

Report No.: SZEM140700375801

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com Page: 1 of 51

FCC REPORT

Application No:SZEM1407003758RFApplicant:SOL REPUBLIC, INC.Manufacturer:SOL REPUBLIC, INC.

Product Name: Punk
Model No.(EUT): MM1
Trade Mark: Punk

FCC ID: 2ACPO-MM1

Standards: 47 CFR Part 15, Subpart C (2013)

Date of Receipt: 2014-07-19

Date of Test: 2014-07-28 to 2014-08-05

Date of Issue: 2014-08-07

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM140700375801

Page: 2 of 51

2 Version

Revision Record						
Version Chapter Date Modifier Remark						
00		2014-08-07		Original		

Authorized for issue by:		
Tested By	Orven Zhoi	2014-08-05
	(Owen Zhou) /Project Engineer	Date
Prepared By	Medy Wen	2014-08-07
	(Hedy Wen) /Clerk	Date
Checked By	Emen-Li	2014-08-08
	(Emen Li) /Reviewer	Date

Report No.: SZEM140700375801

Page: 3 of 51

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	KDB558074 D01 v03r01	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	KDB558074 D01 v03r01	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	KDB558074 D01 v03r01	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01 v03r01	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01 v03r01	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

Report No.: SZEM140700375801

Page: 4 of 51

4 Contents

			Page
1	CO	OVER PAGE	1
2	VE	ERSION	2
3		ST SUMMARY	
4		ONTENTS	
5		ENERAL INFORMATION	
_			
	5.1 5.2	CLIENT INFORMATIONGENERAL DESCRIPTION OF EUT	
	5.2 5.3	TEST ENVIRONMENT	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
	5.10	EQUIPMENT LIST	9
6	TE	ST RESULTS AND MEASUREMENT DATA	12
	6.1	Antenna Requirement	12
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	20
	6.5	Power Spectral Density	23
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	26
	6.7	Spurious RF Conducted Emissions	
	6.8	RADIATED SPURIOUS EMISSION	
	6.8	- 	
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	42-51

Report No.: SZEM140700375801

Page: 5 of 51

5 General Information

5.1 Client Information

Applicant:	SOL REPUBLIC, INC.
Address of Applicant:	9375 SW Commerce Circle, A9 Wilsonville, Oregon 97070, United States
Manufacturer:	SOL REPUBLIC, INC.
Address of Manufacturer:	9375 SW Commerce Circle, A9 Wilsonville, Oregon 97070, United States

5.2 General Description of EUT

Product Name:	Punk	Punk		
Model No.:	MM1	MM1		
Trade Mark:	Punk			
Operation Frequency:	2402MHz~	-2480MHz		
Bluetooth Version:	4.0			
bluelooth version.	This test re	eport is for BLE mode		
Modulation Type:	GFSK			
Number of Channel:	40	40		
Sample Type:	Portable p	Portable production		
EUT Function:	Punk			
Test Software of EUT:	CSR Blues	Suite (manufacturer declare)		
Antenna Type:	Integral			
Antenna Gain:	0dBi			
Dower Cumply	Adapter:	Output: DC 5V = 1A		
Power Supply:	Battery:	DC 3.7V 1400 mAh (Li-ion Rechargeable Battery)		
Test Voltage:	AC 120V 6	AC 120V 60Hz		
rest voltage.	DC 3.7V B	DC 3.7V Battery fully charge		
USB Cable:	30cm (Unshielded)			

Report No.: SZEM140700375801

Page: 6 of 51

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The Lowest channel	2402MHz		
The Middle channel	2440MHz		
The Highest channel	2480MHz		

Report No.: SZEM140700375801

Page: 7 of 51

5.3 Test Environment

Operating Environment:			
Temperature:	23.0 °C		
Humidity:	56 % RH		
Atmospheric Pressure:	1005 mbar		

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	
Adapter	Supply by SGS	Output: DC 5V = 1A	

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM140700375801

Page: 8 of 51

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM140700375801

Page: 9 of 51

5.10 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2015-06-10		
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2014-10-24		
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-16		
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2014-11-10		
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2014-11-10		
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2014-11-10		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-16		
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-29		
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24		
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24		
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16		

Report No.: SZEM140700375801

Page: 10 of 51

	RE in Chamber				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-06-10
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2015-05-16
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-10-24
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2014-10-24
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-10-24
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-16
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2014-10-24
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-29
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-29
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-29
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-29
13	Band filter	Amindeon	82346	SEL0094	2015-05-16
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-16
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2014-10-24
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-06-04

Report No.: SZEM140700375801

Page: 11 of 51

	RF connected test						
Item	Test Equipment	Manufacturer Model No.		Manufacturer Model No.		Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24		
2	Humidity/ Temperature Indicator	HYGRO ZJ1-2B		SEL0033	2014-10-24		
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2014-10-24		
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-29		
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-29		
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-16		
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-05-16		
8	Band filter	amideon	82346	SEL0094	2015-05-16		
9	POWER METER	R&S	NRVS	SEL0144	2014-10-24		
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-05-16		
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2014-10-24		

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM140700375801

Page: 12 of 51

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM140700375801

Page: 13 of 51

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2009					
Test Frequency Range:	150kHz to 30MHz					
Limit:	Fraguena, ranga (MIII-)	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test Procedure:	The mains terminal distur room.	bance voltage test was	s conducted in a shi	elded		
	 The EUT was connected to Impedance Stabilization N impedance. The power cal connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single L exceeded. The tabletop EUT was place ground reference plane. A placed on the horizontal ground reference plane. A vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the ground the EUT and associated en the EUT and associated en the EUT and all of the in ANSI C63.10: 2009 on cor 	etwork) which provides bles of all other units of SN 2, which was bondene way as the LISN 1 for the toutlet strip was used ISN provided the rating code upon a non-metallimed for floor-standing arround reference plane. The theorem was bonded to the strip was placed 0.8 m from the vertical ground reference plane. The to a ground reference plane. The strip of the LISN 1 and the quipment was at least 0 the strip was at least 0 the complete the strip was at least 0 th	s a 50Ω/50μH + 5Ω lift the EUT were do to the ground or the unit being do to connect multiple gof the LISN was not contained the connect multiple ground and the boundary of the boundary of the plane for LISNs his distance was EUT. All other units 0.8 m from the LISN we positions of	he was ear ne he		

Report No.: SZEM140700375801

Page: 14 of 51

Report No.: SZEM140700375801

Page: 15 of 51

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Site : Shielding Room

Condition : 47 CFR PART15C QP CE LINE

Job No. : 3758RF

Mode : Charge+TX mode

			Cable	LISN	Read		Limit	Over	
		Freq	Loss	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	@	0.18249	0.02	9.70	24.08	33.80	54.37	-20.57	Average
2		0.18249	0.02	9.70	30.03	39.75	64.37	-24.62	QP
3	@	0.30028	0.01	9.70	30.54	40.25	60.24	-19.98	QP
4	@	0.30028	0.01	9.70	24.14	33.85	50.24	-16.39	Average
5	0	0.53782	0.01	9.80	21.86	31.67	46.00	-14.33	Average
6	@	0.53782	0.01	9.80	27.67	37.48	56.00	-18.52	QP
7	@	1.396	0.02	9.80	25.53	35.35	56.00	-20.65	QP
8	0	1.396	0.02	9.80	16.45	26.27	46.00	-19.73	Average
9		5.867	0.01	9.90	26.82	36.73	60.00	-23.27	QP
10		5.867	0.01	9.90	17.45	27.36	50.00	-22.64	Average
11		16.486	0.02	10.10	16.89	27.01	50.00	-22.99	Average
12		16.486	0.02	10.10	26.54	36.66	60.00	-23.34	QP

Report No.: SZEM140700375801

Page: 16 of 51

Neutral line:

Site : Shielding Room

Condition : 47 CFR PART15C QP CE NEUTRAL

Job No. : 3758RF

Mode : Charge+TX mode

		Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1		0.17961	0.02	9.70	28.64	38.36	64.50	-26.15	QP
2	@	0.17961	0.02	9.70	27.21	36.93	54.50	-17.57	Average
3		0.30348	0.01	9.71	18.92	28.64	50.15	-21.51	Average
4		0.30348	0.01	9.71	26.50	36.22	60.15	-23.93	QP
5	@	0.54355	0.01	9.80	16.43	26.24	46.00	-19.76	Average
6	@	0.54355	0.01	9.80	24.80	34.61	56.00	-21.39	QP
7	@	1.456	0.02	9.80	26.13	35.95	56.00	-20.05	QP
8	@	1.456	0.02	9.80	17.94	27.76	46.00	-18.24	Average
9	@	11.870	0.01	10.00	28.91	38.92	60.00	-21.08	QP
10	@	11.870	0.01	10.00	21.66	31.67	50.00	-18.33	Average
11	@	17.661	0.02	10.06	28.88	38.95	60.00	-21.05	QP
12	@	17.661	0.02	10.06	20.35	30.43	50.00	-19.57	Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM140700375801

Page: 17 of 51

6.3 Conducted Peak Output Power

Measurement Data

	GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	-1.15	30.00	Pass				
Middle	2.05	30.00	Pass				
Highest	2.09	30.00	Pass				

Report No.: SZEM140700375801

Page: 18 of 51

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Report No.: SZEM140700375801

Page: 19 of 51

Test mode: GFSK Test channel: Highest

Report No.: SZEM140700375801

Page: 20 of 51

6.4 6dB Occupy Bandwidth

Measurement Data

Test channel	6dB Occupy Bandwidth (kHz)	Limit (kHz)	Result
Lowest	697.115384615	≥500	Pass
Middle	701.923076923	≥500	Pass
Highest	697.115384615	≥500	Pass

Report No.: SZEM140700375801

Page: 21 of 51

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Report No.: SZEM140700375801

Page: 22 of 51

Test mode: GFSK Test channel: Highest

Report No.: SZEM140700375801

Page: 23 of 51

6.5 Power Spectral Density

Measurement Data

GFSK mode						
Test channel	Power Spectral Density (dBm)	Limit (dBm)	Result			
Lowest	-1.93	≤8.00	Pass			
Middle	1.21	≤8.00	Pass			
Highest	1.29	≤8.00	Pass			

Report No.: SZEM140700375801

Page: 24 of 51

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Report No.: SZEM140700375801

Page: 25 of 51

Test mode: GFSK Test channel: Highest

Report No.: SZEM140700375801

Page: 26 of 51

6.6 Band-edge for RF Conducted Emissions

Report No.: SZEM140700375801

Page: 27 of 51

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM140700375801

Page: 28 of 51

6.7 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	KDB558074 D01 v03r01
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Non-hopping transmitting with GFSK modulation.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM140700375801

Page: 29 of 51

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM140700375801

Page: 30 of 51

Report No.: SZEM140700375801

Page: 31 of 51

Test mode: GFSK Test channel: Middle

Report No.: SZEM140700375801

Page: 32 of 51

Report No.: SZEM140700375801

Page: 33 of 51

Test mode: GFSK Test channel: Highest

Report No.: SZEM140700375801

Page: 34 of 51

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sqs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM140700375801

Page: 35 of 51

6.8 Radiated Spurious Emission

6.8.1 Spurious Emiss	ions							
Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205				_
Test Method:	ANSI C63.10 2009							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency		Detector	RBW		VBW	Remark	1
	0.009MHz-0.090MH	Z	Peak	10kHz	-	30kHz	Peak	Ī
	0.009MHz-0.090MH	Z	Average	10kHz	<u>-</u>	30kHz	Average	
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	<u>-</u>	30kHz	Quasi-peak	
	0.110MHz-0.490MH	Z	Peak	10kHz	-	30kHz	Peak	
	0.110MHz-0.490MH	Z	Average	10kHz	<u>-</u>	30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	10kHz		Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kH	100 kHz		Quasi-peak	
	Above 1GHz		Peak	1MHz		3MHz	Peak	
	Above Idiiz		Peak	1MHz		10Hz	Average	
Limit:	Frequency	Frequency Field str		Limit (dBuV/m)		Remark	Measureme distance (r	
	0.009MHz-0.490MHz	2	400/F(kHz)	-			300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-		30	
	1.705MHz-30MHz		30	-	40.0 Quasi-peak		30	
	30MHz-88MHz		100	40.0			3	
	88MHz-216MHz		150	43.5	Q	uasi-peak	3	
	216MHz-960MHz		200	46.0	Q	uasi-peak	3	
	960MHz-1GHz 500		54.0		uasi-peak	3		
	Above 1GHz		500	54.0		Average	3	
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.							
Test Setup:								

Report No.: SZEM140700375801

Page: 36 of 51

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse

Report No.: SZEM140700375801

Page: 37 of 51

	case. i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Non-hopping transmitting mode with GFSK modulation. Charge +Transmitting mode
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM140700375801

Page: 38 of 51

Radiated Emission below 1GHz					
30MHz~1GHz (QP)					
Test mode:	Charge +Transmitting mode	Vertical			

Condition: 47 CFR PART 15B 3m 3142C VERTICAL

Job No. : 3758RF

Mode : AC Charge+TX mode

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 6	49. 71 54. 45 70. 58 77. 05 130. 38 952. 09	0.79 0.80 0.82 1.01 1.28 3.65	4.86 4.79 8.21	27. 28 27. 25 27. 23	49.58 49.54 35.25	28. 01 28. 11 17. 73	40.00 40.00 40.00 43.50	-11.99

Report No.: SZEM140700375801

Page: 39 of 51

Test mode: Charge +Transmitting mode Horizontal

Condition: 47 CFR PART 15B 3m 3142C HORIZONTAL

Job No. : 3758RF

Mode : AC Charge+TX mode

	Freq			Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	$\overline{\text{dBuV/m}}$	dBuV/m	dB
1 2 3 4 5	30. 21 77. 05 133. 15 574. 63 675. 21 1000. 00		17.73 4.79 8.26 14.95 16.40 21.50	27. 23 26. 99		21. 47 22. 78 24. 30	40.00 43.50 46.00 46.00	

Report No.: SZEM140700375801

Page: 40 of 51

Transmitt	Transmitter Emission above 1GHz									
Test mode:		GFSK	Test	channel:	Lowest	Rer	nark:	Peak		
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m	~ I I imit	Polarization		
1663.803	3.41	29.50	38.39	49.84	44.36	74	-29.64	Vertical		
3516.592	4.92	32.91	38.75	46.21	45.29	74	-28.71	Vertical		
4804.000	5.63	34.70	39.24	45.46	46.55	74	-27.45	Vertical		
7206.000	6.80	35.63	39.07	45.09	48.45	74	-25.55	Vertical		
9608.000	8.94	37.33	37.93	43.95	52.29	74	-21.71	Vertical		
12024.960	9.27	38.73	38.72	43.83	53.11	74	-20.89	Vertical		
1663.803	3.41	29.50	38.39	46.87	41.39	74	-32.61	Horizontal		
3570.714	5.06	32.97	38.77	45.35	44.61	74	-29.39	Horizontal		
4804.000	5.63	34.70	39.24	45.46	46.55	74	-27.45	Horizontal		
7206.000	6.80	35.63	39.07	44.89	48.25	74	-25.75	Horizontal		
9608.000	8.94	37.33	37.93	43.24	51.58	74	-22.42	Horizontal		
11486.410	9.80	38.22	38.46	44.29	53.85	74	-20.15	Horizontal		

Test mode:		GFSK	Test	channel:	Middle	Rema	rk:	Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
1659.574	3.40	29.48	38.39	50.90	45.39	74	-28.61	Vertical
3616.451	5.11	33.01	38.79	45.06	44.39	74	-29.61	Vertical
4880.000	5.61	34.78	39.26	45.60	46.73	74	-27.27	Vertical
7320.000	6.73	35.51	39.06	45.55	48.73	74	-25.27	Vertical
9760.000	8.84	37.80	37.84	42.40	51.20	74	-22.80	Vertical
11428.080	9.96	38.17	38.43	43.31	53.01	74	-20.99	Vertical
1659.574	3.40	29.48	38.39	50.62	45.11	74	-28.89	Horizontal
3653.463	5.08	33.04	38.81	45.31	44.62	74	-29.38	Horizontal
4880.000	5.61	34.78	39.26	45.81	46.94	74	-27.06	Horizontal
7320.000	6.73	35.51	39.06	45.48	48.66	74	-25.34	Horizontal
9760.000	8.84	37.80	37.84	42.59	51.39	74	-22.61	Horizontal
11169.240	9.52	38.12	38.31	44.16	53.49	74	-20.51	Horizontal

Report No.: SZEM140700375801

Page: 41 of 51

Test mode:		GFSK	Test	channel:	Highest		Remark:		Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)		nit V/m)	Over limit (dB)	Polarization
1663.803	3.41	29.50	38.39	50.62	45.14	7	4	-28.86	Vertical
3607.257	5.12	33.01	38.79	45.65	44.99	7	4	-29.01	Vertical
4960.000	5.60	34.86	39.29	45.12	46.29	7	4	-27.71	Vertical
7440.000	6.72	35.43	39.05	45.54	48.64	7	4	-25.36	Vertical
9920.000	9.19	38.27	37.75	41.55	51.26	7	4	-22.74	Vertical
11545.040	9.63	38.26	38.49	44.26	53.66	7	4	-20.34	Vertical
1659.574	3.40	29.48	38.39	48.48	42.97	7	4	-31.03	Horizontal
3570.714	5.06	32.97	38.77	45.19	44.45	7	4	-29.55	Horizontal
4960.000	5.60	34.86	39.29	45.14	46.31	7	4	-27.69	Horizontal
7440.000	6.72	35.43	39.05	45.84	48.94	7	4	-25.06	Horizontal
9920.000	9.19	38.27	37.75	41.12	50.83	7	4	-23.17	Horizontal
11515.680	9.71	38.24	38.47	43.65	53.13	7	4	-20.87	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM140700375801

Page: 42 of 51

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2009	ANSI C63.10 2009							
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)						
Limit:	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 1GHz	54.0	Average Value						
	Above IGHZ	74.0	Peak Value						
Test Setup:									

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel.

Report No.: SZEM140700375801

Page: 43 of 51

	 g. Test the EUT in the lowest channel , the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Non-hopping transmitting mode with GFSK modulation.
	Charge + Transmitting mode
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM140700375801

Page: 44 of 51

Test plot as follows:

|--|

Site : chamber

Condition: FCC PART C 247 PK 3m Vertical

Job No: : 3758RF

Mode: : 2402 BLE Band edge

Ant Cable Preamp Read Limit Over
Freq Factor Loss Factor Level Line Level Limit Remark

MHz dB/m dB dB dB dBuV dBuV/m dBuV/m dB

1 2390.00 32.35 3.36 38.46 43.22 74.00 40.47 -33.53 2 pp 2402.29 32.41 3.37 38.46 101.64 74.00 98.96 24.96

Report No.: SZEM140700375801

Page: 45 of 51

Test mode: GFSK Test channel: Lowest Remark: Peak Horizontal

Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 3758RF

Mode: : 2402 BLE Band edge

Ant Cable Preamp Read Limit 0ver Loss Factor Level Line Level Limit Remark Freq Factor MHz dB/m dB dB dBuV dBuV/m dBuV/m 2390.00 32.35 3.36 38.46 44.17 74.00 41.42 -32.58 2402.29 32.41 3.37 38.46 100.61 74.00 97.93 23.93

Report No.: SZEM140700375801

Page: 46 of 51

Test mode:	GFSK	Test channel:	Lowest	Remark:	Average	Vertical

Site : chamber

Condition: FCC PART C 247 AV 3m Vertical

Job No: : 3758RF

Mode: : 2402 BLE Band edge

Ant Cable Preamp Read Limit 0ver Loss Factor Line Level Limit Remark Freq Factor Level MHz dB/m dB dB dBuV dBuV/m dBuV/m 3.36 38.46 32.20 54.00 29.45 -24.55 2390.00 32.35 2402.00 32.41 3.37 38.46 81.65 54.00 78.97 24.97

Report No.: SZEM140700375801

Page: 47 of 51

Test mode: GFSK Test channel: Lowest Remark: Average Horizontal

Site : chamber

Condition: FCC PART C 247 AV 3m Horizontal

Job No: : 3758RF

Mode: : 2402 BLE Band edge

Ant Cable Preamp Read Limit 0ver Loss Factor Line Level Limit Remark Freq Factor Level MHz dB/m dB dB dBuV dBuV/m dBuV/m 3.36 38.46 30.99 54.00 28.24 -25.76 2390.00 32.35 2402.00 32.41 3.37 38.46 81.20 54.00 78.52 24.52

Report No.: SZEM140700375801

Page: 48 of 51

Test mode: GFSK Test channel: Highest Remark: Peak Vertical

Site : chamber

Condition: FCC PART C 247 PK 3m Vertical

Job No: : 3758RF

Mode: : 2480 BLE Band edge

2483.50 32.44

Ant Cable Preamp Read Limit Over
Freq Factor Loss Factor Level Line Level Limit Remark

MHz dB/m dB dB dB dBuV/m dBuV/m dBuV/m dB

2479.66 32.44 3.46 38.47 101.69 74.00 99.12 25.12

3.47 38.47 54.73 74.00 52.17 -21.83

Report No.: SZEM140700375801

Page: 49 of 51

Test mode: GFSK Test channel: Highest Remark: Peak Horizontal

Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 3758RF

Mode: : 2480 BLE Band edge

Ant Cable Preamp Read Limit Over
Freq Factor Loss Factor Level Line Level Limit Remark

MHz dB/m dB dB dBuV dBuV/m dBuV/m dB

1 pp 2479.68 32.44 4.23 38.47 101.28 74.00 99.48 25.48 2 2483.50 32.44 4.24 38.47 54.37 74.00 52.58 -21.42

Report No.: SZEM140700375801

Page: 50 of 51

Test mode: GFSK Test channel: Highest Remark: Average Vertical

Site : chamber

Condition: FCC PART C 247 AV 3m Vertical

Job No: : 3758RF

Mode: : 2480 BLE Band edge

Ant Cable Preamp Read Limit 0ver Loss Factor Level Line Level Limit Remark Freq Factor MHz dB/m dB dB dBuV dBuV/m dBuV/m 1 pp 2479.88 32.44 3.46 38.47 81.95 54.00 79.38 25.38 2483.50 32.44 3.47 38.47 42.78 54.00 40.22 -13.78

Report No.: SZEM140700375801

Page: 51 of 51

Test mode: GFSK Test channel: Highest Remark: Average Horizontal

Site : chamber

Condition: FCC PART C 247 AV 3m Horizontal

Job No: : 3758RF

Mode: : 2480 BLE Band edge

Ant Cable Preamp Read Limit 0ver Loss Factor Freq Factor Level Line Level Limit Remark MHz dB/m dB dBuV dBuV/m dBuV/m dB dB 2479.91 32.44 4.23 38.47 81.60 54.00 79.80 25.80 38.47 2483.50 32.44 4.24 43.63 54.00 41.84 -12.16

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."