Package 'CommonSplines'

May 12, 2018

Title Regression Spline and Smoothing Spline

Version 1.0.0

Imports MASS
Date 2018-05-11
Authors Xingchen LIU <e0225109@u.nus.edu>, Yuchen SHI <yuchenshinus@gmail.com>, Xiaozhou Yang <yang_xiaozhou@icloud.com></yang_xiaozhou@icloud.com></yuchenshinus@gmail.com></e0225109@u.nus.edu>
Description This is an R package that covers commonly seem regression spline and smoothing spline. For regression spline, commonly seen basis functions are provided such as truncated power basis, natural spline basis and B-spline basis. For smoothing spline, penalties on second order derivative are provided, i.e., cubic smoothing spline.
Depends R (>= $3.3.2$)
License Apache License 2.0
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests knitr, rmarkdown VignetteBuilder knitr R topics documented:
bs_basis
bs_knots
bs_predict
cal_loo_cv_error
css_predict
css train
generate_knots
ncs_basis
ncs_predict
ncs_train
np_reg
pbs_basis
pbs_predict

2 bs_basis

place_knots	4
sel_smoothing_para	4

bs_basis

Index

Generate an evaluated basis matrix for B-splines

16

Description

#' This function generates B-spline basis. The B-splines are defined following the recursive formulas due to de Boor. Only univariate input can be used.

Usage

```
bs_basis(x, order, knots)
```

Arguments

x Predictor variable vector.

order The order of basis functions. order=degree+1

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots. It can be generated by bs_knots.

Value

Basis matrix evaluated at each x value.

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)
order<-4
knots<-bs_knots(x,real_knots=knots,order=order)
basis<-bs_basis(x,order,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots)-order)){
   lines(x,basis[,i])
}</pre>
```

bs_knots 3

bs_knots	Add phantom knots for B-splines

Description

Add phantom knots for B-splines

Usage

```
bs_knots(x, df = NULL, real_knots = NULL, q = FALSE, order)
```

Arguments

x	Predictor variable vector.
df	Degrees of freedom. One can supply df rather than knots.
real_knots	The innerknots and boundary knots that define the spline. The knots can all be innerknots. The knots provided can be quantiles of x or real values. More explanation of knots, df, q can be seen in generate_knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, real_knots are quantiles of x. When q=FALSE, real_knots are real values of x. Default is FALSE.
order	The order of basis functions. order=degree+1

Value

The knots used to construct the B-splines, including innerknots, boundary knots and phantom knots.

bs_predict	Prediction using regression spline with B-spline basis

Description

This function provides prediction at value of interest using regression spline with B-spline basis. The B-splines are generated by bs_basis and trained by the bs_train. The return value of bs_train can be used as an argument of bs_predict

Usage

```
bs_predict(x_test, order = NULL, knots = NULL, beta = NULL,
basis = NULL)
```

Arguments

x_test	The input values at which evaluations are required.
order	The order of basis functions. order=degree+1
knots	Breakpoints that define the spline. knots should be in terms of real-values of x and contain innner, boundary and phantom knots. It can be the return value of bs_knots.
beta	The coefficients of nonparametric regression.
basis	The return value of function bs_train. Instead of specify knots, order and beta,One can supply basis directly.

4 bs_train

Value

The evaluated output at x_test.

See Also

```
bs_basis, bs_train, bs_knots.
```

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
knots <- seq(0.1, 0.9, 0.01)
order<-4
basis<-bs_train(x,y,order,knots)

x_test<-seq(0, 1, 0.01)
fit<-bs_predict(x_test,basis=basis)
plot(x_test,fit)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

bs_train

Train regression coefficients for B-splines.

Description

Train regression coefficients for B-splines.

Usage

```
bs_train(x, y, order, real_knots = NULL, df = NULL, q = FALSE)
```

Arguments

q

X	The input vector of training dataset.
У	The output vector of training dataset.
order	The order of B-spline functions. The default is order=4 for cubic B-splines.
real_knots	The innerknots and boundary knots that define the spline. Phantom knots should not be included. Phantom knots will be generated by bs_knots The knots provided can be quantiles of x or real values. More explanation of knots, df, q can be seen in generate_knots.
4 t	Degrees of freedom. One can supply df rather than knots

df Degrees of freedom. One can supply df rather than knots.

A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, real_knots are quantiles of x. When q=FALSE, real_knots

are real values of x. Default is FALSE.

cal_loo_cv_error 5

Value

A list with the following components:

beta The coefficients of nonparametric regression.

basis The B-spline basis matrix of dimension c(length(x), df). df = length(innerknots)

+ order.

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots

order The order of basis functions. order=degree+1

See Also

```
generate_knots, bs_knots.
```

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
knots <- seq(0, 1, 0.1)
order<-4

basis<-bs_train(x,y,order,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots)+order)){
   lines(x,basis$basismatrix[,i])
}</pre>
```

cal_loo_cv_error

Calculte leave-one-out CV error

Description

Calculte leave-one-out CV error

Usage

```
cal_loo_cv_error(y, f_hat, S)
```

Arguments

y response variable values

f_hat fitted response variable values

S smoother matrix

Value

leave-one-out cross-validation error

6 css_train

css_predict	Prediction using smoothing spline with squared 2nd derivative penalty

Description

This function takes the coefficients trained by CubicSmoothingSpline.Train and evaluate the output at x_test

Usage

```
css_predict(x_test, knots = NULL, beta = NULL, basis = NULL)
```

Arguments

x_test	The input values at which evaluations are required.
knots	Breakpoints that define the spline. knots should be in terms of real-values of x It can be the return value of generate_knots.
beta	The coefficients of nonparametric regression.
basis	The return value of function css_train. Instead of specify knots and beta,One can supply basis directly.

Value

The evaluated output at x_test.

Examples

```
x<-seq(0, 1, 0.0015)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
lambda<-0.001
basis<-css_train(x,y,lambda)
x_test<-seq(0, 1, 0.1)
fit<-css_predict(x_test=x_test,basis=basis)

plot(x_test,fit)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

css_train Train a smoothing spline with squared 2nd derivative penalty using natural cubic spline

Description

This function trains a smoothing spline with squared 2nd derivative penalty. It has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline. This function can be used for small or moderate number of knots. When the number of data N<=50, all knots are included. When N>50, 50 knots are uniformly chosen from the training dataset.

generate_knots 7

Usage

```
css_train(x, y, lambda)
```

Arguments

x The input vector of training dataset.y The output vector of training dataset.

lambda A fixed smoothing parameter.

Value

A list with the following components:

beta The coefficients of natural splines.

S The smoother matrix.

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots

Examples

```
x < -seq(0, 1, 0.001)

y < -x^3 * 3 - x^2 * 2 + x + exp(1) + rnorm(length(x), 0, 0.1)

plot(x,y)

lambda < -0.001

basis < -css\_train(x,y,lambda)

cat("the knots chosen are: ",basis$knots)
```

generate_knots

Generate knots when real value is not specified.

Description

Generate knots when real value is not specified.

Usage

```
generate_knots(x_train, df = NULL, knots = NULL, q = FALSE)
```

Arguments

x_train	The input vector of	of training dataset.

df Degrees of freedom. One can supply df rather than knots; generate_knots then

chooses (df + 1) knots at uniform quantiles of x. The default, df = 4, sets 5 knots

with 3 inner knots at uniform quantiles of x.

knots Breakpoints that define the spline, in terms of quantiles or real valus of x. The

default is five knots at uniform quantiles c(0, .25, .5, .75, 1). Typical values are

the mean or median for one knot, quantiles for more knots.

q A boolean variable define whether knots provided are quantiles or real values.

When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots

provided are real values of x.

8 ncs_predict

Value

A vector of knots in terms of real values of x.

ncs_basis

Generate an evaluated basis matrix for natural cubic splines

Description

Generate an evaluated basis matrix for natural cubic splines

Usage

```
ncs_basis(x, knots)
```

Arguments

x Predictor variable vector.

knots Knots location in terms of real values of x.

Value

Basis matrix evaluated at each x value.

Examples

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)

basis<-ncs_basis(x,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots))){
   lines(x,basis[,i])
}</pre>
```

ncs_predict

Prediction using regression spline with natural cubic spline.

Description

Prediction using regression spline with natural cubic spline.

Usage

```
ncs_predict(x_test, knots = NULL, beta = NULL, basis = NULL)
```

ncs_train 9

Arguments

x_test	The input values at which evaluations are required.
knots	Breakpoints that define the spline. knots should be in terms of real-values of x It can be the return value of generate_knots.

beta The coefficients of nonparametric regression.

basis The return value of function ncs_train. Instead of specify knots and beta,One

can supply basis directly.

Value

y_pred A vector of dimension length(x), the prediction vector evaluated at x_test values.

ncs_train	Train regression coefficients for natural cubic splines.	

Description

Train regression coefficients for natural cubic splines.

Usage

```
ncs_train(x_train, y_train, df = NULL, knots = NULL, q = FALSE)
```

Arguments

x_train	The input vector of training dataset.
y_train	The output vector of training dataset.
df	Degrees of freedom. One can supply df rather than knots; $ncs()$ then chooses $(df + 1)$ knots at uniform quantiles of x. The default, $df = 4$, sets 5 knots with 3 inner knots at uniform quantiles of x.
knots	Breakpoints that define the spline, in terms of quantiles of x or real values of x. The default is five knots at uniform quantiles $c(0, .25, .5, .75, 1)$. Typical values are the mean or median for one knot, quantiles for more knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots

provided are real values of x. Default is FALSE.

Value

A list of following components:

nknots Number of knots.

knots A vector of knot locations.

N Basis matrix evaluated at each x value.

betas Least squure fit parameters.

np_reg

Examples

```
x_train <- seq(1, 10, 0.1)
y_train <- cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1)+rnorm(length(x_train),0,1)
plot(x_train,y_train)
x_test <- seq(1, 10, 0.1)
df <- 10
train_result <- ncs_train(x_train, y_train, df)
print(train_result$betas)
print(train_result$N[1:5,1:5])</pre>
```

np_reg

Nonparametric Regression using spline based methods

Description

This function provides regression using natural cubic splines with truncated power basis functions. Only univariate input can be used.

Usage

```
np_reg(x_train, y_train, x_test, func = "bs", order = 4, df = NULL,
knots = NULL, lambda = 0.001, q = FALSE)
```

Arguments

x_train	The input vector of training dataset.
y_train	The output vector of training dataset.
x_test	The input values at which evaluations are required.
df	Degrees of freedom. One can supply df rather than knots; $(df + 1)$ knots are chosen at uniform quantiles of x. The default, $df = 4$, sets 5 knots with 3 inner knots at uniform quantiles of x.
knots	Breakpoints that define the spline. The default is five knots at uniform quantiles $c(0, .25, .5, .75, 1)$. Typical values are the mean or median for one knot, quantiles for more knots.

Value

y_pred

A vector of dimension length(x), the prediction vector evaluated at x_test values.

```
x_train <- seq(1, 10, 0.1)
y_train <- cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1)+rnorm(length(x_train),0,1)
plot(x_train,y_train)
title('Comparison of Different Degrees of Freedom')
x_test <- seq(1, 10, 0.1)
lines(x_test,cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1),col="red")

df <- 2
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)
lines(x_test,y_pred, col='blue')</pre>
```

pbs_basis 11

```
df <- 4
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)
lines(x_test,y_pred, col='green')
df <- 10
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)
lines(x_test,y_pred, col='black')
legends <- c("Actual", "Prediction: 2 df", "Prediction: 4 df", "Prediction: 10 df")
legend('topleft', legend=legends, col=c('red', 'blue', 'green', 'black'), lty=1, cex=0.8)</pre>
```

pbs_basis

Evaluate basis functions as each x and return the evaluated basis matrix N

Description

Evaluate basis functions as each x and return the evaluated basis matrix N

Usage

```
pbs_basis(x, order, knots)
```

Arguments

x Predictor variable vector.

order The order that defines the power basis spline.

knots The innerknots and boundary knots that define the spline. The knots should be

real values of x. The knots can be generated by generate_knots.

Value

Basis matrix evaluated at each x value.

See Also

```
generate_knots.
```

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)
order<-4
basis<-pbs_basis(x,order,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots)+order)){
   lines(x,basis[,i])
}</pre>
```

pbs_predict

pbs	pr	edi	ct

Prediction using regression spline with trancated power basis

Description

This function provides prediction at value of interest using regression spline with truncated power basis. The truncated power basis are generated by pbs_basis and trained by the pbs_train. The return value of pbs_train can be used as an argument of pbs_predict

Usage

```
pbs_predict(x_test, order = NULL, knots = NULL, beta = NULL,
    basis = NULL)
```

Arguments

x_test	The input values at which evaluations are required.
order	The order of basis functions. order=degree+1
knots	Breakpoints that define the spline, in terms of real values of input. It can be the return value of generate_knots.
beta	The coefficients of nonparametric regression.
basis	The return value of function pbs_train. Instead of specify knots, order and beta,One can supply basis directly.

Value

The evaluated output at x_test.

See Also

```
pbs_basis, pbs_train, generate_knots.
```

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
knots <- c(min(t),2*pi*c(1/4,2/4,3/4),max(t))
order <- 4
basis <- pbs_train(t,y1,order,knots=knots)
fit<-pbs_predict(t,basis=basis)
y.hat <- fit
plot(t, y1, t="1")
lines(t, y.hat, col=2)</pre>
```

pbs_train 13

pbs_train	Regression using Power Basis spline	
-----------	-------------------------------------	--

Description

This function provides regressions using Power Basis splines. The basis are defined as $1,x,x^2,...,x^m,(x-k1)^m(m-1)+,(x-k2)^m(m-1)+,...,(x-kn)^m(m-1)+$ where m is the order, k1, k2 and kn are n knots, '+' denotes the positive part.

Usage

```
pbs_train(x, y, order, df = NULL, knots = NULL, q = FALSE)
```

Arguments

x	The input vector of training dataset.
У	The output vector of training dataset.
order	The order that defines the spline.
df	Degrees of freedom. One can supply df rather than knots.
knots	The innerknots and boundary knots that define the spline. The knots provided can be quantiles of x or real values. More explanation of knots, df, q can be seen in <code>generate_knots</code> .
q	A boolean variable define whether knots provided are quantiles or real values. When $q=TRUE$, knots provided are quantiles of x. When $q=FALSE$, knots provided are real values of x. Default is FALSE.
x_test	The input values at which evaluations are required.

Details

Only univariate input can be used.

Value

A list with the following components:

beta	The coefficients of nonparametric regression.
basis	The spline basis matrix of dimension $c(length(x), length(knots)+order)$
knots	The knots used to construct the power basis splines
order	The order of basis functions. order=degree+1

See Also

```
{\tt generate\_knots}.
```

14 sel_smoothing_para

Examples

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
knots <- c(min(t),2*pi*c(1/4,2/4,3/4),max(t))
order <- 4
basis <- pbs_train(t,y1,order,knots=knots)
cat("trained coeffecients for every spline are",basis$beta)</pre>
```

place_knots

Find evenly spaced knots by quantile

Description

Knots found include boundary knots at 0th and 100th quantile.

Usage

```
place_knots(nknots, x)
```

Arguments

nknots Number of knots to be located.

x Data vector on which knots are placed.

Value

A named vector with knot quantiles and values.

sel_smoothing_para

Select smoothing parameter based on leave-one-out CV error

Description

Select smoothing parameter based on leave-one-out CV error

Usage

```
sel_smoothing_para(x, y, cv_lambda)
```

Arguments

x predictor variabley response variable

cv_lambda vector of candidate lambda values

sel_smoothing_para 15

Value

lamdba value that minimizes leave-one-out CV error

Index

```
bs_basis, 2
bs\_knots, 3
bs_predict, 3
bs_train, 4
cal_loo_cv_error, 5
css_predict, 6
\mathsf{ncs\_basis}, \textcolor{red}{8}
\verb|ncs_predict|, 8
\mathsf{ncs\_train}, \textcolor{red}{9}
\mathsf{np\_reg},\, \textcolor{red}{10}
{\tt pbs\_basis}, 11
pbs_predict, 12
pbs_train, 13
place_knots, 14
sel_smoothing_para, 14
```