# Lecture 2 DSAA(H) Algorithm Analysis

Bo Tang @ SUSTech, Fall 2022

Several pages are based on the notes by Dr. Ken Yiu (PolyU) and Dr. Yufei Tao(CUHK)

## Our Roadmap

- RAM Computation Model
  - Memory, CPU, Algorithm
  - Algorithm, Pseudocode
- Worst Case Analysis
  - Binary Search Problem
  - Big O notation

## **RAM Computation Model**



## RAM Computation Model



## Memory

- A finite sequence of cells, each cell has the same number of bits.
- Every cell has an address: the first cell of memory has address 0, the second cell 1, and so on.
- Store information for immediate use in a computer

Computer hardware devices



# Center Process Unit (CPU)

- Contains a fixed number of registers
- Basic (atomic) operations
  - Initialization
    - Set a register to a fixed values (e.g., 100, 1000, etc.)
  - Arithmetic (ALU)
    - Take integers a, b stored in two registers, calculate one of {+, -, \*, /} and store the result in a register
  - Comparison / Branching
    - Take integers a, b stored in two registers, compare them, and learn which of {a<b, a=b, a>b} is true.
  - Memory Access
    - Take a memory address A currently stored in a register, Do the READ (i.e., load data from memory) or WRITE (i.e., flush data to memory) operator

## Algorithm Analysis

- Algorithm
  - A sequence of basic operations
- Algorithm Analysis
  - Cost analysis
    - Algorithm cost (running time) is the length of the sequences, i.e., the number of basic operations
    - My algorithm is correct, why my submission is TLE?
    - · Is your algorithm fast?
      - $\,\,^{^{\circ}}$  Focus on the order of growth (how the running time grows for large n)
  - Unless otherwise stated, we refer algorithm analysis as cost analysis in CS203, but it includes correctness analysis in CS217.

## Example I: Summation

- Problem: given integer n, calculate 1+2+3+...+n
- Algorithm:
  - Initialize variable a to 1, b to n, c to 0
  - Repeat the following until a > b:
    - Calculate c plus a, and store the result to c.
    - Calculate a plus 1, and store the result to a.
- Cost of the algorithm:
  - 3 + n + n + n = 3n + 3
- Which atomic operations are performed?
- Algorithm is described by English words

# Example II: Summation

- **Problem**: given integer n, calculate 1+2+3+...+n
- Cost of the above algorithm: 3n + 3
- Can we make it faster?
- In our middle school math course:

$$1+2+3+...+n = (1+n)*n / 2$$

## Algorithm Correctness Analysis

- Correctness analysis
- Wrong Answer
  Wrong Answer
- I have passed all test cases, why is still WA?
- It is not enough even if you have tested your algorithm on many instances
  - · Will your algorithm fail on some other instances?
- Proof your algorithm is correct
- Guarantee your implementation is correct
- Software testing is an individual course in other many Universities
  - We will not introduce software testing techniques in this course.

#### Example I: Summation

#### Algorithm:

```
    load n from memory to register b
    register a ← 1, c ← 0
    repeat
    c ← c + a
    a ← a + 1
    until a > b
    return c
```

- The above is pseudocode, it serves the purpose of express (without ambiguity) how our algorithm runs.
- Pseudocode does not reply on any particular programming language

# Example II: Summation

#### Algorithm:

```
    load n from memory to register b
    register a ← 1
    a ← a + b
    a ← a * b
    a ← a / 2
    return a
```

#### • Cost of the algorithm = 5

- This is significantly faster than the previous algorithm
- The time of the previous algorithm increases linearly with n
- The time of this algorithm remains constant with *n*

## Our Roadmap

- RAM Computation Model
  - Memory, CPU, Algorithm
  - Algorithm, Pseudocode



- Worst Case Analysis
  - Binary Search Problem
  - Big O notation

#### Search Problem

- An array A of n integers have been sorted in ascending order. Design an algorithm to determine whether given value t exists in A.
- Example



- t = 16, the result is "TRUE"
- t = 17, the result is "FALSE"

#### Search Problem

- The First Algorithm
  - Simply read the value of A[i] for each  $i \in [1, n]$
  - If any of those cell equals to t, return "TRUE", otherwise return "FALSE"
- Pseudocode:
  - 1. variable i  $\leftarrow$  1
  - 2. Repeat
  - 3. if A[i] = t then
  - 4. return "TRUE"
  - 5.  $i \leftarrow i + 1$
  - 6. until i > n
  - 7. return "FALSE"

## Running Time of the First Algorithm

| A | 5 | 8 | 10 | 13 | 16 | 19 | 27 | 46 | 51 | 86 |
|---|---|---|----|----|----|----|----|----|----|----|
|---|---|---|----|----|----|----|----|----|----|----|

- How much time does the algorithm require?
  - If *t* is 5, the algorithm has running time = 3
  - If t is 6, the algorithm has running time = 4n + 1 = 41
- In computer science, it is an art to design algorithms with performance guarantees.
- What is the largest running time on the worst input with n integers?

## Worst-Case Running Time

The worst-case running time (or worst case cost) of an algorithm under a problem size n, is defined to be the largest running time of the algorithm on all the inputs of the same size n.

# Worst-Case Time of Search Problem

Our algorithm has worst-case time

f(n) = 4n + 1

- In other words, the algorithm will terminates with a cost at most 4n+1.
- This is a performance guarantee on every n
- Can we make it faster?
  - Binary search algorithm

## Binary Search Algorithm

- We utilize the fact that array A has been sorted in ascending order.
- Let us compare t to the element x in the middle of A
   (i.e., A[n/2])
  - If t = A[n/2], we have found t, return "TRUE", terminate
  - If t < A[n/2], we can ignore A[n/2+1] to A[n]
  - If t > A[n/2], we can ignore A[0] to A[n/2]
- In the 2<sup>nd</sup> and 3<sup>rd</sup> cases, we have at most n/2 elements. Then repeat the above on these left elements.

#### Binary Search Algorithm

| Α | 5 | 8 | 10 | 13 | 16 | 19 | 27 | 46 | 51 | 86 | t=27 |
|---|---|---|----|----|----|----|----|----|----|----|------|
| A | 5 | 8 | 10 | 13 | 16 | 19 | 27 | 46 | 51 | 86 | < t  |
| A |   |   |    |    |    | 19 | 27 | 46 | 51 | 86 | > t  |
|   |   |   |    |    |    |    |    |    |    |    | = t  |

# Binary Search Algorithm

- Binary Search in Pseudocode
  - 1. left  $\leftarrow$  1, right  $\leftarrow$  n
  - 2. repeat
  - 3.  $mid \leftarrow (left+right)/2$
  - 4. **if** (t = A[mid]) **then**
  - return TRUE
  - 6. else if (t < A[mid]) then
  - 7. right  $\leftarrow$  mid -1
  - 8. else
  - 9. left  $\leftarrow$  mid + 1
  - 10. until left > right
  - 11. return FLASE

## Worst-Case Time of Binary Search

- We call the elements from left to right as surviving elements
- Line 1: initialization: 2 basic operations
- Line 2 10: iteration, each iteration performs at most 9 basic operations
- Line 11: termination
- How many iterations in the algorithm?

# Worst-Case Time of Binary Search

- How many iterations in the algorithm?
  - ullet After the  ${\bf 1}^{st}$  iteration, the number of surviving elements is at most  ${\bf n/2}$
  - ullet After the  $2^{nd}$  iteration, the number of surviving elements is at most n/4
  - In general, after i-th iteration, the number of surviving elements is at mots n / 2<sup>1</sup>
  - Suppose that there are h iterations in total, it holds that h is the smallest integer satisfying (why?):

$$n/2^h < 1$$

- Then,  $h > log_2 n \rightarrow h = 1 + log_2 n$
- Thus, the worst case time of binary search is at most:

$$g(n) = 2 + 9h = 2 + 9(1 + \log_2 n)$$

 This is a performance guarantee that holds on all values of n.

#### Search Problem

- $\bullet$  Running time of two algorithms, with input size n
  - Algorithm 1: f(n) = 4n + 1 (operations)
  - Algorithm 2:  $g(n) = 9\log_2 n + 11$  (operations)
- Which algorithm is better?
  - Algorithm 2. Why?
  - We care about the running time at large input size
  - $\, \bullet \,$  Constant factors do not affect the order of growth

24

#### Asymptotic Analysis

- Running time of two algorithms, with input size n
  - Algorithm 1: f(n) = 4n + 1 (operations)
  - Algorithm 2:  $g(n) = 9\log_2 n + 11$  (operations)
- In computer science, we rarely calculate the time to such a level.
- We ignore all the constants, but only worry about the dominating term.
  - Why not constant? 10n VS. 5n? Which one is faster?
  - "it depends", 10n comparison, 5n multiplication
  - Why dominating term: 3n VS. log<sub>2</sub> n? Which one is faster
  - "log<sub>2</sub> n" is better than 3n in theoretical computer science

25

# Big-O notation

- Let f(n) and g(n) be two functions of n.
- We say that f(n) grows asymptotically no faster than g(n) if there is a constant  $c_1 > 0$  such that:

 $f(n) \le c_1 \cdot g(n)$  holds for all  $n \ge c_2$ .

- We denote this by f(n) = O(g(n))
- We say that 5n is considered equally fast as on with 10n, why?
- Big-O capture this by having both of following true (can you prove that?):

$$10n = O(5n)$$

5n = O(10n)

#### Big-O example

10000log<sub>2</sub> n is considered better than n. Big-O capture this by having both of following true:

$$10000\log_2 n = O(n)$$
  
 $n \neq O(10000\log_2 n)$ 

- Proof of  $10000log_2 n = O(n)$
- There are constants  $c_1 = 1$ ,  $c_2 = 2^{20}$  such that  $10000\log_2 n \le c_1 n$

holds for all  $n \ge c_2$ 

#### Big-O example

- Proof of  $n \neq O(10000\log_2 n)$
- We can proof it by contradiction. Suppose that are constant c<sub>1</sub>, c<sub>2</sub> such that

$$n \le c_1 \cdot 10000 \log_2 n$$

holds for all  $n \ge c_2$ . The above can be rewritten as:

$$\frac{n}{\log_2 n} \le c_1 \cdot 10000$$

however,  $\frac{n}{\log_2 n}$  tends to be  $\infty$  as n increases.

Therefore, the inequality cannot hold for all  $n \ge c_2$ 

#### Exercise

- Is  $(5n^2 + 3n) = O(n^2)$ ?
  - Fix c=6 and  $n_0=3$ , then prove  $f(n) \le c g(n)$ [note: other choices also possible]
- Is  $(5n^2 + 3n) = O(n^3)$ ?
- Is  $(5n^2 + 3n) = O(n)$ ?
- Proof the following statements:

$$10000 = O(1)$$

$$100\sqrt{n} + 10n = O(n)$$

$$1000n^{1.5} = O(n^2)$$

$$(\log_2 n)^3 = O(\sqrt{n})$$

 $log_a n = O(log_b n)$  for a>1, b>1

#### Asymptotic Analysis

- Henceforth, we will describe the running time of an algorithm only in the asymptotical (i.e., big-0) form, which is also called the algorithm's time complexity.
- Instead of saying the running time of binary search is  $g(n) = 8\log_2 n + 10$ , we will say  $g(n) = 0(\log n)$ , which captures the fastest-growing term in the running time. This is also the binary search's time complexity.

28

30

# Worst-Case of Algorithms

| Con           | nplexity      | Algorithm                                          |  |  |  |  |
|---------------|---------------|----------------------------------------------------|--|--|--|--|
| 0(1)          | Constant time | E.g., Compare two numbers                          |  |  |  |  |
| $O(\log n)$   | Logarithmic   | E.g., Binary search (on a sorted array)            |  |  |  |  |
| O(n)          | Linear time   | E.g., Search (on a unsorted array)                 |  |  |  |  |
| $O(n \log n)$ |               | E.g., Merge sort                                   |  |  |  |  |
| O(n2)         | Quadratic     | E.g., Selection sort                               |  |  |  |  |
| O(n3)         | Cubic         | E.g., Matrix multiplication                        |  |  |  |  |
| 0(2")         | Exponential   | E.g., Brute-force search on boolean satisfiability |  |  |  |  |
| O(n!)         | Factorial     | E.g., Brute-force search on traveling salesman     |  |  |  |  |

## Big- $\Omega$ notation

- Let f(n) and g(n) be two functions of n.
- We say that f(n) grows asymptotically no slower than g(n) if there is a constant  $c_1 > 0$  such that:  $f(n) \ge c_1 \cdot g(n)$

holds for all  $n \ge c_2$ .

- We denote this by  $f(n) = \Omega(g(n))$
- Examples:
  - $\log_2 n = \Omega(1)$
  - $0.001n = \Omega(\sqrt{n})$

#### Big-Θ notation

- Let f(n) and g(n) be two functions of n.
- If f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ , then we define:  $f(n) = \Theta(g(n))$  to indicate f(n) grows asymptotically as fast as g(n)
- Examples:
  - $0.000 + 30 \log n + 1.5\sqrt{n} = \Theta(\sqrt{n})$

33