Package 'nbfar'

February 18, 2022

Title Negative Binomial Factor Regression Models with Application to Microbiome Data Analysis

Description The R package nbfar implements Negative Binomial factor regression models that allow the estimation of structured (sparse) associations between a feature matrix X and overdis-

Maintainer Aditya Mishra <amishra@flatironinstitute.org>

Type Package

Version 0.1 Date 2022-02-17

persed count data Y. The package has been developed with microbiome count data Y in mind and can be used, e.g., to associate host or environmental covariates with microbial abundances. Currently, two models are available: a) Negative Binomial reduced rank regression (NB-RRR), b) Negative Binomial co-sparse factor regression (NB-FAI	
<pre>URL https://github.com/amishra-stats/nbfar, https: //www.biorxiv.org/content/10.1101/2021.11.29.470304v1</pre>	
Depends R ($>= 3.4$), stats, utils	
Imports Rcpp (>= 0.12.9), MASS, magrittr, rrpack, glmnet, RcppParallel, mpath	
License GPL (>= 3.0)	
Encoding UTF-8	
LazyData FALSE	
LinkingTo Rcpp, RcppArmadillo, RcppParallel	
NeedsCompilation yes	
VignetteBuilder knitr	
Roxygen $list(markdown = TRUE)$	
RoxygenNote 7.1.2	
Suggests rmarkdown, knitr, spelling	
Language en-US	
R topics documented:	
nbfar	4
1	

2 nbfar

Index 10

nbfar Negative binomial co-sparse factor regression (NBF	AR)
--	-----

Description

To estimate a low-rank and sparse coefficient matrix in large/high dimensional setting, the approach extracts unit-rank components of required matrix in sequential order. The algorithm automatically stops after extracting sufficient unit rank components.

Usage

```
nbfar(
   Yt,
   X,
   maxrank = 3,
   nlambda = 40,
   cIndex = NULL,
   ofset = NULL,
   control = list(),
   nfold = 5,
   PATH = FALSE,
   nthread = 1,
   trace = FALSE
)
```

Arguments

Yt	response matrix
X	design matrix; when $X = NULL$, we set X as identity matrix and perform generalized sparse PCA.
maxrank	an integer specifying the maximum possible rank of the coefficient matrix or the number of factors
nlambda	number of lambda values to be used along each path
cIndex	specify index of control variables in the design matrix X
ofset	offset matrix or microbiome data analysis specific scaling: common sum scaling = CSS (default), total sum scaling = TSS, median-ratio scaling = MRS, centered-log-ratio scaling = CLR
control	a list of internal parameters controlling the model fitting
nfold	number of folds in k-fold crossvalidation
PATH	TRUE/FALSE for generating solution path of sequential estimate after cross-validation step
nthread	number of thread to be used for parallelizing the crossvalidation procedure
trace	TRUE/FALSE checking progress of cross validation error

nbfar 3

Value

С	estimated coefficient matrix; based on GIC
Z	estimated control variable coefficient matrix
Phi	estimted dispersion parameters
U	estimated U matrix (generalize latent factor weights)
D	estimated singular values
V	estimated V matrix (factor loadings)

References

Mishra, A., Müller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304

Examples

```
## Model specification:
SD <- 123
set.seed(SD)
p <- 100; n <- 200
pz <- 0
nrank <- 3
                           # true rank
rank.est <- 5
                           # estimated rank
nlam <- 20
                           # number of tuning parameter
s = 0.5
q <- 30
control <- nbfar_control() # control parameters</pre>
#
## Generate data
D <- rep(0, nrank)
V <- matrix(0, ncol = nrank, nrow = q)</pre>
U <- matrix(0, ncol = nrank, nrow = p)</pre>
U[, 1] \leftarrow c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8))
U[, 2] \leftarrow c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14))
U[, 3] \leftarrow c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20))
  # for similar type response type setting
 V[, 1] \leftarrow c(rep(0, 8), sample(c(1, -1), 8,
   replace =
      TRUE
  ) * runif(8, 0.3, 1), rep(0, q - 16))
  V[, 2] \leftarrow c(rep(0, 20), sample(c(1, -1), 8,
    replace =
      TRUE
  ) * runif(8, 0.3, 1), rep(0, q - 28))
  V[, 3] <- c(
    sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23),
    sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30)
U[, 1:3] \leftarrow apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2)))
V[, 1:3] \leftarrow apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2)))
D <- s * c(4, 6, 5) # signal strength varries as per the value of s
```

4 nbfar_control

```
or <- order(D, decreasing = TRUE)
U <- U[, or]
V <- V[, or]
D <- D[or]</pre>
C \leftarrow U \%\% (D * t(V)) # simulated coefficient matrix
intercept \leftarrow rep(0.5, q) # specifying intercept to the model:
C0 <- rbind(intercept, C)</pre>
Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-"))</pre>
# Simulated data
sim.sample <- nbfar_sim(U, D, V, n, Xsigma, C0, disp = 3, depth = 10) # Simulated sample
# Dispersion parameter
X <- sim.sample$X[1:n, ]</pre>
Y <- sim.sample$Y[1:n, ]
                                         # 1st column accounting for intercept
X0 \leftarrow cbind(1, X)
# Model with known offset
set.seed(1234)
offset <- \log(10)*matrix(1,n,q)
control_nbfar <- nbfar_control(initmaxit = 5000, gamma0 = 2, spU = 0.5,</pre>
spV = 0.6, lamMinFac = 1e-10, epsilon = 1e-5)
# nbfar_test <- nbfar(Y, X, maxrank = 5, nlambda = 20, cIndex = NULL,</pre>
# ofset = offset, control = control_nbfar, nfold = 5, PATH = F)
```

nbfar_control

Control parameters for NBFAR and NBRRR

Description

Default value for a list of control parameters that are used to estimate the parameters of negative binomial co-sparse factor regression (NBFAR) and negative binomial reduced rank regression (NBRRR).

Usage

```
nbfar_control(
  maxit = 5000,
  epsilon = 1e-07,
  elnetAlpha = 0.95,
  gamma0 = 1,
  spU = 0.5,
  spV = 0.5,
  lamMaxFac = 1,
  lamMinFac = 1e-06,
  initmaxit = 10000,
  initepsilon = 1e-08,
  objI = 0
)
```

Arguments

maxit

maximum iteration for each sequential steps

nbfar_sim 5

epsilon	tolerance value required for convergence of inner loop in GCURE
elnetAlpha	elastic net penalty parameter
gamma0	power parameter for generating the adaptive weights
spU	maximum proportion of nonzero elements in each column of U
spV	maximum proportion of nonzero elements in each column of V
lamMaxFac	a multiplier of the computed maximum value (lambda_max) of the tuning parameter
lamMinFac	a multiplier to determine lambda_min as a fraction of lambda_max
initmaxit	maximum iteration for minimizing the objective function while computing the initial estimates of the model parameter
initepsilon	tolerance value required for the convergence of the objective function while computing the initial estimates of the model parameter
objI	1 or 0 to indicate that the convergence will be on the basis of objective function or not

Value

a list of controlling parameter.

References

Mishra, A., Müller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304

Examples

```
control <- nbfar_control()</pre>
```

Description

Simulate response and covariates for multivariate negative binomial regression with a low-rank and sparse coefficient matrix. Coefficient matrix is expressed in terms of U (left singular vector), D (singular values) and V (right singular vector).

Usage

```
nbfar_sim(U, D, V, n, Xsigma, C0, disp, depth)
```

Arguments

U	specified value of U
D	specified value of D
V	specified value of V

n sample size

Xsigma covariance matrix used to generate predictors in X

6 nbfar_sim

C0	intercept value in the coefficient matrix
disp	dispersion parameter of the generative model
depth	log of the sequencing depth of the microbiome data (used as an offset in the simulated multivariate negative binomial regression model)

Value

Y Generated response matrix
X Generated predictor matrix

References

Mishra, A., Müller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304

Examples

```
## Model specification:
SD <- 123
set.seed(SD)
p <- 100; n <- 200
pz <- 0
nrank <- 3
                           # true rank
rank.est <- 5
                           # estimated rank
nlam <- 20
                           # number of tuning parameter
s = 0.5
q <- 30
control <- nbfar_control() # control parameters</pre>
#
## Generate data
D <- rep(0, nrank)
V <- matrix(0, ncol = nrank, nrow = q)</pre>
U <- matrix(0, ncol = nrank, nrow = p)</pre>
U[, 1] \leftarrow c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8))
U[, 2] \leftarrow c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14))
U[, 3] \leftarrow c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20))
  # for similar type response type setting
  V[, 1] \leftarrow c(rep(0, 8), sample(c(1, -1), 8,
    replace =
      TRUE
  ) * runif(8, 0.3, 1), rep(0, q - 16))
  V[, 2] \leftarrow c(rep(0, 20), sample(c(1, -1), 8,
    replace =
      TRUE
  ) * runif(8, 0.3, 1), rep(0, q - 28))
  V[, 3] <- c(
    sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23),
    sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30)
U[, 1:3] \leftarrow apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2)))
V[, 1:3] \leftarrow apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2)))
```

nbrrr 7

```
D <- s * c(4, 6, 5) # signal strength varries as per the value of s
or <- order(D, decreasing = TRUE)
U <- U[, or]
V <- V[, or]
D <- D[or]
C <- U %*% (D * t(V)) # simulated coefficient matrix
intercept <- rep(0.5, q) # specifying intercept to the model:
C0 <- rbind(intercept, C)
#
Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-"))
# Simulated data
sim.sample <- nbfar_sim(U, D, V, n, Xsigma, C0,disp = 3, depth = 10) # Simulated sample
# Dispersion parameter
X <- sim.sample$X[1:n, ]
Y <- sim.sample$Y[1:n, ]</pre>
```

nbrrr

Negative binomial reduced rank regression (NBRRR)

Description

In the range of 1 to maxrank, the estimation procedure selects the rank r of the coefficient matrix using a cross-validation approach. For the selected rank, a rank r coefficient matrix is estimated that best fits the observations.

Usage

```
nbrrr(
   Yt,
   X,
   maxrank = 10,
   cIndex = NULL,
   ofset = NULL,
   control = list(),
   nfold = 5,
   trace = FALSE
)
```

Arguments

Yt	response matrix
X	design matrix; when $X = NULL$, we set X as identity matrix and perform generalized PCA.
maxrank	an integer specifying the maximum possible rank of the coefficient matrix or the number of factors
cIndex	specify index of control variable in the design matrix X
ofset	offset matrix or microbiome data analysis specific scaling: common sum scaling = CSS (default), total sum scaling = TSS, median-ratio scaling = MRS, centered-log-ratio scaling = CLR
control	a list of internal parameters controlling the model fitting
nfold	number of folds in k-fold crossvalidation
trace	TRUE/FALSE checking progress of cross validation error

8 nbrrr

Value

С	estimated coefficient matrix
Z	estimated control variable coefficient matrix
PHI	estimted dispersion parameters
U	estimated U matrix (generalize latent factor weights)
D	estimated singular values
٧	estimated V matrix (factor loadings)

References

Mishra, A., Müller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304

Examples

```
## Model specification:
SD <- 123
set.seed(SD)
p <- 50; n <- 200
pz <- 0
nrank <- 3
                           # true rank
rank.est <- 5
                           # estimated rank
nlam <- 20
                            # number of tuning parameter
s = 0.5
q <- 30
control <- nbfar_control() # control parameters</pre>
#
## Generate data
D <- rep(0, nrank)
V <- matrix(0, ncol = nrank, nrow = q)</pre>
U <- matrix(0, ncol = nrank, nrow = p)</pre>
U[, 1] \leftarrow c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8))
U[, 2] \leftarrow c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14))
U[, 3] \leftarrow c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20))
  # for similar type response type setting
 V[, 1] \leftarrow c(rep(0, 8), sample(c(1, -1), 8,
    replace =
      TRUE
  ) * runif(8, 0.3, 1), rep(0, q - 16))
  V[, 2] \leftarrow c(rep(0, 20), sample(c(1, -1), 8,
    replace =
      TRUE
  ) * runif(8, 0.3, 1), rep(0, q - 28))
  V[, 3] <- c(
    sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23),
    sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30)
U[, 1:3] \leftarrow apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2)))
V[, 1:3] \leftarrow apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2)))
D \leftarrow s * c(4, 6, 5) # signal strength varries as per the value of s
```

nbrrr 9

```
or <- order(D, decreasing = TRUE)</pre>
U <- U[, or]
V <- V[, or]
D <- D[or]
C <- U %*% (D * t(V)) # simulated coefficient matrix
intercept <- rep(0.5, q) # specifying intercept to the model:
C0 <- rbind(intercept, C)</pre>
Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-"))</pre>
# Simulated data
sim.sample <- nbfar_sim(U, D, V, n, Xsigma, C0,disp = 3, depth = 10) # Simulated sample
# Dispersion parameter
X <- sim.sample$X[1:n, ]</pre>
Y <- sim.sample$Y[1:n, ]
                                         # 1st column accounting for intercept
X0 \leftarrow cbind(1, X)
# Model with known offset
set.seed(1234)
offset <- log(10)*matrix(1,n,q)
control_nbrr <- nbfar_control(initmaxit = 5000, initepsilon = 1e-4)</pre>
# nbrrr_test <- nbrrr(Y, X, maxrank = 5, cIndex = NULL, ofset = offset,</pre>
                         control = control_nbrr, nfold = 5)
```

Index

```
nbfar, 2
nbfar_control, 4
nbfar_sim, 5
nbrrr, 7
```