Mathematical Foundations for ML: Contour Plots and Gradients

Nipun Batra and teaching staff

IIT Gandhinagar

August 15, 2025

Table of Contents

Understanding Contour Plots

Introduction to Contour Plots

Definition: What is a Contour Plot?

Concept: A contour plot shows curves where a function f(x, y) = K for different constant values K

Example: Example Function: Circular Contours

$$z = f(x, y) = x^2 + y^2$$

Contour Example: Parabolic Function

Example: Function: $z = f(x, y) = x^2$

Note: This function depends only on x, not on y!

Key Points

Observation: Contour lines are vertical because $f(x, y) = x^2$ is constant for all y values when x is fixed

Contour Example: Manhattan Distance

Example: Function: z = f(x, y) = |x| + |y|

Also known as: Manhattan distance or L1 norm

Key Points

Shape: Diamond-shaped contours due to absolute value functions

Contour Example: Polynomial Function

Example: Function: $z = f(x, y) = x^2 \cdot y$

Type: Mixed polynomial (quadratic in x, linear in y)

Key Points

Key Features:

Asymmetric contours

Contour Example: Hyperbolic Function

Example: Function: z = f(x, y) = xy

Type: Bilinear function (linear in each variable separately)

Key Points

Shape: Hyperbolic contours with saddle point at origin

Gradients and Contour Plots

Understanding Gradients

Definition: What is a Gradient?

Gradient ∇f : Vector pointing in the direction of steepest increase of function f

Key Points

Key Properties

- Direction: Points toward steepest ascent
- Magnitude: Rate of steepest change
- Contour relationship: Always perpendicular to contour lines

Example: Fundamental Insight

All points on the same contour have identical f(x, y) values Moving along a contour: No change in function value

Gradients Visualized: Circular Contours

Example: Function: $z = f(x, y) = x^2 + y^2$

Gradient: $\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$

Key Points

Observations:

Gradient Properties: Key Insights

Important: Direction Interpretation

Steepest Ascent: Gradient ∇f points toward maximum increase in f(x, y)

Steepest Descent: $-\nabla f$ points toward maximum decrease in f(x, y)

Key Points

Contour Relationship

- Same contour: All points have identical f(x, y) values
- Gradient direction: Always perpendicular to contour lines
- Zero gradient: Occurs at critical points (minima, maxima, saddle points)

Summary: Contours and Gradients in ML

Key Points

What We Learned

- Contour plots: Visualize function behavior in 2D
- Different shapes: Circular, diamond, hyperbolic, asymmetric
- **Gradients:** Point toward steepest function increase
- Perpendicular relationship: Gradients contours

Important: ML Applications

- Loss landscapes: Understanding optimization challenges
- **Gradient descent:** Following steepest descent direction
- Regularization: L1/L2 penalties create different contour shapes
- Saddle points: Common in deep learning optimization