Estimating survival in left filtered data

Replication and application of Izano's estimator

Kevin Chen

Chapter 3 of Izano (2017)

Drivers of Biased Effect Estimates in Left Filtered Data

- Specified a SEM for "left filtering" in the presence of HWSE
- Simulated large-sample $(n = 10^6)$ data once for each of 5 scenarios
- Simulated finite-sample (n = 50,000) data 500 times for each scenario
- Applied two estimators:
 - Adjusted Kaplan-Meier
 - Delayed-entry adjusted Kaplan-Meier

Description of variables

Variable	Description
R	Time until start of registry
W	Baseline covariates
S	Susceptibility to effects of metalworking fluid
	exposure
H(t)	Adverse health status at time t
N(t)	Employment status at time t
A(t)	Metalworking fluid exposure at time t
D(t)	Mortality status at time t
$Y^*(t)$	Cancer status at time t
Y(t)	Observed Cancer status at time t
$t = \{1, 2, \dots, 20\}$	Time, indexed in years after hire

Abbreviated DAG summarizing the causal structure

Scenarios

- Five scenarios represent 5 sets of parameters used to generate data according to the SEM
- ▶ Sets 2, 3, 4, and 5 differ from Set 1 by a single parameter each
 - Scenario 2: Greater cancer-related mortality (increase HR from 1.6 to 7.4)
 - Scenario 3: Greater proportion of susceptibles (increase proportion from 10% to 20%)
 - Scenario 4: Greater time-varying confounding by history of adverse health
 (decrease HR of being at work from 0.6 to 0.2 and increase HR of cancer incidence from 2.0 to 5.5)
 - Scenario 5: Greater background incidence (increase baseline log hazard from -7 to -6)

Target and estimation

- Goal: estimate cancer-free survival indexed by time since hire
 - Under rule where all are exposed while at work
 - Under rule where all are not exposed (ever)
 - Competing risk of death is accounted for by preventing death
- Adjusted KM ie the inverse probability of treatment weighted KM (WKM)
- Delayed-entry adjusted KM ie the Aalen-filtered WKM (AWKM)

Review of the Kaplan-Meier Estimator

- Let c(t) be the number of cases in the interval (t-1,t]
- Let r(t) be the number of people at risk in interval (t-1,t]
- ▶ The standard survival estimator is

$$\widehat{S}(t) = egin{cases} 1 & ext{if } t < t_1 \ \prod_{j \leq t} \left(1 - rac{c(j)}{r(j)}
ight) & ext{if } t \geq t_1 \end{cases}$$

where t_1 is the first event time

Restricting to followers of rule a, we have

$$c_a(t)$$
, $r_a(t)$, $\widehat{S}_a(t)$

Mathematical expression of $c_a(t)$ and $r_a(t)$

$$c_{a}(t) = \sum_{i}^{n} \underbrace{\mathbb{1}\left[Y_{i}(t) = 1\right]}_{\text{Cancer by time } t} \times \underbrace{\mathbb{1}\left[Y_{i}(t-1) = 0\right]}_{\text{At-risk at time } t-1} \times \underbrace{\mathbb{1}\left[\bar{A}_{i}(t) = \bar{a}(t)\right]}_{\text{Followed rule } a}$$

$$r_{a}(t) = \sum_{i}^{n} \underbrace{\mathbb{1}\left[Y_{i}(t-1) = 0\right]}_{\text{At-risk at time } t-1} \times \underbrace{\mathbb{1}\left[\bar{A}_{i}(t) = \bar{a}(t)\right]}_{\text{Followed rule } a}.$$

Inverse probability of treatment weighted KM (WKM)

The *i*th person at time t is weighted by $w_{i,a}(t)$ the predicted probability of following rule a through time t:

$$c_a^w(t) = \sum_i^n w_{i,a}(t) \times \mathbb{1} \left[Y_i(t) = 1 \right] \times \mathbb{1} \left[Y_i(t-1) = 0 \right] \times \mathbb{1} \left[\bar{A}_i(t) = \bar{a}(t) \right]$$
$$r_a^w(t) = \sum_i^n w_{i,a}(t) \times \mathbb{1} \left[Y_i(t-1) = 0 \right] \times \mathbb{1} \left[\bar{A}_i(t) = \bar{a}(t) \right].$$

The $w_{i,a}$ can be estimated by fitting logistic regressions.

Aalen-filtered WKM (AWKM)

In addition to weighting, we restrict the computation of the discrete hazard to those under observation:

$$c_{a}(t) = \sum_{i}^{n} w_{i,a}(t) \times \mathbb{1} \left[Y_{i}(t) = 1 \right] \times \mathbb{1} \left[Y_{i}(t-1) = 0 \right] \times \mathbb{1} \left[\bar{A}_{i}(t) = \bar{a}(t) \right] \times \mathbb{1} \left[t \geq R_{i} \right]$$

$$r_{a}(t) = \sum_{i}^{n} w_{i,a}(t) \times \mathbb{1} \left[Y_{i}(t-1) = 0 \right] \times \mathbb{1} \left[\bar{A}_{i}(t) = \bar{a}(t) \right] \times \mathbb{1} \left[t \geq R_{i} \right]$$

Results from Izano's Dissertation (2017)

Red: Always exposed Blue: Never exposed

Long dashed: WKM Dot dashed: AWKM Solid: True KM curve

Results from Izano's Dissertation (2017)

Red: Always exposed Blue: Never exposed

Long dashed: WKM Dot dashed: AWKM Solid: True KM curve

Results from Izano's Dissertation (2017)

Red: Always exposed Blue: Never exposed

Long dashed: WKM Dot dashed: AWKM Solid: True KM curve

Replication results

Replication results

Replication results

Application to UAW-GM

- Study population: Workers from Plants 1 or 2, hired after 1938
- ▶ 55-year follow-up starting at hire
- MWF exposure lagged 15 years
- Employment records end in 1994; workers considered administratively censored if they were still at work in 2010 (15 years after1 995)
- Rules of interest
 - Natural course: ever-exposed above reference level (0 mg/m³·years for straights and synthetics; 0.05 mg/m³·years for solubles)
 - Never exposed
- Under both rules, no censoring by death

Application results

