

A linguagem SQL: história

- Em junho de 1970, o matemático Edgar Frank Codd, publicou o artigo "A Relational Model of Data for Large Shared Data Banks" na revista "Communications of the ACM";
- Neste trabalho, Codd estabeleceu princípios sobre gerencia de banco de dados, denominando-os com o termo relacional;
- Esse material é um marco na área de banco de dados:
- Codd faleceu em 18 de abril de 2003, aos 79 anos;
- A razão do sucesso dos bancos de dados relacionais e da linguagem SQL se deve ao fato de existir um modelo matemático formal que serviu de base para seu desenvolvimento.

A linguagem SQL: história

- A linguagem SQL foi desenvolvido no início dos anos 70 nos laboratórios da IBM em San Jose, dentro do projeto System R, que tinha por objetivo demonstrar a viabilidade da implementação do modelo relacional proposto por E. F. Codd.
- O nome original da linguagem era SEQUEL, acrônimo para "Structured English Query Language", vindo daí o fato de, até hoje, a sigla, em inglês, ser comumente pronunciada "síquel".
- A linguagem SQL é um grande padrão de banco de dados.
 Isto decorre da sua simplicidade e facilidade de uso;
- A SQL é uma linguagem declarativa, em oposição a outras linguagens procedurais.
 - A linguagem SQL especifica a forma do resultado e não o caminho para chegar a ele. Isto reduz o ciclo de aprendizado daqueles que se iniciam na linguagem.

A linguagem SQL: história

- Embora o SQL tenha sido originalmente criado pela IBM, rapidamente surgiram vários "dialetos" desenvolvidos por outros produtores.
- Essa expansão levou à necessidade de ser criado e adaptado um padrão para a linguagem.
- Esta tarefa foi realizada pela American National Standards Institute (ANSI) em 1986 e ISO em 1987.

A linguagem SQL: história

- A SQL foi revista em 1992 e a esta versão foi dado o nome de SQL-92 ou SQL2.
- Foi revisto novamente em 1999 e 2003 para se tornar SQL:1999 (SQL3) e SQL:2003, respectivamente.
- A linguagem SQL, embora padronizado pela ANSI e ISO, possui muitas variações e extensões produzidas pelos diferentes fabricantes de sistemas gerenciadores de bases de dados.
- A linguagem pode ser migrada de plataforma para plataforma sem grandes mudanças estruturais.

A linguagem SQL: estrutura

- Linguagem de Definição de dados (DDL)
 - Subconjunto de comandos para definição e modificação de esquemas de relação (tabelas), remoção de tabelas, etc.
- Linguagem de Manipulação de dados (DML)
 - Subconjunto de comandos para inserir, remover e modificar informações em um banco de dados.
- Linguagem de Controle de Dados (DCL)
 - Subconjunto de comandos para controlar aspectos de autorização de dados e licenças de usuários;

Linguagem de Definição de Dados: Relação

Relação

- É a "matéria prima" para a construção de toda a teoria do modelo relacional e, por conseqüência, é o alicerce teórico de todo sistema de banco de dados baseado no modelo relacional.
- Nos sistemas de banco de dados relacionais os dados são agrupados em TABELAS.
- Uma tabela possui um nome e é constituída de uma ou mais colunas (ou campos). Os campos devem também possuir um nome, juntamente com o tipo de dado que será armazenado na coluna.

Linguagem de Definição de Dados: Relação

Cliente ⇒ Relação ou tabela

	reiução ou tao	Ciu	
CodCli	Nome	Endereco	⇒ coluna, campo ou atributo
123	João	Rua Pio XI	
567	Maria	Rua S. Francisco	
<u>678</u>	<u>Joana</u>	Av. Liberdade	\Rightarrow linha ou registro
876	Gabriela	Av. Jatiúca	
976	Ana Júlia	Av. São Paulo	
			•

Linguagem de Definição de Dados: comandos

- CREATE objeto
 - o cria um objeto (uma Tabela, por exemplo) no banco de dados.
- DROP objeto
 - Apaga/exclui um objeto do banco de dados.
- ALTER objeto
 - Altera a estrutura ou a configuração de um objeto no banco de dados

Linguagem de Definição de Dados:

tipos de dados (Interbase)

CHAR(n) CHARACTER(n)	Armazena caracteres alfanuméricos de tamanho fixo n. n = 1 a 32767			
VARCHAR (n)	Cadeia de caracteres de comprimento variável e tamanho máximo de n caracteres. n = 1 a 32767			
INTEGER	Dado numérico inteiro de tamanho fixo (32 bits). Representa valores no intervalo de: 2.147.483.648 a -2.147.483.647			
SMALLINT	Representa valores inteiros de 16 bits no intervalo de: -37.768 a 32.767			
NUMERIC (n, m) DECIMAL (n, m)	Dado numérico de tamanho variável, sendo n o número total de dígitos e m o número de casas decimais. O Parâmetro m é opcional			
FLOAT	Dado numérico de ponto flutuante com precisão de 7 dígitos. Tem tamanho de 32 bits e armazena valores no intervalo de: 1.175 x 10 ⁻³⁸ a 3.402 x 10 ³⁸			
DATE	Data de tamanho fixo.			
TIME	Hora de tamanho fixo			
TIMESTAMP	Integra informações de data e hora			
BLOB	Binary Large Object. Possui tamanho variável e permite armazenar dados, tais como imagens, audio, vídeo, etc. Os subtipos definem o conteúdo do campo. Os subtipos 0 e I são mais utilizados: 0 = dados binários de tipo indeterminado; I = Texto			
	· ·			

Linguagem de Definição de Dados: criando tabelas

Aluno

RA	numeric(8)
Nome	char(40)
RG	numeric(10)
Endereco	varchar(50)
Sexo	char(1)
dt_nasc	date

Linguagem de Definição de Dados: restrição de integridade

Chave primária

 A função da chave primária é identificar univocamente cada registro da tabela. Toda tabela deve possuir uma chave primária, que deve ser composta por um ou mais campos. Todo campo que compõe a chave primária dever ter a cláusula NOT NULL.

Linguagem de Definição de Dados: restrição de integridade

Evitando valores nulos

- É muito comum definirmos campos que não podem conter valores nulos. Isto é, o preenchimento do campo é obrigatório.
- Para evitar que em algum momento um campo de uma tabela possa conter valor nulo (null) deve-se utilizar a cláusula NOT NULL após a definição do campo.

Linguagem de Definição de Dados: restrição de integridade

- Evitando valores inválidos
 - Existem situações onde um campo pode receber apenas alguns determinados valores. Para que o valor de um campo fique restrito a um determinado conjunto de valores, utiliza-se a cláusula CHECK.

Linguagem de Definição de Dados: restrição de integridade

- Evitando valores duplicados
 - Existem situações nas quais não deve existir dois iguais armazenados em uma mesma coluna. Isto é, valores inseridos em uma ou mais colunas são únicos para cada linha da tabela;
 - Para evitar que um valor armazenado em uma coluna de uma linha seja igual ao valor armazenado na mesma coluna de outra linha, utiliza-se a cláusula UNIQUE. A cláusula UNIQUE deve ser usada juntamente com a cláusula NOT NULL

Exercício I: resposta

Linguagem de Definição de Dados: integridade referencial

• É utilizada para garantir a Integridade dos dados entre as tabelas;

Aluno

RA	numeric(8)	Curso	
Nome	char(40)	→ # cd_c	urso integer
RG	numeric(10)	Nome	char(40)
Endereco	varchar(50)		'
Sexo	char(1)		
dt_nasc	date		
cd_curso	integer -		

Cláusulas complementares à cláusula REFERENCES

campo REFERENCES outra_tabela (outro_campo)

ON DELETE { CASCADE | SET NULL }
ON UPDATE { CASCADE | SET NULL }

Linguagem de Definição de Dados: integridade referencial

Curso

Aluno

	cd_curso	nome
100	01	Oiência da Computação
	02	Ciência da Informação

	RA	nome	Rg	endereco	sexo	Dt_nasc	cd_curso
0050	1242532	Manoel	13243647	Rua Cinco	M	30/01/1963	0 4
	1425534	Johanna	62736432	Rua São Paulo	F	14/11/1950	02
	1565243	Maria	6152632	Rua Pio XII	F	15/09/1980	02
0010	4537642	João	746732	Rua Leão 23	M	14/08/1970	01

cd_curso references curso(cd_curso) ON DELETE CASCADE

Linguagem de Definição de Dados: integridade referencial

Curso

1	cd_curso	nome	
686	**Outonsessessessessesses	Ciência da Computação	
	02	Ciência da Informação	

Aluno

RA	nome	Rg	endereco	sexo	Dt_nasc	cd_curso
1242532	Manoel	13243647	Rua Cinco	М	30/01/1963	.Q.
1425534	Johanna	62736432	Rua São Paulo	F	14/11/1950	02
1565243	Maria	6152632	Rua Pio XII	F	15/09/1980	02
4537642	João	746732	Rua Leão 23	М	14/08/1970	04

 $\verb|cd_curso|| \textbf{REFERENCES}|| curso(cd_curso)|| \textbf{ON}|| \textbf{DELETE}|| \textbf{SET}|| \textbf{NULL}||$

Linguagem de Definição de Dados: integridade referencial

Curso

Aluno

 cd_curso
 nome

 17
 Ciência da Computação

 02
 Ciência da Informação

RA	nome	Rg	endereco	sexo	Dt_nasc	cd_curso
1242532	Manoel	13243647	Rua Cinco	М	30/01/1963	17
1425534	Johanna	62736432	Rua São Paulo	F	14/11/1950	02
1565243	Maria	6152632	Rua Pio XII	F	15/09/1980	02
4537642	João	746732	Rua Leão 23	М	14/08/1970	17

cd_curso REFERENCES curso(cd_curso) ON UPDATE CASCADE

Linguagem de Definição de Dados

Integridade Referencial

Curso

01

	cd_curso	nome
	17	Ciência da Computação
	02	Ciência da Informação

Aluno

RA	nome	Rg	endereco	sexo	Dt_nasc	cd_curso
1242532	Manoel	13243647	Rua Cinco	М	30/01/1963	01
1425534	Johanna	62736432	Rua São Paulo	F	14/11/1950	02
1565243	Maria	6152632	Rua Pio XII	F	15/09/1980	02
4537642	João	746732	Rua Leão 23	М	14/08/1970	01

cd_curso REFERENCES curso(cd_curso) ON UPDATE SET NULL

Linguagem de Definição de Dados: alterando a estrutura de uma tabela

Adicionando um novo campo

ALTER TABLE tabela **ADD** nome_campo tipo_dado

Alteração do nome do campo

ALTER TABLE tabela ALTER nome_campo TO novo_nome_campo

Alteração do tipo (de dado) de um campo

ALTER TABLE tabela

ALTER nome_campo TYPE novo_tipo

Alterando a posição de um campo na tabela

ALTER TABLE tabela

ALTER nome_campo POSITION n

- n é a nova posição do campo na tabela
- A posição do primeiro campo é zero

 Excluindo um campo ALTER TABLE tabela

Excluindo uma tabela

DROP TABLE tabela

DROP nome_campo

Exercícios


```
create table editora
                         numeric(3) not null primary key,
varchar(40) not null,
          ( cod_ed nome
             cnpj
                          numeric(15) not null UNIQUE,
             endereco varchar(50),
             telefone char(15),
cidade varchar(30),
                                               create table livro
                                                                   numeric(5) not null primary key,
                                                 ( cod_liv
                                                                    varchar(40) not null,
                          char(2)
                                                     titulo
                                                    isbn
                                                                    numeric(15),
                                                      edicao
                                                                    numeric(2),
numeric(4),
                                                      ano
                                                                   numeric(3) references editora(cod_ed)
                                                    cod_ed
                                                                                  on update cascade
on delete set null)
         create table autor
            ( cod_au
                              numeric(3)
                                               not null primary key,
              nome
                             varchar(40) not null,
                              numeric(11),
              cpf
                              numeric(10).
              endereco
                              varchar(50),
                                                      create table assunto
              telefone
                              char(15),
varchar(30),
                                                          cod_as numeric(3) not null primary key,
descricao varchar(40) not null,
                                                        ( cod_as
              cidade
                              char(2) )
create table autoria
( cod_liv numeri
              numeric(5) not null reference on update on delete on delete on update cascade
                                                                                      on update cascade on delete cascade,
             numeric(3) not null referen
                                                    cod_as numeric(3) not null references assunto(cod_as) on update cascade on delete cascade,
   primary key(cod_liv, cod_au)
                                                 primary key(cod_liv, cod_as)
)
```