Yichao Yuan

E-mail: yichaoy@umich.edu Phone: (+1) 734-450-4291

EDUCATION

Shanghai Jiao Tong University, Shanghai, China

University of Michigan – Shanghai Jiao Tong University Joint Institute (UM-SJTU JI)

B.S.E in Electrical and Computer Engineering

Overall GPA: 3.80/4.00 Sept. 2017 – Aug. 2021

University of Michigan, Ann Arbor, USA

M.S.E in Electrical and Computer Engineering

Overall GPA: 4.00/4.00 Sept. 2021 – May. 2023

Ph.D. in Computer Science and Engineering

Aug. 2023 - Now

Graduate Student Research Assistant (GSRA)

May. 2022 - Now

Relevant coursework: EECS 470 Computer Architecture (A+), EECS 570 Parallel Computer Architecture (A), EECS 583 Advanced Compilers (A+)

RESEARCH INTERESTS

Computer Architecture, hardware-software co-design, accelerator design.

PUBLICATION

Y. Yuan, H. Ye, S. Vedula, W. M Kaza, N. Talati, "Everest: GPU-Accelerated System For Mining Temporal Motifs," Proceedings of the VLDB Endowment, Vol. 17, No. 2, **VLDB 2024**.

N. Talati, H. Ye, S. Vedula, K-Y Chen, Y. Chen, D. Liu, Y. Yuan, D. Blaauw, A. Bronstein, T. Mudge, and R. Dreslinski, "Mint: An Accelerator For Mining Temporal Motifs," the 55th IEEE/ACM International Symposium on Microarchitecture MICRO 2022.

RELEVANT PROJECTS

Prefetching for Graphs on Manycore Architecture

University of Michigan, Shepherd Group

Oct. 2021 – Now

Ongoing project. Discuss project specifications with colleagues. Modeling the designed techniques. Aim at designing prefetching methods for graphs on manycore architecture.

Everest: GPU-Accelerated System For Mining Temporal Motifs

University of Michigan, Shepherd Group

May. 2021 – Oct. 2023

Propose a GPU-Accelerated System for Mining Temporal Motifs. Everest includes various techniques to speed up the workload against a baseline GPU implementation by 19x. This work is published in VLDB 2024. Part of the result is also included in a top-tier conference publication at MICRO 2022.

Out-of-Order Superscalar Processor Design

University of Michigan, EECS 470 Final Project

Oct. 2021 – Dec. 2021

Design and implement a parameterized out-of-order superscalar processor with SystemVerilog. The superscalar width and other parameters are configurable. Implement additional features for higher performance. Propose the high-level design and organize the team. Also, be responsible for implementation details, integration, and testing.

EXTRACURRICULAR ACTIVITIES

Teaching Assistant for VLSI Design

Shanghai Jiao Tong University

May. 2021 – Aug. 2021

Teaching Assistant for Semiconductor Devices

Shanghai Jiao Tong University

Sept. 2019 – Dec. 2019

TECHNICAL SKILLS

Programming languages and tools

C, C++, Python, CUDA, Julia, SystemVerilog, Matlab, LLVM, Murphi, Git, Design Compiler, Nsight Compute, x86 SIMD, LaTeX, RISCV Spike, Vivado, Verilator

REFERENCES

Prof. Ronald Dreslinski, Morris Wellman Faculty Development Associate Professor, Computer Science and Engineering, University of Michigan, Ann Arbor, MI. E-mail: rdreslin@umich.edu

Prof. Trevor Mudge, Bredt Family Professor, Computer Science and Engineering, University of Michigan, Ann Arbor, MI. E-mail: tnm@umich.edu

Dr. Nishil Talati, Assistant Research Scientist (Research Faculty), Computer Science and Engineering, University of Michigan, Ann Arbor, MI.

E-mail: talatin@umich.edu