Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
1. (a)	(i) small village souse <u>Census</u>	ß1
	e.g. we electoral register or some othersuitable list	S 1
	(ii) Sample survey eg. list of times and days when no of vehicles travelling through can be counted, (some suitable list of time periods)*	B((4)
(6)	eg. X = no. of vehicles passing through in a 10min period X could have a <u>Poisson</u> distribution	G1 B1 (2)
<u> </u>	* time period must be specified e.g. 10 mins, 1 hour, 7 an-7pm but < 1 day	
2. (a)	$X = 10.0 f$ accidents in the next month $X \sim P_0(0.9)$ $P(X = 0) = e^{-0.9} = 0.4065 = 0.407 $	B1 cs.o.
(હ)	Y = no. of accidents in next 6 months. Y~Po(5.4)	BI
Ċ	$P(Y = 2) = e^{-5.4} (5.4)^2$ $= 0.06585$ or 0.06589	MI, AI (3).
(c)	MaB(4, 0.407) correct binomial	BI (I their (a))
	$P(H=2) = {4 \choose 2} (0.407)^2 (0.593)^2 = 0.3495 (0.349 \sim 0.350)$) HI, AI (3)
		3
•		

Stewart House 32 Russell Square London WC1B 5DN .

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
3.	Ho: ρ= 4 ; H,: ρ ≠ 4	B1; B1
	X = no. of gold leads in sample of 20. Under Ho Xallwill	
	Critical Region Probability P(x < 1) = 0.0243 E(x)=5 or	Mı
	P(X <8) = 0.9591 P(X <2) = 0.4913 2x P(X <2)	
	C.R. $\times 1$ $P(x)=1-0.8982$ = 2×0.0913 or $\times 9$ = 0.1826	A1 each value.
	or $\times > 9$ = $\frac{0.1826}{}$	π,
	Not significant (either x=2 notin C.R. or prob > 1070)	МІ
	Insufficient evidence of a change in proportion of gold leads	AIV
		7
4.	X = no. of letters marked 1st class X~B(10.0-20)	
(a)	P(x >, 3) = 1-P(x < 2), = 1-0.6778 = 0.3222 40.322	MI, A1 (2)
(6)	$P(X < 2) = P(X \le 1)$, = 0.3758 ~ 0.376	MI, AI (2)
(c)	l	MI (Normal aprox)
	F = N(14, 11-2)	Al oro2
	$P(F \le 12) \approx P(2 \le \frac{12.5 - 14}{\sqrt{11.2}})$ \$\text{tundardizing} \text{Stundardizing}	HI 5 MI
	$\frac{1}{11} \frac{1}{12} \frac{1}{13} = \rho(2 \le -0.4482) Awrt -0.45$	AI
	= 1-0-6736	
	-0.45 (AWRT 0.326~0327)	AI (7)
(4)	The 70 letters form a random sample or are representative	B1 (1)
	or letters are <u>independent</u>	12

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Ma	rks
5.	X= no. of requests for bulbs in a week. X~Po(2)		
· (a)	$P(x=4) = \frac{e^{-2} \cdot 2^4}{4!} \text{at} \left[P(x \le 4) - P(x \le 3) \right]$	HI	(0)
	= 0-0902 or 0.090 or 0.09	Aı	(2)
(h)	$P(x>5) = 1 - P(x \le 5), = 1 - 0.9834 = 0.0166$	H1, A1	(2)
(د)	Y=no. of requests in 3 weeks. Y~ Po(6)	<u>8</u> 1	
	P(Y < 5), = 0-4457	M1, A1	(3)
(d)	Ho: λ=2 (σ-μ=8); H1: λ(2 (σ-μ(8)	B1; B1	
	$R = \text{no.of requests in 4-weeks}$. $R \sim Po(8)$ $P(R \leq 3) = 0.0424$ [C.R. $\leq 3 \propto \text{prob} < 5\%$] sig	MI, AI	
	there is evidence that the rate of requests has decreased	AIJ	(5)
6 (a)	$f(x) = \frac{d}{dx}f(x) = \frac{1}{27}\left(-3x^2 + 12x\right)$ Attempt $\frac{d}{dx}$	MI A <i>2/110</i>	-1 e.e.oo.
(W	$\frac{d[f(x)] = 0}{dx} = -6x + 12 = 0, \Rightarrow 2c = 2 \text{ is mode}$	MI, AI	(2)
(0)	f(x) 1 (1/4) x, f(x) axes maked	B1 B1	
	and at least 1, 4	Bı	(3)
(a)	$\mu = \int_{1}^{4} \left(\frac{4x^{2} - x^{3}}{q} \right) dx$ Attempt $\int x f(x) dx$	1	Linitegration Hempted
	$= \frac{1}{9} \left[\frac{4x^3}{3} - \frac{x^4}{4} \right]_{1}^{4} = \left(\frac{256}{27} - \frac{256}{36} \right) - \left(\frac{4}{27} - \frac{1}{36} \right)$ Correct limit	h HI	
	= 1.25 0.9/4	Al	(3)
(e)	$F(2.25) = \frac{1}{27} \left(-2.25^{3} + 6 \times 2.25^{2} - 5 \right) = 0.517 (AWAT 0.51)$	01	(1)
(4)	$F(\mu) > 0.5 \Rightarrow \mu > \text{median}$ $F(2) = \frac{1}{27} (-8 + 24 - 5) = \frac{1}{27} = 0.407 \Rightarrow \text{mode} < \text{median}$	015	from(e) (2)
<u>L</u>	r(2) = 17 (-0 + 24-5) - 127 - 0.407 - 0.1000		

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
7,	(a) $f(\tau(0.2)) = 0.2$	B1 (1)
·	(b) $\mu = E(T) = 0.5$	β ₁ (1) H1¬
	(c) $E(\tau^2) = \int_0^1 kt^2 dt = \left[\frac{t^3}{3}\right]_0^1$	Al dep
	$V\alpha(\tau) = (\frac{1}{3}) - (0) - \mu^2 = \frac{1}{12}$ \(\frac{1}{12}\)	HI (4)
	(d) X = no. of children with T<0.2 X 2B(20,0.2) Identify	MI (I p from (a))
	$P(x \leq 4) = 0.6296$	HI, AI (3)
	(e) Expect mean to still be close to 0.5 (or no change)	B1 (2)
	Expect voince to be <u>reduced</u>	B1 (2)
	(f) $P(T<0.2) = \int_0^{0.2} 4t dt$ Afterpt $\int 4t dt$ between 0,0.2	М
	$= \left[4t^{2}/_{2}\right]_{0}^{6.2}$	Al cs.o. (2)
	$= 2x(0.2)^2 - 0 = 0.08 $	n cs.o. (2)
	(9) Y= no. of players stopping star in under .25.	M
	y~β(75, 0.08) ≈ Po (6) λ=6	At .
	$P(Y>7) = 1 - P(Y \le 7)$	Ni
	= 0.256	A1 (4)
12 Bar		(7)
(S.c.	Nomal Approx N(6,5.52) 16, 5.52 M1 } 18.2/40.	તુવુ
	→ (0.261~0.262) A1	