Motor cortical and striatal activity during goal-directed reaching

Team Deep Nets:

Darby Losey
Abhinav Sharma
Cathy Su
Akash Umakantha
Elissa Ye

How does neural activity in motor cortex and striatum coordinate to create goal-directed reaching?

Data Overview and Processing

- 1. Mouse1: 163 reaches, Mouse2: 170 reaches
- 2. Considered neurons with >1 Hz Firing rate during analysis period:
 - a. Mouse1: 2 motor, 49 dorsal striatum, 22 ventral striatum
 - b. Mouse 2: 46 motor, 69 dorsal striatum, 66 ventral striatum

Mouse1 explores different directions while Mouse2 tends to reach into the same direction

Mouse2 has a higher success rate than Mouse1

The distribution of action potential firings per neuron varies depending upon neuron type for each mouse

Linear Models for Predicting Peak Amplitude & Velocity

Ventral striatum better predicts behavior in mouse 2 than mouse 1

PCA for Spikes per neuron across Trials

No Label

Rewards

Direction

Activity decomposition (neurons x time x trials)

First factor(trial) predicts transition from goal directed to habitual behavior

Mouse 2 reaches become more stereotyped with trials

First factor(trial) predicts transition from goal directed to habitual behavior

Mouse 1 reaches are variable throughout the session

Condition-Invariant Factor Space Predicts Task Performance for Each Brain Area

How are neurons interacting during goal-directed movements?

- How are neurons within a brain area interacting?
 - Method: graphical lasso to generate conditional independence graphs between neurons
- How are neurons between brain areas interacting?
 - Method: probabilistic CCA to assess correlation and dimensionality of interactions between areas
- Is there a difference in interactions during preparation (500 to 0 ms before reach initiation) and actual reach?

Within-area interactions (glasso) are more prominent during reaching than during preparation

Between-area interactions are higher-dimensional, and stronger during preparation and reaching epochs

Conclusions

- Mouse 2 had comparatively more activity in ventral relative to dorsal and motor neurons
- Mouse 2 had a better reward rate and performed more habitual reaches
- Low-dimensional activity across trials predicts change from goal-directed behavior for mouse 2, but not mouse 1
- Interactions both within a brain area and between brain areas increase during reaching epochs (versus preparatory epochs)

Future Directions

- Repeat experiments and analyses with multiple replicates to have higher statistical confidence.
- Potential for brain-machine interface: can predict moment-to-moment joystick position and/or joystick velocity based on neural activity
 - Simpler models: regression, Kalman filtering
 - Complex model: deep recurrent neural network

Supplemental material

Questions:

- 1. Data background/visualization
- 2. Decoding movement direction from neural activity
- 3. Relationship between velocity and neural activity
- 4. Neural activity on a low dimensional manifold
- 5. How do neurons interact throughout the reach
 - a. Clustering of neurons into functional groups during different parts of the trial
 - b. Interactions between neurons in different parts of the trial

Within area interactions are more prominent during reaching than during preparation (dorsal striatum)

Within area interactions are more prominent during reaching than during preparation (ventral striatum)

Condition-Invariant Factor Space Predicts Task Performance for Each Brain Area (Supplemental Plots)

