Correlation

APPLIED STATISTICS - FCUP

Rita Gaio argaio@fc.up.pt

2020

Covariance and Sample Covariance

The **covariance** between two <u>continuous</u> r.v. X and Y describes the degree to which those variables tend to deviate from their expected values:

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

or, equivalently,

$$Cov(X, Y) = E(XY) - E(X)E(Y).$$

For two random samples x_1, \ldots, x_n , of X, and y_1, \ldots, y_n , of Y, the **sample covariate** corresponds to the sample equivalent of the previous formulae, namely

$$\widehat{Cov}(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

or

$$\widehat{Cov}(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} x_i y_i - \frac{n}{n-1} \overline{x} \, \overline{y},$$
 respectively.

Covariance

Proposition: If X and Y are independent then Cov(X, Y) = 0; however, the inverse is not necessarily true.

Moreover,

- Cov(X,X) = Var(X)
- Cov(X, Y) takes values in \mathbb{R} (has no upper nor lower bound)
- units of covariance = (units X)×(units Y).

A dimensionless quantity bounded below and above is the **correlation coefficient**:¹

$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}.$$

Proposition: for any r.v. X and Y,

- (a) Cor(X, X) = 1
- **(b)** Cor(X, Y) = Cor(Y, X)
- (c) $-1 \le Cor(X, Y) \le 1$
- (d) X, Y independent $\implies Cor(X, Y) = 0$ (the inverse is not necessarily true)
- (e) |Cor(X, Y)| = 1 if and only if X and Y have a linear relationship with a nonzero slope

¹also denoted by Cor(X, Y) or Corr(X, Y)

Pearson² correlation coefficient ρ_{XY} measures the degree of the linear association between X and Y

- sign of ρ_{XY} : X and Y vary in the same way (positive correlation) or in opposite ways (negative correlation)
- absolute value ρ_{XY} : measures the strength of the linear association.

²Karl Pearson, 1857-1936

Proposition: for any r.v. X and Y,

- (f) correlation is invariant under linear transformations of a single variable, up to the sign of the transformation: Cor(aX + b, Y) = sign(a)Cor(X, Y), for all $a \in \mathbb{R}$
- (d) Cor(aX + b, cY + d) = sign(ac)Cor(X, Y), for any $a, b, c, d \in \mathbb{R}$
- (e) $Cor\left(\frac{X-\mu_X}{\sigma_X}, \frac{Y-\mu_Y}{\sigma_Y}\right) = Cor(X, Y)$

Remark: high correlation does not necessarily imply causality. Indeed, two r.v. may be highly correlated for several reasons:

- X causes Y
- Y causes X
- a 3rd factor, directly or indirectly, causes X and Y
- an unlikely event has occured.

For two random samples x_1, \ldots, x_n , of X, and y_1, \ldots, y_n , of Y, the **sample (Pearson) correlation coefficient** corresponds to the sample equivalent of the previous formula, ie,

$$r_{xy} = \frac{SS_{xy}}{\sqrt{SS_{xx}}\sqrt{SS_{yy}}}$$

where

$$\begin{array}{rcl} SS_{xy} & = & \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) \\ SS_{xx} & = & \sum_{i=1}^{n} (x_i - \overline{x})^2 \\ SS_{yy} & = & \sum_{i=1}^{n} (y_i - \overline{y})^2. \end{array}$$

Proposition: for any random samples x_1, \ldots, x_n of X and y_1, \ldots, y_n of Y, and denoting the vectors of observations by $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$, the following holds:

- (a) $r_{xx} = 1$
- **(b)** $r_{xy} = r_{yx}$
- (c) $r_{ax+b,y} = sign(a)r_{xy}$
- (d) if x and y are centered vectors (with zero mean), then $r_{xy} = \cos(\theta)$ where θ is the angle defined by x and y in \mathbb{R}^n
- (e) $-1 \le r_{xy} \le 1$
- (f) $|r_{xy} = 1|$ if and only if y = ax + b, for some real constants a and b with $a \neq 0$.
- (g) $r_{x,y} = 0$ if and only if x and y are orthogonal vectors in \mathbb{R}^n .

Pearson's Correlation Test

- **Data**: random sample $(x_1, y_1), \dots, (x_n, y_n)$ of a pair of continuous random variables (X, Y)
- H_0 : Cor(X, Y) = 0, H_1 : $Cor(X, Y) \neq 0$ H_1 implies that X and Y are not independent
- Requirements: the pair (X, Y) follows a bivariate normal distribution³
- Test Statistic: assuming H_0 , $T = r\sqrt{\frac{n-2}{1-r^2}} \sim t(n-2)$
- **Decision**: to reject H_0 at an α level whenever $|t| > t_{1-\alpha/2}(n-2)$

If H_0 is $Cor(X,Y)=\rho_0\neq 0$, then a different test statistic is required (Fisher's Z-statistic or Hotelling's statistic, depending on the sample size).

³the test remains true if at least one of the variables follows a normal distribution

Pearson's Correlation Test

Instructions in **R**:

where

- x and y are the vector of observations in the random sample
- alternative corresponds to the formulation of the alternative hypothesis
- method indicates the correlation coefficient to be used.

Pearson's Correlation Test - Example 1

The table below represents concentrations (g, I^{-1}) of frutose, sacarose and glucose present in 15 samples of apple juice.

Frutose	Sacarose	Glucose
40	20	6
49	27	11
47	26	10
47	34	5
40	29	16
49	6	26
47	10	22
51	14	21
49	10	20
49	8	19
55	8	17
59	7	21
68	15	20
74	14	19
57	9	15

Question: Assuming the normality requirements, is there enough statistical evidence to say that sacarose decreases linearly with glucose?

Pearson's Correlation Test - Example 1

FRUTOSE		
88.	SACAROSE	
600		GLUCOSE

Pearson's Correlation Test - Example 1

Sample Pearson's correlation is -0.775 for which we obtain p=0.001. Hence:

- At a 5% significance level, we can reject H_0 and conclude that the variables are not independent, being negatively linearly associated.
- ullet if sacarose and glucose were independent, sample values or a more extreme situation (further from zero correlation) only occurs 1% of the time, due to random sampling.

Spearman⁵ Correlation Coefficient

- uses ranks instead of the original values of the variables, thus being possible to apply to ordinal variables
- corresponds to Pearson's correlation coefficient applied to the ranks of the observations within each sample
- $-1 \le \rho_S \le 1$ and $1 \le r_S \le 1$
- detects monotone associations (not simply linear)⁴
- $\rho_S > 0$ (resp < 0) corresponds an increasing (resp.decreasing) monotony
- $|\rho_S|$ gives the strength of the monotone association between X and Y:
 - $|
 ho_{\mathcal{S}}| pprox 1 \implies$ very strong monotone association
 - $|
 ho_{\mathcal{S}}| pprox \mathbf{0} \implies$ very weak monotone association.

 $^{^4}$ a linear association is a monotone association but the inverse is not true

⁵Charles Spearman, 1863-1945

Spearman Correlation Coefficient

Spearman Correlation Coefficient

Spearman Correlation Coefficient

Spearman correlation coefficient is less sensitive to the presence of outliers than Pearson's correlation coefficient.

Spearman's Correlation Test

- data: random sample $(x_1, y_1), \ldots, (x_n, y_n)$ of a pair of continuous or ordinal random variables (X, Y)
- denote by ξ_1, \ldots, ξ_n (resp. η_1, \ldots, η_n) the ranks of x_1, \ldots, x_n (resp. y_1, \ldots, y_n) and define $d_i = \xi_i \eta_i$; then

$$r_{S} = r_{(\xi_{1},...,\xi_{n}),(\eta_{1},...,\eta_{n})} = 1 - \frac{6\sum_{i=1}^{n}d_{i}^{2}}{n(n^{2}-1)}$$

X, Y independent $\implies r_S \approx 0$

- H_0 : There is no (monotonic) association between the two variables (in the population), ie, $\rho_S=0$ H_1 : There is a (monotonic) association between the two variables (in the population), ie, $\rho_S\neq 0^6$
- **Test Statistic**: assuming H_0 , $r_S \sim S(n)$ where S(n) is a known distribution (implemented in softwares)
- **Decision**: to reject H_0 at an α level whenever $|r_S| \geq S_{1-\alpha/2}(n)$

Correlation

 $^{^6\}rho_S \neq 0 \implies X$ and Y not independent

Spearman's Correlation Test

Remarks:

- Spearman's test does not assume conditions on the distribution of (X, Y)
- statistical significance does not provide any information about the strength of the relationship between the two variables. For example, p=0.001 does not mean a stronger relationship than the one found with p=0.04.

Spearman's Correlation Test

Instructions in **R**:

where

- x and y are the vector of observations in the random sample
- alternative corresponds to the formulation of the alternative hypothesis
- method indicates the correlation coefficient to be used.

Spearman's Correlation Test - Example 1

Consider again the previous data

Question: Is there a significant monotonic association between frutose and glucose?

Spearman's Correlation Test - Example 1

Sample Spearman's correlation is $r_S = 0.392$ and we obtain p = 0.148. Hence:

- assuming no monotonic association between frutose and glucose, a result at least as extreme as the one observed in the sample occurs 14.8% of the time, due to random sampling.
- if no association exists, there is more than a 5% chance that the strength of the relationship found (0.392) happened by chance.