- Tech Challenge 2

Introdução

A previsão de séries temporais desempenha um papel crucial em diversos setores da economia, com destaque para o mercado financeiro. A capacidade de prever o fechamento da bolsa de valores, em particular, é de grande importância para investidores, analistas e gestores, pois oferece suporte para tomadas de decisão mais embasadas e estratégicas.

O fechamento da bolsa de valores reflete um conjunto de fatores econômicos, políticos e sociais que influenciam o comportamento dos preços de ativos ao longo do tempo. Nesse cenário dinâmico e volátil, métodos tradicionais de análise, como os fundamentados exclusivamente em histórico de preços, podem não capturar a complexidade inerente das interações de mercado.

Neste contexto, o uso de modelos de previsão de séries temporais surge como uma solução poderosa. Modelos como ARIMA (Autoregressive Integrated Moving Average), SARIMA (Seasonal ARIMA) e PROPHET, têm demonstrado elevado potencial em capturar padrões temporais complexos e prever valores futuros com precisão.

O analista de dados desempenha um papel fundamental nesse processo, sendo responsável por coletar, organizar e explorar os dados relevantes, garantindo que estejam adequados para a modelagem. Além disso, é o analista que avalia diferentes modelos preditivos, seleciona as abordagens mais adequadas e interpreta os resultados, traduzindo-os em insights valiosos para os tomadores de decisão. Sua expertise é essencial para assegurar que as previsões sejam robustas, confiáveis e alinhadas com os objetivos do negócio.

O objetivo deste estudo é desenvolver e avaliar um modelo de previsão capaz de estimar o fechamento da bolsa de valores a partir de dados históricos com uma assertividade de 70%.

Sobre os dados

Na construção do modelo preditivo, utilizaremos os dados disponíveis no site Investing como fonte principal. A tabela obtida apresenta as seguintes colunas, que serão analisadas para medir o desempenho diário do Ibovespa:

- Total de Registros: 2727 entradas, cobrindo o período de janeiro de 2014 a dezembro de 2024
- Data: Refere-se ao dia específico da cotação, permitindo identificar o período exato da análise.

- Último: Apresenta o valor de fechamento do índice no final do pregão, ou seja, o último preço registrado quando o mercado encerra suas atividades naquele dia.
- Abertura: Indica o valor inicial do índice no início do pregão daquele dia.
- Máxima: Mostra o valor mais alto atingido pelo índice durante o pregão, evidenciando o pico de valorização ao longo do dia.
- Mínima: Aponta o valor mais baixo alcançado pelo índice durante o período de negociação.
- Volume: Refere-se ao volume financeiro total negociado no mercado durante o dia, indicando a intensidade da negociação.
- Variação (%): Exibe a variação percentual do índice em relação ao dia anterior, permitindo avaliar se houve valorização ou desvalorização no período.

Processamento e tratamento dos dados

Para a construção de um modelo o primeiro passo é o tratamento da base e para este projeto os passos foram os seguintes:

Data foi convertida para o tipo datetime

```
df\_ibovespa['Data'] = pd.to\_datetime(df\_ibovespa['Data'], format='%d.%m.%Y')
```

 Vol. agora é um número em notação decimal, lidando adequadamente com valores em milhões e milhares.

```
def convert_volume(volume_str):
    if isinstance(volume_str, str):
        if 'M' in volume_str:
            return float(volume_str.replace('M', ").replace(',', '.')) * 1_000_000
        elif 'K' in volume_str:
            return float(volume_str.replace('K', ").replace(',', '.')) * 1_000
        return float(volume_str.replace(',', '.'))
        return volume_str
df_ibovespa['Vol.'] = df_ibovespa['Vol.'].apply(convert_volume)
```

Var% também foi convertida para número decimal

```
df_ibovespa['Var%'] = df_ibovespa['Var%'].str.replace('%', ").str.replace(',',
'.').astype(float)
```

• Atribuindo o campo de data como index.

```
df_ibovespa.set_index('Data')['Último']
```

• Informação ausente: Há um único valor ausente na coluna Vol., que poderemos tratar nas etapas posteriores, dependendo de como ele afetará a modelagem

Estatísticas de introdução e histogramas

Há uma tendência geral de alta no índice IBOVESPA na última década, indicando crescimento no mercado. No entanto, essa tendência é acompanhada por flutuações significativas e períodos de aumento e declínio. O mercado exibe considerável volatilidade, o que é típico para índices de ações. Há picos e quedas visíveis, refletindo reações a eventos econômicos, mudanças de política ou influências do mercado global.

As distribuições exibem padrões interessantes: os preços de fechamento, abertura, máximos e mínimos apresentam distribuições bimodais, sugerindo concentração em duas faixas de valores. O volume de negociação mostra assimetria, com maior frequência em volumes baixos e uma cauda longa à direita. Já a variação percentual tem uma distribuição próxima do normal, concentrada em torno de zero, indicando estabilidade na maioria dos casos.

Regressão (Correlação das métricas)

A matriz de correlação revela forte correlação positiva (valor 1.00) entre os preços de Último, Abertura, Máxima e Mínima, indicando que eles variam de forma muito semelhante. O Volume (Vol.) tem correlação moderada (~0.69) com esses preços, sugerindo relação menos direta. Já a variação percentual (Var%) tem correlação praticamente nula com os demais fatores, indicando independência em relação a preços e volume.

Análise temporal

A decomposição da série mostra:

- 1. **Série Original**: Tendência geral de alta ao longo do tempo.
- 2. **Tendência**: Movimento ascendente contínuo com algumas oscilações leves.
- 3. Sazonalidade: Padrões regulares recorrentes em ciclos curtos.
- 4. **Resíduo**: Ruído aparentemente aleatório, sem padrão definido.

Isso sugere que a série é influenciada por tendência e sazonalidade, com flutuações residuais não explicadas.

A presença de uma sazonalidade por si só não implica que a série seja estacionária. Para uma série ser estacionária, sua média, variância e autocorrelação devem ser constantes ao longo do tempo.

No gráfico, há uma **tendência crescente** evidente, o que viola a condição de estacionariedade. Além disso, a sazonalidade indica padrões cíclicos, mas a presença de uma tendência sugere que a série não é estacionária sem um ajuste prévio, como a remoção da tendência (diferenciação, por exemplo).

Modelo Naive:

Para iniciar a análise dos dados do IBOVESPA e prever o comportamento diário do índice, optamos por implementar inicialmente o modelo Naive. Essa escolha foi motivada por sua simplicidade e eficiência como modelo de benchmark, ideal para estabelecer uma linha de base para comparação com abordagens mais avançadas. O modelo Naive assume que o próximo valor será semelhante ao valor mais recente, ou que seguirá padrões simples, sendo uma escolha lógica para séries temporais com comportamento previsível.

A coluna "Var%" foi utilizada como variável alvo devido à sua relevância para identificar a direção das variações diárias do índice (alta ou baixa). O gráfico de distribuição dessa coluna evidenciou uma concentração significativa dos valores em torno de 0, com uma curva simétrica e formato de sino, sugerindo estabilidade e previsibilidade. Essa característica torna a coluna "Var%" ideal para a abordagem inicial com o modelo Naive, uma vez que a baixa dispersão facilita a identificação de padrões simples de comportamento.

Ao transformar a "Var%" em um rótulo binário (1 para variações positivas e 0 para negativas), simplificamos o problema preditivo, permitindo que o modelo se concentre na direção do mercado em vez de prever valores exatos. Já as colunas "Último", "Abertura", "Máxima", "Mínima" e "Vol." foram utilizadas como variáveis preditoras (X). Essas variáveis representam os preços e volumes de negociação diários, que são fundamentais para capturar o comportamento do mercado financeiro. Essa abordagem inicial permitiu identificar rapidamente as limitações do modelo e abrir caminho para a transição a metodologias mais robustas.

Abaixo um resumo da distribuição da coluna Var% em binário:

```
dados_brutos['Rótulo'] = (dados_brutos['Var%'] > 0).astype(int)
distribuicao = dados_brutos['Rótulo'].value_counts()
```

Percentual de Classes no Rótulo Binário

No caso do Naive optamos também por transformar o dado nulo em com a média, pois assim preservamos ao máximo os valores. E depois foi feita a normalização dos dados de todas as colunas por causa do modelo GaussianNB que é sensível a dados muito dispersos.

 $X = dados_brutos[['Último', 'Abertura', 'Máxima', 'Mínima', 'Vol.']] # Variáveis preditoras$ $<math>y = dados_brutos['Rótulo'] # Rótulo binário$

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)
#Fase de separação dos dados entre teste (30%) e treino (70%)

```
scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

#Normalização dos dados
```

E então o modelo foi aplicado:

```
modelo = GaussianNB()
modelo.fit(X_train, y_train)
```

y_pred = modelo.predict(X_test)

Distribuição das Previsões (y pred)

O gráfico acima apresenta os resultados de um modelo de classificação utilizando o algoritmo Gaussian Naive Bayes (GaussianNB). Após o treinamento do modelo com os dados de treino (X_train e y_train), foi realizada a predição sobre os dados de teste (X_test), gerando as previsões (y_pred). A distribuição das previsões mostra que todas as amostras foram classificadas como pertencentes à mesma classe (classe 1). Isso sugere que o modelo pode estar enfrentando problemas de desbalanceamento nos dados de treino ou dificuldade em identificar padrões que diferenciam as classes.

MAE E GRÁFICO DE RESÍDUOS:

Resultando no Erro Médio Absoluto (MAE): 0.4848

O gráfico de resíduos apresenta a diferença absoluta entre os valores reais (y_test) e os valores previstos pelo modelo (y_pred). Ele revela que os resíduos estão concentrados nos valores 0 e 1, indicando que o modelo cometeu erros binários significativos ao classificar os dados.

O Erro Médio Absoluto (MAE) é de 0,4848, o que indica que, em média, quase metade das previsões feitas pelo modelo estavam incorretas. Esse comportamento sugere que o modelo enfrentou dificuldades para distinguir as classes corretamente, reforçando a necessidade de adoção de modelos mais sofisticados.

ACURÁCIA DO MODELO:

A acurácia foi de 51,52%, indicando que o modelo acertou pouco mais da metade das previsões, o que está próximo de uma classificação aleatória (50%) em um cenário de duas classes.

Classe 0: O modelo falhou completamente em prever corretamente as amostras da classe 0, com precisão, recall e F1-score iguais a **0**.

Classe 1: O modelo previu corretamente todas as amostras da classe 1, resultando em um recall de 1,00 e um F1-score de 0,68. Porém, a precisão foi de apenas 0,52, indicando que muitas das previsões para a classe 1 foram incorretas.

Acurácia do modelo: 51.52%											
Relatório de Classificação: precision recall f1-score support											
0	0.00	0.00	0.00	398							
1	0.52	1.00	0.68	423							
accuracy			0.52	821							
macro avg	0.26	0.50	0.34	821							
weighted avg	0.27	0.52	0.35	821							

A Matriz de confusão a seguir demonstra que todas as 398 amostras reais da classe 0 foram incorretamente classificadas como classe 1.E as 423 amostras reais da classe 1 foram todas corretamente classificadas como classe 1.A matriz de confusão revela que o modelo é incapaz de capturar padrões da classe 0, o que compromete a utilidade prática do modelo para o objetivo de prever movimentos do mercado.

Apesar de inicialmente ter sido escolhido o modelo Naive como uma solução simples e eficiente para estabelecer um benchmark na previsão das variações diárias do IBOVESPA. Foi concluído que este não é o modelo mais adequado para efetuar este tipo de análise, por causa da volatilidade dos dados financeiros, ele não consegue capturar a alta mudança nos dados. Com uma acurácia de apenas 51,52%, além de falhar em capturar padrões complexos ou dependências temporais típicas de dados financeiros. Essa limitação se deve, em parte, às suposições simplistas do Naive Bayes, como a independência entre variáveis preditoras, algo que não reflete a interdependência natural dos dados financeiros. Além disso, o modelo não foi capaz de considerar a natureza sequencial dos dados, ignorando tendências e sazonalidades que são cruciais no contexto de séries temporais.

Diante dessas limitações, a transição para o modelo **ARIMA** foi uma escolha necessária. Diferentemente do Naive, o ARIMA é projetado especificamente para séries temporais, integrando componentes que capturam dependências temporais e padrões históricos.

Testes de estacionaridade

Usaremos o teste **Augmented Dickey-Fuller (ADF)**, para verificar se os dados são estacionários.

ADF test function

```
def adf_test(series):
    result = adfuller(series, autolag='AIC')
    return {'ADF_Statistic': result[0], 'p-value': result[1], 'Critical_Values': result[4]}

daily_adf_result = adf_test(daily_data)

print(f"ADF_Statistic: {daily_adf_result['ADF_Statistic']}'')

print(f"p-value: {daily_adf_result['p-value']}'')

for key, value in daily_adf_result['Critical_Values'].items():
    print('\t%s: %.3f' % (key, value))
```

H0: Hipótese nula - A série é não estacionária

H1: Rejeição de H0 - A série é estacionária

O teste ADF foi realizado nos dados diários e chegamos nesses resultados:

ADF_Statistic: -1.4447455372713434

p-value: 0.5606466715296446

Com um p-valor de 0,561, não rejeitamos a hipótese nula (H0), ou seja os dados não são estacionários.

Para tornar os dados estacionários e poder usar o ARIMA para predição de valores futuros, aplicaremos a diferenciação e verificaremos novamente.

Após a diferenciação, tivemos os seguintes resultados:

ADF_Statistic: -13.831187405458527 p-value: 7.587161234013877e-26 Critical Values:

1%: -3.432 5%: -2.862 Com um p-valor extremamente baixo, podemos rejeitar H0. Portanto, os dados diferidos são estacionários. Deste modo, podemos prosseguir com a modelagem com ARIMA.

Quando construímos um modelo ARIMA, temos que considerar os termos p , d e q que entram em nosso modelo ARIMA.

O primeiro parâmetro, p , é o número de observações defasadas. Ao considerar p , determinamos efetivamente o quão longe no tempo voltamos ao tentar prever a observação atual. Fazemos isso observando as auto correlações de nossa série temporal, que são as correlações em nossa série em defasagens de tempo anteriores.

O segundo parâmetro, d, refere-se à ordem de diferenciação, sobre a qual falamos. Novamente, a diferenciação significa simplesmente encontrar as diferenças entre intervalos de tempo consecutivos. É uma maneira de tornar nossos dados estacionários, o que significa remover as tendências e quaisquer mudanças na variância ao longo do tempo indica a diferenciação em qual ordem você obtém um processo estacionário.

O terceiro parâmetro se refere à ordem da parte da média móvel (MA) do modelo. Ele representa o número de erros de previsão defasados incluídos no modelo. Diferentemente de uma média móvel simples, que suaviza os dados, a média móvel no ARIMA captura a relação entre uma observação e os erros residuais de um modelo de média móvel aplicado a observações defasadas.

Com base nestes gráficos, podemos ver que o ACF corta a linha pontilhada azul na lag 1, enquanto o PACF corta a linha pontilhada azul na lag 1. Isso sugere que um modelo ARIMA(1,1,1) pode ser adequado para a série temporal já que fizemos 1 diferenciação.

Projeção 1 - ARIMA

Usamos 9 dos 10 anos para treinamento e deixamos 1 ano de dados para validação. Segue as previsões para o ano de 2024. Podemos comparar com os dados reais e ver se a estimativa está boa.

```
# Modelagem com ARIMA
closing_prices = df_ibovespa.set_index('Data')['Último'].sort_index()
train data = closing prices[:'2023-12-31']
test_periods = pd.date_range('2024-01-01', periods=365, freq='B')
model \ arima = ARIMA(train \ data, order=(1,1,1))
model_fit = model_arima.fit()
forecast arima = model_fit.get_forecast(steps=len(test_periods))
forecast values = forecast arima.predicted mean
forecast values lower = forecast arima.conf int(alpha=0.05).iloc[:, 0]
forecast_values_upper = forecast_arima.conf_int(alpha=0.05).iloc[:, 1]
df_forecast = pd.DataFrame({
   'Data': test_periods,
  'Previsão': forecast values,
  'Intervalo Inferior': forecast values lower,
  'Intervalo Superior': forecast values upper
})
# Plotando os resultados
plt.figure(figsize=(12, 6))
# Dados históricos
plt.plot(train_data.index, train_data, label='Dados Treinamento', color='blue')
plt.plot(closing prices['2023-12-31':].index, closing prices['2023-12-31':], label='Dados de teste',
color='green')
# Previsões com intervalos de confiança
plt.plot(df forecast['Data'], df forecast['Previsão'], label='Previsão', color='orange')
plt.fill between(
  df_forecast['Data'],
  df_forecast['Intervalo Inferior'],
  df_forecast['Intervalo Superior'],
  color='orange', alpha=0.2, label='Intervalo de Confiança'
)
# Adicionando rótulos e título
plt.title('Previsão de Fechamento com ARIMA', fontsize=14)
plt.xlabel('Data', fontsize=12)
plt.ylabel('Preço de Fechamento', fontsize=12)
plt.legend()
plt.grid()
```


Calculamos o RMSE do modelo e chegamos em um resultado de 7,06. Ou seja, o RMSE de 7,06 significa que, em média, as previsões do nosso modelo desviam dos preços reais em cerca de R\$7,06.

```
forecast_ar = forecast_values[:len(closing_prices['2023-12-31':])]
test_close = closing_prices['2023-12-31':]
# Calculate RMSE
rmse = np.sqrt(mean_squared_error(test_close, forecast_ar))
```

Projeção 2 - Prophet

Previsões para o ano de 2025. O modelo parece ter capturado melhor a complexidade da série temporal. Podemos observar o ajuste no gráfico abaixo. De acordo com o modelo, fecharemos o ano de 2025 com um valor de ~145.

```
m = Prophet()
m.fit(model_df)
future = m.make_future_dataframe(periods=365)
forecast = m.predict(future)
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

fig = m.plot(forecast)
ax = fig.gca()
```

ax.set_title('Previsão de Fechamento com o modelo Prophet')
ax.legend(['Real', 'Forecast', 'Intervalo de confiança'], loc='upper left')
plt.show()

Zoom na curva do forecast

Seguem as métricas de performance do modelo para diferentes horizontes de tempo (forecast)

horizon	mse	rmse	mae	mape	mdape	smape	coverage
36 days	67.196240	8.197331	6.437001	0.066832	0.054870	0.068016	0.384996
37 days	67.274062	8.202077	6.471858	0.067280	0.055044	0.068436	0.379256
38 days	67.050895	8.188461	6.483300	0.067543	0.055385	0.068702	0.378266
39 days	65.895052	8.117577	6.443388	0.067534	0.055385	0.068760	0.380048
40 days	64.966843	8.060201	6.428958	0.067826	0.055468	0.069145	0.377276

Conclusão

Este estudo avaliou métodos preditivos para séries temporais com o objetivo de prever o fechamento diário do índice IBOVESPA, utilizando dados históricos de 2014 a 2024. Após o tratamento da base, incluindo transformações e análises de estacionaridade, o modelo Naive foi usado como benchmark inicial, mas apresentou limitações significativas, com uma acurácia de apenas 51,52%. O modelo ARIMA foi testado em seguida, explorando dependências temporais e tendências nos dados. No entanto, ao não considerar efeitos sazonais.

O modelo Prophet foi então aplicado, mostrando-se mais adequado por sua capacidade de capturar tendências e padrões sazonais. Esse modelo obteve um MAPE de 0,067826, o que indica um erro médio percentual absoluto de apenas 6,78% em suas previsões, atingindo o resultado maior do que os 70% solicitados previamente. Os resultados indicam que, embora modelos simples como o Naive e modelos intermediários como o ARIMA sejam úteis como linha de base, a complexidade e a volatilidade das séries financeiras exigem abordagens mais avançadas, como o Prophet, para fornecer previsões mais confiáveis e aplicáveis à tomada de decisões.