PURDUE UNIVERSITY

CS 699

Spring 2016

Research Thesis

Author:
Hai NGUYEN

 $Instructor: \\ Prof. \ Hemanta \ Maji$

 $March\ 1,\ 2016$

Chapter 1

Fourier Basics

1.1 Vector Space of Functions on Boolean Hyper-cube

Definition 1.1 (Inner Product). Consider the 2^n -dimensional vector space of all functions $f: \{0,1\}^n \to \mathbb{R}$. We define an inner product on this space by

$$\langle f, g \rangle := \mathbb{E}[f \cdot g] = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)g(x)$$

.

1.2 Characteristic Functions

Definition 1.2 (Characteristic function). For each $S \subseteq [n] = \{1, 2, ..., n\}$, we define the characteristic function of S as

$$\chi_S(x) = (-1)^{S \cdot x}$$
, where $S \cdot x = \sum_{i=1}^n S_i \cdot x_i = \sum_{i \in S} x_i$

.

Lemma 1.3. For every $S \subseteq [n]$,

$$\sum_{x \in \{0,1\}^n} \chi_S(x) = \begin{cases} 2^n & \text{if } S = \emptyset \\ 0 & \text{if } S \neq \emptyset \end{cases}$$

Proof. If $S=\emptyset$, then $S\cdot x=0$. So $\sum_{x\in\{0,1\}^n}\chi_S(x)=\sum_{x\in\{0,1\}^n}1=2^n$. If $S\neq\emptyset$, then there exists k such that $S_k\neq0$. Hence,

$$\sum_{x \in \{0,1\}^n} \chi_S(x) = \sum_{x \in \{0,1\}^n} (-1)^{\sum_{i \in S} x_i}$$

$$= \sum_{x \in \{0,1\}^n} [(-1)^{x_k} \cdot (-1)^{\sum_{i \in S \setminus \{k\}} x_i}]$$

$$= \sum_{x_k \in \{0,1\}^n} (-1)^{x_k} \cdot \sum_{x \setminus x_k \in \{0,1\}^{n-1}} (-1)^{\sum_{i \in S \setminus \{k\}} x_i}$$

$$= [(-1)^0 + (-1)^1] \sum_{x \setminus x_k \in \{0,1\}^{n-1}} (-1)^{\sum_{i \in S \setminus \{k\}} x_i}$$

$$= 0$$

Theorem 1.4. For every $S, T \subseteq [n]$,

$$\langle \chi_S, \chi_T \rangle = \begin{cases} 1 & \text{if } S = T \\ 0 & \text{if } S \neq T \end{cases}$$

Proof.

$$\langle \chi_S, \chi_T \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{S \cdot x + T \cdot x} = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{(S\Delta T) \cdot x}$$

where Δ is the symmetric different between two sets S and T. $S\Delta T = \emptyset$ if and only if S = T. Hence, our goal follows immediately from Lemma 1.3. \square

1.3 Fourier Basis

Theorem 1.5. The set of all χ_S defines an orthonormal basis for the space of all real-valued function on $\{0,1\}^n$

Proof. From Theorem 1.4, the set of all χ_S is an orthonormal set. Also, there are 2^n different χ_S . Hence, the set of all χ_S must be an orthonormal basis for the space of all real-valued functions on $\{0,1\}^n$.

The set of all χ_S is called the *the Fourier basis*.

1.4 Fourier Transform

Definition 1.6. For each $S \subseteq [n]$, we define the Fourier transform of f at S as following:

$$\widehat{f}(S) := \mathbb{E}[f \cdot \chi_S] = \langle f, \chi_S \rangle$$

Definition 1.7 (Fourier transform). The mapping $\mathcal{F}: f \mapsto \widehat{f}$ is called the Fourier transform.

If we view functions f, \hat{f} as N-dimensional vectors, then we can write the Fourier transform as the product of f and some matrix F as following:

$$\mathcal{F}(f) = f \cdot F$$

$$= \frac{1}{N} (f(0), f(1), \dots, f(N-1)) \begin{pmatrix} \chi_0(0) & \chi_1(0) & \dots & \chi_{N-1}(0) \\ \chi_0(1) & \chi_1(1) & \dots & \chi_{N-1}(1) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_0(N-1) & \chi_1(N-1) & \dots & \chi_{N-1}(N-1) \end{pmatrix}$$

$$= (\widehat{f}(0), \widehat{f}(1), \dots, \widehat{f}(N-1))$$

$$= \widehat{f}$$

where $F_{ij} = \frac{\chi_i(j)}{N}$. Since $\chi_i(j) = \chi_j(i)$, F is symmetric.

Lemma 1.8. F is invertible

Proof. We have

$$(F \cdot F)_{ij} = \frac{1}{N^2} \sum_{k=0}^{N-1} \langle \chi_i(k), \chi_j(k) \rangle$$

Based on Theorem 1.4, it is easy to see that

$$(F \cdot F)_{ij} = \begin{cases} \frac{1}{N^2} & \text{if } i = j\\ 0 & \text{otherwise} \end{cases}$$

So $F \cdot F = N^2 \cdot I$, which implies that F is invertible

Theorem 1.9. The mapping \mathcal{F} is linear.

Proof. This follows from the properties of inner product. For any S,

$$\widehat{af+bg}(S) = \langle af+bg, \chi_S \rangle = \langle af, \chi_S \rangle + \langle bg, \chi_S \rangle = a\langle f, \chi_S \rangle + b\langle g, \chi_s \rangle = a\widehat{f}(S) + b\widehat{g}(S)$$

Thus, $\widehat{af+bg} = \widehat{af} + b\widehat{g}$, which means \mathcal{F} is linear.

Here is another way to show that.

$$\widehat{af+bg} = \mathcal{F}(af+bg) = (af+bg)F = afF + bgF = a(fF) + b(gF) = a\widehat{f} + b\widehat{g}$$

Theorem 1.10. The linear map \mathcal{F} is a bijection.

Proof. It suffices to show that F is invertible, which follows immediately from Lemma 1.8.

1.5 Parseval's Identity

Since the set of χ_S forms an orthonormal basis,

$$f = \sum_{S} \widehat{f}(S)\chi_{S}. \tag{1.1}$$

Hence,

$$\langle f, g \rangle = \sum_{S} \widehat{f}(S)\widehat{g}(S)$$
 (1.2)

In particular, when f = g we get Parseval's identity:

$$||f||_2^2 = \sum_{S} \widehat{f}(S)^2 \tag{1.3}$$

This also implies:

$$||f - g||_2^2 = \sum_{S} (\widehat{f}(S) - \widehat{g}(S))^2$$
(1.4)

1.6 Convolution

Definition 1.11. Given any two function f and $g: \{0,1\}^n \to \mathbb{R}$, the convolution of $f * g: \{0,1\}^n \to \mathbb{R}$ is defined as

$$(f * g)(x) := \frac{1}{2^n} \sum_{y \in \{0,1\}^n} f(x \oplus y)g(y)$$

Theorem 1.12. If X and Y are n-bits random independent variables with probability distributions f and g, respectively, then $2^n(f*g)$ is the distribution of the random variable $Z = X \oplus Y$.

Proof.

$$Pr[Z = z] = Pr[X = z \oplus Y]$$

$$= \sum_{y \in \{0,1\}^n} Pr[X = z \oplus y | Y = y]$$

$$= \sum_{y \in \{0,1\}^n} Pr[X = z \oplus y] \cdot Pr[Y = y]$$

$$= \sum_{y \in \{0,1\}^n} f((z \oplus y) \cdot g(y))$$

$$= 2^n (f * g)(z)$$

Theorem 1.13. For every $S \subseteq [n]$,

$$\widehat{f * g}(S) = \widehat{f}(S) \cdot \widehat{g}(S)$$

Proof.

$$\widehat{f * g}(S) = \frac{1}{2^n} \sum_{x} (f * g)(x) \chi_S(x)$$

$$= \frac{1}{2^n} \sum_{x} \left(\frac{1}{2^n} \sum_{y} f(x \oplus y) g(y) \right) \chi_S(x)$$

$$= \frac{1}{2^{2n}} \sum_{x} \sum_{y} f(x \oplus y) g(y) \chi_S(x \oplus y) \chi_S(y)$$

$$= \frac{1}{2^n} \sum_{x} f(x \oplus y) \chi_S(x \oplus y) \left(\frac{1}{2^n} \sum_{y} g(y) \chi_S(y) \right)$$

$$= \widehat{f}(S) \cdot \widehat{g}(S)$$

Intuitively, the convolution f * g is the product of the Fourier transforms of f and g.

Theorem 1.14. Let V be a subspace of dimension k of $\{0,1\}^n$ and let V^{\perp} be the dual of V. Define

$$f(x) = \begin{cases} \frac{1}{2^k} & if \ x \in V \\ 0 & otherwise. \end{cases}$$

Then

$$\widehat{f}(S) = \begin{cases} \frac{1}{N} & \text{if } S \in V^{\perp} \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Suppose $v_1, v_2, ..., v_k$ is a basis of V.

Claim 1.15. $V = \langle v_1 \rangle \oplus \langle v_2 \rangle \oplus ... \oplus \langle v_k \rangle$

Claim 1.16.
$$\langle v_1 \rangle^{\perp} \cap ... \cap \langle v_k \rangle^{\perp} = \langle v_1, ..., v_k \rangle^{\perp} = V^{\perp}$$

Let
$$f_i = \begin{cases} \frac{1}{2} & \text{if } S \in \langle v_i \rangle \\ 0 & \text{otherwise} \end{cases}$$
, then $\widehat{f}_i = \begin{cases} \frac{1}{N} & \text{if } S \in \langle v_i \rangle^{\perp} \\ 0 & \text{otherwise.} \end{cases}$.

From above claims, we immediately obtain following result.

Claim 1.17. $f = f_1 \oplus f_2 \oplus ... \oplus f_k$

Hence,

$$\widehat{f}(S) = N^{k-1}\widehat{f}_1(S)...\widehat{f}_k(S)$$

If $S \in V^{\perp}$, then $S \in \langle v_i \rangle^{\perp}$ for every i, so $\widehat{f}(S) = N^{k-1} \cdot (\frac{1}{N})^k = \frac{1}{N}$. If $S \notin V^{\perp}$, then there exits some i such that $S \notin \langle v_i \rangle^{\perp}$, which implies $\widehat{f}_i(S) = 0$. Hence, $\widehat{f}(S) = 0$

Chapter 2

Min Entropy

Let $X = (x_0, x_1, ..., x_{N-1})$ be a distribution function of a random variable over $\{0, 1\}^n$, where $N := 2^n$.

Definition 2.1 (Min Entropy). We define the min entropy of X as follow.

$$H_{\infty}(X) := \min_{i} (-\log x_i)$$

This implies that if $H_{\infty}(X) \geq k$ then $x_i \leq \frac{1}{2^k}$ for every $0 \leq i \leq N-1$

Theorem 2.2 (Collision Probability). If we sample X twice, then the probability we get the same result, denoted Col(X), is $\sum_{i=0}^{N-1} x_i^2 = N \cdot ||X||_2^2$.

Definition 2.3 (Flat Distribution). A probability distribution function $f: \{0,1\}^n \to (0,1)$ is a T-flat if there $\exists S \subseteq \{0,1\}^n$ such that |S| = T and $f(x) = \begin{cases} \frac{1}{T} & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$

Lemma 2.4. For every $\alpha \geq \beta$, every α -flat distribution can be written as the sum of β -flat distributions.

Theorem 2.5. For every integer $k \geq 0$, if $H_{\infty}(X) \geq k$, then $X = \sum \alpha_i X_i$, where each X_i is a 2^k -flat, $\alpha_i \in [0,1]$ for every i, and $\sum_i \alpha_i = 1$.

Proof. Let S be the set of all the probability distributions X with $H_{\infty}(X) \geq k$, then S is a compact (closed and bounded) convex set in \mathbb{R}^N .

Claim 2.6. The set of all 2^k -flat distributions is the set of all extreme points of S.

First, every 2^k -flat distribution X is an extreme point of S since if $X = \alpha Y + (1 - \alpha)Z$ for some $Y, Z \in S$ and $\alpha \in [0, 1]$, then X = Y = Z. Next, we want to show that for any X, which is not a 2^k -flat distribution, X is not an extreme point of S. Since X is not a 2^k -flat distribution, there exist i < j such that $0 < x_i, x_j < \frac{1}{2^k}$. So we can choose $\delta > 0$ such that $x_i + \delta, x_j + \delta \le \frac{1}{2^k}$ and $x_i - \delta, x_j - \delta \ge 0$. Now let $y_k = z_k = x_k$ for every $k \ne i, k \ne j$, $y_i = x_i + \delta, y_j = x_j - \delta, z_i = x_i - \delta$, and $z_j = x_j + \delta$. Then $Y, Z \in S$ and $X = \frac{1}{2}Y + \frac{1}{2}Z$, which implies that X is not an extreme point.

Back to the problem, since S is a compact convex set, the set of all convex combinations of its vertices is identical to S. Hence, every distribution X with $H_{\infty}(X) \geq k$ can be written as a convex combination of k-flat distributions.

Theorem 2.7. If $H_{\infty}(X) \geq k$, then $Col(X) \leq \frac{1}{2^k}$.

Proof. By theorem 2.5, we can write X as $X = \sum_{i} \alpha_i X_i$, where each X_i is a 2^k -flat, $\sum_{i} \alpha_i = 1$, and $\alpha_i \in [0,1]$ for every i. It is obvious that $Col(X_i) = ||X_i||_2^2 = \frac{1}{2^k}$. Collision functions are convex, so by Jensen's inequality,

$$Col(X) = Col\left(\sum_{i} \alpha_{i} X_{i}\right) \leq \sum_{i} \alpha_{i} \cdot Col(X_{i}) = \sum_{i} \alpha_{i} \frac{1}{2^{k}} = \frac{1}{2^{k}} \sum_{i} \alpha_{i} = \frac{1}{2^{k}}$$

Theorem 2.8. If $H_{\infty}(X) \geq k$, then $\sum_{S} \widehat{X}(S)^2 \leq \frac{1}{N \cdot 2^k}$.

This follow immediately from the Parseval's identity.

Definition 2.9 (Small Bias Distribution). Let \mathcal{D} be a probability distribution function over $\{0,1\}^n$. We say that \mathcal{D} is α -bias if $\widehat{D}(S) \leq \frac{\alpha}{N}$.

Definition 2.10. Statistical Different between two distributions A and B is defined as follow:

$$SD(A,B) = \frac{1}{2} \sum_{i} |a_i - b_i|$$

Theorem 2.11. Let \mathcal{D} be a small bias distribution with $\widehat{\mathcal{D}}(S) \leq \frac{\alpha}{N}$ for all S, let \mathcal{M} be a min entropy source such that $H_{\infty}(\mathcal{M}) \geq k$, and let \mathcal{U} be the uniform distribution over n-bits string. Then

$$SD(\mathcal{D} \oplus \mathcal{M}, \mathcal{U}) \le \frac{\alpha\sqrt{N}}{2^{1+k/2}}$$

Proof.

$$SD(\mathcal{D} \oplus \mathcal{M}, \mathcal{U}) = \frac{1}{2} \sum_{i} |(\mathcal{D} \oplus \mathcal{M})(i) - \mathcal{U}(i)|$$

$$\leq \frac{1}{2} \sqrt{N \sum_{i} [(\mathcal{D} \oplus \mathcal{M})(i) - \mathcal{U}(i)]^{2}}$$

$$= \frac{1}{2} \sqrt{N^{2} \cdot ||(\mathcal{D} \oplus \mathcal{M}) - \mathcal{U}||_{2}^{2}}$$

$$= \frac{N}{2} \sqrt{\sum_{S \neq \emptyset} \widehat{\mathcal{D} \oplus \mathcal{M}}(S) - \mathcal{U}(S)]^{2}}$$

$$= \frac{N}{2} \sqrt{\sum_{S \neq \emptyset} \widehat{\mathcal{D} \oplus \mathcal{M}}(S)^{2}}$$

By convolution,

$$\sum_{S \neq \emptyset} \widehat{\mathcal{D}} \oplus \widehat{\mathcal{M}}(S)^2 = \sum_{S \neq \emptyset} N^2 \cdot \widehat{\mathcal{D}} * \widehat{\mathcal{M}}(S)^2$$

$$= N^2 \sum_{S \neq \emptyset} \widehat{\mathcal{D}}(S)^2 \cdot \widehat{\mathcal{M}}(S)^2$$

$$\leq N^2 \cdot \sum_{S \neq \emptyset} (\frac{\alpha}{N})^2 \cdot \widehat{\mathcal{M}}(S)^2$$

$$= \alpha^2 \cdot \sum_{S \neq \emptyset} \widehat{\mathcal{M}}(S)^2$$

$$\leq \frac{\alpha^2}{N \cdot 2^k}$$

Hence,

$$SD(\mathcal{D} \oplus \mathcal{M}, \mathcal{U}) \leq \frac{\alpha \sqrt{N}}{2^{1+k/2}}$$

Theorem 2.12. Let M be a distribution with min entropy k over $\{0,1\}^n$, let G_0, G be $1by\frac{n}{2}$ and $\frac{n}{2}byn$ matrices respectively, and let X be a distribution over $\{0,1\}^{\frac{n}{2}}$. Then

$$SD\{(XG_0, XG \oplus M, G_0, G), (U, XG \oplus M, G_0, G)\} \le \frac{1}{2^k}$$

Proof. For simplicity, let $A = (XG_0, XG \oplus M | G_0, G)$ and $B = (U, XG \oplus M | G_0, G)$.

$$SD\{(XG_0, XG \oplus M, G_0, G), (U, XG \oplus M, G_0, G)\}$$

$$= \underset{G_0, G}{\mathbb{E}} [SD(A, B)]$$

$$= \underset{G_0, G}{\mathbb{E}} \left[\frac{1}{2} \sum_{i,j} |A(i) - B(i)| \right]$$

$$\leq \frac{1}{2} \underset{G_0, G}{\mathbb{E}} \left[\sqrt{2N \cdot \sum_{i} ((A(i) - B(i))^2} \right]$$

$$\leq \frac{\sqrt{2N}}{2} \sqrt{\sum_{G_0, G} \left[\sum_{i} (A(i) - B(i))^2 \right]}$$

$$= \frac{\sqrt{2N}}{2} \sqrt{\sum_{G_0, G} \left[(\widehat{A}(S) - \widehat{B}(S))^2 \right]}$$

Appendix A

A.1 Dual of a Vector Space

Definition A.1 (Dual space). Let V be a subspace of $\{0,1\}^n$. We define the dual of V as $V^{\perp} = \{x \in \{0,1\}^n | x \cdot v = 0 \ \forall v \in V\}.$

Theorem A.2. V^{\perp} is a subspace of $\{0,1\}^n$.

Proof. For any
$$x, y \in V^{\perp}$$
, $a \in \{0, 1\}$, $(a \cdot x + y) \cdot v = a \cdot (x \cdot v) + y \cdot v = 0 + 0 = 0$.

Lemma A.3.
$$\sum_{i:\text{even}}^{t} \binom{n}{i} = \sum_{i:\text{odd}}^{t} \binom{n}{i} = 2^{t-1}$$
.

Theorem A.4. For any subspace V of dimension k of $\{0,1\}^n$, there exists a unique dual space V^{\perp} of dimension (n-k).

Proof. We will show that $|V^{\perp}| = 2^{n-k}$ by induction on k.

If k = 0, then $V = \{0\}$. Clearly, $V^{\perp} = \{0, 1\}^n$.

If k=1, let $V=\{\vec{0},v\}$. Suppose the number of $v_i=1$ is t, then the number of x such that $x\cdot v=0$ is $\sum_{i:2|t-i}\binom{n}{i}2^{n-t}=2^{t-1}\cdot 2^{n-t}=2^{n-1}$ by Lemma A.3.

Suppose that there exists a unique orthogonal subspace V^{\perp} of dimension (n-k+1) for any subspace V of dimension k-1 of $\{0,1\}^n$, where $k \geq 2$.

Let $V = \langle v_1, v_2, ..., v_k \rangle$, $S_1 = \langle v_1, v_2, ..., v_{k-1} \rangle$, and $S_2 = \langle v_k \rangle$. Then, $V^{\perp} = S_1^{\perp} \cap S_2^{\perp}$.

Suppose $dim(V^{\perp}) = t$. We want to show t = n - k.

By induction hypothesis, $dim(S_1^{\perp}) = n - k + 1$ and $dim(S_2^{\perp}) = n - 1$.

If $t \leq n-k-1$, then we need [(n-k+1)-t] independent vectors to cover S_1^{\perp} from extending V^{\perp} , and we need [(n-1)-t] independent vectors to cover S_2^{\perp} from extending V^{\perp} . Since $S_1^{\perp} \cup S_2^{\perp} \subseteq \{0,1\}^n$, we must have $[(n-k+1)-t]+[(n-1)-t]+t \leq n$, which is equivalent to $t \geq n-k$, contradiction.

If $t \geq n-k+1$, then $S_1^{\perp} \subseteq S_2^{\perp}$, this is impossible since v_k is independent from $v_1, v_2, ..., v_{k-1}$. Thus, t = n-k. So $|V^{\perp}| = 2^{n-k}$.