

#### **CENTRO PAULA SOUZA**

12/09/2022 22/09/2022

MAG004 — ÁLGEBRA LINEAR MAT006 — MATEMÁTICA DISCRETA

HENRIQUE FURIA SILVA

Aula 07

# Espaços Vetoriais

Para efetuar operações em espaços vetoriais é preciso primeiro apresentar o conjunto que contém os escalares.

## I — Corpo algébrico ordenado para os escalares

A partir de um conjunto não vazio (K) definem-se duas operações binárias:

| Adição |                               |               | soma                                 | Multi | plicação                       |                   | produto                                                |
|--------|-------------------------------|---------------|--------------------------------------|-------|--------------------------------|-------------------|--------------------------------------------------------|
| +:     | $\mathbb{K} 	imes \mathbb{K}$ | $\rightarrow$ | K                                    | ••    | $\mathbb{K} \times \mathbb{K}$ | $\longrightarrow$ | K                                                      |
|        | (a, b)                        | ↦             | $+(a,b)\stackrel{\text{def}}{=} a+b$ |       | (a, b)                         | $\mapsto$         | $\cdot (a,b) \stackrel{\text{\tiny def}}{=} a \cdot b$ |

Essas operações devem satisfazer às seguintes propriedades, para cada  $\{a, b, c\} \subset \mathbb{K}$ 

#### [1] Propriedades da soma:

| (S1)  | Associatividade da soma                          | a + (b+c) = (a+b) + c                     |  |                             |
|-------|--------------------------------------------------|-------------------------------------------|--|-----------------------------|
| (S2)  | Existência do elemento neutro $(0_{\mathbb{K}})$ | $0_{\mathbb{K}} + a = a \qquad \qquad \&$ |  | $a + 0_{\mathbb{K}} = a$    |
| (\$3) | Existência do elemento oposto $(-a)$             | $a + (-a) = 0_{\mathbb{K}} $ &            |  | $(-a) + a = 0_{\mathbb{K}}$ |
| (S4)  | Comutatividade da soma                           | a+b=b+a                                   |  |                             |

(Quando soma satisfaz as propriedades acima, isto significa que o par  $(\mathbb{K}, +)$  é um grupo comutativo).

### [2] Propriedades do produto:

|      | ·                                                |                                |   |                                |
|------|--------------------------------------------------|--------------------------------|---|--------------------------------|
| (P1) | Associatividade do produto                       | $a\cdot (b\cdot c)=(a\cdot$    |   |                                |
| (P2) | Existência do elemento neutro $(1_{\mathbb{K}})$ | $1_{\mathbb{K}}\cdot a=a$      | & | $a\cdot 1_{\mathbb{K}}=a$      |
| (P3) | Existência do elemento inverso $(a^{-1})$        | $a\cdot a^{-1}=1_{\mathbb{K}}$ | & | $a^{-1}\cdot a=1_{\mathbb{K}}$ |
| (P4) | Comutatividade do produto                        | $a \cdot b = b \cdot a$        |   |                                |

(Quando o produto satisfaz as propriedades acima, isto significa que o par  $(\mathbb{K}^*,\cdot)$  é um grupo comutativo).

#### [3] Propriedades distributivas, que relacionam as operações de adição e multiplicação

| (D1) | Distributiva à esquerda | $a \cdot (b+c) = a \cdot b + a \cdot c$ |  |
|------|-------------------------|-----------------------------------------|--|
| (D2) | Distributiva à direita  | $(a+b)\cdot c = a\cdot c + b\cdot c$    |  |

(Acrescentando-se as propriedades distributivas às anteriores, obtém-se que o trio  $(\mathbb{K}, +, \cdot)$  é um anel comutativo com unidade e divisão, isto é, um **corpo**).

#### [4] Propriedades de ordem parcial

| (01) | Ordem parcial para a soma    | ma $a \le b$  |             | $\Rightarrow$ | $a+c \le b+c$              |
|------|------------------------------|---------------|-------------|---------------|----------------------------|
| (02) | Ordem parcial para o produto | $(a \le b)$ / | $(c \ge 0)$ | $\Rightarrow$ | $a \cdot c \leq b \cdot c$ |

Quando o trio  $(\mathbb{K}, +, \cdot)$  satisfaz aos doze axiomas apresentados, trata-se de um corpo algébrico ordenado.

## [5] Conjuntos numéricos

A adição tem as propriedades desejadas para a soma de escalares somente em conjuntos numéricos que admitem elemento oposto (o que é necessário para definir a operação de subtração). Isto significa que a seguinte cadeia de pares são grupos comutativos:

$$(\mathbb{Z},+)\subset (\mathbb{Q},+)\subset (\mathbb{R},+)$$

Na multiplicação, as propriedades do produto somente são satisfeitas em conjuntos numéricos que admitem elemento inverso (o que é necessário para definir a operação de divisão). Isto significa que a seguinte cadeia de pares são grupos comutativos:

$$(\mathbb{Q}^*,\cdot)\subset (\mathbb{R}^*,\cdot)$$

Somente as frações, os reais e outras extensões destes admitem a estrutura algébrica necessária. Isto significa que a seguinte cadeia de trios são corpos:

$$(\mathbb{Q},+,\cdot)\subset(\mathbb{R},+,\cdot)$$

## II — Espaços Vetoriais

A partir de um corpo algébrico ( $\mathbb{K} \in \{\mathbb{Q}; \mathbb{R}\}$ ), cujos elementos são chamados de <u>escalares</u>, e um conjunto não vazio (V), cujos elementos são chamados de <u>vetores</u>, é possível estabelecer os axiomas que precisam ser satisfeitos para as aplicações desejadas da Álgebra Linear.

| Adição de vetores |              |               |                                            | Multiplicação de escalar por vetor |                            |               | or                                                                                          |
|-------------------|--------------|---------------|--------------------------------------------|------------------------------------|----------------------------|---------------|---------------------------------------------------------------------------------------------|
| +:                | $V \times V$ | $\rightarrow$ | V                                          | •                                  | $\mathbb{K} \times V$      | $\rightarrow$ | V                                                                                           |
|                   | (u, v)       | ↦             | $+(u,v)\stackrel{\text{\tiny def}}{=} u+v$ |                                    | $(\alpha, \boldsymbol{v})$ | $\mapsto$     | $\cdot (\alpha, \boldsymbol{v}) \stackrel{\text{\tiny def}}{=} \alpha \cdot \boldsymbol{v}$ |

Essas operações devem satisfazer às seguintes propriedades, para todos  $\{u, v, w\} \in V$  e para todos  $\{\alpha, \beta\} \subset \mathbb{K}$ 

[6] Propriedades da soma interior:

| (EV1) | Associatividade da soma vetorial             | u + (v + w) = (u + v) + w                                                  |  |                  |
|-------|----------------------------------------------|----------------------------------------------------------------------------|--|------------------|
| (EV2) | Existência do vetor nulo $(0_V)$             | $0_{V} + \boldsymbol{v} = \boldsymbol{v} \qquad \qquad \&$                 |  | $v + 0_V = v$    |
| (EV3) | Existência do vetor oposto $(-oldsymbol{v})$ | $\boldsymbol{v} + (-\boldsymbol{v}) = 0_{\boldsymbol{V}} \qquad \qquad \&$ |  | $(-v) + v = 0_V$ |
| (EV4) | Comutatividade da soma vetorial              | u+v=v+u                                                                    |  |                  |

[7] Propriedades do produto exterior:

| ( <i>EV</i> 5) | Distributiva à esquerda                         | $\alpha \cdot (\boldsymbol{u} + \boldsymbol{v}) = \alpha \cdot \boldsymbol{u} + \alpha \cdot \boldsymbol{v}$ |  |
|----------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| (EV6)          | Distributiva à direita                          | $(\alpha + \beta) \cdot \mathbf{u} = \alpha \cdot \mathbf{u} + \beta \cdot \mathbf{u}$                       |  |
| (EV7)          | Associatividade do produto                      | $\alpha \cdot (\beta \cdot \boldsymbol{u}) = (\alpha \cdot \beta) \cdot \boldsymbol{u}$                      |  |
| (EV8)          | Existência do escalar neutro $(1_{\mathbb{K}})$ | $1_{\mathbb{K}} \cdot \boldsymbol{u} = \boldsymbol{u}$                                                       |  |