Отчет по лабораторной работе No 7

Дисциплины: Архитектура компьютера

Ракутуманандзара Цантамписедрана Сарубиди

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	17
Сг	писок литературы	18

Список иллюстраций

4.1	рис 1.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
4.2	рис 2.																																						8
4.3	рис 3.																																						8
4.4	рис 4.																																						9
4.5	рис 5.																																						9
4.6	рис 6.																																						10
4.7	рис 7.																																						10
4.8	рис 8.																																						11
4.9	рис 9.																																						11
4.10	рис 10																																						11
4.11	рис 11																																						12
4.12	рис 12																																						12
4.13	рис 13																																						13
4.14	рис 14																																						13
4.15	рис 15																																						14
4.16	рис 16								•																														14
4.17	рис 16																																						14
4.18	рис 18							•																															15
4.19	рис 19																																						15

Список таблиц

1 Цель работы

Целью данной лабораторной работы является изучение команд условного и безусловного перехода. Также приобрести навыки написания программ с использованием переходов и понимания назначения и структуры листинга файлов.

2 Задание

- 1. Реализация переходов в NASM
- 2. Изучение структуры файлы листинга
- 3. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Для реализации ветвлений в ассемблере используются так называемые команды передачи управления или команды перехода. Можно выделить 2 типа переходов: • условный переход – выполнение или не выполнение перехода в определенную точку программы в зависимости от проверки условия. • безусловный переход – выполнение передачи управления в определенную точку программы без каких-либо условий.

4 Выполнение лабораторной работы

1. Реализация переходов в NASM

Я создам каталог для программ лабораторных работ 7 под названием lab07 в каталоге ~/work/arch-pc с помощью команды mkdir(puc 1)

```
tsanta@tsanta-VirtualBox:~$ mkdir ~/work/os-intro/lab07
```

Рис. 4.1: рис 1

В созданном каталоге я создам файл с именем lab7-1.asm с помощью сенсорной команды(рис 2).

```
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ touch lab7-1.asm
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$
```

Рис. 4.2: рис 2

Я скопирую файл in_out.asm в текущий каталог с помощью команды ср, потому что буду использовать его в программах(рис 3)

```
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ cp ~/work/os-intro/lab06/in_out.
asm ~/work/os-intro/lab07
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$
```

Рис. 4.3: рис 3

Я открою и введу заданный текст программы в созданный мною файл. Программа использует инструкцию jmp. Инструкция jmp в NASM используется для реализации безусловных переходов(рис 4)

```
lab7-1.asm
                                                        Open V 🗐
                               ~/work/os-intro/lab07
      tsanta.lab6.md
                               tsanta.lab7.md
                                                          lab7-1.asm
msg1: DB 'Сообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: DB 'Сообщение № 3',0
SECTION .text
GLOBAL _start
_start:
jmp _label2
_label1:
mov eax, msg1 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 1'
mov eax, msg2 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 2'
_label3:
mov eax, msg3 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 3'
```

Рис. 4.4: рис 4

Я создам исполняемый файл и запущу его(рис 5). Как мы видим, использование инструкции jmp _label2 меняет порядок выполнения инструкций и позволяет выполнять инструкции, начиная с метки _label2, пропуская вывод первого сообщения.

```
tsanta@tsanta-VirtualBox:-$ cd ~/work/os-intro/lab07
tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ nasm -f elf lab7-1.asm
tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ ld -m elf_i386 lab7-1.o -o lab7-1
tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ ./lab7-1
Cooбщение № 2
Cooбщение № 3
tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$
```

Рис. 4.5: рис 5

Инструкция jmp позволяет прыгать не только вперед, но и назад.Я изменю программу, добавив «jmp _label1» после label2 и «jmp _end» после label1, чтобы она сначала отображала «Сообщение 2», затем «Сообщение 1» и завершала работу без отображения «Сообщения 3».(рис 6)

```
· lab7-1.asm
tsanta.lab6.md
                                                      tsanta.lab7.md
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
msg1: DB 'Сообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: DB 'Сообщение № 3',0
SECTION .text
GLOBAL _start
_start:
jmp _label2
label1:
mov eax, msg1 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 1'
jmp _end
_label2:
mov eax, msg2 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 2'
jmp _label1
_label3:
mov eax, msg3 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 3'
call quit ; вызов подпрограммы завершения
```

Рис. 4.6: рис 6

Я создам исполняемый файл, запущу его и проверю, работает ли программа корректно(рис 7)

```
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ nasm -f elf lab7-1.asm tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ ld -m elf_i386 lab7-1.o -o lab7-1 tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ ./lab7-1 Сообщение № 2 Сообщение № 1 tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$
```

Рис. 4.7: рис 7

Теперь я изменю программу, добавив «jmp_label3» перед label1, «jmp_label1» после label2, «jmp_label2» после label3 и «jmp_end» после label1, чтобы она сначала отображала «Сообщение 3», затем «Сообщение 2» и, наконец, «Сообщение 1»(рис 8)

```
lab7-1.asm
Open V 🗐
                                                       ~/work/os-intro/lab07
              tsanta.lab6.md
                                                        tsanta.lab7.md
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
msg1: DB 'Сообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: DB 'Сообщение № 3',0
SECTION .text
GLOBAL _start
start:
jmp label3
label1:
mov eax, msg1; Вывод на экран строки
call sprintLF ; 'Сообщение № 1'
jmp _end
label2:
mov eax, msg2 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 2'
jmp _label1
_label3:
mov eax, msg3 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 3'
jmp _label2
_end:
call quit ; вызов подпрограммы завершения
```

Рис. 4.8: рис 8

Я создам исполняемый файл, запущу его и проверю, работает ли программа корректно(рис 9)

```
tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ nasm -f elf lab7-1.asm tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ ld -m elf_i386 lab7-1.o -o lab7-1 tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ ./lab7-1 Сообщение № 3 Сообщение № 2 Сообщение № 1 tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$
```

Рис. 4.9: рис 9

Я создам новый файл с именем lab7-2.asm в каталоге ~/work/arch-pc/lab07(рис 10)

```
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ touch lab7-2.asm tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$
```

Рис. 4.10: рис 10

Я скопирую данную текстовую программу в только что созданный файл.При написании программ необходимо использовать условные переходы, т.е. переход должен происходить при выполнении какого-либо условия. Данная программа определяет и отображает наибольшую из 3-х целочисленных переменных: А, В и С. Значения А и С указаны в программе, значение В вводится с клавиатуры(рис 11)

```
lab7-2.asm
Open ∨ □
        tsanta.lab6.md
                                       tsanta.lab7.md
                                                                      lab7-1.asm
%include 'in_out.asm'
msg1 db 'Введите В: ',0h
msg2 db "Наибольшее число: ",0h
A dd '20'
C dd '50'
section .bss
max resb 10
B resb 10
section .text
global _start
_start:
; ----- Вывод сообщения 'Введите В: '
mov eax.msq1
call sprint
: ----- Ввол 'В'
mov ecx.B
mov edx, 10
call sread
; ----- Преобразование 'В' из символа в число
call atoi ; Вызов подпрограммы перевода символа в число
mov [B],eax ; запись преобразованного числа в 'В'
; ----- Записываем 'А' в переменную 'тах'
mov ecx,[A]; 'ecx = A'
mov [max].ecx : 'max = A'
```

Рис. 4.11: рис 11

Я создам исполняемый файл и протестирую его на разных значениях В

```
tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ nasm -f elf lab7-2.asm tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ ld -m elf_i386 lab7-2.o -o lab7-2 tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ ./lab7-2 Введите В: 4 Наибольшее число: 50 tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ ./lab7-2 Введите В: 60 Наибольшее число: 60 tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$
```

Рис. 4.12: рис 12

2. Изучение структуры файлы листинга

Указав ключ -l и имя файла листинга в командной строке. Файл листинга программы я создам из файла lab7-2.asm(рис 13)

```
tsanta@tsanta-VirtualBox:-/work/os-intro/lab07$ nasm -f elf -l lab7-2.lst lab7-2
.asm
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$
```

Рис. 4.13: рис 13

Теперь я открою файл листинга lab7-2.lst с помощью текстового редактора(рис 14)

Рис. 4.14: рис 14

строка 19 «вызов atoi» меняет В с арифметического символа на число строка 174 «msg2 db "Наибольшее число:",0h» отображает текст «Наибольшее число:» на экране

строка 173 «msg1 db 'Введите В:',0h» отображает текст «Введите В:» на экране Я открою файл lab7-2.asm и удалю один из операндов, затем выполню широковещательную рассылку, чтобы получить файл листинга(рис 15 и 16)

```
/home/ts~b7-2.asm [-M--] 9 L:[ 1+16 17/ 45] *(262 /1496b) 0010 0x00A [*][X]
%include 'in_out.asm'
section .data
msg1 db 'Bведите B: ',0h
msg2 db "Наибольшее число: ",0h
C dd '50'
section .bss
max resb 10
B resb 10
section .text
global _start
_start:
mov eax,msg1
call sprint
mov ecx,B
mov edx,10
call sread
mov eax,B
call atoi; Вызов подпрограммы перевода символа в число
mov [В],eax; запись преобразованного числа в 'B'
mov ecx,[A]; 'ecx = A'
mov [max],ecx; 'max = A'
; .......... Сравниваем 'A' и 'C' (как символы)
1 Help 2 Save 3 Mark 4 Replac 5 Copy 6 Nove 7 Search 8 Delete 9 PullDm 10 Quit
```

Рис. 4.15: рис 15

```
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm lab7-2.asm:20: error: symbol `A' not defined tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$
```

Рис. 4.16: рис 16

При создании файла листинга выдала ошибку, так как в файле lab7-2.asm программа неверна

3. Выполнение заданий для самостоятельной работы

С помощью touch команды я создам новый файл lab7-3.asm(рис 17)

```
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ touch lab7-3.asm
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$
```

Рис. 4.17: рис 16

В созданном мной файле я напишу программу, которая будет находить минимальное значение среди трех чисел а, b и с. Я получу значения а, b и с из варианта, который я получил при выполнении лабораторной работы 6(рис 18)

```
lab7-3.asm
Open ~
       +
                                 ~/work/os-intro/lab07
 tsanta.lab7.md
                   lab7-1.asm
                                    lab7-2.asm
                                                    lab7-3.asm ×
%include 'in_out.asm'
section .data
msg1 db "Наименьше число: ",0h
A dd '81'
B dd '22'
C dd '72'
section .bss
min resb 10
section .text
global _start
start:
mov eax,B
call atoi ; Вызов подпрограммы перевода символа в число
mov [B],eax ; запись преобразованного числа в 'B'
mov ecx,[A]; 'ecx = A'
mov [min],ecx ; 'max = A'
```

Рис. 4.18: рис 18

Теперь я создам исполняемый файл и запущу его, чтобы посмотреть, даст ли он правильный ответ(рис 19)

```
tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ nasm -f elf lab7-3.asm tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ ld -m elf_i386 lab7-3.o -o lab7-3 tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$ ./lab7-3 Наименьше число: 22 tsanta@tsanta-VirtualBox:~/work/os-intro/lab07$
```

Рис. 4.19: рис 19

```
%include 'in_out.asm'
section .data
msg1 db "Наименьше число: ",0h
A dd '81'
B dd '22'
C dd '72'
section .bss
min resb 10
```

```
section .text
global _start
_start:
mov eax,B
call atoi ; Вызов подпрограммы перевода символа в число
mov [B], eax ; запись преобразованного числа в 'B'
mov ecx, [A] ; 'ecx = A'
mov [min],ecx ; 'max = A'
стр есх,[С]; Сравниваем 'А' и 'С'
jl check_B; если 'A<C', то переход на метку 'check_B',
mov ecx,[C]; иначе 'ecx = C'
mov [min],ecx ; 'max = C'
check_B:
mov eax, min
call atoi ; Вызов подпрограммы перевода символа в число
mov [min], eax ; запись преобразованного числа в `max`
mov ecx,[min]
cmp ecx,[B] ; Сравниваем 'max(A,C)' и 'B'
jl fin ; если 'max(A,C)<B', то переход на 'fin',
mov ecx, [B] ; иначе 'ecx = B'
mov [min],ecx
fin:
mov eax, msg1
call sprint ; Вывод сообщения 'Наибольшее число: '
mov eax,[min]
call iprintLF ; Вывод 'min(A,B,C)'
call quit ; Выход
```

5 Выводы

Выполняя эту лабораторную работу, я узнал об условных и безусловных командах перехода. Также приобрел навыки написания программ с использованием переходов и понял назначение и структуру листингов файлов.

Список литературы

Архитектура ЭВМ