KINETICA: ОПИСАНИЕ ПРОЕКТА

Умная система контроля качества упражнений и восстановления после травм.

Версия: Прототип системы

Майка А. Н.

Оглавление

I.	Резюме проекта	3
II.	Описание проекта	4
	Введение	4
	Проблемы	4
	Цели	4
III.	Описание решения	5
	Сбор данных с тела	5
	Централизованное управление	5
	Передача команд и телеметрии	5
	Серверная обработка	5
	Обработка и анализ	5
	Собранные данные хранятся в структурированном виде и могут использоваться для:	5
	Масштабируемая архитектура.	5
IV.	Технологии и аппаратная часть	6
	Аппаратные компоненты датчика	6
	Технологии связи	6
	Программная часть	7
V.	Преимущества системы	8
	Беспроводность и мобильность	8
	Точность и надёжность данных	8
	Централизованное управление и гибкая настройка	8
	Автономная архитектура и независимость от интернета	8
	Гибкость интеграции и открытость протоколов	8
	Потенциал для аналитики и персонализированных рекомендаций	8
VI.	Применение	9
	Спорт и тренировки	9
	Реабилитация и физиотерапия	9
	Образование и спортивная подготовка	9
	Исследования и тестирование	9
VII.	Возможный кейс внедрения	10
	Кейс: Повышение качества тренировок и контроля техники в спортивном зале	
	Кейс: Оптимизация реабилитации после травм и операций	10
/TTT	300 MOHELINE IN THE OCHEW THE I	1

Резюме проекта

Название проекта: Kinetica — Умная система контроля качества упражнений и восстановления после травм

Цель проекта: Создание мобильной и масштабируемой системы для точного мониторинга и анализа движений человека с использованием инерциальных датчиков. Основная задача — заменить громоздкие и дорогостоящие системы захвата движений (motion capture) на удобное, автономное и легко внедряемое решение, применимое в спорте, реабилитации, образовании и научных исследованиях.

Краткое описание решения: Система состоит из набора компактных IMU-модулей (на базе BNO080), размещаемых на теле, и центрального хаба на ESP32-S3. Датчики отслеживают ускорение, угловую скорость и ориентацию, передавая данные по ESP-NOW на хаб, который агрегирует информацию и отправляет её на сервер по TCP. Управление и настройка системы осуществляются через BLE. Серверная часть (на Go) принимает данные, управляет сессиями и подготавливает информацию для анализа. Система работает без камер, проводов и доступа к интернету.

Проблемы, которые решает проект:

- Зависимость существующих систем от стационарной установки и визуального контроля.
- Ограниченность мобильности и высокая стоимость оборудования.
- Отсутствие объективной и постоянной обратной связи при тренировках и реабилитации.
- Недоступность высокоточных решений вне лабораторных условий
- Малое кол-во российских разработок

Ключевые преимущества:

- Полная беспроводность и независимость от внешней инфраструктуры.
- Точность и надёжность данных благодаря инерциальным сенсорам и централизованной обработке.
- Автономная архитектура работает без доступа к интернету и внешним серверам.
- **Гибкость масштабирования** добавление новых датчиков и сценариев не требует переработки всей системы.

Целевая аудитория и сферы применения: Система Kinetica ориентирована на спортивные организации и индивидуальных тренеров, которым важно объективно отслеживать технику и прогресс спортсменов; реабилитационные центры и физиотерапевтов, нуждающихся в надёжном инструменте для контроля выполнения упражнений и оценки динамики восстановления; образовательные учреждения и исследовательские лаборатории, использующие данные о движении для обучения и проведения прикладных исследований; а также проекты в области нейроинтерфейсов и цифровой медицины, где требуется точный и масштабируемый сбор информации о моторике человека.

Ожидаемые результаты:

Внедрение системы позволит значительно повысить точность и эффективность анализа движений, ускорить восстановление пациентов за счёт объективного и непрерывного контроля упражнений, улучшить качество тренировочного процесса и снизить риск травматизма. Кроме того, архитектура решения обеспечивает возможность адаптации под конкретные сценарии без значительных затрат, что делает систему гибкой и доступной для различных областей применения

Описание проекта

Введение.

Современные методы контроля движений и состояния опорно-двигательного аппарата часто требуют сложных и дорогостоящих решений. Особенно в сфере спорта, медицины и реабилитации важно обеспечивать точный анализ движений, удобство ношения оборудования и возможность масштабирования.

Классические системы motion capture с камерами или проводными датчиками громоздки, дорогостоящи и требуют специально подготовленной среды. Кіпетіса предлагает альтернативу — легковесную, беспроводную и масштабируемую платформу, которая состоит из компактных IMU-модулей, закрепляемых на теле, и центрального управляющего хаба, соединённого с локальным сервером.

Система ориентирована на практическое применение в спорте, реабилитации, медицине, а также в образовании и научных исследованиях.

Проблемы.

• Сложность и ограниченность существующих систем

Камеры и проводные датчики требуют стационарной установки, высокой точности настройки и затратного обслуживания.

• Отсутствие мобильности

Большинство решений не подходят для использования вне лабораторных условий.

• Низкая масштабируемость

При увеличении числа участников резко возрастают затраты и требования к инфраструктуре.

• Сложность интеграции с реальным процессом тренировки или реабилитации

Устройства ограничивают свободу движений, вызывают дискомфорт и искажают поведение.

• Недостаток оперативной обратной связи и анализа данных

Многие системы не поддерживают реального времени или не позволяют адаптировать тренировку «на лету».

Цели

• Создать мобильную и беспроводную систему захвата движений

Обеспечить свободное использование системы в любых условиях — от спортивного зала до клиники и выездных сессий, без необходимости в громоздком оборудовании и стационарной инфраструктуре.

• Обеспечить точную и надёжную оценку движений

Гарантировать высокую достоверность отслеживания движений для последующего анализа техники, диагностики нарушений и оценки динамики восстановления.

• Обеспечить простоту настройки и взаимодействия с системой

Сделать процесс запуска, управления и работы с системой максимально доступным для специалистов и пользователей без технического опыта.

• Реализовать надёжную и стабильную передачу данных

Обеспечить бесперебойную передачу данных для оперативного контроля и моментального реагирования на изменения в процессе движения.

• Обеспечить анализ данных и формирование рекомендаций

Сформировать основу для интерпретации собранной информации — от текущей оценки техники до рекомендаций по её улучшению

Описание решения

Для решения задачи анализа качества движений и поддержки реабилитации разрабатывается интегрированная система Kinetica, сочетающая точные инерциальные сенсоры, беспроводную передачу данных и серверную обработку информации. Проект ориентирован на применение в спорте, медицине, обучении и восстановительной терапии.

Сбор данных с тела

Система состоит из 13 компактных модулей, размещаемых на теле пользователя. Каждый модуль содержит IMU-сенсор BNO080/ BNO085, отслеживающий ускорение, угловую скорость и ориентацию в пространстве. Сенсоры крепятся на ключевые участки тела (голова, грудь, спина, конечности), обеспечивая полное покрытие для анализа движений.

Централизованное управление

Перед началом сессии пользователь через ВLЕ передаёт хабу параметры подключения к серверу (IP и порт). Хаб подключается к локальной точке доступа (Wi-Fi) и устанавливает TCP-соединение с сервером (на ноутбуке).

Сервер управляет сессией, передаёт команды хабу, принимает от него агрегированные данные от всех сенсоров. Передача между хабом и датчиками осуществляется по ESP-NOW — легковесной, энергоэффективной технологии беспроводной связи.

Передача команд и телеметрии

Хаб управляет остальными сенсорами по беспроводной технологии **ESP-NOW**, передавая им команды и принимая телеметрию. Такая архитектура позволяет обеспечить точную синхронизацию, низкие задержки и устойчивость к помехам, без необходимости в интернет-соединении.

Серверная обработка

На ноутбуке или локальном сервере запускается приложение (написанное на Go), которое принимает потоковые данные от хаба, регистрирует события и позволяет сохранять или анализировать движение пользователя в реальном времени. Сервер может визуализировать движения, оценивать технику и формировать рекомендации на основе полученных данных.

Обработка и анализ

Собранные данные хранятся в структурированном виде и могут использоваться для:

- оценки прогресса пользователя;
- сравнения техники до и после тренировки;
- выявления дисфункций или асимметрий;
- составления индивидуальных рекомендаций для тренировок или восстановления.

Система открыта к адаптации под различные сценарии: от контроля физической активности до образовательных или исследовательских целей.

Масштабируемая архитектура.

Все компоненты Kinetica построены на модульной архитектуре, что позволяет легко масштабировать систему под любое количество пользователей, сенсоров или сценариев. Использование открытых протоколов связи (BLE, TCP, ESP-NOW), а также переносимая программная часть делают её гибкой для различных типов внедрения — от одиночного спортсмена до команды или реабилитационного центра.

Технологии и аппаратная часть

Разработка прототипа **Kinetica** основана на использовании проверенных аппаратных компонентов и современных беспроводных технологий, обеспечивающих надёжную связь, гибкость архитектуры и возможность дальнейшего масштабирования.

Аппаратные компоненты датчика

- **BNO080/BNO085** 9-осевой инерциальный сенсор (акселерометр, гироскоп, магнитометр) со встроенным Sensor Fusion. Выдаёт данные об ориентации, ускорении и угловой скорости в реальном времени, обеспечивая высокую точность отслеживания движений.
- **ESP32-C3 Super Mini** компактный и энергоэффективный микроконтроллер с поддержкой Wi-Fi и BLE. Используется в каждом датчике для связи, обработки и передачи данных.
- ESP32-S3 Zero Mini высокопроизводительный двухъядерный микроконтроллер с поддержкой Wi-Fi и BLE. Применяется в роли хаба системы: управляет датчиками, передаёт команды (start/stop), принимает телеметрию по ESP-NOW и отправляет агрегированные данные на сервер по TCP.
- **Источник питания** каждый модуль питается от перезаряжаемого Li-Po аккумулятора. Планируется реализация оптимального баланса между временем автономной работы и габаритами устройства.
- Система включения/отключения для удобства эксплуатации модули будут оснащены кнопкой включения/выключения и световой индикацией состояния.
- **Корпус** все компоненты размещаются в компактном, лёгком и защищённом корпусе, устойчивом к механическим воздействиям и влаге.
- **Крепление на тело** каждый модуль фиксируется на теле с помощью эластичного ремешка или липучки, обеспечивая надёжное и удобное крепление без ограничения подвижности.

Технологии связи

- BLE (Bluetooth Low Energy) энергоэффективный протокол беспроводной связи малой дальности. Используется для первичной настройки: передача параметров подключения к серверу (IP, порт) на хаб.
- **ESP-NOW** проприетарный протокол от Espressif для прямой передачи данных между ESP32устройствами без участия роутера. Обеспечивает лёгкую, стабильную и энергоэффективную связь между датчиками и хабом.
- Wi-Fi (STA-режим) режим, в котором устройство подключается к существующей точке доступа Wi-Fi как клиент (Station) без доступа в Интернет. Позволяет организовать обмен данными с сервером без использования интернета или внешнего маршрутизатора. Такой подход делает систему автономной и удобной для использования в зале, на выезде или в клинике.
- **TCP** надёжный транспортный протокол, гарантирующий доставку данных в правильной последовательности. Обеспечивает стабильную и упорядоченную передачу информации между хабом и сервером. По TCP хаб получает команды (например, старт/стоп), а также передаёт агрегированные данные от всех датчиков.

Программная часть

Встроенное ПО (датчики и хаб):

- Язык: С
- Фреймворк: ESP-IDF официальный SDK для программирования микроконтроллеров ESP32 от Espressif
- Назначение:
 - о Управление сенсорами BNO080/ BNO085
 - о Передача и приём данных по ESP-NOW
 - о Настройка соединения через BLE
 - о Обработка команд и отправка данных по ТСР

Встроенное ПО отвечает за точный сбор данных с инерциальных сенсоров, их упаковку и надёжную доставку до центрального сервера.

Серверное приложение:

- Язык: Go
- Назначение:
 - о Принятие ТСР-соединения от хаба
 - о Получение и логгирование агрегированных данных с датчиков
 - о Передача управляющих команд хабу (например, start, stop, upload)
 - Обработка и отправка ВLE-сообщений для инициализации подключения
 - о Подготовка данных к дальнейшей обработке и визуализации

Go выбран благодаря своей высокой производительности, удобной работе с параллелизмом (через goroutines), стабильной поддержке сетевых протоколов (TCP, BLE через внешние библиотеки), а также читаемому и поддерживаемому коду для серверной логики.

Преимущества системы

Внедрение системы **Kinetica** открывает новые возможности для эффективного контроля качества движений, оценки физического состояния и поддержки реабилитационных процессов. Ниже представлены ключевые преимущества решения.

Беспроводность и мобильность

Система не требует проводных подключений и громоздкого оборудования. Все сенсоры работают автономно, передавая данные по беспроводной сети, что позволяет использовать систему в спортивных залах, клиниках, на выездных мероприятиях и даже в домашних условиях.

Точность и надёжность данных

Использование высокоточных инерциальных сенсоров (BNO080) в сочетании с алгоритмами сенсорного слияния обеспечивает достоверную оценку движений. Это позволяет выявлять отклонения, асимметрии и нарушения техники с высокой детализацией.

Централизованное управление и гибкая настройка

Вся система управляется через хаб, получающий команды от сервера. Передача параметров подключения осуществляется по ВLE, что делает настройку быстрой и доступной. Управление сенсорами и сбор данных автоматизирован и централизован, что сокращает время подготовки и снижает вероятность ошибок.

Автономная архитектура и независимость от интернета

Система не зависит от внешних серверов или облаков — все соединения происходят в рамках локальной сети. Хаб подключается к точке доступа ноутбука, что позволяет использовать систему даже в условиях отсутствия интернета или мобильной связи.

Гибкость интеграции и открытость протоколов

Серверная часть написана на языке Go и может быть легко интегрирована в существующие IT-системы. Использование открытых стандартов (TCP, BLE, ESP-NOW) обеспечивает совместимость и лёгкую адаптацию под различные технические требования.

Потенциал для аналитики и персонализированных рекомендаций

Собранные данные могут использоваться для последующего анализа, построения траекторий восстановления, выявления прогресса и формирования индивидуальных рекомендаций. Это создаёт основу для интеллектуальной поддержки пользователей, тренеров или врачей.

Применение

Система **Kinetica** в первую очередь предназначена для **контроля техники выполнения движений**, поддержки **восстановительных процессов** и повышения **качества индивидуальных тренировок**. Благодаря модульной архитектуре и мобильности, она также может быть адаптирована под образовательные, исследовательские и прикладные задачи в смежных отрасли.

Спорт и тренировки

- 1. **Оценка техники выполнения упражнений.** Система помогает спортсменам и тренерам отслеживать движения, выявлять ошибки, асимметрии, отклонения от оптимальной траектории, что важно для достижения высоких результатов и профилактики травм.
- 2. **Персонализированное планирование тренировок.** Анализ накопленных данных позволяет корректировать нагрузки, отслеживать прогресс и строить индивидуальные планы на основе объективной информации о движениях и динамике.

Реабилитация и физиотерапия

- 1. **Контроль за выполнением восстановительных упражнений.** Система фиксирует, насколько точно пациент следует предписанной программе. Это позволяет специалисту отслеживать технику, соблюдение амплитуд и повторений.
- 2. **Оценка прогресса восстановления.** Кіпетіса даёт возможность количественно оценивать, как со временем меняется подвижность и качество движений без постоянного присутствия врача и без громоздкого оборудования.

Образование и спортивная подготовка

- 1. **Обучение правильной технике.** В вузах, колледжах и спортивных школах система может использоваться для обучения движениям от общей физической подготовки до элементов сложной координации.
- 2. **Объективная оценка навыков учащихся.** Инструктор или преподаватель получает доступ к объективной информации о движении учащегося, что помогает строить обратную связь и индивидуальные корректировки.

Исследования и тестирование.

- 1. **Анализ биомеханики движений.** Kinetica подходит для проведения прикладных исследований в области двигательной активности, например, для сравнения техник между группами испытуемых.
- 2. **Быстрое прототипирование упражнений и методик.** Гибкость системы позволяет исследователям быстро собирать данные, тестировать гипотезы и сравнивать эффективность разных подходов в тренировке и реабилитации.

Возможный кейс внедрения.

Современные учреждения, работающие в сфере спорта, медицины и образования, стремятся внедрять технологии, способные повысить качество двигательной активности, ускорить восстановление и снизить риски травм.

Система **Kinetica** решает задачу персонального мониторинга движений и может применяться как в учебном процессе, так и в клинической практике и индивидуальных тренировках.

Кейс: Повышение качества тренировок и контроля техники в спортивном зале.

Задача

Переход от визуального и субъективного контроля за выполнением упражнений к объективной, цифровой системе оценки движений, позволяющей спортсмену и тренеру совместно отслеживать прогресс и предотвращать ошибки и травмы.

AS IS (текущее состояние)

В большинстве залов контроль техники осуществляется визуально, в режиме реального времени. Тренер наблюдает за движениями и даёт устную обратную связь, опираясь на собственный опыт. Ошибки могут быть замечены не сразу или интерпретированы субъективно. У спортсмена нет доступа к объективным данным о движении, не сохраняется история тренировок, и невозможно отследить качественные изменения техники. Всё основано на восприятии и памяти — и тренера, и самого спортсмена.

ТО ВЕ (будущее состояние)

Система Kinetica позволяет зафиксировать каждую тренировку объективно. Спортсмен надевает датчики, которые фиксируют параметры движений: амплитуду, траектории, углы, симметрию. Все данные поступают на ноутбук тренера и визуализируются. Ошибки становятся очевидны сразу, что позволяет оперативно корректировать технику. Сессии сохраняются, что даёт возможность сравнивать разные дни и отслеживать прогресс. Тренер работает не "на глаз", а с точной цифровой моделью движения, а спортсмен получает ясную обратную связь и становится активным участником анализа собственных действий

Выгода

Повышается эффективность тренировочного процесса, снижается риск травм, появляется возможность персонализировать нагрузку. Объективные данные усиливают доверие между тренером и спортсменом, а также повышают вовлечённость и мотивацию за счёт видимого прогресса.

Кейс: Оптимизация реабилитации после травм и операций

Задача

Организовать непрерывный, объективный контроль за выполнением реабилитационных упражнений вне клиники. Повысить точность выполнения заданий, снизить риски регресса, упростить контроль со стороны врача и сократить количество очных визитов.

AS IS (текущее состояние)

Пациенты часто выполняют упражнения дома самостоятельно. Врач может оценить результат только при личной встрече, ориентируясь на субъективные рассказы и краткие наблюдения. Если пациент допускает оппибки в технике, это остаётся незамеченным. Прогресс не фиксируется объективно, история восстановления не хранится. Врач не может оперативно скорректировать план, а пациент не уверен, правильно ли он выполняет движения.

ТО ВЕ (будущее состояние)

С внедрением Kinetica пациент использует лёгкие датчики, которые фиксируют выполнение упражнений. Данные поступают на ноутбук врача или в локальную систему. Врач видит: как именно пациент двигался, в чём есть отклонения, какие параметры улучшились. Упражнения можно анализировать удалённо, сравнивать по дням, выявлять ошибки и оперативно вносить изменения в программу. Пациент получает обратную связь, ощущает поддержку, становится увереннее в процессе восстановления.

Выгода

Процесс реабилитации становится более эффективным и предсказуемым. Снижается необходимость в частых визитах, ускоряется восстановление, уменьшается нагрузка на персонал. Пациент получает качественную помощь, а врач — полноценный инструмент для управления восстановление

Заключение и перспективы.

Создание прототипа системы Kinetica подтвердило её работоспособность, точность и применимость в условиях, где необходим мониторинг движений без громоздкого оборудования. Система показала, что может быть мобильной, автономной и удобной для пользователей, предоставляя объективные данные в режиме реального времени.

На следующем этапе развития проекта планируется:

- Добавление новых сенсоров расширение аппаратной части за счёт интеграции дополнительных датчиков (например, ЭМГ, давления, пульса) для получения более полной картины состояния пользователя.
- Углубление аналитики улучшение обработки и интерпретации данных с существующих IMUсенсоров, выявление асимметрий, отклонений от нормы и динамики восстановления.
- **Разработка веб-интерфейса** создание пользовательского интерфейса для визуализации движений, управления сессиями и взаимодействия с системой через браузер.
- Интеграция с VR внедрение модуля виртуальной реальности, в котором пользователь сможет тренироваться или выполнять реабилитационные упражнения в иммерсивной среде с обратной связью, основанной на данных с датчиков.

Система остаётся полностью беспроводной, не требует камер или специализированной среды, что делает её удобной для использования в зале, клинике, на выезде и даже дома. В дальнейшем планируется масштабирование решения, адаптация под конкретные сферы и подготовка к пилотным внедрениям. Кіпетіса формирует основу для интеллектуального и доступного контроля движений, открывая возможности для повышения качества тренировок, ускорения восстановления и улучшения образования.