

Exercícios práticos de métodos numéricos para engenharias 2º Módulo

Exercícios retidados do livro Cálculo Numérico, de Neide Bertoldi Franco.

Escolha APENAS UM problema para trabalhar nas aulas de laboratório.

1. Considere o circuito a seguir com resistências, baterias e um diodo, tal como indicado. Escolhemos arbitrariamente as correntes e os valores de malha:

 Diodo

Aplicando a lei de Kirchoff, que diz que a soma algégrica da diferença de pontencial em qualquer circuito fechado é zero, obtemos para as correntes i_1 , i_2 e i_3 o seguinte sistema linear:

$$\begin{cases}
2i_1 + 4(i_1 - i_2) + 2(i_1 - i_3) - 10 & = 0 \\
2i_2 + v_D + 2(i_2 - i_3) + 4(i_2 - i_1) & = 0 \\
6i_3 + 2(i_3 - i_1) + 2(i_3 - i_2) - 4 & = 0
\end{cases}$$
(1)

Onde v_D é a tensão sobre o diodo, que está relacionada com a corrente i_2 sobre o mesmo através da equação

$$v_D = \frac{1}{40} \ln \left(1 + 10^9 \times i_2 \right). \tag{2}$$

Substituindo esta equação para v_D no sistema acima, obtemos um sistema de equações não-lineares para as variáveis i_1 , i_2 e i_3 . Resolva estes sistema, encontrando os valores das correntes no circuito, por um método numérico da sua escolha.

2. Suponha uma chapa metálica retangular, com extremidades submetidas a diferentes temperaturas, como na figura abaixo:

A temperatura ao longo de AB, AC, BD é mantida constante e igual a $0^{\circ}C$, enquanto ao longo de CD ela é igual a $1^{\circ}C$. A distribuição do calor na barra R obedece à seguinte equação:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, (3)$$

com as condições de contorno:

$$\begin{cases} u(x,3) &= 1 \quad para \quad 0 < x < 4, \\ u(x,0) &= 0 \quad para \quad 0 < x < 4, \\ u(0,y) &= 0 \quad para \quad 0 < y < 3, \\ u(4,y) &= 0 \quad para \quad 0 < y < 3, \end{cases}$$

$$(4)$$

A solução numérica deste problema pode ser obtida considerando-se uma divisão do retângulo ABCD em retângulos menores, a partir da divisão de AB em intervalos de amplitude h e de CD em intervalos de tamanho k, como na figura abaixo:

Nesta figura, consideramos h=k=1. A temperatura u nos pontos internos pode ser obtida numericamente aproximando as derivadas segundas pelo método das diferenças finitas. Neste caso, obtemos a seguinte equação linear:

$$\frac{u(x-h,y) - 2u(x,y) + u(x+h,y)}{h^2} + \frac{u(x,y-h) - 2u(x,y) + u(x,y+h)}{h^2} = 0$$
 (5)

onde o par (x, y) assume os valores discretos da figura acima. Por exemplo $u_1 = u(1, 2) \Rightarrow x = 1 e y = 2$. Para x = 1 e y = 2, observe que a equação acima se torna:

$$\frac{u(0,2) - 2u_1 + u_2}{1^2} + \frac{u_4 - 2u_1 + u(1,3)}{1^2} = 0.$$
 (6)

Resolva o sistema de seis equações lineares nas incógnitas $u_1, u_2, ..., u_6$ dadas na figura acima, por um método à sua escolha. Estime a direção e o sentido do fluxo de calor em cada um dos pontos no interior da chapa, usando o fato que o vetor fluxo de calor é diretamente proporcional ao gradiente de temperatura

$$\overrightarrow{q} \sim \frac{\partial u}{\partial x}\hat{i} + \frac{\partial u}{\partial y}\hat{j} \tag{7}$$

e aproximando as derivadas parciais por diferenças finitas:

$$\frac{\partial u}{\partial x} \approx \frac{u(x+h,y) - u(x,y)}{h} \tag{8}$$

$$\frac{\partial u}{\partial y} \approx \frac{u(x, y+h) - u(x, y)}{h}.$$
 (9)

3. Considere um tubo metálico oco de seção reta quadrada, conforme a figura abaixo:

Nesta figura, consideramos que cada um dos lados do tubo é mantido em um determinado potencial elétrico (os lados são metálicos, porém isolados entre si). O lado AB é mantido a -100V, BC a 0V, CD a 100V e DA a 0V.

Nesta situação, é possível calcular o potencial elétrico v em cada um dos pontos no interior do tubo, utilizando a equação de Laplace:

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0,\tag{10}$$

com as condições de contorno:

$$\begin{cases} u(x,4) &= 100V & para & 0 < x < 4, \\ u(x,0) &= -100V & para & 0 < x < 4, \\ u(0,y) &= 0V & para & 0 < y < 4, \\ u(4,y) &= 0V & para & 0 < y < 4, \end{cases}$$

$$(11)$$

A solução numérica deste problema pode ser obtida considerando-se uma divisão do quadrado ABCD em quadrados menores, a partir da divisão de AB e CD em intervalos de amplitude h, como na figura ao lado.

Utilizando o método das diferenças finitas, obtemos a seguinte equação para o potencial elétrico:

$$\frac{v(v-h,y) - 2v(x,y) + v(x+h,y)}{h^2} + \frac{v(x,y-h) - 2v(x,y) + v(x,y+h)}{h^2} = 0$$
 (12)

onde o par (x, y) assume os valores discretos da figura acima. Por exemplo $v_1 = v(1, 3) \Rightarrow x = 1 e y = 3$. Para x = 1 e y = 3, observe que a equação acima se torna:

$$\frac{v(0,3) - 2v_1 + v_2}{1^2} + \frac{v_4 - 2v_1 + v(1,4)}{1^2} = 0.$$
(13)

Obtenha o sistema de nove equações lineares nas incógnitas $v_1, v_2, ..., v_9$ dadas na figura acima, e resolva-o por um método à sua escolha. Sugestão: organize o sistema de equações resultante na forma matricial.

4. O circuito mostrado abaixo é conhecido como "Ponte de Wheatstone", sendo frequentemente usado em medidas eletrônicas.

Neste circuito, $R_1=10\Omega,\,R_2=R_3=R_4=R_5=100\Omega$ e E=20V.

As equações que goverman o sistema linear são obtidas a partir da Lei de Kirchoff. Para a malha fechada ao longo de ABD, temos:

$$I_1 R_1 + I_4 R_4 - E = 0 (14)$$

Para ABCA:

$$I_1 R_1 + I_5 R_5 - I_2 R_2 = 0 (15)$$

Para BCDB:

$$I_5 R_5 + I_3 R_3 - I_4 R_4 = 0 (16)$$

Para o nó A:

$$I_6 = I_1 + I_2 \tag{17}$$

Para o nó B:

$$I_1 = I_5 + I_4 \tag{18}$$

Para o nó C:

$$I_3 = I_2 + I_5 \tag{19}$$

Determine as correntes $I_1, I_2, ..., I_6$ resolvendo numericamente por um método à sua escolha o sistema de equações lineares acima.