		Engineering Mathematics	
.1	If P and Q ar	e two random events, then which of the following is true?	
	(A) Independ	dence of P and Q implies that Probability $(P \cap Q) = 0$	
	(B) Probabil	$ity(P \cap Q) \ge Probability(P) + Probability(Q)$	

(C) If P and Q are mutually exclusive then they must be independent

red is

	(D) Probability $(P \cap Q) \leq \text{Probability}(P)$			
Q.2	box contains 4 white balls and 3 red balls. In succession, two balls are randomly selected and remove	ed		
	om the box. Given that the first removed ball is white, the probability that the second removed ball	is		

(A) $\frac{1}{3}$	(B) $\frac{3}{7}$	(C) $\frac{1}{2}$	(D) $\frac{4}{7}$
 0 11	1 1 11	TI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C C 1 11 C

Consider a company that assembles computers. The probability of a faulty assembly of any computer is Q.3p. The company therefore subjects each computer to a testing process. This testing process gives the correct result for any computer with a probability of q. What is the probability of a computer being declared faulty? (A) pq + (1-p)(1-q) (B) (1-q)p (C) (1-p)q

Q.4	A determinant is selected from the set of all determinants of order 2 with elements 0 and (or) 1. Find the
	probability that the selected determinant is non zero:

(A) $\frac{13}{16}$ (B) $\frac{10}{16}$ (C) $\frac{6}{16}$ (D) 0

An examination consists of two papers, paper 1 and paper 2. The probability of failing in paper 1 is 0.3 **Q.5** and that in paper 2 is 0.2. Given that a student has failed in paper 2, the probability of failing in paper 1 is 0.6. The probability of a student failing in both papers is

(A) 0.5(B) 0.18 (C) 0.12(D) 0.06

Dialing a phone number, A man forgot the last two digits and remembering only that they are different Q.6 dialed them at random the probability the number being dialled correctly.

(A)	$\frac{1}{2}$	(B) $\frac{1}{45}$	(C) $\frac{1}{72}$	(D) $\frac{1}{90}$

	at random and tossed to happened in biased coin		on both the times. Then	n the probability that the head is
	(A) $\frac{13}{40}$	(B) $\frac{4}{13}$	(C) $\frac{9}{13}$	(D) $\frac{5}{13}$
Q.8	does not know the ans	wer, then the student gue yen that the student has an	sses the answer. The pr	ice question is 2/3. If the student obability of the guessed answer ectly, the conditional probability
	(A) $\frac{2}{3}$	(B) $\frac{3}{4}$	(C) $\frac{5}{6}$	(D) $\frac{8}{9}$
Q.9	In binomial distribution	$n B\left(n, p = \frac{1}{4}\right) \text{ if the problem}$	pability of atleast 1succe	ess is greater than equal to $\frac{9}{10}$.
	Then n is approximate	ly equal		
Q.10	Consider a random vari	able to which a Poisson o	listribut <mark>ion is bes</mark> t fitted.	It happens that $P_{(X=1)} = \frac{2}{3} P_{(X=2)}$
	on this distribution plot. The variance of this distribution will be			
	(A) 3	(B) 2	(C) 1	(D) $\frac{2}{3}$

There are ten coins, of these nine are unbiased and one is a biased coin with two heads. A coin is drawn

Q.7

