Esercizi 04 — 9 pt

1 — 1 pt

Si consideri il sistema lineare A $\mathbf{x} = \mathbf{b}$, dove $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$. Quale tra le seguenti affermazioni è falsa?

- A) La matrice di precondizionamento associata al metodo di Jacobi corrisponde alla matrice diagonale estratta da A.
- **B)** Per la matrice A, i metodi di Jacobi e Gauss–Seidel sono entrambi convergenti o non convergenti per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^2$.
- C) Il metodo di Jacobi converge per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^2$.
- **D)** Il metodo di Gauss–Seidel non converge per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^2$.

D

2 — 2 pt

Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$, dove $A = \begin{bmatrix} 1 & \gamma & \gamma \\ \gamma & 1 & \gamma \\ \gamma & \gamma & 1 \end{bmatrix}$ dipende dal parametro $\gamma \in \mathbb{R}$. Sapendo che gli autovalori di A sono $1+2\gamma, 1-\gamma$ e $1-\gamma$, si riporti il raggio spettrale della matrice di iterazione associata al metodo di Jacobi in funzione di γ . Inoltre, si determinino i valori di γ tali per cui il metodo di Jacobi

$$\rho_{BJ} = 2 \left| \gamma \right|, \quad -\frac{1}{2} < \gamma < \frac{1}{2}$$

risulta convergente per ogni scelta dell'iterata iniziale.

3-1 pt

Si consideri il sistema lineare $A\mathbf{x}=\mathbf{b}$, dove $A=\operatorname{tridiag}(-1,3,2)\in\mathbb{R}^{4\times 4}$ e $\mathbf{b}=\mathbf{1}\in\mathbb{R}^4$. Si applichino 5 iterazioni del metodo di Gauss–Seidel con vettore iniziale $\mathbf{x}^{(0)}=\mathbf{b}$ e si riporti l'iterata $\mathbf{x}^{(5)}$ ottenuta.

$$(0.0112, 0.1512, 0.0996, 0.3665)^T$$

4 — 1 pt

Si consideri il sistema lineare $A\mathbf{x}=\mathbf{b}$, dove $A=\begin{bmatrix}3&-1\\-1&2\end{bmatrix}$ e $\mathbf{b}=\mathbf{1}\in\mathbb{R}^2$ e un metodo iterativo per l'approssimazione di \mathbf{x} che coinvolga la matrice di precondizionamento $P=\begin{bmatrix}\beta&-1\\0&2\end{bmatrix}$, dipendente da un parametro $\beta\neq 0$. Per quali valori del parametro β il metodo iterativo risulta convergente per ogni scelta dell'iterata iniziale?

$$\beta > \frac{5}{4}$$

5 — 2 pt

Dato il sistema lineare $A\mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{4\times 4}$ è la matrice di Hilbert assegnata col comando Matlab[®] hilb, si stimi il minimo numero di iterazioni N del metodo di Richardson stazionario (non precondizionato) con parametro ottimale che garantisce un abbattimento dell'errore iniziale $\|\mathbf{x}^{(0)} - \mathbf{x}\|_A$ di un fattore 1000.

53583

6 — 2 pt

Si consideri il sistema lineare A $\mathbf{x} = \mathbf{b}$, dove $A = \text{pentadiag}(-1, -3, 8.1, -3, -1) \in \mathbb{R}^{100 \times 100}$ è simmetrica e definita positiva e $\mathbf{x}, \mathbf{b} \in \mathbb{R}^{100}$. Si consideri per la sua risoluzione il metodo di Richardson stazionario con parametro ottimale e con precondizionatore $P = \text{tridiag}(-1, \beta, -1) \in \mathbb{R}^{100 \times 100}$ dipendente da un parametro $\beta \in \mathbb{R}$ tale che P sia simmetrica e definita positiva. Si stimi il valore di $\beta \in [2, 2.5]$ tale per cui è garantita la convergenza più rapida del metodo.

[Suggerimento: si determini graficamente con Matlab[®] il valore di β]

2.0345

7

Si consideri il sistema lineare
$$A\mathbf{x} = \mathbf{b}$$
, con $A = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 7 \end{bmatrix}$ e $\mathbf{b} = (2, 2, 2)^T$, e

il metodo del gradiente per l'approssimazione della soluzione $\mathbf{x} \in \mathbb{R}^3$. Si calcolino e si riportino: il valore del parametro dinamico ottimale α_0 associato all'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$ usato per determinare l'iterata $\mathbf{x}^{(1)}$ e l'iterata $\mathbf{x}^{(1)} \in \mathbb{R}^3$.

$$0.1269$$
, $\mathbf{x}^{(1)} = (0.4776, 0.4776, -0.0299)^T$