Homework 2.

- The file name of your homework (in PDF) should be in the format: "學號-作業編號.pdf". For example: 00957999-hw2.pdf
- Please submit your homework to Tronclass before 23:59, October 28 (Saturday),
 2023.

(可以用 word 檔寫完後轉成 pdf 檔上傳,或是手寫後拍照後存成 pdf 檔上傳)

- 1. (5%) Determine whether f is a function from \mathbf{Z} to \mathbf{R} if
 - (a) $f(n) = \pm n$
 - (b) $f(n) = \sqrt{n^2 + 1}$
 - (c) $f(n) = 1/(n^2 4)$
- 2. (10%) (a) If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? (b) If f and $f \circ g$ are onto, does it follow that g is onto?
- 3. (10%) Find the first five terms of the sequence defined by each of these recurrence relations and initial conditions.
 - (a) $a_n = 6a_{n-1}, a_0 = 2$
 - (b) $a_n = na_{n-1} + n^2 a_{n-2}$, $a_0 = 1$, $a_1 = 1$
 - (c) $a_n = a_{n-1} + a_{n-3}$, $a_0 = 1$, $a_1 = 2$, $a_2 = 0$
 - (d) $a_n = na_{n-1} + a_{n-2}^2$, $a_0 = -1$, $a_1 = 0$
 - (e) $a_n = a_{n-1} a_{n-2} + a_{n-3}$, $a_0 = 1$, $a_1 = 1$, $a_2 = 2$
- 4. (15%) Find the solution to each of these recurrence relations and initial condition. (請寫出計算過程)
 - (a) $a_n = 2a_{n-1} 3$, $a_0 = -1$
 - (b) $a_n = a_{n-1} + 2n + 3, a_0 = 4$
 - (c) $a_n = 2na_{n-1}, a_0 = 1$
- 5. (10%) Show that the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2} + 2n 9$ if
 - (a) $a_n = -n + 2$
 - (b) $a_n = 3(-1)^n + 2^n n + 2$
- 6. (10%) (a) Show that the union of a countable number of countable sets is countable.
 - (b) Show that the set $Z^+ \times Z^+$ is countable.

7. (10%) (a) Find
$$\mathbf{AB}$$
 if $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 3 & -2 & -1 \\ 1 & 0 & 2 \end{bmatrix}$.

(b) Let
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Find $\mathbf{A} \vee \mathbf{B}$ and $\mathbf{A} \wedge \mathbf{B}$.

- 8. (10%) Use the definition of "f(x) is O(g(x))" to show that $x^4 + 9x^3 + 4x + 7$ is $O(x^4)$.
- 9. (10%) Use the definition of "f(x) is O(g(x))" to show that $(x^2 + 1)/(x + 1)$ is O(x).
- 10. (10%) Use the definition of "f(x) is O(g(x))" to show that $(x^3 + 2x)/(2x + 1)$ is $O(x^2)$.