引言

一、基础阶段任务:

- (1)熟记基本概念、定理、公式
- (2)掌握基本方法与技术
- (3)培养基本计算能力:求极限、求导数、求积分

二、目标:

- (1)建成基础知识结构
- (2)形成基础数学素养

三、内容安排:

- (1)极限
- (2)一元微分学。高数上
- (3)一元积分学
- (4)多元微分学]
- (5)二重积分 高数下
- (6)微分方程

第一讲 极限

核心考点:

- (1)定义
- (2)性质
- (3)计算
- (4)应用

一、极限定义

1. 函数极限

	$f(x) \rightarrow A$	$f(x) \rightarrow \infty$	$f(x) \rightarrow +\infty$	$f(x) \longrightarrow \infty$
$x \rightarrow x_0$	$\forall \epsilon > 0,$	$\forall M > 0$,	$\forall M > 0$,	$\forall M > 0$,
	$\exists \delta > 0$,	$\exists \delta > 0$,	$\exists \delta > 0,$	∃δ>0,
	使当0< x-x0	使当0< x-x0	使当0< x-x0	使当0< x-x0
	$<\delta$ 时,	$<$ δ 时,	$<$ δ 时,	$<$ δ 时,
	即有 $ f(x) - A < \varepsilon$.	即有 $\mid f(x) \mid > M$.	即有 $f(x) > M$.	即有 $f(x) < -M$.
$x \to x_0^{\dagger}$	$\forall \epsilon > 0$,	$\forall M > 0$,	$\forall M > 0$,	$\forall M > 0$,
	$\exists \delta > 0$,	$\exists \delta > 0$,	$\exists \delta > 0,$	∃δ>0,
	使当 $0 < x - x_0 < \delta$ 时,	$0 < x - x_0 < \delta$ 时,	$0 < x - x_0 < \delta$ 时,	$0 < x - x_0 < \delta$ 时,
	即有 $ f(x) - A < \varepsilon$.	即有 $ f(x) > M$.	即有 $f(x) > M$.	即有 $f(x) < -M$.
$x \rightarrow x_0^-$	∀ε>0,	$\forall M > 0$,	$\forall M > 0$,	$\forall M > 0$,
	$\exists \delta > 0,$	$\exists \delta > 0$,	$\exists \delta > 0,$	$\exists \delta > 0,$
	$0 < x_0 - x < \delta$ 时,	$0 < x_0 - x < \delta$ 时,	$0 < x_0 - x < \delta$ 时,	$0 < x_0 - x < \delta$ 时,
	即有 $ f(x) - A < \varepsilon$.	即有 $\mid f(x) \mid > M$.	即有 $f(x) > M$.	即有 $f(x) < -M$.

少士	#
ZN	*

	$f(x) \rightarrow A$	$f(x) \rightarrow \infty$	$f(x) \rightarrow +\infty$	$f(x) \rightarrow -\infty$
$x \rightarrow \infty$	$\forall \epsilon > 0$,	$\forall M > 0$,	$\forall M > 0$,	$\forall M > 0$,
	$\exists X > 0$,	$\exists X > 0$,	$\exists X > 0$,	$\exists X > 0$,
	x >X 时,	x >X 时,	x >X 时,	x >X 时,
	即有 $ f(x) - A < \varepsilon$.	即有 $ f(x) > M$.	即有 $f(x) > M$.	即有 $f(x) < -M$.
$x \rightarrow + \infty$	$\forall \epsilon > 0$,	$\forall M > 0$,	$\forall M > 0$,	$\forall M > 0$,
	$\exists X > 0$,	$\exists X > 0$,	$\exists X > 0$,	$\exists X > 0,$
	x>X时,	x>X时,	x>X时,	x>X时,
	即有 $ f(x) - A < \varepsilon$.	即有 $ f(x) > M$.	即有 $f(x) > M$.	即有 $f(x) < -M$.
$x \rightarrow -\infty$	$\forall \epsilon > 0$,	$\forall M > 0$,	$\forall M > 0$,	$\forall M > 0$,
	$\exists X > 0$,	$\exists X > 0$,	$\exists X > 0,$	$\exists X > 0$,
	x < -X时,	x < -X时,	x < -X 时,	x < -X 时,
	即有 $ f(x) - A < \epsilon$.	即有 $\mid f(x) \mid > M$.	即有 $f(x) > M$.	即有 $f(x) < -M$.

【例 1】[张宇带你学高等数学·上册 P16 第 10 题]

$$\lim_{x \to \infty} f(x) = A.$$

【例 2】[张宇带你学高等数学·上册 P17 第 11 题]

根据函数极限的定义证明:函数 f(x) 当 $x \to x_0$ 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.

【例 3】 [张宇带你学高等数学•上册 P17 第 12 题] 试给出 $x \to \infty$ 时函数极限的局部有界性的定理,并加以证明.

【定理】若 $\lim_{x\to\infty} f(x)$ 存在,则存在 X>0 及 M>0,使对 $\forall |x|>X$ 均有 $|f(x)| \leq M$.

2. 数列极限

n 为自然数, $n \to \infty$ 专指 $n \to +\infty$,而略去"+"不写 $\lim_{n \to \infty} x_n = A \Leftrightarrow \forall \varepsilon > 0$, $\exists N > 0$, $\exists N > N$ 时,有 $|x_n - A| < \varepsilon$

【例 4】[张宇带你学高等数学·上册 P14 第 6 题]

若 $\lim_{n\to\infty} u_n = a$,证明 $\lim_{n\to\infty} |u_n| = |a|$. 并举例说明:如果数列{ $|x_n|$

|| 有极限,但数列 $\{x_n\}$ 未必有极限.

【例 5】[张宇带你学高等数学·上册 P14 第 8 题]

对于数列 $\{x_n\}$,若 $x_{2k-1} \rightarrow a(k \rightarrow \infty)$, $x_{2k} \rightarrow a(k \rightarrow \infty)$,证明: $x_n \rightarrow a(n \rightarrow \infty)$.

二、极限三大性质

1. 唯一性

若 $\lim_{x \to x_0} f(x) = A$,则 A 唯一.

【例 6】[张宇带你学高等数学·上册 P15 第 4 题]

求 $f(x) = \frac{x}{x}$, $\varphi(x) = \frac{|x|}{x}$ 当 $x \to 0$ 时的左、右极限,并说明它们在 $x \to 0$ 时的极限是否存在.

【例 7】[张宇带你学高等数学·上册 P44 例 6(1)]

当 $x \to 1$ 时,函数 $\frac{x^2-1}{x-1}e^{\frac{1}{x-1}}$ 的极限为().

(A)2

(B)0

 $(C)\infty$

(D) 不存在但不为 ∞

2. 局部有界性

若 $\lim_{x \to x_0} f(x) = A$,则 $\exists M > 0$, $\delta > 0$,当 $0 < |x - x_0| < \delta$ 时,恒有 |f(x)| < M.

【例 8】 $f(x) = \frac{|x|\sin(x-2)}{x(x-1)(x-2)^2}$ 在()内有界.

A. (-1,0)

B. (0,1)

C. (1,2)

D. (2,3)

3. 局部保号性

若
$$\lim_{x \to x_0} f(x) = A > 0$$
,则 $x \to x_0$ 时, $f(x) > 0$ 若 $\lim_{x \to x_0} f(x) = A < 0$,则 $x \to x_0$ 时, $f(x) < 0$

【例 9】设 $\lim_{x\to 0} f(x) = f(0)$ 且 $\lim_{x\to 0} \frac{f(x)}{1-\cos x} = -2$,则 x = 0 是

().

A. 极大值点

B. 极小值点

C. 非极值点

D. 无法判断

三、极限的计算

1. 函数极限计算

① 七种未定式 $\left[\frac{0}{0}, \frac{\infty}{\infty}, \infty \cdot 0, \infty - \infty, \infty^{0}, 0^{0}, 1^{\infty}\right]$

【注】0 不是真的 0,1 不是真的 1.

- ② 计算工具
- (1) 洛必达法则

a) 若
$$\lim_{x \to \infty} f(x) = 0$$
, $\lim_{x \to \infty} g(x) = 0$

b) 且
$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$
 ∃,則 $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$

隐含条件: f(x), g(x) 都为无穷小量; 都可导; 导函数比值的极限存在.

【注 1】如
$$\lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\cos x}{1} = 1$$

洛必达法则能不能用,用了再说,用了若存在,则存在;用了若不存在,只能说洛必达法则失效,并不能说原极限一定不存在,如:

【例 10】[张宇带你学高等数学·上册 P97 第 2 题]

验证极限 $\lim_{x\to\infty}\frac{x+\sin x}{x}$ 存在,但不能用洛必达法则得出.

【例 11】[张宇带你学高等数学·上册 P97 第 3 题]

验证极限 $\lim_{x\to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$ 存在,但不能用洛必达法则得出.

【注 2】常用等价无穷小

当 $x \rightarrow 0$ 时,

 $\sin x \sim x$

 $\arcsin x \sim x$

 $\tan x \sim x$

 $\arctan x \sim x$

 $e^x - 1 \sim x$

 $\ln(1+x) \sim x$

 $(1+x)^{\alpha}-1\sim \alpha x$

 $1 - \cos x \sim \frac{1}{2}x^2$

第一组
$$\left[\frac{0}{0},\frac{\infty}{\infty},\infty\cdot 0\right]$$

【例 1】[张宇带你学高等数学·上册 P95 第 1(9) 题]

$$\lim_{x \to +\infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{\operatorname{arccot} x} \left[\frac{0}{0}\right].$$

【例 2】[张宇带你学高等数学·上册 P95 第 1(7)题]

 $\lim_{x\to 0^+} \frac{\ln \tan 7x}{\ln \tan 2x} \left[\frac{\infty}{\infty}\right].$

【例 3】[张宇带你学高等数学·上册 P95 第 1(12)题] $\lim_{x\to 0} x^2 e^{1/x^2} (0 \cdot \infty).$ 【分析】

第二组 $(\infty-\infty)$

①有分母,则通分

【例】[张宇带你学高等数学·上册 P123 第 10(2)题]

$$\lim_{x\to 0} \left[\frac{1}{\ln(1+x)} - \frac{1}{x} \right] (\infty - \infty).$$

②没有分母,创造分母

【例】
$$\lim_{x\to +\infty} [x^2(e^{\frac{1}{x}}-1)-x]$$
.【分析】

第三组(∞0,00,1∞)

 $U(x)^{V(x)} = e^{V(x)\ln U(x)}$

【例 1】[张宇带你学高等数学·上册 P95 第 1(16)题]

$$\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{\tan x} (\infty^0).$$

【例 2】 [张宇带你学高等数学・上册 P95 第 1(15) 题] $\lim_{x\to 0^+} x^{\sin x}(0^0)$.

【例 3】[张字带你学高等数学・上册 P123 第 10(4)题] $\lim_{x\to\infty} [(a_1^{\frac{1}{x}} + a_2^{\frac{1}{x}} + \cdots + a_n^{\frac{1}{x}})/n]^{nx} \quad (其中 a_1, a_2, \cdots, a_n > 0)$ $(1^{\infty}).$

(2) 泰勒公式

任何可导函数 $f(x) = \sum a_n x^n$

当 $x \rightarrow 0$ 时,

②arcsin
$$x = x + \frac{1}{6}x^3 + o(x^3)$$

③tan
$$x = x + \frac{1}{3}x^3 + o(x^3)$$

(4) arctan
$$x = x - \frac{1}{3}x^3 + o(x^3)$$

$$5\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4)$$

$$\operatorname{\mathfrak{G}ln}(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)$$

$$\mathfrak{g}(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + o(x^2)$$

【例 1】[张宇带你学高等数学·上册 P99 第 6 题]

求函数 $f(x) = \tan x$ 的带有佩亚诺型余项的 3 阶麦克劳林公式.

【例 2】[张宇带你学高等数学·上册 P98 第 3 题]

求函数 $f(x) = \sqrt{x}$ 按(x-4) 的幂展开的带有拉格朗日型余项的 3 阶泰勒公式.

【例 3】[张宇带你学高等数学·上册 P100 第 10(1)(3) 题]

(1) $\lim_{x \to +\infty} (\sqrt[3]{x^3 + 3x^2} - \sqrt[4]{x^4 - 2x^3});$

(2)
$$\lim_{x \to 0} \frac{1 + \frac{1}{2}x^2 - \sqrt{1 + x^2}}{(\cos x - e^{x^2})\sin x^2}.$$

2. 数列极限运算

(1) 若 x_n 易于连续化,转化为函数极限计算依据:若 $\lim_{x \to +\infty} f(x) = A$,则 $\lim_{n \to \infty} f(n) = A$

【例】[张宇带你学高等数学•上册 P41 第 4(3) 题] 求极限 $\lim_{n\to\infty} \sqrt{n} (\sqrt[n]{an} - 1)(a > 0)$.

(2) 若{x_n}不易于连续化,用"夹逼准则"(或定积分定义)

【**例 1**】[张宇带你学高等数学·上册 P44 第 4(1) 题]

求极限
$$\lim_{n\to\infty} \left[\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \cdots + \frac{n}{n^2+n+n} \right].$$

【例 2】[张宇带你学高等数学·上册 P41 第 4(1) 题]

$$\Re \lim_{n \to \infty} \left[\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \dots + \frac{n}{n^2 + n + n} \right].$$

(3) 若 $\{x_n\}$ 由递推式 $x_n = f(x_{n-1})$ 给出,用"单调有界准则": 给出 $\{x_n\}$,若 $\{x_n\}$ 单增且有上界或者单减且有下界 ⇒ $\lim_{n} \exists \Leftrightarrow \{x_n\}$ 收敛

【例】[张宇带你学高等数学·上册 P41 第 4(2) 题]

设 $x_1 = 10, x_{n+1} = \sqrt{6 + x_n}$ $(n = 1, 2, \dots)$, 试证数列 $\{x_n\}$ 极限存在,并求此极限.

四、极限的应用 —— 连续与间断

1. 基本常识

任何初等函数在其定义区间内连续(只要见到的函数都是初等函数),故考研中只研究两类特殊的点:

分段函数的分段点(可能间断) 无定义点(必然间断)

2. 连续的定义

若 $\lim f(x) = f(x_0)$,则 f(x) 称在 $x = x_0$ 处连续.

【注】 $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$ 三者相等才连续.

3. 间断的定义

设 f(x) 在 $x = x_0$ 点的某去心邻域有定义

- (1) $\lim_{x \to x^{+}} f(x)$ (2) $\lim_{x \to x^{-}} f(x)$ (3) $f(x_{0})$
- a) 第一类间断点(1),(2) 均存在,且
 - $(1) \neq (2)$: x_0 为跳跃间断点
 - $(1) = (2) \neq (3): x_0$ 为可去间断点
- b) 第二类间断点(1),(2) 至少一个不存在(目前为止考研只考了(1)(2) 均不存在)

若不存在 = ∞ → 无穷间断点 若不存在 = 振荡 → 振荡间断点

【注】① 单侧定义不讨论间断性

② 若出现左右一边是振荡间断,一边是无穷间断,则我们应该分侧讨论

【例 1】[张宇带你学高等数学·上册 P97 第 4 题] 讨论函数

$$f(x) = \begin{cases} \left[\frac{(1+x)^{\frac{1}{x}}}{e}\right]^{\frac{1}{x}}, & x > 0, \\ e^{-\frac{1}{2}}, & x \leq 0 \end{cases}$$

在点 x = 0 处的连续性.

【例 2】「张宇带你学高等数学·上册 P27 第 3 题]

下列函数在指出的点处间断,说明这些间断点属于哪一类.如果是可去间断点,那么补充或改变函数的定义使它连续:

(1)
$$y = \frac{x^2 - 1}{x^2 - 3x + 2}$$
, $x = 1$, $x = 2$;

(2)
$$y = \frac{x}{\tan x}$$
, $x = k\pi$, $x = k\pi + \frac{\pi}{2}$ $(k = 0, \pm 1, \pm 2, \cdots)$;

(3)
$$y = \cos^2 \frac{1}{x}, x = 0;$$

$$(4)y = \begin{cases} x-1, & x \leq 1, \\ 3-x, & x > 1, \end{cases} x = 1.$$