مدارهای الکتریکی و الکترونیکی فصل اول: مقدمه

استاد درس: محمود ممتازپور ceit.aut.ac.ir/~momtazpour

کتابهای مرجع

- C. Desoer, Basic Circuit Theory, 2nd Edition .1
- W. Hayt, Engineering Circuit Analysis, 8th Edition .2
- A. Agarwal, Foundations of Analog and Digital Electronic

 Circuits

SI: سیستم واحدگذاری و پیشوندها

□ هر مقدار اندازهگیری شده را میتوان با یک واحد بیان کرد. بعضی اوقات این واحد به همراه یک پیشوند میآید.

FACTOR	NAME	SYMBOL
10-9	nano	n
10-6	micro	μ
10-3	milli	m
10 ³	kilo	k
10 ⁶	mega	M

12.3 mW = 0.0123 W =1.23 x 10⁻² W : مثال □

بار الكتريكي

- (C واحد: کولمب یا کولن Q or q
- $^{-1.602 \times 10^{-19}}$ یا پروتون یار، بار الکترون($^{-1.602 \times 10^{-19}}$) یا پروتون $^{-1.602 \times 10^{-19}}$) است.
 - □ در بیشتر مدارها، بار در حال حرکت الکترونها هستند.
- □ قانون بقای بار الکتریکی: بار نه از بین میرود و نه تولید میشود.

جریان الکتریکی و بار الکتریکی

□ جریان، نرخ حرکت بار است. یعنی در هر ثانیه چند کولن بار از سطح مقطع سیم میگذرد.

1 ampere = 1 coulomb/second (or 1 A = 1 C/s) \Box

جریان الکتریکی و بار الکتریکی

□ جریان، نرخ حرکت بار است. به طور دقیق تر: i=dq/dt

□ جریان گذرنده از یک المان یا یک سیم را باید با یک مقدار و یک جهت مشخص کرد.

□ این دو جریان در واقع معادلند:

رابطه جریان و بار: i=dq/dt

ولتاژ الكتريكي

□ وقتی برای جابجایی یک کولن بار از A به

B، یک ژول کار (انرژی) نیاز باشد، اختلاف

ولتاژ بین A و B یک ولت است.

V = dW/dq

- $A \qquad O \qquad A \qquad O \qquad V = -5 \text{ V}$ $B \qquad B \qquad B$
- □ اختلاف ولتاژ (V or v) دو سر یک المان هم اندازه دارد و هم جهت.
 - a)=(b), (c)=(d) مثال: □

(*d*)

(*b*)

(*c*)

(a)

p = v i توان الكتريكي:

- □ توان نرخ مصرف انرژی در زمان است.
 - $P = dE/dt \quad \blacksquare$
- در مدارهای الکتریکی، توان لازم برای v در مدارهای الکتریکی، توان لازم برای برقراری جریان v بین دو نقطه با ولتاژ v برابر است با: v برابر است با: v
 - □ جهت جریان و ولتاژ نشان داده شده در این شکل را جهت قراردادی گویند.
 - □ جریان از سر مثبت ولتاژ وارد المان شود.

p = v i توان الكتريكي:

- □ هرگاه یک المان انرژی جذب کند آن را غیرفعال (Passive) و اگر انرژی تولید کند آن را فعال (Active) گوییم.
- □ برای مشخص کردن فعال یا غیرفعال بودن یک المان:
- □ اگر مقدار توانی که از ضرب جریان و ولتاژ با جهت قراردادی بهدست میآید مثبت باشد، المان غیرفعال و اگر منفی باشد، المان فعال است.

مثال: المان فعال و غيرفعال و نحوه تشخيص آن

چه مقدار توان توسط سه المان بالا جذب میشود؟

المانهای مدار

□ بیشتر المانهای الکتریکی دارای دو پایانه هستند. (برخی ۳ یا بیشتر نیز دارند)

- □ رابطه بین اختلاف ولتاژ دو سر المان و جریانی که از آن میگذرد، مدل المان را تعریف میکند.
- □ مثلاً در مقاومت الكتريكي رابطه اين دو خطي است.

منبع ولتار مستقل

- یک منبع ولتاژ ایدهآل، المانی است که ولتاژ v_s را بین دو سر خود حفظ می کند. \Box
- است. \mathbf{v}_{s} است. مستقل از اینکه چه مداری به دو سر آن متصل باشد، اختلاف ولتاژ دو سر آن همیشه
 - □ جریان گذرنده از آن (مقدار و جهت آن) بسته به مداری که به آن متصل است تعیین می شود.

منبع جريان مستقل

یک منبع جریان ایدهآل، المانی است که جریان i_s گذرنده از دو سر خود را حفظ می کند.

است. i_s مستقل از اینکه چه مداری به دو سر آن متصل باشد، جریان گذرنده از آن همیشه i_s

□ ولتاژ دو سر آن (مقدار و جهت آن) بسته به مداری که به آن متصل است تعیین

مىشود.

باتری به عنوان یک منبع ولتاژ مستقل

- □ منبع ولتاژ مستقل یک مدل ایدهآل و تعمیمیافته از باتری است.
- □ ایدهآل به این معنی که محدودیت جریاندهی باتری حذف شده است.
- □ تعمیمیافته به این معنی که ولتاژ نه فقط ثابت، بلکه میتواند متغیر با زمان باشد.
- □ باتری ایدهآل همیشه یک ولتاژ ثابت (DC) دارد. ولی در عمل باتریها دارای توان الکتریکی محدود هستند.

منابع وابسته

- □ منابعی که مقدار آنها وابسته به مقدار جریان یا ولتاژیک المان دیگر مدار است.
 - a) منبع جریان وابسته به جریان
 - b) منبع جریان وابسته به ولتاژ
 - c) منبع ولتاژ وابسته به ولتاژ
 - d) منبع ولتاژ وابسته به جریان

مثال: منبع ولتاژ وابسته به ولتاژ

ولتاژ v_L را در مدار زیر محاسبه کنید.

مقاومت و قانون اهم

□ یک مقاومت خطی المانی است ولتاژ دو سر آن مضربی از جریان گذرنده از آن باشد.

$$v = Ri$$

- \square مقدار ثابت R را مقاومت (Resistance) گویند.
 - □ معادله بالا را به نام قانون اهم مىشناسيم.
- است. ohm (Ω) است. اندازه گیری مقاومت الکتریکی اهم

تجسم قانون اهم

انواع مقاومتها

(a) مقاومتهای معمول، (b) مقاومت توان بالا مقاومت با مقدار (c) نماد مقاومت (c) یک مقاومت با مقدار (c)

گراف i-v یک مقاومت

□ برای یک مقاومت خطی، نمودار جریان-ولتاژ یک خط راست است که از مبدأ میگذرد.

توان مصرفی یک مقاومت

مقاومتها توان جذب (مصرف) می کنند. از آنجایی که v=i داریم: σ

$$p = vi = v^2/R = i^2R$$

□ توان مثبت به این معنی است که المان توان جذب میکند. برای یک مقاومت توان همیشه مثبت است.

مثال: محاسبه توان یک مقاومت

- یک مقاومت $\alpha > 0$ اهمی به مداری متصل است و جریان گذرنده از آن $\alpha > 0$ است.
 - □ ولتاژ دو سر مقاومت و توان جذب شده آن را حساب کنید.

سیم و مقاومت آن

□ مقاومت یک سیم بر اساس جنس آن (مقاومت ویژه) و ابعاد آن تعیین می شود.

$$R = \rho l / A$$

□ در بیشتر مواقع، مقاومت سیم ناچیز است و از آن صرفنظر میشود.

١. مقدمه

Conductance

رسانايي الكتريكي

- \square معكوس مقاومت (1/R)، رسانايى الكتريكى يا Conductance ناميده مى شود.
- siemens با سمبل G نشان داده می شود و واحد اندازه گیری آن زیمنس (S) با مهو (S) است.
 - است. G=1/R است. R دارای رسانایی G=1/R
 - □ معادله ولتاژ-جریان (قانون اهم) را میتوان به صورت زیر نیز نوشت:

$$i = Gv$$

مدار باز و اتصال کوتاه

- □ مدار باز شدن اتصال بین دو نقطه A و B یعنی:
 - □ جریان گذرنده بین آن نقاط صفر است.
 - □ ولتاژ بین آن نقاط هر مقداری میتواند باشد.
 - □ معادل یک مقاومت با مقدار بینهایت است.
- □ اتصال کوتاه شدن اتصال بین دو نقطه A و B یعنی:
 - ◘ ولتاژ بين آن نقاط صفر است.
- □ جریان گذرنده بین آن نقاط هر مقداری میتواند باشد.
 - □ معادل یک مقاومت با مقدار صفر است.

دستهبندي المانهاي مدار

خطی - غیر خطی

□ (x) خطى است اگر و فقط اگر:

- f(ax) = af(x)
 - 🗖 مقاومت خطی
- v = f(i) = 2i
 - □ مقاومت غيرخطي
- $v = f(i) = 50 i + 0.5 i^3$
 - □ مانند ديود، لامپ نئون

متغیر با زمان – نامتغیر با زمان

مثال:

- □ مقاومت نامتغیر با زمان
- ثابت R v(t) = R i(t)

$$v(t) = R(t)i(t), \quad \blacksquare$$

$$R(t) = Ra + Rbcos2\pi ft$$

🗖 مانند پتانسیومتر

آنچه در این اسلاید آموختیم

- □ مفاهیم اولیه مدارهای الکتریکی
 - □ بار، جریان، ولتاژ، توان، انرژی
- □ منابع ولتاژ و جریان مستقل و وابسته
- □ مقاومت به عنوان سادهترین المان الکتریکی
 - (قانون اهم) V=RI 🗖
 - رسانایی) G=1/R $lue{\Box}$
 - (توان مصرفی مقاومت) $P=VI=RI^2$
 - □ المانهای فعال و غیرفعال
- □ المانهای خطی، غیرخطی، متغیر با زمان، نامتغیر با زمان

تمرین کلاسی ۱

□ توان جذب شده همه المانهای مدار را محاسبه کنید.

تمرین کلاسی ۲

 \square جریان I و توان مقاومت را برای هر شکل محاسبه کنید.

تمرین کلاسی ۳

را به صورت تابعی از V_S و R_1 محاسبه کنید. V_{R2} \square

