Week 2: Weakest Preconditions

$$\mathbf{WP}[\![;]\!](B) \equiv B$$

$$\mathbf{WP}[\![x = e;]\!](B) \equiv B[e/x]$$

$$\mathbf{WP}[\![x = read();]\!](B) \equiv \forall x.B$$

$$\mathbf{WP}[\![write(e);]\!](B) \equiv B$$

$$\mathbf{WP}\llbracket b \rrbracket (B_0, B_1) \equiv ((\neg b) \Rightarrow B_0) \land (b \Rightarrow B_1)$$

$$\equiv (\neg b \land B_0) \lor (b \land B_1)$$

3.

Local Consistency

Local Consistency

A, B und c sind Locally Consistent, falls eine der folgenden Aussagen gilt:

1)
$$A \Rightarrow WPICI(B)$$

2) $SPICI(A) \Rightarrow B$

Beachte: 1) und 2) sind gleichbedeutend

Start $A :\equiv true$ x = 20B := x > 15n = read() $C :\equiv x > 10$ y = 42 $D :\equiv x > 10 \land y > 10$ yesnon < 0 $E :\equiv y > 5$ $F :\equiv x > 10$ x = y + 20x = x * x $G :\equiv x > 25$ x = x + 5 $H :\equiv x \neq 0$ Stop

Week 02 Tutorial 02 Local Consistency

Check whether the annotated assertions prove that the program computes an x = 0 and discuss why this is the case.

Week 02 Tutorial 02 Local Consistency

Week 02 Tutorial 03 — Trouble Sort

Week 02 Tutorial 03 — Trouble Sort