Exercício 8.22 Daniel Hart CC CA PWM

Escolher a tensão de entrada CC para THD seja menor que 10%

$$V_{\rm out} := 220 \text{ (rms)}$$
 $R := 30$ $F := 60$ \$THD := $\frac{10}{100} = 0,1$ $v_o := 2 \cdot \pi \cdot F = 376,9911$

Taxa modulação da amplitude

$$V_1 := V_{\text{out}} \cdot \sqrt{2} = 311,127$$

$$M_a := \frac{V_1}{V_{in}} = 0,7778$$

$$V_{referencia} := M_a \cdot V_{portadora} = 3,8891$$

Amplitude de corrente 60Hz

$$Z_1 := \sqrt{R^2 + (v_o \cdot L)^2} = 31,4456$$

$$I_1 := \frac{V_1}{Z_1} = 9,8941$$

Corrente da harmônica na frequecia da portadora

$$I_{mf} := %THD \cdot I_1 = 0,9894$$

A amplitude Vmf

A amplitude Vmf

Table 8-3 Normalized Fourier Coefficients $V_{\rm n}/V_{\rm dc}$ for Bipolar PWM

	$m_a=1$	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
n=1	1.00	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10
$n=m_f$		0.71	0.82	0.92	1.01	1.08	1.15	1.20	1.24	1.27
$n=mf\pm 2$	0.32	0.27	0.22	0.17	0.13	0.09	0.06	0.03	0.02	0.00

Para ma=0,94, mf=0,75

$$V_{\rm mf} := 0,75 \cdot V_{in} = 300$$

$$Z_{\rm mf} := \frac{V_{\rm mf}}{I_{\rm mf}} = 303,2101$$

Para a impedância de carga (Zmf) ser maior que 250, Mf deverá ser maior que:

$$M_{f} := \frac{Z_{mf}}{v_{o} \cdot L} = 32,1716$$

$$M_{f} := 29$$

Definindo a Portadora

$$F_{\texttt{por}} \coloneqq M_{\texttt{f}} \cdot F = 1740$$

Figure 8-21 Frequency spectrum for bipolar PWM with $m_a = 1$.

Conforme gráfico 8-21 as harmônicas estarão em torno da frequência de chaveamento e seus multiplos. Utilizando a tabela 8-23 calcula-se as harmônicas, com MF=27, calcula-se as V25, V27 e 29

$$\begin{aligned} n &:= 1 \\ V_1 &:= M_a \cdot V_{in} = 311, 127 \\ I_1 &:= \frac{V_1}{Z_1} = 9, 8941 \\ n &:= 27 \\ V_{27} &:= 0, 74 \cdot V_{in} = 296 \end{aligned}$$

$$Z_{1} := \sqrt{R^{2} + (n \cdot v_{o} \cdot L)^{2}} = 31,4456$$

$$P_{1} := \left(\frac{I_{1}}{\sqrt{2}}\right)^{2} \cdot R = 1468,4073$$

$$V_{27} := 0, 74 \cdot V_{in} = 29$$

$$I_{27} := \frac{V_{27}}{Z_{27}} = 1,1552$$

 $S := V_{in} \cdot I_{out rms} = 2823,3996$

$$Z_{27} := \sqrt{R^2 + (n \cdot v_o \cdot L)^2} = 256,2313$$

$$P_{27} := \left(\frac{I_{27}}{\sqrt{2}}\right)^2 \cdot R = 20,0175$$

$$\begin{array}{lll} n := 27 \\ V_{27} := 0, 74 \cdot V_{1n} = 296 \\ I_{27} := \frac{V_{27}}{Z_{27}} = 1, 1552 \\ n := 25 \\ V_{25} := 0, 29 \cdot V_{1n} = 116 \\ I_{25} := \frac{V_{25}}{Z_{25}} = 0, 4884 \\ n := 29 \\ V_{29} := V_{25} = 116 \\ I_{29} := \frac{V_{29}}{Z_{29}} = 0, 4219 \\ P_{29} := \left(\frac{I_{27}}{\sqrt{2}}\right)^2 \cdot R = 2, 6697 \\ P_{29} := \left(\frac{I_{27}}{\sqrt{2}}\right)^2 \cdot R = 2, 6697 \\ P_{29} := \left(\frac{I_{25}}{\sqrt{2}}\right)^2 \cdot R = 2, 6697 \\ P_{201} := V_{25} := \sqrt{\left(\frac{I_{25}}{\sqrt{2}}\right)^2} + \left(\frac{I_{25}}{\sqrt{2}}\right)^2 + \left(\frac{I_{25}}{\sqrt{2}}\right)^2 = 7, 0585 \\ P_{201} := V_{202} := 0, 0175 \\ P_{202} := \left(\frac{I_{202}}{\sqrt{2}}\right)^2 \cdot R = 2, 6697 \\ P_{203} := \left(\frac{I_{203}}{\sqrt{2}}\right)^2 \cdot R = 2, 6697 \\ P_{204} := \left(\frac{I_{204}}{\sqrt{2}}\right)^2 + \left(\frac{I_{204}}{\sqrt{2}}\right)^2 + \left(\frac{I_{204}}{\sqrt{2}}\right)^2 = 7, 0585 \end{array}$$

[

Tabela Valores Calculados X Simulados

	Calculado	Medido	%
Corrente Saída eficaz	3,19	3,19	0%
Tensão de Saída eficaz	100,00	150,00	50%
Potencia Ativa	307,08	307,90	0%
Potencia Aparente	479,90	478,58	0%
Fator Potência	0,63	0,64	2%
THD Saída Corrente	0,11	0,08	27%
Hamônica Fundamental Tensão	141,42	141,87	0%
Hamônica Fundamental Corrente	4,49	4,49	0%
Corrente Chave Rms		2,26	
Corrente Chave Pico		4,59	
Tensão Máxima Chaves	150,00	150,00	0%