Question 1: $M^X/M/1/4$ Queue

Figure 1: $M^X/M/1/4$, with λ^1 and λ^3 arrivals. See Annex A for R Code.

a) We can illustrate the steady state system, with λ^1 denoting the arrival of a batch with 1 customer, and λ^3 denoting a batch with 3 customers. These are not indicies, but a limit of the software. Now, from state space diagram, in Figure 1, we can form the steady state rate equations:

$$\mu P_1 = (\lambda_1 + \lambda_3) P_0, \qquad \mu P_2 = (\lambda_1 + \lambda_3) P_1, \qquad \mu P_3 = \lambda_1 P_2, \qquad \mu P_4 = \lambda_1 P_3$$

These rate equations lead us to an expression for each state:

$$P_{1} = \left[\frac{\lambda_{1} + \lambda_{3}}{\mu}\right] P_{0}, \qquad P_{2} = \left[\frac{\lambda_{1} + \lambda_{3}}{\mu}\right] P_{1}, \qquad P_{3} = \frac{\lambda_{1}}{\mu}, \qquad P_{4} = \frac{\lambda_{1}}{\mu} P_{3}$$

$$\lambda_{1}, \lambda_{3} = 1, \quad \mu = 1 \implies P_{1} = 2P_{0}, \quad P_{2} = 2P_{1}, \quad P_{3} = P_{2}, \quad P_{4} = P_{3}$$

Now, since $\sum_{n=0}^{4} P_n = 1$, then

$$\sum_{n=0}^{4} P_n = P_0 + 2P_0 + 4P_0 + 4P_0 + 4P_0 = 1$$

$$\therefore P_0 = \frac{1}{15}$$

Hence, we obtain: $P_0 = \frac{1}{15}$, $P_1 = \frac{2}{15}$, $P_2 = \frac{4}{15}$, $P_3 = \frac{4}{15}$ and $P_4 = \frac{4}{15}$.

b) From the steady state probabilities, we can deduce the expected length of the system L_2 :

$$L_s = E(N_s) = \sum_{n=1}^{4} nP_n = \frac{1}{15}(0+1(2)+2(4)+3(4)+4(4))$$
$$= \frac{38}{15} \approx 2.53 \quad (3s.f.)$$

c) For expected waiting time W_s in the system, we notice that the waiting time in the queue is $W_q = E(T)E(N)$, where $E(T) = 1/\mu$ denotes the expected time for a set of individuals to be served. Hence $W_q = L_s/\mu$. Now, we also have that the mean waiting time is the mean time spent

in the queue plus the mean service time: $W_s = W_q + 1/\mu$. Hence, $W_s = \frac{38}{15} + 1 = \frac{53}{15} \implies 3$ mins 32 seconds, expected total waiting time.

Question 2: $M^X/M/1/\infty$ Queue

Queue Process M/M/1 with infinite capacity and variable arrival rate. An arrival rate of $\lambda_n \leq 1$, and service rate $\mu = 1$. Arrival and Service are independent Poisson processes.

a) $\lambda_n = \frac{n^4}{(n+1)^4}$, with $\lambda_0 = 1$

In a steady state, this system has: $\lambda_0 P_0 = P_1$, $\lambda_1 P_1 = P_2$...

This leads to $P_n = P_0 \prod_{m=0}^n \lambda_m$. Hence, if a steady state does exist then $\sum_{n\geq 0} P_n = 1$. This is only possible if $\sum_{n\geq 0} \prod_{m=0}^n \lambda_m$ is finite – converges. Importantly, we reduce the product to:

$$\prod_{m=0}^{n} \lambda_m = 1 \cdot \frac{1^4}{2^4} \cdot \frac{2^4}{3^4} \cdot \dots \cdot \frac{n^4}{(n+1)^4} = \left[\frac{n!}{(n+1)!} \right]^4$$
$$= \frac{1}{(n+1)^4}$$

Hence, we obtain

$$\sum_{n\geq 0} \frac{1}{(n+1)^4} = \sum_{n\geq 1} \frac{1}{n^4}$$

Now, by observing the similar general problem, $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} < \infty$ if $\alpha > 1$, we see that $\sum_{n\geq 0} \prod_{m=0}^{n} \lambda_m$ converges for this λ_n , where $\alpha = 4 > 1$. Hence, it is clear that a form for P_0 exists $(P_0 = \frac{90}{\pi^4})$, and a steady state probability distribution does exist.

Now, for the expected system size, $L_s = E(N_s)$

$$E(N_s) = \sum_{n\geq 0} nP_n$$

$$= P_0 \sum_{n\geq 0} n \cdot \frac{1}{(n+1)^4} = P_0 \sum_{n\geq 1} \frac{n-1}{n^4}$$

$$= P_0 \sum_{n\geq 1} \left[\frac{1}{n^3} - \frac{1}{n^4} \right]$$

Clearly, this converges and, since $\frac{1}{n^4} < \frac{1}{n^3}$ for all n, L_s is finite and positive.

b) $\lambda_n = \frac{\sqrt{n}}{\sqrt{n+1}}$, with $\lambda_0 = 1$

Similarly, as before, we have $P_n = P_0 \prod_{m=0}^n \lambda_m$, where the product decomposes to:

$$\prod_{m=0}^{n} \lambda_m = 1 \cdot \frac{\sqrt{1}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{3}} \cdot \dots \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = \sqrt{\frac{n!}{(n+1)!}}$$
$$= \frac{1}{\sqrt{n+1}}$$

This leads us to:

$$\sum_{n>0} P_n = P_0 \sum_{n>1} \frac{1}{\sqrt{n}}$$

Now, studying the same general form $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} = \infty$ if $\alpha \leq 1$, we see that $\alpha = \frac{1}{2} \leq 1$. Hence, this does not converge and there is no viable form for P_n for a steady state. Therefore there is no steady state probability distribution.

c)
$$\lambda_n = \frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}}$$
, with $\lambda_0 = 1$.

Similar, as above, we have $\lambda_0 P_0 = P_1$, $\lambda_1 P_1 = P_2 \dots$

Now we have a P_n with a product term of the form:

$$\prod_{m=0}^{n} \lambda_m = 1 \cdot \frac{1^{\frac{3}{2}}}{2^{\frac{3}{2}}} \cdot \frac{2^{\frac{3}{2}}}{3^{\frac{3}{2}}} \cdot \dots \cdot \frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}} = \left[\frac{n!}{(n+1)!}\right]^{\frac{3}{2}}$$

$$= \frac{1}{(n+1)^{\frac{3}{2}}}$$

This leads to $\sum_{n\geq 0} P_n$ of the form:

$$P_0 \sum_{n>1} \frac{1}{n^{\frac{3}{2}}}$$

This clearly has $\alpha = 1.5 > 1$, hence this will converge and deliver a density function for P_n , so a steady state distribution does exist.

Now, for the form of the expected system size $L_s = E[N_s]$:

$$E[N_s] = \sum_{n\geq 0} nP_n$$

$$= P_0 \sum_{n\geq 0} n \cdot \frac{1}{(n+1)^{\frac{3}{2}}}$$

$$= P_0 \sum_{n\geq 1} \left[\frac{1}{n^{\frac{1}{2}}} - \frac{1}{n^{\frac{3}{2}}} \right]$$

Notice that we have one sum that converges and one that doesn. Hence the overall term does not converge, and there is no finite form for L_s . We can expect the system to have infinite size.

Question 3: Markov Chain

a) With the given transition matrix, we can illustrate the markov chain, with 'a' denoting α :

Figure 2: 5 State Markov Chain - See Annex A for R Code

$$\begin{split} f_1^1 &= 0, \quad f_1^2 = 1 - \alpha, \quad f_1^3 = 0, \quad f_1^4 = \alpha (1 - \alpha), \\ f_1^5 &= 0, \quad f_1^6 = (1 - \alpha)\alpha^2 \quad f_1^7 = 0, \quad f_1^8 = (1 - \alpha)\alpha^3, \quad \dots \end{split}$$

Hence, we reach that $\sum_{n\geq 1} f_1^{(n)} = (1-\alpha)(1+\alpha+\alpha^2+\alpha^3+\ldots)$. Now observe that the expansion of $(1-x)^{-1} = 1+x+x^2+\ldots$, hence, $\sum_{n\geq 1} f_1^{(n)} = (1-\alpha)(1-\alpha)^{-1} = 1$, Hence state 1 is a recurrent state, and will surely return to itself. Now to show positive recurrence – that state 1 will surely return to itself in finite time – we require that $\mu_1 = \sum_{n\geq 1} n f_1^{(n)} < \infty$, which can be shown, by considering only the non-zero terms, which arise from even values of $n \in \mathbb{N}$,

$$\mu_{i} = \sum_{n \geq 1} n f_{1}^{(n)} = \sum_{n \geq 1} (2n) f_{1}^{(2n)}$$

$$= 2 \sum_{n \geq 1} n (-1\alpha) \alpha^{n-1}$$

$$= 2(1-\alpha) \sum_{n \geq 1} n \alpha^{n-1}$$

Now, since $\alpha \in (0,1)$, in particular $\alpha < 1$, then observe the general form of the sum on the RHS: $\sum_{k=1}^{\infty} kr^{k-1} = 1/(1-r^2)$, for |r| < 1. This leads to,

$$\sum_{n>1} n f_1^{(n)} = \frac{2(1-\alpha)}{(1-\alpha)^2} = \frac{2}{1-\alpha}$$

Clearly, we have that $\mu_1 < \infty$, hence state 1 is positively recurrent as they can all return to themselves.

- b) From Figure 2, we see that there are two unchains of groups of states that can communicate mutually accessible. States 1, 2 & 3 make a subchain, and 4 & 5 make the second chain. This second chain contains transient states, because once the system moves from state 4 to state 1, it can no longer return to state 4, or 5. Hence, states 4 and 5 are aperiodic.

 The subchain of states 1,2 &3/ contains positively recurrent states, because we showed that state 1 is positively recurrent and we know that all states in an irreducible subchain share this reccurence property; used without proof. Also, we observe that this subchain of recurrent states is aperiodic, hence it is ergodic.
- c) For the steady state probability vector, we can resolve $T^t\tilde{P}^t=\tilde{P}^t$, where \tilde{P} denotes the row matrix of the stationary distribution for the system:

$$\begin{pmatrix} 0 & 1 - \alpha & 0 & 1/2 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$

$$\begin{pmatrix} (1 - \alpha)x_2 + \frac{1}{2}x_4 \\ x_1 + x_3 \\ \alpha x_2 \\ \frac{1}{2}x_5 \\ \frac{1}{2}(x_4 + x_5) \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$

The final two rows require that $x_5 = x_4 = 0$. The second and third rows require that $x_1 = (1 - \alpha)x_2$, which can be put into the equation in row 1, leading to : $x_2 = x_2$. We can now freely choose $x_2 = 1$ let $x_2 = 1$. Hence, the steady state distribution $\tilde{P} = (1 - \alpha, 1, \alpha, 0, 0)$

Annex A: Queue System R Code

```
require('heemod')
require('shape')
require('diagram')
Tr2 <- define_transition( state_names = c('4', '3', '2', '1', '0'),</pre>
  0, mu, 0, 0, 0,
  lambda^1, 0, mu, 0, 0,
  0, lambda^1, 0, mu, 0,
  lambda^3, 0, lambda^1, 0, mu,
  0, lambda^3, 0, lambda^1, 0)
curves \leftarrow matrix(nrow = 5, ncol = 5, 0.55)
plot(Tr2, pos=c(5), curve=curves, endhead=FALSE,
     arr.length=0.3, latex=FALSE,
     lwd = 1, box.lwd = 1, box.col = "lightblue",
     cex.txt = 1, box.size = 0.07)
Annex B: Markov Chain Plot in R
library('heemod')
```

```
library('shape')
library('diagram')
Tr <- define_transition(</pre>
  state_names = c('1', '2', '3', '4', '5'),
  0, 1, 0, 0, 0,
  1-alpha, 0, alpha, 0, 0,
  0, 1, 0, 0, 0,
  .5, 0, 0, 0, .5,
  0, 0, 0, .5, .5);
curves \leftarrow matrix(nrow = 5, ncol = 5, 0.065)
plot(Tr,
     curve=curves,
     self.shiftx = 0.125,
     self.shifty = 0,
     self.arrpos = 1.4,
     arr.type= "triangle",
     self.cex=0.7,
     latex = FALSE,
     lwd = 1,
     box.lwd = 1,
     box.col = "lightblue",
     cex.txt = 0.7,
     box.size = 0.09)
```