В этом и последующих листках задачи, после номера которых стоит буква "b", являются бонусными. Это означает, что они не являются обязательными и не будут учитываться при выведении оценки за листки, а будут оцениваться отдельно в качестве дополнительных баллов.

- **3.1.** Пусть X нормированное пространство и $X_0 \subset X$ векторное подпространство. Докажите, что
- 1) факторполунорма на X/X_0 действительно является полунормой;
- **2)** топология на X/X_0 , порожденная факторполунормой, является фактортопологией топологии на X (т.е. множество $U \subset X/X_0$ открыто тогда и только тогда, когда его прообраз при факторотображении $Q: X \to X/X_0$ открыт в X).
- **3.2.** Пусть X нормированное пространство и $X_0 \subset X$ замкнутое векторное подпространство. Верно ли, что у любого вектора из X/X_0 есть представитель в X, имеющий ту же норму? Указание. Эта задача эквивалентна одной из задач листка 2 (какой?).
- **3.3.** Пусть (X, μ) пространство с мерой и B(X) пространство всех ограниченных измеримых функций на X, снабженное равномерной нормой. Постройте изометрический изоморфизм между $L^{\infty}(X, \mu)$ и некоторым факторпространством пространства B(X).
- **3.4.** Докажите, что нормированное пространство сепарабельно тогда и только тогда, когда в нем есть плотное векторное подпространство не более чем счетной размерности.
- **3.5.** Докажите, что пространства c_0 , C[a,b], ℓ^p , $L^p[a,b]$, $L^p(\mathbb{R})$ при $p < \infty$ сепарабельны, а ℓ^∞ , $C_b(\mathbb{R})$, $L^\infty[a,b]$ и $L^\infty(\mathbb{R})$ несепарабельны.
- **3.6.** Докажите, что если фундаментальная последовательность в метрическом пространстве имеет сходящуюся подпоследовательность, то она сходится.
- **Определение 3.1.** Пусть X нормированное пространство. Говорят, что ряд $\sum_{n=1}^{\infty} x_n$ векторов из X абсолютно сходится, если сходится числовой ряд $\sum_{n=1}^{\infty} \|x_n\|$.
- **3.7.** Докажите, что нормированное пространство X полно тогда и только тогда, когда в нем каждый абсолютно сходящийся ряд сходится.
- **3.8.** Пусть $\{X_i : i \in I\}$ семейство нормированных пространств, и пусть X их ℓ^p -сумма (где $1 \leq p \leq \infty$). Докажите, что X полно тогда и только тогда, когда полны все пространства X_i .
- **3.9. 1)** Докажите, что пространство $(c_{00}, \|\cdot\|_p)$ неполно для любого $p \in [1, +\infty]$ и что пространство $(\ell^p, \|\cdot\|_q)$ неполно при q > p. **2)** Опишите пополнения этих пространств.
- **3.10. 1)** При $p < \infty$ предъявите фундаментальную последовательность в нормированном пространстве $(C[a,b],\|\cdot\|_p)$, не имеющую предела.
- 2) Опишите пополнение этого пространства.
- **3.11. 1)** Докажите полноту пространства $C^n[a,b]$ относительно нормы $||f|| = \max_{0 \le k \le n} ||f^{(k)}||_{\infty}$.
- 2) Полно ли это пространство относительно равномерной нормы? Если нет, то опишите его пополнение.
- **3.12.** Пусть (X, μ) пространство с мерой. Докажите, что пространство $L^{\infty}(X, \mu)$ полно.
- **3.13.** Докажите, что в банаховом пространстве любая убывающая последовательность $B_1 \supset B_2 \supset B_3 \supset \dots$ замкнутых шаров имеет непустое пересечение (даже если радиусы шаров не стремятся к нулю).

В дальнейшем через Norm обозначается категория, объекты которой — нормированные пространства, а морфизмы — ограниченные линейные операторы. Через $Norm_1$ будет обозначаться категория с теми же объектами, что и в Norm, морфизмы которой — линейные Cooldongleright (т.е. линейные операторы нормы ≤ 1). Полная подкатегория в Norm (соответственно, $Norm_1$), состоящая из банаховых пространств, будет обозначаться через Ban (соответственно, Ban_1).

- **3.14-b. 1)** Докажите, что в *Norm* и $\mathcal{B}an$ любой конечный набор объектов обладает произведением и копроизведением.
- **2)** Докажите, что в $\mathcal{N}orm_1$ и $\mathcal{B}an_1$ любой набор объектов обладает произведением и копроизведением.
- **3)** Верно ли предыдущее утверждение для категорий *Norm* и/или *Ban*?
- **3.15-b.** Пусть X нормированное пространство и $X_0 \subset X$ замкнутое векторное подпространство. Докажите, что факторпространство X/X_0 вместе с факторотображением $Q: X \to X/X_0$ это коядро вложения $X_0 \hookrightarrow X$ (в $\mathscr{N}orm$ и в $\mathscr{N}orm_1$, а в случае полного X в $\mathscr{B}an$ и $\mathscr{B}an_1$).
- **3.16-b.** Пусть X,Y нормированные пространства. Докажите, что морфизм $T\colon X\to Y$ является
- 1) изоморфизмом в Norm (или Ban) \iff он топологический изоморфизм;
- **2)** изоморфизмом в $Norm_1$ (или $\mathcal{B}an_1$) \iff он изометрический изоморфизм;
- 3) мономорфизмом в Norm, $Norm_1$, Ban или $Ban_1 \iff$ он инъективен;
- 4) эпиморфизмом в Norm, $Norm_1$, Ban или $Ban_1 \iff$ он имеет плотный образ;
- **5)** ядром в Norm или $Ban \iff$ он топологически инъективен и (в случае категории Norm) имеет замкнутый образ;
- **6)** ядром в $\mathscr{N}orm_1$ или $\mathscr{B}an_1 \iff$ он изометричен и (в случае категории $\mathscr{N}orm_1$) имеет замкнутый образ;
- 7) коядром в Norm или $Ban \iff$ он открыт;
- 8) коядром в $\mathcal{N}orm_1$ или $\mathcal{B}an_1 \iff$ он коизометричен.