550. If 20.00 mL of a 0.0090 M solution of $(NH_4)_2S$ is mixed with 120.00 mL of a 0.0082 M solution of Al $(NO_3)_3$, does a precipitate form? The K_{sp} of Al $_2S_3$ is 2.00×10^{-7} .

Mixed Review

- **551.** The molar concentration of a saturated calcium chromate, CaCrO₄, solution is 0.010 M at 25°C. What is the K_{sp} of calcium chromate?
- **552.** A 10.00 mL sample of a saturated lead selenate solution is found to contain 0.00136 g of dissolved PbSeO₄ at 25°C. Determine the K_{SP} of lead selenate.
- **553.** A 22.50 mL sample of a saturated copper(I) thiocyanate, CuSCN, solution at 25°C is found to have a 4.0×10^{-6} M concentration.
 - **a.** Determine the K_{sp} of CuSCN.
 - **b.** What mass of CuŚCN would be dissolved in 1.0×10^3 L of solution?
- **554.** A saturated solution of silver dichromate, $Ag_2Cr_2O_7$, has a concentration of 3.684 \times 10⁻³ M. Calculate the K_{sp} of silver dichromate.
- **555.** The K_{sp} of barium sulfite, BaSO₃, at 25°C is 8.0×10^{-7} .
 - a. What is the molar concentration of a saturated solution of BaSO₃?
 - **b.** What mass of BaSO₃ would dissolve in 500. mL of water?
- **556.** The K_{sp} of lead(II) chloride at 25°C is 1.9×10^{-4} . What is the molar concentration of a saturated solution at 25°C?
- **557.** The K_{sp} of barium carbonate at 25°C is 1.2×10^{-8} .
 - **a.** What is the molar concentration of a saturated solution of BaCO₃ at 25°C?
 - **b.** What volume of water would be needed to dissolve 0.10 g of barium carbonate?
- **558.** The K_{SD} of SrSO₄ is 3.2×10^{-7} at 25°C.
 - **a.** What is the molar concentration of a saturated SrSO₄ solution?
 - b. If 20.0 L of a saturated solution of SrSO₄ were evaporated to dryness, what mass of SrSO₄ would remain?
- **559.** The K_{sp} of strontium sulfite, SrSO₃, is 4.0×10^{-8} at 25°C. If 1.0000 g of SrSO₃ is stirred in 5.0 L of water until the solution is saturated and then filtered, what mass of SrSO₃ would remain?
- **560.** The K_{sp} of manganese(II) arsenate is 1.9×10^{-11} at 25° C. What is the molar concentration of $Mn_3(AsO_4)_2$ in a saturated solution? Note that five ions are produced from the dissociation of $Mn_3(AsO_4)_2$.
- **561.** Suppose that 30.0 mL of a 0.0050 M solution of $Sr(NO_3)_2$ is mixed with 20.0 mL of a 0.010 M solution of K_2SO_4 at 25°C. The K_{sp} of $SrSO_4$ is 3.2×10^{-7} .
 - **a.** What is the ion product of the ions that can potentially form a precipitate?
 - **b.** Does a precipitate form?
- **562.** Lead(II) bromide, PbBr₂, is slightly soluble in water. Its K_{sp} is 6.3×10^{-6} at 25°C. Suppose that 120. mL

- of a 0.0035 M solution of MgBr₂ is mixed with 180. mL of a 0.0024 M Pb($C_2H_3O_2$)₂ solution at 25°C.
- **a.** What is the ion product of Br⁻ and Pb²⁺ in the mixed solution?
- b. Does a precipitate form?
- **563.** The K_{sp} of Mg(OH)₂ at 25°C is 1.5×10^{-11} .
 - **a.** Write the equilibrium equation for the dissociation of Mg(OH)₂.
 - **b.** What volume of water would be required to dissolve 0.10 g of Mg(OH)₂?
 - c. Considering that magnesium hydroxide is essentially insoluble, why is it possible to titrate a suspension of Mg(OH)₂ to an equivalence point with a strong acid such as HCl?
- **564.** Lithium carbonate is somewhat soluble in water; its K_{sp} at 25°C is 2.51×10^{-2} .
 - a. What is the molar concentration of a saturated Li₂CO₃ solution?
 - b. What mass of Li₂CO₃ would you dissolve in order to make 3440 mL of saturated solution?
- **565.** A 50.00 mL sample of a saturated solution of barium hydroxide, Ba(OH)₂, is titrated to the equivalence point by 31.61 mL of a 0.3417 M solution of HCl. Determine the K_{SP} of Ba(OH)₂.
- **566.** Calculate the K_{sp} for salts represented by QR that dissociate into two ions, Q⁺ and R⁻, in each of the following solutions:
 - a. saturated solution of QR is 1.0 M
 - **b.** saturated solution of QR is 0.50 M
 - c. saturated solution of QR is 0.1 M
 - d. saturated solution of QR is 0.001 M
- **567.** Suppose that salts QR, X_2Y , KL_2 , A_3Z , and D_2E_3 form saturated solutions that are 0.02 M in concentration. Calculate K_{sp} for each of these salts.
- **568.** The K_{sp} at 25°C of silver bromide is 5.0×10^{-13} . What is the molar concentration of a saturated AgBr solution? What mass of silver bromide would dissolve in 10.0 L of saturated solution at 25°C?
- **569.** The K_{sp} at 25°C for calcium hydroxide is 5.5×10^{-6} .
 - a. Calculate the molarity of a saturated Ca(OH)₂ solution.
 - **b.** What is the OH⁻ concentration of this solution?
 - **c.** What is the pH of the saturated solution?
- **570.** The K_{sp} of magnesium carbonate is 3.5×10^{-8} at 25° C. What mass of MgCO₃ would dissolve in 4.00 L of water at 25° C?

Redox Equations: Chap. 19, Sec. 2

Reactions in Acidic Solution

Balance the following redox equations. Assume that all reactions take place in an acid environment where H^+ and H_2O are readily available.

- **571.** Fe + SnCl₄ \rightarrow FeCl₃ + SnCl₂
- **572.** $H_2O_2 + FeSO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + H_2O$
- 573. $CuS + HNO_3 \rightarrow Cu(NO_3)_2 + NO + S + H_2O$
- **574.** $K_2Cr_2O_7 + HI \rightarrow CrI_3 + KI + I_2 + H_2O$