TRIGONOMETRY

Chapter 16

IDENTIDADES TRIGONOMÉTRICAS @ SACO OLIVEROS **AUXILIARES DEL ÁNGULO DOBLE**

HISTORIA DE LA TRIGONOMETRÍA

• El padre de la trigonometría es hiparco: nació en Nicea de bithynia actualmente iznik, al noroeste de Turquía nació alrededor del año 190 A.C. efectuó sus primeras observaciones astronómicas en su ciudad natal y más tarde se marchó a la isla de Rodas en la zona suroeste del Mar Egeo, fue aquí donde realizó sus principales trabajos, algunos historiadores lo sitúan como un astrónomo visitante en Alejandría y también fue ahí donde realizó otros importantes trabajos, Este genio de la antigüedad vivió en el periodo conocido como Helenismo.

IDENTIDADES TRIGONOMÉTRICAS AUXILIARES DEL ÁNGULO DOBLE

I. IDENTIDADES DE DEGRADACIÓN

II. TRIÁNGULO DEL ÁNGULO DOBLE

$$sen2x = \frac{2tanx}{1+tan^2x}$$

$$\cos 2x = \frac{1 - tan^2x}{1 + tan^2x}$$

III. IDENTIDADES AUXILIARES

$$\cot x - \tan x = 2\cot(2x)$$

$$\cot x + \tan x = 2\csc(2x)$$

+

RESOLUCIÓN

Recordar:

 $\cot x + \tan x = 2\csc(2x)$

$$E = (\cot x + \tan x) \operatorname{sen} 2x$$

$$2 \operatorname{csc} 2x$$

$$E = 2 \operatorname{csc} 2x \cdot \operatorname{sen} 2x$$

$$1$$

$$E = 2$$

RESOLUCIÓN

Recordar:

 $\cot x - \tan x = 2\cot(2x)$

$$\cot x - \tan x = 16$$
$$2\cot 2x = 16$$
$$\cot 2x = 8$$

$$\therefore \tan 2x = \frac{1}{8}$$

©1

3.

$$\frac{-}{+}$$
 $\frac{\theta +}{\theta +}$ $\frac{\theta}{\theta} = -$

θ

RESOLUCIÓN

$$\frac{2 \text{sen}^2 \theta}{1 - \cos 2\theta} + \frac{2 \text{sen}\theta \cos \theta}{1 + \cos 2\theta} = \frac{1}{5}$$

$$\frac{1 + \cos 2\theta}{2 \text{cos}^2 \theta} + \frac{2 \text{sen}\theta \cos \theta}{2 \text{sen}\theta \cos \theta}$$

$$\frac{2sen\theta(sen\theta+cos\theta)}{2cos\theta(cos\theta+sen\theta)} = \frac{1}{5}$$

$$\tan\theta = \frac{1}{5}$$

Recordar:

$$sen2\theta = \frac{2tan\theta}{1 + tan^2\theta}$$

Calculamos: sen20

$$sen2\theta = \frac{2\left(\frac{1}{5}\right)}{1 + \left(\frac{1}{5}\right)^2} = \frac{1}{5} \frac{\left(\frac{2}{5}\right)^1}{5} \frac{13}{5}$$

 $sen2\theta = \frac{5}{13}$

RESOLUCIÓN

Recordar:

$$2\cos^2(x) = 1 + \cos(2x)$$

cot40°

$$=\frac{-}{-}\frac{\theta}{\theta}+\frac{-}{\theta}$$

$$2\cos^2(x) = 1 + \cos(2x)$$

$$2\mathrm{sen}^2(x) = 1 - \cos(2x)$$

$$P = \frac{1 - \cos 4\theta}{1 - \cos 2\theta} + \frac{1 - \cos 4\theta}{1 + \cos 2\theta}$$

$$P = \frac{2sen^2 2\theta}{2sen^2 \theta} + \frac{2sen^2 2\theta}{2cos^2 \theta}$$

$$P = \frac{(sen2\theta)^2}{sen^2\theta} + \frac{(sen2\theta)^2}{cos^2\theta}$$

RESOLUCIÓN
$$P = \frac{1 - \cos 4\theta}{1 - \cos 2\theta} + \frac{1 - \cos 4\theta}{1 + \cos 2\theta}$$

$$P = \frac{(2sen\theta\cos\theta)^2}{sen^2\theta} + \frac{(2sen\theta\cos\theta)^2}{\cos^2\theta}$$

$$P = \frac{4sen^2\theta\cos^2\theta}{1 + \cos^2\theta} + \frac{4sen^2\theta\cos^2\theta}{1 + \cos^2\theta}$$

$$P = \frac{4sen^2\theta\cos^2\theta}{sen^2\theta} + \frac{4sen^2\theta\cos^2\theta}{\cos^2\theta}$$

$$P = 4\cos^2\theta + 4\sin^2\theta \Rightarrow P = 4(\cos^2\theta + \sin^2\theta)$$

RESOLUCIÓN

$$E = \frac{\cot\left(\frac{\pi}{12}\right) + \tan\left(\frac{\pi}{12}\right)}{\cot\left(\frac{\pi}{8}\right) - \tan\left(\frac{\pi}{8}\right)}$$

$$E = \frac{2csc\left(\frac{\pi}{6}\right)}{2cot\left(\frac{\pi}{4}\right)}$$

$$=rac{\left(egin{array}{c} \pi
ight)+ \left(egin{array}{c} \pi
ight) \ \hline \left(egin{array}{c} \pi
ight)- \left(egin{array}{c} \pi
ight) \end{array}$$

$$E = \frac{csc30^{\circ}}{cot45^{\circ}}$$

$$E = \frac{2}{1}$$

$$\therefore E = 2$$

$$\cot x + \tan x = 2\csc(2x)$$

$$\cot x - \tan x = 2\cot(2x)$$

$$=\frac{\pi}{-}$$

$$sen (2x) = \frac{2tanx}{1+tan^2x}$$

$$\cos (2x) = \frac{1-\tan^2 x}{1+\tan^2 x}$$

RESOLUCIÓN

$$M = \frac{2tanx}{1 + tan^2x} + \frac{1 + tan^2x}{1 - tan^2x}$$

$$M = sen2x + sec2x$$

$$M = sen \mathbb{Z} \left(\frac{\pi}{8} \right) + sec \mathbb{Z} \left(\frac{\pi}{8} \right)$$

$$M = sen\left(\frac{\pi}{4}\right) + sec\left(\frac{\pi}{4}\right)$$

$$M = sen45^{\circ} + sec45^{\circ}$$

$$M = \frac{\sqrt{2}}{2} + \sqrt{2}$$

$$M = \frac{3\sqrt{2}}{2}$$

$$=\sqrt{-\sqrt{+}}$$

RESOLUCIÓN

$$A = \sqrt{2 - \sqrt{2 + 2\cos 4x}}$$

$$A = \sqrt{2 - \sqrt{2(1 + \cos 4x)}}$$

$$A = \sqrt{2 - \sqrt{2(2\cos^2 2x)}}$$

$$A = \sqrt{2 - \sqrt{4\cos^2 2x}}$$

$$A = \sqrt{2 - 2\cos 2x}$$

$$A = \sqrt{2(1 - \cos 2x)}$$

$$A = \sqrt{2(2sen^2x)}$$

$$A = \sqrt{4sen^2x}$$

$$2\cos^2(\alpha) = 1 + \cos(2\alpha)$$

$$2\mathrm{sen}^2(\alpha) = 1 - \cos(2\alpha)$$

$$\therefore A = 2senx$$