Se recomienda usar esta sección únicamente como referencia; a lo largo del texto principal se deriva y se presenta una descripción más detallada de cada uno de los símbolos usados.

Datos y variables

 $y_i \in \{0,1\}$ $\forall i=1\ldots,n$: variables de respuesta binarias. Usualmente representadas por el vector $\mathbf{y}=(y_1,\ldots,y_n)^t$

 $\mathbf{x}_i \in \mathcal{X}^d \subseteq \mathbb{R}^d \quad \forall \ i=1\ldots,n$: covariables o regresores. Si se usa por si sola x o \mathbf{x} (vector), ésta representa una variable arbitraria. Si se habla de toda la matriz de datos, se denota por $\mathbf{X} \in \mathcal{X}^{n \times d} \subseteq \mathbb{R}^{n \times d}$. Junto con las y_i , se tienen los datos para el modelo: $\{(y_i, \mathbf{x}_i)\}_{i=1}^n$

 $n \in \mathbb{N}$: número de observaciones en la muestra

 $d \in \mathbb{N}$: número de covariables, o dimensionalidad de estos

 $\lambda \in \mathbb{N}$: número total de términos en el modelo

 $\mathcal{X}^d \subseteq \mathbb{R}^d$: espacio de covariables. Formado por el producto punto de los rangos de cada variable: $\mathcal{X}^d = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_d, b_d]$, donde $[a_j, b_j] \subset \mathbb{R}$ es un intervalo compacto en los reales

Específicos del modelo

 $z_i \sim \mathcal{N}(\cdot) \quad \forall i=1\ldots,n$: variables latentes del modelo cuya distribución es normal. En su forma vectorial: $\mathbf{z}=(z_1,\ldots,z_n)^t$

 $\eta(\mathbf{x})$: función aditiva de predicción

 $f_j(x_j) \quad \forall j = 1, \dots, d$: polinomios por partes

 $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_{\lambda})^t$: vector de parámetros por estimar. Si se le añade tilde entonces el contador comienza en uno y el vector no contiene el parámetro independiente, es decir: $\tilde{\boldsymbol{\beta}} = (\beta_1, \dots, \beta_{\lambda})^t$

 $\Psi_l(\cdot)$ $\forall l=1,\ldots,N^*$: funciones bases para la expansión en polinomios por partes de f_j . Ver $(\ref{eq:constraints})$ y $(\ref{eq:constraints})$. En ocasiones, todas las funciones base se organizan en una matriz $\widetilde{\Phi}$

 N^* : número total de funciones base. Ver ecuación (??) para su expansión final. Si se usa N sin el asterisco denota de igual forma un número de funciones base arbitrario.

M: tamaño de la base para los polinomios por partes, por lo tanto, M-1 indica el grado de los polinomios

J: número de sub-intervalos en los que se parte cada intervalo $[a_j,b_j]$

K: número de restricciones de continuidad impuestas a los polinomios por partes

 $\mathcal{P}_j = \{\tau_1, \dots, \tau_{J-1}\} \quad \forall j = 1, \dots, d$: partición del espacio de la dimensión j

 τ : nodos, se tienen un total de $d\times (J-1)$ nodos acomodados en una matriz de igual tamaño.

Contadores e índices

 $i=1,\dots,n$: contador usado para denotar un conjunto de observaciones

 $j = 1, \dots, d$: contador usado para denotar el conjunto de covariables. Usualmente se hace referencia a la dimensión arbitraria j

k: contador usado para denotar el número de iteración en el algoritmo, i.e. $k=0,1,2,3,\ldots$

 $l=1,\ldots,N^*$: contador asociado al número de funciones base total en la expansión de polinomios por partes N^*

 $\hat{i} = 1, \dots, M-1$: contador asociado al número de funciones base para cada subintervalo, M, en las expansiones de polinomios truncados

 $\hat{j}=1,\dots,J-1$ contador asociado al número de funciones base para cada subintervalo (parámetro M) en las expansiones de polinomios truncados

Probabilidad

 $F(\cdot)$: Función de distribución arbitraria de la familia exponencial

 $\mathcal{N}(\cdot|\mu,\sigma^2)$: distribución normal con su correspondiente parametrización de media y varianza. Se utiliza la misma notación para su forma vectorial añadiendo un subíndice para denotar su dimensionalidad: $\mathcal{N}(\cdot|\mu,\Sigma)$ con su correspondiente vector de medias μ y vector de varianza covarianza Σ

 $\Phi(\cdot): \mathbb{R} \to (0,1)$: la función de distribución acumulada de una distribución normal estándar $\mathcal{N}(\cdot|1,0)$, con su correspondiente función inversa Φ^{-1}

Be $(\cdot|p)$: distribución bernoulli con probabilidad de éxito p

 $p \in [0,1]$: probabilidad arbitraria

 $g(\cdot)$: función liga, ver diagrama ??

 ϵ : errores aleatorios, usualmente distribuidos $\epsilon \sim \mathcal{N}(\epsilon \mid \mu, \sigma^2)$

 $P(\cdot),\,\mathbb{E}[\cdot],\,\mathbb{V}[\cdot]:$ medida de probabilidad, operadores de esperanza y varianza respectivamente

 $\theta \in \Theta$ parámetros canónicos de distribuciones exponenciales, con Θ su correspondiente espacio

 $\pi(\cdot)$: función de densidad

 \propto : operador de proporcionalidad

 ρ : correlación lineal de Pearson

Loss: función de pérdida

Algoritmo

 $N_{\rm sim}$: número de simulaciones realizadas en el algoritmo

 k^* : periodo de burn-in; número de observaciones por descartar

 k_{thin} : parámetro de adelgazamiento

Misceláneos

 $h(\cdot)$: función arbitraria

 $h^{(k)}$: (k)-ésima derivada de la función h.

 $s: \mathbb{R} \to (0,1)$: familia de funciones sigmoidales

I: función indicadora

 $(\cdot)_+$: función parte positiva

ll: función log-loss (Ver pág. ??)

El símbolo $\hat{\cdot}$ se usa para indicar que se trata de una variable estimada, i.e. \hat{y} es la estimación de las variables correspondientes y

Abreviaciones

ANOVA : ANalysis Of VAriance, modelos de análisis de varianza

GAM : Generalized aditive model, modelo aditivo generalizado

GLM: Generalized linear model, modelo lineal generalizado

MCMC: Markov Chain Monte Carlo, cadena de Markov Montecarlo

ML: Machine Learning, aprendizaje de máquina

OLS : Ordinary Least Squares, método de ajuste de mínimos cuadrados ordinarios, el cual utiliza a la función RSS como función objetivo

RSS: Residual sum of squares, suma de residuales cuadrados