Álgebra I Práctica 3 - Combinatoria de Conjuntos, Relaciones y Funciones

Cardinal de conjuntos y cantidad de relaciones y funciones

- 1. Dado el conjunto referencial $V = \{n \in \mathbb{N} : n \text{ es múltiplo de 15}\}$, determinar el cardinal del complemento del subconjunto A de V definido por $A = \{n \in V : n \ge 132\}$.
- 2. ¿Cuńtos números naturales hay menores o iguales que 1000 que no son ni múltiplos de 3 ni múltiplos de 5?
- 3. Dados subconjuntos finitos A, B, C de un conjunto referencial V, calcular $\#(A \cup B \cup C)$ en términos de los cardinales de A, B, C y sus intersecciones.
- 4. (a) En el listado de inscripciones de un grupo de 150 estudiantes, figuran 83 inscripciones en Análisis y 67 en Álgebra. Además se sabe que 45 de los estudiantes se anotaron en ambas materias. ¿Cuántos de los estudiantes no están inscriptos en ningún curso?
 - (b) En un instituto de idiomas donde hay 110 alumnos, las clases de inglés tienen 63 inscriptos, las de alemán 30 y las de francés 50. Se sabe que 7 alumnos estudian los tres idiomas, 30 solo estudian inglés, 13 solo estudian alemán y 25 solo estudian francés. ¿Cuántos alumnos estudian exactamente dos idiomas? ¿Cuántos inglés y alemán pero no francés? ¿Cuántos no estudian ninguno de esos idiomas?
- 5. Si hay 3 rutas distintas para ir de Buenos Aires a Rosario, 4 rutas distintas para ir de Rosario a Santa Fe, y 2 para ir de Santa Fe a Reconquista ¿cuántos formas distintas hay para ir de Buenos Aires a Reconquista pasando por las dos ciudades intermedias?
- 6. (a) ¿Cuántos números de exactamente 4 cifras (no pueden empezar con 0) hay que no contienen al dígito 5?
 - (b) ¿Cuúntos números de exactamente 4 cifras hay que contienen al dígito 7?
- 7. María tiene una colección de 17 libros distintos que quiere guardar en 3 cajas: una roja, una amarilla y una azul. ¿De cuántas maneras distintas puede distribuir los libros en las cajas?
- 8. Un estudiante puede elegir qué cursar entre 5 materias que se dictan este cuatrimestre. ¿De cuántas maneras distintas puede elegir qué materias cursar, incluyendo como posibilidad no cursar ninguna materia? ¿Y si tiene que cursar al menos dos materias?
- 9. Si A es un conjunto con n elementos ¿Cuántas relaciones en A hay? ¿Cuántas de ellas son reflexivas? ¿Cuántas de ellas son simétricas? ¿Cuántas de ellas son reflexivas y simétricas?
- 10. Sean $A = \{1, 2, 3, 4, 5\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Sea \mathcal{F} el conjunto de todas las funciones $f: A \to B$.
 - (a) ¿Cuántos elementos tiene el conjunto \mathcal{F} ?
 - (b) ¿Cuántos elementos tiene el conjunto $\{f \in \mathcal{F} : 10 \notin \text{Im}(f)\}$?
 - (c) ¿Cuántos elementos tiene el conjunto $\{f \in \mathcal{F} : 10 \in \text{Im}(f)\}$?
 - (d) ¿Cuántos elementos tiene el conjunto $\{f \in \mathcal{F}: f(1) \in \{2,4,6\}\}$?
- 11. Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{8, 9, 10, 11, 12, 13, 14\}$.
 - (a) ¿Cuántas funciones biyectivas $f: A \to B$ hay?

- (b) ¿Cuántas funciones biyectivas $f: A \to B$ hay tales que $f(\{1,2,3\}) = \{12,13,14\}$?
- 12. ¿Cuántos números de 5 cifras distintas se pueden armar usando los dígitos del 1 al 5? ¿Y usando los dígitos del 1 al 7? ¿Y usando los dígitos del 1 al 7 de manera que el dígito de las centenas no sea el 2?
- 13. Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
 - (a) ¿Cuántas funciones inyectivas $f: A \to B$ hay?
 - (b) ¿Cuántas de ellas son tales que f(1) es par? ¿Y cuántas tales que f(1) y f(2) son pares?
- 14. ¿Cuántas funciones biyectivas $f: \{1, 2, 3, 4, 5, 6, 7\} \rightarrow \{1, 2, 3, 4, 5, 6, 7\}$ tales que $f(\{1, 2, 3\}) \subseteq$ $\{3, 4, 5, 6, 7\}$ hay?
- 15. Sea $A = \{f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8\} \text{ tal que } f \text{ es una función inyectiva}\}.$ Sea \mathcal{R} la relación de equivalencia en A definida por:

$$f \mathcal{R} g \iff f(1) + f(2) = g(1) + g(2).$$

Sea $f \in A$ la función definida por f(n) = n + 2. ¿Cuántos elementos tiene su clase de equivalencia?

- 16. Determinar cuántas funciones $f:\{1,2,3,\ldots,8\}\to\{1,2,3,\ldots,12\}$ satisfacen simultáneamente las condiciones:
 - f es inyectiva,
- f(5) + f(6) = 6,
- f(1) < 6.

Número combinatorio

- 17. (a) ¿Cuántos subconjuntos de 4 elementos tiene el conjunto {1, 2, 3, 4, 5, 6, 7}?
 - (b) ¿Y si se pide que 1 pertenezca al subconjunto?
 - (c) ¿Y si se pide que 1 no pertenezca al subconjunto?
 - (d) ¿Y si se pide que 1 o 2 pertenezcan al subconjunto pero no simultáneamente los dos?
- 18. Sea $A = \{n \in \mathbb{N} : n \leq 20\}$. Calcular la cantidad de subconjuntos $B \subseteq A$ que cumplen las siguientes condiciones:
 - (a) B tiene 10 elementos y contiene exactamente 4 múltiplos de 3.
 - (b) B tiene 5 elementos y no hay dos elementos de B cuya suma sea impar.
- 19. Dadas dos rectas paralelas en el plano, se marcan n puntos distintos sobre una y m puntos distintos sobre la otra. ¿Cuántos triángulos se pueden formar con vértices en esos puntos?
- 20. Determinar cuántas funciones $f:\{1,2,3,\ldots,11\}\to\{1,2,3,\ldots,16\}$ satisfacen simultáneamente las condiciones:
 - f es invectiva,
- Si n es par, f(n) es par, f(1) < f(3) < f(5) < f(7).
- 21. ¿Cuántos anagramas tienen las palabras estudio, elementos y combinatorio?
- 22. ¿Cuántas palabras se pueden formar permutando las letras de cuadros
 - (a) con la condición de que todas las vocales estén juntas?
 - (b) con la condición de que las consonantes mantengan el orden relativo original?
 - (c) con la condición de que nunca haya dos (o más) consonantes juntas?

- 23. Con la palabra polinomios,
 - (a) ¿Cuántos anagramas pueden formarse en los que las dos letras i no estén juntas?
 - (b) ¿Cuántos anagramas pueden formarse en los que la letra n aparezca a la izquierda de la letra s y la letra s aparezca a la izquierda de la letra p (no necesariamente una al lado de la otra)?
- 24. Pedro compró 14 unidades de fruta: 6 duraznos, 2 naranjas, 1 banana, 1 pera, 1 higo, 1 kiwi, 1 ciruela y 1 mandarina. Su propósito es comer una fruta en cada desayuno y merienda. Determinar de cuántas formas puede organizar sus refrigerios de esa semana si no quiere consumir más de una naranja por día.
- 25. Un grupo de 15 amigos organiza un asado en un club al que llegarán en 3 autos distintos (4 por auto) y 3 irán caminando. Sabiendo que solo importa en qué auto están o si van caminando, determinar de cuántas formas pueden viajar si se debe cumplir que al menos uno entre Lucía, María y Diego debe ir en auto, y que Juan y Nicolás tienen que viajar en el mismo auto.
- 26. Probar que $\binom{2n}{n} > n 2^n, \ \forall n \ge 4.$
- 27. Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión definida por

$$a_1 = 2$$
 y $a_{n+1} = 4a_n - 2\frac{(2n)!}{(n+1)! \, n!}$ $(n \in \mathbb{N})$

Probar que $a_n = \binom{2n}{n}$.

- 28. En este ejercicio no hace falta usar inducción.
 - (a) Probar que $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$ (sug: $\binom{n}{k} = \binom{n}{n-k}$).
 - (b) Probar que $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$
 - (c) Probar que $\sum_{k=0}^{2n} \binom{2n}{k} = 4^n$ y deducir que $\binom{2n}{n} < 4^n$.
 - (d) Calcular $\sum_{k=0}^{2n+1} {2n+1 \choose k}$ y deducir $\sum_{k=0}^{n} {2n+1 \choose k}$.
- 29. Sea $X = \{1, 2, \dots, 20\}$, y sea \mathcal{R} la relación de orden en $\mathcal{P}(X)$ definida por:

$$A \mathcal{R} B \iff A - B = \emptyset$$

¿Cuántos conjuntos $A \in \mathcal{P}(X)$ cumplen simultáneamente $\#A \geq 2$ y $A \mathcal{R} \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$?

30. Sea $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, y sea \mathcal{R} la relación de equivalencia en $\mathcal{P}(X)$ definida por:

$$A \mathcal{R} B \iff A \cap \{1, 2, 3\} = B \cap \{1, 2, 3\}.$$

¿Cuántos conjuntos $B \in \mathcal{P}(X)$ de exactamente 5 elementos tiene la clase de equivalencia \overline{A} de $A = \{1, 3, 5\}$?

31. Sean $X = \{n \in \mathbb{N} : n \leq 100\}$ y $A = \{1\}$ ¿Cuántos subconjuntos $B \subseteq X$ satisfacen que el conjunto $A\Delta B$ tiene a lo sumo 2 elementos?

- 32. (a) Sea A un conjunto con 2n elementos. ¿Cuántas relaciones de equivalencia pueden definirse en A que cumplan la condición de que para todo $a \in A$ la clase de equivalencia de a tenga n elementos?
 - (b) Sea A un conjunto con 3n elementos. ¿Cuántas relaciones de equivalencia pueden definirse en A que cumplan la condición de que para todo $a \in A$ la clase de equivalencia de a tenga n elementos?