IT-Network Planning Network Basics, Corporate Network with NAT and DMZ

1. VMware Installation: Install VMware Workstation/Player.

2. Network Configuration:

a) Create **VMnet2** ((External - Network/RED (FH-Windows-IT-Security Windows-XP-External: 82.12.5.20/24)

a.1) Assign:

- Static IP Address 82.12.5.20
- Subnet Mask = 255.255.255.0
- Default Gateway 82.12.5.1

b) Create VMnet3 (DMZ (FH-IT-Security-Apache-Debian): 192.168.5.147/24

b.1) Assign:

- Static IP Address 192.168.5.147
- Subnet Mask = 255.255.255.0
- Default Gateway = 192.168.5.1

```
GNU nano 2.0.7
                          File: /etc/network/interfaces
# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).
# The loopback network interface
auto lo
iface lo inet loopback
# The primary network interface
# allow-hotplug eth0
auto eth0
iface eth0 inet static
        address 192.168.5.147
netmask 255.255.255.0
        gateway 192.168.5.1
Search (to replace):
 G Get Help
                   First Line
                                  ^R No Replace
                                                   M-B Backwards
                                                                    P PrevHstory
                 ^V Last Line
^C Cancel
                                  M-C Case Sens
                                                   M-R Regexp
                                                                    NextHstory
```

b.2) Use the *ifconfig* command to confirm the IP interfaces.

```
[ Cancelled ]
FH-SERVER: # ifconfig
          Link encap:Ethernet HWaddr 00:0c:29:ef:eb:dd
eth0
          inet addr:192.168.5.147 Bcast:192.168.5.255 Mask:255.255.255.0
          inet6 addr: fe80::20c:29ff:feef:ebdd/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:468 (468.0 B)
          Interrupt:18 Base address:0x1400
          Link encap:Local Loopback
lo
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
          RX packets:76 errors:0 dropped:0 overruns:0 frame:0
          TX packets:76 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:35329 (34.5 KiB) TX bytes:35329 (34.5 KiB)
FH-SERUER: "#
```

c) Create VMnet4 (Internal-Network/GREEN(FH-Windows-IT-Security-Windows-XP: 10.10.5.10/24)

c.1) Assign:

- Static IP Address 10.10.5.10
- Subnet Mask = 255.255.255.0
- Default Gateway 10.10.5.1

3. Attach Interfaces to Linux Firewall

-Use command *nano /etc/network/interfaces* to add interfaces

a) eth0 (External): 82.12.5.1/24

```
GNU nano 2.0.7
                            File: /etc/network/interfaces
# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).
# The loopback network interface
auto lo
iface lo inet loopback
# The primary network interface
allow-hotplug eth0
auto eth0
iface eth0 inet static
        address 82.12.5.1
netmask 255.255.255.0
network 82.12.5.0
        # broadcast 82.12.12.0
         # gateway 192.168.237.0
         # dns-* options are implemented by the resolvconf package, if installed dns-nameservers 192.168.237.1
         dns-search FH
                                   [ Read 41 lines ]
TR Read File Ty Prev Page Tk Cut Text TC Cur Pos
W Where Is Twenty Next Page Tu UnCut Text Tr To Spell
```

b) Eth01 (External): 82.12.5.2 /24

```
GNU nano 2.0.7 File: /etc/network/interfaces Modified

auto eth0:1
iface eth0:1 inet static
address 82.12.5.2
netmask 255.255.255.0
```

c) eth1 (DMZ): 192.168.5.1/24

```
auto eth1
iface eth1 inet static
address 192.168.5.1
netmask 255.255.255.0
network 192.168.5.0
```

d) eth2 (Internal): 10.10.5.1/24

```
auto eth2
iface eth2 inet static
address 10.10.5.1
netmask 255.255.255.0
```

4. Verify the attached Interfaces assignments using: ifconfig more

```
Link encap:Ethernet HWaddr 00:0c:29:72:82:ce
inet addr:82.12.5.1 Bcast:82.12.5.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:2319 errors:0 dropped:0 overruns:0 frame:0
TX packets:2153 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:239882 (234.2 KiB) TX bytes:217978 (212.8 KiB)
  eth0
                   Interrupt:18 Base address:0x1400
                   Link encap:Ethernet HWaddr 00:0c:29:72:82:ce inet addr:82.12.5.2 Bcast:82.12.5.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:18 Base address:0x1400
  eth0:1
                   Link encap:Ethernet HWaddr 00:0c:29:72:82:d8
inet addr:192.168.5.1 Bcast:192.168.5.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:364 errors:0 dropped:0 overruns:0 frame:0
TX packets:287 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:58471 (57.1 KiB) TX bytes:32823 (32.0 KiB)
Interrunt:19 Base address:0x1480
  eth1
                   Interrupt:19 Base address:0x1480
  eth2
                   Link encap:Ethernet HWaddr 00:0c:29:72:82:e2
   --More--
                 Link encap:Ethernet HWaddr 00:0c:29:72:82:e2
eth2
                 inet addr:10.10.5.1 Bcast:10.10.5.255 Mask:255.255.255.0
                 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
                 RX packets:479 errors:0 dropped:0 overruns:0 frame:0
                 TX packets:323 errors:0 dropped:0 overruns:0 carrier:0
                 collisions:0 txqueuelen:1000
                 RX bytes:61307 (59.8 KiB) TX bytes:41745 (40.7 KiB)
                 Interrupt:16 Base address:0x1800
                 Link encap:Local Loopback
lo
                 inet addr:127.0.0.1 Mask:255.0.0.0
                 UP LOOPBACK RUNNING MTU:16436 Metric:1
                 RX packets:13 errors:0 dropped:0 overruns:0 frame:0
                 TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
                 collisions:0 txqueuelen:0
                 RX bytes:1092 (1.0 KiB) TX bytes:1092 (1.0 KiB)
```

5. Enable IP Forwarding and Multicast Routing

- echo 1 > /proc/sys/net/ipv4/ip forward
- > Change the value from 0 (False) to 1 (True) to enable IP forwarding

6. Test Connectivity Using Ping (ICMP)

```
a) From the Firewall to the Web Server (DMZ)
FH-FIREWALL: # ping 192.168.5.147
PING 192.168.5.147 (192.168.5.147) 56(84) bytes of data.
64 bytes from 192.168.5.147: icmp_seq=1 ttl=64 time=4.66 ms
64 bytes from 192.168.5.147: icmp_seq=2 ttl=64 time=0.661 ms
64 bytes from 192.168.5.147: icmp_seq=3 ttl=64 time=0.692 ms
64 bytes from 192.168.5.147: icmp_seq=4 ttl=64 time=1.61 ms
64 bytes from 192.168.5.147: icmp_seq=5 ttl=64 time=2.91 ms
64 bytes from 192.168.5.147: icmp_seq=6 ttl=64 time=2.14 ms
64 bytes from 192.168.5.147: icmp_seq=6 ttl=64 time=1.25 ms
64 bytes from 192.168.5.147: icmp_seq=8 ttl=64 time=1.39 ms
64 bytes from 192.168.5.147: icmp_seq=8 ttl=64 time=1.39 ms
64 bytes from 192.168.5.147: icmp_seq=9 ttl=64 time=0.961 ms
```

b) From the Firewall to an Internal Client (GREEN)

```
FH-FIREWALL: # ping 10.10.5.10

PING 10.10.5.10 (10.10.5.10) 56(84) bytes of data.
64 bytes from 10.10.5.10: icmp_seq=1 ttl=128 time=0.730 ms
64 bytes from 10.10.5.10: icmp_seq=2 ttl=128 time=1.13 ms
64 bytes from 10.10.5.10: icmp_seq=3 ttl=128 time=0.699 ms
64 bytes from 10.10.5.10: icmp_seq=4 ttl=128 time=0.626 ms
64 bytes from 10.10.5.10: icmp_seq=5 ttl=128 time=0.594 ms
64 bytes from 10.10.5.10: icmp_seq=6 ttl=128 time=0.598 ms
64 bytes from 10.10.5.10: icmp_seq=6 ttl=128 time=0.570 ms
64 bytes from 10.10.5.10: icmp_seq=7 ttl=128 time=0.570 ms
64 bytes from 10.10.5.10: icmp_seq=8 ttl=128 time=0.752 ms
64 bytes from 10.10.5.10: icmp_seq=9 ttl=128 time=0.578 ms
```

c) From the Firewall to an External Client (**RED**)

```
FH-FIREWALL: # ping 82.12.5.20
PING 82.12.5.20 (82.12.5.20) 56(84) bytes of data.
64 bytes from 82.12.5.20: icmp_seq=1 ttl=128 time=1.36 ms
64 bytes from 82.12.5.20: icmp_seq=2 ttl=128 time=0.968 ms
64 bytes from 82.12.5.20: icmp_seq=3 ttl=128 time=0.897 ms
64 bytes from 82.12.5.20: icmp_seq=4 ttl=128 time=1.16 ms
64 bytes from 82.12.5.20: icmp_seq=5 ttl=128 time=0.926 ms
64 bytes from 82.12.5.20: icmp_seq=6 ttl=128 time=0.554 ms
64 bytes from 82.12.5.20: icmp_seq=7 ttl=128 time=0.734 ms
64 bytes from 82.12.5.20: icmp_seq=8 ttl=128 time=0.734 ms
```

d) From an Internal Client to the Web Server (DMZ)

```
Antwort von 192.168.5.147: Bytes=32 Zeit=3ms TTL=63
Antwort von 192.168.5.147: Bytes=32 Zeit=2ms TTL=63
Antwort von 192.168.5.147: Bytes=32 Zeit=1ms TTL=63
Antwort von 192.168.5.147: Bytes=32 Zeit=1ms TTL=63
Antwort von 192.168.5.147: Bytes=32 Zeit=4ms TTL=63
Antwort von 192.168.5.147: Bytes=32 Zeit=4ms TTL=63

Ping-Statistik für 192.168.5.147:
Pakete: Gesendet = 4. Empfangen = 4. Verloren = 0 (0% Verlust),
Ca. Zeitangaben in Millisek.:
Minimum = 1ms, Maximum = 4ms, Mittelwert = 2ms

C:\Dokumente und Einstellungen\Administrator\ping 82.12.5.20

Ping wird ausgeführt für 82.12.5.20 mit 32 Bytes Daten:
Antwort von 82.12.5.20: Bytes=32 Zeit=2ms TTL=127
Antwort von 82.12.5.20: Bytes=32 Zeit=3ms TTL=127
Antwort von 82.12.5.20: Bytes=32 Zeit=3ms TTL=127
Antwort von 82.12.5.20: Bytes=32 Zeit=7ms TTL=127

Ping-Statistik für 82.12.5.20:
Pakete: Gesendet = 4, Empfangen = 4, Verloren = 0 (0% Verlust),
Ca. Zeitangaben in Millisek.:
Minimum = 2ms, Maximum = 7ms, Mittelwert = 4ms

C:\Dokumente und Finstellungen\9dministrator\
```

f) From an External Client to the Web Server (**DMZ**)

e) From an External Client to the Internal Client (GREEN)

```
Antwort von 192.168.5.147: Bytes=32 Zeit=1ms TTL=63

Ping-Statistik für 192.168.5.147:
Pakete: Gesendet = 4, Empfangen = 4, Verloren = 0 (0% Verlust),
Ca. Zeitangaben in Millisek.:
Minimum = 1ms, Maximum = 1ms, Mittelwert = 1ms

C:\Dokumente und Einstellungen\Administrator\ping 10.10.5.10

Ping wird ausgeführt für 10.10.5.10 mit 32 Bytes Daten:
Antwort von 10.10.5.10: Bytes=32 Zeit=4ms TTL=127
Antwort von 10.10.5.10: Bytes=32 Zeit=1ms TTL=127
Antwort von 10.10.5.10: Bytes=32 Zeit(1ms TTL=127
Antwort von 10.10.5.10: Bytes=32 Zeit(1ms TTL=127
Ping-Statistik für 10.10.5.10:
Pakete: Gesendet = 4, Empfangen = 4, Verloren = 0 (0% Verlust),
Ca. Zeitangaben in Millisek.:
Minimum = 0ms, Maximum = 4ms, Mittelwert = 1ms

C:\Dokumente und Einstellungen\Administrator\_
```

f) From Web Server to External Client (**RED**)

```
FH-SERVER: # ping 82.12.5.20

PING 82.12.5.20 (82.12.5.20) 56(84) bytes of data.
64 bytes from 82.12.5.20: icmp_seq=1 ttl=127 time=12.1 ms
64 bytes from 82.12.5.20: icmp_seq=2 ttl=127 time=2.09 ms
64 bytes from 82.12.5.20: icmp_seq=3 ttl=127 time=2.84 ms
64 bytes from 82.12.5.20: icmp_seq=4 ttl=127 time=1.82 ms
64 bytes from 82.12.5.20: icmp_seq=5 ttl=127 time=4.68 ms
64 bytes from 82.12.5.20: icmp_seq=6 ttl=127 time=1.46 ms
64 bytes from 82.12.5.20: icmp_seq=6 ttl=127 time=1.59 ms
64 bytes from 82.12.5.20: icmp_seq=8 ttl=127 time=0.942 ms
```

g) From Web Server to Internal Client (GREEN)

```
FH-SERVER: # ping 10.10.5.10

PING 10.10.5.10 (10.10.5.10) 56(84) bytes of data.
64 bytes from 10.10.5.10: icmp_seq=1 ttl=127 time=5.50 ms
64 bytes from 10.10.5.10: icmp_seq=2 ttl=127 time=3.36 ms
64 bytes from 10.10.5.10: icmp_seq=3 ttl=127 time=2.38 ms
64 bytes from 10.10.5.10: icmp_seq=4 ttl=127 time=1.67 ms
64 bytes from 10.10.5.10: icmp_seq=5 ttl=127 time=2.27 ms
64 bytes from 10.10.5.10: icmp_seq=6 ttl=127 time=2.84 ms
64 bytes from 10.10.5.10: icmp_seq=6 ttl=127 time=2.35 ms
64 bytes from 10.10.5.10: icmp_seq=8 ttl=127 time=3.22 ms
64 bytes from 10.10.5.10: icmp_seq=8 ttl=127 time=3.22 ms
64 bytes from 10.10.5.10: icmp_seq=9 ttl=127 time=2.80 ms
64 bytes from 10.10.5.10: icmp_seq=9 ttl=127 time=1.57 ms
```

7. Check the external web server access using the web browser

8. Check the internal web server access using the web browser

9. Difference Between Routing and Port Forwarding (DNAT)

a) Routing

- directing data packets between different networks based on their destination IP addresses. It determines the best path for data to travel from the source to the destination.
- > The firewall routes traffic between:

• RED (External): 82.12.5.0/24

• ORANGE (DMZ): 192.168.5.0/24

• GREEN (Internal): 10.10.5.0/24

➤ if a packet from the GREEN network (10.10.5.10) is destined for the ORANGE network (192.168.5.147), the firewall routes it based on its routing table.

b) Port Forwarding (DNAT)

- A packet arrives at the firewall with a destination IP address and port.
- ➤ The firewall modifies the destination IP address and/or port to forward the packet to an internal server.
- ➤ The internal server processes the request and sends the response back through the firewall, which translates the source address back to the original.

> External Access to Web Server:

- An external user (RED network) tries to access the web server at http://82.12.5.2:80
- The firewall uses DNAT to forward this traffic to the web server in the ORANGE (DMZ) network at 192.168.5.147:80
- The web server responds, and the firewall translates the source address back to 82.12.5.2 before sending the response to the external user.

10. Firewall Configuration

a) Set the Default Rule

- > This ensures that all traffic not explicitly allowed is dropped.
- iptables -P INPUT DROP
- iptables -P FORWARD DROP
- iptables -P OUTPUT DROP

```
FH-FIREWALL: # iptables -P INPUT DROP
FH-FIREWALL: # iptables -P OUTPUT DROP
FH-FIREWALL: # iptables -P FORWARD DROP
FH-FIREWALL: # iptables -L
Chain INPUT (policy DROP)
target prot opt source destination

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (policy DROP)
target prot opt source destination

FH-FIREWALL: # _____
```

b) Firewall Rules for ICMP (from All Networks)

- *iptables -A INPUT -j ACCEPT* allows the firewall itself to respond to ICMP requests
- *iptables -A FORWARD -j ACCEPT* allows ICMP traffic to pass through the firewall between networks from GREEN to ORANGE or RED.
- *iptables -A OUTPUT -j ACCEPT* allows the firewall to send ICMP requests to other devices

```
FH-FIREWALL: # iptables -A INPUT - j ACCEPT
FH-FIREWALL: # iptables -A OUTPUT -j ACCEPT
FH-FIREWALL: # iptables -A FORWARD -j ACCEPT
FH-FIREWALL: "# iptables -L
Chain INPUT (policy DROP)
         prot opt source
                                        destination
target
ACCEPT
          icmp -- anywhere
                                        anywhere
ACCEPT
          all -- anywhere
                                        anywhere
Chain FORWARD (policy DROP)
                                        destination
target
          prot opt source
ACCEPT
           icmp -- anywhere
                                        anywhere
ACCEPT
          all --
                   anywhere
                                        anywhere
Chain OUTPUT (policy ACCEPT)
target prot opt source
                                        destination
ACCEPT
          all -- anywhere
                                        anywhere
FH-FIREWALL: "# _
```

c) Stateless Firewall Rules

- ➤ Both rules allow traffic from two specific subnets (192.168.5.0/24 and 10.10.5.0/24) to be forwarded through the firewall.
- Any traffic from these source IP ranges will be permitted to pass through the firewall to any destination.
- iptables -A FORWARD -s 192.168.5.0/24 -j ACCEPT
- iptables -A FORWARD -s 10.10.5.0/24 -j ACCEPT

```
FH-FIREWALL: # iptables -A FORWARD -s 192.168.5.0/24 -j ACCEPT
FH-FIREWALL: # iptables -A FORWARD -s 10.10.5.0/24 -j ACCEPT
FH-FIREWALL: "# iptables -L
Chain INPUT (policy DROP)
target
           prot opt source
                                          destination
ACCEPT
           icmp --
                    anywhere
                                          anywhere
ACCEPT
           all --
                    anywhere
                                          anywhere
Chain FORWARD (policy DROP)
           prot opt source
                                          destination
target
ACCEPT
           icmp --
                                          anywhere
                    anywhere
           all
ACCEPT
                    anuwhere
                                          anuwhere
                                          anywhere
ACCEPT
           all --
                    192.168.5.0/24
           all --
ACCEPT
                    10.10.5.0/24
                                          anywhere
Chain OUTPUT (policy ACCEPT)
                                          destination
target
           prot opt source
ACCEPT
           all
                    anywhere
                                          anywhere
```

d) Enable Destination Network Address Translation (DNAT)

d.1) Configure NAT for HTTP (Port 80)

- Forwards incoming TCP traffic on port 80 destined for 82.12.5.1 to the Web Server 192.168.5.147 on port 80.
 - iptables -t nat -A PREROUTING -p tcp -d 82.12.5.1 --dport 80 -j DNAT --to-destination 192.168.5.147:80

d.2) Configure NAT for SSH (Port 22)

- Forwards incoming TCP traffic on port 22 destined for 82.12.5.2 to the Web Server 192.168.5.147 on port 22.
 - iptables -t nat -A PREROUTING -p tcp -d 82.12.5.2 --dport 22 -j DNAT --to-destination 192.168.5.147:22

```
FH-FIREWALL: ## iptables -t nat -A PREROUTING -p tcp -d 82.12.5.1 --dport 80 -j D NAT --to-destination 192.168.5.147:80
FH-FIREWALL: ## iptables -t nat -A PREROUTING -p tcp -d 82.12.5.2 --dport 22 -j D NAT --to-destination 192.168.5.147:22
FH-FIREWALL:~# iptables -L
Chain INPUT (policy ACCEPT)
                                                       destination
target
              prot opt source
Chain FORWARD (policy ACCEPT)
              prot opt source
                                                       destination
target
               tcp -- anywhere
ACCEPT
                                                       192.168.5.147
                                                                                  tcp dpt:ssh
               tcp -- anywhere
                                                       192.168.5.147
ACCEPT
                                                                                  tcp dpt:www
                          192.168.5.0/24
ACCEPT
              all
                                                       anywhere
                         192.100.0
ACCEPT
               all
                                                       anywhere
Chain OUTPUT (policy ACCEPT)
                                                       destination
target
              prot opt source
FH-FIREWALL: "#
```

- e) Configure Masquerading as part of NAT settings
 - **e.1)** Masquerade outgoing traffic from the web server to the external network.
 - iptables -t nat -A POSTROUTING -p tcp -s 192.168.5.147 -j SNAT --to-source 80.12.5.1
 - iptables -t nat -A POSTROUTING -p tcp -j MASQUERADE

```
FH-FIREWALL: "# iptables -t nat -A POSTROUTING -p tcp -s 192.168.5.147 -j SNAT --
to-source 80.12.5.1
FH-FIREWALL: # iptables -t nat -A POSTROUTING -p tcp -j MASQUERADE
FH-FIREWALL: # iptables-save > /root/firewall.rules
FH-FIREWALL: "# iptables -L
Chain INPUT (policy ACCEPT)
           prot opt source
                                          destination
target
Chain FORWARD (policy ACCEPT)
           prot opt source
                                          destination
target
                                          192.168.5.147
ACCEPT
           tcp -- anywhere
                                                               tcp dpt:ssh
           tcp -- anywhere
ACCEPT
                                          192.168.5.147
                                                               tcp dpt:www
           all -- 192.168.5.0/24
all -- 10.10.5.0/24
                                          anywhere
ACCEPT
ACCEPT
                                          anywhere
Chain OUTPUT (policy ACCEPT)
target
           prot opt source
                                          destination
FH-FIREWALL: "#
```

f) Stateful Filtering

- 1. Allow Loopback and Established Traffic
 - iptables -A INPUT -i lo -j ACCEPT
 - iptables -A FORWARD -m state --state ESTABLISHED, RELATED -j ACCEPT
- 2. Allow External Traffic to DMZ Web Server
 - **▶ HTTP/HTTPS to DMZ Web Server (192.168.5.147)**
 - iptables -A FORWARD -i eth0 -o eth1 -d 192.168.5.147 -p tcp --dport 80 -j ACCEPT
 - iptables -A FORWARD -i eth0 -o eth1 -d 192.168.5.147 -p tcp --dport 443 -j ACCEPT
 - > Allow return traffic from DMZ to External
 - iptables -A FORWARD -i eth1 -o eth0 -s 192.168.5.147 -j ACCEPT
- 3. Block External Traffic to Internal Network
 - iptables -A FORWARD -i eth0 -o eth2 -j DROP
- 4. Allow Internal (GREEN) to Access Internet and DMZ
 - **>** GREEN → Internet (via NAT)
 - iptables -t nat -A POSTROUTING -o eth0 -s 10.10.5.0/24 -j SNAT --to-source 82.12.5.2

\triangleright GREEN \rightarrow DMZ Web Server

- iptables -A FORWARD -i eth2 -o eth1 -s 10.10.10.0/24 -d 192.168.5.147 -p tcp --dport 80 -j ACCEPT
- iptables -A FORWARD -i eth2 -o eth1 -s 10.10.10.0/24 -d 192.168.5.147 -p tcp --dport 443 -j ACCEPT

4. Allow SSH from GREEN to Firewall

iptables -A INPUT -i eth2 -s 10.10.5.0/24 -p tcp --dport 22 -j ACCEPT

g) Save Current iptables Rules

```
FH-FIREWALL:~# iptables-save > /root/firewall.rules
FH-FIREWALL:~# iptables -L
Chain INPUT (policy DROP)
target prot opt source
             prot opt source
                                                 destination
ACCEPT
             a 1 1
                                                 anywhere
                       anywhere
Chain FORWARD (policy DROP)
target
             prot opt source
                                                 destination
ACCEPT
                                                 anywhere
             all --
                       anywhere
                        192.168.5.0/24
10.10.5.0/24
ACCEPT
             a 1 1
                                                 anywhere
             a 1 1
ACCEPT
                                                 anywhere
                                                 192.168.5.147
192.168.5.147
10.10.5.10
ACCEPT
             tcp
                       anywhere
                                                                         tcp dpt:www
                       anywhere
ACCEPT
                                                                         tcp dpt:ssh
             tcp
                       82.12.5.1
                                                                         tcp dpt:http-alt st
ACCEPT
             tcp
ate NEW, ESTABLISHED
ACCEPT tcp
EW,ESTABLISHED
                                                 anywhere
                                                                         tcp dpt:ssh state N
             tcp
                       anywhere
ACCEPT
                       anywhere
                                                                         tcp dpt:www state N
                                                 anuwhere
             tcp
EW, ESTABL ISHED
ACCEPT
             all
                       anywhere
                                                 anywhere
Chain OUTPUT (policy ACCEPT)
                                                 destination
target
             prot opt source
ACCEPT
             all
                       anywhere
                                                 anywhere
FH-FIREWALL: ~#
```

- 1. External (RED) to DMZ (ORANGE):
 - Allows HTTP/HTTPS to the DMZ web server (192.168.5.147).
 - Blocks all other traffic from RED to GREEN.
- 2. Internal (GREEN) to DMZ/Internet:
 - GREEN clients can access the DMZ web server and the internet via NAT.
 - NAT rule (SNAT) masks internal IPs with the firewall's external IP (82.12.5.2).
- 3. **SSH**:
 - Only GREEN clients (10.10.5.0/24) can SSH into the firewall.
- 4. Stateful Filtering:
 - ESTABLISHED, RELATED rules allow return traffic for existing connections.

Anaylze Network Traffic (Packetyzer)

1. Frame 1

1.1. Ethernet Layer (Layer 2 - Data Link)

- Source MAC: 00:0c:29:ac:12:c4
- Destination MAC: 00:0c:29:72:82:ce
- Type: IPv4 (0x0800)

This shows that the packet is traveling within a local network segment between two MAC addresses.

1.2 Internet Layer (Layer 3 - IP)

- Source IP: 82.12.5.20
- Destination IP: 192.168.5.147
- Protocol: TCP (0x06)
- Total Length: 451 bytes
- Flags: 0x04 (Don't Fragment)

This means:

- The client with IP 82.12.5.20 is sending a request to the web server at 192.168.5.147.
- The packet is part of an HTTP request (Layer 7 application traffic).
- No fragmentation is allowed, meaning the entire packet must be delivered in one piece.

1.3Transport Layer (Layer 4 - TCP)

- Source Port: 1146 (random client port)
- Destination Port: 80 (HTTP)
- Sequence Number: 0 (First packet of the TCP stream)
- Acknowledgment Number: 0 (No prior data acknowledged)
- Flags: PSH, ACK (0x0018)
- Window Size: 62929

Key points:

- The PSH (Push) flag means the packet should be delivered immediately.
- The ACK (Acknowledgment) flag indicates an ongoing TCP connection.
- This is part of an established connection where the client is sending a request to an HTTP server.

2. Frame 2 (1083 bytes on wire, 1083 bytes captured)

2.1 Ethernet II Layer

- Source MAC Address: 00:0c:29:72:82:ce
- Destination MAC Address: 00:0c:29:ac:12:c4
- **Type:** IPv4 (0x0800)

2.2 Internet Protocol (IP) Layer

- Source IP: 192.168.5.147 (Web SERVER)
- Destination IP: 82.12.5.20 (Public IP, external server)
- Protocol: TCP (0x06)

2.3 Transmission Control Protocol (TCP) Layer

- Source Port: 80 (HTTP server)
- Destination Port: 1146 (Client-side port)
- Sequence Number: 0 (Relative)Acknowledgment Number: 411
- Flags: PSH, ACKWindow Size: 10720Checksum: Correct

3. Frame 6 Frame 6 (60 bytes on wire, 60 bytes captured)

3.1 Ethernet II Layer

Source MAC: 00:0c:29:72:82:ceDestination MAC: 00:0c:29:ac:12:c4

• Type: IPv4 (0x0800)

3.2 Internet Protocol (IP) Layer

Source IP: 10.10.5.10 (internal network)

• Destination IP: 82.12.5.20 (Public server)

Protocol: TCP (0x06)

• Total Length: 40 bytes (suggesting no additional payload)

3.3 Transmission Control Protocol (TCP) Layer

• Source Port: 80 (Web Server)

• Destination Port: 1145 (Client-side port)

Sequence Number: 0

Acknowledgment Number: 0

• Flags: FIN, ACK (0x0011)

Window Size: 6432Checksum: Correct

