Theoretische Physik II: Elektrodynamik

Leander Roller 625871

5. Februar 2023

Inhaltsverzeichnis

In	haltsverzeichnis	2
1	Grundlagen	5
	1.1 Mathematische Grundlagen	5
	1.2 Physikalische Grundlagen	6
2	Vorlesung II: Elektrostatik	8
	2.1 Kraft	8
	2.2 Potential und elektrisches Feld	8
	2.3 Ladung	9
	2.4 Rechenbeispiel: Potential einer homogen geladenen Kugel	9
3	Vorlesung III: Poisson-Gleichung	10
	3.1 Physikalischer Gauß-Satz	10
	3.2 Inhomogene Maxwell-Gleichung der Elektrostatik	10
4	Vorlesung IV: Multipolentwicklung	12
	4.1 Entwicklung:	12
5	Vorlesung V: Energie der Ladungssysteme und Feldenergie	14
	5.1 Energie des Systems in einem äußeren Feld	14
	5.2 Potentielle Energie:	14
6	Vorlesung VI: Elektrostatik Randbedingungen	16
7	Vorlesung VII: Elektrostatik der Dielektrika	17
8	Vorlesung VIII: Elektrostatik der Dielektrika II	18
9	Vorlesung IX: Elektrostatik der Dielektrika III	19
10	Vorlesung X: Kapazität	21
	10.1 Kapazitätskoffizienten:	21
11	Vorlesung XI: Elektrische Ströme	23
	11.1 Strom	23
	11.2 Kirchhoff'sche Regel	24
	11.3 Ohm'sches Gesetz	24

	11.4 Elektrische Leistung und Joul'sche Wärme	25
	11.5 Stromdichten in kontinuierlichen Medien	25
12	Vorlesung XIV: Magnetostatik I	26
	12.1 Maxwell-Gleichungen der Magnetostatik im Vakuum	26
	12.2 Ampére-Gesetz und Biot-Savart-Gesetz	26
	12.3 Lorentzkraft:	27
	12.4 Vektorpotential	27
13	Vorlesung XV: Magnetostatik II	28
	13.1 Magnetmonet	28
	13.2 Anwendungsbeispiele des Magnetmoments	29
	13.3 Kraft und Drehmoment einer lokalen Stromverteilung	29
14	Vorlesung XVI: Magnetostatik III	31
	14.1 Magnetfeld	31
	14.2 Inhomogene Maxwellgleichung der Magnetostatik	32
15	Vorlesung XVII: Quasistatische Näherung	33
	15.1 Elektromagnetische Wellen	33
	15.2 Maxwellgleichungen in der quasistatischen Näherung	34
	15.3 Induktion und Gegeninduktion	35
16	Vorlesung XVIII: Maxwell-Gleichungen	37
	16.1 Vollständigen Maxwell'schen Gleichungen	37
	16.2 Elektromagnetische Potentiale	38
	16.3 Eichinvarianz	38
17	Vorlesung XIX: Feldenergie und Feldimpuls	40
	17.1 Feldenergie	40
	17.2 Feldimpuls	41
	17.3 Drehimpuls	42
18	Vorlesung XX: Wellen	43
	18.1 Homogene Wellengleichung	43
	18.2 Ebene monochromatische Welle	44
	18.3 Ebene elektromagnetische Welle	44
	18.4 Polarisierung	44

19	Vorlesung XXI: Green'sche Funktion der Wellengleichung	45
	19.1 Greenfunktion mit der Lorenz-Eichung	45
20	Vorlesung XXI: Wellen Strahlung	46
	20.1 Strahlung mit der Lorenz-Eichung	46
	20.2 Strahlung durch oszillierende Quellen	46
	20.3 Felder in der Strahlungszone	47
	20.4 Felder in der Nahzone	47
	20.5 Elektrische Quadrupol- und magnetische Dipolstrahlung	47
	20.6 Bewegte Ladungen	47
	20.7 Elektromagnetisch Felder	48
21	Vorlesung XXVII: Teilchen im elektromagnetischen Feld	49
	21.1 Lagrangefunktion	49
	21.2 Maxwellgleichungen in der Viererdarstellung	52

Kapitel 1

Grundlagen

1.1 Mathematische Grundlagen

Stokes-Satz

$$\oint_{\partial\Omega} \vec{A} \ d\vec{l} = \int_{\Omega} \operatorname{rot} \vec{A} \ d\vec{s} \tag{1.1}$$

In Kugelkoordinaten ist $d\vec{s}$ gegeben durch:

$$d\vec{s} = r^2 sin(\theta) \ d\theta \ d\varphi \ \vec{e_r} \tag{1.2}$$

Gauß-Satz

Standardform:

$$\oint_{\partial\Omega} \vec{A} \ d\vec{s} = \int_{\Omega} \operatorname{div} \vec{A} \ d\vec{r} \tag{1.3}$$

$$\oint_{\partial\Omega} \vec{A} \ d\vec{s} = \int_{\Omega} \nabla \cdot \vec{A} \ d\vec{r} \tag{1.4}$$

Variationen:

$$\oint_{\partial\Omega} \varphi(\vec{r}) \ d\vec{s} = \int_{\Omega} \nabla \varphi(\vec{r}) \ d\vec{r} = \int_{\Omega} \operatorname{grad} \varphi(\vec{r}) \ d\vec{r} \tag{1.5}$$

$$\oint_{\partial\Omega} d\vec{l} \times \vec{A} = \int_{\Omega} \nabla \times \vec{A} \ d\vec{s} = \int_{\Omega} \operatorname{rot} \vec{A} \ d\vec{s}$$
 (1.6)

Dirac'sche Deltadistribution

Dirac'sche Deltadistribution =
$$\delta(\vec{r} - \vec{r_0})$$
 (1.7)

$$\delta(x) = \begin{cases} 0 & \text{falls } x < 0 \\ \infty & \text{falls } x = 0 \\ 0 & \text{falls } x > 0 \end{cases}$$
 (1.8)

$$f(x_0) = \int_{-\infty}^{\infty} f(x)\delta(x - x_0)dx \tag{1.9}$$

Rechenregeln

Der Laplace-Operator in Kugelkoordinaten (r, θ, ϕ) und nur die radiale Komponente:

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \left[\frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \sin(\theta) \frac{\partial}{\partial \theta} + \frac{1}{\sin^2(\theta)} \frac{\partial^2}{\partial \phi^2} \right]$$
(1.10)

$$\Delta_r = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \tag{1.11}$$

Ableitungen für $\frac{1}{r}$ Terme:

$$\Delta \frac{1}{\vec{r}} = -4\pi \delta(\vec{r}) \tag{1.12}$$

$$\nabla_r \frac{1}{|\vec{r} - \vec{r_0}|} = \frac{\vec{r} - \vec{r_0}}{|\vec{r} - \vec{r_0}|^3} \tag{1.13}$$

$$\int_{V} \nabla \left(\frac{\vec{r}}{r^{3}}\right) d\vec{r} = \begin{cases} 4\pi, & \text{falls } 0 \in V \\ 0, & \text{sonst} \end{cases}$$
 (1.14)

$$\nabla \left(\frac{\vec{r}}{r^3}\right) = 4\pi \delta(\vec{r}) \tag{1.15}$$

1.2 Physikalische Grundlagen

Coulomd-Kraft:

$$\vec{F}_C = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^3} \vec{r} \tag{1.16}$$

Maxwell'schen Gleichungen:

Homogen

$$\operatorname{div}\vec{B} = 0 \tag{1.17}$$

$$rot\vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$
(1.18)

ROLLER ELEKTRODYNAMIK

Inhomogen

$$\operatorname{div} \vec{D} = \rho_{frei} \tag{1.19}$$

$$rot \vec{H} - \frac{\partial \vec{D}}{\partial t} = \vec{j}_{frei} \tag{1.20}$$

Materialgleichungen

$$\vec{B} = \mu_0(\vec{H} + \vec{M}) \longrightarrow \mu_r \mu_0 \vec{H} \tag{1.21}$$

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \longrightarrow \epsilon_r \epsilon_0 \vec{E} \tag{1.22}$$

Gleichung (1.22) gilt nur in linearen Medien.

Vorlesung II: Elektrostatik

Kraft 2.1

$$\vec{F}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^3} \vec{r} \tag{2.1}$$

$$\vec{F}(\vec{r}) = q\vec{E}(\vec{r}) \tag{2.2}$$

$$\vec{F}(\vec{r}) = -\nabla U(\vec{r}), \quad U(\vec{r}) = \text{potentielle Energie}$$
 (2.3)

Potential und elektrisches Feld 2.2

Diskrete Punktladungen

 $U(\vec{r})$ = potentielle Energie

$$\varphi(\vec{r}) = \frac{U(\vec{r})}{q} \tag{2.4}$$

$$\varphi(\vec{r}) = \frac{U(\vec{r})}{q}$$

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{|\vec{r} - \vec{r_0}|}$$
(2.4)

$$\varphi(\vec{r}) = \sum_{i} \varphi_i(\vec{r}) \tag{2.6}$$

$$\vec{E}(\vec{r}) = -\nabla\varphi(\vec{r}) \tag{2.7}$$

$$\vec{E}(\vec{r}) = \frac{q}{4\pi\epsilon_0} \frac{\vec{r} - \vec{r_0}}{|\vec{r} - \vec{r_0}|^3}$$
 (2.8)

Gleichung (2.6) heißt Superpositionsprinzip.

Kontinuierliche Ladungsverteilungen

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\vec{r_0})}{|\vec{r} - \vec{r_0}|} d\vec{r_0}$$
(2.9)

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\vec{r_0})(\vec{r} - \vec{r_0})}{|\vec{r} - \vec{r_0}|^3} d\vec{r_0}$$
 (2.10)

2.3 Ladung

Q = Gesamtladung, Ladungserhaltungssatz (2.13)

$$q = ne, (2.11)$$

$$e = 1.6 \cdot 10^{-19} As$$
 Elementarladung (2.12)

$$Q = \sum_{i} q_i = \text{const.} \tag{2.13}$$

$$Q = \int_{V} \rho(\vec{r}) d\vec{r} \tag{2.14}$$

 $\rho(\vec{r}) = \text{Ladungsdichte}$

$$\rho(\vec{r}) = \frac{\text{Gesamtladung}}{\text{Fläche}}$$
 (2.15)

$$\rho(\vec{r}) = -\epsilon_0 \Delta \varphi \tag{2.16}$$

2.4 Rechenbeispiel: Potential einer homogen geladenen Kugel

Siehe ED2

Gegeben

$$\rho(\vec{r_0}) = \begin{cases} 0, & \text{falls } \vec{r_0} > 0\\ \rho_0, & \text{sonst} \end{cases}$$
 (2.17)

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \rho_0 \int_V \frac{1}{|\vec{r} - \vec{r_0}|} d\vec{r_0}$$
(2.18)

Ergebnis

$$E_r(r) = \frac{Q(r)}{4\pi\epsilon_0 r^2} \tag{2.19}$$

$$Q(r) = \begin{cases} \frac{4\pi}{3}\rho_0 r^3, & \text{falls } r \le R \\ Q, & \text{falls } r > R \end{cases}$$
 (2.20)

Kapitel 3

Vorlesung III: Poisson-Gleichung

3.1 Physikalischer Gauß-Satz

Beispiel: Punktladung

$$\oint_{\partial V} \vec{E} d\vec{s} = \begin{cases} \frac{q}{\epsilon_0}, & \vec{r_0} \in V \\ 0, & \text{sonst} \end{cases}$$
(3.1)

$$\operatorname{div}\vec{E}(\vec{r}) = \frac{q}{\epsilon_0}\delta(\vec{r} - \vec{r_0}) \tag{3.2}$$

3.2 Inhomogene Maxwell-Gleichung der Elektrostatik

$$\operatorname{div}\vec{E} = -\frac{\rho}{\epsilon_0} \tag{3.3}$$

Poissongleichung

div grad
$$\varphi(\vec{r}) = \Delta \varphi(\vec{r}) = -\frac{\rho}{\epsilon_0}$$
 heißt Poisson-Gleichung (3.4)

$$G(\vec{r}, \ \vec{r_0}) = \frac{1}{4\pi\epsilon_0} \frac{1}{|\vec{r} - \vec{r_0}|} \text{ (Green'sche Funktion)}, \tag{3.5}$$

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\vec{r_0})}{|\vec{r} - \vec{r_0}|} d\vec{r_0}, \text{ Lösung für eine Ladungsdichte } \rho(\vec{r}).$$
 (3.6)

Beispiel: Punktladung

$$\operatorname{div}\vec{E}(\vec{r}) = \sum_{i} \operatorname{div}\vec{E}_{i}(\vec{r}) = \sum_{i} \frac{q_{i}}{\epsilon_{0}} \delta(\vec{r} - \vec{r_{0}})$$
(3.7)

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{|\vec{r} - \vec{r_0}|}, \text{ dieses Potential löst:}$$
 (3.8)

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{|\vec{r} - \vec{r_0}|}, \text{ dieses Potential löst:}$$

$$\Delta\varphi(\vec{r}) = -\frac{\delta(\vec{r} - \vec{r_0})}{\epsilon_0}.$$
(3.8)

ROLLER ELEKTRODYNAMIK

Kapitel 4

Vorlesung IV: Multipolentwicklung

4.1 Entwicklung:

Für kontinuierliche Dichten gilt:

$$\varphi(\vec{r_0}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\vec{r})}{|\vec{r_0} - \vec{r}|} d\vec{r}$$
(4.1)

Entwickle die Funktion:

$$\frac{1}{|\vec{r_0} - \vec{r}|}\tag{4.2}$$

Dann ergibt sich für $\varphi(\vec{r_0})$:

$$\varphi(\vec{r_0}) = \frac{1}{4\pi\epsilon_0} \left[\frac{1}{r_0} \int_V \rho(\vec{r}) d\vec{r} + \frac{1}{r_0^3} \int_V (\vec{r}\vec{r_0}) \rho(\vec{r}) d\vec{r} + \frac{1}{2r_0^5} \int_V \left[3(\vec{r}\vec{r_0})^2 - \vec{r}^2 \vec{r_0}^2 \right] \rho(\vec{r}) d\vec{r_0} + \dots \right]$$

$$(4.3)$$

Gesamtladung = Monopolmoment: $q = \int_V \rho(\vec{r}) d\vec{r}$

Vektor des **Dipolmoments**: $\vec{p} = \int_V \vec{r} \rho(\vec{r}) d\vec{r}$

Tensor (2.Grades) des **Quadrupolmoment** Q mit Komponenten:

$$Q_{ij} = \int_{V} \left[3x_i x_j - (\vec{r})^2 \delta_{ij} \right] \rho(\vec{r}) d\vec{r}$$
(4.4)

Also ergibt sich:

$$\varphi(\vec{r_0}) = \frac{1}{4\pi\epsilon_0} \left[\frac{q}{r_0} + \frac{\vec{p} \cdot \vec{r_0}}{r_0^3} + \frac{1}{2r_0^5} \sum_{i,j=1}^3 Q_{i,j} x_i x_j + \dots \right]$$
(4.5)

Anwendung:

Ist $q \neq 0$, so dominiert der Monopolterm:

$$\varphi_M(\vec{r_0}) = \frac{1}{4\pi\epsilon_0} \frac{q}{r_0} \tag{4.6}$$

$$\vec{E}(\vec{r_0}) = \frac{q}{4\pi\epsilon_0} \frac{\vec{r_0}}{r_0^3} \tag{4.7}$$

Ist q=0, so ist der Dipolterm der Größte:

$$\varphi_D(\vec{r_0}) = \frac{\vec{p} \cdot \vec{r_0}}{r_0^3} \tag{4.8}$$

$$\vec{E}_D(\vec{r_0}) = \frac{1}{4\pi\epsilon_0} \frac{1}{r^5} \left(3(\vec{p} \cdot \vec{r_0}) \vec{r_0} - r^2 \vec{p} \right) \tag{4.9}$$

Verschwinden q und \vec{p} gleichzeitig, so dominiert der Quadrupolterm:

$$\varphi_Q(\vec{r_0}) = \frac{1}{4\pi\epsilon_0} \frac{1}{r_0^5} \sum_{i,j=1}^3 Q_{i,j} x_i x_j . \tag{4.10}$$

Kapitel 5

Vorlesung V: Energie der Ladungssysteme und Feldenergie

5.1 Energie des Systems in einem äußeren Feld

 $\mathbf{U}=$ Gesamtenergie, $\varphi_{ex}=$ das vom äußeren Feld erzeugte Potential

$$U(\vec{r}) = \sum_{k} q_k \varphi_{ex}(\vec{r_k}) \tag{5.1}$$

$$U(\vec{r}) = \int_{V} \rho(\vec{r}) \varphi_{ex}(\vec{r}) d\vec{r} . \qquad (5.2)$$

Beispiel: Proton

Siehe Musterlösung 03.

Entwicklung

Nach der Multipolentwicklung gilt für die Energie:

$$U = q\varphi_{ex} - \vec{p} \cdot \vec{E} + \frac{1}{6}Q_{i,j} \sum_{i,j} \frac{\partial E_i}{\partial x_j}$$
 (5.3)

$$U = -\vec{p} \cdot \vec{E} \tag{5.4}$$

5.2 Potentielle Energie:

Für Punktladungen:

$$W = \frac{1}{2} \sum_{i} q_i \varphi(\vec{r}_i) \tag{5.5}$$

$$= \frac{1}{2} \sum_{i \neq j} q_i \frac{q_j}{4\pi\epsilon_0 |\vec{r_j} - \vec{r_i}|} \tag{5.6}$$

Für kontinuierliche Ladungen:

$$W = \frac{1}{2} \int \rho(\vec{r}) \varphi(\vec{r}) d\vec{r}$$
 (5.7)

$$= \frac{1}{2} \int \frac{\rho(\vec{r})\rho(\vec{r_0})}{4\pi\epsilon_0 |\vec{r} - \vec{r_0}|} d\vec{r} d\vec{r_0}$$
 (5.8)

Nach Multipolentwicklung, FlächeF, Flächenstück $d\vec{f}$

$$W = \frac{\epsilon_0}{2} \int [\vec{E}(\vec{r})]^2 d\vec{r} \tag{5.9}$$

$$dW = F \cdot \frac{\epsilon_0}{2} \vec{E}^2 d\vec{f} \tag{5.10}$$

Kapitel 6

Vorlesung VI: Elektrostatik Randbedingungen

Falls $\rho(\vec{r})$ im ganzen Raum gegeben ist, so ist das Potential:

$$\Delta\varphi(\vec{r}) = -\frac{\rho(\vec{r})}{\epsilon_0} \tag{6.1}$$

und die allgemeine Lösung ist die Greensche Funktion:

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\vec{r_0})}{|\vec{r} - \vec{r_0}|} d\vec{r_0}$$
(6.2)

Randbedingungen für ein Potential, falls die Ladungsdichten nicht im ganzen Raum gegeben sind, lauten:

$$E_1^n - E_2^n = \vec{n} \cdot (\vec{E}_1 - \vec{E}_2) = \frac{\sigma}{\epsilon_0}$$
 (6.3)

$$E_1^t - E_2^t = \vec{t} \cdot (\vec{E}_1 - \vec{E}_2) = 0 \tag{6.4}$$

Wobei E_1^n die Normalkomponente des Feldes und E_1^t die Tangentialkomponente des Feldes ist.

Vorlesung VII: Elektrostatik der Dielektrika

Die Maxwell-Gleichungen lesen in der Elektrostatik:

$$\operatorname{div}\vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\epsilon_0} = -\frac{1}{\epsilon_0}\operatorname{div}\vec{P}$$

$$\vec{D} = \epsilon_0\vec{E} + \vec{P}$$
(7.1)

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \tag{7.2}$$

$$\operatorname{div} \vec{D} = 0 \tag{7.3}$$

Wenn es gebundene und freie Ladungen gibt, gilt:

$$\operatorname{div} \vec{D} = \rho_{frei} \tag{7.4}$$

Die Materialgleichungen der Elektrostatik im linearen Bereich, d.h. für schwache Elektrische Felder:

$$\vec{D} = \epsilon \epsilon_0 \vec{E} \tag{7.5}$$

$$\vec{P} = (\epsilon - 1)\epsilon_0 \vec{E} \tag{7.6}$$

Es gelten dann die Anschlussbedingungen:

$$E_A^t - E_B^t = 0 (7.7)$$

$$D_A^n - D_B^n = 0 (7.8)$$

Zwischen einem Leiter und einem Dielektrikum, gilt für die Anschlussbedingungen:

$$E^t = 0, D^n = \sigma (7.9)$$

(7.10)

Vorlesung VIII: Elektrostatik der Dielektrika II

Es gelten die Maxwellgleichungen, die Materialgleichungen und die Anschlussbedingungen (7.7), (7.8).

Eine Punktladung (Position $d \cdot \vec{e}_z$) in einem System zweier verschiedener Dielektrika, lautet die Lösung:

$$q' = q \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \tag{8.1}$$

$$q'' = q \frac{2\epsilon_2}{\epsilon_1 + \epsilon_2} \tag{8.2}$$

Daraus ergeben sich direkt die Potentiale im jeweiligen Dielektrikum:

$$\varphi_1(\vec{r}) = \frac{q}{4\pi\epsilon_1(\epsilon_1 + \epsilon_2)\epsilon_0} \frac{\epsilon_1 + \epsilon_2}{|\vec{r} - d\vec{e_z}|} \frac{\epsilon_1 - \epsilon_2}{|\vec{r} + d\vec{e_z}|}$$
(8.3)

$$\varphi_1(\vec{r}) = \frac{q}{4\pi\epsilon_1(\epsilon_1 + \epsilon_2)\epsilon_0} \frac{\epsilon_1 + \epsilon_2}{|\vec{r} - d\vec{e_z}|} \frac{\epsilon_1 - \epsilon_2}{|\vec{r} + d\vec{e_z}|}$$

$$\varphi_2(\vec{r}) = \frac{2q}{4\pi\epsilon_1(\epsilon_1 + \epsilon_2)\epsilon_0} \frac{1}{|\vec{r} - d\vec{e_z}|}$$
(8.3)

$$\vec{F} = \frac{\epsilon_1 - \epsilon_2}{\epsilon_1} \frac{1}{4\pi\epsilon_0} \frac{q^2}{4d^2} \vec{e_z} \tag{8.5}$$

Kapitel 9

Vorlesung IX: Elektrostatik der Dielektrika III

$$U = \frac{1}{2} \int d\vec{r} \rho_{frei}(\vec{r}) \varphi(\vec{r})$$
 (9.1)

Wobei ρ_{frei} die Dichte der freien, externen Ladungen und $\varphi(\vec{r})$ das von ihnen erzeugte Potential ist.

In der Betrachtung der Dielektrika gilt also für die Energie (9.2) und die Energiedichte (9.3):

$$U = \int \frac{\vec{E} \cdot \vec{D}}{2} d\vec{r} \tag{9.2}$$

$$w(\vec{r}) = \frac{\vec{E} \cdot \vec{D}}{2} \tag{9.3}$$

Leiter im äußeren Feld:

Für die Kraft, die auf einen leitenden Körper wirkt, muss über die Gesamtfläche integriert werden.

$$\vec{F} = \oint_{\partial V} \frac{\epsilon_0}{2} \vec{E}^2(\vec{r}) d\vec{s} \tag{9.4}$$

$$\vec{F} = \int_{V} \rho(\vec{r}) \vec{E}(\vec{r}) d\vec{r} \tag{9.5}$$

$$\vec{F} = \epsilon_0 \oint_{\partial V} \frac{(E^n)^2}{2} d\vec{s} \tag{9.6}$$

Tensor

Im linearen Medium gilt:

$$T_{\alpha\beta} = \epsilon \epsilon_0 [E_{\alpha} E_{\beta} - \frac{1}{2} \delta_{\alpha\beta} \vec{E} \cdot \vec{E}]$$
 (9.7)

$$T_{\alpha\beta} = \epsilon \epsilon_0 [E_{\alpha} E_{\beta} - \frac{1}{2} \delta_{\alpha\beta} \vec{E} \cdot \vec{E}]$$

$$\vec{F} = \int_V \nabla T d\vec{r}$$
(9.8)

Kapitel 10

Vorlesung X: Kapazität

10.1 Kapazitätskoffizienten:

Wir haben φ_i in Abwesenheit der $\varphi_j = 0$ für $i \neq j$ gegeben. Für die Potentiale $\varphi_1, ..., \varphi_N$, (N Anzahl der der Leiter), gilt der Zusammenhang:

$$q_j = \sum_{i=1}^{N} c_{ji} \varphi_i \tag{10.1}$$

 c_{ji} heißen Kapazitätskoeffizienten. Die Gesamtlösung schreibt sich als:

$$\varphi(\vec{r}) = \sum_{j} \varphi_{j} \phi_{j}(\vec{r}) \tag{10.2}$$

$$0 = \phi_j(\vec{r}) \text{ L\"osung zu } \nabla[\epsilon(\vec{r})\nabla\phi(\vec{r})]$$
 (10.3)

Für die Kapazitätskoeffizienten und die Energie gelten im Allgemeinen:

$$c_{ij} = -\oint_{\delta V_i} \epsilon(\vec{r}) \epsilon_0 \nabla \phi_j \cdot d\vec{s}$$
 (10.4)

$$U = -\frac{1}{2} \sum_{i=1}^{N} \varphi_i \phi_i \tag{10.5}$$

Wir können die φ_i als Funktion der q_j darstellen, dass heißt wir lösen das lineare Gleichungssystem, indem wir die Koeffizientenmatrix (c_{ij}) invertieren (spd.).

$$\varphi_i = \sum_j s_{ij} q_j \tag{10.6}$$

Die Einträge der invertierten Matrix heißen Potentialkoffizienten.

ROLLER ELEKTRODYNAMIK

$$\varphi_i = \sum_k R_{ik} I_k \text{ mit } I_k = \text{Stromstärke}$$
(10.7)

Die Einträge von R_{ik} heißen Widerstandskoeffizienten.

In der Betrachtung eines einzigen Leiter spricht man von der Kapazität C und es gilt folgende Formel für U= Potentialdifferenz = Spannung und Q= Gesamtladung

$$C = \frac{Q}{U} \tag{10.8}$$

$$U(\vec{r}) = \int_{\vec{r}_1}^{\vec{r}_2} \vec{E}(\vec{r}) d\vec{r} = \varphi(\vec{r}_1 - \vec{r}_2)$$
 (10.9)

$$W = \frac{q^2}{2C} \tag{10.10}$$

Vorlesung XI: Elektrische Ströme

11.1 Strom

Stromdichte und Stromstärke

Die Stromdichte setzt sich zusammen aus Teilchendichte n, Teilchenladung q und mittlerer Geschwindigkeit \vec{v} .

$$\vec{j}(\vec{r}) = nq\vec{v} \tag{11.1}$$

Für eine kontinuerliche Verteilung

$$\vec{j}(\vec{r}) = \rho(\vec{r})\vec{v} \tag{11.2}$$

Die Stromdichte definiert die Stromstärke (Gesamtladung, die durch eine Fläche F pro Zeiteinheit fließt):

$$I = \int_{F} \vec{j}(\vec{r})d\vec{s} \tag{11.3}$$

Kontinuitätsgleichung

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \vec{j}(\vec{r}) = 0 \tag{11.4}$$

$$\operatorname{div}\vec{j}(\vec{r}) = 0$$
, falls $\rho = \text{const.}$ (11.5)

Das liefert uns die Erkenntnis, dass der Gesamtstrom durch die Oberfläche eines Leiter identisch 0 ist (Anwendung des Gaußsatzes).

11.2 Kirchhoff'sche Regel

Kirchhoff'sche Knotenregel

Die Summme des einfließenden und ausfließenden Stroms addiert sich in einem Knoten zu 0.

Abbildung 1: Kirchhoff'sche Knotenregel

$$\sum_{i} I_i = 0 \tag{11.6}$$

Kirchhoff'sche Maschenregel

Es ist V_k die Potentialdifferenz.

$$\oint_{\partial V} \vec{E} d\vec{l} = \sum_{k=1}^{n} V_k = 0 \tag{11.7}$$

11.3 Ohm'sches Gesetz

E-Feld und Stromdichte führen zum Ohm'schen Gesetz, elektrische Leitfähigkeit σ

$$\vec{j}(\vec{r}) = \sigma(\vec{r})\vec{E}(\vec{r}) \tag{11.8}$$

Materialgleichung in Form des verallgemeinerten Ohm'schen Gesetzes (\vec{E}_{ext} ist das Feld der externen elektromotorischen Kräfte):

$$\vec{j}(\vec{r}) = \sigma \cdot (\vec{E} + \vec{E}_{ext}) \tag{11.9}$$

Potentialdifferenz V, Stromstärke I, Widerstand R (Ergibt sich experimentell, wirkt der elektrostatischen Kraft entgegen) führen zur integralen Variante:

$$V = IR \tag{11.10}$$

ROLLER ELEKTRODYNAMIK

11.4 Elektrische Leistung und Joul'sche Wärme

Gesamtleistung allgemein und für einen Draht (Potentialdifferenz V) :

$$P = \int_{V} \vec{j} \vec{E} d\vec{r} \tag{11.11}$$

$$P = \int_{V} \sigma(\vec{r}) \vec{E}^{2}(\vec{r}) d\vec{r}$$
 (11.12)

$$P = IV \tag{11.13}$$

11.5 Stromdichten in kontinuierlichen Medien

Vergleiche Dielektrikum und Leiter:

$$\operatorname{div} \vec{D} = \rho_{frei} \nabla(\sigma(\vec{r}) \nabla \varphi(\vec{r})) \qquad = \nabla \cdot (\sigma(\vec{r}) \vec{E}_{ext}) \qquad (11.14)$$

(11.15)

Dielektrikum	$ \iff$	Leiter
$\epsilon\epsilon_0$	\iff	σ
$ec{ar{E}}$	\iff	$ec{E}$
$ec{ec{D}}$	\iff	$ec{j}$
$\frac{1}{\epsilon_0} ho_{frei}$	\iff	$-div\vec{j}_{ext}$

Anschlussbedingungen

$$E_{1,t} = E_{2,t} (11.16)$$

$$j_{1,n} = j_{2,n} (11.17)$$

12

Vorlesung XIV: Magnetostatik I

12.1 Maxwell-Gleichungen der Magnetostatik im Vakuum

$$\operatorname{rot}\vec{B} = \mu_0 \vec{j} \tag{12.1}$$

$$\operatorname{div}\vec{B} = 0 \tag{12.2}$$

12.2 Ampére-Gesetz und Biot-Savart-Gesetz

Das Ampére-Gesetz beschreibt die Kraft, die zwischen zwei Stromfäden wirkt.

$$\vec{F} = \frac{\mu_0}{4\pi} I_1 I_2 \oint_{C_1} \oint_{C_2} \frac{d\vec{l_1} \times (d\vec{l_2} \times d\vec{r_{12}})}{r_{12}^3}$$
 (12.3)

Zerlegung möglich in Magnetfeld und Kraftwirkung auf einen Stromfaden:

$$\vec{B}(\vec{r_1}) = \mu_0 \frac{I}{4\pi} \oint_{C_2} d\vec{l_2} \times \frac{\vec{r_{12}}}{\vec{r_{12}}}$$
 (12.4)

$$\vec{F}_{12} = I_1 \oint_{C_1} d\vec{l}_1 \times \vec{B}(\vec{r}_1)$$
 (12.5)

Eine alternative Schreibweise für die Kraft (BAC-CAB), aus der das 3. Newtonsche Axiom ersichtlich ist:

$$\vec{F} = \frac{\mu_0}{4\pi} I_1 I_2 \oint_{C_1} \oint_{C_2} d\vec{l_1} \cdot d\vec{l_2} \frac{\vec{r}_{12}}{r_{12}^3}$$
 (12.6)

$$\vec{F}_{12} = -\vec{F}_{21} \tag{12.7}$$

Betrachtet man das Magnetfeld mit Hilfe der Stromdichte $\vec{j}(\vec{r})$, so ergibt sich das **Biot-Savart-Gesetz**.

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \oint_{V_0} \vec{j}(\vec{r_0}) \times \frac{\vec{r} - \vec{r_0}}{|\vec{r} - \vec{r_0}|^3} d\vec{r_0}$$
 (12.8)

$$\vec{F} = \int_{V} [\vec{j}(\vec{r}) \times \vec{B}(\vec{r})] d\vec{r}$$
 (12.9)

12.3 Lorentzkraft:

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B} \tag{12.10}$$

12.4 Vektorpotential

Massiere Knabe (12.8) und erhalte das Vektorpotential $\vec{A}(\vec{r})$:

$$\vec{B}(\vec{r}) = \nabla_r \times \left[\frac{\mu_0}{4\pi} \int_V \frac{\vec{j}(\vec{r_0})}{|\vec{r} - \vec{r_0}|} d\vec{r_0} \right]$$
 (12.11)

$$= \operatorname{rot} \vec{A}(\vec{r}) \tag{12.12}$$

Poissongleichung für Magnetostatik:

$$\Delta \vec{A}(\vec{r}) = -\mu_0 \vec{j}(\vec{r}) \tag{12.13}$$

Für die Komponenten des Vektorfeldes gilt:

$$\vec{A}_{\alpha}(\vec{r}) = \frac{\mu_0}{4\pi} \int_V d\vec{r_0} \frac{j_{\alpha}(\vec{r_0})}{|\vec{r} - \vec{r_0}|}$$
(12.14)

und sie sind die Lösung für die Gleichung (12.13).

Kapitel 13

Vorlesung XV: Magnetostatik II

13.1 Magnetmonet

Vektorfeld

Alle Ströme sind in einem räumlich begrenzten Gebiet. Das Vektorfeld ist gegeben durch:

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int_V \frac{j(\vec{r_0})}{|\vec{r} - \vec{r_0}|} d\vec{r_0}$$
(13.1)

Multipolentwicklung des Vektorfelds

Wir machen analog zur Elektrostatik eine Multipolentwicklung, bei der das Monopolmoment verschwindet. Betrachte den führenden Term in der Entwicklung, das Magnetmoment (Monopolmoment verschwindet immer).

$$\vec{A}_{dip}(\vec{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{j}(\vec{r_0})(\vec{r} \cdot \vec{r_0})}{r^3} d\vec{r_0}$$
 (13.2)

Eine alternative Schreibeweise definiert jetzt das Magnetmoment \vec{m} :

$$\vec{A}_{dip}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3} \tag{13.3}$$

$$\vec{m} = \frac{1}{2} \int_{V} \vec{r_0} \times \vec{j}(\vec{r_0}) \ d\vec{r_0}$$
 (13.4)

Form des Magnetfeldes des Dipolmoments

Für das Magnetfeld $\vec{B} = \text{rot} \vec{A}$ gilt jetzt:

$$\vec{B} = \text{rot}\vec{A} = \frac{\mu_0}{4\pi} \frac{1}{r^5} \left[3(\vec{m} \cdot \vec{r})\vec{r} - \vec{m} \right]$$
 (13.5)

Dies entspricht einem geschlossenen Stromfaden.

13.2 Anwendungsbeispiele des Magnetmoments

Geschlossener Stromfaden

Betrachte eine geschlossene lineare Stromschleife in der Ebene, dann gilt:

$$\vec{m} = IS\vec{n},\tag{13.6}$$

wobei I der Gesamtstrom, S die von der Schleife begrenzte Fläche und \vec{n} der Normalenvektor zur Ebene ist.

Gyromagentisches Moment

Das gyromagnetische Momement $\frac{q}{2m}$ ist das Verhältnis von Magnetmoment \vec{m} zum Gesamtdrehimpuls $\vec{L}=\sum_i\vec{l_i}$.

13.3 Kraft und Drehmoment einer lokalen Stromverteilung

Gegeben sei das Magnetfeld $\vec{B}(\vec{r})$ und die Stromdichte $\vec{j}(\vec{r})$ auf einem begrenzten Gebiet.

Kraft

Die Gesamtkraft \vec{F} ist

$$\vec{F} = \int_{V} \vec{j} \times \vec{B} \ d\vec{r} \tag{13.7}$$

Mit Umformungen (Taylorentwicklung) aus der Vorlesung erhalten wir zwei alternative Darstellungen der Kraft:

$$\vec{F} = (\vec{m} \times \nabla) \times \vec{B} \tag{13.8}$$

$$\vec{F} = \nabla(\vec{m}\vec{B}) \tag{13.9}$$

Potentielle Energie

Das heißt die Kraft ist aus der potentiellen Energie U ableitbar:

ROLLER ELEKTRODYNAMIK

$$U = -\vec{m}\vec{B} \tag{13.10}$$

Der Dipol wird versuchen sich parallel zum Magnetfeld auszurichten, um den Zustand geringster Energie einzunehmen.

Drehmoment

Das Drehmoment \vec{M} ist

$$\vec{M} = \int_{V} \left[\vec{r} \times (\vec{j}(\vec{r}) \times \vec{B}) \right] d\vec{r} . \tag{13.11}$$

Nach einer Taylorentwicklung dominiert der 1. Term und es gilt:

$$\vec{M} = \vec{m} \times \vec{B}(0) \tag{13.12}$$

$$\vec{M} = -\frac{1}{2} \left[\vec{B}(0) \times \int_{V} d\vec{r} \left(\vec{r} \times \vec{j}(\vec{r}) \right) \right]$$
 (13.13)

Kapitel 14

Vorlesung XVI: Magnetostatik III

14.1 Magnetfeld

Vektorfeld

Betrachte das Vektorfeld bestehend aus äußerem Anteil und durch Dipole in der Materie entstehenden Anteil.

$$\vec{A}(\vec{r}) = \vec{A}_{ext}(\vec{r}) + \vec{A}_{mat}(\vec{r}) \tag{14.1}$$

Der materielle Anteil \vec{A}_{mat} kann gemittelt und vereinfacht werden zu:

$$\vec{A}_{mat}(\vec{r}) = \frac{\mu_0}{4\pi} \int_V \frac{1}{|\vec{r} - \vec{r_0}|} \nabla \times \vec{M}(\vec{r_0}) d\vec{r_0}, \tag{14.2}$$

wobei $\vec{M}(\vec{r})$ Magnetisierung heißt.

Drücken wir das externe Vektorpotential $\vec{A}_{ext}(\vec{r})$ durch die externen Ströme aus, so ergibt sich:

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{j}(\vec{r_0})}{|\vec{r} - \vec{r_0}|} d\vec{r_0} + \frac{\mu_0}{4\pi} \int_V \frac{\nabla \times \vec{M}(\vec{r_0})}{|\vec{r} - \vec{r_0}|} d\vec{r_0}$$
(14.3)

$$\nabla \times \vec{B} = \nabla \times \nabla \times \vec{A}(\vec{r}) = \mu_0 \vec{j}(\vec{r}) + \mu_0 \nabla \times \vec{M}(\vec{r})$$
(14.4)

$$\nabla \times [\vec{B}(\vec{r}) - \mu_0 \vec{M}(\vec{r})] = \mu_0 \vec{j}(\vec{r}) \tag{14.5}$$

Magnetfeld

Das Magnetfeld bzw. die magnetische Feldstärke \vec{H} ist eine Hilfsgröße, die Messgröße ist die magnetische Induktion \vec{B} .

ROLLER ELEKTRODYNAMIK

$$\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M} \tag{14.6}$$

$$\vec{B} = \mu_0(\vec{H} + \vec{M}) \tag{14.7}$$

14.2 Inhomogene Maxwellgleichung der Magnetostatik

$$rot \vec{H} = \vec{j}_{frei} \tag{14.8}$$

Es besteht eine lineare Beziehung zwischen Magnetisierung \vec{M} und Magnetfeld \vec{H} . Wir haben allgemein (14.9) und im Vakuum (14.10)

$$\vec{B} = \mu_r \mu_0 \vec{H} \tag{14.9}$$

$$\vec{B} = \mu_0 \vec{H} \tag{14.10}$$

Für $\mu_r = (1 + \chi_m)$ gibt es materialabhängige Werte:

Diamagnet	\iff	$\chi < 0$
Supraleiter	\iff	$\chi = -1$
Paramagnet	\iff	$\chi > 0$
Ferromagnet	\iff	$\chi \gg 0$

Kapitel 15

Vorlesung XVII: Quasistatische Näherung

Maxwellgleichungen im Vakuum

$$\operatorname{div}\vec{E} = \frac{\rho}{\epsilon_0} \tag{15.1}$$

$$\operatorname{div}\vec{B} = 0 \tag{15.2}$$

$$rot\vec{E} = -\frac{\partial\vec{B}}{\partial t} \tag{15.3}$$

$$rot\vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \tag{15.4}$$

Maxwellgleichungen im Allgemeinen

$$\operatorname{div} \vec{D} = \rho_{frei} \tag{15.5}$$

$$\operatorname{div}\vec{B} = 0 \tag{15.6}$$

$$\operatorname{rot}\vec{E} = -\frac{\partial\vec{B}}{\partial t}
 \tag{15.7}$$

$$rot \vec{H} = j_{frei}^{\vec{}} + \frac{\partial \vec{D}}{\partial t} \tag{15.8}$$

(15.3) ist das Faraday'sche Induktionsgesetz, (15.4) bzw. (15.8) ist die Maxwell'sche Ergänzung.

15.1 Elektromagnetische Wellen

$$\Delta \vec{E} = \frac{\partial}{\partial t} rot \vec{B} = -\epsilon_0 \mu_0 \frac{\partial^2}{\partial t^2} \vec{E}$$
 (15.9)

Der Laplaceoperator wirkt immer komponentenweise, d.h. $\Delta E_{\alpha} = -\epsilon_0 \mu_0 \frac{\partial^2}{\partial t^2} E_{\alpha}$. Neue Schreibweise "d'Alembertian" beschreibt die **Wellengleichung** (15.9).

$$\Box \vec{E}_{\alpha} = (\Delta_{\vec{r}} - \epsilon_0 \mu_0 \frac{\partial^2}{\partial t^2}) \vec{E}_{\alpha} = 0$$
 (15.10)

Dispersionsgesetz

$$\vec{E}_{\alpha} = \vec{E}_0 \cos(kx - \omega t) \tag{15.11}$$

$$\Longrightarrow \omega^2 = \frac{k^2}{\epsilon_0 \mu_0} \tag{15.12}$$

$$\iff \omega = ck, \quad c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$$
 (15.13)

c ist die konstante Phasengeschwindigkeit der Welle.

Die quasistatische Näherung vernachlässigt die Maxwell'sche Ergänzung, da die Lichtgeschwindigkeit sehr groß und dieser Summand damit sehr klein ist.

15.2 Maxwellgleichungen in der quasistatischen Näherung

Wir vernachlässigen (15.4) und (15.8) und erhalten:

Im Vakuum

$$\operatorname{div}\vec{E} = \frac{\rho}{\epsilon_0} \tag{15.14}$$

$$\operatorname{div}\vec{B} = 0 \tag{15.15}$$

$$\operatorname{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{15.16}$$

$$rot\vec{B} = \mu_0 \vec{j} \tag{15.17}$$

Im Allgemeinen

$$\operatorname{div} \vec{D} = \rho_{frei} \tag{15.18}$$

$$\operatorname{div}\vec{B} = 0 \tag{15.19}$$

$$\operatorname{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{15.20}$$

$$rot \vec{H} = \vec{j_{frei}} \tag{15.21}$$

15.3 Induktion und Gegeninduktion

In blau die elektromagnetische Induktion. Gleichung (15.20) beschreib zwei Effekte. Die zeitliche Änderung des j-ten magentischen Flusses ϕ_j durch die Fläche F_j ist:

$$\phi_j = \int_{F_j} \vec{B} d\vec{r} \tag{15.22}$$

Die elektromotorische Kraft ist die sog. Induktionsspannung U_{ind} und es besteht ein Zusammenhang mit dem Magnetfluss ϕ_i .

$$U_{ind} = \oint_C \vec{E} \cdot d\vec{l} \tag{15.23}$$

$$U_{ind} = -\frac{\partial \phi_j}{\partial t} \tag{15.24}$$

Zur Berechnung der im Leiterkreis C_i -en Spannung:

$$U_{ind}^{j}(t) = -\sum_{m=1}^{n} L_{jm} I_{m}'(t)$$
(15.25)

$$L_{jm} = \frac{\mu_r \mu_0}{4\pi} \oint_{C_j} \oint_{C_m} \frac{d\vec{r} \cdot d\vec{r_0}}{|\vec{r} - \vec{r_0}|} = L_{mj}$$
 (15.26)

Die Induktionskoeffizienten heißen Selbstinduktivität L_{jj} und Gegeninduktivität L_{jm} ; $j \neq m$.

Beispiel zur Selbstinduktion

Es ist F der Querschnitt, N die Anzahl der Windungen der Spule und l die Länge der Spule. $\phi = \vec{B}F$ der Magnetfluss, wenn $\vec{B} = \mu_r \mu_0 n I \vec{e_z}$ die magnetische Indukion ist und I der Gesamtstrom.

$$U_{ind} = -N \frac{\partial \phi_j}{\partial t} = -\mu_r \mu_0 \frac{N^2}{l} F I'$$
 (15.27)

$$L = \mu_r \mu_0 \frac{N^2}{I} F (15.28)$$

Hausaufgabe 9 betrachtet einen idealen Transformator mit Spulen N_i , Strom I_i , Länge l i = 1, 2.

$$\phi_1 N_1 = L_{11} I_1$$

$$\phi_1 = \mu \mu_0 A(r) \frac{N_1}{l} I_1$$

$$A(r) = \pi r^2$$

Roller

Selbstinduktionskoeffizienten:

$$L_{11} = \mu \mu_0 A(r) N_1^2 l^{-1}$$

Gegeninduktivität:

$$\phi_j N_j = \sum_{m \neq j} L_{jm} I_m$$

ROLLER Elektrodynamik

Kapitel 16

Vorlesung XVIII: Maxwell-Gleichungen

Vollständigen Maxwell'schen Gleichungen 16.1

Im Vakuum

$$\operatorname{div}\vec{E} = \frac{\rho}{\epsilon_0} \tag{16.1}$$

$$\operatorname{div}\vec{B} = 0 \tag{16.2}$$

$$rot\vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{16.3}$$

$$\operatorname{rot}\vec{B} = \mu_0 \vec{j} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$
(16.4)

Im Allgemeinen

$$\operatorname{div} \vec{D} = \rho_{frei} \tag{16.5}$$

$$\operatorname{div}\vec{B} = 0 \tag{16.6}$$

$$\operatorname{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{16.7}$$

$$rot \vec{H} = j_{frei} + \frac{\partial \vec{D}}{\partial t} \tag{16.8}$$

Ladungserhaltungssatz

$$\frac{\partial}{\partial t}\rho + \nabla \cdot \vec{j}(\vec{r}) = 0$$

$$\frac{\partial}{\partial t}\rho + \operatorname{div}\vec{j}(\vec{r}) = 0$$
(16.9)

$$\frac{\partial}{\partial t}\rho + \operatorname{div}\vec{j}(\vec{r}) = 0 \tag{16.10}$$

Materialgleichungen

Im Vakuum verschwinden die Polarisierung \vec{P} und die Magnetisierung \vec{M} .

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \epsilon_0 \vec{E} \tag{16.11}$$

$$\vec{B} = \mu_0 \vec{H} + \vec{M} = \mu \mu_0 \vec{H} \tag{16.12}$$

16.2 Elektromagnetische Potentiale

Das elektromagnetischen Potentiale werden in Verträglichkeit mit den homogenen Gleichungen (16.6) und (16.7) eingeführt.

Vektorpotential

$$\vec{B}(\vec{r},t) = \text{rot}\vec{A}(\vec{r},t) \tag{16.13}$$

Skalarpotential

$$\vec{E}(\vec{r},t) = -\nabla\varphi - \frac{\partial\vec{A}}{\partial t} \tag{16.14}$$

Ist das Vektorpotential zeitunabhängig, so stimmt das Skalarpotential mit dem elektrostatischen Potential überein.

Die Poissongleichung nimmt dann folgene Gestalt an:

$$\Delta \varphi + \operatorname{div} \frac{\partial \vec{A}}{\partial t} = -\frac{\rho}{\epsilon_0} \tag{16.15}$$

und die magnetische Induktion $\operatorname{rot} \vec{B}$ wird zu:

$$\Box \vec{A} - \nabla (\operatorname{div} \vec{A} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \varphi) = -\mu \vec{j}(\vec{r})$$
 (16.16)

16.3 Eichinvarianz

Die beiden Gleichungen definieren eine Eichtransformation.

$$\varphi' = \varphi - \frac{\partial \chi}{\partial t} \tag{16.17}$$

$$\vec{A}' = \vec{A} + \text{grad}\chi \tag{16.18}$$

Wir betrachten die Lorenz-Eichung, sie ist invariant unter Lorentztransformation

$$\Box \varphi' = -\frac{\rho}{\epsilon_0} \tag{16.19}$$

$$\Box \vec{A}' = -\mu_0 \vec{j}(\vec{r}) \tag{16.20}$$

$$\Box = (\Delta_{\vec{r}} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}) \tag{16.21}$$

$$\Box \chi = -(\nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \varphi) \text{ d'Alembertian}$$
 (16.22)

Wir betrachten die Coulomb-Eichung:

$$\Delta \chi = -\nabla \vec{A} \tag{16.23}$$

$$\operatorname{div} \vec{A}' = 0 \tag{16.24}$$

Diese liefert für Gleichung (16.15) die Poissongleichung mit der Green'schen Funktion als Lösung.

Die Gleichung für das Vektorpotential (16.16) ändert sich durch einsetzen der Green'schen Funktion zu:

$$\Box \vec{A} = -\mu_0 \vec{j}(\vec{r}) - \frac{\mu_0}{4\pi} \nabla \int_V \frac{\nabla \cdot \vec{j}(\vec{r_0}, t)}{|\vec{r} - \vec{r_0}|} d\vec{r_0}$$
 (16.25)

$$\Box \vec{A} = -\mu_0 \vec{j}_t \tag{16.26}$$

$$\Box \vec{A} = 0$$
, falls das Gebiet quellenfrei ist. (16.27)

Kapitel 17

Vorlesung XIX: Feldenergie und Feldimpuls

17.1 Feldenergie

Leistung und Arbeit

Kraft F

Kraftdichte \vec{f}

$$F = q(\vec{E} + \vec{v} \times \vec{B}) \tag{17.1}$$

$$\vec{f}(\vec{r},t) = \rho(\vec{r},t)[\vec{E} + \vec{v} \times \vec{B}] \tag{17.2}$$

Leistung P

Arbeit W, Leistungsdichte (17.4)

$$P = q\vec{F} \cdot \vec{v} = q\vec{v} \cdot \vec{E} \tag{17.3}$$

$$\vec{f}(\vec{r},t) \cdot \vec{v}(\vec{r},t) = \rho(\vec{r},t)\vec{v} \cdot \vec{E} = \vec{j} \cdot \vec{E}$$
(17.4)

Der magnetische Anteil der Lorentz-Kraft steht senkrecht zu \vec{v} und leistet keinen Beitrag.

Gesamtleistung

$$\frac{dW}{dt} = \int_{V} \vec{j} \cdot \vec{E} d\vec{r} \tag{17.5}$$

Energiestromdichte \vec{S} , Energiedichte w

$$\vec{S} = \vec{E} \times \vec{H} \tag{17.6}$$

$$w = \frac{1}{2}[\vec{H} \cdot \vec{B} + \vec{E} \cdot \vec{D}] \tag{17.7}$$

Feldenergie und mechanische Energie

$$\frac{dW^{Feld}}{dt} = \int_{V} \frac{\partial w}{\partial t} d\vec{r} \tag{17.8}$$

$$\frac{dW^{mech}}{dt} = \int_{V} \vec{j} \cdot \vec{E} d\vec{r}$$
 (17.9)

Energiebilanz

In Differential form und in Integral form.

$$\frac{d}{dt}\left(W^{(Feld)} + W^{(mech)}\right) = -\oint_{\partial V} \vec{S}d\vec{s}$$
 (17.10)

$$\frac{\partial}{\partial t} \frac{1}{2} [\vec{E} \cdot \vec{D} + \vec{H} \cdot \vec{B}] + \operatorname{div}(\vec{E} \times \vec{H}) = -\vec{j} \cdot \vec{E}$$
 (17.11)

Energie im Vakuum

$$W_{Vakuum} = \epsilon_0 \frac{E^2}{2} + \frac{1}{\mu_0} \frac{B^2}{2} \tag{17.12}$$

17.2 Feldimpuls

Mechanischer Impuls

$$\frac{d}{dt}\vec{P}_{mech} = \int_{V} (\rho \vec{E} + \vec{j} \times \vec{B}) d\vec{r}$$
 (17.13)

Elektromagnetischer Impuls, Feldimpuls

$$\vec{P}_{Feld} = \int_{V} (\vec{D} \times \vec{B}) d\vec{r} \tag{17.14}$$

Maxwell'scher Spannungstensor

$$T_{ij} = E_i D_j + H_i B_j - \frac{1}{2} \delta_{ij} (\vec{E} \cdot \vec{D} + \vec{H} \cdot \vec{B})$$
 (17.15)

$$T_{ij} = \epsilon_r \epsilon_0 E_i E_j + \frac{1}{\mu_r \mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\epsilon_r \epsilon_0 E^2 + \frac{1}{\mu_r \mu_0} B^2 \right)$$
 (17.16)

Gesamtimpuls

$$\frac{d}{dt}(\vec{P}_{mech} + \vec{P}_{Feld})_i = \int_V \operatorname{div} \vec{T}_i \, d\vec{r}$$
 (17.17)

$$\frac{d}{dt}\vec{P}_{gesamt} = \oint_{\partial V} \vec{T} \ d\vec{s} \tag{17.18}$$

17.3 Drehimpuls

Mechanischer Drehimpuls

$$\frac{d}{dt}\vec{L}_{mech} = \int_{V} \vec{r} \times (\rho \vec{E} + \vec{j} \times \vec{B}) d\vec{r}$$
 (17.19)

Felddrehimpuls

$$\vec{L}_{Feld} = \int_{V} \vec{r} \times (\vec{D} \times \vec{B}) d\vec{r}$$
 (17.20)

Tensor

Stellt die Flussdichte des Drehmoments dar.

$$M_{ij} = \sum_{kl} \varepsilon_{ikl} \ x_k \ T_{lj} \tag{17.21}$$

Gesamtdrehimpuls

$$\frac{d}{dt}(\vec{L}_{mech} + \vec{L}_{Feld}) = \int_{V} \operatorname{div} \vec{M} d\vec{r}$$
 (17.22)

$$\frac{d}{dt}\vec{L}_{gesamt} = \oint_{\partial V} \vec{M}d\vec{s} \tag{17.23}$$

Kapitel 18

Vorlesung XX: Wellen

18.1 Homogene Wellengleichung

Aus den allgemeinen Maxwell-Gleichungen folgt eine homogene Wellengleichung im Vakuum und im Medium.

$$\Box \vec{E} = 0 \tag{18.1}$$

Für eine beliebige Funktion ψ haben wir eine allgemeine Lösung der Wellengleichung. Dabei ist u die Lichtgeschwindigkeit im Medium. (18.4)

$$\frac{1}{u^2} \frac{\partial^2}{\partial t^2} \psi - \Delta \psi = 0 \tag{18.2}$$

$$u = \frac{1}{\sqrt{\mu \epsilon \mu_0 \epsilon_0}} \tag{18.3}$$

$$\psi(x,t) = f_{+}(x - ut) + f_{-}(x + ut)$$
(18.4)

Das Problem in 1-D.

$$\frac{1}{u^2}\frac{\partial^2}{\partial t^2}(r\psi) - \frac{\partial^2(r\psi)}{\partial r^2} = 0 \tag{18.5}$$

$$\psi(r) = \frac{1}{r} \left[f_{-}(r - ut) + f_{+}(r + ut) \right]$$
 (18.6)

$$\operatorname{div}\vec{E} = (\vec{E}_0 \cdot \vec{r}) \frac{1}{r} \frac{d}{dr} \left[\frac{1}{r} e^{i(kr - \omega t)} \right]$$
 (18.7)

Gleichung (18.7) ergibt sich nach den Überlegungen in Abschnitt (18.3)

ROLLER ELEKTRODYNAMIK

Ebene monochromatische Welle 18.2

$$\psi(\vec{r},t) = a(\vec{r})e^{i\omega t} \tag{18.8}$$

$$f_{-}(x - ct) = \psi_0 e^{i(kx - \omega t)}$$

$$= \psi_0 e^{ik(x - \frac{\omega}{k}t)}$$

$$(18.9)$$

$$(18.10)$$

$$=\psi_0 e^{ik(x-\frac{\omega}{k}t)} \tag{18.10}$$

$$\psi_{eben} = \psi_{-}e^{ik(x-\frac{\omega}{k}t)} + \psi_{+}e^{ik(x+\frac{\omega}{k}t)}$$
(18.11)

Ebene elektromagnetische Welle 18.3

$$\vec{E}(\vec{r},t) = \vec{E}_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)} \tag{18.12}$$

$$\vec{B}(\vec{r},t) = \vec{B}_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)} \tag{18.13}$$

Werkzeug für die Maxwell-Gleichungen

$$\operatorname{rot}\vec{E} = i\vec{k} \times \vec{E}_0 e^{i(k_x x + k_y y + k_z z)} e^{i\omega t}$$
(18.14)

$$\operatorname{div}\vec{E} = i\vec{k} \cdot \vec{E}_0 e^{i(k_x x + k_y y + k_z z)} e^{i\omega t}$$
(18.15)

Nach den Maxwellgleichungen für ${\rm div}\vec{E}, {\rm div}\vec{B}$ und ${\rm rot}\vec{E}$ gilt dann:

$$\vec{k} \cdot \vec{B} = 0 \tag{18.16}$$

$$\vec{k} \cdot \vec{E} = 0 \tag{18.17}$$

$$\vec{k} \times \vec{E}_0 = \omega \vec{B}_0 \tag{18.18}$$

Also stehen die Vektoren $\vec{E}, \vec{B}, \vec{k}$ senkrecht aufeinander.

18.4 Polarisierung

Wir gehen immer noch von der Darstellung aus dem vorigen Abschnitt aus. Betrachte Welle in z-Richtung, dann liegt \vec{E} in der x-y Ebene.

$$E_x = |E_{0,x}|\cos(kz - \omega t + \Phi) \tag{18.19}$$

$$E_y = |E_{0,y}|\cos(kz - \omega t + \Phi + \delta) \tag{18.20}$$

Eine allgemeine Welle ist elliptisch polarisiert.

Man spricht von linearer Polarisierung, falls $Spur(A) = \infty$, also $sin\delta = 0$, $\delta = 0$. Von

zirkulärer Polarisierung, falls a=b, also $\cos\delta=0,\ \delta=+-\frac{\pi}{2},\ \sin^2\delta=1.$ Das \vec{E} -Feld durchläuft dann einen Kreis.

Kapitel 19

Vorlesung XXI: Green'sche Funktion der Wellengleichung

19.1 Greenfunktion mit der Lorenz-Eichung

$$\Box \varphi = \frac{\rho}{\epsilon_0} \tag{19.1}$$

$$\Box \vec{A} = \mu_0 \vec{j} \tag{19.2}$$

$$0 = div\vec{A} + \frac{1}{c^2}\frac{\partial}{\partial t} \tag{19.3}$$

Partikuläre Lösung einer inhomogenen Wellengleichung

$$\Box f(\vec{r},t) = q(\vec{r},t)$$

ist im ganzen Raum durch die Greenfunktion $G(\vec{r},t)$ gegeben.

$$f(\vec{r},t) = \int d\vec{r} dt_0 G(\vec{r},t;\vec{r_0},t_0) g(\vec{r_0},t_0)$$
$$\Box G(\vec{r},t;\vec{r_0},t_0) = \delta(\vec{r}-\vec{r_0})\delta(t-t_0)$$

Die Lösung im dreidimensionalen (oben) und zweidimensionalen (unten):

$$G(\vec{r},t) = \frac{1}{4\pi} \frac{1}{r} \delta(\frac{r}{u} - t)$$
$$= \frac{1}{4\pi} \frac{u}{r} \delta(r - ut)$$
$$G(\vec{r},t) = \frac{1}{\sqrt{u^2 t^2 - r^2}}$$

 $_{\text{Kapitel}} 20$

Vorlesung XXI: Wellen Strahlung

20.1 Strahlung mit der Lorenz-Eichung

Es gelten (19.1) (19.2) (19.3) und $\rho(\vec{r},t)$, $\vec{j}(\vec{r},t)$ sind explizit zeitabhängig. Mit u=c im Vakuum und $u=\frac{c}{\sqrt{\mu\epsilon}}$ im Medium ist eine Lösung

$$G(\vec{r}, t; \vec{r_0}, t_0) = \frac{1}{4\pi} \frac{1}{|\vec{r} - \vec{r_0}|} \delta(t_0 - t_{ret}).$$

Wobei $t_{ret} = t - \frac{|\vec{r} - \vec{r_0}|}{u}$. t_{ret} ist die Zeit t minus die Zeit, die die Welle braucht um sich von \vec{r} nach $\vec{r_0}$ zu bewegen.

Die expliziten Lösungen zu (19.1) und (19.2) sind

$$\varphi(\vec{r},t) = \frac{1}{4\pi\epsilon\epsilon_0} \int \frac{\rho(\vec{r_0}, t_{ret})}{|\vec{r} - \vec{r_0}|} d\vec{r_0}$$
(20.1)

$$\vec{A}(\vec{r},t) = \frac{\mu\mu_0}{4\pi} \int \frac{\vec{j}(\vec{r_0}, t_{ret})}{|\vec{r} - \vec{r_0}|} d\vec{r_0}$$
 (20.2)

(20.3)

20.2 Strahlung durch oszillierende Quellen

Das Vektorfeld unter Schwingung, mit Wellenzahl $k = \frac{\omega}{u}$

$$A_{\omega}(\vec{r}) = \int \frac{\vec{j}_{\omega}(\vec{r_0})e^{ik|\vec{r} - \vec{r_0}|}}{|\vec{r} - \vec{r_0}|} d\vec{r_0}.$$

Aufteilung in Bestandteile...

Elektrische Dipolstrahlung

$$A(\vec{r}) = \frac{\mu\mu_0}{4\pi} \frac{e^{ikr}}{r} \int_{\Omega} \vec{j}_{\omega}(\vec{r_0}) d\vec{r_0}.$$

Diese lässt sich mithilfe der Ladungsdichte ausdrücken

$$A(\vec{r}) = -i\omega \frac{\mu\mu_0}{4\pi} \frac{e^{ikr}}{r} \int_{\Omega} \vec{r_0} \rho_{\omega}(\vec{r_0}) d\vec{r_0}.$$
$$= -i\omega \frac{\mu\mu_0}{4\pi} \frac{e^{ikr}}{r} \vec{P_{\omega}}$$

E-Feld und B-Feld siehe VL23 auf Seite 2.

20.3 Felder in der Strahlungszone

Ungleichung $\frac{k^2}{r} \gg \frac{k}{r^2} \gg \frac{1}{r^3}$ VL 23 Seite 4

20.4 Felder in der Nahzone

Ungleichung $\frac{1}{r^3}\gg\frac{k}{r^2}\gg\frac{k^2}{r}$

$$\vec{E} \approx \frac{1}{4\pi\epsilon\epsilon_0} \frac{3\vec{n}(\vec{P} \cdot \vec{n}) - \vec{P}}{r^3}$$

$$\vec{B} \approx iu \frac{\mu\mu_0}{4\pi} \frac{k}{r^2} \vec{n} \times \vec{P}$$

20.5 Elektrische Quadrupol- und magnetische Dipolstrahlung

Magnetische Dipolstrahlung

20.6 Bewegte Ladungen

 $\vec{R}(t)$ bewegte Koordinate der Ladung und $\vec{V}(t)$ Geschwindigkeit der Ladung. Ladungsdichte und Stromdichte:

$$\rho(\vec{r},t) = q\delta(-\vec{R}(t)),$$

$$\vec{j}(\vec{r},t) = q\vec{V}(t)\delta(\vec{r} - \vec{R}(t))$$

Liénard-Wiechert-Potential

Lösen der Integral für φ und \vec{A}

$$\varphi(\vec{r},t) = \frac{q}{4\pi\epsilon\epsilon_0 |\vec{D}_{ret}|\kappa_{ret}}$$
$$\vec{A}(\vec{r},t) = \frac{q\mu\mu_0 \vec{V}(t_{ret})}{4\pi |\vec{D}_{ret}|\kappa_{ret}}$$
$$\vec{A}(\vec{r},t) = \frac{1}{u^2} \vec{V}(t_{ret})\varphi(\vec{r},t_{ret})$$

Wobei

$$\vec{D}_{ret} = \vec{r} - \vec{R}(t_{ret})$$
 retardierter Abstandsvektor
$$\vec{n}_{ret} = \frac{\vec{D}_{ret}}{|\vec{D}_{ret}|}$$
 reatidierter Richtungsvektor
$$\kappa_{ret} = 1 - \vec{n}_{ret} \cdot \vec{V}_{ret}$$

Einsetzen einer ruhenden Ladung liefert erwartungsgemäß das Coulomd-Potential. Für eine gleichförmig bewegte Punktladung mit $\vec{V}={\rm const.}$ und $\vec{R}(t)=\vec{R}_0+\vec{V}\cdot t$

$$\begin{split} \varphi(\vec{r},t) &= \frac{q}{4\pi\epsilon\epsilon_0 |\vec{r}-\vec{R}(t)|} \frac{1}{\sqrt{1-\frac{V^2}{u^2}sin^2\alpha}} \\ \vec{A}(\vec{r},t) &= \frac{1}{u^2} \vec{V} \varphi(\vec{r},t) \end{split}$$

20.7 Elektromagnetisch Felder

Berechne das \vec{E} -Feld mit

$$\vec{E} = -\nabla\varphi - \frac{\partial}{\partial t}\vec{A}$$

...VL 23 Seite 15

Berechne das \vec{B} -Feld mit

$$\vec{B} = \text{rot}\vec{A}$$

$$\vec{B} = \frac{1}{u}\vec{n}_{ret} \times \vec{E}$$

Poynting-vektor in der Strahlungszone

$$\begin{split} \vec{S} &= \vec{E} \times \vec{H} \\ \vec{S} &= \frac{1}{u\mu\mu_0} \left[\vec{n}_{ret} E^2 - \left(\vec{n}_{ret} \times \vec{E} \right) \vec{E} \right] \end{split}$$

Kapitel 21

Vorlesung XXVII: Teilchen im elektromagnetischen Feld

21.1 Lagrangefunktion

Die Lagrangefunktion einer Punktladung

$$\begin{split} L &= -mc^2 \sqrt{1 - \frac{v^2}{c^2}} - q\varphi + q\vec{v}\vec{A} \\ A^i &= \left(\frac{\varphi}{c}, \vec{A}\right) \end{split}$$

Die kanonisch konjugierten Impulse:

$$P_{\alpha} = \frac{\partial L}{\partial v_{\alpha}}$$

$$= \frac{m v_{alpha}}{\sqrt{1 - \frac{v^2}{c^2}}} + q a_{\alpha}$$

Die Hamiltonfunktion mit Näherung \approx für kleine kanonische Impulse.

ROLLER ELEKTRODYNAMIK

$$\begin{split} H &= \vec{P} \cdot \vec{v} - L \\ &= \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} + q\varphi \\ &= \dots \\ &= \sqrt{m^2c^4 + c^2\left(\vec{P} - q\vec{A}\right)^2} + q\varphi \\ H &\approx mc^2 + \frac{1}{2m}\left(\vec{P} - q\vec{A}\right)^2 + q\varphi \end{split}$$

Feldtensor

Es gilt $F_{ki} = A_{k,i} - A_{i,k}$

$$\frac{dp_k}{ds} = qF_{ki}u^i$$

Kovariant:

$$F_{ik} = \begin{pmatrix} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ -\frac{E_x}{c} & 0 & -B_z & B_y \\ -\frac{E_y}{c} & B_z & 0 & -B_x \\ -\frac{E_z}{c} & -B_y & B_x & 0 \end{pmatrix}$$

Kontravariant:

$$F^{ik} = \begin{pmatrix} 0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\ \frac{E_x}{c} & 0 & -B_z & B_y \\ \frac{E_y}{c} & B_z & 0 & -B_x \\ \frac{E_z}{c} & -B_y & B_x & 0 \end{pmatrix}$$

Transformationsregel für Felder

$$E'_{x} = E_{x}$$

$$E'_{y} = \frac{E_{y} - VB_{z}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$E'_{z} = \frac{E_{z} + VB_{y}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$B'_{x} = B_{x}$$

$$B'_{y} = \frac{B_{y} + V\frac{E_{z}}{c^{2}}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$B'_{z} = \frac{B_{z} - V\frac{E_{y}}{c^{2}}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

Feldinvarianten

Ein Skalar S und ein Pseudoskalar P

$$S = F_{ik}F^{ik}$$
$$P = e^{ijkl}F_{ij}F^{kl}$$

Invariante I_1 und I_2 :

$$I_1 = B^2 - \frac{E^2}{c^2}$$

$$\epsilon_0 I_1 = \vec{B} \cdot \vec{H} - \vec{E} \cdot \vec{D}$$

$$I_2 = \vec{B} \cdot \vec{E}$$

Folgerungen:

- (1) Falls $\vec{B} \cdot \vec{E} = 0$ gilt das in allen Inertialsystemen.
- (2) Falls $\vec{B} \cdot \vec{E} > (<)0$, so gilt das in allen Inertialsystemen.
- (3) Falls $|\vec{B}| < (>)c^{-1}\vec{E}$, so gilt das in allen Inertialsystemen.

ROLLER ELEKTRODYNAMIK

21.2 Maxwellgleichungen in der Viererdarstellung

$$F^{ik} = \begin{pmatrix} 0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\ \frac{E_x}{c} & 0 & -B_z & B_y \\ \frac{E_y}{c} & B_z & 0 & -B_x \\ \frac{E_z}{c} & -B_y & B_x & 0 \end{pmatrix}$$

Mit der Wahl i=1, k=2, m=3 folgt aus dem Tensor. Vor dem Komma steht die Position des Eintrags (0,1,2,3), hinterm Komma die Koordinate nach der abgeleitet wird.

$$F_{12,3} + F_{23,1} + F_{13,2} = 0$$

$$\longleftrightarrow$$

$$\operatorname{div} \vec{B} = 0$$