o incoephinento en entinentin

Universidade Eduardo Mondlane

Faculdade de Ciências Departamento de Física

ELECTRÓNICA ANALÓGICA

Trabalho Laboratorial Nº3: Filtros capacitivos passa-altas e passa-baixas

1 Objectivos

- 1. Verificar experimentalmente o funcionamento de um circuito *RC* atuando como filtro passabaixa;
- 2. Verificar experimentalmente o funcionamento de um circuito *RC* atuando como filtro passaalta.

2 Material

- 1. Um (1) gerador de sinais (GS);
- 2. Um (1) osciloscópio;
- 3. Um (1) resístor de $1k\Omega$
- 4. Um (1) capacitor de $0.25\mu F$.

3 Procedimento experimental

3.1 Filtro capacitivo passa-baixa

- 1. Monte o circuíto da Fig.1 e solicite a sua aprovação pelo responsável do laboratório;
- 2. Após ligar os equipamentos, ajuste a fonte (CH1) para um sinal senoidal, com frequência de 50Hz, e amplitude em cerca de 10V. Lembre-se de determinar o valor da frequência utilizando o osciloscópio, e não o valor indicado no gerador, pois ele é menos preciso;
- 3. Meça as voltagens pico a pico de entrada $(V_{pp}in)$ e no capacitor $(V_{pp}out)$;
- 4. Varie a frequência do gerador de sinais (GS) de modo que a tensão pico a pico no capacitor varie em 0.5V e preencha a Tabela 1.
- 5. Utizando um software a sua escolha (porém, recomenda-se que comece a usar python e Scilab), faça o gráfico de ganho de tensão do filtro passa baixa (G_{pb}) $(G_{pb} = V_{pp}out/V_{pp}in)$ em função da frequência (f) e interprete esse gráfico.

O TIGOTUIO E TIDELLIO

3.2 Filtro capacitivo passa-alta

- 1. Monte o circuíto da Fig.2 e solicite a sua aprovação pelo responsável do laboratório;
- 2. Após ligar os equipamentos, ajuste a fonte (CH1) para um sinal senoidal, com frequência de 50Hz, e amplitude em cerca de 10V. Lembre-se de determinar o valor da frequência utilizando o osciloscópio, e não o valor indicado no gerador, pois ele é menos preciso;
- 3. Meça as voltagens pico a pico de entrada $(V_{pp}in)$ e no resístor $(V_{pp}out)$;
- 4. Varie a frequência no gerador de sinais (GS) de modo que a tensão pico a pico no resístor varie em 0.5V e preencha a Tabela 2.
- 5. Utizando um software a sua escolha (porém, recomenda-se que comece a usar python e Scilab), faça o gráfico de ganho de tensão do filtro passa alta (G_{pa}) $(G_{pa} = V_{pp}out/V_{pp}in)$ em função da frequência (f) e interprete esse gráfico.

4 Determinação da frequência de corte (f_c)

1. Plote os dois gráficos (do filtro passa-baixas e passa-altas) no mesmo sistema de coordenadas e determine a frequência de corte. Compare esse valor com o valor teórico.

5 Figuras e tabelas

Figura 1: Figura 2:

Tabela 1:								
N^o	f(Hz)	$V_{pp}in(V)$	$V_{pp}out(V)$	$V_{pp}out/V_{pp}in$				
1								
2								
10								

Tabela 2:								
N^o	f(Hz)	$V_{pp}in(V)$	$V_{pp}out(V)$	$V_{pp}out/V_{pp}in$				
1								
2								
10								