--http://www.ncbi.nlm.nih.gov/pubmed/21743475\$"backslash\$nhttp://www.natufl----"verb-re.com/natu 015-9819-4fl----"endverbfl----"field-issn"-0022-2631"fl----"field-number"-3"fl----"field-pages"-369"bibrangeda 015-9819-4fl----"endverbfl----"field-volume"-248"fl----"verb-file"fl----"verb:home/jamesb/Documents/Mendel -2015--Membranefl--Protfl----"verb-ein-Folding--"&"ampLipid-Interactions-Theory--"&"ampfl--Experiment. -2002--The-Sevenfl--Pilfl---"verblars-ofLife.pdf:pdffl---"endverbfl----"field-journaltitle"-Science"fl----"field-ye phenotype), or interfere with the transmembrane orientation offl-newly synthesized protein segments, can a type-M.-jannaschii-SecYE??-and-an-extensivefl--sequence-conservation-analysis,-we-show-that-the-closed-stat bonding-interactions-of-numerous-highlyff-conserved-amino-acids. Perturbations-induced-by-mutation-at-var type-closed-stateff-translocon, leading-to-displacement-and-increased-hydration-of-the-plug. ??ff-2010-Elsevie Defectivefl-Mutations" "fl----"field-volume"-18" fl----"verb-file" fl----"verb:home/jamesb/Documents/Mendel -2010--fl-Dynamicsfl----"verb--of-SecY-Translocons-with-Translocation-Defective-Mutations.pdf:pdffl----"endv like-environment, we have examined the molecular fl-dynamics of wild-type and mutant-GlpG in different molecular fl-dynamics of wild-type and mutant-GlpG. bond-interactions-with-lipids-are-paramount-infl-protein-orientation-and-dynamics. Mutations-in-the-unusua Ser-catalytic-dyad. Similarly, mutations-in-TM5-change-the-dynamics-andfl-structure-of-the-liloop. These-re-2126-(Print)-0969-2126-(Linking)"fl----"field-issn"-09692126"fl----"field-number"-3"fl----"field-pages"-395"b -2009fl---fl----"verb--Rhomboid-Protease-Dynamics-andLipid-Interactions.pdf:pdffl----"endverbfl----"field-journ Valadez2010"-article"-"fl---"name-author"-3"-"-%fl-----hash=JVE"-%fl-----family=-Jard??n-Valadez",fl-----family i=-J"bibinitperiod-V"bibinitperiod",fl-----given=-Eduardo",fl-----given i=-E"bi induced isomerization of the retinal from 11-c/s to all-fransfl-triggers changes in the conformation of visualc/s-and-all-frans-retinal, and-withfl-two-different-force fields-for-describing-the-retinal-molecule. The-resultsf site-interactionsfl-on-the-retinal-force-field-parameters-highlights-the-coupling-between-thefl-retinal-molecul Valadez, Bondar, Tobiasff---ff----"verb--2010---Coupling-of-retinal, protein, and water-dynamics-in-squidff--rho secretase, BACE, is a membrane spanning aspartic protease, which fl-cleaves the amyloid precursor protein (amyloid-peptidefl-(Abeta). Previous results have suggested that the regulation offl-betasecretase and BACE access to APP is lipid dependent, and involves lipidfl-rafts. Using the baculovirus expres length-BACE-in-insect-cells-and-purified-milligram-amounts-tofl-homogeneity. We have studied partitioning conjugated-BACEfl-between-theliquid-ordered-and-disordered-phases-in-giant-(10-150-mum)fl-unilamellar-v like, liquid-ordered-phase; the fraction-associated-with liquid-ordered fl-phase increased upon-crosslinking-of-raftlipids. To-examine-involvement-offl--individuallipid-species-in-modulating-BACE-activity, we-h 9258"fl----"field-issn"-00219258"fl----"field-number"-44"fl----"field-pages"-36815"bibrangedash-36823"fl----" -2005--fl-Lipidfl----"verb-s-as-modulators-of-proteolytic-activity-of-BACE-Involvement-offl--cholestefl----"verbsecretase, thefl-only-other-activity-known-to-cleave-type-I-transmembrane-domains. Rhomboidfl-proteases-r 8424-(Print)-0027-8424-(Linking)"fl----"field-issn"-0027-8424"fl----"field-number"-6"fl----"field-pages"-1883 2fl----"endverbfl----"field-volume"-276"fl----2field-journaltitle"-Journal-of-Biological-Chemistry"fl----"field-ar

functionfl-relationship, Trans-membrane-peptide "fl----"strng-namehash "-JMMOG1" fl----"strng-fullhash "-JI

protein interactions is fl-given with focus on the physical interactions between lipids and integral fl-proteins in

INVESTIGATING THE RECOGNITION AND INTERACTIONS OF NON-POLAR α HELICES IN BIOLOGY

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN THE FACULTY OF LIFE SCIENCES

2016

James Baker

Contents

Abstract Declaration Copyright Statement													
						\mathbf{A}	Acknowledgements						
						List of publications							
1	Intr	oducti	ion	8									
	1.1	The T	ransmembrane Protein Problem	8									
	1.2	Biolog	cical Membrane Composition	8									
		1.2.1	Lipids of the Membrane	8									
		1.2.2	Differenes in Membrane Compositions	9									
		1.2.3	Membrane Potential	10									
	1.3	α Heli	ces in Membranes	11									
		1.3.1	The Importance of Transmembrane Proteins	11									
		1.3.2	Transmembrane Helix Sequence Composition	11									
	1.4	Bioger	nesis of Transmembrane Proteins	14									
		1.4.1	Translocation	14									
		1.4.2	Tail-Anchored Proteins Post Translationally Insert	14									
		1.4.3	Translocon Independent Membrane Insertion	15									
	1.5	Choice	e of Hydrophobicity Values	15									
		1.5.1	An Overview of the Different Scales	15									
	1.6	A Brie	ef History of Transmembrane Proteins in Science	17									
		1.6.1	Earliest Evidences of Compartmentalisation	17									

		1.6.2 Early Models of the Bilayer	17		
		1.6.3 The Rise of Crystallography	17		
	1.7	Beyond ΔG_{app} : cryptic sequence features	18		
		1.7.1 Sequence complexity	18		
	1.8	Aims of This Thesis	18		
2	The	"Negative-Not-Inside" Rule	19		
	2.1	1 Abstract			
	2.2	2 Introduction			
	2.3	Methods	19		
		2.3.1 Normalisation	19		
	2.4	Results	20		
		2.4.1 Biophysicochemical differences in multi-pass and single-pass he-			
		lices	20		
3	Tail-anchored protein discovery				
	3.1	1 Abstract			
	3.2	Introduction			
	3.3	Methods			
		3.3.1 Filtering the Uniprot database	21		
		3.3.2 Calculating Hydrophobicity	22		
		3.3.3 Calculating Sequence Complexity	22		
	3.4	Results	22		
		3.4.1 An Up To Date Tail-Anchor Dataset	22		
		3.4.2 Potential Tail-Anchored SNARE Protein Discovery	22		
		3.4.3 Biology of Spontaneously Inserting Tail Anchored Proteins	22		
4	AN	lovel GPI Lipid Anchor Categorised	23		
	4.1	1 Abstract			
	4.2	Introduction			
	4.3	Methods			
	4.4	Results	23		

5	The	Good, the Bad, and the Ugly Helices	24		
	5.1	Abstract	24		
	5.2	Introduction	24		
	5.3	Methods	24		
	5.4	Results	24		
6	6 Conclusions				
	6.1	Outlook	25		
		6.1.1 The hydrophobicity–sequence complexity continuum	25		