Vorlesung Analysis II

June 20, 2025

Teil 2: Topologische Grundbegriffe un metrischen Räumen

an10: Konvergenz in metrischen Räumen

Stichworte: Normierter $\mathbb{R} - VR$, B-W, Äquivalenz aller Normen im \mathbb{R}^n , metrischer Raum, Kgz i

Literatur: [Forster], Kapitel 1,2

- 10.1. Einleitung: Wir haben den \mathbb{R}^n mit der Maximumsnorm $||\cdot||_{\infty}$ versehen und damit die Grenzwerttheorie des \mathbb{R}^n aufgebaut. Die euklidische Norm $||\cdot||_2$ ist dazu äquivalent. Wir beschreiben noch andere Normen, zeigen den mehrdimensionalen Satz von Bolzano-Weierstrß und damit, dass alle Normen im \mathbb{R}^n äquivalent sind.
- **10.2.** Def.: Sei $p \in \mathbb{R}, p \geq 1$. Für $x = (\xi_1, ..., \xi_n)^T \in \mathbb{R}^n$ sei $||x||_p := (\sum_{i=1}^n |\xi_i||^p)^{\frac{1}{p}}$ die p-Norm bzw. l_p -Norm bzw. Hölder-Norm.
- 10.3. Bem.: Für p=2 stimmt diese mit der in an 1.6 definierten euklidischen Norm überein.
- 10.4. Satz: $||\cdot||_n$ ist eine Norm.

Bew.: Zeigen Eigenschaften (N1)-(N3) in an 1.5, und (N1),(N2) sind klar.

Zu (N3): Seien $x, y \in \mathbb{R}^n$. Ist p = 1, dann ist $||x + y||_1 = ||x||_1 + ||y||_1$ klar. Ist p > 1, def. q durch $\frac{1}{p} + \frac{1}{q} = 1$, d.h. $q = \frac{p}{p-1} = 1 + \frac{1}{p-1} > 1$. dann ist $||x + y||_p^p = \sum_{j=1}^n |\xi_j + \eta_j| \cdot |\xi_j + \eta_j|^{p-1} \le \sum_{j=1}^n |\xi_j| \cdot |\xi_j + \eta_j|^{p-1} + \sum_{j=1}^n |\eta_j| \cdot |\xi_j + \eta_j|^{p-1}$

$$\stackrel{\text{(*)}}{\leq} ||x||_p (\sum_{j=1}^n |\xi_j + \eta_j|^{q(p-1)})^{1/q} + ||y||_p (\sum_{j=1}^n |\xi_j + \eta_j|^{q(p-1)})^{p-1} \\
= (||x||_p + ||y||_p) \cdot (||x + y||_p)^{p/q}, \text{ also } ||x + y||_p \leq ||x||_p + ||y||_p.$$

In (*): Für
$$a, b \in \mathbb{R}^n$$
 ist $\sum_{j=1}^n |\alpha_j \beta_j \le ||a||_p \cdot ||b||_q$, denn $\lceil \mathbb{E}||a||_p = ||b||_q = 1$ es gilt: $\forall \alpha, \beta \le \frac{\alpha^p}{p} + \frac{\beta^q}{q}$. $\lceil \alpha \beta = l^{ln(\alpha)}l^{ln(\beta)} = \exp(\frac{1}{p}ln(\alpha^p) + \frac{1}{q}ln(\alpha^q)) \le \frac{1}{p}l^{ln(\alpha^p)} + \frac{1}{q}l^{ln(\beta^q)} \checkmark \rceil$

10.5. Bem.: Man nennt die \triangle - Unglg. (N3) für $||\cdot||_p$ auch Minkowski-Ungleichung. Die folgende Beh. zeigt, warum man die Maximumsnorm $||x||_{\infty} := \max_{1 \le j \le n} |\xi_j|$ mit dden ∞ -Zeichen im Index schreibt:

10.6. <u>Beh.:</u> $\forall x \in \mathbb{R}^n : \lim_{p \to \infty} ||x||_p = ||x||_{\infty}.$ <u>Bew.:</u> Wähle $j \in \{1, ..., n\}$ mit $||x||_{\infty} = |\xi_j| =: M$. sei $\times x \neq 0$.

Dann gilt $M = (|\xi_j|^p)^{\frac{1}{p}} \le ||x||_p = (\sum_{j=1}^n |\xi_j|^p)^{1/p} \le (nU^p)^{1/p} = n^{1/p}M \xrightarrow{p \to \infty} 1 \cdot M.$

10.7. <u>Def.:</u> Eine Folge $(x_k) \subseteq \mathbb{R}^n$ heißt <u>beschränkt</u> : $\Leftrightarrow (||x_k||_{\infty})_{k \in \mathbb{N}}$ beschränkt (in \mathbb{R}) $\Leftrightarrow \exists M \in \mathbb{R} \forall k \in \mathbb{N} : ||x_k||_{\infty} \leq M$.

10.8. Satz von Bolzano-Weierstraß(im \mathbb{R}^n):

Jede beschränkte Folge besitzt ein Konvergente Teilfolge.

Bew.: Sei (x_k) beschränkt.

Es genügt, <u>z.z.</u>: \exists Teilfolge $(x_{l(k)})_{k\in\mathbb{N}} \forall j \in \{1,...,n\} : pr_j(k_{l(k)})$ konvergiert.

Dazu sei j fest. Dann ist $(pr_i(x_k))_{k\in\mathbb{N}}$ beschränkt.

Dazu \exists Teilfolge $(x_{l(k)})$ mit $pr_j(x_k)$ Kgt. laut 1-dim. B-W.

Wenden dies für j=1,...,n an, erhalte somit Folgen

 $\mathbb{N} \supseteq (l_1(k)) \supseteq (l_2(k)) \supseteq ... \supseteq (l_n(k))$, setze $l(k) := l_n(k)$ für alle $k \in \mathbb{N}$.

Die Folge $(x_{l(k)})$ ist eine Konvergente Teilfolge, da sie laut Konstruktion in jeder Komponente Konvergiert (d.h. bzgl. $||\cdot||_{\infty}$), vgl. an 1.12.

10.9. <u>Bem.:</u> p Norm auf $\mathbb{R}^n \Rightarrow \forall x, y \in \mathbb{R}^n : \underline{|p(x - p(y) \leq p(x - y))|}$, und damit ist jede Norm auf \mathbb{R}^n stetig.

Bew.: • Haben $p(x) = p(x - y + y) \le p(x - y) + p(y) \Rightarrow p(x) - p(y) \le p(x - y)$,

und $p(y) = p(y - x + x) \le p(x - y) + p(x) \Rightarrow p(y) - p(x) \le p(x - y),$

zusammen fplgt $|p(x) - p(y)| = \max(p(x) - p(y), p(y) - p(x)) \le p(x - y).$

• Die Stetigkeit folgt direkt: $\forall x \forall \epsilon > 0 \exists \delta > 0 \forall y : p(x-y) < \delta \Rightarrow p(x) - p(y) \leq \epsilon$, nämlich nimm $\delta = \epsilon$, dazu ist $p(x)-p(y) \leq p(x-y) < \delta = \epsilon$.

10.10. Satz: Alle Normen auf \mathbb{R}^n sind äquivalent, d.h.

Sind p,qq beliebige Normen, dann $\exists \alpha \beta \in \mathbb{R} : p \leq \alpha q$ und $q \leq \beta p$.

Bew.: Haben Ä-Relation der Normen (refl./symm./transitiv klar).

Daher gen. z.z. Jede Norm ist $\underline{zu} \parallel \cdot \parallel_{\infty}$ äquivalent.

1. Schritt: Mit der Standardbasis $e_1, ..., e_n$ des \mathbb{R}^n gilt:

$$p(x) = p(\sum_{j} \xi_{j} e_{j}) \le \sum_{j} p(\xi_{j} e_{j}) = \sum_{j} |\xi_{j}| p(e_{j}) \le ||x||_{\infty} \underbrace{\sum_{j=1}^{n} p(e_{j})}_{=:a}$$

2. SChritt: Ann.: $\exists z \in S : \{x \in \mathbb{R}^n; ||x||_{\infty} = 1\} \text{ mit } p(z) = \inf_{x \in S} p(x).$

 $\Rightarrow p(z) = min_{x \in S} p(x).$

Dann setze $\frac{1}{\beta} := p(z)$ (da ja $z \neq 0$).

<u>Beh.</u>: Dieses β tut's, d.h. $||\cdot||_{\infty} \leq \beta p$.

Denn: Sei $\times x \neq 0, y := \frac{x}{||x||_{\infty}} \in S$,

Dann ist $\frac{1}{||x||_{\infty}} p(x) = p(\frac{1}{||x||_{\infty}} \cdot x) = p(y) \ge p(z) = \frac{1}{\beta}$

 $\Rightarrow ||x||_{\infty} \leq \beta p(x)$ wie gewünscht.

Zeige also Annahme:

Wähle $(x_k) \subseteq S$ mit $p(x_k) \xrightarrow{k \to \infty} \inf_{e \in S} p(x)$,

wegen $(x_k) \subseteq S$ ist (x_k) beschränkt.

Mit B-W 10.8 folgt $\lim_{n\to\infty} x_{l(k)} = z$.

Dann ist $|||x_{l(k)}||_{\infty} - ||z||_{\infty}| \le ||x_{l(k)} - z||_{\infty} \xrightarrow{k \to \infty} 0 \Rightarrow ||z||_{\infty} = 1.$

Haben somit ein $z \in S$ mit $p(z) = \inf_{x \in S} p(x)$, da p stetig nach 10.9.

10.11. Bsp.: Einheits" Kugeln" bzgl. verschiedener Normen: Sei $a \in \mathbb{R}^2, \epsilon > 0$.

Zur Abstandsmessung im Normierten $\mathbb{R}-V$ Räumen dient der Term $||x-y||\in\mathbb{R}_{\geq 0}$.

10.12. <u>Def.:</u> In einem endlich dim. normierten $\mathbb{R} - VR$ ($\mathbb{R}^n, ||\cdot||$) heißt die Abb. $\underline{\delta} : \mathbb{R}^n x \mathbb{R} \to \mathbb{R}_{\geq 0}$, $\underline{\delta}(x,y) := ||x-y||$ die zu $||\cdot||$ gehörige Metrik.

10.13. Bem.: Die zu $||\cdot||$ gehörige Metrik erfüllt die folgende Eigenschaften:

 $(M1)\underline{\delta(x,y)} = 0 \Leftrightarrow x = \underline{y}, \text{ denn } \delta(x,y) = 0 \Leftrightarrow ||x-y|| = 0 \Leftrightarrow x-y = 0 \Leftrightarrow x = \underline{y}.$

 $(M2)\overline{\delta(x,y)} = \delta(y,x), \text{ denn } \delta(x,y) = ||x-y|| = ||-(y-x)|| = |-1| \cdot ||y-x|| = ||y-x|| = \delta(y,x).$

(M3) $\delta(x,z) \le \delta(x,y) + \delta(y,z)$, denn $\delta(x,z) = ||x-z|| = ||(x-y) + (y-z)|| \le ||x-y|| + ||y-z|| = \delta(x,y) + \delta(y,z)$.

Diese drei Grundeigenschaften der "Abstandsmessung" sind ohne Angabe einer Norm formulierbar, wir sprechen dann allgemein von einem metrischen Raum.

10.14. Def.: Sei R eine Menge und $\delta: R \times R \to \mathbb{R}_{\geq 0}$ eine Abb. mit den Eigenschaften

 $(M1)\forall x, y \in R : \delta(x, y) = 0 \Leftrightarrow x = y$

(M2) $\forall x, y \in R : \delta(x, y = \delta y, x)$ (Symmetrie)

(M3) $\forall x, y, z \in R : \delta(x, z) \leq \delta(x, y) + \delta(y, z) \triangle$ -Unglg.

Dann heißt δ eine Metrik (auf R) und (R, δ) ein metrischer Raum.

10.15. Folgerung: $(1) |\delta(a,b) - \delta(x,y)| \le \delta(a,x) + \delta(b,y)$

 $(2) |\delta(a, \overline{b}) - \delta(a, y)| \le \delta(b, y).$

Bew.: (1): $\delta(a,b) \leq \delta(a,x) + \delta(x,b) \leq \delta(a,x) + \delta(x,y) + \delta(y,b)$

 $\Rightarrow \beta delta(a,b) - \delta(x,y) \leq \delta(a,x) + \delta(b,y),$

analog: $\delta(x,y) - \delta(a,b) \le \delta(a,x) + \delta(b,y)$.

(2): Setze x=a in (1).

Konvergenz dann in metrischen Räumen erklärt werden. Sei dazu (R, δ) metrischer Raum.

10.16. <u>Def.:</u> Eine Folge $(x_k) \subseteq R$ <u>konvergiert</u> gegen $a \in R : \Leftrightarrow \lim_{k \to \infty} \delta(x_k, a) = 0$.

 $\underline{\text{Notation:}}\ x_k\xrightarrow{k\to\infty} a\ \text{bzw.}\ \lim_{k\to\infty} x_k=a.$

Nennen a den Grenzwert der Folge (x_k) in R, kurz: GW.

10.17. Eigenschaften der Konvergenz im metrischen Raum:

(1)
$$x_k \to a, x_k \to b \Rightarrow a = b$$
 (Eindimensional des GW)
(2) $x_k \to a, y_k \to b \Rightarrow \lim_{k \to \infty \delta(x_k, y_k) = \delta(a, b)}$ (Stetigkeit der Metrik).

Bew.: Zu (1):
$$a = b \leftrightarrow \delta(a, b) = 0$$
, aber: $\delta(a, b) \leq \delta(a, x_k) + \delta(x_k, b) \xrightarrow{k \to \infty} 0 + 0 = 0$.

$$\overline{\operatorname{Zu}(2)}: \left|\delta(x_k, y_k) - \delta(a, b)\right| \le \delta(a, x_k) + \delta(b, y_k) \xrightarrow{k \to \infty} 0 + 0 = 0.$$

10.18. Def.: Eine Folge $(x_k) \subseteq R$ in einem metrischen Raum (r, δ) heißt Cauchyfolge: $\forall \epsilon > 0 \exists k_0 \in R$ $\mathbb{N} \forall k, l \in \mathbb{N}, k, l \geq k_0 : \delta(x_k, x_l) < \epsilon.$

10.19. Satz: Jede Konvergente Folge $(x_k) \subseteq R$ ist eine Cauchyfolge.

Bew.: Klar, geht genauso wie in An 5.21.

10.20. <u>Def.</u>: Ein metrischer Raum R heißt vollständig, wenn jede Cauchyfolge Konvergiert. 'vgl. An 6.9

wir zeigen nun, dass jeder normierter endlich-dimensionale $\mathbb{R} - VR$ vollständig ist. (bemerke, dass jeder n-dimensionale $\mathbb{R} - VR$ zu \mathbb{R}^n isomorph ist, s. Lin. Algebra).

10.21. Satz: Es sei $||\cdot||: \mathbb{R}^n \to \mathbb{R}_{>0}$ irgendeine Norm auf \mathbb{R}^n , $\underline{\delta(x,y)} = ||x-y|$.

Dann ist (\mathbb{R}^n, δ) ein vollständiger Raum.

<u>Bew.:</u> Bekannt aus <u>10.10</u>: $\exists M_1, M_2 > 0 \forall x \in \mathbb{R}^n : ||x|| \leq M_1 ||x||_{\infty}, ||x||_{\infty} \leq M_2 ||x||$

Sei (x_k) eine Cauchyfolge bzgl. δ . Sei $\epsilon > 0$, dann $\exists k_0 \in \mathbb{N} : \delta(x_k, x_l) < \frac{\epsilon}{M_2}$,

d.h. $||x_k - x_l|| < \epsilon$ wegen $\frac{||x_k - x_l||_{\infty}}{M_2} \le ||x_k - x_l|| = \delta(x_k, x_l)$ für alle $k, l \ge k_0$. Daraus folgt: $|pr_j(x_k) - pr_j(x_l)| < \epsilon$ für alle $j \in \{1, ..., n\}$,

d.h. $(pr_i(x_k))_{k\in\mathbb{N}}$ ist eine Cauchyfolge in \mathbb{R} .

da \mathbb{R} vollständig ist (vgl. An. 6.9), gilt: $\exists \alpha_j \in \mathbb{R} : \lim_{k \to \infty} pr_j(x_k) = \alpha_j$.

Setze $a := (\alpha, ..., \alpha_n)^T \in \mathbb{R}^n$. Dann gilt $\lim_{k \to \infty} x_k = a$,

denn
$$\delta(x_k, a) = ||x_k - a|| \le M_1 ||x_k - a||_{\infty} = M_1 \max_{1 \le j \le n} |pr_j(x_k) - \alpha_j| \xrightarrow{k \to \infty} 0.$$

10.22. Bsp.: $\bullet(\mathbb{R}^2, ||\cdot||_2)$ ist vollständiger $\mathbb{R} - VR$ der Dimension 2. $\bullet(\mathbb{Q}, |\cdot|)$ ist nicht vollständig.

 $\bullet(l[a,b],||\cdot||_{sup})$ ist vollständig, $(l[a,b],||\cdot||_1)$ ist nicht vollständig, vgl. (\mathring{U}) Nl.1 A4, Bl. 2 A5.