Санкт-Петербургский Государственный университет Физический Факультет

Выпускная дипломная работа студента 707 группы физического факультета Смелкова Кирилла Владимировича

"Энергетический принцип локализации орбиталей. Применение к моделированию химической связи."

 Научный руководитель:
 профессор
 И.В. Абаренков

 Рецензент:
 доцент
 И.И. Тупицин

Санкт-Петербург 2003

Содержание

1	Введ	ение	2
2	Моде	елирование молекулы: декомпозиция электронной плотности и энер-	
	гии .		2
	2.1	переход к неканоническим орбиталям	4
	2.2	декомпозиция энергии	6
	2.3	результат декомпозиции для некоторых молекул	7
	2.4	модель молекулы: предварительные соображения	9
	2.5	устойчивость электронной структуры ион-радикала	12
3	Урав		12
	3.1	вывод уравнения для орбиталей связи путём преобразования	
		общего уравнения для неканонических орбиталей	13
	3.2	вывод уравнения для орбиталей связи путём варьирования E_{bond}	14
	3.3	отсутствие ghost -состояний	15
	3.4	сравнение эффективного потенциала ион-радикала с традици-	
		онным псевдопотенциалом атомного остова	16
4	Поте	енциал внедрения	16
	4.1	основное приближение для $ ho_c$	17
	4.2	базисные эффекты	17
	4.3	экранированное межэлектронное взаимодействие	19
5	Резул	льтаты расчётов и обсуждение	20
	5.1	расчёты орбиталей связи	21
	5.2	расчёты орбиталей окружения	21
	5.3	переносимость эффективного потенциала ион-радикала	22
6	Закл		22

1 Введение

Понятие химической связи является полезным при описании различных свойств молекул. В Хартри-Фоковской теории орбиталь связи — это неканоническая орбиталь локализованная в окрестности двух атомов с максимумом электронной плотности между ними. Процесс образования молекулы в основном определяется связями, и в то же время орбитали связи заняты лишь небольшой частью всех электронов молекулы, по два электрона на простую связь. По этой причине, является желательным свести задачу расчёта электронной структуры молекулы к связям, избавившись при этом от электронов локализованных на атомах. В квантовой теории многих тел исключение остовных состояний обычно производится с помощью так называемого псевдопотенциала. С этой точки зрения переход к орбиталям остова и связи, и дальнейшее рассмотрение только орбиталей связи может быть рассмотрен как частный случай теории псевдопотенциала, разработанной специально для ковалентных соединений.

Однако не существует априори универсального определения орбитали связи. Такие орбитали обычно получают с помощью различных пост Хартри-Фоковских схем локализации. В данной работе предлагается процедура локализации основанная на принципе минимума энергии. В этой процедуре, производится сначала локализация ион-радикалов, а затем получаются орбитали связи как ортогональное дополнение к орбиталям ион-радикалов. Помимо нахождения орбиталей связи, эта схема позволяет выделить "жёсткие" части молекулы, и развить приближенный метод описания молекулярных соединений.

2 Моделирование молекулы: декомпозиция электронной плотности и энергии

Рассмотрим для простоты¹ случай, когда молекула может быть представлена как два ион-радикала \mathcal{R}_1 и \mathcal{R}_2 соединённые посредством ковалентной химической связи — простой или кратной. Каждое атомное ядро приписывается тому или иному ион-радикалу, а связь содержит только электроны. Мы также предполагаем, что все ион-радикалы как и связь содержат по чётному числу электронов $2n_i$ и $2n_b$ соответственно, и, таким образом полное число электронов в молекуле есть $2n = 2n_1 + 2n_2 + 2n_b$. Принимая во внимание ковалентный характер связи, необходимо приписать всем ион-радикалам одинаковый положительный электрический заряд $+n_b$. Связь содержит отрицательный заряд $-2n_b$. Обозначим через N_1 и N_2 число ядер в первом и втором ион-радикале соответственно. Общее число ядер молекулы есть $N = N_1 + N_2$. Вводя обозначение \aleph для ядерной подсистемы молекулы а также \aleph_1 и \aleph_2 для ядерных подсистем ион-радикалов мы можем условно написать

$$\aleph = \aleph_1 \oplus \aleph_2$$

Предполагается, что связь можно сопоставить двум атомам: атому A_1 входящему в состав \mathcal{R}_1 и A_2 входящему в состав \mathcal{R}_2 .

 $^{^{1}}$ рассмотрение естественным образом обобщается на случай более сложных молекул

Основное состояние молекулы при фиксированной геометрии ядер есть синглет волновая функция которого представляет собой один детерминант построенный на функциях $\psi_k(\mathbf{r})$. Функции $\psi_k(\mathbf{r})$ удовлетворяют уравнению самосогласованного по-

$$\widehat{F}(\rho, \aleph; \mathbf{r}) | \psi_k \rangle = \epsilon_k | \psi_k \rangle, \qquad k = 1, \dots, n$$
 (1)

где ρ – безспиновая матрица плотности первого порядка

$$\rho(\mathbf{r}|\mathbf{r}') = \sum_{k=1}^{n} \psi_k(\mathbf{r}) \psi_k^*(\mathbf{r}'), \tag{2}$$

и оператор Фока имеет известный вид

$$\widehat{F}(\rho, \aleph; \mathbf{r}) = -\frac{1}{2}\Delta + V(\aleph; \mathbf{r}) + \widehat{U}(\rho; \mathbf{r})$$
(3)

где

$$V(\aleph; \mathbf{r}) = -\sum_{k \in \aleph} \frac{Z_k}{|\mathbf{r} - \mathbf{R}_k|}$$
 (4)

есть потенциал ядер, Z_k и \mathbf{R}_k – заряд и радиус вектор k-ого ядра из \aleph .

$$\widehat{U}(\rho; \mathbf{r}) f(\mathbf{r}) = \int \frac{2\rho(\mathbf{r}'|\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' f(\mathbf{r}) - \int \frac{\rho(\mathbf{r}|\mathbf{r}') f(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}',$$
 (5)

есть оператор межэлектронного взаимодействия.

Занятые орбитали ψ_k минимизируют функционал полной энергии, который представляет собой сумму

$$E = E_{kin}[\rho] + E_{en}[\rho, \aleph] + E_{ee}[\rho, \rho] + E_{nn}[\aleph, \aleph]$$
(6)

следующих частей: кинетическая энергия

$$E_{kin}[\rho] = 2 \int \left[\left(-\frac{1}{2} \Delta_r \right) \rho(\mathbf{r} | \mathbf{r}') \right]_{\mathbf{r}' = \mathbf{r}} d\mathbf{r},$$

электрон-ядерное притяжение

$$E_{en}[\rho, \aleph] = \int 2\rho(\mathbf{r}|\mathbf{r})V(\aleph; \mathbf{r})d\mathbf{r},$$

электрон-электронное взаимодействие

$$E_{ee}[\rho_A, \rho_B] = \int \left[\hat{U}(\rho_A; \mathbf{r}) \rho_B(\mathbf{r}|\mathbf{r}') \right]_{\mathbf{r}'=\mathbf{r}} d\mathbf{r} = \int \left[\hat{U}(\rho_B; \mathbf{r}) \rho_A(\mathbf{r}|\mathbf{r}') \right]_{\mathbf{r}'=\mathbf{r}} d\mathbf{r}$$

и ядерное отталкивание

$$E_{nn}[\aleph_A, \aleph_B] = \frac{1}{2} \sum_{k_1 \in \aleph_A} Z_k V(\aleph_B; \mathbf{R}_k)$$

Необходимо отметить, что $E_{ee}[\rho_A,\rho_A]$ есть в точности энергия электрон-электронного взаимодействия системы с электронной плотностью ρ_A , в то время как $E_{ee}[\rho_A,\rho_B]$ с различными ρ_A и ρ_B есть половина энергии взаимодействия между ρ_A и ρ_B . Вторая половина содержится в $E_{ee}[\rho_B,\rho_A]$ которая совпадает с $E_{ee}[\rho_A,\rho_B]$. Тоже самое справедливо и для $E_{nn}[\aleph_1,\aleph_2]$. Столь необычные обозначения используются по причине удобства их применения в дальнейшем. Уравнение (6) справедливо для любой системы с заполненными оболочками, редуцированной матрицей плотности ρ и ядерной подсистемой \aleph .

2.1 переход к неканоническим орбиталям.

Наряду с молекулой, для каждого ион-радикала \mathcal{R}_m рассматривается нижнее по энергии синглетное состояние соответствующее геометрии \aleph_m . Эти состояния описываются однодетерминантными волновыми функциями с орбиталями $\psi_k^{(m)}$, которые удовлетворяют уравнениям Хартри-Фока

$$\widehat{F}(\rho_m^{(0)}, \aleph_m) |\psi_k^{(m)}\rangle = \epsilon_k^{(m)} |\psi_k^{(m)}\rangle,$$

$$\widehat{\rho}_m^{(0)} = \sum_{k=1}^{n_m} |\psi_k^{(m)}\rangle \langle \psi_k^{(m)}|$$

$$m = 1, 2, \qquad k = 1, \dots, n_m.$$

и минимизируют функционал энергии $E[\rho_m^{(0)}, \aleph_m]$

Одночастичная матрица плотности (2) инвариантна относительно унитарных преобразований занятых орбиталей ψ_k , таким образом $\hat{\rho}$ и $\hat{F}[\rho,\aleph]$ зависят только от n-мерного подпространства натянутого на ψ_k и не зависит от конкретного выбора орбиталей заполняющих это подпространство. Собственные функции оператора Фока являются так называемыми каноническими орбиталями. В то же время любое неособое линейное преобразование даёт нам неканонические орбитали которые описывают тоже самое многоэлектронное состояние что и канонические орбитали. При работе с неканоническими орбиталями необходимо пользоваться более общим чем (2) выражением для матрицы плотности

$$\rho(\mathbf{r}|\mathbf{r}') = \sum_{j,k=1}^{n} \phi_j(\mathbf{r}) \left\{ S^{-1} \right\}_{jk} \psi_k^*(\mathbf{r}'), \qquad S_{jk} = \int \phi_j^*(\mathbf{r}) \phi_k(\mathbf{r}) d\mathbf{r}$$
 (7)

поскольку неканонические орбитали в общем случае могут быть неортогональны.

Канонические орбитали, в общем случае распространены по всей молекуле, т.е. являются делокализованными. В то-же время можно построить неканонические орбитали

$$\phi_k^{(m)} = \sum_{j=1}^n \psi_j C_{jk}^{(m)}, \qquad k = 1, \dots, n_m.$$
 (8)

которые будут локализованы в окрестности ион-радикала \mathcal{R}_m , и таким образом могут быть рассмотрены как орбитали ион-радикала \mathcal{R}_m в молекуле. Для построения таких орбиталей необходимо использовать ту или иную процедуру локализации. Из числа различных процедур локализации [3] используется процедура основанная на минимизации энергии. Мы определяем орбитали ион-радикала \mathcal{R}_m как неканонические орбитали молекулы минимизирующие функционал энергии $E[\rho_m, \aleph_m]$. Данный функционал соответствует свободному ион-радикалу \mathcal{R}_m и без условия (8) его минимизация даёт орбитали свободного ион-радикала. Однако вместе с условием (8) минимизация соответствует выделению из пространства орбиталей всей молекулы наиболее родственное радикалу \mathcal{R}_m подпространство. Другими словами орбитали ион-радикала в молекуле есть решения уравнений Хартри-Фока для свободного ион-радикала в молекулярном базисе.

$$\rho_m(\mathbf{r}|\mathbf{r}') = \sum_{\ell=1}^{n_m} \phi_k^{(m)}(\mathbf{r}) \left(\phi_k^{(m)}(\mathbf{r}')\right)^* = \sum_{j,k=1}^n \psi_j(\mathbf{r}) \left(\sum_{\ell=1}^{n_m} C_{j\ell}^{(m)} \left(C_{k\ell}^{(m)}\right)^*\right) \psi_k^*(\mathbf{r}')$$
(9)

И уравнения на орбитали принимают вид матричных уравнений на коэффициенты C_{kj}

$$\sum_{k=1}^{n} F_{jk}^{(m)} C_{k\ell}^{(m)} = \epsilon_{\ell}^{(m)} C_{j\ell}^{(m)}, \qquad j = 1, \dots, n, \quad \ell = 1, \dots, n_{m}$$
 (10)

где

$$F_{jk}^{(m)} = \langle \psi_j | \hat{F}[\rho_m, \aleph_m] | \psi_k \rangle$$

Решая уравнение (10) для каждого ион-радикала мы получаем n_1+n_2 неканонических орбиталей которые задают n_1+n_2 мерное подпространство $\mathcal C$ которое мы будем называть остовным. В тоже время размерность молекулярного подпространства $\mathcal M$ образованного занятыми каноническими орбиталями есть $n=n_1+n_2+n_b$ и мы можем рассмотреть $\mathcal B=\mathcal M\ominus\mathcal C$ как n_b -мерное подпространство задающее орбитали связи.

Эти орбитали удобно находить следующим образом: проектор на молекулярное подпространство $\mathcal M$ есть

$$\widehat{\rho} = \sum_{k=1}^{n} |\psi_k\rangle \langle \psi_k|. \tag{11}$$

проектор на остовное подпространство ${\mathcal C}$ есть

$$\widehat{\rho}_c = \sum_{\ell m=1}^{2} \sum_{j=1}^{n_\ell} \sum_{m=1}^{n_m} |\phi_j^{(\ell)}\rangle \left\{ S^{-1} \right\}_{jk}^{\ell m} \langle \phi_k^{(m)} |, \qquad \{S\}_{jk}^{\ell m} = \langle \phi_j^{(\ell)} | \phi_k^{(m)} \rangle. \tag{12}$$

по определению проектор на подпространство связи ${\mathcal B}$ есть

$$\hat{\rho}_b = \hat{\rho} - \hat{\rho}_c$$

и рассмотрев матричные элементы $\hat{
ho}_b$ в каноническом молекулярном базисе

$$\{\rho_b\}_{jk} = \delta_{jk} - \sum_{\ell,m=1}^{2} \sum_{p=1}^{n_\ell} \sum_{q=1}^{n_m} C_{jp}^{(\ell)} \left\{ S^{-1} \right\}_{pq}^{\ell m} \left(C_{kq}^{(m)} \right)^*$$
(13)

можно поставить задачу на собственные значения этой матрицы. n_b собственных векторов отвечающие собственному числу 1 дают коэффициенты C_{jk}^b для орбиталей связи

$$\phi_k^b = \sum_{j=1}^n \psi_j C_{jk}^b \tag{14}$$

Полученные орбитали связи будут ортогональны между собой а также ортогональны орбиталям ион-радикалов.

Таким образом определены все неканонические орбитали молекулы – орбитали ион-радикалов и орбитали связи. Такое разбиение молекулярного пространства на группы естественным образом приводит к разбиению полной энергии молекулы на составляющие.

 $^{^2}$ исключая патологические случаи

2.2 декомпозиция энергии.

С помощью полученных выражений для орбиталей ион-радикалов и связи молекулярная матрица плотности может быть представлена в виде

$$\hat{\rho} = \hat{\rho}_1 + \hat{\rho}_2 + \hat{\rho}_{12} + \hat{\rho}_b \tag{15}$$

где ρ_1 и ρ_2 есть матрицы плотности ион-радикалов (9),

$$\widehat{\rho}_{12} = \widehat{\rho}_{\mathcal{R}_1 \oplus \mathcal{R}_2} - \widehat{\rho}_1 - \widehat{\rho}_2 = \sum_{\ell,m=1}^{2} \sum_{j=1}^{n_\ell} \sum_{m=1}^{n_m} |\phi_j^{(\ell)}\rangle \left(\left\{ S^{-1} \right\}_{jk}^{\ell m} - \delta_{\ell m} \delta_{jk} \right) \langle \phi_k^{(m)} |$$

есть поправка на перекрывание орбиталей разных ион-радикалов, и

$$\widehat{\rho}_b = \sum_{k=1}^{n_b} |\phi_k^b\rangle\langle\phi_k^b|$$

есть матрица плотности связи.

Разложение полной плотности (15) даёт рецепт нахождения матрицы плотности любой комбинации ион-радикалов и связи, что вместе с представлением энергии в виде (6) позволяет вычислить следующие собственные энергии

 $E_1=E[
ho_1, leph_1]$ - собственная энергия ион-радикала \mathcal{R}_1 $E_2=E[
ho_2, leph_2]$ - собственная энергия ион-радикала \mathcal{R}_2 $E_b=E[
ho_b, \emptyset]$ - собственная энергия связи (ядра отсутствуют) $E_{1\oplus 2}=E[
ho_{\mathcal{R}_1\oplus \mathcal{R}_2}, leph]$ - собственная энергия объединения ион-радикалов \mathcal{R}_1 и \mathcal{R}_2 $E_{1\oplus b}=E[
ho_1+
ho_b, leph_1]$ - собственная энергия объединения ион-радикала \mathcal{R}_1 и связи (орбитали ион-радикала \mathcal{R}_1 и связи ортогональны) $E_{2\oplus b}=E[
ho_2+
ho_b, leph_2]$ - собственная энергия объединения ион-радикала \mathcal{R}_2 и связи

(орбитали ион-радикала \mathcal{R}_2 и связи ортогональны) что в свою очередь позволяет представить полную энергию молекулы как сумму одно-, двух- и трех- частичных компонент

$$E = E_1 + E_2 + E_b + E_{1,2} + E_{1,b} + E_{2,b} + E_{1,2,b}$$
(16)

Здесь одночастичная составляющая E_A есть собственная энергия части молекулы A (ион-радикал или связь). Двухчастичная составляющая представляет собой энергию взаимодействия $E_{A,B}$ между частями молекулы A и B. Энергия взаимодействия есть разность собственной энергии объединения систем и собственных энергий отдельных частей

$$E_{A,B} = E_{A \oplus B} - E_A - E_B$$

Трёхчастичная энергия взаимодействия есть

$$E_{A,B,C} = E_{A \oplus B \oplus C} - E_{A,B} - E_{A,C} - E_{B,C} - E_{A} - E_{B} - E_{C} =$$

$$= E_{A \oplus B \oplus C} - E_{A \oplus B} - E_{A \oplus C} - E_{B \oplus C} + E_{A} + E_{B} + E_{C}$$

В нашем случае $E_{\mathcal{R}_1 \oplus \mathcal{R}_2 \oplus \mathcal{B}}$ есть полная энергия молекулы. Простые вычисления показывают, что трёх-частичная энергия взаимодействие является поправкой к электронэлектронному взаимодействию между ион-радикалами и связью на перекрывание ион-радикальных плотностей

$$E_{1,2,b} = 2E_{ee}[\rho_{12}, \rho_b]$$

Наиболее заметный по величине вклад в (16) дают собственные энергии ионрадикалов $E_m = E[\rho_m, \aleph_m]$. В то же время эти величины слабо зависят от положения ядер в окрестности равновесной геометрии молекулы. По этой причине является естественным введение деформационных энергий ион-радикалов \mathcal{R}_m как разность собственных энергий ион-радикала в молекуле и свободного ион-радикала.

$$E_m^{(def)} = E[\rho_m, \aleph_m] - E[\rho_m^{(0)}, \aleph_m] = E_m - E_m^{(0)},$$

В разложение энергии (16) E_m будет теперь входить как $E_m^{(0)} + E_m^{(def)}$.

Рассмотрим теперь энергию взаимодействия ион-радикалов $E_{1,2}$. Важным является асимптотическое поведение этой величины при удалении ион-радикалов друг от друга. В предположении о том, что ρ_m хорошо локализованы каждая в окрестности своего ион-радикала получаем что ρ_{12} и $K[\rho_1,\rho_2]$ стремятся экспоненциально к нулю. Отбрасывая быстро убывающие члены можно представить энергию взаимодействия ион-радикалов в форме мультипольного разложения. Нас интересует только главный вклад в асимптотику, который будет энергией электростатического отталкивания двух одинаковых зарядов $+n_b$ удалённых друг от друга на характерное расстояние между ион-радикалами. В качестве такого расстояния удобно например взять расстояние между ядрами атомов A_1 и A_2 которым приписана связь. Выделяя явно в энергии взаимодействия ион-радикалов асимптотику, целесообразно представить энергию взаимодействия ион-радикалов в виде суммы дальнодействия и короткодействия

$$E_{1,2} = E_{1,2}^{(lr)} + E_{1,2}^{(sr)}$$

где

$$E_{1,2}^{(lr)} = \frac{1}{|\mathbf{R}_{A_1} - \mathbf{R}_{A_2}|}$$

а $E_{1,2}^{(sr)}$ есть всё остальное.

Также, довольно естественно объединить всё члены содержащие ρ_b в (16) и дальнодействующую часть энергии взаимодействия ион-радикалов в т.н. энергию связи

$$E_{bond} = E_b + E_{1,b} + E_{2,b} + E_{1,2,b} + E_{1,2}^{(lr)}$$
(17)

которая может быть рассмотрена как энергия $2n_b$ -электронной связи в поле ионрадикалов. Собирая всё вместе, получим ещё одно выражение для декомпозиции полной энергии молекулы

$$E = E_1^{(0)} + E_2^{(0)} + E_1^{(def)} + E_2^{(def)} + E_{bond} + E_{1.2}^{(sr)}$$
(18)

которое будет использоваться в приложениях.

2.3 результат декомпозиции для некоторых молекул

В этом разделе представлены результаты расчёта адиабатического потенциала для следующих тестовых молекул: CH₃-H, CH₃-Li, CH₃-CH₃ и CH₃-F. Расчёт проводился по схемам описанным в разделах 2.1 и 2.2. Для всех молекул были построены плотности ион-радикалов, плотность связи и компоненты адиабатического потенциала. Полученные данные анализируются на предмет корректности предложенной

процедуры. Для дальнейших исследований будут предложены простые приближённые формулы аппроксимирующие различные части энергии.

В качестве основного объекта иллюстраций выберем СН₃–Н. Качественное описание остальных молекул совпадает с описанием СН₄, поэтому для них будут приведены лишь количественные характеристики.

Полная энергия молекулы и её составляющие в формуле (18) приведены на рисунке 1 как функции длины связи (расстояние между атомами A_1 и A_2 входящими в ион-радикалы \mathcal{R}_1 и \mathcal{R}_2 соответственно). Точками отмечены вычисленные значения, линии показывают предложенные аппроксимации. Видно, что основной вклад в энергию определяющий образование молекулы дают E_{bond} и $E_{sr}(\mathcal{R}_1,\mathcal{R}_2)$, роль энергий деформации меньше. Энергия связи E_{bond} сама по себе не имеет минимума. При использовании суммы $E_{bond} + E_{sr}(\mathcal{R}_1, \mathcal{R}_2)$ в качестве приближённого адиабатического потенциала получим равновесное расстояние 2.0 а.е. и равновесную энергию -1.095 a.e. Поправки вносимые учётом энергий деформации есть 0.076 a.e. для равновесного положения и 0.1 а.е. для энергии в положении равновесия. Величины поправок косвенным образом свидетельствует о том, что ион-радикалы построенные предложенным в 2.1 способом, с хорошей точностью являются жесткими образованиями, и таким образом все электроны принадлежащие ион-радикалам могут быть исключены из молекулярного расчёта в котором остаются только электроны связи. Основываясь на этих соображениях, в 3 мы построим уравнение, решение которого даёт орбитали связи и E_{bond} , где по аналогии с обычным молекулярным расчётом, отталкивание ион-радикалов может быть рассмотрено как фиксированный геометрией потенциал влияющий на форму адиабатической кривой и не влияющий на электронные состояния, а учёт деформации ион-радикалов вносит малые поправки.

Учитывая это, мы предлагаем приближённые формулы параметризующие короткодействие и энергии деформации ион-радикалов. Энергия взаимодействия ионрадикалов вместе с дальнодействующей и короткодействующей частями представлены на рисунке 2. Природа короткодействия в основном определяется перекрыванием орбиталей ион-радикалов, которые в свою очередь хорошо локализованы. В соответствии с этим, в качестве аппроксимации используется экспоненциальная функция

$$E^{(sr)} = C_{sr}e^{-\alpha_{sr}z}$$

где z — длина связи. Это приближение было найдено более чем удовлетворительным и применимым ко всем рассмотренным молекулам несмотря на то, что вместо взаимодействия двух атомов рассматривается отталкивание между двумя радикальными группами. Полученные значения C_{sr} и α_{sr} приведены в таблице 1.

Рассмотрим далее деформацию ион-радикалов. Как уже было замечено, энергия деформации по порядку величины является малой поправкой к энергии связи. Всё же априори пренебречь ей нельзя — эта величина требует анализа поскольку предложенная схема имеет смысл только если энергии деформации ион-радикалов достаточно малы. Всякого рода конкурирующие процессы, различные для внутренних и внешних электронов ион-радикала, ответственны за деформацию ион-радикала. Однако большинство из них имеет сходную функцию отклика, что помогает параметризации. Использованный нами метод Хартри-Фока для закрытых оболочек неправильно описывает химическую связь при больших межатомных расстояниях,

и результаты проведённых расчётов имеют физический смысл только в окрестности равновесной геометрии. Тем не менее при параметризации энергии деформации в данной области используется уравнение

$$E^{(def)} = D_0 + (C_0 + C_1 z)^2 e^{-\alpha z}$$

Будь это уравнение справедливо при больших z, параметр D_0 был-бы разностью энергий между CH_3^+ в CH_4 и свободным CH_3^+ . В нашем случае, D_0 есть параметр, который вместе с остальной частью выражения для $E^{(def)}$ воспроизводит энергию деформации ион-радикала в положении равновесия. Такая параметризация была успешной для всех рассмотренных молекул кроме CH_3 –F, где деформационная кривая фтора качественно отличается от подобных кривых всех остальных ион-радикалов³. Полученные численные величины для D_0 , C_0 , C_1 и α представлены в таблице 1.

2.4 модель молекулы: предварительные соображения

Во многих случаях адекватное описание деформационных процессов может быть получено из простой модели, где сама деформация описывается одним параметром Δ , собственная энергия системы испытывающей возмущение $\Delta^2/2\beta$ квадратична по деформационному параметру, а возмущающий потенциал $\Delta f(z)$ линеен по деформационному параметру.

$$E_{tot} = \frac{\Delta^2}{2\beta} + E_{int}(\Delta, z)$$
 $E_{int}(\Delta, z) = \Delta f(z)$

здесь z – адиабатический параметр. Сама деформация определяется из условия

$$\frac{\partial E_{tot}}{\partial \Lambda} = 0$$

откуда получается

$$\Delta = -\beta f(z)$$
 $E_{int} = -\beta f^{2}(z)$ $E_{tot} = -\frac{\beta}{2} f^{2}(z)$

а также

$$E^{(def)} = \frac{\beta}{2} f^2(z)$$

Видно, что

- 1. в данной модели выполняется теорема Вириала: $E_{int} = -2E^{(def)}$
- 2. из зависимости энергии деформации от z можно восстановить вид возмущающего потенциала

В нашем случае деформация ион-радикала вызвана объединённым воздействием на него связи и другого ион-радикала и разделение f(z) на эти два взаимодействия требует дополнительного анализа.

 $[\]overline{}^3$ заметьте: энергия деформации CH_3^+ в этой молекуле хорошо описывается предложенной формулой.

Рис. 1: Полная энергия и её составляющие как функции длины связи для СН₄. Стрелкой отмечено равновесное положение.

Рис. 2: Декомпозиция энергии взаимодействия ион-радикалов: Кулоновское отталкивание и короткодействие.

Рис. 3: Энергия деформации ион-радикала.

Таблица 1: Подгоночные параметры.

Свойство	СН ₃ -Н	CH ₃ –Li	CH_3-F	CH_3-CH_3
C_{sr}	2.860	0.910	12.662	9.852
α_{sr}	1.353	0.867	1.379	1.253
C_3	0.000	-3.457	-14.641	-9.374
α_3	0.000	2.733	2.518	1.975
D_0^1	0.019	0.065	0.003	0.033
$egin{array}{c} D_0^1 \ C_0^1 \ C_1^1 \end{array}$	-0.063	-0.133	0.916	0.731
C_1^1	0.477	0.376	0.000	0.000
$\alpha^{\bar{1}}$	1.323	0.957	0.987	0.769
D_0^2	0.000	0.000	_	0.033
C_0^2	0.000	0.162	_	0.731
$D_0^2 \ C_0^2 \ C_1^2$	0.000	0.000	_	0.000
α^2	0.000	1.221		0.769

Рис. 4: электронная плотность CH_3^+ вычисленная вдоль линии связи без учёта C(1s) орбитали. правая часть графика соответствует области связи.

2.5 устойчивость электронной структуры ион-радикала.

Рассмотренный набор молекул был выбран для исследования зависимости деформации ион-радикала от молекулярного окружения. В целях количественного анализа мы приводим электронную плотность ион-радикала CH_3^+ вычисленную вдоль линий внешней и внутренней связи. Результаты представлены на рисунках 4 и 5, внутренняя 1s орбиталь углерода исключается так как учёт данной орбитали приводит к одинаковому острому пику расположенному в начале координат и затрудняет анализ. На рисунках приведены области наибольшего изменения плотности, где сама плотность сравнительно мала. Из приведённых иллюстраций следует, что деформация ион-радикала мала. При изменении второго ион радикала от Li^+ до F^+ электронная плотность перетекает из пространства между двумя ион радикалами (пространство связи) во внутреннюю область CH_3^+ , включая как внутренние $\mathrm{C-H}$ связи, так и пространство между ними. При изменении длины связи у фиксированной молекулы тоже наблюдается устойчивость электронного облака каждого ион-радикала.

3 Уравнение связи

В этом разделе мы получим уравнение позволяющее находить орбитали связи. Это уравнение будет получено в форме модифицированного уравнения Хартри-Фока

$$\left\{ -\frac{1}{2}\Delta + \widehat{V}_{eff}(\mathbf{r}) + \widehat{U}_{eff}(\mathbf{r}) \right\} |\phi_k^b\rangle = \lambda_k^b |\phi_k^b\rangle \qquad k = 1, \dots, n_b$$
 (19)

Рис. 5: электронная плотность CH_3^+ вычисленная вдоль внутренней C–H связи без учёта C(1s) орбитали. углерод находится в точке 0, водород в точке 2.

для $2n_b$ электронов находящихся во внешнем нелокальном поле остова \hat{V}_{eff} с эффективным межэлектронным взаимодействием \hat{U}_{eff} которое является модифицированным за счёт наличия остова кулон-обменным взаимодействием.

3.1 вывод уравнения для орбиталей связи путём преобразования общего уравнения для неканонических орбиталей

Мы начинаем с общего уравнения на неканонические орбитали записанного в следующем виде

$$\left\{ \hat{F} - \frac{1}{2} \left(\hat{\rho} \hat{F} + \hat{F} \hat{\rho} \right) \right\} |\phi_k\rangle = 0, \qquad k = 1, \dots, n, \tag{20}$$

где \hat{F} есть оператор Фока $\hat{F}(\rho,\aleph;\mathbf{r})$ (3) и $\hat{\rho}$ есть проектор (11) на молекулярное подпространство \mathcal{M} . Уравнение (20) справедливо т.к. $\hat{\rho}$ и \hat{F} коммутируют и кроме того $\hat{\rho}|\phi_k\rangle = |\phi_k\rangle$. Заметим также, что поскольку незанятые молекулярные орбитали ортогональны к \mathcal{M} , они также являются собственными функциями оператора в фигурных скобках из (20) с отличными от нуля собственными значениями

$$\left\{ \widehat{F} - \frac{1}{2} \left(\widehat{\rho} \widehat{F} + \widehat{F} \widehat{\rho} \right) \right\} |\psi_k\rangle = \epsilon_k |\psi_k\rangle, \qquad k > n$$

Подпространство связи \mathcal{B} было определено так, что

$$\hat{\rho} = \hat{\rho}_c + \hat{\rho}_b$$

разбивая оператор межэлектронного взаимодействия (5) на остовную часть и часть относящуюся к связи

 $\widehat{U}(\rho; \mathbf{r}) = \widehat{U}(\rho_c; \mathbf{r}) + \widehat{U}(\rho_b; \mathbf{r})$

а также вводя оператор Фока остова

$$\widehat{F}_c = \widehat{F}(\rho_c, \aleph) = \widehat{F} - \widehat{U}(\rho_b)$$

перепишем уравнение на неканонические орбитали в виде

$$\left\{ \widehat{F}_c + \widehat{U}(\rho_b) - \frac{1}{2} \left((\widehat{\rho}_c + \widehat{\rho}_b)(\widehat{F}_c + \widehat{U}(\rho_b)) + (\widehat{F}_c + \widehat{U}(\rho_b))(\widehat{\rho}_c + \widehat{\rho}_b) \right) \right\} |\phi_k\rangle = 0$$

для орбиталей связи заполняющих подпространство ${\cal B}$ это уравнение может быть переписано в виде

$$\widehat{F}_b|\phi_k^b\rangle = \widehat{\rho}_b\left(\widehat{F}_c + \widehat{U}(\rho_b)\right)|\phi_k^b\rangle \tag{21}$$

где

$$\hat{F}_b = \hat{F}_c + \hat{U}(\rho_b) - \left(\hat{\rho}_c \hat{F}_c + \hat{F}_c \hat{\rho}_c + \hat{\rho}_c \hat{U}(\rho_b) + \hat{U}(\rho_b) \hat{\rho}_c\right)$$

здесь использованы следующие соотношения: $\hat{\rho}_c | \phi_k^b \rangle = 0$, $\hat{\rho}_b | \phi_k^b \rangle = | \phi_k^b \rangle$. Равенство (21) в частности означает, что \hat{F}_b переводит подпространство связи \mathcal{B} в себя. Поскольку кроме того этот оператор зависит только от ρ_b и не зависит от конкретного выбора орбиталей связи, любой набор ортонормированных орбиталей, линейная оболочка которых есть \mathcal{B} будет решением данного уравнения. В частности мы можем утверждать что все собственные функции оператора \hat{F}_b которые принадлежат \mathcal{B} являются решением уравнения (21), а все остальные решения получаются в результате действия произвольного унитарного преобразования оставляющего \mathcal{B} инвариантом на найденные таким образом орбитали⁴. Итак, орбитали связи можно искать из уравнения

$$\widehat{F}_{b}|\phi_{k}^{b}\rangle = \lambda_{k}^{b}|\phi_{k}^{b}\rangle$$

$$\widehat{V}_{eff} \qquad \widehat{V}_{eff} \qquad \widehat{U}_{eff} \qquad \widehat{U}_{eff} \qquad \widehat{V}_{eff} \qquad \widehat{V}_{$$

в котором участвуют операторы эффективной энергии остова \hat{V}_{eff} и эффективного межэлектронного взаимодействия \hat{U}_{eff} . Сравнивая (21) и (22) находим

$$\lambda_k^b = \langle \phi_k^b | \hat{F}_b | \phi_k^b \rangle = \langle \phi_k^b | \hat{F}_c + \hat{U}(\rho_b) | \phi_k^b \rangle \tag{23}$$

3.2 вывод уравнения для орбиталей связи путём варьирования E_{bond}

Энергия связи (17) с точностью до слагаемых не содержащих ho_b есть

$$E_{bond} = E_{kin}[\rho_b] + E_{en}[\rho_b, \aleph] + E_{ee}[\rho_b, \rho_b] + 2E_{ee}[\rho_c, \rho_b]$$

при варьировании мы должны наложить условие ортонормировки на орбитали связи, а также условие ортогональности орбиталей связи к орбиталям остова

$$\langle \phi_i^b | \phi_j^b \rangle = \delta_{ij} \qquad \langle \phi_i^b | \phi_k^c \rangle = 0$$

⁴всё точно также как в обычном методе Хартри-Фока

эти условия учитываются автоматически при замене варьируемого функционала E_{bond} на

$$\widetilde{E}_{bond} = E_{bond} - \sum_{i,j=1}^{n_b} \lambda_{ij}^b \langle \phi_i^b | \phi_j^b \rangle - \sum_{i=1}^{n_b} \sum_{k=1}^{n_c} \mu_{ik} \langle \phi_i^b | \phi_k^c \rangle$$

варьируем

$$\begin{split} &\frac{\partial \tilde{E}_{bond}}{\partial (\phi_i^b)^*} = \\ &= \left\{ -\frac{1}{2}\Delta + V(\aleph; \mathbf{r}) + \hat{U}(\rho_c) + \hat{U}(\rho_b) \right\} |\phi_i^b\rangle - \sum_{i=1}^{n_b} \lambda_{ij}^b |\phi_j^b\rangle - \sum_{k=1}^{n_c} \mu_{ik} |\phi_k^c\rangle = 0 \end{split}$$

или же

$$\left\{ \hat{F}_c + \hat{U}(\rho_b) \right\} |\phi_i^b\rangle = \sum_{i=1}^{n_b} \lambda_{ij}^b |\phi_j^b\rangle + \sum_{k=1}^{n_c} \mu_{ik} |\phi_k^c\rangle$$

стандартной техникой избавляемся от недиагональных λ^b

$$\left\{ \hat{F}_c + \hat{U}(\rho_b) \right\} |\phi_i^b\rangle = \lambda_{ii}^b |\phi_i^b\rangle + \sum_{k=1}^{n_c} \mu_{ik} |\phi_k^c\rangle$$

домножив слева на $\langle \phi_j^c |$ получим выражения для множителей отвечающих за ортогональность к остову

$$\mu_{ij} = \langle \phi_i^c | \hat{F}_c + \hat{U}(\rho_b) | \phi_i^b \rangle$$

что приводит к следующему уравнению на орбитали связи

$$\left\{ \hat{F}_c + \hat{U}(\rho_b) \right\} |\phi_i^b\rangle = \lambda_{ii}^b |\phi_i^b\rangle + \hat{\rho}_c \left\{ \hat{F}_c + \hat{U}(\rho_b) \right\} |\phi_i^b\rangle$$

перенося член с $\hat{\rho}_c$ влево, а также вводя сопряженное ему слагаемое (оно равно нулю), заменяя λ_{ii}^b на λ_i^b получим уравнение

$$\left\{\widehat{F}_c + \widehat{U}(\rho_b) - \left[\widehat{\rho}_c \left(\widehat{F}_c + \widehat{U}(\rho_b)\right) + \left(\widehat{F}_c + \widehat{U}(\rho_b)\right)\widehat{\rho}_c\right]\right\} |\phi_i^b\rangle = \lambda_i^b |\phi_i^b\rangle$$

в точности совпадающее с (22)

3.3 отсутствие ghost-состояний

Рассмотрим оператор \hat{F}_b в (22) как фиксированный, и покажем, что λ_k^b соответствуют первым n_b низшим собственным числам \hat{F}_b . Для этого необходимо сначала заметить, что все виртуальные орбитали молекулы являются собственными функциями \hat{F}_b . Это действительно так, поскольку для незанятых орбиталей выполняется $\hat{\rho}_c \psi_k = 0$ при k > n и оператор связи действует на такие орбитали как оператор Фока всей молекулы. Из этого в частности следует, что всё пространство векторов состояний разбивается на три подпространства \mathcal{M}^\perp , \mathcal{B} и \mathcal{C} переходящие в себя под действием \hat{F}_b

Учитывая тот факт, что все орбитали связи являются неканоническими орбиталями молекулы и выражение для собственных чисел \hat{F}_b через матричные элементы оператора Фока всей молекулы (23) получим оценку

$$\lambda_k^b < \epsilon_i \qquad k = 1, \dots, n_b \quad i > n$$

это значит что все собственные числа отвечающие собственным векторам \hat{F}_b и \mathcal{M}^\perp больше всех уровней из \mathcal{B} , или условно

$$\widehat{F}_b(\mathcal{B}) < \widehat{F}_b(\mathcal{M}^\perp)$$

Рассмотрим теперь вектор состояния $\phi \in \mathcal{C}$. Для этого вектора верно соотношение

$$\langle \phi | \hat{F}_b | \phi \rangle = -\langle \phi | \hat{F} | \phi \rangle$$

которое означает, что у всех собственных векторов \hat{F}_b из $\mathcal C$ собственные числа больше нуля. таким образом

$$\widehat{F}_b(\mathcal{B}) < 0 < \widehat{F}_b(\mathcal{C})$$

3.4 сравнение эффективного потенциала ион-радикала с традиционным псевдопотенциалом атомного остова

Уравнение (22) может быть рассмотрено как уравнение с псевдо-потенциалом, где орбитали связи рассматриваются как "валентные", а орбитали ион-радикалов как "остовные". Тем не менее псевдо-потенциал в (22) отличается от традиционного псевдо-потенциала исключающего атомные остовные состояния. Основное отличие заключается в следующем: традиционно разделение на остовные и валентные состояние происходит на уровне канонических орбиталей. Затем канонические валентные орбитали преобразуются в неканонические орбитали, тогда как остовные состояния остаются неизменными. В предлагаемом подходе, сначала осуществляется переход к неканоническим орбиталям, и только затем орбитали делятся на "остовные" и "валентные". Поэтому не только орбитали связи имеют примесь традиционного остова, но и "остов" в настоящем подходе имеет примесь традиционных валентных орбиталей. Более того, молекулярная орбиталь соответствующая высокому уровню, может дать намного меньший вклад в связь чем в орбитали ион-радикалов.

В традиционной теории псевдо-потенциала в качестве приближения используется немодифицированное межэлектронное взаимодействие, и из всего разнообразия псевдо-потенциалов выбираются те, для которых данное приближение работает лучше всего. Наибольшее распространение получил так называемый "сохраняющий норму" псевдо-потенциал [4]. В настоящем подходе появляется модифицированное межэлектронное взаимодействие.

4 Потенциал внедрения

Полученные в разделе 2 результаты являются точными в рамках метода Хартри-Фока. Важность этих результатов заключается в используемой энергетической декомпозиции, которая позволяет выделить полезную информацию о различных внутримолекулярных взаимодействиях. Однако, предложенная схема локализации также позволяет разработать приближённый метод вычисления орбиталей связи и адиабатического потенциала. Для этого может быть использовано уравнение связи (22). При данной матрице плотности ρ_c известны оба потенциала \hat{V}_{eff} и \hat{U}_{eff} , и с помощью самосогласованного решения уравнения (22) можно найти ρ_b . При известных ρ_c и ρ_b мы можем сосчитать все компоненты энергии (18). Если исходная

матрица плотности ρ_c точная — мы получим точные результаты. Однако, для ρ_c можно использовать различные приближении и получать при этом приближённые матрицу плотности связи $\widetilde{\rho}_b$ и энергию молекулы \widetilde{E} .

4.1 основное приближение для ρ_c

Как уже было отмечено ранее в 2.3, ион-радикалы представляют собой довольно жёсткие образования. Исходя из этих соображений, в качестве основной аппроксимации для ρ_c мы будем использовать

$$\tilde{\rho}_c = \rho_{\mathcal{R}_1} \oplus \rho_{\mathcal{R}_2} \tag{24}$$

ортогональную сумму матриц плотности ион-радикалов \mathcal{R}_1 и \mathcal{R}_2 взятых из некоторого ссылочного расчёта вообще говоря другой молекулы.

4.2 базисные эффекты

Обычно расчёты молекул проводятся в том или ином базисе атомных орбиталей (AO), где каждая базисная функция приписана некоторому атому и центрирована на его ядре. При использовании (24) возникает необходимость пересчёта ссылочных матриц плотности ион-радикалов из ссылочного представления в базис расчитываемой молекулы, а поскольку ни один из рассматриваемых базисов не является полным, такая процедура не является однозначной. Рассмотрим возможные пути трансформации плотности на следующем примере, когда ссылочная и рассчитываемая молекулы отличаются только геометрией, при этом внутреннее распределение ион-радикалов и их взаимная ориентация остаются фиксированными, и изменению подлежит только длина связи. Для определённости будем говорить о трансформации $\rho_{\mathcal{R}_1}$.

Поскольку матрица плотности строится (7) по орбиталям, задача трансформации сводится к преобразованию орбиталей ион-радикалов. Произведём наложение в пространстве расчитываемой молекулы на ссылочную так, чтобы \mathcal{R}_1 оказался их общей подсистемой.

на рисунке схематично изображено такое построение. Видно, что в каждом базисе происходит деление функций на две группы – центрированных на атоме из состава первого ион-радикала, и центрированных на атоме из состава второго ион радикала. Кроме того, базисные функции относящиеся к радикалу \mathcal{R}_1 образуют общее подмножество двух рассматриваемых базисов. Обозначим через χ_i и ξ_j базисные функции из состава первого и второго ион-радикала соответственно. Тогда

$$AO_1 = \{\chi_i, \xi_j\}$$
 $AO_2 = \{\chi_i, \tilde{\xi}_j\}$

где AO_1 — базис ссылочной геометрии, а AO_2 — базис рассматриваемой геометрии. Рассмотрим преобразовании одной из орбиталей ион-радикала ϕ , и обозначим её представление в базисе AO_2 через $\widetilde{\phi}$.

$$\phi = \sum_{i} C_{i}^{(1)} \chi_{i} + \sum_{j} C_{j}^{(2)} \xi_{j}$$
$$\tilde{\phi} = \sum_{i} D_{i}^{(1)} \chi_{i} + \sum_{j} D_{j}^{(2)} \tilde{\xi}_{j}$$

Коэффициенты C мы знаем, коэффициенты D подлежат определению. В контексте рассматриваемой задачи можно предложить три возможные схемы трансформации

обрезание Так как орбитали ион-радикалов хорошо локализованы, можно просто откинуть коэффициенты при ξ_i .

$$D_i^{(1)} = C_i^{(1)} \qquad D_i^{(2)} = 0$$

Это довольно грубая схема, но её основным достоинством является простота.

проектирование Более тонкая процедура состоит в том, чтобы учесть часть примеси базисных функций второго ион-радикала ξ_j через χ_i . Действительно, каждая базисная функция второго ион-радикала может быть разложена

$$\xi_j = \sum_{ik} \chi_i \{ S^{\chi} \}_{ik}^{-1} \langle \chi_k | \xi_j \rangle + \xi_j^{\perp} \qquad S_{ik}^{\chi} = \langle \chi_i | \chi_k \rangle$$

на часть лежащую в пространстве базиса \mathcal{R}_1 и ортогональную этому пространству часть ξ_j^{\perp} . По аналогии с предыдущим вариантом, мы пренебрежём ξ_j^{\perp} , что даст

$$D_i^{(1)} = C_i^{(1)} + \sum_{kj} \{S^{\chi}\}_{ik}^{-1} \langle \chi_k | \xi_j \rangle C_j^{(2)} \qquad D_j^{(2)} = 0$$

Это уже не столь грубая схема, но для её осуществления необходимо учитывать перекрывание на стадии ссылочного расчёта.

переразложение Можно подчинить процесс трансформации какому-нибудь условию на экстремум. Например можно потребовать, чтобы $\|\widetilde{\phi} - \phi\|$ была минимальной. Это условие приводит к так называемым формулам переразложения, которые формально выглядят так, как если-бы происходило переразложение функции из одного полного базиса в другой, тоже полный, базис

$$\phi = \sum_{i} C_{i} |ao_{i}^{(1)}\rangle \qquad \tilde{\phi}_{i} = \sum_{i} D_{i} |ao_{i}^{(2)}\rangle$$
$$D_{i} = \sum_{ik} \{S^{22}\}_{ij}^{-1} \langle ao_{j}^{(2)} | ao_{k}^{(1)}\rangle C_{k}$$

Если мы не заинтересованы в сохранении каких-либо специфических свойств функций, то эта схема по построению даёт наилучший результат. К её недостатку следует отнести необходимость вычисления матрицы перекрывания между ссылочным и расчётным базисами, т.е. на этапе конечного расчёта.

После того, как функции ион радикалов будут трансформированы, для построения $\rho_{\mathcal{R}_1}$ и $\rho_{\mathcal{R}_2}$ мы должны воспользоваться формулой аналогичной (7), так как при рассмотренных выше преобразованиях теряется свойство ортонормированности.

4.3 экранированное межэлектронное взаимодействие

Как было отмечено в разделе 3.4, уравнение связи (22) содержит модифицированное межэлектронное взаимодействие

$$\hat{U}_{eff}(\rho) = \hat{U}(\rho) - \left[\hat{\rho}_c, \hat{U}(\rho)\right]_+$$

куда в качестве отрицательной добавки входит антикоммутатор операторов ссылочной плотности и межэлектронного взаимодействия. Во внешний эффективный потенциал

$$\widehat{V}_{eff}(\aleph) = \widehat{V}(\aleph) + \widehat{U}(\rho_c) - \left[\widehat{\rho}_c, \widehat{F}_c\right]_{+}$$

входит два дополнительных слагаемых, одно из которых $\hat{U}(\rho_c)$ описывает электронэлектронное взаимодействие с остовом. Наличие-же членов с антикоммутаторами приводит к выталкиванию остовных уровней в положительный спектр, что описывается следующим соотношением (см. раздел 3.3).

$$\langle \phi | \hat{F}_b | \phi \rangle = -\langle \phi | \hat{F} | \phi \rangle$$
 $\hat{\rho}_c | \phi \rangle = | \phi \rangle$

Это влечёт за собой запрет орбиталям связи "скатываться" в остовные состояния, и таким образом реализуют принцип Паули по отношению к остову.

На практике, учёт добавки к межэлектронному взаимодействию может оказаться нетривиальной задачей, поскольку требует изменения блока двухэлектронных интегралов — одной из основных частей любой современной квантово-химической программы. В процессе самосогласования, подавляющее большинство времени проводится внутри данного блока. Поскольку размер двухэлектронной матрицы растёт как N^4 , где N — размер базиса, массив двух-электронных интегралов приходится хранить на внешних накопителях, время доступа к которым существенно больше чем к основной памяти. Всё вышесказанное означает, что учёт межэлектронного взаимодействия является узким местом любой молекулярной программы. Зачастую структура хранения интегралов построена специальным образом, работа с матрицей продумана до мелочей, проведена ручная оптимизация а внесение изменений нежелательно.

Отбрасывание-же обоих антикоммутационных членов привело-бы к нарушению принципа Паули и появлению множества ghost-состояний. Поэтому в разделе 5.2 посвященному анализу тестовых расчётов, исследуется в частности поведение решений уравнения связи с

$$\hat{U}_{eff}(\rho) = \hat{U}(\rho) - \left[\hat{\rho}_{c}, \hat{U}(\rho)\right]_{+}$$

выкинутым добавочным членом только в электрон-электронном взаимодействии. При видоизменённом \hat{F}_b , для функций остова будет выполняться следующее соотношение.

$$\langle \phi | \hat{F}_b$$
 без е-е поправки $|\phi \rangle = -\langle \phi | \hat{F} | \phi \rangle + 2 \langle \phi | \hat{U}(\rho_b) | \phi \rangle$ $\hat{\rho}_c | \phi \rangle = | \phi \rangle$

Попытаемся теперь всё-же проанализировать возможные пути изменения некоторой программы для её адаптации к предложенному методу. Ниже приведена одна из возможных схем цикла самосогласования в методе Хартри-Фока.

```
1 C
         САМОСОГЛАСОВАНИЕ.
 2 C
             - орбитали, DENS - матрица плотности (C*C^+)
 3 C
             - матрица перекрывания
         KIN - оператор кинетической энергии (матричный элемент)
 4 C
 5 C
             - оператор внешнего поля
                                             (матричный элемент)
 6
 7 loop:
 8 c
         строим матрицу плотности
 9
         CALL DENSITY(C, DENS)
10
11 c
         вычисление оператора электрон-электронного взаимодействия
12
         CALL COULOMB_EXCHANGE(DENS,U)
13
14 c
         собственно оператор Фока
15
         F = KIN + Z + U
16
17 c
         решаем секулярную задачу F*C=L*S*C.
18 c
         в случае сходимости происходит выход из цикла
19
         CALL TREQLAB(S,F,C)
20
         IF(|C-C~|.LT.EPS) RETURN
21
22 c
         переход на следующую итерацию
23
         GOTO loop
```

основное время здесь проводится на 12-ой строке, т.е. в подпрограмме вычисления $\hat{U}(\rho)$. Адаптация приведённого фрагмента кода к нашему методу состоит в модификации всего одной строки

```
F = KIN + Z + UCORE - S*DCORE*Z - Z*DCORE*S + U - 
& S*DCORE*U - U*DCORE*S
```

где UCORE — матричные элементы оператора $\hat{U}(\rho_c)$, а DCORE — матрица плотности остова ρ_c . UCORE и DCORE постоянны, и, таким образом, увеличение трудоёмкости расчёта по сравнению с исходным вариантом будет определяться временем 12 умножений матриц $N \times N$. Это время пренебрежимо мало по сравнению с временем работы подпрограммы COULOMB_EXCHANGE.

Отсюда вывод: при подходящей структуре исходной программы

- 1. вносимые изменения минимальны.
- 2. увеличение трудоёмкости расчёта пренебрежимо мало.
- 3. изменения не затрагивают двух-электронный блок.

5 Результаты расчётов и обсуждение

Для аппробации предложенного метода были проведены три серии расчётов. В первой серии расчитываются орбитали связи молекулы при фиксированных $\rho_{\mathcal{R}_1}$ и $\rho_{\mathcal{R}_2}$,

которые берутся из равновесного состояния этой же молекулы. Вторая серия посвящена расчётам, в которых происходит восстановление всего окружения одного из ион-радикалов, при этом ссылочная матрица плотности $\rho_{\mathcal{R}_1}$ также берётся из расчётов для данной молекулы. Наконец в расчётах третьей серии рассматривается восстановление всего окружения ион-радикала со ссылочной матрицей плотности порождённой другой молекулой (так называемое внедрение). Во всех сериях, ссылочные матрицы плотности $\rho_{\mathcal{R}}$ извлекаются из равновесной геометрии.

5.1 расчёты орбиталей связи

В этой серии были рассмотрены четыре молекулы с простой и одна молекула с двойной связью: $\mathrm{CH_4}$, $\mathrm{CH_3Li}$, $\mathrm{CH_3F}$, $\mathrm{C_2H_6}$ и $\mathrm{C_2H_4}$. Для каждой молекулы, ссылочные плотности ион-радикалов брались из равновесного состояния рассматриваемой системы и переразлогались на текущий атомный базис. После решения уравнения связи (22) с учётом и без учёта экранирования меж-электронного взаимодействия (член $\left[\widehat{\rho}_c,\widehat{U}(\rho)\right]_+$) рассматриваются погрешности в орбиталях связи и полной энергии. Результаты приведены в таблицах 2, 3, 4 и 5 где представлены указанные величины как функции разности длины связи в текущем и ссылочном состоянии.

В случае учёта экранирования, для геометрией совпадающей со ссылочной, как и ожидалось (см. таблицы 2 и 3) получаются точные результаты. В области длин связи удалённых от ссылочной не более чем на 0.5 атомные единицы, погрешность функций не превышает 1% для всех молекул с простой связью кроме CH_3F , для которой погрешность орбитали связи в рассматриваемой области меньше 2.5%. В этойже области погрешность орбиталей связи для C_2H_2 не превышает 5%. Расчитанная энергия в большинстве случаев отличается от точной не более чем на несколько тысячных а.е. ($\sim 5 \cdot 10^{-2}$ э.в.).

В расчётах полученных без учёта экранирования, погрешность функций держится на постоянном уровне 2-3% для молекул с простой связью, и 3-6% для молекулы C_2H_4 . Кривая энергии практически полностью (точность лучше чем 10^{-4} a.e.) повторяет аналогичную кривую построенную с учётом экранирования. Необходимо отметить, что при большом удалении от ссылочного состояния, как показывают расчёты, учёт экранирования приводит к ухудшению результатов.

Обобщая сделанные выводы, можно сказать, что проведённые расчёты с хорошей точностью воспроизводят орбитали связи и адиабатический потенциал молекулы.

5.2 расчёты орбиталей окружения

Особенность уравнения (22) заключается в том, что его можно использовать не только для нахождения орбиталей связи, но и в более общем случае, когда молекулярное подпространство \mathcal{M} делится на две части \mathcal{C} и \mathcal{B} (не обязательно связь). В частности можно рассмотреть деление на подпространство орбиталей ион-радикала \mathcal{R}_1 и объеденённое пространство связи и второго ион-радикала. При таком делении в качестве ρ_c выступает плотность первого ион-радикала.

В этом разделе приводятся результаты расчёта для трёх молекул CH_3Li , CH_3F , C_2H_6 в которых находились орбитали связи и орбитали Li^+ , F^+ , CH_3^+ соответственно

при фиксированной матрице плотности CH_3^+ . В данной серии расчётов не исследовалась зависимость результатов от наличия экранирующих членов — вычисления велись с учётом всех слагаемых в (22). Однако, в приведённых ниже результатах (см. таблицы 5.2, 5.2 и 5.2) показана зависимость получаемых решений, от способа трансформации ρ_c из ссылочного в расчётный базис (см. раздел 4.2). В таблицах способ пересчёта ρ_c схематично обозначен одной из букв латинского алфавита t, р или r, что соответственно обозначает обрезание(truncate), проектирование(project) и переразложение(reexpand). Кроме погрешности в функциях и энергии приводятся основные параметры расчитанных адиабатических потенциалов, такие как положение равновесия и значение энергии в этой точке, вторая и третья производные адиабатической кривой в точке минимума. Эти величины играют важную роль в колебательной задаче для ядер, и, таким образом, важны в приложениях.

На основе полученных результатов можно сделать вывод о том, что предложенный метод годится для описания не только орбиталей связи, но и полного окружения устойчивого объекта. Кроме того, в зависимости от используемой схемы трансформации ссылочной плотности можно ожидать ошибки в плотности $\sim 20\text{--}30\%$, 5-10% и 0-5(иногда 10)% для обрезания, проектирования и переразложения соответственно (см. 4.2).

5.3 переносимость эффективного потенциала ион-радикала

В качестве ещё одной иллюстрации использования метода, приведём пример внедрения ион-радикальной плотности полученной из одной ссылочной молекулы в другую. Рассмотрим две молекулы CH_4 и C_2H_6 с общей ион-радикальной группой CH_3^+ , и произведём расчёт этана с \mathcal{R}_1 , т.е. одним из CH_3^+ , отнесённому к остову. Здесь в качестве приближения, мы положим ρ_c равной $\rho_{CH_3^+}$ полученной из равновесного состояния CH_4 . В результате этого расчёта воспроизводятся (см. таблицу 9) как орбитали окружения (ошибка $\sim 15\%$), так и адиабатическая кривая (ошибка ~ 1 э.в.).

Этим примером мы заканчиваем описание тестовых расчётов

6 Заключение

В данной работе предложена процедура локализации позволяющая построить орбитали ион-радикалов и связи, а также провести декомпозицию энергии молекулы. На основании проведённого разбиения молекулярных орбиталей на группы и декомпозиции энергии получено точное уравнение описывающее связь. Тот факт, что построенные по предложенной схеме ион-радикалы слабо зависят от молекулярного окружения позволяет разработать приближённый метод нахождения как орбиталей связи, так и орбиталей окружения. При этом многоэлектронный расчёт сводится к задаче с меньшим числом частиц. Проведённые по описанной схеме расчёты ряда конкретных молекул свидетельствуют о хорошей точности предложенного метода.

Список литературы

- [1] I.V. Abarenkov, I.M. Antonova "Chemical bond modelling with the energy driven orbital localization".
- [2] I.V. Abarenkov, K.V. Smelkov "The adiabatic potential analisys for some carbon containing molecules".
- [3] "Localization and delocalization in Quantum chemistry", ed. by O.Chalvet et all., D.Reidel Publishing Company, 1975
- [4] D.R.Hamman, M.Schlüter, C.Chiang, Phys.Rev.Lett., vol.43, N 5, 1494-1497, (1979)

Таблица 2: $\|\widetilde{\rho}_{scr} - \rho\|$

L - L_{eq}	$\mathrm{CH_{3}}\mathrm{-H}$	$\mathrm{CH_{3}} ext{-}\mathrm{Li}$	$\mathrm{CH}_{3}\mathrm{-F}$	$\mathrm{CH_{3}-CH_{3}}$	$CH_2 = CH_2$
-1.0	0.0219	0.0159	0.0325	0.0418	0.1024
-0.7	0.0142	0.0115	0.0177	0.0270	0.0735
-0.5	0.0089	0.0085	0.0121	0.0168	0.0501
-0.4	0.0066	0.0069	0.0100	0.0121	0.0385
-0.3	0.0045	0.0052	0.0080	0.0080	0.0274
-0.2	0.0027	0.0035	0.0058	0.0045	0.0172
-0.1	0.0013	0.0018	0.0032	0.0019	0.0080
0.0	0.0000	0.0000	0.0000	0.0000	0.0000
0.1	0.0011	0.0018	0.0039	0.0012	0.0066
0.2	0.0022	0.0036	0.0084	0.0020	0.0118
0.3	0.0033	0.0053	0.0133	0.0031	0.0157
0.4	0.0046	0.0071	0.0184	0.0046	0.0183
0.5	0.0059	0.0089	0.0237	0.0067	0.0198
1.0	0.0148	0.0177	0.0487	0.0210	0.0196
1.5	0.0254	0.0261	0.0713	0.0344	0.0332
2.0	0.0359	0.0337	0.0916	0.0446	0.2666
3.0	0.0528	0.0455	0.1274	0.0575	0.2507

Таблица 3: $\widetilde{E}_{scr} - E$

		1	or Escr E		
$\overline{\text{L-L}_{eq}}$	СН ₃ –Н	CH ₃ –Li	$\mathrm{CH_{3}-F}$	$\mathrm{CH_{3}-CH_{3}}$	$CH_2 = CH_2$
-1.0	0.0140	0.0059	0.2175	0.0863	0.0908
-0.7	0.0067	0.0029	0.0817	0.0361	0.0418
-0.5	0.0033	0.0015	0.0363	0.0175	0.0213
-0.4	0.0021	0.0010	0.0222	0.0112	0.0141
-0.3	0.0012	0.0006	0.0123	0.0064	0.0082
-0.2	0.0006	0.0003	0.0055	0.0027	0.0036
-0.1	0.0003	0.0001	0.0015	0.0005	0.0006
0.0	0.0000	0.0000	0.0000	0.0000	0.0000
0.1	-0.0001	0.0000	0.0006	0.0011	0.0018
0.2	-0.0002	0.0001	0.0018	0.0027	0.0044
0.3	-0.0002	0.0003	0.0024	0.0039	0.0064
0.4	-0.0002	0.0005	0.0027	0.0043	0.0071
0.5	-0.0002	0.0008	0.0026	0.0039	0.0070
1.0	-0.0001	0.0022	-0.0011	-0.0029	0.0038
1.5	0.0005	0.0037	-0.0009	-0.0113	-0.0037
2.0	0.0020	0.0052	0.0051	-0.0104	-0.0069
3.0	0.0051	0.0074	0.0083	-0.0082	-0.0059

Таблица 4: $\|\widetilde{\rho} - \rho\|$

		<u> </u>	F F		
L - L_{eq}	СН ₃ –Н	CH ₃ –Li	$\mathrm{CH_{3}}\mathrm{-F}$	$\mathrm{CH_{3}}\mathrm{CH_{3}}$	$CH_2 = CH_2$
-1.0	0.0249	0.0185	0.0422	0.0290	0.0639
-0.7	0.0255	0.0159	0.0340	0.0264	0.0380
-0.5	0.0272	0.0155	0.0325	0.0293	0.0293
-0.4	0.0280	0.0156	0.0317	0.0313	0.0335
-0.3	0.0287	0.0158	0.0306	0.0333	0.0405
-0.2	0.0291	0.0160	0.0290	0.0348	0.0481
-0.1	0.0293	0.0164	0.0266	0.0358	0.0551
0.0	0.0293	0.0169	0.0234	0.0360	0.0609
0.1	0.0289	0.0175	0.0195	0.0354	0.0654
0.2	0.0283	0.0181	0.0155	0.0340	0.0684
0.3	0.0276	0.0188	0.0122	0.0319	0.0700
0.4	0.0267	0.0197	0.0114	0.0291	0.0703
0.5	0.0258	0.0205	0.0137	0.0259	0.0697
1.0	0.0230	0.0257	0.0393	0.0095	0.0579
1.5	0.0267	0.0319	0.0645	0.0146	0.0457
2.0	0.0348	0.0381	0.0865	0.0267	0.1868
3.0	0.0509	0.0485	0.1242	0.0432	0.1824

Таблица 5: $\widetilde{E}-E$

		1-			
L - L_{eq}	СН3-Н	CH ₃ –Li	$\mathrm{CH_{3}}\mathrm{-F}$	$\mathrm{CH_{3}-CH_{3}}$	$CH_2 = CH_2$
-1.0	0.0141	0.0059	0.2176	0.0864	0.0913
-0.7	0.0068	0.0029	0.0817	0.0362	0.0423
-0.5	0.0033	0.0016	0.0363	0.0175	0.0218
-0.4	0.0022	0.0010	0.0222	0.0113	0.0146
-0.3	0.0013	0.0006	0.0123	0.0065	0.0087
-0.2	0.0007	0.0003	0.0056	0.0028	0.0041
-0.1	0.0003	0.0001	0.0015	0.0006	0.0011
0.0	0.0001	0.0000	0.0000	0.0001	0.0004
0.1	-0.0001	0.0000	0.0006	0.0012	0.0022
0.2	-0.0002	0.0001	0.0018	0.0028	0.0048
0.3	-0.0002	0.0003	0.0024	0.0040	0.0068
0.4	-0.0002	0.0005	0.0027	0.0043	0.0075
0.5	-0.0002	0.0008	0.0026	0.0040	0.0073
1.0	-0.0001	0.0022	-0.0011	-0.0028	0.0040
1.5	0.0005	0.0037	-0.0009	-0.0113	-0.0035
2.0	0.0020	0.0052	0.0051	-0.0104	-0.0064
3.0	0.0051	0.0074	0.0083	-0.0082	-0.0056

Таблица 6: Молекула $\mathrm{CH_3\text{-}Li}$ в которой расчитываются орбитали связи и $\mathrm{Li^+}$. Представлены энергия и погрешность орбиталей как функции длины $\mathrm{C\text{-}Li}$ связи, а также различные характеристики адиабатического поенциала.

R(C-Li)	E_{exact}	E_{ap}	$p_{prox} - E_{\epsilon}$	exact	$\ \widehat{\rho}_b(app)\ $	$(prox) - \widehat{\rho}_{\ell}$	b(exact)
		t	p	r	\mathbf{t}	p	r
2.5000 3.0000	-7.7896 -7.9071	0.0447 0.0388	0.0113 0.0053	0.0092 0.0024	0.2089 0.2101	0.0515 0.0322	0.0589 0.0356
3.5000 3.6000	-7.9428 -7.9451	0.0347 0.0339	0.0035 0.0033	0.0002 0.0001	0.2045 0.2031	0.0192 0.0169	0.0142 0.0095
3.7000 3.8000	-7.9463 -7.9468	0.0333	0.0032 0.0032	0.0000	0.2016 0.2001	0.0149 0.0138	0.0047 0.0000
3.9000 4.0000	-7.9465 -7.9456	0.0320 0.0314	0.0032 0.0032	0.0000 0.0000	0.1987 0.1972	0.0138 0.0147	$0.0047 \\ 0.0092$
4.1000 4.2000 4.3000	-7.9443 -7.9425 -7.9404	0.0309 0.0304 0.0299	0.0032 0.0033 0.0034	0.0002 0.0003 0.0005	0.1957 0.1941 0.1926	0.0162 0.0179 0.0197	0.0136 0.0176 0.0215
4.5000 4.5000 5.0000	-7.9355 -7.9206	0.0299 0.0290 0.0272	0.0034 0.0035 0.0041	0.0009 0.0023	0.1920 0.1896 0.1824	0.0197 0.0237 0.0340	0.0213 0.0282 0.0406
5.5000	-7.9200 -7.9046 -7.8891	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.0041 0.0046 0.0051	0.0023 0.0037 0.0049	0.1324 0.1758 0.1700	0.0340 0.0439 0.0527	0.0400 0.0491 0.0557
6.5000	-7.8747	0.0246	0.0056	0.0058	0.1650	0.0601	0.0617

	R_0	E_0	E_0''	$E_0^{\prime\prime\prime}$
exact	3.808	-7.947	0.071	-0.130
t	3.901	-7.915	0.062	-0.100
р	3.811	-7.944	0.073	-0.140
r	3.808	-7.947	0.075	-0.120

Таблица 7: Молекула $\mathrm{CH_3} ext{-}\mathrm{F}$ в которой расчитываются орбитали связи и F^+ . Представлены энергия и погрешность орбиталей как функции длины $\mathrm{C} ext{-}\mathrm{F}$ связи, а также различные характеристики адиабатического поенциала.

R(C-F)	E_{exact}	E_{ap}	$p_{prox} - E_{\epsilon}$	exact	$\ \widehat{\rho}(app)\ $	$rox) - \widehat{\rho}($	exact)
		t	p	r	t	p	r
2.0000	-99.8236	0.0247	0.0238	0.0138	0.1958	0.1194	0.0832
2.1000	-99.8811	0.0191	0.0187	0.0093	0.1767	0.1031	0.0708
2.2000	-99.9202	0.0146	0.0146	0.0056	0.1591	0.0886	0.0590
2.3000	-99.9455	0.0110	0.0113	0.0030	0.1428	0.0756	0.0464
2.4000	-99.9606	0.0083	0.0088	0.0012	0.1291	0.0638	0.0324
2.5000	-99.9680	0.0062	0.0068	0.0003	0.1289	0.0544	0.0167
2.6000	-99.9697	0.0047	0.0053	0.0000	0.1301	0.0519	0.0000
2.7000	-99.9672	0.0037	0.0043	0.0002	0.1318	0.0529	0.0168
2.8000	-99.9617	0.0031	0.0037	0.0008	0.1337	0.0549	0.0324
2.9000	-99.9540	0.0029	0.0034	0.0015	0.1356	0.0575	0.0465
3.0000	-99.9448	0.0030	0.0033	0.0023	0.1374	0.0608	0.0589
3.3000	-99.9123	0.0045	0.0042	0.0044	0.1421	0.0753	0.0877
3.5000	-99.8895	0.0061	0.0054	0.0057	0.1453	0.0847	0.1009
3.7000	-99.8673	0.0081	0.0070	0.0075	0.1489	0.0931	0.1106

	R_0	E_0	E_0''	$E_0^{\prime\prime\prime}$
exact		-99.970 -99.965		
p r	2.615	-99.964 -99.970	0.445	-1.200

Таблица 8: Молекула $\mathrm{CH_3}\text{-}\mathrm{CH_3}$ в которой расчитываются орбитали связи и $\mathrm{CH_3^+}$. Представлены энергия и погрешность орбиталей как функции длины $\mathrm{C-C}$ связи, а также различные характеристики адиабатического поенциала.

R(C-C)	E_{exact}	E_{ap}	$p_{prox} - E_{\epsilon}$	exact	$\ \widehat{ ho}(appr)\ $	$fox) - \widehat{\rho}($	exact
		t	p	r	t	p	r
2.0000	-49.5538	0.0491	0.0427	0.0367	0.3233	0.1504	0.1717
2.1000	-49.6490	0.0409	0.0354	0.0277	0.3040	0.1334	0.1497
2.3000	-49.7737	0.0286	0.0249	0.0139	0.2855	0.1058	0.1093
2.5000	-49.8397	0.0204	0.0182	0.0053	0.2800	0.0851	0.0713
2.6000	-49.8582	0.0173	0.0158	0.0027	0.2784	0.0768	0.0527
2.7000	-49.8697	0.0147	0.0138	0.0011	0.2770	0.0697	0.0345
2.8000	-49.8759	0.0126	0.0122	0.0003	0.2756	0.0636	0.0168
2.9000	-49.8778	0.0109	0.0109	0.0000	0.2742	0.0585	0.0000
3.0000	-49.8765	0.0095	0.0098	0.0002	0.2726	0.0542	0.0155
3.1000	-49.8727	0.0084	0.0089	0.0008	0.2709	0.0505	0.0292
3.2000	-49.8670	0.0075	0.0081	0.0016	0.2691	0.0476	0.0413
3.3000	-49.8600	0.0068	0.0075	0.0026	0.2671	0.0452	0.0520
3.4000	-49.8519	0.0063	0.0070	0.0037	0.2651	0.0434	0.0617
3.5000	-49.8432	0.0059	0.0066	0.0048	0.2629	0.0422	0.0705
4.0000	-49.7954	0.0054	0.0056	0.0071	0.2513	0.0437	0.1037

	R_0	E_0	E_0''	$E_0^{\prime\prime\prime}$
exact	2.906	-49.878	0.320	-0.760
t	2.952	-49.867	0.314	-0.800
p	2.942	-49.867	0.312	-0.800
r	2.905	-49.878	0.366	-0.880

Таблица 9: Внедрение CH_3^+ из CH_4 в молекулу CH_3 – CH_3 .

	, u	-	<i>J J</i>
L - L_{eq}	$\ \widetilde{\rho} - \rho\ $	E	ΔE
-0.5	0.1772	-49.7602	-0.0396
-0.4	0.1601	-49.8261	-0.0492
-0.3	0.1529	-49.8445	-0.0525
-0.2	0.1456	-49.8560	-0.0552
-0.1	0.1380	-49.8620	-0.0572
0.0	0.1300	-49.8637	-0.0587
0.1	0.1218	-49.8621	-0.0598
0.2	0.1134	-49.8581	-0.0606
0.3	0.1051	-49.8521	-0.0611
0.4	0.0974	-49.8447	-0.0614
0.5	0.0921	-49.8363	-0.0616