Distributed and Parallel Computing Lecture 03

Alan P. Sexton

University of Birmingham

Spring 2018

SMs, Cores and Warps

A GPU has a number of *Streaming Multiprocessors (SMs)*, which have a number of *Cores*. Threads are scheduled in units of *Warps*. Each SM has a number of resources. For example, each SM of a Fermi architecture GPU (GeForce 400 and 500 series) might have 2 instruction dispatch units and

- 3 banks of 16 cores (i.e. 48 cores)
- 1 bank of 16 Load Store Units (for calculating source and destination addresses for 16 threads per clock cycle)
- 1 bank of 4 Special Functional Units (hardware support for calculating sin, cos, reciprocals and square roots a warp executes over 8 clocks).
- 1 bank of 4 Texture Units

The 2 instruction dispatch units can start, on each clock cycle, processing on any 2 banks at a time. The 3 banks of 16 cores means that 2 sequential instructions from one thread warp can be executing simultaneously if they are not dependent on each other (superscalar instruction parallelism)

Synchronisation

Conceptually, Warps execute in lock step, so synchronisation within a warp is (mostly) automatic but can be tricky (data variables should be marked *volatile*)

- In practice, it is much more complicated.
- We need to be able to synchronise threads in a block
- Also need to be able to synchronise threads in a warp
- Cannot synchronise across different blocks
- Barrier synchronisation: __syncthreads()
- Must NEVER have __syncthreads() in a branch of a conditional that some threads in the block will not execute
 - Otherwise deadlock may occur!
- Cannot even fix it by making sure each branch has a
 __syncthreads() call: the different calls are NOT necessarily to
 the same barrier!

More on Warps

For the threads in a block,

- Warp 0 consists of threads 0 to 31
- Warp 1 consists of threads 32 to 63
- •

For threads in a multi-dimensional block

- Multidimensional threads are linearized in row-major order
- Thus all the threads with z value 0 come first, followed by those with z value 1, etc.
- Within each group of threads with the same z value, the threads with y value 0 come first, followed by those with y value 1 etc.
- Within each group of threads with the same z and y value, the thread with x value 0 comes first followed by that with x value 1 etc.
- Within this linearized order, the first 32 threads belong to the first warp etc.

Warp Execution and Divergence

The whole warp is handled by a single controller. Consider what happens if some threads (A) in a warp take one branch (1) of an if statement, and others (B) take the other branch (2):

- All threads in the warp must execute the same instructions
- First execute branch 1: all threads execute the branch 1 instructions but the B threads are disabled (think of de-clutching in a car) so they have no effect.
- Then execute branch 2: all threads execute the branch 2 instructions but now the A threads are disabled.
- This is called a divergence
- Whole warp execute same branch ⇒ NO DIVERGENCE

Loops where different threads in the warp execute different numbers of iterations also form divergences: The threads that execute the fewest number of iterations wait on the threads that execute the most number.

Divergence and Reduction

Let's see the consequences of divergence for reduction: the reduction of a set of numbers to one e.g. finding the sum of a vector of length 1024

- Sequentially: iterate through a vector accumulating the sum in a variable (register)
- In parallel, one approach: use a binary tournament:
 - Round 1:
 - thread 0 executes A[0] += A[1]
 - thread 2 executes A[2] += A[3]
 - •
 - ullet thread 2i, where 0 < 2i < 1024, executes A[2*i] += A[2*i+1]
 - Round 2:
 - ullet thread 4i, where 0 < 4i < 1024, executes A[4*i] += A[4*i+2]
 - •
 - Round n:
 - thread $2^n i$ executes $A[2^n * i] += A[2^n * i + 2^{n-1}]$

Naive Parallel Reduction

Naive Parallel Reduction Code

```
float partialSum[]
...
uint t = threadIdx.x;
for (uint stride = 1; stride < blockDim.x; stride *= 2)
{
    __syncthreads();
    if (t % (2 * stride) == 0)
        partialSum[t] += partialSum[t+stride];
}</pre>
```

Naive Parallel Reduction Code

```
float partialSum[]
...
uint t = threadIdx.x;
for (uint stride = 1; stride < blockDim.x; stride *= 2)
{
    __syncthreads();
    if (t % (2 * stride) == 0)
        partialSum[t] += partialSum[t+stride];
}</pre>
```

 Note the __syncthreads(): necessary to make sure all threads have completed previous stage.

Naive Parallel Reduction Code

```
float partialSum[]
...
uint t = threadIdx.x;
for (uint stride = 1; stride < blockDim.x; stride *= 2)
{
    __syncthreads();
    if (t % (2 * stride) == 0)
        partialSum[t] += partialSum[t+stride];
}</pre>
```

- Note the __syncthreads(): necessary to make sure all threads have completed previous stage.
- Assume blockDim.x is 1024
- Iteration 1: Even threads execute add: 1 pass for true branch,
 1 pass for false branch, 512 threads = 16 warps all active
- All iterations: 2 passes each iteration
- In progressive iterations, fewer threads doing real work

Parallel Reduction, Alternative Strategy

Alternative Parallel Reduction Code

```
float partialSum[]
...
uint t = threadIdx.x;
for (uint stride = blockDim.x/2; stride > 1; stride /= 2)
{
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t+stride];
}</pre>
```

Alternative Parallel Reduction Code

```
float partialSum[]
...
uint t = threadIdx.x;
for (uint stride = blockDim.x/2; stride > 1; stride /= 2)
{
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t+stride];
}</pre>
```

- Assume blockDim.x is 1024
- Threads 0-511 = warps 0-15 execute true branch, threads 512-1023 = warps 16-31 execute false branch, thus no divergence \Rightarrow 1 pass each iteration

Alternative Parallel Reduction Code

```
float partialSum[]
...
uint t = threadIdx.x;
for (uint stride = blockDim.x/2; stride > 1; stride /= 2)
{
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t+stride];
}</pre>
```

- Assume blockDim.x is 1024
- Threads 0-511 = warps 0-15 execute true branch, threads 512-1023 = warps 16-31 execute false branch, thus no divergence \Rightarrow 1 pass each iteration
- Continues 1 pass each iteration until less than 32 threads executing

CUDA Memories

Global memory on a GPU is separated from the SMs by a bus and is of DRAM type (i.e. based on capacitors holding charges). This makes data access slow (100s of clock cycles) and limited band width (can't get many words at a time)

GPU	Mem Clock Rate	Mem Bus	Peak Bandwidth
GT 610	535 MHz	64 bits	4.280 GB/s
GTX 960	3600 MHz	128 bits	57.600 GB/s
GTX 1050 Ti	3504 MHz	128 bits	56.064 GB/s
GTX 1080 Ti	5505 MHz	352 bits	242.220 GB/s
Titan V	850 MHz	3072 bits	326.400 GB/s

Memory Bandwidth as a Performance Barrier

- For simple operations (e.g. vectorAdd) the compute to global memory access ratio (CGMA) is 1/3 (1 flop to 3 memory accesses - 2 reads and a write).
- Assume the global memory access bandwidth is of the order of 200GB/s, and the processor can execute of the order of 1500 GFLOPS, then memory bandwidth is limiting us as follows:
 - 3 read/writes = 12 bytes
 - 12 bytes memory access at 200GB/s for each flop = 200/12 GFLOPS = 17 GFLOPS
 - Thus though the hardware is capable of 1500 GFLOPS, our global memory latencies for this application limits us to 17 GFLOPS.

CUDA Memories

Limits quoted for the GeForce GTX 960:

Memory	Scope	Lifetime	Speed	Limits
Register	Thread	Kernel	Ultra fast	65536/block
Local	Thread	Kernel	Very slow	(part of Global)
Shared	Block	Kernel	Very fast	49152 bytes/block
Global	Grid	Application	Very slow	1996 MBytes
Constant	Grid	Application	Very fast	65536 bytes
				(in Global but cached)

Using different memory types:

Memory	Variable Declaration		
Register	Automatic variables other than arrays		
Local	Automatic array variables		
Shared	deviceshared int var;		
Global	device int var;		
Constant	deviceconstant int var;		

Parallel Reduction and Memory

Now reconsider parallel reduction:

- Each reduction iteration reads two words from global memory and writes one word back to global memory per working thread
- If instead the first read copied from global to shared memory, the remainder of the operation would be hugely faster
- In general, many operation can be executed in a tiled fashion, where a large problem in global memory can be broken into small tiles, each of which fits in shared memory, the tiles can be solved and then the results recombined.