

MOSFET

650V CoolMOS™ CM8 Power Transistor

The CoolMOS™ 8th generation platform is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. The 650V CoolMOS™ CM8 series is the successor to the 650V CoolMOS™ 7 Family and is enhancing Infineon's WBG offering. It combines the benefits of a fast switching SJ MOSFET with excellent ease of use, e.g low ringing tendency, implemented fast body diode (CFD) for all products with outstanding robustness against hard commutation and excellent ESD capability. Furthermore, extremely low switching and conduction losses of CM8, make switching applications even more efficient.

Features

- Best in class 650V SJ MOSFET performance
- Suitable for hard and soft switching topologies thanks to an outstanding commutation ruggedness
- Integrated fast body diode and ESD protection
- .XT interconnection technology for best in class thermal performance

Benefits

- Ease of use and fast design-in through low ringing tendency and usage across PFC and PWM stages
- Simplified thermal management due to our advanced die attach technique
- Increased power density solutions enabled by using products with smaller footprint and higher manufacturing quality due state of the art ESD protection
- Suitable for a wide variety of applications and power ranges

Potential applications

- Power supplies and converters
- PFC stages & LLC resonant converters
- High efficiency switching applications
- e.g. Datacenter, Al Server, Telecom Power Supply

Product validation

Fully qualified according to JEDEC for Industrial Applications

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Table 1 Key performance parameters

i and a manage parameters							
Parameter	Value	Unit					
V _{DS} @ T _{j,max}	700	V					
R _{DS(on),max}	18	mΩ					
$Q_{g,typ}$	173	nC					
I _{D,pulse}	505	А					
E _{oss} @ 400V	19.6	μЈ					
Body diode di _F /dt	1300	A/μs					
ESD class (HBM)	2						

Type / Ordering code	Package	Marking	Related links
IPDQ65R018CM8	PG-HDSOP-22	65R018C8	see Appendix A

O-DPAK

Public

650V CoolMOS™ CM8 Power Transistor IPDQ65R018CM8

Table of contents

Description	
Maximum ratings	
Thermal characteristics	
Electrical characteristics	5
Electrical characteristics diagrams	7
Test circuits	
Package outlines	12
Appendix A	
Revision history	
Trademarks	
Disclaimer	16

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Maximum ratings Table 2

Parameter	Crossbad		Values		115:4	Note /Took on PR's	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition	
Continuous drain current ¹⁾	I _D	-	-	127 80	А	T _c =25°C T _c =100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	505	А	T _c =25°C	
Avalanche energy, single pulse	E _{AS}	-	-	297	mJ	L =6.7A+V ==50V: soo table 10	
Avalanche energy, repetitive	E _{AR}	-	-	1.48	mJ	I _D =6.7A; V _{DD} =50V; see table 10	
Avalanche current, single pulse	I _{AS}	-	-	6.7	А	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	120	V/ns	V _{DS} =0400V	
Gate source voltage (static)	$V_{\rm GS}$	-20	-	20	V	static;	
Gate source voltage (dynamic)	$V_{\rm GS}$	-30	-	30	V	AC (f>1 Hz)	
Power dissipation	$P_{\rm tot}$	-	-	625	W	T _C =25°C	
Storage temperature	$T_{\rm stg}$	-55	-	150	°C		
Operating junction temperature	$T_{\rm j}$	-55	-	150	°C		
Extended operating junction temperature	$T_{\rm j}$	150	-	175	°C	≤50 h in the application lifetime	
Mounting torque	-	-	-	-	Ncm	-	
Continuous diode forward current	$I_{\rm S}$	-	-	127	А	T =25°C	
Diode pulse current ²⁾	$I_{S,pulse}$	-	-	505	А	T _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	70	V/ns	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ ≤127A, $T_{\rm i}$ =25°C see	
Maximum diode commutation speed	di _F /dt	-	-	1300	A/μs	table 8	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	V _{rms} , T _C =25°C, <i>t</i> =1min	

 $^{^{1)}}$ Limited by $T_{j,max}$

Pulse width t_p limited by $T_{j,max}$

Identical low side and high side switch with identical R_G

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol	Values			l lmit	Note / Test condition	
Parameter	Syllibol	Min.	Тур.	Max.	Joint	Note / Test condition	
Thermal resistance, junction - case	$R_{\rm thJC}$	-	-	0.2	K/W	-	
Thermal resistance, junction - ambient	R_{thJA}	-	-	62	K/W	device on PCB, minimal footprint	
Thermal resistance, junction - ambient for SMD version	R_{thJA}	-	45	55	K/W	Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thickness) copper area. Tap exposed to air. PCB is vertical without air stream cooling.	
Soldering temperature, reflow soldering allowed	T_{sold}	-	-	260	°C	reflow MSL1	

3 Electrical characteristics

at T_i =25°C, unless otherwise specified

Table 4 Static characteristics

Parameter	Symbol	Values			I I mid	Note / Test condition	
Parameter	Symbol	Min.	Тур.	Max.		Note / Test condition	
Drain-source breakdown voltage	$V_{(BR)DSS}$	650	-	-	V	$V_{\rm GS}$ =0V, $I_{\rm D}$ =1mA	
Gate threshold voltage	$V_{(GS)th}$	3.7	4.2	4.7	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 1.48 \rm mA$	
Zero gate voltage drain current	I _{DSS}	-	- 244	2	μΑ	$V_{\rm DS}$ =650V, $V_{\rm GS}$ =0V, $T_{\rm j}$ =25°C $V_{\rm DS}$ =650V, $V_{\rm GS}$ =0V, $T_{\rm j}$ =150°C	
Gate-source leakage current	I_{GSS}	-	-	0.1	μΑ	$V_{\rm GS}$ =20V, $V_{\rm DS}$ =0V	
Drain-source on-state resistance	$R_{\mathrm{DS(on)}}$	-	0.015 0.033	0.018 -	Ω	$V_{\rm GS}$ =10V, $I_{\rm D}$ =55.6A, $T_{\rm j}$ =25°C $V_{\rm GS}$ =10V, $I_{\rm D}$ =55.6A, $T_{\rm j}$ =150°C	
Gate resistance	R_{G}	-	1	-	Ω	<i>f</i> =1MHz	

Table 5 Dynamic characteristics

Parameter	Cymphol	Values			Linit	Note / Took condition	
	Symbol	Min.	Тур.	Max.	Onit	Note / Test condition	
Input capacitance	C _{iss}	-	8290	-	pF	1/ -0/ 1/ -400// [250]/ -	
Output capacitance	C _{oss}	-	91	-	pF	V _{GS} =0V, V _{DS} =400V, <i>f</i> =250kHz	
Effective output capacitance, energy related ⁴⁾	$C_{\rm o(er)}$	-	245	-	pF	V _{GS} =0V, V _{DS} =0400V	
Effective output capacitance, time related ⁵⁾	$C_{\rm o(tr)}$	-	2702	-	pF	$I_{\rm D}$ =constant, $V_{\rm GS}$ =0V, $V_{\rm DS}$ =0400V	
Turn-on delay time	$t_{\sf d(on)}$	-	33.5	-	ns		
Rise time	t _r	-	10.5	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =29.7A, $R_{\rm G}$ =1.8 Ω ; see table 9	
Turn-off delay time	$t_{\sf d(off)}$	-	145	-	ns		
Fall time	t _f	-	5.1	-	ns		

⁴⁾ $C_{
m o(er)}$ is a fixed capacitance that gives the same stored energy as $C_{
m oss}$ while $V_{
m DS}$ is rising from 0 to 400V

⁵⁾ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

Table 6 Gate charge characteristics

Doromotor	Symbol	Values			Linit	Note / Test condition
Parameter	Syllibol	Min.	Тур.	Max.	Unit	Note / Test condition
Gate to source charge	Q_{gs}	-	48	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =29.7A, $V_{\rm GS}$ =0 to 10V
Gate to drain charge	$Q_{ m gd}$	-	54	-	nC	
Gate charge total	$Q_{ m g}$	-	173	-	nC	
Gate plateau voltage	$V_{ m plateau}$	-	5.8	-	V	

Table 7 Reverse diode characteristics

Parameter	Symbol	Values			Linit	Note / Test condition
raiailletei	Syllibol	Min.	Тур.	Max.		Note / Test condition
Diode forward voltage	$V_{\rm SD}$	-	0.9	-	V	$V_{\rm GS}$ =0V, $I_{\rm F}$ =29.7A, $T_{\rm j}$ =25°C
Reverse recovery time	t _{rr}	-	180	225	ns	$V_{\rm R}$ =400V, $I_{\rm F}$ =29.7A, d $i_{\rm F}$ /d t =100A/μs; see table 8
Reverse recovery charge	$Q_{\rm rr}$	-	1.54	2.31	μC	
Peak reverse recovery current	I _{rrm}	-	16.4	-	А	

4 Electrical characteristics diagrams

5 Test circuits

Table 8 Diode characteristics

Table 9 Switching times (ss)

Table 10 Unclamped inductive load (ss)

6 Package outlines

Figure 1 Outline PG-HDSOP-22, dimensions in mm

Figure 2 Footprint drawing PG-HDSOP-22, dimensions in mm

Figure 3 Packaging variant PG-HDSOP-22, dimensions in mm

7 Appendix A

Table 11 Related links

- IFX CoolMOS CM8 Webpage
- IFX CoolMOS CM8 application note
- IFX CoolMOS CM8 simulation model
- IFX Design tools

Revision history

IPDO65R018CM8

Revision 2024-12-19, Rev. 2.0

Previous revisions

Revision	Date	Subjects (major changes since last revision)
2.0	2024-12-19	Release of final version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2024 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www. infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.