Then \tilde{v} is a solution of (ACP). It follows that $\tilde{v}(s) = T_1(s)f$ for all $s \ge 0$. Hence $v = \eta(f)$. We have shown that η has a closed graph and so η is continuous. This implies the continuity of $T_1(t)$. It remains to show that A_1 is the generator of $(T_1(t))_{t\ge 0}$.

We first show that for $f \in D(A^2)$ one has

(1.1)
$$AT_1(t) f = T_1(t) Af.$$

In fact, let $v(t) = f + \int_0^t u(s,Af) ds$. Then $\dot{v}(t) = u(t,Af) = Af + \int_0^t Au(s,Af) ds = A(f + \int_0^t u(s,Af) ds) = Av(t)$. Since v(0) = f, it follows that v(t) = u(t,f).

Hence $Au(t,f) = Av(t) = \dot{v}(t) = u(t,Af)$. This is (1.1).

Now denote by B the generator of $(T_1(t))_{t\geq 0}$. For $f \in D(A^2)$ we have

$$\lim_{t\to 0} \frac{T_1(t)f - f}{t} = Af$$

and by (1.1),

$$\lim_{t\to 0} A = \frac{T_1(t)f - f}{t} = \lim_{t\to 0} \frac{T_1(t)Af - Af}{t} = A^2 f$$
 in the norm of E.

Hence
$$\lim_{t\to 0} \frac{T_1(t)f - f}{t} = Af$$
 in the norm of E_1 .

This shows that $A_1 \subseteq B$. In order to show the converse, let $f \in D(B)$.

Then $\lim_{t\to 0} A \frac{T_1(t)f - f}{t}$ exists in the norm of E.

Since $\lim_{t\to 0} \frac{T_1(t) f - f}{t} = Af$ in the norm of E, it follows

that Af \in D(A), since A is closed. Thus $f \in$ D(A²) = D(A₁). We have shown that B = A₁.

(ii) implies (i).

Assume that A_1 is the generator of a strongly continuous semigroup $(T_1(t))_{t\geq 0}$ on E_1 . Let $f\in D(A)$ and set $u(t)=T_1(t)f$. Then $u\in C([0,\infty),E)$ and $Au(\cdot)\in C([0,\infty),E)$.

Moreover, $\int_0^t u(s)ds = \int_0^t T_1(s)fds \in D(A_1) = D(A^2)$ and $A \int_0^t u(s)ds = u(t) - u(0) = u(t) - f$ (by A-I,(1.3)).

Consequently, $u(t) = f + A \int_0^{t} u(s) ds = f + \int_0^{t} Au(s) ds$.

Hence $u \in C^1([0,\infty),E)$ and $\dot{u}(t) = Au(t)$. Thus u is a solution of (ACP). We have shown existence.