Berner Fachhochschule - Technik und Informatik

Algorithms and Data Structures

Priority Queues and Heaps

Dr. Rolf Haenni

Fall 2008

Outline

Priority Queues

Heaps

Heap-Based Priority Queues

Bottom-Up Heap Construction

Outline

Priority Queues

Heaps

Heap-Based Priority Queues

Bottom-Up Heap Construction

Priority Queue ADT

- ▶ A priority queue stores a collection of items
- An item is a pair (key, element)
- Characteristic operations:
 - \rightarrow insertItem(k,e): inserts an item with key k and element e
 - → removeMin(): removes the item with the smallest key and returns its element
 - → minKey(): returns the smallest key of an item (no removal)
 - → minElement(): returns the element of an item with smallest key (no removal)
- General operations:
 - → size(): returns the number of items
 - → isEmpty(): indicates whether the priority queue is empty
- ▶ Two distinct items in a priority queue can have the same key

Total Order

- Keys in a priority queue can be arbitrary objects on which a total order is defined
- Mathematically, a total order is a binary relation ≤ defined on a set K which satisfies three properties:
 - \rightarrow Totality: $x \leq y$ or $y \leq x$, for all $x, y \in K$
 - \rightarrow Antisymmetry: $x \leq y$ and $y \leq x$ implies x = y, for all $x, y \in K$
 - \rightarrow Transitivity: $x \leq y$ and $y \leq z$ implies $x \leq z$, for all $x, y, z \in K$
- ▶ Totality implies Reflexivity: $x \leq x$, for all $x \in K$
- ▶ Examples: \leq or \geq for \mathbb{R} , alphabetical or reverse alphabetical order for $\{A, \ldots, Z\}$, lexicographical order for $\{A, \ldots, Z\}^*$, etc.

Comparator ADT

- ► A comparator encapsulates the action of comparing two keys according to a given total order relation
- ▶ A generic priority queue uses an auxiliary comparator (passed as a parameter to the constructor)
- When the priority queue needs to compare two keys, it uses its comparator
- Operations (all with Boolean return type):
 - → isLessThan(x,y)
 - → isLessThanOrEqualTo(x,y)
 - → isEqualTo(x,y)
 - → isGreaterThan(x,y)
 - → isGreaterThanOrEqualTo(x,y)
 - → isComparable(x)

Sequence-Based Priority Queue

- There are two ways to implement a priority queue with a sequence (list or vector)
- Using an unsorted sequence
 - \rightarrow insertItem(k,e) runs in O(1) time, since we can insert the item at the beginning of the sequence
 - \rightarrow removeMin(), minKey(), minElement() run in O(n) time since we have to traverse the entire sequence to find the smallest key
- Using a sorted sequence
 - \rightarrow insertItem(k,e) runs in O(n) time, since we have to find the place where to insert the item
 - → removeMin(), minKey(), minElement() run in O(1) time since the smallest key is at the beginning or end of the sequence

UML Diagram: Composition

UML Diagram: Inheritance

Sorting with a Priority Queue

- We can use a priority queue to sort a collection of comparable elements
 - → Insert the elements one by one with a series of insertItem(e,e) operations
 - → Remove the elements in sorted order with a series of removeMin() operations
- Depending on how the priority queue is implemented (sorted or unsorted), this leads to two well-known sorting algorithms
 - → Selection-Sort
 - → Insertion-Sort

PQ-Sort Algorithm

Solution in pseudo-code:

```
Algorithm PQ-Sort(S,C)

P \leftarrow \text{new priority queue with comparator C}

while not S.\text{isEmpty}() do

e \leftarrow S.\text{removeElement}(S.\text{first}())

P.\text{insertItem}(e,e)

while not P.\text{isEmpty}() do

e \leftarrow P.\text{removeMin}()

S.\text{insertLast}(e)

return S
```

Selection-Sort

- ► Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence
- ► The main task is to select the elements from the unsorted sequence in the right order
- Running time analysis:
 - → Inserting the elements into the priority queue with n insertItem(e,e) operations runs in O(n) time
 - Removing the elements in sorted order from the priority queue with n removeMin() operations takes time proportional to $n+\ldots+2+1$, and thus runs in $O(n^2)$ time
- ▶ Selection-sort runs in $O(n^2)$ time

Insertion-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an sorted sequence
- ▶ The main task is to insert the elements at the right place
- Running time analysis:
 - → Inserting the elements into the priority queue with n insertItem(e,e) operations takes time proportional to $1+2+\ldots+n$, and thus runs in $O(n^2)$ time
 - Removing the elements in sorted order from the priority queue with n removeMin() operations runs in O(n) time
- ▶ In general (worst case), insertion-sort runs in $O(n^2)$ time
- ▶ If the input sequence is in reverse order (best case), it runs in O(n) time

In-Place Sorting

- Instead of using external data structures, we can implement insertion- and selection-sort in-place
- A portion of the input sequence itself serves as priority queue
- ► For in-place insertion-sort we
 - → keep the initial portion of the sequence sorted
 - → use swapElements(p,q) instead of modifying the sequence

Outline

Priority Queues

Heaps

Heap-Based Priority Queues

Bottom-Up Heap Construction

The Heap ADT

- ► A heap is a specialized binary tree storing keys at its nodes (positions) and satisfying the following properties:
 - \rightarrow Heap-Order: $key(p) \succeq key(parent(p))$, for every node p other than the root
 - → Completeness: let *h* be the height of the tree
 - 1) there are 2^i nodes of depth i for i = 0, ..., h-1
 - 2) at depth h, nodes are filled up from the left
- The last node of a heap is the rightmost node of depth h
- Heap operations:
 - \rightarrow insertKey(k): inserts a key k into the heap
 - → removeMin(): removes smallest key and returns it
 - → minKey(): returns the smallest key (no removal)

Heap Example

▶ A heap storing n keys has height $O(\log n)$

Insertion to a Heap

- ► The insertion of a key *k* consists of 3 steps:
 - \rightarrow Add a new node q (the new last node)
 - \rightarrow Store k at q
 - → Restore the heap order property (discussed next)

Upheap

- Algorithm upheap restores the heap-order property
 - \rightarrow Swap k along an upward path from the insertion node
 - → Stop when k reaches the root or a node whose parent has a key smaller than or equal to k
 - → Since the height of the heap is O(log n), upheap runs in O(log n) time
- ▶ insertKey(k) runs in O(log n) time

Removal from a Heap

- The removal algorithm consists of 4 steps:
 - → Return the key of the root
 - → Replace the root key with the key *k* of the last node
 - → Delete the last node
 - → Restore the heap order property (discussed next)

Downheap

- ► Algorithm downheap restores the heap-order property
 - → Swap k along an downward path from the root (always with the smaller key of its children)
 - → Stop when *k* reaches a leaf or a node whose children have keys greater than or equal to *k*
 - → Since the height of the heap is O(log n), downheap runs in O(log n) time
- removeMin() runs in O(log n)
 time

Finding the Insertion Node

- ▶ Starting from the last node, the insertion node can be found by traversing a path of $O(\log n)$ nodes
 - → If the last node is a left child, return the parent node
 - → While the current node is a right child, go to the parent node
 - → If the current node is a left child, go to the right child
 - → While the current node is internal, go to the left child

Array-Based Heap Implementation

- ▶ We can represent a heap with n keys directly by means of an array of length N > n
 - → By-pass the binary tree ADT
 - → No explicit position ADT needed
- Idea similar to array-based implementation of binary trees
 - → The array cell at index 0 is unused
 - ightarrow The root of the heap is at index 1
 - \rightarrow The left child of the node at index *i* is at index 2*i*
 - \rightarrow The right child of the node at index i is at index 2i + 1
- ▶ The insertion operations corresponds to inserting at index n+1 and thus runs in O(1) time

Array-Based Heap: Example

4 10 1

Outline

Priority Queues

Heaps

Heap-Based Priority Queues

Bottom-Up Heap Construction

(m ×

Heap-Based Priority Queues

- We can use a heap to implement a priority queue by storing a pair item = (key, element) at each node of the heap
- Running times for different implementations

	Unsorted	Sorted	
Operation	Sequence	Sequence	Неар
size, isEmpty	1	1	1
minElement, minKey	n	1	1
insertItem	1	n	log n
removeMin	n	1	log n
PQ-Sort	n ²	n ²	n∙ log n

▶ In the long run, the heap-based implementation beats any sequence-based implementation

UML Diagram: Composition

Heap-Sort

- ► Heap-sort is the variation of PQ-sort where the priority queue is implemented with a heap
- Running time analysis:
 - Inserting the elements into the priority queue with n insertItem(e,e) operations runs in $O(n \log n)$ time
 - Removing the elements in sorted order from the priority queue with n removeMin() operations runs in $O(n \log n)$ time
- ▶ In general (worst case), heap-sort runs in $O(n \log n)$ time
- ► For large *n*, heap-sort is much faster than quadratic sorting algorithms such as insertion-sort or selection-sort

In-Place Heap-Sort

- ► To implement Heap-Sort *in-place*, use the front of the original array to implement the heap
 - → Step 1: Use the reverse comparator (e.g. \succeq instead of \preceq) to build up the heap (by swapping elements)
 - → Step 2: Iteratively remove the maximum element from the heap and insert it in front of the sequence

Technik und Informatik

Outline

Priority Queues

Heaps

Heap-Based Priority Queues

Bottom-Up Heap Construction

Bottom-up Heap Construction

We can construct a heap storing $n = 2^h - 1$ keys using a recursive bottom-up construction with h - 1 phases

Bottom-Up Heap Construction

- In phase i, pairs of heaps with 2ⁱ − 1 keys are merged into heaps with 2ⁱ⁺¹ − 1 keys
- ▶ Merging two heaps (and a new key k):
 - → Create a new heap with the root node storing *k* and with the two heaps as subtrees
 - → Perform downheap to restore the heap-order property

Recursive Algorithm in Pseudo-Code

```
Algorithm bottomUpHeap(S) // sequence of keys of length 2^h-1 if S. isEmpty() then return new heap else k \leftarrow S. \, \text{elemAtRank}(0) S. \, \text{removeAtRank}(0) H_1 \leftarrow \text{bottomUpHeap}(\text{firstHalf}(S)) \, // \, 1st \, recursive \, call H_2 \leftarrow \text{bottomUpHeap}(\text{secondHalf}(S)) \, // \, 2nd \, recursive \, call return mergeHeaps(k, H_1, H_2) // merge the results
```

In the general case, i.e. if the sequence is not of size $n = 2^h - 1$, we can adapt the splitting of the sequence accordingly

Example: Phase 1

Example: Phase 2

Example: Phase 3

. .

Complexity Analysis

- ▶ The recursive BottomUpHeap algorithm decomposes a problem of size n into two problems of size $\frac{n-1}{2}$
 - \rightarrow Rule D2 with q = r = 2 (see Topic 2, Page 31)
- ▶ The running time f(n) of each recursive step is $O(\log n)$
 - → with an array-based sequence implementation, firstHalf() and secondHalf() run in O(1) time
 - \rightarrow the necessary downheap in mergeHeaps runs in $O(\log n)$ time
- ▶ Apply the second column of D2, i.e. bottom-up heap construction runs in O(n)
- ▶ Speeds up the heap construction (Phase 1) of the Heap-Sort algorithm, but not Phase 2

