

Ajuste de Curvas

PhD. Alejandro Paredes

Motivación:

Se desea interpolar o extrapolar información a partir de datos experimentales

Se tienen dos opciones:

- Buscar una función (compleja) que pase por todos los puntos.
- Buscar una función simple que pase solo por algunos.

Los datos contienen mucha incertidumbre: Curva pasa solo por algunos puntos y que expresa la tendencia. Regression por minimos cuadrados.

Si los datos contienen poca inceridumbre: Curva que pase exactamente por los puntos. Interpolación polinomial.

Motivación: Aplicaciones del ajsute de curvas

- Test de hypotesis : Se desea es comparar un modelo matemático con los datos experiemntales
 Se propone un modelo y se buscan los parámetros del modelo.
- Adicionalmente el ajuste de curvas es importante para la integración numérica, solución aproxiamda de ecuaciones diferenciales
 Tambien se puede utilizar para aproximar
 - . Tambien se puede utilizar para aproximar funciones complejas a funciones simples.

Estadística inferacional

Mediciones del coeficiente de expansión térmica del acero (10⁻⁶ F⁻¹)

6.495	6.595	6.615	6.635	6.485	6.555
6.665	6.505	6.435	6.625	6.715	6.655
6.755	6.625	6.715	6.575	6.655	6.605
6.565	6.515	6.555	6.395	6.775	6.685

Media= 6.6 S_{ν} = 0.0971

c.v.=1.47%

Información adicional se tiene con la media aritmética del conjunto, el grado de esparcimiento del conjunto llamado desviación estandard S_{ν} (variancia) y el coeficiente de varaición CV (error porcentual relativo)

$$\bar{y} = \frac{\sum y_i}{n} S_t = \sum (y_i - \bar{y})^2$$

$$s_y = \sqrt{\frac{S_t}{n-1}}$$

$$\bar{y} = \frac{\sum y_i}{n}$$
 $S_t = \sum (y_i - \bar{y})^2$ $s_y = \sqrt{\frac{S_t}{n-1}}$ $s_y^2 = \frac{\sum y_i^2 - (\sum y_i)^2 / n}{n-1}$ c.v. $= \frac{s_y}{\bar{y}} 100\%$

c.v. =
$$\frac{s_y}{\bar{y}}$$
100%

Regresión lineal

Considere que se tiene un conjunto de puntos con alta incertidumbre .

El caso mas simple es ajustar los datos $(x_1, y_1)(x_2, y_2) \dots (x_n, y_n)$ a una línea recta de la forma

$$y(x) = a_0 + a_1 x + e$$
; e = error o residuo

Regresión lineal

Opciones para encontrar los coeficientes:

$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)$$
 • Cualquier línea que pase por el punto central verifica la condición. Menos la

vertical.

$$\sum_{i=1}^{n} |e_i| = \sum_{i=1}^{n} |y_i - a_0 - a_1 x_i| \cdot \text{Cualquier línea entre las líneas punteadas verifica la condición.}$$

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_{i,\text{measured}} - y_{i,\text{model}})^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

Regresion lineal por mínimos cuadrados

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_{i,\text{measured}} - y_{i,\text{model}})^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

$$\frac{\partial S_r}{\partial a_0} = -2\sum (y_i - a_0 - a_1 x_i)$$

$$\frac{\partial S_r}{\partial a_1} = -2 \sum \left[(y_i - a_0 - a_1 x_i) x_i \right]$$

$$0 = \sum y_i - \sum a_0 - \sum a_1 x_i$$

$$0 = \sum y_i x_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$na_0 + \left(\sum x_i\right) a_1 = \sum y_i$$
$$\left(\sum x_i\right) a_0 + \left(\sum x_i^2\right) a_1 = \sum x_i y_i$$

$$a_1 = \frac{n\Sigma x_i y_i - \Sigma x_i \Sigma y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2}$$

$$a_0 = \bar{y} - a_1 \bar{x}$$

Regresion lineal por mínimos cuadrados

Ejemplo

1876	$(y_i-a_0-a_1x_i)^2$	$(y_i - \overline{y})^2$	y i	X i
	0.1687	8.5765	0.5	1
	0.5625	0.8622	2.5	2
	0.3473	2.0408	2.0	3
0.071.40057 0.000057	0.3265	0.3265	4.0	4
y = 0.07142857 + 0.8392857x	0.5896	0.0051	3.5	5
	0.7972	6.6122	6.0	6
	0.1993	4.2908	5.5	7
	2.9911	22.7143	24.0	Σ

$$n = 7$$
 $\sum x_i y_i = 119.5$ $\sum x_i^2 = 140$ $\sum x_i = 28$ $\bar{x} = \frac{28}{7} = 4$

$$\sum y_i = 24 \qquad \bar{y} = \frac{24}{7} = 3.428571$$

$$a_1 = \frac{7(119.5) - 28(24)}{7(140) - (28)^2} = 0.8392857$$

$$a_0 = 3.428571 - 0.8392857(4) = 0.07142857$$

Cuantificación del error

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_{i,\text{measured}} - y_{i,\text{model}})^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

Se puede calcular

Desviacion estandar de estimacion del error debido al ajuste

$$s_{y/x} = \sqrt{\frac{S_r}{n-2}}$$
 Error standard de la estimación

Desviacion estandar de estadsitica

$$S_y = \sqrt{\frac{S_t}{n-1}} \qquad S_t = \Sigma (y_i - \bar{y})^2$$

$$S_t = \Sigma (y_i - \bar{y})^2$$

Cuantificación del error

Coeficiente de determinación

$$r^2 = \frac{S_t - S_r}{S_t}$$

- $r^{2} = \frac{S_{t} S_{r}}{S_{t}}$ r=1 implica S_r=0 y el ajuste pasa por todos los puntos
 - r=0 implica S₊=S_r el error del ajsute es igual al error estadistico y no se ha ganado nada.

Coeficiente de correlación

$$r = \frac{n\Sigma x_i y_i - (\Sigma x_i)(\Sigma y_i)}{\sqrt{n\Sigma x_i^2 - (\Sigma x_i)^2} \sqrt{n\Sigma y_i^2 - (\Sigma y_i)^2}}$$

$$s_{t} = \sqrt{\frac{22.7143}{7 - 1}} = 1.9457$$
 $s_{y/x} = \sqrt{\frac{2.9911}{7 - 2}} = 0.7735$ $r^{2} = \frac{22.7143 - 2.9911}{22.7143} = 0.868$ $r = \sqrt{0.868} = 0.932$

Algoritmo

```
SUB Regress(x, y, n, a1, a0, syx, r2)
  sumx = 0: sumxy = 0: st = 0
  sumy = 0: sumx2 = 0: sr = 0
 DOFOR i = 1. n
   sumx = sumx + x_i
   sumy = sumy + y_i
   sumxy = sumxy + x_i * y_i
   sumx2 = sumx2 + x_i * x_i
  FND DO
 xm = sum x/n
 ym = sumy/n
  a1 = (n*sumxy - sumx*sumy)/(n*sumx2 - sumx*sumx)
 a0 = ym - a1*xm
 DOFOR i = 1, n
   st = st + (y_i - ym)^2
   sr = sr + (y_i - a1*x_i - a0)^2
 FND DO
 syx = (sr/(n-2))^{0.5}
 r2 = (st - sr)/st
END Regress
```

Ejemplo: Caida de un paracaidista

$$v(t) = \frac{gm}{c} \left(1 - e^{(-c/m)t} \right) \qquad v(t) = \frac{gm}{c} \left(\frac{t}{3.75 + t} \right)$$

Time, s	Measured v, m/s (<i>a</i>)	Model-calculated v, m/s (<i>b</i>)	Model-calculated v, m/s (c)
1	10.00	8.953	11.240
2	16.30	16.405	18.570
3	23.00	22.607	23.729
4	27.50	27.769	27.556
5	31.00	32.065	30.509
6	35.60	35.641	32.855
7	39.00	38.617	34.766
8	41.50	41.095	36.351
9	42.90	43.156	37.687
10	45.00	44.872	38.829
11	46.00	46.301	39.816
12	45.50	47.490	40.678
13	46.00	48.479	41.437
14	49.00	49.303	42.110
15	50.00	49.988	42.712

$$v_{\text{model}} = -0.859 + 1.032 v_{\text{measure}}$$

$$v_{\text{model}} = 5.776 + 0.752v_{\text{measure}}$$

Intervalos de confianza de los parámetros encontrados !!!

r>0.99

r>0.99

 $c = 12.5 \, kg/s$

Linearización de dependencias no lineales

- Solo algunas relaciones se pueden linealizar.
- Una vez que se han linealizado, se puede utilizar la regresión lineal por mínimos cuadrados.

$$y = \alpha_1 e^{\beta_1 x} \qquad \ln(y) = \ln(\alpha_1) + \beta_1 x$$

$$y = \alpha_2 x^{\beta_1}$$
 $\ln(y) = \ln(\alpha_2) + \beta_2 \ln(x)$

$$y = \alpha_3 \frac{x}{\beta_3 + x} \qquad \frac{1}{y} = \frac{\beta_3}{\alpha_3} \frac{1}{x} + \frac{1}{\alpha_3}$$

Deseamos ajustar un conjunto de datos a un polinomio de orden 2

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m + e$$

$$y = a_0 + a_1 x + a_2 x^2 + e$$

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$$

$$(n)a_0 + \left(\sum x_i\right) a_1 + \left(\sum x_i^2\right) a_2 = \sum y_i$$

$$\left(\sum x_i\right) a_0 + \left(\sum x_i^2\right) a_1 + \left(\sum x_i^3\right) a_2 = \sum x_i y_i$$

$$\left(\sum x_i^2\right) a_0 + \left(\sum x_i^3\right) a_1 + \left(\sum x_i^4\right) a_2 = \sum x_i^2 y_i$$

$$\frac{\partial S_r}{\partial a_0} = -2\sum \left(y_i - a_0 - a_1 x_i - a_2 x_i^2\right)$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum x_i \left(y_i - a_0 - a_1 x_i - a_2 x_i^2 \right)$$

$$\frac{\partial S_r}{\partial a_2} = -2\sum_i x_i^2 \left(y_i - a_0 - a_1 x_i - a_2 x_i^2 \right)$$

Error standard de la estimación:

$$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$
 $m = 2$

Algoritmo para regresión polinomial

La matriz simétrica a_{ij} es la matriz aumentada Correspondiente al sistema lineal

$$(n)a_0 + \left(\sum x_i\right) a_1 + \left(\sum x_i^2\right) a_2 = \sum y_i$$

$$\left(\sum x_i\right) a_0 + \left(\sum x_i^2\right) a_1 + \left(\sum x_i^3\right) a_2 = \sum x_i y_i$$

$$\left(\sum x_i^2\right) a_0 + \left(\sum x_i^3\right) a_1 + \left(\sum x_i^4\right) a_2 = \sum x_i^2 y_i$$


```
DOFOR i = 1. order + 1
  DOFOR j = 1, i
    k = i + j - 2
    sum = 0
    DOFOR \ell = 1, n
       sum = sum + x_{\ell}^{k}
    END DO
    a_{i,j} = sum
    a_{j,j} = sum
  FND DO
  sum = 0
  DOFOR \ell = 1, n
    sum = sum + y_{\ell} \cdot x_{\ell}^{i-1}
  END DO
  a_{i.order+2} = sum
END DO
```

Regresión polinomial

Ejemplo

x i	y i	$(y_i - \overline{y})^2$	$(y_i - a_0 - a_1x_i - a_2x_i^2)^2$
0	2.1	544.44	0.14332
1	7.7	314.47	1.00286
2	13.6	140.03	1.08158
3	27.2	3.12	0.80491
4	40.9	239.22	0.61951
5	61.1	1272.11	0.09439
Σ	152.6	2513.39	3.74657

$$m = 2$$
 $\sum x_i = 15$ $\sum x_i^4 = 979$
 $n = 6$ $\sum y_i = 152.6$ $\sum x_i y_i = 585.6$
 $\overline{x} = 2.5$ $\sum x_i^2 = 55$ $\sum x_i^2 y_i = 2488.8$
 $\overline{y} = 25.433$ $\sum x_i^3 = 225$

$$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix} \begin{Bmatrix} a_0 \\ a_1 \\ a_2 \end{Bmatrix} = \begin{Bmatrix} 152.6 \\ 585.6 \\ 2488.8 \end{Bmatrix} \qquad a_0 = 2.47857 \qquad a_1 = 2.35929$$

$$y = 2.47857 + 2.35929x + 1.86071x^2$$

$$a_0 = 2.47857$$
 $a_1 = 2.3$

$$a_2 = 1.86071$$

$$y = 2.47857 + 2.35929x + 1.86071x^2$$
 $s_{y/x} = \sqrt{\frac{3.74657}{6-3}} = 1.12$ $r^2 = 0.99851$

Regresión lineal múltiple

TECTONATION TO THE REAL PROPERTY AND THE REA

Extender la regrsión lineal para el caso de una función de varias variables.

$$y = a_0 + a_1 x_1 + a_2 x_2 + e$$

La cantidad a minimizar será:

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})^2$$

$$\frac{\partial S_r}{\partial a_0} = -2 \sum (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

$$\frac{\partial S_r}{\partial a_1} = -2 \sum x_{1i} (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

$$\frac{\partial S_r}{\partial a_2} = -2 \sum x_{2i} (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

Regresión lineal múltiple

Obteniendo el correspondiente sistema lineal

$$\begin{bmatrix} n & \Sigma x_{1i} & \Sigma x_{2i} \\ \Sigma x_{1i} & \Sigma x_{1i}^2 & \Sigma x_{1i} x_{2i} \\ \Sigma x_{2i} & \Sigma x_{1i} x_{2i} & \Sigma x_{2i}^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \Sigma y_i \\ \Sigma x_{1i} y_i \\ \Sigma x_{2i} y_i \end{bmatrix}$$

La regresión puede ser util para ajustar relaciones del tipo

$$y = a_0 X_1^{a_1} X_2^{a_2} \cdots X_m^{a_m}$$

$$y = a_0 x_1^{a_1} x_2^{a_2} \cdots x_m^{a_m}$$
 $\log y = \log a_0 + a_1 \log x_1 + a_2 \log x_2 + \cdots + a_m \log x_m$

Regresión no lineal

- Minimizar el cuadrado de los residuos
- La ecuación no lineal se lineariza con una expansión de Taylor.

$$y_i = f(x_i; a_0, a_1, \ldots, a_m) + e_i$$

Proceso iterativo para un caso con 2 parámetros:

$$f(x_i)_{j+1} = f(x_i)_j + \frac{\partial f(x_i)_j}{\partial a_0} \Delta a_0 + \frac{\partial f(x_i)_j}{\partial a_1} \Delta a_1$$

$$y_i - f(x_i)_j = \frac{\partial f(x_i)_j}{\partial a_0} \Delta a_0 + \frac{\partial f(x_i)_j}{\partial a_1} \Delta a_1 + e_i$$

$$\{D\} = [Z_j] \{\Delta A\} + \{E\}$$

- y_i: valor medido de la variable dependiente
- f(x_i;a₀,...,a_n): ecuación que es función de la variable independiente x_i y función no-lineal de los parámetros a₁,a₂,...,a_n y e_i= error aleatorio
- f(x_i): Aproximación de Taylor de la función no-lineal alrededor de los parámetros y truncada a la primera derivada.
- j=estimación inicial
- j+1 = predicción
- $\Delta a_0 = a_{0j+1} a_{0j}$ y $\Delta a_1 = a_{1j+1} a_{1j}$.

Regresión no-lineal

$$[Z_j] = \begin{bmatrix} \partial f_1/\partial a_0 & \partial f_1/\partial a_1 \\ \partial f_2/\partial a_0 & \partial f_2/\partial a_1 \end{bmatrix}$$

$$\vdots & \vdots \\ \vdots & \vdots \\ \partial f_n/\partial a_0 & \partial f_n/\partial a_1 \end{bmatrix}$$

- [Zj]: Matriz de derivadas parciales evaluadas en la j-esima
- $[Z_j] = \begin{bmatrix} \frac{\partial f_1}{\partial a_0} & \frac{\partial f_1}{\partial a_1} \\ \frac{\partial f_2}{\partial a_0} & \frac{\partial f_2}{\partial a_1} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial a_0} & \frac{\partial f_n}{\partial a_1} \end{bmatrix}$ [Z]]: Matriz de derivadas parciales evaluadas en la j-e estimación.
 n: numero de datos
 $\frac{\partial f_i}{\partial a_k} = \text{derivada parcial de la función f con respecto al estimación.}$ k-esimo parámetro evaluada en el i-esimo dato

$$\{D\} = \begin{cases} y_1 - f(x_1) \\ y_2 - f(x_2) \\ \vdots \\ y_n - f(x_n) \end{cases} \qquad \{\Delta A\} = \begin{cases} \Delta a_0 \\ \Delta a_1 \\ \vdots \\ \Delta a_m \end{cases}$$

Regresión no-lineal

Deseamos minimizar el error

$$e_i = y_i - f(x_i; a_0, a_1, ..., a_m)$$

Con respecto a los parámetros a₀,a₁, ...,a_m

$$S = \sum_{i=o,n} e_i^2$$

$$\frac{\partial S}{\partial a_i} = 0$$

$$\sum_{i=1,n} 2e_i \frac{\partial e_i}{\partial a_i} = 0$$

Del proceso recursivo tenemos

$$e_{i} = y(x_{i}) - f(x_{i}, a_{1}, ..., a_{m})$$

$$e_{i} = y(x_{i}) - f(x_{i}, a^{j}) - Z_{ik}^{j} \Delta A_{k}$$

$$e_{i} = D_{i} - Z_{ik}^{j} \Delta A_{k}$$

$$\frac{\partial e_{i}}{\partial a_{l}} = -Z_{ik}^{j} \Delta A_{k}$$

Condición de minimos cuadrados

$$Z^{jT}Z^{j}\Delta A = Z^{jT}D$$

Sistema lineal para ΔA

$$a_{0,j+1} = a_{0,j} + \Delta a_0$$

$$a_{1,j+1} = a_{1,j} + \Delta a_1$$

Ejemplo: Ajustar el conjunto de puntos con la función $f(x; a_0, a_1)$ considerando la estimación inicial $a_0 = a_1 = 1$

$$f(x; a_0, a_1) = a_0(1 - e^{-a_1x})$$

$$\{D\} = \begin{cases} y_1 - f(x_1) \\ y_2 - f(x_2) \\ \vdots \\ y_n - f(x_n) \end{cases} = \begin{cases} 0.28 - 0.2212 \\ 0.57 - 0.5276 \\ 0.68 - 0.7135 \\ 0.74 - 0.8262 \\ 0.79 - 0.8946 \end{cases} = \begin{cases} 0.0588 \\ 0.0424 \\ -0.0335 \\ -0.0862 \\ -0.1046 \end{cases} \quad [Z_j] = \begin{bmatrix} \frac{\partial f_1}{\partial a_0} & \frac{\partial f_1}{\partial a_1} \\ \frac{\partial f_2}{\partial a_0} & \frac{\partial f_2}{\partial a_1} \\ \vdots & \vdots \\ \frac{\partial f_n}{\partial a_0} & \frac{\partial f_1}{\partial a_1} \end{bmatrix} \quad [Z_0] = \begin{bmatrix} 0.2212 & 0.1947 \\ 0.5276 & 0.3543 \\ 0.7135 & 0.3581 \\ 0.8262 & 0.3041 \\ 0.8946 & 0.2371 \end{bmatrix}$$

Sistema lineal

$$[[Z_j]^T [Z_j]] \{ \Delta A \} = \{ [Z_j]^T \{ D \} \} \qquad \Delta A = \{ -0.2714 \\ 0.5019 \} \qquad \{ a_0 \\ a_1 \} = \{ 1.0 \\ 1.0 \} + \{ -0.2714 \\ 0.5019 \} = \{ 0.7286 \\ 1.5019 \}$$

$$a_{0,j+1} = a_{0,j} + \Delta a_0$$

 $a_{1,j+1} = a_{1,j} + \Delta a_1$

Ejercicio 1

A continuación se muestra un modelo para el conjunto de datos mostrado

$$y = \left(\frac{a + \sqrt{x}}{b\sqrt{x}}\right)^2 \qquad \frac{x \mid 0.5 \quad 1}{y \mid 10.4 \quad 5.8 \quad 3.3 \quad 2.4 \quad 2}$$

- Linearizar la ecuación del modelo.
- Utilizar una regresión lineal para determinar a y b

Ejercicio 2

A continuación se muestra un modelo para el conjunto de datos mostrado

$$y = \alpha_4 x e^{\beta_4 x}$$
 x 0.1 0.2 0.4 0.6 0.9 1.3 1.5 1.7 1.8
 y 0.75 1.25 1.45 1.25 0.85 0.55 0.35 0.28 0.18

- Linearizar la ecuación del modelo y utilizar una regresión lineal para determinar α_4 y β_4 .
- Utilizar una regresión no lineal para determinar α_4 y β_4 .