Conferencia 1 - Principios de la Teoría de Números

November 1, 2024

Principio del Buen Ordenamiento. Todo subconjunto no vacío de \mathbb{Z}_+ contiene un elemento mínimo. O sea, $\exists (m)$ tal que $\forall (x)x \in A \land x \neq m$ se cumple que m < x

Principio de Inducción Matemática. Dada una proposición P, si se cumple $P(n_0) \ con \ n_0 \in \mathbb{Z}_+ \ y, \ además, \ \forall (n) \ n \geq n_0 \land P(n) \Rightarrow P(n+1) \ entonces \ \forall (n)$ $n \ge n_0 \wedge P(n)$

Teorema. El Principio del Buen Ordenamiento es equivalente al Principio de Inducción Matemática

Demostración

Sea C el conjunto de los números naturales que no cumplen P y asumamos que $P \neq \emptyset$. Entonces, por el **Principio del Buen Ordenamiento** existe $m \in C$ tal que m es el mínimo elemento de C.

Ahora, asumamos a 1 como n_0 , luego como P(1) se cumple entonces m > 1por lo que $m-1 \geq 1$.

Como m-1 < m entonces $m-1 \notin C$ por lo que P(m-1) se cumple. Por tanto, como para todo n > 1 se tiene que $P(n) \Rightarrow P(n+1)$ entonces dado que P(m-1) se cumple se tendría que P(m) también se cumple ilo que es una contradicción!

Ejemplo Demuestre, utilizando el Principio del Buen Ordenamiento, que para toda $n, n \in \mathbb{Z}, n \ge 1$ se cumple que $\sum_{k=1}^{n} (2k-1) = n^2$

Sea C el conjunto de los números naturales que no cumplen P y asumamos que $P \neq \emptyset$. Entonces, por el **Principio del Buen Ordenamiento** existe $m \in C$ tal que m es el mínimo elemento de C.

P(1) se cumple pues $\sum_{k=1}^{1} (2k-1) = 2-1 = 1 = 1^2$, por tanto m > 1 por lo que $m-1 \ge 1$. Ahora, como $m-1 \ge m$ entonces $m-1 \notin C$ por lo que P(m-1) se cumple. Entonces $\sum_{k=1}^{m-1} (2k-1) = (m-1)^2$.

```
Ahora se tiene que \sum_{k=1}^{m} (2k-1) = \sum_{k=1}^{m-1} (2k-1) + (2m-1) \sum_{k=1}^{m} (2k-1) = (m-1)^2 + (2m-1) \sum_{k=1}^{m} (2k-1) = (m^2 - 2m + 1) + (2m-1) \sum_{k=1}^{m} (2k-1) = m^2
O sea, P(m) se cumple, lo que es una jcontradicción!
```

Definición. Sean $a, b, a \in \mathbb{Z}, b \in \mathbb{Z}, a \neq 0$, se dice que a divide a b o que a es múltiplo de b, denotado a|b, si $\exists (q) \ q \in \mathbb{Z}$ tal que b = a * q

Lema. Todo número $a, a \in \mathbb{Z}$, es divisor de 0

Teorema. Sean $a, b, a \in \mathbb{Z}$, $b \in \mathbb{Z}$, $si\ b|a\ y\ a \neq 0$ entonces $a \geq b$

Teorema. La relación **ser divisor de** es transitiva. O sea, si a|b y b|c entonces a|c

Demostración

Teorema. Algoritmo de la División, sean $a, b, a \in \mathbb{Z}, b \in \mathbb{Z}, a > 0$, entonces existen $q, r, q \in \mathbb{Z}, r \in \mathbb{Z}, \text{ únicos tales que } b = a * q + r \text{ donde } 0 \le r < b$

Demostración

Definición. Sea $a \in \mathbb{Z}$ tal que n > 1, se dice que n es un **número primo** si y solo sus únicos divisores positivos son 1 y n, de lo contrario se dice que n es un **número compuesto**

Corolario. $n, n \in \mathbb{Z}, n > 1$, es un número compuesto si y solo si n = a * b con $a \in \mathbb{Z}, b \in \mathbb{Z}, 1 < a \le b < n$

Lema. Todo número entero mayor que 1 tiene un divisor primo

Demostración

Teorema. Hay una infinita cantidad de números primos

Demostración