Estimation of Dynamic Discrete Demand Model with Bayesian Markov Chain Monte Carlo

Bayesian Estimation of Dynamic Discrete Choice Models

Author(s): Susumu Imai, Neelam Jain and Andrew Ching

Source: Econometrica, Vol. 77, No. 6 (Nov., 2009), pp. 1865-1899

Published by: The Econometric Society

Raymond Chiasson RSM3055 ICJ Method Assignment 8-Nov-2022

Summary

I solve the Loyalty Program model using the IJC method in Julia. These slides briefly document the model, method, code, and estimation results.

This project features

- Bayesian Markov Chain Monte Carlo (MCMC), which is an efficient method to estimate structural models with many parameters such as those with heterogeneous individuals.
- The "IJC method" described in Imai, Jain and Ching 2009 which is a computationally efficient way to approximate the value function in dynamic models which are being estimated with Bayesian MCMC.
- The "Loyalty Program" which is a basic discrete dynamic choice model where consumers decide between products in the current period, and can earn "Rewards" after having chose a product a certain number of times (for example, a "buy 5 get one free").
- Clean and optimized Julia code using best practices of the language, to the best of my knowledge.

Model Parameters and Environmental Variables

```
# 0. Parameters and setup.
# Model parameters (to be esimated).
\alpha = [-0.0, -0.0, -0.0] # store brand intercepts
 = -1.0
             # price coefficient
G = [1.0, 3.0, 8.0]
                                # value of gifts
\sigma g1 = [0.0, 0.0, 0.0]
                                # homogeneous consumers
 = 0.650
                                # discount rate
# Fnvironment variables.
                                # number of stores
n stores = 3
                                # number of choices for consumer (stores + outside option)
n choices = n stores + 1
\bar{s} = [4, 4, 6]
                                # gift threshold
price mean = [1.0, 0.75, 1.5]
                                # mean of observed prices
price stdev = [0.25 0.00 0.00;
             0.00 0.25 0.00;
                                # standard deviation (covariance matrix) of observed prices
             0.00 0.00 0.25
                                # number of draws for price integration
n price draws = 100
# Simulated data parameters.
n individuals = 1000
n periods = 100
```

Parameter Estimates – Bayesian MCMC with IJC

Row	ataFrame variable	true value	estimated mean	95% Credible Interval Low	95% Credible Interval High
	Any	Any	Any	Any	Any
1	α ₁	-0.0	-0.0106112	-0.0542716	0.0367328
2	α2	-0.0	-0.0207863	-0.0559575	0.0169452
3	α3	-0.0	0.00135663	-0.0615654	0.0694388
4	γ	-1.0	-0.997628	-1.04115	-0.957486
5	G ₁	0.65	0.654841	0.641717	0.667859
6	G ₂	1.0	1.01293	0.971786	1.05542
7	G₃	3.0	3.1305	3.07501	3.18438
8	β	8.0	7.89058	7.70638	8.04987

completed 30000 draws, acceptance rate 0.24567408875385913

Parameter Estimates – Maximum Likelihood

	Numerical Maximum Likelihood Results 8×5 DataFrame						
Row	values Any	true value Any	estimated mean Any	95% Confidence Interval Low Any	95% Condifence Interval High Any		
1	α ₁	-0.0	-0.0061304	-0.0491608	0.0369		
2	α2	-0.0	0.000857478	-0.0365915	0.0383065		
3	α3	-0.0	-0.000520678	-0.0618666	0.0608253		
4	γ	-1.0	-0.998529	-1.03678	-0.960279		
5	G ₁	1.0	0.995541	0.930543	1.06054		
6	G ₂	3.0	3.02741	2.93073	3.12408		
7	G ₃	8.0	7.9929	7.83024	8.15557		
8	β	0.65	0.650514	0.639755	0.661272		

Initial Parameter Guesses

Variable	Parameter Guess				
Variable	True Value	Informed	Directional	Zeros	
α_1	0	0	1	0	
α_2	0	0	1	0	
α_3	0	0	1	0	
γ	-1	-0.5	-1	0	
β	0.65	0.8	0.5	0	
G_1	1	2	1	0	
G_2	3	5	1	0	
G_3	8	5	1	0	

I experimented with different starting parameter values.

- Starting from the true value, to confirm that the distribution converged around these values.
- Informed and directional guesses which were logical choices based on economic theory and preliminary runs.
- A naïve guess of 0 for each parameter.

The distribution converged well before the burn-in period for all parameter guesses.

The following graphs and results all use the Zeros parameter guess.

Parameter Draw Mixing During Burn-In

Parameter Draw Mixing After Burn-In

Model Parameters and Environmental Variables

```
# 0. Parameters and setup.
# Model parameters (to be esimated).
\alpha = [-0.0, -0.0, -0.0]
                                     # store brand intercepts
  = -1.0
                                      # price coefficient
  = [1.0, 3.0, 8.0]
                                     # value of gifts
\sigma g = diagm([0.5, 1.0, 2.0])
                                      # covariance of gift values (heterogeneous consumers)
   = 0.650
                                      # discount rate
# Fnvironment variables.
n stores = 3
                                      # number of stores
                                     # number of choices for consumer (stores + outside option)
n choices = n stores + 1
\bar{s} = [4, 4, 6]
                                     # gift threshold
price mean = [1.0, 0.75, 1.5] # mean of observed prices
price_stdev = diagm([0.25, 0.25, 0.25]) # standard deviation (covariance matrix) of observed prices
                                     # number of draws for price integration
n price draws = 100
# Simulated data parameters.
n individuals = 100
n periods = 1000
# Take draws for individual-level parameters
G<sub>i</sub> = rand(MvNormal(G, σg), n individuals)
```

Parameter Estimates

Row	variable Any	true value Any	estimated mean Any	95% Credible Interval Low Any	95% Credible Interval High Any
1	α 1	-0.0	-0.036922	-0.0876735	0.0119379
2	α2	-0.0	-0.0379751	-0.0778946	0.00114623
3	α3	-0.0	-0.0632642	-0.13365	0.00545934
4	γ	-1.0	-0.970838	-1.01471	-0.925212
5	β	0.65	0.658644	0.648444	0.668853
6	Ğ₁	1.0	1.12314	0.967387	1.28021
7	Ğ₂	3.0	3.04384	2.81318	3.27425
8	Ğ₃	8.0	7.93703	7.62853	8.25045
9	σg ₁	0.5	0.537511	0.394034	0.7284
10	σg₂	1.0	1.22921	0.908963	1.64703
11	σg₃	2.0	1.83767	1.29399	2.55138
12	G ₂ -10	4.07	3.52406	2.97044	4.10188
13	G ₂ -50	3.91	3.99739	3.40701	4.60856
14	G ₂ -100	3.62	3.67842	3.11153	4.24063

completed 30000 draws, homogeneous parameter acceptance rate 0.27 heterogeneous: [0.32 0.31 0.31 0.33 0.34 0.34 0.31 0.35 0.33 0.33]

Initial Parameter Guesses

Mavialala	Parameter Guess				
Variable	True Value	Informed	Directional	Zeros	
$lpha_1$	0	0	0	0	
α_2	0	0	0	0	
α_3	0	0	0	0	
γ	-1	-1	-1	0	
β	0.65	0	0	0	
G_1	1	4	1	0	
G_2	3	4	1	0	
G_3	8	4	1	0	
α_1	0.5	1	1	1	
α_2	1	1	1	1	
α_3	2	1	1	1	

I experimented with different starting parameter values.

- Starting from the true value, to confirm that the distribution converged around these values.
- Informed and directional guesses which were logical choices based on economic theory and preliminary runs.
- A naïve guess of 0 for each parameter.

The distribution converged well before the burn-in period for all parameter guesses.

The following graphs and results all use the Zeros parameter guess.

Heterogenous Case

Heterogenous Case

Issue with the Pseudo Value Function Approximation

The pseudo value function approximation to the true value function leads the likelihood function to be non-smooth and biased towards the population mean.

The bias towards the population mean causes incorrect estimates for the variance parameters.

The smoothness can be addressed by adjusting the kernel bandwidth parameter.

The bias can be addressed by using more periods (such as 1000 instead of 100) and by storing individual pseudo value function approximations for each individual (instead of the combined value function approach that stores a random individual in each period).

Outline of Code Files

File	Key sections	Notes	
main.jl	 Parameters and setup Simulate data Estimate model using IJC algorithm Display results Estimate model using Maximum Likelihood Benchmarking, Profiling, Visualizing 	Sections 0-3 perform the key steps of creating the dataset, drawing from the posterior using the IJC algorithm, and displaying the results. Section 4 is only present in the homogeneous case and is shown only for comparison. Section 5 contains additional	
		information used for debugging and optimization.	
	Precalculate_State_ Correspondence	Function 1 precalculates which states are accessible from each	
	2. Solve_Individual_Problem	starting state and the	
	3. Solve_Value_Function	corresponding choices and rewards.	
custom_functions.jl	4. Get_Proposal	Function 2 is used to perform	
	5. Parameter_Distance_Kernel	one iteration of value function	
	6. Log_Prior_Individual_Params	iteration.	
	7. Log_Sample_Likelihood	Functions 4-8 are used when	
	8. Get_Pseudo_Value_Function	taking parameter draws.	

File	Key sections	Notes
	Model_Parameters_Struct Environment_Struct Dataset_Struct Value_Function_Parameters_Struct	Immutable data structs to store scalars and arrays used by various functions and steps in the main program. Model parameters refers to the key unobservables: α, γ, β etc.
data_structs.jl		Environment struct contains observable model parameters such as the number of stores and the number of visits to earn a reward.
		Dataset struct contains the simulated dataset; store choices, starting states, and prices.
		The value function struct contains information required to calculate the pseudo value function; past value functions and corresponding parameter draws.

Optimization

The majority of compute time is spent on unavoidable log and exponential calculations.

- The functions used to update the value function (Solve_Individual_Problem) and calculate the sample log likelihood (Log_Sample_Likelihood) were the computational bottlenecks in the Homogeneous Case.
- Both functions were optimized such that they were bottlenecked by calls to the log and exponential functions.
- The Heterogeneous Case was bottlenecked by estimating the value function (Get_Pseudo_Value_Function). This function was further optimized in this set of code to also be limited by basic math operations.
- The fact that estimating the value function becomes the bottleneck illustrates the utility of the IJC Method, especially in the case of heterogeneous individuals.

Parallelization is employed in the Heterogenous Case to greatly improve the speed of the computation bottleneck (calculating the pseudo value function).

- Calculating the log likelihood can be parallelized over individuals for a given parameter draw.
- Parallelization did not increase the speed of the Homogeneous Case. Calculating the likelihood for each individual did not require estimating the pseudo value function which resulted in the overhead of multithreading causing a net loss in performance.

Optimization

Model	Dataset	Method	Compute Time
		IJC method - Bayesian MCMC	15 minutes
Homogeneous individuals	1000 individuals 100 periods	Bayesian MCMC without IJC (solving value function instead)	54 minutes
		Maximum Likelihood with numerical gradients	2.5 minutes
	1000 individuals	IJC method - Bayesian MCMC	290 minutes
Heterogeneous	100 periods	Bayesian MCMC without IJC (solving value function instead)	792 minutes
individuals	100 individuals	IJC method - Bayesian MCMC	23 minutes
	1000 periods	Bayesian MCMC without IJC (solving value function instead)	786 minutes

Optimization

Profiling (IJC method, individual value functions)

