

Modelldiagnose Lineare Regression

Signifikanz, Modellannahmen, Residuenanalyse, Multikolinearität, Ausreißer

Treffen 30.11.2017 Fabio & Simon

Aufbau

01

Recap: Lineare Regression

Lineare Parameterschätzung

02

Die Logik von Signifikanz

Mechanismen der Inferenz (Standardfehler, Konfidenzintervalle und NHTS

03

Modellannahmen

Problemstellungen und Annahmeverletzungen

learnr

Lineare Regression Recap

Lineare Regression Notation

Lineare Regression Parameter

$$y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i$$

 $Beobachtung_i = Parameter * Daten + Fehler$ Modell

 $Beobachtung_i = Lineare Fun von x + Fehler$

 $Beobachtung_i = Vorhersage + Fehler$

Parameter?!

R User Group

Input Parameter

Vor Allem beim programmieren

$$x_quer <- mean(x, na.rm = T)$$

Die Funktionsargumente X und na.m können auch als Eingabeparameter betrachtet werden, die das Verhalten und den Output der Funktion beeinflusst.

Estimated Parameter

Statistische Modellierung zielt darauf ab, unbekannte Maßzahlen aus Daten zu schätzen, um diese komprimiert zusammenzufassen. Wird auch Koeffizient genannt.

Daten > Schätzung > Params

Unsicherheit

Schätzunsicherheit

```
ess ger %>%
   lm(imm\ econ \sim edu + income + age + I(age^2), data = .) \%
   broom::tidy()
```

·	Dependent variable:
	imm_econ
edu	0.192***
	(0.023)
income	0.074***
	(0.018)
age	-0.070***
	(0.014)
I(age2)	0.001***
	(0.0001)
Constant	5.935***
	(0.308)
Observations	2,511
\mathbb{R}^2	0.048
Adjusted R ²	0.047
Residual Std. Error	2.270 (df = 2506)
F Statistic	31.903*** (df = 4; 2506
Note:	*p<0.1; **p<0.05; ***p<0

Signifikanztests

	- 1					
Ł		term	estimate			p.value
Ł	1	(Intercept)	5.9349814831	0.3082548254	19.253491	3.759595e-77
Ł	2	edu	0.1915797340	0.0227268945	8.429649	5.763811e-17
Ł	3	income	0.0741948714	0.0175057650	4.238311	2.333559e-05
Ł	4	age	-0.0702992536	0.0136998941	-5.131372	3.096792e-07
Ŀ	5	I(age^2)	0.0006791562	0.0001380618	4.919217	9.252048e-07

Steigungsparameter

Inferenzparameter

- Standardfehler
- t-Statistik
- p-Werte/ NHTS

Inferenz

Regression mit **Stichproben**-Daten

oder b

 $y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i$

Regression mit Daten der Grundgesamtheit

Standard Error

##		term	estimate	std.error	statistic	p.value
##	1	(Intercept)	5.9349814831	0.3082548254	19.253491	3.759595e-77
##	2	edu	0.1915797340	0.0227268945	8.429649	5.763811e-17
##	3	income	0.0741948714	0.0175057650	4.238311	2.333559e-05
##	4	age	-0.0702992536	0.0136998941	-5.131372	3.096792e-07
##	5	I(age^2)	0.0006791562	0.0001380618	4.919217	9.252048e-07

Dependent variable: imm econ 0.192*** edu (0.023)0.074*** income (0.018)-0.070*** age (0.014)0.001*** I(age2) (0.0001)5.935*** Constant (0.308)2,511 Observations 0.048 Adjusted R2 0.047 Residual Std. Error 2.270 (df = 2506) 31.903^{***} (df = 4: 2506) F Statistic *p<0.1; **p<0.05; ***p<0.01 Note:

Streuung um den Intercept

$$SE(eta_0) = \sigma^2 \left[rac{1}{n} + rac{ar{x}^2}{\sum_{i=1}^n (x_i - ar{x})^2}
ight]$$
 — uninteressant

Streuung um einen Slope

$$SE(eta_1) = \sqrt{rac{\sigma^2}{\sum_{i=1}^n (x_i - ar{x})^2}} = rac{\sigma}{s_x \sqrt{n}}$$

Sehr wichtig, da der SE die Streuung/ Abweichungen um die lineare Vorhersage beschreibt.

t-Test Signifikanztests

##		term	estimate	std.error	statistic	p.value
##	1	(Intercept)	5.9349814831	0.3082548254	19.253491	3.759595e-77
##	2	edu	0.1915797340	0.0227268945	8.429649	5.763811e-17
##	3	income	0.0741948714	0.0175057650	4.238311	2.333559e-05
##	4	age	-0.0702992536	0.0136998941	-5.131372	3.096792e-07
##	5	I(age^2)	0.0006791562	0.0001380618	4.919217	9.252048e-07

Vergleich des empirischen t-Wertes und dem theoretischen/ kritischen t-Wert.

$$t = rac{eta_1 - 0}{SE(eta_1)} \sim N(0,1) ext{ genauer } \sim t_{n-2}$$

Welche Verteilung?

- t-Verteilung
- z-Verteilung

Beide Standardnormalverteilt. Ab t > 30 konvergiert die t- zur z-Verteilung

Konfidenzintervalle

$$egin{align} CI_eta &= \hat{eta}_1 \pm t_{rac{lpha}{2}} \ SE(eta_1) \ &[\hat{eta}_1 - t_{rac{lpha}{2}} \ SE(eta_1) \leq eta_1 \leq \hat{eta}_1 + t_{rac{lpha}{2}} \ SE(eta_1)] \ \end{gathered}$$

confint(fit1)

```
## 2.5 % 97.5 %
## (Intercept) 3.3950307 3.9478453
## edu 0.3585679 0.4532925
```


Nullhypothesentests p-Werte

```
## term estimate std.error statistic p.value
## 1 (Intercept) 5.9349814831 0.3082548254 19.253491 3.759595e-77
## 2 edu 0.1915797340 0.0227268945 8.429649 5.763811e-17
## 3 income 0.0741948714 0.0175057650 4.238311 2.333559e-05
## 4 age -0.0702992536 0.0136998941 -5.131372 3.096792e-07
## 5 I(age^2) 0.0006791562 0.0001380618 4.919217 9.252048e-07
```

Null Hypothesen Test

 $H_0: \beta_1 = 0$

 $H_1:\beta_1\neq 0$

Modellannahmen

Der linearen Regression

01 Linearität der Parameter

Normalverteilung der Residuen (IID)

Unabhängigkeit der Residuen

05 Multikolinearität

03 Homoskedastizität

06 Ausreißer

Und jetzt ... learnr

https://github.com/favstats/rgroup_diagnostik