# Distributionally Robust Learning from Incomplete Data

Amir Najafi, Shin-ichi Maeda, Masanori Koyama and Takeru Miyato

<sup>1</sup>Sharif University of Technology, Tehran, Iran <sup>2</sup>Preferred Networks, Inc., Tokyo, Japan ※ Work done while at Preferred Networks, Inc.



Overall Data D

Unlabeled Data  $D_{ul}$ 



### Summary

We propose a general framework, SSDRL, that combines distributionally robust learning with semi-supervised learning and includes the following algorithms as its special cases

- Distributionally Robust Learning (DRL) (η=1,only complete data)
- Pseudo-Labeling (PL) ( $\lambda \rightarrow -\infty$ , optimistic estimate of hidden label,  $\epsilon=0$ )
- EM algorithm ( $\lambda=-1$ , probabilistic estimate of hidden label by posterior,  $\epsilon=0$ )

|                            | DRL<br>(Sinha+,18) | <b>PL</b><br>(Lee., 13) | VAT<br>(Miyato+, 18) | EM<br>(Dempster+, 77) | SSDRL<br>(Proposed) |
|----------------------------|--------------------|-------------------------|----------------------|-----------------------|---------------------|
| Generalization Bound       | <b>✓</b>           | ×                       | ×                    | ×                     |                     |
| Convergence Guarantee      |                    | ×                       | ×                    |                       | <b>✓</b>            |
| Robustness to Adversaries  |                    | ×                       |                      | ×                     |                     |
| Handling of Unlabeled Data | ×                  |                         |                      |                       |                     |

#### Notations

$$p_0(x,y) : \text{true distribution} \\ p_0(x,y) : \text{true distribution} \\ p_l = \{z_1, \cdots, z_{N_l}\} : \text{Labeled data} \quad z_n = (x_n, y_n) \sim p_0(x,y) \\ p_0(x,y) = \sum_{v=1}^{N_l} \delta(z - z_n) \\ p_0(x,y) = \sum_{v=1}^{N_l} \delta(x - z_n) \\ p_$$

 $B_{\epsilon}(q) \equiv \{p | W_c(p,q) \leq \epsilon\}$ : a set of distribution that is close to distribution q where proximity is measured under Wasserstein metric  $W_c(p,q)$ 

 $W_c(p,q) \equiv \inf_{\mu \in \Pi(p,q)} E_{\mu}[c(z,z')]$  c(z,z'): transportation cost  $(c(z,z') \geq 0$ , lower semicontinuous, c(z,z) = 0)  $\Pi(p,q)$ : a set of joint distributions whose marginal corresponds p and q

## ■ Proposed Method: Semi-Supervised Distributionally Robust Learning (SSDRL)

Semi-Supervised
Distributionally Robust
Learning (SSDRL)

$$\arg\min_{\theta} \inf_{S \in \hat{P}(D_N)} \left[ \sup_{p \in B_{\epsilon}(S)} E_p[Loss(z; \theta)] + \frac{1 - \eta}{\lambda} E_{\hat{P}(D_{ul})} \left[ H(S_{y|x}) \right] + \gamma \epsilon \right]$$

$$= \arg\min_{\theta} \left[ \left\{ \frac{1}{N} \sum_{n=1}^{N_l} \phi_{\gamma}(z_n; \theta) + \frac{1}{N} \sum_{n=N_l+1}^{N} \operatorname{softmin}_{y}^{\lambda} \left( \phi_{\gamma}((x_n, y); \theta) \right) + \gamma \epsilon \right\} \equiv R_{SSAR}(\theta; D) \right]$$

 $\eta = 1, \lambda = -1,$   $\epsilon = 0 \ (\gamma = +\infty)$   $\lambda = -1, \epsilon = 0 \ (\gamma = +\infty)$ 

 $S_{y|x}: S$  's conditional distribution of Y given X  $\widehat{P}(D_N) \equiv \{\eta \widehat{p}(D_l) + (1 - \eta)\widehat{p}(D_{ul})Q | Q \in M^X(Y)\}$   $\phi_{\gamma}(z; \theta) \equiv \sup_{z'} (J(z'; z) \equiv Loss(z'; \theta) - \gamma c(z', z))$   $(\gamma \geq 0)$  softmin $_y^{\lambda}(f_y) \equiv \frac{1}{\lambda} \log \left(\frac{1}{|Y|} \sum_{y \in Y} \exp(\lambda f_y)\right)$ 

Supervision ratio

DRL

$$\arg \min_{\theta} \sup_{p \in B_{\epsilon}(p_{0})} E_{p}[Loss(z; \theta)]$$

$$\approx \arg \min_{\theta} \sup_{p \in B_{\epsilon}(\hat{p}(D_{l}))} E_{p}[Loss(z; \theta)]$$

$$= \arg \min_{\theta} \frac{1}{N} \sum_{n=1}^{N_{l}} \sup_{z'} Loss(z'; \theta) - \gamma c(z', z_{n})$$

#### MLE

$$\arg \min_{\theta} E_{p_0}[Loss(z;\theta)]$$

$$\approx \arg \min_{\theta} \frac{1}{N_l} \sum_{n=1}^{N_l} Loss(z_n;\theta)$$

#### EM algorithm

$$\arg\min_{\theta} \eta E_{p_0}[Loss(z;\theta)] + (1-\eta) \inf_{Q_y \in M^X(Y)} \left( E_{Q_y \times p_{0X}} \left[ Loss(z;\theta) - H(Q_y) \right] \right)$$

$$\approx \arg\min_{\theta} \eta \frac{1}{N_l} \sum_{n=1}^{N_l} Loss(z_n;\theta) + (1-\eta) \frac{1}{N-N_l} \sum_{n=N_l+1}^{N} \log \left( \frac{1}{|Y|} \sum_{y \in Y} \exp(-Loss((x_n,y);\theta)) \right)$$

### Algorithm 1 Stochastic gradient descent for SSDRL

Inputs:  $D, \gamma, \lambda, k (\leq N), \delta, \alpha, T$ Initialize  $\theta_0, t \leftarrow 0$ while t < T do Randomly select index set *I* with size *k* F-SSDRL computes adversarial sample only for the *likeliest* y for  $n \in I$  do Computation of adversarial sample for each y if  $n \in I_l \equiv \{1, \dots, N_l\}$  # Labeled data Compute  $\hat{z}_{n,\theta}^*$  such that  $|\hat{z}_{n,\theta}^* - z_{n,\theta}^*| < \delta$  where  $z_{n,\theta}^* = \sup Loss(z';\theta) - \gamma c(z',z_n)$ else # Unlabeled data Compute  $\hat{z}_{n,\theta}^*(y)$  for each  $y \in Y$  such that  $|\hat{z}_{n,\theta}^*(y) - z_{n,\theta}^*(y)| < \delta$ where  $z_{n,\theta}^*(y) = \sup Loss(z';\theta) - \gamma c(z',(x_n,y))$ endif Compute the gradient  $\nabla R_{SSAR}^k(\theta)$   $\nabla R_{SSAR}^k(\theta) = \frac{1}{k} \sum_{n \in I \cap I_I} g_{\theta}(\hat{z}_{n,\theta}^*) + \frac{1}{k} \sum_{n \in I \cap I_{uI}} \sum_{y \in Y} q_n(y; \theta) g_{\theta}(\hat{z}_{n,\theta}^*(y))$  $\theta_{t+1} \leftarrow \theta_t - \alpha \, \nabla R^k_{SSAR}(\theta)$ where  $g_{\theta}(z) \equiv \nabla_{\theta} Loss(z; \theta)$  $t \leftarrow t + 1$ endfor  $q_n(y;\theta) = \frac{\exp(\lambda J(\hat{z}_{n,\theta}^*(y);(x_n,y)))}{\sum_{y' \in Y} \exp(\lambda J(\hat{z}_{n,\theta}^*(y');(x_n,y')))}$ endwhile

### Convergence Guarantee

Assume the loss function is universally differentiable with respect to both parameters z and  $\theta$  with Lipschitz gradients. Also, assume  $\|g_{\theta}(z)\|_{2} \leq \sigma$  for some  $\sigma \geq 0$  all over  $Z \times \Theta$ , and  $|\lambda| < \infty$ . Denote the initial hypothesis as  $\theta_{0} \in \Theta$ , and let  $\theta^{*} \in \Theta$  to be a local minimizer of  $R_{SSAR}(\theta; D)$ . Also, let  $\Delta R \equiv R_{SSAR}(\theta_{0}; D) - R_{SSAR}(\theta^{*}; D)$ . Then, for a fixed step size  $\alpha^{*}$  as

$$\alpha^* \equiv \frac{1}{\sigma^2} \sqrt{\frac{\Delta R}{T(\frac{B}{\sigma^2} + (1-\eta)|\lambda||Y|)}},$$

the outputs of Algorithm 1 with parameter set k = 1,  $\delta > 0$ ,  $\alpha = \alpha^*$  after T iterations, satisfy the following inequality:

$$\frac{1}{T} \sum_{t}^{T} E\left[\left\|\nabla R_{SSAR}^{1}(\theta_{t})\right\|_{2}^{2}\right]$$

$$\leq 4\sigma^{2} \sqrt{\frac{\Delta R}{T} \left(\frac{B}{\sigma^{2}} + (1 - \eta)|\lambda||Y|\right)} + C\delta,$$

where positive constants B and C depend only on  $\gamma$  and the Lipschitz constants associated to  $Loss(z;\theta)$ .

#### **Generalization Bound**

Output: $\theta^* \leftarrow \theta_T$ 

Assume the set of continuous functions  $\mathcal{L} \equiv \{Loss(\cdot;\theta)|Loss(\cdot;\theta): Z \to \mathfrak{R}, \|Loss(\cdot;\theta)\|_{\infty} \leq B \text{ (for some } B \geq 0), \theta \in \Theta \}$ , and  $\Phi \equiv \{\phi_{\gamma}(\cdot;\theta)|\theta \in \Theta \}$ . Also assume a partially labeled dataset D which consists of N i.i.d. samples drawn from  $p_0$  where labels can be observed with probability of supervision ratio  $\eta \in [0,1]$ , independently. For  $0 < \delta \leq 1$  and  $\lambda \leq 0$ ,  $\eta$  satisfies the following condition:

$$\eta \ge MSR_{(\Phi,p_0)} \left( \lambda, 4B \sqrt{\frac{\log \frac{1}{\delta}}{2N}} + 4R_{N,(\epsilon,\eta)}^{(SSM)}(\mathcal{L}; p_0) \right)$$

(Newly introduced function  $MSR_{(\mathcal{F},P_0)}(\lambda, \text{margin})$  tells us what kind of loss function set  $\mathcal{F}$ , parameter  $\lambda$  and margin are necessary for the generalization guarantee without observing much labeled data compared with the unlabeled data when the data distribution is  $P_0$ . It does not need a restrictive condition like *cluster assumption*.)

Then, with probability at least  $1-\delta$ , the following bound holds for all  $\epsilon \geq 0$ :

$$\sup_{p \in B_{\epsilon}(p_0)} E_p[Loss(z; \theta^*)] \le \min_{\theta \in \Theta} R_{SSAR}(\theta; D) + 2B \sqrt{\frac{\log \frac{1}{\delta}}{2N}} + 2R_{N,(\epsilon,\eta)}^{(SSM)}(\mathcal{L}; p_0)$$

where  $\theta^*$  is the minimizer of  $R_{SSAR}(\theta; D)$ .

Definition:

Assume a real-valued function set  $\mathcal{F}$  and distribution  $p_0$ . Then for  $\epsilon \geq 0$  and  $\eta \in [0,1]$ , Monge Rademacher complexity and SSM Rademacher Complexity of  $\mathcal{F}$  according to  $\epsilon$ -Monge adversaries  $A_{\epsilon} = \{ \forall a : Z \to Z | c(z, a(z)) \leq \epsilon, \ \forall z \in Z \}$  are defined as

• Monge Rademacher Complexity • Semi-Supervised Monge (SSM) Rademacher Complexity  $R_{N,\epsilon}^{(\text{Monge})}(\mathcal{F};p_0) \equiv E_{p_0,\sigma} \left[ \sup_{f \in \mathcal{F}} \frac{1}{N} \sum_{n=1}^{N} \sigma_n \left( \sup_{a \in A_{\epsilon}} f \circ a(z_n) \right) \right] \quad R_{N,(\epsilon,\eta)}^{(\text{SSM})}(\mathcal{F};p_0) \equiv \eta R_{N,\epsilon}^{(\text{Monge})}(\mathcal{F};p_0) + (1-\eta) \sum_{y \in Y} R_{N,\epsilon}^{(\text{Monge})}(\mathcal{F};p_{0X}\delta_y)$ 

 $z_1, \cdots, z_N \sim p_0$ : i.i.d. samples from  $p_0$   $c(\cdot, \cdot)$ : a valid transportation cost  $\sigma \in \{-1, +1\}^N$ : independent Rademacher random variables  $\delta_y$ : the Dirac-delta function over y

### Experiments

We compare the robustness to two kinds of adversarial attacks.

To make a computationally efficient algorithm, we test F-SSDRL that computes adversarial sample only for the *likeliest* y







Figure 1: Robustness to adversarial test examples computed by  $\sup_{x} Loss((x, y^0); \theta) - \gamma ||x - x^0||_2^2$ 



Figure 2: Robustness to adversarial test examples computed by projected gradient method,  $x^{t+1} = \arg\min_{x \in \{x \mid ||x-x^0||_2 \le \epsilon_{eval}\}} ||x-x^t||$