Résumé de cours : Semaine 23, du 21 mars au 25.

Dérivation (suite)

E désigne un \mathbb{K} -espace vectoriel normé, I un intervalle d'intérieur non vide et f une application de Idans E.

L'égalité des accroissements finis 1

Dans ce paragraphe, toutes les applications utilisées sont définies sur I et sont à valeurs dans \mathbb{R} .

1.1 Extremum et point critique

Définition. f admet un maximum local en a si et seulement s'il existe un voisinage V de a tel que $\forall t \in V \cap I \quad f(t) \le f(a).$

f présente en a un maximum local strict si et seulement s'il existe un voisinage V de a tel que $\forall t \in V \cap I \setminus \{a\} \quad f(t) < f(a).$

Définition. Lorsque f est dérivable en $a \in I$, a est un point critique de f si et seulement si f'(a) = 0.

Théorème. Les extremums locaux de f sur \tilde{I} sont des points critiques de f. Réciproque fausse. Il faut savoir le démontrer.

Le lemme de Rolle

Lemme de Rolle. Soient $(a, b) \in \mathbb{R}^2$ avec a < b et $f : [a, b] \longrightarrow \mathbb{R}$ une application continue sur [a, b]et dérivable sur l'ouvert a, b. Si f(a) = f(b), il existe $c \in a, b$ tel que f'(c) = 0. Il faut savoir le démontrer.

Remarque. C'est faux pour une application à valeur dans \mathbb{C} : prendre $\begin{bmatrix} 0, 2\pi \end{bmatrix} \longrightarrow \mathbb{C}$ $\theta \longmapsto e^{i\theta}$.

Un exercice à connaître : On dit qu'un polynôme P de $\mathbb{R}[X]$ est simplement scindé dans $\mathbb{R}[X]$ si et seulement si il se décompose sous la forme $P(x) = \lambda \prod_{i=1}^n (x - \alpha_i)$, où $\lambda \in \mathbb{R}^*$ et $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ avec $i \neq j \Longrightarrow \alpha_i \neq \alpha_j$. Si P est simplement scindé dans $\mathbb{R}[X]$, alors P' l'est aussi.

Théorème de Rolle généralisé (Hors programme).

Soit $(a, b) \in \mathbb{R} \cup \{-\infty, +\infty\}$ avec a < b. Si f est dérivable sur]a, b[et si $\lim_{x\to a} f(x) = \lim_{x\to b} f(x) \in \mathbb{R} \cup \{-\infty, +\infty\}, \text{ alors il existe } c\in]a,b[\text{ tel que } f'(c)=0.$ Il faut savoir le démontrer.

1.3 L'égalité des accroissements finis

Théorème des accroissements finis (TAF). Soit $(a,b) \in \mathbb{R}^2$ avec $a \neq b$. Soit $f : [a,b] \longrightarrow \mathbb{R}$ continue sur [a,b] et dérivable sur [a,b]. Alors il existe c dans [a,b] tel que f(b) - f(a) = (b-a)f'(c). Il faut savoir le démontrer.

1.4 Théorème de la limite de la dérivée

TLD: Si f est continue sur I, dérivable (resp : de classe C^1) sur $I \setminus \{a\}$ et s'il existe $l \in \mathbb{R}$ tel que $f'(x) \xrightarrow[x \to a]{} l$, alors f est dérivable (resp : de classe C^1) sur I, avec f'(a) = l.

Il faut savoir le démontrer.

Remarque. Il faut savoir montrer que, si f est continue sur I, dérivable sur $I \setminus \{a\}$ et si $f'(x) \xrightarrow[x \in I \setminus \{a\}]{} +\infty$, alors f n'est pas dérivable en a.

Remarque. Ce théorème est encore valable pour une fonction à valeurs dans un \mathbb{K} -espace vectoriel de dimension finie.

TLD: Généralisation aux dérivées d'ordre supérieur. Soient $k \in \mathbb{N} \cup \{\infty\}$. Si f est continue sur I, à valeurs dans un \mathbb{K} -espace vectoriel de dimension finie, si f est de classe C^k sur $I \setminus \{a\}$ et si, pour tout $h \in [1, k] \cap \mathbb{N}$, il existe $l_h \in \mathbb{R}$ tel que $f^{(h)}(x) \underset{x \in I \setminus \{a\}}{\longrightarrow} l_h$, alors f est de classe C^k sur I.

2 Formules de Taylor

2.1 L'égalité de Taylor-Lagrange (hors programme)

Théorème. Soient $n \in \mathbb{N}$ et $f:[a,b] \longrightarrow \mathbb{R}$. Si f est C^n sur [a,b] et n+1 fois dérivable sur]a,b[, alors il existe $c \in]a,b[$ tel que $f(b)=f(a)+\sum_{k=1}^n \frac{(b-a)^k}{k!}f^{(k)}(a)+\frac{(b-a)^{n+1}}{(n+1)!}f^{(n+1)}(c)$.

Il faut savoir le démontrer.

2.2 L'inégalité des accroissements finis (IAF)

Théorème. Inégalité des accroissements finis (IAF)

Si
$$f:[a,b] \longrightarrow \mathbb{K}$$
 est C^1 sur $[a,b]$, alors $|f(b)-f(a)| \le \lambda |b-a|$, où $\lambda = \sup_{x \in [a,b]} |f'(x)|$.

Corollaire. Soient $k \in \mathbb{R}_+$ et $f : I \longrightarrow \mathbb{K}$ de classe C^1 .

Alors f est k-lipschitzienne si et seulement si pour tout $x \in [a, b], |f'(x)| \le k$.

2.3 Formules de Taylor

2.3.1 TRI et inégalité de TL

Théorème. Formule de Taylor avec reste intégral. Soient $k \in \mathbb{N}$ et $f:[a,b] \longrightarrow \mathbb{K}$ C^{k+1} .

Alors
$$f(b) = f(a) + \sum_{h=1}^{k} \frac{(b-a)^h}{h!} f^{(h)}(a) + \int_a^b \frac{(b-t)^k}{k!} f^{(k+1)}(t) dt.$$

Théorème. Inégalite de Taylor-Lagrange. Soient $k \in \mathbb{N}$ et $f:[a,b] \longrightarrow \mathbb{K}$ C^{k+1} .

Alors
$$|f(b) - f(a) - \sum_{h=1}^{k} \frac{(b-a)^h}{h!} f^{(h)}(a)| \le \lambda \frac{|b-a|^{k+1}}{(k+1)!}$$
, où $\lambda = \sup_{x \in [a,b]} |f^{(k+1)}(x)|$.

2.3.2 Primitivation d'un développement limité

Lemme. Soit $k \in \mathbb{N}$. Au voisinage de a, $\int_a^x o((t-a)^k)dt = o((x-a)^{k+1})$.

Il faut savoir le démontrer.

Théorème. Primitivation d'un développement limité. Soient $a \in I$ et $f : I \longrightarrow \mathbb{K}$ une application de classe C^1 . Soit $k \in \mathbb{N}$. Si, au voisinage de a,

$$f'(x) = \sum_{h=0}^{k} \alpha_h(x-a)^h + o((x-a)^k), \text{ alors } f(x) = f(a) + \sum_{h=0}^{k} \frac{\alpha_h}{h+1} (x-a)^{h+1} + o((x-a)^{k+1}).$$

2.3.3 Formule de TY

Formule de Taylor-Young. Si f est k fois dérivable en a, alors au voisinage de a,

$$f(x) = f(a) + \sum_{h=1}^{k} \frac{(x-a)^h}{h!} f^{(h)}(a) + o((x-a)^k).$$

Propriété. (Hors programme?) Soit $f: I \longrightarrow \mathbb{R}$ une application deux fois dérivable en un point a de I. On suppose que f'(a) = 0 et que f''(a) > 0. Alors a est un minimum local strict : il existe un voisinage V de a tel que pour tout $t \in V \cap I \setminus \{a\}$, f(t) > f(a).

3 Monotonie et dérivabilité

Ici les applications utilisées sont à valeurs dans \mathbb{R} .

3.1 Sens de variation

Théorème. f est constante si et seulement si f' = 0, elle est croissante si et seulement si $f' \ge 0$ et elle est décroissante si et seulement si $f' \le 0$.

Il faut savoir le démontrer.

Propriété. Soit $f: I \to \mathbb{R}$ dérivable et croissante. Alors f est strictement croissante si et seulement si $\{x \in I/f'(x) = 0\}$ est d'intérieur vide. En particulier, si f(x) > 0 pour tout $x \in I$ sauf pour un nombre fini d'éléments de I, alors f est strictement croissante.

3.2 Difféomorphismes

Théorème. Supposons que f est dérivable et strictement monotone. Soit $t \in I$.

 f^{-1} est dérivable en f(t) si et seulement si $f'(t) \neq 0$, et dans ce cas $(f^{-1})'(f(t)) = \frac{1}{f'(t)}$.

Lorsque
$$[\forall t \in I, \ f'(t) \neq 0], \ (f^{-1})' = \frac{1}{f' \circ f^{-1}}.$$

Il faut savoir le démontrer.

Définition. Soit $n \in \mathbb{N}^*$. $f: I \longrightarrow J$ est un C^n -difféomorphisme si et seulement si f est bijective, de classe C^n et si f^{-1} est aussi de classe C^n .

Propriété. f est un C^n -difféomorphisme de I dans f(I) si et seulement si f est de classe C^n et si $[\forall t \in I, f'(t) \neq 0]$.

Il faut savoir le démontrer.

4 Suites récurrentes d'ordre 1

On souhaite étudier une suite (x_n) vérifiant $\forall n \in \mathbb{N}$ $x_{n+1} = f(x_n)$.

En étudiant l'application f, supposons que l'on ait déterminé un intervalle I tel que $f: I \longrightarrow I$ est continue et monotone, avec $x_0 \in I$.

Représentation graphique de (x_n) : À connaître.

Propriété. Les valeurs possibles pour la limite de x_n sont les points fixes de $f|_I$ et les bornes de I qui n'appartiennent pas à I.

Propriété. Si $f|_I$ est croissante, alors (x_n) est monotone.

Plus précisément, (x_n) est croissante si et seulement si $f(x_0) - x_0 \ge 0$, et (x_n) est décroissante si et seulement si $f(x_0) - x_0 \le 0$.

Il faut savoir le démontrer.

Propriété. On suppose que $f|_I$ est croissante. Soit $l \in I$ un point fixe de f.

Si $x_0 \le l$, alors $\forall n \in \mathbb{N}$ $x_n \le l$. Si $x_0 \ge l$, alors $\forall n \in \mathbb{N}$ $x_n \ge l$.

Il faut savoir le démontrer.

Propriété. On suppose que $f|_I$ est décroissante. Alors $(f \circ f)|_I$ est croissante, donc les deux suites (x_{2n}) et (x_{2n+1}) sont monotones et de sens contraires.

Il faut savoir le démontrer.

Propriété. Soit $f: I \longrightarrow I$ une application de classe C^1 et $\ell \in I$ tel que $f(\ell) = \ell$.

Si $|f'(\ell)| < 1$, alors il existe $\varepsilon \in \mathbb{R}_+^*$ tel que, pour tout $x_0 \in]\ell - \varepsilon, \ell + \varepsilon[$, $x_n \xrightarrow[n \to +\infty]{} \ell : \ell$ est un point d'équilibre stable.

Si $|f'(\ell)| > 1$, alors il existe $\varepsilon \in \mathbb{R}_+^*$ tel que, pour tout $x_0 \in]\ell - \varepsilon, \ell + \varepsilon[$, il existe $N \in \mathbb{N}$ tel que $x_N \notin [\ell - \varepsilon, \ell + \varepsilon[$: ℓ est un point d'équilibre instable.

Il faut savoir le démontrer.

Plan d'étude d'une suite vérifiant $x_{n+1} = f(x_n)$:

- \diamond Représentez le tableau des variations de f.
- \diamond Lorsque le graphe de f est simple, visualisez le comportement de la suite (x_n) .
- \diamond Trouvez un intervalle I tel que $f(I) \subset I$ et $x_0 \in I$ et f est monotone et continue sur I.
- ♦ Recherchez les "limites éventuelles".
- \diamond Si f est croissante sur I, étudiez les signes de $f(x_0) x_0$ et de $x_0 l$ (où l est un point fixe), puis conclure.
- \diamond Si f est décroissante sur I, se ramener au cas précédent en considérant $f \circ f$, ou bien si l'on a conjecturé que $x_n \underset{n \to +\infty}{\longrightarrow} \ell$ et si $|f'(\ell)| < 1$, majorez $|x_{n+1} \ell| = |f(x_n) f(\ell)|$ à l'aide du TAF.

5 Fonctions convexes

5.1 Sous-espaces affines

Définition. Soient \mathcal{E} un \mathbb{K} -espace affine de direction E et \mathcal{F} une partie de \mathcal{E} .

 \mathcal{F} est un **sous-espace affine** de \mathcal{E} si et seulement si il existe $A \in \mathcal{E}$ et un sous-espace vectoriel F de E tel que $\boxed{\mathcal{F} = A + F = \{A + x \mid x \in F\}}$. Dans ce cas, $F = \{\overrightarrow{MN} \mid M, N \in \mathcal{F}\}$: on dit que F est la direction du sous-espace affine \mathcal{F} . De plus, pour tout $B \in \mathcal{F}$, $\mathcal{F} = B + F$.

Exemples. Un singleton est un sous-espace affine dirigé par $\{0\}$.

Une droite affine de \mathcal{E} est de la forme $\mathcal{D} = A + \mathbb{K}x$, où $A \in \mathcal{E}$ et $x \in E \setminus \{0\}$.

Propriété. Soit E et F deux \mathbb{K} -espaces vectoriels et $f \in L(E,F)$. Soit $y \in F$. L'ensemble des solutions de l'équation linéaire (E): f(x) = y en l'inconnue $x \in E$, est ou bien vide, ou bien un sous-espace affine de E

Définition. Deux sous-espaces affines sont parallèles si et seulement si ils ont la même direction.

Propriété. Soient \mathcal{E} un \mathbb{K} -espace affine de direction E et $(\mathcal{E}_i)_{i\in I}$ une famille de sous-espaces affines de \mathcal{E} . Pour $i \in I$, on note E_i la direction de \mathcal{E}_i .

 $\bigcap_{i \in I} \mathcal{E}_i$ est ou bien \emptyset , ou bien un sous-espace affine de \mathcal{E} de direction $\bigcap_{i \in I} E_i$.

Définition. Soit \mathcal{E} un \mathbb{K} -espace affine de direction E. Un repère de \mathcal{E} est un couple R = (O, b), où O est un point de \mathcal{E} , appelé l'origine du repère et où b est une base de E. Si $M \in \mathcal{E}$, les coordonnées de M dans le repère R sont les coordonnées du vecteur \overrightarrow{OM} dans la base b.

Définition. Si \mathcal{F} est un sous-espace affine de direction F, $\dim(\mathcal{F}) = \dim(F)$.

5.2 Barycentres et convexité

Notation. On fixe un espace affine \mathcal{E} , p points A_1, \ldots, A_p de \mathcal{E} et p scalaires $\lambda_1, \ldots, \lambda_p$ dans \mathbb{K} .

Définition. On appelle fonction vectorielle de Leibniz l'application $\varphi: \mathcal{E} \longrightarrow E$ définie par $\varphi(M) = \sum_{i=1}^p \lambda_i \overline{A_i M}$.

Définition. Lorsque $\sum_{i=1}^{p} \lambda_i = 0$, φ est constante, et lorsque $\sum_{i=1}^{p} \lambda_i \neq 0$, φ est bijective. L'unique point

G tel que $\varphi(G)=0$ s'appelle alors le barycentre des $(A_i,\lambda_i)_{1\leq i\leq p}$. On a donc $\sum_{i=1}^p \lambda_i \overrightarrow{GA_i}=0$.

On en déduit que, pour tout $M \in \mathcal{E}$, $\overrightarrow{MG} = \frac{1}{\displaystyle\sum_{i=1}^p \lambda_i} \sum_{i=1}^p \lambda_i \overrightarrow{MA_i}$. On note $G \stackrel{\triangle}{=} \frac{\lambda_1 A_1 + \cdots + \lambda_p A_p}{\lambda_1 + \cdots + \lambda_p}$.

Il faut savoir le démontrer.

Définition. Lorsque, pour tout $i \in \mathbb{N}_p$, $\lambda_i = 1$, G s'appelle l'isobarycentre des points A_1, \ldots, A_p .

Propriété. Homogénéïté du barycentre :

Si l'on remplace chaque λ_i par $\alpha \lambda_i$ où $\alpha \in \mathbb{K} \setminus \{0\}$, G n'est pas modifié.

Propriété. Associativité du barycentre : Soit $k \in \mathbb{N}_p$. Notons G' le barycentre des $(A_i, \lambda_i)_{1 \le i \le k}$

(on suppose que
$$\lambda' = \sum_{i=1} \lambda_i \neq 0$$
) et G'' le barycentre des $(A_i, \lambda_i)_{k+1 \leq i \leq p}$ (on suppose que

$$\lambda'' = \sum_{i=k+1}^{p} \lambda_i \neq 0$$
). Alors G est le barycentre de $((G', \lambda'), (G'', \lambda''))$.

Il faut savoir le démontrer.

Propriété. Soit \mathcal{F} un sous-espace affine de \mathcal{E} . Si pour tout $i \in \mathbb{N}_p$, $A_i \in \mathcal{F}$, alors $G \in \mathcal{F}$.

Exemple. Si A et B sont deux points distincts de \mathcal{E} , la droite (AB) est égale à l'ensemble des barycentres de A et B.

Si A, B et C sont trois points non alignés de \mathcal{E} , l'ensemble des barycentres de A, B et C est l'unique plan affine contenant ces trois points.

Définition. On suppose que $\mathbb{K} = \mathbb{R}$.

Une partie \mathcal{C} de \mathcal{E} est convexe si et seulement si elle vérifie l'une des propriétés équivalentes suivantes :

- 1. Pour tout $(A_1,A_2) \in \mathcal{C}^2$, $[A_1,A_2] \subset \mathcal{C}$, où $[A_1,A_2]$ est le segment d'extrémités A_1 et A_2 , c'est-à-dire l'ensemble des barycentres de $((A_1,t),(A_2,1-t))$, lorsque t décrit [0,1].
- 2. Pour tout $(A_1, A_2) \in \mathcal{C}^2$, pour tout $(\lambda_1, \lambda_2) \in \mathbb{R}^2_+ \setminus \{0\}$, le barycentre de $((A_1, \lambda_1), (A_2, \lambda_2))$ est dans \mathcal{C} .
- 3. Pour tout $p \in \mathbb{N}^*$, pour tout $(A_i)_{1 \leq i \leq p} \in \mathcal{C}^p$, pour tout $(\lambda_i)_{1 \leq i \leq p} \in \mathbb{R}^p_+ \setminus \{0\}$, le barycentre de $(A_i, \lambda_i)_{1 \leq i \leq p}$ est dans \mathcal{C} .

Une partie est donc convexe ssi elle est stable par pour des barycentres pondérés positivement.

Exemple. Les sous-espaces affines sont des convexes.

Propriété. Une intersection de parties convexes est convexe.

Définition. Soit B une partie de \mathcal{E} . L'enveloppe convexe de B est le plus petit convexe de \mathcal{E} contenant B. C'est l'ensemble des barycentres d'un nombre fini de points de B affectés de pondérations positives.