Ovation 数据广播与历史采集的关系

Zhu Wei

April, 2015

在我们的系统使用中,经常会遇到点的历史数据值与逻辑执行应该表现的值不一致的情况,下文从 Ovation 点的广播与历史站的采样来分析造成这一现象的可能,这样我们设计系统时可以尽量避免惊讶的情况出现。

Ovation 使用 DDB(Dynamic Data Block)来广播点的动态数据,动态数据的定义可以在 REF1140(Record Type)手册找到,就是通常的 1W/2W/3W/AV/A2 等字段。

点的广播频率(Broadcast Frequency)可以是 S(Slow, 1s 广播),F(Fast, 100ms 广播),A(Aperiodic 非周期,通常只用于算法点,因为算法点没有需要周期广播的数据),广播频率一旦设置就不能随意更改,在 Windows 版本的 Ovation 需要将系统置于 Offline Mode 后才可以修改。并且修改完成后,所有引用该点的站(包括上位机都需要 Clear&Load)。另外 OPP Rate 通常设置为与广播频率一致,OPP 的作用是处理点的命令字和报警等,具体见 REF1140 手册。

对于 Fast 广播的点,我们可以理解为将 1s 平均 10 等分,这里 Ovation 引入了 Timeslot 的概念。在 Ovation Studio 搜索 DDB,可以得到如下图的表格:

Object: Ddb	Object Lo	Object Key	Object N	DDB ID	DDB Length	DDB Multicast Flags	DDB Version	DDB Rate	DDB Time Slot
DDB 10	/OVLAB/NET1/	1813	DDB 10	10	100	0	1	S	2
DDB 256	/OVLAB/NET1/	1814	DDB 256	256	1396	0	59	S	1
DDB 258	/OVLAB/NET1/	2206	DDB 258	258	216	4	18	Α	1
DDB 259	/OVLAB/NET1/	2445	DDB 259	259	1392	0	58	F	0
DDB 260	/OVLAB/NET1/	2660	DDB 260	260	1392	0	58	F	0
DDB 261	/OVLAB/NET1/	2721	DDB 261	261	1392	0	58	F	0
DDB 262	/OVLAB/NET1/	2772	DDB 262	262	48	0	2	F	0
DDB 263	/OVLAB/NET1/	2813	DDB 263	263	264	0	11	S	10

DDB 实际上就是一个以太网数据包,长度通常不超过 1400 个字节,不使用上层的 IP/UDP 协议,减少了包的大小,且不超过 1400 字节,也无需分包和重新组包,提高广播效率。上表中 Timeslot 为 0 的 DDB 就是快速广播(每 100ms 广播一次); 1~10 则是慢速广播,每 1s 广播一次,为 1 说明在第一个 100ms 的时间槽广播,为 10 说明第十个 100ms 的时间槽广播。需要注意的是,一个 DDB 必然只属于一个控制器。点的 DDB 分配是在站第一次被 Load 的时候分配的,所以我们会发现控制器第一次 Load 的时候耗时最长,而再次 Clear&Load 或者 Load 备用控制器的时候就快了。而 DDB 一旦分配后,这个 DDB 资源就被永远占用了,要回收只有重建数据库,因此在现场调试的时候可以注意最大 DDB 的数值,DDB 在 Ovation 刚安装是为 1024,建议直接修改为 3072,这样最大 DDB 就是 3072+256=3328,如果系统的 DDB 接近 3000 后就要开始注意了。

接下来建立 4 个点在同一个控制器,DDB-LA1/DDB-LA1-FAST/DDB-LA2/DDB-LA2-FAST,将 4 个点都放在 Fast 区且都在 同一个 DDB 包中。建立如下图的逻辑,逻辑图在 100ms 任务区,其中 DDB-LA1 从 0~600 不断变化,每个周期增加 1,直到 600 后再每个周期减少 1,如此往复循环,DDB-LA1-FAST 由变动后的 DDB-LA1 赋值;同样的,DDB-LA2 与 DDB-LA2-FAST 也是如此。这样该逻辑可以确保 4 个点在每个周期是一样的数值:

在 Ovation 的 OPH 中可以设置 0.1s 采样或 1s 采样历史点的数值,这一次我们先将 4 个点都加入 0.1s 的采样组。使用趋势软件搜索这 4 个点的历史如下,4 个点每 1 秒都变化了 10:

如果用 Point Review 还能看到每 100ms 变化 1,如下图:

03/30/2015 13:20:28.000	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	394.000000
03/30/2015 13:20:27.900	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	395.000000
03/30/2015 13:20:27.800	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	396.000000
03/30/2015 13:20:27.700	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	397.000000
03/30/2015 13:20:27.600	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	398.000000
03/30/2015 13:20:27.500	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	399,000000
03/30/2015 13:20:27.400	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	400.000000
03/30/2015 13:20:27.300	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	401.000000
03/30/2015 13:20:27.200	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	402.000000
03/30/2015 13:20:27.100	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	403.000000
03/30/2015 13:20:27.000	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	404.000000
03/30/2015 13:20:26.900	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	405.000000

如果我们将 4 个点都加入慢速广播,且都在一个 DDB 的话,趋势还是这样的。

接下来,我们只将 DDB-LA1 与 DDB-LA2 变成慢速广播点,另外两个点还是快速广播点,并且确保 DDB-LA1 与 DDB-LA2 在同一个 DDB 中,该 DDB 的 Timeslot 为 3,而这 4 个点还是配置在 OPH 的 0.1 的采样区,这时候搜索趋势,就会发现如下图:

(A) DDB-LA1.UNIT1@N	ET1			Au			
(A) DDB-LA1-FAST.UNIT1@NET1							
(A) DDB-LA2.UNIT1@N	ET1			Au			
▼ (A) DDB-LA2-FAST.UNITi@NETi A							
Graph Table View Radar View Information							
Date Time	DDB-LA1.U	DDB-LA1-FASTJJ	DDB-LA2.U	DDB-LA2-FAST.UNIT1@N			
03/30/2015 13:07:48	408.000	413.000	408.000	413.000			
03/30/2015 13:07:47	398.000	403.000	398.000	403.000			
03/30/2015 13:07:46	388.000	393.000	388.000	393.000			
03/30/2015 13:07:45	378.000	383.000	378.000	383.000			
03/30/2015 13:07:44	368.000	373.000	368.000	373.000			
03/30/2015 13:07:43	358.000	363.000	358.000	363.000			
03/30/2015 13:07:42	348.000	353.000	348.000	353.000			
03/30/2015 13:07:41	338.000	343.000	338.000	343.000			
03/30/2015 13:07:40	328.000	333.000	328.000	333.000			
加上图 应该是完全一样粉值	240 000 44 - A E 48 5	第	710 000 71 → 60 1 → =	而 ODH 还是以 0.1c 至样 由			

如上图,应该是完全一样数值的 4 个点,慢速广播的点在趋势中看到竟然小了 5,而 OPH 还是以 0.1s 采样。由于 DDB 数据包不含时间戳信息,因此 OPH 历史数据的时间信息实际上是历史站标上去的。 DDB-LA1 与 DDB-LA2 在第 3 个时间槽广播了数据,而趋势软件选择了快速广播点的第 8 个时间槽的数据(具体趋势选择哪个数据是不确定的),这样趋势上虽然是同 1 秒,但是实际上,却差了 5 个时间槽,对应 5 个控制周期,这样就差了 5。

接下来我们看看用 Historical Review 搜索历史数据会怎样,Historical Review 可以将数据的时间戳显示为毫秒级,如下图:

03/30/2015 13:20:28.000	DDB-LA1.UNIT1@NET1	System Disk Read Usage	394.000
03/30/2015 13:20:27.000	DDB-LA1.UNIT1@NET1	System Disk Read Usage	404.000
03/30/2015 13:20:26.000	DDB-LA1.UNIT1@NET1	System Disk Read Usage	414.000
03/30/2015 13:20:25.000	DDB-LA1.UNIT1@NET1	System Disk Read Usage	424.000
03/30/2015 13:20:24.000	DDB-LA1.UNIT1@NET1	System Disk Read Usage	434.000
03/30/2015 13:20:23.000	DDB-LA1.UNIT1@NET1	System Disk Read Usage	444.000
03/30/2015 13:20:22.000	DDB-LA1.UNIT1@NET1	System Disk Read Usage	454.000
03/30/2015 13:20:21.000	DDB-LA1.UNIT1@NET1	System Disk Read Usage	464.000
03/30/2015 13:20:28.000	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	394.000
03/30/2015 13:20:27.900	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	395.000
03/30/2015 13:20:27.800	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	396.000
03/30/2015 13:20:27.700	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	397.000
03/30/2015 13:20:27.600	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	398.000
03/30/2015 13:20:27.500	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	399.000
03/30/2015 13:20:27.400	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	400.000
03/30/2015 13:20:27.300	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	401.000
03/30/2015 13:20:27.200	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	402.000
03/30/2015 13:20:27.100	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	403.000
03/30/2015 13:20:27.000	DDB-LA1-FAST.UNIT1@NET1	System Paged Pool	404.000

如上图 DDB-LA1 由于是慢速广播点,即使历史站以 0.1s 采样,还是只能看到 10 为间隔的数据,DDB-LA1-FAST 则是每 0.1 秒都能看到数据,不过我们看到在同样的时间点,这两个数据的值是完全一样的。

接下来我们将 DDB-LA1 的改到 timeslot 为 1 的 DDB 包,DDB-LA2 (由于修改点的 DDB 位置过于困难,这里用了折中的办法,下文中的 DDB-LA2B 实际就认为是 DDB-LA2) 改到 timeslot 为 10 的 DDB 包。然后将 4 个点从历史站的 0.1 的采样区移动到 1s 的采样区。实际上我们平时用得最多的还是 1s 采样区,如果历史站都配成 0.1s 采样,是无法承受的,通常只需把快速广播的点设置为 0.1s 采样,普通慢速广播点还是用 1s 采样。通常来说 DDB-LA1 与 DDB-LA2 应该一直是同样的值,但实际上由于数据广播及历史站采样的关系,我们看到的历史记录却不是这样的,看下图:

1	(A) DDB-LA1.UNIT1@N	IET1			Auto Historian				
	(A) DDB-LA1-FAST.UN	IT1@NET1			Auto Historian				
	(A) DDB-LA2-FAST.UN	IT1@NET1		Auto Historian Auto Historian					
	(A) DDB-LA2B.UNIT1@	NET1							
a	aph Table View Radar View Information								
T	Date Time	DDB-LA1,U	DDB-LA1-FAST.UNIT1@NET1	DDB-LA2-FAST,UNIT1	DDB-LA2B,UNIT1@NET1				
1	03/30/2015 15:17:28	296.000	305.000	305.000	305.000				
1	03/30/2015 15:17:27	286.000	295.000	295.000	295.000				
1	03/30/2015 15:17:26	276.000	285.000	285.000	285.000				
1	03/30/2015 15:17:25	266.000	275.000	275.000	275.000				
1	03/30/2015 15:17:24	256.000	265.000	265.000	265.000				
1	03/30/2015 15:17:23	246.000	255.000	255.000	255.000				
Ì	03/30/2015 15:17:22	236.000	245.000	245.000	245.000				
	03/30/2015 15:17:21	226,000	235,000	235.000	235.000				

如上图的趋势,DDB-LA1 与 DDB-LA2B 应该是一致的,却差了 9。这里我们认为历史站是在第 10 个 timeslot 作了采样(前面已经说过,历史站到底在哪个 timeslot 采样是无法确定的,而且每次重启可能都不一样),。当 DDB-LA1 广播时,4 个点实际都是 286,由于 DDB-LA1 只在 1s 内广播一次,假设历史站在第 10 个 timeslot 采样,收到 DDB-LA1 时的数值就是 286,DDB-LA2B 由于正好在第 10 个 timeslot 广播,这时候历史站采到的数值就是 295,而其他两个点由于每 0.1 广播一次,历史站采样到的也是他们在第 10 个 timeslot 广播的数值。

接下来我们再看看如果将这 4 个点再改到 OPH 的 0.1s 采样区,这次使用 Historical Review 查阅,如下图:

04/03/2015 12:24:52.000	DDB-LA2B.UNIT1@NET1	@ Ovation Control Builder @	305.000000	GQ
04/03/2015 12:24:51.000	DDB-LA2B.UNIT1@NET1	@ Ovation Control Builder @	295.000000	GQ
04/03/2015 12:24:50.000	DDB-LA2B.UNIT1@NET1	@ Ovation Control Builder @	285.000000	GQ
04/03/2015 12:24:49.000	DDB-LA2B.UNIT1@NET1	@ Ovation Control Builder @	275.000000	GQ
04/03/2015 12:24:52.000	DDB-LA1.UNIT1@NET1	@ Ovation Control Builder @	306.000000	GQ
04/03/2015 12:24:51.000	DDB-LA1.UNIT1@NET1	@ Ovation Control Builder @	296.000000	GQ
04/03/2015 12:24:50.000	DDB-LA1.UNIT1@NET1	@ Ovation Control Builder @	286.000000	GQ
04/03/2015 12:24:49.000	DDB-LA1.UNIT1@NET1	@ Ovation Control Builder @	276.000000	GQ
04/03/2015 12:24:51.926	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	309.000000	GQ
04/03/2015 12:24:51.826	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	308.000000	GQ
04/03/2015 12:24:51.726	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	307.000000	GQ
04/03/2015 12:24:51.626	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	306.000000	GQ
04/03/2015 12:24:51.526	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	305.000000	GQ
04/03/2015 12:24:51.426	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	304.000000	GQ
04/03/2015 12:24:51.326	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	303.000000	GQ
04/03/2015 12:24:51.226	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	302.000000	GQ
04/03/2015 12:24:51.126	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	301.000000	GQ
04/03/2015 12:24:50.927	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	299.000000	GQ
04/03/2015 12:24:50.827	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	298.000000	GQ
04/03/2015 12:24:50.727	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	297.000000	GQ
04/03/2015 12:24:50.627	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	296.000000	GQ
04/03/2015 12:24:50.527	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	295.000000	GQ
04/03/2015 12:24:50.427	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	294.000000	GQ
04/03/2015 12:24:50.327	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	293.000000	GQ
04/03/2015 12:24:50.227	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	292.000000	GQ
04/03/2015 12:24:50.127	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	291.000000	GQ
04/03/2015 12:24:50.027	DDB-LA1-FAST.UNIT1@NET1	@ Ovation Control Builder @	290.000000	GQ

如上图,在 51.000 秒这个时间点,DDB-LA1(timeslot 为 1)的值为 296,而 DDB-LA2B(timeslot 为 10)的值为 295,DDB-LA1-FAST(快速广播点)在 50.927 秒这个时间点的值为 299(后面的 300 居然还 miss 了,这也可能是网络有丢包造成的,由于 DDB 数据包强调性能,并不会丢包重传,实际上也没有必要,少量的丢包对系统是没有太大影响的;而现实的逻辑设计中,跨越控制器的 Highway 引用逻辑就就要考虑这个问题,如果一个连锁信号维持的时间太短,在偶尔遇到网络丢包时就可能造成连锁逻辑不执行)。这里我们可以认为历史站的 1s 采样功能是在第 2 个 timeslot 采样的,这时 DDB-LA2B 正好广播出 295 的数值,而 DDB-LA1 的值在下一个 timeslot 广播出时数值已经变为 296 了。实际上不管历史站在哪个 timeslot 采样,都会使得 timeslot 为 1 和 10 的两个点要么相差 9,要么相差 1(可以认为是-1),这个就看历史站采样后,以哪个时间点为 0.000 秒。

而在现实中,我们的逻辑有在 200ms,有在 50ms,硬件点信号上来后维持的时间等情况,具体的现场分析会更加复杂。本文的作用就在于抛砖引玉。我们遇到系统的问题往往习惯性思维认为系统有问题,但实际上系统有问题的概率小之又小,更多得是我们没有想通。