Forming die for glass lens formation - uses tungsten carbide as matrix material with platinum-gold alloy film applied to surface

Patent Assignee: HOYA CORP

Inventors: IZUMITANI T; KOBAYASHI T

Patent Family (2 patents, 1 country)							
Patent Number	Kind	Date	Application Number	Kind	Date	Update	Туре
JP 62256732	Α	19871109	JP 198699801	Α	19860428	198750	В
JP 1990001782	В	19900112	JP 198699801	A	19860428	199006	E

Priority Application Number (Number Kind Date): JP 198699801 A 19860428

Patent Details								
Patent Number	Kind	Language	Pages	Drawings	Filing Notes			
JP 62256732	A	JA	4	2				

Alerting Abstract: JP A

The forming die used for compression forming a forming glass to glass lens, uses tungsten carbide as a matrix material, and the surface of the material is formed to a pressure die having the lens shape, and on the surface of which Pt-Au alloy film (50-3000 Angstroms in thickness, having compsn. of 99-46 wt.% Pt and 1-54 wt.% Au) is applied.

USE/ADVANTAGE - With the forming die, glass lens can be formed without needs for grinding and polishing.

International Patent Classification

IPC	Level	Value	Position	Status	Version
C03B-0011/00	Α	I	F	R	20060101
C03B-0011/08	Α	I		R	20060101
C03B-0011/00	C	I	F	R	20060101
C03B-0011/06	С	I		R	20060101

Original Publication Data by Authority

Japan

Publication Number: JP 62256732 A (Update 198750 B)

Publication Date: 19871109

MOLDING TOOL FOR GLASS LENS

Assignee: HOYA CORP (HOYA)

تق

Inventor: KOBAYASHI TAKAHARU IZUMITANI TETSUO

Language: JA (4 pages, 2 drawings)

Application: JP 198699801 A 19860428 (Local application)

Original IPC: C03B-11/08

Current IPC: C03B-11/00(R,I,M,JP,20060101,20051220,A,F) C03B-

11/00(R,I,M,JP,20060101,20051220,C,F) C03B-11/06(R,I,M,EP,20060101,20051008,C) C03B-

11/08(R,I,M,EP,20060101,20051008,A)|JP 1990001782 B (Update 199006 E)

Publication Date: 19900112

Language: JA

Application: JP 198699801 A 19860428

Derwent World Patents Index

© 2007 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 4235890

19日本国特許庁(JP)

10 特許出願公告

平2-1782⑫特 許 公 報(B2)

®Int. Cl. 5

識別記号 庁内整理番号 2000公告 平成2年(1990)1月12日

C 03 B 11/00

N 6359-4G

発明の数 1 (全3頁)

60発明の名称 ガラスレンズの成形型

> 20特 願 昭61-99801

69公 開 昭62-256732

220出 願 昭61(1986)4月28日 **49昭62(1987)11月9日**

@発 明 者 小 林 降 治 @発 明 者 泉 谷 徹郎

東京都新宿区中落合2丁目7番5号 ホーヤ株式会社内 東京都新宿区中落合2丁目7番5号 ホーヤ株式会社内

勿出 願 人 ホーヤ株式会社

東京都新宿区中落合2丁目7番5号

すことが要求される。

審査官 田中 穣 治

1

切特許請求の範囲

1 被成形ガラスをガラスレンズにプレス成形す る成形型の基盤材料をタングステンカーバイドと し、その基盤表面をレンズ形状の押し型に加工 を膜状に形成することを特徴とするガラスレンズ の成形型。

2 白金ー金合金の膜厚が50Å~3000Åの範囲内 にあることを特徴とする特許請求の範囲第1項記 載のガラスレンズの成形型。

3 白金-金合金の組成が99~46重量%の白金と 1~54重量%の金であることを特徴とする特許請 求の範囲第1項又は第2項記載のガラスレンズの 成形型。

発明の詳細な説明

〔産業上の利用分野〕

本発明は、被成形ガラスをプレス成形した後、 研削及び研磨を必要としないガラスレンズに成形 するためのガラスレンズの成形型に関する。

〔従来の技術〕

近年、ガラスレンズは、光学機器のレンズ構成 の簡素化と、レンズの軽量化を同時に達成し得る 非球面化の傾向にある。この非球面レンズの製造 は、従来、冷間で研削及び研磨する方法により、 点で問題があつたが、直接プレス成形する方法が 有望視されている。この直接プレス成形法は、所 望の型表面形状(例えば、球面又は非球面)に仕

上げた成形型内に、予め軟化した被成形ガラスを 入れ(又は被成形ガラスを成形型内に入れてか ら、成形型と共に被成形ガラスを軟化するように 加熱して)、この成形型に所定の圧力を加えて、 し、その基盤表面上に白金ー金(Pt-Au)合金 5 被成形ガラスをプレス成形する方法である。この 成形型は、その表面形状がそのまゝガラスレンズ の表面形状に転写されることから、その表面層が 重要であり、気孔等の欠陥がなく、緻密で鏡面状 に精密加工することができ、高温に対して硬度及 10 び強度を有する等の型としての一般的要件を満た

2

成形型の材料は、上記要求に応えるべく各種提 案されている。例えば、シリコンカーバイド (SiC) やシリコンナイトライド (Si₃N₄) が提案 15 されている。これは焼結晶であるため、Al₂O₃や B₂O₂などの焼結助剤が含まれており、かつ多孔 質である。上記焼結助剤は、高温下でガラスと化 学反応を起こしやすくガラスの型表面への融着の 一因となる。また、多孔質であることから、高温 20 下で粘性流動する状態のガラスがプレス成形され るときに、その微細な孔へ入り込みやすくなり、 これもガラスが型表面へ融着する一因となる。こ のような融着を防止するために、焼結晶のシリコ ンカーバイドやシリコンナイトライドを基盤材料 行われていたために、時間と労力を非常に要する 25 にして、その基盤を所定の押し型に加工し、その 基盤表面上に同一材料をCVD法によりコーティ ングして緻密な膜を形成し、再度、所望形状に加 工した成形型が提案されている(特開昭523

45613号公報)。

また、成形型の材料としてタングステンカーバ イドも知られており、これは前述したシリコンカ ーバイドやシリコンナイトライドと比較して、所 HIP処理を施すことにより緻密な表面にすること ができる。

[発明が解決しようとする問題点]

しかしながら、シリコンカーパイドやシリコン 同一材料をCVD法によりコーテイングした成形 型は、硬度が非常に高いために、所望の形状に加 工することが難しいのみならず、その加工に多大 な時間を要してしまう問題点があつた。

る成形型は、前述した通り利点があるが、高温下 ではシリコンカーバイドやシリコンナイトライド と比較して酸化しやすく、そのために型表面が肌 荒れを起こし、型として光学鏡面を保持すること ができない問題点があつた。また、この成形型 20 は、プレス成形時に高温で軟化した状態のガラス と接触する際に、タングステンカーバイドとガラ スとの界面においてそれぞれの物質を構成する元 素が相互に拡散するために、タングステンカーバ イドとガラスとが融着する問題点もあつた。

本発明は、上記した問題点を解決するためにな されたものであり、その特徴は、成形型の基盤材 料としてタングステンカーバイドを使用し、その 形成したガラスレンズの成形型である。

〔問題点を解決するための手段〕

白金一金合金の膜は、実施例で示すスパッタリ ング法やイオンプレーテイング法等により均一に 成膜することができ、その膜厚は、50Å~3000Å (好ましくは100Å~2000Å) の範囲内であること 35 が実用的である。それは、膜厚が50人未満である と、白金ー金合金膜が基盤表面上に点在して均一 に形成されず、膜厚が3000Åを越えると、その膜 厚に分布が生じて、押し型の元となる基盤表面を 高精度な光学鏡面に加工しておいても、その光学 40 500 人成膜して構成した。 鏡面の面精度を低下させる要因になるからであ る。また、白金。金合金の組成は、99~46重量% の白金と1~54重量%の金(好ましくは97~30重 量%の白金と3~70重量%の金)であることが実

用範囲である。それは、金が54重量%を越える と、プレス成形されるガラスレンズが薄い赤色に 着色するからである。この着色傾向は、金の重量 %が増加するに従つて顕著である。また、白金が 望の形状に加工することが容易であり、焼結時に 5 99重量%を越えて金が1重量%未満になると、ブ レス成形時に成形型表面と軟化状態のガラスとが

〔実施例〕

融着しやすくなる。

第1図は本発明の一実施例によるガラスレンズ ナイトライドを基盤材料として、その基盤表面に 10 の成形型を示す断面図である。本実施例の成形型 は、上型1と下型2とから構成され、この上型1 と下型2は、それぞれの外周面が案内型3の内周 面と滑動するように案内型3内に位置している。 そして、上型1及び下型2は、それぞれ基盤1a 一方、タングステンカーバイドを基盤材料とす 15 と表面層 1 b 及び基盤 2 a と表面層 2 b とからな り、それぞれの基盤1a及び2aの材料は焼結時 にHIP処理を施して緻密にしたタングステンカー バイドであり、表面層 1 b 及び 2 b の材料は白金 (95重重%)-金(5重量%)合金である。

> 基盤1a及び2aは、タングステンカーバイド を円柱状(直径17㎜、長さ28㎜)に加工し、その 一端面を凹球面状に研削し、最終仕上げとしてダ イヤモンド砥石により高精度に光学鏡面に研磨 し、それぞれ所定の曲率半径(32mm)の凹球面に 25 加工した。この基盤1a及び2aの凹球面の面粗 さは100 人以下であつた。

上記した加工・研削及び研磨に要した各時間 は、1型当り10時間及び2時間であり、従来技術 の項で記述したシリコンカーバイドやシリコンナ 基盤表面上に白金一金 (Pt-Au) 合金を膜状に 30 イトライドを基盤にして、CVD法により同一材 料で基盤表面上に形成した上・下型を本実施例と 同一形状に加工する場合の加工・研削及び研磨に 要した各時間が1型当り60時間及び5時間であつ たのと比較して、大幅に短縮することができた。

表面層1b及び2bは、高周波スパツタリング 装置を使用し、白金 (95重量%)-金 (5重量%) 合金をターゲットとして、所定の成膜条件(アル ゴンガス圧: 4×10-3Torr、成膜速度:300 A/min)で基盤1a及び2aの各表面上に厚さ

次に、本実施例の成形型の使用例を説明する。 第2図はプレス成形機の主要部を示す断面図であ る。このプレス成形機は、前述した上型1、下型 2及び案内型3 (材料:タングステンカーバイ

5

ド)を具備し、ガラス塊状の被成形ガラス4が下 型2上に置かれ、これ等の型1, 2, 3が、断面 H字状の保持具5 (材料:ステンレス鋼)を介し て、支持台6(材料:ステンレス鋼)で支持され ている。そして、上型1の上方には押し棒7(材 5 レス成形した結果、前述したランタンホウ酸系光 料:ステンレス鋼)位置して、この押し棒7を上 型1の頭部に降下させて、被成形ガラス4をプレ ス成形する構成になつてより、以上の型1,2, 3、被成形ガラス4、保持具5、支持台6及び押 し棒7を石英管8内に収納して、この石英管8の 10 い。 外周に配設した誘導加熱コイル9により、型1, 2, 3とその中の被成形ガラス4を加熱し、その 温度制御は下型2の内部に配設した熱電対10に より型温度を測定して行われる。

系光学ガラス(HOYA㈱製:NbFD13、転移温 度;625℃)を使用し、型温度670℃、プレス圧力 40kg/cm、プレス時間60秒で非酸化性雰囲気(98 %N₂, 2%H₂のホーミングガス) 中でプレス 室温まで急冷して、プレス成形されたガラスレン ズ(両凸球面レンズ)を取り出す。このプレス成 形機に同種の被成形ガラス 4 を入れ替えて同一条 件で40回プレス成形を行つたが、上型1、下型2 酸化による肌荒れもなかつた。型表面の面粗さは プレス成形前ではほとんど変化がなく、100 Å以 下であつた。また、上、下型1,2の表面層1 b, 2 b(白金-金合金膜)の付着力については、 上記プレス成形に充分耐え得るものであつた。

次に、被成形ガラス4として酸化鉛系光学ガラ ス (HOYA㈱製:FD6、転移温度;435℃)を使 用し、型温度495℃、プレス圧力40kg / cd. ブレ ス時間60秒で非酸化性雰囲気(N2ガス)中でブ 学ガラスの使用例と同様な良好な評価を得た。

以上の実施例、使用例のガラスレンズ形状は両 凸球面であつたが、本発明はこれに限定されず、 両凹球面、メニスカス、非球面等であつてもよ

〔発明の効果〕

以上の通り、本発明のガラスレンズの成形型に よれば、基盤材料をタングステンカーバイドとし て、その基盤表面をレンズ形状の押し型に加工 そこで、被成形ガラス4としてランタンホウ酸 15 し、その基盤表面上に白金-金合金を膜状に形成 することにより、従来のシリコンカーバイドやシ リコンナイトライドのものよりも短時間で型を加 工するることができ、酸化による肌荒れが起きに くゝ、光学鏡面を長く保持することができる。そ し、その後、転移温度625℃まで徐冷してから、20 して、プレス成形時に軟化状態のガラスと型表面 との融着を防止することができる。

図面の簡単な説明

第1図は本発明の実施例によるガラスレンズの 成形型を示す断面図及び第2図は同実施例による の型表面と被成形ガラス4との融着は起こらず、25 ガラスレンズの成形型を使用したプレス成形機の 主要部を示す断面図である。

> 1…上型、1 a…上型の基盤、1 b…上型の表 面層、2…下型、2 a…下型の基盤、2 b…下型 の表面層、4…被成形ガラス。

30