Chapitre 23

Fonctions de deux variables

23.1 Continuité d'une fonction de deux variables

On munit dans ce chapitre l'espace \mathbb{R}^2 de sa norme euclidienne usuelle : $\|(x,y)\| = \sqrt{x^2 + y^2}$.

DÉFINITION 23.1: Boule ouverte

Soit $a \in \mathbb{R}^2$ et r > 0. On appelle boule ouverte de centre a et de rayon r,

$$B(a,r) = \{ x \in E \mid ||x - a|| < r \}$$

DÉFINITION 23.2: Parties ouvertes

Soit $U \subset \mathbb{R}^2$. On dit que U est une partie *ouverte* si $\forall a \in U$, il existe r > 0 tel que la boule ouverte de centre a et de rayon r soit incluse dans U.

On considère maintenant une partie $U \subset \mathbb{R}^2$ ouverte et une fonction de deux variables:

$$f: \left\{ \begin{array}{ccc} U & \longrightarrow & \mathbb{R} \\ (x,y) & \mapsto & f(x,y) \end{array} \right.$$

Remarque 257. Soit un ouvert $U \subset \mathbb{R}^2$. L'ensemble $(\mathcal{F}(U,\mathbb{R}), +,..,\times)$ est une \mathbb{R} -algèbre.

Fig. 23.1 - Fonction de deux variables

Définition 23.3 : Continuité

- Soit un point $a=(a_1,a_2)\in U$ et un réel $l\in\mathbb{R}$. On dit que f tend vers la limite l lorsque $x=(x_1,x_2)$ tend vers $a=(a_1,a_2)$ si et seulement si:

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in U, ||x - a|| < \alpha \Rightarrow |f(x) - l| < \varepsilon$$

- On dit que la fonction f est continue au point $a \in U$ si et seulement si $\lim_{x\to a} f(x) = f(a)$;
- On dit que la fonction f est continue sur l'ouvert U si et seulement si elle est continue en tout point de U.

Théorème 23.1 : Théorème de majoration

On suppose qu'il existe une fonction $\theta : \mathbb{R} \to \mathbb{R}$ telle que sur un voisinage de $a \in \mathbb{R}^2$, on aît pour $l \in \mathbb{R}$:

$$(H1) \quad |f(x) - l| \le \theta \left(\|X - a\| \right);$$

$$\underbrace{\theta(\rho)}_{\rho\to 0} \theta(\rho) \xrightarrow[\rho\to 0]{} 0;$$

Alors
$$f(X) \xrightarrow[X \to a]{} l$$
.

Exercice 23-1

Soit la fonction de deux variables définie par:

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \mapsto & \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases} \right.$$

Étudier la continuité de la fonction f au point (0,0).

Remarque 258. Soient deux fonctions $f,g:\mathbb{R}^2\mapsto\mathbb{R}$ continues au point a. Montrer que les fonctions f+g et fg sont continues au point a. On montre ainsi que l'ensemble des fonctions continues sur un ouvert U est une algèbre.

Remarque 259. Soit $f: U \subset \mathbb{R}^2 \mapsto \mathbb{R}$ et $g: \mathbb{R} \mapsto \mathbb{R}$. Soit $a \in U$. On suppose que f est continue en a et que g est continue en f(a). Montrer que $g \circ f$ est continue en a.

DÉFINITION 23.4 : Applications partielles

Soit une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ et un point $a = (a_1, a_2) \in \mathbb{R}^2$. On définit les deux fonctions d'une variable (applications partielles au point a) par:

$$f_1: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \mapsto & f(t, a_2) \end{array} \right.$$

$$f_2: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \mapsto & f(a_1, t) \end{array} \right.$$

Théorème 23.2 : Continuité des applications partielles

Si la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est continue au point $a = (a_1, a_2)$, alors la première fonction partielle f_1 est continue au point a_1 et la deuxième fonction partielle f_2 est continue au point a_2 . La réciproque est fausse en général.

Exercice 23-2

Etudier la continuité en (0,0) et la continuité des applications partielles de la fonction définie par :

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \mapsto & \left\{ \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{array} \right.$$

DÉFINITION 23.5 : Fonctions à valeurs dans \mathbb{R}^2 Soit une fonction $f: \left\{ \begin{array}{ccc} U \subset \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \mapsto & \left(f_1(x,y),f_2(x,y)\right) \end{array} \right.$

1. Soit un point $a = (a_1, a_2) \in U$ et un point $l = (l_1, l_2) \in \mathbb{R}^2$. On dit que f tend vers l lorsque x tend vers a si et seulement si:

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in U, \quad ||x - a|| \le \alpha \Rightarrow ||f(x) - l|| \le \varepsilon$$

2. On dit que la fonction f est continue au point a lorsque $\lim_{x\to a} f(x) = f(a)$.

THÉORÈME 23.3 : Limite d'une fonction $f: \mathbb{R}^2 \mapsto \mathbb{R}^2$

Avec les notations précédentes,

$$(f(x) \xrightarrow[(i)]{x \to a} l) \iff (f_1(x) \xrightarrow[x \to a]{} l_1 \text{ et } f_2(x) \xrightarrow[x \to a]{} l_2)$$

Théorème 23.4 : Continuité d'une composée

Soit $f: U \subset \mathbb{R}^2 \to \mathbb{R}^2$ et $g: \mathbb{R}^2 \to \mathbb{R}^2$. Si f est continue au point $a \in U$ et g est continue au point f(a), alors $g \circ f$ est continue en a.

23.2 Dérivées partielles

On considère une fonction $f: U \subset \mathbb{R}^2 \mapsto \mathbb{R}$.

Définition 23.6 : **Dérivée selon un vecteur**

Soit un point $a \in U$ et un vecteur $h' \in \mathbb{R}^2$ non nul. On dit que la fonction f admet une dérivée selon le vecteur h si et seulement si:

$$\lim_{t \to 0} \frac{f(a+t\overrightarrow{h}) - f(a)}{t} \text{ existe}$$

On note alors cette limite $D_{\overrightarrow{h}}f(a)$.

Fig. 23.2 – Dérivée selon un vecteur

Remarque 260. On considère dans cette définition la restriction de f à la droite passant par a dirigée par le vecteur $\vec{h}: \phi(t) = f(a+t\vec{h})$ et la dérivée selon le vecteur \vec{h} est la dérivée en t=0 de la fonction d'une variable $\phi(t)$.

On considère la fonction de deux variables définie par:

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{si}(x,y) \neq (0,0) \\ 0 & \text{si}(x,y) = (0,0) \end{cases}$$

Soit un vecteur $\overrightarrow{h} = (a,b)$. Etudier la dérivée de f selon le vecteur \overrightarrow{h} au point (0.0).

DÉFINITION 23.7: Dérivées partielles

On appelle dérivées partielles de f au point a lorsqu'elles existent, les dérivées de f selon les vecteur $e_1 = (1,0)$ et $e_2 = (0,1)$. On note alors:

$$\frac{\partial f}{\partial x}(a) = \lim_{t \to 0} \frac{f(a_1 + t, a_2) - f(a_1, a_2)}{t}, \quad \frac{\partial f}{\partial y}(a) = \lim_{t \to 0} \frac{f(a_1, a_2 + t) - f(a_1, a_2)}{t}$$

Remarque 261. La recherche de dérivées partielles revient à étudier la dérivabilité des fonctions partielles de f. Pour le calcul pratique, on dérive par rapport à une variable en fixant l'autre constante.

Exercice 23-4

Calculer les dérivées partielles de $f(x,y) = x\cos(xy^2) + ye^x$.

Définition 23.8 : Fonctions de classe C^1

On dit que f est de classe \mathcal{C}^1 sur U si et seulement si

- 1. $\frac{\partial f}{\partial x}(x_0, y_0)$ et $\frac{\partial f}{\partial y}(x_0, y_0)$ existent en tout point $(x_0, y_0) \in U$;
- 2. les deux fonctions $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont continues sur U.

Exercice 23-5

Soit la fonction de deux variables définie par:

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Est-elle de classe C^1 sur \mathbb{R}^2 ?

THÉORÈME 23.5 : Développement limité à l'ordre 1

Soit une fonction $f: U \mapsto \mathbb{R}$ de classe \mathcal{C}^1 sur un ouvert $U \subset \mathbb{R}^2$. Alors Il existe une fonction $\varepsilon: V_0 \mapsto \mathbb{R}$ définie sur un voisinage de (0,0) telle que:

1. $\forall a \in U, \forall h = (h_1, h_2) \in \mathbb{R}^2$, tel que $a + h \in U$,

$$f(a+h) = f(a) + \left(\frac{\partial f}{\partial x}(a)h_1 + \frac{\partial f}{\partial y}(a)h_2\right) + ||h||\varepsilon(h)$$

2. $\varepsilon(h) \xrightarrow[h \to 0]{} 0$.

On dit que la fonction f admet un développement limité à l'ordre 1 au point a.

Théorème 23.6: Classe C^1 implique continuité

Si la fonction f est de classe \mathcal{C}^1 sur l'ouvert U, alors elle est continue sur U.

DÉFINITION 23.9 : Différentielle

Si une fonction $f: U \mapsto \mathbb{R}$ est de classe \mathcal{C}^1 sur l'ouvert U, pour un point $a \in U$, on note

$$df_a: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ h = (h_1, h_2) & \mapsto & \frac{\partial f}{\partial x}(a)h_1 + \frac{\partial f}{\partial y}(a)h_2 \end{array} \right.$$

 df_a est une forme linéaire sur \mathbb{R}^2 qui s'appelle la différentielle de f au point $a \in U$.

Définition 23.10: Gradient

Si $f: U \mapsto \mathbb{R}$ est \mathcal{C}^1 sur U et $a \in U$, alors puisque df_a est une forme linéaire, d'après le théorème de Riesz, il existe un unique vecteur $\nabla f(a) \in \mathbb{R}^2$ tel que

$$\forall h \in \mathbb{R}^2, \boxed{df_a(h) = (\nabla f(a) \mid h)}$$

Ce vecteur s'appelle le gradient de f au point a. Si l'on utilise le produit scalaire usuel de \mathbb{R}^2 , le théorème précédent donne:

$$\nabla f(a) = \left(\frac{\partial f}{\partial x}(a), \frac{\partial f}{\partial y}(a)\right)$$

Théorème 23.7 : Différentielle et dérivée selon un vecteur

Si la fonction $f: U \mapsto \mathbb{R}$ est de classe \mathcal{C}^1 sur l'ouvert U, alors pour tout point $a \in U$ et tout vecteur $h=(h_1,h_2)\in\mathbb{R}^2$, la fonction f admet une dérivée selon le vecteur h au point a et

$$D_h f(a) = df_a(h) = \frac{\partial f}{\partial x}(a)h_1 + \frac{\partial f}{\partial y}(a)h_2 = (\nabla f(a) \mid h)$$

Exercice 23-6

Soit $f(x,y) = x^2 e^y + \sin(xy)$, e la base canonique de \mathbb{R}^2 et a = (0,1) calculer df_a , $Mat_e(df_a)$, $\nabla f(a)$ et $D_h f(a)$ où h = (1,2).

Théorème 23.8 : Théorèmes généraux

Soient $f,g:U\mapsto\mathbb{R}$ deux fonctions de classe \mathcal{C}^1 sur U. Alors

- pour $(\lambda,\mu) \in \mathbb{R}^2$, la fonction $\lambda f + \mu g$ est de classe \mathcal{C}^1 sur U;
- la fonction $f \times g$ est de classe C^1 sur U;
- l'ensemble $\mathcal{C}^1(U,\mathbb{R})$ des fonctions de classe \mathcal{C}^1 sur l'ouvert U est une algèbre.

THÉORÈME 23.9 : **Dérivée d'une composée**

Soit une fonction de deux variables $f:U\subset\mathbb{R}^2\mapsto\mathbb{R}$ de classe \mathcal{C}^1 sur un ouvert $U\subset\mathbb{R}^2$ et deux fonctions d'une variable $u,v:I\subset\mathbb{R}\mapsto\mathbb{R}$ de classe \mathcal{C}^1 sur un intervalle I telles que $\forall t\in I$, $\phi(t) = (u(t), v(t)) \in U$. On peut alors définir la fonction d'une variable:

$$g: \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} \\ t & \mapsto & f(u(t), v(t)) \end{array} \right.$$

Cette fonction g est de classe C^1 sur l'intervalle I et

$$\forall t \in I, \quad g'(t) = \frac{\partial f}{\partial x} (u(t), v(t)) \times u'(t) + \frac{\partial f}{\partial y} (u(t), v(t)) \times v'(t)$$
$$= (\nabla f(\phi(t)) \mid \phi'(t)) = df_{\phi(t)} (\phi'(t))$$

Exercice 23-7

Soit
$$f(x,y) = x^2 + xy + e^{x-y}$$
 et $g(t) = f(e^t,t^2)$. Calculer $g'(0)$.

Remarque 262. La formule précédente est très utile. Elle permet à partir d'une fonction de deux variables d'étudier une fonction partielle d'une seule variable g(t) = f(a+th) et d'utiliser les résultats connus pour les fonctions d'une variable réelle.

Soit $f: U \mapsto \mathbb{R}$ une fonction de classe \mathcal{C}^1 et un segment [a,b] inclus dans l'ouvert U. On considère la restriction de la fonction f à ce segment :

$$g: \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ t & \mapsto & f(a+t(b-a)) \end{array} \right.$$

a) Montrer la formule de Taylor intégrale à l'ordre 1:

$$f(b) = f(a) + (b_1 - a_1) \int_0^1 \frac{\partial f}{\partial x} (a + t(b - a)) dt + (b_2 - a_2) \int_0^1 \frac{\partial f}{\partial y} (a + t(b - a)) dt$$

b) En déduire l'inégalité des accroissements finis : Si $M = \sup_{x \in [a,b]} \left(\left| \frac{\partial f}{\partial x}(x) \right|, \left| \frac{\partial f}{\partial y}(x) \right| \right)$

$$|f(b) - f(a)| \le M||b - a||_1$$

■ Exercice 23-9

Soit $F: I \mapsto \mathbb{R}^2$ une courbe paramétrée de classe \mathcal{C}^1 et $f: \mathbb{R}^2 \mapsto \mathbb{R}$ une fonction de deux variables de classe \mathcal{C}^1 sur \mathbb{R}^2 . On suppose que la courbe paramétrée est une courbe de niveau de $f: \exists c \in \mathbb{R}$ tel que $\forall t \in I$, f(F(t)) = c.

- a) On considère la fonction d'une variable g(t) = f(F(t)). Calculer pour $t \in I$, g'(t).
- b) En déduire qu'en un point a d'une courbe de niveau C_c de f, le vecteur gradient au point $\nabla f(a)$ est orthogonal à la courbe de niveau.
- c) Une application importante: soit \mathcal{C} une courbe de \mathbb{R}^2 définie par une équation f(x,y) = 0 où f est de classe \mathcal{C}^1 sur \mathbb{R}^2 . Montrer que l'équation de la tangente en un point (x_0,y_0) de cette courbe est

$$(X - x_0)\frac{\partial f}{\partial x}(x_0, y_0) + (Y - y_0)\frac{\partial f}{\partial y}(x_0, y_0) = 0$$

d) Déterminer l'équation de la tangente en un point (x_0,y_0) d'une ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

23.3 Extrémas d'une fonction de deux variables

Définition 23.11 : Extremum

Soit $f: U \mapsto \mathbb{R}$ et un point $a \in U$. On dit que a est :

- un maximum local (strict) de f si et seulement si $\exists r > 0$, tel que $\forall x \in B(a,r) \cap U$,

$$f(x) \le f(a) \quad (f(x) < f(a))$$

- un minimum local (strict) de f si et seulement si $\exists r > 0$ tel que $\forall x \in B(a,r) \cap U$,

$$f(x) \ge f(a) \quad (f(x) > f(a))$$

- un extremum local de f si et seulement si a est un maximum local ou un minimum local;
- un maximum global si et seulement si $\forall x \in U, f(x) \leq f(a)$;
- un minimum global si et seulement si $\forall x \in U, f(x) \geq f(a)$.

Théorème 23.10 : La différentielle s'annule en un extremum local

Soit une fonction $f: U \mapsto \mathbb{R}$ de classe \mathcal{C}^1 sur l'ouvert U. Les points $a \in U$ tels que $df_a = 0$ s'appellent des points critiques de f.

Si $a \in U$ est un extremum local de f, alors a est un point critique:

$$df_a = 0 \Longleftrightarrow \nabla f(a) = 0 \Longleftrightarrow \frac{\partial f}{\partial x}(a) = \frac{\partial f}{\partial y}(a) = 0$$

Remarque 263. Les extrémas de f sont à chercher parmi les points critiques de f, mais un point critique ne correspond pas toujours à un extremum: une fois qu'on a déterminé tous les points critiques, il faut faire une étude plus précise.

Exercice 23-10

Etudier les extrémas locaux de la fonction définie sur \mathbb{R}^2 par $f(x,y)=x^2-y^2$.

Exercice 23-11

Soit la fonction définie sur \mathbb{R}^2 par $f(x,y) = (x+y)^2 + x^4 + y^4$. Déterminer les extrémas locaux et globaux de f.

23.4 Dérivées partielles d'ordre supérieur

Définition 23.12 : Dérivées partielles secondes

Soit $f: U \mapsto \mathbb{R}$ une fonction de classe \mathcal{C}^1 sur un ouvert U. On définit les deux fonctions:

$$\frac{\partial f}{\partial x}: U \mapsto \mathbb{R}, \quad \frac{\partial f}{\partial y}: U \mapsto \mathbb{R}$$

qui sont continues sur U.

1. Si
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) (a)$$
 existe, on note ce réel $\frac{\partial^2 f}{\partial x^2} (a)$;

2. Si
$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) (a)$$
 existe, on note ce réel $\frac{\partial^2 f}{\partial y^2} (a)$;

3. Si
$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) (a)$$
 existe, on note ce réel $\frac{\partial^2 f}{\partial y \partial x} (a)$;

4. Si
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) (a)$$
 existe, on note ce réel $\frac{\partial^2 f}{\partial x \partial y} (a)$.

Exercice 23-13

Soit la fonction définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Etudier l'existence de dérivées partielles secondes de f en (0,0).

THÉORÈME 23.11 : Théorème de Schwarz

Soit $f: U \mapsto \mathbb{R}$ et $a \in U$. On suppose que:

- 1. f est de classe C^1 sur U;
- 2. les fonctions $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$ et $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$ existent sur un voisinage de a;
- 3. ces deux fonctions sont continues au point a.

Alors

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) (a) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) (a)$$

On note alors $\frac{\partial^2 f}{\partial x \partial y}(a)$ cette valeur commune.

DÉFINITION 23.13 : On définit par récurrence les dérivées partielles d'ordre $k \geq 2$ d'une fonction $f: U \mapsto \mathbb{R}$. On dit que f est de classe \mathcal{C}^k sur U si et seulement si

- 1. f est de classe k-1;
- 2. Toutes les dérivées partielles $\frac{\partial k}{\partial x^p \partial y^q}(a)$ (p+q=k) existent $\forall a \in U$ et sont des fonctions continues sur U.

D'après le théorème de Schwarz, toutes les dérivées partielles croisées sont égales.

Exercice 23-14

Soit $[a,b] \subset U$ un segment et $f: U \mapsto \mathbb{R}$ une fonction de classe \mathcal{C}^2 . En écrivant la formule de Taylor intégrale pour la restriction de f à ce segment, en déduire la formule de Taylor intégrale pour f:

$$f(b) = f(a) + (\nabla f(a) \mid b - a)$$

$$+ (b_1 - a_1)^2 \int_0^1 \frac{\partial^2 f}{\partial x^2} (a + t(b - a)) dt + 2(b_1 - a_1)(b_2 - a_2) \int_0^1 \frac{\partial^2 f}{\partial x \partial y} (a + t(b - a)) dt$$

$$+ (b_2 - a_2)^2 \int_0^1 \frac{\partial^2 f}{\partial y^2} (a + t(b - a)) dt$$

■ Exercice 23-15

Soit $U = \{(x,t) \in \mathbb{R}^2 | 0 < t < x\}$. Trouver une fonction $u : U \mapsto \mathbb{R}$ de classe C^2 de la forme u(x,t) = f(x/t) vérifiant l'équation des ondes:

$$\forall (x,t) \in U, \quad \frac{\partial^2 u}{\partial t^2}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0$$

Exercice 23-16

Une application $\overrightarrow{F}: U \mapsto \mathbb{R}^2$ s'appelle un *champ de vecteurs*. On dit que le champ de vecteurs dérive d'un potentiel scalaire lorsqu'il existe une application $V: U \mapsto \mathbb{R}$ telle que

$$\forall (x,y) \in U, \quad \overrightarrow{F}(x,y) = \nabla V(x,y) = \begin{vmatrix} \frac{\partial V}{\partial x}(x,y) \\ \frac{\partial V}{\partial y}(x,y) \end{vmatrix}$$

a. On suppose \overrightarrow{F} de classe \mathcal{C}^2 . Montrer que si \overrightarrow{F} dérive d'un potentiel, on doit avoir

$$\frac{\partial F_1}{\partial y}(x,y) - \frac{\partial F_2}{\partial x}(x,y) = 0$$

23.5 Intégrales doubles

Si une fonction f est constante et vaut α sur un petit pavé $[a,b] \times [c,d]$, on définit son intégrale double comme étant le *volume* de l'espace de base le rectangle $[a,b] \times [c,d]$ et de hauteur α . Ce volume vaut $V = \alpha \times (b-a) \times (d-c)$. On vérifie que

$$V = \iint_{[a,b] \times [c,d]} f(x,y) \, dx \, dy = \int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy$$

Pour définir l'intégrale double d'une fonction bornée $f:[a,b]\times[c,d]\mapsto\mathbb{R}$, on commence par subdiviser le rectangle $[a,b]\times[c,d]$ en $n\times p$ petits rectangles, et on définit l'intégrale d'une fonction en escalier (constante sur chacun des rectangles) comme la somme des volumes des parallépipèdes. On définit ensuite l'intégrale supérieure

Fig. 23.3 – Fonction en escalier

de la fonction f comme étant la borne inférieure des intégrales des fonctions en escalier majorant f, et l'intégrale

inférieure de la fonction f comme étant la borne supérieure des intégrales de fonctions en escalier minorant f. Lorsque l'intégrale supérieure et l'intégrale inférieure sont égales, on dit que la fonction f est intégrable, et on note

$$\iint_{[a,b]\times[c,d]} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

son intégrale. On montre que toute fonction $f:[a,b]\times[c,d]\mapsto\mathbb{R}$ continue est intégrable.

La construction devient beaucoup plus compliquée si l'on considère des domaines $U \subset \mathbb{R}^2$ qui ne sont plus des rectangles. Comment « subdiviser » un tel domaine U? Quelle régularité imposer à U? Ce procédé de construction est inadapté, et on utilise une autre définition de l'intégrale: l'intégrale de Lebesgue. Heureusement, les calculs avec l'intégrale de Lebesgue ressemblent aux calculs habituels avec l'intégrale de Riemann. Nous admettrons les résultats qui suivent.

On considère une fonction $f:U\mapsto\mathbb{R}$ continue sur une partie $U\subset\mathbb{R}^2$ « admissible » définie à l'aide de deux fonctions d'une variable:

$$U = \{(x,y) \in \mathbb{R}^2 \mid a \le x \le b \text{ et } \phi(x) \le y \le \psi(x)\}$$

ou alors

$$U = \{(x,y) \in \mathbb{R}^2 \mid c \le y \le d \text{ et } \alpha(y) \le x \le \beta(y)\}$$

Fig. 23.4 – un domaine U délimité par le graphe de deux fonctions

Le théorème suivant permet de calculer une intégrale double sur un tel domaine.

Théorème 23.12 : Théorème de Fubini

Si f est une fonction continue sur un domaine $U \subset \mathbb{R}^2$ admissible, alors on peut calculer l'intégrale double de f sur U en calculant deux intégrales simples :

$$\iint_U f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_a^b \left[\int_{\phi(x)}^{\psi(x)} f(x,y) \, \mathrm{d}y \right] \, \mathrm{d}x = \int_c^d \left[\int_{\alpha(y)}^{\beta(y)} f(x,y) \, \mathrm{d}x \right] \, \mathrm{d}y$$

Exercice 23-17 Calculer $\iint_D (x^2 + y) dx dy$ où $D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le 1 - x\}.$

THÉORÈME 23.13 : Propriétés de l'intégrale double

1. Linéarité:

$$\iint_D (\lambda f + \mu g)(x,y) \, dx \, dy = \lambda \iint_D f(x,y) \, dx \, dy + \mu \iint_D f(x,y) \, dx \, dy$$

2. Additivité: si $D = D_1 \cup D_2$ avec $D_1 \cap D_2 = \emptyset$,

$$\iint_D f(x,y) \, dx \, dy = \iint_{D_1} f(x,y) \, dx \, dy + \iint_{D_2} f(x,y) \, dx \, dy$$

3. **Positivité**: si $f \ge 0$ sur D, alors

$$\iint_D f(x,y) \, dx \, dy \ge 0$$

23.6 Changement de variables

THÉORÈME 23.14 : Changement de variables

Soit un domaine « admissible » $\Delta, D \subset \mathbb{R}^2$ et une application bijective de classe \mathcal{C}^1

$$\phi: \left\{ \begin{array}{ccc} \Delta & \longrightarrow & D \\ (u,v) & \mapsto & (x(u,v),y(u,v)) \end{array} \right.$$

On appelle Jacobien de ϕ , au point (u,v), le déterminant

$$J\phi(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Alors

$$\iint_D f(x,y) \, dx \, dy = \iint_{\Delta} f(x(u,v),y(u,v)) |J\phi(u,v)| \, du \, dv$$

Deux cas importants de changement de variable sont à connaître:

- Changement de coordonnées affine:

$$\begin{cases} x = au + bv + \alpha \\ y = cu + dv + \beta \end{cases}$$

alors
$$J\phi = (ad - bc)$$

- Changement en coordonnées polaires:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

alors
$$J\phi = \rho$$

■ Exercice 23-18

Calculer $\iint_D (x^2 + y^2) dx dy$ où

$$D = \{(x,y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}$$

Exercice 23-19

Calculer $\iint_D (x^2 + y^2) dx dy$ où le domaine d'intégration D est le demi-disque de rayon 1 de centre (0,1) avec x > 0.

Exercice 23-20

On définit:

$$F(x) = \int_0^x e^{-x^2} dx$$

$$I(R) = \int_{[0,R] \times [0,R]} e^{-(x^2 + y^2)} dx dy$$

$$D_R = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le R^2\}$$

- a) Montrer que $I(R) = F(R)^2$.
- b) Montrer que

$$\iint_{D_R} e^{-(x^2+y^2)} \, dx \, dy \le I(R) \le \iint_{D_{\sqrt{2}R}} e^{-(x^2+y^2)} \, dx \, dy$$

c) En déduire que

$$\int_0^{+\infty} e^{-x^2} dx = \lim_{R \to +\infty} F(R) = \frac{\sqrt{\pi}}{2}$$

23.7 Aire d'un domaine plan

DÉFINITION 23.14 : Aire d'un domaine plan

Soit $D \subset \mathbb{R}^2$ un domaine, on appelle aire de D,

$$\mathcal{A}(D) = \iint_D 1 \, dx \, dy$$

Remarque 264. L'aire du domaine plan D est donc le volume de base D et de hauteur 1.

Exercice 23-21

Calculer l'aire délimitée par une ellipse d'équation cartésienne

$$D: \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$$

Théorème 23.15 : Aire d'un secteur délimité par une courbe polaire

Soit une courbe polaire d'équation $\rho = \rho(\theta)$ et le domaine Ω délimité par les deux demi-droites d'équation polaire θ_1 , θ_2 et par la courbe polaire (voir figure 23.5). Alors l'aire de ce domaine se calcule par la formule:

$$\mathcal{A}(\Omega) = \frac{1}{2} \int_{\theta_1}^{\theta_2} \rho^2(\theta) \, d\theta$$

Fig. 23.5 – Aire délimitée par une courbe polaire

Exercice 23-22

Calculer l'aire délimitée par une cardioïde d'équation polaire

$$\rho = a(1 + \cos \theta) \quad (a > 0)$$

Exercice 23-23

On considère le limaçon de Pascal d'équation polaire

$$\rho = 2\cos\theta - 1$$

- a) Tracer cette courbe.
- b) Calculer l'aire entre les deux boucles.