Claim Amendments

Claims 1, 4, and 18-20 have been amended. Claims 6-17 are canceled. Claims 2, 3, and 5 are unchanged. The following listing of claims replaces all previous versions of the claims in the application.

Listing of Claims

1. (currently amended) A complementary-metal-oxide-semiconductor integrated circuit having a semiconductor
substrate with a surface, the integrated circuit comprising:

a metal-oxide-semiconductor (MOS) field-effect transistor having a source, a drain, and a gate having a gate dielectric layer; and

a bipolar transistor having an emitter, a collector, and a base having a base width, wherein the base has:

a base region with a width equal to the base width that separates the emitter and collector and a length,

wherein the emitter and collector are at a distance from each other along the surface that is equal to the base width, and

a base conductor that is electrically connected to the base region along its <u>entire</u> length without being blocked by intervening portions of the gate oxide dielectric layer.

- 2. (original) The complementary-metal-oxidesemiconductor integrated circuit defined in claim 1 wherein the base conductor comprises doped semiconductor.
- 3. (original) The complementary-metal-oxide-semiconductor integrated circuit defined in claim 1 wherein the base conductor comprises doped semiconductor patterned from a crystalline semiconductor epitaxial layer grown on the base region.
- 4. (currently amended) The complementary-metal-oxide-semiconductor integrated circuit defined in claim 1

 further comprising a semiconductor substrate from which wherein the MOS transistor and bipolar transistor are formed from the semiconductor substrate and r wherein the semiconductor substrate comprises a silicon-on-insulator (SOI) substrate.
- 5. (original) The complementary-metal-oxide-semiconductor integrated circuit defined in claim 1 wherein:

the gate comprises a gate conductor formed on top of the gate dielectric layer from polysilicon and silicide or from metal; and

the base conductor comprises silicide.

6-17 (canceled)

18. (currently amended) A complementary-metal-oxide-semiconductor-integrated-circuit bipolar transistor on a complementary-metal-oxide-semiconductor (CMOS) integrated circuit having a semiconductor substrate with a surface, comprising:

an emitter having an emitter region in the semiconductor substrate of the CMOS integrated circuit;

a collector having a collector region in the

semiconductor substrate of the CMOS integrated circuit; and

a base having a base width and having:

a base region in the semiconductor substrate of the CMOS integrated circuit that lies between the emitter region and the collector region, wherein the base region has a length and a width equal to the base width and wherein the emitter region and the collector region are separated by a distance along the surface equal to the base width of the base region, and

a base conductor that lies above the base region and that is electrically connected to the base region along its entire length, wherein the base conductor serves as a path for base current in the bipolar transistor.

19. (currently amended) The bipolar transistor
defined in claim 18 A complementary-metal-oxide-semiconductor-
integrated-circuit bipolar transistor on a complementary-metal-
oxide-semiconductor (CMOS) integrated circuit having a
semiconductor substrate, comprising:
an emitter having an emitter region in the
semiconductor substrate of the CMOS integrated circuit;
a collector having a collector region in the
semiconductor substrate of the CMOS integrated circuit; and
a base having:
a base region in the semiconductor substrate
of the CMOS integrated circuit that lies between the emitter
region and the collector region, wherein the base region has a
length and a width and wherein the emitter region and the
collector region are separated by the width of the base region,
and
a base conductor that lies above the base
region and that is electrically connected to the base region
along its length, wherein the base conductor serves as a path
for base current in the bipolar transistor, wherein the base
conductor comprises epitaxial crystalline semiconductor that is
doped more heavily than the base region.

20. (currently amended) The bipolar transistor defined in claim 18 A complementary-metal-oxide-semiconductorintegrated-circuit bipolar transistor on a complementary-metaloxide-semiconductor (CMOS) integrated circuit having a semiconductor substrate, comprising: an emitter having an emitter region in the semiconductor substrate of the CMOS integrated circuit; a collector having a collector region in the semiconductor substrate of the CMOS integrated circuit; and a base having: a base region in the semiconductor substrate of the CMOS integrated circuit that lies between the emitter region and the collector region, wherein the base region has a length and a width and wherein the emitter region and the collector region are separated by the width of the base region, and a base conductor that lies above the base region and that is electrically connected to the base region along its length, wherein the base conductor serves as a path for base current in the bipolar transistor, wherein the base conductor comprises a portion of an epitaxial silicon layer and wherein the same epitaxial silicon layer is used to form part of a source and part of a drain of a metal-oxide-semiconductor transistor.