Α			Unfil	tered					
0	0	0	0	0	0	0	0	ALDEx2	20
0.2	0.111	2.7	7.2	4.9	0	1.3	2.4	ANCOM-II	
8.7	1	0	113.5	73	0.5	2	0.5	corncob	
0	0	0.1	0.2	3.1	1.5	0	1.1	DESeq2	15
290	1362.333	34.4	730.9	824	43.9	86.9	72.3	edgeR [']	13
341.6	212.778	186.2	845.3	122.9	12.8	109.5	53.5	LEfSe	
0	0	0	0	0	0	0	0	MaAsLin2	
0	0	0	0	0	0	0	0	MaAsLin2 (rare)	10
0	0	0.1	0.2	0.1	0	0	0.1	metagenomeSéq	
0	0	0	0	0	0	0	0	t-test (rare) Wilcoxon (CLR)	
0	0	0	0	0	0	0	0	Wilcoxon (rare)	5
17576.3	16267.333	0	342.3	144.2	556.9	22.8	0	limma voom (TMM)	5
17241.7	29562.444	184	13.6	0.5	0	8	0	limma voom (TMMwsp)	
-			•	•		•		minia voom (numap)	
<u>.</u>	Built – Office	Soil -	Human –	Human – HIV (3)	ਰੁੰ	Human –	Marine		0
sh	-	Ī	na	na	sh	na	Ž.		
wa Wa	Ċ	<u> </u>	Þ	Þ	& a	Þ	(D)		
ite	∄	ue		'	ite				
Ī	8	Ďe	OB	∌	ī	<u>с</u>	è		
≥		Blueberry	(1)	<u> </u>	≟	≝	Ħ		
Freshwater – Arctic)	9	Freshwater – Treat	. diff (1)	Sediment		
i.						Ξ	#		
В			Filte	ered					
B	0	0	0	ered	0	0	0	ALDEx2	
0 0.1	0	2	0 5.4	0 2.7	0	1	1.4	ANCOM-II	25
0 0.1 10.8	0 1.5	2	0 5.4 70.3	0 2.7 50	0 1.2	1 3.5	1.4 1.2	ANCOM-II corncob	25
0 0.1 10.8 0.5	0 1.5 0	2 1 0	0 5.4 70.3 1.9	0 2.7 50 4.2	0 1.2 2	1 3.5 0.6	1.4 1.2 0.6	ANCOM-II corncob DESeg2	
0 0.1 10.8 0.5 48.7	0 1.5 0 51.9	2 1 0 60	0 5.4 70.3 1.9 269.3	0 2.7 50 4.2 315.4	0 1.2 2 33.3	1 3.5 0.6 30.8	1.4 1.2 0.6 35.7	ANCOM-II corncob DESeq2 edgeR	25 20
0 0.1 10.8 0.5 48.7 17.3	0 1.5 0 51.9 7.4	2 1 0 60 216	0 5.4 70.3 1.9 269.3 197.8	0 2.7 50 4.2 315.4 85.3	0 1.2 2 33.3 8.2	1 3.5 0.6 30.8 33.6	1.4 1.2 0.6 35.7 49.3	ANCOM-II corncob DESeq2 edgeR LEfSe	
0 0.1 10.8 0.5 48.7 17.3	0 1.5 0 51.9 7.4 0	2 1 0 60 216	0 5.4 70.3 1.9 269.3 197.8	0 2.7 50 4.2 315.4 85.3 0	0 1.2 2 33.3 8.2 0	1 3.5 0.6 30.8 33.6 0.4	1.4 1.2 0.6 35.7 49.3	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2	20
0 0.1 10.8 0.5 48.7 17.3 0	0 1.5 0 51.9 7.4 0	2 1 0 60 216 0	0 5.4 70.3 1.9 269.3 197.8 0	0 2.7 50 4.2 315.4 85.3 0	0 1.2 2 33.3 8.2 0	1 3.5 0.6 30.8 33.6 0.4 0	1.4 1.2 0.6 35.7 49.3 0	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare)	
0 0.1 10.8 0.5 48.7 17.3 0	0 1.5 0 51.9 7.4 0 0	2 1 0 60 216 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0	0 2.7 50 4.2 315.4 85.3 0 0	0 1.2 2 33.3 8.2 0 0	1 3.5 0.6 30.8 33.6 0.4 0	1.4 1.2 0.6 35.7 49.3 0 0	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq	20 15
0 0.1 10.8 0.5 48.7 17.3 0 0	0 1.5 0 51.9 7.4 0	2 1 0 60 216 0	0 5.4 70.3 1.9 269.3 197.8 0	0 2.7 50 4.2 315.4 85.3 0 0	0 1.2 2 33.3 8.2 0 0 0.1	1 3.5 0.6 30.8 33.6 0.4 0	1.4 1.2 0.6 35.7 49.3 0	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare)	20
0 0.1 10.8 0.5 48.7 17.3 0	0 1.5 0 51.9 7.4 0 0 0	2 1 0 60 216 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0	0 2.7 50 4.2 315.4 85.3 0 0	0 1.2 2 33.3 8.2 0 0	1 3.5 0.6 30.8 33.6 0.4 0 0.2	1.4 1.2 0.6 35.7 49.3 0 0 0.2	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR)	20 15
0 0.1 10.8 0.5 48.7 17.3 0 0 0 0	0 1.5 0 51.9 7.4 0 0 0 0 0 0	2 1 0 60 216 0 0 0 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0 0 0	0 2.7 50 4.2 315.4 85.3 0 0 0 0 0	0 1.2 2 33.3 8.2 0 0 0.1 0 0	1 3.5 0.6 30.8 33.6 0.4 0 0.2 0 0 0 0 5.5	1.4 1.2 0.6 35.7 49.3 0 0 0.2	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR) Wilcoxon (TMM)	20 15 10
0 0.1 10.8 0.5 48.7 17.3 0 0 0	0 1.5 0 51.9 7.4 0 0 0 0	2 1 0 60 216 0 0 0 0 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0 0 0	0 2.7 50 4.2 315.4 85.3 0 0 0 0	0 1.2 2 33.3 8.2 0 0 0.1 0	1 3.5 0.6 30.8 33.6 0.4 0 0.2 0 0 0 5.5	1.4 1.2 0.6 35.7 49.3 0 0 0.2 0	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR) Wilcoxon (rare)	20 15
0 0.1 10.8 0.5 48.7 17.3 0 0 0 0 0 0 0 3.1 5.7	0 1.5 0 51.9 7.4 0 0 0 0 0 0 0 0 3.7 2.3	2 1 0 60 216 0 0 0 0 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0 0 0 0 0	0 2.7 50 4.2 315.4 85.3 0 0 0 0 0 0 0 141.9	0 1.2 2 33.3 8.2 0 0 0.1 0 0 0	1 3.5 0.6 30.8 33.6 0.4 0 0.2 0 0 0 5.5	1.4 1.2 0.6 35.7 49.3 0 0 0.2 0 0 0 100.8	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR) Wilcoxon (TMM)	20 15 10 5
0 0.1 10.8 0.5 48.7 17.3 0 0 0 0 0 0 0 3.1 5.7	0 1.5 0 51.9 7.4 0 0 0 0 0 0 0 0 3.7 2.3	2 1 0 60 216 0 0 0 0 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0 0 0 0 0	0 2.7 50 4.2 315.4 85.3 0 0 0 0 0 0 0 141.9	0 1.2 2 33.3 8.2 0 0 0.1 0 0 0	1 3.5 0.6 30.8 33.6 0.4 0 0.2 0 0 0 5.5	1.4 1.2 0.6 35.7 49.3 0 0 0.2 0 0 0 100.8	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR) Wilcoxon (TMM)	20 15 10
0 0.1 10.8 0.5 48.7 17.3 0 0 0 0 0 0 0 3.1 5.7	0 1.5 0 51.9 7.4 0 0 0 0 0 0 0 3.7 2.3 Buit	2 1 0 60 216 0 0 0 0 0 0 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0 0 0 0 0	0 2.7 50 4.2 315.4 85.3 0 0 0 0 0 0 0 141.9	0 1.2 2 33.3 8.2 0 0 0.1 0 0 0	1 3.5 0.6 30.8 33.6 0.4 0 0.2 0 0 0 5.5	1.4 1.2 0.6 35.7 49.3 0 0 0.2 0 0 0 100.8	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR) Wilcoxon (TMM)	20 15 10 5
0 0.1 10.8 0.5 48.7 17.3 0 0 0 0 0 0 0 3.1 5.7	0 1.5 0 51.9 7.4 0 0 0 0 0 0 0 3.7 2.3 Buit	2 1 0 60 216 0 0 0 0 0 0 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0 0 0 0 160.3 16.6 Human	0 2.7 50 4.2 315.4 85.3 0 0 0 0 0 0 0 141.9	0 1.2 2 33.3 8.2 0 0 0.1 0 0 0	1 3.5 0.6 30.8 33.6 0.4 0 0.2 0 0 0 5.5	1.4 1.2 0.6 35.7 49.3 0 0 0.2 0 0 0 100.8 0.4 Marine	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR) Wilcoxon (TMM)	20 15 10 5
0 0.1 10.8 0.5 48.7 17.3 0 0 0 0 0 0 0 3.1 5.7	0 1.5 0 51.9 7.4 0 0 0 0 0 0 0 3.7 2.3 Buit	2 1 0 60 216 0 0 0 0 0 0 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0 0 0 0 160.3 16.6 Human	0 2.7 50 4.2 315.4 85.3 0 0 0 0 0 0 0 141.9	0 1.2 2 33.3 8.2 0 0 0.1 0 0 0	1 3.5 0.6 30.8 33.6 0.4 0 0.2 0 0 0 5.5 1.7	1.4 1.2 0.6 35.7 49.3 0 0 0.2 0 0 0 100.8 0.4 Marine	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR) Wilcoxon (TMM)	20 15 10 5
0 0.1 10.8 0.5 48.7 17.3 0 0 0 0 0 0 0 3.1 5.7	0 1.5 0 51.9 7.4 0 0 0 0 0 0 0 0 3.7 2.3	2 1 0 60 216 0 0 0 0 0 0 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0 0 0 0 0 160.3 16.6 Human	0 2.7 50 4.2 315.4 85.3 0 0 0 0 0 0 0 141.9	0 1.2 2 33.3 8.2 0 0 0.1 0 0 0 0 Freshwater	1 3.5 0.6 30.8 33.6 0.4 0 0.2 0 0 0 5.5 1.7	1.4 1.2 0.6 35.7 49.3 0 0 0.2 0 0 0 100.8 0.4 Marine	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR) Wilcoxon (TMM)	20 15 10 5
0 0.1 10.8 0.5 48.7 17.3 0 0 0 0 0 0 0 3.1 5.7	0 1.5 0 51.9 7.4 0 0 0 0 0 0 0 3.7 2.3 Buit	2 1 0 60 216 0 0 0 0 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0 0 0 0 0 160.3 16.6 Human	0 2.7 50 4.2 315.4 85.3 0 0 0 0 0 0 0 141.9	0 1.2 2 33.3 8.2 0 0 0.1 0 0 0 0 Freshwater	1 3.5 0.6 30.8 33.6 0.4 0 0.2 0 0 0 5.5 1.7	1.4 1.2 0.6 35.7 49.3 0 0 0.2 0 0 0 100.8 0.4 Marine	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR) Wilcoxon (TMM)	20 15 10 5
0 0.1 10.8 0.5 48.7 17.3 0 0 0 0	0 1.5 0 51.9 7.4 0 0 0 0 0 0 0 3.7 2.3 Buit	2 1 0 60 216 0 0 0 0 0 0 0 0	0 5.4 70.3 1.9 269.3 197.8 0 0 0 0 0 160.3 16.6 Human	0 2.7 50 4.2 315.4 85.3 0 0 0 0 0	0 1.2 2 33.3 8.2 0 0 0.1 0 0 0	1 3.5 0.6 30.8 33.6 0.4 0 0.2 0 0 0 5.5	1.4 1.2 0.6 35.7 49.3 0 0 0.2 0 0 0 100.8 0.4 Marine	ANCOM-II corncob DESeq2 edgeR LEfSe MaAsLin2 MaAsLin2 (rare) metagenomeSeq t-test (rare) Wilcoxon (CLR) Wilcoxon (TMM)	20 15 10 5