Proyecto Optimización Numérica Método de Punto Interior Predictor Corrector Programación Cuadrática

1 Introducción

Considere el problema

Minimizar
$$(1/2)x^TQx^T + c^Tx$$

sujeto a $Ax = b$ (1)
 $Fx \ge d$,

donde $Q \in \mathbb{R}^{nxn}$ es simétrica y positiva definida, $A \in \mathbb{R}^{mxn}$ tal que $m \leq n$ y $rango(A) = m, \ F \in \mathbb{R}^{pxn}, \ c, \ x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ y $d \in \mathbb{R}^p$.

Sea
$$\Omega = \{x \in \mathbb{R}^n \mid Ax = b, Fx - d \ge 0 \}$$
 el conjunto factible de (1).

Suponemos que
$$\Omega^o = \{x \in \mathbb{R}^n \mid Ax = b, Fx - d > 0 \} \neq \emptyset$$
.

Las condiciones necesarias de primer orden para un mínimo local de (1) son,

$$\mathbb{F}(x,\lambda,\ \mu,\ z) = \begin{pmatrix} Qx + A^T\lambda - F^T\mu + c \\ Ax - b \\ -Fx + z + d \\ UZe \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad (\mu,\ z) \ge 0, \quad (2)$$

Las condiciones perturbadas de primer orden con parámetro $\gamma > 0$ son

$$\mathbb{F}_{\gamma}(x,\lambda,\ \mu,\ z) = \begin{pmatrix} Qx + A^T\lambda - F^T\mu + c \\ Ax - b \\ -Fx + z + d \\ UZe - \gamma e \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad (\mu,\ z) > 0, \quad (3)$$

donde $U = diag(\mu), \ Z = diag(z) \ y \ e = (1, 1, ..., 1)^T \in \mathbb{R}^p$.

2 Método Predictor-Corrector

Sea $w = (x, \lambda, \mu, z)$:

- 1. Sean $w_0 = (x_0, \lambda_0, \mu_0, z_0), \gamma_0 > 0, \gamma \approx 0$ tales que $\mu_0, z_0 > 0$. Hacer $k \leftarrow 0, \gamma_{size} \leftarrow (\mu_0)^T (z_0)/p$..
- 2. Mientras $||F_0(w_k)||_2 > tol$ hacer
 - (a) Resuelva el sistema lineal:

$$F'_0(w_k)\Delta w_k = -F_0(w_k)$$

donde el vector solución es $\Delta w_k = (\Delta x_k, \ \Delta \lambda_k, \ \Delta \mu_k, \ \Delta z_k)$ es el paso de predicción

(b) Determine $\alpha_k \in (0, 1]$ tal que

$$z^* = z_k + \alpha_k \Delta z_k > 0, \ , \ \mu^* = \mu_k + \alpha_k \Delta \mu_k > 0$$

- (c) Hacer $\gamma \leftarrow (z^*)^T (\mu^*)/p$ $\gamma \leftarrow (\gamma/\gamma_{size})^3$ $\gamma \leftarrow \gamma * \gamma_{size}$
- (d) Resolver el sistema lineal

$$F'_{0}(w_{k})(\Delta w_{k})^{*} = -F_{0}(w_{k}) + \begin{pmatrix} 0 \\ 0 \\ 0 \\ -\Delta Z_{k} \Delta U_{k} e + \gamma e \end{pmatrix}.$$

El vector $(\Delta w_k)^*$ es el paso de corrección.

(e) Determine $\alpha_k \in (0, 1]$ tal que

$$z_k + \alpha_k (\Delta z_k)^* > 0$$
, , $\mu_k + \alpha_k (\Delta \mu_k)^2 > 0$

(f) Actualizar

$$w_{k+1} = w_k + \alpha_k (\Delta w_k)^*.$$

(g) $k \leftarrow k + 1$ e ir al paso 2.

3 El Sistema Lineal

En el paso predictor, Δw_k , y en el paso corrector, $(\Delta w_k)^*$, se debe resolver un sistema lineal de la forma:

$$\begin{pmatrix}
Q & A^T & -F^T & 0 \\
A & 0 & 0 & 0 \\
-F & 0 & 0 & I_p \\
0 & 0 & Z & U
\end{pmatrix}
\begin{pmatrix}
\Delta x \\
\Delta \lambda \\
\Delta \mu \\
\Delta z
\end{pmatrix} = \begin{pmatrix}
r_x \\
r_\lambda \\
r_\mu \\
r_z
\end{pmatrix},$$
(4)

cuya matriz es rala (tiene muchas entradas igual a cero).

Pregunta 1. Calcule el número de entradas igual a cero en la matriz del sistema lineal.

Pregunta 2. Muestre que el sistema lineal (4) puede reducirse a un sistema lineal de orden (n+m) con la estructura:

$$\begin{pmatrix} \hat{Q} & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} \hat{r}_x \\ r_\lambda \end{pmatrix}. \tag{5}$$

Pregunta 3. Pruebe que el sistema lineal (5) son las condiciones necesarias de primer orden del problema cuadrático

Minimizar
$$\frac{1}{2}\Delta x^T \hat{Q}\Delta x - \hat{r}_x^T \Delta x$$

Sujeto a $A\Delta x = r_\lambda$ (6)

De donde los pasos predictor y corrector son calculados resolviendo un sistema lineal de la forma (5).

4 Programación

Escriba una función en MATLAB de la forma

function $[x, \lambda, \mu, z, iter] = qpintpointpc(Q, A, F, c, d)$ % Resuelve el problema cuadrático por el método de puntos interiores

- % con el esquema de preedicción y corrección.
- % No se resuelve el sistema lineal con la matriz completa.
- % Número máximo de iteraciones permitidas es, maxiter=100.
- % La variable de salida, iter, es el número de iteraciones que usa el método.
- % Se inicia con iter = 0 y se incrementa en uno en cada itercaión.
- % Se detiene el método cuando $||F_0(w_k)||_2 \le 10^{-5}$ o k = maxiter.

%

- % El punto inicial : $x \in \mathbb{R}^n$ satisface que Ax = b.
- $\% \ \lambda = 0, \ \mu = z = (1, ..., 1)^T \in \mathbb{R}^p.$

5 Funciones de Prueba

Los Problemas de Netlib:

Los datos, $A \in \mathbb{R}^{mxn}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, están en los archivos **.mat.

En todos los casos se define

$$Q = I_n$$
.

Se verifica que rango(A) = m.

El programa regresa los siguientes valores:

Problema	$\mid n \mid$	m	iter	$f(x^*)$
AFIRO	51	27	38	2.0082e + 05
CAPRI	496	271	138*	9.3979e + 07
SC105	163	105	50*	1.7720e + 05
BOEING1	726	351	150	NOCONV
GROW7	301	140	36	-88.3601
SCTAP1	660	330	47*	1.4453e + 04

El problema de BOEING1 no converge, de hecho no se obtienen puntos factibles. Algunos problemas, CAPRI, SC105 y SCTAP1, tienen matrices mal condicionadas en las últimas iteraciones, esto se muestra con un * en el número de iteraciones. Los problemas AFIRO y GROW7 se comportan bien. En todos los casos el vector inicial, x, satisface que A*x=b.

El programa quadprog.m en Matlab obtiene los siguientes valores:

Problema	n	m	iter	$f(x^*)$
AFIRO	51	27	11	2.0082e + 05
CAPRI	496	271	34	9.3979e + 07
SC105	163	105	9	1.7720e + 05
BOEING1	726	351	28	NOCONV
GROW7	301	140	9	-88.3601
SCTAP1	660	330	12	1.4453e + 04

Matlab usa un método de predicción-corrección en cada iteración, además de que genera el punto inicial.

6 Entregar

Equipos de a lo más tres estudiantes. Enviar los siguientes programas

- 1. **qpintpointpc.m**, programa de puntos interiores.
- 2. AFIRO.mat, CAPRI.mat, SC105.mat, BOEING1.mat, GROW7.mat, SCTAP1.mat.
- 3. Un script file para cada instancias, por ejemplo para AFIRO, el script será, **SOLAFIRO.m**. Debe mostrar en la pantalla el número de iteraciones que se realizaron y la norma de las condiciones suficientes de primer orden en el punto final.

Empaquetar los programas, **proy1.zip** o **proy1.rar** y enviar a la dirección: **zeferino@itam.mx**

Fecha: Viernes 6 de marzo de 2020 en hora de clase. Habrá exposición por equipos.