

AD-A136 204 SCIENTIFIC REPORT ON THE INTERNATIONAL CONFERENCE ON
METASTABLE AND MODUL... (U) UNIVERSITY OF SOUTHERN
CALIFORNIA LOS ANGELES DEPT OF MATERIALS A MADHUKAR
UNCLASSIFIED 26 OCT 83 AFOSR-TR-83-1075 AFOSR-82-0211 F/G 20/12

1/1

NL

END
DATE
FILED
1 - 84
DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFOSR-TR- 83-1075	2. GOVT ACCESSION NO. AD-A136204	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) International Conference on Metastable and Modulated Semiconductor Structures	5. TYPE OF REPORT & PERIOD COVERED (Final) Dec. 6-10, 1982	
7. AUTHOR(s) Anupam Madhukar	6. PERFORMING ORG. REPORT NUMBER AFOSR-82-0211	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Dept. of Materials Science, VHE 602 University of Southern California Los Angeles, CA 90089-0241	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 2806B1	
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research Bolling AFB, Washington, DC 20332	12. REPORT DATE Oct. 26, 1983	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 27	
16. DISTRIBUTION STATEMENT (of this Report) Unlimited	15. SECURITY CLASS. (of this report) Unclassified	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) S DTIC ELECTED DEC 22 1983 A		
18. SUPPLEMENTARY NOTES Conference proceedings published in Journal of Vacuum Science and Technology, Proceedings, Editors F. J. Grunthaner and A. Madhukar, Vol. <u>B1</u> (1983).		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Metastable Semiconductor Phases, Modulated Semiconductor Structures, MBE, MO-CVD, rf-Sputtering, Ultra Thin Films, Heterojunctions, Multiple Quantum Wells, High Speed/High Frequency Devices		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A brief summary of the highlights of the International Conference on Metastable and Modulated Semiconductor Structures is provided. The report emphasizes (i) the theme of the conference and the systematic coverage of related topics (ii) a technical discussion of the papers presented, their inter-relationship and future prospects.		

**SCIENTIFIC REPORT ON THE INTERNATIONAL CONFERENCE ON
METASTABLE AND MODULATED SEMICONDUCTOR STRUCTURES (MMSS)**

The International MMSS Conference was held from December 6-10, 1982 at the Huntington-Sheraton Hotel in Pasadena, California. It was organized by an international committee headed by the co-chairmen, Dr. A. Madhukar of the University of Southern California, Los Angeles and Dr. F. J. Grunthaner of the Jet Propulsion Laboratory, Pasadena.

The objective of the conference was to bring together practitioners of a wide variety of techniques for the fabrication, characterization and study of the newly emerging field of metastable and modulated semiconductor phases and structures, with the express purpose of promoting cross fertilization of ideas. It was felt that this aim was best achieved by restricting the conference size to between 100 and 125 participants, structuring a program with heavy emphasis on theme setting invited talks, and providing for ample time for discussions, both during and after the sessions. To enhance this aim, only morning and evening sessions were held. A new format employed to further this objective was to require all invited and contributed papers to be also presented as posters which were displayed throughout the conference. The feedback from the participants has indicated that this format was highly appreciated and found to be remarkably effective in promoting critical discussions.

The scientific content of the program was divided into several categories and chronologically arranged to emphasize a systematic development of the subject and the central issues. After an opening session containing two conference theme talks by Dr. Leo Esaki and Prof. P. Duwez on the subject of modulated semiconductor structures and creation of metastable phases, respectively, the regular sessions began with fabrication techniques for metastable phases followed by the new techniques evolving for fabrication of modulated semiconductor structures. These sessions emphasized such techniques as rf-sputtering, metal-organic chemical vapour deposition (MO-CVD), molecular beam epitaxy (MBE), liquid phase epitaxy (LPE), and their new and novel variations. This was followed by two sessions focussing upon the growth mechanisms, and the particular role of growth kinetics and thermodynamics in offering possible ways of creating new and novel metastable phases and structures. Although the tetrahedrally bonded semiconductor combinations found a heavy representation reflecting the large activity around the globe, special place was given to a discussion of the even newer class of metastable systems and compositionally modulated structures involving lattice matched and non-lattice matched semiconductor-dielectric combinations (e.g. Si/(Ca,Sr)F₂(100)) and silicon-transition metal silicide combinations. Finally, the subject of doping-modulated systems (the so called nipi structures) and the creation of metastable doping

profiles via Q-switched laser treatment and the kinetics of such doping processes was critically evaluated.

The conference then proceeded to an examination of the variety of characterization techniques, starting with structural characterization (such as electron microscopy, x-ray diffraction, Rutherford back scattering) with a heavy emphasis on the use of these techniques and their requirements for study of thin (submicron) layers and their interfacial characteristics. Next, the subject of chemical characterization (via techniques such as x-ray photoemission, Auger electron spectroscopy, etc.) was critically examined, before moving on to optical characterization via techniques such as spectroscopic ellipsometry and photoluminescence.

A new and important feature of these sessions on the characterization techniques was the heavy emphasis on the relationship between the information so obtained and the growth mechanism and growth kinetics

The conference next moved on to a discussion of the electronic consequences of the growth mechanism and the resulting structural and chemical characteristics of the systems. The electronic structure of the strained layer superlattices was emphasized. Next, the transport, optical and magneto-optical properties of the quasi-two-dimensionally confined space charge layers in single interface heterojunctions, isolated quantum wells and superlattice structures was discussed. These sessions included some basic aspects of such space charge layer properties, as well as the more applied aspects of relevance to a variety of high speed and/or high frequency devices. Transport under high d.c. fields and the associated real-space charge transfer and hot electron effects reflect an example of such topics.

The final session of the conference focussed on the exploitation of such structures, their characteristics and the properties of the space charge layers realized in them for a variety of new and novel devices. Emphasis was laid on, for example, the high electron mobility transistor (HEMT) being extensively investigated in the GaAs/AlGaAs system. Considerable discussion was focussed on the high-speed, high-frequency device possibilities. Yet another example was manifested in the discussion of the multilayer avalanche diodes and infrared detectors based upon electron emission from multiple quantum well structures.

The specific highlights of the papers presented at the conference, their interrelationship and the future prospects were summarized in the attached paper written by the co-chairmen for this express purpose. For such details, the reader is thus referred to F. J. Grunthaner and A. Madhukar, Proceedings of the International MMSS Conference, J. Vac. Sci. Tech. B1, 462 (1983).

		Availability Codes	
Dist		Avail and/or Special	
H			

Growth, characterization, and properties of metastable and modulated semiconductor structures: Prospects for future studies

F. J. Grunthaner

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91103

A. Madhukar

Departments of Materials Science & Physics, University of Southern California, Los Angeles, California 90089-0241

(Received 23 February 1983; accepted 7 March 1983)

The general field of preparation and study of metastable and modulated semiconductor structures has progressed rapidly in recent years. This short overview offers an assessment of the progress and current understanding in the areas of fabrication, characterization, and utilization of these new material systems. The discussion includes the more prominent growth techniques, theoretical and experimental analysis of growth kinetics, and an overview of structural, chemical, electronic, and optical characterization. The probable application of these structures for the technological development of new device structures and concepts is considered. The discussion particularly emphasizes the prospects for future studies in view of the specific current understanding.

PACS numbers: 64.60.My, 81.20. - n, 68.20. + t, 72.20. - i

I. INTRODUCTION

The creation and study of metastable and modulated semiconductor structures is a relatively new subject which has been motivated by the needs of semiconductor technology and has witnessed rapid increase in effort over the past few years. The scientific community involved in these efforts represents an unusual breadth of particular specialties and interests consistent with the interdisciplinary nature of the problem. This community includes the disciplines of materials science and crystal growth, surface scientists, experts on materials characterization through a variety of electrical, optical, and electron spectroscopic techniques, theoretical and experimental solid state physicist, and device physicists and engineers who provide the technological driving force for the collective effort. In the following, we have attempted to review some of the key scientific and technological aspects of the creation, characterization, understanding and utilization of these new material systems. Our discussion first focuses on the general notion of metastability and modulated structures. We then provide a comparative discussion of the more prominent techniques being employed for the synthesis of such materials and structures. This is followed by theoretical and experimental observations on growth mechanisms, and structural, chemical, electronic, and optical characterization. Finally, we consider the implications of these materials for the technological development of new device structures and concepts. The emphasis here is on the basic ideas exemplified in certain specific material systems investigated to date, rather than the material systems themselves. Consequently, omission of reference to the variety of specific systems and studies is not a reflection of their lack of importance for the specific purpose for which such studies were, and may continue to be, made.

The International Conference on Metastable and Modulated Semiconductor Structures (MMSS) placed a heavy em-

phasis on what we believe to be the three pressing issues relating to metastable and single or multilayered semiconductor structures. These are (i) the dynamics and kinetics of the growth and growth mechanisms of metastable single and multi-interface semiconductor structures; (ii) their dependence upon the growth parameters and conditions, particularly for growth techniques involving or offering far-from-equilibrium conditions for realization of metastable phases, and (iii) correlation of (i) and (ii) with the properties of the resulting system.

Traditionally the term phase (within the context of solid state) has come to represent a state characterized by its composition and structure. The external conditions such as temperature, pressure, concentration, etc., define the regime of thermodynamic equilibrium conditions within which the phase is said to be stable. Away from such a regime, the phase becomes "unstable" and will transform to the most favorable "stable" phase accessible under the given conditions. If this rate of transformation is very slow, the parent phase is referred to as being metastable. Clearly then, the conditions of metastability are inherently tied to the kinetics of the system under prescribed conditions, rather than the thermodynamics. Viewed from a system-free energy-configuration coordinate-diagram point of view, the significant quantity is thus the activation barrier for transformation from one phase to another, rather than the energy difference of the two. Generally, low mobilities of the species involved in the system and a high activation barrier for transformation to the stable phase (under the given conditions) are needed for stabilization of the metastable phase. The synthesis of metastable phase(s) is thus, by definition, an attempt to create a phase outside the region of the thermodynamic stability embodied in conventional phase diagrams. For growth from the vapor phase, stabilization of a metastable phase generally requires high supersaturation (i.e., far from thermodynamic

equilibrium conditions). When more than one metastable phase is possible, the one with the highest nucleation frequency under the given growth condition will form first. The control of the kinetics of growth is thus of central importance to creation of metastable phases.

The modulated semiconductor structures¹ may be of two kinds—one in which alternating thin films of two or more materials are sequentially deposited along a prechosen growth direction, and another in which alternate *n* and *p* doping may be introduced within the same material. The former may be referred to as compositional modulation and the latter as doping modulation. While the former leads to modification of the electronic states in the wave vector space (*k* space), the latter modulates the electronic states in real space. Many, if not all, of the modulated structures of both kinds involve some aspect of metastability, and often in a significant way.

II. SYNTHESIS TECHNIQUES

One of the more significant developments in recent years is the exploitation of the growth kinetics, often under far-from-equilibrium conditions, for the creation of new metastable phases and synthesis of new single or multi-interface device structures. The most promising growth methods are variants of vapor phase epitaxy since this approach is consistent with lower growth temperatures and far-from-equilibrium conditions. Molecular beam epitaxy (MBE),² metal-organic chemical vapor deposition (MO-CVD),³ and rf sputter deposition⁴ each differ substantially in experimental methodology and in the dynamics which characterize the vapor/solid growth interface, yet the quality of structures fabricated using these techniques are surprisingly similar. This similarity is intriguing for both scientific reasons and pragmatic considerations, such as the differences in the required capital investment for these techniques. Although MBE is often cited as the method of choice for the fabrication of multilayer structures, the characteristics of MO-CVD grown single films have been essentially identical⁵ to those grown by MBE. High quality multilayer structures have also been grown⁵⁻⁷ by MO-CVD. While in comparison to MBE the technique of MO-CVD offers higher growth rates, additional degree of freedom afforded by carrier gas interactions, and a greater ease of handling phosphorus chemistry, the interfacial width for both A on B and B on A growth seems to be greater than that achieved in MBE. Moreover, the opportunities for "in situ" monitoring of the interfacial growth front appear to be comparatively limited. The good quality of films achieved by rf sputter deposition methods and their sensitivity to the ion and electron energies involved in the experiment are quite suggestive of the usefulness of external manipulation of the growth interface in other techniques such as MBE.

Many of the key opportunities intrinsic to the MBE technique reduce to the low growth temperatures and rates employed along with the accessibility of the growth interface for extensive study and characterization using "in situ" surface sensitive techniques such as reflection high energy electron diffraction,^{8,9} electron and photon stimulated electron spectroscopies,^{10,11} and photon spectroscopies (e.g., spectro-

scopic ellipsometry¹²). The ability to carry out unambiguous *in situ* characterization studies, preferably during growth, is of central importance for understanding the nature and relative significance of the kinetic processes which control the structural and chemical nature of the grown system. The interrelationship of the growth kinetics and the structural and chemical nature of the dynamic growth front, the choice of substrate and source materials (defining the vapor phase species), growth temperature, and other growth conditions will become apparent in our discussion of such issues in the later sections.

Recently, MBE techniques have been extended to the growth of semiconductor-insulator and semiconductor-metal (or semimetal) single and multiple interface structures.¹³⁻¹⁶ This is a significant development of potential importance to a variety of device structures and architectures.

Future work will undoubtedly focus on a number of issues noted above. There are, however, efforts, generally at too early a stage to have been represented at this MMSS conference, which are breaking new ground and introducing new ideas for fabrication of metastable and modulated semiconductor structures. For instance, the use of appropriate laser beams for controlled modification of surface kinetics on a local spatial scale to effect fabrication of metastable epitaxial thin film phases is being attempted.¹⁷ This naturally brings in an added dimension, offering opportunities for both the fundamental theoretical and experimental studies of external beam-solid surface interactions in the context of crystal growth, as well as the development of experimental techniques to achieve the desired objective.

III. METASTABLE FILMS

In this section we provide a brief account of the two types of metastable epitaxial thin films realized to date. For simple alloy films, the significance of the kinetics of growth are amply reflected in the successful creation of metastable alloy phases of thermodynamically immiscible systems such as $(\text{GaAs})_{1-x}\text{Ge}_{2x}$ and $(\text{InSb})_{1-x}\text{Bi}_{2x}$ via rf sputtering.⁴ Specific kinetic limitations are often operative in different techniques for synthesis of the same system as exemplified by the difficulties encountered with segregation of Bi in the MBE growth¹³ of $(\text{InSb})_{1-x}\text{Bi}_{2x}$. Another aspect of metastability is manifested in the epitaxial strain induced stabilization of structural phases such as the realization of the semiconducting α -Sn phase in thin film form on InSb(100) and CdTe(100) substrates.¹³ Epitaxy induced stabilization of particular phases has also been reported for liquid phase epitaxial growth.¹⁸ Another relatively new development¹³ is the fabrication of metastable fluoride alloy thin films at compositions inaccessible to normal near thermodynamic equilibrium crystal growth techniques. This offers the possibility of fabricating and studying dielectric films nearly lattice matched to group IV and several III-V semiconductors and eventually even fabricating modulated structures of such component systems. Further work on these systems and the usefulness of these basic ideas for other material systems can be expected in the very near future.

The MBE growth of an $\text{Al}_x\text{Ga}_{1-x}\text{As}$ alloy film on (110)GaAs has revealed¹⁹ the unexpected occurrence of qua-

siperiodic fluctuation in the Al concentration along the growth direction, possibly corresponding to formation of a kinetically controlled immiscible metastable region—one not found in LPE growth. Much further work on this system needs to be carried out for different growth conditions to provide a meaningful framework within which some basic and fundamental aspects of the surface orientation dependent kinetics and growth of compound semiconductor can be examined.

IV. MODULATED STRUCTURES

Compositionally modulated structures have, to date, been realized with semiconductor-semiconductor, semiconductor-dielectric, and semiconductor-semimetal combinations. Prominent examples of good quality systems in these categories are GaAs-AlGaAs(100),² InAs-GaSb(100),² Ge-GaAs(100),^{20,21} and Ge-GaAs(110),^{20,21} Si/(Ca, Sr)F₂(100),¹⁴ Si/(Ca, Sr)F₂(111),¹⁴ CdTe-HgTe(100),²² and Si/(Co, Ni)Si₂(111).¹⁴ In addition, compositionally modulated structures involving three material components have recently been realized via MBE growth of InAs-GaSb-AlSb(100) system. The most extensively investigated system at present appears to be the MO-CVD and MBE grown GaAs-AlGaAs(100) system. It does not exhibit the compositional fluctuation noted in the previous section for the [110] MBE growth. The interfacial quality of the MBE grown [100] GaAs-AlGaAs system, however, does show sensitivity to several growth parameters as well as to the background pressures of contaminants such as oxygen.¹⁹ The observed dependence of the interface roughness on the growth parameters²⁴ (e.g., substrate temperature), if intrinsic, emphasizes the need for and an opportunity to seek a deeper understanding of the role of kinetics in growth from the vapor phase in general, and MBE growth in particular. We will further comment on this issue in the next section. The deposition of Ge on GaAs(100) and (110) surfaces has revealed the occurrence of replacement reactions involving exchange between Ge and As, once the Ge coverage exceeds the surface As concentration.^{20,25} This results in the formation of the GeAs_x compound at the surface. On the other hand, such replacement reactions are not observed in the deposition of GaAs on Ge substrates.

The semiconductor-semimetal form of modulated structures involving CdTe-HgTe have very recently been realized²² via MBE. This is a significant step for this material system of much potential use for infrared device technology, even though much characterization work still needs to be carried out. Undoubtedly this work will be vigorously pursued by several investigators. Finally, realization¹⁴ of epitaxially grown modulated structures of Si/CoSi₂(111) and Si/NiSi₂(111) of high crystalline quality via MBE opens up a new class of silicon based systems for further investigations.

The synthesis of modulated structures involving semiconductor-dielectric combinations is of considerable significance to a wide variety of problems. Although the technological use of such systems ultimately leading to three-dimensional architecture will require many related developments and thus may not be foreseeable in the immediate future, the successful fabrication¹⁴ of Si/(Ca, Sr)F₂(100) and

Si/(Ca, Sr)F₂(111) is a most significant step in the right direction. This should prove to be an area of intense research interest in the immediate future.

The study of the effect of the degree of substrate-overlayer lattice mismatch on the equilibrium behavior of epitaxially grown films has a long history. Guidelines for equilibrium behavior are provided by the oversimplified theories²⁶ of Frank and van-der Merwe, and others.²⁷ The idea of the accommodation of lattice misfit via homogeneous strain below a certain critical thickness of the overlayer embodied in these theories has been extended to multilayer systems and was exploited nearly a decade ago in the pioneering work²⁸ of Blakeslee and Matthews on the fabrication of GaAs/GaAs_{0.5}P_{0.5} strained layer superlattices via vapor phase transport. Very recently, such strained layer superlattices have been fabricated via MO-CVD⁷ as well as MBE²⁹ and offer a certain useful flexibility in achieving independent control of the lattice constant and the band gap over a range which depends upon the material components involved.³⁰

We conclude this section by noting that the doping superlattices, contained in the original propositions¹ of Esaki's and Tsu, and extensively investigated³¹ theoretically by Dohler, have been realized in GaAs. Such studies in other systems are thus likely to follow suit and we may finally look forward to the emergence of this class of modulated structures.

V. KINETIC ASPECTS OF GROWTH AND DOPING

As observed earlier, the successful growth of high quality metastable and modulated semiconductor structures rests upon control and manipulation of the growth kinetics. Any attempt, however, to discuss this aspect in general terms is unlikely to be fruitful in the present context for it is too rich a subject and, unfortunately, one for which little reliable information is available for almost all systems discussed here. We will consequently attempt to illustrate the role of certain basic kinetic processes via the vehicle of a few specific modulated systems with the hope that their more general significance would be revealed in the process.

A good case to focus on is the [100] growth of GaAs-AlGaAs superlattices. It is found²⁴ that while the interfacial structural quality initially improves with increasing growth temperature up to about 690 °C (thought to be an extrinsic effect related to possibly Al gettering of oxygen), beyond such a temperature the interface roughness increases with further increase in temperature. Evidence for this increasing interface roughness is also found³² in the decreasing mobility found for the AlGaAs deposited on GaAs single heterostructure (the so-called normal structures). The underlying reasons for such behavior require an understanding of the collective effect of a variety of kinetic processes influencing the growth mechanism. Timely developments in this context are the recent molecular dynamics simulations³³ of surface diffusion on the low index planes of a fcc lattice and the Monte Carlo computer simulations³⁴ of the growth of tetrahedrally bonded compound semiconductors along the [100] and [110] directions. Such studies offer considerable hope of revealing the underlying significance and relative importance of a variety of growth parameters and kinetic processes.

in controlling the nature of the interface—at least between relatively well lattice-matched components. The notion of a kinetically controlled interface roughening for growth under far-from-equilibrium conditions has emerged from the Monte Carlo studies.³⁴ Much further work is necessary but can be useful in understanding relevant and unambiguous experimental observations only if further experimental work on the fundamental kinetic parameters such as the sticking coefficients, desorption rates and surface migration rates of relevance to MBE growth conditions is carried out along the lines of investigations^{35–37} for As and Ga on GaAs. Greater emphasis needs to be placed on systematic follow-up work on the differences in the kinetic behavior³⁸ and surface reaction mechanisms³⁹ for different molecular species evidenced in the work^{38,39} on the use of As₂ versus As₄ for growth of GaAs. Availability of accurate information on these issues will enable the molecular dynamics and Monte Carlo computer simulations to provide a greater and more reliable insight into the *collective influence* of the many individual kinetic processes on the nature of growth in both the nucleation and the continuous growth (postnucleation) regimes. The nature of reconstructions and the local behavior at the dynamic growth front should be expected to influence, and in turn be influenced by, the kinetics of epitaxial growth under the variety of growth conditions employed or potentially available. This is a virtually untackled problem. A detailed study of even a single, well specified, test system would therefore serve as a vital focal point for guiding related thinking for other material systems. Such information could be in the form of careful classification of surface structural condition and the attendant chemical conditions as a function of such growth parameters as the substrate temperature, relative and absolute fluxes of the group III and V vapor species and, in the case of alloys, the sensitivity to stoichiometry. The role of the degree of substrate–overlayer lattice mismatch in affecting the dynamics of the growth of single as well as multilayered structure remains *terra incognita*.

The kinetics of doping also remains an important area requiring similar careful and detailed investigations. The dopant segregation effects^{2,3} often found in both MBE and MO-CVD require more detailed study before the relative importance of thermodynamics and kinetics may be unambiguously established, even for specific systems. It is fair to expect that dopant incorporation and segregation effects are intimately connected with the growth mechanism of the host material and the sources employed for the host species as well as the dopant. Thus, the discussion of the preceding paragraphs is pertinent to the kinetics of doping as well. Use of laser annealing can give rise to higher incorporation limits⁴⁰ often by a factor of 10² and reduce segregation effects, at least in certain cases. A recent development in the effort to selectively prepare graded potential barriers is the use of MBE to implement a planar-doping concept.⁴¹ In this doping technique, the barrier consists of a thin interior plane of dopant incorporated in an otherwise intrinsic layer. Symmetric or asymmetric barriers are produced depending on whether or not the thin interior dopant plane is centered within the confining intrinsic layer. The requirements for spatial confinement and electrical activity of dopant in this

technique again stresses the need to understand segregation and incorporation effects and their relationship to the growth mechanism.

VI. CHARACTERIZATION

A comprehensive characterization of these metastable and modulated materials requires study of the structural, chemical, electronic, and optical properties together with a strong interaction between theoretical and experimental perspectives.

Structural characterization methods have traditionally involved x-ray diffraction⁴² and cross-sectional transmission microscopy (TEM).^{19,21,43} These new materials are particularly amenable to study by channeling methods of Rutherford backscattering spectroscopy (RBS)⁴⁴ as well as cathodoluminescence.⁴³ With recent advances in resolution, double crystal x-ray diffractometers can now be used to study variations of structure and lattice constant within the component films of a multilayer system.⁴² Study of the crystal perfection of the resulting structure as a function of differing growth condition and techniques permits correlation of defect densities with the method. TEM and cathodoluminescence studies of GaAlAs/GaAs superlattices have demonstrated⁴³ the existence of interface roughening with increasing temperature discussed earlier, as well as the observation of interfacial gettering of impurities.^{19,45} For a variety of chemical reasons, it is conceivable that surface segregation of impurities to the growth interface could lead to a constant surface contamination layer which would not be buried by homogeneous film growth. The growth of a heterostructure with interfaces between chemically distinct material could provide an interface chemical potential and the possible intermediate environments to reactively trap impurities at the interface. The sequential enhancement of layer morphology in superlattice structures has been demonstrated⁴⁵ and future studies will certainly focus on the interrelationship of impurities and film quality. Ion channeling along different crystalline axis of a solid provides important information on lattice geometry, the nature of defects, and the details of the interfacial structure.⁴⁴ This analysis of InAs–GaSb and Ge–GaAs superlattices has demonstrated the high degree of structural perfection achieved in these materials and has pointed out the existence of unique interfacial structures which appear to develop in response to the chemical nature of the interfacial discontinuity. Amongst the several optical and electrical techniques employed for characterization, photoluminescence and low field Hall mobility are the more common ones. The photoluminescence linewidth at low temperatures is taken to be a measure²⁴ of the interfacial quality but cannot, without detailed theoretical development, separate the contributions from varying degrees of interface roughness that might exist at different interfaces in multilayered structures. Some evidence for such differences in interfacial quality is provided by the Hall mobility measurements³² on normal and inverted GaAs/AlGaAs single interface heterostructures.

The quasi-two-dimensionally confined electronic states of most relevance in single and modulated structures depend upon the change in the crystal potential across the inter-

face(s) involved.⁴⁴ No reliable theory for self-consistently calculating such a change is presently available. Experimental determinations of the equivalent quantity of operational use—the band edge discontinuity—have been undertaken but invariably rely upon either fitting to some optical property (such as absorption)⁴⁷ or involve the independently untested notion⁴⁸ of the core levels following the band bending of the valence and conduction band edges up to the interface. A complication, with significant consequences for the properties of multilayered structures involving ultrathin layers, is the possible difference between the band edge discontinuity of material A deposited on B and vice versa.⁴⁹ If substantiated, this evidence would reflect, once again, the central role played by the growth conditions and mechanisms, rendering the A on B and B on A interfaces sufficiently different in their physical and chemical nature.

Investigations of the single particle and collective properties of the quasi-two-dimensionally confined carriers arising from the band edge discontinuity has, of course, been an area of active investigation for the past decade.⁴⁹ These investigations range from studies of the quantum Hall effect and quantum Wigner crystallization to those focusing on properties with a more immediate relationship to device prospects. The latter offer the natural transition from growth aspects, emphasized heavily at the MMSS conference, to the high speed and/or high frequency devices one looks forward to. Much of the transport work hitherto concerns itself with motion parallel to the interface. Two results involving observation of new phenomena are reported in these proceedings. These are (i) the first observation⁵⁰ of the deHaas-van Alphen effect in a two-dimensionally confined electron gas, and (ii) the observation⁵¹ of the theoretically predicted⁵² acoustic plasmon mode in a multiple quantum well structure. The latter was achieved via the use of inelastic light scattering technique. A variety of studies of the two-dimensional (2-D) electron gas are possible via light scattering techniques and we should expect such work to be carried out further. Improvements in the low field electron mobility in GaAs/n-AlGaAs modulation doped heterostructures (HEMT) continue to be made,⁵³ the liquid helium value now approaching⁵⁴ 2×10^6 V/cm² for the very best MBE samples. Theoretical analysis of the role of modulation doping and spacer layer(s) in single and multi-interface structures in influencing the mobility needs to be carried out with a much greater degree of sophistication than presently available.^{55,56} Only then may one have a meaningful understanding of the inherent limits placed on the low temperature mobility by the remote ion scattering and interface roughness scattering. It is worth noting that though the high field transport studies found little representation at the MMSS conference, it is an area of active work deserving of even greater attention.

Some work on carrier transport normal to the interfaces is beginning to emerge⁵⁷ but the subject offers much potential for interesting characteristics and effects. Tunneling effects and real-space charge-transfer processes⁵⁸ require particular attention, for they can act as both characterization tools for obtaining information on the atomistic nature of the interfaces, as well as physical effects which may be exploited for device applications. The infrared detector studies⁵⁹ based on

electron emission from multiple quantum well structures, and the enhancement of electron impact ionization in multi-layer avalanche photodiodes⁶⁰ are investigations which will undoubtedly be pursued further. Investigations of the dielectric function of multilayered structures has been sorely lacking given their significance for optical devices. Techniques such as spectroscopic ellipsometry¹² offer much potential for generating such information, but will not provide the understanding sought unless progress is made on the theoretical side as well.

Little has so far been unambiguously accomplished in understanding the origin and nature of point defects and their complexes at and near interfaces. This is particularly true of the formation of native point defects and their complexes during far-from-equilibrium growth of thin films and the formation of interfaces, although some preliminary studies have been carried out.⁶¹ Some elementary studies of the confinement effect on bulk shallow impurities and their consequences have begun,⁶² but offer many challenging problems of scientific and technological importance. The situation with regard to deep levels in modulated structures remains even less investigated⁶³ and deserves greater effort. Among the variety of characterization techniques employed, the use of light scattering techniques for investigations of the lattice dynamics and electronic states has hitherto not been as prevalent as the potential of such techniques might lead one to expect. One might therefore expect a greater use and development of such techniques for study of the phonon modes and defect induced levels in modulated structures.

VII. CONCLUSION

The evidence presented in the preceding section indicates that the study and synthesis of metastable and modulated semiconductor structures constitutes an area which should prove particularly fruitful for both scientific and technological research. The synthesis or fabrication of these unique materials provides a number of opportunities for detailed theoretical and experimental investigations of the fundamentals of growth. The increasing use of MBE preparative methods make available the dynamic growth interface for study, characterization, and manipulation via a variety of technological approaches. These unique materials provide new opportunities for characterization and basic studies of their structural, chemical, electronic, and optical properties. The potential for creating a wide class of new materials based on semiconductor/semitransistor, semiconductors/insulator, and semiconductor/semimetal single and multiple interface structures with and without lattice matching constraints allows new approaches to microelectronic device design, development, and application. Extreme dimensional control of dopants add still other degrees of freedom to these material and experimental systems. Finally, the interdisciplinary aspect of this research, requiring the interaction of theorists and experimentalists representing chemistry, solid state physics, surface science, crystal growth, material science, and device physics and engineering, will provide a particularly stimulating synergism for general progress in the area of electronic materials.

ACKNOWLEDGMENTS

One of us (A.M.) gratefully acknowledges the support of the Office of Naval Research (Contract No. N00014-77-C-0397) and the Air force Office of Scientific Research (Grant No. AFOSR 78-3530). This paper also represents one phase of work performed by F.J.G. at the Jet Propulsion Laboratories, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS 7-918 and by the Office of Naval Research under Contract N00014-82-F-0080.

- ¹L. Esaki and R. Tsu, IBM J. Res. Dev. **14**, 61 (1970).
- ²See, for example, K. Ploog, Ann. Rev. Mater. Sci. **11**, 171 (1981), **12**, 123 (1982); see also A. C. Gossard, in *Thin Films: Preparation and Properties*, edited by K. N. Tu and R. Rosenberg (Academic, New York, 1982).
- ³See, for example, S. D. Hersec and J. P. Duchemin, Ann. Rev. Mater. Sci. **12**, 65 (1982).
- ⁴J. E. Greene (these proceedings).
- ⁵J. P. Duchemin (these proceedings).
- ⁶N. Holonyak, Jr., B. A. Vojak, R. M. Kolbas, R. B. Dupnis, and P. D. Dapkus, Solid State Electron. **22**, 431 (1979).
- ⁷P. L. Gourley and R. M. Biefeld (these proceedings).
- ⁸J. H. Neare and B. A. Joyce, J. Cryst. Growth **44**, 387 (1978).
- ⁹J. M. Van Hove, P. I. Cohen, and C. S. Lent, J. Vac. Sci. Technol. A **1**, 546 (1983).
- ¹⁰R. Ludeke, T. C. Chiang, and D. E. Eastman, J. Vac. Sci. Technol. **21**, 599 (1982).
- ¹¹P. K. Larsen, J. H. Neare, and B. A. Joyce, J. Phys. C **14**, 167 (1981).
- ¹²M. Erman, J. B. Theeten, N. Vodjani, and Y. Demay (these proceedings).
- ¹³R. F. C. Farrow (these proceedings).
- ¹⁴H. Ishiwara, T. Asano, and S. Furukawa (these proceedings).
- ¹⁵J. M. Phillips, L. C. Feldman, J. M. Gibson, and M. L. McDonald (these proceedings).
- ¹⁶J. M. Gibson, J. C. Bean, J. M. Poate, and R. T. Tung, Thin Solid Films **93**, 99 (1982).
- ¹⁷F. J. Grunthaner and A. Madhukar (unpublished).
- ¹⁸M. Quillec, H. Lannois, and M. C. Jancour (these proceedings).
- ¹⁹P. M. Petroff, A. Y. Cho, F. K. Reinhold, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. **48**, 170 (1982).
- ²⁰R. S. Bauer and J. C. Mikkelsen, Jr., J. Vac. Sci. Technol. **21**, 491 (1982).
- ²¹C. A. Chang and T. S. Kuang (these proceedings).
- ²²J. P. Faurie, A. Milliou, and J. Piagnet, Appl. Phys. Lett. **41**, 713 (1982).
- ²³E. E. Mendez, L. L. Chang, and L. Esaki, Surf. Sci. **113**, 474 (1982).
- ²⁴C. A. Weisbuch, R. Dingle, P. M. Petroff, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. **38**, 840 (1981).
- ²⁵R. S. Bauer (these proceedings).
- ²⁶F. C. Frank and J. H. Van-der Merwe, Proc. R. Soc. London Ser. A **198**, 205 (1949).
- ²⁷See, for example, J. H. Van-der-Merwe, Surf. Sci. **31**, 198 (1972).
- ²⁸See, for example, *Epitaxial Growth*, edited by J. W. Matthews (Academic, New York, 1975), Vols. A and B.
- ²⁹J. J. Fritz, L. R. Dawson, and T. E. Zipperian (these proceedings).
- ³⁰G. C. Osbourn (these proceedings).
- ³¹G. Döhler (these proceedings).
- ³²H. Morkoc, T. J. Drummond, and R. Fisher, J. Appl. Phys. **53**, 1032 (1982).
- ³³G. H. Gilmer (these proceedings).
- ³⁴J. Singh and A. Madhukar (these proceedings).
- ³⁵J. R. Arthur, Surf. Sci. **43**, 449 (1974).
- ³⁶B. A. Joyce and C. T. Foxon, J. Cryst. Growth **31**, 122 (1975); C. T. Foxon and B. A. Joyce, Surf. Sci. **64**, 293 (1977).
- ³⁷S. Nagata and T. Tanaka, J. Appl. Phys. **48**, 940 (1977).
- ³⁸C. T. Foxon and B. A. Joyce, J. Cryst. Growth **44**, 75 (1975).
- ³⁹C. T. Foxon (these proceedings).
- ⁴⁰A. G. Cullis (these proceedings).
- ⁴¹R. J. Malik, T. R. AuCoin, R. L. Ross, K. Board, C. E. C. Wood, and L. F. Eastman, Electron. Lett. **16**, 836 (1980).
- ⁴²W. J. Bartels (these proceedings).
- ⁴³P. M. Petroff, A. C. Gossard, P. M. Petroff, W. Wiegmann, and A. Savage, J. Cryst. Growth **44**, 5 (1978).
- ⁴⁴C. A. Chang (these proceedings).
- ⁴⁵P. M. Petroff (these proceedings).
- ⁴⁶A. Madhukar, J. Vac. Sci. Technol. **20**, 149 (1982).
- ⁴⁷R. Dingle, W. Wiegmann, and C. H. Henry, Phys. Rev. Lett. **33**, 827 (1974).
- ⁴⁸R. W. Grant (these proceedings).
- ⁴⁹T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. **54**, 437 (1982).
- ⁵⁰H. L. Stormer, T. Haavasoja, V. Narayanamurti, A. C. Gossard, and W. Wiegmann (these proceedings).
- ⁵¹D. Olego, A. Pinczuk, A. C. Gossard, and W. Wiegmann (these proceedings).
- ⁵²S. Das Sarma and A. Madhukar, Surf. Sci. **98**, 563 (1980).
- ⁵³H. L. Stormer, Surf. Sci. (to be published).
- ⁵⁴S. Hiyamizu and T. Mimura (these proceedings).
- ⁵⁵T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. **54**, 437 (1982).
- ⁵⁶S. Ogale and A. Madhukar (to be published).
- ⁵⁷C. Mailhiot, T. C. McGill, and J. N. Schulman (these proceedings).
- ⁵⁸M. A. Littlejohn, W. M. Kwapien, T. H. Glisson, J. R. Hauser, and K. Hess (these proceedings).
- ⁵⁹J. S. Smith, L. C. Chin, S. Margalit, A. Yariv, and A. Y. Cho (these proceedings).
- ⁶⁰F. Capasso (these proceedings).
- ⁶¹J. Singh (unpublished).
- ⁶²See, for example, R. L. Greene and K. K. Bajaj (these proceedings).
- ⁶³S. Das Sarma and A. Madhukar, J. Vac. Sci. Technol. **19**, 447 (1981).

Proceedings of the International Conference on Metastable and Modulated Semiconductor Structures

216 Preface

Plenary Session

- | | | |
|------------|--|------------------|
| 217 | Summary Abstract: A perspective in development of synthesized semiconductor superlattices | L. Esaki |
| 218 | A typical example of metastability: Metallic glasses | Pol Duwez |

Metastable Phase Formation

- | | | |
|------------|--|---|
| 222 | The stabilization of metastable phases by epitaxy | R. F. C. Farrow |
| 229 | A review of recent research on the growth and physical properties of single crystal metastable elemental and alloy semiconductors | J. E. Greene |
| 238 | Liquid phase epitaxy of unstable alloys: Substrate-induced stabilization and connected effects | M. Quillec, H. Launois,
M. C. Joncour |
| 243 | A new type of order-disorder transition in metastable $(\text{GaAs})_{1-x} \text{Ge}_x$ alloys | Kathie E. Newman,
John D. Dow |
| 246 | Rutherford backscattering/channeling and transmission electron microscopy analysis of epitaxial BaF_2 films on Ge and InP | J. M. Phillips, L. C. Feldman,
J. M. Gibson, M. L. McDonald |
| 250 | Epitaxial growth of GaN/AlN heterostructures | S. Yoshida, S. Misawa,
S. Gonda |
| 254 | Thermal oxidation and anodic film-substrate reactions on $\text{In}_x \text{Ga}_{1-x} \text{As}_y \text{P}_{1-y}$ | G. P. Schwartz, B. V. Dutt,
M. Malyj, J. E. Griffiths,
G. J. Gaultieri |

Modulated Structures—Growth

- | | | |
|------------|---|----------------------------------|
| 260 | Summary Abstract: $\text{HgTe}-\text{CdTe}$ superlattices | T. C. McGill, D. L. Smith |
|------------|---|----------------------------------|

- 262 Low pressure-MOCVD growth of $\text{Ga}_{x,y}\text{In}_{z,z}\text{As}$ -InP heterojunction and superlattices M. Razeghi, J. P. Duchemin

- 266 Epitaxial growth of elemental semiconductor films onto silicide/Si and fluoride/Si structures H. Ishiwara, T. Asano, S. Furukawa

Doping: Metastability and Modulated Systems

- 272 Modulated structures and metastable dopant concentrations in silicon annealed with Q-switched laser pulses A. G. Cullis
- 278 $n-i-p-i$ doping superlattices—metastable semiconductors with tunable properties Gottfried H. Döhler
- 285 Elementary excitations in semiconductors with $n-i-p-i$ doping superlattices P. Ruden
- 289 Quantum transport in GaAs doping superlattices J. C. Maan, Th. Englert, Ch. Uihlein, H. Künzel, K. Ploog, A. Fischer

Growth Mechanisms I

- 293 MBE growth of GaAs and III-V alloys C. T. Foxon
- 298 Simulation models of the crystal-vapor interface George H. Gilmer, Jeremy Q. Broughton

Growth Mechanisms II

- 305 Surface orientation dependent surface kinetics and interface roughening in molecular beam epitaxial growth of III-V semiconductors: A Monte Carlo study Jasprit Singh, Anupam Madhukar
- 313 Summary Abstract: Structure and luminescence of III-V compound superlattices P. M. Petroff
- 314 Summary Abstract: The role of metastable surfaces in determining MBE heterojunction structure: GaAs/Ge interfaces Robert S. Bauer
- 315 Structural studies of Ge-GaAs interfaces Chin-An Chang, Tung-Sheng Kuan

Interface Characterization

- 320 Measurement of potential at semiconductor interfaces by electron spectroscopy R. W. Grant, E. A. Kraut, S. P. Kowalczyk, J. R. Waldrop
- 328 Chemical and structural analysis of the GaAs/AlGaAs heterojunctions by spectroscopic ellipsometry M. Erman, J. B. Theeten, N. Vodjani, Y. Demay

- 334 **Abrupt transitions in composition and doping profile in GaAs-Ga_{1-x}Al_xAs heterostructures by atmospheric pressure MOVPE** J. Maluenda, P. M. Frijlink

Structural Studies

- 338 **Characterization of thin layers on perfect crystals with a multipurpose high resolution x-ray diffractometer** W. J. Bartels
- 346 **Channeling studies of III-V/III-V and IV/III-V semiconductor modulated structures** Chin-An Chang

Semiconductor/Metal Interface

- 353 **Summary Abstract: Molecular beam growth of metal layers on silicon surfaces** Akira Kawazu
- 354 **Electronic and atomic structure of Ag-Si(111) and Ag-Ge(111)** G. Le Lay
- 361 **Initial growth of Al on GaAs(001) and electrical characterization of the interface** Thorwald G. Andersson, Stefan P. Svensson, Gunnar Landgren
- 365 **Interfacial studies of deposited thin films of refractory metals on gallium arsenide substrates. Mo-GaAs** K. Suh, H. K. Park, K. L. Moazed
- 371 **Transverse elastic waves in periodically layered infinite, semi-infinite, and slab media** R. E. Camley, B. Djafari-Rouhani, L. Dobrzynski, A. A. Maradudin
- 376 **A new infrared detector using electron emission from multiple quantum wells** J. C. Smith, L. C. Chiu, S. Margalit, A. Yariv, A. Y. Cho

Electronic States

- 379 **Electronic properties of strained-layer superlattices** G. C. Osbourn
- 383 **Ga(As,P) strained-layer superlattices: A ternary semiconductor with independently adjustable band gap and lattice constant** P. L. Gourley, R. M. Biefeld
- 387 **Doping and transport studies in In_xGa_{1-x}As/GaAs strained-layer superlattices** I. J. Fritz, L. R. Dawson, T. E. Zipperian
- 391 **Energy levels of hydrogenic impurities and Wannier excitons in quantum well structures** Ronald L. Greene, K. K. Bajaj
- 398 **Formation of silicon nitride layers on crystalline silicon by ion implantation as revealed by internal friction and infrared transmission measurements** A. S. Ogale, V. N. Bhoraskar, S. V. Ghaisas, V. P. Godbole, S. B. Ogale, B. S. Raye

Optical Studies

- 404 **Electronic properties of MO-CVD grown InGaAs-InP heterojunctions and superlattices** M. Voos
- 409 **Optical transmission in GaSb-AlSb superlattices** P. Voisin, G. Bastard, M. Voos, E. E. Mendez, C.-A. Chang, L. L. Chang, L. Esaki
- 412 **Plasma oscillations of layered electron gases in semiconductor heterostructures** D. Olego, A. Pinczuk, A. C. Gossard, W. Wiegmann
- 415 **A simple model for the index of refraction of GaAs-AlAs superlattices and heterostructure layers: Contributions of the states around Γ** J. P. Leburton, K. Hess
- 420 **Persistent red shift of the photoluminescence from the semi-insulating GaAs substrate in an $\text{Al}_{x}\text{Ga}_{1-x}\text{As}/\text{GaAs}$ modulation-doped structure** Bernhard Fischer, Douglas M. Collins

Confined Carrier Properties

- 423 **Observation of the deHaas-van Alphen effect in a two-dimensional electron system** H. L. Störmer, T. Haavasoja, V. Narayanamurti, A. C. Gossard, W. Wiegmann
- 427 **Cyclotron resonance of 2D electrons in $\text{GaAs}/\text{Al}_{x}\text{Ga}_{1-x}\text{As}$ heterostructures at low densities** Th. Englert, J. C. Maan, Ch. Uihlein, D. C. Tsui, A. C. Gossard
- 431 **Collective plasmon modes of a semiconductor superlattice** W. L. Bloss
- 435 **Interference effect in multivalley quantum well structures** Yia-Chung Chang, D. Z.-Y. Ting
- 439 **Tunnelling and propagating transport in $\text{GaAs}-\text{Ga}_{1-x}\text{Al}_x\text{As}-\text{GaAs}(100)$ double heterojunctions** C. Mailhiot, T. C. McGill, J. N. Schulman
- 445 **Effects of band bending on real space transfer in $\text{GaAs}-\text{Al}_{x}\text{Ga}_{1-x}\text{As}$ layered heterostructures** M. A. Littlejohn, W. M. Kwapien, T. H. Glisson, J. R. Hauser, K. Hess
- 449 **Electron transport in planar-doped barrier structures using an ensemble Monte Carlo method** M. A. Littlejohn, R. J. Trew, J. R. Hauser, J. M. Golio

Device Prospects

- | | | |
|-----|--|-------------------------------|
| 455 | Summary Abstract: Compound semiconductor structures for high speed, high frequency devices | Lester F. Eastman |
| 456 | Summary Abstract: Electrical properties of MBE-grown GaAs/N-AlGaAs heterostructures and application to high speed devices | S. Hiyamizu, T. Mimura |
| 457 | Band-gap engineering via graded gap, superlattice, and periodic doping structures: Applications to novel photodetectors and other devices | Federico Capasso |
| 462 | Growth, characterization, and properties of metastable and modulated semiconductor structures: Prospects for future studies | F. J. Grunthaner, A. Madhukar |
| 468 | Author Index | |

MMSS Conference Attendees

B. Abeles

Exxon Research and Engineering Co.
Corporate Research, Science Laboratories
PO Box 45
Linden, NJ 07036

(201) 474-2457

R. E. Allen

Department of Physics
Texas A&M University
College Station, TX 77843

(713) 845-4341

D. D. Allred

Energy Conversion Device
1675 West Maple
Troy, MI 48084

(313) 280-1900

D. A. Anderson

Procurement Executive Ministry of Defense
Royal Signals and Radar Establishment
St. Andrews Road, Great Malvern Worcs.
WR14 3PS, United Kingdom

(06845) 2733 ext. 3266
Telex 339747-8

T. Andersson

Department of Physics
Chalmers University of Technology
S-412 96 Goteborg
Sweden

(031) 810100-1487
Telex 2369 CHALBIBS

N. Apsley

Procurement Executive Ministry of Defense
Royal Signals and Radar Establishment
St. Andrews Road, Great Malvern Worcs.
WR14 3PS, United Kingdom

(06845) 2733 ext. 3266
Telex 339747-8

M. Arai

High Speed Semiconductor Devices Group/240
Sony Research Center
174 Fujitsuka-cho, Hodogayaku
Yokohama, Japan

(045) 351-1271
Telex SONYCOP J22262

K. K. Bajaj

Air Force Wright Aeronautical Laboratories
Avionics Laboratory, AFWAL/AADR
Wright-Patterson Air Force Base
OH 45433

(513) 255-3654

MMSS Conference Attendees

I. Banerjee
**Department of Electrical
and Computer Engineering**
UC Santa Barbara
Santa Barbara, CA 93106 (805) 961-2061

S. A. Barnett
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1101 W. Springfield
Urbana, IL 61801 (217) 333-6315

R. S. Bauer
Xerox Corporation
Palo Alto Research Center
3333 Cayote Hill Road
Palo Alto, CA 94304 (415) 494-4118

R. Bell
Director, Solid State Labs
Varian Assoc., Inc.
611 Hansen Way
Palo Alto, CA 94303 (415) 493-4000 ext. 3527

**W. L. Bloss
GTE Laboratories
40 Sylvan Road
Waltham, MA 02254** (617) 466-4118

**R. Braunstein
Department of Physics
UCLA
405 Hilgard Avenue
Los Angeles, CA 90024** (213) 825-1841

**G. Bryant
Dept. 224 Bldg. 110, Lev. 1, MS/4
McDonnell Douglas Corporation
McDonnell Douglas Research Laboratories
PO Box 516
St. Louis, MO 63166** (314) 233-2522
Telex 44857

MMSS Conference Attendees

F. Capasso
Room 7A215
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974 **(201) 582-7737**

C-A. Chang
IBM Thomas J. Watson Research Center
PO Box 218
Yorktown Heights, NY 10598 **(914) 945-2209**

Y. C. Chang
Department of Physics
University of Illinois at Urbana-Champaign
1110 West Green Street
Urbana, IL 61801 (217) 333-4142

**L. J. Cheng
Jet Propulsion Laboratory
California Institute of Technology
238/710
4800 Oak Grove Drive
Pasadena, CA 91109**

L. C. Chiu
Department of Applied Physics
California Institute of Technology
128-95
Pasadena, CA 91125 (213) 356-4413

**N. M. Cho
Department of Materials Science, VHE512
University of Southern California
University Park
Los Angeles, CA 90089-0241 (213) 743-4405**

R. Collins
Department of Applied Physics
California Institute of Technology
Pasadena, CA 91125

L. R. Cooper
Electronic and Solid State Sciences
Office of Naval Research
800 N Quincy Street
Arlington, VA 22217

**P. O. Correc
California Institute of Technology
128-95
Pasadena, CA 91125**

**C. R. Crowell
Department of Materials Science, VHE602
University of Southern California
University Parks
Los Angeles, CA 90089-0241 (213) 743-6220**

MMSS Conference Attendees

A. G. Cullis
Electronic Materials Div.
Royal Signals and Radar Establishment
St. Andrews Road
Great Malvern Worcs.
WR14 3PS, England (6845) 2733 ext. 2509
Telex 339747-8

P. D. Dapkus
EE-Electrophysics
University of Southern California
University Park
Los Angeles, CA 90089-0241 (213) 743-7264

L. R. Dawson
Division 1141
Sandia National Laboratories
Albuquerque, NM 87185 (505) 846-3451

G. H. Doehler
Max Planck Institute für Festkörperforschung
Heisenbergstrasse 1
7000 Stuttgart 80
Federal Republic of Germany Telex 7255555 mpifd

J. D. Dow
Department of Physics
University of Illinois at Urbana-Champaign
1110 W. Green Street
Urbana, IL 61801 (217) 333-2891

J. P. Duchemin
Thomson-CSF
Laboratoire Centrale de Recherches
Domaine de Corbeville
91401 Orsay
France

K. A. Dumas
Jet Propulsion Laboratory
California Institute of Technology
238/710
4800 Oak Grove Drive
Pasadena, CA 91109 (213) 354-6546

P. E. Duwez
Department of Materials Science
California Institute of Technology
W. M. Keck Laboratory
Pasadena, CA 91125

MMSS Conference Attendees

**L. F. Eastman
425 Phillips Hall
School of Electrical Engineering
Cornell University
Ithaca, NY 14853**

(607) 256-4369

S. T. Eng
Jet Propulsion Laboratory
California Institute of Technology
198-226
4800 Oak Grove Drive
Pasadena, CA 91109

(213) 354-3564

S. Eglash
Stanford Electronics Laboratories
Stanford University
251 McCullough Bldg.
Stanford, CA 94305

(415) 497-3209

Th. Englert
Max Planck Institut für Festkörperforschung
Hochfeld-Magnetlabor Grenoble
F-38042 Grenoble—166X Grenoble, Cedex
Avenue des Martyrs (C.N.R.S.)
France

(76) 879842
Telex 320823

**R. Enderlein
Stanford Electronics Laboratory
Stanford University
McCullough Bldg. Room 238
Stanford, CA 94305**

(415) 493-4639

**L. Esaki
IBM T. J. Watson Research Center
PO Box 518
Yorktown Heights, NY 10598**

**R. F. C. Farrow
Research and Development Center
Westinghouse Electric Corp.
1310 Beulah Road
Pittsburgh, PA 15235**

(412) 256-7682
Telex 866-443

B. Fischer
Materials Research Laboratory, Bldg. 148
Hewlett Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

WORLD WIDE REFERENCE ATTACHMENT

P. Fischer
Instruments, S.A., Inc.
Riber Division
173 Essex Avenue
Metuchen, NJ 08840

(201) 494-8660
Telex 844516 ISA METN

C. T. Foxon
Phillips Research Laboratories
Redhill, Surrey
England

(02934) 5544

I. J. Fritz
Division 1132
Sandia National Laboratories
Albuquerque, NM 87185

S. Fukuda
Research and Development Association
for Future Electron Devices
Fukide 2nd Bldg. 4-1-21 Toranomon
Minato-Ku
Tokyo, 105 Japan

(03) 434-3871

P. M. George
Aerojet Electrosystems
Research Dept. 53/8241
1100 N. Hollyvale St.
Azusa, CA 91702

(213) 812-2897

M. Gershenson
Materials Science Dept.
University of Southern California
University Park
Los Angeles, CA 90089-0241

(213) 743-6215

G. H. Gilmer
Bell Laboratories
Room 1D-447
600 Mountain Avenue
Murray Hill, NJ 07974

(201) 582-5547

S. Gonda
Electronic Refractory Materials Section
Materials Division
Electrotechnical Laboratory
1-1-4 Umezono, Sakura-Mura
Niihari-gun
Ibaraki, Japan, 305

(0298) 54-5222

MMSS Conference Attendees

A. C. Gossard
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

(201) 582-6657

P. L. Gourley
Division 1132
Sandia National Laboratories
Albuquerque, NM 87185

(505) 844-9590

R. W. Grant
Electronics Research Center
Rockwell International
A26
1049 Camino Dos Rios
Thousand Oaks, CA 91360

(804) 498-4545

J. E. Greene
Department of Metallurgy
and Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1101 W. Springfield Avenue
Urbana, IL 61801-3082

(217) 333-0747

F. J. Grunthaner
Jet Propulsion Laboratory
California Institute of Technology
198-231
4800 Oak Grove Drive
Pasadena, CA 91109

(213) 354-5546

P. J. Grunthaner
Jet Propulsion Laboratory
California Institute of Technology
189-1
4800 Oak Grove Drive
Pasadena, CA 91109

(213) 354-2114

T. Haavasoja
Bell Laboratories
MH 1D-221
600 Mountain Avenue
Murray Hill, NJ 07974

(201) 582-6983

M. H. Hecht
Jet Propulsion Laboratory
California Institute of Technology
189-1
4800 Oak Grove Drive
Pasadena, CA 91109

(213) 354-2114

S. Hiyamizu
Semiconductor Material Laboratory
Fujitsu Laboratories, Ltd.
1015 Kamikodanaka Nakahara-Ku
Kawasaki, 211, Japan

(044) 777-111 ext. 6315
Telex 3842-122

H. Ishiwara
Tokyo Institute of Technology
Graduate School of Science and Engineering
4259 Nagatasuda, Midoriku
Yokohama 227, Japan

(011) 81-45-922-1111 ext. 2552
Telex 2466360 TITECH J

T. J. Jones
Department of Applied Physics
California Institute of Technology
128-95
Pasadena, CA 91125

(213) 356-4786

E. Jones
Division 1124
Sandia National Labs
PO Box 5800
Albuquerque, NM 87185

(505) 844-8752

H. Kanter
Aerospace Co.
Solid State Electronics MS-244
PO Box 92957
Los Angeles, CA 91302

(213) 648-7479

A. Kawazu
Department of Applied Physics
University of Tokyo
7-3-1, Hongo, Bunkyo-Ku
Tokyo, 113, Japan

(03) 812-2111

J. Y. Kim
Department of Materials Science
University of Southern California
University Park
Los Angeles, CA 90089-0241

(213) 743-4405

M. K. Kim
Western Electric
PO Box 900
Princeton, NJ 08540

(609) 639-2597

MMSS Conference Attendees

J.-P. C. Leburton
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1101 W. Springfield
Urbana, IL 61801

(217) 333-6813

**T. C. Lee
Department of Materials Science VHE 602
University of Southern California
University Park
Los Angeles, CA 90089-0241**

(213) 743-6225

G. LeLay
CRMC2-CNRS
Campus de Luminy, Case 913
13288 Marseille, Cedex 09
France

(91) 41-0152
Telex CNRS LUM 430838 F

B. F. Lewis
Jet Propulsion Laboratory
California Institute of Technology
189-1
4800 Oak Grove Drive
Pasadena, CA 91109

(213) 354-2114

**U. Lieneweg
Jet Propulsion Laboratory
California Institute of Technology
198-231
4800 Oak Grove Drive
Pasadena, CA 91109**

(213) 354-3989

**I. Lindau
Stanford Electronics Laboratory
McCullough Bl.
Stanford University
Stanford, CA 94305**

(415) 497-1052

**M. A. Littlejohn
Electrical Engineering Department
232 Daniels Hall
North Carolina State University
Raleigh, NC 27650**

**C. W. Litton
Avionics Laboratory
Electronics Research, Bldg. 450
AFWAL/AADR
Wright Patterson AFB, OH 45433**

MMSS Conference Attendees

D. Liu
Solid State Devices and Passive
Components Section MS 54-2
NASA Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135

(216) 433-4000 ext. 6181

J. C. Maan
Max Planck Institute für Festkörperforschung
Hochfeld-Magnetlabor Grenoble
F-38042 Grenoble—166X Grenoble, Cedex
France

(76) 879842
Telex 320823

A. Madhukar
Department of Materials Science
Vivian Hall of Engineering—0241
University of Southern California
University Park
Los Angeles, CA 90089-0241

(213) 743-6929

C. Mailhiot
Department of Applied Physics
California Institute of Technology
1201 East California Blvd.
Pasadena, CA 91125

J. Maluenda
Laboratories d' Electronique
et de Physique Appliquee
3 Avenue Descartes—BP 15
94450 Limeil-Brevannes
France

(1) 569-96-10
Telex LEPARIS 203475F

**A. A. Maradudin
Department of Physics
University of California Irvine
Irvine, CA 92717**

(714) 833-5943

J. Maserjian
Jet Propulsion Laboratory
California Institute of Technology
198-231
4800 Oak Grove Drive
Pasadena, CA 91109

(213) 354-3801

T. C. McGill
Department of Applied Physics
California Institute of Technology
Pasadena, CA 91125

MMSS Conference Attendees

- K. L. Moazed**
Surface Studies Laboratories
North Carolina State University
2101 Burlington
Raleigh, NC 27650 (919) 737-2279
- K. E. Newman**
Loomis Laboratory of Physics
University of Illinois at Urbana-Champaign
1110 West Green Street
Urbana, IL 61801 (217) 333-1153
- S. B. Ogale**
Department of Physics
Poona University
Pune, India
- G. C. Osbourn**
Division 1141
Sandia National Laboratories
Albuquerque, NM 87185 (505) 844-8850
- P. M. Petroff**
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974 (201) 582-6455
- J. M. Phillips**
Room 1E-445
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974 (201) 582-4428
- P. A. Pianetta**
Stanford Synchrotron Radiation Lab
Stanford University
PO Box 4349, Bin 69
Stanford, CA 94305 (415) 854-3300 ext. 2896
- M. Quillec**
Centre National d' Etude des
Telecommunications (PMS/PAB)
196 Rue de Paris
92220 Bagneux, France 638-54-41
- P. P. Ruden**
Max Planck Institut für Festkörperforschung
Heisenbergstrasse 1
D-7000 Stuttgart 80
Federal Republic of Germany Telex: 7255555 mpifd

MMSS Conference Attendees

L. Salmon
Hughes Aircraft, California

J. N. Schulman
Dept. of Physics and Astronomy
University of Hawaii
2505 Correa Road
Honolulu, Hawaii 96822

(808) 948-7087

G. P. Schwartz
Bell Laboratories
MH 1D-343
600 Mountain Avenue
Murray Hill, NJ 07974

(201) 582-2115

J. Singh
Department of Materials Science
University of Southern California
University Park
Los Angeles, CA 90089-0241

(213) 743-4272

D. L. Smith
Department of Applied Physics
California Institute of Technology
Pasadena, CA 91125

J. S. Smith
Department of Applied Physics, 128-95
California Institute of Technology
Pasadena, CA 91106

(213) 356-4413

M. Sokolowski
NASA Headquarters
Washington, DC

J. J. Song
Department of Physics
University of Southern California
University Park
Los Angeles, CA 90089-0484

(213) 743-6419

R. J. Stern
Jet Propulsion Laboratory, 512-103
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

(213) 354-9230

R. T. Swimm
Center for Laser Studies, MC 1112
University of Southern California
University Park
Los Angeles, CA 90089-1112

(213) 743-4370

MMSS Conference Attendees

J. B. Theeten
Laboratories d'Electronique
et de Physique Appliquée
3 Avenue Descartes, BP 15
94450 Limeil-Brevannes
France

(1) 569-96-10 ext. 9717
Telex LEPARIS 203475F

R. Tsu
Energy Conversion Devices, Inc.
1675 W. Maple
Troy, MI 48084

(313) 280-1900

**J. W. Tully
Northrop Research and Technology Center
One Research Park
6100 Crest Road
Palos Verdes, CA 90274**

(213) 377-4811

R. P. Vasquez
Department of Materials Science
Vivian Hall of Engineering-0241
University of Southern California
University Park
Los Angeles, CA 90089-0241

(213) 743-6225

P. Voisin
Groupe de Physique des Solides
de L'Ecole Normale Supérieure
Université Pierre et Marie Curie
24 Rue Lhomond
75005 Paris, France

(33-1) 329-12-25 ext. 3373

M. Voos
Groupe de Physique des Solides
de L'Ecole Normale Supérieure
24 Rue Lhomond
75014 Paris Cedex 05, France

(33-1) 329-12-25 ext. 3373

K. L. Wang
7731 Boelter Hall
Electrical Engineering Department
School of Engineering and Applied Science
University of California at Los Angeles
Los Angeles, CA 90024

(213) 825-1609

G. L. Witt
Electronics and Solid State
Sciences Directorate
Air Force Office of Scientific Research
Bolling Air Force Base
Washington, DC 20332

MINIUS CONFERENCE ATTENDEES

G. B. Wright
Electronic and Solid State Sciences
Office of Naval Research
Code 613C:CD
800 N Quincy Street
Arlington, VA 22217 (202) 696-4214

Y. H. Wu
Department of Materials Science
University of Southern California
University Park
Los Angeles, CA 90089-0241 (213) 743-7671

E. Yablonovitch
Exxon Research and Eng. Co.
Corporate Research Science Laboratories
PO Box 45
Linden, NJ 07036 (201) 474-6876

P. Zaicek
Jet Propulsion Laboratory, 189-1
4800 Oak Grove Drive
Pasadena, CA (213) 354-2114

J. Zhong
Department of Materials Science
University of Southern California
University Park
Los Angeles, CA 90089 (213) 743-4550

J. D. Zook
Honeywell Corporation Technical Center
10701 Lyndale Ave. So.
Bloomington, MN 55420 (612) 887-4348

R. Zuleeg
McDonnell Douglas
Microelectronics Center
5301 Bolsa Avenue
Huntington Beach, CA 92647 (714) 896-1937

A. Zur
Department of Applied Physics
California Institute of Technology
Pasadena, CA 91125

