

SynthI: a New Toolkit for Synthon-Based Library Design and Building Blocks Analysis

Yuliana Zabolotna

D.M.Volochnyuk, S. V.Ryabukhin, K. Gavrylenko, D. Horvath, O. Klimchuk, O. Oksiuta, G. Marcou, A. Varnek

Building Blocks in Medicinal Chemistry

Building blocks (BB) – molecules that possess at least one reactive functional group and thus can be used as reagents for synthesis and as a building material for libraries design.

Building Blocks in Medicinal Chemistry

Building blocks (BB) – molecules that possess at least one reactive functional group and thus can be used as reagents for synthesis and as a building material for libraries design.

Usage of the medicinally relevant BB can significantly improve the quality of the designed compounds

Up to date, there are only a few publications dedicated to the analysis of the BB used in medicinal chemistry

BBs analysis challenges

Synthetic chemists: "How?"

 functional groups that define BB's reactivity

Medicinal chemists: "What?"

 structural fragments introduced to the final molecule

This is a reagent that can introduce 2,3-dimethylbutane moiety

This is an aldehyde which can participate in:

- imine formation
- alkylation
- C-C coupling with Li, Mg, Zn organics

Both aspects needs to be considered in BBs analysis!

BBs analysis challenges

Presence of protective groups

- Functional groups in BB can be protected
- Protective groups can be larger than BB itself

Versatile reaction behavior

$$0 = \bigvee_{N \to \infty} A_{N} + \bigvee_{N \to$$

Depending on reaction partner the same BB can:

- behave differently
- contribute different fragments to the final molecule

Concept of Synthons

"Synthon" – is a structural increment, introduced by the BB into the reaction product

Concept of Synthons

"Synthon" – is a structural increment, introduced by the BB into the reaction product

Synthon = BB – Leaving Group + Reaction Centre Label

Concept of Synthons

"Synthon" – is a structural increment, introduced by the BB into the reaction product

Synthon = BB – Leaving Group + Reaction Centre Label

- neutral fragments
- have valid valences

PhysChem properties of synthons can be calculated

Syntons can be mapped on GTM

Synthons Interpreter (SynthI)

SynthI-BB

SynthI-Classification

BBs classification

Classifies and generates synthons for library of BBs

Knowledge-based generalized toolkit empowering library design and BBs analysis

SynthI-Enumeration

Enumerates compound library from user-defined synthons using selected reactions

SynthI-Fragmentation

Fragments library of molecules into synthons using selected list of reactions

https://github.com/Laboratoire-de-Chemoinformatique/Synthl

Synthons Interpreter (SynthI)

SynthI-BB

SynthI-Classification

BBs classification

SynthI-Fragmentation

Knowledge-based generalized toolkit empowering library design for organic chemistry and BBs analysis

SynthI-Enumeration

Building Blocks Classification

- >200 SMARTS specification for BBs classification
- ≈150 BB classes (100 mono-, 28 bi- and 19 trifunctional)

Years of experience of synthetic chemists

Building Blocks Classification

Building Blocks Classification: case study

The molecule is not considered as *primary amine* if R contains:

I. Conflict functionalities

- Second amino group
- Hydroxylamines
- (Thio)Carbonyls
- Iso(thio)cyanates
- Metal-organics

- Acylators
- Alkylators
- Oxiranes
- Imines

II. FG with higher priority than NH₂

- Thiols
- Element Organics
- Boronics*

*A chemist would select this BB because of the boronic acid functionality (e.g. for Suzuki or Chan-Lam coupling) rather than for the amine group

Scaffold analysis of BBs

Scaffold generation for BBs with ring-containing protective groups

Scaffold analysis of BBs

Scaffold generation for BBs with ring-containing protective groups

Incorrect Bemis-Murcko Scaffold

Protected BB

Correct Bemis-Murcko Scaffold

Scaffold generation for BBs with ring-containing leaving groups

Incorrect Bemis-Murcko Scaffold BB with cyclic leaving group

Correct Bemis-Murcko Scaffold

Scaffold analysis of BBs

Synthi allows performing scaffold analysis including generation of the scaffold frequency plots

Synthons Interpreter (SynthI)

SynthI-Classification

SynthI-BB

Generates synthons for library of BBs

Knowledge-based generalized toolkit empowering library design for organic chemistry and BBs analysis

SynthI-Enumeration

SynthI-Fragmentation

SynthI-BBs

Generates the list of synthons for the given BB depending on the class assigned to this BB on the previous step

Synthon = BB - Leaving Group + Reaction Centre Label

9 types of labels

Synthons classes and labels system: electrophilic synthons

Electrophilic synthons

$$R_1$$
 C_1
 R_1
 C_1
 R_1
 R_2
 R_3
 R_4
 R_1
 R_1
 R_1
 R_2
 R_3
 R_4
 R_1
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_6
 R_7
 R_7

• Bivalent Electrophilic synthons

$$R_1$$
 CH^{2+} R_1 $CH_3:30$

Imines formation, olefination

Electrophilic radical synthons

Minisci Reaction

Synthons classes and labels system: nucleophilic synthons

Nucleophilic synthons

$$R_2$$
 R_3
 R_2
 R_3
 R_4
 R_3
 R_4
 R_5
 R_5
 R_5
 R_7
 R_8

N-acylation, -alkylation, -arylation

Bivalent Nucleophilic synthons

Ph
$$\stackrel{P}{=}$$
 Ph $\stackrel{P}{=}$ Ph

Wittig-type olefination

Nucleophilic radical synthons

Minisci and Giese Reaction

Synthons classes and labels system: special synthons classes

Neutral biradical synthons

$$R_1$$
 CH : CH_3

Alkene Metathesis

Umpolung N-electrophile synthons
 Only from acylated hydroxylamines
 BzO-NR₁R₂

Boronic-derived C-nucleophile synthons

Only BF₃ and MIDA boronates

Chamn-Lam C-O and C-N couplings
Suzuki couplings

Protected BBs

Protected Synthon

Rule of two filtration

Ro2 filtration is a simple way of BBs prioritization for designing compounds with physical properties that are suitable for oral administration

Should be applied not to the BBs, but to the increments that will be introduced to the molecule by BB - **synthons**

Rule of two filtration

10 - Electrophilic RC

20 - Nucleophilic RC

Synthons Interpreter (SynthI)

SynthI-Classification

SynthI-BB

Knowledge-based generalized toolkit empowering library design for organic chemistry and BBs analysis

SynthI-Enumeration

SynthI-Fragmentation

Fragments library of molecules into synthons using selected list of reactions

Synthl-Fragmentation

SynthI vs BRICS

Bonds that are not cleaved at all in BRICS

Bonds that are cleaved in BRICS but in different manner

Bonds that are cleaved in the same way in Synthl and BRICS

$$\begin{array}{c|c}
 & \oplus \\
 & \times \\$$

Synthl vs BRICS: different fragmentations

$$A^{3} \xrightarrow{A^{3}} A^{4} \xrightarrow{NH} A^{13} \xrightarrow{NH} A^{16} \xrightarrow{NH} A^{16} A^{16} \xrightarrow{NH} A^{16} A^{16} \xrightarrow{NH} A^{16} A^{16} \xrightarrow{NH} A^{16} A^{16}$$

Different mechanisms of the same bond formation/disconnection in Synthl

Compound for fragmentation Synthons Potential reagents for compound synthesis A0 CH3 H₃C CH3 H₃C CH3 Ph₃P CH₃ CH₃

40 - Bivalent nucleophilic RC

30 - Bivalent electrophilic RC

29

50 - Bivalent neutral RC

CENOBAMATE

10 - Electrophilic RC 20 - Nucleophilic RC 21 - Boronics-derived nucleophilic RC

Availability rate =
$$\frac{\sum heavy \ atoms \ coming \ from \ available \ synthons}{Total \ number \ of \ heavy \ atoms \ in \ a \ molecule} * 100\%$$

10 - Electrophilic RC 20 - Nucleophilic RC 21 - Boronics-derived nucleophilic RC

Availability rate =
$$\frac{3}{18} * 100\% \approx 17\%$$

EN300-50197

Availability rate =
$$\frac{\sum heavy atoms coming from available synthons}{Total number of heavy atoms in a molecule} * 100%$$

10 - Electrophilic RC 20 - Nucleophilic RC 21 - Boronics-derived nucleophilic RC

SynthI vs experimental synthesis

Synthi selected path

Experimantal synthetic path reported in literature

Synthons Interpreter (SynthI)

SynthI-Classification

SynthI-BB

Knowledge-based generalized toolkit empowering library design for organic chemistry and BBs analysis

SynthI-Enumeration

Enumerates compound library from user-defined synthons using selected reactions

SynthI-Fragmentation

SynthI-Enumeration

BB library

Examples of enumerated compounds

10 - Electrophilic RC

20 - Nucleophilic RC

Step 1 – fragmentation of the reference molecule

10 - Electrophilic RC 20 - Nucleophilic RC 21 - Boronics-derived nucleophilic RC

Step 2 – selection of the analogues for each synthon of each path

(source -> library of available synthons)

20 - Nucleophilic RC

Primary constraints:

- Number of RCs
- Type of RC
- Number of cycles

Morgan Fingerprints Similarity (Tanimoto>=0.5)

Similarity in synthons space

The size of compared synthons

The impact of small structural changes on the Tanimoto coefficient

Step 2 – selection of the analogues for each synthon of each path

20 - Nucleophilic RC

Positional Analogues Scanning (PAS) approach

Addition or removal of CH₃, F, NH₂, OH,

$C_{Ar} \rightarrow N_{Ar}$ or $N_{Ar} \rightarrow C_{Ar}$ replacements combined with isomeric rearengents

 $C_{\Delta r} \rightarrow N_{\Delta r}$ replacement + Isomeric rearrangement

Step 3 – selection of the fragmentation scheme(s) for analogues distribution

10 - Electrophilic RC 20 - Nucleophilic RC 21 - Boronics-derived nucleophilic RC

Step 4 – enumeration of the analogues of reference compound

a) PAS approach

$$H_2N$$
 O NH_2

b) C_{Ar}->N_{Ar} replacement + Isomeric rearrangements

$$H_2N$$

c) Morgan Fingerprints Similarity (Tanimoto>=0.5)

$$0 \\ NH_2 \\ NH_2$$

Conclusions

Synth! is an open-source tool for synthons generation, BBs analysis and library design (https://github.com/Laboratoire-de-Chemoinformatique/Synth!).

Synthetically accessible analogs generation

Zabolotna, Y. et al. Synthl: a new open-source tool for synthon-based library design. ChemRxiv. Cambridge: Cambridge Open Engage. 2021 (Accepted in JCIM)

Thank you!

Supervisors:

Prof. Alexandre VARNEK Dr. Dragos HORVATH

Dr. Gilles MARCOU Dr. Olga KLIMCHUK

External collaborators (medicinal chemistry expertise):

Prof. Dmitrii VOLOCHNYUK; Sergey V. RYABUKHIN; Kostiantyn GAVRYLENKO; Oleksandr OKSIUTA