Specific Heat Capacity Problems

$Q = mc\Delta T$

1. How much heat is required to raise the temperature of 8.0 g of water by 3.0 °C?

A. List data	B. Write Equation	C. Solution – show work including units!
$\Delta T = 3'C$ $m = 8.09$ $c = 4.184 \frac{T}{9'C}$	Q = m-c. ST	Q = 8 gx 3 L x 4.184 J 100.42 J

2. How many joules of heat are removed from a 21.0 g sample of water if it is cooled from 34.0 °C to 28.0 °C?

A. List data	B. Write Equation	C. Solution – show work including units!
ΔT = 6°C m = 21.09 c = 4.184 J	Q = m.C.DT	Q = 21 g × 6 × 4.184 J = 527.2 J

3. 30.0 grams of Aluminum at 80.0 °C is added to 30.0 g of water at 10 °C. Predict the final temperature of the water and explain your reasoning.

A List data	B. Write Equation	C. Solution – show work including units!
A. List data	A Dec a Company of the Company of th	
	Qw=mw·Cw.DTw	369×4.184 I × (x-10) =- (369×0.89 I × (x-50))
m = 309	QA = mAI. CAI. DTAI	
C = 4.184 /g'c	QW == QAI	4.184 x = 41.84=0.892 +71.2
ΔTAI = 96-80 MAI = 309		x= 22.3°C
CA1= 0.89 %		and the defeam?

4. The specific heat of silver is 0.24 J/g°C. If 15.4 g of silver absorbs 332 J heat, how much will the temperature of the silver increase?

A. List data	B. Write Equation	C. Solution – show work including units!
$\Delta T = \mathcal{H}$ $m = 15.49$	Q= m.c. AT	332J= 15.4g × 0-24 5 × DT
c = 0.245		AT = 89.82°C
Q=3325		

5. If 135.7 J of heat are added to 54.0 g of water initially at 25.0 $^{\circ}$ C . What is the final temperature of the water?

A. List data	B. Write Equation	C. Solution – show work including units!
$\Delta T = (x - 25i)$ $m = 549$	Q=m·C·DT	135.7J= 54g. 4.184 I (21-25)
c = 4.184 = 0 = 135.7]		x = 25.6°C

6. How much heat is absorbed by a 112.5 g sample of water when it is heated from 12.5 °C to 92.1 °C?

A. List data	B. Write Equation	C. Solution – show work including units!
$\Delta T = 19.6$ C m = 112.59	Q=m·C·DT	Q= 112.5g. 4.184 J x 79.6'C
c = 4.1845		Q = 37,467.72 J (ev)
		37.5 KJ

7. An 18.7 g sample of platinum metal increases in temperature by 3.3 °C when 5.7 J of heat are added. What is the specific heat of the platinum?

A. List data	B. Write Equation	C. Solution – show work including units!
--------------	-------------------	--

$\Delta T = 3.3^{\circ} C$ $m = 18.79$ $c = ?$ $Q = m \cdot C \cdot \Delta T$ $C = ?$ $Q = 5.75$	$C = \frac{5.7}{(18.7 \times 3.3)}$ $C = 0.09. \frac{5}{g^{2}}$
--	---

- 8. A sample of water absorbs 347 J of heat when its temperature is raised 14.6 °C. What is the mass of the water?
- 9. If 874 J of heat are added to 75.0 g of water initially at 15.0 $^{\circ}$ C . What is the final temperature of the water?

8)
$$Q = 3475$$
 $Q = m.c. \Delta T$
 $C = 4.184 \text{ J/g}c$ $m = Q$
 $\Delta T = 14.6°C$ $C.\Delta T$
 $m = \frac{347}{4.184 \times 14.6} = 5.68 \text{ g}$

9)
$$Q = 874 \text{ J}$$

 $m = 759$
 $T_1 = 15 \text{ C}$
 $2 = m \cdot \text{C} \cdot \text{A} \text{ J}$
 $874 = 75 \times 4.184 \times (x-15)$
 $x = 17.8 \text{ C}$
 $76 = 76 \times 4.184 = 76 \times 4.1$