# Block Models and (Generalized) Random Dot Product Graphs STAT-S 675 Fall 2021

- Let G=(V,E) be an undirected and hollow graph with |V|=n and adjacency matrix A
  - $A \in \mathbb{R}^{n imes n}$  is symmetric with zero diagonals
- Suppose  $G \sim F(\theta)$ 
  - What kind of  $F(\theta)$  make sense here?
  - Given F and observed G, how can we estimate  $\theta$ ?

$$A_{ij} = \begin{cases} 1 & \exists \text{ edge between } i \text{ and } j \\ 0 & \text{else} \end{cases}$$
 
$$A_{ji} = A_{ij} \text{ and } A_{ii} = 0 \ \forall i,j \in [n].$$

 $A \sim \mathsf{BernoulliGraph}(P)$  iff:

- 1.  $P \in [0,1]^{n \times n}$  describes edge probabilities between pairs of vertices.
- 2.  $A_{ij} \stackrel{\text{ind}}{\sim} \text{Bernoulli}(P_{ij})$  for each i < j.

For estimation, we need to impose some structure on P.

**Example 1**: If every entry  $P_{ij} = \theta \in (0,1)$ , then  $A \sim \text{BernoulliGraph}(P)$  is an Erdos-Renyi graph. For this model,  $A_{ij} \overset{\text{iid}}{\sim} \text{Bernoulli}(\theta)$ .



Suppose each vertex  $v_1,...,v_n$  has hidden labels  $z_1,...,z_n \in [K]$ , and each  $P_{ij}$  depends on labels  $z_i$  and  $z_j$ . Then  $A \sim \text{BernoulliGraph}(P)$  is a block model.

### **Example 2**: Stochastic Block Model with two communities

- $z_1, ..., z_n \in \{1, 2\}$ •  $P_{ij} = \begin{cases} p & z_i = z_j = 1\\ q & z_i = z_j = 2\\ r & z_i \neq z_j \end{cases}$
- To make this an assortative SBM, set  $pq > r^2$ .
- In this example, p=1/2, q=1/4, and r=1/8.



#### Erdos-Renyi Model (1959)

- $P_{ij} = \theta$  (not a block model)
- 1 parameter  $\theta$

Stochastic Block Model (Lorrain and White, 1971)

- $P_{ij} = \theta_{z_i z_j}$
- K(K+1)/2 parameters  $\theta_{kl}$

Degree Corrected Block Model (Karrer and Newman, 2011)

- $P_{ij} = \theta_{z_i z_j} \omega_i \omega_j$
- K(K+1)/2 + n parameters  $\theta_{kl}$ ,  $\omega_i$

Popularity Adjusted Block Model (Sengupta and Chen, 2017)

- $P_{ij} = \lambda_{iz_j}\lambda_{jz_i}$
- Kn parameters  $\lambda_{ik}$

Random Dot Product Graph  $A \sim \mathsf{RDPG}(X)$  (Young and Scheinerman, 2007)

- Latent vectors  $x_1,...,x_n \in \mathbb{R}^d$  such that  $x_i^{\intercal}x_j \in [0,1]$
- $A \sim \mathsf{BernoulliGraph}(XX^\top)$  where  $X = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top$

Generalized Random Dot Product Graph  $A \sim \mathsf{GRDPG}_{p,q}(X)$  (Rubin-Delanchy, Cape, Tang, Priebe, 2020)

- Latent vectors  $x_1,...,x_n \in \mathbb{R}^{p+q}$  such that  $x_i^{\top}I_{p,q}x_j \in [0,1]$  and  $I_{p,q} = \mathsf{blockdiag}(I_p,-I_q)$
- ullet  $A\sim \mathsf{BernoulliGraph}(XI_{p,q}X^{ op})$  where  $X=egin{bmatrix}x_1&\cdots&x_n\end{bmatrix}^{ op}$

 $\epsilon$ 

## Adjacency Spectral Embedding

To embed in  $\mathbb{R}^d$ ,

- 1. Compute  $A \approx \hat{V} \hat{\Lambda} \hat{V}^{\top}$  where  $\hat{\Lambda} \in \mathbb{R}^{d \times d}$  and  $\hat{V} \in \mathbb{R}^{n \times d}$ . For RDPG, use d greatest eigenvalues; for GRDPG, use p most positive and q most negative eigenvalues.
- 2. For RDPG, let  $\hat{X} = \hat{V}\hat{\Lambda}^{1/2}$ ; for GRDPG, let  $\hat{X} = \hat{V}|\hat{\Lambda}|^{1/2}$ .

RDPG: 
$$\max_i \|\hat{x}_i - Wx_i\| \stackrel{a.s.}{\to} 0$$
 (Athreya et al., 2018) GRDPG:  $\max_i \|\hat{x}_i - Qx_i\| \stackrel{a.s.}{\to} 0$  (Rubin-Delanchy et al., 2020)

## Connecting Block Models to (G)RDPGs

All Bernoulli Graphs are RDPG (if P is positive semidefinite) or GRDPG (in general).

**Example 2** (cont'd): Assortative SBM  $(pq > r^2)$  with K = 2

$$P_{ij} = \begin{cases} p & z_i = z_j = 1\\ q & z_i = z_j = 2\\ r & z_i \neq z_j \end{cases}$$

$$P = \begin{bmatrix} P^{(11)} & P^{(12)} \\ P^{(21)} & P^{(22)} \end{bmatrix} = XX^{\top}$$



$$X = \begin{bmatrix} \sqrt{p} & 0\\ \vdots & \vdots\\ \sqrt{p} & 0\\ \sqrt{r^2/p} & \sqrt{q - r^2/p}\\ \vdots & \vdots\\ \sqrt{r^2/p} & \sqrt{q - r^2/p} \end{bmatrix}$$

## Connecting the SBM to the RDPG

**Example 2** (cont'd): If we want to perform community detection,

- 1. Note that A is a RDPG because  $P = XX^{\top}$ .
- 2. Compute the ASE  $A \approx \hat{X}\hat{X}^{\top}$  with  $\hat{X} = \hat{V}\hat{\Lambda}^{1/2}$ .
- 3. Apply clustering algorithm (e.g., K-means) to  $\hat{X}$ , noting that as  $n \to \infty$ , the ASE approaches point masses.

#### ASE of the adjacency matrix drawn from SBM



ç

# Connecting the DCBM to the RDPG

#### **Example 3**: DCBM with two communities

- $z_1, ..., z_n \in \{1, 2\}$
- $P_{ij} = \begin{cases} p\omega_i\omega_j & z_i, z_j = 1\\ q\omega_i\omega_j & z_i, z_j = 2\\ r\omega_i\omega_j & z_i \neq z_j \end{cases}$
- To make this an assortative DCBM, set  $pq > r^2$ .
- In this example,  $p=q=1/4,\,r=1/2,\,\mathrm{and}$   $\omega_i\in(0,1).$



## Connecting the DCBM to the RDPG

**Example 3** (cont'd): Assortative DCBM  $(pq > r^2)$  with K = 2

$$P_{ij} = \begin{cases} p & z_i = z_j = 1\\ q & z_i = z_j = 2\\ r & z_i \neq z_j \end{cases}$$

$$P = \begin{bmatrix} P^{(11)} & P^{(12)} \\ P^{(21)} & P^{(22)} \end{bmatrix} = XX^{\top}$$



$$X = \begin{bmatrix} \sqrt{p}\omega_1 & 0 \\ \vdots & \vdots \\ \sqrt{p}\omega_{n_1} & 0 \\ \sqrt{\frac{r^2}{p}}\omega_{n_1+1} & \sqrt{q - \frac{r^2}{p}}\omega_{n_1+1} \\ \vdots & \vdots \\ \sqrt{\frac{r^2}{p}}\omega_n & \sqrt{q - \frac{r^2}{p}}\omega_n \end{bmatrix}$$

## Connecting the SBM to the RDPG

**Example 3** (cont'd): If we want to perform community detection,

- 1. Note that A is a RDPG because  $P = XX^{\top}$ .
- 2. Compute the ASE  $A \approx \hat{X}\hat{X}^{\top}$  with  $\hat{X} = \hat{V}\hat{\Lambda}^{1/2}$ .
- 3. Apply clustering algorithm on  $\hat{X}$ , noting that as  $n \to \infty$ , the ASE approaches line segments.

#### ASE of the adjacency matrix drawn from DCBM



### Assortative SBM and DCBM are RDPGs

- P is positive semidefinite  $\implies$  RDPG
- Number of embedding dimensions = number of communities
- Latent structure for the SBM are point masses, latent structure for the DCBM are line segments
- If the SBM or DCBM is not assortative, then  ${\cal P}$  is not positive semidefinite
  - GRDPG instead of RDPG
  - Number of embedding dimensions = number of communities, except split by positive and negative eigenvalues
  - ASE still converges to true latent positions up to multiplication by unidentifiable  $Q\in \mathbb{O}(p,q)$
  - ullet Multiplication by Q doesn't change overall latent structure

## Demo

## Connecting the PABM to the GRDPG

**Def** Popularity Adjusted Block Model (Sengupta and Chen, 2017):

Let each vertex  $i \in [n]$  have K popularity parameters  $\lambda_{i1},...,\lambda_{iK} \in [0,1]$ . Then  $A \sim \mathsf{PABM}(P)$  if each  $P_{ij} = \lambda_{iz_j}\lambda_{jz_i}$ , e.g., if  $z_i = k$  and  $z_j = l$ ,  $P_{ij} = \lambda_{il}\lambda_{jk}$ .

Lemma (Noroozi, Rimal, and Pensky, 2020):

A is sampled from a PABM if P can be described as:

- 1. Let each  $P^{(kl)}$  denote the  $n_k \times n_l$  matrix of edge probabilities between communities k and l.
- 2. Organize popularity parameters as vectors  $\lambda^{(kl)} \in \mathbb{R}^{n_k}$  such that  $\lambda_i^{(kl)} = \lambda_{k_i l}$  is the popularity parameter of the  $i^{\text{th}}$  vertex of community k towards community l.
- 3. Each block can be decomposed as  $P^{(kl)} = \lambda^{(kl)} (\lambda^{(lk)})^{\top}$ .

**Notation**:  $A \sim \mathsf{PABM}(\{\lambda^{(kl)}\}_K)$ .

## Connecting the PABM to the GRDPG

**Theorem**:  $A \sim \mathsf{PABM}(\{\lambda^{(kl)}\}_K)$  is equivalent to  $A \sim \mathsf{GRDPG}_{p,q}(XU)$  with

- p = K(K+1)/2, q = K(K-1)/2
- $U \in \mathbb{O}(K^2)$
- $X \in \mathbb{R}^{n \times K^2}$  is block diagonal and composed of  $\{\lambda^{(kl)}\}_K$  with each block corresponding to a community.

$$X = \begin{bmatrix} \Lambda^{(1)} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \Lambda^{(K)} \end{bmatrix} \in \mathbb{R}^{n \times K^2}$$

$$\Lambda^{(k)} = \begin{bmatrix} \lambda^{(k1)} & \cdots & \lambda^{(kK)} \end{bmatrix} \in \mathbb{R}^{n_k \times K}$$

## Connecting the PABM to the GRDPG

$$X = \begin{bmatrix} \Lambda^{(1)} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \Lambda^{(K)} \end{bmatrix} \qquad U \in \mathbb{O}(K^2)$$

$$A \sim \mathsf{PABM}(\{\lambda^{(kl)}\}_K) \iff A \sim \mathsf{GRDPG}_{p,q}(XU)$$

**Remark 1** (orthogonality of subspaces): If  $y_i^{\top}$  and  $y_j^{\top}$  are two rows of XU corresponding to different communities, then  $y_i^{\top}y_j=0$ .

**Remark 2** (non-uniqueness of the latent configuration): If  $A \sim \mathsf{GRDPG}_{p,q}(Y)$ , then  $A \sim \mathsf{GRDPG}_{p,q}(YQ)$  for any Q in the indefinite orthogonal group with signature p,q.

**Remark 3**: Communities correspond to subspaces even with linear transformation  $Q\in \mathbb{O}(p,q)$ , but this may break the orthogonality property.

## Orthogonal Spectral Clustering

**Theorem** (KTT): If  $P = V\Lambda V^{\top}$  and  $B = nVV^{\top}$ , then  $B_{ij} = 0$  if  $z_i \neq z_j$ .

Algorithm: Orthogonal Spectral Clustering:

- 1. Let V be the eigenvectors of A corresponding to the K(K+1)/2 most positive and K(K-1)/2 most negative eigenvalues.
- 2. Compute  $B = |nVV^{\top}|$  applying  $|\cdot|$  entry-wise.
- 3. Construct graph G using B as its similarity matrix.
- 4. Partition G into K disconnected subgraphs.

**Theorem** (KTT): Let  $\hat{B}_n$  with entries  $\hat{B}_n^{(ij)}$  be the affinity matrix from OSC. Then  $\forall$  pairs (i,j) belonging to different communities and sparsity factor satisfying  $n\rho_n = \omega((\log n)^{4c})$ ,

$$\max_{i,j} \hat{B}_n^{(ij)} = O_P\left(\frac{(\log n)^c}{\sqrt{n\rho_n}}\right)$$