Laboratorio di Fisica 3

Prof. F. Forti

Esercitazione N. 2 Circuito RC – Filtri passivi

Filtro passa-basso

- 1) Progettare un circuito RC in modo che funzioni come filtro passa-basso adatto a trasmettere un segnale sinusoidale di frequenza 2kHz riducendo significativamente un rumore con frequenza 20kHz sovrapposto, tenendo conto che il carico resistivo a valle del filtro sarà di 100kΩ. Potete seguire i seguenti passi:
 - a. Disegnare uno schema di massima senza valori dei componenti
 - b. Decidere quale deve essere la frequenza di taglio dell'RC riflettendo su quale è il massimo fattore di soppressione ottenibile (definito come |Av(2kHz)|/|Av(20kHz)|).
 - c. Selezionare approssimativamente la resistenza tenendo conto del carico a valle
 - d. Selezionare approssimativamente il valore del condensatore
 - e. Cercare un condensatore tra quelli disponibili di valore simile e ricalcolare la resistenza di conseguenza
- 2) Montare il circuito e misurare la risposta in frequenza (tra 100 Hz e 1 MHz) del circuito e riportarla in un grafico di Bode (domanda: quanti punti ? risposta: quanti sono sufficienti !).
 - a. Quanto viene attenuato il segnale a 2 kHz e quanto il rumore a 20kHz? Le misure sono in accordo con quanto atteso?
 - b. Misurare la frequenza di taglio f_T in vari modi:
 - i. $f_{T,A}$ Frequenza cui il guadagno è -3dB rispetto al massimo. L'errore in questo caso puo' essere stimato vedendo per quale variazione di frequenza si apprezza sull'oscilloscopio una variazione di ampiezza.
 - ii. $f_{T,B}$ Punto di incontro delle rette ottenute con due fit separati a bassa ed alta frequenza sul diagramma di Bode (verificando che la pendenza della retta ad alta frequenza sia quella attesa di -20dB/decade). Nella stima dell'errore, attenzione all'estrapolazione e correlazione dei parametri delle rette.
 - iii. f_{TC} (Opzionale) Dal fit della funzione di trasferimento complessiva.
 - c. Confrontare la frequenza di taglio misurata (con il suo errore) con quanto atteso dai valori dei componenti nel circuito.
- 3) Misurare la risposta al gradino. Determinare la frequenza di taglio del circuito attraverso la misura del tempo di salita del segnale tra il 10% ed il 90% del massimo. (t_{salita} = 2.2 RC = 2.2 / (2 πf_T))
- 4) Rispondere alle seguenti domande (senza effettuare misure):
 - a. Qual è l'impedenza di ingresso del circuito a: bassa frequenza, alta frequenza, alla frequenza di taglio f_T ?
 - b. Qual è l'effetto dell'inserimento di una resistenza di carico ? Cosa succederebbe se inserissi un carico di $10K\Omega$ invece che $100K\Omega$?

Filtro passa-banda

1) Si vuole realizzare un filtro passa-banda con due circuiti RC posti in serie, secondo il circuito indicato in figura.

Nota: misurare "rozzamente" la risposta in frequenza significa significa:

- a. verificare che il guadagno abbia l'andamento generale previsto
- b. misurare il guadagno massimo (ad alta o bassa frequenza)
- c. misurare la frequenza di taglio approssimata quando il guadagno è -3dB.
- 2) Filtro RC passa-basso.
 - a. Si monti il solo circuito passa basso R1-C1 scegliendo R1=3.3K Ω e C1 = 10nF.
 - b. Misurare (rozzamente) la risposta in frequenza del solo passa-basso e verificare che guadagno (A_1) e frequenza di taglio (f_1) corrispondano a quanto atteso.
- 3) Filtro RC passa-alto.
 - a. Si monti il solo circuito passa-alto R2-C2 scegliendo R2=3.3K Ω e C2 = 100nF.
 - b. Misurare (rozzamente) la risposta in frequenza del solo passa-alto e verificare che guadagno (A_2) e frequenza di taglio (f_2) corrispondano a quanto atteso.
- 4) Adesso collegare in serie i due circuiti e misurare la risposta in frequenza del circuito complessivo, avendo cura di estendere il campo di misura almeno una decade sopra e sotto le effettive frequenze di taglio del circuito complessivo.
 - a. Misurare il guadagno di centro banda (A_0) e misurare le frequenze di taglio effettive $(f_L \ e \ f_H)$ attraverso le intersezioni delle rette fittate nelle tre regioni. Si osservi come le frequenze di taglio sono adesso diverse rispetto a quelle misurate nei circuiti separati. Valutare correttamente gli errori di misura sulle frequenze.
 - b. Si spieghi l'effetto includendo le impedenze di ingresso e di uscita dei circuiti singoli.
 - c. Come si sarebbe dovuto scegliere R1 ed R2 in modo che il circuito complessivo avesse una risposta uguale al prodotto delle risposte dei singoli circuiti ?