Assignment 2

201300035 方盛俊

Question 1. Some interesting properties of \mathcal{EL}

(1)

Let $\mathcal{I}=(\Delta^{\mathcal{I}},\cdot^{\mathcal{I}})$ be an interpretation and $\Delta^{\mathcal{I}}=\{a\}$, $A^{\mathcal{I}}=\{a\}$ for all concept name A, $r^{\mathcal{I}}=\{(a,a)\}$ for all role r.

By induction on the structure of \mathcal{EL} -concept C:

- Assume that $C=\top$, then $C^{\mathcal{I}}=\Delta^{\mathcal{I}}=\{a\}.$
- Assume that $C=A\in {f C}$, then $C^{\cal I}=A^{\cal I}=\{a\}$ by definition.
- Assume that $C=D\sqcap E$, then $C^{\mathcal{I}}=D^{\mathcal{I}}\cap E^{\mathcal{I}}=\{a\}\cap \{a\}=\{a\}.$
- Assume that $C=\exists r.D$, then $C^{\mathcal{I}}=\{a\}$ by the semantics of existential restriction.

So there exists an interpretation ${\mathcal I}$ such that $C^{{\mathcal I}}
eq \emptyset$.

(2)

We use the same interpretation ${\cal I}$ in (1).

For any \mathcal{EL} concept inclusion $C \sqsubseteq D$ in \mathcal{EL} -TBox \mathcal{T} (replace $C \equiv D$ with $C \sqsubseteq D$ and $D \sqsubseteq C$), we can know that $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ as $C^{\mathcal{I}} = D^{\mathcal{I}} = \{a\}$ by (1).

So there exists an interpretation \mathcal{I} such that $\mathcal{I} \models \mathcal{T}$.

Question 2. Reasoning in \mathcal{EL}

(1)

Consider \mathcal{T} :

```
Reptile \sqsubseteq Vertebrate \sqcap \exists lays.Egg
Step 1 gives:
                                                       Bird \sqsubseteq Vertebrate \sqcap \exists has_part.Wing
              Vertebrate \sqcap \exists has\_part.Wing \sqsubseteq Bird
                                                  Reptile \sqsubseteq Vertebrate \sqcap \exists lays.Egg
Step 2 gives:
                                                                  Bird \sqsubseteq Vertebrate
                                                                  Bird \sqsubseteq \exists has\_part.Wing
                         Vertebrate \sqcap \exists has\_part.Wing \sqsubseteq Bird
                                                             Reptile \sqsubseteq Vertebrate
                                                             Reptile \sqsubseteq \exists lays.Egg
Step 4 gives:
                                                       Bird \sqsubseteq Vertebrate
                                                       Bird \sqsubseteq \exists has\_part.Wing
                                                          X \sqsubseteq \exists \text{has\_part.Wing}
                                    \exists \text{has\_part.Wing} \sqsubseteq X
                                     \mathbf{Vertebrate} \sqcap X \sqsubseteq \mathbf{Bird}
                                                  Reptile \square Vertebrate
                                                  Reptile \square \existslays.Egg
```

So it is the \mathcal{T}' .

(2)

Initalise:

 $Bird \equiv Vertebrate \sqcap \exists has_part.Wing$

$$S(\mathrm{Bird}) = \{\mathrm{Bird}\}$$
 $S(\mathrm{Vertebrate}) = \{\mathrm{Vertebrate}\}$
 $S(\mathrm{Wing}) = \{\mathrm{Wing}\}$
 $S(X) = \{X\}$
 $S(\mathrm{Reptile}) = \{\mathrm{Reptile}\}$
 $S(\mathrm{Egg}) = \{\mathrm{Egg}\}$
 $R(\mathrm{has_part}) = \emptyset$
 $R(\mathrm{lays}) = \emptyset$

Application of (simpleR) and axiom 1, 6 gives:

$$S(\mathrm{Bird}) = \{ \mathrm{Bird}, \mathrm{Vertebrate} \}$$

 $S(\mathrm{Reptile}) = \{ \mathrm{Reptile}, \mathrm{Vertebrate} \}$

Application of (rightR) and axiom 2, 3, 7 gives:

$$R(\text{has_part}) = \{(\text{Bird}, \text{Wing}), (X, \text{Wing})\}\$$

 $R(\text{lays}) = \{(\text{Reptile}, \text{Egg})\}\$

Application of (leftR) and axiom 4 gives:

$$S(\mathsf{Bird}) = \{\mathsf{Bird}, \mathsf{Vertebrate}, X\}$$

No more rules are applicable.

So the final result is:

$$S(\mathrm{Bird}) = \{\mathrm{Bird}, \mathrm{Vertebrate}, X\}$$
 $S(\mathrm{Vertebrate}) = \{\mathrm{Vertebrate}\}$
 $S(\mathrm{Wing}) = \{\mathrm{Wing}\}$
 $S(X) = \{X\}$
 $S(\mathrm{Reptile}) = \{\mathrm{Reptile}, \mathrm{Vertebrate}\}$
 $S(\mathrm{Egg}) = \{\mathrm{Egg}\}$
 $R(\mathrm{has_part}) = \{(\mathrm{Bird}, \mathrm{Wing}), (X, \mathrm{Wing})\}$
 $R(\mathrm{lays}) = \{(\mathrm{Reptile}, \mathrm{Egg})\}$

(3)

Use the result of (2) and $A \sqsubseteq_{\mathcal{T}'} B$ if and only if $B \in S(A)$, we can obtain that

- Reptile $\sqsubseteq_{\mathcal{T}'}$ Vertebrate is true
- Vertebrate $\sqsubseteq_{\mathcal{T}'}$ Bird is false

Question 3. Bisimulation & bisimulation invariance

(1)

We extend the notion of bisimulation relation to \mathcal{ALCN} firstly.

Let $\mathcal I$ and $\mathcal J$ be interpretations. The relation $\rho\subseteq\Delta^{\mathcal I}\times\Delta^{\mathcal J}$ is a bisimulation between $\mathcal I$ and $\mathcal J$ if

- (i) $d\rho e$ implies $d\in A^{\mathcal{I}}$ if and only if $e\in A^{\mathcal{I}}$ for all $d\in \Delta^{\mathcal{I}}$, $e\in \Delta^{\mathcal{I}}$, and $I\in {\bf C}$.
- (ii) if d_1, \cdots, d_n are all the distinct elements of $\Delta^{\mathcal{I}}$ such that $(d, d_i) \in R^{\mathcal{I}}$ for $1 \leq i \leq n$, then there are exactly n distinct elements e_1, \cdots, e_n of $\Delta^{\mathcal{I}}$ such that $(e, e_i) \in R^{\mathcal{I}}$ for all $1 \leq i \leq n$.
- (iii) if e_1,\cdots,e_n are all the distinct elements of $\Delta^{\mathcal{J}}$ such that $(e,e_i)\in R^{\mathcal{J}}$ for $1\leq i\leq n$, then there are exactly n distinct elements d_1,\cdots,d_n of $\Delta^{\mathcal{I}}$ such that $(d,d_i)\in R^{\mathcal{J}}$ for all $1\leq i\leq n$.

Then we prove that \mathcal{ALCN} is bisimulation invariant for the bisimulation relation.

We omit the part of original part and add new step:

Assumed that $C = (\leq nR)$. Then $d \in (\leq nR)^{\mathcal{I}}$

if and only if exists all $m \leq n$ elements d_1, \cdots, d_m with $(d,d_i) \in R^{\mathcal{I}}$ (semantics of $\leq nR$)

if and only if exists exactly $m \leq n$ elements e_1, \cdots, e_m with $(e, e_i) \in R^{\mathcal{I}}$ (hypothesis and $d\rho e$)

if and only if $d_2 \in (\leq nR)^{\mathcal{I}_2}$.

Assumed that $C=(\geq nR)$. Then $d\in (\geq nR)^{\mathcal{I}}$

if and only if exists all $m \geq n$ elements d_1, \cdots, d_m with $(d, d_i) \in R^\mathcal{I}$ (semantics of $\geq nR$)

if and only if exists exactly $m \geq n$ elements e_1, \cdots, e_m with $(e, e_i) \in R^{\mathcal{I}}$ (hypothesis and $d \rho e$)

(2)

As the image, there is a bisimulation between $\mathcal I$ and $\mathcal J$, so \mathcal{ALC} cannot distinguish the interpretations $\mathcal I$ and $\mathcal J$ because of (1).

But \mathcal{ALCQ} can distinguish them by $(\leq 1R.A)$.

So \mathcal{ALCQ} is more expressive than \mathcal{ALCN} .

Question 4. Closure under Disjoint Union

Let $\mathcal{K}=(\mathcal{T},\mathcal{A})$ be an ALC-knowledge base and $(\mathcal{I}_v)_{v\in\Omega}$ a family of models of $\mathcal{K}.$

We extend the notion of disjoint union to individual names.

- $\Delta^{\mathcal{J}} = \{(d,v)|v \in \Omega \text{ and } d \in \Delta^{\mathcal{I}_v}\}$
- $A^{\mathcal{J}}=\{(d,v)|v\in\Omega ext{ and }d\in A^{\mathcal{I}_v}\}$ for all $A\in\mathbf{C}$
- $ullet \ r^{\mathcal{J}}=\{((d,v),(e,v))|v\in\Omega \ ext{and} \ (d,e)\in r^{\mathcal{I}_v} \ \}$ for all $r\in\mathbf{R}$
- $a^{\mathcal{I}}=(a^{\mathcal{I}_{v_0}},v_0)$ for all individual names a occurring in \mathcal{A} and $v_0\in\Omega$ is a singe index picked up previously and arbitrarily.

Then we prove that its disjoint union $\mathcal{J}=\biguplus_{v\in\Omega}$ is also a model of $\mathcal{K}.$

Assume that $\mathcal J$ is not a model of $\mathcal T$. Then there is a GCI $C \sqsubseteq D$ in $\mathcal T$ and an element $(d,v) \in \Delta^{\mathcal J}$ such that $(d,v) \in C^{\mathcal J}$, but $(d,v) \not\in D^{\mathcal J}$. By the bisimulation between $\mathcal I_v$ and $\mathcal J$, this implies $d \in C^{\mathcal I_v}$ and $d \not\in D^{\mathcal I_v}$, which contradicts our assumption that $\mathcal I_v$ is a model of $\mathcal K$.

Assume that \mathcal{J} is not a model of \mathcal{A} . And we assume that there is assertion a:C in \mathcal{A} and the element $(a^{\mathcal{I}_{v_0}},v_0)\not\in C^{\mathcal{J}}$. By the bisimulation between \mathcal{I}_{v_0} and \mathcal{J} , this implies $a^{\mathcal{I}_{v_0}}\not\in C^{\mathcal{I}_{v_0}}$, which contradicts our assumption that \mathcal{I}_{v_0} is a model of \mathcal{K} . Then we assume that there is assertion (a,b):r in \mathcal{A} and $((a^{\mathcal{I}_{v_0}},v_0),(b^{\mathcal{I}_{v_0}},v_0))\not\in r^{\mathcal{J}}$. By the bisimulation between \mathcal{I}_{v_0} and \mathcal{J} , this implies $(a^{\mathcal{I}_{v_0}},b^{\mathcal{I}_{v_0}})\not\in r^{\mathcal{I}_{v_0}}$, which contradicts our assumption that \mathcal{I}_{v_0} is a model of \mathcal{K} .

Question 5. Closure under Disjoint Union

⇐:

We have $C \sqsubseteq_{\mathcal{T}} D$, so $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for every model \mathcal{I} of \mathcal{T} .

Because each model J of $\mathcal K$ is must be a model of $\mathcal T$, so $C^{\mathcal J}\subseteq D^{\mathcal J}$ holds for every model $\mathcal J$ of $\mathcal K$.

So we know $C \sqsubseteq_{\mathcal{K}} D$.

 \Rightarrow :

We have $C \sqsubseteq_{\mathcal{K}} D$, so $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for every model \mathcal{I} of \mathcal{K} . And because \mathcal{K} is a consisten \mathcal{ALC} -KB, so there is a model \mathcal{I}_1 of \mathcal{K} satisfying $C^{\mathcal{I}_1} \subseteq D^{\mathcal{I}_1}$, which is also a model of \mathcal{T} .

Assumed $C \not\sqsubseteq_{\mathcal{T}} D$, then there is an model \mathcal{I}_2 of \mathcal{T} and $C^{\mathcal{I}_2} \not\subseteq D^{\mathcal{I}_2}$.

We can get the disjoint union $\mathcal J$ of $\mathcal I_1$ and $\mathcal I_2$. By the previous exercise we attain that there is a bisimulation between $\mathcal I_1$ and $\mathcal J$. We need to prove $C^{\mathcal J}\subseteq D^{\mathcal J}$. Assumed $C^{\mathcal J}\not\subseteq D^{\mathcal J}$, then there is an element $(d,v)\in C^{\mathcal J}$ but $(d,v)\not\in D^{\mathcal J}$. By bisimulation between $\mathcal I_1$ and $\mathcal J$, this implies $d\in C^{\mathcal I_1}$ but $d\not\in D^{\mathcal I_1}$, which contradicts the former conclusion $C^{\mathcal I_1}\subseteq D^{\mathcal I_1}$. So we

know $C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$. Using the bisimulation between \mathcal{J} and \mathcal{I}_2 , and the same steps, we could attain $C^{\mathcal{I}_2}\subseteq D^{\mathcal{I}_2}$, which contradicts the former assumption $C^{\mathcal{I}_2}\not\subseteq D^{\mathcal{I}_2}$.

So we know $C \sqsubseteq_{\mathcal{T}} D$.

Question 6. Finite model property

(1)

Because C is a satisfiable \mathcal{ALC} -concept with respect to \mathcal{T} . So by the finite model property, there is a finite model \mathcal{I} such that $|C^{\mathcal{I}}| \geq 1$.

Let $\mathcal{I}_m=\biguplus_{v\in\{1,\cdots,m\}}\mathcal{I}$, e.t. the m-fold disjoint union of \mathcal{I} itself. So $|C^{I_m}|=m|C^{\mathcal{I}}|\geq m$.

So for all $m \geq 1$ there is a finite model \mathcal{I}_m of \mathcal{T} such that $|C^{\mathcal{I}_m}| \geq m$.

(2)

It doesn't hold if the condition " $|C^{\mathcal{I}_m}| \geq m$ " is replaced by " $|C^{\mathcal{I}_m}| = m$ ".

Let
$$C=\top$$
, $\mathcal{T}=\{A\sqsubseteq \exists r. \neg A, \neg A\sqsubseteq \exists r. A\}$ and $m=1$.

For any model $\mathcal I$ of $\mathcal T$, because $\Delta^{\mathcal I} \neq \emptyset$ and $(A \sqcup \neg A)^{\mathcal I} = \top^{\mathcal I} = \Delta^{\mathcal I}$, so $A^{\mathcal I} \neq \emptyset$ or $(\neg A)^{\mathcal I} \neq \emptyset$.

We assume $A^{\mathcal{I}}=\emptyset$, so $(\exists r.A)^{\mathcal{I}}=\emptyset$. By the CGI $\neg A\sqsubseteq \exists r.A$, we can know $(\neg A)^{\mathcal{I}}\subseteq (\exists r.A)^{\mathcal{I}}$ then $(\neg A)^{\mathcal{I}}=\emptyset$, which contradicts the former conclusion $A^{\mathcal{I}}\neq\emptyset$ or $(\neg A)^{\mathcal{I}}\neq\emptyset$.

We assume $(\neg A)^{\mathcal{I}} = \emptyset$, so $(\exists r. \neg A)^{\mathcal{I}} = \emptyset$. By the CGI $A \sqsubseteq \exists r. \neg A$, we can know $A^{\mathcal{I}} \subseteq (\exists r. \neg A)^{\mathcal{I}}$ then $A^{\mathcal{I}} = \emptyset$, which contradicts the former conclusion $A^{\mathcal{I}} \neq \emptyset$ or $(\neg A)^{\mathcal{I}} \neq \emptyset$.

Then we can know $|C^\mathcal{I}|=|\top^\mathcal{I}|=|A^\mathcal{I}|+|(\neg A)^\mathcal{I}|\geq 1+1=2$, which contradicts $|C^\mathcal{I}|=m=1$.

So it doesn't hold if the condition " $|C^{\mathcal{I}_m}| \geq m$ " is replaced by " $|C^{\mathcal{I}_m}| = m$ ".

Question 7. Bisimulation over filtration

The statement "the relation $ho=\{(d,[d])|d\in\Delta^{\mathcal{I}}\}$ is a bisimulation between I and J" is false.

Let
$$C = A$$
 and $\mathcal{T} = \{\exists r. \top \sqsubseteq \top\}$, so $S = \mathrm{sub}(C) \cup \mathrm{sub}(\mathcal{T}) = \{\top, A, \exists r. \top\}$.

We can see that the right interpretation $\mathcal J$ is the $\mathcal S$ -filtration of the left interpretation $\mathcal I$ with respect to $\mathrm{sub}(C) \cup \mathrm{sub}(\mathcal T)$.

But relation $ho=\{(d,[d])|d\in\Delta^{\mathcal{I}}\}$ is not a bisimmulation between \mathcal{I} and $\mathcal{J}.$

Question 8. Bisimulation within the same interpretation

(1)

We need to prove that $pprox_{\mathcal{I}}$ is a bisimulation on $\mathcal{I}.$

(i) $d \approx_{\mathcal{I}} e$ implies there is a bisimulation ρ on \mathcal{I} such that $d\rho e$, which imlies

 $d \in A^{\mathcal{I}}$ if and only if $e \in A^{\mathcal{I}}$

for all $d \in \Delta^{\mathcal{I}}$, $e \in \Delta^{\mathcal{I}}$, and $A \in \mathbf{C}$.

(ii) $d \approx_{\mathcal{I}} e$ and $(d,d') \in r^{\mathcal{I}}$ implies there is a bisimulation ρ on \mathcal{I} such that $d\rho e$ and $(d,d') \in r^{\mathcal{I}}$, which implies the existence of $e' \in \Delta^{\mathcal{I}}$ such that

d'
ho e' and $(e,e') \in r^{\mathcal{I}}$, and then

 $d'pprox_{\mathcal{I}}e'$ and $(e,e')\in r^{\mathcal{I}}$ because of the definition of $d'pprox_{\mathcal{I}}e'$,

for all $d,d'\in\Delta^{\mathcal{I}}$, $e\in\Delta^{\mathcal{I}}$, and $r\in\mathbf{R}$.

(iii) Same property in the opposite direction with same method.

So $\approx_{\mathcal{I}}$ is a bisimulation on \mathcal{I} .

By the definition like filtration, we can know

$$[d]_{pprox \mathcal{I}} = \{e \in \Delta^{\mathcal{I}} | d pprox_{\mathcal{I}} e \}$$

And the ${\mathcal J}$ is defined as follow:

$$\Delta^{\mathcal{J}} = \{[d]_{pprox \mathcal{I}} | d \in \Delta^{\mathcal{I}} \}$$

$$A^{\mathcal{J}}=\{[d]_{pprox_{\mathcal{I}}}| ext{there is } d'\in [d]_{pprox_{\mathcal{I}}} ext{ with } d'\in A^{\mathcal{I}}\} ext{ for all } A\in {f C}$$

$$r^{\mathcal{I}}=\{([d]_{pprox_{\mathcal{I}}},[e]_{pprox_{\mathcal{I}}})| ext{there is }d'\in[d]_{pprox_{\mathcal{I}}},e'\in[e]_{pprox_{\mathcal{I}}} ext{ with }(d',e')\in r^{\mathcal{I}}\} ext{ for all }r\in\mathbf{R}$$

Now we show that $ho=\{(d,[d]_{pprox \mathcal{I}})|d\in\Delta^{\mathcal{I}}\}$ is a bisimulation between \mathcal{I} and \mathcal{J} .

(i)
$$(d,[d]_{pprox_{\mathcal{I}}})\in
ho$$
 implies

 \Rightarrow :

Assume $d \in A^{\mathcal{I}}$. Because there is $d \in [d]_{\approx_{\mathcal{I}}}$ as $d \approx_{\mathcal{I}} d$ with $d \in A^{\mathcal{I}}$, we can know $[d]_{\approx_{\mathcal{I}}} \in A^{\mathcal{I}}$ by the definition of $A^{\mathcal{I}}$.

⇐:

Assume $[d]_{pprox_{\mathcal{I}}}\in A^{\mathcal{I}}$. There is $d'\in[d]_{pprox_{\mathcal{I}}}$ with $d'\in A^{\mathcal{I}}$. Because $d\in[d]_{pprox_{\mathcal{I}}}$ as $dpprox_{\mathcal{I}}d$, we can know that $dpprox_{\mathcal{I}}d'$. And $pprox_{\mathcal{I}}$ is a bisimulation on \mathcal{I} , which implies $d'\in A^{\mathcal{I}}$ if and only if $d\in A^{\mathcal{I}}$.

So $d \in A^{\mathcal{I}}$ if and only if $[d]_{pprox_{\mathcal{I}}} \in A^{\mathcal{I}}$

for all $d \in \Delta^{\mathcal{I}}$, $[d]_{pprox \mathcal{I}} \in \Delta^{\mathcal{J}}$, and $A \in \mathbf{C}$.

(ii) $(d,[d]_{\approx_{\mathcal{I}}})\in \rho$ and $(d,e)\in r^{\mathcal{I}}$ implies there is $d\in [d]_{\approx_{\mathcal{I}}}$, $e\in [e]_{\approx_{\mathcal{I}}}$ with $(d,e)\in r^{\mathcal{I}}$, which implies the existence of $[e]_{\approx_{\mathcal{I}}}\in \Delta^{\mathcal{I}}$ such that

$$(e,[e]_{pprox \mathcal{T}}) \in
ho$$
 and $([d]_{pprox \mathcal{T}},[e]_{pprox \mathcal{T}}) \in r^{\mathcal{J}}$

for all $d,e\in\Delta^{\mathcal{I}}$, $[d]_{pprox_{\mathcal{I}}}\in\Delta^{\mathcal{I}}$, and $r\in\mathbf{R}.$

(iii) $(d,[d]_{pprox \mathcal{I}}) \in \rho$ and $([d]_{pprox \mathcal{I}},[e]_{pprox \mathcal{I}}) \in r^{\mathcal{I}}$ implies there is $d' \in [d]_{pprox \mathcal{I}}$, $e' \in [e]_{pprox \mathcal{I}}$ with $(d',e') \in r^{\mathcal{I}}$. Because $d \in [d]_{pprox \mathcal{I}}$, we can know $d pprox_{\mathcal{I}} d'$. And $pprox_{\mathcal{I}}$ is a bisimulation on \mathcal{I} , which implies the existence of $e \in \Delta^{\mathcal{I}}$ such that

$$epprox_{\mathcal{I}}e'$$
 and $(d,e)\in r^{\mathcal{I}}$

So we can know

$$(e,[e]_{pprox_{\mathcal{I}}})\in
ho$$
 and $(d,e)\in r^{\mathcal{I}}$

for all $d\in\Delta^{\mathcal{I}}$, $[d]_{pprox_{\mathcal{I}}}$, $[e]_{pprox_{\mathcal{I}}}\in\Delta^{\mathcal{J}}$, and $r\in\mathbf{R}$.

So we show that $ho=\{(d,[d]_{pprox \mathcal{I}})|d\in\Delta^{\mathcal{I}}\}$ is a bisimulation between \mathcal{I} and \mathcal{J} .

(3)

Because $\mathcal I$ is a model of an $\mathcal {ALC}$ -concept C with respect to an $\mathcal {ALC}$ -TBox $\mathcal T$, then $C^{\mathcal I} \neq \emptyset$.

Let $d \in \Delta^{\mathcal{I}}$ be such that $d \in C^{\mathcal{I}}$. Since there is a bisimulation between \mathcal{I} and \mathcal{J} , so $[d]_{\approx_{\mathcal{I}}} \in C^{\mathcal{I}}$ by bisimulation invariance of \mathcal{ALC} .

It is also easy to see that $\mathcal J$ is a model of $\mathcal T$. Let $D \sqsubseteq E$ be a GCI in $\mathcal T$, and $[e]_{pprox \mathcal I} \in D^{\mathcal J}$. We must show $[e]_{pprox \mathcal I} \in E^{\mathcal J}$. By bisimulation invariance, $e \in D^{\mathcal I}$ and thus $e \in E^{\mathcal J}$ since $\mathcal I$ is a model of $\mathcal T$. And then $e \in E^{\mathcal J}$ implies $[e]_{pprox \mathcal I} \in E^{\mathcal J}$.

So $\mathcal J$ is a model of an $\mathcal A\mathcal L\mathcal C$ -concept C with respect to an $\mathcal A\mathcal L\mathcal C$ -TBox $\mathcal T$.

Question 9. Unravelling

Question 10. Tree model property

The statement "if \mathcal{K} is an \mathcal{ALC} -KB and C an \mathcal{ALC} -concept such that C is satisfiable w.r.t. \mathcal{K} , then C has a tree model w.r.t. \mathcal{K} " is false.

Let
$$C = \top, \mathcal{K} = (\mathcal{T}, \mathcal{A}), \mathcal{T} = \emptyset, \mathcal{A} = \{a: A, b: \neg A, (a, b): r, (b, a): r\}.$$

For any model $\mathcal I$ of such $\mathcal K$, we can know that $a^{\mathcal I}$ and $b^{\mathcal I}$ are two distinct elements, and $(a^{\mathcal I},b^{\mathcal I}),(b^{\mathcal I},a^{\mathcal I})\in r^{\mathcal I}$ both. So there is a ring " $a\stackrel{r}{\longrightarrow} b\stackrel{r}{\longrightarrow} a$ " for any model $\mathcal I$ of such $\mathcal K$.

So the statement is false.

Question 11. Tableau algorithm

Init:

$$\mathcal{A}_0 = \mathcal{A} = \{(b,a): r, (a,b): r, (a,c): s, (c,b): s, a: \exists s.A, b: \forall r.((\forall s. \neg A) \sqcup (\exists r.B)), c: \forall s.(B \sqcap (\forall s. \bot))\}$$

An application of \rightarrow_\exists and $a:\exists s.A$ gives

$$\mathcal{A}_1 = \mathcal{A}_0 \cup \{(a,d): s,d:A\}$$

An application of ightarrow orall and $b: orall r.((orall s.
eg A) \sqcup (\exists r.B))$ gives:

$$\mathcal{A}_2 = \mathcal{A}_1 \cup \{a : (\forall s. \neg A) \sqcup (\exists r. B)\}$$

An application of \rightarrow_\forall and $c: \forall s.(B \sqcap (\forall s.\bot))$ gives:

$$\mathcal{A}_3 = \mathcal{A}_2 \cup \{b: B \sqcap (\forall s. \bot)\}$$

An application of \rightarrow_{\sqcap} and $b:B\sqcap(\forall s.\bot)$ gives:

$$\mathcal{A}_4 = \mathcal{A}_3 \cup \{b: B, b: \forall s. \perp\}$$

An application of \rightarrow_\sqcup and $a:(\forall s. \neg A) \sqcup (\exists r. B)$ gives:

Firstly, we can try

$$\mathcal{A}_5 = \mathcal{A}_4 \cup \{a : \forall s. \neg A\}$$

An application of \rightarrow_\forall and $a: \forall s. \neg A$ gives

$$\mathcal{A}_6 = \mathcal{A}_5 \cup \{c: \neg A, d: \neg A\}$$

We have abtained a clash because d:A and $d:\neg A$, thus this choice was unsuccessful.

Secondly, we can try

$$\mathcal{A}_5^* = \mathcal{A}_4 \cup \{a: \exists r.B\}$$

No rule is applicable to \mathcal{A}_5^* and it does not contain a clash.

Thus, \mathcal{A} is consistent.

Question 12. Extension of Tableau algorithm

We need to add a new law $\neg(C \to D) \equiv C \sqcap \neg D$ to push negations inwards dealing with new concept constructor \to (implication).

We prove $C o D \equiv \neg C \sqcup D$ firstly. For any interpretation ${\mathcal I}$, there is

$$(C \to D)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | x \in C^{\mathcal{I}} \text{ implies } x \in D^{\mathcal{I}} \}$$

= $\{x \in \Delta^{\mathcal{I}} | x \in \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \text{ or } x \in D^{\mathcal{I}} \}$
= $(\neg C \sqcup D)^{\mathcal{I}}$

Then we prove that $\neg(C \to D) \equiv C \sqcap \neg D$. With lemma $\neg D \equiv \neg C \sqcap \neg D$ we can know

$$\neg(C \to D) \equiv \neg(\neg C \sqcup D) \equiv C \sqcap \neg D$$

So we can still get the normalised ABox $\mathcal A$ with NNF by preprocessing.

Terminating:

We omit part of original proof and add the new proof for \rightarrow .

Let $m = |\operatorname{sub}(\mathcal{A})|$.

- After applying application, it will add a new assertion of the form a:C and $C\in\operatorname{sub}(\mathcal{A})$. So for any individual name a, we have $\operatorname{con}_{\mathcal{A}}(a)\leq m$.
- It is still only \exists -rule that adds a new individual name. With the same original proof, a given individual name can cause the addition of at most m new individual names, and the outdegree of each tree in the forest-shaped ABox is thus bounded by m.
- With the same original proof, the depth of each tree in the forest-shaped ABox is bounded by m.

There properties ensure that there is a bound on the size of the ABox that can be constructed via rule applications, and thus a bound on the number of recursive applications of expand.

Soundness:

We only modify and add the necessary proof.

The construction of \mathcal{I} means that it trivially satisfies all role assertions in \mathcal{A}' . By induction on the structure of concepts, we show the following property:

if
$$a:C\in \mathcal{A}'$$
 , then $a^\mathcal{I}\in C^\mathcal{I}$

Induction Basis: C is a conceptname: by definition of \mathcal{I} , if $a:C\in\mathcal{A}'$, then $a^{\mathcal{I}}\in C^{\mathcal{I}}$ as required.

Induction Steps:

- $C=\neg D$: since \mathcal{A}' is clash-free, $a:\neg D\in \mathcal{A}'$ implies that $a:D\in \mathcal{A}'$. Since all concepts in \mathcal{A} are in NNF, D is a concept name. By definition of \mathcal{I} , $a^{\mathcal{I}}\not\in D^{\mathcal{I}}$, which implies $a^{\mathcal{I}}\in \Delta^{\mathcal{I}}\setminus D^{\mathcal{I}}=C^{\mathcal{I}}$ as required.
- $C = D \to E$: if $a: D \to E \in \mathcal{A}'$, then completeness of \mathcal{A}' implies that $\{a: E\} \subseteq \mathcal{A}'$ or $\{a: \dot{\neg} D\} \subseteq \mathcal{A}'$ (otherwise the one of two \to -rules would be applicable). Thus $a^{\mathcal{I}} \in E^{\mathcal{I}}$ or $a^{\mathcal{I}} \in \Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}$ by induction, and hence $a^{\mathcal{I}} \in (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) \cup E^{\mathcal{I}} = (\neg D \cup E)^{\mathcal{I}}$ by the semantics of \to .

As a consequence, $\mathcal I$ satisfies all concept assertions in $\mathcal A'$ and thus in $\mathcal A$, and it satisfies all role assertions in $\mathcal A'$ and thus in $\mathcal A$ by definition. Hence $\mathcal A$ has a model and thus is consistent.

Completeness:

We only modify and add the necessary proof.

Let \mathcal{A} be consistent, and consider a model \mathcal{I} of \mathcal{A} . Since \mathcal{A} is consistent, it cannot contain a clash.

If $\mathcal A$ is complete, since it does not contain a clash, expand simply returns $\mathcal A$ and consistent returns "consistent". If $\mathcal A$ is not complete, then expand calls itself recursively until $\mathcal A$ is complete; each call selects a rule and applies it.

- The deterministic \rightarrow -rule: If $a:C\to D\in\mathcal{A}$ and $a:C\in\mathcal{A}$, then $a^{\mathcal{I}}\in(C\to D)^{\mathcal{I}}$. Thus $a^{\mathcal{I}}\in\Delta^{\mathcal{I}}\setminus C^{\mathcal{I}}$ or $a^{\mathcal{I}}\in D^{\mathcal{I}}$ by the semantics of \rightarrow , but $a^{\mathcal{I}}\in C^{\mathcal{I}}$, so $a^{\mathcal{I}}\in D^{\mathcal{I}}$. Therefore, \mathcal{I} is still a model of $\mathcal{A}\cup\{a:D\}$, so \mathcal{A} is still consistent after the rule is applied.
- The nondeterministic \rightarrow -rule: If $a:C\to D\in\mathcal{A}$, then $a^{\mathcal{I}}\in(C\to D)^{\mathcal{I}}$. Thus $a^{\mathcal{I}}\in\Delta^{\mathcal{I}}\setminus C^{\mathcal{I}}$ or $a^{\mathcal{I}}\in D^{\mathcal{I}}$ by the semantics of \rightarrow . Therefore, at least one of the ABoxes $\mathcal{A}'\in\exp(\mathcal{A}, \text{nondeterministic}\to -\text{rule}, a:C\to D)$ is consistent. Thus, one of the calls of expand is applied to a consistent ABox.

Question 13. Modification of Tableau algorithm

We modify the notion of a clash to that \mathcal{A} contains a clash if, for some individual name a, and for some concept C, $\{a:C,a:\neg C\}\subseteq \mathcal{A}$, or for some individual names a and b, and for some role names r and s, $\{(a,b):r,(a,b):s\}\in \mathcal{A}$ and $\{\operatorname{disjoint}(r,s)\}\subseteq \mathcal{T}$.

And we add a new expansion rule:

$$\sqsubseteq$$
-rule: if $(a,b):r\in\mathcal{A}$, $r\sqsubseteq s\in\mathcal{T}$ and $(a,b):s
ot\in\mathcal{A}$, then $\mathcal{A}\longrightarrow\mathcal{A}\cup\{(a,b):s\}$

Termination:

We need to prove that the \sqsubseteq -rule is terminable. Because the number of individual names in \mathcal{A} is bounded by the original proof, the number of new role assertions is no more than square of the number of individual names, and thus it is bounded.

Soundness:

Let \mathcal{A}' be the set return by $\operatorname{expand}(\mathcal{A})$. Since the algorithm returns "consistent", \mathcal{A}' is a complete and clash-free ABox.

We use same definition of \mathcal{I} from original proof.

We firstly prove that $\mathcal I$ satisfies each $\operatorname{disjoint}(r,s)\in\mathcal T$. Assume $r^{\mathcal I}\cap s^{\mathcal I}=\emptyset$, thus there are such a and b that $(a,b)\in r^{\mathcal I}$ and $(a,b)\in s^{\mathcal I}$. So we can know $\{(a,b):r,(a,b):s\}\subseteq\mathcal A'$,

which contradicts \mathcal{A}' is a clash-free ABox.

We secondly prove that $\mathcal I$ satisfies each $r\sqsubseteq s\in \mathcal T$. Assume there are such a and b that $(a,b)\in r^{\mathcal I}$ but $(a,b):s^{\mathcal I}$. Therefore, $(a,b):r\in \mathcal A'$ but $(a,b):s\not\in \mathcal A'$, which contradicts $\mathcal A'$ is a complete ABox.

Completeness:

Let \mathcal{A} be consistent, and consider a model \mathcal{I} of \mathcal{A} . Since \mathcal{A} is consistent, it cannot contain a clash.

If $\mathcal A$ is complete, since it does not contain a clash, expand simply return $\mathcal A$ and consistent returns "consistent". If $\mathcal A$ is not complete, then expand calls itself recursively until $\mathcal A$ is complete; each call selects a rule and applies it.

We omit the original proof, and add a new step to it:

The \sqsubseteq -rule: if $(a,b): r \in \mathcal{A}$ and $r \sqsubseteq s \in \mathcal{T}$, then $(a,b) \in r^{\mathcal{I}}$. As \mathcal{I} is a model of $\mathcal{T}, r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$, thus $(a,b) \in s^{\mathcal{I}}$. Therefore, \mathcal{I} is still a model of $\mathcal{A} \cup \{(a,b): s\}$, so \mathcal{A} is still consistent after the rule is applied.