日期: 2022年6月1日

Page 10 10 10 10 10 10 10 10 10 10 10 10 10		
成绩:		
ΠV Zm .		
14/1/2/2/3		

学院: 智能工程学院 课程: 数据库原理 周次: 第 16 周

专业: 智能科学与技术 姓名: 方桂安 学号: 20354027

1 题一

1.1 题目

Consider the following relation r(A, B, C, D, E, F) with the set of functional dependencies

$$F = \{$$

$$A \to BCD$$

$$BC \to DE$$

$$B\to D$$

$$D \to A$$

- (a) Compute B^+
- (b) Prove that AF is a superkey
- (c) Compute a canonical cover of F_c
- (d) Give a 3NF decomposition of r
- (e) Give a BCNF decomposition of r

1.2 解答

(a) $B \to BD$ (third dependency)

 $BD \to ABD$ (fourth dependency)

 $ABD \rightarrow ABCD$ (first dependency)

 $ABCD \rightarrow ABCDE$ (second dependency)

Thus, $B^+ = ABCDE$

(b) Using Armstrong's axioms

 $A \to BCD$ (Given)

 $A \rightarrow ABCD$ (Augmentation with A)

 $BC \to DE$ (Given)

 $ABCD \rightarrow ABCDE$ (Augmentation with ABCD)

 $A \to ABCDE$ (Transitivity)

 $AF \rightarrow ABCDEF$ (Augmentation with F)

(c) Because of dep. 3, we can observe that D is superfluous in deps. 1 and 2. We acquire the new set of rules by removing these two.

$$A \to BC$$

$$BC \to E$$

$$B \to D$$

$$D \to A$$

Now observe that B^+ equals ABCDE, and from this set, the FD $B \to E$ can be derived. As a result, in the third dependence, the property C is superfluous. We can achieve the final canonical cover by removing this characteristic and merging it with the third FD:

$$A \to BC$$

$$B \to DE$$

$$D \to A$$

There are no unnecessary attributes in any of the FDs here.

(d) We see that there is no FD in the canonical cover such that the set of attributes is a subset of

any other FD in the canonical cover. Thus, each each FD gives rise to its own relation, giving

$$r_1(A, B, C)$$

$$r_2(B, D, E)$$

$$r_3(D,A)$$

Now the attribute F is not dependent on any attribute. Thus, it must be a part of every superkey. Also, none of the relations in the above schema have F, and hence, none of them have a superkey. Thus, we need to add a new relation with a superkey.

$$r_4(A,F)$$

(e) We start with

We see that the relation is not in BCNF because of the first FD. Hence, we decompose it accordingly to get

$$r_1(A, B, C, D)$$
 $r_2(A, E, F)$

Now we notice that $A \to E$ is an FD in F^+ , and causes r_2 to violate BCNF. Once again, decomposing r_2 gives

$$r_1(A, B, C, D) \ r_2(A, F) \ r_3(A, E)$$

This schema is now in BCNF.