Zapiski pri predmetu Verjetnost

Hvala ker bereš.

1 Osnovna verjetnost

Definicija 1.1. Klasična definicija verjetnosti:

Naj bo $A \subseteq \Omega$ dogodek, n število ugodnih izidov in N vsi možni izidi. Potem je verjetnost definirana:

$$P(A) = \frac{n}{N}$$

IZREK 1.2. Naj bo Ω prostor izidov verjetnostnega eksperimenta. Dogodki tvorijo družino $\mathcal{F} \subseteq 2^{\Omega} = P(\Omega)$ z lastnostmi:

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow A^C \in \mathcal{F} \quad (\Rightarrow \emptyset \in \mathcal{F})$
- 3. A_1, A_2, \dots števen nabor dogodkov iz \mathcal{F} . Potem je $\bigcup A \in \mathcal{F}$

Trditev 1.3. Računanje z dogodki:

- \bullet $A \cap A = A$ $A \cup A = A$
- $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
- $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- $(A \cup B)^C = A^C \cap B^C$
- $(A \cap B)^C = A^C \cup B^C$

Dogodka A in B sta **nezdružljiva**, če je $A \cap B = \emptyset$.

DEFINICIJA 1.4. Verjetnost je preslikava $\mathcal{F} \rightarrow [0,1]$, ki zadošča lastnosti:

- $P(\Omega) = 1$
- $P(A^C) = 1 P(A) \quad (\Rightarrow P(\emptyset) = 0)$
- Naj bodo $(A_i)_{i\geq 1}$ paroma nezdružljivi dogodki $(A_i\cap A_j=0)_{i\neq j}$.
- $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Trditev 1.5. Princip vključevanja in izključevanja:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Trditev 1.6. Zveznost verjetnosti

Če je $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_k \supseteq \ldots$ padajoče zaporedje dogodkov je

$$P(\bigcap_{k=1}^{\infty} A_k) = \lim_{k \to \infty} P(A_k)$$

Trditev 1.7. Če je $B_1 \subseteq B_2 \subseteq ... \subseteq B_k \subseteq ...$ naraščajoče zaporedje dogodkov, velja:

$$P(\bigcup_{k=1}^{\infty} B_k) = \lim_{k \to \infty} P(B_k)$$

2 Pogojna verjetnost

Definicija 2.1. Naj bo dogodek $A \subseteq \omega$ P(A) > 0. Potem je $B \in \mathcal{F}$ definiramo

$$P(A|B) = \frac{P(A \cap B)}{P(A)} \Rightarrow P(A \cap B) = P(A) \cdot P(A|B)$$

P(A|B) pravimo pogojna verjetnost in jo beremo kot: verjetnost dogodka A pri pogoju B.

2.1 Večfazni ali relejski poskusi

2.2 Formula za popolno verjetnost

DEFINICIJA 2.2. $H_1, H_2, H_3, ...$ (končno mnogo) naborov dogodkov. \mathcal{F} je popoln sistem dogodkov, če velja:

- $H_i \cap H_j = \emptyset$ $i \neq j$
- $P(\bigcup_{i=1} H_i) = \Omega$ (Unija vseh dogodkov je cel prostor)
- $P(H_i) > 0 \quad \forall i$

IZREK 2.3. Formula za popolno verjetnost je

$$P(A) = \sum_{i=1} P(A|H_i) \cdot P(H_i)$$

Izrek 2.4. (Baynsova formula)

$$P(H_j|A) = \frac{P(H_j \cap A)}{P(A)}$$

IZREK 2.5. Naj bosta dogodka A in $B \in \mathcal{F}$. Dogodka sta **neodvisna**, če velja

$$P(A \cap B) = P(A) \cdot P(B)$$

Posledica 2.6. Naj bosta A in B neodvisna dogodka. Potem so neodvisni tudi naslednji dogodki:

- $\bullet \{A^c, B\}$
- $\{A, B^c\}$
- $\{A^c, B^c\}$

Posledica 2.7. $A, B, C \in \mathcal{F}$ neodvisne $\Rightarrow P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$ V splošnem $P(A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot ... \cdot P(A_{i_k})$

3 Diskretne slučajne spremenljivke

DEFINICIJA 3.1. Naj bo (Ω, \mathcal{F}, P) verjetnostni prostor in funkcija $X : \Omega \to \mathbb{R}$, ki lahko zavzema kvečejmu števno mnogo vrednosti w_1, w_2, \ldots Naj bo H_i množica vseh izidov za katere je vrednost funkcije enaka x_i . Povedano drugače: $H_i = \{\omega_i : X(\omega) = x_i\}$. X je slučajna spremenljivka, če je $H_i \in F$ $\forall i$.

$$\frac{X}{p} = \begin{pmatrix} x_1 & x_2 & x_3 & \cdots \\ p_1 & p_2 & p_3 & \cdots \end{pmatrix}$$
$$p_i \ge 0 \quad \sum_{i=1}^n p_i = 1$$

3.1 Binomska porazdelitev

DEFINICIJA 3.2. Verjetnost, da bomo v n poskusih k-krat videli izzid p. Oznaka: Bin(n,p).

Definicija 3.3.

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Posledica 3.4.

$$E(X) = n \cdot p$$
$$Var(X) = n \cdot p \cdot q$$

3.2 Bernulijeva porazdelitev

Definicija 3.5. Indikator dogodka. Be(p)

$$\frac{X}{p} = \begin{pmatrix} 0 & 1\\ 1 - p & p \end{pmatrix}$$

Posledica 3.6.

$$E(X) = p$$
$$Var(X) = p \cdot q$$

3.3 Geometrijska porazdelitev

Definicija 3.7. Število poskusov do prvega uspešnega izzida. Geom(p).

Definicija 3.8.

$$P(X = k) = p \cdot q^{k-1}$$

Posledica 3.9.

$$E(X) = \frac{1}{p}$$
$$Var(X) = \frac{q}{n^2}$$

Opomba 3.10. Geometrijska porazdelitev nima spomina!

3.4 Poissonova porazdelitev

Definicija 3.11. Število telefonskih klicev, nesreč v določenem času. $Po(\lambda)$.

Definicija 3.12.

$$P(X = k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

Posledica 3.13.

$$E(X) = \lambda$$
$$Var(X) = \lambda$$

3.5 Matematično upanje

Definicija 3.14. Naj bo X slučajna spremneljivka s porazdelitveno shemo:

$$\frac{X}{p} = \begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_k \\ p_1 & p_2 & p_3 & \cdots & p_k \end{pmatrix}$$

Matematično upanje je:

$$E[X] = \sum_{k} x_k \cdot p_k$$

pod pogojem, da je $\sum_{k} |x_k| \cdot p_k < \infty$

IZREK 3.15. Naj bo X, Y slučajni spremenljivki. Tedaj velja:

- E[X] obstaja natanko tedaj, ko obstaja E[|X|]. Pri tem velja $|E[X]| \leq E[|X|]$.
- $E[aX + b] = a \cdot E[X] + b$
- $0 \le X \le Y \Rightarrow E[X] \le E[Y]$
- Če obstaja E[X] in E[Y], takrat velja: E[X + Y] = E[X] + E[Y]

3.6 Pogojno matematično upanje in pogojna porazdelitev

DEFINICIJA 3.16. Naj bo X diskretna slučajna spremenljivka in $A \in \mathcal{F}$, za katero velja P(A) > 0. Pogojna porazdelitev X pri pogoju A:

$$\frac{X}{p} = \begin{pmatrix} x_1 & \cdots & x_k \\ p_1 & \cdots & p_k \end{pmatrix}$$

Pri čemer je
$$p_k = \frac{P(X_k = x_k \cap A)}{P(A)}$$

Definicija 3.17. Pogojno matematično upanje:

$$E[X|A] = \sum_{i} x_{i} \cdot P(X = x_{i}|A) = \sum_{i} x_{i} \cdot \frac{P(\{X_{k} = x_{k}\} \cap A)}{P(A)} = \frac{E[X \cdot \mathcal{U}_{A}]}{P(A)}$$

Definicija 3.18. (Formula za popolno matematično upanje)

Naj bodo A_1, A_2, \ldots paroma tuji dogodki in $P(\bigcup_{i=1} A_i) = 1$. Potem za vsako slučajno spremenljivko X velja

$$E[X] = \sum_{i} E[X|A_i] \cdot P(A_i)$$

4 Slučajni vektorji

Definicija 4.1. slučajni vektor je n-terica slučajnih spremenljvik: $X = (x_1, x_2, \dots, x_n)$

$$\vec{x}:\Omega\to\mathbb{R}^d$$

Porazdelitev posamične koordinate rečemo robna porazdelitev.

Definicija 4.2. Slučajne spremenljivke X_1, X_2, \ldots, X_n so neodvisne, če velja:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = P(X_1 = x_1) \cdot P(X_2 = x_2) \cdot \dots \cdot P(X_n = x_n)$$

Posledica 4.3. Naslednje trditve so posledica zgornje definicije:

• $\forall A_1, \dots, A_n \subseteq \mathbb{R} \Rightarrow P(X_1 \in A_1, \dots, X_n \in A_n) = P(X_1 \in A_1) \cdot \dots \cdot P(X_n \in A_n)$ Opomba 4.4.

$$P(X \in A) = \sum_{x \in A} P(X = x)$$

- Če so X_1, \ldots, X_n neodvisni, potem so za $\forall 1 \leq i_1 \leq i_2 \leq \ldots \leq i_k \leq n$, tudi $X_{i_1}, X_{i_2}, \ldots, X_{i_n}$ neodvisni.
- Če so X_1, \ldots, X_n neodvisne, so za vsak $A_1, \ldots, A_n \in \mathbb{R}$ dogodki $\{X_1 \in A_1\} \ldots \{X_n \in A_n\}$ neodvisni.
- Dogodki $B_1, \ldots, B_n \in \mathcal{F}$ so neodvisni natanko tedaj, ko so slučajne spremenljivke $\mathcal{U}_{B_1}, \ldots, \mathcal{U}_{B_n}$ neodvisne.
- Če so X_1, \ldots, X_n neodvisne in $f_1, \ldots, f_n : \mathbb{R} \to \mathbb{R}$ so tudi $f_1(X_1), \ldots, f_n(X_n)$ neodvisne.
- Denimo, da sta X in Y neodvisna. Potem velja:

$$E[XY] = E[X] \cdot E[Y]$$

5 Splošne slučajne spremenljivke

DEFINICIJA 5.1. Naj bo verjetnostni prostor definiran kot: (Ω, \mathcal{F}, P) . Nadalje naj bo $X : \Omega \to \mathbb{R}$. Zahteva, da je X slučajna spremenljivka : $\{X \le x\} = \{\omega; X(\omega) \le x\} \in \mathcal{F}$. Potem je

$$F_X(x) = P(X \le x)$$

dobro definirana funkcija $\mathbb{R} \to \mathbb{R}$ in jo imenujemo **porazdelitvena funkcija**.

Trditev 5.2. Lastnosti porazdelitvene funkcije:

- $F_X(x) \in [0,1] \quad \forall x \in \mathbb{R}$
- $\{X \le x\} \subseteq \{X \le y\} \Rightarrow P(X \le x) \le P(X \le y)$
- $\lim_{t \downarrow x} F_X(t) = F_x(x)$ (zvezna iz desne).
- $F_X(x-) = \lim_{t \uparrow x} F_X(t) \le F_X(x)$ (ker je $F_X(x)$ nepadajoča ima X v vsaki točki x tudi levo limito).
- Če velja $F_X(x-) = F_X(x)$, potem je $F_X(x)$ zvezna v točki $x \in \mathbb{R}$, sicer pa ima skok v točki $x \in \mathbb{R}$.
- Točk, kjer je porazdelitvena funkcija nezvezna (ima skok) je kvečejmu števno mnogo.
- $\lim_{x \to \infty} F_X(x) = 1$

Definicija 5.3. Slučajna spremneljivka X ima **gostoto** $\mathbf{p}_{\mathbf{X}}(\mathbf{x})$, če velja:

$$P(X \le x) = F_X(x) = \int_{-\infty}^x p_X(t)dt$$

 $za \ vsak \ x \in \mathbb{R}.$

Takim spremenljivkam pravimo absolutno zvezne slučajne spremneljivke.

Trditev 5.4. Če obstaja gostota, potem velja:

$$(F_X(x))' = \left(\int_{-\infty}^x p_X(t)dt\right)' = p_X(x)$$

Trditev 5.5. (Lastnosti gostote)

- $p_X(x) \geq 0$
- $\int_{-\infty}^{\infty} p_X(t)dt = 1$

5.1 Enakomerno zvezna na [a,b]

Definicija 5.6. Naj bo X enakomerno zvzena slučajna spremenljivka. $X \sim EZ[a,b]$. Potem je gostota enaka:

$$p_X(x) = \begin{cases} \frac{1}{b-a} : a \le x \le b \\ 0 : \text{ sicer} \end{cases}$$
$$E[X] = \frac{a+b}{2}$$
$$Var(X) = \frac{(b-a)^2}{12}$$

5.2 Eksponentna porazdelitev

DEFINICIJA 5.7. Naj bo X eksponentna slučajna spremeneljivka $(X \sim Exp(\lambda) \quad \lambda > 0)$. Definirana je kot čas čakanja na dogodek. Njena porazdelitvena funkcija je:

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} : x > 0 \\ 0 : \text{ sicer} \end{cases}$$

$$p_X(x) = \begin{cases} \lambda \cdot e^{-\lambda x} : x > 0 \\ 0 : \text{ sicer} \end{cases}$$

$$E[X] = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

Opomba 5.8. Eksponentna porazdelitev je brez spomina!

5.3 Standardna normalna porazdelitev ali Gaussova porazdelitev

Definicija 5.9. Naj bo X standardno normalna slučajna spremneljivka $X \sim \mathcal{N}(0,1)$. Njena gostota je enaka:

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}} \left(\frac{x-\mu}{\sigma}\right)^2$$
$$E[X] = \mu$$

$$Var(X) = \sigma$$

5.4 Porazdelitev slučajnih spremenljivk

Definicija 5.10. Naj bo $(X,Y):\Omega\to\mathbb{R}^2$ slučajni vektor.

$$F_{X,Y}(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p_{X,Y}(x,y) dy dx$$

Definicija 5.11.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{X,Y}(x,y) dy dx = 1$$

Trditev 5.12. Slučajni spremenljivki X in Y sta neodvisni, če velja:

$$P(X \le x, Y \le y) = F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y) \quad \forall x, y \in \mathbb{R}$$
$$p_{X,Y}(x, y) = p_X(x) \cdot p_Y(y) \quad \forall x, y \in \mathbb{R}$$

Trditev 5.13. Naj bosta X in Y neodvisni slučajni spremenljivki. Nadalje naj velja Z = X + Y. Gostota slučajne spremenljivke Z je:

$$p_Z(z) = \int_{-\infty}^{\infty} dx \left(\int_{-\infty}^{z-x} p_{X,Y}(x,y) dy \right) = \int_{-\infty}^{\infty} p_X(x) \cdot p_Y(z-x) dx$$

5.5 Matematično upanje zveznih slučajnih spremenljivk

Definicija 5.14. Će ima slučajna spremenljivka X gostoto $p_X(x)$ je

$$E[X] = \int_{-\infty}^{\infty} x \cdot p_X(x) dx$$

pod pogojem da $\int_{-\infty}^{\infty} |x| \cdot p_X(x) dx < \infty$.

IZREK 5.15. Naj bo X slučajna spremenljivka in $p_X(x)$ gostota. Nadalje naj bo f: $\mathbb{R} \to \mathbb{R}$ zvezna, razen morda v končno mnogo točkah. Iz tega sledi, da je f(X) slučajna spremenljivka, njeno matematično upanje je:

$$E[f(X)] = \int_{-\infty}^{\infty} f(x) \cdot p_X(x) dx$$

pod pogojem da integral absolutno konvergira.

5.6 Pogojna porazdelitvena funkcija

DEFINICIJA 5.16. Naj bo X zvezna slučajna spremenljivka in naj bo A dogodek iz \mathcal{F} . Pogojna porazdelitvena funckija je definirana kot:

$$F_{X|A}(x) = P(X \le x|A) = \frac{P(X \le x, A)}{P(A)}$$

DEFINICIJA 5.17. Naj bo X zvezna slučajna spremenljivka in naj bo A dogodek iz \mathcal{F} . Potem obstaja pogojna gostota definiran kot odvod pogojne porazdelitvene funkcije $F_{X|A}$

DEFINICIJA 5.18. Če sta X in Y slučajni spremenljivki na (Ω, \mathcal{F}, P) , potem obstaja pogojna porazdelitev X glede na Y ($P(X \leq x | Y \leq y)$) za skoraj vsak $y \in \mathbb{R}$. Pogojno gostota je tako:

$$p_{X|Y}(x,y) = \frac{p_{X,Y}(x,y)}{p_X(x)}$$

pri čemer je

$$p_X(x) = \int_{-\infty}^{\infty} p_{X,Y}(x,y) dx$$

5.7 Mediana

DEFINICIJA 5.19. Naj bo X slučajna spremenljvka in $a \in \mathbb{R}$. Število a je **mediana**, če velja:

$$P(X \le a) = \frac{1}{2}$$

5.8 Varianca

Definicija 5.20. Varianca ali disprezija je mera, kako slučajna spremenljivka oscilira okrog svoje pričakovane vrednosti.

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

Definicija 5.21. (Standardni odklon):

$$\sigma = \sqrt{Var(X)}$$

Trditev 5.22. Naj bo X slučajna spremenljivka in naj Var(X) obstaja. Potem sledi:

- $Var(X) \ge 0$ in $Var(X) = 0 \iff x = konst.$
- Var(X + b) = Var(X)
- $Var(a \cdot X) = a^2 \cdot Var(X)$

5.9 Kovarianca

DEFINICIJA 5.23. Naj bosta X in Y slučajni spremenljivki na (Ω, \mathcal{F}, P) . Nadalje naj obstaja E[X], E[Y], ter E[XY]. Kovarianca je:

$$Cov(X, Y) = E[XY] - E[X] \cdot E[Y]$$

TRDITEV 5.24. Naj bojo X, Y, Z slučajne spremenljivke na (Ω, \mathcal{F}, P) . Nadlaje naj velja, da sta števili a in $b \in \mathbb{R}$. Potem velja:

- $Cov(a \cdot X + b \cdot Y, Z) = a \cdot Cov(X, Z) + b \cdot Cov(Y, Z)$
- $|Cov(X,Y)| < \sigma(X) + \sigma(Y)$
- Cov(X, X) = Var(X)

IZREK 5.25. Naj bosta X in Y neodvisni (z drugim momentom). Takrat velja:

$$Cov(X,Y) = E[XY] - E[X] \cdot E[Y] = 0$$

Posledica 5.26. Naj bosta X in Y neodvisni. Takrat velja:

$$Var(X + Y) = Var(X) + Var(Y)$$

Definicija 5.27. (Korelacijski koeficient)

$$\rho = \frac{Cov(X, Y)}{\sigma(X) \cdot \sigma(Y)}$$