

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	SPS II
Popis sady vzdělávacích materiálů:	Stavba a provoz strojů II, 2. ročník
Sada číslo:	C-07
Pořadové číslo vzdělávacího materiálu:	18
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_C-07-18
Název vzdělávacího materiálu:	Mechanicky neovládané spojky
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Hynek Palát

Spojky

Spojky jsou takové strojní součásti, kterými spojujeme dva hřídele – obvykle hnací hřídel s hnaným. Spojky přenášejí kroutící moment z hnacích hřídelů na hnané, přičemž **je zachována možnost toto spojení kdykoliv demontovat.** Spojky se obvykle vyrábějí sériově a volí se podle katalogu výrobce.

Rozdělení hřídelových spojek

- Mechanicky neovládané spojky nepružné (pevné a vyrovnávací) a pružné;
- mechanicky ovládané spojky výsuvné, pojistné, rozběhové, volnoběžné;
- hydraulické spojky;
- elektrické a magnetické spojky.

Pevnostní výpočet

Spojku v podstatě pouze kontrolujeme, zdali je schopna přenést požadovaný kroutící moment. Musíme přitom dbát na to, abychom dosadili opravdu ten nejvyšší kroutící moment, který v provozu spojky může nastat. Např. záběrový moment při rozběhu elektromotoru bývá větší než kroutící moment, kterým stejný elektromotor disponuje během provozu.

$$M_V \geq k \cdot M_K$$

kde M_k – kroutící moment hnacího stroje (nejvyšší, který může nastat);

M_V – max. povolený přenášený kroutící moment udaný výrobcem – najdeme ho v katalogu;

k – provozní bezpečnost – volíme podle provozních podmínek.

Mechanicky neovládané spojky

Tyto spojky se používají k trvalému spojení hřídelů.

Spojky nepružné pevné

Jde o konstrukčně nejprostší druh hřídelových spojek. Slouží k pevnému rozebíratelnému spojení dvou hřídelů bez možnosti jejich vzájemného pohybu. Jde vždy o spoje s tvarovým stykem – nejčastěji prostřednictvím per.

Trubková spojka

Jde v podstatě o opracovanou trubku s vnitřní drážkou. Konce obou spojovaných hřídelů jsou opatřeny pery, která se do drážky zasunou. Trubková spojka je vlastně jakýmsi spojovacím nábojem.

Korýtková spojka

Je to v podstatě trubková spojka rozdělená na dvě poloviny. Oba díly pak spojujeme šrouby. Na rozdíl od obyčejné trubkové spojky má tato spojka snadnější montáž, protože hřídele nemusíme posouvat.

Kotoučová (přírubová) spojka

Tato spojka umožňuje spojení dvou hřídelů o nestejném průměru. Oba spojované hřídele jsou na koncích osazeny kotouči (přírubami), které pak jsou navzájem spojeny soustavou šroubů.

Zubová spojka

Čelní plochy obou spojovaných částí jsou opatřeny zuby. Obě poloviny se pak stáhnou šrouby v ose spojky.

Spojky nepružné vyrovnávací

Tyto spojky použijeme tehdy, pokud musíme spojit nesouosé hřídele nebo hřídele axiálně případně radiálně posunuté. Ideálně kompenzují výrobní nepřesnosti v uloženích hřídelů.

Axiální posuvná spojka

Umožňuje vzájemný axiální posuv obou spojovaných hřídelů.

Radiální zubová spojka

Tato spojka kromě axiálního posuvu umožňuje i určité vzájemné naklopení obou hřídelů. Používá se u nich evolventní ozubení, které je na rozdíl od běžných převodů zaobleno, aby bylo usnadněno naklopení hřídele.

Kloubová čepová spojka

Tato spojka umožňuje vzájemné natočení spojovaných hřídelů značného rozsahu. Aplikujeme-li dvě takovéto spojky vedle sebe, získáme tzv. kardanový hřídel. Ten umožňuje i spojení takových hřídelů, které se v provozu vůči sobě kývou ve velkém rozsahu. Používá se například u automobilů na propojení výstupní hřídele převodovky s diferenciálem rozvodovky, kde je třeba kompenzovat vlivy odpružení vozu při jízdě.

Pružné spojky

Tyto spojky disponují soustavou pružných prvků (např. pružinami, pryžovými díly apod.), pomocí kterých dokážou tlumit provozní rázy hnacího stroje. Některé pružné spojky jsou zároveň i vyrovnávací, umožňují tedy i vzájemné naklopení spojovaných hřídelů.

Spojka s vinutými pružinami

Dojde-li k provoznímu rázu (prudkému natočení hnací hřídele), pružiny se stlačí.

Pružná kotoučová spojka

Je to obdoba běžné kotoučové spojky. Spojovací šrouby jsou zpravidla v jedné přírubě uloženy do pryžových pouzder.

Spojka s pružnými hranoly

Pružnými elementy jsou pryžové segmenty, spojující hnací a hnanou část spojky.

• Pružná obručová spojka

Pružným elementem je pryžový plášť, sešroubovaný se dvěma přírubami, nasazenými na obou spojovaných hřídelích.

Spojka Hardy

Pružným dílem je zde zpravidla pryžový kotouč spojený s oběma hřídeli pomocí šroubů.

Opakovací otázky a úkoly

- Proveď základní rozdělení mechanicky neovládaných spojek a charakterizuj jednotlivé skupiny.
- Nakresli jednoduchou trubkovou spojku a kotoučovou přírubovou spojku.
- Nakresli alespoň tři druhy vyrovnávacích, pružných a rozběhových spojek.

Seznam použité literatury

- KŘÍŽ, R. a kol.: Strojní součásti I. Praha: SNTL, 1984.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 3. doplněné vydání. Praha: Albra, 2006. ISBN 80-7361-033-7.