Faculdade de Tecnologia de Ribeirão Preto

Cálculo

Funções

Prof. Me. Júnior César Bonafim junior.bonafim@fatec.sp.gov.br

 $2^{\underline{0}}$ semestre de 2024

Resumo de funções elementares

Função constante

Função de primeiro grau

Função de segundo grau

Função exponencial

Função logaritmica

Composição de funções

Funções Função constante

Veremos agora um breve resumo de funções elementares, apresentando suas principais características.

Funções Função constante

Veremos agora um breve resumo de funções elementares, apresentando suas principais características.

Forma geral:

$$f(x) = c, \quad c \in \mathbb{R}$$

Domínio:

$$D_f = \mathbb{R}$$

Gráfico:reta paralela ao eixo x

interceptando o eixo $y\ \mathrm{em}\ c$

Funções Função de 1º grau

► Forma geral:

$$f(x) = ax + b, \text{ com}$$

$$a, b \in \mathbb{R}, \ a \neq 0$$

- ▶ Domínio: ℝ
- Gráfico: reta
- a é o coeficiente angular que indica a inclinação do gráfico de f
- \blacktriangleright b é o coeficiente linear. É o intercepto do gráfico no eixo y

$$a = tg\theta$$

O gráfico abaixo apresenta a evolução da temperatura (em $^{\circ}C$) em certo processo químico em função do tempo medido em minutos.

- Determine a função que modela a situação acima. (considere o gráfico dado como uma reta)
- b) Qual a temperatura após 10 minutos?
- c) Quanto tempo será necessário para que a temperatura atinja $32^{\circ}C$?

Funções Função de 2ºgrau

► Forma geral:

$$f(x) = ax^2 + bx + c \text{, com}$$

$$a,b,c \in \mathbb{R}, \ a \neq 0$$

- ▶ Domínio: ℝ
- Gráfico: parábola
- a determina a concavidade da parábola
- o eixo de simetria da parábola ocorre em $x = \frac{-b}{2a}$

A relação entre a demanda mensal q e o preço x para um certo produto é q=-0,2x+100.

- a) Qual o preço que torna a receita mensal máxima?
- b) Qual a receita máxima?
- c) Esboce o gráfico da função receita mensal.

► Forma geral:

$$f(x)=b^x \text{, com}$$

$$b \in \mathbb{R}_+^*, \ b \neq 1$$

▶ Domínio: ℝ

Variação:

$$f(x)=cb^{ax}\text{, com}$$

$$b\in\mathbb{R}_+^*,\ b\neq 1$$

$$a,c\in\mathbb{R}^*$$

► Domínio: ℝ

Modelo exponencial para casos de COVID-19 em Ribeirão Preto

Fonte: FMRP https://ciis.fmrp.usp.br/covid19/analises-ribeirao-preto/

Considere o gráfico abaixo relacionado à decomposição de certa substância onde t é o tempo em horas, Q(t) é a massa da amostra em gramas e K é uma constante.

Determine K e a.

Forma geral:

$$f(x) = \log_b x, \text{ com}$$

$$b \in \mathbb{R}_+^*, \ b \neq 1$$

Domínio: \mathbb{R}_+^*

Exercício 4

Considere a mesma função do exercício anterior. Qual o tempo necessário para que a massa da amostra atinja 700 gramas?

Definição 1 (Composição de funções)

Sejam $f:A\longrightarrow B$ e $g:B\longrightarrow C$ funções. A função $(g\circ f)(x)=g\big(f(x)\big)$ é denominada função composta de f e g.

Determine $f \circ g$ em cada caso abaixo.

a)
$$f(x) = x^3 - 3x$$
 e $g(x) = \frac{2}{x}$

b)
$$f(x) = \sin x$$
 e $g(x) = \sqrt{x}$

Um objeto parte do ponto A e se move perpendicularmente ao segmento AB com velocidade constante igual a $5 \mathrm{m/s}$ como ilustrado na figura abaixo.

- a) Determine uma função que forneça a distância do objeto ao ponto B em termos da distância x do objeto ao ponto A.
- b) Determine uma função que forneça a distância do objeto ao ponto B em termos do tempo de movimento do objeto, considerando como instante zero o momento em que o objeto parte do ponto A.

