# CECS 274: Data Structures Graphs

Oscar Morales Ponce

California State University Long Beach

### **Applications**

- In social networks, e.g., Facebook, Instagram, etc., there is a need of a data structure that supports queries such as
  - List of all friends of a person x?
  - List the friends of the friends of a person x?
  - Given two people x and y, what is the shortest path of friends that connects them?

# **Applications**



# Graph Example



#### **Graphs**

- a (directed) graph is a pair G = (V, E) where V is a set of vertices and E is a set of ordered pairs of vertices called edges.
  - ▶ An edge (i, j) is directed from i to j; where i is the source and j the target
- ▶ A path in G is a sequence of vertices  $v_0, \ldots, v_k$  such that, for every  $i \in \{1, \ldots, k\}$ , the edge  $(v_{i-1}, v_i)$  is in E.
- A path v<sub>0</sub>,..., v<sub>k</sub> is a cycle if, additionally, the edge (v<sub>k</sub>, v<sub>0</sub>) is in E. A path (or cycle) is simple if all of its vertices are unique.

# Graph Interface

- ▶  $add\_edge(i, j)$ : Add the edge (i, j) to E
- ▶  $remove\_edge(i, j)$ : Remove the edge (i, j) from E.
- ▶  $has\_edge(i, j)$ : Check if the edge  $(i, j) \in E$
- ▶  $out\_edges(i)$ : Return a List of all integers j such that  $(i,j) \in E$
- $ullet in\_edges(j)$ : Return a List of all integers i such that  $(i,j) \in E$

# Implementing the Graph Interface using AdjacencyMatrix

- AdjacencyMatrix represents a graph graph G = (V, E) with n vertices
  - State:
    - n: Number of nodes.
    - a: Matrix of dimension 2 of boolean values

▶ Invariant: 
$$a[i][j] = \begin{cases} true, & \text{if } (i,j) \in E \\ false, & \text{if } (i,j) \notin E \end{cases}$$

#### AdjacencyMatrix example



# AdjacencyMatrix: Initialize

▶ initialize() : allocates memory in a to store n × n boolean values.

```
\begin{array}{l} \text{initialize()} \\ a \leftarrow \text{new\_boolean\_matrix}(n,n) \end{array}
```

# AdjacencyMatrix: $add\_edge(i, j)$

 $\qquad \qquad add\_edge(i,j): \text{Add the edge } (i,j) \text{ to } E$ 

```
\begin{array}{c} \operatorname{add\_edge}(i,j) \\ a[i][j] \leftarrow true \end{array}
```

# AdjacencyMatrix: $remove\_edge(i, j)$ :

 $\qquad \qquad remove\_edge(i,j) : \text{remove the edge } (i,j) \text{ from } E$ 

```
remove_edge(i, j)
a[i][j] \leftarrow false
```

# AdjacencyMatrix: $has\_edge(i, j)$

▶  $has\_edge(i, j)$  : returns true if the edge (i, j) exists in E

```
\text{has\_edge}(i, j)

return a[i][j]
```

# AdjacencyMatrix: $out\_edges(i)$

•  $out\_edge(i)$  : returns a list of all integers j such that  $(i,j) \in E$ 

```
\begin{array}{c} \text{out\_edges}(i) \\ l \leftarrow ArrayList() \\ \textbf{for } j \textbf{ in } 0,1,\dots,n-1 \textbf{ do} \\ \textbf{ if } has\_edge(i,j) \textbf{ then} \\ l.append(j) \\ \textbf{return } l \end{array}
```

# AdjacencyMatrix: $in\_edges(j)$

•  $in\_edges(j)$  : returns a list of all integers i such that  $(i,j) \in E$ 

```
\begin{array}{c} \text{in\_edges}(j) \\ l \leftarrow ArrayList() \\ \textbf{for } i \textbf{ in } 0,1,\ldots,n-1 \textbf{ do} \\ \textbf{ if } has\_edge(i,j) \textbf{ then} \\ l.append(i) \\ \textbf{return } l \end{array}
```

# AdjacencyMatrix: Summary

#### **Theorem**

The AdjacencyMatrix data structure implements the Graph interface. An AdjacencyMatrix supports the operations

- ▶ add\_edge(i,j), remove\_edge(i,j), and has\_edge(i,j) in constant time per operation; and
- ▶  $in\_edges(i)$ , and  $out\_edges(i)$  in O(n) time per operation.

The space used by an AdjacencyMatrix is  $O(n^2)$ .

# Implementing the Graph Interface using AdjacencyLists

- AdjacencyLists: represents a graph graph G = (V, E) with n vertices
  - State:
    - n: Number of nodes.
    - adj: Array of lists (ArrayList or Linked-List)
  - ▶ Invariant: adj[i] is the list of neighbors, i.,e.,

j is in the list adj[i] if and only if (i,j) in E

# AdjacencyLists example



|   | 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9  | 10 | 11 |
|---|---|---|---|---|---|---|----|----|---|----|----|----|
| Ī | 1 | 0 | 1 | 2 | 0 | 1 | 5  | 6  | 4 | 8  | 9  | 10 |
| - | 4 | 2 | 3 | 7 | 5 | 2 | 2  | 3  | 9 | 5  | 6  | 7  |
|   |   | 6 | 6 |   | 8 | 6 | 7  | 11 |   | 10 | 11 |    |
|   |   | 5 |   |   |   | 9 | 10 |    |   |    |    |    |
| İ |   |   |   |   |   | 4 |    |    |   |    |    |    |

# AdjacencyLists: Initialize

▶ initialize() : allocates n lists adj

```
 \begin{array}{l} \mathrm{initialize}() \\ adj \leftarrow \mathrm{new\_array}(n) \\ \textbf{for } i \textbf{ in } 0, 1, 2, \ldots, n-1 \textbf{ do} \\ adj[i] \leftarrow \mathrm{ArrayList}() \end{array}
```

# AdjacencyLists: $add\_edge(i, j)$

 $\qquad \qquad add\_edge(i,j): \text{Add the edge } (i,j) \text{ to } E$ 

```
\operatorname{add\_edge}(i, j) \operatorname{adj}[i].\operatorname{append}(j)
```

How many operations?

# AdjacencyLists: $remove\_edge(i, j)$ :

▶  $remove\_edge(i, j)$  : remove the edge (i, j) from E

```
\begin{aligned} & \text{remove\_edge}(i,j) \\ & \textbf{for } k \textbf{ in } 0,1,2,\ldots, \text{length}(adj[i]) - 1 \textbf{ do} \\ & \textbf{if } adj[i].\text{get}(k) = j \textbf{ then} \\ & adj[i].\text{remove}(k) \\ & \textbf{return} \end{aligned}
```

▶ It takes  $O(\deg(i))$  time, where  $\deg(i)$  is the degree of i.

# AdjacencyLists: $has\_edge(i, j)$

▶  $has\_edge(i, j)$  : returns true if the edge (i, j) exists in E

```
\begin{aligned} & \mathsf{has\_edge}(i,j) \\ & & \mathsf{for}\ k\ \mathsf{in}\ 0,1,2,\dots,adj[i].size()-1\ \mathsf{do} \\ & & \mathsf{if}\ k=j\ \mathsf{then} \\ & & & \mathsf{return}\ true \\ & & \mathsf{return}\ false \end{aligned}
```

▶ It takes  $O(\deg(i))$  time, where  $\deg(i)$  is the degree of i.

# AdjacencyLists: $out\_edges(i)$

•  $out\_edge(i)$  : returns a list of all integers j such that  $(i,j) \in E$ 

```
out\_edges(i)
return adj[i]
```

# AdjacencyLists: $in\_edges(j)$

•  $in\_edges(j)$  : returns a list of all integers i such that  $(i,j) \in E$ 

```
 \begin{aligned} & out \leftarrow \operatorname{ArrayList}() \\ & \textit{for } j \; \textbf{in} \; 0, 1, 2, \dots, n-1 \; \textbf{do} \\ & \quad \quad \textbf{if} \; \operatorname{has\_edge}(j, i) \; \textbf{then} \; out. \\ & \quad \quad \textbf{append}(j) \\ & \quad \quad \textbf{return} \; out \end{aligned}
```

▶ This operation is very slow. It scans the adjacency list of every vertex, so it takes O(n + m) time

# AdjacencyLists: Summary

#### **Theorem**

The AdjacencyLists data structure implements the Graph interface. An AdjacencyLists supports the operations

- ▶  $add\_edge(i, j)$  in constant time per operation;
- ▶ remove\_edge(i, j) and has\_edge(i, j) in O(deg(i)) time per operation;
- ▶  $in\_edges(i)$  in O(n+m) time per operation.

The space used by a AdjacencyLists is O(n+m).

## Graph Traversal: Shortest Path from a node



#### Graph Traversal: Breadth-First Search

- ▶ BFS(i): First visit the neighbors of i then the neighbors of the neighbors of i, then the neighbors of the neighbors of i, and so on.
  - State:
    - ▶ q: a queue
    - seen: an array of boolean values
  - Invariant:
    - q.peak() is the next element to be visited

    - For each element i in q, the value of seen[i] is false

#### Graph Traversal: Breadth-First Search

```
bfs(q,r)
   seen \leftarrow \text{new\_array}(n)
   q \leftarrow \text{Queue}()
   q.add(r)
   seen[r] \leftarrow true
   while q.size() > 0 do
       i \leftarrow q.\text{remove}()
       ngh \leftarrow g.out\_edges(i)
       for k in 0, 1, \dots, ngh.size() - 1 do
           j \leftarrow ngh.get(k)
            if seen[j] = false then
                q.add(j)
                seen[j] \leftarrow true
```

# Graph Traversal: Breadth-First Search Example



# Graph Traversal: Analysis Breadth-First Search

#### **Theorem**

When given as input a Graph, g, that is implemented using the AdjacencyLists data structure, the  $\mathrm{bfs}(g,r)$  algorithm runs in O(n+m) time.

#### Proof.

- Using the array seen ensures that no vertex is added to q more than once.
- Adding (and later removing) each vertex from q takes constant time per vertex for a total of O(n) time.
- ▶ Since each vertex is processed at most once, each edge of G is processed at most once. Thus, a total of O(m) time.
- ▶ Therefore, the entire algorithm runs in O(n + m) time.



# Graph Traversal: Shortest path

```
shortestPath(q, r)
    seen \leftarrow \text{new\_array}(n)
    p \leftarrow \text{new\_array}(n)
    q \leftarrow \text{Queue}()
    q.add(r)
   p[r] \leftarrow r
    seen[r] \leftarrow true
   while q.size() > 0 do
       i \leftarrow q.\text{remove()}
       ngh \leftarrow g.out\_edges(i)
       for k in 0, 1, \dots, ngh.size() - 1 do
           j \leftarrow ngh.get(k)
           if seen[j] = false then
               q.add(j)
               seen[j] \leftarrow true
               p[j] \leftarrow i
    return p
```

# Graph Traversal: Cycles



### Graph Traversal: Depth-First Search

- ▶ DFS(i): First fully explore one subtree, then a second subtree and so on.
  - State:
    - s: a stack
    - seen: an array of boolean values
  - Invariant:
    - s.top() is the next element to be visited

# Graph Traversal: Depth-First Search

```
dfs(q,r)
    seen \leftarrow \text{new\_array}(q.n)
    s \leftarrow \text{Stack}()
    s.\operatorname{push}(r)
    while s.size() > 0 do
        i \leftarrow s.pop()
        seen[i] \leftarrow true
        ngh \leftarrow q.out\_edges(i)
        for j in 0, 1, \dots, ngh.size() - 1 do
            if seen[ngh.get(j)] = false then
                s.push(ngh.qet(i))
```

# Graph Traversal: Depth-First Search Example



# Graph Traversal: Analysis Breadth-First Search

#### **Theorem**

When given as input a Graph, g, that is implemented using the AdjacencyLists data structure, the  $\mathrm{dfs}(g,r)$  algorithm runs in O(n+m) time.

#### Proof.

- Using the array c ensures that no vertex is processed more than once.
- ▶ Adding (and later removing) each vertex from *s* takes constant time per vertex for a total of *O*(*n*) time.
- ▶ Since each vertex is processed at most once, each edge of G is processed at most once. Thus, a total of O(m) time.
- ▶ Therefore, the entire algorithm runs in O(n + m) time.



# Graph Traversal: Cycle



# Graph Traversal: Cycle Detection

```
dfs(q,r)
    seen \leftarrow \text{new\_array}(q.n)
    s \leftarrow \text{Stack}()
    s.\mathrm{push}(r)
   while s.size() > 0 do
       i \leftarrow s.pop()
       seen[i] \leftarrow true
       ngh \leftarrow q.out\_edges(i)
       for i in 0, 1, \dots, nqh.size() - 1 do
           if seen[ngh.qet(j)] = false then
               s.push(ngh.qet(i))
            else
               print("i and j are in a cycle")
```