ECS 230 - Homework 04

Student: Qirun Dai (qrdai@ucdavis.edu)

1. Polynomial Plots (degree from 3 to 9)

2. Program Outputs (degree 5 and 9)

2.1 Degree = 5

1. Initial Matrix X:

(1.000000)	0.500000	0.250000	0.125000	0.062500	0.031250
1.000000	0.200000	0.040000	0.008000	0.001600	0.000320
1.000000	1.200000	1.440000	1.728000	2.073600	2.488320
1.000000	2.900000	8.410000	24.389000	70.728100	205.111490
1.000000	3.400000 2.400000	11.560000 5.760000	39.304000 13.824000	133.633600 33.177600	$454.354240 \\ 79.626240$
1.000000	4.400000	19.360000	85.184000	374.809600	1649.162240
1.000000	4.500000	20.250000	91.125000	410.062500	1845.281250
1.000000	4.900000	24.010000	117.649000	576.480100	2824.752490
1.000000	3.300000	10.890000	35.937000	118.592100	391.353930 /

2. Matrix X^TX :

/	10.000000	27.700000	101.970000	409.273000	1719.621300	7452.161770
1	27.700000	101.970000	409.273000	1719.621300	7452.161770	33026.567037
	101.970000	409.273000	1719.621300	7452.161770	33026.567037	148818.438655
	409.273000	1719.621300	7452.161770	33026.567037	148818.438655	678992.342083
l	1719.621300	7452.161770	33026.567037	148818.438655	678992.342083	3127498.672417
1	7452.161770	33026.567037	148818.438655	678992.342083	3127498.672417	14512038.543277

3. Vector $X^T y$:

 $\left(\begin{array}{c} 64.200000 \\ 202.910000 \\ 773.963000 \\ 3156.550700 \\ 13391.743790 \\ 58404.717011 \end{array}\right)$

4. Lower Triangular Matrix L:

/	3.162278	0	0	0	0	0
	8.759509	5.024042	0	0	0	0
	32.245745	25.241846	6.533178	0	0	0
	129.423486	116.626228	51.268111	6.784688	0	0
	543.792002	535.188731	303.441456	68.546818	8.957628	0
1	2356.580469	2464.963161	1623.792326	481.578786	117.436679	10.613064

5. Coefficients of the polynomial fit $\,b\,$:

 $\left(egin{array}{c} 3.302285 \ 0.548540 \ 1.698495 \ -1.062627 \ 0.254667 \ -0.021502 \end{array}
ight)$

2.2 Degree = 9

1. Initial Matrix X:

1	/1.000000 1.000000	0.500000 0.200000	$0.250000 \\ 0.040000$	$0.125000 \\ 0.008000$	$0.062500 \\ 0.001600$	$0.031250 \\ 0.000320$	$0.015625 \\ 0.000064$	0.007812 0.000013	0.003906 0.000003	0.001953 \ 0.000001
	1.000000	1.200000	1.440000	1.728000	2.073600	2.488320	2.985984	3.583181	4.299817	5.159780
	$1.000000 \\ 1.000000$	2.900000 3.400000	8.410000 11.560000	$24.389000 \\ 39.304000$	$70.728100 \\ 133.633600$	$205.111490 \\ 454.354240$	594.823321 1544.804416	$1724.987631 \\ 5252.335014$	$5002.464130 \\ 17857.939049$	$14507.145976 \\ 60716.992766$
	1.000000 1.000000	2.400000 4.400000	5.760000 19.360000	13.824000 85.184000	33.177600 374.809600	79.626240 1649.162240	191.102976 7256.313856	458.647142 31927.780966	$1100.753142 \\ 140482.236252$	2641.807540 618121.839510
	1.000000	4.500000	20.250000	91.125000	410.062500	1845.281250	8303.765625	37366.945312	168151.253906	756680.642578
	1.000000 $(1.000000$	4.900000 3.300000	$24.010000 \\ 10.890000$	$\frac{117.649000}{35.937000}$	576.480100 118.592100	$2824.752490 \\ 391.353930$	$13841.287201 \\ 1291.467969$	$67822.307285 \\ 4261.844298$	$332329.305696 \\ 14064.086182$	1628413.597910 46411.484402

2. Matrix X^TX :

/ 10.000000	27.700000	101.970000	409.273000	1719.621300	7452.161770	33026.567037	148818.438655	678992.342083	3127498.672417
27.700000	101.970000	409.273000	1719.621300	7452.161770	33026.567037	148818.438655	678992.342083	3127498.672417	14512038.543277
101.970000	409.273000	1719.621300	7452.161770	33026.567037	148818.438655	678992.342083	3127498.672417	14512038.543277	67732371.152119
409.273000	1719.621300	7452.161770	33026.567037	148818.438655	678992.342083	3127498.672417	14512038.543277	67732371.152119	317632499.957908
1719.621300	7452.161770	33026.567037	148818.438655	678992.342083	3127498.672417	14512038.543277	67732371.152119	317632499.957908	1495443977.308277
7452.161770	33026.567037	148818.438655	678992.342083	3127498.672417	14512038.543277	67732371.152119	317632499.957908	1495443977.308277	7064473457.161751
33026.567037	148818.438655	678992.342083	3127498.672417	14512038.543277	67732371.152119	317632499.957908	1495443977.308277	7064473457.161751	33470793953.852802
148818.438655	678992.342083	3127498.672417	14512038.543277	67732371.152119	317632499.957908	1495443977.308277	7064473457.161750	33470793953.852802	158995811147.602295
678992.342083	3127498.672417	14512038.543277	67732371.152119	317632499.957908	1495443977.308277	7064473457.161751	33470793953.852802	158995811147.602295	757053992476.260010
3127498.672417	14512038.543277	67732371.152119	317632499.957908	1495443977.308277	7064473457.161751	33470793953.852802	158995811147.602295	757053992476.260010	3612429064743.778320

3. Vector $X^T y$:

 $\begin{array}{c} 64.200000 \\ 202.910000 \\ 773.963000 \\ 3156.550700 \\ 13391.743790 \\ 58404.717011 \\ 259935.897116 \\ 1174549.902276 \\ 5368639.315758 \\ 24756528.655340 \\ \end{array}$

4. Lower Triangular Matrix L:

(3.162278	0	0	0	0	0	0	0	0	0 \
8.759509	5.024042	0	0	0	0	0	0	0	0
32.245745	25.241846	6.533178	0	0	0	0	0	0	0
129.423486	116.626228	51.268111	6.784688	0	0	0	0	0	0
543.792002	535.188731	303.441456	68.546818	8.957628	0	0	0	0	0
2356.58046	9 2464.963161	1623.792326	481.578786	117.436679	10.613064	0	0	0	0
10443.91751	.3 11412.095224	8289.700126	2927.706354	1001.530335	165.427909	12.143240	0	0	0
47060.52239	8 53097.736152	41283.456271	16535.495790	7073.046800	1610.271754	209.050765	7.294521	0	0
214716.2314	79 248144.787781	202768.251954	89512.168065	45008.406820	12607.957139	2187.198085	148.401049	5.064513	0
\989001.9183	99 1164175.576363	988083.660915	471920.750926	268462.145231	87058.156491	18076.109899	1781.693719	123.327046	0.982265

5. Coefficients of the polynomial fit b:

 $\left(\begin{array}{c} 280.120205 \\ -2632.708972 \\ 8366.981270 \\ -12398.140518 \\ 10053.695004 \\ -4830.562494 \\ 1414.511540 \\ -248.059639 \\ 23.953893 \\ -0.979794 \end{array}\right)$

3. Discussion on the quality of the fit for different choices of the degree

3.1 Degree from 3 to 9

• As can be seen in the polynomial plots above, the quality of the fit consistently increases as the chosen degree increases from 3 to 9. This is intuitive, as there are 10 data points in the provided data.dat file. According to the basic property of polynomials, (d+1) data points (x,y) with different x values uniquely determine a polynomial of degree d. For d=9, it can be found that the polynomial perfectly fits all the 10 data points.

3.2 Degree >= 10

- Next let's analyze why this fit does not work for polynomials with degree >= 10. The reason is also straightforward. Since we only have 10 data points, if the choice of degree is 10, then matrix X will be of shape 10*11, thus the coefficient matrix in the normal equation X^TX will be of shape 11*11 and will definitely be rank-deficient as its maximum possible rank cannot exceed 10. In this way, the normal equation $X^TXb = X^Ty$ will have infinite number of solutions b instead of a unique one. Thus we cannot determine the best fit by simply solving the normal equation. Actually, since X^TX is rank-deficient, it is sometimes impossible to even calculate the Cholesky Decomposition of it.
- Typically in such rank-deficient cases of Least Square, we can add an additional regularization term into our original optimization objective, and convert the basic Least Square problem into a Ridge/Lasso Regression problem.