

2.5 Ω , High Bandwidth, Dual SPDT Analog Switch

DESCRIPTION

The DG2032E is a low-voltage dual single-pole / double-throw monolithic CMOS analog switch. Designed to operate from 1.8 V to 5.5 V power supply, the DG2032E achieves a bandwidth of 221 MHz while providing low on-resistance (2.5 Ω), excellent on-resistance matching (0.3 Ω) and flatness (1 Ω) over the entire signal range.

The DG2032E offers the advantage of high linearity that reduces signal distortion, making ideal for audio, video, and USB signal routing applications.

Built on Vishay Siliconix's proprietary sub-micron high-density process, the DG2032E brings low power consumption at the same time as reduces PCB spacing with the QFN12 package.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. The QFN12 package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-GE4" suffix. The nickel-palladium-gold device terminations meet all JEDEC® standards for reflow and MSL ratings.

FEATURES

- 1.8 V to 5.5 V single supply operation
- Low R_{ON}: 2.5 Ω at 4.5 V
- 221 MHz. -3 dB bandwidth
- Low off-isolation, -58 dB at 1 MHz
- +1.6 V logic compatible
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- · High linearity
- Low power consumption
- High bandwidth
- Full rail signal swing range

APPLICATIONS

- USB / UART signal switching
- · Audio / video switching
- · Cellular phone
- Media players
- Modems
- Hard drives
- PCMCIA

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE							
LOGIC	LOGIC NC1 AND NC2 NO1 AND N						
0	ON	OFF					
1	OFF	ON					

ORDERING INFORMATION							
TEMP. RANGE	PACKAGE	PART NUMBER					
-40 °C to +85 °C	12-Pin QFN (3 mm x 3 mm)	DG2032EDN-T1-GE4					

ABSOLUTE MAXIMUM RATINGS							
PARAMETER		LIMIT	UNIT				
Reference to GND	<u> </u>						
V+		-0.3 to +6	V				
IN, COM, NC, NO ^a		-0.3 to (V+ + 0.3)					
Continuous current (any terminal)	± 50	mA					
Peak current (pulsed at 1 ms, 10 % duty of	± 200	IIIA					
Storage temperature (D suffix)		-65 to +150	°C				
Power dissipation (packages) b	12-Pin QFN (3 mm x 3 mm) ^c	1295	mW				
ESD / HBM	EIA / JESD22-A114-A	7.5k	V				
ESD / CDM	EIA / JESD22-C101-A	1.5k	v				
Latch up	JESD78	300	mA				

Notes

- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings
- b. All leads welded or soldered to PC board
- c. Derate 4 mW/°C above 70 °C

www.vishay.com

Vishay Siliconix

SPECIFICATIONS (V+	= 3 V)							
PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPECIFIED		TEMP.	LIMITS -40 °C to +85 °C			UNIT
		$V+ = 3 V, \pm 10 \%, V_{INL} = 0.5 V, V_{INH}$	_H = 1.5 V ^e		MIN. c	TYP. b	MAX. c	
Analog Switch								
Analog signal range ^d	V_{ANALOG}			Full	0	-	V+	V
		$V+ = 1.8 \text{ V}, V_{NC/NO} = 0.4 \text{ V} / V+, I_{NC/NO} = 8 \text{ mA}$		Room	-	7	11	
Drain-source on-resistance	R _{DS(on)}			Full	-	-	13	
Brain coarce on recictance	1 1DS(0H)	V+ = 2.7 V, V _{COM} = 0.8 V / 1.8 V, I _{COM} = 10 mA		Room	-	4.6	5.5	
		V = 2.7 V, VCOIN = 0.0 V / 1.0 V, ICO	IVI — TO THE	Full	-	-	6.5	Ω
On-resistance matching	$\Delta R_{DS(on)}$			Room	-	0.02	0.3	
on redictaries matering	21 (DS(0H)	$V+ = 2.7 \text{ V}, V_{COM} = 0.8 \text{ V} / 1.4 \text{ V}$	/ 1.8 V,	Full	-	-	0.6	
On-resistance flatness d, f	R _{flat(on)}	I _{COM} = 10 mA		Room	-	0.62	1	
On resistance namess	i itlat(on)			Full	-	-	1.5	
Off leakage current ^g	hiomores	$V+ = 3.6 \text{ V}, V_{NC/NO} = 1 \text{ V} / 3.2$	2 V,	Room	-1	0.01	1	
On leakage current •	I _{NC/NO(off)}	V _{COM} = 3.2 V / 1 V		Full	-5	-	5	nA
Channel-on leakage	loove v	$V_{+} = 3.3 \text{ V}, V_{COM} = V_{NC/NO} = 1 \text{ V}$	/32V	Room	-1	0.01	1	IIA
current ^g	I _{COM(on)}	V+ = 3.3 V, VCOM = VNC/NO = 1 V	/ J.Z V	Full	-5	ı	5	
Digital Control								
Input current ^d	I_{INL} or I_{INH}			Full	-1	-	1	μΑ
Input high voltage ^d	V_{INH}			Full	1.5	ı	ı	V
Input low voltage ^d	V_{INL}			Full	ı	ı	0.4	V
Digital input capacitance ^d	C_{IN}			Room	-	3	ı	pF
Dynamic Characteristics								
Turn-on time	+			Room	ı	19	45	
rum-on time	t _{ON}	$V_{NC/NO} = 3 \text{ V, } C_1 = 35 \text{ pF, } R_1 = 300 \Omega$		Full	-	-	50	
Turn-off time	t _{OFF}			Room	-	9	35	
rum-on time		V _{NC/NO} = 3 V, O _L = 33 βr, n _L =	300 12	Full	ı	ı	45	ns
Break-before-make time d	+			Room	4	11	ı	
break-before-make time	t _{BBM}			Full	3	1	ı	
Charge injection ^d	Q_{INJ}	C _L = 1 nF, V _{gen} = 1.5 V, R _{gen} =	= 0 Ω	Room	ı	-9	ı	рС
Bandwidth ^d	BW	C _L = 5 pF (set up capacitano	ce)	Room	-	226	ı	MHz
Off-isolation d	OIRR	D = 50 0 C = 5 pE	f = 1 MHz	Room	-	-55	-	
OII-ISOIAtIOII 9		$R_L = 50 \Omega$, $C_L = 5 pF$	= 10 MHz	Room	-	-42	-	dB
Character to alcount an actual d	4	D 5000 5 75	f = 1 MHz	Room	-	-61	-	иь
Channel-to-channel crosstalk d	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$	= 10 MHz	Room	-	-44	-	
NO NO off conscitones d	C _{NO(off)}	V+ = 2.7 V, f = 1 MHz		Room	-	7	-	
NO, NC off capacitance d	C _{NC(off)}			Room	-	7	-	pF
Channel on conseitance d	C _{NO(on)}			Room	-	23	-	
Channel-on capacitance d	C _{NC(on)}			Room	-	23	1	
Power Supply								
Power supply range V+ 2.7 - 3.3					3.3	V		
1 ower supply range								

Notes

- a. Room = 25 °C, Full = as determined by the operating suffix
- b. Typical values are for design aid only, not guaranteed nor subject to production testing
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- d. Guarantee by design, not subjected to production test
- e. V_{IN} = input voltage to perform proper function
- f. Difference of min. and max. values
- g. Guaranteed by 5 V testing

www.vishay.com

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPE	TEMP.	LIMITS -40 °C to +85 °C			UNIT	
		$V+ = 5 V, \pm 10 \%, V_{INL} = 0.5 V, V_{INL} = 0.5 V$	V _{INH} = 2 V ^e	a	MIN. c	TYP. b	MAX. c	
Analog Switch								
Analog signal range d	V _{ANALOG}			Full	0	-	V+	V
Drain-source on-resistance	D	$V + = 4.5 \text{ V}, V_{COM} = 0.8 \text{ V} / 3.5 \text{ V}; I_{COM} = 0.8 \text{ V}; I_{COM} = 0.8 \text{ V} / 3.5 $	= 10 mA	Room	-	2.5	3.1	
Diani-source on-resistance	R _{DS(on)}	V+ = 4.5 V, V _{COM} = 0.8 V / 3.5 V, I _C	COM = TOTTIA	Full	-	-	4	
On-resistance matching	$\Delta R_{DS(on)}$			Room	-	0.01	0.4	Ω
On resistance matering	Δi iDS(on)	$V+ = 4.5 \text{ V}, V_{COM} = 0.8 \text{ V} / 2.5 \text{ V} / 3.5 \text{ V},$		Full	-	-	0.6	2.2
On-resistance flatness d, f	R _{flat(on)}	$I_{COM} = 10 \text{ mA}$		Room	-	0.61	1	
on resistance names	· ·liat(on)			Full	-	-	1.5	
Off leakage current ^g	I _{NC/NO(off)}	$V+ = 5.5 V, V_{NC/NO} = 1 V /$	4.5 V,	Room	-2	0.15	2	
	110/110(011)	$V_{COM} = 4.5 \text{ V} / 1 \text{ V}$		Full	-10	-	10	nA
Channel-on leakage current ^g	I _{COM(on)}	$V+ = 5.5 \text{ V}, V_{COM} = V_{NC/NO} = 1$	V / 4.5 V	Room	-2	0.20	2	
	-COM(OH)	110,110		Full	-10	-	10	
		$V+ = 0 V, V_{COM} = 5.5 V, NC/N$		Full	-	0.01	5	μΑ
Power down leakage ^d	I _{PD}	$V+=0$ V, $V_{NC/NO}=5.5$ COM, open	V,	Full	-	0.01	3	mA
Digital Control								
Input current d	I _{INL} or I _{INH}			Full	-1	-	1	μΑ
Input high voltage d	V _{INH}			Full	2	-	-	V
Input low voltage d	V_{INL}			Full	-	-	0.5	V
Digital input capacitance d	C_{IN}			Room	-	3	-	pF
Dynamic Characteristics								
Turn-on time	t			Room	-	13	40	ns
Turri-ori time	t _{ON}			Full	-	-	43	
Turn-off time	t	$V_{NC/NO} = 3 \text{ V, } C_1 = 35 \text{ pF, } R_1$	- 300 O	Room	-	7	33	
Turn-on time	t _{OFF}	VNC/NO = 3 V, OL = 33 pr , Til	_ 300 12	Full	-	-	35	113
Break-before-make time d	tone			Room	3	6	-	1
	t _{BBM}			Full	2	-	-	
Propagation delay ^d	tpd	$V+ = 5 V$, no R_L		Room	-	380	-	ps
Charge injection d	Q_{INJ}	$C_L = 1 \text{ nF}, V_{gen} = 2.5 \text{ V}, R_{ge}$	$_{n} = 0 \Omega$	Room	-	-19.4	-	рC
Bandwidth ^d	BW	C _L = 5 pF (set up capacita	ance)	Room	-	221	-	MHz
Off-isolation d	OIRR	$R_1 = 50 \Omega$, $C_1 = 5 pF$	f = 1 MHz	Room	-	-58	-	
C. Isolation		11 00 22, 0[- 0 β1	f = 10 MHz	Room	-	-43	-	dB
Channel-to-channel	X _{TALK}	$R_1 = 50 \Omega, C_1 = 5 pF$	f = 1 MHz	Room	-	-62	-	ab
crosstalk ^d		1 1 = 00 12, 0 = 0 pi	f = 10 MHz	Room	-	-47	-	
NO, NC off capacitance d	$C_{NO(off)}$	V+ = 5 V, f = 1 MHz		Room	-	7	-	pF
140, 140 on capacitance	$C_{NC(off)}$			Room		7	-	
Channel-on capacitance d	$C_{NO(on)}$			Room	-	23	-	
·	C _{NC(on)}			Room	-	23	-	
Power Supply		_						
Power supply range	V+				4.5	=.	5.5	V
Power supply current ^d	l+	$V+ = 5.5 V$, $V_{IN} = 0 V$ or 5	Full	-	-	1	μΑ	

Notes

- a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix
- b. Typical values are for design aid only, not guaranteed nor subject to production testing
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- d. Guarantee by design, not subjected to production test
- e. V_{IN} = input voltage to perform proper function
- f. Difference of min. and max. values
- g. Guaranteed by 5 V testing

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

R_{ON} vs. V_{COM} and Single Supply Voltage

Supply Current vs. Temperature

R_{ON} vs. Analog Voltage and Temperature

Positive Supply Current vs. Switching Frequency

R_{ON} vs. Analog Voltage and Temperature

Switching Time vs. Temperature

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

Switching Time vs. Temperature

Leakage Current vs. Temperature

Switching Threshold vs. Supply Voltage

Leakage Current vs. Temperature

Charge Injection vs. Source Voltage

Leakage Current vs. Analog Voltage

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

Loss, OIRR, X_{TALK} vs. Frequency

TEST CIRCUITS

Fig. 1 - Switching Time

Fig. 2 - Break-Before-Make Interval

TEST CIRCUITS

Fig. 3 - Charge Injection

Fig. 4 - Off-Isolation

Fig. 5 - Channel Off / On Capacitance

Fig. 6 - Source / Drain Power Down Leakage

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg278604.

QFN-12 LEAD (3 X 3)

NOTES:

- 1. All dimensions are in millimeters.
- 2. N is the total number of terminals.

Dimension b applies to metallized terminal and is measured between 0.25 and 0.30 mm from terminal tip. $\,$

Coplanarity applies to the exposed heat sink slug as well as the terminal.

The pin #1 identifier may be either a mold or marked feature, it must be located within the zone iindicated.

	МІ	LLIMETE	RS					
Dim	Min	Nom	Max	Min	Nom	Max		
Α	0.80	0.90	1.00	0.032	0.035	0.039		
b	0.18	0.23	0.30	0.007	0.012			
D		3.00 BSC 0.118 BSC						
D2	1.00	1.15	1.25	0.039 0.045 0.0				
Е		3.00 BSC		0.118 BSC				
E2	1.00	1.15	1.25	0.039	0.045	0.049		
е		0.50 BSC		0.02 BSC				
L	0.45	0.55	0.65	0.018 0.022 0.0				
AA		0.435		0.017				
BB		0.435		0.017				
CC		0.18		0.007				
DD		0.18		0.007				
ECN: C-03092—Rev. A, 14-Apr-03 DWG: 5898								

Document Number: 72209 www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.