Chapter 6

Cubical Homotopy Theorey

6.1 On Compactly Generated Hausdorff Spaces

Proposition

If $A \subseteq X$ is a retract of Hausdorff X , then A is closed.

Compactly generated spaces

For a compactly generated space X, the topology is (compact sets determine all closed sets):

$$\{C \mid C \subseteq X \text{ is closed}\} = \{C \mid C \cap K \subseteq X \text{ is closed for each compact } K \subseteq X\}$$
 .

Compact-open topology

The mapping space $X^Y = \{l \mid l : Y \longrightarrow X \text{ is continuous}\}$ is a topological space with the compact-open topology :

$$\{f_i\}\subseteq X^Y$$
 is a topology basis. $\iff f_i:C\longrightarrow U$ where $C\subseteq Y$ is compact, $U\subseteq X$ is open.

Exponential law

For unbased X , Y , Z one has :

$$X^{Y \times Z} \cong (X^Y)^Z$$
.

For based X , Y , Z one has :

$$X^{Y \wedge Z} \cong (X^Y)^Z$$
,

$$X^{\Sigma Y} \cong (\Omega X)^Y$$

Half-smash products

For based X and unbased Y, define the half-smash product to be

$$X \wedge Y_{\perp} = X \times Y / \{*\} \times Y$$
,

$$X \wedge Y_{+} = X \times (Y \sqcup \{*\})/X \vee (Y \sqcup \{*\}) = (X \times Y \sqcup X \times \{*\})/X \sqcup Y$$

Proposition

(1) For
$$f_0 \simeq f_1: A \longrightarrow Y$$
 , $g_0 \simeq g_1: A \longrightarrow Y$, one has $f_0 \times g_0 \simeq f_1 \times g_1: A \longrightarrow X \times Y$.

(2) For
$$f_0 \simeq f_1: X \longrightarrow B$$
, $g_0 \simeq g_1: Y \longrightarrow B$, one has $f_0 \vee g_0 \simeq f_1 \vee g_1: X \vee Y \longrightarrow B$.

(3)
$$[A, X] \times [A, Y] \cong [A, X \times Y]$$
, $[X, B] \times [Y, B] \cong [X \vee Y, B]$.

Cone and path adjunction

$$CX=X\times I/(X\times\{1\}\cup\{*\}\times I)$$
 , $PX=\{l\mid l:I\longrightarrow X\text{ is continuous, }l(0)=*\}$. One has

$$[CX,Y] \cong [X,PY]$$
.

Suspension and loop adjunction

$$\Sigma X=X\times I/(X\times\{0\}\cup X\times\{1\}\cup\{*\}\times I)$$
 , $\Omega X=\{l\mid l:S^1\longrightarrow X\text{ is continuous, }l(0)=*\}$. One has

$$[\Sigma X, Y] \cong [X, \Omega Y]$$
.

Proposition

 $f: X \longrightarrow Y$ is nullhomotopic.

Proposition

 $f: X \longrightarrow Y$ is a homotopy equivalence.

 $\iff X^Z \longrightarrow Y^Z$ is a homotopy equivalence for all Z.

 $\iff Z^X \longrightarrow Z^Y$ is a homotopy equivalence for all Z.

 $\iff [X, Z] \cong [Y, Z] \text{ for all } Z$.

 \iff $[Z, X] \cong [Z, Y]$ for all Z.

Ω functor : $Ho(Top_*) \longrightarrow Ho(Top_*)$

Objects: $(X, x) \xrightarrow{f} (Y, y) \longrightarrow \Omega X \xrightarrow{\Omega f} \Omega Y$

Morphisms:

- (1) If $f \simeq g$, then $\Omega f \simeq \Omega g$.
- (2) If f is a homotopy equivalence, then Ωf is a homotopy equivalence.

$[-,\Omega X]$ functor (contravariant) : $\mathbf{Ho}(\mathbf{Top}_*) \longrightarrow (\mathbf{Gp})$

Objects : $(A,a) \xrightarrow{f} (B,b) \dashrightarrow [A,\Omega X] \xleftarrow{[f,1]} [B,\Omega X]$

Morphisms:

- (1) For maps $f \simeq g$, [f, 1] = [g, 1] is a homomorphism.
- (2) If f is a homotopy equivalence, then [f, 1] is an isomorphism.

Σ functor : $\mathbf{Ho}(\mathbf{Top}_*) \longrightarrow \mathbf{Ho}(\mathbf{Top}_*)$

Objects : $(X, x) \xrightarrow{f} (Y, y) \xrightarrow{} \Sigma X \xrightarrow{\Sigma f} \Sigma Y$

Morphisms:

- (1) If $f \simeq g$, then $\Sigma f \simeq \Sigma g$.
- (2) If f is a homotopy equivalence, then Σf is a homotopy equivalence.

Proposition

- (1) $\Omega(X \times Y) \cong \Omega X \times \Omega Y$, $\Sigma(X \vee Y) \cong \Sigma X \vee \Sigma Y$.
- (2) $\Sigma(X \wedge Y) \cong \Sigma X \wedge Y \cong X \wedge \Sigma Y$.

Milnor's theorem (1959)

The loop space has the homotopy type of a CW complex.

Proposition

 ΣX is a cogroup object in $\mathbf{Ho}(\mathbf{Top}_*)$, ΩX is a group object in $\mathbf{Ho}(\mathbf{Top}_*)$.

Homotopy splitting of CW complexes

For 1-connected CW complexes, consider the cofiber sequence $A \xrightarrow{i} X \xrightarrow{p} C_i$, if there is $s: C_i \longrightarrow X$ such that $s \circ p \simeq \mathbbm{1}_{C_i}$, then one has homotopy equivalence $(p \vee s) \circ fold: A \vee C_i \longrightarrow X$.

For 1-connected CW complexes, consider the fiber sequence $M_p \xrightarrow{i} X \xrightarrow{f} Y$, if there is $r: X \longrightarrow M_p$ such that $r \circ i = \mathbbm{1}_{M_p}$, then one has homotopy equivalence $(r \times f) \circ \nabla : X \times M_p \longrightarrow Y$.

6.2 Cofibrations and Fibrations

Fibrations (Hurewicz fibrations)

The continuous map $p: E \longrightarrow B$ has the homotopy lifting property with respect to X.

 $\iff \forall \text{ homotopy } F: X \times I \longrightarrow B \text{ and contionuous map } G_0: X \times \{0\} \longrightarrow E \text{ such that } p \circ G_0 = F_0 \ ,$ $\exists \text{ a homotopy } G: X \times I \longrightarrow E \text{ such that } p \circ G_t = F_t \text{ for any } t \in I \ .$

If the map $p:E\longrightarrow B$ has the homotopy lifting property with respect to any space X , then $p:E\longrightarrow B$ is a fibration.

Cofibrations

The continuous map $i:A\longrightarrow X$ has homotopy extension property with respect to Y.

 $\iff \forall \text{ homotopy } F: A\times I \longrightarrow Y \text{ and continonous map } G_0: X\times \{0\} \longrightarrow Y \text{ such that } F_0 = G_0\circ (i\times \mathbbm{1}) \ ,$ $\exists \text{ a homotopy } G: X\times I \longrightarrow Y \text{ such that } F_t = G_t\circ (i\times \mathbbm{1}) \text{ for any } t\in I \ .$

If the map $i:A\longrightarrow X$ has the homotopy extension property with respect to any space Y, then $i:A\longrightarrow X$ is a cofibration.

Cofibre and fibre sequences

For a cofibration $i:A\longrightarrow X$, $A\longrightarrow X\longrightarrow X/f(A)$ is called a cofibre sequence and $X/f(A)\simeq C_i$. For a fibration $f:E\longrightarrow X$, $F\longrightarrow E\longrightarrow X$ is called a fibre sequence and $F\simeq M_f$.

Cofibrations and fibrations with homotopy equivalence

For a cofibration and homotopy equivalence $i:A\longrightarrow X$, A is a strong deformation retrack of X.

For a fibration and homotopy equivalence $p: E \longrightarrow X$, one has homotopy inverse $j: X \longrightarrow E$ such that j is a section of p, if j is a cofibration then $j \circ p \simeq \mathbbm{1}_X$ rel j(X).

Proposition

- (1) If the base space X is 0-connected, then the fibration $p: E \longrightarrow X$ is surjective.
- (2) Every cofibration $i:A\longrightarrow X$ is injective and also an embedding. In the case of Hausdorff space or compactly generated weak Hausdorff space, every cofibratrion is a closed inclusion.

Examples

- (1) The inclusion $i: A \longrightarrow X$ of CW pairs (X, A) is a cofibration. The inclusion $i: N \longrightarrow M$ of smooth closed submanifold is a cofibration.
- (2) $ev_0: X^Y \longrightarrow X$, $f \longmapsto f(*)$ is a fibration.
- (3) There are cofibre sequences:

$$X \longrightarrow * \longrightarrow \Sigma X ,$$

$$\Sigma X \longrightarrow \Sigma Y \longrightarrow \Sigma C_f \text{ where } f: X \longrightarrow Y ,$$

$$X \times Z \longrightarrow Y \times Z \longrightarrow C_f \wedge Z_+ \text{ where } f: X \longrightarrow Y ,$$

$$X \wedge Z \longrightarrow Y \wedge Z \longrightarrow C_f \wedge Z \text{ where } f: X \longrightarrow Y ,$$

$$\bigvee_i X \longrightarrow \bigvee_i Y \longrightarrow \bigvee_i Z \text{ where } X_i \longrightarrow Y_i \longrightarrow Z_i \text{ is cobifre sequence,}$$

$$C_f \longrightarrow C_{f \circ g} \longrightarrow C_g \text{ where } f: X \longrightarrow Y, g: Y \longrightarrow Z .$$

(4) There are fibre sequences:

$$\begin{split} \Omega X &\longrightarrow * \longrightarrow X \;, \\ \Omega M_f &\longrightarrow \Omega X \longrightarrow \Omega Y \text{ where } f: X \longrightarrow Y \;, \\ M_f{}^Z &\longrightarrow X^Z \longrightarrow Y^Z \text{ where } f: X \longrightarrow Y \;, \\ Z^{C_f} &\longrightarrow Z^Y \longrightarrow Z^X \text{ where } f: X \longrightarrow Y \;, \\ \prod_i X_i &\longrightarrow \prod_i Y_i \longrightarrow \prod_i Z_i \text{ where } X_i \longrightarrow Y_i \longrightarrow Z_i \text{ is fibre sequence,} \\ M_f &\longrightarrow M_{f \circ g} \longrightarrow M_g \text{ where } f: X \longrightarrow Y, g: Y \longrightarrow Z \;. \end{split}$$

- (1) If f is surjective (or homeomorphism) , then so is j_2 . If f' is injective (or homeomorphism) , then so is j_2' .
- (2) If f is a cofibration, g is a homotopy equivalence (or weak homotopy equivalence), then j_1 is a homotopy equivalence (or weak homotopy equivalence). If f' is a fibration, g' is a homotopy equivalence (or weak homotopy equivalence), then j'_1 is a homotopy equivalence (or weak homotopy equivalence).

Proof:

Consider the long exact sequence of homotopy groups and five lemma.

Enlarge diagrams

For a homotopy commutative diagram, there exists a map g such that following diagrams commute and commute up to homotopy.

Pushout of cofibrations

For a cofibration $i:A\longrightarrow Y$ and a continuous map $f:A\longrightarrow B$, the pushout Y_f makes $i':B\longrightarrow Y_f$ also a cofibration, and their cofibres Y/i(A), $Y_f/i'(A)$ are homeomorphic.

Homotopy cofibres

For the cofibration $i:X\longrightarrow CX$ and a continuous map $f:X\longrightarrow Y$, the pushout C_f is called the homotopy cofibre of f, and $Y\longrightarrow C_f\longrightarrow \Sigma X$ is a cofibre sequence.

Pullback of fibrations

For a fibration $p:E\longrightarrow X$ and a continuous map $f:Y\longrightarrow X$, the pullback E_f makes $p':E_f\longrightarrow Y$ also a fibration, and their fibres are homeomorphic.

Homotopy fibres

For the fibration $p:X\longrightarrow PX$ and a continuous map $f:Y\longrightarrow X$, the pullback M_f is called the homotopy fibre of f, and $\Omega X\longrightarrow M_f\longrightarrow X$ is a fibre sequence.

Principal fibrations

For a map $f: X \longrightarrow Y$ and mapping fibre M_f , one has a fibre sequence

$$\Omega Y \longrightarrow M_f \longrightarrow X$$

called the principal fibration induced by f .

Proposition

For $f \simeq g$, one has $C_f \simeq C_g$, $M_f \simeq M_g$, $I_f \simeq I_g$ (mapping cylinder), $P_f \simeq P_g$ (mapping path). For $f: X \longrightarrow Y$, $g: X' \longrightarrow Y'$, one has $C_f \vee C_g \cong C_{f \vee g}$, $M_f \times M_g \cong M_{f \times g}$.

Map decompositions

For a continuous map $f: X \longrightarrow Y$ one has a cofibration $X \longrightarrow I_f$ and a homotopy equivalence $I_f \longrightarrow Y$, such that the cofibre of $X \longrightarrow I_f$ is C_f . Thus there is a coexact sequence

$$X \longrightarrow Y \longrightarrow C_f$$
.

For a continuous map $f:X\longrightarrow Y$ one has a homotopy equivalence $X\simeq P_f$ and a fibration $P_f\longrightarrow Y$, such that the fibre of $P_f\longrightarrow Y$ is M_f . Thus there is an exact sequence

$$M_f \longrightarrow X \longrightarrow Y$$
.

Puppe sequences

Consider coexact sequences

$$X \longrightarrow Y \longrightarrow C_f$$
, $Y \longrightarrow C_f \longrightarrow \Sigma X$ (cofibration),

one has a coexact sequence

$$X \xrightarrow{f} Y \longrightarrow C_f \longrightarrow \Sigma X \xrightarrow{-\Sigma f} \Sigma Y \longrightarrow \Sigma C_f \longrightarrow \cdots$$

Consider exact sequences

$$M_f \longrightarrow X \longrightarrow Y$$
, $\Omega Y \longrightarrow M_f \longrightarrow X$ (fibration),

one has an exact sequence

$$\cdots \longrightarrow \Omega M_f \longrightarrow \Omega X \xrightarrow{-\Omega f} \Omega Y \longrightarrow M_f \longrightarrow X \xrightarrow{f} Y.$$

For all maps with double line are all fibrations : $X_1 \longrightarrow X_1'$, $X_2 \longrightarrow X_2'$, $X_{12} \longrightarrow X_{12}'$, $X_2 \longrightarrow X_{12}$, $X_2 \longrightarrow X_{12}'$, $X_1 \longrightarrow X_2 \longrightarrow X_2$, one has an induced fibration

$$lim (X_1 \longrightarrow X_{12} \longleftarrow X_2) \longrightarrow lim (X_1' \longrightarrow X_{12}' \longleftarrow X_2')$$
.

For all maps with double line are all cofibrations : $X_1 \longrightarrow X_1'$, $X_2 \longrightarrow X_2'$, $X_\emptyset \longrightarrow X_\emptyset'$, $X_\emptyset \longrightarrow X_2$, $X_\emptyset' \longrightarrow X_2'$, $X_\emptyset \longrightarrow X_2'$, one has an induced cofibration

$$colim \ (X_1 \longleftarrow X_\emptyset \longrightarrow X_2) \longrightarrow colim \ (X_1' \longleftarrow X_\emptyset' \longrightarrow X_2') \ .$$

6.3 Homotopy Pushouts and Pullbacks

Homotopy pushouts

standrad homotopy pushout in Ho (Top)

$$f(a) \sim (a,0) , g(a) \sim (a,1)$$

Homotopy pullbacks

standrad homotopy pullback in Ho (Top)

$$eq(fp_1, gp_2) = \{(x, y) \mid f(x) = g(y)\}$$
 $P = \{(x, l, y) \mid f(x) = l(0), g(y) = l(1)\}$

Proposition

For $i:A\longrightarrow Y$ and $f:A\longrightarrow B$, the homotopy pushout is Y_f . Then their mapping cones Y/i(A) and $Y_f/i'(B)$ are homotopy equivalent.

For $p:E\longrightarrow X$ and $f:Y\longrightarrow X$, the homotopy pullback is E_f . Then their mapping fibres F_1 and F_2 are homotopy equivalent.

One has homeomorphism

$$holim (X \xrightarrow{f} A \xleftarrow{g} Y) \cong lim (P_f \longrightarrow A \xleftarrow{g} Y), (x, l, y) \longmapsto ((x, l), y).$$

Thus there are homeomorphisms

$$\begin{aligned} holim \ (X \xrightarrow{f} A \xleftarrow{g} Y) &\cong lim \ (P_f \longrightarrow A \xleftarrow{g} Y) \\ &\cong lim \ (P_f \longrightarrow A \longleftarrow P_g) \cong lim \ (X \xrightarrow{f} A \longleftarrow P_g) \\ &\cong lim \ (lim \ (X \xrightarrow{f} A \xleftarrow{ev_0} A^I) \longrightarrow A^I \longleftarrow lim \ (A^I \xrightarrow{ev_1} A \xleftarrow{g} Y)) \ . \end{aligned}$$

One has homeomorphism

$$hocolim \ (X \xleftarrow{f} A \xrightarrow{g} Y) \cong colim \ (I_f \longleftarrow A \xrightarrow{g} Y) \ , \ \begin{pmatrix} y \\ a,t \\ x \end{pmatrix} \longmapsto \begin{pmatrix} y \\ \begin{pmatrix} a,t \\ x \end{pmatrix} \end{pmatrix} \ .$$

Thus there are homeomorphisms

$$\begin{aligned} hocolim \ (X \xleftarrow{f} A \xrightarrow{g} Y) &\cong colim \ (I_f \longleftarrow A \xrightarrow{g} Y) \\ &\cong colim \ (I_f \longleftarrow A \longrightarrow I_g) \cong colim \ (X \xleftarrow{f} A \longrightarrow I_g) \\ &\cong colim \ (colim \ (X \xleftarrow{f} A \xrightarrow{i_0} A \times I) \longleftarrow A \times I \longrightarrow colim \ (A \times I \xleftarrow{i_1} A \xrightarrow{g} Y)) \ . \end{aligned}$$

Matching lemma

$$holim (X \longrightarrow A \longleftarrow Y) \simeq holim (X' \longrightarrow A' \longleftarrow Y')$$
 (or weak equivalence).

Gluing lemma

If the vertical maps are homotopy equivalences (or weak homotopy equivalence) , then one has

$$hocolim \ (X \longleftarrow A \longrightarrow Y) \simeq hocolim \ (X' \longleftarrow A' \longrightarrow Y')$$
 (or weak equivalence) .

In the pushout square, if g is a cofibration, then it is a homotopy pushout square, one has

$$hocolim (X \xleftarrow{f} A \xrightarrow{g} Y) \simeq colim (X \xleftarrow{f} A \xrightarrow{g} Y)$$
.

Then the bottom square is a pushout since

$$colim \; (X \longleftarrow I_f \longrightarrow colim \; (I_f \longleftarrow A \longrightarrow Y)) \cong colim \; (X \longleftarrow A \longrightarrow Y) \; .$$

Proposition

In the pullback square, if g is a fibration, then it is a homotopy pullback square, one has

$$holim (X \xrightarrow{f} A \xleftarrow{g} Y) \simeq lim (X \xrightarrow{f} A \xleftarrow{g} Y)$$
.

Proof:

Then the bottom square is a pullback since

$$\lim (X \longrightarrow P_f \longleftarrow \lim (P_f \longrightarrow A \longleftarrow Y)) \cong \lim (X \longrightarrow A \longleftarrow Y) , \ (x,(x',l,y)) \longmapsto (x,y)$$
 according to l links $f(x'), g(y)$ is a homeomorphism.

Pullback corner maps

For fibration $p:X\longrightarrow Y$ and cofibration $i:A\longrightarrow B$, one has a fibration

$$X^B \longrightarrow lim \ (X^A \longrightarrow Y^A \longleftarrow Y^B) \ .$$

If either p or i is homotopy equivalence, then

$$X^B \simeq lim \ (X^A \longrightarrow Y^A \longleftarrow Y^B) \ .$$

Proposition

$$(lim (X \longrightarrow A \longleftarrow Y))^E \cong lim (X^E \longrightarrow A^E \longleftarrow Y^E) .$$

$$E^{colim\ (X\longleftarrow A\longrightarrow Y)}\cong lim(E^X\longleftarrow E^A\longrightarrow E^Y)\ .$$

Proposition

$$(1)\; hocolim\; (*\longleftarrow X \xrightarrow{f} Y) = C_f \;, \; hocolim\; (X \longleftarrow X \times Y \longrightarrow Y) = X * Y \;, \; X * Y \simeq \Sigma (X \wedge Y) \;.$$

- (2) $X \longrightarrow X * Y$ and $Y \longrightarrow X * Y$ are nullhomotopic.
- (3) For n-connected X and m-connected Y ($m, n \ge 0$) , X * Y is (m+n)-connected.
- (4)

6.4 On Cofibre and Fibre sequences

Prism theorem

For homotopy commutative diagrams ABCD and BDEF one has:

(1) ABCD is a homotopy pushout, then:

BDEF is a homotopy pushout. $\iff ACEF$ is a homotopy pushout.

(2) BDEF is a homotopy pullback, then:

ABCD is a homotopy pullback. $\Longleftrightarrow ACEF$ is a homotopy pushout.

Excision maps

There is a diagram with some commutative triangles.

For a sequence $X \longrightarrow Y \longrightarrow Z$ with gf = * , there are three excision maps given by

$$\alpha: (x,t) \longmapsto * \; , \; y \longmapsto f(y) \; ,$$

$$\beta: x \longmapsto (f(x),*) \; ,$$

$$\gamma: (x,l) \longmapsto gl \; .$$

There are homotopy pushout $X \times \Omega Z - \Omega Z - M_{\alpha} - M_{g}$ and commutative diagrams $X \times \Omega Z - C_{j_{1}} - C_{\beta} - M_{g}$, $X \times \Omega Z - C_{j_{1}} - \Omega Z$, $M_{g} - C_{\beta} - M_{\alpha}$, since $X - X \times \Omega Z - C_{j_{1}} - *$ and $X - M_{g} - C_{\beta} - *$ are homotopy pushouts, thus $X \times \Omega Z - M_{g} - C_{\beta} - C_{j_{1}}$ and $\Omega Z - C_{j_{1}} - C_{\beta} - M_{\alpha}$ are homotopy pushouts.

Proposition

For $j_1:X\longrightarrow X\times\Omega Z$, $\widetilde{p_2}:C_{j_1}\longrightarrow\Omega Z$, one has $C_{\widetilde{p_2}}\simeq X*\Omega Z$.

James's theorem

For cofibre sequence $X \longrightarrow CX \xrightarrow{p} \Sigma X$, one has a homotopy commutative diagram.

For principal fibration $\Omega\Sigma X\longrightarrow M_p\longrightarrow CX\simeq *$ with $\Omega\Sigma X\simeq M_p$, one has $C_{\beta}\simeq C_e\simeq C_{-e}$. Then one has

$$\Sigma C_{\beta} \simeq X * \Omega \Sigma X$$
.

For cofibre sequence $\Omega\Sigma X\simeq M_p\longrightarrow C_{\beta}\simeq C_e\stackrel{r}{\longrightarrow}\Sigma X$, one has $r\simeq *$, thus $\Sigma\Omega\Sigma X\simeq \Sigma X\vee \Sigma C_e$. Then

$$\Sigma\Omega\Sigma X \simeq \Sigma X \vee \Sigma C_e \simeq \Sigma X \vee \Sigma (X*\Omega\Sigma X) \simeq \Sigma X \vee \Sigma (\Sigma (X \wedge \Omega\Sigma X)) \simeq \Sigma X \vee \Sigma (X \wedge \Sigma\Omega\Sigma X) .$$

Serre's theorem

For a weak fibration $p: E \longrightarrow X$, $F_{x_0} = p^{-1}(x_0)$ and $f_0 \in F$, the map $p': (E,F) \longrightarrow (X,x_0)$ with cumutative diagram induces a bijection $\pi_n(p'): \pi_n(E,F) \longrightarrow \pi_n(X,x_0)$ for all $n \ge 1$.

For a weak fibration $p: E \longrightarrow X$, $F = p^{-1}(x_0)$, take the based point $x_0 = p(e_0)$, there is a long exact sequence in category (**Sets**_{*}):

$$\cdots \longrightarrow \pi_n(F) \longrightarrow \pi_n(E) \xrightarrow{\pi_n(p)} \pi_n(X) \longrightarrow \pi_{n-1}(F) \longrightarrow \cdots$$

6.5 Arithmetic Squares

Notice

For a weak homotopy equivalence $f: X \longrightarrow Y$, $f^Z: X^Z \longrightarrow Y^Z$ is not necessarily a weak homotopy equivalence unless Z is a CW complex. In this section, the homotopy cocartesian (or homotopy cartesian) square is defined for CW complexes, we assume that all spaces in this section are CW complexes.

Cocartesian and cartesian squares

By the universal property, a cocartesian square is a pushout, a cartesian square is a pullback.

k-cocartesian and k-cartesian squares

If the induced map is a k-equivalence, then it is k-cocartesian or k-cartesian.

If the induced map is a weak homotopy equivalence, then it is homotopy cocartesian or homotopy cartesian.

Cocartesian and k-cocartesian squares

 $\{U,V\}$ is an open cover of X

Cartesian and k-cartesian squares

If f is a cofibration, then one has (not only for CW complexes):

If f is a fibration, then one has (not only for CW complexes):

Proposition

With mapping spaces

Commutativity of homotopy colimits

$$\begin{array}{c} hocolim \ (V \vee X_1 \longleftarrow V \vee X_\emptyset \longrightarrow V \vee X_2) \cong V \vee hocolim \ (X_1 \longleftarrow X_\emptyset \longrightarrow X_2) \ , \\ hocolim \ (V \times X_1 \longleftarrow V \times X_\emptyset \longrightarrow V \times X_2) \cong V \times hocolim \ (X_1 \longleftarrow X_\emptyset \longrightarrow X_2) \ , \\ hocolim \ (Z \times_Y X_1 \longleftarrow Z \times_Y X_\emptyset \longrightarrow Z \times_Y X_2) \cong Z \times_Y hocolim \ (X_1 \longleftarrow X_\emptyset \longrightarrow X_2) \ , \\ hocolim \ (V \wedge X_1 \longleftarrow V \wedge X_\emptyset \longrightarrow V \wedge X_2) \cong V \wedge hocolim \ (X_1 \longleftarrow X_\emptyset \longrightarrow X_2) \ , \\ hocolim \ (V * X_1 \longleftarrow V * X_\emptyset \longrightarrow V * X_2) \cong V * hocolim \ (X_1 \longleftarrow X_\emptyset \longrightarrow X_2) \ , \\ hocolim \ (\Sigma X_1 \longleftarrow \Sigma X_\emptyset \longrightarrow \Sigma X_2) \cong \Sigma hocolim \ (X_1 \longleftarrow X_\emptyset \longrightarrow X_2) \ , \\ holim \ (\Omega X_1 \longrightarrow \Omega X_\emptyset \longleftarrow \Omega X_2) \cong \Omega holim \ (X_1 \longrightarrow X_\emptyset \longleftarrow X_2) \ . \end{array}$$

Homotopy colimit commutes with homotopy cofibers, homotopy limit commutes with homotopy fibers.

With products

Mountain theorem

Cocartesian prism theorem

Valley theorem

Cartesian prism theorem

One has weak equivalence $\Sigma(X\wedge Y) \longrightarrow X*Y$.

Proof:

Use moutain theorem.

Proposition

For n-connected X and m-connected Y , $X \wedge Y$ is (m+n+1)-connected, $X*Y \simeq \Sigma(X \wedge Y)$ is (m+n+2)-connected.

Homotopy fiber and cofiber of constant map

For constant map $X \xrightarrow{f} Y$, one has fiber sequence

$$X \times \Omega Y \longrightarrow X \longrightarrow Y$$

and cofiber sequence

$$X \longrightarrow Y \longrightarrow Y \vee \Sigma X$$
.

Cofibrant and fibrant squares

fibrant if all double lines are fibrations

cofibrant if all double lines are cofibrations

Fibrant square : all maps are fibrations, induced map is fibration.

Cofibrant square : all maps are cofibrations, induced map is cofibration.

Cofibrant replacement

Every square \mathcal{X} is homotopy equivalent to a cofibrant square \mathcal{X}' called cofibrant replacement to \mathcal{X} . One has (one can take $k=\infty$): \mathcal{X} is k-cocartesian. $\iff \mathcal{X}'$ is k-cocartesian.

Proof:

Fibrant replacement

Every square $\mathcal X$ is homotopy equivalent to a fibrant square $\mathcal X'$.

One has (one can take $k = \infty$): \mathcal{X} is k-cartesian. $\iff \mathcal{X}'$ is k-cartesian.

Proof:

6.6 Algebraic squares

Notice

In this section, the homotopy cocartesian (or homotopy cartesian) square is defined for CW complexes, we assume that all spaces in this section are CW complexes.

Total cofibers and fibers

Iterated theorem

The total fiber is the iterated homotopy fiber, the total cofiber is the iterated homotopy cofiber.

Proof:

Enlarge with * then use valley theorem and mountain theorem.

Applications of iterated theorem

fiber sequence $M_f \longrightarrow M_{g \circ f} \longrightarrow M_g$

cofiber sequence $C_f \longrightarrow C_{g \circ f} \longrightarrow C_g$

fiber sequence $M_f \longrightarrow * \longrightarrow M_g$ cofiber sequence $C_f \longrightarrow * \longrightarrow C_g$

where $X_S \longrightarrow X_{S'} \longrightarrow X_S$ is 1

Long exact sequence of squares

One has long exact sequences

$$\cdots \longrightarrow \pi_n(f_1) \longrightarrow \pi_n(f_2) \longrightarrow \pi_{n+2}(\mathcal{X}) \longrightarrow \pi_{n-1}(f_1) \longrightarrow \cdots \longrightarrow \pi_1(f_2) ,$$
$$\cdots \longrightarrow H_n(f_1) \longrightarrow H_n(f_2) \longrightarrow H_n(\mathcal{X}) \longrightarrow H_{n-1}(f_1) \longrightarrow \cdots .$$

House theorem

For four commutative triangles with Y, one has the distributive law with $holim\ (-\longleftarrow Y\longrightarrow *)$ as multiplication and colim as addition

$$holim\ (hocolim\ (X_1 \longleftarrow X_\emptyset \longrightarrow X_2) \longleftarrow Y \longrightarrow *)$$

 $\simeq hocolim \ (holim \ (X_1 \longrightarrow Y \longleftarrow *) \longleftarrow holim \ (X_\emptyset \longrightarrow Y \longleftarrow *) \longrightarrow holim \ (X_2 \longrightarrow Y \longleftarrow *)) \ .$

Applications of house theorem

fiber sequence $\Omega X \ast \Omega Y \longrightarrow X \vee Y \longrightarrow X \times Y$

splitting fiber sequence $\Omega(\Omega X*\Omega Y) \longrightarrow \Omega(X\vee Y) \longrightarrow \Omega(X\times Y)$

fiber sequence $\Omega Y * M_f \longrightarrow C_g \longrightarrow Y$

(Ganea's theorem)

 $M_{f \circ g} \simeq \Omega Y \times M_f$ since $M_f \longrightarrow Y$ is constant

fiber sequence $\Sigma\Omega X \longrightarrow X \vee X \longrightarrow X$

Applications of house theorem

fiber sequence $X \wedge (\Omega Y)_+ \longrightarrow Y \vee X \longrightarrow Y$

$$M_{1 \vee c} \simeq C_{c \times 1} = X \times \Omega Y / \{*\} \times \Omega Y = X \wedge (\Omega Y)_{+}$$

Applications of house theorem

fiber sequence $M_f * U \longrightarrow X *_Y U \longrightarrow Y$

$$X_{\emptyset} \simeq holim \ (X_1 \longrightarrow X_{12} \longleftarrow X_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad M_{f_{\emptyset}} \simeq M_{f_1} \times M_{f_2} \ \text{by valley theorem}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

fiber sequence $M_{f_1}*M_{f_2} \longrightarrow hocolim \ (X_1 \longleftarrow X_\emptyset \longrightarrow X_2) \longrightarrow X_{12}$

Open pushouts

Excisive triads

Homotopy excision theorem

Suppose $\{A, B\}$ is an open cover of X with 0-connected $A \cap B$, then for m-connected pair $(A, A \cap B)$ and n-connected pair $(B, B \cap A)$, one has (m+n)-connected inclusion $(A, A \cap B) \longrightarrow (X, B)$.

There is an isomorphism given by Whitehead product

$$\pi_{m+1}(A, A \cap B) \otimes \pi_{n+1}(B, B \cap A) \longrightarrow \pi_{m+n+1}(X; A, B) , [f] \otimes [g] \longmapsto [f, g] .$$

Proposition

For CW complex X , one has an (m+n-3)-cartesian square.

For a square with all maps fibrations, one has a quasi-fibration $hocolim\ (X_1 \longleftarrow X_\emptyset \longrightarrow X_2) \longrightarrow X_{12}$.

Blackers-Massey theorem

generalised version

Proof:

by prism theorem (generlised version)

 $M_1 \times M_2$ $M_1 \times M_2$

it is $M_1 \times M_2$ since X_\emptyset is base space

by prism theorem (generlised version)

Hurewicz theorem

X is n-connected. $\iff \widetilde{H_i}(X) = 0$ for $0 \le i \le n$, $\widetilde{H_{n+1}}(X) \cong H_{n+1}(X) \cong \pi_{n+1}(X)$. (X,A) is n-connected with 1-connected A . $\iff \widetilde{H_i}(X,A) = 0$ for $0 \le i \le n$, $\widetilde{H_{n+1}}(X,A)$. Proof :

for relative version, consider

Hurewize theorem for 1-connected space

Hurewize theorem for n-connected space

Applications of Blakers-Massey theorem

$$\Sigma(\Omega X \wedge \Omega Y) \longrightarrow \Omega(X \wedge Y)$$
 is $m + n + min\{m, n\} + 1$

 $X \longrightarrow \Omega ZX$ is (2n-1)-connected for (n-1)-connected X (Freudenthal suspension theorem)

 $\Sigma\Omega X\longrightarrow X$ is (2n+1)-connected for n-connected X

Ganea's fiber-cofiber construction

has increasing connectivity as up the tower

Dual construction

$$CX \simeq * \longleftarrow \Sigma \Omega X \simeq M_1 \longleftarrow M_2 \longleftarrow M_3 \longleftarrow \cdots$$

has increasing connectivity as up the tower

Serre theorem

fiber sequence $M_f \xrightarrow{p} Y \xrightarrow{f} X$ induces (m+n+1)-connected map $C_p \longrightarrow X$