11th International Seminar on the Commercial Applications for Inherently Conductive Polymers Pittsburgh, October 6-7 2004

Solvent Processable Conducting Block Copolymers Based On Poly(3,4-ethylenedioxythiophene)

Silvia Luebben, Shawn Sapp, Emily Chang, Raechelle D'Sa, Brian Elliott, Wallace Ellis

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, inclu- ion of information. Send comments : arters Services, Directorate for Infor ny other provision of law, no person	regarding this burden estimate mation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE OCT 2004		2. REPORT TYPE		3. DATES COVE 00-00-2004	red I to 00-00-2004	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Solvent Processable Conducting Block Copolymers Based on				5b. GRANT NUMBER		
Poly(3,4-ethylenedioxythiophene)				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER			
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) TDA Research Inc,12345 West 52nd Avenue, Wheat Ridge,CO,80033-1916				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited				
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	images.				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER OF PAGES	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT	26	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Acknowledgements

- Shawn Sapp
- Emily Chang
- Carolina Wilson
- Raechelle D'Sa
- Brian Elliott
- Wallace Ellis

NIH

TDA Research

TDA Research

- Began operations in 1987
- 65 Full-time technical staff
- \$ 9.6 Million annual revenue
- 50,000 ft² Total facility

- Performs contract R&D
- 15 patents, 29 pending applications
- Commercializes technology by
 - Internal business units
 - Joint ventures
 - Licensing

Outline

- Problems with ICP commercialization
- Processing: current approaches
- TDA's approach
- PEDOT-PEG block copolymers
- Other conducting block copolymers
- Concluding remarks

ICPs in Numbers

- Discovered in the late 70's
- Ten thousands of scientific papers published since discovery
- Some 40,000 patents filed since 1976
- Nobel Prize awarded in 2000
- Only a few commercial applications with limited markets
- North America ICP sales were \$140 million in 2003 and are projected to be \$610 million in 2008 (Conductive Polymers, BCC Report 2003)

ICP Problems

- 1. Metallic conductivity is difficult to achieve
- 2. Dark in color
- 3. Poor long-term and thermal stability
- 4. Difficult processing
 - Rigid rod chains
 - DON'T FLOW & DON'T MELT
 - Poly(ionic) chains with intercalated counterion
 - DON'T DISSOLVE

TDA's Objectives

- Develop new practical processing methods for existing ICPs
- Increase versatility and global use of ICPs
- Focus on PEDOT:
 - Offer a range of solvents
 - Avoid a large excess of polyelectrolyte
 - Reduce hygroscopic and acidic properties
- Also polypyrrole:
 - Stimuli-responsive biodegradable biomaterial

Current ICP Processing Methods

- From undoped state / post processing doping
- In Situ polymerization
- Fancy solvents, cosolvents, dopants
- Oligomer approach
- Dispersion techniques

PEDOT/PSS Dispersion (Baytron® P)

Ionic-Stabilized Water-Based Dispersion

- Large excess of PSSH
- Hygroscopic, acidic, corrosive
- Poor wetting of organic substrates
- Difficult to blend with hydrophobic resins and polymers

TDA's Approach: Block Copolymers & Capped Oligomers

TDA

Research

e)

Solution and Solid State Structures

Steric-stabilized colloidal dispersion in solution

Phase-separated domains in solid state

PEDOT-PEG Copolymers Synthesis

1) Synthesis of Polymerizable Macromonomers

2) Oxidative Polymerization

Purification and Dispersion

Sample Description	Chlorine Content	Iron Content	
	(ppm)	(ppm)	
raw product	6310	3410	
first rinse	2900	700	
second rinse	2200	100	
third rinse	2310	19	

Linear Copolymers: Conductivity Versus PEDOT/PEG Ratio

Linear Copolymers: Conductivity Versus Dopant

Perchlorate doped copolymer:

$$\sigma = 10^{-1} - 10^{0} \text{ S/cm}$$

Triflate doped copolymer:

$$\sigma = 10^{-2} \text{ S/cm}$$

ParaToluensulfonate doped copolymer:

$$\sigma = 10^{-4} - 10^{-3} \text{ S/cm}$$

Linear Copolymers: Optical Clarity

Linear Copolymers: Particle Size

Light Scattering of Solvated Colloidal Particles TDA

Linear Copolymers: Surface Roughness

Contact Mode AFM: dry film on float glass

Hyperbranched Copolymers: Conductivity Versus Composition

Hyperbranched Copolymers: Optical Clarity

Hyperbranched Copolymers: Surface Roughness

Contact Mode AFM: dry film on float glass

RMS Roughness = 3.9 nm

Film cast at 3000 RPM

Surface Resistivity = $6,600 \Omega/\text{sq}$.

No annealing needed

Methacrylated Capped Oligomers

$$\begin{pmatrix} CH_3 & O \\ CH_2 & O \\ \end{pmatrix}_2 = \begin{pmatrix} O & CH_3 \\ & & & \\ &$$

- Post-curing cross-linking for:
 - Photo-lithographic patterning
 - Improved scratch resistance
 - Post-inkjet print curing
- Added functionality for reaction with specific functional compounds
- Bulk conductivity = 10⁻²-10⁰ S/cm (PTSA doped) TDA

Photoprinting of Methacrylated Oligomers

Areas that are exposed to the light become "fixed" and the rest of the film can be rinsed away

Ink (above), mask (middle) and printed image (bottom)

The printable conducting ink contains a mixture of our conducting polymer and other polymerizable monomers. TDA

Research

Commercial Products

- Aedotron[™] C polymer: Linear PEDOT-PEG/CIO₄ in nitromethane (64980-5)
- 2. Aedotron™ C polymer: Linear PEDOT-PEG/ClO₄ in propylene carbonate (64978-3)
- 3. Aedotron™ P polymer: Linear PEDOT-PEG/PTSA in nitromethane (64979-1)
- 4. Oligotron™ material: PEDOTtetramethacrylate/PTSA in propylene carbonate (64981-3)
- 5. Oligotron™ material: PEDOTtetramethacrylate/PTSA in nitromethane (64982-1)

PDMS-PEDOT Copolymers

Conductivity = 10^{-2} - 10^{0} S/cm

Elongation = 80-190%

Tensile Strength = 60-100 psi

Glass Transition = -50 °C

Advantages of TDA's Materials

- Processable from non-acidic organic dispersions
 - O No ITO etching
 O Not hygroscopic
- Wet glass and organic substrates
- Conductivity from 10⁻⁴ to 10 S/cm
 - O PEDOT/PEG ratio Dopant
- Colloidal dispersion independent from dopant
- Hyperbranched oligomers have improved conductivity/transparency and lower surface roughness
- Methacryated materials can be cross-linked
- PDMS-PEDOT materials show high conductivity and elongation

