Given any basis (e_1, \ldots, e_n) , if A = M(f) is the matrix of f w.r.t. (e_1, \ldots, e_n) , we can compute the characteristic polynomial $\chi_f(X) = \det(X \operatorname{id} - f)$ of f by expanding the following determinant:

$$\det(XI - A) = \begin{vmatrix} X - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & X - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & X - a_{nn} \end{vmatrix}.$$

If we expand this determinant, we find that

$$\chi_A(X) = \det(XI - A) = X^n - (a_{11} + \dots + a_{nn})X^{n-1} + \dots + (-1)^n \det(A).$$

The sum $\operatorname{tr}(A) = a_{11} + \cdots + a_{nn}$ of the diagonal elements of A is called the *trace of* A. Since we proved in Section 7.7 that the characteristic polynomial only depends on the linear map f, the above shows that $\operatorname{tr}(A)$ has the same value for all matrices A representing f. Thus, the *trace of a linear map* is well-defined; we have $\operatorname{tr}(f) = \operatorname{tr}(A)$ for any matrix A representing f.

Remark: The characteristic polynomial of a linear map is sometimes defined as $\det(f - X \operatorname{id})$. Since

$$\det(f - X \operatorname{id}) = (-1)^n \det(X \operatorname{id} - f),$$

this makes essentially no difference but the version det(X id - f) has the small advantage that the coefficient of X^n is +1.

If we write

$$\chi_A(X) = \det(XI - A) = X^n - \tau_1(A)X^{n-1} + \dots + (-1)^k \tau_k(A)X^{n-k} + \dots + (-1)^n \tau_n(A),$$

then we just proved that

$$\tau_1(A) = \operatorname{tr}(A)$$
 and $\tau_n(A) = \det(A)$.

It is also possible to express $\tau_k(A)$ in terms of determinants of certain submatrices of A. For any nonempty ordered subset, $I \subseteq \{1, \ldots, n\}$, say $I = \{i_1 < \cdots < i_k\}$, let $A_{I,I}$ be the $k \times k$ submatrix of A whose jth column consists of the elements $a_{i_h i_j}$, where $h = 1, \ldots, k$. Equivalently, $A_{I,I}$ is the matrix obtained from A by first selecting the columns whose indices belong to I, and then the rows whose indices also belong to I. Then it can be shown that

$$\tau_k(A) = \sum_{\substack{I \subseteq \{1, \dots, n\} \\ I = \{i_1, \dots, i_k\} \\ i_1 < \dots < i_k}} \det(A_{I,I});$$