Baeten, J., and B. Boerboom. " Ω can be anything it should not be." Indagationes Mathematicae, vol. 82 (1979), pp. 111-120.

MATHEMATICS

Ω Can be anything it should not be

by J. Baeten and B. Boerboom

Mathematical Institute, University of Utrecht

Communicated by Prof. A. S. Troelstra at the meeting of September 30, 1978

ABSTRACT

Let Ω be the λ -term $(\lambda x.xx)$ $(\lambda x.xx)$. Correcting and supplementing Jacopini [1975], it will be shown by a prooftheoretical argument that $\operatorname{Con}(\lambda \eta + \Omega = M)$ for an arbitrary closed λ -term M.

By changing the pairing function in the graphmodel $P\omega$, cf. Scott [1975], it will be shown that for arbitrary closed M one may have $P\omega \models = \Omega = M$, giving a model theoretic proof of $\text{Con}(\lambda + \Omega = M)$.

§ 1. PROOFTHEORETICAL PROOF OF Con $(\lambda \eta + \Omega = M)$

In this paper we use the notation as in Barendregt [1977]. In this section we follow the line of argument as given in Jacopini [1975] to show that for an arbitrary closed λ -term M Con $(\lambda \eta + \Omega = M)$.

- In 1.1-1.7 we give a criterion for Con $(\lambda \eta + M = N)$, and in the rest of this section we use this to show that Con $(\lambda \eta + \Omega = M)$ for $M \in \Lambda^0$.
- 1.0 NOTE: Throughout this section all our reasoning takes place in the theory $\lambda \eta$, so when writing M = N, we mean $\lambda \eta \vdash M = N$.
- 1.1 DEF.: Let $X, Y, U, V \in \Lambda^0$, then $X \stackrel{UV}{\longleftrightarrow} Y$ iff $\mathcal{I}Q \in \Lambda^0$ QUV = X and QVU = Y.
 - 1.2 LEMMA: For all $X, Y, X', Y' \in \Lambda^0$:
- 1. $X \stackrel{vv}{\longleftrightarrow} X$

- 2. $X \stackrel{UV}{\longleftrightarrow} Y$, then $Y \stackrel{UV}{\longleftrightarrow} X$
- 3. $X \stackrel{UV}{\longleftrightarrow} Y$ and $X' \stackrel{UV}{\longleftrightarrow} Y'$, then $XX' \stackrel{UV}{\longleftrightarrow} YY'$
- 4. $U \stackrel{\nabla V}{\longleftrightarrow} V$

PROOF:

- 1. K(KX)UV = KXV = KXU = K(KX)VU
- 2. If QUV = X and QVU = Y, then $(\lambda xyz \cdot xzy)QUV = QVU = Y$ and $(\lambda xyz \cdot xzy)QVU = QUV = X$.
- 3. and 4. are equally simple.

1.3 DEF.:

- 1. $\overset{UV}{\rightleftharpoons}$ is the transitive closure of $\overset{UV}{\Longleftrightarrow}$, so $X\overset{UV}{\rightleftharpoons}Y$ iff $\mathcal{Z}_1, ..., Z_n \in \Lambda^0$, $n \geqslant 0$ such that $X \leftrightarrow Z_1 \leftrightarrow ... \leftrightarrow Z_n \leftrightarrow Y$.
- 2. lth $(X \sim Y) = n$, if in 1. n is chosen minimal. Notation: $X \sim Y$, e.g. $X \sim Y$ means $X \leftrightarrow Y$.
 - 1.4 LEMMA: For all $X, Y, Z, X', Y' \in \Lambda^0$:
- 1. $X \stackrel{vv}{\sim} X$
- 2. $X \stackrel{vv}{\sim} Y$, then $Y \stackrel{vv}{\sim} X$
- 3. $X \stackrel{vv}{\sim} Y$ and $X' \stackrel{vv}{\sim} Y'$, then $XX' \stackrel{vv}{\sim} YY'$
- 4. $X \stackrel{\overline{UV}}{\sim} Y$ and $Y \stackrel{\overline{UV}}{\sim} Z$, then $X \stackrel{\overline{UV}}{\sim} Z$
- 5. $X \stackrel{UV}{\sim} Y$, then $\lambda x \cdot X \stackrel{UV}{\sim} \lambda x \cdot Y$
- 6. U 💯 V

PROOF: 1, 2, 4, 5, 6 trivial.

3. By induction on max (lth $(X \sim Y)$, lth $(X' \sim Y')$).

CONCLUSION: $\frac{UV}{}$ is a congruence relation on $\Lambda^0 \times \Lambda^0$.

1.5 LEMMA: For all X, Y, U, $V \in \Lambda^0$: $X \stackrel{UV}{\sim} Y \Leftrightarrow \lambda \eta + U = V \vdash X = Y$.

PROOF: Trivial.

1.6 DEF.: U is separable from V, U sep V iff $T \stackrel{UV}{\sim} F$.

1.7 THM.: For $M, N \in \Lambda^0$: $M \operatorname{sep} N$ iff $-1 \operatorname{Con} (\lambda \eta + M = N)$.

PROOF:

 $M \operatorname{sep} N \Leftrightarrow T \xrightarrow{MN} F \Leftrightarrow \lambda \eta + M = N \vdash T = F \Leftrightarrow \neg \operatorname{Con}(\lambda \eta + M = N).$

18 DEF

1. $\underline{\Lambda}$ is a set of words over the following alphabet: $x_0, x_1, \ldots; \underline{\Omega}, \lambda, (,)$.

Note: $\underline{\Omega}$ is a special symbol, but $\Omega \equiv (\lambda x \cdot xx)(\lambda x \cdot xx)$.

2. $\underline{\Lambda}$ is inductively defined by: for $i \in \omega$ $x_i \in \underline{\Lambda}$; $\underline{\Omega} \in \underline{\Lambda}$; if $M, N \in \underline{\Lambda}$, then $MN \in \underline{\Lambda}$; if $M \in \underline{\Lambda}$, then $\lambda x M \in \underline{\Lambda}$.

3. $M \xrightarrow{\underline{\beta}\underline{\eta}} N$ if 1. $M \equiv C[(\lambda x P)Q]$ and $N \equiv C[P[x := Q]]$ 2. $M \equiv C[\lambda x P x]$ and $N \equiv C[P]$ $(x \notin FV(P))$ 3. $M \equiv C[\underline{\Omega}]$ and $N \equiv C[\underline{\Omega}]$

 $\xrightarrow[\beta\eta]{}$ is defined as the transitive and reflexive closure of $\xrightarrow[\beta\eta]{}$.

4. For a $\underline{\Lambda}$ -term we define |M| to be M without any underlining, and $M \simeq M' \Leftrightarrow |M| \equiv |M'|$.

In particular $\underline{\Omega} \simeq \underline{\Omega}$, for $|\underline{\Omega}| \equiv \underline{\Omega}$.

5. For $M \in \underline{\Lambda}$ we define $\phi_x : \underline{\Lambda} \to \Lambda$ for $x \notin FV(M)$ as follows:

 $M \equiv x_i$, then $\phi_x(x_i) \equiv x_i$

 $M \equiv \underline{\Omega}$, then $\phi_x(\underline{\Omega}) \equiv x$

 $M \equiv PQ$, then $\phi_x(PQ) \equiv \phi_x(P)\phi_x(Q)$

 $M \equiv \lambda x_i P$, then $\phi_x(\lambda x_i P) \equiv \lambda x_i \phi_x(P)$

With these definitions we can keep track of Ω 's in a Λ -term M, while reducing this term.

First we will obtain a version of the "Genericity Lemma" in 1.11.

1.9 LEMMA: Let $M, N \in \Lambda$ and $M' \subseteq \Lambda$, with $M \simeq M'$ and $M \xrightarrow{\beta\eta} N$, then there is a $N' \subseteq \Lambda$ such that $N \simeq N'$ and $M' \xrightarrow{\beta\eta} N'$.

PROOF: It is sufficient to show this for $M \xrightarrow{\beta n} N$.

Then the proof is easy by simulating the reduction of the redex in M in M'.

1.10 LEMMA: Let $M, N \in \Lambda$, and $M \xrightarrow{\underline{\beta}\underline{\eta}} N$, then $\phi_x(M) \xrightarrow{\beta\eta} \phi_x(N)$ (for $x \notin FV(MN)$)

PROOF: By induction on $-\frac{1}{\beta \underline{\eta}}$: in the reduction $M \xrightarrow{\beta \underline{\eta}} N$ replace the constant $\underline{\Omega}$ everywhere by the fresh variable x.

1.11 THM.: (Version of the Genericity Lemma). Let $GQ \xrightarrow[\beta\eta]{} N$ and N in $\beta\eta$ -normal form, then for all $M \in \Lambda$ $GM \xrightarrow[\beta\eta]{} N$.

PROOF: By lemma 1.9 we have: there is a $N' \subseteq \Lambda$, such that $GQ \xrightarrow{\beta\underline{\eta}} N'$ and $N \simeq N'$.

By lemma 1.10: $\phi_x(G\underline{\mathcal{Q}}) \xrightarrow{\beta\eta} \phi_x(N')$. Now $\mathcal{Q} \notin N$ hence $N \equiv N'$ and $N' \equiv \phi_x(N')$. Therefore $Gx \xrightarrow{\beta\eta} N$ for $x \notin FV(G)$, hence $GM \xrightarrow{\beta\eta} N$, for all M.

1.12 LEMMA: Let $M, N \in \underline{\Lambda}$, then $M \simeq N \Rightarrow \mathcal{A}C(x_0, x_1, x_2)$ $(x_0, x_1, x_2 \in FV(C))$ such that $C[x_0:=x, x_1:=x, x_2:=\Omega] \equiv \phi_x M$ and $C[x_0:=x, x_1:=\Omega, x_2:=x] \equiv \phi_x N$.

PROOF: It is obvious that M is identical with N, except for the occurrences of Ω and $\underline{\Omega}$. Now we will consider M and N as contexts of Ω and $\underline{\Omega}$, where every occurrence of Ω and $\underline{\Omega}$ is mentioned.

We have e.g. $M \equiv C'[\Omega, \Omega, \underline{\Omega}, \underline{\Omega}, \ldots]$ and $N \equiv C'[\Omega, \underline{\Omega}, \Omega, \underline{\Omega}, \ldots]$ (with $x \notin FV(MN)$), giving us: $\phi_x M \equiv C'[\Omega, \Omega, x, x, \ldots]$ and $\phi_x N \equiv C'[\Omega, x, \Omega, x, \ldots]$.

We can now distinguish between four cases:

- 1. an occurrence of x in $\phi_x M$, where in the corresponding place in $\phi_x N$ occurs a x.
- 2. an occurrence of x in $\phi_x M$, where in the corresponding place in $\phi_x N$ occurs an Ω .
- 3. an occurrence of Ω in $\phi_x M$, where in the corresponding place in $\phi_x N$ occurs a x.
- 4. an occurrence of Ω in $\phi_x M$, where in the corresponding place in $\phi_x N$ occurs an Ω .

Now substitute "fresh" variables x_0 , x_1 , x_2 in $\phi_x M$ and $\phi_x N$ respectively for occurrences of 1, 2 and 3.

This gives the desired C. (In the example: $C(x_0, x_1, x_2) \equiv C'[\Omega, x_2, x_1, x_0, \dots]$.)

1.13 LEMMA: If $C_0[\Omega] = C_1[\Omega]$, then there is a C such that

$$C_0[x] \xrightarrow{\beta\eta} C[x_0 := x, x_1 := x, x_2 := \Omega], \text{ and}$$

$$C_1[x] \xrightarrow{\beta\eta} C[x_0 := x, x_1 := \Omega, x_2 := x].$$

PROOF: By the Church-Rosser theorem we obtain for some Z

$$C_0[\Omega] \xrightarrow{\beta\eta} Z$$
 and $C_1[\Omega] \xrightarrow{\beta\eta} Z$.

By lemma 1.9:

 \simeq being an equivalence relation on $\underline{\Lambda} \times \underline{\Lambda}$, $\phi_x(C_0[\underline{\Omega}]) \xrightarrow{\beta\eta} \phi_x M$, $\phi_x(C_1[\underline{\Omega}]) \xrightarrow{\beta\eta} \phi_x N$ and $M \simeq N$ hold.

Then lemma 1.12 gives us the desired result.

1.14 DEF.: Let $X, Y, U, V \in \Lambda^0$, then $X \xrightarrow{UV} Y \Leftrightarrow Y \xleftarrow{UV} X \Leftrightarrow \mathcal{I}P \in \Lambda^0 \ (PU = X \text{ and } PV = Y).$

1.15 LEMMA:

- 1. If $T \stackrel{U\Omega}{\longleftarrow} Z$, then T = Z (for $U, Z \in \Lambda^0$)
- 2. If $Z \xrightarrow{v\Omega} F$, then Z = F.

PROOF:

- 1. Suppose $T \stackrel{U\Omega}{\longleftarrow} Z$, then $\mathcal{I}P$ PU = Z and $P\Omega = T$. Now apply theorem 1.11, T in $\beta\eta$ -normal form. Then $PM \xrightarrow{\beta\eta} T$ for all M, hence PU = T.
- 2. Analogous.

1.16 LEMMA:

1.
$$X \stackrel{\mathcal{U}\mathcal{V}}{\longleftrightarrow} Y \Rightarrow \mathcal{Z}(X \stackrel{\mathcal{U}\mathcal{V}}{\longleftarrow} Z \stackrel{\mathcal{U}\mathcal{V}}{\longrightarrow} Y)$$
 (for $X, Y, Z \in \Lambda^0$)

$$2. \quad X \xrightarrow{U\Omega} Z \xleftarrow{U\Omega} Y \Rightarrow X \xleftarrow{U\Omega} Y.$$

PROOF:

- 1. Suppose there is a Q such that QUV = X and QVU = Y, then define $Z \equiv QUU$, $P \equiv QU$ and $P' \equiv \lambda x \cdot QxU$. Then $PU \equiv QUU \equiv Z$ and $PV \equiv QUV = X$, so $X \stackrel{UV}{\longleftarrow} Z$, and also $P'U \equiv (\lambda x \cdot QxU)U = QUU \equiv Z$ and $P'V \equiv (\lambda x \cdot QxU)V = QVU = Y$, so $Z \stackrel{UV}{\longrightarrow} Y$.
- 2. Suppose there are P, P' such that PU = X, $P\Omega = Z$ and P'U = Y, $P'\Omega = Z$, so $P\Omega = P'\Omega$. By lemma 1.13

$$Px \xrightarrow{\beta x} C[x_0 := x, x_1 := x, x_2 := \Omega]$$

and

$$P'x \xrightarrow{\beta_{\mathcal{D}}} C[x_0 := x, x_1 := \Omega, x_2 := x]$$

for certain C.

Therefore

$$PU = C[x_0 := U, x_1 := U, x_2 := \Omega]$$

and

$$P'U = C[x_0 := U, x_1 := \Omega, x_2 := U].$$

Now define $Q \equiv \lambda xyC[x_0:=U, x_1:=x, x_2:=y]$.

Then

$$QUQ \equiv (\lambda x y C[x_0:=U, x_1:=x, x_2:=y])UQ = C[x_0:=U, x_1:=U, x_2:=Q] = PU = X$$

and

$$Q\Omega U = C[x_0 := U, x_1 := \Omega, x_2 := U] = P'U = Y,$$

hence $X \stackrel{\nabla\Omega}{\longleftrightarrow} Y$.

1.17 LEMMA: $\neg T \stackrel{U\Omega}{\sim} F$ (for any $U \in \Lambda^0$).

PROOF: We show by induction on $n: \neg T \stackrel{va}{\sim} F$.

1. n=0. $T \stackrel{V\Omega}{\longleftrightarrow} F$, then by 1.16.1 for some Z $T \stackrel{V\Omega}{\longleftrightarrow} Z \stackrel{V\Omega}{\longrightarrow} F$, hence by 1.15 T=Z and Z=F, so T=F, and that is a contradiction. Hence $\neg T \Leftrightarrow F$.

2. n > 0. Suppose $T \stackrel{\text{U.S.}}{\stackrel{\circ}{n}} F$, then $\mathcal{I}Z_1, \ldots, Z_n T \leftrightarrow Z_1 \leftrightarrow \ldots \leftrightarrow Z_n \leftrightarrow F$, and by 1.16.1 $\mathcal{I}W_1, \ldots, W_{n+1} T \leftarrow W_1 \to Z_1 \leftarrow \ldots \to Z_n \leftarrow W_{n+1} \to F$. By 1.15 $T = W_1$ and $W_{n+1} = F$, so this reduces the chain to:

$$T \to Z_1 \leftarrow W_2 \to \ldots \leftarrow W_n \to Z_n \leftarrow F$$
,

and by 1.16.2 $T \leftrightarrow W_2 \leftrightarrow ... \leftrightarrow W_n \leftrightarrow F$, so $T \underset{n-1}{\sim} F$, and this contradicts the induction hypothesis.

1.18 THM.: For all $M \in \Lambda^0$ Con $(\lambda \eta + \Omega = M)$.

PROOF: Let $M \in \Lambda^0$. Suppose M sep Ω . Then by 1.6 $T \stackrel{M\Omega}{=} F$ contradicting 1.17. Therefore -1 M sep Ω and hence by 1.7 Con $(\lambda \eta + \Omega = M)$.

1.19 REMARK

1. It is not the case that, if P is unsolvable, then Con $(\lambda + P = M)$ for all $M \in \Lambda^0$.

Take e.g. $P \equiv YK$ (the fixed-point of K), then Px = KPx = P, hence $P = I \vdash x = Ix = Px = P$ for all x, contradiction.

2. Jacopini [1975] gives an example of an unsolvable P, which is of order 0 (a term P is of order 0 iff P does not reduce to a term of the form λxQ), such that \neg Con $(\lambda + P = I)$: let $\omega_3 \equiv \lambda x \cdot xxx$, and $P \equiv \omega_3\omega_3 \equiv \Omega_3$, then: $I = \Omega_3 \vdash I = \omega_3\omega_3 = \omega_3\omega_3\omega_3 = \Omega_3\omega_3 = I\omega_3 = \omega_3$, and it is not difficult to derive a contradiction from $\lambda x \cdot x = \lambda x \cdot xxx$. (Cf. Böhm [1968]).

§ 2. MODELTHEORETICAL PROOF OF Con $(\lambda + \Omega = M)$

For all $M \in \Lambda^0$, we will define a bijective pairing function C_M , such that $P\omega$, $C_M \models \Omega = M$.

- 2.1 Some definitions and remarks in connection with P_{ω} :
- 1. $e_n = \{x_0, \ldots, x_k\}$ iff $n = \sum_{i=0}^k 2^{x_i}$ and $x_0 < x_1 < \ldots < x_k$.
- 2. The letter C will be reserved for bijective pairing-functions: $\Omega \times \Omega \to \Omega$. C^* is the "ordinary" pairing: $C^*(n, m) = \frac{1}{2}(n+m)(n+m+1) + m$.
- 3. Abstraction and application in $P\omega$, given a pairing C: if $f: P\omega^{n+1} \to P\omega$ is continuous, then $\lambda^*x\cdot f(x,\overline{y}) = \{C(n,m)|m\in f(e_n,\overline{y})\}$; if $u,x\in P\omega$, then $u\cdot x = \{m| \exists n\ e_n\subseteq x\ \text{and}\ C(n,m)\in u\}\in P\omega$.
- 4. Interpretation from λ to $P\omega$, given C and a valuation ϱ (by induction): $[x]_{C}^{\varrho} = \varrho(x)$; $[MN]_{C}^{\varrho} = [M]_{C}^{\varrho} \cdot [N]_{C}^{\varrho}$; $[\lambda x \cdot M]_{C}^{\varrho} = \lambda^{*}d \cdot [M]_{C}^{\varrho(x/d)}$.
- 5. By definition of e_n and C^* : if $e_q \subseteq e_k$, then $q \leqslant k$; if $m \in e_k$ then m < k; if $C^*(a, b) = c$, then $c \geqslant a$ and $c \geqslant b$. If $C^*(a, b) = c$, we call a = Ic and b = Jc.

2.2 LEMMA:

- 1. If $a \in [\Omega]_C$, then $\mathcal{I}k(C(k, a) \in e_k)$.
- 2. If $e_k = \{C(k, a)\}$, then $a \in [\Omega]_C$.

PROOF:

- 1. Suppose $a \in [\Omega]_C$. Let $\omega = [\lambda x \cdot xx]_C$. By 2.1.3 $\mathcal{I}k(e_k \subseteq \omega \text{ and } C(k, a) \in \omega)$. Let $k_0 = \mu k[e_k \subseteq \omega \text{ and } C(k, a) \in \omega]$ ("the smallest k such that . . ."). $C(k_0, a) \in \omega \Rightarrow a \in e_{k_0} \cdot e_{k_0} \Rightarrow \mathcal{I}q(e_q \subset e_{k_0} \text{ and } C(q, a) \in e_{k_0})$. Hence $e_q \subseteq \omega$ and $C(q, a) \in \omega$, so $k_0 \leqslant q$ by the minimality of k_0 ; and by 2.1.5 $q \leqslant k_0$, i.e. $q = k_0$, therefore $C(k_0, a) \in e_{k_0}$.
- 2. Suppose $e_k = \{C(k, a)\}$, then $e_k \subseteq e_k$ and $C(k, a) \in e_k$, so $a \in e_k \cdot e_k$, i.e. $C(k, a) \in \omega$. Therefore $e_k \subseteq \omega$, and $a \in [\Omega]_C$.

2.3 COR.: $[\Omega]_{C*} = \emptyset$.

PROOF: By 2.2.1 and 2.1.5. Cf. Scott [1975].

- 2.4 LEMMA: If $A \subseteq \mathbf{\Pi}$, then there is a pairing C_A such that $[\Omega]_{C_A} = A$.

 PROOF:
- 1. If $A = \emptyset$, then $[\Omega]_{C*} = \emptyset = A$. Define $C_A = C^*$.
- 2. If $A \neq \emptyset$, then let $\{a_i | i \in \mathbf{\Omega}\}$ be an enumeration (possibly with repetitions) of the elements of A. We define C_A in stages, by interchanging values of C^* .

Step 0: if $C^*(1, a_0) = p_0$, define $C_A(1, a_0) = 0$ and $C_A(0, 0) = p_0$; step n, for n > 0: let k' be the smallest k such that $C_A(2^k, a_n)$ or $C_A(Ik, Jk)$ is not yet defined in any of the previous steps. Then define $C_A(2^{k'}, a_n) = k'$ and $C_A(Ik', Jk') = C^*(2^{k'}, a_n)$. For all pairs (p, q), such that $C_A(p, q)$ is not defined in any of the steps above, define $C_A(p, q) = C^*(p, q)$.

Clearly this definition makes C_A a bijective pairing.

- a. Let $m \in \mathbb{N}$. By step m, there is a $k \in \mathbb{N}$ such that $C_A(2^k, a_m) = k$. By $2.1.1 \ e_{2^k} = \{k\}$, so by $2.2.2 \ a_m \in [\Omega]_{C_A}$. Therefore $[\Omega]_{C_A} \supseteq A$.
- b. If $a \in [\Omega]_{C_A}$, then by 2.2.1 $\mathcal{I}k$ $C_A(k, a) \in e_k$. By 2.1.5 $C_A(k, a) < k$, so $C_A(k, a) < C^*(k, a)$. Let $C_A(k, a)$ be defined in step i. It follows easily that $a = a_i$, so $[\Omega]_{C_A} \subseteq A$.

a and b give $[\Omega]_{C_A} = A$, in all cases.

In 2.5 and 2.6, we will formulate a finiteness condition, in order to be able to construct C_M for each $M \in \Lambda^0$, such that $[\Omega]_{C_M} = [M]_{C_M}$.

- 2.5 DEF.: Let $M \in \Lambda$, ϱ be a valuation, and $a \in \Omega$. Then:
- 1. $P: \mathbf{\Omega} \times \mathbf{\Omega} \to \mathbf{\Omega}$, an injective partial function with a *finite* domain, is called a *forcing condition*.
- 2. When P is a forcing condition, then $P \parallel a \in [M]^e$ (P forces $a \in [M]^e$), iff for all pairings C, if $C \supseteq P$, then $a \in [M]^e$.
- 2.6 THM.: Let $M \in \Lambda$, ϱ be a valuation, C a pairing, and $a \in \mathbb{N}$. Then: if $a \in [M]^{\varrho}$, then there is a forcing condition P such that $P \subseteq C$ and $P \Vdash a \in [M]^{\varrho}$.

PROOF: By induction on the structure of M:

1. $M \equiv x$. Then $[x]_c^{\varrho} = \varrho(x)$. Suppose $a \in \varrho(x)$. This is independent of C,

so if $a \in [M]_c^p$, then for all pairing C', $a \in [x]_c^p$. Then $\emptyset \Vdash a \in [x]_c^p$ follows.

2. $M \equiv \lambda x \cdot R$, and suppose the theorem is proven for R. Then

$$[M]_{C}^{\varrho} = \lambda * d \cdot [R]_{C}^{\varrho(x/d)} = \{C(n, m) | m \in [R]_{C}^{\varrho(x/e_{n})}\}.$$

Suppose $a \in [M]$. $\exists n, m(a = C(n, m) \text{ and } m \in [R]_{\mathcal{C}}^{\varrho(x/e_n)})$. By induction there is a forcing condition $P \subseteq C$ with $P \models m \in [R]^{\varrho(x/e_n)}$. Define $P^* = P \cup \{(n, m, a)\}$. Clearly P^* is a forcing condition, $P^* \subseteq C$, and $P^* \models m \in [R]^{\varrho(x/e_n)}$. Now if $C' \supseteq P^*$ is a pairing, then $m \in [R]_{\mathcal{C}}^{\varrho(x/e_n)}$, and $C'(n, m) = a \in [M]_{\mathcal{C}}^{\varrho}$, so $P^* \models a \in [M]^{\varrho}$.

3. $M \equiv RQ$, and suppose the theorem is proven for R and Q. Now

$$[M]_C = [R]_C \cdot [Q]_C = \{m | \mathcal{I}_n \ e_n \subseteq [Q] \ \text{and} \ C(n, m) \in [R]\}.$$

Suppose $a \in [M]$, then for some $n, q e_n = \{x_0, ..., x_k\} \subseteq [Q]$ and $C(n, a) = q \in [R]$. Then by induction there are forcing conditions $P_0, ..., P_k, P_{k+1}$ such that $P_i \subseteq C$ $(0 \leqslant i \leqslant k+1)$ and $P_i \models x_i \in [Q]$ $(0 \leqslant i \leqslant k)$ and $P_{k+1} \models q \in [R]$. Define $P = \bigcup_{i=1}^{k+1} P_i \cup \{(n, a, q)\}$. Clearly P is a forcing condition and $P \subseteq C$. Also $P \models x_i \in [Q]$ $(0 \leqslant i \leqslant k)$ and $P \models q \in [R]$. Now, if $C' \supseteq P$ is a pairing, then $e_n = \{x_0, ..., x_k\} \subseteq [Q]_{C'}$ and $q \in [R]_{C'}$ and C'(n, a) = q, so $a \in [M]_{C'}$

2.7 REMARK: We want a pairing C_M such that $[\Omega]_{C_M} = [M]_{C_M}$ (for $M \in \Lambda^0$). The construction of 2.4 is not sufficient now, because the set $[M]_C$ changes, when C changes.

2.6 gives us the solution: $a \in [M]_C$ is forced by a finite $P \subseteq C$, so when we define C' such that $C'(2^m, a) = m$ for a certain $m \in \Omega$ and still $C' \supseteq P$, we will have $a \in [M]_{C'}$ and $a \in [\Omega]_{C'}$. Then we can proceed with the "next" element in [M]. In detail, we do this in 2.8.

2.8 DEF.:

- 1. By induction we define $a_n \in \Omega \cup \{\frac{1}{2}\}$, pairings C_n and forcing conditions P_n for each $M \in \Lambda^0$, such that for $n \leq k$ $P_n \subseteq C_k$, for all n $P_n \subseteq P_{n+1}$ and, if $a_n \neq \frac{1}{2}$, $P_n \models a_n \in [M]$.
- a. n = 0. Define $a_0 = \frac{1}{2}$, $C_0 = C^*$ and $P_0 = \emptyset$.
- b. n > 0. Suppose a_{n-1} , C_{n-1} and P_{n-1} defined. Then: case 1: $[M]_{C_{n-1}} \subset \{a_1, ..., a_{n-1}\}$. Define $a_n = a_{n-1}$, $C_n = C_{n-1}$, $P_n = P_{n-1}$. case 2: $[M]_{C_{n-1}} \not \in \{a_1, ..., a_{n-1}\}$. Define $a_n = \mu x [x \in [M]_{C_{n-1}} \{a_1, ..., ..., a_{n-1}\}]$. By 2.6 there is a forcing condition Q such that $Q \models a_n \in [M]$ and $Q \subseteq C_{n-1}$. Let

$$q = \mu x [x \notin \text{Ran} (P_{n-1} \cup Q) \text{ and } (2^x, a_n) \notin \text{Dom} (P_{n-1} \cup Q)];$$

q exists, because $P_{n-1} \cup Q$ is finite.

Define $C_n(x, y) = C_{n-1}(x, y)$ if $(x, y) \neq (2^q, a_n)$ and $(x, y) \neq (Iq, Jq)$; $C_n(2^q, a_n) = q$ and $C_n(Iq, Jq) = C*(2^q, a_n)$.

Define $P_n = P_{n-1} \cup Q \cup \{(2^q, a_n, q), (Iq, Jq, C^*(2^q, a_n))\}.$

Note that in both cases C_n is a bijective pairing, P_n a forcing condition and the conditions mentioned above hold.

- 2. Define C_M by $C_M(x, y) = \lim_{n \to \infty} C_n(x, y)$. Result: $P_n \subseteq C_M$ for all n.
 - 2.9 LEMMA: C_M is well-defined and a bijective pairing.

PROOF: Let $x, y \in \Omega$. If $C_n(x, y) = C^*(x, y)$ for all $n \in \Omega$, trivially $C_M(x, y) = C^*(x, y)$. If that is not the case, there is a k > 0 such that $(x, y) \notin \text{Dom } P_{k-1}$ but $(x, y) \in \text{Dom } P_k$, by 2.8.

Hence $C_i(x, y) = C^*(x, y)$, if $0 \le i \le k-1$, and $C_i(x, y) = C_k(x, y)$ for i > k by the condition for q in 2.8. So $C_M(x, y) = C_k(x, y)$.

Therefore is $C_n(x, y)$ for all x and y eventually constant, and is C_M well-defined. It is easily checked that C_M is bijective.

2.10 LEMMA: For all $a, q \in \Omega$ $\{(2^q, a, q)\} \mid \vdash a \in [\Omega]$.

PROOF: $e_{2q} = \{q\}$, so if $C(2^q, a) = q$, or $C \supseteq \{(2^q, a, q)\}$ for a certain pairing C, then $a \in [\Omega]_C$ by 2.2.2.

- 2.11 THM.: For all $M \in \Lambda^0$ $[\Omega]_{C_M} = [M]_{C_M}$ (C_M as defined in 2.8). PROOF:
- a. We claim $[M]_{C_M} = \{a_i | i \in \mathbb{N}\} \{\frac{1}{2}\}\ (a_i \text{ as defined in } 2.8).$
- 1. Let $i \in \Omega$ and $a_i \neq \frac{1}{2}$. Then $P_i \mid \vdash a_i \in [M]$ and $P_i \subseteq C_k$ for $k \geqslant i$ by 2.8, hence $P_i \subseteq C_M$, thus $a_i \in [M]_{C_M}$ by 2.9.
- 2. Suppose $a \in [M]_{C_M}$. By 2.6 there is a forcing condition $P \subseteq C_M$ such that $P \mid \mid -a \in [M]$. Since for all $x, y \ C_n(x, y)$ is eventually constant and P is finite, $\mathcal{I}i_0 \in \mathbf{n} \ Vk > i_0 \ (C_k \supseteq P \ \text{and} \ a \in [M]_{C_k})$.

Now if for certain $k > i_0$ case 1 in 2.8 holds, i.e. $[M]_{C_k} \subseteq \{a_1, ..., a_k\}$, then $a = a_i$ for certain $i \in \mathbb{N}$.

Now, suppose on the contrary that for every $k > i_0$ case 2 holds. Then $a_{i_0+1}, a_{i_0+2}, \ldots$ are all distinct, so there is a a_k in this sequence with $a_k > a$. Because we chose each a_i minimal, a itself must be in this sequence, so $a = a_i$ for certain $i \in \mathbf{\Omega}$. We conclude that in both cases $a \in \{a_i | i \in \mathbf{\Omega}\} - \{\frac{1}{2}\}$, i.e. $[M]_{C_M} \subseteq \{a_i | i \in \mathbf{\Omega}\}$. This proves claim a.

- b. We claim $[\varOmega]_{C_M} = \{a_i | i \in \mathbf{\Omega}\} \{\frac{1}{2}\}.$
- 1. Let $i \in \mathbb{N}$ and $a_i \neq \frac{1}{2}$. Then, for certain $q \in \mathbb{N}$, $(2^q, a_i, q) \in P_i$, and by 2.10 $P_i \mid \vdash a_i \in [\Omega]$. Hence, since $P_i \subseteq C_M$, $a_i \in [\Omega]_{C_M}$ by 2.9.
- 2. Suppose $a \in [\Omega]_{C_M}$. By 2.2.1 $\mathcal{I}k$ $(C_M(k, a) \in e_k)$, and by 2.1.5 $C_M(k, a) < k \leqslant C^*(k, a)$. By construction of C_n there is a $n \in \Omega$ such that $C^*(k, a) = C_n(k, a) > C_{n+1}(k, a) = C_M(k, a)$.

It follows by 2.8 that $(k, a) = (2^q, a_n)$, so $a = a_n$, and $[\Omega]_{C_M} \subseteq \{a_i | i \in \mathbb{N}\}$. This proves claim b.

- a and b together prove $[\Omega]_{C_M} = [M]_{C_M}$.
- 2.12 NOTE: The construction of C_M is not recursive.

REFERENCES

- Barendregt, H. P. The type free Lambda calculus, Handbook of Mathematical Logic, Editor J. Barwise, North Holland, Amsterdam, pages 1092–1132 (1977).
- Böhm, C. Alcune proprietà delle forme β - η -normali nel λ -K calcolo. Pubbl. IAC CNR n. 696, Roma, 1968.
- Jacopini, G. λ -Calculus and Computer Science Theory, Editor C. Böhm, Lecture Notes in Computer Science, 37, pages 213–220 (1975).
- Scott, D. S. Lambda calculus and recursion theory, Proceedings Third Scandinavian Logic Symposium, North Holland, pages 154–193 (1975).