Package 'LSKAT'

January 13, 2017

Type Package

Title SNP-set (Sequence) Kernel Association Test for longitudinal data.	
Version 0.5	
Date 2016-10-20	
Author Zhong Wang and Zuoheng Wang	
Maintainer Zhong Wang <zhong.wang@yale.edu></zhong.wang@yale.edu>	
Description Kernel based SNP set test for longitudinal data.	
License GPL (>= 2)	
Depends R (>= 2.12.1), SKAT, mvtnorm, snpStats, snowfall	
Suggested sn	
NeedsCompilation yes	
Repository CRAN	
Date/Publication 2016-10-20	
R topics documented:	
longskat_est_model	2
longskat_gene_plink	4
longskat_gene_simulate	7
longskat_gene_test	11
longskat_get_gene	
longskat_plink_load	
longskat_snp_plink	
longskat_snp_test	
plot.LSKAT.gen.plink	
plot.LSKAT.snp.plink	
summary.LSKAT.gen.plink	
summary.LSKAT.snp.plink	20
Index	21

2 longskat_est_model

```
longskat_est_model NULL model estimation
```

Description

Estimating the parameters and residuals for the NULL model in LSKAT.

Usage

```
longskat_est_model( phe.long,
    phe.cov,
    phe.time = NULL,
    time.cov = 0,
    intercept = FALSE,
    method = c("REML", "ML"),
    g.maxiter = 20,
    par.init = list(),
    verbose = F)
```

Arguments

phe.long	Phenotype matrix with m rows denoting the individuals and n columns denoting the time points, the row name indicates the individual's ID.
phe.cov	Time covariate matrix with m rows denoting individuals and x columns denoting the covariate variables, the row name indicates the individual's ID.
phe.time	Time point matrix with m rows denoting individuals and n columns denoting the time points, the row name indicates the individual's ID. If this matrix is not specified, the default matrix is generated.
time.cov	Numeric, indicating whether the time exponnents are included as extra covariates, The time points are used if 1, the time points and time squares are used if 2, and so on. The default value (0) doesn't use the time covariate.
intercept	Logical variable, indicating whether the intercept is estimated.
method	String, REML or ML are available for the parameter estimation.
g.maxiter	Numeric, the maximum count for the iterative estimation.
par.init	List, the initial values for the parameter rho, sig.a, sig.b, sig.e.
verbose	Logical variable, indicating whether some debug information can be outputted.

Value

This function returns an list object with model parameters and residuals of the NULL model which assumes there is no association between genes and longitudinal phenotypes.

The return object is a list with the following items:

```
par List, model paramters as shown in below.

likelihood Numeric, the likelihood value estimated by REML or ML.
```

longskat_est_model 3

phe.delt	Residual matrix with the row name indicating the individual's ID, the structure is same as phe.long.
phe.time	Time matrix, copied from the input parameter phe.time.
phe.cov	Covariate matrix, copied from the input parameter phe.cov.

The Model paramters: par has the following sub-items:

intercept	Logical variable copied from the input parameter, indicating the intercept is estimated.
mu	Numeric indicating the intercept value.
cov.effect	String indicating the coefficient of the covariates except intercept
sig.a	String indicating the standar deviation of individual random effects
sig.b	String indicating the standar deviation of individual-specific timede-pendent random effects.
sig.e	String indicating the standar deviation of measurement error.
rho	String indicating the corelation coefficient of covariance structure.
time.cov	Numeric, indicating whether consider times as covariate, 0 means no time effects, 1 means time effects, 2 means time effects and time square effects are included as covariates. and so on.
time.effect	Vector of numeric, the time coefficient of time effects. The 1st item is the coefficient for time effects, The 2nd item is the coefficient for time square effects and so on.

After obtaining the model parameters, please use the <code>longskat_gene_test</code> to test the association between gene and traits.

References

Wang Z., Xu K., Zhang X., Wu X., and Wang Z., (2016) Longitudinal SNP-set association analysis of quantitative phenotypes. Genetic Epidemiology.

```
## Data simulation using the default parameters
p0 <- longskat_gene_simulate();

## Estimating the model parameters and residuals
r.model0 <- longskat_est_model( p0$phe.long, p0$phe.cov, g.maxiter=3, verbose=T);

##print this model
print(r.model0);</pre>
```

4 longskat_gene_plink

```
longskat_gene_plink
```

LSKAT test for plink data set.

Description

This function provides a pipeline for the plink data set based on the LSKAT function. Except the plink data set(BED, BIM and FAM), SNP set table is same as SKAT package.

Usage

```
longskat_gene_plink(file.plink.bed,
    file.plink.bim,
    file.plink.fam,
    file.phe.long,
    file.phe.cov,
    file.phe.time = NULL,
    file.gene.set,
    gene.set = NULL,
    options = list())
```

Arguments

```
file.plink.bed
File name, PLINK bed file

file.plink.bim
File name, PLINK bim file

file.plink.fam
File name, PLINK fam file

file.phe.long
```

File name, indicating phenotype file in CSV format with row name (individual ID) and header information (Measured Index). Each individual is encoded to one row data which has individual ID as row name and multiple observed values followed by row name.

file.phe.cov File name, indicating covariate file in CSV format with row name (individual ID) and header information (Covariate Index). Each individual is encoded to one row data which has individual ID as row name and covariate values followed by row name

file.phe.time

File name, indicating measured times in CSV format with row name (individual ID) and header information (Measured Time). Each individual is encoded to one row data which has individual ID as row name and covariate values followed by row name.

file.gene.set

File name, indicating gene set table which has two columns, 1st column is gene name, 2nd column is variant name and no header.

gene.set numeric or string. indicating the gene name or gene index in the gene set table.

options String, see the details.

longskat_gene_plink 5

Details

The gene set file is same as the SetID file in SKAT packa which is white-space (space or tab) seperated file with 2 columns: SetID (1st column) and SNP_ID (2nd column), Please keep in mind that there should be no header!

The phenotype file, covariate file and measured time file are CSV files with header and row name(indicating the individual id), these 3 files should have same individual order. Please note that the columns in measured time file are corresponding to same columns in the phenotype file.

The options list has some important feature to tune the association test. The default values are defined in the package as the follows:

rare.cutoff Numeric, a value of MAF cutoff for the rare SNPs. Only SNPs that have MAFs smaller than this are considered as rare SNP. The default criterion of rare SNP is calculated by the formula $1/\sqrt{2*sample}$

time.cov Numeric, indicating which order of time is included as extra covariates. If this value is 2, time and time square are considered as extra covariates.

g.maxiter Number, indicating the number of maximum iteration is applied to MLE alogrithm.

weights.common a numeric vector of parameters of beta weights for common variants (default=c(0.5,0.5)).

weights.rare a numeric vector of parameters of beta weights for rare variants (default=c(1,25)).

run.cpp Logical, indicating whether C/C++ functions are used to compute LSKAT.

verbose Logical, indicating the computational process output much more information than normal mode.

snp.impute String, indicating the method of SNP imputation, the default model uses the mean of each variant to replace the missing SNP data. Two optional values: 'mean' or 'random'.

intercept Logical, indicating whether the intercept is considered in the NULL model.

plink.path String, indicating PLINK command path, for the large PLINK data, the package will load small plink data set extracted by the plink command rather than the whole data set.

test.type String, Three models can be selected, "joint", "Common.Only", "rare.Only".

est.method String, indicating the estimate method for NULL model, two options, REML or ML, default is REML.

6 longskat_gene_plink

Value

A list object with 3 items is returned by this function:

par The parameters of this function call.

mle The estimation of NULL Model returned by longskat_est_model, includ-

 $ing \ model \ parameters \ and \ residuals, \ please \ refer \ to \ the \ structure \ in \ \verb|longskat_est_model|.$

result Matrix containing the test result of LSKAT and L-burden for all genes, the sub-

items are described as follows.

The structure: of result item:

index	Number, gene index
gene.name	String, gene name
chr	Number, chromosome
min.pos	Number, minimum position of all variants
snp.total	Number, the total number of variants
snp.rare	Number, the number of rare variants.
q.lskat	Numeric, the statistical test of LSKAT
p.lskat	Numeric, the p-value of LSKAT
q.burden	Numeric, the statistical test of L-Burden test
p.burden	Numeric, the p-value of L-Burden test

References

Wang Z., Xu K., Zhang X., Wu X., and Wang Z., (2016) Longitudinal SNP-set association analysis of quantitative phenotypes. Genetic Epidemiology.

See Also

```
longskat_gene_test and longskat_est_model
```

power.test=T, n.gene=20);

```
longskat_gene_simulate
```

Simulation for LSKAT test

Description

Using the pre-defined parameters to make the simulation data for the LSKAT test (including power test and type I error test).

Usage

```
longskat_gene_simulate( power.test = TRUE,
    n.minsect = 3000,
    n.maxsect = 30000,
    n.sample = 800,
    n.time = 6,
    n.gene = 10,
    plink.format = FALSE,
    file.plink.prefix = "LSKAT.plink.test",
    geno.miss = 0.01,
    pheno.miss = 0.1,
    pheno.dist = "mn",
    pheno.cov = "AR1",
    intercept = FALSE,
    par = list() )
```

Arguments

power.test	Logical variable, indicating whether simulate individual random effects and the individual-specific timede-pendent random effects for the pwer test, otherwise, FALSE indicates type I error test.
n.minsect	Numeric, the minimum size of gene(Unit: BP)
n.maxsect	Numeric, the maximum size of gene(Unit: BP)
n.sample	Numeric, sample size, ie, individual count.
n.time	Numeric, measurement time.
n.gene	Numeric, gene number. If simulation for power test, the 1st gene is the causal gene, the rest are non-causal gene.

plink.format Logical variable, indicating whether the data will be stored into PLINK file in additionalto return a list obecjt with multiple matrices.

file.plink.prefix
String, the prefix file name for plink data set if plink.format is TRUE.

geno.miss
Numeric, the missing rate for genome data set.
pheno.miss
Numeric, the missing rate for phenotype traits.

pheno.dist
String, the distribution of individual-specific timede-pendent random effects, four optional values: 'mn', 'mt', 'msn', 'mmn', see details.

pheno.cov
String, the covariance structure of individual-specific timede-pendent random effects, three optional values: 'AR1', "SAD1' and 'CS', see details.

intercept Logical variable, indicating whether intercept is used in phenotypic traits.

par List, the parameters for the phenotype traits, including covariates and individual-

specific timede-pendent random effects.

Details

The simultion is generated by the following formula:

$$Y_{ij} = intercept + b1 * X1_{ij} + b2 * X2_{ij} + a_i + r_{ij} + e_{ij}$$

 a_i :individual random effects

 r_{ij} :individual-specific timede-pendent random effects

 e_{ij} :measurement error

the individual random effects follow the normal distribution with the standard deviation sig.a.

the individual-specific timede-pendent random effects follow the multivariate normal distribution with covariance structure: AR1, SAD1 or CS.

the individual random effects follows the distribution of t, normal, skew normal or mixed normal.

The covariance structure:

```
AR1 first-order Autoregressive model [AR(1)], parameters: par$rho and par$sig.b SAD1 first-order structured antedependence [SAD(1)], parameters: par$rho and par$sig.b CS compound symmetry model, parameters: par$rho and par$sig.b
```

The distibution of measurement error:

```
mn Normal distribution, parameters: par$sig.e

mt Student distribution, parameters: df=10

msn Skew normal distribution, parameters: par$sig.e, alpha = 40

mmn Mixed normal distribution, parameters: par$par.e[1], par$par.e[2], par$par.e[3]
```

The pre-defined parameters in the package have the following values:

```
par <- list(b0=1, b1=0.5, b2=0.5,
    sig.a=0.8, sig.b=0.8, sig.e=0.8,
    rho=0.7,
    cov.param = c(0,1, 0.1),
    time.cov = 0,
    time.effect = c(0.2, -0.08),
    max.common.causal = 4,
    coef.common.causal = 0.12,
    max.rare.causal = 10,
    coef.rare.causal = 0.08,
    positive.ratio = 1,
    rare.cutoff = 0.05);</pre>
```

- b0 Numeric, the intercept value if the intercept is enable.
- b1 Numeric, the coefficient of the 1st covariate, binary variable.
- b2 Numeric, the coefficient of the 2nd covariate, continuous variable.
- sig.a Numeric, the standar deviation of individual random effects.
- sig.b Numeric, the standar deviation of individual-specific timede-pendent random effects.
- sig.e Numeric, the standar deviation of measurement error.
- rho Numeric, the corelation coefficient of covariance structure.
- cov.param Vector, the other parameters of covariance structure except rho.
- time.cov Numeric, indicating whether consider times as covariate, 0 means no time effects, 1 means time effects, 2 means time effects and time square effects are included as covariates. and so on.
- time.effect Numeric, the time coefficient of time effects. The 1st item is the coefficient for time effects, The 2nd item is the coefficient for time square effects and so on.
- max.common.causal Numeric, the maximum number of common causal SNPs.
- coef.common.causal Numeric, the effect coefficient for common causal SNPs.
- max.rare.causal Numeric, the maximum number of rare causal SNPs.
- coef.rare.causal Numeric, the effect coefficient for rare causal SNPs.
- positive.ratio Numeric, the positive ratio in all causal SNPs.
- rare.cutoff Numeric, hard cuf off for rare MAF, default rare cut off is calculated by the formula: $1/\sqrt{2*sample}$.

Value

A list object is returned with the following items:

```
file.plink.bed
```

String, if plink.format is assigned to TRUE, this is the name of the PLINK file containing the packed binary SNP genotype data. It should have the extension .bed.

```
file.plink.bim
```

String, if plink.format is assigned to TRUE, this is the name of the PLINK file containing the SNP descriptions.

file.plink.fam

String, if plink.format is assigned to TRUE, this is the name of the PLINK file containing subject (and, possibly, family) identifiers.

file.gene.set

String, if plink.format is assigned to TRUE, this is the name of the table file containing the gene defintion, 1st column is gene and 2nd column is SNP name.

file.phe.cov

String, if plink.format is assigned to TRUE, this is the CSV file containing covariate matrix with m rows (individuals) and n columns (covariates), and also with the individual IDs as row names.

file.phe.long

String, if plink.format is assigned to TRUE, this is the CSV file containing phenotype traits matrix with m rows (individuals) and n columns (covariates), and also with the individual IDs as row names.

phe.long Matrix, phenotype traits matrix with m rows (individuals) and n columns (covariates), and also with the individual IDs as row names.

phe.cov Matrix, covariate matrix with m rows (individuals) and n columns (covariates), and also with the individual IDs as row names.

snp.mat List, containing multiple matrices, each matrix includes all SNPs in the gene.

References

Wang Z., Xu K., Zhang X., Wu X., and Wang Z., (2016) Longitudinal SNP-set association analysis of quantitative phenotypes. Genetic Epidemiology.

longskat_gene_test 11

```
longskat_gene_test Assoictaion test using LSKAT
```

Description

Assoictaion test for the comined effect of common and rare variants using LSKAT

Usage

```
longskat_gene_test( r.model,
    snp.mat,
    weights.common=c(0.5,0.5),
    weights.rare=c(1,25),
    rare.cutoff=NULL,
    test.type="Joint",
    snp.impute = "mean",
    run.cpp=F,
    verbose=F)
```

Arguments

	r.model	The list object obtained from the function <code>longskat_est_model</code> , including the estimated parameters and residuals.
	snp.mat	Matrix with m row for individuals and n columns for the variaints(SNPs), also with the individuals' ID as the row names.
weights.common		on
		a numeric vector of parameters of beta weights for common variants (default= $c(0.5,0.5)$).
	weights.rare	a numeric vector of parameters of beta weights for rare variants (default=c(1,25)).
	rare.cutoff	Numeric, a value of MAF cutoff for the rare SNPs. Only SNPs that have MAFs smaller than this are considered as rare SNP. The default criterion of rare SNP is calculated by the formula $1/\sqrt{2*sample}$
	test.type	String, Three models can be selected, "joint", "Common.Only", "rare.Only".
	snp.impute	String, indicating the method of SNP imputation, the default model uses the mean of each variant to replace the missing SNP data.
	run.cpp	Logical, indicating whether C/C++ functions are used to compute LSKAT.
	verbose	Logical variable, indicating whether some debug information can be outputted.

Value

The list object is returned by this function with the following items:

snp.NMISS	Vector, the missing rate for each SNP.
snp.MAF	Vector, the MAF for each SNP.
snp.total	Numeric, the total number of variants.
snp.rare	Numeric, the number of rare variants.
q.lskat	Numeric, the statistical test of LSKAT

12 longskat_get_gene

```
    p.lskat Numeric, the p-value of LSKAT
    q.burden Numeric, the statistical test of L-Burden Test
    p.burden Numeric, the p-value of L-Burden Test
```

References

Wang Z., Xu K., Zhang X., Wu X., and Wang Z., (2016) Longitudinal SNP-set association analysis of quantitative phenotypes. Genetic Epidemiology.

See Also

```
longskat_est_model
```

Examples

Description

This function provides a interface to read all SNPs of genes from the PLINK data object.

Usage

```
longskat_get_gene( gen.obj, gene.set, snp.impute="mean", verbose = FALSE )
```

Arguments

gen.obj	Reference class, it is a wrapper of plink data object obtained from the function longskat_plink_load.
gene.set	Vector of numeric or string, indicating the gene index or gene name.
snp.impute	String, indicating the method of SNP imputation, the default model uses the mean of each variant to replace the missing SNP data. Two optional values: 'mean' or 'random'.

longskat_plink_load 13

```
verbose Logical variable, indicating whether some debug information can be outputted.
```

Details

The parameter gene.set can be gene index (numeric) or gene names (string).

Value

The returned list object could contain multiple genes. It includes

```
snp.mat List, SNP Matrices for genes in gene.set.

maf List, SNP MAF vectors for genes in gene.set.

nmiss List, SNP missing information for genes in gene.set.

gene.name List, gene names for genes in gene.set.
```

References

Wang Z., Xu K., Zhang X., Wu X., and Wang Z., (2016) Longitudinal SNP-set association analysis of quantitative phenotypes. Genetic Epidemiology.

See Also

```
longskat_plink_load and longskat_gene_test
```

Examples

```
longskat_plink_load
```

Loading plink data set.

Description

This function provides a pipeline for the plink data set based on the LSKAT function. Except the plink data set(BED, BIM and FAM), SNP set table is same as SKAT package.

14 longskat_plink_load

Usage

```
longskat_plink_load(file.plink.bed,
    file.plink.bim,
    file.plink.fam,
    file.gene.set,
    plink.path=NULL,
    verbose=FALSE)
```

Arguments

```
file.plink.bed
```

File name, PLINK bed file, containing the packed binary SNP genotype data

file.plink.bim

File name, PLINK bim file, containing the SNP descriptions

file.plink.fam

File name, PLINK fam file, containing subject(and, possibly, family) identifiers

file.gene.set

File name, indicating SNP set table which has two columns, gene name in 1st

column and variant name in 2nd column and no header.

plink.path String, indicating PLINK command path, for the large PLINK data, the package

will load partial plink data extracted by the plink command rather than the whole

data set.

verbose Logical Variable, indicating whether some information are outputted for debug.

Details

The SNP set file is same as the SetID file in *SKAT* package which is white-space (space or tab) seperated file with 2 columns: SetID (1st column) and SNP_ID (2nd column), Please keep in mind that there should be *no header!*

Value

This function returns a reference class ("'PLINK.refer'") for PLINK data operation which provides a interface to access the SNP information. longskat_get_gene use this object to extract the SNP matrix for genes.

References

Wang Z., Xu K., Zhang X., Wu X., and Wang Z., (2016) Longitudinal SNP-set association analysis of quantitative phenotypes. Genetic Epidemiology.

See Also

```
longskat_get_gene
```

```
## see the example in the function longskat_get_gene
```

longskat_snp_plink 15

longskat_snp_plink Single SNP association test using LSKAT for PLINK data set.

Description

This function provides a pipeline for the plink data set based on the LSKAT function. Except the plink data set(BED, BIM and FAM), SNP set table is same as SKAT package.

Usage

```
longskat_snp_plink(file.plink.bed,
    file.plink.bim,
    file.plink.fam,
    file.phe.long,
    file.phe.cov,
    file.phe.time = NULL,
    file.gene.set=NULL,
    snp.set = NULL,
    options = list(),
    verbose=FALSE);
```

Arguments

```
file.plink.bed
File name, PLINK bed file
file.plink.bim
File name, PLINK bim file
file.plink.fam
File name, PLINK fam file
file.phe.long
```

File name, indicating phenotype file in CSV format with row name (individual ID) and header information (Measured Index). Each individual is encoded to one row data which has individual ID as row name and multiple observed values followed by row name.

file.phe.cov File name, indicating covariate file in CSV format with row name (individual ID) and header information (Covariate Index). Each individual is encoded to one row data which has individual ID as row name and covariate values followed by row name.

file.phe.time

File name, indicating measured times in CSV format with row name (individual ID) and header information (Measured Time). Each individual is encoded to one row data which has individual ID as row name and covariate values followed by row name.

file.gene.set

File name, indicating gene set table which has two columns, 1st column is gene name, 2nd column is variant name and no header.

snp. set numeric or string, indicating the gene name or gene index in the gene set table

options String, see the *details*

verbose Logical variable, indicating whether some debug information can be outputted.

16 longskat_snp_plink

Details

None

Value

A list object with 3 items is returned by this function:

par The parameters of this function call.

mle The estimation of NULL Model returned by longskat_est_model, includ-

ing model parameters and residuals, please refer to the structure in longskat_est_model.

result Matrix containing the test result of LSKAT for all SNPs, the sub-items are de-

scribed as follows.

The structure: of result item:

index Number, gene index
snp.name String, snp name
gene.name String, gene name
chr Number, chromosome

pos Number, position

MAF Number, Minor Allel Frequency.

NMISS Number, number of missing SNP.

rare Logical, rare SNP or not.

q.lskat Numeric, the statistical test of LSKAT

p.lskat Numeric, the p-value of LSKAT

longskat_snp_test 17

```
longskat_snp_test None
```

Description

None

Usage

```
longskat_snp_test(r.model,
    snp,
    weights.common = c(0.5, 0.5),
    weights.rare = c(1, 25),
    snp.impute = "mean",
    rare.cutoff = NULL,
    run.cpp = F,
    verbose = FALSE )
```

Arguments

r.model	The list object obtained from the function <code>longskat_est_model</code> , including the estimated parameters and residuals.
snp	Matrix with m row for individuals and n columns for the variaints(SNPs), also with the individuals' ID as the row names.
weights.common	
	a numeric vector of parameters of beta weights for common variants (default= $c(0.5,0.5)$).
weights.rare	a numeric vector of parameters of beta weights for rare variants (default=c(1,25)).
rare.cutoff	Numeric, a value of MAF cutoff for the rare SNPs. Only SNPs that have MAFs smaller than this are considered as rare SNP. The default criterion of rare SNP is calculated by the formula $1/\sqrt{2*sample}$
run.cpp	Logical, indicating whether C/C++ functions are used to compute LSKAT.
verbose	Logical variable, indicating whether some debug information can be outputted.

Value

None

```
## data simulation for the power test
p0 <- longskat_gene_simulate( plink.format=F, power.test=T, n.gene=1);

## model estimation
r.model <- longskat_est_model( p0$phe.long, p0$phe.cov, g.maxiter=3, verbose=T);

for(i in 1:NCOL(p0$snp.mat[[1]]))
{
    ## test all SNPs in the 1st gene.
    r.lskat <- longskat_snp_test(r.model, p0$snp.mat[[1]][,i]);
    print(r.lskat);</pre>
```

}

```
plot.LSKAT.gen.plink
```

Plot Manhattan figure.

Description

This function draws manhattan figure using the p-value of LSKAT and L-Burden.

Usage

```
plot.LSKAT.gen.plink( r.lskat, pdf.file, title, y.max, bonferroni )
```

Arguments

r.lskat	The list object with S3 class name: LSKAT.gen.plink, obtained from longskat_gene_plink.
pdf.file	String, the file name of PDF output.
title	String, title
y.max	Numeric, the maximum value of Y-axis
bonferroni	Boolean, indicating whether Bonferroni correction is used in the plot

See Also

```
longskat_gene_plink
```

Examples

```
## check the code in the function longskat_gene_plink
```

```
plot.LSKAT.snp.plink
```

Plot Manhattan figure using SNP association test

Description

This function draws manhattan figure using the p-value of LSKAT and L-Burden.

Usage

```
plot.LSKAT.snp.plink(r.lskat, pdf.file, title, y.max)
```

Arguments

```
r.lskat The list object with S3 class name: LSKAT.gen.plink, obtained from longskat_snp_plink.

pdf.file String, the file name of PDF output.

title String, title

y.max Numeric, the maximum value of Y-axis

bonferroni Boolean, indicating whether Bonferroni correction is used in the plot
```

See Also

```
longskat_snp_plink
```

Examples

```
## check the code in the function longskat_snp_plink

summary.LSKAT.gen.plink

Summarizing the LSKAT results for all genes
```

Description

Summarizing the LSKAT results for all genes in PLINK data set

Usage

```
summary.LSKAT.gen.plink(r.lskat)
```

Arguments

r.lskat The list object with S3 class name: LSKAT.gen.plink, obtained from longskat_gene_plink.

See Also

```
longskat_gene_plink
```

Examples

show(df);

```
summary.LSKAT.snp.plink

Summarizing the LSKAT results for all SNPs
```

Description

Summarizing the LSKAT results for all SNPs in PLINK data set

Usage

```
summary.LSKAT.snp.plink(r.lskat)
```

Arguments

r.lskat The list object with S3 class name: LSKAT.snp.plink, obtained from longskat_snp_plink.

See Also

```
longskat_snp_plink and summary.LSKAT.gen.plink
```

Index

```
*Topic Gene-base
   longskat_gene_plink,4
   longskat_gene_test, 11
   plot.LSKAT.gen.plink, 18
   summary.LSKAT.gen.plink, 19
*Topic NULL Model
   longskat_est_model, 2
*Topic PLINK
   longskat_gene_plink,4
   longskat_get_gene, 12
   longskat_plink_load, 13
   longskat_snp_plink, 15
   plot.LSKAT.gen.plink, 18
   plot.LSKAT.snp.plink, 18
   summary.LSKAT.gen.plink, 19
   summary.LSKAT.snp.plink, 20
*Topic Plot
   plot.LSKAT.gen.plink, 18
   plot.LSKAT.snp.plink, 18
*Topic SNP-base
   longskat_snp_plink, 15
   longskat_snp_test, 17
   plot.LSKAT.snp.plink, 18
   summary.LSKAT.snp.plink, 20
*Topic Summary
   summary.LSKAT.gen.plink, 19
   summary.LSKAT.snp.plink, 20
*Topic Test
   longskat_gene_plink,4
   longskat_gene_test, 11
   longskat_snp_plink, 15
   longskat_snp_test, 17
*Topic simulation
   longskat_gene_simulate,7
longskat_est_model, 2, 6, 11, 12, 16, 17
longskat_gene_plink, 4, 18, 19
longskat_gene_simulate,7
longskat_gene_test, 3, 6, 11, 13
longskat_get_gene, 12, 14
longskat_plink_load, 12, 13, 13
longskat_snp_plink, 15, 19, 20
longskat_snp_test, 17
```

```
plot.LSKAT.gen.plink, 18
plot.LSKAT.snp.plink, 18
summary.LSKAT.gen.plink, 19, 20
summary.LSKAT.snp.plink, 20
```