Process Improvement

• Understanding, Modelling and Improving the Software Process

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Slide 1

Objectives

- To explain the principles of software process improvement
- To explain how software process factors influence software quality and productivity
- To introduce the SEI Capability Maturity Model and to explain why it is influential. To discuss the applicability of that model
- To explain why CMM-based improvement is not universally applicable

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Topics covered

- Process and product quality
- Process analysis and modelling
- Process measurement
- The SEI process maturity model
- Process classification

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Slide 3

Process improvement

- Understanding existing processes
- Introducing process changes to achieve organisational objectives which are usually focused on quality improvement, cost reduction and schedule acceleration
- Most process improvement work so far has focused on defect reduction. This reflects the increasing attention paid by industry to quality
- However, other process attributes can be the focus of improvement

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Process attributes

Process characteristic	Description	
Understandability	To what extent is the process explicitly defined and how easy is it to	
•	understand the process definition?	
Visibility	Do the process activities culminate in clear results so that the progress	
	of the process is externally visible?	
Supportability	To what extent can the process activities be supported by CASE tools?	
Acceptability	Is the defined process acceptable to and usable by the engineers	
	responsible for producing the software product?	
Reliability	Is the process designed in such a way that process errors are avoided or	
	trapped before they result in product errors?	
Robustness	Can the process continue in spite of unexpected problems?	
Maintainability	Can the process evolve to reflect changing organisational requirements	
	or identified process improvements?	
Rapidity	How fast can the process of delivering a system from a given	
	specification be completed?	

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide

Process improvement stages

- Process analysis
 - Model and analyse (quantitatively if possible) existing processes
- Improvement identification
 - Identify quality, cost or schedule bottlenecks
- Process change introduction
 - Modify the process to remove identified bottlenecks
- Process change training
 - Train staff involved in new process proposals
- Change tuning
 - Evolve and improve process improvements

The process improvement process

Process and product quality

- Process quality and product quality are closely related
- A good process is usually required to produce a good product
- For manufactured goods, process is the principal quality determinant
- For design-based activity, other factors are also involved especially the capabilities of the designers

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Principal product quality factors

Development technology

Process quality

Product quality

People quality

Cost, time and schedule

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Slide 9

Quality factors

- For large projects with 'average' capabilities, the development process determines product quality
- For small projects, the capabilities of the developers is the main determinant
- The development technology is particularly significant for small projects
- In all cases, if an unrealistic schedule is imposed then product quality will suffer

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Process analysis and modelling

Process analysis

 The study of existing processes to understand the relationships between parts of the process and to compare them with other processes

Process modelling

- The documentation of a process which records the tasks, the roles and the entities used
- Process models may be presented from different perspectives

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Slide 11

Process analysis and modelling

- Study an existing process to understand its activities
- Produce an abstract model of the process. You should normally represent this graphically.
 Several different views (e.g. activities, deliverables, etc.) may be required
- Analyse the model to discover process problems. Involves discussing activities with stakeholders

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Process analysis techniques

Published process models and process standards

• It is always best to start process analysis with an existing model. People then may extend and change this.

Questionnaires and interviews

 Must be carefully designed. Participants may tell you what they think you want to hear

Ethnographic analysis

Involves assimilating process knowledge by observation

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Process model element	Description	
Activity	An activity has a clearly defined objective, entry and exit	
(represented by a round-	conditions. Examples of activities are preparing a set of test	
edged rectangle with no	data to test a module, coding a function or a module, proof-	
drop shadow)	reading a document, etc. Generally, an activity is atomic i.e.	
1	it is the responsibility of one person or group. It is not	
	decomposed into sub-activities.	
Process	A process is a set of activities which have some coherence	
(represented by a round-	and whose objective is generally agreed within an	
edged rectangle with drop	organisation. Examples of processes are requirements	
shadow)	analysis, architectural design, test planning, etc.	
Deliverable	A deliverable is a tangible output of an activity which is	
(represented by a rectangle	predicted in a project plan.	
with drop shadow)	1 1 1 1	
Condition	A condition is either a pre-condition which must hold before	
(represented by a	a process or activity can start or a post-condition which holds	
parallelogram)	after a process or activity has finished.	
Role	A role is a bounded area of responsibility. Examples of roles	
(represented by a circle	might be configuration manager, test engineer, software	
with drop shadow)	designer, etc. One person may have several different roles	
······	and a single role may be associated with several different	
	people.	
Exception	An exception is a description of how to modify the process if	
(not shown in examples	some anticipated or unanticipated event occurs. Exceptions	
here but may be represented	are often undefined and it is left to the ingenuity of the	
as a double edged box)	project managers and engineers to handle the exception.	
Communication	An interchange of information between people or between	
(represented by an arrow)	people and supporting computer systems. Communications	Elements of a
	may be informal or formal. Formal communications might be	
	the approval of a deliverable by a project manager; informal	process model
	communications might be the interchange of electronic mail	r-stess model
	to resolve ambiguities in a document.	

Process exceptions

- Software processes are complex and process models cannot effectively represent how to handle exceptions
 - Several key people becoming ill just before a critical review
 - A complete failure of a communication processor so that no email is available for several days
 - Organisational reorganisation
 - A need to respond to an unanticipated request for new proposals
- Under these circumstances, the model is suspended and managers use their initiative to deal with the exception

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Slide 17

Process Management

- Includes modelling and enactment of processes
- Two main research areas with similar characterictics
 - Workflow Management Systems (WfMSs)
 - » From the Information Systems and Data Base area
 - Process-centred Software Engineering Environments (PSEEs)
 - » From the Software Engineering Area

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Process measurement

- Wherever possible, quantitative process data should be collected
 - However, where organisations do not have clearly defined process standards this is very difficult as you don't know what to measure. A process may have to be defined before any measurement is possible
- Process measurements should be used to assess process improvements
 - But this does not mean that measurements should drive the improvements. The improvement driver should be the organizational objectives

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Slide 21

Classes of process measurement

- Time taken for process activities to be completed
 - E.g. Calendar time or effort to complete an activity or process
- Resources required for processes or activities
 - E.g. Total effort in person-days
- Number of occurrences of a particular event
 - E.g. Number of defects discovered

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Goal-Question-Metric Paradigm

Goals

 What is the organisation trying to achieve? The objective of process improvement is to satisfy these goals

Questions

 Questions about areas of uncertainty related to the goals. You need process knowledge to derive these

Metrics

• Measurements to be collected to answer the questions

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Slide 23

The Software Engineering Institute

- US Defense Dept. funded institute associated with Carnegie Mellon
- Mission is to promote software technology transfer particularly to defense contractors
- Maturity model proposed in mid-1980s, refined in early 1990s.
- Work has been very influential in process improvement

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Maturity model levels

- Initial
 - Essentially uncontrolled
- Repeatable
 - Product management procedures defined and used
- Defined
 - Process management procedures and strategies defined and used
- Managed
 - Quality management strategies defined and used
- Optimising
 - Process improvement strategies defined and used

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

SEI model problems

- It focuses on project management rather than product development.
- It ignores the use of technologies such as rapid prototyping.
- It does not incorporate risk analysis as a key process area
- It does not define its domain of applicability

The CMM and ISO 9000

- There is a clear correlation between the key processes in the CMM and the quality management processes in ISO 9000
- The CMM is more detailed and prescriptive and includes a framework for improvement
- Organisations rated as level 2 in the CMM are likely to be ISO 9000 compliant

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Slide 31

Capability assessment

- An important role of the SEI is to use the CMM to assess the capabilities of contractors bidding for US government defence contracts
- The model is intended to represent organisational capability not the practices used in particular projects
- Within the same organisation, there are often wide variations in processes used
- Capability assessment is questionnaire-based

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Process classification

Informal

 No detailed process model. Development team chose their own way of working

Managed

Defined process model which drives the development process

Methodical

Processes supported by some development method such as HOOD

Supported

• Processes supported by automated CASE tools

Process choice

- Process used should depend on type of product which is being developed
 - For large systems, management is usually the principal problem so you need a strictly managed process. For smaller systems, more informality is possible.
- There is no uniformly applicable process which should be standardised within an organisation
 - High costs may be incurred if you force an inappropriate process on a development team

Key points

- Process improvement involves process analysis, standardisation, measurement and change
- Process models include descriptions of tasks, activities, roles, exceptions, communications, deliverables and other processes
- Measurement should be used to answer specific questions about the software process used
- The three types of process metrics which can be collected are time metrics, resource utilisation metrics and event metrics

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25

Key points

- The SEI model classifies software processes as initial, repeatable, defined, managed and optimising. It identifies key processes which should be used at each of these levels
- The SEI model is appropriate for large systems developed by large teams of engineers. It cannot be applied without modification in other situations
- Processes can be classified as informal, managed, methodical and improving. This classification can be used to identify process tool support

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 25