Mise à niveau en C

Tableaux et boucles

Enseignant: P. Bertin-Johannet

Les tableaux

- Un tableau est une liste de taille finie d'éléments du même type
- Pour déclarer un tableau on précise:
 - Le type des éléments qu'il contient
 - Le nom de la variable
 - Le nombre d'éléments
- Par exemple pour un tableau de 5 entiers

```
int nom_tableau[5];
```

On accède ensuite à l'élément n d'un tableau ainsi :

```
nom_tableau[n - 1]
```

Programme:

```
char tab [4];
tab[0] = 1;
tab[1] = 2;
tab[2] = tab[0] + 2;
```

Valeurs	Octets
	Octet 1
	Octet 2
	Octet 3
	Octet 4
	Octet 5
	Octet 6
	Octet 7
	Octet 8
	Octet 9

Programme:

```
char tab [4];
tab[0] = 1;
tab[1] = 2;
tab[2] = tab[0] + 2;
```

Valeurs	Octets
	Octet 1
	Octet 2
	Octet 3
	Octet 4
	Octet 5
	Octet 6
	Octet 7
	Octet 8
	Octet 9

Programme:

```
char tab [4];
tab[0] = 1;
tab[1] = 2;
tab[2] = tab[0] + 2;
```

Valeurs	Octets
1	Octet 1
	Octet 2
	Octet 3
	Octet 4
	Octet 5
	Octet 6
	Octet 7
	Octet 8
	Octet 9

Programme:

```
char tab [4];
tab[0] = 1;

tab[1] = 2;

tab[2] = tab[0] + 2;
```

Valeurs	Octets
1	Octet 1
2	Octet 2
	Octet 3
	Octet 4
	Octet 5
	Octet 6
	Octet 7
	Octet 8
	Octet 9

Programme:

```
char tab [4];
tab[0] = 1;
tab[1] = 2;

tab[2] = tab[0] + 2;
```

Valeurs	Octets
1	Octet 1
2	Octet 2
3	Octet 3
	Octet 4
	Octet 5
	Octet 6
	Octet 7
	Octet 8
	Octet 9

Les chaines de charactères

 En C, une chaine de charactère est un tableau de char se terminant par la valeur zero

Attention

Il ne s'agit pas du charactère '0' (qui vaut en ASCII 48) mais de '0' (qui est en ASCII 0).

- Il faut donc toujours reserver un octet de plus pour une chaines de charactères.
- Le langage C permet d'écrire une chaine de charactères entre guillemets :
 "Bonjour"

Programme:

```
char tab [4] = "oui";
tab[0]++;
```

Valeurs	Octets
	Octet 1
	Octet 2
	Octet 3
	Octet 4
	Octet 5
	Octet 6
	Octet 7
	Octet 8
	Octet 9

Programme:

```
char tab [4] = "oui";
tab[0]++;
```

Valeurs	Octets
111 (o)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
	Octet 5
	Octet 6
	Octet 7
	Octet 8
	Octet 9

Programme:

```
char tab [4] = "oui";
tab[0]++;
```

Valeurs	Octets
112 (p)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
	Octet 5
	Octet 6
	Octet 7
	Octet 8
	Octet 9

Les chaines de charactères

- On peut utiliser printf et scanf avec les chaines de charactères
- Le format à utiliser est %s

! Attention

Pour scanner une chaine de charactères avec scanf, il ne faut pas utiliser de &

Programme:

```
char tab [4];
scanf("%s", tab);
tab[0] -= 32;
printf("%s\n", tab);
```

```
Programme:
    char tab [4];
    scanf("%s", tab);
    tab[0] -= 32;
    printf("%s\n", tab);
```

Entrée utilisateur: > Oui

```
Programme: Entrée utilisateur: > Oui char tab [4]; Sortie: > Oui scanf("%s", tab); tab[0] -= 32; printf("%s\n", tab);
```

La boucle while

- L'instruction while (en anglais : "tant que") permet d'executer du code tant qu'une condition est vraie.

```
while(condition){
     code
}
```

 Les lignes de code entre les accolades seront répétées tant que la condition est vraie

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
   tab[i]++;
   i++;
}
```

Valeurs	Octets
	Octet 1
	Octet 2
	Octet 3
	Octet 4
	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
  tab[i]++;
  i++;
}
```

Valeurs	Octets
111 (o)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
   tab[i]++;
   i++;
}
```

Valeurs	Octets
111 (o)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
0	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
  tab[i]++;
  i++;
}
```

Valeurs	Octets
111 (o)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
0	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
   tab[i]++;
   i++;
}
```

Valeurs	Octets
112 (p)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
0	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
   tab[i]++;
   i++;
}
```

Valeurs	Octets
112 (p)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
1	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
  tab[i]++;
  i++;
}
```

Valeurs	Octets
112 (p)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
1	Octet 5
1	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
   tab[i]++;
   i++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
105 (i)	Octet 3
0	Octet 4
1	Octet 5
1	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
   tab[i]++;
   i++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
105 (i)	Octet 3
0	Octet 4
2	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
  tab[i]++;
  i++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
105 (i)	Octet 3
0	Octet 4
2	Octet 5
4	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
   tab[i]++;
   i++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
116 (j)	Octet 3
0	Octet 4
2	Octet 5
2	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
   tab[i]++;
   i++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
116 (j)	Octet 3
0	Octet 4
3	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
int i = 0;
while(tab[i] != 0){
   tab[i]++;
   i++;
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
116 (j)	Octet 3
0	Octet 4
3	Octet 5
	Octet 6
	Octet 7

La boucle for

- L'instruction depart sera executée une fois au début
- Tant que condition sera vraie, code et instruction seront executées en boucle.

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++){
    tab[i]++;
}
```

Valeurs	Octets
	Octet 1
	Octet 2
	Octet 3
	Octet 4
	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";

for(int i = 0; tab[i] != 0; i++){
    tab[i]++;
}
```

Valeurs	Octets
111 (o)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0;  tab[i] != 0; i++){
    tab[i]++;
}
```

Valeurs	Octets
111 (o)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
0	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++){
   tab[i]++;
}
```

Valeurs	Octets
111 (o)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
0	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++){
    tab[i]++;
}
```

Valeurs	Octets
112 (p)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
0	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++) {
    tab[i]++;
}
```

Valeurs	Octets
112 (p)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
1	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++){
   tab[i]++;
}
```

Valeurs	Octets
112 (p)	Octet 1
117 (u)	Octet 2
105 (i)	Octet 3
0	Octet 4
1	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++){
    tab[i]++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
105 (i)	Octet 3
0	Octet 4
1	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++) {
    tab[i]++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
105 (i)	Octet 3
0	Octet 4
2	Octet 5
<u> </u>	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++){
   tab[i]++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
105 (i)	Octet 3
0	Octet 4
2	Octet 5
<u> </u>	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++){
    tab[i]++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
116 (j)	Octet 3
0	Octet 4
2	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++) {
    tab[i]++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
116 (j)	Octet 3
0	Octet 4
3	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++){
   tab[i]++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
116 (j)	Octet 3
0	Octet 4
3	Octet 5
	Octet 6
	Octet 7

Programme:

```
char tab [4] = "oui";
for(int i = 0; tab[i] != 0; i++){
    tab[i]++;
}
```

Valeurs	Octets
112 (p)	Octet 1
118 (v)	Octet 2
116 (j)	Octet 3
0	Octet 4
3	Octet 5
	Octet 6
	Octet 7

Durée de validité d'une variable

- Une variable déclarée entre deux accolades existe uniquement entre ces deux accolades
- Une variable déclarée entre les parenthèses d'une boucle for, n'existe que pour cette boucle for

```
int a; // a existe pour toute la durée du programme
if (a > 2){
  int b = 1; // b existe uniquement entre les accolades du if
} else {
  int c = 3; // c existe uniquement entre les accolades du else
}
```

Faille de sécurité de type buffer overflow

- Il est possible de lire ou d'écrire en dehors des limites d'un tableau, cela peut causer des failles de sécurité appellées buffer overflow
- Pour éviter ce problème, il faut toujours contrôler les limites des tableaux avant d'écrire dedans

Placement des variables dans la mémoire

- Lors des exemples du cours, pour des raisons de simplicité, les variables étaient arrangées dans la mémoire dans l'ordre dans lequel elles étaient déclarées
- Cela n'est pas toujours le cas. Le langage C n'impose pas d'ordre pour les variables dans la mémoire
- Ainsi, pour des raisons de sécurité (évoquées dans la slide précédente) ou de performance, le compilateur est libre de réorganiser la position des variables dans la mémoire.

Mise en pratique

```
printf("
      < TP 2 >
               (00)\_
                        )\/\
```