

CS 534 Artificial Intelligence

Week 5: Supervised Machine Learning Model I

By

Ben C.K. Ngan

Machine Learning

- Machine Learning is the study of computer algorithms that can learn from the data and use that knowledge to make predictions on data they have not seen before.
- This learning is achieved via a parameterized model with tunable parameters that are automatically adjusted according to different performance criteria.

Supervised Classification

Supervised and Unsupervised Learning

- Supervised: Algorithms which learn from a training set of <u>labeled</u> examples to generalize to the set of <u>all possible inputs</u>.
 - Classification: decision tree, random forest, support vector classifier, etc.
 - Regression: linear regression, regression tree, support vector regressor, etc.
 - Time Series: ARIMA, SARIMA, exponential smoothing, etc.
- Unsupervised: Algorithms that learn from a training set of <u>unlabeled</u> examples. Used to explore data according to some statistical, geometric or similarity criterion.
 - Clustering: k-means clustering, hierarchical clustering, expectation maximization, etc.
 - Dimension Reduction: principal component analysis, linear discriminant analysis, kernel density estimation, etc.
 - Association Analysis: Apriori Algorithm, FP-Growth, ZeroR, etc.

scikit-learn (https://scikit-learn.org/stable/)

Supervised Learning - Regression

- If our question is a prediction of **a real-valued quantity**, we are faced with a regression problem.
 - Given the description of an apartment, what is the expected market value of this apartment? What will the value be if the apartment has an elevator?
 - Given the past records of user activity on our Apps, how long will a certain client be connected to our App?
 - Given my skills and marks in computer science and math, what mark will I achieve in a data science course?
- Some of the most popular regression models are linear regression, regression tree, support vector regressor, etc.

Linear Regression Model

- Goal of Linear Regression Analysis:
 - -Estimate the linear relationship between one or more explanatory variables and a single continuous variable.
 - Predict the value of this single continuous variable based upon the values of those input explanatory variables.
- Simple Linear Regression (SLR) Model:
 - $-Y = \beta_1 X + \beta_0$, where β_1 is the slope (regression coefficient) and β_0 is the intercept (constant coefficient).
 - Both X and Y must be continuous variables

• $Y = \beta_1 X + \beta_0$, where β_1 is the slope (regression coefficient) and β_0 is the intercept (constant coefficient).

• $Y = \beta_1 X + \beta_0$, where β_1 is the slope (regression coefficient) and β_0 is the intercept (constant coefficient).

- Y = β_1 X + β_0 , where β_1 is the slope (regression coefficient) and β_0 is the intercept (constant coefficient).
- Ordinary Least Squares (OLS): Obtain the minimum value for the following equation:
 Sum of Squared Errors (SSE) or Cost/Error Function (C)

$=\frac{1}{N}\sum_{i=1}^{N}(Y_i-(\beta_1X_i+\beta_0))^2, \text{ where N is the size of the learning data set}$ $\widehat{Y}_i \text{ is a predicted value}$ $Y_i \text{ is an actual value}$

- OLS minimizes the SSE
 - If SSE = 0, the straight line fits the data points perfectly \rightarrow Correlation Coefficient r = +1 or -1.
 - If SSE > 0, the straight regression line does not go through each data point \rightarrow Correlation Coefficient -1 < r < +1.

- When two variables share the same tendency, we speak about covariance.
- Let us consider two series, {x_i} and {y_i}. Let us center the data with respect to their mean, where n is the length of both sets:
 - $-d_{xi} = x_i \mu_X$ and $d_{yi} = y_i \mu_{Y}$
 - It is easy to show that when $\{x_i\}$ and $\{y_i\}$ vary together, their deviations tend to have the same sign.
 - The covariance is defined as the mean of the following products:

$$Cov(X, Y) = \frac{1}{n} \sum_{i=1}^{n} dx_i dy_i,$$

If we normalize the data with respect to their deviation, that leads to the standard scores; and then
multiplying them, we get:

$$\rho_i = \frac{x_i - \mu_X}{\sigma_X} \frac{y_i - \mu_Y}{\sigma_Y}.$$

- The mean of this product is $\rho = \frac{1}{n} \sum_{i=1}^{n} \rho_i$
- Equivalently, we can rewrite ρ in terms of the covariance, and thus obtain the correlation coefficient:

$$\rho = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}.$$

- The correlation coefficient is always between -1 and +1, where the magnitude depends on the degree of correlation.
 - If the correlation coefficient is 1 (or -1), it means that the variables are **perfectly correlated** (positively or negatively). This means that one variable can predict the other very well.
 - Having $\rho = 0$, does not necessarily mean that the variables are not correlated! The correlation coefficient captures correlations of first order, but not **nonlinear correlations**.

- The correlation coefficient is always **between -1 and +1**, where the magnitude depends on the degree of correlation.
 - If the correlation coefficient is 1 (or -1), it means that the variables are **perfectly** correlated (positively or negatively). This means that one variable can predict the other very well.
 - Having $\rho = 0$, does not necessarily mean that the variables are not correlated! The correlation coefficient captures correlations of first order, but not **nonlinear correlations**.
- The linear strength of the correlation suggests for the absolute value of ρ:
 - 0.00-0.19 "Very Weak"
 - 0.20-0.39 "Weak"
 - 0.40-0.59 "Moderate"
 - 0.60-0.79 "Strong"
 - 0.80-1.00 "Very Strong"

Hands-on Example: Simple Linear Regression

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
def main():
    df = pd.read csv('longley.csv', index col=0)
    print("Correlation coefficient = ", np.corrcoef(df.Employed,df.GNP)[0,1])
   X = df.Employed # predictor (independent variable)
   y = df.GNP # response (dependent variable)
   X = sm.add constant(X) # Adds a constant term to the predictor
    lr model = sm.OLS(y, X).fit()
    print(lr model.summary())
    # We pick 100 points equally spaced from the min to the max
    X prime = np.linspace(X.Employed.min(), X.Employed.max(), 100)
    X prime = sm.add constant(X prime) # Add a constant as we did before
    # Now we calculate the predicted values
   y hat = lr model.predict(X prime)
    plt.scatter(X.Employed, y) # Plot the raw data
    plt.xlabel("Total Employment")
    plt.ylabel("Gross National Product")
    plt.plot(X prime[:, 1], y hat, 'red', alpha=0.9) # Add the regression line, colored in red
    plt.show()
if name == " main ":
```

main()

	GNP.deflator	GNP	Unemployed	Armed.Forces	Population	Year	Employed		
1947	83	234.289	235.6	159	107.608	1947	60.323		
1948	88.5	259.426	232.5	145.6	108.632	1948	61.122		
1949	88.2	258.054	368.2	161.6	109.773	1949	60.171		
1950	89.5	284.599	335.1	165	110.929	1950	61.187		
1951	96.2	328.975	209.9	309.9	112.075	1951	63.221		
1952	98.1	346.999	193.2	359.4	113.27	1952	63.639		
1953	99	365.385	187	354.7	115.094	1953	64.989		
1954	100	363.112	357.8	335	116.219	1954	63.761		
1955	101.2	397.469	290.4	304.8	117.388	1955	66.019		
1956	104.6	419.18	282.2	285.7	118.734	1956	67.857		
1957	108.4	442.769	293.6	279.8	120.445	1957	68.169		
1958	110.8	444.546	468.1	263.7	121.95	1958	66.513		
1959	112.6	482.704	381.3	255.2	123.366	1959	68.655		
1960	114.2	502.601	393.1	251.4	125.368	1960	69.564		
1961	115.7	518.173	480.6	257.2	127.852	1961	69.331		
1962	116.9	554.894	400.7	282.7	130.081	1962	70.551		

- Multiple Linear Regression (MLR) Model: $Y = \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n + \beta_0$
 - Y must be a continuous variable.
 - $-X_1, X_2, ..., X_n$ must be continuous variables
 - Rule of Thumb: At least two or more X_i variables.
- The linear strength of the correlation suggests for the absolute value of r:
 - -0.00-0.19 "Very Weak"
 - -0.20-0.39 "Weak"
 - -0.40-0.59 "Moderate"
 - -0.60-0.79 "Strong"
 - -0.80-1.00 "Very Strong"

- Multiple Linear Regression Model that describes how a target variable Y relates to two or more X variables.
 - Multiple: $Y = \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n + \beta_0$
 - Ordinary Least Squares (OLS): Obtain the minimum value for the following equation: Sum of Squared Errors (SSE) or Cost/Error Function Residual Error

$$= \frac{1}{N} \sum_{i=1}^{N} (Y_i - (\beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_n X_{ni} + \beta_0))^2$$

 \widehat{Y}_i is a predicted value

 Y_i is an actual value

Hands-on Example: Multiple Linear Regression

```
import numpy as np
                                                                                      Radio Newspaper Sales
                                                                              TV
import pandas as pd
import matplotlib.pyplot as plt
                                                                           1 230.1
                                                                                       37.8
                                                                                                       69.2
                                                                                                              22.1
import statsmodels.api as sm
                                                                                        39.3
                                                                                                       45.1
                                                                                                              10.4
from mpl toolkits.mplot3d import Axes3D
                                                                                                       69.3
                                                                                                               9.3
                                                                               17.2
                                                                                        45.9
def main():
                                                                                                              18.5
                                                                           4 151.5
                                                                                        41.3
                                                                                                       58.5
    # Load the advertising dataset into a pandas data frame
    df = pd.read csv('Advertising.csv', index col=0)
                                                                                                              12.9
                                                                           5 180.8
                                                                                        10.8
                                                                                                       58.4
    v = df['Sales']
                                                                                                               7.2
                                                                                        48.9
                                                                                                         75
    X = df[['TV', 'Radio']]
    X = sm.add constant(X)
                                                                               57.5
                                                                                       32.8
                                                                                                       23.5
                                                                                                              11.8
                                                                                                      11.6
                                                                                                              13.2
                                                                           8 120.2
                                                                                        19.6
    lr model = sm.OLS(v,X).fit()
    print(lr model.summary())
                                                                                                               4.8
                                                                                 8.6
                                                                                         2.1
    print(lr model.params)
                                                                          10 199.8
                                                                                                       21.2 10.6
                                                                                         2.6
    # Figure out X and Y axis using ranges from TV and Radio
    X axis, Y axis = np.meshgrid(np.linspace(X.TV.min(), X.TV.max(), 100), np.linspace(X.Radio.min(), X.Radio.max(), 100))
    # Plot the hyperplane by calculating corresponding Z axis (Sales)
    Z axis = lr model.params[0] + lr model.params[1] * X axis + lr model.params[2] * Y axis
    # Create matplotlib 3D axes
    fig = plt.figure(figsize=(12, 8)) # figsize refers to width and height of the figure
    ax = Axes3D(fig, azim=-100)
    # Plot hyperplane
    ax.plot_surface(X_axis, Y_axis, Z_axis, cmap=plt.cm.coolwarm, alpha=0.5, linewidth=0)
   # Plot data points
    ax.scatter(X.TV, X.Radio, y)
    # Set axis labels
    ax.set xlabel('TV')
    ax.set ylabel('Radio')
    ax.set_zlabel('Sales')
    plt.show()
if name == " main ":
```

main()

- $Y = \beta_1 X + \beta_0$, where β_1 is the slope (regression coefficient) and β_0 is the intercept (constant coefficient). C is the **cost or error** function, i.e., **the convex function**.
- Find the best β_1 and β_0 set that will minimize C using gradient descent.
- The darker blue color indicates the lowest the error function value and the better it fits the data.
- The objective is to keep adjusting the function by picking different values for its parameters and seeing if that lowers the cost. Whenever we find the lowest cost, we stop and note the values of the parameters. Those parameter values comprise the most fitting model for the data. This is the essence

Min
$$C = \frac{1}{2N} \sum_{i=1}^{N} (Y_i - (\beta_1 X_i + \beta_0))^2$$

most fitting model for the data. This is the essence of a technique called gradient descent.

• It is an approach for looking for minima - points where the error is at its lowest.

Worcester Polytechnic Institute

- Compute the gradient or slope of C by differentiating C using the partial derivative for each parameter, i.e., β_1 and β_0 .
 - $\frac{\partial C}{\partial \beta_1} = \frac{1}{N} \sum_{i=1}^{N} ((\beta_1 X_i + \beta_0) Y_i) X_i$
 - $\frac{\partial C}{\partial \beta_0} = \frac{1}{N} \sum_{i=1}^{N} ((\beta_1 X_i + \beta_0) Y_i)$
- Initialize the search to start at <u>any pair</u> of β_1 and β_0 values (i.e., any line) and let the gradient descent algorithm march downhill on C toward the best line.
- Each point in this 3D figure represent a line,
 where the point has three dimensions.

- This 3D figure presents a whole bunch of possible lines that could fit the data.
- The darker blue the color at a point, the lower the error function value, and the better that point fits our data. Worcester Polytechnic Institute

• Compute the gradient or slope of C by differentiating C using the partial derivative for each parameter, i.e., β_1 and β_0 .

•
$$\frac{\partial C}{\partial \beta_1} = \frac{1}{N} \sum_{i=1}^{N} ((\beta_1 X_i + \beta_0) - Y_i) X_i$$

•
$$\frac{\partial C}{\partial \beta_0} = \frac{1}{N} \sum_{i=1}^{N} ((\beta_1 X_i + \beta_0) - Y_i)$$

• Each iteration will *update* β_1 and β_0 to a line that yields slightly lower error than the previous iteration.

Min
$$C = \frac{1}{2N} \sum_{i=1}^{N} (Y_i - (\beta_1 X_i + \beta_0))^2$$

- Image a Model that Could Have Any Number of Parameters of Inputs.
- $h(X) = \sum_{j=0}^{n} \theta_j X_j$, where $\theta_0 = \beta_0$, $\theta_1 = \beta_1$, and $X_0 = 1$

•
$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (h(X_i) - Y_i)^2$$

, where N is the number of data instances

•
$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{N} \sum_{i=1}^{N} (h(X_i) - Y_i) X_{ji}$$

Slope = Gradient

•
$$\theta_j = \theta_j - \alpha \frac{1}{N} \sum_{i=1}^N (h(X_i) - Y_i) X_{ji}$$
,

where α is the learning rate with the value between 0 and 1 & 0 \leq j \leq n.

Min
$$C = \frac{1}{2N} \sum_{i=1}^{N} (Y_i - (\beta_1 X_i + \beta_0))^2$$

Image a Model that Could Have Any Number of Parameters of Inputs.

•
$$h(X) = \sum_{j=0}^{n} \theta_j X_j$$
, where $\theta_0 = \beta_0$, $\theta_1 = \beta_1$, and $X_0 = 1$

•
$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (h(X_i) - Y_i)^2$$

, where N is the number of data instances

•
$$\frac{\partial J(\theta)}{\partial \theta_j} = \underbrace{\frac{1}{N} \sum_{i=1}^{N} (h(X_i) - Y_i) X_{ji}}_{\text{Slope}}$$

Slope = Gradient

•
$$\theta_j = \theta_j - \alpha \frac{1}{N} \sum_{i=1}^N (h(X_i) - Y_i) X_{ji}$$
,

where α is the learning rate with the value between 0 and 1 & 0 \leq j \leq n.

Gradient Descent is an iterative process that finds the minima of a function. This is an
optimization algorithm that finds the parameters or coefficients of a function where the
function has a minimum value. Note that this function does not always guarantee to
find a global minimum and can get stuck at a local minimum.


```
for i in range(num_epochs):
    grad = compute_gradient(data, params)
    params = params - learning_rate * grad
```

Batch Gradient Descent

In BGD, it looks at **ALL** the data point at a time. It moves in a focused, almost linear fashion to the point where the cost or the error is the lowest. It takes fewer steps, but each step is quite expensive.

```
for i in range(num_epochs):
    np.random.shuffle(data)
    for batch in radom_minibatches(data, batch_size=32):
        grad = compute_gradient(batch, params)
        params = params - learning_rate * grad
```

Mini-Batch Gradient Descent

```
for i in range (num_epochs):
    np.random.shuffle(data)
    for example in data:

Stochastic Gradient Descent
```

In SGD, it only looks at **ONE** data point at a time. It could bounce around a lot moving in all kinds of directions. It takes far more steps, but each step is computationally cheap.

	STOCHASTIC	MINI-BATCH	BATCH
VELOCITY	Ø	②	×
ACCURACY	×	②	②
UPDATES	Every time	Every mini-batch	Once

Hands-on Example: Gradient Descent

```
import numpy as np
                                                                        while (delta > epsilon):
                                                                        to if (plot_on > 0 and i % plot_on == 0 and plot func is not None):
                                  epsilon is a threshold
import pandas as pd
                                                                                plot func(theta)
import matplotlib.pyplot as plt
                                  determine the next iteration
                                  for the theta update.
                                                                           # calculate a column that holds the difference between y hat and
x prime = []
                                                                           # y for each data point
            The evolution of the regression line
                                                                           differences = X @ theta - y
def batch gradient descent1(y, X, alpha, epsilon,
                         plot on=-1, plot_func=None):
                                                                            # Update each theta j by the partial derivative of the cost with
   # Initialize our "guess" for each coefficient theta j to 1
                                                                            # respect to theta j, scaled by learning rate
   # and store these in a single column
   theta = np.ones(shape=(X.shape[1], 1))
                                                                            # Note: np.transpose(X) gives us the observed values (x \ i) for
                                                                            # a parameter j in the j'th row of a matrix
   m = X.shape[0] # number of data points
                                                                           theta = theta - (alpha / m) * ((np.transpose(X)) @ differences)
                                                                           # Using the updated coefficient values, append the new cost value
   # Calculate a column of predicted y values for each data point
                                                                            cost = np.transpose(X @ theta - y) @ (X @ theta - y)
   y hat = X @ theta
                                                                            costs.append(cost[0][0] / (2 * m))
                                                                            delta = abs(costs[i + 1] - costs[i])
   # calculate a 1 by 1 matrix that holds the sum of the squared
   # differences between each y hat and y
                                                                           if (costs[i + 1] > costs[i]):
   cost = np.transpose(y_hat - y) @ (y_hat - y)
                                                                               print('Cost is increasing. Try reducing alpha.')
                                                                                break
   # initialize list of costs to contain the cost associated with
                                                                           i += 1
   # our initial coefficients (scaled by 1/2m in accordance with
   # the cost formula)
                                                                        if (plot on > 0 and i % plot on == 0 and plot func is not None):
   costs = [cost[0][0] / (2 * m)] m is the total number of
                                                                           plot func(theta)
                                data instances
   i = 0 # number of iterations
                                                                        print('Completed in', i, 'iterations.')
   delta = 1 # Change in cost
                                                                        return theta
```

Hands-on Example: Gradient Descent

```
def plot model(theta):
    y_hat = [xp * theta[0] for xp in x prime]
    plt.plot(x prime, y hat, color='dimgrey')
# Perform batch gradient descent, as in the previous example,
# but plots the evolution of cost as opposed to the evolution of
# the regression line The evolution of cost over iteration
def batch gradient descent2(y, X, alpha, epsilon):
    theta = np.ones(shape=(X.shape[1], 1))
    m = X.shape[0]
    cost = np.transpose(X @ theta - y) @ (X @ theta - y)
    costs = \lceil \cos t[\theta] \lceil \theta \rceil / (2 * m) \rceil
    i = 0
    delta = 1
    while (delta > epsilon):
        theta = theta - (alpha / m) * ((np.transpose(X)) @ (X @ theta - y))
        cost = np.transpose(X @ theta - y) @ (X @ theta - y)
        costs.append(cost[0][0] / (2 * m))
        delta = abs(costs[i + 1] - costs[i])
        if (costs[i + 1] > costs[i]):
            print('Cost is increasing. Try reducing alpha.')
            break
        i += 1
    print('Completed in', i, 'iterations.')
    # Plot the cost versus iteration
    plt.plot([i for i in range(len(costs))], costs)
    return theta
```

```
def main():
   df = pd.read csv('regression.csv')
                                               1 3
   X = df[['x']]
   v = df[['v']]
   plt.xlabel('x')
   plt.ylabel('y')
                                               4 4
   plt.title('Batch Gradient Descent')
   xt = np.arange(0, df.x.max() + 5, 5)
                                               6 9
   yt = np.arange(0, df.y.max() + 10, 10)
                                               7 8
   plt.axis([xt[0], xt[-1], yt[0], yt[-1]])
   plt.xticks(xt[1:])
                                               8 12
   plt.yticks(yt[1:])
                                               9 15
                                              10 26
   # originial data
   plt.scatter(df.x, df.y, facecolors='none', edgecolors='lightgray')
   global x prime
   x_{prime} = [xt[0], xt[-1]]
   X = X.to numpy()
   y = y.to numpy()
   batch_gradient_descent1(y=y, X=X, alpha=0.01, epsilon=10**-4,
                           plot on=1, plot func=plot model)
    plt.show()
   # Set up our predictor / response columns
   df = pd.read csv('regression.csv')
   X = df[['x']].to_numpy()
   y = df[['y']].to_numpy()
                                          if name == " main ":
                                              main()
   # Set up our plotting environment
   plt.xlabel('iteration')
   plt.ylabel('cost')
   plt.title('Cost Function')
   batch gradient descent2(y=y, X=X, alpha=0.01, epsilon=10**-4)
    plt.show()
```

Hands-on Example: Gradient Descent

- Y = β_1 X + β_0 , where β_1 is the slope (regression coefficient) and β_0 is the intercept (constant coefficient).
- β_0 and β_1 Formula and Calculation

$$\frac{\partial C}{\partial \beta_1} = \frac{1}{N} \sum_{i=1}^{N} ((\beta_1 X_i + \beta_0) - Y_i) X_i = 0$$

$$\frac{\partial C}{\partial \beta_0} = \frac{1}{N} \sum_{i=1}^{N} ((\beta_1 X_i + \beta_0) - Y_i) = 0$$

Co-variance of X and Y

$$\frac{\partial C}{\partial \beta_1} = \frac{1}{N} \sum_{i=1}^{N} ((\beta_1 X_i + \beta_0) - Y_i) X_i = 0 \qquad \beta_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sum_{i=1}^{N} (X_i - \bar{X})^2}$$

Variance of X

$$\beta_0 = \bar{Y} - (\beta_1 * \bar{X})$$

Linear Regression Model Assessment

Coefficient of Determination - Multiple R-squared R²:

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (Y_{i} - \hat{Y}_{i})^{2}}{\sum_{i=1}^{N} (Y_{i} - \bar{Y})^{2}}$$
 Residual Error%

- $-\hat{Y}_i$ is the predicted value of Y_i , where $\hat{Y}_i = \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_n X_{ni} + \beta_0$, and Y_i is the actual value, for $1 \le i \le N$
- $-\bar{Y}$ is the mean Y
- $-0 \le R^2 \le 1$
- $-R^2 \times 100\%$: The variation in Y is 'explained by' the variation in the predictors $(X_1, X_2, ... X_n)$. Worcester Polytechnic Institute

Linear Regression Model Assessment

- Problems with R^2 Too Many Predictor Variables: **Overfitting**
- Every time you add a predictor to a model, the *R*-squared increases. It never decreases.

- If a model has too many predictors, it begins modeling and accounting the random noise and variation in the variable data.
- This condition is known as overfitting the model and it produces misleadingly high R-squared values.

What problem can you think of if you have an overfitting model?

Linear Regression Model Assessment

Solution for Overfitting:

Adjusted
$$R^2 = 1 - \left(\frac{N-1}{N-p}\right)(1-R^2),$$

where N is the data size, and p = n + 1, i.e., the number of β coefficients $(\beta_0, \beta_1, \beta_2, ..., \beta_n)$ in the model

- The adjusted R-squared R^2
 - Increase when a new predictor variable improves the model more than would be expected by chance OR
 - Decrease when a new predictor variable improves the model by less than expected by chance.

Linear Regression Model

https://scikitlearn.org/stable/modules/generated/sklear n.linear_model.LinearRegression.html

Copyright © 2020 by Pearson Education, Inc.

Supervised Learning - Classification

- If our question is answered by YES/NO/MAYBE, we are facing a classification problem.
- Classifiers are also the models to use if our question admits only a discrete set of answers, i.e., we want to select from a finite number of choices.
 - Given the results of a clinical test, e.g., does this patient suffer from diabetes?
 - Given a magnetic resonance image, is it a tumor shown in the image?
 - Given the past activity associated with a credit card, is the current operation fraudulent?
- According to the cardinality of the target variable, one usually distinguishes between binary classifiers when the target output only takes two values, i.e., the classifier answers questions with a yes (1) or a no (0); and multiclass classifiers, for a larger number of classes.

- Purpose of Logistic Regression Model:
 - Predict the decision outcome/response of an event (i.e., do or not do) by learning regression coefficients of the logistic distribution function of the explanatory variables.
 - Binary Decision-Making Model, i.e., a binary target variable.
 - Some Decision Examples include:
 - A customer should purchase or rent a car
 - An investor decides whether or not to buy or sell a stock
 - An employee should be promoted or not
 - A company determines whether or not they should target a customer to sell a long-term deposit.
 - A bank should give a person a loan or not?
 - A person should decide to vote against a new law or not?
 - The school will accept my admittance or not?

- Logistic Function f(z)
 - Describes the mathematical form on which the nonlinear logistic regression model is based.

- -What is e? e = 2.7182818284590452
- $--\infty \le Z \le +\infty$

Range: $0 \le f(z) \le 1$

- Logistic Function f(z)
 - Describes the mathematical form on which the nonlinear logistic regression model is based.
 - $-z = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$ is a linear regression function.

$$z = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

$$f(z) = \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{1 + e^{-(\alpha + \sum \beta_i X_i)}}$$

- Logistic Function $f(z) \rightarrow P(X)$
 - Describes the mathematical form on which the nonlinear logistic regression model is based.
 - $-z = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$ is a linear function.
 - $-X = (X_1, X_2, \dots, X_k)$

Model formula:

$$P(\mathbf{X}) = \frac{1}{1 + e^{-(\alpha + \sum \beta_i X_i)}}$$

If $P(X) \ge 0.5$, then 1 indicates a decision event occurs.

If P(X) < 0.5, then 0 indicates a decision event does not occur.

- Example for Applying the Logistic Regression Model
 - Coronary Heart Disease (CHD): 0 without CHD and 1 with CHD
 - Catecholamine Level (CAT): 1 if high and 0 if low
 - AGE: Continuous Numbers
 - Electrocardiogram Status (ECG): 1 if abnormal and 0 if normal

$$-P(X) = \frac{1}{1+e^{-(\alpha+\sum_{i=1}^{3}\beta_{i}X_{i})}}$$

$$P(\mathbf{X}) = \frac{1}{1 + e^{-(\alpha + \beta_1 \text{CAT} + \beta_2 \text{AGE} + \beta_3 \text{ECG})}}$$

- -X = (CAT=1, AGE=40, ECG=0)
- Use the dataset to estimate parameters $\alpha = -3.911$, $\beta_1 = 0.652$, $\beta_2 = 0.029$, and $\beta_3 = 0.342$.

$$-P(X) = \frac{1}{1 + e^{-(-3.911 + 0.652(1) + 0.029(40) + 0.342(0))}}$$

$$-P(X) = \frac{1}{1+e^{-(-2.101)}} = \frac{1}{1+8.173} = 0.110 < 0.5 \rightarrow Without CHD$$

- Example for Applying the Logistic Regression Model
 - Coronary Heart Disease (CHD): 0 without CHD and 1 with CHD
 - Catecholamine Level (CAT): 1 if high and 0 if low
 - AGE: Continuous Numbers
 - Electrocardiogram Status (ECG): 1 if abnormal and 0 if normal

$$P(\mathbf{X}) = \frac{1}{1 + e^{-(\alpha + \beta_1 \text{CAT} + \beta_2 \text{AGE} + \beta_3 \text{ECG})}}$$

— Maximum Likelihood Estimation: https://online.stat.psu.edu/stat415/lesson/1/1.2

- $0 \leq McFadden R^2 \leq 1$
 - —The closer this statistic is to one, the better the predictive ability of the model.
 - The value of the McFadden R² never decreases but increases as additional variables are added to the model, leading to potential overfitting problems.
 - —If the model with additional variables fits perfectly, the McFadden R^2 equals to one.
- Solution: Minimal Akaike Information Criterion (AIC)

Hands-on Example: Logistic Regression Model

https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.Logistic
Regression.html

MLR vs. LR

Multiple Linear Regr	ession Model	Logistic Regression Model		
Input Predictors	Continuous Target Variable	Input Predictors	Binary Target Variable	
$\beta_1 X_1 + \beta_2 X_2 + + \beta_n X_n + \beta_0$	Y	$\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_0 X_1 + \beta_0$	Y	
Model Builder -	Learning	Model Builder - Learning		
$\widehat{Y} = \beta_1 X_1 + \beta_2 X_2 + \dots$	$+ \beta_n X_n + \beta_0$	$P(X_{1}, X_{2},, X_{k}) = \frac{1}{1 + e^{-(\beta_{0} + \sum_{i=1}^{k} \beta_{i} X_{i})}}$ If $P(X_{1}, X_{2},, X_{k}) \ge 0.5$, $\widehat{Y} = 1$ If $P(X_{1}, X_{2},, X_{k}) < 0.5$, $\widehat{Y} = 0$		

Y is an actual value, and \widehat{Y} is the predicted value.