MINI PROJECT

Topic - Data analysis and Visualization of AIRBNB at New York city

Name:Pranav Kalambe Roll No. 1913023 Branch:SY-EXTC

Name: Ishika Bhatt Roll No. 1914073 Branch: SY-IT

Link For the dataset:

https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data (https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data)

Airbnb: Inc. is an American vacation rental online marketplace company based in San Francisco, California, United States. Airbnb offers arrangement for lodging, primarily homestays, or tourism experiences.

Since 2008, guests and hosts have used Airbnb to expand on traveling possibilities and present more unique, personalized way of experiencing the world. This dataset describes the listing activity and metrics in NYC, NY for 2019.

This data file includes all needed information to find out more about hosts, geographical availability, necessary metrics to make predictions and draw conclusions.

Getting Started

Importing all required libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Loading and Observing dataset

In [2]:

```
original_df = pd.read_csv("AB_NYC_2019.csv")
original_df.head()
```

Out[2]:

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitu
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.647
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.753
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80§
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.685
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.798
4							•

In [3]:

original_df.shape

Out[3]:

(48895, 16)

There are total of 48895 rows and 16 colums

```
In [4]:
```

```
original df.dtypes
Out[4]:
id
                                    int64
name
                                   object
host_id
                                    int64
host name
                                   object
neighbourhood group
                                   object
neighbourhood
                                   object
latitude
                                  float64
longitude
                                  float64
room_type
                                   object
price
                                     int64
                                     int64
minimum nights
number_of_reviews
                                     int64
last review
                                   object
reviews_per_month
                                  float64
calculated_host_listings_count
                                     int64
availability 365
                                     int64
dtype: object
In [5]:
original_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48895 entries, 0 to 48894
Data columns (total 16 columns):
     Column
 #
                                     Non-Null Count Dtype
---
                                      _____
     id
 0
                                     48895 non-null
                                                      int64
 1
    name
                                     48879 non-null object
 2
    host id
                                     48895 non-null int64
    host name
 3
                                     48874 non-null object
    neighbourhood_group
 4
                                     48895 non-null
                                                     object
 5
    neighbourhood
                                     48895 non-null
                                                      object
    latitude
                                     48895 non-null
                                                     float64
 6
 7
     longitude
                                     48895 non-null
                                                      float64
 8
    room_type
                                     48895 non-null
                                                      object
 9
    price
                                     48895 non-null
                                                      int64
 10 minimum_nights
                                     48895 non-null
                                                      int64
 11 number_of_reviews
                                     48895 non-null
                                                      int64
 12 last review
                                     38843 non-null
                                                      object
                                                      float64
 13 reviews_per_month
                                     38843 non-null
 14 calculated_host_listings_count 48895 non-null
                                                      int64
 15 availability_365
                                     48895 non-null
                                                      int64
dtypes: float64(3), int64(7), object(6)
memory usage: 6.0+ MB
```

Finding No. of Missing data in dataset

In [6]:

```
original_df.isnull().sum()
Out[6]:
```

id	0
name	16
host_id	0
host_name	21
neighbourhood_group	0
neighbourhood	0
latitude	0
longitude	0
room_type	0
price	0
minimum_nights	0
number_of_reviews	0
last_review	10052
reviews_per_month	10052
<pre>calculated_host_listings_count</pre>	0
availability_365	0
dtype: int64	

Cleaning of Dataset

Droping last_review column - It consist of dtype Object (to be specify Date) and alot of missing data Droping id - Since it is not much significant

Droping host_name because of ethical reasons

In [7]:

```
original_df.drop(['id','host_name','last_review'],axis = 1,inplace = True)
original_df.tail()
```

Out[7]:

	name	host_id	neighbourhood_group	neighbourhood	latitude	longitude
48890	Charming one bedroom - newly renovated rowhouse	8232441	Brooklyn	Bedford- Stuyvesant	40.67853	-73.94995
48891	Affordable room in Bushwick/East Williamsburg	6570630	Brooklyn	Bushwick	40.70184	-73.93317
48892	Sunny Studio at Historical Neighborhood	23492952	Manhattan	Harlem	40.81475	-73.94867
48893	43rd St. Time Square-cozy single bed	30985759	Manhattan	Hell's Kitchen	40.75751	-73.99112
48894	Trendy duplex in the very heart of Hell's Kitchen	68119814	Manhattan	Hell's Kitchen	40.76404	-73.98933
4						•

In [8]:

```
original_df.isnull().sum()
```

Out[8]:

name	16
host_id	0
neighbourhood_group	0
neighbourhood	0
latitude	0
longitude	0
room_type	0
price	0
minimum_nights	0
number_of_reviews	0
reviews_per_month	10052
<pre>calculated_host_listings_count</pre>	0
availability_365	0
dtype: int64	

In [9]:

```
original_df.dtypes['reviews_per_month']
```

Out[9]:

dtype('float64')

```
In [10]:
```

```
original_df.fillna({'reviews_per_month':0},inplace = True)
#examing changes
original_df.reviews_per_month.isnull().sum()
```

Out[10]:

0

Dropping the rows which have Name column as 'NA'

```
In [11]:
```

```
original_df.dropna(how='any',inplace=True)
```

In [12]:

```
original_df.isnull().sum()
```

Out[12]:

```
name
                                    0
host id
                                    0
neighbourhood_group
                                    0
neighbourhood
                                    0
latitude
                                    0
longitude
                                    0
room_type
                                    0
price
                                    0
minimum_nights
                                    0
number_of_reviews
                                    0
reviews_per_month
                                    0
calculated_host_listings_count
                                    0
availability_365
                                    0
dtype: int64
```

Now the dataset has been Cleaned

```
In [13]:
```

```
len(original_df)
```

Out[13]:

48879

Note: At the start No. of rows were 48894, now we have 48879 rows, means 16 rows has been removed which has name column as 'NA'

Since Original dataset is now manupulated and cleaned, let's assign it to a new variable and Save it!

```
In [14]:
air_df = original_df.copy()
```

```
In [15]:
```

```
air_df.to_csv("Updated_Airbnb.csv")
```

Examine Continous Variables

```
In [16]:
```

```
air_df.describe()
```

Out[16]:

	host_id	latitude	longitude	price	minimum_nights	number_of_
count	4.887900e+04	48879.000000	48879.000000	48879.000000	48879.000000	4887!
mean	6.763013e+07	40.728945	-73.952168	152.722355	7.011027	2:
std	7.862070e+07	0.054529	0.046160	240.186804	20.016000	4.
min	2.438000e+03	40.499790	-74.244420	0.000000	1.000000	(
25%	7.816856e+06	40.690090	-73.983070	69.000000	1.000000	
50%	3.079133e+07	40.723080	-73.955680	106.000000	3.000000	!
75%	1.074344e+08	40.763110	-73.936280	175.000000	5.000000	24
max	2.743213e+08	40.913060	-73.712990	10000.000000	1250.000000	62!
4						>

Let's have a closer look at individual features and relation between them

```
In [17]:
```

```
len(air_df['host_id'].unique()) # Since there alot of unique values not displaying them
```

Out[18]:

37443

```
In [19]:
```

```
top host=air df.host id.value counts().head(10)
top_host
Out[19]:
219517861
             327
107434423
             232
30283594
             121
137358866
             103
16098958
              96
12243051
              96
61391963
              91
22541573
              87
200380610
              65
7503643
              52
Name: host_id, dtype: int64
In [20]:
#coming back to our dataset we can confirm our findings with already existing column ca
lled 'calculated_host_listings_count'
top host check=air df.calculated host listings count.max()
top host check
Out[20]:
327
In [21]:
air_df['neighbourhood_group'].unique()
Out[21]:
array(['Brooklyn', 'Manhattan', 'Queens', 'Staten Island', 'Bronx'],
      dtype=object)
```

No. of Rooms used at different Neighbourhood_groups

```
In [22]:
```

```
air_df.neighbourhood_group.value_counts()
```

Out[22]:

Manhattan 21652 Brooklyn 20098 Queens 5666 Bronx 1090 Staten Island 373

Name: neighbourhood_group, dtype: int64

In [23]:

```
plt.figure(figsize=(7,7))
plt.bar(air_df['neighbourhood_group'].unique(),air_df.neighbourhood_group.value_counts
(),color = ('m','b','g','y','r') )
plt.title('Count of Rooms at different Neighboorhood Groups',color = 'blue',fontsize =
15)
plt.ylabel('No. of rooms',fontsize=15)
plt.show()
```


In [24]:

len(air_df['neighbourhood'].unique()) # Since there alot of unique values not displayin
g them

Out[24]:

221

Room Type

```
In [25]:
```

```
air_df['room_type'].unique()
```

Out[25]:

array(['Private room', 'Entire home/apt', 'Shared room'], dtype=object)

In [26]:

```
print(air_df.room_type.value_counts())
```

Entire home/apt 25402
Private room 22318
Shared room 1159
Name: room_type, dtype: int64

In [27]:

```
labels = air_df.room_type.value_counts().index
colors = ['pink','orange','red']
explode = [0,0,0]
sizes =air_df.room_type.value_counts().values

plt.figure(0,figsize = (7,7))
plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%')
plt.title('Distribution According to Room Type',color = 'blue',fontsize = 15)
plt.legend()
plt.show()
```

Distribution According to Room Type

Prices

In [28]:

```
len(air_df['price'].unique())
```

Out[28]:

674

In [29]:

```
air_df['price'].describe()
```

Out[29]:

48879.000000 count mean 152.722355 std 240.186804 min 0.000000 25% 69.000000 50% 106.000000 75% 175.000000 10000.000000 max

Name: price, dtype: float64

Sorting Maximum Price Hotel Rooms

In [30]:

```
air_df = air_df.sort_values(by=["price"], ascending=False)
air_df.head()
```

Out[30]:

	name	host_id	neighbourhood_group	neighbourhood	latitude	longitude	roor
9151	Furnished room in Astoria apartment	20582832	Queens	Astoria	40.76810	-73.91651	
29238	1-BR Lincoln Center	72390391	Manhattan	Upper West Side	40.77213	-73.98665	ho
17692	Luxury 1 bedroom apt stunning Manhattan views	5143901	Brooklyn	Greenpoint	40.73260	-73.95739	hc
12342	Quiet, Clean, Lit @ LES & Chinatown	3906464	Manhattan	Lower East Side	40.71355	-73.98507	
6530	Spanish Harlem Apt	1235070	Manhattan	East Harlem	40.79264	-73.93898	hc
4							•

Minimum Price Hotel Rooms

In [31]:

```
min_price = air_df['price'].min()
air_df.loc[(air_df.price == min_price)]
```

Out[31]:

	name	host_id	neighbourhood_group	neighbourhood	latitude	longitude
25796	Cozy yet spacious private brownstone bedroom	86327101	Brooklyn	Bedford- Stuyvesant	40.68258	-73.91284
25794	Spacious comfortable master bedroom with nice	86327101	Brooklyn	Bedford- Stuyvesant	40.68173	-73.91342
25795	Contemporary bedroom in brownstone with nice view	86327101	Brooklyn	Bedford- Stuyvesant	40.68279	-73.91170
26259	the best you can find	13709292	Manhattan	Murray Hill	40.75091	-73.97597
25634	MARTIAL LOFT 3: REDEMPTION (upstairs, 2nd room)	15787004	Brooklyn	Bushwick	40.69467	-73.92433
26866	Best Coliving space ever! Shared room.	101970559	Brooklyn	Bushwick	40.69166	-73.90928
23161	Huge Brooklyn Brownstone Living, Close to it all.	8993084	Brooklyn	Bedford- Stuyvesant	40.69023	-73.95428
25433	★Hostel Style Room Ideal Traveling Buddies★	131697576	Bronx	East Morrisania	40.83296	-73.88668
25778	Modern apartment in the heart of Williamsburg	10132166	Brooklyn	Williamsburg	40.70838	-73.94645
25753	Sunny, Quiet Room in Greenpoint	1641537	Brooklyn	Greenpoint	40.72462	-73.94072
26841	Coliving in Brooklyn! Modern design / Shared room	101970559	Brooklyn	Bushwick	40.69211	-73.90670
4			_			•

Highest Price of different neighbourhood_groups

In [32]:

```
groups = air_df.neighbourhood_group.unique()
for i in groups:
    temp = air_df.loc[(air_df.neighbourhood_group == i)]
    group_max = temp['price'].max()
    print('{:<25} {}'.format(i,group_max))</pre>
```

 Queens
 10000

 Manhattan
 10000

 Brooklyn
 10000

 Staten Island
 5000

 Bronx
 2500

In [33]:

Minimum Number of Nights spend

In [34]:

```
#Maximum No. of nights spend
nights_max = air_df['minimum_nights'].unique().max()
print("Maximum No. of Nights spend is",nights_max)
```

Maximum No. of Nights spend is 1250

In [35]:

```
total = air_df['minimum_nights'].sum()
n = air_df['minimum_nights'].count()
average = total/n
print("Average No. of Nights spend is",int(average))
```

Average No. of Nights spend is 7

In [36]:

```
air_df['minimum_nights'].describe()
```

Out[36]:

```
48879.000000
count
mean
             7.011027
std
            20.016000
min
             1.000000
25%
             1.000000
50%
             3.000000
75%
             5.000000
          1250.000000
max
```

Name: minimum_nights, dtype: float64

In [37]:

```
#last column we need to look at is 'number_of_reviews'

#let's grab 10 most reviewed listings in NYC

top_reviewed_listings=air_df.nlargest(10,'number_of_reviews')
top_reviewed_listings
```

Out[37]:

	name	host_id	neighbourhood_group	neighbourhood	latitude	lon
11759	Room near JFK Queen Bed	47621202	Queens	Jamaica	40.66730	-73
2031	Great Bedroom in Manhattan	4734398	Manhattan	Harlem	40.82085	-73
2030	Beautiful Bedroom in Manhattan	4734398	Manhattan	Harlem	40.82124	-73
2015	Private Bedroom in Manhattan	4734398	Manhattan	Harlem	40.82264	-73
13495	Room Near JFK Twin Beds	47621202	Queens	Jamaica	40.66939	-73
10623	Steps away from Laguardia airport	37312959	Queens	East Elmhurst	40.77006	-73
1879	Manhattan Lux Loft.Like.Love.Lots.Look !	2369681	Manhattan	Lower East Side	40.71921	-73
20403	Cozy Room Family Home LGA Airport NO CLEANING FEE	26432133	Queens	East Elmhurst	40.76335	-73
4870	Private brownstone studio Brooklyn	12949460	Brooklyn	Park Slope	40.67926	-73
471	LG Private Room/Family Friendly	792159	Brooklyn	Bushwick	40.70283	-73

In [38]:

```
price_avrg=top_reviewed_listings.price.mean()
print('Average price per night at top 10 rooms is {}'.format(price_avrg))
print('9/10 are private rooms')
```

Average price per night at top 10 rooms is 65.4 9/10 are private rooms

Visualizing the distribution for every feature (Histogram)

In [39]:

```
fig = plt.figure(figsize = (15,15))
ax = fig.gca()
air_df.hist(ax=ax,color='orange')
plt.show()
```

<ipython-input-39-3847014b5728>:3: UserWarning: To output multiple subplot
s, the figure containing the passed axes is being cleared
 air_df.hist(ax=ax,color='orange')

Plotting Different Rooms Location on New York Map

In [40]:

```
plt.figure(figsize=(15,9))
img = plt.imread("map_new_york.png")
plt.imshow(img,zorder=0,extent=[-74.258, -73.7, 40.49,40.92],alpha=0.3)
plt.scatter(air_df['longitude'],air_df['latitude'],s=10)
plt.axis('off')
```

Out[40]:

(-74.258, -73.7, 40.49, 40.92)

Plotting Longitude and Latitude of Rooms at different Neighbourhood Groups

```
In [41]:
```

In [42]:

```
data brooklyn = air df.loc[(air df['neighbourhood group'] == 'Brooklyn')]
lat_brooklyn = data_brooklyn['latitude']
long_brooklyn = data_brooklyn['longitude']
color brooklyn = 'r'
data_queens = air_df.loc[(air_df['neighbourhood_group'] == 'Queens')]
lat_queens = data_queens['latitude']
long_queens = data_queens['longitude']
color_queens = 'b'
data_Manhattan = air_df.loc[(air_df['neighbourhood_group'] == 'Manhattan')]
lat Manhattan = data_Manhattan['latitude']
long_Manhattan = data_Manhattan['longitude']
color Manhattan = 'm'
data_Bronx = air_df.loc[(air_df['neighbourhood_group'] == 'Bronx')]
lat_Bronx = data_Bronx['latitude']
long_Bronx = data_Bronx['longitude']
color_Bronx = 'y'
data_Staten_Island = air_df.loc[(air_df['neighbourhood_group'] == 'Staten Island')]
lat Staten Island = data Staten Island['latitude']
long_Staten_Island = data_Staten_Island['longitude']
color Staten Island = 'g'
```

In [43]:

```
places long lat color = [(long brooklyn,lat brooklyn,color brooklyn,'Brooklyn'),(long q
ueens,lat_queens,color_queens,'Queens'),
                        (long_Manhattan,lat_Manhattan,color_Manhattan,'Manhattan'),(lon
g Bronx,lat Bronx,color Bronx,'Bronx'),
                        (long_Staten_Island,lat_Staten_Island,color_Staten_Island,'Stat
en Island')]
plt.figure(figsize=(15,9))
img = plt.imread("map_new_york.png")
plt.imshow(img,zorder=0,extent=[-74.258, -73.7, 40.49,40.92],alpha=0.5)
for (long,lat,pcolor,place) in places long lat color:
    plt.scatter(long,lat,color=pcolor ,label= place ,s=20)
plt.grid(True)
plt.title("ROOMS AT NEIGHBOURHOOD GROUPS", color = 'b', fontsize=20)
plt.xlabel('Longitude',fontsize=20)
plt.ylabel('Latitude', fontsize=20)
plt.legend()
plt.show()
```

ROOMS AT NEIGHBOURHOOD GROUPS

Plotting Longitude and Latitude of different Types of rooms in New york

```
In [44]:
air_df['room_type'].unique()
Out[44]:
array(['Private room', 'Entire home/apt', 'Shared room'], dtype=object)
In [45]:
data_private = air_df.loc[(air_df['room_type'] == 'Private room')]
lat private = data private['latitude']
long_private = data_private['longitude']
color_private = 'r'
data_Entire = air_df.loc[(air_df['room_type'] == 'Entire home/apt')]
lat_Entire = data_Entire['latitude']
long_Entire = data_Entire['longitude']
color_Entire = 'b'
data_Shared_room = air_df.loc[(air_df['room_type'] == 'Shared room')]
lat_Shared_room = data_Shared_room['latitude']
long_Shared_room = data_Shared_room['longitude']
color Shared room = 'y'
```

In [46]:

Relation Between Neighbouring Group And Availability of days

```
In [47]:
air df.neighbourhood group.unique()
Out[47]:
array(['Queens', 'Manhattan', 'Brooklyn', 'Staten Island', 'Bronx'],
      dtype=object)
In [48]:
air_df['availability_365'].count()
Out[48]:
48879
In [49]:
data_brooklyn = air_df.loc[(air_df['neighbourhood_group'] == 'Brooklyn')]
avail_brooklyn = data_brooklyn['availability_365']
data_queens = air_df.loc[(air_df['neighbourhood_group'] == 'Queens')]
avail queens = data queens['availability 365']
data_Manhattan = air_df.loc[(air_df['neighbourhood_group'] == 'Manhattan')]
avail_Manhattan = data_Manhattan['availability_365']
data_Staten_Island = air_df.loc[(air_df['neighbourhood_group'] == 'Staten Island')]
avail Staten Island = data Staten Island['availability 365']
```

data_Bronx = air_df.loc[(air_df['neighbourhood_group'] == 'Bronx')]

avail_Bronx = data_Bronx['availability_365']

In [50]:

```
available_days = [avail_brooklyn,avail_Manhattan,avail_queens,avail_Staten_Island,avail
_Bronx]
plt.figure(figsize=(10,7))
plt.boxplot(available_days,patch_artist=True,notch='True',vert=1,labels=air_df.neighbou
rhood_group.unique())
plt.title('Relation Between Neighbourhood groups and Availability',fontsize=20,color=
'b')
plt.xlabel('NEIGHBOURHOOD GROUPS',fontsize=15)
plt.ylabel('AVAILABILITY',fontsize=15)
plt.show()
```


_This Airbnb ('AB_NYC2019') dataset for the 2019 year appeared to be a very rich dataset with a variety of columns that allowed us to do deep data exploration on each significant column presented.

In []:		