WHAT IS CLAIMED IS:

I	1. An electronic device testing system comprising:			
2	a tester operable to generate test data and apply the test data to the electronic			
3	device to determine the response of the electronic device;			
4	a capture interface operable to capture the test data communicated to the			
5	electronic device by the tester;			
6	a compression engine in communication with the capture interface and			
7	operable to compress the test data; and			
8	memory in communication with the compression engine and operable to save			
9	the compressed test data.			
1	2. The system of Claim 1 further comprising:			
2	a de-compression engine interfaced with the memory and operable to de-			
3	compress the test data; and			
4	an analyzer interfaced with the de-compression engine and operable to analyze			
5	the de-compressed test data to determine the test data source of an			
6	electronic device error response.			
1	3. The system of Claim 2 wherein the test data comprises plural cycles			
2	including empty cycles not associated with the electronic device error response, and			
3	wherein the analyzer is further operable to generate a test program that reduces the			
4	empty cycles of the test data.			
1	4. The system of Claim 1 wherein the tester is further operable to run the			
2	test program on production electronic devices to detect the error response.			
1	5. The system of Claim 1 wherein the tester comprises a vector generator			
2	operable to generate vector test data.			
1	6. The system of Claim 5 wherein the electronic device comprises a			

memory device operable to store data fields according to address and control

3	information and the vector generator generates memory vectors for storage on the
4	memory device.

- 7. The system of Claim 6 wherein the compression engine further comprises:

 a compressor having plural comparison modules, each comparison module having a width adapted for comparing data field, address or control information and a depth for comparing predetermined cycles of test vectors, the comparison modules operable to represent test vectors having matching data field, address or control information with a representation having a reduced size to output compressed vectors having variable lengths;

 a reformater interfaced with the comparison modules and operable to reformat the compressed vectors of the comparison modules as concatenated
- 8. The system of Claim 7 wherein the compressor further comprises repeating vector detection logic operable to detect repeating test data patterns and to represent the repeating test data patterns as a word having the repeating value and a counter for the number of times the value repeats.

words of similar length.

- 9. The system of Claim 1 wherein the memory further comprises:
 plural memory motherboards;
 a memory parser associated with each memory motherboard;
 plural memory controllers associated with each memory parser; and
 plural memory storage devices associated with each memory controller;
 wherein the memory parser coordinates with its associated memory controllers
 to store test data on plural memory storage devices in sequence so that
 the memory storage devices operate on a lower clock speed than the
 test data generation clock speed.
- 10. A method for testing electronic devices, the method comprising: generating test data for application to the electronic device;

3	communicating the test data to the electronic device through an interface;				
4	capturing the test data communicated to the electronic device;				
5	compressing the captured test data;				
6	storing the compressed test data;				
7	detecting an error response by the electronic device to the test data; and				
8	analyzing the compressed test data to identify the source of the error response				
1	11. The method of Claim 10 wherein the electronic device comprises a				
2	memory device and generating test data further comprises generating vectors of				
3	memory test data for storage on the memory device, the memory test data having data				
4	field, address and control information.				
1	12. The method of Claim 11 wherein detecting an error further comprises:				
2	reading test data stored on the memory device;				
3	comparing the read test data with the test data written to the memory device;				
4	and				
5	detecting an error if the read test data differs from the written test data.				
1	13. The method of Claim 11 wherein compressing the test data further				
2	comprises:				
3	comparing the data field, address and control information of a vector with the				
4	data field, address and control information of a predetermined number				
5	of previous vectors to identify matches in one or more of the data field				
6	address and control information; and				
7	representing matches with defined opcodes that reduce the size of the vector.				
1	14. The method of Claim 11 wherein compressing the test data further				
2	comprises:				
3	detecting repeat patterns; and				
4	representing the repeat patterns with the repeated value and a count of the				
5	number of repeats of the repeat value.				

1	15.	The method of Claim 10 wherein storing the compressed test data		
2	further comprises coordinating storage of the test data in plural storage devices so that			
3	the storage devices operate at a slower clock speed than the clock speed associated			
4	with the generation of the test data.			
1	16.	The method of Claim 10 wherein analyzing the test data further		
2	comprises:			
3	de-cor	npressing the compressed test data to replay the test data applied to the		
4		electronic device; and		
5	passin	g the replayed test data through a logic analyzer to determine the applied		
6		test data that generated an error response.		
1	17.	The method of Claim 16 wherein analyzing the test data further		
2		comprises generating a test program to detect the error response by		
3		generating test data cycles associated with the error response and		
4		reducing test data cycles not associated with the error response.		