Project Development Phase Model Performance Test

Date	16 November 2022	
Team ID	PNT2022TMID43216	
Project Name	virtual eye - life guard for swimming pool to	
	detect active drowning	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Safety is paramount in all	
		swimming pools. The current	
		systems expected to address the	
		problem of ensuring safety at	
		swimming pools have	
		significant problems due to their	
		technical aspects, such as	
		underwater cameras and	
		methodological aspects such as	
		the need for human intervention	
		in the rescue mission. The use	
		of an automated visual-based	
		monitoring system can help to	
		reduce drownings and assure	
		pool safety effectively. This	
		study introduces a revolutionary	
		technology that identifies	
		drowning victims in a minimum	
		amount of time and dispatches	
		an automated drone to save	
		them. Using convolutional	
		neural network (CNN) models,	
		it can detect a drowning person	
		in three stages. Whenever such	
		a situation like this is detected,	
		the inflatable tube-mounted	
		selfdriven drone will go on a	
		rescue mission, sounding an	
		alarm to inform the nearby	
		lifeguards. The system also	
		keeps an eye out for potentially	

		dangerous actions that could result in drowning. This system's ability to save a drowning victim in under a minute has been demonstrated in prototype experiments' performance evaluations.	
2.	Accuracy	Training Accuracy – 85 % Validation Accuracy – >90 %	
3.	Confidence Score (Only Yolo Projects)	Class Detected – up to 85 % Confidence Score – 95 %	