# Árvores Equilibradas

### **Sumário**

- Splay
- Vermelho-Preto
- AA e BB
- Multidimensionais
  - quaternárias
  - k-d
- Pesquisa Lexicográfica
  - tries multivia
  - tries binárias
  - PATRICIA

# Árvores Equilibradas

### **Sumário**

- Árvores AVL
- Árvores B
- Splay
- Pesquisa Lexicográfica
  - tries multivia
  - tries binárias

# Árvores equilibradas

### □ Árvore de pesquisa binária não garante acesso logarítmico

- Inserção e eliminação simples podem criar árvores desequilibradas
- Pior caso é linear: árvore degenera em lista ligada
- Pior caso ocorre tipicamente para inserções ordenadas

### □ Árvores equilibradas

- Evitam casos degenerados
- Garantem O(log N) para operações de inserção, remoção e pesquisa
- Requerem algoritmos mais elaborados para inserção e remoção

### □ Condição adicional na árvore

• condição de equilíbrio, garante que nenhum nó está demasiado profundo

## Árvores AVL

- □ Adelson-Velskii e Landis, 1962
- Condição de equilíbrio: na altura das sub-árvores de cada nó
  - diferença de alturas não pode exceder 1
  - garante altura logarítmica para a árvore
  - é simples de manter
- □ Definição
  - Uma árvore AVL é uma árvore de pesquisa binária que respeita a seguinte condição de equilíbrio: para qualquer nó da árvore, as alturas das sub-árvores esquerda e direita diferem no máximo de 1 unidade.
- □ Altura de uma árvore
  - 1 + altura da sua sub-árvore mais alta
  - 0 para árvore só com 1 nó
  - -1 para árvore vazia

### Número de nós na árvore AVL

- □ Uma árvore AVL de altura H tem pelo menos  $F_{H+3}$  -1 nós, em que  $F_i$  é o número de Fibonacci de ordem i
  - $S_H$ : tamanho da menor árvore AVL de altura H ( $S_0 = 1$ ,  $S_1 = 2$ )
  - A árvore mais pequena de altura H tem sub-árvores de alturas H-1 e H-2
  - Cada sub-árvore terá, por sua vez, o número mínimo de nós para a sua altura
  - Então será  $S_H = S_{H-1} + S_{H-2} + 1$
  - $S_H = F_{H+3} 1$ , por indução:

$$partial S_0 = 1, \& F_3 - 1$$

$$^{\square}$$
 Se  $S_{H-1} = F_{H+2}$  -1 e  $S_{H-2} = F_{H+1}$  -1, então  $S_{H} = S_{H-1} + S_{H-2} + 1 = F_{H+2}$  -1 +  $F_{H+1}$  -1 +  $F_{H+2} + F_{H+1}$  -1 =  $F_{H+3}$  -1

- $\blacksquare$   $\mathbf{F_i} \approx \phi^i / \sqrt{5}$ , com  $\phi = (1 + \sqrt{5})/2 \approx 1.618$ 
  - árvore de altura H tem no mínimo  $\phi^{H+3}/\sqrt{5}$  nós
  - H < 1.44 log (N+2) -1.328 (não mais de 44% acima da mínima)

## Árvores AVL



- ☐ Inserções e remoções podem destruir o equilíbrio de alguns dos nós da árvore
  - Necessário verificar condição e reequilibrar se tiver sido destruída

# Inserção em Árvores AVL

- □ Após uma inserção, só os nós no caminho da raiz ao ponto de inserção podem ter a condição de equilíbrio alterada
  - condição só depende das alturas das sub-árvores de um nó
- □ Para reequilibrar: subir no caminho até à raiz
  - reequilibrar o nó mais profundo onde surge desequilíbrio
  - toda a árvore resulta equilibrada
- ☐ X: nó a reequilibrar devido a inserção em
  - 1- árvore esquerda do filho esquerdo de X
  - 2- árvore direita do filho esquerdo de X
  - 3- árvore esquerda do filho direito de X
  - 4- árvore direita do filho direito de X
- □ Casos 1 e 4 simétricos; casos 2 e 3 simétricos

## Rotação simples



#### k2 é nó mais profundo onde falha o equilíbrio

- sub-árvore esquerda está 2 níveis abaixo da direita
  - B não está no mesmo nível de A, ou k2 estaria desequilibrado antes da inserção
  - D não está no mesmo nível que C, ou k1 seria nó desequilibrado mais fundo

## Rotação simples



### □ Árvore resultante da rotação é AVL

- k1 e k2 passam a ter subárvores da mesma altura
- nova altura da árvore resultante é igual á da árvore anterior à inserção
- problema fica resolvido com uma só operação

## Rotação simples com filho esquerdo

```
/ * *
   * Rotate binary tree node with left child
   * For AVL trees, this is a single rotation
   * for case 1.
  static BinaryNode withLeftChild( BinaryNode
      BinaryNode k1 = k2.left;
      k2.left = k1.right;
      k1.right = k2;
      return k1;
```

### Rotação simples com filho direito

```
/ * *
  * Rotate binary tree node with right child
  * For AVL trees, this is a single rotation
  * for case 4.
static BinaryNode withRightChild( BinaryNode
     BinaryNode k2 = k1.right;
     k1.right = k2.left;
     k2.left = k1;
     return k2;
```

## Rotação simples no caso 2



### □ Rotação simples não resolve o desequilíbrio!

- sub-árvore Q está a 2 níveis de diferença de R
- sub-árvore Q passa a estar a 2 níveis de diferença de P

### Rotação dupla no caso 2



#### □ Uma das subárvores B ou C está 2 níveis abaixo de D (e só uma)

- k2, a chave intermédia, fica na raiz
- posições de k1, k3 e subárvores completamente determinadas pela ordenação

## Rotação dupla



- □ Rotação dupla pode ser vista como sequência de 2 rotações simples
  - rotação entre o filho e o neto de X
  - rotação entre X e o seu novo filho

## Rotação dupla com filho esquerdo

```
/ * *
 * Double rotate binary tree node: first le
 * with its right child; then node k3 with :
 * left child.
 * For AVL trees, this is a double rotation
 * case 2.
static BinaryNode doubleWithLeftChild( Bina
   k3.left = withRightChild( k3.left );
    return withLeftChild( k3 );
```

## Rotação dupla com filho direito

```
/ * *
 * Double rotate binary tree node: first ri
 * with its left child; then node k1 with no
 * right child.
 * For AVL trees, this is a double rotation
 * case 3.
static BinaryNode doubleWithRightChild(Binar
    k1.right = withLeftChild( k1.right )
    return withRightChild( k1 );
```

## Inserção em árvore AVL

#### □ Algoritmo recursivo

- Inserir nó com chave X numa árvore A
  - recursivamente, inserir na subárvore conveniente de A, SA
  - 🖂 se a altura de AS não se modifica: terminar
  - se a altura de AS é modificada: se ocorre desequilíbrio em A, fazer as rotações necessárias para reequilibrar
- Comparação de alturas
  - requer cálculo repetido de alturas das árvores: preferível manter o resultado da comparação como um factor de equilíbrio

#### □ Algoritmo iterativo

• Especificar paragem logo que uma rotação é realizada