PRÁCTICA 1: SERVO CONTROLADOR AC GSK

OBJETIVOS

- Conocer las características, partes constitutivas, modos de operación, funcionamiento, del servo controlador y servo motor AC.
- Familiarizar al estudiante con el manejo del servo controlador, su conexión y manejo de parámetros.

INFORMACIÓN

Introducción

La tecnología servo AC se ha desarrollado rápidamente desde el comienzo de los años 1990s, período en el cual esta tecnología ha madurado y su desempeño ha mejorado constantemente. Ahora esta tecnología se aplica ampliamente en campos de automatización como: maquinaria CNC, máquinas impresoras y empacadoras, maquinaria textil y líneas de producción automática.

El servo controlador AC DA98D es una nueva generación de servo controlador AC digital, manufacturada por la compañía GSK CNC EQUIPMENT CO., LTD. Este producto

incluye dos modos de control, de velocidad y posición, el cual puede ser comparado con varios sistemas de control de lazo abierto y lazo cerrado.

Utiliza elementos internos como: un procesador digital de señales (DSP) dedicado para el control de motores TMS320LF2407A, un dispositivo lógico programable complejo (CPLD) y un módulo inteligente de potencia (IPM) MITSUBISHI; por lo que presenta varias ventajas como, alto grado de integración, ser compacto, poseer protección y alta confiabilidad. Se

emplea un controlador PID óptimo para lograr control PWM. El desempeño de este equipo se ha destacado internacionalmente frente a otros equipos de similares características.

Comparado con un controlador de motor de pasos, el servo controlador AC DA98D, presenta las siguientes fortalezas:

- Evita el fenómeno de no-sincronización ya que el servo motor incluye un encoder y las señales de posición son realimentadas al servo controlador, formando de esta manera un sistema de lazo casi-cerrado junto con el controlador de posición de lazo abierto.
- En comparación a un motor de pasos no presenta vibraciones en bajas velocidades, debido a que el patrón de velocidad es más estable.

 Amplio rango de velocidad y torque constante, a diferencia de los motores de pasos en los cuales el rango de velocidad es limitado y su torque varía en función de la velocidad

- Precisión en alta y baja velocidad, la máxima velocidad que se puede alcanzar con el servo motor 110SJT-M020E es de 3000 rpm, con una precisión de posicionamiento rotacional de 1/10000 revoluciones.
- Control flexible y sencillo, mediante el cambio de parámetros, métodos de trabajo y características del servo controlador pueden ser configurados apropiadamente para satisfacer diferentes requerimientos.

Descripción de equipos

A continuación se presenta una descripción de las partes del servo controlador DA98D y del servo motor 110SJT-M020E.

Criterios para el montaje físico

Se debe considerar varios factores que intervienen al momento de instalar el servo controlador y servo motor en algún sitio como un gabinete, una máquina, etc. Así se tiene las condiciones ambientales, para lo cual se debe cumplir los requisitos mostrados en la tabla:

Items	DA98DServo Drive unit	GSK SJT Series of AC Servo Motor		
Operation Temperature/ Humidity	0°C ∼55°C (no frozen frost) Less than 90%RH (no dew condensation)	-10℃~40℃ (no frozen frost)) 90%RH (no dew condensation)		
Storage Temperature/ Humidity	-20℃~80℃ 90%RH(no dew)	-40℃~55℃ 85%RH (no dew)		
Atmospheric Environment	Within the control panel, there shall be not corrosive air, combustible air, oil fog or dust.	Within the room (no insolation), there shall be not corrosive air, combustible air, oil fog and dust.		
Height	Less than 1000m above sea level	Less than 1000m above sea level		
Vibration	Less than 0.5G(4.9m/s2)10 Hz -60Hz (non-continuous operation)			
Degree of Protection	IP00	IP54		

Además se requiere proporcionar espacio para ventilación entre equipos cercanos al servo controlador para evitar sobrecalentamiento y mal funcionamiento de las partes.

Cableado

Las conexiones en los terminales de potencia deben realizarse de la siguiente manera:

- Para los puntos de conexión R, S, T, PE, U, V, W, se debe utilizar cable AWG14-16, como mínimo.
- Para los terminales r, t, se debe utilizar cable AWG16-18, como mínimo.
- La conexión a tierra (PE) se debe realizar con un cable tan grueso como sea posible para obtener una resistencia hacia tierra menor que 100Ω .

- Se recomienda utilizar una fuente de energía con un transformador trifásico para reducir la posibilidad de un choque eléctrico.
- Se recomienda instalar un interruptor térmico para cortar el suministro de energía eléctrica cuando el controlador falle.

Las conexiones en los terminales de control deben realizarse de la siguiente manera:

- Se debe utilizar cable par trenzado blindado AWG24-26, como mínimo. La malla de blindaje debe ser conectado al terminal FG.
- Los cables para las señales de control deben ser lo más cortos en lo posible, para las señales de CN1 la longitud de los cables no debería superar los 3 metros y para las señales de CN2 no debe ser mayor a 20 metros.
- El cableado debe estar separado del circuito de potencia para evitar interferencias.

A continuación se presenta los diagramas de conexión eléctrica para el servo drive DA98D, modo de control de posición y velocidad.

Diagrama de conexiones eléctricas para modo de control de velocidad

Descripción de terminales para CN1 (DB44)

Terminal No.	Terminal Name	Mark	I/O	Mode	Functions
CN1-38 CN1-39	Power Anode of Input Terminal	COM+	Type I		Power anode of input terminal Used to drive photoelectrical coupler in the input terminal DC12~24V, current ≥100mA
CN1-23	Servo On	SON	Type1		Servo on input terminal SON ON: allow driving operation SON OFF: the driver is closed and stops work; the motor is under free state Note 1 before switching SON OFF to SON ON, the motor must be in stillness; Note 2: after SON ON is switched on, wait at least 50ms before inputting commands.
CN1-8	Alarm Stopping	ALRS	Type1		Input terminal for alarm stopping ALRS ON: stop system alarm ALRS OFF: maintain system alarm Note1: Alarm for failure code larger than 8 can not be stopped with this method; it needs to cut off the power for examination and repair, and then switch on power.
CN1-24	CCW Drive Stopping	FSTP	Type1		Input terminal for CCW(counter clockwise) drive stopping FSTP ON: allow CCW driving operation FSTP OFF: stop CCW driving operation Note 1: If limit of the machine is surpassed, the CCW torque will remain zero when switching on OFF. Note 2: The function of FSTP OFF can be screened off or the function of "ON" can permanently surface by setting No.20 parameter.
CN1-9	CW Drive Stopping	RSTP	Type1		Input terminal for CW(clockwise direction) drive stopping RSTP ON: allow CW driving operation RSTP OFF: stop CW driving operation Note 1: If limit of the machine is surpassed, the CW torque will remain zero when switching on OFF. Note 2: The function of FSTP OFF can be screened off or the function of "ON" can permanently surface by setting No.20 parameter.
	Error Meter Clearance	CLE	Type1	Р	Input terminal for clearing position error meter CLE ON: Position control; the position error meter will be cleared
CN1-40	Speed Choice 1	SC1	Type1	S	Input terminal for speed choice 1 Under the speed control mode, the combination of SC1 and SC2 can be used to select different internal speeds SC1 OFF,SC2 OFF: internal speed 1 SC1 ON,SC2 OFF: internal speed 2 SC1 OFF,SC2 ON: internal speed 3 SC1 ON,SC2 ON: internal speed 4 Note: the values of internal speed 1 to 4 can be changed with parameters.

CN1-41	Command Pulse Inhibiting	INH	Type1	Р	Input terminal for command pulse inhibiting INH ON: command pulse input is inhibited INH OFF: command pulse input is valid
	Command Pulse Inhibiting	INH	Type1	Р	Input terminal for position command pulse inhibiting INH ON: command pulse input is inhibited INH OFF: command pulse input is valid
CN1-41	Speed Choice 2	SC2	Type1	S	Input terminal for speed choice 2 Under the speed control mode, the combination of SCA and SC2 can be used to select different internal speeds. SC1 OFF,SC2 OFF: internal speed 1 SC1 ON:SC2 OFF: internal speed 2 SC1 OFF,SC2 ON: internal speed 3 SC1 ON,SC2 ON: internal speed 4
CN1-25	CCW Torque Limiting	FIL	Type1		Input terminal for CCW(counter-clockwise direction) torque limiting FIL ON:CCW torque is limited within the scope of parameter No.36 FIL OFF: CW torque is not limited by parameter No.36 Note 1: No matter FIL is on or off, CCW torque will still be limited by parameter No.34. Generally, parameter No.34 > parameter No.36
CN1-10	CW Torque Limiting	RIL	Type1		Input terminal for CW(clockwise direction) torque limiting RIL ON: CW torque is limited within the scope of parameter No.37. RIL OFF: CW torque is not limited by parameter No.37 Note 1: No matter FIL is on or off, CCW torque will still be limited by parameter No.35. Generally, parameter No.351 > parameter No.371
CN1-20	Servo Ready for Output	SRDY	Type2		Terminal of Servo Ready for Output SRDY ON: Control power supply and main power supply are normal, the driver alarm does not occur, and the servo gets Ready for Output ON. SRDY OFF: the main power supply is not cut off or the driver alarm occurs, and the servo gets Ready for outputting OFF.
CN1-5	Servo Alarm Output	ALM	Type2		Output terminal for servo alarm ALM ON: servo driver alarm dose not occur, and the servo is Ready for outputting ON. ALM OFF: servo driver alarm occurs and the servo is Ready for outputting OFF.
CN1-35	Output for Positioning Completing	COIN	Type2	Р	Output terminal for positioning completing COIN ON: when the value of position error meter is within the set scope of positioning, ON will be output for positioning completing.
5111-00	Output for Speed Completing	SCMP	Type2	s	Output terminal for speed completing SCMP ON: when the speed reaches or surpasses the set speed, On will be output for speed completing.

CN1-32 CN1-33	Common edge of Output terminal	DG	Common edge		Earthling common edge of control signal output terminal (excluding CZ)	
CN1-37	Z-Phase output of Encoder	CZ	Type2		Output terminal for Z-phase of encoder Output Z-phase pulse of servo motor's photoelectric code CZ ON: Z-phase signal appears	
CN1-26	Zero Speed Clamping	ZSL	Type1		ZSL ON: Servo driver is not under the control of analog voltage, and zero speed is output. ZSL OFF: servo driver is under the control of analog voltage	
CN1-36		CZCOM			Common edge of encoder's Z-phase output terminal	
CN1-30		PULS+				
CN1-15	Command Pulse Input	PULS-	Type3	Р	Input terminal for external command pulse Note 1: the pulse input modes are set by PA14.	
CN1-29		SIGN+			Mode of command pulse+ symbol; Mode of CCW/CW command pulse	
CN1-14	Command Pulse Input	SIGN-	Type3	Р	,	
CN1-31	Shielding Ground Wire	FG			Earthling shielding terminal	
CN1-2 CN1-16	Analog Ground	AGND		s	Analog ground	
CN1-17	Input Simulation Command	VCMD	Typo4	s	Input analog command+-10V	
CN1-1	Input Analog command Ground	SG	Type4	s	Input resistance of 20K	
CN1-7	Positive Terminal of Hold Output	HOLD+	_	S/P	Open-loop output of drain electrode, the photoelectric coupler is open under normal operation. ON is output	
CN1-6	Negative Terminal of Hold Output	HOLD-	Type2	S/P	The power is off and the drive stops. When alarm stops, the photoelectric coupler is closed. OFF is output	
CN1-27	Code disc Pulse A+	PAOUT +	Type5	s	Feedback output signal of encoder. The standard is 2500/line Output linear speed can be adjusted through electronic gears of output PA 41 and PA42, e.g. if	
CN1-12	Code disc Pulse A-	PAOUT-		s	the encoder has 2500 pulses per round, setting PA41/42=4/5, then the A and B-phase signals output from drive unit will be 2500 X	
CN1-28	Code disc Pulse B+	PBOUT +			PA41/PA42=2000 pluses/round.	

CN1-13	Code disc Pulse B-	PBOUT-		
CN1-42	Code disc Pulse Z+	PZOUT +		One pulse will be output from one round of the
CN1-43	Code disc Pulse Z-	PZOUT-		motor.

Descripción de terminales para CN2 (DB25)

Terminal	Terminal Name	Termina	al Mark		Color	Functions
No.	rerminar Name	Mark	I/O	Mode	Color	Functions
CN2-5 CN2-6 CN2-17 CN2-18	Power Output+	+5V				Photoelectric encoder of the servo motor employs + 5V power supply;
CN2-1 CN2-2 CN2-3 CN2-4 CN2-16	Power Output-	ov				When the cable is relatively long, it should use multiple component wires that are connected in parallel.
CN2-24	Encoder A+Input	A+				Connected with A+ phase of the servo motor's photoelectric encoder
CN2-12	Encoder A-Input	A-	Type4			Connected with A- phase of the servo motor's photoelectric encoder
CN2-23	Encoder B+Input	B+	Tupo4			Connected with B+ phase of the servo motor's photoelectric encoder
CN2-11	Encoder B-Input	B-	Type4			Connected with B- phase of the servo motor's photoelectric encoder
CN2-22	Encoder Z+Input	Z+	Typo4			Connected with Z+ phase of the servo motor's photoelectric encoder
CN2-10	Encoder Z-Input	Z-	Type4			Connected with Z- phase of the servo motor's photoelectric encoder
CN2-21	Encoder U+Input	U+	Tupo 4			Connected with U+ phase of the servo motor's photoelectric encoder
CN2-9	Encoder U-Input	U-	Type4			Connected with U- phase of the servo motor's photoelectric encoder
CN2-20	Encoder V+Input	V+	Tupo4			Connected with V+ phase of the servo motor's photoelectric encoder
CN2-8	Encoder V-Input	V-	Type4			Connected with V+ phase of the servo motor's photoelectric encoder

Interfaz de entrada digital

Para habilitar o no una entrada mediante un interruptor, se recomienda utilizar el siguiente circuito:

La fuente de alimentación externa de 12~24VDC debe proporcionar una corriente mínima de 100mA.

Interfaz de salida digital

Para activar una carga con alguna de las salidas del servo controlador se debe emplear el siguiente circuito:

Se debe tener cuidado al momento de conectar la fuente externa, ya que al invertir su polaridad se puede dañar al servo controlador.

Como se puede apreciar en el circuito, la salida de transistor es de colector abierto a través de la cual puede circular una corriente máxima de 50mA; además la fuente de voltaje debe ser de 25V como máximo. Si se conecta una carga inductiva como un relé, se debe colocar un diodo en anti paralelo.

Interfaz de entrada analógica

Se debe utilizar una señal de referencia de voltaje que varíe desde -10VDC hasta +10VDC en los terminales VCMD y AGND, para obtener todo el rango de velocidad y

también cambio de giro. Se debe considerar que la impedancia de entrada de la interfaz analógica del servo controlador es de $20 \mathrm{K}\Omega$.

Interfaz de entrada de pulsos

Para transmitir correctamente la información de pulsos se recomienda utilizar circuitos integrados de salida diferencial como, AM26LS31, MC3487, o similares.

Si se tiene algún dispositivo como un PLC, controlador, que no posea una salida diferencial, se puede realizar la siguiente conexión:

Para este caso se debe considerar que la corriente de ingreso al servo controlador debe ser de 10~15mA, con una fuente de voltaje externa de 25V máximo, por lo que las

resistencias externas pueden tomar los siguientes valores dependiendo del valor de la fuente: VCC=24V, R=1.3 \sim 2K; VCC=12V, R=510 \sim 820 Ω ; VCC=5V, R=82 \sim 120 Ω .

A continuación se muestra una tabla de los modos de comando por pulsos:

Forms of Pulse Command	CCW	CW	Set Parameter Values
Symbol for Pulse Train	PULS		0 Command Pulse+ Symbol
CCW Pulse Train CW Pulse Train	PULS SIGN		1 CCW Pulse/CCW Pulse

En los diagramas de tiempo que se observan a continuación se detallan los intervalos de tiempo mínimos que se deben proporcionar para asegurar el correcto funcionamiento del servo controlador:

Pulsos y signo

Pulsos sentido horario y pulsos sentido anti horario

Listado de variables para tiempos de conmutación

Parameter	Differential Drive Input	Uni-polar Drive Input
t _{ck}	>2µS	>5µS
t _h	>1µS	>2.5µS
t _l	>1µS	>2.5µS
t _{rh}	<0.2µS	<0.3µS
t _{rl}	<0.2µS	<0.3µS
t _s	>1µS	>2.5µS
tqck	>8µS	>10µS
tqh	>4µS	>5µS
t _{ql}	>4µS	>5µS
^t qrh	<0.2µS	<0.3µS
tqrl	<0.2µS	<0.3µS
t _{qs}	>1µS	>2.5µS

Parámetros de programación

Listado de parámetros

No.	Name	Mode	Parameter	Factory	Unit
			range	Values	
0	Password	P,S	0~9999	315	
1	Model Code	P,S	0~569	30*	
2	Software Version (Read only)	P,S	*	*	
3	Initial Display State	P,S	0~20	0	
4	Choice of Control Mode	P,S	0~5	0	
5	Speed Proportion Gain	P,S	5~2000	100*	Hz
6	Speed Integral Time Constant	P,S	1~1000	20*	ms
7	Torque Command Filter	P,S	1~500	100	%
8	Low pass Filter for Speed Inspection	P,S	1~500	100	%
9	Position Proportion Gain	Р	1~1000	40	1/S
10	Position Feed Forward Gain	Р	0~100	0	%
11	Low Pass Filter Cut-off Frequency for Position Feed-forward	Р	1~1200	300	Hz
12	Position Command Pulse Frequency Division Numerator	Р	1~32767	1	
13	Position Command Pulse Frequency Division Denominator	Р	1~32767	1	
14	Position Command Pulse Input Mode	Р	0~1	0	
15	Position Command Pulse Direction Reversing	Р	0~1	0	
16	Range for Positioning Completing	Р	0~30000	20	Pulse
17	Inspection Range for Position Excess	Р	0~30000	400	×100 Pulse
18	Invalid Position Excess Error	Р	0~1	0	
19	Position Command Smoothing Filter	Р	0~30000	0	0.1ms
20	Invalid Drive Stopping Input	P,S	0~1	0	
21	JOG Operation Speed	S	-3000~3000	120	r/min
22	Reservation				
23	Maximal Speed Limit	P,S	0~4000	3600	r/min
24	Internal Speed 1	S	-3000~3000	0	r/min
25	Internal Speed 2	S	-3000~3000	100	r/min

26	Internal Speed 3	S	-3000~3000	300	r/min
27	Internal Speed 4	S	-3000~3000	-100	r/min
28	Speed Completing	S	0~3000	500	r/min
29	Reservation				
30	Linear Velocity Conversion Numerator	P,S	1~32767	10	
31	Linear Velocity Conversion Denominator	P,S	1~32767	1	
32	Decimal Position of Linear Velocity	P,S	0~5	3	
33	Zero Speed Scope for Analog Command	S	0~1000	3	
34	Internal CCW Torque Limiting	P,S	0~300	300*	%
35	Internal CW Torque Limiting	P,S	-300~0	-300*	%
36	External CCW Torque Limiting	P,S	0~300	100	%
37	Internal CW Torque Limiting	P,S	-300~0	-100	%
38	Torque Limiting for Speed Trial Operation and JOG Operation	S	0~300	100	%
39	Acceleration Time Constant	S	1~10000	0	ms
40	Deceleration Time Constant	S	1~10000	0	ms
41	Numerator of Output Electronic Gear Ratio	S	1~255	1	
42	Denominator of Output Electronic Gear Ratio	S	1~255	1	
43	Choice of Speed Command	S	0~1	1	
44	High Speed AD Zero Point	S	412~1600	1024	
45	Low Speed AD Zero Point	S	412~1600	1024	
46	Motor Rotation Direction Control	S	0~3	0	
47	Analog Command Gain	S	20~3000	100	
48	Anti-jamming Scope for Analog Command	S	0~1000		
49	Choice of Zero Adjustment Channels for Analog Speed		0~1	0	
52	Analog Command Transition Mode	S	0~1	0	
53	Zero-point Slope	S	0~1023	0	

Se recomienda al estudiante revisar detenidamente el capítulo cuatro, parámetros de programación, que se encuentran en el manual de usuario del servo controlador DA98D Digital AC Servo Drive Unit (DA98D servo driver manual.pdf), página 25.

Manejo de alarmas

Una de las características del servo controlador AC GSK es generar una alarma visual en función a un fallo en el conjunto servo motor AC y servo controlador, el cual ayuda a comprender al usuario que procedimiento seguir para solucionarlo, en base a una tabla de métodos para manejar alarmas; se recomienda al estudiante revisar detenidamente el capítulo cinco, manejo de alarmas, que se encuentran en el manual de usuario del servo controlador DA98D Digital AC Servo Drive Unit (DA98D servo driver manual.pdf), página 35.

A continuación se presenta un listado de alarmas:

Listado de alarmas

Alarm Codes	Alarm name	Contents
0	Normal	
1	Excessive Speed	Speed of the servo motor exceeds the set value
2	Over-voltage in Main Circuit	Voltage of the main circuit power is excessive
3	Voltage Shortage in Main Circuit	Voltage of the main circuit power is too low
4	Position Excess	Value in the position error meter surpasses the set value.
5	Motor Overheating	Excessively high motor temperature
6	Saturation Failure of Speed Regulator	Long-time saturation of the speed regulator
7	Abnormal Drive Stopping	Both CCW and CW drive stopping are OFF.
8	Overflow of Position Error Meter	Absolute Value of the number in the position error meter exceeds 2 ³⁰
9	Encoder Failure	Encoder signal error
10	Voltage Shortage in Control Power	The control power of ±15V is on the low side
11	IPM Module Failure	IPM intelligent module breaks down
12	Excessive Current	Excessive motor current
13	Overload	Overload in servo driver and motor (Instantaneous overheating)
14	Braking Failure	Failure in braking circuit
15	Counting Error of Encoder	Abnormal counting in Encoder
20	EEPROM Error	EEPROM Error
30	Z Pulse Losing in Encoder	Wrong Z pulse in encoder
31	UVW Signal Error in Encoder	Encoder's UVW signal is wrong or not matchable with encoder
32	Code Violation of Encoder's UVW Signal	or all-low level exists in UVW signal

Operación de teclado

Para acceder a los parámetros y configuración del servo drive se tiene una interfaz compuesta por un display de 6 dígitos y 4 botones para desplazamiento de menús, aceptación de parámetros, etc.

Interfaz de usuario de servo controlador GSK DA98D

Con las teclas se desplaza por los menús, si se desea ingresar a cualquiera de ellos se presiona la tecla . Para regresar al menú principal se presiona el botón

Primer menú

Opciones de menú principal

Para modificar alguno de los parámetros de la lista se ingresa a la opción "PA" con el botón , y en ella desplazarse con las teclas para hallar el parámetro requerido, para modificarlo se presiona el botón , modificando el valor con las teclas , para aceptarlo se presiona el botón , y para regresar de menú se presiona el botón .

Opciones de menú PA

Como se puede apreciar el manejo y ajuste de parámetros del servo drive es muy sencillo lo que ayuda al usuario final a sacar el mejor provecho del equipo.

Se recomienda al estudiante revisar detenidamente el capítulo seis, Operación y Visualización, que se encuentran en el manual de usuario del servo controlador DA98D Digital AC Servo Drive Unit (DA98D servo driver manual.pdf), página 40.

TRABAJO PREPARATORIO

- 1.- Estudiar la información de esta práctica.
- 2.- Leer completamente el manual de usuario del servo controlador DA98D Digital AC Servo Drive Unit (DA98D servo driver manual.pdf).

PROCEDIMIENTO

- 1.- El instructor explicará todo lo necesario sobre el servo controlador y servo motor AC GSK, las instalaciones del laboratorio y el equipo disponible.
- 2.- Siguiendo las indicaciones dadas por el instructor, inspeccione los elementos constitutivos del tablero de control de servo motor AC GSK.

INFORME

- Consulte las definiciones de: servo motor, lazo de control abierto, lazo de control cerrado, codificador (encoder), procesador digital de señales, CPLD, módulo inteligente de potencia.
- 2.- De la información procesada y observando el servomotor, liste las características del servomotor AC GSK.
- 3.- Elabore un cuadro comparativo entre servo motor DC, servo motor AC, motor de pasos, motor de inducción.
- 3.- Conclusiones y recomendaciones sobre la práctica.