Vergleich der SRCNN-Architekturen

In diesem Projekt werden drei Varianten von SRCNN-basierten Super-Resolution-Netzwerken verwendet: SRCNN_low, SRCNN_medium und SRCNN_high. Diese unterscheiden sich hauptsächlich in der Tiefe (Anzahl der Residualblöcke) und damit in der Komplexität und der Fähigkeit, feine Details zu rekonstruieren.

Architektur	Residualblöcke	Channel Attention	Parameter (ca.)	Eigenschaften
SRCNN_low	4	Nein	ca. 0.5 Mio	Einfach, schnell trainierbar, Basisvergleich
SRCNN_medium	10	Ja (alle 2 Blöcke)	ca. 1.2 Mio	Gleichgewicht zwischen Qualität und Effizienz
SRCNN_high	20	Ja (alle 2 Blöcke)	ca. 2.4 Mio	Hohe Rekonstruktionsqualität, aufwendiger im Training

Komponenten und Aufbau:

Alle drei Modelle bestehen aus denselben Bausteinen: - **Head:** Ein 9x9 Convolution-Layer mit PReLU-Aktivierung zur großflächigen Merkmalsextraktion. - **Trunk:** Sequenz von Residualblöcken mit optionaler Squeeze-and-Excitation (SE) Attention zur Fokussierung auf wichtige Kanäle. - **Tail:** 3x3 Convolution zur Rekonstruktion des Ausgangsbildes. - **Global Skip Connection:** Verbindet Eingabe direkt mit Ausgang, um Stabilität und schnelle Konvergenz zu gewährleisten.

Stabilisierungsmechanismen:

Zur Stabilisierung des Trainings werden Residual-Scaling (z. B. 0.1) und PReLU-Aktivierungen verwendet. Auf Batch Normalization wird bewusst verzichtet, um Detailverlust zu vermeiden. Diese Designprinzipien fördern stabiles Lernen auch bei tieferen Netzen.

Die Architekturwahl ermöglicht somit eine klare Vergleichsbasis: von leichtgewichtig (SRCNN_low) über ausgewogen (SRCNN_medium) bis hin zu tief und leistungsstark (SRCNN_high). Dies erlaubt eine Analyse des Zusammenhangs zwischen Netzwerkgröße, Trainingsstabilität und Super-Resolution-Qualität.