TP 1

Outils et Concepts de base

1.1 Objectifs

- Utiliser ChemCompute, Gamess, un éditeur de texte, un tableur
- Visualiser des OM
- Visualiser des Vibrations, Translation, Rotation
- Corriger l'énergie "électronique" avec la ZPE.

1.2 Déroulé

Cette session démarre avec 1h en salle de TD pour discuter des éléments du fascicule de (TD et Concepts) : TD1 Exercices 1 et 2 TD2 Exercices 5, 7 et 8

Ensuite la pratique (3h) s'appuie entièrement sur un tutorial de ChemCompute : [Gamess Information & Experiments].

Dans les menus de ChemCompute (à droite) suivre

- GAMESS Experiments (15)
- étendre le sous menu "Physical Chemistry"
- sélectionner le "Lab Experiment" du sous-menu "Molecular Orbitals, Vibrational Spectra, and Relative pKa Calculations"

1.2.1 Modifications générale par rapport aux menus

Durant votre travail vous suivez les directives donnée sur ChemCompute, vous ferez attention aux points suivants :

- Sauf mention contraire, on décochera la case "Use Symmetry"
- Le bouton "Next" permet de passer du "3D panel" au "Set Parameter"
- Toujours visualiser le fichier d'entrée que vous allez soumettre : appuyer sur le bouton gris "Optional : Edit input file".
- Reporter le numéro de job et les résultats dans un fichier tableur de travail (évitez d'utiliser une calculatrice).

1.2.2 Travail spécifique (en + des consignes du site web)

(1) MO's of H2

- 1. Optimisez la molécule et demandez un calcul de thermodynamique
- 2. Dans les "Vibrations", dénombrez les translations, les rotations et dénombrez les vibrations.
- 3. Pour la visualisation des OM
 - Notez l'utilisation du cut-off.
 - Notez la présence de 4 orbitales moléculaires pour H₂. Discutez rapidement.
- 4. Avec le bouton "Thermo" faites apparaître les données de thermodynamique. Reportez vous à notre page "thermo" sur le site web des TP pour attribuer les grandeurs importantes telles que la correction "ZERO POINT ENERGY". Nous utiliserons cette correction "E" pour corriger l'énergie "électronique" (E_{el}) , Ce qui donne l'énergie interne à 0K U_0 . Vous utiliserez systématiquement U_0 dans les TP de cette année. Puisque l'on utilise toujours des différences

- d'énergies, et puisque les autres corrections sont essentiellement des constantes, on considèrera que les écarts d'énergie $\Delta U_0 = \Delta H_{298}$, et en phase gaz.
- 5. Téléchargez le fichier "out", ouvrez le avec un éditeur de texte (Notes ou SublimeText par exemple)
 - A la mention "**** EQUILIBRIUM GEOMETRY" Notez la décomposition de l'énergie en termes positifs (répulsion) ou négatifs.
 - Notez comment les orbitales sont écrites de façon littérale.
 - A la mention "THERMOCHEMISTRY AT T= " On retrouve les données de thermochimie vues plus haut.

(2) Benzene Part 1

— Notez que le calcul AM1 donne des OM assez pertinentes (contrairement à ce qu'annonce le texte)

(3) Benzene Part 2

— Garder la symétrie D_{6h} pour accélerer les calculs. En profiter pour remarquer que le fichier input ne contient que 2 atomes au lieu de 12. Expliquez.