Lista 3: desigualdade do valor médio e fórmulas de Taylor

26 de março de 2025

1. Seja $\ell: \mathbb{R}^n \to \mathbb{R}$ um funcional linear. Lembremos que a norma de operador de ℓ é definida por

$$\|\ell\| = \sup\{\|\ell v\| : v \in \mathbb{R}^n, \|v\| = 1\}.$$

Mostre que, se $w \in \mathbb{R}^n$ é tal que $\ell(v) = \langle w, v \rangle$ para todo $v \in \mathbb{R}^n$, então $\|\ell\| = \|w\|$. Conclua que, se f é uma função diferenciável em p, então $\|df(p)\| = \|\nabla f(p)\|$.

- 2. Seja $U \subset \mathbb{R}^n$ um aberto e $f \in C^1(U)$. Mostre que, se $K \subset U$ é compacto e convexo, então a restrição de f a K é uma função de Lipschitz.
- 3. Seja $U \subset \mathbb{R}^n$ aberto. Mostre que, se $f:U \to \mathbb{R}$ é diferenciável e de Lipschitz em U, então a função

$$U \to \mathbb{R}, \qquad x \mapsto \|df(x)\|$$

é limitada.

- 4. (Qualificação 2012, 2013, 2015) Seja $U \subset \mathbb{R}^n$ aberto e $f: U \to \mathbb{R}$ diferenciável. Mostre que, se $|\frac{\partial f}{\partial x_i}(x)| \leq M$, para todo $x \in U$ e $i = 1, \ldots, n$, então $f(\Omega)$ é limitado quando $\Omega \subset U$ é limitado e convexo.
- 5. Mostre que o teorema de Schwarz, visto em aula para funções de classe C^2 , vale mais geralmente para funções duplamente diferenciáveis. (Ver [1, §3.7].)
- 6. Sea $k \geq 1$ um inteiro. Mostre que, se f é k vezes diferenciável em p, então, para todo $v \in \mathbb{R}^n$, vale

$$d^k f(p) v^{\otimes k} = \sum_{|\alpha|=k} {k \choose \alpha} \partial^{\alpha} f(p) v^{\alpha},$$

onde
$$\binom{k}{\alpha} = \frac{k!}{\alpha_1! \cdots \alpha_n!}$$
.

- 7. Mostre que, se $f(x)=\sum_{|\alpha|\leq d}c_{\alpha}x^{\alpha}$ é uma função polinomial que se anula em uma vizinhança da origem, então $c_{\alpha}=0$ para todo α .
- 8. Um teorema visto em aula afirma que, se $f \in k$ vezes diferenciável e se anula à ordem k+1 na origem, então $f(v) = o(\|v\|^k)$ quando $v \to 0$. Deduza a fórmula de Taylor infinitesimal deste resultado. Em seguida, use a fórmula de Taylor infinitesimal para mostrar que vale a volta do teorema. Conclua que a fórmula de Taylor infinitesimal é única, isto é, se $f \in k$ vezes diferenciável em $p \in P_j(v)$ são funções polinomiais homogêneas de grau i em v tais que

$$f(p+v) = \sum_{j=0}^{k} P_j(v) + o(||v||^k), \qquad v \to 0,$$

então $P_j = d^j f(p)/j!$ para todo j = 0, ..., k.

9. Calcule a fórmula de Taylor infinitesimal de ordem 7 na origem da função $\ln\left(\frac{1}{1-\|x\|^2}\right)$.

- 10. Calcule a matriz hessiana na origem da função do exercício anterior.
- 11. Encontre todas as derivadas parciais de ordem 2025 na origem da função $f(x,y) = e^{x^2 + y^4}$.
- 12. Mostre, sem usar a fórmula de Taylor infinitesimal, que, nas fórmulas de Taylor com resto de Lagrange e restro integral de ordem k, os restos são funções $o(||v||^k)$ quando $v \to 0$.
- 13. (Qualificação 2010)
 - (a) Suponha que $f: \mathbb{R}^n \to \mathbb{R}$ seja tal que f(0) = 0 e $\nabla f(0) = 0$ e seja K > 0 uma constante. Mostre que, se

$$\left| \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right| \le K$$
, para todo $||x|| \le 1$ e $i, j \in \{1, \dots, n\}$,

então existe C>0 e uma vizinhança da origem Ω tais que

$$|f(x)| \le C||x||^2$$
, para todo $x \in \Omega$.

- (b) Mostre que a recíproca do resultado contido no item (a) é falsa.
- 14. Seja $U \subset \mathbb{R}^n$ um aberto. Uma função $f \in C^{\infty}(U)$ é dita analítica (real) se, para todo $p \in U$, a série de Taylor de f em p converge absolutamente para f em uma vizinhança de p. Assim, podemos escrever

$$f(p+v) = \sum_{j=0}^{\infty} \frac{d^j f(p)}{j!} v^{\otimes j} = \sum_{\alpha} \frac{\partial^{\alpha} f(p)}{\alpha!} v^{\alpha}$$

para todo $v \in \mathbb{R}^n$ suficientemente pequeno, ou, de maneira equivalente,

$$f(x) = \sum_{j=0}^{\infty} \frac{d^j f(p)}{j!} (x - p)^{\otimes j} = \sum_{\alpha} \frac{\partial^{\alpha} f(p)}{\alpha!} (x - p)^{\alpha}$$

para todo x em uma vizinhança de p. Note que a convergência absoluta garante que não precisamos nos preocupar com a ordem da soma indexada nos multi-índices $\alpha \in \mathbb{N}^n$. O conjunto das funções analíticas em U é denotado $C^{\omega}(U)$. Exemplos de funções analíticas incluem as funções elementares, como polinômios, exponencial, logaritmo, seno, cosseno, etc.

(a) Mostre que a função

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(t) = \begin{cases} 0, & t \le 0 \\ e^{-\frac{1}{t}}, & t > 0 \end{cases}$$

é de classe C^{∞} , mas não analítica.

(b) Seja $f \in C^{\infty}(U)$. Mostre que $f \in C^{\omega}(U)$ se, e somente se, para todo compacto $K \subset U$, existe uma constante $C \geq 0$ tal que

$$\sup_{x \in K} \frac{|\partial^{\alpha} f(x)|}{\alpha!} \le C^{|\alpha|+1}$$

para todo $\alpha \in \mathbb{N}^n$. [Dica: use a fórmula de Taylor com resto de Lagrange ou resto integral.]

- (c) Mostre que $C^{\omega}(U)$ é uma \mathbb{R} -álgebra e que, se $f\in C^{\omega}(U)$ não se anula em nenhum ponto de U, então $\frac{1}{f}\in C^{\omega}(U)$.
- 15. Uma função $f: \mathbb{R}^n \to \mathbb{R}$ é dita homogênea de grau k se $f(tx) = t^k f(x)$ para todo t > 0 e todo $x \in \mathbb{R}^n$. Demonstre a seguinte identidade de Euler: se f é homogênea de grau k e diferenciável em p, então

$$p_1 \frac{\partial f}{\partial x_1}(p) + \dots + p_n \frac{\partial f}{\partial x_n}(p) = kf(p).$$

16. Lembremos que um polinômio $f(x_1, \ldots, x_n)$ é dito simétrico se permanece inalterado após uma permutação qualquer de suas variáveis. Por exemplo, $f(x_1, x_2) = x_1^2 + x_2^2$ é simétrico, mas $g(x_1, x_2) = x_1^2 + x_2^4$ não é, pois $g(x_2, x_1) \neq g(x_1, x_2)$. Os polinômios simétricos elementares

$$s_1(x_1, \dots, x_n) = \sum_{1 \le i \le n} x_i = x_1 + \dots + x_n$$

$$s_2(x_1, \dots, x_n) = \sum_{1 \le i < j \le n} x_i x_j = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$$

$$\vdots$$

$$s_n(x_1, \dots, x_n) = x_1 \dots x_n$$

são definidos pela fórmula

$$(y-x_1)\cdots(y-x_n)=y^n-s_1(x_1,\ldots,x_n)y^{n-1}+\cdots+(-1)^ns_n(x_1,\ldots,x_n).$$

Um teorema, geralmente atribuído a Newton, afirma que qualquer polinômio simétrico pode se escrever como um polinômio nos polinômios simétricos elementares. Por exemplo, $x_1^2 + \cdots + x_n^2 = s_1(x_1, \ldots, x_n)^2 - 2s_2(x_1, \ldots, x_n)$. Em geral, não é fácil descrever uma fórmula explícita que exprime as somas de potências

$$p_k(x_1,\ldots,x_n) = x_1^k + \cdots + x_n^k$$

como combinação dos polinômios simétricos elementares, mas a seguinte *identidade de Newton* fornece uma solução recursiva para este problema:

$$ks_k = s_{k-1}p_1 - s_{k-2}p_2 + \dots + (-1)^{k-2}s_1p_{k-1} + (-1)^{k-1}s_0p_k,$$

onde $s_0 = 1$ e $s_i = 0$ para k > n. O objetivo deste exercício é demonstrar a identidade de Newton.

(a) Mostre que

$$s_0 + s_1 + \dots + s_n = (1 + x_1) \cdots (1 + x_n).$$

(b) Utilizando o "operador de Euler" $x_1 \frac{\partial}{\partial x_1} + \dots + x_n \frac{\partial}{\partial x_n}$, mostre que

$$\frac{s_1 + 2s_2 + \dots + ns_n}{s_0 + s_1 + \dots + s_n} = \frac{x_1}{1 + x_1} + \dots + \frac{x_n}{1 + x_n}.$$

(c) Conclua considerando as expansões de Taylor do termo à direita.

Referências

[1] E. L. Lima, *Curso de análise. Vol. 2* (décima segunda edição), Projeto Euclides, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 2020.