Machine Learning

Week 5 - Review - Jan 2020

About the course

Announcements

- This is our final session
- You can download this week's Notebook folder if you haven't and start Jupyter Notebook
- If you can, camera on is appreciated

Previously on ML..

Linear Regression (Record this course)

Linear Regression is a statistical model used to predict the relationship **between independent and dependent variables**. In linear regression, the relationships are modeled using **linear predictor functions** whose unknown model parameters are **estimated** from the data.

We start with a function

We then iteratively make predictions, apply the cost function and update parameters

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

The product of the learning process are the model's parameters

Watch out for the overfitting!!

Regularization can be helpful

Ridge Regression (L₂ regularization)

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=0}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2 \right]$$

Lasso Regression (L₁ regularization)

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=0}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j| \right]$$

Testing your system

Always separate your dataset in train and test sets

Testing your system

Make even more separations!

Partition the dataset into K folds (bins) of equal size.

Logistic regression is a statistical **model** that in its basic form uses a **logistic** function to **model** a binary dependent variable. In regression analysis, logistic regression (or logit regression) is estimating the **parameters** of a logistic model (a form of binary regression).

We start with a function - the Decision Boundary

Decision Boundary

- Example: Loan demand evaluation model
 - o Predict the loan safety class given the revenue and the charges values
 - o $h_{\theta}(x) = g (\theta_0 + \theta_1 x_1 + \theta_2 x_2) = g (20 + 0.01 \text{ #revenue} 0.1 \text{ #charges})$
- Predict 1: if $g(\theta^T x) \ge 0.5 \Rightarrow \theta^T x \ge 0$
 - if $g(20 + 0.01x_1 0.1x_2) \ge 0.5$
 - \Rightarrow 20 + 0,01 x_1 0,1 x_2 \geq 0
- Predict $\mathbf{0}$: if $g(\theta^T x) < 0.5 \rightarrow \theta^T x < 0$
 - if $g(20 + 0.01x_1 0.1x_2) < 0.5$
 - \Rightarrow 20 + 0,01 x_1 0,1 x_2 < 0

• $20 + 0.01x_1 - 0.1x_2 = 0$ is our decision boundary

We then fit this decision boundary into the Logistic (Sigmoid function)

•
$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

- $h_{\theta}(x)$ = **estimated probability that y = 1** given the input x parameterized by θ
 - Example: $h_{\theta}(x)$ = 0,8 → The probability that the loan is safe (y=1) is equal to 80%
- $h_{\theta}(x) = P(y = 1 | x; \theta) = 1 P(y = 0 | x; \theta)$
- $P(y = 1 | x; \theta) + P(y = 0 | x; \theta) = 1$
- Hypothesis:
 - $y = 1 \text{ when } g(\theta^T x) \ge 0.5 \Rightarrow \theta^T x \ge 0$
 - \Box y = 0 when $g(\theta^T x) < 0.5 \Rightarrow \theta^T x < 0$

We then iteratively make predictions, apply the cost function and update parameters

•
$$Cost(h_{\theta}(x), y) = -(y) * log(h_{\theta}(x)) - (1 - y) * log(1 - h_{\theta}(x))$$

Predicted value

Real value

Logistic Regression - Multiclass

When predicting more than 2 classes we train a model for each class

Logistic Regression - Performance

90% accuracy doesn't tell the whole story

		Predicted class	
		Negative	Positive
Actual class	Negative	True Negative	False Positive
	Positive	False Negative	True Positive

Precision =
$$\frac{True\ positive}{True\ positive + False\ positive} = \frac{9}{9+1} = 90\%$$

Recall =
$$\frac{True\ positive}{True\ positive + False\ negative} = \frac{9}{9+3} = 75\%$$

Polynomial Regression

Polynomial Regression

Useful for both continuous and discrete predictions

$$h_{\theta}(x) = g \left(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1^3 + \theta_6 x_2^3\right)$$

Decision Trees

Conclusion