

Outline

- Brief review
- Binary Classification
- Multi-class classification

Outline Lecture 2 - 2/57 2021/4/2

Multivariate Linear Regression

Size	0.488	0.681	0.655	0.088	0.139	0.721	0.999	0.775	0.881	0.007	0.14	0.817	0.681	0.851	0.436
Color	0.609	0.112	0.324	0.669	0.91	0.41	0.902	0.353	0.865	0.539	0.524	0.62	0.093	0.447	0.088
prize	2.737	2.237	2.869	1.626	2.22	3.038	3.929	3.351	4.308	1.304	1.917	3.189	2.656	3.517	1.663

• Data:

- Sample: $(x \in R^n, y \in R)$, where n=2 is the dimension of the input vector x.
- Dataset: $D = \{(x^i \in R^2, y^i \in R) | i \in [1, m]\}$, where m=15 is the number of the samples.

$$\left(\boldsymbol{x}^{i} = \begin{bmatrix} x_{1}^{i} \\ x_{2}^{i} \end{bmatrix}, y^{i} \right)$$

Multivariate Linear Regression

Multivariate Linear Regression

- Data:
 - Sample: $(x \in R^n, y \in R)$, where n=2 is the dimension of the input vector x.
 - Dataset:

$$D = \{(x^i \in R^n, y^i \in R) | i \in [1, m]\},$$

where $m=15$ is the number of the samples.

Linear Model:

$$a = wx + b = w_1x_1 + w_2x_2 + b,$$

where $w = [w_1, w_2], x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

• Object: $\underset{w,b}{\operatorname{argmin}} J(w,b) = \underset{w,b}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^i - y^i)^2$

$$a^{i} = wx^{i} + b$$

$$= w_{1}x_{1}^{i} + w_{2}x_{2}^{i} + b \cdot 1$$

$$= w_{1}x_{1}^{i} + w_{2}x_{2}^{i} + w_{3} \cdot 1$$

$$= w_{1}x_{1}^{i} + w_{2}x_{2}^{i} + w_{3} \cdot x_{3}^{i}$$

$$= \sum_{j=1}^{n} w_{j} \cdot x_{j}^{i}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \longrightarrow \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

Multivariate Linear Regression

Multivariate Linear Regression

- Data:
 - Sample: $(x \in R^n, y \in R)$, where n=2 is the dimension of the input vector x.
 - Dataset: $D = \{(x^i \in R^n, y^i \in R) | i \in [1, m]\}$, where m=15 is the number of the samples.
- Linear Model:

$$a = \boldsymbol{w}\boldsymbol{x} + b = w_1x_1 + w_2x_2 + b,$$
 where $\boldsymbol{w} = [w_1, w_2], \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

• Object:

$$\underset{w,b}{\operatorname{argmin}} J(w,b) = \underset{w,b}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2}$$

Multivariate Linear Regression

- Data:
 - Sample: $(x \in R^n, y \in R)$, where n=3 is the dimension of the input vector x and $x_3=1$.
 - Dataset: $D = \{(x^i \in R^n, y^i \in R) | i \in [1, m]\}$, where m=15 is the number of the samples.
- Linear Model:

$$a = wx = \sum_{j=1}^{n} w_j \cdot x_j^i$$

where
$$\mathbf{w} = [w_1, w_2, w_3], \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Object:

$$\underset{w}{\operatorname{argmin}} J(\mathbf{w}) = \underset{w}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2}$$

Least Squares Approximations

Multivariate Linear Regression

- Data:
 - Sample: $(x \in R^n, y \in R)$, where n=3 is the dimension of the input vector x and $x_3=1$.
 - Dataset: $D = \{(x^i \in R^n, y^i \in R) | i \in [1, m]\}$, where m=15 is the number of the samples.
- Linear Model:

$$a = wx = \sum_{j=1}^{n} w_j \cdot x_j^i$$

where
$$\mathbf{w} = [w_1, w_2, w_3], \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Object:

$$\underset{w}{\operatorname{argmin}} J(\mathbf{w}) = \underset{w}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2}$$

For a differentiable function J(w), if w^* is a minimum point of J, then the following equation holds:

$$\left. \frac{\partial J}{\partial w} \right|_{w=w^*} = 0$$

Least Squares Approximations

$$\frac{1}{m} \left[(a^{1} - y^{1}), \cdots (a^{i} - y^{i}), \cdots, (a^{m} - y^{m}) \right] \begin{bmatrix} x_{1}^{1} \\ x_{2}^{2} \\ \vdots \\ x_{1}^{m} \end{bmatrix} = \frac{\partial J}{\partial w_{1}}$$

$$\frac{1}{m} \left[(a^{1} - y^{1}), \cdots (a^{i} - y^{i}), \cdots, (a^{m} - y^{m}) \right] \begin{bmatrix} x_{1}^{2} \\ \vdots \\ x_{2}^{i} \\ \vdots \\ x_{2}^{m} \end{bmatrix} \begin{bmatrix} x_{2}^{2} \\ \vdots \\ x_{2}^{i} \\ \vdots \\ x_{2}^{m} \end{bmatrix}$$

$$\frac{1}{m} \left[(a^{1} - y^{1}), \cdots (a^{i} - y^{i}), \cdots, (a^{m} - y^{m}) \right] \begin{bmatrix} x_{1}^{1} \\ \vdots \\ x_{2}^{m} \\ \vdots \\ x_{2}^{m} \end{bmatrix} \begin{bmatrix} x_{1}^{3} \\ \vdots \\ x_{3}^{3} \\ \vdots \\ \vdots \\ x_{3}^{i} \end{bmatrix} = \frac{\partial}{\partial w_{1}}$$

Brief review Lecture 2 - 7/57 2021/4/2

Least Squares Approximations

$$\frac{1}{m} [(a^{1} - y^{1}), \cdots (a^{i} - y^{i}), \cdots, (a^{m} - y^{m})] \quad X^{T} = \begin{bmatrix} \frac{\partial J}{\partial w_{1}}, \frac{\partial J}{\partial w_{2}}, \frac{\partial J}{\partial w_{3}} \end{bmatrix}$$

$$\frac{1}{m} (wX - y)X^{T} = \begin{bmatrix} \frac{\partial J}{\partial w_{1}}, \frac{\partial J}{\partial w_{2}}, \frac{\partial J}{\partial w_{3}} \end{bmatrix}$$

$$(wX - y)X^{T} = \mathbf{0}$$

$$wXX^{T} = yX^{T}$$

$$w = yX^{T}(XX^{T})^{-1}$$

Brief review Lecture 2 - 8/57 2021/4/2

Multivariate Linear Regression

- Data:
 - Sample: $(x \in \mathbb{R}^n, y \in \mathbb{R})$, where n=3 is the dimension of the input vector x and $x_3=1$.
 - Dataset: $D = \{(x^i \in R^n, y^i \in R) | i \in [1, m]\}$, where m=15 is the number of the samples.
- Linear Model:

$$a = \mathbf{w}\mathbf{x} = \sum_{j=1}^{n} w_j \cdot x_j^i$$

where
$$\mathbf{w} = [w_1, w_2, w_3], \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Object:

$$\underset{w}{\operatorname{argmin}} J(\mathbf{w}) = \underset{w}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2}$$

Vector form

$$\frac{\partial J}{\partial w} = \frac{1}{m} (wX - y) X^T$$

Component form

$$\frac{\partial J}{\partial w_j} = \frac{1}{m} \sum_{i=1}^m (a^i - y^i) \cdot x_j^i$$

Finding a minimum point step by step

$$w(k+1) = w(k) + \alpha_k \cdot p_k^w$$

 p_k , is called searching direction

 α_k is learning rate at step k.

Vector form

$$w(k+1) = w(k) - \alpha_k \frac{1}{m} (wX - y)X^T$$

Component form

$$w_j(k+1) = w_j(k) - \alpha_k \frac{1}{m} \sum_{i=1}^m (a^i - y^i) \cdot x_j^i$$

Multivariate Linear Regression

- Data:
 - Sample: $(x \in R^n, y \in R)$, where n=3 is the dimension of the input vector x and $x_3=1$.
 - Dataset: $D = \{(x^i \in R^n, y^i \in R) | i \in [1, m]\}$, where m=15 is the number of the samples.
- Linear Model:

$$a = \mathbf{w}\mathbf{x} = \sum_{j=1}^{n} w_j \cdot x_j^i$$

where
$$\mathbf{w} = [w_1, w_2, w_3], \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Object:

```
\underset{w}{\operatorname{argmin}} J(\mathbf{w}) = \underset{w}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2}
```

Steepest Descent Algorithm

```
Input: D, w
for k in 1,2,..., K:
          for i in 1,2,...,m:
               a^i \leftarrow \sum_{i=1}^n w_i x_j^i
          for j in 1,2,..., n:
         \frac{\partial J}{\partial w_j} \leftarrow \frac{1}{m} \sum_{i=1}^m (a^i - y^i) \cdot x_j^i
         for j in 1,2,..., n:
\{ w_j \leftarrow w_j - \alpha \frac{\partial J}{\partial w_i} \}
```

Multivariate Linear Regression

- Data:
 - Sample: $(x \in R^n, y \in R)$, where n=3 is the dimension of the input vector x and $x_3=1$.
 - Dataset: $D = \{(x^i \in R^n, y^i \in R) | i \in [1, m]\}$, where m=15 is the number of the samples.
- Linear Model:

$$a = \mathbf{w}\mathbf{x} = \sum_{j=1}^{n} w_j \cdot x_j^i$$

where
$$\mathbf{w} = [w_1, w_2, w_3], \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Object:

$$\underset{w}{\operatorname{argmin}} J(\boldsymbol{w}) = \underset{w}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2}$$

Steepest Descent Algorithm

Input: D, wfor k in 1,2,...,K: $\begin{cases} a \leftarrow wX \\ \frac{\partial J}{\partial w} = \frac{1}{m}(wX - y)X^T \\ w \leftarrow w - \alpha \frac{\partial J}{\partial w} \end{cases}$

$$J = \frac{1}{2m} \sum_{i=1}^{m} (a^i - y^i)^2$$
$$= \frac{1}{2m} (\mathbf{a} - \mathbf{y}) (\mathbf{a} - \mathbf{y})^T$$

Size	0.488	0.681	0.655	0.088	0.139	0.721	0.999	0.775	0.881	0.007	0.14	0.817	0.681	0.851	0.436
Color	0.609	0.112	0.324	0.669	0.91	0.41	0.902	0.353	0.865	0.539	0.524	0.62	0.093	0.447	0.088
bias	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
prize	2.737	2.237	2.869	1.626	2.22	3.038	3.929	3.351	4.308	1.304	1.917	3.189	2.656	3.517	1.663

Please predict the price for an apple (size=0.6, color=0.3)

2.47*0.6+1.25*0.3+0.69=2.56

w = [2.47, 1.25, 0.69]

Brief review Lecture 2 - 13/57 2021/4/2

machine learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

• The dataset contains the true answer(label):

$$D=\{(x,y)\}$$

- Regression
- Classification

Unsupervised Learning

Reinforcement Learning

Outline

- Brief review
- Binary Classification
- Multi-class classification

Outline Lecture 2 - 15/57 2021/4/2

Color	0.609	0.112	0.324	0.669	0.91	0.41	0.902	0.353	0.865	0.539	0.524	0.62	0.093	0.447	0.088
class	red	blue	blue	red	red	blue	red	blue	red	red	red	red	blue	blue	blue

Binary Classification

Color	0.609	0.112	0.324	0.669	0.91	0.41	0.902	0.353	0.865	0.539	0.524	0.62	0.093	0.447	0.088
class	red	blue	blue								red			blue	blue
label y	1	0	0	1	1	0	1	0	1	1	1	1	0	0	0

• Sample: $(x \in R^n, y \in \{0,1\})$

• Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m] \}$

Size x_1													0.681		
Color x_2	0.609	0.112	0.324	0.669	0.91	0.41	0.902	0.353	0.865	0.539	0.524	0.62	0.093	0.447	0.088
Class sweet	No	No	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	No

Size x_1	0.488	0.681	0.655	0.088	0.139	0.721	0.999	0.775	0.881	0.007	0.14	0.817	0.681	0.851	0.436
x_2	0.609	0.112	0.324	0.669	0.91	0.41	0.902	0.353	0.865	0.539	0.524	0.62	0.093	0.447	0.088
Class sweet	No	No	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	No
Label y	0	0	0	0	0	1	1	1	1	0	0	1	0	1	0

- Sample: $(x \in R^n, y \in \{0,1\})$
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$

Size x_1	0.488	0.681	0.655	0.088	0.139	0.721	0.999	0.775	0.881	0.007	0.14	0.817	0.681	0.851	0.436
Color x_2	0.609	0.112	0.324	0.669	0.91	0.41	0.902	0.353	0.865	0.539	0.524	0.62	0.093	0.447	0.088
Class sweet	No	No	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	No
Label y	0	0	0	0	0	1	1	1	1	0	0	1	0	1	0

- Sample: $(x \in R^n, y \in \{0,1\})$
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m] \}$

Data:

- Sample: $(x \in R^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Model:

$$a = F(x, w)$$

Object:

 $\forall (x, y) \in D$, the output a is close to y

How to define F(x, w)

- Data:
 - Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
 - Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Linear Regression Model:

$$a = wx = \sum_{j=1}^{n} w_j \cdot x_j^i$$

Object:

 $\forall (x, y) \in D$, the output a is close to y

Color x	0.609	0.112	0.324	0.669
label y	1	0	0	1

Threshold classifier output a at τ :

if
$$a \ge \tau$$
, predict "y=1"

if
$$a < \tau$$
, predict "y=0".

For example $\tau = 0.5$

- Data:
 - Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
 - Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Linear Regression Model:

$$a = \mathbf{w}\mathbf{x} = \sum_{j=1}^{n} w_j \cdot x_j^i$$

Object:

 $\forall (x, y) \in D$, the output a is close to y

Color x	0.609	0.112	0.324	0.669
label y	1	0	0	1

label
$$y \in \{0,1\}$$

output
$$a \in [-\infty, +\infty]$$

Data:

- Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Logistic Regression Model:

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$

where
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Object:

 $\forall (x, y) \in D$, the output a is close to y

 $\sigma(z) = \frac{1}{1 + e^{-z}}$ Sigmoid function

Sigmoid Function

A sigmoid function is a bounded, monotonic, differentiable function that is defined for all real input values and has a nonnegative derivative at each point.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

If $z_1 > z_2$ then $\sigma(z_1) > \sigma(z_2)$

Sigmoid Function

A sigmoid function is a <u>bounded</u>, <u>monotonic</u>, <u>differentiable</u> function that is defined for all real input values and has a nonnegative derivative at each point.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

If $z_1 > z_2$ then $\sigma(z_1) > \sigma(z_2)$

$$\frac{\partial \sigma(z)}{\partial z} = -\frac{-e^{-z}}{(1 + e^{-z})^2}$$

$$\frac{\partial \sigma(z)}{\partial z} = \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}}$$

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z) \cdot (1 - \sigma(z))$$

Interpretation of output

Data:

- Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Logistic Regression Model:

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$

where
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Object:

 $\forall (x, y) \in D$, the output a is close to y

Given an input x, the output a estimates the probability that "y=1"

$$p(y = 1|\mathbf{x}, \mathbf{w}) = a$$
$$p(y = 0|\mathbf{x}, \mathbf{w}) = 1 - a$$

Interpretation of output

Data:

- Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Logistic Regression Model:

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$

where
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

Object:

 $\forall (x, y) \in D$, the output a is close to y

$$p(y = 1|\mathbf{x}, \mathbf{w}) = a$$
$$p(y = 0|\mathbf{x}, \mathbf{w}) = 1 - a$$

$$p(y|\mathbf{x}, \mathbf{w}) = a^{y} \cdot (1-a)^{1-y}$$

How to find w?

 $p(y|\mathbf{x}, \mathbf{w}) = a^{y} \cdot (1 - a)^{1 - y}$

Joint probability for sampled dataset D

$$P(Y|X, \mathbf{w}) = \prod_{i=1}^{m} p(y^{i}|x^{i}, \mathbf{w})$$

Size x_1	0.088	0.999	0.007	0.14	0.817	0.681	0.851	0.436
Color x_2	0.669	0.902	0.539	0.524	0.62	0.093	0.447	0.088
Label y		1	0	0	1	0	1	0

$$\mathbf{X} = \begin{bmatrix} x_1^1, x_1^2, \cdots x_1^i, \cdots, x_1^m \\ x_2^1, x_2^2, \cdots x_2^i, \cdots, x_2^m \\ x_3^1, x_3^2, \cdots x_3^i, \cdots, x_3^m \end{bmatrix} \quad Y = \begin{bmatrix} y^1, \cdots y^i, \cdots, y^m \end{bmatrix}$$

we would like to maximize the joint probability P(Y|X, w)

$$\underset{w}{\operatorname{argmax}} P(Y|X, w) = \underset{w}{\operatorname{argmax}} \prod_{i=1}^{m} p(y^{i}|x^{i}, w)$$

$$\underset{w}{\operatorname{argmax}} \log P(Y|X, w) = \underset{w}{\operatorname{argmax}} \log \prod_{i=1}^{m} p(y^{i}|x^{i}, w)$$

$$= \underset{w}{\operatorname{argmax}} \sum_{i=1}^{m} \log \left(p(y^{i}|x^{i}, w) \right)$$

$$= \underset{w}{\operatorname{argmax}} \sum_{i=1}^{\infty} \log \left(p(y^{i} | \boldsymbol{x}^{i}, \boldsymbol{w}) \right) \qquad p(y | \boldsymbol{x}, \boldsymbol{w}) = a^{y} \cdot (1 - a)^{1 - y}$$

$$= \underset{w}{\operatorname{argmax}} \sum_{i=1}^{m} \log \left(a^{i} \cdot (1 - a^{i})^{1 - y^{i}} \right)$$

$$= \underset{w}{\operatorname{argmax}} \sum_{i=1}^{m} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

$$= \underset{w}{\operatorname{argmax}} \sum_{i=1}^{i=1} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

$$\underset{w}{\operatorname{argmax}} \frac{1}{m} \log P(Y|X, w) = \underset{w}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

$$\underset{w}{\operatorname{argmin}} - \frac{1}{m} \log P(Y|X, w) = \underset{w}{\operatorname{argmin}} - \frac{1}{m} \sum_{i=1}^{m} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

$$J(\mathbf{w}) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \cdot \log(a^i) + (1 - y^i) \cdot \log(1 - a^i) \right]$$

$$\underset{\boldsymbol{w}}{\operatorname{argmax}} P(Y|\boldsymbol{X}, \boldsymbol{w}) = \underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{i=1}^{m} p(y^{i}|\boldsymbol{x}^{i}, \boldsymbol{w})$$

$$\underset{w}{\operatorname{argmax}} \log P(Y|X, w) = \underset{w}{\operatorname{argmax}} \sum_{i=1}^{\infty} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

$$\underset{w}{\operatorname{argmax}} \frac{1}{m} \log P(Y|X, w) = \underset{w}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

$$\underset{w}{\operatorname{argmin}} - \frac{1}{m} \log P(Y|X, w) = \underset{w}{\operatorname{argmin}} - \frac{1}{m} \sum_{i=1}^{m} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

$$J(\mathbf{w}) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \cdot \log(a^i) + (1 - y^i) \cdot \log(1 - a^i) \right]$$

Cross-entropy cost function

sample

Data:

- Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Logistic Regression Model:

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$

where
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Object:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \mathbf{J}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \overline{-[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i})]}$$

 $e(a^i, y^i)$

$$e(a,y) = \begin{cases} -\log(a), & y = 1\\ -\log(1-a), & y = 0 \end{cases}$$

$$\begin{cases} e(a,y) \to \infty, & \text{if a is not close to } y \\ e(a,y) \to 0, & \text{if a is close to } y \end{cases}$$

$$e(a,y) = \begin{cases} -\log(a), & y = 1\\ -\log(1-a), & y = 0 \end{cases}$$

$$e(a,y) = \begin{cases} -\log(a), & y = 1 \\ -\log(1-a) & y = 0 \end{cases}$$

$$\begin{cases} e(a,y) \to \infty, if \ a \ is \ not \ close \ to \ y \\ e(a,y) \to 0, if \ a \ is \ close \ to \ y \end{cases}$$

Data:

- Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Logistic Regression Model:

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$

where
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

Object:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \mathbf{J}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} - \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

Vector form

$$\mathbf{w}(\mathbf{k} + \mathbf{1}) = \mathbf{w}(\mathbf{k}) - \alpha_k \frac{\partial J}{\partial \mathbf{w}}$$

Component form

 $e(a^i, y^i)$

$$w_j(k+1) = w_j(k) - \alpha_k \frac{\partial J}{\partial w_j}$$

$$\frac{\partial J}{\partial w_j} = -\frac{1}{m} \sum_{i=1}^m \frac{\partial \left[y^i \cdot \log a^i + (1 - y^i) \cdot \log(1 - a^i) \right]}{\partial a^i} \cdot \frac{\partial a^i}{\partial w_j}$$

$$\frac{\partial J}{\partial w_j} = -\frac{1}{m} \sum_{i=1}^m \left[y^i \cdot \frac{1}{a^i} + (1 - y^i) \cdot \frac{-1}{1 - a^i} \right] \cdot \frac{\partial a^i}{\partial w_j}$$

$$\frac{\partial J}{\partial w_j} = -\frac{1}{m} \sum_{i=1}^m \frac{y^i - a^i}{a^i (1 - a^i)} \cdot \frac{\partial a^i}{\partial w_j}$$

$$a = \sigma\left(\sum_{j}^{n} w_{j} x_{j}\right)$$

$$\frac{\partial J}{\partial w_j} = -\frac{1}{m} \sum_{i=1}^m \frac{y^i - a^i}{a^i (1 - a^i)} \cdot \frac{\partial a^i}{\partial w_j}$$

$$\frac{\partial J}{\partial w_j} = -\frac{1}{m} \sum_{i=1}^m \frac{y^i - a^i}{a^i (1 - a^i)} \cdot \frac{\partial a^i}{\partial \sum_{l}^n w_l x_l^i} \cdot \frac{\partial \sum_{l}^n w_l x_l^i}{\partial w_j}$$

$$\frac{\partial J}{\partial w_j} = -\frac{1}{m} \sum_{i=1}^m \frac{y^i - a^i}{a^i (1 - a^i)} \cdot \left[a^i \cdot (1 - a^i) \right] \cdot x_j^i$$

$$\frac{\partial J}{\partial w_i} = -\frac{1}{m} \sum_{i=1}^m (y^i - a^i) \cdot x_j^i = \frac{1}{m} \sum_{i=1}^m (a^i - y^i) \cdot x_j^i$$

$$a = \sigma\left(\sum_{j}^{n} w_{j} x_{j}\right)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z) \cdot (1 - \sigma(z))$$

$$\frac{\partial J}{\partial w_j} = \frac{1}{m} \sum_{i=1}^{m} (a^i - y^i) \cdot x_j^i = \frac{1}{m} [(a^1 - y^1), (a^2 - y^2), \dots, (a^i - y^i) \dots (a^m - y^m)] \begin{bmatrix} x_j^1 \\ x_j^2 \\ \vdots \\ x_j^m \\ \vdots \\ x_j^m \end{bmatrix}$$

$$\left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \cdots, \frac{\partial J}{\partial w_n}\right] = \frac{1}{m} \left[(a^1 - y^1), \cdots (a^i - y^i), \cdots, (a^m - y^m) \right] \begin{bmatrix} x_1^{-1} \\ x_2^{-1} \\ \vdots \\ x_1^{i} \\ \vdots \\ x_n^{m} \end{bmatrix} \begin{bmatrix} x_2^{-1} \\ x_2^{-1} \\ \vdots \\ x_n^{i} \\ \vdots \\ x_n^{m} \end{bmatrix}$$

$$\frac{\partial J}{\partial \mathbf{w}} = \frac{1}{m} [\mathbf{a} - Y] X^T$$

Data:

- Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Logistic Regression Model:

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$
where $\sigma(z) = \frac{1}{1 + e^{-z}}$

Object:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \mathbf{J}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} - \frac{1}{m} \sum_{i=1}^{m} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

Vector form

$$\mathbf{w}(\mathbf{k} + \mathbf{1}) = \mathbf{w}(\mathbf{k}) - \alpha_k \frac{1}{m} [\mathbf{a} - Y] X^T$$

Component form

$$w_j(k+1) = w_j(k) - \alpha_k \frac{1}{m} \sum_{i=1}^m (a^i - y^i) \cdot x_j^i$$

Data:

- Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Logistic Regression Model:

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$
where $\sigma(z) = \frac{1}{1 + e^{-z}}$

Object:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \mathbf{J}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} - \frac{1}{m} \sum_{i=1}^{m} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

Steepest Descent Algorithm

```
Input: D, w, \alpha
for k in 1,2,..., K:
       for i in 1,2,\ldots,m:
         for j in 1,2,...,n:
       \frac{\partial J}{\partial w_j} \leftarrow \frac{1}{m} \sum_{i=1}^m (a^i - y^i) \cdot x_j^i
       for j in 1,2,..., n:
           w_j \leftarrow w_j - \alpha \frac{\partial J}{\partial w_i}
```

Data:

- Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where n is the dimension of the input vector \boldsymbol{x} .
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\},$ where m is the number of the samples.
- Logistic Regression Model:

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$
where $\sigma(z) = \frac{1}{1 + e^{-z}}$

Object:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \mathbf{J}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} - \frac{1}{m} \sum_{i=1}^{m} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

Steepest Descent Algorithm

```
Input: D, w, \alpha
for k in 1,2,..., K:
          a \leftarrow \sigma(wX)
         \frac{\partial J}{\partial w} = \frac{1}{m} [\boldsymbol{a} - Y] X^T
        w \leftarrow w - \alpha \frac{\partial J}{\partial w}
```


- Data:
 - Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\},$ where m is the number of the samples.
- Logistic Regression Model:

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$

where $\sigma(z) = \frac{1}{1+e^{-z}}$

Vector form

$$\mathbf{w}(\mathbf{k} + \mathbf{1}) = \mathbf{w}(\mathbf{k}) - \alpha_k \frac{1}{m} [\mathbf{a} - Y] X^T$$

Component form

$$w_j(k+1) = w_j(k) - \alpha_k \frac{1}{m} \sum_{i=1}^m (a^i - y^i) \cdot x_j^i$$

- Data:
 - Dataset: $D = \{(x^i \in R^n, y^i \in R) | i \in [1, m]\},$ where m is the number of the samples.
- Linear Regression Model:

$$a = wx = \sum_{j=1}^{n} w_j \cdot x_j^i$$

Vector form

$$\mathbf{w}(\mathbf{k} + \mathbf{1}) = \mathbf{w}(\mathbf{k}) - \alpha_k \frac{1}{m} [\mathbf{a} - Y] X^T$$

Component form

$$w_j(k+1) = w_j(k) - \alpha_k \frac{1}{m} \sum_{i=1}^m (a^i - y^i) \cdot x_j^i$$

Cross-entropy vs Mean Square Error

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$
 where $\sigma(z) = \frac{1}{1 + e^{-z}}$

Cross-entropy

$$J(w) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \cdot \log(a^i) + (1 - y^i) \cdot \log(1 - a^i) \right] \qquad J(w) = -\frac{1}{m} \sum_{i=1}^{m} (a^i - y^i)^2$$

Mean Square Error

$$J(w) = -\frac{1}{m} \sum_{i=1}^{m} (a^i - y^i)^2$$

Cross-entropy cost function

If Hessian Matrix $\nabla^2 I(w)$ is positive determinate matrix, then, J(w) is a convex function.

$$\nabla J(\mathbf{w}) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \cdots, \frac{\partial J}{\partial w_n} \right]$$

$$H = \begin{bmatrix} \frac{\partial^2 J}{\partial w_1 \partial w_1} & \frac{\partial^2 J}{\partial w_1 \partial w_2} & \cdots & \frac{\partial^2 J}{\partial w_1 \partial w_q} & \cdots & \frac{\partial^2 J}{\partial w_1 \partial w_n} \\ \frac{\partial^2 J}{\partial w_2 \partial w_1} & \frac{\partial^2 J}{\partial w_2 \partial w_2} & \cdots & \frac{\partial^2 J}{\partial w_2 \partial w_q} & \cdots & \frac{\partial^2 J}{\partial w_2 \partial w_n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 J}{\partial w_p \partial w_1} & \frac{\partial^2 J}{\partial w_p \partial w_2} & \cdots & \frac{\partial^2 J}{\partial w_p \partial w_q} & \cdots & \frac{\partial^2 J}{\partial w_p \partial w_n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 J}{\partial w_n \partial w_1} & \frac{\partial^2 J}{\partial w_n \partial w_2} & \cdots & \frac{\partial^2 J}{\partial w_n \partial w_q} & \cdots & \frac{\partial^2 J}{\partial w_n \partial w_n} \end{bmatrix}_{n \times n}$$

$$\frac{\partial^2 J}{\partial w_p \partial w_q} = \frac{\partial \frac{\partial J}{\partial w_p}}{\partial w_q}$$

Cross-entropy cost function

$$\frac{\partial^{2} J}{\partial w_{p} \partial w_{q}} = \frac{\partial \frac{\partial J}{\partial w_{p}}}{\partial w_{q}}$$

$$\frac{\partial^{2} J}{\partial w_{p} \partial w_{q}} = \frac{1}{m} \frac{\partial \sum_{i=1}^{m} (a^{i} - y^{i}) \cdot x_{p}^{i}}{\partial w_{q}}$$

$$\frac{\partial^{2} J}{\partial w_{p} \partial w_{q}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial a^{i}}{\partial w_{q}} \cdot x_{p}^{i}$$

$$\frac{\partial^{2} J}{\partial w_{p} \partial w_{q}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial a^{i}}{\partial \sum_{l=1}^{n} w_{l} \cdot x_{l}^{i}} \cdot \frac{\partial \sum_{l=1}^{n} w_{l} \cdot x_{l}^{i}}{\partial w_{q}} x_{p}^{i}$$

$$\frac{\partial^{2} J}{\partial w_{p} \partial w_{q}} = \frac{1}{m} \sum_{i=1}^{m} a^{i} (1 - a^{i}) \cdot x_{q}^{i} \cdot x_{p}^{i}$$

$$\frac{\partial^{2} J}{\partial w_{p} \partial w_{q}} = \frac{1}{m} \sum_{i=1}^{m} a^{i} (1 - a^{i}) \cdot x_{p}^{i} \cdot x_{q}^{i}$$

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z) \cdot (1 - \sigma(z))$$

$$\frac{\partial J}{\partial w_j} = \frac{1}{m} \sum_{i=1}^{m} (a^i - y^i) \cdot x_j^i$$

Cross-entropy cost function

$$\frac{\partial^2 J}{\partial w_p \partial w_q} = \frac{1}{m} \sum_{i=1}^m a^i (1 - a^i) \cdot x_p^i \cdot x_q^i$$

$$H_{pq} = \frac{1}{m} \sum_{i=1}^m a^i (1 - a^i) \cdot x_p^i \cdot x_q^i$$

$$H = \frac{1}{m} \sum_{i=1}^{m} a^{i} (1 - a^{i}) \cdot \mathbf{x}^{i} (\mathbf{x}^{i})^{T}$$

 $\mathbf{x}^i \ (\mathbf{x}^i)^T$ is positive determinate matrix

Hessian Matrix H is positive determinate matrix, then, J(w) is a convex function.

$$H = \begin{bmatrix} \frac{\partial^2 J}{\partial w_1 \partial w_1} & \frac{\partial^2 J}{\partial w_1 \partial w_2} & \cdots & \frac{\partial^2 J}{\partial w_1 \partial w_q} & \cdots & \frac{\partial^2 J}{\partial w_1 \partial w_n} \\ \frac{\partial^2 J}{\partial w_2 \partial w_1} & \frac{\partial^2 J}{\partial w_2 \partial w_2} & \cdots & \frac{\partial^2 J}{\partial w_2 \partial w_q} & \cdots & \frac{\partial^2 J}{\partial w_2 \partial w_n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 J}{\partial w_p \partial w_1} & \frac{\partial^2 J}{\partial w_p \partial w_2} & \cdots & \frac{\partial^2 J}{\partial w_p \partial w_q} & \cdots & \frac{\partial^2 J}{\partial w_p \partial w_n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 J}{\partial w_n \partial w_1} & \frac{\partial^2 J}{\partial w_n \partial w_2} & \cdots & \frac{\partial^2 J}{\partial w_n \partial w_q} & \cdots & \frac{\partial^2 J}{\partial w_n \partial w_n} \end{bmatrix}_{n \times n}$$

$$\begin{bmatrix} x_1^i \\ x_2^i \\ \vdots \\ x_p^i \\ \vdots \\ x_n^i \end{bmatrix}$$

$$\begin{bmatrix} x_1^i, x_2^i, \cdots, x_q^i, \cdots x_n^i \end{bmatrix}$$

Binary classification

Data:

- Sample: $(x \in \mathbb{R}^n, y \in \{0,1\})$, where *n* is the *dimension* of the input vector x.
- Dataset: $D = \{(x^i \in R^n, y^i \in \{0,1\}) | i \in [1,m]\}$, where m is the number of the samples.
- Logistic Regression Model:

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$
where $\sigma(z) = \frac{1}{1 + e^{-z}}$

Object:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \mathbf{J}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} - \frac{1}{m} \sum_{i=1}^{m} \left[y^{i} \cdot \log(a^{i}) + (1 - y^{i}) \cdot \log(1 - a^{i}) \right]$$

Steepest Descent Algorithm

```
Input: D, w
for k in 1,2,..., K:
         for i in 1,2,\ldots,m:
            a^i \leftarrow \sigma \left( \sum_{i=1}^n w_j \cdot x_j^i \right)_{0}^{10} 
         for j in 1,2,...,n:
         \frac{\partial J}{\partial w_j} \leftarrow \frac{1}{m} \sum_{i=1}^m (a^i - y^i) \cdot x_j^i
         for j in 1,2,..., n:
               w_j \leftarrow w_j - \alpha \frac{\partial J}{\partial w_i}
```

Size x_1	0.488	0.681	0.655	0.088	0.139	0.721	0.999	0.775	0.881	0.007	0.14	0.817	0.681	0.851	0.436
x_2	0.609	0.112	0.324	0.669	0.91	0.41	0.902	0.353	0.865	0.539	0.524	0.62	0.093	0.447	0.088
Label y	0	0	0	0	0	1	1	1	1	0	0	1	0	1	0

w = [7.52, 3.19, -6.46]

Binary classification Lecture 2 - 48/57 2021/4/2

Decision Line

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

If $z_1 > z_2$ then $\sigma(z_1) > \sigma(z_2)$

If
$$\sigma(z_1) > \sigma(z_2)$$
 then $z_1 > z_2$

Threshold classifier output a at τ :

if
$$a \ge \tau$$
, predict "y=1"

if
$$a < \tau$$
, predict "y=0".

For example $\tau = 0.5$

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$

Threshold classifier output a at 0.5: Threshold classifier output a at 0.5:

if
$$a \ge 0.5$$
, predict "y=1"

if
$$a < 0.5$$
, predict "y=0".

if
$$wx \ge 0$$
, predict "y=1"

if
$$wx < 0$$
, predict "y=0".

wx = 0 is called the decision line

Decision Line

Size x_1	0.488	0.681	0.655	0.088	0.139	0.721	0.999	0.775	0.881	0.007	0.14	0.817	0.681	0.851	0.436
Color x_2	0.609	0.112	0.324	0.669	0.91	0.41	0.902	0.353	0.865	0.539	0.524	0.62	0.093	0.447	0.088
Label y	0	0	0	0	0	1	1	1	1	0	0	1	0	1	0

$$w = [7.52, 3.19, -6.46]$$

Threshold classifier output a at τ : if $a \ge \tau$, predict "y=1" if $a < \tau$, predict "y=0".

For example $\tau = 0.5$

$$a = \sigma(wx) = \sigma\left(\sum_{j=1}^{n} w_j \cdot x_j^i\right)$$

Threshold classifier output a at 0.5: if $wx \ge 0$, predict "y=1" if wx < 0, predict "y=0".

Accuracy

$$Accuracy = \frac{number\ of\ correct\ prediction}{number\ of\ samples}$$

Threshold classifier output a at τ : if $a \ge \tau$, predict "y=1" if $a < \tau$, predict "y=0".

For example $\tau = 0.5$

Test on training set:

- Reflect the progress of training.
- Evaluate the ability of the model to fit given data.

Test on testing set:

• Evaluate the ability of the model to generalize the knowledge.

Outline

- Brief review
- Binary Classification
- Multi-class classification

Outline Lecture 2 - 52/57 2021/4/2

Multi-class classification

Size x_1	0.488	0.681	0.655	0.088	0.139	0.721	0.999	0.775	0.881	0.007	0.14	0.817	0.681	0.851	0.436
Color x_2	0.609	0.112	0.324	0.669	0.91	0.41	0.902	0.353	0.865	0.539	0.524	0.62	0.093	0.447	0.088
Class sweet	medium 1	medium 1	medium 1	low 0	medium 1	medium 1	high 2	high 2	high 2	low 0	low 0	high 2	medium 1	high 2	low 0

Multi-class classification Lecture 2 - 54/57 2021/4/2

Binary classification

	class	label
*	1	0
	2	1

Multi-class classification

	class	label
*	1	?
	2	?
	3	?

Multi-class classification Lecture 2 - 55/57 2021/4/2

	class	label
*	1	0
	2	1

Threshold classifier output a at τ :

if
$$a \ge \tau$$
, predict "y=1"

if $a < \tau$, predict "y=0".

	class	label
*	1	?
	2	?
	3	?

How to interpret the output *a* ?

Thanks!!!