MATH 561 Fall 2015 – Final Assignment

Last Name:	First Name:
UID:	Siganuture:

1. (10 points) Let $x_1, x_2, \ldots, x_n, n > 1$, be machine numbers. Their product can be computed by the algorithm

$$p_1 = x_1,$$

 $p_k = fl(x_k p_{k-1}), k = 2, 3, \dots, n.$

(a) Find an upper bound for the relative error in terms of the machine precision eps and n,

$$\frac{p_n - x_1 x_2 \cdots x_n}{x_1 x_2 \cdots x_n}$$

(b) For any integer $r \ge 1$ not too large so as to satisfy $r \cdot eps < 1/10$, show that

$$(1 + eps)^r - 1 < 1.06 \cdot r \cdot eps.$$

Hence, for n not too large, simplify the answer given in (a). (Hint: use the binomial theorem)

2. (30 points) (a) Determine

$$\min \max_{a \le x \le b} |a_0 x^n + a_1 x^{n-1} + \dots + a_n|, \quad n \ge 1,$$

where the minimum is taken over all real a_0, a_1, \ldots, a_n with $a_0 \neq 0$. (Hint: use Chebyshev's Theorem 2.2.1)

(b) Let a > 1 and $\mathbf{P}_n^a = \{ p \in \mathbf{P}_n : p(a) = 1 \}$. Define $\hat{p}_n \in \mathbf{P}_n^a$ by $\hat{p}_n(x) = T_n(x)/T_n(a)$, where T_n is the Chebyshev polynomial of degree n, and let $\| \cdot \|_{\infty}$ denote the maximum norm on the interval [-1, 1]. Prove:

$$\|\hat{p}_n\|_{\infty} \le \|p\|_{\infty} \text{ for all } p \in \mathbf{P}_n^a.$$

(Hint: imitate the proof of Chebyshev's Theorem 2.2.1.)

(c) Let f be a positive function defined on [a, b] and assume

$$\min_{a \le x \le b} |f(x)| = m_0, \max_{a \le x \le b} |f^{(k)}(x)| = M_k, \ k = 0, 1, 2, \dots$$

- (c.1) Denote by $p_{n-1}(f;\cdot)$ the polynomial of degree $\leq n-1$ interpolating f at the n Chebyshev points (relative to the interval [a,b]). Estimate the maximum relative error $r_n = \max_{a \leq x \leq b} |(f(x) p_{n-1}(f;x))/f(x)|$.
- (c.2) Apply the result of (c.1) to $f(x) = \ln x$ on $I_r = \{e^r \le x \le e^{r+1}\}$, $r \ge 1$ an integer. In particular, show that $r_n \le \alpha(r,n)c^n$, where 0 < c < 1 and α is slowly varying. Exhibit c.

3. (20 points) Let $f: \mathbf{R} \to \mathbf{R}$ be a function defined and integrable on [-1, 1]. Let

$$-1 = x_0 < x_1 < \dots < x_n = 1$$

be a partition of [-1,1]. Consider the following numerical quadrature

$$I(f) \equiv \int_{-1}^{1} f(x)dx \approx \sum_{i=0}^{n} w_i f(x_i) \equiv I_n(f),$$

where

$$w_i = \int_{-1}^{1} L_i(x) dx$$
 with $L_i(x) = \prod_{k=0, k \neq i}^{n} \frac{x - x_k}{x_i - x_k}$ for $i = 0, 1, \dots, n$

- (a) Prove that if n is even and the quadrature points are evenly spaced: $x_i = -1 + ih$ with h = 2/n, then the numerical quadrature is exact for polynomial of degree n + 1.
- (b) Let n = 2 and let $x_0 = -1, x_1 = 0$, and $x_2 = 1$. Compute w_0, w_1 , and w_2 , and explicitly write out the numerical quadrature formula in this case.
- (c) When n = 2 and let $x_0 = -1, x_1 = 0$, and $x_2 = 1$, what is the degree of precision of the numerical quadrature formula? (Completely justify your answer).
- 4. (20 points) Let

$$a = x_0 < x_1 < \dots < x_n = b$$

be a partition of [a, b]. Consider a function $f \in C^{\infty}[a, b]$.

- (a) Define what it means for a S to be a linear spline that interpolates f at all the points x_i for i = 0, 1, ..., n. Give a formula for S in terms of the point values of f.
- (b) Let

$$h = \max_{0 \le i \le n-1} (x_{i+1} - x_i).$$

Derive an upper bound on

$$|f(x) - S(x)|$$
 for $x \in [a, b]$.

Use this to prove that

$$\lim_{h \to 0} |f(x) - S(x)| = 0 \text{ for } x \in [a, b],$$

and state the rate of convergence.

- (c) Define what it means for a S to be a clamped cubic spline that interpolates f at all the points x_i , i = 0, 1, ..., n. (You must include a full definition for a cubic spline, including the clamped part.)
- 5. (20 points)

(a) Prove the following theorem: consider the system of initial value problems:

$$\mathbf{y}' = \mathbf{f}(\mathbf{y})$$

and apply to it the forward Euler method:

$$\mathbf{u}_{n+1} = \mathbf{F}(\mathbf{u}_n) \equiv \mathbf{u}_n + h\mathbf{f}(\mathbf{u}_n)$$

Then

- α is a fixed point of the Euler method $\mathbf{F}(\alpha) = \alpha$ if and only if α is a fixed point of the initial value problem $(\mathbf{f}(\alpha) = \mathbf{0})$.
- If α is a linearly stable fixed point of the initial value problem (i.e., all the eigenvalues of the matrix $\partial \mathbf{f}/\partial \mathbf{y}(\alpha)$ have negative real parts) and if $|1 + h\lambda_p| < 1$ for each eigenvalue λ_p of $\partial \mathbf{f}/\partial \mathbf{y}(\alpha)$, then α is also a linearly stable fixed point of the Euler method.
- (b) The fixed points of the Logistic growth equation:

$$y' = f(y) = 2y(1-y)$$

are y = 0 (unstable since f'(0) = 2) and y = 1 (stable since f'(1) = -2). Apply the Euler method to this equation and find and classify all fixed points of the Euler method as a function of the time-step parameter h