relacional Tema 2

Diseño lógico

Modelo relacional

Entidad y generalización

Relación binaria

diseño lógico

Transformación EER a relacional

- COLEGIOS (num, totalvotantes)
 C.P.: num
- MESAS(letra, cole, blanM, blanA, nulM, nulA)
 C.P.: (letra, cole)
 C.Aigna: cole → COLEGIO
- VOTANTES (dnj. nombre, fechanac, direccion, letra, colegio)
 C.P.: dnj
 C.Aisna: (letra, colegio) → MESAS
 V.N.N.; letra, colegio
- PARTIDOS (siglas, nombre, líder)
 C:P.: siglas
- APODERADOS (ggj. nombre, partido)
 C.P.: ggj
 C.Aiega: partido → PARTIDOS
- NACIONALES (dgi)
 C.P.: dgi
 C. Ajena: dgi → VOTANTES
- EXTRANJEROS (dnj. porpartido, orden)
 C.P.: dnj
 - C. Ajena: dnj → VOTANTES
 C. Ajena: porpartido → PARTIDOS
- Si tiene valor la columna porpartido debe tener valor la columna orden.

No tiene sentido que tenga valor la columna orden y no lo tenga porpartido.

- DE_MESAS (dnititular, dnisuplente)
 C.P.: dnititular
 - C.Alternativa : doisuplente
 - C. Ajena: dnititular → NACIONALES
 C. Ajena: dnisuplente → NACIONALES
- Se debe controlar que no aparezca el mismo dnj en las dos columnas.

- POLÍTICOS (dnj. porpertido, orden)
 C.P.: dnj
 - C. Ajena: dnj → NACIONALES

 C. Ajena: gor, padjdo → PARTIDOS

 V.N. por padjdo
 - V.N.N.: por_partido V.N.N.:orden
- <u>AUTONOMICAS</u>(partido, mesa, colegio, votos)
 - C.P.: (partido, mesa, colegio)
 - C. Ajena: partido → PARTIDOS
 - C. Ajena: (mesa, colegio) → MESAS
- MUNICIPALES(partido, mesa, colegio, votos)
 - C.P.: (partido, mesa, colegio)
 - C. Ajena: partido → PARTIDOS
 - C. Ajena: (mesa, colegio) → MESAS
- VOCALES (dnj. número)
 C.P.: dnj
 - C. Ajena: dnj → DE_MESAS
- PRESIDENTES (dp.)
 - C.P.: dnj
 - C. Ajena: dnj → DE_MESAS
- No se refleja que las generalizaciones sean totales ni tampoco que sean disjuntas.

modelo relacional

- Clave candidata
 - Clave primaria (CP)
 - Clave alternativa (cAlt)

No duplicados

No nulos

SÓLO PUEDE EXISTIR UNA CP PERO VARIAS CAIt

Clave ajena

Valor no nulo

una entidad

A

<u>a0</u>

a1

a2 1..1

a3

A(a0, a1, a2, a3)

C.P.: a0

V.N.N.: a2

una entidad

clave primaria compuesta

Α

<u>a0</u>

<u>a1</u>

a2 1..1

а3

A(a0, a1, a2, a3)

C.P.: (a0,a1)

V.N.N.: a2

una entidad

con atributos multivalor

A a0 a1 a2 1..1 A3 0.. N A(a0, a1, a2)

C.P.: a0

V.N.N.: a2

M(a0,a3)

C.P.:(a0, a3)

C.aj.: a0→A

generalización

A(a0, a1)

C.P.: a0

No se puede captar que es TOTAL

B(rA, b1, b2)

C.P.: rA

C. Ajena: rA→ A

C(rA)

C.P.: rA

C. Ajena: rA→ A

D(rA, d1)

C.P.: rA

C. Ajena: rA→ A

en las tablas sólo se representan bien las generalizaciones P,S

A(a0, a1, rB)
C.P.: a0
C.aj.: rB → B

B(b0, b1) C.P.: b0

con una restricción de existencia

A(a0, a1, rB)

C.P.: a0

C.aj.: rB → B

V.N.N.: rB

B(b0, b1)

C.P.: b0

con una restricción de existencia

A(a0, a1, rB)

C.P.: a0

C.aj.: rB → B

B(b0, b1)

C.P.: b0

se pierde la R.E. de B hacia R

cuando hay atributo identificador compuesto

A(a0, a1, rB0, rB1)

C.P.: a0

C.aj.: (rB0,rB1) → B

B(b0, b1,b2)

C.P.: (b0,b1)

con atributo

A(a0, a1, rB, r1*)

C.P.: a0

C.aj.: rB \rightarrow B

■ B(b0, b1)

C.P.: b0

C.P.: a0 C.P.: rA

■B(b0, b1) C.aj.: rA \rightarrow A

C.P.: b0 C.aj.: $rB \rightarrow B$

V.N.N.:rB

^{*} Existirán valores de r1 cuando dispongamos de valores para rB

con una restricción de identificador

A(a0, a1, rB)

C.P.: (a0, rB)
C.aj.: rB → B

B(b0, b1) C.P.: b0

A(a0, a1) C.P.: a0 B(b0,b1) C.P.: b0

R(rA, rB, r1) C.P.: (rA, rB)

C. Ajena: rA→ A

C. Ajena: rB → B

con atributo multivalor

C.P.: a0

B(b0, b1) C.P.: b0

A(a0, a1) | R(rA, rB, r1)

C.P.: (rA, rB)

C. Ajena: rA→ A

C. Ajena: rB → B

R2(rA, rB, r2)

C.P.: (rA, rB, r2) C. Ajena: (rA, rB)→ R

A(a0, a1)

C.P.: a0

B(b0, b1)

C.P.: b0

R(rA, rB)

C.P.: rA

C. Alt: rB

C. Ajena: rA→ A

C. Ajena: rB → B

con una restricción de existencia

A(a0, a1) C.P.: a0

B(b0, b1, rA)

C.P.: b0

C. Alt: rA

C. Ajena: rA→ A

con dos restricción de existencia

R(a0, a1, b0, b1)

C.P.: a0

C.Alt: b0

