TOSHIBA MOS MEMORY PRODUCTS

1,048,576 WORD ×1 BIT DYNAMIC RAM

SILICON GATE CMOS

TC511000P/J/Z-85, TC511000P/J/Z-10 TC511000P/J/Z-12

DESCRIPTION

The TC511000P/J/Z is the new generation dynamic RAM organized 1,048,576 words by 1 bit. The TC511000P/J/Z utilizes TOSHIBA's CMOS Silicon gate process technology as well as advanced circuit techniques to provide wide operating margins, both internally and to the system user. Multiplexed address inputs permit the TC511000P/J/Z to be packaged in a standard 18 pin plastic DIP, 26/20 pin plastic SOJ and 20/19 pin plastic

ZIP. The package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment. System oriented features include single power supply of 5V ± 10% tolerance, direct interfacing capability with high performance logic families such as Schottky TTL. "Test Mode" function is implemented from Revision C.

FEATURES

- 1,048,576 word by 1 bit organization
- Fast access time and cycle time

		TC511000P/J/Z-85-10-					
tRAC	RAS Access Time	85 ns	100 ns	120 ns			
tдд	Column Address Access Time	45 ns	50 ns	60 ns			
tcac	CAS Access Time	25 ns	25 ns	30 ns			
tRC	Cycle Time	165 ns	190 ns	220 ns			
t _{PC}	Fast Page Mode Cycle Time	50 ns	55 ns	70 ns			

 \bullet Single power supply of 5V \pm 10% with a built-in V_{BB} generator

PIN CONNECTION (TOP VIEW)

RAS 03 16 0 CAS RAS 03 24 0 CAS TF 04 15 0 A9 N.C. 0 5 22 0 A9 1 A8 1 0 10 17 0 A7 1 10 10 10 10 10 10 10 10 10 10 10 10 1	Plas	stic	DIP	Plas	tic SOJ
100 H2 20 h22 100 H23 22 h22	WRITE C RAS (TF C AO (A1 (A2 (2 1 3 4 5 5 6 7 8	17] D _{OUT} 16] CAS 15] A9 14] A8 13] A7 12] A6	WRITE 02 RAS 03 TF 04 N.C. 05 A0 09 A1 01 A2 01 A3 01	25 DOUT 24 D CAS 23 D N.C. 22 D A9 18 D A8 0 17 D A7 1 16 D A6 2 15 D A5

Plastic ZIP

1			
A9	1	[2]	CAS
TUO	3.1	[4]	Vss
DIN	5	6	WRITI
RAS	7.;	8	TF
N.C.	9		
ΑO	11	12	Al
A2	13	14	A3
ACC.	15	16	A4
A5	17	рв	A6
A7	19	20	AB
	L		i

PIN NAMES

A0~A9	Address Inputs
RAS	Row Address Strobe
D _{IN}	Data In
Dout	Data Out
CAS	Column Address Strobe
WRITE	Read/Write Input
Vcc	Power (+5V)
V _{SS}	Ground
TF	Test Function
N.C.	No Connection

 Low Power 385mW MAX. Operating (TC511000P/J/Z-85) 330mW MAX. Operating (TC511000P/J/Z-10) 275mW MAX. Operating (TC511000P/J/Z-12)

5.5mW MAX. Standby

Output unlatched at cycle end allows two-dimensional chip selection

- Common I/O capability using "EARLY WRITE" operation
- Read-Modify-Write, CAS before RAS refresh, RASonly refresh, Hidden refresh, Fast Page Mode and Test Mode capability
- All inputs and output TTL compatible
- 512 refresh cycles/8 ms
- Package Plastic DIP: TC511000P Plastic SOJ: TC511000J Plastic ZIP: TC511000Z

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNITS	NOTES
Input Voltage	VIN	1 ~ 7	V	1
Test Function Input Voltage	VIN(TF)	-1 ~ 10.5	V	1
Output Voltage	Vout	1 ~ 7	V	1
Power Supply Voltage	Vcc	1 ~ 7	V	1
Operating Temperature	T _{OPR}	0~70	°C	1
Storage Temperature	T _{STG}	55 ~ 150	°C	1
Soldering Temperature Time	TSOLDER	260•10	°C•sec	1
Power Dissipation	P _D	600	mW	1
Short Circuit Output Current	LOUT	50	mA	1

RECOMMENDED DC OPERATING CONDITIONS (Ta = 0 ~ 70°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	2
ViH	Input High Voltage	2.4		6.5	٧	2
VIL	Input Low Voltage	-1.0		0.8	V	2
VIH (TF)	Test Enable Input High Voltage	V _{CC} +4.5		10.5	V	2
VIL (TF)	Test Disable Input Low Voltage	-1.0		V _{CC} +1.0	V	2

DC ELECTRICAL CHARACTERISTICS (V_{CC} = 5V ± 10%, Ta = 0 ~ 70°C)

SYMBOL	PARAMETER			MAX.	UNITS	NOTES
		TC511000P/J/Z-85	T	70		
lcc1		TC511000P/J/Z-10	 	60	mA	3,4
	(RAS, CAS, Address Cycling: tac = tac MIN.)	TC511000P/J/Z-12		50	1	
I _{CC2}	STANDBY CURRENT Power Supply Standby Current (RAS = CAS = VIH)	_	2	mA		
	RAS ONLY REFRESH CURRENT	TC511000P/J/Z-85	_	70		
lcc3	Average Power Supply Current, RAS Only Mode	TC511000P/J/Z-10		60	mA	3
	(RAS Cycling, CAS = V _{IH} : t _{RC} = t _{RC} MIN.)	TC511000P/J/Z-12		50		
	FAST PAGE MODE CURRENT	TC511000P/J/Z-85	_	50		
I _{CC4}	Average Power Supply Current, Fast Page Mode	TC511000P/J/Z-10	_	40	mA	3, 4
	(RAS = VIL, CAS, Address Cycling: tpc = tpc MIN.) TC511000P/J/Z-12			30		
I _{CC5}	STANDBY CURRENT Power Supply Standby Current (RAS = CAS = Vcc-0.2V)	_	1	mA		
	CAS BEFORE RAS REFRESH CURRENT	TC511000P/J/Z-85	_	70	mA	
lcc6	Average Power Supply Current, CAS Before	TC511000P/J/Z-10	_	60		3
	RAS Mode (RAS, CAS Cycling: tRC=tRC MIN.)	TC511000P/J/Z-12	_	50		
I _{1 (L)}	INPUT LEAKAGE CURRENT (any input except TF Input Leakage Current, any input (0V \leq VIN \leq 6.5V Pins Not Under Test = 0V)		-10	10	μΑ	
I _{ITF(L)}	INPUT LEAKAGE CURRENT (only TF) (0V ≦VIN (TF) ≦Vcc + 0.5V, All Other Pins Not U	Inder Test = 0V)	-10	10	μΑ	
lo(L)	OUTPUT LEAKAGE CURRENT (Dou⊤ is disabled, 0V ≦ Vou⊤ ≦ 5.5V)			10	μΑ	
ITE	TEST FUNCTION INPUT CURRENT (Vcc + 4.5V \leq Vin(TF) \leq 10.5V)			1	mA	
V _{OH}	OUTPUT LEVEL Output "H" Level Voltage (IOUT =-5 mA)			_	V	
VoL	OUTPUT LEVEL Output "L" Level Voltage (IOUT = 4.2 mA)			0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(V_{CC} = 5V \pm 10\%, Ta = 0 \sim 70^{\circ}C)$ (Notes 5, 6, 7)

SYMBOL	PARAMETER	TC511000P/ J/Z-85		TC511000P J/Z-10		TC511000P/ J/Z-12		UNITS	NOTES
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		L
tRC	Random Read or Write Cycle Time	165	_	190	_	220	_	ns	
t _{RWC}	Read-Write Cycle Time	190	_	220	_	255		ns	
t _{PC}	Fast Page Mode Cycle Time	50	_	55		70	_	ns	
t _{PRWC}	Fast Page Mode Read-Write Cycle Time	75		85	_	105	—	ns	
tRAC	Access Time from RAS		85	_	100	_	120	ns	8, 13
t _{CAC}	Access Time from CAS		25	_	25	_	30	ns	8, 13
t _{AA}	Access Time from Column Address	_	45	_	50	-	60	ns	8, 14
t _{CPA}	Access Time from CAS Precharge		45	_	50	_	65	ns	8
t _{CLZ}	CAS to Output in Low-Z	5		5	_	5	_	ns	8
t _{OFF}	Output Buffer Turn-off Delay	0	30	0	30	0	35	ns	9
t _T	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns	7
t _{RP}	RAS Precharge Time	70	_	80	_	90	_	ns	
t _{RAS}	RAS Pulse Width	85	10,000	100	10,000	120	10,000	ns	
t RASP	RAS Pulse Width (Fast Page Mode)	85	100,000	100	100,000	120	100,000	ns	
t RSH	RAS Hold Time	25		25	_	30	_	ns	
t _{CSH}	CAS Hold Time	85		100		120		ns	
t _{CAS}	CAS Pulse Width	25	10,000	25	10,000	30	10,000	ns	
t _{RCD}	RAS to CAS Delay Time	25	60	25	75	25	90	ns	13
t _{BAD}	RAS to Column Address Delay Time	20	40	20	50	20	60	ns	14
t _{CRP}	CAS to RAS Precharge Time	10		10	_	10		ns	
t _{CP}	CAS Precharge Time (Fast Page Mode)	10	_	10		15		ns	1
t ASR	Row Address Set-Up Time	0	_	0		0	_	ns	
t _{RAH}	Row Address Hold Time	15	T -	15	-	15	_	ns	
tASC	Column Address Set-Up Time	0	_	0		0	<u> </u>	ns	
t _{CAH}	Column Address Hold Time	20	_	20		25	_	ns	
t _{AR}	Column Address Hold Time referenced to RAS	65	_	7 5		90	_	ns	
tRAL	Column Address to RAS Lead Time	45	_	50	_	60	T -	ns	
tRCS	Read Command Set-Up Time	0		0	_	0	 	ns	
t _{RCH}	Read Command Hold Time	0	_	0	_	0		ns	10
t _{RRH}	Read Command Hold Time referenced to RAS	0	-	0	_	0	_	ns	10
twch	Write Command Hold Time	20	_	20	_	25	T -	ns	
twcr	Write Command Hold Time referenced to RAS	65	_	75	_	90		ns	
twp	Write Command Pulse Width	20		20	_	25	_	ns	
tRWL	Write Command to RAS Lead Time	20	<u> </u>	25	<u> </u>	30	T -	ns	
tcwL	Write Command to CAS Lead Time	20		25	_	30	_	ns	1
t _{DS}	Data Set-Up Time	0		0		0		ns	11
t _{DH}	Data Hold Time	20	_	20	_	25	T -	ns	11
t _{DHR}	Data Hold Time referenced to RAS	65	_	75		90	_	ns	
tREF	Refresh Period		8		8	T _	8	ms	1

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Continued)

SYMBOL	PARAMETER	TC511000P/ J/Z-85		TC511000P/ J/Z-10		TC511000P/ J/Z-12		UNIT	NOTES
	MIN. MAX. MIN.		MAX.	MIN.	MAX.				
twcs	Write Command Set-Up Time	0	_	0	_	0	_	ns	12
tcwD	CAS to WRITE Delay Time	25	_	25	_	30	_	ns	12
t RWD	RAS to WRITE Delay Time	85	_	100		120	_	ns	12
t _{AWD}	Column Address to WRITE Delay Time	45	_	50		60	_	ns	12
t _{CSR}	CAS Set-Up Time (CAS before RAS Cycle)	10	_	10	_	10	_	ns	
t _{CHR}	CAS Hold Time (CAS before RAS Cycle)	30	-	30	-	30	_	ns	
t RPC	RAS to CAS Precharge Time	0	_	0		0	_	ns	
t _{CPT}	CAS Precharge Time (CAS before RAS Counter Test Cycle)	50	_	50	-	60	_	ns	
tCPN	CAS Precharge Time	15	_	15	_	20		ns	
tTES	Test Mode Enable Set-Up Time referenced to RAS	0	_	0	_	0	_	ns	
[†] TEHR	Test Mode Enable Hold Time referenced to RAS	0	_	0	-	0	_	ns	
t TEHC	Test Mode Enable Hold Time referenced to CAS	0	_	0	. —	0		ns	

CAPACITANCE ($V_{CC} = 5V \pm 10\%$, f = 1 MHz, Ta = 0 ~ 70°C)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
C _{t1}	Input Capacitance (A0 ~ A9, D _{IN})		5	pF
C ₁₂	Input Capacitance (RAS, CAS, WRITE, TF)	_	7	pF
Co	Output Capacitance (D _{OUT})	_	7	pF

NOTES:

- Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- 2. All Voltages are referenced to Vss.
- 3. I_{CC1} , I_{CC3} , I_{CC4} , I_{CC6} depend on cycle rate.
- 4. I_{CC1}, I_{CC4} depend on output loading. Specified values are obtained with the output open.
- 5. An initial pause of 200µs is required after power-up followed by 8 RAS cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 CAS before RAS initialization cycles instead of 8 RAS cycles are required.
- 6. AC measurements assume t_T = 5ns.
- 7. V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- 8. Measured with a load equivalent to 2 TTL loads and 100pF.
- 9. t_{OFF} (max.) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 10. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 11. These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in read-write cycles.
- 12. twcs, t_{RWD}, t_{CWD} and t_{AWD} are not restrictive operating parameters. They are included the data sheet as electrical characteristics only. If t_{WCS} ≥ t_{WCS}(min.), the cycle is an early write cycle and data out pin will remain open circuit (high impedance) through the entire cycle; If t_{RWD}≥ t_{RWD}(min.), t_{CWD}≥ t_{CWD}(min.) and t_{AWD}≥ t_{AWD}(min.), the cycle is a read-write cycle and data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 13. Operation within the t_{RCD}(max.) limit insures that t_{RAC}(max.) can be met. t_{RCD}(max.) is specified as a reference point only: If t_{RCD} is greater than the specified t_{RCD}(max.) limit, then access time is controlled by t_{CAC}.
- 14. Operation within the t_{RAD}(max.) limit insures that t_{RAC}(max.) can be met. t_{RAD}(max.) is specified as a reference point only: If t_{RAD} is greater than the specified t_{RAD}(max.) limit, then access time is controlled by t_{AA}.

TIMING WAVEFORMS

• READ CYCLE

: "H" or "L"

NOTE: "TF" pin should be connected to $V_{IL}\,$ (TF) level or open, if "Test Mode" is not used.

• WRITE CYCLE (EARLY WRITE)

: "H"or"L"

NOTE: "TF" pin should be connected to V_{1L} (TF) level or open, if "Test Mode" is not used.

• READ-WRITE CYCLE

NOTE: "TF" pin should be connected to V_{1L} (TF) level or open, if "Test Mode" is not used.

• FAST PAGE MODE READ CYCLE

: "H"or"L"

NOTE: "TF" pin should be connected to V_{IL} (TF) level or open, if "Test Mode" is not used.

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

NOTE: "TF" pin should be connected to $V_{\rm IL}$ (TF) level or open, if "Test Mode" is not used.

• FAST PAGE MODE READ-WRITE CYCLE

: "H"or"L"

NOTE: "TF" pin should be connected to V_{IL} (TF) level or open, if "Test Mode" is not used.

• RAS ONLY REFRESH CYCLE

: "H" or "L"

NOTE: WRITE = "H" or "L", A9 = "H" or "L"

"TF" pin should be connected to V_{IL} (TF) level or open, if "Test Mode" is not used.

• CAS BEFORE RAS REFRESH CYCLE

: "H" or "L"

NOTE: WRITE = "H" or "L", A0 \sim A9 = "H" or "L" "TF" pin should be connected to V_{LL} (TF) level or open, if "Test Mode" is not used.

HIDDEN REFRESH CYCLE (READ)

: "H" or "L"

NOTE: "TF" pin should be connected to V_{IL} (TF) level or open, if "Test Mode" is not used.

• HIDDEN REFRESH CYCLE (WRITE)

: "H" or "L"

NOTE: "TF" pin should be connected to $V_{\rm IL}$ (TF) level or open, if "Test Mode" is not used.

• CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

NOTE: "TF" pin should be connected to $V_{\rm IL}$ (TF) level or open, if "Test Mode" is not used.

TEST MODE

The TC511000P/J/Z is the RAM organized 1,048,576 words by 1 bit, it is internally organized 262,144 words by 4 bits. In "Test Mode", data would be written into a number of sectors (4 sectors) in parallel and retrieved the same way. If upon reading, all bits are equal (all "H" or "L"), the data output pin indicates a same data as all bits. In this case, the data output pin indicates an expected data for good

parts, the data output pin indicates a complementary data for bad parts. And also, if any of the bits differed, the data output pin would indicate a high impedance state for bad parts. Fig. 1 shows the block diagram of TC511000P/J/Z including its truth table when "Test Mode" is used.

In test mode, 1MDRAM can be tested as if it were 256K DRAM by the following method.

Block Diagram in Test Mode

TF Pin = Super voltage; Test Mode
TF Pin = V_{IL}(TF) level or High-Z; Normal

Truth Table in Test Mode Function

Α	В	С	D	Dout
0	0	0	0	0
1	1	1		
	other	Hi-Z		

Fig. 1

"Test Mode" function is performed on any of the timing cycles including fast page mode when "TF" pin is held on "super voltage (V_{CC} +4.5V (V_{CC} = 5V ± 10%), max. voltage = 10.5V)" for the specified period (t_{TES}, t_{TEHR} and t_{TEHC}; see Fig. 2). The address input of A9 is ignored in the "Test Mode".

On the other hand, normal operation requires the "TF" pin be connected to V_{1L} (TF) level, or left unconnected on the printed wiring board.

The "Test Mode" function reduces test times (1/4; in case of using N test pattern). This "Test Mode" function is implemented from Revision "C".

OUTLINE DRAWINGS

Plastic DIP

Note: Each lead pitch is 2,54mm.

All leads are located within 0.25mm of their true longitudinal position with respect to

No. 1 and No. 18 leads.

All dimensions are in millimeters.

Plastic SOJ

Unit in mm

Note: Each lead pitch is 1.27mm.

All dimensions are in millimeters.