

Teória sietí

Prvá úloha

Ako popísať proces, ktorý sa v sieti odohráva?

Bernoulliho proces

rozdelenie pravdepodobnosti

$$P\{\tau_k = n\} = P\{\tau = n\} = p(1-p)^{n-1}$$

$$\forall k, \ n = 1, 2, ...$$

Proces nie Bernoulliho

Proces so stavmi $\{S_1,...,S_n\}$

počiatočné rozdelenie pravdepodobnosti

$$\mathbf{p}_0 = (p_0(1), ..., p_0(n))$$

matica pravdepodobností prechodov

$$\mathbf{P} = \begin{pmatrix} p_{1,1} & \dots & p_{1,n} \\ \dots & \dots & \dots \\ p_{n,1} & \dots & p_{n,n} \end{pmatrix}$$

Invariantné rozdelenie

Invariantné rozdelenie pravdepodobnosti

$$\pi = (\pi(1), ..., \pi(n))$$

procesu so stavmi $\{S_1,...,S_n\}$ a maticou pravdepodob-

ností prechodov
$$\mathbf{P} = \begin{pmatrix} p_{1,1} & \dots & p_{1,n} \\ \dots & \dots & \dots \\ p_{n,1} & \dots & p_{n,n} \end{pmatrix}$$

nájdeme riešením sústavy lineárnych algebraických rovníc

$$\pi = \pi P$$
, $\sum_{i}^{n} \pi_{i} = 1$

Veta o zachovaní toku

Formálny dôkaz za domácu úlohu

Veľká Daltonova doska

Poissonovo rozdelenie

Rozdelenie prevádzky

$$\overline{m} = \lambda t$$

$$P\{x=k\} = \frac{\overline{m}^k}{k!} e^{-\overline{m}}$$

Interval medzi príchodmi

Distribučná funkcia

$$F(t) = P\{\tau < t\} = 1 - e^{-\lambda t}$$

Hustota rozdelenia pravdepodobnosti

$$f(t) = F'(t) = \lambda e^{-\lambda t}$$

Neexistencia pamäte

Intenzity prechodov

Matica intenzít

$$oldsymbol{\Lambda} = \left(eta_{ij}
ight) = \left(egin{array}{cccc} \lambda_{00} & \lambda_{01} & \dots \ \lambda_{10} & \lambda_{11} & \dots \ \dots & \dots \end{array}
ight)$$

Poissonov proces s parametrom λ

$$oldsymbol{\Lambda} = (\lambda_{ij}) = egin{pmatrix} -\lambda & \lambda & 0 & \dots \\ 0 & -\lambda & \lambda & \dots \\ 0 & 0 & -\lambda & \dots \\ \dots & \dots & \dots \end{pmatrix}$$

Súčet Poissonových procesov

Súčet Poissonových procesov s parametrami λ_1 a λ_2 je Poissonovým procesom s parametrom $\lambda = \lambda_1 + \lambda_2$

Náhodné smerovanie

Náhodný výber udalostí s pravdepodobnosťou p z Poissonovho procesu s parametrom λ je Poissonovým procesom s parametrom $p\lambda$

Úloha vrstvy prevádzky?

Nájsť kompromis medzi kvalitou a efektívnosťou siete.

- 1. z ekonomických dôvodov musí byť kapacita siete menšia než sú možné požiadavky na prenos
- 2. požiadavky na prenos vznikajú náhodne

Aká je priepustnosť spoločného komunikačného prostredia?

Jednoduchý komunikačný systém

zdroje a prijímače informácie

Aké prepojovanie zvoliť?

- kanálov
- paketov

Kapacita spoločného prostredia

Synchrónny prenos komutácia kanálov kapacita kanála

0

Gbit/s

objem vstupného toku

deterministická garancia kvality

Primárny a sekundárny proces

Domáca úloha 1

Vypočítajte stredný počet zriadených relácií

Vypočítajte stredný počet prichádzajúcich paketov

Domáca úloha 2

Vypočítajte:

- pravdepodobnosť odmietnutia žiadosti o zriadenie relácie (miera kvality)
- stredné využitie spoločného komunikačného prostredia (miera efektívnosti)

Kapacita spoločného prostredia

stochastická garancia kvality

nemožnosť deterministicky garantovať kvalitu pre ľubovoľne malé toky

$$\lambda = \lambda' p_0$$

doba vysielania informácie 1 slot

 \mathcal{T}

intenzita prevádzky:

čerstvej
$$\rho = \lambda \tau$$

celkovej
$$\rho' = \lambda' \tau$$

$$p_0 = \frac{\rho}{\rho'}$$

pravdepodobnosť stavu bez kolízie

$$p_0 = P\{T > 2\tau\} = 1 - F(2\tau) = e^{-\lambda'2\tau} = e^{-2\rho'}$$

$$p_0 = e^{-2\rho'} \qquad p_0 = \frac{\rho}{\rho'}$$

$$\lambda = \lambda' p_0$$

$$\rho = \rho' e^{-2\rho'}$$

Pravdepodobnosť kolízie

Počet vysielaní

$$p_0 = e^{-2\rho'}$$
 $p_1 = 1 - e^{-2\rho'}$

$$r_k = p_1^{k-1} p_0 = (1 - e^{-2\rho'})^{k-1} e^{-2\rho'}, \quad k = 1, 2, \dots$$

Stredný počet vysielaní

$$\mathcal{E}\{k\} = \sum_{k=1}^{\infty} k p_1^{k-1} p_0 = \frac{1}{p_0} = e^{2\rho'}$$

Stredný počet vysielaní

Maximálna priepustnosť

Maximálna priepustnosť

$$\rho = \rho' e^{-2\rho'} \qquad \frac{\partial \rho}{\partial \rho'} = 0$$

$$\frac{\partial \rho}{\partial \rho'} = \frac{\partial}{\partial \rho'} \rho' e^{-2\rho'} = e^{-2\rho'} - 2\rho' e^{-2\rho'} = 0$$

$$\rho' = \frac{1}{2}$$
 $\rho = \frac{1}{2e} \approx 0.184$

Maximálna priepustnosť

Miera efektívnosti

užitočné zaťaženie systému – 18,4% celkové zaťaženie systému - 50%

z toho čerstvá prevádzka – 36,8% opakovaná prevádzka – 63,2%

Miera kvality

pravdepodobnosť kolízie – p_1 =0,63 stredný počet vysielaní – $\mathcal{E}\{k\}$ = e =2,72

Počet vysielaní

Rozdelenie pravdepodobnosti počtu vysielaní

Prednáška 7

Ďakujem za pozornosť

