

w/ K. Costello 2201.02595, 2204.0530/ local holicthy in 60 m> tree & 1-loop amplitudes in QCD Hr(BF(A)-). Ben2(R',g) 4d: self-dual YM } + \(\frac{1}{2} g_{yn}^2 \int + \((B^2) \) \} 50YM in presence op insertions tr (B2), tr (B2)(b) tr (B2)(x,).... 2 loops, n inscarons ~> n-2+) (-)-helicity twistor space: PT = R4x CP1 = O(1) @O(1) C4, ||x-y||2=0 7 CP H 5 (PT, O(21-2))

holic BF+hy Penns /WW 2

$$\int_{C}^{(0)}(BF(A)) \longrightarrow \int_{C}^{(0)}(BF(A)-)$$
1Ptt
$$A \in N^{(0)}(P\Pi, q) \qquad Costello 2111.08679$$
B G $N^{(3)}(P\Pi, q)$

$$Can cancel gauge anomaly in 6d$$

$$g = Su(a), Su(3), So (8), excaptional$$

$$(d: $\mathcal{M} \in \mathcal{N}^{2}(P\mathcal{H}), \mathcal{J}\mathcal{M} = \mathcal{O} \qquad \# \int_{\mathcal{M}} \mathcal{M} + r(A\partial A)$

$$IR^{H}: \int_{C}^{(0)} (BF(A)-) + \frac{1}{2} \int_{C}^{(0)} (A\rho)^{2} - \# \int_{C}^{(0)} \rho(F(A) \wedge F(A))$$
Which is the sum of the su$$

4dthy SOVM faxion

Generators | Spin

A <-- J[m,n] | - (m+n)/2 | Sl_2(R) & Z

B <-- J[m,n] | -1-(m+n)/2 | CP2

T <-- E[m,n] | -(m+n)/2 | (2->g)

T[m,n] | -(m+n)/2 | (Jq[r,s](0)) = [r,u](2) ~ 1 | July = [r](0) = [r](0)

T[r,s](= 675] -(m-n)/2 | Jq[r,s](0) = [r](0) = [r](0

J[r,s,k] = \$7[r,s]2k-d] \\

J[

59	(on-shell gauge thy)	Penrose <u>Gd</u>
Egenerators of chirulaly.	Sbasis of conformal T Sprimmy stutusion (4d of neg. with	Conf. primay States on + wistor
	10) (-> A = S2-20)	V'V25
Koszul durit vertex elgebra		
1 5007	\(91 \ \ \ \	$V_{i}(z_{i})V_{n}(z_{n})$ ational for of z_{i}
4d form factors	2d chira?	4d theong
(scattering amp.	Conf. primery	single-putiel states
M provide of C	OPEs	Collinear limits
	conf. block	local questos
	Correlation fins.	form factors

BY PTT' = 53x CP'x R70 53 Kk adudon 41 J Roox CP! 3d-Any 1891803 = R,0x 53 3d theory tople-holic 74 (53 x CP1) ₹H(s³) chial alg- 5 is bdy alg- of 3d on Roox CP2 · define a conf. block H (CP) = >1 (CP) . 8 p.c. @ L= ∞ MHV amolitude S $G(0) = T_1(B^2)(0)$ $\langle f_1(B^2) | \widetilde{J}(2)\widetilde{J}(2) J(2)...J(2_n) \rangle$ $\widetilde{J}(z) = \widetilde{J}[0,0](1)$ = Ka, 92 (2,-22)2 Symmetry B~3 (1) (+(B2) | 5 5 7c) = fc 1/22-23 (+(B2) | 59(2) 50(2)) $\frac{1}{2}\int_{-23}^{4} \langle t(\beta^2) | \tilde{J}^{2}(z) \tilde{J}^{2}(z) \rangle$ tre-land OPF $= \frac{(z_1 - z_2)^3}{(z_1 - z_3)(z_2 - z_3)} \int_{0}^{a_5 z_2}$ $\langle i, \rangle^{4}$ $\forall r (ta, ...tan) + \langle 12 \times 23 \rangle ... \langle n \rangle$ perms. induct on n Paile-Taylor