Modulos

OMMJAL-Femenil

Emmanuel Buenrostro

12 April 2025

.

§1 Principios

Definition 1.1. $a \equiv b \pmod{n}$ si $n \mid a - b$

Propiedades: Si $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n}$:

- 1. $a + c \equiv b + d \pmod{n}$
- 2. $a c \equiv b d \pmod{n}$
- 3. $ac \equiv bd \pmod{n}$
- 4. $a^x \equiv b^x \pmod{n}$

Y en general cualquier operación con suma, resta, multiplicación se puede hacer.

§2 ¿Cómo se usa?

Los modulos tienen distintos usos, creo que los dos más usuales es cosas directamente relacionadas con la divisibilidad (o por ejemplo calcular algun modulo), o el poder resolver distintas ecuaciones diofantinas (con enteros) al acotar bastante en que casos se puede y no se puede.

Veamos unos problemas de ejemplo.

Example 2.1

Encuentra que valores de n se tiene que $3 \mid n^2 + 1$.

Solution. Como queremos que $3 \mid n^2 + 1$ entonces queremos que $3 \mid n^2 - (-1)$ y entonces quieres $n^2 \equiv -1 \pmod 3$.

Ōtra forma de ver esto, és que si $3 \mid n^2 + 1$ entonces

$$n^2 + 1 \equiv 0 \pmod{3}$$
$$n^2 \equiv -1 \pmod{3}$$

Puedes moverlo como si fuera una ecuación normal.

Entonces ahora vamos a ver todos los posibles casos de $n^2 \pmod{3}$.

$n \pmod{3}$	$n^2 \pmod{3}$
0	0
1	1
2	$4 \equiv 1$

Entonces podemos notar que no hay ningun caso donde $n^2 \equiv -1 \pmod 3$ entonces no hay soluciones.

Example 2.2

¿Cuál es el residuo de 2^{2025} al dividirlo entre 7?

Solution. Vamos a ver los primeros casos de potencias de 2 modulo 7.

$$2^1 \equiv 2, 2^2 \equiv 4, 2^3 \equiv 1, 2^4 \equiv 2$$

Entonces podemos ver que volvemos al 2, pero el residuo de una potencia de 2 depende totalmente del residuo anterior, entonces si se repite una se va a hacer un ciclo, en este caso el ciclo es

$$2 \rightarrow 4 \rightarrow 1$$

Entonces ahora lo que nos importa es ver cuanto es 2025 modulo 3 (porque el ciclo es de tamaño 3), y como $2025 \equiv 0 \pmod{3}$ entonces $2^{2025} \equiv 1 \pmod{7}$.

Seguro Emma ya lo tiene completo

Lalo refiriendose al Excel

§3 Problemas Parte 1

Problem 3.1. Demuestra que $a - b \mid a^n - b^n$ para n entero no negativo.

Problem 3.2. ¿Para cuáles enteros n se tiene que $4 \mid 3n^3 + 1$?

Problem 3.3. Demuestra el criterio de divisibilidad del 3, el cual dice que un número es divisible entre 3 si la suma de sus digitos es divisible entre 3.

Problem 3.4. Demuestra el criterio de divisibilidad del 4, el cual dice que un número es multiplo de 4 si el número formado por sus dos ultimos digitos es multiplo de 4.

Problem 3.5. Sea S la suma

$$S = 1 + 2 + 3 + \ldots + 2025$$

Encuentra el residuo cuando S es dividido entre 7.

Problem 3.6. ¿Puede 222222 ser un cuadrado perfecto?

Problem 3.7. Demuestra que los números primos mayores a 3 son 1 o 5 (mod 6).

Problem 3.8. Encuentra los enteros n tales que $n^2 \equiv 1 \pmod{8}$.

Problem 3.9. Encuentra los enteros x tales que $12x \equiv 1 \pmod{23}$.

Problem 3.10. Demuestra que si para x, y enteros entonces si $3 \mid x^2 + y^2$ se tiene que $3 \mid x y 3 \mid y$.

§4 Problemas Parte 2

Problem 4.1. Prueba que si p y 8p - 1 son ambos primos entonces 8p + 1 es compuesto.

Problem 4.2. Encuentra el residuo cuando $9 \times 99 \times ... \times 99 \cdots 9$ con 999 9's al final es dividido entre 1000.

Problem 4.3. Encuentra todos los números tales que son su propio inverso multiplicativo (El inverso multiplicativo es el que multiplicas para llegar a 1) mod p donde p es primo.

Problem 4.4. Demuestra que si $a^2 \equiv b^2 \pmod{p}$ donde p es primo entonces $a \equiv b \pmod{p}$ o $a \equiv -b \pmod{p}$.

Problem 4.5. Demuestra que

$$2025 \mid 1^{2025} + 2^{2025} + 3^{2025} + \ldots + 2025^{2025}$$

Problem 4.6. Demuestra el criterio de divisibilidad de 2^n , el cual dice que que un numero es divisible por 2^n si el número formado por los ultimos n digitos es multiplo de 2^n .

Problem 4.7. Demuestra que un numero es divisible por 5^n si el número formado por los ultimos n digitos es multiplo de 5^n .

Problem 4.8. Demuestra que si $7 \mid x^3 + y^3 + z^3$ entonces 7 divide a alguno de x, y, z.

Problem 4.9. Demuestra que un número es multiplo de 7 si el número formado por los numeros excepto el ultimo digito - el doble de el ultimo digito es multiplo de 7.

Problem 4.10. Determina todas las soluciones enteras no negativas $(n_1, n_2, \dots, n_1 4)$ a

$$n_1^4 + n_2^4 + \ldots + n_{14}^4 = 1599$$