Università degli studi di Verona

Soluzioni scheda 2

VR455961 Davide Bragantini VR443470 Andrea Valentini

maggio 2023

Indice

1	Sol	Soluzione esercizio 1 1.1 Soluzione a															3								
	1.1	Soluzione	a																						3
	1.2	Soluzione	b																						4
2	Soluzione esercizio 2															5									
	2.1	Soluzione	a																						5
	2.2	Soluzione	b																						6
3	Solı	Soluzione esercizio 3															8								
	3.1	Soluzione	a																						8
	3.2	Soluzione	b																						10
	3.3	Soluzione	c																						10
	3.4	Soluzione	d																						10
	3.5	Soluzione	e																						10
	3.6	Soluzione	f																						11
4	Sol	ızione ese	rc	izi	0	4																			11

1 Soluzione esercizio 1

Sia A_k la seguente matrice reale:

$$A_k = \begin{pmatrix} 2 & 2 & 2k \\ k - 1 & k & k^2 \\ -k & -k & 0 \end{pmatrix}$$

1.1 Soluzione a

Si determini per quali valori di $k \in \mathbb{R}$ la matrice A_k ammette inversa.

Una matrice quadrata a coefficienti in un campo dell'insieme \mathbb{K} è invertibile se e solo se il suo determinante è diverso da zero. Quindi, si procede con il calcolo del determinante della matrice A_k . Visto che si tratta di una matrice di ordine 3, si utilizza la regola di Sarrus per risolvere il determinante. Si duplica la matrice:

Si sommano i prodotti lungo le prime tre diagonali principali:

1° diag : $(2 \cdot k \cdot 0) = 0$

 2° diag : $(2 \cdot k^2 \cdot -k) = 2k^2 \cdot -k = -2k^3$

3° diag : $[2k \cdot (k-1) \cdot -k] = 2k \cdot (-k^2 + k) = -2k^3 + 2k^2$

Somma : $0 + (-2k^3) + (-2k^3 + 2k^2) = -4k^3 + 2k^2$

E si esegue lo stesso calcolo considerando le tre diagonali opposte:

1° diag opp : $(2k \cdot k \cdot -k) = -2k^3$

 $2^{\circ} \text{ diag opp} : [2 \cdot (k-1) \cdot 0] = 0$

3° diag opp : $(2 \cdot k^2 \cdot -k) = -2k^3$

Somma : $-2k^3 + 0 + (-2k^3) = -4k^3$

Si esegue la sottrazione dei due risultati ottenuti mantenendo a sinistra quello della diagonale principale:

$$(-4k^3 + 2k^2) - (-4k^3) = 2k^2$$

Quindi il determinante è:

$$\det\left(A_k\right) = 2k^2$$

La matrice A_k ammette inversa per qualsiasi valore reale di k, poiché non esiste nessun valore (in \mathbb{R}) in grado di annullare l'espressione $2k^2$.

1.2 Soluzione b

Sia $k\in\mathbb{R}$ tale che A_k ammette inversa. Si calcoli A_k^{-1} usando la formula $A_k^{-1}=\frac{1}{\det(A_k)}A_k^*$.

Per calcolare la matrice inversa si calcolano prima i complementi algebrici Com:

$$\operatorname{Com}(A_{11}) = (-1)^{1+1} \cdot C_{11} = (-1)^{2} \cdot \det \begin{pmatrix} k & k^{2} \\ -k & 0 \end{pmatrix} = 1 \cdot \begin{bmatrix} 0 - (-k^{3}) \end{bmatrix} = k^{3}$$

$$\operatorname{Com}(A_{21}) = (-1)^{2+1} \cdot C_{21} = (-1)^{3} \cdot \det \begin{pmatrix} 2 & 2k \\ -k & 0 \end{pmatrix} = -1 \cdot \begin{bmatrix} 0 - (-2k^{2}) \end{bmatrix} = -2k^{2}$$

$$\operatorname{Com}(A_{31}) = (-1)^{3+1} \cdot C_{31} = (-1)^{4} \cdot \det \begin{pmatrix} 2 & 2k \\ k & k^{2} \end{pmatrix} = 1 \cdot (2k^{2} - 2k^{2}) = 0$$

$$\operatorname{Com}(A_{12}) = (-1)^{1+2} \cdot C_{12} = (-1)^{3} \cdot \det \begin{pmatrix} k - 1 & k^{2} \\ -k & 0 \end{pmatrix} = -1 \cdot \begin{bmatrix} 0 - (-k^{3}) \end{bmatrix} = -k^{3}$$

$$\operatorname{Com}(A_{22}) = (-1)^{2+2} \cdot C_{22} = (-1)^{4} \cdot \det \begin{pmatrix} 2 & 2k \\ -k & 0 \end{pmatrix} = 1 \cdot \begin{bmatrix} 0 - (-2k^{2}) \end{bmatrix} = 2k^{2}$$

$$\operatorname{Com}(A_{32}) = (-1)^{3+2} \cdot C_{32} = (-1)^{5} \cdot \det \begin{pmatrix} 2 & 2k \\ k - 1 & k^{2} \end{pmatrix} = -1 \cdot \begin{bmatrix} 2k^{2} - (2k^{2} - 2k) \end{bmatrix} = -2k$$

$$\operatorname{Com}(A_{13}) = (-1)^{1+3} \cdot C_{13} = (-1)^{4} \cdot \det \begin{pmatrix} k - 1 & k \\ -k & -k \end{pmatrix} = 1 \cdot \begin{bmatrix} -k^{2} + k - (-k^{2}) \end{bmatrix} = k$$

$$\operatorname{Com}(A_{23}) = (-1)^{2+3} \cdot C_{23} = (-1)^{5} \cdot \det \begin{pmatrix} 2 & 2 \\ -k & -k \end{pmatrix} = -1 \cdot [-2k - (-2k)] = 0$$

$$\operatorname{Com}(A_{33}) = (-1)^{3+3} \cdot C_{33} = (-1)^{6} \cdot \det \begin{pmatrix} 2 & 2 \\ -k & -k \end{pmatrix} = 1 \cdot [2k - (2k - 2)] = -2$$

Con i complementi algebrici si costruisce la matrice e si esegue la trasposta per ottenere A_k^* :

$$A_k^* = \begin{pmatrix} k^3 & -k^3 & k \\ -2k^2 & 2k^2 & 0 \\ 0 & -2k & -2 \end{pmatrix}^T = \begin{pmatrix} k^3 & -2k^2 & 0 \\ -k^3 & 2k^2 & -2k \\ k & 0 & -2 \end{pmatrix}$$

Infine, si applica la formula:

$$A_k^{-1} = \frac{1}{\det(A_k)} A_k^* = \frac{1}{2k^2} \begin{pmatrix} k^3 & -2k^2 & 0\\ -k^3 & 2k^2 & -2k\\ k & 0 & -2 \end{pmatrix} = \begin{pmatrix} \frac{k}{2} & -1 & 0\\ -\frac{k}{2} & 1 & -\frac{1}{k}\\ \frac{1}{2k} & 0 & -\frac{1}{k^2} \end{pmatrix}$$

2 Soluzione esercizio 2

Nello spazio vettoriale $\mathbb{R}^{\mathbb{R}}$ definito nell'Esempio 5.2(2), si consideri il seguente sottoinsieme per ogni $t \in \mathbb{R}$:

$$\mathscr{S}_t = \left\{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = t \right\}$$

2.1 Soluzione a

Si trovino i valori di t per cui l'insieme \mathscr{S}_t è un sottospazio di $\mathbb{R}^{\mathbb{R}}$.

Per verificare quali valori di t rispettano il teorema di caratterizzazione dei sottospazi vettoriali, si possono effettuare alcune prove banali:

• Assumendo che t = 1:

$$\mathscr{S}_{1} = \left\{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = 1 \right\}$$

E trovando due funzioni che appartengano all'insieme:

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = \begin{cases} 1 & x = 0 \\ 4 & x \neq 0 \end{cases}$

$$g: \mathbb{R} \to \mathbb{R}$$
 $g(x) = \begin{cases} 1 & x = 0 \\ 5 & x \neq 0 \end{cases}$

Si esegue la verifica delle due proprietà:

Proprietà a: $(f+g)(0) = f(0) + g(0) = 1 + 1 = 2 \neq 0$

Proprietà b: $\lambda f(x) = \lambda f(0) = \lambda 1 \neq 0$

Le proprietà non sono rispettate, quindi con il valore t=1 l'insieme \mathscr{S}_1 non è un sottospazio di $\mathbb{R}^{\mathbb{R}}$.

• Assumendo che t = -1:

$$\mathscr{S}_{-1} = \left\{ f \in \mathbb{R}^{\mathbb{R}} \mid f\left(0\right) = -1 \right\}$$

E trovando due funzioni che appartengano all'insieme:

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = \begin{cases} -1 & x = 0 \\ 8 & x \neq 0 \end{cases}$

$$g: \mathbb{R} \to \mathbb{R}$$
 $g(x) = \begin{cases} -1 & x = 0 \\ 10 & x \neq 0 \end{cases}$

Si esegue la verifica delle due proprietà:

Proprietà a: $(f+g)(0) = f(0) + g(0) = -1 - 1 = -2 \neq 0$

Proprietà b: $\lambda f(x) = \lambda f(0) = \lambda - 1 \neq 0$

Le proprietà non sono rispettate, quindi con il valore t=-1 l'insieme \mathscr{S}_{-1} non è un sottospazio di $\mathbb{R}^{\mathbb{R}}$.

• Assumendo che t = 0:

$$\mathscr{S}_{0} = \left\{ f \in \mathbb{R}^{\mathbb{R}} \mid f\left(0\right) = 0 \right\}$$

E trovando due funzioni che appartengano all'insieme:

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$

$$g: \mathbb{R} \to \mathbb{R}$$
 $g(x) = \begin{cases} 0 & x = 0 \\ 2 & x \neq 0 \end{cases}$

Si esegue la verifica delle due proprietà:

Proprietà a : (f+g)(0) = f(0) + g(0) = 0 + 0 = 0 = 0

Proprietà b : $\lambda f(x) = \lambda f(0) = \lambda 0 = 0$

Le proprietà sono rispettate, quindi con il valore t=0 l'insieme \mathscr{S}_0 è un sottospazio di $\mathbb{R}^{\mathbb{R}}$.

È possibile concludere le prove con i valori t e giungere ad una conclusione. L'insieme \mathscr{S}_t è un sottospazio di $\mathbb{R}^{\mathbb{R}}$ se e solo se t ha valore 0. Negli altri casi l'insieme non rispetta il teorema di caratterizzazione dei sottospazi vettoriali. Infatti, andando ad aumentare positivamente o negativamente la t, la proprietà a avrà come risultato un valore sempre diverso da zero.

2.2 Soluzione b

Sia \mathscr{U} il sottospazio di $\mathbb{R}^{\mathbb{R}}$ generato da f e g dove $f(x) = \sin(x)$ e $g(x) = \cos(x)$ per ogni $x \in \mathbb{R}$. Si trovi una base dell'intersezione $\mathscr{U} \cap \mathscr{S}_0$.

L'insieme \mathcal{S}_0 è così definito:

$$\mathscr{S}_0 = \left\{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = 0 \right\}$$

Per evitare errori, una funzione che appartiene a questo insieme verrà indicata con l'apice, quindi $f' \in \mathscr{S}_0$. Si prende una qualsiasi funzione dall'insieme \mathscr{S}_0 così definita:

$$f' \in \mathscr{S}_0$$
 $f' : \mathbb{R} \to \mathbb{R}$ $f'(x) = \begin{cases} 0 & x = 0 \\ 4 & x \neq 0 \end{cases}$

Le funzioni generatori del sottospazio $\mathscr U$ sono:

$$f \in \mathscr{U} \qquad f(x) = \sin(x)$$

$$g \in \mathscr{U} \qquad g\left(x\right) = \cos\left(x\right)$$

Si sceglie un valore comodo e si formano due insiemi:

$$x = 0 \implies v_1 = \{f'(0), f(0), g(0)\} = \{0, 0, 1\}$$

$$x = 90 \implies v_2 = \{f'(90), f(90), g(90)\} = \{4, 1, 0\}$$

Adesso è necessario dimostrare che $\{v_1, v_2\}$ è un sistema di generatori, cioè è necessario stabilire se per ogni $\mathbf{w} = (w_1, w_2, w_3) \in \mathcal{U} \cap \mathcal{S}_0$ esistono due scalari $a_1, a_2 \in \mathbb{R}$ tali che:

$$a_1v_1 + a_2v_2 = \mathbf{w} \xrightarrow{\text{sostituzione}} a_1(0,0,1) + a_2(4,1,0) = (w_1, w_2, w_3)$$

$$(0,0,a_1) + (4a_2, a_2, 0) = (w_1, w_2, w_3)$$

$$(4a_2, a_2, a_1) = (w_1, w_2, w_3)$$

Il relativo sistema lineare:

$$\begin{cases} 4a_2 = w_1 \\ a_2 = w_2 \\ a_1 = w_3 \end{cases}$$

I vettori v_1, v_2 sono un sistema di generatori se e solo se il sistema ammette soluzione. Per farlo, si utilizza il teorema di Rouché Capelli e per calcolare il rango, necessario per il teorema, si utilizza l'Eliminazione di Gauss così da ottenere una forma matriciale ridotta:

$$\begin{pmatrix}
4 & w_1 \\
1 & w_2 \\
1 & w_3
\end{pmatrix} \xrightarrow{E_{1,3}(-\frac{1}{4})} \begin{pmatrix}
4 & w_1 \\
1 & w_2 \\
0 & w_3 - \frac{w_1}{4}
\end{pmatrix} \xrightarrow{E_{1,2}(-\frac{1}{4})} \begin{pmatrix}
4 & w_1 \\
0 & w_2 - \frac{w_1}{4} \\
0 & w_3 - \frac{w_1}{4}
\end{pmatrix} \longrightarrow \begin{pmatrix}
4 & w_1 \\
0 & \frac{4w_2 - w_1}{4} \\
0 & \frac{4w_3 - w_1}{4}
\end{pmatrix}$$

$$\xrightarrow{E_{2,3}\left(\frac{-w_1+4w_3}{w_1-4w_2}\right)} \begin{pmatrix} 4 & w_1 \\ 0 & \frac{4w_2-w_1}{4} \\ 0 & 0 \end{pmatrix}$$

Il rango della matrice aumentata è 2. Tuttavia, nel caso in cui w_2, w_1 siano pari a zero, il rango è 1. Dunque, esiste una e un'unica soluzione al sistema. Quindi è possibile concludere che v_1, v_2 sono un sistema di generatori. Per affermare che siano anche una base è necessario dimostrare che siano anche linearmente indipendenti:

$$b_1v_1 + b_2v_2 = 0$$
 $\xrightarrow{\text{sostituzione}}$ $b_1(0,0,1) + b_2(4,1,0) = (0,0,0)$
 $(0,0,b_1) + (4b_2,b_2,0) = (0,0,0)$
 $(4b_2,b_2,b_1) = (0,0,0)$

Il sistema relativo:

$$\begin{cases} 4b_2 = 0 \\ b_2 = 0 \\ b_1 = 0 \end{cases}$$

E con il metodo di sostituzione si trova subito che l'unica soluzione possibile è $b_1 = b_2 = 0$. Dunque i vettori sono linearmente indipendenti e l'insieme:

$$\{v_1, v_2\} = \{(f'(0), f(0), f(0)), (f'(90), f(90), g(90))\} = \{(0, 0, 1), (4, 1, 0)\}$$

È una base di $\mathcal{U} \cap \mathcal{S}_0$.

3 Soluzione esercizio 3

Sia $f: \mathbb{C}^3 \to \mathbb{C}^2$ l'applicazione data da:

$$f\left(\begin{pmatrix} x\\y\\z\end{pmatrix}\right) = \begin{pmatrix} x-y+z\\3x-3y+3z\end{pmatrix}$$

Per ogni
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{C}^3$$
.

3.1 Soluzione a

Si verifichi che f è lineare.

Per verificare la linearità si prova rapidamente a "mandare lo zero nello zero":

$$f\left(\begin{pmatrix}0\\0\\0\end{pmatrix}\right) = \begin{pmatrix}0-0+0\\3\cdot 0 - 3\cdot 0 + 3\cdot 0\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix}$$

La condizione necessaria di linearità è stata dimostrata. Adesso, si prosegue con la verifica della proprietà di condizione di linearità dividendola nella dimostrazione della condizione di additività e omogeneità.

Dimostrazione condizione di additività. Dati due vettori generici v_1, v_2 dello spazio vettoriale:

$$v_1 = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, v_2 = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \in \mathbb{C}^3$$

Si dimostra che f è una funzione additiva:

$$f(v_1 + v_2) = f(v_1) + f(v_2) = f\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix} = f\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + f\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$$

Si esegue prima il calcolo del blocco dell'unica funzione:

$$f\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix} = \begin{pmatrix} (x_1 + x_2) - (y_1 + y_2) + (z_1 + z_2) \\ 3(x_1 + x_2) - 3(y_1 + y_2) + 3(z_1 + z_2) \end{pmatrix}$$

E successivamente si esegue il calcolo delle due funzioni distinte:

$$f\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + f\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} x_1 - y_1 + z_1 \\ 3x_1 - 3y_1 + 3z_1 \end{pmatrix} + \begin{pmatrix} x_2 - y_2 + z_2 \\ 3x_2 - 3y_2 + 3z_2 \end{pmatrix}$$
$$= \begin{pmatrix} (x_1 + x_2) - (y_1 + y_2) + (z_1 + z_2) \\ 3(x_1 + x_2) - 3(y_1 + y_2) + 3(z_1 + z_2) \end{pmatrix}$$

I due risultati coincidono, per cui la funzione f è additiva.

Dimostrazione condizione di omogeneità. Dato un vettore generico v_1 dello spazio vettoriale e dato uno scalare λ :

$$v_1 = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \in \mathbb{C}^3, \qquad \lambda \in \mathbb{K}$$

Si dimostra che f è una funzione omogenea:

$$f(\lambda v_1) = \lambda f(v_1) = f\begin{pmatrix} \lambda \cdot x_1 \\ \lambda \cdot y_1 \\ \lambda \cdot z_1 \end{pmatrix} = \lambda \cdot f\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$

Si esegue prima il calcolo della funzione con lo scalare internamente:

$$f\begin{pmatrix} \lambda \cdot x_1 \\ \lambda \cdot y_1 \\ \lambda \cdot z_1 \end{pmatrix} = \begin{pmatrix} \lambda x - \lambda y + \lambda z \\ 3\lambda x - 3\lambda y + 3\lambda z \end{pmatrix} = \begin{pmatrix} \lambda (x - y + z) \\ \lambda (3x - 3y + 3z) \end{pmatrix}$$

E successivamente si esegue il calcolo della funzione con lo scalare esternamente:

$$\lambda \cdot f \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \lambda \cdot \begin{pmatrix} x - y + z \\ 3x - 3y + 3z \end{pmatrix} = \begin{pmatrix} \lambda \left(x - y + z \right) \\ \lambda \left(3x - 3y + 3z \right) \end{pmatrix}$$

I due risultati coincidono, per cui la funzione è anche omogenea. QED

Entrambe le condizioni, additività e omogeneità, sono state dimostrate e confermate. Per cui, la funzione f è un'applicazione lineare.

3.2 Soluzione b

Si determini la matrice A associata a f rispetto alla base canonica e si dica se f è un isomorfismo.

La base canonica del dominio è:

$$\mathcal{C}_{\mathbb{C}^3} = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

E i rispettivi vettori immagine mediante f sono:

$$f\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}1-0+0\\3\cdot 1 - 3\cdot 0 + 3\cdot 0\end{pmatrix} = \begin{pmatrix}1\\3\end{pmatrix}$$

$$f\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}0-1+0\\3\cdot 0 - 3\cdot 1 + 3\cdot 0\end{pmatrix} = \begin{pmatrix}-1\\-3\end{pmatrix}$$

$$f\begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}0-0+1\\3\cdot 0 - 3\cdot 0 + 3\cdot 1\end{pmatrix} = \begin{pmatrix}1\\3\end{pmatrix}$$

La matrice associata A rispetto alla base canonica è:

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 3 & -3 & 3 \end{pmatrix}$$

Per verificare se f è un isomorfismo, è possibile verificare se l'applicazione lineare è invertibile. In caso affermativo, allora la funzione è isomorfa. Purtroppo, l'applicazione lineare inversa si calcola eseguendo l'inversione della matrice associata A, che in questo caso $\underline{\text{non}}$ è quadrata. Per cui, è possibile già concludere che l'applicazione lineare f non è un isomorfismo.

3.3 Soluzione c

Si calcolino le dimensioni degli spazi vettoriali $\operatorname{Im}(f) \subseteq \mathbb{C}^2$ e $\operatorname{N}(f) \subseteq \mathbb{C}^3$.

3.4 Soluzione d

Si verifichi che l'insieme $\mathscr{C} = \{v_1, v_2, v_3\}$ con $v_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ è una base di \mathbb{C}^3 .

3.5 Soluzione e

Si verifichi che l'insieme $\mathscr{B} = \{w_1, w_2\}$ con $w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, w_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ è una base di \mathbb{C}^2 .

3.6 Soluzione f

Si determini la matrice associata a f rispetto alla base $\mathscr C$ di $\mathbb C^3$ e alla base $\mathscr B$ di $\mathbb C^2.$

4 Soluzione esercizio 4

Sia $\mathscr C$ la base di $\mathbb C^3$ dell'esercizio 3(d) e sia $\mathscr D=\{u_1,u_2,u_3\}$ dove $u_1=\begin{pmatrix}1\\0\\1\end{pmatrix},v_2=\begin{pmatrix}6\\-1\\8\end{pmatrix},v_3=\begin{pmatrix}-8\\-8\\1\end{pmatrix}$. Si verifichi che $\mathscr D$ è una base di $\mathbb C^3$ e si calcoli la matrice del cambio di base $\mathscr C\to\mathscr D$.