

ELECTRONIQUE

Mardi 31 janvier 2012 Durée : 2h

Documents autorisés : 1 feuille A4 manuscrite recto verso Calculatrice autorisée

EXERCICE 1 (6 points)

On étudie ici le fonctionnement d'un convertisseur analogique numérique à rampe numérique. La figure ci-dessous reproduit le schéma complet de ce type de convertisseur :

Fonctionnement:

- On applique une impulsion DEBUT positive qui a pour effet de mettre à zéro (RAZ) le compteur. La logique de contrôle bloque alors le passage des impulsions d'horloge jusqu'au compteur.
- Le compteur étant à zéro, $V_A = 0$ et la sortie du comparateur est au niveau haut (en supposant que V_A est une tension positive quelconque).
- Quand l'impulsion DEBUT revient au niveau bas, la logique de contrôle envoie le signal d'horloge jusqu'au compteur.
- A mesure que le compteur progresse, la sortie V'_A du convertisseur numérique analogique (CNA) augmente à chaque fois d'un échelon de tension égal au quantum.
- Ceci se répète jusqu'à ce que V'_A atteigne un échelon qui dépasse V_A d'une grandeur supérieure ou égale à V_T (sensibilité seuil du comparateur).
- 1. Que se passe-t-il ensuite ? Où se trouve le mot binaire correspondant à la tension à convertir V_A ? Où se trouverait le signal "fin de conversion" sur le montage ?

Le convertisseur a les caractéristiques suivantes :

- fréquence d'horloge : 1 MHz
- $V_T = 0.1 \text{ mV}$
- Tension pleine échelle du CNA = 10,23 V

译和

• Nombre de bits du CNA: 10

La tension d'entrée est $V_A = 3,728 \text{ V}$.

- 2. Que vaut le quantum (tension analogique correspondante au LSB)?
- 3. Déterminer la valeur à la sortie du compteur en décimal et en binaire.
- 4. Quelle est la durée de conversion?
- 5. En déterminant la plus longue durée de conversion, quelle est la fréquence maximale du signal DEBUT.

EXERCICE 2 (7 points)

On souhaite réaliser un filtre assurant une atténuation de 50 dB de la gamme fréquentielle inférieure à 20kHz et laissant passer les fréquences supérieures à 80kHz.

- 1. Quel type de filtre permettra de répondre au mieux à ce cahier des charges ?
- 2. Quelles informations nous manque-t-il pour établir un choix définitif pour la fonction de transfert?

On nous donne le gabarit suivant :

- 3. Vers quelle famille de fonction de transfert va-t-on finalement s'orienter?
- 4. Déterminer l'ordre n du filtre.
- 5. Donner la fonction de transfert dénormalisée T(jω) du filtre qui répond au gabarit.

On souhaite réaliser ce filtre avec une structure active à AOP de type Sallen-Key dont la structure est rappelée ci-dessous :

6. Déterminer la fonction de transfert $V_{\text{out}}/V_{\text{in}}$ en fonction de $Z_1,\,Z_2,\,Z_3$ et $Z_4.$

On choisit
$$Z_1 = \frac{1}{jC\omega}$$
, $Z_2 = \frac{1}{jC\omega}$, $Z_3 = R_2$ et $Z_4 = R_1$.

- 7. Déterminer la fonction de transfert V_{out}/V_{in} et la mettre sous forme normalisée en donnant la pulsation naturelle ω_n et le coefficient d'amortissement m.
- 8. De quel type de filtre s'agit-il?

On prend C = 100 pF, $R_2 = 143 \text{ k}\Omega$ et $R_1 = 3.3 \text{ k}\Omega$.

9. Est-ce que V_{out}/V_{in} peut être associée à une des cellules du filtre T(jω)? Si oui, laquelle?

EXERCICE 3 (7 points)

Soit le schéma ci-dessous.

1. Déterminer la fonction de transfert V_S/V_c et la mettre sous la forme :

$$\frac{V_s}{V_e} = \frac{\frac{p^2}{\omega_n^2}}{1 + 2m\frac{p}{\omega_n} + \frac{p^2}{\omega_n^2}}, \text{ en identifiant } \omega_n \text{ et m.}$$

- 2. De quel type de filtre s'agit-il?
- 3. Tracer son diagramme de Bode (gain et phase) asymptotique sur votre copie.

On veut une fréquence naturelle de 100 kHz. La résistance de charge est de 14,5 k Ω . Le choix de C est imposé : C = 100 pF.

- 4. Déterminer la valeur de L et le coefficient d'amortissement.
- 5. Tracer l'allure du diagramme réel.

Cette fonction de transfert correspond en fait à une des cellules du filtre de l'exercice 2 mais réalisée en passif.

6. Peut-on associer une structure passive à une structure active ? Est-ce qu'il y a des précautions à prendre ?

Filtre de Butterworth

ordre n	Cellule	T-1(s)
2	1	$s^2 + 1,4142 s + 1$
3	1	$s^2 + 1,0000 s + 1$
	2	s + 1
4	1	$s^2 + 1,8477 s + 1$
	2	$s^2 + 0,7653 s + 1$
5 .	1 2	$s^2 + 1,6180 s + 1$
	2	$s^2 + 0.6180 s + 1$
	3	s+1
6	1	$s^2 + 1,9318 s + 1$
	2	$s^2 + 1,4142 s + 1$
	3	$s^2 + 0.5176 s + 1$
7	1	$s^2 + 1,8019 s + 1$
	2	$s^2 + 1,2469 s + 1$
	3	$s^2 + 0,4450 s + 1$
	4	s+1
8	1	$s^2 + 1,9615 s + 1$
	2	$s^2 + 1,6629 s + 1$
	3	$s^2 + 1,1111 s + 1$
	4	$s^2 + 0.3901 s + 1$
9	1	$s^2 + 1,8793 s + 1$
	2 3 4	$s^2 + 1,5320 s + 1$
	3	$s^2 + 1,0000 s + 1$
	4	$s^2 + 0.3472 s + 1$
	5	s + 1

Filtre de Tchebycheff d'ondulation en bande passante de 0,1 dB

ordre n	Cellule	$T^{-1}(s)$
2	1	$0.3017 \text{ s}^2 + 0.7158 \text{ s} + 1$
3	1	$0,5918 \text{ s}^2 + 0,5736 \text{ s} + 1$
	2	1,031 s + 1
4	1	$0,7518 \text{ s}^2 + 0,3972 \text{ s} + 1$
	2	$1,6053 \text{ s}^2 + 2,0475 \text{ s} + 1$
5	1	$0.8368 \text{ s}^2 + 0.2787 \text{ s} + 1$
51.5.	2	$1,5725 \text{ s}^2 + 1,3712 \text{ s} + 1$
	3	1,855 s ± 1
6	1	$3,7970 \text{ s}^2 + 3,2506 \text{ s} + 1$
	2	$0.8854 \text{ s}^2 + 0.2031 \text{s} + 1$
	3	$1,4360 \text{ s}^2 + 0,8999 \text{ s} + 1$
7	1	$0.9153 \text{ s}^2 + 0.1534 \text{ s} + 1$
	2	$3,0283 \text{ s}^2 + 2,0560 \text{ s} + 1$
15	3	$1,3276 \text{ s}^2 + 0,6237 \text{ s} + 1$
	4	2,654 s + 1
8	1	$6,8675 \text{ s}^2 + 4,4178 \text{ s} + 1$
P 1	2	$0.9350 \text{ s}^2 + 0.1196 \text{ s} + 1$
	3	$1,2517 \text{ s}^2 + 0,4561 \text{s} + 1$
i i	4	$2,4026 \text{ s}^2 + 1,3103 \text{ s} + 1$
9	. 1	$2,0098 \text{ s}^2 + 0,8944 \text{ s} + 1$
	2	$0,9485 \text{ s}^2 + 0,0956 \text{ s} + 1$
	3	$4,9665 \text{ s}^2 + 2,7112 \text{ s} + 1$
	4	$1,1985 \text{ s}^2 + 0,3481 \text{ s} + 1$
	5	3,442 s + 1

Filtre de Tchebycheff d'ondulation en bande passante de 1 dB

ordre n	Cellule	T-1(s)
2	1	$0,9070 \text{ s}^2 + 0,9956 \text{ s} + 1$
3 .	1	$1,0058 \text{ s}^2 + 0,4970 \text{ s} + 1$
	- 2	2,023 s + 1
4	. 1	$1,0136 \text{ s}^2 + 0,2828 \text{ s} + 1$
	2	$3,5791 \text{ s}^2 + 2,4113 \text{ s} + 1$
5	1	$2,3293 \text{ s}^2 + 1,0911 \text{ s} + 1$
8	2	$1,0118 \text{ s}^2 \pm 0,1810 \text{ s} + 1$
	3	3,454 s + 1
6	1	$8,0188 \text{ s}^2 + 3,7217 \text{ s} + 1$
Y ₁₀₀	, , - 2	$1,0093 \text{ s}^2 + 0,1255 \text{s} + 1$
* 3	3	$1,7930 \text{ s}^2 + 0,6092 \text{ s} + 1$
7	1	$4,3393 \text{ s}^2 + 1,6061 \text{ s} + 1$
7 1	2	$1,5303 \text{ s}^2 + 0,3919 \text{ s} + 1$
	- 3	$1,0073 \text{ s}^2 + 0,0920 \text{ s} + 1$
	4	4,868 s + 1
8	1 - 1	$14,2326 \text{ s}^2 + 5,0098 \text{ s} + 1$
	- 2	$1,3820 \text{ s}^2 + 0,2755 \text{ s} + 1$
es.	3	$2,9337 \text{ s}^2 + 0,8754 \text{s} + 1$
	4	$1,0058 \text{ s}^2 + 0,0704 \text{ s} + 1$
9	1	$7,0242 \text{ s}^2 + 2,1033 \text{ s} + 1$
	2	$2,2801 \text{ s}^2 + 0,5566 \text{ s} + 1$
	- 3	$1,0047 \text{ s}^2 + 0,0556 \text{ s} + 1$
3	4	$1,2896 \text{ s}^2 + 0,2054 \text{ s} + 1$
***	5	6,276 s + 1

