

Amendments to the Claims:

What is claimed is:

1. (Currently Amended) A digital signature method to be performed by a computer based on braid group conjugacy problem, parameters involved in this method comprising a signatory (S), a signature verifying party (V), a message (M) needing signature, a braid group $B_n(l)$ divided into a left subgroup $LB_m(l)$ and a right subgroup $RB_{n-l-m}(l)$, an integer n for a number of generators in the braid group $B_n(l)$, an integer m for a number of generators in a left subgroup $LB_m(l)$, an integer l for an upper bound of a length of a braid, a one way hash function h from bit sequence $\{0,1\}^*$ to braid groups $B_n(l)$; said signature method comprising the following steps of:

Step 1.a signatory (S) selecting a braid x generated from the left subgroup $LB_m(l)$, a second braid x' generated from the braid group $B_n(l)$, and a third braid a generated from the braid group $B_n(l)$, and making them meet $x' = a^{-1}xa$, moreover, with known x and x' , it being impossible to find a in calculation, and considering a braid pair (x',x) as a public key of signatory (S), a as a private key of signatory (S);

Step 2. signatory (S) using hash function h for message (M) needing signature to get $y = h(M)$ from the braid group $B_n(l)$;

Step 3. generating a braid b from the right subgroup $RB_{n-l-m}(l)$ at random, then signing the message (M) with the private key a and a generated random braid b to obtain $Sign(M) = a^{-1}byb^{-1}a$; and

Step 4. the signatory (S) outputting message (M) and a signature of message (M) $Sign(M)$.

2. (Previously Presented) The digital signature method based on braid group conjugacy problem according to claim 1, wherein generating the public key braid pair (x',x) and the private key braid a of signatory (S) in said step 1 comprises the following steps of:

Step 1a. selecting a distance d between system parameter braid groups public key pairs;

Step 1b. representing x into a left canonical form $x = \Delta^u \pi_1 \pi_2 K \pi_l$;

Step 1c. selecting a braid b at random to belong to a set $B_n(l)$

Step 1d. calculating $x' = b^{-1} x b, a = b$;

Step 1e. generating a bit at random, if 1, calculating $x' = decycling(x'), a = a \pi_l$; if not 1, calculating $x' = cycling(x'), a = a \tau^u(\pi_l)$;

Step 1f. judging whether x' belongs to $SSS(x)$ and whether $l(x') \leq d$, if all the conditions are yes, outputting the braid pair (x, x') as the public key, a as the private key; if either of them is not, performing step 1e.

3. (Previously Presented) The digital signature method based on braid group conjugacy problem according to claim 1, wherein the process for obtaining $y = h(M) \in B_n(l)$ by using the hash function h in said step 2 comprises the following steps of:

Step 2a, selecting an ordinary hash function H , with a length of output $H(M)$ is l $\lceil \log(2, n!) \rceil$, then dividing $H(M)$ into l sections $R_1 \| R_2 \| K \| R_l$ in equal at one time;

Step 2b, corresponding R_i to a permutation braid A_i , then calculating $h(M) = A_1 * A_2 * \dots * A_l$, that is the $h(M)$ required.

4. (Previously Presented) The digital signature method based on braid group conjugacy problem according to claim 1, wherein a integer n for the number of generators in a braid group is in the range of 20~28, an upper value of the braid length is $l=3$, $d=4$, and an left subgroup $n-m=4$.

5.-7. (Canceled)

8. (Currently Amended) A method for digital signature to be performed by a computer configured to calculate data based on braid groups conjugacy problem and verification thereof, parameters involved in this method comprising a signatory (S), a signature verifying party (V), a message (M) needing signature, a braid group $B_n(l)$ divided into a left subgroup $LB_m(l)$ and a right subgroup $RB_{n-l-m}(l)$, an integer n for a number of generators in the braid group $B_n(l)$, an integer m for a number of generators in the left subgroup $LB_m(l)$, an integer l

for an upper bound of a length of a braid, a one way hash function h mapped from bit sequence $\{0,1\}^*$ to braid groups $B_n(l)$; comprising the following steps of:

Step 1. the signatory(S) selecting a braid x generated from the left subgroup $LB_m(l)$, a second braid x' generated from the braid group $B_n(l)$, and a third braid a generated from the braid group $B_n(l)$, and making them meet $x' = a^{-1}xa$, moreover, with the known x and x' , it is impossible to find a in calculation, and considering a braid pair (x',x) as a public key of the signatory (S), a as a private key of signatory (S);

Step 2. signatory (S) using a hash function h for message (M) needing signature to get $y = h(M)$ from the braid group $B_n(l)$;

Step 3. generating a braid b from the right subgroup $RB_{n-l-m}(l)$ at random, then signing the message (M) with the private key a and the braid b generated randomly to obtain $Sign(M) = a^{-1}byb^{-1}a$;

Step 4. the signatory (S) outputting the message (M) and its signature $Sign(M)$ to the signature verifying party (V);

Step 5. the signature verifying party (V) obtaining the public key of signatory (S) after receiving the message (M) and the signature of message (M) $Sign(M)$ transmitted from signatory (S);

Step 6. calculating message M by employing a system parameter hash function h , to obtain $y=h(M)$;

Step 7. judging whether $sign(M)$ and y are conjugate or not, if not, $sign(M)$ is an illegal signature, the verification fails; if yes, perform step 8; and

Step 8. calculating $sign(M)$ x' and xy by using the obtained public key of signatory (S), and judging whether they are conjugate or not, if not, $sign(M)$ is an illegal signature, and the verification fails; if yes, $sign(M)$ is a legal signature of message (M).

9. (Previously Presented) The method according to claim 8, wherein generating the public key braid pair (x',x) and private key braid a of signatory (S) in said step 1 comprises the following steps of:

Step 1a. selecting a distance d between system parameter braid groups public key pair;

Step 1b. representing x into left canonical form $x = \Delta^u \pi_1 \pi_2 K \pi_l$;

Step 1c. selecting a braid b at random to belong to set $B_n(l)$

Step 1d. calculating $x' = b^{-1}xb, a = b$;

Step 1e. generating a bit at random, if 1, calculating $x' = decycling(x'), a = a\pi_l$; if not 1, calculating $x' = cycling(x'), a = a\tau^u(\pi_l)$; and

Step 1f. judging whether x' belongs to $SSS(x)$ and whether $l(x') \leq d$, if all conditions are yes, outputting the braid pair (x, x') as the public key, a as the private key; if either of them is not, performing step 1e.

10. (Previously Presented) The method according to claim 8, wherein the process for obtaining $y = h(M) \in B_n(l)$ by using hash function h in said step 2 comprises the following steps of:

Step 2a. selecting an ordinary hash function H , with a length of its output $H(M)$ is $l = \lceil \log(2, n!) \rceil$, then dividing $H(M)$ into l sections $R_1 \parallel R_2 \parallel K \parallel R_l$ in equal at one time; and

Step 2b. corresponding R_i to a permutation braid A_i , then calculating $h(M) = A_1 * A_2 * \dots * A_l$, that is the $h(M)$ required.

11. (Previously Presented) The method according to claim 8, wherein n for the number of the generation braids in the braid group is in the range of 20~28, an upper value of the braid length is $l=3$, $d=4$, and an left subgroup $n-m=4$.

12. (Previously Presented) The method according to claim 8, wherein algorithm $BCDA$ is employed in judging whether $sign(M)$ and y are conjugate or not in step 7 and judging whether $sign(M)$ x' and xy are conjugate or not in step 8.

13. (Previously Presented) The digital signature method based on braid group conjugacy problem according to claim 2, wherein a integer n for the number of generators in a braid group is in the range of 20~28, an upper value of the braid length is $l=3$, $d=4$, and an left subgroup $n-m=4$.

14. (Previously Presented) The digital signature method based on braid group conjugacy problem according to claim 3, wherein a integer n for the number of generators in a braid

group is in the range of 20~28, an upper value of the braid length is $l=3$, $d=4$, and an left subgroup $n-m=4$.

15. (Previously Presented) The method according to claim 9, wherein n for the number of the generation braids in the braid group is in the range of 20~28, an upper value of the braid length is $l=3$, $d=4$, and an left subgroup $n-m=4$.

16. (Previously Presented) The method according to claim 10, wherein n for the number of the generation braids in the braid group is in the range of 20~28, an upper value of the braid length is $l=3$, $d=4$, and an left subgroup $n-m=4$.