Computación Bioinspirada

Dr. Edward Hinojosa Cárdenas ehinojosa@unsa.edu.pe

La Programación Evolutiva (PE) fue propuesta por Fogel,
 Owens e Walsh a mediados de la década 60.

"Artificial Intelligence Through Simulated Evolution"

- PE fue desarrollada originalmente para simular a la evolución como un proceso de aprendizaje
 - Con el objetivo de generar inteligencia artificial
- Inteligencia: capacidad de un sistema de adaptar su comportamiento para lograr objetivos predefinidos en un ambiente dado (comportamiento adaptado)
- La capacidad para predecir el ambiente fue considerada como un requisito para lograr adaptabilidad (comportamiento inteligente o adaptado)
- Por lo tanto, la capacidad para predecir el ambiente es clave para lograr inteligencia

- La PE se basa en la evolución natural, pero considerando que el proceso evolutivo no se centra en el nivel de los individuos, sino en el nivel de las especies enteras.
- En la PE cada individuo representa una especie, por lo tanto no existe intercambio a través genético a través de especies, por ello se omite el operador de cruzamiento.

- La PE enfatiza en la optimización de modelos de comportamiento:
 - Modelar el comportamiento con del fin de predecir lo que va a suceder (Predicción)
 - Capturar la interacción del sistema con el ambiente.

 Una forma común de predecir una acción consiste en el análisis de acciones anteriores.

- En el contexto de una MEF, cada acción o suceso puede ser representada por un símbolo.
 - Dada una secuencia de símbolos, se debe predecir cual será el próximo símbolo.

- Los símbolos deben pertenecer a un alfabeto finito.
- Para realizar la optimización debemos:
 - Analizar la secuencia de símbolos.
 - Generar una salida que optimice un función de aptitud dada, la cual envuelve el pronóstico del próximo símbolo de la secuencia:
 - Mercado Financiero, Predicción del Tiempo, etc.

 Cuando se considera por un alfabeto finito de símbolos, responde con otro alfabeto finito de símbolos y posee un número finito de estados.

 Alfabetos de entrada y salida no son necesariamente idénticos.

- Inicialmente en PE, los predictores fueron evolucionados en la forma de máquinas de estado finito
- Máquina de Estado Finito (MEF)
 - Estados (S)
 - Entradas (I)
 - Salidas (O)
 - Función de transición δ : $S \times I \rightarrow S \times O$
 - Transforma una cadena de símbolos de entrada en una cadena de símbolos de salida
- Pueden ser usadas para predicciones (ej.: predecir el siguiente símbolo de entrada en una cadena de entrada).

Ejemplo de MEF

- Considerar la MEF con:
 - S = {A, B, C}

 - $O = \{a, b, c\}$
 - ullet δ especificada por el diagrama.

Ejemplo de una MEF como un predictor

- Tarea: predecir la siguiente entrada
- Calidad de Pred. o Aptitud:in(i+1) = out(i)
- Estado inicial: C
- Secuencia de entrada: 011101
- Secuencia de salida: 110111
- Aptitud: 3 aciertos de 5

$$S = \{A,B,C\} \mid \{0,1\} \mid O = \{0,1\}$$

```
Procedure EP{
                                          No existe cruzamiento,
    t = 0;
                                          solo Mutación
    Initialize P(t);
    Evaluate P(t);
    While (Not Done)
      Parents(t) = Select Parents(P(t));
      Offspring(t) = Procreate(Parents(t));
      Evaluate(Offspring(t));
      P(t+1) = Select Survivors(P(t),Offspring(t));
      t = t + 1;
```

Programación Evolutiva: Codificación

- Aunque PE puede tener individuos de tamaño variable, es posible evolucionar una MEF con PE donde los individuos tienen tamaño fijo:
 - Definir un número máximo de estados.
- Por ejemplo, vamos a considerar la máquina de predicción presentada anteriormente, la cual puede tener como máximo 4 estados.

Programación Evolutiva: Codificación

Programación Evolutiva: Codificación

• Como vimos, cada estado puede ser representado por una cadena de 7 caracteres:

A B C D

11011AB 10101BC 11001AB 00000DA

Operadores usados en la PE: Mutación

- Diferente a los AG donde el cruzamiento es un componente importante para la producción de una nueva generación, la mutación es el único operador usado en la PE.
- Podemos considerar, cada miembro de la población después de la mutación produce un hijo. Si tenemos M (tamaño de la población) ascendientes serán generados M descendientes.

Operadores usados en la PE: Mutación

 La mejor mitad de la población ascendiente y la mejor mitad de la población descendiente se unen para formar la nueva generación.

Operadores usados en la PE: Mutación

• Cinco tipos de mutación pueden ocurrir en una máquina de estados finitos. Se recomienda las siguientes probabilidades (siempre se realiza una mutación que genera un individuo viable diferente al ascendente):

Valor	Acción
0.0 - 0.2	Desactivar un estado
0.2 - 0.4	Cambiar estado inicial
0.4 - 0.6	Cambiar un símbolo de entrada
0.6 - 0.8	Cambiar un símbolo de salida
0.8 – 1.0	Activar un estado

Operadores usados en la PE: Mutación

- En muchos casos la mutación puede generar individuos inviables, como transiciones que no sean posibles (pues un estado puede haber sido eliminado).
- Esos problemas deben ser identificados y corregidos durante la implementación.

Criterios de Parada

- Se pueden considerar diferentes criterios de parada, por ejemplo:
 - Cuando el fitness es satisfactorio.
 - Definir un números de generaciones.

Laboratorio 4 (0 a 20)

- Evolucione una MEF usando PE con las siguientes características:
 - Considerar 4 estados como máximo.
 - Utilizar la codificación vista anteriormente.
 - Considerar M = 4.
 - Considerar que solamente los individuos que tengan por lo menos dos estados activos sean admitidos en la población.
 - Para cada individuo utilice la calidad de predicción mostrado anteriormente como aptitud del clima considerando la siguiente entrada (N = Nublado, S = Sol):

NSSNSSNSSNSS

Ejemplo de una MEF como un predictor

- Posible respuesta:
 - \circ S = {A, B, C}
 - $I = \{N, S\}$
 - $O = \{N, S\}$

E: NSSNSSNSSNSS

S: SSNSSNSSNSSN

Aptitud = 0

GRACIAS

Dr. Edward Hinojosa Cárdenas ehinojosa@unsa.edu.pe