

Université Libre de Bruxelles

Synthèse

Physique des semiconducteurs PHYS-H-301

Auteur:

Nicolas Englebert

Appel à contribution

Synthèse OpenSource

Ce document est grandement inspiré de l'excellent cours donné par Alain Dubus à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de l'améliorer

surtout que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LATEX, mais aussi git. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi le README contient de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Chapitre 2

Modèles de Drude et de Sommerfeld

2.1 Modèle de Drude

2.1.1 Modèle de Drude pour les métaux

Malgré que le modèle de Drude soit ancien (1900) il est toujours utilisé aujourd'hui. A cette époque, l'électron n'a été mis en évidence que depuis trois ans : la physique quantique n'est pas encore connue mais les équations de Maxwell, elles, le sont bien.

Drude a voulu faire un modèle phénoménologique pour expliquer les propriétés de transport (conductivité électrique et thermique) des solides (essentiellement les métaux).

Au vu de la masse de la matière, Drude suppose qu'il existe des *êtres lourds* (cœurs ioniques) autour desquels règne le vide permettant aux électrons de se déplacer.

FIGURE 2.1 – Métal dans le modèle de

Inclure tableau slide Dans ce tableau, on peut voir Z comme la valence, c'est à dire le nombre d'électrons qui vont jouer dans le conduction 1 . La densité du gaz d'électron de valence, donnant le nombre d'électrons par volume, s'exprime

$$n = N_A * \frac{Z\rho_m}{A} \approx 10^{22} \frac{e^-}{cm^3}$$
 (2.1)

où N_A est le nombre d'Avogadro, ρ_m la masse spécifique du matériau ([g/cm³]) et A la masse atomique de l'élément.

Prude Pour représenter cette densité, on utilise le paramètre $r_s=\frac{r_0}{a_0}$ où a_0 est le rayon de Bohr et r_0 le rayon d'une sphère contenant un seul électron. On a alors :

$$V_{sph\`ere} = \frac{4\pi r_0^3}{3} = \text{Volume d'un \'electron} = \frac{1e^-}{n} \Longrightarrow r_0 = \left(\frac{3}{4\pi n}\right)^{1/3} \Longleftrightarrow r_s = \left(\frac{3}{4\pi n a_0^3}\right)^{1/3} \tag{2.2}$$

Ce paramètre est compris entre 2 et 3 pour la majorité des métaux et entre 3 et 6 pour les métaux alcalins.

^{1.} Ne pas confondre avec Z_a , le numéro atomique. On a donc $Z_a - Z$ électrons restant liés aux noyaux.

2.2 Hypothèses de base du modèle de Drude

Pour parvenir à son modèle, Drude émit quatre hypothèses

- 1. Entre deux collisions, on observe un mouvement classique (en MRU à l'aide de f=ma) en l'absence de champs extérieurs. On postule aussi l'approximation des électrons indépendants qui néglige l'interaction entre les électrons et l'approximations des électrons libre la négligence des interactions ion-électron. La première approximation est très pertinente mais la deuxième est a abandonné lors d'une étude qualitative.
- 2. Collisions instantanées : la vitesse d'un électron change brusquement lors d'une collision avec un cœur ionique.
- 3. C'est l'ingrédient phénoménologique : la probabilité par unité de temps $1/\tau$ ($[s^{-1}]$) où τ est le temps de relaxation, que l'on suppose indépendant de la position et de la vitesse de l'électron ².
- 4. Les collisions amènent à un équilibre thermique (après un nombre conséquent de collision, une seule ne suffit pas)

2.3 Conductivité électrique "en courant continu" d'un métal

On peut écrire la loi d'Ohm locale

$$\vec{j} = \sigma \vec{E} \tag{2.3}$$

où σ est le conductivité électrique et \vec{j} est le vecteur densité de courant, la densité de charge qui traverse une surface unitaire par unité de temps.

Soit n électrons par unité de volume se déplaçant à vitesse moyenne \vec{v} . Sur dt, ils parcourent vdt et donc n(vdt)S électrons vont traverser une surface S perpendiculaire au courant. La charge électrique traversant la surface sera -nevSdt. Comme I=dQ/dt, on a I=-nevS. Par définition, J=I/S. La densité de courant vaut alors

$$\vec{j} = -e.n.S.\vec{v}\frac{1}{S} = -ne\vec{v} \tag{2.4}$$

On va montrer que le temps entre deux collisions est le temps de relaxation. En t=0 la vitesse est $\vec{v_0}$ et immédiatement après une collision 3 plus $-e\vec{E}\tau/m$. Par l'hypothèse 4, $\vec{v_0}$ ne contribue pas à la vitesse moyenne :

$$\vec{v}_{moy} = \frac{-e\tau\vec{E}}{m} \tag{2.5}$$

Avec la définition de \vec{j} , on obtient

$$\vec{j} = \frac{ne^2\tau}{m}\vec{E} \tag{2.6}$$

En en déduit avec la loi d'Ohm locale que

A retenir :
$$\sigma = \frac{ne^2\tau}{m} \eqno(2.7)$$

^{2.} La probabilité de subir une collision sur un intervalle de temps dt est dt/τ .

^{3.} $f = ma = eE \Leftrightarrow a = \frac{eE}{m} \Leftrightarrow v = \frac{eE\tau}{m}$

Le **tableau** donne des temps de relaxations τ calculés par Drude. A noter que son odre de grandeur est $\approx 10^{-14} \ s$, ce que Drude avait conclut comme correct. Hélas, la vitesse qu'il a considérée était fausse ⁴. La vitesse exacte donne lieu à des distances plus grandes qui peuvent encore s'agrandir à basse température : l'hypothèse des collision avec les cœur ionique est donc fausse, mais on peut utiliser ce modèle sans nous poser la question de la cause des collisions.

2.4 Effet Hall et magnétorésistance

Considérons un champ électrique E_x selon x appliqué au fil avec, en plus, un champ magnétique \vec{H}^5 dirigé selon z. La force de Lorentz exercée sur les e^- vaut

$$-ev_x\vec{1_x} \times B\vec{1_z} \tag{2.8}$$

Les électrons seront défléchis dans le sens -y et un champ électrique E_y va s'installer, dirigé vers les y négatifs ⁶. Ce champ à l'équilibre va contrebalancer la force de Lorentz : $|E_y| = |v_x|B$.

Deux grandeurs sont remarquables :

1. Remarquons la résistivité selon l'axe x:

$$\rho(B) = \frac{E_x}{j_x} \tag{2.9}$$

C'est la $magnétorésistance^7$ transverse (car le champ magnétique est perpendiculaire au champ électrique), indépendante de B.

2. Le champ électrique transversal $E_y \propto B, j_x.$ On définit le coefficient (ou constante) de Hall :

$$R_H = \frac{E_y}{i_r B} \tag{2.10}$$

Le signe de j_x est indépendant du signe des porteurs de charge ainsi que de la force de Lorentz. Si les charges sont positives, E_y et R_H seront positifs. On peut calculer ce coefficient :

$$-eE_y = ev_x B \Leftrightarrow -neE_y = nev_x B = j_x B \Longrightarrow R_H = -\frac{1}{ne}$$
 (2.11)

où R_H est négatif car le champ de Hall est en $-\vec{1}_y$.

^{4.} Car la distribution d'un métal n'est pas maxwellienne

^{5.} C'est bien \vec{H} le champ magnétique et non \vec{B} qui est la densité de champ d'induction magnétique! Biot et Savart permet en réalité de calculer \vec{H} mais pas \vec{B} (erreur fréquente). Cependant, seul \vec{B} est mesurable, \vec{H} "n'existe pas".

^{6.} Attention, la vitesse des électrons est bien opposée à celle de \vec{j}

^{7.} La magnétorésistance est la propriété qu'ont certains matériaux de présenter une résistance qui évolue lorsqu'ils sont soumis à un champ magnétique.