Implementation of Boolean Logic in Arduino using IC 7474 in FPGA

LAKKIREDDY VEERASIVA REDDY

${lakkired dy veer a sivared dy@gmail.com} \\ FWC 22122$

IIT Hyderabad-Future Wireless Communication Assignment

Contents

1	Problem	2
2	Introduction	2
3	Components	3
4	Hardware	4
5	Software	5

1 Problem

(GATE EC-2022)

Q.43. For the circuit shown, the clock frequency is f0 and the duty cycle is 25%. For the signal at the Q output of the Flip-Flop,

Figure 1: Circuit

- 1. frequency of $\frac{f0}{4}$ and duty cycle is 50%
- 2. frequency of $\frac{f0}{4}$ and duty cycle is 25%
- 3. frequency of $\frac{f0}{2}$ and duty cycle is 50%
- 4. frequency of f0 and duty cycle is 25%

2 Introduction

The Aim is to implement the above circuit in Arduino using IC 7474. IC 7474 is a dual positive-edge-triggered D-type flip-flop, which means it has two seperate flip-flop that are triggered by the rising edge of a clock signal. A 2-bit binary counter can be implemented using 2 D Flip-flops similarly a JK Flip-flop can be implemented using one D Flip-flop. Thus we will use two IC 7474 to implement the whole circuit.

The LSB output of the 2-bit binary counter is given to J and K inputs of the JK Flip-flop which then gives the final Q output of the circuit. Since the inputs given to J and K are same it acts as T Flip-flop.

3 Components

COMPONENTS						
Component	Value	Quantity				
Resistor	220 Ohm	1				
Arduino	UNO	1				
Seven Segent Display	Common Anode	1				
Decoder	7447	1				
Flip Flop	7474	2				
Jumper Wires		20				
Breadboard		1				

Table 1: Components

4 Hardware

The IC 7474 is a type of flip-flop integrated circuit that is commonly used indigital electronics applications. It is a dual positive-edge-triggered by the rising edge of a clock signal. Below is the pin diagram of IC 7474.

Figure 2: 7474

The connections between Arduino UNO and two IC 7474 is given in below Table $\,$

	INPUT	OUTPUT			CLOCK		Vcc	GND
ARDUINO	D6	D3	D4	D5		D2	5V	GND
7447		5			3	11	14	7
7474	5		9	2		3	14	7

Table 2: Arduino - 7474

The truth table for the circuit is given in below table

counter	MSB	LSB	J	K	Q(t)	Q(t+1)
0	0	0	0	0	0	0
1	0	1	1	1	0	1
2	1	0	0	0	1	1
3	1	1	1	1	1	0

Table 3: Truth Table

The kmap for the circuit is

Figure 3: kmap

5 Software

The verilog code for the given circuit using IC 7474 is

https://github.com/SivaLakkireddy/FWC/blob/main/Vaman/FPGA/codes/helloworldfpga.v