Scientific Diary

1 Mepa

Theorem 1.1 (Kolmogorov). Пусть $\mu_{t_1t_2t_3...t_k}$ для $\forall t_1,t_2,t_3...t_k \in T$, $k \in \mathbb{N}$ являются вероятностными мерами на \mathbb{R}^{kn} такими, что:

$$\nu_{t_{\sigma(1)}}, \cdots, t_{\sigma(k)} \left(F_1 \times \cdots \times F_k \right) = \nu_{t_1, \cdots, t_k} \left(F_{\sigma^{-1}(1)} \times \cdots \times F_{\sigma^{-1}(k)} \right) \tag{1}$$

для всех перестановок $\sigma \in S_k$

$$\nu_{t_1,\dots,t_k} (F_1 \times \dots \times \dots \times F_k)$$

$$= \nu_{t_1,\dots,t_k,t_{k+1},\dots,t_{k+m}} (F_1 \times \dots \times F_k \times \mathbf{R}^n \times \dots \times \mathbf{R}^n)$$
(2)

Тогда $\exists (\Omega, \mathcal{F}, \mathrm{P})$ и случайный процесс $\{X_t\}$ на $\Omega, X_t : \Omega \to \mathrm{R}^n$

$$\nu_{t_1,\dots,t_k}\left(F_1\times\dots\times F_k\right) = P\left[X_{t_1}\in F_1,\dots,X_{t_k}\in F_k\right] \tag{3}$$