4-6 Wednesday - 210-GD3

Special topics in Computer Science INT3121 20

Lecturer: Nguyen Thi Ngoc Diep, Ph.D.

Email: ngocdiep@vnu.edu.vn

Slide & Code: https://github.com/chupibk/INT3121-20

Image classification with convolutional neural networks

Week	Content	Class hour	Self-study hour
	Introduction Image classification problem and its applications A toy problem with CIFAR10	2	1
2 (4/9/2019)	CNN model architectures and visualization	2	1
	Training and tuning parameters Automatic parameter learning	2	1
4 (18/9/2019)	Data augmentation Data generator	2	2-6
5 (25/9/2019)	Transfer learning	2	2-6
6 (2/10/2019)	Multi-output image classification	2	2-6
7 (9/10/2019)	Building a training dataset How to write a report	1	2-6
8, 9, 10, 11	Seminar: Bag of tricks with CNN (as mid-term tests)	1	2-6
12, 13, 14	Final project presentations	1-3	2-6
15	Class summarization	1	open

Recall week 6: Multi-output classification (or Multi task learning)

Image credit: pyimagesearch.com

Define a MTL model & training

```
\label{eq:model} & \text{model} = \text{Model}(\\ & \text{inputs=inputs,} \\ & \text{outputs=[outBranch1, outBranch2]} \\ \\ & \text{model.compile}(\text{loss='branch1': 'categorical_crossentropy',} \\ & \text{'branch2': 'binary_crossentropy'}, \\ & \text{loss\_weights='(branch1': 1.0,} \\ & \text{'branch2': o.5}, \\ & \text{optimizer='adam',} \\ & \text{metrics={'branch1': 'accuracy',} \\ & \text{'branch2': ['binary_crossentropy', 'mse']}} \\ \\ & \text{model.fit(x\_train,} \\ & \text{'branch1': y\_train, 'branch2': x\_train}, \\ & \text{batch_size=batch_size,} \\ & \text{epochs=epochs,} \\ & \text{validation_data=} & \text{(x\_test,} \\ & \text{'branch1': y\_test, 'branch2': x\_test}} \\ & \text{verbose=1} \\ \\ ), \\ & \text{verbose=1} \\ ) \\ \\ \\ & \text{Compile with different learning rates for each task head} \\ \\ & \text{multipliers} = \{'dense\_1': 0.5, 'dense\_2': 0.4\} \\ & \text{opt} = \text{LearningRateMultiplier}(\text{SGD, lr_multiplier=multipliers, lr=0.001, momentum=0.9}) \\ \\ \end{aligned}
```

Week 7: Building a training dataset

Steps in building a dataset

- Collect the data
 - Decide the number of classes
 - · Balance the data
- Annotate the data
 - How to store the data?
 - Method 1: Subfolder name = name of class
 - Method 2: Image folder + a groundtruth file
- Split data
 - Train/Validation/Test
- Start building classification model

Tools to collect image data

- Scraping from the Internet
 - Google Image
 - Bing (for example: https://www.pyimagesearch.com/2018/04/09/how-to-quickly-build-a-deep-learning-image-dataset/)
- Using existing datasets
 - Open Images: 15 millions with 600 categories
 - ImageNet: 14 millions, 1000 categories

Make train/val/test data

• What is the most important thing to check?

Mid-term groups & schedule

Mid-term registration

Closed

- Form to register groups: https://forms.gle/BgAWdsCjHgD1nwoA6
- Spreadsheet to change datasets, submit references, etc.
 - Edit with care!!!! (don't change things that do not belong to you)
 - https://docs.google.com/spreadsheets/d/1HtpFzZUsacJqzrSXr66nnN8V1TB8E rnvCgrB3V07mqo/edit?usp=sharing

Registered IDs

Wrong ID: '16922417'

→ Should be: '16022417'

Not registered IDs: '16020209', '16020230', '16020287', '16020397', '16022494'

Mid-term requirements for each group

• Presentation: 30 mins

Talk: 15-20 minsQ&A: 15-10 mins

Report: 4-8 A4-pagesFont: 12-13, Arial

Schedule

Week	Group	# of members	Dataset	Note
Week 8, Oct 16, 2019	TripleA	5	iWildCam 2019 – FGVC6	kaggle → check if peer-reviewed papers exist
	thức khuya	4	PASCAL VOC 2012	
Week 9, Oct 23, 2019	Nam Nguyễn & Friends	4	Microsoft Malware	kaggle – but, not image classification!!!
	WjbuPride	5	PASCAL VOC 2012	
	Four_frogs	4	CIFAR-100	
	The T Company	5	global terrorist database	image??
Week 10, Oct 30, 2019	Tiger Beer	4	Plant Seedlings classification	kaggle → check if peer-reviewed papers exist
	Heineken	4	CIFAR-10	
	F & Đồng bọn	4	SVHN	object recognition problem
	T' Bros	4	MNIST	
Week 11, Nov 6, 2019	No hope	5	ASL alphabet	kaggle → check if peer-reviewed papers exist
	Fountain Valley-ers	3	tbd	
	Tâm Thi	5	tbd	

How to write a report

Academic report

- 1. Introduction
 - 1. Statement of objectives
 - 2. Definition of classes (if not obvious)
 - 3. Origin (who made it, when it was made, how it was collected, ...)
 - 4. Some statistics about labels (how many)
 - 5. Analysis of the dataset (the amount of data is enough? The consistency of labeling...)
- 2. Methods

Clarify the metrics used to evaluate and compare

Summarize all researches have been done using the datasets and their achievements Analyze the pros & cons of each method

- 3. Implementation
 - Reproduce & test results
- 4. Discussion & Conclusions Which improvement can be made
- 5. References

Reference - citation format

Reference – how to cite a work?

ACM, IEEE, ... 1.Using #'s, like [1] or [6,7]

2.Using short strings like [SM15] or [Bob14]

3. Using author-date style, like Smith (2015) or (Smith 2015).

More effective for readers

Best practices

- Use a lot of proper graphics (tables, graphs, plots)
- Use formal definitions whenever possible