OR4030 OPTIMIZATION Chapter 6

Optimality Conditions for Constrained Optimization Problems

6.1 Equality Constrained Optimization

6.1.1 Problem Description

Problem:

min
$$f(x)$$

s.t. $h_i(x) = 0, \quad i = 1, ..., m$
 $x \in \Re^n$

where

- ightharpoonup m < n;
- $ightharpoonup f, h_1, \ldots, h_m: \Re^n \mapsto \Re;$
- $f, h_1, \ldots, h_m \in C^2(\mathbb{R}^n).$

In this chapter, we shall learn necessary or sufficient optimality conditions for above optimization problem without giving proofs.

6.1.2 First-Order Necessary Conditions

Lagrange Theorem

- Let x^* be a local extreme (either a maximum or a minimum) point of f subject to the constraints $h(x) = (h_1(x), \ldots, h_m(x))^T = 0$.
- Assume further that x^* satisfies certain regularity conditions. (e.g., all $\nabla h_i(x^*)$ are linearly independent. In this course it is not required to know these conditions in detail.)
- ▶ Then there exists

$$\lambda^* \in \Re^m$$

(called Lagrange Multipliers) such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0.$$

- ▶ A feasible point that satisfies the above condition is called a **stationary point**. Note that such a stationary point may be a constrained minimum point, or a constrained maximum point, or neither (i.e., only a saddle point).
- ▶ It should be noted that the first-order necessary conditions

$$abla f(x^*) + \sum_{i=1}^m \lambda_i^*
abla h_i(x^*) = 0 \quad (n \text{ equations})$$

together with the constraints

$$h(x^*) = 0$$
 (*m* equations)

gives n + m (generally nonlinear) equations in the n + m variables comprising x^* and λ^* .

▶ Define the *Lagrangian function* as follows:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x).$$

The first-order necessary conditions together with the constraints can then be expressed in the form:

$$\nabla_x L(x^*, \lambda^*) = 0$$
 and $\nabla_\lambda L(x^*, \lambda^*) = 0$,

or equivalently,

$$\nabla L(x^*, \lambda^*) = 0.$$

- 6.1.3 Second-Order Necessary Conditions
- Let x^* be a local minimum point of f subject to h(x) = 0. Assume that x^* satisfies certain regularity conditions.

Then there exists

$$\lambda^* \in \Re^m$$

such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0,$$

and

$$y^T \left| \nabla^2 f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla^2 h_i(x^*) \right| y \ge 0$$

for all $y \in \Re^n$ satisfying

$$y \neq 0$$

$$\nabla h_i(x^*)^T y = 0 \quad \text{for} \quad i = 1, \dots, m.$$

► The second-order necessary conditions can be expressed in the form:

$$\nabla L(x^*, \lambda^*) = 0,$$

and

$$y^T \nabla^2_{xx} L(x^*, \lambda^*) y \ge 0 \tag{1}$$

for all $y \in \Re^n$ satisfying

$$y \neq 0$$

 $\nabla h_i(x^*)^T y = 0$ for $i = 1, ..., m$.

Remark. The above condition for $\nabla^2_{xx} L(x^*, \lambda^*)$ is weaker than asking the matrix $\nabla^2_{xx} L(x^*, \lambda^*)$ to be positive semidefinite. Why?

▶ If x^* is a local maximum point of f subject to h(x) = 0, then in the above conditions, (1) is changed to

$$y^T \nabla^2_{xx} L(x^*, \lambda^*) y \leq 0.$$

6.1.4 Second-Order Sufficient Conditions

Just like in the unconstrained case, if, additionally, x^* satisfies

$$y^T \nabla^2_{xx} L(x^*, \lambda^*) y > 0$$

for all $y \in \Re^n$ satisfying

$$y \neq 0$$

 $\nabla h_i(x^*)^T y = 0$ for $i = 1, ..., m$,

then x^* is a strict local minimum point of f subject to h(x) = 0. For the maximum case, if the above inequality is changed to

$$y^T \nabla^2_{xx} L(x^*, \lambda^*) y < 0$$

for such y, then x^* is a strict local maximum point of f subject to h(x) = 0.

6.1.5 Examples

Example 6.1 Solve the problem:

minimize
$$f(x) = x_1^2 + x_2^2$$

subject to $h(x) = x_1 + x_2 - 1 = 0$.

Solution: The Lagrangian function is

$$L(x, \lambda) = x_1^2 + x_2^2 + \lambda(x_1 + x_2 - 1).$$

Thus,

$$\nabla L(x,\lambda) = \begin{bmatrix} 2x_1 + \lambda \\ 2x_2 + \lambda \\ x_1 + x_2 - 1 \end{bmatrix} \quad \text{and} \quad \nabla^2_{xx} L(x,\lambda) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

The first-order necessary conditions are

$$2x_1^* + \lambda^* = 0,$$

$$2x_2^* + \lambda^* = 0,$$

$$x_1^* + x_2^* - 1 = 0.$$

We may solve the system of equations as

$$\begin{bmatrix} x_1^* \\ x_2^* \\ \lambda^* \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \\ -1 \end{bmatrix}.$$

But usually we use the elimination method to solve these equations more quickly. In fact from the first two equations we know that $x_1^* = x_2^*$ (i.e., eliminate λ^*). Substituting this result into the third equation, we obtain $x_1^* = x_2^* = 0.5$. Finally, from the first or the second equation, we obtain $\lambda^* = -1$.

Since

$$\nabla^2_{xx}L(x^*,\lambda^*) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

is positive definite, (x^*, λ^*) satisfies the second-order sufficient conditions. Therefore

$$\begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

is a strict local minimum solution to the problem.

Example 6.2 Solve the problem:

minimize
$$f(x) = -x_1x_2 - x_2x_3 - x_1x_3$$

subject to $h(x) = x_1 + x_2 + x_3 - 3 = 0$.

Solution The Lagrangian function is

$$L(x,\lambda) = -x_1x_2 - x_2x_3 - x_1x_3 + \lambda(x_1 + x_2 + x_3 - 3).$$

Thus,

$$\nabla L(x,\lambda) = \begin{bmatrix} -x_2 - x_3 + \lambda \\ -x_1 - x_3 + \lambda \\ -x_1 - x_2 + \lambda \\ x_1 + x_2 + x_3 - 3 \end{bmatrix}, \nabla^2_{xx} L(x,\lambda) = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}.$$

The first-order necessary conditions are

$$-x_2^* - x_3^* + \lambda^* = 0,$$

$$-x_1^* - x_3^* + \lambda^* = 0,$$

$$-x_1^* - x_2^* + \lambda^* = 0,$$

$$x_1^* + x_2^* + x_3^* - 3 = 0,$$

which has a solution $\begin{bmatrix} x_1^*, & x_2^*, & x_3^*, & \lambda^* \end{bmatrix}^T = \begin{bmatrix} 1, & 1, & 1, & 2 \end{bmatrix}^T$.

Since

$$\nabla^2_{xx} L(x^*, \lambda^*) = \begin{vmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{vmatrix}$$

is not positive definite, we cannot make conclusion immediately. Let $y \in \Re^3$ satisfying $y \neq 0$ and

$$0 = \nabla h(x^*)^T y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{vmatrix} y_1 \\ y_2 \\ y_3 \end{vmatrix} = y_1 + y_2 + y_3.$$

For such y,

$$y^{T} \nabla_{xx}^{2} L(x^{*}, \lambda^{*}) y = \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}$$
$$= -y_{1}(y_{2} + y_{3}) - y_{2}(y_{1} + y_{3}) - y_{3}(y_{1} + y_{2})$$
$$= y_{1}^{2} + y_{2}^{2} + y_{3}^{2} > 0.$$

So, (x^*,λ^*) satisfies the second order sufficient conditions, and

$$\begin{bmatrix} x_1^*, & x_2^*, & x_3^* \end{bmatrix}^T = \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$$

is a strict local minimum solution to the problem.

Example 6.3 Solve the problem:

minimize
$$f(x) = x_1^2 + x_2^2 + x_3^2$$

subject to $h_1(x) = x_1 + x_2 + 3x_3 - 2 = 0$
 $h_2(x) = 5x_1 + 2x_2 + x_3 - 5 = 0$.

Solution The Lagrangian function is

$$L(x,\lambda) = x_1^2 + x_2^2 + x_3^2 + \lambda_1(x_1 + x_2 + 3x_3 - 2) + \lambda_2(5x_1 + 2x_2 + x_3 - 5).$$

Thus,

$$\nabla L(x,\lambda) = \begin{bmatrix} 2x_1 + \lambda_1 + 5\lambda_2 \\ 2x_2 + \lambda_1 + 2\lambda_2 \\ 2x_3 + 3\lambda_1 + \lambda_2 \\ x_1 + x_2 + 3x_3 - 2 \\ 5x_1 + 2x_2 + x_2 - 5 \end{bmatrix} \text{ and } \nabla^2_{xx} L(x,\lambda) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

The first-order necessary conditions are

$$2x_1^* + \lambda_1^* + 5\lambda_2^* = 0,$$

$$2x_2^* + \lambda_1^* + 2\lambda_2^* = 0,$$

$$2x_3^* + 3\lambda_1^* + \lambda_2^* = 0,$$

$$x_1^* + x_2^* + 3x_3^* - 2 = 0,$$

$$5x_1^* + 2x_2^* + x_3^* - 5 = 0.$$

From the first three equations we eliminate variables λ_1^* and λ_2^* , and obtain the equation $5x_1^* - 14x_2^* + 3x_3^* = 0$. Then together with the last two equations we obtain x_1^*, x_2^* and x_3^* . Finally,

$$(x_1^*, x_2^*, x_3^*, \lambda_1^*, \lambda_2^*) \approx (0.8043, 0.3478, 0.2826, -0.0870, -0.3043).$$

Since

$$\nabla^2_{xx} L(x^*, \lambda^*) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

is positive definite, (x^*, λ^*) satisfies the second-order sufficient conditions. Therefore

$$\begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \end{bmatrix} \approx \begin{bmatrix} 0.8043 \\ 0.3478 \\ 0.2826 \end{bmatrix}$$

is a strict local minimum solution to the problem.

6.2 Equality and Inequality Constrained Optimization

6.2.1 Problem Description

Problem:

min
$$f(x)$$

s.t. $h_i(x) = 0, \quad i = 1, ..., m$
 $g_j(x) \leq 0, \quad j = 1, ..., r$
 $x \in \Re^n$

where

- 1. m < n;
- 2. $f, h_1, \ldots, h_m, g_1, \ldots, g_r : \Re^n \mapsto \Re;$
- 3. $f, h_1, \ldots, h_m, g_1, \ldots, g_r \in C^2(\mathbb{R}^n)$.
 - 6.2.2 First-Order Necessary Conditions

Karosh-Kuhn-Tucker (KKT) Conditions

► Let *x** be a local minimum point of *f* subject to the constraints

$$h(x) = (h_1(x), \dots, h_m(x))^T = 0$$
 and $g(x) = (g_1(x), \dots, g_r(x))^T \le 0$.

- ightharpoonup Assume further that x^* satisfies certain regularity conditions.
- Then there exists

$$\lambda_i^* \in \Re$$
 for $i = 1, \dots, m$
 $\mu_j^* \ge 0$ for $j = 1, \dots, r$

 $(\lambda^* \text{ and } \mu^* \text{ are called } KKT \text{ multipliers}) \text{ such that }$

$$\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla h_i(x^*) + \sum_{j=1}^{r} \mu_j^* \nabla g_j(x^*) = 0$$

$$\mu_j^* g_j(x^*) = 0 \quad \text{for} \quad j = 1, \dots, r$$

- ▶ A feasible point x^* that satisfies the above KKT conditions (together with a set of multipliers λ^* and μ^*) is called a **stationary point**, or a **KKT point**.
- ▶ Define the *Lagrangian function* as follows:

$$L(x,\lambda,\mu)=f(x)+\sum_{i=1}^m\lambda_ih_i(x)+\sum_{j=1}^r\mu_jg_j(x).$$

The first-order necessary conditions together with the equality constraints can then be expressed as the following system of equations:

$$abla_x L(x^*, \lambda^*, \mu^*) = 0$$
 (n equations)
 $h(x^*) = 0$ (m equations)
 $\mu_j^* g_j(x^*) = 0$ for $j = 1, \dots, r$ (r equations)

which contains n+m+r equations for n+m+r unknown variables $x^* \in R^n$, $\lambda^* \in R^m$, and $\mu^* \in R^r$.

Note that the conditions also ask that

$$g_j(x^*) \le 0, \ \mu_j^* \ge 0 \text{ and } \mu_j^* g_j(x^*) = 0, \text{ for } j = 1, \dots, r.$$
 (2)

The last request is called the *complementary slackness* condition which asks that in each pair of μ_j^* and $g_j(x^*)$, at least one of them must be 0.

(This condition is a natural extension of the complementary slackness condition in linear programming.)

▶ If in (2), it is requested further that in each pair of μ_j^* and $g_j(x^*)$, exactly one is zero, it is called the strict complementary slackness condition. That is, if $g_j(x^*) < 0$, then $\mu_i^* = 0$, and if $g_j(x^*) = 0$, then $\mu_i^* > 0$.

6.2.3 Second-Order Necessary Conditions

- Suppose that x^* is a local minimum point of f subject to the constraints h(x) = 0 and $g(x) \le 0$.
- \triangleright Assume that x^* satisfies certain regularity conditions.
- Then there exists

$$\lambda_i^* \in \Re$$
 for $i = 1, \dots, m,$ $\mu_j^* \ge 0$ for $j = 1, \dots, r,$

such that

and

$$y^T \nabla_{xx}^2 L(x^*, \lambda^*, \mu^*) y \ge 0 \tag{3}$$

for all $y \in \mathbb{R}^n$ satisfying

$$y \neq 0$$

$$\nabla h_i(x^*)^T y = 0 \quad \text{for} \quad i = 1, ..., m$$

$$\nabla g_j(x^*)^T y = 0 \quad \text{for} \quad j \in A(x^*)$$

where
$$A(x^*) = \{j : g_j(x^*) = 0\}.$$

We call $g_j(x) \leq 0$ an active or binding constraint at x^* if the index $j \in A(x^*)$. For example, suppose the problem has two inequality constraints:

$$g_1(x) = x_1 + 2x_2 - 3 \le 0,$$

 $g_2(x) = 2x_1 + x_2 - 5 \le 0.$

At point $x^* = (1, 1)$,

$$g_1(x^*) = x_1^* + 2x_2^* - 3 = 0,$$

 $g_2(x^*) = 2x_1^* + x_2^* - 5 < 0.$

We see that at x^* , the first constraint is active, but the second one is not. Hence $A(x^*) = \{1\}$.

6.2.4 Second-Order Sufficient Conditions

The above conditions become sufficient if

1. the inequality (3) is further strengthened to

$$y^T \nabla^2_{xx} L(x^*, \lambda^*, \mu^*) y > 0$$

for all $y \in \Re^n$ satisfying

$$y \neq 0$$

$$\nabla h_i(x^*)^T y = 0 \quad \text{for} \quad i = 1, ..., m$$

$$\nabla g_j(x^*)^T y = 0 \quad \text{for} \quad j \in A(x^*),$$

and

2. $\mu_i^* > 0$ for $j \in A(x^*)$.

Note that Condition 2 is in fact the strict complementary slackness condition.

6.2.5 Examples

Example 6.4 Solve the problem:

minimize
$$f(x) = x_1^2 + x_2^2$$

subject to $g(x) = -x_1 - x_2 + 1 \le 0$.

Solution The Lagrangian function is

$$L(x, \mu) = x_1^2 + x_2^2 + \mu(-x_1 - x_2 + 1).$$

Thus,

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \mu) = \begin{bmatrix} 2x_1 - \mu \\ 2x_2 - \mu \end{bmatrix}$$
 and $\nabla^2_{\mathbf{x}\mathbf{x}} L(\mathbf{x}, \mu) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.

The KKT necessary conditions are

$$\mu^*(-x_1^*-x_2^*+1) = 0,$$

$$\mu^* \geq 0.$$
 We now consider the following two cases.
 Case 1: Suppose

 $2x_1^* - \mu^* = 0,$

 $2x_2^* - \mu^* = 0$

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(8) and (6) imply $\mu^* = 0.$

 $-x_1^*-x_2^*+1<0.$

$$(x_1^*, x_2^*) = (0, 0).$$

Case 2: Suppose

$$-x_1^* - x_2^* + 1 = 0. (11)$$

Rewrite (4), (5) and (11) as

$$\begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ \mu^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

We thus have

$$(x_1^*, x_2^*, \mu^*) = (0.5, 0.5, 1).$$
 (12)

Since $\mu^* \geq 0$,

$$(x_1^*, x_2^*) = (0.5, 0.5)$$

is a KKT point.

This point may be a potential minimum solution to the problem.

Since

$$\nabla^2_{xx} L(x^*, \mu^*) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

is positive definite and $\mu^* > 0$, (x^*, μ^*) satisfies the second-order sufficient conditions. Therefore

$$\begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

is a strict local minimum solution to the problem.

Example 6.5 Solve the problem:

minimize
$$f(x) = x_1^3 + x_2^2$$

subject to $g(x) = -x_1 - 1 \le 0$.

Solution The Lagrangian function is

$$L(x, \mu) = x_1^3 + x_2^2 + \mu(-x_1 - 1).$$

Thus.

$$abla_{x}L(x,\mu) = \begin{bmatrix} 3x_{1}^{2} - \mu \\ 2x_{2} \end{bmatrix} \quad \text{and} \quad
abla_{xx}^{2}L(x,\mu) = \begin{bmatrix} 6x_{1} & 0 \\ 0 & 2 \end{bmatrix}.$$

The KKT necessary conditions are

necessary conditions are
$$3(x_1^*)^2 - \mu^* = 0, \qquad (13)$$

$$x_2^* = 0, \qquad (14)$$

$$\mu^*(-x_1^* - 1) = 0, \qquad (15)$$

$$\mu^* \geq 0. \qquad (16)$$

We now consider the following two cases.

Case 1: Suppose

$$-x_1^* - 1 < 0. (17)$$

(17) and (15) imply

$$\mu^* = 0. \tag{18}$$

Substituting (18) into (13) gives

$$x_1^* = 0.$$
 (19)

As (19) satisfies (17), $(x_1^*, x_2^*) = (0, 0)$ with $\mu^* = 0$ is a potential minimum solution to the problem.

Since at (x^*, y^*) , there is no any active constraint, the second order optimality condition can be simplified.

- ▶ necessary condition: $\nabla^2_{xx} L(x^*, \mu^*)$ is p.s.d.;
- ▶ sufficient condition: $\nabla^2_{xx} L(x^*, \mu^*)$ is p.d.

We consider

$$\nabla_{xx}^2 L(x^*, \mu^*) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}. \tag{20}$$

As (20) is positive semi-definite, (x^*, μ^*) satisfies the second-order necessary conditions but does not satisfy the sufficient conditions to be a strict local minimizer, the identity of the point $(x_1^*, x_2^*) = (0, 0)$ is unknown from the above theorems. But in this particular example, it is easy to see that x^* is not a local minimizer. In fact if we take $\bar{x} = (-\epsilon, 0)^T$ with very small positive value ϵ , it is obvious that \bar{x} is very close to x^* and feasible, but $f(\bar{x}) < f(x^*)$.

Case 2: Suppose

$$x_1^* = -1. (21)$$

Substituting (21) into (13) gives

$$\mu^* = 3. \tag{22}$$

Since (22) satisfies (16),

$$(x_1^*, x_2^*) = (-1, 0)$$

with $\mu^* = 3$ is a potential minimum solution to the problem.

Note that $\mu^* > 0$ satisfies the sufficient condition to be a strict local minimum solution to the problem.

Consider

$$\nabla_{xx}^2 L(x^*, \mu^*) = \begin{bmatrix} -6 & 0\\ 0 & 2 \end{bmatrix}. \tag{23}$$

Since (23) is indefinite, we cannot make conclusion immediately.

Since the constraint is active, we consider $y = (y_1, y_2) \neq (0, 0)$ such that

$$0 = \nabla g(x^*)^T y = \begin{bmatrix} -1 & 0 \end{bmatrix} \begin{vmatrix} y_1 \\ y_2 \end{vmatrix} = -y_1. \tag{24}$$

This implies

$$y_2 \neq 0. (25)$$

For such y,

$$y^{T} \nabla_{xx}^{2} L(x^{*}, \mu^{*}) y = \begin{bmatrix} 0 & y_{2} \end{bmatrix} \begin{bmatrix} -6 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ y_{2} \end{bmatrix}$$
$$= 2y_{2}^{2} > 0.$$

Therefore $(x_1^*, x_2^*) = (-1, 0)$ is a strict local minimum solution to the problem.

Example 6.6 Solve the problem:

minimize
$$f(x) = x_1^2 + x_2^2$$

subject to $g_1(x) = -x_1 - x_2 + 1 \le 0$, $g_2(x) = -x_1 + 2 \le 0$.

Solution The Lagrangian function is

$$L(x, \mu) = x_1^2 + x_2^2 + \mu_1(-x_1 - x_2 + 1) + \mu_2(-x_1 + 2).$$

Thus,

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \mu) = \begin{bmatrix} 2x_1 - \mu_1 - \mu_2 \\ 2x_2 - \mu_1 \end{bmatrix} \quad \text{and} \quad \nabla^2_{\mathbf{x}\mathbf{x}} L(\mathbf{x}, \mu) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

The KKT necessary conditions are

$$2x_{1}^{*} - \mu_{1}^{*} - \mu_{2}^{*} = 0, \qquad (26)$$

$$2x_{2}^{*} - \mu_{1}^{*} = 0, \qquad (27)$$

$$\mu_{1}^{*}(-x_{1}^{*} - x_{2}^{*} + 1) = 0, \qquad (28)$$

$$\mu_{2}^{*}(-x_{1}^{*} + 2) = 0, \qquad (29)$$

$$\mu_{1}^{*} \geq 0, \qquad (30)$$

$$\mu_{2}^{*} \geq 0. \qquad (31)$$

We now consider the following four cases.

Case 1: Suppose that

$$\mu_2^* = 0.$$
 Rewrite (26), (27), (34) and (35) as
$$\begin{bmatrix} 2 & 0 & -1 & -1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ \mu_1^* \\ u_1^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix},$$

 $-x_1^* - x_2^* + 1 < 0$, and $-x_1^* + 2 < 0$.

 $\mu_1^* = 0.$

(32)

(33)

(34)

(35)

(36)

and we thus have

(32) and (28) imply

(33) and (29) imply

$$(x_1^*, x_2^*, \mu_1^*, \mu_2^*) = (0, 0, 0, 0).$$

Since (36) contradicts (32) and (33), case 1 is rejected.

Case 2: Suppose that

$$-x_1^* - x_2^* + 1 = 0$$
, and (37)
 $-x_1^* + 2 < 0$. (38)

(38) and (29) imply

$$\mu_2^* = 0.$$
 (39)

Rewrite (26), (27), (37) and (39) as

$$\begin{bmatrix} 2 & 0 & -1 & -1 \\ 0 & 2 & -1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ \mu_1^* \\ \mu_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

We thus have

$$(x_1^*, x_2^*, \mu_1^*, \mu_2^*) = (0.5, 0.5, 1, 0).$$
 (40)

Since (40) contradicts (38), case 2 is rejected.

Case 3: Suppose that

$$-x_1^* - x_2^* + 1 < 0$$
, and (41)
 $x_1^* = 2$. (42)

(41) and (28) imply

$$\mu_1^* = 0. (43)$$

Rewrite (26), (27), (42) and (43) as

$$\begin{bmatrix} 2 & 0 & -1 & -1 \\ 0 & 2 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ \mu_1^* \\ \mu_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}.$$

We thus have

$$(x_1^*, x_2^*, \mu_1^*, \mu_2^*) = (2, 0, 0, 4).$$
 (44)

Since (44) satisfies (31) and (41),

$$\begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \quad \text{with} \quad \begin{bmatrix} \mu_1^* \\ \mu_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

is a potential minimum solution to the problem.

As

$$\nabla_{xx}^2 L(x^*, \mu^*) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

is positive definite, and only the second constraint is active which corresponds to the multiplier $\mu_2^* > 0$, we see that (x^*, μ^*) satisfies the sufficient conditions. Therefore $(x_1^*, x_2^*) = (2, 0)$ is a strict local minimum solution to the problem.

Case 4: Suppose that

$$-x_1^* - x_2^* + 1 = 0$$
, and (45)
 $x_1^* = 2$. (46)

Rewrite (26), (27), (45) and (46) as

$$\begin{bmatrix} 2 & 0 & -1 & -1 \\ 0 & 2 & -1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ \mu_1^* \\ \mu_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}.$$

We thus have

$$(x_1^*, x_2^*, \mu_1^*, \mu_2^*) = (2, -1, -2, 6).$$
 (47)

As (47) violates (30), case 4 is rejected.

To summarize, this example has a unique local minimum solution $x^* = (2,0)^T$.

So far we assume that all inequality constraints are $g_j(x) \leq 0$ type. If all inequality constraints are $g_j(x) \geq 0$ type, i.e., the problem is

min
$$f(x)$$

s.t. $h_i(x) = 0, \quad i = 1, ..., m,$
 $g_j(x) \geq 0, \quad j = 1, ..., r,$
 $x \in \Re^n,$

how to revise the optimality conditions? We may rewrite the constraints as

$$-g_j(x) \leq 0, \quad j=1,\ldots,r,$$

then use the result of this section. In fact now the first order necessary condition asks that

$$\nabla f(x^*) - \sum_{i=1}^{m} \lambda_i^* \nabla h_i(x^*) - \sum_{j=1}^{r} \mu_j^* \nabla g_j(x^*) = 0$$

$$\mu_j^* g_j(x^*) = 0 \quad \text{for} \quad j = 1, \dots, r.$$

Here the sign of the first sum can be written either as "+", or "-", because the signs of multipliers λ_i^* have no restriction. Or we can define the *Lagrangian function* as follows:

$$\bar{L}(x,\lambda,\mu)=f(x)-\sum_{i=1}^m \lambda_i h_i(x)-\sum_{j=1}^r \mu_j g_j(x),$$

then in the first order necessary condition, $\nabla_x L(x^*, \lambda^*, \mu^*) = 0$ should be replaced by:

$$\nabla_{\mathsf{x}}\bar{\mathsf{L}}(\mathsf{x}^*,\lambda^*,\mu^*)=0,$$

and in the second order conditions, the matrix $\nabla_{xx}^2 L$ should be changed to $\nabla_{xx}^2 \bar{L}(x^*, \lambda^*, \mu^*)$.

Suppose a minimization problem has inequality constraints only, for example,

min
$$f(x)$$

 $s.t.$ $g_1(x) \le 0$;
 $g_2(x) \le 0$.

Here the feasible region is

$$S = \{x \mid g_1(x) \le 0; g_2(x) \le 0\}.$$

If at the optimal solution x^* , there is no active constraint, i.e.,

$$g_1(x^*) < 0, \ g_2(x^*) < 0,$$

then by KKT condition, we know that

$$\mu_1^* g_1(x^*) = 0 \Longrightarrow \mu_1^* = 0,$$

$$\mu_2^* g_2(x^*) = 0 \Longrightarrow \mu_2^* = 0.$$

So,

$$\nabla f(x^*) + \sum_{i=1}^2 \mu_j^* \nabla g_j(x^*) = 0 \Longrightarrow \nabla f(x^*) = 0.$$

This result is correct because in this case there is a neighborhood $N(x^*, \epsilon)$ of x^* such that

$$x \in N(x^*, \epsilon) \Longrightarrow g_1(x) < 0, \ g_2(x) < 0,$$

that is,

$$N(x^*, \epsilon) \subset S$$
.

Since x^* is a minimum point of f over the feasible region S,

$$f(x) \ge f(x^*)$$
 for all $x \in N(x^*, \epsilon)$.

This means that x^* is an local **unconstrained** minimum point. Therefore,

$$\nabla f(x^*) = 0.$$

It tells us that for an inequality constrained minimization problem, if at the optimal solution x^* , $\nabla f(x^*) \neq 0$, then there must be some active constraints, i.e., x^* is on some boundary of the feasible region.