

Lilly Elliott

Why?

- Negative Impacts on organic farmers
- A Threatened Predator
- Population Decline
- Invasive Species

Harvester colony disks in an agricultural (left) versus an urban (right) setting

Harvester ants (*Pogonomyrmex*)

- Habitat loss
- Anthropogenic disturbance
- Economic loss
- Pesticide use

A. *Pogonomyrmex* worker

Inhabited RegionColony size

B. P. barbatus foragers consuming an army worm found in a corn field. Photo taken at local organic farm.

- •Individuals' description
- Food preferences

C. *Pogonomyrmex* Queen

Experimental Design

Seed Choice Assay

- Colony requirements
 - Visible disk with midden pile
 - Visible trail extending from colony
 - Active colonies only
- Field Design
 - Protective Covering
 - Seed housing

Seed Preference trial details

- Duration: 24 hours
- Seed Counts conducted after 1, 2, 4, and 24 hours.
- Extra annotations included:
 - Appearance of foreign items in dish (e.g., corpses, rocks, other seeds...)
 - Temperature (°F)
 - Cloud Cover (%)
 - Wind Speed (mph)

Survival Analysis

$$S(ti) = \frac{n \ subjects \ at \ risk \ at \ start - n \ subjects \ that \ died}{n \ subjects \ at \ risk \ at \ start}$$

$$S(t_i) = S(t_i - 1) * (1 - \frac{n \text{ subjects that died}}{n \text{ subjects at risk at start}})$$

S(ti) = Survival probability

$$S(t_i) = S(t_{i-1}) * \left(1 - \frac{d_i}{n_i}\right)$$

Basic Methodology

- Remove null values from dataset
- Create an object (Kaplan-meier fitter)
- Create new column named 'dead'
- Assign values to dead based on value in data column
- (data = 8, dead = 0) and (data = 0, dead = 1)
- Within object, assign data column to 'durations and event_observed (dead?)
- Create event table.
- Plot the object, repeat for samples

```
kmf_r = KaplanMeierFitter()
```

```
ant.loc[radish == 10, 'dead'] = 1
ant.loc[radish != 10, 'dead'] = 0
```

```
kmf_r.fit(durations = ant['Time point'], event_observed = ant['dead'])
```

```
kmf_r.predict([0,1,2,4,24])
```

```
0 000000
```

1 0.975709

0.912419

4 0.749222

24 0.245647

Name: KM_estimate, dtype: float64

Seed Preference Trials

test_statistic	р	-log2(p)
81.19	<0.005	62.08

Inoculation Trials

- Two most preferred seeds were used for this choice assay.
- Would a favorite seed be rejected post-inoculation? Or would survivability decrease?

Inoculated vs. Control

test_statistic	р	log2(p)
0.33	0.6	0.82

Diseased-Seed Head trials

- What is the relationship between ants and disease seed dispersal?
- Will these ants pose a risk of collecting large amounts of

Diseased Seed Trials

test_statistic	р	-log2(p)
0.19	0.66	0.6

Conclusion

 Significant difference between preference of Vetch and Sunhemp and Radish, Wheatgrass, Fescue, and Oat.

 Diseased Seed heads, and seed inoculation cause no significant difference in harvester ant seed preference.

