Linear Algebra

Vectors, vector spaces, matrices, coordinates, and transformations

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

Table of Contents

- sli.do: #linalg
- Vectors geometric and algebraic perspective
 - Operations
- Matrices
 - Definition, properties, operations
- Linear transformations
- Linear systems

Vectors

Concrete and abstract

Vector Definitions

- "Physics definition"
 - A pointed segment in space
- "Computer science definition"
 - A list of objects (usually numbers)
 - Dimensions = length
- Math definition
 - Encompasses both, and allows even more abstraction: \vec{v}
 - Vectors can be added and multiplied
 - By numbers and other vectors
 - Similar to how we defined a field
- Another perspective
 - Transformations
 - Actually, things a just a little more complicated...
 - You can look up "tensors" if you're interested
 - We'll talk a little about tensors later

Vector Components

- The distances to all coordinate axes: v_x , v_y
- Equivalent to $\begin{vmatrix} v_x \\ v_y \end{vmatrix}$
 - Polar coordinates: $v = |\vec{v}|, \theta$
- Finding components

- All these operations generalize to more than 2 dimensions
- Note: We usually denote vectors by \vec{v} or with bold type: v
 - Another notation: Latin letters for vectors, Greek letters for numbers
 - Reason: The vector v and its length v can be easily confused

Vector Operations

- Addition
 - Result: length = distance from start to end, direction: start → end
 - In component form
 - Sum all components for every direction

- Result: length = scaled length, direction: same (if scalar ≥ 0), opposite otherwise
- In component form
 - Multiply each component by the number

Vector Operations (2)

- Scalar product of two vectors
 - Also called dot product or inner product
 - Result: scalar
 - Definition: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta)$
 - Using the vector components:

$$\vec{a}.\vec{b} = \sum_{i=1}^{n} a_i b_i$$

- Vector product of two vectors
 - Also called cross product
 - Result: vector, perpendicular to both initial vectors
 - Definition $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin(\theta) \vec{n}$
 - \vec{n} normal vector
 - Magnitude: $|\vec{a}||\vec{b}|\sin(\theta)$ = volume of parallelogram between \vec{a} and \vec{b}
 - Direction: coincides with the direction of \vec{n}

Vector Spaces

Finding yourself in space

Vector Space

- A field (usually \mathbb{R} or \mathbb{C}): F
- A set of elements (vectors): V
- Operations
 - Addition of two vectors: w = u + v
 - Multiplication by an element of the field: $w = \lambda u$
- A "checklist" of eight axioms
- We read this as "vector space (or linear space) *V* over the field *F*"

Examples of vector spaces

- Coordinate space, e.g. real coordinate space \mathbb{R}^n
 - n-dimensional vectors
- Infinite coordinate space \mathbb{R}^{∞}
 - Vectors with infinitely many components
- Polynomial space
 - lacktriangledown All polynomials of variable x with real coefficients $\mathbb{R}[x]$
- Function space

Linear Combinations

- Vectors v_1, v_2, \dots, v_n
- Numbers (scalars) $\lambda_1, \lambda_2, ..., \lambda_n$
- Linear combination
 - The sum of each vector multiplied by a scalar coefficient

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = \sum \lambda_i v_i$$

- Why linear? No fancy functions, no vector multiplications
- Span (linear hull) of vectors: the set of all their linear combinations
- Linear (in)dependence
 - The vectors $v_1, ..., v_n$ are **linearly independent** if the only solution to the equation $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n = \vec{0}$ is $\lambda_1 = 0, \lambda_2 = 0, ..., \lambda_n = 0$
 - Conversely, they are linearly dependent if there is a non-trivial linear combination which is equal to zero
- Example

$$u = (2, -1, 1), v = (3, -4, -2), w = (5, -10, -8)$$

 $w = -2u + 3v \Rightarrow 2u - 3v + 1w = 0$

Basis Vectors

- Consider $\hat{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \hat{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- Now consider the vector $a = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$
- We can see that we can express \hat{a} as the linear combination $a = -2\hat{i} + 1\hat{j}$

$$\begin{bmatrix} -2\\1 \end{bmatrix} = -2 \begin{bmatrix} 1\\0 \end{bmatrix} + 1 \begin{bmatrix} 0\\1 \end{bmatrix}$$

Basis vectors

- Linearly independent
- Every other vector in the space can be represented as their linear combination
 - This linear combination is unique

Each vector space has a basis

- Each pair of two LI vectors forms a basis in 2D coordinate space
 - More generally, each set of n LI vectors forms a basis in n-dimensional vector space

Matrices

Which pill are you going to take?

Matrix

- A rectangular table of numbers
- Dimensions: rows × columns
 - May also be infinite
- Examples:

$$A = \begin{bmatrix} 1 & 3 & 5 \\ -2 & 4.2 & 8 \end{bmatrix} \quad B = \begin{bmatrix} 2 & -1 & 1 \\ 4 & 7 & 12 \\ 0 & 5 & -3 \end{bmatrix} E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad R = \begin{bmatrix} 2 & 4 & 3 \end{bmatrix} \quad C = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$$

- \blacksquare R row vector, C column vector
- Elements $A = \{a_{ij}\}$
- Some thoughts about dimensions
 - Scalars have no dimensions: 2; 3; 18; -42; 0,5
 - Vectors have one dimension: $v = \{v_i\}$
 - Matrices have two dimensions: $A = \{a_{ij}\}$
 - A generalization of this pattern to many dimensions is called a tensor
 - Tensors are quite more complicated than this, but for almost all purposes it's OK to think about them as multidimensional matrices

Matrix Operations

• Addition (the dimensions must be the same)

$$A = \begin{bmatrix} 2 & 3 & 7 \\ 8 & 9 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -3 & 0 \\ 2 & -4 & 1 \end{bmatrix} \Rightarrow A + B = \begin{bmatrix} 2+1 & 3-3 & 7+0 \\ 8+2 & 9-4 & 1+1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 7 \\ 10 & 5 & 2 \end{bmatrix}$$

Multiplication by a scalar

$$\lambda = 2, A = \begin{bmatrix} 2 & 3 & 7 \\ 8 & 9 & 1 \end{bmatrix} \Rightarrow \lambda A = \begin{bmatrix} 2.2 & 2.3 & 2.7 \\ 2.8 & 2.9 & 2.1 \end{bmatrix} = \begin{bmatrix} 4 & 6 & 14 \\ 16 & 18 & 2 \end{bmatrix}$$

- All $m \times n$ matrices form a vector space
- Transposition: turning rows into columns and vice versa
 - The transpose of a matrix is denoted by an upper index T

$$A^T = (a_{ij})_{m \times n}^T = (a_{ji})_{n \times m}$$

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ -3 & -4 & 1 & 3 \\ 2 & 0 & 1 & 1 \end{bmatrix} \Rightarrow A^T = \begin{bmatrix} 1 & -3 & 2 \\ 2 & -4 & 0 \\ 0 & 1 & 1 \\ 1 & 3 & 1 \end{bmatrix}$$

Matrix Multiplication

- The dimensions must match: $A_{m \times p} B_{p \times n} = C_{m \times n}$
 - "Inner dimensions" are the same; result has "outer dimensions"
- Definition: $c_{ij} = \sum_{i=1}^{r} a_{ik} b_{kj}$
- Example

$$A = \begin{bmatrix} 2 & 3 & 7 \\ 8 & 9 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 0 & 1 \\ -3 & -4 & 1 & 3 \\ 2 & 0 & 1 & 1 \end{bmatrix}$$

$$AB = \begin{bmatrix} 2.1 + 3.(-3) + 7.2 & 2.2 + 3.(-4) + 7.0 & 2.0 + 3.1 + 7.1 & 2.1 + 3.3 + 7.1 \\ 8.1 + 9.(-3) + 1.2 & 8.2 + 9.(-4) + 1.0 & 8.0 + 9.1 + 1.1 & 8.1 + 9.3 + 1.1 \end{bmatrix}$$

$$AB = \begin{bmatrix} 7 & -8 & 10 & 18 \\ -17 & -20 & 10 & 36 \end{bmatrix}$$

- Note that $AB \neq BA$
 - In this case, we can't even multiply BA
 - We say that matrix multiplication is not commutative
 - Compare with multiplication of numbers: $5.3 = 3.5 \rightarrow \text{commutative}$

Matrix Operations in numpy

- In numpy we can use dot() for matrix multiplication and dot products
- Note: Whenever possible, use numpy arrays instead of Python lists
 - They perform much faster
 - They make the code a lot cleaner

```
A = np.array([
  [2, 3, 7],
  [8, 9, 1]
B = np.array([
 [1, -3, 0],
  [2, -4, 1]
print(A + B)
print(2 * A)
print(A * B) # Element-wise multiplication
print(A.dot(B)) # Error: incompatible dimensions
print(A.dot(B.T)) # Matrix multiplication
```

Linear Transformations

Transformation

- A mapping (function) between two vector spaces $V \rightarrow W$
- Special case: mapping a space onto itself: $V \rightarrow V$
 - This is called a linear operator
- Each vector of V gets mapped to a vector in W
 - Intuition: think about vectors as points

Linear

- Only linear combinations are allowed
- The origin remains fixed
- All lines remain lines (not curves)
- All lines remain evenly spaced (equidistant)

Each space has a basis

- All other vectors can be expressed as linear combinations of the basis vectors
- If we know how basis vectors are transformed, we can transform every other vector

Linear Transformations (2)

Consider the transformation

$$\hat{i}' = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \hat{j}' = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \Rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

- Consider another vector
 - Old basis:

$$v = v_x \hat{i} + v_y \hat{j}$$

$$\begin{bmatrix} v_x \\ v_y \end{bmatrix} = v_x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + v_y \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Same coefficients, new basis vectors

$$v' = v_x \hat{i}' + v_y \hat{j}'$$

$$\begin{bmatrix} v_x' \\ v_y' \end{bmatrix} = v_x \begin{bmatrix} 1 \\ -1 \end{bmatrix} + v_y \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

- This operation is called applying the linear transformation
 - Note how applying a linear transformation and change of basis are the same

Transformation Matrices

Consider the same transformation

$$\hat{i}' = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \hat{j}' = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

- We applied the linear transformation by taking dot products
 - Therefore, we can describe it in another way using a matrix
 - This is called the matrix of the linear transformation
 - Its columns denote where the basis vectors go

- $T = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$
- Now, applying the transformation to a vector is the same as multiplying the matrix times the original vector (in that order!) v' = Tv
- Example:

$$T = \begin{bmatrix} 3 & 2 \\ -2 & 1 \end{bmatrix}, \ v = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$

$$v' = \begin{bmatrix} 3 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 29 \\ -3 \end{bmatrix}$$

Multiple Transformations

- We can apply many transformations, one right after the other
 - Result: composite transformation
 - We do this by multiplying on the left by the matrix of each transformation
 - So, matrix multiplication ≡ applying many transformations
- To visualize transformations, you can use the code in the visualize_transformation.py file
- Intuition
 - Apply each transformation in order
 - After the last one, record where the basis vectors land
 - The new matrix is the matrix of the composite transformation
- We can either apply all transformations one by one or just the resulting transformation
 - Note that the second is much, much faster; and gives the same result
- This is especially useful in computer graphics

Multiple Transformations (2)

• Example: rotation, then shearing

$$R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \ S = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Apply rotation to a vector

$$v' = Rv = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

Apply shear to the resulting vector

$$v'' = Sv' = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} v'_x \\ v'_y \end{bmatrix}$$

This is the same as

$$v'' = SRv = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

The new transformation matrix is

$$T = SR = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

Determinant

- A linear transformation stretches space
 - Since lines remain parallel and equidistant, space is stretched equally, no matter where we look
 - A characteristic of the space is "the unit area" a 1x1 square
 - The transformation will change this area
- Determinant a measure of how much the unit area changes
 - Scalar value
 - Defined only for square matrices
 - For more than two dimensions, area → volume
- The determinant of a matrix A is denoted det(A)
 - Written with straight lines
 - There are "easy" computational rules for 2D and 3D matrices
 - Generally, the determinant is given by a formula
- The determinant has very useful <u>properties</u>
 - Especially det(AB) = det(A) det(B)

Linear Systems

... again

Linear Systems in Matrix Form

Consider the linear system

$$2x - 5y + 3z = -3$$

 $4x + 0y + 8z = 0$
 $1x + 3y + 0z = 2$

- Unknown variables x, y, z
- We can represent this as a matrix equation

$$\begin{bmatrix} 2 & -5 & 3 \\ 4 & 0 & 8 \\ 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 2 \end{bmatrix}$$

- Or more generally, Ax = b
- Looks like a linear equation "on steroids"
- Transformation perspective
 - The matrix *A* specifies a transformation
 - This transformation was applied to $[x \ y \ z]^T$ to get $[-3 \ 0 \ 2]^T$
 - Can we find the inverse transformation?

Inverse Matrix

- Consider a general, "good" transformation
 - We'll talk later which transformations are not so good
 - The inverse transformation will "bring back" the basis vectors
 - E.g. 90°clockwise rotation ⇒ 90° counterclockwise rotation
- The inverse transformation has its own matrix: T^{-1}
- If we apply the transformation and the inverse, we'll get our initial result
 - This means, nothing will change
 - In math terms, $T^{-1}T = E$
- Let's now try to apply the inverse transformation to our linear system
 - Note that this means multiplying on the left

$$Ax = b$$

$$A^{-1}A = E \Rightarrow Ex = A^{-1}b$$

$$Ex = x \Rightarrow x = A^{-1}b$$

Solving the Linear System

- So, to find the unknown vector x, we need to find the inverse matrix of A the matrix of the linear system
 - How?
 - There are many methods, the most popular of which is called Gaussian elimination (or Gauss – Jordan method)
 - We'll see this in the exercises
- Basic idea: $A^{-1}A = E$
 - Apply some transformation to get from *A* to *E*
 - Apply the same transformation to E
 - What we get is the inverse matrix
- Uses: a lot
 - Makes solving linear systems very fast and robust
 - Allows us to solve multiple linear systems with the same coefficients and different "free terms"

How About "Bad" Matrices?

- If the determinant of the matrix is zero, every element is mapped into a lower-dimensional space
 - 2D case: det(A) = 0 ⇒ every possible point in the 2D space is mapped onto a single vector
 - We can use the visualization to confirm this
 - We can also use our intuition: when is the area equal to zero?
 - Another viewpoint: $det(A) = 0 \Rightarrow$ linearly dependent rows
- Consequently, there are many points mapped on the same point
 - Consider projection as an example
- No "reversible" function maps many inputs to one output
 - The matrix, therefore, is non-invertible
 - A^{-1} does not exist!
- However, solutions to the matrix can sometimes exist
 - We found one such solution in the first lecture
 - We'll talk about this in more detail in the exercises

Summary

- Vectors geometric and algebraic perspective
 - Operations
- Matrices
 - Definition, properties, operations
- Linear transformations
- Linear systems

Questions?