

MATH 181 2ND EXAM PRACTICE C SOLUTIONS

Spring 2019

Name:			

- Write your **full name** on the line above.
- Show your work. Incorrect answers with work can receive partial credit.
- Attempt every question; showing you understand the question earns some credit.
- If you run out of room for an answer, continue on the back of the page. Before doing so, write "see back" with a circle around it.
- You can use 1 page (front and back) of notes.
- You can use (and probably need) a calculator.
- You can use the Geogebra Scientific Calculator instead of a calculator. You need to put your phone on **airplane mode** and then within the application, start **exam mode**; you should see a green bar with a timer counting up.
- If a question is confusing or ambiguous, please ask for clarification; however, you will not be told how to answer the question.
- · Box your final answer.
- A formula sheet is attached to this test.

Do not write in this grade table.

Question:	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Total
Points:	10	10	10	10	10	10	10	10	10	90
Score:										

Normal Distribution:

 $X \sim \mathcal{N}(\mu, \sigma)$

 μ = population mean

 σ = population standard deviation

x =possible value of X

 ℓ = percentile of x (left area)

 $\Phi(z)$ = standard normal cumulative function

$$z = \frac{x - \mu}{\sigma}$$

$$P(X < x) = \Phi(z)$$

$$\ell = \Phi(z)$$

$$z = \Phi^{-1}(\ell)$$

Bernoulli Distribution:

 $X \sim \text{Bern}(p)$

X = 0 for fail or 1 for success

p = probability of success

$$P(X = 0) = 1 - p$$

$$P(X = 1) = p$$

$$\mu = p$$

$$\sigma = \sqrt{p(1 - p)}$$

Geometric Distribution:

 $X \sim \mathsf{Geo}(p)$

X = number of trials until first success

p =probability of success on each trial

n = a possible number of trials

$$P(X = n) = (1 - p)^{n-1}(p)$$

$$\mu = \frac{1}{p}$$

$$\sigma = \sqrt{\frac{1 - p}{p^2}}$$

Mean-Sampling Distribution:

 \bar{X} = sample mean

s =sample standard deviation

n =sample size

 μ = population mean

 σ = population standard deviation

SE =standard error

$$SE = \frac{\sigma}{\sqrt{n}}$$

If $n \ge 30$ (or if population is normal) then:

$$\bar{X} \sim \mathcal{N}(\mu, SE)$$

Binomial Distribution:

 $X \sim \mathcal{B}(n, p)$

X = number of successes from n trials

p =probability of success on each trial

n = number of trials

k = a possible number of successes

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$
$$\mu = np$$
$$\sigma = \sqrt{np(1 - p)}$$

If $np \ge 10$ and $n(1-p) \ge 10$, then

$$X \sim \mathcal{N}(\mu, \sigma)$$

Continuity correction:

$$P(X \le k) \approx \Phi\left(\frac{k + 0.5 - \mu}{\sigma}\right)$$

Confidence Interval:

CI =confidence interval

 γ = confidence level

 $\bar{x} = \text{sample mean}$

s =sample standard deviation

$$z^* = \Phi^{-1} \left(\frac{\gamma + 1}{2} \right)$$
$$SE \approx \frac{s}{\sqrt{n}}$$
$$CI = \bar{x} \pm z^* SE$$

Hypothesis testing:

 H_0 : $\mu = \mu_0$

 $H_A: \mu \neq \mu_0$

 $\bar{x} = \text{a possible/specific/observed sample mean}$

s =sample standard deviation

 α = significance level

$$\sigma \approx s$$
$$z = \frac{\bar{x} - \mu_0}{SE}$$

p-value =
$$P(|Z| > |z|)$$

= $2 \cdot \Phi(-|z|)$

If p-value $< \alpha$, then reject H_0 , else retain H_0 .

Q1. (10 points) Let random variable *X* be normally distributed with mean $\mu = 50$ and standard deviation $\sigma = 12$. What is the probability that *X* is between 46 and 54?

Solution:

$$z_{\text{LOWER}} = \frac{46 - 50}{12} = -0.33$$
$$z_{\text{UPPER}} = \frac{54 - 50}{12} = 0.33$$

$$P(46 < X < 54) = \Phi(0.33) - \Phi(-0.33)$$
$$= 0.6293 - 0.3707$$
$$= 0.2586$$

Q2. (10 points) Let random variable \bar{X} be the sample mean of 36 draws from a normally distributed population with mean $\mu = 50$ and standard deviation $\sigma = 12$. What is the probability that \bar{X} is between 46 and 54?

Solution:

$$SE = \frac{12}{\sqrt{36}} = 2$$

$$z_{\text{LOWER}} = \frac{46 - 50}{2} = -2$$

$$z_{\text{UPPER}} = \frac{54 - 50}{2} = 2$$

$$P(46 < \bar{X} < 54) = \Phi(2) - \Phi(-2)$$
$$= 0.9772 - 0.0228$$
$$= \boxed{0.9544}$$

Q3. (10 points) Let random variable *X* be normally distributed with mean $\mu = 50$ and standard deviation $\sigma = 12$. What is the *x*-score of the 80th percentile?

Solution:

$$z = \Phi^{-1}(0.80) = 0.84$$

$$0.84 = \frac{x - 50}{12}$$

$$x = 50 + (0.84)(12) = 60.08$$

Q4. (10 points) Let random variable Y be normally distributed with mean $\mu = 72$ and an unknown standard deviation σ . However, you know the 90th percentile is y = 79. What is the distribution's standard deviation?

Solution:

$$z = \Phi^{-1}(0.90) = 1.28$$

$$1.28 = \frac{79 - 72}{\sigma}$$

$$\sigma = \frac{79 - 72}{1.28} = \boxed{5.47}$$

Q5. (10 points) Let random variable W be normally distributed with an unknown mean μ and standard deviation $\sigma = 0.5$. However, you know the 30th percentile is w = 8. What is the distribution's mean?

Solution:

$$z = \Phi^{-1}(0.30) = -0.52$$

$$-0.52 = \frac{8 - \mu}{0.5}$$

$$\mu = 8 + (0.5)(0.52) = 8.26$$

- **Q6**. (10 points) Let each trial have a probability of success p = 0.61.
 - (a) What is the probability that in 400 trials there are 250 successes?

Solution:

$$P(X = 250) = {400 \choose 250} (0.61)^{250} (0.39)^{150}$$

$$P(X = 250) = \boxed{0.034}$$

(b) What is the probability that in 400 trials there are at least 250 successes? (Please use a normal approximation and continuity correction. Also, remember that p = 0.61.)

Solution: Find the mean and standard deviation (binomial distribution).

$$\mu = (400)(0.61) = 244$$

$$\sigma = \sqrt{(400)(0.61)(0.39)} = 9.75$$

Find the *z*-score (with appropriate continuity correction).

$$z = \frac{249.5 - 244}{9.75} = 0.56$$

Find the probability.

$$P(X \ge 250) = P(X > 249.5)$$

$$= P(Z > 0.56)$$

$$= 1 - P(Z < 0.56)$$

$$= 1 - \Phi(0.56)$$

$$= 1 - 0.7123$$

$$= \boxed{0.288}$$

Q7. (10 points) A random sample of size n = 89 has a mean $\bar{x} = 23.4$ and a sample standard deviation s = 5.6 (and no apparent skew). Determine a confidence interval of the population's mean using a confidence level of 75%.

Solution: Determine z^* .

$$z^* = \Phi^{-1} \left(\frac{0.75 + 1}{2} \right)$$

 $z^* = \Phi^{-1}(0.875)$
 $z^* = 1.15$

Determine SE.

$$SE = \frac{5.6}{\sqrt{89}} = 0.625$$

Find the confidence interval.

$$CI = \bar{x} \pm z^* SE$$

= 23.4 ± (1.15)(0.625)
= $(22.7, 24.1)$

Q8. (10 points) A population is claimed to have a mean $\mu = 678$. However, you are skeptical, so you decide you'll take a random sample and run a two-tail hypothesis test with a significance level $\alpha = 0.05$.

Your random sample of size n = 211 results in a sample mean of $\bar{x} = 664.4$ and a sample standard deviation s = 101.3. What do you conclude?

Solution: State the hypotheses.

$$H_0: \mu = 678$$

$$H_A: \mu \neq 678$$

Find the standard error.

$$SE = \frac{101.3}{\sqrt{211}} = 6.974$$

Determine the *z*-score.

$$z = \frac{664.4 - 678}{6.974} = -1.95$$

Draw a sketch of the two-tail area of the null's sampling distribution.

Find the area.

$$p$$
-value = $2 \cdot \Phi(-1.95)$
= $(2)(0.0256)$
= 0.0512

Compare *p*-value and α .

$$p$$
-value > α

Make the conclusion. In this case we retain the null.

Q9. (10 points) What is a sampling distribution?

Solution: A sampling distribution describes our expectations about what might happen (and with what kind of variability) when we sample from a population and determine a statistic (often the sample mean).