## Python库

Numpy, Scipy

### 清华大学iCenter



### pip

- pip 是python的包管理工具(package manager)
- pip —version 查看pip版本和安装位置
- pip install/uninstall 安装/删除包
- pip list 列出所有的安装的包

### **DEPENDENCY HELL**



### 安装使用Numpy, Scipy

- Windows的命令行(CMD)打开方式
  - 方法一: 按下Win + R键, 弹出运行窗口, 输入"cmd"后点击确定。
  - 方法二: 在电脑左下角的搜索框搜索"cmd"或"命令提示符", 点击检索结果"命令提示符"。
  - 方法三: 打开"开始",点击"运行",弹出运行窗口,输入"cmd"后点击确定。
  - 输入 pip install numpy
  - 输入 pip install scipy
- MacOS的终端(Terminal)打开方式
  - 搜索termianl应用(自带)
  - 输入 pip install numpy
  - 输入 pip install scipy



### Numpy & Scipy

- Numpy package for vector and matrix manipulation
- https://numpy.org/



- Scipy package for scientific and technical computing
- https://www.scipy.org/





• 创建数组



• 讲行算术运算

```
a = np.arange(4)

array([0, 1, 2, 3])

a + 4

array([4, 5, 6, 7])

a * 2

array([0, 2, 4, 6])

b = np.arange(4,8)

b

array([4, 5, 6, 7])

a + b

array([4, 6, 8, 10])

a-b

array([-4, -4, -4, -4])

a * b
```



• 函数运算

### 矩阵乘积

- \* operator as a matrix product when it is applied to two matrices.
- This operation is element-wise
- •矩阵代数相乘使用NumPy的dot()函数
- This operation is not element-wise

• 矩阵运算

### 矩阵乘积

- NumPy使用点乘 dot()函数.
- This operation is not element-wise



### 增减算符Operators

- Python中没有++ 或 -
- Python中使用 +=
- Python中使用 -=

```
a = np.arange(4)
a
array([0, 1, 2, 3])

a += 1
array([2, 3, 4, 5])

a -= 1
array([0, 1, 2, 3])

a += 4
array([4, 5, 6, 7])

a *= 2
array([8, 10, 12, 14])
```

### 想一想,练一练

• 矩阵增减运算

```
array([0, 1, 2, 3])

a += 1

array([2, 3, 4, 5])

a -= 1

array([0, 1, 2, 3])

a += 4

array([4, 5, 6, 7])

a *= 2

array([8, 10, 12, 14])
```

a = np.arange(4)

# 数组变形 \*\*Shape manipulation \*\*reshape() 函数转换数组的形状. \*\*返回新的数据对象.\*\* \*\*ravel() \*\*transpose() \*\*transpose() \*\*chape() \*\*

### 想一想,练一练

- 数组变形reshape
- ravel
- transpose

```
a = np.random.random(12)
a

array([0.93648146, 0.49712723, 0.23628688, 0.57393036, 0.52174171, 0.94516367, 0.59237128, 0.96787483, 0.20880308, 0.29318431, 0.32277472, 0.9270486])

A = a.reshape(3,4)
A

array([[0.93648146, 0.49712723, 0.23628688, 0.57393036], [0.52174171, 0.94516367, 0.59237128, 0.96787483], [0.20880308, 0.29318431, 0.32277472, 0.9270486]])

a.shape = (3,4)
a

array([[0.93648146, 0.49712723, 0.23628688, 0.57393036], [0.52174171, 0.94516367, 0.59237128, 0.96787483], [0.20880308, 0.29318431, 0.32277472, 0.9270486]])

a = a.ravel()
a

array([0.93648146, 0.49712723, 0.23628688, 0.57393036, 0.52174171, 0.94516367, 0.59237128, 0.96787483, 0.20880308, 0.29318431, 0.32277472, 0.9270486])

a.shape = (12)
a

array([0.93648146, 0.49712723, 0.23628688, 0.57393036, 0.52174171, 0.94516367, 0.59237128, 0.96787483, 0.20880308, 0.29318431, 0.32277472, 0.9270486])

A.transpose()

array([[0.93648146, 0.49712723, 0.23628688, 0.57393036, 0.52174171, 0.94516367, 0.59237128, 0.96787483, 0.20880308, 0.29318431, 0.32277472, 0.9270486])

A.transpose()

array([[0.93648146, 0.52174171, 0.20880308], [0.49712723, 0.94516367, 0.29318431], [0.23628688, 0.59237128, 0.32277472], [0.57393036, 0.96787483, 0.9270486]])
```

### Numpy使用

| Python方法    | 描述                                                           |  |
|-------------|--------------------------------------------------------------|--|
| np.matmul   | 矩阵相乘(Matrix multiply)                                        |  |
| np.zeros    | 创建零矩阵(Create a matrix filled with zeros (Read on np.ones))   |  |
| np.arange   | 定义范围(开始,停止,步长)(Start, stop, step size (Read on np.linspace)) |  |
| np.identity | 创建一个单位矩阵(Create an identity matrix)                          |  |
| np.vstack   | 垂直叠加2阵列(Vertically stack 2 arrays (Read on np.hstack))       |  |

### Numpy debugging

| Python Command              | Description                                                              |
|-----------------------------|--------------------------------------------------------------------------|
| array.shape                 | 得到numpy数组的形状(Get shape of numpy array)                                   |
| array.dtype                 | 检查数组的数据类型 (Check data type of array (for precision, for weird behavior)) |
| type(stuff)                 | 获取变量的类型(Get type of a variable)                                          |
| import pdb; pdb.set_trace() | 设置断点(Set a breakpoint<br>(https://docs.python.org/3/library/pdb.html))   |
| print(f'My name is {name}') | 输出信息(Easy way to construct a message)                                    |

### SciPy使用

| Python方法               | 描述                                                                      |  |
|------------------------|-------------------------------------------------------------------------|--|
| scipy.linalg.inv       | 矩阵的逆Inverse of matrix (numpy as equivalent)                             |  |
| scipy.linalg.eig       | 矩阵的特征值Get eigen value (Read documentation on eigh and numpy equivalent) |  |
| scipy.spatial.distance | 距离计算Compute pairwise distance                                           |  |

# 谢谢指正!