Простые решения уравнения фильтрации

Хабибуллин Р.А.

24 сентября 2024 г.

1 Формула Дюпюи

Простое решение для задачи стационарного притока к вертикальной скважине в однородном изотропном пласте круговой формы с постоянным давлением на границе имеет вид

$$Q = \frac{kh}{18.41\mu B} \frac{P_{res} - P_{wf}}{\ln\frac{r_e}{r_{w}} + S} \tag{1}$$

где:

- Q дебит скважины на поверхности, приведенный к нормальным условиям, ст. ${
 m M}^3/{
 m cyr}$
 - μ вязкость нефти в пласте, сП
 - B объемный коэффициент нефти, ${\rm M}^3/{\rm M}^3$
 - P_{res} пластовое давление или давление на контуре с радиусом r_e , атма
 - P_{wf} давление забойное, атма
 - k проницаемость, мД
 - h мощность пласта, м
 - r_e внешний контур дренирования скважины, м
 - r_w радиус скважины, м
 - S скин-фактор скважины, м

Это решение известно как закон Дарси https://ru.wikipedia.org/wiki/ Закон Дарси или формула Дюпюи.

Выражение можно переписать в виде

$$P_r = P_{res} - 18.41 \frac{Q\mu B}{kh} \left[\ln \frac{r_e}{r} + S \right] \tag{2}$$

который удобен для расчета распределения давления в пласте P_r на произвольном расстоянии от скважины r. В выражении (2) задано граничное значение давления p_e на контуре r_e . Расчет позволит найти любое значение внутри контура, в том числе и забойное давление P_{wf} на $r=r_w$

Выражение можно переписать

$$P_r = P_{wf} + 18.41 \frac{Q\mu B}{kh} \left[\ln \frac{r}{r_w} + S \right] \tag{3}$$

где по известному дебиту и забойному давлению можно найти давление в пласте. При известном пластовом давлении можно оценить радиус контура на котором оно достигается.

1.1 Формула Дюпюи в декартовых координатах

Для построения карты распределения давлений в пласте полезно вспомнить, что расстояние от скважины с координатами (x_{well}, y_{well}) до произвольной точки пласта с координатами (x,y) можно найти по формуле

$$r = \sqrt{(x - x_{well})^2 + (y - y_{well})^2}$$

Тогда выражение для расчета давления в любой точке пласта примет вид

$$P_r = P_{res} - 18.41 \frac{Q\mu B}{kh} \left[\ln \frac{r_e}{\sqrt{(x - x_{well})^2 + (y - y_{well})^2}} + S \right]$$
 (4)

Простой вариант расчета - можно создать пустую матрицу со значениями давления по сетке и перебирая все точки на сетке/матрице рассчитать давления

1.2 Суперпозиция для нескольких скважин с постоянным дебитом

Для стационарного решения работает принцип суперпозиции - сумма двух решений также будет решением, это позволяет построить карту для нескольких скважин. Давление в любой точке пласта можно найти по формуле

$$P_{res} - P_{x,y} = \sum_{i} 18.41 \frac{Q_i \mu B}{kh} \left[\ln \frac{r_e}{\sqrt{(x - x_{w.i})^2 + (y - y_{w.i})^2}} + S \right]$$
 (5)

Выражение справедливо только если $\sqrt{(x-x_{w.i})^2+(y-y_{w.i})^2} < r_e$.

1.3 Суперпозиция для нескольких скважин с постоянным забойным давлением

При наличии нескольких скважин можно записать выражение для оценки забойных давлений скважин

$$P_{res} - P_{wf.j} = \sum_{i} 18.41 \frac{Q_i \mu B}{kh} \left[\ln \frac{r_e}{\sqrt{(x_{w.j} - x_{w.i})^2 + (y_{w.j} - y_{w.i})^2}} + S \right]$$

Если считать забойные давления $P_{wf,j}$ известными а дебиты скважин Q_i не известными, тогда выражение (6) можно рассматривать как систему линейных алгебраических уравнений вида

$$AX = B$$

Где

$$A_{[i,j]} = 18.41 \frac{\mu B}{kh} \left[\ln \frac{r_e}{\sqrt{(x_{w.j} - x_{w.i})^2 + (y_{w.j} - y_{w.i})^2}} + S \right]$$

$$B_{[j]} = P_{res} - P_{wf.j}$$

такую систему можно решить например с использованием пакета 'scipy.linalg'

1.4 Задания для самостоятельной работы

Для совершенствования навыков работы с python выполните следующие задания:

1. Постройте график распределения давления в пласте для композитного пласта. В композитном пласте на расстоянии $r < r_1$ проницаемость равна $k = k_1$, а для $r >= r_1, k = k_2$. 2. Постройте двумерную тепловую или контурную карту распределения давления в пласте для моделей однородного и композитного пласта. 3. Рассчитайте среднюю величину давления в круговой области дренирования для однородного пласта. Насколько среднее давление в круговой области дренирования будет отличаться от давления на контуре. Чему будет равен коэффициент S в выражении Q = kh $P_{res} - P_{wf}$

 $\frac{kh}{18.41\mu B}\frac{P_{res}-P_{wf}}{ln(\frac{r_e}{r_w})+S}$ при использовании вместо давления на контуре среднего давле-

ния? Постройте график, на котором будет отображаться распределение давления в зоне дренирования и величина среднего давления (в виде линии). 4. Для примера с несколькими скважинами имитирующими трещину ГРП рассчитайте дебиты скважин таким образом, чтобы забойное давление на всех скважинах было одинаковым. Постройте графики распределения давления в пласте. Постройте график дебитов вдоль "скважины".

2 Решение линейного стока

Уравнение фильтрации для радиального потока в линеаризованном виде можно записать в виде

$$\frac{\partial p}{\partial t} = 0.00036 \frac{k}{\varphi \mu c_t} \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r \frac{\partial p}{\partial r} \right) \right] \tag{6}$$

Напомним, здесь

- p давление, атм
- t время, час
- k проницаемость в направлении движения потока, мД
- μ динамическая вязкость, с Π
- φ пористость, д.е.
- c_t сжимаемость, 1/атм
- r расстояние от центра, м

Часто для анализа уравнений неустановившейся фильтрации используются безразмерные переменные. Мы будем использовать переменные в виде:

$$r_D = \frac{r}{r_w}$$

$$t_D = \frac{0.00036kt}{\varphi\mu c_t r_w^2}$$

$$p_D = \frac{kh}{18.41q_s B\mu} (p_i - p)$$

Здесь использование единицы измерения СИ. - r_w - радиус скважины, м

- r расстояние от центра скважины до точки в пласте, м
- q_s дебит скважины на поверхности, приведенный к нормальным условиям м3/сут
- φ пористость, доли единиц
- μ вязкость нефти в пласте, сП
- В объемный коэффициент нефти, м3/м3
- p_i начальное давление в пласте, атм
- p давление на расстоянии r, атм
- c_t общая сжимаемость системы в пласте, 1/атм

Использование безразмерных переменных позволяет упростить уравнение фильтрации, которое примет вид

$$\frac{\partial p_D}{\partial t_D} = \frac{1}{r_D} \left[\frac{\partial}{\partial r_D} \left(r_D \frac{\partial p_D}{\partial r_D} \right) \right]$$

Решение этого уравнения - функция безразмерного давления от безразмерных времени и расстояния $p_D(r_D,t_D)$

2.1 Решение линейного стока

Для решения уравнения фильтрации - линейного дифференциального уравнения в частных производных второго порядка необходимо задать начальные и граничные условия. Самое простое решение можно получить для случая вертикальной скважины бесконечно малого радиуса запускающейся с постоянным дебитом. Условия соответствующие этому случаю можно выразить следующим образом

* начальное условие. До запуска скважины в момент времени $t_D=0$ давление в пласте равно начальному во всех точках $p=p_i$

$$t_D < 0, p_D = 0$$

* условие постоянства дебита на скважине - граничное условие на скважине

$$\lim_{r_D \to 0} r_D \frac{\partial p_D}{\partial r_D} = -1$$

* условие на бесконечном расстоянии возмущения от скважине нет

$$r_D = \infty, p_D = 0$$

В этом случае решение может быть выражено через функцию интегральной экспоненты

$$p_D(r_D, t_D) = -\frac{1}{2} Ei \left(-\frac{r_D^2}{4t_d} \right)$$

где -Ei(-x) - интегральная показательная функция. Решение в размерных переменных можно записать как

$$p(r,t) = p_i - \frac{18.41q_sB\mu}{kh} \left(-\frac{1}{2}Ei\left(-\frac{\varphi\mu c_t r^2}{0.00144kt} \right) \right)$$

Решение с интегральной экспонентой может быть заменено приблеженным решением с использованием логарифма

$$p_D(r_D, t_D) = -\frac{1}{2} \ln \left(\frac{r_D^2}{4t_d} \right) - \frac{1}{2} \gamma$$

где $\gamma = 0.57721566481$ - константа Эйлера

на графике от времени в полулогарифмических координатах логарифмическое приближение выглядит как кривая с наклоном 0.5