T P C 3+1* 0 3

DYNAMICS OF MACHINERY

Course Objectives:

- 1. To equip the student with fundamental knowledge of dynamics of machines so that student can appreciate problems of dynamic force balance, transmissibility of forces, isolation of systems, vibrations.
- 2. Develop knowledge of analytical and graphical methods for calculating balancing of rotary and reciprocating masses.
- 3. Develop understanding of vibrations and its significance on engineering design.
- 4. Develop understanding of dynamic balancing, flywheel analysis, gyroscopic forces and moments.

UNIT - I

PRECESSION: Gyroscopes, effect of precession motion on the stability of moving vehicles such as motor car, motor cycle, aero planes and ships, static and dynamic force analysis of planar mechanisms, (Demonstration of models in video show).

UNIT - II

FRICTION: Inclined plane, friction of screw and nuts, pivot and collar, uniform pressure, uniform wear, friction circle and friction axis: lubricated surfaces, boundary friction, film lubrication.

CLUTCHES: Friction clutches- single disc or plate clutch, multiple disc clutch, cone clutch, centrifugal clutch.

BRAKES AND DYNAMOMETERS: Simple block brakes, internal expanding brake, band brake of vehicle. General description and operation of dynamometers: Prony, Rope brake, Epicyclic, Bevis Gibson and belt transmission,

UNIT - III

TURNING MOMENT DIAGRAMS: Dynamic force analysis of slider crank mechanism, inertia torque, angular velocity and acceleration of connecting rod, crank effort and turning moment diagrams – fluctuation of energy – fly wheels and their design.

UNIT-IV

GOVERNERS: Watt, porter and proell governors, spring loaded governors

 Hartnell and Hartung with auxiliary springs. sensitiveness, isochronism and hunting.

UNIT - V

BALANCING: Balancing of rotating masses single and multiple – single and different planes, use analytical and graphical methods. Primary, secondary, and higher balancing of reciprocating masses. analytical and graphical methods, unbalanced forces and couples – examination of "V" multi cylinder in line and radial engines for primary and secondary balancing, locomotive balancing, hammer blow, swaying couple, variation of tractive effort.

UNIT - VI

VIBRATIONS: Free Vibration of spring mass system – oscillation of pendulums, centers of oscillation and suspension. transverse loads, vibrations of beams with concentrated and distributed loads. Dunkerly's methods, Raleigh's method, whirling of shafts, critical speeds, torsional vibrations, two and three rotor systems, Simple problems on forced damped vibration, vibration isolation and transmissibility.

TEXT BOOKS:

- 1. Theory of Machines / S.S Ratan/ Mc. Graw Hill Publ.
- Mechanism and machine theory by Ashok G. Ambedkar, PHI Publications.

REFERENCES:

- Mechanism and Machine Theory / JS Rao and RV Dukkipati / New Age.
- 2. Theory of Machines / Shiegly / MGH
- 3. Theory of Machines / Thomas Bevan / CBS Publishers
- 4. Theory of machines / Khurmi / S.Chand.

Course outcomes:

Upon successful completion of this course the student should be able to:

- Analyze stabilization of sea vehicles, aircrafts and automobile vehicles.
- 2. Compute frictional losses, torque transmission of mechanical systsms.
- 3. Analyze dynamic force analysis of slider crank mechanism and design of flywheel.
- 4. Understand how to determine the natural frequencies of continuous systems starting from the general equation of displacement.
- 5. Understand balancing of reciprocating and rotary masses.

T P C 3+1* 0 3

METAL CUTTING & MACHINE TOOLS

Course objectives:

- 1. The course provides students with fundamental knowledge and principles in material removal processes.
- In this course, the students apply the fundamentals and principles of metal cutting to practical applications through multiple labs using lathes, milling machines, grinding machines, and drill presses, Computer Numerical Control etc.
- To demonstrate the fundamentals of machining processes and machine tools.
- 4. To develop knowledge and importance of metal cutting parameters.
- 5. To develop fundamental knowledge on tool materials, cutting fluids and tool wear mechanisms.
- 6. To apply knowledge of basic mathematics to calculate the machining parameters for different machining processes.

UNIT - I

FUNDAMENTALS OF MACHINING:

Elementary treatment of metal cutting theory – element of cutting process – geometry of single point tool angles, chip formation and types of chips – built up edge and its effects chip breakers, mechanics of orthogonal cutting – Merchant's force diagram, cutting forces, cutting speeds, feed, depth of cut, tool life, coolants, tool materials.

UNIT - II

LATHE MACHINES:

Engine lathe – principle of working, specification of lathe – types of lathe – work holders tool holders – box tools taper turning, thread turning – for lathes and attachments, constructional features of speed gear box and feed gear box. Turret and capstan lathes – collet chucks – other work holders – tool holding devices – box and tool layout. Principal features of automatic lathes – classification – single spindle and multi-spindle automatic lathes – tool layout and cam design for automats.

UNIT - III

SHAPING, SLOTTING AND PLANNING MACHINES: Principles of working – principal parts – specifications, operations performed, machining time calculations.

DRILLING & BORING MACHINES: Principles of working, specifications, types, operations performed – tool holding devices – twist drill – Boring Machines – fine Boring Machines – jig boring machine, deep hole Drilling Machine.

UNIT - IV

MILLING MACHINES: Principles of working – specifications – classification of Milling Machines – Principle features of horizontal, vertical and universal Milling Machine, machining operations, types of cutters, geometry of milling cutters – methods of indexing, accessories to milling machines.

UNIT -V

FINISHING PROCESSES: Theory of grinding – classification of grinding machines, cylindrical and surface grinding machines, tool and cutter grinding machines, different types of abrasives, bonds, specification and selection of a grinding wheel. Lapping, Honing & Broaching operations, comparison to grinding.

UNIT - VI

JIGS & FIXTURES: Principles of design of jigs and fixtures and uses, classification of jigs & fixtures, principles of location and clamping, types of clamping & work holding devices, typical examples of jigs and fixtures.

CNC MACHINE TOOLS: CNC Machines, working principle, classification, constructional features of CNC machines, CNC controller, types of motion controls in CNC machines, applications of CNC machines.

TEXT BOOKS:

- 1. Production Technology by R.K. Jain and S.C. Gupta.
- 2. Workshop Technology B.S.Raghu Vamshi Vol II

REFERENCES:

- 1. Metal cutting Principles by M.C. Shaw
- 2. Metal cutting and machine tools by Boothroyd
- 3. Production Technology by H.M.T. (Hindustan Machine Tools).
- 4. Production Engineering, K.C Jain & A.K Chitaley, PHI Publishers

- 5. Manufacturing technology II, P.N Rao
- 6. Technology of machine tools, S.F.Krar, A.R. Gill, Peter SMID, TMH (I)

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- 1) Apply cutting mechanics to metal machining based on cutting force and power consumption.
- 2) Operate lathe, milling machines, drill press, grinding machines, etc.
- 3) Select cutting tool materials and tool geometries for different metals.
- Select appropriate machining processes and conditions for different metals.
- 5) Learn machine tool structures and machining economics.
- 6) Write simple CNC programs and conduct CNC machining.

T P C 3+1* 0 3

DESIGN OF MACHINE MEMBERS – I

Course Objectives:

- 1. The student shall gain appreciation and understanding of the design function in mechanical engineering, the steps involved in designing and the relation of design activity with manufacturing activity
- 2. Selection of proper materials to different machine elements based on their physical and mechanical properties.
- Learn and understanding of the different types of failure modes and criteria.
- 4. Procedure for the different machine elements such as fasteners, shafts, couplings, keys, axially loaded joints etc.

UNIT - I

INTRODUCTION: General considerations in the design of Engineering Materials and their properties – selection –Manufacturing consideration in design, tolerances and fits –BIS codes of steels.

STRESSES IN MACHINE MEMBERS: Simple stresses – combined stresses – torsional and bending stresses – impact stresses – stress strain relation – various theories of failure – factor of safety – design for strength and rigidity – preferred numbers. the concept of stiffness in tension, bending, torsion and combined situations – static strength design based on fracture toughness.

UNIT - II

STRENGTH OF MACHINE ELEMENTS: Stress concentration – theoretical stress concentration factor – fatigue stress concentration factor notch sensitivity – design for fluctuating stresses – endurance limit – estimation of endurance strength – goodman's line – soderberg's line – modified goodman's line.

UNIT - III

Riveted and welded joints – design of joints with initial stresses – eccentric loading.

Bolted joints – design of bolts with pre-stresses – design of joints under eccentric loading – locking devices – both of uniform strength, different seals.

UNIT - IV

KEYS, COTTERS AND KNUCKLE JOINTS: Design of keys-stresses in keys-cotter joints-spigot and socket, sleeve and cotter, jib and cotter joints-knuckle joints.

SHAFTS: Design of solid and hollow shafts for strength and rigidity – design of shafts for combined bending and axial loads – shaft sizes – BIS code. Use of internal and external circlips, gaskets and seals (stationary & rotary).

UNIT - V

SHAFT COUPLING: Rigid couplings – muff, split muff and flange couplings, flexible couplings – flange coupling (modified).

UNIT - VI

MECHANICAL SPRINGS:

Stresses and deflections of helical springs – extension -compression springs – springs for fatigue loading, energy storage capacity – helical torsion springs – co-axial springs, leaf springs.

TEXT BOOKS:

- 1. Machine Design, V.Bandari, TMH Publishers
- 2. Machine design Pandya & Shah
- 3. Machine Design PSG Data hand book

REFERENCES:

- 1. Design of Machine Elements / V.M. Faires
- 2. Machine design / Schaum Series.
- 3. Data books (1) PSG College of technology (2) Mahadevan

Course outcomes:

Upon successful completion of this course student should be able to:

- 1. Apply the design procedure to engineering problems, including the consideration of technical and manufacturing constraints.
- 2. Select suitable materials and significance of tolerances and fits in critical design applications.
- 3. Utilize design data hand book and design the elements for strength, stiffness and fatigue.
- 4. Identify the loads, the machine members subjected and calculate static and dynamic stresses to ensure safe design.

T P C 3+1* 0 3

INSTRUMENTATION & CONTROL SYSTEMS

Course Objectives:

The course focuses on imparting the principles of measurement which includes the working mechanism of various sensors and devices, that are in use to measure the important physical variables of various mechatronic systems.

UNIT - I

Definition – Basic principles of measurement – measurement systems, generalized configuration and functional descriptions of measuring instruments – examples. dynamic performance characteristics – sources of error, classification and elimination of error.

Measurement of Displacement: Theory and construction of various transducers to measure displacement – piezo electric, inductive, capacitance, resistance, ionization and photo electric transducers, calibration procedures.

UNIT - II

MEASUREMENT OF TEMPERATURE: Classification – ranges – various principles of measurement – expansion, electrical resistance – thermistor – thermocouple – pyrometers – temperature indicators.

MEASUREMENT OF PRESSURE: Units – classification – different principles used. manometers, piston, bourdon pressure gauges, bellows – diaphragm gauges. low pressure measurement – thermal conductivity gauges – ionization pressure gauges, mcleod pressure gauge.

UNIT - III

MEASUREMENT OF LEVEL: Direct method – indirect methods – capacitative, ultrasonic, magnetic, cryogenic fuel level indicators – bubler level indicators.

FLOW MEASUREMENT: Rotameter, magnetic, ultrasonic, turbine flow meter, hot – wire anemometer, laser doppler anemometer (LDA).

MEASUREMENT OF SPEED : Mechanical tachometers – electrical tachometers – stroboscope, noncontact type of tachometer

Measurement of Acceleration and Vibration: Different simple instruments – principles of seismic instruments – vibrometer and accelerometer using this principle.

UNIT - IV

STRESS STRAIN MEASUREMENTS: Various types of stress and strain measurements – electrical strain gauge – gauge factor – method of usage of resistance strain gauge for bending compressive and tensile strains – usage for measuring torque, strain gauge rosettes.

UNIT - V

MEASUREMENT OF HUMIDITY – Moisture content of gases, sling psychrometer, absorption psychrometer, dew point meter.

MEASUREMENT OF FORCE, TORQUE AND POWER- Elastic force meters, load cells, torsion meters, dynamometers.

UNIT - VI

ELEMENTS OF CONTROL SYSTEMS : Introduction, importance – classification – open and closed systems, servomechanisms–examples with block diagrams–temperature, speed & position control systems.

TEXT BOOKS:

- 1. Measurement Systems: Applications & design by D.S Kumar.
- Mechanical Measurements / BeckWith, Marangoni, Linehard, PHI / PE.

REFERENCES:

- 1. Measurement systems: Application and design, Doeblin Earnest. O. Adaptation by Manik and Dhanesh/ TMH.
- 2. Experimental Methods for Engineers / Holman.
- 3. Mechanical and Industrial Measurements / R.K. Jain/ Khanna Publishers.
- 4. Instrumentation, measurement & analysis by B.C.Nakra & K.K.Choudhary, TMH.

Course outcomes:

After undergoing the course the student can select appropriate device for the measurement of parameters like temperature, pressure, speed, stress, humidity, flow velocity etc., and justify its use through characteristics and performance.

T P C 3+1* 0 3

THERMAL ENGINEERING – II

(Use of steam tables and Mollier chart is allowed)

Course objectives:

This course is intended to provide basic knowledge of components being used in steam and gas power plant cycles and to analyse the energy transfers and transformations in these components including individual performance evaluation.

UNIT - I

BASIC CONCEPTS: Rankine cycle - schematic layout, thermodynamic analysis, concept of mean temperature of heat addition, methods to improve cycle performance - regeneration & reheating. combustion: fuels and combustion, concepts of heat of reaction, adiabatic flame temperature, stoichiometry, flue gas analysis.

UNIT II

BOILERS: Classification – working principles of L.P & H.P boilers with sketches – mountings and accessories – working principles, boiler horse power, equivalent evaporation, efficiency and heat balance – draught, classification – height of chimney for given draught and discharge, condition for maximum discharge, efficiency of chimney – artificial draught, induced and forced.

UNIT - III

STEAM NOZZLES: Function of a nozzle – applications - types, flow through nozzles, thermodynamic analysis – assumptions -velocity of fluid at nozzle exit-Ideal and actual expansion in a nozzle, velocity coefficient, condition for maximum discharge, critical pressure ratio, criteria to decide nozzle shape: Super saturated flow, its effects, degree of super saturation and degree of under cooling - Wilson line.

STEAM TURBINES: Classification – impulse turbine; mechanical details – velocity diagram – effect of friction – power developed, axial thrust, blade or diagram efficiency – condition for maximum efficiency. De-laval turbine – methods to reduce rotor speed-velocity compounding, pressure compounding and velocity & pressure compounding, velocity and pressure variation along the flow – combined velocity diagram for a velocity compounded impulse turbine, condition for maximum efficiency.

UNIT IV

REACTION TURBINE: Mechanical details – principle of operation, thermodynamic analysis of a stage, degree of reaction –velocity diagram – Parson's reaction turbine – condition for maximum efficiency – calculation of blade height.

STEAM CONDENSERS: Requirements of steam condensing plant – classification of condensers – working principle of different types – vacuum efficiency and condenser efficiency – air leakage, sources and its affects, air pump- cooling water requirement.

UNIT - V

GAS TURBINES: Simple gas turbine plant – ideal cycle, essential components – parameters of performance – actual cycle – regeneration, inter cooling and reheating –closed and semi-closed cycles – merits and demerits, types of combustion chambers.

UNIT - VI

JET PROPULSION: Principle of operation –classification of jet propulsive engines – working principles with schematic diagrams and representation on t-s diagram - thrust, thrust power and propulsion efficiency – turbo jet engines – needs and demands met by turbo jet – schematic diagram, thermodynamic cycle, performance evaluation, thrust augmentation – methods.

Rockets : Application – working principle – classification – propellant type – thrust, propulsive efficiency – specific impulse – solid and liquid propellant rocket engines.

TEXT BOOKS:

- 1. Thermodynamics and Heat Engines, Volume 2 R.Yadav- Central book depot.
- Gas Turbines V.Ganesan /TMH
- 3. Heat Engineering V.P Vasandani and D.S Kumar- Metropolitan Book Company, New Delhi

REFERENCES:

- Gas Turbines and Propulsive Systems P.Khajuria & S.P.Dubey /Dhanpatrai
- Gas Turbines / Cohen, Rogers and Saravana Muttoo / Addison Wesley

 Longman
- 3. Thermal Engineering-R.S Khurmi/JS Gupta/S.Chand.

- 4. Thermal Engineering-P.L.Bellaney/ Khanna publishers.
- 5. Thermal Engineering-M.L.Marthur & Mehta/Jain bros

Course outcomes:

After undergoing this course the student is expected to understand the working of steam and gas power plant cycles and also should be able to analyze and evaluate the performance of individual components. The student also should be in a position to understand basic principles of Jet propulsion and rocket engineering.

T P C 3+1* 0 3

METROLOGY

Course objectives:

The students will learn

- 1. Inspection of engineering parts with various precision instruments.
- 2. Design of part, tolerances and fits.
- 3. Principles of measuring instruments and gauges and their uses.
- 4. Evaluation and inspection of surface roughness.
- 5. Inspection of spur gear and thread elements.
- 6. Machine tool testing to evaluate machine tool quality.

UNIT-I

SYSTEMS OF LIMITS AND FITS: Introduction, nominal size, tolerance, limits, deviations, fits -Unilateral and bilateral tolerance system, hole and shaft basis systems- interchangeability, determistic & statistical tolerancing, selective assembly. International standard system of tolerances, selection of limits and tolerances for correct functioning.

UNIT-II

LINEAR MEASUREMENT: Length standards, end standards, slip gauges-calibration of the slip gauges, dial indicators, micrometers.

MEASUREMENT OF ANGLES AND TAPERS:

Different methods – bevel protractor, angle slip gauges- angle dekkor- spirit levels- sine bar- sine table, rollers and spheres used to measure angles and tapers.

LIMIT GAUGES:

Taylor's principle – design of go and no go gauges; plug, ring, snap, gap, taper, profile and position gauges.

UNIT-III

OPTICAL MEASURING INSTRUMENTS: Tools maker's microscope and uses - autocollimators, optical projector, optical flats and their uses.

INTERFEROMETRY:

Interference of light, Michaleson's interferometer, NPL flatness interferometer, and NPL gauge interferometer.

UNIT-IV

SURFACE ROUGHNESS MEASUREMENT: Differences between

surface roughness and surface waviness –Numerical assessment of surface finish-CLA, Rt., R.M.S. Rz, R10 values, Method of measurement of surface finish – Profilograph, Talysurf, ISI symbols for indication of surface finish.

COMPARATORS: Types - mechanical, optical , electrical and electronic, pneumatic comparators and their uses.

UNIT - V

GEAR MEASUREMENT: Nomenclature of gear tooth, tooth thickness measurement with gear tooth vernier & flange micro meter, pitch measurement, total composite error and tooth to tooth composite errors, rolling gear tester, involute profile checking.

SCREW THREAD MEASUREMENT: Elements of measurement – errors in screw threads- concept of virtual effective diameter, measurement of effective diameter, angle of thread and thread pitch, and profile thread gauges.

UNIT - VI

FLATNESS MEASUREMENT:

Measurement of flatness of surfaces- instruments used- straight edges-surface plates – auto collimator.

MACHINE TOOL ALIGNMENT TESTS: Principles of machine tool alignment testing on lathe, drilling and milling machines.

TEXT BOOKS:

- 1. Engineering Metrology by R.K.Jain / Khanna Publishers
- 2. Engineering Metrology by Mahajan / Dhanpat Rai Publishers

REFERENCE BOOKS:

- 1. Dimensional Metrology, Connie Dotson, Cengage Learning.
- 2. Engineering Metrology by I.C.Gupta / Dhanpat Rai Publishers.
- 3. Precision Engineering in Manufacturing by R.L.Murthy / New Age.
- Engineering Metrology and Measurements by NV Raghavendra, L Krishna murthy, Oxford publishers.
- 5. Engineering Metrology by KL Narayana, Scitech publishers.

Course outcomes:

Students will be able to design tolerances and fits for selected product quality. They can choose appropriate method and instruments for inspection of various gear elements and thread elements. They can understand the standards of length, angles, they can understand the evaluation of surface finish and measure the parts with various comparators. The quality of the machine tool with alignment test can also be evaluated by them.

T P C 0 3 2

METROLOGY & INSTRUMENTATION LAB

Course Objectives:

The Metrology and instrumentation Laboratory course is designed for measuring and gauging instruments for inspection of precision linear, geometric forms, angular and surface finish measurements. The student can learn the measurements with and calibration of instruments. They also understand the machine tool alignment test. Instrumentation lab introduces the students with the theory and methods for conducting experimental work in the laboratory and calibration of various instruments for measuring pressure, temperature, displacement, speed, vibration etc.

Note: The students have to conduct at least 8 experiments from each lab.

METROLOGY LAB

- Measurement of lengths, heights, diameters by vernier calipers, micrometers etc.
- 2. Measurement of bores by internal micrometers and dial bore indicators.
- 3. Use of gear tooth vernier caliper for tooth thickness inspection and flange micro meter for checking the chordal thickness of spur gear.
- 4. Machine tool alignment test on the lathe.
- 5. Machine tool alignment test on drilling machine.
- 6. Machine tool alignment test on milling machine.
- 7. Angle and taper measurements with bevel protractor, Sine bars, rollers and balls.
- 8. Use of spirit level in finding the straightness of a bed and flatness of a surface.
- 9. Thread inspection with two wire/ three wire method & tool makers microscope.
- 10. Surface roughness measurement with roughness measuring instrument.

INSTRUMENTATION LAB

- 1. Calibration of pressure gauge.
- 2. Calibration of transducer for temperature measurement.
- 3. Study and calibration of LVDT transducer for displacement measurement.

- 4. Calibration of strain gauge.
- 5. Calibration of thermocouple.
- 6. Calibration of capacitive transducer.
- 7. Study and calibration of photo and magnetic speed pickups.
- 8. Calibration of resistance temperature detector.
- 9. Study and calibration of a rotameter.
- 10. Study and use of a seismic pickup for the measurement of vibration amplitude of an engine bed at various loads.
- 11. Study and calibration of Mcleod gauge for low pressure.

Course outcomes:

Metrology Lab

Student will become familiar with the different instruments that are available for linear, angular, roundness and roughness measurements they will be able to select and use the appropriate measuring instrument according to a specific requirement (in terms of accuracy, etc).

Instrumentation Lab:

Students will be able to select proper measuring instrument and know requirement of calibration, errors in measurement etc. They can perform accurate measurements.

T P C 0 3 2

MACHINE TOOLS LAB

Course objectives:

The students are required to understand the parts of various machine tools and operate them. They are required to understand the different shapes of products that can be produced on these machine tools.

- 1. Introduction of general purpose machines -lathe, drilling machine, milling machine, shaper, planing machine, slotting machine, cylindrical grinder, surface grinder and tool and cutter grinder.
- 2. Step turning and taper turning on lathe machine
- 3. Thread cutting and knurling on -lathe machine.
- 4. Drilling and tapping
- 5. Shaping and planning
- 6. Slotting
- 7. Milling
- 8. Cylindrical surface grinding
- 9. Grinding of tool angles.

Course outcomes:

The students can operate different machine tools with understanding of work holders and operating principles to produce different part features to the desired quality.

T P C 0 3 2

INTELLECTUAL PROPERTY RIGHTS AND PATENTS

Unit I

Introduction to Intellectual Property Law – Evolutionary past – Intellectual Property Law Basics - Types of Intellectual Property - Innovations and Inventions of Trade related Intellectual Property Rights – Agencies Responsible for Intellectual Property Registration – Infringement - Regulatory – Over use or Misuse of Intellectual Property Rights - Compliance and Liability Issues.

Unit II

Introduction to Copyrights – Principles of Copyright – Subject Matters of Copyright – Rights Afforded by Copyright Law –Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works –Rights of Distribution – Rights of performers – Copyright Formalities and Registration – Limitations – Infringement of Copyright – International Copyright Law-Semiconductor Chip Protection Act.

Unit III

Introduction to Patent Law – Rights and Limitations – Rights under Patent Law – Patent Requirements – Ownership and Transfer – Patent Application Process and Granting of Patent – Patent Infringement and Litigation – International Patent Law – Double Patenting – Patent Searching – Patent Cooperation Treaty – New developments in Patent Law- Invention Developers and Promoters.

Unit IV

Introduction to Trade Mark – Trade Mark Registration Process – Post registration procedures – Trade Mark maintenance – Transfer of rights – Inter parties Proceedings – Infringement – Dilution of Ownership of Trade Mark – Likelihood of confusion – Trade Mark claims – Trade Marks Litigation – International Trade Mark Law.

Unit V

Introduction to Trade Secrets – Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreement – Trade Secret Law – Unfair Competition – Trade Secret Litigation – Breach of Contract – Applying State Law.

Unit VI

Introduction to Cyber Law – Information Technology Act - Cyber Crime and E-commerce – Data Security – Confidentiality – Privacy - International aspects of Computer and Online Crime.

REFERENCE BOOKS:

- Deborah E.Bouchoux: "Intellectual Property". Cengage learning, New Delhi.
- 2. Kompal Bansal & Parishit Bansal "Fundamentals of IPR for Engineers", BS Publications (Press).
- Cyber Law. Texts & Cases, South-Western's Special Topics Collections.
- 4. Prabhuddha Ganguli: 'Intellectual Property Rights' Tata Mc-Graw Hill, New Delhi.
- 5. Richard Stim: "Intellectual Property", Cengage Learning, New Delhi.
- 6. R. Radha Krishnan, S. Balasubramanian: "Intellectual Property Rights", Excel Books. New Delhi.
- M.Ashok Kumar and Mohd.Iqbal Ali: "Intellectual Property Right" Serials Pub.