

Recysis

Sentiment Analysis

Data Mining and Machine Learning Project a.a. 2021-2022

Irene Cantini Elisa De Filomeno

Contents overviews

- Introduction
- Sentiment Analysis
- Streaming Analysis
- Application
- Conclusions

Introduction

Introduction

- Recysis is a cooking application offering users over 500,000 recipes,
- It allows users to add reviews to each recipe.
- These reviews contain users' opinion and emotion about recipes.
- Each recipe contains lots of positive or negative comments.

Goal

- Help users in the choice of what recipes to make by looking at the number of positive, neutral and negative comments that has been left on each recipe.
- Automatically classify comments by the polarity of the sentiment as positive, negative or neutral (Sentiment Analysis).

Datasets

Source: https://www.kaggle.com/irkaal/foodcom-recipes-and-reviews

- First dataset (recipes.csv): is composed by 522.517 recipes and 28 attributes
- Second dataset (reviews.csv): is composed by 1.401.754 comments and 8 attributes

Recipes.csv	Reviews.csv
Recipeld Name Authorld RecipeCategory	ReviewId RecipeId
RecipeIngredientParts RecipeInstruction Calories CholesterolContent FiberContent	AuthorId AuthorName Rating Review DateSubmitted
SugarContent ProteinContent 	DateModified

Sentiment analysis

- 1. Dataset Preparation and Training Set
- 2. Text preprocessing, Building Vocabulary and Feature Extraction
- 3. Classifiers Evaluations
- 4. Model Selection

Dataset cleaning

- Dataset: reviews.csv
- Removed empty comments
- Removed from comments:
 - characters which represent the end of the line
 - multiple spaces

Data reduction

Reviews distribution

- From 1.401.752 comments to202.979 comments in 2008
- Attribute selected:
 - Review -> containing the text of the comments
 - Rating -> score from 1 to 5, establishing a ground truth

Training Set

- Timeline for training set: 01/01/2008
 to 31/12/2008
- 4.500 comments labelled:
 - Rating = 1 → negative comment
 - Rating = 3→ neutral comment
 - Rating = 5→ positive comment
- Balanced training set, 1500 instances for each class

Text Elaboration

"This taste great!!!!! Even my 3yr. old loved it"

Classification

Comparison of Classifiers

- 5-fold cross validation for each classifier
- Paired T-test between the two best classifiers

Comparison of two best classifiers

- MultinominalNB()

	Precision	Recall	F1-score	Support
Negative	0.85	0.76	0.80	1500
Neutral	0.68	0.80	0.73	1500
Positive	0.86	0.81	0.83	1500
Average	0.80	0.79	0.79	

- LinearSVC(C=0.1)

	Precision	Recall	F1-score	Support
Negative	0.83	0.85	0.84	1500
Neutral	0.78	0.74	0.76	1500
Positive	0.84	0.86	0.85	1500
Average	0.82	0.82	0.82	

Results

- t-test: α =0.05, p-value=0.003 \rightarrow p < α
- General high accuracies in classifying positive, negative and neutral comments
- LinearSVC is the most performing classifier

	ACCURACY	ERROR RATE
multinominalNB	78.777%	21.222%
linearSVC	81.666 %	18.333%

Streaming Analysis

STEPS

- 1. Select a subsequent time window
- 2. Select a certan number of events
- 3. Find comments about these events
- 4. Build three different models
- 5. Select most suitable model

 Subsequent time window (2009-2010)

Events: Peaks of comments

 Found 6 key events on the timeline

Models

- We implemented a comparative study based on different models
- For each event selected we labelled 60 comments using the Rating attribute as ground truth
- We use those comments as test set for 3 different learning settings:
 - Static model: the initial training set composed by 4500 comments
 - Sliding model: retrained each time with the most recent 4500 comments, removing the oldest 60 and adding the newest 60
 - Incremental model: trained with the initial training set plus all the labelled data of all the previous events before testing on a new event

Results

Application

Application

- Command line application developed using Python
- Use the static model
- We embedded in our application all the comments from the original dataset labelled as positive, neutral and negative
- There is also the possibility for the users to add new comments and see immediately the associated sentiment

Use case diagram

Application

```
*************
PRINCIPAL MENU'
What do you want to do?
Select:
1-> Browse all the recipes
2-> Browse all the users
3-> Browse categories
0-> exit
*************
*************
Write command:
```

```
*****************
RECIPE MENU' ID:45
What do you want to do?
Select:
1 -> View Information
2 -> View comments
3 -> View general sentiment about it
4 -> Insert new comment
0 -> Previous menu
**************
**********
Write command: >? 3
************
4 comments are present.
3 comments are NEGATIVE.
1 comments are NEUTRAL.
O comments are POSITIVE
```

Conclusions

Conclusions

- The service we provide offers an additional functionalities to explore all the recipes' impressions
- The application gives an immediate snapshot on the goodness of a recipe useful for both final users and the recipe's owner

THANKS FOR YOUR ATTENTION!

Data Mining and Machine Learning Project a.a. 2021-2022

Irene Cantini Elisa De Filomeno