Parametrs for this particular study

Table 1. Basic model parameters and derived quantities. $T_{\mathrm{eff},s_{\mathrm{min}}}$ $R_{\star,s_{\min}}$ P_{puls} model M_{\star} n_x^5 $C_{T \text{fac}}$ $\log g_{s_{\min}}$ $x_{outerbox}$ $t_{\rm avg}$ $x_{\rm innerbox}$ (R_{\odot}) (M_{\odot}) (M_{\star}) (L_{\odot}) (R_{\odot}) (d) (R_{\odot}) (K) (yr) cgs 599^{3} st28gm06n050 510 7049 0.75 2823 1.0 0.1824858 2340 54.61 351 -0.656 7030 679^{3} st28gm06n052 1.0 0.181 6386 0.7757.78 2806 -0.665 545 2640 355 559^{3} st28gm05n033 1.5 0.2986702 0.723454 1581 27.70 304 2993 -0.358 297

 The stellar parameter sets of the 3D models presented here were chosen to fall into two different regimes: according to results from 1D DARWIN simulations, model st28gm06n052 is expected to develop a pronounced dustdriven wind, while the 1D counterpart of model st28gm05n033 fails to produce an outflow

Parametrs for this particular study

Table 1. Basic model parameters and derived quantities. $T_{\mathrm{eff},s_{\mathrm{min}}}$ $R_{\star,s_{\min}}$ P_{puls} model M_{\star} n_x^5 $C_{T \text{fac}}$ $\log g_{s_{\min}}$ $x_{outerbox}$ $x_{innerbox}$ $t_{\rm avg}$ (M_{\odot}) (M_{\star}) (L_{\odot}) (R_{\odot}) (R_{\odot}) (d) (R_{\odot}) (K) (yr) cgs 599^{3} st28gm06n050 510 0.182 7049 0.75 54.61 2823 1.0 4858 2340 351 -0.656 7030 679^{3} st28gm06n052 0.181 6386 0.7757.78 2806 545 1.0 2640 355 -0.665 559^{3} 6702 st28gm05n033 0.298 0.721.5 3454 1581 27.70 304 2993 -0.358 297

 The stellar parameter sets of the 3D models presented here were chosen to fall into two different regimes: according to results from 1D DARWIN simulations, model st28gm06n052 is expected to develop a pronounced dustdriven wind, while the 1D counterpart of model st28gm05n033 fails to produce an outflow