Solution Section 1.2 – Functions

Exercise

Determine whether each relation is a function and find the domain and the range.

$$\{(1, 2), (3, 4), (5, 6), (5, 8)\}$$

Solution

Not a function

Domain: {1, 3, 5}

Range: {2, 4, 6, 8}

Exercise

Determine whether each relation is a function and find the domain and the range.

$$\{(1, 2), (3, 4), (6, 5), (8, 5)\}$$

Solution

It is a Function

Domain: {1, 3, 6, 8}

Range: {2, 4, 5}

Exercise

Determine whether each relation is a function and find the domain and the range.

$$\{(9, -5), (9, 5), (2, 4)\}$$

Solution

It is *not* a function

Domain = $\{2, 9\}$

Range = $\{-5, 5, 4\}$

Exercise

Determine whether each relation is a function and *find the domain and the range*.

$$\{(-2, 5), (5, 7), (0, 1), (4, -2)\}$$

Solution

It is a function

Domain = $\{-2, 0, 4, 5\}$

Range = $\{-2, 1, 5, 7\}$

Determine whether each relation is a function and find the domain and the range.

$$\{(-5, 3), (0, 3), (6, 3)\}$$

Solution

It is a function

Domain =
$$\{-5, 0, 6\}$$

$$Range = \{3\}$$

Exercise

Determine whether each relation is a function and find the domain and the range.

$$\{(1, 2), (3, 4), (6, 5), (8, 5), (1, 5)\}$$

Solution

It is not a function

Domain =
$$\{1, 3, 6, 8\}$$

Range =
$$\{2, 4, 5\}$$

Exercise

Determine whether each relation is a function and find the domain and the range.

$$\{(-1, 3), (3, 4), (6, 5), (8, 5), (1, 5)\}$$

Solution

It is a function

Domain =
$$\{-1, 1, 3, 6, 8\}$$

Range =
$$\{3, 4, 5\}$$

Exercise

Find the domain and the range of the relation:

$$\{(5, 12.8), (10, 16.2), (15, 18.9), (20, 20.7), (25, 21.81)\}$$

Solution

Domain: {5, 10, 15, 20, 25}

Range: {12.8, 16.2, 18.9, 20.7, 21.81}

Let
$$f(x) = -3x + 4$$
, find $f(0)$

Solution

$$f(0) = -3(0) + 4$$
$$= 4$$

Exercise

Let
$$g(x) = -x^2 + 4x - 1$$
, find $g(-x)$

Solution

$$g(-x) = -(-x)^{2} + 4(-x) - 1$$
$$= -x^{2} - 4x - 1$$

Exercise

Let
$$f(x) = -3x + 4$$
, find $f(a + 4)$

Solution

$$f(a+4) = -3(a+4) + 4$$
$$= -3a - 12 + 4$$
$$= -3a - 8$$

Exercise

Given:
$$f(x) = 2 |x| + 3x$$
, find $f(2-h)$.

Solution

$$f(2-h) = 2 | 2-h | +3(2-h)$$

$$= 2 | 2-h | +6-3h$$

Exercise

Given:
$$g(x) = \frac{x-4}{x+3}$$
, find $g(x+h)$

$$g(x+h) = \frac{x+h-4}{x+h+3}$$

Given:
$$g(x) = \frac{x}{\sqrt{1-x^2}}$$
, find $g(0)$ and $g(-1)$

Solution

$$g(0) = \frac{0}{\sqrt{1 - 0^2}}$$

$$= 0$$

$$g(-1) = \frac{-1}{\sqrt{1 - (-1)^2}}$$

$$= \frac{-1}{0} \quad undefined$$

Exercise

Given that $g(x) = 2x^2 + 2x + 3$. Find g(p+3)

Solution

$$g(p+3) = 2(p+3)^{2} + 2(p+3) + 3$$

$$= 2(p^{2} + 2(p)(3) + 3^{2}) + 2p + 6 + 3$$

$$= 2(p^{2} + 6p + 9) + 2p + 9$$

$$= 2p^{2} + 12p + 18 + 2p + 9$$

$$= 2p^{2} + 14p + 27$$

Exercise

If $f(x) = x^2 - 2x + 7$, evaluate each of the following: f(-5), f(x+4), f(-x)

$$f(-5) = (-5)^{2} - 2(-5) + 7$$

$$= 25 + 10 + 7$$

$$= 42$$

$$f(x+4) = (x+4)^{2} - 2(x+4) + 7$$

$$= x^{2} + 2(4)x + 4^{2} - 2x - 8 + 7$$

$$= x^{2} + 8x + 16 - 2x - 1$$

$$= x^{2} + 6x + 15$$

$$= x^{2} + 2x + 7$$

Find
$$g(0)$$
, $g(-4)$, $g(7)$, and $g(\frac{3}{2})$ for $g(x) = \frac{x}{\sqrt{16 - x^2}}$

$$g(0) = \frac{0}{\sqrt{16 - 0^2}}$$
$$= \frac{0}{\sqrt{16}}$$
$$= 0$$

$$g(7) = \frac{7}{\sqrt{16 - 7^2}}$$

$$= \frac{7}{\sqrt{16 - 49}}$$

$$= \frac{7}{\sqrt{-33}} \quad doesn't \text{ exist in real number}$$

$$g\left(\frac{3}{2}\right) = \frac{\frac{3}{2}}{\sqrt{16 - \left(\frac{3}{2}\right)^2}}$$

$$= \frac{\frac{3}{2}}{\sqrt{16 - \frac{9}{4}}}$$

$$= \frac{\frac{3}{2}}{\sqrt{\frac{4(16) - 9}{4}}}$$

$$= \frac{\frac{3}{2}}{\frac{\sqrt{55}}{2}}$$

$$= \frac{3}{\sqrt{55}}$$

$$= \frac{3\sqrt{55}}{55}$$

$$f(x) = 3x - 4$$

- a) f(0)
- b) $f\left(\frac{5}{3}\right)$
- c) f(-2a) d) f(x+h)

Solution

- a) f(0) = -4
- **b)** $f\left(\frac{5}{3}\right) = 3\frac{5}{3} 4$ =5-1=1
- c) f(-2a) = 3(-2a) 4=-6a-4
- **d)** f(x+h) = 3(x+h) 4= 3x + 3h - 4

Exercise

$$f(x) = 3x^2 + 3x - 1$$

- a) f(0) b) f(x+h) c) f(2) d) f(h)

- a) f(0) = -1
- **b)** $f(x+h) = 3(x+h)^2 + 3(x+h) 1$ $= 3(x^2 + 2hx + h^2) + 3x + 3h - 1$ $=3x^2 + 6hx + 3h^2 + 3x + 3h - 1$
- c) f(2) = 12 + 6 1=17
- **d)** $f(h) = 3h^2 + 3h 1$

$$f(x) = 2x^2 - 4$$

- a) f(0)

- b) f(x+h) c) f(2) d) f(2)-f(-3)

Solution

- a) f(0) = -4
- **b)** $f(x+h) = 2(x+h)^2 4$ $=2(x^2+2hx+h^2)-4$ $=2x^2+4hx+2h^2-4$
- c) f(2) = 8-4= 4
- d) f(2)-f(-3)=8-4-(18-4)=-10

Exercise

$$f(x) = 3x^2 + 4x - 2$$

- a) f(0) b) f(x+h) c) f(3) d) f(-5)

Solution

- a) f(0) = -2
- **b)** $f(x+h) = 3(x+h)^2 + 4(x+h) 2$ $= 3(x^2 + 2hx + h^2) + 4x + 4h - 2$ $=3x^2+6hx+3h^2+4x+4h-2$
- c) f(3) = 27 + 12 2

d) f(-5) = 75 - 20 - 2= 53

$$f(x) = -x^3 - x^2 - x + 10$$

- a) f(0) b) f(-1) c) f(2) d) f(1)-f(-2)

Solution

- a) f(0) = 10
- **b)** f(-1) = 1 1 + 1 + 10
- c) f(2) = -8 4 2 + 10
- **d)** f(1)-f(-2)=-1-1-1+10-(8-4+2+10)=7-16

Exercise

For $\frac{1}{10}x^{10} - \frac{1}{2}x^6 + \frac{2}{3}x^3 - 10x$, determine

- a) f(2) f(-2)
- b) f(1) f(-1)
- c) f(2)-f(0)

a)
$$f(2) - f(-2) = \frac{2^{10}}{10} - \frac{2^6}{2} + \frac{2}{3}2^3 - 20 - \left(\frac{2^{10}}{10} - \frac{2^6}{2} - \frac{2}{3}2^3 + 20\right)$$

$$= \frac{2^{10}}{10} - \frac{2^6}{2} + \frac{2^4}{3} - 20 - \frac{2^{10}}{10} + \frac{2^6}{2} + \frac{2^4}{3} - 20$$

$$= \frac{2^5}{3} - 40$$

$$= \frac{32}{3} - 40$$

$$= -\frac{88}{3}$$

b)
$$f(1) - f(-1) = \frac{1}{10} - \frac{1}{2} + \frac{2}{3} - 10 - \left(\frac{1}{10} - \frac{1}{2} - \frac{2}{3} + 10\right)$$

 $= \frac{1}{10} - \frac{1}{2} + \frac{2}{3} - 10 - \frac{1}{10} + \frac{1}{2} + \frac{2}{3} - 10$
 $= \frac{4}{3} - 20$
 $= -\frac{56}{3}$

c)
$$f(2) - f(0) = \frac{2^{10}}{10} - \frac{2^6}{2} + \frac{2}{3}2^3 - 20 - (0)$$

$$= \frac{2^9}{5} - 2^5 + \frac{2^4}{3} - 5(2^2)$$

$$= 2^2 \left(\frac{128}{5} - 8 + \frac{4}{3} - 5\right)$$

$$= 4\left(\frac{384 + 20 - 195}{15}\right)$$

$$= 4\left(\frac{209}{15}\right)$$

$$= \frac{836}{15}$$

For $f(x) = 3x^4 + x^2 - 4$, determine

a)
$$f(2) - f(-2)$$

a)
$$f(2)-f(-2)$$
 b) $f(1)-f(-1)$

c)
$$f(2)-f(0)$$

Solution

a)
$$f(2)-f(-2) = 3(16)+4-4-(3(16)+4-4)$$

= $48+4-4-48-4+4$
= 0

b)
$$f(1) - f(-1) = 3 + 1 - 4 - (3 + 1 - 4)$$

= 0

c)
$$f(2)-f(0)=3(16)+4-4-(0)$$

= 48 |

Exercise

For $f(x) = -\frac{2}{3}x^3 + 4x$, determine

a)
$$f(2)-f(-2)$$
 b) $f(1)-f(-1)$

b)
$$f(1) - f(-1)$$

c)
$$f(2)-f(0)$$

a)
$$f(2) - f(-2) = -\frac{2}{3}(2^3) + 8 - (-\frac{2}{3}(-2)^3 - 8)$$

= $-\frac{16}{3} + 8 - \frac{16}{3} + 8$
= $2(-\frac{16}{3} + 8)$

$$= 16\left(-\frac{1}{3} + 1\right)$$
$$= 16\left(\frac{2}{3}\right)$$
$$= \frac{32}{3}$$

b)
$$f(1) - f(-1) = -\frac{2}{3} + 4 - \left(\frac{2}{3} - 4\right)$$

= $2\left(-\frac{2}{3} + 4\right)$
= $\frac{20}{3}$

c)
$$f(2)-f(0) = -\frac{16}{3} + 8 - (0)$$

= $\frac{8}{3}$

For $f(x) = \frac{2x-3}{x-4}$, determine

a)
$$f(0)$$

b)
$$f(3)$$

b)
$$f(3)$$
 c) $f(x+h)$ d) $f(-4)$

$$d)$$
 $f(-4)$

a)
$$f(0) = \frac{3}{4}$$

b)
$$f(3) = \frac{6-3}{3-4}$$

c)
$$f(x+h) = \frac{2(x+h)-3}{x+h-4}$$

= $\frac{2x+2h-3}{x+h-4}$

d)
$$f(-4) = \frac{-8-3}{-4-4}$$

= $\frac{11}{8}$

For $f(x) = \frac{3x-1}{x-5}$, determine

- a) f(0) b) f(3) c) f(x+h) d) f(-5)

- a) $f(0) = \frac{1}{5}$
- **b)** $f(3) = \frac{9-1}{3-5}$
- c) $f(x+h) = \frac{3(x+h)-1}{x+h-5}$ $=\frac{3x+3h-1}{x+h-5}$
- *d*) $f(-5) = \frac{-12-1}{-4-5}$ $=\frac{13}{9}$