DOCUMENT 1/1 DOCUMENT NUMBER @: unavailable 1. JP,2000-175900,A (51)Int.CI. (21)Application number: 10-358115 (22)Date of filing: (54) CT APPARATUS (57)Abstract: PROBLEM TO BE SOLVED: To collect inspection data for an object to be examined at an optimum contrasting timing by monitoring contrasting condition of the whole organs and monitoring different blood vessel groups. SOLUTION: An ROI designating part 41 designates a plurality of concerned regions of an object P to be examined in the three-dimensional BACK NEXT

JAPANESE DEMAND

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-

175900

(43)Date of publication of application: 27.06.2000

A61B 6/03

(71)Applicant: TOSHIBA IN

SYSTEM

ENGINEERI

KK **TOSHIBA** CORP

16.12.1998 (72)Inventor: YAMAZAKI

MASAHIKO

region based on the three-dimensional data of the object P to be examined and a scan starting condition setting part 43 sets a scan starting condition for starting an inspection scan and a CT value judging part 45 judges whether CT values in a plurality of concerned regions designated by the ROI designating part 41 after a contrasting agent is poured into the object P to be examined reach the scan starting condition set by the scan starting condition setting part 43.

SEARCH

MENU

HELP

THIS PAGE BLANK (USPTO)

有点 化二氯磺磺磺磺磺酚磺基二甲磺磺基

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2000-175900 (P2000-175900A)

(43)公開日 平成12年6月27日(2000.6.27)

(51) Int.CL7		識別記号	FΙ			テーマコード(参考)
A61B	6/03	3 3 0	A 6 1 B	6/03	330C	4 C 0 9 3
		360			360D	
		3 7 5			375	

審査請求 未請求 請求項の数7 OL (全 9 頁)

特顧平10-358115	(71)出顧人	594164531 東芝医用システムエンジニアリング株式会
平成10年12月16日(1998.12.16)		社 東京都北区赤羽2丁目16番4号
	(71) 出願人	000003078 株式会社東芝 神奈川県川崎市幸区堀川町72番地
	(72)発明者	山崎 正彦 東京都北区赤羽2丁目16番4号 東芝医用 システムエンジニアリング株式会社内
	(74)代理人	100083806 弁理士 三好 秀和 (外7名)
		平成10年12月16日(1998. 12. 16) (71)出願人 (72)発明者

(54) 【発明の名称】 X線CT装置

(57)【要約】

【課題】 臓器全体の造影状態の監視や異なる血管群の 造影状態の監視を行うことにより最適な造影タイミング で被検体の検査データを収集する。

【解決手段】 ROI指定部41は、被検体Pの3次元データに基づく3次元領域内で被検体Pの複数の関心領域を指定し、スキャン開始条件設定部43は、検査スキャンを開始するためのスキャン開始条件を設定し、CT値判定部45は、被検体Pに造影剤を注入した後にROI指定部41により指定された複数の関心領域のCT値がスキャン開始条件設定部43で設定されたスキャン開始条件に達したかどうかを判定し、スキャン制御部47は、複数の関心領域のCT値がスキャン開始条件に達した場合に被検体Pの検査スキャンを開始させる。

1

【特許請求の範囲】

【請求項1】 被検体の3次元データに基づく3次元領域内で被検体の複数の関心領域を指定する指定手段と、前記被検体に造影剤を注入した後に前記指定手段により指定された前記複数の関心領域のCT値の変化を監視する監視手段と、

この監視手段により監視された前記複数の関心領域のC T値の変化に基づき前記被検体の検査スキャンを開始させるスキャン制御手段と、を備えることを特徴とするX 線CT装置。

【請求項2】 前記監視手段は、前記指定手段により指定された前記複数の関心領域のCT値が前記検査スキャンを開始するための予め設定されたスキャン開始条件に達したかどうかを判定し、

前記スキャン制御手段は、前記複数の関心領域のCT値が前記スキャン開始条件に達した場合に前記被検体の検査スキャンを開始させることを特徴とする請求項1記載のX線CT装置。

【請求項3】 前記3次元データは、ヘリカルスキャン により得られたヘリカルデータまたは前記被検体のスライス方向に複数列配列された2次元検出器を用いて得られたデータまたは平面検出器を用いて得られたデータであることを特徴とする請求項1記載のX線CT装置。

【請求項4】 前記指定手段は、前記3次元データのC T値を予め定められたしきい値と比較することにより特 定部位を抽出し、抽出された特定部位に前記複数の関心 領域を指定することを特徴とする請求項1記載のX線C T装置。

【請求項5】 前記監視手段は、前記スキャン開始条件 として、前記複数の関心領域の全てのCT値が予め定め 30 られたしきい値を越えたかどうかを判定することを特徴 とする請求項2記載のX線CT装置。

【請求項6】 前記監視手段は、各関心領域毎に前記スキャン開始条件が個別に設定されている場合に、各関心領域毎にその関心領域のCT値がその関心領域に個別に設定されたスキャン開始条件に達したかどうかを判定

前記スキャン制御手段は、各関心領域毎にその関心領域のCT値がその関心領域に個別に設定されたスキャン開始条件に達した場合に前記被検体の検査スキャンを開始させることを特徴とする請求項2記載のX線CT装置。

【請求項7】 X線源と前記被検体との間に設けられ、 前記被検体のスライス方向に沿って移動可能な2枚のX 線遮蔽板を有するスリットと、

前記監視手段がCT値の変化を監視している間、前記複数の関心領域に対応した複数スライスのみに前記X線源からのX線を曝射するように前記スリットの2枚のX線遮蔽板相互間の幅を制御するスリット制御手段と、を備えることを特徴とする請求項1記載のX線CT装置。

【発明の詳細な説明】

(2) 000-175900 (P2000-175900A)

[0001]

【発明の属する技術分野】本発明は、全身用X線CT装置に関し、特に、造影剤を被検体内部に注入し、最適な造影タイミングで被検体をスキャンするX線CT装置に関する。

2

[0002]

【従来の技術】従来、X線CT装置において、癌変部を 明瞭にするために造影剤を被検体内部に注入し、最適な 造影タイミングで被検体をスキャンするリアルプレップ 10 スキャンが知られている。

【0003】このリアルプレップスキャンにおいては、まず、被検体の一断面像を使用し、この一断面内部の例えば大動脈等の関心領域(以下、ROIと略称する。)を指定し、そのROIのCT値を監視する。

【0004】そして、被検体内部に注入された造影剤によりそのROIのCT値が上昇して、そのCT値がある関値に達したとき、そのROIが造影剤により十分染まったことを確認する。その後、被検体の検査データの収集を開始する。従って、最適な造影タイミングでスキャンすることができるため、被検体に依らない確実な造影タイミングの捕捉に極めて有効である。

[0005]

【発明が解決しようとする課題】しかしながら、従来のリアルプレップスキャンにあっては、被検体の一断面のみにおけるROIのCT値を監視していたため、観察したい臓器の領域全体が造影剤により最も良く染まったかどうかを観察することができなかった。

【0006】また、例えば、動脈層と門脈層を観察したい場合に、ちょうど同じ断面像に最適な動脈血管、門脈血管がないときには、動脈血管と門脈血管との両者を同時に監視することは困難であった。

【0007】本発明の目的は、臓器全体の造影状態の監視や異なる血管群の造影状態の監視を行うことにより、 最適な造影タイミングで被検体の検査データを収集する ことができるX線CT装置を提供することにある。

[0008]

【課題を解決するための手段】本発明は前記課題を解決するために以下の構成とした。本発明は、被検体の3次元データに基づく3次元領域内で被検体の複数の関心領域を指定する指定手段と、前記被検体に造影剤を注入した後に前記指定手段により指定された前記複数の関心領域のCT値の変化を監視する監視手段と、この監視手段により監視された前記複数の関心領域のCT値の変化に基づき前記被検体の検査スキャンを開始させるスキャン制御手段とを備えることを特徴とする。

【 0 0 0 9 】この発明によれば、指定手段が被検体の3次元データに基づく3次元領域内で被検体の複数の関心領域を指定すると、監視手段は、被検体に造影剤を注入した後に指定手段により指定された複数の関心領域のC T値の変化を監視し、スキャン制御手段は、監視手段に

(3) 000-175900 (P2000-175900A)

より監視された複数の関心領域のCT値の変化に基づき 被検体の検査スキャンを開始させる。すなわち、3次元 データで複数の関心領域を指定し、臓器全体の造影状態 の監視や異なる血管群の造影状態の監視を行うため、臓 器全体や異なる血管群に対して最適な造影タイミングで 被検体の検査データを収集することができる。

3

【0010】また、前記監視手段は、前記指定手段によ り指定された前記複数の関心領域のCT値が前記検査ス キャンを開始するための予め設定されたスキャン開始条 件に達したかどうかを判定し、前記スキャン制御手段 は、前記複数の関心領域のCT値が前記スキャン開始条 件に達した場合に前記被検体の検査スキャンを開始させ ることを特徴とする。

【0011】この発明によれば、監視手段は、指定手段 により指定された複数の関心領域のCT値が検査スキャ ンを開始するための予め設定されたスキャン開始条件に 達したかどうかを判定し、スキャン制御手段は、複数の 関心領域のCT値がスキャン開始条件に達した場合に被 検体の検査スキャンを開始させるため、臓器全体や異な る血管群に対して最適な造影タイミングで被検体の検査 20 データを収集することができる。

【0012】また、前記監視手段は、各関心領域毎に前 記スキャン開始条件が個別に設定されている場合に、各 関心領域毎にその関心領域のCT値がその関心領域に個 別に設定されたスキャン開始条件に達したかどうかを判 定し、前記スキャン制御手段は、各関心領域毎にその関 心領域のCT値がその関心領域に個別に設定されたスキ ャン開始条件に達した場合に前記被検体の検査スキャン を開始させることを特徴とする。

【0013】この発明によれば、監視手段は、各関心領 30 域毎にスキャン開始条件が個別に設定されている場合 に、各関心領域毎にその関心領域のCT値がその関心領 域に個別に設定されたスキャン開始条件に達したかどう かを判定し、スキャン制御手段は、各関心領域毎にその 関心領域のCT値がその関心領域に個別に設定されたス キャン開始条件に達した場合に被検体の検査スキャンを 開始させるため、各関心領域毎に最適な造影タイミング で被検体の検査データを収集することができる。

【0014】また、X線源と前記被検体との間に設けら れ、前記被検体のスライス方向に沿って移動可能な2枚 40 のX線遮蔽板を有するスリットと、前記監視手段がCT 値の変化を監視している間、前記複数の関心領域に対応 した複数スライスのみに前記X線源からのX線を曝射す るように前記スリットの2枚のX線遮蔽板相互間の幅を 制御するスリット制御手段とを備えることを特徴とす

【0015】この発明によれば、監視手段がCT値の変 化を監視している間、スリット制御手段は、複数の関心 領域に対応した複数スライスのみにX線源からのX線を を制御するため、被検体へのX線の被曝量を少なくする ことができる。

[0016]

【発明の実施の形態】以下、本発明のX線CT装置の実 施の形態を図面を参照して詳細に説明する。

【0017】 <第1の実施の形態>図1は、本発明の第 1の実施の形態のX線CT装置の概略構成を示すシステ ム構成図である。図1において、第1の実施の形態のX 線CT装置10は、システム制御部11、操作部12、 架台·寝台制御部13、寝台移動部15、X線制御装置 17、高電圧発生装置19、X線ビーム発生源21、検 出器23、回転架台25、データ収集部27、収集デー 夕記憶装置29、画像再構成部31、表示部33を有し ている。このX線CT装置10は、X線ビーム発生源2 1を被検体Pの回りに回転させながらX線ビームを曝射 させるものである。

【0018】操作部12は、マウス、キーボード等であ り、各種の情報を入力する。システム制御部11は、中 央処理装置 (CPU) 等から構成され、操作部12から 入力されたスライス厚、回転速度、寝台移動量等を架台 ・寝台制御信号として架台・寝台制御部13に対して出 力する。システム制御部11は、X線ビーム発生を制御 するX線ビーム発生制御信号をX線制御装置17に対し て出力する。

【0019】システム制御部11は、X線ビームの検出 のタイミングを示す検出制御信号をデータ収集部2.7に 対して出力する。システム制御部11は、データ収集の ためのデータ収集制御信号をデータ収集部27に対して 出力する。

【0020】架台・寝台制御部13は、システム制御部 11により出力された架台、寝台制御信号に基づき回転 架台25を回転させると共に、寝台移動信号を寝台移動 部15に対して出力する。

【0021】X線制御装置17は、システム制御部11 により出力されたX線ビーム発生制御信号に基づき、高 電圧発生装置19による高電圧発生のタイミングを制御 する。高電圧発生装置19は、X線ビームを曝射させる ための高電圧をX線制御部17からの制御信号に従って X線ビーム発生源21に供給する。

【0022】X線ビーム発生源21は、高電圧発生装置 19から供給された高電圧によってスライス方向に厚み を持った扇状のX線ビームを被検体に向けて多方向から 曝射する。検出器23は、X線ビーム発生源21から曝 射され、被検体を透過したX線ビームを検出する。

【0023】図2(a)は、検出器23を3次元的に表 した図である。検出器23は、多チャンネルの検出素子 を有し且つスライス方向に複数配列された2次元検出器 からなる。各列については、図2(b)のシングルスラ イスCT用検出器と同様に1,000チャンネル程度の 曝射するようにスリットの2枚のX線遮蔽板相互間の幅 50 検出素子がX線ビーム発生源21の焦点を中心として円 5

弧状に配置される.

【0024】回転架台25は、X線ビーム発生源21と 検出器23とを保持する。回転架台25は、図示しない 架台回転機構により、X線ビーム発生源21と検出器2 3との中間点を通る回転軸を中心にして回転される。な お、X線ビーム発生源21と検出器23とが被検体の周 囲を1回転しながら、被検体の複数スライス(複数断 面)の投影データを収集することを1回のスキャン動作 と称する。

【0025】データ収集部27は、システム制御部11 により出力されたデータ収集制御信号に基づき被検体の複数スライスの投影データを同時に収集して出力する。収集データ記憶装置29は、データ収集部27によって収集された被検体の複数スライスの投影データを記憶する。

【0026】画像再構成部31は、収集データ記憶装置29に記憶された複数スライスの投影データに基づき被検体の複数の断層画像を同時に再構成する。表示部33は、画像再構成部31で再構成された被検体の複数の断層画像を同時にモニタ上に表示する。

【0027】また、システム制御部11は、ROI指定部41、スキャン開始条件設定部43、CT値判定部45、スキャン制御部47を有している。ROI指定部41は、画像再構成部31で得られた被検体の複数の断層画像に基づく3次元データの中に複数のROIを指定する。

【0028】スキャン開始条件設定部43は、造影剤注入器44からの造影剤を被検体Pに注入して実施されるリアルプレップスキャンを停止させて通常スキャンを開始するためのスキャン開始条件を設定する。

【0029】CT値判定部45は、ROI設定部41で 指定された複数のROIのCT値がスキャン開始条件設 定部43で設定されたスキャン開始条件を満たしたかど うかを判定する。

【0030】スキャン制御部47は、複数のROIのC T値がスキャン開始条件を満たした場合には、通常スキャンを開始させる。また、スキャン制御部47は、リア ルプレップスキャンでは低線量のX線曝射を行い、通常 スキャンでは比較的多線量のX線曝射を行う。

【0031】次にこのように構成された第1の実施の形態のX線CT装置による3次元リアルプレップ処理を図3のフローチャートを参照しながら説明する。

【0032】まず、X線ビーム発生源21とマルチスライス用の検出器23とを被検体Pの回りに回転させることにより、ROI指定用スキャンを行い、被検体Pの3次元データ(ボリュームデータ)を収集する(ステップS11)。この3次元データは、画像再構成部431で再構成された複数の断層画像に基づくボリュームデータである。

【0033】次に、ROI指定部41は、ステップS1 50 プスキャンを開始させてもよい。この場合、造影剤注入

(4) 000-175900 (P2000-175900A)

1で収集した3次元データの中にCT値を監視するための複数のROIを指定する。例えば、図4に示すように、3次元データ50の臓器51の中に3つのROIとしてR1, R2, R3を指定する。R1, R2, R3のそれぞれは、複数の断面に亘っている。3つのROIは、実際には表示部33の画面上でマウス等を用いて指定される。

【0034】なお、ROIの指定方法については、例えば、以下の2つの方法を例示することができる。第1の方法は、3次元データのCT値に対して適当なウインドウ幅を設定し、設定されたウインドウ幅に入る例えば、血管部のみを抽出した3D像を用いてROIを指定する方法である。第2の方法は、3次元データのCT値に対して微分処理等を施してエッジ検出を行い、ある臓器のみの輪郭を抽出してROIを指定する方法である。

【0035】次に、スキャン開始条件設定部43は、被 検体Pの検査データ(通常スキャン)収集を開始するス キャン開始条件を設定する(ステップS13)。このス キャン開始条件としては、例えば、図5(a)や図5 20 (b)に示すような条件を例示することができる。

【0036】図5(a)に示す例では、縦軸をCT値とし、横軸を時間とし、 X_0 をしきい値とし、R1におけるCT値をCT1、R2におけるCT値をCT2、R3におけるCT値をCT3とした場合に、CT1> X_0 , CT2> X_0 , CT3> X_0 をスキャン開始条件とする。すなわち、CT1, CT2, CT3のそれぞれが全てしきい値 X_0 を越えたかどうかを条件とする。

、【0037】図5(b)に示す例では、縦軸をCT値とし、横軸を時間とし、Xiをしきい値とした場合に、

30 $(CT1^2+CT2^2+CT3^2)^{1/2}>X_1をスキャン開始条件とする。すなわち、CT1、CT2、CT3のそれぞれの値の二乗の総和の平方根がしきい値<math>X_1$ を越えたかどうかを条件とする。

【0038】なお、図5(a)、図5(b)に示すようなスキャン開始条件以外のスキャン開始条件であっても良く、また適当な名前を付加してスキャン開始条件を予め登録しておき、そのスキャン開始条件を読み出すことで設定しても良い。

【0039】次に、造影剤注入器44からの造影剤の被検体P内部への注入を開始した後(ステップS15)、スキャン制御部47は、X線制御装置17に対して低線量制御信号を送出し、リアルプレップスキャンを実施させる(ステップS17)。このリアルプレップスキャンでは、通常スキャンよりもX線ビーム発生源21の管電流mAを下げて低線量としたり、特殊なX線フィルターを用いることで、被検体Pへの被曝量を少なくすることができる。

【0040】なお、スキャン制御部47は、造影剤注入器44からの造影剤の注入に同期させて、リアルプレップスキャンを開始させてもよい。この場合、造影剤は1

器44から造影剤を注入したとき、造影剤の注入を示す 注入信号をスキャン制御部47に送出し、スキャン制御 部47がその注入信号に同期させてリアルプレップスキャンを開始させればよい。このようにすれば、適切なタイミングで確実にリアルプレップスキャンを実施することができる。

【0041】また、スキャン制御部47は、X線制御装置17に対して間欠信号を送出することにより、しばらくの間、X線を間欠的に曝射させても良い。このようにすれば、被検体Pへの被曝量を少なくすることができる。

【0042】このようにして、CT値判定部45は、指定された複数のROIのCT値がスキャン開始条件に達したかどうかを監視する(ステップS19)。例えば、図5(a)に示す例では、時刻 t_1 において、R1,R2,R3のそれぞれのCT値が全てしきい値 X_0 に達する。また、図5(b)に示す例では、時刻 t_2 において、R1,R2,R3のそれぞれのCT値の二乗の総和の平方根がしきい値 X_1 に達する。

【0043】さらに、指定された複数のROIのCT値 20 がスキャン開始条件に達した場合には、スキャン制御部 47は、被検体Pの通常スキャンを実施する(ステップ S21)。この場合には、比較的多量のX線を被検体P に曝射して検査データを収集する。

【0044】このように、3次元データを用いて複数の ROIを指定し、指定された複数のROIのCT値がス キャン開始条件に達したときに、X線量を上げて通常ス キャンを開始するので、臓器全体が造影剤により最も良 く染まったタイミングで検査データを収集することがで きる。このため、癌変部等をより明瞭にすることができる。

【0045】なお、図6に従来のリアルプレップスキャンによる造影タイミングを説明する図を示す。図7に第1の実施の形態のリアルプレップスキャンによる造影タイミングを説明する図を示す。

【0046】図6(a)に示すように、従来の方法では、一断面S1(1スライス)の臓器51aの中にR1を指定し、指定されたR1のCT値が時刻t3でしきい値Xoに達すると、通常スキャンを開始する。この方法では、一断面しか観察していないため、図7(b)から40もわかるように、時刻t3では、R2のCT値はしきい値Xoに達っしていない。このため、臓器全体が十分に染まらないタイミングで検査データを収集していた。

【0047】一方、図7(a)に示すように、第1の実施の形態の方法では、複数の断面に亘る臓器51bの中にR1,R2,R3を指定し、R1,R2,R3のCT値の全てがしきい値X₀に達した時刻t₄で、通常スキャンを開始する。このため、臓器全体が造影剤により最も良く染まったタイミングで検査データを収集することができる。

(5) 000-175900 (P2000-175900A)

【0048】〈第2の実施の形態〉次に、本発明の第2の実施の形態のX線CT装置を説明する。第2の実施の形態のX線CT装置は、異なる血管群のそれぞれの血管群に対して、最適な造影タイミングで検査データを収集することを特徴とする。第2の実施の形態のX線CT装置による3次元リアルプレップ処理を図8のフローチャートを参照しながら説明する。

【0049】まず、ROI指定用スキャンを行い、被検体Pの3次元データを収集する(ステップS31)。

10 【0050】次に、ROI指定部41は、収集した3次 元データの中から、CT値を監視するための複数のRO Iを指定する。例えば、図9に示すように、3次元デー タ50の大動脈55の中にR4を指定し、臓器53の中 にR5を指定する。

【0051】次に、スキャン開始条件設定部43は、被 検体Pの検査データ(通常スキャン)収集を開始するス キャン開始条件を設定する(ステップS33)。スキャ ン開始条件としては、例えば、図10に示すような条件 を例示することができる。

○ 【0052】図10に示す例では、縦軸をCT値とし、 横軸を時間とし、Xo, X1をしきい値とし、R4におけるCT値をCT4、R5におけるCT値をCT5とした 場合に、CT4>Xoを第1スキャン開始条件とし、C T5>X1を第2スキャン開始条件とする。なお、 | C T4-CT5 | < X2を第2スキャン開始条件としても良い。</p>

【0053】次に、造影剤注入器44から被検体P内部への造影剤の注入を開始した後(ステップS35)、スキャン制御部47は、指定されたR4のための第1リアルプレップスキャンを実施させる(ステップS37)。【0054】そして、CT値判定部45は、指定されたR4のCT値が第1スキャン開始条件に達したかどうかを監視する(ステップS39)。指定されたR4のCT値が図10に示すように時刻tsで第1スキャン開始条件に達した場合には、スキャン制御部47は、第1検査データを収集するために被検体Pの通常スキャンを実施する(ステップS41)。

【0055】次に、スキャン制御部47は、指定された R5のための第2リアルプレップスキャンを実施させる (ステップS43)。

【0056】そして、CT値判定部45は、指定されたR5のCT値が第2スキャン開始条件に達したかどうかを監視する(ステップS45)。指定されたR5のCT値が図10に示すように時刻 t_6 で第2スキャン開始条件に達した場合には、スキャン制御部47は、第2検査データを収集するために被検体Pの通常スキャンを実施する(ステップS47)。なお、ステップS43からステップS47の処理は必要な回数だけ繰り返し行われる

50 【0057】このように、2つの血管のそれぞれにRO

(i6) 000-175900 (P2000-175900A)

10

Iを指定し、各ROI毎にスキャン開始条件を個別に設 定し、ROIのCT値がそのROIに対して設定された スキャン開始条件に達したかどうかを判定するため、異 なる2つの最適な造影タイミングで、検査データを収集 することができる.

【0058】なお、この場合においても、スキャン開始 タイミングを造影剤注入器44からの造影剤の注入タイ ミングと同期させて行っても良く、また、間欠的にX線 を曝射しても良い。

【0059】図11に従来のリアルプレップスキャンに 10 よる造影タイミングを説明する図を示す。図12に第2 の実施の形態のリアルプレップスキャンによる造影タイ ミングを説明する図を示す。

【0060】図11(a)に示すように、従来の方法で は、一断面S2(1スライス)の中にR4(大動脈)を 指定し、指定されたR4のCT値が時刻t7でしきい値 X₀に達すると、通常スキャン(第1スキャン)を開始 する。この方法では、動脈層には最適な造影タイミング である。しかし、R4しか観察していないため、平衡層 や門脈層の最適な造影タイミングがわからない。このた 20 め、平衡層や門脈層の造影タイミングは、術者のカンと 経験に依存していた。なお、図11(b)において、動 脈層の終了時刻から平衡層の開始時刻までの時間td が、術者のカンと経験に依存する時間である。

【0061】一方、図12(a)に示すように、第2の 実施の形態の方法では、血管55の中にR4(大動脈) を指定し、血管53の中にR5(門脈)を指定し、R4 のCT値が時刻t7で第1スキャン開始条件に達した場。 合に第1スキャンを開始し、R5のCT値が時刻tgで 第2スキャン開始条件に達した場合に第2スキャンを開 30 始する。従って、動脈層、門脈層、平衡層のそれぞれに ついて最適な造影タイミングで検査データを収集するこ とができる。

【0062】〈第3の実施の形態〉次に、本発明の第3 の実施の形態のX線CT装置を説明する。図13は、第 3の実施の形態のX線CT装置の主要部の構成ブロック 図である。このX線CT装置は、図13に示すように、 さらに、スリット61、スリット制御部63を備えるこ とを特徴とする。

【0063】スリット61は、X線ピーム発生源21と 被検体Pとの間に設けられ、スライス方向に沿って移動 可能な2枚のX線遮蔽板を有する。スリット制御部63 は、システム制御部11a内のROI指定部41で指定 された複数のROIに基づき、この複数のROIに対応 した複数スライスのみにX線を曝射するようにスリット 61の2枚のX線遮蔽板相互間の幅を制御する。

【0064】このように構成されたX線CT装置によれ ば、図13に示すように、スリット制御部63は、指定 されたR1とR2とに対応する例えば3つのスライスの みにX線FBを曝射するようにスリット61の2枚のX 50 X線CT装置を示す図である。

線遮蔽板相互間の幅を制御するため、R1, R2以外の 臓器57の残りの部位にX線が曝射されないから、被検 体Pへの不要な被曝量を少なくすることができる。

【0065】なお、本発明は前述した第1乃至第3の実 施の形態のX線CT装置に限定されるものではない。第 1乃至第3の実施の形態では、マルチスライス用の検出 器23を用いたが、例えば、図14に示すように平面検 出器65を用いて、X線ビーム発生源21と平面検出器 65とを被検体Pの回りに回転させることにより、3次 元データを収集してもよい。

【0066】また、図2(b)に示すようなシングルス ライス用の検出器23aを用いて、寝台15aを寝台移 動部15によりスライス方向に所定速度で移動させるこ とによりヘリカルスキャンを行い、ヘリカルスキャンに より得られたヘリカルデータ、すなわち、被検体の3次 元データを収集してもよい。

[0067]

【発明の効果】本発明によれば、3次元データで複数の 関心領域を指定し、臓器全体の造影状態の監視や異なる 血管群の造影状態の監視を行うため、臓器全体や異なる 血管群に対して最適な造影タイミングで被検体の検査デー ータを収集することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態のX線CT装置の概 略構成を示すシステム構成図である。

【図2】検出器を3次元的に表した図である。

【図3】第1の実施の形態のX線CT装置による3次元 リアルプレップ処理を示すフローチャートである。

【図4】臓器の中で指定された3つのROIを示す図で ある。

【図5】第1の実施の形態のスキャン開始条件を示す図 である。

【図6】従来のリアルプレップスキャンによる造影タイ ミングを説明する図である。

【図7】第1の実施の形態のリアルプレップスキャンに よる造影タイミングを説明する図である。

【図8】第2の実施の形態のX線CT装置による3次元 リアルプレップ処理を示すフローチャートである。

【図9】大動脈と門脈とのそれぞれに指定されたROI を示す図である。

【図10】第2の実施の形態のスキャン開始条件を示す 図である。

【図11】従来のリアルプレップスキャンによる造影タ イミングを説明する図である。

【図12】第2の実施の形態のリアルプレップスキャン による造影タイミングを説明する図である。

【図13】第3の実施の形態のX線CT装置の主要部の 構成ブロック図である。

【図14】平面検出器を用いて3次元データを収集する

1 1

【符号の説明】

10…X線CT装置、11…システム制御部、12…操作部、13…架台・寝台制御部、15…寝台移動部、15a…寝台、17…X線制御装置、19…高電圧発生装置、21…X線ビーム発生源、23…検出器、25…回転架台、27…データ収集部、29…収集データ記憶装

(17) 000-175900 (P2000-175900A)

置、31…画像再構成部、33…表示部、41…ROI 指定部、43…スキャン開始条件設定部、44…造影剤 注入器、45…CT値判定部、47…スキャン制御部、 61…スリット、63…スリット制御部、65…平面検 出器、P…被検体、R1~R5…ROI(関心領域)。

BEST AVAILABLE COPY

(8) 000-175900 (P2000-175900A)

BEST AVAILABLE COPY

(i9) 000-175900 (P2000-175900A)

【図12】

(a)

(b)

フロントページの続き

Fターム(参考) 4C093 AA22 AA24 BA10 CA24 DA02 . EB18 FA19 FA20 FA34 FA36 FA43 FD11 FF18 FF28 FF42 THIS PAGE BLANK (USPTO)