Last Name:	First Name:	
CruzID:		

Final Exam

CMPE 012: Computer Systems and Assembly Language

University of California, Santa Cruz

Fall 2018

DO NOT BEGIN UNTIL YOU ARE TOLD TO DO SO.

This exam is closed book and closed notes. Only 4-function calculators are permitted.

Answers must be marked but the Cahiron four to be graded. All work must be written on the exam.

Write your first name, and CruzID on this page. Write your CruzID on all subsequent pages of the exam. On the Scantron form, bubble in your name, student ID number, and test form. The test form can be found in the footer of all subsequent pages of the exam.

You must sit in your assigned seat. Keep your student or government issued ID on your desk. Brimmed hats must be removed or turned around backwards. Only unmarked water bottles are permitted. Backpacks must be placed at the front of the room. Your cell phone must be on a setting where it will not make noise or vibrate.

All questions are multiple choice. Some questions have more than one correct answer. You must mark all correct answers to receive credit for a question.

You have 120 minutes to complete this exam.

CruzID:	@ucsc.edu
---------	-----------

CMPE 12 Final Exam Version A

Fall 2018

Bits

1.	What is the	e size of a byte?
		32 bits
	<u></u> В.	10 bits
	О С.	4 bits
	O D.	6 bits
	○ E.	8 bits
2.	What is the	e size of a nybble?
	○ A.	·
	<u></u> В.	64 bits
	О С.	32 bits
	O D.	4 bits
	○ E.	8 by scienment Project Even Help
3.		⁸ Assignment Project Exam Help
•		8 bits
	_	A bits
	_	32 bits https://powcoder.com
	-	16 bits
	Ŏ Е.	64 bits
		Add WaChat navyandan
R	inary Ad	Add WeChat powcoder
•	mary rra	
4.	Which con	nputations have overflow? Assume numbers are 16-bit two's complement. Select all that apply.
т.	() A.	$0 \times 76 = 0 \times 801 = 0 \times 713$
	○ B.	$0 \times 0.02 \text{A} + 0 \times 5.7 \text{D9} = 0 \times 2.803$
	_	0xF02B + 0x57D9 = 0x5864
	\circ	$0 \times 0308 + 0 \times 1198 = 0 \times 14A0$
	○ E.	$0 \times 0308 + 0 \times 1198 = 0 \times 14 A0$
5.	O	
۶.	that apply.	nputations have carry out but no overflow? Assume numbers are 8-bit two's complement. Select all
	(A.	$0 \times 2C + 0 \times 2D$
	○ B.	$0 \times ED + 0 \times O9$
	○ C.	0x0A + 0xFD
	○ C. ○ D.	0xD9 + 0x5C
	○ E.	0x7F + 0x01

Data Representation

Decode the following ASCII string.

0x43 0x45 0x31 0x32 0x20 0x69 0x73 0x20 0x6c 0x6f 0x76 0x65 0x2e 0x20 0x43 0x45 0x31 0x32 0x20 0x69 0x73 0x20 0x6c 0x69 0x66 0x65 0x2e

- A. Lab 4 was easy.
- O B. You're a wizard, Harry.
- O. CE12 is love. CE12 is life.
- O D. CE12 was the best class ever.
- () E. No, I am your father!

Which IEEE 754 Single Precision floating point numbers are additive inverses of each other? (Select two)

- A. 0x40400000
- O B. 0xC0400000
- O. C. 0x26500000
- O. 0xF4500000
- E. 0x354FFFFF

- Convert this 8-bit 2's complement number to decimal: 11010110 Exam Help
 - B. 212
 - C. -40
 - O D. -42
 - https://powcoder.com ○ E. 213

Which IEEE 754 Single Precision floating point number is furthest from zero?

- 0x42903333
- 0xc30180Add WeChat powcoder \bigcirc B.
- \cap C.
- O D. 0x425A6666
- E. 0x4377999A

10. Convert this base 15 number into base 9: 42

- B. 46
- C. 28
- O D. 68
- E. 38

Logic

11. Given the logic circuit below, x and y are logically equivalent.

- O B. True

12. What device does this timing diagram represent:

- () A. S-R latch, active high
- O B. S-R latch, active low
- O. C. D latch
- O. D. D-R latch
- O E. D flip flop, edge triggered
- 13. Select all expressions equivalent to $\bar{A} \cdot B + A \cdot B$

 - B. B
 - \bigcirc C. $A \oplus B$
 - \bigcirc D. $\overline{A \oplus B}$
 - \bigcirc E. $(\bar{A}+B)\cdot(A+B)$

Addressabili Assignment Project Exam Help

Assume a 4MB memory space with 4096 memory locations i.e. addresses.

14. What is the addressabil to the Spie nor power of the property of the prope

Add WeChat powcoder

- O A. 1024
- B. 9
- O. 512
- O D. 4096
- E. 10
- 15. How many bits are needed to represent the address?

 - B. 9
 - O C. 34
 - O D. 36
 - E. 22

CruzID:	@ucsc.edu
CI uzib.	C desc.cad

MIPS

16. Translate the following Java statement into MIPS assembly code. Assume that x, y, z, q are stored in registers \$\$1, \$\$2, \$\$3, and \$\$4 respectively.

$$x = x - y + z + q$$

- A. add \$t0 \$s1 \$s2 sub \$t0 \$s2 \$s3 add \$s1 \$t0 \$s4
- B. add \$s1 \$s1 \$s3
 sub \$s1 \$s1 \$s2
 add \$s1 \$s1 \$s4
- C. add \$s3 \$s3 \$s4 add \$s2 \$s2 \$s3 sub \$s1 \$s1 \$s2
- O D. sun significant Project Exam Help add \$1 \$10 \$14
- O E. sub \$s1 \$https://powcoder.com
 add \$s1 \$s1 \$s4
 add \$s1 \$s3
- 17. How can we isolate bits 20.14 of to WeChat powcoder
 - A. ANDI \$t0 \$t0 0x1FC000
 - \bigcirc B. ORI \$t0 \$t0 0x0001FC
 - C. XORI \$t0 \$t0 0x11FFC
 - O D. AND \$t0 \$t0 << 2
 - O E. AND \$t0 \$t0 0x1FC000

The next four questions refer to this code.

```
.data
first word: .asciiz "flux"
second word: .asciiz "bunny"
.text
main:
la $a0, first_word
jal PUSH_STRING
#push "bunny"
la $a0, second_word
jal PUSH STRING
#pop and print ten characters
li $a1, 8
Assignment Project Exam Help
#exit program:
li $v0, 10
                 https://powcoder.com
syscall
#Pushes a string onto the stack, followed by the length of the string
#input: $a0 = address of string to push
PUSH_STRING: Add WeChat powcoder
 lb $t1, ($a0)
 begz $t1, EXIT_PUSH_STRING
  subi $sp, $sp, 4
  sw $t1, ($sp)
 addi $a0, $a0, 1
    PUSH_STRING
 EXIT_PUSH_STRING: jr $ra
#Pops a number of characters off the stack, and printing each one
#a1 = number of characters to pop and print
POP AND PRINT:
 lb $a0, ($sp)
  addi $sp, $sp, 4
  li $v0, 11 #print character
  syscall
 subi $a1, $a1, 1
 bnez $a1, POP_AND_PRINT
  jr
      $ra
```

18.	What is the	ne value of the stack pointer after this code exits?
	○ A.	0x2fdc
	○ B.	0x2ffc
	O C.	0x2fd8
	O D.	0x3000
	○ E.	0x2ff8
19.	Which in:	structions are the "pop" operation?
		subi \$sp, \$sp, 4 / sw \$t1, (\$sp)
	○ B.	li \$a1, 8 / jal POP_AND_PRINT
	O C.	lb \$a0, (\$sp) / addi \$sp, \$sp, 4
		subi \$sp, \$sp, 4 / addi \$a0, \$a0, 1
	_	bnez \$a1, POP_AND_PRINT / jr \$ra
20.	What doe	s this code print?
	○ A.	nnubxulf
	○ B.	xulfnnub
	○ C.	fluxbunn
	O D.	Assignment Project Exam Help
	○ E.	bunnyflu
21.	What is th	ne minimum value of \$sp during execution of this code?
	○ A.	0x2FF7 0x2FDC https://powcoder.com
	○ B.	0x2FDC IIIIps.//powcoder.com
	O C.	0x2FF0
	Ō D.	0x3000
	Ŏ Е.	Ox2FD8 Add WeChat powcoder
		1 2 3 3 4 4 5 C 11 3 5 C 11 3 C 3 C 1

The following three questions refer to this code.

```
li $t0, 1
li $t1, 1

sll $t0, $t0, 2

mul $t1, $t1, 4

div $t1, $t0

mfhi $t2

add $t0, $t0, 3

div $t0, $t1

mfhi $t3

mflo $t4
```

22. What is the value of \$t2 after this code is executed?

○ A. 1○ B. 0○ C. 3○ D. 4○ E. 2

			CruzID:	@ucsc.edu
A.B.C.D.E.	4 2 16 0 1 the value of \$t3 4 0 2 3	after this code is executed? after this code is executed?		
Data Mov	vement			
	-	e memory space with little ory state is as follows:	endian memory stora	ge. Assume \$t1 contains the value
0x1004 0 0x1003 0 0x1002 0 0x1001 0)xCA)xAD	gnment Pro https://pow		_
The followin	g MIPS instruc	tions are executed the characteristic control of the control of th	at powed	oder
addiu \$t0 sw \$t0 lb \$t0 add \$t1 lh \$t3	(\$t1) (\$t1) 4(\$t1) 5t1,	0xCAFE		
25. What is t		4 0 2		
	the value of reg			

B. 0xffffbaadC. 0xffffadbaD. 0x0000baadE. 0x0000ADBa

CruzID:	@ucsc.edu
---------	-----------

27. What is the value of register \$t0?

\bigcirc	A.	0xCAFFFFFF
\bigcirc	B.	0xCA00000
\bigcirc	C.	0x000000CA
\bigcirc	D.	0xFFFFFFCA
\bigcirc	E.	0x000000AD

Arrays

The next three questions refer to the following code:

```
1
   .data
2
   space: .asciiz " "
3
   array: .space 32
4
5
   .text
6
  main:
7
      la $s0, array
      li $t0, 0 •
8
      Assignment Project Exam Help
9
10
11
  loop:
      bgt $t2, 75 https://powcoder.com
12
13
14
      sb $t2, 0($t3)
15
      add $t0, $tAdd WeChat powcoder
16
17
      j loop
18
19
20 printArray:
     la $a0, array
21
      li $v0, 4
22
23
     syscall
24
25
     nop
26
      li $v0, 10
27
      syscall
```

28. What will be printed to the screen after the program completes execution?

- () A. ABCDEFGHIJKL
- O B. 65 66 67 68 69 70 71 72 73 74
- O. C. ACEGIK
- O D. ABCDEFGHIJK
- (E. nothing will be printed

CruzID:	@ucsc.edu
---------	-----------

29. Assume you changed line 16 from	29.	Assume	you	changed	line	16	fror
-------------------------------------	-----	--------	-----	---------	------	----	------

```
add $t0, $t0, 1

to

add $t0, $t0, 2

What would be printed to the screen after the program completes execution?

A. none of the other answers

B. ABCDEFGHIJK

C. ACEGIK

D. 65 67 69 71 73

E. A
```

- 30. What will be stored in register \$s0 right after execution of line 7?
 - A. none of the other answers
 - O B. register \$s0 will contain the value of 32
 - O. register \$s0 will be set to zero
 - On the address of 'array'

Decoding Instructions

31. The machine code 0x8162E0101 represents which instruction? Exam Help

\bigcirc	A.	LW	\$t3	0x0101	(\$t6)				
\bigcirc	B.	SUBU	\$zei	o \$t3	\$t6//		1	1	
\bigcirc	C.	SUBU	\$t3	ntto	$Sz \neq y o$	DOW	'COC	ler.co	m
\bigcirc	D.	LW	\$t6	0x0101	(\$t3)				
\bigcirc	E.	ANDI	\$t2	\$t3	0x101	0			

- 32. Which MIPS 32 assembly anguage incharcing assembles into the waching recent 2A690003?
 - O A. addi \$t1, \$s3,
 - \bigcirc B. sw \$t1, 3(\$t2)
 - C. slti \$t1, \$s3, 3
 - O D. xor \$t1, \$v1, \$s3
- 33. Encode the following instruction:

BNE \$t1 \$t0 0x10

A. 0x21090010

B. 0x15280010

C. 0x35090010

D. 0x15280100

O E. 0x21090010

CruzID: @ucsc.edu

Data Path

Refer to this data path diagram for the next five questions.

The next two questions refer to the following MIPS32 instruction:

bne \$t1, \$t3, init_count_loop

This instruction is stored at memory address 0x3008. The label "init_count_loop" refers to an instruction stored at memory address 0x308C. Prior to executing this instruction, \$t1 and \$t3 contain 0x0E66 and 0xBABE, respectively.

Note: A branch instruction uses the format

bne rs rt label

34.	uring execution, what signal is on line 4? A. 0x3008 B. 0x0020 C. 0x0080 D. 0x000B E. 0x305C	
35.	uring execution, what signal is on line 9? A. 0x305C B. 0x0020 C. 0xBABE D. 0x0E66 E. 0x000B	
	ext three problems refer to the following MIPS32 instruction: 2. Assignment Project Exam Help	
_	hat is the signal on line ttps://powcoder.com A. 0x0E64 B. 0xBABC C. 0x0E66 D. 0xBABE Add WeChat powcoder E. This line is not used in this instruction	
37.	ssume the address range of the data memory in this MIPS processor is 0x00000000-0x00001000. Does the struction execute without error? A. yes B. no	his
38.	hat is the signal on line 10? A. 0x0E64	

○ D. 0xBABE

E. This line is not used in this instruction

REG NAME	REG #	MNEMONIC	MEANING	TYPE	OPCODE	FUNCT		MNEMONIC	MEANING	TYPE	OPCODE	FUNCT
\$zero	0	sll	Logical Shift Left	R	0x00	0x00		add	Add	R	0x00	0x20
\$at	1	srl	Logical Shift Right (0-extended)	R	0x00	0x02		addi	Add Immediate	I	0x08	NA
\$v0	2	sra	Arithmetic Shift Right (sign-extended)	R	0x00	0x03		addiu	Add Unsigned Immediate	I	0x09	NA
\$v1	3	jr	Jump to Address in Register	R	0x00	0x08		addu	Add Unsigned	R	0x00	0x21
\$a0	4	mfhi	Move from HI Register	R	0x00	0x10		and	Bitwise AND	R	0x00	0x24
\$a1	5	mflo	Move from LO Register	R	0x00	0x12		andi	Bitwise AND Immediate	I	0x0C	NA
\$a2	6	mult	Multiply	R	0x00	0x18		beq	Branch if Equal	I	0x04	NA
\$a3	7	multu	Unsigned Multiply	R	0x00	0x19		blez	Branch if Less Than or Equal to Zero	I	0x06	NA
\$t0	8	div	Divide	R	0x00	0x1A		bne	Branch if Not Equal	I	0x05	NA
\$t1	9	divu	Unsigned Divide	R	0x00	0x1B		div	Divide	R	0x00	0x1A
\$t2	10	add	Add	R	0x00	0x20		divu	Unsigned Divide	R	0x00	0x1B
\$t3	11	addu	Add Unsigned	R	0x00	0x21		j	Jump to Address	J	0x02	NA
\$t4	12	sub	Subtract	R	0x00	0x22		jal	Jump and Link	J	0x03	NA
\$t5	13	subu	Unsigned Subtract	R	0x00	0x23		jr	Jump to Address in Register	R	0x00	0x08
\$t6	14	and	Bitwise AND	R	0x00	0x24		1b	Load Byte	I	0x20	NA
\$t7	15	or	Bitwise ASS19nment	P	0:00	PAGE 1	1	1tal X	AMe us ed 1)	I	0x24	NA
\$s0	16	xor	Bitwise XOR (Exclusive-OR)	R	0x00	0x26		1h	Load Halfword	I	0x21	NA
\$s1	17	nor	Bitwise NOR (NOT-OR)	R	0x00	0x27		1hu	Load Halfword Unsigned	I	0x25	NA
\$s2	18	slt	Set to 1 if Less Than	R	0x00	0x2A		lui	Load Upper Immediate	I	0x0F	NA
\$s3	19	sltu	Set to 1 if Less Than intigned	P	0k90	0x2B	12	dwe C	logd logd	I	0x23	NA
\$s4	20	j	Jump to Address 11005.//	3	0x02	NA	11	miteo	Move from Coprocessor 0	R	0x10	NA
\$s5	21	jal	Jump and Link	J	0x03	NA		mfhi	Move from HI Register	R	0x00	0x10
\$s6	22	beq	Branch if Equal	I	0x04	NA		mflo	Move from LO Register	R	0x00	0x12
\$s7	23	bne	Branch if Not Equal \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I	10 k05	NA		mult	Multiply	R	0x00	0x18
\$t8	24	blez	Branch if Less Than on Laud to ZVr	1	0 kg 60	NΔ)(mul\u\	Unsigned Multiply	R	0x00	0x19
\$t9	25	addi	Add Immediate	I	0x08	NA -		nor	Bitwise NOR (NOT-OR)	R	0x00	0x27
\$k0	26	addiu	Add Unsigned Immediate	I	0x09	NA		or	Bitwise OR	R	0x00	0x25
\$k1	27	slti	Set to 1 if Less Than Immediate	I	0x0A	NA		ori	Bitwise OR Immediate	I	0x0D	NA
\$gp	28	sltiu	Set to 1 if Less Than Unsigned Immediate	I	0x0B	NA		sb	Store Byte	I	0x28	NA
\$sp	29	andi	Bitwise AND Immediate	I	0x0C	NA		sh	Store Halfword	I	0x29	NA
		ori	Bitwise OR Immediate	I	0x0D	NA		sll	Logical Shift Left	R	0x00	0x00
		xori	Bitwise XOR (Exclusive-OR) Immediate	I	0x0E	NA		slt	Set to 1 if Less Than	R	0x00	0x2A
		lui	Load Upper Immediate	I	0x0F	NA		slti	Set to 1 if Less Than Immediate	I	0x0A	NA
		mfc0	Move from Coprocessor 0	R	0x10	NA		sltiu	Set to 1 if Less Than Unsigned Immediat	e I	0x0B	NA
		1b	Load Byte	I	0x20	NA		sltu	Set to 1 if Less Than Unsigned	R	0x00	0x2B
		1h	Load Halfword	I	0x21	NA		sra	Arithmetic Shift Right (sign-extended)	R	0x00	0x03
		lw	Load Word	I	0x23	NA		srl	Logical Shift Right (0-extended)	R	0x00	0x02
		1bu	Load Byte Unsigned	I	0x24	NA		sub	Subtract	R	0x00	0x22
		lhu	Load Halfword Unsigned	I	0x25	NA		subu	Unsigned Subtract	R	0x00	0x23
		sb	Store Byte	I	0x28	NA		SW	Store Word	I	0x2B	NA
		sh	Store Halfword	I	0x29	NA		xor	Bitwise XOR (Exclusive-OR)	R	0x00	0x26
		SW	Store Word	I	0x2B	NA		xori	Bitwise XOR (Exclusive-OR) Immediate	I	0x0E	NA

R Type:	instr instr								.С,	lo	gica	al)															
31		26	25				21	20				16	15				11	10				6	5				0
opcode			rs					rt					rd					sh	amt	:		1	fun	ict			
I Type:	<pre>I Type: instr rt rs immediate (arithmetic, logical)</pre>																										
31		26	25				21	20				16	15														0
opcode			rs					rt					imr	nedi	iate	j											
J Type:	j imme		te 25	(jum	nps)																					0
opcode			imm	edi	ate																						

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

	ASCI	I COI	DE					ASCI				
BIN		ОСТ	DEC	HEX	CHARACTER		BIN		ОСТ	DEC	HEX	CHARACTER
010	0000	40	32	20	space		101	0000	120	80	50	Р
010	0001	41	33	21	!		101	0001	121	81	51	Q
010	0010	42	34	22	"		101	0010	122	82	52	R
010	0011	43	35	23	#		101	0011	123	83	53	S
010	0100	44	36	24	\$		101	0100	124	84	54	Т
010	0101	45	37	25	%		101	0101	125	85	55	U
010	0110	46	38	26	&		101	0110	126	86	56	V
010	0111	47	39	27	'		101	0111	127	87	57	W
010	1000	50	40	28	(101	1000	130	88	58	X
010	1001	51	41	29)		101	1001	131	89	59	Υ
010	1010	52	42	2A	*		101	1010	132	90	5A	Z
010	1011	53	43	2B	+		101	1011	133	91	5B	
010	1100	54	44	2C	,		101	1100	134	92	5C	\
010	1101	55	45	2D	-		101	1101	135	93	5D]
010	1110	56	46	2E	•		101	1110	136	94	5E	^
010	1111	57	47	2F	/		101	1111	137	95	5F	_
011	0000	60	48	30	0		110	0000	140	96	60	`
011	0001	61	49	31	1			0001	141	97	61	a
011	(91 6)	m	50 -	132	Pro	1	110	0110	142	98	F	Ме

Assi gingist Projection 141 97 61 a Assi gingist 133 Projection 143 98 61 Elelp

911	0011	63	21	33	3	J	110	9911	143	99	63	C
011	0100	64	52	34	4		110	0100	144	100	64	d
011	0101	65	53	35	5		110	0101	145	101	65	е
011	1117	16	5 4	361)OW	C	(1)	@1 10 1	146	1(2)	16	f
011	0111	6 7	55	37	7		110	0111	147	103	67	g
011	1000	70	56	38	8		110	1000	150	104	68	h
011	1901	711	57	39	0912			1001	151	105	69	leř
011	1010		58	3 A	eun	8	110	1360	Y5 12	196		iei
011	1011	73	59	3B	;		110	1011	153	107	6B	k
011	1100	74	60	3C	<		110	1100	154	108	6C	1
011	1101	75	61	3D	=		110	1101	155	109	6D	m
011	1110	76	62	3E	>		110	1110	156	110	6E	n
011	1111	77	63	3F	;		110	1111	157	111	6F	0
100	0000	100	64	40	@		111	0000	160	112	70	р
100	0001	101	65	41	Α		111	0001	161	113	71	q
100	0010	102	66	42	В		111	0010	162	114	72	r
100	0011	103	67	43	С		111	0011	163	115	73	S
100	0100	104	68	44	D		111	0100	164	116	74	t
100	0101	105	69	45	E		111	0101	165	117	75	u
100	0110	106	70	46	F		111	0110	166	118	76	V
100	0111	107	71	47	G		111	0111	167	119	77	W
100	1000	110	72	48	Н		111	1000	170	120	78	х
100	1001	111	73	49	I		111	1001	171	121	79	у
100	1010	112	74	4A	J		111	1010	172	122	7A	z
100	1011	113	75	4B	K		111	1011	173	123	7B	{
100	1100	114	76	4C	L		111	1100	174	124	7C	
100	1101	115	77	4D	М		111	1101	175	125	7D	}
100	1110	116	78	4E	N		111	1110	178	126	7E	~
100	1111	117	79	4F	0		111	1111	177	127	7F	DEL