

MA2401 Geometri Vår 2022

Norges teknisk—naturvitenskapelige universitet

Løsningsforslag — Øving 3

Institutt for matematiske fag

3.4.1 La A, B, C være tre punkter som ikke ligger på en linje. Vi skal finne et punkte D som ligger i det indre av $\angle BAC$ slik at $\mu(\angle BAD) = \mu(\angle DAC)$. La H_C være halvplanet bestemt av linje \overrightarrow{AB} og punktet C.

Av tredje del av gradskivepostulatet (aksiom 3.4.1) finnes det en unik stråle \overrightarrow{AD} slik at D ligger i H_C og $\mu(\angle BAD) = \frac{\mu(\angle BAC)}{2}$. Siden $\mu(\angle BAD) < \mu(\angle BAC)$, gir teorem 3.4.5 at \overrightarrow{AD} ligger mellom strålene \overrightarrow{AB} og \overrightarrow{AC} , som per definisjon betyr at D ligger i det indre av $\angle BAC$. Av del 4 av gradskivepostulatet (vinkeladdisjonspostulatet) er

$$\mu(\angle BAC) = \mu(\angle BAD) + \mu(\angle DAC),$$

og siden $\mu(\angle BAD) = \frac{\mu(\angle BAC)}{2}$ per konstruksjon må $\mu(\angle BAD) = \mu(\angle DAC) = \frac{\mu(\angle BAC)}{2}$.

Siden strålen \overrightarrow{AD} er unik av del tre av gradskivepostulatet, har vi også vist unikhetsdelen av utsagnet.

 $\boxed{\mathbf{3.4.2}}$ **a)** Vi må vise at f er injektiv (en-til-en) og surjektiv $(p\mathring{a})$.

Surjektiv: La $c \in (0, 180)$ være gitt. Av del tre av gradskivepostulatet finnes en stråle \overrightarrow{AE} slik at $E \in H$ og $\mu(\angle BAE) = c$. Med andre ord er $f(\angle BAE) = c$, som viser at f er surjektiv.

Injektiv: Anta at $\mu(\angle BAD) = \mu(\angle BAE)$ for $\angle BAD$, $\angle BAE \in \mathcal{A}$. For et hvert tall $r \in (0, 180)$ sier del tre av gradskivepostulatet at det finnes en unik stråle \overrightarrow{AE} alik at $\mu(\angle BAE) = r$, og unikhetsdelen gir oss at $\overrightarrow{AE} = \overrightarrow{AD}$ ettersom $\mu(\angle BAD) = \mu(\angle BAE)$. Da vi har definert en vinkel som unionen av to stråler får vi at

$$\angle BAE = \overrightarrow{AB} \cup \overrightarrow{AE} = \overrightarrow{AB} \cup \overrightarrow{AD} = \angle BAD,$$

som viser at f er injektiv.

- b) Av teorem 3.4.5 vet vi at \overrightarrow{AF} ligger mellom strålene \overrightarrow{AB} og \overrightarrow{AE} hvis og bare hvis $\mu(\angle BAF) < \mu(\angle BAE)$. Men vi har definert $f(\angle BAF) = \mu(\angle BAF)$ og $f(\angle BAE) = \mu(\angle BAE)$. Derfor har vi $\mu(\angle BAF) < \mu(\angle BAE)$ hvis og bare hvis $f(\angle BAF) < f(\angle BAE)$, som beviser utsagnet. Vi burde også egentlig argumentere for at $f(\angle BAF) > 0$, men dette følger direkte fra gradskivepostulatet.
- 3.5.1 Det at $m \perp l$ betyr per definisjon at det finnes et punkt A som ligger på både m og l, og to punkter $B \in l$, $C \in m$ slik at $\mu(\angle BAC) = 90$. Ved hjelp av linjalpostulatet

kan vi finne et punkt D på l og et punkt E PÅ m slik at D*A*B og E*A*C. Da er \overrightarrow{AB} og \overrightarrow{AD} motsatte stråler, så vi kan anvende teorem 3.5.5 som gir oss at

$$\mu(\angle BAC) + \mu(\angle CAD) = 180.$$

Siden vi vet at $\mu(\angle BAC) = 90$, må vi også ha $\mu(\angle CAD) = 90$. Helt tilsvarende kan man vise at $\mu(\angle DAE) = \mu(\angle EAB) = 90$, slik at de fire strålene \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} og \overrightarrow{AE} står vinkelrett på hverandre.

3.5.2 Vi viser først eksistens, og så unikhet.

Eksistens: La l være en linje og A et punkt på l. Vi velger et annet punkt B på l, slik at $\overrightarrow{AB} = l$. Fra planseparasjonsaksiomet deler linjen planet inn i to halvplan H_1 og H_2 – vi velger å bruke H_1 her, men kunne like gjerne brukt H_2 . Fra gradskivepostulatet finnes det for etthvert reellt tall r mellom 0 og 180 en unik stråle \overrightarrow{AE} slik at $E \in H_1$ og $\mu(\angle BAE) = r$. Ved å velge r = 90 får vi at linjen \overrightarrow{AE} er perpendikulær på linjen \overrightarrow{AB} . Altså eksisterer det en linje m slik at $A \in m$ og $m \perp l$.

Unikhet: Anta at vi har to linjer m og m' slik at de begge er perpendikulære til l og at punktet A ligger på både m og m'. Fra definisjonen av å være perpendikulær, finnes det to punkter B og B' på l, et punkt $C \in m$ og et punkt $C' \in m'$, slik at

- 1) $\mu(\angle BAC) = 90$
- 2) $\mu(\angle B'AC') = 90.$

Vi har da to muligheter. Linjen l deler ved planseparasjonsaksiomet planet inn i to halvplan H_1 og H_2 , så enten ligger punktene C og C' i samme halvplan, eller så ligger de i ulike halvplan. Dersom de ligger i samme halvplan, for eksempel H_1 , vet vi fra gradskivepostulatet at strålen \overrightarrow{AC} som danner vinkelen $\mu(\angle BAC)$ er unik. Dermed må vi ha $\overrightarrow{AC} = \overrightarrow{AC'}$, som vil si at linjene m og m' deler to punkter – ergo er de like. Dersom C og C' ligger i ulike halvplan er strålene \overrightarrow{AC} og $\overrightarrow{AC'}$ motsatte stråler. Dermed er $m = \overrightarrow{AC} = \overrightarrow{AC'} = m'$, som viser at linjene er de samme.

Altså finnes det for enhver linje l og et punkt A på l, en unik linje m slik at $A \in m$ og $l \perp m$.

- 3.5.3 La A og B være ulike punkt. Vi må vise at det finnes en unik linje m slik at midtpunktet M av \overline{AB} ligger på m og $\overline{AB} \perp m$. Fra teorem 3.2.22 vet vi at midtpunktet M finnes og er unikt. Fra forrige oppgave vet vi at det finnes en unik linje m som går gjennom M og er perpendikulær til \overline{AB} . Denne linja tilfredsstiller alle kravene våre, og må være unik fordi både midtpunktet og linjen er det.
- 3.5.4 La $\angle ABC$, $\angle DEF$, $\angle GHI$ og $\angle JKL$ være fire vinkler slik at
 - 1) $\angle ABC$ og $\angle DEF$ er supplementærvinkler
 - 2) $\angle GHI$ og $\angle JKL$ er supplementærvinkler
 - 3) $\angle DEF \cong \angle JKL$.

Vi må vise at $\angle ABC \cong \angle GHI$.

Fra punkt 1) og 2) vet vi at $\mu(\angle ABC) + \mu(\angle DEF) = 180$ og $\mu(\angle GHI) + \mu(\angle JKL) = 180$. Fra punkt 3) vet vi at $\mu(\angle DEF) = \mu(\angle JKL)$. Vi har dermed

$$\mu(\angle ABC) + \mu(\angle DEF) = 180$$
$$= \mu(\angle GHI) + \mu(\angle JKL)$$
$$= \mu(\angle GHI) + \mu(\angle DEF)$$

Ved å trekke fra $\mu(\angle DEF)$ i ligningen står vi igjen med $\angle ABC \cong \angle GHI$, som var det vi ville vise.

- 3.5.5 Vi ønsker å vise at dersom to vinkler $\angle BAC$ og $\angle DAE$ er slik at
 - 1) \overrightarrow{AB} og \overrightarrow{AE} er motsatte stråler,
 - 2) \overrightarrow{AC} og \overrightarrow{AD} er motsatte stråler,

så er $\mu(\angle BAC) = \mu(\angle DAE)$.

Siden \overrightarrow{AB} og \overrightarrow{AE} er motsatte stråler, gir teorem 3.5.5 oss at $\mu(\angle BAC) + \mu(\angle CAE) = 180$, altså at de er supplementære. Helt tilsvarende får vi at $\mu(\angle CAE) + \mu(\angle DAE) = 180$. Ved å trekke den andre likningen fra den første får vi

$$\mu(\angle BAC) - \mu(\angle DAE) = 0,$$

som gir oss det vi ønsket: $\mu(\angle BAC) = \mu(\angle DAE)$.

3.5.6 Fra linjalpostulatet har vi et punkt F på \overrightarrow{DB} slik at F*B*D. Siden \overrightarrow{BD} og \overrightarrow{BF} er motsatte stråler, kan vi bruke teorem 3.5.13 til å konkludere med at $\mu(\angle DBC) = \mu(\angle ABF)$. Siden vi antar at $\mu(\angle DBC) = \mu(\angle ABE)$, har vi

$$\mu(\angle ABE) = \mu(\angle ABF).$$

Fra konstruksjonen vår vet vi at E og F ligger op samme side av \overrightarrow{AB} . Resultatet følger nå fra unikhetsdelen av punkt 3) i gradskivepostulatet, altså: siden $\mu(\angle ABE) = \mu(\angle ABF)$ og E og F ligger på samme side av \overrightarrow{AB} , må $\overrightarrow{BE} = \overrightarrow{BF}$. Siden \overrightarrow{BF} og \overrightarrow{BD} er motsatte stråler får vi at også \overrightarrow{BD} og \overrightarrow{BE} er motsatte stråler, som var det vi skulle vise.