3. Übung Numerik von partiellen Differentialgleichungen - stationäre Probleme 9. November 2018

1. Sei $\Omega=(0,\pi)$ und $u=\sum_{i=1}^\infty u_i\sin(ix)$ die Zerlegung der Funktion u in ihre Fourierkoeffizienten. Wir definieren für $s\in[0,\frac32)$ die $\|\cdot\|_{H^s_0}$ Norm mittels

$$||u||_{H_0^s}^2 := \sum_{i=1}^{\infty} i^{2s} u_i^2.$$

Bem.: Damit gilt $||u||_{H_0^0} \cong ||u||_{L_2}$ sowie $||u||_{H_0^1} \cong ||\nabla u||_{L_2}$.

a.) Sei $0 < a < \pi$. Für welche s liegt die Funktion u_1 mit

$$u_1(x) := \begin{cases} 1 & x > a \\ 0 & x \le a \end{cases}$$

in H_0^s ? Der Raum H_0^s ist als Abschluss $\overline{C_0^\infty(\Omega)}^{\|\cdot\|_{H_0^s}}$ erklärt.

- b.) Für welche s liegt das Punktauswertungsfunktional $f: u \mapsto u(a)$ in $(H_0^s)^*$?
- 2. Sei $s\in(\frac{1}{2},\frac{3}{2})$ und $u\in H_0^s$. Dann ist u Hölderstetig mit Exponent $\alpha=s-\frac{1}{2}$, d.h. es gilt

$$|u(x) - u(y)| \le c |x - y|^{\alpha}$$

- 3. Finden Sie einen Fortsetzungsoperator $E:H^2(-2,0)$ nach $H^2(-2,1)$. Zeigen Sie Stetigkeit bzgl. L_2 -Norm und H^1 und H^2 -Seminormen. Hinweis: Verwenden Sie den Ansatz Eu(x)=au(-x)+bu(-2x) für $x\in(0,1)$.
- 4. V, W, Hilberträume, $B(.,.): V \times W \to \mathbb{R}$, stetige Bilinearform, erfülle die zweite inf sup Bedingung

$$\inf_{v\in W}\sup_{u\in V}\frac{B(u,v)}{\|u\|_V\|v\|_W}\geq \beta_1,$$

Formel (2.10) aus Skript. Zeigen Sie, dass damit der Operator B surjektiv ist, d.h. das Variationsproblem

suche
$$u \in V$$
: $B(u, v) = f(v) \quad \forall v \in W$

für alle $f \in W^*$ lösbar ist. Es gibt eine Lösung u mit $\|u\| \leq \beta_1^{-1} \|f\|$.

Hinweis: Ein lineares Gleichungssystem Bx = y mit $B \in \mathbb{R}^{n \times m}$, n < m, vollen Rang können Sie mittles $BB^tw = y$, und $x := B^tw$ lösen. Definieren Sie $B^*: W \to V^*$ mittels $\langle B^*v, u \rangle_{V^* \times V} = B(u,v)$, und zeigen Sie dass $(B^*w, B^*v)_{V^*}$ eine stetig und elliptische Bilinearform auf W ist.

5. Sei $\Omega = \bigcup_i \Omega_i$ eine Zerlegung in Teilgebiete, und $\lambda : \Omega \to \mathbb{R}$ stückweise konstant bezüglich dieser Zerlegung. Betrachten Sie das Variationsproblem

suche
$$u \in H_0^1(\Omega)$$
: $\int_{\Omega} \lambda \nabla u \nabla v = \int_{\Omega} f v$.

Bestimmen Sie die klassische Formulierung der Differentialgleichung. Geben Sie die Übergangsbedingungen an den Interfaces $\gamma_{ij} = \overline{\Omega_i} \cap \overline{\Omega_j}$ an.

1

6. Sei $\Omega=(0,1)^2$, $\Omega_1=(0.3,0.5)\times(0.5,0.7)$, $\Omega_2=(\Omega\setminus\Omega_1)^\circ$. Es sei $\lambda_{|\Omega_1}=1$ und $\lambda_{|\Omega_2}=10$, $f_{|\Omega_1}=1$ und $f_{|\Omega_2}=0$. Lösen Sie das entsprechende Variationsproblem aus Beispiel 5 mittels FEM. Berechnen Sie die Wärmeflüsse $\int_{\Gamma_i}\lambda\frac{\partial u}{\partial n}$ durch die einzelnen Randstücke von Ω_1 mit einer Methode Ihrer Wahl. Die Summe sollte 0.04 ergeben.