Experimental analysis on granular materials for robotics application

Katy Gero, Nadia Cheng, Karl Iagnemma, Anette Hosoi *Massachusetts Inst. Of Tech.*

Robotic Applications: The Mechanism

flexible/un-jammed state

rigid/jammed state

Differential jamming pressure:

$$P_{atm} - P_{atm} = 0$$

$$P_{atm} - 0 = P_{atm}$$

Robotic Applications: Example

Trim video to start at 21s approx

Conformable gripper by U of Chicago, Cornell, and iRobot

Experimental Study: Purpose

correlate

Particle properties (individual, microscopic)

shape parameters

 circularity, aspect ratio, fractal dimension, etc.
polydispersivity
strength
surface texture

Effective bulk properties (collective, macroscopic)

material properties

 strength, yield stress, modulus fluidity ease of jamming repeatability

predict

Changes in microstructure can lead to macroscopic changes.

Experimental Study: Overview

Focus on shape and size distribution and strength properties:

Preliminary tri-axial tests for the specific case of high strength-to-weight ratio

Experimental Study: Shape and Size

Experimental Study: Shear Strength

Experimental Study: Prelim. Results

Asymptotic approach relationship.

Experimental Study: Best Predictor

Experimental Study: Best Predictor

Further Studies: Particle Parameters

Controlling for variables

Questions?

