

Model Performance And Fit - 2

One should look for what is and not what he thinks should be. (Albert Einstein)

Module completion checklist

Objective	Complete
Implement a custom neural network for different batch sizes	
Evaluate the neural network for different number of epochs	

Goal for this section

- We will again work with the credit_card_data dataset
- We will build a model and then compare the loss and accuracy of the validation data for different levels of epochs and batch sizes

Wide and deep neural networks

- The architecture of a neural network is defined by 2 parameters: width and depth
 - Depth is measured by the number of layers in the neural network, excluding the input layer
 - Width is measured by the maximal number of nodes present in a layer of a neural network
- In general, as we increase the width and the depth in a model, the accuracy increases, but so does the complexity
- Choosing the depth and width of the layers in a neural network is a trial-and-error process highly dependent on the data we have in hand, but having a single hidden layer is always a good start
- Note: Remember that if we try to increase the width and depth of a neural network beyond a certain point, the model might overfit!

Define and compile a sequential model

 Let's create a convenience function to define and compile the model with an input layer, two hidden layers, and an output layer

Fit the model

- We will now fit the model with **different batch sizes** and compare how the validation loss and the accuracy look by comparing their results
- We will keep the number of epochs the same for every experiment

Default batch size

• The default batch size while we fit the model is 32, and hence we need not specify the parameter explicitly

Small batch size

• Let's set the batch size to 8

Large batch size

Now, let's set the batch size as 512

Visualize results for various batch sizes

 Let's create a dataframe with the loss and accuracy for training and validation data along with their epoch and batch size

```
batch_sizes = []

for exp, result in zip([bt_default, bt_small, bt_large], ["32", "8", "512"]):

    df = pd.DataFrame.from_dict(exp.history)
    df['epoch'] = df.index.values
    df['Batch Size'] = result

    batch_sizes.append(df)

df_summary = pd.concat(batch_sizes)
    df_summary['Batch Size'] = df_summary['Batch Size'].astype('str')
```

Visualize results for various batch sizes (cont'd)

```
sns.lineplot(x='epoch', y='val_accuracy',
    hue='Batch Size', data=df_summary)
```


Visualize results for various batch sizes (cont'd)

```
sns.lineplot(x='epoch', y='val_loss',
    hue='Batch Size', data=df_summary)
```


 We obtain the best results when the batch size is set to the default 32, and for small batch size is set to 8

Module completion checklist

Objective	Complete
Implement a custom neural network for different batch sizes	
Evaluate the neural network for different number of epochs	

Using a different number of epochs

- Now, we will train the model using different number of epochs and compare our results
- We will keep the batch size and the learning rate at their default values in this analysis

Higher number of epochs

 We initially run the model by setting the number of epochs as 150 with the default batch_size

Medium number of epochs

Let's set the epochs parameter to 100 and fit the model

15

Lower number of epochs

We set the number of epochs as 25 and fit the model

Visualize results for epoch sizes

 Let's create a dataframe with the loss and accuracy for training and validation data along with their corresponding epoch and the number of epochs they have been trained on

```
epoch_sizes = []

for exp, result in zip([ep_high, ep_medium, ep_low], ["150", "100", "25"]):

    df = pd.DataFrame.from_dict(exp.history)
    df['epoch'] = df.index.values
    df['Number of epochs'] = result

    epoch_sizes.append(df)

df_epochs = pd.concat(epoch_sizes)
df_epochs['Number of epochs'] = df_epochs['Number of epochs'].astype('str')
```

Visualize results for epoch sizes (cont'd)

sns.lineplot(x='epoch', y='val_accuracy', hue='Number of epochs', data=df_epochs)

Visualize results for epoch sizes (cont'd)

sns.lineplot(x='epoch', y='val_loss', hue='Number of epochs', data=df_epochs)

• The validation loss and accuracy obtained when the epochs are set to 150 are close to the values obtained when the number of epochs are set to 100

Knowledge check

Exercise

You are now ready to try tasks 8-12 in the Exercise for this topic

Module completion checklist

Objective	Complete
Implement a custom neural network for different batch sizes	
Evaluate the neural network for different number of epochs	

Congratulations on completing this module!

