Teorema 29.1: Teorema di Peano

Sia $(X, \|\cdot\|)$ uno spazio di Banach, con $\dim(X) < +\infty$.

Sia $t_0 \in \mathbb{R}$.

Sia $\mathbf{x}_0 \in X$.

Sia $f: \mathbb{R} imes X o X$ continua.

Esiste $I \subseteq \mathbb{R}$ intervallo con $t_0 \in I$, tale che il problema di Cauchy

$$\left\{egin{aligned} u' = f(u,t) & orall t \in I \ u(t_0) = \mathbf{x}_0 \end{aligned}
ight.$$
 ammetta soluzioni.

Teorema 29.2: Teorema di Godunov

Sia $(X, \|\cdot\|)$ uno spazio di Banach, con $\dim(X) = +\infty$.

Sia $t_0 \in \mathbb{R}$.

Sia $\mathbf{x}_0 \in X$.

Esiste una funzione $f: \mathbb{R} \times X \to X$ continua, tale che per ogni $I \subseteq \mathbb{R}$ intervallo con $t_0 \in I$, il problema di Cauchy

$$egin{cases} u' = f(u,t) & orall t \in I \ u(t_0) = \mathbf{x}_0 \end{cases}$$
 non ammetta soluzioni.

Teorema 29.3: Esistenza di soluzioni a problemi di Cauchy

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia c > 0.

Siano $\mathbf{x}_0, \mathbf{y}_0 \in X$.

Sia $f:[a;b] imes \overline{B}(\mathbf{x}_0,c) o X$ una funzione uniformemente continua.

Si supponga che esiste L>0 tale che

 $lphaig(f(t,A)ig) \leq L \cdot lpha(A)$, per ogni $t \in [a;b]$ e per ogni $A \subseteq \overline{B}(\mathbf{x}_0,c)$.

Sia
$$M = \sup_{(t,\mathbf{x}) \in [a;b] imes \overline{B}(\mathbf{x}_0,c)} \|f(t,\mathbf{x})\|.$$

Sia $b^* = \min \left\{ b, a + \frac{c}{M} \right\}$.

Allora, esiste $u \in C^1ig([a;b^*],Xig)$ tale che:

- $uig([a;b^*]ig)\subseteq \overline{B}(\mathbf{x}_0,c)$, ossia $\|u(t)-\mathbf{x}_0\|\leq c$ per ogni $t\in [a;b^*];$
- $\left\{egin{aligned} u'(t) &= fig(t, u(t)ig) \ \ orall t \in [a;b^*] \ u(a) &= \mathbf{x}_0 \end{aligned}
 ight.$

Osservazioni preliminari

 $M<+\infty$.

Infatti, $f([a;b] \times \overline{B}(\mathbf{x}_0,c))$ è un insieme limitato per la [Proposizione 28.7], essendo f uniformemente continua per ipotesi su $[a;b] \times \overline{B}(\mathbf{x}_0,c)$ convesso e limitato.

Si osserva intanto che, per acquisire la tesi, è sufficiente mostrare l'esistenza di una funzione $u:[a;b^*] \to X$ continua, tale che:

•
$$||u(t) - \mathbf{x}_0|| \le c$$
 per ogni $t \in [a; b^*]$;

•
$$u(t) = \mathbf{x}_0 + \int_a^t fig(au, u(au)ig)\,d au$$
 per ogni $t\in [a;b^*].$

Infatti, dalla seconda condizione seguirebbe allora che u'(t)=fig(t,u(t)ig) per ogni $t\in[a;b]$, e che $u(a)=\mathbf{x}_0$.

Per ogni $n\in\mathbb{N}$ si definisca $u_n:[a;b^*] o \overline{B}(\mathbf{x}_0,c)$ come l'unica funzione tale che

$$u_n(t)=egin{cases} \mathbf{x}_0, & t\leq a+rac{b^*-a}{n} \ \mathbf{x}_0+\int_a^{t-(b^*-a)/n}fig(au,u_n(au)ig)\,d au, & t>a+rac{b^*-a}{n} \end{cases}$$
 , per ogni $t\in[a;b^*].$

Essa è ben definita.

Infatti, fissato $n \in \mathbb{N}$, per ogni $i \in \{1, \dots, n\}$ si definiscano gli intervalli

$$I_{n,i}=ig[a;a+irac{b^*-a}{n}ig];$$

$$J_{n,i}=egin{cases} I_{n,1}, & i=1\ I_{n,i}\setminus I_{n,i-1}, & i>1 \end{cases}$$
; si osserva che $J_{n,1},\ldots,J_{n,n}$ costituiscono una partizione di $[a;b^*]$, e $\mathrm{diam}(J_{n,i})=rac{b^*-a}{n}$ per ogni $i\in\{1,\ldots,n\}$.

La buona definizione della legge u_n segue dal fatto che:

- la sua legge è univocamente determinata in I_1 (in cui si ha $u_n(t) = \mathbf{x}_0$ per ogni $t \in I_1$);
- fissato $i \in \{1, ..., n\}$ di modo da aver individuato la legge di u_n in I_i , per ogni $t \in J_{i+1}$ si ha che $\left[a; t \frac{b^* a}{n}\right] \subseteq I_i$, e dunque risulta ben definita e univocamente determinata la legge di $u_n(t)$ dalla posizione

$$u_n(t) = \mathbf{x}_0 + \int_a^{t-(b^*-a)/n} fig(au, u_n(au)ig)\,d au.$$

Resta da provare che il codominio di u_n è ben definito, ossia $u_n([a;b^*]) \subseteq \overline{B}(\mathbf{x}_0,c)$, cioè $||u_n(t) - \mathbf{x}_0|| \le c$ per ogni $t \in [a;b^*]$.

Fissato dunque $t \in [a; b^*]$, se $t \in I_1$ si ha $u_n(t) = \mathbf{x}_0 \in \overline{B}(\mathbf{x}_0, c)$; se $t \notin I_1$ si ha invece che

$$\|u_n(t) - \mathbf{x}_0\| = \left\| \int_a^{t - (b^* - a)/n} f(\tau, u_n(\tau)) d\tau \right\|$$
 Per definizione di u_n

$$\leq \int_a^{t - (b^* - a)/n} \|f(\tau, u_n(\tau))\| d\tau$$
 Per maggiorazione della norma dell'integrale di Riemann ([Proposizione 21.6])

$$\leq \int_a^{t-(b^*-a)/n} M \, d au$$
 Per definizione di M e per monotonia dell'integrale di Riemann di funzioni a valori reali

$$M=M\left(t-rac{b^*-a}{n}-a
ight) \ \leq M(b^*-a) \ \ \ \ \ \ \ \ \ t-rac{b^*-a}{n} \leq b^* ext{ in quanto } t \in [a;b^*] \setminus I_1$$

$$\leq M\left(a+rac{c}{M}-a
ight)=c$$
 In quanto $b^*\leq a+rac{c}{M}$ per definizione di b^*

Dunque, $u_n(t) \in \overline{B}(\mathbf{x}_0,c)$ per ogni $t \in [a;b^*]$.

Si provi ora che $\{u_n\}_{n\in\mathbb{N}}$ è una successione di funzioni equi-(uniformemente) continue in $[a;b^*]$.

Si fissino dunque $n \in \mathbb{N}$ e $t, s \in [a; b^*]$; si supponga s < t.

Se
$$s,t\in I_1$$
, si ha $\|u_n(t)-u_n(s)\|=0$ per ogni $n\in\mathbb{N}.$

Se $s \in I_1 \not\ni t$, si ha

$$\|u_n(t)-u_n(s)\|=\left\|\int_a^{t-(b^*-a)/n}fig(au,u_n(au)ig)\,d au
ight\|$$

 $\leq \int_a^{t-(b^*-a)/n} \left\| fig(au, u_n(au)ig)
ight\| d au$

$$\leq \int_a^{t-(b^*-a)/n} M \, d au$$

$$=M\left(t-rac{b^*-a}{n}-a
ight)$$

$$\leq M(t-s)$$

Se $s,t \notin I_1$, si ha

Per definizione di
$$u_n$$

Per maggiorazione della norma dell'integrale di Riemann ([Proposizione 21.6])

Per definizione di M e per monotonia dell'integrale di Riemann di funzioni a valori reali

$$\|u_n(t)-u_n(s)\|=\left\|\int_a^{t-(b^*-a)/n}fig(au,u_n(au)ig)\,d au-\int_a^{s-(b^*-a)/n}fig(au,u_n(au)ig)\,d au
ight\|$$

 $\left\|\int_{s-(b^*-a)/n}^{t-(b^*-a)/n}fig(au,u_n(au)ig)\,d au
ight\|$

$$\leq \int_{s-(b^*-a)/n}^{t-(b^*-a)/n} \left\| fig(au, u_n(au)ig)
ight\| d au$$

$$\leq \int_{s-(b^*-a)/n}^{t-(b^*-a)/n} M\,d au$$

$$=M(t-s)$$

Fissato ora $\varepsilon > 0$, per ogni $s,t \in [a;b^*]$ con $|s-t| < \frac{\varepsilon}{M}$ si ha allora $\|u_n(s) - u_n(t)\| < \varepsilon$ per ogni $n \in \mathbb{N}$.

Per definizione di u_n

Per additività dell'integrale di Riemann rispetto all'intervallo di integrazione ([Proposizione 21.8])

Per maggiorazione della norma dell'integrale di Riemann ([Proposizione 21.6])

Per definizione di M e per monotonia dell'integrale di Riemann di funzioni a valori reali

Si consideri ora la successione $\{f(\cdot,u_n(\cdot))\}_{n\in\mathbb{N}}$.

Le sue funzioni sono ben definite, in quanto f è definita su $[a;b^*] \times \overline{B}(\mathbf{x}_0,c)$ e $u_n([a;b^*]) \subseteq \overline{B}(\mathbf{x}_0,c)$ per ogni $n \in \mathbb{N}$ per quanto visto prima;

inoltre, esse sono equi-continue, essendo $\{u_n\}_{n\in\mathbb{N}}$ una successione di funzioni equi-continue per quanto appena acquisito ed essendo f (uniformemente) continua per ipotesi,

e anche equi-limitate, in quanto f è uniformemente continua per ipotesi su $[a;b^*] \times \overline{B}(\mathbf{x}_0,c)$ convesso e limitato, dunque la sua immagine è limitata per la [Proposizione 28.7].

Per ogni $n \in \mathbb{N}$, si definisca ora la funzione $v_n : [a;b^*] \to X$ ponendo $v_n(t) = \mathbf{x}_0 + \int_a^t f(\tau,u_n(\tau)) \, d\tau$, per ogni $t \in [a;b^*]$; essa è di classe C^1 .

Inoltre, si ha $v_n([a;b^*]) \subseteq \overline{B}(\mathbf{x}_0,c)$ per ogni $n \in \mathbb{N}$; infatti, per ogni $t \in [a;b^*]$ si ha

$$\|v_n(t)-\mathbf{x}_0\|=\left\|\int_a^t fig(au,u_n(au)ig)\,d au
ight\|$$
 Per definizione di v_n

$$\leq \int_a^t \left\| f(\tau, u_n(\tau)) \right\| d\tau$$
 Per maggiorazione della norma dell'integrale di Riemann ([Proposizione 21.6])

$$\leq \int_a^t M \, d au$$
 Per definizione di M e per monotonia dell'integrale di Riemann di funzioni a valori reali

$$=M(t-a)$$

$$0 \leq M(b^*-a)$$
 $t \leq b^*$ in quanto $t \in [a;b^*]$

$$\leq M\left(a+rac{c}{M}-a
ight)=c$$
 In quanto $b^*\leq a+rac{c}{M}$ per definizione di b^*

Si osserva che vale $\lim_n \|u_n - v_n\|_{C^0([a;b^*],X)} = 0.$

Infatti, si fissi $t \in [a; b^*]$; se $t \in I_1$, si ha

$$||v_n(t) - u_n(t)|| = \left| \int_a^t f(\tau, \mathbf{x}_0) d\tau \right|$$

 $\|v_n(t)-u_n(t)\|=\left\|\int_a^t f(au,\mathbf{x}_0)\,d au
ight\|$ Per definizione di v_n e u_n , ed essendo $[a;t]\subseteq I_1$

$$\leq \int_a^t \|f(au,\mathbf{x}_0)\|\,d au$$

Per maggiorazione della norma dell'integrale di Riemann ([Proposizione 21.6])

$$\leq \int_a^t M \, d au$$

Per definizione di M e per monotonia dell'integrale di Riemann di funzioni a valori reali

$$= M(t-a)$$

$$\leq M \frac{b^* - a}{n}$$

In quanto $t \in I_1$

Se invece $t \notin I_1$, si ha

$$\|v_n(t)-u_n(t)\|=\left\|\int_a^t fig(au,u_n(au)ig)\,d au-\int_a^{t-(b^*-a)/n} fig(au,u_n(au)ig)\,d au
ight\|$$

Per definizione di v_n e u_n , ed essendo $t
otin I_1$

 $\left\|\int_{t-(b^*-a)/n}^t fig(au,u_n(au)ig)\,d au
ight\|$

Per additività dell'integrale di Riemann rispetto all'intervallo di integrazione ([Proposizione 21.8])

 $\leq \int_{t-(b^*-a)/n}^t \left\| fig(au, u_n(au)ig)
ight\| d au$

Per maggiorazione della norma dell'integrale di

Riemann ([Proposizione 21.6])

$$\leq \int_{t-(b^*-a)/n}^t M\,d au$$

Per definizione di M e per monotonia

dell'integrale di Riemann di funzioni a valori reali

$$=M\frac{b^*-a}{n}$$

Dunque, $\|u_n-v_n\|_{C^0([a;b^*],X)}\leq Mrac{b^*-a}{n}$ per ogni $n\in\mathbb{N}$, da cui segue per confronto che

$$\lim_n \|u_n - v_n\|_{C^0([a;b^*],X)} = 0.$$

Per ogni $t \in [a; b^*]$, si ponga ora

$$U(t)=\left\{ u_{n}(t)\mid n\in\mathbb{N}
ight\} ;$$

$$V(t) = \{v_n(t) \mid n \in \mathbb{N}\}.$$

U(t) e V(t) sono limitate per ogni $t \in [a;b^*]$; ciò segue dal fatto che $u_n(t), v_n(t) \subseteq \overline{B}(\mathbf{x}_0, c)$ per ogni $n \in \mathbb{N}$ e per ogni $t \in [a;b^*]$.

Inoltre, avendo osservato che $\lim_n \|u_n-v_n\|_{C^0([a;b^*],X)}=0$, si ha in particolare che $\lim_n \|u_n(t)-v_n(t)\|=0$ per ogni $t\in [a;b^*]$.

Per la [Proposizione 28.1], si ha allora $\alpha \big(V(t) \big) = \alpha \big(U(t) \big)$ per ogni $t \in [a;b^*]$.

Si osserva ora che, per ogni $t \in [a; b^*]$, vale

$$lphaig(V(t)ig)=lpha\left(\left\{\mathbf{x}_0+\int_a^t fig(au,u_n(au)ig)\,d au\mid n\in\mathbb{N}
ight\}ig)$$
 Per definizione di $V(t)$

$$= lpha \left(\left\{ \int_a^t fig(au, u_n(au)ig) \, d au \mid n \in \mathbb{N}
ight\}
ight)$$

$$\leq \int_a^t lphaig(ig\{fig(au,u_n(au)ig)\mid n\in\mathbb{N}ig\}ig)\,d au$$

$$=\int_a^t lphaig(fig(au,U(au)ig)ig)\,d au$$

$$\leq \int_a^t L \cdot \alpha(U(\tau)) d\tau$$

Per le osservazioni preliminari

Per la [Proposizione 28.4], avendo osservato prima che $\{f(\cdot,u_n(\cdot))\}_{n\in\mathbb{N}}$ è una successione di funzioni equi-continue ed

equi-limitate

$$ig\{fig(au,u_n(au)ig)\mid n\in\mathbb{N}ig\}=fig(au,U(au)ig)$$
 per ogni $au\in[a;b^*]$, per definizione di $U(au)$

Vale $f(\tau, U(\tau)) \leq L \cdot \alpha(U(\tau))$ per ogni $\tau \in [a; b^*]$, per ipotesi su L; si fa poi uso della monotonia dell'integrale di Riemann di funzioni a valori reali

$$=L\int_a^t lphaig(V(au)ig)\,d au$$

Per linearità dell'integrale di Riemann, e avendo osservato prima che lphaig(U(au)ig)=lphaig(V(au)ig) per ogni $au\in[a;b^*]$

Dal [Corollario 28.6], segue allora che lphaig(V(t)ig)=0 per ogni $t\in[a;b^*].$

Sia $V = \{v_n \mid n \in \mathbb{N}\};$

questa è una famiglia di funzioni equi-totalmente limitate, limitata in $C^0([a;b^*],X)$.

La limitatezza segue dal fatto che $v_n([a;b^*]) \subseteq \overline{B}(\mathbf{x}_0,c)$ per ogni $n \in \mathbb{N}$, osservato prima; infatti, sfruttando la definizione di $\|\cdot\|_{C^0([a;b],X)}$ e la seconda disuguaglianza triangolare delle norme, si ricava che $\|v_n\|_{C^0([a;b],X)} \le \|\mathbf{x}_0\| + c$ per ogni $n \in \mathbb{N}$.

Per mostrare la equi-totale limitatezza delle v_n , si fissi $\varepsilon > 0$.

Sia $k \in \mathbb{N}$ tale che $k > \frac{M}{\varepsilon}(b^* - a)$, e si considerino gli intervalli $J_{k,1}, \ldots, J_{k,k}$, che partizionano $[a; b^*]$; fissato $i \in \{1, \ldots, k\}$, per ogni $t, s \in J_{k,i}$ e per ogni $n \in \mathbb{N}$ si ha

$$\|v_n(t)-v_n(s)\|=\left\|\int_a^t fig(au,u_n(au)ig)\,d au-\int_a^s fig(au,u_n(au)ig)\,d au
ight\|$$

Per definizione di v_n

 $=\left\Vert \int_{s}^{t}fig(au,u_{n}(au)ig)\,d au
ight\Vert$

Per additività dell'integrale di Riemann rispetto all'intervallo di integrazione ([Proposizione 21.8])

 $\leq \left| \int_s^t \left\| fig(au, u_n(au)ig)
ight\| d au
ight|$

Per maggiorazione della norma dell'integrale di Riemann ([Proposizione 21.6]); il valore assoluto va inserito per ovviare al caso t < s

 $\leq \left| \int_s^t M \, d au
ight|$

Per definizione di M e per monotonia dell'integrale di Riemann di funzioni a valori reali

\$=M

t-s

$$\leq M^{\frac{(b^*-a)}{k}}$$

In quanto $t,s\in J_{k,i}$ e $\operatorname{diam}(J_{k,i})=rac{b^*-a}{k}$

 $< \varepsilon$

Avendo supposto $k > \frac{M}{\varepsilon}(b^* - a)$

Avendo quindi acquisito che V è una famiglia di funzioni equi-totalmente limitate, limitata in $C^0([a;b^*],X)$, per il [Teorema 4.2] si ha allora che $\alpha(V) = \sup_{t \in [a;b^*]} \alpha(V(t));$

avendo ottenuto anche che $\alpha(V(t)) = 0$ per ogni $t \in [a; b^*]$, si ha quindi $\alpha(V) = 0$.

Pertanto, V è totalmente limitato in $C^0([a;b^*],X)$; essendo tale spazio completo in quanto X è uno spazio di Banach, ne viene che V è relativamente compatto.

Allora, \overline{V} è compatto, dunque lo è sequenzialmente; per definizione di V, segue allora che la successione $\{v_n\}_{n\in\mathbb{N}}$ ammette un'estratta $\{v_{n_k}\}_{k\in\mathbb{N}}$ convergente in $C^0([a;b^*],X)$ (cioè uniformemente) a una certa funzione $u \in C^0ig([a;b^*],Xig)$.

Si osserva ora che, per ogni $t \in [a; b^*]$, vale

$$u(t) = \lim_n v_{n_k}(t)$$

Per definizione di u e dal fatto che la convergenza uniforme implica la puntuale

$$=\lim_n \; \mathbf{x}_0 + \int_a^t fig(au, u_{n_k}(au)ig) \, dx$$
 Per definizione di v_{n_k}

$$\mathbf{x}_0 + \int_a^t fig(au, u(au)ig)\,d au$$

La successione $\{u_{n_k}\}_{k\in\mathbb{N}}$ converge uniformemente a u;

infatti, $\{v_{n_k}\}_{k\in\mathbb{N}}$ converge ad essa uniformemente, ed è stato osservato che

$$\lim_n \|u_n - v_n\|_{C^0([a;b^*],X)} = 0.$$

Essendo $f(\cdot,u_n(\cdot))$ uniformemente continua in quanto continua su $[a;b^*]$ compatto, la

successione $\big\{f\big(\cdot,u_{n_k}(\cdot)\big)\big\}_{k\in\mathbb{N}}$ converge uniformemente a $f\big(\cdot,u(\cdot)\big);$

l'ugugaglianza si ottiene allora passando al limite sotto l'operatore integrale

Dunque, u(t) soddisfa le proprietà espresse all'inizio della dimostrazione, che è dunque conclusa.

Sia $[a;b] \subseteq \mathbb{R}$.

Sia
$$\mathcal{F}\subseteq C^1ig([a;b],\mathbb{R}ig)$$
.

Si supponga che la famiglia $\mathcal{F}'=\{f'\mid f\in\mathcal{F}\}_{n\in\mathbb{N}}$ sia costituita da funzioni equi-continue ed equi-limitate.

Si supponga che esiste $t_0 \in [a;b]$ tale che $\mathcal{F}(t_0)$ sia limitato.

Allora, \mathcal{F} è relativamente compatto in $C^1([a;b],\mathbb{R})$.

Dimostrazione

Sia $\{f_n\}_{n\in\mathbb{N}}\subseteq\mathcal{F}$.

Essendo \mathcal{F}' una famiglia di funzioni equi-continue ed equi-limitate, per il teorema di Ascoli-Arzelà ([Corollario 5.3]), la successione $\{f'_n\}_{n\in\mathbb{N}}$ ammette un'estratta $\{f'_{n_k}\}_{k\in\mathbb{N}}$, convergente in $C^0([a;b],\mathbb{R})$ (cioè uniformemente) a una certa funzione $g\in C^0([a;b],\mathbb{R})$.

La successione $\{f_{n_k}(t_0)\}_{n\in\mathbb{N}}$ è limitata, essendo $\mathcal{F}(t_0)$ limitato per ipotesi; per il teorema di Bolzano-Weierstrass, la successione $\{f_{n_k}\}$ ammette a sua volta un'estratta $\{f_{n_{k_r}}\}_{r\in\mathbb{N}}$ dimodoché $\{f_{n_{k_r}}(t_0)\}_{r\in\mathbb{N}}$ converga in \mathbb{R} .

Per il teorema di scambio di limiti e derivate, $\{f_{n_{k_r}}\}_{r\in\mathbb{N}}$ converge allora uniformemente a una certa funzione $F\in C^1([a;b],\mathbb{R})$, e si ha F'=g.

Ne segue che la successione $\{f_{n_{k_r}}\}_{r\in\mathbb{N}}$ converge in $C^1([a;b],\mathbb{R})$ a F; infatti, dotando tale spazio della norma del massimo, si ha

$$\|\cdot\|_{r} \|f_{n_{k_{r}}} - F\|_{C^{1}([a;b],\mathbb{R})} = \lim_{r} \max \left\{ \|f_{n_{k_{r}}} - F\|_{C^{0}([a;b],\mathbb{R})}, \|f'_{n_{k_{r}}} - F'\|_{C^{1}([a;b],\mathbb{R})}
ight\} \ | \ ext{Per definizione di } \|\cdot\|_{C^{1}([a;b],\mathbb{R})} \ | \$$

 $|=\lim_r \max\left\{\|f_{n_{k_r}}-F\|_{C^0([a;b],\mathbb{R})},\|f'_{n_{k_r}}-g\|_{C^1([a;b],\mathbb{R})}
ight\}|$ Per quanto ottenuto prima |=0| In quanto $\{f_{n_{k_r}}\}_{r\in\mathbb{N}}$ converge uniformemente a F, e $\{f'_{n_k}\}_{k\in\mathbb{N}}$ converge uniformemente a g

Dunque, ogni successione in \mathcal{F} ammette un'estratta convergente in $C^1([a;b],\mathbb{R})$; cioè, \mathcal{F} è relativamente sequenzialmente compatto, quindi relativamente compatto.

Proposizione 29.5: Esistenza della soluzione di problemi di Cauchy alle derivate parziali

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $[c;d]\subseteq\mathbb{R}$.

Sia $f:[a;b] imes\mathbb{R} o\mathbb{R}$ una funzione continua.

Siano $\alpha, \beta : [a;b] \to \mathbb{R}$ due funzioni continue.

Sia $arphi \in C^1ig([c;d],\mathbb{R}ig)$.

Sia $x_0 \in [c;d]$.

Esistono $b^* \in]a;b]$ e una funzione $u \in C^1([a;b^*] \times [c;d],\mathbb{R})$, dotata di derivata parziale seconda mista continua, dimodoché per ogni $(t,x) \in [a;b^*] \times [c;d]$ valga

$$egin{cases} u_{tx}(t,x) = lpha(t)u_x(t,x) + fig(t,u(t,x)ig) \ u_t(t,x_0) = eta(t) \ u(t_0,x) = arphi(x) \end{cases}$$

Dimostrazione

Si vuole applicare il [Teorema 29.3] allo spazio di Banach $C^1([c;d],\mathbb{R})$.

Si doti $C^1([c;d],\mathbb{R})$ della norma della somma, puntualmente rispetto a x_0 , che verrà denotata con $\|\cdot\|_{C^1([c;d],\mathbb{R})}$;

si consideri anche la norma del massimo in $C^1([c;d],\mathbb{R})$, denotata invece con $\|\cdot\|_{C^1([c;d],\mathbb{R})}^*$.

Sia $\rho > 0$.

Sia $g:[a;b] imes \overline{B}(arphi,
ho) o C^1ig([c;d],\mathbb{R}ig)$ la funzione definita ponendo

$$g(t,v)(x)=lpha(t)ig(v(x)-v(x_0)ig)+\int_{x_0}^x fig(t,v(s)ig)\,ds+eta(t),$$
 per ogni $(t,v)\in[a;b] imes\overline{B}(arphi,
ho).$

g è di classe C^1 .

Si provi che g è uniformemente continua.

Essendo α continua su [a;b] compatto, tale funzione è limitata;

sia dunque $L = \sup_{t \in [a:b]} |\alpha(t)|$.

Per ogni $v\in \overline{B}(arphi,
ho)$, si ha $\|v-arphi\|_{C^1([c;d],\mathbb{R})}\leq
ho$ per definizione;

dalla seconda proprietà triangolare e dalla definizione di $\|\cdot\|_{C^1([c;d],\mathbb{R})}$ segue allora che

$$\|arphi\|_{C^1([c;d],\mathbb{R})} +
ho \ge \|v\|_{C^1([c;d],\mathbb{R})}.$$

Poiché le norme $\|\cdot\|_{C^1([c;d],\mathbb{R})}$ e $\|\cdot\|_{C^1([c;d],\mathbb{R})}^*$ sono equivalenti ([Proposizione 26.1]), esiste k>0 tale che si abbia $\|v\|_{C^1([c;d],\mathbb{R})}^* \le k\|v\|_{C^1([c;d],\mathbb{R})}$ per ogni $v\in C^1([c;d],\mathbb{R})$.

Si ponga $\sigma = k(\|\varphi\|_{C^1([c;d],\mathbb{R})} + \rho);$

dalle due disuguaglianze ottenute e dalla definizione di $\|\cdot\|_{C^1([c;d],\mathbb{R})}^*$ segue allora che

$$\max\left\{\|v\|_{C^0([c;d],\mathbb{R})}\,,\,\|v'\|_{C^0([c;d],\mathbb{R})}
ight\}\leq \sigma$$
, per ogni $v\in\overline{B}(arphi,
ho)$.

Per quanto ottenuto prima, ne viene allora che $|v(x)| \leq \|v\|_{C^0([c;d],\mathbb{R})} \leq \sigma$ per ogni $v \in \overline{B}(\varphi,\rho)$ e per ogni $x \in [c;d]$.

Siano
$$(t,v),(s,w)\in [a;b] imes \overline{B}(arphi,
ho)$$
.

Si ha

$$\|g(t,v)-g(s,w)\|_{C^1([c;d],\mathbb{R})}=ig\|lpha(t)v'(\cdot)-lpha(s)w'(\cdot)+fig(t,v(\cdot)ig)-fig(s,w(\cdot)ig)ig\|_{C^0([c;d],\mathbb{R})}+|eta(t)-eta(s)|$$

$$egin{split} &= \left\|lpha(t)v'(\cdot) - lpha(s)v'(\cdot) + lpha(s)v'(\cdot) - lpha(s)w'(\cdot) + fig(t,v(\cdot)ig) - fig(s,w(\cdot)ig)
ight\|_{C^0([c;d],\mathbb{R})} + \left|eta(t) - eta(s)
ight| \\ &\leq \left\|lpha(t)v'(\cdot) - lpha(s)v'(\cdot)
ight\|_{C^0([c;d],\mathbb{R})} + \left\|lpha(s)v'(\cdot) - lpha(s)w'(\cdot)
ight\|_{C^0([c;d],\mathbb{R})} + \left\|fig(t,v(\cdot)ig) - fig(s,w(\cdot)ig)
ight\|_{C^0([c;d],\mathbb{R})} + \left|eta(t) - eta(s)w'(\cdot)
ight\|_{C^0([c;d],\mathbb{R})} + \left\|fig(t,v(\cdot)ig) - fig(s,w(\cdot)ig)
ight\|_{C^0([c;d],\mathbb{R})} + \left\|eta(t) - eta(s)w'(\cdot) - eta(s)w$$

$$egin{aligned} &= |lpha(t) - lpha(s)| \|v'\|_{C^0([c;d],\mathbb{R})} + |lpha(s)| \|v' - w'\|_{C^0([c;d],\mathbb{R})} + ig\|fig(t,v(\cdot)ig) - fig(s,w(\cdot)ig)ig\|_{C^0([c;d],\mathbb{R})} + |eta(t) - eta(s)| \ &= |lpha(t) - lpha(s)| \cdot \sigma + L \|v - w\|_{C^1([c;d],\mathbb{R})} + ig\|fig(t,v(\cdot)ig) - fig(s,w(\cdot)ig)ig\|_{C^0([c;d],\mathbb{R})} + |eta(t) - eta(s)| \end{aligned}$$

Si fissi ora $\varepsilon > 0$.

Sia $\tilde{\delta} > 0$ dimodoché:

- $|\alpha(t) \alpha(s)| < \frac{\varepsilon}{4\sigma}$ per ogni $t, s \in [a; b]$ con $|t s| < \tilde{\delta}$; ciò è possibile in quanto α è continua per ipotesi su [a; b] compatto, dunque è uniformemente continua.
- $\tilde{\delta} < \frac{\varepsilon}{4L}$.
- $||f(t,x)-f(t,x)|| < \frac{\varepsilon}{4}$ per ogni $t,s \in [a;b]$ e per ogni $x,y \in [-\sigma;\sigma]$ con $\max\{|t-s|,|x-y|\} < \tilde{\delta};$ ciò è possibile in quanto f è continua per ipotesi su $[a;b] \times [-\sigma;\sigma]$ compatto, dunque è uniformemente continua.

• $|\beta(t) - \beta(s)| < \frac{\varepsilon}{4}$ per ogni $t, s \in [a; b]$ con $|t - s| < \tilde{\delta}$; ciò è possibile in quanto β è continua per ipotesi su [a; b] compatto, dunque è uniformemente continua.

Sia
$$\delta = \min\left\{ ilde{\delta}, rac{ ilde{\delta}}{k}
ight\}$$
.

Si osserva che $|v(x)-w(x)|<\tilde{\delta}$ per ogni $v,w\in\overline{B}(\varphi,\rho)$ con $\|v-w\|_{C^1([c;d],\mathbb{R})}<\delta$ e per ogni $x\in[c;d]$. Infatti, si ha

$$v(x)-w(x)$$

$$\| \leq \| v - w \|_{C^1([c;d],\mathbb{R})}^*$$
 Dalla definizione di $\| \cdot \|_{C^1([c;d],\mathbb{R})}^*$

$$\leq k \|v-w\|_{C^1([c;d],\mathbb{R})}$$
 Per costruzione di k

$$< k\delta$$
 Avendo imposto $\|v-w\|_{C^1([c;d],\mathbb{R})} < \delta$

$$< ilde{\delta}$$
 Dalla prima condizione nella costruzione di δ

Per ogni $(t,v),(s,w)\in [a;b] imes \overline{B}(arphi,
ho)$ con $\max\{|t-s|,\|v-w\|_{C^1([c;d],\mathbb{R})}\}<\delta$, si ha allora

$$\|g(t,v)-g(s,w)\|_{C^1([c;d],\mathbb{R})}$$

$$\leq |lpha(t)-lpha(s)|\cdot \sigma + L\|v-w\|_{C^1([c;d],\mathbb{R})} + ig\|fig(t,v(\cdot)ig) - fig(s,w(\cdot)ig)ig\|_{C^0([c;d],\mathbb{R})} + |eta(t)-eta(s)|$$

Per la catena di disuguaglianze ottenuta prima

$$0<rac{arepsilon}{4}+L\|v-w\|_{C^1([c;d],\mathbb{R})}+ig\|fig(t,v(\cdot)ig)-fig(s,w(\cdot)ig)ig\|_{C^0([c;d],\mathbb{R})}+|eta(t)-eta(s)|$$

Dalla prima condizione sulla costruzione di $\tilde{\delta}$, ed essendo $\delta < \tilde{\delta}$ per costruzione di δ

$$<rac{arepsilon}{4}+rac{arepsilon}{4}+ig\|fig(t,v(\cdot)ig)-fig(s,w(\cdot)ig)ig\|_{C^0([c;d],\mathbb{R})}+|eta(t)-eta(s)|$$

Dalla seconda condizione sulla costruzione di $\tilde{\delta}$, ed

$$\leq rac{arepsilon}{4} + rac{arepsilon}{4} + rac{arepsilon}{4} + |eta(t) - eta(s)|$$

costruzione di δ Dalla terza condizione sulla costruzione di $\tilde{\delta}$, in

essendo $\delta < \tilde{\delta}$ per

quanto vale \$

$$\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \varepsilon$$

Dalla quarta condizione sulla costruzione di $\tilde{\delta}$, ed essendo $\delta < \tilde{\delta}$ per costruzione di δ

Resta da mostrare l'uniforme α -Lipschitzianità di g rispetto alla seconda variabile.

Siano $g_1, g_2 : [a; b] \times \overline{B}(\varphi, \rho) \to C^1([c; d], \mathbb{R})$ le funzioni definite ponendo rispettivamente

$$g_1(t,v)(x)=lpha(t)ig(v(x)-v(x_0)ig)+eta(t)$$
, per ogni $[a;b] imes\overline{B}(arphi,
ho)$ e per ogni $x\in [c;d]$,

$$g_2(t,v)(x)=\int_{x_0}^x fig(t,v(s)ig)\,ds$$
, per ogni $[a;b] imes \overline{B}(arphi,
ho)$ e per ogni $x\in [c;d]$.

Si ha
$$g = g_1 + g_2$$
.

Si osserva che, per ogni $t \in [a; b]$, la funzione $g_1(t, \cdot)$ è Lipschitziana di costante L; infatti, si ha

$$\|g_1(t,v) - g_1(t,w)\|_{C^1([c;d],\mathbb{R})} = \|\alpha(t)(v'-w')\|_{C^0([a;b],\mathbb{R})} + |\beta(t) - \beta(t)| \quad \text{Per definizione di } \|\cdot\|_{C^1([c;d],\mathbb{R})} \text{ e di } g_1$$

$$=|lpha(t)|\cdot\|v'-w'\|_{C^0([a;b],\mathbb{R})}$$

$$\leq |lpha(t)| \cdot \|v-w\|_{C^1([a;b],\mathbb{R})}$$

Dalla definizione di $\|\cdot\|_{C^1([a:b],\mathbb{R})}$

$$\leq L\|v-w\|_{C^1([a;b],\mathbb{R})}$$

Per definizione di L

Si osserva anche che, per ogni $t \in [a;b]$, la funzione $g_2(t,\cdot)$ è a immagine relativamente compatta.

Infatti, si ha
$$g_2ig(t,\overline{B}(arphi,
ho)ig)=ig\{\int_{x_0}^{\cdot}fig(t,v(s)ig)\,ds\mid v\in\overline{B}(arphi,
ho)ig\};$$

la famiglia delle derivate $\{f(t,v(\cdot)) \mid v \in \overline{B}(\varphi,\rho)\}$ è costituita da funzioni equi-continue ed equi-limitate;

l'equi-limitatezza segue dal fatto che $v(x) \in [-\sigma; \sigma]$ per ogni $v \in \overline{B}(\varphi, \rho)$ e per ogni $x \in [c; d]$, per quanto osservato precedentemente, e dal fatto che $f(t, \cdot)$ è continua su $[-\sigma; \sigma]$ compatto, dunque è limitata;

l'equi-continuità segue dal fatto che $f(t,\cdot)$ è continua, e dal fatto che le funzioni in $\overline{B}(\varphi,\rho)$ sono equi-Lipschitziane; infatti, per ogni $x,y\in [c;d]$ e per ogni $v\in \overline{B}(\varphi,\rho)$ si ha

$$|v(x)-v(y)|=|v'(\xi)|\cdot |x-y|,$$
 Per il teorema di Lagrange per qualche ξ interno all'intervallo di estremi x e y

$$\leq |v'|_{C^0([c;d],\mathbb{R})} \cdot x-y$$

Infine, $g_2(t, \overline{B}(\varphi, \rho))(x_0) = \{0\}$, che dunque è un insieme limitato.

Per il [Lemma 29.4], $g_2(t, \overline{B}(\varphi, \rho))$ è allora relativamente compatto, dunque totalmente limitato.

Per ogni $t \in [a; b]$, la funzione $g(t, \cdot)$ è allora somma di una funzione Lipschitziana di costante L e una totalmente limitata; pertanto, per la [Proposizione 28.8] si ha che $g(t, \cdot)$ è α -Lipschitziana di costante L, per ogni $t \in [a; b]$.

g soddisfa allora le ipotesi del [Teorema 29.3]; dunque, esistono $b^* \in [a;b]$ e $h \in C^1([a;b^*],C^1([c;d],\mathbb{R}))$, dimodoché si abbia

$$egin{cases} h'(t) = gig(t,h(t)ig) & orall t \in [a;b^*] \ h(a) = arphi \end{cases}.$$

Sia allora $u:[a;b^*] imes [c;d] o \mathbb{R}$ la funzione definita ponendo u(t,x)=h(t)(x) per ogni $(t,x)\in [a;b^*] imes [c;d]$.

Per la [Proposizione 26.4], u è di classe C^1 , possiede derivata seconda mista u_{tx} continua in $[a;b^*] \times [c;d]$, e $h'(t)(x) = u_t(t,x)$ per ogni $(t,x) \in I \times [c;d]$.

Per ogni $(t,x) \in [a;b^*] \times [c;d]$, si ha allora

$$u_t(t,x) = h'(t)(x)$$
 Per quanto appena osservato
$$= f(t,h(t))(x)$$
 Per costruzione di h
$$= \alpha(t) \big(h(t)(x) - h(t)(x_0)\big) + \int_{x_0}^x g(t,h(t)(s)) \, ds + \beta(t)$$
 Per definizione di f
$$= \alpha(t) \big(u(t,x) - u(t,x_0)\big) + \int_{x_0}^x g(t,u(t,s)) \, ds + \beta(t)$$
 Per definizione di u

e inoltre si ha $u(t_0, x) = h(t_0)(x) = \varphi(x)$ per ogni $x \in [c; d]$, per definizione di u e per costruzione di h.

Poiché u ammette in $[a; b^*] \times [c; d]$ derivata mista per quanto osservato prima, u_t è parzialmente derivabile rispetto alla seconda variabile;

derivando quindi la legge ottenuta per u_t rispetto alla seconda variabile, si ricava che

$$u_{tx}(t,x) = lpha(t) \ u_x(t,x) + gig(x,u(t,x)ig)$$
 per ogni $(t,x) \in [a;b^*] imes [c;d].$

Inoltre, sempre dalla legge di u_t si ricava che $u_t(t,x_0)=eta(t)$ per ogni $t\in [a;b^*]$.

Allora, u soddisfa le condizioni espresse nella tesi, che risulta pertanto acquisita.