

# CSC413/2516 Lecture 2: Multilayer Perceptrons & Backpropagation

Bo Wang

### Course information

- Expectations and marking
  - Written homeworks (30% of total mark)
    - first homework is out, due 1/28
    - 2-3 short conceptual questions
    - Use material covered up through Tuesday of the preceding week
  - 4 programming assignments (40% of total mark)
    - Python, PyTorch
    - 10-15 lines of code
    - may also involve some mathematical derivations
    - give you a chance to experiment with the algorithms
  - Exams
    - midterm (10%), Feb, 11 , covering the first 4 lectures
    - final project (20%)
- See Course Information handout for detailed policies



### Course information

- Final Projects (undergrad and grad students)
  - Form a group: 2-3 persons
    - Undergrads can collaborate with grad students
    - Contributions have to be stated in the final report
    - Students from different backgrounds are encouraged to form a group
  - Proposal
    - One-page summary of the main topics
    - Deadline: TBD
  - Final report
    - tutorial (How to Write a Good Course Project Report, Feb 08)
    - 4 pages (excluding references)
    - Open review format
    - Deadline: TBD

### Recap: Linear Classification and Gradient Descent



Advantages: Easy to understand and implement; Widely-adopted;

- Single neurons (linear classifiers) are very limited in expressive power.
- **XOR** is a classic example of a function that's not linearly separable.



• There's an elegant proof using convexity.

#### **Convex Sets**



• A set S is convex if any line segment connecting points in S lies entirely within S. Mathematically,

$$\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{S} \implies \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in \mathcal{S} \text{ for } 0 \leq \lambda \leq 1.$$

• A simple inductive argument shows that for  $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{S}$ , weighted averages, or convex combinations, lie within the set:

$$\lambda_1 \mathbf{x}_1 + \cdots + \lambda_N \mathbf{x}_N \in \mathcal{S} \quad \text{for } \lambda_i > 0, \ \lambda_1 + \cdots + \lambda_N = 1.$$



### Showing that XOR is not linearly separable

- Half-spaces are obviously convex.
- Suppose there were some feasible hypothesis. If the positive examples are in the positive half-space, then the green line segment must be as well.
- Similarly, the red line segment must line within the negative half-space.



But the intersection can't lie in both half-spaces. Contradiction!

### A more troubling example



- These images represent 16-dimensional vectors. White = 0, black = 1.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!



### Translation Invariance





### A more troubling example



- These images represent 16-dimensional vectors. White = 0, black = 1.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!
- Suppose there's a feasible solution. The average of all translations of A is the vector  $(0.25, 0.25, \dots, 0.25)$ . Therefore, this point must be classified as A.
- Similarly, the average of all translations of B is also  $(0.25, 0.25, \dots, 0.25)$ . Therefore, it must be classified as B. Contradiction!

 Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for XOR:

$$\psi(\mathbf{x}) = \begin{pmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{pmatrix}$$

| $x_1$ | <i>x</i> <sub>2</sub> | $\phi_1(\mathbf{x})$ | $\phi_2(\mathbf{x})$ | $\phi_3(\mathbf{x})$ | t |
|-------|-----------------------|----------------------|----------------------|----------------------|---|
| 0     | 0                     | 0                    | 0                    | 0                    | 0 |
| 0     | 1                     | 0                    | 1                    | 0                    | 1 |
| 1     | 0                     | 1                    | 0                    | 0                    | 1 |
| 1     | 1                     | 1                    | 1                    | 1                    | 0 |

- This is linearly separable. (Try it!)
- Not a general solution: it can be hard to pick good basis functions.
   Instead, we'll use neural nets to learn nonlinear hypotheses directly.

# Feature maps

 We can convert linear models into nonlinear models using feature maps.

$$y = \mathsf{w}^{\top} \phi(\mathsf{x})$$

• E.g., if  $\psi(x) = (1, x, \dots, x^D)^{\top}$ , then y is a polynomial in x. This model is known as polynomial regression:

$$y = w_0 + w_1 x + \dots + w_D x^D$$

- This doesn't require changing the algorithm just pretend  $\psi(x)$  is the input vector.
- ullet We don't need an expicit bias term, since it can be absorbed into  $\psi.$
- Feature maps let us fit nonlinear models, but it can be hard to choose good features.
  - Before deep learning, most of the effort in building a practical machine learning system was feature engineering.



# Feature maps







-Pattern Recognition and Machine Learning, Christopher Bishop.

### Generalization

Underfitting: The model is too simple - does not fit the data.



Overfitting: The model is too complex - fits perfectly, does not generalize.



### Generalization

- We would like our models to generalize to data they haven't seen before
- The degree of the polynomial is an example of a hyperparameter, something we can't include in the training procedure itself
- We can tune hyperparameters using a validation set:



# After the break Multi-Layer Perceptrons



Source: https://www.youtube.com/watch?v=vyNkAuX29OU

# A brief history





100 billion neurons

100,000 neurons



- We can connect lots of units together into a directed acyclic graph.
- This gives a feed-forward neural network. That's in contrast to recurrent neural networks, which can have cycles. (We'll talk about those later.)
- Typically, units are grouped together into layers.



- Each layer connects *N* input units to *M* output units.
- In the simplest case, all input units are connected to all output units. We call this
  a fully connected layer. We'll consider other layer types later.
- Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.
- Recall from softmax regression: this means we need an  $M \times N$  weight matrix.
- The output units are a function of the input units:

$$\mathbf{y} = f(\mathbf{x}) = \phi \left( \mathbf{W} \mathbf{x} + \mathbf{b} \right)$$

 A multilayer network consisting of fully connected layers is called a multilayer perceptron. Despite the name, it has nothing to do with perceptrons!



#### Some activation functions:



#### Linear

$$y = z$$



#### Hard Threshold

$$y = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{if } z \le 0 \end{cases}$$



### Logistic

$$y = \frac{1}{1 + e^{-z}}$$

#### Some activation functions:



Hyperbolic Tangent (tanh)

$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$



Rectified Linear Unit (ReLU)

$$y = \max(0, z)$$



Soft ReLU

$$y = \log 1 + e^z$$

 Each layer computes a function, so the network computes a composition of functions:

$$\mathbf{h}^{(1)} = f^{(1)}(\mathbf{x})$$
 $\mathbf{h}^{(2)} = f^{(2)}(\mathbf{h}^{(1)})$ 
 $\vdots$ 
 $\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)})$ 

Or more simply:

$$\mathbf{y} = f^{(L)} \circ \cdots \circ f^{(1)}(\mathbf{x}).$$

 Neural nets provide modularity: we can implement each layer's computations as a black box.



# Feature Learning

Neural nets can be viewed as a way of learning features:



# Feature Learning

• Neural nets can be viewed as a way of learning features:



• The goal:



- We've seen that there are some functions that linear classifiers can't represent. Are deep networks any better?
- Any sequence of linear layers can be equivalently represented with a single linear layer.

$$\mathbf{y} = \underbrace{\mathbf{W}^{(3)}\mathbf{W}^{(2)}\mathbf{W}^{(1)}}_{\triangleq \mathbf{W}'} \mathbf{x}$$

- Deep linear networks are no more expressive than linear regression!
- Linear layers do have their uses stay tuned!



- Multilayer feed-forward neural nets with nonlinear activation functions are universal approximators: they can approximate any function arbitrarily well.
- This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)
  - Even though ReLU is "almost" linear, it's nonlinear enough!

### Universality for binary inputs and targets:

- Hard threshold hidden units, linear output
- Strategy: 2<sup>D</sup> hidden units, each of which responds to one particular input configuration

| $x_1$ | $x_2$ | $x_3$ | t  |            |
|-------|-------|-------|----|------------|
|       | :     |       | :  | / 1        |
| -1    | -1    | 1     | -1 |            |
| -1    | 1     | -1    | 1  | -2.5       |
| -1    | 1     | 1     | 1  |            |
|       | ÷     |       | :  | -1 1 -1    |
|       |       |       |    | $\bigcirc$ |

Only requires one hidden layer, though it needs to be extremely wide!

### Designing a network to compute XOR:

Assume hard threshold activation function





**Exercise**: Could you come up with another set of weights to compute XOR?



- What about the logistic activation function?
- You can approximate a hard threshold by scaling up the weights and biases:





• This is good: logistic units are differentiable, so we can tune them with gradient descent. (Stay tuned!)

- Limits of universality
  - You may need to represent an exponentially large network.
  - If you can learn any function, you'll just overfit.
  - Really, we desire a compact representation!

- Limits of universality
  - You may need to represent an exponentially large network.
  - If you can learn any function, you'll just overfit.
  - Really, we desire a compact representation!
- We've derived units which compute the functions AND, OR, and NOT. Therefore, any Boolean circuit can be translated into a feed-forward neural net.
  - This suggests you might be able to learn compact representations of some complicated functions

### After the break

After the break: Backpropagation

# After the break Back-Propagation



Source: https://www.youtube.com/watch?v=Suevq-kZdlw



### Overview

- We've seen that multilayer neural networks are powerful. But how can we actually learn them?
- Backpropagation is the central algorithm in this course.
  - It's is an algorithm for computing gradients.
  - Really it's an instance of reverse mode automatic differentiation, which is much more broadly applicable than just neural nets.
    - This is "just" a clever and efficient use of the Chain Rule for derivatives.
    - We'll see how to implement an automatic differentiation system next week.

## Recap: Gradient Descent

 Recall: gradient descent moves opposite the gradient (the direction of steepest descent)

- Weight space for a multilayer neural net: one coordinate for each weight or bias of the network, in all the layers
- Conceptually, not any different from what we've seen so far just higher dimensional and harder to visualize!
- We want to compute the cost gradient  $d\mathcal{J}/d\mathbf{w}$ , which is the vector of partial derivatives.
  - This is the average of  $d\mathcal{L}/d\mathbf{w}$  over all the training examples, so in this lecture we focus on computing  $d\mathcal{L}/d\mathbf{w}$ .

## Recap: Univariate Chain Rule

- We've already been using the univariate Chain Rule.
- Recall: if f(x) and x(t) are univariate functions, then

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t)) = \frac{\mathrm{d}f}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}.$$

## Recap: Computation Graph

- A computational graph is a directed graph where the nodes correspond to operations or variables.
- Variables can feed their value into operations, and operations can feed their output into other operations. This way, every node in the graph defines a function of the variables.
- For example : we want to plot the operation z = x + y, then



## Recap: Computation Graph

- A computational graph is a directed graph where the nodes correspond to operations or variables.
- Variables can feed their value into operations, and operations can feed their output into other operations. This way, every node in the graph defines a function of the variables.
- Another example : we want to plot the operation f = (x + y) \* b, then



# A simple example

$$f(x, y, z) = (x + y) * z$$
  
 $q = x + y; f = q * z$ 



## A simple example: Forward Pass

$$f(x, y, z) = (x + y) * z$$
 $q = x + y; f = q * z$ 
 $e.g., x = -1, y = 2, z = 3$ 
 $then, q = 1, f = -3$ 
 $Want, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ 



$$f(x, y, z) = (x + y) * z$$
  
 $q = x + y$ ;  $f = q * z$   
 $e.g., x = -1, y = 2, z = 3$   
 $baseline: \frac{\partial f}{\partial f} = 1$ 



$$f(x, y, z) = (x + y) * z$$

$$q = x + y; f = q * z$$

$$e.g., x = -1, y = 2, z = 3$$

$$baseline : \frac{\partial f}{\partial f} = 1$$

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial f}{\partial z} = q = 1$$

$$\frac{\partial f}{\partial q} = \frac{\partial f}{\partial f} \frac{\partial f}{\partial q} = z = -3$$



$$f(x, y, z) = (x + y) * z$$

$$q = x + y; f = q * z$$

$$e.g., x = -1, y = 2, z = 3$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = (-3) * (1) = -3$$

$$\frac{\partial f}{\partial v} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial v} = (-3) * (1) = -3$$



## A quick summary:





# A quick summary:





# A quick summary:



# A quick summary:



## A quick summary:



# A more complex example: logistic least squares model

#### Recall: Univariate logistic least squares model

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Let's compute the loss derivatives.

### Univariate Chain Rule

#### How you would have done it in calculus class

$$\mathcal{L} = \frac{1}{2}(\sigma(wx+b)-t)^{2}$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial}{\partial w} \left[ \frac{1}{2}(\sigma(wx+b)-t)^{2} \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx+b)-t)^{2}$$

$$= (\sigma(wx+b)-t) \frac{\partial}{\partial w} (\sigma(wx+b)-t)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) \frac{\partial}{\partial w} (wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) \frac{\partial}{\partial w} (wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) \alpha'(wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) \alpha'(wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

What are the disadvantages of this approach?

#### Univariate Chain Rule

- We can diagram out the computations using a computation graph.
- The nodes represent all the inputs and computed quantities, and the edges represent which nodes are computed directly as a function of which other nodes.



# A more structured way to do it



#### Computing the derivatives:

#### Computing the loss:

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} = y - t$$

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} \, \sigma'(z)$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} \, x$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z}$$

### Univariate Chain Rule

#### A slightly more convenient notation:

- Use  $\overline{y}$  to denote the derivative  $d\mathcal{L}/dy$ , sometimes called the error signal.
- This emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).
- This is not a standard notation, but I couldn't find another one that I liked.

#### Computing the loss:

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

#### Computing the derivatives:

$$\overline{y} = y - t$$
 $\overline{z} = \overline{y} \sigma'(z)$ 
 $\overline{w} = \overline{z} x$ 
 $\overline{b} = \overline{z}$ 

### After the break

After the break: Back-propagation in Multivariate Forms

#### Multivariate Chain Rule

**Problem:** what if the computation graph has fan-out > 1? This requires the multivariate Chain Rule!

### L<sub>2</sub>-Regularized regression



#### Multiclass logistic regression



### Multivariate Chain Rule

• Suppose we have a function f(x,y) and functions x(t) and y(t). (All the variables here are scalar-valued.) Then

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$

• Example:

$$f(x,y) = y + e^{xy}$$
$$x(t) = \cos t$$
$$y(t) = t^{2}$$

• Plug in to Chain Rule:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}$$
$$= (ye^{xy}) \cdot (-\sin t) + (1 + xe^{xy}) \cdot 2t$$

### Multivariable Chain Rule

• In the context of backpropagation:





In our notation:

$$\overline{t} = \overline{x} \frac{\mathrm{d}x}{\mathrm{d}t} + \overline{y} \frac{\mathrm{d}y}{\mathrm{d}t}$$



# Backpropagation

#### Full backpropagation algorithm:

Let  $v_1, \ldots, v_N$  be a topological ordering of the computation graph (i.e. parents come before children.)

 $v_N$  denotes the variable we're trying to compute derivatives of (e.g. loss).

# Backpropagation

#### Full backpropagation algorithm:

Let  $v_1, \ldots, v_N$  be a topological ordering of the computation graph (i.e. parents come before children.)

 $v_N$  denotes the variable we're trying to compute derivatives of (e.g. loss).

# Backpropagation

### Multilayer Perceptron (multiple outputs):



#### Forward pass:

$$z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$$
 $h_i = \sigma(z_i)$ 
 $y_k = \sum_i w_{ki}^{(2)} h_i + b_k^{(2)}$ 
 $\mathcal{L} = \frac{1}{2} \sum_i (y_k - t_k)^2$ 

### **Backward pass:**

$$egin{aligned} \overline{\mathcal{L}} &= 1 \ \overline{y_k} &= \overline{\mathcal{L}} \left( y_k - t_k 
ight) \ \overline{w_{ki}^{(2)}} &= \overline{y_k} \ \overline{b_k^{(2)}} &= \overline{y_k} \ \overline{h_i} &= \sum_k \overline{y_k} w_{ki}^{(2)} \ \overline{z_i} &= \overline{h_i} \ \sigma'(z_i) \ \overline{w_{ij}^{(1)}} &= \overline{z_i} \ x_j \ \overline{b_i^{(1)}} &= \overline{z_i} \end{aligned}$$

- Computation graphs showing individual units are cumbersome.
- As you might have guessed, we typically draw graphs over the vectorized variables.



We pass messages back analogous to the ones for scalar-valued nodes.

Consider this computation graph:



Backprop rules:

$$\mathbf{z} \in \mathcal{R}^{N}, \mathbf{y} \in \mathcal{R}^{M}$$
  $\overline{z_{j}} = \sum_{k} \overline{y_{k}} \frac{\partial y_{k}}{\partial z_{j}}$   $\overline{\mathbf{z}} = \frac{\partial \mathbf{y}}{\partial \mathbf{z}}^{\top} \overline{\mathbf{y}},$ 

where  $\partial \mathbf{y}/\partial \mathbf{z}$  is the Jacobian matrix (**note**: check the matrix shapes):

$$\left(\frac{\partial \mathbf{y}}{\partial \mathbf{z}}\right)_{M \times N} = \begin{pmatrix} \frac{\partial y_1}{\partial z_1} & \cdots & \frac{\partial y_1}{\partial z_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial z_1} & \cdots & \frac{\partial y_m}{\partial z_n} \end{pmatrix}$$

#### Examples

Matrix-vector product

$$\mathbf{z} = \mathbf{W} \mathbf{x} \qquad \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \mathbf{W} \qquad \overline{\mathbf{x}} = \mathbf{W}^{\top} \overline{\mathbf{z}}$$

Elementwise operations

$$\mathbf{y} = \exp(\mathbf{z})$$
  $\frac{\partial \mathbf{y}}{\partial \mathbf{z}} = \begin{pmatrix} \exp(z_1) & 0 \\ & \ddots & \\ 0 & \exp(z_D) \end{pmatrix}$   $\overline{\mathbf{z}} = \exp(\mathbf{z}) \circ \overline{\mathbf{y}}$ 

 Note: we never explicitly construct the Jacobian. It's usually simpler and more efficient to compute the Vector Jacobian Product (VJP) directly.



## Hessian: Higher-order Gradients

Hessian

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^2 \mathcal{L}}{\partial x_1^2} & \frac{\partial^2 \mathcal{L}}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 \mathcal{L}}{\partial x_1 \partial x_n} \\ \frac{\partial^2 \mathcal{L}}{\partial x_2 \partial x_1} & \frac{\partial^2 \mathcal{L}}{\partial x_2^2} & \cdots & \frac{\partial^2 \mathcal{L}}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 \mathcal{L}}{\partial x_n \partial x_1} & \frac{\partial^2 \mathcal{L}}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 \mathcal{L}}{\partial x_n^2} \end{pmatrix}$$

- Note: Again, we never explicitly construct the Hessian. It's usually simpler and more efficient to compute the Vector Hessian Product (VHP) directly.
- Note: You will need to practice this in HW1.

#### Full backpropagation algorithm (vector form):

Let  $\mathbf{v}_1, \dots, \mathbf{v}_N$  be a topological ordering of the computation graph (i.e. parents come before children.)

 $\mathbf{v}_N$  denotes the variable we're trying to compute derivatives of (e.g. loss). It's a scalar, which we can treat as a 1-D vector.

#### MLP example in vectorized form:



#### Forward pass:

$$\mathbf{z} = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}$$
 $\mathbf{h} = \sigma(\mathbf{z})$ 
 $\mathbf{y} = \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)}$ 
 $\mathcal{L} = \frac{1}{2}\|\mathbf{t} - \mathbf{y}\|^2$ 

### **Backward pass:**

$$egin{aligned} \overline{\mathcal{L}} &= 1 \ \overline{\mathbf{y}} &= \overline{\mathcal{L}} \left( \mathbf{y} - \mathbf{t} 
ight) \ \overline{\mathbf{W}^{(2)}} &= \overline{\mathbf{y}} \mathbf{h}^{ op} \ \overline{\mathbf{b}^{(2)}} &= \overline{\mathbf{y}} \ \overline{\mathbf{h}} &= \mathbf{W}^{(2) op} \overline{\mathbf{y}} \ \overline{\mathbf{z}} &= \overline{\mathbf{h}} \circ \sigma'(\mathbf{z}) \ \overline{\mathbf{W}^{(1)}} &= \overline{\mathbf{z}} \mathbf{x}^{ op} \ \overline{\mathbf{b}^{(1)}} &= \overline{\mathbf{z}} \end{aligned}$$

## Computational Cost

 Computational cost of forward pass: one add-multiply operation per weight

$$z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$$

 Computational cost of backward pass: two add-multiply operations per weight

$$\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$$

$$\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$$

- Rule of thumb: the backward pass is about as expensive as two forward passes.
- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.

# Closing Thoughts

- Backprop is used to train the overwhelming majority of neural nets today.
  - Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally implausible.
  - No evidence for biological signals analogous to error derivatives.
  - All the biologically plausible alternatives we know about learn much more slowly (on computers).
  - So how on earth does the brain learn?

# Closing Thoughts

The psychological profiling [of a programmer] is mostly the ability to shift levels of abstraction, from low level to high level. To see something in the small and to see something in the large.

- Don Knuth

- By now, we've seen three different ways of looking at gradients:
  - Geometric: visualization of gradient in weight space
  - Algebraic: mechanics of computing the derivatives
  - Implementational: efficient implementation on the computer
- When thinking about neural nets, it's important to be able to shift between these different perspectives!