practice-assignment-5

May 4, 2025

```
[3]: import pandas as pd
     import numpy as np
     import seaborn as sns
     import matplotlib.pyplot as plt
[5]: vm=pd.read_csv("Social_Network_Ads.csv")
     vm
[5]:
          Age
               EstimatedSalary
                                 Purchased
     0
           19
                          19000
                                          0
     1
           35
                          20000
                                          0
     2
           26
                                          0
                          43000
     3
           27
                          57000
                                          0
     4
                          76000
           19
                                          0
     395
           46
                          41000
                                          1
     396
           51
                          23000
                                          1
     397
                                          1
           50
                          20000
     398
                                          0
           36
                          33000
     399
           49
                          36000
                                          1
     [400 rows x 3 columns]
[9]: print(vm.head())
     print(vm.tail())
     print(vm.info())
     print(vm.describe())
     print(vm.isnull().sum())
            EstimatedSalary Purchased
       Age
        19
    0
                       19000
                                       0
                                       0
    1
        35
                       20000
    2
                                       0
        26
                       43000
    3
                                       0
        27
                       57000
        19
                       76000
         Age EstimatedSalary Purchased
    395
           46
                         41000
                                          1
                         23000
                                          1
    396
          51
```

```
397
                          20000
           50
                                         1
     398
           36
                          33000
                                         0
     399
           49
                         36000
                                         1
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 400 entries, 0 to 399
     Data columns (total 3 columns):
          Column
                            Non-Null Count
                                            Dtype
          _____
                            _____
      0
                            400 non-null
                                            int64
          Age
      1
          EstimatedSalary 400 non-null
                                            int64
      2
          Purchased
                            400 non-null
                                            int64
     dtypes: int64(3)
     memory usage: 9.5 KB
     None
                   Age
                        EstimatedSalary
                                           Purchased
     count 400.000000
                              400.000000
                                          400.000000
     mean
             37.655000
                            69742.500000
                                            0.357500
     std
             10.482877
                            34096.960282
                                            0.479864
     min
             18.000000
                            15000.000000
                                            0.000000
     25%
             29.750000
                            43000.000000
                                            0.000000
     50%
             37.000000
                            70000.000000
                                            0.000000
     75%
             46.000000
                            88000.000000
                                            1.000000
                           150000.000000
     max
             60.000000
                                            1.000000
     Age
                         0
     EstimatedSalary
                        0
     Purchased
                         0
     dtype: int64
[12]: vm.boxplot()
```

[12]: <Axes: >


```
[14]: X=vm.drop(['Purchased'],axis=1)
      Y=vm['Purchased']
[16]: print(X)
      print(Y)
          Age EstimatedSalary
                          19000
     0
            19
                          20000
     1
           35
     2
           26
                          43000
     3
           27
                          57000
                          76000
     4
            19
                          41000
     395
           46
     396
                          23000
           51
     397
                          20000
           50
     398
           36
                          33000
     399
           49
                          36000
     [400 rows x 2 columns]
```

```
2
            0
     3
            0
            0
     395
            1
     396
     397
            1
     398
            0
     399
     Name: Purchased, Length: 400, dtype: int64
[18]: #Split the dataset into training and testing datasets
      from sklearn.model_selection import train_test_split
      xtrain, xtest, ytrain, ytest = train_test_split(X, Y, test_size =0.
       \hookrightarrow 2, random_state = 0)
[26]: from sklearn.linear_model import LogisticRegression
      lr=LogisticRegression()
[30]: lr.fit(xtrain,ytrain)
[30]: LogisticRegression()
[32]: y_pred=lr.predict(xtest)
[34]: print(xtrain)
      print("----\n")
      print(xtest)
      print("----\n")
      print(ytrain)
      print("----\n")
      print(ytest)
      print("----\n")
      print(y_pred)
          Age EstimatedSalary
     336
           58
                        144000
     64
           59
                         83000
     55
           24
                         55000
     106
           26
                         35000
     300
                         38000
           58
     . .
                         30000
     323
          48
     192
           29
                         43000
     117
           36
                         52000
     47
           27
                         54000
     172
           26
                        118000
```

[320 rows x 2 columns]

	Age	EstimatedSalary
132	30	87000
309	38	50000
341	35	75000
196	30	79000
246	35	50000
	•••	•••
14	18	82000
363	42	79000
304	40	60000
361	53	34000
329	47	107000

[80 rows x 2 columns]

```
336
      1
64
55
106
      0
300
      1
323
    1
192
      0
117
      0
47
172
```

Name: Purchased, Length: 320, dtype: int64

```
132
       0
309
       0
341
196
246
       0
14
      0
363
      0
304
       0
361
329
```

Name: Purchased, Length: 80, dtype: int64

 $[0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0$

```
0 0 1 0 1 1]
[36]: from sklearn.metrics import
      -accuracy_score,classification_report,confusion_matrix,precision_score,recall_score,f1_score
[44]: cm=confusion_matrix(ytest,y_pred)
     cm
[44]: array([[56, 2],
            [ 5, 17]], dtype=int64)
[46]: ac=accuracy_score(ytest,y_pred)
     ac
[46]: 0.9125
[50]: tn,fp,fn,tp=confusion_matrix(ytest,y_pred).ravel()
     print(tn)
     print(tp)
     print(fn)
     print(fp)
     56
     17
     5
     2
[52]: err_rate=1-ac
     print(err_rate)
     0.087500000000000002
[54]: print(classification_report(ytest,y_pred))
                 precision
                             recall f1-score
                                               support
               0
                      0.92
                                0.97
                                         0.94
                                                    58
                      0.89
                                0.77
                                         0.83
                                                    22
                                         0.91
                                                    80
        accuracy
                                         0.89
                                                    80
       macro avg
                      0.91
                                0.87
     weighted avg
                      0.91
                                0.91
                                         0.91
                                                    80
[56]: print(precision_score(ytest,y_pred))
     print(recall_score(ytest,y_pred))
     print(f1_score(ytest,y_pred))
```

- 0.8947368421052632
- 0.7727272727272727
- 0.8292682926829268

[]: