SY19 Automne 2013 TP 0

1 Loi normale bidimensionnelle

1.1 Géométrie de la loi normale bidimensionnelle

On rappelle qu'un vecteur aléatoire $\mathbf{X} \in \mathbb{R}^p$, suivant une loi normale multidimensionnelle de vecteur moyenne μ et de matrice de variance-covariance Σ , a pour fonction de densité :

$$f_{\mathbf{X}}(\mathbf{x}; \mu, \Sigma) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\mathsf{T}} \Sigma^{-1}(\mathbf{x} - \mu)\right). \tag{1}$$

Les courbes d'iso-densité de ce vecteur aléatoire sont des ellipsoïdes de centre μ , dont la forme est définie par la matrice Σ .

La diagonalisation de la matrice de variance-covariance Σ peut s'écrire :

$$\Sigma = \lambda D^{\mathsf{T}} A D,\tag{2}$$

où λ est un paramètre scalaire, D est une matrice de changement de base, et A est une matrice diagonale telle que |A| = 1. En particulier, dans le cas bidimensionnel (p = 2), on a :

$$D = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \quad A = \begin{pmatrix} a & 0 \\ 0 & 1/a \end{pmatrix}.$$

Le scalaire θ mesure alors l'angle entre l'axe des abscisses et l'axe de l'ellipse orienté selon les premier et troisième quadrants. Le scalaire a caractérise le facteur d'aplatissement de l'ellipse; le grand axe est orienté selon les I^{er} et III^e quadrants lorsque a > 1, et selon les quadrants II et IV lorsque a < 1. La figure 1 résume la signification de ces différents paramètres.

1.2 Génération d'un échantillon de réalisations d'une variable multinormale

On souhaite générer un échantillon de réalisations d'un vecteur aléatoire $\mathbf{X} \in \mathbb{R}^p$ suivant une loi multinormale d'espérance μ et de matrice de variance-covariance Σ fixées. Soit $\mathbf{Z} \in \mathbb{R}^p$ un vecteur aléatoire formé par concaténation de p variables aléatoires indépendantes suivant chacune une loi normale $\mathcal{N}(0,1)$.

- 1. Quelle est la loi de **Z**?
- 2. Soient un scalaire λ , une matrice orthogonale D, et une matrice diagonale A telle que |A|=1, vérifiant l'équation (2). Étant donné un vecteur μ , comment peut-on obtenir le vecteur \mathbf{X} à partir de \mathbf{Z} ? Justifier.
- 3. Que deviennent les calculs si \mathbf{Z} et \mathbf{X} sont représentés sous forme de vecteurs lignes ? (Question subsidiaire)

Générer et représenter un échantillon de n=1000 réalisations d'une variable normale d'espérance $\mu=(1,2)$ et de matrice de variance-covariance

$$\Sigma = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right).$$

Calculer la moyenne empirique et la matrice de covariance empirique sur cet échantillon.

2 Mélanges de lois normales

2.1 Génération d'une classe suivant un mélange de lois normales

On souhaite à présent générer un échantillon de $n_1 = 1000$ réalisations d'un vecteur multidimensionnel \mathbf{Y} , dont la fonction de densité est définie à partir de plusieurs lois normales :

$$f_{\mathbf{Y}}(\mathbf{y}) = \pi_1 f_{\mathbf{X}}(\mathbf{y}; \mu_1, \Sigma_1) + \pi_2 f_{\mathbf{X}}(\mathbf{y}; \mu_2, \Sigma_2) + \pi_3 f_{\mathbf{X}}(\mathbf{y}; \mu_3, \Sigma_3),$$

où $\pi_1 = 1/2$, $\pi_2 = 1/4$ et $\pi_3 = 1/4$. Nous verrons par la suite en cours que la loi du vecteur aléatoire Y correspond à un mélange gaussien comportant trois composantes de fréquences π_1 , π_2 et π_3 . Les valeurs des paramètres caractérisant chacune de ces composantes sont consignées dans le tableau 1.

Table 1 – Caractéristiques des composantes de la fonction de densité $f_{\mathbf{Y}}$.

composante	centre μ	angle θ	λ	a
composante 1 (μ_1, Σ_1)	$(-3,8)^{\top}$	$-\pi/3$	2	1.5
composante 2 (μ_2, Σ_2)	$(-5, 10)^{T}$	$-\pi/6$	1	1.5
composante 3 (μ_3, Σ_3)	$(-1,10)^{\top}$	$\pi/6$	1	1.5

Générer un échantillon de n=1000 réalisations de \mathbf{Y} , en prenant soin de respecter les fréquences des différentes composantes. Afficher les réalisations de \mathbf{Y} , de même que les courbes de niveau de sa fonction de densité. Calculer la moyenne empirique et la matrice de covariance empirique sur cet échantillon.

2.2 Variation des proportions du mélange

On souhaite faire varier les proportions du modèle décrit ci-dessus. Générer un échantillon de n = 1000 réalisations de \mathbf{Y} , en prenant les valeurs suivantes :

- $-(\pi_1 = 0.6, \pi_2 = 0.2, \pi_3 = 0.2),$
- $(\pi_1 = 0.8, \pi_2 = 0.1, \pi_3 = 0.1),$
- $-(\pi_1 = 0.98, \pi_2 = 0.01, \pi_3 = 0.01).$

Comme précédemment, calculer la moyenne empirique et la matrice de covariance empirique sur cet échantillon.

3 Informations d'ordre technique

3.1 Fonctions utiles

- mvrnorm (bibliothèque MASS) : générer un échantillon de réalisations d'un vecteur multidimensionnel.
- mvdnorm (à récupérer sur le site de SY19) : calculer la densité d'une loi normale multidimensionnelle en un certain nombre de points.
- mroot (bibliothèque mgcv) : calcul de la racine carrée d'une matrice
- ginv (bibliothèque MASS) : calcul de l'inverse d'une matrice (la fonction est en fait plus générale)
- help : premiers secours

3.2 Affichage des valeurs d'une fonction $f: \mathbb{R}^2 \to \mathbb{R}$

Pour afficher la valeur prise par une fonction dans un domaine restreint de l'espace, on peut procéder en se fixant une grille de points de coordonnées (x_1, x_2) et en calculant la valeur de la fonction $f(x_1, x_2)$ en chacun de ces points.

```
# formation de la grille de points
Xaff1 <- seq(from=-8,to=6,by=0.5)
naff1 <- length(Xaff1)
Xaff2 <- seq(from=-2,to=14,by=0.5)
naff2 <- length(Xaff2)
Xaff <- cbind(rep.int(Xaff1,times=rep(naff2,naff1)),rep(Xaff2,naff1))
# calcul des valeurs de la fonction
valeurs <- ma_fonction(Xaff, parametres)</pre>
```

Il est alors possible de représenter la fonction par ses courbes de niveau.

FIGURE 1 – Représentation géométrique d'une ellipse d'équidensité de la loi normale de moyenne μ et de matrice de variance-covariance $\Sigma = \lambda D^{\top} A D$.