Lösungen zu Übungsblatt 3

Aufgabe 1. Wir betrachten die beiden Merkmale X: $K\"{o}rpergewicht$ (in kg) und Y: $K\"{o}rpergr\"{o}eta e$ (in cm). Eine Untersuchung von 10 zufällig ausgewählten erwachsenen Personen lieferte folgendes Ergebnis:

k	1	2	3	4	5	6	7	8	9	10
X	80	86	47	64	72	102	106	66	79	82
Y	173	192	166	153	184	202	176	178	174	171

a) Ermitteln Sie den Bravais-Pearson-Korrelationkoeffizienten und den Spearman-Korrelationskoeffizienten und interpretieren Sie die Ergebnisse.

Lösung:

Aus den Formeln ergibt sich für die Merkmale $X=K\ddot{o}rpergewicht$ und $Y=K\ddot{o}rpergr\ddot{o}\beta e$ zunächst

$$\bar{x} = 78.40$$

und

$$\bar{y} = 176.90$$

und damit:

$$r_{X,Y} = \frac{\sum_{i=1}^{10} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{10} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{10} (y_i - \overline{y})^2}} = 0.596$$

Der Korrelationskoeffizient deutet also auf eine mittelstark ausgeprägte positive lineare Korrelation von Körpergewicht und Körpergröße hin.

Für den Spearman-Korrelationskoeffizienten bestimmen wir zunächst die Rangordnungen der Merkmale (jeweils ausgehend von der größten Merkmalsausprägung):

k	1	2	3	4	5	6	7	8	9	10
rg_X	5	3	10	9	7	2	1	8	6	4
rg_Y	7	2	9	10	3	1	5	4	6	8

Für die Mittelwerte erhalten wir nach der allgemeinen Formel

$$\overline{rg_X} = \frac{11}{2} = \overline{rg_Y}$$

und damit:

$$r_{Sp} = \frac{\sum_{i=1}^{10} (rg_{x_i} - 5.5) \cdot (rg_{y_i} - 5.5)}{\sqrt{\sum_{i=1}^{10} (rg_{x_i} - 5.5)^2 \cdot \sum_{i=1}^{10} (rg_{y_i} - 5.5)^2}} = \frac{31}{55} = 0.564$$

Der Spearman-Korrelationskoeffizient deutet also ebenfalls auf eine mittel ausgeprägte positive lineare Korrelation der Rangordnungen von Körpergewicht und Körpergröße hin.

b) Bestimmen Sie die Regressionsgerade für das Merkmal $Y = K\ddot{o}rpergr\ddot{o}\beta e$ in Abhängigkeit von $X = K\ddot{o}rpergewicht$.

Lösung:

Aus Teil a) wissen wir bereits

$$\bar{x} = 78.40$$

und

$$\bar{y} = 176.90$$

Die Koeffizienten \hat{a} und \hat{b} der Regressionsgerade

$$f(x) = \hat{a} \cdot x + \hat{b}$$

ermittelt sich laut Vorlesung nach der Formel

$$\widehat{a} = \frac{\sum_{i=1}^{10} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{10} (x_i - \overline{x})^2} = 0.461$$

und

$$\widehat{b} = \overline{y} - \widehat{a} \cdot \overline{x} = 140.8$$

so dass also die Regressionsgerade die Form

$$f(x) = 0.216 \cdot x + 140.8$$

hat. Das Bestimmtheitsmaß der Regressionsgerade ist

$$R^{2} = \frac{\sum_{i=1}^{10} (f(x_{i}) - \overline{y})^{2}}{\sum_{i=1}^{10} (y_{i} - \overline{y})^{2}} = 0.36$$

Das deutet auf einen eher schwachen Erklärungsgrad der tatsächlichen Werte durch die Regressionsgerade hin. Auch am Graphen sieht man eine passabel gute Erklärung der Werte durch die Regressionsgerade.

Aufgabe 2. Wir betrachten eine Grundgesamtheit Ω . Für $A, B \subseteq \Omega$ bezeichnen wir mit

$$A \setminus B = \{ \omega \in \Omega | (\omega \in A) \land (\omega \notin B) \}$$

die Differenz von A und B. Zeigen Sie, dass für Teilmengen $A, B, C \subseteq \Omega$ gilt:

a)
$$(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$$
.

Lösung:

Wir beweisen die Gleichheit in dem wir nachweisen, dass

$$x \in (A \cap B) \setminus C \iff x \in (A \setminus C) \cap (B \setminus C)$$

Dazu gehen wir vor wie folgt

$$x \in (A \cap B) \setminus C \iff (x \in (A \cap b) \land (x \notin C)$$

$$\iff ((x \in A) \land (x \in B)) \land (\neg(x \in C))$$

$$\iff (x \in A) \land (x \in B) \land (\neg(x \in C)) \land (\neg(x \in C))$$

$$\iff ((x \in A) \land (\neg(x \in C))) \land ((x \in B) \land (\neg(x \in C)))$$

$$\iff (x \in A \setminus C) \land (x \in B \setminus C)$$

$$\iff x \in (A \setminus C) \cap (B \setminus C)$$

Dabei haben wir ausgenutzt, dass

$$\neg(x \in C) \iff \neg(x \in C) \land \neg(x \in C)$$

und das in der Aussagenlogik das Kommutativ- und das Assotiativgesetz gilt.

b)
$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$
.

Lösung:

Wir beweisen die Gleichheit in dem wir nachweisen, dass

$$x \in A \setminus (B \setminus C) \iff x \in (A \setminus B) \cup (A \cap C)$$

Dazu gehen wir vor wie folgt

$$x \in A \setminus (B \setminus C) \iff (x \in A) \land (x \notin (B \setminus C))$$

$$\iff (x \in A) \land \neg (x \in (B \setminus C))$$

$$\iff (x \in A) \land \neg ((x \in B) \land \neg (x \in C))$$

$$\iff (x \in A) \land \neg (x \in B) \lor \neg (\neg (x \in C))$$

$$\iff (x \in A) \land \neg (x \in B) \lor (x \in C)$$

$$\iff ((x \in A) \land \neg (x \in B)) \lor ((x \in A) \land (x \in C))$$

$$\iff (x \in A \setminus B) \lor (x \in A \cap B)$$

$$\iff x \in (A \setminus B) \cup (A \cap C)$$

wobei wir hier speziell das de Morgansche Gesetz der Logik ausgenutzt haben, das in dieser Situation besagt

$$\neg((x \in B) \land \neg(x \in C)) \iff \neg(x \in B) \lor \neg(\neg(x \in C))$$

Aufgabe 3. Wir betrachten eine Grundgesamtheit Ω . Für $B\subseteq \Omega$ bezeichnen wir mit

$$\overline{B} = \Omega \setminus B = \{ \omega \in \Omega | \omega \notin B \}$$

a) Zeigen Sie die de Morganschen Gesetze der Mengenlehre

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \qquad \overline{A \cap B} = \overline{A} \cup \overline{B}$$

Lösung:

Beachten Sie, dass die de Morganschen Regeln der Logik besagen, dass

$$\neg(\alpha \lor \beta) \iff \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \iff \neg\alpha \lor \neg\beta$$

Damit gilt

$$x \in \overline{A \cup B} \iff x \notin A \cup B$$

$$\iff \neg(x \in A \cup B)$$

$$\iff \neg(x \in A \lor x \in B)$$

$$\iff \neg(x \in A) \land \neg(x \in B)$$

$$\iff x \in \overline{A} \land x \in \overline{B}$$

$$\iff x \in \overline{A} \cap \overline{B}$$

also das erste de Morgansche Gesetz, und das zweite erhält man vollkommen analog.

b) Zeigen Sie, dass für Teilmengen $A_n \subseteq \Omega \ (n \in \mathbb{N})$ gilt:

$$\overline{\bigcup_{n\in\mathbb{N}} A_n} = \bigcap_{n\in\mathbb{N}} \overline{A_n}$$

Lösung:

Es ist zu zeigen, dass

$$x \in \overline{\bigcup_{n \in \mathbb{N}} A_n} \iff x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$$

Dazu

$$x \in \overline{\bigcup_{n \in \mathbb{N}} A_n} \quad \Longleftrightarrow \quad x \notin \bigcup_{n \in \mathbb{N}} A_n$$

$$\iff \quad x \notin A_n \qquad \text{für alle } n \in \mathbb{N}$$

$$\iff \quad x \in \overline{A_n} \qquad \text{für alle } n \in \mathbb{N}$$

$$\iff \quad x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$$

und damit ist die Aussage gezeigt.

Natürlich kann sie auch durch Nachweis der beiden Inklusionen

$$\overline{\bigcup_{n\in\mathbb{N}} A_n} \subseteq \bigcap_{n\in\mathbb{N}} \overline{A_n}$$

und

$$\bigcap_{n\in\mathbb{N}} \overline{A_n} \subseteq \overline{\bigcup_{n\in\mathbb{N}} A_n}$$

erfolgen. Diese Nachweise können mit ähnlichen Argumenten geführt werden.

Aufgabe 4. Wir betrachten die Grundgesamtheit $\Omega = \mathbb{N}$. Bestimmen Sie die kleinste σ -Algebra \mathcal{A} auf Ω , für die gilt:

Ist $n \in \mathbb{N}$ eine gerade Zahl, so ist $\{n\} \in \mathcal{A}$.

Lösung:

Zunächst behaupten wir, dass jede Teilmenge $A \subseteq \mathbb{N}$, die nur gerade Zahlen enthält, in \mathcal{A} sein muss. Ist dabei A endlich, $A = \{a_1, \ldots, a_n\}$, so setzen wir

$$A_i = \{a_i\}$$
 für $i = 1, \dots, n$

Nach Voraussetzung sind die $A_i \in \mathcal{A}$, also gilt nach dem dritten Axiom für σ -Algebren auch

$$A = \bigcup_{i=1}^{n} A_i \in \mathcal{A}$$

Ist A unendlich, so ist aber A auf jeden Fall noch abzählbar (da ganz \mathbb{N} abzählbar ist), und wir können $A = \{a_1, a_2, \dots, a_n, \dots\}$ schreiben. Setzen wir

$$A_i = \{a_i\}$$
 für $i \in \mathbb{N}$

so sind nach Voraussetzung die $A_i \in \mathcal{A}$, also gilt nach dem dritten Axiom für $\sigma-$ Algebren auch hier

$$A = \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$$

Damit müssen notwendig alle Teilmengen von \mathbb{N} , die nur gerade Zahlen enthalten, in \mathcal{A} sein. Nach dem zweiten Axiom für σ -Algebra müssen auch Komplemente aller Mengen aus \mathcal{A} in \mathcal{A} enthalten sein, d.h. auch alle Teilmengen $A \subseteq \mathbb{N}$, für die \overline{A} nur gerade Zahlen enthält, müssen in \mathcal{A} sein. Wir behaupten, dass wir damit \mathcal{A} aber auch schon gefunden haben,

$$\mathcal{A} = \{A \subseteq \mathbb{N} \mid A \text{ enthält nur gerade Zahlen oder } \overline{A} \text{ enthält nur gerade Zahlen} \}$$

Die zweite Bedingung kann dabei auch so formuliert werden, dass A alle ungeraden Zahlen enthält.

Klar ist dabei, dass \mathcal{A} nicht leer ist.

Mit A ist auch \overline{A} in A, denn so haben wir A gerade konstruiert.

Sind A_n $(n \in \mathbb{N})$ Mengen aus \mathcal{A} , und enthalten alle A_n nur gerade Zahlen, so enthält auch $\bigcup_{i=1}^{\infty} A_i$ nur gerade Zahlen, ist also in \mathcal{A} . Gibt es dagegen (mindestens) ein A_n ,

dass alle ungeraden Zahlen enthält, so enthält auch $\bigcup_{i=1}^{\infty} A_i$ alle ungeraden Zahlen, ist also in \mathcal{A} .

Damit erfüllt \mathcal{A} alle drei Axiome einer σ -Algebra, ist also eine σ -Algebra. Dass es keine kleinere σ -Algebra mit den gewünschten Eigenschaften geben kann, haben wir bereits gezeigt, denn die Mengen, die nur gerade Zahlen enthalten, müssen alle in \mathcal{A} sein, genauso wie die Mengen die alle ungeraden Zahlen enthalten.