patient	before (X)	after (Y)	patient	before (X)	after (Y)
1	102.4	99.6	7	102.5	101.0
2	103.2	100.1	8	103.1	100.1
3	101.9	100.2	9	102.8	100.7
4	103.0	101.1	10	102.3	101.1
5	101.2	99.8	11	101.9	101.3
6	100.7	100.2	12	101.4	100.2

Table 1: Temperatures of n = 12 children before and after taking aspirin.

In a pediatric clinical study carried out to see how effective aspirin is in reducing temperature, n = 12 five-year-old children suffering from influenza had their temperature taken immediately before (X) and 1 hour after (Y) administration of aspirin. The data are in Table 1, and online at www.biostat.umn.edu/~brad/data/aspirin_data.txt.

Let Z = X - Y, the observed reduction in temperature. The study investigators suspect that the reduction in temperature Z may be related to the initial temperature X. Thus, they would like to fit the simple linear regression (SLR) model,

$$Z_i = \beta_0 + \beta_1(x_i - \bar{x}) + \epsilon_i, \ \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2), \ i = 1, \dots, n.$$

- (a) Use R (or any package) to plot the raw data. Does the linear model appear plausible?
- (b) Following the model of Example 2.10, fit the SLR model in WinBUGS, using vague priors for all parameters. Find a posterior density estimate and a 95% credible interval for the initial temperature effect β_1 . Do your results confirm the investigators' suspicion? Also check the effective model size p_D and DIC score for the fitted SLR.
- (c) Suppose a 13th patient arrives with an initial temperature of 100.0 degrees. Find an estimate of the predictive density of Z_{13} , the predicted reduction in temperature for this patient, and a point estimate for $P(Z_{13} > 0 | Z_1, \ldots, Z_{12})$, the predictive probability that this new patient's temperature is reduced by aspirin.
- (d) Follow the model of CL3, Example 2.16 to investigate approximate residual and CPO values for your model (do not bother with exact cross-validatory results here). Are any data points outliers in any sense?
- (e) Suppose we attempt to improve model fit by adding a quadratic term, $\beta_2(x_i \bar{x})^2$, to our model. Make this change and recheck p_D and DIC, as well as the posterior of β_2 . Is this model enhancement well-justified by the data? Also check this change's impact on your answer to part (c) above. Is either Z_{13} prediction well-justified by the data?

Working ~1 Deriance Deviance statistic: -210g p(+210g h(y) effective PD = D - D(0) Lo where D(0) is deviance statistic Evaluated at means of posterior Sempler of model parameters 1 trink of Y; ~ N (Bo+B, x, 02) tren average of Bo, B1, and a poskrior samples should be used. L's and where D is defined as Epy[D], which is posterior expertedion of the deviance so maybe evaluate deviance using each sampled value of Bo, B, O and take the average over this deviouse

distribution