ELECTRON LINAC UPGRADE FOR THOMX PROJECT

L. Garolfi*, C. Bruni, M. El Khaldi, LAL, Orsay, France N. Faure, A. Perez Delaume, PMB-ALCEN, Peynier, France *garolfi@lal.in2p3.fr

THOMX: A COMPACT HIGH FLUX X-RAYS SOURCE

- Compton back-scattering compact light source machine.
- Collisions between laser pulses and relativistic electron bunches in a optical cavity (Fabry-Perot resonator).
- Intense flux of monochromatic X-rays (10¹² 10¹³ ph/s, 45 - 90 keV energy) for a 50 / 70 MeV Linac.
- energy electron machine which allows the integration in hospitals or museums.
- THOMX accelerator is under construction in the Orsay university campus.

MOTIVATIONS

To accomplish technical specifications at the interaction point, the LINAC has to be carefully designed, especially the photo-injector.

LINAC REQUIREMENTS

- Nominal Energy 50 MeV
- **Bunch charge** 1 nC
 - $< 5 \, \text{m} \, \text{mm} \, \text{mrad}$ rms norm. emittance
- rms energy spread
 - < 0,3 %
- rms bunch length
- < 5 ps
- Average current
- 50 nA

Upgrade phase:

PMB ALCEN - LAL

HG structure (HGAS)

Length: 3.2 m (96 cells)

Travelling wave section (TW)

Quasi-constant gradient field

- 50 Hz Repetition frequency

THE THOMX S-BAND LINAC SCHEME

- The RF Gun design almost the same as for the Probe Beam Photo-Injector (PBPI) at CLIC Test Facility 3.
- To avoid vacuum constraints with high efficiency

 metallic magnesium photocathode has been chosen.
- RF Gun properties: Q-factor = 15000, shunt Impedance = 50 M Ω /m, pulse = 5 MW, 3 μ s, E_{peak} = 80 MV/m, energy gain = 5 MeV.

Commissioning phase: LIL structure

Standard section

Length: 4.5 m (135 cells) **Travelling wave section (TW) Quasi-constant gradient field**

ΔΦ per cell: 2π/3-mode

 $\langle E_{acc} \rangle = 14 \text{ MV/m} @ 12 \text{ MW},$ Filling time ~ 1.35 µs

Final Energy: 50 MeV 45 MeV section + 5 MeV RF gun **Upgrade** under

development

 $\Delta\Phi$ per cell: $2\pi/3$ -mode $\langle E_{acc} \rangle = 20.5 \text{ MV/m} @ 22 \text{ MW},$ Filling time < 1 µs

Beam parameters at z = 1 m

-15

7.6

Final Energy: 70 MeV 65 MeV section + 5 MeV RF gun

Dephasing [deg]

8.4

+10

8.5

-10

8

X-rays energy: 50 MeV → γ ~ 45 keV 70 MeV → y ~ 90 keV

Parameters

 $\varepsilon_{x,v}$ [π mm mrad]

LINAC BEAM DYNAMICS

z [m]

- $\Phi_{RF \text{ qun}} = 0^{\circ}$, $\Phi_{LIL} = 0^{\circ}$ Maximum Mean Momentum Gain (MMMG).
- $\sigma_{x,y} = 0.2 \text{ mm}$, $\sigma_t = 4 \text{ ps}$, $B_{\text{peak coils}} = 0.2574T \longrightarrow \epsilon_{n,x,y,\text{tot}} = 4 \text{ mm mrad.}$
- High transverse density e⁻ emission strong image charge @ 1 nC.
- $\Phi_{RF gun} = 0^{\circ}$, $\sigma_{x,y} = 0.2$ mm, $\sigma_t = 4$ ps loses more than 40% of total charge.
- $\varepsilon_{n,x,v,tot}$ & σ_z approximately constant, dephasing has not effect.
- $\Delta E/E$ vs Φ_{RF} significant variation, dephasing has strong impact.
 - $\Delta E/E = 0.2$ % for both cases ($\Phi_{RF gun} = 0^{\circ}$, $\Phi_{RF gun} = -15^{\circ}$).
- $\varepsilon_{n,x,y,tot} > 8 \pi mm mrad, \Phi_{RF gun} = 0^{\circ};$
- $\varepsilon_{n,x,y,tot} \approx 7 \text{ mm mrad}, \Phi_{RF qun} = -15^{\circ}.$
- $\sigma_z \approx 3.4 \text{ ps}$, $\Phi_{RF gun} = 0^\circ$; $\sigma_z \approx 3.2 \text{ ps}$, $\Phi_{RF gun} = -15^\circ$.
- $\sigma_x \approx 3.5$ mm in both cases ($\Phi_{RF \text{ qun}} = 0^\circ$; $\Phi_{RF \text{ qun}} = -15^\circ$).

ΔΕ/Ε [%] 0.37 0.6 1.3 3.1 3 3.1 3.4 σ_z [ps] RF Gun + LIL (Q = 1 nC, sigxy = 0.6 mm, sigt = 2ps) RF gun Deltaphi = 0 deg -RF gun Deltaphi = -15 deg [pi mm

CONCLUSIONS & PROSPECTS

- Preliminary beam dynamics investigation on the ThomX Linac ASTRA tracking code.
- Transverse laser spot $\sigma_{x,y} = 0.2$ mm, pulse duration $\sigma_t = 4$ ps Nominal $\epsilon_{n,x,y,tot} = 4$ m mm mrad out of the RF gun; at the expense of $\Delta E/E$ & σ_z . (*)
- A first set of parameters: σ_{x,y}, σ_t, E_{peak RF gun}, <E_{LIL}>, B_{peak coils} strengths and RF gun dephasing for energy spread minimization, has been proposed.
- The set $\sigma_{x,y} = 0.6$ mm, $\sigma_t = 2$ ps, $E_{peak RF gun} = 80$ MV/m, $\langle E_{LIL} \rangle = 14$ MV/m, $E_{peak coils} = 0.2620$ T, $\Phi_{RF gun} = -15^{\circ}$, $\Phi_{LIL} = 0^{\circ}$ respect with $\Phi_{RF gun} = 0^{\circ}$, $\Phi_{LIL} = 0^{\circ}$ Maximum Mean Momentum Gain (MMMG) allows to obtain $\Delta E/E = 0.2 \%$ with $\epsilon_{n,x,y,tot} = 7 \pi$ mm mrad, $\sigma_z = 3$ ps, $\sigma_x = 3.5$ mm.
- To improve ΔE/E with ε_{n,x,v,tot}, σ_z trade off better position of solenoids & accelerating cavity, several H_{peak coils}, strength, high gradient accelerating section electric field profile (PMB ALCEN – LAL section).
- * L. Garolfi et al., "BEAM DYNAMICS SIMULATIONS OF THE THOMX LINAC", Proceedings of IPAC2016, Busan, Korea.

