Введение в искусственный интеллект. Машинное обучение

Тема: Решающие деревья. Случайный лес

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

План лекции

- Случайные деревья
 - ID3 (Iterative Dichotomiser 3)
 - CART (Classification And Regression Tree)
- Олучайный лес

КАК ВСЁ ПОЧИНИТЬ

ЭТО ДВИГАЕТСЯ?

Скрипт разговора оператора

• Инструкции любого call-центра

- Инструкции любого call-центра
- Постановка медицинского диагноза

- Инструкции любого call-центра
- Постановка медицинского диагноза
- Многие алгоритмы имеют древовидную структуру

- Инструкции любого call-центра
- Постановка медицинского диагноза
- Многие алгоритмы имеют древовидную структуру

Достоинства

Главные достоинства дерева — интерпретируемость и простота

Определение решающего дерева

Определение

Решающее дерево — алгоритм машинного обучения, задающийся деревом со следующими свойствами:

- Выделена вершина корень дерева
- ② Листовой вершине (у которой нет потомков) соотвествует некоторый ответ алгоритма $y \in Y$
- Каждой внутренней вершине соотвествует предикат. Каждому ребру из внутренней вершины соотвествует некоторое значение предиката

Пример решающего дерева для задачи классификации

Ирисы Фишера

Задача Фишера о классификации цветков ириса на 3 класса

Пример решающего дерева для задачи регрессии

• Пороговое условие

- Пороговое условие
- Конъюнкция пороговых условий

- Пороговое условие
- Конъюнкция пороговых условий
- Синдром выполнение какого-то минимального количества условий

- Пороговое условие
- Конъюнкция пороговых условий
- Синдром выполнение какого-то минимального количества условий
- Полуплоскость линейная пороговая функция

- Пороговое условие
- Конъюнкция пороговых условий
- Синдром выполнение какого-то минимального количества условий
- Полуплоскость линейная пороговая функция
- Шар пороговая функция близости

K-мерное дерево для kNN

Kd-Tree in 2D

Multiple Randomized Kd-Trees

Задача

Построение дерева наименьшего размера, которое не ошибается

Задача

Построение дерева наименьшего размера, которое не ошибается

Построение дерева определенного размера с минимальным количеством ошибок

Задача

Построение дерева наименьшего размера, которое не ошибается

Построение дерева определенного размера с минимальным количеством ошибок

Проблема

Построение дерева наименьшего размера, которое не ошибается — NP - сложная задача

Задача

Построение дерева наименьшего размера, которое не ошибается

Построение дерева определенного размера с минимальным количеством ошибок

Проблема

Построение дерева наименьшего размера, которое не ошибается — NP - сложная задача

Решение

Итеративные жадные алгоритмы

Пример построения дерева

Пример построения дерева

Пример построения дерева

Критерии информативности для задачи двухклассовой классификации

Пусть p — частота встречаемости одного из классов

Ошибка классификации	1-max(p,1-p)
Индекс Джинни	2p(1-p)
Кросс-энтропийный критерий	-p log p - (1-p) log(1-p)

- Критерии довольно похоже
- Последние два критерия дифференцируемые

Критерии информативности для задачи двухклассовой классификации

Пусть p — частота встречаемости одного из классов

Ошибка классификации	1-max(p,1-p)
Индекс Джинни	2p(1-p)
Кросс-энтропийный критерий	-p log p - (1-p) log(1-p)

- Критерии довольно похоже
- Последние два критерия дифференцируемые
- Есть по 400 наблюдений из двух классов. Вопрос: какое разделение лучше (300, 100) и (100, 300) против (200, 400) и (200, 0)?

Критерии информативности для задачи многоклассовой классификации

Определения

Пусть R_m — некотороя часть пространста, сожержащая N_m объектов.

Пусть
$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} [y_i = k].$$

$$k(m) = rg \max_{k} \hat{
ho}_{mk}$$
 — мажоритарный класс

Ошибка классификации	$\frac{1}{N_m}\sum_{i:x_i\in R_m}[y_i\neq k(m)]=1-\hat{p}_{mk(m)}$
Индекс Джинни	$\sum\limits_{k eq k'}\hat{ ho}_{mk}\hat{ ho}_{mk'}=\sum\limits_{k}\hat{ ho}_{mk}(1-\hat{ ho}_{mk})$
Кросс-энтропийный критерий	$-\sum_{k}\hat{p}_{mk}\log\hat{p}_{mk}$

Ветвление

Дано

U — множество объектов, $\mathcal B$ - множество предикатов, I(U) — критерий информативности.

Ветвление

Тогда для предиката eta множество U разбивается на U_0 и U_1 .

Определим предикат с максимально информативностью:

$$\beta = \argmax_{\beta \in \mathcal{B}} I(\beta, U),$$

где
$$I(\beta,U) = \frac{|U_0|}{|U|} I(U_0) + \frac{|U_1|}{|U|} I(U_1).$$

Вход

U — обучающее множество объектов

 \mathcal{B} — множество предикатов

def ID3(U):

- ① Если все объекты из U лежат в одном классе, то отбить новый лист с меткой этого класса и выйти
- $oldsymbol{a}$ Найти маскисально информативный предикат $eta=rg\max_{eta\in\mathcal{B}}I(eta,U)$ и разбить выборку на 2 части $U=U_0\cup U_1$
 - на 2 части $O=O_0\cup O_1$
- ullet Если $U_0=\emptyset$ или $U_0=\emptyset$, от отбить лист с меткой мажоритарного класса и выйти
- lacktriangle Запустить ID3 для U_0 и U_1 .

Преимущества

• Простота реализации

- Простота реализации
- Хорошая интерпретируемость

- Простота реализации
- Хорошая интерпретируемость
- Сложность алгоритма линейна по длине выборки

- Простота реализации
- Хорошая интерпретируемость
- Сложность алгоритма линейна по длине выборки
- Алгоритм легко поддаётся многочисленным усовершенствованиям

Преимущества

- Простота реализации
- Хорошая интерпретируемость
- Сложность алгоритма линейна по длине выборки
- Алгоритм легко поддаётся многочисленным усовершенствованиям

Недостатки

• Жадность. Локальный выбор оптимального предиката не является глобальным

Преимущества и недостатки алгоритма ID3

Преимущества

- Простота реализации
- Хорошая интерпретируемость
- Сложность алгоритма линейна по длине выборки
- Алгоритм легко поддаётся многочисленным усовершенствованиям

Недостатки

- Жадность. Локальный выбор оптимального предиката не является глобальным
- Большая вариация алгоритма, при небольших изменениях в данных структура дерева полностью меняется

Преимущества и недостатки алгоритма ID3

Преимущества

- Простота реализации
- Хорошая интерпретируемость
- Сложность алгоритма линейна по длине выборки
- Алгоритм легко поддаётся многочисленным усовершенствованиям

Недостатки

- Жадность. Локальный выбор оптимального предиката не является глобальным
- Большая вариация алгоритма, при небольших изменениях в данных структура дерева полностью меняется
- Алгоритм склонен к переобучения, так как усложняет структуру дерева

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

$$c_m = ave(y_i | x_i \in R_m)$$

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

$$c_m = ave(y_i | x_i \in R_m)$$

<u>Ве</u>твление

Пусть
$$R_1(j,s) = \{X | X_j \leq s\}$$
 и $R_2(j,s) = \{X | X_j > s\}$

Тогда на каждом шаге будем решать задачу минимизации

$$\min_{j,s} (\min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2)$$

Регуляризация деревьев

Проблема

Деревья обученные жадным алгоритмом склонны к переобучению

Регуляризация деревьев

Проблема

Деревья обученные жадным алгоритмом склонны к переобучению

Решение

Добавление различных условий на сложность дерева, редукция решающих деревьев

CART

Определения

Пусть T — некоторое поддерево дерева T_0 . Обозначим:

- |Т| количество листов в Т
- $N_m = \#\{x_i \in R_m\}$
- $c_m = \frac{1}{N_m} \sum_{x_i \in R_m} y_i$
- $Q_m(T) = \frac{1}{N_m} \sum_{x_i \in R_m} (y_i c_m)^2$

Стратегия усечения дерева

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

• Максимальная глубина дерева (max_depth)

- Максимальная глубина дерева (max depth)
- Минимальное число наблюдений для ветвления дерева (min_samples_split)

- Максимальная глубина дерева (max depth)
- Минимальное число наблюдений для ветвления дерева (min_samples_split)
- Минимальное число наблюдения в листе (min_samples_leaf)

- Максимальная глубина дерева (max depth)
- Минимальное число наблюдений для ветвления дерева (min_samples_split)
- Минимальное число наблюдения в листе (min_samples_leaf)
- Максимальное количество признаков, используемых для деления (max_features)

- Максимальная глубина дерева (max depth)
- Минимальное число наблюдений для ветвления дерева (min_samples_split)
- Минимальное число наблюдения в листе (min_samples_leaf)
- Максимальное количество признаков, используемых для деления (max_features)
- Максимальное число листьев (max_leaf_nodes)

- Максимальная глубина дерева (max depth)
- Минимальное число наблюдений для ветвления дерева (min_samples_split)
- Минимальное число наблюдения в листе (min_samples_leaf)
- Максимальное количество признаков, используемых для деления (max_features)
- Максимальное число листьев (max_leaf_nodes)
- Минимальное изменение критерия информативности (min_impurity_decrease)

Время для вопросов

Random forest

Основная идея

Решащие деревья не устойчивы к небольшим изменениям данных. Поэтому при обучении на различных подвыборках решающие деревья будут ошибаться на разных объектах.

Random forest

Основная идея,

Решащие деревья не устойчивы к небольшим изменениям данных. Поэтому при обучении на различных подвыборках решающие деревья будут ошибаться на разных объектах.

Определение

- Обучение каждого решающего дерева происходит на сгенерированной случайной подвыборки с повторениями размера обучающей выборки
- Обучение происходит на случайной подвыборке признаков (их количество входной параметр алгоритма, для классификации берут \sqrt{n} , для регрессии $\frac{n}{3}$)
- Дерево строится до полного исчерпания подвыборки и не подвергается процедуре прунинга
- ullet Решающее правило $a(x)=rac{1}{T}\sum_{t=1}^{T}a_t(x)$

Отбор признаков

Важность признаков

• При построении случайного леса считается количество вершин, в которых используется признак с весом (количество наблюдений в вершине)

Отбор признаков

Важность признаков

- При построении случайного леса считается количество вершин, в которых используется признак с весом (количество наблюдений в вершине)
- Признак тем важнее, чем большее разница между метрикой качества на обычных данных и на данных, где этот признак случайно перемешан

Преимущества

• Способность эффективно обрабатывать данные с большим числом признаков и классов

- Способность эффективно обрабатывать данные с большим числом признаков и классов
- Нечувствительность к масштабированию значений признаков

- Способность эффективно обрабатывать данные с большим числом признаков и классов
- Нечувствительность к масштабированию значений признаков
- Одинаково хорошо обрабатываются как непрерывные, так и дискретные признаки

- Способность эффективно обрабатывать данные с большим числом признаков и классов
- Нечувствительность к масштабированию значений признаков
- Одинаково хорошо обрабатываются как непрерывные, так и дискретные признаки
- Существуют методы оценивания значимости отдельных признаков в модели

- Способность эффективно обрабатывать данные с большим числом признаков и классов
- Нечувствительность к масштабированию значений признаков
- Одинаково хорошо обрабатываются как непрерывные, так и дискретные признаки
- Существуют методы оценивания значимости отдельных признаков в модели
- Внутренняя оценка способности к обобщению

- Способность эффективно обрабатывать данные с большим числом признаков и классов
- Нечувствительность к масштабированию значений признаков
- Одинаково хорошо обрабатываются как непрерывные, так и дискретные признаки
- Существуют методы оценивания значимости отдельных признаков в модели
- Внутренняя оценка способности к обобщению
- Высокая параллелизуемость и масштабируемость

Преимущества

- Способность эффективно обрабатывать данные с большим числом признаков и классов
- Нечувствительность к масштабированию значений признаков
- Одинаково хорошо обрабатываются как непрерывные, так и дискретные признаки
- Существуют методы оценивания значимости отдельных признаков в модели
- Внутренняя оценка способности к обобщению
- Высокая параллелизуемость и масштабируемость

Недостатки

• Большой размер и сложность получающихся моделей

Преимущества

- Способность эффективно обрабатывать данные с большим числом признаков и классов
- Нечувствительность к масштабированию значений признаков
- Одинаково хорошо обрабатываются как непрерывные, так и дискретные признаки
- Существуют методы оценивания значимости отдельных признаков в модели
- Внутренняя оценка способности к обобщению
- Высокая параллелизуемость и масштабируемость

Недостатки

- Большой размер и сложность получающихся моделей
- Нулевая интерпретируемость черный ящик

Заключение

• Решающие деревья — хорошо интерпритируемый алгоритм машинного обучения

Заключение

- Решающие деревья хорошо интерпритируемый алгоритм машинного обучения
- На его основе строятся самые сильные модели машинного обучения (например, случайный лес)

