Error-Correcting Codes in the Rank Metric With Applications to Cryptography

Dario Gjorgjevski¹ gjorgjevski.dario@students.finki.ukim.mk

¹Faculty of Computer Science and Engineering Ss. Cyril and Methodius University in Skopje

January 30, 2018

Contents

- Introduction
 - Crash Course in Cryptography
 - Going Post-Quantum
 - Code-Based Cryptography
- The GPT Cryptosystem
- 3 Decoding Random Codes in the Rank Metric

Past vs. Present

- In the past, cryptography was used to provide secure communication in an ad-hoc manner.
- This picture changed radically with the development of a rich and rigorous theory in the late 20th century.
- Today, we have algorithms for secure communication in two settings: symmetric and asymmetric.
- We will quickly review both; however, the remainder of this thesis focuses entirely on algorithms for secure communication in the asymmetric setting.

The Symmetric Setting

- The message m is encrypted under the secret key k to obtain the ciphertext c.
- The ciphertext c is decrypted under the same key k.
- If the two parties could share the secret key securely, why could they not do the same with the message?

Figure: Secure communication in the symmetric setting.

The Asymmetric Setting

Cryptography in the asymmetric setting is called *public-key cryptography*. The RSA (Rivest et al. [11]) cryptosystem is the most widely used and one of the first asymmetric cryptosystems:

- \bullet Encryption is done with the intended recipient's *public key*, $k_{\rm pub}$, known to everybody.
- $\ensuremath{\text{2}}$ Decryption is done with the $\ensuremath{\textit{private key, }} k_{\text{priv}},$ known only to the recipient.

Real-world analogy

Think of a mailbox: encryption corresponds to leaving mail in a person's mailbox, decryption to the person opening the mailbox to retrieve it.

RSA Basics

RSA relies on the computational complexity of integer factorization.

Example (Integer factorization)

If you were asked to multiply

 $17627949842247424607 \times 15969639761398924673$,

you would need several minutes with pen and paper to arrive at $281\,512\,008\,712\,700\,373\,730\,275\,954\,373\,439\,628\,511$. But, what if you were asked to find two integers, p and q, such that

 $p \times q = 281\,512\,008\,712\,700\,373\,730\,275\,954\,373\,439\,628\,511$?

Unfortunately, Shor [13] published an algorithm that can factor integers efficiently and hence "break" RSA. The only drawback: it needs a quantum computer.

The McEliece Cryptosystem

- A cryptosystem from roughly the same time as RSA is believed to be hard even for quantum computers: the McEliece cryptosystem.
- \bullet It relies on the hardness of decoding random codes over \mathbb{F}_q in the Hamming metric.
- The problem was proven \mathcal{NP} -complete when q=2 by Berlekamp et al. [2]; and in the general case by Barg [1].
- The best attacks against McEliece come from a family of algorithms called *information set decoding* (ISD).

Issues with McEliece

...and Fixing Them

- ullet Unfortunately, McEliece requires a key size of roughly 192 kB to achieve 128-bit security against information set decoding \Longrightarrow very prohibitive for embedded devices.
- Gabidulin et al. [4] proposed the GPT cryptosystem which uses error-correcting codes in the *rank metric*, as opposed to McEliece's Goppa codes which correct errors in the Hamming metric.
- GPT is believed to require much smaller keys in order to achieve the same security.

Cryptography and the Information Transmission Model

- The information transmission model comes from the landmark work of Shannon [12].
- It can be utilized for cryptographic purposes by means of errorcorrecting codes. McEliece is one of the most prominent examples of such code-based cryptography.
- We assume transmission to be error-free and add noise deliberately for encryption.

Figure: Transmitting information over a noisy channel.

Contents

- Introduction
- 2 The GPT Cryptosystem
 - Basic Concepts
 - Gabidulin Codes
 - Description of the GPT Cryptosystem
 - Overbeck's Attack and Loidreau's Reparation
- 3 Decoding Random Codes in the Rank Metric

Linear Codes

Definition (Linear Code)

An [n,k]-code $\mathcal C$ over a finite field $\mathbb F$ is a k-dimensional subspace of the vector space $\mathbb F^n$. The elements of $\mathcal C$ are called codewords. $\mathcal C$ is an [n,k,d]-code if $d=\min\{\|x-y\|:x,y\in\mathcal C,x\neq y\}$ for some norm $\|\cdot\|$. d is called the $minimum\ distance$ of the code with respect to $\|\cdot\|$.

An [n,k,d]-code can correct an error $oldsymbol{e}$ if and only if

$$\|e\| \le t =: \lfloor (d-1)/2 \rfloor.$$

t is called the *error-correcting capacity* of $\mathcal{C}.$

Generating and Utilizing Linear Codes

Definition (Generator Matrix)

A full-rank matrix $G \in \mathbb{F}^{k \times n}$ is said to be a *generator matrix* for the [n,k]-code $\mathcal C$ if its rows span $\mathcal C$ over $\mathbb F$. In other words, if

$$\mathcal{C} = \{ \boldsymbol{x}\boldsymbol{G} : \boldsymbol{x} \in \mathbb{F}^k \}.$$

G defines an *encoding map* $f_G \colon \mathbb{F}^k o \mathbb{F}^n$ given by $x \mapsto xG$.

- $\textbf{ 0} \ \, \mathsf{A} \ \, \mathsf{message} \,\, \boldsymbol{x} \in \mathbb{F}^k \,\, \mathsf{is} \,\, \mathsf{encoded} \,\, \mathsf{as} \,\, \boldsymbol{c} \coloneqq \boldsymbol{m} \boldsymbol{G} \in \mathbb{F}^n.$
- ② The codeword c is inflicted by noise and received as $y \coloneqq c + e$ with $\|e\| \le t$.
- ullet If an efficient decoding procedure exists for \mathcal{C} , y is decoded into x. (Decoding can of course be done without an efficient procedure, but will be computationally very demanding.)

The Rank Metric

Definition (Rank Norm)

Let $x:=\begin{bmatrix}x_1 & \cdots & x_n\end{bmatrix}\in\mathbb{F}_{q^m}^n$ and $\{\beta_1,\dots,\beta_m\}$ be a basis of \mathbb{F}_q^m over \mathbb{F}_q . For all $i\in\{1,\dots,n\}$, we can write $x_i=\sum_{j=1}^m x_{i,j}\beta_j$ with $x_{i,j}\in\mathbb{F}_q$. The rank norm $\|\cdot\|_q$ is defined as

$$\|\boldsymbol{x}\|_{q} \coloneqq \operatorname{rank} \begin{bmatrix} x_{1,1} & \cdots & x_{1,m} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,m} \end{bmatrix}. \tag{1}$$

The rank norm of is independent of the choice of basis and induces a metric called the *rank metric* (or *rank distance*):

$$d_{\mathbf{R}}(\boldsymbol{x}-\boldsymbol{y})\coloneqq \|\boldsymbol{x}-\boldsymbol{y}\|_{q}.$$

Generating Gabidulin Codes

Gabidulin [3] constructed a family of Maximum Rank Distance codes over \mathbb{F}_{q^m} of length $n \leq m$. For any $x \in \mathbb{F}_{q^m}$ and any $i \in \mathbb{Z}$, the quantity $x^{[i]} := x^{q^i}$.

Definition (Gabidulin Code)

Let ${m g} \coloneqq \begin{bmatrix} g_1 & \cdots & g_n \end{bmatrix} \in \mathbb{F}_{q^m}^n$ with all g_i independent over \mathbb{F}_q . (This implies $n \le m$.) The *Gabidulin code* of dimension k, $\mathfrak{G}_k({m g})$, is generated by

$$G := \begin{bmatrix} g_1^{[0]} & \cdots & g_n^{[0]} \\ \vdots & \ddots & \vdots \\ g_1^{[k-1]} & \cdots & g_n^{[k-1]} \end{bmatrix}. \tag{2}$$

Gabidulin codes have d=n-k+1, hence errors of rank $t=\lfloor (n-k)/2 \rfloor$ can be corrected in time $\mathcal{O}(d^3+dn)$.

The GPT Cryptosystem

System Parameters and Key Generation

System Parameters

- Choose $k, n, m \in \mathbb{N}$ such that $k < n \leq m$.
- Define the error-correcting capacity $t = \lfloor (n-k)/2 \rfloor$.
- Choose $l \in \mathbb{N}$ with $l \ll n$.

Key Generation

- \bullet Let ${\pmb g} \in \mathbb{F}_{q^m}^n$ with $\|{\pmb g}\|_q = n$ and let ${\pmb G}$ be a generator of $\mathfrak{G}_k({\pmb g}).$
- Let $S \in GL_k(\mathbb{F}_{q^m})$ and $P \in GL_{n+l}(\mathbb{F}_q)$. Note that P is an *isometry* in the rank metric.
- $\bullet \ \ \text{Let} \ \pmb{X}_1 \in \mathbb{F}_{q^m}^{k \times l} \ \text{and} \ \pmb{X}_2 \in \mathbb{F}_{q^m}^{k \times n} \ \text{with} \ \mathrm{rank} \ \pmb{X}_2 < t.$
- Define the distortion transformation

$$\mathcal{D}(\boldsymbol{G})\coloneqq \boldsymbol{S}\begin{bmatrix}\boldsymbol{X}_1 & \boldsymbol{G}+\boldsymbol{X}_2\end{bmatrix}\boldsymbol{P}\!.$$

The GPT Cryptosystem

Public Key, Encryption, and Decryption

- $\bullet \ \ \text{The public key consists of} \ \textbf{$G_{\rm pub} \coloneqq \mathcal{D}(G)$ and} \ t_{\rm pub} \coloneqq t {\rm rank} \, \textbf{X_2}.$
- ullet To encrypt $m{x}\in \mathbb{F}_{q^m}^k$, choose $m{e}\in \mathbb{F}_{q^m}^n$ with $\|m{x}\|_q\leq t_{\mathsf{pub}}$ and compute $m{y}:=m{x}m{G}_{\mathsf{pub}}+m{e}.$
- To decrypt $y \in \mathbb{F}_{q^m}^n$, apply the decoding procedure for $\mathfrak{G}_k(g)$ to the last n components of yP^{-1} to obtain xS, then just multiply by S^{-1} . The math works out just nicely.

The GPT Cryptosystem

Common Form of the Public Key

We simplified and generalized the following theorem due to Kshevetskiy [6].

Theorem (GPT Public Key)

Let G_{pub} be a public GPT key, and assume that $\operatorname{rank} X_2 = t_{X_2}$. Then, there exist $P^* \in \operatorname{GL}_{l+n}(\mathbb{F}_q)$, $X^* \in \mathbb{F}_{q^m}^{k \times (l+t_{X_2})}$, and G^* which generates an $[n-t_{X_2},k]$ -Gabidulin code $\mathfrak{G}_k(g^*)$. Furthermore,

$$oldsymbol{G}_{\mathsf{pub}} = oldsymbol{S} egin{bmatrix} oldsymbol{X}^* & oldsymbol{G}^* \end{bmatrix} oldsymbol{P}^*$$
 ,

and $\mathfrak{G}_k({m g}^*)$ can correct more than $t_{\sf pub}$ errors.

Distinguishing Properties

Definition

For any $i\in\mathbb{N}$, let $\Lambda_i\colon\mathbb{F}_{q^m}^{k\times n}\to\mathbb{F}_{q^m}^{ik\times n}$ be the \mathbb{F}_q -linear operator defined as:

$$\varLambda_i(\boldsymbol{X}) \coloneqq \begin{bmatrix} \boldsymbol{X}^{[0]} \\ \vdots \\ \boldsymbol{X}^{[i-1]} \end{bmatrix}.$$

For any code $\mathcal C$ generated by G, we denote by $\varLambda_i(\mathcal C)$ the code generated by $\varLambda_i(G)$. It turns out that \varLambda_i can distinguish Gabidulin codes from random.

Gabidulin vs. Random

Lemma

Let ${m g} \in \mathbb{F}_{q^m}^n$ with $\|{m g}\|_q = n.$ For $i \in \mathbb{N}$ such that $i \leq n-k-1$,

$$\varLambda_i(\mathfrak{G}_k(\boldsymbol{g}))=\mathfrak{G}_{k+i}(\boldsymbol{g}).$$

On the other hand, if G is a randomly-drawn matrix, we obtain something quite different. Overbeck [8, 9, 10] formulated a successful attack against GPT using these properties.

Lemma

If $\mathcal{C} \subset \mathbb{F}_{q^m}^n$ is a code generated by a random matrix $m{G} \in \mathbb{F}_{q^m}^{k imes n}$,

$$\dim \varLambda_i(\mathcal{C}) = \min\{n, (i+1)k\}$$

with high probability.

Reparation by Loidreau [7]

Crucial to the structural attack against GPT are:

- \bullet The distinguishing properties of $\mathfrak{G}_k(\boldsymbol{g})$ under $\varLambda_i.$
- \bullet The invariance of $\boldsymbol{P} \in \mathrm{GL}_{n+l}(\mathbb{F}_q)$ under $\varLambda_i.$

Loidreau [7] tackled these issues by

- $\textbf{0} \ \ \mathsf{Letting} \ \boldsymbol{P} \in \mathsf{GL}_{n+l}(\mathcal{W}) \text{, where } \mathcal{W} \text{ is a } \lambda \text{-dimensional subspace of } \mathbb{F}_q^m.$
- ② Using ${m P}^{-1}$ to scramble and ${m P}$ to unscramble instead of the other way around.

This has the effect of resisting the structural attack at the cost of reducing the error-correcting capacity by a factor of λ .

No Structural Exploits

Our best attacks against this reparation are *generic*. The state-of-the-art comes from Gaborit et al. [5]; we will try to formulate the *information set decoding* family of algorithms in the rank metric.

Contents

- Introduction
- 2 The GPT Cryptosystem
- 3 Decoding Random Codes in the Rank Metric
 - State-of-the-Art
 - Information Set Decoding

Support-Trapping Algorithm by Gaborit et al. [5]

- $\operatorname{supp}(e) \coloneqq \operatorname{subspace} \mathcal{E}$ which contains each e_i .
- Assume $\|e\|_q \le w \implies \mathcal{E}$ is w.l.o.g. w-dimensional.
- ullet However, we may need to guess $\mathcal{E}'>\mathcal{E}$ to be able to solve for e.
- Gaborit et al. [5] showed how to retrieve e in time $\mathcal{O}(q^{w\lceil mk/n \rceil})$ by:
 - **①** Taking \mathcal{E}' to be of dimension $\lceil (n-k)m/n \rceil$; and
 - ② Writing each e_i in \mathcal{E}' .

An ISD-Inspired Variation

Instead of guessing a superspace of \mathcal{E} , we will—analogously to ISD algorithms in the Hamming metric—guess a subspace that is "near-orthogonal" to \mathcal{E} .

Intuition Behind ISD in the Rank Metric

Instead of guessing a superspace of \mathcal{E} , we guess $\mathcal{V} \leq \mathbb{F}_q^m$ that is

- lacktriangle "Near-orthogonal" to \mathcal{E} ; and
- 2 Allows us to solve for each e_i .

Assume that

- \mathcal{V} is ζ -dimensional.
- $m{P} \in \mathbb{F}_q^{\zeta imes m}$ projects from \mathbb{F}_q^m to $\mathcal{V}.$
- $\quad \bullet \ \, \tilde{\mathcal{V}} \ \, \text{is a p-dimensional subspace of \mathcal{V}, for $p \in \{0,\dots,\zeta\}$.}$
- $\bullet \ \langle \tilde{\pmb{v}}_1, \dots, \tilde{\pmb{v}}_p \rangle \text{ is a basis for } \tilde{\mathcal{V}}.$

Description of the Algorithm

$$\{ \widetilde{\boldsymbol{P}(y_i - (\boldsymbol{x}\boldsymbol{G})_i)} = \sum_{j=1}^p \gamma_{i,j} \widetilde{\boldsymbol{v}}_j : i \in \{1, \dots, n\} \}$$
 (3)

is a linear system over \mathbb{F}_q in ζn equations and mk+np unknowns $\Longrightarrow \zeta = \lceil mk/n \rceil + p$. Now:

- $oldsymbol{\circ}$ Solve for x in (3).
- $\textbf{ If } \| \boldsymbol{y} \boldsymbol{x} \boldsymbol{G} \|_q \leq w \text{, then we have a successful iteration. Otherwise, try a new } \mathcal{V} \text{ along with all } p\text{-dimensional } \tilde{\mathcal{V}} \text{'s.}$

Complexity Analysis of the Algorithm

Setting Up the Stage

Informally, we need the

- ullet Probability that "w-p dimensions" of $\mathrm{supp}(e)$ come from $\mathcal{V}^\perp.$
- \bullet Probability that "p dimensions" of $\operatorname{supp}(\boldsymbol{e})$ come from $\tilde{\mathcal{V}}.$
- ullet The cost of iterating through all p-dimensional $ilde{\mathcal{V}}$'s.

(We can ignore the cost of solving for $oldsymbol{x}$ as it is a simple linear system.)

A Counting Argument

In order to evaluate the two probabilities, we:

- Count all "good" choices; and
- ② Divide that number by the total number of choices for $\operatorname{supp}(\boldsymbol{e}).$

q-Binomial Coefficients

Counting Vector Spaces

Definition (*q*-Binomial Coefficient)

The q-binomial coefficient (also called Gaussian binomial coefficient) is defined by

$$\begin{bmatrix} m \\ r \end{bmatrix}_q = \begin{cases} \frac{(1-q^m)(1-q^{m-1})\cdots(1-q^{m-r+1})}{(1-q)(1-q^2)\cdots(1-q^r)} & r \leq m \\ 0 & r > m. \end{cases}$$

Furthermore, it satisfies

$$\begin{bmatrix} m \\ r \end{bmatrix}_q \in \Theta(q^{r(m-r)}).$$

The q-binomial coefficient counts the number of r-dimensional subspaces of an m-dimensional vector space over \mathbb{F}_q .

Complexity Analysis of the Algorithm

Final Results

We can see that the probability of a successful iteration is

$$\begin{bmatrix} \zeta \\ p \end{bmatrix}_q \begin{bmatrix} m - \zeta \\ w - p \end{bmatrix}_q \begin{bmatrix} m \\ w \end{bmatrix}_q^{-1},$$

while the cost of iterating through all $\tilde{\mathcal{V}}$'s is

$$\begin{bmatrix} \zeta \\ p \end{bmatrix}_q.$$

This gives an average complexity of

$$\begin{bmatrix} m-\zeta \\ w-p \end{bmatrix}_q^{-1} \begin{bmatrix} m \\ w \end{bmatrix}_q \in \Theta(q^{w\zeta+p(p+m-\zeta)}).$$

 $m>\zeta \implies$ it is minimized when p=0 and becomes the same as in [5]:

$$\Theta(q^{w\lceil mk/n\rceil}).$$

References I

- S. Barg. "Some New NP-Complete Coding Problems". English. In: *Probl. Inf. Transm.* 30.3 (1994), pp. 209–214. ISSN: 0032-9460; 1608-3253/e.
- E. Berlekamp, R. McEliece, and H. van Tilborg. "On the Inherent Intractability of Certain Coding Problems". In: *IEEE Transactions on Information Theory* 24.3 (May 1978), pp. 384–386. ISSN: 0018-9448. DOI: 10.1109/TIT.1978.1055873.
- E. M. Gabidulin. "Theory of Codes with Maximum Rank Distance". In: *Probl. Inf. Transm.* 21.1 (1985), pp. 3–16.
 - E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. "Ideals over a Non-Commutative Ring and Their Application in Cryptology". In: *Proceedings of the 10th Annual International Conference on Theory and Application of Cryptographic Techniques.* EUROCRYPT'91. Brighton, UK: Springer-Verlag, 1991, pp. 482–489. ISBN: 3-540-54620-0.

References II

- P. Gaborit, O. Ruatta, and J. Schrek. "On the Complexity of the Rank Syndrome Decoding Problem". In: CoRR abs/1301.1026 (2013). arXiv: 1301.1026. URL: http://arxiv.org/abs/1301.1026.
- A. Kshevetskiy. "Security of GPT-Like Public-Key Cryptosystems Based on Linear Rank Codes". In: 3rd International Workshop on Signal Design and Its Applications in Communications. Sept. 2007, pp. 143–147. DOI: 10.1109/IWSDA.2007.4408344.
 - P. Loidreau. A New Rank Metric Codes Based Encryption Scheme. Cryptology ePrint Archive, Report 2017/236.

 Version 20170311:144514. Mar. 2017. eprint:
 https://eprint.iacr.org/2017/236.

References III

- R. Overbeck. "A New Structural Attack for GPT and Variants". In: Progress in Cryptology Mycrypt 2005: First International Conference on Cryptology in Malaysia, Kuala Lumpur, Malaysia, September 28–30, 2005. Proceedings. Ed. by E. Dawson and S. Vaudenay. Berlin, Heidelberg: Springer, 2005, pp. 50–63. ISBN: 978-3-540-32066-1. DOI: 10.1007/11554868_5.
- R. Overbeck. "Extending Gibson's Attacks on the GPT Cryptosystem". In: Coding and Cryptography: International Workshop, WCC 2005, Bergen, Norway, March 14–18, 2005. Revised Selected Papers. Ed. by Ø. Ytrehus. Berlin, Heidelberg: Springer, 2006, pp. 178–188. ISBN: 978-3-540-35482-6. DOI: 10.1007/11779360 15.
 - R. Overbeck. "Structural Attacks for Public-Key Cryptosystems Based on Gabidulin Codes". In: *Journal of Cryptology* 21.2 (Apr. 2008), pp. 280–301. ISSN: 1432-1378. DOI: 10.1007/s00145-007-9003-9.

References IV

- R. L. Rivest, A. Shamir, and L. Adleman. "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems". In: *Commun. ACM* 21.2 (Feb. 1978), pp. 120–126. ISSN: 0001-0782. DOI: 10.1145/359340.359342.
- C. E. Shannon. "A Mathematical Theory of Communication". In: *Bell System Technical Journal* 27.3 (1948), pp. 379–423. ISSN: 1538-7305. DOI: 10.1002/j.1538-7305.1948.tb01338.x.
 - P. W. Shor. "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer". In: *SIAM J. Comput.* 26.5 (Oct. 1997), pp. 1484–1509. ISSN: 0097-5397. DOI: 10.1137/S0097539795293172.