Consider

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_2), \tag{1}$$

a conterexample to commutivity is given by

$$\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\neq \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}.$$
(2)

G consists of the invertible upper triangular real 2 by 2 matrices.

1. Show G is closed under multiplication.

Consider

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} d & e \\ 0 & f \end{pmatrix} = \begin{pmatrix} ad & ae + bf \\ 0 & cf \end{pmatrix} \in G.$$
 (3)

2. Show G is closed under inverse.

Consider

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} = \frac{1}{ac} \begin{pmatrix} c & -b \\ 0 & a \end{pmatrix} \in G.$$
 (4)

3. Show that $G \leq \operatorname{GL}_2(\mathbb{F}_2)$.

Notice that G is non empty since $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in G$, and $G \subset \mathrm{GL}_2(\mathbb{F}_2)$ by definition, and G is closed under multiplication and inverse by (1) and (2). Thus $G \leq \mathrm{GL}_2(\mathbb{F}_2)$.

4. Show that G is not commutative, but its subset with b=0 is a commutative subgroup.

Consider

$$\begin{pmatrix}
1 & 2 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
0 & 2
\end{pmatrix} = \begin{pmatrix}
1 & 6 \\
0 & 2
\end{pmatrix}$$

$$\neq \begin{pmatrix}
1 & 2 \\
0 & 2
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 4 \\
0 & 2
\end{pmatrix}.$$
(5)

And so *G* is not commutative.

However, if b = 0, then

$$\begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} d & 0 \\ 0 & f \end{pmatrix} = \begin{pmatrix} ad & 0 \\ 0 & cf \end{pmatrix} = \begin{pmatrix} d & 0 \\ 0 & f \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}. \tag{6}$$

Also, the subset is non empty since $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is in the subset, and it is closed under multiplication and inverse by (1) and (2). Thus the subset with b=0 is a commutative subgroup of G.

1. Order of each element in Q_8 .

$$Q = \{ \pm 1, \pm i, \pm j, \pm k \}. \tag{7}$$

We have |1|=1, |-1|=2, |i|=4, |-i|=4, |j|=|-j|=|k|=|-k|=4.

2. Prove that ${\cal D}_8$ and ${\cal Q}_8$ are not isomorphic.

We consider the isomorphic property that if $\varphi: G \to H$ is an isomorphism, then for any $g \in G$, $|g| = |\varphi(g)|$. This implies that isomorphism preserves the order of elements, and so G and H must have the same number of elements of each order. We notice that in D_8 ,

$$|e| = 1, |r| = |r^3| = 4, |r^2| = 2, |s| = |sr| = |sr^2| = |sr^3| = 2.$$
 (8)

Thus D_8 has 5 elemetrs of order 2, while Q_8 has only one element of order 2. Thus D_8 and Q_8 are not isomorphic.

1.

We verify each relations.

$$1.M_{-1}^2 = M_1$$

$$\mathbf{M}_{-1}^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} (-1)(-1) + (0)(0) & (-1)(0) + (0)(-1) \\ (0)(-1) + (-1)(0) & (0)(0) + (-1)(-1) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{M}_{1}$$
(9)

2.
$$M_i^2 = M_i^2 = M_k^2 = M_{-1}$$
.

$$\mathbf{M}_{i}^{2} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} i^{2} & 0 \\ 0 & (-i)^{2} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \mathbf{M}_{-1}$$

$$\mathbf{M}_{j}^{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \mathbf{M}_{-1}$$

$$\mathbf{M}_{k}^{2} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \begin{pmatrix} i^{2} & 0 \\ 0 & i^{2} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \mathbf{M}_{-1}$$
(10)

All three relations hold.

3.
$$M_i M_i = M_k$$
.

$$\mathbf{M}_{i}\mathbf{M}_{j} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} (i)(0) + (0)(-1) & (i)(1) + (0)(0) \\ (0)(0) + (-i)(-1) & (0)(1) + (-i)(0) \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \mathbf{M}_{k}$$
(11)

4. $M_i M_i = M_{-k}$:

$$\mathbf{M}_{j}\mathbf{M}_{i} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} = \mathbf{M}_{-k} \tag{12}$$

2.Deduce that these eight matrices consitute a subgroup of $\mathrm{GL}_2(\mathbb{C})$ with the same multiplication table as Q_8 , and thus Q_8 is a group.

Let H be the 8-matrix subgroup of $GL_2(\mathbb{C})$ We verify the subgroup criteria for finite group H.

- 1. Closure: The relations we checked showed that any element in the set can be written as a product of generators, and any product of generators simplifies to an element in the set. Thus, *H* is **closed** under matrix multiplication.
- 2. Non empty: M_1 is the identity matrix, and is in H, and so H is non empty.

And so by the subgroup criterion, $H \leq GL_2(\mathbb{C})$.

3. Show that the subgroup has the same multiplication table as Q_8 .

The map $\varphi: Q_8 \mapsto \{M_x \mid x \in Q_8\}$ defined by $\varphi(x) = M_x$ (e.g., $\varphi(i) = M_i$, $\varphi(j) = M_j$, etc.) is a homomorphism because the generators i, j and M_i, M_j satisfy the same defining relations.

Since φ is a bijection between the two sets of 8 elements, it is an isomorphism. This means the matrix group and Q_8 have identical structures and multiplication tables.

4. Conclude that Q_8 is a group.

Let $\psi:Q_8\to H$ be the bijection defined by $\psi(x)=\mathbf{M}_x$ for each $x\in Q_8$. By the verified relations, ψ respects the defining multiplication rules of Q_8 , hence ψ is a homomorphism.

The associativity axiom for Q_8 now follows from the associativity of matrix multiplication in H. For any $x, y, z \in Q_8$:

$$\psi((xy)z) = \psi(xy)\psi(z) = (\psi(x)\psi(y))\psi(z) \tag{13}$$

Since matrix multiplication is associative in H:

$$(\psi(x)\psi(y))\psi(z) = \psi(x)(\psi(y)\psi(z)) \tag{14}$$

And since ψ is a homomorphism:

$$\psi(x)(\psi(y)\psi(z)) = \psi(x)\psi(yz) = \psi(x(yz)) \tag{15}$$

Thus, $\psi((xy)z)=\psi(x(yz))$. Since ψ is injective, it follows that (xy)z=x(yz) in Q_8 .

The existence of an identity element in Q_8 is confirmed by $\psi(1)=\mathbf{M}_1$, where \mathbf{M}_1 is the identity matrix in H. The existence of inverses for each element $x\in Q_8$ is confirmed by $\psi(x^{-1})=\psi(x)^{-1}$, where $\psi(x)^{-1}$ is the matrix inverse in H. Finally, closure of Q_8 under its operation is inherent in its definition via the multiplication table.

Therefore, Q_8 satisfies all the group axioms (closure, associativity, identity, and inverses), and hence is a group.

let $\varphi:G\to H$ be a homomorphism.

1. Prove that $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{N}$.

We prove this by induction on n. Base case: n=1. Trivially true since $\varphi(x^1)=\varphi(x)=\varphi(x)^1$.

Inductive step: Assume true for n=k, i.e., $\varphi(x^k)=\varphi(x)^k$. We want to show it is true for n=k+1. Notice

$$\psi(x^{k+1}) = \psi(x^k x) \tag{16}$$

and homomorphism implies

$$\psi(x^k x) = \psi(x^k)\psi(x) = \psi(x)^{k+1},\tag{17}$$

as wanted. Thus by induction, $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{N}$.

2. Do part 1 for n=-1 and deduce that $\varphi(x^n)=\varphi(x)^n$ for all $n\in\mathbb{Z}$.

Since homomorphisem preserves identity, we have

$$\varphi(x^{-1}x) = \varphi(x^{-1})\varphi(x) = \varphi(e) = e. \tag{18}$$

Thus $\varphi(x^{-1}) = \varphi(x)^{-1}$.

Let $m \in \mathbb{Z}, m < 0; n = -m, n \in \mathbb{N}$. Then consider

$$\varphi(x^m) = \varphi(x^{-n}) = \varphi((x^n)^{-1}) = \varphi(x^n)^{-1} = (\varphi(x)^n)^{-1} = \varphi(x)^{-n} = \varphi(x)^m.$$
(19)

Since we have proved part 1, we conclude that $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{Z}$.

Let $\theta:\Delta \to \Omega$ be a bijection. Define

$$\varphi: S_{\Delta} \to S_{\Omega}, \quad \text{by } \varphi(\sigma) = \theta \circ \sigma \circ \theta^{-1}.$$
 (20)

1. Prove that φ is well defined.

If $\sigma \in S_{\Delta}$, then $\sigma : \Delta \to \Delta$ is a bijection, and since θ, θ^{-1} are bijections, the composition

$$\phi(\sigma) = \theta \circ \sigma \circ \theta^{-1} : \Omega \to \Omega \tag{21}$$

is also a bijection. Hence $\phi(\sigma) \in S_{\Omega}$, so ϕ is well-defined.

2. Prove that φ is a bijection from S_{Δ} onto S_{Ω} .

Define

$$\psi: S_{\Omega} \to S_{\Lambda}, \qquad \psi(\tau) = \theta^{-1} \circ \tau \circ \theta.$$
 (22)

Then for any $\tau \in S_{\Omega}$,

$$(\phi \circ \psi)(\tau) = \phi(\theta^{-1} \circ \tau \circ \theta) = \theta \circ (\theta^{-1} \circ \tau \circ \theta) \circ \theta^{-1} = (\theta \circ \theta^{-1}) \circ \tau \circ (\theta \circ \theta^{-1}) = \tau, \tag{23}$$

so $\phi \circ \psi = \mathrm{id}_{S_{\Omega}}$. Similarly, for any $\sigma \in S_{\Delta}$,

$$(\psi \circ \phi)(\sigma) = \psi(\theta \circ \sigma \circ \theta^{-1}) = \theta^{-1} \circ (\theta \circ \sigma \circ \theta^{-1}) \circ \theta = (\theta^{-1} \circ \theta) \circ \sigma \circ (\theta^{-1} \circ \theta) = \sigma, \tag{24}$$

so $\psi \circ \phi = \mathrm{id}_{S_{\wedge}}$. Hence φ is bijective with inverse ψ .

3. Prove that φ is a homomorphism, i.e. $\varphi(\sigma \circ \tau) = \varphi(\sigma) \circ \varphi(\tau)$

For any $\sigma, \tau \in S_{\Delta}$,

$$\phi(\sigma \circ \tau) = \theta \circ (\sigma \circ \tau) \circ \theta^{-1} = (\theta \circ \sigma \circ \theta^{-1}) \circ (\theta \circ \tau \circ \theta^{-1}) = \phi(\sigma) \circ \phi(\tau). \tag{25}$$

Thus φ is a group homomorphism.

Therefore, ϕ is a bijective homomorphism, i.e., an isomorphism $S_\Delta \cong S_\Omega.$

Let G, H be groups and let $\varphi : G \to H$ be a homomorphism. Prove that the image of $\varphi(G)$ is a subgroup of H, and that if φ is injective then G is isomorphic to $\varphi(G)$.

1.

Using the subgroup criterion, we see that $\varphi(G) \subset H$ by definition of the image, and $\varphi(G)$ is non empty since $e_H = \varphi(e_G) \in \varphi(G)$.

Also, let $x=\varphi(g_1), y=\varphi(g_2); g_1,g_2\in G.$ Notice that

$$xy^{-1} = \varphi(g_1)\varphi(g_2)^{-1} = \varphi(g_1)\varphi(g_2^{-1}) = \varphi(g_1g_2^{-1}) \in \varphi(G), \tag{26}$$

and so $\varphi(G)$ is closed under inverse. Thus by the subgroup criterion, $\varphi(G) \leq H$. (Note that we used part 2 of problem 5 to show $\varphi(g_2)^{-1} = \varphi(g_2^{-1})$.)

2.

Define $\psi:G\to \varphi(G), \psi(g)\coloneqq \varphi(g)$. Then ψ is a homomorphism since for any $g_1,g_2\in G,$

$$\psi(g_1 g_2) = \varphi(g_1 g_2) = \varphi(g_1) \varphi(g_2) = \psi(g_1) \psi(g_2). \tag{27}$$

 ψ is surjective by definition of $\varphi(G)$, and injective if φ is injective. Thus ψ is an isomorphism.

Let G,H be groups and $\varphi:G\to H$ a homomorphism. Define

$$\ker(\varphi) := \{ g \in G \mid \varphi(g) = e_H \}. \tag{28}$$

1. $ker(\varphi)$ is a subgroup of G.

Use the subgroup test: a nonempty subset $K \subseteq G$ is a subgroup iff $\forall x, y \in K$, we have $xy^{-1} \in K$.

- Nonempty: $\varphi(e_G) = e_H$, so $e_G \in \ker(\varphi)$.
- Closure under xy^{-1} : If $x, y \in \ker(\varphi)$, then

$$\varphi(xy^{-1}) = \varphi(x)\,\varphi(y)^{-1} = e_H\cdot(e_H)^{-1} = e_H, \tag{29}$$

hence $xy^{-1} \in \ker(\varphi)$.

Therefore $ker(\varphi) \leq G$.

2. φ is injective $\iff \ker(\varphi) = \{e_G\}$.

- $(\Rightarrow) \ \text{Suppose} \ \varphi \ \text{is injective. Let} \ g \in \ker(\varphi), \text{so} \ \varphi(g) = e_H = \varphi(e_G). \ \text{By injectivity,} \ g = e_G. \ \text{Hence} \ \ker(\varphi) = \{e_G\}.$
- (\Leftarrow) Suppose $\ker(\varphi)=\{e_G\}.$ If $\varphi(g_1)=\varphi(g_2),$ then

$$\varphi(g_1 g_2^{-1}) = \varphi(g_1) \varphi(g_2)^{-1} = e_H, \tag{30}$$

so $g_1g_2^{-1}\in \ker(\varphi)$ and thus $g_1g_2^{-1}=e_G$, i.e. $g_1=g_2$. Hence φ is injective.