(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出顧公開番号

特開2004-6856 (P2004-6856A)

(43) 公開日 平成16年1月8日 (2004.1.8)

(51) Int.Cl.⁷

FΙ

テーマコード(参考)

HO1L 21/3205 HO1L 21/768 HO1L 21/88 HO1L 21/90 M A 5F033

審査請求 未請求 請求項の数 21 OL (全 9 頁)

(21) 出願番号

特願2003-126073 (P2003-126073)

(22) 出願日

(32) 優先日

平成15年4月30日 (2003.4.30)

(31) 優先権主張番号 10/140,460

10/140,460 平成14年5月6日 (2002.5.6)

(33) 優先権主張国

米国 (US)

(71) 出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(74) 代理人 100078282

弁理士 山本 秀策

(74) 代理人 100062409

弁理士 安村 高明

(74) 代理人 100107489

弁理士 大塩 竹志

(72) 発明者 ウェイ パン

アメリカ合衆国 ワシントン 98683 , バンクーバー, エスイー 23アー ルディー ウェイ 17311

最終質に続く

(54) 【発明の名称】金属バリア層と銅との間の密着促進剤として用いられる超薄膜タングステン金属膜および超薄膜 タングステン金属膜を用いた基板に銅薄膜を密着させる方法

(57)【要約】 (修正有)

【課題】CVD銅の密着性を向上させる。

【解決手段】集積回路構造内の基板に鋼薄膜を密着させる方法は、活性領域ならびに相互接続線構造用のピアホールおよび溝の形成を含む基板を調製する工程と、基板上に金属パリア層22を堆積する工程と、金属パリア層上にタングステン超薄膜層24を堆積する工程と、タングステン超薄膜層上に鋼薄膜26を堆積する工程と、過剰な鋼およびタングステン超薄膜層を金属パリア層のレベルまで除去する工程と、集積回路構造を完成させる工程とを含む。

【選択図】 図4

【特許請求の範囲】

【請求項1】

集積回路構造内の基板に銅薄膜を密着させる方法であって、

活性領域ならびに相互接続線構造用のピアホールおよび溝の形成を含む基板を調製する工、程と、

該基板上に金属パリア層を堆積する工程と、

該金属パリア層上にタングステン超薄膜層を堆積する工程と、

該タングステン超薄膜層上に銅薄膜を堆積する工程と、

過剰な銅およびタングステンを該金属パリア層のレベルまで除去する工程と、

該集積回路構造を完成させる工程と、

を包含する方法。

【請求項2】

前記タンプステン超薄膜層を堆積する工程が、約1nm~約5nmの厚みを有するタンプステン層を堆積する工程を包含する、請求項1に記載の方法。

【請求項3】

前記タングステン超薄膜層を堆積する工程が、MOCVDおよびALDからなる群より選択された堆積方法によってタングステンを堆積する工程を包含する、請求項 1 に記載の方法。

【請求項4】

前記タングステン超薄膜層を堆積する工程が、WF。およびW(CO)。からなる群より 選択された前駆体からタングステンを堆積する工程を包含する、請求項1 に記載の方法。

【請求項5】

前記金属パリア層を堆積する工程が、Tの、TiN、TのNおよびTiSiNからなる群より選択された材料の層を堆積する工程を包含する、請求項1に記載の方法。

【請求項6】

前記金属パリア層を堆積する工程が、約5mm~約10mmの厚みを有する材料の層を堆積する工程を包含する、請求項1に記載の方法。

【請求項7】

前記金属パリア層を堆積する工程が、PVD、ALDおよびMOCVDからなる群より選択された方法により材料の層を堆積する工程を包含する、請求項1に記載の方法。

【請求項8】

前記鋼薄膜を堆積する工程が、前記構造体中のピアホールおよび前記溝を充填するために 十分な厚みまで鋼の層を堆積する工程を包含する、請求項1に記載の方法。

【請求項9】

前記構造体中のピアホールおよび前記溝を充填するために十分な厚みまで銅の層を堆積する工程が、約10mm~約20mmの厚みを有する銅の層を堆積する工程を包含する、請求項8に記載の方法。

【請求項10】

前記鋼薄膜を堆積する工程が、PVD、ALDおよびMOCVDからなる群より選択された方法により鋼の層を堆積する工程を包含する、請求項1に記載の方法。

【請求項11】

集積回路構造内の基板に銅薄膜を密着させる方法であって、

活性領域ならびに相互接続線構造用のピアホールおよび溝の形成を含む基板を調製する工程と、

該基板上に金属パリア層を堆積する工程と、

該金属パリア層上に、WF。およひW(CO)。からなる群より選択された前駆体から、

約1nm~約5nmの厚みまでタングステン超薄膜層を堆積する工程と、

該タングステン超薄膜層上に銅薄膜を堆積する工程と、

過剰な銅およびタングステンを該金属パリア層のレベルまで除去する工程と、

該集積回路構造を完成させる工程と、

10

20

30

を包含する方法。

【請求項12】

前記タングステン超薄膜層を堆積する工程が、MOCVDおよびALDからなる群より選択された堆積方法によってタングステンを堆積する工程を包含する、請求項11に記載の方法。

【請求項13】

前記金属パリア層を堆積する工程が、Tの、TiN、TのN、TのSiNおよびTiSiNからなる群より選択された材料の層を堆積する工程を包含する、請求項11に記載の方法。

【請求項14】

前記金属パリア層を堆積する工程が、約5mm~約10mmの厚みを有する材料の層を堆積する工程を包含する、請求項11に記載の方法。

【請求項15】

前記金属パリア層を堆積する工程が、PVD、ALDおよびMOCVDからなる群より選択された方法により材料の層を堆積する工程を包含する、請求項11に記載の方法。

【請求項16】

前記鋼薄膜を堆積する工程が、前記構造体中のピアホールおよび前記溝を充填するために 十分な厚みまで銅の層を堆積する工程を包含する、請求項11に記載の方法。

【請求項17】

前記構造体中のピアホールおよび前記溝を充填するために十分な厚みまで銅の層を堆積する工程が、約10mm~約20mmの厚みを有する銅の層を堆積する工程を包含する、請求項16に記載の方法。

【請求項18】

前記銅薄膜を堆積する工程が、PVD、ALDおよびMOCVDからなる群より選択された方法により銅の層を堆積する工程を包含する、請求項11に記載の方法。

【請求項19】

金属パリア層上に形成された銅の相互接続線を有する集積回路であって、

活性領域と、相互接続線構造用のピアホールおよび溝とを含む基板と、

該基板上に形成された金属パリア層であって、Tの、TiN、TのN、TのSiNおよびTiSiNからなる群より選択された材料により、約5mm~約10mmの厚みまで形成された金属パリア層と、

該金属パリア層上に形成されたタングステン超薄膜層であって、約1nm~約5nmの厚みを有するタングステン超薄膜層と、

該タングステン超薄膜層上に形成された銅薄膜であって、該集積回路内の該ピアホールお よび該溝を充填するために十分な厚みを有する銅薄膜と、

を備えた集積回路。

【請求項20】

前記タングステン超薄膜層が、WF g およびW(CO) g からなる群より選択された前駆体から形成される、請求項19に記載の集積回路。

【請求項21】

前記ピアホールおよび前記溝を充填するために十分な厚みを有する銅薄膜が、約10mm~約20mmの厚みを有する、請求項19に記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、半導体IC高速デバイス内の相互接続線用のパリアおよび銅薄膜のMOCVDに関し、CVD銅の密着性を向上させる方法に関する。

[0002]

本出願は、米国特許出願シリアル番号第09/940、739号(2001年8月27日出願)(発明の名称: Thermal densification in the ea

10

20

งบ

40

rly stage of Copper MOCVD for depositing high quality Cu filmswith good adhesion and trench filling characteristics) に関連する。

[0003]

【従来の技術】

有機金属化学気相成長法(MOCVD)によって形成された、例えばTiNまたはTのNなどの窒化金属パリア層上に、これもまたMOCVDによって形成された銅膜は、特に銅層が窒化物層または窒化物構造上にインサイチュで成長された場合には、優れた密着完全性を呈さない。得られる密着性は、IC製造時に銅CVD技術を適用することを妨げるようなものである。

10

[0004]

下層であるパリア層に対する銅の密着性を向上させるために、多くの研究がこの分野で行われてきた。関連出願および従来技術は、この分野でなされてきたいくつかの改良を示している。これらの改良は、ウォータペーパーインジェクション、パリア表面酸化、パリア表面でリトリートメント、および熱処理による 密化を含む。これらの改良のうち、熱処理による 密化のみが、銅が狭い溝またはピアホールに堆積される場合の適切なスループットを提供するという点で実用的であることが判明している。しかし、熱処理による 密化は追加の工程を必要とするため、銅CVDにおける熱処理による 密化は比較的複雑であり、従来のCVDに比べてスループットが低い。

20

[0005]

原子層CVD(ALD)は、半導体研究において採用されてきた比較的新しい技術であり、商業的IC製造に採用されている。ALDは迅速に動作するパルプを用いて、堆積チャンパに個々の反応物を送り込む。各反応物は、化学的吸収を介してIC表面上に材料の単層を堆積し、既に堆積されている単層種と反応することにより、所望の化合物を形成された化合物は従来のCVDにより達成されたものよりもはるかがに高い密度を有する。ALDではさらに、優れたステップカパレッジを提供する。前に選択することにより、多層の、または異なる層を交互に堆積したパリア金属が形成される。例えば、交互に堆積されたTのN/SiN薄膜、TのN/TiN薄膜がおびTiN/SiN薄膜、または他の組み合わせで交互に堆積された薄膜が容易に形成された積層体全体の厚みは僅か50オングストロームであり、優れたパリア特性を呈する。

30

[0006]

このような技術に関してN 3 u y e n らは、銅薄膜の密着性を向上させるために水蒸気を用いることを提案している(1 9 9 8 年 4 月 2 8 日に許可されたN 3 u y e n らの特許文献 1 参照)。

[0007]

また、Nuescaらは銅薄膜の密着性を向上させるために水素を用いることを提案している(Nuescaちの非特許文献1参照)。

40

[0008]

【特許文献1】 米国特許第5、744、192号(発明の名称: Method ofusing water vaPor to increase the conductivity of coPPer dePosited with

Cu (Hfac) TMV8)

【非特許文献1】

Surface effects in the MOCVD ofcoPPer、Mat. Res. Soc. Symp. Proc. Vol. $3\,3\,7\,$ 、 $1\,9\,9\,4\,$ 、 $1\,7\,7\,\sim\,1\,8\,8\,$

[0009]

【発明が解決しようとする課題】

ALDの適用は、パリア層、例えば多層TのN/TiN薄膜積層体などの製造に特に有用である。TのN薄膜は、TiNの箱層体よりも優れたパリア特性を呈するが、後に堆積される層、特に銅薄膜層に対して適切な密着性を提供しない。単一の薄膜層はさらに、粒界に沿ったある程度の拡散を可能にする粒構造を有する。このように、TのN/TiN多層薄膜積層体は、銅がこの薄膜積層体に密着されることができれば、望ましい。

[0010]

【課題を解決するための手段】

本発明の目的は、金属および窒化金属基板上の銅薄膜の密着性を向上させることである。

[0011]

本発明の別の目的は、基板に対する銅薄膜の密着を向上させるために、金属または窒化金属基板上にタングステンを堆積する方法を提供することである。

[0012]

本発明の集積回路構造内の基板に銅薄膜を密着させる方法は、活性領域ならびに相互接続線構造用のピアホールおよび溝の形成を含む基板を調製する工程と、上記基板上に金属パリア層を堆積する工程と、上記金属パリア層上にタングステン超薄膜層を堆積する工程と、上記タングステン超薄膜層上に銅薄膜を堆積する工程と、過剰な銅およびタングステンを上記金属パリア層のレベルまで除去する工程と、上記集積回路構造を完成させる工程と、を包含し、そのことにより上記目的が達成される。

[0013]

上記タングステン超薄膜層を堆積する工程が、約1nm~約5nmの厚みを有するタングステン層を堆積する工程を包含してもよい。

[0014]

上記タンプステン超薄膜層を堆積する工程が、MOCVDおよびALDからなる群より選択された堆積方法によってタンプステンを堆積する工程を包含してもより。

[0015]

上記タングステン超薄膜層を堆積する工程が、WF。およびW(CO)。からなる群より選択された前駆体からタングステンを堆積する工程を包含してもより。

[0016]

上記金属パリア層を堆積する工程が、Tα、TiN、TαNおよびTiSiNからなる群より選択された材料の層を堆積する工程を包含してもよい。

[0017]

上記金属パリア層を堆積する工程が、約5nm~約10nmの厚みを有する材料の層を堆積する工程を包含してもよい。

[0018]

上記金属パリア層を堆積する工程が、PVD、ALDおよびMOCVDからなる群より選択された方法により材料の層を堆積する工程を包含してもより。

[0019]

上記銅薄膜を堆積する工程が、上記構造体中のピアホールおよび上記溝を充填するために 十分な厚みまで銅の層を堆積する工程を包含してもよい。

[0020]

上記構造体中のピアホールおよび上記溝を充填するために十分な厚みまで銅の層を堆積する工程が、約10mm~約20mmの厚みを有する銅の層を堆積する工程を包含してもよい。

[0021]

上記銅薄膜を堆積する工程が、PVD、ALDおよびMOCVDからなる群より選択された方法により銅の層を堆積する工程を包含してもよい。

[0022]

本発明の集積回路構造内の基板に銅薄膜を密着させる方法は、活性領域ならびに相互接続線構造用のピアホールおよび溝の形成を含む基板を調製する工程と、上記基板上に金属パ

10

20

40

30

リア層を堆積する工程と、上記金属パリア層上に、WF®およびW(CO)® からなる群より選択された前駆体から、約1nm~約5nmの厚みまでタングステン超薄膜層を堆積する工程と、上記タングステン超薄膜層上に銅薄膜を堆積する工程と、過剰な鋼およびタングステンを上記金属パリア層のレベルまで除去する工程と、上記集積回路構造を完成させる工程とを包含し、そのことにより上記目的が達成される。

[0023]

上記タンプステン超薄膜層を堆積する工程が、MOCVDおよびALDからなる群より選択された堆積方法によってタンプステンを堆積する工程を包含してもよい。

[0024]

上記金属パリア層を堆積する工程が、Ta、TiN、TaN、TaSiNおよびTiSi 10Nからなる群より選択された材料の層を堆積する工程を包含してもより。

[0025]

上記金属パリア層を堆積する工程が、約5NM~約10NMの厚みを有する材料の層を堆積する工程を包含してもよい。

[0026]

上記金属パリア層を堆積する工程が、PVD、ALDおよびMOCVDからなる群より選択された方法により材料の層を堆積する工程を包含してもよい。

[0027]

上記銅薄膜を堆積する工程が、上記構造体中のピアホールおよび上記溝を充填するために 十分な厚みまで銅の層を堆積する工程を包含してもより。

[0028]

上記構造体中のピアホールおよび上記溝を充填するために十分な厚みまで銅の層を堆積する工程が、約10mm~約20mmの厚みを有する銅の層を堆積する工程を包含してもよい。

[0029]

上記銅薄膜を堆積する工程が、PVD、ALDおよびMOCVDからなる群より選択された方法により銅の層を堆積する工程を包含してもより。

[0030]

本発明の金属パリア層上に形成された銅の相互接続線を有する集積回路は、活性領域と相互接続線構造用のピアホールおよび溝とを含む基板と、上記基板上に形成された金属パリア層であって、Ta、TiN、TaN、TaSiNおよびTiSiNからなる群より選択された材料により、約5mm~約10mmの厚みまで形成された金属パリア層と、上記は田本のであって、約1mm~約5mmの厚みを属パリア層上に形成されたタングステン超薄膜層であって、約1mm~約5mmの厚みを有するタングステン超薄膜層と、上記タングステン超薄膜層上に形成された銅薄膜であって、上記集積回路内の上記ピアホールおよび上記溝を充填するために十分な厚みを有する銅薄膜とを備え、そのことにより上記目的が達成される。

[0081]

上記タングステン超薄膜層が、WF。およびW(CO)。からなる群より選択された前駆体から形成されてもよい。

[0082]

上記ピアホールおよび上記溝を充填するために十分な厚みを有する鋼薄膜が、約10nm ~約20nmの厚みを有してもより。

[0033]

タンクステン超薄膜は通常、約10mm~約20mmの厚みを有する。

[0084]

以上、本発明の特徴の簡潔な理解のために、本発明の要約および目的を述べた。本発明のより詳細な理解は、以下の好適な実施形態の記載を添付の図面を参照して読むことにより得られる。

[0035]

【発明の実施の形態】

50

20

30

本実施形態では、任意の従来のパリア層上に、約1nm〜約5nmの厚みを有する超薄膜タングステン層を形成する。その後、銅をCVDによって堆積する。堆積されたタングステンと銅との間の密着性は優れていることが判明している。このように、パリア層、タングステン薄膜、および銅膜は、優れた密着完全性を提供するスムーズな合理的CVDプロセスで堆積され、さらなる工程を必要としないため、製造プロセスが簡素化される。

[0086]

タングステン超薄膜は、有機金属化学気相成長法(MOCVD)または原子層堆積(ALD)により堆積され得、銅薄膜と金属パリア層との間の密着促進剤として作用する。本発明の方法は、他の密着を向上させる方法に比べて、単純、容易、そして簡単に、高速ICデバイス内で銅の相互接続線を製造し、下層のIC構造に対して適切な密着性を有する銅で、ピアホールおよび溝を適切に充填することを可能にする。

10

[0037]

本発明の方法の実施は、図1に示す基板(概して参照符号10で示す)の調製から始まる。基板10は、内部にソース12、ドレイン14、ゲート16などの活性領域を形成することにより調製される。基板10はゲート積層体18を含み得る。基板10およびその上の構造体は酸化層20で覆われ、基板10および構造体がパターニングされ、溝21などの相互接続線用溝がその中に形成される。パターニングおよび溝の形成は当業者に公知の任意の方法で行われ得る。

[0038]

その後図2に示すように、基板10上に金属層または窒化金属パリア膜22が堆積され、次いでパターニングされ溝構造が形成される。一例として、パリア金属膜は、Tの、TiN、ToN、TiSiNからなる群より選択され得、物理蒸着法(PVD)またはMOCVDにより約5nm~約10nmの厚みまで堆積され得るがこれらに限定されない。

20

[0039]

図3に示すように、実際、超薄膜であるタングステン薄膜24がインサイチュまたはエクスサイチュでMOCVDによりパリア金属膜上に堆積される。この堆積は、前駆体としてWF a またはW(CO) a を用いて、約1nm~約5nmの厚みまで行われる。前駆体は、気体WF a またはW(CO) a などの固体物質である。前駆体は、キャリアガスによって供給または搬送されてCVDチャンパに入れられる。CVDチャンパの温度は約350℃~450℃である。堆積は、約1分間~約2分間で行われ、所望の厚みを有するタングステン超薄膜が確立される。

30

[0040]

図4に示すように、タングステン薄膜上に銅薄膜26が、MOCVDにより約10nm~約20nmの厚みまで堆積される。銅は、Schumacherから入手可能なCuPraSelect[™] Blend前駆体を用いることにより堆積され得、約180℃~約250℃の温度のCVDチャンパに導入され得る。堆積は、約12秒間~約10分間で行われ、所望の厚みを有する銅薄膜が確立される。

[0041]

得られた構造体は、CVDによる充填の場合、パリア膜のレベルまで、さらなる銅の電気メッキまたは化学機械的研磨(CMP)で処理することが可能である。これを図5に示す。さらなるIC構造体および金属化が追加されて、銅薄膜ICデバイスが完成され得る。さらなるIC構造体および金属化とは例えば、銅30を用いて、CVDまたは他の堆積技術により溝28を充填することである。

40

[0042]

パリア金属、タングステン、および銅は、すべてALDによって堆積されてもよりし、これらの一部の層がALDによって堆積されて残りの層がCVDまたはMOCVDによって形成されてもより。構造体のサイズが特に100mm未満に減少すると、ALDを用いることが有益である。特に良好なプロトコルは、ALDによりTiNパリア層を形成し、タングステン層をALD処理し、CVDにより銅を堆積することである。

[0043]

以上、GVDにより堆積されたTiSiN、TaN、TaSiN、およびCu間の密着促進削としてタングステン超薄膜を用いる方法を開示した。特許請求の範囲に記載の本発明の範囲から逸脱することなく、さらなる改変および変更が可能であることが理解される。

[0044]

【発明の効果】

本発明によれば、基板に対する銅薄膜の密着性を向上させるために、金属または窒化金属基板上にタングステンを堆積する方法が提供され、それにより、金属および窒化金属基板上の銅薄膜の密着性を向上させることができる。。

【図面の簡単な説明】

- 【図1】図1は、本発明による銅薄膜集積回路デバイスの製造工程を示す図である。
- 【図2】図2は、本発明による銅薄膜集積回路デバイスの製造工程を示す図である。
- 【図3】図3は、本発明による銅薄膜集積回路デバイスの製造工程を示す図である。
- 【図4】図4は、本発明による銅薄膜集積回路デバイスの製造工程を示す図である。
- 【図5】図5は、本発明による銅薄膜集積回路デバイスの製造工程を示す図である。

【符号の説明】

- 10 基板
- 12 ソース
- 14 ドレイン
- 16 ゲート
- 18 ゲート積層体
- 20 酸化層
- 22 金属パリア膜
- 24 タンプステン薄膜
- 2 6 銅薄膜

【図1】

[図2]

[23]

20

10

【図4】

【図5】

フロントペープの続き

- (72)発明者 デビット アール エバンス アメリカ合衆国 オレゴン 97007. ピーヴァートン. エスダブリュー 179ティーエ イチ ストリート 7574
- (72)発明者 シェン テン スー アメリカ合衆国 ワシントン 98607. カマス. エヌダブリュー トラウト コート 2 216
- F ターム(参考) 5F038 HH11 HH19 HH21 HH27 HH32 HH38 JJ11 JJ19 JJ21 JJ27 JJ32 JJ33 KK01 MM01 MM12 MM13 NN06 NN07 PP02 PP03 PP06 PP11 PP14 PP19 PP27 PP33 QQ48 QQ98 WW02 XX13