```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn as sk
import statsmodels.api as sm
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
from sklearn.metrics import mean squared error
df = pd.read_csv("winequality-red.csv")
df.sample
     <bound method NDFrame.sample of</pre>
                                             fixed acidity volatile acidity citric acid
     residual sugar chlorides \
                                       0.700
                                                      0.00
                                                                        1.9
                                                                                 0.076
                      7.4
     1
                      7.8
                                       0.880
                                                      0.00
                                                                        2.6
                                                                                 0.098
     2
                      7.8
                                       0.760
                                                      0.04
                                                                        2.3
                                                                                 0.092
     3
                                                                        1.9
                     11.2
                                       0.280
                                                      0.56
                                                                                 0.075
     4
                                                                        1.9
                      7.4
                                       0.700
                                                      0.00
                                                                                 0.076
                                                                        ...
     . . .
                      ...
                                         ...
                                                       . . .
                                                                                   . . .
                      6.2
                                       0.600
                                                                        2.0
                                                                                 0.090
     1594
                                                      0.08
                      5.9
                                                                        2.2
     1595
                                       0.550
                                                      0.10
                                                                                 0.062
     1596
                      6.3
                                       0.510
                                                      0.13
                                                                        2.3
                                                                                 0.076
     1597
                      5.9
                                       0.645
                                                      0.12
                                                                        2.0
                                                                                 0.075
     1598
                      6.0
                                       0.310
                                                      0.47
                                                                        3.6
                                                                                 0.067
           free sulfur dioxide total sulfur dioxide density
                                                                    pH sulphates \
     0
                                                   34.0
                           11.0
                                                         0.99780
                                                                  3.51
                                                                              0.56
     1
                           25.0
                                                   67.0 0.99680
                                                                  3.20
                                                                              0.68
     2
                           15.0
                                                   54.0
                                                         0.99700
                                                                  3.26
                                                                              0.65
     3
                           17.0
                                                   60.0
                                                         0.99800
                                                                  3.16
                                                                              0.58
     4
                           11.0
                                                   34.0 0.99780
                                                                 3.51
                                                                              0.56
                            ...
                                                             ...
                                                                   ...
                                                                               . . .
     ...
                                                    ...
     1594
                           32.0
                                                   44.0
                                                         0.99490
                                                                  3.45
                                                                              0.58
     1595
                           39.0
                                                   51.0 0.99512 3.52
                                                                              0.76
     1596
                           29.0
                                                   40.0
                                                         0.99574
                                                                  3.42
                                                                              0.75
                                                         0.99547
     1597
                           32.0
                                                   44.0
                                                                  3.57
                                                                              0.71
     1598
                           18.0
                                                  42.0 0.99549 3.39
                                                                              0.66
           alcohol quality
     0
               9.4
                           5
     1
               9.8
                           5
     2
               9.8
                           5
     3
               9.8
                           6
     4
               9.4
                           5
                ...
                         . . .
     1594
              10.5
                           5
              11.2
     1595
                           6
     1596
              11.0
                           6
                           5
     1597
              10.2
```

import numpy as np

1598

11.0

6

df.describe

<box< th=""><th>d method</th><th>NDFrame.desc</th><th>ribe of</th><th>fixed ac</th><th>idity</th><th>volatile</th><th>acidity</th><th>citric</th><th>acid</th></box<>	d method	NDFrame.desc	ribe of	fixed ac	idity	volatile	acidity	citric	acid
resid	lual sugar	chlorides	1				-		
0		7.4	0.700	θ.	99	:	1.9	0.076	
1		7.8	0.880	0.	99		2.6	0.098	
2		7.8	0.760	θ.	04	1	2.3	0.092	
3		11.2	0.280	0.	56	1	1.9	0.075	
4		7.4	0.700	θ.	99	:	1.9	0.076	
1594		6.2	0.600	θ.	89	- 1	2.0	0.090	
1595		5.9	0.550	θ.	10		2.2	0.062	
1596		6.3	0.510	θ.	13	- 1	2.3	0.076	
1597		5.9	0.645	θ.	12		2.0	0.075	
1598		6.0	0.310	е.	47		3.6	0.067	
	free sul	fur dioxide	total sulfur	dioxide	densit	у рН	sulphate	s \	
0		11.0		34.0	0.9978		0.5		
1		25.0		67.0	0.9968	0 3.20	0.6	8	
2		15.0		54.0	0.9970	9 3.26	0.6	5	
3		17.0		60.0	0.9980	9 3.16	0.5	8	
4		11.0		34.0	0.9978	0 3.51	0.5	6	
1594		32.0		44.0	0.9949		0.5		
1595		39.0		51.0	0.9951		0.7		
1596		29.0		40.0			0.7		
1597		32.0			0.9954		0.7		
1598		18.0		42.0	0.9954		0.6		
	-11	144.							
	alcohol	quality							
0	9.4	5							
1	9.8								
2	9.8	5 6							
4	9.8 9.4	5							
1594	10.5								
1595	11.2	5 6							
1596	11.0	6							
1596	10.2	5							
1598	11.0	6							
1390	11.0	•							

[1599 rows x 12 columns]>

plt.figure(figsize=(30,15))
sns.boxplot(data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6bdc65550>

plt.figure(figsize=(30,15))
close = df[['fixed acidity','volatile acidity','citric acid','residual sugar','chlorides','de
sns.boxplot(data=close)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6c7d04a90>

plt.figure(figsize=(30,15))
sns.pairplot(data=df, hue='quality')
plt.show


```
plt.figure(figsize=(30,15))
sns.heatmap(df.corr(), vmin=-1, vmax=1, cmap='Set2', annot=True)
plt.show()
```



```
## Highest to the lowest correlation in order to Quality: Alcohol (0.48), Volatile Acidity (-
a = df.iloc[:, :-1].values
b = df.iloc[:, -1].values

x_train,x_test,y_train,y_test = train_test_split(a, b, test_size=0.2, random_state = 0)

lr = LinearRegression()
lr.fit(x_train, y_train)
```

LinearRegression()

```
print(lr.predict([[15,0.01,0,5,0.001,30,50,0.95,3,0.9,15]]))
    [9.82988592]
```

a = sm.add_constant(x_train)
project = sm.OLS(y_train,a).fit()
print(project.summary())

OLS Regression Results

		OLS RE	gression ke	201C2				
Dep. Varia	ble:		y R-squi	ared:		0.365		
Model:				R-squared:		0.360		
Method:				F-statistic:				
Date:	Sa	t, 29 Oct 20			:):	66.34 6.26e-117		
Time:	-	21:42		ikelihood:	,,,	-1268.8		
No. Observ	ations:		279 AIC:			2562.		
Df Residua		17	267 BIC:			2624.		
Df Model:			11			2777.1		
Covariance Type:		nonrobi						
		std err		P> t				
const		23.831						
x1	0.0413	0.029	1.416	0.157	-0.016	0.098		
x2	-1.1495	0.133	-8.631	0.000	-1.411	-0.888		
x3	-0.1779	0.165	-1.077	0.282	-0.502	0.146		
x4	0.0279	0.017	1.670	0.095	-0.005	0.061		
x5	-1.8734	0.466	-4.024	0.000	-2.787	-0.960		
х6	0.0027	0.002	1.097	0.273	-0.002	0.007		
x7	-0.0028	0.001	-3.448	0.001	-0.004	-0.001		
x8	-31.5167	24.325	-1.296	0.195	-79.238	16.205		
x9	-0.2545	0.216	-1.179	0.239	-0.678	0.169		
x10	0.9240	0.126	7.362	0.000	0.678	1.170		
x11	0.2678	0.030	9.031	0.000	0.210	0.326		
Omnibus:		21.1	104 Durbin	n-Watson:		2.098		
Prob(Omnib	us):	0.6	900 Jarque	e-Bera (JB):	:	29.312		
Skew:		-0.1	182 Prob(:	JB):		4.32e-07		
Kurtosis:		3.6	646 Cond.	No.		1.14e+05		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specif
- [2] The condition number is large, 1.14e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
•
```

```
y_pred = lr.predict(x_test)
print("MSE:", mean_squared_error(y_test, y_pred))
```

MSE: 0.38447119782012323