Conception Electronique pour le Traitement de l'Information
Julien VILLEMEJANE /
LENE / Institut d'Optique Graduate School

5N-027-SCI / CéTI

NSTIUI

domont fine

universit

paris-saclay

Bloc3

BLOC 3 / TRANSMISSION PAR LA LUMIÈRE

Mission 1 - Emettre une information lumineuse

En se basant sur une \mathbf{LED} IR de type SFH415.

Proposer un montage émetteur permettant d'obtenir un flux lumineux sinusoïdal sans risque pour la LED, et donner les paramètres des différentes sources utilisées et des autres éléments du montage.

Mission 2 - Transmettre une information par la lumière

En se basant sur une **LED IR** de type SFH415 et une **photodiode** de type SFH229, on souhaite réaliser un système de transmission d'information par la lumière.

On se propose dans un premier temps d'utiliser le montage « simple » de photodétection.

A quoi correspondent les deux montages proposés?

Donner la fonction de transfert du montage en fonction du flux lumineux reçu.

Quelle est alors la limite en fréquence d'un tel montage? Peut-on transmettre des données binaires?

Mission 3 - Transmettre une information par la lumière - transimpédance

En se basant sur une **LED IR** de type TSAL6100 et une **photodiode** de type SFH229, on souhaite réaliser un système de transmission d'information par la lumière.

On se propose dans un premier temps d'utiliser le montage de photodétection de type transimpédance.

Donner la fonction de transfert du montage en fonction du flux lumineux reçu.

Quelle est alors la limite en fréquence d'un tel montage? Peut-on transmettre des données binaires?

5N-027-SCI / CéTI

Bloc 3 / Transmission par la lumière

Mission 4 - Modéliser le montage transimpédanq

Dans l'exemple précédent, nous avons supposé l'amplificateur linéaire idéal.

On prendra le modèle suivant pour l'amplificateur linéaire :

$$V_S = \frac{A_0}{1 + j \cdot \frac{\omega}{\omega_0}} \cdot (V^+ - V^-)$$

Calculer la fonction de transfert $T(j\cdot\omega)=V_S/i_{PHD}$ du montage suivant :

ssion 5 - Détecter un obstacle

On souhaite détecter un obstacle à une certaines distances. Proposer une solution basée sur une LED IR et un photodétecteur.

Mission 6 - Transporter plusieurs informations par la lumière

On souhaite rendre plus spécifique une communication par la lumière, et pourquoi pas transporter plusieurs informations différentes sur un même canal lumineux.

Proposer une solution.

GaAs-IR-Lumineszenzdioden **GaAs Infrared Emitters**

Lead (Pb) Free Product - RoHS Compliant

SFH 415

Wesentliche Merkmale

GaAs-LED mit sehr hohem Wirkungsgrad

Very highly efficient GaAs-LED

Features

- Hohe Zuverlässigkeit UL Version erhältlich
- Gute spektrale Anpassung an

Spectral match with silicon photodetectors

UL version available

High reliability

SFH 415: Same package as SFH 300, SFH 203

Si-Fotoempfänger SFH 415: Gehäusegleich mit SFH 300, **SFH 203**

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern,
- Gerätefernsteuerungen für Gleich- und Wechsellichtbetrieb
- Sensorik
- Lichtdimmern
- Rauchmelder
- Diskrete Lichtschranken

Applications

- IR remote control of hi-fi and TV-sets, video tape recorders, dimmers
- Remote control for steady and varying intensity
 - Smoke detectors
- Sensor technology
- Discrete interrupters

Тур Туре	Bestellnummer Ordering Code	Strahlstärkegruppierung ¹⁾ ($I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms) Radiant Intensity Grouping ¹⁾ $I_{\rm e}$ (mW/sr)
SFH 415	Q62702-P0296	> 25
SFH 415-U	Q62702-P1137	7 > 40

⁾ gemessen bei einem Raumwinkel Ω = 0.01 sr / measured at a solid angle of Ω = 0.01 sr

Opto Semiconductors

2009-08-21

OSRAM

DSRAM

Grenzwerte ($T_{\rm A}$ = 25 °C) Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op}$; $T_{ m stg}$	- 40 + 100	٥,
Sperrspannung Reverse voltage	$V_{ m R}$	5	>
Durchlassstrom Forward current	I_{F}	100	mA
Stoßstrom, $t_{\rm p} = 10~\mu{\rm s},D = 0$ Surge current	I _{FSM}	3	A
Verlustleistung Power dissipation	$P_{ m tot}$	165	mW
Wärmewiderstand Thermal resistance	$R_{ m thJA}$	450	K/W

Kennwerte $(T_A = 25 \, ^{\circ}\text{C})$ Characteristics

Bezeichnung	Symbol	Wert	Einheit
Parameter		Value	Unit

Parameter	Symbol	value	Onit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}=100~{\rm mA},\ t_{\rm p}=20~{\rm ms}$	λ̂реак	950	mu
Spektrale Bandbreite bei 50% von $I_{\rm max}$ Spectral bandwidth at 50% of $I_{\rm max}$ $I_{\rm F}=100~{\rm mA}$	Δλ	55	mu
Abstrahlwinkel Half angle SFH 415	Ф	± 17	Grad
Aktive Chipfläche Active chip area	A	0.09	mm²
Abmessungen der aktiven Chipfläche Dimensions of the active chip area	$L \times B$ $L \times W$	0.3×0.3	mm²
Abstand Chipoberfläche bis Linsenscheitel Distance chip front to lens top	Н	4.2 4.8	шш

2009-08-21

7

Opto Semiconductors

SFH 415

Kennwerte (T_A = 25 °C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Schaltzeiten, $I_{\rm e}$ von 10% auf 90% und von 90% auf 10%, bei $I_{\rm F}=100$ mA, $R_{\rm L}=50~\Omega$ Switching times, $I_{\rm e}$ from 10% to 90% and from 90% to 10%, $I_{\rm F}=100$ mA, $R_{\rm L}=50~\Omega$	tr, tf	0.5	รท
Kapazität Capacitance $V_{\rm R} = 0 \ V, f = 1 \ \rm MHz$	°C	25	Нd
Durchlasspannung Forward voltage $I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$ $I_F = 1 \text{ A}, t_p = 100 \text{ µs}$	7 7	1.3 (≤ 1.5) 2.3 (≤ 2.8)	>>
Sperrstrom Reverse current $V_R = 5 \text{ V}$	I_{R}	0.01 (≤ 1)	Ρη
Gesamtstrahlungsfluss Total radiant flux $I_F = 100 \text{ m/s}, t_p = 20 \text{ ms}$	Ф	22	ww
Temperaturkoeffizient von I $_{\rm e}$ bzw. $\Phi_{\rm e}$, $I_{\rm F}=100$ mA Temperature coefficient of I $_{\rm e}$ or $\Phi_{\rm e}$, $I_{\rm F}=100$ mA	TC_1	- 0.5	%/K
Temperaturkoeffizient von $V_{\rm F}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F}$, $I_{\rm F}$ = 100 mA	TC_{V}	-2	mV/K
Temperaturkoeffizient von $\lambda_v I_F = 100$ mA Temperature coefficient of $\lambda_v I_F = 100$ mA	TC_{λ}	+ 0.3	nm/K

OSRAM

Opto Semiconductors

2009-08-21

Silicon PIN Photodiode with Very Short Switching Time Silizium-PIN-Fotodiode mit sehr kurzer Schaltzeit Lead (Pb) Free Product - RoHS Compliant

SFH 229 FA SFH 229

SFH 229 FA

SFH 229

Features

 Speziell geeignet f
ür Anwendungen im Bereich von 380 nm bis 1100 nm (SFH 229) und bei

Wesentliche Merkmale

380 nm to 1100 nm (SFH 229) and of 880 nm (SFH 229 FA) Especially suitable for applications from

Short switching time (typ. 10 ns) 3 mm LED plastic package

Kurze Schaltzeit (typ. 10 ns)
 3 mm-Plastikbauform im LED-Gehäuse

880 nm (SFH 229 FA)

Auch gegurtet lieferbar

Also available on tape and reel

Photointerrupters

Lichtschranken f
ür Gleich- und Wechselbetrieb

"Messen/Steuern/Regeln"

Тур

Industrieelektronik

Anwendungen

- Industrial electronics
- For control and drive circuits

Applications

Bestellnummer Ordering Code Q62702P0215 Q62702P0216 SFH 229 FA SFH 229

2005-04-06

JSRAM

Opto Semiconductors

SFH 229, SFH 229 FA

SFH 229, SFH 229 FA

Grenzwerte Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	– 40 + 100 °C	O°.
Sperrspannung Reverse voltage	$V_{ m R}$	20	^
Verlustleistung Total power dissipation	$P_{ m tot}$	150	ww

Kennwerte $(T_{\rm A}=25~^{\circ}\,{\rm C})$ Characteristics

Bezeichnung Parameter	Symbol	We	Wert Value	Einheit Unit
		SFH 229	SFH 229 FA	
-otostrom Photocurrent				
$V_{\rm R}=5$ V, Normlicht/standard light A, $F=2858$ K, $F=1000$ ly	Ip	28 (≥ 18)	ı	μA
$V_R = 5 \text{ V}, \lambda = 950 \text{ nm}, E_e = 1 \text{ mW/cm}^2$	Iρ	ı	20 (≥ 10.8)	μΑ
Wellenlänge der max. Fotoempfindlichkeit Navelength of max. sensitivity	λs max	860	006	mu
Spektraler Bereich der Fotoempfindlichkeit $S = 10\%$ von $S_{\rm max}$ Spectral range of sensitivity $S = 10\%$ of $S_{\rm max}$	~	380 1100 730 1100	730 1100	Eu.
Sestrahlungsempfindliche Fläche Radiant sensitive area	A	0.3	0.3	mm ²
Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area	$L \times B$ $L \times W$	0.56 × 0.56	0.56 × 0.56	mm × mm
Halbwinkel Half angle	ф	±17	±17	Grad deg.
Dunkelstrom, $V_{\rm R}$ = 10 V Dark current	I_{R}	20 (<2000)	50 (≤5000)	рА
Spektrale Fotoempfindlichkeit, λ = 850 nm Spectral sensitivity	S_{λ}	0.62	09.0	W/W
Quantenausbeute, λ = 850 nm Quantum yield	h	06.0	0.88	<u>Electrons</u> Photon

2005-04-06

Opto Semiconductors

OSRAM

Kennwerte $(T_{\rm A}$ = 25 $^{\circ}$ C) Characteristics (conf'd)

Bezeichnung	Symbol	M	Wert	Einheit
Parameter	Symbol	Va	Value	Unit
		SFH 229	SFH 229 FA	
Leerlaufspannung Open-circuit voltage				
$E_{\rm v}=1000$ Ix, Normlicht/standard light A, $T=2856$ K	V_{0}	450 (≥ 400)	ı	/m/
$E_{\rm e} = 0.5 {\rm mW/cm^2}, \lambda = 950 {\rm nm}$	$V_{\rm o}$	ı	420 (≥ 370)	m/
Kurzschlußstrom Short-circuit current				
$E_{ m v}=1000$ lx, Normlicht/standard light A, $T=2856$ K	$I_{ m SC}$	27	ı	μA
$E_{\rm e}$ = 0.5 mW/cm ² , λ = 950 nm	$I_{ m SC}$	ı	6	βη
Anstiegs- und Abfallzeit des Fotostromes	tr, tf	10	10	ns
Rise and fall time of the photocurrent $R_L = 50 \ \Omega; \ V_R = 10 \ V; \ \lambda = 850 \ \text{nm}; \ I_p = 800 \ \mu\text{A}$				
Durchlaßspannung, $I_{\rm F}=$ 100 mA, $E=$ 0 Forward voltage	V_{F}	1.3	1.3	>
Kapazität, $V_{\rm R}=0~{\rm V}$, f = 1 MHz, E = 0 Capacitance	Co	13	13	рF
Temperaturkoeffizient von V_{O} Temperature coefficient of V_{O}	$TC_{\rm V}$	-2.6	-2.6	mV/K
Temperaturkoeffizient von $I_{ m SC}$ Temperature coefficient of $I_{ m SC}$	TC_{I}			%/K
Normlicht/standard light A $\lambda = 950$ nm		0.18	0.2	
Rauschäquivalente Strahlungsleistung Noise equivalent power $I_{\rm R}=10~{\rm V}$, $\lambda=850~{\rm nm}$	NEP	6.5×10^{-15}	6.5×10^{-15}	W HZ
Nachweisgrenze, $V_{\rm R}$ = 10 V, λ = 850 nm Detection limit	*	8.4 × 10 ¹²	8.4 × 10 ¹²	cm× √Hz W

2005-04-06

က

Opto Semiconductors

SFH 229, SFH 229 FA

2005-04-06

OSRAM

Opto Semiconductors

Opto Semiconductors

2005-04-06

OSRAM