

Deep-Learning:

Recurrent Neural Networks (RNN)

Pr. Fabien MOUTARDE Center for Robotics MINES ParisTech **PSL** Université Paris

Fabien.Moutarde@mines-paristech.fr http://people.mines-paristech.fr/fabien.moutarde

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 1

Acknowledgements

During preparation of these slides, I got inspiration and borrowed some slide content from several sources, in particular:

- Fei-Fei Li + J.Johnson + S.Yeung: slides on "Recurrent Neural Networks" from the "Convolutional Neural Networks for Visual Recognition" course at **Stanford**
 - http://cs231n.stanford.edu/slides/2019/cs231n 2019 lecture10.pdf
- Yingyu Liang: slides on "Recurrent Neural Networks" from the "Deep Learning Basics" course at Princeton
 - https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/DL lecture9 RNN.pdf
- Arun Mallya: slides "Introduction to RNNs" from the "Trends in Deep Learning and Recognition" course of Svetlana LAZEBNIK at University of Illinois at Urbana-Champaign
 - http://slazebni.cs.illinois.edu/spring17/lec02 rnn.pdf
- · Tingwu Wang: slides on "Recurrent Neural Network" for a course at **University of Toronto**
 - https://www.cs.toronto.edu/%7Etingwuwang/rnn_tutorial.pdf
- online tutorial "Understanding LSTM Networks" Christopher Olah: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

- Standard Recurrent Neural Networks
- Training RNN: BackPropagation Through Time
- LSTM and GRU
- Applications of RNNs

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 3

Recurrent Neural Networks (RNN)

Time-delay for each connection

Equivalent form

Canonical form of RNN

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 5

PSLM Time unfolding of RNN

PSL Dynamic systems & RNN

$$s^{(t+1)} = f(s^{(t)}, x^{(t+1)})$$

$$s^{(t+1)} = f(s^{(t-1)}, x^{(t+1)})$$

$$s^{(t+1)} = f(s^{(t-1)}, x^{(t+1)})$$

$$s^{(t+1)} = f(s^{(t-1)}, x^{(t+1)})$$

If using a Neural Net for f, this is EXACTLY a RNN!

Figures from Deep Learning, Goodfellow, Bengio and Courville

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 7

PSL Standard ("vanilla") RNN

State vector $s \leftarrow \rightarrow$ vector h of hidden neurons

$$h_t = f_W(h_{t-1}, x_t)$$
new state old state input vector at some time step some function with parameters W
 $h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$
 $y_t = W_{hy}h_t$

ou $y_t = softMax (W_{hv}h_t)$

Advantages of RNN

The <u>hidden state</u> s of the RNN builds a kind of <u>lossy summary of the past</u>

RNN totally <u>adapted to processing SEQUENTIAL</u> <u>data</u> (same computation formula applied at each time step, but modulated by the evolving "memory" contained in state s)

<u>Universality of RNNs</u>: any function computable by a Turing Machine can be computed by a finite-size RNN (Siegelmann and Sontag, 1995)

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019

RNN hyper-parameters

 As for MLP, main hyperparameter = size of hidden layer (=size of vector h)

- Standard Recurrent Neural Networks
- **Training RNN: BackPropagation Through Time**
- LSTM and GRU
- **Applications of RNNs**

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 11

RNN training

or Real Time Recurrent Learning (RTRL) gradients update for each frame in a sequence

BackPropagation THROUGH TIME (BPTT)

- Forward through entire sequence to compute SUM of losses at ALL (or part of) time steps
- Then backprop through ENTIRE sequence to compute gradients

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019

PSL BPTT computation principle

 $\delta W = \delta W_1 + \delta W_2 + \delta W_3$

BPTT algorithm

 $W(t+N_t) = W(t) - \lambda \operatorname{grad}_W(E) \operatorname{avec} E = \sum_{\tau} (Y_{\tau} - D_{\tau})^2$

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial W} \quad \text{and} \quad \forall t, \frac{\partial E_t}{\partial W} = \frac{\partial E_t}{\partial Y_t} \frac{\partial Y_t}{\partial X_{t-1}} \frac{\partial X_{t-1}}{\partial W} \quad \text{(chain rule)}$$

$$\frac{\partial X_t}{\partial W} = \sum_{k=1}^{t-1} \frac{\partial X_t}{\partial X_{t-k}} \frac{\partial X_{t-k}}{\partial W} \qquad \frac{\partial X_t}{\partial X_{t-k}} = \prod_{j=1}^t \left| \frac{\partial X_j}{\partial X_{j-1}} \right| \qquad \text{Jacobian matrix of the}$$

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 15

Vanishing/exploding gradient problem

- If eigenvalues of Jacobian matrix >1, then gradients tend to **EXPLODE**
 - → Learning will never converge.
- Conversely, if eigenvalues of Jacobian matrix <1, then gradients tend to VANISH
 - → Error signals can only affect small time lags
 - → short-term memory.
- → Possible solutions for exploding gradient: **CLIPPING** trick
- → Possible solutions for vanishing gradient:
 - use ReLU instead of tanh
 - change what is inside the RNN!

- Standard Recurrent Neural Networks
- Training RNN: BackPropagation Through Time
- LSTM and GRU
- Applications of RNNs

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 17

Long Short-Term Memory (LSTM)

Problem of *standard* RNNs = no actual LONG-TERM memory

LSTM = RNN variant for solving this issue

(proposed by Hochreiter & Schmidhuber in 1997)

[Figures from https://colah.github.io/posts/2015-08-Understanding-LSTMs/]

 Key idea = use "gates" that modulate respective influences of input and memory

LSTM gates

Gate = pointwise multiplication by σ in]0;1[

- → modulate between "let nothing through" and "let everything through"
- FORGET gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right) \quad \text{and} \quad f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

INPUT gate

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \qquad {}^{h_{t-1}}$$

→ next state = mix between pure memory or pure new

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

[Figures from https://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 19

LSTM summary

OUTPUT gate

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

$$h_t = o_t * \tanh\left(C_t\right)$$

[Figure from <u>Deep Learning</u> book by I. Goodfellow, Y. Bengio & A. Courville]

Why LSTM avoids vanishing gradients?

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 21

PSL Gated Recurrent Unit (GRU)

Simplified variant of LSTM, with only 2 gates: a RESET gate & an UPDATE gate

(proposed by Cho, et al. in 2014)

- Standard Recurrent Neural Networks
- **Training RNN: BackPropagation Through Time**
- LSTM and GRU
- **Applications of RNNs**

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 23

Typical usages of RNNs

Combining RNN with CNN

Input into RNN the features from last convolutional layer

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019

Deep RNNs

Several RNNs stacked (like layers in MLP)

Bi-directional RNNs

 $h = [\overrightarrow{h}; \overleftarrow{h}]$ now represents (summarizes) the past and future around a single token.

(e.g. for offline classification of sequence of words)

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019

Encoder-decoder RNN

PSL Applications of RNN/LSTM

Wherever data is intrinsicly SEQUENTIAL

- **Speech recognition**
- Natural Language Processing (NLP)
 - Machine-Translation
 - Image caption generator

- **Gesture recognition**
- **Music generation**
- Potentially any kind of time-series!!

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019

Summary and perspectives on **Recurrent Neural Networks**

- For SEQUENTIAL data (speech, text, ..., gestures, ...)
- Impressive results in **Natural Language Processing (in particular Automated Real-Time Translation)**
- Training of standard RNNs can be tricky (vanishing gradient...)
- LSTM / GRU now more used than standard RNNs

Any QUESTIONS?

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, May 2019 31