MATH3301 Tutorial 3

Somp

1. Let G be a group and $n \in \mathbb{Z}$. Suppose that for all $a, b \in G$,

$$(ab)^{n-1} = a^{n-1}b^{n-1}, \quad (ab)^n = a^nb^n, \quad (ab)^{n+1} = a^{n+1}b^{n+1}.$$

Show that G is abelian.

2. For a group G and $a \in G$, define the maps l_a and $r_a : G \to G$ by

$$l_a(g) = ag$$
, $r_a(g) = ga$, $g \in G$,

and call them, respectively, the left translation and the right translation of G by a.

- (a) Show that both maps $l_a, r_a : G \to G$ are bijective.
- (b) Are l_a and r_a in general isomorphisms? Explain your answer.
- (c) Is the map $c_a:G\to G$ defined by $c_a=l_a\circ r_a^{-1}$ an isomorphism? Justify your answer. (The map c_a is called the **conjugation on** G by a.)
- 3. (a) Construct an isomorphism from \mathbb{Z}_8^{\times} to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
 - (b) Construct an isomorphism from $(\mathbb{R}, +)$ to $(\mathbb{R}_{>0}, \times)$.
- 4. Let H be a subset of the group G. Show that H is a subgroup of G if and only if $H \neq \emptyset$ and $qh^{-1} \in H$ whenever $q, h \in H$.
- 5. Let G be a finite group and $x, y \in G$. Prove or disprove, with justifications, the following:
 - (a) $\operatorname{ord}(x^m) = m \cdot \operatorname{ord}(x) \ \forall \ m \in \mathbb{N}$

(b) $\operatorname{ord}(x^{-1}) = \operatorname{ord}(x)$ (e) $\operatorname{ord}(x) = \operatorname{ord}(yxy^{-1})$

- (c) $\operatorname{ord}(xy) = \operatorname{ord}(yx)$
- (d) $\operatorname{ord}(xy) = \operatorname{ord}(x) + \operatorname{ord}(y)$
- 6. (a) Let $\phi: G \to G'$ be a homomorphism and $a \in G$. Show that $\operatorname{ord}(\phi(a))$ divides $\operatorname{ord}(a)$ if $ord(a) < \infty$.
 - (b) Show that H and K defined below are groups.
 - $H = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ under matrix multiplication.
 - $K = \{1, -1, i, -i\}$ under multiplication (of complex numbers).
 - (c) Find all homomorphisms from H to K and state which one is an isomorphism.