

FCC TEST REPORT for TunerWorks Korea Corp.

HUD (Head Up Display) Model No.: Kivic HUD

Prepared for : TunerWorks Korea Corp.

Address : 697-18, Manyeon Ro, Jeongnam Myeon, Hwaseong City,

Gyeonggi Do, South Korea

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road,

Nanshan District, Shenzhen, Guangdong, China

Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number : R0117011599W2
Date of Test : Feb. 22~Mar. 23, 2017

Date of Report : Mar. 24, 2017

TABLE OF CONTENT

Description

Page Test Report 1. GENERAL INFORMATION......5 1.1. Description of Device (EUT)......5 4.3. Test Procedure 13 5. MAXIMUM CONDUCTED OUTPUT POWER TEST......22 5.1. Test Limit 22 5.3. Test Procedure 23 6. PEAK POWER SPECTRUAL DENSITY TEST......28 6.3. Test Procedure 29 7. RADIATED EMISSION TEST......35

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2ALMVKIVICHUD Page 3 of 61 Report No.: R0117011599W2

7.1. Test Limit	35
7.2. Test Setup	
7.3. Test Procedure	
7.4. Test Equipment	37
7.5. Test Results	
8. BAND EDGE TEST	43
8.1. Test Limit	43
8.2. Test Setup	
8.3. Test Procedure	
8.4. Test Equipment	44
8.5. Test Results	
9. ANTENNA APPLICATION	48
9.1. Antenna requirement	48
9.2. Result	
10. PHOTOGRAPH	49
10.1. Photo of Conducted Emission Measurement	40
10.2. Photo of Radiation Emission Test.	
APPENDIX I (EXTERNAL PHOTOS)	51
APPENDIX II(INTERNAL PHOTOS)	

TEST REPORT

Applicant : TunerWorks Korea Corp.

Manufacturer : TunerWorks Korea Corp.

EUT : HUD (Head Up Display)

Model No. : Kivic HUD

Serial No. : N.A.
Trade Mark : N.A.

Rating : Input DC 5V~12V, 1.5A

Measurement Procedure Used:

Date of Test :

FCC Part15 Subpart E 2016, Paragraph 15.407

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart E requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Feb 22~Mar 23 2017

Prepared by : (Tested Engineer / Kyle Xu) Reviewer : (Project Manager / Brown Lu) Approved & Authorized Signer :	Date of Test.	1 co. 22 - Wat. 25, 2017
Reviewer: (Project Manager / Brown Lu) Approved & Authorized Signer:	Prepared by :	Kyle Xu
Reviewer: (Project Manager / Brown Lu) Approved & Authorized Signer:	Control of the second of the s	(Tested Engineer / Kyle Xu)
Approved & Authorized Signer:	Reviewer:	Frown Lu
		(Project Manager / Brown Lu)
(Manager / Tom Chen)	Approved & Authorized Signer : _	Ton Chen
		(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : HUD (Head Up Display)

Model Number : Kivic HUD

Test Power Supply: DC 12V

Frequency

Types of module	Operating Frequency
WiFi 2.4G (802.11b/ g/ n(HT20))	2412-2462MHz
WiFi 5G (802.11a/ n(HT20))	5180-5240MHz
BT 4.0+EDR	2402-2480MHz

Modulation : WiFi:

802.11a OFDM, 802.11b CCK; 802.11g OFDM, 802.11n MCS

BT 4.0: GFSK

BT EDR: GFSK, π/4DQPSK, 8DPSK

Antenna Type : Ceramic Antenna

Antenna Gain: : WIFI & BT EDR: 3.6 dBi

BT 4.0: 1.99 dBi

Applicant : TunerWorks Korea Corp.

Address : 697-18, Manyeon Ro, Jeongnam Myeon, Hwaseong City, Gyeonggi

Do, South Korea

Manufacturer : TunerWorks Korea Corp.

Address : 697-18, Manyeon Ro, Jeongnam Myeon, Hwaseong City, Gyeonggi

Do, South Korea

Date of receipt : Feb. 22, 2017

Date of Test : Feb. 22~Mar. 23, 2017

Remark : This report is for WiFi 5G.

1.2. Auxiliary Equipment Used during Test

Car Adapter : Input: DC 12V, 1.5A

Output: DC 12V, 1.5A

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 06, 2016.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, Jun. 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty : Ur = 4.1 dB (Horizontal)

Ur = 4.3 dB (Vertical)

Conduction Uncertainty : Uc = 3.4dB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC Part 15, Paragraph 15.247.

2.1. Summary of Test Results

The EUT has been tested according to the following specifications:

Standard	Test Type	Result
FCC Part 15, Paragraph 15.207 & 15.407	Conducted Emission	PASS
FCC Part 15, Paragraph 15.407(b)(1)(4)(5)(7)	Undesireable Emission Restricted Band	PASS
FCC Part 15, Paragraph 15.407(a)(1)	26dB Bandwidth	PASS
FCC Part 15, Paragraph 15.407(a)(1)(2)(3)	Maximum Conducted Output Power	PASS
FCC Part 15, Paragraph 15.407(a)(1)(2)(3)	Peak Power Spectrual Density	PASS
FCC Part 15, Paragraph 15.203	Antenna Requirement	PASS

2.2. Description of Test Modes

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Mode	Test channel	
	5180MHz	
IEEE802.11a	5200MHz	
	5240MHz	
	5180MHz	
IEEE802.11n(HT20)	5200MHz	
	5240MHz	

2.3. Description Of Test Setup

CE

RE

3. Conducted Emission Test

3.1. Block Diagram of Test Setup

3.1.1. Block diagram of connection between the EUT and simulators

3.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits dB(µV)		
MHz	Quasi-peak Level	Average Level	
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*	
0.50 ~ 5.00	56	46	
5.00 ~ 30.00	60	50	

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- 3.4.1. Setup the EUT and simulator as shown as Section 3.1.
- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in test mode (5G WiFi Mode) and measure it.

3.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 3.6.

3.6. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Two-Line V-network	Rohde & Schwarz	ENV216	100055	Jul. 19, 2016	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Jun. 17, 2016	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Jun. 17, 2016	1 Year

3.7. Power Line Conducted Emission Measurement Results **PASS.**

The frequency range from 150KHz to 30 MHz is investigated.

The EUT was tested on (5G WiFi Mode) Mode is attached in the following pages.

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room Operating Condition: 5G WiFi Mode

Test Specification: DC 12V
Comment: Live Line

Tem.:25°C Hum.:50%

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room Operating Condition: 5G WiFi Mode

Test Specification: DC 12V
Comment: Neutral Line

Tem.:25°C Hum.:50%

4.Bandwidth

4.1. Test Limit

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz

4.2. Test Setup

4.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

26 dB &99%bandwidth

RBW = approximately 1% of the emission bandwidth;

Set the VBW>RBW:

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

6 dB bandwidth

RBW = 100kHz;

Set the video bandwidth (VBW) \geq 3 RBW;

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Measure the maximum width of the emission that is 26dB / 6dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer.
- 5. Repeat until all the rest channels are investigated.

4.4. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Jul. 12, 2016	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Jun. 17, 2016	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Jun. 17, 2016	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	May 06, 2016	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	May 06, 2016	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Jun. 17, 2016	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	Agilent	KFSW150 502	15I00041SN0 45	Jun. 17, 2016	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun. 17, 2016	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun. 17, 2016	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun. 17, 2016	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun. 17, 2016	1 Year
13	TEMP&HUMI PROGRAMMAB LE CHAMBER	Bell Group	BE-THK-1 50M8	SE-0137	Jun. 17, 2016	1 Year
14	Spectrum Analysis	Rohde & Schwarz	FSV40	132.1.3008K3 9 -100965	Jun. 17, 2016	1 Year
15	Pre-amplifier	Agilent	8449B	3008A00252	Jun. 17, 2016	1 Year
16	Horn Antenna	SCHWARZBECK	BBHA917 0	9170-068	Jun. 17, 2016	1 Year

4.5. Test Results

Pass.

Please refer to the following data.

Bandwidth:

Test Mode: IEEE 802.11a

Test Mode. IEE	3 0 0 2 . 1 1		
Channel	Frequency	6dB Bandwidth	Limit
	(MHz)	(MHz)	(kHz)
Low	5180	15.37	
Mid	5200	15.12	>500
High	5240	15.95	

Channel	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5180	18.72	16.395
Mid	5200	18.68	16.406
High	5240	18.52	16.380

Test Mode: IEEE 802.11n(HT20)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (kHz)
Low	5180	16.92	
Mid	5200	17.47	>500
High	5240	16.00	

Channel	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5180	18.89	17.521
Mid	5200	18.86	17.524
High	5240	18.83	17.517

6dB Bandwidth Test Mode: 802.11a--5180

6dB Bandwidth Test Mode: 802.11a---5200

26dB & 99% Bandwidth Test Mode: 802.11a---5200

26dB & 99% Bandwidth Test Mode: 802.11a--5240

26dB & 99% Bandwidth Test Mode: 802.11n(HT20)--5180

26dB & 99% Bandwidth Test Mode: 802.11n(HT20)---5200

26dB & 99% Bandwidth Test Mode: 802.11n(HT20)--5240

5. Maximum Conducted Output Power Test

5.1. Test Limit

- 1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional

gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

5.2. Test Setup

EUT System	Spectrum Analyzer

5.3. Test Procedure

- 1. Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- 2. Set RBW = 1 MHz.
- 3. Set VBW > 3 MHz.
- 4. Number of points in sweep \geq 2 × span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- 5.Sweep time = auto.
- 6.Detector = power averaging (rms), if available. Otherwise, use sample detector mode.
- 7. If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode.
- 9. Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

5.4. Test Equipment

Same as clause 4.4.

5.5. Test Results

Pass.

Please refer to the following data.

Test Mode: IEEE 802.11a

1 est 1/10de. IEEE 002.11d				
Channel	Frequency (MHz)	Maximum transmit power (dBm)	Limit (dBm)	Result
Low	5180	11.74	24.00	Pass
Mid	5200	11.68	24.00	Pass
High	5240	11.91	24.00	Pass

Test Mode: IEEE 802.11n(HT20)

10001/1000.1EEE 002.1111(11120)				
Channel	Frequency (MHz)	Maximum transmit power (dBm)	Limit (dBm)	Result
Low	5180	9.83	24.00	Pass
Mid	5200	9.98	24.00	Pass
High	5240	10.80	24.00	Pass

Test Mode: 802.11a---5180

Test Mode: 802.11a---5200

Test Mode: 802.11n(HT20)---5200

Test Mode: 802.11n(HT20)---5240

6. Peak Power Spectrual Density Test

6.1. Test Limit

- 1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional

gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

6.3. Test Procedure

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz).

- 1. The EUT is directly connected to the spectrum analyzer;
- 2. Set RBW $\geq 1/T$;
- 3. Set $VBW \ge 3 RBW$.;
- 3. Set the span to encompass the entire emissions bandwidth (EBW) of the signal;
- 5. Detector=RMS;
- 6. Sweep time= auto couple;
- 7. Trace mode=max. hold:

6.4. Test Equipment

Same as clause 4.4.

6.5. Test Results

Pass.

Please refer to the following data.

Test Mode: IEEE 802.11a

Channel	Frequency (MHz)	Final Power Spectral Density (dBm)	Power Spectral Density Limit (dBm)	Result
Low	5180	4.466	11	Pass
Mid	5200	5.649	11	Pass
High	5240	6.015	11	Pass

Test Mode: IEEE 802.11n(HT20)

-	1000 111000: 1222 002:1111(11120)				
	C1 1	Frequency (MHz)	Final Power Spectral	Power Spectral	D14
'	Channel		Density	Density Limit	Result
			(dBm)	(dBm)	
	Low	5180	4.365	11	Pass
	Mid	5200	2.962	11	Pass
	High	5240	5.088	11	Pass

Test Mode: 802.11a---5180

Test Mode: 802.11a---5200

Test Mode: 802.11a---5240

Test Mode: 802.11n(HT20)---5180

Test Mode: 802.11n(HT20)---5200

7. Radiated Emission Test

7.1. Test Limit

8.1.1. Test Limits (< 30 MHZ)

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meter)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

7.1.2. Test Limits (≥ 30 MHZ)

FIELD STRENGTH FIELD STRENGTH S15.209

of Fundamental: of Harmonics 30 - 88 MHz 40 dBuV/m

@3M

902-928 MHZ 88 - 216 MHz 43.5 2.4-2.4835 GHz 216 - 960 MHz 46

 $94 \text{ dB}\mu\text{V/m}$ @3m $\qquad \qquad 54 \text{ dB}\mu\text{V/m}$ @3m $\qquad \qquad \text{ABOVE } 960 \text{ MHz} \qquad 54 \text{dB}u\text{V/m}$

7.1.3. Restriction Band of Operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

7.2. Test Setup

7.2.1. 9k to 30MHz emissions:

7.2.2. 30M to 1G emissions:

7.2.3. 1G to 40G emissions:

7.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turntable shall be rotated 360 degrees to determine the position of max. emission level. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz.

The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

The test results are listed in Section 8.5.

7.4. Test Equipment

Same as clause 4.4.

7.5. Test Results

The EUT was tested on (5G WiFi Mode) is attached in the following pages. Only the worst case (x orientation).

Job No.: 0117011599W Plarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: DC 12V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: 5G WiFi Mode Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)		Over Limit (dB)	Detector	Height (cm)	degree (deg)
1	178.1322	56.03	4.55	31.67	5.14	34.05	43.50	-9.45	QP		
2	222.1698	54.18	6.41	31.66	5.36	34.29	46.00	-11.71	QP		
3	365.5391	51.10	11.66	31.3	6.09	37.55	46.00	-8.45	QP		
4	568.6127	51.45	13.49	31.44	6.8	40.30	46.00	-5.70	QP		
5	603.5392	51.93	13.53	31.6	6.93	40.79	46.00	-5.21	QP		
6	790.6186	48.74	16.94	31.3	7.61	41.99	46.00	-4.01	QP		

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2ALMVKIVICHUD Page 39 of 61 Report No.: R0117011599W2

Job No.: 0117011599W Plarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: DC 12V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: 5G WiFi Mode Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)	Limit (dBuV/m	Over Limit (dB)	Detector	Height (cm)	degree (deg)
1	178.1322	54.68	9.55	31.67	5.14	37.70	43.50	-5.80	QP		
2	219.8446	55.09	11.19	31.66	5.35	39.97	46.00	-6.03	QP		
3	297.2241	54.38	11.01	31.54	5.77	39.62	46.00	-6.38	QP		
4	432.5457	49.56	13.56	31.15	6.35	38.32	46.00	-7.68	QP		1
5	519.0647	51.03	13.94	31.18	6.62	40.41	46.00	-5.59	QP	-	1
6	721.7260	48.17	16.3	31.54	7.41	40.34	46.00	-5.66	QP		-

Test Results (Above 1000MHz)

Test mode:	IEEE 8	IEEE 802.11a			Test channel:			Low CH		
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
10360.00	40.29	31.98	17.08	33.91	55.44	74.00	-18.56	Vertical		
15540.00	35.77	32.65	20.03	34.85	53.60	74.00	-20.40	Vertical		
10360.00	38.56	31.98	17.08	33.91	53.71	74.00	-20.29	Horizontal		
15540.00	36.99	32.65	20.03	34.85	54.82	74.00	-19.18	Horizontal		

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	30.23	31.98	17.08	33.91	45.38	54.00	-8.62	Vertical
15540.00	27.69	32.65	20.03	34.85	45.52	54.00	-8.48	Vertical
10360.00	29.68	31.98	17.08	33.91	44.83	54.00	-9.17	Horizontal
15540.00	28.39	32.65	20.03	34.85	46.22	54.00	-7.78	Horizontal

Test mode:	IEEE 8	IEEE 802.11a				Test channel:			Mid CH		
Peak value:				1							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or	Level (dBuV/m)	Limit I (dBuV		Over Limit (dB)	Polarization	
10400.00	40.06	32.44	17.18	33.9	1	55.77	74.0	0	-18.23	Vertical	
15600.00	37.63	32.78	20.12	34.8	6	55.67	74.0	0	-18.33	Vertical	
10400.00	39.58	32.44	17.18	33.9	1	55.29	74.0	0	-18.71	Horizontal	
15600.00	36.77	32.78	20.12	34.8	6	54.81	74.0	0	-19.19	Horizontal	

Average value:

Average value	5.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	29.68	32.44	17.18	33.91	45.39	54.00	-8.61	Vertical
15600.00	27.33	32.78	20.12	34.86	45.37	54.00	-8.63	Vertical
10400.00	29.74	32.44	17.18	33.91	45.45	54.00	-8.55	Horizontal
15600.00	28.36	32.78	20.12	34.86	46.40	54.00	-7.60	Horizontal

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2ALMVKIVICHUD Page 41 of 61 Report No.: R0117011599W2

Test mode:	IEEE 8	302.11a		Т	est channel:	High	High CH		
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
10480.00	41.06	32.59	18.02	33.92	57.75	74.00	-16.25	Vertical	
15720.00	38.06	32.87	20.15	34.88	56.20	74.00	-17.80	Vertical	
10480.00	40.58	32.59	18.02	33.92	57.27	74.00	-16.73	Horizontal	

34.88

20.15

57.79

74.00

-16.21

Horizontal

Average value:

15720.00

39.65

32.87

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	31.25	32.59	18.02	33.92	47.94	54.00	-6.06	Vertical
15720.00	30.02	32.87	20.15	34.88	48.16	54.00	-5.84	Vertical
10480.00	29.58	32.59	18.02	33.92	46.27	54.00	-7.73	Horizontal
15720.00	28.39	32.87	20.15	34.88	46.53	54.00	-7.47	Horizontal

Test mode:	IEEE 8	02.11n(HT2	0)	Г	Test channel:	Low	CH	
Peak value:								_
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	39.88	31.98	17.08	33.91	55.03	74.00	-18.97	Vertical
15540.00	34.57	32.65	20.03	34.85	52.40	74.00	-21.60	Vertical
10360.00	37.69	31.98	17.08	33.91	52.84	74.00	-21.16	Horizontal
15540.00	35.88	32.65	20.03	34.85	53.71	74.00	-20.29	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	30.12	31.98	17.08	33.91	45.27	54.00	-8.73	Vertical
15540.00	27.81	32.65	20.03	34.85	45.64	54.00	-8.36	Vertical
10360.00	29.61	31.98	17.08	33.91	44.76	54.00	-9.24	Horizontal
15540.00	27.55	32.65	20.03	34.85	45.38	54.00	-8.62	Horizontal

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2ALMVKIVICHUD Page 42 of 61 Report No.: R0117011599W2

Test mode:	IEEE 8	302.11n(HT2	0)	Те	est channel:	Mid (Mid CH				
Peak value:											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
10400.00	39.68	32.44	17.18	33.91	55.39	74.00	-18.61	Vertical			
15600.00	38.65	32.78	20.12	34.86	56.69	74.00	-17.31	Vertical			
10400.00	37.54	32.44	17.18	33.91	53.25	74.00	-20.75	Horizontal			
15600.00	35.69	32.78	20.12	34.86	53.73	74.00	-20.27	Horizontal			

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	28.99	32.44	17.18	33.91	44.70	54.00	-9.30	Vertical
15600.00	26.35	32.78	20.12	34.86	44.39	54.00	-9.61	Vertical
10400.00	29.03	32.44	17.18	33.91	44.74	54.00	-9.26	Horizontal
15600.00	28.15	32.78	20.12	34.86	46.19	54.00	-7.81	Horizontal

Test mode:	IEEE 8	IEEE 802.11n(HT20)			Test channel:			High CH		
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit l (dBuV		Over Limit (dB)	Polarization
10480.00	40.35	32.59	18.02	33.9	2	57.04	74.0	0	-16.96	Vertical
15720.00	37.65	32.87	20.15	34.8	8	55.79	74.0	0	-18.21	Vertical
10480.00	37.32	32.59	18.02	33.9	2	54.01	74.0	0	-19.99	Horizontal
15720.00	38.06	32.87	20.15	34.8	8	56.20	74.0	0	-17.80	Horizontal

Average value:

Tivorage varue.									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
10480.00	30.58	32.59	18.02	33.92	47.27	54.00	-6.73	Vertical	
15720.00	31.25	32.87	20.15	34.88	49.39	54.00	-4.61	Vertical	
10480.00	28.14	32.59	18.02	33.92	44.83	54.00	-9.17	Horizontal	
15720.00	27.96	32.87	20.15	34.88	46.10	54.00	-7.90	Horizontal	

Note:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

8. BAND EDGE TEST

8.1. Test Limit

For transmitter operating in the 5.15-5.25GHz band: all emissions outside of the 5.15-5.35GHz outside of the 5.15-5.35GHz band shall not exceed an EIRP of -27dBm/MHz.

For transmitters operating in the 5.25-5.35GHz band: all emissions outside of the 5.15-5.35GHz band shall not exceed an EIRP of -27dBm/MHz. Devices operating in the 5.25-5.35GHz band that generate emissions in the 5.15-5.25GHz band must meet all applicable technical requirements for operation in the 5.15-5.25GHz band (includeing indoor use) or alternatively meet an out-of-band emission EIRP limit of -27dBm/MHz in the 5.15-5.25GHz band.

For transmitters operating in the 5.45-5.725GHz band: all emissions outside of the 5.47-5.725GHz band shall not exceed an EIRP of -27dBm/MHz.

For transmitters operating in the 5.725-5.825GHz band: all emissions within the frequency range from the band edge to 10MHz above or below the band edge shall not exceed an EIRP of -17dBm/MHz; for frequencies 10MHz or greater above or below the band edge, emssions shall not exceed an EIRP of -27dBm/MHz.

8.2. Test Setup

Same as clause 7.2.

8.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turntable shall be rotated 360 degrees to determine the position of max. emission level. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz.

The EUT is tested in 9*6*6 Chamber.

The test results are listed in Section 9.5.

8.4. Test Equipment

Same as clause 4.4.

8.5. Test Results

Please refer to the following pages.

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	EIRP (dBm)	Limit (dBm)	Polarization		
802.11a										
5150.00	43.25	28.65	13.58	31.04	54.44	-40.76	-27.00	Horizontal		
5350.00	44.96	29.16	14.68	31.96	56.84	-38.36	-27.00	Horizontal		
5150.00	45.25	28.65	13.58	31.04	56.44	-38.76	-27.00	Vertical		
5350.00	46.21	29.16	14.68	31.96	58.09	-37.11	-27.00	Vertical		
802.11n(HT20)										
5150.00	44.56	28.65	13.58	31.04	55.75	-39.45	-27.00	Horizontal		
5350.00	45.63	29.16	14.68	31.96	57.51	-37.69	-27.00	Horizontal		
5150.00	45.12	28.65	13.58	31.04	56.31	-38.89	-27.00	Vertical		
5350.00	44.23	29.16	14.68	31.96	56.11	-39.09	-27.00	Vertical		

Remark: 1. According to KDB 789033 D02 section H) d) (iii), for measurement above 1000MHz@3m istance, the limit of EIRP is calculated as follows: EIRP[dBm] = $E[dB\mu V/m] - 95.2$

For conducted test:

802.11a: Band Edge, Right Side

Note: EIRP BAND EDGE=Reading Level+antenna gain

9. ANTENNA APPLICATION

9.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.407.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

9.2. Result

The EUT's antenna used a ceramic antenna which is permanently attached, The antenna's gain is 3.6dBi and meets the requirement.

10. PHOTOGRAPH

10.1. Photo of Conducted Emission Measurement

10.2. Photo of Radiation Emission Test

APPENDIX I (EXTERNAL PHOTOS)

APPENDIX II(INTERNAL PHOTOS)

