Chapter 4 Notes

4.2 Harmonic Functions and the Dirichlet Problem

A function $u:D\mapsto\mathbb{R}$ where D is an open subset of \mathbb{R}^d is called **harmonic** in D if u is of class C^2 and $\Delta u\triangleq\sum_{i=1}^d(\frac{\partial^2 u}{\partial x_i^2})=0$ in D. Throughout this section, $\{W_t,\mathcal{F}_t;0\leq t<\infty\}$, (Ω,\mathcal{F}) , $\{P^x\}_{x\in\mathbb{R}^d}$ is a d-dimensional

Throughout this section, $\{W_t, \mathcal{F}_t; 0 \leq t < \infty\}$, (Ω, \mathcal{F}) , $\{P^x\}_{x \in \mathbb{R}^d}$ is a d-dimensional Brownian family and $\{\mathcal{F}_t\}$ satisfies the usual conditions. We denote by D an open set in \mathbb{R}^d and introduce the stopping time (Problem 1.2.7)

$$\tau_D = \inf\{t \ge 0; W_t \in D^c\},\$$

the time of first exit from D. The boundary of D will be denoted by ∂D , and $\bar{D} = D \cup \partial D$ is the closure of D. By Theorem 2.9.23, each component of W is a.s. unbounded, so

$$P^x[\tau_D < \infty] = 1; \quad \forall x \in D \subset \mathbb{R}^d, \ D \text{ bounded.}$$

Let $B_r \triangleq \{x \in \mathbb{R}^d; ||x|| < r\}$ be the open ball of radius r centered at the origin. The volume of this ball is

$$V \triangleq \frac{2r^d \pi^{\frac{d}{2}}}{d\Gamma(\frac{d}{2})},$$

and its surface area is

$$S_r \triangleq \frac{2r^{d-1}\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})} = \frac{d}{r}V_r.$$

We define a probability measure μ_r on ∂B_r by

$$\mu_r(dx) = P^0[W_{\tau_{B_r}} \in dx]; \quad r > 0.$$

In the integral notation, the above definition for $A \subset \partial B_r$ becomes:

$$\mu_r(A) = \int_{x \in A} P^0[W_{\tau_{B_r}} \in dx],$$

which we interpret as the probability of the Brownian motion W_t crossing the boundary ∂B_r by passing through points in A.

A. The mean-value property

Because of the rotational invariance of Brownian motion (Problem 3.3.18), the measure μ_r is also rotationally invariant and thus proportional to surface measure on ∂B_r . In particular, the Lebesgue integral of a function f over B_r can be written in iterated form as

$$\int_{B_r} f(x)dx = \int_0^r S_\rho \int_{\partial B_\rho} f(x)\mu_\rho(dx)d\rho.$$

2.1 Definition We say that the function $u: D \mapsto \mathbb{R}$ has the **mean-value property** if, for every $a \in D$ and $0 < r < \infty$ s.t. $a + \bar{B}_r \subset D$, we have

$$u(a) = \int_{\partial B_r} u(a+x)\mu_r(dx).$$

Then we derive the consequence

$$u(a) = \frac{1}{V_r} \int_{B_n} u(a+x) dx.$$

$$\therefore \int_{B_r} u(a+x)dx = \int_0^r S_\rho \int_{\partial B_\rho} u(a+x)\mu_\rho(dx)d\rho = \int_0^r S_\rho u(a+x)d\rho = u(a+x)\int_0^r S_\rho d\rho = u(a+x)V_r$$

(the second inequality follows from the mean-value property)

of the mean-value property, which asserts that the mean integral value of u over a ball is equal to the value at the center.

2.2 Proposition If u is harmonic in D, then it has the mean-value property there.

Proof) With $a \in D$ and $0 < r < \infty$ s.t. $a + \bar{B} \subset D$, we have from Ito's formula:

$$u(W_{t\wedge\tau_{a+B_r}})=u(W_0)+\sum_{i=1}^d\int_0^{t\wedge\tau_{a+B_r}}\frac{\partial u}{\partial x_i}(W_s)dW_s^{(i)}+\frac{1}{2}\int_0^{t\wedge\tau_{a+B_r}}\Delta u(W_s)ds=$$

$$= u(W_0) + \sum_{i=1}^{d} \int_0^{t \wedge \tau_{a+B_r}} \frac{\partial u}{\partial x_i}(W_s) dW_s^{(i)} \text{ where } 0 \le t < \infty,$$

since u is harmonic and $(\partial u/\partial x_i)$; $1 \le i \le d$, are bounded functions on $a + B_r$, the expectations under P^a of the stochastic integrals are all equal to 0. After taking these expectations on both sides and letting $t \to \infty$, we use

$$u(a) = E^a u(W_{\tau_{a+B_r}}) = \int_{\partial B_r} u(a+x)\mu_r(dx). \quad \Box$$

2.3 Corollary (Maximum Principle) Suppose that u is harmonic in the open, connected domain D. If u achieves its supremum over D at some point in D,

then u is identically constant.

Proof) Let $M = \sup_{x \in D} u(x)$, and let $D_M = \{x \in D; u(x) = M\}$. We assume that D_M is nonempty and show that $D_M = D$. Since u is continuous, $D_M = u^{-1}(\{M\}) \cap D$ is a closed set relative to D. But for $a \in D_M$, and $0 < r < \infty$ s.t. $a + \overline{B}_r \subset D$, we have the mean value property:

$$M = u(a) = \frac{1}{V_r} \int_{B_r} u(a+x) dx \le \frac{1}{V_r} \int_{B_r} M dx = M,$$

which shows that u = M on $a + B_r$.

Since $a \in D_M$ was arbitrary, and $a \in a + B_r \subset D_M$, we conclude D_M is open. Moreover, D is connected, either D_M or $D - D_M$ must be empty. \square

For the sake of completeness, below is the converse of Proposition 2.2.

2.5 Proposition If u maps D into \mathbb{R} and has the mean-value property, then u is of class C^{∞} and harmonic.

Proof) We first prove that u is of class C^{∞} . For $\epsilon > 0$, let $g_{\varepsilon} : \mathbb{R}^d \to [0, \infty)$ be the C^{∞} function

$$g_{\varepsilon}(x) = \begin{cases} c(\varepsilon) \exp\left[\frac{1}{\|x\|^2 - \varepsilon^2}\right], & \|x\| < \varepsilon \\ 0, & \|x\| \ge \varepsilon \end{cases}$$
 (1)

where $c(\varepsilon)$ is chosen so that

$$\int_{B_{\varepsilon}} g_{\varepsilon}(x)dx = \int_{0}^{\varepsilon} S_{\rho} \int_{\partial B_{\rho}} g_{\varepsilon}(x)\mu_{\rho}(dx)d\rho =$$

$$= c(\varepsilon) \int_{0}^{\varepsilon} S_{\rho} \int_{\partial B} \exp(\frac{1}{\|x\|^{2} - \varepsilon^{2}})\mu_{\rho}(dx)d\rho = c(\varepsilon) \int_{0}^{\varepsilon} S_{\rho} \exp(\frac{1}{\rho^{2} - \varepsilon^{2}})d\rho = 1.$$

For $\varepsilon > 0$ and $a \in D$ s.t. $a + \bar{B_{\varepsilon}} \subset D$, define

$$u_{\varepsilon}(a) \triangleq \int_{B_{\varepsilon}} u(a+x)g_{\varepsilon}(x)dx = \int_{\mathbb{R}^d} u(y)g_{\varepsilon}(y-a)dy.$$

From the second representation, u_{ε} is of class C^{∞} on the open subset of D where it is defined. Furthermore, for every $a \in D$ there exists $\varepsilon > 0$ so that $a + \bar{B}_{\varepsilon} \subset D$; from mean-value property of u, we have

$$u_{\varepsilon}(a) = \int_{B_{\varepsilon}} u(a+x)g_{\varepsilon}(x)dx = c(\varepsilon) \int_{0}^{\varepsilon} S_{\rho} \int_{\partial B_{\rho}} u(a+x) \exp(\frac{1}{\rho^{2} - \varepsilon^{2}}) \mu_{\rho}(dx)d\rho =$$

$$= c(\varepsilon) \int_{0}^{\varepsilon} S_{\rho}u(a) \exp(\frac{1}{\rho^{2} - \varepsilon^{2}})d\rho = u(a)$$

where the last equality is from the definition of $c(\varepsilon)$. Thus, u is also of class C^{∞} .

In order to show that $\Delta u = 0$ in D, we choose $a \in D$ and use a Taylor-series expansion in the neighborhood $a + \bar{B}_{\varepsilon}$,

$$u(a+y) = u(a) + \sum_{i=1}^{d} y_{i} \frac{\partial u}{\partial x_{i}}(a) + \frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} y_{i} y_{j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(a) + o(\|y\|^{2}); \ y \in \bar{B}_{\varepsilon},$$

where again $\varepsilon > 0$ is chosen so that $a + \bar{B}_{\varepsilon} \subset D$. Odd symmetry gives us

$$\int_{\partial B_{\varepsilon}} y_{i} \mu_{\varepsilon}(dy) = 0, \quad \int_{\partial B_{\varepsilon}} y_{i} y_{j} \mu_{\varepsilon}(dy) = 0; \quad i \neq j,$$

so integrating the above Taylor-expansion over ∂B_{ε} and using the mean-value property, we have

$$u(a) = \int_{\partial B_{\varepsilon}} u(a+y)\mu_{\varepsilon}(dy) = u(a) + \frac{1}{2} \sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}(a) \int_{\partial B_{\varepsilon}} y_{i}^{2} \mu_{\varepsilon}(dy) + o(\varepsilon^{2}).$$

But

$$\int_{\partial B_{\varepsilon}} y_i^2 \mu_{\varepsilon}(dy) = \frac{1}{d} \sum_{i=1}^d \int_{\partial B_{\varepsilon}} y_i^2 \mu_{\varepsilon}(dy) = \frac{\varepsilon^2}{d},$$

thus we have

$$\frac{\varepsilon^2}{2d}\Delta u(a) + o(\varepsilon^2) = 0.$$

Dividing by ε^2 and letting $\varepsilon \downarrow 0$, we have $\Delta u(a) = 0$. \square

B. The Dirichlet problem

We take up now the Dirichlet problem (D, f): with open $D \subset \mathbb{R}^d$ and $f : \partial D \to \mathbb{R}$ is a given continuous function, find a continuous function $u : \bar{D} \to \mathbb{R}$ s.t.

$$\Delta u = 0$$
; in D

$$u = f$$
: on ∂D .

Such a function, when it exists, will be called a solution to the Dirichlet problem (D, f). One may interpret u(x) as the steady-state temperature at $x \in D$ when the boundary temperatures of D are specified by f.

The power of the probabilistic method is demonstrated by the fact that we can immediately write down a very likely solution to (D, f), namely

$$u(x) \triangleq E^x f(W_{\tau_D}); \quad x \in \bar{D},$$

provided that

$$E^x|f(W_{\tau_D})| < \infty; \quad \forall x \in D.$$

If $x \in \partial D$, then since $P^x[W_0 = x] = 1$, we have

$$u(x) = E^x f(W_{\tau_D}) = E^x f(W_0) = f(x).$$

Thus, u satisfies u = f on ∂D . Furthermore, for $a \in D$ and B_r chosen so that $a + \bar{B}_r \subset D$, we have:

$$u(a) = E^{a} f(W_{\tau_{D}}) \stackrel{\text{tower}}{=} E^{a} \{ E^{a} [f(W_{\tau_{D}}) | \mathcal{F}_{\tau_{a+B_{r}}}] \} =$$

$$= E^{a} \{ E^{a} [f(W_{\tau_{D}} - W_{\tau_{a+B_{r}}} + W_{\tau_{a+B_{r}}}) | \mathcal{F}_{\tau_{a+B_{r}}}] \} =$$

$$= E^{a} \{ u(W_{\tau_{a+B_{r}}}) \} \stackrel{\text{def}}{=} \int_{\partial B_{r}} u(a+x) \mu_{r}(dx),$$

where the second last equality is from the strong Markov property of B.M.

Therefore, u has the mean-value property, and so it must satisfy $\Delta u = 0$; in D. The only unresolved issue is whether u is continuous up to and including ∂D . **2.6 Proposition** If $E^x|f(W_{\tau_D})| < \infty$ holds, then $u(x) \triangleq E^x f(W_{\tau_D})$; $x \in \bar{D}$ is harmonic in D.

2.7 Proposition If f is bounded and

$$P^a[\tau_D < \infty] = 1; \quad \forall a \in D,$$

then any bounded solution to (D, f) has the representation $u(x) = E^x f(W_{\tau_D})$.

Proof) Let u be any bounded solution to (D, f), and let $D_n \triangleq \{x \in D; \inf_{y \in \partial D} \|x - y\| > \frac{1}{n}\}$. Then, D_n is an increasing sequence of subsets of D. From Ito's rule,

$$u(W_{t \wedge \tau_{B_n} \wedge \tau_{D_n}}) = u(W_0) + \sum_{i=1}^d \int_0^{t \wedge \tau_{B_n} \wedge \tau_{D_n}} \frac{\partial u}{\partial x_i}(W_s) dW_s^{(i)}; \quad 0 \le t < \infty, \quad n \ge 1.$$

Since $\frac{\partial u}{\partial x_i}$ is bounded in $\overline{B_n \cap D_n}$, we take expectations w.r.t P^a from both sides:

$$E^{a}u(W_{t\wedge\tau_{B_{n}}\wedge\tau_{D_{n}}}) = E^{a}(u(W_{0})) = u(a);$$

where $0 \le t < \infty$, $n \ge 1$, $a \in D_n$.

As $t \to \infty, n \to \infty, P^a[\tau_D < \infty] = 1$; $\forall a \in D$ implies that $u(W_{t \wedge \tau_{B_n} \wedge \tau_{D_n}})$ converges to $f(W_{\tau_D})$, a.s. P^a . The representation $u(x) = E^x f(W_{\tau_D})$; $x \in \overline{D}$ follows from the bounded convergence theorem. \square

In the light of Proposition 2.6 and 2.7, the existence of a solution to the Dirichlet problem boils down to the question of the continuity of u defined by

 $E^x f(W_{\tau_D})$ at the boundary of D. We therefore undertake to characterize those points $a \in \partial D$ for which

$$\lim_{x \to a, x \in D} E^x f(W_{\tau_D}) = f(a)$$

holds for every bounded, measurable function $f:\partial D\to\mathbb{R}$ which is continuous at the point a.

- **2.9 Definition** Consider the stopping time of the right-continuous filtration $\{\mathcal{F}_t\}$ given by $\sigma_D \triangleq \inf\{t > 0; W_t \in D^c\}$. We say that a point $a \in \partial D$ is regular for D if $P^a[\sigma_D = 0] = 1$, i.e., a Brownian motion path started at a does not immediately return to D and remain there for a nonempty time interval.
- **2.10 Remark** A point $a \in \partial D$ is called irregular if $P^a[\sigma_D = 0] < 1$; however, the event $\{\sigma_D = 0\}$ belongs to \mathcal{F}_{0+}^W , and so the Blumenthal zero-one law (Theorem 2.7.17) gives for an irregular point $a : P^a[\sigma_D = 0] = 0$.
- **2.11 Remark** The regularity is a local condition; i.e. $a \in \partial D$ is regular for D if and only if a is regular for $(a + B_r) \cap D$, for some r > 0.
- **2.12 Theorem** Assume that $d \geq 2$ and fix $a \in \partial D$. The following are equivalent:
- (i) $\lim_{x\to a, x\in D} E^x f(W_{\tau_D}) = f(a)$ holds for every bounded, measurable function $f: \partial D \to \mathbb{R}$ which is continuous at a;
- (ii) a is regular for D;
- (iii) for all $\varepsilon > 0$, we have

$$\lim_{x \to a, x \in D} P^x [\tau_D > \varepsilon] = 0.$$

Proof) We assume WLOG that a=0, and begin by proving the implication $(i) \Rightarrow (ii)$ by contradiction. If the origin is irregular, then $P^0[\sigma_D=0]=0$ (Remark 2.10). Since a Brownian motion of dimension $d \geq 2$ never returns to its starting point (Prop 3.3.22), we have

$$\lim_{r \downarrow 0} P^0[W_{\tau_D} \in B_r] = P^0[W_{\tau_D} = 0] = 0.$$

Fix r > 0 for which $P^0[W_{\tau_D} \in B_r] < \frac{1}{4}$, and choose a sequence $\{\delta_n\}_{n=1}^{\infty}$ for which $0 < \delta_n < r$ for all n and $\delta_n \downarrow 0$. With $\tau_n \triangleq \inf\{t \geq 0; \|W_t\| \geq \delta_n\}$, we have $P^0[\tau_n \downarrow 0] = 1$, and thus $\lim_{n \to \infty} P^0[\tau_n < \sigma_D] = 1$. Furthermore, on the event $\{\tau_n < \sigma_D\}$ we have $W_{\tau_n} \in D$. For n large enough so that $P^0[\tau_n < \sigma_D] \geq \frac{1}{2}$ we may write

$$\frac{1}{4} > P^{0}[W_{\sigma_{D}} \in B_{r}] \ge P^{0}[W_{\sigma_{D}} \in B_{r}, \tau_{n} < \sigma_{D}] = E^{0}(1_{\{W_{\sigma_{D}} \in B_{r}\}} 1_{\{\tau_{n} < \sigma_{D}\}}) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} E^{0}[1_{\{W_{\sigma_{D}} \in B_{r}\}} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r} | \mathcal{F}_{\tau_{n}}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma_{D}} \in B_{r}]) = E^{0}(1_{\{\tau_{n} < \sigma_{D}\}} P^{0}[W_{\sigma$$

$$= \int_{D \cap B_{\delta_n}} P^x [W_{\tau_D} \in B_r] P^0 [\tau_n < \sigma_D, W_{\tau_n} \in dx] \ge \frac{1}{2} \inf_{x \in D \cap B_{\delta_n}} P^x [W_{\tau_D} \in B_r],$$

for which we conclude that $P^{x_n}[W_{\tau_D} \in B_r] \leq \frac{1}{2}$ for some $x_n \in D \cap B_{\delta_n}$. Now choose a bounded, continuous function $f: \partial D \to \mathbb{R}$ s.t. f = 0 outside B_r , $f \leq 1$ inside B_r , and f(0) = 1. For such a function we have

$$\overline{\lim}_{n \to \infty} E^{x_n} f(W_{\tau_D}) \le \overline{\lim}_{n \to \infty} P^{x_n} [W_{\tau_D} \in B_r] \le \frac{1}{2} < f(0),$$

and (i) fails.

We next show that $(ii) \Rightarrow (iii)$. Observe first of all that for $0 < \delta < \varepsilon$, the function

$$g_{\delta}(x) \triangleq P^{x}[W_{s} \in D; \delta \leq s \leq \varepsilon] = E^{x}(P^{W_{\delta}}[\tau_{D} > \varepsilon - \delta]) =$$
$$= \int_{\mathbb{R}^{d}} P^{y}[\tau_{D} > \varepsilon - \delta]P^{x}[W_{\delta} \in dy]$$

is continuous in x. But

$$g_{\delta}(x) \downarrow g(x) \triangleq P^{x}[W_{s} \in D; 0 < s \leq \varepsilon] = P^{x}[\sigma_{D} > \varepsilon]$$

as $\delta \downarrow 0$, so g is upper semicontinuous. From this fact and the inequality $\tau_D \leq \sigma_D$, we conclude that $\overline{\lim}_{x\to 0} P^x[\tau_D > \varepsilon] \leq \overline{\lim}_{x\to 0} g(x) \leq g(0) = 0$, by (ii).

Finally, we prove $(iii) \Rightarrow (i)$. We know that for each r > 0, $P^x[\max_{0 \le t \le \varepsilon} ||W_t - W_0|| < r]$ does not depend on x and approaches one as $\varepsilon \downarrow 0$. But then

$$P^{x}[\|W_{\tau_{D}} - W_{0}\| < r] \ge P^{x}[\{\max_{0 \le t \le \varepsilon} \|W_{t} - W_{0}\| < r\} \cap \{\tau_{D} \le \varepsilon\}] \ge$$
$$\ge P^{0}[\max_{0 \le t \le \varepsilon} \|W_{t}\| < r] - P^{x}[\tau_{D} > \varepsilon].$$

Letting $x \to 0 \ (x \in D)$ and $\varepsilon \downarrow 0$, successively, we obtain from (iii),

$$\lim_{x \to 0} P^x [\|W_{\tau_D} - x\| < r] = 1; \quad 0 < r < \infty.$$

The continuity of f at the origin and its boundedness on ∂D gives $\lim_{x\to 0, x\in D} E^x f(W_{\tau_D}) = f(a)$. \square

C. Conditions for regularity

For many open sets D and boundary points $a \in \partial D$, we can convince ourselves intuitively that a Brownian motion originating at a will exit from \bar{D} immediately, i.e., a is regular.

When d = 2, the center of a punctured disc is an irregular boundary point. The following development, culminating with Problem 2.16 shows that in \mathbb{R}^2 , any irregular boundary point of D must be "isolated" in the sense that it cannot be connected to any other point outside D by a simple arc lying outside D.

- **2.13 Definition** Let $D \subset \mathbb{R}^d$ be open and $a \in \partial D$. A **barrier** at a is a continuous function $v : \bar{D} \to \mathbb{R}$ which is harmonic in D, positive on $\bar{D} \{a\}$, and equal to zero at a.
- **2.14 Example** Let $D \subset B_r \subset \mathbb{R}^2$ be open, where 0 < r < 1, and assume $(0,0) \in \partial D$. If a single valued, analytic branch of $\log(x_1 + ix_2)$ can be defined in $\bar{D} (0,0)$, then

$$v(x_1, x_2) \triangleq \begin{cases} -\operatorname{Re} \frac{1}{\log(x_1 + ix_2)} = -\frac{\log \sqrt{x_1^2 + x_2^2}}{|\log(x_1 + ix_2)|^2}; & (x_1, x_2) \in D - (0, 0), \\ 0; & (x_1, x_2) = (0, 0), \end{cases}$$

is a barrier at (0,0). Indeed being the real part of an analytic solution, v is harmonic in D, and because $0 < \sqrt{x_1^2 + x_2^2} \le r < 1$ in $\bar{D} - (0,0)$, v is positive on this set

2.15 Proposition Let D be bounded and $a \in \partial D$. If there exists a barrier at a, then a is regular.

Proof) Let v be a barrier at a. We establish condition (i) of Theorem 2.12. With $f: \partial D \to \mathbb{R}$ bounded and continuous at a, define $M = \sup_{x \in \partial D} |f(x)|$. Choose $\varepsilon > 0$ and let $\delta > 0$ be s.t. $|f(x) - f(a)| < \varepsilon$ if $x \in \partial D$ and $||x - a|| < \delta$. Choose k so that $kv(x) \geq 2M$ for $x \in \overline{D}$ and $||x - a|| \geq \delta$. We then have $|f(x) - f(a)| \leq \varepsilon + 2M \leq \varepsilon + kv(x)$; $x \in \partial D$, so

$$|E^x f(W_{\tau_D}) - f(a)| \le E^x |f(W_{\tau_D}) - f(a)| \le \varepsilon + k E^x v(W_{\tau_D}) = \varepsilon + k v(x); \quad x \in D$$

by Proposition 2.7. But v is continuous and v(a) = 0, so

$$\overline{\lim}_{x \to a, x \in D} |E^x f(W_{\tau_D}) - f(a)| \le \varepsilon.$$

Finally, we let $\varepsilon \downarrow 0$ to obtain $\lim_{x \to a, x \in D} E^x f(W_{\tau_D}) = f(a)$. \square

2.17 Example (Lebesgue's Thorn) With d=3 and $\{\varepsilon_n\}_{n=1^{\infty}}$ a sequence of positive numbers decreasing to zero, define

$$E = \{(x_1, x_2, x_3); -1 < x_1 < 1, x_2^2 + x_3^2 < 1\},$$

$$F_n = \{(x_1, x_2, x_3); 2^{-n} \le x_1 \le 2^{-n+1}, x_2^2 + x_3^2 \le \varepsilon_n\},$$

$$D = E - (\bigcup_{n=1}^{\infty} F_n).$$

Now $P^0[(W_t^{(2)},W_t^{(3)})=(0,0)$, for some t>0]=0 (Proposition 3.3.22), so the P^0 -probability that $W=(W^{(1)},W^{(2)},W^{(3)})$ ever hits the compact set $K_n\triangleq$

 $\{(x_1,x_2,x_3); 2^{-n} \leq x_1 \leq 2^{-n+1}, x_2 = x_3 = 0\}$ is zero. According to Problem 3.3.24, $\lim_{t\to\infty}\|W_t\| = \infty$ a.s. P^0 , so for P^0 -a.e. $\omega\in\Omega$, the path $t\mapsto W_t(\omega)$ remains bounded away from K_n . Thus, if ε_n is chosen sufficiently small, we can ensure that $P^0[W_t\in F_n$, for some $t\geq 0]\leq 3^{-n}$. If W, beginning at the origin, does not return to D immediately, it must avoid D by entering $\bigcup_{n=1}^\infty F_n$. In other words,

$$P^{0}[\sigma_{D} = 0] \le P^{0}[W_{t} \in F_{n}, \text{ for some } t \ge 0 \text{ and } n \ge 1] \le \sum_{n=1}^{\infty} < 1.$$

If the cusplike behavior is avoided, then the boundary points of D are regular, regardless of the dimension. To make this statement precise, let us define for $y \in \mathbb{R}^d - \{0\}$ and $0 \le \theta \le \pi$, the **cone** $C(y, \theta)$ with direction y and aperture θ by

$$C(y, \theta) = \{x \in \mathbb{R}^d; (x, y) \ge ||x|| ||y|| \cos \theta\}.$$

- **2.18 Definition** We say that the point $a \in \partial D$ satisfies the **Zaremba's cone condition** if there exists $y \neq 0$ and $0 < \theta < \pi$ s.t. the translated cone $a + C(y, \theta)$ is contained in $\mathbb{R}^d D$.
- **2.19 Theorem** If a point $a \in \partial D$ satisfies the Zaremba's cone condition, then it is regular.

Proof) We assume WLOG that a is the origin and $C(y,\theta) \subset \mathbb{R}^d - D$, where $y \neq 0$ and $0 < \theta < \pi$. Because the change of variables $z = \frac{x}{\sqrt{t}}$ maps $C(y,\theta)$ onto itself, we have for any t > 0,

$$\begin{split} P^0[W_t \in C(y,\theta)] &= \int_{C(y,\theta)} \frac{1}{(2\pi t)^{d/2}} \exp[-\frac{\|x\|^2}{2t}] dx = \\ &= \int_{C(y,\theta)} \frac{1}{(2\pi)^{d/2}} \exp[-\frac{\|z\|^2}{2}] dz \triangleq q > 0, \end{split}$$

where q is independent of t. Now, $P^0[\sigma_D \leq t] \geq P^0[W_t \in C(y,\theta)] = q$, and letting $t \downarrow 0$, we conclude that $P^0[\sigma_D = 0] > 0$. Regularity follows from the Blumenthal zero-one law (Remark 2.10).

2.20 Remark If, for $a \in \partial D$ and some r > 0, the point a satisfies Zaremba's cone condition for the set $(a + B_r) \cap D$, then a is regular for D (Remark 2.11).

- E. Supplementary Exercises
- 4.3 The One-Dimensional Heat Equation
- A. The Tychonoff uniqueness theorem
- B. Nonnegative solutions of the heat equation
- C. Boundary Crossing probabilities for Brownian motion
- D. Mixed initial/boundary value problems
- 4.4 The Formulas of Feynman and Kac
- A. The multi-dimensional formula
- B. The one-dimensional formula