Regresión múltiple y otras técnicas multivariadas | Semestre 2019-2

Tarea 09

Fecha de entrega: 24 de abril

- 1. Bajo los supuestos del modelo RLM y con los resultados sobre distribuciones de formas cuadráticas vistos en clase, justificar las siguientes proposiciones.
 - a) $SCT/\sigma^2 = \sim \chi_{n-1,\lambda}^{*2}$. Calcular el parámetro de no centralidad.
 - b) $SCR/\sigma^2 = \sim \chi_{p,\lambda}^{*2}$. Calcular el parámetro de no centralidad.
 - c) $SCR \perp SCE$.
- 2. En el siguiente cuadro se muestran los resultados del ANOVA de un modelo RLM.

F.V.	G.L.	S.C.	C.M.	F
Regresión	3	X	1600.81	X
Error	36	146.9	X	
Total	X	X	X	

Responder lo siguiente.

- a) Completar la información de la tabla anterior (únicamente las celdas marcadas con X)
- b) ¿Con cuántas variables explicativas y cuántas observaciones se ajustó el modelo?
- c) Si se toma $\alpha = 0.01$, ¿el modelo ajustado es significativo?
- d) Estimar puntualmente y por intervalo (de confianza 99%) la varianza del modelo.
- e) Calcula los coeficientes \mathbb{R}^2 y \mathbb{R}^2_{adj} o del modelo.
- 3. El conjunto de datos publicidad.csv contiene: cuatro variables Ventas, TV, Radio e Impresos que corresponden a las ventas semanales y gasto en publicidad, de un determinado producto en 200 mercados diferentes. El objetivo es modelar las ventas semanales a partir del gasto en publicidad, ambas variables expresadas en miles de USD.
 - a) Ajustar un modelo RLM para explicar la distribución de las ventas semanales a partir del gasto en publicidad. Reportar las estimaciones de β , σ^2 y $V(\hat{\beta})$.
 - b) Interpretar las estimaciones de los coeficientes en el contexto de los datos.
 - c) Construir la tabla ANOVA y probar la significancia del modelo. Interpretar los resultados. Utilizar $\alpha=0.01$.
 - d) Construir intervalos de confianza 99 % para las componentes de β , individuales y simultáneos (Bonferroni y Hotelling-Scheffé). Comparar las longitudes de los intervalos.

- e) Probar la significancia del modelo utilizando los intervalos de confianza simultáneos del inciso anterior y comparar los resultados con el inciso 3. Utilizar $\alpha = 0.01$.
- f) Calcular \mathbb{R}^2 y \mathbb{R}^2_{adj} e interpretar los resultados.
- g) Contrastar si el efecto de TV es el doble que el efecto de Radio. Interpretar los resultados en el contexto de los datos.