

## KT0623 常见问题解答

| 1  | KT0623 与 KT0603 相比有哪些不同和改进? | 2 |
|----|-----------------------------|---|
| 2  | KT0623 是否需要 MCU 支持?         | 2 |
| 3  | KT0623 如何选择晶体?              | 2 |
| 4  | KT0623 支持的频率范围是多少?          |   |
| 5  | KT0623 如何选择 VCO 片外电感?       | 2 |
| 6  | KT0623 如何进行初始化配置            | 2 |
| 7  | KT0623 如何设定发射频率?            | 3 |
| 8  | KT0623 如何切换发射频率?            | 3 |
| 9  | KT0623 的频率分辨率是多少?           | 3 |
| 10 | KT0623 的预加重时间常数是多少?         | 3 |
| 11 | KT0623 如何调整压扩时间常数?          | 4 |
| 12 | KT0623 如何配置发射功率?            | 4 |
| 13 | KT0623 如何进入待机状态?            | 4 |
| 14 | KT0623 如何调整麦克风灵敏度?          | 4 |
| 15 | KT0623 如何开启静音功能?            | 4 |
| 16 | KT0623 静音后是否还有导频信号?         |   |
| 17 | KT0623 如何设置导频?              | 4 |
| 18 | KT0623 如何实现低电压指示功能?         | 5 |
| 19 | KT0623 的参考设计是什么样的?          | 6 |
| 20 |                             | 7 |
|    | KT0623 的参考设计是什么样的?          |   |



2014/08/26, Rev 1.0

#### 1 KT0623 与 KT0603 相比有哪些不同和改进?

KT0623 是 KT Micro 的第二代无线麦克风发射产品,与第一代 KT0603 相比,有如下不同及改进:

- a. KT0623 简化了开关机静音电路,无开关机噪音;
- b. KT0623 增加了 Standby 功能;
- c. KT0623 增强了电池电压检测和报警功能,当电池电压低时先使 LED 闪烁报警,继续降低后 LED 变为常亮,再进一步降低后射频 PA 自动关闭;
- d. KT0623 降低了射频上的干扰杂波;
- e. KT0623 增加了 EEPROM 数据判断功能, 当数据为空时不读取 EEPROM 中的数据;
- f. KT0623 无快速开关机的问题,简化了外围电路;
- g. KT0623 提高了抗干扰性能。

#### 2 KT0623 是否需要 MCU 支持?

KT0623 内部集成了人机接口模式,无需 MCU 支持即可完成频率设置,静音和电池电压监测、报警等功能。

#### 3 KT0623 如何选择晶体?

KT0623 支持 24MHz 晶体或者 24.576MHz 晶体,晶体两端分别接于 XI 和 XO 引脚。根据所用的晶体,调整 XI 和 XO 引脚与地之间的电容(一般是 33pF,根据所选晶体而定),可以微调晶体的震荡频率。

选择 24MHz 晶体还是 24.576MHz 晶体可以在《Wireless Mic Tx(KT062x) Configuration》配置软件的<频道配置>进行选择。

#### 4 KT0623 支持的频率范围是多少?

KT0623 具有支持 UHF 470MHz-960MHz 频率范围的能力,对于不同波段的设计需要配合不同的 VCO 电感。

#### 5 KT0623 如何选择 VCO 片外电感?

KT0623 的 VCO 需要一个片外电感配合芯片工作。电感推荐选用射频多层电感接在 INDP 和 INDN 两个引脚两端。

片外电感的值取决于产品使用的波段,一般在 0.5nH~6.8nH 之间。

具体频率对应的片外电感值则可参考《Wireless Mic Tx(KT062x) Configuration》配置软件的<频道配置>里的推荐电感值。

注意: 布线时需要保证 VCO 电感的对称,严格按照参考设计 Layout 的走线宽度和线间距绘制。

#### 6 KT0623 如何进行初始化配置

首先需要将所需的配置信息写入 EEPROM (24C02) 中,在上电的过程中,KT0623 会自动将 EEPROM 中存储的初始化信息读入芯片,并且写入内部寄存器中,内部寄存器地址与 EEPROM 中的寄存器地址的映射关系如表格 1 所示。

表格 1: 24C02 与 KT0623 寄存器地址对应关系

| 24C02 |       | KT0623 |        |
|-------|-------|--------|--------|
| 寄存器地址 | 位     | 寄存器地址  | 位      |
| 0x00  | D7:D0 | 0x00   | D15:D8 |

2014/08/26, Rev 1.0

| 0x01 | D7:D0 |      | D7:D0  |
|------|-------|------|--------|
| 0x02 | D7:D0 | 0x01 | D15:D8 |
| 0x03 | D7:D0 |      | D7:D0  |
|      |       |      |        |
|      |       | •••  |        |
| 0xBE | D7:D0 | 0x5F | D15:D8 |
| 0xBF | D7:D0 |      | D7:D0  |

#### 7 KT0623 如何设定发射频率?

KT0623 允许用户设定 16 个发射频率。

某个频率 Channel x 的具体频率可以通过配置 CHAN\_REGA\_x<15:0> 寄存器和 CHAN\_REGB\_x<15:0> 寄存器去设定, x 为 0-15。可以通过填写《Wireless Mic Tx(KT062x) Configuration》配置软件的<频道配置>对应的 Channel x 进行配置。

#### 8 KT0623 如何切换发射频率?

KT0623 允许用户在 EEPROM 里设定好的频率里任意切换。

具体切换电路如图 1 所示, CH 引脚连接一个电位器,改变 CH 的电平就可以切换到与之对应发射频率。



图 1: KT0623 如何切换发射频率

#### 9 KT0623 的频率分辨率是多少?

KT0623 支持 1KHz 的频率分辨率。

#### 10 KT0623 的预加重时间常数是多少?

KT0623 内置预加重网络的时间常数是 75us。RPE\_DIS 寄存器为 0 可以使能预加重功能,RPE\_DIS 寄存器为 0 可以关闭预加重功能。



2014/08/26, Rev 1.0

#### 11 KT0623 如何调整压扩时间常数?

KT0623 的压扩时间常数由 COMP\_TC<2:0>寄存器决定,见表格 2。推荐使用 12ms 的压扩时间常数配置。设置时必须保证与接收机的解压扩时间常数一致。COMP\_DIS 寄存器为 0 时使能压扩功能,为 1 时关闭压扩功能。

表格 2: COMP\_TC 寄存器与压扩时间常数的关系

| Comp_TC | 压扩时间常数(ms) |
|---------|------------|
| 0       | 6          |
| 1       | 12         |
| 2       | 24         |
| 3       | 48         |
| 4       | 93         |
| 5       | 199        |
| 6       | 398        |
| 7       | 796        |

#### 12 KT0623 如何配置发射功率?

KT0623 的发射功率可由 PA\_GAIN<3:0>寄存器进行调整, PA\_GAIN<3:0>数值为 0~12, 0 表示增益最低, 12 表示增益最高。

用户可以在《Wireless Mic Tx(KT062x) Configuration》配置软件<射频配置>中通过滑动对应的 PA GAIN 进行配置。

#### 13 KT0623 如何进入待机状态?

KT0623 可以通过将 CHIP\_EN 引脚电平拉低的方式进入待机状态。当 CHIP\_EN 引脚电平为高时,KT0623 处于正常工作状态。

#### 14 KT0623 如何调整麦克风灵敏度?

麦克风灵敏度是指麦克风预放大器的放大倍数,由 MIC\_SENS<3:0>寄存器决定,它可以从 0~15 中选择,0 表示增益最低(0dB),15 表示增益最高(46dB)。可以通过《Wireless Mic Tx(KT062x) Configuration》配置软件的<音频配置>中 Microphone Sensitivity Adjust 选择不同的配置。

#### 15 KT0623 如何开启静音功能?

KT0623 可以通过将 MUTE 引脚电平拉高的方式开启静音功能,当 MUTE 引脚为低电平时,KT0623 退出静音功能。

#### 16 KT0623 静音后是否还有导频信号?

KT0623 允许用户通过 MUTE\_PILOT\_EN 寄存器设置静音时是否还继续开启导频。0 表示静音时仍然打开导频信号,1 表示静音时不再打开导频信号。

#### 17 KT0623 如何设置导频?

KT0623 允许用户开启和关闭导频,设定导频频率和导频信号的频偏。

开启和关闭导频由 PILOT\_EN 寄存器决定,当 PILOT\_EN 为 1 可以使芯片发射导频,为 0 则关闭导频。



2014/08/26, Rev 1.0

导频信号的频偏由 PILOT\_FDEV<1:0>寄存器决定,PILOT\_FDEV<1:0>与导频发射频偏的关系见表格 3。

表格 3: PILOT\_FDEV 与导频发射频偏的关系

| PILOT_FDEV | 频偏(KHz) |
|------------|---------|
| 0          | 2.5     |
| 1          | 5       |
| 2          | 7.5     |
| 3          | 10      |

#### 18 KT0623 如何实现低电压指示功能?

KT0623 集成了电池电压测量用 ADC,ADC 从 BAT\_IN 引脚检测电池电压,量化范围是  $0\sim1.2$ V,如果电池电压高于这个范围,需要在片外对电池电压适当分压后送入 BAT\_IN。BATT\_EN 寄存器决定开启或关闭电池电压测量用 ADC。当 BATT\_EN 为 1 时开启电池电压测量用 ADC,为 0 时关闭电池电压测量用 ADC。

LOWBAT\_EN 寄存器决定开启或关闭低电压指示功能,当LOWBAT\_EN 为1时开启低电压指示,为0时关闭低电压指示。

KT0623 具有两种指示:闪烁模式、常亮模式。两种模式都是控制 SDA/LOW\_BAT 引脚实现的。

LOWBAT\_BLINK\_TH<6:0>寄存器为低电压指示灯闪烁门限,其范围是 0~127,对应 0~1.2V。如果 BAT\_IN 引脚的输入电压高于 LOWBAT\_BLINK\_TH<6:0>寄存器设定的电压值, SDA/LOW\_BAT 引脚输出高电平;相反,SDA/LOW\_BAT 引脚输出 10Hz 的方波,即低电压指示灯闪烁。

LOWBAT\_LIGHT\_TH<6:0>寄存器为低电压指示灯常亮门限,其范围是 0~127,对应 0~1.2V。如果 BAT\_IN 引脚的输入电压高于 LOWBAT\_LIGHT\_TH<6:0>寄存器设定的电压值, SDA/LOW\_BAT 引脚输出高电平;相反,SDA/LOW\_BAT 引脚输出低电平。

当 LOWBAT\_BLINK\_TH<6:0>门限低于 LOWBAT\_LIGHT\_TH<6:0>门限时, KT0623 的闪烁模式关闭。

LOWBAT\_PAPD\_EN 寄存器决定是否开启低电压自动关闭射频 PA 输出的功能,当 LOWBAT\_PAPD\_EN为1时使能自动关闭射频 PA 输出的功能,为0时则禁止此功能。

LOWBAT\_PAPD\_TH<6:0>寄存器为自动关闭射频 PA 输出的功能的电压门限,其范围是 0~127,对应 0~1.2V。如果 BAT\_IN 引脚的输入电压低于 LOWBAT\_PAPD\_TH<6:0>寄存器设定的电压值,芯片会自动关闭射频 PA 输出,不在发射信号。只有电压再重新高于 LOWBAT\_PAPD\_TH<6:0>寄存器设定的电压值且重新开机后,射频 PA 输出才会重新被打开。

用户可以通过《Wireless Mic Tx(KT062x) Configuration》配置软件设置低电压指示功能。首先选中<其他配置>,然后选择 Battery Meter 框中的 Enable 开启电压测量用 ADC,或者选择 Disable 关闭 ADC。选择 Low Battery Indicator 框中 Enable 开启低电压指示,或者选择 Disable 关闭低电压指示;再通过拖动 Low Battery Blink Threshold 或 Low Battery Light Threshold 中 0mV~1200mV 的滑钮,根据 Threshold 后显示的值配置需要进行低电压指示的具体值,Threshold 后显示的值即为

LOWBAT\_BLINK\_TH<6:0>或 LOWBAT\_LIGHT\_TH<6:0>寄存器换算为电压的值。选择 Low Battery PAPD 框中 Enable 开启自动关闭射频 PA 输出的功能,或者选择 Disable 关闭此功能;再通过拖动 Low Battery PAPD Threshold 中 0mV~1200mV 的滑钮,根据 Threshold 后显示的值配置需要进行自动关闭射频 PA 输出的功能的具体值, Threshold 后显示的值即为 LOWBAT\_PAPD\_TH<6:0>寄存器换算为电压的值。



## 19 KT0623 的参考设计是什么样的?



图 2: 典型应用电路

| Components               | Description | Value      | Suppliers         |
|--------------------------|-------------|------------|-------------------|
| C1,C4                    | 晶体负载电容      | 33pF       |                   |
| C2,C5,C9,C11,C12,C13,C15 | 去藕电容        | 10uF       |                   |
| C3,C6,C7,C10,C14,C22     | 去藕电容        | 0.1uF      |                   |
| C8                       | 去藕电容        | 1uF        |                   |
| C16                      | 去藕电容        | 47pF       |                   |
| C17,C19,C20              | 去藕电容        | 100pF      |                   |
| C18,C21                  | LC 巴伦电容     | TBD        |                   |
| D1                       | 发光二极管       |            |                   |
| E1                       | 天线          |            |                   |
| FB1,FB2,FB3,FB4,FB5      | 磁珠          | 331@100MHz |                   |
| J1                       | 音频输入插座      |            |                   |
| L1                       | VCO 电感      | TBD        | Murata LQG series |
| L2,L3                    | 扼流电感        | 68nH       | Murata LQG series |
| L4,L5                    | LC 巴伦电感     | TBD        | Murata LQG series |
| Q1                       | 三极管         | S9014      |                   |
| R1,R2                    | 电阻          | 2.2Kohm    |                   |
| R3                       | 电阻          | 10Kohm     |                   |

# KTMicro

## **Application Notes**

2014/08/26, Rev 1.0

| R4  | 电阻        | 680Kohm |  |
|-----|-----------|---------|--|
| R5  | 电阻        | 51Kohm  |  |
| R6  | 电阻        | 30Kohm  |  |
| R7  | 电阻        | 1Kohm   |  |
| RV1 | 可变电阻      | 10Kohm  |  |
| SW1 | 开关        | 2P-3W   |  |
| U1  | 无线麦克风发射芯片 | KT0623  |  |
| U2  | EEPROM    | AT24C02 |  |
| Y1  | 晶体        | 24MHz   |  |

#### 与频段相关元件值:

| ALCHIO COUT EL |       |        |       |       |  |
|----------------|-------|--------|-------|-------|--|
| 频段             | L1    | L4, L5 | C18   | C21   |  |
| 550~650MHz     | 4.3nH | 15nH   | 1pF   | 1pF   |  |
| 650~700MHz     | 2.7nH | 12nH   | 0.5pF | 0.5pF |  |
| 700~736MHz     | 2.7nH | 12nH   | 0.5pF | 0.5pF |  |
| 736~750MHz     | 2nH   | 12nH   | 0.5pF | 0.5pF |  |
| 750~850MHz     | 1.5nH | 9.1nH  | 0.3pF | -     |  |

#### 20 版图必须注意什么?

- 1) 电源的去藕电容应该尽量靠近芯片的电源输入脚,并保证流入芯片的电流都先经过电容滤波。
- 2) 不要将 RF 走线、数字走线、模拟走线平行放置,避免它们之间信号耦合,减少干扰。
- 3) 不要将 RF 输出线打断,或是穿过两层走线。
- 4) 不要将电源线或其他信号线穿过 RF 输出线。
- 5) RF 输出端在差分信号转化为单端信号前,应尽量保证 RF 的差分输出走线互相靠近并且保持 对称。
- 6) RF 输出端的走线要尽量的短,最好将 RF output 安排在 PCB 的板边处。
- 7) RF 输出脚及走线周围需要使用铺地将其包裹起来,避免受到其他信号的干扰,但是注意不要将地线与 RF 信号靠的太近,避免过大的分布电容衰减 RF 信号。
- 8) 确保 AVSS 可以很好的共地。
- 9) 保证 20pin 和 21pin 的 VCO 电感为对称放置,周围需净空。严格按照 KT Micro 的参考设计进行布线。



2014/08/26, Rev 1.0

## 版本信息:

V1.0 发布正式版。



2014/08/26, Rev 1.0

#### 联系方式:

#### 昆腾微电子股份有限公司

北京市海淀区北坞村路 23 号北坞创新园中区 4 号楼

邮编: 100195

电话: +86-10-8889 1955 传真: +86-10-8889 1977 电子邮件: <u>sales@ktmicro.com</u> 网站: <u>http://www.ktmicro.com.cn</u>

#### KT Micro, Inc. (US Office)

999 Corporate Drive, Suite 170 Ladera Ranch, CA 92694 USA

Tel: 949-713-4000 Fax: 949-713-4004

Email: <a href="mailto:sales@ktmicro.com">sales@ktmicro.com</a>