Simulating longitudinal data for time-to-event analysis in continuous time.

Each observation $O=\left(T_{(K)},\Delta_{(K)},A\Big(T_{(K-1)}\Big),L\Big(T_{(K-1)}\Big),T_{(K-1)},\Delta_{(K-1)},...,A(0),L(0)\right)$ is generated in the following way. Recall from the main note that we put $\mathcal{F}_{T_{(k)}}=\sigma\Big(T_{(k)},\Delta_{(k)},A\Big(T_{(k-1)}\Big),L\Big(T_{(k-1)}\Big)\Big)\vee\mathcal{F}_{T_{(k-1)}}.$

Let $\pi_k\Big(t,\mathcal{F}_{T_{(k-1)}}\Big)$ be the probability of being treated at the k'th event given $\Delta_{(k)}=a,T_{(k)}=t$, and $\mathcal{F}_{T_{(k-1)}}$. Similarly, let $\mu_k\Big(t,\cdot,\mathcal{F}_{T_{(k-1)}}\Big)$ be the probability measure for the covariate value given $\Delta_{(k)}=\ell,T_{(k)}=t$, and $\mathcal{F}_{T_{(k-1)}}$. Let also $\Lambda_k^x\Big(\mathrm{d}t,\mathcal{F}_{T_{(k-1)}}\Big)$ be the cumulative cause-specific hazard measure for the k'th event and cause x given $\mathcal{F}_{T_{(k-1)}}$, where $x=a,\ell,d,y,c$. At baseline, we let $\pi_0(L(0))$ be the probability of being treated given L(0) and $\mu_0(\cdot)$ be the probability measure for the covariate value.

We let L(t) consist of the covariates age , sex , $L_1(t)$, $L_2(t)$ (e.g., recurrent events). Then we generate the baseline variables as follows

$$\begin{split} & \operatorname{age} \sim \operatorname{Unif}(40, 90) \\ & \operatorname{sex} \sim \operatorname{Bernoulli}(0.4) \\ & L_1(0) \sim \operatorname{Bernoulli}(0.4) \\ & L_2(0) \sim \operatorname{Bernoulli}(0.25) \\ & A(0) \sim \operatorname{Bernoulli}\left(\operatorname{expit}\left(\left(\beta_0^a\right)^T \mathcal{F}_0^{\text{-A}} + \beta_0^{a,*}\right)\right), \end{split}$$

where $\mathcal{F}_0^{\text{-A}} = (\text{age}, \text{sex}, L_1(0), L_2(0)).$

Then, the observation is drawn iteratively as follows,

$$\begin{split} S_{(k)}^{x} \mid \mathcal{F}_{T_{(k-1)}} &= f_{t_{k-1}} \sim \text{Exp} \Big(\lambda_{k}^{x} \exp \Big((\beta_{k}^{x})^{T} f_{t_{k-1}} \Big) \Big), x = a, \ell, d, y, c \\ \Delta_{(k)} &= x \text{ if } S_{(k)}^{x} < S_{(k)}^{z} \text{ for all } z \neq x \\ T_{(k)} &= T_{(k-1)} + S_{(k)}^{x} \text{ if } \Delta_{(k)} = x \\ L^{*} \mid T_{(k)}, \mathcal{F}_{T_{(k-1)}} &= f_{t_{k-1}} \sim \text{Bernoulli}(\exp \mathrm{it} (\alpha_{k}^{L})^{T} f_{t_{k-1}} + \alpha_{k}^{L,*}) \\ L_{1}(0) &= \begin{cases} L_{1}(k-1) + L^{*} \text{ if } \Delta_{(k)} = \ell \text{ and } k < K \\ L_{1}(k-1) \text{ otherwise} \end{cases} \\ L_{2}(0) &= \begin{cases} L_{2}(k-1) + L^{*} \text{ if } \Delta_{(k)} = \ell \text{ and } k < K \\ L_{2}(k-1) \text{ otherwise} \end{cases} \\ A\Big(T_{(k)}\Big) &= \text{Bernoulli}(\exp \mathrm{it} ((\alpha^{A}k)^{T} f_{t_{k-1}} + \alpha_{k}^{A,*})) \text{ if } \Delta_{(k)} = a \end{split}$$

where $\operatorname{Exp}(\lambda)$ denotes the exponential distribution with rate λ . When the static intervention is applied, we put $A\left(T_{(k)}\right)=1$ for each k=1,...,K. When the uncensored data argument is used, we put $S_{(k)}^c=\infty$. So the parameters we can vary are the α 's, β 's, and λ 's. A limitation of the current implementation is that the Markov assumption is used for the time-varying variables, i.e., $S_{(k)}^x$ depends only on $\mathcal{F}_{T_{(k-1)}}$ through $\left(A\left(T_{(k-1)}\right), L\left(T_{(k-1)}\right), T_{(k-1)}, \Delta_{(k-1)}\right)$.