Modern Control Systems

Matthew M. Peet Arizona State University

Lecture 15: Linear Causal Time-Invariant Operators

Operators

 L_2 and \hat{L}_2 space

Because $L_2(-\infty,\infty)$ and \hat{L}_2 are isomorphic, so are the sets of operators $\mathcal{L}(L_2)$ and $\mathcal{L}(\hat{L}_2)$.

• Prove using the map $M \mapsto \phi M \phi^{-1}$ and $\hat{M} \mapsto \phi^{-1} \hat{M} \phi$.

How to parameterize $\mathcal{L}(L_2)$?

\hat{L}_{∞} and Multiplication Operators

We now define the new space

Definition 1.

Let $\hat{L}_{\infty}(\imath\mathbb{R})$ be the space of matrix-valued functions $\hat{G}:\imath\mathbb{R}\to\mathbb{C}^{m\times n}$ such that

$$\|\hat{G}\|_{\hat{L}_{\infty}} = \operatorname{ess} \, \sup_{\omega \in \mathbb{R}} \bar{\sigma}(\hat{G}(\imath \omega)) < \infty$$

Every element of \hat{L}_{∞} defines a multiplication operator.

Definition 2.

Given $\hat{G} \in \hat{L}_{\infty}(\imath \mathbb{R})$, define

$$(M_{\hat{G}}\hat{u})(\imath\omega)=\hat{G}(\imath\omega)\hat{u}(\imath\omega)$$

M. Peet Lecture 15: 3 /

$$\hat{L}_{\infty}$$

Every multiplication operator defined by \hat{L}_{∞} is a bounded linear operator.

Proposition 1.

For any $\hat{G} \in \hat{L}_{\infty}(i\mathbb{R})$, $M_{\hat{G}} \in \mathcal{L}(\hat{L}_2)$. Furthermore

$$||M_{\hat{G}}||_{\mathcal{L}(\hat{L}_2)} = ||\hat{G}||_{\hat{L}_{\infty}}$$

Proof.

Sufficiency is easy.

$$\begin{aligned} \|M_{\hat{G}}\hat{u}\|_{\hat{L}_{2}}^{2} &= \int_{-\infty}^{\infty} (M_{\hat{G}}\hat{u})(\imath\omega)^{*}(M_{\hat{G}}\hat{u})(\imath\omega)d\omega \\ &= \int_{-\infty}^{\infty} \hat{u}(\imath\omega)^{*}\hat{G}(\imath\omega)^{*}\hat{G}(\imath\omega)\hat{u}(\imath\omega)d\omega \\ &\leq \sup_{\omega} \|\hat{G}(\imath\omega)\|^{2} \int_{-\infty}^{\infty} \|\hat{u}(\imath\omega)\|^{2}d\omega \\ &= \|\hat{G}\|_{\hat{L}_{\infty}}^{2} \|\hat{u}\|_{\hat{L}_{2}}^{2} \end{aligned}$$

M. Peet Lecture 15:

\tilde{L}_{∞} and $\mathcal{L}(L_2)$

Because the Fourier Transform is unitary, $M_{\hat{G}}$ also defines an operator in $\mathcal{L}(\hat{L}_2)$ with equivalent norm.

• If $G = \phi^{-1} M_{\hat{G}} \phi$, then

$$||G||_{\mathcal{L}(L_2)} = ||M_{\hat{G}}||_{\mathcal{L}(\hat{L}_2)} = ||\hat{G}||_{\hat{L}_{\infty}}.$$

Question: For every $G \in \mathcal{L}(L_2)$ does there exist some $\hat{G} \in \hat{L}_{\infty}$ such that

$$G = \phi^{-1} M_{\hat{G}} \phi?$$

M. Peet 5 / 16 Lecture 15:

To answer the previous question affirmatively, we must consider a subspace of linear operators.

Definition 3.

Define the shift operator $S_{\tau}: L_2(-\infty,\infty) \to L_2(-\infty,\infty)$ by

$$(S_{\tau}u)(t) = u(t - \tau)$$

- Also called the delay operator
- Well defined on both $L_2(-\infty,\infty)$ and $L_2[0,\infty)$.
- Invertible on $L_2(-\infty,\infty)$ but not on $L_2[0,\infty)$.

The shift operator can be defined by a multiplication operator

$$S_{\tau} = \phi^{-1} M_{\hat{S}} \phi$$

where

$$\hat{S}(\imath\omega) = e^{-\imath\omega t}$$

Definition 4.

An operator Q is **Time-Invariant** if

$$S_{\tau}Q = QS_{\tau}$$

for all $\tau > 0$.

- $(Qu)(t-\tau) = Q(S_{\tau}u)(t)$
- Initial time doesn't matter.
 - Identical signals applied at different times will produce the same output.
- Shifting the input shifts the output.

Most Systems are Time-Invariant

Any state-space system is time-invariant

$$\dot{x}(t) = Ax(t) + Bu(t)$$

• Unless of course A varies with time $\big(A(t)\big)$

Multiplication Operators define Time-Invariant Operators

Lemma 5.

For any \hat{G} , $G = \phi^{-1} M_{\hat{G}} \phi$ is a time-invariant operator.

Proof.

Recall a system is time-invariant if $S_{\tau}G = GS_{\tau}$. Examine the first term

$$\begin{split} S_{\tau}G &= \phi^{-1}M_{\hat{S}}\phi\phi^{-1}M_{\hat{G}}\phi \\ &= \phi^{-1}M_{\hat{S}}M_{\hat{G}}\phi \\ &= \phi^{-1}M_{\hat{S}\hat{G}}\phi \\ &= \phi^{-1}M_{\hat{G}\hat{S}}\phi \\ &= \phi^{-1}M_{\hat{S}}M_{\hat{S}}\phi \\ &= \phi^{-1}M_{\hat{G}}\phi\phi^{-1}M_{\hat{S}}\phi \\ &= GS_{\tau} \end{split}$$

This works because $\hat{S}=e^{-\imath\omega\tau}I$ and so $(\hat{G}\hat{S}=\hat{S}\hat{G}).$

M. Peet Lecture 15:

Time-Invariant Operators define Multiplication Operators

More significantly, the converse is also true.

Theorem 6.

An operator $G:L_2(-\infty,\infty)\to L_2(-\infty,\infty)$ is time-invariant if and only if there exists some $\hat{G}\in\hat{L}_\infty$ such that

$$G = \phi^{-1} M_{\hat{G}} \phi$$

- \bullet All LTI systems can be represented using transfer functions in $\hat{L}_{\infty}.$
- Note that not all transfer functions have a state-space representation. (e.g. delay)

M. Peet Lecture 15: 10 / 16

The Truncation Operator

Linear, Causal, Time-Invariant Systems are those which are well-defined on $L_2[0,\infty)$.

Definition 7.

Define the **Truncation Operator** $P_{\tau}: L_2(-\infty,\infty) \to L_2(-\infty,\infty)$ as

$$(P_{\tau}u)(t) = \begin{cases} u(t) & t \le \tau \\ 0 & t > \tau \end{cases}$$

Truncation operator zeros out the signal after time τ .

M. Peet Lecture 15: 11 / 16

An operator is causal if changes in the future input don't create changes in past output.

• If the output at time t, y(t) only depends on the input up to time t, u(s), $s \in (-\infty, t]$.

Definition 8.

An operator $G \in \mathcal{L}(L_2)$ is **Causal** if

$$P_{\tau}GP_{\tau} = P_{\tau}G$$

for all $\tau \in \mathbb{R}$.

M. Peet Lecture 15: 12 / 16

Lemma 9.

A linear time-invariant operator, G, is causal if and only if

$$P_0GP_0 = P_0G$$

Proof.

First note that on $L_2(-\infty,\infty)$, S_{τ} is an invertible operator. Hence $P_{\tau}=S_{\tau}P_0S_{-\tau}$: we can shift truncation point to 0, truncate, then shift back.

- This implies $P_{\tau}S_{\tau}=S_{\tau}P_0$ (truncation is not a time-invariant operator).
- We have the following equivalence: G is causal if and only if

$$\begin{split} \Leftrightarrow P_{\tau}GP_{\tau} &= P_{\tau}G \\ \Leftrightarrow P_{\tau}GP_{\tau}S_{\tau} &= P_{\tau}GS_{\tau} \\ \Leftrightarrow P_{\tau}GS_{\tau}P_{0} &= P_{\tau}S_{\tau}G \\ \Leftrightarrow P_{\tau}GS_{\tau}P_{0} &= S_{\tau}P_{0}G \\ \Leftrightarrow S_{\tau}P_{0}GP_{0} &= S_{\tau}P_{0}G \\ \Leftrightarrow P_{0}GP_{0} &= P_{0}G \\ \end{split} \qquad \begin{array}{ll} G \text{ is LTI} \\ P_{\tau}S_{\tau} &= S_{\tau}P_{0} \\ P_{\tau}S_{\tau} &= S_{\tau}P_{0} \\ \Leftrightarrow P_{0}GP_{0} &= P_{0}G \\ \end{array}$$

M. Peet Lecture 15: 13 / 16

Corollary 10.

If $G \in \mathcal{L}(L_2(-\infty,\infty))$ is LTI, then G is causal if and only if

$$G: L_2[0,\infty) \to L_2[0,\infty)$$

Thus the subspace of Linear Causal Time-Invariant Operators is $\mathcal{L}(L_2[0,\infty))$

Proof.

We first show that $2) \Rightarrow 1$). Suppose $G: L_2[0,\infty) \to L_2[0,\infty)$.

- For any $u \in L_2(-\infty, \infty)$, $P_0u \in L_2(-\infty, 0] = L_2[0, \infty)^{\perp}$.
- Thus $(I P_0)u \in L_2[0, \infty)$.
- Thus $G(I-P_0)u \in L_2[0,\infty)$.
- Thus $P_0G(I P_0)u = 0$.
- Thus $P_0G = P_0GP_0$.
- Hence G is causal.

M. Peet Lecture 15: 14

Corollary 11.

If $G \in \mathcal{L}(L_2(-\infty,\infty))$ is LTI, then G is causal if and only if

$$G: L_2[0,\infty) \to L_2[0,\infty)$$

Proof.

Now we show that 1) implies 2). Suppose that $P_0G=P_0GP_0.$ Then $P_0G(I-P_0)u=0.$

- Then $(I P_0)G(I P_0) = G(I P_0)$.
- Note that for $u \in L_2[0,\infty)$, we have $(I-P_0)u = u$.
- Thus for $u \in L_2[0,\infty)$,

$$Gu = G(I - P_0)u$$

$$= (I - P_0)G(I - P_0)u$$

$$\in L_2[0, \infty)$$

since $(I - P_0)$ is the projection onto $L_2[0, \infty)$

Summary

An LTI operator is causal iff it maps $L_2[0,\infty) \to L_2[0,\infty)$

- Any LTI operator is defined by a multiplication operator (transfer function).
- ullet Which multiplication operators map $H_2 o H_2$ (causal operators)
 - Which operators define causal systems?

Next Lecture: H_{∞} .

M. Peet Lecture 15: 16 / 16