Review of Basic Statistical Procedures

Basic Statistical Inference

Let X_1, \dots, X_n be a random sample with pdf $f(\theta)$, where either f or θ or both may be unknown.

Inference:

Estimation

Hypothesis
 Testing

Approaches:

Frequentist

Bayesian

Parameter Estimation

The Maximum Likelihood Method

Let X, \dots, X_n be a random sample from $f(x, \theta)$. The *likelihood function* of θ is defined to be

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta)$$

Under regularity conditions, $\hat{\theta}$, the MLE, is approximately normal, with mean θ and variance $\frac{1}{nI(\theta)}$, where

$$I(\theta) = E \left[\frac{\partial}{\partial \theta} \log f(x, \theta) \right]^2$$

• The Method of Moments

Define the k'th moment of $f(x, \theta)$ as $\mu_k = E[X^k]$.

The corresponding sample moments are given as

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Let $\theta_j = h_j(\mu_1, \dots, \mu_s)$ be parameters of interest.

The method of moments estimates of θ_j

$$\hat{\theta}_j = h_j(\hat{\mu}_1, \cdots \hat{\mu}_s)$$

Unbiasedness

An estimator $\hat{\theta}$ is said to be unbiased if $E[\hat{\theta}] = \theta$.

An estimator is said to be uniformly minimum variance unbiased (UMVU) if it has the smallest variance in the class of unbiased estimators uniformly in θ .

Consistency

An estimator $\hat{\theta}_n$ of θ is said to be *consistent* if it approaches θ for large n. More formally, for any $\epsilon > 0$,

$$Pr[\mid \hat{\theta}_n - \theta \mid > \epsilon] \to 0, \ n \to \infty$$

Method of moments estimators and most mle's are consistent.

Efficiency

Let $\tilde{\theta}$ and $\hat{\theta}$ be possible estimates of θ . The efficiency of $\hat{\theta}$ relative to $\tilde{\theta}$ is defined to be

$$\epsilon(\hat{\theta}, \tilde{\theta}) = \frac{Var(\tilde{\theta})}{Var(\hat{\theta})}$$

Cramer-Rao Inequality. Let X_1, \dots, X_n be i.i.d. with p.d.f. $f(x; \theta)$. Let $T = T(X, \dots, X_n)$ be an unbiased estimator of θ . Then under regularity conditions

$$Var(T) \ge \frac{1}{nI(\theta)}$$

An unbiased estimator whose variance attains the lower bound is said to be efficient.

Sufficiency

A statistic $T = T(X_1, \dots, X_n)$ is said to be sufficient for θ if the conditional distribution of the sample given T = t is independent of θ , i.e., T contains all the information about θ .

A necessary and sufficient condition for T to be sufficient for θ is given by the factorization theorem.

$$f(x_1, \dots, x_n; \theta) = g[T, \theta]h(x_1, \dots, x_n)$$

If there is a sufficient statistic for θ then the mle is also a function of T

Rao-Blackwell Theorem. Let θ be an etsimator of θ , with $E[\hat{\theta}^2] < \infty$, and put $\tilde{\theta} = E[\hat{\theta} \mid T]$. Then

$$E(\tilde{\theta} - \theta)^2 \le E(\hat{\theta} - \theta)^2$$

with strict equality when $\tilde{\theta} = \hat{\theta}$.

In complete families of distributions, if there is an unbiased estimator that is a function of the sufficient statistic, then one should look no further, i.e., that estimator is the unique unbiased minimum variance estimator.

Lehmann-Scheffe theorm.

Hypothesis Testing

Suppose we are interested in determining whether $\theta \in \Theta_1$ versus $\theta \in \Theta_2$, where Θ_1 and Θ_2 are disjoint subsets of the parameter space.

Suppose X_1, \dots, X_n is a random sample from $f(x, \theta)$, the hypotheses may be written as

 $H_0: \theta \epsilon \Theta_0$

 $H_1: \theta \epsilon \Theta_1.$

Type I error occurs when H_o is falsely rejected
 Type II: When H_o is not rejected when it should be.

The probability of Type I error is known as level of significance.

Suppose H_0 specifies that the pdf of the data is $f_o(x)$, and H_1 claims $f_1(x)$.

Neyman-Pearson Lemma. Let ϕ^* be a test that accepts when

$$rac{f_{\phi}(x)}{f_{1}(x)}>c$$

with significance level α^* . Let ϕ be another test of level $\alpha \leq \alpha^*$. Then the power of ϕ^* is greater than or equal to that of ϕ .

For testing composite hypotheses, $H_o: \theta \epsilon \Theta_o$ vs $H_1: \theta \epsilon \Theta_1$, the generalized likelihood ratio tests may be constructed:

$$\Lambda = \frac{\sup_{\theta \in \Theta_{\mathbf{o}}}[L(\theta)]}{\sup_{\theta \in \Theta_{\mathbf{1}}}[L(\theta)]}$$

where Θ_0 and Θ_1 are partitions of the parameter space Θ .

In application, one uses the following formulation

$$\Lambda = \frac{\sup_{\theta \in \Theta_o} [L(\theta)]}{\sup_{\theta \in \Theta} [L(\theta)]}$$

The likelihood ratio test rejects for small values of Λ , or large values of $-log\Lambda$.

Given a test statistic $T = T(X_1, \dots, X_n; \theta_o)$, and the observed value t_{obs} , the p-value is defined as the probability of observing a value of T as extreme as or more extreme than t_{obs} . Small p-values are evidence against H_o .

Confidence Intervals

Let $L = L(X_1, \dots, X_n)$ and $U = U(X_1, \dots, X_n)$ be statistics, such that $Pr[L \le \theta \le U] = 1-\alpha$. Then the interval [L, U] is called a $100(1-\alpha)\%$ confidence interval for θ .

Assumptions of Classical Statistical Inference

- Independence
- Normality (or other specified distribution)

Validation of Assumptions:

- Histograms, qqnorm, etc., for normality
- Box-plots, stem-and-leaf diagrams for outlier detection
- Simple time series plot for serial correlations: including trends and cycles.

When distribution of data skewed, confidence intervals tend to be large, on the average, and p-values may be inflated.

Nonparametric methods do not make explicit assumptions about underlying distributions.

Most commonly used nonparametric methods are based on rank transformations of the observations.

Example: Cedar-apple rust data:

- Disease that affects apple trees, with symptom, rust-colored spots on apple leaves. Study conducted to study cause.
- In the first year of experiment the number of affected leaves on a random sample of 8 trees was counted on Variety 1.
- Normally, the average number of affected leaves is at most 25.

Data:

Tree	Count	
1	38	
2	10	
3	84	
4	36	
5	50	
6	35	
7	73	
8	48	

Does the data suggest the apple trees are affected?

Standard Tests for Location

One-Sample Problem

Let X_1, \dots, X_n be a random sample from a distribution with meand μ and variance σ^2 . We wish to test the hypothesis

$$H_0: \mu = \mu_o$$

VS.

$$H_1: \mu > \mu_o$$

When the distribution is normal, and σ^2 un-known (the usual case), a procedure that is commonly used is the Student's t-test, given by

$$T = \frac{\sqrt{n}(\bar{X} - \mu_o)}{S}$$

which under the null has a t_{n-1} distribution.

Example: Cedar-apple rust data:

> variety1
[1] 38 10 84 36 50 35 73 48

> t.test(variety1,mu=25)

One Sample t-test

data: variety1

t = 2.651, df = 7, p-value = 0.03289

alternative hypothesis: true mean is not equal to 25

95 percent confidence interval:

27.34963 66.15037

sample estimates:

mean of x: 46.75

If EDA shows that the data is non-normal, then the Wilcoxon signed-rank test may be used.

- Let $D_i = X_i \mu_o$
- Rank $|D_1|, \cdots, |D_n|$
- Let T_+ and T_- be the sums of the ranks assigned to the positive and negative $d_i's$, respectively. Clearly, if H_0 is true, $T_+ \approx T_-$.

Further, under H_o ,

$$E[T_+] = \frac{n(n+1)}{4}$$

and

$$Var(T_{+}) = \frac{n(n+1)(2n+1)}{24}$$

• The Wilcoxon signed-rank test rejects for large values of T_+ , or when

$$Z = \frac{T_+ - E[T_+ \mid H_o]}{\sqrt{Var(T_+ \mid H_o)}}$$

exceeds a standard normal critical point.

• The test requires the underlying distribution to be symmetric.

Example: Cedar-apple rust data (cont'd):

- Disease that affects apple trees, with symptom, rust-colored spots on apple leaves. Study conducted to study cause.
- In the first year of experiment the number of affected leaves on a random sample of 8 trees from Variety 1 and a random sample of 7 trees from Variety 2 counted.

Data:

Variety 1			Variety 2	
Tree	Count	Tree	Count	
1	38	1	27	
2	10	2	28	
3	84	3	57	
4	36	4	66	
5	50	5	77	
6	35	6	49	
7	73	7	62	
8	48			

Does the data suggest there is a difference between the two varieties in the mean number of affected leaves?

Two-Sample Problem

Let $X_1, \dots X_n$, and $Y_1, \dots Y_m$, be independent random samples from distributions with respective means, μ_1 and μ_2 , and variances, σ_1^2 and σ_2^2 .

We are interested in the hypothesis

$$H_o: \mu_1 - \mu_2 = \Delta_o$$

VS

$$H_1: \mu_1 - \mu_2 > \Delta_o$$

When both distributions are normal, with unkown, but equal, variance σ^2 , the two-sample t-test is given by

$$T = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{S_p^2(\frac{1}{n} + \frac{1}{m})}}$$

where the pooled variance S_p^2 is defined as

$$S_p^2 = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}$$

It is easy to show that T has a t_{n+m-2} distribution.

Example: Cedar-apple rust data (cont'd):

> variety2 <- c(27,28,57,66,77,49,62)

> t.test(variety1,variety2,var.equal=T)

Two Sample t-test
data: variety1 and variety2
t = -0.501, df = 13, p-value = 0.6247
alternative hypothesis:
true difference in means is not equal

true difference in means is not equal to 0 95 percent confidence interval: -29.40555 18.33412

sample estimates: mean of x mean of y 46.75000 52.28571 Example: Cedar-apple rust data (cont'd):

> var.test(variety1,variety2)

F test to compare two variances

data: variety1 and variety2 F = 1.499, num df = 7, denom df = 6, p-value = 0.638 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.2631926 7.6728062 sample estimates: ratio of variances 1.499006

When the variances are not equal, an approximate test is Welch's modified two-sample t test, given by

$$T = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{S_w}$$

where

$$S_w^2 = \frac{S_1^2}{n} + \frac{S_2^2}{m}$$

T has an approximate t_{ν} distribution, with

$$\nu \approx \left[\frac{c^2}{n-1} + \frac{(1-c)^2}{m-1} \right]^{-1}$$

where

$$c = \frac{S_1^2}{nS_2^2}$$

```
Example: Cedar-apple rust data (cont'd):
> t.test(variety1,variety2)
     Welch Two Sample t-test
data: variety1 and variety2
t = -0.5082, df = 12.956,
p-value = 0.6198
alternative hypothesis: true difference in means is not equal
  to 0
95 percent confidence interval:
-29.07417 18.00275
sample estimates:
mean of x mean of y
46.75000 52.28571
```

Example: Cedar-apple rust data (cont'd):

> variety2 <- c(27,28,57,66,77,49,62)

>variety3 <- c(27,28,57,66,77,49,6200)

> boxplot(variety2,variety3)

Example: Cedar-apple rust data (cont'd):

t.test(variety1,variety2,var.equal=T)

Two Sample t-test
data: variety1 and variety2
t = -0.501, df = 13,
p-value = 0.6247
alternative hypothesis:
 true difference in means is not equal to 0
95 percent confidence interval:
-29.40555 18.33412

sample estimates: mean of x mean of y 46.75000 52.28571

```
> t.test(variety1,variety3,var.equal=T)
     Two Sample t-test
data: variety1 and variety3
t = -1.1151, df = 13, p-value = 0.285
alternative hypothesis: true difference in
   means is not equal to 0
95 percent confidence interval:
-250.4077 79.9077
sample estimates:
mean of x mean of y
```

46.75 132.00

> variety3 <- c(27,28,57,66,77,49,620)

Wilcoxon Rank-Sum Test

- Combine the two samples, and rank the observations
- Let T_1 be the sum of the ranks for the observations in the 1st group, and T_2 for the second
- The Wilcoxon rank-sum test is then based on T_W, which has an asymptotic standard normal distribution,

$$T_{\mathcal{W}} = \frac{T_{1} - E(T_{1} \mid H_{o})}{\sqrt{Var(T_{1} \mid H_{o})}}$$

where

$$E[T_1 \mid H_o] = \frac{n(n+m+1)}{2}$$

and

$$Var(T_1 \mid H_o) = \frac{nm(n+m+1)}{12}$$

In some applications, the Mann-Whitney (U) form of the Wilcoxon rank-sum test is used, due to the relative ease of computing critical values using the latter. The two are related by the equation

$$U_1 = T_1 - \frac{n(n+1)}{2}$$

The test is most appropriate when the populations have the same shape and differ only in location (e.g., same dispersion) Howeve, the distributions do not have to be symmetric.

Example: Cedar-apple rust data (cont'd):

> wilcox.test(variety1,variety2)

Wilcoxon rank sum test

data: variety1 and variety2 W = 24, p-value = 0.6943 alternative hypothesis: true mu is not equal to 0 > variety3 <c(27,28,57,66,77,49,620)

> wilcox.test(variety1,variety3)

Wilcoxon rank sum test

data: variety1 and variety3W = 22, p-value = 0.5358alternative hypothesis: true mu is not equal to 0

Example: Cedar-apple rust data (cont'd):

- Disease that affects apple trees, with symptom, rust-colored spots on apple leaves. Study conducted to study cause.
- In the first year of experiment the number of affected leaves on a random sample of 8 trees from Variety 1
- All red cedar trees within 100 yards of the orchard were then removed and the following year the same Variety 1 trees were examined for affected leaves.

Data:

Year 1		Year 2
Tree	Count	Count
1	38	32
2	10	16
3	84	57
4	36	28
5	50	55
6	35	12
7	73	61
8	48	29

Does the data suggest there is a difference between the mean number of affected leaves in the two periods?

```
Example: Cedar-apple rust data (cont'd):
Apply 2-sample t-test?
> t.test(year1,year2,var.equal=T)
    Two Sample t-test
data: variety1 and year2
t = 0.9899, df = 14, p-value = 0.3390
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-12.25070 33.25070
sample estimates:
mean of x mean of y
  46.75 36.25
```

Paired Samples

Consider a study comparing weight gains in rats before and after receiving a new dietary regime. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be the respective weights of n rats. Clearly, there is dependence between obseravtions on the same rat, hence, the twosample procedures discussed above will not be appropriate.

Let $D_i = X_i - Y_i$, $i = 1, \dots, n$. Then the problem may be handled based on the D_i 's using the one-sample t-test (paired t-test) or the Wilcoxon signed-rank test.

Example: Cedar-apple rust data (cont'd):

> t.test(year1,year2,paired=T)

Paired t-test

data: variety1 and year2 t = 2.4342, df = 7, p-value = 0.04514

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

0.2999574 20.7000426

sample estimates: mean of the differences 10.5 > wilcox.test(year1,year2,paired=T)

Wilcoxon signed rank test with continuity correction

data: year1 and year2 V = 32.5, p-value = 0.04967 alternative hypothesis: true mu is not equal to 0

Measures of Associations

Given a random sample $(X_1, Y_1), \dots, (X_n, Y_n)$ on n individuals, we are often interested in the degree of association or relationship between X and Y.

1. Pearson's product-moment correlation coefficient

The population correlation coefficient is defined as

$$\rho = \frac{E(X - \mu_x)(Y - \mu_y)}{\sigma_x \sigma_y}$$

and has the property $-1 \le \rho \le 1$.

The corresponding sample quantity is given by

$$r = \frac{\Sigma_i (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)S_x S_y}$$

with similar properties as ρ .

For the problem of testing H_0 : $\rho = 0$ vs. H_1 : $\rho > 0$, a suitable test statistic is given by

$$T = \sqrt{\frac{n-2}{1-r^2}}$$

which has a t_{n-2} null distribution.

The test of the more general hypothesis H_0 : $\rho = \rho_0$ vs. $H_1: \rho > \rho_0$ involves Fisher's Z-transformation. Let

$$Q(r) = \frac{1}{2} ln \left(\frac{1+r}{1-r} \right)$$

Then a test statistic is given by

$$Z = \frac{Q(r) - Q(\rho)}{\sqrt{\frac{1}{n-3}}}$$

which has an apprximate standard normal null distribution.

For purposes of confidence interval construction, one often uses the following inverse hyperbolic tangent transformation. Let H(r) = atanh(r). Then $H(r) - H(\rho)$ has an approximate N(0, 1/(n-3)) distribution. A

 $100(1-\alpha)\%$ confidence interval for ρ is $\tanh\left[(H(r)\pm Z_{\alpha/2}\frac{1}{\sqrt{n-3}}\right].$

Remarks

- The product moment correlation coefficient may not be appropriate for ordinal data
- The sample correlation coefficient r is extremely sensitive to outliers

2. Spearman's rank correlation coefficient

Spearman's rho is a measure of association based on ranks.

Given $(X_1, Y_1), \dots, (X_n, Y_n)$, let d_i denote the difference between the ranks of X_i and Y_i , when the X's and Y's are ranked separately among themselves.

For tied observation, the mean of the ranks are taken.

When there are no ties, Spearman's rho r_s coincides with the Pearson product-moment correlation coefficient applied to the ranks, and is given by

$$r_s = 1 - \frac{6 \, \Sigma_i \, d_i^2}{n(n^2 - 1)}$$

3. Kendall's tau

Kendall's tau is another rank-based measure of association. Let R_i and S_i denote the ranks of X_i and Y_i , respectively. Then

$$\tau = \frac{1}{\binom{n}{2}} \sum_{i < j} sgn(R_i - R_j)(S_i - S_j)$$

where

$$sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

> cor.test(variety1,year2)

> cor.test(variety1,year2,method="sp")

Pearson's product-moment correlation

Spearman's rank correlation rho

data: variety1 and year2

data: variety1 and year2

t = 3.973, df = 6,

p-value = 0.002232

p-value = 0.007342

alternative hypothesis:

alternative hypothesis:

true rho is not equal to 0

true correlation is not equal to 0

95 percent confidence interval:

0.3662168 0.9725356

sample estimates:

cor

0.851221

sample estimates:

rho

0.9285714

Goodness-of-Fit Tests

CDF Test

Let X_1, \dots, X_n be a random sample from F. The empirical distribution function, F_n , is defined as

$$F_n(x) = \frac{\sum_i I[X_i \le x]}{n}$$

for $x \in \mathbb{R}$. As an estimator of F, F_n has several desirable properties.

One way of assessing goodness-of-fit is by looking at a plot of F_n and F, superimposed. The function cdf.compare() provides such plots.

Chi-Square Test of Goodness of Fit

Let X_1, \dots, X_n be a random sample from F. Group the observations x_1, \dots, x_n into k classes. Let m_i and M_i be the observed and expected, under F, counts in the i'th class, respectively. The chi-square test of goodness-of-fit is given by:

$$\chi_G^2 = \sum_i \frac{(m_i - M_i)^2}{M_i}$$

and has an approximate $\chi_{k=1}^2$ distribution under F. In R, the function chisq.gof may be used.

The Kolmogorov-Smirnov Test

Let X_1, \dots, X_n be iid F. Then the one-sample K-S test is given by

$$T_{KS} = sup_x \mid F_n(x) - F(x) \mid$$

In the case of two samples, let X_1, \dots, X_n and Y_1, \dots, Y_m be independent random samples from F and G, respectively. Then the K-S test for comparing the two distributions is given by:

$$T_{KS} = sup_x \mid F_n(x) - G_m(x) \mid$$

In R, the procedures are implemented using ks.gof().

Bootstrap Tests

The bootstrap may be used to construct approximate confidence intervals and test critical points, when the associated distributions are not tractable.

Consider the problem of comparing two means μ_1 and μ_2 , when sampling X_1, \dots, X_n and Y_1, \dots, Y_m from F and G, respectively.

To implement the bootstrap, one draws pseudorandom samples from F_n and G_m under H_0 : $\mu_1 = \mu_2$.

• Draw with replacement, B pseudo-samples: X_1^*, \dots, X_n^* from F_n and and Y_1^*, \dots, Y_m^* from \tilde{G}_m , where \tilde{G}_m is the edf of Y_1, \dots, Y_m , and

$$\tilde{Y}_i = Y_i + \bar{X} - \bar{Y}$$

For the b'th pseudo-sample, compute

$$Z_b^* = \frac{(\bar{X}^* - \bar{Y}^*)}{\sqrt{\frac{S_1^*}{n} + \frac{S_2^*}{m}}}$$

Calculate the p-value as

$$p_B = \frac{\Sigma_b^B I[\mid Z_b^* \mid \geq z_{obs}]}{B}$$

where z_{obs} is the observed value of the test statistic based on the original sample.

Bayesian Statistics

Prior Distributions

- Non-informative priors
 - Vague priors, reference priors, flat priors
 - Have minimal impact on the posterior distribution, e.g.,

```
if \theta is normal(\theta_0, \sigma_0^2), pick large \sigma_0^2
Or, if 0 \le \theta \le 1, use U(0,1) as a prior for \theta
```

- Informative priors
 - Based on expert opinion
 - From previous studies

Conjugate Prior Distributions

```
\begin{array}{lll} & \underline{ \mbox{Family} } & \underline{ \mbox{Conjugate Prior for } \theta } \\ & \overline{ \mbox{Bin } (n, \theta) } & \overline{ \mbox{$\theta$}} \sim \mbox{Beta } (\alpha, \beta) \\ & \overline{ \mbox{$\theta$}} \sim \mbox{$\theta$} \sim \mbox{$\theta$} (\alpha, \beta) \\ & \overline{ \mbox{$\theta$}} \sim \mathcal{G}(\alpha, \beta) \\ & \overline{ \mbox{$\phi$}} (\alpha, \theta); \ \sigma^2 \ \mbox{known} & \overline{ \mbox{$\theta$}} \sim \mathcal{N}(\theta_0, \sigma_0^2) \\ & \overline{ \mbox{$\mathcal{G}(\alpha, \theta)$}}; \ \alpha \ \mbox{known} & \overline{ \mbox{$\theta$}} \sim \mathcal{G}(\delta_0, \gamma_0) \\ & \overline{ \mbox{$\mathcal{N}(\alpha, \theta)$}}; \ \alpha \ \mbox{known} & \overline{ \mbox{$\theta$}} \sim \mathcal{G}(\delta_0, \gamma_0) \\ & \overline{ \mbox{$\phi$}} \sim \mathcal{G}(\delta_0, \gamma
```

The likelihood, considered in terms of the parameter(s), has a kernel in the same form as the prior distribution.

Exponential families have conjugate priors in general.

Conjugate priors can be either informative or non-informative.

The Jeffreys' Prior

A general approach: Define the prior based on the Fisher information *I of the* likelihood

$$I(\theta \mid \mathbf{x}) = -E_x \left(\frac{\partial^2 \ln \ell(\theta \mid \mathbf{x})}{\partial \theta^2} \right)$$

So that

$$p(\theta) \propto \sqrt{I(\theta \mid \mathbf{x})}$$

	Frequentist	Bayesian
Prior information	Informally used in design	Used formally to priors
Interpretation of the parameter of interest	A fixed state of nature	An unknown quantity with probability distribution
Approach	"How likely is the data, given a particular value of the parameter?"	Use posterior distribution of the parameter to calculate and use of the posterior distribution in formal decision analysis
Presentation of results	P-values, confidence intervals	Predictive probabilities

Credible Intervals

a $100(1-\alpha)\%$ two-sided Bayesian credible interval for a single parameter θ with equal posterior tail probabilities

$$[\theta_{\alpha/2}, \theta_{1-\alpha/2}]$$

where the two end points are the α /2 and 1 – α /2 quantiles of the posterior distribution of θ

Bayesian vs Frequentist Inference

- Bayesian estimates with flat priors equivalent to ML estimates
- Asymptotically, priors would be irrelevant and Bayesian and frequentist results would converge.
- Frequentist one-tailed tests equivalent to credible intervals. But, Bayesian methods poor for two-tailed tests.
 - E.g., probability of zero in a continuous distribution is zero.
 - In Bayesian paradigm, frequentist p-values violate the likelihood principle.

Bayes Factors

Bayes Factors: Analogues of likelihood ratio tests.

 Ratio of prior and posterior information used to provide evidence in favor of one model specification vs another.

Wish to compare two competing models, M_1 and M_2 , with respective parameters parameters, θ_1 and θ_2 . and likelihood specifications :

$$f_1(x \mid \theta_1)$$
 and $f_2(x \mid \theta_1)$

PosteriorOdds = PriorOdds/Data * Bayes Factor

$$\frac{\pi(M_1 \mid x)}{\pi(M_2 \mid x)} = \frac{p(M_1) / p(x)}{p(M_2) / p(x)} \times \frac{\int_{\theta_1} f_1(x \mid \theta_1) p_1(\theta_1) d\theta_1}{\int_{\theta_2} f_2(x \mid \theta_2) p_2(\theta_2) d\theta_2}$$

Bayes Factor =
$$B(x) = \frac{\pi(M_1 | x) / p(M_1)}{\pi(M_2 | x) / p(M_2)}$$

NB: Bayes Factors intuitive, but often quite difficult to calculate.

Rule of Thumb

Bayes Factor =
$$B(x) = \frac{\pi(M_1 | x) / p(M_1)}{\pi(M_2 | x) / p(M_2)}$$

- $B(x) \ge 1$, evidence in favor of model 1
- •1 > B(x) \geq 10^{-1/2}, weak evidence against model 1.
- •10^{-1/2} > B(x) \geq 10⁻¹, substantial evidence against model 1.
- •10⁻¹ > B(x) \geq 10⁻², strong evidence against model 1.
- •10⁻² > B(x), decisive evidence against model 1.

Problem Set 2

- l) Reading Assignment: Chapter 2,3,4. The Statistical Sleuth: A Course in Methods of Data Analysis. Ramsey & Schafer
- II) Consider the RatPupWeight (the weight of rat pups) in R library *nlme:* data(RatPupWeight, package="nlme")
- 1)Disregarding the effects of all the other variables, determine whether there is a significant difference between mean weight of rat pubs in the control and active (low/high combined) treatment groups using each of the following procedures:
 - a) A parametric procedure
 - b) A non-parametric procedure
 - c) A re-sampling procedure
- 2) Discuss the assumption underlying the analyses in (1) above, their validity, and any remedial measures to be taken..
- 3) Determine whether there is a significant association between weight and Litter Size for each of the following:
 - a) A parametric procedure
 - b) A non-parametric procedure
- III) Suppose data are drawn from a normal distribution, with mean θ and variance 1. Assume the prior distribution of θ is normal(θ_o, σ_o^2).
- 1)Determine the posterior distribution of θ , and
- 2) Indicate the form of a 95% credible interval for the posterior mean of

A useful reference on R may be found at:

http://heather.cs.ucdavis.edu/~matloff/132/NSPpart.pdf (courtesy Jon Fintzi)