Bayesian multiple regression

Dr. Merlise Clyde

cognitive scores

model
$$kid\ score_i = \beta_{intercept} + \beta_{hs}hs_i + \beta_{iq}iq_i + \beta_{work}work_i + \beta_{age}age_i + \varepsilon_i$$

$$\varepsilon_i \overset{\mathrm{iid}}{\sim} \mathsf{N}(0,\sigma^2)$$

- Prior distribution for $\beta_{intercept}$, β_{hs} , β_{iq} , β_{work} , β_{age} and σ^2
- conjugate family multivariate normal-gamma
- mean, variance and covariance of all regression coefficients
- ightharpoonup prior parameters of the gamma distribution of $1/\sigma^2$

reference prior

reference analysis

- prior distributions: uniform for eta_j and $p(\sigma^2) \propto 1/\sigma^2$
- posterior distribution

$$\beta_j \mid y_1, \dots, y_n \sim t_{n-p-1} \left(\hat{\beta}_j, SE(\beta_j)^2 \right)$$

- \blacktriangleright degrees of freedom n-p-1
- \blacktriangleright posterior mean $\hat{\beta}_j$
- \blacktriangleright posterior standard deviation $SE(\beta_j)$

example

highest posterior density intervals

	post. mean	post. sd	2.5%	97.5%
hs	5.09	2.31	0.55	9.64
iq	0.56	0.06	0.44	0.68
work	2.54	2.35	-2.08	7.16
age	0.22	0.33	-0.43	0.87

posterior mean
$$\beta_j \pm t_{1-\alpha/2,n-p-1} \, \operatorname{sd}(\beta_j)$$

summary

- reference analysis
- use standard software to obtain
- interpretation of credible intervals

next video

model selection

