

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 1

Durée: 4 heures

Les calculatrices sont autorisées.

N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Cette épreuve comporte deux problèmes totalement indépendants l'un de l'autre.

PROBLEME 1

Dans ce problème, on désigne par :

E la fonction partie entière,

I l'intervalle $]0,+\infty[$,

A l'ensemble des applications continues par morceaux de R⁺ dans R qui

vérifient la condition : pour tout $t \in \mathbb{R}^+$ $|f(t)| \le t$.

Si $f \in \mathcal{O}$ et $x \in I =]0,+\infty[$, on considère $F(x) = \int_{\mathbf{R}^+} e^{-xt} f(t) dt$. Le but de ce problème est d'étudier quelques propriétés de F.

Préliminaire - Etude de deux fonctions :

On considère pour $x \in \mathbf{R}$ et $n \in \mathbf{N}$: $u_n(x) = e^{-nx}$ et $v_n(x) = ne^{-nx}$

P.1/ Déterminer l'ensemble de convergence simple D de la série $\sum_{n\geq 0}u_n(x)$ (resp. D' de la série $\sum_{n\geq 0}v_n(x)$).

On note désormais $g(x) = \sum_{n=0}^{+\infty} u_n(x)$ pour $x \in D$ et $h(x) = \sum_{n=1}^{+\infty} v_n(x)$ pour $x \in D'$.

- **P.2**/ Expliciter g(x) pour $x \in D$.
- **P.3**/ Etablir (en la justifiant) une relation entre les fonctions g et h. En déduire l'expression explicite de h(x) pour $x \in D'$.

1/ Une étude de A.

- 1.1/ On considère la fonction f_0 définie sur \mathbf{R}^+ par $f_0(t) = t$.

 Montrer que si $x \in I$ alors l'application $t \mapsto e^{-xt} f_0(t)$ est intégrable sur \mathbf{R}^+ et expliciter $F_0(x) = \int e^{-xt} f_0(t) \ dt$.
- 1.2/ Vérifier que si $f \in \mathcal{A}$ et si $x \in I$, alors la fonction $\varphi_x : t \mapsto e^{-xt} f(t)$ est intégrable sur \mathbb{R}^+ .

Ainsi, lorsque $f \in \mathcal{O}$, la fonction $F: x \mapsto \int_{\mathbb{R}^+} e^{-xt} f(t) dt$ est bien définie sur I et on

note désormais $F = \mathcal{L}(f)$.

- 1.3/ Soit $f \in \mathcal{A}$ et $F = \mathcal{L}(f)$.
- 1.3.1/ Déduire de ce qui précède que xF(x) admet une limite que l'on précisera lorsque x tend vers $+\infty$.
- 1.3.2/ On suppose de plus que f est continue sur \mathbf{R}^+ . Montrer que la fonction F est de classe \mathcal{C}^1 sur l'intervalle I.

2/ Exemple 1 : fonction partie entière.

On considère dans cette question la fonction f_1 définie sur \mathbf{R}^+ par $f_1(t) = E(t)$ (partie entière de t) et soit $F_1 = \mathcal{L}(f_1)$.

- 2.1/ Vérifier que la fonction f_1 appartient à l'ensemble A.
- **2.2**/ Montrer que la fonction F_1 peut s'exprimer à l'aide de l'une des deux fonctions g ou h, et expliciter $F_1(x)$ pour $x \in I$.

3/ Un deuxième exemple.

On considère dans cette question la fonction f_2 définie sur \mathbf{R}^+ par $f_2(t) = E(t) + (t - E(t))^2$ et soit $F_2 = \mathcal{L}(f_2)$.

3.1/ Montrer que la fonction f_2 appartient à l'ensemble A.

- 3.2/ La fonction F_2 est-elle de classe \mathcal{C}^1 sur l'intervalle I?
- 3.3/ Indiquer l'allure du graphe de F_2 sur l'intervalle I.
- 3.4/ Expliciter $F_2(x)$ pour $x \in I$.

PROBLEME 2

Dans tout ce problème, $n \in \mathbb{N}^*$; si $(p,q) \in \mathbb{N}^2$ avec $p \le q$ on note [[p,q]] l'ensemble des $k \in \mathbb{N}$ tels que $p \le k \le q$.

On désigne par :

 $m_{n+1}(\mathbf{R})$ l'ensemble des matrices carrées d'ordre n+1 à coefficients dans \mathbf{R} ,

 O_{n+1} l'ensemble des matrices orthogonales de $m_{n+1}(\mathbf{R})$,

 D_{n+1} l'ensemble des matrices diagonales de $m_{n+1}(\mathbf{R})$;

si $M \in m_{n+1}(\mathbf{R})$ on note:

 $M = (\mu_{i,j})$ avec $(i,j) \in [[1,n+1]] \times [[1,n+1]]$, où $\mu_{i,j}$ désigne l'élément de la i-ème ligne et de la j-ème colonne de la matrice M,

 M^{t} la matrice transposée de M,

 $\det M$ le déterminant de M,

 f_M l'endomorphisme de \mathbb{R}^{n+1} dont la matrice dans la base canonique de \mathbb{R}^{n+1} est la matrice M,

 M^* la transposée de la comatrice de M (on rappelle la relation $MM^* = M^*M = (\det M)I_{n+1}$, où I_{n+1} désigne la matrice unité de $m_{n+1}(\mathbf{R})$).

Etant donné deux éléments de \mathbf{R}^n : $a = (a_1, a_2, \dots, a_n)$ et $b = (b_1, b_2, \dots, b_n)$, on associe au couple (a, b) la matrice $A_n(a, b) \in \mathcal{M}_{n+1}(\mathbf{R})$ définie par $A_n(a, b) = (\alpha_{i,j})$ avec

$$\alpha_{i,j} = 0$$
 lorsque $|i - j| \neq 1$

$$\alpha_{i+1,i} = a_i \quad , \quad \alpha_{i,i+1} = b_i \quad \text{pour} \quad i \in [[1, n]].$$

Par exemple pour n = 2 $a = (a_1, a_2)$, $b = (b_1, b_2)$

$$A_2(a,b) = \begin{bmatrix} 0 & b_1 & 0 \\ a_1 & 0 & b_2 \\ 0 & a_2 & 0 \end{bmatrix} \in m_3(\mathbf{R})$$

Pour $n \in \mathbb{N}^*$, n fixé, on note \mathcal{E}_n l'ensemble des matrices $A_n(a,b)$ pour $(a,b) \in (\mathbb{R}^n)^2$. On se propose d'étudier quelques propriétés des matrices $A_n(a,b)$ et de l'ensemble \mathcal{E}_n .

PARTIE I

Etude de \mathcal{E}_1

Soit C_1 l'ensemble des matrices $A_1 = A_1(a_1, b_1) = \begin{pmatrix} 0 & b_1 \\ a_1 & 0 \end{pmatrix}$ pour $a_1 \in \mathbf{R}$ et $b_1 \in \mathbf{R}$.

1.1/ soit $G = A_1(1,0)$ $H = A_1(0,1)$

Calculer G^2 , H^2 , GH, HG.

L'ensemble \mathcal{E}_1 est-il stable pour la multiplication ?

- **1.2**/ Expliciter l'ensemble $\mathcal{C}_1 \cap O_2$ (c'est à dire l'ensemble des matrices de \mathcal{C}_1 qui sont orthogonales).
- I.3/ Montrer que toute matrice $A = A_1(a_1, b_1)$ appartenant à \mathcal{C}_1 peut s'écrire sous la forme $A = U\Delta$ avec $U \in \mathcal{C}_1 \cap O_2$ et $\Delta \in D_2$; préciser le nombre de décompositions.
- **I.4**/ On considère une matrice $A = A_1(a_1, b_1) \in \mathcal{E}_1$.
- I.4.1/ On suppose $a_1b_1 \neq 0$. Justifier l'existence de A^{-1} ; la matrice A^{-1} appartientelle à C_1 ?
 - I.4.2/ La matrice A est-elle diagonalisable dans $m_2(\mathbf{R})$ lorsque $a_1b_1 < 0$?
 - lorsque $a_1b_1 > 0$?
- I.4.3/ On suppose que $a_1b_1=0$. Donner une condition nécessaire et suffisante portant sur a_1 et b_1 pour que la matrice A soit diagonalisable dans $m_2(\mathbf{R})$.

I.5/ On considère deux matrices de \mathcal{E}_1 :

$$K = \begin{pmatrix} 0 & y \\ x & 0 \end{pmatrix}$$
 $L = \begin{pmatrix} 0 & t \\ z & 0 \end{pmatrix}$ avec $(x, y, z, t) \in \mathbf{R}^4$

- I.5.1/ Les deux matrices K et L sont-elles semblables dans $m_2(\mathbf{R})$ lorsque $xy \neq zt$?
 - **I.5.2**/ On suppose que $xy = zt \neq 0$.

Les deux matrices K et L sont-elles semblables dans $m_2(\mathbf{R})$?

PARTIE II

Etude de \mathcal{E}_n

Pour $n \in \mathbb{N}^*$, soit $a = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$, $b = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$; dans le but de simplifier, on notera $d_n(a, b)$ ou simplement d_n le déterminant de la matrice $A = A_n(a, b)$.

II.1/ Calcul de d_n .

11.1.1/ Calculer d_2 .

II.1.2/ Pour $n \ge 3$ exprimer d_n function de a_n, b_n et d_{n-2} .

II.1.3/ Quelle est la valeur de d_{2p} pour $p \in \mathbb{N}^*$?

fh.1.4/ Calculer d_{2p+1} pour $p \in \mathbb{N}$, en fonction des a_i et des b_i , $i \in [[1,2p+1]]$.

II.2/ Liens entre \mathcal{C}_n , O_{n+1} et D_{n+1} .

11.2.1 On suppose qu'il existe une matrice $U \in \mathcal{E}_n \cap O_{n+1}$. Soit $\Delta \in D_{n+1}$, on pose $A = U\Delta$; vérifier que $A \in \mathcal{E}_n$ et que $A^t A \in D_{n+1}$.

II.2.2/ Soit $A \in \mathcal{C}_{2p}$; existe-t-il $U \in \mathcal{C}_{2p} \cap O_{2p+1}$ et $\Delta \in D_{2p+1}$ telles que $A = U\Delta$?

II.2.3/ Pour n=3 on considère la matrice $A=A_3(a,b)\in\mathcal{C}_3$ avec a=(1,3,5) b=(2,4,6). Existe-t-il $U\in\mathcal{C}_3\cap O_4$ et $\Delta\in D_4$ telles que $A=A_3(a,b)=U\Delta$?

II.2.4/ On suppose que n = 2p + 1 et que $A = A_{2p+1}(a, b) \in \mathcal{C}_{2p+1} \cap O_{2p+2}$.

11.2.4.1/ Quelles sont les valeurs possibles pour a_1 , b_1 , a_2 , b_2 ?

I.2.4.2/ Préciser l'ensemble $\mathcal{C}_{2p+1} \cap O_{2p+2}$ et son cardinal.

II.2.4.3/ Soit $A \in \mathcal{C}_{2p+1}$ telle que $A^t A \in D_{2p+2}$ et det $A \neq 0$. Montrer qu'il

existe $U \in \mathcal{C}_{2p+1} \cap O_{2p+2}$ et $\Delta \in D_{2p+2}$ telles que $A = U\Delta$.

II.3/ Matrices symétriques de \mathcal{E}_n .

On considère dans cette question la matrice $A = A_n(a, a)$ pour $a \in \mathbb{R}^n$.

II.3.1/ Justifier l'affirmation:

Pour tout $a \in \mathbb{R}^n$ la matrice A est diagonalisable dans $m_{n+1}(\mathbb{R})$.

Si λ_j , $j \in [[1, n+1]]$ désignent les valeurs propres de f_A , préciser la valeur de $\sum_{j=1}^{n+1} \lambda_j$.

II.3.2/ Pour $(x, y) \in (\mathbb{R}^{n+1})^2$, on note $\langle x, y \rangle$ le produit scalaire euclidien canonique de x et y. On associe à $A = A_n(a, a)$ la forme bilinéaire φ_A (notée simplement φ) définie par :

pour tout
$$(x, y) \in (\mathbb{R}^{n+1})^2$$
 $\varphi(x, y) = \langle x, f_A(y) \rangle$.

La forme bilinéaire φ définit-elle un produit scalaire sur \mathbb{R}^{n+1} ? (on pourra considérer $\varphi(x, x)$ pour x vecteur propre de l'endomorphisme f_A).

II.4/ Comatrices et ensemble \mathcal{E}_n .

11.4.1/ Montrer que pour toute matrice $A = A_1(a_1, b_1) \in \mathcal{C}_1$ la matrice A^* est élément de \mathcal{C}_1 .

Dans la suite on suppose que $n \ge 2$.

II.4.2/ Si
$$A \in \mathcal{E}_n \cap O_{n+1}$$
 la matrice A^* appartient-elle à \mathcal{E}_n ?

II.4.3/ Existe-t-il un entier $n \ge 2$ tel que pour toute matrice $A \in \mathcal{C}_n$ la matrice A^* soit élément de \mathcal{C}_n ?