Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 3 B

 $L\"{o}sungshinweise$

Aufgabe 1: Zeigen Sie, dass jede Teilmenge B einer höchstens abzählbaren Menge A ebenfalls höchstens abzählbar ist.

Lösung:

Fall 1: A ist die leere Menge. Dann ist $B = \emptyset$ die einzige Teilmenge von A; diese ist nach Definition endlich und somit höchstens abzählbar.

Fall 2: $A \neq \emptyset$ ist endlich. Es sei $n \in \mathbb{N}$ die Anzahl der Elemente von A. Ist B = A, so ist die B ebenfalls endlich mit n Elementen. Andernfalls ist $A \setminus B \neq \emptyset$. Wir können also ein $x_1 \in A \setminus B$ wählen; nach Aufgabe 2 von Präsenzblatt 2 B ist $A_1 := A \setminus \{x_1\}$ endlich mit n-1 Elementen. Haben wir $A_1 = B$, dann ist B endlich (mit n-1 Elementen) und wir sind fertig. Andernfalls ist $A_1 \setminus B \neq \emptyset$. Wir können dann ein $x_2 \in A_1 \setminus B$ wählen und folgern mit Aufgabe 2 von Präsenzblatt 2 B, dass $A_2 := A_1 \setminus \{x_2\} = A \setminus \{x_1, x_2\}$ endlich mit n-2 Elementen ist. Diesen Vorgang setzen wir fort, bis wir eine Menge $A_k = A \setminus \{x_1, \ldots, x_k\}$ mit n-k Elementen gefunden haben, für die $A_k = B$ gilt; dies ist nach höchstens k = n Schritten der Fall, weil dann A_n die Mächtigkeit 0 hat, also $A_n = \emptyset$ gilt. Damit ist B endlich (mit n-k Elementen).

Fall 3: A ist abzählbar unendlich. In diesem Fall finden wir eine Bijektion $\varphi: \mathbb{N} \to A$. Wir betrachten $\varphi^{-1}(B) \subseteq \mathbb{N}$. Ist $\varphi^{-1}(B)$ endlich, dann gibt es ein $n \in \mathbb{N}$ und eine Bijektion $\sigma: \{1, \ldots, n\} \to \varphi^{-1}(B)$; folglich ist $\psi:=(\varphi|_{\varphi^{-1}(B)}) \circ \sigma: \{1, \ldots, n\} \to B$ als Komposition der bijektiven Abbildungen $\varphi|_{\varphi^{-1}(B)}: \varphi^{-1}(B) \to B$ und σ ebenfalls bijektiv, d. h. B ist endlich mit n Elementen. Andernfalls definieren wir eine Abbildung $\sigma: \mathbb{N} \to \mathbb{N}$ mittels der folgenden Rekursion: Wir setzen $\sigma(1) := \min \varphi^{-1}(B)$ sowie $B_1 := B \setminus \{\varphi(\sigma(1))\}$ und $\sigma(k) := \min \varphi^{-1}(B_{k-1})$ sowie $B_k := B_{k-1} \setminus \{\varphi(\sigma(k))\}$ für alle $k \in \mathbb{N}$ mit $k \geq 2$. Dann ist $\psi := (\varphi|_{\varphi^{-1}(B)}) \circ \sigma: \mathbb{N} \to B$ surjektiv (da jedes $b \in B$ nach endlich vielen Schritten in der Liste $\psi(1), \psi(2), \ldots$ auftaucht) und injektiv nach Konstruktion. Somit haben wir eine Bijektion $\psi: \mathbb{N} \to B$ gefunden, d. h. B ist abzählbar unendlich.

In jedem der drei Fälle ist eine beliebige Teilmenge B von A höchstens abzählbar.

Aufgabe 2: Bestimmen Sie von folgenden Mengen jeweils Infimum und Supremum (falls existent) und entscheiden Sie jeweils, ob es sich um ein Minimum oder Maximum handelt.

Definition: Wir sagen, dass das Supremum sup A einer nach oben beschränkten Menge $A \subset \mathbb{R}$ das $Maximum\ von\ A$ ist, falls sup $A \in A$. Analog sagen wir, dass das Infimum inf A einer nach unten beschränkten Menge $A \subset \mathbb{R}$ das $Minimum\ von\ A$ ist, falls inf $A \in A$.

(a)
$$A = {\sqrt{x} \mid 0 \le x \le 4}$$

(b)
$$B = \left\{ \frac{1}{n+10} \mid n \in \mathbb{N} \right\}$$

(c)
$$C = \{x \in \mathbb{R} \mid x^2 > 2x + 8\}$$

(d)
$$D = \left\{ (-1)^n + \frac{1}{m} \mid m, n \in \mathbb{N} \right\} \cup \{-1\}$$

(e)
$$E = [0, 1] \setminus \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$$

Lösung: (a) Mit den aus der Schule bekannten Eigenschaften der Wurzelfunktion sieht man, dass A = [0, 2]. Es folgt

$$\inf A = \min A = 0$$
, $\sup A = \max A = 2$.

(b) Die Menge B ist das Bild der (monoton fallenden) Folge $\{\frac{1}{n+10}\}_{n\in\mathbb{N}}$. Diese erfüllt

$$\lim_{n \to \infty} \frac{1}{n+10} = 0,$$

gleichzeitig gilt

$$\frac{1}{n+10} \neq 0$$

für alle $n \in \mathbb{N}$. Es folgt inf B = 0, ein Minimum von B existiert nicht. Da $\{\frac{1}{n+10}\}_{n \in \mathbb{N}}$ monoton fallend ist, folgt außerdem

$$\sup B = \max B = \frac{1}{1+10} = \frac{1}{11}.$$

(c) Die Menge C ist die Lösungsmenge der Ungleichung

$$x^2 > 2x + 8, \quad x \in \mathbb{R},$$

und es gilt

$$x^{2} > 2x + 8$$

$$\Leftrightarrow x^{2} - 2x - 8 > 0$$

$$\Leftrightarrow (x - 1)^{2} - 9 > 0$$

$$\Leftrightarrow (x - 1)^{2} > 9$$

$$\Leftrightarrow x - 1 < -3 \quad \forall \quad x - 1 > 3$$

$$\Leftrightarrow x < -2 \quad \forall \quad x > 4.$$

sodass $C = (-\infty, -2) \cup (4, \infty)$. Also existieren weder Infimum und Minimum, noch Supremum und Maximum.

(d) Es ist

$$D = \{-1\} \cup \left\{1 + \frac{1}{m} \mid m \in \mathbb{N}\right\} \cup \left\{-1 + \frac{1}{m} \mid m \in \mathbb{N}\right\}$$

und für alle $m \in \mathbb{N}$ gilt

$$-1 < -1 + \frac{1}{m} < 1 + \frac{1}{m},$$

sodass

$$\inf D = \min D = -1.$$

Außerdem ist die Folge $\{\frac{1}{m}\}_{m\in\mathbb{N}}$ monoton fallend, sodass

$$1 + \frac{1}{m} \le 1 + \frac{1}{1} = 2$$

für alle $m \in \mathbb{N}$ gilt. Es folgt

$$\sup D = \max D = 2.$$

(e) Die Folge $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ ist monoton fallend mit

$$0 < \frac{1}{n} \le 1$$

für alle $n \in \mathbb{N}$. Insbesondere gilt $0 \in E$ und $1 \notin E$ aber $1 - \varepsilon \in E$ für alle $\varepsilon \in (0, 1]$. Es folgt

$$\inf E = \min E = 0, \quad \sup E = 1,$$

ein Maximum von E existiert nicht.

Aufgabe 3: Es sei X die Menge aller regelmäßigen n-Ecke mit $n \in \mathbb{N}$, $n \geq 3$, die einem Kreis mir Radius r = 1 einbeschrieben sind.

Für ein Vieleck $E \in X$ bezeichne A(E) seinen Flächeninhalt.

- (a) Zeigen Sie, dass die Menge $\{A(E) \mid E \in X\}$ nach oben beschränkt ist.
- (b) Wir setzen $\pi := \sup\{A(E) \mid E \in X\}$. Zeigen Sie, dass $\pi \ge \frac{3}{2}\sqrt{3}$; betrachten Sie hierzu ein regelmäßiges Sechseck.

Lösung:

(a) Jedes Vieleck $E \in X$ ist Teilmenge des Kreises, der selbst wiederum eine Teilmenge des umbeschriebenen Quadrats Q ist.

- Es gilt also $A(E) \leq A(Q)$ für alle $E \in X$. Das Quadrat Q hat die Kantenlänge 2r = 2 und somit den Flächeninhalt A(Q) = 4. Also haben wir $A(E) \leq 4$ für alle $E \in X$, d. h. die Menge $\{A(E) \mid E \in X\}$ ist nach oben beschränkt.
- (b) Nach Aufgabenteil (a) existiert das Supremum $\pi:=\sup\{A(E)\mid E\in X\}$. Weil π selbst eine obere Schranke der Menge $\{A(E)\mid E\in X\}$ ist, gilt $\pi\geq A(E)$ für alle $E\in X$. Es sei nun E das regelmäßige Sechseck. Dieses setzt sich zusammen aus sechs gleicheitigen Dreiecken mit der Kantenlänge r=1. Mithilfe des Satzes des Pythagoras bestimmt man die Höhe dieses Dreiecks aus $h^2+\left(\frac{1}{2}\right)^2=1$ als $h=\frac{1}{2}\sqrt{3}$ und schließlich seinen Flächeninhalt als $\frac{1}{2}rh=\frac{1}{4}\sqrt{3}$. Somit ist $\pi\geq A(E)=6\cdot\frac{1}{4}\sqrt{3}=\frac{3}{2}\sqrt{3}$, wie behauptet.