Solution Book of Mathematic

Ssnior 2 Part I

MELVIN CHIA

Written on 9 October 2022

Contents

12	Sequ	nence and Series	3
	12.1	Sequence and Series	3
		12.1.1 Practice 1	3
		12.1.2 Practice 2	3
		12.1.3 Exercise 12.1	3
	12.2	Arithmetic Progression	5
		12.2.1 Practice 3	5
		12.2.2 Practice 4	6
		12.2.3 Practice 5	6
		12.2.4 Exercise 12.2	7
	12.3	Geometric Progression	13
		12.3.1 Practice 6	13
		12.3.2 Practice 7	14
		12.3.3 Practice 8	14
		12.3.4 Practice 9	15
		12.3.5 Exercise 12.3	16
	12.4	Simple Summation of Special Series	22
		12.4.1 Practice 10	23
		12.4.2 Exercise 12.4	24
	12.5	Revision Exerise 12	26
13	Syste	em of Equations	33
	•	-	33
	13.1		33
		13.1.2 Exercise 13.1	33

	13.2	System of Equations with Three Variables	37
		13.2.1 Practice 2	37
		13.2.2 Exercise 13.2	37
	13.3	Revision Exercise 13	39
14	Mar	ix and Determinant	43
	14.1	Matrix	43
		14.1.1 Exercise 14.1	44
	14.2	Matrix Addition and Substraction	44
		14.2.1 Practice 1	45
		14.2.2 Exercise 14.2	45
	14.3	Scalar Product of Matrices	46

Chapter 12

Sequence and Series

12.1 Sequence and Series

12.1.1 Practice 1

1. Find the first 5 terms of the sequence $a_n = \frac{2^n}{n+1}$.

sol.
$$a_1 = \frac{2}{2} = 1$$
, $a_2 = \frac{4}{3}$, $a_3 = \frac{8}{4}$, $a_4 = \frac{16}{5}$, $a_5 = \frac{32}{6}$

2. Write the general term of the sequence 1, 8, 27, 64, ···

sol.
$$a_n = n^3$$

12.1.2 Practice 2

1. Express the series $\sum_{n=1}^{10} n^2 + 1$ in the form of numbers.

sol.
$$\sum_{n=1}^{10} n^2 + 1$$

$$= (1^2 + 1) + (2^2 + 1) + (3^2 + 1) + (4^2 + 1)$$

$$+ (5^2 + 1) + (6^2 + 1) + (7^2 + 1)$$

$$+ (8^2 + 1) + (9^2 + 1) + (10^2 + 1)$$

$$= 2 + 5 + 10 + 17 + 26 + 37 + 50 + 65$$

$$+ 82 + 101$$

2. Write the first term, last term and the number of terms of the series $\sum_{n=1}^{10} (3^n - 2^n)$.

sol. First term =
$$(3^1 - 2^1) = 1$$

Last term = $(3^{10} - 2^{10}) = 59049$
Number of terms = 10

3. Express the series $2 \times 5 + 3 \times 7 + 4 \times 9 + \dots + 15 \times 31$ in the form of Σ .

sol.

$$a_1 = 2 \times 5 = 10$$

 $a_2 = 3 \times 7 = 21$
 $a_3 = 4 \times 9 = 36$
 $a_4 = 5 \times 11 = 55$
 \vdots
 $a_{15} = 15 \times 31 = 465$
 $\therefore 2 \times 5 + 3 \times 7 + 4 \times 9 + \dots + 15 \times 31$
 $= \sum_{i=1}^{15} a_i$

12.1.3 Exercise 12.1

- 1. Find the general term of the following sequences.
 - (a) 5, 8, 11, 14, ... **sol.** $a_n = 3n + 2$
 - (b) $2, 4, 8, 16, \dots$ **sol.** $a_n = 2^n$
 - (c) $\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots$ **sol.** $a_n = \frac{n+1}{n}$
 - (d) $\frac{2}{5}, \frac{4}{7}, \frac{6}{9}, \frac{8}{11}, \dots$ **sol.** $a_n = \frac{2n}{2n+1}$
- 2. Find the first 5 terms of the following sequences.
 - (a) $a_n = 2n + 3$ **sol.** $a_1 = 2 \times 1 + 3 = 5, a_2 = 2 \times 2 + 3 = 7, a_3 = 2 \times 3 + 3 = 9, a_4 = 2 \times 4 + 3 = 11, a_5 = 2 \times 5 + 3 = 13$
 - (b) $a_n = n(n-2)$ **sol.** $a_1 = 1 \times (-1) = -1, a_2 = 2 \times 0 = 0, a_3 = 3 \times 1 = 3, a_4 = 4 \times 2 = 8, a_5 = 5 \times 3 = 15$
 - (c) $a_n = \frac{n}{2n+1}$ **sol.** $a_1 = \frac{1}{2 \times 1 + 1} = \frac{1}{3}, a_2 = \frac{2}{2 \times 2 + 1} = \frac{2}{5}, a_3 = \frac{3}{2 \times 3 + 1} = \frac{3}{7}, a_4 = \frac{4}{2 \times 4 + 1} = \frac{4}{9}, a_5 = \frac{5}{2 \times 5 + 1} = \frac{5}{11}$
 - (d) $a_n = (-3)^n$ **sol.** $a_1 = (-3)^1 = -3, a_2 = (-3)^2 = 9, a_3 = (-3)^3 = -27, a_4 = (-3)^4 = 81, a_5 = (-3)^5 = -243$
- 3. Express the following series in the form of numbers.
 - (a) $\sum_{n=1}^{5} n(n+3)$

sol.
$$\sum_{n=1}^{5} n(n+3)$$
= $(1 \times 4) + (2 \times 5) + (3 \times 6) + (4 \times 7)$
+ (5×8)
= $4 + 10 + 18 + 28 + 40$

(b)
$$\sum_{n=2}^{6} \frac{1}{3^n}$$

sol.
$$\sum_{n=2}^{6} \frac{1}{3^n}$$

$$= \frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \frac{1}{3^5} + \frac{1}{3^6}$$

$$= \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \frac{1}{243} + \frac{1}{729}$$

(c)
$$\sum_{n=1}^{6} \frac{1}{n(2n+1)}$$

$$sol. \sum_{n=1}^{6} \frac{1}{n(2n+1)}$$

$$= \frac{1}{1(2\times 1+1)} + \frac{1}{2(2\times 2+1)}$$

$$+ \frac{1}{3(2\times 3+1)} + \frac{1}{4(2\times 4+1)}$$

$$+ \frac{1}{5(2\times 5+1)} + \frac{1}{6(2\times 6+1)}$$

$$= \frac{1}{3} + \frac{1}{10} + \frac{1}{21} + \frac{1}{36} + \frac{1}{55} + \frac{1}{78}$$

(d)
$$\sum_{n=2}^{5} \frac{1}{n^2+2}$$

sol.
$$\sum_{n=2}^{5} \frac{1}{n^2 + 2}$$

$$= \frac{1}{4+2} + \frac{1}{9+2} + \frac{1}{16+2} + \frac{1}{25+2}$$

$$= \frac{1}{6} + \frac{1}{11} + \frac{1}{18} + \frac{1}{27}$$

4. Find the first term, last term and the number of terms of the following series.

(a)
$$\sum_{n=3}^{10} 2^2$$
 sol. $a_3 = 2^2 = 4$, $a_{10} = 2^2 = 4$, $n = 10 - 3 + 1 = 8$

(b)
$$\sum_{n=1}^{8} \frac{n+2}{n}$$

sol.
$$a_1 = \frac{1+2}{1} = \frac{3}{1} = 3, a_8 = \frac{8+2}{8} = \frac{10}{8} = \frac{5}{4}, n = 8 - 1 + 1 = 8$$

(c)
$$\sum_{n=1}^{10} 3n^2 - n$$

sol. $a_1 = 3 \times 1^2 - 1 = 2, a_{10} = 3 \times 10^2 - 10 = 290, n = 10 - 1 + 1 = 10$

(d)
$$\sum_{n=9}^{14} n^2(n-7)$$

sol. $a_9 = 9^2(9-7) = 9^2 \times 2 = 162, a_{14} = 14^2(14-7) = 14^2 \times 7 = 2744, n = 14-9+1 = 6$

5. Express the following series in the form of Σ .

(a) $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{30}$

sol.

$$a_1 = 1$$

$$a_2 = \frac{1}{2}$$

$$a_3 = \frac{1}{3}$$

$$\vdots$$

$$a_{30} = \frac{1}{30}$$

$$\therefore 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{30} = \sum_{1}^{30} \frac{1}{n}$$

(b)
$$1^3 + 2^3 + 3^3 + \dots + 50^3$$

$$a_1 = 1^3$$

$$a_2 = 2^3$$

$$a_3 = 3^3$$

$$\vdots$$

$$a_{50} = 50^3$$

$$\therefore 1^3 + 2^3 + 3^3 + \dots + 50^3 = \sum_{n=1}^{50} n^3$$

(c)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16}$$

$$a_{1} = \left(-\frac{1}{2}\right)^{1-1}$$

$$a_{2} = \left(-\frac{1}{2}\right)^{2-1}$$

$$a_{3} = \left(-\frac{1}{2}\right)^{3-1}$$

$$a_{4} = \left(-\frac{1}{2}\right)^{4-1}$$

$$a_{5} = \left(-\frac{1}{2}\right)^{5-1}$$

$$\therefore 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16}$$

$$= \sum_{n=1}^{5} \left(-\frac{1}{2}\right)^{n-1}$$

(d) $2 \times 4 + 4 \times 7 + 6 \times 10 + 8 \times 13 + 10 \times 16$ sol.

$$a_1 = 2 \times 1 \times (3 \times 1 + 1)$$

$$a_2 = 2 \times 2 \times (3 \times 2 + 1)$$

$$a_3 = 2 \times 3 \times (3 \times 3 + 1)$$

$$a_4 = 2 \times 4 \times (3 \times 4 + 1)$$

$$a_5 = 2 \times 5 \times (3 \times 5 + 1)$$

$$\therefore 2 \times 4 + 4 \times 7 + 6 \times 10 + 8 \times 13$$

$$+ 10 \times 16 = \sum_{n=1}^{5} 2n(3n+1)$$

12.2 Arithmetic Progression

General term of an Arithmetic Progression (AP) is given by

$$a_n = a_1 + (n-1)d$$

where a_1 is the first term, d is the common difference and n is the number of terms.

12.2.1 Practice 3

1. Find the number of terms of the AP $-4-2\frac{3}{4}-1\frac{1}{2}-\frac{1}{4}+\cdots+16$.

$$a_{1} = -4$$

$$a_{n} = 16$$

$$d = -2\frac{3}{4} - (-4)$$

$$= -2\frac{3}{4} + 4$$

$$= \frac{5}{4}$$

$$16 = -4 + (n - 1)\frac{5}{4}$$

$$20 = \frac{5}{4}(n - 1)$$

$$80 = 5(n - 1)$$

$$n - 1 = 16$$

$$n = 17$$

2. Given that $a_2 = 4$ and $a_6 = -8$, find the 10th term of the AP.

sol.

$$a_2 = 4$$
 $a + (2 - 1)d = 4$
 $a_6 = -8$
 $a + (6 - 1)d = -8$

$$\begin{cases} a+d = 4 & (1) \\ a+5d = -8 & (2) \end{cases}$$

(2)
$$-(1): 4d = -12$$

 $d = -3$
 $a + (-3) = 4$
 $a = 7$
 $\therefore a_{10} = 7 + (10 - 1)(-3)$
 $= 7 - 27$
 $= -20$

3. How many multiples of 7 are there between 50 and 500?

$$a_{1} = 56$$

$$a_{n} = 497$$

$$d = 7$$

$$497 = 56 + (n - 1)7$$

$$441 = 7(n - 1)$$

$$n - 1 = 63$$

$$n = 64$$

4. Find 5 numbers between 30 and 54 such that these numbers form an AP.

sol.

$$a_1 = 30$$

 $a_7 = 54$
 $54 = 30 + (7 - 1)d$
 $24 = 6d$
 $d = 4$

:. These 5 numbers are 34, 38, 42, 46, and 50.

Arithmetic mean

If A is in between x and y, and x, A, y are in AP, then

$$A = \frac{x + y}{2}$$

12.2.2 Practice 4

1. If 9, x, 17 are in AP, find x.

sol.

$$x = \frac{9+17}{2}$$
$$= \frac{26}{2}$$
$$= 13$$

2. Find the arithmetic mean of 26 and -11.

sol.

$$A = \frac{26 - 11}{2}$$
$$= \frac{15}{2}$$

3. Find x and y when 3, x, 12, y, 21 are in AP.

sol.

$$x = \frac{3+12}{2}$$
$$= \frac{15}{2}$$
$$y = \frac{12+21}{2}$$
$$= \frac{33}{2}$$

Summation of Arithmetic Progression

The summation formula for AP is given by

$$S_n = \frac{n}{2}(2a + (n-1)d)$$

or

$$S_n = \frac{n}{2}(a_1 + a_n)$$

12.2.3 Practice 5

1. Find the sum of the first 16 terms of the AP 22 + 18 + $14 + 10 + \cdots$

sol.

$$a_1 = 22$$

$$n = 16$$

$$d = -4$$

$$S_n = \frac{16}{2}(2 \times 22 + (-4)(16 - 1))$$

$$= \frac{16}{2}(44 + (-4)(15))$$

$$= \frac{16}{2}(44 - 60)$$

$$= \frac{16}{2}(-16)$$

$$= -128$$

2. If the sum of AP $23+19+15+\cdots$ is 72, find the number of terms.

$$a_1 = 23$$

$$S_n = 72$$

$$d = -4$$

$$72 = \frac{n}{2}(2 \times 23 + (-4)(n-1))$$

$$72 = \frac{n}{2}(46 + (-4)(n-1))$$

$$144 = n(46 + (-4)(n-1))$$

$$144 = n(46 - 4n + 4)$$

$$144 = n(50 - 4n)$$

$$144 = 50n - 4n^2$$

$$72 = 25n - 2n^2$$

$$2n^2 - 25n + 72 = 0$$

$$(n-8)(2n-9) = 0$$

$$n = 8$$

3. Given that $S_n = 2n + 3n^2$, find the first term and the common difference of the AP.

sol.

$$S_n = 2n + 3n^2$$

$$2n + 3n^2 = \frac{n}{2}(2a + (n-1)d)$$

$$4n + 6n^2 = n(2a + (n-1)d)$$

$$4n + 6n^2 = 2na + (n-1)nd$$

$$4n + 6n^2 = 2na + n^2d - nd$$

$$4n + 6n^2 = (2a - d)n + dn^2$$

Comparing both sides,

$$2a - d = 4$$
$$a = 6$$
$$d = 2$$

12.2.4 Exercise 12.2

1. Find the 10th terms of the AP 5, 13, 21, ...

sol.

$$a_1 = 5$$

 $n = 10$
 $d = 8$
 $a_{10} = 5 + (10 - 1) \times 8$
 $= 5 + 72$
 $= 77$

2. Find the 8th term of the AP $5, 4\frac{1}{4}, 3\frac{1}{2}, 2\frac{3}{4}, \cdots$

sol.

$$a_{1} = 5$$

$$n = 8$$

$$d = -\frac{3}{4}$$

$$a_{8} = 5 + (8 - 1) \times -\frac{3}{4}$$

$$= 5 - \frac{3}{4} \times 7$$

$$= 5 - \frac{21}{4}$$

$$= -\frac{1}{4}$$

3. Find the number of terms of the following AP.

(a)
$$4, 9, \dots, 64$$

$$a_1 = 4$$

 $a_n = 64$
 $d = 5$
 $64 = 4 + (n - 1) \times 5$
 $60 = 5(n - 1)$
 $12 = n - 1$
 $n = 13$

(b)
$$4\frac{1}{3}, 3\frac{2}{3}, 3, \dots, -10\frac{1}{3}$$

$$a_{1} = 4\frac{1}{3}$$

$$a_{n} = -10\frac{1}{3}$$

$$d = -\frac{2}{3}$$

$$-10\frac{1}{3} = 4\frac{1}{3} + (n-1) \times -\frac{2}{3}$$

$$-\frac{31}{3} = \frac{13}{3} - \frac{1}{3}(n-1)$$

$$-31 = 13 - 2n + 2$$

$$-46 = 2n$$

$$n = 23$$

4. The 6th term of an AP is 43, and its 10th term is 75. Find the first term and common difference of this AP.

sol.

$$a_6 = 43$$
 $a_{10} = 75$
 $43 = a + (6 - 1)d$
 $75 = a + (10 - 1)d$
 $32 = 4d$
 $d = 8$
 $43 = a + 5 \times 8$
 $43 = a + 40$
 $3 = a$
 $a = 3$
 $\therefore a_1 = 3, d = 8$

5. The 7th term of an AP is -10, and the 12th term -25, find the 15th term of this AP.

sol.

$$a_7 = -10$$

$$a_{12} = -25$$

$$-10 = a + (7 - 1)d$$

$$-25 = a + (12 - 1)d$$

$$-15 = 5d$$

$$d = -3$$

$$-10 = a + 6 \times -3$$

$$-10 = a - 18$$

$$a = 8$$

$$a_{15} = 8 + (15 - 1) \times -3$$

$$= 8 - 42$$

$$= -34$$

6. How many multiples of 7 are there between 100 and 200?

sol.

$$a = 105$$

$$d = 7$$

$$a_n = 196$$

$$196 = 105 + (n - 1) \times 7$$

$$91 = 7(n - 1)$$

$$13 = n - 1$$

$$n = 14$$

7. Find the arithmetic mean of the following number pairs.

$$\frac{8+20}{2} = 14$$

(b)
$$(-9, 17)$$
 sol.
$$\frac{-9 + 17}{2} = 4$$

8. Find 5 numbers between 22 and 58 such that these 7 numbers are in AP.

sol.

$$a_1 = 22$$

 $a_7 = 58$
 $58 = 22 + (7 - 1)d$
 $36 = 6d$
 $d = 6$
 \therefore These 5 numbers are 22, 28, 34, 40, 46

9. Find the sum of first 20 terms of AP $12 + 15 + 18 + \cdots$

sol

$$a_1 = 12$$

$$n = 20$$

$$d = 3$$

$$S_{20} = \frac{20}{2}(2 \times 12 + (20 - 1) \times 3)$$

$$= 10(24 + 57)$$

$$= 10(81)$$

$$= 810$$

10. Find the sum of first 12 terms of the AP $18 + 10 + 2 - 6 - \dots$

sol.

$$a_1 = 18$$

$$n = 12$$

$$d = -8$$

$$S_{12} = \frac{12}{2}(2 \times 18 + (12 - 1) \times -8)$$

$$= 6(36 - 88)$$

$$= 6(-52)$$

$$= -312$$

11. Find the sum of first 14 terms of the AP $\frac{1}{6} + \frac{4}{3} + \frac{5}{2} + \cdots$ sol.

$$a_{1} = \frac{1}{6}$$

$$n = 14$$

$$d = \frac{7}{6}$$

$$S_{14} = \frac{14}{2}(2 \times \frac{1}{6} + (14 - 1) \times \frac{7}{6})$$

$$= 7(\frac{1}{3} + \frac{91}{6})$$

$$= 7 \times \frac{93}{6}$$

$$= 7 \times \frac{31}{2}$$

$$= \frac{217}{2}$$

12. Find the sum of all the multiples of 13 in between 200 and 800.

sol.

$$a_1 = 208$$

$$a_n = 793$$

$$d = 13$$

$$793 = 208 + (n - 1) \times 13$$

$$585 = 13(n - 1)$$

$$45 = n - 1$$

$$n = 46$$

$$S_{46} = \frac{46}{2}(2 \times 208 + (46 - 1) \times 13)$$

$$= 23(416 + 585)$$

$$= 23(1001)$$

$$= 23023$$

13. If the sum of first n terms of the AP -3, -7, -11, \cdots is -903, find the value of n.

sol.

$$a_{1} = -3$$

$$d = -4$$

$$-903 = \frac{n}{2}(2 \times (-3) - 4(n-1))$$

$$-1806 = -2n - 4n^{2}$$

$$4n^{2} + 2n - 1806 = 0$$

$$2n^{2} + n - 903 = 0$$

$$(n-21)(2n+43) = 0$$

$$n = 21, -43(invalid)$$

$$\therefore n = 21$$

- 14. Given that the first 3 terms of an AP are x, 3x-4, 2x+7, find:
 - (a) The value of x sol.

$$3x - 4 = \frac{x + 2x + 7}{2}$$
$$6x - 8 = 3x + 7$$
$$3x = 15$$
$$x = 5$$

(b) The common difference **sol.**

$$a_1 = x = 5$$

 $a_2 = 3x - 4 = 3 \times 5 - 4 = 11$
 $d = 11 - 5$
 $= 6$

(c) The sum of first 10 terms. **sol.**

$$a_1 = x = 5$$

$$n = 10$$

$$d = 6$$

$$S_{10} = \frac{10}{2}(2 \times 5 + (10 - 1) \times 6)$$

$$= 5(10 + 54)$$

$$= 5(64)$$

$$= 320$$

- 15. Let the sum of the first n terms of an AP to be $S_n = \frac{n(n+1)}{4}$, find:
 - (a) The first term

$$\frac{n(n+1)}{4} = \frac{n}{2}(2a + (n-1)d)$$

$$n(n+1) = 2n(2a + dn - d)$$

$$n^2 + n = 4na + 2dn^2 - 2nd$$

$$n^2 + n = 2dn^2 + (4a - 2d)n$$

Comparing both sides,

$$2d = 1$$

$$d = \frac{1}{2}$$

$$4a - 2d = 1$$

$$4a - 1 = 1$$

$$4a = 2$$

$$a = \frac{1}{2}$$

(b) The common difference

sol.

$$d = \frac{1}{2}$$

gg

(c) The 6th terms

sol.

$$a_{1} = \frac{1}{2}$$

$$n = 6$$

$$d = \frac{1}{2}$$

$$a_{6} = \frac{1}{2} + (6 - 1) \times \frac{1}{2}$$

$$= \frac{1}{2} + \frac{5}{2}$$

$$= 3$$

(d) The sum from 6th term to 10th term

sol.

$$d = \frac{1}{2}$$

$$S_{10} = \frac{10}{2}(2 \times \frac{1}{2} + (10 - 1) \times \frac{1}{2})$$

$$= \frac{10}{2}(1 + \frac{9}{2})$$

$$= 5 \times \frac{11}{2}$$

$$S_5 = \frac{5}{2}(2 \times \frac{1}{2} + (5 - 1) \times \frac{1}{2})$$
$$= \frac{5}{2}(1 + 2)$$

$$S_{10} - S_6 = \frac{55}{2} - \frac{15}{2}$$
$$= \frac{40}{2}$$
$$= 20$$

 $a=\frac{1}{2}$

 $=\frac{55}{2}$

16. Given three numbers in an AP, the sum of these three numbers is 30, and the sum of square of these numbers is 318, find these three numbers.

$$a_{1} + a_{2} + a_{3} = 30$$

$$a_{1}^{2} + a_{2}^{2} + a_{3}^{2} = 318$$

$$a_{2} - a_{1} = a_{3} - a_{2}$$

$$a_{1} - 2a_{2} + a_{3} = 0$$

$$3a_{2} = 30$$

$$a_{2} = 10$$

$$a_{1} - 20 + a_{3} = 0$$

$$a_{1} + a_{3} = 20$$

$$a_{3} = 20 - a_{1}$$

$$a_{1}^{2} + 100 + (20 - a_{1})^{2} = 318$$

$$a_{1}^{2} + 100 + 400 + a_{1}^{2} - 40a_{1} = 318$$

$$2a_{1}^{2} - 40a_{1} + 182 = 0$$

$$a_{1}^{2} - 20a_{1} + 91 = 0$$

$$(a_{1} - 7)(a_{1} - 13) = 0$$

$$a_{1} = 7ora_{1} = 13$$

:. These three numbers are 7, 10, and 13

17. Find the sum of all the numbers between 100 and 200 that are both the multiples of 2 and 3.

sol.

$$a_{1} = 102$$

$$d = 6$$

$$a_{n} = 198$$

$$198 = 102 + (n - 1) \times 6$$

$$96 = 6(n - 1)$$

$$6n - 6 = 96$$

$$6n = 102$$

$$n = 17$$

$$S_{17} = \frac{17}{2}(2 \times 102 + (17 - 1) \times 6)$$

$$= \frac{17}{2}(204 + 96)$$

$$= \frac{17}{2}(300)$$

$$= 150 \times 17$$

$$= 2550$$

- 18. Given an AP $-100 96 92 \cdots$:
 - (a) Find the term where the number become positive

sol.

$$a_1 = -100$$

$$d = 4$$

$$a_n = -100 + (n-1) \times 4 > 0$$

$$-100 + 4n - 4 > 0$$

$$4n > 104$$

$$n > 26$$

$$\therefore n = 27$$

(b) Find the term where the sum of this AP becomes positive.

sol.

$$S_n = \frac{n}{2}(2(-100) + (n-1) \times (4)) > 0$$

$$\frac{n}{2}(-200 + 4n - 4) > 0$$

$$\frac{n}{2}(-204 + 4n) > 0$$

$$n(2n - 102) > 0$$

$$n(n - 51) > 0$$

$$n > 51$$

$$\therefore n = 52$$

19. Find the first negative term of the AP 20, $19\frac{1}{5}$, $18\frac{2}{5}$, ...

sol.

$$a_1 = 20$$

$$d = -\frac{4}{5}$$

$$a_n = 20 + (n-1) \times (-\frac{4}{5}) < 0$$

$$100 - 4n + 4 < 0$$

$$4n > 104$$

$$n > 26$$

20. Given an AP $10 + 9\frac{1}{5} + 8\frac{2}{5} + \cdots$, what is the first negative term? When will the sum of the terms become negative, and what's the value of it?

 $\therefore n = 27$

$$a_n = 10 + (n-1) \times (-\frac{4}{5}) < 0$$

$$10 - \frac{4}{5}(n-1) < 0$$

$$50 - 4n + 4 < 0$$

$$-4n < -54$$

$$n > 13\frac{1}{2}$$

 $\therefore n = 14$

$$\begin{split} S_n &= \frac{n}{2}(2\times 10 + (n-1)\times (-\frac{4}{5})) < 0 \\ &\frac{n}{2}(20 - \frac{4}{5}(n-1)) < 0 \\ &20n - \frac{4}{5}(n^2 - n) < 0 \\ &100n - 4n^2 + 4n < 0 \\ &25n - n^2 + n < 0 \\ &26n - n^2 < 0 \\ &n(n-26) > 0 \end{split}$$

 $\therefore n = 27$

$$S_{27} = \frac{27}{2}(2 \times 10 + (27 - 1) \times (-\frac{4}{5}))$$

$$= \frac{27}{2}(20 - \frac{4}{5}(27 - 1))$$

$$= \frac{27}{2}(20 - \frac{4}{5}(26))$$

$$= \frac{27}{2} \times (-\frac{4}{5})$$

$$= -\frac{54}{5}$$

- :. The first negative term is the 14th term
- :. The first term where the sum of the terms becomes negative is the 27th term
- :. The value of the sum of the terms when it becomes negative is $-\frac{54}{5}$

21. Given a polygon which all their internal angles are in AP. The common difference of this AP is 6°, the largest angle is 135°. How many sides does this polygon have?

sol.

$$a_{1} = 135$$

$$d = -6$$

$$\frac{n}{2}(2 \times 135 + (n-1) \times (-6)) = 180(n-2)$$

$$n(270 - 6(n-1)) = 360(n-2)$$

$$n(276 - 6n) = 360n - 720$$

$$276n - 6n^{2} = 360n - 720$$

$$46n - n^{2} = 60n - 120$$

$$n^{2} + 14n - 120 = 0$$

$$(n+20)(n-6) = 0$$

$$n = -20 \text{ (invalid)}$$

$$n = 6$$

$$\therefore The number of sides is 6$$

22. Given an AP which its 5th term is 3 and the sum of its first 10 terms is $26\frac{1}{4}$. Which term in this AP is 0?

$$a_5 = a + (5 - 1)d = 3$$

$$a + 4d = 3$$

$$S_{10} = \frac{10}{2}(2a + (10 - 1)d) = 26\frac{1}{4}$$

$$5(2a + 9d) = 26\frac{1}{4}$$

$$20(2a + 9d) = 105$$

$$4(2a + 9d) = 21$$

$$8a + 36d = 21$$

$$8a + 32d = 24$$

$$4d = -3$$

$$d = -\frac{3}{4}$$

$$a = 3 + \frac{3}{4} \times 4$$

$$= 6$$

$$a_n = 6 + (n - 1) \times (-\frac{3}{4}) = 0$$

$$6 - \frac{3}{4}(n - 1) = 0$$

$$24 - 3n + 3 = 0$$

$$3n = 27$$

$$n = 9$$

23. Given that the sum of the first 6 terms of an AP is 96, and the sum of the first 20 terms is 3 times the sum of the first 10 terms of this AP. Find the first term and the 10th term of it.

sol.

$$S_{6} = \frac{6}{2}(2a + (6 - 1)d) = 96$$

$$3(2a + 5d) = 96$$

$$2a + 5d = 32$$

$$S_{20} = 3S_{10}$$

$$\frac{20}{2}(2a + (20 - 1)d) = 3 \times \frac{10}{2}(2a + (10 - 1)d)$$

$$10(2a + 19d) = 15(2a + 9d)$$

$$2(2a + 19d) = 3(2a + 9d)$$

$$4a + 38d = 6a + 27d$$

$$2a - 11d = 0$$

$$16d = 32$$

$$d = 2$$

$$a = \frac{11 \times 2}{2}$$

$$= 11$$

$$a_{10} = 11 + (10 - 1) \times 2$$

$$= 29$$

24. Given that $5^2 \times 5^4 \times 5^6 \times \dots \times 5^{2n} = (0.04)^{-28}$, find the value of n.

sol.

$$(0.04)^{-28} = \frac{1}{25}^{-28}$$

$$= (5^{(-2)})^{-28}$$

$$= 5^{56}$$

$$\therefore n^{a} \times n^{b} = n^{a+b}$$

$$2 + 4 + 6 + \dots + 2n = 56$$

$$S_{n} = \frac{n}{2}(2 \times 2 + (n-1) \times 2) = 56$$

$$n(4 + 2(n-1)) = 112$$

$$n(2 + 2n) = 112$$

$$2n^{2} + 2n = 112$$

$$n^{2} + n - 56 = 0$$

$$(n+8)(n-7) = 0$$

$$n = -8 \text{ (invalid)}$$

$$n = 7$$

25. Given that the 9th term of an AP is double the 5th term of it. Find the ratio of the sum of first 9 terms and the sum of first 5 terms of the AP.

sol.

$$a_{9} = 2a_{5}$$

$$a + (9 - 1)d = 2(a + (5 - 1)d)$$

$$a + 8d = 2a + 8d$$

$$a = 0$$

$$S_{9} : S_{5} = \frac{9}{2}(2a + a_{9}) : \frac{5}{2}(2a + a_{5})$$

$$= \frac{9}{2}(2a + 2a_{5}) : \frac{5}{2}(2a + a_{5})$$

$$= 9(a + a_{5}) : \frac{5}{2}(2a + a_{5})$$

$$\frac{S_{9}}{S_{5}} = \frac{9(a + a_{5})}{\frac{5}{2}(2a + a_{5})}$$

$$= \frac{18(a + a_{5})}{5(2a + a_{5})}$$

$$= \frac{18 \times a_{5}}{5 \times a_{5}}$$

$$= \frac{18}{5}$$

$$\therefore S_{9} : S_{5} = 18 : 5$$

12.3 Geometric Progression

The general formula of a geometric progression (GP) is given by

$$a_n = a_1 \times r^{n-1}$$

where a_1 is the first term, r is the common ratio, and n is the number of terms.

12.3.1 Practice 6

1. Find the 6th term of the GP 12, $-18, 27, \cdots$

$$a_1 = 12$$

$$r = \frac{-18}{12}$$

$$= -\frac{3}{2}$$

$$a_6 = 12 \times (-\frac{3}{2})^{6-1}$$

$$= 12 \times (-\frac{3}{2})^5$$

$$= 12 \times (-\frac{243}{32})$$

$$= -\frac{729}{8}$$

2. Find the number of terms of GP $\frac{1}{64} - \frac{1}{32} + \frac{1}{16} - \frac{1}{8} + \cdots - 512$

sol.

$$a_1 = \frac{1}{64}$$

$$r = \frac{-\frac{1}{32}}{\frac{1}{64}}$$

$$= -2$$

$$-512 = \frac{1}{64}(-2)^{n-1}$$

$$(-2)^9 = \frac{1}{2^6}(-2)^{n-1}$$

$$(-2)^{15} = (-2)^{n-1}$$

$$n - 1 = 15$$

$$n = 16$$

3. The 5th term of a GP is 3, and its 9th term is $\frac{1}{27}$, find the first term and the common ratio of this GP.

$$a_5 = ar^4 = 3$$

$$a_9 = ar^8 = \frac{1}{27}$$

$$r^4 = \frac{1}{27} \times \frac{1}{3}$$

$$= \frac{1}{81}$$

$$r = \frac{1}{3}$$

$$a_1 = 3 \times 81$$

$$= 243$$

4. Find 5 numbers between $\frac{1}{2}$ and frac1128 such that these 7 numbers are in GP.

sol.

$$a_1 = \frac{1}{2}$$

$$n = 7$$

$$\frac{1}{128} = \frac{1}{2}r^{7-1}$$

$$r^6 = \frac{1}{64}$$

$$r = \frac{1}{2}$$

:. These 5 numbers are $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$

Geometric Mean

The geometric mean G of two numbers x and y is given by

$$\frac{G}{x} = \frac{G}{y}$$

$$G^{2} = xy$$

$$G = \mp \sqrt[2]{xy}$$

12.3.2 Practice 7

Find the geometric mean of $\frac{27}{8}$ and $\frac{2}{3}$.

$$G = \pm \sqrt[2]{\frac{27}{8} \times \frac{2}{3}}$$
$$= \pm \sqrt[2]{\frac{9}{4}}$$
$$= \pm \frac{3}{2}$$

Summation of Geometric Progression

The sum of *n* terms of a GP is given by

$$S_n = \frac{a_1(1 - r^n)}{1 - r} \ (r \neq 1)$$

12.3.3 Practice 8

1. Find the sum of the first 8 terms of GP $3+6+12+\cdots$

$$a_{1} = 3$$

$$r = \frac{6}{3}$$

$$= 2$$

$$n = 8$$

$$S_{n} = \frac{3(1 - 2^{8})}{1 - 2}$$

$$= \frac{3(1 - 256)}{1 - 2}$$

$$= 3 \times 255$$

$$= 765$$

 $a_1 = 1$

2. Find the sum of the GP $1 + \sqrt{3} + 3 + \cdots + 81$

sol.

$$r = \sqrt{3}$$

$$81 = 1 \times (\sqrt{3})^{n-1}$$

$$3^4 = (\sqrt{3})^{n-1}$$

$$(\sqrt{3})^8 = (\sqrt{3})^{n-1}$$

$$n - 1 = 8$$

$$n = 9$$

$$S_n = \frac{1(1 - (\sqrt{3})^9)}{1 - \sqrt{3}}$$

$$= \frac{1 - 81\sqrt{3}}{1 - \sqrt{3}}$$

$$= \frac{(1 - 81\sqrt{3})(1 + \sqrt{3})}{-2}$$

$$= \frac{1 - 81\sqrt{3} + \sqrt{3} - 243}{-2}$$

$$= \frac{-242 - 80\sqrt{3}}{-2}$$

$$= 121 + 40\sqrt{3}$$

3. Given that the sum of the first n terms of GP $4\frac{4}{5}$, $1\frac{3}{5}$, $\frac{8}{15}$, \cdots is $7\frac{145}{729}$, find n.

sol.

$$a_{1} = \frac{24}{5}$$

$$r = \frac{8}{5} \times \frac{5}{24}$$

$$= \frac{1}{3}$$

$$S_{n} = \frac{24}{5} \times \frac{1 - (\frac{1}{3})^{n}}{1 - \frac{1}{3}}$$

$$\frac{5248}{729} = \frac{24}{5} \times \frac{1 - (\frac{1}{3})^{n}}{\frac{2}{3}}$$

$$\frac{5248}{729} \times \frac{5}{24} \times \frac{2}{3} = 1 - (\frac{1}{3})^{n}$$

$$\frac{6560}{6561} = 1 - (\frac{1}{3})^{n}$$

$$-\frac{1}{6561} = -(\frac{1}{3})^{n}$$

$$(\frac{1}{3})^{8} = (\frac{1}{3})^{n}$$

Summation of Infinite Geometric Progression

The sum of infinite GP is given by

$$S_{\infty} = \frac{a_1}{1 - r} \left(-1 < r < 1 \right)$$

12.3.4 Practice 9

1. Find the sum of the following infinite GP.

(a)
$$16 + 8 + 4 + \cdots$$
 sol.

$$a_1 = 16$$

$$r = \frac{8}{16}$$

$$= \frac{1}{2}$$

$$S_{\infty} = \frac{16}{1 - \frac{1}{2}}$$

$$= \frac{16}{\frac{1}{2}}$$

$$= 32$$

(b)
$$18 - 12 + 8 + \cdots$$

$$a_{1} = 18$$

$$r = \frac{8}{-12}$$

$$= -\frac{2}{3}$$

$$S_{\infty} = \frac{18}{1 + \frac{2}{3}}$$

$$= \frac{18}{\frac{5}{3}}$$

$$= \frac{54}{5}$$

(c)
$$1 + \frac{3}{4} + \frac{9}{16} + \cdots$$

$$a_1 = 1$$

$$r = \frac{9}{16} \times \frac{16}{9}$$

$$= \frac{3}{4}$$

$$S_{\infty} = \frac{1}{1 - \frac{3}{4}}$$

$$= \frac{1}{\frac{1}{4}}$$

$$= 4$$

(d)
$$\sqrt{2} + 1 + \frac{1}{\sqrt{2}} + \cdots$$

sol.

$$a_1 = \sqrt{2}$$

$$r = \frac{1}{\sqrt{2}}$$

$$S_{\infty} = \frac{\sqrt{2}}{1 - \frac{1}{\sqrt{2}}}$$

$$= \frac{\sqrt{2}}{\frac{\sqrt{2} - 1}{\sqrt{2}}}$$

$$= \frac{2}{\sqrt{2} - 1}$$

$$= 2(\sqrt{2} + 1)$$

2. Convert the following recurring decimals to fraction using the summation of inifinite geometric series.

(a)
$$0.\overline{3}$$

sol.

$$a_1 = 0.3$$

$$r = 0.1$$

$$S_{\infty} = \frac{0.3}{1 - 0.1}$$

$$= \frac{0.3}{0.9}$$

$$= \frac{1}{3}$$

$$\therefore 0.\overline{3} = \frac{1}{3}$$

(b) $0.5\overline{3}$

sol.

$$a_1 = 0.03$$

$$r = 0.01$$

$$S_{\infty} = \frac{0.03}{1 - 0.01}$$

$$= \frac{0.03}{0.99}$$

$$= \frac{3}{99}$$

$$∴0.5\overline{3} = \frac{5}{10} + \frac{3}{99}$$
$$= \frac{53}{99}$$

12.3.5 Exercise 12.3

1. Find the 10th term of the GP 2, 4, 8, ···

sol.

$$a_1 = 2$$
 $r = \frac{4}{2}$
 $= 2$
 $a_{10} = 2 \times 2^{10-1}$
 $= 2 \times 512$
 $= 1024$

2. Find the 8th term of the GP 243, -162, 108, ...

$$a_1 = 243$$

$$r = \frac{-162}{243}$$

$$= -\frac{2}{3}$$

$$a_8 = 243 \times (-\frac{2}{3})^{8-1}$$

$$= 243 \times (-\frac{128}{2187})$$

$$= -\frac{128}{9}$$

- 3. Find the number of terms of the following GP.
 - (a) $8, 4, 2, 1, \dots, \frac{1}{64}$ **sol.**

$$a_{1} = 8$$

$$r = \frac{4}{8}$$

$$= \frac{1}{2}$$

$$\frac{1}{64} = 8 \times (\frac{1}{2})^{n-1}$$

$$\frac{1}{512} = (\frac{1}{2})^{n-1}$$

$$\frac{1}{2^{9}} = (\frac{1}{2})^{n-1}$$

$$n - 1 = 9$$

$$n = 10$$

(b) 6, -18, 54, ..., -13122 **sol.**

$$a_{1} = 6$$

$$r = \frac{-18}{6}$$

$$= -3$$

$$-13122 = 6 \times (-3)^{n-1}$$

$$-2187 = (-3)^{n-1}$$

$$(-3)^{7} = (-3)^{n-1}$$

$$n - 1 = 7$$

$$n = 8$$

(c) $54, 36, 24, \dots, 3\frac{13}{81}$

sol.

$$a_{1} = 54$$

$$r = \frac{36}{54}$$

$$= \frac{2}{3}$$

$$\frac{256}{81} = 54 \times (\frac{2}{3})^{n-1}$$

$$\frac{256}{81} \times \frac{1}{54} = (\frac{2}{3})^{n-1}$$

$$\frac{128}{2187} = (\frac{2}{3})^{n-1}$$

$$(\frac{2}{3})^{7} = (\frac{2}{3})^{n-1}$$

$$n - 1 = 7$$

$$n = 8$$

4. Given that the 2nd term of a GP is 12, and its 4th term is 108, find the first term and the common ratio of it.

sol.

$$a_2 = ar = 12$$

 $a_4 = ar^3 = 109$
 $r^2 = 9$
 $r = \pm 3$
 $a_1 = \pm 4$
 $\therefore a_1 = 4, r = 3 \text{ or } a_1 = -4, r = -3$

5. Given that the 3rd term of an GP is $1\frac{1}{3}$, and its 8th term is $-10\frac{1}{8}$. Find the 5th term of this AP.

$$a_{3} = ar^{2} = \frac{4}{3}$$

$$a_{8} = ar^{7} = -\frac{81}{8}$$

$$r^{5} = -\frac{81}{8} \times \frac{3}{4}$$

$$= -\frac{243}{32}$$

$$= (-\frac{3}{2})^{5}$$

$$r = -\frac{3}{2}$$

$$a = \frac{4}{3} \times \frac{4}{9}$$

$$= \frac{16}{27}$$

$$a_{5} = \frac{16}{27} \times (\frac{3}{2})^{4}$$

$$= \frac{16}{27} \times \frac{81}{16}$$

$$= 3$$

6. Find the geometric mean of 2 and 18.

sol.

$$G = \pm \sqrt[2]{2 \times 18}$$
$$= \pm \sqrt[2]{36}$$
$$= \pm 6$$

7. Given that x+12, x+4 and x-2 are in GP, find the value of x and the common ratio of this GP.

sol.

$$x + 4 = \pm \sqrt{(x + 12)(x - 2)}$$

$$x^{2} + 8x + 16 = x^{2} + 10x - 24$$

$$2x = 40$$

$$x = 20$$

$$a_{1} = 20 + 12 = 32$$

$$a_{2} = 20 + 4 = 24$$

$$r = \frac{24}{32}$$

$$= \frac{3}{4}$$

8. Find 3 numbers between 14 and 224 such that these 5 numbers are in GP.

sol.

$$a_1 = 14$$

$$a_5 = 224$$

$$244 = 14 \times r^4$$

$$16 = r^4$$

$$(\pm 2)^4 = r^4$$

$$r = \pm 2$$

∴ These 3 numbers are 28, 56, 112 or -28, 56, -112

9. Calculate the sum of the first 6 terms of the GP 2+6+ 18+...

sol.

$$a_1 = 2$$

$$r = \frac{6}{2}$$

$$= 3$$

$$S_6 = \frac{2(1 - 3^6)}{1 - 3}$$

$$= \frac{2(1 - 729)}{-2}$$

$$= 728$$

10. Calculate the sum of the first 8 terms of the GP 32 - $16 + 8 - \cdots$

sol.

$$a_{1} = 32$$

$$r = \frac{-16}{32}$$

$$= -\frac{1}{2}$$

$$S_{8} = \frac{32(1 - (\frac{1}{2})^{8})}{1 + \frac{1}{2}}$$

$$= \frac{32(1 - \frac{1}{256})}{\frac{3}{2}}$$

$$= 32 \times \frac{255}{256} \times \frac{2}{3}$$

$$= \frac{85}{4}$$

11. Find the sum of the GP $14 - 28 + 56 - \cdots + 3584$

$$a_{1} = 14$$

$$r = \frac{-28}{14} = -2$$

$$3584 = 14 \times (-2)^{n-1}$$

$$256 = (-2)^{n-1}$$

$$(-2)^{8} = (-2)^{n-1}$$

$$n - 1 = 8$$

$$n = 9$$

$$S_{9} = \frac{14(1 - (-2)^{9})}{1 - (-2)}$$

$$= \frac{14(1 + 512)}{3}$$

$$= \frac{14 \times 513}{3}$$

$$= 2394$$

12. If the first term of a GP is 7, its common ratio is 3, and the sum of its terms is 847, find the number of terms and the last term of this GP.

sol.

$$a_{1} = 7$$

$$r = 3$$

$$S_{n} = \frac{7(1 - 3^{n})}{1 - 3} = 847$$

$$7(1 - 3^{n}) = -1694$$

$$1 - 3^{n} = -242$$

$$3^{n} = 243$$

$$3^{n} = 3^{5}$$

$$n = 5$$

$$a_{5} = 7 \times 3^{4} = 567$$

13. Find the sum of the following infinite GP.

(a)
$$24 + 18 + 13\frac{1}{2} + \cdots$$
 sol.

$$a_1 = 24$$

$$r = \frac{18}{24} = \frac{3}{4}$$

$$S_{\infty} = \frac{24}{1 - \frac{3}{4}}$$

$$= \frac{24}{\frac{1}{4}}$$

$$= 96$$

(b)
$$27 - 9 + 3 - 1 + \cdots$$

വ

$$a_{1} = 27$$

$$r = \frac{-9}{27} = -\frac{1}{3}$$

$$S_{\infty} = \frac{27}{1 + \frac{1}{3}}$$

$$= \frac{27}{\frac{4}{3}}$$

$$= \frac{81}{4}$$

(c)
$$2 - \frac{1}{2} + \frac{1}{8} - \frac{1}{32} + \cdots$$

sol

$$a_{1} = 2$$

$$r = \frac{-\frac{1}{2}}{2} = -\frac{1}{4}$$

$$S_{\infty} = \frac{2}{1 + \frac{1}{4}}$$

$$= \frac{2}{\frac{5}{4}}$$

$$= \frac{8}{\frac{5}{4}}$$

14. Given an infinite GP which has a sum of 24 and first term of 30, find the common difference.

sol.

$$a_{1} = 30$$

$$S_{\infty} = 24$$

$$24 = \frac{30}{1 - r}$$

$$24(1 - r) = 30$$

$$24 - 24r = 30$$

$$-24r = 6$$

$$r = -\frac{1}{4}$$

15. Convert the following recurring decimals into fractions.

(a)
$$0.\overline{45}$$

$$a_1 = 0.45$$

$$r = 0.01$$

$$S_{\infty} = \frac{0.45}{1 - 0.01}$$

$$= \frac{0.45}{0.99}$$

$$= \frac{45}{99}$$

$$= \frac{5}{11}$$

$$\therefore 0.\overline{45} = \frac{5}{11}$$

(b) $0.\overline{037}$

sol.

$$a_1 = 0.037$$

$$r = 0.001$$

$$S_{\infty} = \frac{0.037}{1 - 0.001}$$

$$= \frac{0.037}{0.999}$$

$$= \frac{37}{999}$$

$$= \frac{1}{27}$$

$$\therefore 0.\overline{037} = \frac{1}{27}$$

(c) 0.218

sol.

$$a_1 = 0.018$$

$$r = 0.01$$

$$S_{\infty} = \frac{0.018}{1 - 0.01}$$

$$= \frac{0.018}{0.99}$$

$$= \frac{18}{990}$$

$$= \frac{1}{55}$$

$$\therefore 0.2\overline{18} = \frac{1}{5} + \frac{1}{55}$$
$$= \frac{12}{55}$$

(d) $1.\overline{3}$

sol.

$$a_1 = 0.3$$

$$r = 0.1$$

$$S_{\infty} = \frac{0.3}{1 - 0.1}$$

$$= \frac{0.3}{0.9}$$

$$= \frac{1}{3}$$

$$\therefore 1.\overline{3} = 1 + \frac{1}{3}$$
$$= \frac{4}{3}$$

16. Three integers are in GP, summing up to 42 while accumulating up to 512, find these three integers.

sol.

$$a_{1} + a_{2} + a_{3} = 42$$

$$a_{1}a_{2}a_{3} = 512$$

$$a_{2} = \pm \sqrt{a_{1}a_{3}}$$

$$a_{1}a_{3} = a_{2}^{2}$$

$$a_{2}^{3} = 512$$

$$a_{2} = \sqrt[3]{512}$$

$$= 8$$

$$a_{1}a_{3} = 64$$

$$a_{3} = \frac{64}{a_{1}}$$

$$a_{1} + 8 + \frac{64}{a_{1}} = 42$$

$$a_{1} + \frac{64}{a_{1}} = 34$$

$$a_{1}^{2} + 64 = 34a_{1}$$

$$a_{1}^{2} - 34a_{1} + 64 = 0$$

$$(a_{1} - 32)(a_{1} - 2) = 0$$

$$a_{1} = 32 \text{ or } a_{1} = 2$$

:. These three integers are 2, 8, 32

17. The sum of first 6 term of a GP is 9 times the sum of first 3 terms. Find the common ratio.

$$S_6 = 9S_3$$

$$\frac{a(1-r^6)}{1-r} = 9 \times \frac{a(1-r^3)}{1-r}$$

$$a(1-r^6) = 9a(1-r^3)$$

$$1-r^6 = 9(1-r^3)$$

$$= 9-9r^3$$

$$r^6 - 9r^3 + 8 = 0$$

$$(r^3 - 8)(r^3 - 1) = 0$$

$$r^3 = 8 \text{ or } r^3 = 1$$

$$r = 1 \text{ (invalid)}$$

$$r = 2$$

18. Given a GP, its first term is 16, last term is $\frac{1}{2}$ and its sum is $31\frac{1}{2}$, find its common ratio and number of terms.

sol.

$$a_{1} = 10$$

$$\frac{1}{2} = 16r^{n-1}$$

$$\frac{1}{32} = r^{n-1}$$

$$= r^{n} \times \frac{1}{r}$$

$$r^{n} = \frac{r}{32}$$

$$\frac{63}{2} = \frac{16(1 - r^{n})}{1 - r}$$

$$63(1 - r) = 32(1 - r^{n})$$

$$63 - 63r = 32 - 32r^{n}$$

$$-31 = 32r^{n} - 63r$$

$$-31 = r - 63r$$

$$-31 = -62r$$

$$r = \frac{1}{2}$$

$$(\frac{1}{2})^{n-1} = \frac{1}{32}$$

$$= (\frac{1}{2})^{5}$$

$$n - 1 = 5$$

$$n = 6$$

19. Given a GP, its 3rd term is 6 less than its 2nd term, ant its 2nd term is 9 less than its 1st term. Find the 4th term and the sum of the first 4 terms.

sol.

Let
$$x = a_2$$

$$a_3 = x - 6$$

$$a_1 = x + 9$$

$$x = \pm \sqrt{(x - 6)(x + 9)}$$

$$x^2 = x^2 + 3x - 54$$

$$3x - 54 = 0$$

$$x = 18$$

$$a_2 = 18$$

$$a_1 = 27$$

$$r = \frac{12}{18}$$

$$= \frac{2}{3}$$

$$a_4 = 27 \times (\frac{2}{3})^3$$

$$= 8$$

$$S_4 = \frac{27(1 - (\frac{16}{3})^4)}{1 - \frac{2}{3}}$$

$$= \frac{27(1 - \frac{8}{81})}{\frac{1}{3}}$$

$$= 81 \times \frac{65}{81}$$

$$= 65$$

20. GIven an infinite GP, its common ratio is positive and the sum of it is 9. The sum of the first two terms is 5, find the 4th term.

$$S_{\infty} = \frac{a}{1-r} = 9$$

$$a = 9(1-r)$$

$$= 9-9r$$

$$S_{2} = \frac{a(1-r^{2})}{1-r} = 5$$

$$a - ar^{2} = 5 - 5r$$

$$9 - 9r - (9 - 9r)r^{2} = 5 - 5r$$

$$9 - 9r - 9r^{2} + 9r^{3} = 5 - 5r$$

$$4 - 4r - 9r^{2} + 9r^{3} = 0$$

$$4(1-r) - 9r^{2}(1-r) = 0$$

$$(4 - 9r^{2})(1-r) = 0$$

$$(9r^{2} - 4)(r - 1) = 0$$

$$r = 1 \text{ (invalid)}$$

$$r = -\frac{2}{3} \text{(invalid)}$$

$$r = \frac{2}{3}$$

$$a = 9(1 - \frac{2}{3})$$

$$= 3$$

$$a_{4} = 3(\frac{2}{3})^{3}$$

$$= 3 \times \frac{8}{27}$$

$$= \frac{8}{9}$$

- 21. If x + 1, x 2, $\frac{1}{2}x$ are the first three terms of an infinite GP, find:
 - (a) The value of x sol.

$$x - 2 = \pm \sqrt{(x+1)(\frac{1}{2}x)}$$

$$x^2 - 4x + 4 = \frac{1}{2}x(x+1)$$

$$2x^2 - 8x + 8 = x^2 + x$$

$$x^2 - 9x + 8 = 0$$

$$(x-8)(x-1) = 0$$

$$x = 8 \text{ or } x = 1$$

(b) The common ratio

sol.

When
$$x = 8$$
,

$$r = \frac{8-2}{8+1}$$

$$= \frac{6}{9}$$

$$= \frac{2}{3}$$

When
$$x = 1$$
,

$$r = \frac{1-2}{1+1}$$

$$= -\frac{1}{2}$$

(c) The sum of the GP sol.

When
$$x = 8$$
,

$$S_{\infty} = \frac{a}{1 - r}$$

$$= \frac{9}{1 - \frac{2}{3}}$$

$$= 9 \times 3$$

$$= 27$$

When
$$x = 1$$
,

$$S_{\infty} = \frac{a}{1 - r}$$

$$= \frac{2}{1 + \frac{1}{2}}$$

$$= 2 \times \frac{2}{3}$$

$$= \frac{4}{3}$$

12.4 Simple Summation of Special Series

Sum formula of natural number:

$$\sum_{i=1}^{n} k = \frac{n(n+1)}{2}$$

Sum formula of square of natural number:

$$\sum_{i=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Sum formula of cube of natural number:

$$\sum_{i=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$$

12.4.1 Practice 10

1. Find the sum of the following series.

(a)
$$\sum_{k=1}^{8} 3k$$

$$\sum_{k=1}^{8} 3k = 3 \sum_{k=1}^{8} k$$

$$= 3 \times \frac{8(8+1)}{2}$$

$$= 3 \times \frac{8 \times 9}{2}$$

$$= 3 \times \frac{72}{2}$$

$$= 3 \times 36$$

$$= 108$$

(b)
$$\sum_{k=1}^{12} k^2$$
 sol.

$$\sum_{k=1}^{12} k^2 = \frac{12(12+1)(2\times12+1)}{6}$$
$$= \frac{12\times13\times25}{6}$$

(c)
$$\sum_{k=3}^{10} (2k-3)$$
 sol.

$$\sum_{k=3}^{10} (2k-3)$$

$$= 2 \sum_{k=3}^{10} k - \sum_{k=3}^{10} 3$$

$$= 2 \left[\sum_{k=1}^{10} k - \sum_{k=1}^{2} k \right] - (30-6)$$

$$= 2 \left[\frac{10(10+1)}{2} - \frac{2(2+1)}{2} \right] - 8$$

$$= 2(55-3) - 24$$

$$= 2 \times 52 - 24$$

$$= 104 - 24$$

$$= 80$$

(d)
$$\sum_{k=7}^{13} 3k^2$$

sol.

$$\sum_{k=7}^{13} 3k^2$$

$$= 3 \left[\sum_{k=1}^{13} k^2 - \sum_{k=1}^{6} k^2 \right]$$

$$= 3 \times \left[\frac{13(13+1)(2 \times 13+1)}{6} - \frac{6(6+1)(2 \times 6+1)}{6} \right]$$

$$= 3 \times \left[\frac{13 \times 14 \times 27}{6} - \frac{6 \times 7 \times 13}{6} \right]$$

$$= 3 \times \left[\frac{4914}{6} - \frac{546}{6} \right]$$

$$= 3 \times \frac{4368}{6}$$

$$= 3 \times 728$$

$$= 2184$$

2. Given that the nth term of a series is n (n+3), find the sum of the first 20 terms of the series.

sol.

$$\sum_{k=1}^{20} k(k+3)$$

$$= \sum_{k=1}^{20} k^2 + 3k$$

$$= \sum_{k=1}^{20} k^2 + 3 \sum_{k=1}^{20} k$$

$$= \frac{20(20+1)(2 \times 20+1)}{6} + 3 \times \frac{20(20+1)}{2}$$

$$= \frac{20 \times 21 \times 41}{6} + 3 \times \frac{20 \times 21}{2}$$

$$= 2870 + 630$$

$$= 3500$$

3. Find the sum of series $1\times3+2\times4+3\times5+\cdots+n(n+2)$.

$$\sum_{k=1}^{n} k(k+2)$$

$$= \sum_{k=1}^{n} k^2 + 2k$$

$$= \sum_{k=1}^{n} k^2 + 2 \sum_{k=1}^{n} k$$

$$= \frac{n(n+1)(2n+1)}{6} + 2 \times \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + n(n+1)$$

$$= \frac{n(n+1)(2n+1) + 6n(n+1)}{6}$$

$$= \frac{n(n+1)(2n+7)}{6}$$

12.4.2 Exercise 12.4

1. Find the sum of the following series.

(a)
$$\sum k = 1^8 5k^2$$
 sol.

$$\sum_{k=1}^{8} 5k^2 = 5 \sum_{k=1}^{8} k^2$$

$$= 5 \times \frac{8(8+1)(2 \times 8+1)}{6}$$

$$= 5 \times \frac{8 \times 9 \times 17}{6}$$

$$= 5 \times \frac{1368}{6}$$

$$= 5 \times 204$$

$$= 1020$$

(b)
$$\sum_{k=1}^{9} k^3$$

$$\sum_{k=1}^{9} k^3 = \left[\frac{9(9+1)}{2} \right]^2$$
= 45²
= 2025

(c)
$$\sum_{n=1}^{10} (3n-5)$$

sol.

$$\sum_{n=1}^{10} (3n - 5) = 3 \sum_{n=1}^{10} n - 5 \sum_{n=1}^{10} 1$$

$$= 3 \times \frac{10(10 + 1)}{2} - 5 \times 10$$

$$= 3 \times \frac{10 \times 11}{2} - 5 \times 10$$

$$= 3 \times 55 - 50$$

$$= 3 \times 5 - 50$$

$$= 165 - 50$$

$$= 115$$

(d)
$$\sum_{k=3}^{6} 2k^3$$

$$\sum_{k=3}^{6} 2k^3 = 2\sum_{k=3}^{6} k^3$$

$$= 2\left(\sum_{k=1}^{6} k^3 - \sum_{k=1}^{2} k^3\right)$$

$$= 2\left\{\left[\frac{6(6+1)}{2}\right]^2$$

$$-\left[\frac{2(2+1)}{2}\right]^2\right\}$$

$$= 2(21^2 - 3^2)$$

$$= 2(441 - 9)$$

$$= 2 \times 432$$

$$= 864$$

(e)
$$\sum_{k=6}^{10} (2k^2 + 3)$$

$$\sum_{k=6}^{10} (2k^2 + 3)$$

$$= 2 \sum_{k=6}^{10} k^2 + 3 \sum_{k=6}^{10} 1$$

$$= 2 \left(\sum_{k=1}^{10} k^2 - \sum_{k=1}^{5} k^2 \right)$$

$$+ 3 \times (10 - 5)$$

$$= 2 \times \left[\frac{10 \times 11 \times 21}{6} - \frac{5 \times 6 \times 11}{6} \right]$$

$$+ 3 \times 5$$

$$= 2 \times \left[\frac{2310}{6} - \frac{330}{6} \right] + 3 \times 5$$

$$= 2 \times \frac{1980}{6} + 3 \times 5$$

$$= 2 \times 330 + 3 \times 5$$

$$= 660 + 15$$

$$= 675$$

(f)
$$\sum_{n=11}^{15} (n^2 + 2n)$$

sol.

$$\sum_{n=11}^{15} (n^2 + 2n)$$

$$= \sum_{n=11}^{15} n^2 + 2 \sum_{n=11}^{15} n$$

$$= \left[\sum_{n=1}^{15} n^2 - \sum_{n=1}^{10} n^2 \right]$$

$$+ 2 \left[\sum_{n=1}^{15} n - \sum_{n=1}^{10} n \right]$$

$$= \left[\frac{15 \times 16 \times 31}{6} - \frac{10 \times 11 \times 21}{6} \right]$$

$$+ 2 \left[\frac{15 \times 16}{2} - \frac{10 \times 11}{2} \right]$$

$$= 985$$

(g)
$$\sum_{n=2}^{6} n(n^2 - n + 1)$$

sol.

$$\sum_{n=2}^{6} n(n^2 - n + 1)$$

$$= \sum_{n=2}^{6} n^3 - \sum_{n=2}^{6} n^2 + \sum_{n=2}^{6} n$$

$$= \left[\sum_{n=1}^{6} n^3 - \sum_{n=1}^{1} n^3 \right] - \left[\sum_{n=1}^{6} n^2 - \sum_{n=1}^{1} n^2 \right]$$

$$+ \left[\sum_{n=1}^{6} n - \sum_{n=1}^{1} n \right]$$

$$= \left[\left(\frac{6 \times 7}{2} \right)^2 - \left(\frac{1 \times 2}{2} \right)^2 \right]$$

$$- \left(\frac{6 \times 7 \times 13}{6} - \frac{1 \times 2 \times 3}{6} \right)$$

$$+ \left(\frac{6 \times 7}{2} - \frac{1 \times 2}{2} \right)$$

$$= 21^2 - 1^2 - (7 \times 13 - 1) + (3 \times 7 - 1)$$

$$= 440 - 90 + 20$$

$$= 370$$

2. Fiven that the nth term of a series is $3n^2 + n$, find the sum of the first 10 terms of the series.

sol.

$$\sum_{n=1}^{10} 3n^2 + n = 3 \sum_{n=1}^{10} n^2 + \sum_{n=1}^{10} n$$

$$= 3 \left(\frac{10 \times 11 \times 21}{6} \right) + \left(\frac{10 \times 11}{2} \right)$$

$$= 3 \times \frac{2310}{6} + \frac{110}{2}$$

$$= 3 \times 385 + 55$$

$$= 1210$$

3. Find the sum of first nth term of series $1 \times 3 + 2 \times 7 + 3 \times 11 + \cdots$

$$\sum_{n=1}^{n} n \times (4n-1)$$

$$= 4 \sum_{n=1}^{n} n^2 - \sum_{n=1}^{n} n$$

$$= 4 \left(\frac{n(n+1)(2n+1)}{6} \right) - \left(\frac{n(n+1)}{2} \right)$$

$$= \frac{4n(n+1)(2n+1) - 3n(n+1)}{6}$$

$$= \frac{n(n+1)(8n+1)}{6}$$

4. Find the sum fo the series $1^2 + 3^2 + 5^2 + \dots + 15^2$ sol.

$$\sum_{n=1}^{8} (2n-1)^2 = \sum_{n=1}^{8} (4n^2 - 4n + 1)$$

$$= 4 \sum_{n=1}^{8} n^2 - 4 \sum_{n=1}^{8} n + \sum_{n=1}^{8} 1$$

$$= 4 \left(\frac{8 \times 9 \times 17}{6} \right) - 4 \left(\frac{8 \times 9}{2} \right) + 8$$

$$= 4 \times 204 - 4 \times 36 + 8$$

$$= 816 - 144 + 8$$

$$= 680$$

12.5 Revision Exerise 12

1. Express the following series in form of Σ .

(a)
$$\frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \dots + \frac{49}{50}$$

sol.

$$a_1 = \frac{2 \times 1 - 1}{2 \times 1}$$

$$a_2 = \frac{2 \times 2 - 1}{2 \times 2}$$

$$a_3 = \frac{2 \times 3 - 1}{2 \times 3}$$

$$\vdots$$

$$a_{25} = \frac{2 \times 25 - 1}{2 \times 25}$$

$$\therefore \frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \dots + \frac{49}{50} = \sum_{n=1}^{25} \frac{2n - 1}{2n}$$

(b)
$$6 - 7 + 8 - 9 + \cdots$$

sol.

$$a_{1} = (-1)^{6} \times 6$$

$$a_{2} = (-1)^{7} \times 7$$

$$a_{3} = (-1)^{8} \times 8$$

$$\vdots$$

$$a_{n} = (-1)^{n} n \therefore \quad 6 - 7 + 8 - 9 + \dots = \sum_{n=1}^{\infty} (-1)^{n} n$$

(c)
$$2 \times 5 + 3 \times 7 + 4 \times 9 + \dots + 15 \times 31$$

sol.

$$a_{1} = (1+1)(2 \times 1 + 3)$$

$$a_{2} = (2+1)(2 \times 2 + 3)$$

$$a_{3} = (3+1)(2 \times 3 + 3)$$

$$\vdots$$

$$a_{14} = (14+1)(2 \times 14 + 3)$$

$$\therefore 2 \times 5 + 3 \times 7 + 4 \times 9 + \dots + 15 \times 31$$

$$= \sum_{n=1}^{14} (n+1)(2n+3)$$

2. Given a general formula $a_n = \frac{3^n}{2n-3}$, state the first 5 terms of the sequence.

sol.

$$a_1 = \frac{3^1}{2 \times 1 - 3} = -3$$

$$a_2 = \frac{3^2}{2 \times 2 - 3} = 9$$

$$a_3 = \frac{3^3}{2 \times 3 - 3} = 9$$

$$a_4 = \frac{3^4}{2 \times 4 - 3} = \frac{81}{5}$$

$$a_5 = \frac{3^5}{2 \times 5 - 3} = \frac{243}{7}$$

3. Express the series $\sum_{k=1}^{10} (2k^2 - 3)$

$$\sum_{k=1}^{10} (2k^2 - 3)$$

$$= (2 \times 1^2 - 3) + (2 \times 2^2 - 3) + (2 \times 3^2 - 3)$$

$$+ (2 \times 4^2 - 3) + (2 \times 5^2 - 3) + (2 \times 6^2 - 3)$$

$$+ (2 \times 7^2 - 3) + (2 \times 8^2 - 3) + (2 \times 9^2 - 3)$$

$$+ (2 \times 10^2 - 3)$$

$$= -1 + 5 + 15 + 29 + 47 + 69 + 95 + 125$$

$$+ 159 + 197$$

4. State the first term, last term and the number of terms of theh series $\sum_{k=3}^{7} (3^k - 2^k - k)$

sol.

$$a_3 = 3^3 - 2^3 - 3 = 27 - 8 - 3 = 16$$

 $a_7 = 3^7 - 2^7 - 7 = 2187 - 128 - 7 = 2052$
 $n = 5$

5. Find the number of terms of the AP $-4 - 2\frac{3}{4} - 112 - \frac{1}{4} + \dots + 16$

sol.

$$a = -4$$

$$d = \frac{5}{4}$$

$$16 = -4 + (n - 1)\frac{5}{4}$$

$$20 = \frac{5}{4}(n - 1)$$

$$5n - 5 = 80$$

$$5n = 85$$

$$n = 17$$

- 6. If x+1, 2x+1, x-3 are the first 3 terms of AP, find:
 - (a) The value of x

sol.

$$2x + 1 = \frac{x+1+x-3}{2}$$

$$4x + 2 = 2x - 2$$

$$2x = -4$$

$$x = -2$$

(b) Sum from the 10th term to the 20th term

sol.

$$a_1 = -1$$

$$a_2 = -3$$

$$r = -2$$

$$S = S_{20} - S_9$$

$$= \frac{20}{2}(-2 + (20 - 1)(-2))$$

$$-\frac{9}{2}(-2 + (9 - 1)(-2))$$

$$= 10 \times (-40) - 9 \times (-9)$$

$$= -400 + 81$$

$$= -319$$

7. Find 4 numbers between 28 and -12 such that these 6 numbers form an AP.

sol.

$$a_1 = 28$$

$$a_n = -12$$

$$n = 6$$

$$-12 = 28 + 5d$$

$$5d = 40$$

$$d = 8$$

 \therefore These 4 numbers are -4, 4, 12, 20

- 8. Find the sum of the following AP.
 - (a) $7 + 11 + 15 + \cdots$ up to the 10th term

sol.

$$a_1 = 7$$

$$d = 4$$

$$n = 10$$

$$S_{10} = \frac{10}{2}(2 \times 7 + (10 - 1)4)$$

$$= 5(14 + 36)$$

$$= 250$$

(b) $20 + 18\frac{1}{2} + 17 + \cdots$ up to the 16tm term

$$a_1 = 20$$

$$d = -\frac{3}{2}$$

$$n = 16$$

$$S_{16} = \frac{16}{2}(2 \times 20 + (16 - 1)(-\frac{3}{2}))$$

$$= 8(40 - \frac{45}{2})$$

$$= 8 \times \frac{35}{2}$$

$$= 140$$

(c)
$$2\sqrt{2} + 3\sqrt{2} + 4\sqrt{2} + \dots + 13\sqrt{2}$$
 sol.

$$a_{1} = 2\sqrt{2}$$

$$d = \sqrt{2}$$

$$n = 12$$

$$S_{12} = \frac{12}{2}(2 \times 2\sqrt{2} + (12 - 1)\sqrt{2})$$

$$= 6(4\sqrt{2} + 11\sqrt{2})$$

$$= 6 \times 15\sqrt{2}$$

$$= 90\sqrt{2}$$

- 9. Given an AP which the sum of the first n terms $S_n = n(1 + 2n)$, find:
 - (a) First term sol.

$$\frac{n}{2}(2a + (n-1)d) = n(1+2n)$$

$$n(2a + (n-1d)) = 2n(1+2n)$$

$$2an + dn^2 - dn = 2n - 4n^2$$

$$(2a - d)n + dn^2 = 2n - 4n^2$$

Comparing both sides,

$$a = 3$$
$$d = 4$$

(b) Common Difference sol.

According to the sol. of (a),
$$d = 4$$

(c) Sum of the first 20 terms.

sol.

According to the sol. of (a),

$$a = 3$$

 $d = 4$
 $n = 20$
 $S_{20} = \frac{20}{2}(2 \times 3 + (20 - 1)4)$
 $= 10(6 + 76)$
 $= 10 \times 82$
 $= 820$

- 10. Given an AP $33 + 27 + 21 + \cdots$
 - (a) If the first sum of the first n terms is 105, find the value of n.

sol.

$$a_{1} = 33$$

$$d = -6$$

$$105 = \frac{n}{2}(2 \times 33 + (n-1) \times (-6))$$

$$210 = n(66 - (n-1)6)$$

$$35 = 11n - n^{2} + n$$

$$n^{2} - 12n + 35 = 0$$

$$(n-7)(n-5) = 0$$

$$n = 7 \text{ or } n = 5$$

(b) If the sum of the first n terms is negative value, find the minimum value of n.

sol.

$$a_{1} = 33$$

$$d = -6$$

$$\frac{n}{2}(2 \times 33 + (n-1) \times (-6)) < 0$$

$$n(66 - 6n + 6) < 0$$

$$12n - n^{2} < 0$$

$$n(12 - n) < 0$$

$$n > 12$$

:. The minimum value of n is 13

11. Find the sum of the numbers between 150 and 300 that are multiple of both 5 and 3.

$$a_1 = 165$$

 $a_n = 285$
 $d = 15$
 $285 = 165 + (n-1) \times 15$
 $8 = n-1$
 $n = 9$

$$S_9 = \frac{9}{2}(2 \times 165 + (9 - 1) \times 15)$$
$$= \frac{9}{2} \times 450$$
$$= 2025$$

$$a_1 = 102$$
$$a_n = 198$$

When
$$d = 2$$
,
 $198 = 102 + (n - 1) \times 2$
 $48 = n - 1$
 $n = 49$
 $S_{49} = \frac{49}{2}(2 \times 102 + (49 - 1) \times 2)$
 $= \frac{49}{2} \times (204 + 96)$
 $= 7350$

When
$$d = 3$$
,
 $198 = 102 + (n - 1) \times 3$
 $32 = n - 1$
 $n = 33$
 $S_{33} = \frac{33}{2}(2 \times 102 + (33 - 1) \times 3)$
 $= \frac{33}{2} \times (204 + 96)$
 $= 4950$

When
$$d = 6$$
,
 $198 = 102 + (n - 1) \times 6$
 $16 = n - 1$
 $n = 17$
 $S_{17} = \frac{17}{2}(2 \times 102 + (17 - 1) \times 6)$
 $= \frac{17}{2} \times (204 + 96)$
 $= 2550$

$$\therefore S = 7350 + 4950 - 2550$$
$$= 9750$$

- 12. Find the sum of all the numbers between 100 and 200 that can be divided by 2 or 3.
- 13. Find the sum of the numbers between 50 and 100 that cannot be divided by 5.

When
$$d = 1$$
,
 $a_1 = 51$
 $a_n = 99$
 $99 = 51 + (n - 1) \times 1$
 $48 = n - 1$
 $n = 49$
 $S_{49} = \frac{49}{2}(2 \times 51 + (49 - 1) \times 1)$
 $= \frac{49}{2} \times (102 + 48)$
 $= 3675$

When
$$d = 5$$
,
 $a_1 = 55$
 $a_n = 95$
 $95 = 55 + (n - 1) \times 5$
 $8 = n - 1$
 $n = 9$
 $S_9 = \frac{9}{2}(2 \times 55 + (9 - 1) \times 5)$
 $= \frac{9}{2} \times (110 + 40)$
 $= 675$

$$\therefore S = 3675 - 675 \\
= 3000$$

14. Which term is the first negative term of the AP 20 + $16\frac{1}{4} + 12\frac{1}{2} + \cdots$?

sol.

$$a_{1} = 20$$

$$d = -\frac{15}{4}$$

$$a_{n} = 20 - (n-1) \times \frac{15}{4} < 0$$

$$80 - 15(n-1) < 0$$

$$16 - 3n + 3 < 0$$

$$3n > 19$$

$$n > 6\frac{1}{3}$$

:. The first negative term is 7

15. Three numbers are in AP, thier sum is 15 while the sum of the square of these numbers is 83. Find this three

numbers.

sol.

$$a_{1} + a_{2} + a_{3} = 15$$

$$a_{1}^{2} + a_{2}^{2} + a_{3}^{2} = 83$$

$$a_{2} - a_{1} = a_{3} - a_{2}$$

$$a_{1} + a_{3} = 2a_{2}$$

$$3a_{2} = 15$$

$$a_{2} = 5$$

$$a_{3} = 10 - a_{1}$$

$$a_{1}^{2} + a_{3}^{2} = 83 - 25$$

$$= 58$$

$$a_{1}^{2} + (10 - a_{1})^{2} = 58$$

$$a_{1}^{2} + 100 - 20a_{1} + a_{1}^{2} = 58$$

$$2a_{1}^{2} - 20a_{1} + 100 = 58$$

$$2a_{1}^{2} - 20a_{1} + 42 = 0$$

$$a_{1}^{2} - 10a_{1} + 21 = 0$$

$$(a_{1} - 7)(a_{1} - 3) = 0$$

$$a_{1} = 7 \text{ or } a_{1} = 3$$

 \therefore The three numbers are 7, 5, 3

16. Find the sum of the series $18^2 - 17^2 + 16^2 - 15^2 + 14^2 - 13^2 + \dots + 2^2 - 1^2$

sol.

$$18^{2} - 17^{2} + 16^{2} - 15^{2} + \dots + 2^{2} - 1^{2}$$

$$= (18^{2} - 17^{2}) + (16^{2} - 15^{2}) + \dots + (2^{2} - 1^{2})$$

$$= ((2 \times 9)^{2} - (2 \times 9 - 1)^{2}) + ((2 \times 8)^{2} - (2 \times 8 - 1)^{2})$$

$$+ \dots + ((2 \times 1)^{2} - (2 \times 1 - 1)^{2})$$

$$= \sum_{n=1}^{9} \left[(2n)^{2} - (2n - 1)^{2} \right]$$

$$= \sum_{n=1}^{9} (4n - 1)$$

$$= 4 \sum_{n=1}^{9} n - \sum_{n=1}^{9} 1$$

$$= 4 \times \frac{9 \times 10}{2} - 9$$

$$= 180 - 9$$

$$= 171$$

17. State the general formula of the series $20, -10, 5, -2\frac{1}{2}, \cdots$

$$a_1 = 20$$

 $r = -\frac{1}{2}$
 $a_n = 20(-\frac{1}{2})^{n-1}$

18. Given three integers x-3, x+1, 4x-2 that are in GP. If the sum of this GP is S, common ratio is r, find the value of S+r.

sol.

$$x + 1 = \pm \sqrt{(x - 3)(4x - 2)}$$

$$x^{2} + 2x + 1 = 4x^{2} - 14x + 6$$

$$3x^{2} - 16^{x} + 5 = 0$$

$$(3x - 1)(x - 5) = 0$$

$$x = 5 \text{ or } x = \frac{1}{3}$$

$$a_{1} = x - 3 = 5 - 3 = 2$$

$$a_{2} = x + 1 = 5 + 1 = 6$$

$$a_{3} = 4x - 2 = 4(5) - 2 = 18$$

$$S = a_{1} + a_{2} + a_{3}$$

$$= 2 + 6 + 18$$

$$= 26$$

$$r = \frac{a_{3}}{a_{2}} = \frac{18}{6} = 3$$

$$\therefore S + r = 26 + 3$$

$$= 29$$

19. Find the geometric mean of $\frac{1}{3}$ and $\frac{1}{5}$

sol.

$$G = \pm \sqrt{\frac{1}{3} \times \frac{1}{5}}$$
$$= \pm \sqrt{\frac{1}{15}}$$
$$= \pm \frac{1}{\sqrt{15}}$$
$$= \pm \frac{\sqrt{15}}{15}$$

20. Find 5 numbers between $-\frac{1}{4}$ and $-\frac{1}{256}$ such that these 7 numbers form a GP.

sol.

$$a_1 = -\frac{1}{4}$$

$$n = 7$$

$$-\frac{1}{256} = -\frac{1}{4}r^6$$

$$\frac{1}{64} = r^6$$

$$\left(\pm \frac{1}{2}\right)^6 = r^6$$

$$r = \pm \frac{1}{2}$$

When
$$r = \frac{1}{2}$$
,

These 5 numbers are

$$\frac{1}{8}$$
, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$, $\frac{1}{128}$

When
$$r = -\frac{1}{2}$$
,

These 5 numbers are

$$\frac{1}{8}$$
, $-\frac{1}{16}$, $\frac{1}{32}$, $-\frac{1}{64}$, $\frac{1}{128}$

21. Find the sum of the series $\sum_{n=5}^{15} n^2 (3n+1)$

$$\sum_{n=5}^{15} n^2 (3n+1) = \sum_{n=5}^{15} n^3 + \sum_{n=5}^{15} 3n^2$$

$$= 3 \sum_{n=5}^{15} n^3 + \sum_{n=5}^{15} n^2$$

$$= 3 \left[\sum_{n=1}^{15} n^3 - \sum_{n=1}^4 n^3 \right]$$

$$+ \left[\sum_{n=1}^{15} n^2 - \sum_{n=1}^4 n^2 \right]$$

$$= 3 \left[\left(\frac{15 \times 16}{2} \right)^2 - \left(\frac{4 \times 5}{2} \right)^2 \right]$$

$$+ \left[\frac{15 \times 16 \times 31}{6} - \frac{4 \times 5 \times 9}{6} \right]$$

$$= 3 \left[(15 \times 8)^2 - (2 \times 5)^2 \right]$$

$$+ 1240 - 30$$

$$= 3(14400 - 100) + 1210$$

$$= 42900 + 1210$$

$$= 44110$$

22. Find the sum of the series $5^2 + 7^2 + 9^2 + \cdots + 25^2$

sol.

$$\sum_{n=1}^{11} (2n+3)^2$$

$$= \sum_{n=1}^{11} 4n^2 + 12n + 9$$

$$= 4 \sum_{n=1}^{11} n^2 + 12 \sum_{n=1}^{11} n + 11$$

$$= 4 \left[\frac{11 \times 12 \times 23}{6} \right] + 12 \left[\frac{11 \times 12}{2} \right] + 99$$

$$= 2024 + 792 + 99$$

$$= 2915$$

23. Find the sum of the series $2 \times 3 + 3 \times 12 + 4 \times 27 + \cdots + (n+1) \times 3n^2$

$$\sum_{n=1}^{n} (n+1)3n^{2}$$

$$= \sum_{n=1}^{n} 3n^{3} + \sum_{n=1}^{n} 3n^{2}$$

$$= 3 \left[\sum_{n=1}^{n} n^{3} + \sum_{n=1}^{n} n^{2} \right]$$

$$= 3 \left[\left(\frac{n(n+1)}{2} \right)^{2} + \frac{n(n+1)(2n+1)}{6} \right]$$

$$= 3 \left[\frac{n^{2}(n+1)^{2}}{4} + \frac{n(n+1)(2n+1)}{6} \right]$$

$$= 3 \left[\frac{3n^{2}(n+1)^{2} + 2n(n+1)(2n+1)}{12} \right]$$

$$= \frac{n(n+1) \left[3n^{2} + 3n + 4n + 2 \right]}{4}$$

$$= \frac{n(n+1) \left[3n^{2} + 7n + 2 \right]}{4}$$

$$= \frac{n(n+1)(n+2)(3n+1)}{4}$$

Chapter 13

System of Equations

13.1 System of Equations with Two Variables

13.1.1 Practice 1

Solve the following system of equations.

1.

$$\begin{cases} 2x - 3y &= 11\\ xy &= -5 \end{cases}$$

sol.

$$\begin{cases} 2x - 3y = 11 \\ xy = -5 \end{cases} \tag{1}$$

$$(2) \Rightarrow y = -\frac{5}{x}$$
Sub (3) into (1) $\Rightarrow 2x - \frac{15}{x} = 11$

$$2x^2 - 15 = 11x$$

$$2x^2 - 11x - 15 = 0$$

$$(2x - 5)(x - 3) = 0$$

$$x = 3 \text{ or } x = \frac{5}{2}$$

Sub x = 3 into (2)
$$\Rightarrow$$
 y = $-\frac{5}{3}$
Sub x = $\frac{5}{2}$ into (2) \Rightarrow y = $-\frac{5}{\frac{5}{2}}$
 \Rightarrow y = $-\frac{5}{5}$
 \Rightarrow y = -1

$$\therefore \begin{cases} x = 3 \\ y = -\frac{5}{3} \end{cases} or \begin{cases} x = \frac{5}{2} \\ y = -1 \end{cases}$$

2.

$$\begin{cases} 3x + y = 5 \\ x^2 - 2xy = 8 \end{cases}$$

sol.

$$\begin{cases} 3x + y = 5 \\ x^2 - 2xy = 8 \end{cases}$$
 (1)

$$3(1) \Rightarrow y = 5 - 3x$$
Sub (3) into (2) \Rightarrow x^2 - 2x(5 - 3x) = 8
$$x^2 - 10x + 6x^2 = 8$$

$$7x^2 - 10x + 8 = 0$$

$$(7x + 4)(x - 2) = 0$$

$$x = -\frac{4}{7} \text{ or } x = 2$$
Sub $x = -\frac{4}{7} \text{ into } (1) \Rightarrow y = 5 - 3\left(-\frac{4}{7}\right)$

$$\Rightarrow y = \frac{47}{7}$$
Sub $x = 2$ into (1) \Rightarrow y = -1
$$\therefore \begin{cases} x = -\frac{4}{7} & \text{or } \begin{cases} x = 2 \\ y = -1 \end{cases}$$

13.1.2 Exercise 13.1

Solve the following system of equations.

1

(3)

$$\begin{cases} x - y &= 1 \\ xy &= 6 \end{cases}$$

$$\begin{cases} x - y = 1 \\ xy = 6 \end{cases} \tag{1}$$

$$(1) \Rightarrow y = x - 1$$
Sub (3) into (2) $\Rightarrow x(x - 1) = 6$

$$x^2 - x = 6$$
(3)

$$x^{2} - x - 6 = 0$$

$$(x+2)(x-3) = 0$$

$$x = -2 \text{ or } x = 3$$

Sub
$$x = -2$$
 into (1) $\Rightarrow y = -2 - 1$
 $\Rightarrow y = -3$

Sub
$$x = 3$$
 into $(1) \Rightarrow y = 3 - 1$
 $\Rightarrow y = 2$

$$\therefore \left\{ \begin{array}{l} x = -2 \\ y = -3 \end{array} \right. or \left\{ \begin{array}{l} x = 3 \\ y = 2 \end{array} \right.$$

$$\begin{cases} 3x - y = 4 \\ xy = 4 \end{cases}$$

sol.

$$\begin{cases} 3x - y = 4 \\ xy = 4 \end{cases} \tag{1}$$

$$(1) \Rightarrow y = 3x - 4$$
Sub (3) into (2) \(\Rightarrow x(3x - 4) = 4\)
$$3x^2 - 4x = 4$$

$$3x^2 - 4x - 4 = 0$$

$$(3x + 2)(x - 2) = 0$$

$$x = -\frac{2}{3} \text{ or } x = 2$$

Sub
$$x = -\frac{2}{3}$$
 into (1) $\Rightarrow y = 3\left(-\frac{2}{3}\right) - 4$
 $\Rightarrow y = -6$

Sub
$$x = 2$$
 into $(1) \Rightarrow y = 3(2) - 4$
 $\Rightarrow y = 2$

$$\therefore \left\{ \begin{array}{l} x = -\frac{2}{3} \\ y = -6 \end{array} \right. or \left\{ \begin{array}{l} x = 2 \\ y = 2 \end{array} \right.$$

3.

$$\begin{cases} 3x + 4y = -39 \\ xy = 30 \end{cases}$$

sol.

$$\begin{cases} 3x + 4y = -39 & (1) \\ xy = 30 & (2) \end{cases}$$

$$(2) \Rightarrow y = \frac{30}{x}$$
Sub (3) into (1) $\Rightarrow 3x + 4\frac{30}{x} = -39$

$$3x^2 + 120 = -39x$$

$$3x^2 + 39x + 120 = 0$$

$$x^2 + 13x + 40 = 0$$

$$(x+5)(x+8) = 0$$

$$x = -5 \text{ or } x = -8$$

Sub
$$x = -5$$
 into (1) $\Rightarrow y = \frac{30}{-5} - 39$
 $\Rightarrow y = -6$

Sub
$$x = -8$$
 into (1) $\Rightarrow y = \frac{30}{-8} - 39$
 $\Rightarrow y = -\frac{15}{4}$

$$\therefore \begin{cases} x = -5 \\ y = -6 \end{cases} or \begin{cases} x = -8 \\ y = -\frac{15}{4} \end{cases}$$

4.

(3)

$$\begin{cases} y = 2x + 3 \\ y = x^2 - 2x + 1 \end{cases}$$

$$\begin{cases} y = 2x + 3 \\ y = x^2 \end{cases} \tag{1}$$

$$(1) = (2) \Rightarrow 2x + 3 = x^{2}$$

$$\Rightarrow x^{2} - 2x - 3 = 0$$

$$\Rightarrow (x + 1)(x - 3) = 0$$

$$\Rightarrow x = -1 \text{ or } x = 3$$
Sub $x = -1$ into $(1) \Rightarrow y = 2(-1) + 3$

$$\Rightarrow y = 1$$
Sub $x = 3$ into $(1) \Rightarrow y = 2(3) + 3$

$$\Rightarrow y = 9$$

$$\therefore \begin{cases} x = -1 \\ y = 1 \end{cases} or \begin{cases} x = 3 \\ y = 9 \end{cases}$$

$$\begin{cases} x - y = 1\\ x^2 + y^2 = 25 \end{cases}$$

sol.

$$\begin{cases} x - y = 1 \\ x^2 + y^2 = 25 \end{cases} \tag{1}$$

$$(1) \Rightarrow x = y + 1$$
Sub (3) into (2) \Rightarrow $(y + 1)^2 + y^2 = 25$

$$\Rightarrow y^2 + 2y + 1 + y^2 = 25$$

$$\Rightarrow 2y^2 + 2y = 24$$

$$\Rightarrow y^2 + y = 12$$

$$\Rightarrow y^2 + y - 12 = 0$$

$$\Rightarrow (y + 4)(y - 3) = 0$$

$$\Rightarrow y = -4 \text{ or } y = 3$$

Sub
$$y = -4$$
 into (1) $\Rightarrow x = -4 + 1$
 $\Rightarrow x = -3$
Sub $y = 3$ into (1) $\Rightarrow x = 3 + 1$
 $\Rightarrow x = 4$

$$\therefore \left\{ \begin{array}{l} x = -3 \\ y = -4 \end{array} \right. or \left\{ \begin{array}{l} x = 4 \\ y = 3 \end{array} \right.$$

6.

$$\begin{cases} 5x - y = 3\\ y^2 - 6x^2 = 25 \end{cases}$$

sol.

$$\begin{cases} 5x - y = 3 \\ y^2 - 6x^2 = 25 \end{cases} \tag{1}$$

$$(1) \Rightarrow y = 5x - 3$$

$$Sub (3) into (2) \Rightarrow (5x - 3)^{2} - 6x^{2} = 25$$

$$\Rightarrow 25x^{2} - 30x + 9$$

$$- 6x^{2} = 25$$

$$\Rightarrow 19x^{2} - 30x + 16 = 0$$

$$\Rightarrow (19x + 8)(x - 2) = 0$$

$$\Rightarrow x = -\frac{8}{19} \text{ or } x = 2$$

$$Sub x = -\frac{8}{19} \text{ into } (1) \Rightarrow y = 5(-\frac{8}{19}) - 3$$

$$\Rightarrow y = -\frac{97}{19}$$

Sub x = 2 into $(1) \Rightarrow y = 7$

$$\therefore \begin{cases} x = -\frac{8}{19} \\ y = -\frac{97}{19} \end{cases} or \begin{cases} x = 2 \\ y = 7 \end{cases}$$

7.

(3)

$$\begin{cases} x + y = 3\\ (x + 2)(y + 3) = 12 \end{cases}$$

sol.

$$\begin{cases} x + y = 3 \\ (x + 2)(y + 3) = 12 \end{cases}$$
 (1)

(1)
$$\Rightarrow x = 3 - y$$
 (3)
Sub (3) into (2) \Rightarrow (3 - y + 2)(y + 3) = 12
 \Rightarrow (5 - y)(y + 3) = 12
 \Rightarrow 5y + 15 - y² - 3y = 12
 \Rightarrow 2y - y² = -3
 \Rightarrow y² - 2y - 3 = 0
 \Rightarrow (y + 1)(y - 3) = 0
 \Rightarrow y = -1 or y = 3

Sub
$$y = -1$$
 into $(1) \Rightarrow x = 4$
Sub $y = 3$ into $(1) \Rightarrow x = 0$

$$\therefore \left\{ \begin{array}{l} x = 4 \\ y = -1 \end{array} \right. or \left\{ \begin{array}{l} x = 0 \\ y = 3 \end{array} \right.$$

8

$$\begin{cases} 5x - 6y = -1\\ 25x^2 + 36y^2 = 61 \end{cases}$$

$$\begin{cases} 5x - 6y = -1 \\ 25x^2 + 36y^2 = 61 \end{cases} \tag{1}$$

$$(1) \Rightarrow y = \frac{5x+1}{6}$$

$$(3)$$
Sub (3) into (2) $\Rightarrow 25x^2 + 36\left(\frac{5x+1}{6}\right)^2$

$$= 61$$

$$\Rightarrow 25x^2 + 36\left(\frac{5x+1}{6}\right)^2$$

$$+ 36 = 61$$

$$\Rightarrow 25x^2 + 25x^2 + 10x$$

$$+ 1 = 61$$

$$\Rightarrow 50x^2 + 10x = 60$$

$$\Rightarrow 5x^2 + x - 6 = 0$$

$$\Rightarrow (5x+6)(x-1) = 0$$

$$\Rightarrow x = -\frac{6}{5} \text{ or } x = 1$$
Sub $x = -\frac{6}{5} \text{ into } (1) \Rightarrow y = \frac{5(-\frac{6}{5})+1}{6}$

$$\Rightarrow y = -\frac{5}{6}$$
Sub $x = 1 \text{ into } (1) \Rightarrow y = \frac{5(1)+1}{6}$

$$\Rightarrow y = \frac{6}{6}$$

$$\Rightarrow y = \frac{1}{6}$$

$$\therefore \begin{cases} x = -\frac{6}{5} \\ y = -\frac{5}{6} \end{cases} or \begin{cases} x = 1 \\ y = 1 \end{cases}$$

9.

$$\begin{cases} x + 4y = 5 \\ 2x^2 + 21xy + 27y^2 = 0 \end{cases}$$

sol.

$$\begin{cases} x + 4y = 5 \\ 2x^2 + 21xy + 27y^2 = 0 \end{cases} \tag{1}$$

$$(1) \Rightarrow x = 5 - 4y$$

$$(3)$$
Sub (3) into (2) \Rightarrow 2 (5 - 4y)^2 + 21 (5 - 4y) y
$$+ 27y^2 = 0$$

$$\Rightarrow 2 (25 - 40y + 16y^2)$$

$$+ 105y - 84y^2 + 27y^2 = 0$$

$$\Rightarrow 50 - 80y + 32y^2 + 105y$$

$$- 57y^2 = 0$$

$$\Rightarrow 25y^2 - 25y - 50 = 0$$

$$\Rightarrow y^2 - y - 2$$

$$\Rightarrow (y + 1)(y - 2) = 0$$

$$\Rightarrow y = -1 \text{ or } y = 2$$
Sub $y = -1 \text{ into } (1) \Rightarrow x = 5 - 4(-1) = 9$
Sub $y = 2 \text{ into } (1) \Rightarrow x = 5 - 4(2) = -3$

$$\therefore \left\{ \begin{array}{l} x = 9 \\ y = -1 \end{array} \right. or \left\{ \begin{array}{l} x = -3 \\ y = 2 \end{array} \right.$$

10.

$$\begin{cases} \frac{x}{3} - \frac{y}{10} = \frac{5}{6} \\ x(y-2) = 2y + 3 \end{cases}$$

$$\begin{cases} \frac{x}{3} - \frac{y}{10} = \frac{5}{6} \\ x(y-2) = 2y+3 \end{cases}$$
 (1)

$$(1) \Rightarrow 10x - 3y = 25 \tag{3}$$

$$(2) \Rightarrow x = \frac{2y+3}{y-2} \tag{4}$$

Sub (4) int
$$3 \Rightarrow 10 \left(\frac{2y+3}{y-2}\right) - 3y = 25$$

$$\Rightarrow 10(2y+3) - 3y(y-2)$$

$$= 25(y-2)$$

$$\Rightarrow 20y + 30 - 3y^2 + 6y$$

$$= 25y - 50$$

$$\Rightarrow 3y^2 - y - 80 = 0$$

$$\Rightarrow (y+5)(3y-16) = 0$$

$$\Rightarrow y = -5 \text{ or } y = \frac{16}{3}$$
Sub $y = -5$ into (1) $\Rightarrow 10x - 3(-5) = 25$

$$\Rightarrow 10x + 15 = 25$$

$$\Rightarrow 10x = 10$$

Sub
$$y = \frac{16}{3}$$
 into (1) $\Rightarrow 10x - 3\left(\frac{16}{3}\right) = 25$
 $\Rightarrow 10x = 41$
 $\Rightarrow x = \frac{41}{10}$

$$\therefore \begin{cases} x = 1 \\ y = -5 \end{cases} or \begin{cases} x = \frac{41}{10} \\ y = \frac{16}{3} \end{cases}$$

13.2 **System of Equations with Three** Variables

13.2.1 Practice 2

Solve the system of equation

$$\begin{cases} x + 2y - z = -5 \\ 2x - y + z = 6 \\ x - y - 3z = -3 \end{cases}$$

sol.

$$\begin{cases} x + 2y - z = -5 \\ 2x - y + z = 6 \\ x - y - 3z = -3 \end{cases}$$
 (1)

$$(1) \times 3 \Rightarrow 3x + 6y - 3z = -15$$
 (4)

$$(2) \times 3 \Rightarrow 6x - 3y + 3z = 18$$
 (5)

$$(3) + (5) \Rightarrow 7x - 4y = 15$$
 (6)

$$(4) + (5) \Rightarrow 9x + 3y = 3 \tag{7}$$

$$(6) \times 3 \Rightarrow 21x - 12y = 45$$
 (8)

$$(7) \times 4 \Rightarrow 36x + 12y = 12$$
 (9)

$$(8) + (9) \Rightarrow 57x = 57$$

$$\Rightarrow x = 1$$
(10)

Sub
$$x = 1$$
 into $(7) \Rightarrow -4y = 8$

$$\Rightarrow v = -2$$

Sub
$$y = -2$$
 and $x = 1$ into $(1) \Rightarrow -z = -2$
 $\Rightarrow z = 2$

$$\therefore x = 1, y = -2, z = 2$$

13.2.2 Exercise 13.2

Solve the following system of equations.

1.

$$\begin{cases} x+y-z=1\\ 2x-3y+z=0\\ 2x+y+2z=5 \end{cases}$$

sol.

$$\begin{cases} x + y - z = 1 \\ 2x - 3y + z = 0 \\ 2x + y + 2z = 5 \end{cases}$$
 (1)

$$\begin{cases} 2x - 3y + z = 0 \end{cases} \tag{2}$$

$$2x + y + 2z = 5 (3)$$

$$(1) \times 2 \Rightarrow 2x + 2y - 2z = 2 \quad (4)$$

$$(4) - (3) \Rightarrow y - 4z = -3$$
 (5)

$$(3) - (2) \Rightarrow 4y + z = 5$$
 (6)

$$(5) \times 4 \Rightarrow 4y - 16z = -12 \tag{7}$$

$$(6) - (7) \Rightarrow 17z = 17$$

$$\Rightarrow z = 1$$

Sub
$$z = 1$$
 into $(5) \Rightarrow y = 1$

Sub
$$y = 1$$
 and $z = 1$ into $(1) \Rightarrow z = 1$

$$\therefore x = 1, y = 1, z = 1$$

2.

$$\begin{cases} x - 2y = 5 \\ 2x + y - 3z = 8 \\ x + 4y - z = 0 \end{cases}$$

$$\begin{cases} x - 2y = 5 \\ 2x + y - 3z = 8 \\ x + 4y - z = 0 \end{cases}$$
 (1)

$$(3) \times 3 \Rightarrow 3x + 12y - 3z = 0$$
 (4)

$$(4) - (2) \Rightarrow x + 11y = -8 \tag{5}$$

$$(5) - (1) \Rightarrow 13y = -13$$
$$\Rightarrow y = -1$$

Sub
$$y = -1$$
 into (1) $\Rightarrow x + 2 = 5$
 $\Rightarrow x = 3$

Sub
$$x = 3$$

and
$$y = -1$$
 into (2) $\Rightarrow -3z = 3$
 $\Rightarrow z = -1$

$$\therefore x = 3, y = -1, z = -1$$

3.

$$\begin{cases} x + y = z - 5 \\ y + z = x - 3 \\ z + x = y + 1 \end{cases}$$

sol.

$$\begin{cases} x + y = z - 5 \\ y + z = x - 3 \\ z + x = y + 1 \end{cases}$$
 (1)

$$(1) \Rightarrow x + y - z = -5 \tag{4}$$

$$(2) \Rightarrow -x + y + z = -3 \qquad (5)$$

$$(3) \Rightarrow x - y + z = 1 \tag{6}$$

$$(4) + (5) \Rightarrow 2y = -8$$
$$\Rightarrow y = -4$$
$$(5) + (6) \Rightarrow 2z = -2$$

Sub
$$y = -4$$

and
$$z = -1$$
 into (2) $\Rightarrow x - 3 = -5$
 $\Rightarrow x = -2$

$$\therefore x = -2, y = -4, z = -1$$

$$\begin{cases} x + 4y + 2z = 4 \\ 2x - 2y + z = 4 \\ x - 2y + 3z = 3 \end{cases}$$

sol.

$$\begin{cases} x + 4y + 2z = 4 \\ 2x - 2y + z = 4 \\ x - 2y + 3z = 3 \end{cases}$$
 (1)

$$x - 2y + 3z = 3 \tag{3}$$

$$(1) \times 2 \Rightarrow 2x + 8y + 4z = 8 \quad (4)$$

$$(3) \times 2 \Rightarrow 2x - 4y + 6z = 6 \quad (5)$$

$$(4) - (2) \Rightarrow 10y + 3z = 4 \tag{6}$$

$$(5) - (4) \Rightarrow -12y + 2z = -2$$
 (7)

$$(6) \times 2 \Rightarrow 20y + 6z = 8 \tag{8}$$

$$(7) \times 3 \Rightarrow -36y + 6z = -6$$
 (9)

$$(8) - (9) \Rightarrow 56y = 14$$

$$\Rightarrow y - \frac{1}{2}$$

Sub
$$y = \frac{1}{4}$$
 into (6) $\Rightarrow 6z = 3$
 $\Rightarrow z = \frac{1}{4}$

$$\Rightarrow y = \frac{1}{4}$$
Sub $y = \frac{1}{4}$ into $(6) \Rightarrow 6z = 3$

$$\Rightarrow z = \frac{1}{2}$$
Sub $y = \frac{1}{4}$ and $z = \frac{1}{2}$ into $(1) \Rightarrow x + 1 + 1 = 4$

$$\Rightarrow x = 2$$

$$\therefore x = 2, y = \frac{1}{4}, z = \frac{1}{2}$$

$$\begin{cases} x - y - z = 0 \\ 3x + 2y = 13 \\ y - 3z = -1 \end{cases}$$

$$\begin{cases} x - y - z = 0 \\ 3x + 2y = 13 \\ y - 3z = -1 \end{cases}$$
 (2)

$$(3) \Rightarrow y = 3z - 1 \tag{4}$$

Sub (4) into (1)
$$\Rightarrow x - (3z - 1) - z = 0$$

$$\Rightarrow x - 4z = -1 \tag{5}$$

Sub (4) into (2) \Rightarrow 3x + 2(3z - 1) = 13

$$\Rightarrow 3x + 6z = 15 \tag{6}$$

$$(5) \times 3 \Rightarrow 3x - 12z = -3 \tag{7}$$

$$(6) - (7) \Rightarrow 18z = 18$$
$$\Rightarrow z = 1$$

$$\Rightarrow z =$$

Sub
$$z = 1$$
 into $(4) \Rightarrow y = 2$

Sub
$$z = 1$$
 into $(5) \Rightarrow x - 4 = -1$

$$\Rightarrow x = 3$$

$$\therefore x = 3, y = 2, z = 1$$

6.

$$\begin{cases} 2x + 2y - z = -1 \\ x + 3y + z = -8 \\ 3x - 2y + 3z = 9 \end{cases}$$

sol.

$$\begin{cases} 2x + 2y - z = -1 & (1) \\ x + 3y + z = -8 & (2) \\ 3x - 2y + 3z = 9 & (3) \end{cases}$$

$$3x - 2y + 3z = 9 (3)$$

$$(1) \times 3 \Rightarrow 6x + 6y - 3z = -3$$
 (4)

$$(2) \times 3 \Rightarrow 3x + 9y + 3z = -24$$
 (5)

$$(3) + (4) \Rightarrow 9x + 4y = 6 \tag{6}$$

$$(4) + (5) \Rightarrow 9x + 15y = -27 \tag{7}$$

$$(7) - (6) \Rightarrow 11y = -33$$

$$\Rightarrow y = -3$$

Sub
$$y = -3$$
 into (6) $\Rightarrow 9x = 18$

$$\Rightarrow x = 2$$

Sub x = 2

and
$$y = -3$$
 into $(2) \Rightarrow -7 + z = -8$
 $\Rightarrow z = -1$

$$\therefore x = 2, y = -3, z = -1$$

7.

$$\begin{cases} \frac{3}{x} + \frac{1}{y} + \frac{4}{z} = 0\\ \frac{1}{x} + \frac{4}{y} - \frac{2}{z} = 4\\ \frac{2}{x} - \frac{3}{y} - \frac{1}{z} = -11 \end{cases}$$

sol.

$$\begin{cases} \frac{3}{x} + \frac{1}{y} + \frac{4}{z} = 0 \end{cases} \tag{1}$$

$$\begin{cases} \frac{1}{x} + \frac{4}{y} - \frac{2}{z} = 4 \end{cases} \tag{2}$$

$$\frac{2}{x} - \frac{3}{y} - \frac{1}{z} = -11\tag{3}$$

Let
$$u = \frac{1}{x}$$
, $v = \frac{1}{y}$, $w = \frac{1}{z}$

$$(1) \Rightarrow 3u + v + 4w = 0 \tag{4}$$

$$(2) \Rightarrow u + 4v - 2w = 4 \tag{5}$$

$$(3) \Rightarrow 2u - 3v - w = -11$$
 (6)

$$(5) \times 2 \Rightarrow 2u + 8v - 4w = 8 \tag{7}$$

$$(6) \times 4 \Rightarrow 8u - 12v - 4w = -44$$
 (8)

$$(4) + (7) \Rightarrow 5u + 9v = 8 \tag{9}$$

$$(4) + (8) \Rightarrow 11u - 11v = -44$$

$$\Rightarrow u - v = -4 \tag{10}$$

$$(10) \times 5 \Rightarrow 5u - 5v = -20 \tag{11}$$

$$(9) - (11) \Rightarrow 14v = 28$$

$$\Rightarrow v = 2$$
(12)

Sub
$$v = 2$$
 into (10) $\Rightarrow u = -2$

Sub
$$u = -2$$

and
$$v = 2$$
 into (4) $\Rightarrow -4 + 4w = 0$
 $\Rightarrow w = 1$

$$\therefore u = -2, v = 2, w = 1$$

$$\therefore x = -\frac{1}{2}, y = \frac{1}{2}, z = 1$$

Revision Exercise 13 13.3

Solve the following system of equations.

1.

$$\begin{cases} 3x + 4y = 24 \\ xy = 12 \end{cases}$$

$$\begin{cases} 3x + 4y = 24 & (1) \\ xy = 12 & (2) \end{cases}$$

$$xy = 12 \tag{2}$$

$$(2) \Rightarrow y = \frac{12}{x} \tag{3}$$

Sub (3) into (1)
$$\Rightarrow 3x + 4(\frac{12}{x}) = 24$$

 $\Rightarrow 3x^2 + 48 = 24x$
 $\Rightarrow x^2 - 8x + 16 = 0$
 $\Rightarrow (x - 4)^2 = 0$
 $\Rightarrow x = 4, x = -4$

Sub
$$x = 4$$
 into (3) $\Rightarrow y = \frac{12}{4} = 3$
Sub $x = -4$ into (3) $\Rightarrow y = \frac{12}{-4} = -3$

$$\therefore \begin{cases} x = 4 \\ y = 3 \end{cases} \text{ or } \begin{cases} x = -4 \\ y = -3 \end{cases}$$

$$\begin{cases} x + 2y = 5 \\ 5x^2 + 4y^2 + 12x = 29 \end{cases}$$

sol.

$$\begin{cases} x + 2y = 5 \\ 5x^2 + 4y^2 + 12x = 29 \end{cases}$$
 (1)

(1)
$$\Rightarrow x = 5 - 2y$$
 (3)
Sub (3) into (2) $\Rightarrow 5(5 - 2y)^2 + 4y^2$

$$\Rightarrow 5(25 - 20y + 4y^2) + 4y^2 + 60 - 24y = 29$$

$$\Rightarrow 125 - 100y + 20y^2 + 4y^2 + 60 - 24y = 29$$

+12(5-2y) = 29

$$+4y^{2} + 60 - 24y = 29$$
$$\Rightarrow 24y^{2} + 124y + 156 = 0$$

$$\Rightarrow 6v^2 + 31v + 39 = 0$$

$$\Rightarrow (y-3)(6y-13) = 0$$

$$\Rightarrow y = 3, y = \frac{13}{6}$$

Sub
$$y = 3$$
 into $(1) \Rightarrow x = 5 - 2(3) = -1$

Sub
$$y = \frac{13}{6}$$
 into (1) $\Rightarrow x = 5 - 2(\frac{13}{6}) = \frac{2}{3}$

$$\therefore \begin{cases} x = -1 \\ y = 3 \end{cases} \text{ or } \begin{cases} x = \frac{2}{3} \\ y = \frac{13}{6} \end{cases}$$

3.

$$\begin{cases} 2x + y = 7 \\ x^2 - xy + y^2 = 7 \end{cases}$$

sol.

$$\begin{cases} 2x + y = 7 \\ x^2 - xy + y^2 = 7 \end{cases} \tag{1}$$

$$x^2 - xy + y^2 = 7 (2)$$

$$(1) \Rightarrow y = 7 - 2x \tag{3}$$

$$+ (7 - 2x)^2 = 7$$

$$\Rightarrow x^2 - 7x + 2x^2 - 28x$$

$$+ 49 + 4x^2 = 7$$

$$\Rightarrow 7x^2 - 35x + 42 = 0$$

Sub (3) into (2) $\Rightarrow x^2 - x(7 - 2x)$

$$\Rightarrow x^2 - 5x + 6 = 0$$

$$\Rightarrow (x-2)(x-3) = 0$$
$$\Rightarrow x = 2, x = 3$$

Sub
$$x = 2$$
 into (3) $\Rightarrow y = 7 - 2(2) = 3$

Sub
$$x = 3$$
 into $(3) \Rightarrow y = 7 - 2(3) = 1$

$$\therefore \begin{cases} x = 2 \\ y = 3 \end{cases} \text{ or } \begin{cases} x = 3 \\ y = 1 \end{cases}$$

4.

$$\begin{cases} 2x + 3y = 7\\ x^2 + xy + y^2 = 7 \end{cases}$$

$$\begin{cases} 2x + 3y = 7 \\ x^2 + xy + y^2 = 7 \end{cases}$$
 (1)

$$(1) \Rightarrow y = \frac{7 - 2x}{3}$$
Sub (3) into (2) $\Rightarrow x^2 + x(\frac{7 - 2x}{3})$

$$+ (\frac{7 - 2x}{3})^2 = 7$$

$$\Rightarrow x^2 + \frac{7x - 2x^2}{3}$$

$$+ \frac{49 - 28x + 4x^2}{9} = 7$$

$$\Rightarrow 9x^2 + 21x - 6x^2 + 49$$

$$- 28x + 4x^2 = 63$$

$$\Rightarrow 7x^2 - 7x - 14 = 0$$

$$\Rightarrow x^2 - x - 2 = 0$$

$$\Rightarrow (x + 1)(x - 2) = 0$$

$$\Rightarrow x = -1, x = 2$$

Sub
$$x = -1$$
 into (3) $\Rightarrow y = \frac{7 - 2(-1)}{3} = 3$
Sub $x = 2$ into (3) $\Rightarrow y = \frac{7 - 2(2)}{3} = 1$

$$\therefore \begin{cases} x = -1 \\ y = 3 \end{cases} \text{ or } \begin{cases} x = 2 \\ y = 1 \end{cases}$$

$$\begin{cases} 4x - 3y + 2 = 0 \\ 2y + 5z - 19 = 0 \\ 5x - 7z + 16 = 0 \end{cases}$$

sol.

$$\begin{cases} 4x - 3y + 2 = 0 & (1) \\ 2y + 5z - 19 = 0 & (2) \\ 5x - 7z + 16 = 0 & (3) \end{cases}$$

$$5x - 7z + 16 = 0 (3)$$

$$(1) \times 2 \Rightarrow 8x - 6y + 4 = 0$$
 (4)

$$(2) \times 3 \Rightarrow 6y + 15z - 57 = 0 \tag{5}$$

$$(4) + (5) \Rightarrow 8x + 15z - 53 = 0 \tag{6}$$

$$(3) \times 8 \Rightarrow 40x - 56z + 128 = 0 \tag{7}$$

$$(6) \times 5 \Rightarrow 40x + 75z - 265 = 0$$
 (8)

$$(7) - (8) \Rightarrow -131z + 393 = 0$$

$$\Rightarrow 131z = 393$$

$$\Rightarrow z = 3$$

$$(9)$$

Sub
$$z = 3$$
 into $(8) \Rightarrow 40x + 75(3) - 265 = 0$
 $\Rightarrow 40x + 225 - 265 = 0$
 $\Rightarrow 40x - 40 = 0$
 $\Rightarrow x = 1$

Sub
$$z = 3$$
 into $(2) \Rightarrow 6y - 12 = 0$
 $\Rightarrow y = 2$

$$\therefore x = 1, y = 2, z = 3$$

6.

$$\begin{cases} x + y + z = 9 \\ 3x + y - 2z = 1 \\ x - 2y + z = 0 \end{cases}$$

$$\begin{cases} x + y + z = 9 \\ 3x + y - 2z = 1 \\ x - 2y + z = 0 \end{cases}$$
 (1)

$$(1) \Rightarrow x + z = 9 - y$$
Sub (4) into (3) $\Rightarrow 9 - y - 2y = 0$

$$\Rightarrow 3y = 9$$
(4)

$$\Rightarrow y = 3$$

Sub
$$y = 3$$
 into $(2) \Rightarrow 3x - 2z = -2$ (5)

Sub
$$y = 3$$
 into $(3) \Rightarrow x + z = 6$ (6)

$$(6) \times 2 \Rightarrow 2x + 2z = 12 \tag{7}$$

$$(5) + (7) \Rightarrow 5x = 10$$
$$\Rightarrow x = 2$$

Sub
$$x = 2$$
 into $(6) \Rightarrow z = 4$

$$\therefore x = 2, y = 3, z = 4$$

$$\begin{cases} 2x - 3y - z = 4 \\ 4x + y + 2z = 3 \\ x - 4y - 3z = 2 \end{cases}$$

sol.

$$\begin{cases} 2x - 3y - z = 4 \\ 4x + y + 2z = 3 \\ x - 4y - 3z = 2 \end{cases}$$
 (1)

$$\begin{cases} 4x + y + 2z = 3 \\ x - 4y - 3z = 2 \end{cases}$$
 (2)

$$(1) \times 2 \Rightarrow 4x - 6y - 2z = 8 \tag{4}$$

$$(3) \times 4 \Rightarrow 4x - 16y - 12z = 8 \tag{5}$$

$$(2) - (4) \Rightarrow 7y + 4z = -5 \tag{6}$$

$$(4) - (5) \Rightarrow 10y + 10z = 0$$
$$\Rightarrow y + z = 0$$

$$\Rightarrow y = -z$$

Sub
$$y = -z$$
 into (6) \Rightarrow 7($-z$) + 4 $z = -5$

$$\Rightarrow 3z = 5$$

$$\Rightarrow z = \frac{5}{3}$$

$$y = -z \Rightarrow y = -\frac{5}{3}$$

Sub
$$y = -\frac{5}{3}$$

and
$$z = \frac{5}{3}$$
 into (1) $\Rightarrow 2x - 3(-\frac{5}{3}) - \frac{5}{3} = 4$
 $\Rightarrow 2x - \frac{5}{3} = -1$
 $\Rightarrow 2x = \frac{2}{3}$
 $\Rightarrow x = \frac{1}{3}$

$$\therefore x = \frac{1}{3}, y = -\frac{5}{3}, z = \frac{5}{3}$$

8.

$$\begin{cases} \frac{3}{x+1} - \frac{1}{y+2} + \frac{1}{z-1} = 2\\ \frac{2}{x+1} - \frac{3}{y+2} - \frac{1}{z-1} = 7\\ \frac{1}{x+1} + \frac{1}{y+2} - \frac{4}{z-1} = 8 \end{cases}$$

$$\begin{cases} \frac{3}{x+1} - \frac{1}{y+2} + \frac{1}{z-1} = 2 \\ \frac{2}{x+1} - \frac{3}{y+2} - \frac{1}{z-1} = 7 \\ \frac{1}{x+1} + \frac{1}{y+2} - \frac{4}{z-1} = 8 \end{cases}$$
 (2)

$$\begin{cases} \frac{2}{x+1} - \frac{3}{y+2} - \frac{1}{z-1} = 7 \end{cases} \tag{2}$$

$$\left| \frac{1}{x+1} + \frac{1}{y+2} - \frac{4}{z-1} \right| = 8 \tag{3}$$

Let
$$u = \frac{1}{x+1}$$
, $v = \frac{1}{v+2}$, $w = \frac{1}{z-1}$

$$(1) \Rightarrow 3u - v + w = 2 \tag{4}$$

$$(2) \Rightarrow 2u - 3v - w = 7 \tag{5}$$

$$(3) \Rightarrow u + v - 4w = 8 \tag{6}$$

$$(4) \times 3 \Rightarrow 9u - 3v + 3w = 6$$
 (7)

$$(6) \times 3 \Rightarrow 3u + 3v - 12w = 24$$
 (8)

$$(5) + (8) \Rightarrow 5u - 13w = 31$$
 (9)

$$(7) + (8) \Rightarrow 12u - 9w = 30$$

$$\Rightarrow 4u - 3w = 10 \tag{10}$$

$$(9) \times 4 \Rightarrow 20u - 52w = 124$$
 (11)

$$(10) \times 5 \Rightarrow 20u - 15w = 50$$
 (12)

$$(12) - (11) \Rightarrow 37w = -74 \tag{13}$$

$$\Rightarrow w = -2$$

Sub
$$w = -2$$
 into (10) $\Rightarrow 4u = 4$
 $\Rightarrow u = 1$

Sub
$$u = 1$$

and
$$w = -2$$
 into (6) $\Rightarrow 9 + v = 8$
 $\Rightarrow v = -1$

$$\therefore u = 1, v = -1, w = -2$$

$$\therefore x = 0, y = -3, z = \frac{1}{2}$$

Chapter 14

Marix and Determinant

14.1 Matrix

Definition of Matrix

A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. It is generally denoted as:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

where m is the number of rows and n is the number of columns.

Each number in the matrix is called *an entry of the matrix*, the number in the i^{th} row and j^{th} column is denoted as a_{ij} . Thus, a matrix can also be denoted as $A = (a_{ij})$, or $A = (a_{ij})_{mn}$ where m is the number of rows and n is the number of columns.

A matrix with m rows and n columns is called an $m \times n$ matrix, where $m \times n$ is called the *order of the matrix*. For

example, the following matrix is a 3×4 matrix:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$$

When m = n, the matrix is called a *square matrix*. For example, the following matrix is a **third-order square matrix**:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

When m = 1, the matrix is called a *row matrix*. For example, the following matrix is a **row matrix**:

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

When n = 1, the matrix is called a *column matrix*. For example, the following matrix is a **column matrix**:

$$A = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

Equal Matrices

Two matrices A and B are equal if they have the same order and the same entries. That is, A = B if and only if $A_{ij} = B_{ij}$ for all i and j.

Zero Matrix

The matrix with all entries equal to zero is called the *zero* matrix and is denoted as O. Zero matrix can be in any order. For exmaple, the matrix below is a 2×2 zero matrix or a second-order square zero matrix:

$$O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Identity Matrix

The matrix with all entries equal to zero except the entries on the main diagonal, which are equal to one, is called the *identity matrix* and is denoted as I. Identity matrix can be in any order. The form of an identity matrix is:

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Transpose Matrix

The transpose of a matrix A is denoted as A', A^{I} or A^{T} and is obtained by interchanging the rows and columns of A. For example, given the matrix:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

The transpose of A is:

$$A' = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

Thus, we know that the transpose matrix of $m \times n$ matrix is a $n \times m$ matrix.

14.1.1 Exercise 14.1

1. State the order of the following matrices.

(a)
$$A = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

sol. A is a matrix with order 3×1 .

(b)
$$B = \begin{pmatrix} 2 & 1 & 3 & 0 \\ 4 & 2 & 1 & 5 \end{pmatrix}$$

sol. B is a matrix with order 2×4

(c)
$$C = \begin{pmatrix} 3 & 2 & 1 \\ 4 & 3 & 0 \\ 2 & 1 & -1 \end{pmatrix}$$

sol. C is a matrix with order 3×3 .

2. Given
$$A = \begin{pmatrix} 1 & 5 & -2 & 4 \\ 2 & -4 & 3 & 1 \\ 0 & 6 & 4 & 7 \end{pmatrix}$$
, what is a_{23} and a_{34} ?
sol. $a_{23} = 3$ and $a_{34} = 7$.

3. If
$$\begin{pmatrix} 2 & 0 \\ 1 & -4 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 1 & x \end{pmatrix}$$
, what is x ?

14.2 Matrix Addition and Substraction

Given two matrices A and B of the same order, the sum of A and B is defined as the matrix A + B whose (i, j)-th entry is the sum of the (i, j)-th entries of A and B. That is:

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

The difference of A and B is defined as the matrix A - B whose (i, j)-th entry is the difference of the (i, j)-th entries of A and B. That is:

$$A - B = \begin{pmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \cdots & a_{1n} - b_{1n} \\ a_{21} - b_{21} & a_{22} - b_{22} & \cdots & a_{2n} - b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} - b_{m1} & a_{m2} - b_{m2} & \cdots & a_{mn} - b_{mn} \end{pmatrix}$$

Note that the order of *A* and *B* must be the same. For example, the following metrices cannot be added or subtracted:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

The addition of matrices has the following properties:

- Commutative: A + B = B + A.
- Associative: (A + B) + C = A + (B + C).
- Identity: $A \pm O = A$.
- Inverse: A + (-A) = O.
- Transpose: $(A \pm B)' = A' \pm B'$.

where A, B, C are matrices of the same order and O is the zero matrix of the same order as A.

Given a matrix A, if A = A', then A is called a *symmetric matrix*. If A = -A', then A is called an *antisymmetric matrix*.

For any given matrix A, A + A' is symmetric, and A - A' is antisymmetric.

14.2.1 Practice 1

Let
$$A = \begin{pmatrix} -4 & 2 & -7 \\ 5 & 4 & 0 \\ 3 & -2 & -3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & -5 \\ 4 & -1 & 1 \end{pmatrix}$. Find the following:

1. A + B'. sol.

$$B' = \begin{pmatrix} 1 & 3 & 4 \\ 3 & 1 & -1 \\ 2 & -5 & 1 \end{pmatrix}$$

$$A + B' = \begin{pmatrix} -3 & 5 & -3 \\ 8 & 5 & -1 \\ 5 & -7 & -2 \end{pmatrix}$$

2. (A-B)' sol.

$$A - B = \begin{pmatrix} -5 & -1 & -9 \\ 2 & 3 & 5 \\ -1 & -1 & -4 \end{pmatrix}$$

$$(A-B)' = \begin{pmatrix} -5 & 2 & -1 \\ -1 & 3 & -1 \\ -9 & 5 & -4 \end{pmatrix}$$

14.2.2 Exercise 14.2

Let $P = \begin{pmatrix} -5 & 4 & 2 \\ 6 & -4 & 3 \\ -2 & 1 & 6 \end{pmatrix}$ and $Q = \begin{pmatrix} 1 & -2 & 0 \\ 3 & 2 & 1 \\ 0 & 0 & 4 \end{pmatrix}$. Evaluate the following:

1. (P+Q)' sol.

$$P + Q = \begin{pmatrix} -4 & 2 & 2\\ 9 & -2 & 4\\ -2 & 1 & 10 \end{pmatrix}$$

$$\therefore (P+Q)' = \begin{pmatrix} -4 & 9 & -2 \\ 2 & -2 & 1 \\ 2 & 4 & 10 \end{pmatrix}$$

2. Q' - P'

$$Q - P = \begin{pmatrix} 6 & -6 & 2 \\ -3 & 6 & -2 \\ 2 & -1 & -2 \end{pmatrix}$$

$$\therefore Q' - P' = (Q - P)' = \begin{pmatrix} 6 & -3 & 2 \\ -6 & 6 & -1 \\ 2 & -2 & -2 \end{pmatrix}$$

3.
$$(P' - Q)$$

$$P' = \begin{pmatrix} -5 & 6 & -2\\ 4 & -4 & 1\\ 2 & 3 & 6 \end{pmatrix}$$

$$P' - Q = \begin{pmatrix} -6 & 8 & -2\\ 1 & -6 & 0\\ 2 & 3 & 2 \end{pmatrix}$$

$$\therefore (P' - Q)' = \begin{pmatrix} -6 & 1 & 2 \\ 8 & -6 & 3 \\ -2 & 0 & 2 \end{pmatrix}$$

4. P' - (I - Q)' sol.

$$P' - (I - Q)' = P' - I' + Q'$$

= $(P + Q)' - I'$
= $(P + Q - I)'$

$$P + Q - I = \begin{pmatrix} -4 & 2 & 2 \\ 9 & -2 & 4 \\ -2 & 1 & 10 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -5 & 2 & 2\\ 9 & -3 & 4\\ -2 & 1 & 9 \end{pmatrix}$$

$$\therefore P' - (I - Q)' = (P + Q - I)'$$

$$= \begin{pmatrix} -5 & 9 & -2 \\ 2 & -3 & 1 \\ 2 & 4 & 9 \end{pmatrix}$$

14.3 Scalar Product of Matrices

Let $A = (a_{ij})_{m \times n}$ be an $m \times n$ matrix, k be any real number, then $kA = (ka_{ij})_{m \times n}$. This is called scalar product of a matrix A and scalar k. For example:

$$k \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} k & 2k & 3k \\ 4k & 5k & 6k \end{pmatrix}$$

The scalar product of a matrix has the following properties:

- r(A+B) = rA + sB
- $\bullet \ (r+s)A = rA + sA$
- $\bullet (rs)A = r(sA)$