Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Телематика (при ЦНИИ РТК)»

Отчет по лабораторной работе

Доверительные интервалы для парметров нормальнго распределения

По дисциплине «Теория вероятностей и Математическая статистика»

Выполнил Студент гр. 3630201/80101		М. Д. Маляренко
Руководитель к.фм.н., доцент		А. Н. Баженов
	«	_» 2020r.

Содержание

1 Постановка задачи			4
2	2.1.1 Оценка на основе стати	Стьюдента и хи-квадрат	5 5 5 5
3	3 Реализация		6
4	4 Результаты		7
3 a	Заключение		8
Сг	Список литературы		9
П	Приложение А. Репозиторий с исход	ным колом	10

Список таблиц

1	Интервальные оценки на основе статистик Стьюдента и хи-квадрат	7
2	Асимптотические интервальные оценки	7

1 Постановка задачи

Для двух выборок размерами 20 и 100 элементов, сгенерированных согласно нормальному закону N(x,0,1), для параметров положения и масштаба построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве параметра надёжности взять $\gamma=0.95$

2 Теория

2.1 Доверительные интервалы

Дана выборка размером $n(x_1, \ldots, x_n)$ из генеральной совокупности. Для нее построим выборочное среднее \overline{x} и среднеквадратическое отклонение s.[1]

Параметры расположения μ и масштаба σ неизвестны. Построим для них доверительный интервал с доверительной вероятностью γ .

2.1.1 Оценка на основе статистики Стьюдента и хи-квадрат

Оценка для параметра положения[1]:

$$P\left(\overline{x} - \frac{s \cdot t_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < \mu < \overline{x} + \frac{s \cdot t_{1-\alpha/2}(n-1)}{\sqrt{n-1}}\right) = \gamma,\tag{1}$$

где $1-\alpha=\gamma,\ t_{1-\alpha/2}(n-1)$ — квантиль распределения Стьюдента с (n-1) степенями свободы порядка $1-\alpha/2.$

Оценка для параметра масштаба:

$$P\left(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^2(n-1)}}\right) = \gamma,\tag{2}$$

где $1-\alpha=\gamma,\ \chi_p^2(n-1)$ — квантиль распределения хи-квадрат с (n-1) степенями свободы порядка p.

Эти оценки справедливы для выборки из нормальной генеральной совокупности.

2.1.2 Асимптотические оценки на основе центральной предельной теоремы

Оценка для параметра положения[1]:

$$P\left(\overline{x} - \frac{s \cdot u_{1-\alpha/2}}{\sqrt{n}} < \mu < \overline{x} + \frac{s \cdot u_{1-\alpha/2}}{\sqrt{n}}\right) \approx \gamma,\tag{3}$$

где $1-\alpha=\gamma, u_{1-\alpha/2}$ — квантиль стандартного нормального распределения порядка $1-\alpha/2.$

Для оценки параметра масштаба необходимо рассчитать выборочный эксцесс $e=\frac{m_4}{s^4}-3$, где $m_4=\frac{1}{n}\sum (x_i-\overline{x})^4$ — четвёртый выборочный центральный момент.

Парметр масштаба можно оценить так:

$$P(s(1+U)^{-0.5} < \sigma < s(1-U)^{-0.5}) \approx \gamma,$$
 (4)

где $U=u_{1-\alpha/2}\sqrt{(e+2)/n},\;u_{1-\alpha/2}$ — квантиль стандартного нормального распределения порядка $1-\alpha/2.$

Эти оценки справедливы для выборки из генеральной совокупности, которая имеет конечные центральные моменты вплоть до 4 порядка и конечное матожидание.

3 Реализация

Расчёты реализованы в среде аналитических вычислений Maxima. Сначала были сгенерированные две нормально распределённые выборки размера 20 и 100. Далее для их вычислялось среднеквадратическое отклонение, средневыборочная величина. Затем происходили вычисления по формулам (1) (2) (3) (4). Для расчётов использовались встроенные статистические функции из пакета descriptive. Полный текст скрипта представлен в репозитории на GitHub.

4 Результаты

В Таблице 1 представлены оценки параметров нормального распределения на основе статистик Стьюдента и хи-квадрат.

Таблица 1: Интервальные оценки на основе статистик Стьюдента и хи-квадрат

	μ (1)	σ (2)
N=20	$-0.34 < \mu < 0.63$	$0.79 < \sigma < 1.50$
N = 100	$-0.17 < \mu < 0.21$	$0.84 < \sigma < 1.12$

В Таблице 2 представлены асимптотические интервальные оценки параметров нормального распределения.

Таблица 2: Асимптотические интервальные оценки

	μ (3)	σ (4)
N = 20	$-0.29 < \mu < 0.59$	$0.82 < \sigma < 1.41$
N = 100	$-0.04 < \mu < 0.35$	$0.86 < \sigma < 1.09$

Заключение

В результате выполнения лабораторной работы были построены доверительные интервалы для параметров закона распределения выборок размера 20 и 100. Как видно из полученных результатов (Таблицы 1, 2) асимптотический метод оценки доверительного интервала показал более точные результаты по сравнения оценок на основе статистик Стьюдента и хи-квадрат.

Список литературы

- [1] Теоретическое приложение к лабораторным работам №5-8 по дисциплине «Математическая статистика». СПб.: СПбПУ, 2020. 22 с
- [2] Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей: учеб. пособие / Ю.Д. Максимов; под ред. В.И. Антонова. СПб.: Изд-во Политехн. ун-та, 2009. 395 с. (Математика в политехническом университете).

Приложение А. Репозиторий с исходным кодом

Исходный код скрипта для среды аналитических вычислений Maxima находится в репозитории GitHub-URL https://github.com/malyarenko-md/TeorVer