Computer Architecture & Real-Time Operating System

8. Memory Subsystem (1/2)

Prof. Jong-Chan Kim

Dept. Automobile and IT Convergence

Memory Technologies

RAM (Random Access Memory)

- Cannot maintain content after power reset
- Array of bytes, which is byte-addressable through the system bus

Sequential access 1 2 3 4 5 6 7 8 Random access

On-Chip SRAM

Off-Chip DRAM

Two Types of RAM

SRAM (Static RAM)	DRAM (Dynamic RAM)		
 Faster than DRAM (10x) 	Slower than SRAM (1x)		
• Expensive (100x)	Less Expensive (1x)		
No refresh required	Refresh required		
Use less power	Use more power		
 Mostly used for on-chip cache or scratchpad memory 	Mostly used for off-chip main memory		

On-chip SRAM and Off-chip DRAM

Non-Volatile Memory

- ROM (Read Only Memory)
 - The content is hardwired while manufacturing
- PROM (Programmable ROM)
 - Programmable once in its lifetime
- EPROM (Erasable PROM)
 - Erasable (entirely) by exposing to UV light
- EEPROM (Electrically Erasable PROM)
 - Allows byte-level read and write
 - Writing a byte takes too much time (milliseconds)
 - Mostly used for storing configuration data

PROM Programmer

http://www.advin.com/PROMprogrammer.htm

http://electronics.stackexchange.com/questions/34607/erasing-eproms-with-sunlight

http://electronics.stackexchange.com/questions/34607/erasing-eproms-with-sunlight

https://en.wikipedia.org/wiki/EEPROM

Non-Volatile Memory

- Flash Memory
 - − Writable in pages (~ KB)
 - Erasable in blocks (~ MB)
 - Block must be erased before writing a page
 - Wear-leveling problem

NOR Flash	NAND Flash (used in SSDs and USB flash drives)		
Faster read	Faster write		
Higher cost-per-byte	Lower cost-per-byte		
 Used for store instructions (text section) 	Used for store multimedia data		
Byte-level random access (memory mapped)	No byte-level random access (port-based I/O)		
Use less power	Use more power		
XIP (eXecute In Place)	No XIP		

Example Memory Configurations

Technical specs

Data, Bss, Stack, ...

Microcontroller	ATmega328P			
Operating Voltage	5V			
Input Voltage (recommended)	7-12V			
Input Voltage (limit)	6-20V			
Digital I/O Pins	14 (of which 6 provide PWM output)			
PWM Digital I/O Pins	6			
Analog Input Pins	6			
DC Current per I/O Pin	20 mA			
DC Current for 3.3V Pin	50 mA			
Flash Memory ← Code	32 KB (ATmega328P)			
	of which 0.5 KB used by bootloader			
SRAM	2 KB (ATmega328P)			
EEPROM 🙀	1 KB (ATmega328P)			
Clock Speed	16 MHz			
Long-term	configuration data			
Length	08.0 mm			
Width	53.4 mm			
Weight	25 g			

CPU Clock: 180 MHz

Including:

- TriBoard Hardware
- USB cable
- Power Supply
- Extension Board
- · Getting Started, first 3 Steps to install the Tools, set up your Hardware, write and debug the first program
- Technical Documentation: e.g. User manuals (System unit and Peripheral unit), Architecture manual, Application notes, Data Sheets, Board Documentation (pdf-version)
- Evaluation Versions of Development Tools: e.g. Compiler, Debugger from Tool Partners

On-Chip Memory:

- 4 MByte embedded program flash with ECC,
- 16KByte EEPROM (emulated by 64KByte data Flash),
- 156 KByte on-chip SRAM,
- 4KByte data cache,
- . 16 KByte instruction cache.

On-Boards Memory:

- Burst FLASH up to 16 MBytes (default: 4 MBytes),
- asynchronous SRAM up to 1MBytes (default),
- optional synchronous SRAM up to 8 MBytes.

Cache memory will be discussed in the next lecture

https://www.arduino.cc/en/Main/ArduinoBoardUno

http://www.ehitex.de/en/starter-kits/for-tricore/2111/starterkit-fr-tricore-tc1797

System Bus & Address Space

- A virtual space what CPU sees through system bus
 - Assuming n-bit address bus and m-bit data bus (n = m, in most cases)
 - Addressable from 0 to 2ⁿ-1
 - At each address, one byte exist
 - m bits can be transferred at once (each cycle)

Quiz

- Assuming n-bit address bus and m-bit data bus
 - Q: What is the size of the address space assuming n=32?

– Q: What is the maximum bus bandwidth assuming m=64 and a 100 MHz bus frequency?

A: on the next slide

Max Memory Bandwidth = Bus Speed-Bus Width

Assuming 64-bit data bus

TILL 4 0	DRAM Memor		
Table 1: S	INDAMA MAMAR	ine Shood	('omparieon
			COHIDAIISOH
TOOLS IN C		100 0000	COMPANION

Memory	Technology	Rated Clock	Real Clock	Maximum Transfer Rate
PC66	SDRAM	66 MHz	66 MHz	533 MB/s
PC100	SDRAM	100 MHz	100 MHz	800 MB/s
PC133	SDRAM	133 MHz	133 MHz	1,066 MB/s
DDR200	DDR-SDRAM	200 MHz	100 MHz	1,600 MB/s
DDR266	DDR-SDRAM	266 MHz	133 MHz	2,100 MB/s
DDR333	DDR-SDRAM	333 MHz	166 MHz	2,700 MB/s
DDR400	DDR-SDRAM	400 MHz	200 MHz	3,200 MB/s
DDR2-400	DDR2-SDRAM	400 MHz	200 MHz	3,200 MB/s
DDR2-533	DDR2-SDRAM	533 MHz	266 MHz	4,264 MB/s
DDR2-667	DDR2-SDRAM	667 MHz	333 MHz	5,336 MB/s
DDR2-800	DDR2-SDRAM	800 MHz	400 MHz	6,400 MB/s
DDR3-800	DDR3-SDRAM	800 MHz	400 MHz	6,400 MB/s
DDR3-1066	DDR3-SDRAM	1066 MHz	533 MHz	8,528 MB/s
DDR3-1333	DDR3-SDRAM	1333 MHz	666 MHz	10,664 MB/s
DDR3-1600	DDR3-SRAM	1600 MHz	800 MHz	12,800 MB/s

Source: https://www.nxp.com/docs/en/supporting-information/BeyondBits2article17.pdf

8-bit, 16-bit, 32-bit MCUs

- n-bit CPU
 - n-bit address bus
 - n-bis data bus
 - n-bit registers and ALUs
- With a larger n, what can we do?
 - Larger address space
 - Can handle larger memory
 - 32-bit CPU cannot handle memory > 4GB
 - More memory bandwidth
 - Linearly increases with n
 - Larger or more accurate numbers
 - 32-bit integer vs 64-bit integer
 - 32-bit float vs 64-bit double

Address Space and Memory Size

• 32-bit system has 4 GB address space

Do not confuse 4 GB address space with 4 GB memory

Pure abstract space for addressing

Physical component for storing bits and bytes

- What if 4 GB address space with 4 MB memory?
 - Only 4 MB of the 4 GB address space is used

Memory Map

- Mapping of memory devices on an address space
- Peripherals (I/O devices) are also mapped to be accessed by CPU

http://www.rapidrepair.com/guides/iphone3g/pmiPhone_boardtopBIG.jpg

Example Memory Map

ARM Cortex-M3 Memory Map

Accessing Address Space (read)

```
void function(void)
{
   unsigned long p;
   p = *((unsigned long *)0x78787878);
}
```


ARM compiler (32bit)

```
function():
    push {r7}
    sub sp, sp, #12
    add r7, sp, #0
    mov r3, #2021161080
    ldr r3, [r3]
    str r3, [r7, #4]
    nop
    adds r7, r7, #12
    mov sp, r7
    ldr r7, [sp], #4
    bx lr
```

Accessing Address Space (write)

```
void function(void)
{
    *((unsigned long *) (0x78787878)) = 0x11111111;
}
```


ARM compiler (32bit)

```
function():
             {r7}
       push
                              0x78787878
       add r7, sp, #0
       mov r3, #2021161080
       mov r2, #286331153
                              0x11111111
       str
           r2, [r3]
       nop
       mov
            sp, r7
       ldr
           r7, [sp], #4
       bx
              lr
```

Summary

- Memory Technologies
 - RAM, ROM, Flash Memory
- Address Space
- Memory Map