Тема проекта: Музыкальный стриминговый сервис

План

- Описание проекта
- DAU, PPU, Revenue
- Масштабирование

Схема данных

Некоторые запросы к БД

Любимый жанр пользователя

```
SELECT A.USER ID, GENRE
FROM (SELECT USER ID, GENRE, COUNT(GENRE) AS COUNT LISTEN
      FROM Melnikova. USER X TRACK
               LEFT JOIN Melnikova.TRACK
                         ON Melnikova. USER X TRACK. TRACK ID = Melnikova. TRACK. TRACK ID
      GROUP BY USER ID, GENRE) AS A
         LEFT JOIN (SELECT USER ID, MAX(COUNT LISTEN) AS MAX COUNT
                    FROM (SELECT USER ID, GENRE, COUNT (GENRE) AS COUNT LISTEN
                          FROM Melnikova. USER X TRACK
                                   LEFT JOIN Melnikova.TRACK
                                             ON Melnikova.USER X TRACK.TRACK ID = Melnikova.TRACK.TRACK ID
                          GROUP BY USER ID, GENRE) AS C
                    GROUP BY USER ID) AS B
                   ON A.USER ID = B.USER ID
WHERE A.COUNT LISTEN = B.MAX COUNT
ORDER BY USER ID;
```

■ USER_ID ÷	I GENRE
0	Pop
0	Rock
1	Jazz
1	Pop
2	Pop
3	Jazz
3	Pop
4	Rock
5	Pop
6	Pop
7	Afrikanische M
7	Pop
7	Alternative
7	Jazz
8	Rock
9	Jazz
10	Pop
10	Rock
11	Pop
12	Electro
13	Heavy Metal
13	Jazz
13	Filme/Videospi
13	Pop

Количество треков, выпущенных артистом, в год

```
WITH

COUNT_TRACKS AS (

SELECT ALBUM_ID, COUNT(TRACK_ID) AS COUNT_TRACK

FROM Melnikova.ALBUM_X_TRACK

GROUP BY ALBUM_ID
),

ALBUM_ARTIST AS (

SELECT ARTIST_ID, ALBUM.ALBUM_ID, YEAR(YEAR) AS YEAR

FROM Melnikova.ALBUM

LEFT JOIN Melnikova.ARTIST_X_ALBUM

ON ARTIST_X_ALBUM.ALBUM_ID = ALBUM.ALBUM_ID
)

SELECT ALBUM_ARTIST.ARTIST_ID, YEAR, SUM(COUNT_TRACK) OVER(PARTITION BY ARTIST_ID ORDER BY YEAR) AS NUM_TRACKS

FROM COUNT_TRACKS

LEFT JOIN ALBUM_ARTIST ON ALBUM_ARTIST.ALBUM_ID = COUNT_TRACKS.ALBUM_ID

ORDER BY ARTIST_ID;
```

	ARTIST_ID :	III YEAR ÷	■ NUM_TRACKS :
1	317	2008	10
2	381	2008	2
3	409	2008	5
4	475	2008	24
5	564	2007	2
6	896	2007	2
7	1026	2008	16
8	1055	2009	13
9	1060	2000	10
10	1083	2008	6
11	1302	2005	31
12	1439	2007	14
13	1802	2002	2
14	2059	1993	12
15	2802	2008	2
16	3197	2008	3
17	4029	1996	12
18	4093	2007	15
19	5080	2008	22
20	5080	2008	22
21	5369	1999	4
22	6362	2008	1
23	7525	2008	3

DAU, PPU, REVENUE

DAU запрос

```
WITH RECURSIVE CTE (DT) AS
                       SELECT MIN(CAST(BEGIN DTTM AS DATE)) AS DT
                       FROM Melnikova. SESSIONS
                       UNION ALL
                       SELECT DT + INTERVAL 1 DAY
                       FROM CTE
                       WHERE DT + INTERVAL 1 DAY <= (SELECT MAX(CAST(BEGIN_DTTM AS DATE))
                                                     FROM (SELECT BEGIN DTTM FROM Melnikova.SESSIONS) AS SESSIONS DTTM
SELECT CTE.DT, COUNT(DISTINCT USER ID)
FROM CTE
         LEFT JOIN (SELECT BEGIN DTTM, USER ID FROM Melnikova.SESSIONS) AS SESSIONS DTTM USER
                   ON CTE. DT = CAST (SESSIONS DTTM USER. BEGIN DTTM AS DATE)
GROUP BY CTE.DT
ORDER BY CTE.DT;
```

DAU EXPLAIN

	■ id : ■ select_type :	I table ÷	■ partitions :	■ type ÷	possible_keys	i≣ key ÷	■ key_len	: I≣ ref :	■ rows ÷	■ filtered : ■ Extra :
1	1 PRIMARY	<derived2></derived2>	<null></null>	ALL	<null></null>	<null></null>	<null></null>	<null></null>	3	100 Using filesort
2	1 PRIMARY	SESSIONS	<null></null>	ALL	<null></null>	<null></null>	<null></null>	<null></null>	3572	100 Using where
3	2 DERIVED	SESSIONS	<null></null>	index	<null></null>	dttm_index	5	<null></null>	3572	100 Using index
4	3 UNION	CTE	<null></null>	ALL	<null></null>	<null></null>	<null></null>	<null></null>	2	100 Recursive; Using where
5	5 SUBQUERY	SESSIONS	<null></null>	index	<null></null>	dttm_index	5	<null></null>	3572	100 Using index

DAU график

Revenue запрос

```
WITH RECURSIVE
    CTE(DT) AS (
        SELECT MIN(CAST(BEGIN DTTM AS DATE)) AS DT
        FROM Melnikova.SESSIONS
        UNION ALL
        SELECT DT + INTERVAL 1 DAY
        FROM CTE
       WHERE DT + INTERVAL 1 DAY <= (SELECT MAX(CAST(BEGIN_DTTM AS DATE)) FROM Melnikova.SESSIONS)
    SUMM AS (
        SELECT CAST (Melnikova.PAYMENTS.PAYMENT DTTM AS DATE) AS DT, SUM(PAYMENT SUM) AS SUM
        FROM Melnikova.PAYMENTS
        GROUP BY DT
SELECT CTE.DT, COALESCE (SUM, 0) AS SUM PAYMENT
FROM CTE
         LEFT JOIN SUMM ON CTE. DT = SUMM.DT;
```

Revenue EXPLAIN

	■ id : ■ select_type :	: III table :	partitions :	type +	: ■possible_keys :	i≣ key ÷	■ key_len	: I ref :	■ rows ÷	I filtered :	⊞ Extra
1	1 PRIMARY	<derived2></derived2>	<null></null>	ALL	<null></null>	<null></null>	<null></null>	<null></null>	3	100	<null></null>
2	1 PRIMARY	<derived6></derived6>	<null></null>	ref	<auto_key0></auto_key0>	<auto_key0></auto_key0>	4	CTE.DT	10	100	<null></null>
3	6 DERIVED	PAYMENTS	<null></null>	ALL	<null></null>	<null></null>	<null></null>	<null></null>	269	100	Using temporary
4	2 DERIVED	SESSIONS	<null></null>	index	<null></null>	dttm_index	5	<null></null>	3572	100	Using index
5	3 UNION	CTE	<null></null>	ALL	<null></null>	<null></null>	<null></null>	<null></null>	2	100	Recursive; Using where
6	5 SUBQUERY	SESSIONS	<null></null>	index	<null></null>	dttm index	5	<null></null>	3572	100	Using index

Revenue график

PPU запрос

```
EXPLAIN
WITH RECURSIVE
   CTE(DT) AS (
       SELECT MIN(CAST(BEGIN_DTTM AS DATE)) AS DT
       FROM Melnikova.SESSIONS
       UNION ALL
       SELECT DT + INTERVAL 1 DAY
        FROM CTE
       WHERE DT + INTERVAL 1 DAY <= (SELECT MAX(CAST(BEGIN DTTM AS DATE)) FROM Melnikova.SESSIONS)
   ),
   DAU AS (
       SELECT CAST (Melnikova.SESSIONS.BEGIN_DTTM AS DATE) AS DT, COUNT (DISTINCT USER_ID) AS COUNT USER
       FROM Melnikova.SESSIONS
       GROUP BY DT
   ),
   PU AS (
       SELECT CAST (Melnikova.PAYMENTS.PAYMENT DTTM AS DATE) AS DT, COUNT (DISTINCT USER ID) AS COUNT PAY USER
       FROM Melnikova.PAYMENTS
       GROUP BY DT
SELECT CTE.DT, COALESCE(COUNT PAY USER, 0) / COALESCE(COUNT USER, 1) AS PPU
FROM CTE
        LEFT JOIN DAU ON CTE. DT = DAU. DT
        LEFT JOIN PU ON CTE.DT = PU.DT;
```

PPU EXPLAIN

	■ id : ■ select_type :	⊞ table ÷	<pre>■ partitions</pre>	: III type :	■ possible_keys :	i≣ key ÷	key_len	: I≣ ref :	■ rows ÷	III filtered : III Extra :
1	1 PRIMARY	<derived2></derived2>	<null></null>	ALL	<null></null>	<null></null>	<null></null>	<null></null>	3	100 < null>
2	1 PRIMARY	<derived6></derived6>	<null></null>	ref	<auto_key0></auto_key0>	<auto_key0></auto_key0>	4	CTE.DT	35	100 < null>
3	1 PRIMARY	<derived7></derived7>	<null></null>	ref	<auto_key0></auto_key0>	<auto_key0></auto_key0>	4	CTE.DT	10	100 < <i>null</i> >
4	7 DERIVED	PAYMENTS	<null></null>	ALL	<null></null>	<null></null>	<null></null>	<null></null>	269	100 Using filesort
5	6 DERIVED	SESSIONS	<null></null>	ALL	dttm_index	<null></null>	<null></null>	<null></null>	3572	100 Using filesort
6	2 DERIVED	SESSIONS	<null></null>	index	<null></null>	dttm_index	5	<null></null>	3572	100 Using index
7	3 UNION	CTE	<null></null>	ALL	<null></null>	<null></null>	<null></null>	<null></null>	2	100 Recursive; Using where
8	5 SUBQUERY	SESSIONS	<null></null>	index	<null></null>	dttm_index	5	<null></null>	3572	100 Using index

PPU график

МАСШТАБИРОВАНИЕ

Проблемы

• Рост числа пользователей

• Решение: Разделим таблицу Users на примерно равные части и вынесем каждую часть на отдельный сервер.

(горизонтальный шардинг)

Проблемы

• Рост числа сессий и платежей

• Решение: вынесем таблицы Sessions и Payments на отдельный сервер

(вертикальный шардинг)

- Можно было бы хранить эти таблицы на отдельных серверах, но тогда теряем возможность быстро делать SQL запросы объединяющие эти таблицы.
- Не храним информацию о давних сессиях

(обратное масштабирование)

Проблемы

• Высокая нагрузка на сервер из-за частых запросов к таблицам Track, Artist, Album, Playlist

• Решение: Храним копии таблиц на нескольких серверах

(репликация)

#