PMATH 351 Notes

Real Analysis

Winter 2025

Based on Professor Kevin Hare's Lectures

CONTENTS Peiran Tao

Contents

1	Metric Spaces		3
	1.1	Normed Vector Spaces	3
	1.2	Metric Spaces	5
	1.3	Topology of Metric Spaces	7
	1.4	Continuous Functions	10
	1.5	Finite dimensional normed vector spaces	12
	1.6	Completeness	13
	1.7	Completeness of \mathbb{R}	16
	1.8	Limits of continuous functions	18
2	More Metric Topology		21
	2.1	Compactness	21
	2.2	Countable and Uncountable Sets	28
	2.3	Compactness and Continuity	29
	2.4	Cantor Set	30
	2.5	Compact sets in $C(X)$	31
	2.6	Connectedness	34
	2.7	Bonus Cantor Set Stuff	36
3	Completeness		41
	3.1	Baire Category Theorem	41
	3.2	Nowhere Differentiable Functions	43
\mathbf{A}	Pro	blems in the Textbook	46
	A.1	Section 1.3 - 1.5	46
	A 2	Section 2.1 - 2.3	49

— Lecture 1, 2025/01/06 —

1 Metric Spaces

1.1 Normed Vector Spaces

Definition. Let V be a vector space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. We say $\|\cdot\| : V \to \mathbb{R}$ is a **norm** if:

- (i). For all $v \in V$ we have $||v|| = 0 \iff v = 0$.
- (ii). For all $v \in V$ and $\lambda \in \mathbb{K}$ we have $\|\lambda v\| \leq |\lambda| \|v\|$.
- (iii). For all $v, w \in V$ we have $||v + w|| \le ||v|| + ||w||$.

A vector space, combined with a norm, is called a **normed vector space**.

Example. Let $V = \mathbb{R}^n$. Define a map $\|\cdot\|_1 : \mathbb{R}^n \to \mathbb{R}$ by:

$$||v||_1 = ||(x_1, \cdots, x_n)||_1 = |x_1| + \cdots + |x_n|$$

Clearly property 1 and 2 holds. To see property 3 we have:

$$||(x_1, \dots, x_n) + (y_1, \dots, y_n)||_1 = |x_1 + y_1| + \dots + |x_n + y_n|$$

$$\leq |x_1| + |y_1| + \dots + |x_n| + |y_n| \qquad (\triangle \text{ inequality in } \mathbb{R})$$

$$= ||(x_1, \dots, x_n)||_1 + ||(y_1, \dots, y_n)||_1$$

Hence $\|\cdot\|_1$ defines a norm on $V=\mathbb{R}^n$.

Example. Let $V = \mathbb{R}^n$ again. Define $\|\cdot\|_{\infty} : \mathbb{R}^n \to \mathbb{R}$ by:

$$||v||_{\infty} = ||(x_1, \dots, x_n)||_{\infty} = \max(|x_1|, \dots, |x_n|)$$

This also defines a norm on \mathbb{R}^n .

Example. What does the unit ball $B = \{v \in V : ||v|| \le 1\}$ look like? Take $V = \mathbb{R}^2$.

Note. It is possible to extend these two norms to infinite dimensional vector spaces if we are being careful. Both of the norms above are examples of p-norms, for $1 \le p \le \infty$.

Example. Let $V = \mathbb{R}[x]$ be a vector over \mathbb{R} . Define $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ on V by:

$$||f|_1 = \int_0^1 |f(x)| dx$$
 and $||f||_\infty = \sup_{x \in [0,1]} |f(x)|$

The three properties are satisfied by these two norms. Note these norms can be defined beyond polynomials if we are careful.

Theorem 1.1 (Minkowski). Let $1 \le p < \infty$ be a real number.

(i). We define:

$$\ell_p = \left\{ (x_n)_{n=1}^{\infty} \subseteq \mathbb{C} : \left(\sum_{n=1}^{\infty} |x_n|^p \right)^{1/p} < \infty \right\}$$

Then the map $\|\cdot\|_p:\ell_p\to\mathbb{R}$ defined by:

$$\|(x_n)\|_p := \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$$

defines a norm on ℓ_p . This is called the ℓ_p -space.

(ii). Let C[a, b] be the set of continuous functions on [a, b]. Then:

$$||f||_p = \left(\int_a^b |f(x)|^p \, \mathrm{d}x\right)^{1/p}$$

defines a norm. Define $L^p[a,b] = \{f \in \mathcal{C}[a,b] : ||f||_p < \infty\}$, called the L^p -space.

Proof. Note for $p \ge 1$, define a map $\varphi(x) = |x|^p$ and φ is convex on \mathbb{R} . We will prove part 2 first. Assume $f, g \in \mathcal{C}[a, b]$ and $f, g \ne 0$. If f = 0 or g = 0 the triangle inequality is easy to prove.

$$||f + g||_p^p = \int_a^b |f(x) + g(x)|^p \, dx = \int_a^b \left| ||f||_p \cdot \frac{f}{||f||_p} + ||g||_p \cdot \frac{g}{||g||_p} \right|^p \, dx$$

$$= (||f||_p + ||g||_p)^p \int_a^b \left| \underbrace{\frac{||f||_p}{||f||_p + ||g||_p}}_{\alpha} \cdot \frac{f}{||f||_p} + \underbrace{\frac{||g||_p}{||f||_p + ||g||_p}}_{1-\alpha} \cdot \frac{g}{||g||_p} \right|^p \, dx$$

Note that $\alpha \in [0, 1]$, we can rewrite the above quantity as:

$$I := (\|f\|_p + \|g\|_p)^p \int_a^b \left| \alpha \cdot \frac{f}{\|f\|_p} + (1 - \alpha) \cdot \frac{g}{\|g\|_p} \right|^p dx$$
$$= (\|f\|_p + \|g\|_p)^p \int_a^b \varphi \left(\alpha \cdot \frac{f}{\|f\|_p} + (1 - \alpha) \cdot \frac{g}{\|g\|_p} \right)^p dx$$

Recall $\varphi(x) = |x|^p$ is convex, we have:

$$I \le (\|f\|_p + \|g\|_p)^p \left(\alpha \int_a^b \left| \frac{f}{\|f\|_p} \right|^p dx + (1 - \alpha) \int_a^b \left| \frac{g}{\|g\|_p} \right|^p dx \right)$$
$$= (\|f\|_p + \|g\|_p)^p (\alpha + 1 - \alpha) = (\|f\|_p + \|g\|_p)^p$$

This proved that:

$$||f + g||_p^p \le (||f||_p + ||g||_p)^p \implies ||f + g||_p \le ||f||_p + ||g||_p$$

Part 1 (ℓ_p -space) are proved in the similar way by replacing integral with sum.

— Lecture 2, 2025/01/08 —

1.2 Metric Spaces

Definition. Let X be a non-empty set. A **distance (metric)** on X is a function $d: X \times X \to [0, \infty)$ such that:

- (i). For all $x, y \in X$ we have $d(x, y) = 0 \iff x = y$.
- (ii). For all $x, y \in X$ we have d(x, y) = d(y, x).
- (iii). For all $x, y, z \in X$ we have $d(x, z) \leq d(x, y) + d(y, z)$.

The pair (X, d) is called a **metric space**. We just say X is a metric space if d is understood.

Example. Let $(X, \|\cdot\|)$ be a normed vector space, then $d(x, y) = \|x - y\|$ is a metric on X. Clearly $d(x, y) = 0 \iff \|x - y\| = 0 \iff x - y = 0 \iff x = y$. Property (ii) is also trivial. For property (iii) we have:

$$d(x,z) = ||x - z|| = ||x - y + y - z|| \le ||x - y|| + ||y - z|| = d(x,y) + d(y,z)$$

Example (Graph metric). Let (X, E) be a graph where X is the vertex set. The set of paths from x to y is:

$$P_{xy} = \{(x = x_1, x_2, \cdots, x_n = y) : (x_i, x_{i+1}) \in E\}$$

Define a **weight** function $\omega: E \to (0, \infty)$. Then:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y\\ \min\{\omega(x_1, x_2) + \dots + \omega(x_{n-1}, x_n) \text{ for } (x_1, \dots, x_n) \in P_{xy} \} & \text{otherwise} \end{cases}$$

This distance basically measures the shortest path from x to y, with weight on the edge.

Example (Trivial metric). Let X be a non-empty set, define:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Exercise: It is easy to verify that this is a distance function on X.

Example (*p*-adic metric on \mathbb{Q}). Let *p* be a fixed prime in \mathbb{N} . By unique factorization, every $q \in \mathbb{Q}$ can be uniquely written as:

$$q = p^n \frac{a}{b}$$

where $n \in \mathbb{Z}$ and $a \in \mathbb{Z}$ and $0 \neq b \in \mathbb{N}$ with gcd(a, b) = 1. Define the *p*-adic norm by:

$$|q|_p = \begin{cases} p^{-n} & \text{if } q \neq 0 \text{ and } n \text{ is from above} \\ 0 & \text{if } q = 0 \end{cases}$$

Exercise: For $q, r \in \mathbb{Q}$ we have:

$$|q+r|_p \le \max\{|q|_p, |r|_p\} \le |q|_p + |r|_p$$

Take p = 3 and q = 1/6 and r = 2/9, then:

$$|q|_{3} = \left| 3^{-1} \cdot \frac{1}{2} \right|_{3} = 3^{-(-1)} = 3$$

$$|r|_{3} = \left| 3^{-2} \cdot \frac{2}{1} \right|_{3} = 3^{-(-2)} = 9$$

$$|q + r|_{3} = \left| \frac{3+4}{18} \right|_{3} = \left| 3^{-2} \cdot \frac{7}{2} \right|_{3} = 9 = \max\{3, 9\}$$

Define the *p*-adic metric on \mathbb{Q} by:

$$d_p(q,r) = |q - r|_p$$

Exercise: This clearly defined a metric on \mathbb{Q} .

Example. Consider $\{0,1\}^{\mathbb{N}} = \{(b_n)_{n=1}^{\infty} : b_n \in \{0,1\}\}$. Take $b,c \in \mathbb{N}$ then define:

$$d(b,c) := \begin{cases} 0 & \text{if } b = c\\ \frac{1}{2^n} \text{ for } b = \min\{i \in \mathbb{N} : b_i \neq c_i\} & \text{otherwise} \end{cases}$$

Exercise: d is a metric on $\{0,1\}^{\mathbb{N}}$, we may call this product metric. Now we define:

$$\rho(b,c) = \sum_{n=1}^{\infty} \frac{d(b_n, c_n)}{2^n}$$
 (always converges)

Fact (Exercise): $d(b, c) \le \rho(b, c) \le 2d(b, c)$.

Definition. Let (X, d) be a metric space. If $\emptyset \neq Y \subseteq X$, we make Y a metric space by defining $d_Y : Y \times Y \to \mathbb{R}$ by $d_Y(x, y) = d(x, y)$ for $x, y \in Y$. [This is just the restriction $d|_{Y \times Y}$] This is called the **relativized metric** on Y.

Definition. Let X be a non-empty set and d_1, d_2 be metrics on X. We say d_1 is **equivalent** to d_2 if there exist c, C > 0 such that:

$$cd_1(x,y) \le d_2(x,y) \le Cd_1(x,y)$$

for all $x, y \in X$. Exercise: This is an equivalence relation on the set of metrics on X.

Example. Let $X = \mathbb{R}^n$ and $1 \le p < \infty$. Define a metric:

$$d_p(x,y) = ||x - y||_p = \left(\sum_{k=1}^n |x_i - y_i|^p\right)^{1/p}$$

and define $d_{\infty}(x,y) = \max\{|x_k - y_k| : k \in \{1, \dots, n\}\}$. Let $x \in \mathbb{R}^n$, say $||x||_{\infty} = x_j$ for some j. Then we note that:

$$||x||_{\infty} = |x_j| = (|x_j|^p)^{1/p} \le \left(\sum_{k=1}^n |x_k|^p\right)^{1/p} = ||x||_p \le \left(\sum_{k=1}^n |x_j|^p\right)^{1/p} = n^{1/p} ||x||_{\infty}$$

To summarize we have:

$$||x||_{\infty} \le ||x||_p \le n^{1/p} ||x||_{\infty}$$

Hence $\|\cdot\|_{\infty}$ and $\|\cdot\|_p$ are equivalent norms for all $1 \leq p < \infty$. By equivalence, $\|\cdot\|_p$ are all equivalent norms on \mathbb{R}^n for $1 \leq p \leq \infty$.

- Lecture 3, 2025/01/10 -

1.3 Topology of Metric Spaces

Definition. Let (X, d) be a metric space. Take $x \in X$ and r > 0. Define an **open ball** centered at x with radius r to be:

$$B_r(x) := b_r(x) := B(x,r) := \{ y \in X : d(x,y) < r \}$$

Similarly we define a **closed ball** as:

$$\overline{B}_r(x) := \overline{b}_r(x) := \overline{B}(x,r) := \{ y \in X : d(x,y) \le r \}$$

Definition. Let (X, d) be a metric space. Let $N \subseteq X$ with some $x \in X$. We say N is a **neighborhood** of x if there exists r > 0 such that $B_r(x) \subseteq N$.

Definition. Let (X, d) be a metric space. We say $N \subseteq X$ is **open** if N is a neighborhood of x for all $x \in N$. We say N is **closed** if $X \setminus N$ is open.

Example. Let $X = \mathbb{R}$ with usual Euclidean metric. Then (a, b) is open for all a < b in \mathbb{R} . The empty set \emptyset and \mathbb{R} are open.

Remark. In general, in a metric space (X, d), the set X is trivially open and the empty set \emptyset is vacuously open. Note that $X \setminus X = \emptyset$ and $X \setminus \emptyset = X$. Hence X, \emptyset are both open and closed.

Example. Let (X, d) be a metric space where d is the discrete metric. Every subset $N \subseteq X$ is open! Why? Take r = 1/2 and $x \in N$, then $B_{1/2}(x) = \{x\} \subseteq N$. Similarly every subset is closed.

Question: Consider the metric space (\mathbb{Q}, d_3) , where d_3 is the 3-adic metric. What do the open sets look like?

Theorem 1.2 (Union of Open sets). Let (X, d) be a metric space. Let $\{X_i\}_{i \in I}$ be a collection of open sets, then $\bigcup_{i \in I} X_i$ is an open set.

Proof. Let $x \in \bigcup_{i \in I} X_i$, then $x \in X_{i_0}$ for some $i_0 \in I$. Since X_{i_0} is open, there is r > 0 such that $B_r(x) \subseteq X_{i_0}$. Hence:

$$B_r(x) \subseteq X_{i_0} \subseteq \bigcup_{i \in I} X_i$$

It follows that $\bigcup_{i \in I} X_i$ is open, as desired.

Corollary 1.3 (Intersection of Closed sets). Let (X, d) be a metric space and $\{X_i\}_{i \in I}$ a collection of closed sets. Then $\bigcap_{i \in I} X_i$ is closed.

Proof. Take complement using De Morgan's Law and apply the above theorem.

Question: If $\{X_i\}_{i\in I}$ is a collection of open sets, want can we say about $\bigcap_{i\in I} X_i$?

- (i). If $|I| = n < \infty$, then this intersection is open. Consider $\{X_1, \dots, X_n\}$. Take $x \in \bigcap_{i=1}^n X_i$, then $x \in X_i$ for all i, so there is $r_i > 0$ such that $B(x, r_i) \subseteq X_i$ for all i. Take $r = \min\{r_1, \dots, r_n\}$, then $B(x, r) \subseteq \bigcap_{i=1}^n X_i$, hence open.
- (ii). If $|I| > |\mathbb{N}|$, this may fail. For example, take $X_n = (\frac{-1}{n}, \frac{1}{n})$. Then $\bigcap_{n=1}^{\infty} X_n = \{0\}$, not open.

Proposition 1.4. Finite intersection of open sets is open and finite union of closed sets is closed.

Definition. Let (X, d) be a metric sapce and $(x_n)_{n=1}^{\infty}$ be a sequence in X. Let $x \in X$. We say the sequence $(x_n)_{n=1}^{\infty}$ converges to x if $\lim_{n\to\infty} d(x, x_n) = 0$. Equivalently, for all $\epsilon > 0$ there is $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$:

$$n \ge N \implies d(x, x_n) < \epsilon$$

In this case we can write $\lim_{n\to\infty} x_n = x$.

Example. Let $X = \mathbb{Q}$ with Euclidean metric. Let $(x_n)_{n=1}^{\infty}$ be $x_n = 1/n$. This converges to 0.

Example. Let $X = \mathbb{Q}$, consider the sequence defined by:

 $x_n = \text{truncation of } \pi \text{ to the } n\text{-th decimal place}$

For example $x_1 = 3$, $x_2 = 3.1$, $x_3 = 3.14$ and so on. This sequence "converges" to π , but $\pi \notin \mathbb{Q}$ so this sequence does not converge in \mathbb{Q} ! It converges in \mathbb{R} .

Example. Let (X, d) with the discrete metric. A sequence (a_n) is convergent if and only if it is eventually constant. That is, there is $N \in \mathbb{N}$ such that $x_n = X_N$ for all $n \geq N$. In this case the limit is just $\lim_{n \to \infty} x_n = X_N$.

Example. Consider (\mathbb{Q}, d_3) , the 3-adic metric. Consider the two sequences:

$$(x_n)_{n=1}^{\infty} = \left(\frac{1}{n}\right)_{n=1}^{\infty} \text{ and } (y_n)_{n=1}^{\infty} \text{ by } y_n = \begin{cases} 2 & \text{if } n=1\\ 2+3y_{n-1} & \text{if } n \ge 2 \end{cases}$$

For the first sequence (x_n) , it has a subsequence $(3^{-k})_{k=1}^{\infty}$ and $d(0,3^{-k})=3^k\to\infty$. Hence (x_n) does not converge (We defer the actual proof of this when we see Cauchy sequence). For the second sequence, we see that:

$$y_n = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots + 2 \cdot 3^{n-1} = 3^n - 1$$

Hence $d(-1, y_n) = ||-3^n||_3 = \frac{1}{3^n} \to 0$ so that $\lim_{n \to \infty} y_n = -1$.

— Lecture 4, 2025/01/13 -

Definition. Let (X, d) be a metric space and $A \subseteq X$. The **closure** of A in X is the smallest closed set in X that contains A. We denote the closure of A by cl(A) or \overline{A} . In other word, \overline{A} is the intersection of all closed sets that contain A.

Example. The closure of a closed set is itself.

Example. Consider the metric space (\mathbb{R}, d) with the usual Euclidean metric. Then $\overline{\mathbb{Q}} = \mathbb{R}$.

Example. Consider \mathbb{R} again with discrete metric, then $\overline{\mathbb{Q}} = \mathbb{Q}$. (because every set is closed in this topology).

Example. Consider (\mathbb{Q}, d) with the 3-adic metric. We can show that \mathbb{Z} is not closed. Define a sequence $(x_n)_{n=1}^{\infty}$ by $x_n = \sum_{k=0}^{n} 9^k$. This sequence has a limit in \mathbb{Q} but not in \mathbb{Z} . How do we "guess" the limit of this sequence? Notice that:

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \text{ for all } ||x|| < 1$$

In this case $||9||_3 = 1/9 < 1$, hence plugging in 9 shows the limit of (x_n) is $-1/8 \notin \mathbb{Z}$. [This is NOT a rigorous proof for now! This just allows us to guess the limit and we can then use the ϵ thing to prove the limit]. Hence \mathbb{Z} does not contain a limit point, which means it is not closed (by the theorem below).

Theorem 1.5. A closed set contains all of its limit points. That is, if $A \subseteq X$ is closed and $(x_n)_{n=1}^{\infty}$ is a sequence in A, then whenever $\lim_{n\to\infty} x_n = x \in X$ exists, we must have $x \in A$.

1.4 Continuous Functions

Definition. Let (X, d) and (Y, ρ) be metric spaces. A function $f: X \to Y$ is **continuous at** $x_0 \in X$ if for all $\epsilon > 0$ there is $\delta > 0$ such that for all $x \in X$ with $d(x, x_0) < \delta$, then $\rho(f(x), f(x_0)) < \epsilon$. [Equivalently we have $f(B_{\delta}(x_0)) \subseteq B_{\epsilon}(\epsilon)$.]

Example. Let (X, d) be a metric space with discrete metric. Let $f: X \to Y$ with (Y, ρ) a metric space. Then f is continuous at every $x_0 \in X$. Why? For any $\epsilon > 0$, pick $\delta = 1/2$. Then $d(x, x_0) < 1/2$ implies $d(x, x_0) = 0$ and $x = x_0$. Hence $\rho(f(x), f(x_0)) = 0 < \epsilon$.

Definition. Let (X, d) and (Y, ρ) be metric spaces.

- (i). We say $f: X \to Y$ is **continuous on** X if it is continuous at all $x_0 \in X$.
- (ii). We say $f: X \to Y$ is **uniformly continuous on** X if for all $\epsilon > 0$, there is $\delta > 0$ such that for all $x, y \in X$:

$$d(x,y) < \delta \implies \rho(f(x),f(y)) < \epsilon$$

That is, the choice of $\delta > 0$ is independent of $x, y \in X$. The usual continuity means for any $x, y \in X$ we can choose a $\delta > 0$ for them, but in this case there is one choice of $\delta > 0$ that works for all $x, y \in X$.

Note. In the Example above, we see that f is in fact uniformly continuous.

Example. Let $f:(0,1)\to(0,\infty)$ with Euclidean metric given by f(x)=1/x. This function is continuous but NOT uniformly continuous. To see it is continuous, fix $x_0\in(0,1)$ and let $\epsilon>0$. We then pick $\delta>0$ to be:

$$\delta = \min\left\{\frac{x_0}{2}, \frac{\epsilon x_0^2}{2}\right\}$$

Then, if $|x-x_0| < \delta$, we have:

$$\left| \frac{1}{x} - \frac{1}{x_0} \right| = \left| \frac{x_0 - x}{x x_0} \right| < \frac{\epsilon \cdot x_0^2 / 2}{(x_0 / 2) x_0} = \epsilon$$

It follows that f is continuous on (0,1). To see it is NOT uniformly continuous, assume it is. Take $\epsilon = 1$, then there is $\delta > 0$ such that $|x - y| < \delta$ implies |f(x) - f(y)| < 1. However, pick $N \in \mathbb{N}$ large enough so that $1/N - 1/(N+1) < \delta$, then:

$$1 > \left| f\left(\frac{1}{N}\right) - f\left(\frac{1}{N+1}\right) \right| = \left| \frac{1}{1/N} - \frac{1}{1/(N+1)} \right| = 1$$

This is a contradiction, hence f is NOT uniformly continuous.

Definition. Let X, Y be metric spaces. We say $f: X \to Y$ is **sequentially continuous at** $x_0 \in X$ if for all sequence $(x_n)_{n=1}^{\infty}$ in X we have:

$$\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = f(x_0)$$

We say f is sequentially continuous if it is sequentially continuous at every $x_0 \in X$.

Theorem 1.6. Let (X,d) and (Y,ρ) be metric spaces and $f:X\to Y$. The followings are equivalent:

- (i). f is continuous.
- (ii). For all open sets $V \subseteq Y$ we have $f^{-1}(V)$ is open in X.
- (iii). f is sequentially continuous.

Proof. We will prove (i) \Longrightarrow (ii) \Longrightarrow (i) and (i) \Longrightarrow (iii) \Longrightarrow (i).

(i) \Longrightarrow (ii). Assume f is continuous. Let $V \subseteq Y$ be open. We want to show $f^{-1}(V)$ is open in X. If $f^{-1}(V) = \emptyset$, done. Otherwise pick $x_0 \in f^{-1}(V)$, then $f(x_0) \in V$. Then is $\epsilon > 0$ such that $B_{\epsilon}(f(x_0)) \subseteq V$. Since f is continuous at x_0 , there is $\delta > 0$ such that $f(B_{\delta}(x_0)) \subseteq B_{\epsilon}(f(x_0)) \subseteq V$. Hence $B_{\delta}(x_0) \subseteq f^{-1}(V)$ and therefore $f^{-1}(V)$ is open in X.

(i) \Longrightarrow (iii). Assume f is continuous at x_0 and $(x_n)_{n=1}^{\infty}$ is a sequence with $x_n \to x_0$. Pick $\epsilon > 0$, since f is continuous there is $\delta > 0$ such that $d(x, x_0) < \delta$ implies $\rho(f(x), f(x_0)) < \epsilon$. Now pick $N \in \mathbb{N}$ so that $d(x_n, x_0) < \delta$ for $n \ge N$. Hence if $n \ge N$ we have $\rho(f(x_n), f(x_0)) < \epsilon$.

— Lecture 5, 2025/01/15 —

- (ii) \Longrightarrow (i). Fix $x_0 \in X$ and let $\epsilon > 0$. Consider the open set $V = B_{\epsilon}(f(x_0))$. Since we are assuming (ii), we know $f^{-1}(V)$ is open and $x_0 \in f^{-1}(V)$. Therefore there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(V)$. Therefore we have $f(B_{\delta}(x_0)) \subseteq B_{\epsilon}(f(x_0))$, which proved f is continuous at x_0 .
- (iii) \Longrightarrow (i). We will prove this by contrapositive. Assume f is not continuous. This means there is $x_0 \in X$ and $\epsilon > 0$ such that for all $\delta > 0$, there are $x \in X$ with $d(x, x_0) < \delta$ but $\rho(f(x), f(x_0)) \ge \epsilon$. We are going to construct a sequence $(x_n)_{n=1}^{\infty} \subseteq X$ using this information that breaks the sequential

continuity. For $n \in \mathbb{N}$, we choose $x_n \in X$ such that $d(x_0, x_n) < 1/n$ but $\rho(f(x_0), f(x_n)) \ge \epsilon$. Then we clearly have $x_n \to x_0$ but $f(x_n)$ does NOT converge to $f(x_0)$ as they are always at least ϵ -away from each other.

Theorem 1.7. Let X, Y, Z be metric spaces. Let $f: X \to Y$ and $g: Y \to Z$ be continuous. Then $g \circ f: X \to Z$ is continuous.

Definition. Let (X, d) and (Y, ρ) be metric spaces. We can define a metric $d \times \rho$ on $X \times Y$ by:

$$(d \times \rho)((x_1, y_1), (x_2, y_2)) := d(x_1, x_2) + \rho(y_1, y_2)$$

It is easy to check that this defines a metric.

Theorem 1.8. Let X, Y, Z, W be metric spaces and $f: X \to Z$ and $g: Y \to W$ be continuous. Then $f \times g: X \times Y \to Z \times W$ by $(f \times g)(x, y) = (f(x), g(y))$ is continuous where $X \times Y$ and $Z \times W$ are equipped with the metric defined above.

Definition. Let $f: X \to Y$ where (X, d) and (Y, ρ) are metric spaces. We say f is an **isometry** if for all $x_1, x_2 \in X$ we have $d(x_1, x_2) = \rho(f(x_1), f(x_2))$.

Example. In \mathbb{R}^2 , any rotation, reflection, translation and combination of them are isometries.

Definition. Let (X, d) and (Y, ρ) be metric spaces. A map $f: X \to Y$ is called **Lipschitz** if there exists a constant C > 0 such that:

$$\rho(f(x_1), f(x_2)) < Cd(x_1, x_2)$$

for all $x_1, x_2 \in X$.

Definition. Let (X, d) and (Y, ρ) be metric spaces. A map $f: X \to Y$ is called **bi-Lipschitz** if there exist constants C, c > 0 such that:

$$cd(x_1, x_2) \le \rho(f(x_1), f(x_2)) \le Cd(x_1, x_2)$$

for all $x_1, x_2 \in X$.

Definition. Let (X, d) and (Y, ρ) be metric spaces. We say $f: X \to Y$ is a **homeomorphism** if f is a continuous bijection such that $f^{-1}: Y \to X$ is also continuous.

1.5 Finite dimensional normed vector spaces

Definition. Let V be a vector space. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on V are said be to **equivalent** if there are constants c, C > 0 such that:

$$c||v||_2 \le ||v||_1 \le C||v||_2$$

for all $v \in V$. It is clear that this is an equivalence relation.

Theorem 1.9. For $n \in \mathbb{N}$, all norms in \mathbb{R}^n are equivalent. The similar result holds for \mathbb{C}^n .

Proof. It suffices to show all norms $\|\cdot\|$ are equivalent to the 1-norm $\|\cdot\|_1$. Then since equivalence norm is an equivalence relation, all norms are equivalent. A basis for \mathbb{R}^n is $\{e_1, \dots, e_n\}$, the standard basis. Let $C = \max\{\|e_1\|, \dots, \|e_n\}$. Let $v = (v_1, \dots, v_n) \in \mathbb{R}^n$, then:

$$||v|| = ||v_1e_1 + \dots + v_ne_n||$$

 $\leq |v_1|||e_1|| + \dots + |v_n|||e_n||$ (\triangle -inequality)
 $\leq C(|v_1| + \dots + |v_n|)$
 $= C||v||_1$

This gives us one inequality. This also shows that $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ is Lipschitz, hence continuous (where \mathbb{R}^n is equipped with $\|\cdot\|_1$ norm). Define:

$$S = \{ v \in \mathbb{R}^n : ||v||_1 = 1 \}$$

Since $\|\cdot\|$ is continuous on $(\mathbb{R}^n, \|\cdot\|_1)$ we have that $\|\cdot\|: S \to \mathbb{R}$ obtains its maximum and minimum. Further, the minimum is nonzero. Define $c = \min_{v \in S} \|v\| > 0$. Note for all $0 \neq v \in \mathbb{R}^n$ we have that $v/\|v\|_1 \in S$. Hence:

$$\left\| \frac{v}{\|v\|_1} \right\| \ge c \implies \|v\| \ge c\|v\|_1$$

Hence $c||v||_1 \le ||v|| \le C||v||_1$, as desired.

1.6 Completeness

Definition. Let (X, d) be a metric space and $(x_n)_{n=1}^{\infty}$ be a sequence in X. We say $(x_n)_{n=1}^{\infty}$ is a **Cauchy sequence** if for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n, m \in \mathbb{N}$:

$$n, m \ge N \implies d(x_n, x_m) < \epsilon$$

Example. Let $(\frac{1}{n})_{n=1}^{\infty}$ be a sequence in \mathbb{Q} but with different metrics.

(i). If \mathbb{Q} is equipped with the Euclidean metric. This is clearly Cauchy. To see that, let $\epsilon > 0$ pick $N > 2/\epsilon$, then for $n, m \geq \mathbb{N}$ we have:

$$d\left(\frac{1}{n}, \frac{1}{m}\right) = \left|\frac{1}{n} - \frac{1}{m}\right| \le \left|\frac{1}{n}\right| + \left|\frac{1}{m}\right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

(ii). If \mathbb{Q} is equipped with the discrete metric, then d(1/n, 1/m) = 1 for all $n, m \in \mathbb{N}$. This means this sequence is not Cauchy. (If it is Cauchy, take $\epsilon = 1/2$ then contradiction)

(iii). If \mathbb{Q} is equipped with the 3-adic metric, then this is not a Cauchy sequence. Let $n=3^k$ and $m=3^\ell$ where $k\neq \ell$. Then we have:

$$d\left(\frac{1}{n}, \frac{1}{m}\right) = d\left(\frac{1}{3^k}, \frac{1}{3^\ell}\right) = 3^{\min\{k,\ell\}}$$

If we pick k, ℓ large enough, then the distance between them can be arbitrarily large. Hence this is not a Cauchy sequence.

Theorem 1.10. Let (X, d) be a metric space and let $(x_n)_{n=1}^{\infty}$ be a convergent sequence, then $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence.

Proof. Say $\lim_{n\to\infty} x_n = x^* \in X$. Let $\epsilon > 0$, pick $N \in \mathbb{N}$ such that for $n \in \mathbb{N}$:

$$n \ge N \implies d(x^*, x_n) < \frac{\epsilon}{2}$$

Now pick $n, m \in \mathbb{N}$ such that $n, m > \mathbb{N}$, we have:

$$d(x_n, x_m) \le d(x_n, x^*) + d(x_m, x^*) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence.

Example (The Converse is False). Every convergent sequence is Cauchy but not the other way around. There are cauchy sequences that do not converge.

- (i). Let $X = \mathbb{Q}$ with the Euclidean metric. Let $x_n =$ the truncation of π to the n-th decimal place. For example: $x_1 = 3$, $x_2 = 3.1$, $x_3 = 3.14$ and so on. This is a Cauchy sequence, but the limit does not exist (because its "limit" is π , which is not in \mathbb{Q}).
- (ii). Consider the sequence $(\frac{1}{n})_{n=2}^{\infty}$ with X=(0,1) with Euclidean metric. Then this is Cauchy but not convergent because $0 \notin X$.

Definition. We say a metric space (X, d) is **complete** if every Cauchy sequence in X converges.

Example (Complete Spaces).

- (i). The metric space (\mathbb{R}, d) is complete with Euclidean metric.
- (ii). Any X with the discrete metric space.

Definition. A complete normed vector space is called a Banach Space.

Theorem 1.11. Let (X, d) be a complete metric space. Let $Y \subseteq X$ be a subset. Then (Y, d) is a complete metric space if and only if Y is closed in X.

Proof. (\Leftarrow). Assume Y is closed in X. Let $(x_n)_{n=1}^{\infty} \subseteq Y$ be a cauchy sequence in Y. Hence it is also a cauchy sequence in X. Therefore $(x_n)_{n=1}^{\infty}$ converges to x^* in X since X is complete. However, Y is closed so it contains its limit point, which means $x^* \in Y$ and thus $(x_n)_{n=1}^{\infty}$ converges in Y. This proved that (Y, d) is a complete metric space.

 (\Rightarrow) . Assume (Y,d) is complete. To show Y is closed in X it suffices to show it contains all of its limit points. Let $(x_n)_{n=1}^{\infty}$ be a convergent sequence with limit $x^* \in X$. Since convergent sequences are cauchy, we know $(x_n)_{n=1}^{\infty}$ is cauchy. Since Y is complete, this cauchy sequence converges in Y! This means $x^* \in Y$ and hence Y is closed.

Theorem 1.12. Let $1 \leq p < \infty$. Then the space $(\ell_p, ||\cdot||_p)$ is complete.

Proof. An element in ℓ_p is already a sequence, so a sequence of elements in ℓ_p is annoying. We use the following notation.

$$x^{(n)} = \{x_1^{(n)}, x_2^{(n)}, \dots\} = \left(x_k^{(n)}\right)_{k=1}^{\infty}$$

where $x^{(n)} \in \ell_p$ is the *n*-th term in the sequence $(x^{(n)})_{n=1}^{\infty}$. Let $(x^{(n)})_{n=1}^{\infty}$ be a cauchy sequence in ℓ_p . Pick $\epsilon > 0$, hence there exists an $N \in \mathbb{N}$ such that for $n, m \in \mathbb{N}$:

$$n, m \ge N \implies d(x^{(n)}, x^{(m)}) = \left(\sum_{k=1}^{\infty} |x_k^{(n)} - x_k^{(m)}|^p\right)^{1/p} < \epsilon$$
 (1)

Our goal is to find a limit point $x = (x_k)_{k=1}^{\infty} \in \ell_p$ of the sequence $(x^{(n)})_{n=1}^{\infty}$ and prove it. Fix $k \in \mathbb{N}$, we claim that $(x_k^{(n)})_{n=1}^{\infty}$ is a cauchy sequence in $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Indeed:

$$|x_k^{(n)} - x_k^{(m)}| = \left(|x_k^{(n)} - x_k^{(m)}|^p\right)^{1/p} \le \left(\sum_{j=1}^{\infty} |x_j^{(n)} - x_j^{(m)}|^p\right)^{1/p}$$

We have seen that the RHS can be arbitrarily small by (1), hence $(x_k^{(n)})_{n=1}^{\infty}$ is cauchy in \mathbb{K} . Since \mathbb{K} is complete, this limit exists, we define $x_k = \lim_{n \to \infty} x_k^{(n)} \in \mathbb{K}$. We claim that:

$$\lim_{n \to \infty} x^{(n)} = x \in \ell_p$$

There are two things to prove: the limit is x and x lies in ℓ_p .

- Lecture 7, 2025/01/20

(i). Pick $\epsilon > 0$, there exists an N such that for all $n, m \geq N$ we have:

$$d(x^{(n)}, x^{(m)}) = \left(\sum_{k=1}^{\infty} |x_k^{(n)} - x_k^{(m)}|^p\right)^{1/p} < \epsilon$$

For any $J \in \mathbb{N}$ and for all $n, m \geq N$ we have:

$$\sum_{k=1}^{J} |x_k^{(n)} - x_k^{(m)}| \le \sum_{k=1}^{\infty} |x_k^{(n)} - x_k^{(m)}| < \epsilon^p$$

As this is true for all $n \geq M$, it is true as $m \to \infty$. This gives:

$$\lim_{m \to \infty} \sum_{k=1}^{J} |x_k^{(n)} - x_k^{(m)}|^p \le \epsilon^p \implies \sum_{k=1}^{J} |x_k^{(n)} - x_k|^p < \epsilon^p$$

because $x_k^{(m)} \to x_k$ as $m \to \infty$. This result is true for all $n \ge N$, independent of the choice of J. As this is true for all J, we can take the limit as $J \to \infty$. Hence:

$$\sum_{k=1}^{\infty} |x_k^{(n)} - x_k|^p \le \epsilon^p \tag{1}$$

It follows that $(x^{(n)} - x) \in \ell_p$ for all $n \in \mathbb{N}$, by definition. We also know $x^{(n)} \in \ell_p$, hence:

$$x = (x^{(n)} - x) + x^{(n)} \in \ell_p$$

as ℓ_p is a vector space. Inequality (1) says that for any $\epsilon > 0$ we can find $N \in \mathbb{N}$ such that $n \geq N$ implies:

$$||x^{(n)} - x||_p = \left(\sum_{k=1}^{\infty} |x_k^{(n)} - x_k|^p\right)^{1/p} \le \epsilon$$

This is exactly the definition of $x^{(n)} \to x$ in ℓ_p , as desired.

1.7 Completeness of \mathbb{R}

Definition. Let $S \subseteq \mathbb{R}$. We say S is **bounded above** if there exists an $M \in \mathbb{R}$ such that $s \leq M$ for all $s \in S$. Similarly S is **bounded below** if there is $N \in \mathbb{R}$ such that $s \geq N$ for all $s \in S$. A set is **bounded** if it is both bounded above and below.

Example. $\mathbb{Z} \subseteq \mathbb{R}$ is not bounded above or below. $(0,1) \subseteq \mathbb{R}$ is bounded.

Definition. Let $S \subseteq \mathbb{R}$ be bounded above. Then we say $M \in \mathbb{R}$ is the **least upper bound** if M is an upper bound for S and if $N \in \mathbb{R}$ is another upper bound for S we have $M \leq N$. We define the **greatest lower bound** similarly. We denote them by $\sup S$ and $\inf S$.

Theorem 1.13 (Least Upper Bound Property). Let $\emptyset \neq S \subseteq \mathbb{R}$ be bounded above, then S has a least upper bound.

Proof. Let $M \in \mathbb{Z}$ be an upper bound of S. Consider M-1. One of two things is true. Either M-1 is an upper bound or it is not. If M-1 is an upper bound, replace M by M-1 and repeat this argument. Eventually we will get $M \in \mathbb{Z}$ such that M is an upper bound but M-1 is NOT an upper bound (This process terminates because $S \neq \emptyset$). Divide [M-1, M] into 10 subintervals.

$$\left[M-1, M-1+\frac{1}{10}\right], \cdots, \left[M-1+\frac{9}{10}, M\right]$$

We can find some $k \in \{0, \dots, 9\}$ such that $M - 1 + \frac{k}{10}$ is not an upper bound and $M - 1 + \frac{k+1}{10}$ is an upper bound. We construct u^* as the decimal sequence which is an upper bound (We have to be careful if a ring end point is a least upper bound, as we get a decimal expansion of trailing 9's but this is fine). As desired.

Theorem 1.14 (MCT). Let $(x_n)_{n=1}^{\infty}$ be a bounded, non-decreasing sequence in \mathbb{R} . Then $(x_n)_{n=1}^{\infty}$ converges in \mathbb{R} .

Proof. Let $x^* = \sup\{x_n : n \in \mathbb{N}\}$, this exists because $(x_n)_{n \geq 1}$ is bounded. Let $\epsilon > 0$, as x^* is the least upper bound, there exists $N \in \mathbb{N}$ such that:

$$x^* - \epsilon < x_N \le x^*$$

Hence, for $n \geq N$ we have that $x_n \geq x_N$, which means:

$$x^* - \epsilon < x_N \le x_n \le x^* < x^* + \epsilon \implies |x^* - x_n| < \epsilon$$

which prvoed that $\lim_{n\to\infty} x_n = x^*$, as desired.

Theorem 1.15 (Bolzano-Weierstrass). Every bounded sequence $(x_n)_{n=1}^{\infty}$ in \mathbb{R} has a convergent subsequence (that converges in \mathbb{R}).

Proof. Just see MATH 147/247 notes, the proof idea is just bisection.

Lemma 1.16. Let $(x_n)_{n=1}^{\infty}$ be a cauchy sequence in \mathbb{R} . Then $(x_n)_{n=1}^{\infty}$ is bounded.

Proof. Pick $\epsilon = 1$, there is $N \in \mathbb{N}$ such that for $n, m \geq N$ we have $|x_n - x_m| < 1$. In particular $|x_n - x_N| < 1$ for all $n \geq N$. Let $M = \max\{|x_1|, \dots, |x_N| + 1\}$. Then $|x_n| \leq M$ for all $n \in \mathbb{N}$. \square

Theorem 1.17. $(\mathbb{R}, |\cdot|)$ is a complete normed space.

Proof. Let $(x_n)_{n=1}^{\infty}$ be a cauchy sequence in \mathbb{R} . By the above lemma, $(x_n)_{n=1}^{\infty}$ is bounded. By Bolzano-Weierstrass, $(x_n)_{n=1}^{\infty}$ has a convergent subsequence $(x_{n_k})_{k=1}^{\infty}$. Say $\lim_{k\to\infty} x_{n_k} = x^* \in \mathbb{R}$. We claim that $\lim_{n\to\infty} x_n = x^*$ as well. Indeed, let $\epsilon > 0$. There is $N_1 \in \mathbb{N}$ such that:

$$n, m \ge N \implies |x_n - x_m| < \frac{\epsilon}{2}$$

Find $k \in \mathbb{N}$ such that $n_k \geq N$ and $|x_{n_k} - x^*| < \epsilon/2$. Hence for $n \geq N$ we have:

$$|x_n - x^*| \le |x_n - x_{n_k}| + |x_{n_k} - x^*| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore \mathbb{R} is complete.

1.8 Limits of continuous functions

Definition. Let (X, d) and (Y, ρ) be metric spaces. Let $(f_n)_{n=1}^{\infty}$ be a sequence of function $X \to Y$. We say $(f_n)_{n=1}^{\infty}$ converges uniformly to $f^*: X \to Y$ if for all $\epsilon > 0$ there is $N \in \mathbb{N}$ such that for $n \in \mathbb{N}$ we have:

$$n \ge N \implies d^*(f_n, f^*) := \sup_{x \in X} \rho(f_n(x), f^*(x)) < \epsilon$$

Example. Let $X = [0, \frac{1}{2}]$ and $Y = \mathbb{R}$ with Euclidean metrics. Define:

$$f_n(x) = 1 + x + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$

This $(f_n)_{n=1}^{\infty}$ is a sequence of bounded continuous functions from $X \to Y$. We claim that it converges to $f^*(x) = \frac{1}{1-x}$. Indeed, for any $n \in \mathbb{N}$ we have:

$$d^*(f_n, f^*) = \sup_{x \in [0, \frac{1}{2}]} \left| \frac{1}{1 - x} - \frac{1 - x^{n+1}}{1 - x} \right| = \sup_{x \in [0, \frac{1}{2}]} \frac{x^{n+1}}{|1 - x|} \le \frac{(1/2)^{n+1}}{1/2} = \left(\frac{1}{2}\right)^n$$

where the denominator is at least 1/2 and the numerator is at most $(1/2)^{n+1}$. As $n \to \infty$ this tends to 0, which means $f_n \to f^*$ uniformly.

Theorem 1.18. Let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous functions that converges uniformly to f^* . Then f^* is continuous.

Proof. Let $x \in X$ and $\epsilon > 0$. Pick $N \in \mathbb{N}$ such that $d^*(f^*, f_N) < \epsilon/3$. Since f_N is continuous at x, we can pick $\delta > 0$ such that:

$$d(x,y) < \delta \implies \rho(f_N(x), f_N(y)) < \frac{\epsilon}{3}$$

Therefore if $y \in X$ and $d(x,y) < \delta$, we have:

$$\rho(f^*(x), f^*(y)) \le \rho(f^*(x), f_N(x)) + \rho(f_N(x), f_N(y)) + \rho(f_N(y), f^*(y))$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$

Therefore f^* is continuous at $x \in X$, as desired.

Definition. Let (X, d) be a metric space. A subset $A \subseteq X$ is **bounded** if:

$$diam(A) := \sup_{x,y \in A} d(x,y) < \infty$$

We say a function $f: X \to Y$ is bounded if $f(X) \subseteq Y$ is bounded.

Definition. Let (X, d) and (Y, ρ) be metric spaces. Define:

$$C^b(X,Y) = \{f : X \to Y \mid f \text{ is continuous and bounded}\}\$$

The metric on $C^b(X,Y)$ is the metric d^* defined by:

$$\rho^*(f,g) := \sup_{x \in X} \rho(f(x), g(x))$$

Then $(C^b(X,Y), \rho^*)$ is a metric space.

Theorem 1.19. Let (f_n) be a sequence of bounded functions $f_n \in \mathcal{C}^b(X, \mathbb{K})$ that converges uniformly to f^* , then f^* is also bounded.

Theorem 1.20. Let (X, d) and (Y, ρ) be metric spaces. The metric space $(\mathcal{C}^b(X, Y), \rho^*)$ is complete if and only if (Y, ρ) is complete!

Proof. See Assignment 2.

Theorem 1.21. Let (X, d) be a metric space. Then $\mathcal{C}^b(X, \mathbb{K})$ is complete.

Proof. Let $(f_n)_{n=1}^{\infty}$ be a cauchy sequence. Construct $f^*: X \to \mathbb{K}$ by:

$$f^*(x) := \lim_{n \to \infty} f_n(x)$$

Why is this well-defined? Note that for all fixed $x \in \mathbb{K}$, the sequence $(f_n(x))_{n=1}^{\infty}$ is a cauchy sequence in \mathbb{K} ! Since \mathbb{K} is complete, this sequence converges. We claim that $(f_n)_{n=1}^{\infty}$ converges uniformly to f^* . Let $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that:

$$n, m \ge N \implies d^*(f_n, f_m) = \sup_{x \in X} |f_n(x) - f_m(x)| < \frac{\epsilon}{2}$$

Let $n \ge N$ be arbitrary. Let $x \in X$ be arbitrary as well. Since $f_n(x) \to f^*(x)$, we can find $M \in \mathbb{N}$ with $M \ge N$ such that $|f_n(x) - f^*(x)| < \epsilon/2$. Then, for $n \ge N$:

$$|f_n(x) - f^*(x)| \le |f_n(x) - f_M(x)| + |f_M(x) - f^*(x)|$$

 $\le d^*(f_n, f_M) + |f_M(x) - f^*(x)|$
 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

Since $x \in X$ is chosen arbitrarily, we have:

$$d^*(f_n, f^*) = \sup_{x \in X} |f_n(x) - f^*(x)| \le \epsilon$$

Therefore $f_n \to f^*$ in the d^* metric (that is $f_n \to f^*$ uniformly in the usual sense). Hence f^* is continuous and bounded, so $f^* \in \mathcal{C}^b(X, \mathbb{K})$.

Theorem 1.22 (Weierstrass M-Test). Let $\zeta: X \to \mathbb{R}$ by $\zeta(a) = 0$ denote the zero function. Then we let $(f_n)_{n=1}^{\infty}$ be a sequence in $\mathcal{C}^b(X,\mathbb{R})$ such that there exists $M \in \mathbb{R}$ with:

$$\sum_{n=1}^{\infty} d^*(f_n, \zeta) \le M < \infty$$

Define $g_N(x) = \sum_{n=1}^N f_n(x)$. Then $(g_N)_{N=1}^{\infty}$ converges to $g^* \in \mathcal{C}^b(X)$ in the d^* metric.

Example. The series of function $f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{2^n}$ is well-defined and is continuous on \mathbb{R} .

2 More Metric Topology

2.1 Compactness

Definition. Let (X, d) be a metric space and $A \subseteq X$. We say $\{U_i\}_{i \in I}$ is an **open cover** of A if each U_i is open and $A \subseteq \bigcup_{i \in I} U_i$.

Definition. Let (X, d) be a metric space and $A \subseteq X$. We say A is **compact** if for every open cover $\{U_i\}_{i\in I}$ there is a finite subset $I_0 \subseteq I$ with $A \subseteq \bigcup_{i\in I_0} U_i$. This $\{U_i\}_{i\in I_0}$ is called a **finite subcover**.

Example. Let $A = \{x_1, \dots, x_n\}$ be a finite set, then A is compact. Why? Let $\{U_i\}$ be an open cover of A. For each $j \in \mathbb{N}$ there is $i_j \in I$ such that $a \in U_{i_j}$. Hence we have:

$$A \subseteq U_{i_1} \cup \cdots \cup U_{i_n}$$

This is a finite subcover! Hence A is compact.

Example. Let $A = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\} \subseteq \mathbb{R}$. We claim that A is compact. Let $\{U_i\}_{i \in I}$ be an open cover. There exists an open set U_0 such that $0 \in U_0$. Hence there is $N \in \mathbb{N}$ large enough such that $0 \in B_{\epsilon}(0) \subseteq U_0$, where $\epsilon = 1/N$. This means:

$$\left\{\frac{1}{n}: n \ge N+1\right\} \cup \{0\} \subseteq U_0$$

Then there are only finitely many points left, so we can use finitely many U_i to cover $\{\frac{1}{n} : n \geq N+1\}$. This gives an finite subcover of A.

Example. Let A, B be compact sets. Then $A \cup B$ is compact. Indeed, any open cover of $A \cup B$ gives an open cover for A, B. This gives a finite subcover for A, B, respectively. The union of these two finite subcovers gives a finite subcover of $A \cup B$.

Example. The set $A = \{\frac{1}{n} : n \in \mathbb{N}\}$ is not compact! Consider the open cover:

$$\left\{ \left(\frac{1}{n}, 1 + \frac{1}{n}\right) : n \in \mathbb{N} \right\}$$

This has no finite subcover. Indeed, suppose we have a finite subcollection of open sets indexed by n_1, \dots, n_r . WLOG we may assume $n_1 < \dots < n_r$. Then the union of these U_i is:

$$\left(\frac{1}{n_r}, 1 + \frac{1}{n_1}\right)$$

This clearly does not cover A.

Example. Let $A = \mathbb{R}$. Then A is not compact. The open cover $\{(-n, n) : n \in \mathbb{N}\}$ has no finite subcover. Similarly $A = \mathbb{Z}$ is not compact as well.

Proposition 2.1. Let (X, d) be a metric space. If $A \subseteq X$ is compact, then A is closed and bounded.

Proof. Assume A is not closed. There exists a subsequence $(a_n)_{n=1}^{\infty}$ in A with $a_n \to a^*$ and $a^* \notin A$. Consider the following open cover:

$$U_n = X \setminus \overline{B_{d(a_n,a^*)}(a^*)}$$

This cannot have a finite subcover, since a^* is a limit point of (a_n) . Therefore A is closed. Similarly suppose A is not bounded. Fix $a \in A$. For all $N \in \mathbb{N}$ such that there exists an $a_N \in A$ such that:

$$d(a_N, a) > N$$

Consider the open cover $\{B_N(a): N \in \mathbb{N}\}\$ of A. Given a finite subset $\{N_1 < \cdots < N_r\}$, the union of these is $B_{N_r}(a)$. However, for $N = N_r + 1$ there is $a_N \in A$ such that $d(a_N, a) > N$ so $a_N \notin B_{N_r}(a)$, but $a_N \in A$. Hence this open cover has no finite subcover! Hence A is bounded.

Definition. Let (X, d) be a metric space and $A \subseteq X$. We say A is **sequentially compact** if for every sequence $(a_n)_{n=1}^{\infty}$ of A, there is a convergent subsequence $(a_{n_k})_{k=1}^{\infty}$ with $a_{n_k} \to a^* \in A$.

Example. Let A be a finite set. This is sequentially compact. Why? For any infinite sequence of A, there exists $a \in A$ that appears infinitely many times in this sequence. Take this subsequence that only consists of a. This is a convergent subsequence.

Example. Let $A = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. This is sequentially compact. Any sequence in A either has a convergent subsequence that goes to 0 or the sequence only takes on finitely many values.

Definition. Let (X, d) be a metric space. Let $A \subseteq X$ be a subset. Then (A, d_A) is a metric space, where $d_A : A \times A \to \mathbb{R}$ is the restriction of d on A. This is called the **induced metric space**. A subset $U \subseteq A$ is called **relatively open** if there exists an open set $U' \subseteq X$ such that $U = U' \cap A$.

Remark. As a metric space, the open balls of (A, d_A) are of the form:

$$B_A(a,r) = \{x \in A : d_A(x,a) < r\} = \{x \in X \cap A : d(x,a) < r\} = B_X(a,r) \cap A$$

Therefore, an open set in (A, d_A) is of the form $U' \cap A$ for open sets U' in X.

Definition. A metric space (X, d) is **compact** if every open cover of X has a finite subcover. That is, for every open cover $\{U_i : i \in I\}$, there is a finite subset $I_0 \subseteq I$ such that:

$$X = \bigcup_{i \in I_0} U_i$$

Note that this is an equality, not a subset. This is because X is our whole space, it does not sit in any bigger space.

Remark. Note that there are two notions of compactness for a subset $A \subseteq X$.

- (i). A is compact as a subset of X. [This is the definition we saw above.]
- (ii). A is compact as a metric space. [Note that for an open cover of A, the open sets are open sets in A! These open sets are different from the open sets in X.]

In fact, these two notions concide. Suppose (ii) is true, we want to show (i) is true. Let $\{U_i : i \in I\}$ be an open cover of A, where U_i is an open set of X for all i. Then:

$$\{U_i \cap A : i \in I\}$$

is an open cover of the metric space (A, d_A) , where each $U_i \cap A$ is an open set in A. Since (A, d_A) is compact, there is a finite set $I_0 \subseteq I$ such that:

$$A = \bigcup_{i \in I_0} (U_i \cap A)$$

Then clearly we have $A \subseteq \bigcup_{i \in I_0} U_i$, an finite subcover of A (as a subset of X.)

Conversely suppose (i) is true. Let $\{U_i : i \in I\}$ be an open cover of (A, d_A) , then for each $i \in I$ there is an open set $U_i' \subseteq X$ of X such that $U_i = U_i' \cap A$. Hence $\{U_i' : i \in I\}$ is an open cover of $A \subseteq X$. Since A is a compact subset of X, there is a finite $I_0 \subseteq I$ with $A \subseteq \bigcup_{i \in I_0} U_i'$. By taking the intersection with A, we have:

$$A = \bigcup_{i \in I_0} (U_i' \cap A) = \bigcup_{i \in I_0} U_i$$

Therefore (A, d_A) is compact and (ii) is true.

Definition. Let (X, d) be a metric space. A collection $\mathcal{F} = \{F_{\lambda} : \lambda \in \Lambda\} \subseteq X$ is said to have the **finite intersection property (FIP)** if for every finite subset $\Lambda_0 \subseteq \Lambda$ we have $\bigcap_{\lambda \in \Lambda_0} F_{\lambda} \neq \emptyset$.

Example. Let $X = \mathbb{R}$. Consider the collection $\{\mathbb{R} \setminus \{a\} : a \in \mathbb{R}\}$. This clearly satisfies the FIP. However, the infinite intersection:

$$\bigcap_{a \in \mathbb{R}} (\mathbb{R} \setminus \{a\}) = \emptyset$$

is empty! As we will see, this actually tells us \mathbb{R} is not compact!

Definition. Let (X, d) be a metric space. A subset $A \subseteq X$ is called **cauchy** if every cauchy sequence in A converges to a point in A.

Definition. Let (X, d) be a metric space. We say $A \subseteq X$ is **totally bounded** if for all $\epsilon > 0$ there exists a finite set $F_{\epsilon} \subseteq X$ (called an ϵ -net) such that:

$$A \subseteq \bigcup_{f \in F_{\epsilon}} B_{\epsilon}(f)$$

Note that totally boundedness implies boundedness.

Remark. Note that if A is totally bounded, we may assume $F_{\epsilon} \subseteq A$ for all $\epsilon > 0$. Suppose for $\epsilon > 0$ we have an ϵ -net $F = \{x_1, \dots, x_n\} \subseteq X$ of A, so:

$$A \subseteq \bigcup_{i=1}^{n} B_{\epsilon/2}(x_i)$$

We may assume $B_{\epsilon}(x_i) \cap A \neq \emptyset$ for all i. (If the intersection is empty we can just remove it from the ϵ -net.) Hence we may chooise $y_i \in A \cap B_{\epsilon/2}(x_i)$ for all i. Note that:

$$A \subseteq \bigcup_{i=1}^{n} B_{\epsilon}(y_i)$$

by the triangle inequality. Indeed, for any $x \in A$ we can choose $i \in \{1, \dots, n\}$ such that $x \in B_{\epsilon/2}(x_i)$. Then we have that:

$$d(x, y_i) \le d(x, x_i) + d(x_i, y_i) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

This proved that $x \in B_{\epsilon}(y_i)$. Hence $\{y_1, \dots, y_n\} \subseteq A$ is an ϵ -net for A.

Recall in \mathbb{R}^n , a subset is compact if and only if it is closed and bounded (Heine-Borel). We will now see that for metric spaces, there are also some easier ways to characterize compactness, and the Heine-Borel theorem for \mathbb{R}^n is a special case of it.

Theorem 2.2 (Borel-Lebesgue). Let (X, d) be a metric space and $A \subseteq X$. Then the followings are equivalent:

- (i). A is compact (either as a subset or a metric space, these two notions are equivalent.)
- (ii). If $\mathcal{F} = \{F_{\lambda} : \lambda \in \Lambda\}$ is an collection of closed sets in (A, d_A) with FIP, then $\bigcap_{\lambda \in \Lambda} F_{\lambda} \neq \emptyset$.
- (iii). A is sequentially compact.
- (iv). A is complete and totally bounded.

Example. Consider $A = \mathbb{Q} \cap [0,1]$ and $B = \mathbb{Z}$ as induced metric spaces from (\mathbb{R}, d) . By the Borel-Lebesgue theorem, we can show that A, B are not compact in four different ways.

(i). For A, we define the open cover:

$$\left\{ \mathbb{R} \setminus \overline{B_{1/n}(1/\pi)} : n \in \mathbb{N} \right\}$$

This does not have a finite subcover. For B, the open cover $\{B_{1/2}(n) : n \in \mathbb{Z}\}$ does not have a finite subcover as well. Hence A, B are not compact by definition.

(ii). We need to find a collection of closed sets that FIP but the intersection is empty. Let:

$$\left\{A \cap \overline{B_{1/n}(1/\pi)} : n \in \mathbb{N}\right\} \subseteq A$$
$$\left\{[n, \infty) \cap B : n \in \mathbb{N}\right\} \subseteq B$$

These two have FIP but the intersection over all $n \in \mathbb{N}$ is empty.

- (iii). Let $(a_n)_{n=1}^{\infty}$ be the sequence in A such that a_n is the truncation of the decimal expansion of $1/\pi$ at the n-th place. Then $a_n \to 1/\pi$ in \mathbb{R} , which means any convergent subsequence of (a_n) converges to $1/\pi \notin A$. For B, the sequence $(b_n)_{n=1}^{\infty}$ by $b_n = n$ is a sequence in B that does not have a convergent subsequence.
- (iv). Let $(a_n)_{n=1}^{\infty}$ be the same sequence in (iii), this is cauchy but does not converge in A. For B, consider $\epsilon = 1/2$. Then $B = \mathbb{Z}$ does not have a ϵ -net. Therefore A is not complete and B is not totally bounded.

Proof of Theorem 2.2. (i) \Longrightarrow (ii). Assume (A, d_A) is a compact metric space. Let $\{F_{\lambda} : \lambda \in \Lambda\}$ be a collection of closed sets in A satisfying FIP. Assume for a contradiction that $\bigcap_{\lambda \in \Lambda} F_{\lambda} = \emptyset$. Consider the following collection of open sets in A:

$$\{U_{\lambda} := A \setminus F_{\lambda} : \lambda \in \Lambda\}$$

Note that this is an open cover for A. Since A is compact, there exists a finite subset $\Lambda_0 \subseteq \Lambda$ such that $\bigcup_{\lambda \in \Lambda_0} U_{\lambda} = A$. However, this implies that:

$$\bigcap_{\lambda \in \Lambda_0} F_{\lambda} = A \setminus \bigcup_{\lambda \in \Lambda_0} U_{\lambda} = A \setminus A = \emptyset$$

Since Λ_0 is finite, this contradicts to our assumption that $\{F_{\lambda} : \lambda \in \Lambda\}$ has FIP!

(ii) \Longrightarrow (iii). Assume (ii) is true. We want to show A is sequentially compact. Let $(a_n)_{n=1}^{\infty}$ be a sequence in A. For each $k \geq 1$ we define $S_k = \{a_n : n \geq k\}$ and define the closed set:

$$F_k = \overline{S_k} = \overline{\{a_n : n \ge k\}} \subseteq A$$

to be the closure of a tail of $(a_n)_{n=1}^{\infty}$. Note that $F_{k+1} \subseteq F_k$ for all $k \ge 1$. Define $\mathcal{F} = \{F_k : k \ge 1\}$. Then \mathcal{F} is a collection of closed sets in A that has FIP. It satisfies FIP because for a finite set $\{k_1 < \cdots < k_r\}$ we have:

$$F_{k_1} \cap \cdots \cap F_{k_r} = F_{k_1} \neq \emptyset$$

By our assumption we have $\bigcap_{k=1}^{\infty} F_k \neq \emptyset$. Let's pick $a^* \in \bigcap_{k=1}^{\infty} F_k$. We claim that we can find a subsequence of (a_n) that converges to a^* . First we note that:

$$B_r(a^*) \cap S_k \neq \emptyset$$

for all r > 0 and $k \ge 1$. This is because each $a^* \in F_k$ is closed so a^* is a limit point for every S_k . In other word, for any r > 0 and $k \ge 1$ we can find some a_i such that $d(a_i, a^*) < r$ and $i \ge k$. For r = 1 we can find $n_1 \ge 1$ with $d(a_{n_1}, a^*) < 1$. Inductively suppose we have defined n_1, \dots, n_r , we can find $n_{r+1} > n_r$ such that $d(a_{n_r}, a^*) < 1/(r+1)$. Hence $(a_{n_r})_{r=1}^{\infty}$ is a subsequence that converges to $a^* \in A$. Therefore (A, d_A) is sequentially compact.

(iii) \Longrightarrow (iv). Assume (A, d_A) is sequentially compact. We first show that A is complete (as a subset of X.) Let $(a_n)_{n=1}^{\infty}$ be a cauchy sequence in A. There exist a convergent subsequence $(a_{n_k})_{k=1}^{\infty}$ that converges to $a^* \in A$. Since $(a_n)_{n=1}^{\infty}$ is cauchy, we must have $a_n \to a^*$ as well. Hence A is complete. Now let us show that A is totally bounded. Let $\epsilon > 0$ be arbitrary. Suppose it is not, then there is $\epsilon > 0$ such that there does not exist a ϵ -net for A. First note that in the case, A must be infinite. (Any finite set is clearly totally bounded.) Let $a_1 \in A$ be arbitrary. Hence $\{a_1\}$ is not an ϵ -net. This means there exists $a_2 \in A$ such that $d(a_1, a_2) \geq \epsilon$. Now, inductively suppose we have found a_1, \dots, a_r for $r \geq 1$. Then $\{a_1, \dots, a_r\}$ is not an ϵ -net. We can then find $a_{r+1} \in A$ such that:

$$d(a_{r+1}, a_i) \ge \epsilon$$
 for all $i \in \{1, \dots, r\}$

This gives us a sequence $(a_n)_{n=1}^{\infty}$ in A that has no convergent subsequence! (since for all n, m we have $d(a_n, a_m) \ge \epsilon$.) This is a contradiction, so A is totally bounded.

(iv) \Longrightarrow (i). Assume (iv) is true, we want to show A is compact. Suppose for a contradiction that A is not compact as a metric space. Let $\mathcal{U} = \{U_i : i \in I\}$ be an open cover of A that does not have a finite subcover (in this case $U_i \subseteq X$ is open for all i). Since A is totally bounded, for all $n \ge 1$ there exists a $\frac{1}{n}$ -net in A:

$$F_n = \{x_{n,1}, \cdots, x_{n,m_n}\}$$

such that:

$$A = \bigcup_{f \in F_n} B_{1/n}(f) = \bigcup_{f \in F_n} \overline{B_{1/n}(f)}$$

Let n=1. Note that if all $\overline{B_1(f)}$ can be covered by finitely many U_i 's, then A can be covered by finitely many U_i 's, which is impossible. Hence there is $i_1 \in \{1, \dots, m_n\}$ such that $\overline{B_1(x_{i_1})}$ does not have a finite subcover of \mathcal{U} . Let $y_1 = x_{i_1}$. Inductively suppose we have chosen y_1, \dots, y_k so that:

$$X_k := \bigcap_{i=1}^k \overline{B_{1/i}(y_i)}$$

has no finite subcover. Consider the sets:

$$X_{k,i} = X_k \cap \overline{B_{1/(k+1)}(x_{k+1,i})}$$
 for $1 \le i \le m_{n+1}$

Suppose for a contradiction that each of them has a finite subcover. However:

$$\bigcup_{i=1}^{m_{n+1}} X_{n,i} = \bigcup_{i=1}^{m_{n+1}} X_k \cap \overline{B_{1/(k+1)}(x_{k+1,i})} = X_k \cap \bigcup_{i=1}^{m_{n+1}} \overline{B_{1/(k+1)}(x_{k+1,i})} = X_k \cap A = X_k$$

This means X_k has a finite subcover, which is impossible! Hence there is i_{k+1} such that $\overline{B_{1/(k+1)}(x_{k+1,i_{k+1}})}$ does not have a finite subcover. Let $y_{k+1} = x_{k+1,i_{k+1}}$.

Note that $(y_n)_{n=1}^{\infty}$ is cauchy in A. Indeed, let $\epsilon > 0$ we choose $N > 2/\epsilon$. For all $n \ge m \ge N$ we have:

$$X_n \subseteq \overline{B_{1/m}(y_m)} \cap \overline{B_{1/n}(y_n)} \neq \emptyset$$

and X_n is non-empty set. We can pick $x \in X_n$. Then:

$$d(y_n, y_m) \le d(y_n, x) + d(y_m, x) \le \frac{1}{n} + \frac{1}{m} \le \frac{2}{N} < \epsilon$$

Since A is complete, $y_n \to y^* \in A$ for some $y^* \in A$. For any $m \in \mathbb{N}$ we have:

$$d(y_m, y^*) = \lim_{n \to \infty} d(y_m, y_n) \le \lim_{n \to \infty} \left(\frac{1}{m} + \frac{1}{n}\right) = \frac{1}{m}$$

Since \mathcal{U} is a cover of A, there is $i_0 \in I$ such that $y^* \in U_{i_0}$. Since U_{i_0} is open, then is r > 0 such that $B_r(y^*) \subseteq U_{i_0}$. Choose m > 2/r, then for any $x \in X_m \subseteq \overline{B_{1/m}(y_m)}$ we have:

$$d(x, y^*) \le d(x, y_m) + d(y_m, y^*) \le \frac{2}{m} < r$$

Hence $X_m \subseteq U_{i_0}$. This means X_m does have a finite subcover, contradicting our construction! Therefore A is compact.

Remark. Totally bounded is not same as bounded. There exist sets that are closed, bounded but not compact. Consider $X = \{0,1\}^{\mathbb{N}}$ with ℓ^{∞} norm. It is clearly bounded since $||x||_{\infty} \leq 1$ for all $x \in X$. However, we claim that it is not totally bounded. Suppose it has an $\frac{1}{2}$ -net:

$$F = \{x_1, \cdots, x_n\}$$

Then $B_{1/2}(x_i) = \{x_i\}$ because $||x||_{\infty} \in \{0,1\}$ for any $x \in X$. Hence:

$$\bigcup_{i=1}^{n} B_{1/2}(x_i) = \{x_1, \dots, x_n\} \neq \{0, 1\}^{\mathbb{N}}$$

Therefore this is not a $\frac{1}{2}$ -net, contradiction. Hence $(X, \|\cdot\|_{\infty})$ is bounded but NOT totally bounded! Corollary 2.3 (Heine-Borel). A subset of \mathbb{R}^n is compact if and only if it is closed and bounded. **Proof.** Since \mathbb{R}^n is compact, A is closed \iff it is complete. Moreover, we claim that in \mathbb{R}^n , bounded implies totally bounded. Let $\epsilon \in \mathbb{N}$, we claim that there is also an ϵ -net of a bounded set A. Since A is bounded, we know $A \subseteq [-r,r]^n$ for some r > 0. We can cover $[-r,r]^n$ with finitely many boxes of side length $\frac{\epsilon}{2}$. Any such box can be covered by an ϵ -ball. Hence we can use finitely many ϵ -balls to cover A. Therefore A is totally bounded. Hence A is bounded \iff it is totally bounded. The result follows from (iv) of Borel-Lebesgue.

2.2 Countable and Uncountable Sets

Definition. A set X is **countable** if there is a injection $f: X \to \mathbb{N}$. A set is **denumerable** if there is a bijection $f: X \to \mathbb{N}$. We say a set is **uncountable** if it is not countable.

Example. The integers \mathbb{Z} is countable because $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \cdots\}$.

Example. The rationals $\mathbb{Q} \cap [0,1]$ is also countable because:

$$\mathbb{Q} = \left\{ \frac{0}{1}, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \cdots \right\}$$

Informally: Write $\frac{p}{q} \in \mathbb{Q} \cap [0,1]$ with q in increasing order and $p \in \{1, \dots, q\}$ such that $\gcd(p,q) = 1$. We require coprimeness so that there is no element appearing twice in the list.

Example. The set $\{0,1\}^{\mathbb{N}}$ is uncountable. Suppose for a contradiction that it is countable. Then:

$$\{0,1\}^{\mathbb{N}} = \{(x_{1,k})_{k=1}^{\infty}, (x_{2,k})_{k=1}^{\infty}, \cdots\}$$

Define a sequence $(x_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$ by:

$$x_n = \begin{cases} 0 & \text{if } x_{n,n} = 1\\ 1 & \text{if } x_{n,n} = 0 \end{cases}$$

Then $(x_n)_{n=1}^{\infty}$ is different from $(x_{n,k})_{k=1}^{\infty}$ at the *n*-th place for all $n \geq 1$. This is a new element in $\{0,1\}^{\mathbb{N}}$, contradiction! Hence $\{0,1\}^{\mathbb{N}}$ is uncountable. This method is called the **diagonal argument**: If we list out all the given $(x_{n,k})_{k=1}^{\infty}$ row by row, then our new element $(x_n)_{n=1}^{\infty}$ is constructed by changing the diagonal entries.

Example. Let A, B be sets and $f: A \to B$ be a bijection, then A is countable if and only if B is countable.

Example. Let $A \subseteq B$. If A is uncountable then so is B. If B is countable then so is A.

Example. We claim \mathbb{R} is uncountable. Let $X = \{0, 1, \dots, 9\}^{\mathbb{N}}$. By the same argument we can show that X is uncountable. Define $f: X \to \mathbb{R}$ by:

$$f((x_n)_{n=1}^{\infty}) = \sum_{k=1}^{\infty} \frac{x_k}{10^k}$$

Then $f: X \to f(X)$ is a bijection. Since $f(X) \subseteq \mathbb{R}$, we know \mathbb{R} is uncountable.

Definition. Let (X, d) be a metric space. We say $A \subseteq X$ is **dense** in X if $\overline{A} = X$.

Definition. We say a metric space (X, d) is **separable** if there is a countable subset $A \subseteq X$ such that A is dense in X.

Example. The reals $\mathbb R$ with the usual metric is separable because $\overline{\mathbb Q}=\mathbb R$ and $\mathbb Q$ is countable.

Example. Let (X, d) with the discrete metric. Then X is separable if and only if X is countable. This is because every subset is closed (equal to their own closure), so the only dense subset is X itself. Hence X is countable if and only if X is separable.

Proposition 2.4. Let (X,d) be a metric space. If (X,d) is totally bounded, then X is separable.

Proof. For each $n \in \mathbb{N}$ there is an $\frac{1}{n}$ -net of X, call it F_n . Define $F = \bigcup_{n=1}^{\infty} F_n$. Note that F is countable, being a countable union of finite sets. We claim that F is dense. Let $x \in X$ be and $\epsilon > 0$ be arbitrary. There is $N \geq 1$ such that $1/N < \epsilon$. Since F_N is an $\frac{1}{N}$ -net, there is $f \in F_N$ such that $d(f,x) < 1/N < \epsilon$. Since $f \in F$, we proved that F is dense in X.

2.3 Compactness and Continuity

Proposition 2.5. Let (X,d) and (Y,ρ) be metric spaces. If $f:X\to Y$ is continuous and X is compact, then f(X) is compact.

Proof. Let $\{U_i : i \in I\}$ be an open cover of f(X) in Y. Since f is continuous, each $f^{-1}(U_i)$ is open. Since $f^{-1}(Y) = X$, we know $\{f^{-1}(U_i) : i \in I\}$ is an open cover of X. Since X is compact, there is a finite subcover $\{i_1, \dots, i_n\}$. Hence:

$$f(X) \subseteq \bigcup_{k=1}^{n} U_{i_k}$$

Therefore f(X) is compact.

Proposition 2.6. Let (X,d) and (Y,ρ) be metric spaces. If $f:X\to Y$ is continuous and X is compact, then f is uniformly continuous.

Proof. Let $\epsilon > 0$. For each $x \in X$ we can find $\delta_x > 0$ such that for all $y \in X$:

$$d(y,x) < \delta_x \implies \rho(f(y),f(x)) < \frac{\epsilon}{2}$$
 (1)

Now note that $\{B_{\delta_x/2}(x): x \in X\}$ is an open cover of X. Since X is compact, we know:

$$X = B_{\delta_{x_1}/2}(x_1) \cup \cdots \cup B_{\delta_{x_n}/2}(x_n)$$

for some $x_1, \dots, x_n \in X$. Now define $\delta = \frac{1}{2} \min\{\delta_{x_1}, \dots, \delta_{x_n}\} > 0$. Let $x, y \in X$ be arbitray with $d(x, y) < \delta$. Say $y \in B_{\delta_{x_b}}(x_b)$ for some $x_b \in \{x_1, \dots, x_n\}$. However:

$$d(x, x_b) \le d(x, y) + d(y, x_b) < \delta + \frac{1}{2}\delta_{x_b} < \frac{1}{2}\delta_{x_b} + \frac{1}{2}\delta_{x_b} < \delta_{x_b}$$

Since $d(y, x_b) < \delta_{x_b}$ as well, by (1) we have:

$$\rho(f(x), f(y)) \le \rho(f(x), f(x_b)) + \rho(f(x_b), f(y)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence f is uniformly continuous.

2.4 Cantor Set

Construction 2.7 (Ver 1). Let $C_0 = [0,1]$. Recursively, C_{i+1} is constructed by removing the middle third from each intervals in C_i . First we see that:

$$C_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

$$C_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$

We see $\{C_n\}_{n=0}^{\infty}$ has the finite intersection property and they are all compact sets. Define:

$$C^* = \bigcap_{n=0}^{\infty} C_n$$

We call C^* the (middle-third) cantor set. Clearly $0, 1 \in C^*$. In fact any endpoint of any C_n is in C^* . For example $1/3, 1/9, 2/27 \in C^*$. We have C^* is compact (as it is closed and bounded in \mathbb{R}).

Construction 2.8 (Ver 2). Equivalently we can define:

$$C^* = \left\{ \sum_{n=1}^{\infty} \frac{a_n}{3^n} : a_n \in \{0, 2\} \right\}$$

It is the set of all real numbers that CAN be written in ternary expansion wiwthout using 1. [For example $0.1 \in C^*$ because it CAN be written as $0.222 \cdots$] This shows that C^* has an uncountable number of points.

Construction 2.9 (Ver 3). The cantor set C^* is the unique non-empty compact set satisfying:

$$C^* = f_1(C^*) \cup f_2(C^*)$$

where $f_1(x) = x/3$ and $f_2(x) = x/3 + 2/3$.

Theorem 2.10. Let (X, d) be a compact metric space. There is an continuous map $f: C^* \to X$ that is surjective.

Proof. The idea is to construct $s_n : C^* \to X$ such that (s_n) is cauchy and each s_n is continuous. As $n \to \infty$ we have $s_n(C^*)$ better approximate X [produce an ϵ -net for smaller ϵ .]

For n=1, construct a 1-net for X. That is, a finite set F_1 such that $X=\bigcup_{f\in F_1}B_1(f)$ [This exists since X is totally bounded.] We can assume wlog that $|F_1|=2^{k_1}$ for some k_1 . [If not power of 2, adding more points if necessary.] Now consider C_{k_1} , a union of 2^{k_1} intervals containing C^* For each $c\in C^*$, we know c is in some subinterval of C_{k_1} . We map each subinterval in C_{k_1} to a different $f\in F_1$. Let s_1 be this map. Then s_1 is continuous as it is locally constant.

For n=2, construct a 1/2-net for each of each $\overline{B}_1(f_i)$, where $\{f_i\}=F_1$ from the construction of s_1 . As before, we can assume that this set is a power of 2, and the same powers of 2. Say 2^{k_2} in size. For each subinterval I_i used to construct s_1 , subdivide it into 2^{k_2} subintervals. As before, s_2 is continuous. We further notice $d(s_1(c), s_2(c))$ is not huge. In fact $d(s_1(c), s_2(c)) \leq 1 + \frac{1}{2}$.

We continue in this fashion, we get that:

$$d(s_n(c), s_{n+1}(c)) \le \frac{1}{2^n}$$

We can make this arbitrarily small. Hence for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for $n, m \geq N$:

$$d^*(s_n, s_m) = \sup_{c \in C^*} d(s_n(c), s_m(c)) < \epsilon$$

Therefore (s_n) is a cauchy sequence. As C^* is compact and X is complete so $C^b(C^*, X) = C(C^*, X)$ is complete. Hence $s_n \to s^* \in C(C^*, X)$. We need to show $s^*(C^*) = X$, that is, s^* is onto. Take a point x in X. This point will be distance 1 from some point in F_1 . This gives us a subinterval in C^* . There exists a point in F_2 whose distance is 1/2 from x and 1 + 1/2 from f_1 . This gives a smaller subinterval. Repeating this process we get nested subintervals with non-trivial intersection with C^* . The infinite intersection is in C^* , and this intersection has $s^*(c^*) = x$, as required.

2.5 Compact sets in C(X)

Definition. Let (X, d) be a compact metric space, we denote:

$$C(X) := C(X, \mathbb{R}) = \{ f : X \to \mathbb{R} \mid f \text{ is continuous} \}$$

Here \mathbb{R} is a metric space with the usual metric. For $f \in \mathcal{C}(X)$ we define the **uniform norm** by:

$$||f||_{\infty} := \sup\{|f(x)| : x \in X\}$$

Since X is compact, by the extreme value theorem this supremum can be achieved. So we can equivalently define it as:

$$||f||_{\infty} = \max\{|f(x)| : x \in X\}$$

Note that $(\mathcal{C}(X), \|\cdot\|_{\infty})$ is a normed vector space. In fact, since \mathbb{R} is complete we knew that $\mathcal{C}(X)$ is also complete. Therefore $(\mathcal{C}(X), \|\cdot\|_{\infty})$ is a Banach space. Also note that $f_n \to f$ uniformly (as functions) is the same as $f_n \to f$ as sequences in the normed space $(\mathcal{C}(X), \|\cdot\|_{\infty})$.

Remark. By Borel-Lebesgue we know that:

$$K \subseteq \mathcal{C}(X)$$
 is compact $\iff K$ is complete and totally bounded $\iff K$ is closed and totally bounded

since closed subsets of a complete space are complete.

Example. Let $K = \{f_n(x) = x^n : n \in \mathbb{N}\} \subseteq \mathcal{C}([0,1])$. Note that every subsequence of (f_n) converges pointwise to the function $f : [0,1] \to \mathbb{R}$ defined by:

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

Since f is not continuous, the sequence (f_n) does not converge in $\mathcal{C}([0,1])$. Therefore K is not sequentially compact despite being closed and bounded.

Definition. Let (X, d) be complete. A subset $F \subseteq \mathcal{C}(X)$ is called **equicontinuous at** $x \in X$ if for all $\epsilon > 0$ there is $\delta > 0$ so that for all $y \in X$:

$$d(x,y) < \delta \implies |f(x) - f(y)| < \epsilon \text{ for all } f \in F$$

We know $F \subseteq \mathcal{C}(X)$ is **equicontinuous** if it is equicontinuous at every $x \in X$. We say a subset $F \subseteq \mathcal{C}(X)$ is **uniformly equicontinuous** if for all $\epsilon > 0$ there is $\delta > 0$ such that for all $x, y \in X$:

$$d(x,y) < \delta \implies |f(x) - f(y)| < \epsilon \text{ for all } f \in F$$

That is, the choice of $\delta > 0$ does not depend on $x \in X$.

Remark. Clearly uniformly equicontinuous \implies equicontinuous.

Lemma 2.11. Let (X, d) be compact. If $K \subseteq \mathcal{C}(X)$ is compact, then K is uniformly equicontinuous.

Proof. Let $\epsilon > 0$. Since K is compact, it is totally bounded and thus has a $\frac{\epsilon}{3}$ -net. Say it is $F = \{f_1, \dots, f_n\} \subseteq K$. Each f_i is continuous, thus uniformly continuous (since X is compact). For each i there is $\delta_i > 0$ such that for all $x, y \in X$:

$$d(x,y) < \delta_i \implies |f_i(x) - f_i(y)| < \frac{\epsilon}{3}$$

Let $\delta = \min\{b_1, \dots, b_n\}$. Now let $x, y \in X$ with $d(x, y) < \delta$ and let $f \in K$ be arbitrary. We can find i such that $||f - f_i|| < \epsilon/3$ (because F is an $\epsilon/3$ -net!) Therefore we have:

$$|f(x) - f(y)| \le |f(x) - f_i(x)| + |f_i(x) - f_i(y)| + |f_i(y) - f(y)|$$

$$\le ||f - f_i||_{\infty} + \frac{\epsilon}{3} + ||f - f_i||_{\infty}$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

Therefore K is uniformly equicontinuous.

Lemma 2.12. Let (X, d) be compact. Suppose $F \subseteq \mathcal{C}(X)$ is equicontinuous. Then F is uniformly equicontinuous.

Proof. Let $\epsilon > 0$. For each $x \in X$ there is $\delta_x > 0$ so that for all $y \in X$:

$$d(x,y) < \delta_x \implies |f(x) - f(y)| < \frac{\epsilon}{2}$$
 for all $f \in F$

Then the collection $\{B_{\delta_x/2}(x): x \in X\}$ is an open cover of X. Since X is compact, it has a finite subcover, indexed by $\{x_1, \dots, x_n\}$. Let $\delta = \min\{\delta_{x_1}/2, \dots, \delta_{x_n}/2\}$. Suppose $y_1, y_2 \in X$ and $d(y_1, y_2) < \delta$. Pick i so that $d(y_1, x_i) < \delta_{x_i}/2$. Then:

$$d(y_2, x_i) \le d(y_2, y_1) + d(y_1, x_i) < \delta + \frac{\delta_{x_i}}{2} \le \delta_{x_i}$$

Now we know $d(y_1, x_i) < \delta_{x_i}$ and $d(y_2, x_i) < \delta_{x_i}$. By the choice of δ_{x_i} , for all $f \in F$ we have:

$$|f(y_1) - f(y_2)| \le |f(y_1) - f(x_i)| + |f(y_2) - f(x_i)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore F is uniformly equicontinuous.

Theorem 2.13 (Arzela-Ascoli). Let (X,d) be a compact metric space. A subset $K \subseteq \mathcal{C}(X)$ is compact if and only if K is closed, bounded and equicontinuous.

Proof. (\Rightarrow). If K is compact then it is closed and bounded by Proposition 2.1. Also we know that K is equicontinuous by the lemma above.

(\Leftarrow). Suppose K is closed, bounded and equicontinuous. Note that $\mathcal{C}(X)$ is complete and K is closed, so K is complete. It remains to show K is totally bounded. Let $\epsilon > 0$. Since K is equicontinuous, it is uniformly equicontinuous by the lemma above. There is $\delta > 0$ such that for all $f \in K$ and $x, y \in X$ we have:

$$d(x,y) < \delta \implies |f(x) - f(y)| < \frac{\epsilon}{4}$$
 (*)

Since X is compact, there is a δ -net:

$$F_X = \{x_1, \dots, x_n\} \subseteq X \text{ and } X \subseteq \bigcup_{i=1}^n B_{\delta}(x_i)$$
 (†)

Define $T: K \to (\mathbb{R}^n, \|\cdot\|_{\infty})$ by:

$$T(f) = (f(x_1), \cdots, f(x_n))$$

Note that $||T(f)||_{\infty} = \max\{|f(x_i)| : 1 \le i \le n\} \le ||f||_{\infty}$. [Here is a bit of abusing of notation. The two $||\cdot||$ -norm are on two different spaces.] This implies that T(K) is bounded in \mathbb{R}^n since K is bounded in C(X). This means T(K) is totally bounded, thus $\overline{T(K)}$ is compact in \mathbb{R}^n . This means that there exists a $\epsilon/4$ -net of T(K):

$$F_T = \{T(f_1), \cdots, T(f_m)\} \subseteq T(K) \text{ and } T(K) \subseteq \bigcup_{i=1}^m B_{\epsilon/4}(f_i)$$
 (††)

Here each $f_i \in K$. We claim that $F_K = \{f_1, \dots, f_m\}$ is a ϵ -net for K. Indeed, let $f \in K$ be arbitrary. We can find some $j \in \{1, \dots, m\}$ such that $||T(f) - T(f_j)||_{\infty} < \epsilon/4$ by $(\dagger \dagger)$. Now we let $y \in X$, we can find $i \in \{1, \dots, n\}$ such that $d(x_i, y) < \delta$ by (\dagger) . Then:

$$|f(y) - f_j(y)| \le \underbrace{|f(y) - f(x_i)|}_{<\frac{\epsilon}{4} \text{ by } (*)} + \underbrace{|f(x_i) - f_j(x_i)|}_{\le ||T(f) - T(f_j)||_{\infty} < \frac{\epsilon}{4}} + \underbrace{|f_j(x_i) - f_j(y)|}_{<\frac{\epsilon}{4} \text{ by } (*)} < \frac{3\epsilon}{4}$$

Since $y \in X$ is arbitrary, we have $||f - f_j||_{\infty} \leq \frac{3\epsilon}{4} < \epsilon$. This proved that $K \subseteq \bigcup_{i=1}^m B_{\epsilon}(f_j)$. Hence K is totally bounded.

2.6 Connectedness

Definition. Let (X, d) be a metric space. We say $A \subseteq X$ is **disconnected** if there exist two open sets U, V of X such that $A \subseteq U \cup V$ and $U \cap V = \emptyset$ and $U \cap A \neq \emptyset$ and $V \cap A \neq \emptyset$. We say A is **connected** if it is not disconnected.

Example. Let (X,d) be a metric space. Any finite subset $A = \{x_1, \dots, x_n\}$ with at least two elements is disconnected. Let $r = \frac{1}{2} \min\{d(x_i, x_j) : i \neq j\} > 0$. We define open sets:

$$U = B_r(x_1)$$
 and $V = B_r(x_2) \cup \cdots \cup B_r(x_n)$

Then $A \subseteq U \cup V$ and $U \cap V = \emptyset$ by our choice of r. Moreover $U \cap A = \{x_1\}$ and $V \cap A = \{x_2, \dots, x_n\}$ are not empty. Therefore A is disconnected.

Example. Let X be a set with $|X| \geq 2$. Let d be the discrete metric on X. Then (X, d) is disconnected. Indeed, let $x_0 \in X$. Then $U = \{x_0\}$ is open and $V = X \setminus \{x_0\}$ is also open.

Example. The middle third cantor set is disconnected.

Example. The interval $[0,1] \subseteq \mathbb{R}$ is connected. Assume it is disconnected by open sets U, V of \mathbb{R} . WLOG we may assume $0 \in U$. Let $C = \{c \in \mathbb{R} : [0,c) \subseteq U\}$. Since U is open, there is $\epsilon > 0$ so that $B_{\epsilon}(0) \subseteq U$. Since C is nonempty, we let $c^* = \sup C$. There are two cases.

- (i). If $c^* \in U$. Then as U is open, there is $\epsilon > 0$ such that $B_{\epsilon}(c^*) \subseteq U$. This means $c^* + \epsilon \in U$, so we have $c^* + \epsilon \in C$. Contradiction.
- (ii). If $c^* \in V$. There is $\epsilon > 0$ with $B_{\epsilon}(c^*) \subseteq V$. This means $B_{\epsilon}(c^*) \cap U = \emptyset$. However, by the definition of supremum we know $c^* \epsilon \in C$, so $[0, c^* \epsilon) \subseteq U$. This means $c^* \frac{\epsilon}{2} \in U$, but we know $c^* \frac{\epsilon}{2} \in V$ as well. Contradiction.

Theorem 2.14. Let (X, d) and (Y, ρ) be metric spaces. Suppose (X, d) is connected. If $f: X \to Y$ is continuous, then f(X) is connected.

Proof. Assume f(X) is disconnected, say by open sets U, V of (Y, ρ) . It is easy to see that $f^{-1}(U)$ and $f^{-1}(V)$ are open sets that separate X. Contradiction.

Theorem 2.15. Any connected subsets of \mathbb{R} are intervals.

Proof. Let C be a connected set. We define:

$$a = \inf C \in \mathbb{R} \cup \{-\infty\}$$
 and $b = \sup C \in \mathbb{R} \cup \{\infty\}$

If $c \in \mathbb{R}$ and a < c < b we must have $c \in C$. Otherwise:

$$C\subseteq\underbrace{(-\infty,c)}_{U}\cup\underbrace{(c,\infty)}_{V}$$

This gives a separation of C, contradiction. Hence we have $(a,b) \subseteq C \subseteq [a,b]$. This means C is an interval in \mathbb{R} .

Definition. Let (X, d) be a metric space. We can define an equivalence relation on X by $x \sim y$ if and only if there is a connected set C containing both x, y. The equivalence classes of this relation are called **connected components**. Let $x_0 \in X$. the equivalence class that x_0 lies in is called the connected component of x_0 and it is equal to the union of all connected sets containing x_0 .

Example. Let $X = [0, 1] \cup [2, 3]$ be the metric space with induced Euclidean metric. Then [0, 1] and [2, 3] are the connected components of X.

Definition. Let (X, d) be a metric space. We say X is **totally disconnected** if every connected component is a singleton set.

Example. Finite sets are totally disconnected.

Definition. Let (X, d) be a metric space. We say (X, d) is **path-connected** if for all $x, y \in X$ there exists a continuous function $f : [0, 1] \to X$ such that f(0) = x and f(1) = y.

Example. Let $(V, \|\cdot\|)$ be a normed space. Any convex set $C \subseteq V$ is path connected. For $x, y \in C$ we can define $f(t) = (1-t)x + ty \in C$.

Proposition 2.16. Let (X,d) be a metric space. If X is path-connected then X is connected.

Proof. Suppose $X = U \cup V$ is disconnected. Pick $x \in U$ and $y \in V$. There is a path $f : [0,1] \to X$ such that f(0) = x and f(1) = y. Now:

$$[0,1] = f^{-1}(X) = f^{-1}(U) \cup f^{-1}(V)$$

Note that $0 \in f^{-1}(U)$ and $1 \in f^{-1}(V)$. It is easy to check $f^{-1}(U)$ and $f^{-1}(V)$ give a separation of [0,1]. This is a contradiction!

Example. The converse of this is not true. There exists connected spaces that is not path-connected. We define the following set:

$$X = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) : x > 0 \right\} \cup \left\{ (0, 0) \right\}$$

Then $X \subseteq \mathbb{R}^2$ is connected but not path connected.

2.7 Bonus Cantor Set Stuff

Definition. Let $n \ge 2$ and $A \subseteq \{0, 1, \dots, n-1\}$ be a finite set. We define the **linear Cantor set**:

$$C_{A,n} = \left\{ \sum_{k=1}^{\infty} \frac{a_k}{n^k} : a_k \in A \right\}$$

Definition. Let $A \subseteq \mathbb{R}$. We define $N_{\epsilon}(A)$ to be the minimal number of ϵ -balls needed to cover A. The **box-counting dimension** of A is defined as:

$$\dim_B(A) = \lim_{\epsilon \to 0} \frac{-\log N_A(\epsilon)}{\log \epsilon}$$

if the limit exists. If the limit does not exist, we can take the limsup or liminf to define the **upper** box dimension and lower box dimension.

Example. Consider the middle third Cantor set. For $3^{-n} \le \epsilon < 3^{-(n-1)}$, we need 2^n intervals of length $1/3^n$ to cover C. Hence:

$$\dim_B(C) = \lim_{n \to \infty} \frac{-\log 2^n}{\log 3^{-n}} = \frac{\log 2}{\log 3}$$

The box-counting dimension of C is $\log_3(2)$.

Definition. Let (X, ρ) be a metric space. For any $U \subseteq X$ we let $\operatorname{diam}(U)$ or |U| denote its diameter. Let $S \subseteq X$ and let $\delta > 0$ and $d \in [0, \infty)$. We define:

$$H_{\delta}^{d}(S) = \inf \left\{ \sum_{i \in I} |U_{i}|^{d} : S \subseteq \bigcup_{i \in I}, |U_{i}| < \delta, |I| \le |\mathbb{N}| \right\}$$

Then we define:

$$H^d(S) = \lim_{\delta \to 0} H^d_{\delta}(S)$$

to be the d-dimensional Hausdorff measure of S.

Theorem 2.17. Let (X, ρ) be a metric space and $0 \le s < t < \infty$. For $A \subseteq X$ we have:

- (i). If $H^s(A) < \infty$ then $H^t(A) = 0$.
- (ii). If $H^t(A) > 0$ then $H^s(A) = \infty$.

Proof. It suffices to prove (i) since (ii) is just the contrapositive of (i). We have:

$$H_{\delta}^{t}(A) = \inf \left\{ \sum_{i \in I} |U_{i}|^{t} : A \subseteq \bigcup_{i \in I} U_{i}, \ |U_{i}| < \delta, \ |I| \le |\mathbb{N}| \right\}$$

$$= \inf \left\{ \sum_{i \in I} |U_{i}|^{t-s} |U_{i}|^{s} : A \subseteq \bigcup_{i \in I} U_{i}, \ |U_{i}| < \delta, \ |I| \le |\mathbb{N}| \right\}$$

$$\leq \inf \left\{ \sum_{i \in I} \delta^{t-s} |U_{i}|^{s} : A \subseteq \bigcup_{i \in I} U_{i}, \ |U_{i}| < \delta, \ |I| \le |\mathbb{N}| \right\}$$

$$= \delta^{t-s} \inf \left\{ \sum_{i \in I} |U_{i}|^{s} : A \subseteq \bigcup_{i \in I} U_{i}, \ |U_{i}| < \delta, \ |I| \le |\mathbb{N}| \right\}$$

$$= \delta^{t-s} H_{\delta}^{s}$$

Suppose $H^s(A) < \infty$, we then have:

As desired.

$$H^{t}(A) = \lim_{\delta \to 0} \delta^{t-s} H^{s}_{\delta} = H_{\delta} \lim_{\delta \to 0} \delta^{t-s} = 0$$

Corollary 2.18. There is at most one $d \in [0, \infty)$ with $0 < H^d(A) < \infty$.

Definition. Same setting as above. We define the **Hausdorff dimension** of A to be:

$$\dim_{H}(A) = \sup\{d \in [0, \infty) : H^{d}(A) = \infty\} = \inf\{d \in [0, \infty) : H^{d}(A) = 0\}$$

Example. Let $A = \mathbb{Q} \cap [0,1]$. We need $[\epsilon^{-1}]$ many ϵ -balls to cover A, as \mathbb{Q} is dense in \mathbb{R} . Hence:

$$\dim_B(A) = \lim_{\epsilon \to 0} \frac{-\log\lceil \epsilon^{-1} \rceil}{\log \epsilon} = 1$$

However, we claim the Hausdorff dimension is 0. Consider:

$$H^{0}_{\delta}(A) = \inf \left\{ \sum_{i \in I} |U_{i}|^{0} : A \subseteq \bigcup_{i \in I} U_{i}, \ |U_{i}| < \delta, \ |I| \le |\mathbb{N}| \right\}$$

$$= \inf \left\{ \sum_{i \in I} |U_{i}|^{t} : A \subseteq \bigcup_{i \in I} U_{i}, \ |U_{i}| < \delta, \ I \text{ finite} \right\}$$

$$= \inf \left\{ |I| : A \subseteq \bigcup_{i \in I} U_{i}, \ |U_{i}| < \delta, \ I \text{ finite} \right\}$$

$$= \left\lceil \frac{1}{\delta} \right\rceil$$

Then we have $H^0(A) = \lim_{\delta \to 0} H^0_{\delta}(A) = \infty$. Let d > 0, we wish to show that $H^d(A) = 0$. To do this it suffices to show for all $\epsilon > 0$ and $\delta > 0$ we have $H^d_{\delta}(A) \leq \epsilon$. Since A is countable, we can enumerate $A = \{r_n : n \geq 1\}$. For each $n \geq 1$ let:

$$\epsilon_n = \min\left\{\delta, \ \frac{1}{2} \left(\frac{\epsilon}{2^n}\right)^{1/d}\right\} > 0$$

Then let $U_n = B_{\epsilon_n}(r_n)$ and $|U_n| \leq \left(\frac{\epsilon}{2^n}\right)^{1/d}$. Hence we have:

$$\sum_{n=1}^{\infty} |U_n|^d \le \sum_{n=1}^{\infty} \left(\left(\frac{\epsilon}{2^n} \right)^{1/d} \right)^d = \epsilon$$

Hence $H^d(A) = 0$ for all d > 0, so $\dim_H(A) = \inf\{d \ge 0 : H^d(A) = 0\} = 0$.

Proposition 2.19. For any linear Cantor set $C_{A,n}$ we have $\dim_B(C_{A,n}) = \dim_H(C_{A,n})$.

Proposition 2.20. Let $A, B \subseteq \mathbb{R}$, then:

$$\dim_H(A \cup B) = \max\{\dim_H(A), \dim_H(B)\}\$$

Proposition 2.21. Let $A, B \subseteq \mathbb{R}$, then:

$$\dim_H(A+B) \le \dim_H(A) + \dim_H(B)$$

Proposition 2.22. Let $\emptyset \neq A \subseteq \mathbb{R}^n$, then $0 \leq \dim_H(A) \leq n$.

Example. From A4 we saw that C + C = [0, 2], where C is the middle-third Cantor set. That is:

$$C_{\{0,2\},3} + C_{\{0,2\},3} = [0,2]$$

We know the box counting dimension is $\log_3(2)$, so $\dim_H(C_{\{0,2\},3}) = \log_3(2)$ as well.

Example. What is the dimension of $C_{\{0,3\},4}$ and the dimension of $C_{\{0,3\},4} + C_{\{0,3\},4}$? In general, we need 2^n intervals of length 4^{-n} to cover $C_{\{0,3\},4}$, so:

$$\dim_B(C_{\{0,3\},4}) = \lim_{n \to \infty} \frac{\log 2^n}{\log 4^{-n}} = \frac{1}{2} = \dim_H(C_{\{0,3\},4})$$

What does $C_{\{0,3\},4} + C_{\{0,3\},4}$ looks like?

$$C_{\{0,3\},4} + C_{\{0,3\},4} = \left\{ \sum_{k=1}^{\infty} \frac{a_k + b_k}{4^k} : a_k, b_k \in \{0,3\} \right\} = \left\{ \sum_{k=1}^{\infty} \frac{c_k}{4^k} : c_k \in \{0,3,6\} \right\}$$

$$= \left\{ \sum_{k=1}^{\infty} \frac{c_k}{4^k} : c_k \in \left\{0,\frac{3}{2},3\right\} \right\} + \left\{ \sum_{k=1}^{\infty} \frac{c_k}{4^k} : c_k \in \left\{0,\frac{3}{2},3\right\} \right\}$$

$$= 2C_{\{0,\frac{3}{2},3\},4}$$

We see that:

$$\dim_H(C_{\{0,\frac{3}{2},3\},4}) = \dim_B(C_{\{0,\frac{3}{2},3\},4}) = \frac{\log 3}{\log 4} < 1$$

Theorem 2.23. Let $C_{A,n}$ be a linear Cantor set. If $\dim_H(C_{A,n}) < \frac{1}{2}$ then $C_{A,n} + C_{A,n} \neq [0,2]$.

Proof. By Proposition 2.21 we have:

$$\dim_H(C_{A,n} + C_{A,n}) \le \dim_H(C_{A,n}) + \dim_H(C_{A,n}) < 1$$

However $\dim_{H}([0,2]) = 1$. Hence $C_{A,n} + C_{A,n} \neq [0,2]$.

Example. Let $C \subseteq \mathbb{R}^n$ be a perfect and totally disconnected set with $\dim_H(C) < \frac{1}{2}$. Then C + C is a perfect and totally disconnected set.

Theorem 2.24. Let $C_{A,n}$ be a linear Cantor set, then:

$$C_{A,n} = \bigcup_{a \in A} S_a(C_{A,n})$$

where $S_a : \mathbb{R} \to \mathbb{R}$ is defined by $S_a(x) = \frac{x+a}{n}$.

Proof. Note that we have:

$$C_{A,n} = \left\{ \frac{a_1}{n} + \sum_{k=2}^{\infty} \frac{a_k}{n^k} : a_k \in A \right\}$$

$$= \bigcup_{a \in A} \left\{ \frac{a}{n} + \left\{ \sum_{k=2}^{\infty} \frac{a_k}{n^k} : a_k \in A \right\} \right\}$$

$$= \bigcup_{a \in A} \left\{ \frac{a}{n} + \frac{1}{n} \left\{ \sum_{k=1}^{\infty} \frac{a_k}{n^k} : a_k \in A \right\} \right\}$$

$$= \bigcup_{a \in A} \frac{a}{n} + \frac{1}{n} C_{A,n}$$

$$= \bigcup_{a \in A} S_a(C_{A,n})$$

As desired.

Theorem 2.25. Let $A \subseteq \{0, \dots, n-1\}$ and $0, n-1 \in A$. Define:

$$B := A + A = \{0 = b_0 < b_1 < \dots < b_k = 2n - 2\}$$

Then $C_{A,n} + C_{A,n} = [0,2]$ if and only if $b_i - b_{i-1} \le 2$ for all $1 \le i \le k$.

Proof. Note that we have:

$$C_{A,n} + C_{A,n} = \left\{ \sum_{r=1}^{\infty} \frac{a_r + c_r}{n^r} : a_r, c_r \in A \right\} = \left\{ \sum_{r=1}^{\infty} \frac{b_r}{n^r} : b_r \in B \right\} = C_{B,n}$$

Then $b_i - b_{i-1} \le 2$ for all *i* if and only if $[0, 2] = \bigcup_{i=0}^k S_{b_i}(C_{B,n}) = C_{B,n}$.

Definition. A Cantorval is a compact subset of \mathbb{R} with non-empty interior such that none of its connected components are isolated.

Fact. Let $A \subseteq \{0, \dots, n-1\}$ and $0, n-1 \in A$. Exactly one of the followings is true:

- 1. $C_{A,n} + C_{A,n} = [0,2].$
- 2. $C_{A,n} + C_{A,n}$ is a totally disconnected and perfect set.
- 3. $C_{A,n} + C_{A,n}$ ia a Cantorval.

- Lecture 19, 2025/02/24 -

3 Completeness

3.1 Baire Category Theorem

Definition. Let (X, d) be a metric space. We say $A \subseteq X$ is **nowhere dense** if $\operatorname{int}(\overline{A}) = \emptyset$.

Example. Consider (\mathbb{R}, d) with Euclidean metric. A singleton is nowhere dense. The integers \mathbb{Z} is nowhere dense. Rationals \mathbb{Q} is NOT nowhere dense, as $\overline{\mathbb{Q}} = \mathbb{R}$. The Cantor set is nowhere dense.

Example. Consider the metric space (X, d) where d is the discrete metric. Any non-empty set is NOT nowhere dense because every $A \subseteq X$ is both open and closed, so:

$$\operatorname{int}(\overline{A}) = \operatorname{int}(A) = A \neq \emptyset$$

The only nowhere dense subset of (X, d) is \emptyset .

Lemma 3.1. Let (X,d) be a metric space. If $A \subseteq X$ is nowhere, then $X \setminus \overline{A}$ is open and dense.

Proof. Since \overline{A} is closed, clearly $X \setminus \overline{A}$ is open. Suppose $x \notin X \setminus \overline{A}$ and let $\epsilon > 0$. We want to find $y \in X \setminus \overline{A}$ such that $y \in B_{\epsilon}(x)$, which proves that $X \setminus \overline{A}$ is dense in X. Since $x \notin X \setminus \overline{A}$, we know $x \in \overline{A}$. Since A is nowhere dense, int $(\overline{A}) = \emptyset$. Hence we can find $y \notin \overline{A}$ such that $y \in B_{\epsilon}(x)$, which means $y \in X \setminus \overline{A}$, as desired.

Definition. Let (X, d) be a metric space. We say $A \subseteq X$ is **first category (meagre)** if we can write A as a countable union of nowhere dense sets. That is:

$$A = \bigcup_{n=1}^{\infty} K_n$$

where each $K_n \subseteq X$ is nowhere dense. When X is first category as a set, then we also say (X, d) is first category. Otherwise we say A is **second category**.

Example. Consider (\mathbb{R}, d) with the usual metric. Any nowhere dense set is first category. The rationals \mathbb{Q} is first category because it is the countable union of $q \in \mathbb{Q}$.

Question: Is \mathbb{R} , with the usual metric, first category?

Answer: It is not first category (not obvious) by the Baire Category Theorem.

Theorem 3.2 (Baire Category Theorem). Any non-empty complete metric space (X, d) is second category.

Example. The reals \mathbb{R} is not first category. The ℓ^p spaces for $1 \leq p < \infty$ are not first category. This does not apply to (\mathbb{Q}, d) with the Euclidean metric signe it is not complete.

Corollary 3.3. Let (X, d) be a non-empty complete metric space with $X = \bigcup_{n=1}^{\infty} K_n$, then there is $n \ge 1$ such that $\operatorname{int}(\overline{K}_n) \ne \emptyset$.

Proof. We know X is not first category by the BCT, so one of K_n is not nowhere dense.

Proof of BCT. Assume $(K_n)_{n=1}^{\infty}$ is a sequence of nowhere dense sets, we want to show $X \neq \bigcup_{n=1}^{\infty} K_n$ by constructing $x^* \in X$ such that $x^* \notin K_n$ for all $n \geq 1$. Pick any $x_0 \in X$ and $r_0 > 0$. Consider $\overline{B_{r_0}(x_0)}$. Since K_1 is nowhere dense, we can find $x_1 \in \overline{B_{r_0}(x_0)}$ and $r_1 < r_0/2$ such that:

$$\overline{B_{r_1}(x_1)} \cap K = \emptyset$$
 and $\overline{B_{r_1}(x_1)} \subseteq \overline{B_{r_0}(x_0)}$

We repeat this process. Suppose we have defined x_n and r_n , we find x_{n+1} and r_{n+1} such that $x_{n+1} \in \overline{B_{r_n}(x_n)}$ and $r_n < r_{n-1}/2$ with:

$$\overline{B_{r_{n+1}}(x_{n+1})} \cap K = \emptyset$$
 and $\overline{B_{r_{n+1}}(x_{n+1})} \subseteq \overline{B_{r_n}(x_n)}$

We claim that $(x_n)_{n=1}^{\infty}$ is cauchy and its limit x^* satisfies our desired property. Let m > n, notice:

$$d(x_n, x_m) \le r_n < \frac{r_{n-1}}{2} < \dots < \frac{r_0}{2^n}$$

Therefore $(x_n)_{n=1}^{\infty}$ is cauchy. Since (X, d) is complete, we let $\lim_{n \to \infty} x_n = x^* \in X$. Note that $(x_n)_{n=k}^{\infty}$ is a sequence in $\overline{B_{r_k}(x_k)}$ for all $k \ge 1$ and each such closed ball is closed. Therefore:

$$x^* = \lim_{n \to \infty} x_n \in \overline{B_{r_k}(x_k)}$$

Hence $x^* \in \overline{B_{r_n}(x_n)}$ for all $n \ge 1$. Hence $x^* \notin K_n$ for all $n \ge 1$, as desired.

- Lecture 20, 2025/02/26 -

Definition. Let (X, d) be a metric space. We say $A \subseteq X$ is a G_{δ} set if there exist a countable sequence of open sets $U_n \subseteq X$ such that $A = \bigcap_{n=1}^{\infty} U_n$.

Example. Any open set is a G_{δ} set by definition.

Example. The irrational numbers are a G_{δ} set. Note that \mathbb{Q} is countable, so:

$$\mathbb{R} \setminus \mathbb{Q} = \bigcap_{r \in \mathbb{Q}} (\mathbb{R} \setminus \{r\})$$

Definition. Let (X, d) be a metric space. We say $A \subseteq X$ is an F_{σ} set it there is a countable sequence of closed sets $C_n \subseteq X$ such that $A = \bigcup_{n=1}^{\infty} C_n$.

Remark. Note that A is G_{δ} if and only if A^c is F_{σ} .

Example. Any closed set is a F_{σ} set.

Example. The interval A = (0,1) is an F_{σ} set because $(0,1) = \bigcup_{n=2}^{\infty} \left[\frac{1}{n}, 1 - \frac{1}{n} \right]$.

Example. Note that $\mathbb{Q} = \bigcup_{r \in \mathbb{Q}} \{r\}$ is F_{σ} . However, we claim that \mathbb{Q} is NOT a G_{δ} set! Assume for a contradiction that \mathbb{Q} is a G_{δ} set, say:

$$\mathbb{Q} = \bigcap_{n=1}^{\infty} U_n$$

where each $U_n \subseteq \mathbb{R}$ is an open set. This means $\mathbb{Q} \subseteq U_n$ for all $n \geq 1$. Hence each U_n is an open denset set. Then $\mathbb{R} \setminus U_n$ is closed and nowhere dense. This means:

$$\mathbb{R}\setminus\mathbb{Q}=\bigcup_{n=1}^{\infty}(\mathbb{R}\setminus U_n)$$

is a union of nowhere dense sets! Hence $\mathbb{R} \setminus \mathbb{Q}$ is first category. Since \mathbb{Q} is first category, we have:

$$\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$$

is first category, being the union of two sets that are first category. Since \mathbb{R} is complete, it is second category by BCT. Contradiction.

3.2 Nowhere Differentiable Functions

For this section we consider the space:

$$\mathcal{C}[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}\$$

We will show that "most" functions $f \in \mathcal{C}[0,1]$ are nowhere differentiable!

Definition. Let $f \in \mathcal{C}[0,1]$. We say f is **Lipschitz at** $x_0 \in X$ if there is $K \in \mathbb{R}$ (dependent on x_0) such that for all $x \in [0,1]$ we have:

$$|f(x_0) - f(x)| \le K|x_0 - x|$$

We say f is **Lipschitz** if the choice of K is independent of x_0 .

Lemma 3.4. Let $f \in \mathcal{C}[0,1]$ and $x_0 \in [0,1]$. Assume $f'(x_0)$ exists, then f is Lipschitz at x_0 .

Proof. Let $c_1 = |f'(x_0)| \ge 0$. This implies that:

$$c_1 = \lim_{x \to x_0} \left| \frac{f(x) - f(x_0)}{x - x_0} \right|$$

There exists $\delta > 0$ (small enough such that $(x_0 - \delta, x_0 + \delta) \subseteq [0, 1]$) such that for all $x \in (x_0 - \delta, x_0 + \delta)$ we have that:

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| \le c_1 + 1$$

Consider the function $h(x) = \frac{f(x) - f(x_0)}{x - x_0}$ on the set $[0, x_0 - \delta] \cup [x_0 + \delta, 1]$. Note that h is continuous on this compact set, hence it is bounded on it. Let $c_2 \in \mathbb{R}$ such that for all $x \in [0, x_0 - \delta] \cup [x_0 + \delta, 1]$ we have that:

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| \le c_2$$

Let $K = \max\{c_1 + 1, c_2\} > 0$, then for all $x \in [0, 1]$ we have:

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| \le K \implies |f(x) - f(x_0)| \le K|x - x_0|$$

As desired. \Box

Lemma 3.5. Let $f \in \mathcal{C}[0,1]$ be Lipschitz at $x_0 \in [0,1]$ with constant K. Then for all $a, b \in [0,1]$ with $a \le x_0 \le b$ we have:

$$|f(a) - f(b)| \le K|a - b|$$

Proof. Since $a \le x_0 \le b$ we have $|a - x_0| + |x_0 - b| = |a - b|$. Then:

$$|f(a) - f(b)| \le |f(a) - f(x_0)| + |f(x_0) + f(b)| \le K(|a - x_0| + |x_0 - b|) = K|a - b|$$

As desired.

Example. Define a function $f:[0,1]\to\mathbb{R}$ by $f(x)=\sum_{n=1}^{\infty}2^{-n}\cos(\pi 10^n x)$. We claim that $f\in\mathcal{C}[0,1]$ but nowhere differentiable! It suffices to show it is the limit of a sequence of continuous functions. For each N>1 let:

$$f_N(x) = \sum_{n=1}^{N} 2^{-n} \cos(\pi 10^n x)$$

Then each $f_N \in \mathcal{C}[0,1]$. We claim that $(f_N)_{N=1}^{\infty}$ is cauchy. Let N > M, we have:

$$||f_N - f_M||_{\infty} = \sup_{x \in [0,1]} \left| \sum_{n=M+1}^N 2^{-n} \cos(\pi 10^n x) \right| \le \sum_{n=M+1}^N 2^{-n} \to 0$$

because the series $\sum_{n=1}^{\infty} 2^{-n} = 1$ converges, its tail goes to 0. Therefore $(f_N)_{N=1}^{\infty}$ is cauchy and since $\mathcal{C}[0,1]$ is complete, it converges to $f \in \mathcal{C}[0,1]$. To show it is nowhere differentiable, it suffices to show it is not Lipschitz at any $x_0 \in [0,1]$. Write $x_0 = \sum_{k=1}^{\infty} \frac{a_k}{10^k}$ in base 10. Suppose f is Lipschitz at x_0

with constant $K \in \mathbb{R}$. Let $N \geq 1$ (to be chosen later), we define:

$$x_L = \sum_{k=1}^{N} \frac{a_k}{10^k}$$
 and $x_R = x_L + \frac{1}{10^N}$

We consider the difference between $f(x_R)$ and $f(x_L)$. Note that:

$$\cos(x) - \epsilon \le \cos(x + \epsilon) \le \cos(x) + \epsilon \tag{1}$$

for $\epsilon > 0$ small. By (1), for $1 \le k \le N$ we have:

$$\cos(\pi 10^k (x_L + 10^{-N})) - \cos(\pi 10^k x_L) = \pi 10^{-N+k}$$

For k > N, note that $10^k x_L$ and $10^k x_R$ are integers so:

$$\cos(\pi 10^k (x_L + 10^{-N})) - \cos(\pi 10^k x_L) = 0$$

With some work, this gives:

$$|f(x_L) - f(x_R)| \ge (5^N + \text{small stuff})|x_L - x_R|$$

If we pick N so that $5^N > K$ then this gives a contradiction.