Binary Relations

Definition

Let A and B be any two sets. A binary relation R from A to B, written $R:A \leftrightarrow B$, is a subset of $A \times B$. The notation aRb means $(a,b) \in R$.

■ If aRb, we may say "a is related to b (by relation R)", or "a relates to b (under relation R)".

Example

$$\langle : N \leftrightarrow N :\equiv \{(n, m) \mid n < m\}. \ a < b \text{ means } (a, b) \in \langle . \rangle$$

■ A binary relation R corresponds to a predicate function $P_R: A \times B \rightarrow \{T, F\}$ defined over the 2 sets A and B.

Examples of Binary Relations

- Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. Then $R = \{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B. For instance, we have 0Ra, 0Rb, etc..
 - Can we have visualized expressions of relations?
- Let A be the set of all cities, and let B be the set of the 50 states in the USA. Define the relation R by specifying that (a, b) belongs to R if city a is in state b. For instance, (Boulder, Colorado), (Bangor, Maine), (Ann Arbor, Michigan), (Middletown, New Jersey), (Middletown, New York), (Cupertino, California), and (Red Bank, New Jersey) are in R.
- "eats" : $\equiv \{(a, b) \mid \text{organism } a \text{ eats food } b\}$.

Complementary Relations

Definition

Let $R:A \leftrightarrow B$ be any binary relation. Then, $\overline{R}:A \leftrightarrow B$, the complement of R, is the binary relation defined by

$$\overline{R} :\equiv \{(a,b) \mid (a,b) \notin R\} = (A \times B) - R.$$

- Note this is just \overline{R} if the universe of discourse is $U = A \times B$; thus the name complement.
- The complement of \overline{R} is R.

Inverse Relations

Definition

Any binary relation $R:A \leftrightarrow B$ has an *inverse relation* $R^{-1}:B \leftrightarrow A$, defined by

$$R^{-1} := \{(b, a) \mid (a, b) \in R\}.$$

Examples

2 If $R: People \rightarrow Foods$ is defined by " $aRb \Leftrightarrow a$ eats b", then $bR^{-1}a \Leftrightarrow b$ is eaten by a.

Example

Let $A = \{1, 2, 3, 4, 5\}$ and $R : A \leftrightarrow A :\equiv \{(a, b) : a \mid b\}$. What are \overline{R} and R^{-1} ?

Solution

Example

Let $A = \{1, 2, 3, 4, 5\}$ and $R : A \leftrightarrow A :\equiv \{(a, b) : a \mid b\}$. What are \overline{R} and R^{-1} ?

Solution

$$\overline{R} = \left\{ \begin{array}{l} (2,1)\,, (2,3)\,, (2,5)\,, (3,1)\,, (3,2)\,, (3,4)\,, (3,5)\,, \\ (4,1)\,, (4,2)\,, (4,3)\,, (4,5)\,, (5,1)\,, (5,2)\,, (5,3)\,, \\ (5,4) \end{array} \right\}$$

Example

Let $A = \{1, 2, 3, 4, 5\}$ and $R : A \leftrightarrow A :\equiv \{(a, b) : a \mid b\}$. What are \overline{R} and R^{-1} ?

Solution

$$\overline{R} = \left\{ \begin{array}{l} (2,1), (2,3), (2,5), (3,1), (3,2), (3,4), (3,5), \\ (4,1), (4,2), (4,3), (4,5), (5,1), (5,2), (5,3), \\ (5,4) \end{array} \right\}$$

Combining Relations

- Since relations from A to B are subsets of $A \times B$, two relations from A to B can be combined through set operations.
- Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$. The relations $R_1 = \{(1, 1), (2, 2), (3, 3)\}$ and $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$ can be combined to obtain $R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\}$, $R_1 \cap R_2 = \{(1, 1)\}$, $R_1 R_2 = \{(2, 2), (3, 3)\}$, $R_2 R_1 = \{((1, 2), (1, 3), (1, 4)\}$.
- Quiz: What is $R_1 \oplus R_2$?

Composite Relations

■ Let $R: A \leftrightarrow B$, and $S: B \leftrightarrow C$. Then the composite $S \circ R$ of R and S is defined as: $S \circ R = \{(a, c) \mid aRb \land bSc\}$.

Example 1 Function composition $f \circ g$ is an example.

Example 2
$$A = \{1, 2, 3\}, B = \{a, b, c, d\}, C = \{x, y, z\}.$$

- $R: A \leftrightarrow B, R = \{(1, a), (1, b), (2, b), (2, c)\}.$
- $S: B \leftrightarrow C$, $S = \{(a, x), (a, y), (b, y), (d, z)\}$.
- $S \circ R = \{(1, x), (1, y), (2, y)\}.$

Relations on a Set

Definition

A (binary) relation from a set A to itself is called a relation on the set A.

- E.g., the "<" relation from earlier was defined as a relation on the set $\mathbb N$ of natural numbers.
- The identity relation I_A on a set A is the set $\{(a, a) \mid a \in A\}$.
- Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?
- How many relations are there on a set with *n* elements?

Reflexivity

Definition

A relation R on A is *reflexive* if $\forall a \in A$, aRa. A relation is *irreflexive* iff its complementary relation is reflexive.

- E.g., the relation $\geq :\equiv \{(a, b) \mid a \geq b\}$ is reflexive.
- E.g., < is irreflexive.
- "irreflexive" ≠ "not reflexive"!
- "likes" between people is not reflexive, but not irreflexive either. (Not everyone likes themselves, but not everyone dislikes themselves either.)

Example 7 from Textbook

Example

Consider the following relations on $\{1, 2, 3, 4\}$.

$$\begin{array}{lll} R_1 & = & \left\{ (1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4) \right\}, \\ R_2 & = & \left\{ (1,1), (1,2), (2,1), (2,2) \right\}, \\ R_3 & = & \left\{ (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4) \right\}, \\ R_4 & = & \left\{ (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) \right\}, \\ R_5 & = & \left\{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), \\ (3,4), (4,4) \right\}. \end{array}$$

Which of these relations are reflexive, irreflexive, and not reflexive?

Symmetry & Antisymmetry

Definition

- A binary relation R on A is symmetric iff $(a, b) \in R \leftrightarrow (b, a) \in R$, i.e. $R = R^{-1}$.
 - E.g., = (equality) is symmetric, and < is not.
 - "is married to" is symmetric, and "likes" is not.
- A binary relation R is antisymmetric if $(a, b) \in R \land (b, a) \in R \rightarrow a = b$.
 - E.g., < is antisymmetric, and "likes" is not.
- Which relations from Example 7 are symmetric and which are antisymmetric?
- If R_1 is symmetric and R_2 is antisymmetric, is it true that $R_1 \cap R_2 = \emptyset$?

Transitivity

Definition

A relation R is transitive iff

$$\forall a, b, c : (a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R.$$

A relation is intransitive if it is not transitive.

- E.g., "is an ancestor of" is transitive, and "likes" is intransitive.
- Which of the relations in Example 7 are transitive?
- Is the "divides" relations on the set of positive integers transitive?
- "is within 1 mile of" is ...?

The Power of A Relation

Definition

The *n*th power R^n of a relation R on a set A can be defined recursively by

$$\left\{ \begin{array}{l} R^0 :\equiv I_A; \\ R^{n+1} :\equiv R^n \circ R \text{ for all } n \geq 0. \end{array} \right.$$

The negative powers of R can also be defined if desired, by $R^{-n} :\equiv (R^{-1})^n$.

Whether A Relation Is Transitive Or Not?

Theorem

The relation R on a set A is transitive if and only if $R^n \subseteq R$ for all $n = 1, 2, 3, \cdots$.

- Think about what $(a, b) \in R^k$ means?
- How to prove an "if and only if" statement?
- Let $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Find the powers R^n for $n = 2, 3, \cdots$.
- Let $R = \{(1,2), (1,3), (2,2), (2,3), (4,3)\}$. Find the powers R^n for $n = 2, 3, \cdots$.

n-ary Relations

Definition

An *n*-ary relation R on sets A_1, \dots, A_n , written $R: A_1, \dots, A_n$, is a subset $R \subseteq A_1 \times \dots \times A_n$.

- The sets A_i are called the *domains* of R.
- The *degree* of *R* is *n*.
- R is functional in domain A_i if it contains at most one n-tuple (\cdots, a_i, \cdots) for any value a_i within domain A_i .

Relational Databases

- A relational database is essentially an n-ary relation R.
- A domain A_i is a primary key for the database if the relation R is functional in A_i.
- A composite key for the database is a set of domains $\{A_i, A_j, \dots\}$ such that R contains at most 1 n-tuple $(\dots, a_i, \dots, a_j, \dots)$ for each composite value $(a_i, a_j, \dots) \in A_i \times A_j \times \dots$

Selection Operators

- Let A be any n-ary domain $A = A_1 \times \cdots \times A_n$, and let $C : A \to \{T, F\}$ be any condition (predicate) on elements (n-tuples) of A.
- Then, the selection operator s_C is the operator that maps any (n-ary) relation R on A to the n-ary relation of all n-tuples from R that satisfy C.
 - I.e., $\forall R \subseteq A$,

$$s_{\mathcal{C}}(R) = R \cap \{a \in A \mid s_{\mathcal{C}}(a) = T\}$$

= $\{a \in R \mid s_{\mathcal{C}}(a) = T\}.$

Selection Operator Example

- Suppose we have a domain $A = StudentName \times Standing \times SocSecNos.$
- Suppose we define a certain condition on *A*,

$$UpperLevel(name, standing, ssn)$$

$$: \equiv [(standing = junior) \lor (standing = senior)]$$

■ Then, s_{UpperLevel} is the selection operator that takes any relation R on A (database of students) and produces a relation consisting of just the upper-level classes (juniors and seniors).

Projection Operators

- Let $A = A_1 \times \cdots \times A_n$ be any *n*-ary domain, and let $\{i_k\} = (i_1, \dots, i_m)$ be a sequence of indices all falling in the range 1 to n.
 - That is, where $1 \le i_k \le n$ for all $1 \le k \le m$.
- Then the projection operator on *n*-tuples

$$P_{\{i_k\}}:A\to A_{i_1}\times\cdots\times A_{i_m}$$

is defined by

$$P_{\{i_k\}}\left(a_1,\cdots,a_n
ight)=\left(a_{i_1},\cdots,a_{i_m}
ight).$$

Projection Example

- Suppose we have a ternary (3-ary) domain $Cars = Model \times Year \times Color$. (n = 3)
- Consider the index sequence $\{i_k\} = \{1,3\}$. (m=2)
- Then the projection $P_{\{i_k\}}$ simply maps each tuple $(a_1, a_2, a_3) = (model, year, color)$ to its image:

$$(a_{i_1}, a_{i_2}) = (a_1, a_3) = (model, color).$$

This operator can be usefully applied to a whole relation R ⊆ Cars (database of cars) to obtain a list of model/color combinations available.

Join Operator

- Puts two relations together to form a sort of combined relation.
- If the tuple (A, B) appears in R_1 , and the tuple (B, C) appears in R_2 , then the tuple (A, B, C) appears in the join $J(R_1, R_2)$.
- A, B, C can also be sequences of elements rather than single elements.

Join Example

- Suppose R_1 is a teaching assignment table, relating *Professors* to *Courses*.
- Suppose R_2 is a room assignment table relating *Courses* to *Rooms* and *Times*.
- Then $J(R_1, R_2)$ is like your class schedule, listing (professor, course, room, time).

Representing Relations

- Some ways to represent n-ary relations:
 - With an explicit list or table of its tuples.
 - With a function from the domain to $\{T, F\}$.
- Some special ways to represent binary relations:
 - With a zero-one matrix.
 - With a directed graph.

Using Zero-One Matrices

- To represent a relation R by a matrix $\mathbf{M}_R = [m_{ij}]$, let $m_{ij} = 1$ if $(a_i, b_j) \in R$, else 0.
- E.g., Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally. The 0-1 matrix representation of that "Likes" relation:

	Susan	Mary	Sally	
Joe	[1	1	0]	
Fred	0	1	0	
Mark	0	0	1	

Example

Let $S = \{Spring, Summer, Fall, Winter\}$ and $F = \{Apple, Berry, Cherry, Durian\}$. Which ordered pairs are in the relation R represented by the matrix?

	Apple	Berry	Cherry	Durian
Spring	1	0	1	0
Summer	0	0	1	1
Fall	0	1	0	0
Winter	1	0	0	0

Zero-One Reflexive, Symmetric

- Terms: reflexive, non-reflexive¹, irreflexive, symmetric, asymmetric², and antisymmetric.
 - These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

¹A relation R on A is non-reflexive if it is not reflexive.

²A relation R on A is asymmetric if $\forall a, b \in A : aRb \rightarrow b\overline{R}a$.

Matrix Operation v.s. Relation Operations

- $\mathbf{M}_{R_1 \cup R_2} = \mathbf{M}_{R_1} \vee \mathbf{M}_{R_2}; \ \mathbf{M}_{R_1 \cap R_2} = \mathbf{M}_{R_1} \wedge \mathbf{M}_{R_2}.$
 - ∨ and ∧ are element-wise Boolean operators.
- $\mathbf{M}_{S \cap R} = \mathbf{M}_R \odot \mathbf{M}_S$; $\mathbf{M}_{R^n} = (\mathbf{M}_R)^n$.
 - O denotes Boolean matrix multiplications.
- $\mathbf{M}_{P-1} = (\mathbf{M}_{R})^{T}$.
- Quiz: If R is a symmetric relation, \mathbf{M}_R is a symmetric matrix.

Using Directed Graphs

■ A directed graph or digraph $G = (V_G, E_G)$ is a set V_G of vertices (nodes) with a set $E_G \subseteq V_G \times V_G$ of edges (arcs, links). Visually represented using dots for nodes, and arrows for edges. Notice that a relation $R : A \leftrightarrow B$ can be represented as a graph $G_R = (V_G = A \cup B, E_G = R)$.

\mathbf{M}_R	Susan	Mary	Sally
Joe	[1	1	0]
Fred	0	1	0
Mark	0	0	1

Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive/irreflexive/symmetric/antisymmetric properties by graph inspection.

Reflexive: Every node has a self-loop

Irreflexive:
No node

Asymmetric, non-antisymmetric

Symmetric: Every link is bidirectional

Antisymmetric:
No link is
bidirectional

Non-reflexive, non-irreflexive

Closures of Relations

- For any property X, the "X closure" of a set (or relation) R is defined as the "smallest" superset of R that has the given property.
- The reflexive closure of a relation R on A is obtained by adding (a, a) to R for each $a \in A$. I.e., it is $R \cup I_A$.
- The symmetric closure of R is obtained by adding (b, a) to R for each (a, b) in R. I.e., it is $R \cup R^{-1}$.
- The transitive closure or connectivity relation of R is obtained by repeatedly adding (a, c) to R for each (a, b) and (b, c) in R. I.e., it is

$$R^* = \bigcup_{n \in Z^+} R^n.$$

Paths in Digraphs/Binary Relations

Definition

A path of length n from node a to b in the directed graph G (or the binary relation R) is a sequence $(a, x_1), (x_1, x_2), \cdots, (x_{n-1}, b)$ of n ordered pairs in E_G (or R). A path of length $n \ge 1$ from a to a is called a *circuit* or a *cycle*.

Theorem

There exists a path of length n from a to b in R if and only if $(a,b) \in R^n$.

- An empty sequence of edges is considered a path of length 0 from a to a.
- If any path from a to b exists, then we say that a is connected to b. ("You can get there from here.")

Simple Transitive Closure Algorithm

Lemma

Let A be a set with n element, and let R be a relation on A. If there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n.

```
procedure transClosure(\mathbf{M}_R: rank-n\ 0-1\ matrix)

// A procedure computes R^* with 0-1 matrices.

\mathbf{A} := \mathbf{B} := \mathbf{M}_R;

for i := 2 to n begin

\mathbf{A} := \mathbf{A} \odot \mathbf{M}_R; \ \mathbf{B} := \mathbf{B} \vee \mathbf{A};

end

return \mathbf{B}
```

■ This algorithm takes $\Theta(n^4)$ time.

A Faster Transitive Closure Algorithm

```
procedure transClosure(\mathbf{M}_R: rank-n\ 0-1 \ matrix) \mathbf{A} := \mathbf{B} := \mathbf{M}_R; for i := 2 to \lceil \log_2 n \rceil begin \mathbf{A} := \mathbf{A} \odot \mathbf{A}; // \mathbf{A} represents R^{2^i}. \mathbf{B} := \mathbf{B} \vee \mathbf{A}; // "add" into \mathbf{B}. end return \mathbf{B}
```

■ This algorihum takes only $\Theta(n^3 log n)$ time, BUT NOT CORRECT.

Roy-Warshall Algorithm

- Uses only $\Theta(n^3)$ operations!
- $w_{ij} = 1$ means there is a path from i to j going only through nodes $\leq k$.

∟§8.4 Closures of Relations

Examples

Example

Find the symmetric closure, reflexive closure, and transitive closure of the following relation.

Equivalence Relations

Definition

An equivalence relation (e.r.) on a set A is simply any binary relation on A that is reflexive, symmetric, and transitive.

- E.g., "=" itself is an equivalence relation.
- For any function $f: A \to B$, the relation "have the same f value", or $=_f :\equiv \{(a_1, a_2) \mid f(a_1) = f(a_2)\}$ is an equivalence relation.
 - E.g., let m = "mother of", then $=_m$: \equiv "have the same mother" is an e.r..

Examples

■ "Strings a and b are the same length."

Examples

- "Strings a and b are the same length."
- "Integers a and b have the same absolute value."

Examples

- "Strings a and b are the same length."
- "Integers a and b have the same absolute value."
- "Real numbers a and b have the same fractional part (i.e., $a-b\in Z$)."

Examples

- "Strings a and b are the same length."
- "Integers a and b have the same absolute value."
- "Real numbers a and b have the same fractional part (i.e., $a-b \in Z$)."
- "Integers a and b have the same residue modulo m." (for a given m > 1)

Equivalence Classes

Definition

Let R be any equivalence relation on a set A. The equivalence class of a is

$$[a]_R := \{b \mid aRb\}$$
. (optional subscript R)

- It is the set of all elements of A that are "equivalent" to a according to the E.R. R.
- Each such b (including a itself) is called a representative of $[a]_R$.

- "Strings a and b are the same length."
 - [a] = the set of all strings of the same length as a.
- "Integers a and b have the same absolute value."
- "Real numbers a and b have the same fractional part (i.e., $a-b\in Z$)."
- "Integers a and b have the same residue modulo m." (for a given m > 1)

- "Strings a and b are the same length."
 - [a] = the set of all strings of the same length as a.
- "Integers a and b have the same absolute value."
 - [a] =the set $\{a, -a\}.$
- "Real numbers a and b have the same fractional part (i.e., $a-b\in Z$)."
- "Integers a and b have the same residue modulo m." (for a given m > 1)

- "Strings a and b are the same length."
 - [a] = the set of all strings of the same length as a.
- "Integers a and b have the same absolute value."
 - [a] =the set $\{a, -a\}.$
- "Real numbers a and b have the same fractional part (i.e., $a-b\in Z$)."
 - [a] = the set $\{\cdots, a-2, a-1, a, a+1, a+2, \cdots\}$.
- "Integers a and b have the same residue modulo m." (for a given m > 1)

- "Strings a and b are the same length."
 - [a] =the set of all strings of the same length as a.
- "Integers a and b have the same absolute value."
 - $[a] = \text{the set } \{a, -a\}.$
- "Real numbers a and b have the same fractional part (i.e., $a-b\in Z$)."
 - $[a] = \text{the set } \{\cdots, a-2, a-1, a, a+1, a+2, \cdots\}.$
- "Integers a and b have the same residue modulo m." (for a given m > 1)
 - $[a] = \text{the set } \{\cdots, a-2m, a-m, a, a+m, a+2m, \cdots\}.$

Partitions

Definition

A partition of a set A is the set of all the equivalence classes $\{A_1, A_2, \dots\}$ for some e.r. on A.

Example

Let $m \in \mathbb{Z}^+$. For any $a, b \in \mathbb{Z}$, we define aRb iff $m \mid a - b$. Then, R is an e.r., and $\{[0], [1], \dots, [m-1]\}$ is a partition of \mathbb{Z} for R.

- The A_i 's are all disjoint and their union is equal to A.
- They "partition" the set into pieces. Within each piece, all members of the set are equivalent to each other.

Partial Orderings

Definition

A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a *partially ordered set*, or *poset*, and is denoted by (S,R).

- The "greater than or equal" relation ≥ is a partial ordering on the set of integers.
- The divisibility relation | is a partial ordering on the set of positive integers.
- The inclusion relation \subseteq is a partial ordering on the power set of a set S.

Total Orderings

Definition

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a *totally ordered set* or *linearly ordered set*, and \preccurlyeq is called a total order or a linear order. A totally ordered set is also called a chain.

■ E.g.,
$$(\mathbb{N}, \leq)$$
.

Lexicographic Order

- (A_1, \preccurlyeq_1) and (A_1, \preccurlyeq_2) are posets. For any (a_1, a_2) , $(b_1, b_2) \in A_1 \times A_2$, we say $(a_1, a_2) \preccurlyeq (b_1, b_2)$ if and only if $a_1 \preccurlyeq_1 b_1$ or both $a_1 = b_1$ and $a_2 \preccurlyeq_2 b_2$.
- The lexicographic order of the Cartesian product of posets is a partial order.
 - Please prove this by yourself.

Hasse Diagrams

- Digraphs for finite posets can be simplified by following ideas.
 - Remove loops at every vertices.
 - 2 Remove edge that must be present because of the transitivity.
 - 3 Arrange each edge so that its initial vertex is below its terminal vertex.
 - 4 Remove all the arrows.
- The simplified diagrams are called *Hasse diagrams*.

Example of Hasse Diagrams

Example of Hasse Diagrams (Cont.)

Maximal and Minimal Elements

Definition

a is a maximal (resp., minimal) element in the poset (S, \preceq) if there is no $b \in S$ such that $a \prec b$ (resp., $b \prec a$).

Definition

a is the greatest (resp., least) element of the poset (S, \preccurlyeq) if $b \preccurlyeq a$ (resp., $a \preccurlyeq b$) for all $b \in S$.

Lemma

Every finite nonempty poset (S, \preceq) has a minimal element.

Maximal and Minimal Elements (Cont.)

Definition

A is a subset of of a poset (S, \preceq) .

- $u \in S$ is called an upper bound (resp., lower bound) of A if $a \preceq u$ (resp., $u \preceq a$) for all $a \in A$.
- $x \in S$ is called the least upper bound (resp., greatest lower bound) of A if x is an upper bound (resp., lower bound) that is less than every other upper bound (resp., lower bound) of A.

Definition

 (S, \preccurlyeq) is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element.

- E.g., (\mathbb{Z}^+, \leq) is well-ordered but (\mathbb{R}, \leq) is not.
- There is "well-ordered induction".

Lattices

Definition

A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.

Example

Determine whether the posets $(\{1, 2, 3, 4, 5\}, |)$ and $(\{1, 2, 4, 8, 16\}, |)$ are lattices.

Topological Sorting

- Motivation: A project is make up of 20 different tasks. Some tasks can be completed only after others have been finished. How can an order be found for these tasks?
- Topological sorting: Given a partial ordering R, find a total ordering \leq such that $a \leq b$ whenever aRb. \leq is said compatible with R.

Topological Sorting for Finite Posets

```
procedure topological\_sort(S: finite poset) k := 1 while S \neq \varnothing begin a_k := a minimal element of <math>S S := S - \{a_k\} k := k + 1 end \{a_1, a_2, \cdots, a_n \text{ is a compatible total ordering of } S\}
```