Algebra 2R

a voyage into the unknown

koteczek

 \sim

Spis rzeczy niezbyt mądrych

	1: Teoria równań algebraicznych	4
1.1	Rozwiązywanie układów równań	4
1.2	Rozszerzanie ciał	6
	2: Ciała skończone i pierwiastki z jedności	10
2.1	Algebraiczne domknięcie ciała	11
2.2	Pierwiastki z jedności	12
2.3	Rozszerzenia ciał	15

1. Wykład 1: Teoria równań algebraicznych

Przez R, S będziemy oznaczać pierścienie przemienne z $1 \neq 0$, natomiast K, L będziemy rezerwować dla oznaczeń ciał.

1.1. Rozwiązywanie układów równań

Rozważmy funkcje $f_1,...,f_m \in R[X_1,...,X_n]$. Dla wygody będziemy oznaczać krotki przez \overline{X} , czyli $R[X_1,...,X_n] = R[\overline{X}]$. Pojawia się problem: czy istnieje rozszerzenie pierścieni z jednością $R \subseteq S$ takie, że układ $U: f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ ma rozwiązanie w pierścieniu S?

Fakt 1.1. $\overline{a} = (a_1, ..., a_n) \subseteq S$, gdzie S jest rozszerzeniem pierścienia R, jest rozwiązaniem układu równań $U \iff g(\overline{a}) = 0$ dla każdego wielomianu $g \in (f_1, ..., f_m) \triangleleft R[X]$.

Dowód:

 \iff Implikacja jest dość trywialna, jeśli każdy wielomian z ($f_1,...,f_m$), czyli wytworzony za pomocą sumy i produktu wielomianów $f_1,...,f_m$ zeruje się na \bar{a} , to musi zerować się też na każdym z tych wielomianów.

⇒ Rozważamy dwa przypadki:

1.
$$(f_1, ..., f_m) \ni b \neq 0 i b \in R$$
.

To znaczy w $(f_1,...,f_m)$ mamy pewien niezerowy wyraz wolny. Wtedy mamy wielomian $g \in (f_1,...,f_m)$ taki, że $g(\overline{a}) \neq 0$. Ale przecież g jest kombinacką wielomianów $f_1,...,f_m$, która na \overline{a} przyjmują wartość 0. W takim razie dostajemy układ sprzeczny i przypadek jest do odrzucenia.

2.
$$(f_1, ..., f_m) \cap R = \{0\}$$
. (nie ma wyrazów wolnych różnych od 0)

Teraz wiemy, że układ U jest niesprzeczny, a więc możemy skonstruować pierścień z 1 S będący rozszerzeniem R $[S \supseteq R]$ oraz rozwiązanie $\overline{a} \subseteq S$ spełniające nasz układ równań.

Niech S = $R[\overline{X}]/(f_1,...,f_m)$ i rozważmy

$$j:R[\overline{X}]\to S=R[\overline{X}]/(f_1,...,f_m)$$

nazywane przekształceniem ilorazowym. Po pierwsze, zauważmy, że j $\$ R jest 1 – 1, bo

$$ker(j \upharpoonright R) = ker(j) \cap R = (f_1, ..., f_m) \cap R = \{0\}$$

i dlatego

$$j \upharpoonright R : R \xrightarrow{\cong} j[R] \subseteq S.$$

Z uwagi na ten izomorfizm, będziemy utożsamiać R, j[R]. W takim razie, S jest rozszerzeniem pierścienia R. Czyli mamy rozszerzenie pierścienia R.

Niech

$$\bar{a} = (a_1, ..., a_m) = (j(X_1), ..., j(X_n)) \subseteq S,$$

czyli jako potencjalne rozwiązanie rozważamy zbiór obrazów wielomianów stopnia 1 przez wcześniej zdefiniowaną funkcję $j:R[\overline{X}]\to S$. Tak zdefiniowane \overline{a} jest rozwiązaniem układu U w pierścieniu S, bo dla funkcji wielomianowej (czyli zapisywalnej jako wielomian) $\hat{f_i}\in (f_1,...,f_m)$ mamy

$$\hat{f}_i(\bar{a}) = \hat{f}_i(j(X_1), ..., j(X_m)) = j(\hat{f}_i(X_1, ..., X_m)) = j(f_i) = 0.$$

TUTAJ TRZEBA POUZASADNIAĆ KILKA RÓWNOŚCI, ALE MOŻE NIE BĘDĘ TEGO RO-BIŁA NA AISD

Uwaga 1.2. Skonstruowane powyżej rozwiązanie a układu U ma następującą własność uniwersalności:

(\clubsuit) Jeżeli S' \supseteq R jest rozszerzeniem pierścienia z 1 i \overline{a}' = $(a'_1,...,a'_m) \subseteq S$ jest rozwiązaniem U w S', to istnieje jedyny homomorfizm

$$h: R[\overline{a}] \rightarrow R[\overline{a}']$$

taki, że h \upharpoonright R jest identycznością na R i h(\overline{a}) = \overline{a}' . Wszystkie rozwiązania układów są homomorficzne.

Tutaj R[\overline{a}] \subseteq S jest podpierścieniem generowanym przez R \cup { \overline{a} }, czyli zbiór:

$$R[\overline{a}] = \{f(\overline{a}) \ : \ f(\overline{X}) \in R[\overline{X}]\} \subseteq S$$

Dowód: Niech I = $\{g \in R[\overline{X}] : g(\overline{a}') = 0\} \subseteq S'$. Oczywiście mamy, że I \triangleleft R $[\overline{X}]$, a więc

$$(f_1,...,f_m)\subseteq I$$
.

Z twierdzenia o faktoryzacji wie

Homomorfizm $\phi: R[\overline{X}] \to R[\overline{a}']$ określamy wzorem

$$\phi(w) = w(\overline{a}),$$

a homomorfizm j jest jak wyżej odwzorowaniem ilorazowym. Widzimy, że

$$I = ker(\phi)$$

$$ker(j) = (f_1, ..., f_m).$$

Z twierdzenia o homomorfizmie pierścieni dostajemy jedyny homomorfizm

$$h: R[X]/(f_1,...,f_m) \rightarrow R[\overline{a}]$$

taki, że h(\overline{a}) = \overline{a}' .

Uwaga 1.3. *Jeśli* I =
$$(f_1, ..., f_m)$$
, to h : R[\overline{a}] $\xrightarrow{\cong}_{R}$ [\overline{a}'].

Wtedy mamy $\ker \phi = \ker j$, czyli $\ker (h \circ j) = \ker \phi = \ker j$, no a z tego wynika, że $\ker h$ jest trywialne, czyli h jest apimorfizmem (1-1). Z drugiej strony, $\operatorname{Im} \phi = \operatorname{Im}(h \circ j)$, a ϕ jest epimorfizmem ("na"), więc również h musi być "na".

Załóżmy, że S \supseteq R jest rozszerzeniem pierścienia oraz $\overline{a} \in S^n$. Wtedy:

1. ideał a nad R definiujemy jako

$$I(\overline{a}/R) = \{q \in R[\overline{X}] : q(\overline{a}) = 0\}$$

2. a nazywamy rozwiązaniem ogólnym układu U, jeśli ideał

$$I(\overline{a}/R) = (f_1, ..., f_m).$$

Uwaga 1.4. W sytuacji jak z definicji wyżej, gdy U jest układem niesprzecznym, wtedy \overline{a} jest rozwiązaniem ogólnym układu $U \iff$ zachodzi warunek (\clubsuit).

Dowód: Ćwiczenia.

1.2. Rozszerzanie ciał

Dla K \subseteq L ciał i \overline{a} \subseteq L definiujemy ideał \overline{a} nad K jako:

$$I(\overline{a}/L) := \{f(X_1, ..., X_n) \in K[\overline{X}] : f(\overline{a}) = 0\},\$$

to znaczy generujemy ideał w wielomianach nad K zawierający wszystkie wielomiany (niekoniecznie tylko jednej zmiennej) zerujące się w ā.

Przykład:

Dla K = \mathbb{Q} , L = \mathbb{R} , n = 1, $a_1 = \sqrt{2}$ mamy

$$I(\sqrt{2}/\mathbb{Q}) = \{f(x^2 - 2) : f \in \mathbb{Q}[X]\} = (x^2 - 2) \triangleleft \mathbb{Q}[X]$$

Dalej, definiujemy

$$K[\overline{a}] := \{f(\overline{a}) : f \in K[X]\}$$

czyli **podpierścień** L **generowany przez** $K \cup \{\overline{a}\}$ oraz $K(\overline{a})$, **czyli podciało** L generowane przez $K \cup \{\overline{a}\}$:

$$K(\overline{a}) := \{f(\overline{a}) : f \in K(X_1, ..., X_n) | f(\overline{a}) \text{ dobrze określone} \}.$$

Tutaj $K(X_1, ..., X_n)$ to *ciało ułamków pierścienia* $K[\overline{a}]$ w ciele L (czyli najmniejsze ciało, że pierścień może być w nim zanurzony). Czasami oznaczamy to przez $K[\overline{a}]_0$.

Uwaga 1.5. Niech $K \subseteq L_1$, $K \subseteq L_2$ będą ciałami. Wybieramy $\overline{a}_1 \in L_1$ i $\overline{a}_2 \in L_2$, $|\overline{a}_1| = |\overline{a}_2| = n$. Wtedy następujące warunki są równoważne:

- 1. istnieje izomorfizm $\phi : K[\overline{a}_1] \to K[\overline{a}_2]$ taki, że $\phi \upharpoonright K = id_K$ oraz $\phi(\overline{a}_1) = \overline{a}_2$.
- 2. $I(\bar{a}_1/K) = I(\bar{a}_2/K)$.

Dowód:

$$1 \implies 2$$

Implikacja jest jasna, bo dla $g(\overline{X}) \in K[\overline{X}]$, bo $g(\overline{a}_1) = 0$ w $K[\overline{a}_1] \iff g(f(\overline{a}_1)) = 0$, a $f(\overline{a}_1) = \overline{a}_2$.

Zwróćmy uwagę na odwzorowanie ewaluacji a

$$\phi_{\overline{a}_1}: K[\overline{X}] \xrightarrow{"na"} K[a_1]$$

zadane wzorem

$$\phi(w(\overline{X})) = w(\overline{a}_1).$$

Mamy

$$\ker(\phi_{\overline{a}_1}) = I(\overline{a}_1/K).$$

Tak samo dla \overline{a}_2 możemy określić analogicznie odwzorowanie ewaluacyjne $\phi_{\overline{a}_2}: K[\overline{X}] \to K[\overline{a}_2]$. Wtedy

$$I(\overline{a}_2/K) = \ker(\phi_{\overline{a}_2}),$$

ale ponieważ $I(\overline{a}_1/K) = I(\overline{a}_2/K)$, to $\ker(\phi_{\overline{a}_1}) = \ker(\phi_{\overline{a}_2})$. Oznaczmy $I = I(\overline{a}_1/K) = I(\overline{a}_2/K)$. Widzimy, że $\phi_{\overline{a}_i} \upharpoonright K = \operatorname{id}_k$.

Niech f = $f_2f_1^{-1}$: $K[\overline{a}_1] \rightarrow K[\overline{a}_2]$ jest funkcją spełniającą warunki punktu 1.

MOŻE TUTAJ ŁADNIE SPRAWDZIĆ ŻE NAPRAWDĘ JEST TO DOBRZE SPEŁNIAJĄCA WARUNKI FUNKCJA?

Uwaga. Niech $I \triangleleft K[\overline{X}]$ noetherowskiego pierścienia $K[\overline{X}]$. Niech $I = (f_1, ..., f_m)$ dla pewnych $f_i \in K[\overline{X}]$. Wtedy istnieje rozszerzenie pierścienia $S \supseteq K$ oraz $\overline{a} \subseteq S$ - rozwiązanie ogólne układu $f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ takie, że $I(\overline{a}/K) = I$.

Dowód: Wcześniejsze uwagi KTÓRE KONKRETNIE?

Twierdzenie 1.6. Niech $I \triangleleft K[\overline{X}]$. Wtedy istnieje ciało $L \supseteq K$ oraz $\overline{a} = (a_1, ..., a_n) \subseteq L$ takie, że $f(\overline{a}) = 0$ dla każdego $f \in I$.

Dowód: Niech I \subseteq M \triangleleft K[\overline{X}] będzie ideałem maksymalnym. Niech L = K[\overline{X}]/M i określmy przekształcenie ilorazowe

$$j: K[\overline{X}]/M \to L = K[\overline{X}]/M.$$

Ponieważ $M \cap K = \{0\}$ (bo inaczej w ideale byłby wielomian odwracalny), to $j \upharpoonright K : K \to L$ jest funkcją 1-1, czyli

$$j \upharpoonright K : K \xrightarrow{1-1} j[K] \subseteq L.$$

Możemy utożsamić K z j[K], czyli K \subseteq L. Niech \overline{a} = $(a_1,...,a_n)$ takie, że dla każdego $i \in [n]$

$$a_i = j(X_i) \in L$$
.

Wtedy g(\overline{a}) = 0 dla każdego g(\overline{X}) \in M \supseteq I (bo inaczej mielibyśmy wyrazy wolne).

Wniosek 1.7. Niech $f \in K[X]$ stopnia > 0. Wtedy istnieje ciało $L \supseteq K$ rozszerzające ciało K takie, że K ma pierwiastek K ciele K.

Przykłady:

1. Rozpatrzmy ciało K = \mathbb{Q} i f(X) = X – 2. Wtedy I = (f) $\triangleleft \mathbb{Q}[X]$ jest ideałem maksymalnym, bo jest on pierwszy (w tym wypadku nierozkładalny). Równanie f = 0 ma rozwiązanie ogólne w pierścieniu ilorazowym

$$\mathbb{Q}[X]/I \cong \mathbb{Q}.$$

Czyli nie zawsze musimy rozszerzać ciało do czegoś nowego.

2. $\mathbb{C} = \mathbb{R}[i] = \mathbb{R}(i) = \mathbb{R}[z]$ dla każdego $z \in \mathbb{C} \setminus \mathbb{R}$, co jest na liście zadań.

Załóżmy, że K \subseteq L₁, K \subseteq L₂ są rozszerzeniami ciała. Wtedy mówimy, że L₁ **jest izomorficzne z** L₂ **nad** K [L₁ \cong _K L₂] \iff istnieje izomorfizm f : L₁ \rightarrow L₂ taki, że f \upharpoonright K = id_K.

Fakt 1.8.

- 1. Załóżmy, że $f(X) \in K[X]$ jest nierozkładalny. Niech $L_1 = K(a_1)$, $L_2 = K(a_2)$ i $f(a_i) = 0$ w L_i . Wtedy $L_1 \cong_K L_2$.
- 2. Ogółniej: załóżmy, że $\phi: K_1 \to K_2$ jest izomorfizmem i $f_1 \in K_1[X], f_2 \in K_2[X], \phi(f_1) = f_2, f_i$ jest nierozkładalne. Dodatkowo załóżmy, że $L_1 = K_1(a_1)$ i $L_2 = K_2(a_2)$, gdzie $f_i(a_i) = 0$ w L_i . Wtedy istnieje izomorfizm $\phi \in \psi: L_1 \to L_2$ taki, że $\psi(a_1) = a_2$.

Dowód:

- 1. $I(a_1/K) = I(a_2/K)$, stąd na mocy 1.5 mamy $K(a_1) \cong_K K(a_2)$. Po dowodzie przypadku 2. możemy uzasadniać, że jest to szczególny przypadek tego ogólniejszego stwierdzenia właśnie.
 - 2. Zacznijmy od rozrysowania tej sytuacji:

Izomorfizm $\phi: K_1[X] \xrightarrow{\cong}_{K_2} [X]$ indukuje nam przekształcenie

$$\mathsf{K}_1[\mathsf{X}]/(\mathsf{f}_1) \xrightarrow{\cong} \mathsf{K}_2[\mathsf{X}]/(\mathsf{f}_2),$$

bo $\phi(f_1) = f_2$. Wiemy, że f_i jest nierozkładalne, czyli

$$I(a_i/K_i) = (f_i) \triangleleft K_i[X]$$

jest ideałem maksymalnym. Mamy

$$L_i = K_i(a_i) = K_i[a_i] \cong K[X]/I(a_i/K_i).$$

2. Wykład 2: Ciała skończone i pierwiastki z jedności

Ciało L \supseteq K nazywamy **ciałem rozkładu nad** K wielomianu f \in K[X], gdy spełnione są warunki:

- 1. f rozkłada się w pierścieniu L[X] na czynniki liniowe (stopnia 1)
- 2. Ciało L jest rozszerzeniem ciała K o elementy $a_1, ..., a_n$, gdzie $a_1, ..., a_n$ to wszystkie pierwiastki f w L.

Przykład: Jeżeli deg(f) = 0, to nie istnieje ciało rozkładu f.

Wniosek 2.1. Załóżmy, że $f \in K[X]$ jest wielomianem stopnia > 0. Wtedy

- 1. istnieje L: ciało rozkładu f nad K,
- 2. to ciało jest jedyne z dokładnością do izomorfizmy nad K.

Dowód:

1. Dowód przez indukcje względem stopnia f

Jako przypadek bazowy rozważmy f takie, że deg(f) = 1. Wtedy L = K i wszystko wniosek jest spełniony.

Załóżmy teraz, że stopień wielomianu f jest > 1 i tez zachodzi dla wszystkich wielomianów stopnia < deg(f) i wszystkich ciał K'. Teraz z 1.7 wiemy, że istnieje rozszerzenie ciała L \supseteq K takie, że f ma pierwiastek w L. Nazwijmy ten pierwiastek a $_0$ i niech

$$K' = K(a_0).$$

Ponieważ K'[X] wielomian f ma pierwiastek a_0 , to możemy zapisać

$$f = (x - a_0)f_1$$

dla pewnego $f_1 \in K'[X]$ i deg (f_1) < deg(f). Z założenia indukcyjnego dla f_a istnieje L' = $K'(a_1,...,a_r)$ - ciało rozkładu wielomianu f_1 nad K'. Wtedy

$$L = K(a_0, ..., a_r)$$

jest ciałem rozkładu f nad K.

2. Udowodnimy wersję ogólniejszą:

(**) Jeśli $\phi: K_1 \xrightarrow{\cong} K_2$ jest izomorfizmem nad ciałem i $f_i \in K_i[X]$ jest wielomianem stopnia > 0, $\phi(f_1) = f_2$, to wtedy istnieje $\psi: L_1 \xrightarrow{\cong} L_2$ izomorfizm nad ciałami rozkładu f_i w K_i rozszerzający izomorfizm ϕ (to znaczy $\phi \subseteq \psi$).

Wykorzystamy indukcję po deg(f). W przypadku bazowym mamy deg(f) = 1, czyli $L_1 = K_1, L_2 = K_2$ i $\phi = \psi$.

Teraz niech deg(f) > 1 i załóżmy, że dla wszystkich ciał K' oraz wielomianów stopnia < deg(f) jest to prawdą. Niech

$$f_i = f_i' \cdot g_i$$

gdzie $f_i', g_i \in K_i[X]$ i g_i jest wielomianem nierozkładalnym w K. Wiemy już, że istnieje $a_i \in L_i$ będące pierwiastkiem wielomianu g_i .

Z faktu 1.8:(2), wiemy, że istnieje wtedy izomorfizm

$$\psi_0: \mathsf{K}_1(\mathsf{a}_1) \xrightarrow{\cong} \mathsf{K}_2(\mathsf{a}_2)$$

taki, że $\psi_0(a_1) = a_2 i \phi \subseteq \psi_0$.

Mamy, że L_i to ciało rozkładu f_i' nad K_i . W takim razie z założenia indukcyjnego istnieje izomorfizm

 $\overline{\psi_1:\mathsf{L}_1}\overset{\cong}{\longrightarrow}\mathsf{L}_2$

taki, że $\psi \subseteq \psi_0$ i to już jest koniec.

Wniosek 2.2. Jeśli $f_1 \in K_1[X]$ i $f_2 \in K_2[X]$ są nierozkładalnymi wielomianami, $\phi : K_1 \xrightarrow{\cong} K_2$ izomorfizmem i $\phi(f_1) = f_2$, a L_1 , L_2 to ciała rozkładu f_1 , f_2 odpowiednio nad K_1 i K_2 , $a_i \in L_i$ to pierwiastek f_i , to wtedy istnieje $\psi : L_1 \xrightarrow{\cong} L_2$ takie, że $\psi(a_1) = a_2$.

Dowód: Wynika z dowodu stwierdzenia 🐃.

2.1. Algebraiczne domknięcie ciała

Ciało L jest **algebraicznie domknięte** \iff dla każdego $f \in L[X]$ o stopniu > 0 istnieje pierwiastek f w L, to znaczy każdy wielomian rozkłada się na czynniki liniowe nad L.

Przykład:

- $\hookrightarrow \mathbb{C}$ jest algebraicznie domknięte.
- $\hookrightarrow \mathbb{R}$ nie jest algebraicznie domknięte, gdyż x^2+1 nie ma pierwiastka rzeczywistego.
- $\hookrightarrow \mathbb{Q}[i]$ nie jest algebraicznie domknięte, bo x^2 2 nie ma pierwiastka.

Twierdzenie 2.3. Każde ciało zawiera się w pewnym ciele algebraicznie domkniętym.

Dowód:

Lemat: Dla każdego ciała K istnieje $K'\supseteq K$ takie, że $(\forall\ f\in K[X])$ stopnia > 0 f ma pierwiastek w K'.

Rozważmy dobry porządek na zbiorze wielomianów z K[X] stopnia > 0

$$\{f\in K[X]\ :\ deg(f)>0\}=\{f_\alpha\ :\ \alpha\subset x\}$$

Skonstruujmy rosnący ciąg ciał $\{K_{\alpha} : \alpha \subset x\}$ taki, że

$$\hookrightarrow \mathsf{K} \subseteq \mathsf{K}_{\alpha} \subseteq \mathsf{K}_{\beta}$$
 dla α < β < x

 \hookrightarrow f $_{\alpha}$ ma pierwiastek w K $_{\alpha$ +1.

Załóżmy, że α < x i mamy {K_{β} : β < α }.

1. α to liczba graniczna, wtedy $K_{\alpha} = \bigcup_{\beta < \alpha} K_{\beta}$

2. $\alpha = \beta + 1$ to następnik, wtedy $K_{\alpha} = K_{\beta}(a)$, gdzie a to pierwiastek wielomianu f_{β} .

Czyli lemat jest prawdziwy.

Wracamy teraz do dowodu twierdzenia i niech (L_n , $n < \omega$) będzie rosnącym ciągiem ciał takim, że

$$\hookrightarrow L_0 = K$$

 $\hookrightarrow L_{n+1} \supseteq \overline{L}_n \text{, gdzie } L_{n+1} \text{ dane jest przez lemat, to znaczy } (\forall \ f \in L_n[X]) \text{ f ma pierwiastek } L_{n+1}.$

Niech

$$\hat{K} = L_{\infty} = \bigcup_{n < \omega} L_n.$$

Jest to ciało, ponieważ suma rosnącego ciągu ciał jest ciałem. Dalej mamy, że również

$$L[X] = \bigcup_{n < \omega} L_n[X]$$

i L[X] jest algebraicznie domknięte.

Uwaga 2.4. *Załóżmy, że mamy ciała* $K \subseteq L$. *Wtedy*

$$\hookrightarrow$$
 char(K) = char(L)

$$\hookrightarrow$$
 0_K = 0_L oraz 1_K = 1_L

$$\hookrightarrow \mathsf{K}^* = \mathsf{K} \setminus \{0\} < \mathsf{L}^* = \mathsf{L} \setminus \{0\}$$

2.2. Pierwiastki z jedności

K jest ciałem prostym wtedy i tylko wtedy, gdy K nie zawierza żadnego właściwego podciała.

Przykład:

- $\hookrightarrow \mathbb{Q}$, gdzie char(\mathbb{Q}) = 0 to ciało proste nieskończone.
- \hookrightarrow Ciałem prostym skończonym jest na przykład \mathbb{Z}_p dla liczby pierwszej p, wtedy char (\mathbb{Z}_p) = p.

Niech R będzie pierścieniem przemiennym z 1 \neq 0. Mamy następujące definicje:

- 1. $a \in R$ jest **pierwiastkiem z** 1 stopnia $n > 0 \iff a^n = 1$
- 2. $\mu_n(R)$ = {a $\in R$: a^n = 1} jest **grupą pierwiastków z** 1 stopnia n
- 3. $\mu(R) = \bigcup_{n>0} \mu_n(R)$ jest grupą pierwiastków z 1
- 4. a jest **pierwiastkiem pierwotnym** stopnia n z 1 \iff a $\in \mu_n(R)$ oraz (\forall k < n)a $\notin \mu_k(R)$.

Uwaga 2.5.

1. $\mu_n(R) \triangleleft R^X$ jest grupą jednostek pierścienia

2.
$$\mu$$
(R) ⊲ R^X

3. $\mu(R)$ jest torsyjną grupą abelową (każdy element jest pierwiastkiem z 1).

Przykłady

1.
$$\mu(\mathbb{C}) = \bigcup_{n>0} \mu_n(\mathbb{C}) \lneq (\{z \in \mathbb{C} : |z| = 1\}, \cdot\}) < \mathbb{C}^x = C \setminus \{0\}$$

2.
$$\mu(\mathbb{C}) \cong (\mathbb{Q}, +)/(\mathbb{Z}, +)$$
, bo $f: \mathbb{Q} \xrightarrow{\text{``na"}} \mu(\mathbb{C})$ taki, że $f(w) = \cos(w2\pi) + i\sin(w2\pi)$ ma jądro $\ker(f) = \mathbb{Z}$.

- 3. $\mu(\mathbb{R}) = \{\pm 1\}$
- 4. $\mu_n(K) = \{ zera wielomianu w_n(x) = x^n 1 \}$

Uwaga 2.6.

- 1. Jeśli char(K) = 0, to $w_n(x) = x^n 1$ ma tylko pierwiastki jednokrotne w K
- 2. Jeśli char(K) = p > 0 i n = $p^l n_1$ takie, że $p \nmid n_1$, to wszystkie pierwiastki $w_n(x) = x^n 1$ mają krotność $p^l w$ K.

Dowód:

1. Niech a \in K takie, że $w_n(a) = 0$. Z twierdzenia Bezouta mamy, że

$$w_n(x) = x^n - 1 = x^n - a^n = (x - a)(x^{n-1} + ax^{n-2} + ... + a^{n-2}x + a^{n-1}) = (x - a)v_n(x),$$

gdzie
$$v_n(x) = x^{n-1} + ax^{n-2} + ... + a^{n-2}x + a^{n-1}$$
.

Z tego, że char(K) = 0 wynika, że $v_n(a) = na^{n-1} + 0$, skąd wynika, że a jest jednokrotnym pierwiastkiem $w_n(x)$.

Fakt 2.7. Załóżmy, że char(K) = p > 0. Wtedy funkcja f : K \rightarrow K taka, że f(x) = x^p jest homomorfizmem ciał oraz monomorfizmem zwanym funkcją Frobeniusa.

Uwaga 2.8. $x \mapsto x^p$ nie musi być funkcją "na" (automorfizmem). Na przykład $K = \mathbb{Z}_p(f)$, wtedy $x \mapsto x^p$ nie jest "na".

2. Mając powyższy fakt i uwagę z tyłu, przechodzimy do dowodu 2.

Niech f : $K[X] \rightarrow K[X]$, $f(h(x)) = w(x)^p$ i

$$f(\sum a_k x^k) = \sum a_k^p x^{n \cdot p}$$

Z faktu wyżej mamy, że f jest 1 – 1. Ponieważ n = $p^l n_1$, to mamy

$$w_n(x) = x^n - 1 = x^n - 1^n = (x^{n_1})^{p^l} - (1^{n_1})^{p^l} = \dots l \text{ razy...} = (x^{n_1} - 1)^{p^l} = \underbrace{w_{n_1} \cdot \dots \cdot w_{n_1}}_{n^l},$$

zatem każdy pierwiastek $w_n(x)$ ma krotność co najmniej p^l . Wystarczy więc pokazać, że każdy pierwiastek $w_{n_1}(x)$ jest jednokrotny.

Niech a \in K takie, że w_{n_1} (a) = 0. Wtedy

$$w_{n_1}(x) = x^{n_1} - a^{n_1} = (x - 1)(x^{n_1 - 1} + ... + a^{n_1 - 1}) = (x - a)v_{n_1}(x),$$

gdzie v_{n_1} jest analogiczne jak w dowodzie 1. Ale przecież $v_{n_1}(a) = n_1 \cdot a^{n_1-1} \neq 0$, bo p $\nmid n_1$.

Twierdzenie 2.9. Niech $G < \mu(K)$ i G jest podgrupą skończoną o |G| = n. Wtedy

- 1. $G = \mu_n(K)$
- 2. G jest cykliczna
- 3. Jeśli char(K) = p > 0, to $p \nmid n$.

Dowód

- 1. Jeśli |G| = n, to dla każdego $x \in G$ mamy x^n = 1. Z tego wynika, że $G \subseteq \mu_n(K)$, ale $|\mu_n(K)| \le n$, czyli $G = \mu_n(K)$.
 - 2. Wystarczy pokazać, że istnieje $x \in G$ taki, że rank(x) = n.

Załóżmy nie wprost, że dla każdego $x \in G$ rang(x) < n. Niech

$$k = \max\{rank(x) : x \in G\}.$$

Niech $x_0 \in G$ takie, że rank $(x_0) = k$. Wtedy

$$(\forall y \in G) \operatorname{rank}(y)|k.$$

Czyli

$$(\forall y \in G) y^k = 1,$$

co pociąga $G \subseteq \mu_k(K)$ i $|G| \le k < n$. Sprzeczność.

3. Wiemy, że wszystkie pierwiastki $w_n = x^n - 1$ są jednokrotne, bo jest ich w tym przypadku dokładnie n (z poprzedniego punktu). Z uwagi 2.6, że jeśli $n = p^l n_1$, to pierwiastki wielomianu $w_n(x)$ mają krotność p^l . Ale w tym przypadku pierwiastki mają krotność jeden, czyli $p^l = 1$ i $n = 1 \cdot n_1$, gdzie $p \nmid n_1$.

Wniosek 2.10. *Jeśli* a $\in \mu_n(K)$ *jest pierwiastkiem pierwotnym z* 1 *stopnia* n > 1, *to* a *generuje* $\mu_n(K)$.

Dowód:

 $\mu_n(K) \supseteq \langle a \rangle = \mu_k(K)$ dla pewnego $k \in \mathbb{N}$. Ale ponieważ a było pierwiastkiem pierwotnym z 1, to musimy mieć n = k.

Twierdzenie 2.11. Niech K będzie ciałem skończonym. Wtedy

- 1. $char(K) = p \implies |K| = p^n dla pewnego n \in \mathbb{N}$
- 2. Dla każdego n > 0 istnieje dokładnie jedno ciało K takie, że $|K| = p^n z$ dokładnością do izomorfizmu. Ciało mocy p^n będziemy oznaczać $F(p^n)$.

Dowód:

1. Skoro char(K) = p, to $\mathbb{Z}_p \subseteq K$ jest najmniejszym podciałem K. W takim razie, K jest przestrzenią liniową nad \mathbb{Z}_p . Jeśli n = dim \mathbb{Z}_p (K), to K jest izomorficzne z \mathbb{Z}_p^n , jako przestrzenie liniowe nad \mathbb{Z}_p . W takim razie |K| = p^n .

2.

Istnienie:

Niech n > 0. Rozważmy

$$w_{p^n-1}(x)=x^{p^n-1}\in\mathbb{Z}_p[X].$$

Niech L $\supseteq \mathbb{Z}_p$ będzie ciałem rozkładu wielomianu w_{p^n-1} , a K = $\{0\} \cup \{$ pierwiastki $w_{p^n-1}\}$. Wtedy

$$|K| = 1 + p^n - 1 = p^n$$
,

czyli mamy potencjalne ciało rzędu pⁿ. Wystarczy więc pokazać, że K jest ciałem.

Niech f : L $\xrightarrow{1-1}$ L będzie funkcją Frobeniusa $x \mapsto x^p$. Teraz niech $f^n = f \circ ... \circ f$, $f^n(x) = x^{p^n}$. Jest to monomorfizm, bo składamy ze sobą n takich samych funkcji 1 - 1. Dla $a \in L$ mamy

$$(a^{p^n-1} = 1 \lor a = 0) \implies a \in K.$$

Co więcej, $a^{p^n-1} = 1 \iff a^{p^n} = a \iff f^n(a) = a$, czyli $K = \{a \in L : f^n(a) = a\}$ jest zbiorem punktów stałych morfizmu f^n , czyli jest ciałem.

Jedyność K:

Ciało K stworzone jak wyżej jest ciałem rozkładu $w_{p^n-1}(x)$ nad \mathbb{Z}_p . Załóżmy nie wprost, że K' to inne ciało mocy p^n . Niech $x\in K'\setminus\{0\}$. wiemy, że $x^{p^n-1}=1$, czyli w_{p^n-1} rozkłada się nad K' na czynniki liniowe. Zatem K' jest również ciałem rozkładu w_{p^n-1} nad \mathbb{Z}_p , stąd K \cong K' nad \mathbb{Z}_p i mamy sprzeczność.

2.3. Rozszerzenia ciał

Niech K \subseteq L będą ciałami i a \in L \ K.

- \hookrightarrow Jeżeli a jest algebraiczny nad K, to istnieje $f \in K[X]$ stopnia > 0 i f(a) = 0
- \hookrightarrow a jest przestępny nad K \iff a nie jest algebraiczny.
- \hookrightarrow **Rozszerzenie** L \supseteq K jest **algebraiczne** \iff dla każdego a \in L a jest algebraiczny nad K.
- \hookrightarrow Rozszerzenie jest przestępne \iff nie jest algebraiczne.
- \hookrightarrow Niech a $\in \mathbb{C}$. Wtedy a jest algebraiczna, gdy a jest algebraiczna nad \mathbb{Q} .

Uwaga 2.12. Niech a jak wyżej. Wtedy a jest algebraiczny nad $K \iff I(a/K) \neq \{0\}$.

Niech K \subset L będzie rozszerzeniem ciała K. Wtedy L jest przestrzenia liniowa nad K. Definiujemy

$$[L:K] := dim_K(L)$$

jako wymiar przestrzeni liniowej.

Uwaga 2.13. *Niech* $a \in L \setminus K$. *Następujące warunki są równoważne:*

- 1. a jest algebraiczny nad K
- 2. K[a] = K(a), to znaczy K[a] jest ciałem (usuwanie niewymierności z mianownika)
- 3. [K(a) : K] = dim_K(a) < ∞

Dowód:

 $1 \implies 2$