

Block 2 BASIC E/R DESIGN (PART 2)

Debora Gil, Oriol Ramos, Alejandro Párraga, Carles Sánchez

Basic ER Design Contents

- 1. E-R Model Introduction
- 2. Basic Structures
 - 2.1 Entities
 - 2.2 Attributes
 - 2.3 Relationships
- 3. Relationships Features
 - 3.1 Cardinality
 - 3.2 Degree
 - 3.3 Participation

Basic ER Design Contents (Part II)

- 1. E-R Model Introduction
- 2. Basic Structures
- 2.1 Entities
- 2.2 Attributes
- 2.3 Relationships

- 3. Relationships Features
 - 3.1 Cardinality
 - 3.2 Degree
 - 3.3 Participation

2. Basic Structures

2.3 Relationships

2.3 Relationships

Definition

Association between different related entities instances. They are represented by rhombuses

Each instance of the relationship is defined by the values of the PKs of the associated entities instances

Relationships NEVER have PKs (they are already uniquely defined by the PKs of the two related instances)

Client

NIF	Name	Surname	Phone
3676373L	Peio	Artola	938373893
4748474P	Dani	Alves	617232066
1233399Q	Alex	Morera	617188819
***	***	***	****

Car

Model	License car		
Ka	3090 BKJ		
Focus	7839 JKH		
Escort	6677 PPL		

Correlation with the real world:

Relationships are correlated with the real world

Real World:

- Peio Artola buys a Ka with license 3090 BKJ
- Dani Alves buys a Focus with license 7839 JKH and an Escort with license 6677 PPL
- ...

Symbolic representation:

Relationships are represented by rhombuses

Real World:

Phone

Peio Artola buys a Ka with license 3090 BKJ

Surname

- Dani Alves buys a Focus with license 7839 JKH and an Escort with license 6677 PPL
- ..

<u>License</u>

car

Relationship Attributes:

Sometimes it may be appropriate to associate attributes with relationships in themselves ...

Relationship Attributes:

Sometimes it may be appropriate to associate attributes with relationships in themselves ...

Real World:

- Peio Artola buys a Ka with license 3090 BKJ on 25/01/2015
- Dani Alves buys a Focus with license 7839 JKH on 18/06/2016
- and an Escort with license 6677 PPL on 24/09/2016
- ...

Relationship Primary Key (PK)

Relationships NEVER have PKs (they are already uniquely defined by the PKs of the two related instances)

Real World:

- Peio Artola buys a Ka with license 3090 BKJ on 25/01/2015
- Dani Alves buys a Focus with license 7839 JKH on 18/06/2016
- and an Escort with license 6677 PPL on 24/09/2016
- ...

Examples

Example 1. Information contained in the relationship

Library

We want to manage a library network loans and know the free copies.

From a book we want to save the ISBN and the title.

From a member we want to save name and ID.

We want to know what books each member has.

Entities?? Relationships?? Attributes??

Example 1. Information contained in the relationship

Entities: Member, book Relationship: Book loan

Example 1. Information contained in the relationship

Obs: Not all instances must participate in the relationship, only the loaned books.

With this design, can we know the titles of the books that are on loan?

How would you modify it?

Should the title of the book be incorporated as an attribute of the "loan" relationship?

Relationship contains (indirectly, through the PKs of the related entities) all the information (attributes) of the entities that it relates.

You do **NOT** need attributes to the link that are already in the related entities.

Example 1. Information contained in the relationship

In addition, these repetitions introduce redundancy of attributes that the DBMS will not handle (updates, FK modifications only) and may violate integrity

Example 3. Identify entities and relationships

Database subjects

The students of this subject are distributed in different groups according to type of teaching (theory, problems and practices).

Each of these courses is taught by a teacher (which can always be the same). In addition, depending on the number of students more than one teacher can do the same type of teaching.

And several evaluation tests will be performed for each type of teaching

Entities?

Relationships?

Example 3. Identify entities and relationships

Database subjects

The **students** of this subject are distributed in different **groups** according to type of **teaching** (theory, problems and practices).

Each of these **teachings** is taught by a **professor** (which can always be the same). In addition, depending on the number of students more than one **professor** can do the same type of **teaching**.

And several **evaluation tests** will be performed for each type of **teaching**

Entities

- Students
- Groups
- Teaching
- Professor
- Evaluation test

Relationships?

Example 3. Identify entities and relationships

Database subjects

The **students** of this subject <u>are distributed</u> in <u>different</u> **groups** <u>according</u> to type of **teaching** (theory, problems and practices).

Each of these **teachings** is taught by a **professor** (which can always be the same). In addition, depending on the number of students more than one **professor** can do the same type of **teaching**.

And several **evaluation tests** <u>will be</u> <u>performed</u> for each type of **teaching**

Entities

- Students
- Groups
- Teaching
- Professor
- Evaluation test

Relationships

- Students are distributed in groups
- Groups vary by teaching
- Teachers teach various types of teaching
- ..

3. Relationships Properties

3.1 Cardinality

3.1 Cardinality

Definition

Cardinality is the maximum number of instances of an entity that may be associated with an instance of the other entity involved in a relationship (there are several types)

Cardinality 1-1: a client can only have one loan (and one loan can only be took by one client)

Cardinality 1-N: A client can have more than one loan (and a loan can only be took by a client)

Cardinality N-1: a loan can be shared among multiple clients (but one client cannot have more than one loan)

Cardinality N-N: no restrictions (one loan can be shared between multiple clients and one client can take more than one loan)

Symbolic representation:

The simple or directed line (arrow) serves to distinguish between many-to-many, many-to-one, or one-to-many relationships.

The double arrow indicates a **one-to-one** relationship

A simple arrow indicates a **many-to-one** relationship.

A simple line indicates a **many-to-many** relationship

Examples

Example 4. Cardinality type

Consider the E-R design where the "Loan" relationship has 1-1 cardinality

Client		Book		
ID	Name	Title	ISBN	
2321323N	Pepe	Quixot	0011	
7484849P	Paco	BBDD	0022	
2342312Q	Kike	Postres	1122	
4848994J	Montse	Hamlet	2829	

Example 4. Cardinality type

Consider the E-R design where the "Loan" relationship has 1-1 cardinality

Client		Book		
ID	Name	Title	ISBN	
2321323N	Pepe	Quixot	0011	
7484849P	Paco	BBDD	0022	
2342312Q	Kike	Postres	1122	
4848994J	Montse	Hamlet	2829	

Example 4. Cardinality type

Consider the E-R design where the "Loan" relationship has 1-1 cardinality

Does this design allow Montse or Paco to take Don Quixote?

Consider the E-R design where the "Loan" relationship has 1-1 cardinality

Does this design allow Montse or Paco to take Don Quixote? NO: because one book could be load by one client.

Consider the E-R design where the "Loan" relationship has 1-N cardinality

Does this design allow keeping Montse to take Don Quixote?

Consider the E-R design where the "Loan" relationship has 1-N cardinality

Does this design allow keeping Montse to take Don Quixote? YES: One member can have more than 1 book on loan and one book can only be loaned to 1 member

Client		Book			
ID	Name		Title	ISBN	
2321323N	Pepe		Quixot	0011	
7484849P	Paco		BBDD	0022	
2342312Q	Kike		Postres	1122	
4848994J	Montse		Hamlet	2829	

Consider the E-R design where the "Loan" relationship has N-1 cardinality

Does this design allow keeping Montse to take Don Quixote?

Consider the E-R design where the "Loan" relationship has N-1 cardinality

Does this design allow keeping Montse to take Don Quixote? **Only** if we remove from the DB the book that Montse already has on loan

Client			Book	
ID	Name		Title	ISBN
2321323N	Pepe		Quixot	0011
7484849P	Paco	X	BBDD	0022
2342312Q	Kike		Postres	1122
4848994J	Montse		Hamlet	2829

Where is it more convenient to define an attribute?

The cardinality of a relationship can determine where it is more convenient to define an attribute

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Suppose we want to keep access date for each bank account...

Option (b) **NIF** It is now possible to record the date of the last entry in each Deposit Client account separately. NOTE: New access overwrites the previous date Name Client Account NIF # Account **Balance** Access date Name **Deposit** CTB-246800 D. Alves 4748474P 500 22-05-2016 CTB-357900 1.250 R. Forns 6788900H 15-04-2016 E. Walter 6112888L CTB-135700 13.000 22-02-2017 CTB-975300 100.056 R. Zabalo 7282944P 25-01-2017

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Suppose we want to keep access date for each bank account...

Option (b)

In this case you get a possible solution (last access date)

Name	NIF	Deposit	# Account	Balance	Access date
D. Alves	4748474P	2 opeon	CTB-246800	500	22-05-2016
R. Forns	6788900H		CTB-357900	1.250	15-04-2016
E. Walter	6112888L		CTB-135700	13.000	22-02-2017
R. Zabalo	7282944P		CTB-975300	100.056	25-01-2017

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Suppose we want to keep access date for each bank account...

Option (c)

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Consider the E-R design where the cardinality of the "deposit" relationship is 1-N (one to many)

Suppose we want to keep access date for each bank account...

Option (c)

In this case you also get a possible solution (last access date)

Name	NIF	Access date	# Account	Balance
D. Alves	4748474P	22-05-2016	CTB-246800	500
R. Forns	6788900H	15-04-2016	CTB-357900	1.250
E. Walter	6112888L	22-02-2017	CTB-135700	13.000
R. Zabalo	7282944P	25-01-2017	CTB-975300	100.056
•••				

Consider the E-R design where the cardinality of the "deposit" relationship is 1-1 (one to one)

Suppose we want to keep access date for each bank account...

Again there are three possibilities:

Consider the E-R design where the cardinality of the "deposit" relationship is 1-1 (one to one)

Consider the E-R design where the cardinality of the "deposit" relationship is 1-1 (one to one)

Consider the E-R design where the cardinality of the "deposit" relationship is N-N (many to many)

Suppose we want to keep access date for each bank account...

Again there are three possibilities:

Consider the E-R design where the cardinality of the "deposit" relationship is N-N (many to many)

Consider the E-R design where the cardinality of the "deposit" relationship is N-N (many to many)

Consider the E-R design where the cardinality of the "deposit" relationship is N-N (many to many)

Consider the E-R design where the cardinality of the "deposit" relationship is N-N (many to many)

Consider the E-R design where the cardinality of the "deposit" relationship is N-N (many to many)

Suppose we want to keep access date for each bank account...

In no case (a) and (b) it is possible to register the clients and the dates of access to their respective accounts

Access date	Name	NIF	Deposit	# Account	Balance	Access date
22-5-27-6	D. Alves	4748474P	Берееле	CTB-246800	500	22 5-2/6
	R. Forns	6788900H		CTB-357900	1.250	15-0 2016
27 2 117	E. Walter	6112888L		CTB-135700	13.000	22 2 117
5 -01-2017	R. Zabalo	7282944P		CTB-975300	100.056	J-01-2017

Consider the E-R design where the cardinality of the "deposit" relationship is N-N (many to many)

Suppose we want to keep access date for each bank account...

Option (c) Access date <u>NIF</u> # Account Deposit Client Account Balance Name **Deposit** Client Account **Access date** # Account **Balance** Name NIF 22-05-2016 D. Alves 4748474P CTB-246800 500 15-04-2016 CTB-357900 R. Forns 6788900H 1.250 6112888L 22-02-2017 CTB-135700 13.000 E. Walter 25-01-2017 CTB-975300 100.056 R. Zabalo 7282944P

Consider the E-R design where the cardinality of the "deposit" relationship is N-N (many to many)

Suppose we want to keep access date for each bank account...

Option (c)

This is the only case where it is possible to register the clients and the last dates of access to their respective accounts

Name	NIF		Access date	# Account	Balance
D. Alves	4748474P		22-05-2016	CTB-246800	500
R. Forns	6788900H		15-04-2016	CTB-357900	1.250
E. Walter	6112888L		22-02-2017	CTB-135700	13.000
R. Zabalo	7282944P		25-01-2017	CTB-975300	100.056

Final Exam Question: Is it possible for these designs to record a "history" of clients that includes all access dates to their respective accounts?