Processamento Digital de Imagem

Filtragem Especial Parte 2

Prof: Emília Alves Nogueira
Ciência da Computação
Universidade Federal de Goiás
E-mail: emiliacdc@hotmail.com

Sumário

- Filtros de Realce
- Detectores de Bordas
 - Detector de Roberts
 - Detector de Prewitt
 - Detector de Sobel

Sumário

- Filtros de Realce
- Detectores de Bordas
 - Detector de Roberts
 - Detector de Prewitt
 - Detector de Sobel

- Também chamados de filtros passa-alta
 - O realce (sharpening) tem como objetivo destacar as transições de intensidade na imagem
 - Utiliza um tipo de máscara que tende a realçar as diferenças de níveis de cinza na imagem

- Analogias
 - Filtro de média (suavização) ⇔ Integração
 - Realce ⇔ Derivação
- As derivadas de uma função digital são definidas em termos de diferenças entre os pixels

- Derivadas são proporcionais ao grau de descontinuidade na imagem
 - Enfatizam as regiões de bordas e os ruídos
 - Não enfatizam regiões constantes ou com variações de intensidade suaves
- Filtros
 - Laplaciano
 - Unsharp masking e highboost filtering
 - Derivativos

- Filtro Laplaciano
 - Utiliza derivadas de segunda ordem
 - Resposta mais acentuada a detalhes finos como pontos isolados e linhas

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- É um filtro isotrópico
 - A resposta é independente da direção da descontinuidade na imagem em que o filtro é aplicado (invariante à rotação);

- Máscaras para o filtro Laplaciano
 - Centro negativo: remove bordas exteriores
 - Centro positivo: remove bordas interiores

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

- Filtro Laplaciano
 - Realça bordas ou descontinuidades na imagem, porém ameniza regiões com nível de cinza constante

- Note que o fundo da imagem foi "perdido"
 - O fundo pode ser "reconstruído", preservando as descontinuidades, somando a imagem Laplaciana à imagem original

$$g(x,y) = f(x,y) + c[\nabla^2 f(x,y)]$$

- c é uma constante
 - c = -1 se o centro da mascara é negativo
 - c = 1, caso contrário

• "Recuperando" o fundo da imagem

$$g(x,y) = f(x,y) + c[\nabla^2 f(x,y)]$$

f(x,y)

Laplaciano

g(x,y)

- Como o filtro Laplaciano é linear, existem máscaras que já combinam as duas operações
 - Realce + reconstrução do fundo da imagem

0	-1	0	
-1	5	-1	
0	-1	0	

-1	-1	-1
-1	9	-1
-1	-1	-1

- Um processo para aumentar a nitidez das imagens consiste em subtrair uma versão não nítida (suavizada) de uma imagem da imagem original
- Passos
 - Borrar a imagem original
 - Subtrair a imagem borrada da original a diferença resultante é chamada de máscara
 - Adicionar a máscara à imagem original

- Unsharp masking (máscara de nitidez) e filtragem highboost
 - Seja s(x,y) uma suavização da imagem f(x,y)

$$g_{mask}(x,y) = f(x,y) - s(x,y)$$

$$g(x,y) = f(x,y) + g_{mask}(x,y)$$

- Generalizando
- K = 1 -> unsharp masking
- k > 1 -> highboost filtering (filtragem alto-reforço)
- *k* < 1 -> atenua a contribuição da máscara de nitidez

$$g_{mask}(x, y) = f(x, y) - s(x, y)$$
$$g(x, y) = f(x, y) + k.g_{mask}(x, y)$$

Exemplo unidimensional para entender o processo

• *Unsharp masking* e filtragem *highboost*

Unsharp mask (gmask)

• Unsharp masking e filtragem highboost

Resultado usando unsharp mask

Resultado usando filtragem

Sumário

- Filtros de Realce
- Detectores de Bordas
 - Detector de Roberts
 - Detector de Prewitt
 - Detector de Sobel

Detectores de Bordas

- São filtros derivativos
 - Utilizam derivadas de primeira ordem
 - Utilizam a magnitude do gradiente
- Gradiente
 - Vetor que indica a direção de maior variação de uma função

$$\nabla f \equiv grad(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Detectores de Bordas

- Magnitude
 - Comprimento do vetor gradiente
 - A magnitude do vetor gradiente de ∇f , denotado por M(x,y) é dado por:

$$M(x, y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2} \approx |g_x| + |g_y|$$

- M(x,y) indica, no ponto (x,y), a taxa de mudança na direção do vetor gradiente
 - A imagem gradiente tem o mesmo tamanho que a imagem original

Detectores de Bordas

- Cálculo da derivada para funções discretas
 - Devemos construir máscaras
 - Convolução
- Máscaras Propostas na literatura
 - Operador gradiente cruzado de Roberts
 - Ou, detector de Bordas de Roberts
 - Operador de Prewitt
 - Ou, detector de Bordas de Prewitt
 - Operador de Sobel
 - Ou, detector de Bordas de Sobel

Sumário

- Filtros de Realce
- Detectores de Bordas
 - Detector de Roberts
 - Detector de Prewitt
 - Detector de Sobel

Detector de Roberts

- Operador gradiente-cruzado de Roberts
- Máscaras

$$h_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad h_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Gradiente

f * h₁ = resultado da convolução

Im =
$$\sqrt{(f * h_1)^2 + (f * h_2)^2}$$

Detector de Roberts

• Operador gradiente-cruzado de Roberts

Sumário

- Filtros de Realce
- Detectores de Bordas
 - Detector de Roberts
 - Detector de Prewitt
 - Detector de Sobel

Detector de Prewitt

- Operador de Prewitt
- Máscaras

$$h_1 = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad h_2 = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Gradiente

f * h₁ = resultado da convolução

Im =
$$\sqrt{(f * h_1)^2 + (f * h_2)^2}$$

Detector de Prewitt

• Operador de Prewitt

Sumário

- Filtros de Realce
- Detectores de Bordas
 - Detector de Roberts
 - Detector de Prewitt
 - Detector de Sobel

Detector de Sobel

- Operador de Sobel
- Máscaras

$$h_1 = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad h_2 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$h_2 = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

 $f * h_1 = resultado$ da convolução

Gradiente

Im =
$$\sqrt{(f * h_1)^2 + (f * h_2)^2}$$

Im Final = Im / max(Im)

Detector de Sobel

• Operador de Sobel

Um exemplo da combinação de métodos de realce

