Mathématique

Série nº 6 — Fonctions de plusieurs variables

 \mathbf{Ex} 6.1 – Étudier la continuité de la fonction $f: \mathbf{R}^2 \longrightarrow \mathbf{R}$ dans chacun des cas suivants :

1)
$$f(x,y) \coloneqq \frac{e^{xy} - 1}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) \coloneqq 0$.

2)
$$f(x,y) = (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right)$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

3)
$$f(x,y) = xy \ln|x/y|$$
 si $xy \neq 0$ et $f(x,y) = 0$ si $xy = 0$.

4)
$$f(x,y) := \frac{y}{x^2} e^{-|y|/x^2}$$
 si $x \neq 0$ et $f(x,y) := 0$ si $x = 0$.

Ex 6.2 – Étudier la continuité de la fonction $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ dans chacun des cas suivants :

1)
$$f(x, y, z) = e^{-\frac{1}{x^2 + y^2 + z^2}}$$
 si $(x, y, z) \neq (0, 0, 0)$ et $f(0, 0, 0) = 0$.

2)
$$f(x, y, z) = xyz \ln(x^2 + y^2 + z^2)$$
 si $(x, y, z) \neq (0, 0, 0)$ et $f(0, 0, 0) = 0$.

 $\mathbf{Ex}\ \mathbf{6.3}$ — Calculer les dérivées partielles premières des fonctions suivantes :

1)
$$f: \mathbf{R}^2 \longrightarrow \mathbf{R}$$
 définie par $f(x,y) = x^2 e^{xy}$.

2)
$$g: U \longrightarrow \mathbf{R}$$
 définie par $g(x,y) := \ln(1+x/y)$ avec $U := \{(x,y) \in \mathbf{R}^2 \mid (x+y)y > 0\} \subseteq \mathbf{R}^2$.

3)
$$h: \mathbf{R} \times \mathbf{R} \times \mathbf{R}^*_+ \longrightarrow \mathbf{R}$$
 définie par $h(x, y, z) := x^2 y^3 \sqrt{z}$.

 $\mathbf{Ex} \ \mathbf{6.4} - \mathrm{Soit} \ f: \mathbf{R}^2 \longrightarrow \mathbf{R}$ la fonction définie par

$$f(x,y) := \frac{x^3y}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) := 0$.

- 1) Étudier la continuité de f.
- 2) Calculer les dérivées partielles premières de f.
- 3) La fonction f est-elle de classe C^1 sur \mathbf{R}^2 ?
- 4) Montrer que $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$.

 $\mathbf{Ex} \ \mathbf{6.5} - \mathbf{Soit} \ f : \mathbf{R}^2 \longrightarrow \mathbf{R}$ la fonction définie par

$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

- 1) Étudier la continuité de f.
- 2) Calculer les dérivées partielles premières de f.
- 3) La fonction f est-elle de classe C^1 sur \mathbb{R}^2 ?
- 4) Calculer les dérivées partielles secondes de f.
- 5) La fonction f est-elle de classe C^2 sur \mathbb{R}^2 ?

Ex 6.6 – Dans chacun des cas suivants, déterminer les points en lesquels la fonction f de \mathbb{R}^2 dans \mathbb{R} admet un extremum en précisant leur nature :

- 1) $f(x,y) := (x^2 y^2)e^{-x^2}$.
- 2) $f(x,y) := x^3 + y^3 3xy$.
- 3) $f(x,y) = x^2y xy^2 + xy$.
- 4) $f(x,y) := \arctan(xy)$.
- 5) $f(x,y) := x^4 + y^4 (x-y)^2/4$.
- 6) $f(x,y) := x^2/2 + y^5 + y^4/4 + 1$.