Test for Concyclic points: Converse, angles in the same segment

Created by Mr. Francis Hung on 20210915

Last updated: 2021-09-26

In the figure, if $\alpha = \beta$, then A, B, C, D are concyclic. Abbreviation:

Converse,

∠s in the same segment

Proof: Assume that any 3 points are not collinear. Draw a circle which passes through A, B and C. There are 3 different cases:

Case 1 D lies outside the circle

AD cuts the circle at E.

Join BE.

 $\angle AEB = \alpha \ (\angle s \text{ in the same segment } ACB)$

 $\alpha = \beta$ (given)

 $\therefore BE // BD$ (corr. \angle s eq.)

This is impossible because there are two different parallel lines which meet at B.

∴ Case 1 is impossible.

Case 2 *D* lies inside the circle

Produce AD which cuts the circle at E. Join BE.

 $\angle AEB = \alpha$ (\angle s in the same segment ACB)

 $\alpha = \beta$ (given)

 $\therefore BE // BD$ (corr. \angle s eq.)

This is impossible because there are two different parallel lines which meet at *B*.

∴ Case 2 is impossible.

Case 3 *D* lies on the circle *ABC*.

: Case 1 and case 2 are impossible

The only possible case is case 3.

i.e. *D* must lie on the circle This is known as indirect proof. (反證法)

 \therefore A, B, C, D are concyclic.

Test for Concyclic points: Opposite angles supplementary

Test for Concyclic points: Exterior angle = interior opposite angle

In the figure, if x = y, then A, B, C, D are concyclic

Proof: $\angle ABC = 180^{\circ} - y$ (adj. \angle s on st. line)

$$\angle ABC + \angle ADC = x + 180^{\circ} - y$$

= 180°

 \therefore A, B, C, D are concyclic (opp. \angle s supp.)

The theorem is proved.

Abbreviation: **ext.** \angle = **int. opp.** \angle

Example 1

In the figure, Given $\triangle ABC$, AB = AC, $\angle BAC = 36^{\circ}$, the line bisecting $\angle ABC$ meets the line through C parallel to BA at D. To prove: A, B, C, D are concyclic.

D Proof:
$$\angle ABC = \angle ACB$$

(base
$$\angle$$
s isos. Δ)

$$=\frac{180^{\circ}-36^{\circ}}{2}=72^{\circ}$$

$$(\angle \text{ sum of } \Delta)$$

$$b = b_1 = \frac{72^{\circ}}{2} = 36^{\circ}$$

$$d = b = 36^{\circ}$$

(alt.
$$\angle$$
s, $AB // DC$)

$$\therefore \angle A = \angle D$$

$$\therefore$$
 A, B, C, D are concyclic

Example 2

In the figure, 2 circles *APRB*, *ASQB* intersect at *A* and *B*. *PAQ*, *RAS* are straight lines, *RP* and *QS* are produced to meet at *O*. To prove: *O*, *P*, *B*, *Q* are concyclic.

Proof:
$$p = a$$

$$(\angle s \text{ in the same segment})$$

$$a = q$$

 $(\angle \text{ sum of } \Delta)$

$$\therefore p = q$$

$$\therefore O, P, B, Q$$
 are concyclic. (ext. $\angle = \text{int. opp. } \angle$)

Example 3

In the figure, O is the centre of the circle. AOB is a diameter. AC intersects DE at

F. If $\angle ADE = \angle DCA = x$, prove that FEBC is a cyclic quadrilateral.

$$\angle ACB = 90^{\circ}$$

(∠ in semi-circle)

$$\angle DAE = 180^{\circ} - \angle BCD$$

(opp. ∠ cyclic quad.)

$$= 180^{\circ} - (90^{\circ} + x) = 90^{\circ} - x$$

 $\angle AED = 180^{\circ} - (90^{\circ} - x) - x = 90^{\circ}$

 $(\angle \text{ sum of } \Delta)$

$$\therefore \angle ACB = 90^{\circ} = \angle AED$$

$$B, C, F, E$$
 are concyclic

(ext. \angle = int. opp. \angle)

Orthocentre

Example 4

The three altitudes of a triangle are concurrent at a point

called the "orthocentre". (Figure 1)

In $\triangle ABC$, $AD \perp BC$, $BE \perp AC$, $CF \perp AB$.

Then AD, BE, CF are concurrent at H.

Proof: Let the **altitudes** *BE* and *CF* meet at *H*.

Join AH and produce it to meet BC at D.

Try **to show** that $AD \perp BC$. (Figure 2)

$$\angle AFH + \angle AEH = 180^{\circ}$$

A, F, H, E are concyclic. (opp. \angle supp.)

$$\angle BFC = \angle BEC$$

B, C, E, F are concyclic. (converse, \angle s in the same seg.)

Figure 2

In **Figure 3**, let $\angle BAD = x$, $\angle AHF = y$.

$$\angle FEH = x$$
 (\angle s in the same seg.)

$$\angle BCF = \angle BEF$$
 (\angle s in the same seg.)

= x

$$\angle CHD = y$$
 (vert. opp. $\angle s$.)

In
$$\triangle AFH$$
, $x + y = 90^{\circ}$ (\angle sum of \triangle)

In
$$\triangle CDH$$
, $x + y + \angle CDH = 180^{\circ}$ (\angle sum of \triangle)

$$\therefore \angle CDH = 90^{\circ}$$

The **theorem** is proved.

