Formal theorems of Intuitionistic type theory

Mark Bickford

Cornell University

April 6, 2020

Outline

- The Modulus of Continuity
- Bar Induction
- What can we prove using them?

The Modulus of Continuity

- $\mathbb{S} = \mathbb{N} \to T$ where T is an inhabited subtype of \mathbb{N} .
- $\mathcal{F} = \mathbb{S} \to \mathbb{N}$ and $F \in \mathcal{F}$ and $f \in \mathbb{S}$, so $F(f) \in \mathbb{N}$.
- F(f) depends on only a finite part of f. How much?
- $f_n^e(x) = \text{if } x < n \text{ then } f(x) \text{ else exception}(e, x)$
- $M_F(n, f) = \nu e. F(f_n^e)?e : x.\langle x, x \rangle$
- $M_F(n, f) \in \mathbb{N} \cup (\mathbb{N} \times \mathbb{N})$
- (A) If $M_F(n,f)=k\in\mathbb{N}$ then k=F(f) and $\forall m\geq n.$ $M_F(m,f)=k.$
- (B) $\exists n : \mathbb{N}. M_F(n, f) = F(f).$
- (Kleene M) $KM = \lambda F$. M_F
- $KM \in \mathcal{F} \to \{\mathbb{N} \to \mathbb{S} \to \mathbb{N} \cup (\mathbb{N} \times \mathbb{N}) \mid A \land B\}$?? No!
- $KM \in \mathcal{F} \to \{\mathbb{N} \to \mathbb{S} \to \mathbb{N} \cup (\mathbb{N} \times \mathbb{N}) \mid A \land B\} / / \mathsf{True}$

Bar Induction

- T a type, $Seq(T) = k : \mathbb{N} \times (\mathbb{N}_k \to T)$, $\mathsf{nil} = \langle 0, \bot \rangle$.
- $B \in Seq(T) \to \mathbb{P}$ is a bar if $\forall f : \mathbb{N} \to T$. $\exists n : \mathbb{N}$. $B(\langle n, f \rangle)$.
- *B* is decidable if $\forall s : Seq(T)$. $(B(s) \lor \neg B(s))$
- $Q \in Seq(T) \to \mathbb{P}$ is a inductive if $\forall s : Seq(T)$. $(\forall t : T. \ Q(s + [t])) \Rightarrow Q(s)$.
- $(B \Rightarrow Q)$ if $\forall s : Seq(T)$. $B(s) \Rightarrow Q(s)$
- Bar Induction: If B is a decidable bar and Q is inductive and $(B \Rightarrow Q)$ then $Q(\mathsf{nil})$.
- Remarks:
 - Bar Induction is true classically.
 - Bar Induction is false if all $f \in \mathbb{N} \to \mathbb{N}$ are recursive.
 - We assume Bar Induction only for Q(s) of the form $F(s) \in X(s)$ that have no constructive content.
 - We use that to prove that bar recursion realizes Bar Induction for general Q.

Why use Intuitionistic Type Theory?

- We can prove stronger theorems of constructive analysis than are provable using only Bishop's constructive analysis.
 - Strong connectedness of the continuum.
 - Brouwer's uniform continuity theorem.
 - Strong form of Brouwer's (approximate) fixedpoint theorem.
 - Simple definition of derivative and better Chain Rule.
- We can derive useful induction principles from Bar Induction.
 - Transfinite Induction (on well-founded relations)
 - Induction on *W*-types and parameterized families of *W*-types. (Similar to Coq's *inductive construction*)
- Using continuity, we derive induction on monotone bars.
 - *B* is monotone if $\forall s : Seq(T)$. $(B(s) \Rightarrow \forall t : T. \ B(s + [t]))$
 - We can do Bezem & Veldman's original proof of the intuitionistic Ramsey's theorem (intersections of almost full relations is almost full).

Strong Connectedness of the Continuum

- The reals $\mathbb R$ are convergent (regular) sequences of rationals. There is an equivalence relation $x \equiv y$, but we do not form the quotient type. (We use the *setoid* $\mathbb R, \equiv$).
- A set of reals is a proposition P(x) such that for all $x, y \in \mathbb{R}$, $(P(x) \land x \equiv y) \Rightarrow P(y)$
- Using continuity we proved: If A and B are inhabited sets of reals and $\mathbb{R} \subseteq (A \cup B)$ then $(A \cap B)$ is inhabited.
- Remarks:
 - In classical math, A and B need to be open sets.
 - Brouwer proved $\neg (A \cap B = \emptyset)$
 - Mike Shulman, trying to connect homotopy type theory and constructive analysis, introduced a concept of *crisp* sets of reals. One of his axioms is that two crisp sets that cover the reals have a point in common. We discovered our theorem while trying to interpret "crisp" in Nuprl.
 - We conjecture that connecting HoTT and constructive analysis will work best using intuitionistic math (viz. with continuity and FAN).

Brouwer's uniform continuity theorem

- X and Y are (pseudo)metric spaces and $f \in X \to Y$.
- f is a metric operation if for $x_1, x_2 \in X$, $d(x_1, x_2) = 0 \Rightarrow d(f(x_1), f(x_2)) = 0.$
- f is uniformly continuous if $\forall \epsilon > 0$. $\exists \delta > 0$. $\forall x_1, x_2 \in X$. $d(x_1, x_2) < \delta \Rightarrow d(f(x), f(y)) < \epsilon$.
- compact = complete and totally bounded. X is complete if every Cauchy sequence in X converges in X. X is totally bounded if for every $\epsilon > 0$ there is a finite list L of points in X such that every point in X is within ϵ of a point in L.
- UCT If X is compact then f is uniformly continuous if and only if f is a metric operation. Proof uses FAN + CONT
 - Remarks:
 - We use terminology *metric operation* rather than *function* to avoid contradicting classical math.
 - Metric operations are closed under composition. Bishop's analysis can not prove that uniformly continuous functions are closed under composition.

Brouwer's fixedpoint theorem

- B(n) is the unit n-dimensional ball, $\{x \in \mathbb{R}^n \mid d(x,0) \leq 1\}$. It is *compact*.
- Theorem: For every metric operation f from B(n) to B(n) and every $\epsilon > 0$ there exists $x \in B(n)$ with $d(x, f(x)) < \epsilon$.
 - In BISH one must also assume f is uniformly continuous.
 - In CLASS one must assume f is pointwise continuous, but get the "existence" of an exact fixedpoint d(x, f(x)) = 0.
- We adapted an inductive proof by Karol Sieclucki that there is no retraction from $|K| \to |\partial K|$ for an *n*-dimensional rational cubical complex K.
- The existence of approximate fixedpoints follows from this no-retraction theorem.

Better definition of derivative.

- I is an interval and $f, f' \in I \to \mathbb{R}$.
- df(x)/dx = f' if $\forall x \in I$. $\lim_{y \to x, y \in I} (f(y) - f(x)/y - x) = f'(x)$.
- Bishop's definition is: for every compact sub-interval $J \subseteq I$, for every $\epsilon > 0$ there exists $\delta > 0$ such that $\forall x, y \in J$. $|x y| < \delta \Rightarrow |(f(y) f(x) f'(x)(y x))| < \epsilon * |y x|$.
- Using UCT we can prove these two equivalent.
- (Chain rule) If $f, f' \in I \to J$ and $g, g' \in J \to \mathbb{R}$ and df(x)/dx = f' and dg(x)/dx = g' then d(g(f(x))/dx = g'(f(x)) * f'(x).
- Bishop must assume in addition that f maps each compact subinterval of I into a compact subinterval of J. This is often troublesome to prove.