Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	1. (Currently amended): A reconfigurable secure keyboard console to
2	encrypt a keystroke, comprising:
3	a plurality of physical keys;
4	a reconfigurable first memory to store an encryption key;
5	a reconfigurable second memory to store at least one transformation instruction;
6	a reconfigurable third memory; and
7	a keyboard processor including a standard lookup table containing a plurality of
8	codes and a plurality of values, each of the plurality of codes and the plurality of values
9	corresponding to one of a plurality of potential keyboard inputs,
10	wherein the keyboard processor retrieves the at least one transformation
11	instruction,
12	executes the at least one transformation instruction,
13	creates a transformed lookup table containing the plurality of values and a
14	plurality of transformed codes, each of the plurality of values and the plurality of
15,	transformed codes corresponding to one of the plurality of potential keyboard inputs,
16	stores the transformed lookup table in the third reconfigurable memory,
17	receives actual keyboard input corresponding to one of the plurality of
18	potential keyboard inputs and finds an actual value corresponding to one of the plurality
19	of potential keyboard inputs;
20	matches the actual value with one of the plurality of values in the
21	transformed lookup table; and
22	outputs a transformed code from the plurality of transformed codes
23	corresponding to the actual value.

2.

1

2	wherein the first reconfigurable memory and the second reconfigurable memory are both located
3	in the same physical memory device.
1	3. (Original): The reconfigurable secure keyboard console of claim 1,
2	wherein the first reconfigurable memory, the second reconfigurable memory and the third
3	reconfigurable memory are located in the same physical memory device.
1	4. (Original): The reconfigurable secure keyboard console of claim 1,
2	further including a transaction card reader.
1	5. (Original): The reconfigurable secure keyboard console of claim 4,
2	wherein the transaction card reader is a smart card reader.
1	6. (Original): The reconfigurable secure keyboard console of claim 5,
2	wherein a subscriber identity module (SIM) is plugged into the smart card reader
1	7. (Original): The reconfigurable secure keyboard console of claim 4,
2	wherein the transaction card reader is a bar code reader.
1	8. (Original): The reconfigurable secure keyboard console of claim 4,
2	wherein the transaction card reader is a biometric reader.
1	9. (Original): The reconfigurable secure keyboard console of claim 4,
2	wherein the transaction card reader is a memory card reader.
1	10. (Currently amended): A computing device, comprising:
2	a central processing unit (CPU);
3	a keyboard controller to receive encrypted data from the reconfigurable secure
4	keyboard console; and
5	a reconfigurable secure keyboard console to transmit encrypted data to the
6	keyboard controller including,

(Original): The reconfigurable secure keyboard console of claim 1,

7	a plurality of physical keys,
8	a reconfigurable first memory to store an encryption key,
9	a reconfigurable second memory to store at least one transformation
10	instruction,
11	a reconfigurable third memory, and
12	a keyboard processor including a standard lookup table containing a
13	plurality of codes and a plurality of values, each of the plurality of codes and the plurality
14	of values corresponding to one of a plurality of potential keyboard inputs,
15	wherein the keyboard processor retrieves the at least one transformation
16	instruction,
17	executes the at least one transformation instruction,
18	creates a transformed lookup table containing the plurality of values and a
19	plurality of transformed codes, each of the plurality of values and the plurality of
20	transformed codes corresponding to one of the plurality of potential keyboard inputs,
21	stores the transformed lookup table in the third reconfigurable memory,
22	receives actual keyboard input corresponding to one of the plurality of
23	potential keyboard inputs and finds an actual value corresponding to one of the plurality
24	of potential keyboard inputs,
25	matches the actual value with one of the plurality of values in the
26	transformed lookup table, and
27	outputs a transformed code from the plurality of transformed codes
28	corresponding to the actual value.
1	11. (Currently amended): A secure computing system, comprising:
2	a global network;
3	a first computing device to communicate securely with a second computing
4	device over the global network, including
5	a first central processing unit to receive encrypted information from the global
6	network and to transmit encrypted information to the global network,

. 7	a reconfigurable secure keyboard console to transmit encrypted information and
8	to receive encrypted information from the keyboard controller including
9	a plurality of physical keys,
10	a reconfigurable first memory to store an encryption key,
11	a reconfigurable second memory to store at least one transformation
12	instruction,
13	a reconfigurable third memory, and
14	a keyboard processor including a standard lookup table containing a
15	plurality of codes and a plurality of values, each of the plurality of codes and the plurality
16	of values corresponding to one of a plurality of potential keyboard inputs,
17	wherein the keyboard processor retrieves the at least one transformation
18	instruction,
19	executes the at least one transformation instruction,
20	creates a transformed lookup table containing the plurality of values and a
21	plurality of transformed codes, each of the plurality of values and the plurality of
22	transformed codes corresponding to one of the plurality of potential keyboard inputs,
23	stores the transformed lookup table in the third reconfigurable memory,
24	receives actual keyboard input corresponding to one of the plurality of
25	potential keyboard inputs and finds an actual value corresponding to one of the plurality
26	of potential keyboard inputs,
27	matches the actual value with one of the plurality of values in the
28	transformed lookup table, and
29	outputs a transformed code from the plurality of transformed codes
30	corresponding to the actual value, and
31	a keyboard controller to receive encrypted information from the secure
32	keyboard console and to output encrypted information to the first central processing unit,
33	and the second computing device communicates securely with the first computing device
34	and includes

35	a central processing unit to receive encrypted information from the global
36	network, transmit encrypted information to the global network, generate at least one
37	transformation instruction, and
38	an encryption engine to generate encrypted information.
1	12. (Original): A method of encrypting keyboard input of a reconfigurable
2	secure keyboard console, comprising:
3	receiving an encryption key and at least one transformation instruction from a
4	computing device;
5	storing the encryption key in a reconfigurable first memory;
6	storing the at least one transformation instruction in a reconfigurable second
7	memory;
8	utilizing the at least one transformation instruction to create a plurality of
9	transformed codes, each of the plurality of encrypted transformed corresponding to one of a
10	plurality of potential keyboard inputs from the reconfigurable secure keyboard console;
11	storing the plurality of transformed codes along with a plurality of values in a
12	transformed lookup table, wherein the plurality of values corresponds to each of the plurality of
13	potential keyboard inputs;
14	receiving an actual keyboard input;
15	matching the actual keyboard input with one of the plurality of the potential
16	keyboard inputs to create a matching value; and
17	outputting a transformed code from the transformed lookup table corresponding to
18	the matching value.
1	13. (Original): A program code storage device, comprising:
. 2	a machine-readable storage medium; and
3	machine-readable program code, stored on the machine-readable storage medium,
4	the machine-readable program code having instructions to
5	receive an encryption key and at least one transformation from a
6	computing device;

7	store the encryption key in a first reconfigurable memory; store the at least
8	one transformation instruction in a reconfigurable second memory;
9	utilize the at least one transformation instruction to create a plurality of
10	transformed codes, each of the plurality of encrypted transformed corresponding to one
11	of a plurality of potential keyboard inputs from a reconfigurable secure keyboard console;
12	store the plurality of transformed codes along with a plurality of values in
13	a transformed lookup table, wherein the plurality of values corresponds to each of the
14	plurality of potential keyboard inputs;
15	receive an actual keyboard input;
16	match the actual keyboard input with one of the plurality of the values
17	which correspond to each of the potential keyboard inputs to create a matching value; and
18	output a transformed code from the transformed lookup table
19	corresponding to the matching value.