Complete semi-conjugacies for psuedo-Anosov homeomorphisms

John Franks*, Michael Handel[†] February 2, 2008

Abstract

Suppose S is a surface of genus ≥ 2 , $f: S \to S$ is a surface homeomorphism isotopic to a pseudo-Anosov map α and suppose \tilde{S} is the universal cover of S and F and A are lifts of f and α respectively. A result of A. Fathi shows there is a semiconjugacy $\Theta: \tilde{S} \to \bar{\mathcal{L}}^s \times \bar{\mathcal{L}}^u$ from F to \bar{A} , where $\bar{\mathcal{L}}^s$ ($\bar{\mathcal{L}}^u$) is the completion of the R-tree of leaves of the stable (resp. unstable) foliation for A and \bar{A} is the map induced by A.

We generalize a result of Markovich and show that for any $g \in \text{Homeo}(S)$ that commutes with f and is isotopic to the identity with identity lift G and for any (c, w) in the image of Θ each component of $\Theta^{-1}(c, w)$ is G-invariant.

1 Introduction

Suppose that S is a closed surface and that $\alpha:S\to S$ is either an orientation preserving linear Anosov map of T^2 or an orientation preserving pseudo-Anosov homeomorphism of a higher genus surface. In the former case note that α fixes the point e that is the image of (0,0) in the usual projection of \mathbb{R}^2 to T^2 . The first author [Fr] proved that if $f\in \operatorname{Homeo}(T^2)$ is isotopic to α and fixes e then there is a unique map $p:T^2\to T^2$ that fixes e, is isotopic to the identity and that semi-conjugates f to α ; i.e $pf=\alpha p$.

To describe this case further we work in the universal cover \mathbb{R}^2 of T^2 . Let A, F and P be the lifts of α, f and p respectively that fix (0,0) and note that $PF^k = A^kP$ for all $k \in \mathbb{Z}$ (because $PF^k((0,0)) = A^kF((0,0))$. We say that the F-orbit of $\tilde{y} \in \mathbb{R}^2$ shadows the A-orbit of $\tilde{x} \in \mathbb{R}^2$ if $\tilde{d}(F^k(\tilde{y}), A^k(\tilde{x})) \leq C$ for some C and all $k \in \mathbb{Z}$; we also say that the f-orbit of $y \in T^2$ globally shadows the α -orbit of $x \in T^2$. Since p is homotopic to the identity, there exists C > 0 so that $\operatorname{dist}(P(\tilde{y}), \tilde{y}) < C$ for all

^{*}Supported in part by NSF grant DMS-055463.

[†]Supported in part by NSF grant DMS0103435.

 $\tilde{y} \in \mathbb{R}^2$. In particular, $\operatorname{dist}(F^k(\tilde{y}), A^k(P(\tilde{y})) = \operatorname{dist}(F^k(\tilde{y}), PF^k(\tilde{y})) < C$ for all k so the F-orbit of \tilde{y} shadows the A-orbit of $P(\tilde{y})$ for all $\tilde{y} \in \mathbb{R}^2$. It is well known that no two A-orbits shadow each other so P is completely determined by this shadowing property. The surjectivity of P reflects the fact that every A-orbit is shadowed by some F-orbit. The fact that P is defined on all of \mathbb{R}^2 reflects the fact that every F-orbit shadows some A-orbit.

Suppose now that α is pseudo-Anosov, that f is isotopic to α and that $A: \tilde{S} \to \tilde{S}$ is a lift of α . The isotopy between α and f lifts to an isotopy between A and a lift $F: \tilde{S} \to \tilde{S}$ of f. Equivalently, F is the unique lift of f that induces the same action on covering translations as A. Let d(x,y) be any path metric on S and let $\tilde{d}(\tilde{x},\tilde{y})$ be its lift to \tilde{S} . Shadowing in \tilde{S} and global shadowing in S are defined as above using \tilde{d} in place of the Euclidean metric on \mathbb{R}^2 . It is not hard to construct examples (c.f. Proposition 2.1 of [H2]) for which there are F-orbits that are not shadowed by any A-orbit. On the other hand, the second author proved [H1] that every A-orbit is shadowed by some F-orbit. More precisely, there exists a closed f-invariant set $Y \subset S$ with full pre-image denoted $\tilde{Y} \subset \tilde{S}$ and a continuous equivariant surjection $P: \tilde{Y} \to \tilde{S}$ such that PF = AP.

The F-orbits of $\tilde{S} \setminus \tilde{Y}$ do not shadow A-orbits. It is natural to ask if there is some larger context in which one can understand these orbits. Fathi [Fa] answered this by considering leaf spaces of the stable and unstable foliations.

In the Anosov case, the hyperbolic linear map A has stable and unstable invariant foliations \mathcal{F}^s and \mathcal{F}^u consisting of straight lines parallel to the eigenvectors of A. Let \mathcal{L}^s and \mathcal{L}^u be the leaf spaces of \mathcal{F}^s and \mathcal{F}^u respectively. Then \mathcal{L}^s and \mathcal{L}^u can be identified with \mathbb{R} in such a way that A induces homotheties $A^s: \mathcal{L}^s \to \mathcal{L}^s$ and $A^u: \mathcal{L}^u \to \mathcal{L}^u$ defined respectively by $x \to \lambda x$ and by $x \to x/\lambda$ where $\lambda > 1$ is an eigenvalue of A. Thus $(A^s, A^u): \mathcal{L}^s \times \mathcal{L}^u \to \mathcal{L}^s \times \mathcal{L}^u$ is naturally identified with $A: \mathbb{R}^2 \to \mathbb{R}^2$ and the shadowing argument that defines P can be done in this product of leaf spaces.

In the pseudo-Anosov case the stable and unstable foliations \mathcal{F}^s and \mathcal{F}^u have singularities and their leaf spaces \mathcal{L}^s and \mathcal{L}^u are more complicated. Namely, \mathcal{L}^s and \mathcal{L}^u , and their metric completions $\bar{\mathcal{L}}^s$ and $\bar{\mathcal{L}}^u$ have the structure of \mathbb{R} -trees [MS]. As in the previous case A induces a homothety $A^s: \bar{\mathcal{L}}^s \to \bar{\mathcal{L}}^s$ that uniformly expands distance by a factor $\lambda > 1$ and a homothety $A^u: \bar{\mathcal{L}}^u \to \bar{\mathcal{L}}^u$ that uniformly contracts distance by the factor $1/\lambda$. Let $\bar{A} = (A^s, A^u): \bar{\mathcal{L}}^s \times \bar{\mathcal{L}}^u \to \bar{\mathcal{L}}^s \times \bar{\mathcal{L}}^u$.

Let $Q_s: \tilde{S} \to \mathcal{L}^s$ be the natural map that sends a point in \tilde{S} to the leaf of \mathcal{F}^s that contains it. Define Q_u similarly and let $Q = Q_s \times Q_u: \tilde{S} \to \mathcal{L}^s \times \mathcal{L}^u$. Denote the subset of $\mathcal{L}^s \times \mathcal{L}^u$ consisting of pairs of leaves of \mathcal{F}^s and \mathcal{F}^u that have a point in common by Δ . Then $Q(\tilde{S}) = \Delta$, and $Q: \tilde{S} \to \Delta$ is a homeomorphism. Moreover,

the following diagram commutes.

Fathi [Fa] extended QP to a non-surjective map $\Theta: \tilde{S} \to \bar{\mathcal{L}}^s \times \bar{\mathcal{L}}^u$ that makes the following diagram commutes.

See also [RHU] for more details on the map Θ .

The maps $p: T^2 \to T^2$ and $\Theta: S \to \bar{\mathcal{L}}^s \times \bar{\mathcal{L}}^u$ depend canonically on f and so determine canonical decompositions $\{p^{-1}(x)\}$ of T^2 and $\{\Theta^{-1}(c,w)\}$ of S. If g commutes with f then one expects g to preserve this decomposition. If g is isotopic to the identity then one might even expect g to setwise preserve each element of the decomposition.

Implicit in [Mark] is an even stronger and more surprising fact for the Anosov case. Namely that if g commutes with f and is isotopic to the identity then g setwise preserves each component of the decomposition. It is not hard to see that this decomposition is upper semi-continuous and that each element is cellular.

Theorem 1.1. (Markovich) Suppose that $\alpha: T^2 \to T^2$ is a linear Anosov map, that $f \in \text{Homeo}(T^2)$ is isotopic to α and fixes e and that $p: T^2 \to T^2$ is the unique map that fixes e and satisfies $pf = \alpha p$. If $g \in \text{Homeo}(T^2)$ commutes with f, is isotopic to the identity and setwise preserves $p^{-1}(e)$ then each component of $p^{-1}(x)$ is g-invariant for all $x \in T^2$.

The main result of this paper is the following extension of Markovich's result to the pseudo-Anosov case. If g is isotopic to the identity then the *identity lift* G of g is the unique lift that commutes with all covering translations.

Theorem 1.2. Suppose that $\alpha: S \to S$ is pseudo-Anosov, that $f \in \text{Homeo}(S)$ is isotopic to α and that $A, F: \tilde{S} \to \tilde{S}$ and $\Theta: \tilde{S} \to \bar{\mathcal{L}}^s \times \bar{\mathcal{L}}^u$ are as above. If $g \in \text{Homeo}(S)$ commutes with f and is isotopic to the identity then the identity lift $G: \tilde{S} \to \tilde{S}$ of g commutes with F and preserves each component of $\Theta^{-1}(c, w)$ for all $(c, w) \in \Theta(\tilde{S})$.

Our proof of Theorem 1.2 makes use of arguments from [Mark]. We give complete details for the reader's convenience and because the arguments from [Mark] are not easily referenced. It is straightforward to modify our proof of Theorem 1.2 to obtain a proof of Theorem 1.1. We leave that to the interested reader.

2 Proof of Theorem 1.2

We assume throughout this section that $\alpha: S \to S$ is pseudo-Anosov with expansion factor $\lambda > 1$, that $f \in \operatorname{Homeo}(S)$ is isotopic to α , and that $A: \tilde{S} \to \tilde{S}$ and $F: \tilde{S} \to \tilde{S}$ are lifts of α and f that induce the same action on covering translations.

The transverse measures on the lifts $\tilde{\mathcal{F}}^s$ and $\tilde{\mathcal{F}}^u$ of the stable and unstable measured foliations \mathcal{F}^s and \mathcal{F}^u for α determine pseudo-metrics d^u and d^s on \tilde{S} such that

$$d^{u}(A(x), A(y)) = \lambda d^{u}(x, y) \text{ and } d^{s}(A(x), A(y)) = \lambda^{-1} d^{s}(x, y).$$
 (1)

for all $x,y\in \tilde{S}$. Moreover, $d^u(x,y)=0$ [resp. $d^s(x,y)=0$] if and only if x and y belong to the same leaf of $\tilde{\mathcal{F}}^s$ [resp. $\tilde{\mathcal{F}}^u$]. There is also [B] a singular Euclidean metric d on \tilde{S} such that

$$d(x,y) = \sqrt{d^s(x,y)^2 + d^u(x,y)^2}$$

on each standard Euclidean chart (i.e. one without singularities). In particular, $d(x,y) \leq 2 \max\{d^s(x,y), d^u(x,y)\}.$

For any $x, y \in S$ there is a unique (up to parametrization) path ρ with endpoints x and y and with length equal to d(x, y). Subdividing ρ at the singularities that it intersects decomposes ρ into a concatenation of linear subpaths. We will refer to ρ as the geodesic joining x to y. If the intersection of two geodesics γ_1 and γ_2 is more than a single point, then it is a path whose endpoints are either singularities or endpoints of γ_1 or γ_2 . Any leaf without singularities of either foliation is a geodesic, as is any embedded copy of \mathbb{R} in a leaf with singularities.

Remark 2.1. Since the geodesic γ joining x to y (minimizing length as measured by d) consists of a finite collection of segments whose interiors lie in Euclidean charts we can conclude $\max\{d^s(x,y),d^u(x,y)\} \leq d(x,y) \leq 2\max\{d^s(x,y),d^u(x,y)\}.$

We denote the leaf of $\tilde{\mathcal{F}}^s$ that contains x by $W^s(x)$, the leaf space of $\tilde{\mathcal{F}}^s$ by \mathcal{L}^s and the image of $W^s(x)$ in \mathcal{L}^s by $Q_s(x)$). Thus $Q_s^{-1}(Q_s(x)) = W^s(x)$. Moreover, d^u induces a metric on \mathcal{L}^s (which we also denote d^u) by setting $d^u(Q_s(x_1), Q_s(x_2)) = d^u(x_1, x_2)$. This is easily seen to be independent of the choice of x_1 and x_2 . This

metric gives \mathcal{L}^s the structure of an \mathbb{R} -tree [MS]. As illustrated in Remark 2.2, \mathcal{L}^s is not complete. We denote the metric completion by $(\bar{\mathcal{L}}^s, d^u)$

Remark 2.2. One can construct a non-converging Cauchy sequence $L_i = Q_s(x_i)$ in \mathcal{L}^s as follows. Choose a singularity $\tilde{x}_0 \in \tilde{S}$, a stable ray R_0 initiating at x_0 and a sequence $\epsilon_i > 0$ whose sum is finite. Assuming inductively that x_i and R_i have been defined, choose a singularity $x_{i+i} \in \tilde{S}$ such that $W^u(x_{i+1}) \cap R_i \neq \emptyset$ and such that $d^u(x_{i+1}, x_i) < \epsilon_{i+1}$. Let R_{i+1} be a stable ray in $W^s(x_{1+1})$ that initiates at x_{i+1} and whose interior is contained in a component of the complement of $W^u(x_{i+1})$ that is disjoint from x_i . By construction, $d^u(L_i, L_j) = \epsilon_{i+1} + \cdots + \epsilon_j$ for all $i \leq j$ and there are no accumulation points of the $W^s(x_i)$'s. The former shows that the L_i 's are a Cauchy sequence and the latter implies that this sequence is non-convergent.

Similarly \mathcal{L}^u , the space of unstable leaves in \tilde{S} is an \mathbb{R} -tree with metric d^s and $Q_u: \tilde{S} \to \mathcal{L}^u$ satisfies $Q_u^{-1}(Q_u(x)) = W^u(x)$. The metric completion of \mathcal{L}^u is $(\bar{\mathcal{L}}^u, d^s)$ and we use the metric $\bar{d} = \max\{d^u, d^s\}$ on $\bar{\mathcal{L}}^u \times \bar{\mathcal{L}}^s$. Define $Q: \tilde{S} \to \mathcal{L}^u \times \mathcal{L}^s$ by $Q(x) = (Q^s(x), Q^u(x))$ and let $\Delta = Q(\tilde{S})$ equipped with the subset topology. Note that Δ can be characterized as the subset of $\mathcal{L}^s \times \mathcal{L}^u$ consisting of pairs of leaves of \mathcal{F}^s and \mathcal{F}^u that have a point in common.

The pseudo-Anosov map A on \tilde{S} induces a homeomorphism $A_s : \mathcal{L}^s \to \mathcal{L}^s$. From the properties of d^s (equation (1) above) it is clear that A_s is an expanding homothety, i.e. for any $L_1, L_2 \in \mathcal{L}^s$

$$d^{u}(A_{s}(L_{1}), A_{s}(L_{2})) = \lambda d^{u}(L_{1}, L_{2}).$$
(2)

The map $A_u: \mathcal{L}^u \to \mathcal{L}^u$ is defined analogously and has similar properties. Likewise if T is a covering translation on \tilde{S} it induces an isometry $T_s: \mathcal{L}^s \to \mathcal{L}^s$. It is clear that A_s and A_u extend to expanding and contracting homotheties respectively of $\bar{\mathcal{L}}^s$ and $\bar{\mathcal{L}}^u$ which we also denote by A_s and A_u . Also T_s extends to an isometry of $\bar{\mathcal{L}}^s$. The map $T_u: \mathcal{L}^u \to \mathcal{L}^u$ is defined analogously and has similar properties. Let $\bar{A}: \bar{\mathcal{L}}^s \times \bar{\mathcal{L}}^u \to \bar{\mathcal{L}}^s \times \bar{\mathcal{L}}^u$ be the map $A_s \times A_u$.

As a consequence of Fathi's theorem we have the following.

Proposition 2.3. There exists a unique continuous map $\theta_s: \tilde{S} \to \bar{\mathcal{L}}^s$ satisfying

(i) There is a commutative diagram

- (ii) There exists $C_1 > 0$ such that $d^u(Q_s(x), \theta_s(x)) < C_1$ for all $x \in \tilde{S}$.
- (iii) For all $x \in \tilde{S}$, $\theta_s(x)$ is the unique point in $\bar{\mathcal{L}}^s$ with the property that there exists $C_2 > 0$ such that $d^u(Q_s(F^k(x)), A_s^k \theta_s(x)) < C_2$ for all $k \geq 0$.
- (iv) $\theta_s(T(x)) = T_s(\theta_s(x))$ for all $x \in \tilde{S}$ and each covering transformation T.
- (v) The image of θ_s contains \mathcal{L}^s .

Proof. Let $\theta_s : \tilde{S} \to \bar{\mathcal{L}}^s$ be the composition of Θ with the projection of $\bar{\mathcal{L}}^s \times \bar{\mathcal{L}}^u$ onto its first factor. Then properties (i)-(v) follow from the corresponding properties of Θ as proved in [Fa].

Let $\theta_u: \tilde{S} \to \bar{\mathcal{L}}^u$ be the analogous semiconjugacy from F to $A_u: \bar{\mathcal{L}}^u \to \bar{\mathcal{L}}^u$. Note then that

$$\Theta(x) = (\theta_u(x), \theta_s(x)).$$

Remark 2.4. Proposition 2.3 can be proved directly as follows. Given $x \in \tilde{S}$ let $z_k = A^{-k}F^k(x)$ and let $L_k = Q_s(z_k)$. Then it is straight forward to show that $\{L_k\}$ is a Cauchy sequence in the d^u metric on $\bar{\mathcal{L}}^s$. It's limit can be taken as the definition of $\theta_s(x)$. Property (i) is then immediate and it is not difficult to show θ_s is continuous and satisfies the other properties.

We denote open ϵ -neighborhoods by $N_{\epsilon}(\cdot)$. By item (iii) of Proposition 2.3 applied with k=0 there is a constant C_2 such that

$$d^{u}(Q_{s}(x), \theta_{s}(x)) < C_{2} \tag{3}$$

for all $x \in \tilde{S}$. Since $d^u(A(x), F(x))$ is bounded independently of x and since Q_s preserves d^u we may also assume that

$$d^{u}(Q_{s}F(x), A_{s}Q_{s}(x)) = d^{u}(Q_{s}F(x), Q_{s}A(x)) < C_{2}.$$
(4)

Choose $C > \max(C_2, C_2/(\lambda - 1))$ and note that

$$\lambda C - C_2 > C \tag{5}$$

Lemma 2.5. $\Theta^{-1}(N_{\epsilon}(c) \times N_{\epsilon}(w))$ is a bounded subset of \tilde{S} for all $\epsilon > 0$ and all $(c, w) \in \mathcal{L}^s \times \mathcal{L}^u$.

Proof. For $x \in Q_s^{-1}(c)$ and $z \in \Theta^{-1}(N_{\epsilon}(c) \times N_{\epsilon}(w))$ we have

$$d^{u}(x,z) = d^{u}(Q_{s}(x), Q_{s}(z))$$

$$\leq d^{u}(Q_{s}(x), \theta_{s}(z)) + d^{u}(\theta_{s}(z), Q_{s}(z))$$

$$\leq \epsilon + C_{2}.$$

Symmetrically, if $\theta_u(y) = w$ then

$$d^s(y,z) \le \epsilon + C_2.$$

It follows that $d(z, z') \leq 2 \max\{d^u(z, z'), d^s(z, z')\} \leq 2(\epsilon + C_2)$ for all $z, z' \in \Theta^{-1}(N_{\epsilon}(c) \times N_{\epsilon}(w))$.

Lemma 2.6. If $V(c,\epsilon)$ is defined to be $\theta_s^{-1}(N_{\epsilon}(c))$, then

- (i) The set $V(c, \epsilon)$ is an open, connected, simply connected, unbounded set for all $c \in \mathcal{L}^s$ and all $\epsilon > 0$.
- (ii) If $G: \tilde{S} \to \tilde{S}$ commutes with F and if there is a constant C_1 such that $d(x, G(x)) < C_1$ for all $x \in \tilde{S}$ then there is a ray R that is properly embedded in \tilde{S} such that $R, G(R) \subset V(c, \epsilon)$ and such that R is properly homotopic to G(R) in $V(c, \epsilon)$; i.e. there is a one parameter family R_t of rays in $V(c, \epsilon)$ such that $R_0 = R$ and $R_1 = G(R)$ and such that each R_t is properly embedded in \tilde{S} .

Proof. Define

$$Y_k = \{ x \in \tilde{S} : d^u(x, W^s(A^k(c)) < \lambda^k \epsilon - C \}$$

or equivalently

$$Y_k = Q_s^{-1}(N_{\lambda^k \epsilon - C}(A_s^k(c))).$$

Then Y_k is an open convex subset of \tilde{S} that is a union of leaves of \mathcal{F}^s . In particular, Y_k is an open, connected, simply connected, unbounded set. If $R_1(t)$ and $R_2(t)$ are any two rays in Y_k that are properly embedded in \tilde{S} and if there is a constant C_0 such that $d(R_1(t), R_2(t)) \leq C_0$ for all t, then these rays are properly homotopic in Y_k (by a homotopy along geodesics).

Define

$$X_k = F^{-k}(Y_k).$$

Thus

$$X_k = F^{-k} Q_s^{-1} (N_{\lambda^k \epsilon - C} (A_s^k(c)))$$

= $\{ x \in \tilde{S} : d^u(Q_s F^k(x), A_s^k(c)) < \lambda^k \epsilon - C \}.$

Since F is a homeomorphism, each X_k is an open, connected, simply connected, unbounded set. Also if $R_1(t)$ and $R_2(t)$ are properly embedded rays in \tilde{S} , contained in X_k , for which there is a constant C_0 such that $d(R_1(t), R_2(t)) \leq C_0$, then these rays are properly homotopic in X_k .

If $x \in X_k$ then Equation (3) implies that $A_s^k \theta_s(x) = \theta_s F^k(x) \in N_{\lambda^k \epsilon}(A_s^k(c))$ and so $\theta_s(x) \in N_{\epsilon}(c)$ by Equation (2). This proves that $X_k \subset V(c, \epsilon)$. Moreover, by the triangle inequality and Equations (4), (2) and (5) we have

$$\begin{split} d^{u}(Q_{s}F^{k+1}(x),A_{s}^{k+1}(c)) &= d^{u}(Q_{s}FF^{k}(x),A_{s}A_{s}^{k}(c)) \\ &\leq d^{u}(A_{s}Q_{s}F^{k}(x),A_{s}A_{s}^{k}(c)) + C_{2} \\ &= \lambda d^{u}(Q_{s}F^{k}(x),A_{s}^{k}(c)) + C_{2} \\ &\leq \lambda(\lambda^{k}\epsilon - C) + C_{2} \\ &= \lambda^{k+1}\epsilon - (\lambda C - C_{2}) \\ &< \lambda^{k+1}\epsilon - C \end{split}$$

which proves that $X_k \subset X_{k+1}$.

If $\theta_s(w) \in N_{\epsilon}(c)$ then we may choose $\delta < \epsilon$ and $k \ge 1$ so that $\theta_s(w) \in N_{\delta}(c)$ and so that $\lambda^k \delta < \lambda^k \epsilon - C_2 - C$. Then

$$\theta_s F^k(w) = A_s^k \theta_s(w) \in N_{\lambda^k \epsilon - C - C_2}(A_s^k(c))$$

and Equation (3) implies that

$$Q_s F^k(w) \in N_{\lambda^k \epsilon - C}(A_s^k(c))$$

and hence that $w \in X_k$. We have now shown that $V(c, \epsilon)$ is the increasing union of open, connected, simply connected and unbounded sets X_k thereby completing the proof of (i).

Choose $k \geq 1$ so that $C_1 < \lambda^k \epsilon - C$ and let R' be a ray in $W^s(A_s^k(c))$. Then R' and G(R') are properly embedded in \tilde{S} and are contained in Y_k and $R := F^{-k}(R')$ and $G(R) = F^{-k}G(R')$ are properly embedded in \tilde{S} and are contained in X_k . Choosing C_0 so that $d(G(x), x) \leq C_0$ for all x, we conclude $d(R(t), G(R(t))) \leq C_0$ and as noted above, R and G(R) are properly homotopic in $X_k \subset V(c, \epsilon)$. This proves (ii).

The following proof is an adaptation of one that appears in [Mark].

Proof of Theorem 1.2 Let $G: \tilde{S} \to \tilde{S}$ be the unique lift of g that is equivariantly isotopic to the identity; equivalently G is the lift that commutes with all covering translations T of \tilde{S} . The commutator [F,G], which must be a covering translation since it is a lift of the identity on S, commutes with all covering translations and hence is the identity. It follows that F and G commute.

Since S is compact and $\bar{d}(Q(G(Ty)), Q(Ty)) = \bar{d}(Q(G(y)), Q(y))$ for all $y \in \tilde{S}$ and all covering translations T, there is a constant C' such that $\bar{d}(Q(G(y)), Q(y)) < C'$ for all $y \in \tilde{S}$. It follows that

$$\begin{split} \bar{d}(QF^k(x), \bar{A}^k(\Theta(G(x))) &\leq \bar{d}(QF^k(x), QF^k(G(x)) + \bar{d}(QF^k(G(x)), \bar{A}^k\Theta(G(x))) \\ &= \bar{d}(QF^k(x), QG(F^k(x)) + \bar{d}(QF^k(G(x)), \bar{A}^k\Theta(G(x))) \\ &\leq C' + \bar{d}(QF^k(G(x)), \bar{A}^k\Theta(G(x))) \\ &\leq C' + \overline{C_2} \end{split}$$

where $\overline{C_2}$ is the maximum of the constants produced by item (iii) of Proposition 2.3 applied to θ_s and to θ_u . The uniqueness part of Proposition 2.3-(iii) therefore implies that $\Theta G = \Theta$. In particular, $\Theta^{-1}(c, w)$ is G-invariant. It suffices to show that each component of $\Theta^{-1}(c, w)$ is G-invariant.

Choose $\epsilon_n \to 0$. Let $V_n = V(c, \epsilon_n)$ be as in Lemma 2.6 and let $H_n = H(w, \epsilon_n)$ be the open set obtained by applying Lemma 2.6 with \mathcal{L}^s replaced by \mathcal{L}^u and θ_s replaced by θ_u . Then $V_n \cap H_n = \Theta^{-1}(N_{\epsilon}(c) \times N_{\epsilon}(w))$ is bounded by Lemma 2.5 and

$$\Theta^{-1}(c,w) = \bigcap_{n=1}^{\infty} (V_n \cap H_n).$$

Moreover if Λ is a component of $\Theta^{-1}(c, w)$ and we let K_n be the component of $V_n \cap H_n$ containing Λ then $\overline{K_{n+1}} \subset K_n$ for all n where $\overline{K_{n+1}}$ denotes the closure of K_{n+1} . In particular,

$$\bigcap_{n=1}^{\infty} K_n = \bigcap_{n=1}^{\infty} \overline{K_{n+1}}.$$

Since each $\overline{K_{n+1}}$ is compact, $\bigcap_{n=1}^{\infty} K_n$ is non-empty and connected and hence equal to Λ . It therefore suffices to show that each K_n is G-invariant. In fact it is enough to prove that $G(\bar{K}_n) \cap \bar{K}_n \neq \emptyset$, because then $G(\bar{K}_n)$ and \bar{K}_n are both subsets of K_{n-1} and hence $G(K_{n-1}) = K_{n-1}$.

If there were infinitely many components of $V_n \cap H_n$ that contain an element of $\Theta^{-1}(c,w)$ then there would be a sequence $\{x_i\} \subset \Theta^{-1}(c,w)$ converging to some $x \in \Theta^{-1}(c,w)$ and with each x_i in a different component of $V_n \cap H_n$. Since these components are disjoint, x is also an accumulation point of the frontiers of these components. Hence, since the frontier of a component of $V_n \cap H_n$ is contained in the union of the frontier of V_n and the frontier of H_n there is a sequence $\{y_i\}$ converging to x with each y_i in the frontier of either V_n or H_n . This contradicts the continuity of Θ and the fact that $\bar{d}(\Theta(y_i), \Theta(x_i)) = \epsilon_n > 0$ for all i. We conclude that there are only finitely many components of $V_n \cap H_n$ that contains an element of $\Theta^{-1}(c,w)$. Since G commutes with Θ , $G^i(K_n)$ is a such a component for all $i \geq 0$. Thus $G^m(K_n) = K_n$ for some smallest m > 1.

Let S^2 denote the one point compactification of \tilde{S} obtained by adding a point ∞ . The set $V_n \subset \tilde{S}$ can be thought of as a subset of S^2 and when we do so we refer to it simply as V. By Lemma 2.6, V is open, connected and simply connected and so has a prime end compactification \hat{V} . For our purposes the key properties are:

- (i) \hat{V} is topologically a disk D whose interior is identified with V.
- (ii) The function $G|_V$ extends continuously to a homeomorphism $\widehat{G}:D\to D$.
- (iii) For each continuous arc $\gamma:[0,1]\to S^2$ with $\gamma([0,1))\subset V$ and $\gamma(1)$ in the frontier of V there is a continuous arc $\widehat{\gamma}:[0,1]\to D$ with $\widehat{\gamma}(t)=\gamma(t)$ for $t\in[0,1)$. The point $\gamma(1)$ is called an *accessible point* of the frontier of V and $\widehat{\gamma}(1)$ is a prime end corresponding to it (there may be more than one prime end corresponding to an accessible point).
- (iv) If γ_t is a continuous one parameter family of arcs in S^2 as in (iii) and if $\gamma(1)$ is independent of t then $\widehat{\gamma}(1)$ is also independent of t.

Properties (i)-(iii) go back to Caratheodory. An excellent modern exposition can be found in Mather's paper [M]. In particular see §17 of [M] for a discussion of accessible points and §18 for property (iv).

A properly embedded ray R in \tilde{S} that is contained in V_n determines an arc γ as in (iii) with $\gamma(1) = \infty$. Considering the rays R and G(R) and applying item (ii) of

Lemma 2.6 we obtain γ and $\widehat{G}(\gamma)$ to which Property (iv) applies. This implies that $\widehat{\gamma}$ and $\widehat{G}(\widehat{\gamma})$ converge to the same prime end $\widehat{\infty}$ which is evidently fixed by \widehat{G} .

Now choose a properly embedded ray R_1 in H_{n+1} with initial endpoint in K_n and note that R_1 is disjoint from the frontier of H_n . Since K_n is bounded, R_1 intersects the frontier of K_n in some first point z which is necessarily in the frontier of V_n . The initial segment γ_1 of R_1 that terminates at z satisfies the hypotheses of (iii) with $\gamma(1) = z$. Let $\hat{\gamma}$ be the associated path in D and let $\hat{z} \in \partial D$ be the prime end $\hat{\gamma}(1)$.

Our proof is by contradiction. Let m be the smallest natural number with $G^m(K_n) = K_n$ and assume $m \neq 1$ and $G(\bar{K}_n) \cap \bar{K}_n = \emptyset$. Then $\hat{z}, \hat{G}(\hat{z}), \hat{G}^m(\hat{z})$ and $\hat{G}^{m+1}(\hat{z})$ are distinct and in this order on $\partial D \setminus \{\widehat{\infty}\}$ (oriented so that $\hat{z} < \hat{G}(\hat{z})$). Since $G^m(K_n) = K_n$ the initial endpoints of the $\widehat{\gamma}_1$ and $\widehat{G}^m(\widehat{\gamma}_1)$ can be joined in K_n to form an arc $\widehat{\beta}$ with interior in K_n and endpoints \hat{z} and $\widehat{G}^m(\hat{z})$. Therefore $\widehat{G}(\widehat{\beta})$ has one endpoint $\widehat{G}(\hat{z})$ and the other $\widehat{G}^{m+1}(\hat{z})$. It follows that $\widehat{G}(\widehat{\beta}) \cap \widehat{\beta} \neq \emptyset$ and indeed the points of intersection must lie in the interior of these arcs in contradiction to the assumption that $G(K_n) \cap K_n = \emptyset$. We conclude that m = 1 and hence that $G(K_n) = K_n$.

References

- [B] L. Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), no. 1-2, 73–98
- [Fa] A. Fathi, Homotopical stability of pseudo-Anosov diffeomorphisms, Ergodic Theory Dynam. Systems, 10 (1990) 287–294
- [FLP] A. Fathi, F. Laudenbach and V. Poenaru, *Travaux de Thurston sur les surfaces*, Astérisque **66–67** (1979)
- [Fr] J. Franks, Anosov diffeomorphisms, 1970 Global Analysis (Proc. Sympos. Pure Math., vol. XIV, Berkeley, Calif., 1968) 61–93, Amer. Math. Soc., Providence, R.I
- [FHP] J. Franks, M. Handel and K. Parwani Fixed Points of abelian actions on S^2 . preprint
- [H1] M. Handel, Global shadowing of pseudo-Anosov homeomorphisms, Ergodic Theory Dynam. Systems 5 (1985), no. 3, 373–377
- [H2] M. Handel, Entropy and semi-conjugacy in dimension two, Ergodic Theory Dynam. Systems 8 (1988), no. 4, 585–596
- [Ko] M. Korkmaz, Low dimensional homology of mapping class groups: a survey, Turkish J. Math. 26 (2002), no. 1, 101–114

- [M] J.Mather: Topological proofs of some purely topological consequences of Caratheodory's Theory of prime ends, in *Selected Studies*, Th. M. Rassias, G. M. Rassias, eds., *North-Holland* (1982), 225–255
- [Mark] V. Markovic, Realization of the mapping class group by homeomorphisms, Invent. MAth. 168 (2007), no.3, 523–566
- [MS] J. W. Morgan and P. B. Shalen, Free actions of surface groups on \mathbb{R} -trees, Topology 30 (1991) no. 2 143–154
- [Mor1] S. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), 551–577
- [Mor2] S. Morita, Geometry of characteristic classes of surface bundles, Translations of Mathematical Monographs, 199 Iwanami Series in Modern Mathematics. American Mathematical Society, (2001)
- [RHU] Federico Rodriguez Hertz, Jana Rodriguez Hertz, Raul Ures, Dynamics in the isotopy class of a pseudo-Anosov map, http://uk.arxiv.org/pdf/math.DS/0407369.pdf