Context-Free Grammars and Languages

Formal Languages and Abstract Machines

Week 07

Baris E. Suzek, PhD

Outline

Last week

- Pushdown automata
- Properties of Context-free Languages

Context-Free and Regular Languages

Context-Free Languages

Phase 2
$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS \qquad aabb$$

$$S \Rightarrow SS \Rightarrow aSbS$$
Phase 1 $S \Rightarrow SS \Rightarrow bSaS$

$$S \Rightarrow SS \qquad S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSbb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

$$S \Rightarrow aSb \Rightarrow abSab$$

$$S \Rightarrow aSb \Rightarrow abSab$$

Total time needed for string W:

Pretty bad!!!

Chomsky Normal Form

Each productions has form:

and no useless productions.

Greinbach Normal Form

All productions have form:

Final grammar in Chomsky Normal Form:

$$S \rightarrow AV_{1}$$

$$V_{1} \rightarrow BT_{a}$$

$$A \rightarrow T_{a}V_{2}$$

$$V_{2} \rightarrow T_{a}T_{b}$$

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$A \rightarrow aab$$

$$B \rightarrow AT_{c}$$

$$T_{a} \rightarrow a$$

$$T_{b} \rightarrow b$$

7

The CYK(Cocke-Younger-Kasami) Membership Algorithm

Input: Grammar G in Chomsky Normal Form String ${\mathcal W}$

Output: Find if string $w \in L(G)$

$S \to AB$ $A \to BB$	а <i>А</i>	а <i>А</i>	b B	b B	b B
$A \to a$ $B \to AB$	aa	ab S,B	bb <i>A</i>	bb <i>A</i>	
$B \rightarrow b$	aab S,B	abb A	bbb S,B		
Vhat is the computation omplexity?	aabb A	abbb S,B			
	aabbb S,B				

Outline

- Last week
- Pushdown automata

Pushdown Automaton -- PDA Input String

Initial Stack Symbol

The States

stack

A Possible Transition

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

No transition is allowed to be followed When the stack is empty

Empty stack

A Good Transition

Non-Determinism

These are allowed transitions in a

Non-deterministic PDA (NPDA)

NPDA: Non-Deterministic PDA

Example:

Execution Example: Time 0

Input

Time 1

Time 2

Time 3

Time 4

Time 5

Input

Time 6

Time 7

Time 8

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

The input string aaabbb is accepted by the NPDA:

In general,

$$L = \{a^n b^n : n \ge 0\}$$

is the language accepted by the NPDA:

Another NPDA example

NPDA M

$$L(M) = \{ww^R\}$$

$$a, \lambda \to a \qquad a, a \to \lambda$$

$$b, \lambda \to b \qquad b, b \to \lambda$$

$$\downarrow \qquad \qquad \downarrow$$

$$q_0 \qquad \lambda, \lambda \to \lambda \qquad q_1 \qquad \lambda, \$ \to \$$$

Execution Example:

Time 0

Input

$$a, \lambda \to a \qquad a, a \to \lambda$$

$$b, \lambda \to b \qquad b, b \to \lambda$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Input

Input

Input

$$a, \lambda \to a$$

$$b, \lambda \to b$$

$$\downarrow$$

$$q_0$$

$$\lambda, \lambda \to \lambda$$

$$q_1$$

$$\lambda, \$ \to \$$$

$$q_2$$

Stack

Input

Rejection Example:

Time 0

Input

$$a, \lambda \to a \qquad a, a \to \lambda$$

$$b, \lambda \to b \qquad b, b \to \lambda$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Input

Input

Input

Guess the middle of string

Input

 (q_0)

$$a, \lambda \to a \qquad a, a \to \lambda$$

$$b, \lambda \to b \qquad b, b \to \lambda$$

 $\lambda, \lambda \rightarrow \lambda$

Input

There is no possible transition.

Input is not consumed

$$a, \lambda \rightarrow a$$

 $b, \lambda \rightarrow b$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

Another computation on same string:

Input

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

$$b, b \rightarrow \lambda$$

Input

$$(a, \lambda \to a)$$

$$(b, \lambda \to b)$$

$$a, a \rightarrow \lambda$$

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

$$\lambda, \$ \rightarrow \$$$

Input

No final state

is reached

$$a, \lambda \rightarrow a$$

 $b, \lambda \rightarrow b$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

There is no computation

that accepts string

abbb

$$abbb \notin L(M)$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

A string is rejected if there is no computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

In other words, a string is rejected if in every computation with this string:

The input cannot be consumed

OR

The input is consumed and the last state is not a final state

OR

The stack head moves below the bottom of the stack

Another NPDA example

NPDA M

 $L(M) = \{a^n b^m : n \ge m-1\}$ $a, \lambda \rightarrow a$ $b, a \rightarrow \lambda$ $b, \$ \rightarrow \lambda$

Execution Example:

Time 0

Input

$$a, \lambda \rightarrow a$$

 $b, a \rightarrow \lambda$
 $b, \$ \rightarrow \lambda$

$$b, a \rightarrow \lambda$$

$$b, \$ \rightarrow \lambda$$

Input

Stack

Input

Stack

accept

Rejection example:

Time 0

Stack

Stack

Stack

Input

$$a, \lambda \rightarrow a$$

 $b, a \rightarrow \lambda$
 $b, \$ \rightarrow \lambda$

$$b, a \rightarrow \lambda$$

$$b, \$ \rightarrow \lambda$$

Halt and Reject

Pushing Strings

Example:

Another NPDA example

NPDA
$$M$$

$$L(M) = \{w: n_a = n_b\}$$

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

Execution Example:

Time 0

Input

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

Stack

current

state

$$\lambda, \$ \rightarrow \$$$

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

Stack

Input

$$a,\$ \rightarrow 0\$$$
 $b,\$ \rightarrow 1\$$
 $a,0 \rightarrow 00$ $b,1 \rightarrow 11$
 $a,1 \rightarrow \lambda$ $b,0 \rightarrow \lambda$

Stack

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$ $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

$$a, 1 \rightarrow \lambda$$

$$b, \$ \rightarrow 1\$$$

$$b, 1 \rightarrow 11$$

$$b, 0 \rightarrow \lambda$$

Stack

$$a, \$ \rightarrow 0\$$$

$$a,\$ \rightarrow 0\$$$
 $b,\$ \rightarrow 1\$$
 $a,0 \rightarrow 00$ $b,1 \rightarrow 11$
 $a,1 \rightarrow \lambda$ $b,0 \rightarrow \lambda$

$$a, 1 \rightarrow \lambda$$

$$b, \$ \rightarrow 1\$$$

$$b, 1 \rightarrow 11$$

$$b, 0 \rightarrow \lambda$$

Stack

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$a, 1 \rightarrow \lambda$$

$$b, \$ \rightarrow 1\$$$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

Stack

Formalities for NPDAs

$$\underbrace{q_1}^{a, b \to w} + \underbrace{q_2}$$

Transition function:

$$\delta(q_1, a, b) = \{(q_2, w)\}$$

Transition function:

$$\delta(q_1, a, b) = \{(q_2, w), (q_3, w)\}$$

Formal Definition

Non-Deterministic Pushdown Automaton

Instantaneous Description

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Example:

Instantaneous Description

$$(q_2,bb,aa\$)$$

 \boldsymbol{a}

a

\$

$$a, \lambda \rightarrow a$$

$$b, a \rightarrow \lambda$$

$$b, a \rightarrow \lambda$$
 q_2 $\lambda, \$ \rightarrow$

We write:

$$(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)$$

Time 4

Time 5

A computation:

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{*}{\succ} (q_3, \lambda,\$)$$

Formal Definition

Language L(M) of NPDA : M

$$L(M) = \{w \colon (q_0, w, s) \succ (q_f, \lambda, s')\}$$
 Initial state Final state

Example:

$$(q_0, aaabbb,\$) \succ (q_3, \lambda,\$)$$

 $aaabbb \in L(M)$

NPDA M

$$a, \lambda \to a \qquad b, a \to \lambda$$

$$-(q_0) \xrightarrow{\lambda, \lambda \to \lambda} (q_1) \xrightarrow{b, a \to \lambda} (q_2) \xrightarrow{\lambda, \$ \to \$} (q_3)$$

$$(q_0, a^n b^n, \$) \succ (q_3, \lambda, \$)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$a^n b^n \in L(M)$$

NPDA M

$$a, \lambda \to a \qquad b, a \to \lambda$$

$$- (q_0) \xrightarrow{\lambda, \lambda \to \lambda} (q_1) \xrightarrow{b, a \to \lambda} (q_2) \xrightarrow{\lambda, \$ \to \$} (q_3)$$

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

NPDA M

$$a, \lambda \to a \qquad b, a \to \lambda$$

$$- (q_0) \xrightarrow{\lambda, \lambda \to \lambda} (q_1) \xrightarrow{b, a \to \lambda} (q_2) \xrightarrow{\lambda, \$ \to \$} (q_3)$$

Outline

- Last week
- Pushdown automata
- Properties of Context-free Languages

Positive Properties of Context-Free languages

Union

Context-free languages

are closed under:

Union

is context free

 L_2 is context free

 $L_1 \cup L_2$ is context-free

Example

Language

Grammar

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1, L_2 with context-free grammars G_1, G_2 and start variables S_1, S_2

The grammar of the union S has new start variable S and additional production S

$$L_1 \cup L_2$$

$$S$$

$$S \to S_1 \mid S_2$$

Concatenation

Context-free languages

are closed under:

Concatenation

 L_1 is context free

 L_1L_2

 L_2 is context free

is context-free

Example

Language

Grammar

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1, L_2 with context-free grammars G_1, G_2 and start variables S_1, S_2

The grammar of the concatenation
$$L_1L_2$$
 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under:

Star-operation

L is context free L^* is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

In general:

For context-free language	L
with context-free grammar	G
and start variable	S

The grammar of the star operation
$$L^*$$
 has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Negative Properties of Context-Free Languages

Intersection

Context-free languages are **not** closed under:

intersection

 L_1 is context free

 $L_1 \cap L_2$

 L_2 is context free

not necessarily
context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are **not** closed under:

complement

I is context free

 \overline{L} not necessarily context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

Intersection
of
Context-free languages
and
Regular Languages

The intersection of

a context-free language and a regular language

is a context-free language

 L_1 context free

 $L_1 \cap L_2$

 L_{2} regular

context-free

Machine M_1

NPDA for L_1 context-free

Machine M_2

DFA for L_2

regular

MConstruct a new NPDA machine that accepts $L_1 \cap L_2$

M simulates in parallel M_1 and M_2

NPDA

$$(q_1, p_1)$$
 $\xrightarrow{a, b \to c} (q_2, p_2)$

transition

NPDA M_1

DFA M_2

transition

NPDA M

$$\overbrace{(q_1,p_1)} \xrightarrow{\lambda,b\to c} \overbrace{(q_2,p_1)}$$

transition

NPDA M_1

DFA M_2

initial state

initial state

NPDA M

Initial state

NPDA M_1 DFA final state final states NPDA

final states

Example:

context-free

$$L_1 = \{w_1 w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

NPDA M_1

regular
$$L_2 = \{a, c\}^*$$

DFA
$$M_2$$

context-free

Automaton for:
$$L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$$

NPDA M

In General:

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

M accepts string w if and only if

 M_1 accepts string w and

 M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

Therefore:

M is NPDA

$$L(M_1) \cap L(M_2)$$
 is context-free

 $L_1 \cap L_2$ is context-free

Applications of Regular Closure

The intersection of

a context-free language and a regular language

is a context-free language

 L_1 context free

regular

Regular Closure

 $L_1 \cap L_2$

context-free

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

We know:

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure)
$$\{a^nb^n\}\cap \overline{L_1}$$
 context-free

$$\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n : n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is **not** context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Impossible!!!

Therefore, L is **not** context free