Equilibre d'un corps pur sous plusieurs phases

Les changements de phases I.

Diagramme (P, T) II.

III. Equilibres de phases d'un corps pur

	1 phase	2 phases	3 phases
Equilibres		X(lpha) = X(eta) lpha plus condensé que eta	X(s) = X(l) $X(s) = X(g)$ $X(l) = X(g)$
Relations		$g_{\alpha}(T,P) = g_{\beta}(T,P)$	$g_{\scriptscriptstyle S} = g_{\scriptscriptstyle l} g_{\scriptscriptstyle S} = g_{\scriptscriptstyle g} g_{\scriptscriptstyle l} = g_{\scriptscriptstyle g}$
Equilibré décrit par	Plan $g(T, P)$	Courbe de saturation $P_{\alpha\beta}(T)$	Point triple Y

IV. Transitions de première espèce

Formules 1.

Enthalpie de transition:

$$l_{1\to 2} = \Delta h_{1\to 2}$$

$$l_{1\rightarrow 2}=-l_{2\rightarrow 2}$$

Relation de Clapeyron:

$$l_{1\to 2} = T(v_2 - v_1) \frac{dP_{12}}{dT}$$

 $l_{1 \to 2} = T(v_2 - v_1) \frac{dP_{12}}{dT}$ $\frac{dP_{12}}{dT}$: pente de la courbe de transition de phases

Propriétés du point triple :

$$l_f(T_Y) + l_v(T_Y) - l_s(T_Y) = 0$$

et
$$\left(\frac{dP_s}{dT}\right)_V > \left(\frac{dP_v}{dT}\right)_V$$

Compression isotherme à $T = T_0$

Echauffement isobare à $P = P_0$

Diagramme (P, V)

$$v = xv_g + (1 - x)v_l$$