1. Thiết kế mạch giải mã

2. Thanh ghi

• Các thanh ghi đa năng:

- o 4 thanh ghi 16 bits:
 - AX: thanh ghi tổng, thường dùng để lưu kết quả
 - BX: thanh ghi cơ sở, thường dùng chứa địa chỉ ô nhớ
 - CX: thanh ghi đếm
 - DX: thanh ghi dữ liệu
- o Hoặc 8 thanh ghi 8 bits: AH, AL, BH, BL, CH, CL, DH, DL

• Các thanh ghi con trỏ và chỉ số:

- O SP: Con trỏ ngăn xếp. SP luôn chứa địa chỉ đỉnh ngăn xếp
- o BP: Con trỏ cơ sở sử dụng với đoạn ngăn xếp
- o SI: Thanh ghi chỉ số nguồn.
- O DI: Thanh ghi chỉ số đích.

• Các thanh ghi đoạn:

- CS (Code Segment): Thanh ghi đoạn mã. CS chứa địa chỉ bắt đầu đoan mã
- DS (Data Segment): Thanh ghi đoạn dữ liệu. DS chứa đại chỉ bdd đoan dữ liêu
- O SS (Stack Segment): Thanh ghi đoạn ngăn xếp.
- o ES (Extra Segment): Thanh ghi đoạn dữ liệu mở rộng

• Con trỏ lệnh (IP) và thanh ghi cờ (FR)

• Các cờ trạng thái:

- o C (Carry): cờ nhớ. C = 1 → có nhớ, C = 0 → không nhớ
- A (Auxiliary): cờ nhớ phụ. A = 1 → có nhớ phụ, A = 0 → không nhớ phụ
- P (Parity): cò chẵn lẻ. P = 1 khi tổng số bit 1 trong kết quả là lẻ, P
 = 0 khi tổng số bit 1 trong kết quả là chẵn
- o O (Overflow): cờ tràn. O = 1 khi kết quả bị tràn
- \circ Z (Zero): cờ zero. Z = 1 khi kết quả bằng 0, ngược lại Z = 0
- \circ S (sign): cờ dấu. S = 1 khi kết quả âm, S = 0 khi kết quả không âm

• Các cờ điều khiển:

○ D (Diection): cò hướng, chỉ hướng tăng giảm địa chỉ với các lệnh chuyển dữ liệu. D = 0 → địa chỉ tăng. D = 1 → địa chỉ giảm

- O T (Trap/ Trace): cò bẫy/ lần vết, được dùng khi gỡ rối ct. T = 1 →
 COU ở chế độ chạy từng lệnh
- I (Interrupt): cờ ngắt. $I = 1 \rightarrow$ cho phép ngắt, $I = 0 \rightarrow$ cấm ngắt
- 3. Tập lệnh của cpu
- 4. Hợp ngữ 8086, 8088 Đổi chữ hoa → thường, thường → hoa,....
- 5. Chức năng đoạn lệnh
- 6. Chương 1-2 chủ yếu là lý thuyết
- 7. Raid (1-2 câu lý thuyết)
 - Có 7 loai RAID (RAID 0: RAID 6)
 - K phân cấp RAID
 - Tập hợp nhiều đĩa vật lý được HĐH coi như một đĩa (logic) duy nhất
 - Dữ liệu được phân bố trên nhiều đĩa vật lý khác nhau
 - Dung lượng RAID lên tới hàng nghìn GB
 - Do dung lượng lớn → cần có một phần đĩa dùng để lưu trữ thông tin an toàn
- 8. Nhiều bài tập tính toán, ít lý thuyết (10%)
- 9. K vào ROM, RAM
- 10. bài tập: cache, tập lệnh cpu, họp ngữ, giải mã
 - Nhị phân \rightarrow hexa: 11 1011 1110 0110 (2) = 3BE6(16)
 - Hexa \rightarrow nhị phân: 3E8(16) = 11 1110 1000 (2)
 - Thập phân → hexa: 14988 =?
 - 14988 : 16 = 936 du 12 tức là C
 - \circ 936: 16 = 58 du 8
 - \circ 58 : 16 = 3 du 10 tức là A
 - \circ 3:16 = 0 du 3
 - \rightarrow 14988(10) = 3A8C (16)
 - Hexa → thập phân: 3A8C = ?
 - \circ 3A8C (16) = 3. 16³ + 10. 16² + 8. 16¹ + 12. 16⁰ = 14988(10)
 - Mã ASCII
 - 0: 30h 0,...9 tăng dần, 48- 57 DEC (nhị phân)
 - \circ A: 41h A,...Z tăng dần, 65 90

CHƯƠNG 1: GIỚI THIỆU CHUNG

1. LỊCH SỬ PHÁT TRIỂN MÁY TÍNH

- Thế hệ 1 (1944-1959):
 - O Sử dụng bóng đèn điện tử
 - O Dùng băng từ làm các thiết bị đầu vào/ ra
 - o Mật độ tích hợp: 1000 linh kiện/ foot3 (1 foot = 30.48 cm)
 - o Vd: ENIAC_ 1946_ 500000 USD
- Thế hệ 2 (1960 1964):
 - Sử dụng transistors
 - o 100.000 linh kiện/ foot3
 - Vd: UNIVAC 1107, UNIVAC III, IBM 7070, 7080, 7090, 1400 series, 1600 series.
- Thế hệ 3 (1964 1975):
 - o Sử dụng mạch tích hợp (IC)
 - o 10 triệu linh kiện/ foot3
 - o Vd: UNIVAC 9000 series, IBM System/360, System 3, System 7
- Thế hệ 4 (1975 1989):
 - o Sd LSI
 - o 1 tỷ linh kiện/ foot3
 - o Vd: IBM System 3090, IBM RISC 6000, IBM RT, Cray 2 XMP
- Thế hệ 5 (1990 -nay):
 - o Sd VLSI
 - \circ <10 nm 0,045 μm

2. KHÁI NIỆM KIẾN TRÚC VÀ TỔ CHÚC MÁY TÍNH

- Kiến trúc máy tính: là khoa học về lựa chọn và kết nối các thành phần phần cứng của máy tính nhằm đạt yêu cầu:
 - O Hiệu năng: càng nhanh càng tốt
 - O Chức năng: nhiều chức năng
 - o Giá thành: càng rẻ càng tốt
- Tổ chức máy tính: là khoa học nghiên cứu các thành phần của máy tính và phương thức làm việc của chúng dựa trên kiến trúc cho trước
- 3 thành phần cơ bản của kiến trúc máy tính

- 1. Kiến trúc tập lệnh: là hình ảnh trừu tượng của máy tính ở mức ngôn ngữ máy (hoặc hợp ngữ), bao gồm:
 - Tập lệnh
 - Các chế độ địa chỉ bộ nhớ
 - Các thanh ghi
 - Khuôn dạng địa chỉ và dữ liệu
- 2. Vi kiến trúc: mô tả hệ thống ở mức thấp
- 3. Thiết kế hệ thống, bao gồm tất cả các thành phần phần cứng khác trong hệ thống máy tính.

3. CÁU TRÚC VÀ CHỨC NĂNG CỦA MÁY TÍNH

Các thiết bị ngoại vi

- Bộ xử lý trung tâm (CPU):
 - o Chức năng:
 - Đọc lệnh từ bộ nhớ
 - Giải mã và thực hiện lệnh
 - o Bao gồm:
 - Khối điều khiển (CU)
 - Khối tính toán số học và logic (ALU)
 - Các thanh ghi
 - Bus trong CPU
- Bộ nhớ trong:
 - o Lưu trữ lệnh và dữ liệu để CPU xừ lý
 - o Bao gồm:

- ROM
 - Lưu trữ lệnh và dữ liệu của hệ thống
 - Thông tin trong ROM vẫn tồn tại khi mất nguồn nuôi
- RAM
 - Lưu trữ lệnh và dữ liệu của hệ thống và người dùng
 - Thông tin trong RAM sẽ mất khi mất nguồn nuôi
- Các thiết bị vào ra:
 - Thiết bị vào: nhập dữ liệu và điều khiển (Bàn phím, chuột, ổ đĩa, máy quét)
 - O Thiết bị ra: kết xuất dữ liệu (màn hình, máy in, ổ đĩa)
- Bus hệ thống, bao gồm 3 loại:
 - o Bus địa chỉ (bus A)
 - o Bus dữ liệu (bus D)
 - o Bus điều khiển (bus C)

Luật Moore

- □ Quan sát bởi Gordon Moore, CEO của Intel, 1965
- □ Số transistors trên chip sẽ tăng gấp đôi trong ~18m
- □ Giá thành của chip hầu như không thay đổi
- Mật độ cao hơn, do vậy đường dẫn ngắn hơn
- ☐ Kích thước IC nhỏ hơn dẫn tới độ phức tạp tăng lên
- □ Điện năng tiêu thụ ít hơn
- □ Thiết kế tối ưu hơn
- **4. KIÉN TRÚC VON NEUMANN** Cmp
- 5. KIẾN TRÚC HARVARD

Von Neumann: địa chỉ và bộ nhớ chia sẻ dữ liệu và lệnh từ CPU Harvard: 2 địa chỉ và bộ nhớ cho dữ liệu và CPU → xử lý song song

Havard Architecture	Von Neumann Architecture	
Dùng các đường truyền dữ liệu và truyền lệnh điều khiển riêng → linh hoạt	Đường truyền dữ liệu và truyền lệnh điều khiển chung	
Có một tập địa chỉ và đường truyền (bus) riêng để đọc và ghi data vào bộ nhớ Và tập địa chỉ và đường truyền (bus) riêng để đọc lệnh	Có một tập địa chỉ và đường truyền (bus) chung để đọc / ghi data vào bộ nhớ; đồng thời đọc lệnh	
Kiến trúc cho phép CPU có thể đọc lệnh và truy cập bộ nhớ đồng thời	Kiến trúc không cho phép CPU có thể đọc lệnh và truy cập bộ nhớ đồng thời. Tại mỗi thời điểm chỉ có một hệ thống truyền (bus) được hoạt động cho việc đọc lệnh hoặc đọc/ghi dữ liệu.	
Có hai không gian địa chỉ cho mã lệnh và dữ liệu khác nhau: Địa chỉ 0 của địa chỉ khác địa chỉ lệnh 0 (instruction address 0) khác địa chỉ dữ liệu 0 (data address 0)	Kiến trúc Von Neumann có cùng không gian địa chỉ cho cả dữ liệu (data) và lệnh (instructions).	

6. BIỂU DIỄN DỮ LIỆU TRONG MÁY TÍNH

Số có dấu: $-2^{n-1} + 1 \rightarrow 2^{n-1} - 1$

Số kông dấu: $0 \rightarrow 2^n - 1$

CHƯƠNG 1: GIỚI THIỆU CHUNG

1. MÁY TÍNH VÀ PHÂN LOẠI MÁY TÍNH

- Máy tính: nhận thông tin xử lý thông tin xuất thông tin
- Các thành phần cơ bản của máy tính
 - o Bộ xử lý
 - o Bus liên kết
 - Hệ thống vào/ra
 - Hệ thống nhớ

Các thiết bị ngoại vi

- Phân loại
 - o Phân loại máy tính theo truyền thống
 - Bô vi điều khiển
 - Máy vi tính
 - Máy tính nhỏ
 - Máy tính lớn
 - Siêu máy tính
 - o Phân loại máy tính theo hiện đại
 - Máy tính để bàn
 - Máy chủ
 - Máy tính nhúng
 - o Chức năng cơ bản của máy tính
 - Xử lý dữ liệu
 - Lưu trữ dữ liệu
 - Trao đổi dữ liệu
 - Điều khiển
- Bộ xử lý
 - Chức năng
 - Điều khiển hoạt động của máy tính
 - Xử lý dữ liệu
 - Nguyên tắc hoạt động cơ bản: BXL hoạt động theo ct nằm sẵn trong bộ nhớ, gồm 2 bước cơ bản:

- Nhân lênh từ bô nhớ
- Giải mã và thực hiện lệnh
- o Bộ vi xử lý: là bộ xử lý đc chế tạo trên một chip
- Các thành phần cơ bản của BXL
 - Khối điều khiển (CU)
 - ALU
 - Các thanh ghi
 - Bus bên trong
- Hệ thống nhớ
 - O Chức năng: lưu trữ ct và dữ liệu
 - Các thao tác cơ bản với bộ nhớ
 - Đoc
 - Ghi
 - Các thành phần chính:
 - Bộ nhớ trong
 - Bộ nhớ ngoài
- Hệ thống vào/ra
- Bus liên kết
- Một số tín hiệu điều khiển điển hình
 - Các tín hiệu điều khiển đọc/ghi:
 - MEMR (memory read): đọc lệnh/dữ liệu từ ngăn nhớ
 - MEMW (memory write): ghi dữ liệu tới ngăn nhớ
 - IOR (I/O read): đọc dữ liệu từ một cổng vào/ra
 - IOW (I/O write): ghi dữ liệu đến một cổng vào/ra
 - Các tín hiệu điều khiển ngắt:
 - INTR (Interrupt Request): tín hiệu từ bên ngoài gửi đến CPU xin ngắt (ngắt chắn được)
 - INTA (Interrupt acknowledge): tín hiệu từ CPU gửi ra ngoài báo chấp nhận ngắt
 - NMI (Non maskable interrupt): tín hiệu ngắt gửi đến CPU (ngắt k chắn đc)
 - Reset: tín hiệu từ bên ngoài khởi động lại máy tính
- 2. KIẾN TRÚC VÀ TỔ CHỨC MÁY TÍNH
- 3. CHỨC NĂNG VÀ CẦU TRÚC CỦA MÁY TÍNH
- 4. HOẠT ĐỘNG CỦA MÁY TÍNH
- 5. LỊCH SỬ PHÁT TRIỀN MÁY TÍNH

CHƯƠNG 2: KHỐI XỬ LÝ TRUNG TÂM CPU

CPU - Sơ đồ khối tổng quát

Chu kỳ xử lý lệnh

- Khi một chương trình được chạy, hệ điều hành tải mã chương trình vào bộ nhớ trong
- Địa chỉ lệnh đầu tiên của chương trình được đưa vào thanh ghi PC
- Địa chỉ của ô nhớ chứa lệnh được chuyển tới bus A qua thanh ghi MAR
- Tiếp theo, bus A truyền địa chỉ tới khối quản lý bộ nhớ MMU (Memory Management Unit)
- MMU chọn ô nhớ và sinh ra tín hiệu READ

- Lệnh chứa trong ô nhớ được chuyển tới thanh ghi MBR qua bus D
- MBR chuyển lệnh tới thanh ghi IR. Sau đó IR lại chuyển lệnh tới CU
- CU giải mã lệnh và sinh ra các tín hiệu xử lý cho các đơn vị khác, ví dụ như ALU để thực hiện lệnh
- Địa chỉ trong PC được tăng lên để trỏ tới lệnh tiếp theo của chương trình sẽ được thực hiện
- Thực hiện lại các bước 3->9 để chạy hết các lệnh của chương trình

CHƯƠNG 2: BIỂU DIỄN DỮ LIỆU VÀ SỐ HỌC MÁY TÍNH

• Biểu diễn số thực

Nguyên tắc chung

Một số thực X có thể biểu diễn như sau:

$$X = (-1)^S * M * R^E$$

Trong đó:

- S (sign): dấu (0: số dương; 1: số âm)
- M (mantissa): phần định trị
- R (radix): cơ số
- E (exponent): số mũ

Các phép toán số học

$$X1 = (-1)^{S1} * M1 * R^{E1}$$

 $X2 = (-1)^{S2} * M2 * R^{E2}$

Phép nhân:

$$X1 * X2 = (-1)^{S1 \oplus S2} * (M1*M2) * R^{E1 + E2}$$

Phép chia:

$$X1/X2 = (-1)^{S1 \oplus S2} * (M1/M2) * R^{E1-E2}$$

Phép công / trừ:

$$X1 \pm X2 = R^{E1*}[(-1)^{S1*}M1 \pm (-1)^{S2} * M2*R^{E2-E1}]$$

Chuẩn IEEE 754/85

- Có 3 dạng:
 - · Dạng đơn (single precision): 32 bit
 - · Dang kép (double precision): 64 bit
 - Dạng kép mở rộng (double-extended precision):
 80 bit
- Cả 3 dạng đều có điểm chung: R = 2

Dang đơn: 32 bit

Khi đó, 1 số thực bất kỳ được biểu diễn:

$$X = (-1)^S * 1, M * 2^{E-127}$$

Dải giá trị biểu diễn:

$$2^{-127} < |X| < 2^{127}$$
, hay: $10^{-38} < |X| < 10^{38}$

Chuyển đổi → IEEE 754/85 (32 bit)

- Bước 1: Đổi số thực đó → nhị phân
- Bước 2: Chuyển về dạng: ±1,aa...a * 2^b
- Bước 3: Xác định các giá trị:
 - S = 0 néu số dương; S = 1 néu số âm
 - E 127 = b \Rightarrow E = 127 + b \rightarrow nhị phân
 - M = aa...a00...0

Ví dụ chuyển đổi

- Ví dụ 1: 17,625 → IEEE 754/85
 - B1: A = 17,625 = 10001,101
 - B2: A = 1,0001101 * 2⁴ (±1,aa...a * 2^b)
 - B3: Ta có:
 - > S = 0, vi A > 0
 - \triangleright E 127 = 4 \Rightarrow E = 131 = 1000 0011
 - > M = 000 1101 0000 0000 0000 0000

Ví dụ chuyển đổi

- Ví dụ 4: Tìm giá trị số thực: C2 0D 00 00H
- Giải:

Ta có: X = C2 0D 00 00H =

- S = 1 ⇒ X < 0
- E = 1000 0100 = 132 ⇒ E -127 = 5
- M = 000 1101 0000 0000 0000 0000
- \Rightarrow X = -1,0001101 * 2⁵ = -100011,01 = -35,25

Dang kép: 64 bit

Khi đó, 1 số thực bất kỳ được biểu diễn:

$$X = (-1)^S * 1,M * 2^{E-1023}$$

Dải giá trị biểu diễn:

$$2^{-1023} < |X| < 2^{1023}$$
, hay: $10^{-308} < |X| < 10^{308}$

Dạng kép mở rộng: 80 bit

Khi đó, 1 số thực bất kỳ được biểu diễn:

$$X = (-1)^S * 1, M * 2^{E - 16383}$$

Dải giá trị biểu diễn:

$$2^{-16383} < |X| < 2^{16383}$$
, hay: $10^{-4932} < |X| < 10^{4932}$

CHƯƠNG 5: HỆ THỐNG NHỚ

- 1. Các đặc trưng của hệ thống nhớ
 - Vị trí:
 - o Bên trong Bộ xử lý: Các thanh ghi
 - o Bộ nhớ trong: Bộ nhớ chính

Bộ nhớ cache

- Bộ nhớ ngoài: Đĩa từ, băng từ
 Đĩa quang
- Dung lượng
 - Độ dài ngăn nhớ
 - Số lượng ngăn nhớ
- Đơn vị truyền:
 - Truyền theo từ nhớ
 - Truyền theo khối nhớ
- Phương pháp truy nhập:
 - Truy nhập tuần tự (băng từ)
 - o Truy nhập trực tiếp (đĩa từ, đĩa quang)
 - Truy nhập ngẫu nhiên (bộ nhớ trong)
 - Truy nhập liên kết (bộ nhớ cache)
- Kiểu vật lý của bộ nhớ:
 - o Bộ nhớ bán dẫn
 - o Bộ nhớ từ: băng từ và đĩa từ
 - o Bộ nhớ quang: đĩa quang
- Các đặc trưng vật lý:
 - o Bộ nhớ khả biến/ không khả biến
 - Bộ nhớ xóa được/ không xóa được

Phân cấp hệ thống nhớ

Từ trái sang phải:

- Dung lượng tăng dần
- Tốc độ trao đổi dữ liệu giảm dần
- · Giá thành /1 bit giảm dần
- Tần suất BXL truy nhập giảm dần
- Mức trái chứa một phần dữ liệu của mức phải

2. Bộ nhớ bán dẫn

Kiểu bộ nhở	Tiểu chuẩn	Khả năng xóa	Cơchếghi	Tính thay đổi
Read Only Memory (ROM)	Bộ nhớ chỉ đọc	Không xóa được	Mặt nạ	Không khả biến
Programmable ROM (PROM)			· Bằng điện	
Erasable PROM (EPROM)	Bộ nhớ hầu như chỉ đọc	Bằng tia cực tím, cả chip		
Electrically Erasable PROM (EEPROM)		Bằng điện, mức từng byte		
Flash memo ry	Bộ nhớ đọc - ghi	Bằng điện, từng khối		
Random Access Memory (RAM)		Bằng điện, từng byte		Khả biến

• ROM:

- O Là loại bộ nhớ không khả biến
- O Không mất dữ liệu khi mất nguồn nuôi
- o Lưu trữ các thông tin:
 - Thư viện các ct con
 - Các ct hệ thống (BIOS)
 - Các bảng chức năng
 - Vi ct
- Các kiểu ROM:
 - o ROM mặt nạ (ROM cố định):
 - Thông tin được ghi ngay khi sản xuất
 - Rất đắt
 - o PROM:
 - Khi sản xuất chưa ghi dữ liệu
 - Cần thiết bị chuyên dụng để ghi bằng ct, chỉ ghi được 1 lần
 - o EPROM:
 - Khi sản xuất chưa ghi dữ liệu
 - Cần thiết bị chuyên dụng để ghi bằng ct, ghi được nhiều lần
 - Trước khi ghi lại, phải xóa bằng tia cực tím
 - o EEPROM:
 - Có thể ghi theo từng byte
 - Xóa bằng điện

- Ghi lâu hơn đọc
- o Flash memory:
 - Ghi theo khối
 - Xóa bằng điện
- RAM
 - o Bộ nhớ đoc/ ghi
 - Khả biến
 - O Lưu trữ thông tin tạm thời
 - Mất dữ liệu khi mất nguồn nuôi
 - o Có hai loại RAM:
 - SRAM (Static RAM)
 - Các bit được lưu trữ bằng các Flip Flop
 - Không cần mạch làm tươi
 - Cấu trúc phức tạp hơn DRAM
 - Dung lượng nhỏ
 - Tốc đô nhanh hơn DRAM
 - Đắt hơn DRAM
 - Dùng làm bộ nhớ cache
 - DRAM (Dynamic RAM)
 - Các bit được lưu trữ trên tụ điện → cần phải có mạch làm tươi
 - Cấu trúc đơn giản
 - Dung lượng lớn
 - Tốc độ chậm hơn SRAM
 - Rẻ hơn SRAM
 - Dùng làm bộ nhớ chính
- 3. Tổ chức của chip nhớ

• SRAM

- Các đường địa chỉ: A₀ ÷ A_{n-1} → có 2ⁿ ngăn nhớ.
- Các đường dữ liệu: D₀ ÷ D_{m-1} → độ dài ngăn nhớ là m bit.
- Dung lượng chip nhớ: 2ⁿ x m bit
- Các đường điều khiển:
 - Tín hiệu chọn chip: CS (Chip Select)
 - Tín hiệu điều khiển đọc: RD / OE
 - Tín hiệu điều khiển ghi: WR / WE
- DRAM

- Dùng n đường địa chỉ don kênh → cho phép truyền 2n bit địa chỉ
- Tín hiệu chọn địa chỉ hàng RAS (Row Address Select)
- Tín hiệu chọn địa chỉ cột CAS (Column Address Select)
- Dung lượng của DRAM: 2²ⁿ x m bit

4. Bộ nhớ chính

- Các đặc trưng cơ bản
 - O Chứa các ct đang thực hiện và các dữ liệu đang đc sử dụng
 - O Tồn tại trên mọi hệ thống máy tính
 - Được đánh giá địa chỉ trực tiếp bởi CPU: có nhiều ngăn nhớ, mỗi ngăn nhớ được gán một địa chỉ xác định
 - Việc quản lý logic BNC tùy thuộc vào HĐH
 - Về nguyên tắc, người lập trình có thể can thiệp trực tiếp vào toàn bộ BNC của máy tính
 - O Các ngăn nhớ tổ chức theo byte

5. Bộ nhớ cache

- Cache có tốc độ nhanh hơn bộ nhớ chính
- Cache đc đặt giữa CPU và BNC nhằm tăng tốc độ truy nhập bô nhớ của CPU
- Cache có thể được đặt trên chip CPU
- Các khái niệm:
 - Nguyên lý định vị tham số bộ nhớ:

- Định vị về thời gian: thông tin vừa truy nhập thì xác suất lớn ngay sau đó nó đc truy nhập lại.
- Định vị về không gian: thông tin vừa truy nhập thì xác suất lớn là ngay sau đó các mục lân cận sẽ được truy nhập.
- Trao đổi thông tin giữa cache và BNC
 - BNC được chia thành các block nhớ
 - Cache được chia thành các line nhớ
 - Kích thước line bằng kích thước block

→Số lượng line << Số lượng block

- Mỗi line trong cache được gắn thêm một tag để xác định block nào đang ở trong line
- Các kỹ thuật ánh xạ địa chỉ:
 - Ánh xạ trực tiếp
 - Mỗi Block cảu BNC chỉ đc ánh xạ vào một Line duy nhất
 - Vd1: Cho máy tính có dung lượng:
 - BNC = 128 MB, cache = 256 KB, line = 32 byte
 - Độ dài ngăn nhớ = 1 byte

Tìm dạng địa chỉ do BXL phát ra?

BL:

BNC =
$$128 \text{ MB} = 2^7 * 2^20 = 2^27 \text{ byte}$$

Cache =
$$256 \text{ KB} = 2^8 * 2^10 = 2^18 \text{ byte}$$

Line = 32 byte =
$$2^5$$
 byte \rightarrow w = 5

Số lượng line trong cache:
$$2^18/2^5 = 2^13 \rightarrow r = 13$$

Số bit của tag:
$$27 - 13 - 5 = 9$$

Vậy dạng địa chỉ do BXL phát ra: 9 + 13 + 5

- Vd2: Cho máy tính có dung lượng:
 - BNC = 256 MB, cache = 64 KB, line = 16 byte
 - Độ dài ngăn nhớ = 4 byte

Tìm dạng địa chỉ do BXL phát ra?

BL:

BNC = 256 MB = 2^28 byte = 2^28/2^2 = 2^26 ng/nhớ
Cache = 64 KB = 2^16 byte = 2^16/2^2 = 2^14 ng/ nhớ
Line = 16 byte = 2^4/2^2 = 2^2 ng/ nhớ
$$\Rightarrow$$
 w = 2
Số lượng line trong cache: 2^14/2^2 = 2^12 \Rightarrow r = 10
Số bit của tag: 26 – 10 – 2 = 14, s – r = 14

- Ánh xạ liên kết hoàn toàn
 - Mỗi Block trong BNC được ánh xạ vào một Line bất kỳ trong cacche
 - Vd1: Cho máy tính có dung lượng:
 - BNC = 256 MB, cache = 128 KB, line = 32 byte
 - Độ dài ngăn nhớ = 4 byte

Tìm dạng địa chỉ do B

XL phát ra?

BL:

Line size = 32 byte =
$$2^5 / 2^2 -$$
Word = 3 bit
BNC size = 256 MB = 2^8 . $2^20 = 2^28$
Tag = $28 - 5 = 23$ bit
--> $23 + 3$

- Ánh xạ liên kết tập hợp
 - Cache được chia thành nhiều Set, mỗi Set gồm nhiều Line liên tiếp
 - Một Block của BNC chỉ được ánh xạ vào một Set duy nhất trong cache, nhưng được ánh xạ vào Line bất kỳ trong set đó.
 - Vd1: Cho máy tính có dung lượng:
 - BNC = 512 MB, cache = 128 KB, line = 32 byte
 - Độ dài ngăn nhớ = 2 byte, set: 4 line

Tìm dạng địa chỉ do BXL phát ra?

BL:

Line =
$$2^5/2^1 B -> w = 4$$

BNC = $512 \text{ MB} = 2^29 \text{ B} = 2^29/2^1 = 2^28$

Cache = $128 \text{ KB} = 2^17 \text{ B} = 2^17/2^1 = 2^16$

Dung luong set: $2^2*2^4=2^6-> 2^16/2^6=2^10$

-> d= 10

số bit của tag: 28 - 10 - 4 = 14

Các thuật toán thay thế

- Kỹ thuật ánh xạ trực tiếp: Không thay được
- Hai kỹ thuật ánh xạ liên kết: có 4 thuật toán
 - Random: thay ngẫu nhiên một Block cũ nào đó
 - ⇒ Dễ thực hiện, nhanh nhất, tỉ lệ cache hit thấp.
 - FIFO (First In First Out): thay Block ở đầu tiên trong số các Block đang có trong cache
 - ⇒ tỉ lệ cache hit không cao
 - LFU (Least Frequently Used): thay Block được dùng với tần suất ít nhất ⇒ tỉ lệ cache hit tương đối cao
 - LRU (Least Recently Used): thay Block được dùng gần đây ít nhất ⇒ tỉ lệ cache hit cao

Hoạt động của cache

- Đọc:
 - Nếu cache hit: đọc ngăn nhớ từ cache
 - Néu cache miss: thay Block ⇒ cache hit
- Ghi:
 - Néu cache hit: có 2 phương pháp:
 - Write through: ghi dữ liêu vào cả cache và cả BNC
 - ⇒ không cần thiết, tốc độ chậm, mạch đơn giản.
 - ➤ Write back: chỉ ghi vào cache, khi nào Block (trong cache) được ghi bị thay đi → ghi vào BNC
 - ⇒ tốc độ nhanh, mạch phức tạp.
 - Néu cache miss: thay Block ⇒ cache hit

CHƯƠNG 6: HỆ THỐNG VÀO/ RA

- Tại sao cần Modul vào/ra?
 - o Không thể nối trực tiếp các thiết bị ngoại vi với bus hệ thống, vì:
 - BXL không thể điều khiển đc tất cả TBNV
 - Tốc đô trao đổi dữ liêu khác nhau
 - Khuôn dạng dữ liệu khác nhau
 - Tất cả có tốc độ chậm hơn BXL và RAM
 - O Chức năng của Modul vào/ra:
 - Nối ghép với BXL và hệ thống nhớ
 - Nối ghép với một hoặc nhiều TBNV
- Các thiết bị ngoại vi
 - Chức năng: chuyển đổi dữ liệu giữa bên trong và bên ngoài máy tính
 - o Phân loại:
 - TBNV giao tiếp người máy: màn hình, bàn phím, mày in,...
 - TBNV giao tiếp máy máy: các thiết bị theo dõi và kiểm tra
 - TBNV truyền thông: modem, card giao tiếp mạng (NIC)

Sơ đồ khối của TBNV

• Các thành phần cơ bản của TBNV:

- o Bộ chuyển đổi tín hiệu
- Logic điều khiển
- Bộ đếm
- Modul vào/ra:
 - o Chức năng:
 - Điều khiển và định thời gian
 - Trao đổi thông tin với BXL
 - Trao đổi thông tin với TBNV
 - Bộ đếm dữ liệu
 - Phát hiện lỗi
 - o Thành phần cơ bản:
 - Thanh ghi dữ liệu
 - Các cổng vào/ra
 - Thanh ghi điều khiển/ trạng thái
 - Logic điều khiển
- Các pp địa chỉ hóa cổng vào/ra
 - Vào/ra cách biệt (isolated IO)
 - Đặc điểm: Không gian địa chỉ cổng vào/ra nằm ngoài không gian địa chỉ bộ nhớ
 - Cách truy nhập:
 - Cần có tín hiệu phân biệt truy nhập cổng vào/ra hay truy nhập bộ nhớ
 - Sử dụng lệnh vào/ra chuyên dụng: IN, OUT

Ví dụ đối với BXL 8088

- O Vào/ra theo bản đồ bộ nhớ (memory mapped IO)
 - Đặc điểm: Không gian địa chỉ cổng vào/ra nằm trong không gian địa chỉ bộ nhớ
 - Cách truy nhập:
 - Dùng chung tín hiệu như truy nhập bộ nhớ
 - Dùng chung lệnh trao đổi dữ liệu với bộ nhớ

Ví dụ đối với BXL 8088

- Các pp điều khiển vào/ra
 - Vào/ra bằng ct
 - Nguyên tắc chung:
 - Sử dụng lệnh vào/ra trong ct để trao đổi dữ liệu với cổng vào/ra
 - Khi BXL thực hiện ct, gặp lệnh vào/ra thì BXL điều khiển trao đổi dữ liêu với TBNV
 - Vào/ra bằng ngắt
 - Vào/ra bằng DMA
 - DMAC điều khiển vào/ra không qua BXL (CPU)
 - Đây là pp có tốc độ trao đổi dữ liệu nhanh

Sơ đồ

- Quy trình hoạt động
 - B1: TBNV gửi tín hiệu DREQ (Dma REQuest) tới DMAC
 - B2: DMAC gửi tín hiệu HRQ (Hold ReQuest) để xin dùng các đường bus
 - B3: BXL sẽ thực hiện xong chu kỳ bus hiện tại và trả lời đồng ý bằng việc gửi tín hiệu HLDA (HoLD Acknowledge) tới DMAC
 - B4: DMAC gửi tín hiệu DACK (Dma ACKnowledge) tới TBNV báo chuẩn bị truyền dữ liệu
 - B5: DMAC thực hiện điều khiển quá trình truyền dữ liệu giữa bô nhớ và TBNV
 - B6: DMAC thực hiện xong công việc, nó bổ kích hoạt tín hiệu HRQ. Hệ thống trở lại bình thường.
- Các kiểu thực hiện DMA:
 - DMA truyền theo khối: sd bus để truyền cả khối dữ liệu
 - DMA ăn trộm chu kỳ: ép buộc BXL treo tạm thời chu kỳ để thực hiện truyền một byte dữ liệu
 - DMA trong suốt: nhận biết những chu kỳ nào BXL k dùng bus thì lấy bus để tranh thủ truyền 1 byte dữ liệu
- Phân loại ngắt
 - o Ngắt cứng
 - Ngắt cứng NMI

- Ngắt cứng MI là ngắt cứng chắn được, ngắt cứng MI dùng để trao đổi dữ liệu với TBNV
- O Ngắt mềm, do lệnh ngắt nằm trong ct sinh ra
- o Ngắt ngoại lệ, là ngắt do lỗi ct sinh ra
 - Lệnh chia cho 0 sinh ra ngắt ngoại lệ
 - Tràn số sinh ra ngắt ngoại lệ
 - Lỗi bộ nhớ sinh ra ngắt ngoại lệ
- Các pp xác định modul ngắt
 - o Nhiều đường yêu cầu ngắt

- BXL phải có các đường yêu cầu ngắt khác nhau cho mỗi modul vào/ra
- Hạn chế số lượng thiết bị
- o Kiểm tra vòng bằng phần mềm

- BXL thực hiện phần mềm kiểm tra từng modul
- Tốc độ chậm
- Kiểm tra vòng bằng phần cứng

- BXL phát tín hiệu chấp nhận ngắt đến chuỗi các modul vào/ra
- Modul sẽ đáp ứng bằng cách đặt vecto ngắt lên bus dữ liệu
- BXL sử dụng vecto để xác định CTC điều khiển ngắt

o Chiếm bus

- Modul vào ra cần chiếm bus trước khi nó phát tín hiệu yêu cầu ngắt
- Vd: PCI, SCSI

Ngắt tuần tự

Ngắt lồng nhau

