Question #1:

Solution 1. For part (a):

We seek to prove equation (2.4.3) from textbook, which is the following eqution:

Given continuous positive random variable X, the variance is

$$Var(X) = 2\int_{0}^{\infty} tS(t)dt - \left[\int_{0}^{\infty} S(t)dt\right]^{2}$$

Here is the proof:

Since we know that

$$Var(X) = E[X^2] - \left(E[X]\right)^2$$

We compute $E[X^2]$ and E[X] separately.

We havve:

$$E[X] = \int_0^\infty t f(t)dt = -\int_0^\infty t dS(t) = -tS(t)\Big|_0^\infty + \int_0^\infty S(t)dt$$
$$= \int_0^\infty S(t)dt$$

and

$$E[X^{2}] = \int_{0}^{\infty} t^{2} f(t) dt = -\int_{0}^{\infty} t^{2} dS(t) = -t^{2} S(t) \Big|_{0}^{\infty} + \int_{0}^{\infty} 2t S(t) dt$$
$$= 2 \int_{0}^{\infty} t S(t) dt$$

Plug these into the equation for variance, we got

$$Var(X) = E[X^{2}] - \left(E[X]\right)^{2}$$
$$= 2\int_{0}^{\infty} tS(t)dt - \left[\int_{0}^{\infty} S(t)dt\right]^{2}$$

For part (b):

We are going to prove the 'lack of memory' property for exponential distribution:

$$P(X \ge x + z | X \ge x) = P(X \ge z)$$

We have:

$$P(X \ge x + z | X \ge x) = \frac{P(X \ge x + z, X \ge x)}{P(X \ge x)} = \frac{P(X \ge x + z)}{P(X \ge x)} = \frac{\int_{x+z}^{\infty} \lambda e^{-\lambda t} dt}{\int_{x}^{\infty} \lambda e^{-\lambda t} dt}$$
$$= \frac{-e^{-\lambda t} \Big|_{x+z}^{\infty}}{-e^{-\lambda t} \Big|_{x}^{\infty}} = \frac{\lambda e^{-\lambda(x+z)}}{\lambda e^{-\lambda x}}$$
$$= e^{-\lambda z} = P(X \ge z)$$

Also we can compute the mean residual life time for exponential distribution:

$$mrl(x) = E[X - x | X > x] = \frac{\int_{x}^{\infty} (t - x) f(t) dt}{S(x)} = \frac{\int_{x}^{\infty} S(t) dt}{S(x)}$$

$$= \frac{\int_{x}^{\infty} e^{-\lambda t} dt}{e^{-\lambda x}} = \frac{\frac{-1}{\lambda} \int_{x}^{\infty} e^{-\lambda t} d(-\lambda t)}{e^{-\lambda x}}$$

$$= \frac{-\frac{1}{\lambda} e^{-\lambda t} \Big|_{x}^{\infty}}{e^{-\lambda x}} = \frac{\frac{1}{\lambda} e^{-\lambda x}}{e^{-\lambda x}}$$

$$= \frac{1}{\lambda}$$

For part (c):

We show an alternative expression for mrl(x):

$$mrl(x) = \frac{\int_x^{\infty} (u - x)f(u)du}{S(x)} = \frac{\int_x^{\infty} uf(u)du - x\int_x^{\infty} f(u)du}{S(x)} = \frac{\int_x^{\infty} uf(u)du - xS(x)}{S(x)}$$
$$= \frac{\int_x^{\infty} uf(u)du}{S(x)} - x$$

For part (d):

The multiplicative hazard model is:

$$h(x|\mathbf{Z}) = h_0(x)G(\boldsymbol{\beta}'\mathbf{Z})$$

We want to show that

$$S(x|\mathbf{Z}) = [S_0(x)]^{G(\boldsymbol{\beta}'\mathbf{Z})}$$

We use two different approaches to prove this:

The first approach is the same as the one on the textbook in the practical section, we have:

$$S(x|\mathbf{Z}) = \exp\left\{-\int_0^x h(u|\mathbf{Z})du\right\} = \exp\left\{-\int_0^x h_0(u)G(\boldsymbol{\beta}'\mathbf{Z})du\right\}$$
$$= \exp\left\{-G(\boldsymbol{\beta}'\mathbf{Z})\int_0^x h_0(u)du\right\} = \left(\exp\left\{-\int_0^x h_0(u)du\right\}\right)^{G(\boldsymbol{\beta}'\mathbf{Z})}$$
$$= S_0(x)^{G(\boldsymbol{\beta}'\mathbf{Z})}$$

The second approach is essentially the same idea using the ODE(ordinary differential equation) theory, but in a different algebraic flavor:

Since we have

$$h(x|\mathbf{Z}) = h_0(x)G(\boldsymbol{\beta}'\mathbf{Z})$$

and $h(x|\mathbf{Z} = 0) = h_0(x)$, we got G(0) = 1.

From the equation above we got:

$$h(x|\mathbf{Z}) = h_0(x)G(\boldsymbol{\beta}'\mathbf{Z}) \Longrightarrow \frac{f(x|\mathbf{Z})}{S(x|\mathbf{Z})} = \frac{f_0(x)}{S_0(x)}G(\boldsymbol{\beta}'\mathbf{Z})$$
$$\Longrightarrow -\frac{d}{dx}\log S(x|\mathbf{Z}) = -G(\boldsymbol{\beta}'\mathbf{Z})\frac{d}{dx}\log S_0(x)$$

Integrate on both sides, we got:

$$-\log S(x|\mathbf{Z}) = -G(\boldsymbol{\beta}'\mathbf{Z})\log S_0(x) + Constant$$

$$\Longrightarrow S(x|\mathbf{Z}) = Constant \cdot S_0(x)^{G(\boldsymbol{\beta}'\mathbf{Z})}$$

Since when $\mathbf{Z} = \mathbf{0}$ we have $G(\beta'\mathbf{Z}) = G(0) = 1$ as explained before, and also $S(x|\mathbf{Z} = \mathbf{0}) = S_0(x)$, we got

$$S(x|\mathbf{Z}=\mathbf{0}) = S_0(x) = Constant \cdot S_0(x)$$

which implies Constant = 1.So we conclude

$$S(x|\mathbf{Z}) = S_0(x)^{G(\boldsymbol{\beta}'\mathbf{Z})}$$

Question #2:

Solution 2. For part (a):

(i) If $X \sim Weibull(\lambda, \alpha)$, we have the pdf of X as

$$f(x) = \alpha \lambda x^{\alpha - 1} \exp(-\lambda x^{\alpha})$$

with survival function

$$S(x) = \exp[-\lambda x^{\alpha}]$$

So the mean for weibull distribution is

$$E[X] = \int_0^\infty x \cdot \alpha \lambda x^{\alpha - 1} \exp(-\lambda x^{\alpha}) dx = \int_0^\infty \alpha \lambda x^{\alpha} e^{-\lambda x^{\alpha}} dx$$
$$= \int_0^\infty x \cdot e^{-\lambda x^{\alpha}} d\lambda x^{\alpha}$$
$$= \frac{1}{\lambda^{1/\alpha}} \int_0^\infty (\lambda x^{\alpha})^{(1 + \frac{1}{\alpha}) - 1} e^{-\lambda x^{\alpha}} d\lambda x^{\alpha}$$
$$= \frac{\Gamma(1 + \frac{1}{\alpha})}{\lambda^{1/\alpha}}$$

To compute the variance, we first compute the second moment:

$$\begin{split} E[X^2] &= \int_0^\infty x^2 \alpha \lambda x^{\alpha-1} e^{-\lambda x^\alpha} dx = \int_0^\infty x^2 e^{-\lambda x^\alpha} d\lambda x^\alpha \\ &= \frac{1}{\lambda^{2/\alpha}} \int_0^\infty (\lambda x^\alpha)^{\frac{2}{\alpha}} e^{-\lambda x^\alpha} d\lambda x^\alpha = \frac{1}{\lambda^{2/\alpha}} \int_0^{+\infty} (\lambda x^\alpha)^{(\frac{2}{\alpha}+1)-1} e^{-\lambda x^\alpha} d\lambda x^\alpha \\ &= \frac{\Gamma(\frac{2}{\alpha}+1)}{\lambda^{\frac{2}{\alpha}}} \end{split}$$

So the variance of weibull distribution is:

$$Var[X] = E[X^{2}] - \left(E[X]\right)^{2} = \frac{\Gamma(\frac{2}{\alpha} + 1)}{\lambda^{\frac{2}{\alpha}}} - \left(\frac{\Gamma(1 + \frac{1}{\alpha})}{\lambda^{1/\alpha}}\right)^{2}$$
$$= \frac{\left(\Gamma(\frac{2}{\alpha} + 1) - \Gamma^{2}(1 + \frac{1}{\alpha})\right)}{\lambda^{\frac{2}{\alpha}}}$$

(ii) If $X \sim \Gamma(\beta, \lambda)$ (I am following the notation from textbook, see Table 2.2 on page 38), then we have the pdf

$$f(x) = \frac{\lambda^{\beta} x^{\beta - 1} e^{-\lambda x}}{\Gamma(\beta)}$$

So the mean of gamma distribution is:

$$\begin{split} E[X] &= \int_0^\infty x \cdot \frac{x^{\beta-1} \lambda^\beta e^{-\lambda x}}{\Gamma(\beta)} dx = \int_0^\infty x \cdot \frac{(\lambda x)^{\beta-1} e^{-\lambda x}}{\Gamma(\beta)} d\lambda x \\ &= \frac{1}{\lambda} \int_0^\infty \frac{(\lambda x)^{(\beta+1)-1} e^{-\lambda x} d\lambda x}{\Gamma(\beta)} = \frac{1}{\lambda \Gamma(\beta)} \Gamma(\beta+1) \\ &= \frac{\beta \Gamma(\beta)}{\lambda \Gamma(\beta)} = \frac{\beta}{\lambda} \end{split}$$

To compute the variance, we first compute the second moment for gamma distribution:

$$\begin{split} E[X^2] &= \int_0^\infty x^2 \cdot \frac{x^{\beta-1} \lambda^\beta e^{-\lambda x}}{\Gamma(\beta)} dx = \int_0^\infty x^2 \cdot \frac{(\lambda x)^{\beta-1} e^{-\lambda x}}{\Gamma(\beta)} d\lambda x \\ &= \frac{1}{\lambda^2} \int_0^\infty \frac{(\lambda x)^{(\beta+2)-1} e^{-\lambda x}}{\Gamma(\beta)} d\lambda x = \frac{\Gamma(\beta+2)}{\lambda^2 \Gamma(\beta)} \\ &= \frac{\beta(\beta+1) \Gamma(\beta)}{\lambda^2 \Gamma(\beta)} \\ &= \frac{\beta^2 + \beta}{\lambda^2} \end{split}$$

So we now can compute the variance of gamma distribution as:

$$Var[X] = E[X^2] - \left(E[X]\right)^2 = \frac{\beta^2 + \beta}{\lambda^2} - \left(\frac{\beta}{\lambda}\right)^2$$
$$= \frac{\beta^2 + \beta - \beta^2}{\lambda^2} = \frac{\beta}{\lambda^2}$$

(iii) If $X \sim lognormal(\mu, \sigma^2)$, we have $Y = log(X) \sim N(\mu, \sigma^2)$., which also says that $X = e^Y$. Denote $M_Y(t) = E[e^{tY}]$ as the moment generating function of Y, since $Y \sim N(\mu, \sigma^2)$, we have:

$$M_Y(t) = E[e^{tY}] = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Thus we can compute the mean of X as:

$$E[X] = E[e^Y] = M_Y(1) = e^{\mu + \frac{1}{2}\sigma^2}$$

We can also compute the second moment of X as:

$$E[X^2] = E[e^{2Y}] = M_Y(2) = e^{2\mu + \frac{1}{2}\sigma^2 \cdot 4} = e^{2\mu + 2\sigma^2}$$

So the variance of log normal distribution is:

$$Var[X] = E[X^2] - (E[X])^2 = e^{2\mu + 2\sigma^2} - e^{2\mu + \sigma^2}$$

= $e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$

(iv) If $X \sim log \ logistic(\alpha, \lambda)$, we have $Y = log(X) \sim logistic(\mu, \sigma)$, where $\alpha = \frac{1}{\sigma}$ and $\lambda = e^{-\frac{\mu}{\sigma}}$. We denote by $M_Y(t) = E[e^{tY}]$ the moment generating function of Y, thus

$$M_Y(t) = e^{\mu t} B(1 - \sigma t, 1 + \sigma t)$$
 for $\sigma t \in (-1, 1)$

Here B(a,b) is the beta function defined as

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$$

So we can compute the mean of log logistic distribution as:

$$E[X] = E[e^{Y}] = M_{Y}(1) = e^{\mu}B(1 - \sigma, 1 + \sigma) \text{ for } \sigma \in (0, 1)$$
$$= \frac{1}{\lambda^{\frac{1}{\alpha}}}B(1 - \frac{1}{\alpha}, 1 + \frac{1}{\alpha}) \text{ for } \alpha > 1$$

We comment without proof that

$$B(1-t, 1+t) = \frac{\pi t}{\sin(\pi t)} = \pi t \csc(\pi t)$$

We also solved from $\alpha = \frac{1}{\sigma}$ and $\lambda = e^{-\frac{\mu}{\sigma}}$ that:

$$\lambda = e^{-\alpha\mu} \Longrightarrow e^{\mu} = \frac{1}{\lambda^{\frac{1}{\alpha}}}$$

Plug this result into the computation above, we got

$$E[X] = \frac{1}{\lambda^{\frac{1}{\alpha}}} \cdot \frac{\pi \csc(\frac{\pi}{\alpha})}{\alpha} = \frac{\pi \csc(\pi/\alpha)}{\alpha \lambda^{\frac{1}{\alpha}}} \text{ for } \alpha > 1$$

Now we compute the second moment:

$$E[X^{2}] = E[e^{2Y}] = M_{Y}(2) = e^{2\mu}B(1 - 2\sigma, 1 + 2\sigma) \text{ for } \sigma \in (0, \frac{1}{2})$$

$$= \frac{1}{\lambda^{\frac{2}{\alpha}}}B(1 - \frac{2}{\alpha}, 1 + \frac{2}{\alpha}) \text{ for } \alpha > 2$$

$$= \frac{2\pi \csc(2\pi/\alpha)}{\alpha \lambda^{\frac{2}{\alpha}}} \text{ for } \alpha > 2$$

So the variance of log logistic distribution is:

$$Var[X] = E[X^2] - \left(E[X]\right)^2 = \frac{2\pi \csc(2\pi/\alpha)}{\alpha \lambda^{\frac{2}{\alpha}}} - \left(\frac{\pi \csc(\pi/\alpha)}{\alpha \lambda^{\frac{1}{\alpha}}}\right)^2 \text{ for } \alpha > 2$$

For part (b):

(i): If $X \sim \exp(\lambda)$, we have its pdf and cdf:

$$f_X(x) = \lambda e^{-\lambda x}$$
$$F_X(x) = 1 - e^{-\lambda x}$$

Now for $Y = \log(X)$, first consider the cdf:

$$F_Y(y) = P(Y \le y) = P(\log X \le y) = P(X \le e^y) = F_X(e^y)$$

= 1 - $e^{-\lambda e^y}$

So the pdf can be computed as:

$$f_Y(y) = \frac{d}{dy} F_Y(y) = -e^{-\lambda e^y} \cdot (-\lambda e^y) = \lambda e^{y-\lambda e^y} \text{ for } y \in (-\infty, +\infty)$$

(ii): If $X \sim Weibull(\alpha, \lambda)$, we know the pdf of X is:

$$f_X(x) = \alpha \lambda x^{\alpha - 1} e^{-\lambda x^{\alpha}}$$

Let $Y = \log(X)$, then the cdf of Y is:

$$F_Y(y) = P(Y \le y) = P(\log X \le y) = P(X \le e^y)$$

Thus the pdf of Y can be computed as:

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} P(X \le e^y) = \frac{d}{dy} F_X(e^y)$$
$$= f_X(e^y) \cdot e^y = \alpha \lambda (e^y)^{\alpha - 1} \cdot e^{-\lambda (e^y)^{\alpha}} \cdot e^y$$
$$= \alpha \lambda e^{\alpha y} \cdot e^{-\lambda e^{\alpha y}}$$

(iii): When X follows lognormal distribution, it means $Y = \log(X)$ follows normal distribution, so the pdf is:

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

(iv): When X follows logistic distribution, $Y = \log(X)$ follows logistic distribution, so the pdf is

$$f_Y(y) = \frac{e^{\frac{y-\mu}{\sigma}}}{\sigma \left[1 + e^{\frac{y-\mu}{\sigma}}\right]^2} \text{ for } y \in (-\infty, +\infty)$$

For part (c):

(i) Exercise 2.3:

For part (a), the survival function for log-logistic distribution is

$$S(x) = \frac{1}{1 + \lambda x^{\alpha}} = \frac{1}{1 + 0.01x^{1.5}}$$

So the 50,100, and 150 day survival probabilities for kidney transplantation in patiens are:

$$S(50) = \frac{1}{1 + 0.01 \cdot 50^{1.5}} = 0.22$$

$$S(100) = \frac{1}{1 + 0.01 \cdot 100^{1.5}} = 0.09$$

$$S(150) = \frac{1}{1 + 0.01 \cdot 150^{1.5}} = 0.05$$

For part (b):

At the median time to death x_m following a kidney transplant, we have

$$S(x_m) = \frac{1}{1 + 0.01x_m^{1.5}} = 0.5$$

Solve the above equation:

$$1 + 0.01x_m^{1.5} = 2 \Longrightarrow 0.01x_m^{1.5} = 1$$
$$\Longrightarrow x_m^{1.5} = 100$$
$$\Longrightarrow x_m = 100^{\frac{2}{3}} \simeq 21.54$$

For part (c):

With log logistic distribution, we have a hazard rate as:

$$h(x) = \frac{\alpha x^{\alpha - 1} \lambda}{1 + \lambda x^{\alpha}} = \frac{1.5 \cdot 0.01 x^{0.5}}{1 + 0.01 x^{1.5}} = \frac{0.015 x^{0.5}}{1 + 0.01 x^{1.5}}$$

Consider the derivative of h(x):

$$h'(x) = \frac{0.015 \cdot \frac{1}{2\sqrt{x}} (1 + 0.01x^{1.5}) - 0.015x^{0.5} \cdot 0.01 \cdot 1.5\sqrt{x}}{(1 + 0.01x^{1.5})^2}$$

$$= \frac{\frac{0.015}{2\sqrt{x}} + \frac{0.00015}{2}x - (0.015)^2x}{(1 + 0.01x^{1.5})^2} = \frac{\left(\frac{0.00015}{2} - (0.015)^2\right)x + \frac{0.015}{2\sqrt{x}}}{(1 + 0.01x^{1.5})^2}$$

$$= \frac{-0.00015x^{\frac{3}{2}} + 0.0075}{\sqrt{x}(1 + 0.01x^{1.5})^2} = \frac{-0.00015(x^{\frac{3}{2}} - 50)}{\sqrt{x}(1 + 0.01x^{1.5})^2}$$

From the expression above, we see that h'(x) > 0 when $x^{\frac{3}{2}} < 50$, and h(x) is increasing. We also have h'(x) < 0 when $x^{\frac{3}{2}} > 50$, and h(x) is decreasing. The critical point is when

$$x^{\frac{3}{2}} = 50 \Longrightarrow x = 50^{\frac{2}{3}} \simeq 13.57$$

The hazard rate changes from increasing to decreasing at $x = 50^{\frac{2}{3}} = 13.57$.

For part (d):

The mean time to death is:

$$E[X] = \frac{\pi \csc(\pi/\alpha)}{\alpha \lambda^{1/\alpha}} = \frac{\pi \csc(\pi/1.5)}{1.5 \cdot (0.01)^{1/1.5}} \simeq 52.10$$

(ii) Exercise 2.5:

For part (a):

Denote time to death by X, then $X \sim lognormal(\mu, \sigma)$, and $Y = log(X) \sim N(\mu, \sigma^2)$.

The mean time to death is:

$$E[X] = \exp(\mu + 0.5\sigma^2) = \exp(3.177 + 0.5 \times 2.084^2) = 210.30$$

The median time to death x_m is computed as following:

$$P(X > x_m) = P(Y > \log(x_m)) = P(\frac{Y - \mu}{\sigma} > \frac{\log(x_m) - \mu}{\sigma}) = P(Z > \frac{\log(x_m) - \mu}{\sigma}) = \frac{1}{2}$$

Here Z denote the standard normal random variable.

We solve the equation:

$$\frac{\log(x_m) - \mu}{\sigma} = \Phi(1 - 0.5) = \Phi(0.5) = 0$$

$$\Longrightarrow \log(x_m) = \mu = 3.177$$

$$\Longrightarrow x_m = \exp(3.177) = 23.97$$

So the median time to death is 23.97.

For part (b):

We have the survival function as:

$$S(x) = 1 - \Phi(\frac{\log(x) - \mu}{\sigma}) = 1 - \Phi(\frac{\log(x) - 3.177}{2.084})$$

So the probability an individual survives 100, 200 and 300 days following a transplant are:

$$S(100) = 1 - \Phi(\frac{\log(100) - 3.177}{2.084}) = 0.25$$

$$S(200) = 1 - \Phi(\frac{\log(200) - 3.177}{2.084}) = 0.15$$

$$S(300) = 1 - \Phi(\frac{\log(300) - 3.177}{2.084}) = 0.11$$

For part (c):

The hazard rate of X is:

$$h(x) = \frac{f(x)}{S(x)} = \frac{\exp\left[-\frac{1}{2\sigma^2}(\log(x) - \mu)^2\right]}{x(2\pi)^{\frac{1}{2}}\sigma\left(1 - \Phi\left[\frac{\log(x) - \mu}{\sigma}\right]\right)}$$

We have the following plot:

```
RStudio

File Edit Code View Plots Session Build Debug Profile Tools Help

The Studio File Tools Find Tools File Tools Help

The Studio File Tools File Tools File Tools Help

The Studio File Tools File Tools File Tools Help

The Studio File Tools File Tools File Tools Help

The Studio File Tools File Tools File Tools Help

The Studio File Tools File
```


We see that given $\mu = 3.177, \sigma = 2.084$, the hazard rate of log normal distribution first increase and then decrease over the time.

(iii) Exercise 2.7:

For part (a):

The survival function of gamma distribution is:

$$S(x) = 1 - I(\lambda x, \beta) = 1 - \frac{\int_0^{\lambda x} u^{\beta - 1} \exp(-u) du}{\Gamma(\beta)}$$
$$= 1 - \frac{\int_0^{0.2x} u^2 \exp(-u) du}{\Gamma(3)}$$

Notice that we have:

$$\int u^2 e^{-u} du = -\int u^2 de^{-u} = -u^2 e^{-u} + 2 \int u e^{-u} du = -u^2 e^{-u} - 2 \int u de^{-u}$$
$$= -u^2 e^{-u} - 2u e^{-u} + 2 \int e^{-u} du = -u^2 e^{-u} - 2u e^{-u} - 2e^{-u} + constant$$
$$= -e^{-u} (u^2 + 2u + 2) + constant$$

So we can explicitly compute our survival function as:

$$S(x) = 1 - \frac{-e^{-u}(u^2 + 2u + 2)\Big|_0^{0.2x}}{2}$$

$$= 1 - \frac{-e^{-0.2x}(0.04x^2 + 0.4x + 2) + 2}{2}$$

$$= \frac{1}{2}e^{-0.2x}(0.04x^2 + 0.4x + 2)$$

So the probability that a rate will survive beyond age 18 months is:

$$S(18) = \frac{1}{2}e^{-0.2 \times 18}(0.04 \times 18^2 + 0.4 \times 18 + 2) = 0.30$$

part (b):

The probability that a rat will die in its first year of life (or not survive beyond 12 months) is:

$$1 - S(12) = 1 - \frac{1}{2}e^{-0.2 \times 12}(0.04 \times 12^2 + 0.4 \times 12 + 2) = 0.43$$

part(c):

The mean lifetime for this species of rats is:

$$E[X] = \frac{\beta}{\lambda} = \frac{3}{0.2} = 15$$

So the mean life time is 15 months.

Question #3:

Solution 3. To answer textbook qustion #3.3:

For part (a):

a rat who had a palpable tumor at the first examination at 6 weeks after incubation with DMBA. So we know the palpable tumor happenes before at 6 weeks however the exact time we do not know. So this is left censoring.

For part (b):

For a rat that survived the study without having any tumors, if it ever develops tumors at all, it will be sometime after the end of study, and the exact time we do not know. So this is right censored.

For part (c):

For a rat which did not have a tumor at week 12 but which had a tumor at week 13 after inturbation with DMBA, it happens between two time point but the exact time we do not know, so this is an interval censoring case.

For part (d):

A rat died without tumor present and death was unrelated to the occurrence of cancer, so if the rat had lived and developed cancer, it will be sometime after the death time and the exact time of which we do not know. Thus this is a right censoring case. Since the study ending time is different than planned, we consider this as the generalized type I censoring. Since death time is independent from the time of developing tumor, this is also a random censoring.

For part (e):

The time is measured in days. Since 1 week is 7 days, so $C_l = 6 \times 7 = 42$. For the rat in part (a), the likelihood is then:

$$L_a = 1 - S(C_l) = 1 - S(42)$$

For the rat in part (b), $C_r = 7 \times (6 + 14) = 140$, so the likelihood is then:

$$L_b = S(C_r) = S(140)$$

For the rat in part (c), $C_l = 7 \times (6 + 12) = 126$ and $C_r = 7 \times (6 + 13) = 133$

$$L_c = S(126) - S(133)$$

and for the rat in part (d), $C_r = 37$ the likelihood is:

$$L_d = S(37)$$

So the total likelihood for this portion of the study is:

$$L \propto L_a * L_b * L_c * L_d = (1 - S(42))S(140)(S(126) - S(133))S(37)$$

To answer textbook question #3.6:

For part (a):

for exponentil distribution with parameter λ , we know that

$$S(x) = e^{-\lambda x}$$

$$h(x) = \lambda$$

For relapse case, we have two different types:

Patient 1-6 experienced the relapse event, so their likelihood is $f(t_i)$, i = 1, 2, 3, 4, 5, 6. Patient 7-10 were free of relapse by the end of study, so it is the right censoring case, so their likelihood is $C_r(t_i)$. Hence the likelihood for relpase is:

$$L \propto f(5) \times f(8) \times f(12) \times f(24) \times f(32) \times f(17) \times S(16) \times S(17) \times S(19) \times S(30)$$

$$= \lambda^{6} e^{-\lambda(5+8+12+24+32+17)} \times e^{-\lambda(16+17+19+30)}$$

$$= \lambda^{6} e^{-\lambda(98+82)} = \lambda^{6} e^{-180\lambda}$$

For part (b):

For time to death in relapse case, patient 1, 2, 3, 5 experienced death event and patient 4, 6, 7-10 are right censored.

So the likelihood is:

$$L \propto f(11) \times f(12) \times f(15) \times f(45) \times S(33) \times S(28) \times S(16) \times S(17) \times S(19) \times S(30)$$

$$= \alpha^4 \theta^4 (11 \times 12 \times 15 \times 45)^{\alpha - 1} \exp\left(-\theta (11^{\alpha} + 12^{\alpha} + 15^{\alpha} + 45^{\alpha})\right)$$

$$\times \exp\left[-\theta \left(33^{\alpha} + 28^{\alpha} + 16^{\alpha} + 17^{\alpha} + 19^{\alpha} + 30^{\alpha}\right)\right]$$

$$= \alpha^4 \theta^4 \times 89,100^{\alpha - 1} \exp\left[-\theta \left(11^{\alpha} + 12^{\alpha} + 15^{\alpha} + 45^{\alpha} + 33^{\alpha} + 28^{\alpha} + 16^{\alpha} + 17^{\alpha} + 19^{\alpha} + 30^{\alpha}\right)\right]$$

For part (c):

Since we were only allowed to observe a patients death time if the patient relapsed, so this is a left truncated situation.

After the truncation we only use data from patient 1-6.

So the likelihood is:

$$\begin{split} L(\theta,\alpha) &\propto \frac{f(11)}{S(5)} \cdot \frac{f(12)}{S(8)} \cdot \frac{f(15)}{S(12)} \cdot \frac{S(33)}{S(24)} \cdot \frac{f(45)}{S(32)} \cdot \frac{S(28)}{S(17)} \\ &= \frac{\alpha^4 \theta^4 (11 \times 12 \times 15 \times 45)^{\alpha - 1} \exp\left(-\theta (11^{\alpha} + 12^{\alpha} + 15^{\alpha} + 45^{\alpha})\right)}{\exp\left[-\theta \left(5^{\alpha} + 8^{\alpha} + 12^{\alpha} + 32^{\alpha}\right)\right]} \cdot \frac{\exp\left[-\theta (33^{\alpha} + 28^{\alpha})\right]}{\exp\left[-\theta \left(24^{\alpha} + 17^{\alpha}\right)\right]} \\ &= \frac{\alpha^4 \theta^4 (89, 100)^{\alpha - 1} \exp\left(-\theta (11^{\alpha} + 15^{\alpha} + 28^{\alpha} + 33^{\alpha} + 45^{\alpha})\right)}{\exp\left[-\theta \left(5^{\alpha} + 8^{\alpha} + 17^{\alpha} + 24^{\alpha} + 32^{\alpha}\right)\right]} \end{split}$$

We conditioned on the left truncation situation that is why we have those survival functions on the denominator, and also we did not use those subjects that did not go through relapse.

Question #4:

Solution 4. For part (a):

We construct the data lay out for each group:

	$\overline{t_i}$	e_i	c_i	$\overline{n_i}$
	0	0	1	17
	6	1	0	16
	11	1	0	15
	12	1	0	14
	32	1	0	13
	35	1	1	12
	39	1	0	10
For the group of $AZT + zalcitabine$ (ddC):	45	1	0	9
	49	1	0	8
	75	1	0	7
	80	1	0	6
	84	1	0	5
	85	1	0	4
	87	1	0	3
	102	1	1	2
	Totals	14	3	
	$\overline{t_i}$	e_i	c	n_i
	0	0	C	17
	2	1	C	17
	3	1	0	16
	4	1	C	15
	12	1	C	14
	22	1	C	13
For the answer of $ATT + (ddC) + accoming in the contract of $	48	1	2	12
For the group of $AZT + (ddC) + saquiniving$	80	1	C	9
	85	1	C	8
	90	1	1	. 7
	160	1	C	5
		1		1
	171	1	C) 4
	171 180	1	1	

Now we compute the Kaplan-Meier estimates for each group:

For the AZT + zalcitabine (ddC) group:

Totals 13

$$\hat{C}(0) = \frac{17}{17} = 1, \hat{S}(0) = 1$$

$$\hat{C}(6) = \frac{15}{16}, \hat{S}(6) = 1 \cdot \frac{15}{16} = 0.9375$$

$$\hat{C}(11) = \frac{14}{15}, \hat{S}(11) = \hat{S}(6) \cdot \frac{14}{15} = 0.875$$

$$\hat{C}(12) = \frac{13}{14}, \hat{S}(12) = \hat{S}(11) \cdot \frac{13}{14} = 0.8125$$

$$\hat{C}(32) = \frac{12}{13}, \hat{S}(32) = \hat{S}(12) \cdot \frac{12}{13} = 0.75$$

$$\hat{C}(35) = \frac{11}{12}, \hat{S}(35) = \hat{S}(32) \cdot \frac{11}{12} = 0.6875$$

$$\hat{C}(39) = \frac{9}{10}, \hat{S}(39) = \hat{S}(35) \cdot \frac{9}{10} = 0.61875$$

$$\hat{C}(45) = \frac{8}{9}, \hat{S}(45) = \hat{S}(39) \cdot \frac{8}{9} = 0.55$$

$$\hat{C}(49) = \frac{7}{8}, \hat{S}(49) = \hat{S}(45) \cdot \frac{7}{8} = 0.48125$$

$$\hat{C}(75) = \frac{6}{7}, \hat{S}(75) = \hat{S}(49) \cdot \frac{6}{7} = 0.4125$$

$$\hat{C}(80) = \frac{5}{6}, \hat{S}(80) = \hat{S}(75) \cdot \frac{5}{6} = 0.34375$$

$$\hat{C}(84) = \frac{4}{5}, \hat{S}(84) = \hat{S}(80) \cdot \frac{4}{5} = 0.275$$

$$\hat{C}(85) = \frac{3}{4}, \hat{S}(85) = \hat{S}(84) \cdot \frac{3}{4} = 0.20625$$

$$\hat{C}(87) = \frac{2}{3}, \hat{S}(87) = \hat{S}(85) \cdot \frac{2}{3} = 0.1375$$

$$\hat{C}(102) = \frac{1}{2}, \hat{S}(102) = \hat{S}(87) \cdot \frac{1}{2} = 0.06875$$

We incorporate this information into the previous data layout to get:

t_i	e_i	c_i	n_i	$\hat{S}(t_{j-1})$	$\hat{C}(t_j)$	$\hat{S}(t_j)$
0	0	1	17	-	$\frac{17}{17}$	1
6	1	0	16	1	$\frac{15}{16}$	0.9375
11	1	0	15	0.9375	$\frac{14}{15}$	0.875
12	1	0	14	0.875	$\frac{13}{14}$	0.8125
32	1	0	13	0.8125	$\frac{12}{13}$	0.75
35	1	1	12	0.75	$\frac{11}{12}$	0.6875
39	1	0	10	0.6875	$\frac{\overline{9}}{10}$	0.61875
45	1	0	9	0.61875	$\frac{8}{9}$	0.55
49	1	0	8	0.55	$\frac{7}{8}$	0.48125
75	1	0	7	0.48125	$\frac{6}{7}$	0.4125
80	1	0	6	0.4125	$\frac{5}{6}$	0.34375
84	1	0	5	0.34375	$\frac{4}{5}$	0.275
85	1	0	4	0.275	$\frac{3}{4}$	0.20625
87	1	0	3	0.20625	<u>131 </u> 19 00 97 86 75 64 531 42 31 2	0.1375
102	1	1	2	0.1375	$\frac{1}{2}$	0.06875
Totals	14	3			-	

Similarly for the AZT + zalcitabine (ddC) + saquinivir group:

$$\hat{C}(0) = \frac{17}{17} = 1, \hat{S}(0) = 1$$

$$\hat{C}(2) = \frac{16}{17}, \hat{S}(2) = 1 \cdot \frac{16}{17} = 0.94$$

$$\hat{C}(3) = \frac{15}{16}, \hat{S}(3) = \hat{S}(2) \cdot \frac{15}{16} = 0.88$$

$$\hat{C}(4) = \frac{14}{15}, \hat{S}(4) = \hat{S}(3) \cdot \frac{14}{15} = 0.82$$

$$\hat{C}(12) = \frac{13}{14}, \hat{S}(12) = \hat{S}(4) \cdot \frac{13}{14} = 0.765$$

$$\hat{C}(22) = \frac{12}{13}, \hat{S}(22) = \hat{S}(12) \cdot \frac{12}{13} = 0.71$$

$$\hat{C}(48) = \frac{11}{12}, \hat{S}(48) = \hat{S}(22) \cdot \frac{11}{12} = 0.65$$

$$\hat{C}(80) = \frac{8}{9}, \hat{S}(80) = \hat{S}(48) \cdot \frac{8}{9} = 0.58$$

$$\hat{C}(85) = \frac{7}{8}, \hat{S}(85) = \hat{S}(80) \cdot \frac{7}{8} = 0.503$$

$$\hat{C}(90) = \frac{6}{7}, \hat{S}(90) = \hat{S}(85) \cdot \frac{6}{7} = 0.43$$

$$\hat{C}(160) = \frac{4}{5}, \hat{S}(160) = \hat{S}(90) \cdot \frac{4}{5} = 0.345$$

$$\hat{C}(171) = \frac{3}{4}, \hat{S}(171) = \hat{S}(160) \cdot \frac{3}{4} = 0.259$$

$$\hat{C}(180) = \frac{2}{3}, \hat{S}(180) = \hat{S}(171) \cdot \frac{2}{3} = 0.17$$

$$\hat{C}(238) = 0, \hat{S}(238) = 0$$

Incorporate this informatino into the data layout above, we got: For the group of AZT + (ddC) + saquinivir:

$\overline{t_i}$	e_i	c_i	n_i	$\hat{S}(t_{j-1})$	$\hat{C}(t_j)$	$\hat{S}(t_j)$
0	0	0	17	-	1	1
2	1	0	17	1	$\frac{16}{17}$	0.94
3	1	0	16	0.94	$\frac{15}{16}$	0.88
4	1	0	15	0.88	$\frac{14}{15}$	0.82
12	1	0	14	0.82	$\frac{13}{14}$	0.765
22	1	0	13	0.765	$\frac{12}{13}$	0.71
48	1	2	12	0.71	$\frac{11}{12}$	0.65
80	1	0	9	0.65	128191718617415314913	0.58
85	1	0	8	0.58	$\frac{7}{8}$	0.503
90	1	1	7	0.503	$\frac{6}{7}$	0.43
160	1	0	5	0.43	$\frac{4}{5}$	0.345
171	1	0	4	0.345	$\frac{3}{4}$	0.259
180	1	1	3	0.259	$\frac{2}{3}$	0.17
238	1	0	1	0.17	ŏ	0
Totals	13	4				

The complete KM estimates for each group and for any t betwee the starting time and the largest time is a step function whose values are defined by the values of $\hat{S}(t_i)$ in the two tables above.

Based on the two tables above:

The median survival time(point estimate) for group AZT + zalcitabine (ddC) is t = 49 since $\hat{S}(45) = 0.55$ and $\hat{S}(49) = 0.48125$.

The median survival time(point estimate) for group AZT + (ddC) + saquinivir is t = 90 since $\hat{S}(85) = 0.503$ and $\hat{S}(90) = 0.43$.

I would not feel comfortable reporting the mean survival time for group AZT + ddc because there is censoring time greater than the largest event time, so the estimated mean survival time will be biased downward.

However we can report the mean survival timefor the second group AZT + ddc + saquinivir. For part (b):

We run the following SAS code to verify that we got the correct Kaplan-Meier estimates in part (a):

```
dm 'log; clear; output; clear;';
proc format;
     value status 0 = "censored"
                 1 = "event";
     value group 1 = "AZT + ddc"
                 2 = "ATT + ddc + saquinivir";
□ data Q4;
     input group time status @@;
     format group group.
           status status.;
     datalines;
     1 4 0 1 6 1 1 11 1 1 12 1 1 32 1 1 35 1
     1 38 0 1 39 1 1 45 1 1 49 1 1 75 1 1 80 1
     1 84 1 1 85 1 1 87 1 1 102 1 1 180 0 2 2 1
     2 3 1 2 4 1 2 12 1 2 22 1 2 48 1 2 51 0
     2 56 0 2 80 1 2 85 1 2 90 1 2 94 0 2 160 1
   2 171 1 2 180 1 2 180 0 2 238 1
 run;
□proc print data=Q4;
 title "Question 4 KM Estimate";
□ proc lifetest data=Q4;
     time time*status(0);
     by group;
 run;
```

Then we got the Kaplan Meier estimates for group AZT + ddc as the following:

			The LIF	ETEST Procedure									
	group=AZT + ddc												
		Pro	oduct-Lim	nit Survival Estimate	s								
time		Survival	Failure	Survival Standard Error	Number Failed	Number Left							
0.000		1.0000	0	0	0	17							
4.000	*				0	16							
6.000		0.9375	0.0625	0.0605	1	15							
11.000		0.8750	0.1250	0.0827	2	14							
12.000		0.8125	0.1875	0.0976	3	13							
32.000		0.7500	0.2500	0.1083	4	12							
35.000		0.6875	0.3125	0.1159	5	11							
38.000	*				5	10							
39.000		0.6188	0.3813	0.1230	6	9							
45.000		0.5500	0.4500	0.1271	7	8							
49.000		0.4813	0.5188	0.1285	8	7							
75.000		0.4125	0.5875	0.1272	9	6							
80.000		0.3438	0.6563	0.1232	10	5							
84.000		0.2750	0.7250	0.1162	11	4							
85.000		0.2063	0.7938	0.1055	12	3							
87.000		0.1375	0.8625	0.0900	13	2							
102.000		0.0688	0.9313	0.0662	14	1							
180.000	*	0.0688	0.9313		14	0							

We also have the Kaplan Meier estimates for group AZT+ddc+saquinivir as:

		g	roup=AZ	Γ + ddc + saquinivir		
		Pro	oduct-Lim	nit Survival Estimate	s	
time		Survival	Failure	Survival Standard Error	Number Failed	Number Left
0.000		1.0000	0	0	0	17
2.000		0.9412	0.0588	0.0571	1	16
3.000		0.8824	0.1176	0.0781	2	15
4.000		0.8235	0.1765	0.0925	3	14
12.000		0.7647	0.2353	0.1029	4	13
22.000		0.7059	0.2941	0.1105	5	12
48.000		0.6471	0.3529	0.1159	6	11
51.000	*				6	10
56.000	*				6	9
80.000		0.5752	0.4248	0.1233	7	8
85.000		0.5033	0.4967	0.1272	8	7
90.000		0.4314	0.5686	0.1277	9	6
94.000	*				9	5
160.000		0.3451	0.6549	0.1280	10	4
171.000		0.2588	0.7412	0.1217	11	3
180.000		0.1725	0.8275	0.1074	12	2
180.000	*				12	1
238.000		0	1.0000		13	0

Compare with the manually computed result in part (a), they do match.

For part (c):

We give the following SAS code:

```
□proc lifetest data=Q4;
      time time*status(0):
      by group;
  run;
 title "Compare H hat and H tilde";
proc lifetest data=Q4 nelson;
     time time*status(0);
      by group;
      ods output productlimitestimates=ple;
  run;
data cumhazard;
      set ple;
      hatcumhaz = -log(Survival);
 run:
□ proc print data=cumhazard;
 title "cuulative hazard fuction estimate comparison";
 title2 "nelson-aalen estimate and product limit estimate";
proc sgpanel data=cumhazard
      (where = (censor = 0 and (group = 1 or group = 2)));
      panelby group;
      step x =time y = CumHaz/legendlabel = "N-A estimates";
      step x = time y = hatCumHaz/legendlabel = "product limit estimates";
rowaxis label = "cumulative hazard function estimate";
 run:
```

The first proc lifetest gives the following out put by group for the cumulative hazard fuction estimate (based on Nelson Aalen):

For group AZT + ddc:

			Surviva	al Function and Cum	ulative Haza	rd Rate		
			Produ	ct-Limit	Nelson-	Aalen		
time		Survival	Failure	Survival Standard Error	Cumulative Hazard	Cum Haz Standard Error	Number Failed	Number Left
0.000		1.0000	0	0	0		0	17
4.000	*						0	16
6.000		0.9375	0.0625	0.0605	0.0625	0.0625	1	15
11.000		0.8750	0.1250	0.0827	0.1292	0.0914	2	14
12.000		0.8125	0.1875	0.0976	0.2006	0.1160	3	13
32.000		0.7500	0.2500	0.1083	0.2775	0.1392	4	12
35.000		0.6875	0.3125	0.1159	0.3609	0.1622	5	11
38.000	*						5	10
39.000		0.6188	0.3813	0.1230	0.4609	0.1906	6	9
45.000		0.5500	0.4500	0.1271	0.5720	0.2206	7	8
49.000		0.4813	0.5188	0.1285	0.6970	0.2535	8	7
75.000		0.4125	0.5875	0.1272	0.8398	0.2910	9	6
80.000		0.3438	0.6563	0.1232	1.0065	0.3354	10	5
84.000		0.2750	0.7250	0.1162	1.2065	0.3905	11	4
85.000		0.2063	0.7938	0.1055	1.4565	0.4636	12	3
87.000		0.1375	0.8625	0.0900	1.7898	0.5710	13	2
102.000		0.0688	0.9313	0.0662	2.2898	0.7590	14	1
180.000	*	0.0688	0.9313				14	0

For group AZT + ddc + saquinivir:

			Surviva	al Function and Cum	nulative Haza	rd Rate		
			Produ	ct-Limit	Nelson-	Aalen		
time		Survival	Failure	Survival Standard Error	Cumulative Hazard	Cum Haz Standard Error	Number Failed	Number Left
0.000		1.0000	0	0	0		0	17
2.000		0.9412	0.0588	0.0571	0.0588	0.0588	1	16
3.000		0.8824	0.1176	0.0781	0.1213	0.0858	2	15
4.000		0.8235	0.1765	0.0925	0.1880	0.1087	3	14
12.000		0.7647	0.2353	0.1029	0.2594	0.1300	4	13
22.000		0.7059	0.2941	0.1105	0.3363	0.1511	5	12
48.000		0.6471	0.3529	0.1159	0.4197	0.1726	6	11
51.000	*						6	10
56.000	*			4.			6	9
80.000		0.5752	0.4248	0.1233	0.5308	0.2052	7	8
85.000		0.5033	0.4967	0.1272	0.6558	0.2403	8	7
90.000		0.4314	0.5686	0.1277	0.7986	0.2796	9	6
94.000	*						9	5
160.000		0.3451	0.6549	0.1280	0.9986	0.3437	10	4
171.000		0.2588	0.7412	0.1217	1.2486	0.4250	11	3
180.000		0.1725	0.8275	0.1074	1.5820	0.5402	12	2
180.000	*						12	1
238.000		0	1.0000	1	2.5820	1.1366	13	0

The second proc lifetest gives a plot of comparison between the cumulative hazard function estimate acquired from product limit (Kaplan Meier) and from Nelson-Aalen(N-A):

and as expected we see that in both groups we have $\hat{H}(t) \geq \tilde{H}(t)$, this is because we have:

$$\exp[-\hat{H}(t)] = \hat{S}(t) = \prod_{t_i \le t} \left[1 - \frac{d_i}{Y_i}\right] \le \prod_{t_i \le t} \exp\left[-\frac{d_i}{Y_i}\right] = \exp[-\sum_{t_i \le t} \frac{d_i}{Y_i}] = \exp[-\tilde{H}(t)] = \tilde{S}(t)$$

which leads to

$$-\hat{H}(t) \le -\tilde{H}(t)$$

and hence

$$\hat{H}(t) \ge \tilde{H}(t)$$

For part (d):

We give the following SAS code to produce life-table estimate of the survival function and to plot the life table estimates of the hazard function:

```
title "life table estimate";

proc lifetest data=Q4 method = life width = 60 plots = (H);
   time time*status(0);
   by group;
run;
```

partial arrow the width = 60 option specify that the estimate is based on interval width of 60 days.

For group AZT + ddc we have the following output, and among which the survival column gives the life table estimate for survival function based on interval width of 60 days.

						life tak	ole estim	ate							
						The LIFE	TEST Proc	edure							
						group	=AZT + do	lc							
						Life Table S	Survival E	stimates							
Inter	rval					Conditional						Evaluate	ed at the Mi	dpoint of t	he Interval
[Lower,	Upper)	Number Failed	Number Censored	Effective Sample Size	Conditional Probability of Failure	Probability Standard Error	Survival	Failure	Survival Standard Error	Median Residual Lifetime	Median Standard Error	PDF	PDF Standard Error	Hazard	Hazard Standard Error
0	60	8	2	16.0	0.5000	0.1250	1.0000	0	0	60.0000	15.0000	0.00833	0.00208	0.011111	0.003704
60	120	6	0	7.0	0.8571	0.1323	0.5000	0.5000	0.1250	35.0000	13.2288	0.00714	0.00210	0.025	0.00675
120	180	0	0	1.0	0	0	0.0714	0.9286	0.0685			0		0	
180	240	0	1	0.5	0	0	0.0714	0.9286	0.0685			0		0	
240		0	0	0.0	0	0	0.0714	0.9286	0.0685						

The hazard rate reaches a peak but then decrease with respect to the time, indicating the drug resistance later on and less efficacy over long time.

For group AZT + ddc + saquivinir, we have the following output,

						The LIFE	TEST Proc	edure							
						group=AZT									
Inter	rval					0 11:1						Evaluate	ed at the Mi	dpoint of t	he Interval
[Lower,	Upper)	Number	Number Censored	Effective Sample Size	Conditional Probability of Failure	Conditional Probability Standard Error	Survival	Failure	Survival Standard Error	Median Residual Lifetime	Median Standard Error	PDF	PDF Standard Error	Hazard	Hazard Standard Error
0	60	6	2	16.0	0.3750	0.1210	1.0000	0	0	94.0000	34.0000	0.00625	0.00202	0.007692	0.003056
60	120	3	1	8.5	0.3529	0.1639	0.6250	0.3750	0.1210	94.0909	39.7565	0.00368	0.00185	0.007143	0.004028
120	180	2	0	5.0	0.4000	0.2191	0.4044	0.5956	0.1290	72.5000	27.9508	0.00270	0.00171	0.008333	0.005705
180	240	2	1	2.5	0.8000	0.2530	0.2426	0.7574	0.1176	37.5000	23.7171	0.00324	0.00187	0.022222	0.011712
240		0	0	0.0	0	0	0.0485	0.9515	0.0657						

the hazard rate keep increasing later on, indicates a long term efficancy and less of a drug resistance For part (e):

For example, if we would like to build confidence interval under linear transformation, and sketch the confidence band of both equal probability and hall wellner type, we have the following SAS code:

```
title "confidence bands";
title2 "linear transformation";

proc lifetest data=Q4
    outsurv = results1 conftype = linear confband = all
    plots = survival(CB = all);
    time time*status(0);
    by group;
run;

proc print data=results1;
run;
```

We have the following plots for each group:

and the following table of confidence intervals

				confide	nce band nsformati					
Obs	group	time	_CENSOR_	SURVIVAL	SDF_LCL	SDF_UCL	HW_LCL	HW_UCL	EP_LCL	EP_UCI
1	AZT + ddc	0		1.00000	1.00000	1.00000				
2	AZT + ddc	4	1	1.00000						
3	AZT + ddc	6	0	0.93750	0.81889	1.00000	0.60683	1.00000	0.74852	1.0000
4	AZT + ddc	11	0	0.87500	0.71295	1.00000	0.54304	1.00000	0.61680	1.0000
5	AZT + ddc	12	0	0.81250	0.62125	1.00000	0.47925	1.00000	0.50778	1.0000
6	AZT + ddc	32	0	0.75000	0.53783	0.96217	0.41547	1.00000	0.41194	1.000
7	AZT + ddc	35	0	0.68750	0.46038	0.91462	0.35168	1.00000	0.32563	1.000
8	AZT + ddc	38	1	0.68750						
9	AZT + ddc	39	0	0.61875	0.37766	0.85984	0.27801	0.95949	0.23462	1.000
10	AZT + ddc	45	0	0.55000	0.30087	0.79913	0.20435	0.89565	0.15306	0.946
11	AZT + ddc	49	0	0.48125	0.22945	0.73305	0.13068	0.83182	0.08005	0.882
12	AZT + ddc	75	0	0.41250	0.16321	0.66179	0.05702	0.76798	0.01530	0.809
13	AZT + ddc	80	0	0.34375	0.10232	0.58518	0.00000	0.70415	0.00000	0.728
14	AZT + ddc	84	0	0.27500	0.04734	0.50266	0.00000	0.64031	0.00000	0.637
15	AZT + ddc	85	0	0.20625	0.00000	0.41306	0.00000	0.57648	0.00000	0.5357
16	AZT + ddc	87	0	0.13750	0.00000	0.31389	0.00000	0.51264	0.00000	0.418
17	AZT + ddc	102	0	0.06875	0.00000	0.19858	0.00000	0.44881	0.00000	0.2756
18	AZT + ddc	180	1							

19	AZT + ddc + saquinivir	0		1.00000	1.00000	1.00000			-	
20	AZT + ddc + saquinivir	2	0	0.94118	0.82933	1.00000	0.61181	1.00000	0.76578	1.00000
21	AZT + ddc + saquinivir	3	0	0.88235	0.72920	1.00000	0.55298	1.00000	0.64218	1.00000
22	AZT + ddc + saquinivir	4	0	0.82353	0.64231	1.00000	0.49416	1.00000	0.53936	1.00000
23	AZT + ddc + saquinivir	12	0	0.76471	0.56307	0.96635	0.43533	1.00000	0.44851	1.00000
24	AZT + ddc + saquinivir	22	0	0.70588	0.48929	0.92248	0.37651	1.00000	0.36623	1.00000
25	AZT + ddc + saquinivir	48	0	0.64706	0.41989	0.87423	0.31769	0.97643	0.29083	1.00000
26	AZT + ddc + saquinivir	51	1	0.64706			-	-	-	
27	AZT + ddc + saquinivir	56	1	0.64706				-		
28	AZT + ddc + saquinivir	80	0	0.57516	0.33345	0.81688	0.23766	0.91267	0.19613	0.95420
29	AZT + ddc + saquinivir	85	0	0.50327	0.25406	0.75248	0.15763	0.84890	0.11247	0.89406
30	AZT + ddc + saquinivir	90	0	0.43137	0.18108	0.68167	0.07760	0.78514	0.03887	0.82387
31	AZT + ddc + saquinivir	94	1	0.43137				-	-	
32	AZT + ddc + saquinivir	160	0	0.34510	0.09416	0.59604	0.00000	0.72473	0.00000	0.73860
33	AZT + ddc + saquinivir	171	0	0.25882	0.02036	0.49729	0.00000	0.66432	0.00000	0.63277
34	AZT + ddc + saquinivir	180	0	0.17255	0.00000	0.38311	0.00000	0.60390	0.00000	0.50273
35	AZT + ddc + saquinivir	180	1	0.17255			-			
36	AZT + ddc + saquinivir	238	0	0.00000	0.00000	0.00000				

We can change the option of confidence type, so for log-log transformation, we have

```
title2 "log-log transformation";

proc lifetest data=Q4
    outsurv = results2 conftype = loglog confband = all
    plots = survival(CB = all);
    time time*status(0);
    by group;
run;
proc print data=results2;
```


and

					nce band					
				log-log tra	instorma	uon				
Obs	group	time	_CENSOR_	SURVIVAL	SDF_LCL	SDF_UCL	HW_LCL	HW_UCL	EP_LCL	EP_UCL
1	AZT + ddc	0		1.00000	1.00000	1.00000			-	
7	AZT + ddc	4	1	1.00000						
:	AZT + ddc	6	0	0.93750	0.63235	0.99095	0.00000	0.99973	0.23073	0.99716
4	AZT + ddc	11	0	0.87500	0.58598	0.96719	0.10146	0.99224	0.29611	0.98546
!	AZT + ddc	12	0	0.81250	0.52460	0.93535	0.22384	0.97161	0.28253	0.9664
(AZT + ddc	32	0	0.75000	0.46343	0.89798	0.25767	0.94079	0.25199	0.9417
7	AZT + ddc	35	0	0.68750	0.40460	0.85628	0.25161	0.90326	0.21725	0.9121
8	AZT + ddc	38	1	0.68750						
9	AZT + ddc	39	0	0.61875	0.33929	0.80799	0.22052	0.85861	0.17385	0.8765
10	AZT + ddc	45	0	0.55000	0.27933	0.75560	0.18078	0.81143	0.13544	0.8362
11	AZT + ddc	49	0	0.48125	0.22410	0.69933	0.13805	0.76328	0.10162	0.7914
12	AZT + ddc	75	0	0.41250	0.17339	0.63922	0.09600	0.71561	0.07230	0.7419
13	AZT + ddc	80	0	0.34375	0.12728	0.57512	0.05782	0.67029	0.04758	0.6876
14	AZT + ddc	84	0	0.27500	0.08617	0.50668	0.02699	0.63043	0.02770	0.6283
15	AZT + ddc	85	0	0.20625	0.05082	0.43325	0.00729	0.60268	0.01299	0.5633
16	AZT + ddc	87	0	0.13750	0.02265	0.35367	0.00039	0.60554	0.00385	0.4925
17	AZT + ddc	102	0	0.06875	0.00443	0.26651	0.00000	0.71206	0.00026	0.4188
18	AZT + ddc	180	1							
19	AZT + ddc + saquinivir	0		1.00000	1.00000	1.00000				
20	AZT + ddc + saquinivir	2	0	0.94118	0.65018	0.99150	0.00000	0.99981	0.26951	0.9972
21	AZT + ddc + saquinivir	3	0	0.88235	0.60598	0.96921	0.08457	0.99368	0.33241	0.9858
22	AZT + ddc + saquinivir	4	0	0.82353	0.54713	0.93941	0.21800	0.97556	0.31722	0.9677
23	AZT + ddc + saquinivir	12	0	0.76471	0.48828	0.90449	0.26286	0.94756	0.28564	0.9441
24	AZT + ddc + saquinivir	22	0	0.70588	0.43148	0.86560	0.26455	0.91280	0.24995	0.9162
25	AZT + ddc + saquinivir	48	0	0.64706	0.37715	0.82338	0.24619	0.87354	0.21398	0.8843
26	AZT + ddc + saquinivir	51	1	0.64706	0.07710	0.02000	0.24010	0.01004	0.21000	0.0010
27	AZT + ddc + saquinivir	56	1	0.64706			-			
28	AZT + ddc + saquinivir	80	0	0.57516	0.30653	0.77204	0.20232	0.82576	0.16190	0.8453
29		85	0	0.50327	0.24358	0.77204	0.20232	0.02576	0.11914	0.8012
	AZT + ddc + saquinivir	90								
30	AZT + ddc + saquinivir		0	0.43137	0.18703	0.65595	0.10753	0.72832	0.08364	0.7520
31	AZT + ddc + saquinivir	94	1	0.43137				0.00501		0.00:0
32	AZT + ddc + saquinivir	160	0	0.34510	0.12156	0.58442	0.05019	0.68501	0.04473	0.6946
33	AZT + ddc + saquinivir	171	0	0.25882	0.06909	0.50479	0.01346	0.65437	0.01952	0.6287
34	AZT + ddc + saquinivir	180	0	0.17255	0.02963	0.41588	0.00068	0.65473	0.00540	0.5536
35	AZT + ddc + saquinivir	180	1	0.17255	-	-	-			
36	AZT + ddc + saquinivir	238	0	0.00000						

 $For \ arcsin-square \ root \ transformation, \ we \ have$

```
title2 "arcsin-square root transformation";

proc lifetest data=Q4
    outsurv = results3 conftype = asinsqrt confband = all
    plots = survival(CB = all);
    time time*status(0);
    by group;
run;
```

Proc print data=results3;
run;

				confide	nce band	s				
			arcsi	n-square r	oot trans	formation				
Obs	group	time	_CENSOR_	SURVIVAL	SDF_LCL	SDF_UCL	HW_LCL	HW_UCL	EP_LCL	EP_UCI
1	AZT + ddc	0		1.00000	1.00000	1.00000				
2	AZT + ddc	4	1	1.00000						
3	AZT + ddc	6	0	0.93750	0.77210	0.99994	0.35193	1.00000	0.64045	1.0000
4	AZT + ddc	11	0	0.87500	0.67523	0.98652	0.42247	1.00000	0.53365	1.0000
5	AZT + ddc	12	0	0.81250	0.59204	0.95942	0.41114	0.99956	0.44731	0.9967
6	AZT + ddc	32	0	0.75000	0.51680	0.92437	0.37679	0.98126	0.37286	0.9823
7	AZT + ddc	35	0	0.68750	0.44730	0.88358	0.33320	0.94761	0.30699	0.9594
8	AZT + ddc	38	1	0.68750						
9	AZT + ddc	39	0	0.61875	0.37311	0.83573	0.27724	0.90417	0.23819	0.9288
10	AZT + ddc	45	0	0.55000	0.30502	0.78270	0.21990	0.85691	0.17877	0.8910
11	AZT + ddc	49	0	0.48125	0.24230	0.72486	0.16318	0.80818	0.12752	0.8464
12	AZT + ddc	75	0	0.41250	0.18471	0.66225	0.10896	0.75972	0.08399	0.7949
13	AZT + ddc	80	0	0.34375	0.13234	0.59467	0.05982	0.71341	0.04828	0.7362
14	AZT + ddc	84	0	0.27500	0.08569	0.52154	0.02029	0.67209	0.02112	0.6693
15	AZT + ddc	85	0	0.20625	0.04587	0.44172	0.00019	0.64156	0.00412	0.5926
16	AZT + ddc	87	0	0.13750	0.01524	0.35280	0.00000	0.63736	0.00000	0.5025
17	AZT + ddc	102	0	0.06875	0.00008	0.24850	0.00000	0.72280	0.00000	0.3896
18	AZT + ddc	180	1							

19	AZT + ddc + saquinivir	0	-	1.00000	1.00000	1.00000				
20	AZT + ddc + saquinivir	2	0	0.94118	0.78458	0.99995	0.34320	1.00000	0.66458	1.00000
21	AZT + ddc + saquinivir	3	0	0.88235	0.69251	0.98741	0.42444	1.00000	0.56241	1.00000
22	AZT + ddc + saquinivir	4	0	0.82353	0.61319	0.96213	0.42021	1.00000	0.47915	0.99631
23	AZT + ddc + saquinivir	12	0	0.76471	0.54123	0.92949	0.39158	0.98609	0.40679	0.98222
24	AZT + ddc + saquinivir	22	0	0.70588	0.47453	0.89159	0.35297	0.95582	0.34222	0.96034
25	AZT + ddc + saquinivir	48	0	0.64706	0.41205	0.84946	0.30958	0.91740	0.28392	0.93220
26	AZT + ddc + saquinivir	51	1	0.64706			-			
27	AZT + ddc + saquinivir	56	1	0.64706		-	-			
28	AZT + ddc + saquinivir	80	0	0.57516	0.33416	0.79855	0.24643	0.87020	0.21116	0.89710
29	AZT + ddc + saquinivir	85	0	0.50327	0.26385	0.74189	0.18376	0.82128	0.15012	0.85452
30	AZT + ddc + saquinivir	90	0	0.43137	0.20017	0.67973	0.12370	0.77259	0.09913	0.80450
31	AZT + ddc + saquinivir	94	1	0.43137		-	-			
32	AZT + ddc + saquinivir	160	0	0.34510	0.12674	0.60563	0.05137	0.73247	0.04512	0.74528
33	AZT + ddc + saquinivir	171	0	0.25882	0.06684	0.52055	0.00501	0.70501	0.01137	0.67165
34	AZT + ddc + saquinivir	180	0	0.17255	0.02226	0.42192	0.00000	0.70731	0.00000	0.57955
35	AZT + ddc + saquinivir	180	1	0.17255		-	-			
36	AZT + ddc + saquinivir	238	0	0.00000						1.

Question #5:

Solution 5. For part (a), we have the number of the subjects at risk as a function of age as following:

age	entry	exit	$risk \ set \ (Y_i)$	d_i
58	2	0	2	0
59	1	0	3	0
60	2	1	5	1
61	2	0	6	0
62	3	1	9	1
63	2	1	10	1
64	1	0	10	0
65	0	2	10	2
66	2	1	10	1
67	3	0	12	0
68	1	2	13	2
69	3	4	14	2
70	3	2	13	2
71	1	2	12	2
72	2	3	12	2
73	2	2	11	1
74	0	2	9	1
75	0	0	7	0
76	0	2	7	1
77	0	1	5	1
78	0	1	4	0
79	0	2	3	0
80	0	1	1	0
81	0	0	0	0

For part (b):

The conditional survival function for a diabetic who has survived to age 60 is:

$$S_{60}(t) = P(X > t | X \ge 60)$$

So the estimate is:

$$\hat{S}_{60}(t) = \prod_{60 < t_i < t} \left[1 - \frac{d_i}{Y_i} \right], t \ge 60$$

we have:

$$\hat{S}_{60}(t) = 1 - \frac{1}{5} = 0.8 \text{ if } 60 \le t < 62$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(60) \cdot (1 - \frac{1}{9}) = 0.71 \text{ if } 62 \le t < 63$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(62) \cdot (1 - \frac{1}{10}) = 0.64 \text{ if } 63 \le t < 65$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(63) \cdot (1 - \frac{2}{10}) = 0.512 \text{ if } 65 \le t < 66$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(65) \cdot (1 - \frac{1}{10}) = 0.4608 \text{ if } 66 \le t < 68$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(66) \cdot (1 - \frac{2}{13}) = 0.39 \text{ if } 68 \le t < 69$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(68) \cdot (1 - \frac{2}{14}) = 0.334 \text{ if } 69 \le t < 70$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(69) \cdot (1 - \frac{2}{13}) = 0.28 \text{ if } 70 \le t < 71$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(70) \cdot (1 - \frac{2}{12}) = 0.236 \text{ if } 71 \le t < 72$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(71) \cdot (1 - \frac{2}{12}) = 0.196 \text{ if } 72 \le t < 73$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(73) \cdot (1 - \frac{1}{11}) = 0.179 \text{ if } 73 \le t < 74$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(74) \cdot (1 - \frac{1}{9}) = 0.159 \text{ if } 74 \le t < 76$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(74) \cdot (1 - \frac{1}{7}) = 0.136 \text{ if } 76 \le t < 77$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(76) \cdot (1 - \frac{1}{5}) = 0.109 \text{ if } t \ge 77$$

For part (c):

Similar to part (b), we have

$$S_{70}(t) = P(X > t | X \ge 60)$$

So the estimate is:

$$\hat{S}_{70}(t) = \prod_{70 \le t_i \le t} \left[1 - \frac{d_i}{Y_i} \right], t \ge 70$$

We have:

$$\hat{S}_{70}(t) = (1 - \frac{2}{13}) = 0.846 \text{ if } 70 \le t < 71$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(70) \cdot (1 - \frac{2}{12}) = 0.7051 \text{ if } 71 \le t < 72$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(71) \cdot (1 - \frac{2}{12}) = 0.5876 \text{ if } 72 \le t < 73$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(72) \cdot (1 - \frac{1}{11}) = 0.534 \text{ if } 73 \le t < 74$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(73) \cdot (1 - \frac{1}{9}) = 0.4748 \text{ if } 74 \le t < 76$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(74) \cdot (1 - \frac{1}{7}) = 0.407 \text{ if } 76 \le t < 77$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(76) \cdot (1 - \frac{1}{5}) = 0.3256 \text{ if } t \ge 77$$

For part (d), if we ignore the left truncation and simply treat the data as right censored, we would just simply ignore the entry time, and pretend that everyone starts from age 0. So the relationship between age and risk set becomes:

age	exit	$risk \ set \ (Y_i)$	$event(e_i)$
60	1	30	1
62	1	29	1
63	1	28	1
65	2	27	2
66	1	25	1
68	2	24	2
69	4	22	2
70	2	18	2
71	2	16	2
72	3	14	2
73	2	11	1
74	2	9	1
76	2	7	1
77	1	5	1

So we have the estimate for survival function conditional on age greater or equal to 60:

$$\hat{S}_{60}(t) = (1 - \frac{1}{30}) = 0.97 \text{ if } 60 \le t < 62$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(60) \cdot (1 - \frac{1}{29}) = 0.93 \text{ if } 62 \le t < 63$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(62) \cdot (1 - \frac{1}{28}) = 0.9 \text{ if } 63 \le t < 65$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(63) \cdot (1 - \frac{2}{27}) = 0.833 \text{ if } 65 \le t < 66$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(65) \cdot (1 - \frac{1}{25}) = 0.8 \text{ if } 66 \le t < 68$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(66) \cdot (1 - \frac{2}{24}) = 0.733 \text{ if } 68 \le t < 69$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(68) \cdot (1 - \frac{2}{22}) = 0.667 \text{ if } 69 \le t < 70$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(69) \cdot (1 - \frac{2}{18}) = 0.593 \text{ if } 70 \le t < 71$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(70) \cdot (1 - \frac{2}{16}) = 0.5185 \text{ if } 71 \le t < 72$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(71) \cdot (1 - \frac{2}{14}) = 0.444 \text{ if } 72 \le t < 73$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(72) \cdot (1 - \frac{1}{11}) = 0.404 \text{ if } 73 \le t < 74$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(73) \cdot (1 - \frac{1}{9}) = 0.359 \text{ if } 74 \le t < 76$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(74) \cdot (1 - \frac{1}{7}) = 0.3078 \text{ if } 76 \le t < 77$$

$$\hat{S}_{60}(t) = \hat{S}_{60}(76) \cdot (1 - \frac{1}{5}) = 0.246 \text{ if } t \ge 77$$

Similarly, conditional on patient greater than or equal to age 70, we have

$$\hat{S}_{70}(t) = 1 - \frac{2}{18} = 0.89 \text{ if } 70 \le t < 71$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(70) \cdot (1 - \frac{2}{16}) = 0.78 \text{ if } 71 \le t < 72$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(71) \cdot (1 - \frac{2}{14}) = 0.67 \text{ if } 72 \le t < 73$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(72) \cdot (1 - \frac{1}{11}) = 0.606 \text{ if } 73 \le t < 74$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(73) \cdot (1 - \frac{1}{9}) = 0.5387 \text{ if } 74 \le t < 76$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(74) \cdot (1 - \frac{1}{7}) = 0.462 \text{ if } 76 \le t < 77$$

$$\hat{S}_{70}(t) = \hat{S}_{70}(76) \cdot (1 - \frac{1}{5}) = 0.3694 \text{ if } t \ge 77$$

Question #6:

I confirm that I have read understood the proof of Greenwood's formula for variance.