アルゴリズム論 1 第 7 回

プッシュダウンオートマトン (2)

関川浩

2017/05/31

第4回から第7回の目標

第4回から第7回の目標

正規表現と fa: よくできたシステムだが能力が低い

より能力が高いシステムを導入する

- 文脈自由文法 (第 4, 5 回)
- プッシュダウンオートマトン (第 6, 7 回)

第 7 回の目標:

- プッシュダウンオートマトンの設計 (前回からの続き)
- 文脈自由文法とプッシュダウンオートマトンの等価性

- 📵 プッシュダウンオートマトンの設計 (前回からの続き)
 - 例題 3
 - pda による fa の模倣
 - 例題 4

- 2 文脈自由文法とプッシュダウンオートマトンの等価性
 - cfg と pda の等価性の証明の方針
 - 例題 5
 - 状態数1のpda
 - cfg と pda の等価性

- ① プッシュダウンオートマトンの設計 (前回からの続き)
- 2 文脈自由文法とプッシュダウンオートマトンの等価性

例題 3 (1/6)

例題 3

 $\{0^m1^n\mid m,n\geq 1\;(m\neq n)\}$ を認識する pda を構成せよ

解答 (1/5)

以下で言及しないパターンの場合は<u>停止して非受理</u> たとえば:

- 入力記号列が ε の場合
- m > n とゲスした場合の記号ゲスモードで 1 を読んだ場合
- m < n とゲスした場合のポップモードで 0 を読んだ場合
- ...

例題 3 (2/6)

解答 (2/5)

最初に m > n であるか m < n であるかをゲス (m=n) の場合はどちらもはずれなので非受理)

- (1) m > n (0 の方が多い) とゲスした場合 スタックに触らず入力ヘッドを動かして (これでm=nを排除) 記号ゲスモードに入る
 - 記号ゲスモード 現在読んでいる 0 が右端の 0 から n 番目か否かをゲス

Yes: スタックの Z_0 を 0 に書き換え 0 チェックモードへ移行

No: 記号ゲスモードを続行

例題 3 (3/6)

解答 (3/5)

- 0 チェックモード
 - 0 を読んだとき: 0 をスタックにプッシュし現モードを続行
 - 1 を読んだとき: ポップして 1 チェックモードへ移行
- 1 チェックモード
 - 1を読んだとき: ポップして現モードを続行

例題 3 (4/6)

解答 (4/5)

積み上げモード

(2) m < n (1 の方が多い) とゲスした場合 スタックの Z_0 を 0 に書き換え, 入力ヘッドを動かして積み上げ モードヘ

0 を読んだとき: 0 をスタックに積み上げ, 現モード続行 1 を読んだとき: スタックに触らず入力ヘッドを動かして (これで m = n を排除) 記号ゲスモードヘ

例題 3 (5/6)

解答 (5/5)

記号ゲスモード

読んでいる 1 が<mark>右端の 1 から m 番目</mark>か否かをゲス

Yes: その 1 からポップモードに入って, 1 を読むたびにポップ

No: 記号ゲスモードを続行

右端の1からm番目とゲス

例題 3 (6/6)

注意

もし,

 $\{0^m1^n\mid {\color{red} m,n\geq 0}\;(m\neq n)\}$ を認識する pda を構成せよ

とすると,

- 0^m (n=0 の場合)
- $1^n (m=0 の場合)$

も受理しなければいけないので、複雑になる

pda による fa の模倣

pda: fa に補助記憶装置を追加したもの ⇒ fa を模倣できる

受理条件に注意: 入力を読み終わったときにちょうどスタックが空

しかし、今読んでいる記号がテープの右端か否かは不明

解決策: ゲスを利用

M: 与えられた dfa

T: M を模倣する pda

T はスタックには触らず, M の状態遷移を模倣しながら, 現在の記号がテープの右端か否かをゲス

Yes: その記号を読んだ行先がMの受理状態なら Z_0 をポップ

No: 模倣を続行

注: pda が決定性なら fa を模倣できない (ゲスが使えない)

⇒ pda は決定性と非決定性で言語を認識する能力が異なる

例題 4 (1/7)

例題 4

 $L = \{x \mid x \in \{a,b\}\{a,b\}^*$ かつ x = yy と書けない $\}$ を認識する pda M を構成せよ

注意

 ${a,b}^* \setminus L = {yy \mid y \in \{a,b\}^*}$ は文脈自由言語ではない (第 5 回の例題 3)

解答 (1/5)

 $x \in L \iff x$ は以下のいずれかの条件を満たす

- (i) |x| は奇数
- (ii) |x| は偶数で, $x=a_1\dots a_na_{n+1}\dots a_{2n}$ としたとき, ある i に対して $a_i\neq a_{n+i}$
- (ii) の異なる記号を d_1 , d_2 とする

例題 4 (2/7)

解答 (2/5)

M は最初に条件 (i), (ii) のどちらが満たされるかゲスする

(1) 条件 (i) を満たすとゲスした場合 奇数チェックモードに入る |x| が奇数か否かは fa でチェック可能なので, それを模倣

例題 4 (3/7)

解答 (3/5)

- (2) 条件(ii) を満たすとゲスした場合(1/3)
 - d_1 ゲスモード M は現在の記号が d_1 か否かをゲス

No: 1個の記号をプッシュしてこのモードを続行

Yes: その記号がaかbかを有限状態を利用して記憶し,

スタックには触らず d₂ ゲスモードへ

例題 4 (4/7)

解答 (4/5)

- (2) 条件(ii) を満たすとゲスした場合(2/3)
 - do ゲスモード

 Z_0 が現れるまでポップ

 Z_0 が現れたら d_1 のときと同様に d_2 をゲス

No: 1個の記号をプッシュしてこのモードを続行

Yes: 記憶している d_1 の値と違っていればポップして

排出モードへ

同じなら停止して非受理

例題 4 (5/7)

解答 (5/5)

- (2) 条件 (ii) を満たすとゲスした場合 (3/3)
 - 排出モード 記号を一つ読むごとにポップ

例題 4 (6/7)

注意 (1/2)

(ii) で, d_1 をゲスしたあと, 中央右隣をゲスする方法 (自然な方法) は不可

- 両方のゲスが当たったときは問題ない
- 中央右隣のゲスがはずれた場合が問題

(例) 受理してはいけない列 abaaaabaaa 左から 2 番目の b を d_1 とゲス

5番目の aを中央右隣とゲス

 \Longrightarrow 受理 (6 番目の a が d_2)

例題 4 (7/7)

注意 (2/2)

中央右隣のゲスがはずれたことが確認できれば問題ない

⇒ 中央左隣までの記号数をスタックに蓄える必要がある

 $\Longrightarrow l_1$ の情報が取り出せなくなってしまう

- ① プッシュダウンオートマトンの設計 (前回からの続き)
- 2 文脈自由文法とプッシュダウンオートマトンの等価性

cfg と pda の等価性の証明の方針

- pda の重要性: cfg との等価性受理条件や非決定性も cfg に合わせるため
- cfg と pda の等価性の証明
 pda の状態数は 1 で十分であることを示す
 アイディア: スタック記号に状態の情報を載せる
 1 状態の pda は cfg とほとんど同じ

例題 5 (1/3)

例題 5

 $\{xx^{\mathbf{R}} \mid x \in \{a,b\}\{a,b\}^*\}$ を認識する 1 状態の pda を構成せよ

解答 (1/2)

前回: 2 状態 s_0 , s_1 で積み上げモードとチェックモードを区別

今回: スタックの先頭記号で区別

● 積み上げモード: A', B' (先頭より下は A, B)

チェックモード: *A*, *B*

例題 5 (2/3)

解答 (2/2)

状態遷移関数 (以下にないものの値は ∅)

$$\delta(s_0, a, Z_0) = \{(s_0, A')\}, \qquad \delta(s_0, b, Z_0) = \{(s_0, B')\},
\delta(s_0, a, A') = \{(s_0, A'A), (s_0, \varepsilon)\}, \qquad \delta(s_0, b, A') = \{(s_0, B'A)\},
\delta(s_0, a, B') = \{(s_0, A'B)\}, \qquad \delta(s_0, b, B') = \{(s_0, B'B), (s_0, \varepsilon)\},
\delta(s_0, a, A) = \{(s_0, \varepsilon)\}, \qquad \delta(s_0, b, B) = \{(s_0, \varepsilon)\}$$

1 状態になると cfg とほとんど同じ

対応:
$$(s_0, \alpha) \in \delta(s_0, c, D) \Longleftrightarrow D \to c\alpha$$
 $Z_0 \to aA', \qquad Z_0 \to bB',$

$$A' \rightarrow aA'A, \ A' \rightarrow a,$$
 $A' \rightarrow bB'A,$ $B' \rightarrow aA'B,$ $B' \rightarrow bB'B, \ B' \rightarrow b,$ $B \rightarrow b$

例題 5 (3/3)

導出例:

$$Z_0 \Rightarrow aA' \Rightarrow abB'A \Rightarrow abaA'BA \Rightarrow abaaA'ABA$$

 $\Rightarrow abaaaA'AABA \Rightarrow abaaaaAABA \Rightarrow abaaaaaABA$
 $\Rightarrow abaaaaaaBA \Rightarrow abaaaaaabA \Rightarrow abaaaaaaba$

導出途中の abaA'BA に対応

定理 1 (1/3)

定理 1

与えられた pda に対し、同じ言語を認識する 1 状態の pda が構成可能

証明のアイディア (1/3)

スタック記号に情報を載せるアイディアのみ示す

M: 与えられた pda

M が入力記号 a, b, c を

- 状態を p, q, r と推移しながら読み
- ◆ その間にスタックに B をプッシュし直後に ポップしたとする

定理 1 (2/3)

証明のアイディア (2/3)

 M_s : M を模倣する 1 状態の pda

- スタック記号は (s_1, C, s_2) s_1, s_2 : M の状態 C: M のスタック記号
- M の状態が q で B をプッシュ \Rightarrow M_s では (q,B,r) をプッシュ 同時に、それまでの先頭記号の 第 1 成分を書き換え (この記号が次に先頭になった ときの M の状態をゲス)

定理 1 (3/3)

証明のアイディア (3/3)

第3成分: ゲスの判定に必要

- 第1.2成分と入力記号から 次状態を求めて第3成分と比較
- 第3成分がないとゲスの判定に ポップが必要

ポップすると正解が不明に

この下の記号の最初の成分が r であることを示す (q, B, r)(r, A, s)(p, A, s)(r, A, s)この記号が次に先頭になったときの M の状態をrとゲスして書き換え

cfg と pda の等価性 (1/2)

定理 2

cfg と pda は等価

証明 (1/2)

ullet pda M から cfg G を構成

M を 1 状態の pda $M_1 = (\{s\}, \Sigma, \Gamma, \delta, s, Z_0)$ に直す

$$G = (\Gamma, \Sigma, P, Z_0)$$
, ただし

$$P = \{A \to a\alpha \mid (s, \alpha) \in \delta(s, a, A)\}\$$

このとき $x \in \Sigma^*$ に対して

M が x を受理 $\iff M_1$ が x を受理 $\iff x \in L(G)$

cfg と pda の等価性 (2/2)

証明 (2/2)

● cfg G から pda M を構成

$$G$$
 を Greibach 標準形 $G_1 = (V, \Sigma, P, S)$ に直す

$$M=(\{s\},\Sigma,V,\delta,s,S)$$
, ただし

$$(s, \alpha) \in \delta(s, a, A) \iff (A \to a\alpha) \in P$$

このとき $x \in \Sigma^*$ に対して

$$x \in L(G) \iff M$$
 が x を受理

注意

注意

 L_1 , L_2 が Σ 上の正規言語のとき

• $L_1 \cup L_2$, $L_1 \cap L_2$, $\Sigma^* \setminus L_1$, L_1L_2 , L_1^* も正規言語 (第 3 回の定理 2)

 L_1 , L_2 が Σ 上の文脈自由言語のとき

- L₁ ∪ L₂, L₁L₂, L₁* も文脈自由言語 (第 4 回の定理 1)
- $L_1 \cap L_2$, $\Sigma^* \setminus L_1$ は文脈自由言語とは限らない

 $L_1 \cap L_2$ の例: 第 5 回 p. 34 の例

 $\Sigma^* \setminus L_1$ の例: 第 5 回の例題 3, 今回の例題 4, 定理 2