Pawan Goyal

CSE, IIT Kharagpur

Week 4, Lecture 2

Uses the well-known EM algorithm to find the maximum likelihood estimate of the parameters of a hidden markov model

Uses the well-known EM algorithm to find the maximum likelihood estimate of the parameters of a hidden markov model

Parameters of HMM

Let X_t be the random variable denoting hidden state at time t, and Y_t be the observation variable at time T. HMM parameters are given by $\theta = (A, B, \pi)$ where

- $A = \{a_{ij}\} = P(X_t = j | X_{t-1} = i)$ is the state transition matrix
- $\pi = {\pi_i} = P(X_1 = i)$ is the initial state distribution
- $B = \{b_i(y_t)\} = P(Y_t = y_t | X_t = j)$ is the emission matrix

Uses the well-known EM algorithm to find the maximum likelihood estimate of the parameters of a hidden markov model

Parameters of HMM

Let X_t be the random variable denoting hidden state at time t, and Y_t be the observation variable at time T. HMM parameters are given by $\theta = (A, B, \pi)$ where

- $A = \{a_{ij}\} = P(X_t = j | X_{t-1} = i)$ is the state transition matrix
- $\pi = {\pi_i} = P(X_1 = i)$ is the initial state distribution
- $B = \{b_j(y_t)\} = P(Y_t = y_t | X_t = j)$ is the emission matrix

Given observation sequences $Y = (Y_1 = y_1, Y_2 = y_2, ..., Y_T = y_T)$, the algorithm tries to find the parameters θ that maximise the probability of the observation.

The Algorithm

The basic idea is to start with some random initial conditions on the parameters θ , estimate best values of state paths X_t using these, then re-estimate the parameters θ using the just-computed values of X_t , iteratively.

The Algorithm

The basic idea is to start with some random initial conditions on the parameters θ , estimate best values of state paths X_t using these, then re-estimate the parameters θ using the just-computed values of X_t , iteratively.

Intuition

- Choose some initial values for $\theta = (A, B, \pi)$.
- Repeat the following step until convergence:
- Determine probable (state) paths ... $X_{t-1} = i, X_t = j...$
- Count the expected number of transitions a_{ij} as well as the expected number of times, various emissions $b_j(y_t)$ are made
- Re-estimate $\theta = (A, B, \pi)$ using a_{ij} and $b_j(y_t)$ s.

A forward-backward algorithm is used for finding probable paths.

Forward Procedure

 $\alpha_i(t) = P(Y_1 = y_1, \dots, Y_t = y_t, X_t = i | \theta)$ be the probability of seeing y_1, \dots, y_t and being in state i at time t. Found recursively using:

 $\bullet \ \alpha_i(1) = \pi_i b_i(y_1)$

Forward Procedure

 $\alpha_i(t) = P(Y_1 = y_1, \dots, Y_t = y_t, X_t = i | \theta)$ be the probability of seeing y_1, \dots, y_t and being in state i at time t. Found recursively using:

- $\bullet \ \alpha_i(1) = \pi_i b_i(y_1)$
- $\bullet \ \alpha_j(t+1) = b_j(y_{t+1}) \sum_{i=1}^N \alpha_i(t) a_{ij}$

Forward Procedure

 $\alpha_i(t) = P(Y_1 = y_1, \dots, Y_t = y_t, X_t = i | \theta)$ be the probability of seeing y_1, \dots, y_t and being in state i at time t. Found recursively using:

- $\bullet \ \alpha_i(1) = \pi_i b_i(y_1)$
- $\bullet \ \alpha_j(t+1) = b_j(y_{t+1}) \sum_{i=1}^N \alpha_i(t) a_{ij}$

Backward Procedure

 $\beta_i(t) = P(Y_{t+1} = y_{t+1}, \dots, Y_T = y_T | X_t = i, \theta)$ be the probability of ending partial sequence y_{t+1}, \dots, y_T given starting state i at time t. $\beta_i(t)$ is computed recursively as:

• $\beta_i(T) = 1$

Forward Procedure

 $\alpha_i(t) = P(Y_1 = y_1, \dots, Y_t = y_t, X_t = i | \theta)$ be the probability of seeing y_1, \dots, y_t and being in state i at time t. Found recursively using:

- $\alpha_i(1) = \pi_i b_i(y_1)$
- $\bullet \ \alpha_j(t+1) = b_j(y_{t+1}) \sum_{i=1}^N \alpha_i(t) a_{ij}$

Backward Procedure

 $\beta_i(t) = P(Y_{t+1} = y_{t+1}, \dots, Y_T = y_T | X_t = i, \theta)$ be the probability of ending partial sequence y_{t+1}, \dots, y_T given starting state i at time t. $\beta_i(t)$ is computed recursively as:

- $\beta_i(T) = 1$
- $\beta_i(t) = \sum_{j=1}^{N} \beta_j(t+1) a_{ij} b_j(y_{t+1})$

Finding probabilities of paths

We compute the following variables:

• Probability of being in state i at time t given the observation Y and parameters θ

$$\gamma_i(t) = P(X_t = i|Y, \theta) = \frac{\alpha_i(t)\beta_i(t)}{\sum_{j=1}^N \alpha_j(t)\beta_j(t)}$$

• Probability of being in state i and j at time t and t+1 respectively given the observation Y and parameters θ

$$\zeta_{ij}(t) = P(X_t = i, X_{t+1} = j | Y, \theta) = \frac{\alpha_i(t) a_{ij} \beta_j(t+1) b_j(y_{t+1})}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i(t) a_{ij} \beta_j(t+1) b_j(y_{t+1})}$$

Updating the parameters

- $\pi_i = \gamma_i(1)$, expected number of times state i was seen at time 1
- $a_{ij} = \frac{\sum_{t=1}^{T} \zeta_{ij}(t)}{\sum_{t=1}^{T} \gamma_{i}(t)}$, expected number of transitions from state i to state j, compared to the total number of transitions away from state i
- $b_i(v_k) = \frac{\sum_{t=1}^T 1_{y_t=v_k} \gamma_i(t)}{\sum_{t=1}^T \gamma_i(t)}$ with $1_{y_t=v_k}$ being an indicator function, is the expected number of times the output observations are v_k while being in state i compared to the expected total number of times in state i.