Nonsmooth Nonlinear Conjugate Gradient Method for Interactive Contact Force Computation

Morten Silcowitz Sarah Niebe Kenny Erleben

Department of Computer Science University of Copenhagen Denmark

June 2010

What is it all about?

An Interactive Goal Oriented Task

The Interactive Requirements

Must

- Be responsive
- Be interactive
- Have high fidelity

Why is it a Hard Problem?

- Computational very heavy
- Limited time to compute result
- End user is unpredictable
- End user has divine power \approx very unphysical
- "Traditionally" proof of existence of multiple solutions

Solution: Iterative methods!

The State-of-the-Art Iterative Method

Projected Gauss-Seidel (PGS) from ODE, Bullet etc..

- Linear Convergence Rate
- Inaccurate Friction Forces
- Incredible Robust

Consequences: Great for blow them up physics but simulation is an art form!

Facts of Life and Hypotheses

- Better accuracy improves fidelity
- With better convergence rate one gets better accuracy in fewer iterations
- A Newton method is great but
 - Lack robustness!
 - Iteration cost is high!
 - Performance is unpredictable!

Desire: Something that behaves like PGS but with better convergence!

The Contact Force Problem

Deriving it...

- Start with classical mechanics
- Add some approximations
- Do a whole bunch of mathemagical tricks then our final problem is to find λ where

$$\mathbf{y} = \mathbf{A}\lambda + \mathbf{b}$$

and for each i we have

$$y_i < 0 \Rightarrow \lambda_i = \mathbf{u}_i(\lambda),$$

 $y_i > 0 \Rightarrow \lambda_i = \mathbf{I}_i(\lambda),$
 $y_i = 0 \Rightarrow \mathbf{I}_i(\lambda) \le \lambda_i \le \mathbf{u}_i(\lambda).$

where \mathbf{l}_i and \mathbf{u}_i are affine functions modeling friction bounds and non-negative normal forces.

An Quick Observation

The Contact Force Problem is a Nonlinear Complementarity Problem (NCP)

Oh no! If only we had a mixed Linear Complementary Problem then

We could use a Projected Conjugate Gradient method on a Quadratic Programming Problem reformulation

That would give us

- Same iteration cost as PGS
- But quadratic convergence rate instead of linear

Projected Gauss-Seidel Method (PGS)

Using a splitting of $\mathbf{A} = \mathbf{L} + \mathbf{D} + \mathbf{U}$

and a whole lot of math later ...

we have the Projected Gauss-Seidel Method

$$\lambda^{k+1} \leftarrow \min(\mathbf{u}(\lambda^k), \max(\mathbf{I}(\lambda^k), (\mathbf{D} + \mathbf{L})^{-1}(\mathbf{U}\lambda^k - \mathbf{b})))$$

One iteration of PGS can be implemented nicely as a forward loop we write it as

$$\lambda^{k+1} = \mathbf{PGS}(\lambda^k)$$

The Idea Part One

Assuming convergence $\lambda^k \to \lambda^*$ for $k \to \infty$

$$\lambda^* = \underbrace{\min(\mathbf{u}(\lambda^*), \max(\mathbf{I}(\lambda^*), (\mathbf{D} + \mathbf{L})^{-1} (\mathbf{U}\lambda^* - \mathbf{b})))}_{\simeq \mathbf{H}\lambda^* + \mathbf{h}},$$

Conceptually evaluation of an affine function

$$0 = (\mathbf{H} - \mathbf{I})\lambda^* + \mathbf{h}$$

Residual is given by

$$\mathbf{r}^k = (\mathbf{H} - \mathbf{I})\lambda^k + \mathbf{h} = \mathbf{PGS}(\lambda^k) - \lambda^k$$

The Idea Part Two

Define a non-smooth nonlinear quasi-quadratic function

$$f(\lambda^k) \equiv \frac{1}{2} \parallel \mathbf{r}^k \parallel^2$$

Gradient is given by

$$\nabla f(\lambda^k) = -\mathbf{r}^k$$

Oh! Gradient Descent method is equivalent to the PGS method

Nonlinear Nonsmooth Conjugate Gradients (NNCG)

Use a Fletcher–Reeves nonlinear conjugate gradient method on f. Update step,

$$\lambda^{k+1} = \lambda^k + \tau^k \mathbf{p}^k$$

 \mathbf{p}^k is the search direction and and τ^k is the line step. Initially $\mathbf{p}^1 = -\nabla f^1$,

$$\beta^{k+1} = \frac{\parallel \nabla f^{k+1} \parallel^2}{\parallel \nabla f^k \parallel^2}$$
$$\mathbf{p}^{k+1} = \beta^{k+1} \mathbf{p}^k - \nabla f^{k+1}$$

Restart if $\|\nabla f^{k+1}\|^2 > \|\nabla f^k\|^2$.

Interactive Results

• Fast convergence for small sized stacks

Interactive Results

• Better convergence for large mass ratios

NNCG Method in Action

Interactive Comparisons with PGS

Non-Interactive Results

- Quadratic convergence rates was observed
- Notice restart spikes

Conclusion and Future Work

Findings

- Roughly same iteration cost as PGS
- Lower error level than PGS
- Super linear and even quadratic convergence rate
- Best for small problems with obvious structure

Speculation

 Over-determinacy causes inability to improve convergence on larger and more complex problems

Future work

Preconditioning or multigrid techniques

Thank you for attending this talk!

