

arXiv:

Website:

WILLIAM LEENEY AND RYAN MCCONVILLE {will.leeney, ryan.mcconville}@bristol.ac.uk School of Engineering Mathematics and Technology

University of Bristol

Federated Learning is machine learning between a network of clients whilst maintaining data residency and/or privacy constraints. Community Detection is the unsupervised discovery of clusters of nodes within graph-structured data.

Federated Community Detection is challenging due to the complexity induced due to missing connectivity information between privately held graphs.

01 REAL-WORLD APPLICATIONS

DETECTION

- Banks: collaboration on anti-fraud measures that can't share client information -> each client owns a sub-section of a global graph.
- Social Media: preventing fake news propagation between platforms -> data is heterogeneous (comment != tweet)
- Pharmaceuticals: molecular copyright ownership -> expensive proprietary feature space information restriction
- Hospitals: can't share user identities -> restrictions on connectivity space

02 PROBLEM STATEMENT

 ${\it C}$: Number of Clients

 $G = [G_1, G_2, \ldots, G_C]$: Partitioned Graph $= [\{X_1, A_1\}, \{X_2, A_2\}, \ldots, \{X_C, A_C\}]$

 N_c, M_c : Each own nodes and edges

 $Y_C \in \{1,2,\ldots,k\}$: Output Community Assignments

Constraints:

- Clients don't share data
- Loss function doesn't use labels

03 PROPOSED SOLUTION

(performed privately by each client) —

N

A degree vector: $A = \sum_{i=1}^{N} A_i$

 $A'=D^{-rac{1}{2}}(A+I)D^{-rac{1}{2}}$: normalise adjacency using degree vector: $d_u=\sum_{v=1}^N A_{uv}$ $X_{eta_u=}\left\{x_v\in v\,|a'_{uv}=1
ight\}$: feature neighbourhood

 $h_u = \sigma(b_u + \Sigma_{v \in eta_u} a'_{uv} \psi(x_v))$: node-wise message passing

 $F(X) = [h_1, h_2, \dots, h_N]^T$: GNN function

 $Y=\xi(F(X))$: forward pass $Y'\in \left\{0,1
ight\}^{N imes k}$: relax to one-hot assignments

 $L\left(G,w
ight) = -rac{1}{2M}Tr\Big({Y'}^TAY' - Y'd^TdY'\Big) + \lambda_r\left(rac{\sqrt{k}}{N}\left\|\sum_u Y'_u
ight\|_F - 1
ight)$ [1] $w_c\left(r+1
ight) \leftarrow w_c\left(r
ight) - \eta igtriangledown L$: update weights with DMoN loss

 $w' \leftarrow \sum^{C=1} rac{N_c}{N} w_c$: aggregate weights at server

: repeat for r local rounds

and r_q aggregation rounds

 $\|\cdot\|_F$: Frobius Norm ψ, ξ : neural networks η : learning rate

04 EXPERIMENT DETAILS

- Local rounds: r = 5
- Communication rounds: r_g = 250
- Cluster size regularisation: λ_r = 1.0 Adam optimiser using a learning rate: η = 0.001
- Dimensionality of hidden space features: 64
- Training/Validation/Test splits: 0.7/0.1/0.2
- $\bullet\ W$ Randomness Coefficient quantifies the consistency of algorithm ranking comparisons over random seeds.

$$W=1-rac{1}{T}\sum_{t\in T}rac{12S}{n_s\left(n_{a^3}-n_a
ight)}$$
 [2]

 n_s :(3) number of seeds

 n_a :number of algorithms

S :sum of squared deviations

T :set of benchmarking tests

Experiment 1 (W Randomness Coefficient = 0.212): No overlapping/shared nodes between clients in dataset partitioning.

Experiment 2 (W Randomness Coefficient = 0.259):

Nodes may overlap between clients.

Datasets	Cora	CiteSeer	PubMed
	I	3327	19717
n features	1433	3703	500
n edges	10556	9104	88648

05 RESULTS

