ETI Aufgabenblatt

https://github.com/LitschiW/ETIPAVorschlaege

letzte Änderung: 26. Januar 2019

Aufgabenbereich 1: Festkommaarithmetik

a)

Füllen Sie die Tabelle aus:

Dezimalzahl	Vorzeichenbehaftete Binärdarstellung	B-Komplement Darstellung	Hexadecimal Darstellung
42			2A
-8			
	00110000		
	10001101		
		00011010	
		11111111	

(Hinweis: $A_{(16)} = 10_{(10)}, B_{(16)} = 11_{(10)}, C_{(16)} = 12_{(10)}, D_{(16)} = 13_{(10)}, E_{(16)} = 14_{(10)}, F_{(16)} = 15_{(10)}$

1	`
h	١
V	,

Konvertieren Sie 93, $625_{(10)}$ jeweils in die Binär- und Hexadezimaldarstellung:

(Hinweis: Ihr Ergebnis sollte mehr als 8 Binärstellen enthalten. Das ist in diesem Fall gewollt, Sie müssen nicht kürzen/runden.)

aktion:			mittels binärer

Aufgabenbereich 2: Fließkommaarithmetik

Für diesen Aufgabenbereich nutzen wir den IEEE 754 Standard für Minifloats. D.h. wir benutzen eine 8 Bit Darstellung mit einem Vorzeichen-, 3 Manitssen- und 4 Exponentbits.

a)

Wie groß ist der Bias unserer Darstellung?

Was ist der Bias für eine Fließkommzahl mit einem Exponent der Länge 6?

b)

Konvertieren Sie diese Sonderfälle in Fließkommadarstellung:

$$\infty =$$

$$0 =$$

$$NaN =$$

c)

Bestimmen sie die einzelnen Bestandteile der Fließkommazahl $11011100_{(2F)}$:

$$V =$$

$$E =$$

$$M =$$

d)
Konvertieren Sie $11011100_{(2F)}$ in eine Dezimalzahl:
e)
Addieren Sie 01011100 $_{(2F)}$ und 01001000 $_{(2F)}$ mittels Fließkommaarithmetik:

f)
Multiplizieren Sie 01011100 $_{(2F)}$ und 00111100 $_{(2F)}$ mittels Fließkommaarithmetik:
$\mathbf{g})$
Stellen sie 1 ₁₀ in Fließkommaschreibweise da:
Zeigen Sie anhand eines Beispiels, dass man durch das kontinuierliche Addieren von 1_{10} auf eine beliebige Fließkommazahl F $(\neq \infty)$ niemals ∞ erreicht.

Aufgabenbereich 3: Logik und CMOS-Komplexgatter

In diesem Bereiche beschäftigen wir uns mit Logik und CMOS Komplexgattern. Es wird erwartet, dass Sie entsprechen Pull-up und Pull-down Netzwerke zeichnen.

a) Logische Funktionen

Füllen sie Folgende Wahrheitstabellen aus:

(Hinweis: $(A \Rightarrow B) \equiv (\overline{A} \lor B)$)

A	B	$A \lor B$
0	0	
0	1	
1	0	
1	1	

A	B	$A \Rightarrow B$
0	0	
0	1	
1	0	
1	1	

A	B	$\overline{A \wedge B}$
0	0	
0	1	
1	0	
1	1	

A	B	$\overline{A \oplus B}$
0	0	
0	1	
1	0	
1	1	

b)

Geben sei folgende Funktionstabelle der Funktion F(A, B, C) = Q:

A	В	С	Q
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Welche Normalform der Funktion wäre kürzer?	
1. kKNF	
2. kDNF	
Geben sie die Funktion in der gewählten Normalform an:	
F(A, B, C) =	
a) Allgamaina Fragan zum Thoma CMOS:	_
c) Allgemeine Fragen zum Thema CMOS: Wie viele Transistoren benötiget ein OR Komplexgatter?	
Wie viele Transistoren benötiget ein NAND Komplexgatter?	
Was ist der Unterschied zwischen n-Mos- und p-Mos-Transistoren?	

$\mathbf{d})$
Vereinfachen Sie die Formel $\overline{\left(C\vee(\overline{C}\wedge A)\vee(\overline{\overline{A}\vee B})\right)\wedge\overline{C}}$ möglichst stark:
Zeichnen Sie ein (strukturgleiches) CMOS-Komplexgatter das ihrem Ergebnis entspricht:

e)
Zeichnen Sie folgende Funktion strukturgleich als CMOS-Komplexgatter: $f(x) = \overline{(A \vee B)}$.
Wie viele Transistoren würden Sie benötigen?
Aufmahambanaiah A. Elindana und Cabaltumman

Aufgabenbereich 4: Flipflops und Schaltungen

a) Volladdierer

Zeichnen sie einen Halbaddierer auf Gatterebene. Setzen Sie dann 2 Halbaddierer (gekennzeichnent als \fbox{HA}) zu einem Volladdierer zusammen:

Füllen Sie die Funktionstabelle für ein Volladdierer aus:

A	B	C_{in}	S	C_{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

b)	D-FlipFlop
n	1 1
\sim	

Was ist der	Unterschied z	wischen einem I	O-Latch und ein	em D-Flip-Flop	p?	

Füllen Sie die Funktionstabelle für ein D-Flip-Flop aus:

C	D_t	D_{t+1}

(Hinweis: ☐ bezeichnet eine sinkende, ☐ eine steigende Flanke)

Zeichnen Sie ein taktgesteuertes D-Latch auf Gatter Ebene. Makieren sie das enthaltene RS-Flipflop:

Zeichnen	Sie ein	taktgesteuertes	D-Flip-Flop.	Nutzen Sie	D-Latches	als vorhandene	Bauteile:
a) Sa	hicho	nogiston					
		register	. 1				
Zeichnen	Sie ein	3-Bit-Links-Sch	neberegister:				
Wofür kö	innen Se	chieberegister ei	ngesetzt werd	len?			

			ontroller finden?		
Aufgaben	bereich 5:	Finite St	ate Machin	ies	
$\mathbf{a})$					
Was ist der unt	erschied zwischer	Moore und Me	ealy Automaten?		
b)					
Ο)					

(Hinweis: bei einem Zustand S_i/X bezeichnet S_i den Zustand und X die Ausgabe in diesem Zustand.)

- •
- •
- •

$\mathbf{c})$

Entwerfen sie einen synchronen Modulo 4 Zähler. Der Zähler soll bidirektional zählen können, dafür betrachten wir den Eingang dir. Für dir = 0 soll vorwärts, bei dir = 1 rückwärts gezählt werden.

Zeichen Sie eine Zustandsdiagramm für diesen Automaten:

(Hinweis: Den Clock Eingang müssen sie zunächst nicht beachten.)

Geben Sie die Zustandsübergangstabelle an:

Takt t			Tal	$\operatorname{st} t + 1$
dir	s_1	s_0	s_1	s_0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Geben sie die Zustandsübergangslogik für den Zustand $s=s_1s_0$ an:

$$s_1 =$$

$$s_0 =$$

Nun fügen wir dem Automaten 4 1-Bit Ausgänge mit dem Namen ZERO, ONE, TWO, THREE hinzu. Sie sollen entsprechend ihrer Namen den Wert 1 annehmen, wenn der Automat den dazugehörigen Zustand erreicht. (z.B. für s=00 ist ZERO=1, der Rest=0)

ZERO =

ONE =

TWO =

THREE =

Zeichnen sie nun den Automaten auf Gatterebene. Ihnen stehen D-Flip-Flops, Normale-Gatter
(AND, OR, NAND, NOR, XOR, NOT) mit beliebig vielen Eingängen zur Verfügung. Beachten Sie, dass sie nun auch den Clock Eingang betrachten müssen:
3. 3

Aufgabenbereich 6: VHDL