```
In [34]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
import warnings
warnings.filterwarnings('ignore')
```

In [35]:

```
salary=pd.read_csv('salary.csv')
```

In [36]:

salary

Out[36]:

	salary	experience	education	management
0	13876	1	Bachelor	Υ
1	11608	1	Ph.D	N
2	18701	1	Ph.D	Υ
3	11283	1	Master	N
4	11767	1	Ph.D	N
5	20872	2	Master	Υ
6	11772	2	Master	N
7	10535	2	Bachelor	N
8	12195	2	Ph.D	N
9	12313	3	Master	N
10	14975	3	Bachelor	Υ
11	21371	3	Master	Υ
12	19800	3	Ph.D	Υ
13	11417	4	Bachelor	N
14	20263	4	Ph.D	Υ
15	13231	4	Ph.D	N
16	12884	4	Master	N
17	13245	5	Master	N
18	13677	5	Ph.D	N
19	15965	5	Bachelor	Υ
20	12336	6	Bachelor	N
21	21352	6	Ph.D	Υ
22	13839	6	Master	N
23	22884	6	Master	Υ
24	16978	7	Bachelor	Υ
25	14803	8	Master	N
26	17404	8	Bachelor	Υ
27	22184	8	Ph.D	Υ
28	135/18	ρ	Rachelor	N

20	salary experience education			management
29	14467	10	Bachelor	N-
30	15942	10	Master	N
31	23174	10	Ph.D	Υ
32	23780	10	Master	Υ
33	25410	11	Master	Υ
34	14861	11	Bachelor	N
35	16882	12	Master	N
36	24170	12	Ph.D	Υ
37	15990	13	Bachelor	N
38	26330	13	Master	Υ
39	17949	14	Master	N
40	25685	15	Ph.D	Υ
41	27837	16	Master	Υ
42	18838	16	Master	N
43	17483	16	Bachelor	N
44	19207	17	Master	N
45	19346	20	Bachelor	N

In [37]:

```
salary.describe()
```

Out[37]:

	salary	experience
count	46.000000	46.000000
mean	17270.195652	7.500000
std	4716.631513	5.171503
min	10535.000000	1.000000
25%	13320.750000	3.000000
50%	16436.000000	6.000000
75%	20719.750000	11.000000
max	27837.000000	20.000000

In [38]:

```
salary.dtypes
```

Out[38]:

salary int64
experience int64
education object
management object
dtype: object

In [39]:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
list1=['salary','experience','education','management']
for val in list1:
    salary[val]=le.fit_transform(salary[val].astype(str))
```

In [40]:

```
salary
```

	salary	experience	education	management
0	15	0	0	1
1	3	0	2	0
2	28	0	2	1
3	1	0	1	0
4	4	0	2	0
5	34	9	1	1
6	5	9	1	0
7	0	9	0	0
8	6	9	2	0
9	7	11	1	0
10	19	11	0	1
11	36	11	1	1
12	32	11	2	1
13	2	12	0	0
14	33	12	2	1
15	10	12	2	0
16	9	12	1	0
17	11	13	1	0
18	13	13	2	0
19	21	13	0	1
20	8	14	0	0
21	35	14	2	1
22	14	14	1	0
23	38	14	1	1
24	24	15	0	1
25	17	16	1	0
26	25	16	0	1
27	37	16	2	1
28	12	16	0	0
29	16	1	0	0
30	20	1	1	0
31	39	1	2	1
32	40	1	1	1
33	42	2	1	1
34	18	2	0	0
35	23	3	1	0
36	41	3	2	1
37	22	4	0	0
38	44	4	1	1
39	27	5	1	0
40	43	6	2	1
41	45	7	1	1
42	29	7	1	0
43	26	7	0	0
44	30	8	1	0
45	31	10	0	0

In [41]:

```
sns.heatmap(salary.isnull())
```

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x25fa91caf40>

In [42]:

```
salary.isnull().sum()
```

Out[42]:

salary 0
experience 0
education 0
management 0
dtype: int64

In [43]:

salary.corr()

Out[43]:

	salary	experience	education	management
salary	1.000000	-0.080479	0.229857	0.730005
experience	-0.080479	1.000000	-0.131927	0.027792
education	0.229857	-0.131927	1.000000	0.196684
management	0.730005	0.027792	0.196684	1.000000

In [44]:

```
plt.figure(figsize=(10,6))
sns.heatmap(salary.corr(),annot=True)
```

Out[44]:

<matplotlib.axes._subplots.AxesSubplot at 0x25fa915a940>

In [45]:

```
salary.skew()
```

Out[45]:

 salary
 0.000000

 experience
 -0.189173

 education
 0.038033

 management
 0.272071

dtype: float64

In [46]:

```
from scipy.stats import zscore
z_score=abs(zscore(salary))
print(salary.shape)
sal=salary.loc[(z_score<3).all(axis=1)]
print(sal.shape)</pre>
```

(46, 4)

(46, 4)

In [47]:

sal

Out[47]:

	salary	experience	education	management
0	15	0	0	1
1	3	0	2	0
2	28	0	2	1
3	1	0	1	0
4	4	0	2	0
5	34	9	1	1
6	5	9	1	0
7	0	9	0	0
8	6	9	2	0
9	7	11	1	0
10	19	11	0	1
11	36	11	1	1
12	32	11	2	1
13	2	12	0	0
14	33	12	2	1
15	10	12	2	0
16	9	12	1	0
17	11	13	1	0
18	13	13	2	0
19	21	13	0	1

20	salary	experienq _e	education	management
21	35	14	2	1
22	14	14	1	0
23	38	14	1	1
24	24	15	0	1
25	17	16	1	0
26	25	16	0	1
27	37	16	2	1
28	12	16	0	0
29	16	1	0	0
30	20	1	1	0
31	39	1	2	1
32	40	1	1	1
33	42	2	1	1
34	18	2	0	0
35	23	3	1	0
36	41	3	2	1
37	22	4	0	0
38	44	4	1	1
39	27	5	1	0
40	43	6	2	1
41	45	7	1	1
42	29	7	1	0
43	26	7	0	0
44	30	8	1	0
45	31	10	0	0

In [48]:

x=sal.iloc[:,0:-1]

In [49]:

×

Out[49]:

	salary	experience	education
0	15	0	0
1	3	0	2
2	28	0	2
3	1	0	1
4	4	0	2
5	34	9	1
6	5	9	1
7	0	9	0
8	6	9	2
9	7	11	1
10	19	11	0
11	36	11	1
12	32	11	2
13	2	12	0

14	sala ³ 3	experiend2	education
15	10	12	2
16	9	12	1
17	11	13	1
18	13	13	2
19	21	13	0
20	8	14	0
21	35	14	2
22	14	14	1
23	38	14	1
24	24	15	0
25	17	16	1
26	25	16	0
27	37	16	2
28	12	16	0
29	16	1	0
30	20	1	1
31	39	1	2
32	40	1	1
33	42	2	1
34	18	2	0
35	23	3	1
36	41	3	2
37	22	4	0
38	44	4	1
39	27	5	1
40	43	6	2
41	45	7	1
42	29	7	1
43	26	7	0
44	30	8	1
45	31	10	0

In [50]:

```
x.shape
```

Out[50]:

(46, 3)

In [51]:

```
y=sal.iloc[:,-1]
```

In [52]:

Out[52]:

0	1
1	0
2	1
3	0

0

```
6
      0
7
      0
8
      0
9
      0
10
11
12
      1
13
14
      1
15
      0
16
17
      0
18
      0
19
      1
20
      0
21
      1
22
      0
23
      1
24
      1
25
      0
26
      1
27
28
      0
29
      0
30
      0
31
      1
32
      1
33
      1
34
      0
35
      0
36
      1
37
      0
38
      1
      0
39
40
      1
41
42
      0
43
44
      0
45
     0
Name: management, dtype: int32
In [53]:
y.shape
Out[53]:
(46,)
In [54]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.22,random_state=42)
In [55]:
lr=LogisticRegression()
lr.fit(x_train,y_train)
lr.score(x_train,y_train)
pred=lr.predict(x test)
print(accuracy_score(y_test,pred))
print(confusion_matrix(y_test,pred))
print(classification_report(y_test,pred))
0.81818181818182
[[6 2]
 [0 3]]
                         recall f1-score
              precision
                                              support
           0
                   1.00
                            0.75
                                        0.86
                                                     8
                   0.60
                             1.00
                                        0.75
                                                     3
           1
                                        0.82
                                                    11
    accuracy
```

```
0.80 0.88 0.80 11
0.89 0.82 0.83 11
  macro avg
                0.89
                          0.82
                                   0.83
weighted avg
```

```
In [56]:
```

```
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier()
knn.fit(x_train,y_train)
knn.score(x_train,y_train)
predknn=knn.predict(x_test)
print(accuracy_score(y_test,predknn))
print(confusion_matrix(y_test,predknn))
print(classification_report(y_test,predknn))
1.0
[[8 0]
[0 3]]
             precision
                          recall f1-score
                                             support
```

```
1.00
                         1.00
                                   1.00
                                               8
         1
                1.00
                         1.00
                                  1.00
                                               3
                                   1.00
                                              11
   accuracy
                 1.00
                        1.00
  macro avg
                                   1.00
                                              11
                1.00
                         1.00
                                  1.00
                                              11
weighted avg
```

In [57]:

```
gnb=GaussianNB()
gnb.fit(x train,y train)
gnb.score(x_train,y_train)
predgnb=gnb.predict(x_test)
print(accuracy_score(y_test,predgnb))
print(confusion_matrix(y_test,predgnb))
print(classification_report(y_test,predgnb))
```

0.72727272727273 [[6 2]

[1 2]]

[+ 2]]	precision	recall	f1-score	support
0 1	0.86 0.50	0.75 0.67	0.80 0.57	8
accuracy macro avg weighted avg	0.68 0.76	0.71 0.73	0.73 0.69 0.74	11 11 11

In [58]:

```
dtc=DecisionTreeClassifier()
dtc.fit(x_train,y_train)
dtc.score(x_train,y_train)
preddtc=dtc.predict(x_test)
print(accuracy_score(y_test,preddtc))
print(confusion matrix(y test,preddtc))
print(classification_report(y_test,preddtc))
```

0.9090909090909091

[[7 1]

[0 3]]					
		precision	recall	f1-score	support
	0	1.00	0.88	0.93	8
	1	0.75	1.00	0.86	3
accur	racy			0.91	11
macro	avg	0.88	0.94	0.90	11
weighted	avg	0.93	0.91	0.91	11

In [59]:

ad=AdaBoostClassifier()

from sklearn.ensemble import AdaBoostClassifier

```
ad.fit(x train,y train)
ad.score(x_train,y_train)
predad=ad.predict(x test)
print(accuracy_score(y_test,predad))
print(confusion_matrix(y_test,predad))
print(classification_report(y_test,predad))
0.9090909090909091
[[7 1]
[0 3]]
             precision recall f1-score support
                         0.88
          0
                  1.00
                                      0.93
                                                   8
                          1.00
                  0.75
                                     0.86
                                                  3
                                     0.91
   accuracy
                                                 11
                          0.94
                                    0.90
                  0.88
                                                 11
  macro avg
                  0.93
                            0.91
                                     0.91
weighted avg
In [60]:
rf=RandomForestClassifier()
rf.fit(x_train,y_train)
rf.score(x train,y train)
predrf=rf.predict(x test)
print(accuracy_score(y_test,predrf))
print(confusion_matrix(y_test,predrf))
print(classification_report(y_test,predrf))
1.0
[[8 0]
[0 3]]
                        recall f1-score support
             precision
                        1.00
          Ω
                  1.00
                                    1.00
                                                   8
                  1.00
                           1.00
                                     1.00
                                                  3
          1
                                     1.00
   accuracy
                                                 11
  macro avg
                  1.00
                            1.00
                                      1.00
                                                  11
                                                 11
                  1.00
                                     1.00
weighted avg
                            1.00
In [61]:
#AdaBoostClassifier is the best model among all models
import joblib
joblib.dump(ad,'salary.pkl')
Out[61]:
['salary.pkl']
```