In the Name of God, the Merciful, the Compassionate

Introduction to Bioinformatics 05: Database Similarity Searching

Instructor: Hossein Zeinali Amirkabir University of Technology

Chapter Agenda

- Unique Requirements of Database Searching
- Heuristic Database Searching
- Basic Local Alignment Search Tool (BLAST)
- FASTA
- Comparison of FASTA and BLAST
- Database Searching with Smith-Waterman Method

Amirkabir University of Technology (Tehran Polytechnic)

Database searching

Why database search is needed?

- Given a newly discovered gene,
 - Does it occur in other species?
 - Is its function known in another species?
- Given a newly sequenced genome, which regions align with genomes of other organisms?
 - Identification of potential genes
 - Identification of other functional parts of chromosomes
- Find members of a multigene family nic)

Why do we Need Fast Search Algorithms?

- Your query is 200 amino acids (aa) long (N)
- You are searching a non-redundant database, which currently contains $>10^6$ proteins (K)
- If proteins in database have avg. length 200 aa (M), then:
 - Must fill in $200 \times 200 \times 10^6 = 4 \times 10^{10}$ **DP entries!!**
- 4×10^{10} operations just to fill in the DP matrix!
- DP for pairwise alignment is **O(NM)**
- Searching in a database is **O**(*NMK*)
 - Need faster algorithms for searching in large databases! echnology
- *Speed* is the time it takes to get results from database searches.

Sensitivity and Specificity

- Sensitivity (Recall): the ability to find as many correct hits as possible and measures the proportion of actual positives that are correctly identified as such.
- Specificity (Selectivity): the ability to exclude incorrect hits and measures the proportion of actual negatives that are correctly identified as such.
- Example in disease: **positive** means having the disease and **negative** means not having the disease.
 - True positive (TP): Sick people correctly identified as sick
 - False positive (FP): Healthy people incorrectly identified as sick
 - True negative (TN): Healthy people correctly identified as healthy
 - False negative (FN): Sick people incorrectly identified as healthy

TP eqv Hit
FP eqv False alarm
TN eqv Correct rejection
FN eqv Miss

Sensitivity and Specificity (Cont.)

• *Sensitivity (Recall)*: the ability to find as many correct hits as possible.

$$Sensitivity = \frac{TP}{TP + FN}$$

• Specificity (Selectivity): the ability to exclude incorrect hits.

$$Specificity = \frac{TN}{TN + FP}$$

• The ideal case is having the greatest sensitivity, selectivity, and speed in database searches.

Sensitivity and

• Sensitivity (Recall): possible.

S

• Specificity (Selectiv

S

• The ideal case is har speed in database se

lany correct hits as

V

ide incorrect hits.

D

ivity, selectivity, and

Example

		Patients with bowel cancer (as confirmed on endoscopy)		
		Condition positive	Condition negative	
Fecal occult blood screen test outcome	Test outcome positive	True positive (TP) = 20	False positive (FP) = 180	Positive predictive value (PPV = TP / (TP + FP) = 20 / (20 + 180) = 10 %
	Test outcome negative	False negative (FN) = 10	True negative (TN) = 1820	Negative predictive value (NP = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
		Sensitivity = TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity = TN / (FP + TN) = 1820 / (180 + 1820) = 91 %	

Exhaustive vs Heuristic Methods

• Exhaustive

- Tests every possible solution
- Guaranteed to give best answer (identifies optimal solution)
- Can be very time/space intensive!
 - e.g., *Dynamic Programming* (as in Smith-Waterman algorithm)
- Example: querying a database of 300,000 sequences using a query sequence of 100 residues took 2–3 hours to complete.

• Heuristic

- Does NOT test every possibility
- No guarantee that answer is best (but, often can identify optimal solution, 50–100 times faster with a moderate expense of sensitivity and specificity)
- Sacrifices accuracy (potentially) for speed
- Uses "rules of thumb" or "shortcuts" tersity of Technology
 - e.g., BLAST & FASTA which use a heuristic word method

FASTA vs BLAST

- Both FASTA, BLAST are based on heuristics
- Tradeoff: Sensitivity vs Speed
- DP is slower, but more sensitive

• FASTA

- User defines value for k =word length
- Slower, but more sensitive than BLAST at lower values of k, (preferred for searches involving a very short query sequence)

BLAST family

- Family of different algorithms *optimized* for particular types of queries, such as searching for distantly related sequence matches
- BLAST was developed to provide a faster alternative to FASTA without sacrificing much accuracy

Basic Local Alignment Search Tool (BLAST)

Steps in BLAST

- 1. Create list of very possible "word" (e.g., 3-11 residues) from query sequence (Seeding)
- 2. Search database to identify sequences that contain matching words (Searching)
- 3. The matching of the words is scored by a given substitution matrix.
- 4. Extend match (seed) in both directions using pairwise alignment, while calculating alignment score at each step (Extension)
- 5. Continue extension until score drops below a *threshold* (due to mismatches).

High Scoring Segment Pair (HSP) - the resulting contiguous aligned segment pair without gaps. Tehran Polytechnic)

What are the Results of a BLAST Search?

- Original version of BLAST?
 - List of HSPs called Maximum Scoring Pairs

- More recent, improved version of BLAST?
 - Allows gaps: Gapped Alignment
 - How? Allows score to drop below threshold, (but only temporarily)

Amirkabir University of Technology (Tehran Polytechnic)

Why is Gapped Alignment Harder?

- Without gaps, there are N+M-1 possible alignments between sequences of length N and M
- Once we start allowing gaps, there are many more possible arrangements to consider:

• Becomes a very large number when we also allow mismatches, because we need to look at every possible pairing between elements:

Roughly N^M possible alignments!

e.g.: for N=M=100, there are 100^{100} = 10^{200} possible alignments & 100 aa is a small protein!

BLAST - a few details

- Developed by *Stephen Altschul* at NCBI in 1990.
- Word length?
 - Typically: 3 aa for protein sequence
 - 11 nt for DNA sequence
- Substitution matrix?
 - Default is BLOSUM62
 - Can change under Algorithm Parameters
 - Can choose other BLOSUM or PAM matrices
 - Change other parameters here, too
- Stop-Extension Threshold?
 - Typically: 22 for proteins abir University of Technology
 - 20 for DNA

(Tehran Polytechnic)

DNA potentially can encode 6 protein frames

```
CAT CAA ...
   5' ATC AAC ....

> 5' TCA ACA ....
CATCAACAACACTCCAAAGACACCCTTACACATCAAC 3'
GTAGTTGTTGAGGTTTCTGTGGGAATGTGTAGTTG 5'
                           5' TGA TGT ...
           Amirkabir University of Fechnology ATG
                (Tehran Polytechni5)' GTT GAT
```

BLAST - a Family of Programs

- **BLASTN** nucleotide (nt) sequence query against a nucleotide sequence DB (GenBank)
- BLASTP protein sequence query against protein DB
- BLASTX translates nt seq to six translated protein seq as query against protein DB
- TBLASTN protein query against 6 translated protein from translation
- TBLASTX 6-frame DNA query to 6-frame DNA translation
- **PSI-BLAST** protein "profile" query against protein DB
- PHI-BLAST protein pattern against protein DB
- Newest: MEGA-BLAST optimized for highly similar sequences

Which tool should you use?

https://blast.ncbi.nlm.nih.gov/Blast.cgi

BLAST - Statistical Significance?

- E-value (expectation value): the probability that the resulting alignments are caused by random chance.
 - $-E = m \times n \times P$
 - m = total number of residues in database
 - n = number of residues in query sequence
 - -P = probability that an HSP is result of random chance
 - Cons: the E-value is proportionally affected by the database size.
- **Bit Score** (S'): measures sequence similarity independent of query sequence length and database size and is normalized based on the raw pairwise alignment score.

BLAST - Statistical Significance?

- Bit Score (S'): normalized score, to account for differences in size of database (m) & sequence length(n)
 - $-S' = (\lambda \times S \ln K) / \ln 2$
 - $-\lambda$ = Gumble distribution constant
 - -S = raw alignment score
 - -K = constant associated with scoring matrix
 - It is linearly related to raw alignment score, so higher S' means alignment has higher significance
- Low Complexity Masking
 - remove repeats that confound scoring

Relation with E-value:

$$E = m \times n \times 2^{-S'}$$

BLAST - Statistical Significance?

- Conclusions based on E-value:
 - -E < 1e-50: there should be an extremely high confidence that the database match is a result of homologous relationships.
 - -1e-50 < E < 0.01: the match can be considered a result of homology.
 - -0.01 < E < 10: the match is considered not significant, but may hint at a tentative remote homology relationship.
 - -E > 10, the sequences under consideration are unrelated.

Amirkabir University of Technology (Tehran Polytechnic)

Detailed Steps in BLAST algorithm

- 1. Remove low-complexity regions (LCRs)
- 2. Make a list (dictionary): all words of length 3 aa or 11 nt
- 3. Augment list to include similar words
- 4. Store list in a search tree (data structure)
- 5. Scan database for occurrences of words in search tree
- 6. Connect nearby occurrences
- 7. Extend matches (words) in both directions
- 8. Prune list of matches using a score threshold
- 9. Evaluate significance of each remaining match
- 10. Perform Smith-Waterman to get alignment

1: Filter low-complexity regions (LCRs)

- Low complexity regions, transmembrane regions and coiled-coil regions often display significant similarity without homology.
- Low complexity sequences can yield false positives.
- Screen them out of your query sequences! When appropriate!

e.g., for GGGG: L! = 4!=4x3x2x1= 24 n_G =4 n_T = n_A = n_C =0 Πn_i ! = 4!x0!x0!x0! = 24 K=1/4 $\log_4 (24/24) = 0$ For CGTA: K=1/4 $\log_4 (24/1) = 0.57$

K = computational complexity;
varies from 0 (very low complexity)
to 1 (high complexity)
Alphabet size

letter in the window

2: List all words in query

YGGFMTSEKSQTPLVTLFKNAIIKNAHKKGQ

YGG

GGF

GFM

FMT

MTS

TSE

SEK

• •

Amirkabir University of Technology (Tehran Polytechnic)

3: Augment word list

YGGFMTSEKSQTPLVTLFKNAIIKNAHKKGQ

3: Augment word list (Cont.)

A user-specified **threshold**, **T**, determines which 3-letter words are considered matches and non-echnology matches (Tehran Polytechnic)

3: Augment word list (Cont.)

YGGFMTSEKSQTPLVTLFKNAIIKNAHKKGQ

Example

Find all words that match EAM with a score greater than or equal to 11

inology

Example 2

Find all words with size 2 and score greater than 8 for **RQCSAGW**

4: Store words in search tree

Search Tree (Trie)

GGF

GGL

GGM

GGW

GGY

Amirkabir University of Technology (Tehran Polytechnic)

Trie Example

Put this word list into a search tree

DAM

QAM

EAM

KAM

ECM

EGM

ESM

ETM

EVM

EAI

EAL

EAV

5: Scan the database sequences

Example

Scan this "database" for occurrences of your words

6: Connect nearby occurrences

• (diagonal matches in Gapped BLAST)

7: Extend matches in both directions

Amirkabir University of Technology (Tehran Polytechnic)

7: Extend matches, calculating score at each step

- Each match is extended to left & right until a negative BLOSUM62 score is encountered
- Extension step typically accounts for > 90% of execution time

8&9: Prune matches & Evaluate significance

- Prune matches:
 - Discard all matches that score below defined threshold

- Evaluate significance:
 - BLAST uses an analytical statistical significance calculation

Amirkabir University of Technology (Tehran Polytechnic)

10: Use SW algorithm to generate alignment

- *ONLY* significant matches are re-analyzed using Smith-Waterman DP algorithm.
- Alignments reported by BLAST are produced by dynamic programming

Amirkabir University of Technology (Tehran Polytechnic)

BLAST: What is a "Hit"?

- A *hit* is a *w*-length word in database that aligns with a word from query sequence with score > T
- BLAST looks for hits instead of exact matches
 - Allows word size to be kept larger for speed, without sacrificing sensitivity
- Typically:
 - -w = 3-5 for amino acids, w = 11-12 for DNA
- T is the most critical parameter:
 - $-\uparrow T \Rightarrow \downarrow$ "background" hits (faster) of Technology
 - $-\downarrow T \Rightarrow \uparrow$ ability to detect more distant relationships (at cost of increased noise)

Tips for BLAST Similarity Searches

- If you don't know, use default parameters first
- Try several programs & several parameter settings
- If possible, search on *protein* sequence level

Scoring matrices:

- PAM1 / BLOSUM80: if expect/want less divergent proteins
- PAM120 / BLOSUM62: "average" proteins
- PAM250 / BLOSUM45: if need to find more divergent proteins

• Proteins:

```
>25-30% identity (and >100aa) -> likely related
15-25% identity -> twilight zone
<15% identity -> likely unrelated
```

Practical Issues

- Searching on DNA or protein level?
- In general, protein encoding DNA should be translated!
- DNA yields more random matches:
 - 25% for DNA vs. 5% for proteins
- DNA databases are larger and grow faster
- Selection (generally) acts on protein level
 - <u>Synonymous mutations</u> are usually neutral
 - DNA sequence similarity decays faster

NCBI: BLAST

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

Learn more

Search Betacoronavirus Database

We have created a new BLAST database focused on the SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) Sequences. For further detail please visit

NCBI GenBank.

Mon, 03 Feb 2020 10:00:00 EST

More BLAST news...

Web BLAST

blastx

translated nucleotide ▶ protein

tblastn

protein ▶ translated nucleotide

Example: P01308 (INS_HUMAN)

• Sequence:

MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLV CGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEG SLQKRGIVEQCCTSICSLYQLENYCN

> Amirkabir University of Technology (Tehran Polytechnic)

BLAST Output

FASTA (FAST ALL)

FASTA

- FASTA was the first database similarity search tool.
- It uses a **hashing** strategy to find matches for a short stretch of identical residues with a length of *k*.
- The string of residues is known as *ktuples* or *ktups*, which are equivalent to words in BLAST, but are normally shorter.
 - A ktup is composed of 2 residues for protein sequences and 6 residues for DNA sequences.

Amirkabir University of Technology

https://www.ebi.ac.uk/Tools/sss/fasta/

Steps in FASTA

- Step 1: identify ktups between two sequences by using the hashing strategy.
- Step 2 : narrow down the high similarity regions between the two sequences.
- Step 3: the gapped alignment is refined further using the Smith–Waterman algorithm to produce a final alignment.
- Step 4 : perform a statistical evaluation of the final alignment as in BLAST, which produces the *E*-value.

Step 1: Construct a Hashing Table

Seq1 = **AMPSDGL** Seq2 = **GPSDNAT**

amino acid	sequen	offset	
	seq 1	seq 2	
A	1	6	- 5
D	5	4	1
G	6	1	5
${f L}$	7	_	_
M	2	_	_
N	_	5	_
P	3	2	1
S	4	3	1
T	-	7	-

Step 2: Narrow Down the Similarity Regions

• The alignments are scored according to a particular scoring matrix. Only the ten best alignments are selected.

Step 3: Refined the Gapped Alignment

• The alignments in the same diagonal are selected and joined to form a single gapped alignment, which is optimized using the dynamic programming approach.

Step 4: Perform a Statistical Evaluation

- FASTA also uses E-values and bit scores.
- Estimation of the two parameters in FASTA is essentially the same as in BLAST.
- In addition, the FASTA output provides one more statistical parameter, the *Z*-score.
 - Z-score describes the number of standard deviations from the mean score for the database search.
- The higher *Z*-score means the more significant match.
 - Z-score > 15: extremely significant with certainty of a homologous relationship.
 - -5 < Z-score < 15: sequence pair can be described as highly probable homologs.
 - -Z < 5: relationship is described as less certain.

BLAST vs FASTA

• Seeding:

- BLAST integrates scoring matrix into first phase
- FASTA requires exact matches (uses hashing)
- FASTA uses shorter word sizes so it gives more sensitive results with a better coverage rate for homologs.
- BLAST increases search speed by finding fewer, but better, words during initial screening phase.

• Results:

- BLAST can return multiple best scoring alignments
- FASTA returns only one final alignment technic

BLAST Notes - & DP Alternatives

- BLAST uses heuristics: it may miss some good matches
 - It has been estimated that for some families of protein sequences BLAST can miss 30% of truly significant matches.
- But, it's fast: 50 100X faster than Smith-Waterman (SW) DP
- Large impact:
 - NCBI's BLAST server handles more than 100,000 queries/day
 - Most used bioinformatics program in the world!
- Increased availability of parallel processing has made DP-based approaches feasible: 2 DP-based web servers: both more sensitive than BLAST
 - Scan Protein Sequence: http://www.ebi.ac.uk/scanps/index.html
 Implements modified SW optimized for parallel processing
 - ParAlign: www.paralign.org parallel SW or heuristics

References

- Mostly used:
 - Essential bioinformatics, Chapter 3 (Database Similarity Searching)
- Second reference:
 - Bioinformatics and functional genomics, Chapter 3 (Basic Local Alignment Search Tool (BLAST))

• IP notice: some slides were selected from Drena Dobbs' slides.

Amirkabir University of Technology (Tehran Polytechnic)

Thanks for your attention

