Digital Signal Processing for Music

Part 23: Time-stretching and Pitch-shifting

Andrew Beck

Intro

- >> Time Stretching
 - Change playback speed/tempo without changing pitch
- >> Pitch Shifting
 - Change pitch without changing tempo / playback speed
- >> Terms
 - >> Time / pitch scaling
 - >> Time expansion / compression

Applications

- >>> Beat Matching:: Align tempo of two or more audio files (mashup)
- >> Key lock: "Align" pitch of two or more audio files (mashup)
- >> Pitch / time correction: Edit intonation, frequency deviation, vibrato, glissando
- >> Video frame rate conversion
- >> Sample player / libraries
- >> Sound design
- >> Educational software: Pitch and timing visualization

Stretch and Pitch Factors

$$s = rac{t_{output}}{t_{input}}$$

$$p = rac{f_{output}}{f_{input}}$$

Examples:

- \Rightarrow Half speed: s=2
- >> Half pitch: $p = \frac{1}{2}$
- >> Semitone up / down:

$$p_u = 2^{rac{1}{12}} = 1.059 \quad p_d = 2^{-rac{1}{12}} = 0.9439$$

>> 100 BPM \rightarrow 75 BPM: $s = \frac{4}{3}$

Resampling

- >> Traditional: resampling
 - >> Change inter-sample 'distance' by interpolation
 - >> Keep playback sample rate constant
 - >> Audio example

 - Resample: 0:00 / 0:11
- >> Tempo changes results in pitch change (and vice versa)

$$s=rac{1}{p}$$

Stretching: Effect on Frequency Domain

OLA: Introduction

Overlap and add approaches for:

- >> Granular synthesis
- >> Time /frequency synthesis and processing
- >> Time-stretching and pitch-shifting

Time Stretching

Overlap and add

- 1. Split input signal into overlapping blocks
- 2. Duplicate or discard blocks depending on stretch factor

>> Original:

Windowed Grains

Outputing Grains

Parameters

- >> Grain Size
- >> Hop Size
- >> Time Scale
- >> Pitch Scale
- >> Time Variance
- >> Pitch Variance
- >> Interpolation Method

Pitch Synchronous Overlap and Add

- >> Use the OLA principle, but
- >> Adapt block length to fundamental period length

PSOLA: Example

>> Original:

► 0:00 / 0:15 **→**

PSOLA: Transient Copying

PSOLA: Summary

>> Processing Steps

- Detect fundamental frequency / period length
- Set pitch marks
- Intelligently select blocks to be repeated / discarded

>> Advantages

- >> High granularity Modify audio on period length resolution
- >> High quality

PSOLA: Summary

>> Problems

- >> Quality depends on pitch tracking reliability
- >> Quality and timbre depends on pitch mark positioning
- >> Works only for *monophonic* input signals
 - >> Polyphonic and noisy segments
 - >> Reverberation and overlapping tones
- >> Noise, plosives require special consideration
- >> Copying artifacts (double transients, timing deviations)
- >> Typical Applications
 - >> Standard approach for vocal editing tools

Phase Vocoder: Frequency Domain OLA

- 1. **Split input** signal into overlapping blocks
- 2. Compute magnitude and phase spectrum of each block
- 3. **Change overlap ratio** between blocks depending on stretch factor
- 4. Keep the magnitude, adapt the phase per bin to the blocks new time stamp

Phase Vocoder: Audio Example

- Original: 0:00 / 0:15
- Phase Vocoded: D:00 / 0:20

Frequency Reassignment: Relation of Phase and Frequency

Phasor Representation:

- >> Sine value is defined by magnitude and phase
- Decreasing the amplitude → shorter vector
- >> Increasing the frequency -> Increasing speed

Frequency and phase change closely related

>> Time for full rotation is period length *T* with

$$f=rac{1}{T}$$

>> Time for fractional rotation $\Delta\Phi$ is corresponding fraction of period length

$$f=rac{\Delta\Phi}{\Delta t}$$

Frequency and phase change closely related

>> In other words:

$$\Phi(t) = \omega \cdot t$$
 $\Rightarrow rac{d\Phi(t)}{dt} = \omega = 2\pi f$

Frequency Reassignment: Principles

- Frequency domain
- >> Instead of using the bin frequency

$$f(k) = k * rac{f_{ ext{S}}}{\mathcal{K}}$$

- >> We use the phase of each bin $\Phi(k,n)$
- >> To compute the frequency from the phase difference of neighboring blocks

$$\omega_{
m I}(k,n) \propto \Phi(k,n) - \Phi(k,n-1)$$

 $ightharpoonup \omega_{
m I}(k,n)$ is called **instantaneous frequency** per block per bin

Frequency Reassignment: Scaling Factor

- >> Instantaneous frequency calculation has to take into account
 - >> Hop Size: H
 - \rightarrow Sample Rate: f_s

$$\omega_{
m I}(k,n) = rac{\Delta \Phi_{
m u}(k,n)}{\mathcal{H}} \cdot f_{
m S}$$

>> Problem: Phase ambiguity

$$\Phi(k,n) = \Phi(k,n) + j \cdot 2\pi$$

>> Phase unwrapping

Phase Unwrapping

- >> Compute unwrapped phase $\Phi_{\mathrm{u}}(k,n)$
 - >> Estimate unwrapped bin phase

$$\hat{\Phi}(k,n) = \Phi(k,n-1) + 2\pi k \cdot rac{\mathcal{H}}{\mathcal{K}} = \omega_k \cdot rac{\mathcal{H}}{f_{
m s}}$$

>> Unwrap phase by shifting current phase to estimates range

$$\Phi_{\mathrm{u}}(k,n) = \hat{\Phi}(k,n) + \mathrm{princarg} \Big[\Phi(k,n) - \hat{\Phi}(k,n) \Big]$$

Phase Unwrapping

>> Compute unwrapped phase difference

$$egin{aligned} \Delta\Phi_{ ext{u}}(k,n) &= \Phi_{ ext{u}}(k,n) - \Phi(k,n-1) \ &= \hat{\Phi}(k,n) + ext{princarg} \Big[\Phi(k,n) - \hat{\Phi}(k,n) \Big] - \Phi(k,n-1) \ &= rac{2\pi k}{\mathcal{K}} \mathcal{H} + ext{princarg} \Big[\Phi(k,n) - \Phi(k,n-1) - rac{2\pi k}{\mathcal{K}} \mathcal{H} \Big] \end{aligned}$$

Frequency Reassignment: Problems

- >> Overlapping spectral components
 - >>> Sinusoidal components often overlap (Spectral leakage, several instruments playing the same pitch, ...)
 - >> Incorrect phase estimates
 - >> Spectrum should be as sparse as possible, increase STFT length
- >> Inaccurate phase unwrapping

Phase Vocoder Window Compensation

Phase Vocoder - Properties & Artifacts

>> Advantages

- Allows polyphonic input (assumption: no overlapping harmonics)
- >> Absolute timing stability (i.e., sample resolution)

>> Disadvantages

- >> Low granularity FFT block size
- >> Artifacts: Phasing, Transient smearing / doubling

Phase Vocoder Artifacts: Spectral Leakage

Phase Vocoder Phasing

Use Frequency Reassignment for grouping and phase sync

Phase Vocoder Artifacts - Unsynced Harmonics

Use Harmonic Analysis for Grouping and Phase Sync

- Original:

 0:00 / 0:15

Phase Vocoder Artifacts: Interchannel Phasing

Phase estimation between channels slightly off due to

- >> Numerical inaccuracies (cumulative!)
- >> Overlapping frequency components

Change in spatial image

- Phase Vocoder:

 0:00 / 0:25

Phase Vocoder Artifacts: Transient Smearing

Transient Smearing Example

- Original:
- Phase Vocoder:

 | Discolution | Discolution

Detect transients and reset phase per bin

- Phase Vocoder:

 | 0:00 / 0:20 |
- >> PV w/ Phase Reset: 0:00 / 0:20

Time Stretching: Inherent Problems

- >> Stretching the audio data can lead to "non-natural" results
- >> Examples
 - >> Tempo dependent timing variations
 - >> Other performance related aspects may get inappropriate lengths and speed: *vibrato, tremolo, glissando*

Pitch Shifting

>> Definition

Change pitch without changing tempo

>> Method

Combine stretching and sample rate conversion (interpolation)

Change length with stretching

Resample to compensate for length difference

- >> Implementation: Differentiate "external" and "internal" parameters
 - >> External: stretch s_e and pitch p_e
 - >> External: stretch s_i and resample r_i

Pitch Shifting: Example

Pitch shift factor $p=rac{4}{3}$

- >> Time stretch (increase length / decrease tempo) $s = \frac{4}{3}$
- >> Resample (decrease length / increase pitch) $s = \frac{3}{4}$
- Phase Vocoder: 0:00 / 0:15

Pitch Shifting: Standard Approach Examples

- External: $s_e=1\dots p_e=2$ Internal: $s_i=2\dots r_i=\frac{1}{2}$
- >> External: $s_e=1\dots p_e=rac{4}{3}$ Internal: $s_i=rac{4}{3}\dots r_i=rac{3}{4}$
- \Rightarrow External: $s_e = \frac{1}{2} \dots p_e = 2$ Internal: $s_i = 1 \dots r_i = \frac{1}{2}$
- >>> External: $s_e=2\dots p_e=2$ Internal: $s_i=4\dots r_i=rac{1}{2}$

Pitch Shifting: Frequency Domain Approach

- >> STFT
- >> Magnitude and phase
- >> Magnitude and instantaneous frequency
- >>> Resample both magnitude and frequency spectrum according to pitch factor
- >> Magnitude and phase
- >> Complex spectrum
- >> IFFT and OLA

Format Preservation: Time Domain

Formant Preservation: Frequency Domain

- >> Idea
 - >>> Preserve spectral envelope
- >> Approach
 - >> Measure spectral envelope
 - Apply inverse envelope (whitening)
 - >> Pitch shift
 - >> Apply spectral envelope

Spectral Envelope Estimate

- >> Approaches
 - >> LPC coefficients
 - >> Spectral maxima
- >> Potential issues
 - >>> Polyphonic input audio

 'Superposition' of envelopes
 - >> Very high / low pitch factors: High frequency boost / cut
 - >> Estimate resolution
 - >> Too coarse -> Loss of timbre characteristics
 - >>> Too fine → Impress pitch characteristics (harmonic pattern) on spectrum

Pitch Shifting: Audio Examples

Summary

- >> Pitch stretching and pitch shifting are largely equivalent algorithms
 - >> Sample artifacts
 - >> Same workload
- Monophonic time-stretching with PSOLA-based approaches
 - >> Easier to solve
 - >> Has bad artifacts if pitch tracker is off

Summary

- >> Polyphonic time-stretching with PV-based approaches
 - >> Complicated due to tradeoffs (e.g., frequency vs time resolution
- >> General challenges:
 - >> Noisy and transient signals
 - >>> Resulting timbre changes
 - >> Perceived naturalness of result
 - >> Time resolution / accuracy due to blocked processing