26/06/2018

**Encadrants**:

Jean-Louis Dessalles

Pierre-Alexandre Murena

Giovanni Sileno

# Contraste et catégorisation

Etudiants:

Aurélien Blicq

Antoine Bellami

Clément Bonet

Benoît Malézieux

Louis Penet de Monterno

Bastien Vagne

#### Le problème

- Comment différencier deux objets d'une même catégorie mais avec des caractéristiques différentes ?
- Comment repérer une exception ou une anomalie tout en plaçant l'objet dans la bonne catégorie ?

### Exemple



1ere étape : catégorisation avec l'algorithme K-Means ou Gaussian Mixture Model



► GMM fait correspondre un ensemble de gaussiennes aux données, tandis que k-means identifie plus simplement le « plus proche » centroïde



Choix du nombre de clusters par la méthode du coude



- 2e étape : calcul du contraste
- On effectue la différence vectorielle de chaque point avec son centre puis on divise par l'écart-type :

$$\frac{x-\mu}{\sigma}$$

► Technique du *sharpening* : on ne garde que les valeurs exceptionnelles du contraste, c'est-à-dire les composantes plus grandes qu'une certaine valeur

Exemple de sharpening



Exemple de données contrastées







Sharpening



## Implémentation



# Implémentation

On utilise une base de données artificielle de fruits

|   | fruit                         | longueur | largeur  | r          | v          | b         | sucre    | eau       | fibres   |
|---|-------------------------------|----------|----------|------------|------------|-----------|----------|-----------|----------|
| 0 | abricot#petit~                | 5.992987 | 4.607582 | 230.000000 | 126.000000 | 48.000000 | 2.000000 | 87.000000 | 1.800000 |
| 1 | abricot#                      | 7.000000 | 5.000000 | 232.098033 | 117.722015 | 51.817661 | 2.000000 | 87.000000 | 1.800000 |
| 2 | abricot#                      | 7.415552 | 5.144938 | 235.226165 | 121.031608 | 60.406919 | 5.785021 | 80.749193 | 1.749528 |
| 3 | abricot#long~                 | 7.703690 | 5.428736 | 230.000000 | 126.000000 | 48.000000 | 2.000000 | 87.000000 | 1.800000 |
| 4 | abricot#plus rouge~plus vert~ | 7.000000 | 5.000000 | 244.327768 | 143.660484 | 54.050655 | 2.000000 | 87.000000 | 1.800000 |

#### Résultats

Ce tableau illustre notre algorithme de description d'un nouvel élément. On associe ainsi à un nouveau fruit une espèce et un adjectif.

#### Extrait d'un jeu de données de fruits décrits :

| Longueur | Contraste<br>Iongueur | Catégorie du<br>fruit | Catégorie du<br>contraste |  |
|----------|-----------------------|-----------------------|---------------------------|--|
| 5.1      | + 1.2                 | Fraise                | Grand                     |  |
| 12.7     | 12.7 - 1.7            |                       | Petit                     |  |
|          |                       |                       |                           |  |

Entrées partielles

**Sorties** 

#### Résultats

Bilan de la première étape de catégorisation

| Catégories              | « tomate » | « banane » | « cerise »                               | « pomme » | « abricot »   | « patate » | « prune » | « prune » | « poire » | « prune » |
|-------------------------|------------|------------|------------------------------------------|-----------|---------------|------------|-----------|-----------|-----------|-----------|
| Nombre<br>d'éléments    | 100        | 100        | 201                                      | 100       | 200           | 100        | 27        | 35        | 100       | 37        |
| Eléments<br>bien placés | 100%       | 100%       | 49,75%                                   | 100%      | 50%           | 100%       | 100%      | 100%      | 100%      | 100%      |
| Eléments<br>mal placés  |            |            | Poivrons:<br>49,75 %<br>Prunes: 0,5<br>% |           | Carottes: 50% |            |           |           |           |           |

#### Résultats

Ce tableau synthétise les résultats obtenus par notre algorithme, chaque ligne correspondant à un cluster de contrastes

| Label                                                        | Centre (en nombre d'écarts-types)<br>(les valeurs non spécifiées sont nulles)               | Interprétation | Pourcentage |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------|-------------|
| ['r+']                                                       | R = 2,35                                                                                    | Rouge          | 6,12 %      |
| []                                                           |                                                                                             | normal         | 19,45 %     |
| ['longueur+', 'largeur+', 'b+', 'sucre-', 'eau+', 'fibres-'] | Longueur = 0,89, largeur = 1,36,<br>b = 1, 42, sucre = -2,25,<br>eau = 0,71, fibres = -1,83 | aucune         | 2,19 %      |
| []                                                           |                                                                                             | normal         | 21,10 %     |
| ['longueur+']                                                | Longueur = 1,28                                                                             | long           | 2,18 %      |
| ['largeur+']                                                 | Largeur = 1,63                                                                              | large          | 4,5 %       |
| ['longueur+', 'largeur+]                                     | Longueur = 0,93, largeur = 1,06                                                             | gros           | 5,89 %      |
| ['v-', 'b+', 'eau+',<br>'sucre+']                            | V = -0,63, b = 1,45, eau = 1,05,<br>sucre = 2,02                                            | aucune         | 1,64 %      |
| ['r-', 'b-', 'v-']                                           | R = -0.83, $b = -0.76$ , $v = -0.62$                                                        | Clair          | 6,2 %       |
| ['longueur+', 'eau-',<br>'sucre+', fibres-]                  | Longueur = 0,72, eau = -1,23,<br>sucre = 1,42, fibres = -1,06                               | aucune         | 5,28 %      |
| ['sucre-']                                                   | Sucre = -2,31                                                                               | Peu sucré      | 8,31 %      |
| ['eau-', 'sucre+',<br>fibres-]                               | Eau = -0,60, sucre = 1,33, fibres = -1,42                                                   | aucune         | 4,53 %      |
| ['r-', 'v+', 'b+']                                           | R = -0.62, v = 0.88, b = 1.04                                                               | jaune          | 8,42 %      |
| ['longueur+', 'largeur-']                                    | Longueur = 1,58, largeur = -1,38                                                            | Long et fin    | 3,89 %      |

#### Méthode incrémentale

Problématique différente : comment classer un petit jeu de données de manière itérative ?



#### Perspectives d'utilisation

- One shot learning
- Apprentissage sur un faible volume de données
- Détection d'anomalies