

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математической физики

Ненахов Нил Денисович

Вычисление управляющих параметров работы электролизной ванны.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Научный руководитель:

д.ф-м.н., ведущий научный сотрудник

Н.П.Савенкова

Производство алюминия

Производство алюминия играет очень важную роль в экономике России. В 2021 году Россия произвела 3,64 млн алюминия, а его экспорт принес 8,67 млрд долларов. В 2022 году выработка металла выросла на 1,65%.

В 2022 году мировое производство алюминия выросло на 2,2 % и достигло 69 млн тонн. Ожидается, что до 2029 года рынок алюминия будет прирастать в среднем на 6,1 % в год

В 2024 году Россия стала 2 страной по количеству произведенного алюминия - 3.5 млн тонн. На первом месте Китай.

Рис 1. Динамика производства алюминия.

Технологический процесс производства алюминия

Рис 2. Устройство алюминиевого электролизера Соделберга

Рис 3. Взаимосвязь процессов в электролизной ванне.

Управляющие параметры выхода по току (η) и потери выхода по току (Δ η)

Теоретическая величина процентного выхода по току

$$\eta = \frac{P}{M} \cdot 100\%, (1)$$

где Р — количество металла, полученное в ванне.

Эмпирическая формула выхода по току разработанная в институте ВАМИ(Всероссийский Алюминиевомагниевый Институт):

$$\eta = \left(1 - 2567 \cdot \frac{S_{a\,nod}^{0,21}}{i_a^{0.58} \cdot L_{ACD} \cdot e^{\frac{12940}{T_e}}}\right) \cdot 100\%,(3)$$

Где i_a - анодная плотность тока, $S_{\it anod}$ - площадь анода, $L_{\it ACD}$ - МПР, T_e - температура электролита.

Теоретическое количество металла по закону Фарадея, получаемое в процессе электролиза:

$$M = F \cdot I \cdot t$$
, (2)

где F — электрохимический эквивалент, I — сила тока, t — время.

Полуэмпирическая формула потери по току.

$$\Delta \eta = (1 - \eta_0) \cdot \frac{l}{S} \cdot \int_Z \frac{1}{H(x, y)} dS, (4)$$

где $\Delta\eta$ — изменение выхода по току, 1 — значение МРП, η_0 — значение выхода по току при плоской поверхности раздела, S — площадь катода, H — высота металла.

Модификация формулы потери по току

В формуле (4) значения параметров I и S являются константами, которые определяются опытным путем с большой погрешностью. Поэтому в настоящей работе предлагается следующая модификация формулы, вычисление которой становится возможным при использовании вычислительного комплекса, моделирующего процесс электролиза.

 $egin{array}{lll} \begin{tabular}{lll} \begin{tabular} \begin{tabular}{lll} \begin{tabular}{lll} \begin{tabular$

Модифицированная формула потери выхода по току:

$$\Delta \eta = \left(1 - \eta_0\right) \cdot \frac{1}{S} \cdot \int_{Z} \frac{l(x, y)}{H(x, y)} dS(5)$$

Таблица 1: Противоречивые значения полученные по формуле 4.

	Мод. формула	Исх. формула	Исх. формула	Исх. формула	Исх. формула	Исх. формула	Исх. формула
точка		(2,2)	(10,5)	(5,10)	(5,30)	(7,15)	(4,30)
значение	0.012011	0.010918	0.01397	0.013292	0.011528	0.011528	0.013495

Таблица 2. Значение формул потери выхода по току в зависимости от точки в которой взято МПР (I).

Модификация формулы изменения выхода по току, метод триангуляции.

Рис 4. Разбиение области

решения на треугольники с

вершинами в узлах сетки.

Рис 5. Вычисление площадей проекций фрагментов поверхностей на плоскость ХҮ.

$$S_{\Delta_{i,j}^1} = \frac{1}{2} \cdot |\vec{a} \times \vec{b}|$$
(6)

Вычисление поверхностного интеграла

$$I = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} I_{i,j} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \left(S_{\Delta_{i,j}^1} \cdot F_{i,j}^1 + S_{\Delta_{i,j}^2} \cdot F_{i,j}^2 \right) (9)$$

Число узлов	$50 \rightarrow 100$	$100 \rightarrow 200$	$200 \rightarrow 400$
Порядок точности т	2.029272	2.014531	2.007240

Таблица 3. Абсолютная погрешность вычисления площади поверхности

Рис 6. Значения функции, соответствующие Δ_{i}^{1} , Δ_{i}^{2}

$$F_{i,j}^{1} = \frac{1}{3} (f_{i,j} + f_{i,j+1} + f_{i+1,j})(7)$$

$$F_{i,j}^{2} = \frac{1}{3} (f_{i+1,j+1} + f_{i,j+1} + f_{i+1,j})(8)$$

Рис. 7. Тестовая поверхность

1.5

Вычисление управляющих параметров при МГДстабильности

	Выход по току
Момент времени t_1	90.646
Момент времени t_2	93.594

Таблица 4: Выход по току η .

	Потери по току
Момент времени t_1	0.00674
\mathbf{M} момент времени t_2	0.00667

Таблица 5: Потери по току $\Delta \eta$.

Момент времени t_2

Рис 9

Изменение выхода по току (%) Изменение потерь по току (%) 2.948 -1.038

Таблица 6: Измененние выхода по току и потерь по току.

Рис 8

Момент времени t_1

Вычисление управляющих параметров при выемке анодов

Момент времени t_1 Рис. 10

Момент времени t_2 Рис .11

Рис .11

Вынимаются крайние 11 и 22 аноды

Рис 12

	Выход по току
Момент времени t_1	89.638
Момент времени t_2	91.365

Таблица 7: Выход по току η .

	Потери по току
Момент времени t_1	0.00945
Момент времени t_2	0.00928

Таблица 8: Потери по току $\Delta \eta$.

Изменение выхода по току (%)	Изменение потерь по току (%)
1.727	-1.799

 ${
m Epe}$ мени t_2 | 91.305 | Момент времени t_2 | 0.00928 | Таблица 9: Измененние выхода по току и потерь по току.

Вычисление управляющих параметров при анодном эффекте

Демонстрация расположения анодов при анодном эффекте

Момент времени t_1

Рис. 13

Момент времени t_2 Рис. 14

Момент времени t_1

Рис. 15

	Выход по току
Момент времени t_1	87.048
Момент времени t_2	90.037

	Потери по току
Момент времени t_1	0.01188
Момент времени t_2	0.01173

Изменение выхода по току (%) Изменение потерь по току (%) 2.948 -1.038

Таблица 12: Измененние выхода по току и потерь по току.

Таблица 11: Потери по току $\Delta \eta$.

Таблица 10: Выход по току η .

Исследование распределения потерь по току

Здесь
$$\mu = 10^{-5}$$
.

Распределение потерь по току

Потери по току при выемке 11 и 22 анодов.

Потери по току для МГД стабильного режима.

Распределение потерь по току

Потери по току при анодном эффекте.

Основные результаты

- Предложен алгоритм расчета площади криволинейной поверхности на основе метода триангуляции. Исследована сходимость метода на сгущающихся сетках.
- Предложена модифицированная формула вычисления величины потерь по току, проведена ее верификация.
- Численно определены значения выхода по току и потерь выхода по току, показана корреляция этих управляющих параметров.
- Численно исследованы распределения потерь по току в планарной плоскости разреза ванны для МГД-стабильной работы ванны и для МГД-нестабильной работы ванны в случае выемки двух анодов и анодного эффекта. На основе проведенных численных исследований были выработаны рекомендации по управлению работой ванны.

Список литературы

- 1) Калмыков А.В. Математическое моделирование влияния процессов тепломассопереноса на МГД-стабильность алюминиевого электролизёра // Москва: Московский государственный университет имени М.В. Ломоносова. Факультет вычислительной математики и кибернетики. Кафедра вычислительных методов. Диссертация. 2017.
- 2) Белолипецкий В. М., Пискажова Т.В. Математическое моделирование процесса электролитического получения алюминия. Решение задач управления технологией // Красноярск: Сибирский федеральный университет. Библиогр. 2013.
- 3) Деркач А.С., Левитан Г.У., Лебедев В.И., Сенин В.Н., Солнцев С.С., Форсблом Г.В. Электролиз алюминия // Издательство 'Металлургия' Москва 1966.
- 4) Grjotheim K., Rrohn C., Malinovsky. M., Matiasovsky K., Thonstad J. 2nd Edition Aluminium Electrolysys. Fundamentals of the Hall-Heroult Process. // Dusseldorf 1982.
- 5) Тепловые процессы в электролизерах и миксерах алюминиевого производства. / Под общей редакцией Громова Б. С., М.: 1998. С. 322.
- 6) Коробов, М. А. Самообжигающиеся аноды алюминиевых электролизеров / М. А. Коробов, А. А. Дмитриев // М.: Металлургия. 1972. 207 с.
- 7) Lillebuen, B. Current Efficiency and back reaction in aluminium electrolysis // Electrochim. Acta. 1980, V25. P. 131–137.
- 8) Деркач, А. С. Влияние нестабильности тока серии на технологический режим алюминиевых электролизеров// Цветные металлы. – 1967. – № 3. – С. 39– 40.
- 9) Кудрявцев Л.Д. Курс математического анализа. Том 2. // Дрофа 2004
- 10) Скворцов А.В., Мирза Н.С. Алгоритмы построений и анализа триангуляции // 'Издательство томского университета' 2006.
- 11) Широкий А.А., Аппроксимационные свойства триангуляций поверхностей // Казань 2012.
- 12) Самарский А.А. Гулин А.В. Численные методы // Москва 'Наука' 1989

Спасибо за внимание