

Model Optimization and Tuning Phase Template

Date	10 July 2024
Team ID	SWTID1720013031
Project Title	Prediction and Analysis of Liver Patient Data Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	<pre>from sklearn.linear_model import LogisticRegression lr = LogisticRegression(random_state=42) lr.fit(x_train, y_train) v LogisticRegression LogisticRegression(random_state=42)</pre>	<pre>lr_acc = accuracy_score(y_pred_lr, y_test) lr_acc 0.7606837606837606</pre>
K neighbors Classifier	<pre>from sklearn.neighbors import KNeighborsClassifier knn=KNleighborsClassifier(n_neighbors=6, weights='uniform',</pre>	accuracy_score(y_test,y_pred) 0.7692307692307693

RandomForest	rf=RandomForestClassifier(n_estimators=500,criterion='entropy',random_state=18) rf.fit(x_train,y_train)	accuracy_score(y_test,y_pred)
Classifier	RandomForestClassifier RandomForestClassifier(criterion='entropy', n_estimators=500, random_state=18)	0.7606837606837606
SVC	<pre>immodel = SVC(kernel="rbf",random_state=100,gamma='auto',verbose=2,decision_function_shape='ovo') : model.fit(x_train,y_train) [LibSVM] :</pre>	accuracy_score(pred,y_test) 0.7808219178082192

Performance Metrics Comparison Report (2 Marks):

Model	В	Baseline N	Aetric			Optimi	zed M	Ietric	
Logistic Regression	accuracy macro avg weighted avg	ation_report(y_t recision reca 0.75 0. 0.45 0. 0.60 0. 0.67 0. n_matrix(y_test,	11 f1-score 91 0.83 19 0.27 0.72 55 0.55 72 0.68	128 47 175 175	print(classif	0.79 0.56 0.68 0.73	recall 0.92 0.30 0.61 0.76	f1-score 0.85 0.39 0.76 0.62 0.73	support 87 30 117 117 117
K neighbors Classifier	accuracy macro avg weighted avg confusion_matri array([[87, 22]	0.81 0.8 0.42 0.4 0.61 0.6 0.71 0.7	1 f1-score 0 0.80 3 0.43 0.71 2 0.61 1 0.71	support 109 37 146 146 146	print(classif	0.77 0.83 0.80 0.78	recall 0.99 0.16 0.57 0.77	f1-score	support 86 31 117 117 117

	<pre>print(classification_report(y_test,ypred_rfc))</pre>					<pre>print(classification_report(y_test,y_pred))</pre>				
	р	recision	recall	f1-score	support	precision recall f1-score support				
RandomForest	1 2	0.80 0.46	0.85 0.37	0.82 0.41	87 30	1 0.82 0.87 0.84 87 2 0.54 0.43 0.48 30				
Classifier	accuracy macro avg weighted avg	0.63 0.71	0.61 0.73	0.73 0.61 0.72	117 117 117	accuracy 0.76 117 macro avg 0.68 0.65 0.66 117 weighted avg 0.75 0.76 0.75 117				
	confusion_matri	x(y_test,	ypred_rfc)			<pre>confusion_matrix(y_test,y_pred)</pre>				
	array([[74, 13] [19, 11]	, l. dtype=	int64)			array([[76, 11], [17, 13]], dtype=int64)				
	print(classifica					classification_report(pred,y_test)				
SVC	accuracy macro avg weighted avg	0.74 0.00 0.37 0.55	1.00 0.00 0.50 0.74	0.85 0.00 0.74 0.43 0.63	87 30 117 117 117	[77]: ' precision recall f1-score support\n\n 1 1.00 0.78 0.88 146\n 2 0.0 0 0.00 0.00 0\n\n accuracy 0.78 146\n macro avg 0.50 0.39 0.44 146\nweighted avg 1.00 0.78 0.88 146\n'				
	<pre>confusion_matrix(y_test,y_pred_svm) array([[87, 0],</pre>					<pre>confusion_matrix(pred,y_test) [78]: array([[114, 32],</pre>				
						[0, 0]], dtype=int64)				

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
SVC	SVC is selected as for its Effective in High-Dimensional Spaces, Robust to Overfitting handle both linear and non-linear classification problems by employing kernel functions, making it a versatile and powerful tool for a wide range of applications