WLAN Interface Management on Mobile Devices

Hossein Falaki

Master's Thesis

July 25, 2008

Motivation

Smartphones are proliferating

- Multiple Network Interfaces:
 - Bluetooth
 - EDGE or 3G
 - WiFi

Motivation

Advantages of WiFi

- Higher bandwidth
- Good energy trade-off
- Free

Problem

- WLAN interfaces consume considerable energy in idle mode
- WLAN scanning is highly energy consuming
- To discover a WiFi opportunity the WLAN interface should be "up" and "scanning"

What is a good strategy for turning the WLAN NIC on and scanning?

WLAN Scanning

- Passive Scanning:
 - The interface listens for periodic AP beacons on each channel
- Active Scanning:
 - On each channel the interface sends a broadcast probe request, and waits for probe responses

Thesis

- For background/delay-tolerant applications, static scanning works better than expected due to the power-law distribution.
- Context hints can be used through a cache to help interface management.
- User-initiated WLAN scans do not appear to incur significant costs.

Outline

- Modeling
- Heuristic Strategies
- Measurements
- Evaluation
- Conclusions

University of Waterloo

Definitions

- I. Medium
- 2. Availability block
- 3. Interface states
- 4. Schedule, T-connected schedule
- 5. Strategy

Optimal Strategy

- Optimal T-Connected schedule
- Optimal strategy
- Future knowledge assumption

Greedy

If blocks are "far apart," the greedy algorithm finds the optimal schedule:

- Sort the blocks according to length
- Start filling the schedule with the longest blocks
- The NIC is off between blocks

Dynamic Programming

If some blocks are "too close," it is better not to turn off the NIC.

Outline

- Modeling
- Heuristic Strategies
- Measurements
- Evaluation
- Conclusions

Heuristic Strategies

- Naive
- Static
- Exponential Back-off
- Bounded Exponential Back-off

Naive Scanning

$$Scan_{Naive} \sim \frac{1}{t} \times \lambda \times 3600 \times 24$$

- Considerable number of scans
- Almost zero missed opportunity

Static Scanning

Exponential Back-off

$$P_0 = \mu$$

$$P_k = \lambda^k \mu$$

$$E[Missed_{EB}] = \sum_{i=1}^{m} P_i \times Missed_{static}(2^i)$$

$$E[Scan] = \sum_{i=1}^{m} i \times P_i$$
$$= \sum_{i=1}^{m} \mu i \lambda^i$$

$$E[d] = \sum_{i=1}^{\infty} P_i \times d_0 2^i$$

$$= d_0 \mu \sum_{i=1}^{\infty} (2\lambda)^i$$

$$0 \qquad \qquad \lambda \qquad \qquad \lambda \qquad \qquad \lambda \qquad \qquad \lambda$$

$$0 \qquad \qquad \mu \qquad \qquad 0 \qquad \qquad \lambda \qquad \qquad \lambda \qquad \qquad \lambda$$

If availability rate is "too low," the number of backoffs should be bounded.

Outline

- Modeling
- Heuristic Strategies
- Measurements
- Evaluation
- Conclusions

Measurements

University of Waterloo

Wireless Measurements

- Six iPhones scanned WiFi and GSM every minute for five weeks
- Similar to the Rice measurement (10 WM), with fewer missed samples

Waterloo Dataset

Number of GSM and WiFi IDs visited by Waterloo users

3070 GSM and 5709 WiFi unique IDs

Avg. availability rate: 0.62

Avg. missing samples/day: 66

Rice Dataset

Number of GSM and WiFi IDs visited by Rice users

2806 GSM and 3907 WiFi unique IDs

Avg. availability rate: 0.48

Avg. missing samples/day: 147

Block Length

Waterloo
Histogram of the length of the availability blocks

Block Length

Rice
Histogram of the length of the availability blocks

User Measurements

 Two BlackBerrys logged user interaction times for about three weeks

Histogram of the length of user activity times Frequency Length (seconds)

Inactivity

Outline

- Modeling
- Heuristic Strategies
- Measurements
- Evaluation
- Conclusions

Evaluations

- Performance metrics:
 - Number of scans
 - Missed opportunity
- Configurable parameters:
 - Scanning interval
 - Maximum back-off

Comparing Strategies

Different Strategies

Number of Scans

Missed Opportunity

Simulation Results

- Static scanning performs well
 - Low missed opportunity
 - Consistently low number of scans
- Exponential Back-off performs fewer scans for some users, but with very high missed opportunity

Discussion

Waterloo

Rank-size CDF of availability blocks

Discussion

Tuning Static Scanning

Sample Waterloo user:

Tuning Static Scanning 2

Caching Scan Results

Interactive Processes

Outline

- Modeling
- Heuristic Strategies
- Measurements
- Evaluation
- Conclusions

Conclusions

- Separate delay-tolerant and interactive processes
- For delay-tolerant applications use static scanning with the largest possible scanning interval
- For interactive processes use an aggressive scanning strategy
- Use context hints to avoid unnecessary scans

Future Work

- Considering usability of access points
- Improving caching
- Making interactive scans smarter
- Management of multiple NICs
- Collaborative scheduling

WLAN Interface Management on Mobile Devices

Hossein Falaki

Master's Thesis

July 25, 2008

