Neural Text To Speech Synthesis

Abdellah EL MEKKI

Text To Speech Synthesis

The artificial production of human speech from text.

- TTS technologies
 - Concatenative speech synthesis
 - Statistical parametric speech synthesis
 - Neural network based end-to-end speech synthesis
- **Disciplines:** Acoustics, linguistics, digital signal processing, statistics and deep learning.

Text To Speech Synthesis

- Neural based end-to-end TTS
 - Text Analysis: text → phoneme
 - Text normalization, grapheme-to-phoneme conversion
 - Acoustic Model: phoneme → mel-spectrogram
 - Tacotron 2, DeepVoice 3, TransformerTTS, FastSpeech 1/2
 - Vocoder: mel-spectrogram → waveform
 - WaveNet, WaveRNN, LPCNET, WaveGlow, MelGAN, PWG (Parallel WaveGAN)

The Neural Text-To-Speech Framework

TTS vs ASR

	ASR	TTS
Dataset	Can be multi-speaker	One speaker
Text	No need for phonemes level annotation.	Phonemes level is mandatory.
Mapping	One-to-one (Every audio have one writing possibility).	One-to-many (Every text can be spoken using different styles. E.g. duration, pitch, sound volume, speaker, style, emotion, etc)

FASTSPEECH 2: FAST AND HIGH-QUALITY END-TO-END TEXT TO SPEECH

Yi Ren¹*, Chenxu Hu¹*, Xu Tan², Tao Qin², Sheng Zhao³, Zhou Zhao¹†, Tie-Yan Liu²

¹Zhejiang University {rayeren, chenxuhu, zhaozhou}@zju.edu.cn

²Microsoft Research Asia {xuta, taoqin, tyliu}@microsoft.com

³Microsoft Azure Speech Sheng.Zhao@microsoft.com

FastSpeech 2

- End-to-end model.
- Input:
 - Phonemes
- Encoder:
 - Transformer encoder
- Output:
 - Mel-spectogram
 - Waveform (FastSpeech 2s)
- Variance Adaptor:
 - Duration
 - Pitch
 - Energy
 - O ..

Variance Adaptor

- Phoneme duration: how long the speech voice sounds.
- <u>Pitch:</u> a key feature to convey emotions and greatly affects the speech prosody.
- **Energy:** frame-level magnitude of mel-spectrograms and directly affects the volume and prosody of speech.

Variance Predictor

Duration Predictor

• <u>Input</u>

Phoneme hidden sequence

Output

 Duration of phoneme (How many mel frames correspond to this phoneme)

Optimization

Mean square error (MSE) loss

• Training data

- Durations are extracted using Montreal forced alignment (MFA).
 - Forced alignment is a technique to take an orthographic transcription of an audio file and generate a time-aligned version using a pronunciation dictionary to look up phones for words.

Pitch Predictor

Issue:

High variations of ground-truth pitch

• <u>Input</u>

o Phoneme hidden sequence

Output

Pitch spectrogram

Optimization

Mean square error (MSE) loss

CWT Pitch Prediction

- Motivation: To better predict the variations in pitch contour
- <u>Idea:</u> Use continuous wavelet transform (CWT) to decompose the continuous pitch contour to pitch spectrogram.

- During training
 - Text input -fit-> pitch spec <-CWT- pitch contour
- During inference
 - Text input -predict -> pitch spec -iCWT-> pitch contour.

Energy Predictor

Input

Spectrogram frame

Output

- L2-norm of the amplitude of the frame
- o Phoneme-level average

Optimization

Mean square error (MSE) loss

FastSpeech 2

- End-to-end model.
- Input:
 - Phonemes
- Output:
 - Mel-spectrogram
 - Waveform (FastSpeech 2s)
- Variance Adaptor:
 - Duration
 - Pitch
 - Energy
 - 0 ..

Experimental Setup

- Dataset: LJSpeech
- Language: English
- Dataset size: 24 hours 13,100 audio clips.
 - o Train: 12,228 samples
 - Validation: 349 samples
 - Test: 523 samples
- Grapheme-to-phoneme: https://github.com/Kyubyong/g2p
- Raw waveform to mel-spectrograms:
 - Frame size: 1024
 - o Hop size: 256
 - o Sample rate: 22050

Results

Method	MOS
GT $GT (Mel + PWG)$	$\begin{vmatrix} 4.30 \pm 0.07 \\ 3.92 \pm 0.08 \end{vmatrix}$
Tacotron 2 (Shen et al., 2018) (Mel + PWG) Transformer TTS (Li et al., 2019) (Mel + PWG)	$\begin{vmatrix} 3.70 \pm 0.08 \\ 3.72 \pm 0.07 \end{vmatrix}$
FastSpeech (Ren et al., 2019) (Mel + PWG)	3.68 ± 0.09
FastSpeech 2 (Mel + PWG) FastSpeech 2s	$\begin{vmatrix} 3.83 \pm 0.08 \\ 3.71 \pm 0.09 \end{vmatrix}$

Thanks!