Vector Spaces

- add vectors

Example:
$$(2,1) + (1,3)$$
 $\binom{2}{1} + \binom{1}{3}$
 $= (3,4)$

Example: $(-1,0.5,2.1) + (5.3,7,-8.4)$
 $= (4.5,7.5,-6.3)$

- scalar multiplication

- scalar multiplication

Example:
$$-2 \cdot (-1,2) = (2,-4)$$

$$2 \cdot (-1,2) = (-2,4)$$

$$-1 \cdot (-1,2) = (1,-2)$$

Example:
$$\frac{1}{2}(3,1.4,-2)=(\frac{3}{2},\cdot7,-1)$$

1. addith is commutative at b=b+a

2. " associative (a+b)+e=a+(b+e)

3. " has an identity element $\vec{a}+\vec{0}=\vec{a}$

(0,0) (0,0,0)

4. addit in has an inverse $-\vec{a}+\vec{a}=\vec{0}$

(-1,2) (1,-2)=-(-1,2)

5. scalar multiplication distributes over addition vectors

scalar ($\vec{v}+\vec{w}$)= \vec{c} \vec{v} + \vec{c} \vec{w}

6. " vector \vec{a}

5. scalar multiplication is associative

b (\vec{a} \vec{v}) = \vec{a} \vec{v} + \vec{b} \vec{v}

7. scalar multiplication is associative

b (\vec{a} \vec{v}) = (\vec{b} \vec{a}) \vec{v}

scalars vector

8. sedar null. has an identity ノジョジ ordinary number 1 DOT PRODUCT Example: (1,0,-3)·(2,1.5,-2) 1.2 + (0.1.5 + (-3).(-2) = 2 + 0 + 6 - 8 Properties - v.v is positive (or 0) (1,-2,0).(1,-2,0)=1+4+0=5 only 0 if J=0. -commutative 3.6 = 6.0 - distributes over addition scala 3. (b+2) = 3.6 + a.c - (ca)· = c (3·2) = 3·(c2)

- dot product with 0 is 0 v · 0 = 0 Theorem: 3. 6 = | a| 6 cos A angle between

uses kow of Cosches