

AMENDMENTS TO THE CLAIMS

1. **(Currently amended)** A probe comprising a nucleic acid carrying a labeling substance that releases energy and an intercalator or an energy absorbing substance which is capable of specifically binding to specifically binds to a double-stranded nucleic acid, wherein the intercalator or the energy absorbing substance is capable of absorbing the energy released from the labeling substance, wherein the intercalator or the energy-absorbing substance specifically interacts with binds the double-stranded nucleic acid due to by the hybridization of the probe with a target nucleic acid thereby resulting in no quenching of the labeling substance wherein energy transfer from the labeling substance to the intercalator or the energy-absorbing substance is intercepted.
2. **(Original)** The probe according to claim 1, wherein the energy is photo energy.
3. **(Previously presented)** The probe according to claim 1, wherein the labeling substance is selected from the group consisting of a fluorescent substance, a delayed fluorescent substance, and a chemiluminescent substance.
4. **(Canceled)**
5. **(Previously presented)** The probe according to claim 1, wherein the intercalator is selected from the group consisting of acridine, anthracene, pyrene, and derivatives thereof.
6. **(Previously presented)** The probe according to claim 1, wherein the labeling substance is fluorescein, and the energy-absorbing substance is selected from the group consisting of pyrene, coumarin, and acridine.

7. (Previously presented) A solid phase carrier for detecting a nucleic acid, on which the probe of claim 1 is immobilized.

8. (Previously presented) A method for detecting a nucleic acid comprising the steps of contacting the probe of claim 1 with a nucleic acid sample and then measuring energy released from the labeling substance.

9. (Original) The method according to claim 8, wherein the presence of the energy released from the labeling substance indicates the hybridization of the probe with the target nucleic acid.