

Introduction to Machine Learning

Inas A. Yassine, PhD

Assoc. Prof.,

Systems and Biomedical Engineering Department,

Cairo University

inas.yassine@eng.cu.edu.eg

Regression in Machine Learning

Outline

- Regression vs Classification
- Linear regression another discriminative learning method
 - −As optimization → Gradient descent
 - As matrix inversion (Ordinary Least Squares)
- Overfitting

What is linear Regression

Regression/ Classification/ [Confidence]

Regression examples

Stock Market Estimation

Temperature Estimation

Prediction of menu prices

(a) METADATA:		
ambience		
-0.015		
-0.013		
-0.012		
-0.005		
-0.004		
-7e-6		
0.058		
0.099		

(d) MENT DESC:		
= "of chicken"		
slices	-0.102	
bits	-0.032	
cubes	-0.030	
pieces	-0.024	
strips	-0.00	
chunks	0.015	
morsels	0.025	
pcs	0.040	
cuts	0.042	

(c) MENI DESC:		
descriptors		
old time favorite	-0.112	
fashioned	-0.034	
artısanal	0.064	
raised	0.066	
heirloom	0.083	
wild	0.084	
hormone	0.085	
farmed	0.099	
hand picked	0.101	
wild caught	0.116	
farmhouse	0.133	

A decision tree: classification

Dependent variable: PLAY

A Regression tree

Dependent variable: PLAY

Regression for LMS as optimization

Linear regression

- Given an input x we would like to compute an output y
- For example:
 - Predict height from age
 - Predict Google's price from Yahoo's price
 - Predict distance from wall from sensors

Linear regression

Cairo University

- Given an input x we would like to compute an output y
- In linear regression we assume that y and x are related with the following equation:

What we are trying to predict $y = wx + \epsilon$

where w is a parameter and ε represents measurement or other noise

Linear regression

- Our goal is to estimate w from a training data of <x_i,y_i> pairs
- Optimization goal: minimize squared error (least squares):

$$\arg\min_{w}\sum_{i}(y_{i}-wx_{i})^{2}$$

- Why least squares?
- minimizes squared distance between measurements and predicted line
 - has a nice probabilistic interpretation
 - the math is pretty

Solving linear regression

- To optimize:
- We just take the derivative w.r.t. to w

prediction

$$\frac{\partial}{\partial w} \sum_{i} (y_i - wx_i)^2 = 2 \sum_{i} -x_i (y_i - wx_i)$$

prediction

Compare to logistic regression...

$$\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = (y - p)x^j$$

- To optimize closed form:
- We just take the derivative w.r.t. to w and set to 0:

$$\frac{\partial}{\partial w} \sum_{i} (y_{i} - wx_{i})^{2} = 2 \sum_{i} -x_{i} (y_{i} - wx_{i}) \Rightarrow$$

$$2 \sum_{i} x_{i} (y_{i} - wx_{i}) = 0 \Rightarrow 2 \sum_{i} x_{i} y_{i} - 2 \sum_{i} wx_{i} x_{i} = 0$$

$$\sum_{i} x_{i} y_{i} = \sum_{i} wx_{i}^{2} \Rightarrow$$

$$W = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}$$

covar(X,Y)/var(X)
if mean(X)=mean(Y)=0

Regression example

• Generated: w=2

• Recovered: w=2.03

• Noise: std=1

Regression example

Cairo University

• Generated: w=2

• Recovered: w=2.05

• Noise: std=2

Bias term

- So far we assumed that the line passes through the origin
- What if the line does not?
- No problem, simply change the model to $y = W_0 + W_1X + \varepsilon$
- Can use least squares to determine w_0 , w_1

$$W_0 = \frac{\sum_i y_i - W_1 X_i}{n}$$

$$W_1 = \frac{\sum_i X_i (y_i - W_0)}{\sum_i X_i^2}$$

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- · Again, its easy to model:

Yahoo's stock price

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:

$$y = W_0 + W_1 X_1 + ... + W_k X_k + \varepsilon$$

Non-Linear basis function

- So far we only used the observed values $x_1, x_2,...$
- However, linear regression can be applied in the same way to functions of these values
 - Eg: to add a term w x_1x_2 add a new variable $z=x_1x_2$ so each example becomes: x_1, x_2, z
- As long as these functions can be directly computed from the observed values the parameters are still linear in the data and the problem remains a multi-variate linear regression problem

$$y = w_0 + w_1 x_1^2 + ? + w_k x_k^2 + \varepsilon$$

How can we use this to add an intercept term?

Add a new "variable" z=1 and weight w_0

Non-linear basis functions

- What type of functions can we use?
- A few common examples:

- Polynomial:
$$\phi_i(x) = x^j$$
 for $j=0 ... n$

$$\phi_j(\mathbf{x}) = \frac{(\mathbf{x} - \mu_j)}{2\sigma_j^2}$$

$$\phi_j(x) = \frac{(x - \mu_j)}{2\sigma_j^2}$$

$$\phi_j(x) = \frac{1}{1 + \exp(-s_j x)}$$

- Logs:
$$\phi_i(x) = \log(x+1)$$

Any function of the input values can be used. The solution for the parameters of the regression remains the same.

General linear regression problem

 Using our new notations for the basis function linear regression can be written as

$$y = \sum_{j=0}^{n} W_{j} \phi_{j}(x)$$

- Where $\phi_j(\mathbf{x})$ can be either x_j for multivariate regression or one of the non-linear basis functions we defined
- ... and $\phi_0(\mathbf{x})=1$ for the intercept term

Learning/Optimizing Multivariate Least Squares

Approach 1: Gradient Descent

Gradient Descent for Linear Regression

Goal: minimize the following loss function:

predict with:
$$\hat{y}^{i} = \sum_{j=1}^{n} w_{j} \phi_{j}(\mathbf{x}^{i})$$

$$J_{\mathbf{X},\mathbf{y}}(\mathbf{w}) = \sum_{i} (y^{i} - \hat{y}^{j})^{2} = \sum_{i} (y^{i} - \sum_{j} w_{j} \varphi_{j}(\mathbf{x}^{i}))^{2}$$
sum over *n* examples

sum over *k+1* basis vectors

Gradient Descent for Linear Regression

Goal: minimize the following loss function:

predict with:
$$\hat{y}^{i} = \sum_{j=1}^{n} w_{j} \phi_{j}(\mathbf{x}^{i})$$

$$J_{\mathbf{x},\mathbf{y}}(\mathbf{w}) = \sum_{i} (y^{i} - \hat{y}^{j})^{2} = \sum_{i} (y^{i} - \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i}))^{2}$$

$$\frac{\partial}{\partial w_{j}} J(\mathbf{w}) = \frac{\partial}{\partial w_{j}} \sum_{i} (y^{i} - \hat{y}^{j})^{2}$$

$$= 2 \sum_{i} (y^{i} - \hat{y}^{j}) \frac{\partial}{\partial w_{j}} \hat{y}^{j}$$

$$= 2 \sum_{i} (y^{j} - \hat{y}^{j}) \frac{\partial}{\partial w_{j}} \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i})$$

$$= 2 \sum_{i} (y^{j} - \hat{y}^{j}) \phi_{j}(\mathbf{x}^{i})$$

Gradient Descent for Linear Regression

Learning algorithm:

- Initialize weights w=0
- For t=1,... until convergence:
 - Predict for each example xⁱ using w:

$$\hat{\mathbf{y}}^{j} = \sum_{j=0} \mathbf{w}_{j} \mathbf{\phi}_{j} (\mathbf{x}^{i})$$

Compute gradient of loss:

This is a vector g

$$\frac{\partial}{\partial w_j} J(\mathbf{w}) = 2\sum_i (y^i - \hat{y}^i) \phi_j(\mathbf{x}^i)$$

• Update: $\mathbf{w} = \mathbf{w} - \lambda \mathbf{g}$ \(\lambda\) is the learning rate.

- We can use any of the tricks we used for logistic regression:
 - stochastic gradient descent (if the data is too big to put in memory)
 - regularization

— ...

Linear regression is a *convex* optimization problem

gradient descent will reach a global optimum

proof: differentiate again to get the second derivative

Approach 2: Matrix Inversion

Goal: minimize the following loss function: predict with: $\hat{y}^{j} = \sum_{j=1}^{n} W_{j} \phi_{j}(\mathbf{x}^{i})$ $J_{\mathbf{x},\mathbf{y}}(\mathbf{w}) = \sum_{i} (y^{i} - \hat{y}^{i})^{2} = \sum_{i} (y^{j} - \sum_{j=1}^{n} w_{j} \phi_{j}(\mathbf{x}^{i}))^{2}$ $\frac{\partial}{\partial w_{j}} J(\mathbf{w}) = 2\sum_{i} (y^{j} - \hat{y}^{j}) \phi_{j}(\mathbf{x}^{i})$

Approach 2: Matrix Inversion

Goal: minimize the following loss function: predict with: $\hat{y}^{j} = \sum_{j=1}^{n} W_{j} \phi_{j}(\mathbf{x}^{i})$ $J_{\mathbf{x},\mathbf{y}}(\mathbf{w}) = \sum_{i} \left(y^{i} - \hat{y}^{i} \right)^{2} = \sum_{i} \left(y^{i} - \sum_{j=1}^{n} w_{j} \phi_{j}(\mathbf{x}^{i}) \right)^{2}$ $\frac{\partial}{\partial W_{j}} J(\mathbf{w}) = 2 \sum_{i} \left(y^{i} - \hat{y}^{i} \right) \phi_{j}(\mathbf{x}^{i})$ k+1 basis vectors $\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^1) & \phi_1(\mathbf{x}^1) & ? & \phi_k(\mathbf{x}^1) \\ \phi_0(\mathbf{x}^2) & \phi_1(\mathbf{x}^2) & ? & \phi_k(\mathbf{x}^2) \\ ? & ? & ? & ? \\ \phi_0(\mathbf{x}^n) & \phi_1(\mathbf{x}^n) & ? & \phi_k(\mathbf{x}^n) \end{pmatrix}$ Notation: *n* examples

Approach 2: Matrix Inversion

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^1) & \phi_1(\mathbf{x}^1) & ? & \phi_k(\mathbf{x}^1) \\ \phi_0(\mathbf{x}^2) & \phi_1(\mathbf{x}^2) & ? & \phi_k(\mathbf{x}^2) \\ ? & ? & ? & ? \\ \phi_0(\mathbf{x}^n) & \phi_1(\mathbf{x}^n) & ? & \phi_k(\mathbf{x}^n) \end{pmatrix} = \begin{pmatrix} \phi^1 \\ \cdots \\ \phi^n \end{pmatrix}$$

$$\frac{\partial}{\partial W_0} J(\mathbf{w}) = 2\sum_i (y^i - \hat{y}^i) \phi_0(\mathbf{x}^i)$$

$$\frac{\partial}{\partial w_k} J(\mathbf{w}) = 2\sum_i (y^i - \hat{y}^i) \phi_k(\mathbf{x}^i)$$

notation: $\phi_i^i \equiv \phi_i(\mathbf{x}^i)$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^1) & \phi_1(\mathbf{x}^1) & ? & \phi_k(\mathbf{x}^1) \\ \phi_0(\mathbf{x}^2) & \phi_1(\mathbf{x}^2) & ? & \phi_k(\mathbf{x}^2) \\ ? & ? & ? & ? \\ \phi_0(\mathbf{x}^n) & \phi_1(\mathbf{x}^n) & ? & \phi_k(\mathbf{x}^n) \end{pmatrix} = \begin{pmatrix} \phi^1 \\ \cdots \\ \phi^n \end{pmatrix}$$

$$\frac{\partial}{\partial w_0} J(\mathbf{w}) = 2 \sum_{i} \left(y^{i} \phi_1^{i} - \hat{y}^{j} \phi_1^{i} \right)$$
...
$$\frac{\partial}{\partial w_k} J(\mathbf{w}) = 2 \sum_{i} \left(y^{i} \phi_k^{i} - \hat{y}^{j} \phi_k^{i} \right)$$

recall
$$\hat{y}^{j} = \sum_{j}^{n} w_{j} \phi_{j}^{i}$$

$$= \phi' \mathbf{W}$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^1) & \phi_1(\mathbf{x}^1) & ? & \phi_k(\mathbf{x}^1) \\ \phi_0(\mathbf{x}^2) & \phi_1(\mathbf{x}^2) & ? & \phi_k(\mathbf{x}^2) \\ ? & ? & ? & ? \\ \phi_0(\mathbf{x}^n) & \phi_1(\mathbf{x}^n) & ? & \phi_k(\mathbf{x}^n) \end{pmatrix} = \begin{pmatrix} \phi^1 \\ \cdots \\ \phi^n \end{pmatrix}$$

$$\frac{\partial}{\partial w_0} J(\mathbf{w}) = 2 \sum_i \left(y^i \phi_0^i - \phi^i \mathbf{w} \phi_0^i \right)$$

$$\dots$$

$$\frac{\partial}{\partial w_k} J(\mathbf{w}) = 2 \sum_i \left(y^j \phi_k^i - \phi^i \mathbf{w} \phi_k^i \right)$$

$$= 2 \Phi^T \mathbf{y} - 2 \Phi^T \Phi \mathbf{w}$$

$$=2\Phi^T\mathbf{y}-2\Phi^T\Phi\mathbf{w}$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^1) & \phi_1(\mathbf{x}^1) & ? & \phi_k(\mathbf{x}^1) \\ \phi_0(\mathbf{x}^2) & \phi_1(\mathbf{x}^2) & ? & \phi_k(\mathbf{x}^2) \\ ? & ? & ? & ? \\ \phi_0(\mathbf{x}^n) & \phi_1(\mathbf{x}^n) & ? & \phi_k(\mathbf{x}^n) \end{pmatrix} = \begin{pmatrix} \phi^1 \\ \cdots \\ \phi^n \end{pmatrix}$$

$$\frac{\partial}{\partial w_0} J(\mathbf{w}) = 2 \sum_{i} (\phi_0^i y^i - \phi_0^i \phi^i \mathbf{w})$$

$$\dots$$

$$\frac{\partial}{\partial w_k} J(\mathbf{w}) = 2 \sum_{i} (\phi_k^i y^i - \phi_k^i \phi^i \mathbf{w})$$

$$\frac{\partial}{\partial w_k} J(\mathbf{w}) = 2 \sum_{i} (\phi_k^i y^i - \phi_k^i \phi^i \mathbf{w})$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^1) & \phi_1(\mathbf{x}^1) & ? & \phi_k(\mathbf{x}^1) \\ \phi_0(\mathbf{x}^2) & \phi_1(\mathbf{x}^2) & ? & \phi_k(\mathbf{x}^2) \\ ? & ? & ? & ? \\ \phi_0(\mathbf{x}^n) & \phi_1(\mathbf{x}^n) & ? & \phi_k(\mathbf{x}^n) \end{pmatrix} = \begin{pmatrix} \phi^1 \\ \cdots \\ \phi^n \end{pmatrix}$$

$$\frac{\partial}{\partial w_0} J(\mathbf{w}) = 2 \sum_{i} (\phi_0^i y^i - \phi_0^i \phi^i \mathbf{w})$$
...
$$\frac{\partial}{\partial w_k} J(\mathbf{w}) = 2 \sum_{i} (\phi_k^i y^i - \phi_k^i \phi^i \mathbf{w})$$

$$\frac{\partial}{\partial w_k} J(\mathbf{w}) = 2 \sum_{i} (\phi_k^i y^i - \phi_k^i \phi^i \mathbf{w})$$

$$= \dots - 2\Phi^T \Phi \mathbf{W}$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^1) & \phi_1(\mathbf{x}^1) & ? & \phi_k(\mathbf{x}^1) \\ \phi_0(\mathbf{x}^2) & \phi_1(\mathbf{x}^2) & ? & \phi_k(\mathbf{x}^2) \\ ? & ? & ? & ? \\ \phi_0(\mathbf{x}^n) & \phi_1(\mathbf{x}^n) & ? & \phi_k(\mathbf{x}^n) \end{pmatrix} = \begin{pmatrix} \phi^1 \\ \cdots \\ \phi^n \end{pmatrix}$$

$$\frac{\partial}{\partial w_0} J(\mathbf{w}) = 2 \sum_{i} (\phi_0^i y^i - \phi_0^i \phi^i \mathbf{w})$$
...
$$\frac{\partial}{\partial w_k} J(\mathbf{w}) = 2 \sum_{i} (\phi_k^i y^i - \phi_k^i \phi^i \mathbf{w})$$

$$\frac{\partial}{\partial w_k} J(\mathbf{w}) = 2 \sum_{i} (\phi_k^i y^i - \phi_k^i \phi^i \mathbf{w})$$

$$= \dots - 2\Phi^T \Phi \mathbf{w}$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^1) & \phi_1(\mathbf{x}^1) & ? & \phi_k(\mathbf{x}^1) \\ \phi_0(\mathbf{x}^2) & \phi_1(\mathbf{x}^2) & ? & \phi_k(\mathbf{x}^2) \\ ? & ? & ? & ? \\ \phi_0(\mathbf{x}^n) & \phi_1(\mathbf{x}^n) & ? & \phi_k(\mathbf{x}^n) \end{pmatrix} = \begin{pmatrix} \phi^1 \\ \cdots \\ \phi^n \end{pmatrix}$$

$$\frac{\partial}{\partial w_0} J(\mathbf{w}) = 2 \sum_i (y^i \phi_0^i - \phi^i \mathbf{w} \phi_0^i)$$

$$\dots$$

$$\frac{\partial}{\partial w_k} J(\mathbf{w}) = 2 \sum_i (y^i \phi_k^i - \phi^i \mathbf{w} \phi_k^i)$$

$$\mathbf{w} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

$$= 2\Phi^{T}\mathbf{y} - 2\Phi^{T}\Phi\mathbf{w} = 0$$

$$\mathbf{w} = (\Phi^{T}\Phi)^{-1}\Phi^{T}\mathbf{y}$$

LMS for general linear regression problem

Deriving w we get:
$$\mathbf{W} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

 $J(\mathbf{w}) = \sum_{i} (\mathbf{y}^{i} - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}^{i}))^{2}$

k+1 entries vector

n entries vector

n by k+1 matrix

This solution is also known as 'pseudo inverse'

Another reason to start with an objective function: you can see when two learning methods are the same!

LMS versus gradient descent

$$J(\mathbf{w}) = \sum_{i} (\mathbf{y}^{i} - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}^{i}))^{2} \qquad \mathbf{w} = (\Phi^{T} \Phi)^{-1} \Phi^{T} \mathbf{y}$$

LMS solution:

- + Very simple in Matlab or something similar
- -Requires matrix inverse, which is expensive for a large matrix.

Gradient descent:

- + Fast for large matrices
- + Stochastic GD is very memory efficient
- + Easily extended to other cases
- Parameters to tweak (how to decide convergence? what is the learning rate?)

Overfitting in Regression

0th Order Polynomial

9th Order Polynomial

Root-Mean-Square (RMS) Error:

$$E_{\mathrm{RMS}} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

Dataset Size

9th Order Polynomial

Thank You...