Covid19 - Modelo SIR

André F. B. Menezes

04 de abril de 2020

Considerações do modelo SIR

Modelo assume três grupos de pessoas: suscetíveis a doença (S), infectadas (I) e recuperadas (R).

- As equações diferenciais são controladas pelos parâmetros $\beta \in (0,1)$ e $\gamma \in (0,1)$.
- β controla a transição entre S e I.
- γ controla a transição entre I e R.

$$\frac{dS}{dt} = -\beta S I \tag{1}$$

$$\frac{dS}{dt} = -\beta SI \tag{1}$$

$$\frac{dI}{dt} = \beta SI - \gamma I \tag{2}$$

$$\frac{dS}{dt} = -\gamma I \tag{3}$$

$$\frac{dS}{dt} = -\gamma I \tag{3}$$

- Para resolver a EDO utilizou-se a função ode do pacote deSolve.
- Os parâmetros β e γ foram estimados minimizando a soma de quadrados (RSS) entre número de infectados observados e ínfectados predito pelo modelo.
- $R_0 = \frac{\beta}{\gamma}$, a taxa de reprodução, indica em média o número de pessoas que são infectados por um indivíduo com COVID.
- I_{max} e T_{max} são predições do número máximo de infectados e o tempo (data) de ocorrência, respecti-

 ${\bf Brasil}$ Casos de Covid
19 obtidos do repositório CSSEGIS
and
Data/COVID-19.

Ajuste modelo SIR versus casos observados

Predições do modelo SIR

Estado de SP

Casos de covid no estado de SP obtidos da iniciativa Brasil IO.

 $\frac{\text{Table 2: Parâmetros estimados via RSS do modelo SIR.}}{\beta} \frac{\gamma}{1.0000} \frac{R_0}{0.7167} \frac{I_{\text{max}}}{1.3953} \frac{T_{\text{max}}}{2.043.535} \frac{21/\text{abr}/2020}{21}$

Ajuste modelo SIR versus casos observados

Predições do modelo SIR

Região metropolitana de Campinas

Casos de covid na região metropolitana de Campinas considerando as informaçãoes das 20 cidades obtidas da iniciativa Brasil IO.

 $\frac{\text{Table 3: Parâmetros estimados via RSS do modelo SIR.}}{\beta} \frac{\beta}{0.7034} \frac{\gamma}{0.2966} \frac{R_0}{2.3719} \frac{I_{\text{max}}}{589.293} \frac{T_{\text{max}}}{25/\text{abr}/2020}$

Ajuste modelo SIR versus casos observados

Predições do modelo SIR

