LECTURE NOTES

Machine Learning

Winter Semester 24/25

Emma Bach

Lecture by Dr. Daniele CATTANEO

Emma Bach February 20, 2025

Table of contents

1 Introduction 2

Chapter 1

Introduction

Given a set $\{(x_1, y_1), \dots, (x_n, y_n)\}$, i.e. a set of features (inputs) $x = \{x_1, \dots, x_n\}$ and a target (desired output) $y = \{y_1, \dots, y_n\}$, Machine Learning is the process of algorithmically finding the best possible function f(x) such that

$$\forall x_i [f(x_i) \approx y_i].$$

y is also known as the **ground truth**. In **unsupervised learning**, y is not explicitly given to the algorithm (and may not even exist). The focus of the course, and thus these notes, was **supervised learning**, where y is explicitly given.

In order to find an optimal f(x), we first rephrase the function in terms of **learnable parameters** θ to get a function $f(x,\theta)$. We often write $f(x_i,\theta) = \hat{y}_i$, where the hat \hat{y}_i is an approximation of y_i . The full image \hat{y} is often called the **prediction model**.

We now need to define a separate function that we can use to judge how good our values of θ are. Such a function is known as a **loss function**, which we write as $\mathcal{L}(y,\hat{y})$. The problem of finding the best possible f then comes down to a minimization problem of the form

$$\underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \mathcal{L}(y_n, \hat{y}_n)$$