

dro de-corneiled slope =-+000/smut Re= 802/1 gmz +0.0018mwt Me always msaz.

guall 0,00 0.3 +0,00/3MWE = UB34- UTH4 = 0.8 - 0.7

3+0,001Smwt

$$R_7 = \frac{\sqrt{e}}{2e} = 207$$

Degeneration

Common-Source with Source Degradation

Amplifier Equivalent Circuit

- How to calculate G_m ? v_{out} shorted to ground. $G_m = i_{out}/v_{in}$
- How to calculate R_{out} ? v_{in} shorted to ground and v_{out} connected to v_{test} . $R_{out} = v_{test}/i_{test}$

Amplifier Equivalent Circuit

Amplifier Equivalent Circuit

omplete りもの、トキロ Ro am = Dout on Vout Va + (Va - Vm) gm, + Va + gmb 1 Va = 0 Equivalent small Stona Vous Dour

$$\begin{cases} i_o = \frac{-v_a}{R_S} \\ (v_{in} - v_a)gm_1 + i_o = \frac{v_a}{r_{o1}} + v_agmb_1 \end{cases}$$

$$G_{\rm m} = \frac{i_{\rm o}}{v_{\rm in}} = \frac{-gm_1r_{\rm o1}}{R_{\rm S} + r_{\rm o1} + (gm_1 + gmb_1)r_{\rm o1}R_{\rm S}} \approx -\frac{1}{R_{\rm S}}$$

 $\approx -\frac{1}{R_S} \begin{array}{c} \text{if } gmb_1 \iff gmb_1)r_{o_1}R_S \\ \text{>> } r_{o_1} \text{ and } R_S \end{array}$

- At low V_{in} (gm small), turn-on behavior of R_S≠ 0 is similar to that of R_S= 0.
- At large V_{in} (gm large), the effect of R_s, i.e. degradation, becomes more significant.
- V_{in} = 0 V → M₁ off, no current flowing → V_a = 0 V and V_{out} = V_{DD}

りもの、トキロ complete Upp Vout Equivalent small Signa Vour et Ugsi

$$\begin{cases} i_x = \frac{v_a}{R_S} \\ v_a g m_1 + v_a g m b_1 + \frac{v_a - v_x}{r_o} + i_x = 0 \end{cases}$$

$$R_{\text{out}} = R_{\text{out1}} \parallel R_D = [R_S + r_{o1} + (gm_1 + gmb_1)r_{o1}R_S] \parallel R_D \approx R_D$$

$$U_{\text{p}}/\tilde{l}_{1} = R_{\text{put}}$$
 If $(gm_1 + gmb_1)r_{o1}R_S >> R_D$

Small-signal Analysis

$$A_{v} = \frac{v_{out}}{v_{in}} = G_{m}R_{out}$$

$$= \frac{-gm_{1}r_{o1}}{R_{S} + r_{o1} + (gm_{1} + gmb_{1})r_{o1}R_{S}} \cdot \frac{(R_{S} + r_{o1} + (gm_{1} + gmb_{1})r_{o1}R_{S})R_{D}}{[R_{S} + r_{o1} + (gm_{1} + gmb_{1})r_{o1}R_{S}] + R_{D}}$$

$$\approx -\frac{R_D}{R_S} \qquad \text{If } (gm_1 + gmb_1)r_{o1} \text{, the intrinsic gain, is large.} \\$$

$$\text{fmb} << \text{gm}$$

Example

Assuming $\lambda = \gamma = 0$, calculate the small signal voltage gain of the circuit below.

Solution:

$$G_{\rm m} = -\frac{1}{\frac{1}{\rm gm_1} + \frac{1}{\rm gm_2}}$$

$$R_{out} = R_D$$

$$A_v = G_m R_{out}$$