Acta Scientiae Circumstantiae

DOI: 10.13671/j.hjkxxb.2017.0166

徐秀娟 吕宝玲 浒婷婷 等.2017.UV/H₃O₃氧化降解克拉霉素的反应动力学及影响因素[J].环境科学学报 37(9):3419-3426

Xu X J , Lü B L , Xu T T , et al. 2017. Degradation of clarithromycin by UV/H₂O₂ process: reaction kinetics and impact factors [J]. Acta Scientiae Circumstantiae 37(9): 3419–3426

UV/H_2O_2 氧化降解克拉霉素的反应动力学及影响 因素

徐秀娟 吕宝玲 ,许婷婷 ,王潇晓 ,李威* ,张银龙

南京林业大学南方现代林业协同创新中心 / 生物与环境学院 南京 210037

收稿日期: 2017-02-16 修回日期: 2017-04-17 录用日期: 2017-05-02

摘要: 克拉霉素用量大、检出频率高、生态风险大,已被欧盟列为优先监测污染物.针对传统污水处理厂难以完全去除克拉霉素的问题,主要研究了 UV/ H_2O_2 降解克拉霉素的效果和反应动力学,探讨了 pH、天然有机质(NOM) 和水中共存阴、阳离子对 UV/ H_2O_2 降解克拉霉素的影响.结果表明: 单一 UV 对克拉霉素的光降解符合准一级反应动力学模型,其反应速率常数为 $0.0016~\text{min}^{-1}$. UV/ H_2O_2 对克拉霉素的降解符合准一级反应动力学模型,其反应速率常数为 $0.0016~\text{min}^{-1}$. UV/ H_2O_2 对克拉霉素的降解符合准一级反应动力学模型,且克拉霉素的降解速率随 H_2O_2 浓度的增大而增大,在 H_2O_2 浓度为 $40~\text{mmol}^{-1}$ ·日,克拉霉素降解的反应速率常数为 $0.0284~\text{min}^{-1}$. 克拉霉素与 •OH的二级反应速率常数为 0.236 ± 0.20 × $10^{10}~\text{L}$ • mol^{-1} • s^{-1} . 碱性条件有利于克拉霉素的降解;NOM($2\sim10~\text{mg}$ • L^{-1}) 会抑制克拉霉素的降解,且随 NOM 浓度增大而增大;共存阴离子 CO_3^{2-} 对克拉霉素降解无影响, HCO_3^- 、 NO_3^- 、 CI^- 会抑制克拉霉素的降解,抑制程度的大小顺序为 NO_3^- >Cl $^-$;共存阳离子 Ca^{2+} 、 Mg^{2+} >Cu $^{2+}$ 、 Fe^{3+} 会抑制克拉霉素的降解,抑制程度的大小顺序为 Fe^{3+} >Cu $^{2+}$ >Mg $^{2+}$ >Ca $^{2+}$.

关键词: 抗生素; 克拉霉素; UV/H2O2; 反应动力学; 影响因素

文章编号: 0253-2468(2017) 09-3419-08 中图分类号: X703 文献标识码: A

Degradation of clarithromycin by $UV/H_2 O_2$ process: reaction kinetics and impact factors

XU Xiujuan , LÜ Baoling , XU Tingting , WANG Xiaoxiao , LI Wei* , ZHANG Yinlong

Co-Innovation Center for Sustainable Forestry in Southern China , College of Biology and the Environment , Nanjing Forestry University , Nanjing 210037 **Received** 16 February 2017; **received** in revised form 17 April 2017; **accepted** 2 May 2017

Abstract: European Union (EU) has listed clarithromycin (CLA) in the priority pollutants due to its high usage , frequently detection in environment and high ecosystem risk. As conventional wastewater treatment plant cannot remove CLA completely , the degradation efficiency and reaction kinetics of CLA by UV/H_2O_2 were studied , the effects of pH , natural organic matter (NOM) , cations and anions on the degradation of CLA were also investigated. The results show that the degradation of CLA by UV/H_2O_2 also follows pseudo-first-order kinetics , and the removal efficiency increased with the H_2O_2 concentration. The degradation rate constant of CLA can reach up to 0.0284 min^{-1} with H_2O_2 concentration of 40 mmol·L⁻¹. The second reaction rate constant between CLA and ·OH was $(2.36\pm0.20)\times10^{10}\,\text{L}\cdot\text{mol}^{-1}\cdot\text{s}^{-1}$. alkalinic pH is favorable for the degradation of CLA. The presence of NOM ($2\sim10\,\text{mg}\cdot\text{L}^{-1}$) inhibited the degradation of CLA , and the inhibition effect is enhanced with the increasing of NOM concentration. Anion CO_3^{-2} showed no effect on the degradation of CLA , while HCO_3^- , NO_3^- and Cl^- inhibited the degradation of CLA following the order of $NO_3^- > HCO_3^- > Cl^-$. Cation Ca^{2+} , Cu^{2+} and Ca^{2+} inhibited the degradation of CLA in the order of $Ca^{2+} > Ca^{2+} > Ca^{2+}$.

 $\textbf{Keywords:} \ \ \text{antibiotics;} \ \ \text{clarithromycin;} \ \ \ \text{UV/H}_2\text{O}_2; \ \ \text{reaction kinetics; impact factors}$

基金项目: 江苏省高校自然科学基金面上项目(No.15KJB610006); 江苏省自然科学青年基金项目(No.BK20160930)

Supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province (No.15KJB610006) and the Natural Science Foundation of Jiangsu Province (No.BK20160930)

作者简介: 徐秀娟(1992—) , 女 ,E-mail: 1363627965@ qq.com; * 通讯作者(责任作者) ,E-mail: uwliwei@ 163.com

Biography: XU Xiujuan (1992—) , female , E-mail: 1363627965@ qq.com; * Corresponding author , E-mail: uwliwei@ 163.com

1 引言(Introduction)

近年来,抗生素在环境中的污染特征、环境归 趋和生态风险已引起了广泛关注(Kummerer, 2009) .克拉霉素(Clarithromycin, CLA) 是一种典型 的大环内酯类抗生素,主要通过阻断转肽作用和 mRNA 位移而抑制细菌蛋白质合成,从而预防和治 疗组织感染(于守汎 2001).克拉霉素是最常用的一 种大环内酯类抗生素.1999年,瑞士的克拉霉素的 个人消费量为 1.74 t(Mcardell et al., 2003); 2004 年,法国的克拉霉素消耗量可达 15.02 t(Vione et al., 2009).由于其大量使用,克拉霉素已经在污 水处理厂、河流、海洋、沉积物等环境介质中频繁检 出(Michael et al., 2013; Zhang et al., 2013; 伍婷婷 等 2013). 尽管环境水体中克拉霉素的检出浓度较 低 $(ng \cdot L^{-1} \sim \mu g \cdot L^{-1})$,但却对敏感生物具有较大的 生态毒性效应.如 Baumann 等(2015) 发现克拉霉素 对水华鱼腥藻的生长率的半数抑制浓度为 12.1 $\mu g \cdot L^{-1}$ 对其生长量的半数抑制浓度为 5.6 $\mu g \cdot L^{-1}$. Zhang 等(2013) 也发现克拉霉素对水生藻类具有较 高的生态风险.2015年,欧盟已将克拉霉素列为水 体中的优先监测污染物(Barbosa et al., 2016).

传统污水处理厂不能有效去除克拉霉素等大 环内酯类抗生素(Mcardell et al., 2003; Dong et al., 2016) 而高级氧化技术则被认为是一种去除水中 抗生素等微量污染物的有效方法(李文君等 ,2011; Ikehata et al., 2006). UV/H2O2 是一种典型的高级 氧化技术,它能产生氧化性极强的羟基自由基 •OH , 攻击有机物从而使其完全矿化或部分分解 (邓靖等 2013).研究表明 JUV/H_2O_2 可有效去除卡 马西平、羟苯甲酮等新型污染物(邓靖等,2013;冯 欣欣等, 2015; Lin et al., 2016; Afonso - Olivares, et al., 2016; Miralles-Cuevas et al., 2017). Kim 等 (2009) 研究了 UV 和 UV/H₂O₂ 对多种药品与个人 护理用品的降解 发现 UV/H₂O₂ 能够氧化降解克拉 霉素 在纯水和污水处理厂出水中的一级反应速率 常数分别为 0.0017 s^{-1} 和 0.0011 s^{-1} .但 UV/H₂O₂ 对 克拉霉素降解的影响因素及反应动力学尚未阐述 透彻.因此 本文主要考察 UV/H2O2 氧化降解克拉 霉素的反应动力学,以及水质特征(pH、天然有机 质、水中共存阴离子和阳离子) 对 UV/H_2O_2 降解克 拉霉素效果的影响,以期为水环境中克拉霉素的去 除提供一定的数据和理论依据.

2 材料与方法(Materials and methods)

2.1 实验材料

克拉霉素(纯度>95%) 购于 TCI(上海) 化成工业发展有限公司.称取一定量的克拉霉素溶于乙腈中 配成 4000 mg·L¹的克拉霉素储备液,使用时稀释至所需浓度; 天然有机质(NOM ,2R101N) 购于国际腐殖酸协会; 过氧化氢酶(Catalase ,来源于牛肝脏≥3000 U) 和乙酸铵购于阿拉丁生化科技股份有限公司; 过氧化氢(质量浓度 30%)、高锰酸钾、冰乙酸(色谱纯)、磷酸二氢钾、磷酸氢二钾、硝酸钠、氯化钠、碳酸钠、碳酸氢钠、三氯化铁、氯化镁、氯化铜、氯化钙购于国药集团化学试剂有限公司; 对氯苯甲酸(pCBA) 购于 Sigma-Aldrich 化学试剂公司; 乙腈(色谱纯) 和甲醇(色谱纯) 购于美国天地有限公司.除特别说明外,所用的化学试剂纯度为分析纯.实验用水为 Millipore 超纯水.

2.2 实验装置

光降解实验均在 XPA-7 型旋转式光化学反应 仪中进行(南京胥江机电厂),其剖面图见图 1.光化学反应仪主体为圆柱形,12 支石英试管环绕一周,均匀分布在光源周围,反应过程中试管可绕光源旋转.光源为 500 W 中压汞灯+紫外滤光片,实验溶液置于 50 mL 石英试管中,试管反应中心处的光强为4.05 mW•cm⁻²(采用 UV-A 辐照计测定,北京师范大学光电仪器厂).

图 1 光化学反应仪实验装置剖面图(1.进水口 2.出水口 3.反 应试管 4.光源 5.冷凝套 6.取样口)

Fig.1 Schematic diagram of the photo-chemical reactor (1. water inlet, 2. water outlet, 3. reaction tubes, 4. UV light source, 5. condenser jacket, 6. sampling place)

2.3 实验方法

 UV/H_2O_2 氧化降解克拉霉素的反应动力学试验在 $10 \text{ mmol} \cdot \text{L}^{-1}$ 的磷酸盐缓冲溶液中进行(pH 为 7) .加入一定量的克拉霉素缓冲溶液 ,使其初始浓度为 $20 \text{ mg} \cdot \text{L}^{-1}(26.7 \text{ }\mu\text{mol} \cdot \text{L}^{-1})$.之后加入一定浓度的 H_2O_2 将试管置于光化学反应仪开始反应 ,一段时间后(0.15.30.45.60.90.120.180 和 360 min) 取样测定克拉霉素的浓度.每个样品两个平行 ,同时设置单一 UV 和单独 H_2O_2 作为 UV/H_2O_2 的对照组.

为评估 UV/H_2O_2 对实际污水中克拉霉素的去除效果 研究了水质特征 ,包括 pH、NOM、阴离子和阳离子对 UV/H_2O_2 降解克拉霉素的影响.研究 pH的影响时 ,水样的 pH 设置为 4、5、6、7、7.5、8 和 9 ,通过 10 $mmol • L^{-1}$ 的磷酸盐配制得到. NOM 的浓度为 2、5 和 10 $mg • L^{-1}$. 阴离子(NO_3^- 、 Cl^- 、 CO_3^{2-} 和 HCO_3^-) 和阳离子(Cu^{2+} 、 Ca^{2+} 、 Mg^{2+} 和 Fe^{3+}) 的浓度设置为 1 $mmol • L^{-1}$. 克拉霉素的初始浓度为 20 $mg • L^{-1}$, H_2O_2 的初始浓度为 40 $mmol • L^{-1}$. 反应溶液配好后,置于光化学反应仪开始反应,一段时间后取样测定克拉霉素的浓度.

2.4 克拉霉素测定方法

克拉霉素浓度采用高效液相色谱 (Ultimate 3000 ,Dionex) 进行测定. 色谱柱为安捷伦 Eclipse Plus C_{18} 柱(150 mm × 4.6 mm ,5 μm) ,流动相为乙腈和 20 mmol • L⁻¹的乙酸铵溶液 (pH 6) ,两者的体积比为 45:55 ,流速为 1.0 mL • min⁻¹ 柱温 35 °C ,紫外检测波长 210 nm ,进样量 100 μL.

3 结果与讨论(Results and discussion)

3.1 单一 UV 和 UV/ H_2O_2 降解克拉霉素的反应动力学

实验首先比较了单一 UV、投加 H_2O_2 和 UV/ H_2O_2 氧化降解克拉霉素的效果. H_2O_2 的氧化能力 $(1.77\ V)$ 较低 因此 在实验时间内 $(180\ min)$,单独 投加 H_2O_2 并未引起克拉霉素的明显降解(数据未列出) . 单一 UV 和 UV/ H_2O_2 对克拉霉素的去除效果见图 2a. 由图 2a 可知 ,单一 UV 照射可导致克拉霉素的光降解,且其降解效率随时间的延长而增大 ,UV 照射 $360\ min$ 后,克拉霉素的去除率可达到 46.2%. 这可能是由于克拉霉素吸收紫外光后跃迁至其三重态(式(1)) ,并转化为降解产物. UV/ H_2O_2 工艺可以大大提高克拉霉素的降解率. 在 H_2O_2 浓度为 $5\ mmol \cdot L^{-1}$ 时, UV/H_2O_2 氧化处理 $360\ min$ 后,克拉

霉素的去除率可提高到 92.1%.这是由于在 H_2O_2 在 UV 照射下 ,产生了具有强氧化能力的活性物质羟基自由基(\cdot OH) ,攻击克拉霉素使其降解 ,反应过程如式(2) 和(3) 所示.

$$CLA+h\nu \rightarrow ^{3}CLA^{*} \rightarrow$$
 降解产物 (1)

$$H_2O_2 + h\nu \rightarrow 2 \cdot OH$$
 (2)

图 2 单独 UV 和 UV/ H_2O_2 对克拉霉素的降解效率(a) 和反应 动力学(b)

Fig.2 Degradation efficiency (a) and reaction kinetics (b) of clarithromycin by UV and UV/H₂O₂

 H_2O_2 的投加量直接决定了 UV/H_2O_2 反应体系中 • OH的量 ,进而决定了克拉霉素的降解效果.图 2a 表明了不同浓度的 H_2O_2 对克拉霉素降解率的影响 随着 H_2O_2 浓度的增加 ,克拉霉素的去除率也逐渐增加.当 H_2O_2 的初始浓度为 5 mmol • L^{-1} 时 ,反应 180 min 后克拉霉素的去除率为 72.7%; 而当 H_2O_2 的初始浓度增加到 40 mmol • L^{-1} 时 ,180 min 后克拉霉素的去除率即可达到 99.5%.

另一方面 ,克拉霉素的降解率随反应时间的增加而增加. 如在 H_2O_2 浓度为 $20~\text{mmol} \cdot L^{-1}$ 时 ,反应 30~min 和 360~min 后 ,克拉霉素的去除率分别为 48.4%和 97.5%.采用一级动力学模型(式(4))对不

同H₂O₂浓度下克拉霉素随时间的降解数据进行拟 合 并根据式(5) 计算克拉霉素的半衰期 结果如图 2b 和表 1 所示.由图 2b 和表 1 可见,可决系数 R^2 > 0.98 说明克拉霉素的降解符合准一级反应动力学, 而且反应速率常数随 H₂O₂ 浓度增大而增大.这主要 是因为投加的 H_2O_2 越多 ,产生的 $\bullet OH$ 也越多 ,从而 反应速率也越快.在 H_2O_2 浓度为 $40 \text{ mmol} \cdot L^{-1}$ 时 克 拉霉素降解的一级反应速率常数可达到 0.0284 min⁻¹.而 Kim 等(2009) 研究发现 UV/H₂O₂ 对纯水 中克拉霉素降解的一级反应速率常数为 $0.0017~{
m s}^{-1}$. 两者的差异可能是因为克拉霉素的初始浓度和所 采用的光源能量的不同.另一方面,许多研究发现过 量的 H₂O₂ 对 •OH具有捕获作用 ,从而导致高浓度 时反应速率常数反而降低的现象(冯欣欣等 2015; 何勇等 2016) .在本实验中,并未出现此种情况,这 可能是由于 H₂O₂ 的投加量未过量.在实际工艺中, 应根据克拉霉素的浓度通过实验确定最佳的 H_2O_2 投加量.

$$\ln \frac{C_{\text{(CLA}_{l})}}{C_{\text{(CLA}_{0})}} = -k_{\text{app}}t \tag{4}$$

$$t_{1/2} = \frac{0.693}{k_{\rm app}} \tag{5}$$

式中 $\mathcal{L}_{(CLA_0)}$ 表示反应时间 t 时克拉霉素的浓度; $C_{(CLA_0)}$ 表示克拉霉素的初始浓度; k_{app} 为表观反应速率常数; t 为反应时间.

表 1 不同 H_2O_2 浓度下 UV/H_2O_2 降解克拉霉素的一级动力学拟合参数

Table 1 Degradation parameters of pseudo-first-order kinetics model under different H₂O₂ dosages

under different 11202 dosages			
$C_{(\mathrm{H_2O_2})}$ / (mmol • L^{-1})	$K_{\rm app}/{\rm min}^{-1}$	$t_{1/2}$ /min	R^2
0	0.0016	433.1	0.9944
5	0.0067	103.4	0.9850
10	0.0098	70.7	0.9867
20	0.0168	41.3	0.9848
40	0.0284	24.4	0.9845

克拉霉素与 • OH的二次反应速率常数 $k_{\rm CLA-OH}$ 通过竞争动力学模型来计算. 竞争动力学模型的方法原理为克拉霉素和参照化合物同时被 • OH氧化. 在本研究中,参照化合物为对氯苯甲酸($p{\rm CBA}$),其与 • OH的二次反应速率常数 $k_{\rm pCBA-OH}$ 为 5×10^9 L•mol⁻¹•s⁻¹. 克拉霉素和对氯苯甲酸与 • OH的反应均可用二级反应动力学方程来表示,见式(6) 和 (7) .

$$\frac{\mathrm{d}\left[\mathrm{CLA}\right]}{\mathrm{d}t} = -k_{\mathrm{CLA-OH}}\left[\cdot\mathrm{OH}\right]\left[\mathrm{CLA}\right] \qquad (6)$$

$$\frac{\mathrm{d}\left[p\mathrm{CBA}\right]}{\mathrm{d}t} = -k_{p\mathrm{CBA}} \cdot \mathrm{OH} \left[\cdot\mathrm{OH}\right] \left[p\mathrm{CBA}\right] \quad (7)$$

将式(6)与(7)相除 求积分可得到方程(8).

$$\ln\left(\frac{\text{[CLA]}_{0}}{\text{[CLA]}_{t}}\right) = \frac{k_{\text{CLA-OH}}}{k_{\text{pCBA-OH}}} \ln\left(\frac{\text{[pCBA]}_{0}}{\text{[pCBA]}_{t}}\right)$$
(8)

式中,[CLA]。为克拉霉素在反应时间为 0 时的浓度:[CLA],为反应时间 t 由 •OH氧化作用造成的克拉霉素的剩余浓度:[pCBA]。和 [pCBA],分别为对氯苯甲酸在反应时间为 0 和 t 时的浓度; $k_{pCBA-0H}$ 为对氯苯甲酸与 •OH的二次反应速率常数; k_{CLA-0H} 为克拉霉素与 •OH的二次反应速率常数.

在 UV/H_2O_2 处理中 ,克拉霉素的总的降解速率 常数(k_{app}) 可用式(9) 表示(Giannakis et~al. , 2017):

$$k_{\rm app} = k_{\rm UV} + k_{\rm \cdot OH} \tag{9}$$

式中 $k_{\rm app}$ 为 UV/H $_2$ O $_2$ 降解克拉霉素的总的一级反应速率常数 ,见表 $1;k_{\rm UV}$ 为单一 UV 照射下克拉霉素的反应速率常数 ,在本研究中为 $0.0016~{\rm min}^{-1}.k_{-0}$ 为 ${}^{\bullet}$ OH氧化降解克拉霉素的反应速率常数 . ${}^{\bullet}$ OH氧化造成克拉霉素降解的 ${\rm ln}(~{\rm [CLA]}_{o}/{\rm [CLA]}_{\iota})$ 可根据 k_{-0} 乘以反应时间计算得到. ${\rm ln}(~{\rm [CLA]}_{o}/{\rm [CLA]}_{\iota})$ 与 ${\rm ln}(~{\rm [PCBA]}_{o}/{\rm [PCBA]}_{\iota})$ 的关系见图 3 ,其斜率即为 $k_{{\rm CLA}-{\rm OH}}/k_{{\rm PCBA}-{\rm OH}}$ 为 $(2.36\pm0.20)\times10^{10}{\rm L}^{\bullet}{\rm mol}^{-1}{\rm s}^{-1}$.

图 3 不同浓度 H₂O₂ 条件下 ln([CLA]₀/[CLA]_t) 与 ln ([pCBA]₀/[pCBA]_t) 的关系

Fig.3 Correlation between $\ln \left([CLA]_0 / [CLA]_t \right)$ and $\ln \left([pCBA]_0 / [pCBA]_t \right)$ with varying H_2O_2 concentrations

3.2 水质特征对 UV/H_2O_2 降解克拉霉素的影响

3.2.1 pH 对 UV/ H_2O_2 降解克拉霉素的影响 在克

拉霉素的初始浓度为 20 mg·L⁻¹、H,O, 的投加量为 40 mmol • L⁻¹、反应时间为 360 min 的条件下 考察了 pH 对克拉霉素降解的影响.采用准一级动力学拟合 不同 pH 条件下克拉霉素浓度随时间的变化规律见 图 4 拟合参数见表 2.由图 4 和表 2 可知 ,pH 4 和 pH 5 的条件下 ,UV/H2O2 氧化降解克拉霉素的反应 速率常数无明显差别. 当 pH 从 6 增加到 9 时 ,克拉 霉素的降解效率也随之增加.如在 pH 为 6 时 ,反应 360 min 时克拉霉素的去除效率可达到 95.5% 其反 应速率常数为 0.0084 min⁻¹; 当 pH 增加到 7.5 时 反 应 60 min 后克拉霉素的去除率就可达到 97.1% 其 反应速率常数可达到 0.0584 min⁻¹.这说明碱性条件 更有利于克拉霉素的氧化降解.这可能跟不同 pH 条 件下克拉霉素的解离情况有关系.克拉霉素的 pK_a 为 8.9(Sibley and Pedersen, 2008),在酸性条件下多以 质子化形式存在.研究表明,与内酯环相连的红霉支 糖的 O 键是 •OH的主要攻击点位之一(Radjenović et al., 2009; Liu et al., 2014) ,而在酸性条件下, H⁺ 也会加成在该点位,阻碍·OH对克拉霉素的降

图 4 pH 对 UV/H_2O_2 降解克拉霉素的影响

Fig.4 Effect of pH on the degradation of clarithromycin by $UV/\ H_2O_2$

表 2 不同 pH 条件下克拉霉素降解的准一级动力学模型的拟合 参数

Table 2 Fitting parameters of pseudo-first-order kinetics model under different pH

	· F		
pН	$k_{ m app}$ / ${ m min}^{-1}$	$t_{1/2}/\min$	R^2
4	0.0067	103.4	0.9935
5	0.0066	105.0	0.9969
6	0.0084	82.5	0.9880
7	0.0277	25.0	0.9817
7.5	0.0584	11.9	0.9883
8	0.1251	5.5	0.9960
9	0.3035	2.3	0.9659

解.而在碱性条件下,克拉霉素多以分子形式存在,易于被•OH氧化降解.

3.2.2 NOM 对 UV/H₂O₂ 降解克拉霉素的影响 NOM 是自然水体中普遍存在的天然高分子有机物, 其成分复杂,官能团种类较多,对有机物的迁移转 化具有重要影响.实验在克拉霉素浓度为20 mg•L⁻¹、H₂O₂ 的投加量为 40 mmol•L⁻¹、pH 为 7 反 应时间为 180 min 的条件下 .研究了不同浓度 NOM 对 UV / H₂O₂ 降解克拉霉素的影响 ,其结果见图 5 和表 3. 水中的 NOM 抑制了克拉霉素的降解,且 NOM 浓度越大 其抑制效应越大.在 NOM 浓度为 2 mg·L-1和10 mg·L-1时,克拉霉素光降解的反应速率 常数分别为 0.0234 min⁻¹和 0.0149 min⁻¹.这可能是 有两个原因造成的 (Î) NOM 能够吸收光能,可能减 少 H₂O₂ 对光能的吸收 ,降低 •OH的产率从而降低 克拉霉素的降解效率; ②NOM 又能够和 •OH反应, 降低反应体系中·OH的量,从而降低克拉霉素的反 应速率.

图 5 NOM 对 UV/H₂O₂ 降解克拉霉素的影响

Fig.5 Effect of NOM on the degradation of clarithromycin by $UV/\ H_2O_2$

表 3 天然有机质存在条件下克拉霉素降解的准一级动力学模型的 拟合参数

Table 3 Fitting parameters of pseudo-first-order kinetics model in the presence of natural organic matter

1			
天然有机质 NOM/ (mg•L ⁻¹)	$k_{\rm app} / {\rm min}^{-1}$	$t_{1/2}$ /min	R^2
0	0.0284	24.4	0.9845
2	0.0234	29.6	0.9970
5	0.0160	43.3	0.9836
10	0.0149	46.5	0.9884

3.2.3 共存阴离子对 UV/H_2O_2 降解克拉霉素的影响 天然水体中普遍存在着 NO_3 等阴离子 ,它们可能对有机污染物的光降解具有不同的影响.实验考

察了常见阴离子(NO_3^- 、 Cl^- 、 CO_3^{2-} 和 HCO_3^-) 对 UV/H_2O_2 降解克拉霉素的影响.采用准一级动力学拟合 阴离子存在条件下克拉霉素浓度随时间的变化规律(图 6) 拟合参数见表 4.

图 6 水中阴离子对 UV/H_2O_2 降解克拉霉素的影响

Fig.6 Effect of anions on the degradation of clarithromycin by UV/ $\label{eq:H2O2} H_2O_2$

表 4 不同阴离子条件下克拉霉素降解的准一级动力学模型的拟合参数

Table 4 Fitting parameters of pseudo-first-order kinetics model in the presence of different anions

阴离子	$k_{\rm app}/{\rm min}^{-1}$	$t_{1/2}$ / min	R^2
CK(phosphate buffer)	0.0284	24.4	0.9845
NO_3^-	0.0175	39.6	0.9923
Cl-	0.0245	28.3	0.9880
CO_3^{2-}	0.0290	23.9	0.9941
HCO ₃	0.0195	35.5	0.9926

由图 6 和表 4 可见 在 4 种考察阴离子中, CO_3^{2-} 对克拉霉素的降解未产生影响,其余 3 种阴离子均抑制了克拉霉素的降解。 CO_3^{2-} 是 • OH的清除剂,其反应方程式见式(10),但是由于加入 CO_3^{2-} 会增加反应体系的碱度(pH 增加到了 7.17),而碱性的 pH 有利于克拉霉素的降解,因此,加入 1 mmol • L⁻¹ CO_3^{2-} 对克拉霉素降解的综合效应表现为无显著性影响. HCO_3^{-} 也是 • OH的清除剂,而且 HCO_3^{-} 与 • OH 反应生成的 CO_3^{--} 也会消耗 H_2O_2 ,反应过程见方程式(10)~(13),因此, HCO_3^{--} 对克拉霉素的降解表现为抑制作用.

$$HCO_3^- + \bullet OH \rightarrow HCO_3^+ + OH^-$$
 (11)

$$HCO_3 \rightarrow CO_3 \rightarrow H^+$$
 (12)

$$CO_3^{-\bullet} + H_2O_2 \rightarrow HO_2^{\bullet} + HCO_3^{-}$$
 (13)

 NO_3^- 对有机物的降解具有双重作用 ,一方面 , NO_3^- 在紫外光的照射下 ,可产生 •OH(方程式

(14) ~ (16)),促进有机物的降解;另一方面, NO_3^- 对紫外光具有较强的吸收作用,阻碍紫外光通过溶液,从而使 UV/H_2O_2 产生 • OH的效率降低,抑制有机物的降解.由于 NO_3^- 产生 • OH的作用没有它的吸收作用强(邓靖等 2013),因此 NO_3^- 抑制了克拉霉素的降解.

$$NO_3^- + h\nu \rightarrow NO_2^- + O \tag{14}$$

$$NO_3^- + H_2O + h\nu \rightarrow NO_2 \cdot + OH^- + \cdot OH$$
 (15)

$$O+H,O\rightarrow 2 \cdot OH$$
 (16)

Cl⁻可与 •OH反应生成 ClOH⁻ ,Cl 和 Cl₂⁻等(方程式(17)~(21)),这些自由基可选择性的跟某些有机污染物反应,如 Cl 可以与富电子化合物乙醇等发生反应(Wang *et al.*,2013).而克拉霉素的分子结构决定了其与 Cl 的反应活性较低.因此,Cl⁻对 •OH的消耗抑制了克拉霉素的降解.

$$Cl^- + \cdot OH \rightarrow ClOH^-$$
 (17)

$$ClOH^- \rightarrow \bullet OH + Cl^-$$
 (18)

$$ClOH^{-}+H^{+}\rightarrow Cl^{+}+H_{2}O$$
 (19)

$$Cl^{\cdot} + Cl^{-} \rightarrow Cl_{2}^{\cdot-}$$
 (20)

$$Cl_2^{-} + \cdot OH \rightarrow HOCl + Cl^{-}$$
 (21)

3.2.4 共存阳离子对 UV/H₂O₂ 降解克拉霉素的影 响 实验考察了常见阳离子(Cu²⁺、Ca²⁺、Mg²⁺和 Fe³⁺) 对 UV/H₂O₂ 降解克拉霉素的影响.由于阳离 子的加入引入了 Cl⁻,本实验以 1 mmol·L⁻¹的 NaCl 共存时克拉霉素的光降解作为对照.采用准一级动 力学拟合阳离子存在条件下克拉霉素浓度随时间 的变化规律见图 7.拟合参数见表 5.由图 7和表 5 可知 共存的阳离子抑制了克拉霉素的降解 抑制 强度的大小顺序为 Fe³⁺>Cu²⁺>Mg²⁺>Ca²⁺.反应 120 min 后,对照组中克拉霉素的去除率为 96.5%; 而在 1 mmol·L⁻¹的 Ca²⁺、Mg²⁺、Cu²⁺和 Fe³⁺共存条件下反 应 120 min 后,克拉霉素的去除率降为 95.3%、 93.7%、63.8%和 36.3%. 阳离子对克拉霉素降解的抑 制作用可能是由于克拉霉素与阳离子之间的络合 作用(Vione et al., 2009; Hamdan, 2003),而且 其 抑制效果可能跟络合强度成正比. Ca2+ 的金属性比 Mg2+强 其配位体更容易水化,因此,Ca2+对克拉霉 素光降解的抑制程度要小于 Mg²⁺的影响; 过渡金属 Cu2+和 Fe3+具有多个不饱和电子轨道,可能与多个 克拉霉素分子形成了稳定且复杂的络合结构(郭洪 光等 2011) 因此 Cu²⁺和 Fe³⁺对克拉霉素降解的抑 制效果更强.由于克拉霉素的分子结构较复杂.很难 预测具体的络合位点,但是根据之前研究(Vione et al., 2009; Hamdan, 2003) 络合位点很可能是在内酯环的氧原子上.

图 7 水中阳离子对 UV/H_2O_2 降解克拉霉素的影响

Fig. 7 Effect of cations on the degradation of clarithromycin by $UV/H_2O_2 \label{eq:UV}$

表 5 不同阳离子条件下克拉霉素降解的准一级动力学模型的拟合 参数

Table 5 Fitting parameters of pseudo-first-order kinetics model in the presence of different cations

阳离子	$k_{ m app}$ / ${ m min}^{-1}$	$t_{1/2}$ /min	R^2
CK(NaCl)	0.0245	28.3	0.9880
Ca ²⁺	0.0237	29.2	0.9961
Mg^{2+}	0.0214	32.4	0.9938
$\mathrm{Fe^{3+}}$	0.0034	203.8	0.9860
Cu ²⁺	0.0077	90.0	0.9940

4 结论(Conclusions)

- 1) 单一 UV 对克拉霉素的光降解符合准一级反应动力学模型 其反应速率常数为 0.0016 min⁻¹.
- $2)~UV/H_2O_2~$ 对克拉霉素的降解符合准一级反应动力学模型 ,且克拉霉素的降解速率随 H_2O_2 浓度的增大而增大.克拉霉素与 \bullet OH的二级反应速率常数为(2.36 ± 0.20) $\times 10^{10}~L$ \bullet mol $^{-1}$ \bullet s $^{-1}$.
- 3) 水质特征对 UV/H_2O_2 降解克拉霉素具有重要影响: 碱性条件更有利于克拉霉素的降解; NOM 会抑制克拉霉素的降解 ,且随 NOM 浓度增大而增大; 共存的阴离子 CO_3^2 对克拉霉素降解无影响 , $HCO_3^ NO_3^ CI^-$ 则抑制了克拉霉素的降解 ,其抑制程度从大到小为 NO_3^- > HCO_3^- > CI^- ; 共存阳离子 Ca^{2+} 、 Mg^{2+} 、 Cu^{2+} 和 Fe^{3+} 也会抑制克拉霉素的降解 ,其抑制程度从大到小为 Fe^{3+} > Cu^{2+} > Mg^{2+} > Ca^{2+} .

参考文献(References):

Afonso-Olivares C , Fernandez-Rodriguz C , Ojeda-Gonzalez R J , et al.

- 2016. Estimation of kinetic parameters and UV doses necessary to remove twenty-three pharmaceuticals from pre-treated urban wastewater by UV/H₂O₂ [J]. Journal of Photochemistry and photobiology A: Chemistry ,329: 130–138
- Barbosa M O , Moreira N F F , Ribeiro A R , et al. 2016. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495 [J]. Water Research , 94: 257–279
- Baumann M , Weiss K , Maletzki D , et al. 2015. Aquatic toxicity of the macrolide antibiotic clarithromycin and its metabolites [J]. Chemosphere , 120: 192–198
- Dong H , Yuan X , Wang W , et al. 2016. Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: A field study [J]. Journal of Environmental Management , 178: 11–19
- 冯欣欣 , 杜尔登 , 郭迎庆 , 等. 2015. UV/H_2O_2 降解羟苯甲酮反应动力学及影响因素 [J]. 环境科学 , 36(6): 2129-2137
- Giannakis S , Hendaoui I , Milica J , et al. 2017. Solar photo-Fenton and UV/H_2O_2 processes against the antidepressant venlafaxine in urban wastewaters and human urine. Intermediates formation and biodegradability assessment [J]. Chemical Engineering Journal , 308: 492–504
- 郭洪光,高乃云,张永吉,等. 2011.水中环丙沙星的 UV 及 UV/ H₂O₂ 光化学降解[J]. 沈阳工业大学学报,33(4): 468-475
- Hamdan I I. 2003. Comparative in vitro investigations of the interaction between some macrolides and Cu(II), Zn(II) and Fe(II) [J]. Pharmazie, 58(3): 223-224
- 何勇 ,陈瑛 ,卢丽娟 ,等. 2016. 基于 UV/H_2O_2 和 UV/PS 工艺降解 水体中磺胺吡啶研究 [J]. 应用化工 ,45(5):815-819
- Ikehata K , Naghashkar N J , Ei-Din M G. 2006. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review [J]. Ozone Science and Engineering , 28(6): 353-414
- Kummerer K. 2009. Antibiotics in the aquatic environment-A review-part I [J]. Chemosphere , 75(4):417-434
- 李文君, 蓝梅, 彭先佳. 2011. UV/H_2O_2 联合氧化法去除畜禽养殖 废水中抗生素[J]. 环境污染与防治, 33(4): 25-28
- Lin C , Lin H , Hsu L. 2016. Degradation of of loxacin using $\rm UV/H_2O_2$ process in a large photoreactor [J]. Separation and Purification Technology , 168: 57–71
- Liu P , Zhang H , Feng Y , et al. 2014. Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes [J]. Chemical Engineering Journal , 240(6): 211–220
- Mcardell C S, Molnar E, Suter M J F, et al. 2003. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland [J]. Environmental Science and Technology, 37(24): 5479-5486
- Michael I, Rizzo L, Mcardell C S, et al. 2013. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review [J]. Water Research, 47(3): 957–995

- Miralles-Cuevas S , Darowna D , Wanag A , et al. 2017. Comparision of $UV/H_2O_2 \ , UV/S_2O_8^{2-} \ , \ solar/Fe(\ II) \ /H_2O_2 \ and \ solar/Fe(\ II) \ / \\ S_2O_8^{2-} \ at \ pilot \ plant \ scale \ for \ the \ elimination \ of \ micro-contaminants in natural water: An economic assessment [J]. Chemical Engineering Journal , 310: 514–524$
- Radjenovic J , GodehardT M , Petrovic M , et al. 2009. Evidencing generation of persistent ozonation products of antibiotics roxithromycin and trimethoprim [J]. Environmental Science and Technology , 43(17): 6808-6815
- Sibley S D , Pedersen J A. 2008. Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid [J]. Environmental Science and Technology ,42(2): 422–428
- Vione D , Feitosa-Felizzola J , Minero C , et al. 2009. Phototransformation of selected human-used macrolides in surface water:

- kinetics, model predictions and degradation pathways [J]. Water Research, 43(7): 1959–1967
- Wang D , Duan X , He X , et al. 2016. Degradation of dibutyl phthalate (DBP) by UV-254 nm/H₂O₂ photochemical oxidation: kinetics and influence of various process parameters [J]. Environmental Science Pollution Research , 23(23):23772-23780
- 伍婷婷,张瑞杰,王英辉,等. 2013. 邕江南宁市区段表层沉积物典型抗生素污染特征[J]. 中国环境科学,33(2): 336-344
- 于守汎. 2001. 克拉霉素的特点和临床应用[J]. 国外医药(抗生素分册),22(3): 113-115,127
- Zhang R , Tang J , Li J , et al. 2013. Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea , North China [J]. Science of the Total Environment , 450-451(2):197-204