高三化学参考答案、提示及评分细则

- 1. D 熟石膏的主要成分为 2CaSO₄ H₂O, A 项正确; ²H(氘)、 ³H(氚)是质子数相同而中子数不同的同一元素的不同核素, B 项正确; 石墨烯与金刚石是碳元素形成的不同单质, 互为同素异形体, C 项正确; 铷单质的金属性强, 与水剧烈反应放出氢气, D 项错误。
- 2. B 中子数为 10,质子数为 8 的 O 原子质量数为 10+8=18,其原子表示为 ${}^{18}_{8}$ O, A 项正确; 氨分子的 VSEPR 模型是四面

H F

体结构,B项错误;甲胺的结构简式为 CH_3NH_2 ,电子式为 $H:C:N:H_3C$ 项正确; π 键是肩并肩,则乙烯中 π 键可以 H

- 3. A $P(NH_2)_3$ 分子中 P 原子杂化方式为 sp^3 ,存在孤电子对,为极性分子,A 项错误;第一电离能:Cl>P,B 项正确; NH_4Cl 中含有配位键 $N\rightarrow H$,C 项正确; NH_3 分子间存在氢键,其沸点高于 PH_3 ,D 项正确。
- 4. D 铜丝与稀硫酸不反应,不能制取 SO₂, A 项错误;将 SO₂通人新制氯水中,氯水褪色,SO₂被氧化,表现还原性,没有体现漂白性,B项错误;浓溴水与苯酚生成的三溴苯酚易溶于苯,不能通过分液除去苯酚,C项错误;乙酸与碳酸钠反应,转化为易溶于水的盐,再通过分液即可提纯乙酸乙酯,D项正确。
- 5. C 甲、乙中均含羟基、醚键、碳碳双键、酮羰基四种官能团,A 项错误;1 mol 的甲、乙与分别足量溴水反应,均消耗 5 mol Br_2 ,B 项错误;酚羟基能与 NaOH 和Na₂ CO₃ 反应,C 项正确;一定条件下,甲与足量的 H_2 加成产物的分子中有 6 个手性 碳原子,D 项错误。
- 6. B Ca^{2+} 半径小于 K^+ , Ca^{2+} 带电荷多, CaF_2 的熔点高于 KF, A 项错误; CaC_2 中含 Ca^{2+} 和 C_2^{2-} , CaC_2 中存在离子键和非极性键, B 项正确; CaC_2 中 C 元素化合价为一1 价, 生成 1 mol C 转移 1 mol 电子, C 项错误; 四氯化碳的密度比钾大, 钾不能保存在四氯化碳中, D 项错误。
- 7. D 若丙溶于水得到蓝绿色溶液,则丙为 CuCl₂,则甲、乙为 Cl₂和 Cu,电解 CuCl₂溶液可得 Cl₂和 Cu,A 项正确;若溶液遇 Na₂ CO₃放出 CO₂气体,则丙可能为 HCl,电解 HCl 溶液可得到 H₂,B 项正确;若丙溶于水后得到强碱溶液,则甲、乙可能 为 O₂和 Na,丙为 Na₂O₂,电解 NaOH 溶液得到 O₂,C 项正确;电解含 Mg²+的溶液,不可能得到 Mg,D 项错误。
- 8. D H^+ 作催化剂,A 项正确;中间产物甲生成时 H^+ 与 O 形成了配位键,甲生成乙的过程中有 C—O 的断裂,乙生成丙的过程中有 C—O 的形成,B、C 项正确;中间产物乙中带+电荷的 C 原子杂化方式为 sp^2 ,D 项错误。
- 9. A NH₂与 NH₃中 N 原子杂化方式均为 sp³, NH₂有 2 个孤电子对, NH₃ 只有一个孤电子对, NH₂中 H—N—H 键角小, A 项错误; 电负性: H>Na, B 项正确; NaNH₂溶于水会水解, 生成 NaOH 和 NH₃, NaNH₂溶液显碱性, C 项正确; 1 mol N₃中含 2 mol σ键, D 项正确。
- 10. C 由甲图可知,碳化物甲的化学式为 W_2 C, A 项错误;晶体甲中与 W 原子距离最近的 W 有 12 个, B 项错误;由乙的晶胞可知,两个 C 原子最近距离为面对角线长度的一半, C 项正确;甲的化学式为 W_2 C, 乙的化学式为 WC, 晶胞的质量比不为 1:2,甲乙两种晶胞的密度比不会是 b^3 : $2a^3$, D 项错误。
- 11. A 由图可知,甲装置为固液不加热装置,可进行"酸浸"操作,A 项符合题意;胶头滴管应在试管口的正上方,不能插入试管中,B 项不符合题意;过滤时,应用玻璃棒引流,防止溶液溅出,C 项不符合题意;MgSO4 7H₂O 加热烘干容易失 夫结晶水,应低温烘干,D 项不符合题意。
- 12. D 依题意可推出 X,Y,Z,W 分别为 O,Si,S,Cl,非金属性:O>S>Si,A 项正确;Si,Cl₂均可与 NaOH 溶液反应,B 项正确;Z₂W₂为S₂Cl₂,其结构为 Cl—S—S—Cl,各原子均满足 8 电子稳定结构,C 项正确;SiO₂ 不溶于水,D 项错误。
- 13. C 图 1 中,Fe 电极上,NO 生成 $NH_2OH \cdot HCl$,N 元素化合价降低,为正极,Pt 电极上 H_2 失电子生成 H^+ ,为负极,图 2 中 a 电极 Cl^- 生成 HClO,Cl 元素化合价升高,a 电极为阳极,应与电池正极相连,a 电极应与含铁催化电极相连,A 项

错误;1 mol NO₃ 生成 1 mol NH⁺,转移 8 mol e⁻,B 项错误;电池工作时左室反应为 NO+3e⁻+4H⁺+Cl⁻ — NH₂OH·HCl,0.1 mol NO参加反应转移 0.3 mol e⁻,右室有 0.3 mol H⁺迁移到左室,左室溶液质量增加 3.3 g,C 项正确;电池工作一段时间后,负极区溶液的 pH 不变,正极区 pH 增大,D 项错误。

14. C 强碱滴定弱酸,应使用酚酞作指示剂 $[K_a(HA) \approx 10^{-4.8}]$, A 项错误;点 a 时,为等物质的量 NaA 与 HA 混合的溶液,溶液显酸性,HA 电离程度大于 A⁻的水解程度,此时应有 $c(A^-) > c(Na^+) > c(HA)$,B 项错误;由 0. 1 mol·L⁻¹的 HA 溶液中 $c(H^+)_{*} = 10^{-11.1}$ mol·L⁻¹知,溶液 pH=2.9,故 $K_a(HA) \approx \frac{10^{-2.9} \times 10^{-2.9}}{0.1} = 10^{-4.8}$,b 点为恰好完全反应

点,溶质为 0.05 mol·L⁻¹的 NaA,根据 A⁻+H₂O
$$\Longrightarrow$$
 HA+OH⁻, $K_h = \frac{c(\mathrm{HA}) \cdot c(\mathrm{OH}^-)}{c(\mathrm{A}^-)} = \frac{K_w}{K_a}, c^2(\mathrm{OH}^-) \approx \frac{10^{-14}}{10^{-4.8}}$

 \times 0.05 mol·L⁻¹=5 \times 10^{-11.2} mol²·L⁻²,即 c(OH⁻) \approx $\sqrt{5}\times$ 10^{-5.6} mol·L⁻¹,C项正确;点 c溶液呈碱性,D项错误。

- 15.(1)(球形)冷凝管(2分)
 - (2)氢键(2分)
 - (3)B(2分)
 - (4)温度高于 50 ℃时,过氧化尿素容易分解(2 分)
 - (5) ①5 $H_2O_2 + 2MnO_4^- + 6H^+ = 2Mn^{2+} + 5O_2$ ↑ +8 $H_2O(2$ 分)
 - ②A(1分) ③16(2分) ④偏高(1分)
- 16.(1)8:1
 - (2) $Al^{3+} + 3HCO_3^-$ = Al(OH)₃ ↓ +3CO₂ ↑
 - (3)Fe $(OH)_3$;Cl $O^- + Mn^{2+} + H_2O = MnO_2 \downarrow + 2H^+ + Cl^-$
 - (4)草酸钴的溶解度随温度的升高而逐渐增大
 - (5)900;否(每空2分)
- 17. (1) -269. 2(2分)
 - (2) Fe_2O_3 作催化剂时, 在相对较低温度可获得较高的 SO_2 转化率, 从而节约能源(2分); 8(1分); 1:2(2分)
 - (3)①0.3(2分) ②d(1分)
 - (4)① $p_3 > p_2 > p_1(1 分)$ ②176(2 分) ③ $p_3 : p_1(2 分)$
- 18.(1)苯丙酸(2分)
 - (2)取代反应(1分);酯基、氨基(2分)
 - (3)使原料充分反应,提高原料的利用率(2分)

$$(4) \qquad O \qquad O \qquad O \qquad (2 \text{ }\%)$$

$$NO_2 \qquad NO_2$$