Package 'MiMIR'

February 1, 2024

Title Metabolomics-Based Models for Imputing Risk Version 1.5 Description Provides an intuitive framework for ad-hoc statistical analysis of 1H-NMR metabolomics by Nightingale Health. It allows to easily explore new metabolomics measurements assayed by Nightingale Health, comparing the distributions with a large Consortium (BBMRI-nl); project previously published metabolic scores [<doi:10.1016/j.ebiom.2021.103764>, <doi:10.1161/CIRCGEN.119.002610>, <doi:10.1038/s4146 019-11311-9>, <doi:10.7554/eLife.63033>, <doi:10.1161/CIRCULATIONAHA.114.013116>, <doi:10.1007/s00125-019-05001-w>]; and calibrate the metabolic surrogate values to a desired dataset. License GPL-3 **Encoding UTF-8** RoxygenNote 7.1.2 **Depends** R (>= 4.1.0) **Imports** caret, DT, foreach, ggplot2, heatmaply, matrixStats, plotly, pROC, purrr, shiny, shinycssloaders, shinyFiles, shinydashboard, shinyjs, shinyWidgets, stats, survival, survminer, dplyr, fs LazyData true **Suggests** testthat (>= 3.0.0), ggfortify, knitr, rmarkdown Config/testthat/edition 3 NeedsCompilation no Author Daniele Bizzarri [aut, cre] (https://orcid.org/0000-0002-6881-273X), Marcel Reinders [aut, ths] (https://orcid.org/0000-0002-1148-1562), Marian Beekman [aut] (https://orcid.org/0000-0003-0585-6206), Pieternella Eline Slagboom [aut, ths] (<https://orcid.org/0000-0002-2875-4723>), Erik van den Akker [aut, ths] (https://orcid.org/0000-0002-7693-0728) Maintainer Daniele Bizzarri <d.bizzarri@lumc.nl> Repository CRAN Date/Publication 2024-02-01 08:50:02 UTC

Index

R topics documented:

acc_LOBOV	3
Ahola_Olli_betas	3
BBMRI_hist	4
BBMRI_hist_plot	5
BBMRI_hist_scaled	6
binarize_all_pheno	7
BMI_LDL_eGFR	8
c21	9
calculate_surrogate_scores	9
comp.CVD_score	11
	12
comp.T2D_Ahola_Olli	13
	14
cor_assoc	15
	16
	17
	17
	18
hist_plots_mortality	19
<u>. </u>	
LOBOV_accuracies	
metabolites_subsets	
MetaboWAS	
metabo_names_translator	
mort_betas	
multi_hist	
PARAM_metaboAge	
PARAM_surrogates	
phenotypes_names	
pheno_barplots	
plattCalibration	
plot_corply	
plot_na_heatmap	
prep_data_COVID_score	
prep_met_for_scores	
QCprep	
QCprep_surrogates	
	37
	38
<u>*</u>	39
	40
= =	41
	41
-7171	
-	42 43
ttest_surrogates	43
	44

acc_LOBOV 3

acc_LOBOV

acc_LOBOV

Description

Accuracy of the Leave One Biobank Out Validation of the surrogate metabolic-modesl performed in BBMRI-nl

Usage

```
data("acc_LOBOV")
```

Format

An object of class list of length 20.

Details

Dataframe containing the accuracy obtained during the Leave One Biobank Out Validation of the surrogate metabolic-modesl in BBMRI-nl.

References

The method is described in: Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi:10.1016/j.ebiom.2021.103764

Examples

```
data("acc_LOBOV")
```

Ahola_Olli_betas

T2D-score Betas

Description

The coefficients used to compute the T2Diabetes score by Ahola Olli.

Usage

```
data("Ahola_Olli_betas")
```

Format

An object of class data. frame with 7 rows and 3 columns.

4 BBMRI_hist

Details

Dataframe containing the abbreviation of the metabolites, the metabolites names and finally the Coefficients to compute the T2Diabetes score

References

Ahola-Olli,A.V. et al. (2019) Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia, 62, 2298-2309, doi:10.1007/s00125-019-05001-w

Examples

```
data("Ahola_Olli_betas")
```

BBMRI_hist

BBMRI_hist

Description

Distributions of the Nightingale Health metabolic features in BBMRI-nl

Usage

```
data("BBMRI_hist")
```

Format

An object of class list of length 57.

Details

List containing the histograms of the metabolomics-features in BBMRI-nl.

```
data("BBMRI_hist")
```

BBMRI_hist_plot 5

BBMRI_hist_plot multi_hist

Description

Function to plot the ~60 metabolites used for the metabolomics-based scores and compare them to to their distributions in BBMRI-nl

Usage

```
BBMRI_hist_plot(
  dat,
  x_name,
  color = MiMIR::c21,
  scaled = FALSE,
  datatype = "metabolite",
  main = "Comparison with the metabolites measures in BBMRI"
)
```

Arguments

data.frame or matrix with the metabolites

x_name string with the name of the selected variable

color colors selected for all the variables

scaled logical to z-scale the variables

datatype a character vector indicating what data type is being plotted

main title of the plot

Details

This function plots the distribution of a metabolic feature in the uploaded dataset, compared to their distributions in BBMRI-nl. The selection of features available is done following the metabolic scores features.

Value

plotly image with the histogram of the selected variable compared to the distributions in BBMRI-nl

References

The selection of metabolic features available is the one selected by the papers: Deelen,J. et al. (2019) A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nature Communications, 10, 1-8, doi:10.1038/s41467-019-11311-9 Ahola-Olli,A.V. et al. (2019) Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia, 62, 2298-2309, doi:10.1007/s00125-019-05001-w Wurtz,P. et al. (2015) Metabolite profiling and cardiovascular event risk:

6 BBMRI_hist_scaled

a prospective study of 3 population-based cohorts. Circulation, 131, 774-785, doi:10.1161/CIRCULATIONAHA.114.013116 Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi:10.1016/j.ebiom.2021.103764 van den Akker Erik B. et al. (2020) Metabolic Age Based on the BBMRI-NL 1H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circulation: Genomic and Precision Medicine, 13, 541-547, doi:10.1161/CIRCGEN.119.002610

Examples

```
library(plotly)
library(MiMIR)

#load the metabolites dataset
metabolic_measures <- synthetic_metabolic_dataset

BBMRI_hist_plot(metabolic_measures, x_name="alb", scaled=TRUE)</pre>
```

BBMRI_hist_scaled

BBMRI_hist_scaled

Description

Z-scaled distributions of the Nightingale Health metabolic features in BBMRI-nl

Usage

```
data("BBMRI_hist_scaled")
```

Format

An object of class list of length 57.

Details

List containing the histograms of the scaled metabolomics-features in BBMRI-nl.

```
data("BBMRI_hist_scaled")
```

binarize_all_pheno 7

binarize_all_pheno

binarize_all_pheno

Description

Helper function created to binarize the phenotypes used to calculate the metabolomics based surrogate made by Bizzarri et al.

Usage

```
binarize_all_pheno(data)
```

Arguments

data

phenotypes data.frame containing some of the following variables (with the same namenclature): "sex", "diabetes", "lipidmed", "blood_pressure_lowering_med", "current_smoking", "metabolic_syndrome", "alcohol_consumption", "age", "BMI", "ln_hscrp", "waist_circumference", "weight", "height", "triglycerides", "ldl_chol", "hdlchol", "totchol", "eGFR", "wbc", "hgb"

Details

Bizzarri et al. built multivariate models,using 56 metabolic features quantified by Nightingale, to predict the 19 binary characteristics of an individual. The binary variables are: sex, diabetes status, metabolic syndrome status, lipid medication usage, blood pressure lowering medication, current smoking, alcohol consumption, high age, middle age, low age, high hsCRP, high triglycerides, high ldl cholesterol, high total cholesterol, low hdl cholesterol, low eGFR, low white blood cells, low hemoglobin levels.

Value

The phenotypic variables binarized following the thresholds in in the metabolomics surrogates made by Bizzarri et al.

References

This function was made to binarize the variables following the same rules indicated in the article: Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi:10.1016/j.ebiom.2021.103764

See Also

pheno_barplots

8 BMI_LDL_eGFR

Examples

```
library(MiMIR)
```

#load the phenotypes dataset
phenotypes <- synthetic_phenotypic_dataset
#Calculate BMI, LDL cholesterol and eGFR
binarized_phenotypes<-binarize_all_pheno(phenotypes)</pre>

BMI_LDL_eGFR

BMI_LDL_eGFR

Description

#' Function created to calculate: 1) BMI using height and weight; 2) LDL cholesterol using HDL cholesterol, triglycerides, totchol; 3) eGFR creatinine levels, sex and age.

Usage

```
BMI_LDL_eGFR(phenotypes, metabo_measures)
```

Arguments

phenotypes

data.frame containing height and weight, HDL cholesterol, triglycerides, totchol,

sex and age

metabo_measures

numeric data-frame with Nightingale metabolomics quantifications containing

creatinine levels (crea)

Value

phenotypes data.frame with the addition of BMI, LDL cholesterol and eGFR

References

This function is constructed to calculate BMI, LDL cholesterol and eGFR as in the following papers:

BMI: Flint AJ, Rexrode KM, Hu FB, Glynn RJ, Caspard H, Manson JE et al. Body mass index, waist circumference, and risk of coronary heart disease: a prospective study among men and women. Obes Res Clin Pract 2010; 4: e171-e181, doi:10.1016/j.orcp.2010.01.001

LDL-cholesterol: Friedewald WT, Levy RI, Fredrickson DS. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin Chem 1972; 18: 499-502, <doi.org/10.1093/clinchem/18.6.499>

eGFR: Carrero Juan Jesus, Andersson Franko Mikael, Obergfell Achim, Gabrielsen Anders, Jernberg Tomas. hsCRP Level and the Risk of Death or Recurrent Cardiovascular Events in Patients With Myocardial Infarction: a Healthcare-Based Study. J Am Heart Assoc 2019; 8: e012638, <doi: 10.1161/JAHA.119.012638>

c21

Examples

```
library(MiMIR)

#load the dataset
metabolic_measures <- synthetic_metabolic_dataset
phenotypes <- synthetic_phenotypic_dataset
#Calculate BMI, LDL cholesterol and eGFR
phenotypes<-BMI_LDL_eGFR(phenotypes, metabolic_measures)</pre>
```

c21 *c21*

Description

Colors attributed to each metabolomics-based model in MiMIR

Usage

```
data("c21")
```

Format

An object of class character of length 21.

Examples

```
data("c21")
```

```
calculate\_surrogate\_scores \\ calculate\_surrogate\_scores
```

Description

Function to compute the surrogate scores by Bizzarri et al. from the Nightingale metabolomics matrix

Usage

```
calculate_surrogate_scores(
  met,
  pheno,
  PARAM_surrogates,
  bin_names = c("sex", "diabetes"),
  Nmax_miss = 1,
  Nmax_zero = 1,
  post = TRUE,
  roc = FALSE,
  quiet = FALSE
)
```

Arguments

met numeric data-frame with Nightingale-metabolomics

pheno phenotypic data.frame including this clinical variables (with the same nomen-

clature): "sex", "diabetes", "lipidmed", "blood_pressure_lowering_med", "current_smoking", "metabolic_syndrome", "alcohol_consumption", "age", "BMI", "ln_hscrp", "waist_circumference", "weight", "height", "triglycerides", "ldl_chol",

"hdlchol", "totchol", "eGFR", "wbc", "hgb"

PARAM_surrogates

list containing the parameters to compute the metabolomics-based surrogates

bin_names vector of strings containing the names of the binary variables

Nmax_miss numeric value indicating the maximum number of missing values allowed per

sample (Number suggested=1)

Nmax_zero numeric value indicating the maximum number of zeros allowed per sample

(Number suggested=1)

post logical to indicate if the function should calculate the posterior probabilities

roc logical to plot ROC curves for the metabolomics surrogate (available only for

the phenotypes included)

quiet logical to suppress the messages in the console

Details

Bizzarri et al. built multivariate models, using 56 metabolic features quantified by Nightingale, to predict the 19 binary characteristics of an individual. The binary variables are: sex, diabetes status, metabolic syndrome status, lipid medication usage, blood pressure lowering medication, current smoking, alcohol consumption, high age, middle age, low age, high hsCRP, high triglycerides, high ldl cholesterol, high total cholesterol, low hdl cholesterol, low eGFR, low white blood cells, low hemoglobin levels.

Value

if pheno is not available: list with the surrogates and the Nightingale metabolomics matrix after QC. if pheno is available: list with the surrogates, ROC curves, phenotypes, binarized phenotypes and the Nightingale metabolomics matrix after QC,

comp.CVD_score

References

This function was made to vidualize the binarized variables calculated following the rules indicated in the article: Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi:10.1016/j.ebiom. 2021.103764

See Also

QCprep_surrogates

Examples

```
require(MiMIR)
require(foreach)
require(pROC)
require(foreach)

#load dataset
m <- synthetic_metabolic_dataset
p <- synthetic_phenotypic_dataset
#Apply the surrogates
sur<-calculate_surrogate_scores(met=m,pheno=p,MiMIR::PARAM_surrogates,bin_names=c("sex","diabetes"))</pre>
```

comp.CVD_score comp.CVD_score

Description

Function to compute CVD-score made by Peter Wurtz et al. made by Deelen et al. on Nightingale metabolomics data-set.

Usage

```
comp.CVD_score(met, phen, betas, quiet = FALSE)
```

Arguments

met numeric data-frame with Nightingale-metabolomics

phen data-frame containing phenotypic information of the samples (specifically: sex,

systolic_blood_pressure, current_smoking, diabetes, blood_pressure_lowering_med,

lipidmed, totchol, and hdlchol)

betas The betas of the linear regression composing the CVD-score

quiet logical to suppress the messages in the console

Value

data-frame containing the value of the CVD-score on the uploaded data-set

12 comp.mort_score

References

This function is constructed to be able to apply the CVD-score as described in: Wurtz,P. et al. (2015) Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation, 131, 774-785, doi:10.1161/CIRCULATIONAHA.114.013116

See Also

```
prep_met_for_scores, CVD_score_betas, comp.T2D_Ahola_Olli, comp.mort_score
```

Examples

```
library(MiMIR)

#load the dataset
met <- synthetic_metabolic_dataset
phen<-synthetic_phenotypic_dataset
#Prepare the metabolic features fo the mortality score
CVDscore<-comp.CVD_score(met= met, phen=phen, betas=MiMIR::CVD_score_betas, quiet=TRUE)</pre>
```

comp.mort_score

comp.mort_score

Description

Function to compute the mortality score made by Deelen et al. on Nightingale metabolomics dataset.

Usage

```
comp.mort_score(dat, betas = mort_betas, quiet = FALSE)
```

Arguments

dat numeric data-frame with Nightingale-metabolomics

betas data.frame containing the coefficients used for the regression of the mortality

score

quiet logical to suppress the messages in the console

Details

This multivariate model predicts all-cause mortality at 5 or 10 years better than clinical variables normally associated with mortality. It is constituted of 14 metabolic features quantified by Nightingale Health. It was originally trained using a stepwise Cox regression analysis in a meta-analysis on 12 cohorts composed by 44,168 individuals.

Value

data-frame containing the value of the mortality score on the uploaded data-set

References

This function is constructed to be able to apply the mortality score as described in: Deelen, J. et al. (2019) A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nature Communications, 10, 1-8, doi:10.1038/s41467-019-11311-9

See Also

```
prep_met_for_scores, mort_betas, comp.T2D_Ahola_Olli, comp.CVD_score
```

Examples

library(MiMIR)

```
#load the Nightignale metabolomics dataset
metabolic_measures <- synthetic_metabolic_dataset
#Prepare the metabolic features fo the mortality score
mortScore<-comp.mort_score(metabolic_measures,quiet=TRUE)</pre>
```

```
comp.T2D_Ahola_Olli comp.T2D_Ahola_Olli
```

Description

Function to compute the T2D score made by Ahola Olli et al. on Nightingale metabolomics data-set.

Usage

```
comp.T2D_Ahola_Olli(met, phen, betas, quiet = FALSE)
```

Arguments

met	numeric data-frame with Nightingale-metabolomics
phen	data-frame containing phenotypic information of the samples (in particular: sex, age, BMI and the clinically measured glucose)
betas	The betas of the linear regression composing the T2D-score
quiet	logical to suppress the messages in the console

Details

This metabolomics-based score is associated with incident Type 2 Diabetes, made by Ahola-Olli et al. It is constructed using phe, l_vldl_ce_percentage and l_hdl_fc quantified by Nightingale Health, and some phenotypic information: sex, age, BMI, fasting glucose. It was trained using a stepwise logistic regression on 3 cohorts.

14 comp_covid_score

Value

data-frame containing the value of the T2D-score on the uploaded data-set

References

This function is constructed to be able to apply the T2D-score as described in: Ahola-Olli,A.V. et al. (2019) Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia, 62, 2298-2309, doi:10.1007/s00125-019-05001-w

See Also

```
prep_met_for_scores, Ahola_Olli_betas, comp.mort_score, comp.CVD_score
```

Examples

```
library(MiMIR)

#load the dataset
met <- synthetic_metabolic_dataset
phen<-synthetic_phenotypic_dataset
#Prepare the metabolic features fo the mortality score
T2Dscore<-comp.T2D_Ahola_Olli(met= met, phen=phen,betas=MiMIR::Ahola_Olli_betas, quiet=TRUE)</pre>
```

comp_covid_score comp_covid_score

Description

Function to compute the COVID severity score made by Nightingale Health UK Biobank Initiative et al. on Nightingale metabolomics data-set.

Usage

```
comp_covid_score(dat, betas = MiMIR::covid_betas, quiet = FALSE)
```

Arguments

dat numeric data-frame with Nightingale-metabolomics

betas data.frame containing the coefficients used for the regression of the COVID-

score

quiet logical to suppress the messages in the console

Details

Multivariate model predicting the risk of severe COVID-19 infection. It is based on 37 metabolic features and trained using LASSO regression on 52,573 samples from the UK-biobanks.

cor_assoc 15

Value

data-frame containing the value of the COVID-score on the uploaded data-set

References

This function is constructed to be able to apply the COVID-score as described in: Nightingale Health UK Biobank Initiative et al. (2021) Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-19 in the general population. eLife, 10, e63033, doi:10.7554/eLife.63033

See Also

```
prep_data_COVID_score, covid_betas, comp.mort_score
```

Examples

```
library(MiMIR)

#load the Nightignale metabolomics dataset
metabolic_measures <- synthetic_metabolic_dataset

#Compute the mortality score
mortScore<-comp_covid_score(dat=metabolic_measures, quiet=TRUE)</pre>
```

cor_assoc	cor assoc

Description

Function to calulate the correlation between 2 matrices

Usage

```
cor_assoc(dat1, dat2, feat1, feat2, method = "pearson", quiet = FALSE)
```

Arguments

dat1	matrix 1
dat2	matrix 2
feat1	vector of strings with the names of the selected variables in dat
feat2	vector if strings with the names of the selected variables in dat2
method	indicates which methods of the correlation to use
quiet	logical to suppress the messages in the console

Value

correlations of the selected variables in the 2 martrices

16 covid_betas

See Also

```
plot_corply
```

Examples

```
library(stats)
#load the dataset
m <- as.matrix(synthetic_metabolic_dataset)</pre>
```

#Compute the pearson correlation of all the variables in the data.frame metabolic_measures
cors<-cor_assoc(m, m, MiMIR::metabolites_subsets\$MET63, MiMIR::metabolites_subsets\$MET63)</pre>

covid_betas

COVID-score betas

Description

The coefficients used to compute the COVID score by Nightingale Health UK Biobank Initiative et al.

Usage

```
data("covid_betas")
```

Format

An object of class data. frame with 25 rows and 3 columns.

Details

Dataframe containing the abbreviation of the metabolites, the metabolites names and finally the Coefficients to compute the COVID score

References

Nightingale Health UK Biobank Initiative et al. (2021) Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-19 in the general population. eLife, 10, e63033, doi:10.7554/eLife.63033

```
data("covid_betas")
```

CVD_score_betas 17

CVD_score_betas

CVD-score betas

Description

The coefficients used to compute the CVD score by Wurtz et al.

Usage

```
data("CVD_score_betas")
```

Format

An object of class data. frame with 12 rows and 3 columns.

Details

Dataframe containing the abbreviation of the metabolites, the metabolites names and finally the Coefficients to compute the COVID score

References

Wurtz,P. et al. (2015) Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation, 131, 774-785, doi:10.1161/CIRCULATIONAHA.114. 013116

Examples

```
data("CVD_score_betas")
```

find_BBMRI_names

find_BBMRI_names

Description

Function to translate Nightingale metabolomics alternative metabolite names to the ones used in BBMRI-nl

Usage

```
find_BBMRI_names(names)
```

Arguments

names

vector of strings with the metabolic features names to be translated

18 hist_plots

Value

data.frame with the uploaded metabolites names on the first column and the BBMRI names on the second column.

References

This is a function originally created for the package ggforestplot and modified ad hoc for our package (https://nightingalehealth.github.io/ggforestplot/articles/index.html).

Examples

```
library(MiMIR)
library(purrr)

#load the Nightignale metabolomics dataset
metabolic_measures <- synthetic_metabolic_dataset
#Find the metabolites names used in BBMRI-nl
nam<-find_BBMRI_names(colnames(metabolic_measures))</pre>
```

hist_plots

hist_plots

Description

#' Function to plot the histograms for all the variables in dat

Usage

```
hist_plots(
  dat,
  x_name,
  color = MiMIR::c21,
  scaled = FALSE,
  datatype = "metabolic score",
  main = "Predictors Distributions"
)
```

Arguments

dat	data.frame or matrix with the variables to plot
x_name	string with the names of the selected variables in dat
color	colors selected for all the variables
scaled	logical to z-scale the variables
datatype	a character vector indicating what data type is beeing plotted
main	title of the plot

hist_plots_mortality 19

Value

plotly image with the histograms of the selected variables

Examples

```
require(MiMIR)
require(plotly)
require(matrixStats)
#load the metabolites dataset
m <- synthetic_metabolic_dataset

#Apply a surrogate models and plot the ROC curve
surrogates<-calculate_surrogate_scores(m, PARAM_surrogates=MiMIR::PARAM_surrogates, roc=FALSE)
#Plot the histogram of the surrogate sex values scaled
hist_plots(surrogates$surrogates, x_name="s_sex", scaled=TRUE)</pre>
```

Description

#' Function to plot the histogram of the mortality score separated for different age ranges as a plotly image

Usage

```
hist_plots_mortality(mort_score, phenotypes)
```

Arguments

mort_score data.frame containing the mortality score phenotypes data.frame containing age

Value

plotly image with the histogram of the mortality score separated in 3 age ranges

```
library(MiMIR)
library(plotly)
#' #load the dataset
metabolic_measures <- synthetic_metabolic_dataset
phenotypes <- synthetic_phenotypic_dataset

#Compute the mortality score
mortScore<-comp.mort_score(metabolic_measures,quiet=TRUE)
#Plot the mortality score histogram at different ages</pre>
```

20 kapmeier_scores

```
hist_plots_mortality(mortScore, phenotypes)
```

kapmeier_scores

kapmeier_scores

Description

#' Function that creates a Kaplan Meier comparing first and last tertile of a metabolic score

Usage

```
kapmeier_scores(predictors, pheno, score, Eventname = "Event")
```

Arguments

predictors The data.frame containing the predictors

pheno The data.frame containing the phenotypes

score a character string indicating which predictor to use

Eventname a character string with the name of the event to print on the plot

Value

plotly with a Kaplan Meier comparing first and last tertile of a metabolic score

```
require(MiMIR)
require(plotly)
require(survminer)
require(ggfortify)
require(ggplot2)

#load the dataset
metabolic_measures <- synthetic_metabolic_dataset
phenotypes <- synthetic_phenotypic_dataset

#Compute the mortality score
mortScore<-comp.mort_score(metabolic_measures,quiet=TRUE)

#Plot a Kaplan Meier
kapmeier_scores(predictors=mortScore, pheno=phenotypes, score="mortScore")</pre>
```

LOBOV_accuracies 21

LOBOV_accuracies

LOBOV_accuracies

Description

Function created to visualize the accuracies in the current dataset compared to the accuracies in the Leave One Biobank Out Validation in Bizzarri et al.

Usage

```
LOBOV_accuracies(surrogates, bin_phenotypes, bin_pheno_available, acc_LOBOV)
```

Arguments

Details

Comparison of the AUCs of the surrogates in the updated dataset and the results of the Leave One Biobank Out Validation made in BBMRI-nl.

Value

Boxplot with the accuracies of the LOBOV

References

This function was made to vidualize the binarized variables calculated following the rules indicated in the article: Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi:10.1016/j.ebiom. 2021.103764

```
require(pROC)
require(plotly)
require(MiMIR)
require(foreach)
require(ggplot2)

#load the dataset
m <- synthetic_metabolic_dataset
p<- synthetic_phenotypic_dataset</pre>
```

22 metabolites_subsets

```
#Calculating the binarized surrogates
b_p<-binarize_all_pheno(p)
#Apply a surrogate models and plot the ROC curve
sur<-calculate_surrogate_scores(m, p, MiMIR::PARAM_surrogates, bin_names=colnames(b_p))
p_avail<-colnames(b_p)[c(1:5)]
LOBOV_accuracies(sur$surrogates, b_p, p_avail, MiMIR::acc_LOBOV)</pre>
```

metabolites_subsets

metabolomics feature subsets

Description

List containing all the subset of the metabolomics-based features used for our models

Usage

```
data("metabolites_subsets")
```

Format

An object of class list of length 8.

References

The selection of metabolic features available is the one selected by the papers: Deelen,J. et al. (2019) A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nature Communications, 10, 1-8, doi:10.1038/s41467-019-11311-9 Ahola-Olli,A.V. et al. (2019) Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia, 62, 2298-2309, doi:10.1007/s00125-019-05001-w Wurtz,P. et al. (2015) Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation, 131, 774-785, doi:10.1161/CIRCULATIONAHA.114.013116 Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi:10.1016/j.ebiom.2021.103764 van den Akker Erik B. et al. (2020) Metabolic Age Based on the BBMRI-NL 1H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circulation: Genomic and Precision Medicine, 13, 541-547, doi:10.1161/CIRCGEN.119.002610

```
data("metabolites_subsets")
```

MetaboWAS 23

Description

Function to calculate a Metabolome Wide Association study

Usage

```
MetaboWAS(met, pheno, test_variable, covariates, img = TRUE, adj_method = "BH")
```

Arguments

met numeric data.frame with the metabolomics features
pheno data.frame containing the phenotype of interest

test_variable string vector with the name of the phenotype of interest

covariates string vector with the name of the variables to be added as a covariate

img logical indicating if the function should plot a Manhattan plot

adj_method multiple testing correction method

Details

This is a function to compute linear associations individually for each variable in the first data.frame with the test variable and corrected for the selected covariates. This function to computes linear regression modelindividually for each variable in the first data.frame with the test variable and adjusted for potential confounders. False Discovery Rate (FDR) is applied to account for multiple testing correction. The user has the faculty to select the test variable and the potential covariates within the pool of variables in the phenotypic file input. The results of the associations are reported in a Manhattan plot

The p-value of the association is then corrected using Benjamini Hochberg. Finally we use plotly to plot a Manhattan Plot, which reports on the x-axis the list of metabolites reported in the Nightingale Health, divided in groups, and on the y-axis the -log (adjusted p-value).

Value

res= the results of the MetaboWAS, manhplot= the Manhattan plot made with plotly, N_hits= the number of significant hits

References

This method is also described and used in: Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi:10.1016/j.ebiom.2021.103764

Examples

```
require(MiMIR)
require(plotly)
require(ggplot2)

#' #load the dataset
metabolic_measures <- synthetic_metabolic_dataset
phenotypes <- synthetic_phenotypic_dataset

#Computing a MetaboWAS for age corrected by sex
MetaboWAS(met=metabolic_measures, pheno=phenotypes, test_variable="age", covariates= "sex")</pre>
```

metabo_names_translator

metabolomics feature nomenclatures

Description

Translator of the names of the metabolomics-features to the ones used in BBMRI-nl

Usage

```
data("metabo_names_translator")
```

Format

An object of class data. frame with 228 rows and 9 columns.

References

This is a list originally created for the package ggforestplot and modified ad-hoc for our package (https://nightingalehealth.github.io/ggforestplot/articles/index.html).

```
data("metabo_names_translator")
```

mort_betas 25

mort_betas

Mortality score betas

Description

The coefficients used to compute the mortality score by Deelen et al.

Usage

```
data("mort_betas")
```

Format

An object of class data. frame with 14 rows and 3 columns.

Details

Dataframe containing the abbreviation of the metabolites, the metabolites names and finally the Coefficients to compute the mortality score

References

Deelen, J. et al. (2019) A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nature Communications, 10, 1-8, doi:10.1038/s41467-019-11311-9

Examples

```
data("mort_betas")
```

multi_hist

multi_hist

Description

#' Function to plot the histograms for all the variables in dat

Usage

```
multi_hist(dat, color = MiMIR::c21, scaled = FALSE)
```

Arguments

data data.frame or matrix with the variables to pl	ot
--	----

color colors selected for all the variables scaled logical to z-scale the variables

Value

plotly image with the histograms for all the variables in dat

Examples

```
library(plotly)
library(MiMIR)

#load the dataset
metabolic_measures <- synthetic_metabolic_dataset

multi_hist(metabolic_measures[,MiMIR::metabolites_subsets$MET14], scaled=T)</pre>
```

PARAM_metaboAge

PARAMETERS MetaboAge

Description

The coefficients used to compute the MetaboAge by van den Akker et al.

Usage

```
data("PARAM_metaboAge")
```

Format

An object of class list of length 8.

Details

List containing all the information to pre-process and compute the MetaboAge.

References

van den Akker Erik B. et al. (2020) Metabolic Age Based on the BBMRI-NL 1H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circulation: Genomic and Precision Medicine, 13, 541-547, doi:10.1161/CIRCGEN.119.002610

```
data("PARAM_metaboAge")
```

PARAM_surrogates 27

PARAM_surrogates

PARAMETERS surrogates

Description

The coefficients used to compute the metabolomics-based surrogate clinical variables by Bizzarri et al

Usage

```
data("PARAM_surrogates")
```

Format

An object of class list of length 6.

Details

List containing all the information to pre-process and compute the surrogate clinical variables.

References

Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi:10.1016/j.ebiom.2021.103764

Examples

```
data("PARAM_surrogates")
```

phenotypes_names

phenotypic features names

Description

List containing all the subsets of phenotypics variables used in the app

Usage

```
data("phenotypes_names")
```

Format

An object of class list of length 5.

```
data("phenotypes_names")
```

28 pheno_barplots

pheno_barplots

pheno_barplots

Description

#' Function created to binarize the phenotypes used to calculate the metabolomics based surrogate made by Bizzarri et al.

Usage

```
pheno_barplots(bin_phenotypes)
```

Arguments

bin_phenotypes phenotypes data.frame containing some of the following variables (with the same namenclature): "sex","diabetes", "lipidmed", "blood_pressure_lowering_med", "current_smoking", "metabolic_syndrome", "alcohol_consumption", "age","BMI", "ln_hscrp","waist_circumference", "weight", "height", "triglycerides", "ldl_chol", "hdlchol", "totchol", "eGFR","wbc","hgb"

Details

Bizzarri et al. built multivariate models, using 56 metabolic features quantified by Nightingale, to predict the 19 binary characteristics of an individual. The binary variables are: sex, diabetes status, metabolic syndrome status, lipid medication usage, blood pressure lowering medication, current smoking, alcohol consumption, high age, middle age, low age, high hsCRP, high triglycerides, high ldl cholesterol, high total cholesterol, low hdl cholesterol, low eGFR, low white blood cells, low hemoglobin levels.

Value

The phenotypic variables binarized following the thresholds in in the metabolomics surrogates made by Bizzarri et al.

References

This function was made to vidualize the binarized variables calculated following the rules indicated in the article: Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi:10.1016/j.ebiom. 2021.103764

See Also

binarize_all_pheno

plattCalibration 29

Examples

```
require(MiMIR)
require(foreach)

#load the phenotypes dataset
phenotypes <- synthetic_phenotypic_dataset

#Calculate BMI, LDL cholesterol and eGFR
binarized_phenotypes<-binarize_all_pheno(phenotypes)
#Plot the variables
pheno_barplots(binarized_phenotypes)</pre>
```

plattCalibration

plattCalibration

Description

Function that calculates the Platt Calibrations

Usage

```
plattCalibration(r.calib, p.calib, nbins = 10, pl = FALSE)
```

Arguments

r.calib observed binary phenotypep.calib predicted probabilities

nbins number of bins to create the plots

pl logical indicating if the function should plot the Reliability diagram and his-

togram of the calibrations

Details

Many popular machine learning algorithms produce inaccurate predicted probabilities, especially when applied on a dataset different than the training set. Platt (1999) proposed an adjustment, in which the original probabilities are used as a predictor in a single-variable logistic regression to produce more accurate adjusted predicted probabilities. The function will also help the evaluation of the calibration, by plotting: reliability diagrams and distributions of the calibrated and non-calibrated probabilities. The reliability diagrams plots the mean predicted value within a certain range of posterior probabilities, against the fraction of accurately predicted values. Finally, we also report accuracy measures for the calibrations: the ECE, MCE and the Log-Loss of the probabilities before and after calibration.

Value

list with samples, responses, calibrations, ECE, MCE and calibration plots if save==T

30 plot_corply

References

This is a function originally created for the package in eRic, under the name prCalibrate and modified ad hoc for our purposes (Github)

J. C. Platt, 'Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods', in Advances in Large Margin Classifiers, 1999, pp. 61-74.

Examples

```
library(stats)
library(plotly)

#load the dataset
met <- synthetic_metabolic_dataset
phen <- synthetic_phenotypic_dataset

#Calculating the binarized surrogates
b_phen<-binarize_all_pheno(phen)

#Apply a surrogate models and plot the ROC curve
surr<-calculate_surrogate_scores(met, phen,MiMIR::PARAM_surrogates, bin_names=colnames(b_phen))
#Calibration of the surrogate sex
real_data<-as.numeric(b_phen$sex)
pred_data<-surr$surrogates[,"s_sex"]
plattCalibration(r.calib=real_data, p.calib=pred_data, nbins = 10, pl=TRUE)</pre>
```

plot_corply

plot_corply

Description

Function creating plottig the correlation between 2 datasets, dat1 x dat2 on basis of (partial) correlations

Usage

```
plot_corply(
    res,
    main = NULL,
    zlim = NULL,
    reorder.x = FALSE,
    reorder.y = reorder.x,
    resort_on_p = FALSE,
    abs = FALSE,
    cor.abs = FALSE,
    reorder_dend = FALSE
)
```

plot_na_heatmap 31

Arguments

res associations obtained with cor.assoc

main title of the plot

zlim max association to plot

reorder.x logical indicating if the function should reorder the x axis based on clustering logical indicating if the function should reorder the y axis based on clustering resort_on_p logical indicating if the function should reorder x and y axis based on the pvalues

of the associations

abs logical indicating if the function should reorder based the absolute values

cor.abs logical indicating if the function should reorder the plot base on the absolute

values

reorder_dend Tlogical indicating if the function should reorder the plot based on dendrogram

Value

heatmap with the results of cor.assoc

See Also

cor_assoc

Examples

```
library(stats)

#load the dataset
m <- as.matrix(synthetic_metabolic_dataset)

#Compute the pearson correlation of all the variables in the data.frame metabolic_measures
cors<-cor_assoc(m, m, MiMIR::metabolites_subsets$MET63,MiMIR::metabolites_subsets$MET63)
#Plot the correlations
plot_corply(cors, main="Correlations metabolites")</pre>
```

Description

Function plotting information about missing & zero values on the indicated matrix.

Usage

```
plot_na_heatmap(dat)
```

Arguments

dat

The matrix or data.frame

Details

This heatmap indicates the available values in grey and missing or zeros in white. On the sides two bar plots on the sides, one showing the missing or zero values per row and another to show the missing or zeroes per column.

Value

Plot with a central heatmap and two histogram on the sides

Examples

```
library(graphics)
library(MiMIR)

#load the metabolites dataset
metabolic_measures <- synthetic_metabolic_dataset
#Plot the missing values in the metabolomics matrix
plot_na_heatmap(metabolic_measures)</pre>
```

```
prep_data_COVID_score
```

Description

Helper function to pre-process the Nightingale Health metabolomics data-set before applying the COVID score.

Usage

```
prep_data_COVID_score(
    dat,
    featID = c("gp", "dha", "crea", "mufa", "apob_apoa1", "tyr", "ile", "sfa_fa", "glc",
        "lac", "faw6_faw3", "phe", "serum_c", "faw6_fa", "ala", "pufa", "glycine", "his",
        "pufa_fa", "val", "leu", "alb", "faw3", "ldl_c", "serum_tg"),
        quiet = FALSE
)
```

Arguments

dat numeric data-frame with Nightingale-metabolomics
featID vector of strings with the names of metabolic features included in the COVID-

score

quiet logical to suppress the messages in the console

prep_met_for_scores 33

Value

The Nightingale-metabolomics data-frame after pre-processing (checked for zeros, z-scaled and log-transformed) according to what has been done by the authors of the original papers.

References

This function is constructed to be able to follow the pre-processing steps described in: Nightingale Health UK Biobank Initiative et al. (2021) Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-19 in the general population. eLife, 10, e63033, doi:10.7554/eLife.63033

See Also

```
prep_met_for_scores, covid_betas, comp_covid_score
```

Examples

```
require(MiMIR)
require(matrixStats)

#load the Nightignale metabolomics dataset
metabolic_measures <- synthetic_metabolic_dataset
#Prepare the metabolic features fo the mortality score
prepped_met <- prep_data_COVID_score(dat=metabolic_measures)</pre>
```

```
prep_met_for_scores
```

Description

Helper function to pre-process the Nightingale Health metabolomics data-set before applying the mortality, Type-2-diabetes and CVD scores.

Usage

```
prep_met_for_scores(dat, featID, plusone = FALSE, quiet = FALSE)
```

Arguments

dat	numeric data-frame with Nightingale-metabolomics
featID	vector of strings with the names of metabolic features included in the score selected
plusone	logical to determine if a value of 1.0 should be added to all metabolic features (TRUE) or only to the ones featuring zeros before log-transforming (FALSE)
quiet	logical to suppress the messages in the console

QCprep

Value

The Nightingale-metabolomics data-frame after pre-processing (checked for zeros, zscale and log-transformed) according to what has been done by the authors of the original papers.

References

This function is constructed to be able to follow the pre-processing steps described in: Deelen, J. et al. (2019) A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nature Communications, 10, 1-8, doi:10.1038/s41467-019-11311-9.

Ahola-Olli, A.V. et al. (2019) Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia, 62, 2298-2309, doi:10.1007/s00125-019-05001-w

Wurtz,P. et al. (2015) Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation, 131, 774-785, doi:10.1161/CIRCULATIONAHA.114. 013116

See Also

```
comp.mort score, mort betas, comp.T2D Ahola Olli, comp.CVD score
```

Examples

library(MiMIR)

```
#load the Nightingale metabolomics dataset
metabolic_measures <- synthetic_metabolic_dataset
#Prepare the metabolic features fo the mortality score</pre>
```

prepped_met <- prep_met_for_scores(metabolic_measures,featID=MiMIR::mort_betas\$Abbreviation)</pre>

QCprep QCprep

Description

Helper function to pre-process the Nightingale Health metabolomics data-set before applying the MetaboAge score by van den Akker et al.

Usage

```
QCprep(mat, PARAM_metaboAge, quiet = TRUE, Nmax_zero = 1, Nmax_miss = 1)
```

QCprep_surrogates 35

Arguments

mat numeric data-frame NH-metabolomics matrix.

PARAM_metaboAge

list containing all the parameters to compute the metaboAge (metabolic features

list,BBMRI-nl means and SDs of the metabolic features, and coefficients)

quiet logical to suppress the messages in the console

Nmax_zero numberic value indicating the maximum number of zeros allowed per sample

(Number suggested=1)

Nmax_miss numberic value indicating the maximum number of missing values allowed per

sample (Number suggested=1)

Value

Nightingale-metabolomics data-frame after pre-processing (checked for zeros, missing values, samples>5SD from the BBMRI-mean, imputing the missing values and z-scaled)

References

This function is constructed to be able to follow the pre-processing steps described in: van den Akker Erik B. et al. (2020) Metabolic Age Based on the BBMRI-NL 1H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circulation: Genomic and Precision Medicine, 13, 541-547, doi:10.1161/CIRCULATIONAHA.114.013116

See Also

apply.fit

library(MiMIR)

Examples

```
#load the Nightignale metabolomics dataset
metabolic_measures <- synthetic_metabolic_dataset</pre>
```

```
#Pre-process the metabolic features
prepped_met<-QCprep(as.matrix(metabolic_measures[,metabolites_subsets$MET63]), PARAM_metaboAge)</pre>
```

QCprep_surrogates QCprep_surrogates

Description

Helper function to pre-process the Nightingale Health metabolomics data-set before applying metabolomics-based surrogates by Bizzarri et al.

36 QCprep_surrogates

Usage

```
QCprep_surrogates(
  mat,
  PARAM_surrogates,
  Nmax_miss = 1,
  Nmax_zero = 1,
  quiet = FALSE
)
```

Arguments

mat numeric data-frame Nightingale metabolomics matrix.

PARAM_surrogates

is a list holding the parameters to compute the surrogates

Nmax_miss numeric value indicating the maximum number of missing values allowed per

sample (Number suggested=1)

Nmax_zero numeric value indicating the maximum number of zeros allowed per sample

(Number suggested=1)

quiet logical to suppress the messages in the console

Details

Bizzarri et al. built multivariate models,using 56 metabolic features quantified by Nightingale, to predict the 19 binary characteristics of an individual. The binary variables are: sex, diabetes status, metabolic syndrome status, lipid medication usage, blood pressure lowering medication, current smoking, alcohol consumption, high age, middle age, low age, high hsCRP, high triglycerides, high ldl cholesterol, high total cholesterol, low hdl cholesterol, low eGFR, low white blood cells, low hemoglobin levels.

Value

Nightingale-metabolomics data-frame after pre-processing (checked for zeros, missing values, samples>5SD from the BBMRI-mean, imputing the missing values and z-scaled)

References

This function was made to vidualize the binarized variables calculated following the rules indicated in the article: Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi:10.1016/j.ebiom. 2021.103764

See Also

binarize_all_pheno

roc_surro 37

Examples

```
library(MiMIR)

#load the Nightignale metabolomics dataset
metabolic_measures <- synthetic_metabolic_dataset
#Pre-process the metabolic features
prepped_met<-QCprep_surrogates(as.matrix(metabolic_measures), MiMIR::PARAM_surrogates)</pre>
```

roc_surro

roc_surro

Description

Function that creates a ROC curve of the selected metabolic surrogates as a plotly image

Usage

```
roc_surro(surrogates, bin_phenotypes, x_name)
```

Arguments

surrogates numeric data.frame of metabolomics-based surrogate values by Bizzarri et al. bin_phenotypes logic data.frame of binarized phenotypes x_name vector of strings with the names of the selected binary phenotypes for the roc

Value

plotly image with the ROC curves for one or more selected variables

```
require(pROC)
require(plotly)
require(foreach)
require(MiMIR)

#load the dataset
met <- synthetic_metabolic_dataset
phen<- synthetic_phenotypic_dataset

#Calculating the binarized surrogates
b_phen<-binarize_all_pheno(phen)
#Apply a surrogate models and plot the ROC curve
surr<-calculate_surrogate_scores(met, phen, MiMIR::PARAM_surrogates, colnames(b_phen))
#Plot the ROC curves
roc_surro(surr$surrogates, b_phen, "sex")</pre>
```

38 roc_surro_subplots

```
roc_surro_subplots
```

Description

Function that plots the ROCs of the surrogates of all the available surrogate models as plotly subplots

Usage

```
roc_surro_subplots(surrogates, bin_phenotypes)
```

Arguments

```
surrogates numeric data.frame containing the surrogate values by Bizzarri et al.

bin_phenotypes numeric data.frame with the binarized phenotypes output of binarize_all_pheno
```

Value

plotly image with all the ROCs for all the available clinical variables

```
library(pROC)
library(plotly)
library(MiMIR)

#load the dataset
met <- synthetic_metabolic_dataset
phen<- synthetic_phenotypic_dataset

#Calculating the binarized surrogates
b_phen<-binarize_all_pheno(phen)
#Apply a surrogate models and plot the ROC curve
surr<-calculate_surrogate_scores(met, phen, MiMIR::PARAM_surrogates, colnames(b_phen))
roc_surro_subplots(surr$surrogates, b_phen)</pre>
```

scatterplot_predictions 39

```
scatterplot_predictions
```

scatterplot_predictions

Description

Function to visualize a scatter-plot comparing two variables

Usage

```
scatterplot_predictions(x, p, title, xname = "x", yname = "predicted x")
```

Arguments

X	numeric vector
p	second numeric vector
title	string vector with the title
xname	string vector with the name of the variable on the x axis
yname	string vector with the name of the variable on the y axis

Value

plotly image with the scatterplot

```
library(plotly)
#load the dataset
metabolic_measures <- synthetic_metabolic_dataset
phenotypes <- synthetic_phenotypic_dataset

#Pre-process the metabolic features
prepped_met<-QCprep(as.matrix(metabolic_measures), MiMIR::PARAM_metaboAge)
#Apply the metaboAge
metaboAge<-apply.fit(prepped_met, FIT=PARAM_metaboAge$FIT_COEF)

age<-data.frame(phenotypes$age)
rownames(age)<-rownames(phenotypes)
scatterplot_predictions(age, metaboAge, title="Chronological Age vs MetaboAge")</pre>
```

40 startApp

startApp

startMiMIR

Description

Start the application MiMIR.

Usage

startApp(launch.browser = TRUE)

Arguments

launch.browser TRUE/FALSE

Details

This function starts the R-Shiny tool called MiMIR (Metabolomics-based Models for Imputing Risk), a graphical user interface that provides an intuitive framework for ad-hoc statistical analysis of Nightingale Health's 1H-NMR metabolomics data and allows for the projection and calibration of 24 pre-trained metabolomics-based models, without any pre-required programming knowledge.

Value

Opens application. If launch.browser=TRUE in default web browser

References

Deelen,J. et al. (2019) A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nature Communications, 10, 1-8, doi: 10.1038/s41467-019-11311-9. Ahola-Olli,A.V. et al. (2019) Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia, 62, 2298-2309, doi: 10.1007/s00125-019-05001-w Wurtz,P. et al. (2015) Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation, 131, 774-785, doi: 10.1161/CIRCULATIONAHA.114.013116 Bizzarri,D. et al. (2022) 1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints. EBioMedicine, 75, 103764, doi: 10.1016/j.ebiom.2021.103764 van den Akker Erik B. et al. (2020) Metabolic Age Based on the BBMRI-NL 1H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circulation: Genomic and Precision Medicine, 13, 541-547, doi:10.1161/CIRCGEN.119.002610

synthetic_metabolic_dataset

synthetic metabolomics dataset

Description

Data.frame containing a synthetic dataset of the Nightingale Metabolomics dataset created with the package synthpop from the LLS_PAROFF dataset.

Usage

```
data("synthetic_metabolic_dataset")
```

Format

An object of class data. frame with 500 rows and 229 columns.

References

M. Schoenmaker et al., 'Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study', Eur. J. Hum. Genet., vol. 14, no. 1, Art. no. 1, Jan. 2006, doi:10.1038/sj.ejhg.5201508 B. Nowok, G. M. Raab, and C. Dibben, 'synthpop: Bespoke Creation of Synthetic Data in R', J. Stat. Softw., vol. 74, no. 1, Art. no. 1, Oct. 2016, doi: 10.18637/jss.v074.i11

Examples

```
data("synthetic_metabolic_dataset")
```

```
synthetic_phenotypic_dataset
```

synthetic metabolomics dataset

Description

Data.frame containing a synthetic dataset of phenotypic dataset created with the package synthpop from the LLS_PAROFF dataset.

Usage

```
data("synthetic_metabolic_dataset")
```

Format

An object of class data. frame with 500 rows and 24 columns.

42 ttest_scores

References

M. Schoenmaker et al., 'Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study', Eur. J. Hum. Genet., vol. 14, no. 1, Art. no. 1, Jan. 2006, doi:10.1038/sj.ejhg.5201508 B. Nowok, G. M. Raab, and C. Dibben, 'synthpop: Bespoke Creation of Synthetic Data in R', J. Stat. Softw., vol. 74, no. 1, Art. no. 1, Oct. 2016, doi: 10.18637/jss.v074.i11

Examples

```
data("synthetic_metabolic_dataset")
```

ttest_scores

ttest_scores

Description

#' Function that creates a boxplot with a continuous variable split using the binary variable

Usage

```
ttest_scores(dat, pred, pheno)
```

Arguments

dat The data.frame containing the 2 variables

pred character indicating the y variable
pheno character indicating the binary variable

Value

plotly boxplot with the continuous variable split using the binary variable

```
library(MiMIR)
library(plotly)

#load the dataset
metabolic_measures <- synthetic_metabolic_dataset
phenotypes <- synthetic_phenotypic_dataset

#Compute the mortality score
mortScore<-comp.mort_score(metabolic_measures,quiet=TRUE)
dat<-data.frame(predictor=mortScore, pheno=phenotypes$sex)
colnames(dat)<-c("predictor","pheno")
ttest_scores(dat = dat, pred= "mortScore", pheno="sex")</pre>
```

ttest_surrogates 43

Description

Function that calculates a t-test and a plotly image of the selected surrogates

Usage

```
ttest_surrogates(surrogates, bin_phenotypes)
```

Arguments

surrogates numeric data.frame containing the surrogate values by Bizzarri et al.
bin_phenotypes numeric data.frame with the binarized phenotypes output of binarize_all_pheno

Details

Barplot and T-test indicating if the surrogate variables could split accordingly the real value of the binary clinical variables.

Value

plotly image with all the ROCs for all the available clinical variables

```
require(pROC)
require(plotly)
require(MiMIR)
require(foreach)

#load the dataset
m <- synthetic_metabolic_dataset
p <- synthetic_phenotypic_dataset

#Calculating the binarized surrogates
b_p<-binarize_all_pheno(p)
#Apply a surrogate models and plot the ROC curve
surr<-calculate_surrogate_scores(met=m, pheno=p, MiMIR::PARAM_surrogates, bin_names=colnames(b_p))
ttest_surrogates(surr$surrogates, b_p)</pre>
```

Index

* datasets	kapmeier_scores, 20	
acc_LOBOV, 3		
Ahola_Olli_betas,3	LOBOV_accuracies, 21	
BBMRI_hist, 4		
BBMRI_hist_scaled, 6	metabo_names_translator, 24	
c21, 9	metabolites_subsets, 22	
covid_betas, 16	MetaboWAS, 23	
CVD_score_betas, 17	mort_betas, 25	
<pre>metabo_names_translator, 24</pre>	multi_hist, 25	
<pre>metabolites_subsets, 22</pre>	PARAM_metaboAge, 26	
mort_betas, 25	PARAM_surrogates, 27	
PARAM_metaboAge, 26	pheno_barplots, 28	
PARAM_surrogates, 27	phenotypes_names, 27	
phenotypes_names, 27	plattCalibration, 29	
<pre>synthetic_metabolic_dataset, 41</pre>	plot_corply, 30	
<pre>synthetic_phenotypic_dataset, 41</pre>	plot_na_heatmap, 31	
	prep_data_COVID_score, 32	
acc_LOBOV, 3	prep_met_for_scores, 33	
Ahola_Olli_betas, 3	, , – – ,	
DDMDT birt 4	QCprep, 34	
BBMRI_hist, 4	QCprep_surrogates, 35	
BBMRI_hist_plot, 5		
BBMRI_hist_scaled, 6	roc_surro, 37	
binarize_all_pheno,7	roc_surro_subplots,38	
BMI_LDL_eGFR, 8	conttorplat predictions 30	
c21, 9	scatterplot_predictions, 39 startApp, 40	
calculate_surrogate_scores, 9	synthetic_metabolic_dataset, 41	
comp.CVD_score, 11	synthetic_phenotypic_dataset, 41	
comp.mort_score, 12	synthetic_phenotypic_dataset, 41	
comp.T2D_Ahola_Olli, 13	ttest_scores, 42	
comp_covid_score, 14	ttest_surrogates, 43	
cor_assoc, 15	_ 0 /	
covid_betas, 16		
CVD_score_betas, 17		
find_BBMRI_names, 17		
hist_plots, 18		
hist_plots_mortality, 19		