ECE 322L Electronics 2

03/03/20- Lecture 12
Biasing the BJT 1

Updates and Overview

• Biasing the BJT (Neamen 5.2 and 5.4, S&S 6.7)

Biasing the BJT

- -Biasing: Establishing a Q point for the BJT
- -The Q point is defined by the DC values of the input and output current and voltages. In CE configuration the latter are: I_{CQ} , I_{BQ} (V_{BEQ}), and V_{CEQ} . Desired characteristics of the Q point for an amplifier:

it is in the forward-active region; it is insensitive to variations of temperature and β ; it allows for maximum (or required) output signal swi

it allows for maximum (or required) output signal swing and maximum (or required gain).

BJT amplifier configurations

Voltage-transfer characteristics (VTC)

CE configuration: VTC is a $V_{CE}-V_{BE}$ plot CB configuration: VTC is a $V_{CB}-V_{EB}$ plot CC configuration: VTC is a $V_{BC}-V_{EC}$ plot

Voltage-transfer characteristics (VTC)

The venin equivalent of the voltage divider
$$V_{TH} = [R_2/(R_1 + R_2)]V_{CC}$$
 $R_{TH} = R_1 || R_2$

KVL on the input loop

$$V_{TH} = I_{BQ}R_{TH} + V_{BE}(\text{on}) + I_{EQ}R_E$$

Assuming operation in

$$I_{EQ} = (1 + \beta)I_{BQ}$$

active region

$$I_{BQ} = \frac{V_{TH} - V_{BE}(\text{on})}{R_{TH} + (1+\beta)R_E}$$

$$I_{BQ} = \frac{V_{TH} - V_{BE}(\text{on})}{R_{TH} + (1+\beta)R_E}$$
 $I_{CQ} = \beta I_{BQ} = \frac{\beta(V_{TH} - V_{BE}(\text{on}))}{R_{TH} + (1+\beta)R_E}$

 $V_{TH} \gg V_{BE}(on)$ guarantees stability of the Q point against temperature variation which reflects in a change of the $V_{BE (on)}$.

 $R_{TH} \ll (1+\beta)R_{E}$ guarantees stability of the Q point against variations of β

Mechanism by which R_E stabilizes I_C with respect to temperature:

- Increasing temperature will increase the emitter current.
- Increasing the emitter current will increase the voltage drop across R_E and decrease the V_{BE}.
- ➤ A decreasing V_{BE} will decrease the emitter current and the collector current.

Examples of trade-off conditions

V _{TH}	Q point	Voltage gain	Output signal swing
High	Stable	Low	Limited by cut-off
Low	Not stable	High	Limited by saturation

R _{TH}	Q point	Input resistance
High	Not stable	High
Low	Stable	Low

Stable Q point in the active region.

Rule of thumb for a
$$V_{TH}\cong \frac{1}{3}V_{cc}$$
 $R_{TH}\cong 0.1(1+\beta)R_E$ Stable Q point in

In-class problem 1

In the circuit shown below, let V_{CC} =5 V, R_E =0.2 k Ω , R_C =1 k Ω , β =150, V_{BE} (on)=0.7 V. Design a bias-stable circuit such that the Q point in the center of the forward active region.

Figure 5.54 (a)

In addition sketch the input and output I-V characteristics and the input and output load lines.

In-class problem 1, solution

In-class problem 1, solution

Overview of Lecture 13

• Biasing the BJT 2 (Neamen 5.2 and 5.4, S&S 6.7)