

Lecture 02 -

전력전자 기초 이론 (Ⅱ)

Presented by Byoung-Kuk Lee, Ph. D., Senior IEEE

Energy Mechatronics Lab.
College of Information and Communication Eng.
Sungkyunkwan University

Tel: +82-31-299-4581 Fax: +82-31-299-4612 http://seml.skku.ac.kr EML: bkleeskku@skku.edu

단상 PWM AC-DC 컨버터 (I)

- ▶ 다이오드 정류기
 - ❖ 출력전압 크기 제어 및 입력단 역률이 작고 THD가 큼
- PWM AC-DC 컨버터를 통하여 역률 제 어 및 출력전압 크기제어 가능

단상 PWM AC-DC 컨버터 (II)

- ▶ 센싱받은 입력전류를 입력전압과 동상인 전류 지령값과 같아 지도록 제어
 → Hysteresis 제어 이용
 - ❖ i_{s_under}<i_s: T₂&T₃ on(전류 증가)
 - $I_{s_upper} > i_s : T_2 \& T_3 \text{ off}(전류 감소)$

< 제어 블록 다이어그램 >

3상 PWM AC-DC 컨버터 (I)

< 3상 PWM AC-DC 컨버터 토폴로지 >

▶ 기본 동작 원리는 단상 PWM 컨버터와 동일

3상 PWM AC-DC 컨버터 (II)

< 3상 PWM AC-DC 컨버터 토폴로지 >

▶ a상, b상, c상은 기준파를 120° 위상차 가 나도록 제어함으로써 출력 전압 위 상 제어

CVCF & VVVF

- Square Wave Inverter
 - : 출력 전압의 크기 고정, 출력 주파수 제어
- Pulse Width modulation Inverter
 - : 출력 전압의 크기 및 주파수 동시 제어

- Three Phase Voltage Source Inverter
 - ❖ 교류 전동기 구동 분야 & 교류 전원장치 분야
- VVVF (Variable Voltage Variable Frequency)
 - : 교류 전동기의 가변속 구동을 위해 출력 전압의 크기 & 주파수가 동시에 가변되도록 제어
- CVCF (Constant Voltage Constant Frequency)
 - : 안정된 교류 전원을 출력하기위해 출력 전압의 크기와 주파수를 일정하게 유지
 - : UPS (Uninterruptible Power Supply), 신재생 에너지는 활용하는 PCS

3상 인버터 회로의 구성

(출력상전압=
$$v_a$$
, v_b , v_c) $\in \left\{ \frac{V_{DC}}{2}$, $-\frac{V_{DC}}{2} \right\}$ (출력선간전압= v_{ab} , v_{bc} , v_{ca}) $\in \left\{ V_{DC}$, 0 , $-V_{DC} \right\}$ (부하상전압= v_{an} , v_{bn} , v_{cn}) $\in \left\{ \frac{2}{3}V_{DC}$, $\frac{1}{3}V_{DC}$, 0 , $-\frac{1}{3}V_{DC}$, $-\frac{2}{3}V_{DC} \right\}$

▶ 회로의 구성

- ❖ 전압 관계를 고려하기 위하여 DC 입력 중성점을 가상접지를 표현
- ❖ Top-Bottom 소자는 상보적으로 동작
- ❖ 각각의 스위칭 소자에 환류를 위한 다이오드를 병렬로 부착
- ❖ 출력에 3의 배수 및 짝수 고조파를 제외한 홀 수 고조파 발생 (6k±1 차수의 고조파)
- ❖ 8개의 서로 다른 스위칭 상태만 존재, 부하에 5종류(0, Vdc/3, -Vdc/3, 2Vdc/3, -2Vdc/3)의 상 전압 존재

3상 인버터 동작

- ▶ 스위칭 함수 (한 Leg의 두 스위치는 번갈아 On/Off하는 상보 스위칭)
 - <Sa, Sb, Sc>
 - x Sx = 1 or 0 (x = a, b, c)
 - ❖ ON = 1, OFF = 0

Switching Function & Switching state

< Eight Possible Phase Leg Switch Combinations for VSI >

3상 부하의 연결상태

(010) Active Vector

(111) Zero Vector

(101) Active Vector

(000) Zero Vector

스위칭 상태 및 출력전압

스위칭 상태			폴전압			출력 상전압 (부하전압)		
Sa	Sb	Sc	Vao	Vbo	Vco	Van	Vbn	Vcn
0	0	0	-Vdc/2	-Vdc/2	-Vdc/2	0	0	0
1	0	0	Vdc/2	-Vdc/2	-Vdc/2	2Vdc/3	-Vdc/3	-Vdc/3
1	1	0	Vdc/2	Vdc/2	-Vdc/2	Vdc/3	Vdc/3	-2Vdc/3
0	1	0	-Vdc/2	Vdc/2	-Vdc/2	-Vdc/3	2Vdc/3	-Vdc/3
0	1	1	-Vdc/2	Vdc/2	Vdc/2	-2Vdc/3	Vdc/3	Vdc/3
0	0	1	-Vdc/2	-Vdc/2	Vdc/2	-Vdc/3	-Vdc/3	2Vdc/3
1	0	1	Vdc/2	-Vdc/2	Vdc/2	Vdc/3	-2Vdc/3	Vdc/3
1	1	1	Vdc/2	Vdc/2	Vdc/2	0	0	0

Square Wave Control (I)

- Six Step Inverter
 - ❖ 각 극의 두 스위치를 필요한 출력 주파수의 반주기씩 번갈아 스위칭
 - ❖ 출력 전압이 3상 전압이 되도록 하기위해 각 상의 극전압은 서로 120도 위상차를 갖도록 스위칭
 - ❖ 출력 전압 한주기에 서로 다른 6개 구간이 존재 구형파 제어
 - $(101) \rightarrow (100) \rightarrow (110) \rightarrow (010) \rightarrow (011) \rightarrow (001)$
 - ❖ 3상 인버터에서 가장 큰 전압 출력, 출력 주파수만 제어

Square Wave Control (II)

- Six Step Inverter
 - $(101) \rightarrow (100) \rightarrow (110) \rightarrow (010) \rightarrow (011) \rightarrow (001)$
 - ❖ 상전압은 한 주기에 60도 구간씩 6차례에 걸쳐 그 값이 Vdc/3씩 단계적으로 변함 : Six Step Inverter
 - ❖ 기본파의 크기 제어불가
 - ❖ 기본파의 주파수 제어가능
 - ❖ 고조파 성분 제어불가

PWM

- ▶ PWM (Pulse Width Modulation) 출력 주파수 뿐만 아니라 출력 전압의 크기 조절
 - ❖ 목적
 - 출력 전압의 기본파 크기 제어
 - 출력 전압의 기본파 주파수 제어
 - 고조파 성분 저감
 - ❖ 단점
 - 스위칭 손실 증가
 - 이용 가능한 출력 감소

- PWM Inverter
 - ❖ 인버터가 주어진 지령 전압과 동일한 크기 및 주파수를 갖는 기본파 전압 발생을 위해 각 상의 스위치를 On/Off 구동 펄스를 생성하는 것
 - → 불필요한 고조파나 스위칭 손실 등을 최소화위해 스위칭 패턴 결정
- 전압 변조 지수 (Modulation Index)
 - ❖ 직류단 전압 Vdc/2에 대한 인버터 출력 상전압에 포함된 기본파의 크기 비 표현 방법

SPWM (Sinusoidal PWM) (I)

- SPWM : 지령 전압과 삼각파를 비교하여 그 크기의 대소에 따라 인버터의 각 상의 스위 치를 조작
 - ❖ 정현파 형태의 지령 전압을 사용하여 전압을 변조하기 때문에 정현파 전압 변조 방식 이라 명칭

지령전압 > 삼각파 : 위 스위치 ON (출력 폴전압 : VDC/2) 지령전압 < 삼각파 : 아래 스위치 ON (출력 폴전압 : -VDC/2)

- → 샘플링 시간 단위로 제어되므로 동특성이 우수, 스위칭 주파수가 삼각파 주파수로 일정하게 유지, 구현이 간단
- → 출력 가능한 상전압의 최대치는 VDC/2로 한정 (MI = 1)

SPWM (Sinusoidal PWM) (II)

▶ 폴전압 기본파의 실효값

$$V_{PO(1)} = \frac{1}{\sqrt{2}} \cdot \frac{V_{DC}}{2} m_a$$

선간전압 기본파의 실효값

$$V_{LL(1)} = \sqrt{3}V_{PO(1)} = \frac{\sqrt{3}}{2\sqrt{2}}V_{DC}m_a$$

$$V_{LL(1),\text{max}} = \frac{\sqrt{3}}{2\sqrt{2}}V_{DC} = 0.612V_{DC}$$

$$V_{PN(1)} = \frac{1}{\sqrt{3}} V_{LL(1)} = \frac{1}{2\sqrt{2}} V_{DC} m_a$$

$$m_a = \frac{\text{기준파의 진폭}}{\text{반송파의 진폭}} \quad m_f = \frac{\text{반송파의 주파수}}{\text{기준파의 주파수}}$$
$$= \frac{f_c}{f}$$

3상 SPWM 인버터

< 3상 PWM AC-DC 컨버터 토폴로지 >

- ▶ 기본 동작원리는 단상 PWM AC-DC 컨버터와 동일
 - ❖ 기준파를 120°씩 위상차를 두어 제어함으로써 3상 AC전압을 출력
 - ❖ 스위칭 주파수 : 반송파 주파수로 제어
 - ❖ 출력전압 크기 : 기준파 진폭으로 제어
 - ❖ 출력전압 주파수 : 기준파 주파수로 제어

단상 및 3상 회로 Variation

전력전자 기초 이론

MATLAB 기초 사용법

PWM 컨버터 & 인버터 시뮬레이션 실습

BLDC 전동기 드라이브 시뮬레이션 실습

Introduction of MATLAB

MATLAB의 개요

- **❖ MATrix + LABoratory**
- ❖ 행렬을 기본 데이터로 사용하는 계산환경
- ❖ M-file을 사용한 프로그래밍
- ❖ 심볼로 이루어진 수식을 계산하는 기호 계산
- ❖ 수치해석, 행렬연산, 신호처리 및 간편한 그래픽 기능 등을 통합
- ❖ 고성능의 수치계산 및 결과의 가시화 기능을 제공하는 프로그램
- ❖ 사용자와 쌍방향흐름의 대화식 프로그램 : 명령어 입력하면 바로 결과 출력
- ❖ MATLAB 신호 처리, 통계학, 영상 처리, 제어, fuzzy logic, 재정, 화학 공정 등 다양한 Toolbox 제공
 - → 데이터 처리 및 알고리즘 개발에 매우 편리

Introduction of MATLAB

MATLAB의 코딩체계

- ▶ MATLAB 코딩 체계 = 수학적인 기호 + 간단한 C문법
- ▶ MATLAB의 전형적인 이용범위
 - ❖ 수학과 관련된 계산
 - ❖ 알고리즘 개발
 - ❖ 상황 모델링과 data분석
 - ❖ MATLAB 여러 가지 과학과 공학적인 그래픽적 표현
 - ❖ GUI(Graphical User Interface)에 의한 에플리케이션 개발

