<u>Seite</u> **503**

Seite 13.4.1 Massendefekt und Bindungsenergie

- 1 a) Berechnen Sie die Bindungsenergie der Nuklide Tritium ³H und Helium ³He. Entnehmen Sie dazu die Massen aus der Tabelle der Nuklide im Anhang.
 - b) Erklären Sie das Ergebnis des Aufgabenteils a).

2 Berechnen Sie für folgende Nuklide die Bindungsenergie pro Nukleon nach dem Massendefekt: 14 N, 16 O, 20 Ne, 24 Mg und 28 Si. Entnehmen Sie die Massen der Nuklidtabelle (\rightarrow *S.* 577).

Tabelle einiger Nuklide (Atommassen)

Metzler

Tabelle enliger (Atolililassen)							
Nuklid	Masse in u	Nuklid	Masse in u	Nuklid	Masse in u	Nuklid	Masse in u
H1	1,007825	O16	15,994915	I127	126,90447	Th231	231,03632
H2	2,014102	O17	16,999 133	I131	130,90612	Th232	232,03808
H3	3,016049	Ne20	19,992440	Cs133	132,90543	Th233	233,04160
He3	3,016029	Na22	21,994437	Cs137	136,90707	U233	233,03965
He4	4,002603	Na23	22,989770	Pb204	203,973.05	U234	234.04098
Li6	6,015123	Mg24	23,985 044	Pb206	205,97448	U235	235,04394
Li7	7,016005	Ni28	27,976928	Pb207	206,97590	U238	238,05082
Be7	7,016930	K39	38,963708	Pb208	207,976,66	U239	239,05433
Be9	9,012189	K40	39,964000	Po210	209,98288	Np237	237.04819
C12	12	K41	40,961827	Po211	210,986 66	Np239	239,05295
C13	13,003355	Co59	58,133137	Po216	216,00192	Pu239	239,05218
C14	14,003 242	Co60	59,933810	Rn220	220.01140	Pu240	240,05383
N14	14,003074	Sr88	87,905627	Rn222	222,01761	Pu241	241,05687
N15	15,000109	Sr90	89,907753	Ra226	226,02544	Am241	241,05685

AUFGABEN

- 1 Ein Nickelkern ⁶²₂₈Ni hat die Masse 61,912 985 u.
 - Berechnen Sie den Massendefekt und die mittlere Bindungsenergie pro Nukleon.
 - b Vergleichen Sie die Werte mit denen von ¹⁶₈O, das eine Masse von 15,990 526 u aufweist.
- **2** a Berechnen Sie die Massenbilanz für die Kernreaktionsgleichung $^{235}_{92}$ U + 1_0 n \rightarrow $^{139}_{56}$ Ba + $^{95}_{36}$ Kr + 2 1_0 n. Verwenden Sie für die Bindungsenergien pro Nukleon E_B/A die folgenden Werte: 7,5 MeV für $^{235}_{92}$ U; 8,4 MeV für $^{139}_{56}$ Ba; 8,6 MeV für $^{95}_{36}$ Kr.
 - b Berechnen Sie die Energie, die nach dieser Reaktionsgleichung bei der Spaltung von einem Gramm ²³⁵₉₂U umgewandelt würde.
- 3 Kann die folgende Kernreaktion durch thermische Neutronen mit einer kinetischen Energie von 0,025 eV ausgelöst werden? $^{64}_Z$ Zn + 1_0 n $\rightarrow {}^A_Z$ Cu + 1_1 p Begründen Sie Ihre Aussage.
- **4** Erklären Sie, ob der spontane Zerfall von $^{210}_{94}$ Pu in der folgenden Reaktion möglich ist. $^{240}_{94}$ Pu $\rightarrow ^{128}_{50}$ Sn + $^{110}_{44}$ Ru
- Näherungsweise kann die Kernmasse eines Nuklids auch aus der Atommasse bestimmt werden. Erläutern Sie die Abschätzung, und begründen Sie die auftretende Abweichung.