ЛЕКЦИЯ Б1. Упорядоченные пары. Прямое произведение множеств. Бинарные отношения. Операции над ними

Прямое произведение множеств. Упорядоченная пара $\langle a,b \rangle$ интуитивно определяется как совокупность двух предметов a и b, расположенных в строго определенном порядке. Основное свойство упорядоченных пар состоит в том, что $\langle a,b \rangle = \langle c,d \rangle \Leftrightarrow a = c,b = d$.

Упражнение 2.1. Пусть $\langle a,b \rangle = \{\{a\},\{a,b\}\}$. Доказать, что

$$\langle a,b\rangle = \langle c,d\rangle \Leftrightarrow a=c,b=d.$$

Указание. Отдельно рассмотреть случаи: a=b , $a \neq b$.

Аналогично определяется упорядоченная n -ка $\langle a_1, a_2, ..., a_n \rangle$.

Замечание 2.1. Можно определить:

$$\langle a_1,a_2,a_3 \rangle = \langle \langle a_1,a_2 \rangle, a_3 \rangle, \langle a_1,a_2,a_3,a_4 \rangle = \langle \langle a_1,a_2,a_3 \rangle, a_4 \rangle$$
, и т.д.

Основное свойство упорядоченных n-ок заключается в следующем:

$$\langle a_1, a_2, ..., a_n \rangle = \langle b_1, b_2, ..., b_n \rangle \Leftrightarrow a_1 = b_1, ..., a_n = b_n.$$

Прямым (декартовым) произведением множеств $A_1,A_2,...,A_n$ называется множество $A_1\times A_2\times \cdots \times A_n=\{< a_1,...,a_n> | a_1\in A_1,...,\ a_n\in A_n\}$. В случае $A_1=A_2=\cdots =A_n=A$ будем кратко писать $A_1\times A_2\times \cdots \times A_n=A^n$.

Упражнение 2.2. Доказать, что если $A_1, A_2, ..., A_n$ – конечные множества, то

$$|A_1 \times A_2 \times \cdots \times A_n| = \prod_{i=1}^n |A_i|.$$

Указание. Воспользоваться рассуждениями, аналогичными доказательству утверждения 1.1.

Пример 2.1. Пусть $A = \{2,3\}, B = \{0,1,2\}.$ Тогда $A \times B = \{\langle 2,0 \rangle, A \times B = \{\langle 2,0 \rangle, A \times B \}$

$$\langle 2,1\rangle, \langle 2,2\rangle, \langle 3,0\rangle, \langle 3,1\rangle, \langle 3,2\rangle\}, B\times A = \{\langle 0,2\rangle, \langle 0,3\rangle, \langle 1,2\rangle, \langle 1,3\rangle, \langle 2,2\rangle, \langle 2,3\rangle\}.$$

Заметим, что в приведенном примере $A \times B \neq B \times A$, т.е. операция \times в общем случае не является коммутативной.

Пример 2.2. Пусть A = [0;2], B = [0;1]. Тогда $A \times B = = \{\langle a,b \rangle | a \in [0;2], b \in [0;1]\}$ – прямоугольник (см. рис. 2.1).

Пример 2.3. Пусть A – множество юношей, B – множество девушек. Тогда $A \times B$ – множество супружеских пар, которые можно составить из A и B.

Приведем некоторые тождества, связанные с прямым произведением множеств. Для любых множеств A,B,C, являющихся подмножествами некоторого универсального множества U, справедливы равенства:

1.
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
;

1'.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
;

2.
$$(A \cap B) \times C = (A \times C) \cap (B \times C);$$
 3. $2' \cdot A \times (B \cap C) = (A \times B) \cap (A \times C);$ $(A \setminus B) \times C = (A \times C) \setminus (B \times C);$ 3. $3' \cdot A \times (B \setminus C) = (A \times B) \setminus (A \times C);$ 4. $(A + B) \times C = (A \times C) + (B \times C).$ 4. $(A \times C) = (A \times C) + (A \times C)$

Докажем тождество 1. Для любых $x, y \in U$ имеем:

$$\langle x, y \rangle \in (A \cup B) \times C \Rightarrow x \in A \cup B, y \in C \Rightarrow$$

$$\Rightarrow y \in C, \left[\begin{array}{c} x \in A \Rightarrow \langle x, y \rangle \in A \times C \\ x \notin A \Rightarrow x \in B \Rightarrow \langle x, y \rangle \in B \times C \end{array} \right] \Rightarrow$$

$$\Rightarrow \langle x, y \rangle \in (A \times C) \cup (B \times C).$$

С другой стороны, для любых $x, y \in U$ имеем:

$$\langle x, y \rangle \in (A \times C) \cup (B \times C) \Rightarrow$$

$$\Rightarrow \begin{bmatrix} \langle x, y \rangle \in A \times C \Rightarrow x \in A, y \in C \\ \langle x, y \rangle \notin A \times C \Rightarrow \langle x, y \rangle \in B \times C \Rightarrow x \in B, y \in C \end{bmatrix} \Rightarrow$$
$$\Rightarrow x \in A \cup B, y \in C \Rightarrow \langle x, y \rangle \in (A \cup B) \times C.$$

Докажем тождество 2. Для любых $x, y \in U$ имеем:

$$\langle x, y \rangle \in (A \cap B) \times C \Leftrightarrow x \in A \cap B, y \in C \Leftrightarrow x \in A, x \in B, y \in C \Leftrightarrow \langle x, y \rangle \in A \times C,$$

 $\langle x, y \rangle \in B \times C \Leftrightarrow \langle x, y \rangle \in (A \times C) \cap (B \times C).$

Докажем тождество 3. Для любых $x, y \in U$ имеем:

$$\langle x, y \rangle \in \in (A \setminus B) \times C \Leftrightarrow x \in A \setminus B, y \in C \Leftrightarrow x \in A, x \notin B, y \in C \Leftrightarrow \Leftrightarrow \langle x, y \rangle \in A \times C,$$

 $\langle x, y \rangle \notin B \times C \Leftrightarrow \langle x, y \rangle \in (A \times C) \setminus (B \times C).$

Докажем тождество 4. В силу доказанных тождеств 1,3 имеем: $(A+B)\times C=[(A\setminus B)\cup (B\setminus A)]\times C=[(A\setminus B)\times C]\cup [(B\setminus A)\times C]=$ = $=[(A\times C)\setminus (B\times C)]\cup [(B\times C)\setminus (A\times C)]=(A\times C)+(B\times C)$.

Тождества 1'-4' доказываются аналогично тождествам 1-4.

Бинарные отношения. Введем понятие *бинарного отношения*. Бинарным отношением между элементами множеств A и B называется любое подмножество ρ прямого произведения $A \times B$. Если A = B, то бинарное отношение ρ называется бинарным отношением на множестве A. Вместо $\langle x, y \rangle \in \rho$ часто пишут $x \rho y$.

Пример 2.4. Пусть \mathcal{J} – множество всех людей. Рассмотрим бинарное отношение $o \subseteq \mathcal{J}^2$ такое, что $< x, y > \in o \Leftrightarrow x$ является отцом y. Таким образом, o – бинарное отношение отцовства. Аналогичным образом можно определить бинарное отношение материнства m, а также большое многообразие бинарных отношений на множестве всех людей \mathcal{J} : дружбы, любви, ненависти, вражды и т.д. (в том числе большое многообразие родственных отношений: брат, сестра, двоюродный брат, сводный брат, племянник, внук и т.д.). Например, бинарное отношение ghyk на множестве людей \mathcal{J} определяется следующим образом: $x ghyk y \Leftrightarrow \exists z : [(y o z или y m z), (z o x или z m x)].$

Пример 2.5. Пусть R – множество действительных чисел. Тогда $\rho = \{ \left\langle x,y \right\rangle \, \big| \, x,y \in R \,, \, \exists z \in R : x+z^2 = y \} \, - \, \text{бинарное отношение на множестве } \, R, \, \text{которое}$ обычно обозначается $\leq (\leq -$ множество точек из заштрихованной области; см. рис. 2.2). Обычно вместо $\left\langle x,y \right\rangle \in \leq \,$ пишем $x \leq y$.

Рис. 2.2

Пример 2.6. $\rho = \{\langle x, y \rangle \mid x, y \in \mathbb{R} , y \geq x^2 \}$ – бинарное отношение на множестве действительных чисел \mathbb{R} (ρ – множество точек из заштрихованной области; см. рис. 2.3)

Пример 2.7. Пусть $A = \{1,2\}$, $B = \{3,4\}$. Тогда $\rho = \{<1,4>, <2,3>\}$ — бинарное отношение между элементами множеств A и B, так как $\rho \subseteq A \times B = \{<1,3>, <1,4>, <2,3>, <2,4>\}$.

Областью определения бинарного отношения ρ называется мно-

жество $D_{\rho} = \{x | \exists y : \langle x, y \rangle \in \rho \}$ (т.е. D_{ρ} – это множество всех первых элементов пар из ρ).

Множеством значений бинарного отношения ρ называется множество

$$R_{\rho} = \{y | \exists x : \langle x, y \rangle \in \rho \}$$
 (т.е. R_{ρ} – это множество всех вторых элементов пар из ρ).

В примере 2.4 D_o — это множество всех отцов, а R_o — это множество всех людей. В примере 2.5 D_ρ = R, R_ρ = R. В примере 2.6 D_ρ = R, R_ρ = { $x \in \mathbb{R} \mid x \ge 0$ }. В примере 2.7 D_ρ = {1,2}, R_ρ = {3,4}.

Операции над бинарными отношениями. Для бинарных отношений определены обычным образом теоретико-множественные операции объединения, пересечения и т.д. Абсолютным дополнением бинарного отношения ρ между элементами множеств A и B считается множество $\overline{\rho} = (A \times B) \setminus \rho$. Например, абсолютным дополнением бинарного отношения \leq на R является бинарное отношение > на R.

Обратным отношением для бинарного отношения $\rho \subseteq A \times B$ называется отношение $\rho^{-1} = \{< y, x> \mid < x, y> \in \rho\} \subseteq B \times A$, т.е. получаемое из ρ переворачиванием пар.

Произведением бинарных отношений $\rho_1 \subseteq A \times B$, $\rho_2 \subseteq B \times C$ называется бинарное отношение $\rho_1 \circ \rho_2 \subseteq A \times C$, задаваемое равенством:

$$\rho_1 \circ \rho_2 = \{ \left\langle x, z \right\rangle \in A \times C \mid \exists y \in B : \left\langle x, y \right\rangle \in \rho_1, \left\langle y, z \right\rangle \in \rho_2 \}.$$

Если ho – бинарное отношение на множестве, то будем кратко писать $ho^2 = \rho \circ \rho$, $ho^3 = \rho \circ \rho \circ \rho$ и т.д.

Приведем некоторые свойства этих операций.

Утверждение 2.1. Для любых бинарных отношений $\rho_1 \subseteq A \times B$,

$$\rho_2 \subseteq B \times C$$
 выполняется $(\rho_1 \circ \rho_2)^{-1} = \rho_2^{-1} \circ \rho_1^{-1} \subseteq C \times A$.

Доказательство. Пусть $\langle z, x \rangle \in C \times A$. Тогда

$$\langle z, x \rangle \in (\rho_1 \circ \rho_2)^{-1} \Leftrightarrow \langle x, z \rangle \in \rho_1 \circ \rho_2 \Leftrightarrow \exists y \in B : \langle x, y \rangle \in \rho_1,$$

$$\langle y, z \rangle \in \rho_2 \Leftrightarrow \Leftrightarrow \exists y \in B : \langle z, y \rangle \in \rho_2^{-1}, \langle y, x \rangle \in \rho_1^{-1} \Leftrightarrow \langle z, x \rangle \in \rho_2^{-1} \circ \rho_1^{-1}.$$

Утверждение 2.2. Для любых бинарных отношений $\rho_1 \subseteq A \times B$, $\rho_2 \subseteq B \times C$, $\rho_3 \subseteq C \times D$ выполняется $\rho_1 \circ (\rho_2 \circ \rho_3) = = (\rho_1 \circ \rho_2) \circ \rho_3 \subseteq A \times D$.

Доказательство. Для любой пары $\langle x, u \rangle \in A \times D$ имеем:

$$\langle x, u \rangle \in \rho_1 \circ (\rho_2 \circ \rho_3) \Leftrightarrow \exists y \in B : \langle x, y \rangle \in \rho_1, \langle y, u \rangle \in \rho_2 \circ \rho_3 \Leftrightarrow$$

$$\Leftrightarrow \exists y \in B, \exists z \in C : \langle x, y \rangle \in \rho_1, \langle y, z \rangle \in \rho_2, \langle z, u \rangle \in \rho_3 \Leftrightarrow$$

$$\Leftrightarrow \exists z \in C : \langle x, z \rangle \in \rho_1 \circ \rho_2, \langle z, u \rangle \in \rho_3 \Leftrightarrow \langle x, u \rangle \in (\rho_1 \circ \rho_2) \circ \rho_3.$$

Утверждение 2.3. Для любых бинарных отношений $\rho_1 \subseteq A \times B$, $\rho_2 \subseteq A \times B$, $\rho_3 \subseteq B \times C$ выполняется:

(a)
$$(\rho_1 \cup \rho_2) \circ \rho_3 = (\rho_1 \circ \rho_3) \cup (\rho_2 \circ \rho_3) \subseteq A \times C$$
;

(6)
$$(\rho_1 \cap \rho_2) \circ \rho_3 \subseteq (\rho_1 \circ \rho_3) \cap (\rho_2 \circ \rho_3) \subseteq A \times C$$
;

(B)
$$(\rho_1 \setminus \rho_2) \circ \rho_3 \supseteq (\rho_1 \circ \rho_3) \setminus (\rho_2 \circ \rho_3) \subseteq A \times C$$
.

Доказательство. Докажем (a). Пусть $\langle x, z \rangle \in A \times C$. Тогда

$$\langle x, z \rangle \in (\rho_1 \cup \rho_2) \circ \rho_3 \Rightarrow \exists y \in B : \langle x, y \rangle \in \rho_1 \cup \rho_2, \langle y, z \rangle \in \rho_3 \Rightarrow$$

$$\Rightarrow \langle y, z \rangle \in \rho_3, \begin{bmatrix} \langle x, y \rangle \in \rho_1 \Rightarrow \langle x, z \rangle \in \rho_1 \circ \rho_3 \\ \langle x, y \rangle \notin \rho_1 \Rightarrow \langle x, y \rangle \in \rho_2 \Rightarrow \langle x, z \rangle \in \rho_2 \circ \rho_3 \end{bmatrix} \Rightarrow \Rightarrow \langle x, z \rangle \in (\rho_1 \circ \rho_3) \cup (\rho_2 \circ \rho_3).$$

С другой стороны, $\langle x, z \rangle \in (\rho_1 \circ \rho_3) \cup (\rho_2 \circ \rho_3) \Rightarrow$

$$\Rightarrow \begin{bmatrix} \langle x, z \rangle \in \rho_1 \circ \rho_3 \Rightarrow \exists y_1 \in B : \langle x, y_1 \rangle \in \rho_1, \langle y_1, z \rangle \in \rho_3 \\ \langle x, z \rangle \in \rho_2 \circ \rho_3 \Rightarrow \exists y_2 \in B : \langle x, y_2 \rangle \in \rho_2, \langle y_2, z \rangle \in \rho_3 \end{bmatrix} \Rightarrow$$

$$\Rightarrow \exists y \in B : \langle x, y \rangle \in \rho_1 \cup \rho_2, \langle y, z \rangle \in \rho_3 \Rightarrow \langle x, z \rangle \in (\rho_1 \cup \rho_2) \circ \rho_3.$$

Доказательство (б), (в) аналогично.

Утверждение 2.4. Для любых бинарных отношений $\rho_1 \subseteq A \times B$, $\rho_2 \subseteq B \times C$, $\rho_3 \subseteq B \times C$ выполняется:

(a)
$$\rho_1 \circ (\rho_2 \cup \rho_3) = (\rho_1 \circ \rho_2) \cup (\rho_1 \circ \rho_3) \subseteq A \times C$$
;

(6)
$$\rho_1 \circ (\rho_2 \cap \rho_3) \subseteq (\rho_1 \circ \rho_2) \cap (\rho_1 \circ \rho_3) \subseteq A \times C$$
;

(B)
$$\rho_1 \circ (\rho_2 \setminus \rho_3) \supseteq (\rho_1 \circ \rho_2) \setminus (\rho_1 \circ \rho_3) \subseteq A \times C$$
.

Доказательство утверждения 2.4 аналогично доказательству утверждения 2.3. Приведите примеры бинарных отношений ρ_1, ρ_2, ρ_3 на множестве $A = \{1, 2, 3\}$, для которых в утверждениях 2.3, 2.4 не выполняются равенства в случаях (б), (в).