Notes for Recitation 13

1 Asymptotic Notation

Which of these symbols $\Theta = O = \Omega = o = \omega$ can go in these boxes? (List all that apply.)

Recitation 13

2

2 Asymptotic Equivalence

Suppose $f, g: \mathbb{Z}^+ \to \mathbb{Z}^+$ and $f \sim g$.

1. Prove that $2f \sim 2g$.

Solution.

$$\frac{2f}{2q} = \frac{f}{q},$$

so they have the same limit as $n \to infty$.

2. Prove that $f^2 \sim g^2$.

Solution.

$$\lim_{n\to\infty}\frac{f(n)^2}{g(n)^2}=\lim_{n\to\infty}\frac{f(n)}{g(n)}\cdot\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f(n)}{g(n)}\cdot\lim_{n\to\infty}\frac{f(n)}{g(n)}=1\cdot 1=1.$$

3. Give examples of f and g such that $2^f \nsim 2^g$.

Solution.

$$f(n) = n + 1$$
$$g(n) = n.$$

Then $f \sim g$ since $\lim_{n \to \infty} (n+1)/n = 1$, but $2^f = 2^{n+1} = 2 \cdot 2^n = 2 \cdot 2^g$ so

$$\lim \frac{2^f}{2^g} = 2 \neq 1.$$

4. Show that \sim is an equivalence relation

Solution. (a) Reflexive: $f \sim f$ since f(x)/f(x) = 1 for all x (assuming $f(x) \neq 0$), so $\lim_{x\to\infty} f(x)/f(x) = 1$

- (b) Symmetric: $f \sim g$ implies $g \sim f$ since if $\lim_{x \to \infty} f(x)/g(x) = 1$, then by the laws of limits $\lim_{x \to \infty} g(x)/f(x) = 1$
- (c) Transitive: $f \sim g$ and $g \sim h$ implies $f \sim h$: if $\lim_{x\to\infty} f(x)/g(x) = 1$, and $\lim_{x\to\infty} g(x)/h(x) = 1$, then multiplying the limits we get

$$\lim_{x \to \infty} f(x)/h(x) = \lim_{x \to \infty} \frac{f(x)}{g(x)} \times \frac{g(x)}{h(x)} = 1$$

Recitation 13

5. Show that Θ is an equivalence relation

Solution. (a) Reflexive: $\lim_{x\to\infty} f(x)/f(x) = 1 < \infty$, trivial.

- (b) Symmetric: If $f = \Theta(g)$, we wish to show $g = \Theta(f)$. From the definiton: $\lim_{x\to\infty} f(x)/g(x) = c$ for some non-zero finite constant c. Hence $\lim_{x\to\infty} g(x)/f(x) = 1/c$. Also a non-zero finite constant, so $g = \Theta(f)$.
- (c) Transitive: Want to show $f = \Theta(g)$, $g = \Theta(h)$ then $f = \Theta(h)$. Let $\lim_{x\to\infty} f(x)/g(x) = c_1$ and $\lim_{x\to\infty} g(x)/h(x) = c_2$. Then $\lim_{x\to\infty} f(x)/h(x) = \lim_{x\to\infty} f(x)/g(x) \times g(x)/h(x) = c_1 \times c_2$. Since both c_1 and c_2 are non-zero and finite, so is $c_1 \times c_2$.

3 More Asymptotic Notation

1. Show that

$$(an)^{b/n} \sim 1.$$

where a, b are positive constants and \sim denotes asymptotic equality. Hint $an = a2^{\log_2 n}$.

Solution.

$$(an)^{b/n} = (a^b)^{1/n} \cdot 2^{(b\log_2 n)/n} \to 1 \cdot 2^0 = 1,$$

as $n \to \infty$.

2. You may assume that if $f(n) \ge 1$ and $g(n) \ge 1$ for all n, then $f \sim g \Rightarrow f^{\frac{1}{n}} \sim g^{\frac{1}{n}}$. Show that

$$\sqrt[n]{n!} = \Theta(n).$$

Solution.

$$\sqrt[n]{n!} \sim \left((2\pi n)^{\frac{1}{2}} \left(\frac{n}{e} \right)^n \right)^{1/n}$$
(Stirling)
$$\sim (2\pi n)^{\frac{1}{2n}} \frac{n}{e}$$

$$\sim 1 \cdot \frac{n}{e}$$
part (a)
$$= \Theta(n)$$