle

- Décomposition variables observées / variables latentes
- Approximer la postérieure des variables latentes par une fonction paramétrique
- Utiliser Jensen, optimiser l'approximation de la postérieure

$$egin{aligned} \log p_{ heta}(x) &= \log \int_{\mathcal{Z}} p_{ heta}(x|z) p(z) \mathrm{d}z \ &= \log \int \mathcal{Z} rac{q_{\phi}(z|x)}{q_{\phi}(z|x)} p_{ heta}(x|z) p(z) \mathrm{d}z \ &\geq - \mathbb{D}_{\mathit{KL}} \left[q_{\phi}(z|x) | p(z)
ight] + \mathbb{E}_q \left[\log p_{ heta}(x|z)
ight] \ &= \mathcal{F}(x) \end{aligned}$$

(heta: paramètres du modèle; ϕ : paramètres du réseau)

• A priori: $\pi(\cdot)$

Gaspard B. HNF March 17th, 2020 5 / 17

- A priori: $\pi(\cdot)$
- Fonction inversible $f(\cdot)$

Gaspard B. HNF March 17th, 2020 5 / 17

- A priori: $\pi(\cdot)$
- Fonction inversible $f(\cdot)$
- Loi objectif: $p(x) = \pi \left(f^{-1}(x) \right) \left| \det \frac{\partial f^{-1}}{\partial x} \right|$

Gaspard B. HNF March 17th, 2020 5/17

- A priori: $\pi(\cdot)$
- Fonction inversible $f(\cdot)$
- Loi objectif: $p(x) = \pi \left(f^{-1}(x) \right) \left| \det \frac{\partial f^{-1}}{\partial x} \right|$

Problème: comment calculer le Jacobien efficacement?

Gaspard B. HNF March 17th, 2020 5/17

Variational inference with Normalizing Flows

- Planar Flows
 - Transformation de type:

$$f(z) = z + uh(w^{\top}z + b)$$

- ightharpoonup Ensemble de contractions dilatations orthogonalement à $oldsymbol{w}$.
- Déterminant calculable en temps linéaire par rapport au nombre de dimensions.

Gaspard B. HNF March 17th, 2020 6 / 17

Variational inference with Normalizing Flows

- Planar Flows
 - Transformation de type:

$$f(z) = z + uh(w^{\top}z + b)$$

- ightharpoonup Ensemble de contractions dilatations orthogonalement à w.
- Déterminant calculable en temps linéaire par rapport au nombre de dimensions.
- Radial flows
 - Transformation de type:

$$f(z) = z + \beta \frac{z - z_0}{\alpha + \|z - z_0\|}$$

- Contraction radiale par rapport à un point de référence z₀.
- Déterminant calculable en temps linéaire à nouveau.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Expressivité

Des flots qui restent expressifs (gaussienne en distribution initiale).

Hamiltonian Monte Carlo

Principe (Neal)

- MCMC = générer une chaîne de Markov avec loi a posteriori pour loi invariante
- Énergie :

$$H(q,p) = \frac{1}{Z} \exp(-U(q)) \exp(-K(p))$$

avec $U(q) = -\log(\pi(q)p(q|\theta))$.

• Si $K(p) \propto p^{\top} M p$, \iff p variable latente tirée suivant une gaussienne.

Gaspard B. HNF March 17th, 2020 8/17

Hamiltonian Monte Carlo

Principe (Neal)

- MCMC = générer une chaîne de Markov avec loi a posteriori pour loi invariante
- Energie :

$$H(q,p) = \frac{1}{Z} \exp(-U(q)) \exp(-K(p))$$

avec $U(q) = -\log(\pi(q)p(q|\theta))$.

• Si $K(p) \propto p^{\top} Mp$, \iff p variable latente tirée suivant une gaussienne.

Résultats:

- déplacements sur des isodensités pour H, peut explorer différents modes pour q.
- Réversibilité du Hamiltonien donne automatiquement la detailed balance equation.
- Nécessite de choisir judicieusement les paramètres d'intégration.

8 / 17

HMC with NN

Principe (Levy):

- Utiliser des opérateurs d'échelles sur la mise à jour des états (translations, dilatation sur l'état et sur le gradient).
- Coût doit:
 - maximiser le mixing (maximise la taille des sauts, ie. distance entre les états)
 - encourage un burn-in rapide (atteindre l'état stationnaire rapidement)
- Convergence vers la loi invariante garantie par la réversibilité

Schémas numériques pour l'intégration - Euler

Schémas numériques pour l'intégration - Leapfrog

Neural Hamiltonian Flow

Principe:

- Utiliser T hamiltoniens pour modéliser un flot qui emmène d'un a priori simple à une fonction complexe.
 - ▶ **Préserve le volume** : pas de déterminant à calculer
 - ▶ Réflexif : inverse naturel et facile à calculer
- État = $s_0, ..., s_T$ avec $s_i = q_i, p_i$. Moment = variable latente:

$$egin{aligned}
ho(oldsymbol{q}_{\mathcal{T}}) &= \int
ho(oldsymbol{q}_{\mathcal{T}}, oldsymbol{p}_{\mathcal{T}}) \mathrm{d}oldsymbol{p}_{\mathcal{T}} \ &= \int \pi(\mathcal{H}_1^{-\mathrm{d}t} \circ \cdots \circ \mathcal{H}_{\mathcal{T}}^{-\mathrm{d}t}(oldsymbol{q}_{\mathcal{T}}, oldsymbol{p}_{\mathcal{T}})) \mathrm{d}oldsymbol{p}_{\mathcal{T}} \end{aligned}$$

Impossible d'explorer tout l'espace des $m{p}: o$ encoder le moment depuis la position.

Gaspard B. HNF March 17th, 2020 12 / 17

FI BO

On approche la probabilité par une fonction paramétrique:

$$\log p(\boldsymbol{q}_{T}) = \log \int p(\boldsymbol{q}_{T}, \boldsymbol{p}_{T}) d\boldsymbol{p}_{T}$$

$$= \log \int \frac{p(\boldsymbol{q}_{T}, \boldsymbol{p}_{T})}{f_{\psi}(\boldsymbol{p}_{T}|\boldsymbol{q}_{T})} f_{\psi}(\boldsymbol{p}_{T}|\boldsymbol{q}_{T}) d\boldsymbol{p}_{T}$$

$$\geq \mathbb{E}_{f_{\psi}(\boldsymbol{p}_{T}|\boldsymbol{q}_{T})} [\log \pi(\mathcal{H}_{1}^{-dt} \circ \dots \circ \mathcal{H}_{T}^{-dt}(\boldsymbol{q}_{T}, \boldsymbol{p}_{T}))$$

$$- \log f_{\psi}(\boldsymbol{p}_{T}|\boldsymbol{q}_{T})]$$

$$= \text{ELBO}(\boldsymbol{q}_{T})$$

On optimise cette borne inf par rapport à ψ et les T hamiltoniens.

Détails Techniques

Plusieurs modules:

- Hamiltonien:
 - ▶ 2 réseaux de neurones (MLP): U(q) (potentiel) et K(p) cinétique
 - ▶ Une fonction d'intégration: $q, p \mapsto q', p'$.
- Un encodeur:
 - 2 réseaux de neurones (MLP): $\mu, \sigma : \mathbb{R}^d \to \mathbb{R}^d$.
 - Échantillonne selon une gaussienne de loi μ, σ .
- Le flot:
 - Définit une a priori
 - Implémente les fonctions de coûts
 - Optimise les paramètres par rétropropagation.

Objectif

Résultats numériques

Instabilités numériques...

Prolongements

Beaucoup de questions en suspend:

- Quelle est l'utilité de plusieurs hamiltoniens vs. 1 hamiltonien complexe?
- Comment procéder à l'échantillonnage ? First, we assume that the initial state s_0 is a sample from a simple prior $s_0 \sim \pi_0(\cdot)$.
 - On ne peut pas explorer tout l'espace des moments
 - Entraîner un nouvel encodeur?
- Notion de dynamique:
 - Peu de pas d'intégration...
 - ▶ Interprétation simple ⇒ overkill? Échantillons = bassin d'attraction?