Unconstrained minimization: Newton's method

15.093: Optimization

Dimitris Bertsimas Alexandre Jacquillat

Sloan School of Management Massachusetts Institute of Technology

Reminder: descent methods for unconstrained minimization

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$$

Algorithm

- 1. Initialization: starting point $x^0 \in \mathbb{R}^n$, and iteration counter k=0
- 2. Repeat, until termination criterion is reached
 - **2.1** Update iteration counter: $k \leftarrow k+1$
 - **2.2** Determine a descent direction \boldsymbol{d}^k , such that $\nabla f(\boldsymbol{x}^k)^{\top} \boldsymbol{d}^k < 0$
 - **2.3** Determine a step size $\alpha^k > 0$
 - **2.4** Update $x^{k+1} \leftarrow x^k + \alpha^k d^k$
- Main design questions
 - 1. Initialization: how to determine the starting point x^0 ?
 - 2. Descent: how to determine the descent direction d^k ?
 - 3. Line search: how to choose the step size α^k ?
 - 4. Termination criterion; typically, $\|\nabla f(\boldsymbol{x}^k)\| \leq \eta$ for small $\eta > 0$

Unconstrained minimization: Newton's method Newton's method

Newton's method

Motivation and intuition: a second-order view

ullet Taylor series expansion around x

$$f(\boldsymbol{y}) \approx \widehat{f}(\boldsymbol{y}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x}) + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{x})^{\top} \nabla^{2} f(\boldsymbol{x}) (\boldsymbol{y} - \boldsymbol{x})$$

Motivation and intuition: a second-order view

• Taylor series expansion around x

$$f(\boldsymbol{y}) \approx \widehat{f}(\boldsymbol{y}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x}) + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{x})^{\top} \nabla^2 f(\boldsymbol{x}) (\boldsymbol{y} - \boldsymbol{x})$$

- Approximation of the minimization problem: $\min f(y) \to \min \widehat{f}(y)$
- From first-order conditions, move in the Newton direction

$$\nabla \widehat{f}(\boldsymbol{y}) = \boldsymbol{0} \implies \nabla f(\boldsymbol{x}) + \nabla^2 f(\boldsymbol{x})(\boldsymbol{y} - \boldsymbol{x}) = \boldsymbol{0}$$
$$\implies \boldsymbol{y} = \boldsymbol{x} - (\nabla^2 f(\boldsymbol{x}))^{-1} \nabla f(\boldsymbol{x})$$

The Newton decrement approximates the algorithm's progress:

$$f(x) - \min_{\mathbf{y}} \widehat{f}(\mathbf{y}) = f(x) - \widehat{f}(x+d) = \frac{1}{2}\lambda(x)^2$$

Definition

- Newton direction: $d = -(\nabla^2 f(x))^{-1} \nabla f(x)$
- Newton decrement: $\lambda(x) = (\nabla f(x)^{\top} \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}$

Motivation and intuition: a first-order view

- We seek a stationary point: $\nabla f(y) = 0$
- Taylor series expansion of $\nabla f(y)$ around x

$$abla f(oldsymbol{y}) pprox \widehat{g}(oldsymbol{y}) =
abla f(oldsymbol{x}) +
abla^2 f(oldsymbol{x})(oldsymbol{y} - oldsymbol{x})$$

Motivation and intuition: a first-order view

- We seek a stationary point: $\nabla f(y) = 0$
- Taylor series expansion of $\nabla f(y)$ around x

$$abla f(oldsymbol{y}) pprox \widehat{g}(oldsymbol{y}) =
abla f(oldsymbol{x}) +
abla^2 f(oldsymbol{x})(oldsymbol{y} - oldsymbol{x})$$

- Approximation of the problem: $\nabla f(y) = \mathbf{0} \rightarrow \widehat{g}(y) = \mathbf{0}$
- From the equation, move in the Newton direction

$$egin{aligned} \widehat{g}(oldsymbol{y}) &= oldsymbol{0} \implies
abla f(oldsymbol{x}) +
abla^2 f(oldsymbol{x})(oldsymbol{y} - oldsymbol{x}) &= oldsymbol{0} \ \implies oldsymbol{y} &= oldsymbol{x} - (
abla^2 f(oldsymbol{x}))^{-1}
abla f(oldsymbol{x}) \end{aligned}$$

- History:
 - The Newton method was developed by Newton and Raphson in the 1600's for solving systems of equations
 - Extension to optimization by Simpson in the 1700's: $g(y) = \nabla f(y)$

Visualization

- Two equivalent ways of interpreting Newton's method
 - 1. Second-order view: minimization of second-order Taylor approximation
 - 2. First-order view: root of first-order Taylor approximation of gradient
- ightarrow By leveraging second-order (Hessian) information, we obtain a stronger approximation of the function, hence of the minimization problem

Newton's method

Algorithm (Newton's method)

- 1. Initialization: starting point $x^0 \in \mathbb{R}^n$, and iteration counter k=0
- 2. Repeat, until termination criterion is reached
 - **2.1** *Update iteration counter:* $k \leftarrow k+1$
 - **2.2** Determine Newton's direction $d^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$
 - 2.3 Update $x^{k+1} \leftarrow x^k + d^k$

Newton's method

Algorithm (Newton's method)

- 1. Initialization: starting point $oldsymbol{x}^0 \in \mathbb{R}^n$, and iteration counter k=0
- 2. Repeat, until termination criterion is reached
 - **2.1** *Update iteration counter:* $k \leftarrow k+1$
 - **2.2** Determine Newton's direction $d^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$
 - **2.3** Update $x^{k+1} \leftarrow x^k + d^k$
- ightarrow A second-order method: use of first-order gradient and second-order Hessian information to proceed from iteration to iteration
 - More progress at each iteration than gradient descent
 - More work per iteration: $\mathcal{O}(n^3)$ operations
 - "Pure" Newton method relies on a step size of 1
 - Convergence criterion based on estimated improvement: $\lambda(x)^2/2 \leq \varepsilon$
 - Affine invariance: Newton's method independent of problem scaling
 - Newton's method for f(x) and $\widetilde{f}(y) = f(Ty)$ yields $x^{k+1} = Ty^{k+1}$
 - Recall that this is not the case with gradient descent

Example: fitting a logistic regression model

$$\max \ f(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left\{ y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta} - \log \left(1 + e^{\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}} \right) \right\}$$

$$\nabla f(\boldsymbol{\beta}) = \boldsymbol{X}^{\top} (\boldsymbol{y} - \boldsymbol{p}(\boldsymbol{X}, \boldsymbol{\beta})), \quad \text{with: } p_{i}(\boldsymbol{X}, \boldsymbol{\beta}) = \frac{e^{\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}}}$$

$$\nabla^{2} f(\boldsymbol{\beta}) = -\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{X}, \text{ where: } \boldsymbol{W} = \operatorname{diag} \left(\frac{e^{\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}}} \cdot \frac{1}{1 + e^{\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}}} \right)$$

- A convex optimization problem: $\max f(\beta)$ with $\nabla^2 f(\beta) \prec 0$
- Minimum at a stationary point $X^{\top}(y p(X, \beta^*)) = 0$
- Applying Newton's algorithm to the logistic regression model:

$$\begin{split} \boldsymbol{\beta}^{k+1} &= \boldsymbol{\beta}^k + (\boldsymbol{X}^\top \boldsymbol{W} \boldsymbol{X})^{-1} \boldsymbol{X}^\top (\boldsymbol{y} - \boldsymbol{p}(\boldsymbol{X}, \boldsymbol{\beta}^k)) \\ &= (\boldsymbol{X}^\top \boldsymbol{W} \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{W} \boldsymbol{z}^k, \text{ with } \boldsymbol{z}^k = \boldsymbol{X} \boldsymbol{\beta}^k + \boldsymbol{W}^{-1} (\boldsymbol{y} - \boldsymbol{p}(\boldsymbol{X}, \boldsymbol{\beta}^k)) \end{split}$$

→ Interpretation as iterative re-weighted least squares:

$$oldsymbol{eta}^{k+1} = \operatorname*{arg\,min}_{oldsymbol{eta}} (oldsymbol{z}^k - oldsymbol{X}oldsymbol{eta})^ op oldsymbol{W} (oldsymbol{z}^k - oldsymbol{X}oldsymbol{eta})$$

Unconstrained minimization: Newton's method Local convergence

Local convergence

Local convergence of Newton's method

Definition (operator norm of a matrix)

$$\|M\| = \max\{\|Mx\| : \|x\| = 1\}$$

Theorem

- $f(\cdot)$ twice continuously differentiable, and $\nabla f(x^*) = 0$. Assume that:
 - $-\|(\nabla^2 f(x^*))^{-1}\| \leq \frac{1}{m}$ for some m > 0
 - $-\nabla^2 f(x)$ is L-Lipschitz in the β -ball around x^* for some $\beta > 0$, L > 0:

$$\|\nabla^2 f(\boldsymbol{x}) - \nabla^2 f(\boldsymbol{y})\| \le L\|\boldsymbol{x} - \boldsymbol{y}\|, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{B}(\boldsymbol{x}^*, \beta)$$

Define $\delta = \min \left\{ \beta, \frac{2m}{3L} \right\}$. The following holds:

- 1. If $||x^k x|| < \delta$, then $||x^{k+1} x|| < \delta$ for all $k = 0, 1, 2, \cdots$
- 2. $\|\boldsymbol{x}^{k+1} \boldsymbol{x}^*\| \leq \frac{3L}{2m} \|\boldsymbol{x}^k \boldsymbol{x}^*\|^2$, $\forall k = 0, 1, 2, \cdots$

Local convergence: interpretation and implications

Corollary

$$\|oldsymbol{x}^k - oldsymbol{x}^*\| \leq rac{1}{C} \left(CX \|oldsymbol{x}^0 - oldsymbol{x}^*\|
ight)^{2^k}, ext{ where } C = rac{3L}{2m}$$

- Interpretation of the result:
 - Once in a δ -neighborhood of $m{x}^*$, the algorithm stays there
 - Quadratic convergence within the δ -neighborhood: $\frac{\|m{x}_{k+1}-m{x}^*\|}{\|m{x}_k-m{x}^*\|^2} \leq \frac{3L}{2m}$
 - \rightarrow Solution within ε of the optimum after at most

$$\left\lceil \frac{\log\left(\frac{\log(C\varepsilon)}{\log(C\|\mathbf{z}^0 - \mathbf{z}^*\|)}\right)}{\log 2} \right\rceil \text{ iterations}$$

- ullet Newton's method is attracted to local minima & maxima: $abla f(oldsymbol{x}^*) = oldsymbol{0}$
- ullet eta, m and L are hard to estimate, but not used in the algorithm
- The algorithm and local convergence do not require the convexity of f, only that $H(x^*)$ is nonsingular and not badly behaved near x^* .

Proof of the theorem (1/2)

• Notation: $g(\boldsymbol{x}) = \nabla f(\boldsymbol{x})$ and $H(\boldsymbol{x}) = \nabla^2 f(\boldsymbol{x})$

Lemma

$$g(x^k) - g(x^*) = \int_0^1 H(x^* + t(x^k - x^*))(x^k - x^*)dt$$

• By definition of x^{k+1} , we derive:

$$\begin{split} \boldsymbol{x}^{k+1} - \boldsymbol{x}^* &= \boldsymbol{x}^k - \boldsymbol{x}^* - (H(\boldsymbol{x}^k))^{-1}g(\boldsymbol{x}^k) \\ &= \boldsymbol{x}^k - \boldsymbol{x}^* - (H(\boldsymbol{x}^k))^{-1}(g(\boldsymbol{x}^k) - \underbrace{g(\boldsymbol{x}^*)}_{=\boldsymbol{0}}) \\ &= (\boldsymbol{x}^k - \boldsymbol{x}^*) - (H(\boldsymbol{x}^k))^{-1} \int_0^1 H(\boldsymbol{x}^* + t(\boldsymbol{x}^k - \boldsymbol{x}^*))(\boldsymbol{x}^k - \boldsymbol{x}^*) dt \\ &= (H(\boldsymbol{x}^k))^{-1} \int_0^1 \left[H(\boldsymbol{x}^k) - H(\boldsymbol{x}^* + t(\boldsymbol{x}^k - \boldsymbol{x}^*)) \right] (\boldsymbol{x}^k - \boldsymbol{x}^*) dt \end{split}$$

Proof of the theorem (2/2)

Lemma

Under the conditions of the theorem, we have

$$||H(x)^{-1}|| \le \frac{1}{m - L||x - x^*||}, \ \forall x \in \mathcal{B}(x^*, \beta)$$

$$\begin{aligned} \|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\| &\leq \left\| H(\boldsymbol{x}^k))^{-1} \right\| \int_0^1 \left\| H(\boldsymbol{x}^k) - H(\boldsymbol{x}^* + t(\boldsymbol{x}^k - \boldsymbol{x}^*)) \right\| \|\boldsymbol{x}^k - \boldsymbol{x}^*\| dt \\ &\leq \frac{1}{m - L \|\boldsymbol{x} - \boldsymbol{x}^*\|} \cdot \int_0^1 L(1 - t) \|\boldsymbol{x}^k - \boldsymbol{x}^*\| dt \cdot \|\boldsymbol{x}^k - \boldsymbol{x}^*\| \\ &= \frac{L}{2(m - L \|\boldsymbol{x} - \boldsymbol{x}^*\|)} \|(\boldsymbol{x}^k - \boldsymbol{x}^*)\|^2 \end{aligned}$$

• Since $L\|(x^k - x^*)\| < 2m/3$, we obtain:

1.
$$\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\| \le \frac{2m/3}{2(m-2m/3)} \|(\boldsymbol{x}^k - \boldsymbol{x}^*)\| = \|(\boldsymbol{x}^k - \boldsymbol{x}^*)\| \le \delta$$

$$2. \|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\| \le \frac{L}{2(m - 2m/3)} \|(\boldsymbol{x}^k - \boldsymbol{x}^*)\|^2 = \frac{3L}{2m} \|(\boldsymbol{x}^k - \boldsymbol{x}^*)\|^2$$

Example and illustration

$$f(x_1, x_2) = -\log(1 - x_1 - x_2) - \log x_1 - \log x_2$$

$$\nabla f(x_1, x_2) = \left(\frac{1}{1 - x_1 - x_2} - \frac{1}{x_1}; \frac{1}{1 - x_1 - x_2} - \frac{1}{x_2}\right)^{\top}$$

$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} \left(\frac{1}{1 - x_1 - x_2}\right)^2 + \left(\frac{1}{x_1}\right)^2 & \left(\frac{1}{1 - x_1 - x_2}\right)^2 \\ \left(\frac{1}{1 - x_1 - x_2}\right)^2 & \left(\frac{1}{1 - x_1 - x_2}\right)^2 + \left(\frac{1}{x_1}\right)^2 \end{bmatrix}$$

Unconstrained minimization: Newton's method Global convergence

Global convergence

Global convergence: issues and solutions

- Quadratic convergence in Newton's method is "local"
 - There is no guaranteee that $f(x^{k+1}) \leq f(x^k)$ at each iteration
 - Newton's method is attracted to local minima & maxima: $\nabla f(x^*) = \mathbf{0}$
 - What happens if we start "far" away from x^* ?
- ightarrow Augment algorithm with line search: $lpha^k = rg \min_{lpha} f(m{x}^k + lpha m{d}^k)$

Proposition

If
$$\nabla^2 f(x) \succeq \mathbf{0}$$
, then $d = -\nabla^2 f(x)^{-1} \nabla f(x) \neq \mathbf{0}$ is a descent direction: $f(x + \alpha d) < f(x)$ for α sufficiently small.

Algorithm (Newton's method with exact line search)

- 1. Initialization: starting point $x^0 \in \mathbb{R}^n$, and iteration counter k=0
- 2. Repeat, until termination criterion is reached
 - **2.1** Update iteration counter: $k \leftarrow k+1$

 - 2.2 Determine Newton's direction $d^k = -(\nabla^2 f(\boldsymbol{x}^k))^{-1} \nabla f(\boldsymbol{x}^k)$ 2.3 Determine α^k via exact line search, and update $\boldsymbol{x}^{k+1} \leftarrow \boldsymbol{x}^k + \alpha^k \boldsymbol{d}^k$

Global convergence: (strong) convexity to the rescue

Theorem

- $f(\cdot)$ twice continuously differentiable. Assume that:
 - f is M-smooth
 - f is m-strongly convex
 - $\nabla^2 f(x)$ is L-Lipschitz: $\|\nabla^2 f(x) \nabla^2 f(y)\| \le L\|x y\|, \forall x, y$

Newton's method with line search satisfies, for $0 < \eta \le m^2/L$, $\gamma > 0$:

- **1**. If $\|\nabla f(x^k)\| \ge \eta$: $f(x^{k+1}) f(x^k) \le -\gamma$
- 2. If $\|\nabla f(x^k)\| < \eta$: $\|\nabla f(x^{k+1})\| < \eta$ & $\|\nabla f(x^{k+1})\| \le \frac{L}{2m^2} \|\nabla f(x^k)\|^2$
- → Two phases in Newton's method:
 - 1. Damped phase: progress of at least η per iteration
 - 2. Local phase: quadratic convergence within a local neighborhood
- → Main objective: getting quickly into a good neighborhood

$$rac{f(\pmb{x}^0-z^*)}{\gamma} + \log_2\log_2\left(rac{arepsilon_0}{arepsilon}
ight)$$
 iterations, for some constant $arepsilon_0$

Damped phase: proof

- $\nabla f(\boldsymbol{x}^k)^{\top} \boldsymbol{d}^k = -\nabla f(\boldsymbol{x}^k)^{\top} (\nabla^2 f(\boldsymbol{x}^k))^{-1} \nabla f(\boldsymbol{x}^k) = -\lambda (\boldsymbol{x}^k)^2$
- Due to the M-smoothness of the function f:

$$f(\boldsymbol{x}^k + \alpha \boldsymbol{d}^k) \le f(\boldsymbol{x}^k) + \alpha \nabla f(\boldsymbol{x}^k)^{\top} \boldsymbol{d}^k + \frac{M\alpha^2}{2} \|\boldsymbol{d}^k\|^2$$
$$\lambda(\boldsymbol{x}^k)^2 = \nabla f(\boldsymbol{x}^k)^{\top} (\nabla^2 f(\boldsymbol{x}^k))^{-1} \nabla f(\boldsymbol{x}^k) \ge \frac{1}{M} \|\nabla f(\boldsymbol{x}^k)\|^2$$

Due to the strong convexity of the function f:

$$\lambda(\boldsymbol{x}^k)^2 = (\boldsymbol{d}^k)^{\top} \nabla^2 f(\boldsymbol{x}^k) \boldsymbol{d}^k \ge m \|\boldsymbol{d}^k\|^2$$

By combining the two properties, we obtain:

$$f(\boldsymbol{x}^k + \alpha \boldsymbol{d}^k) \le f(\boldsymbol{x}^k) - \alpha \lambda (\boldsymbol{x}^k)^2 + \frac{M\alpha^2}{2m} \lambda (\boldsymbol{x}^k)^2$$

- Exact line search: $\alpha^k \in \arg\min_{\alpha} f(\boldsymbol{x}^k + \alpha \boldsymbol{d}^k)$
- By minimizing over α on both sides, we obtain:

$$f\left(\boldsymbol{x}^{k} + \alpha^{k} \boldsymbol{d}^{k}\right) \leq f(\boldsymbol{x}^{k}) - \frac{m}{2M} \lambda(\boldsymbol{x}^{k})^{2} = f(\boldsymbol{x}^{k}) - \frac{m}{2M^{2}} \|\nabla f(\boldsymbol{x}^{k})\|^{2}$$
$$\Longrightarrow f(\boldsymbol{x}^{k+1}) - f(\boldsymbol{x}^{k}) = f\left(\boldsymbol{x}^{k} + \alpha^{k} \boldsymbol{d}\right) - f(\boldsymbol{x}^{k}) \leq -\frac{m}{2M^{2}} \eta^{2} := -\gamma$$

Unconstrained minimization: Newton's method Conclusion

Conclusion

Summary

Takeaway

Newton's method was originally developed to find roots of equations, and then extended to solve optimization problems.

Takeaway

Newton's method augments descent methods by leveraging second-order (Hessian) information.

Takeaway

Convergence of Newton's method is very fast (quadratic) locally.

⇒ two steps: (i) finding a solution near a stationary point; and (ii) finding the stationary point, exploiting quadratic convergence.

Takeaway

Numerous enhancements exist to address global convergence issues.