HWMCC'07

Hardware Model Checking Competition 2007

Armin Biere, Toni Jussila

Institute for Formal Models and Verification Johannes Kepler University Linz, Austria

CAV'07

Berlin

July 7, 2007

Chairs

- Armin Biere (JKU, Linz, Austria)
- Toni Jussila (JKU, Linz, Austria)

Committee

- Alessandro Cimatti (IRST, Trento, Italy)
- Koen Lindström Claessen (Chalmers, Gothenburg, Sweden)
- Ken McMillan (Cadence Berkeley Labs, Berkeley, USA)
- Fabio Somenzi (University of Colorado, Boulder, USA)

- advance model checking technology and research:
 - generate a large set of public available benchmarks
 - encourage researchers to work on novel model checking engines
 - provide a platform for comparison
- repeat success story of SAT competition:
 - exponential improvement of SAT solvers
 - enhances visibility and generates more and more applications
- first things first: synchronous gate level models

[http://fmv.jku.at/aiger]

- Multi-Rooted Sequential And-Inverter Graphs
 - binary AND gate as single type of operator
 - roots denote outputs or next state functions
 - latches are treated as inputs, initialized to zero
- nodes / inputs / outputs represented by unsigned numbers (literals)
 - boolean constants0, 1
 - least significant bit (LSB) used as sign bit
 - 2 = first variable, 3 = not first variable

MILOA	MaxVar Inputs La	atches Outputs Ands
aag 7 2 1 2 4		
2	input 0	'enable'
4	input 1	'reset'
6 8	latch 0	Q next(Q)
6	output 0	Q
7	output 1	! Q
8 4 10	AND gate 0	reset & (enable ^ Q)
10 13 15	AND gate 1	enable ^ Q
12 2 6	AND gate 2	enable & Q
14 3 7	AND gate 3	!enable & !Q

```
MILOA
                MaxVar Inputs Latches Outputs Ands
aag 8 2 1 1 5
                 input 0
                              'enable'
4
                 input 1
                              'reset'
6 8
                 latch 0 Q next(Q)
                 output 0 Q & !q
16
8 4 10
                               reset & (enable ^ Q)
                 AND gate 0
10 13 15
                AND gate 1
                               enable ^ Q
12 2 6
                AND gate 2
                              enable & Q
14 3 7
                AND gate 3 !enable & !Q
16 6 7
                 AND gate 4 Q & !Q
```

SAT iff output can be set to 1 UNSAT iff output can never be set to 1

- supports combinational and sequential circuits and property checking
- compact binary format (10x 100x size reduction)
 - reasonably easy to parse
 - multiple parsers available
 - symbol tables
- AIGER is a format, a library and a tool suite
 - smvtoaig, aigtosmv, bliftoaig, aigtoblif, aigdd, aigtodot, aigtocnf, ...
 - MIT style license

(with the exception of bliftoaig)

• third party software: ABC, ...

L2S (submitted by Viktor Schuppan)

SMV

various sources, LTL properties, liveness to safety
 175 instances

TIP (originally generated by Niklas Eén)
 SMV, Verilog, BLIF, ISCAS

various sources, all safety

118 instances

Intel (submitted by Zurab Khasidashvili)

SMV

varying hardness, contain monitors

42 instances

AMBA (submitted by Barbara Jobstman, Roderick Bloem)

Verilog

- automatically synthesized circuits, scalable

9 instances

344 instances

	aiger	JKU Linz	BMC with PicoSAT
+	aigtrav	JKU Linz	BDDs + localization
+	ebmc-interpolate	ETH Zürich	
+	ebmc-k-induction	ETH Zürich	
	nusmv-bdd	IRST Trento	BDDs version 2.4.3
	nusmv-bmc	IRST Trento	BMC with MiniSAT 2.0
+	pdtrav-bdd	Politecnico di Torino	
+	pdtrav-cbq	PoliTecnico di Torino	
+	pdtrav-inv	PoliTecnico di Torino	
+	pdtrav-itp	PoliTecnico di Torino	
	smv2qbf	JKU Linz	k-induction with PicoSAT
	smv-cmu	CMU Pittsburgh	BDDs
	smv-bwolen	CMU Pittssburgh	BDDs
	smv-cadence	Cadence Berkeley	BDDs
	tip	Chalmers Gothenburg	k-induction with Satzoo
+	vis-bmc-comp	CU-Boulder	
+	vis-bmc-incomp	CU-Boulder	
+	vis-grab	CU-Boulder	8 already existed
+	vis-puresat	CU-Boulder	11 actually submitted

- 15 node cluster running Ubuntu Linux 7.04
 - Fully Automatic Install (FAI)
 - Sun's Grid Engine (SGE)
- identical nodes with Intel Pentium IV, 3 GHz, 2 GB main memory
- limits enforced by resource sampling run utility
 - time limit: 900 seconds (only in final run)
 - space limit: 1.5 GB

- we started with small runs
 - some checkers when killed stalled cluster nodes
 - some checkers had bugs (partially fixed by authors)
 - multiple fixes to run and analysis scripts
- final run took slightly more than 48 hours wall clock time
 - finished Sunday June 24
 - CPU time of 720 hours = 30 days on a single computer
 - used up roughly 106 kWh

- root disk of our cluster master crashed at the start of the competition
 - Murphy's Law: back up also lost (which is a long story)
 - lost one full person week to get the cluster running again
 so we had a busy June . . .
- surprisingly no discrepancies among model checkers (solvers)
 - discrepancy: two solvers return different results
 - very encouraging compared to SAT/QBF/SMT competitions

	total	solved	SAT	UNSAT
all	344	307	194	113
L2S	175	175	166	9
TIP	118	108	28	80
Intel	42	9	0	9
AMBA	9	8	0	8

- the Intel suite is the hardest one
 - first four instances are relatively easy
 - only aigtrav and pdtrav-itp occasionally can solve harder ones
- AMBA shows nice scalable behavior

spec 1 2 3 4 5 6 7 9 10 8 missing, since solved by 11 9 7 5 4 2 1 1 0
$$|\text{spec 8}| > |\text{spec 10}|$$

- 1. interpretation: run all solvers in parallel
 - stop as soon one finds a result
 - this SOTA solver solves 307 benchmarks
- 2. interpretation: a SOTA solver solves one instance uniquely (CASC)

uniquely solved

nusmv-bmc 7

pdtrav-bdd 3

pdtrav-{inv,itp}, aigtrav 2

vis-grab 1

others 0

	solved	SAT	UNSAT	timeout	spaceout	signal
SOTA	307	194	113	0	0	0
pdtrav-inv	251	163	88	78	1	14
pdtrav-itp	248	170	78	80	3	13
vis-puresat	236	177	59	101	4	3
tip	222	183	39	97	25	0
vis-bmc-comp	210	173	37	134	0	0
smv2qbf	210	173	37	26	108	0
vis-bmc-incomp	199	183	16	131	14	0
ebmc-k-induction	199	170	29	52	93	0
nusmv-bmc	193	193	0	134	3	14
aiger	182	182	0	65	97	0
ebmc-interpolate	178	155	23	121	45	0
pdtrav-bdd	125	42	83	213	0	6
pdtrav-cbq	118	39	79	212	6	8
smv-cadence	106	33	73	49	171	18
vis-grab	94	19	75	71	0	179
aigtrav	77	22	55	16	251	0
smv-bwolen	51	18	33	42	1	250
nusmv-bdd	47	13	34	35	256	6
smv-cmu	30	12	18	296	0	18

	solved	SAT	UNSAT	timeout	spaceout	signal
SOTA	307	194	113	0	0	0
nusmv-bmc	193	193	0	134	3	14
tip	222	183	39	97	25	0
vis-bmc-incomp	199	183	16	131	14	0
aiger	182	182	0	65	97	0
vis-puresat	236	177	59	101	4	3
vis-bmc-comp	210	173	37	134	0	0
smv2qbf	210	173	37	26	108	0
pdtrav-itp	248	170	78	80	3	13
ebmc-k-induction	199	170	29	52	93	0
pdtrav-inv	251	163	88	78	1	14
ebmc-interpolate	178	155	23	121	45	0
pdtrav-bdd	125	42	83	213	0	6
pdtrav-cbq	118	39	79	212	6	8
smv-cadence	106	33	73	49	171	18
aigtrav	77	22	55	16	251	0
vis-grab	94	19	75	71	0	179
smv-bwolen	51	18	33	42	1	250
nusmv-bdd	47	13	34	35	256	6
smv-cmu	30	12	18	296	0	18

	solved	SAT	UNSAT	timeout	spaceout	signal
SOTA	307	194	113	0	0	0
pdtrav-inv	251	163	88	78	1	14
pdtrav-bdd	125	42	83	213	0	6
pdtrav-cbq	118	39	79	212	6	8
pdtrav-itp	248	170	78	80	3	13
vis-grab	94	19	75	71	0	179
smv-cadence	106	33	73	49	171	18
vis-puresat	236	177	59	101	4	3
aigtrav	77	22	55	16	251	0
tip	222	183	39	97	25	0
vis-bmc-comp	210	173	37	134	0	0
smv2qbf	210	173	37	26	108	0
nusmv-bdd	47	13	34	35	256	6
smv-bwolen	51	18	33	42	1	250
ebmc-k-induction	199	170	29	52	93	0
ebmc-interpolate	178	155	23	121	45	0
smv-cmu	30	12	18	296	0	18
vis-bmc-incomp	199	183	16	131	14	0
nusmv-bmc	193	193	0	134	3	14
aiger	182	182	0	65	97	0

- AIGER Format 2.0 (full binary, secondary outputs, QBF)
- OS and I/O conformance
 - ideally: single statically linked binary, temporary files in /tmp
 - forbidden: processes, environment assumptions
 - clearly: witnesses / counterexample traces
- two rounds
 - 1st round: weed out problems
 - 2nd round: only one entrant per "group"
- more model checkers and more benchmarks