

October 1987 Revised March 2002

CD40192BC • CD40193BC Synchronous 4-Bit Up/Down Decade Counter • Synchronous 4-Bit Up/Down Binary Counter

General Description

The CD40192BC and CD40193BC up/down counters are monolithic complementary MOS (CMOS) integrated circuits. The CD40192BC is a BCD counter, while the CD40193BC is a binary counter.

Counting up and counting down is performed by two count inputs, one being held HIGH while the other is clocked. The outputs change on the positive-going transition of this clock.

These counters feature preset inputs that are enabled when load is a logical "0" and a clear which forces all outputs to "0" when it is at logical "1". The counters also have carry and borrow outputs so that they can be cascaded using no external circuitry.

All inputs are protected against damage due to static discharge by clamps to $\rm V_{DD}$ and $\rm V_{SS}.$

Features

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Carry and borrow outputs for easy expansion to N-bit by cascading
- Asynchronous clear
- Equivalent to: MM74C192 and MM74C193

Ordering Code:

Order Number	Package Number	Package Description
CD40192BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD40193BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD40193BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Connection Diagram

Cascading Packages

Absolute Maximum Ratings(Note 1)

(Note 2)

DC Supply Voltage (V_{DD}) $-0.5 \text{ to } +18 \text{ V}_{DC}$ Input Voltage (V_{IN}) $-0.5 \text{ to } V_{DD} +0.5 \text{ V}_{DC}$

Storage Temperature Range (T_S) $-65^{\circ}C$ to +150 $^{\circ}C$

Power Dissipation (P_D)

Dual-In-Line 700 mW
Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds)

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V $_{\rm DD}$) 3 to 15 V $_{\rm DC}$ Input Voltage (V $_{\rm IN}$) 0 to V $_{\rm DD}$ V $_{\rm DC}$

Operating Temperature Range (T_A)

700 mW Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Recommended Operating Conditions" and Electrical Characteristics tables provide conditions for actual device operation.

 $260^{\circ}C$ Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	-55°C		+25°C			+125°C		Units	
Symbol		Conditions	Min	Max	Min	Тур	Max	Min	Max	Units	
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		5			5		150		
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		10			10		300	μΑ	
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		20			20		600		
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05			0.05		0.05		
	Output Voltage	$V_{DD} = 10V$		0.05			0.05		0.05	V	
		$V_{DD} = 15V$		0.05			0.05		0.05		
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95			4.95			
	Output Voltage	$V_{DD} = 10V$	9.95		9.95			9.95		V	
		$V_{DD} = 15V$	14.95		14.95			14.95			
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5			1.5		1.5		
	Input Voltage	$V_{DD} = 10V$, $V_{O} = 1V$ or $9V$		3.0			3.0		3.0	V	
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0			4.0		4.0		
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5			
	Input Voltage	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$	7.0		7.0			7.0		V	
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0			11.0			
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36			
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA	
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4			
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36			
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4			
I _{IN}	Input Current	$V_{DD} = 15V$, $V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	μА	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μΛ	

Note 3: AC Parameters are guaranteed by DC correlated testing.

Note 4: I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics (Note 3) $T_A = 25^{\circ}C,\ C_L = 50\ \text{pF},\ R_L = 200\ \text{k}\Omega,\ \text{input}\ t_r = t_f = 20\ \text{ns},\ \text{unless otherwise specified}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		250	400	
	from Count Up or	$V_{DD} = 10V$		100	160	ns
	Count Down to Q	$V_{DD} = 15V$		80	130	
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		120	200	
	from Count Up to Carry	$V_{DD} = 10V$		50	80	ns
		V _{DD} = 15V		40	65	
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		120	200	
	from Count Down	$V_{DD} = 10V$		50	80	ns
	to Borrow	$V_{DD} = 15V$		40	65	
t _{SU}	Time Prior to Load	$V_{DD} = 5V$		100	160	
	That Data Must	$V_{DD} = 10V$		30	50	ns
	Be Present	$V_{DD} = 15V$		25	40	
t _{PHL}	Propagation Delay Time	V _{DD} = 5V		130	220	
	from Clear to Q	$V_{DD} = 10V$		60	100	ns
		V _{DD} = 15V		50	80	
t _{PLH} or t _{PHL}	Propagation Delay Time	V _{DD} = 5V		300	480	
	from Load to Q	$V_{DD} = 10V$		120	190	ns
		V _{DD} = 15V		95	150	
t _{TLH} or t _{THL}	Output Transition Time	$V_{DD} = 5V$		100	200	
1611 1116		V _{DD} = 10V		50	100	ns
		V _{DD} = 15V		40	80	
f _{CL}	Maximum Count Frequency	V _{DD} = 5V	2.5	4		
		$V_{DD} = 10V$	6	10		MHz
		V _{DD} = 15V	7.5	12.5		
t _{rCL} or t _{fCL}	Maximum Count Rise	$V_{DD} = 5V$	15			
	or Fall Time	$V_{DD} = 10V$	5			μs
		V _{DD} = 15V	1			
t _{WH} , t _{WL}	Minimum Count Pulse	$V_{DD} = 5V$		120	200	
	Width	V _{DD} = 10V		35	80	ns
		V _{DD} = 15V		28	65	
t _{WH}	Minimum Clear	$V_{DD} = 5V$		300	480	
	Pulse Width	V _{DD} = 10V		120	190	ns
		V _{DD} = 15V		95	150	
t _{WL}	Minimum Load	V _{DD} = 5V		100	160	
	Pulse Width	V _{DD} = 10V		40	65	ns
		V _{DD} = 15V		32	55	
C _{IN}	Average Input Capacitance	Load and Data		5	7.5	
		Inputs (A,B,C,D)				_
		Count Up, Count		10	15	pF
		Down and Clear				
C _{PD}	Power Dissipation Capacity	(Note 5)		100	-	pF

Note 5: CPD determines the no load AC power consumption of any CMOS device. For complete explanation, see Family Characteristics application note,

Timing Diagrams

Sequence:

- Clear outputs to zero.
- 2. Load (preset) to BCD seven.
- 3. Count up to eight, nine, carry, zero, one and two.
- 4. Count down to one, zero, borrow, nine, eight and seven.

Sequence:

- Clear outputs to zero.
- 2. Load (preset) to binary thirteen.
- 3. Count up to fourteen, fifteen, carry, zero, one and two.
- 4. Count down to one, zero, borrow, fifteen, fourteen and thirteen.

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com