

Katedra kybernetiky Katedra počítačů

Vytěžování dat – přednáška I Úvod do vytěžování dat

Filip Železný: zelezny@fel.cvut.cz

Pavel Kordík: kordikp@fel.cvut.cz

Vytěžování dat (data mining)

- Fayyad et al: "Data Mining je netriviální proces identifikace pravdivých, dosud neznámých, potenciálně využitelných a naprosto srozumitelných vzorů v datech"
 - Vzor = obecný princip, souvislost, tvrzení, apod.
 nalezený v konkrétních datech
 - Vzor reprezentuje znalost
 - "Dobývání znalostí z dat" (Knowledge Discovery in Data, KDD)
- Účel: zlepšení rozhodovacích procesů
- Data mining prakticky: vývoj a využití počítačových algoritmů umožňujících vyhledávat vzory

Vytěžování dat neformálně

Data

- Nalezené vzory
 - Má-li vlak 2 vagóny, jede doleva
 - Všechny náklady v jednom vagónu mají stejný tvar
 - **...**

Příklady (reálnějších) vzorů

- Častá asociace v nákupních košících {pivo, dětské pleny}
- Implikace

IF horečka AND bolest_svalů THEN chřipka

Graf

$$V = Z$$

$$W X$$

Který vzor je lepší?

Data

$$(x_1,y_1), (x_2,y_2), ...$$

- Vzor 1
 - Rovnice přímky
- Vzor 2Rovnice polynomu
- Oba vzory platné v zadaných datech.
- Který z nich je "pravdivější"?
- Pravdivost vzorů nelze zaručit.

Vytěžování dat

- Past data miningu: když se dost snažíme, vždy nějaké vzory najdeme
- V dostupných datech mohou platit jen náhodou
- Nemusí být skutečně charakteristické pro proces, který data generuje
- Google define: Data Mining :
- "Data mining is the equivalent to sitting a huge number of monkeys down at keyboards, and then reporting on the monkeys who happened to type actual words."

Je to tedy k něčemu dobré ?!

Vytěžování dat

PŘÍKLADY APLIKACÍ

Rozpoznávání řeči

Rozpoznávání obrazu

"Information retrieval"

Predikce řad a signálů

- Finanční analýzy
- Meteorologie
- Biosignály (nejen predikce)
- **...**

Analýza transakčních dat

EAN 1	Název 1	EAN 2	Název 2	EAN 3	Název 3	Výskyty
8590338901657	'MR.MATTES WC NµHRADA CITRON 1X40G'	8590338901671	'MR.MATTES WC NµHRADA LES 1X40G'	8590338901664	'MR.MATTES WC NµHRADA MOÜE 1X40G'	7366
8585000703424	'VOUX MÍDLO ML□KO A MED, 100G'	8585000703394	'VOUX MÍDLO S VITAMÖNEM E, 100G'	8585000703332	'VOUX MÍDLO ZELENÍ ¬AJ A CITRON 100G'	3748
8585000703424	'VOUX MÍDLO ML□KO A MED, 100G'	8585000703363	'VOUX MÍDLO S ALOE VERA, 100G'	8585000703332	'VOUX MÍDLO ZELENÍ ¬AJ A CITRON 100G'	3441
8585000703394	'VOUX MÍDLO S VITAMÖNEM E, 100G'	8585000703363	'VOUX MÍDLO S ALOE VERA, 100G'	8585000703332	'VOUX MÍDLO ZELENÍ ¬AJ A CITRON 100G'	3419
8594003602498	'KOUPELOVμ SUL RELAXA¬NÖ 70G'	8594003602481	'KOUPELOVμ SUL ZKLIDŐUJÖCÖ 70G'	8594003602504	'KOUPELOVμ SUL ZVLμ~ŐUJÖCÖ 70G'	3111
8585000703424	'VOUX MÍDLO ML□KO A MED, 100G'	8585000703394	'VOUX MÍDLO S VITAMÖNEM E, 100G'	8585000703363	'VOUX MÍDLO S ALOE VERA, 100G'	3099
8693495004886	'PALMOLIVE MÍDLO MILK AND HONEY100G'	8693495004848	'PALMOLIVE MÍDLO BÖL⊡-ZVLμ¬ŐUJÖCÖ 100G'	8693495004862	'PALMOLIVE MÍDLO ZELEN□-ZVLH¬UJÖCÖ 100G'	2715
8594001698981	'HAM□ KOJENECKμ Ví¦IVA S MERU KAMI 190G'	8594001698974	'HAM□ KOJENECKµ VͦIVA S BROSKVEMI 190G'	8594001698837	'HAM□ KOJENECKμ VͦIVA S JOHODAMI 190G'	2651
8594002670122	'TWIGGY ćVESTKOVμ V JOGURTU 35G'	8594002670139	'TWIGGY BRUSINKOVμ V JOGURT U 31G'	8594002670405	'TWIGGY JAHODOVμ V JOGURTU'	2609
8595000910562	'LARRIN-PLUS FIALOVÍ 40G N.V.'	8595000910500	'LARRIN-PLUS ZELENÍ 40G N.V.'	8595000910555	'LARRIN WC PRIM MODRÍ N.V. 40G'	2554
8594001698981	'HAM□ KOJENECKμ Ví¦IVA S MERU KAMI 190G'	8594001698974	'HAM□ KOJENECKµ VͦIVA S BROSKVEMI 190G'	8595139718879	'HAM® KOJENECKμ Ví¦IVA S HRUćKAMI 190G'	2525
8594001698974	'HAM□ KOJENECKμ VͦIVA S BROSKVEMI 190G'	8594001698837	'HAM□ KOJENECKµ VͦIVA S JOHODAMI 190G'	8595139718879	'HAM® KOJENECKμ VͦIVA S HRUĆKAMI 190G'	2486
8595121403653	'DROXI MINI SG S VIT.E,B5 SPORT&RELAX 35 ML'	8595121403639	'DROXI MINI SG S ES.OLEJI AROMA ANTI STRESS 35 ML'	8595121403646	'DROXI MINI KR□M GEL HONEY&MILK S HYDR.LµTKAMI 35ML'	2485
8594003602511	'KOUPELOVμ SUL ¬ISTÖCÖ 70G'	8594003602481	'KOUPELOVµ SUL ZKLIDŐUJÖCÖ 70G'	8594003602504	'KOUPELOVμ SUL ZVLμ~ŐUJÖCÖ 70G'	2442
8717163607268	'DOVE MÍDLO EXFOLIATING 100G'	4000388170704	'DOVE MÍDLO S OLEJEM 100G'	8000700000005	'DOVE MÍDLO 100G'	2432
5900452071854	'SUNµREK MASOZEL. PÜÖKRM ZELENINA S VEPÜOVÍM MASEM'	5900452071465	'SUNµREK MASOZEL. PÜÖKRM ZELENINA S JEHN∵ÖM MASEM'	5900452072134	'SUNµREK MASOZEL. PÜÖKRM ZELENINA S TELECÖM MASEM 1'	2389
8594001698981	'HAM□ KOJENECKμ VͦIVA S MERU KAMI 190G'	8594001698837	'HAM□ KOJENECKμ VͦIVA S JOHODAMI 190G'	8595139718879	'HAM® KOJENECKμ VͦIVA S HRUĆKAMI 190G'	2362
8594003602511	'KOUPELOVμ SUL ¬ISTÖCÖ 70G'	8594003602498	'KOUPELOVμ SUL RELAXA¬NÖ 70G'	8594003602481	'KOUPELOVμ SUL ZKLIDŐUJÖCÖ 70G'	2352
8717163978238	'LUX MÍDLO S VÍTA¦KY Z RަI 90G'	8717163978320	'LUX MÍDLO S VÍTA¦KY Z BYLIN 90G'	8717163978399	'LUX MÍDLO S MANDLOVÍM OLEJEM 90G'	2307
8594003602511	'KOUPELOVμ SUL ¬ISTÖCÖ 70G'	8594003602498	'KOUPELOVμ SUL RELAXA-NÖ 70G'	8594003602504	'KOUPELOVμ SUL ZVLμ-ŐUJÖCÖ 70G'	2290
8717163978283	'LUX MÍDLO S VÍTA¦KY Z OVOCE 90G'	8717163978320	'LUX MÍDLO S VÍTA¦KY Z BYLIN 90G'	8717163978399	'LUX MÍDLO S MANDLOVÍM OLEJEM 90G'	2238

- Časté asociace mezi výrobky v nák. košících
- Segmentace zákazníků

Lékařská diagnostika

Bioinformatika

Objevování funkcí genů

Bioinformatika

 Predikce sekundární struktury bílkovin

Bioinformatika

Predikce karcinogenity sloučenin

Systémy pro doporučení

Good luck and thanks for helping!

Analýza sociálních sítí

- Elektronická komunikace
- LinkedIn, FaceBook, ...
- Citace ve výzkumu
- Organizovaný zločin
- Znalostní sítě (Wiki)

K něčemu to tedy dobré je!

- Data mining prokázal užitečnost (\$\$\$) v mnoha reálných aplikacích.
- Obor disponuje metodami pro důkladné ověřování a hodnocení výsledků vytěžování.
- Jejich důsledné využití odlišuje "seriózní" DM od šarlatánství.
- I proto tento předmět.

Vytěžování dat

SOUVISLOSTI S DALŠÍMI OBORY

Souvislosti

Souvislosti: Strojové učení

- Obor umělé inteligence
- Systémy (algoritmy) zlepšující svoji činnost na základě zkušenosti
 - Zkušenost = data
 - Zlepšování činnosti: obvykle pomocí hledání vzorů v datech
- Podobný cíl s VD, algoritmy SU lze využít
 - Ale rozdíly (srozumitelnost vzorů, datove transformace, ...)

Souvislosti: Statistika

- Statistická analýza
 - Odhad statistik (průměr, variance, …)
 - Ověřování hypotéz
 - Staří volí stranu X, mladí stranu Y
 - Potvrují to nasbíraná data?
- Explorační analýza
 - Člověk vymýšlí a ověřuje množství hypotéz
- Data mining
 - Počítač vymýšlí a ověřuje množství hypotéz

Souvislosti: Vizualizace

Vizualizace dat může odhalit hypotézy

Často je nutné vizualizovat vzory

Souvislosti: Databáze

 Většina aplikací data miningu předpokládá vstupní data ve formě relační databáze

(PKDD 1999 challenge, http://lisp.vse.cz/pkdd99/)

Souvislosti: Databáze

 Vzor může mít podobu relačního databázového dotazu (SQL)

```
SELECT Client.ID FROM Client, Disposition, Account WHERE Client.District = Praha and Client. Client_ID = Disposition.Client_ID AND Account.Account_ID = Disposition.Account_ID and Account.Balance > 1000000
```

- Napr. tento vzor charakterizuje "bezproblemove klienty"
- Efektivita DM závisí na schopnosti DB systému rychle vyhodnotit tyto dotazy

Souvislosti: Databáze

OLAP: Online Analytical Processing

Predpocitane odpovedi na caste dotazy do

relacni databaze

Pro "manazersky data mining"

[obr.: Wiki]

Vytěžování dat

VYTĚŽOVÁNÍ JAKO PROCES

VD: praktické problémy

- Proč je náročné pracovat s reálnými daty?
- Data nejsou sbírána jako zdroj trénovacích příkladů, ale především kvůli podnikové dokumentaci a archivaci. Z tohoto hlediska bývá sběr i uložení optimalizováno.
- Většina času v data miningových projektech je strávena mimo aktivity hledání vzorů (modelování)
- Téměř vždy opakování cyklu pokus-omyl

CRISP cyklus

- CRoss Industry Standard Process for DM
 - 1997-9 navrženo jako prům. standard konsorciem Evrop. firem (www.crisp-dm.org)

Vytěžování dat

ZÁKLADNÍ POJMY A ÚLOHY

Termíny: Model, Vzor, Hypotéza

- Vzor (Pattern)
 - Formální popis obecného principu v datech
- Model
 - Vzor (příp. množina vzorů) postačující k řešení definované úlohy modelování dat
 - Extrémní případ: vzor(y) umožňující generovat pozorovaná data ("generativní model")
- Hypotéza
 - model/vzor, který lze ověřit/ohodnotit na datech
- Pozor: "fuzzy" terminologie. Užití termínů závisí zejména na kontextu.

Obvykle kategorie uloh

- Deskripce (popisné úlohy)
 - Model má charakterizovat vstupní data jako celek
- Hledání nuggetů
 - Hledáme zajimavé vzory, které se mohou týkat třeba jen malých podmnožin vstupních dat
- Klasifikace, Regrese, Predikce
 - Jedna veličina V je vybrána jako cílová
 - Modelujeme vliv ostatních veličin na V

Deskripce: příklady

Shluková analýza (aka: segmentace)

Deskripce: příklady

Modelování pravděpodob. rozdělením

Nuggety: příklady

- Asociace {pivo, párky, horčice}
- Asociační pravidla {párky, horčice} -> {pivo}
- Odlehlé instance (outlier detection)

Klasifikace: priklady

- Cilový atribut ma konečnou množinu hodnot
- Příklad: data: tabulka pacientů
 - Cilový atribut infarkt, hodnoty z {ano, ne}
 - Klasifikátor:
 - IF váha>100 and věk > 50 THEN infarkt-ano
 - Tento klasifikator je symbolický
 - -> čitelný člověkem

Klasifikace: priklady

Priklad nesymbolického klasifikátoru

Neuronova síť s dopředným řetezením

Regrese a Predikce

- Regrese
 - Jako klasifikace, ale cílová veličina reálné číslo
 - Příklad regresoru **brzdná_dráha** = c * hmotnost * rychlost
- "Predikce"
 - Klasifikační i regresní modely mohou být využity pro předpověď hodnoty cílové veličiny
 - Z ostatních veličin a/nebo z hodnot cílové veličiny v minulosti

To nejdůležitější teprve přijde!

- Jak modely/vzory hledat/konstruovat?
- Jak je hodnotit, tj.
 - Jak odhadovat jejich kvalitu?
 - Jak definovat jejich kvalitu?

Literatura

http://cw.felk.cvut.cz/doku.php/courses/y336vd/start

