# Visualization Visual Analytics (VA)





Based on Material by Marc Streit and Alexander Lex

### **VA** Motivation

- Possibilities to collect and store data increase
- Faster than ability to use it for decision making

Danger of getting lost in the data

- Data has no value in itself
- Extract the information contained in it!



## Data → Information → Knowledge → Wisdom

[Bellinger 2004]

#### Data

Symbols

#### Information

Data that are processed to be useful; provides answers to "who", "what", "where", and "when" questions

#### Knowledge

 Application of data and information; answers "how" questions

#### Wisdom

Evaluated understanding



http://www.systems-thinking.org/dikw/dikw.htm



## History of VA

- Move from confirmatory to exploratory data analysis
  - ▶ John W. Tukey 1977 in "Exploratory Data Analysis" book
  - Confirmatory: charts and other visual representations to present data
  - Exploratory: interact with data
- Visual data exploration & visual data mining
- Visual analytics
  - **2004**
  - Research and development agenda "Illuminating the Path"



### **VA** Definition

- "Visual Analytics is the science of analytical reasoning supported by a highly interactive visual interface." [WongThomas 2004]
- "Visual Analytics combines automated analysis techniques with interactive visualisations for an effective understanding, reasoning and decision making on the basis of very large and complex datasets" [Keim 2010]

Detect the expected and discover the undetected



## Visual Analytics Process

- First step: preprocess and transform data
  - Data cleaning, normalization, grouping, data fusion
- Alternating between visual and automatic methods

#### Visual Data Exploration





## **Application Fields**

- Physics
- Astronomy
- Climate and weather
- Biology
- Medicine
- Business Intelligence



### VAST

- IEEE Conference on Visual Analytics Science and Technology
- Founded 2006
- Co-located with IEEE VisWeek (Vis, InfoVis)

- New: EuroVA
  - Co-located with EuroVis



## Interdisciplinary!





## **VISUALIZATION**

Already covered in other lectures!



## **DATA MANAGEMENT**



## Heterogeneous Data

- Until last decade
  - Focus on efficiency and scalability
  - Uniform, structured data
- Numeric data, graphs, text, audio, video, etc.+
- Different formats
- Different sources
- Dealing with missing and inaccurate data values

- Users get overwhelmed
  - Data/information overload problem!



## Data Types

- Numeric Data
- Text
- Graphs
- Audio
- Video signals
- etc.



## Data Management

- Data Management is a well understood field
  - Research over past 30 years
- Dynamicity problem
  - Data Management: Static two step interaction
    - 1. Query formulation
    - 2. Result collection
  - Interactive analysis
    - Response in < 100 msec necessary</p>
- User interaction life-cycle
  - Data Management: Single user, one shot
  - Interactive analysis:Long-term activities and collaborative tasks



## Ways to manage data in VA

- Flat files
  - Lack of typing and metadata
  - ▶ E.g., spreadsheets, CSV
- Structured file formats
  - Adds typing
  - ► E.g., XML
- Traditional (relational) databases
  - Row-based
  - Robust / mature



## Ways to manage data in VA (2)

- Analytical databases
  - Column-based architecture
- NoSQL systems
  - Cloud Storage
- Workflow and dataflow systems
  - Apply a previous or well-known process repeatedly

Interactive analysis needs in-memory storage!



## **Data Cleaning**

- Missing values
- Inaccurate values
- Null values

- Curative algorithms: Providing an alternative
  - Interpolation
  - Statistically computed
- Visualization

- Complex and time consuming!
  - Even for small data sets



## Challenge: Uncertainty

#### Definition

▶ "Degree to which the lack of knowledge about the amount of error is responsible for hesitancy in accepting results and observations with caution" [Hunter 1993]

#### Measurement data

▶ E.g., DNA microarray expression data





## Uncertainty Visualization Example



## Challenge: Semantics Management

- Manage not only data itself
- But also
  - Meta data
  - Abstraction levels
  - Hierarchical structures

Needed for automatic and semi-automatic analysis



## Challenge: Data Streaming

- Dynamic data
- Example
  - VA of social network with life feed data
- Re-calculating everything is not a solution



## **Network Traffic Analysis**



# Challenge: Distributed and Collaborative VA

- Interdisciplinary analysis problems
- Single domain expert may not be enough
  - → Need for collaboration
- Annotating data and insights
- Share findings with different users

Co-located vs. distributed



## Co-Located Visual Analytics



[Streit, CoVis 2009]



## Deskotheque Lab at ICG



[Waldner, CoVis 2009]



## Challenge: VA for the Masses

Web-based system

+

Integrated data management

+

Interactive visualization

=

Visual Analytics for the Masses

- Home user becomes naive analyst
- Challenges
  - Raises heterogeneity (data sources and devices)
  - User Acceptance Issues
  - Scalability



## VA for the Masses: Gapminder

- World census data
- http://graphs.gapminder.org/world

- Software: Trendalyzer
  - Acquired by Google in 2007
  - Interactive 2D-Scatterplot
  - Plus color and size for additional attributes
  - Linking and brushing
    - Sliders





## VA for the Masses: Gapminder (2)

Hans Rosling – TED talks

- http://www.gapminder.org/videos/
- http://www.youtube.com/watch?v=jbkSRLYSojo



## VA for the Masses: ManyEyes

- IBM Research
- http://www-958.ibm.com/software/data/cognos/manyeyes/





## **DATA MINING**



## Data Mining Intro

- Definition
  - Automatic algorithmic extraction of valuable information from raw data

Find interesting facts in large datasets



### Statistics vs. Visualization

- Ascombe's quartett
- Statistics profile is the same for all!
  - Mean of x = 9.0
  - Mean of y = 7.5
  - ▶ Sums of squared errors = 110
  - Correlation coefficient = 0.82
  - Coefficient of determination = 0
  - etc.

|      | Ι     | I    | Ι    | I    | II    | IV   |       |  |
|------|-------|------|------|------|-------|------|-------|--|
| X    | У     | x y  |      | X    | У     | X    | У     |  |
| 10.0 | 8.04  | 10.0 | 9.14 | 10.0 | 7.46  | 8.0  | 6.58  |  |
| 8.0  | 6.95  | 8.0  | 8.14 | 8.0  | 6.77  | 8.0  | 5.76  |  |
| 13.0 | 7.58  | 13.0 | 8.74 | 13.0 | 12.74 | 8.0  | 7.71  |  |
| 9.0  | 8.81  | 9.0  | 8.77 | 9.0  | 7.11  | 8.0  | 8.84  |  |
| 11.0 | 8.33  | 11.0 | 9.26 | 11.0 | 7.81  | 8.0  | 8.47  |  |
| 14.0 | 9.96  | 14.0 | 8.10 | 14.0 | 8.84  | 8.0  | 7.04  |  |
| 6.0  | 7.24  | 6.0  | 6.13 | 6.0  | 6.08  | 8.0  | 5.25  |  |
| 4.0  | 4.26  | 4.0  | 3.10 | 4.0  | 5.39  | 19.0 | 12.50 |  |
| 12.0 | 10.84 | 12.0 | 9.13 | 12.0 | 8.15  | 8.0  | 5.56  |  |
| 7.0  | 4.82  | 7.0  | 7.26 | 7.0  | 6.42  | 8.0  | 7.91  |  |
| 5.0  | 5.68  | 5.0  | 4.74 | 5.0  | 5.73  | 8.0  | 6.89  |  |

(a) Four datasets with different values and the same statistical profile



## Simple Visualization: Dot plot

|                                                                             | Ι     | I    | Ι    | I    | III   | I    | V     |      |       |    |         |    |    |   |
|-----------------------------------------------------------------------------|-------|------|------|------|-------|------|-------|------|-------|----|---------|----|----|---|
| X                                                                           | У     | X    | У    | X    | У     | X    | У     |      | ı     |    |         |    |    |   |
| 10.0                                                                        | 8.04  | 10.0 | 9.14 | 10.0 | 7.46  | 8.0  | 6.58  |      |       |    | _       |    | ١. |   |
| 8.0                                                                         | 6.95  | 8.0  | 8.14 | 8.0  | 6.77  | 8.0  | 5.76  |      |       |    |         |    |    |   |
| 13.0                                                                        | 7.58  | 13.0 | 8.74 | 13.0 | 12.74 | 8.0  | 7.71  |      | _     | •  |         |    |    |   |
| 9.0                                                                         | 8.81  | 9.0  | 8.77 | 9.0  | 7.11  | 8.0  | 8.84  |      |       |    |         |    | •  |   |
| 11.0                                                                        | 8.33  | 11.0 | 9.26 | 11.0 | 7.81  | 8.0  | 8.47  | 4    |       |    | -       |    |    | - |
| 14.0                                                                        | 9.96  | 14.0 | 8.10 | 14.0 | 8.84  | 8.0  | 7.04  | 12 - | . III |    | •       |    | IV |   |
| 6.0                                                                         | 7.24  | 6.0  | 6.13 | 6.0  | 6.08  | 8.0  | 5.25  | 8 -  |       |    | /       |    |    |   |
| 4.0                                                                         | 4.26  | 4.0  | 3.10 | 4.0  | 5.39  | 19.0 | 12.50 | 0 1  |       |    | ••      |    |    |   |
| 12.0                                                                        | 10.84 | 12.0 | 9.13 | 12.0 | 8.15  | 8.0  | 5.56  | 4 -  |       |    |         |    | •  |   |
| 7.0                                                                         | 4.82  | 7.0  | 7.26 | 7.0  | 6.42  | 8.0  | 7.91  | 0 -  |       |    |         |    |    |   |
| 5.0                                                                         | 5.68  | 5.0  | 4.74 | 5.0  | 5.73  | 8.0  | 6.89  | -    | )     | 10 | )       | 20 | +  | - |
| (a) Four detects with different values and (b) Det Plet of the four detects |       |      |      |      |       |      |       |      |       |    | to anta |    |    |   |

(a) Four datasets with different values and the same statistical profile

(b) Dot Plot of the four datasets

Fig. 6. Anscombe's Quartet



# Traditional Data Mining vs. Visual Analysis Processes





# Knowledge Discovery and Data Mining (KDD)

- Semi or fully automated analysis of massive data sets
- Contributions are more about general methodologies

- Black-box methods in the hands of end users
  - Users need to understand the algorithms for using them
  - What attributes to use? What similarity measure? etc.
  - Often trial and error



### In Contrast: Visualization

- Incorporate
  - Experts' background knowledge
  - Creativity
  - Intuition
  - But: only relatively small data sets

VA has to bridge these two fields!



## Supervised vs. Unsupervised Learning

#### Supervised learning

- Based on set of training samples
- Learn models for classification of previously unseen data samples
- Unsupervised learning
  - Extract structure form data without prior knowledge
  - Example: Cluster analysis
  - Example: Dimensionality reduction



## Cluster Analysis

- Automatically group data instances into classed based on mutual similarity
- Distance metric

- Hierarchical
- Partitional
  - K-Means
- Bi-clustering
  - Simultaneous clustering of rows and columns
- Fuzzy



#### Hierarchical Clustering

Distance metric: Euclidean distance



## Hierarchical, Clustered Heat Map







## K-Means Clustering

- Partition n observations into k clusters
- Each observation belongs to the cluster with the nearest mean



1) *k* initial "means" (in this case *k*=3) are randomly selected from the data set (shown in color).



2) k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.



3) The centroid of each of the *k* clusters becomes the new means.



4) Steps 2 and 3 are repeated until convergence has been reached.

http://en.wikipedia.org/wiki/K-means\_clustering



#### **Dimension Reduction**

- High-dimensional data
- Transform to space with fewer dimensions
- Linear and non-linear approaches
- Example
  - PCA (Principle Component Analysis)

- Disadvantages
  - Hard to preserve semantics of single dimensions
  - Hard to understand and interpret



## **INFRASTRUCTURE**



#### Infrastructure

- Linking together all the processes, functions and services required by VA applications
- Current state
  - Custom-built stand-alone applications (ad-hoc systems)
  - In-memory data storage (rather than DBMS)
  - No off-the-shelf systems
  - Need to implement them with limited domain skills
  - No intercompatibility / interoperatibility
- Problematic commercial market



## Data Analysis Environments

- Statistical analysis
  - R, SPSS, SAS
- Scientific computation
  - Matlab, Scilab
- Machine learning toolkits
  - WEKA
- Textual Analysis
  - ▶ GATE, UIMA, SPSS/Text, SAS Text Miner
- Video/image analysis
  - ▶ OpenCV, IRIS Explorer ter, PhD | seichter@fh-sm.de | Schmalkalden University of Applied Sciences



# PERCEPTION AND COGNITION



#### Differentiation

- Perception
  - How people interpret the surroundings

- Cognition
  - Ability to understand visual information
  - Largely based on prior learning



# **EVALUATION**



#### **Evaluation**

- Goal
  - Compare approaches
  - Identify problems
- Assess
  - User acceptance
  - Effectiveness
    - doing "right" things, i.e. setting right targets to achieve an overall goal (the effect)
  - Efficiency
    - doing things in the most economical way (good input to output ratio)

## Evaluation (2)

Quantitative vs. Qualitative methods

- Recently evaluation becomes more prominent
- Challenge
  - How to evaluate interactive, explorative visual data analysis?



#### **VA Conclusion**

- Every research field runs through same stages
- BRETAM Model -- VA is only at replication stage!





#### The End

## **QUESTIONS?**

