المستوى: الأولى ثانوي ج م ع وتك

ملاحظة: بما أن الورقة المطبوع عليها صغيرة فنعتبر كل مربع في التمثيل هو 1 cm.

التمرين الأول:

1- ضع علامة X في المكان المناسب:

خطأ	صح	العبارة	
		جسم لا يخضع لأي قوة وفي حالة حركة فإنه يستمر في حركته بسرعة ثابتة	1
		حسب مبدأ العطالة فإن الجسم المتحرك يبقى متحرك ما لم تؤثر عليه قوة خارجية	2
		في الحركة المستقيمة المنتظمة هناك قوة ثابتة مطبقة على الجسم	3
		إذا كان شعاع تغير السرعة معدوم يكون شعاع السرعة ثابت	4
		في الحركة المستقيمة المتغيرة بانتظام يكون $\stackrel{ ightarrow}{\Delta v}$ و $\stackrel{ ightarrow}{F}$ لهما نفس الجهة	5
		إذا كان $\stackrel{ ightarrow}{\Delta v}$ ثابتة	6
		في الحركة المستقيمة المتباطئة بانتظام $\stackrel{ ightarrow}{\Delta v}$ ، $\stackrel{ ightarrow}{F}$ ، $\stackrel{ ightarrow}{\Delta v}$ الجهة	7

2- قمنا في الجدول التالي بتمثيل القوى المطبقة على جملة S في حركة شاقولية موجهة من الأعلى نحو الأسفل في ثلاث وضعيات مختلفة . لكل شكل من أشكال القوى ، حدد طبيعة حركة الجملة S مع التعليل.

طبيعة حركة الجملة S مع التعليل	القوى المطبقة على الجملة S
	S F _{X/S}
	S $\overrightarrow{F}_{1/S}$
··	$\overrightarrow{F_{1/S}}$ $S \bigoplus_{\overrightarrow{F_{2/S}}}$

- في كل الحالات السابقة كيف سيكون شعاع السرعة للجملة S نحو الأسفل أو نحو الأعلى أو يكون معدوم.

التمرين الثاني:

يمثل الشكل المجاور أوضاع متتالية لحركة جسم تم تسجيلها خلال فواصل زمنية متالية ومتساوية قدرها (T=0.1s)

1-أكمل الجدول الأتي:

الموضع	M ₁	M ₂	M ₃	M ₄
الزمنt (s)				
السرعة (V(cm/s				
ΔV(cm/s)				

2- بين طبيعة حركته.

 $1cm \longrightarrow 17.5cm/s$ السرعة اللحظية V_2 في الموضع M_2 بإستخدام السلم السرعة اللحظية V_2

1cm \longrightarrow 10cm/s السلم السرعة ΔV_2 في الموضع ΔV_2 الميام السلم 3- مثل شعاع تغير السرعة ألم الموضع

4- هل القوة المؤثرة على هذا الجسم ثابتة القيمة أم متغيرة –مثلها في الموضع M_2 بسهم كيفي.

V=f(t) وبالنسبة الزمن 0.1 s أرسم مخطط السرعة V=f(t) بإستخدام السلم بالنسبة للزمن 1 cm \longrightarrow 10cm/s للسرعة

6-إستنتج من هذا المنحنى: -سرعة المتحرك عند اللحظة t=0.

-لحظة إنعدام سرعته.

-المسافة التي يقطعها خلال حركته.

<u>التمرين الثالث:</u>

يمثل الشكل-1- منحنى تغيرات السرعة اللحظية لمتحرك بدلالة الزمن.

- 1- حدد مع التعليل أطوار هذه الحركة ومدة كل منها.
 - 2- أحسب المسافة المقطوعة في كل طور.
 - 3- استنتج المسافة الكلية.

التمرين الرابع:

يمثل الشكل-2- تمثيلا للصور المتعاقبة لحركة نقطة من جسم أخذت في فترات زمنية متساوبة T =0.04 s .

- 1- ماذا يمكنك أن تقول عن سرعة الجسم خلال الحركة؟ علل
- 2- أحسب قيمة السرعة اللحظية في المواضع M5, M4, M3, M2, M1 ، ثم مثل أشعة السرعة اللحظية في هذه المواضع.
 - 3- هل الجسم يخضع لتأثير قوة؟ علل.

التمرين الخامس:

عربة صغيرة (M) موضوعة فوق طاولة أفقية ملساء نثبت فها خيط عديم

الإمتطاط يمر على محز بكرة و في نهايته الأخرى معلق جسم صلب (S)

الذي يجر العربة كما هو موضح في الشكل المقابل.

في لحظة نعتبرها مبدأ الأزمنة t_0 =0 تكون العربة (M) عند الموضع M_0 .

فجأة عند اللحظة t ينقطع الخيط الواصل بين العربة (M) و الجسم (S).

يمثل الشكل أدناه تسجيلا لمواضع العربة التي تشغلها خلال فترات زمنية متتالية و متساوية τ=0,1s .

- 1- ما هي طبيعة حركة العربة (M) بين اللحظتين t_5 ، t_0 و اللحظتين t_8 ، t_8 ، مع التعليل.
 - 2- مثل شعاع السرعة اللحظية في اللحظات: t_3 ، t_3 ، t_3 ، t_4 بإختيار سلم مناسب.
- 3- مثل شعاع التغير في السرعة $\overline{\Delta v}$ في الموضعين : M_2 و M_2 ثم أذكر خصائص كل شعاع.
 - 4- أحسب شدة شعاع التغير في السرعة $\overline{\Delta v}$ في الموضعين السابقين.
 - قارن القيمة المحصل عليها مع شدته الممثلة في السؤال 3 .
 - 5- ماذا تستطيع القول عن القوة المطبقة على العربة؟
 - 6- ذكر بمبدأ العطالة. هل هو محقق في المرحلة الثانية من الحركة؟

.t₄ و t_1 بين اللحظتين v=f(t) بين اللحظتين t_1 و t_1

t(s)	0,1		
υ(m/s)			

- ماذا تستنتج ؟
- 8- إستنتج شدة شعاع السرعة الإبتدائية.
- 10- أحسب المسافة المقطوعة M₀M₄ ثم قاربها مع القيمة المحسوبة من التسجيل مباشرة.

التمرين السادس:

ينطلق جسم نقطي على طريق مستقيم في اللحظة t=0 فسجلت قيمة سرعته اللحظية في لحظات زمنية متساوية T ودونت النتائج في الجدول التالي:

t(s)			0.12		0.20	0.24					0.44
V (m/s)	2.2	4.2	6.1	8.1	10.0	10.0	10.0	10.0	7.0	4.0	1.0
Δ V(m/s)	////				/////			/////			/////

- $\overline{\Delta v}$. أكتب العبارة الشعاعية لشعاع تغير السرعة اللحظية $\overline{\Delta v}$ في الموضع $M_{ ext{n}}$
 - 2- أكمل الجدول السابق، واستنتج قيمة T
 - 3- ارسم المنحنى البياني الممثل له: V=f(t) باختيار سلم رسم مناسب.
- 4- حدد من البيان عدد مراحل (أطوار) الحركة. (التحديد يكون بواسطة مجالات زمنية)
 - 5- ماهي طبيعة الحركة في كل طور؟ علل اجايتك باختصار
- اذكر خصائص شعاع السرعة اللحظية وخصائص شعاع تغير السرعة في كل مرحلة من المراحل الموجودة سابقا.
 - 7- استنتج من ما سبق قيمة السرعة الإبتدائية للمتحرك في اللحظة t=0.
 - 8- احسب من البيان المسافة المقطوعة من طرف المتحرك بين اللحظتين t=0.20s و t=0.32s.
 - اذكرنص مبدأ العطالة واستنتج أثر القوة المطبقة في كل مرحلة.
- 10- مثل كيفيا على محور الحركة الموجه في جهة الحركة كل من شعاع السرعة اللحظية، شعاع تغير السرعة اللحظية وشعاع القوة وذلك في كل طور من الحركة.