

Final Project Practical Course Robotics

Students: Eliza Cozma, Ionut Vintu, Ediba Zugor

Summer Term 2016 | 18.07.2016

Ediba

Eliza

lonuţ

Project Goal

Make Baxter write!

What to write?

- Make Baxter sign "autographs";
- Designing the letters;

Where to write? (1)

- Determine the table's position
 - Left endeffector at a starting position: y = (0.6, -0.1, 1.1);
 - Go down step by step;
 - Read the torques u and the Jacobian J;
 - Compute force via $f = (J^{\#})^T u$, where $J^{\#} = J^T (JJ^T)^{-1}$;
 - Save y and corresponding f_i

Where to write? (2)

Analyze the data;

$$f = 63.714 * y(2) - 28.8;$$

Value on z axis w.r.t base frame

determine the table's height.

How to write? (1)

- Torque control;
- Robot dynamics: $u = M\ddot{q}^*$, neglecting F;

Provided in the code

- Torque for pushing: $u = J^T f$;
- Necessary torque: $u = M\ddot{q} + J^T f$.

How to write? (2)

- Desired acceleration \ddot{q}^* : $\ddot{q}^* = \ddot{q}^{ref} + K_p (q^{ref} q) + K_d (\dot{q}^{ref} \dot{q})$; = 0 = 0
- Compute the reference joint vector q^{ref} :
 - Inverse kinematics: $q^* = \underset{q}{\operatorname{argmin}} \|\phi(q) y^*\|^2 + \|q q_0\|^2$;
 - Linearization of $\phi(q)$ at q_0 : $\phi(q) \approx y_0 + J(q q_0)$, $y_0 = \phi(q_0)$;
 - > Solution: $q^* = q_0 + J^{\#}(y^* y_0)$.

How to write? (3)

"Small step" approach → target interpolation;

```
Input: initial state q_0, desired y^*, methods \phi^{\text{pos}} and J^{\text{pos}}

Output: trajectory q_{0:T}

1: Set y_0 = \phi^{\text{pos}}(q_0)  // starting endeff position

2: for t = 1: T do

3: y \leftarrow \phi^{\text{pos}}(q_{t-1})  // current endeff position

4: J \leftarrow J^{\text{pos}}(q_{t-1})  // current endeff Jacobian

5: \hat{y} \leftarrow y_0 + (t/T)(y^* - y_0)  // interpolated endeff target

6: q_t = q_{t-1} + J^{\sharp}(\hat{y} - y)  // new joint positions

7: Command q_t to all robot motors and compute all T_{W \rightarrow i}(q_t)

8: end for
```

Lecture 5 (Kinematics), Robotics Course

https://ipvs.informatik.uni-stuttgart.de/mlr/15-Robotics/05-kinematics.pdf

How to write? (4)

• Configuration close to the initial one, q_0 :

Team Kugelschreiber and Baxter thank you for the attention!

