

## Rocket Launch First Stage Reusage

Aaron Garcia 28-07-2023

### OUTLINE



- Executive Summary
- Introduction
- Methodology
- Results
  - **EDA with SQL**
  - **EDA with Visualization**
  - Interactive Maps with Folium
  - **Plotly Dashboard**
  - Predictive Analysis
- Conclusion

### **EXECUTIVE SUMMARY**

#### **Summary:**

The research attempts to identify the factors for a successful rocket landing. To make this determination, the following methodologies where used:

- Collect data using SpaceX REST API and web scraping techniques
- Wrangle data to create success/fail outcome variable
- Explore data with SQL and Data Visualization techniques to analyze main factors and calculating relevant statistics
- Explore launch site success rates and proximity to geographical markers
- Visualize the launch sites with the most success and successful payload ranges
- Build Models to predict landing outcomes using logistic regression, support vector machine (SVM), decision tree and Knearest neighbor (KNN)

#### **Exploratory Data Analysis:**

- Launch success has improved over time
- KSC LC-39A has the highest success rate among landing sites
- Orbits ES-L1, GEO, HEO, and SSO have a 100% success rate

#### **Visualization/Analytics:**

- Most launch sites are near the equator, and all are close to the coast Predictive Analytics:
- All models performed similarly on the test set. The decision tree model slightly outperformed





### INTRODUCTION



### **Background**

SpaceX, a leader in the space industry, strives to make space travel affordable for everyone. Its accomplishments include sending spacecraft to the international space station, launching a satellite constellation that provides internet access and sending manned missions to space.

SpaceX can do this because the rocket launches are relatively inexpensive (\$62 million per launch) due to its novel reuse of the first stage of its Falcon 9 rocket. Other providers, which are not able to reuse the first stage, cost upwards of \$165 million each.

By determining if the first stage will land, we can determine the price of the launch. To do this, we can use public data and machine learning models to predict whether SpaceX – or a competing company – can reuse the first stage.

### **Explore**

- How payload mass, launch site, number of flights, and orbits affect firststage landing success
- Rate of successful landings over time
- Best predictive model for successful landing (binary classification)

### **METHODOLOGY**



### Steps

- Collect data using SpaceX REST API and web scraping techniques
- Wrangle data by filtering the data, handling missing values and applying one hot encoding – to prepare the data for analysis and modeling
- Explore data via EDA with SQL and data visualization techniques
- Visualize the data using Folium and Plotly Dash
- Build Models to predict landing outcomes using classification models. Tune and evaluate models to find best model and parameters

### Data Collection - API



- Request data from SpaceX API (rocket launch data)
- Decode response using .json() and convert to a dataframe using .json\_normalize()
- Request information about the launches from SpaceX API using custom functions
- Create dictionary from the data
- Create dataframe from the dictionary
- Filter dataframe to contain only Falcon 9 launches
- Replace missing values of Payload Mass with calculated .mean()
- Export data to csv file

## Data Collection - Web Scraping



- Request data (Falcon 9 launch data) from Wikipedia
- Create BeautifulSoup object from HTML response
- Extract column names from HTML table header
- Collect data from parsing HTML tables
- Create dictionary from the data
- Create dataframe from the dictionary
- Export data to csv file

# Data Wrangling



- Perform EDA and determine data labels
- Calculate:
- # of launches for each site
- # and occurrence of orbit
- # and occurrence of mission outcome per orbit type]
- Create binary landing outcome column (dependent variable)
- Export data to csv file

## Exploratory Data Analysis

#### **SQL Queries**

#### Display:

- Names of unique launch sites
- 5 records where launch site begins with 'CCA'
- Total payload mass carried by boosters launched by NASA (CRS)
- Average payload mass carried by booster version F9 v1.1.

#### List:

- Date of first successful landing on ground pad
- Names of boosters which had success landing on drone ship and have payload mass greater than 4,000 but less than 6,000
- Total number of successful and failed missions
- Names of booster versions which have carried the max payload
- Failed landing outcomes on drone ship, their booster version and launch site for the months in the year 2015
- Count of landing outcomes between 2010-06-04 and 2017-03-20 (desc)



## Exploratory Data Analysis



### **Data Visualization**

#### Charts

- Flight Number vs. Payload
- Flight Number vs. Launch Site
- Payload Mass (kg) vs. Launch Site
- Payload Mass (kg) vs. Orbit type

### **Analysis**

- View relationship by using scatter plots. The variables could be useful for machine learning if a relationship exists
- Show comparisons among discrete categories with bar charts. Bar charts show the relationships among the categories and a measured value.

### with Folium Map



- Added red circles at all launch sites coordinates with a popup label showing its name using its name using its latitude and longitude coordinates
- Added colored markers of successful (green) and unsuccessful (red) launches at each launch site to show which launch sites have high success rates
- Added colored lines to show distance between launch site CCAFS SLC-40 and its proximity to the nearest coastline, railway, highway, and city

## Dashboard with Plotly



**Dropdown List with Launch Sites** 

Allow user to select all launch sites or a certain launch site

Pie Chart Showing Successful Launches

 Allow user to see successful and unsuccessful launches as a percent of the total

Slider of Payload Mass Range

Allow user to select payload mass range

Scatter Chart Showing Payload Mass vs. Success Rate by Booster Version

 Allow user to see the correlation between Payload and Launch Success

## Predictive Analytics



- Create NumPy array from the Class column
- Standardize the data with StandardScaler. Fit and transform the data.
- Split the data using train\_test\_split
- Create a GridSearchCV object with cv=10 for parameter optimization
- Apply GridSearchCV on different algorithms: logistic regression, support vector machine, decision tree, K-Nearest Neighbor
- Calculate accuracy on the test data using .score() for all models
- Assess the confusion matrix for all models
- Identify the best model using Jaccard\_Score, F1\_Score and Accuracy

### RESULTS

### **Exploratory Data Analysis**

- Launch success has improved over time
- KSC LC-39A has the highest success rate among landing sites
- Orbits ES-L1, GEO, HEO and SSO have a 100% success rate

### **Visual Analytics**

- Most launch sites are near the equator, and all are close to the coast
- Launch sites are far enough away from anything a failed launch can damage (city, highway, railway), while still close enough to bring people and material to support launch activities

### **Predictive Analytics**

• Decision Tree model is the best predictive model for the dataset

### Launch Site Information

#### **Launch Sites Names**

%sql SELECT Launch\_site FROM SPACEXTBL GROUP BY Launch\_site;

\* sqlite:///my\_data1.db Done.

#### Launch\_Site

None

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

### 5 Records from launches starting with CCA

%sql SELECT \* FROM SPACEXTBL WHERE Launch\_site LIKE 'CCA%' LIMIT 5;

\* sqlite:///my\_data1.db Done.

| Date       | Time (UTC) | Booster_Version | Launch_Site | Payload                                                       | PAYLOAD_MASS_KG_ | Orbit     | Customer        | Mission_Outcome | Landing_Outcome     |
|------------|------------|-----------------|-------------|---------------------------------------------------------------|------------------|-----------|-----------------|-----------------|---------------------|
| 06/04/2010 | 18:45:00   | F9 v1.0 B0003   | CCAFS LC-40 | Dragon Spacecraft Qualification Unit                          | 0.0              | LEO       | SpaceX          | Success         | Failure (parachute) |
| 12/08/2010 | 15:43:00   | F9 v1.0 B0004   | CCAFS LC-40 | Dragon demo flight C1, two CubeSats, barrel of Brouere cheese | 0.0              | LEO (ISS) | NASA (COTS) NRO | Success         | Failure (parachute) |
| 22/05/2012 | 7:44:00    | F9 v1.0 B0005   | CCAFS LC-40 | Dragon demo flight C2                                         | 525.0            | LEO (ISS) | NASA (COTS)     | Success         | No attempt          |
| 10/08/2012 | 0:35:00    | F9 v1.0 B0006   | CCAFS LC-40 | SpaceX CRS-1                                                  | 500.0            | LEO (ISS) | NASA (CRS)      | Success         | No attempt          |
| 03/01/2013 | 15:10:00   | F9 v1.0 B0007   | CCAFS LC-40 | SpaceX CRS-2                                                  | 677.0            | LEO (ISS) | NASA (CRS)      | Success         | No attempt          |

## Payload Mass

#### Total Payload Mass carried by Boosters launched by NASA (CRS)

```
%sql SELECT SUM(PAYLOAD_MASS_ KG_), Customer from SPACEXTBL where Customer = 'NASA (CRS)';
 * sqlite:///my_data1.db
Done.
SUM(PAYLOAD MASS KG)
                         Customer
                45596.0 NASA (CRS)
```

#### Average Payload Mass carried by F9 v1.1 Boosters

```
%sql SELECT AVG(PAYLOAD MASS KG ) from SPACEXTBL where Booster Version = 'F9 v1.1';
 * sqlite:///my_data1.db
Done.
AVG(PAYLOAD_MASS_KG_)
                 2928.4
```

## Landing & Mission Info

#### 1st Succesful Landing in Ground pad

%sql select MIN(Date) from SPACEXTBL where Landing\_Outcome = 'Success (ground pad)'

\* sqlite:///my\_data1.db

Done.

MIN(Date)

01/08/2018

#### **Total of Every Outcome**

%sql select Mission\_outcome,count(Mission\_outcome) \
from SPACEXTBL group by Mission\_outcome;

\* sqlite:///my\_data1.db

Done.

| Mission_Outcome     | count(Mission_outcome) |  |
|---------------------|------------------------|--|
| None                | 0                      |  |
| Failure (in flight) | 1                      |  |
| Success             | 98                     |  |
| Success             | 1                      |  |

### Booster Drone Ship Landing with mass between 4000 and 6000

%sql select Booster\_Version, Landing\_outcome, PAYLOAD\_MASS\_\_KG\_ \
from SPACEXTBL where Landing outcome = "Success (drone ship)" \
and PAYLOAD MASS\_\_KG\_ > 4000 and PAYLOAD MASS\_\_KG\_ < 6000;</pre>

\* sqlite:///my\_data1.db

Done.

| Booster_Version |               | Landing_Outcome      | PAYLOAD_MASSKG_ |  |
|-----------------|---------------|----------------------|-----------------|--|
|                 | F9 FT B1022   | Success (drone ship) | 4696.0          |  |
|                 | F9 FT B1026   | Success (drone ship) | 4600.0          |  |
|                 | F9 FT B1021.2 | Success (drone ship) | 5300.0          |  |
|                 | F9 FT B1031.2 | Success (drone ship) | 5200.0          |  |



### **Boosters & Outcomes**

#### Failed landings in Drone ship in 2015

#### **Boosters with max Payload Mass**

```
%sql select Booster_version, PAYLOAD_MASS__KG__\
from SPACEXTBL \
where PAYLOAD MASS KG = (select MAX(PAYLOAD MASS KG ) \
                          from SPACEXTBL);
```

\* sqlite:///my data1.db Done.

| <pre>%sql SELECT substr(Date,4,2) as month, DATE,BOOSTER_VERSION, LAUNCH_SITE, [Landing_Outcome] FROM SPACEXTBL \ where [Landing_outcome] = 'Failure (drone ship)' and substr(Date,7,4)='2015';</pre> |                                             |                                                                                      |                                                                                                   |                                                                                                            |                                                                                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| * sql:<br>Done.                                                                                                                                                                                       | ite:///my_d                                 | data1.db                                                                             |                                                                                                   |                                                                                                            |                                                                                                                   |  |
| month                                                                                                                                                                                                 | Date                                        | Booster_Version                                                                      | Launch_Site                                                                                       | Landing_Outcome                                                                                            |                                                                                                                   |  |
| 10                                                                                                                                                                                                    | 01/10/2015                                  | F9 v1.1 B1012                                                                        | CCAFS LC-40                                                                                       | Failure (drone ship)                                                                                       |                                                                                                                   |  |
| 04                                                                                                                                                                                                    | 14/04/2015                                  | F9 v1.1 B1015                                                                        | CCAFS LC-40                                                                                       | Failure (drone ship)                                                                                       |                                                                                                                   |  |
|                                                                                                                                                                                                       | FROM Si<br>where<br>* sql<br>Done.<br>month | FROM SPACEXTBL \ where [Landing_or * sqlite:///my_or Done. month Date  10 01/10/2015 | <pre>FROM SPACEXTBL \ where [Landing_outcome] = 'Fail   * sqlite:///my_data1.db Done. month</pre> | <pre>FROM SPACEXTBL \ where [Landing_outcome] = 'Failure (drone  * sqlite:///my_data1.db Done. month</pre> | FROM SPACEXTBL \ where [Landing_outcome] = 'Failure (drone ship)' and subst  * sqlite:///my_data1.db Done.  month |  |

#### Booster Version PAYLOAD MASS KG

| F9 B5 B1048.4 | 15600.0 |
|---------------|---------|
| F9 B5 B1049.4 | 15600.0 |
| F9 B5 B1051.3 | 15600.0 |
| F9 B5 B1056.4 | 15600.0 |
| F9 B5 B1048.5 | 15600.0 |
| F9 B5 B1051.4 | 15600.0 |
| F9 B5 B1049.5 | 15600.0 |
| F9 B5 B1060.2 | 15600.0 |
| F9 B5 B1058.3 | 15600.0 |
| F9 B5 B1051.6 | 15600.0 |
| F9 B5 B1060.3 | 15600.0 |
| F9 B5 B1049.7 | 15600.0 |

| <pre>%sql SELECT [Landing_Outc FROM SPACEXTBL \ WHERE DATE between '04-06 group by [Landing_Outcome order by count_outcomes D</pre> | -2010' and '20-03 |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| * sqlite:///my_data1.db<br>Done.<br>Landing_Outcome count_                                                                          | outcomes          |  |
| Success                                                                                                                             | 20                |  |
| No attempt                                                                                                                          | 10                |  |
| Success (drone ship)                                                                                                                | 8                 |  |
| Success (ground pad)                                                                                                                |                   |  |

Failure (drone ship)

Failure (parachute)

Controlled (ocean)

No attempt

Failure

**Count of landing** outcomes between 2010-06-04 and 2017-03-20 in descending order

### IBM **Developer**



## Flight Number vs Launch Site

- Earlier flights had a lower success rate (blue = fail)
- Later flights had a higher success rate (orange = success)
- Around half of launches were from CCAFS SLC 40 launch site
- VAFB SLC 4E and KSC LC 39A have higher success rates
- We can infer that new launches have a higher success rate



## Payload Mass vs Launch Site



- Typically, the higher the payload mass (kg), the higher the success rate
- Most launces with a payload greater than 7,000 kg were successful
- KSC LC 39A has a 100% success rate for launches less than 5,500 kg
- VAFB SKC 4E has not launched anything greater than ~10,000 kg

## Success Rate by Orbit

• 100% Success Rate: ES-L1, GEO, HEO and SSO

• 50%-80% Success Rate: GTO, ISS, LEO, MEO, PO

• 0% Success Rate: SO



## Flight Number and Orbit

- The success rate typically increases with the number of flights for each orbit
- This relationship is highly apparent for the LEO orbit
- The GTO orbit, however,
   does not follow this trend



## Payload Mass and Orbit

- Heavy payloads are better with LEO, ISS and PO orbits
- The GTO orbit has mixed success with heavier payloads



### Launch Success Trend

- The success rate improved from 2013-2017 and 2018-2019
- The success rate decreased from 2017-2018 and from 2019-2020
- Overall, the success rate has improved since 2013



### Launch Sites

Near Equator: the closer the launch site to the equator, the easier it is to launch to equatorial orbit, and the more help you get from Earth's rotation for a prograde orbit. Rockets launched from sites near the equator get an additional natural boost due to the rotational speed of earth - that helps save the cost of putting in extra fuel and boosters.



### Launch Outcomes



- Green markers
   for successful launches
- Red markers for unsuccessful launches
- Launch site CCAFS SLC-40 has a 3/7 success rate (42.9%)

### Distance to Proximities

- 0.86 km to nearest coastline
- 0.58 km to nearest road
- 1.28 km to nearest railway

Coasts: help ensure that spent stages dropped along the launch path or failed launches don't fall on people or property.

Safety / Security: needs to be an exclusion zone around the launch site to keep unauthorized people away and keep people safe.

Transportation: need to be close enough to roads/rails/docks to be able to transport people and materials to support of launch activities.



### Distance to Proximities

51.43 km to nearest city (Melbourne)

Cities: need to be away from any city for any damage caused by a failed launch



## Dashboard with Plotly

KSC LC-39A has the most successful launches amongst launch sites (41.2%)

#### **SpaceX Launch Records Dashboard**



### Launch Success

- KSC LC-39A has the highest success rate amongst launch sites (76.9%)
- 10 successful launches and 3 failed launches (1=Failure, 0=Success)

### **SpaceX Launch Records Dashboard**

KSC LC-39A

Total Success Launches for Site KSC LC-39A



## Payload Mass and Success

- Payloads between 2,000 kg and 5,000 kg have the highest success rate
- 1 indicating successful outcome and 0 indicating an unsuccessful outcome



Correlation Between Payload and Success for All Sites



## Predictive Analysis

#### **Accuracies**

```
print("Logistic Regression test set accuracy :",logreg_cv.score(X_test, Y_test))
print("Support Vector Machine (SVM) test set accuracy :",svm_cv.score(X_test, Y_test))
print("Decission Tree test set accuracy :",tree_cv.score(X_test, Y_test))
print("KN Neighbors test set accuracy :",knn_cv.score(X_test, Y_test))
# Decission Tree is the best method
```

From the 4 evaluated models, the Decision Tree model performed the best by having the highest accuracy and the lowest false positives.

Logistic Regression, Support Vector Machine and K-Nearest Neighbors confusion matrices were identical.

### IBM **Developer**

#### **Confusion Matrices**



### Conclusions

- Model Performance: The models performed similarly on the test set with the decision tree model slightly outperforming
- Equator: Most of the launch sites are near the equator for an additional natural boost due to the rotational speed of earth which helps save the cost of putting in extra fuel and boosters
- Coast: All the launch sites are close to the coast
- Launch Success: Increases over time
- KSC LC-39A: Has the highest success rate among launch sites. Has a 100% success rate for launches less than 5,500 kg
- Orbits: ES-L1, GEO, HEO, and SSO have a 100% success rate
- Payload Mass: Across all launch sites, the higher the payload mass (kg), the higher the success rate
- Dataset: A larger dataset will help build on the predictive analytics results to help understand if the findings can be generalizable to a larger data set
- Feature Analysis / PCA: Additional feature analysis or principal component analysis should be conducted to see if it can help improve accuracy
- XGBoost: Is a powerful model which was not utilized in this study. It would be interesting to see if it outperforms the other classification models

