SST Rosetta: VAM-to-SST Translation Guide for Symbols, Macros, and Constants

Omar Iskandarani*

September 22, 2025

Abstract

This note provides a rigorous nomenclature concordance between the legacy VAM presentation and the Swirl–String Theory (SST) house style. It establishes a one-to-one mapping of symbols and terminology while preserving the underlying kinematics, operators, and calibrated constants. In particular, it fixes the canonical SST equalities

$$\rho_{E} = \frac{1}{2} \rho_{f} \|\mathbf{v}_{\odot}\|^{2}, \qquad \rho_{m} = \rho_{E}/c^{2}, \qquad K = \frac{\rho_{\text{core}} r_{c}}{\|\mathbf{v}_{\odot}\|_{r=r_{c}}} = \frac{\rho_{\text{core}} r_{c}}{\|\mathbf{v}_{\odot}\|_{r=r_{c}}}, \quad \rho_{f} = K \Omega,$$

and records that all published numerical values for $\|\mathbf{v}_0\||_{r=r_c}$ (defined here as $\|\mathbf{v}_0\||_{r=r_c}$), r_c , ρ_{core} , the background density, and the sectoral force bounds carry over unchanged. The document includes compact translation tables (fields/kinematics/operators; densities/velocities/coarse–graining; global scales) and a minimal macro layer (\rhoF, \rhoE, \rhoM, \rhoC, \vswirl, \vnorm) to prevent notation drift in large projects. Legacy wording is restricted to historical citations; narrative prose adopts the neutral SST vocabulary (e.g., foliation, swirl string) without altering the mathematics. Compatibility is ensured both for standalone use (title page + metadata) and for modular inclusion (\providecommand guards and no additional package requirements). The result is a drop-in "translation guide" that guarantees dimensional consistency, unambiguous symbol usage, and reproducible cross-referencing across manuscripts that span the VAM \rightarrow SST transition.

Email: info@omariskandarani.com ORCID: 0009-0006-1686-3961 DOI: 10.5281/zenodo.17172376 License: CC-BY-NC 4.0 International

^{*} Independent Researcher, Groningen, The Netherlands

1 SST-VAM Translation and Constant Overlaps (Extended)

Canonical equalities (SST form)

$$\rho_E = \frac{1}{2} \rho_f \|\mathbf{v}_{\odot}\|^2, \quad \rho_m = \rho_E/c^2,$$

$$K = \frac{\rho_{\text{core}} r_c}{\|\mathbf{v}_{\odot}\|_{r=r_c}} = \frac{\rho_{\text{core}} r_c}{\|\mathbf{v}_{\odot}\|_{r=r_c}}, \quad \rho_f = K\Omega.$$

Dimensional check

$$\begin{aligned} [\rho_f] &= & \text{kg m}^{-3} \\ [\|\mathbf{v}_{\circ}\|] &= & \text{m s}^{-1} \\ [\rho_E] &= & \text{J m}^{-3} \\ [\rho_m] &= & \text{kg m}^{-3} \\ [K] &= & \text{kg m}^{-3} \text{ s} \end{aligned}$$

Chronos-Kelvin invariant (added for completeness)

 $\frac{D}{Dt}(R^2\omega) = 0$ (incompressible, inviscid, barotropic, no reconnection).

(Kelvin/Helmholtz circulation conservation in SST wording; see [1, 2, 3, 4].)

Temporal Ontology in SST

We distinguish absolute parameter time \mathcal{N} (preferred foliation label), external observer time τ , and internal clocks carried by swirl strings: a phase accumulator S(t) and a loop "proper time" T_s . These appear in the field equations and separate global synchronization from local rotational dynamics.

\mathcal{N}	Absolute time (foliation)	Global causal parameter
ν_0	Now-point	Localized synchronization label
τ	External/chronos time	Measured time of external observer
S(t)	Swirl clock	Internal phase memory along a string
T_{s}	String proper time	Loop-duration functional
\mathbb{K}	Kairos event	Topological/phase transition moment

Fields, kinematics, operators (mapping)

VAM (legacy)	SST (house)	Meaning	Units	Overlap
"æther time"	absolute time parametrization	foliation time label	_	Yes
T(x)	T(x)	scalar clock field	_	Yes
u_{μ} (unit "æther" vector)	u_{μ} (unit time-like field)	$u_{\mu} = \partial_{\mu} T / \sqrt{-g^{\alpha\beta} \partial_{\alpha} T \partial_{\beta} T}$	_	Yes
"vortex line(s)"	swirl string(s)	object name only	_	Yes
$B_{\mu\nu}$, $H_{\mu\nu\rho}$	same	Kalb–Ramond 2-form; $H = \partial_{[\mu} B_{\nu\rho]}$	_	Yes
W_{μ}	W_{μ}	coarse-grained frame connection	_	Yes
$C(K)$, $L(K)$, $\mathcal{H}(K)$	same	crossing #, ropelength, hyperbolic proxy	_	Yes

Densities, velocities, coarse-graining (mapping)

VAM (legacy)	SST (macro)	Meaning	Units	Overlap
ρ_0 , $\rho_{\text{æ}}^{\text{(fluid)}}$, $\rho_{\text{æ}}^{\text{(vacuum)}}$	$ ho_f$, $ ho_f^{ m bg}$ or $ ho_f^{(0)}$	effective fluid density	${\rm kg}{\rm m}^{-3}$	Yes
$ ho_{lpha}^{(ext{core})}$, $ ho_{lpha}^{(ext{mass})}$	$ ho_{ m core}$	core/material density	${\rm kg}{\rm m}^{-3}$	Yes
$ ho_{ m e}^{ m (energy)}$	$\rho_{\rm E}$ (or $\rho_{\rm core}c^2$)	energy density	$\mathrm{J}\mathrm{m}^{-3}$	Yes
C_e (tangential)	$\ \mathbf{v}_{\circlearrowleft}\ _{r=r_c}$	characteristic swirl speed (= $\ \mathbf{v}_{\circlearrowleft}\ $ at $r = r_e$)	${ m ms^{-1}}$	Yes
C_e (field form)	v o	swirl-velocity vector field	${ m ms^{-1}}$	Add
C_e (scalar use)	$\ \mathbf{v}_{\circlearrowleft}\ _{r=r_c}$	core magnitude of $\mathbf{v}_{\circlearrowleft}$	${ m ms^{-1}}$	Add
$K = \frac{\rho^{(\text{mass})} r_c}{C_e}$	$K = \frac{\rho_{\text{core}} r_c}{\ \mathbf{v}_{\circlearrowleft}\ _{r=r_c}}$	coarse-graining coefficient	$kgm^{-3}s$	Add
Ω	Ω	leaf angular rate	s^{-1}	Yes

Global scales and bounds

VAM (legacy)	SST (house)	Meaning	Units	Overlap
F ^{max} (Coulomb)	F _{EM}	Coulomb-sector bound	N	Yes
$F_{\rm gr}^{\rm max}$ (Universal)	F_G^{max}	gravitational/universal bound	N	Yes
Γ	Γ	loop circulation	${ m m}^2{ m s}^{-1}$	Yes
Ω_R , Ω_c	same	outer rigid vs. core spin	s^{-1}	Yes

Numeric overlaps (published values)

Quantity	Symbol (SST)	Value	Units
Characteristic swirl speed	$\ \mathbf{v}_{\circlearrowleft}\ _{r=r_c} \ (\equiv \ \mathbf{v}_{\circlearrowleft}\ _{r=r_c})$	1,093,845.63	$\mathrm{m}\mathrm{s}^{-1}$
Core radius	r_c	$1.40897017 \times 10^{-15}$	m
Core density	$ ho_{ m core}$	$3.8934358266918687 \times 10^{18}$	${ m kg}{ m m}^{-3}$
Background density	$ ho_f^{ m bg}$	7.0×10^{-7}	${\rm kg}{\rm m}^{-3}$
Max Coulomb force	$ ilde{ ext{F}_{ ext{EM}}^{ ext{max}}}$	29.053507	N
Max universal force	F _G ^{max}	3.02563×10^{43}	N

Macro glossary (house style)

Use the macros to avoid drift:

 ρ_f (effective density), ρ_E (energy density), ρ_m (mass-equivalent)

 $ho_{
m core}$ (core density), ${\bf v}_{\circ}$ (swirl velocity vector), $\|{\bf v}_{\circ}\| = \|{\bf v}_{\circ}\|$ (speed magnitude at a point). Energy vs mass-equivalent (clarification). ho_E is an energy density; $ho_m =
ho_E/c^2$ is the corresponding local mass-equivalent. Note. $ho_{
m core}$ is a calibration constant. The mass-equivalent density is a field $ho_m(x) =
ho_E(x)/c^2$. In the core-saturation evaluation $ho_E^{
m core} =
ho_{
m core} c^2$, one has $ho_m^{
m core} =
ho_{
m core}$.

Prose guardrails (rebrand policy)

Use *foliation* and *swirl string(s)* in narrative text. Reserve legacy words ("æther", "vortex") strictly for quoting historical titles or citations. Retain *vorticity* as standard.

Sentence rewrites (examples)

Legacy: "The æther sector fixes the vortex core density."

SST: "The *foliation* sector fixes the *core density* ρ_{core} of the swirl string."

Legacy: "Kelvin's vortex theorem implies conserved $R^2\omega$."

SST: "Kelvin's *circulation* theorem implies $\frac{D}{Dt}(R^2\omega)=0$ under incompressible, inviscid, barotropic flow."

Scale-dependent Effective Densities in SST

Effective densities (house style).

 $ho_f \equiv ext{effective fluid density}, \qquad
ho_E \equiv frac{1}{2} \,
ho_f \, \| \mathbf{v}_\odot \|^2 \quad (ext{swirl energy density}),$

 $\rho_m \equiv \rho_E/c^2$ (mass-equivalent density).

Background value: $\rho_f^{\rm bg} \approx 7.0 \times 10^{-7}~{\rm kg}\,{\rm m}^{-3}$. Core (material) density: $\rho_{\rm core} \approx 3.8934358267 \times 10^{18}~{\rm kg}\,{\rm m}^{-3}$. Hence core energy density

$$\rho_E^{\text{core}} = \rho_{\text{core}} c^2 \approx 3.499 \times 10^{35} \,\text{J m}^{-3}.$$

Radial profile (phenomenology). It is convenient to model the near-core energy density with an exponential relaxation to the background:

$$\rho_E(r) = \rho_F^{\text{bg}} + \left(\rho_E^{\text{core}} - \rho_F^{\text{bg}}\right) e^{-r/r_*},$$

with a microscopic decay scale r_* (fit parameter). This empirical profile does not replace the exact tube energetics below.

String energetics (Rankine core + irrotational envelope). For a core of radius r_c and length ℓ with solid-body rotation $v_{\phi}(r) = \Omega r$ for $r \leq r_c$,

$$E_{\rm core} = \int_0^{r_c} \frac{1}{2} \, \rho_f \, (\Omega r)^2 \, (2\pi r \, \ell) \, dr = \frac{\pi}{4} \, \rho_f \, \Omega^2 \, r_c^4 \, \ell.$$

Outside the core, $v_{\phi}(r) = \Gamma/(2\pi r)$ with $\Gamma = 2\pi\Omega r_c^2$, giving the slender-tube envelope term

$$E_{\mathrm{env}} \simeq \frac{\rho_f \, \Gamma^2}{4\pi} \, \ell \, \ln \frac{R}{r_c}$$

where R is an outer cutoff set by the nearest boundary or neighboring strings. Both contributions are standard in vortex-tube energetics (core + Biot–Savart envelope).

Coarse-graining. At macroscales, we use the canonical identity

$$K = \frac{\rho_{\text{core}} r_c}{\|\mathbf{v}_{\circ}\|_{r=r_c}} = \frac{\rho_{\text{core}} r_c}{\|\mathbf{v}_{\circ}\|_{r=r_c}}, \qquad \rho_f = K \Omega_{\text{leaf}}.$$

where Ω_{leaf} is a coarse-grained (leaf-averaged) angular rate. Numerically, $\Omega_{leaf} \sim 10^{-4} \, s^{-1}$ in the Canon fit; it must not be confused with the microscopic core rate below.

2 Layered Time Scaling from Swirl Dynamics

Adopt the SR-like local rule

$$\frac{d\tau}{dt} = \sqrt{1 - \frac{v_{\phi}^2(r)}{c^2}}.$$

With a Rankine profile,

$$v_{\phi}(r) = egin{cases} \Omega_{
m core} \, r, & r \leq r_c, \ rac{\Gamma}{2\pi r'} & r \geq r_c, \end{cases} \qquad \Gamma = 2\pi \Omega_{
m core} \, r_c^2.$$

Continuity at $r = r_c$ gives $v_{\phi}(r_c) = \Omega_{\text{core}} r_c \equiv \|\mathbf{v}_{\circ}\||_{r=r_c} = \|\mathbf{v}_{\circ}\||_{r=r_c}$, hence

$$\Omega_{\rm core} = \frac{\|\mathbf{v}_{\circ}\||_{r=r_c}}{r_c} = \frac{\|\mathbf{v}_{\circ}\||_{r=r_c}}{r_c} \approx \frac{1.09384563 \times 10^6}{1.40897017 \times 10^{-15}} \approx 7.763 \times 10^{20} \; \rm s^{-1}.$$

Thus

$$\frac{d\tau}{dt} = \begin{cases} \sqrt{1 - \frac{\Omega_{\text{core}}^2 r^2}{c^2}}, & r \leq r_c, \\ \sqrt{1 - \frac{\Gamma^2}{4\pi^2 c^2 r^2}}, & r \geq r_c. \end{cases}$$

The earlier ansatz $d\tau/d\bar{t} = e^{-r/r_c}$ can be used only as a phenomenological fit; it does not follow from the SR-like form unless one imposes a special $v_{\phi}(r)$ inconsistent with Rankine.

References

- [1] H. von Helmholtz. Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. *J. Reine Angew. Math.*, 55:25–55, 1858.
- [2] W. Thomson (Lord Kelvin). On vortex motion. Trans. R. Soc. Edinburgh, 25:217–260, 1869.
- [3] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
- [4] P. G. Saffman. *Vortex Dynamics*. Cambridge University Press, 1992.