题目:基于 FPGA 的 LED 阵列显示系统

基于 FPGA 平台,我们需要开发一个能够驱动 LED 灯整列显示指定内容的显示系统,该系统可能主要包含以下模块:

1、控制逻辑模块:在 FPGA 中实现,包括时钟分频,生成适合扫描频率的时钟;

行列扫描控制,逐行/列激活 LED,配合数据输出;数据缓冲与处理,存储显示内容,支持动态效果。

2、驱动电路:扩展 FPGA 的 IO 驱动能力。

3、电源管理:为 LED 阵列提供稳定电源。

4、输入接口:可选通信模块(如 UART、SPI)接收外部数据更新显示内容。

目标:

我们目前大概有以下的完成目标:

- 1、完成 LED 灯阵列的文字或符号静态显示
- 2、尝试让显示的内容可根据时间刷新
- 3、尝试在 LED 灯阵列上显示像素动画
- 4、利用外部按键或者声音指令灯切换显示的动画内容,就像看动画切换不同一集一样。

工作计划:

阶段	时间节点	项目分解	提交文档
项目启动	5月27日	- 成立项目组 - 安装开发环境 - 确定 FPGA 型号与 LED 规 格	无
硬件设计	5月28日	- LED 驱动电路设计 - FPGA GPIO 接口定义 - 电平转换电路实现	技术方案书 BOM 物料清 单
基础构建	5月30日	- Verilog 扫描驱动模块开发 - PWM 灰度控制实现 - UART/SPI 通信协议设计	RTL 仿真报告 原理图

阶段	时间节点	项目分解	提交文档
算法实现	6月2日	- 动态显示算法开发 - 图像缓存管理设计 - 时序收敛优化	时序分析报告 测试用例
系统集成	6月4日	- 软硬件联合调试	演示视频
验收交付	6月6日	- 系统压力测试 - 文档规范化整理	验收报告