Gathering, evaluating, and aggregating social scientific models of COVID-19 mortality

Tara Slough with Miriam Golden, Alexandra Scacco, Macartan Humphreys, Haoyu Zhai, Alberto Díaz-Cayeros, Kim Yi Dionne, Sampada KC, Eugenia Nazrullaeva, and Eva Vivalt et al.

September 14, 2022

The production of empirical social science

The production of empirical social science, ctd.

The problem: the proliferation of explanations

- Social science is filled with discrete rival explanations for outcomes that many people care about.
 - In many literatures we confront many disjointed explanations for outcomes of interest.
 - When do many discrete explanations allow us to understand a phenomenon?
 - How might we aggregate or discriminate between explanations?
- Why does this problem emerge?
 - Incentives for novelty.
 - Norms encouraging simultaneous theoretical and empirical contributions.
 - Focus on "effects of causes," not explanatory questions.
- We lack a framework for filtering or combining multiple explanations → a cumulative learning problem.

A framework for filtering and combining explanations

	Analytic review es-	Meta-analysis	This paper
# of treatments or predictors	Any	1	Many
# of outcomes	Any	1	1
Sample	Any	Multiple	Same
Quantities of interest	_	Common structural parameters across studies or samples.	Metrics of predictive accuracy.

Comparison of research designs for aggregating evidence in social science.

- \bigcirc Fundamentally not about external validity \rightarrow a single sample.
- "Dimension reduction" plays an important role in efforts to cumulate.

The Models Challenge

The COVID-19 Model Challenges

- We crowdsourced predictive statistical models of COVID-19 mortality from social scientists.
 - Predictions collected: December 2020-January 2021 using a Shiny interactive web platform.
 - We asked for predictions of future mortality on August 31, 2021.
- To simulate human aggregation of multiple explanations, we elicited expert forecasts about the anticipated predictive performance of the crowdsourced models.
 - Forecasts elicited in May 2021.
 - Forecasters reported anticipated predictive preformance on August 31, 2021.

Covid Model Challenge Team The Models Challenge

The outcome

O Logged COVID-19 mortality per million as of August 31, 2021.

Covid Model Challenge Team The Models Challenge

Eight challenges

- O Four samples: crossnational, Indian states, Mexican states, US states
- Two types of models:
 - General: only functional form \rightarrow parameters are estimated from data, e.g., $y_i = \beta_0 + \beta_1 x_i$.
 - Parameterized: functional form and parameters, e.g., $y_i = 4 + 2x_i$.
- We added Lasso and epidemiological benchmarks for each challenge.

	Substantively motivated		Machine Learning		Total
Challenge	General	Parameterized	General	Parameterized	
Crossnational	27	15	1	1	44
India	8	6	1	1	16
Mexico	8	5	1	1	15
US	17	6	3	2	29
Total	61	32	6	5	104

Covid Model Challenge Team The Models Challenge

Framework for model evaluation, aggregation

Evaluating model performance

- We use out-of-sample predictions to evaluate each set of model predictions:
 - ∘ For general models → leave-one-out (LOO) predictions.
 - ∘ For parameterized models → model predictions.
- Our two metrics of predictive performance are variants of:

$$M = 1 - \alpha \frac{\sum_{i=1}^{N} (\widehat{y}_{ik} - y_{ik})^{2}}{\sum_{i=1}^{N} (\overline{y}_{ik} - y_{ik})^{2}}$$

- Pseudo- R^2 : $\alpha = 1$
- Correlation: $\alpha = 1/2$, standardize \hat{y}_{ik} and y_{ik} .

A meta-model

- We use model stacking to combine estimates from different predictive models into a single model. (e.g., Yao et al., 2018).
 - The stacking model places weights on some subset of individual models.
 - To generate the stacking model, we estimate these weights by optimizing:

$$\underset{w_k}{\operatorname{argmin}} \ \sum_{i=1}^{n} \left(y_i - \sum_{k} w_k \widehat{y}_{ik} \right)^2 \text{s.t. } w_k \ge 0 \,\forall \, k, \sum_{k=1}^{K} w_k = 1$$

The stacking model generates the prediction:

$$\hat{y}_i = \sum_k w_k^* \hat{y}_{ik}$$

Eliciting expected performance

- Are social scientists able to accurately discriminate between or aggregate multiple predictive models?
- We answer this question by using our forecasting exercise using the Social Science Prediction Platform
- Experts were randomly assigned to give one of two types of forecasts:
 - Horserace: Which model is most likely to predict the most variation in the outcome?
 - Stacking: Assign larger weights to models if you would pay relatively more attention to the predictions of those models when forming an overall prediction.

Results

Gathering models: results

- Descriptively, there was a fairly high degree of overlap in the content of predictive models.
- 2. Most common predictors: measures of trust and government effectiveness; few models used measures of regime type or political institutions.

Gathering models: overlap in predictors

Evaluating models: results

1. High variability in predictive performance: the strongest substantively-justified models outperform Lasso in 3/4 general challenges. But the median models in each challenge perform poorly.

Evaluating models: cross-national general challenge

Evaluating models: results

- 1. High variability in predictive performance: the strongest substantively-justified models outperform Lasso in 3/4 general challenges. But the median models in each challenge perform poorly.
- 2. Parameterized models make substantially less accurate predictions.
 - Predictions correlate strongly with outcomes, but almost all models substantially underpredict mortality.

Gathering models: cross-national parameterized challenge

Evaluating models: results

- 1. High variability in predictive performance: the strongest substantively-justified models outperform Lasso in 3/4 general challenges. But the median models in each challenge perform poorly.
- 2. Parameterized models make substantially less accurate predictions.
- Stacking and horserace contests converge on top two models, but stacking weights are heavily skewed toward top two models.
 - Stacking weights reward models that provide different information.

Evaluating models: horserace vs. stacking

Top five models in the algorithmic horserace and stacking contests.

Evaluating models: results

- High variability in predictive performance: the strongest substantively-justified models outperform Lasso in 3/4 general challenges.
 But the median models in each challenge perform poorly.
- 2. Parameterized models make substantially less accurate predictions.
- Stacking and horserace contests converge on top two models, but stacking weights are heavily skewed toward top two models.
- 4. Algorithmic horserace and elicited horserace rankings do not overlap at top of the distribution.
 - Note slightly different measure of model performance (psuedo-R² vs. Pr(best model in set)).

Evaluating models: algorithmic vs. elicited horserace

Top five models in the algorithmic horserace and elicited horserace contest.

Evaluating models: results

- High variability in predictive performance: the strongest substantively-justified models outperform Lasso in 3/4 general challenges.
 But the median models in each challenge perform poorly.
- 2. Parameterized models make substantially less accurate predictions.
- Stacking and horserace contests converge on top two models, but stacking weights are heavily skewed toward top two models.
- 4. Algorithmic horserace and elicited horserace rankings do not overlap at top of the distribution.
- Algorithmic and elicited stacking rankings overlap somewhat, but elicited weights are much less skewed.

Evaluating models: algorithmic vs. elicited stacking

O Top five models in the algorithmic horserace and elicited stacking contest.

Aggregating models: results

- Aggregate stacking-based prediction outperforms best model (as it should!), but modestly.
 - But stacking models with the submitted models vastly outperform stacking models generated from an equal number of randomly-generated predictive models.
- 2. Metrics based on expert stacking perform surprisingly poorly.
- 3. Models performed substantially worse at predicting only future deaths.

Aggregating models: levels approach

 \bigcirc Comparison of approaches to aggregation using pseudo R^2 measure:

Aggregating models: correlation approach

Comparison of approaches to aggregation using correlation measure:

Aggregating models: is stacking's edge mechanical?

- Stacking on the submitted models outperforms:
 - The best model \rightarrow mechanical as this is equivalent to setting $w_{best} = 1$.
 - Stacking on a randomly generated sets of K models.

Discussion and conclusion

- We highlight the problem of accumulating explanations and provide a framework to measure the severity of problem and provide a path forward.
- A framework for aggregation of multiple explanations:
 - Applicable to many other literatures.
 - Many potential applications in a secondary meta-study.
 - But beware of publication bias, selection into the published literature.
- Forecasting results researchers perform poorly at filtering or combining explanations.
 - At least when abstracting from usual heuristics etc.
 - A reason to use our framework!