Reading By Abstraction

Dijkstra

initializeDataStructures

Línea 60: asigna el valor infinito a la posición 'i' del array distances.

Línea 61: asigna el valor false a la posición 'i' del array visited.

Línea 62: asigna el valor -1 a la posición 'i' del array prev.

Líneas 59 - 63: mientras el contador 'i' esté dentro del rango del número de vértices (nVertices):

- Asigna el valor infinito a la posición 'i' del array distances
- Asigna el valor false a la posición 'i' del array visited
- Asigna el valor -1 a la posición 'i' del array prev.

Es decir, inicializa los tres arrays con los valores por defecto.

Línea 54: instancia el array distances de tipo Double.

Línea 55: instancia el array visited de tipo Boolean.

Línea 56: instancia el array prev de tipo Integer.

Línea 52 - 66: la función initializeDataStructures() instancia e inicializa los arrays distances, visited y prev.

nextCur

Línea 79: le da el valor de i a la variable next.

Línea 80: cost pasa a tener el valor de la posición i del array distances.

Línea 78-81: si el nodo i no ha sido visitado y la distancia de i es menor que cost, la variable next pasa a valer i y la variable cost pasa a valer la distancia de i.

Línea 74: se define la variable next como un int que vale -1 inicialmente.

Línea 75: se define la variable cost como un double que pasa a valer infinito con la sentencia 'Double.POSITIVE INFINITY'.

Línea 77-82: mientras, a partir de 0, i sea menor que número de vértices:

- si el nodo i no ha sido visitado y la distancia de i es menor que cost, la variable next pasa a valer i y la variable cost pasa a valer la distancia de i.

Línea 73-85: el método nextCur: inicializa variables y mediante un bucle for recorre los vértices para devolver el nodo que no haya sido visitado y que menor coste tenga.

getPath

Línea 156: La variable error pasa a ser true.

Línea 157: se devuelve null;

Línea 155-158: si la ejecución de dijkstra no se ha cumplido(!dijkstraExec), a la variable error se le asigna true, y se devuelve null.

Línea 160: se define un ArrayList de enteros llamado path.

Línea 164: se define un entero llamado cur, y se inicializa a end que es el último valor del algoritmo (variable pasada por parámetro).

Línea 165: se añade el valor de la variable cur al ArrayList path.

Línea 167: se añade al ArrayList path el nodo previo a cur.

Línea 168: El valor de cur pasa a tener el valor de su nodo anterior.

Línea 166-169: mientras el valor de cur no sea el primer valor del algoritmo (ini),

- se añade al ArrayList path el nodo previo a cur.
- El valor de cur pasa a tener el valor de su nodo anterior.

Línea 153-172: el método getPath inicializa variables, y devuelve un array que contiene el camino más corto desde el vértice inicial del algoritmo, hasta el último.

hasErrorHappened

Línea 181: se devuelve el valor de la variable error.

Línea 180-182: el método hasErrorHappened devuelve el valor de la variable error, que inicialmente vale false, pero si ocurre algún error al ejecutar valdrá true.

computeShortestPath

Línea 126: asigna al contenido del índice 'neigh' del array distances el valor de 'newDistance'

Línea 127: asigna al contenido del índice 'neigh' del array prev el valor de cur.

Línea 122: asigna a la variable 'newDistance' la suma del valor del índice 'cur' del array distances con el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix.

Línea 125: Si el valor de la posición 'neigh' del array distances es estrictamente mayor que 'newDistance':

- Asigna al contenido del índice 'neigh' del array prev el valor de cur
- Asigna a la variable 'newDistance' la suma del valor del índice 'cur' del array distances con el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix

Línea 120: Si el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix es true y el valor del índice 'neigh' del array es false:

- Asigna a la variable 'newDistance' la suma del valor del índice 'cur' del array distances con el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix.
- Si el valor de la posición 'neigh' del array distances es estrictamente mayor que 'newDistance':
 - Asigna al contenido del índice 'neigh' del array prev el valor de cur
 - Asigna a la variable 'newDistance' la suma del valor del índice 'cur' del array distances con el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix

Línea 117: mientras el contador 'neigh' esté dentro del rango del número de vértices (nVertices):

- Si el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix es true y el valor del índice 'neigh' del array es false:
 - Asigna a la variable 'newDistance' la suma del valor del índice 'cur' del array distances con el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix.
 - Si el valor de la posición 'neigh' del array distances es estrictamente mayor que 'newDistance':

- Asigna al contenido del índice 'neigh' del array prev el valor de cur
- Asigna a la variable 'newDistance' la suma del valor del índice 'cur' del array distances con el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix

Línea 132: asigna el valor true a la posición 'cur' del array visited

Línea 133: asigna a la variable 'cur' el valor devuelto por la función "nextCur".

Línea 115: Mientras que el valor del índice 'end' del array visited sea false:

- Mientras el contador 'neigh' esté dentro del rango del número de vértices (nVertices):
 - Si el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix es true y el valor del índice 'neigh' del array es false:
 - Asigna a la variable 'newDistance' la suma del valor del índice 'cur' del array distances con el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix.
 - Si el valor de la posición 'neigh' del array distances es estrictamente mayor que 'newDistance':
 - Asigna al contenido del índice 'neigh' del array prev el valor de cur
 - Asigna a la variable 'newDistance' la suma del valor del índice 'cur' del array distances con el valor de los índices 'cur' y 'neigh' de la matriz adjMatrix
- Asigna el valor true a la posición 'cur' del array visited
- Asigna a la variable 'cur' el valor devuelto por la función "nextCur".

Línea 110: se define un Double llamado newDistamce.

Línea 111: se llama a la función initializeDataStructures().

Línea 113: se asigna el entero ini a la variable cur.

Línea 114: se inicializa el array distances en la posición ini al valor 0.0

Línea 136: se asigna true a la variable dijkstraExec.

Línea 137: se devuelve el array distances en la posición end.

Análisis de <u>nextCur</u>

1	Código	Lo que se supone que hace	Lo que creemos que hace
2	private Integer nextCur() {	Returns the next vertex to be analyzed	Cada vez que se llama a nextCur, tras
3		by the Dijkstra algorithm. As required,	inicializar next a -1 y coste a un valor
4	Integer next = -1;	that should be the unvisited vertex with	alto, se entra en un for que recorre
5		smallest expected cost. Return Next	todos los nodos del grafo hasta
6	Double cost = Double.POSITIVE_INFINITY;	vertex to be explored.	encontrar el nodo no visitado a menor
7			distancia. Por último, retorna ese nodo.
8	for(int i=0; i <nvertices; i++)="" td="" {<=""><td></td><td></td></nvertices;>		
9			
10	if(!visited[i] && distances[i] <cost) td="" {<=""><td></td><td></td></cost)>		
11			
12	next = i;		
13			
14	cost = distances[i];		
15			
16	}		
17	-		
18	}		
19			
20	return next;		
21			
22	}		