264 Variables aléatoires discrètes. Exemples et applications.

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to \mathbb{R}$ une variable aléatoire réelle. On munit \mathbb{R} de sa tribu borélienne $\mathcal{B}(\mathbb{R})$.

I - Généralités

1. Définitions

Définition 1. — On dit qu'une loi μ est **discrète** s'il existe un ensemble D fini tel que $\mu(D) = 1$.

— On dit que la variable aléatoire X est discrète si sa loi \mathbb{P}_X est discrète.

Remarque 2. Cela revient à dire que $X(\Omega)$ est fini ou est dénombrable.

[**GOU21**] p. 335

p. 335

Exemple 3. On pose $\Omega = \{(\omega_n) \in \mathbb{R}^n \mid \omega_n \in \{0,1\} \, \forall n \in \mathbb{N}\} \text{ et } X : (\omega_n) \mapsto \inf\{n \in \mathbb{N} \mid \omega_n = 0\}.$ Alors X est une variable aléatoire discrète, à valeurs dans $\mathbb{N} \cup \{+\infty\}$.

Proposition 4. Si X est une variable aléatoire discrète à valeurs dans un ensemble dénombrable D, alors :

р. 131

- (i) $\forall A \in \mathcal{B}(\mathbb{R}), \mathbb{P}_X(A) = \sum_{i \in D \cap A} \mathbb{P}(X = i).$
- (ii) $\mathbb{P}_X = \sum_{i \in D} \mathbb{P}(X = i) \delta_i$ où les δ_i sont des masses de Dirac (voir Exemple 7).

Remarque 5. Si D est un ensemble fini ou dénombrable et $(p_i)_{i \in D}$ est une famille de réels positifs de somme égale à 1, alors en posant $\Omega = D$, $\mathscr{A} = \mathscr{P}(D)$, $X : \omega \mapsto \omega$ et $\mathbb{P} = \sum_{i \in D} \mathbb{P}(X = i)\delta_i$, on a construit une variable aléatoire discrète X sur $(\Omega, \mathscr{A}, \mathbb{P})$.

2. Lois discrètes usuelles

Définition 6. Si $A \subseteq \Omega$, l'application \mathbb{I}_A , appelée **indicatrice** de A est définie sur Ω par

$$\begin{array}{ccc}
\Omega & \to & \{0; 1\} \\
\mathbb{I}_A : & & \downarrow & \begin{cases}
1 \text{ si } x \in A \\
0 \text{ sinon}
\end{cases}$$

Exemple 7 (Mesure de Dirac). Si $x \in \Omega$, on pose $\delta_x : A \mapsto \mathbb{I}_A(x)$. C'est une loi discrète sur $\mathscr{P}(\Omega)$.

Exemple 8 (Loi uniforme). Soit $E \subseteq \Omega$ fini. On appelle loi uniforme sur E la loi discrète définie sur $\mathscr{P}(\Omega)$ par

$$\mathcal{P}(\Omega) \to \begin{bmatrix} 0,1 \end{bmatrix}$$

$$A \mapsto \frac{|A \cap E|}{|E|}$$

Remarque 9. Il s'agit du nombre de cas favorables sur le nombre de cas possibles. Ainsi, X suit la loi uniforme sur E si on a $\forall x \in E$, $\mathbb{P}(X = x) = \frac{1}{|E|}$ et $\forall x \notin E$, $\mathbb{P}(X = x) = 0$.

C'est, par exemple, la loi suivie par une variable aléatoire représentant le lancer d'un dé non truqué avec E = [1, 6].

Exemple 10 (Loi de Bernoulli). X suit une loi de Bernoulli de paramètre $p \in [0, 1]$, notée $\mathcal{B}(p)$, si $\mathbb{P}(X = 1) = p$ et $\mathbb{P}(X = 0) = 1 - p$. Dans ce cas, X est bien une loi discrète et on a

$$\mathbb{P}_X = (1 - p)\delta_0 + p\delta_1$$

Exemple 11 (Loi binomiale). X suit une loi de binomiale de paramètres $n \in \mathbb{N}$ et $p \in [0, 1]$, notée $\mathcal{B}(n, p)$, si X est la somme de n variables aléatoires indépendantes qui suivent des lois de Bernoulli de paramètre p. Dans ce cas, X est bien une loi discrète et on a

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

Remarque 12. Il s'agit du nombre de succès pour *n* tentatives.

C'est, par exemple, la loi suivie par une variable aléatoire représentant le nombre de "Pile" obtenus lors d'un lancer de pièce équilibrée.

Exemple 13 (Loi géométrique). X suit une loi géométrique de paramètre $p \in]0,1]$, notée $\mathcal{G}(p)$, si l'on a

$$\forall k \in \mathbb{N}^*, \mathbb{P}(X = k) = p(1 - p)^{k - 1}$$

Remarque 14. Il s'agit d'une succession de k-1 échecs consécutifs suivie d'un succès.

C'est, par exemple, la loi suivie par une variable aléatoire représentant le nombre de lancers effectués avant d'obtenir "Pile" lors d'un lancer de pièce équilibrée.

Exemple 15 (Loi de Poisson). X suit une loi de Poisson de paramètre $\lambda > 0$, notée $\mathcal{P}(\lambda)$, si l'on a

$$\forall k \in \mathbb{N}^*, \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Remarque 16. Cette loi est une bonne modélisation pour le nombre de fois où un événement rare survient (par exemple, un tremblement de terre).

p. 298

II - Propriétés spécifiques aux variables aléatoires discrètes

1. Indépendance

Définition 17. On dit que des variables aléatoires $X_1, ... X_n$, sont **indépendantes** si

$$\mathbb{P}_{(X_1,...,X_n)} = \bigotimes_{i=1}^n \mathbb{P}_{X_i}$$

p. 238

[GOU21]

p. 128

Exemple 18. Si X_1 et X_2 sont des variables aléatoires indépendantes suivant des lois de Poisson de paramètres respectifs λ et μ , alors $X_1 + X_2$ suit une loi de Poisson de paramètre $\lambda + \mu$.

Contre-exemple 19. Soient X_1 et X_2 deux variables aléatoires indépendantes telles que

$$\forall i \in [1,2], \mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = \frac{1}{2}$$

On pose $X_3 = X_1 X_2$. Alors, X_2 et X_3 sont indépendantes, X_1 et X_3 aussi, mais X_1 , X_2 et X_3 ne le sont pas.

Proposition 20. Des variables aléatoires discrètes X_1, \ldots, X_n sont indépendantes si et seulement si

$$\forall j \in \llbracket,1,n\rrbracket, \, \forall x_j \in X_j(\Omega), \, \mathbb{P}(X_1=x_1,\ldots,X_n=x_n) = \prod_{j=1}^n \mathbb{P}(X=x_i)$$

Proposition 21. Soient X_1, \ldots, X_n des variables aléatoires discrètes définies sur $(\Omega, \mathcal{A}, \mathbb{P})$, $f: X_1(\Omega) \times \cdots \times X_m(\Omega) \to F$ et $g: X_{m+1}(\Omega) \times \cdots \times X_n(\Omega) \to F'$ deux fonctions. Si X_1, \dots, X_n sont indépendantes, alors il en est de même de $f(X_1, ..., X_m)$ et $g(X_{m+1}, ..., X_n)$.

2. Espérance

— On note $\mathscr{L}_1(\Omega, \mathscr{A}, \mathbb{P})$ (ou simplement $\mathscr{L}_1(\Omega)$ voire \mathscr{L}_1 s'il n'y a pas d'ambiguïté) l'espace des variables aléatoires intégrables sur $(\Omega, \mathcal{A}, \mathbb{P})$.

— Si $X \in \mathcal{L}_1$, on peut définir son **espérance**

$$\mathbb{E}(X) = \int_{\Omega} X(\omega) \, \mathrm{d}\mathbb{P}(\omega)$$

Théorème 23 (Transfert). Si X est une variable aléatoire dont la loi \mathbb{P}_X admet une densité fpar rapport à \mathbb{P} et si g est une fonction mesurable, alors

$$g(X) \in \mathcal{L}_1 \iff \int_{\mathbb{R}} |g(x)| f(x) \, d\mathbb{P}(x) < +\infty$$

et dans ce cas,

$$\mathbb{E}(g(X)) = \int_{\mathbb{R}} g(x) f(x) \, \mathrm{d}\mathbb{P}(x)$$

Corollaire 24. Soit g une fonction mesurable. Si X est une variable aléatoire discrète telle que $X(\Omega) = D$, alors

$$g(X) \in \mathcal{L}_1 \iff \sum_{i \in D} |g(i)| \mathbb{P}(X = i) < +\infty$$

et dans ce cas,

$$\mathbb{E}(g(X)) = \sum_{i \in D} g(i) \mathbb{P}(X=i)$$

Remarque 25. En reprenant les notations précédentes, et avec $g: x \mapsto x$, on a

$$X \in \mathcal{L}_1 \iff \sum_{i \in D} |i| \mathbb{P}(X = i) < +\infty$$

et dans ce cas,

$$\mathbb{E}(X) = \sum_{i \in D} i \mathbb{P}(X = i)$$

Exemple 26. — $\mathbb{E}(\mathbb{I}_A) = \mathbb{P}(A)$.

$$-X \sim \mathcal{B}(n,p) \Longrightarrow \mathbb{E}(X) = np.$$

$$\begin{split} & - X \sim \mathcal{B}(n,p) \implies \mathbb{E}(X) = np. \\ & - X \sim \mathcal{G}(p) \implies \mathbb{E}(X) = \frac{1}{p}. \end{split}$$

$$-X \sim \mathcal{P}(\lambda) \Longrightarrow \mathbb{F}(X) = \lambda$$

Proposition 27. Si X est à valeurs dans $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$, alors $\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(X > k)$.

p. 159

p. 164

p. 187

3. Fonctions génératrices

On suppose dans cette sous-section que X est à valeurs dans $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$.

Définition 28. On appelle **fonction génératrice** de *X* la fonction

$$G_X: \begin{bmatrix} -1,1 \end{bmatrix} \rightarrow \mathbb{R}$$

 $z \mapsto \sum_{k=0}^{+\infty} \mathbb{P}(X=k)z^k$

Exemple 29. $X \sim \mathcal{B}(p) \implies \forall s \in [-1,1], G_X(s) = (1-p) + ps.$ $X \sim \mathcal{B}(n,p) \implies \forall s \in [-1,1], G_X(s) = ((1-p) + ps)^n.$ $X \sim \mathcal{G}(p) \implies \forall s \in [-1,1], G_X(s) = \frac{ps}{1-(1-p)s}.$ $X \sim \mathcal{P}(\lambda) \implies \forall s \in [-1,1], G_X(s) = e^{-\lambda(1-s)}.$

Théorème 30. Soient X_1 et X_2 deux variables aléatoires indépendantes et \mathcal{L}_1 . Alors,

$$\mathbb{E}(X_1X_2) = \mathbb{E}(X_1)\mathbb{E}(X_2)$$

Corollaire 31. Soient X_1 et X_2 deux variables aléatoires indépendantes et à valeurs dans \mathbb{N} . Alors,

$$G_{X_1 X_2} = G_{X_1} + G_{X_2}$$

Théorème 32. Sur [0,1], la fonction G_X est infiniment dérivable et ses dérivées sont toutes positives, avec

$$G_X^{(n)}(s) = \mathbb{E}(X(X-1)\dots(X-n+1)s^{X-n})$$

En particulier,

$$\mathbb{P}(X=n) = \frac{G_X^{(n)}(0)}{n!}$$

ce qui montre que la fonction génératrice caractérise la loi.

Exemple 33. Si $X_1 \sim \mathcal{B}(n,p)$ et $X_2 \sim \mathcal{B}(m,p)$ sont indépendantes, alors $X_1 + X_2 \sim \mathcal{B}(n+m,p)$.

[**GOU21**] p. 346

Théorème 34. $X \in \mathcal{L}_1$ si et seulement si G_X admet une dérivée à gauche en 1. Dans ce cas, $G_X'(1) = \mathbb{E}(X)$.

[G-K] p. 238

III - Application en analyse réelle

Définition 35. On dit que *X* admet un moment d'ordre 2 si elle est de carré intégrable, ie. $X^2\in \mathcal{L}_1. \text{ On note } \mathcal{L}_1(\Omega, \mathcal{A}, \mathbb{P}) \text{ (ou simplement } \mathcal{L}_1(\Omega) \text{ voire } \mathcal{L}_1 \text{ s'il n'y a pas d'ambigu\"it\'e)}$ l'espace des variables aléatoires de carré intégrable.

p. 171

Proposition 36.

$$X_1, X_2 \in \mathcal{L}_2 \Longrightarrow X_1 X_2 \in \mathcal{L}_1$$

En particulier, $X_1 \in \mathcal{L}_2 \Longrightarrow X_1 \in \mathcal{L}_1$.

Définition 37. Soient X_1 et X_2 deux variables aléatoires admettant chacune un moment d'ordre 2.

— On appelle **covariance** du couple (X_1, X_2) le réel

$$\mathrm{Covar}(X_1,X_2) = \mathbb{E}((X_1 - \mathbb{E}(X_1))(X_2 - \mathbb{E}(X_2)))$$

— On appelle **variance** de X_1 le réel positif

$$\operatorname{Var}(X_1) = \operatorname{Covar}(X_1, X_1) = \mathbb{E}(X_1 - \mathbb{E}(X_1))^2 = \mathbb{E}(X_1^2) - (\mathbb{E}(X_1))^2$$

Proposition 38. Si X est à valeurs dans \mathbb{N} , alors $X \in \mathcal{L}_2$ si et seulement si $G_X \in \mathcal{C}^2([0,1])$, et dans ce cas,

[GOU21] p. 346

$$Var(X) = G_X''(1) + G_X'(1) - G_X'(1)^2$$

Exemple 39. $-\operatorname{Var}(\mathbb{I}_A) = \mathbb{P}(A)$.

$$\begin{split} & - X \sim \mathcal{B}(n,p) \implies \mathrm{Var}(X) = n p (1-p). \\ & - X \sim \mathcal{G}(p) \implies \mathrm{Var}(X) = \frac{1-p}{p^2}. \end{split}$$

 $-X \sim \mathscr{P}(\lambda) \Longrightarrow \operatorname{Var}(X) = \lambda.$

p. 186

Proposition 40 (Inégalité de Bienaymé-Tchebychev). On suppose $X \in \mathcal{L}_2$. Alors,

$$\forall a > 0, \mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}$$

7

[DEV]

Théorème 41 (Bernstein). Soit $f:[0,1] \to \mathbb{R}$ continue. On note

$$\forall n \in \mathbb{N}^*, B_n(f) : x \mapsto \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

le n-ième polynôme de Bernstein associé à f. Alors le suite de fonctions $(B_n(f))$ converge uniformément vers f.

Théorème 42 (Weierstrass). Toute fonction continue $f : [a, b] \to \mathbb{R}$ (avec $a, b \in \mathbb{R}$ tels que $a \le b$) est limite uniforme de fonctions polynômiales sur [a, b].

IV - Théorèmes limites et d'approximations

1. Théorèmes limites

Théorème 43 (Lévy). Soient (X_n) une suite de variables aléatoires réelles et X une variable aléatoire réelle. Alors :

 $X_n \xrightarrow{(d)} X \iff \phi_{X_n}$ converge simplement vers ϕ_X

où ϕ_Y désigne la fonction caractéristique d'une variable aléatoire réelle Y.

Théorème 44 (Central limite). Soit (X_n) une suite de variables aléatoires réelles indépendantes de même loi admettant un moment d'ordre 2. On note m l'espérance et σ^2 la variance commune à ces variables. On pose $S_n = X_1 + \cdots + X_n - nm$. Alors,

$$\left(\frac{S_n}{\sqrt{n}}\right) \xrightarrow{(d)} \mathcal{N}(0, \sigma^2)$$

[DEV]

Application 45 (Théorème des événements rares de Poisson). Soit $(N_n)_{n\geq 1}$ une suite d'entiers tendant vers l'infini. On suppose que pour tout $n, A_{n,N_1}, \ldots, A_{n,N_n}$ sont des événements indépendants avec $\mathbb{P}(A_{n,N_k}) = p_{n,k}$. On suppose également que :

- (i) $\lim_{n\to+\infty} s_n = \lambda > 0$ où $\forall n \in \mathbb{N}$, $s_n = \sum_{k=1}^{N_n} p_{n,k}$.
- (ii) $\lim_{n\to+\infty} \sup_{k\in[1,N_n]} p_{n,k} = 0.$

Alors, la suite de variables aléatoires (S_n) définie par

$$\forall n \in \mathbb{N}^*$$
, $S_n = \sum_{k=1}^n \mathbb{1}_{A_{n,k}}$

p. 195

p. 307

p. 390

agreg.skyost.eu

converge en loi vers la loi de Poisson de paramètre λ .

Théorème 46 (Loi faible des grands nombres). Soit (X_n) une suite de variables aléatoires deux à deux indépendantes de même loi et \mathcal{L}_1 . On pose $M_n = \frac{X_1 + \dots + X_n}{n}$. Alors,

$$M_n \xrightarrow{(p)} \mathbb{E}(X_1)$$

Théorème 47 (Loi forte des grands nombres). Soit (X_n) une suite de variables aléatoires mutuellement indépendantes de même loi. On pose $M_n = \frac{X_1 + \dots + X_n}{n}$. Alors,

[Z-Q]p. 532

p. 270

$$X_1 \in \mathcal{L}_1 \iff M_n \stackrel{(ps.)}{\longrightarrow} \ell \in \mathbb{R}$$

Dans ce cas, on a $\ell = \mathbb{E}(X_1)$.

2. Approximation d'une loi normale

Théorème 48 (Moivre-Laplace). Soit (X_n) une suite de variables aléatoires indépendantes de même loi $\mathcal{B}(p)$. Alors,

p. 308

p. 297

$$\frac{\sum_{k=1}^{n} X_k - np}{\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0, p(1-p))$$

3. Approximation d'une loi de Poisson

Théorème 49. Soit, pour $n \ge 1$, une variable aléatoire X_n suivant la loi binomiale de paramètres n et p_n . On suppose que $\lim_{n\to+\infty} np_n = \lambda > 0$. Alors,

 $X_n \xrightarrow{(d)} \mathscr{P}(\lambda)$

Remarque 50. En pratique, pour $n \ge 30$ et $np \le 10$, on a une "bonne" approximation de $\mathscr{P}(\lambda)$.

> [GOU21] p. 343

Exemple 51. Si chaque seconde, il y a une probabilité $p = \frac{1}{600}$ qu'un client entre dans un magasin, le nombre de clients qui entrent sut un intervalle d'une heure suit approximativement une loi de Poisson de paramètre $\lambda = 3600p = 6$.

Pour cette raison, on appelle parfois cette loi la loi des événements rares.

[G-K] p. 297 **Application 52** (Nombre de dérangements). Soit σ_n une permutation aléatoire suivant la loi uniforme sur S_n . Si on note D_n le nombre de points fixes de σ_n , on a

$$\mathbb{P}(D_n = k) = \frac{1}{k!} \frac{d_{n-k}}{(n-k)!}$$

où d_n est le nombre de permutations de S_n sans point fixe. En particulier, comme $d_n \sim \frac{1}{e} n!$, on a

$$D_n \xrightarrow{(d)} \mathscr{P}(1)$$

Bibliographie

De l'intégration aux probabilités

[G-K]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021. https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5° éd. Dunod, 26 août 2020.

 $\verb|https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.||$