Adversarial Auto-Encoders (AAEs) and Wasserstein Auto-Encoders (WAEs)

Alex Lin Melissa Yu

Harvard University

April 5, 2018

Jensen-Shannon divergence

Minimize Jensen-Shannon divergence between true data distribution p_d and generative model p_g :

$$\min_{G} \mathcal{D}_{JS}(p_d(x)||p_g(x))$$

where

$$\mathcal{D}_{JS}(p_d(x)||p_g(x)) = \frac{1}{2}\mathcal{D}_{KL}(p_d||\frac{p_d + p_g}{2}) + \frac{1}{2}\mathcal{D}_{KL}(p_g||\frac{p_d + p_g}{2})$$

Generative Adversarial Networks (GANs)

Minimizing JSD corresponds to finding best G when D is optimal

$$\min_{G}\max_{D}V(D,G)=\mathbb{E}_{p_{d}(x)}[\log D(x)]+\mathbb{E}_{p_{z}(z)}[\log(1-D(G(z)))]$$

Min-max game between 2 neural networks

- generator G(z): prior $p_z(z)$ and likelihood $p(x \mid z)$
- discriminator D(x): predicts probability x comes from p_d , not p_g

VAEs

Encoder $q(z \mid x)$, decoder $p(x \mid z)$. Prior on latent codes p(z).

$$\begin{aligned} \min_{q} \ \mathbb{E}_{q(z \mid x)} [-\log p(x \mid z)] + \mathcal{D}_{\mathit{KL}} (q(z \mid x) \mid\mid p(z)) \\ &= \mathsf{Reconstruction} + \mathsf{Regularization} \end{aligned}$$

Adversarial Auto-encoders (AAEs)

Aggregated posterior

$$q(z) = \int_{x} q(z \mid x) p_{d}(x) dx$$

• Replaces VAE's $\mathcal{D}_{\mathit{KL}}(q(z \mid x) \mid\mid p(z))$ regularizer with $\mathcal{D}_{\mathit{JS}}(q(z) \mid\mid p(z))$

AAE: Adversarial Networks

- Directly minimizing $\mathcal{D}_{JS}(p(z) \mid\mid q(z))$ is intractable
- \Rightarrow Attach adversarial network on top of z
 - Encoder of autoencoder is also generator of adversarial network

$$G(z) = q(z \mid x)$$

• Discriminator D distinguishes p(z) (positive samples) from q(z) (negative samples)

AAE

Figure 1: Architecture of an adversarial autoencoder. The top row is a standard autoencoder that reconstructs an image \mathbf{x} from a latent code \mathbf{z} . The bottom row diagrams a second network trained to discriminatively predict whether a sample arises from the hidden code of the autoencoder or from a sampled distribution specified by the user.

AAE

Trained by alternately minimizing reconstruction error and training adversarial network

• Reconstruction phase. Encoder q and decoder p are trained to minimize reconstruction error:

$$\min_{q,p} \mathbb{E}_{q(z\mid x)}[-\log p(x\mid z)] \tag{1}$$

Regularization phase. Adversarial network is trained on GAN objective:

$$\min_{q} \max_{D} \ \mathbb{E}_{p(z)}[\log D(z)] + \mathbb{E}_{q(z \mid x)}[\log(1 - D(z))]$$

Choice of Encoder q

- Deterministic: q is deterministic function of x
 - may not produce smooth mapping; empirical distribution of data is fixed by training set
- Gaussian posterior: q is Gaussian distribution whose parameters are predicted by encoder network

$$z \sim \mathcal{N}(\mu(x), \sigma(x))$$

Universal approximator posterior

Encoder (cont.)

- Gaussian posterior + universal approximator posterior give network additional sources of stochasticity that could help it in the adversarial regularization stage by smoothing out q(z).
- In practice, authors obtain similar test likelihoods for all 3 choices.

WAE Paper

Published as a conference paper at ICLR 2018

WASSERSTEIN AUTO-ENCODERS

Ilya Tolstikhin

MPI for Intelligent Systems Tübingen, Germany ilya@tue.mpg.de

Sylvain Gelly

Google Brain Zürich, Switzerland sylvaingelly@google.com

Olivier Bousquet

Google Brain
Zürich, Switzerland
obousquet@google.com

Bernhard Schölkopf

MPI for Intelligent Systems Tübingen, Germany bs@tue.mpg.de

• Let our data $x_1, \ldots, x_n \in \mathcal{X}$ be distributed according to P_X .

- Let our data $x_1, \ldots, x_n \in \mathcal{X}$ be distributed according to P_X .
- Goal of generative modeling is to find a model G with $P_G: \mathcal{X} \to [0,1]$ that minimizes a specified distance $D(P_X, P_G)$.

- Let our data $x_1, \ldots, x_n \in \mathcal{X}$ be distributed according to P_X .
- Goal of generative modeling is to find a model G with $P_G: \mathcal{X} \to [0,1]$ that minimizes a specified distance $D(P_X, P_G)$.
- Variational Auto-Encoders (VAEs) seek to minimize

$$D_{KL}(P_X, P_G) = \underbrace{-\mathbb{E}_{P_X}[\log P_G(X)]}_{\text{negative log-likelihood}} + \underbrace{\mathbb{E}_{P_X}[\log P_X(X)]}_{\text{entropy of data}}$$

- Let our data $x_1, \ldots, x_n \in \mathcal{X}$ be distributed according to P_X .
- Goal of generative modeling is to find a model G with $P_G: \mathcal{X} \to [0,1]$ that minimizes a specified distance $D(P_X, P_G)$.
- Variational Auto-Encoders (VAEs) seek to minimize

$$D_{KL}(P_X, P_G) = \underbrace{-\mathbb{E}_{P_X}[\log P_G(X)]}_{\text{negative log-likelihood}} + \underbrace{\mathbb{E}_{P_X}[\log P_X(X)]}_{\text{entropy of data}}$$

The NLL cannot be optimized directly, so VAEs use an upper bound.

$$NLL \leq \inf_{\substack{Q(Z|X) \in \mathcal{Q} \\ \text{min over all encoders}}} -\mathbb{E}_{P_X} [\underbrace{\mathbb{E}_{Q(Z|X)}[\log P_G(X|Z)]}_{\text{reconstruction loss}} - \underbrace{D_{KL}(Q(Z|X), P_Z)}_{\text{regularization loss}}]$$

- Let our data $x_1, \ldots, x_n \in \mathcal{X}$ be distributed according to P_X .
- Goal of generative modeling is to find a model G with $P_G: \mathcal{X} \to [0,1]$ that minimizes a specified distance $D(P_X, P_G)$.
- Variational Auto-Encoders (VAEs) seek to minimize

$$D_{KL}(P_X, P_G) = \underbrace{-\mathbb{E}_{P_X}[\log P_G(X)]}_{\text{negative log-likelihood}} + \underbrace{\mathbb{E}_{P_X}[\log P_X(X)]}_{\text{entropy of data}}$$

The NLL cannot be optimized directly, so VAEs use an upper bound.

$$\mathit{NLL} \leq \underbrace{\inf_{Q(Z|X) \in \mathcal{Q}}}_{\text{min over all encoders}} - \mathbb{E}_{P_X} [\underbrace{\mathbb{E}_{Q(Z|X)}[\log P_G(X|Z)]}_{\text{reconstruction loss}} - \underbrace{D_{\mathit{KL}}(Q(Z|X), P_Z)}_{\text{regularization loss}}]$$

 Take-Away: VAEs minimize an upper bound on KL divergence between the data and the model.

• Alternative way to measure distance between probability distributions

- Alternative way to measure distance between probability distributions
- Aka Earth Mover's Distance, Kantorovich-Rubinstein Metric, Optimal Transfer Plan

- Alternative way to measure distance between probability distributions
- Aka Earth Mover's Distance, Kantorovich-Rubinstein Metric, Optimal Transfer Plan
- Defined with respect to a cost function $c: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ as

$$W_c(P_X, P_Y) = \inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_Y)} \mathbb{E}_{(X, Y) \sim \Gamma}[c(X, Y)]$$

where $\Gamma(x, y)$ is the "transport plan".

• The objective is

$$W_c(P_X, P_Y) = \inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_Y)} \mathbb{E}_{(X, Y) \sim \Gamma}[c(X, Y)]$$

• The objective is

$$W_c(P_X, P_Y) = \inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_Y)} \mathbb{E}_{(X, Y) \sim \Gamma}[c(X, Y)]$$

The objective is

$$W_c(P_X, P_Y) = \inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_Y)} \mathbb{E}_{(X, Y) \sim \Gamma}[c(X, Y)]$$

- Γ must be some joint distribution of X, Y because
 - $\int_X \Gamma(x,y) dx = P_X(x) \Rightarrow$ Total earth leaving x = total earth at x =
 - $\int_{y} \Gamma(x,y) dy = P_{Y}(y) \Rightarrow$ Total earth entering y = total earth at y

• Consider a latent space \mathcal{Z} with prior P_Z . We want to find a model (i.e. decoder) $G: \mathcal{Z} \to \mathcal{X}$ that minimizes the Wasserstein distance

$$W_c(P_X, P_G) = \inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_G)} \mathbb{E}_{(X, Y) \sim \Gamma}[c(X, Y)]$$

• Consider a latent space \mathcal{Z} with prior P_Z . We want to find a model (i.e. decoder) $G: \mathcal{Z} \to \mathcal{X}$ that minimizes the Wasserstein distance

$$W_c(P_X, P_G) = \inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_G)} \mathbb{E}_{(X, Y) \sim \Gamma}[c(X, Y)]$$

• [Bousquet et al. (2017)] This is equivalent to minimizing

$$W_c(P_X,P_G) = \underbrace{Q: Q_Z = P_Z}_{\text{min over encoders with marginal } P_Z} \mathbb{E}_{P_X} \underbrace{\mathbb{E}_{Q(Z|X)}[c(X,G(Z)]}_{\text{reconstruction cost}}$$

where $Q_Z = \int Q(Z|X)P_X(X)dX$.

• The WAE objective relaxes the constraint $Q_Z = P_Z$ by adding a penalty. It minimizes

$$D_{WAE}(P_X, P_G) = \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X, G(Z)] + \lambda \cdot \mathcal{D}_Z(Q_Z, P_Z)]$$

where $\mathcal D$ is some divergence and λ is some regularization parameter.

• The WAE objective relaxes the constraint $Q_Z = P_Z$ by adding a penalty. It minimizes

$$D_{WAE}(P_X, P_G) = \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X, G(Z)] + \lambda \cdot \mathcal{D}_Z(Q_Z, P_Z)]$$

where \mathcal{D} is some divergence and λ is some regularization parameter.

Claims to fix blurriness issue of VAEs

• The WAE objective minimizes

$$D_{WAE}(P_X, P_G) = \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X, G(Z))] + \lambda \cdot \mathcal{D}_Z(Q_Z, P_Z)$$

The WAE objective minimizes

$$D_{WAE}(P_X, P_G) = \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X, G(Z))] + \lambda \cdot \mathcal{D}_Z(Q_Z, P_Z)$$

There are two sources of customization.

The WAE objective minimizes

$$D_{WAE}(P_X, P_G) = \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X, G(Z))] + \lambda \cdot \mathcal{D}_Z(Q_Z, P_Z)$$

- There are two sources of customization.
 - **1** Choose divergence between Q_Z and P_Z .

The WAE objective minimizes

$$D_{WAE}(P_X, P_G) = \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X, G(Z))] + \lambda \cdot \mathcal{D}_Z(Q_Z, P_Z)$$

- There are two sources of customization.
 - **1** Choose divergence between Q_Z and P_Z .

WAE-MMD
$\mathcal{D}_Z = MMD_k$
Use unbiased
U-statistic estimator

The WAE objective minimizes

$$D_{W\!AE}(P_X,P_G) = \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X,G(Z))] + \lambda \cdot \mathcal{D}_Z(Q_Z,P_Z)$$

- There are two sources of customization.
 - ① Choose divergence between Q_Z and P_Z .

WAE-GAN	WAE-MMD
$\mathcal{D}_Z = \mathcal{D}_{JS}$	$\mathcal{D}_{Z} = MMD_{k}$
Introduce adversarial	Use unbiased
discriminator in ${\cal Z}$	U-statistic estimator

2 Choose reconstruction cost function c.

The WAE objective minimizes

$$D_{WAE}(P_X, P_G) = \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X, G(Z))] + \lambda \cdot \mathcal{D}_Z(Q_Z, P_Z)$$

- There are two sources of customization.
 - ① Choose divergence between Q_Z and P_Z .

WAE-GAN	WAE-MMD
$\mathcal{D}_Z = \mathcal{D}_{JS}$	$\mathcal{D}_{Z} = MMD_{k}$
Introduce adversarial	Use unbiased
discriminator in ${\cal Z}$	U-statistic estimator

- 2 Choose reconstruction cost function c.
 - If $c(x, x') = ||x x'||_2^2$, then WAE-GAN is equivalent to AAE

The WAE objective minimizes

$$D_{WAE}(P_X, P_G) = \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X, G(Z))] + \lambda \cdot \mathcal{D}_Z(Q_Z, P_Z)$$

- There are two sources of customization.
 - **1** Choose divergence between Q_Z and P_Z .

WAE-GAN	WAE-MMD
$\mathcal{D}_Z = \mathcal{D}_{JS}$	$\mathcal{D}_{Z} = MMD_{k}$
Introduce adversarial	Use unbiased
discriminator in ${\mathcal Z}$	U-statistic estimator

- Choose reconstruction cost function c.
 - If $c(x, x') = ||x x'||_2^2$, then WAE-GAN is equivalent to AAE
 - Theoretical justification of AAE as minimizing 2-Wasserstein distance

Experiments

- Test VAE, WAE-GAN, WAE-MMD on MNIST and CelebA
- Record Frechet Inception Distance (FID) to assess quality of images

Algorithm	FID
VAE	82
WAE-MMD	55
WAE-GAN	42

Table 1: FID scores for samples on CelebA (smaller is better).

Extensions

ADVERSARIALLY REGULARIZED AUTOENCODERS

Junbo (Jake) Zhao¹, Yoon Kim², Kelly Zhang¹, Alexander M. Rush², Yann LeCun^{1,3}

- 1 Department of Computer Science, New York University
- ² School of Engineering and Applied Sciences, Harvard University
- 3 Facebook AI Research

{ jakezhao, kz918, vann}@cs.nvu.edu, {voonkim, srush}@seas.harvard.edu

WASSERSTEIN AUTO-ENCODERS: LATENT DIMENSIONALITY AND RANDOM ENCODERS

Paul Rubenstein, Bernhard Schölkopf, Ilya Tolstikhin Empirical Inference

Max Planck Institute for Intelligent Systems, Tübingen {paul.rubenstein,bs,ilya}@tuebingen.mpg.de

LEARNING DISENTANGLED REPRESENTATIONS WITH WASSERSTEIN AUTO-ENCODERS

Paul Rubenstein, Bernhard Schölkopf, Ilva Tolstikhin

Empirical Inference

Max Planck Institute for Intelligent Systems, Tübingen

{paul.rubenstein,bs,ilva}@tuebingen.mpg.de

• Build on work of Zhao et. al (2018) in applying WAEs to text

- Build on work of Zhao et. al (2018) in applying WAEs to text
- Semi-Supervised Learning for transfering between different styles of English

- Build on work of Zhao et. al (2018) in applying WAEs to text
- Semi-Supervised Learning for transfering between different styles of English
 - Shakespearean English vs. Modern English

ORIGINAL TEXT	MODERN TEXT	
JULIET	JULIET	
By and by, I come.—	Alright, I'm coming!—I beg you to stop trying for me and	
To cease thy strife and leave me to my grief.	leave me to my sadness. Tomorrow I'll send the	
155 Tomorrow will I send.	messenger.	
ROMEO	ROMEO	
So thrive my soul—	My soul depends on it—	

- Build on work of Zhao et. al (2018) in applying WAEs to text
- Semi-Supervised Learning for transfering between different styles of English
 - Shakespearean English vs. Modern English

stop trying for me and
ow I'll send the

Formal English vs. Informal English

Informal: *I'd say it is punk though*.

Formal: However, I do believe it to be punk.

Informal: Gotta see both sides of the story.

Formal: You have to consider both sides of the story.