In this notebook, I have picked up the Wine Dataset from Kaggle to explore the following-

- The top country with maximum wine production
- The province which produced the highest number of wines
- The best variety of wine in the specific province
- The price range of the wines in the same province and country

In [4]:

```
import pandas as pd
import numpy as np
```

The following are the 2 data sets, I used for analysi-

```
In [5]:
```

```
Wine_data1 = pd.read_csv('winemag-data_first150k.csv',sep=',')
Wine_data2 = pd.read_csv('winemag-data-130k-v2.csv',sep=',')
```

In the below command, I have appended the 1st dataset to the second to get the overall wine data combined in one dataset

In [6]:

```
Wine_data=Wine_data1.append(Wine_data2)
Wine_data.head()
```

Out[6]:

	Unnamed: 0	country	description	designation	points	price	province	region_1	region_2	taster_name	taster_twitter_handle	title
0	0	US	This tremendous 100% varietal wine hails from	Martha's Vineyard	96	235.0	California	Napa Valley	Napa	NaN	NaN	Nal
1	1	Spain	Ripe aromas of fig, blackberry and cassis are	Carodorum Selección Especial Reserva	96	110.0	Northern Spain	Toro	NaN	NaN	NaN	NaN
2	2	US	Mac Watson honors the memory of a wine once ma	Special Selected Late Harvest	96	90.0	California	Knights Valley	Sonoma	NaN	NaN	Nal
3	3	US	This spent 20 months in 30% new French oak, an	Reserve	96	65.0	Oregon	Willamette Valley	Willamette Valley	NaN	NaN	Nal
4	4	France	This is the top wine from La Bégude, named aft	La Brûlade	95	66.0	Provence	Bandol	NaN	NaN	NaN	NaN
4												Þ

We can see some null values appearing in some fields, lets check how many columns have it.

```
In [7]:
```

```
Wine_data.isnull().any()
```

```
Unnamed: 0
                      False
country
                       True
description
                       False
designation
                       True
                      False
points
province
                       True
region 1
                        True
region 2
                        True
taster name
                        True
taster_twitter_handle True
title
variety
                        True
                       False
winery
dtype: bool
```

So there are null values in all columns accept 4. Let us get rid of them

```
In [8]:
Wine_data = Wine_data.dropna()
In [9]:
```

```
Wine data.isnull().any()
```

Out[9]:

Unnamed: 0

False country False False description designation False False points False price province False False False False region_1 region 2 taster_name taster_twitter_handle False title variety False False winery dtype: bool

Now we have eliminated the null values from our dataset!!!

```
uniq_countries=Wine_data.sort_values('country', ascending=False).drop_duplicates(['country'])
```

```
In [11]:
country count=uniq countries['country'].value counts()
max country=country count.max()
```

```
In [12]:
print (country_count)
US 1
Name: country, dtype: int64
```

Here we see that the wine data from US is the highest.

We will use US's data and further dive deep into which region produces the more wine.

```
In [14]:
```

```
Top_provinces=Wine_data['province'].value_counts()
print (Top_provinces)

California 12900
Washington 5845
Oregon 3489
New York 153
Name: province, dtype: int64
```

We are able to find out that the top most place where Wine is produced the most is in the province of California!

```
In [80]:
Wine data.columns
Out[80]:
Index(['Unnamed: 0', 'country', 'description', 'designation', 'points',
       'price', 'province', 'region_1', 'region_2', 'taster_name',
       'taster_twitter_handle', 'title', 'variety', 'winery'],
      dtype='object')
In [81]:
Wine data.drop(Wine data.columns[[0,2,7,8,9,10,11,13]], axis=1, inplace=True)
In [82]:
Wine_data.columns
Out[82]:
Index(['country', 'designation', 'points', 'price', 'province', 'variety'], dtype='object')
In [83]:
Most variety=Wine data['variety'].value counts()
Most_variety.head()
Out[83]:
Pinot Noir
                      4788
Chardonnay
                      2.407
                     2372
Cabernet Sauvignon
Red Blend
                      1803
                     1678
Svrah
Name: variety, dtype: int64
```

The above findings show that the vast famous variety of these is the 'Pinot Noir'

Now we will pick the top country and he province which contains the maximum data on wine and analyze the cost of the wines sold in them.

```
In [17]:
```

```
hist_province='California'
hist_country='US'

mask1=Wine_data['province'].str.contains(hist_province)
mask2=Wine_data['country'].str.contains(hist_country)
```

```
stage = Wine_data[mask1 & mask2]
```

The below shows the first 5 rows of Wine_data with the unwanted rows eliminated.

In [85]:

```
stage.head()
```

Out[85]:

	country	designation	points	price	province	variety
10	US	Mountain Cuvée	87	19.0	California	Cabernet Sauvignon
23	US	Signature Selection	87	22.0	California	Merlot
25	US	King Ridge Vineyard	87	69.0	California	Pinot Noir
60	US	Estate	86	100.0	California	Cabernet Sauvignon
64	US	Golden Horn	86	26.0	California	Sauvignon Blanc

In [16]:

```
import matplotlib.pyplot as plt
```

In [19]:

```
Price_of_Wine=stage['price'].values
Points=stage['points'].values

plt.xlabel('Prices')
plt.ylabel('Points for California')
plt.title('Cost range of Wines in California')
plt.bar(Points, Price_of_Wine)
plt.show()
```


The above plot shows range of price against the points given to each designation in US, California

We see that at point 91 there is an outlier whose price is 2000 which is way beyond the 2nd costliest wine i.e. at 750

This gives us the cost range of wines produced in he California province of US!