Pulsar Noise Analysis using ENTERPRISE

Abhimanyu Susobhanan

"Frequency"

1. Pulsar frequency == pulse frequency == rotational frequency F

 ν

2. Radio frequency == observation frequency

3. Fourier frequency == conjugate frequency

4. Gravitational wave frequency == source frequency

Pulsar timing likelihood (ideal)

Number of TOAs – N

 $TOA - t_i$

TOA uncertainty – σ_i

Estimated pulse phase $\Phi_i = \Phi(t_i)$

Estimated pulse number – $n_i = \frac{\Phi_i}{2\pi}$

Pulse frequency – $F_i = \frac{dn}{dt}(t_i)$

Timing residual – $R_i = \frac{n_i - \lfloor n_i \rfloor}{F_i}$

Weighted least squares metric – $\chi^2 = \sum_{i=1}^{N} \left(\frac{R_i}{\sigma_i}\right)^2$

Timing model

$$|\Lambda = \left[\prod_{i=1}^{1} \frac{1}{\sqrt{2\pi\sigma_i^2}} \right] \exp\left[-\frac{\chi^2}{2} \right]$$

$$\ln\Lambda \sim -rac{\chi^2}{2} - \sum\limits_{i=1}^N \ln\sigma_i$$

Pulsar timing likelihood (extra white noise - EFAC & EQUAD)

Scaled TOA uncertainty –
$$\varsigma_i^2 = E_f^2 \sigma_i^2 + E_q^2$$

Weighted least squares metric – $\chi^2 = \sum_{i=1}^N \left(\frac{R_i}{\varsigma_i}\right)^2$

$$\Lambda = \left[\prod_{i=1}^{1} \frac{1}{\sqrt{2\pi\varsigma_i^2}} \right] \exp\left[-\frac{\chi^2}{2} \right]$$

$$\ln \Lambda \sim -\frac{\chi^2}{2} - \sum_{i=1}^{N} \ln \varsigma_i$$

- EFAC E_f Underestimated radiometer noise
- EQUAD E_a Pulse jitter

Pulsar timing likelihood (single-pulsar correlated noise)

Covariance matrix (white noise)
$$-C_{ij}^w = \begin{cases} \varsigma_i^2 & \text{if } i=j \\ 0 & \text{otherwise} \end{cases}$$

$$\Lambda = \left[\frac{1}{\sqrt{2\pi \det[C]}}\right] \exp\left[-\frac{\chi^2}{2}\right]$$
Covariance matrix (red noise) $-C_{ij}^r$
Covariance matrix (total) $-C_{ij} = C_{ij}^w + C_{ij}^r$
Generalized least squares metric $-\chi^2 = C_{ij}^{-1} R_i R_j$

$$\ln \Lambda \sim -\frac{\chi^2}{2} - \frac{1}{2} \ln \det C$$

- ECORR Narrowband TOAs from the same observation are correlated
- Achromatic noise Radio frequency-independent noise
 - Spin noise Stochastic pulsar frequency variations
- Chromatic Noise Frequency-dependent noise (includes DM noise, scattering noise etc)
 - DM Noise DM variations
 - Scattering noise Variations in the scattering timescale, scattering index

Red noise

$$P(f) = Af^{-\gamma} \Theta[f - f_{\min}]$$
Power spectrum

$$C(\tau) = \int_0^\infty df \ P(f) \cos(2\pi f \tau)$$

Autocorrelation function

$$C_{ij} = (\nu_i \nu_j)^{-\alpha} C(|t_i - t_j|)$$

Correlation matrix

α = Chromatic indexγ = Power law index / spectral index

 $\alpha = 0$ — Achromatic noise

 α = 2 — DM noise

SPNA vs SPNTA

1. SPNTA – Estimate timing model parameters together with noise parameters (eg: TEMPONEST, PINT (under development))

$$\ln \Lambda \sim -\frac{\chi^2}{2} - \frac{1}{2} \ln \det C$$

- 2. SPNA Estimate noise parameters assuming that the best-fit timing model parameters are known (eg: ENTERPRISE)
 - a. Timing model parameters are analytically marginalized

(See van Haasteren+ 2009 Eq 18 for the analytically marginalized likelihood function)

Fourier representation of red noise

- C_{ii} is an N x N matrix
- Computing its inverse and determinant are $O(N^3)$ operations \Rightarrow slow.
- We can speed this up by approximating C_{ij} using a truncated Fourier representation.

$$C_{ij}^r \approx F_{im} S_{mn} F_{jn}$$

$$F_{jn} = \begin{cases} \sin \left[2\pi n F_{\min} |t_j - t_0| \right] & \text{even } n \\ \cos \left[2\pi n F_{\min} |t_j - t_0| \right] & \text{odd } n \end{cases}$$
 for $n = 1...2N_{\text{harm}}$

$$S_{mn} = \begin{cases} P(2\pi n F_{\min}) & \text{if } m = n \\ 0 & \text{otherwise} \end{cases} \quad \text{for } m, n = 1...2N_{\text{harm}}$$