Hand Kinect

Elliot Vanegue, Gaëtan Deflandre et Alexis Robache

Suivi par :

Hazem Wannous et Jean-Philippe Vandeborre

 $Novembre\ 2015$

Présentation contexte

Objectif:

- Détection de la main
- Reconnaissance de la posture de la main
- Modélisation de la main
- Animation de la main

Equipe: 3D-Sam

Présentation contexte

Données fourni par la Kinect :

- Image YUV
- Image de profondeur

Présentation des solutions Différents types de données

Figure : Leap Motion et Realsense

Présentations des solutions Détection de la main à partir d'une image couleur

Algorithme de Viola et Jones

Présentations des solutions Détection de la main à partir d'une image couleur

Détection des doigts de la main

Présentations des solutions Détection de la main à partir d'une image de profondeur

Réutilisation de la méthode utilisé par la Kinect

[2]

Présentations des solutions

Modélisation de la main

[3]

Prévisionnel du projet

Conclusions

Application de démontration

Exemple

Référence

P. Viola and M. Jones, "Robust real-time object detection," in IEEE Workshop on Statistical and Theories of Computer Vision, 2001.

T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton, D. Kim, C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei, D. Freedman, P. Kohli, E. Krupka, A. Fitzgibbon, and S. Izadi, "Accurate, robust, and flexible real-time hand tracking," CHI, April 2015.

J. Taylor, R. Stebbing, V. Ramakrishna, C. Keskin, J. Shotton, S. Izadi, A. Hertzmann, and A. Fitzgibbon, "User-specific hand modeling from monocular depth sequences," Computer Vision and Pattern Recognition (CVPR), 2014.