Library imports

```
import pandas as pd
import numpy as np
import geopandas as gpd
from shapely.geometry import MultiPoint, Point
import random
import zipfile
from geomanip.poly_contains import combine_geom_dfs
from geomanip.haversine import haversine_2_way
from geomanip.endpoint_algorithm import find_dist_ratio
from geomanip.inher_super import inherently_superior
import requests
import folium
import os
```

First, we read the routed generated from the 100 Zip Codes with the most EV registrations. This data was generated in the prior workbook.

```
In [2]:
          top routes = gpd.read file('assets/top routes.geojson')
In [3]:
          top routes.head()
            id direction part route route_num seed_direction seed_station seed_traffic station
                                                                                                       traffic traffic_adj traffic_perc
Out[3]:
                                                                                                                                     MUL
         0
             0
                     5.0
                            1
                                   1
                                            140
                                                            5.0
                                                                     870855
                                                                                    603 870855 603.000000
                                                                                                               4.307143
                                                                                                                           1.000000
                                                                                                                                     MUL.
         1 1
                     5.0
                            2
                                   1
                                            140
                                                            5.0
                                                                     870855
                                                                                    603 870139 244.761282
                                                                                                               1.748295
                                                                                                                           0.405906
                                                                                                                                     MUL<sup>-</sup>
         2
            2
                     5.0
                                            140
                                                            5.0
                                                                     870855
                                                                                    603 876138 145.569626
                                                                                                              1.039783
                                                                                                                           0.241409
```

	id	direction	part	route	route_num	seed_direction	seed_station	seed_traffic	station	traffic	traffic_adj	traffic_perc	
													MUL
3	3	5.0	4	1	140	5.0	870855	603	871135	88.974253	0.635530	0.147553	
													MUL ⁻
4	4	7.0	5	1	140	5.0	870855	603	878017	2.148334	0.015345	0.003563	

First, we grouped the dataframe by station and direction and computed the total traffic by section.

Next, we sorted by estimated traffic and chose only the 1,000 most trafficked routes.

```
route_traffic = route_traffic.sort_values('traffic_adj', ascending=False).iloc[:1000]
```

We then converted the grouped dataframe into a GeoDataFrame and set the crs.

```
In [6]:
    route_traffic = gpd.GeoDataFrame(route_traffic, geometry='geometry')
    route_traffic.crs = 'EPSG:4326'
```

We created a function that generates a given number of random points inside a polygon. This was created to generate random points adjacent to each segment.

```
def generate_random(polygon, number, seed=42):
    """
    Generates number of random points within a Shapely Polygon

    Parameters
    _____
    polygon - Shapely Polygon
        polygon from which random points are drawn
        number - int
```

```
number of random points to draw
seed - int
    random seed set for reproducibility

Returns
-----
Shapely MultiPoint shape with all generated points
"""

points = []
minx, miny, maxx, maxy = polygon.bounds
random.seed(seed)
while len(points) < number:
    pnt = Point(random.uniform(minx, maxx), random.uniform(miny, maxy))
    if polygon.contains(pnt):
        points.append(pnt)
points = MultiPoint(points)
return points</pre>
```

We created a buffer around each segment to create polygons for generating points.

```
In [8]: route_traffic.geometry = route_traffic.buffer(0.001)
```

<ipython-input-8-cd13f26ec9f0>:1: UserWarning: Geometry is in a geographic CRS. Results from 'buffer' are likel
y incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.

```
route_traffic.geometry = route_traffic.buffer(0.001)
```

Next, we created a column with MulitPoint objects of 10 randomly selected points within each buffer zone using the previously created function.

```
route_traffic['geom_point'] = route_traffic.geometry.map(lambda x: generate_random(x, 10))
```

We then renamed the geometry columns and set the point geometries as the main geometry in our GeoDataFrame. This enables the explosion of the MultiPoint geometry into Point geometries.

```
route_traffic.rename({'geometry': 'geom_poly', 'geom_point': 'geometry'}, axis=1, inplace=True)
route_traffic = gpd.GeoDataFrame(route_traffic, geometry='geometry')
route_traffic.crs = 'EPSG:4326'
```

We reset the index and exploded the MultiPoint geometries.

```
In [11]:    route_traffic = route_traffic.reset_index().drop('index', axis=1)
    route_traffic = route_traffic.explode().reset_index()
```

We then dropped the unnecessary grouping columns created by the explode method.

```
In [12]: route_traffic.drop(['level_0', 'level_1'], axis=1, inplace=True)
```

Next we extracted files from the NYC zoning geographic database. This contains geomtries of differently zoned areas in NYC.

```
if not os.path.exists('assets/nyc_zoning'):
    with zipfile.ZipFile('assets/nyc_zoning.zip', 'r') as nyc_zoning:
        nyc_zoning.extractall('assets/nyc_zoning')
```

We read the file for commercially zoned areas and set the crs accordingly. We assumed that charging stations would only be placed in areas zoned for commercial development.

```
In [14]:
    nyc_zoning = gpd.read_file('assets/nyc_zoning/nyc_zoning/nyco.shp')
    nyc_zoning.crs = 'EPSG:2263'
    nyc_zoning = nyc_zoning.to_crs('EPSG:4326')
```

We next combined the zoning and traffic dataframes using a vectorized function from our created geomanip package. This method finds all generated points that lie withing commercially zoned areas

We read the dataframe with all alternative fuel stations. This was used to determine the distance of commercially zoned points to the nearest existing charging station.

```
stations = pd.read_csv('assets/alt_fuel_stations.csv', low_memory=False)
```

We selected only the stations with are in NY state and are below 41.5\$^{\circ}\$N.

```
In [18]: stations_nyc = stations.loc[(stations['State'] == 'NY') & (stations['Latitude'] < 41.5)]
```

We converted the latitude and longitude of the charging stations to Shapely Point objects, then converted the dataframe to a GeoDataFrame and set the crs.

```
stations_nyc['geometry'] = stations_nyc.apply(lambda x: Point(x['Longitude'], x['Latitude']), axis=1)
stations_nyc = gpd.GeoDataFrame(stations_nyc, geometry='geometry')
stations_nyc.crs = 'EPSG:4326'
```

```
<ipython-input-19-10c82622e6f8>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy

```
stations_nyc['geometry'] = stations_nyc.apply(lambda x: Point(x['Longitude'], x['Latitude']), axis=1)
```

We recreated the dataframe with commercially zoned points into a GeoDataFrame and set the crs.

```
top_results_full = gpd.GeoDataFrame(top_results_full, geometry='geom_route')
top_results_full.crs = 'EPSG:4326'
```

Using the haversine_2_way vectorized function from the geomanip package that we created, we found the distance of each generated commercially zoned point to every EV charging station.

Next we grouped the resulting dataframe by the index and found the closest charging station to each point.

```
g = stations_route.groupby('index')
station_closest = g.apply(lambda x: x.sort_values('distance').iloc[0])
```

Next we adjusted the indices as they were no longer needed to identify points.

We used the inherently superior vectorized function from our created geomanip package. This function takes the dataset, with distance to a charging station and traffic and finds how many other possible locations each possible location is superior to. Points are characterized as superior to other points if both metrics are as high or higher than for another point. The perc_sup column is the percent of other points to which each point is superior.

```
station_closest['perc_sup'] = inherently_superior(station_closest[['distance', 'traffic_adj']])['perc_sup']
```

We then chose the top 10 locations based on this evaluation of superiority.

```
top_loc = station_closest.sort_values('perc_sup', ascending=False).iloc[:10]
```

In [26]: top_loc

Out[26]:

	OVERLAY	Shape_Leng	Shape_Area	geom_zoning	station	direction	traffic_adj	geom_poly	ge
135	C1-3	1597.641551	70321.207270	POLYGON ((-73.96421219075391 40.62253839844913	021189	1.0	100.195999	POLYGON ((-73.96599815922355 40.62337155093744	(-73.964312 ⁴ 40.622657
123	C2-4	1833.883122	85160.054471	POLYGON ((-73.96556566650732 40.62970644177518	021189	1.0	100.195999	POLYGON ((-73.96599815922355 40.62337155093744	(-73.965964 40.6315193
141	C2-2	1318.762024	81526.600657	POLYGON ((-73.92967827495094 40.58643644135677	020906	7.0	95.032183	POLYGON ((-73.9093162587283 40.59431571606489,	(-73.930404) 40.5861081
50	C2-2	706.363115	30191.361539	POLYGON ((-73.75781782182298 40.74816078230577	050047	7.0	159.917042	POLYGON ((-73.75611525833661 40.74838273387774	(-73.758357 40.7483086
146	C1-3	1803.514432	79833.674600	POLYGON ((-73.96518777502872 40.62243063917565	021138	7.0	13.456809	POLYGON ((-73.95748263527133 40.62460333790642	(-73.96533 40.6240226
62	C1-2	1620.834235	129511.836437	POLYGON ((-73.73152517420824 40.75949029666447	056018	1.0	14.840996	POLYGON ((-73.72951177592692 40.75508101552814	(-73.732102 40.75964

	OVERLAY	Shape_Leng	Shape_Area	geom_zoning	station	direction	traffic_adj	geom_poly	ge
145	C1-4	453.542650	12669.438046	POLYGON ((-73.96841189251157 40.60892078397171	021145	7.0	25.869827	POLYGON ((-73.96326138004056 40.60887981352835	(-73.968414 40.6089307
133	C1-4	666.978052	23431.596882	POLYGON ((-73.97248586611182 40.60899433508917	021144	7.0	24.440267	POLYGON ((-73.97342798197243 40.60971399337825	(-73.972412 40.609123
101	C1-4	604.732720	21808.308130	POLYGON ((-73.96851475796134 40.60945224235646	021144	7.0	24.440267	POLYGON ((-73.97342798197243 40.60971399337825	(-73.968563 40.6095738
97	C2-3	1186.803935	47889.466986	POLYGON ((-73.96157397842951 40.60856720165741	021145	7.0	25.869827	POLYGON ((-73.96326138004056 40.60887981352835	(-73.9618) 40.609280

10 rows × 77 columns

We reformed the dataframe into a GeoDataFrame and set the crs. We then rounded the distance and traffic down to the nearest integer to make tooltips in the Folium map have fewer significant digits. Finally we separated the top locations from the existing EV charging stations for plotting.

```
top_loc = gpd.GeoDataFrame(top_loc, geometry='geom_route')
top_loc.crs = 'EPSG:4326'
top_loc['distance'] = top_loc['distance'].astype(int)
top_loc['traffic_adj'] = top_loc['traffic_adj'].astype(int)
top_loc_poly = gpd.GeoDataFrame(top_loc, geometry='geom_poly')[['traffic_adj', 'distance', 'geom_poly']]
top_loc_poly.crs = 'EPSG:4326'
ev_chargers = gpd.GeoDataFrame(top_loc, geometry='geom_station')[['traffic_adj', 'distance', 'geom_station']]
ev_chargers.crs = 'EPSG:4326'
```

The chart below shows the top 10 locations based on our analysis. While some of the locations are close together, this may be necessary as many businesses may not agree to installing chargers. The existing charging stations are shown with a half empty battery in red, and the chosen locations are in blue.

Out[28]: Make this Notebook Trusted to load map: File -> Trust Notebook

Finally, we wanted to find the exact location of each point using the Mapbox reverse geocoding api. Below is a function used for this purpose.

```
In [29]:
          from config import api token
          longitude = top loc['geom route'].iloc[0].x
          latitude = top loc['geom route'].iloc[0].y
          def find address(point):
              Uses Mapbox reverse geocoding API to find address of specific location
              Parameters
              _____
              point - Shapely Point
                  point containing latlong coords of address
              Returns
              _____
              Address of location
              longitude = point.x
              latitude = point.y
              TOKEN = api token
              URL = f'https://api.mapbox.com/geocoding/v5/mapbox.places/{longitude}, {latitude}.json?access token={TOKEN}
              address = requests.get(URL).json()['features'][0]['place name']
              return address
```

The addresses of the chosen locations are found using the above function.

```
In [30]: top_loc['address'] = top_loc['geom_route'].map(find_address)
```

These are the final chosen locations with traffic, distance to a charging station, and address.

```
final_loc = top_loc[['traffic_adj', 'distance', 'address']]
final_loc.to_csv('assets/top_loc.csv')
final_loc
```

Out[31]:		traffic_adj	distance	address
	135	100	11269	Mark Halberstam, 1435 Coney Island Ave, New Yo
	123	100	9655	1071 Coney Island Avenue, Brooklyn, New York 1

	traffic_adj	distance	address
141	95	5774	3939 Shore Parkway, Brooklyn, New York 11235,
50	159	5338	BP, 21902 Horace Harding Expy, New York, New Y
146	13	11819	1372 Coney Island Avenue, Brooklyn, New York 1
62	14	10163	56-20 Marathon Parkway, Queens, New York 11362
145	25	7527	1622 Ocean Parkway, Brooklyn, New York 11223,
133	24	7978	Dunkin', 407 Avenue P, New York, New York 1123
101	24	7764	511 Avenue P, Brooklyn, New York 11230, United
97	25	7352	1963 Coney Island Avenue, Brooklyn, New York 1