Relations

Sénminaire - Cours

I Quelques définitions

Définition (relation):

Soient E et F des ensembles non vides. Soit \mathcal{R} une partie de $E \times F$. On considère tous les couples (a,b) de $E \times F$ tels que $(a,b) \in \mathcal{R}$. On note $a\mathcal{R}b \Leftrightarrow (a,b) \in \mathcal{R}$ et on appelle \mathcal{R} correspondance de E vers F.

Définition (relation binaire):

On appelle relation binaire toute correspondance de E sur lui-même.

Exemple:

Dans $\mathcal{P}(E): (A, B) \in \mathcal{P}(E), A\mathcal{R}B \Leftrightarrow A \subset B$

II Relation d'équivalence

Définition (réflexivité):

Soit E un ensemble et $\mathcal R$ une relation binaire. La relation $\mathcal R$ est dit réflexive si :

$$\forall x \in E, x\mathcal{R}x$$

Exemples:

- Dans $\mathcal{P}(E): \forall A \in \mathcal{P}(E), A \subset A \to \text{Relation réflexive}$
- Soit $(x,y) \in \mathbb{R}^2$, $x \in \mathbb{R}^2$, $x \in \mathbb{R}^2$ Relation non réflexive

Remarque : Soit \mathcal{R} une relation réflexive sur E ($\mathcal{R} \subset E \times E$). Alors \mathcal{R} est réflexive $\Leftrightarrow \forall x \in E, (x, y) \in \mathcal{R}$.

Définition (symétrie):

La relation \mathcal{R} est dite symétrique si :

$$\forall (x,y) \in E^2, x\mathcal{R}y \Rightarrow y\mathcal{R}x$$

Exemples:

- Soit E l'ensemble des droites du plan. Alors $(d, d') \in E^2, d\mathcal{R}d' \Leftrightarrow d \perp d'$ est une relation symétrique.
- L'inclusion n'est pas symétrique.

Définition (transitivité):

Soient $(x, y, z) \in E^3$. La relation \mathcal{R} est transitive si :

$$\forall (x, y, z) \in E^3, (x\mathcal{R}y) \land (y\mathcal{R}z) \Rightarrow x\mathcal{R}z$$

Exemple:

- L'inclusion est transitive.
- $d /\!\!/ d'$ est transitif.
- $d \perp d'$ n'est pas transitif.

Définition (équivalence) :

Soit E un ensemble non vide et $\mathcal R$ une relation binaire. On dit que $\mathcal R$ est une relation d'équivalence si :

- $-\mathcal{R}$ est réflexive,
- \mathcal{R} est symétrique,
- et \mathcal{R} est transitive.

Définition (antisymétrique) :

Soit E un ensemble non vide et $\mathcal R$ une relation binaire. La relation $\mathcal R$ est dite antisymétrique si :

$$\forall (x,y) \in E^2, (x\mathcal{R}y) \land (y\mathcal{R}x) \Rightarrow x = y$$

Exemple:

L'inclusion est une relation antisymétrique (si $A \subset B$ et $B \subset A$, alors A = B).

III Relation d'ordre

Définition (ordre total, ordre partiel):

On dit que la relation d'ordre $\mathcal R$ est une relation d'ordre total si :

$$\forall (x,y) \in E^2, (x\mathcal{R}y) \lor (y\mathcal{R}x)$$

Sinon, on dit que l'ordre est partiel.

Définition (diagramme de Hasse) :

Soit \mathcal{R} une relation d'ordre sur un ensemble fini E. Le diagramme de Hasse de \mathcal{R} est le graphe dont les sommets sont les éléments de E et dont les arcs (ou arêtes) satisfont la propriété suivante. Il existe un arc de x à y si et seulement si :

- $-x \leq y$
- et $\exists z \in E, x \leq y \leq z \Rightarrow x = z \lor y = y$.

Exemple:

