Fast Incremental and Personalized PageRank

Paper Presentation

Ioannis Chios, Georgios Kyziridis

November 30, 2018

Social Network Analysis for Computer Scientists

Leiden University

Table of Contents

- 1. Background
- 2. Problem Statement
- 3. Algorithms
- 4. Experiments
- 5. Results
- 6. Our Project
- 7. Demo

Background

PageRank

- A variant of eigenvector centrality
- The key idea behind Google Search
- Measures relative importance of web pages
- Apply citation analysis to the web's hypertextual structure
- Importance of a web page based on the number of backlinks

Image taken from Wikipedia

Personalized PageRank

- Apply PageRank to a specific node
- Different rankings for each node
- Applications
 - Personalized search results
 - Personalized Recommendation Systems

Image taken from Wikipedia

Twitter Network

- Very large dynamic social network
- Network topology changes over time
- Nodes and edges are leaving and coming
- High levels of uncertainty
- Uses personalized PageRank for WTF

Problem Statement

Problem Statement

- Research Question: Can we build a recommender system for Dynamic Social Networks?
- Possible Solution: Find a way to keep the personalized PageRank values updated all the time and use them for recommendation.

Algorithms

Approximating PageRank

Goal: Design an algorithm to update PageRank incrementally (i.e. upon an edge arrival). Reduce algorithm's complexity using approximations.

Idea: Instead of calculating the PageRank values exhaustively, use Monte Carlo method and approximate them.

Approximating PageRank

Approach: R random walks for each node in the network. Store all walks in a database. Then approximate the PageRank value of a node with:

$$\pi_{v} = \frac{X_{v}}{nR/\epsilon}$$

 π_{v} : PageRank value for v node

 X_v : Total number of node v occurrences in all walks

n: Total number of network nodes

 ϵ : Transmission probability

Updating Approximations

- Network evolves through time
- PageRank values of the nodes have to be updated

Expected amount of work for keeping approximations updated through time over m edge arrivals:

$$\frac{nR}{\epsilon^2} \sum_{t=1}^m \frac{1}{t} = \frac{nR}{\epsilon^2} H_m \le \frac{nR}{\epsilon^2} \ln m$$

 H_m : The m^{th} harmonic number

t: Time-stamp

Approximating Personalized PageRank

Idea: Recommendation system according to Personalized-PageRank.

Approach: Reuse the R stored random walks and perform the personalized PageRank random walk for node w and walk length L.

Approximating Personalized PageRank

Algorithm 1 Personalized PageRank Walk

```
Input: Source node w. required walk length L
Output: A personalized PageRank walk P_w
Start the walk at w: P_w \leftarrow [w]
while length(P_w) < L do
    u \leftarrow \text{last node in } P_w
    Generate a uniformly random number \beta \in [0, 1]
    if \beta < \epsilon then
        Reset the walk to w: P_w \leftarrow P_w \cdot \operatorname{append}(w)
    else
        if u has unused walk segment Q in memory then
            Add Q to the end of P_w: P_w \leftarrow P_w \cdot \operatorname{append}(Q)
             Reset the walk to w: P_w \leftarrow P_w \cdot \operatorname{append}(w)
        else
            if u was previously fetched then
                 Take a random edge (u, v) out of u
                 Add v to the end of P_w: P_w \leftarrow P_w append(v)
            else
                 Do a fetch at u
```

Personalized PageRank Values

Let $\vec{\pi}$ to be the vector of Personalized PageRank's scores of interest.

Assume that $\vec{\pi}$ follows a power law model.

If π_j is the J^{th} largest element in $\vec{\pi}$ then for some $\alpha \in (0,1)$ approximate the PageRank values:

$$\pi_j = \frac{(1-\alpha)j^{-\alpha}}{n^{1-\alpha}}$$

$$\pi_j \propto j^{-\alpha}$$

 π_j is a proportion of the j^{th} largest element, j^{-lpha}

Experiments

Experimental Setup

- Twitter Network consists of directed edges
- Data access through Twitter's Social Store called FlockDB
- FlockDB is stored in distributed memory
- Personalized experiments on 100 randon users
- Reasonable amount of user's friends e.g. 20-30

Experimental Setup (Cont.)

True

- An infinite random walk would accurately give the top k nodes
- For each user do a personalized walk with 50.000 steps
- Consider the top 100 most visited nodes as true

Retrieved

- For each user do a personalized walk with 5.000 steps
- Retrieve the top 1000 most visited nodes

Metrics

- Interpolated average precision
- Number of fetches

Results

Interpolated Average Precision

11 point interpolated average precision for top 1000 results

 Shows that even short random walks are enough to find the top nodes.

Number of Fetches

- Thin line shows the average number of fetches with R walk segments per node.
- Thick line shows the theoretical upperbound on the number of fetches.

Our Project

General Ideas

Goal: Test the above algorithms on different datasets. Evaluate the results according to time and performance.

Intuition: The approximated version of PageRank probably is not capable of handling sparse networks.

- Implement PageRank and approximated PageRank efficiently
- Test both on different kinds of datasets
- Compare the results
- Evaluate both algorithms regarding time and results outcome
- Explore the intuition on sparse networks

Possible Evaluation Metrics

True: Personalized PageRank output from NetworkX.

Predicted: Approximated personalized PageRank outcome.

Retrieval Metrics

- Accuracy
- Interpolated Precision
- F1_{measure}
- Jaccard Similarity

Continuous Metrics

- Euclidean Distance
- Mean Square Error (MSE)
- Mean Absolute Error (MAE)
- Root Mean Square Error (RMSE)

Thank you for your attention! Questions?

Demo