Sequential learning – Lesson 4 Contextual and Linear Bandits

Rémy Degenne

February 10, 2023

Centre Inria de l'Université de Lille

Stochastic bandit

At each time step t = 1, ..., T

- the player observes a context $x_t \in \mathcal{X}$
- the player chooses an arm $k_t \in \Theta$ (compact decision/parameter set, often $\{1,\ldots,K\}$);
- the player observes
 - the rewards of every arm: $X^k_t \sim \nu_k$ for all $k \in \Theta \longrightarrow$ full-information feedback
 - the reward of the chosen arm only: $X_t^{k_t} \sim \nu_{k_t}$ \rightarrow bandit feedback.

The goal of the player is to maximize their cumulative reward.

The main reference:

Tor Lattimore and Csaba Szepesvári, Bandit algorithms. Cambridge University Press, 2020. (online on Tor Lattimore's webpage)

Finitely many arms, no contexts.

Initialization For rounds t = 1, ..., K pull arm $k_t = t$.

For $t = K + 1, \dots, T$, choose

$$k_t \in \operatorname*{arg\,max}_{k \in [K]} \left\{ \widehat{\mu}_{t-1}^k + \sqrt{\frac{2 \log t}{N_{t-1}^k}} \right\} \,,$$

and get reward $X_t^{k_t}$.

3

UCB Regret Bounds

Theorem 1

If the distributions ν_k have supports all included in [0,1] then for all k such that $\Delta_k>0$

$$\mathbb{E}\big[N_T^k\big] \leqslant \frac{8\log T}{\Delta_k^2} + 2.$$

In particular, this implies that the expected regret of UCB is upper-bounded as

$$\mathbb{E}[R_T] \leqslant 2K + \sum_{k: \Delta_k > 0} \frac{8 \log T}{\Delta_k}.$$

Remarks:

- we can also prove $\mathbb{E}[R_T] \lesssim \sqrt{KT \log(T)}$. Close to the optimal $O(\sqrt{KT})$.
- Deals with multiple gaps, without any knowledge of the gaps.
- Anytime algorithm: does not depend on *T*.

5

Contextual Bandits

Continuous Bandits

Contextual Bandits with Continuous Contexts

Stochastic Linear Bandits

Contextual Bandits: Motivation

Online advertisement problem:

- A user connects to a website,
- The seller (website algorithm) observes a cookie $x_t \in \mathcal{X}$,
- The seller chooses an ad $k_t \in [K]$,
- The reward is 1 if the user clicks on the ad, 0 otherwise.

Setting and Regret

At each time step t = 1, ..., T

- the player observes a context $x_t \in \mathcal{X}$
- the player chooses an arm $k_t \in \Theta$
- the player observes the reward $X_t^{k_t} \sim \nu_{k_t}(x_t)$ (distribution with mean $\mu_{k_t}(x_t)$, with support in [0,1]).

The goal of the player is to maximize their cumulative reward.

Regret:

$$R_T \stackrel{\text{def}}{=} \sum_{t=1}^T \mu^*(x_t) - \sum_{t=1}^T \mu_{k_t}(x_t)$$

with $\mu^*(x) = \max_k \mu_k(x)$, mean of the best arm in context x.

Naive Algorithm for Finitely Many Contexts

Here \mathcal{X} is finite.

Idea: treat contexts as independent \rightarrow one algorithm per context.

Regret:

$$R_T = \sum_{\mathbf{x} \in \mathcal{X}} R_T(\mathbf{x}) = \sum_{\mathbf{x} \in \mathcal{X}} \left(T_{\mathbf{x}} \mu^*(\mathbf{x}) - \sum_{t=1}^T \mu_{k_t}(\mathbf{x}) \mathbb{I}\{\mathbf{x}_t = \mathbf{x}\} \right) .$$

where T_x is the number of times context x arises.

Theorem 2

The algorithm using one instance of UCB per context has regret

$$\mathbb{E}R_T \lesssim \sqrt{K|\mathcal{X}|T\log T}$$
.

9

Issue: many/continuous contexts?

We have a $\sqrt{K|\mathcal{X}|T\log T}$ bound.

What if $|\mathcal{X}|$ is very large? Or \mathcal{X} is continuous?

We treated the function $x \mapsto \nu_R(x)$ as an arbitrary function. Can we make sense of the following hypothesis: on contexts that are "similar", the distributions (or their means) are "similar"?

Continuous Bandit

No contexts here.

Continuous bandit setting: stochastic bandits with arm set $\Theta \subseteq \mathbb{R}^d$. To each arm $\theta \in \Theta$ corresponds a distribution $\nu(\theta)$.

Regret:
$$R_T = T\mu^* - \sum_{t=1}^T \mu_{\theta_t}$$
, with $\mu^* = \sup_{\theta \in \Theta} \mu_{\theta}$.

Idea to overcome infinity of arms: close arms have similar means.

Hölder Assumption

The expectation function $\theta \mapsto \mu_{\theta}$ is β -Hölder: i.e., there exists c > 0

$$\forall \theta, \theta' \in \mathcal{X}, \qquad |\mu_{\theta} - \mu_{\theta'}| \leq c ||\theta - \theta'||^{\beta},$$

12

Discretization

 ε -covering of $\Theta \subseteq [0,1]^d$ with $O(\varepsilon^{-d})$ balls.

Then:

- arm set = {center of the balls},
- use UCB (for example) using that arm set.

UCB on Hölder Bandits

Theorem 3

Let $\beta > 0$ and $\varepsilon > 0$. Assume that μ is β -Hölder. If UCB is run on an ε -covering of minimal cardinal of $\Theta \subset [0,1]^d$, then it satisfies

$$\mathbb{E}R_T \lesssim T\varepsilon^{\beta} + \sqrt{\frac{T\log(T)}{\varepsilon^d}}$$
.

In particular for $\varepsilon \approx \left(\frac{\log T}{T}\right)^{\frac{1}{2\beta+d}}$, we have $\mathbb{E}R_T \lesssim T\left(\frac{\log T}{T}\right)^{\frac{\beta}{2\beta+d}}$.

14

Goal:
$$\mathbb{E}R_T \lesssim T\varepsilon^{\beta} + \sqrt{\frac{T\log(T)}{\varepsilon^d}}$$
.

UCB for continuous bandits: remarks

To build the discretization, both β and T need to be known in advance.

- T can be calibrated online through a "doubling trick".
- β may be tuned through bandit with experts (or bandits where arms are bandit algorithms).

The per-round complexity of such an algorithm is of order $\varepsilon^{-d} \approx T^{\frac{d}{2\beta+d}}$.

 \rightarrow It does not explodes with the dimension d and is always smaller than T!

Explanation: higher dimension $d \Rightarrow$ worse regret bound \Rightarrow cruder discretization needed.

Contextual Bandits with Continuous Contexts

Contextual bandit setting, this time with continuous contexts.

<u>Unknown parameters:</u> $\nu_k(x)$, for each arm $k \in \{1, ..., K\}$ and context $x \in \mathcal{X}$, a probability distribution on [0, 1] with expectation $\mu_k(x) \in [0, 1]$.

At each time step t = 1, ..., T

- the environment chooses $x_t \in \mathcal{X}$ and reveals it to the player;
- the player chooses an action $k_t \in \{1, ..., K\}$;
- given k_t , the environment draws the reward $X_t \sim \nu_{k_t}(x_t)$ independently from the past;
- the player only observes the feedback X_t .

The player wants to minimize its expected regret defined as

$$\mathbb{E}R_T \stackrel{\text{def}}{=} \mathbb{E}\left[\sum_{t=1}^T \mu^*(X_t) - \sum_{t=1}^T \mu_{R_t}(X_t)\right],$$

where
$$\mu_k(x) = \mathbb{E}_{X \sim \nu_k(x)}[X]$$
 and $\mu^*(x) = \max_{k=1,...,K} \mu_k(x)$.

Discretization

Idea: discretize the context space using a regularity assumption on $\mathcal{X} \subset [0,1]^d$.

Theorem 4

Let $\beta > 0$ and $\varepsilon > 0$. Assume that $x \mapsto \mu_k(x)$ is β -Hölder for all $k \in [K]$. If UCB is independently run in each bin of an optimal ε -covering of \mathcal{X} , then

$$\mathbb{E}R_T \lesssim T\varepsilon^{\beta} + \sqrt{\frac{KT\log T}{\varepsilon^d}}.$$

In particular for ε well-optimized, we have $\mathbb{E}R_T \lesssim T \left(\frac{K \log T}{T}\right)^{\frac{\beta}{2\beta+d}}$.

Remark: in all these regret bounds, the suboptimal log *T* term can be removed by using MOSS (a minimax optimal variant of UCB).

Distribution Dependent Bounds

We used the distribution-free regret bound of UCB. Why?

 \rightarrow if the function $\mu_k(x)$ varies smoothly with x, there should be some context with zero suboptimality gap for arm k. $\frac{1}{\Delta}$ is infinite.

Better rates are possible by assuming the following α -margin assumption: the contexts x_t are i.i.d. and satisfy for all $\delta \in (0,1)$

$$\mathbb{P}\Big\{\min_{k:\Delta_k(\mathsf{X}_t)>0}\Delta_k(\mathsf{X}_t)<\delta\Big\}\leqslant \Box\delta^{\alpha} \tag{1}$$

where $\Delta_k(x_t) \stackrel{\text{def}}{=} \mu^*(x) - \mu_k(x)$ and \square is some constant. Larger $\alpha \Rightarrow$ easier problem.

Margin Assumption

 α -margin assumption: the contexts x_t are i.i.d. and satisfy for all $\delta \in (0,1)$

$$\mathbb{P}\Big\{\min_{k:\Delta_k(x_t)>0}\Delta_k(x_t)<\delta\Big\}\leqslant\square\delta^{\alpha}$$
(2)

where $\Delta_k(x_t) \stackrel{\text{def}}{=} \mu^*(x) - \mu_k(x)$ and \square is some constant. Larger $\alpha \Rightarrow$ easier problem.

Theorem 5 (Theorem 4.1, Perchet and Rigollet, "The multi-armed bandit problem with covariates", 2013)

Let $\alpha \in (0,1)$, $\beta > 0$ and $\varepsilon > 0$. Assume that $x \mapsto \mu_k(x)$ is β -Hölder for all $k \in [K]$ and that the α -margin assumption (2) holds. Running a bandit algorithm (similar to UCB) independently in each bin of an optimal ε -covering of \mathcal{X} , we get

$$\mathbb{E}R_T \lesssim T \left(\frac{K \log K}{T}\right)^{\frac{\beta(\alpha+1)}{2\beta+d}},$$

for optimized ε .

Contextual Bandits

Continuous Bandits

Contextual Bandits with Continuous Contexts

Stochastic Linear Bandits

Stochastic Linear Bandits - Motivation

Main motivation: another way to use contexts.

For contextual bandits,

- we can successfully generalize multi-armed bandits to use contexts
- however, regret rate is worse:
 - $-\sqrt{T}$ for non-contextual bandits
 - $T^{\frac{d+1}{d+2}}$ for Lipschitz rewards (β -Hölder with $\beta=1$).

Goal in this part: use a linear model assumption to get better rates.

Stochastic Linear Bandits

Unknown parameter: $\mu^* \in \mathbb{R}^d$.

At each time step t = 1, ..., T

- the environment chooses $\Theta_t \subseteq \mathbb{R}^d$, the decision set;
- the player chooses an action $\theta_t \in \Theta_t$;
- given θ_t , the environment draws the reward

$$X_t = \theta_t^{\top} \mu^* + \varepsilon_t$$

where ε_t is i.i.d. 1-subgaussian noise. $(\forall \lambda > 0, \mathbb{E}[\exp(\lambda \varepsilon_t)] \leq \exp(\lambda^2/2))$

- the player only observes the feedback X_t .

The player wants to minimize its expected regret defined as

$$\mathbb{E}R_T \stackrel{\text{def}}{=} \mathbb{E}\left[\sum_{t=1}^T \max_{\theta \in \Theta_t} \theta^\top \mu^* - \sum_{t=1}^T \theta_t^\top \mu^*\right].$$

Examples

- <u>Finite-armed bandit</u>: if $\Theta_t = (e_1, \dots, e_d)$, unit vectors in \mathbb{R}^d and $\mu^* = (\mu_1, \dots, \mu_d)$, we recover the setting of finite-armed bandit (with d arms).
- Contextual linear bandit: if $x_t \in \mathcal{X}$ is a context observed by the player and the reward function μ is of the form

$$\mu(\theta, x) = \psi(\theta, x)^{\top} \mu^*, \qquad \forall (\theta, x) \in [K] \times \mathcal{X},$$

for some unknown parameter $\mu^* \in \mathbb{R}^d$ and feature map $\psi : [K] \times \mathcal{X} \to \mathbb{R}^d$.

- <u>Combinatorial bandit</u>: $\Theta_t \subseteq \{0,1\}^d \to \text{combinatorial bandit problems. Example: decision set = possible paths in a graph, the vector <math>\mu^*$ assigns to each edge a reward corresponding to its cost and the goal is to find the smallest path with smallest cost.

Algorithmic principle: optimism

Algorithm LinUCB - UCB for linear bandits.

- Build confidence region for the parameter: C_t such that $\mu^* \in C_t$ with high probability.
- Build confidence bounds for the arm means: $U_t^{\theta} = \max_{\mu \in \mathcal{C}_t} \theta^{\top} \mu$.
- Be optimistic: pull $\theta_t = \arg \max_{\theta} U_t^{\theta}$.

Main question: how do we get C_t ?

Confidence region

After time *t*, the algorithm observed:

$$X_1 = \theta_1^\top \mu^* + \varepsilon_1$$

$$X_2 = \theta_2^\top \mu^* + \varepsilon_2$$

$$\vdots$$

$$X_t = \theta_t^\top \mu^* + \varepsilon_t$$

The unknown parameter we want to estimate is μ^* .

Denoting by I_d the $d \times d$ identity matrix and picking $\lambda > 0$, we can estimate μ^* with regularized least square

$$\widehat{\mu}_t \stackrel{\text{def}}{=} \operatorname*{arg\,min}_{\mu \in \mathbb{R}^d} \left\{ \sum_{s=1}^t (X_s - \theta_s^\top \mu)^2 + \lambda \|\mu\|^2 \right\} = V_t^{-1} \sum_{s=1}^t \theta_s X_s \,,$$

where $V_t \stackrel{\text{def}}{=} \lambda I_d + \sum_{s=1}^t \theta_s \theta_s^{\top}$.

Confidence region

Lemma 1

Let $\delta \in (0,1)$. Then, with probability at least $1-\delta$, if $\max_{\theta \in \Theta_t} \|\theta\|_2 \leqslant 1$, for all $t \geqslant 1$

$$\|\widehat{\mu}_t - \mu^*\|_{V_t} \leq \sqrt{\lambda} \|\mu^*\| + \sqrt{2 \log(1/\delta)} + d \log\left(1 + \frac{T}{\lambda}\right) \stackrel{\text{def}}{=} \beta(\delta),$$

where $\|\mu\|_{V_t}^2 = \mu^{\top} V_t \mu$.

Conclusion: with probability $1 - \delta$, for all $t \ge 1$,

$$\mu^* \in C_t$$
, where $C_t \stackrel{\text{def}}{=} \left\{ \theta \in \mathbb{R}^d : \left\| \mu - \widehat{\mu}_{t-1} \right\|_{V_{t-1}} \leqslant \beta(\delta/T) \right\}$. (3)

Regret Bound

Theorem 6

Let $T\geqslant 1$ and $\mu^*\in\mathbb{R}^d$. Assume that for all $\theta\in\cup_{t=1}^T\Theta_t$, $|\theta^\top\mu^*|\leqslant 1$, $\|\mu^*\|\leqslant 1$ and $\|\theta\|\leqslant 1$, then LinUCB with C_t defined as above satisfies the regret bound

$$\mathbb{E}R_T \leqslant \Box_{\lambda} d\sqrt{T} \log(T) \,,$$

where \square_{λ} is a constant that may depend on λ .

Remark:

- $O(\sqrt{T})$: the exponent does not depend on d.

```
With probability 1-1/T, for all t\geqslant 1, \mu^*\in C_t, where C_t\stackrel{\mathrm{def}}{=}\left\{\theta\in\mathbb{R}^d:\left\|\mu-\widehat{\mu}_{t-1}\right\|_{V_{t-1}}\leqslant\beta(1/T^2)\right\}.
```

Summary

LinUCB with C_t defined as above satisfies the regret bound

$$\mathbb{E}R_T \lesssim d\sqrt{T}\log(T)$$
,

To prove it, we assumed the following lemma:

Lemma 2

Let $\delta \in (0,1)$. Then, with probability at least $1-\delta$, if $\max_{\theta \in \Theta_t} \|\theta\|_2 \leqslant 1$, for all $t \geqslant 1$

$$\|\widehat{\mu}_t - \mu^*\|_{V_t} \leq \sqrt{\lambda} \|\mu^*\| + \sqrt{2 \log(1/\delta)} + d \log\left(1 + \frac{T}{\lambda}\right) \stackrel{\text{def}}{=} \beta(\delta),$$

where $\|\mu\|_{V_t}^2 = \mu^{\top} V_t \mu$.

Improvements

Under additional assumptions, it is possible to improve the regret bound $O(d\sqrt{T}\log T)$.

- If the set of available actions at time t is fixed and finite; i.e., $\theta_t \in \Theta$ where $|\Theta| = K$. Then, it is possible to achieve

$$\mathbb{E}R_T \leqslant \Box \sqrt{Td\log(TK)}\,,$$

which improves the previous bound by a factor $\sqrt{d}/\log(K)$ and improves the classical bound of UCB $O(\sqrt{TK\log T})$ by a factor K/\sqrt{d} .

- Another possible improvement when $d\gg 1$ is to assume that μ^* is m_0 -sparse (i.e., most of its components are zero). Then under assumptions, one can get a regret of order $\tilde{O}(\sqrt{dm_0T})$.

Combinatorial Semi-Bandits

Combinatorial semi-bandits: a linear bandit with $\Theta \subseteq \{0,1\}^d$.

When some $\theta = (0, 1, 1, ..., 0) \in \Theta$ is pulled, the player observes X_t^k for all $k \in [d]$ for which $\theta_k = 1$.

The total reward is then (for example) $X_t = \sum_k X_t^k \mathbb{I}\{\theta_k = 1\}$.

Observation mechanisms:

- Full information: see X_t^k for all $k \in [d]$.
- Semi-bandit: see X_t^k for all $k \in [d]$ for which $\theta_k = 1$.
- Bandit: see only X_t , total reward.

Algorithm: use all available information in a LinUCB-like algorithm.

Confidence region proof

We want to prove: with probability at least $1 - \delta$, if $\max_{\theta \in \Theta_t} \|\theta\|_2 \leqslant 1$, for all $t \geqslant 1$

$$\|\widehat{\mu}_t - \mu^*\|_{V_t} \leq \sqrt{\lambda} \|\mu^*\| + \sqrt{2\log(1/\delta)} + d\log\left(1 + \frac{T}{\lambda}\right).$$

References

Thank you!

Cesa-Bianchi, Nicolo and Gábor Lugosi. Prediction, learning, and games. Cambridge university press, 2006.

Hazan, Elad et al. "Introduction to online convex optimization". In: Foundations and Trends® in Optimization 2.3-4 (2016). pp. 157–325.

Lattimore, Tor and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Perchet, Vianney and Philippe Rigollet. "The multi-armed bandit problem with covariates". In: The Annals of Statistics (2013), pp. 693–721.

Shalev-Shwartz, Shai et al. "Online learning and online convex optimization". In: Foundations and Trends® in Machine Learning 4.2 (2012), pp. 107–194.

Whiteboard

Whiteboard

Whiteboard