- 1. Use strong induction to show that if you can run one mile or two miles, and if you can always run two more miles once you have run a specified number of miles, then you can run any number of miles.
- 3. Let P(n) be the statement that a postage of n cents can be formed using just 3-cent stamps and 5-cent stamps. The parts of this exercise outline a strong induction proof that P(n) is true for all integers $n \ge 8$.
- a) Show that the statements P(8), P(9), and P(10) are true, completing the basis step of a proof by strong induction that P(n) is true for all integers $n \ge 8$.
- b) What is the inductive hypothesis of a proof by strong induction that P(n) is true for all integers $n \ge 8$?
- c) What do you need to prove in the inductive step of a proof by strong induction that P(n) is true for all integers $n \ge 8$?
- **d**) Complete the inductive step for $k \ge 10$.
- e) Explain why these steps show that P(n) is true whenever $n \ge 8$.
- **5. a)** Determine which amounts of postage can be formed using just 4-cent and 11-cent stamps.
 - **b)** Prove your answer to (a) using the principle of mathematical induction. Be sure to state explicitly your inductive hypothesis in the inductive step.
 - c) Prove your answer to (a) using strong induction. How does the inductive hypothesis in this proof differ from that in the inductive hypothesis for a proof using mathematical induction?
- 7. Which amounts of money can be formed using just two-dollar bills and five-dollar bills? Prove your answer using strong induction.
- 13. A jigsaw puzzle is put together by successively joining pieces that fit together into blocks. A move is made each time a piece is added to a block, or when two blocks are joined. Use strong induction to prove that no matter how the moves are carried out, exactly n-1 moves are required to assemble a puzzle with n pieces.

- **25.** Suppose that P(n) is a propositional function. Determine for which positive integers n the statement P(n) must be true, and justify your answer, if
 - a) P(1) is true; for all positive integers n, if P(n) is true, then P(n + 2) is true.
 - **b)** P(1) and P(2) are true; for all positive integers n, if P(n) and P(n+1) are true, then P(n+2) is true.
 - c) P(1) is true; for all positive integers n, if P(n) is true, then P(2n) is true.
 - **d)** P(1) is true; for all positive integers n, if P(n) is true, then P(n + 1) is true.
- **29.** What is wrong with this "proof" by strong induction?

"Theorem" For every nonnegative integer n, 5n = 0.

Basis Step: $5 \cdot 0 = 0$.

Inductive Step: Suppose that 5j = 0 for all nonnegative integers j with $0 \le j \le k$. Write k + 1 = i + j, where i and j are natural numbers less than k + 1. By the inductive hypothesis, 5(k + 1) = 5(i + j) = 5i + 5j = 0 + 0 = 0.