Solving Differential Equations in R (book) - PDE examples

Karline Soetaert

Royal Netherlands Institute of Sea Research (NIOZ) Yerseke, The Netherlands

Abstract

This vignette contains the R-examples of chapter 10 from the book:

Soetaert, K., Cash, J.R. and Mazzia, F. (2012). Solving Differential Equations in R. UseR series, Springer, 248 pp.

www.springer.com/statistics/computational+statistics/book/978-3-642-28069-6.

Chapter 10. Solving Partial Differential Equations in R.

Here the code is given without documentation. Of course, much more information about each problem can be found in the book.

Keywords: partial differential equations, initial value problems, examples, R.

1. The heat Equation

```
xgrid
         \leftarrow setup.grid.1D(x.up = 0, x.down = 1, N = N)
         <- xgrid$x.mid
X
D.coeff <- 0.01
Diffusion <- function (t, Y, parms){
   tran \leftarrow tran.1D(C = Y, C.up = 0, C.down = 1,
                 D = D.coeff, dx = xgrid
   list(dY = tran$dC, flux.up = tran$flux.up,
        flux.down = tran$flux.down)
}
Yini <- sin(pi*x)</pre>
times <- seq(from = 0, to = 5, by = 0.01)
print(system.time(
  out <- ode.1D(y = Yini, times = times, func = Diffusion,
             parms = NULL, dimens = N)
        system elapsed
  user
  0.20
          0.02
                   0.21
par (mfrow=c(1, 2))
plot(out[1, 2:(N+1)], x, type = "l", lwd = 2,
```


Figure 1: The solution of the heat equation. See book for more information.

```
xlab = "Variable, Y", ylab = "Distance, x")
for (i in seq(2, length(times), by = 50))
    lines(out[i, 2:(N+1)], x)
image(out, grid = x, mfrow = NULL, ylab = "Distance, x",
    main = "Y")
```

2. The Wave Equation

```
<- 0.2
dx
xgrid \leftarrow setup.grid.1D(x.up = -100, x.down = 100, dx.1 = dx)
       <- xgrid$x.mid
       <- xgrid$N
Ν
lam <- 0.05
uini \leftarrow \exp(-lam*x^2)
vini \leftarrow rep(0, N)
yini <- c(uini, vini)
times \leftarrow seq (from = 0, to = 50, by = 1)
wave <- function (t, y, parms) {</pre>
  u \leftarrow y[1:N]
  v \leftarrow y[(N+1):(2*N)]
   du <- v
   dv \leftarrow tran.1D(C = u, C.up = 0, C.down = 0, D = 1,
                 dx = xgrid)$dC
   return(list(c(du, dv)))
 out <- ode.1D(func = wave, y = yini, times = times,
               parms = NULL, method = "adams",
               dimens = N, names = c("u", "v"))
u <- subset(out, which = "u")</pre>
analytic <- function (t, x)</pre>
   0.5 * (exp(-lam * (x+1*t)^2) + exp(-lam * (x-1*t)^2))
OutAna <- outer(times, x, FUN = analytic)</pre>
max(abs(u - OutAna))
[1] 0.002222087
outtime \leftarrow seq(from = 0, to = 50, by = 10)
matplot.1D(out, which = "u", subset = time %in% outtime,
     grid = x, xlab = "x", ylab = "u", type = "l",
     1wd = 2, x1im = c(-50, 50),
     col = c("black", rep("darkgrey", 5)))
legend("topright", lty = 1:6, lwd = 2,
       col = c("black", rep("darkgrey", 5)),
       title = "t = ", legend = outtime)
```


Figure 2: The 1-D wave equation. See book for explanation.

3. Laplace Equation

```
Nx <- 100
Ny <- 100
xgrid \leftarrow setup.grid.1D (x.up = 0, x.down = 1, N = Nx)
ygrid \leftarrow setup.grid.1D (x.up = 0, x.down = 1, N = Ny)
       <- xgrid$x.mid
       <- ygrid$x.mid
laplace <- function(t, U, parms) {</pre>
  w <- matrix(nrow = Nx, ncol = Ny, data = U)</pre>
  dw \leftarrow tran.2D(C = w, C.x.up = 0, C.x.down = 0,
                flux.y.up = 0,
                flux.y.down = -1 * sin(pi*x)*pi*sinh(pi),
                D.x = 1, D.y = 1,
                dx = xgrid, dy = ygrid)$dC
  list(dw)
print(system.time(
  out <- steady.2D(y = runif(Nx*Ny), func = laplace,
                    parms = NULL, nspec = 1,
                    dimens = c(Nx, Ny), lrw = 1e7)
))
  user system elapsed
  0.33
        0.05
                 0.45
w <- matrix(nrow = Nx, ncol = Ny, data = out$y)</pre>
analytic <- function (x, y) sin(pi*x) * cosh(pi*y)</pre>
OutAna <- outer(x, y, FUN = analytic)</pre>
max(abs(w - OutAna))
[1] 0.0006024049
image(out, grid = list(x, y), main = "elliptic Laplace",
      add.contour = TRUE)
```


Figure 3: The laplace equation. See book for explanation.

4. The Advection Equation

```
adv.func <- function(t, y, p, adv.method)

list(advection.1D(C = y, C.up = y[N], C.down = y[1],

v = 0.1, adv.method = adv.method,

dx = xgrid)$dC)

xgrid <- setup.grid.1D(0.3, 1.3, N = 50)

x <- xgrid$x.mid

N <- length(x)

yini <- sin(pi * x)^50

times <- seq(0, 20, 0.01)

out1 <- ode.1D(y = yini, func = adv.func, times = times,

parms = NULL, method = "euler", dimens = N,

adv.method = "muscl")

out2 <- ode.1D(y = yini, func = adv.func, times = times,

parms = NULL, method = "euler", dimens = N,

adv.method = "super")
```

5. The Busselator in One Dimension

```
<- 50
Grid \leftarrow setup.grid.1D(x.up = 0, x.down = 1, N = N)
x1ini \leftarrow 1 + sin(2 * pi * Grid$x.mid)
x2ini \leftarrow rep(x = 3, times = N)
yini <- c(x1ini, x2ini)</pre>
brusselator1D <- function(t, y, parms) {</pre>
   X1 \leftarrow y[1:N]
   X2 \leftarrow y[(N+1):(2*N)]
   dX1 \leftarrow 1 + X1^2*X2 - 4*X1 +
         tran.1D (C = X1, C.up = 1, C.down = 1,
                  D = 0.02, dx = Grid) $dC
   dX2 <- 3*X1 - X1^2*X2 +
         tran.1D (C = X2, C.up = 3, C.down = 3,
                  D = 0.02, dx = Grid)$dC
   list(c(dX1, dX2))
}
times <- seq(from = 0, to = 10, by = 0.1)
print(system.time(
  out <- ode.1D(y = yini, func = brusselator1D,</pre>
                times = times, parms = NULL, nspec = 2,
                names = c("X1", "X2"), dimens = N)
))
  user system elapsed
         0.00
  0.19
                  0.19
par(mfrow = c(2, 2))
image(out, mfrow = NULL, grid = Grid$x.mid,
     which = "X1", method = "contour")
image(out, mfrow = NULL, grid = Grid$x.mid,
     which = "X1")
par(mar = c(1, 1, 1, 1))
image(out, mfrow = NULL, grid = Grid$x.mid,
     which = "X1", method = "persp", col = NA)
image(out, mfrow = NULL, grid = Grid$x.mid,
     which = "X1", method = "persp", border = NA,
     shade = 0.3)
```


Figure 4: The 1-D Brusselator model. See book for explanation.

6. The Brusselator in 2-D

```
brusselator2D <- function(t, y, parms) {</pre>
   X1 <- matrix(nrow = Nx, ncol = Ny,
               data = y[1:(Nx*Ny)])
   X2 <- matrix(nrow = Nx, ncol = Ny,
               data = y[(Nx*Ny+1) : (2*Nx*Ny)])
   dX1 < -1 + X1^2*X2 - 4*X1 +
         tran.2D (C = X1, D.x = D_X1, D.y = D_X1,
                  dx = Gridx, dy = Gridy)$dC
   dX2 <- 3*X1 - X1^2*X2 +
         tran.2D (C = X2, D.x = D_X2, D.y = D_X2,
                  dx = Gridx, dy = Gridy)$dC
   list(c(dX1, dX2))
}
     <- 50
Nx
     <- 50
Gridx \leftarrow setup.grid.1D(x.up = 0, x.down = 1, N = Nx)
Gridy \leftarrow setup.grid.1D(x.up = 0, x.down = 1, N = Ny)
D_X1 < -2
D_X2 <- 8*D_X1
X1ini <- matrix(nrow = Nx, ncol = Ny, data = runif(Nx*Ny))</pre>
X2ini <- matrix(nrow = Nx, ncol = Ny, data = runif(Nx*Ny))</pre>
yini <- c(X1ini, X2ini)
times <- 0:8
print(system.time(
 out <- ode.2D(y = yini, parms = NULL, func = brusselator2D,
              nspec = 2, dimens = c(Nx, Ny), times = times,
              lrw = 2000000, names=c("X1", "X2"))
))
  user system elapsed
        0.03
  1.72
                  1.79
par(oma = c(0,0,1,0))
image(out, which = "X1", xlab = "x", ylab = "y",
     mfrow = c(3, 3), ask = FALSE,
     main = paste("t = ", times),
     grid = list(x = Gridx$x.mid, y = Gridy$x.mid))
mtext(side = 3, outer = TRUE, cex = 1.25, line = -1,
     "2-D Brusselator, species X1")
```


Figure 5: Solution of the 2-D Brusselator. See book for explanation.

Figure 6: The Laplace equation in polar coordinates. See book for explanation.

7. The Laplace Equation in Polar Coordinates

```
Nr <- 100
Np <- 100
           \leftarrow seq(2, 4, len = Nr+1)
           \leftarrow seq(0, 2*pi, len = Np+1)
theta.mid \leftarrow 0.5*(theta[-1] + theta[-Np])
Model <- function(t, C, p) {</pre>
 y = matrix(nrow = Nr, ncol = Np, data = C)
 tran \leftarrow tran.polar (y, D.r = 1, r = r, theta = theta,
              C.r.up = 0, C.r.down = 4 * sin(5*theta.mid),
              cyclicBnd = 2)
  list(tran$dC)
}
STD \leftarrow steady.2D(y = runif(Nr*Np), parms = NULL,
                 func = Model, dimens = c(Nr, Np),
                 lrw = 1e6, cyclicBnd = 2)
OUT <- polar2cart (STD, r = r, theta = theta,
                     x = seq(-4, 4, len = 400),
                     y = seq(-4, 4, len = 400))
image(OUT, main = "Laplace")
```

8. The Time-dependent 2-D Sine-Gordon Equation

```
Nx <- 80
Ny <- 80
xgrid <- setup.grid.1D(-7, 7, N=Nx)
ygrid <- setup.grid.1D(-7, 7, N=Ny)</pre>
x <- xgrid$x.mid
y <- ygrid$x.mid
sinegordon2D <- function(t, C, parms) {</pre>
   u \leftarrow matrix(nrow = Nx, ncol = Ny,
               data = C[1 : (Nx*Ny)])
   v <- matrix(nrow = Nx, ncol = Ny,</pre>
               data = C[(Nx*Ny+1) : (2*Nx*Ny)])
   dv \leftarrow tran.2D (C = u, C.x.up = 0, C.x.down = 0,
                  C.y.up = 0, C.y.down = 0,
                  D.x = 1, D.y = 1,
                  dx = xgrid, dy = ygrid)$dC - sin(u)
   list(c(v, dv))
peak \leftarrow function (x, y, x0 = 0, y0 = 0)
                  \exp(-((x-x0)^2 + (y-y0)^2))
uini <- outer(x, y,</pre>
FUN = function(x, y) peak(x, y, 2,2) + peak(x, y,-2,-2)
                     + peak(x, y, -2, 2) + peak(x, y, 2, -2))
vini <- rep(0, Nx*Ny)</pre>
times <- 0:3
print(system.time(
out \leftarrow ode.2D (y = c(uini, vini), times = times,
                parms = NULL, func = sinegordon2D,
                names = c("u", "v"),
                dimens = c(Nx, Ny), method = "ode45")
))
  user system elapsed
  0.27
       0.00
                0.27
mr \leftarrow par(mar = c(0, 0, 1, 0))
image(out, main = paste("time =", times), which = "u",
     grid = list(x = x, y = y), method = "persp",
     border = NA, col = "grey", box = FALSE,
     shade = 0.5, theta = 30, phi = 60, mfrow = c(2, 2),
     ask = FALSE)
par(mar = mr)
```


Figure 7: The 2-D sine-gordon equation. See book for explanation.

9. The Nonlinear Schrodinger Equation

```
alf <- 0.5
gam <- 1
Schrodinger <- function(t, u, parms) {</pre>
   du \leftarrow 1i * tran.1D (C = u, D = 1, dx = xgrid)$dC +
                 1i * gam * abs(u)^2 * u
   list(du)
}
      <- 300
xgrid \leftarrow setup.grid.1D(-20, 80, N = N)
      <- xgrid$x.mid
   <- 1
c1
c2 <- 0.1
        <- function(x) 2/(\exp(x) + \exp(-x))
soliton <- function (x, c1)
  sqrt(2*alf/gam) * exp(0.5*1i*c1*x) * sech(sqrt(alf)*x)
yini \leftarrow soliton(x, c1) + soliton(x-25, c2)
times <- seq(0, 40, by = 0.1)
print(system.time(
 out <- ode.1D(y = yini, parms = NULL, func = Schrodinger,
              times = times, dimens = 300, method = "adams")
))
  user system elapsed
          0.00
                  0.98
  0.99
image(abs(out), grid = x, ylab = "x", main = "two solitons")
```

Affiliation:

```
Karline Soetaert
```

```
Royal Netherlands Institute of Sea Research (NIOZ) 4401 NT Yerseke, Netherlands E-mail: karline.soetaert@nioz.nl URL: http://www.nioz.nl
```


Figure 8: Solution of the Schrödinger equation. See book for explanation.