# Probabilistic classification - generative models

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata"

a.a. 2021-2022

# Giorgio Gambosi

#### Naive Bayes classifiers recap

A *language model* is a (categorical) probability distribution on a vocabulary of terms (possibly, all words which occur in a large collection of documents).

#### Use

A language model can be applied to predict (generate) the next term occurring in a text. The probability of occurrence of a term is related to its information content and is at the basis of a number of information retrieval techniques.

#### **Hypothesis**

It is assumed that the probability of occurrence of a term is independent from the preceding terms in a text (bag of words model).

## Bayesian classifiers

A language model can be applied to derive document classifiers into two or more classes through Bayes' rule.

- given two classes  $C_1, C_2$ , assume that, for any document d, the probabilities  $p(C_1|d)$  and  $p(C_2|d)$  are known: then, d can be assigned to the class with higher probability
- how to derive  $p(C_k|d)$  for any document, given a collection  $C_1$  of documents known to belong to  $C_1$  and a similar collection  $C_2$  for  $C_2$ ? Apply Bayes' rule:

$$p(C_k|d) \propto p(d|C_k)p(C_k)$$

the evidence p(d) is the same for both classes, and can be ignored.

• we have still the problem of computing  $p(C_k)$  and  $p(d|C_k)$  from  $C_1$  and  $C_2$ 

# Bayesian classifiers

#### Computing $p(C_k)$

The prior probabilities  $p(C_k)$  (k = 1, 2) can be easily estimated from  $C_1, C_2$ : for example, by applying ML, we obtain

$$p(C_k) = \frac{|\mathcal{C}_1|}{|\mathcal{C}_1| + |\mathcal{C}_2|}$$

Naive bayes classifiers

Computing  $p(d|C_k)$ 

For what concerns the likelihoods  $p(d|C_k)$  (k = 1, 2), we observe that d can be seen, according to the bag of words assumption, as a multiset of  $n_d$  terms

$$d = \{\overline{t}_1, \overline{t}_2, \dots, \overline{t}_{n_d}\}$$

By applying the product rule, it results

$$\begin{aligned} p(d|C_k) &= p(\bar{t}_1, \dots, \bar{t}_{n_d}|C_k) \\ &= p(\bar{t}_1|C_k)p(\bar{t}_2|\bar{t}_1, C_k) \cdots p(\bar{t}_{n_d}|\bar{t}_1, \dots, \bar{t}_{n_d-1}, C_k) \end{aligned}$$

# Naive bayes classifiers

## The naive Bayes assumption

Computing  $p(d|C_k)$  is much easier if we assume that terms are pairwise conditionally independent, given the class  $C_k$ , that is, for  $i, j = 1, \ldots, n_d$  and k = 1, 2,

$$p(\overline{t}_i, \overline{t}_i|C_k) = p(\overline{t}_i|C_k)p(\overline{t}_2|C_k)$$

as, a consequence,

$$p(d|C_k) = \prod_{j=1}^{n_d} p(\overline{t}_j|C_k)$$

that is, we model the document as a set of samples from a categorical distribution (the language model): ML is applied to select the best categorical distribution (class)

## Language models and NB classifiers

The categorical distributions  $p(\bar{t}_j|C_k)$  have been derived for  $C_1$  and  $C_2$ , respectively from documents in  $C_1$  and  $C_2$ .

## Generative models

- Classes are modeled by suitable conditional distributions  $p(\mathbf{x}|C_k)$  (language models in the previous case): it is possible to sample from such distributions to generate random documents statistically equivalent to the documents in the collection used to derive the model.
- Bayes' rule allows to derive  $p(C_k|\mathbf{x})$  given such models (and the prior distributions  $p(C_k)$  of classes)
- We may derive the parameters of  $p(\mathbf{x}|C_k)$  and  $p(C_k)$  from the dataset, for example through maximum likelihood estimation
- Classification is performed by comparing  $p(C_k|\mathbf{x})$  for all classes

# Deriving posterior probabilities

• Let us consider the binary classification case and observe that

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)} = \frac{1}{1 + \frac{p(\mathbf{x}|C_2)p(C_2)}{p(\mathbf{x}|C_1)p(C_1)}}$$

• Let us define

$$a = \log \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)} = \log \frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})}$$

that is, a is the log of the ratio between the posterior probabilities (log odds)

• We obtain that

$$p(C_1|\mathbf{x}) = \frac{1}{1 + e^{-a}} = \sigma(a)$$
  $p(C_2|\mathbf{x}) = 1 - \frac{1}{1 + e^{-a}} = \frac{1}{1 + e^a}$ 

•  $\sigma(x)$  is the logistic function or (sigmoid)

# Sigmoid



Useful properties of the sigmoid

• 
$$\sigma(-x) = 1 - \sigma(x)$$

• 
$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

The inverse function of the sigmoid is the logit function

$$a = \log \frac{\sigma}{1 - \sigma}$$

$$a = \log \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)} = \log \frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})}$$

# Deriving posterior probabilities

• In the case K>2, the general formula holds

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_j p(\mathbf{x}|C_j)p(C_j)}$$

• Let us define, for each  $k=1,\ldots,K$ 

$$a_k(\mathbf{x}) = \log(p(\mathbf{x}|C_k)p(C_k)) = \log p(\mathbf{x}|C_k) + \log p(C_k)$$

• Then, we may write

$$p(C_k|\mathbf{x}) = \frac{e^{a_k}}{\sum_j e^{a_j}} = s(a_k)$$

- $s(\mathbf{x})$  is the softmax function (or normalized exponential) and it can be seen as an extension of the sigmoid to the case K>2
- $s(\mathbf{x})$  can be seen as a smoothed version of the maximum:

if 
$$a_k \gg a_j$$
 for all  $j \neq k$ , then  $s(a_k) \simeq 1$  and  $s(a_j) \simeq 0$  for all  $j \neq k$ 

## Gaussian discriminant analysis

In Gaussian discriminant analysis (GDA) all class conditional distributions  $p(\mathbf{x}|C_k)$  are assumed gaussians. This implies that the corresponding posterior distributions  $p(C_k|\mathbf{x})$  can be easily derived.

#### Hypothesis

All distributions  $p(\mathbf{x}|C_k)$  have same covariance matrix  $\Sigma$ , of size  $D \times D$ . Then,

$$p(\mathbf{x}|C_k) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \mathrm{exp}\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_k)^T \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu}_k)\right)$$

## Binary case

If 
$$K=2$$
.

$$p(C_1|\mathbf{x}) = \sigma(a(\mathbf{x}))$$

where

$$\begin{split} a(\mathbf{x}) &= \log \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)} \\ &= \log \frac{\frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_1)^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}_1)\right) p(C_1)}{\frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_2)^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}_2)\right) p(C_2)} \\ &= \frac{1}{2} (\boldsymbol{\mu}_2^T \Sigma^{-1} \boldsymbol{\mu}_2 - \mathbf{x}^T \Sigma^{-1} \boldsymbol{\mu}_2 - \boldsymbol{\mu}_2^T \Sigma^{-1} \mathbf{x}) - \\ &- \frac{1}{2} (\boldsymbol{\mu}_1^T \Sigma^{-1} \boldsymbol{\mu}_1 - \mathbf{x}^T \Sigma^{-1} \boldsymbol{\mu}_1 - \boldsymbol{\mu}_1^T \Sigma^{-1} \mathbf{x}) + \log \frac{p(C_1)}{p(C_2)} \end{split}$$

# Binary case

Observe that the results of all products involving  $\Sigma^{-1}$  are scalar, hence, in particular

$$\begin{aligned} \mathbf{x}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 &= \boldsymbol{\mu}_1^T \boldsymbol{\Sigma}^{-1} \mathbf{x} \\ \mathbf{x}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 &= \boldsymbol{\mu}_2^T \boldsymbol{\Sigma}^{-1} \mathbf{x} \end{aligned}$$

Then,

$$a(\mathbf{x}) = \frac{1}{2}(\boldsymbol{\mu}_2^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1) + (\boldsymbol{\mu}_1^T \boldsymbol{\Sigma}^{-1} - \boldsymbol{\mu}_2^T \boldsymbol{\Sigma}^{-1}) \mathbf{x} + \log \frac{p(C_1)}{p(C_2)} = \mathbf{w}^T \mathbf{x} + w_0$$

with

$$\begin{split} \mathbf{w} &= \Sigma^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \\ w_0 &= \frac{1}{2}(\boldsymbol{\mu}_2^T \Sigma^{-1} \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1^T \Sigma^{-1} \boldsymbol{\mu}_1) + \log \frac{p(C_1)}{p(C_2)} \end{split}$$

 $p(C_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + w_0)$  is computed by applying a non-linear function to a linear combination of the features (generalized linear model)

# Example





Left, the class conditional distributions  $p(\mathbf{x}|C_1), p(\mathbf{x}|C_2)$ , gaussians with D=2. Right the posterior distribution of  $C_1$ ,  $p(C_1|\mathbf{x})$  with sigmoidal slope.

# Discriminant function

The discriminant function can be obtained by the condition  $p(C_1|\mathbf{x}) = p(C_2|\mathbf{x})$ , that is,  $\sigma(a(\mathbf{x})) = \sigma(-a(\mathbf{x}))$ .

This is equivalent to  $a(\mathbf{x}) = -a(\mathbf{x})$  and to  $a(\mathbf{x}) = 0$ . As a consequence, it results

$$\mathbf{w}^T \mathbf{x} + w_0 = 0$$

or

$$\Sigma^{-1}(\pmb{\mu}_1 - \pmb{\mu}_2) \mathbf{x} + \frac{1}{2}(\pmb{\mu}_2^T \Sigma^{-1} \pmb{\mu}_2 - \pmb{\mu}_1^T \Sigma^{-1} \pmb{\mu}_1) + \log \frac{p(C_2)}{p(C_1)} = 0$$

Simple case:  $\Sigma = \lambda \mathbf{I}$  (that is,  $\sigma_{ii} = \lambda$  for  $i = 1, \dots, d$ ). In this case, the discriminant function is

$$2(\boldsymbol{\mu}_{2} - \boldsymbol{\mu}_{1})\mathbf{x} + ||\boldsymbol{\mu}_{1}||^{2} - ||\boldsymbol{\mu}_{2}||^{2} + 2\lambda\log\frac{p(C_{2})}{p(C_{1})} = 0$$

#### Multiple classes

In this case, we refer to the softmax function:

$$p(C_k|\mathbf{x}) = s(a_k(\mathbf{x}))$$

where  $a_k(\mathbf{x}) = \log(p(\mathbf{x}|C_k)p(C_k))$ .

By the above considerations, it easily turns out that

$$a_k(\mathbf{x}) = \frac{1}{2} \left( \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}^{-1} \mathbf{x} - \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k \right) + \log p(C_k) - \frac{d}{2} \log(2\pi) - \frac{1}{2} \log |\boldsymbol{\Sigma}| = \mathbf{w}_k^T \mathbf{x} + w_{0k}$$

Again,  $p(C_k|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + w_0)$  is computed by applying a non-linear function to a linear combination of the features (generalized linear model)

#### Multiple classes

Desision-boundaring-corresponding to the corresponding to the corresponding the corresponding to the corresponding

$$p(C_k|\mathbf{x}) = p(C_i|\mathbf{x})$$
  $p(C_i|\mathbf{x}) < p(C_k|\mathbf{x})$   $i \neq j,k$ 

hence

$$e^{a_k(\mathbf{x})} = e^{a_j(\mathbf{x})}$$
  $e^{a_i(\mathbf{x})} < e^{a^k(\mathbf{x})}$   $i \neq j, k$ 

that is,

$$a_k(\mathbf{x}) = a_j(\mathbf{x})$$
  $a_i(\mathbf{x}) < a^k(\mathbf{x})$   $i \neq j, k$ 

As shown, this implies that boundaries are linear.

## General covariance matrices, binary case

The class conditional distributions  $p(\mathbf{x}|C_k)$  are gaussians with different covariance matrices

$$\begin{split} a(\mathbf{x}) &= \log \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)} \\ &= \log \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}_1^{-1}(\mathbf{x} - \boldsymbol{\mu}_1)\right)}{\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}_2^{-1}(\mathbf{x} - \boldsymbol{\mu}_2)\right)} + \frac{1}{2} \log \frac{|\boldsymbol{\Sigma}_2|}{|\boldsymbol{\Sigma}_1|} + \log \frac{p(C_1)}{p(C_2)} \\ &= \frac{1}{2} \left( (\mathbf{x} - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}_2^{-1}(\mathbf{x} - \boldsymbol{\mu}_2) - (\mathbf{x} - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}_1^{-1}(\mathbf{x} - \boldsymbol{\mu}_1) \right) + \frac{1}{2} \log \frac{|\boldsymbol{\Sigma}_2|}{|\boldsymbol{\Sigma}_1|} + \log \frac{p(C_1)}{p(C_2)} \end{split}$$

## General covariance matrices, binary case

By applying the same considerations, the decision boundary turns out to be

$$\left( (\mathbf{x} - \boldsymbol{\mu}_2)^T \Sigma_2^{-1} (\mathbf{x} - \boldsymbol{\mu}_2) - (\mathbf{x} - \boldsymbol{\mu}_1)^T \Sigma_1^{-1} (\mathbf{x} - \boldsymbol{\mu}_1) \right) + \log \frac{|\Sigma_2|}{|\Sigma_1|} + 2 \log \frac{p(C_1)}{p(C_2)} = 0$$

Classes are separated by a (at most) quadratic surface.

# General covariance, multiple classe

It can be proved that boundary surfaces are at most quadratic.

Left: 3 classes, modeled by gaussians with different covariance matrices.

Right: posterior distribution of classes, with boundary surfaces.





# GDA and maximum likelihood

The class conditional distributions  $p(\mathbf{x}|C_k)$  can be derived from the training set by maximum likelihood estimation.

For the sake of simplicity, assume K=2 and both classes share the same  $\Sigma$ .

It is then necessary to estimate  $\mu_1, \mu_2$ ,  $\Sigma$ , and  $\pi = p(C_1)$  (clearly,  $p(C_2) = 1 - \pi$ ).

# GDA and maximum likelihood

Training set  $\mathcal{T}$ : includes n elements  $(\mathbf{x}_i, t_i)$ , with

$$t_i = \begin{cases} 0 & \text{se } \mathbf{x}_i \in C_2 \\ 1 & \text{se } \mathbf{x}_i \in C_1 \end{cases}$$

If 
$$\mathbf{x} \in C_1$$
, then  $p(\mathbf{x}, C_1) = p(\mathbf{x}|C_1)p(C_1) = \pi \cdot \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_1, \Sigma)$   
If  $\mathbf{x} \in C_2$ ,  $p(\mathbf{x}, C_2) = p(\mathbf{x}|C_2)p(C_2) = (1 - \pi) \cdot \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_2, \Sigma)$ 

The likelihood of the training set  $\mathcal{T}$  is

$$L(\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma} | \mathcal{T}) = \prod_{i=1}^n (\pi \cdot \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}))^{t_i} ((1-\pi) \cdot \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_2, \boldsymbol{\Sigma}))^{1-t_i}$$

# GDA and maximum likelihood

The corresponding log likelihood is

$$\begin{split} l(\pi, \pmb{\mu}_1, \pmb{\mu}_2, \Sigma | \mathcal{T}) &= \sum_{i=1}^n \left( t_i \log \pi + t_i \log(\mathcal{N}(\mathbf{x}_i | \pmb{\mu}_1, \Sigma)) \right) + \\ &+ \sum_{i=1}^n \left( (1 - t_i) \log(1 - \pi) + (1 - t_i) \log(\mathcal{N}(\mathbf{x}_i | \pmb{\mu}_2, \Sigma)) \right) \end{split}$$

Its derivative wrt  $\pi$  is

$$\frac{\partial l}{\partial \pi} = \frac{\partial}{\partial \pi} \sum_{i=1}^n \left( t_i \log \pi + (1-t_i) \log (1-\pi) \right) = \sum_{i=1}^n \left( \frac{t_i}{\pi} - \frac{(1-t_i)}{1-\pi} \right) = \frac{n_1}{\pi} - \frac{n_2}{1-\pi}$$

which is equal to 0 for

$$\pi = \frac{n_1}{n}$$

# GDA and maximum likelihood

The maximum wrt  $\mu_1$  (and  $\mu_2$ ) is obtained by computing the gradient

$$\frac{\partial l}{\partial \boldsymbol{\mu}_1} = \frac{\partial}{\partial \boldsymbol{\mu}_1} \sum_{i=1}^n t_i \log(\mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})) = \dots = \boldsymbol{\Sigma}^{-1} \sum_{i=1}^n t_i (\mathbf{x}_i - \boldsymbol{\mu}_1)$$

As a consequence, we have  $\frac{\partial l}{\partial \pmb{\mu}_1} = 0$  for

$$\sum_{i=1}^n t_i \mathbf{x}_i = \sum_{i=1}^n t_i \boldsymbol{\mu}_1$$

hence, for

$$\mu_1 = \frac{1}{n_1} \sum_{\mathbf{x}_i \in C_1} \mathbf{x}_i$$

# GDA and maximum likelihood

Similarly,  $\frac{\partial l}{\partial u_2} = 0$  for

$$oldsymbol{\mu}_2 = rac{1}{n_2} \sum_{\mathbf{x}_i \in C_2} \mathbf{x}_i$$

#### GDA and maximum likelihood

Maximizing the log-likelihood wrt  $\Sigma$  provides

$$\Sigma = \frac{n_1}{n} \mathbf{S}_1 + \frac{n_2}{n} \mathbf{S}_2$$

where

$$\mathbf{S}_1 = rac{1}{n_1} \sum_{\mathbf{x}_i \in C_i} (\mathbf{x}_i - oldsymbol{\mu}_1) (\mathbf{x}_i - oldsymbol{\mu}_1)^T$$

$$\mathbf{S}_2 = rac{1}{n_2} \sum_{\mathbf{x}_i \in C_2} (\mathbf{x}_i - \boldsymbol{\mu}_2) (\mathbf{x}_i - \boldsymbol{\mu}_2)^T$$

and let

$$\mathbf{S} = rac{n_1}{n} \mathbf{S}_1 + rac{n_2}{n} \mathbf{S}_2$$

# GDA: discrete features

- In the case of d discrete (for example, binary) features we may apply the Naive Bayes hypothesis (independence of features, given the class)
- Then, we may assume that, for any class  $C_k$ , the value of the *i*-th feature is sampled from a Bernoulli distribution of parameter  $p_{ki}$ ; by the conditional independence hypothesis, it results into

$$p(\mathbf{x}|C_k) = \prod_{i=1}^d p_{ki}^{x_i} (1 - p_{ki})^{1 - x_i}$$

where  $p_{ki} = p(x_i = 1|C_k)$  could be estimated by ML, as in the case of language models

• Functions  $a_k(\mathbf{x})$  can then be defined as:

$$a_k(\mathbf{x}) = \log(p(\mathbf{x}|C_k)p(C_k)) = \sum_{i=1}^{D} (x_i \log p_{ki} + (1 - x_i) \log(1 - p_{ki})) + \log p(C_k)$$

These are still linear functions on x.

• The same considerations can be done in the case of non binary features, where, for any class  $C_k$ , we may assume the value of the i-th feature is sampled from a distribution on a suitable domain (e.g. Poisson in the case of count data)

# Generative models and the exponential family

The property that  $p(C_k|\mathbf{x})$  is a generalized linear model with sigmoid (for the binary case) and softmax (for the multiclass case) activation function holds more in general than assuming a gaussian or bernoulli class conditional distribution  $p(\mathbf{x}|C_k)$ .

# Generative models and the exponential family

Indeed, let the class conditional probability wrt  $C_k$  belong to the exponential family, that is it may be written in the general form

$$p(\mathbf{x}|C_k) = \frac{1}{s}g(\boldsymbol{\theta}_k)f\left(\frac{\mathbf{x}}{s}\right)e^{\frac{1}{s}\boldsymbol{\theta}_k^T\mathbf{u}(\mathbf{x})} = \exp\left(\frac{1}{s}\left(\boldsymbol{\theta}_k^T\mathbf{u}(\mathbf{x}) + A(\boldsymbol{\theta}_k,s)\right) + C\left(\frac{\mathbf{x}}{s}\right)\right)$$

Here,

- 1.  $\theta_k = (\theta_{k1}, \dots, \theta_{km})$  is an m-dimensional array (for a give, suitable, m) denoted as the natural parameter
- 2. **u** is a function mapping **x** to an m-dimensional array  $\mathbf{u}(\mathbf{x}) = (\mathbf{u}(\mathbf{x})_1, \dots, \mathbf{u}(\mathbf{x})_m)$
- 3. s is a dispersion parameter
- 4.  $g(\boldsymbol{\theta}_k)$  normalizes the function values so that  $\int p(\mathbf{x}|C_k)d\mathbf{x}=1$ , hence  $g(\boldsymbol{\theta}_k)=\frac{s}{\int f(\frac{\mathbf{x}}{s})e^{\frac{1}{s}\theta_k^T\mathbf{u}(\mathbf{x})d\mathbf{x}}}$ ; its inverse  $\frac{s}{g(\boldsymbol{\theta}_k)}$  is denoted as the partition function
- 5. clearly,  $A(\theta_k, s) = \log \frac{g(\theta_k)}{s}$  and  $C\left(\frac{\mathbf{x}}{s}\right) = \log f\left(\frac{\mathbf{x}}{s}\right)$

## **Exponential family**

Let us consider the gaussian distribution. The distribution belongs to the exponential family since

$$\begin{split} p(x|\mu,\sigma) &= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \\ &= \exp\left(-\frac{(x-\mu)^2}{2\sigma^2} - \log\left(\sqrt{2\pi}\sigma\right)\right) \\ &= \exp\left(-\frac{x^2}{2\sigma^2} + x\frac{\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\log\left(2\pi\sigma^2\right)\right) \end{split}$$

which fits the exponential family structure assuming  $\boldsymbol{\theta}=(\frac{\mu}{\sigma^2},-\frac{1}{\sigma^2})$ ,  $\mathbf{u}(x)=(x,\frac{x^2}{2})$ , s=1,  $A(\boldsymbol{\theta},s)=-\frac{\mu^2}{2\sigma^2}-\log\sigma$ ,  $C\left(\frac{\mathbf{x}}{s}\right)=-\frac{1}{2}\log(2\pi)$ 

# **Exponential family**

In the case of a gaussian distribution with the assumption that the variance  $\sigma^2$  is not fixed, the same holds assuming  $\boldsymbol{\theta} = (\frac{\mu}{\sigma^2}, \frac{1}{\sigma^2})$ ,  $\mathbf{u}(x) = (x, \frac{x^2}{2})$ , s = 1,  $A(\boldsymbol{\theta}, s) = -\frac{\theta_1^2}{2\sigma^2} - \log \sigma$ ,  $C\left(\frac{\mathbf{x}}{s}\right) = -\frac{1}{2}\log\left(2\pi\right)$ 

# **Exponential family**

Let us consider the bernoulli distribution  $p(x|\pi) = \pi^x (1-\pi)^{1-x}$ . The distribution belongs to the exponential family since

$$\begin{split} p(x|\pi) &= \pi^x (1-\pi)^{1-x} \\ &= \exp\left(x\log \pi + (1-x)\log(1-\pi)\right) = \exp\left(x\log\frac{\pi}{1-\pi} + \log(1-\pi)\right) \end{split}$$

which fits the exponential family structure assuming  $\theta = \log \frac{\pi}{1-\pi}$ , u(x) = x, s = 1,  $A(\theta,s) = \log(1-\pi)$ ,  $C\left(\frac{\mathbf{x}}{s}\right) = 0$ 

#### Generative models and the exponential family

In the case of binary classification, we check that  $a(\mathbf{x})$  is a linear function

$$\begin{split} a(\mathbf{x}) &= \log \frac{p(\mathbf{x}|\boldsymbol{\theta}_1)p(\boldsymbol{\theta}_1)}{p(\mathbf{x}|\boldsymbol{\theta}_2)p(\boldsymbol{\theta}_2)} = \log \frac{g(\boldsymbol{\theta}_1)e^{\frac{1}{s}\boldsymbol{\theta}_1^T\mathbf{u}(\mathbf{x})}p(\boldsymbol{\theta}_1)}{g(\boldsymbol{\theta}_2)e^{\frac{1}{s}\boldsymbol{\theta}_2^T\mathbf{u}(\mathbf{x})}p(\boldsymbol{\theta}_2)} \\ &= (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2)^T\mathbf{x} + \log g(\boldsymbol{\theta}_1) - \log g(\boldsymbol{\theta}_2) + \log p(\boldsymbol{\theta}_1) - \log p(\boldsymbol{\theta}_2) \end{split}$$

Similarly, for multiclass classification, we may easily derive that

$$a_k(\mathbf{x}) = \boldsymbol{\theta}_k^T \mathbf{x} + \log q(\boldsymbol{\theta}_k) + p(\boldsymbol{\theta}_k)$$

for all k.