

generalized intermediate value theorem

Canonical name GeneralizedIntermediateValueTheorem

Date of creation 2013-03-22 17:17:44 Last modified on 2013-03-22 17:17:44 Owner azdbacks4234 (14155) Last modified by azdbacks4234 (14155)

Numerical id 8

Author azdbacks4234 (14155)

Entry type Theorem
Classification msc 26A06
Related topic OrderTopology
Related topic TotalOrder
Related topic Continuous
Related topic ConnectedSpace

Related topic ConnectednessIsPreservedUnderAContinuousMap

Theorem. Let $f: X \to Y$ be a continuous function with X a connected space and Y a totally ordered set in the order topology. If $x_1, x_2 \in X$ and $y \in Y$ lies between $f(x_1)$ and $f(x_2)$, then there exists $x \in X$ such that f(x) = y.

Proof. The sets $U = f(X) \cap (-\infty, y)$ and $V = f(X) \cap (y, \infty)$ are disjoint open subsets of f(X) in the subspace topology, and they are both non-empty, as $f(x_1)$ is contained in one and $f(x_2)$ is contained in the other. If $y \notin f(X)$, then $U \cup V$ constitutes a of the space f(X), contradicting the hypothesis that f(X) is the continuous image of the connected space X. Thus there must exist $x \in X$ such that f(x) = y.

This version of the intermediate value theorem reduces to the familiar one of http://planetmath.org/node/7599real analysis when X is taken to be a closed interval in \mathbb{R} and Y is taken to be \mathbb{R} .

References

[1] J. Munkres, *Topology*, 2nd ed. Prentice Hall, 1975.