

Biologia

Fisiologia Humana: Sistemas

Professor: Gregório Kappaun Rocha

Contato: gregkappaun@gmail.com / gregorio.rocha@iff.edu.br

Biologia

Fisiologia Humana: Sistema Linfático

Professor: Gregório Kappaun Rocha

Sistema Linfático

Complexo conjunto de órgãos linfoides, tecidos e vasos que se distribuem por todo o corpo.

Diretamente associado ao sistema imunológico do organismo.

Sistema Linfático: complexo conjunto de órgãos, tecidos e vasos.

Sistema Linfático: Estruturas

Sistema Linfático: Estruturas

Sistema Linfático: Funções

Princípio geral: <u>Drenar</u> e <u>filtrar</u> o **líquido intersticial (linfa)** para dentro dos vasos linfáticos, devolvendo-o ao sangue. Contribui para manter o <u>equilíbrio dos fluidos</u> no corpo.

Outras funções (não menos importantes!)

- 1. Absorção dos ácidos graxos da dieta e transporte de gordura para o sistema circulatório;
- 2. Retorno de proteínas do meio extracelular ao sangue;
- 3. Atua junto ao sistema imunológico:
 - Produção de células de defesa, como linfócitos, monócitos e plasmócitos (células produtoras de anticorpos);
 - Defender o organismo de microrganismos, conduzindo-os para linfonodos onde são destruídos ou sensibilizam o organismo;
 - Conduzir os anticorpos e os linfócitos para a corrente sanguínea.

Sistema Linfático: Linfa

Líquido que percorre a circulação linfática.

Origem: <u>extravasamento do plasma sanguíneo</u> para o espaço ao redor das células (espaço intersticial).

Sistema Linfático: Linfa

Líquido que percorre a circulação linfática.

Origem: <u>extravasamento do plasma sanguíneo</u> para o espaço ao redor das células (espaço intersticial).

Líquido intersticial: formado pelo excesso de <u>líquido que extravasa</u> dos capilares sanguíneos e <u>banham as células</u>.

Função: as células ficam envoltas por este líquido e retiram **nutrientes** e **eliminam excretas** do metabolismo.

Composição: aminoácidos, açúcares, ácidos graxos, sais, produtos residuais das células, células de defesa.

OBS: Pode conter **microorganismos** (vírus e bactérias) invasores!

Sistema Linfático: Linfa

Líquido que percorre a circulação linfática.

Origem: extravasamento do plasma sanguíneo para o espaço ao redor das células (espaço

intersticial).

Cerca de 10% do plasma sanguíneo escapa do sangue e forma a **linfa**.

A linfa percorre os vasos linfáticos em um trajeto <u>unidirecional</u> e **retorna ao sangue** para manter o volume e auxiliar na manutenção da <u>Pressão Arterial</u>.

Células sanguíneas na linfa:

 As hemácias NÃO são saem do sangue por serem muito grandes.

Por isso, a linfa tem cor clara (não é vermelha)!

 A linfa é rica em glóbulos brancos, células de defesa chamadas de <u>Leucócitos</u> (sendo, 99% de <u>Linfócitos</u>).

Sistema Linfático: Funções

Outras funções da linfa e do sistema linfático:

- <u>Transporte de lipídios</u> e <u>vitaminas lipossolúveis</u>: a linfa é muito rica em gorduras absorvidas pelos capilares linfáticos do intestino.
- Controlar o volume de líquido extracelular.

Drenagem linfática.

Vasos <u>finos</u> que entram em contato com as células do organismo e <u>captam os líquidos intersticiais</u>.

À medida que retornam com a linfa para o sangue, crescem e formam os vasos linfáticos maiores, até convergir em vasos que se esvaziam nas veias subclávias (ramo das veias cavas). A linfa retorna em direção ao coração.

Função:

- Captar o fluido intersticial ao redor das células, evitando o acúmulo de líquidos e inchaço no corpo.
- Direcionam a linfa para os <u>gânglios linfáticos</u>, onde será <u>filtrada</u> antes de ser direcionada ao sangue.

Retorno da linfa para a circulação sanguínea.

Filtração da linfa em estruturas chamadas de <u>Linfonodos</u>.

Transporte da linfa pelos vasos linfáticos de forma <u>unidirecional</u>.

Captação da linfa pelo capilares linfáticos a partir da líquido intersticial presente entre as células.

O sistema linfático não é um sistema fechado e não tem uma bomba central.

A linfa move-se lentamente e sob baixa pressão.

Promovem o seu deslocamento:

- Contração dos músculos esqueléticos;
- Ação das válvulas linfáticas: impedem o retorno da linfa. Assim, a linfa circula pelo vaso linfático em um único sentido (em direção do coração).

Filariose Linfática (Elefantíase)

Doença parasitária crônica, considerada uma das maiores causas mundiais de incapacidades permanentes ou de longo prazo.

Causador: verme nematoide Wuchereria Bancrofti

Transmissão: basicamente, pela picada do mosquito *Culex* infectado com larvas do parasita.

As microfilárias do parasita <u>ocupam e obstruem os vasos</u> <u>linfáticos e linfonodos</u>, causando inchaço do membro afetado.

Aumenta o risco de infecções bacterianas frequentes que endurecem e engrossam a pele (elefantíase).

Filariose tem **cura**, apenas se for <u>descoberta no início</u>.

Microfilárias.

Sistema Linfático

Órgãos linfáticos

- Espalhados ao longo do trajeto dos vasos linfáticos.
- Apresentam variados tamanhos, estruturas e funções.
- Estimulados sempre que há uma infecção ou inflamação.

Órgãos Linfáticos Primários: local de <u>produção</u> e <u>amadurecimento</u> de células de defesa.

- Medula Óssea
- Timo

As células maduras migram dos órgãos primários para os secundários.

Órgãos Linfáticos Secundários: local de <u>armazenamento</u> e <u>ativação</u> de células de defesa. É neles que a <u>resposta imunológica</u> é gerada.

- Baço
- Linfonodos
- Tonsilas

Timo

Glândula endócrina linfática.

<u>Localização</u>: no tórax, entre os pulmões e a frente do coração, bem no centro do peito.

Anatomistas do passado acreditavam que o timo guardava a **alma** da pessoa.

Timo: Funções

Produz a **timosina**: promove a **seleção** e **maturação** de <u>linfócitos T</u> que vieram da medula óssea. Em seguida, esses linfócitos maduros migram para os gânglios linfáticos, onde se tornam ativos para a resposta imune.

Timo faz o Controle de Qualidade dos Linfócitos T!

Timo: Funções

Produz a **timosina**: promove a **seleção** e **maturação** de <u>linfócitos T</u> que vieram da medula óssea. Em seguida, esses linfócitos maduros migram para os gânglios linfáticos, onde se tornam ativos para a resposta imune.

Timo faz o Controle de Qualidade dos Linfócitos T!

Como fazer com que nossas células de defesa não destruam nossas próprias células?

Os glóbulos brancos circulam no nosso corpo em busca de agentes externos para intervir. Esta tarefa é muito **específica**, para que os glóbulos brancos destruam **apenas o que é estranho** e não ataquem as células do corpo.

Timo: Controle da Qualidade de Linfócitos T

Seleção de Linfócitos T não-auto-reativos:

- Apenas Linfócitos T que **não reagem** contra antígenos do próprio corpo serão **liberados** (~5%) e atuarão na <u>defesa do organismo.</u> Capazes de identificar e atacar <u>apenas</u> os agentes infecciosos.
- Os linfócitos T que reagem à antígenos do próprio corpo serão destruídos por macrófagos no próprio timo (morte é o destino de ~95% dos linfócitos T).

Timo: Controle da Qualidade de Linfócitos T

- E quando essa seleção falha?

Timo: Controle da Qualidade de Linfócitos T

- E quando essa seleção falha?
- Quando essa seleção falha, o timo deixa escapar para o resto do corpo linfócitos T auto-reativos, que podem <u>agredir células do próprio corpo!</u> Resultando em <u>Doenças</u>
 <u>Autoimunes!</u>
- Ex: <u>Diabetes mellitus do tipo 1</u> (diabetes insulino-dependente): no pâncreas, os linfócitos T auto-reativos destroem as *células-beta* produtoras de insulina.

Timo: varia de tamanho ao longo da vida

- Cresce do desenvolvimento fetal até a adolescência, quando atinge tamanho máximo (~40 gramas).
- Depois da puberdade, reduz de tamanho e boa parte é substituída por gordura.

O timo não desaparece do mapa! Mesmo reduzido, continua a fabricar a timosina.

Mesmo com a sua diminuição, as funções não são perdidas, embora ocorra uma diminuição da produção de linfócitos T. Mas a quantidade de linfócitos que ele treinou é suficiente pra vida toda!

Pequenos órgãos perfurados por canais, espalhados ao longo dos vasos linfáticos, por onde a linfa circula.

Já foram chamados de gânglios linfáticos.

Função: filtrar a linfa.

Microorganismos, como bactérias, vírus e resíduos celulares são identificados pelos linfócitos ali presentes que <u>iniciam uma resposta imunológica</u>, que envolve a produção de anticorpos e a fagocitose dos invasores pelos macrófagos ali existentes.

Os linfonodos se aglomeram em algumas regiões do corpo, como axila, região inguinal, mesentério, região submandibular ou cervical.

<u>Ínguas?</u>

O que são?

Que informação passam?

Os linfonodos se aglomeram em algumas regiões do corpo, como axila, região inguinal, mesentério, região submandibular ou cervical.

Ínguas podem ser sinal de infecção!

Em caso de invasão por microorganismos, os glóbulos brancos dos linfonodos começam a se multiplicar ativamente para dar combate. Com isso, os gânglios incham, formando as ínguas.

É possível detectar um processo infeccioso pela existência de linfonodos inchados.

Sistema Linfático: Baço

Grande <u>órgão linfático secundário</u>.

Localização: parte superior esquerda do abdômen (entre o fundo do estômago e o músculo diafragma).

Características: é mole e esponjoso.

Fragmenta-se facilmente! Se rompe facilmente após impactos. Precisa ser removido para evitar hemorragias.

Nesses casos, o fígado assume suas funções.

Necessário maior atenção diante de infecções virais ou bacterianas.

Sistema Linfático: Baço

Funções:

- Reserva de sangue: caso haja uma hemorragia intensa, o sangue liberado ajuda a manter a pressão arterial. O órgão pode armazenar até 250 ml de sangue.
- Controle de células sanguíneas: remove hemácias e plaquetas danificadas ou envelhecidas.
- Defesa / Imunológica:
 - Abriga macrófagos: fagocitam microorganismos e partículas estranhas do sangue, como vírus e bactérias.
 - Abriga **linfócitos B** (que migraram da medula óssea). Um dos locais onde ocorre a <u>ativação dos linfócitos B</u> (se diferenciam em células produtoras de anticorpos).

OBS: o baço não filtra a linfa!

Sistema Linfático: Tonsilas

Órgão linfático secundário.

Aglomerados de tecido linfático, rico em glóbulos brancos.

Situadas na boca, região inferior da língua e faringe.

- Tonsilas faríngeas (adenoides)
- Tonsilas palatinas (amídalas)
- Tonsilas linguais (amídalas linguais)

OBS: Não ficam no trajeto de vasos linfáticos.

Função:

 Abriga glóbulos brancos que geram resposta imune para substâncias que são ingeridas ou inaladas.

Sistema Linfático: Medula Óssea Vermelha

Estrutura localizada dentro de grandes ossos, nas cavidades do osso esponjoso.

Formada por Tecido Conjuntivo Hematopoiético.

Função: formação das diversas células do sangue, incluindo os linfócitos, que são as

células de defesa.

Transplante de medula.

Estrutura do Osso

O **interior** dos ossos é preenchido pela <u>medula</u> <u>óssea</u>, que pode ser de dois tipos:

- Amarela: constituída por tecido adiposo.
- Vermelha: formadora de <u>células do sangue</u>.
 Presente nas <u>cavidades do osso esponjoso</u>.

Com o envelhecimento, a medula óssea vermelha é substituída pela amarela, permanecendo apenas em alguns ossos: esterno, costelas, crânio, vértebras da coluna e nos ossos longos (fêmur e úmero).

Medula Óssea Vermelha

<u>Células parcialmente indiferenciadas</u> (**células-tronco <u>multipotentes</u>**): capazes de originar todas as células do sangue e além de novas células da medula. Mas **não** são capazes de

originar qualquer tipo de célula.

Hematopoiese: processo de formação das células sanguíneas.

- Leucócitos (glóbulos brancos): defesa.
- Linfócitos T
- Linfócitos B

- Eritrócitos

(Glóbulos Vermelhos -

Hemácias): transporte

de Oxigênio.

Células Tronco

Hematopoiéticas

Medula Óssea

- Eritrócitos

(Glóbulos Vermelhos - Hemácias):

transporte de Oxigênio.

Eritropoiese: processo de formação de eritrócitos. Necessita de B12, Fator Intrínseco

de Absorção e Ferro!

Estímulo: hipoxia (queda dos níveis de oxigênio).

Rim: libera EPO (eritropoietina), que estimula a medula óssea.

Hemácias são anucleadas e sem organelas.

Lotadas de **hemoglobinas**.

- Trombócitos (Plaquetas):

Coagulação do sangue.

Anucleadas!

São <u>fragmentos celulares</u>, gerados a partir de células chamadas <u>Megacariócitos</u>.

Lotadas de grânulos que abrigam substâncias fundamentais para a coagulação.

Células Sanguíneas

- Trombócitos (Plaquetas): coagulação do sangue.
- 2. Leucócitos (glóbulos brancos): defesa.
 - a. Agranulócitos
 - Linfócitos T
 - Linfócitos B
 - Monócitos
 - b. Granulócitos
 - Neutrófilos
 - Basófilos
 - Eosinófilos
- 3. Eritrócitos (Glóbulos Vermelhos Hemácias): transporte de Oxigênio.

Sistema Imunológico Humano