Neural Networks: Classification

In binary classification there is only one K output unit where output $y \in \{0,1\}$. In multi-class classification there are two or more K output units that are K dimensional where $y \in \mathbb{R}^K$. For example if there are two classes A and B then the results of the output units would be:

Two classes where
$$K=\begin{bmatrix}A\\B\end{bmatrix}$$
 Is class A where $K^1=\begin{bmatrix}1\\0\end{bmatrix}$ Is class B where $K^2=\begin{bmatrix}0\\1\end{bmatrix}$

Where there are three or more output units for classification then one-vs-all will be used.

Cross Entropy Loss Function

The cost function for neural networks with regularization is shown below. Instead of having a single output unit we now have K units where $h_{\Theta}(x)_i$ refers to the i^{th} value in the output vector. $\sum_{k=1}^K$ is summing the normal logistic cost function over each of the K output units and y_k is the i^{th} output such as $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (see $\mathit{Classification}$). Including the bias units in the cost is not a big deal but you generally want to omit them hence below we are not regularizing the bias units so our limits will start at 1.

$$J(\Theta) = -rac{1}{m}[\sum\limits_{i=1}^{m}\sum\limits_{k=1}^{K}(-y_{k}^{(i)}\cdot log(h_{\Theta}(x^{(i)}))_{k} + (1-y_{k}^{(i)})\cdot log(1-h_{\Theta}(x^{(i)}))_{k})] + rac{\lambda}{2m}\sum\limits_{l=1}^{L-1}\sum\limits_{i=1}^{s_{i}}\sum\limits_{j=1}^{s_{l+1}}(\Theta_{ji}^{(l)})^{2}$$

For the regularization term (also called a Weight Decay) it is doing the following:

- 1. For each layer: $\sum_{l=1}^{L-1}$
- 2. For each weight in that layer: $\sum_{i=1}^{s_i}$ and $\sum_{j=1}^{s_l+1}$ where s_i and s_i+1 are the matrix dimensions at that layer
- 3. Square the weight at ji: $(\Theta_{ji}^{(l)})^2$