Lista 1 Análise de Algoritmos MAC5711

1.

(b)
$$\log_{10} n \notin O(\lg n)$$

prova Para $n \ge 1$ e $c_1 = \log_{10} 2$ temos que:

$$\log_{10} n \le \log_{10} 2 \lg n$$

$$\begin{aligned} &\log_{10} n \leq \log_{10} 2 \lg n \\ &\log_{10} n \leq \log_{10} 2 \cdot \frac{\log_{10} n}{\log_{10} 2} \end{aligned}$$

$$\log_{10} n \le \log_{10} n.$$

2 .

(d)
$$n = O(2^n)$$

prova Para todo $n_0 = 0$ e $c_1 = 1$ onde $n \ge n_0$, temos que $0 \le n \le 2^n$.

3 .

(b) Se
$$f(n) = \Theta(g(n))$$
 e $g(n) = \Theta(h(n))$ então $f(n) = \Theta(h(n))$.

prova Temos que $f(n) = \Theta(g(n))$ quando f(n) = O(g(n)) e $f(n) = \Omega(g(n))$:

$$c_1 g(n) \le f(n) \le c_2 g(n) \tag{1}$$

 $E g(n) = \Theta(h(n))$ quando g(n) = O(h(n)) e $g(n) = \Omega(h(n))$

$$c_3h(n) \le g(n) \le c_4h(n) \tag{2}$$

 $f(n) = \Theta(h(n))$ é verdadeiro pois se (1) e (2), existe um c_1, c_2, c_3 e c_4 em que temos:

$$c_3h(n) \le c_2g(n) \le f(n) \le c_2g(n) \le c_4h(n)$$
$$c_3h(n) \le f(n) \le c_4h(n)$$

Logo, $f(n) \in \Theta(h(n))$.