Práctica 6, Primera parte (Ejercicios 1 al 10)

Resolución del Ejercicio 2

Sean los conjuntos $A = \{-3, -2, -1, 0, 1, 2, 3\}$ y B = Z.

Definimos la relación R del conjunto A al conjunto B de la siguiente manera:

$$xRy \Leftrightarrow y = x^2$$

Veamos cómo es nuestra relación:

Recordar primero que $x \in A$ e $y \in B$ Luego tomamos un elemento en el conjunto A, por ejemplo $-3 \in A$

Si

$$x = -3$$

luego la relación nos dice que

$$(-3)^2 = y$$

osea

$$9 = y$$

entonces como

$$y = 9 \in B$$

Finalmente, tenemos que $(-3, 9) \in R$.

Luego repetimos el procedimiento con cada elemento del conjunto A otro ejemplo: $x=0\in A$ luego $y=(0)^2=0\in B=Z$ concluimos que $(0,0)\in R$.

Finalmente, la relación R por extensión nos queda:

$$R = \{(-3, 9); (-2, 4); (-1, 1); (0, 0); (1, 1); (2, 4); (3, 9)\}$$

Ahora bien nos piden hallar R^{-1} :

Recordar la definición de relación inversa \mathbb{R}^{-1} del conjunto \mathbb{B} al conjunto \mathbb{A} como:

$$R^{-1} = \{(y, x) : (x, y) \in R\}$$

Luego R^{-1} por comprensión es:

$$R^{-1} = \{(y, x) : y = x^2\}$$

y R^{-1} por extensión es:

$$R^{-1} = \{(9, -3); (4, -2); (1, -1); (0, 0); (1, 1); (4, 2); (9, 3)\}$$

Resolución del Ejercicio 3

Sea $A = \{a, b, c\}$:

a. Dar un ejemplo de una relación R no reflexiva en A.

Comencemos notando que la relación R está definida en el conjunto A, osea, $x, y \in A$ para que $(x, y) \in R$.

Recordemos qué significa que la relación tenga la propiedad de ser reflexiva:

$$\forall x \in A \ xRx \Leftrightarrow \forall x \in A \ (x,x) \in R$$

Pero en éste caso nos piden que R no tenga esta propiedad eso sería:

$$\exists x \in A : (x, x) \notin R$$

Proponemos entonces, la siguiente relación:

$$R = \{(a, a)\}$$

No es reflexiva. Porqué? Qué elementos faltan para que lo sea? (ver la definición con atención o consulte con los docentes).

b. Dar un ejemplo de una relación R simétrica en A.

Recordemos qué significa que la relación tenga la propiedad de ser simétrica:

$$\forall x, y \in A \ xRy \Rightarrow yRx \Leftrightarrow \forall x, y \in A \ (x, y) \in R \Rightarrow (y, x) \in R$$

Proponemos entonces, la siguiente relación:

$$R = \{(a, a); (b, b); (c, c); (a, b); (b, a); (a, c); (c, a)\}$$

es simétrica (verificarlo)

c. Dar un ejemplo de una relación no transitiva en A.

Recordemos qué significa que la relación tenga la propiedad de ser transitiva:

$$\forall x, y, z \in A \ xRy \land yRz \Rightarrow xRz \Leftrightarrow$$

$$\Leftrightarrow \forall x,y,z \in A \ (x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R$$

Pero en éste caso nos piden que R no tenga esta propiedad eso sería:

$$\exists x, y, z \in A : (x, y) \in R \land (y, z) \in R \land (x, z) \notin R$$

Proponemos entonces, la siguiente relación:

$$R = \{(a, b); (b, c)\}$$

no es transitiva, pues vemos fácilmente que:

$$(a,b) \in R, (b,c) \in R \text{ pero } (a,c) \notin R.$$

Resolución del Ejercicio 7

Dado el conjunto $A = \{a, b, c\}$ y las relaciones en A definidas:

$$R = \{(a, a); (a, b); (b, a); (b, b)\}$$

$$S = \{(b, a); (c, a)\}$$

a. Decidir justificando si R es reflexiva, simétrica, transitiva o antisimétrica.

Analicemos qué propiedades cumple la relación R:

 \blacksquare R es reflexiva? Es decir, tenemos que analizar si cumple:

$$\forall x \in A \ xRx \Leftrightarrow \forall x \in A \ (x,x) \in R$$

Vemos claramente que R no es reflexiva, pues (c, c) no están en R.

 \blacksquare R es simétrica? es decir, tenemos que analizar si cumple:

$$\forall x, y \in A \ xRy \Rightarrow yRx \Leftrightarrow \forall x, y \in A \ (x, y) \in R \Rightarrow (y, x) \in R$$

R satisface la definición de la propiedad simétrica:

En efecto, si tomamos $a, b \in A$ como $(a, b) \in R \Rightarrow (b, a) \in R$ éste condicional es verdadero, ya que el antecedente $(a, b) \in R$ es verdadero y el consecuente

 $(b,a) \in R$ es verdadero (recordar la tabla de verdad del condicional).

Pero si miramos la definición con cuidado, esto debe cumplirse $\forall x \in A$, es decir, para todo elemento del conjunto A.

luego qué pasa si consideramos $b, c \in A$, se cumple, por ejemplo, que $(c,b) \in R \Rightarrow (b,c) \in R$ éste condicional sea verdadero?

la respuesta es sí, ya que el antecedente $(b,c) \notin R$ es verdadero y $(c,b) \notin R$ es verdadero de lo cual resulta $(c,b) \in R \Rightarrow (b,c) \in R$ éste condicional es verdadero.

 \blacksquare R es transitiva? es decir, tenemos que analizar si cumple:

$$\forall x, y, z \in A \ xRy \land yRz \Rightarrow xRz \Leftrightarrow$$

$$\Leftrightarrow \forall x, y, z \in A \ (x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$$

R es transitiva, pues, si tomamos $a, b, c \in A$ tal que $(a, b) \in R$ es verdadero y $(b, c) \in R$ es falso, luego el antecedente resulta falso, pero el consecuente $(a, c) \in R$ también es falso, de lo cual el condicional resulta ser verdadero.

(justificar los casos restantes).

 \blacksquare R es antisimétrica? es decir, tenemos que analizar si cumple:

$$\forall x, y \in A \ xRy \land yRx \Rightarrow x = y \Leftrightarrow$$

$$\Leftrightarrow \forall x, y \in A \ (x, y) \in R \land (y, x) \in R \Rightarrow (x, x) \in R$$

Vemos que R no es antisimétrica, pues existen $a, b \in A$ tal que $(a, b) \in R$ es verdadero y $(b, a) \in R$ es verdadero, luego a = b resulta falso, ya que a y b son elementos distintos del conjunto A, de lo cual el condicional resulta ser falso.

- b. Decidir justificando si S es transitiva y/o antisimétrica.
 - ullet S es transitiva? es decir, tenemos que analizar si cumple:

$$\forall x, y, z \in A \ xRy \land yRz \Rightarrow xRz \Leftrightarrow$$

$$\Leftrightarrow \forall x, y, z \in A \ (x, y) \in S \land (y, z) \in S \Rightarrow (x, z) \in S$$

S es transitiva, pues, si tomamos, $a, b, c \in A$ tal que $(a, b) \in S$ es falso y $(b, c) \in S$ es falso, luego el antecedente resulta falso, pero como el consecuente $(a, c) \in S$ resulta falso, de lo cual el condicional resulta ser verdadero.

(justificar los casos restantes).

 \blacksquare S es antisimétrica? es decir, tenemos que analizar si cumple:

$$\forall x, y \in A \ xRy \land yRx \Rightarrow x = y \Leftrightarrow$$

$$\Leftrightarrow \forall x, y \in A \ (x, y) \in S \land (y, x) \in S \Rightarrow (x, x) \in S$$

Vemos que S es antisimétrica:

pues, por ejemplo, vemos que si tomamos $a, b \in A$ se tiene que el antecedente $(a,b) \in S$ es falso $\land (b,a) \in S$ es verdadero luego (recordando la tabla de la conjunción ' \land 'resulta que el antecedente es falso y como el consecuente a=b es falso, luego por la tabla del condicional ' \rightarrow 'resulta ser verdadero.) Verifique los demás casos.

c. ¿Qué pares hay que agregar necesariamente a S para que sea reflexiva?

Para que S sea reflexiva hay que agregar los pares (a, a); (b, b); (c, c), luego la relación con estos elementos agregados, llamésmola S' nos queda:

$$S' = \{(b, a); (c, a); (a, a); (b, b); (c, c)\}$$

d. ¿Qué pares hay que agregar necesariamente a S para que sea simétrica?

Para que S sea simétrica hay que agregar los pares (a,b); (a,c), luego la relación con estos elementos agregados, llamésmola S'' nos queda:

$$S'' = \{(b, a); (c, a); (a, b); (a, c)\}$$

Resolución del Ejercicio 9

Sea R una relación definida en el conjunto cartesiano $Z \times Z$ como:

$$(x,y)R(z,w) \Leftrightarrow x=z$$
 (1)

Hay que demostrar que R es una relación de equivalencia, es decir, debe verificar:

 \blacksquare R es reflexiva:

$$\forall (x, y) \in Z \times Z \ (x, y) R(x, y)$$

Sí se verifica pues,

$$(x,y)R(x,y) \Leftrightarrow$$

por definición (1)

$$x = x$$

Por lo tanto, R es reflexiva.

\blacksquare R es simétrica:

$$\forall (x,y); (z,w) \in Z \times Z \ (x,y)R(z,w) \Rightarrow (z,w)R(x,y)$$

Para verificarlo, lo realizaremos por el método directo, es decir, partimos de la verdad del antecedente para concluir que el consecuente es también verdadero.

Sabemos que el antecedente (también llamado hipótesis) (x,y)R(z,w) es verdadero luego:

Aplicamos la definición de la relación R (1)

$$x = z$$

por la propiedad conmutativa la igualdad en números reales, es lo mismo,

$$z = x$$

Aplicamos la definición de la relación R (1)

como queríamos probar.

Por lo tanto, concluimos que R es simétrica.

\blacksquare R es transitiva:

$$\forall (x,y); (z,w); (u,t) \in Z \times Z \ (x,y)R(z,w) \land (z,w)R(u,t) \Rightarrow (x,y)R(u,t)$$

Para verificarlo, nuevamente aplico el método directo.

Sabemos que el antecedente $(x,y)R(z,w) \wedge (z,w)R(u,t)$ es verdadero luego:

$$(x,y)R(z,w) \wedge (z,w)R(u,t)$$

Aplicamos la definición de la relación R (1)

$$x = z \wedge z = u$$

por la propiedad transitiva en de la igualdad de números reales, es lo mismo,

$$x = u$$

Aplicamos la definición de la relación R (1)

Como queríamos probar.

Por lo tanto, concluimos que R es transitiva.

Finalmente, concluimos que R es una relación de equivalencia en $Z \times Z$.

Ahora dado un elemento cualquiera $(x, y) \in Z \times Z$, busco la clase de equivalencia del elemento (x, y) (o R-clase), denotado como $\overline{(x, y)}$ la cual está definida como:

$$\overline{(x,y)} = \{(z,w) \in Z \times Z : (z,w)R(x,y)\} = \{(z,w) \in Z \times Z : z = x\}$$

(esto último aplicando la definición (1)).

Luego la clase de equivalencia del elemento (x, y) es:

$$\overline{(x,y)} = \{(z,w) \in Z \times Z : z = x\}$$

para entenderlo, veamoslo con un ejemplo:

Tomemmos (x, y) = (1, 1) luego su clase de equivalencia sería:

$$\overline{(1,1)} = \{(z,w) \in Z \times Z : (z,w)R(1,1)\} = \{(z,w) \in Z \times Z : z = 1 \land w \in Z\} = \{(z,w) \in Z : z = 1 \land w \in Z\} = \{(z,w) \in Z \times Z : z = 1 \land w \in Z\} = \{(z,w) \in Z : z = 1 \land w \in Z\} = \{(z,w) \in Z : z = 1 \land w \in Z\} = \{(z,w) \in Z : z = 1 \land w \in Z\} = \{(z,w) \in Z : z = 1 \land w \in Z\} = \{(z,w) \in Z : z = 1 \land w \in Z\} = \{(z,w) \in Z : z = 1 \land w \in Z\} = \{(z,w) \in Z : z = 1 \land w$$

$$= \{(1,0); (1,-1); (1,2); (1,3) \dots \}$$

Resolución del Ejercicio 10

Sea $f:A\to B$ donde puede ser $A=B=\Re$. Luego se defina la relación de equivalencia R sobre el conjunto A de la siguiente forma:

Sean $x, y \in A$

$$xRy \Leftrightarrow f(x) = f(y) \ (1)$$

(a) Nos dan la función $f(x) = x^2$, luego nos piden:

El conjunto cociente:

$$A/R = {\overline{a} : a \in A}$$

pero entonces necesitamos hallar \overline{a} :

Fijamos entonces $a \in A$ cualquiera entonces busco:

$$\overline{a} = \{x \in A : xRa\}$$

Aplico la definición (1) y tenemos:

$$\overline{a} = \{ x \in A : f(x) = f(a) \}$$

Analicemos entonces

$$f(x) = f(a)$$

luego aplicamos la definición de la función f

$$x^2 = a^2$$

Despejamos el/los valores de x (pues el valor de a está fijo)

$$x = |a|$$

osea,

$$x = a \wedge x = -a$$

Finalmente, nos queda:

$$\overline{a} = \{x \in A : xRa\} = \{-a, a\}$$

y nos queda determinado el conjunto cociente:

$$A/R = \{ \overline{a} : a \in A \}$$

(b) seguir pasos similares al inciso anterior, pero ahora con la función f(x) = 2x.