

Systèmes d'Exploitation

Didier Verna EPITA

Généralités Réquisition

Critères

Algorithmes

ECES

SJF

Priorités

Tourniquet Multi-niveau

iviuiti-iiiv

Loterie Temps Réel

Systèmes d'Exploitation Ordonnancement des processus

Didier Verna

didier@lrde.epita.fr http://www.lrde.epita.fr/~didier

Table des matières

Systèmes d'Exploitation Didier Verna

Généralités Réquisition

Algorithmes FCFS SJF Priorités

Priorités Tourniquet Multi-niveau Loterie Temps Réel

Généralités

- Ordonnancement et réquisition
- Critères d'ordonnancement

2 Algorithmes d'ordonnancement

- Premier arrivé premier servi
- Plus court d'abord
- Ordonnancement avec priorités
- Tourniquet
- Files d'attentes multi-niveau
- Loterie
- Ordonnancement temps-réel

Qu'est-ce que l'ordonnancement?

Commuter dès qu'un processus se bloque

Systèmes d'Exploitation

Généralités

Réquisition Critères

Algorithmes

Priorités

Tourniquet

Multi-niveau

Temps Réel

Ordonnancement et Réquisition

Systèmes d'Exploitation Didier Verna

Généralités

Réquisition Critères

Algorithmes
FCFS
SJF
Priorités
Tourniquet
Multi-niveau

Temns Réel

Motifs de commutation

- Aucun choix : blocage ou terminaison d'un processus
- Choix : arrivée d'un nouveau processus, passage des états actif ou bloqué à l'état prêt

■ Types d'ordonnanceurs

- Ordonnancement sans réquisition (système coopératif): ne gère que le premier type de commutation. Windows (< 95), Windows NT, Mac OS (< 10).
- Ordonnancement avec réquisition (système préemptif): gère tous les motifs de commutation.
 Nécessite des outils de synchronisation et du matériel spécifique (horloge). Windows 95, Mac OS X, UNIX.

Critères d'ordonnancement

Systèmes d'Exploitation Didier Verna

Généralités

aeneralite Réquisition Critères

Algorithmes FCFS SJF Priorités Tourniquet Multi-niveau

Temns Réel

Tous systèmes

- Équité : répartition du CPU
- Respect de politique : imposer les choix d'ordonnancement
- Équilibre : occupation de toutes les parties du système

Batch

- Capacité de traitement / rendement : nombre de processus exécutés par unité de temps
- Temps de restitution / service : délai entre la soumission d'un processus et sa terminaison (mise en mémoire, attente en état prêt, attente E/S, exécution)
- Utilisation du processeur

Critères d'ordonnancement (suite)

Systèmes d'Exploitation Didier Verna

Généralités

Réquisition

Algorithmes FCFS SJF Priorités

SJF Priorités Tourniquet Multi-niveau Loterie Temps Réel

Interactifs

- Temps de réponse : délai entre la soumission et le moment où l'on commence à répondre
- Temps d'attente : temps passé en état prêt
- Proportionnalité : aux attentes des utilisateurs

Temps-réel

- Respect des dates limites : éviter la perte de données
- Prédictibilité : stabilité des applications multimédia
- ⇒ Optimisation min, max, moyenne, variance etc.

Premier arrivé, premier servi (FCFS)

Systèmes d'Exploitation Didier Verna

Généralités

Réquisition Critères

Algorithmes

SJF Priorités Tourniquet Multi-niveau

Temns Réel

Principe

- Algorithme sans réquisition
- File d'attente FIFO pour les processus prêts
- Facile à comprendre et à programmer
- Intrinsèquement équitable pour des processus équivalents

Inconvénients

- Grande variance des critères d'ordonnancement
- Effet d'accumulation

⇒ Mauvais algorithme pour les systèmes en temps partagé. OK pour les systèmes de batch.

Plus court d'abord / ensuite (SJF / N)

Systèmes d'Exploitation Didier Verna

Généralités Réquisition

Algorithmes

Priorités Tourniquet Multi-niveau Loterie Temps Réel

Principe

- Algorithme sans réquisition
- ▶ Le prochain cycle le plus court est sélectionné
- En cas d'égalité, on revient au FCFS
- Version avec réquisition : « temps restant le plus court » (SRTF)

Avantage

Temps moyen d'attente minimal

Inconvénient

- Difficulté de calculer la longueur des cycles
- Approximation possible par moyenne exponentielle :

$$\tau_{n+1} = \alpha \tau_n + (1-\alpha)\tau_{n-1}$$

⇒ Peu adapté pour l'ordonnancement à court terme. OK pour les systèmes de batch.

Ordonnancement avec priorités

Systèmes d'Exploitation Didier Verna

Généralités Réquisition

Critères
Algorithmes

FCFS SJF

Drioritón

Tourniquet Multi-niveau Loterie Temps Réel

Principe

- Généralisation du SJF (priorité = inverse de la longueur du prochain cycle)
- Algorithme avec ou sans réquisition
- Priorités internes (consommation de ressources etc.)
- Priorités externes (fixées par l'utilisateur)

Inconvénient

- Blocage infini (« famine »)
- Solution : technique du « vieillissement » (augmentation progressive de la priorité des processus en attente)

Tourniquet (RR) ROUND ROBIN Conçu spécialement pour le temps partagé

Systèmes d'Exploitation Didier Verna

Généralités Réquisition Critères

Algorithmes

FCFS SJF Priorités

Tourniquet

Multi-niveau Loterie Temps Réel

Principe

- FCFS avec réquisition sur une base de quantums (20 50ms)
- Nécessite une horloge
- Précautions quantum trop petit le system est écroulé
 - Le quantum doit être grand par rapport au temps de commutation
 - Le quantum ne doit pas être trop grand

⇒ Réquisition pour les cycles plus longs que le quantum, commutation passive (FCFS) pour les cycles plus courts.

Files d'attente à plusieurs niveaux

Systèmes d'Exploitation Didier Verna

Généralités Réquisition Critères

Algorithmes FCFS SJF

Priorités Tourniquet

Multi-niveau Loterie Principe

- Découpage de la file d'attente des processus prêts en plusieurs files (processus système, interactifs, arrière-plan etc.)
- Ordonnancement spécifique au sein de chaque file (RR, FCFS)
- Ordonnancement des files entre elles (priorités fixes, allocation de tranches de temps etc.)
- Ordonnancement avec feedback (recyclage)
 - Possibilité de déplacer les processus d'une file d'attente à l'autre
 - implémentation du vieillissement
 - dégradation des priorités (ex. cycles longs)

Ordonnancement par loterie

Systèmes d'Exploitation Didier Verna

Généralités

Réquisition Critères

Algorithmes FCFS

SJF Priorités

Tourniquet Multi-niveau

Temps Réel

Principe

- Distribution de tickets (CPU, mémoire...)
- Tirage du gagnant à intervalle fixe

Avantages

- Implémentation légère d'un mécanisme de « promesse » (les processus importants peuvent obtenir plusieurs tickets)
- Efficace pour des processus coopératifs (transmission de tickets)

Catégories d'événements temps réel

Systèmes d'Exploitation Didier Verna

Généralités

Generalite
Réquisition
Critères

Algorithmes FCFS SJF Priorités Tourniquet Multi-niveau Loterie

■ Types d'événements

- Périodiques : distribution vidéo, chaîne industrielle etc.
- Apériodiques : monitoring hospitalier, contrôleur de bord etc.

Cas particulier

▶ Systèmes « ordonnançables » : Soient N événements périodiques de période P_i , nécessitant C_i temps CPU pour s'exécuter. Le système est dit ordonnançable si et seulement si : $\sum_{i=1}^{N} \frac{C_i}{P_i} \le 1$

Catégories d'ordonnanceurs temps réel

Systèmes d'Exploitation Didier Verna

Généralités Réquisition

Algorithmes

Critères

Types d'ordonnanceurs

- Temps réel rigide : « réservation de ressource ». L'ordonnanceur doit connaître exactement les échéances de chaque processus, et les ressources nécessaires
- Temps réel souples : fournir des priorités hautes et non dégradables, minimiser la latence de dispatching.

Minimisation de la latence de dispatching

 Points de réquisition, réquisition des appels systèmes, ou plus généralement de tout le noyau (Solaris 2).

Inversion des priorités

- Un processus prioritaire attends des ressources noyau prises par un (des) processus non prioritaire(s)
- Solution : héritage des priorités (accès noyau en priorité haute).