

Les données

Les 3 modes d'importations possibles sur R

Importer les données depuis un url

X <- read.table('http://pbil.univ-lyon1.fr/R/donnees/essence.txt', h=T, dec=',')

X <- read.csv("https://pages.isfa.fr/data/liais54c7cd.csv", h=TRUE, dec = ",")

args(read.csv) ou help("read.csv") permettent d'obtenir les informations sur la fonction

dim(X)

Importer les données depuis un espace local

X <- read.table("essence.txt", header=TRUE, dec=',')

Importer les données depuis la library

library(ade4)

data(banque)

Variables et Description générale

Relation entre terminologie et noms des objets sur R

tableau	data frame	st
variable qualitative	factor	b
modalité	level	
variable quantitative	numeric, integer	

tr(pb) permet vérifier la nature de la table et corriger si pesoin.

Ex: A variable quantitative \rightarrow A = as.numeric(A)

B variable qualitative \rightarrow Y = as.factor(B)

Variable quantitative

Une série statistique associée à une variable quantitative A est une liste de valeurs mesurées sur n individus. À chaque individu i est associée la valeur xi.

Paramètres descriptifs

<u>Variance descriptive</u>: vardes <- function(x) var(x)*(length(x)-1)/length(x)

vardes(A)

<u>Variance estimée</u>: var(A)

<u>Ecart-type descriptif</u>: ecartype <- function(x) sqrt(vardes(x))

ecartype(A)

Paramètres de position : summary(A)

Représentation

Histogramme: hist(A)

Le graphe de Cleveland : dotchart(A)

La boite à moustache : bp = boxplot(A) \rightarrow déterminer les quartiles avec bp\$stats

1	2	3	4	5
Valeur min	Q1	médiane	Q3	Valeur max

Variable Qualitative

Paramètres statistiques

Fréquences absolues : summary(as.factor(A))

Fréquences relatives : summary(A)/ length(A)

Représentation :

pie(summary(A))

barplot(summary(A))

Les tables

Création d'une table à partir de 2 variables quantitatives

X = as.data.frame(X)

attach(X)

_	jour [‡]	nuit [‡]
piétons	258	210
bicyclettes	117	38
cycles<50	73	82
cycles>50	433	181

Création d'une table entre 2 variables qualitatives

 $Y <- \ matrix(c("c","b","a","c","b","b","b","a","c","x","z","y","x","x","z","x","y","y","y"), \ byrow=F, \ ncol=2)$

colnames(Y) <- c("Variable1","Variable2")</pre>

Y = as.data.frame(Y)

attach(Y)

^	Variable1 [‡]	Variable
1	с	x
2	b	z
3	a	у
4	С	x
5	b	x
6	b	z
7	b	x
8	a	у
9	a	у
10	с	v

Création d'une table de contingence entre 2 variables qualitatives

T <- table(Variable1, Variable2)

> Importor des données et lire les données

names (file): renvoie noms dos alonnes d'en detatrame

-> selection d'en sous-ensemble de données:

File [...,..]: File [File & Colone 1 = = "a",]: donne talen les lignes dont la dennée de le culone 1 est Égale à «

File [File \$ Colone 1 = = \alpha', 2]: donne tous les élèments de les colonnes 2 qui correquisdent à une ligne dont la donné de la colonne 1 est a

File [File & Colono 1== " " e (1,4)]

> Representations

→ HISTOGRANNE high ()

hist (vectous, main = "...", col = "...", border = "...", xlab = "...", ylas = "...", ylas = "..."

range of

range of largen des barres values : la décapage des axes des villeurs

-> GRAPHE DE CLEVELAND : dotchart ()

dotchart (recteur, main = "-", pch = 20)

dot chart (sort (secteur), main = "...", pch= 20)

D' pour afficher plusieus plot ensemble: par (...): par (mfrau= c (1,2)) par (mf.col) = c(2,1)1

par(mfrow)

par(mfrow)

par(mfrow) $\frac{3}{4}$ $\frac{4}{2}$ par(mfcol) $\frac{2}{4}$ $\frac{4}{2}$ $\frac{2}{4}$ par(mfcol) = $\frac{2}{2}$ $\frac{2}{4}$ $\frac{2}{4}$

DONTE À MOUSTACHE: boxplot()

boxplot (vecteur, cd = "...", main = "...",

horizontal = TRUE)

par placer la boite à moustache horizontalement

Lo respecte son seus de loctere de

gauche à droite

mediane

- as

mediane

- as

mantsche mp

reportition unforme

de valeurs

be have / Blass =) tassement de valeurs

val max (max) = Q3 + 4, 5 × (Q3 - Q2)

val min (mm) = Q4 - 4, 5 × (Q3 - Q2)

-> REPRÉSENTATION EN CAMETIBERT prie ()

pre (summary (vectous), main = "...", col = "..." / c = ("...", "...", "))

-> REPRESENTATION EN BÂTONS barplot()

frequences (summary (vectory)/length (vectory)

vectory

vectory

label

rethicus

label

> RELATION ENTRE DEUX VARIABLES

or relatives

Croisement	Parametre	Graphique
Quantitaty Quantitaty	Covariance coefficient de conelation coeff de determination	nuage de points
Qualitan J Qualitan f	Chi-Deux Osefficient de Cramer	mosaique reprirentation en ballons
Quantishif Qualitatif	Rapport de conclativi	reprez inter et intragroupes bottes à moustache

$$COU(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$r = \frac{COV(X,Y)}{S_X S_Y} \text{ ext}(v1, v2)$$

-> NUAGE DE POINTS Plot ()

plat (veckeur abs, vecteur ord, pch = 20, main = "...", sclab, yeab, type = "n")

text (vectors, vectors, vectour nom)

du graphe mais vide (graphe à ayoler à le ligne suvente

B'altach (dataframe): permet de France duertement (n 1901 iolande dataframe en

-> Valeur du Chi-Daux de contingence

On constreut une carle de contragence (tarle théorique) par définir le ben entre deux variables: hypothèse d'endépendance entre les deux variables ie equi probe: n:n/

Chi-Deux de contingence: compare EO=nij avec ET= ninj effectifs 2 effectifs the oriques

=> » 7 =0 : indépendence des deux variables On a $\chi^2 = \sum \frac{(EO - ET)^2}{ET}$ > n' 12 of petit: EO et ET prosque identiques Lo variables peu lues entre alles

> 8 72 get grand: EU et ET defférents 40 variables lives entre alles

chisq. test (V1, V2) Code R:

- -> REPRÉSENTATION EN BALLONS balloonplot () (ago mo) and library (gplots) ballonplot (table (V1, V2), main = "-")
- REPRÉSENTATION EN MOSAI QUE mosaicplot () se base or les écouts entre 60 et ET: (EO-ET)

mosai epolol-(table (v1, v2), main = "...", shade = TRUE)

La permet de meltre en relief les différences

· blen : los EO sut @ grands que ET sur l'abtence de lien entre les deep variables

o rouge: les €0 sont @ petrs que les ET sous l'absence de lien entre les deep variables

- Quantatif x Qualitatif

· variance descriptive mesure à sur un grape de n endevidus $S^2 = \frac{\tilde{\Sigma}}{\tilde{\Sigma}^2} (x_i - \tilde{x})^2.$ > Variation:

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}$$

· variance estimet de la population à partir d'un échantilles de n enderidees

$$\hat{\sigma}^2 = \frac{n}{n-1} s^2 \quad \text{ou encore } \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x}_i)^2}{n-1}$$

On préfix travailler et la variation totale ile sur le somme obtanco Galabien des égapts à la mayenne (SCE)

SCE - function (x) sum ((x-mean(x)) 2)

Variation enter-grape : comé des éconts entre la mayerne des grape et la mayerne globale

Exemple:

crimeo dans les Etats

Américauris

nor d'états ayant els échanhllonnés

l'année &

nbr mogen do crim es pour l'annes

SCEB < function (x, gpe) {

mayenne < tappy (x, gpe, mean) effectifs < tappy (x, gpe, length)

reo ((8vm (effectifs + (mayerne - mean(x)) 12))
return (100)

3

Rapport de correlation: $\eta^2 = \frac{SCE_B}{SCE_T} = \frac{\circ \text{ proche de 0: variables pas lies}}{\circ \text{ proche de 1: variables lies}}$

eta 2
function (2, gpe) { res
SCEB(x, gpe)/SCE T(n); return (res)}

(a prin)

(Voir le cas des graphes avec les modèletes d'en variables quelletatives : boîter à moustache, graphe de Cleveland)