Confirmer o risultado de 89 n. C/n. 76 n 6 Pula table logoritmo => L(84)-F4 > L(C1) - B2 F4 + B2 = 1AG F4 G REDUZIT EM MODOLO 255 82 IAGNIFF . RESTO ATL 1 A 6 FFL 1 A7 n - Resto Na tabela de esegueste isso deve dan o resultado encontrado (7E) A7 n 5 > 76 m Natabela Confirmar se 57 h. 83 h: C1 h £ L (57):62 L(83):50 Linha COLUMA 62h + 50 h BZ L LFFL resto > tabela DE EXPOENTE > E(BZ) = C14) 82 h CORReto dista 02. 1- Wultiplicar B4 n por C1 n modulo 11B n um GF (28) GL(04)=16 L(C1)=62 115 IAD FF 52 I.E. (A) AC. E(AE) = 89 10 - 0 M- C 5 B 15 € 26 www.ipog.edu.br IPOG 20G INSPIRANDO Vidas

PIRANDO Vidas

+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18			
3	0	1	2	3	4	5	6	7	3	9	fo		Ľ	13	13	13	16	_	+			
	4	2	3	4	5	6	7	8	9	10	11	15	13	14	15	_	-	18	0			
2	2	3	Ч	5	6	7	8	9	12	11	12	13	14	15	16	17	18	0	1			
3	3	4	5	6	4	8	9	10	1	12	13	19	15	16	17	18	0	1	2			
1	4	5	6	7	1	9	10	lı i	12	9	19	_	16	17	18	0	1	2	3			
5	3	6	7	8	4	10	7	3	13	$\overline{}$	15	16	17	13	0.	1	2	3	4			
0.	6	7	8	9	10	11	12	_	_				18	0	1	t	3.	4	5			
	7	8	9	10	11	16	13	14	_	16	17	-	0	1	L	3	4	5	6			
2	8	9	10.	11	12	13	14	15	_	17	18	0	1	L	3	H	5	6	7			
	4	10	11	17	13	17	-	-		18	0	1	2	3	. It	3	6	7	7			
)	10	lt	12	13	14		16		-	0	1	2	3	4	5	6	1	8	9			
1	11	12	13	14	15	_		1		1	2	3	4	5	6	1	8	9	10			
2	12	13	19	15	16	17	_	_	1	Z	3	4	5	+	1	8	h	10	11			
3	13	14	15	16	-	18	-	1	2	3	+-	5	6	-	8	9	11	12	12			
4	19	15	16	17	18	0	1	2	3		5	0	1	8	1	10			15			
5_	15	16	17	_	0	1	2	-	ч		6	-	8	9	13	12	1/2	15	15			
,	16	17	18	0	1	7	3	4	+	6	-	-	1	_	-	-	13	14	16			
7	17	18	0	_	7	3	5	5	6	7	8	+	10	-	-	13	17	15	12			
}	18	0	11	2	3	4	0	6	15	-	-	-	11	16	9							
, V	130	A.I	iti	Vo-) +											
					-5						3											
						15					5 -											
						15					4 1											
					6 -							4										

www.ipog.edu.br

6	F (1	9)				_							_	_		7				1	7			
Х	0	1	2	3	14	5	6			8	9	10	11	12	11-	3	14	15		+	-	18		
0	0	0	0	0	T	0	10	0	2	0	0	0	0	0	10		0	0	0	0		0		
1	0	0	1	3	14	15	6		7	3	9	10	11	12	1.	4	14	125	16	1		13		
2	0	2	4	6	8		-	e lu	ŀ	6	18	0	3	S	7	1	7	11	13	(3	- 1	17		
3	0	3	6	-		15				1		11	-14	17	0	1	4	7	10	13		16		
4	0	4				0				3/1	7	2	6	10	14		8	3	7	11				
5	0	S		15	1 4		11				- 1	12	17	3	3	1	3	13	4	9	11	4		
6		6		18	100	11	-	-	-	-1-		3	9	15	3	1	3	14	0	7	13	1		
7	0	7	15	2	9	16		11				13	0	3	15	1	3	[0	17	5	12	-		
3	0	3.	16	5	13		10			15		4	12	0	9	1	7	6	14	3	11			
9	0	9	18			44		6			T	4	4	13	3	17	3.	2	11	(1)	10			
10	0	10	0			12		13			3	5	15	6	16	1	2	17	8	13	9			
11	0	11	-	19			9				1		7	13	10		2	13	5	16				
12		12		17		3		9			6		18	14	Le.	1	9	9	2	15	4			
13		13		0				15			1	G	10	4	17	1		5	13	12	6			
15	0	115	1			13		3			12		2	16	1/	6	5	1	15	10	5			
15			11		3	19			6		1		13	7		(0	16	12	8	4			
16			13				0				180		5	2	13	Γ		5	9	6	3			
12			15	1		9		5	- 1		f		15	14	12	-	0	3	6	4	6			
18			19				13			_		_	8	Ŧ	6	3	5	9	3	2	0			
	VE	-						2				,	10 -	2										
10				1123				7.2					11 -											
								3,					12.											
								4,					13 -											
								5.					19											
								6 +					15 :											
								7.					16											
								8:						, 9										
									-1					2 12										

www.ipog.edu.br

IPOG INSPIRANDO Vidas 4. Com polinómio um Zio a) $(7x+2)-(3x^2+5)$ 7x+2-3x2+5 $-3x^{2}+7x+(1-5)$ Cp(-3=7 mool 10) -> -3+10 = 7 5-3x2+7x+7 la Aciana tumos que -3 nos modulo 10 é R= 7x2+7x+7 (6x2+x+3). (4x2+2) G 24x4+12x2+4x3+2x+12x2+6 24x4+ 4x3+24x2+2x+6 6 Z10 -> 27 = 4 mod 10 4 = 4 mood 10 14 = 4 mod 10 2 = 2 mod 10 6 = 6 mod 10 D = 4x4 + 4x3 + 4x2 + 2x+6 5. Tris satella pararão sobre o Rio esta norte. O primeros à 2h da modra gada, o sigundo às 5h do terceiro às 3h da manha Code satilite tem um periodo deferente. O primeiro lua 13h para compettar uma volta em losno da tura, o segundo 15 e o terciro 19 horas. Determine quantas horas de coverão, a partir da meia vorte, atí que os tria satelita passim ao mismo tempo dobre o R.O. Resolvendo willy ando a trorema do Chines =

www.ipog.edu.br

IPOG INSPIRANDO Vidus Salelite to t = 2 (mod (3) - REPETE a CADA 13h Salitite 2 + (= 5 (mod 15) SALELITE 3 - + = 8 (MOD 19) M = 13-15-19 e M; =12 mos 13 = 12 My = 285 MOD 13 M = 3705 6 285 = 12 mas 13) M1 = 3705 - 285 Mz = 247 mos 15 PM2 = 7 nos 15 - 13 M2 = 3705 = 247 - 4 247 = 7 MODIS (+M3:5"MOD 19-4 M3 = 195 MOD 19 CD 195 = 5 mas 19. M3 = 3705 = 195 t = (2.285.12) + (5.247.13) + (8-195.4) t- 29135 t mad M -> 29135 mool 3705 = 1055 1055 um das a horas = 43 dias a 23 horas 6. Menor intere positivo que disea restor 2 na divisar por 5, resto 4 na divisair por 7 x resto 5 na divisair por 11 trouve do Resto China 1=2 mil 5 (= 4 mad 7 f = 5 mad 11 M= 5-7-11=385 M1 = 385 = 77 - 77 mod 5 = 2 - Mi = 2 - 1005 = 3 Mz = 3 25 = 55 -> 55 mos 7 = 6 -> Mi = 6 mos 7 = 6 M3 = 315 = 35 -35 non 11=2 - M3 = 2 non 11 = 6 € = (2 17 3) + (4.55.6) + (5.35.6) = 2832 -> 2832 not 385 = 137

IPOG

SOLDADOS G7 X = 5 MOD 7 Onde x > 1500 X = 4 MOD 9 X = 1 was 10 M = 7 9 . 10 = 630 M, = 630 = 90 - 90 no 7 : 6 -> 6 1 mon 7 = 6 M2 = 630 - 70 - 70 mas 9 = 7 - 7 mas 9 = 4 M3 = 630 = 63 - 63 mas 10 = 3 - 3 mos 10 = 7 Fox: (5.90.6)+(4.70.4)+(1.63.7)-4261 4261 mod 630 = 481 481 minor que 1500 F Como relavos no 2630 → 431 + 630 = 1111 mener 6 1111 + 630 . 1741 mars pur 1500 INICIO: 2000 SOLDADOS Soldados Mortos = 2000 - 1741 = 259 L 8. X = 4 mod 5 M = J.7.16 = 560 X=3 mod 7 M = 560/5 = 112 mod 5 = 2, (x=5 mod 16 Mz=560/7=80 mod 7:3, M3 = 560/16 = 35 mod 16 = 3, M, 1 = 12-1 mod 5 = 3 Mi: 3 mod 7: 5 M3 = 3-1 mod 16 = 11 tox=(4112.3)+(3-80-5)+(5.35.1)=4469 9469 mool 560 = 549 h

www.ipog.edu.br

IPOG INSPIRANDO Vidas

to das senhas secretas dos 5 funcionaisios. Qual a senha o para

www.ipog.edu.br

abour o copu?

IPOG INSPIRANDO Vidas

Utilizando os puncionarios o (7,6) e (13, 4).
∫x ≥ 6 mool 7
(x = 4 mod /3
$M = 7 \cdot 13 = 91$
My = 91 = 13 mod 7 = 6
7
M. = 91 = 7 mod 13 = 7
$M_1 = \frac{91}{13} = \frac{7}{13}$ mod $13 = 7$
Mi. 6 1 mood 7 = 6
M; = 7 1 mod 13 = 2
x: (6.13.6)+ (4.7.2) mgd M
x - 52 7 mood 91
x = 69 mod 91
Sunha 69 4
O That I say

www.ipog.edu.br

IPOG INSPIRANDO Vidas