Ćwiczenie 21

Wyznaczanie pojemności kondensatora i stałej czasowej obwodu z krzywej rozładowanie kondensatora

I. Wymagania do ćwiczenia

- 1. Pole elektryczne natężenie i potencjał.
- 2. Pojemność kondensatora
- 3. Ładowanie i rozładowanie kondensatora
- 4. Stała czasowa obwodu.

Literatura

1. I.W. Sawieliew, Wykłady z fizyki t.2, Wydawnictwo Naukowe PWN, Warszawa 1994, str. 22 – 31, 107 - 110.

II. Metodologia wykonania pomiarów

1. Połączyć obwód według schematu: w zależności od położenia klucza K obwód służy do ładowania lub rozładowania kondensatora.

- 2. Naładować kondensator (przełącznik K w pozycji 1). Ustawić taką wartość oporu R, aby natężenie prądu osiągnęło maksymalną, możliwą do odczytu wartość przy pomocy zastosowanego amperomierza, $I=I_0$ dla $t=0\,\mathrm{s}$.
- 3. Ustawić przełącznik K w pozycji 2 i jednocześnie włączyć sekundomierz. Zmierzyć czas, po którym natężenie prądu osiągnie wartości $I_1=I_0-\Delta I$, $I_2=I_0-2\Delta I$, $I_3=I_0-3\Delta I$, ..., $I_n=I_0-n\Delta I$. Wartość ΔI ustalić z prowadzącym ćwiczenia.
- 4. Uzyskane wyniki zapisać w tabeli pomiarowej.

U	R	I_0	t	I	Q	$C \pm u(C)$	$ au \pm u(au)$
[V]	[Ω]	[A]	[s]	[A]	[C]	[F]	[s]

III. Obliczenia

- 1. Sporządzić wykresy zależności prądu rozładowania od czasu I = f(t) oraz $\ln I = f(t)$.
- 2. Wartość ładunku zgromadzonego na okładkach kondensatora obliczyć wyznaczając wartość pola powierzchni zawartego między osią czasu a krzywą I = f(t).
- 3. Wyznaczyć pojemność kondensatora z zależności:

$$C = \frac{Q}{U}$$

- 4. Obliczyć stałą czasową obwodu: a) na podstawie wykresu I(t) korzystając z definicji stałej czasowej, b) z zależności $\tau = RC$, c) korzystając z wykresu $\ln I = f(t)$ poprzez wyznaczenie współczynnika kierunkowego tej prostej. Przedyskutować otrzymane wyniki.
- 5. Na wykresie I = f(t) zaznaczyć niepewności pomiarowe. Niepewność pomiaru natężenia prądu obliczyć na podstawie klasy przyrządu pomiarowego i niepewności odczytu. Uwzględnić również fakt, że I = 0 gdy $t \to \infty$. Pomiary są przeprowadzone w skończonym czasie, w którym natężenie prądu nie spada do zera wpływa to na niepewność wyznaczenia ładunku. Niepewność wyznaczenia pojemności kondensatora obliczyć metodą różniczki zupełnej.
- 6. Przy wyznaczaniu stałej czasowej obwodu z zależności $\ln I = f(t)$ dopasować, korzystając z metody najmniejszych kwadratów, do uzyskanych wyników prostą. Na podstawie nachylenia prostej wyznaczyć stałą czasową obwodu. Wyznaczyć odchylenia standardowe u(a), u(b) parametrów prostej.