Simboli o i O

Definicija 1. Ako važi

$$\lim_{x \to a} f(x) = 0$$

tada kažemo da je f beskonačno mala veličina.

Definicija 2. Neka je $a\in \overline{\mathbb{R}}$ i neka su funkcije f i g definisane u nekoj okolini tačke a, ali ne obavezno i u tački a. Pretpostavimo da postoji konačna granična vrednost

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L. \tag{0.1}$$

- Ako je L=0, tada kažemo da je f(x)=o(g(x)) kada $x\to a$.
- Ako je $0 < L < +\infty$, kažemo da je f(x) = O(g(x)) kada $x \to a$.
- U posebnom slučaju, ako je L=1, onda je $f(x)\sim g(x)$ kada $x\to a.$

U slučaju da ne postoji limes (0.1), koristimo sledeću definiciju simbola o i O:

• f(x) = o(g(x)) kada $x \to a$ ako postoji funkcija $\omega(x)$ takva da u nekoj okolini tačke a važi

$$f(x) = \omega(x)g(x)$$
 $(x \neq a)$, $\lim_{x \to a} \omega(x) = 0$.

• f(x) = O(g(x)) kada $x \to a$ ako postoji pozitivna konstanta K takva da u nekoj okolini tačke a važi

$$|f(x)| \le K|g(x)| \qquad (x \ne a).$$

Definicija 3. Neka su f i g beskonačno male veličine kada $x \to a$.

- Ako važi f(x) = o(g(x)) kada $x \to a$, tada kažemo da je f beskonačno mala veličina višeg reda u odnosu na g.
- Ako važi f(x) = O(g(x)) kada $x \to a$, tada kažemo da su f i g beskonačno male veličine istog reda.
- Ako važi $f(x) = O(g^k(x))$ kada $x \to a$, tada kažemo da je f beskonačno mala veličina reda k u odnosu na g.
- Ako je $f(x) \sim g(x)$ kada $x \to a$, kažemo da su f i g ekvivalentne..

Važi:

• $C \cdot o(x^n) = o(x^n), \qquad C \in \mathbb{R},$

•
$$o(x^m) \cdot o(x^n) = o(x^{m+n}), \qquad x^m \cdot o(x^n) = o(x^{m+n})$$

Primer 1. a) Neka je $f(x) = x^5$ i $g(x) = x^3$. Tada je f(x) = o(g(x)) kada $x \to 0$, jer je

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^5}{x^3} = \lim_{x \to 0} x^2 = 0.$$

b) Neka je $f(x) = \sin x$ i g(x) = x. Tada je $f(x) \sim g(x)$ kada $x \to 0$, jer je

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

c) Neka je f(x) beskonačno mala veličina kada $x \to a$. Tada je f(x) = o(1) kada $x \to a$, jer je

$$\lim_{x \to a} \frac{f(x)}{1} = \lim_{x \to 0} f(x) = 0.$$

Primer 2. Neka je $f(x)=2x^3\sin\frac{1}{x}$ i $g(x)=x^3$. Tada ne postoji granična vrednost količnika $\frac{f(x)}{g(x)}$ kada $x\to 0$,

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{x^3} = \lim_{x \to 0} \sin \frac{1}{x},$$

ali za $x\neq 0$ važi

$$|2x^3 \sin \frac{1}{x}| \le 2|x|^3 \quad \Rightarrow \quad |f(x)| \le 2|g(x)|,$$

pa je f(x) = O(g(x)), kada $x \to 0$.

Zadaci:

1. Ako je $\lim_{x\to 0} \frac{f(x)}{x^3} = 3$, ispitati tačnost navedenih relacija kada $x\to 0$:

a)
$$f(x) = o(x^3)$$

a)
$$f(x) = o(x^3)$$
, b) $f(x) = O(x^3)$, c) $f(x) \sim x^3$,

c)
$$f(x) \sim x^3$$

d)
$$f(x) \sim 3x^3$$
,

e)
$$f(x) = o(1),$$

f)
$$f(x) = o(x^2)$$

e)
$$f(x) = o(1)$$
, f) $f(x) = o(x^2)$, g) $f(x) = O(x^2)$ h) $f(x) = O(x)$.

$$h) f(x) = O(x)$$

Rešenje: a) Imamo

$$f(x) = o(x^3)$$
 \Leftrightarrow $\lim_{x \to 0} \frac{f(x)}{x^3} = 0.$

Nije tačno.

b) Važi

$$f(x) = O(x^3)$$
 \Leftrightarrow $\lim_{x \to 0} \frac{f(x)}{x^3} = C \neq 0.$

Tačno.

c) Dobijamo

$$f(x) \sim x^3 \quad \Leftrightarrow \quad \lim_{x \to 0} \frac{f(x)}{x^3} = 1.$$

Nije tačno.

d) Određujemo

$$f(x) \sim 3x^3 \quad \Leftrightarrow \quad \lim_{x \to 0} \frac{f(x)}{3x^3} = 1.$$

Tačno.

e) Imamo

$$f(x) = o(1)$$
 \Leftrightarrow $\lim_{x \to 0} \frac{f(x)}{1} = 0$ \Leftrightarrow $\lim_{x \to 0} \frac{f(x)}{x^3} \cdot x^3 = 0.$

Tačno.

f) Određujemo

$$f(x) = o(x^2)$$
 \Leftrightarrow $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$ \Leftrightarrow $\lim_{x \to 0} \frac{f(x)}{x^3} \cdot x = 0.$

Tačno.

g) Važi

$$f(x) = O(x^2)$$
 \Leftrightarrow $\lim_{x \to 0} \frac{f(x)}{x^2} = C \neq 0$ \Leftrightarrow $\lim_{x \to 0} \frac{f(x)}{x^3} \cdot x = C \neq 0.$

Nije tačno.

h) Imamo

$$f(x) = O(x)$$
 \Leftrightarrow $\lim_{x \to 0} \frac{f(x)}{x} = C \neq 0$ \Leftrightarrow $\lim_{x \to 0} \frac{f(x)}{x^3} \cdot x^2 = C \neq 0.$

Nije tačno.

2. Ako $x \to 0$, dokazati

a)
$$(3x + 5x^2)\sin\frac{1}{x} = O(x)$$
, b) $(1+x)^n = 1 + nx + O(x^2)$,

c)
$$\sin x + \cos x \sim x + 1$$
.

Rešenje: a) Pokazujemo da granična vrednost

$$\lim_{x \to 0} \frac{(3x + 5x^2)\sin\frac{1}{x}}{x} = \lim_{x \to 0} (3 + 5x)\sin\frac{1}{x}$$

ne postoji. Međutim, važi

$$|(3x + 5x^2)\sin\frac{1}{x}| \le 3|x| + 5|x|^2 \le 3|x| + 5|x| = 8|x|,$$

što po definiciji znači f(x) = O(x) kada $x \to 0$.

b) Određujemo

$$\lim_{x \to 0} \frac{(1+x)^n - 1 - nx}{x^2}$$

$$= \lim_{x \to 0} \frac{(1+nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + x^n) - 1 - nx}{x^2}$$

$$= \lim_{x \to 0} \frac{\frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3 + \dots + x^n}{x^2}$$

$$= \lim_{x \to 0} \left(\frac{n(n-1)}{2} + \frac{n(n-1)(n-2)}{6}x + \dots + x^{n-2}\right) = \frac{n(n-1)}{2}.$$

Na osnovu dobijenog rezultata imamo

$$(1+x)^n - 1 - nx = O(x^2)$$
 \Rightarrow $(1+x)^n = 1 + nx + O(x^2).$

c) Imamo

$$\lim_{x \to 0} \frac{\sin x + \cos x}{x+1} = \lim_{x \to 0} \left(\frac{\sin x}{x} \frac{x}{x+1} + \frac{\cos x}{x+1} \right) = 1,$$

odakle, po definiciji, važi $\sin x + \cos x \sim x + 1$.

3. Ako $x \to +\infty$, dokazati

a)
$$\frac{3x+1}{x^2-3} = O(1/x)$$
, b) $\sqrt{x+1} - \sqrt{x} = O(1/\sqrt{x})$.

Rešenje: a) Važi

$$\lim_{x \to +\infty} \frac{\frac{3x+1}{x^2-3}}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{x(3x+1)}{x^2-3} = \lim_{x \to +\infty} \frac{x^2(3+\frac{1}{x})}{x^2(1-\frac{3}{x^2})} = \lim_{x \to +\infty} \frac{3+\frac{1}{x}}{1-\frac{3}{x^2}} = 3,$$

što znači da je $\frac{3x+1}{x^2-3} = O\left(\frac{1}{x}\right)$.

b) Imamo

$$\lim_{x \to +\infty} \frac{\sqrt{x+1} - \sqrt{x}}{\frac{1}{\sqrt{x}}} = \lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x+1} - \sqrt{x} \right) \cdot \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$

$$= \lim_{x \to +\infty} \frac{\sqrt{x}}{\sqrt{x+1} + \sqrt{x}} = \lim_{x \to +\infty} \frac{\sqrt{x}}{\sqrt{x} \left(\sqrt{1 + \frac{1}{x}} + 1 \right)} = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + \frac{1}{x}} + 1} = \frac{1}{2},$$

pa zaključujemo da važi $\sqrt{x+1}-\sqrt{x}=O(\frac{1}{\sqrt{x}}).$

4. Ako $x \to 0$, odrediti realne konstante C i p tako da je $f(x) \sim Cx^p$, gde je

a)
$$f(x) = x^3 - 2x^2 + 7x$$
,

a)
$$f(x) = x^3 - 2x^2 + 7x$$
, b) $f(x) = \sqrt{1+x} - \sqrt{1-3x}$,

c)
$$f(x) = \tan x - \sin x$$
.

Rešenje: a) Iz uslova

$$\lim_{x \to 0} \frac{x^3 - 2x^2 + 7x}{Cx^p} = \lim_{x \to 0} \frac{x^2 - 2x + 7}{Cx^{p-1}} = \frac{7}{C} = 1,$$

imamo p = 1 i C = 7.

b) Imamo

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-3x}}{Cx^p} = \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-3x}}{Cx^p} \cdot \frac{\sqrt{1+x} + \sqrt{1-3x}}{\sqrt{1+x} + \sqrt{1-3x}}$$

$$= \lim_{x \to 0} \frac{4x}{Cx^p \left(\sqrt{1+x} + \sqrt{1-3x}\right)} = \lim_{x \to 0} \frac{4}{Cx^{p-1} \left(\sqrt{1+x} + \sqrt{1-3x}\right)} = \frac{2}{C} = 1.$$

Sada je p = 1 i C = 2.

c) Određujemo

$$\lim_{x \to 0} \frac{\tan x - \sin x}{Cx^p} = \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{Cx^p \cos x} = \lim_{x \to 0} \frac{2 \sin x \sin^2 \frac{x}{2}}{Cx^p \cos x}$$

$$= \lim_{x \to 0} \frac{2 \frac{\sin x}{x} x \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2 \frac{x^2}{4}}{Cx^p \cos x} = \lim_{x \to 0} \frac{\frac{\sin x}{x} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2}{2Cx^{p-3} \cos x} = \frac{1}{2C} = 1,$$

odakle je p=3 i $C=\frac{1}{2}$.

5. Ako $x \to +\infty$, odrediti realne konstante C i p tako da je $f(x) \sim Cx^p$, gde je

$$f(x) = \sqrt[3]{1+x} - \sqrt[3]{x}.$$

Rešenje: Važi

$$\lim_{x \to +\infty} \frac{\sqrt[3]{1+x} - \sqrt[3]{x}}{Cx^p} = \lim_{x \to +\infty} \frac{\sqrt[3]{1+x} - \sqrt[3]{x}}{Cx^p} \cdot \frac{\sqrt[3]{(1+x)^2} + \sqrt[3]{x(1+x)} + \sqrt[3]{x^2}}{\sqrt[3]{(1+x)^2} + \sqrt[3]{x(1+x)} + \sqrt[3]{x^2}}$$

$$= \lim_{x \to +\infty} \frac{1}{Cx^p \left(\sqrt[3]{(1+x)^2} + \sqrt[3]{x(1+x)} + \sqrt[3]{x^2}\right)}$$

$$= \lim_{x \to +\infty} \frac{1}{Cx^{p+2/3} \left(\sqrt[3]{(\frac{1}{x}+1)^2} + \sqrt[3]{\frac{1}{x}+1} + 1\right)} = \frac{1}{3C} = 1,$$

odakle imamo $p = -\frac{2}{3}$, $C = \frac{1}{3}$.

6. Pokazati da su funkcije f(x) = 1 - x i $g(x) = a(1 - \sqrt[3]{x}), a \in \mathbb{R} \setminus \{0\}$ beskonačno male veličine kada $x \to 1$. Odrediti $a \in \mathbb{R} \setminus \{0\}$ tako da f(x) i g(x)budu ekvivalentne.

Rešenje: Važi

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (1 - x) = 0, \qquad \lim_{x \to 1} g(x) = \lim_{x \to 1} a(1 - \sqrt[3]{x}) = 0.$$

Prema tome, funkcije f i g su beskonačno male veličine kada $x\to 1$. Funkcije f i g su ekvivalentne $(f\sim g)$ ako je

$$\lim_{x \to 1} \frac{f(x)}{g(x)} = 1.$$

Imamo

$$\lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{1 - x}{a(1 - \sqrt[3]{x})} = \lim_{x \to 1} \frac{(1 - \sqrt[3]{x})(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{a(1 - \sqrt[3]{x})}$$

$$= \lim_{x \to 1} \frac{1 + \sqrt[3]{x} + \sqrt[3]{x^2}}{a} = \frac{3}{a}.$$
(0.2)

Važi $\frac{3}{a}=1,$ odakle je a=3.