Aula 1 - Logistics

Aula 2 Introdução

- Training set: a set of $(X,y)^m$ pairs, where input $X \in R^d$ and output $y \in \{0,1\}$
- Goal: Learn function/model $f: X \rightarrow y$ to predict correctly on new inputs X
 - Step 1: Choose a learning algorithm
 - logistic regression, SVMs, KNNs, decision trees, ANNs etc.
 - Step 2: Optimize parameters/weights W using the training set
 - Minimize a loss function: $\min_{W} \sum_{i=1}^{m} (f_{W}(x^{(i)}) y^{(i)})^{2}$

Treinamento: tunning dos parametros utiliando algoritmos de otimização para minimizar função de perdas.

Generalização: Similarmente a navalha de occam, utilizar hipoteses e funções suficientemente complexas, ou o mais simples possivel que represente os dados.

- Input: X (customer application)
- Output: y (good/bad customer?)
- Target function: $f: \mathcal{X} \to \mathcal{Y}$ (ideal credit approval formula)
- Data: $(X_1, y_1), (X_2, y_2), \dots, (X_N, y_N)$ (training set)
- Hypothesis: $g: \mathcal{X} \to \mathcal{Y}$ (g approximates f well)

 We want to approximate a target function.

- Need a sample of data generated from the target function.
- A hypothesis set is used to avoid candidate functions that do not approximate well the target function.

O algoritmo de aprendizado procura por uma boa função no grupo de hipoteses (seja otimização ou heuristica)

Perceptron

Simplificação de neurônio:

Multipas entradas e uma saida Cada entrada tem um peso que é multiplicado pelas entradas O neuronio faz a soma ponderada das entradas de acordo com os pesos para determinar a saida de acordo com uma funcao de ativacao

Credit approval with a linear classifier.

- Given an input $X = (x_1, x_2, \dots, x_d)$:
 - Approve credit if $\sum_{i=1}^{a} w_i \times x_i > \text{threshold}$,
 - Deny credit if $\sum_{i=1}^{d} w_i \times x_i < \text{threshold}$.
- This rule can be written as:

•
$$h(X) = sign\left(\left(\sum_{i=1}^{d} w_i \times x_i\right) - \text{threshold}\right)$$

- Searching for h is to find optimum values for w_i and threshold
 - w_i is high if x_i is evidence for approval.
 - w_i is low if x_i is evidence for denial.

$$\bullet W^TX = \sum_{i=1}^d w_i \times x_i = 0.$$

Aula 3 Introdução

Credit approval with a linear classifier.

•
$$h(X) = sign\left(\left(\sum_{i=1}^{d} w_i \times x_i\right) - threshold\right)$$

•
$$h(X) = sign\left(\left(\sum_{i=1}^{d} w_i \times x_i\right) + w_0\right)$$

- Threshold is $-w_0$.
- Introduce an artificial coordinate x_0 which is always set to 1.

•
$$h(X) = sign\left(\sum_{i=0}^{d} w_i \times x_i\right)$$

- In vector form: $h(X) = sign(W^T X)$
 - This is the hypothesis set (e.g., linear separations).