## sine basis 02



**Statistics:** p-values adjusted for search volume

|           |             | <del>,'</del> , , , |                                    |                       |                        |                     |                     |                 |                   |                       |
|-----------|-------------|---------------------|------------------------------------|-----------------------|------------------------|---------------------|---------------------|-----------------|-------------------|-----------------------|
| set-level |             | cluster-le          | peak-level                         |                       |                        |                     |                     | mm mm mm        |                   |                       |
| р с       | $p_{FWE-c}$ | g<br>corrFDR-corr   | κ <sub>E</sub> ρ <sub>uncorr</sub> | $p_{FWE-c}$           | <i>g</i><br>corrFDR-co | T<br>orr            | $(Z_{\equiv})$      | $p_{ m uncorr}$ |                   |                       |
| 1.000162  | 0.002       |                     | 33 0.000                           | 0.086                 | 0.086                  | 4.98                | 4.92                | 0.000           | -38               |                       |
|           |             |                     |                                    | 0.752<br>0.995        | 0.223                  | 4.30                | 4.25                | 0.000           | -40<br>-42        | -62 52<br>-58 38      |
|           | 0.006       | 0.002 2             | 74 0.000                           | 0.993                 | 0.119                  | 4.74                | 4.68                | 0.000           | -32               | 64 -8                 |
|           | 0.000       | 0.002 2             | , 1 0.000                          | 0.764                 | 0.223                  | 4.29                | 4.25                | 0.000           | -40               | 54 -14                |
|           |             |                     |                                    | 1.000                 | 0.999                  | 3.19                | 3.17                | 0.001           | -34               | 44 - 14               |
|           | 0.997       | 0.393 5             | 7 0.026                            | 0.404                 | 0.164                  | 4.56                | 4.51                | 0.000           | -4                | -82 38                |
|           | 0.875       | 0.189 8             | 2 0.009                            | 0.797                 | 0.223                  | 4.26                | 4.22                | 0.000           | 28                | -20 4                 |
|           | 0 045       | 0 011 0             | 01 0 000                           | 1.000                 | 0.999                  | 3.09                | 3.07                | 0.001           | 26                | -24 12                |
|           | 0.045       | 0.011 2             | 01 0.000                           | 0.846                 | <b>0.223</b> 0.402     | <b>4.21</b> 3.82    | <b>4.18</b> 3.79    | 0.000           | <b>-10</b><br>-22 | <b>18 66</b> 14 70    |
|           |             |                     |                                    | 0.999                 | 0.402                  | 3.24                | 3.79                | 0.000           | -22<br>-28        | 20 58                 |
|           | 0.934       | 0.220 7             | 5 0.012                            | 0.977                 | 0.361                  | 4.01                | 3.98                | 0.000           | -52               | -64 22                |
|           | 0.998       | 0.393 5             |                                    | 0.995                 | 0.402                  | 3.91                | 3.88                | 0.000           | -28               | -20 2                 |
|           | 0.219       | 0.045 1             | 44 0.001                           | 0.997                 | 0.402                  | 3.89                | 3.86                | 0.000           | -52               | 12 -4                 |
|           |             |                     |                                    | 1.000                 | 0.993                  | 3.26                | 3.24                | 0.001           | -52               | 18 16                 |
|           |             |                     | 10 0 000                           | 1.000                 | 0.999                  | 2.89                | 2.88                | 0.002           | -50               | 10 8                  |
|           | 0.507       | 0.103 1             | 12 0.003                           | 0.998                 | 0.402                  | 3.87                | 3.84                | 0.000           | <b>58</b>         | -20 -22               |
|           | 1.000       | 0.781 3             | 1 0.087                            | 1.000<br><b>0.999</b> | 0.655<br><b>0.402</b>  | 3.56<br><b>3.83</b> | 3.53<br><b>3.80</b> | 0.000           | 66<br><b>-40</b>  | -24 -18 <b>60 -38</b> |
|           | 1.000       | 0.781 3             | 1 0.007                            | 1.000                 | 0.999                  | 2.50                | 2.49                | 0.006           | -30               | 64 - 40               |
|           | 0.698       | 0.145 9             | 7 0.005                            | 0.999                 | 0.402                  | 3.83                | 3.80                | 0.000           | 62                | -58 24                |

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 $\Omega$ ) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels

FWHM = 6.7 6.6 6.8 mm mm mm; 3.3 3.3 3.4 {voxels}

Expected voxels per cluster,  $\langle k \rangle = 10.794$  Volume: 1704456 = 213057 voxels = 5261.9 resels

Expected number of clusters,  $\langle c \rangle = 222.53$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 37.51 voxels)

FWEp: 5.106, FDRp: Inf, FWEc: 201, FDRo? 2494 1