Równania różniczkowe 1 R

Notatki z konsultacji

25 marca 2020

Do zad. 3

Dla równań niejednorodnych, dla których funkcje po prawej stronie są określonej postaci, to możemy próbować zgadywać jakiej postaci są rozwiązania. Dla funkcji $f(x) = e^x$ możemy próbować funkcji $y = p(x)e^x$, dla $f(x) = p_1(x)\cos(x)+p_2(x)\sin(x)$ możemy próbować $y = p_3(x)\cos(x)+p_4(x)\sin(x)$. Jeżeli podstawimy funkcje tej postaci do wyjściowego równania, to e^x się poskraca i dostaniemy równanie na współczynniki wielomianu. W pierwszym przypadku f(x) jest sumą funkcji tej postaci, z liniowości samego równania wystarczy nam rozwiązać problem osobno dla $f(x) = x\cos(x)$ oraz dla $f(x) = e^x$, następnie dodać te rozwiązania do siebie.

Współczynniki wielomianów pojawiających się przy $e^x q(x) = e^x$ staramy się wyznaczać rekurencyjnie - równanie to pochodzi od wstawienia $y = p(x)e^x$ do wyjściowego równania. W przypadku jednego z równań na naszej liście mamy q(x) = ap(x) + bp'(x) + cp''(x) = 1. W tym przypadku jest to jakieś proste: $p(x) = a^{-1}$.

Rozważamy teraz nieco bardziej skomplikowany przypadek. Będziemy rozwiązywać problem postaci $y'' + ay' + by = w(x)e^x$. W takim bardziej ogólnym przypadku schemat postępowania jest bardzo podobny. Szukamy rozwiązania postaci $y(x) = p(x)e^x$. Robimy dokładnie takie same rachunki jak wcześniej, tj. wyliczamy y'' + ay' + by. Po przegrupowaniu składników względem stopnia pochodnej p(x) otrzymujemy problem postaci

$$e^{x}(c_{3}p''(x) + c_{2}p'(x) + c_{1}p(x)) = w(x)e^{x}$$

Chcemy zatem rozwiązać równość

$$c_1p(x) + c_2p'(x) + c_3p''(x) = w(x)$$

gdzie znane są nam $w(x), c_1, c_2, c_3$, a szukany jest wielomian p(x). Łatwo zauważyć, że stopnie wielomianów p(x) oraz w(x) musza być tego samego stopnia. Oznaczmy więc $p(x) = \sum_{k}^{n} p_k x^k$, podobnie $w(x) = \sum_{k}^{n} w_k x^k$. Mamy $p'(x) = \sum_{k}^{n} k p_k x^k$, $p''(x) = \sum_{k}^{n} k (k-1) x^k$. Wstawiamy te wielo-

Mamy $p'(x) = \sum_{k=1}^{n} k p_k x^k$, $p''(x) = \sum_{k=1}^{n} k (k-1) x^k$. Wstawiamy te wielomiany do naszego zagadnienia i chcemy porównać wielomiany wyraz po wyrazie. Otrzymujemy więc:

$$c_1 \sum_{k=0}^{n} p_k x^k + c_2 \sum_{k=0}^{n} k p_k x^{k-1} + c_3 \sum_{k=0}^{n} k(k-1) p_k x^{k-2} = \sum_{k=0}^{n} w_k x^k$$

Staramy się wywnioskować rekurencyjnie jakieś wzorki. Widzimy np., że $p_k = w_k/c_1$.

Twierdzenie $\sum_{k=0}^{n} a_k y^{(k)} = w(x)e^x$ ma rozwiązanie $y = p(x)e^x$, gdzie p(x) - wielomian stopnia co najwyżej $n + \deg(w)$. Dowód przez rozumowanie rekurencyjne przedstawione wyżej.

Uwaga dla cosinusowosinusowych zagadnień: całe to nasze rozumowanie działa dla problemu postaci $\sum_k a_k y^{(k)} = w(x) e^{ax}$ gdzie $a \in \mathbb{C}$. Trzeba wówczas wziąć pod uwagę na pojawiające się współczynniki (zwłaszcza potencjalnie zespolone). Można też dla części niejednorodnej postaci $w(x)\cos(x)$ rozważać rozwiązania postaci $y = p_1(x)\cos(x) + p_2(x)\sin(x)$, identycznie dla $w(x)\sin(x)$.

Wartości własne zespolone

Rozważamy równania ay'' + by' + y = 0. Liczymy wielomiany charakterystyczne. Załóżmy, że dostajemy pierwiastki zespolone: $\lambda_1 = \bar{\lambda_2}$, tj. $\lambda_1 = c_1 + ic_2$, $\lambda_2 = c_1 - ic_2$. Rozwiązania naszego problemu są postaci $y = ce^{\lambda_1 t} + \tilde{c}e^{\lambda_2 t}$.

Dlaczego? Jeżeli założymy, że $y(x) = e^{\lambda x}$, to z wyjściowego równania dostaniemy $a\lambda^2 + b\lambda + c = 0$. Ten obiekt traktowany jako funkcję λ nazywamy wielomianem charakterystycznym zagadnienia ay'' + by' + y = 0.

Jeżeli $\lambda_1 \neq \lambda_2 \in \mathbb{R}$, to rozwiązanie jest postaci $y(x) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$. Jeżeli $\lambda_1 = \lambda_2 \in \mathbb{R}$, to rozwiązanie jest postaci $y(x) = c_1 e^{\lambda_1 t} + c_2 t e^{\lambda_2 t}$.

Jeżeli $\lambda_1, \lambda_2 \in \mathbb{C}, \ \lambda_1 = \bar{\lambda_2}.$ Wtedy rozwiązanie ma postać $y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$, gdzie $c_1, c_2 \in \mathbb{C}$. Ale interesuje nas rozwiązanie rzeczywiste, więc zespolone współczynniki zdają się być co najmniej niepokojące. Aby wyjaśnić tę sytuację wprowadźmy oznaczenia: $\lambda_1 = s + iu, \ \lambda_2 = s - iu.$ Dostajemy zagadnienie postaci $y(t) = c_1 e^{st} e^{itu} + c_2 e^{st} e^{-itu}$. Chcemy dobrać c_1, c_2 tak, aby pozbyć się zespolonego charakteru tego rozwiązania i sprowadzić je do wartości rzeczywistych. Np. dla $c_1 = c_2 = c/2i$ dla pewnego $c \in \mathbb{R}$ otrzymujemy $y(t) = ce^{st}(e^{itu} + e^{-itu}) = ce^{st}\cos(tu)$. Podstawiając natomiast $c_1 = c/2i, c_2 - c/2i$ dostajemy $y(t) = ce^{st} + \sin(tu)$. Dodając obie postaci rozwiązania otrzymujemy $y(t) = e^{st}(\alpha\cos(tu) + \beta\sin(tu))$.

Uwaga: przechodząc do części rzeczywistej tracimy pewne rozwiązania istniejące dla zespolonych warunków początkowych.

Jeżeli dane jest nam zagadnienie początkowe $y(0) = y_0 \in \mathbb{R}$, $y'(0) = y'_0 \in \mathbb{R}$, to z rozwiązania postaci $y(t) = c_1 e^{\lambda t} + c_2 e^{\bar{\lambda} t}$ jesteśmy w stanie wyznaczyć stałe c_1, c_2 .