Chapter 2: ARRAYS AND STRUCTURES

Data Structures Lecture Note Prof. Sungwon Jung Big Data Processing Laboratory Dept. of Computer Science and Engineering Sogang University

2.1 ARRAYS

2.1.1 The Abstract Data Type

- ■An *array* is usually viewed as "a consecutive set of memory locations" which is a usual implementation.
- ■An *array* as an ADT is a set of pairs, < *index, value*>, such that each index that is defined has a value associated with it.
- Aside from creating a new array, most languages provide only two standard operations for arrays,
 - (1) retrieving a value
 - (2) storing a value

<Abstract Data Type Array>

ADT Array is

objects: A set of pairs < *index*, *value*> where for each value of *index* there is a value from the set *item*. *Index* is a finite set of one or more dimensions, for example, $\{0, \ldots, n-1\}$ for one dimension, $\{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)\}$ for two dimensions, etc.

functions:

for all $A \in Array$, $i \in index$, $x \in item$, j, $size \in integer$

Array Create(j, list) ::= **return** an array of j dimensions where list is a j-tuple whose ith element is the size of the ith dimension. Items

are undefined.

Item Retrieve(A, i) ::= if $(i \in index)$ return the item associated with index value i in array A

else return error.

Array Store(A, i, x) ::= if $(i \in index)$ return an array that is identical to

array A except the new pair $\langle i, x \rangle$ has been inserted

else return error.

end Array

Data Engineering Laboratory

2.1.2 Arrays in C

■Declaration of one-dimensional arrays in C:

int list[5], *plist[5];

Memory allocation of arrays :

Variable	Memory address
list[0]	base address = a
list[1]	a + sizeof(int)
list[2]	<pre>a + 2·sizeof(int)</pre>
list[3]	a + 3·sizeof(int)
list[4]	a + 4·sizeof(int)

C interprets list[i] as a pointer to an integer.

Data Engineering Laboratory

Observe the difference between a declaration such as

```
int *list1;
and
int list2[5];
```

Variables *list1* and *list2* are both pointers to an integer type object. *list2* is a pointer to *list2*[0] and *list2*+*i* is a pointer to *list2*[i].

```
Thus, (list2+i) equals \&list2[i]. So, *(list2+i) equals list2[i].
```

Data Engineering Laboratory

5

■ [Program 2.1]

- When sum is invoked, *input* = & *input*[0] is copied into a temporary location and associated with the formal parameter *list*.
- When list[i] occurs on the right-hand side of '=' in an assignment statement, a dereference takes place and the value pointed at by (list+i) is returned.
- If list[i] appears on the left-hand side of '=', then the value produced on the right-hand side is stored in the location (list+i).

7

■ Example 2.1 [One-dimensional array addressing]

```
int one[]=\{0, 1, 2, 3, 4\};
```

A function that prints out both the address of the *I*th element of this and the value found at this address.

[Program 2.2]

Data Engineering Laboratory

■ [Figure 2.1] One-dimensional array addressing

Address	Contents
12244868	0
12344872	1
12344876	2
12344880	3
12344884	4

Data Engineering Laboratory

Q

2.2 DYNAMICALLY ALLOCATED ARRAYS

2.2.1 ONE-DIMENSIONAL ARRAYS

- ■If the user wishes to change array size, we have to change the definition of *MAX_SIZE* and recompile the program.
- ■A good solution to this problem is to defer this decision to run time and allocate the array when we have a good estimate of the required array size.

```
int i, n, *list;
printf("Enter the number of numbers to generate: ");
scanf("%d", &n);
if ( n < 1 ) {
    fprintf(stderr, "Improper value of n \n");
    exit(EXIT_FAILURE);
}
MALLOC(list, n * sizeof(int));</pre>
```

Data Engineering Laboratory

2.2.2 TWO-DIMENSIONAL ARRAYS

- ■A 2-D array is represented as a 1-D array in which each element is itself a 1-D array
- **■**(e.g.) int x[3][5];

■A 3-D array is represented as a 1-D array in which each element is itself a 2-D array

Data Engineering Laboratory

11 -

■ [Program 2.3]

- void* calloc(elt_count, elt_size)
- → allocates a region of memory large enough to hold an array of elt_count elements, each of size elt_size, and the region of memory is set to zero
- ■void* realloc(p, s)
 - → changes the size of memory block pointed at by p to s

13 -

2.3 STRUCTURES AND UNIONS

2.3.1 Structures

- A *structure* (called a *record* in many other programming language) is a collection of data items, where each item is identified as to its *type* and *name*.
- For example, the following declaration creates a variable whose name is person with three fields.

```
struct {
   char name[10];
   int age;
   float salary;
} person;
```

■ The structure member operator · is used to select a particular member of the structure.

```
strcpy (person.name, "james");
person.age = 10;
person.salary = 35000;
```

Data Engineering Laboratory

• Creating new structure data types by using the *typedef* statement :

humanBeing person1, person2;

15

Data Engineering Laboratory

■ [Program 2.4]

```
int humans equal(human being person1, human being person2)
  /* return TRUE if person1 and person2 are the same human being
  otherwise return FALSE */
  if (strcmp(person1.name, person2.name))
      return FALSE;
  if (person1.age != person2.age)
      return FALSE;
  if (person1.salary != person2.salary)
       return FALSE;
  return TRUE;
}
if (humans equal(person1, person2))
  printf("The two human beings are the same");
else
  printf("The two human beings are not the same");
                                                           Data Engineering Laboratory
```

A structure within a structure

17

```
typedef struct {
    int month;
    int day;
    int year;
} date;

typedef struct human_being {
    char name[10];
    int age;
    float salary;
    date dob;
};

person1.dob.month = 2;
person1.dob.day = 11;
person1.dob.year = 1944;
```

Data Engineering Laboratory

2.3.2 Unions

19 \blacksquare

■ Fields share their memory space → only one field of union is active at any given time

```
human_being person1, person2;
person1.sex_info.sex = male;
person1.sex_info.u.beard = FALSE;
person2.sex_info.sex = female;
person2.sex_info.u.children = 4;
```

2.3.3 Internal Implementation of Structures

- In most cases we need not be concerned with exactly how the C compiler will store the fields of structure in memory.
- Generally, the values will be stored in the same way using increasing address location in the order specified in the structure definition.

Data Engineering Laboratory

24

2.3.4 Self-Referential Structures

- A *self-referential structure* is one in which one or more of its components is a pointer to itself.
- Self-referential structure usually require dynamic storage management routine (*malloc* and *free*) to explicitly obtain and release memory.

```
typedef struct list {
          char data;
          list *link;
        };

list item1, item2, item3;

item1.data = 'a';
item2.data = 'b';
item3.data = 'c';
item1.link = item2.link = item3.link = NULL;

item1.link = &item2;
item2.link = &item3;
Data Engineering Laboratory
```

2.4 POLYNOMIALS

23

2.4.1 The Abstract Data Type

- Arrays are not only data structures in their own right, we can also use them to implement other abstract data types.
- One of the simplest and most commonly found data structures:
 ordered list or linear list.

```
( item_0, item_1, ..., item_{n-1})
```

- Examples:
 - Days of the week: (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday)
 - Values in a deck of cards: (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King)
 - Floors of the building : (basement, lobby, mezzanine, first, second)
 etc.

- Possible operations on the ordered lists :
 - Finding the length, n, of a list.
 - Reading the items in a list from left to right (or right to left).
 - Retrieving the *l*th item from a list, $0 \le i < n$.
 - Replacing the item in the *l*th position of a list, $0 \le i < n$.
 - Inserting a new item in the ith position of a list, $0 \le i < n$. The items previously numbered i, i+1, . . ., n-1 become items numbered i+1, i+2, . . ., n.
 - Deleting an item from the *i*th position of a list, $0 \le i < n$. The items previously numbered $i+1, \ldots, n$ become items numbered $i, i+1, \ldots, n-1$.
- Implementations (ways to represent an ordered list) :
 - Sequential mapping
 - Nonsequential mapping

25

■ A *polynomial* (viewed from a mathematical perspective) is a sum of terms, where each term has a form ax^e , where x is a variable, a is the coefficient, and e is the exponent.

For example:

$$A(X) = 3X^{2} + 2X^{5} + 4$$

$$B(X) = X^{4} + 10X^{3} + 3X^{2} + 1$$

Standard mathematical definitions for sum and product of polynomials.

For A(x) =
$$\sum a_i x^i$$
 and B(x) = $\sum b_i x^i$
A(x) + B(x) = $\sum (a_i + b_i) x^i$
A(x)·B(x) = $\sum (a_i x^i \bullet (\sum b_i x^i))$

[ADT 2.2] Abstract Data Type Polynomial

ADT Polynomial is

Objects: $p(x) = a_1 x^{e_1} + \dots + a_n x^{e_n}$; a set of ordered pairs of $\langle a_i, e_i \rangle$

where a_i in Coefficients and e_i in Exponents, are integers >=0.

Functions:

for all poly, poly1, $poly2 \in Polynomial$, $coef \in Coefficients$, $expon \in Exponents$

Polynomial Zero() ::= **return** the polynomial p(x)=0

Boolean IsZero(poly) ::= if (poly) return FALSE

else return TRUE

Coefficients Coef(poly, expon) ::= **if** (expon \in poly) **return** its coefficient

else return zero

Exponent LeadExp(poly) ::= **return** the largest exponen in poly.

Polynomial Attach(poly,coef,expon) $::= if (expon \in poly) return error$

else return the polynomial poly with

the term < coef, expon> inserted

Data Engineering Laboratory

27

Polynomial Remove(poly, expon) ::= **if** ($expon \in poly$)

return the polynomial *poly* with

the term whose exponent

is expon deleted

is emport defeted

else return error

Polynomial SingleMult(*poly,coef,expon*) ::= **return** the polynomial

 $poly \cdot coef \cdot \chi^{expon}$

 $Polynomial \ Add(poly1,poly2)$::= **return** the polynomial

poly1 + poly2

 $Polynomial \ Mult(poly1,poly2)$::= **return** the polynomial

poly1 · poly2

end Polynomial

2.4.2 Polynomial Representation

[Program 2.5] Initial version of padd function

```
/* d = a + b, where a, b, and d are polynomials */
d = Zero();
While(!IsZero(a) &&! IsZero(b)) do {
   switch COMPARE(Lead Exp(a), Lead Exp(b)) {
                 d = Attach(d, Coef(b, Lead_Exp(b)), Lead_Exp(b));
                 b = Remove(b, Lead Exp(b));
                 break;
     case 0:
                 sum = Coef(a, Lead Exp(a)) + Coef(b, Lead Exp(b));
                 if (sum) {
                      Attach(d, sum, Lead Exp(a));
                 a = Remove(a, Lead Exp(a));
                 b = Remove(b, Lead Exp(b));
                 break;
     case 1: d = Attach(d, Coef(a, Lead Exp(a)), Lead Exp(a));
                 a = Remove(a, Lead Exp(a));
```

insert any remaining terms of a or b into d

Data Engineering Laboratory

29

Representation

Exponents are uniquely arranged in decreasing order.

<Dense Representation>

Include all the terms in a polynomial:

$$A(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, where $a_n \neq 0$

```
#define MAX DEGREE 101
typedef struct {
```

int degree; float coef[MAX DEGREE];

Let *a* be a variable of type polynomial.

We can represent the polynomial $A(x) = \sum_{i=1}^{n} a_i x^i$ in a_i , by setting a.degree = n and a.coef[i] = a_{n-i} , $0 \le i \le n$.

Data Engineering Laboratory

} polynomial;

- Although this representation leads to very simple algorithms for most of the operations, it wastes a lot of space.
- For instance, if a.degree << MAX_DEGREE or if the polynomial is sparse.

Examples:
$$A(x) = 2x^{1000} + 1$$
 and
$$B(x) = x^4 + 10x^3 + 3x^2 + 1$$

31

<Sparse Representation>

To preserve space, we use only one global array to store all our polynomials.

```
#define MAX_TERMS 100
typedef struct {
     float coef;
     int expon;
     } polynomial;
polynomial terms[MAX_TERMS];
int avail = 0;
```

■ [Figure 2.2] : Array representation of two polynomials

starta	finisha	startb		ţ	finishb	avail			
	↓	↓			1	↓			
2	1	1	10	3	1			}	
1000	0	4	3	2	0				
0	1	2	3	4	5	6	7	8	

Examples:
$$A(x) = 2x^{1000} + 1, B(x) = x^4 + 10x^3 + 3x^2 + 1$$

To represent a zero polynomial *c*, set *startc > finishc*.

Data Engineering Laboratory

33

2.4.3 Polynomial Addition

■[Program 2.6]: Function to add two polynomials

```
void padd(int starta, int finisha, int startb, int finishb, int *startd, int *finishd)
{
    /* add A(x) and B(x) to obtain D(x) */
    float coefficient;
    *startd = avail;
    while (starta <= finisha && startb <= finishb)
        switch (COMPARE(terms[starta].expon, terms[startb].expon)) {
        case -1 : /* a expon < b expon */
            attach(terms[startb].coef, terms[startb].expon);
            startb++;
            break;
        }
}</pre>
```

```
case 0 : /* equal exponents */
                       coefficient = terms[starta].coef + terms[startb].coef;
                       if (coefficient)
                                  attach(coefficient, terms[starta].expon);
                                   startb++;
                       starta++;
                       break;
           case 1: /* a expon > b expon */
                       attach(terms[starta].coef, terms[starta].expon);
                       starta++;
    /* add in remaining terms of A(x) */
    for (; starta <= finisha; starta++)
           attach(terms[starta].coef, terms[starta].expon);
    /* add in remaining terms of B(x) */
    for (; startb <= finishb; startb++)</pre>
           attach(terms[startb].coef, terms[startb].expon);
    *finishd =avail-1;
}
```

35

[Program 2.7]: Function to add a new term

```
void attach(float coefficient, int exponent)
{
    /* add a new term to the polynomial */
    if (avail >= MAX_TERMS) {
        fprintf(stderr, "Too many terms in the polynomial");
        exit(1);
    }
    terms[avail].coef = coefficient;
    terms[avail++].expon = exponent;
}
```

■ Analysis of *padd*:

Time complexity is O(n+m), where m and n are the number of terms in A and B, respectively.

When avail > MAX_TERMS, must we quit?

Data Engineering Laboratory

37

2.5 THE SPARSE MATRIX

2.5.1 The Abstract Data Type

- A *sparse matrix* is a matrix which contains many zero entries.
- If a two-dimensional array is used to represent a sparse matrix, a lot of space is used to store the same value 0 and this implementation does not work when the matrices are large since most compilers impose limits on array sizes.

[Figure 2.3]

	<u>c</u>	co1 0	col 1	co1 2			<u>c</u>	o1 0	col 1	col 2	co1 3	co1 4	co1 5
wor	0	-27	3	4	wor	0	I	15	0	0	22	0	-15
wor	1	6	82	-2	wor	1	I	0	11	3	0	0	0
row	2	109	-64	11	wor	2	I	0	0	0	-6	0	0
wor	3	12	8	9	wor	3	I	0	0	0	0	0	0
row	4	48	27	47	wor	4	I	91	0	0	0	0	0
					wor	5	I	0	0	28	0	0	0

(a) (b)

Data Engineering Laboratory

39 **I**

■ [ADT 2.3] ADT Sparse Matrix

ADT Sparse_Matrix is

objects: a set of triples, <*row*, *column*, *value*>, where *row* and *column* are integers and from a unique combination, and value comes from the set *item*.

functions:

for all $a, b \in Sparse_Matrix, x \in item, i, j, max_col, max_row \in index$

Sparse_Matrix Create(*max_row*, *max_col*) ::=

return a Sparse_Matrix that can hold up to max_items = max_row ×max_col and whose maximum row size is max_row and whose maximum column size is max_col.

Sparse_Matrix Transpose(a) ::=

return the matrix produced by interchanging the row and column value of every triple.

Data Engineering Laboratory

Sparse Matrix Add(a, b) ::=

if the dimension of a and b are the same return the matrix produced by adding corresponding items, namely those with identical row and column values.

else return error.

Sparse Matrix Multiply(a, b) ::=

if number of columns in a equals number of rows in b**return** the matrix d produced by multiplying a by b according to the formula : $d(i, j) = \nabla a(i, k) \cdot b(k, j)$, where d(i,j) is the (i,j)th element else return error.

end Sparse_matrix

Data Engineering Laboratory

2.5.2 Sparse Matrix Representation

•We can characterize uniquely any element within a matrix by a triple < row, col, *value*>.

Thus we can use an array of triples.

- •We organize the triples so that row indices are in ascending order and among those with the same row indices are ordered in ascending order of column indices.
- To insure that the operations terminate, we must know the number of rows and columns, and the number of nonzero elements in the matrix.

```
Sparse_Matrix Create(max_row, max_col) ::=
         #define Max_TERMS 101 /* maximum number of terms +1*/
         typedef struct {
                 int col;
                  int row;
                  int value;
                  } term;
         term \ a[MAX\_TERMS];
```

43

[Figure 2.5] For example,

	IOW	col	<u>value</u>		row	col	<u>value</u>
a[0]	6	6	8	b[0]	6	6	8
[1]	0	0	15	[1]	0	0	15
[2]	0	3	22	[2]	0	4	91
[3]	0	5	-15	[3]	1	1	11
[4]	1	1	11	[4]	2	1	3
[5]	1	2	3	[5]	2	5	28
[6]	2	3	-6	[6]	3	0	22
[7]	4	0	91	[7]	3	2	-6
[8]	5	2	28	[8]	5	0	-15
		(a)				(b)	

2.5.3 Transposing A Matrix

A simple algorithm >

```
for each row i

take element <i, j, value> and store it
as element <j, i, value> of the transpose;
```

We will not know exactly where to place element <j, i, value> in the transpose until we have processed all the elements that precede it.

For instance,

```
(0, 0, 15) becomes (0, 0, 15)
(0, 3, 22) becomes (3, 0, 22)
(0, 5,-15) becomes (5, 0,-15)
```

Consecutive insertions are required.

We must move elements to maintain the correct order.

Data Engineering Laboratory

45

 We can avoid this data movement by using the column indices to determine the placement of elements in the transpose matrix.

```
for all elements in column j
place element <i, j, value> in element <j, i, value>;
```

■ [Program 2.8]

4/

A transpose algorithm using dense representation :

```
for (j = 0; j < columns; j++)
for (i = 0; i < rows; i++)
b[j][i] = a[i][j];
```

Time complexity : O(*rows columns*).

<A much better algorithm by using a little more storage>

This algorithm, *fast_transpose*, proceeds by first determining the number of elements in each column of the original matrix.

This number gives the number of elements in each row of the transpose matrix.

[Program 2.9]

```
void fast transpose(term a[], term b[])
{ /* the transpose of a is placed in b */
    int row terms[MAX_COL], starting_pos[MAX_COL];
    int i, j, num cols = a[0].col, num terms = a[0].value;
    b[0].row = num cols; b[0].col = a[0].row;
    b[0].value = num terms;
    if (num terms > 0) { /* nonzero matrix */
            for (i = 0; i < num cols; i++)
                                             row terms[i] = 0;
            for (i = 1; i \le num \text{ terms}; i++) row terms[a[i].col]++;
            starting pos[0] = 1;
            for (i = 1; i < num \ cols; i++)
                        starting pos[i] = starting pos[i-1] + row terms[i-1];
            for (i = 1; i \le num \text{ terms}; i++) 
                        j = starting pos[a[i].col]++;
                        b[j].row = a[i].col; b[j].col = a[i].row;
                        b[j].value = a[i].value;
    }
                                                                        Data Engineering Laboratory
```

- Time complexity: O(columns + elements).
 If elements = O(rows columns), then
 O(columns + elements) becomes O(rows columns).
- Additional arrays, row_terms and starting_pos, are used.
- We can reduce this space to one array
 if we put the starting positions into the space used by row_terms.

2.5.4 Matrix Multiplication

Definition :

Given two matrices A and B where A is $m \times n$ and B is $n \times p$, the product matrix D has dimension $m \times p$. Its $\langle i, j \rangle$ element is :

$$d_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$$

for $0 \le i < m$ and $0 \le j < p$.

Data Engineering Laboratory

51

<Matrix Multiplication Algorithm using dense representation>

```
\label{eq:cost_sum} \begin{split} &\text{for } (i=0;\,i < rows\_a;\,i++) \; \{ \\ &\text{for } (j=0;\,j < cols\_b;\,j++) \; \{ \\ &\text{sum} = 0; \\ &\text{for } (k=0;\,k < cols\_a;\,k++) \\ &\text{sum} += a[i][k]*b[k][j]; \\ &\text{d}[i][j] = sum; \\ &\} \end{split}
```

Time Complexity: O(rows_a·cols_a·cols_b)

Note that the product of two sparse matrices may no longer be sparse.

For example : $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

<Multiplying two sparse matrices represented as an ordered list>
Need to compute the elements of D by rows so that we can store them in their proper place without moving previously computed elements.

\mathbf{A}				
rows_a	cols_a	totala		
rows_a				
\mathbf{B}^{T}				

D				
rows_b	cols_b	totalb		

$\mathbf{B}_{\mathbf{I}}$				
cols_b	rows_b	totalb		
cols b	-1			

D					
rows_a	cols_b	totald			

Data Engineering Laboratory

■ [Program 2.10]

Matrices A, B, and D are stored in the arrays a, b, and d, respectively. Transpose of B is stored in new_b .

Variables used:

row - the row of A that we are currently multiplying with the columns in B.

row_begin - the position in a of the first element of the current row.

column - the column of B that we are currently multiplying with a row in A.

totald - the current number of elements in the product matrix D.

i, j - pointers which are used to examine successively elements from a row of A and a column B.

```
void mmult(term a[], term b[], term d[])
/* multiply two sparse matrices */
{
   int i, j, column, totalb = b[0].value, totald = 0;
   int rows_a = a[0].row, cols_a = a[0].col, totala = a[0].value;
   int cols_b = b[0].col;
   int row_begin = 1, row = a[1].row, sum = 0;
   term new_b[MAX_TERMS];
   if (col_a != b[0].row) {
      fprintf(stderr, "Incompatible matrices\n");
      exit(1);
   }
   fast_transpose(b, new_b);
   /* set boundary condition */
   a[totala+1].row = rows_a;
   new_b[totalb+1].row = cols_b; __new_b[totalb+1].col = -1;
```

```
55 •
```

 $\mathbf{A} = \begin{bmatrix} 7 & 0 & 0 & 5 \\ 4 & 5 & 0 & 1 \\ 0 & 0 & 5 & 0 \end{bmatrix}$

57

 $\mathbf{D} = \begin{array}{c|cccc} 5 & 7 & 0 \\ 46 & 49 & 35 \\ \hline 0 & 0 & 5 \end{array}$

A

3	4	6
0	0	7
0	3	5
1	0	4
1	1	5
1	3	1
2	2	5
3	0	0

 \mathbf{B}^{T}

	3	4	6
	0	1	9
>	0	3	1
>	1	0	1
>	1	1	9
	2	1	7
	2	2	1
	3	-1	0

D

0	0	0
0	0	5
0	1	7
1	0	46
1	1	49

Data Engineering Laboratory

58

row = 0 column = 0

rowBegin = 3

sum = **9**9

■ Notice that we have introduced an additional term into both *a* and *new_b*:

Time complexity :

lines before the for loop:

fast transpose - O(cols_b + totalb) time.

the outer *for* loop is iterated *rows a* times:

at each iteration - one row of the product matrix D is computed by the inner *for* loop in which at each iteration either *i* or *j* or both increase by 1, or *i* is reset to *row begin*.

Data Engineering Laboratory

59 ı

The maximum total increment in *j* is *totalb*+1.

Let r_k be the number of terms in row k.

Then when row k is processed, i can increase at most r_k times

and i is reset to row begin at most cols b times.

Thus the maximum total increment in *i* is $cols_b \cdot r_k$.

The inner *for* loop requires $O(cols_b \cdot r_k + totalb)$ time.

column is reset.

Therefore the outer *for* loop requires

$$\sum_{k=0}^{rows} O(cols b \cdot r_k + totalb)$$

$$= O(cols b \cdot \sum_{k=0}^{rows} r_k + rows a \cdot totalb)$$

$$= O(cols b \cdot totala + rows a \cdot totalb).$$

Note that if $totala = O(rows_a \cdot cols_a)$ and $totalb = O(rows_b \cdot cols_b)$,

its complexity becomes $O(rows_a \cdot cols_a \cdot cols_b)$.

Data Engineering Laboratory

2.6 REPRESENTATION OF MULTIDIMENSIONAL ARRAYS

- If an array is declared a[upper₀][upper₁]···[upper_{n-1}], the number of elements in the array is $\prod_{i=0}^{n-1} upper_i$
- Two common ways to represent multidimensional arrays : row major order column major order

Data Engineering Laboratory

61

<row major order>
We interpret the two-dimensional array a[upper₀][upper₁]
as upper₀ rows, row₀, row₁, . . ., row_{upper0-1}
each row containing upper₁ elements.

If we assume that a is the address of a[0][0], then the address of a[i][j] is a+i-upper $_1+j$. To represent a three-dimensional array a[upper $_0$][upper $_1$][upper $_2$], we interpret the array as upper $_0$ two-dimensional arrays of dimension upper $_1 \times$ upper $_2$.

Then the address of a[i][j][k] is $a + i \cdot upper_1 \cdot upper_2 + j \cdot upper_2 + k$.

- column major order address:
 - $a + j \cdot upper_0 + i$
 - $a + k \cdot upper_0 \cdot upper_1 + j \cdot upper_0 + i$

• Generalizing on the preceding discussion, we can obtain the addressing formula for any element $a[i_0][i_1]\cdots[i_{n-1}]$ in an array declared as $a[upper_0][upper_1]\cdots[upper_{n-1}]$.

If a is the address of $a[0][0] \dots [0]$, the address of $a[i_0][i_1] \dots [i_{n-1}]$ is :

$$a + i_0 \cdot upper_1 \cdot upper_2 \cdot upper_{n-1} + i_1 \cdot upper_2 \cdot upper_3 \cdot upper_4 \cdot upper_{n-1} + i_2 \cdot upper_3 \cdot upper_4 \cdot upper_{n-1} + i_{n-2} \cdot upper_{n-1}$$

+
$$i_{n-2}$$
 · upper_{n-1}
+ i_{n-1}

$$= \alpha + \sum_{j=0}^{n-1} i_j a_j \quad \text{where } a_j = \prod_{k=j+1}^{n-1} upper_k, \quad 0 \le j < n-1, \ a_{n-1} = 1$$

- Example:
 - Given a[upper₀][upper₁][upper₂][upper₃] array, the address of a[i][j][k][m] is

 $\textit{row major order address}: \ a + i \cdot upper_1 \cdot upper_2 \cdot upper_3 + j \cdot upper_2 \cdot upper_3 + k \cdot upper_3 + m \leftarrow 1 + i \cdot upper_3 + i \cdot upper_3$

 $column\ major\ order\ address:\ a+m\cdot upper_0\cdot upper_1\cdot upper_2+k\cdot upper_0\cdot upper_1+j\cdot upper_0+i\leftarrow i$

Data Engineering Laboratory

63

2.7 STRINGS

2.7.1 The Abstract Data Type

A string is a finite sequence of zero or more characters,

$$S = S_0$$
, ..., S_{n-1} , where S_i are characters.

■[ADT2.4] Abstract data type String:

ADT String is

objects: a finite sequence of zero or more characters.

functions: for all $s, t \in String, i, j, m \in non-negative integers$

String Null(m) ::= **return** a string whose maximum length is m characters, but is initially set to NULL. We write NULL as "".

Integer Compare(s, t) ::= **if** s equals t **return** 0 else if s precedes t return -1else return +1. Boolean IsNull(s) ::= if (Compare(s, NULL)) return FALSE else return TRUE. ::= if (Compare(s, NULL))*Integer* Length(s) **return** the number of characters in s **else** return 0. String Concat(s, t) ::= if (Compare(t, NULL))return a string whose elements are those of *s* followed by those of *t* else return s. *String* Substr(*s*,*i*,*j*) $::= if((j>0) && (i+j-1) \leq Length(s))$ return the string containing the characters of s at positions i, i+1,.... i+j-1. else return NULL.

C provides many string operations in its library : see Fig. 2.8 (string.h)

Data Engineering Laboratory

65

2.7.2 Strings in C

Representation>

In C, we represent strings as character arrays terminated with the null character.

```
For instance,

#define MAX_SIZE 100

char s[MAX_SIZE] = "dog";

char t[MAX_SIZE] = "house";
```

Internal representation in C:

[Figure 2.8]

s[0] s[1] s[2] s[3] t[0] t[1] t[2] t[3] t[4] t[5]

d o g \(0 \) h o u s e \(\)

Alternative declaration :

```
char s[] = "dog";
char t[] = "house";
```

Concatenating these two strings by calling *strcat*(s,t) which stores the result in *s*. This produces the new string, "doghouse".

Although s has increased in length by five, we have no additional space in s to store the extra five characters.

Most of *C* compilers simply *overwrite* the memory to fit in the extra five characters.

Data Engineering Laboratory

- C provides built-in other string functions which we access through the statement #include <string.h>
- Example 2.2 [String insertion]

```
# include <string.h>
# define MAX_SIZE 100
char string1 [MAX_SIZE], *s = string1;
char string2 [MAX_SIZE], *t = string2;
```

strnins (*s*, *t*, 1)

■ [Program 2.12]

```
void strnins(char *s, char *t, int i)
{ /* insert string t into string s at position i */
    char string[MAX_SIZE], *temp = string;

if (i<0 && i>strlen(s)) {
    fprint(stderr, "Position is out of bounds ");
    exit(1);
    }
    if (!strlen(s))
        strcpy(s, t);
    else if (strlen(t)) {
        strncpy(temp, s, i);
        strcat(temp, t);
        strcat(temp, (s+i));
        strcpy(s, temp);
    }
}
```

2.7.3 Pattern Matching

```
char pat[MAX_SIZE], string[MAX_SIZE], *t;

To determine if pat is in string:
    if (t = strstr(string, pat))
        printf("The string from strstr is: %s", t);
    else
        printf("The pattern was not found with strstr");

The call (t = strstr(string, pat)) returns
    a null pointer if pat is not in string.
    a pointer to the start of pat in string if pat is in string.
```

Data Engineering Laboratory

71

- Reasons of developing our own pattern matching function:
 - (1) The function *strstr* may not be available with the compiler we are using.
 - (2) There are several different methods for implementing a pattern matching function.
- A simple matching algorithm :
 At each position i of string, check if pat == string[i+strlen(pat)-1].
- If pat is not in string, this algorithm has a computing time of O(nm), where n is the length of pat and m is the length of string.
- Improvements:
 - 1. Quitting when *strlen(pat)* is greater than the number of remaining characters in the string.
 - 2. Checking the first and last characters of pat before we checking the remaining characters.

[Program 2.13]

Analysis of *nfind*:

For string = "aa...a'' and pat = "aa...ab'', the computing time is O(m). Bur for string = "aa...a'' and pat = "aa...aba'', the computing time is still O(nm).

Data Engineering Laboratory

75

<KMP Algorithm>

- When a mismatch occurs, use our knowledge of the characters in the pattern and the position in the pattern where the mismatch occurred to determine where we should continue the search.
- We want to search the string for the pattern without moving backwards in the string

$$pat = \text{ 'a b c a b c a c a b'}$$
 $p_0 p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9$

if $s_i \neq p_0$, ?

if $s_i = p_0$ and $s_{i+1} \neq p_1$, ?

if $s_i = p_0$, $s_{i+1} = p_1$, and $s_{i+2} \neq p_2$, ?

if $s_i = p_0$, $s_{i+1} = p_1$, $s_{i+2} = p_2$, $s_{i+3} = p_3$, and $s_{i+4} \neq p_4$, ?

Data Engineering Laboratory

■ Definition :

If $p = p_0 p_1 p_2$... p_{n-1} is a pattern, then its *failure function*, f, is defined as:

$$f(j) = \begin{cases} \text{largest i} < j \text{ such that } p_0 p_1 \dots p_j = p_{j-i} p_{j-i+1} \dots p_j \text{ if such an i} \ge 0 \text{ exists} \\ -1 & \text{otherwise} \end{cases}$$

A rule for pattern matching :

If a partial match is found such that $s_{i-j} cdots ... s_{i-1} = p_0 p_1 cdots ... p_{j-1}$ and $s_i \neq p_j$ then matching may be resumed by comparing s_i and $p_{f(j-1)+1}$ if $j \neq 0$. If j = 0, then we may continue by comparing s_{i+1} and p_0 .

Data Engineering Laboratory

79

Assumed declarations:

#include <stdio.h>
#include <string.h>
#define max_string_size 100
#define max_pattern_size 100
int pmatch();
void fail();
int failure[max_pattern_size];
char string[max_string_size];
char pat[max_pattern_size];

Data Engineering Laboratory

• [Program 2.14]

Data Engineering Laboratory

81

Analysis of *pmatch*:

The *while* loop is iterated until the end of either the string or the pattern is reached.

In each iteration, one of the following three actions occurs:

- 1) increment i.
- 2) increment both i and j.
- 3) reset j to failure[j-1]+1
 - -- this cannot be done more than j is incremented by the statement j++ as otherwise, j falls off the pattern.

Note that j cannot be incremented more than m = strlen(string) times.

Hence the complexity of *pmatch* is O(m).

Another definition of the failure function:

$$f(j) = \begin{cases} -1 & \text{if } j = 0 \\ f^{\wedge}m(j-1) + 1 & \text{where } m \text{ is the least integer } k \text{ for which } p_{f^{\wedge}k(j-1)+1} = p_j \\ -1 & \text{if there is no } k \text{ satisfying the above} \end{cases}$$

Data Engineering Laboratory

83

• [program 2.15]

```
void fail(char *pat)
{
/* compute the pattern's failure function */
    int i, n = strlen(pat);
    failure[0] = -1;
    for (j = 1; j < n; j++) {
        i = failure[j-1];
        while ((pat[j] != pat[i+1]) && (i >= 0))
            i = failure[i];
        if (pat[j] == pat[i+1])
            failure[j] = i+1;
        else failure[j] = -1;
    }
}
```

Data Engineering Laboratory

Analysis of fail:

In each iteration of the *while* loop, the value of i decreases (by the definition of f).

The variable i is reset at the beginning of each iteration of the *for* loop.

However, it is either reset to −1

or it is reset to a value 1 greater than its terminal value on the previous iteration.

Since the *for* loop is iterated only *n-*1 times,

the value of i has a total increment of at most n-1.

Hence it cannot be decremented more than *n*-1 times.

Consequently, the *while* loop is iterated at most *n*-1 times over the whole algorithm

Hence the complexity of *fail* is O(n) = O(strlen(pat))