Calcul Intégral III

Table des matières

TODO	1
Théorèmes de Convergence	2
Intégrales Multiples	2
Théorème de Stokes TODO	2
TODO	2
Exercices Déformations	2 2
Réferences	2

TODO

- MCT, DCT. NON, transférer au chapitre précédent
- Intervalle (ou "pavé") dans \mathbb{R}^n , par analogie avec le cas réel (via les points intermédiaires) ou comme produit d'intervalles réels.
- Intégrale dans \mathbb{R}^n , Fubini, formule de changement de variable
- Compact à bord régulier (par épigraphe et comme solution d'une inégalité (avec équivalence par IFT)), normale, intégrale de surface, formule de Stokes.

Théorèmes de Convergence

Intégrales Multiples

Théorème de Stokes

TODO

Compact à bord régulier

Un sous-ensemble K de \mathbb{R}^n est un compact à bord C^1 s'il est compact et peut être caractérisé au voisinage de tout point de sa frontière ∂K , et après un éventuel changement de repère orthonormé direct, comme l'épigraphe d'une fonction de classe C^1 . Autrement dit, pour tout point $x \in \partial K$, il existe un ouvert non vide $V_x \subset \mathbb{R}^n$ de la forme $V_x = U_x \times I_x$ où $U_x \subset \mathbb{R}^{n-1}$ et I_x est un intervalle ouvert non vide de \mathbb{R} , une isométrie directe T_x telle que $T_x(x) \in V_x$ et une fonction $f_x : y \in U_x \to I_x$ continûment différentiable tels que

$$T_x(K) \cap V_x = \{(y_1, \dots, y_n) \in V_x \mid y_n \le f_x(y_1, \dots, y_{n-1})\}$$

TODO

Vérifier qu'il n'est pas nécessaire (?) de spécifier indépendamment intérieur et frontière comme dans (Delfour and Zolésio 2011, 87).

Exercices

Déformations

 Ω dans U paramétrisé par une déformation T = I + u avec u petit et une base Ω_0 qui est un compact à bords C^1 . Montrer que si la base est un compact à bord C^1 , les déformés aussi.

Réferences

Delfour, M. C., and J.-P. Zolésio. 2011. Shapes and Geometries. Metrics, Analysis, Differential Calculus, and Optimization. 2nd Ed. 2nd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).