

Rapport Tp2 Calcul Scientifique - Analyse de Données

Mdaa Saad // El Bennouri Abdeslam // Dahhoumi Mouad

D
partement Sciences du Numérique - 1 A $2019\mbox{-}2020$

Question 1

On remarque que la méthode de puissance itérée est 7 fois plus lente que la méthode de Lapack dsyev.

Question 2

La méthode puissance est un algorithme simple, mais elle peut converger lentement. à cause de sa nature itérative : on calcule une valeur propre ,on applique l'étape de deflation puis on calcule la valeur propre suivante .

Question 3

On suppose qu'on applique l'algorithme 1 sur m vecteur (une matrice $V \in \mathbb{R}^{n,m}$) Donc

$$\begin{cases} V^0 \in \mathbb{R}^{n,m} \\ V^{k+1} = \frac{AV^k}{||AV^k||} \end{cases}$$

On suppose que A est diagonale de valeurs propres $\lambda_1,..,\lambda_n$, de vecteurs propres associés $\mu_1,..,\mu_n$, avec λ_1 la valeur propre dominante

soit c_i une colonne de V $(i \in [|1, m|])$ donc elle se décompose :

$$c_i = \sum_{j=1}^n a_j^{(i)} \mu_j$$

Donc

$$A^{k}c_{i} = \sum_{j=1}^{n} a_{j}^{(i)} A^{k} \mu_{j} = \sum_{j=1}^{n} a_{j}^{(i)} \lambda_{j}^{k} \mu_{j}$$

Alors

$$A^k c_i = \lambda_1^k \sum_{j=1}^n a_j^{(i)} (\frac{\lambda_j}{\lambda_1})^k \mu_j$$

On a pour $j \in [|2, n|]$

$$(\frac{\lambda_j}{\lambda_1})^k \to 0$$

Alors

$$A^k c_i \approx \lambda_1^k a_1^{(i)} \mu_1$$

 $c_i \to \mu_1$

Donc $\forall i \in [|1, m|]$ on

Question 4

On a

$$H = V^T . A . V \in \mathbb{R}^{m,m}$$

Donc on est amenée à faire la décomposition spectrale à une matrice de dimension bien inférieur à la dimension de A. Par exemple dans l'application de l'ACP le nombre des vecteurs propres qu'on cherche est très inférieur à la dimension de la matrice de données.

Question 5

voir code.

Question 6

 \bullet Generate an initial set of m orthonormal vectors $V \in \mathbb{R}^{m,m}$

```
Vr = randn(n, m);

Vr = mgs(Vr);
```

• $V \leftarrow$ orthonormalisation of the columns of Y = A.V

$$Y = A*Vr;$$

 $Vr = mgs(Y);$

• Rayleigh - Ritz projection applied on matrix A and orthonormal vectors V

ullet Convergence analysis step

```
while (~analyse_cvg_finie),
.. % ligne [68 -105]
end
```

• save eigenpairs that have converged and update RercentReached

```
if(conv)
    n_ev = nb_c;
    V = Vr(:, 1:n_ev);
    W = W(1:n_ev);
    it = k;
else
    W = zeros(1,1);
    V = zeros(1,1);
    n_ev = 0;
    it = k;
end
```

Question 7

• soit $A = (a_{ij}) \in \mathbb{R}^{n,n}$, on note $A^2 = (c_{ij})$ Donc $\forall i, j \in [|1, n|]$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} a_{kj}$$

Donc on a n multiplications et n additions pour le calcul d'un élément c_{ij} . Alors pour calculer A^2 on a besoin de :

$$\sum_{i=1}^{n} \sum_{j=1}^{n} 2n = 2n^3$$

donc pour calculer A^p le nombre de flops nécessaire est :

$$2(p-1)n^3$$

• On note $A^p.V = (d_{ij})$ Donc $\forall i, j \in [|1, n|] * [|1, m|]$

$$d_{ij} = \sum_{k=1}^{n} a_{ik}^{p} v_{kj}$$

de même on a n multiplications et n additions pour le calcul d'un élément d_{ij} . Alors pour calculer $A^p.V$ on a besoin de :

$$\sum_{i=1}^{n} \sum_{j=1}^{m} 2n = \boxed{2mn^2}$$

•

Question 8

voir code.

Question 9

```
||A*V_i - Lambda_i*V_i||/||A||
Eigenvalue 1: 0.272E-15
Eigenvalue 2: 0.227E-15
           3: 0.244E-15
Eigenvalue
Eigenvalue
             4: 0.293E-15
Eigenvalue
            5: 0.327E-15
Eigenvalue
             6: 0.236E-15
Eigenvalue
             7: 0.179E-15
Eigenvalue
             8: 0.225E-15
Eigenvalue
            9: 0.213E-15
Eigenvalue
            10: 0.190E-15
Eigenvalue
            11: 0.158E-15
Eigenvalue
            12: 0.214E-15
           13: 0.244E-15
Eigenvalue
Eigenvalue
           14: 0.146E-15
Eigenvalue
           15: 0.178E-15
Eigenvalue
           16: 0.188E-15
Eigenvalue
           17: 0.144E-15
            18: 0.171E-15
Eigenvalue
Eigenvalue
            19: 0.302E-15
Eigenvalue
            20: 0.949E-15
```

• On remarque que la précision diffère pour certains des vecteurs en effet : la précision dépend du rapport de la plus grande valeur propre et la deuxième plus grande valeur propre .

Question 10

• Pour la version 3 la précision sera meilleur en effet on augmente la puissance de la matrice A donc on augmente le rapport de la plus grande valeur propre et la deuxième plus grande valeur propre .

Question 11

voir code.

Question 12

```
pour p=5
smdaa@vador:~/1A/Projet_TP2_Fournitures/code_fourni/Fortran$ ./main -imat 3 -n 500 -v 2 -m 30 -disp 0
Calling the subspace iteration method v2
End the subspace iteration method v2
percentage 0.70 NOT reached with 30 eigenvalues
n_ev =
              30
_____
Time = 1.0650000572204590
 _____
  pour p=6
smdaa@vador:~/1A/Projet_TP2_Fournitures/code_fourni/Fortran$ ./main -imat 3 -n 500 -v 2 -m 30 -disp 0
Calling the subspace iteration method v2
End the subspace iteration method v2
percentage 0.70 NOT reached with 30 eigenvalues
             30
n_ev =
-----
Time = 0.92599999904632568
-----
  pour p=7
smdaa@vador:~/1A/Projet_TP2_Fournitures/code_fourni/Fortran$ ./main -imat 3 -n 500 -v 2 -m 30 -disp 0
Calling the subspace iteration method v2
End the subspace iteration method v2
percentage 0.70 NOT reached with 30 eigenvalues
n_ev =
             30
_____
Time = 0.84500002861022949
-----
  pour p = 8
smdaa@vador:~/1A/Projet_TP2_Fournitures/code_fourni/Fortran$ ./main -imat 3 -n 500 -v 2 -m 30 -disp 0
Calling the subspace iteration method v2
End the subspace iteration method v2
percentage 0.70 NOT reached with 30 eigenvalues
n_ev =
              30
Time = 0.75800001621246338
 _____
```

 \bullet On remarque que lorsqu'on augmente p le temps diminue et la précision augmente aussi , en effet en augmentant p on augmente le rapport entre la plus grande valeur propre et la deuxième seconde valeur propre.

Question 13

- \bullet On remarque que la distribution des valeurs propre d'un matrice de type 1 et de type 4 est linéaire contrairement au type 2 et au type 3.
- Pour une matrice de type 3 la converge va être plus rapide car le rapport entre la plus grande valeur propre et la deuxième seconde valeur propre est plus important.

Question 14

pour p = 5

on exécute la commande : ./main -imat i -n j -v k -m 20 avec

$$i = 1, 3, 4$$

$$j = 50,1000$$

$$k = 1, 2, 10, 3$$

On obtient les résultats suivantes pour n = 50:

matrice	v 1	v2	dseyv	v3
type 1	0,114 s	$1,79.10^{-2} \text{ s}$	1.10^{-3} s	$1,7.10^{-2} \text{ s}$
type 3	1.10^{-3} s	1,01 s	2.10^{-3} s	$0.72 \; { m s}$
type 4	$9,3.10^{-2} \text{ s}$	$1,8.10^{-2} \text{ s}$	2.10^{-3} s	$1.9.10^{-2} \text{ s}$

On obtient les résultats suivantes pour n = 1000:

matrice	v 1	v2	dseyv	v3
type 1	98,09 s	44, 4 s	1,29 s	16,38 s
type 3	23,98 s	5,29 s	1,09 s	2,31 s
type 4	98,78 s	46,5 s	$1,28 \; s$	35, 8 s

- On remarque que sur les matrices de type 3 on obtient les meilleures performances en terme de temps.
- \bullet On remarque que la performance des matrice de type 1 et de type 4 sont très proches puisque les deux ont une distribution de valeurs propres linéaire.
- ullet On remarque que pour une matrice de petite taille de type 3 la méthode la plus performante est la version 1 .
- ullet On remarque que obtient une accélération plus importante pour la version 2 pour une matrice de type 3.
- On remarque que la méthode dseyv est la plus efficace en terme de temps et en terme de précision.
- On remarque que l'accélération obtenu par la version 3 est plus importante que la version 2 .