

Guía 2: Series Cronológicas

Profesor: Felipe Elorrieta L. Ayudante: Felipe Silva G.

• Holt-Winters y Regresión en Series de Tiempo

1. Las siguientes observaciones corresponden a las ventas trimestrales de sierras de la empresa de herramientas Acme. A partir de la tabla responda las siguientes preguntas:

	Q1	Q2	Q3	Q4
1994	500	350	250	400
1995	450	350	200	300
1996	350	200	150	400
1997	550	350	250	550
1998	550	400	350	600
1999	750	500	400	650
2000	850	600	450	700

- a) Grafique el conjunto de datos y señale los aspectos más relevantes y técnicas posibles de predicción.
- b) Ajuste la serie a partir de AELB con $\alpha=0.3$ y obtenga la predicción para todos los trimestres del año 2001.
- c) Utilice AEL Biparamétrico de Holt con $\alpha=0.3$ y $\beta=0.6$ y obtenga la predicción para todos los trimestres del año 2001.
- d) Compare ambos métodos respecto a los valores ajustados y predicciones obtenidas.
- 2. Sean las observaciones correspondientes a las ventas de cierto producto entre Enero de 1970 y Diciembre de 1973.

	ene	feb	mar	abr	may	jun	jul	ago	sep	- oct	nov	dic
1970	143	138	195	225	175	389	454	618	770	564	327	235
1971	189	326	289	293	279	552	664	827	1000	502	512	300
1972	359	264	315	361	414	647	836	901	1104	874	683	352
1973	332	244	329	437	544	830	1011	1081	1400	1123	713	487

a) Grafique las observaciones y comente sobre cada uno de los componentes de la serie. Es la serie multiplicativa o aditiva?

- b) A partir del primer año obtenga los valores iniciales del método de Holt-Winters. Posteriormente, aplique el suavizado con S=12, $\alpha=0.2$, $\beta=0.3$ y $\gamma=0.2$, para el año 1971 mostrando los valores de cada componente. Finalmente, realice una predicción de los valores para Enero y Febrero de 1972.
- c) Encuentre los intervalos de confianza para las predicciones de la parte b) con $\alpha = 0.05$.
- 3. Considere una serie de tiempo de largo n=89 con la siguiente Función de Autocorrelación empirica:

Lag	0	1	2	3	4	5	6	7	8	9	10
ACF	1.00	-0.05	-0.23	0.02	-0.13	0.01	0.12	-0.20	-0.00	0.05	-0.07

Calcule el estadístico del Test de Box-Ljung para L=1 y L=2. Tiene esta serie de tiempo una dependencia temporal significativa?.

- 4. Suponga el modelo $y_t = \beta_0 + \beta_1 t + \epsilon_t$ con t = 1, ..., n, $\mathbb{E}(\epsilon_t) = 0$, $\mathbb{E}(\epsilon_t^2) = \sigma^2$ y para $t \neq s$, $\mathbb{E}(\epsilon_t \epsilon_s) = 0$. Defina $w_t = \frac{1}{3} \sum_{j=-1}^{1} y_{t+j}$
 - a) Calcule la esperanza de la serie de tiempo w_t
 - b) Calcule $Cov(w_{t+k}, w_t)$ y muestre que dicha covarianza no depende de t. Es w_t estacionario?
- 5. Sea $\{X_t\}$ un proceso definido por,

$$X_t = A\cos(\pi t/3) + B\sin(\pi t/3) + Y_t$$

donde $Y_t = Z_t + 2.5Z_{t-1}$, $\{Z_t\} \sim WN(0, \sigma^2)$, A y B son no correlacionados con media 0 y varianza ν^2 y Z_t es no correlacionado con A y B para cada t. Encuentre la funcion de autocovarianza del proceso X_t .

6. Considere el proceso

$$Y_t = A\cos(\omega t) + B\sin(\omega t)$$
 $t = 0, \pm 1, \dots$

donde A y B son variables aleatorias incorrelacionadas, con media 0 y varianza 1 y ω es fija en el intervalo $[0, \pi]$. Es Y_t un proceso estacionario?

Diferenciación y Procesos Lineales

- 7. Explique brevemente lo siguiente:
 - a) Estacionaridad estricta y de segundo orden.
 - b) Estacionalidad.

- c) Causalidad.
- d) Invertibilidad.
- e) ¿Cuáles son las ventajas y desventajas de la diferenciación versus una aplicación del análisis armónico?
- 8. Sea el proceso $\{Y_t\}$ definido como:

$$Y_t = \epsilon_t + c(\epsilon_{t-1} + \epsilon_{t-2} + \ldots)$$

donde $\{\epsilon_t\} \sim RB(0, \sigma^2)$ y c es una constante.

- a) Es $\{Y_t\}$ un proceso estacionario?
- b) Es $\nabla \{Y_t\}$ un proceso estacionario?
- c) Calcule la función de autocorrelación de Y_t
- 9. Si $T_t = \sum_{k=0}^p c_k t^k$, $t = 0, \pm 1, \pm 2, \ldots$, muestre que $\nabla T_t = T_t T_{t-1}$ es un polinomio de grado (p-1) en t y de aquí $\nabla^{p+1} T_t = 0$.
- 10. Sea $\{\epsilon_t\}$ una secuencia de va i.i.d con media 0 y varianza σ^2 . ¿Bajo que condiciones sobre θ los siguientes procesos son estacionarios?.
 - a) $X_t = \theta X_{t-1} + \epsilon_t$
 - b) $X_t = \epsilon_t + \theta \epsilon_{t-1}$
 - c) $X_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$

- 11. Dado el proceso Z_t definido por.
 - a) $Z_t = \beta_0 + \beta_1 \epsilon_t$
 - b) $Z_t = \beta_0 + \beta_1 t + \epsilon_t$
 - c) $Z_t = \beta_0^t exp\{\epsilon_t\}$
 - $d) Z_t = \beta_0 + \epsilon_t + \beta_1 \epsilon_{t-1}$

donde β_0 y β_1 son constantes y $\{\epsilon_t\}$ es un proceso de ruido blanco con media cero y varianza σ^2 , defina un nuevo proceso Y_t (en función de Z_t) que sea estacionario. Proporcione $\mathbb{E}[Y_t]$, $\mathbb{V}[Y_t]$ y $Cov(Y_t, Y_{t+k})$, para $k = 1, 2, \ldots$

- 12. Considere un proceso consistente de una tendencia lineal con un término de ruido aditivo consistente de variables aleatorias independientes ϵ_t con media cero y varianza σ_{ϵ}^2 , ie, $x_t = \beta_0 + \beta_1 t + \epsilon_t$, donde β_0 y β_1 son constantes fijas
 - a) Pruebe que x_t no es estacionario
 - b) Pruebe que la primera diferencia de la serie $\nabla x_t = x_t x_{t-1}$ es estacionario hallando la media y la función de autocovarianza.

Modelos para Series de Tiempo Estacionarias

- 13. En un proceso AR(2) escriba (ϕ_1, ϕ_2) en términos de (ρ_1, ρ_2) y vicebersa. Escriba condiciones de estacionaridad en términos de ρ_1 y ρ_2 .
- 14. Sea $\{X_t\}$ un proceso de medias móviles de orden 2 dado por

$$X_t = \epsilon_t + \theta \epsilon_{t-2}$$

donde $\epsilon_t \sim RB(0, \sigma^2)$

- a) Hallar la función de autocovarianza y autocorrelación para estos procesos cuando $\theta=0.8$
- b) Calcule la varianza de la media muestral $\frac{X_1+X_2+X_3+X_4}{4},$ cuando $\theta=0.8$
- c) Repita (b) cuando $\theta = -0.8$ y compare sus resultados con los obtenidos en (b).
- 15. Determine cuál de los siguientes procesos AR/MA son estacionarios y/o invertibles. (En cada caso $\{\epsilon_t\}$ denota ruido blanco).
 - a) $X_t + 1.9X_{t-1} + 0.88X_{t-2} = \epsilon_t$
 - b) $X_t = \epsilon_t + 0.2\epsilon_{t-1} + 0.7\epsilon_{t-2}$
 - $c) X_t + 0.6X_{t-1} = \epsilon_t$
 - $d) X_t = \epsilon_t + 1.2\epsilon_{t-1}$
 - e) $X_t + 1.8X_{t-1} + 0.81X_{t-2} = \epsilon_t$

Encuentre la representación $MA(\infty)$ y $AR(\infty)$ si corresponde en cada caso.