第1講 微分計算

1 - 1

次の関数f(x)の導関数を定義に従って微分せよ。

(1)
$$f(x) = x^3$$
 (2) $f(x) = \sqrt{x}$

1 - 2

次のxの関数を微分せよ。

(1)
$$y = x^3 + 5x^2 + 8x + 1$$
 (2) $y = (2x + 1)(3x + 1)$

(3)
$$y = \frac{x^2}{x+1}$$
 (4) $y = \frac{3x-1}{x^2+2}$

1 - 3

次のxの関数を微分せよ。

(1)
$$y = \sqrt{x} + \frac{1}{x} + \frac{1}{x^2}$$
 (2) $y = 3x\sqrt{x} + \sqrt[3]{x}$

1 - 4

次のxの関数を微分せよ。

(1)
$$y = (2x+1)^{100}$$
 (2) $y = (\sqrt{x}+1)^3$ (3) $y = \sqrt{x+1}$ (4) $y = \frac{1}{\sqrt{x^3-2}}$

1 - 5

次のxの関数を微分せよ。

(1)
$$y = (2x + 1)^3 (3x - 2)^4$$
 (2) $y = x\sqrt{x^2 + 1}$

1 - 6

次のxの関数を微分せよ。

(1)
$$y = e^x \sin x$$
 (2) $y = \frac{\cos x}{1 - \sin x}$

1 - 7

次のxの関数を微分せよ。

(1)
$$y = \sin 2x$$
 (2) $y = \tan \pi x$ (3) $y = e^{-x^2}$ (4) $y = 3^{-\pi x}$

(5)
$$y = \log(x^2 + 1)$$
 (6) $y = \log_2|\sin x|$

1 - 8

次のxの関数を微分せよ。

(1)
$$y = \sin^3 x$$
 (2) $y = (\log x)^4$

1 - 9

次のxの関数を微分せよ。

(1)
$$y = \sin^2 3x$$
 (2) $y = e^{-x} \cos \pi x$ (3) $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ (4) $y = \log \left(x + \sqrt{x^2 + 1} \right)$

$1 - 1 \ 0$

次のxの関数を微分せよ。

(1)
$$y = x^x (x > 0)$$
 (2) $y = x^{\sin x} (x > 0)$

$1 - 1 \ 1$

次の関数をxとtでそれぞれ微分せよ。

(1)
$$y = x^2 + xt^2 + t^3$$
 (2) $y = e^{-xt} \sin 2t$

$1 - 1 \ 2$

次の式で $\frac{dy}{dx}$ を求めよ。

(1)
$$x^2 + y^2 = 4$$
 (2) $x^2 + xy + y^2 = 4$ (3) $x = \sin y \left(-\frac{\pi}{2} < y < \frac{\pi}{2} \right)$

$1 - 1 \ 3$

媒介変数tで表された次の曲線について、 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ を求めよ。

$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$$

第2,3講 積分計算

2 - 1

$$(1) \int \frac{(x+1)^2}{x^2} dx \quad (2) \int \frac{x-2}{\sqrt{x}} dx \quad (3) \int_0^1 (e^x - 2^x) dx \quad (3) \int_0^{\frac{\pi}{2}} (2\sin x - \cos x) dx$$

2 - 2

(1)
$$\int (2x+1)^{100} dx$$
 (2) $\int \frac{1}{3x+1} dx$

(3)
$$\int_0^1 e^{-x+1} dx$$
 (4) $\int_0^{\frac{\pi}{2}} \sin 2x \, dx$ (5) $\int_1^2 \sqrt{2x-1} dx$

2 - 3

(1)
$$\int \frac{x^2 + 4x + 1}{x + 3} dx$$
 (2) $\int \frac{1}{x^2 - 1} dx$ (3) $\int \frac{x^3 - x^2 - 9x + 10}{x^2 - 9} dx$

2 - 4

(1)
$$\int \sin^2 x \, dx$$
 (2) $\int \sin x \cos x \cos 2x \, dx$ (3) $\int_0^{\pi} \sin^4 x \, dx$

$$(4) \int \sin 3x \cos 2x \, dx \quad (5) \int_0^{\pi} \sin mx \sin nx \, dx \quad (m, n \in \mathbb{N})$$

2 - 5

(1)
$$\int \frac{2x}{x^2 + 1} dx$$
 (2) $\int \frac{x + 1}{x^2 + 2x + 2} dx$ (3) $\int_0^{\frac{\pi}{4}} \tan x \, dx$

2 - 6

$$(1) \int_0^1 x\sqrt{1-x} dx \quad (2) \quad \int \sin^2 x \cos x \, dx$$

(3)
$$\int_0^{\frac{\pi}{2}} e^{\cos x} \sin x \, dx \quad (4) \int (2x+1)(x^2+x+1)^4 \, dx \quad (5) \int x\sqrt{4-x^2} \, dx$$

2 - 7

(1)
$$\int x \sin x \, dx$$
 (2) $\int_0^1 x^2 e^{-x} dx$ (3) $\int_0^{\frac{\pi}{2}} x^3 \sin 2x \, dx$

(4)
$$\int \log x \, dx$$
 (5) $\int_0^1 \log(x+1) \, dx$ (6) $\int e^x \sin 2x \, dx$

2 - 8

$$\int e^{\sqrt{x}} dx$$

2 - 9

(1)
$$\int_0^2 \sqrt{4-x^2} dx$$
 (2) $\int_0^{2\sqrt{2}} \frac{1}{\sqrt{16-x^2}} dx$ (3) $\int_0^3 \frac{1}{x^2+3} dx$

2 - 10

(1)
$$\int \frac{1}{x-1} dx$$
 (2) $\int \frac{1}{x^2-1} dx$ (3) $\int_0^1 \frac{1}{x^2+1} dx$ (4) $\int_0^1 \frac{x}{x^2+1} dx$

 $2 - 1 \ 1$

(1)
$$\int \sin^2 x \, dx$$
 (2) $\int \sin^3 x \, dx$ (3) $\int \sin^2 x \cos^3 x \, dx$ (4) $\int \frac{1}{\sin x} dx$

 $2 - 1 \ 2$

$$(1) \int_0^1 \sqrt{1-x} \ (2) \int_0^1 x \sqrt{1-x} dx \ (3) \int_0^1 \sqrt{1-x^2} dx \ (4) \int_0^1 x \sqrt{1-x^2} dx \ (5) \int_0^1 x^2 \sqrt{1-x^2} dx$$

 $2 - 1 \ 3$

(1) a_1 , a_2 を求めよ。

(2)
$$n \ge 3$$
 のとき、 $a_n = \frac{n-1}{n} a_{n-2}$ を示せ。

(3) a₆, a₇を求めよ。