Nociones de Localidad

IIC3263

Proviso

Nuevamente suponemos primero vocabularios sin constantes, y las agregamos al final.

(hacemos esto para tener menos complejidad en las demostraciones, después veremos que las constantes solo les agregan casos y notación adicional)

Notación: Grafo de Gaifman

Queremos mostrar que la lógica de primer orden no es capaz de distinguir entre sub-estructuras que están *lejos*.

- ► Suena razonable en órdenes lineales, e incluso en grafos
- ▶ Pero qué significa *lejos* en hiper-grafos? o en estructuras cualquiera?

Notación: Grafo de Gaifman

Dado: Vocabulario ${\mathcal L}$ y ${\mathcal L}$ -estructura ${\mathfrak A}$

Notación: Grafo de Gaifman

Dado: Vocabulario $\mathcal L$ y $\mathcal L$ -estructura $\mathfrak A$

Definición

El Grafo de Gaifman de \mathfrak{A} , denotado como $\mathcal{G}(\mathfrak{A})$, contiene los siguientes elementos:

- ▶ Nodos: Dominio A de 🎗
- ▶ Arcos: (a_1, a_2) es un arco en $\mathcal{G}(\mathfrak{A})$ si y sólo si $a_1 \neq a_2$ y existe $R \in \mathcal{L}$ y una tupla $\bar{t} \in R^{\mathfrak{A}}$ que menciona a a_1 y a_2

Grafo de Gaifman: Ejemplo

```
Si \mathfrak{A} es la estructura \langle A = \{1, 2, 3, 4, 5\}, R^{\mathfrak{A}} = \{(1, 2, 3)\},
T^{\mathfrak{A}} = \{(1, 4), (4, 5)\}\rangle, entonces \mathcal{G}(\mathfrak{A}) es el siguiente grafo:
```

Grafo de Gaifman: Ejemplo

Si \mathfrak{A} es la estructura $\langle A = \{1, 2, 3, 4, 5\}, R^{\mathfrak{A}} = \{(1, 2, 3)\},$ $T^{\mathfrak{A}} = \{(1, 4), (4, 5)\}\rangle$, entonces $\mathcal{G}(\mathfrak{A})$ es el siguiente grafo:

Vecindarios

Notación

 $d_{\mathfrak{A}}(a,b)$: Distancia entre a y b en $\mathcal{G}(\mathfrak{A})$

 $d_{\mathfrak{A}}(\bar{a},b)$: Menor valor de $d_{\mathfrak{A}}(a,b)$, para a en \bar{a}

 $N_d^{\mathfrak{A}}(\bar{a})$: Subestructura de \mathfrak{A} inducida por los elementos a distancia a lo más d de \bar{a}

▶ Elementos en ā son tratados como constantes

Nuevamente sea $\mathfrak A$ la estructura $\langle A = \{1, 2, 3, 4, 5\}$, $R^{\mathfrak A} = \{(1, 2, 3)\}$, $T^{\mathfrak A} = \{(1, 4), (4, 5)\}\rangle$.

```
Nuevamente sea \mathfrak A la estructura \langle A=\{1,2,3,4,5\}, R^{\mathfrak A}=\{(1,2,3)\},\ T^{\mathfrak A}=\{(1,4),\ (4,5)\}\rangle. Vocabulario de N_2^{\mathfrak A}(5): \{R(\cdot,\cdot,\cdot),\ T(\cdot,\cdot),\ c\}
```

Nuevamente sea \mathfrak{A} la estructura $\langle A = \{1, 2, 3, 4, 5\}$, $R^{\mathfrak{A}} = \{(1, 2, 3)\}$, $T^{\mathfrak{A}} = \{(1, 4), (4, 5)\}\rangle$.

Vocabulario de $N_2^{\mathfrak{A}}(5)$: $\{R(\cdot,\cdot,\cdot),\ T(\cdot,\cdot),\ {\color{red}c}\}$

- Dominio de $N_2^{\mathfrak{A}}(5)$ es $N = \{1, 4, 5\}$
- $R^{N_2^{\mathfrak{A}}(5)} = \emptyset$
- $T^{N_2^{\mathfrak{A}}(5)} = \{(1,4), (4,5)\}$
- $c^{N_2^{\mathfrak{A}}(5)} = 5$

Nuevamente sea $\mathfrak A$ la estructura $\langle A = \{1, 2, 3, 4, 5\}$, $R^{\mathfrak A} = \{(1, 2, 3)\}$, $T^{\mathfrak A} = \{(1, 4), (4, 5)\}\rangle$.

Vocabulario de $N_2^{\mathfrak{A}}(5)$: $\{R(\cdot,\cdot,\cdot),\ T(\cdot,\cdot),\ {\color{red}c}\}$

- Dominio de $N_2^{\mathfrak{A}}(5)$ es $N = \{1, 4, 5\}$
- $R^{N_2^{\mathfrak{A}}(5)} = \emptyset$
- $T^{N_2^{\mathfrak{A}}(5)} = \{(1,4),(4,5)\}$
- $c^{N_2^{\mathfrak{A}}(5)} = 5$

Notación

Para $\bar{a}=(a_1,\ldots,a_m)$, usamos $N_d^{\mathfrak{A}}(a_1,\ldots,a_m)$ como notación alternativa para $N_d^{\mathfrak{A}}(\bar{a})$.

Isomorfismo de vecindarios

Dados: Vecindarios
$$N_d^{\mathfrak{A}}(\bar{a})$$
 y $N_d^{\mathfrak{A}}(\bar{b})$, donde $\bar{a}=(a_1,\ldots,a_m)$ y $\bar{b}=(b_1,\ldots,b_m)$

Si f es un isomorfismo entre $N_d^{\mathfrak{A}}(\bar{a})$ y $N_d^{\mathfrak{A}}(\bar{b})$, entonces $f(a_i) = b_i$, para todo $1 \leq i \leq m$

▶ ¿Por qué?

Isomorfismo de vecindarios

Dados: Vecindarios
$$N_d^{\mathfrak{A}}(\bar{a})$$
 y $N_d^{\mathfrak{A}}(\bar{b})$, donde $\bar{a}=(a_1,\ldots,a_m)$ y $\bar{b}=(b_1,\ldots,b_m)$

Si f es un isomorfismo entre $N_d^{\mathfrak{A}}(\bar{a})$ y $N_d^{\mathfrak{A}}(\bar{b})$, entonces $f(a_i) = b_i$, para todo $1 \leq i \leq m$

▶ ¿Por qué?

Notación

$$N_d^{\mathfrak{A}}(\bar{a})\cong N_d^{\mathfrak{A}}(\bar{b})$$

Primera noción: Localidad de Gaifman

Dado: Vocabulario \mathcal{L}

Teorema (Gaifman)

Para cada \mathcal{L} -fórmula $\varphi(\bar{x})$ en LPO, existe un número d tal que para toda \mathcal{L} -estructura \mathfrak{A} y tuplas \bar{a} , \bar{b} en \mathfrak{A} :

$$N_d^{\mathfrak{A}}(\bar{\mathbf{a}})\cong N_d^{\mathfrak{A}}(\bar{\mathbf{b}}) \qquad \Rightarrow \qquad \mathfrak{A}\models \varphi(\bar{\mathbf{a}}) \; ext{si y sólo si } \mathfrak{A}\models \varphi(\bar{\mathbf{b}})$$

Primera noción: Localidad de Gaifman

Dado: Vocabulario \mathcal{L}

Teorema (Gaifman)

Para cada \mathcal{L} -fórmula $\varphi(\bar{x})$ en LPO, existe un número d tal que para toda \mathcal{L} -estructura \mathfrak{A} y tuplas \bar{a} , \bar{b} en \mathfrak{A} :

$$N_d^{\mathfrak{A}}(\bar{a}) \cong N_d^{\mathfrak{A}}(\bar{b}) \qquad \Rightarrow \qquad \mathfrak{A} \models \varphi(\bar{a}) \text{ si y s\'olo si } \mathfrak{A} \models \varphi(\bar{b})$$

¿Cómo podemos usar este teorema para demostrar que una propiedad no es expresable en LPO?

Localidad de Gaifman: Dos ejemplos

Ejercicios

Usando el teorema de Gaifman demuestre que las siguientes propiedades no son expresables en lógica de primer orden:

- 1. Clausura transitiva: Determinar si existe un camino entre dos nodos de un grafo
- 2. Misma generación: Determinar si en un árbol dos nodos están en la misma generación

Localidad de Gaifman: Dos ejemplos

Ejercicios

Usando el teorema de Gaifman demuestre que las siguientes propiedades no son expresables en lógica de primer orden:

- 1. Clausura transitiva: Determinar si existe un camino entre dos nodos de un grafo
- 2. Misma generación: Determinar si en un árbol dos nodos están en la misma generación

¿Qué tan difícil es resolver estos problemas usando juegos de Ehrenfeucht-Fraïssé?

Sea
$$\mathcal{L} = \{E(\cdot, \cdot)\}$$

Por contradicción: Suponga que existe una \mathcal{L} -fórmula $\varphi(x,y)$ en LPO tal que para cada \mathcal{L} -estructura \mathfrak{A} y par de puntos a,b en \mathfrak{A} :

▶ $\mathfrak{A} \models \varphi(a,b)$ si y sólo si existe un camino desde a a b en el grafo representado por \mathfrak{A}

Por Teorema de Gaifman: Existe d tal que para toda \mathcal{L} -estructura \mathfrak{A} y tuplas (a_1, b_1) , (a_2, b_2) en \mathfrak{A} :

► Si $N_d^{\mathfrak{A}}(a_1, b_1) \cong N_d^{\mathfrak{A}}(a_2, b_2)$, entonces $\mathfrak{A} \models \varphi(a_1, b_1)$ si y sólo si $\mathfrak{A} \models \varphi(a_2, b_2)$

Sea $\mathfrak A$ una estructura tal que $E^{\mathfrak A}$ es la siguiente relación de sucesor:

Donde:

- La distancia entre a y el primer punto de $E^{\mathfrak{A}}$ es mayor que d
- ▶ La distancia entre b y a es mayor que $2 \cdot d + 1$
- La distancia entre el último punto de $E^{\mathfrak{A}}$ y b es mayor que d

 $N_d^{\mathfrak{A}}(a,b)$ es la siguiente estructura:

 $N_d^{\mathfrak{A}}(b,a)$ es la siguiente estructura:

$$N_d^{\mathfrak{A}}(a,b)$$
 es la siguiente estructura:

 $N_d^{\mathfrak{A}}(b,a)$ es la siguiente estructura:

Por lo tanto: $N_d^{\mathfrak{A}}(a,b) \cong N_d^{\mathfrak{A}}(b,a)$

Por hipótesis: $\mathfrak{A} \models \varphi(a,b)$ si y sólo si $\mathfrak{A} \models \varphi(b,a)$

 $N_d^{\mathfrak{A}}(a,b)$ es la siguiente estructura:

 $N_d^{\mathfrak{A}}(b,a)$ es la siguiente estructura:

Por lo tanto: $N_d^{\mathfrak{A}}(a,b) \cong N_d^{\mathfrak{A}}(b,a)$

▶ Por hipótesis: $\mathfrak{A} \models \varphi(a,b)$ si y sólo si $\mathfrak{A} \models \varphi(b,a)$

Pero: $\mathfrak{A} \models \varphi(a,b)$ y $\mathfrak{A} \not\models \varphi(b,a)$

▶ ¡Tenemos una contradicción!

Sea
$$\mathcal{L} = \{E(\cdot, \cdot)\}$$

Ahora suponga que $\psi(x, y)$ es una \mathcal{L} -fórmula en LPO tal que para cada \mathcal{L} -estructura \mathfrak{B} que representa un árbol y puntos a, b en \mathfrak{B} :

▶ $\mathfrak{B} \models \psi(a, b)$ si y sólo si a y b están en la misma generación en el árbol representado por \mathfrak{B}

Por Teorema de Gaifman: Existe d tal que para toda \mathcal{L} -estructura \mathfrak{B} y tuplas (a_1, b_1) , (a_2, b_2) en \mathfrak{B} :

▶ Si $N_d^{\mathfrak{B}}(a_1,b_1) \cong N_d^{\mathfrak{B}}(a_2,b_2)$, entonces $\mathfrak{B} \models \psi(a_1,b_1)$ si y sólo si $\mathfrak{B} \models \psi(a_2,b_2)$

Sea $\mathfrak B$ una estructura tal que $E^{\mathfrak B}$ es el siguiente árbol:

Donde:

- $d_{\mathfrak{B}}(a,r) = d_{\mathfrak{B}}(b,r) > d$
 - ► a y b están en la misma generación
- ▶ $(b,c) \in E^{\mathfrak{B}}$
- $b d_{\mathfrak{B}}(h_1,a) = d_{\mathfrak{B}}(h_2,c) > d$

 $N_d^{\mathfrak{B}}(a,b)$ es la siguiente estructura:

 $N_d^{\mathfrak{B}}(a,b)$ es la siguiente estructura:

 $N_d^{\mathfrak{B}}(a,c)$ es la siguiente estructura:


```
Por lo tanto: N_d^{\mathfrak{B}}(a,b) \cong N_d^{\mathfrak{B}}(a,c)
```

▶ Por hipótesis: $\mathfrak{B} \models \psi(a,b)$ si y sólo si $\mathfrak{B} \models \psi(a,c)$

Por lo tanto:
$$N_d^{\mathfrak{B}}(a,b) \cong N_d^{\mathfrak{B}}(a,c)$$

▶ Por hipótesis: $\mathfrak{B} \models \psi(a,b)$ si y sólo si $\mathfrak{B} \models \psi(a,c)$

Pero:
$$\mathfrak{B} \models \psi(a, b)$$
 y $\mathfrak{B} \not\models \psi(a, c)$

▶ ¡Tenemos una contradicción!

¿Se puede utilizar la noción de localidad de Gaifman para consultas Booleanas (oraciones)?

¿Se puede utilizar la noción de localidad de Gaifman para consultas Booleanas (oraciones)?

► El teorema es válido pero inútil en este caso

¿Se puede utilizar la noción de localidad de Gaifman para consultas Booleanas (oraciones)?

► El teorema es válido pero inútil en este caso

Necesitamos una segunda noción.

▶ No sólo va a ser útil en el caso de consultas Booleanas

Definición

Decimos que $\mathfrak{A} \leftrightarrows_d \mathfrak{B}$ si existe una biyección $f: A \to B$ tal que para todo $c \in A$:

$$N_d^{\mathfrak{A}}(c) \cong N_d^{\mathfrak{B}}(f(c))$$

Definición

Decimos que $\mathfrak{A} \hookrightarrow_d \mathfrak{B}$ si existe una biyección $f: A \to B$ tal que para todo $c \in A$:

$$N_d^{\mathfrak{A}}(c) \cong N_d^{\mathfrak{B}}(f(c))$$

Teorema (Hanf)

Para cada \mathcal{L} -oración φ en LPO, existe un número d tal que para todo par de \mathcal{L} -estructuras $\mathfrak A$ y $\mathfrak B$:

$$\mathfrak{A} \leftrightarrows_d \mathfrak{B} \quad \Rightarrow \quad \mathfrak{A} \models \varphi \text{ si y sólo si } \mathfrak{B} \models \varphi$$

Localidad de Hanf: Utilización

¿Cómo podemos usar este teorema para demostrar que una propiedad no es expresable en LPO?

Localidad de Hanf: Utilización

¿Cómo podemos usar este teorema para demostrar que una propiedad no es expresable en LPO?

Ejercicio

Usando el teorema de Hanf demuestre que la siguiente propiedad no es expresable en lógica de primer orden:

- 1. Conexidad: Determinar si un grafo es conexo.
 - ► Existe una secuencia de arcos entre cada par de nodos

¿Podemos usar la noción de localidad de Gaifman para hacer esta demostración?

Sea
$$\mathcal{L} = \{E(\cdot, \cdot)\}$$

Por contradicción: Suponga que Φ es una \mathcal{L} -oración en LPO tal que para cada \mathcal{L} -estructura \mathfrak{A} :

 $ightharpoonup \mathfrak{A} \models \Phi$ si y sólo si el grafo representado por \mathfrak{A} es conexo

Por Teorema de Hanf: Existe d tal que para todo par de \mathcal{L} -estructura \mathfrak{A} , \mathfrak{B} :

► Si $\mathfrak{A} \leftrightarrows_d \mathfrak{B}$, entonces $\mathfrak{A} \models \Phi$ si y sólo si $\mathfrak{B} \models \Phi$

Considere las siguientes estructuras:

 $\mathfrak A$ contiene dos ciclos, cada uno con $2 \cdot d + 2$ elementos, y $\mathfrak B$ contiene un ciclo con $4 \cdot d + 4$ elementos.

El grafo representado por ${\mathfrak A}$ no es conexo.

El grafo representado por ${\mathfrak B}$ es conexo.

$$\triangleright \mathfrak{B} \models \Phi$$

Sea f una biyección cualquiera de A en B

• Existe porque $|A| = |B| = 4 \cdot d + 4$

Sea f una biyección cualquiera de A en B

• Existe porque $|A| = |B| = 4 \cdot d + 4$

Se tiene que: $\mathfrak{A} \leftrightarrows_d \mathfrak{B}$

▶ ¿Por qué?

Sea f una biyección cualquiera de A en B

• Existe porque $|A| = |B| = 4 \cdot d + 4$

Se tiene que: $\mathfrak{A} \leftrightarrows_d \mathfrak{B}$

▶ ¿Por qué?

Por hipótesis: $\mathfrak{A} \models \Phi$ si y sólo si $\mathfrak{B} \models \Phi$

▶ ¡Tenemos una contradicción!

Localidad de Hanf: Noción general

Notación

Dada tuplas $\bar{a}=(a_1,\ldots,a_m),\; \bar{b}=(b_1,\ldots,b_n)$ y un elemento c:

- ightharpoonup $\bar{a}\bar{b}$ se define como la tupla $(a_1,\ldots,a_m,b_1,\ldots,b_n)$
- ▶ $\bar{a}c$ se define como la tupla (a_1, \ldots, a_m, c)

Localidad de Hanf: Noción general

Notación

Dada tuplas $\bar{a}=(a_1,\ldots,a_m),\; \bar{b}=(b_1,\ldots,b_n)$ y un elemento c:

- ightharpoonup $\bar{a}\bar{b}$ se define como la tupla $(a_1,\ldots,a_m,b_1,\ldots,b_n)$
- ▶ $\bar{a}c$ se define como la tupla (a_1, \ldots, a_m, c)

Definición

Decimos que $(\mathfrak{A}, \bar{a}) \leftrightarrows_d (\mathfrak{B}, \bar{b})$ si existe una biyección $f : A \to B$ tal que para todo elemento c en \mathfrak{A} :

$$N_d^{\mathfrak{A}}(\bar{a}c)\cong N_d^{\mathfrak{B}}(\bar{b}f(c))$$

Localidad de Hanf: Noción general

Teorema (Hanf)

Para cada \mathcal{L} -fórmula $\varphi(\bar{x})$ en LPO, existe un número d tal que para todo par de \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} , para todo \bar{a} en \mathfrak{A} y para todo \bar{b} en \mathfrak{B} :

$$(\mathfrak{A},\bar{a})\leftrightarrows_d(\mathfrak{B},\bar{b})$$
 \Rightarrow $\mathfrak{A}\models\varphi(\bar{a})$ si y sólo si $\mathfrak{B}\models\varphi(\bar{b})$