Multidimensional and Multilevel Method to Find Irregular Patterns in Interaction Data

Audrey Wilmet¹, Robin Lamarche-Perrin²

¹Laboratoire d'informatique de Paris 6 (LIP6) - Complex Networks Team http://www.complexnetworks.fr/ ²Institut des Systèmes Complexes Paris Île de France (ISC-PIF)

EUSN'17, Mainz, September 28, 2017

Information

CLIL

Normalisation

Comparison

Local

Multi-level -dimensional

Method

Irregular Patterns

(atterns

(d, h) - Global

(a, d, h) - Local

Other

Conclusion

Introduction

Information

Normalisation

ormalisatio

Comparison Global

Multi-level -dimensional

Method Irregular

Patterns

(d, h) - Global (a, d, h) - Local Other

Conclusion

Interaction Data

• Set of interactions: set of triplets (u, v, t).

a interacted with c at time t = 3.5.

- Goal: find irregular patterns in interactions,
- \rightarrow global high activity of a node, **u**,
- \rightarrow sharp variation in a node's activity, (u,t),
- \rightarrow high activity between two nodes, (u,v),
- → high activity at a particular moment, t.
- Need of a framework to study interactions:
- → modelling of interaction data as a cube,
- \rightarrow definition of 3 multilevel operations to study the cube.

Information

Local

Normalisation

Comparison

Global

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local

Conclusion

Political communication on Twitter

- Interactions on twitter = Retweet
- \rightarrow spreader has retweeted author at hour h of day d
- \rightarrow (s, a, d, h).
- Retweets : sampled from political accounts and keywords.
 - Example

ta Emmanuel Macron a retweeté

Élysée 🤣 @Elysee · 29 août

Discours d'ouverture d'@EmmanuelMacron pour la semaine des Ambassadeurs. #SemaineAmbass

(s, a, d, h) = (Emmanuel Macron, Elysee, August 29, 10h)

Information

Local

Local

Normalisation

Comparison Global

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local

Conclusion

Cube representation of (s, a, d, h)

 \rightarrow August '16: |V| = 211, 155, |E| = 990, 005, D = [1, 31], H = [0, 23].

 \rightarrow irregular patterns: political leaders, media events, etc.

Information

Local

Normalisation

Comparison

Local

Multi-level -dimensional

Method

Irregular Patterns

Patterns

(d, h) - Global

(a, d, h) - Local

Other

Conclusion

Information

Information

Normalisation

Normalisatio

Comparison

Multi-level

-dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local

Other

Conclusion

Local Information

Entity: (s, a, d, h)

Authors

- Activity function v(s, a, d, h)
- \Rightarrow number of retweets of a by s during hour h of day d.

Information

Global Normalisation

Comparison

Multi-level -dimensional Method

Irregular Patterns

(a, d, h) - Local

Conclusion

Global Information: $v(., a, d, h) = \sum_{s \in V} v(s, a, d, h)$

Entity: (a, d, h)

Authors

Authors

Spreaders

In formation

Normalisation

Global

Comparison

Global

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local

Other

Conclusion

Global Information:

$$v(s, ., ., .) = \sum_{a \in V} \sum_{d \in D} \sum_{h \in H} v(s, a, d, h)$$

Information

Cloba

Normalisation

Comparison

Local

Multi-level -dimensional

Method

Irregular

Patterns

(d, h) - Global

(a, d, h) - Local

Conclusion

Normalisation

Information

Normalisation

Comparison

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global

Conclusion

Normalisation

[Grasland et al., 2014], [Geomedia]

Evaluate the quantity of interaction of an entity with respect to another more global value.

 \rightarrow An aggregated value: $v_{obs} = v(., a, d, h)/v(., a, ...)$,

Information

Normalisation

Comparison

Globa

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local

Conclusion

Normalisation

[Grasland et al., 2014], [Geomedia]

Evaluate the quantity of interaction of an entity with respect to another more global value.

- \rightarrow An aggregated value,
- ightarrow An expected value:

$$v(., a, d, h)$$
 vs $v_{exp} = \text{mean of } v(., a, d, h) \text{ on } a$,

Information

Normalisation

Comparison

GIOD

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local

Conclusion

Normalisation

[Grasland et al., 2014], [Geomedia]

Evaluate the quantity of interaction of an entity with respect to another more global value.

- \rightarrow An aggregated value: $v_{obs} = v(., a, d, h)/v(., a, d, .)$,
- ightarrow Its expected value: v(.,a,d,h) vs v_{exp} ,
- \rightarrow Both: $v_{obs} = v(., a, d, h)/v(., a, d, .)$ vs v_{exp} .

Information

Clobal

Normalisation

Comparison

Giobai

Multi-level -dimensional Method

Irregular

Patterns

(d, h) - Global

(a, h) - Global (a, d, h) - Local

(a, a, n) - 1 Other

Conclusion

Comparison

Information

Normalisation

Comparison Global

Local

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local

Conclusion

Global Comparison

• Principle: comparing the quantity of interactions of an entity to the quantities of interactions obtained by all other entities of the same type.

Example:

Activity function: v(., a, d, h)

Entity: (a, d, h)

Compared Entities: $(a, d, h) \forall a \in V, d \in D$ and $h \in H$

Information

Normalisation

Comparison

Local

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local

Conclusion

Local Comparison

• Principle: fixing a dimension in an entity and comparing its value to all others obtained by varying the remaining variable(s).

Example:

Activity function: v(., a, d, h)

Entity: (a, d, h)

Compared Entities: $(a, d', h'), \forall a \in V$

Information

Local

Normalisation

Comparison

Global

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local

Conclusion

Multilevel & Multidimensional Method

To find irregular patterns:

- -1 st step: choice of an entity and measure of the quantity of interaction (information),
- 2 nd step (optional): normalisation of the quantity of interaction,
- 3 rd step: choice of the comparison.

Information

Local

Normalisation

Comparison

Global

Multi-level

-dimensional Method

Irregular Patterns

(d, h) - Global

(a, d, h) - Local Other

Conclusion

Irregular Patterns

Information

Normalisation

Comparison

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global

Conclusion

Abnormal (d, h) - **Global Comparison**

Entity: (d, h),

Information: v(.,.,d,h),

Normalisation: v(.,.,d,h)/v(.,.,d,.) vs v_{exp}

Comparison: Global.

Information

Local

Normalisation

Comparison

Global

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global

(a, d, h) - Loc Other

Conclusion

Abnormal (d, h) - **Results**

Information

Local

Normalisation

Comparison

Global

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local

(a, d, h) - Local Other

Conclusion

(a, d, h) - Local Comparison

Entity: (a, d, h),

Normalisation: v(., a, d, h)/v(., ., d, h) vs v_{ex}

Comparison: (d', h') fixed.

Information

Normalisation

Comparison

Multi-level -dimensional Method

Irregular

Patterns

(d, h) - Global (a, d, h) - Local

Conclusion

Abnormal (a, d, h) - **Results**

Information

Normalisation

Comparison

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global

(a, d, h) - Local Other

Conclusion

Abnormal (a, d, h) - **Analysis**

Information

Normalisation

Comparison

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global

(a, d, h) - Local

Conclusion

Other approach

Entity: (a, d, h),

Normalisation: v(., a, d, h)/v(., ., d, h) vs v_{exp} Comparison: Global.

Entity: (s, a, d, h),

Normalisation: v(s, a, d, h)/v(., a, d, h) vs

Comparison: Local, (a', d', h') fixed.

Information

Normalisation

Comparison

Local

Multi-level -dimensional Method

Irregular Patterns

(d, h) - Global (a, d, h) - Local Other

Conclusion

Conclusion

- Multidimensional and multilevel method:
- numerous ways to explore data,
- \neq types of irregular patterns: dimensions, normalities,
- Aggregate accounts belonging to the same user category, political groups.

⇒ difficulties in finding a relevant study approach.

Information

Local

Normalisation

Comparison

Global

Multi-level -dimensional Method

Irregular

Patterns

(d, h) - Global (a, d, h) - Local

Conclusion

Thanks for your attention! Questions

Acknowledgement

