Statistical Data Analysis

Dr. Jana de Wiljes

10. November 2021

Universität Potsdam

Kolmogorov-distance

Def: The Kolmogorov-distance between the empirical cdf $\widehat{F}_n(t)$ and the theoretical cdf F is defined as follows

$$D_n := \sup_{t \in \mathbb{R}} |\widehat{F}_n(t) - F(t)| \tag{1}$$

Theorem of Gliwenko-Cantelli

Theorem: For the Kolmogorov-distance D_n the following holds

$$D_n \to 0$$
 for $n \to \infty$ almost everywhere (2)

i.e.,

$$\mathbb{P}\Big[\lim_{n\to}D_n=0\Big]=1\tag{3}$$

A statistical model

Def: A statistical model is a triple $(\mathcal{X}, \mathcal{A}, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ where

- ullet $\mathcal X$ is the sample space
- $\mathcal{A} \subset 2^{\mathcal{X}}$ is a σ -algebra on \mathcal{X}
- ullet Θ is the parameter space
- for every $\theta \in \Theta$ \mathbb{P}_{θ} is a probability measure on $(\mathcal{X}, \mathcal{A})$

Estimator

Def: Let $\Theta \subset \mathbb{R}^r$. A estimator is a measurable map

$$\widehat{\theta}: \mathcal{X} \to \Theta, \quad x \mapsto \widehat{\theta}(x)$$
 (4)

Maximum-Likelihood estimator

Def: The Maximum-Likelihood estimator is defined via

$$\widehat{\theta}_{\mathsf{ML}} = \arg\max_{\theta \in \Theta} L(\theta) \tag{5}$$

Abbildung 1: Daniel Bernoulli, Joseph-Louis Lagrange, Carl-Friedrich Gau and Ronald Fisher

A-posteriori-distribution

Def: The a-posteriori-distribution of θ is the conditional distribution given the information $X_1 = x_1, \dots, X_n = x_n$, i.e.,

$$q(\theta_i|x_1,...,x_n) := \mathbb{P}[\theta = \theta_i|X_1 = x_1,...,X_n = x_n], \quad i = 1,2,...$$

Bayes method

Def: The Bayes estimator is defined as the expectation of the a-posteriori-distribution

$$\widehat{ heta}_{\mathsf{Bayes}} = \sum_i heta_i q(heta_i | x_1, \dots, x_n)$$

Maximum-spacing method

Lemma: Let the cdf F_{θ} be continuous and strictly monoton increasing. Under \mathbb{P}_{θ} the random variables $F_{\theta}(X_1), \ldots, F_{\theta}(X_n)$ are independent and uniformly distributed on the (0,1) interval.

Maximum-spacing method

Lemma: Let $z_1, \ldots, z_k \in [0,1]$ be number that are subject to the condition $z_1 + \cdots + z_k = 1$. Then

$$z_1 \cdot \cdots \cdot z_k \leq \frac{1}{k^k}. \tag{6}$$

Equality is attained only if all the numbers all the numbers are equal to $\frac{1}{k}$.

Maximum-spacing method

Lemma: The maximum-spacing method is defined via

$$\widehat{\theta}_{MS} = \arg\max_{\theta \in \Theta} \prod_{i=1}^{n+1} (F_{\theta}(x_{(i)}) - F_{\theta}(x_{(i-1)}))$$
 (7)