ОГЛАВЛЕНИЕ

П	OCTAHOB	КА ЗАДАЧИ И ИСХОДНЫЕ ДАННЫЕ	3
1.	УПРАВЛІ	ение по положению схвата. аналитический метод.	5
2.	УПРАВЛЕНИЕ ПО ПОЛОЖЕНИЮ СХВАТА. ЧИСЛЕННЫЙ МЕТОД НЬЮ- ТОНА.		7
	2.1.	Постановка задачи	7
	2.2.	Метод Ньютона	7
3.	АЛГОРИТМ УПРАВЛЕНИЯ НА ОСНОВЕ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ		
	О СКОРО	ОСТЯХ.	8
	3.1.	Постановка задачи	8
	3.2.	Алгоритм управления	8

ПОСТАНОВКА ЗАДАЧИ И ИСХОДНЫЕ ДАННЫЕ

Цель работы

Управление манипуляционным роботом *KUKA youBot* на основе решения обратной задачи о положениях при перемещении схвата по заданному закону.

Ограничения

В лабораторных рассматривается только две степени манипулятора – остальные зафиксированы. Из этого следует, что: ϕ_1,ϕ_4 и ϕ_5 это константы, а угол ориентации схвата в плоскости руки манипулятора: $\theta=\phi_2+\phi_3+\phi_4$. Причем, последнее звено схвата выпрямлено, находится в положении параллельном третьему звену, откуда следует, что $\phi_4=0$.

Исходные данные

Длины звеньев и расстояния между их осями:

$$d_1 = 0.033$$

$$l_1 = 0.075$$

$$l_2 = 0.155$$

$$l_3 = 0.135$$

$$l_4 = 0.081$$

$$l_5 = 0.137$$

$$l_{45} = l_4 + l_5 = 0.218$$

$$l_{345} = l_3 + l_4 + l_5 = 0.353$$

Схват перемещается так, что его координаты X и Y не меняются со временем, а Z меняется по закону:

$$Z(t) = 0.2 + 0.1\cos\frac{2\pi t}{10}$$

Время берем дискретное, из ста значений от 0 до 10~c. Временной шаг $\Delta t = 0.1~c$

Так как для управления движением манипулятора используются «технические» углы A_i , отсчет которых производится от упоров, то необходим переход от углов φ_i к A_i , который осуществляется следующим образом:

$$A_1 = \varphi_1 + 2.9496$$

$$A_2 = \varphi_2 + 1.1345$$

$$A_3 = \varphi_3 - 2.5654$$

$$A_4 = \varphi_4 + 1.829$$

$$A_5 = -\varphi_5 + 2.93$$

Причем диапазоны работы манипулятора ограничены в A_i :

$$0.01 < A_1 < 5.84$$

 $0.01 < A_2 < 2.6179$
 $-4.8 < A_3 < -0.01$
 $0.022 < A_4 < 3.4292$
 $0.01 < A_5 < 5.6415$

Нам заданы X(t),Z(t), требуется найти $\varphi_i(t)$.

1. УПРАВЛЕНИЕ ПО ПОЛОЖЕНИЮ СХВАТА. АНАЛИТИЧЕСКИЙ МЕТОД.

Расчет углов в сочленениях производится с помощью результатов точного аналитического решения обратной задачи о положениях:

$$X_{1A} = d_1 + l_2 \sin \varphi_2 + l_3 \sin (\varphi_2 + \varphi_3)$$

$$Z_{1A} = l_1 + l_2 \cos \varphi_2 + l_3 \cos (\varphi_2 + \varphi_3)$$
(1)

Преобразуя данные уравнения, получим:

$$l_2 \sin \varphi_2 + l_3 \sin (\varphi_2 + \varphi_3) = X_{1A} - d_1 = \tilde{X}$$

$$l_2 \cos \varphi_2 + l_3 \cos (\varphi_2 + \varphi_3) = Z_{1A} - l_1 = \tilde{Z}$$

$$\tilde{l} = \sqrt{\tilde{X}^2 + \tilde{Z}^2}$$

$$\alpha = \pi - \varphi_3$$

По теореме косинусов:

$$\tilde{l}^2 = l_3^2 + l_2^2 - 2l_2 l_3 \cos \alpha$$

$$\cos \varphi_3 = \frac{\tilde{l}^2 - l_3^2 - l_2^2}{2l_2 l_3} = \frac{(\tilde{X}^2 + \tilde{Z}^2) - (l_3^2 + l_2^2)}{2l_2 l_3} = D$$

Замечание: если |D|>1, то программное движение нереализуемо, так как координаты целевой точки вне рабочей области.

$$\varphi_3 = \pm \arccos D + 2\pi n, n \in \zeta$$

Найдем φ_2 :

$$tg \beta = \frac{\tilde{Z}}{\tilde{X}}$$
$$\beta = \arctan(\tilde{Z}, \tilde{X})$$

По теореме косинусов:

$$l_3^2 = \tilde{l}^2 + l_2^2 - 2\tilde{l}l_3\cos\gamma$$

$$\cos\gamma = \frac{\tilde{l}^2 + l_2^2 - l_3^2}{2\tilde{l}l_2}$$

$$\gamma = \pm\arccos\frac{\tilde{l}^2 + l_2^2 - l_3^2}{2\tilde{l}l_2}$$

$$\varphi_2 + \gamma + \beta = \frac{\pi}{2}$$

Тогда

$$\varphi_2 = \frac{\pi}{2} - \gamma - \beta.$$

Для проверки результата решим прямую задачу. Полученные значения φ_2, φ_3 подставим в (1).

Программа для нахождения φ_2, φ_3 , а также графики реальных и программных значений координат представлены в Приложении 1.

Также были получены квадратичные отклонения:

$$||X(t) - X^*||_2 = 4.98 \cdot 10^{-16}$$

$$||Z(t) - Z^*||_2 = 4.65 \cdot 10^{-16}$$

.

2. УПРАВЛЕНИЕ ПО ПОЛОЖЕНИЮ СХВАТА. ЧИСЛЕННЫЙ МЕТОД НЬЮТОНА.

2.1. Постановка задачи

Дан вектор
$$X=egin{bmatrix} X_{1A}(t) \\ Z_{1A}(t) \end{bmatrix}$$
, требуется найти $q=egin{bmatrix} \phi_2 \\ \phi_3 \end{bmatrix}$ методом Ньютона.

2.2. Метод Ньютона

Путем итерационных приближений находится $q^{(k+1)}=q^{(k)}-p^{(k)},$ где $p^{(k)}$ – вектор полного шага.

$$J(q^{(k)}) \cdot p^{(k)} = F(q^{(k)})$$

$$J = \frac{\partial F}{\partial q} = \begin{bmatrix} \frac{\partial X_{1A}}{\partial \varphi_2} & \frac{\partial X_{1A}}{\partial \varphi_3} \\ \frac{\partial Z_{1A}}{\partial \varphi_2} & \frac{\partial Z_{1A}}{\partial \varphi_3} \end{bmatrix}$$

Если размерность J небольшая, то можно найти $p^{(k)} = J^{-1}(q^{(k)}) \cdot F(q^{(k)})$. Здесь и выше J – это матрица Якоби. Она формируется путем дифференцирования графа координат схвата по обобщенным координатам. Граф для координат схвата:

$$X_{1A} = d_1 + l_2 \sin \varphi_2 + l_3 \sin (\varphi_2 + \varphi_3)$$

$$Z_{1A} = l_1 + l_2 \cos \varphi_2 + l_3 \cos (\varphi_2 + \varphi_3)$$

При помощи найденных численно φ_1, φ_2 можно решить прямую задачу кинематики, подставив значения в граф. После чего сравнить полученную траекторию движения с программным движением.

Программа для нахождения φ_2, φ_3 , а также графики реальных и программных значений координат представлены в Приложении 2.

Также были получены квадратичные отклонения:

$$||X(t) - X^*||_2 = 0.194585$$

 $||Z(t) - Z^*||_2 = 0.2622$

.

3. АЛГОРИТМ УПРАВЛЕНИЯ НА ОСНОВЕ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ О СКОРОСТЯХ.

3.1. Постановка задачи

Даны векторы $X^*=\begin{bmatrix} X_{1A}^*(t)\\ Z_{1A}^*(t) \end{bmatrix}$, $\dot{X^*}=\begin{bmatrix} \dot{X}_{1A}^*(t)\\ \dot{Z}_{1A}^*(t) \end{bmatrix}$ — закон изменения скорости схвата. Известно, что $J(q)\dot{q}=\dot{X}$.

Требуется найти: $\dot{q} = \begin{bmatrix} \dot{arphi}_2 \\ \dot{arphi}_3 \end{bmatrix}$.

3.2. Алгоритм управления

Введём вектор ошибок положения схвата: $e = X - X^*(t) = f(q) - X^*$, где f(q) – фактические координаты, X^* – требуемые координаты.

Потребуем, чтобы $e \to 0$ при $t \to \infty$.

Пусть $\dot{e}=-ke,k=egin{bmatrix} k1&0\\0&k2 \end{bmatrix}$, тогда $e\to 0$ при $t\to \infty$ в силу ассимптотической устойчивости.

$$\dot{e} = \dot{X} - \dot{X}^*$$

$$J\dot{q} - \dot{X}^* = -ke$$

$$J\dot{q} = \dot{X}^* - ke$$

$$\dot{q} = J^{-1} \cdot (\dot{X}^* - ke)$$

Для проверки результата решим прямую задачу. Получим $\varphi_2,\,\varphi_3$ из \dot{q} с помощью метода Эйлера:

$$\varphi_{2i} = \varphi_{2(i-1)} + 0.1\dot{\varphi}_{2i}$$

$$\varphi_{3i} = \varphi_{3(i-1)} + 0.1\dot{\varphi}_{3i}$$

Подставим полученные значения в граф для координат схвата:

$$X_{1A} = d_1 + l_2 \sin \varphi_2 + l_3 \sin (\varphi_2 + \varphi_3)$$

$$Z_{1A} = l_1 + l_2 \cos \varphi_2 + l_3 \cos (\varphi_2 + \varphi_3)$$

Программа для нахождения \dot{q} , а также графики реальных и программных значений координат представлены в Приложении 3.

Также были получены квадратичные отклонения:

$$||X(t) - X^*||_2 = 0.0002513$$

 $||Z(t) - Z^*||_2 = 0.38452$

.