

American International University- Bangladesh (AIUB) Faculty of Engineering

Course Name :	Electronic Devices	Course Code:	EEE 2103
Semester:	Summer 2020-21	Section:	
Faculty:	Nowshin Alam	Term	Mid

Assignment No:	1
CO Number	CO2
POI Number	P.b.1.C2

Student Name:	Anonnya Sarkar	Student ID:	20-42600-1
---------------	----------------	--------------------	------------

Submission Date:	04/07/21	Due Date:	07/07/21

Marking Rubrics (to be filled by Faculty):

Problems	Excellent [5]	Proficient [4]	Good [3]	Acceptable [2]	Unacceptable [1]	No Response [0]	Secured Marks
(i)	Detailed unique response explaining the concept properly and answer is correct with all works clearly shown.	Response with no apparent errors and the answer is correct, but explanation is not adequate/unique.	Response shows understanding of the problem, but the final answer may not be correct.	Partial problem is solved; response indicates part of the problem was not understood clearly.	Unable to clarify the understanding of the problem and method of the problem solving was not correct.	No Response	
(ii)	Detailed unique response explaining the concept properly and answer is correct with all works clearly shown.	Response with no apparent errors and the answer is correct, but explanation is not adequate/unique.	Response shows understanding of the problem, but the final answer may not be correct	Partial problem is solved; response indicates part of the problem was not understood clearly.	Unable to clarify the understanding of the problem and method of the problem solving was not correct	No Response	
Comments						Total marks (10)	

<u>INSTRUCTIONS:</u> When a question mentions "ID" as a value, you have to use the <u>last two digits of your ID</u> before the hyphen. For example, for 12-34567-8 it would be <u>67</u>. If the last 2 digits of your ID form a number less than 10, then add 10 with the number before using it to solve the problems. If the last 2 digits of your ID form a number greater than or equal to 10, you can use it as it is.

Note: Copied/identical submissions will be graded as 0 for all parties concerned.

Imagine a situation where your laptop is almost out of charge. To charge up your laptop, you have to use the wall socket, which provides a sinusoidal AC output of ($\mathbf{ID}+\mathbf{100}$) V (rms) and 50 Hz, but your laptop needs to receive a DC voltage of ($\mathbf{\underline{ID}} \div 5$) +15 V to be charged. However, the connection from the wall socket can be a bit unstable as sometimes it spikes to a much higher than the rated value.

To address the above issue, **illustrate** a diode-based circuit that can be placed between the wall socket and your laptop to charge your laptop successfully and safely.

Design Criteria:

- 1) The regular diodes (choose between Ge, Si, GaAs), zener diode, and resistors can be used to construct the circuit.
- 2) The PIV of the diode must exceed the peak value of the AC input.
- 3) An overcharge protection must be implemented to keep your laptop from being damaged from spikes in the voltage.

Based on this criterion, demonstrate the following:

- i) Identify the name of the circuit and illustrate the designed circuit with appropriate connections and adequate labeling. Also, Explain the operation of the designed circuit.
 [5]
- ii) **Show** the appropriate label of the input and output voltage wave shapes of the designed circuit. [5]

My ID = 20-42600-1

as the last two digit of my id is oo so I have to add 10 with it.

AC output, N1 = (ID+100) = (10+100) = 110 N (rcms)

DC output,
$$\sqrt{2} = 3(10 \div 5) + 15$$
?

= $2 \times (10 \div 5) + 15$?

= $(2+15)$ \cdots
= 17 \cdots

Diodes considered can be normal Si diodes with \$\frac{17}{23} \times forward voltage drop and specification for genera diode is considered as \$V_2=17 \times I_{2min} = 0A \times I_{2max} = \frac{25A}{mA} \\ R_L = 2 \times \Omega\$

.'. load current =
$$\frac{17}{2}$$

= 8.5 mA

Now, Zener dio de will act as regulatore which will save ther circuite when i/p will be much higher than reated value. let, $R = 100 \Omega$

Rectifier
$$0/P(min)$$

= 17 + (8.5×10⁻³×100) ×
= 17.85 ×

Rectifier
$$0/p \text{ (max)}$$

 $17 + (8.5 + 25) \times 10^{-3} \times 100$
 $= 20.35 \text{ m}$

Now, considering 0.7 v forward voltage droop in Si diodes, the reectifier i/p and % waveforens will be mon as it as library of Vm 0 = sin (1.4 / vm) Now Avarage value of VR will be VRavg = 1 / 11-01 (Vmsm wt-1.4) d (wt) = 1 [Vm[-cosw+] [1-0] = 1 [2 Vm coso, -1.4 (11-201)] = 1 [vm coso, - cos (n-0,)-1.4 = 1 [2Vm cos 0,-1.4 (11-201)] :. VRang = 1 [2 \[\frac{1.4^2 - 1.411 + 2.8 \sin^{-1} \left(\frac{1.14}{Vm}\right)]

Let's consider Vm = 50 v

VRANG = 31.84 which is almost same with required rectifier 0/p (min) i. e

17.85 V and as it is in range

[17.85, 20.35], Zenera dio de can maintain

30-17 V 0/P

Now with the Vm=50 V, we have all

Socket 0/P 110 V (rans)

i.e (110/2) = 155.56 v peak

Transformer twins reation = 155.56 = 3.112

Our final design will be.

Diode PIV will be (2vm) = (2x50) = 100v