BEST AVAILABLE COPY

BUNDESREPUBLIK DEUTSCHLAND

REC'D 13 OCT 2004 WIPO

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 022 065.4

SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

Anmeldetag:

5. Mai 2004

Anmelder/Inhaber:

Degussa AG, 40474 Düsseldorf/DE

Bezeichnung:

Screeningverfahren für Hydantoinrazemasen

Priorität:

6. Juni 2003 DE 103 26 109.5

IPC:

C 12 N, C 12 Q, C 07 H

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 27. September 2004 **Deutsches Patent- und Markenamt** Der Präsident Im Auftrag

15

20

Screeningverfahren für Hydantoinrazemasen

Die vorliegende Erfindung ist auf ein Screeningverfahren zur Detektion verbesserter Hydantoinrazemasen, neue Hydantoinrazemasen selbst und deren Verwendung zur Herstellung von N-Carbamoyl-Aminosäuren gerichtet.

Diese optisch aktiven Verbindungen sind in der organischen Synthese zur Herstellung von z.B. bioaktiven Wirkstoffen häufig eingesetzte Verbindungen. Sie kommen auch in chiralen Auxiliaren z.B. in Form der Aminoalkohole (Evans-Reagenzien) vor.

Die enzymatische Hydrolyse von 5-substituierten Hydantoinen zu N-Carbamoyl-Aminosäuren und deren Weiterreaktion zu den entsprechenden enantiomerenangereicherten Aminosäuren ist eine Standardmethode in der organischen Chemie ("Enzyme Catalysis in Organic Synthesis", Eds.: Drauz, Waldmann, VCH, $1^{\rm st}$ and $2^{\rm nd}$ Ed.). Die Enantiodifferenzierung kann dabei entweder auf der Stufe der Hydantoinhydrolyse durch Hydantoinasen erfolgen oder aber wahlweise bei der Spaltung der N-Carbamoyl-Aminosäuren mittels enantioselektiver Carbamoylasen. Da die Enzyme nur jeweils eine optische Antipode der entsprechenden Verbindung umsetzen, wird versucht, die andere im Gemisch (in-situ) zu razemisieren, um den vollständigen Umsatz des razemisch leicht herstellbaren Hydantoins in die korrespondierende enantiomerenangereicherte Aminosäure zu gewährleisten. Die Razemisierung kann dabei entweder auf der Stufe der Hydantoine mittels chemischer (Base, Säure, erhöhte Temp.) oder enzymatischer Verfahren erfolgen oder aber auf der Stufe der N-Carbamoyl-Aminosäuren mittels z.B.

Acetylaminosäurerazemasen (DE10050124) vonstatten gehen. Letztere Variante funktioniert erfolgreich naturgemäß nur bei Einsatz von enantioselektiven Carbamoylasen. Das nachfolgende Schema veranschaulicht diesen Sachverhalt.

Schema 1:

Für aromatische Substrate ist die Geschwindigkeit der chemischen Razemisierung der Hydantoine, wie in Tabelle 1 gezeigt, ausreichend hoch, um hohe Raum-Zeit-Ausbeuten für die Herstellung von Aminosäuren nach dem

10 Hydantoinaseverfahren zu gewährleisten. Für aliphatische Hydantoine wie Isobutyl-, Methyl- und Isopropylhydantoin stellt die Razemisierung jedoch einen erheblichen Engpass bei der Synthese aliphatischer Aminosäuren dar.

Tabelle 1: Razemisierungskonstanten von Hydantoinen bei $40\,^{\circ}$ C, pH 8.5 bestimmt durch Anfangsraten gem. einer Reaktion erster Ordnung ($-k_{rac}=\ln([a]/[a_0])$) aus: Hydrolysis and Formation of Hydantoins (Chpt. B 2.4). Syldatk, C. and Pietzsch, M. In: Enzyme catalysis in organic synthesis (Eds.: K. Drauz & H. Waldmann), VCH, $1^{\rm st}$ and $2^{\rm nd}$ Ed.).

5'-substituent	k_{rac} (h ⁻¹)	t _{1/2} (h)				
Phenyl	2.59	0.27				
Methylthioethyl	0.12	5.82				
Isobutyl	0.032	21.42				
Methyl	0.02	33.98				
Isopropyl	0.012	55.90				

Dieses Problem zeigt sich beispielsweise bei der in EP759475 beschriebenen Herstellung von enantiomerenangereichertem tert-Butylhydantoin mittels des Hydantoinaseverfahrens. Hier wurden zur vollständigen Umsetzung von 32mM tert.-Butylhydantoin mit 1,5kU R-Hydantoinase 8 Tage bei pH 8,5 und 4 Tage bei pH 9,5 benötigt. Tatsächlich ist die geringe Raum-Zeit-Ausbeute durch die nur langsame chemische Razemisierung von tert-Butylhydantoin (k_{rac} = 0.009h⁻¹ bei 50°C und pH 8.5) bedingt.

Aus dem Stand der Technik sind Hydantoinrazemasen aus Mikroorganismen der Gattung Pseudomonas, Mikrobacterium, Agrobacterium und Arthrobacter bekannt (Lit.: JP04271784; 20 EP1188826; Cloning and characterization of genes from Agrobacterium sp. IP I-671 involved in hydantoin degradation. Hils, M.; Muench, P.; Altenbuchner, J.; Syldatk, C.; Mattes, R. Applied Microbiology and Biotechnology (2001), 57(5-6), 680-688; A new razemase for 5-monosubstituted hydantoins. Pietzsch, Markus;

Syldatk, Christoph; Wagner, Fritz. Ann. N. Y. Acad. Sci. (1992), 672 (Enzyme Engineering XI), 478-83. Lickefett, Holger; Krohn, Karsten; Koenig, Wilfried A.; Gehrcke, Barbel; Syldatk, Christoph. Tetrahedron: Asymmetry (1993), 4(6), 1129-35; Purification and characterization of the hydantoin razemase of Pseudomonas sp. strain NS671 expressed in Escherichia coli. Watabe, Ken; Ishikawa, Takahiro; Mukohara, Yukuo; Nakamura, Hiroaki. J. Bacteriol. (1992), 174(24), 7989-95).

Von den Hydantoinrazemasen aus Arthrobacter aurescens DSM 10 3745, Pseudomonas sp. NS671 und Microbacterium liquefaciens ist bekannt, dass diese Enzyme aliphatische Hydantoine wie beispielsweise Isopropylhydantoin oder Isobutylhydantoin nur schwach razemisieren. Darüber hinaus weiß man, dass die 15 Hydantoinrazemasen aus Arthrobacter aurescens DSM 3747 aromatische Hydantoine wie Indolylmethylhydantoin oder Benzylhydantoin bevorzugt, wohingegen aliphatische Hydantoine wie Methylthioethylhydantoin vergleichsweise schwach oder im Fall von Isopropylhydantoin überhaupt nicht 20 umgesetzt werden (A new razemase for 5-monosubstituted hydantoins. Pietzsch, Markus; Syldatk, Christoph; Wagner, Fritz. Ann. N. Y. Acad. Sci. (1992), 672 (Enzyme Engineering XI), 478-83.).

Die niedrige Aktivität von Hydantoinrazemasen begrenzt daher häufig das wirtschaftliche Potential dieser Route.

Um in geeigneter Zeit möglichst viele Hydantoinrazemasen auf ihr Potential zur Razemisierung von aliphatischen Hydantoine prüfen zu können, lag die Aufgabe der vorliegenden Erfindung unter anderem in der Angabe eines geeigneten Screeningverfahrens für Hydantoinrazemasen. Darüber hinaus sollte das erfindungsgemäße Screeningverfahren als Bestandteil für ein Mutagenseverfahren zur Gewinnung neuer und verbesserter Hydantoinrazemasen einsetzbar sein. Ebenfalls Aufgabe der vorliegenden Erfidnung war die Angabe neuer

15

20

30

Hydantoinrazemasen, die den Hydantoinrazemasen des Standes der Technik zumindest in Selektivität und/oder Aktivität und/oder Stabilität überlegen sind.

Diese Aufgabe wird anspruchsgemäß gelöst. Anspruch 1 bezieht sich auf ein Screeningverfahren für Hydantoinrazemasen. Unteransprüche 2 bis 4 zeigen vorteilhafte Ausführungsformen des Screeningverfahrens auf. Anspruch 5 beschäftigt sich mit einem Mutageneseverfahren zur Herstellung neuer Hydantoinrazemasen unter Anwendung des erfindungsgemäßen Screeningverfahrens. Ansprüche 6 bis 11 beziehen sich auf neue Hydantoinrazemasen sowie die sie codierenden Nukleinsäuresequenzen und deren Verwendung. Ansprüche 12 bis 14 richten sich auf Vehikel , welche die erfindungsgemäßen Hydantoinrazemasen aufweisen, bzw. spezielle Primer für deren Herstellung.

Dadurch, dass man ein Screeningverfahren für Hydantoinrazemasen angibt, bei dem man

- a) eine enantioselektive Hydantoinase und
- b) die zu prüfende Hydantoinrazemase, welche eine verglichen mit der Hydantoinase unter a) langsamere Umsetzungsrate aufweist, auf
- c) ein chirales Hydantoin einwirken lässt,
 welches in zur Selektivität der Hydantoinase
 entgegengesetzter enantiomerenangereicherter Form
 eingesetzt wird, und
- d) die resultierende N-Carbamoyl-Aminosäure oder die freigesetzten Protonen zeitabhängig detektiert, gelangt man überraschend einfach und dennoch vorteilhaft zu einer Möglichkeit, viele Hydantoinrazemasen in kurzer Zeit auf ihre Fähigkeit hin zu überprüfen, in verbesserter Weise Hydantoine razemisieren zu können.

Durch Einsatz eines L-Enantiomers eines 5'monosubstituierten Hydantoins und Verwendung einer Dselektiven Hydantoinase, welche aufgrund ihrer

35 Enantioselektivität bevorzugt dass entstehende D-Enantiomer

10

des Hydantoins schnell hydrolysiert, kann durch die Bildung der N-Carbamoyl-D-Aminosäure oder freiwerdende Protonen die Razemisierungsgeschwindigkeit und damit die Aktivität der Hydantoinrazemase auf einfache Weise gemessen werden. Die Quantifizierung der N-Carbamoyl-Aminosäure kann dabei durch dem Fachmann bekannte Methoden wie beispielsweise HPLC oder colorimetrische Methoden erfolgen. Die Quantifizierung über Protonen kann auf einfache Weise über pH Indikatoren, bevorzugt Cresol Rot, erfolgen. Es sei darauf hingewiessen, dass in dem Verfahren sowohl D- als auch L-Enantiomere von Hydantoinen mit unterschiedlichen ggf. aliphatischen 5'-Substituenten eingesetzt werden können. Beim Einsatz der D-Hydantoine sind dementsprechenden L-selektive Hydantoinasen im Screeningverfahren einzusetzen.

Im erfindungsgemäßen Verfahren eingesetzt werden vorteilhaft aliphatische in 5'-Stellung substituierte Hydantoine. Unter aliphatisch substituierten Hydantoinen wird in diesem Zusammenhang ein System verstanden, welches in 5'-Stellung an dem Hydantoinheterozyklus einen Rest aufweist, der über ein C-Atom mit sp³-Hybridisierung an den Heterozyklus gebunden ist. Bevorzugte 5'-Substituenten sind dabei Methyl, Ethyl, Butyl, Propyl, tertiär-Butyl, Isopropyl und Isobutyl. Ganz besonders bevorzugt ist Ethyl-Hydantoin.

Als Hydantoinasen können sämtliche in der Literatur bekannten Hydantoinasen eingesetzt werden, welche das über die Hydantoinrazemase gebildete Enantiomer des Hydantoins enantioselektiv hydrolysieren, wobei diese Hydrolyse schneller als die Razemisierungsgeschwindigkeit sein muss.

30 Bevorzugte Hydantoinasen sind dabei die kommerziellen Hydantoinasen 1 & 2 von Roche, die Hydantoinasen der Gattungen Agrobacterium, Arthrobacter, Bacillus, Pseudomonas, Flavobacterium, Pasteurella, Microbacterium, Vigna, Ochrobactrum, Methanococcus, Burkholderia und Streptomyces. (Hils, M.; Muench, P.; Altenbuchner, J.;

Syldatk, C.; Mattes, R. Cloning and characterization of genes from Agrobacterium sp. IP I-671 involved in hydantoin degradation. Applied Microbiology and Biotechnology (2001), 57(5-6), 680-688.Soong, C.-L.; Ogawa, J.;

- Shimizu, S. Cyclic ureide and imide metabolism in microorganisms producing a D-hydantoinase useful for D-amino acid production. Journal of Molecular Catalysis B: Enzymatic (2001), 12(1-6), 61-70.Wiese, Anja; Wilms, Burkhard; Syldatk, Christoph; Mattes, Ralf; Altenbuchner,
- Josef. Cloning, nucleotide sequence and expression of a hydantoinase and carbamoylase gene from Arthrobacter aurescens DSM 3745 in Escherichia coli and comparison with the corresponding genes from Arthrobacter aurescens DSM 3747. Applied Microbiology and Biotechnology (2001),
- 15 55(6), 750-757.Yin, Bang-Ding; Chen, Yi-Chuan; Lin, Sung-Chyr; Hsu, Wen-Hwei. Production of D-amino acid precursors with permeabilized recombinant Escherichia coli with D-hydantoinase activity. Process Biochemistry (Oxford) (2000), 35(9), 915-921. Park, Joo-Ho; Kim, Geun-Joong;
- Lee, Seung-Goo; Lee, Dong-Cheol; Kim, Hak-Sung.

 Purification and characterization of thermostable Dhydantoinase from Bacillus thermocatenulatus GH-2. Applied
 Biochemistry and Biotechnology (1999), 81(1), 53-65;
 Pozo, C.; Rodelas, B.; de la Escalera, S.; Gonzalez-Lopez,
 J. D,L-Hydantoinase activity of an Ochrobactrum anthropi
 strain. Journal of Applied Microbiology (2002), 92(6),
 1028-1034; Chung, Ji Hyung; Back, Jung Ho; Lim, Jae-Hwan;
 Park, Young In; Han, Ye Sun. Thermostable hydantoinase
 from a hyperthermophilic archaeon, Methanococcus
- jannaschii. Enzyme and Microbial Technology (2002), 30(7), 867-874; Xu, Zhen; Jiang, Weihong; Jiao, Ruishen; Yang, Yunliu. Cloning, sequencing and high expression in Escherichia coli of D-hydantoinase gene from Burkholderia pickettii. Shengwu Gongcheng Xuebao (2002), 18(2), 149-
- 35 154; Las Heras-Vazquez, Francisco Javier; Martinez-Rodriguez, Sergio; Mingorance-Cazorla, Lydia; Clemente-Jimenez, Josefa Maria; Rodriguez-Vico, Felipe.

Overexpression and characterization of hydantoin racemase from Agrobacterium tumefaciens C58. Biochemical and Biophysical Research Communications (2003), 303(2), 541-547; DE 3535987; EP 1275723; US 6087136; WO 0281626; US 2002045238; DE 4328829; WO 9400577; WO 9321336; JP 04325093; NL 9001680; JP 2003024074; WO 0272841; WO 0119982; WO 9620275).

Ganz besonders bevorzugt ist die Verwendung der Hydantoinase aus Arthrobacter crystallopoietes, insbesondere der aus DSM 20117.

Wie schon angedeutet sollte die Umsetzungsgeschwindigkeit der Hydantoinase die der Razemase übertreffen. Vorzugsweise liegt das Verhältnis der Geschwindigkeitskonstanten der Hydantoinase zur Hydantoinrazemase ($k_{\rm Hyd}/k_{\rm Raz}$) bei >2 ,

besonders bevorzugt bei > 10 und ganz besonders bevorzugt bei >50.

Gegenstand der Erfindung ist ebenfalls ein Verfahren zur Herstellung von verbesserten Hydantoinrazemasen, welches sich dadurch auszeichnet, dass man

- 20 a) die Nukleinsäuresequenz codierend für die Hydantoinrazemase einer Mutagenese unterwirft,
 - b) die aus a) erhältlichen Nukleinsäuresequenzen in einen geeigneten Vektor kloniert und diesen in ein geeignetes Expressionsystem transferiert und
- c) die gebildeten Hydantoinrazemasen mit verbesserter Aktivität und/oder Selektivität und/oder Stabilität mittels eines erfindungsgemäßen Screeningverfahrens detektiert und isoliert.
- Als Ausgangsgene für die Mutagenese der Hydantoinrazemasen können sämtliche bekannten und in der angeführten Literatur erwähnten Hydantoinrazemasegene dienen. Bevorzugt sind dabei die Hydantoinrazemasegene von Arthobacter, Pseudomonas, Agrobacterium und Micrococcus (Wiese A; Pietzsch M; Syldatk C; Mattes R; Altenbuchner J Hydantoin racemase from Arthrobacter aurescens DSM 3747: heterologous

10

15

expression, purification and characterization. JOURNAL OF BIOTECHNOLOGY (2000 Jul 14), 80(3), 217-30; Watabe K; Ishikawa T; Mukohara Y; Nakamura H Purification and characterization of the hydantoin racemase of Pseudomonas sp. strain NS671 expressed in Escherichia coli. JOURNAL OF BACTERIOLOGY (1992 Dec), 174(24), 7989-95; Las Heras-Vazquez, Francisco Javier; Martinez-Rodriguez, Sergio; Mingorance-Cazorla, Lydia; Clemente-Jimenez, Josefa Maria; Rodriguez-Vico, Felipe. Overexpression and

- characterization of hydantoin racemase from Agrobacterium tumefaciens C58. Biochemical and Biophysical Research Communications (2003), 303(2), 541-547; EP 1188826). Ganz besonders bevorzugt ist das Hydantoinrazemasegen aus Arthrobacter aurescens welches für die Proteinsequenz in
- Seq.ID.Nr. 2 codiert. Zur Mutagenese der Hydantoinrazemase können sämtliche in der Literatur bekannten Methoden wie beispielsweise Zufallsmutagenese, Sättigungsmutagenes, Kassetten-Mutagenese oder Rekombinationsmethoden verwendet werden
- 20 (May, Oliver; Voigt, Christopher A.; Arnold, Frances H. Enzyme engineering by directed evolution. Enzyme Catalysis in Organic Synthesis (2nd Edition) (2002), 1 95-138; Bio/Technology 1991, 9, 1073-1077; Horwitz, M. und Loeb, L., Promoters Selected From Random DNA-Sequences, Proc Natl Acad Sci USA 83, 1986, 7405-7409; Dube, D. und L. Loeb, Mutants Generated By The Insertion Of Random Oligonucleotides Into The Active-Site Of The Beta-Lactamase Gene, Biochemistry 1989, 28, 5703-5707; Stemmer, P.C., Rapid evolution of a protein in vitro by DNA shuffling,
- 30 Nature 1994, 370, 389-391 und Stemmer, P.C., DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91, 1994, 10747-10751).
- Die Klonierung und Expression kann wie in der weiter unten 35 angegebenen Literatur durchgeführt werden. Das Verfahren kann mehrmals hintereinander ggf. mit wechselnden Mutagenesestrategien durchgeführt werden.

Gegenstand der Erfindung sind ebenfalls rec-Polypeptide oder die diese codierende Nukleinsäuresequenzen, welche nach dem eben genannten Mutageneseverfahren erhältlich sind.

Ebenso ein Aspekt der Erfindung ist die Verwendung der so 5 hergestellten Polypeptide zur Herstellung von chiralen enantiomerenangereicherten N-Carbamoyl-Aminosäuren oder Aminosäuren. Die erfindungsgemäß hergestellten Nukleinsäuresequenzen können zur Herstellung von Ganzzellkatalysatoren dienen.

10

20

Einen Teil der vorliegenden Erfindung bilden auch Hydantoinrazemasen, welche in Position 79 einen Aminosäureaustausch mit einer Aminosäure ausgewählt aus der Gruppe bestehend aus A, R, N, D, C, Q, E, H, I, L, K, M, F,

P, S, T, Y oder V aufweisen. Interessant ist, dass die 15 Aminosäuren, welche diese Position umgeben, für viele Hydantoinrazemasen vollständig konserviert sind. Die Konsensussequenz lautet: FX_1DX_2GL (Seq.ID.Nr. 1), wobei X_2 P oder T darstellt und X_1 W oder G darstellt. Bevorzugte

Mutanten weisen daher die oben genannte Konsensussequenz auf, wobei X_1 vorzugsweise eine Aminosäure ausgewählt aus der Gruppe bestehend aus A, R, N, D, C, Q, E, H, I, L, K, M, F, P, S, T, Y oder V darstellt. X1 entspricht dabei der Position 79. Bevorzugte Mutanten sind in Tabelle 2 dargestellt.

Tabelle 2:

Mutanten Name	Mutation (codon)	Mutation X ₁ (Aminosäure)	Aktivitäts- änderung	Seq.ID Nr.
3CH11	GGG -> GAG	G79E	2	5
1BG7	GGG -> AGG	G79R	2	3
BB5	GGG -> TTG	G79L	4	9
AE3	GGG -> CAG	G79Q	4	7

Weitere äußerst vorteilhafte Kombinationen von X_1 und X_2 Hydantoinrazemasen sind in folgender Tabelle 3 aufgeführt.

Tabelle 3: Vorteilhafte Kombinationen von X_1 und X_2 in dem Konsensusmotiv FX_1DX_2GL

X ₁	L	E	Q	R	L	E	Q	R
X ₂	P	P ·	P	P	T	T	T	T

Von besonderem Vorteil ist es, wenn die Hydantoinrazemasen die oben angegebene Konsensusregion und zusätzlich eine Homologie von >40% zur Hydantoinrazemase aus DSM 20117 aufweisen.

Weiterhin Gegenstand der Erfindung sind isolierte Nukleinsäuresequenzen codierend für eine Hydantoinrazemase ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz codierend für eine erfindungsgemäße Hydantoinrazemase,
- b) einer Nukleinsäuresequenz, die unter stringenten Bedingungen mit der Nukleinsäuresequenz codierend für

eine erfindungsgemäße Hydantoinrazemase oder der dazu komplementären Sequenz hybridisiert,

- c) einer Nukleinsäuresequenz gemäß den Seq.ID.Nr. 3, 5, 7 oder 9 oder solchen mit einer Homologie von > 80% zu diesen,
- d) einer Nukleinsäuresequenz aufweisend 15 aufeinanderfolgende Nukleotide der Sequenzen Seq.ID.Nr. 3, 5, 7 oder 9.
- In Bezug auf Punkt d) ist es bevorzugt, wenn die erfindungsgemäße Nukleinsäuresequenz 20, mehr bevorzugt 25, weiter bevorzugt 30, 31, 32, 33, 34 und äußerst bevorzugt mehr als 34 identische konsekutive Nukleinsäuren der Sequenzen Seq.ID.Nr. 3, 5, 7 oder 9 aufweist.

Wie gesagt sind von der Erfindung auch

- Nukleinsäuresequenzen mitumfasst, welche unter stringenten Bedingungen mit den erfindungsgemäßen einzelsträngigen Nukleinsäuresequenzen oder deren komplementären einzelsträngigen Nukleinsäuresequenzen hybridisieren (b) oder solche, die sich in Sequenzabschnitten gleichen (d).
- 20 Als solche sind z.B. spezielle Gensonden oder die für eine PCR notwendigen Primer anzusehen.

Eine Kopplung von Hydantoinrazemase und Hydantoinase und ggf. Carbamoylase kann dabei durch Zusammengeben der freien bzw. immobilisierten Enzyme erfolgen. Bevorzugt ist jedoch, wenn die Hydantoinase gemeinsam mit der Hydantoinrazemase und/oder der Carbamoylase in der selben Zelle exprimiert wird (Ganzzellkatalysator).

Die erfindungsgemäßen Nukleinsäuresequenzen können daher als Bestandteil eines Gens in analoger Weise wie in

- 30 DE10234764 und dort zitierter Literatur in einen Ganzzellkatalysator kloniert werden.
 - Sofern dieser dann auch Gene für eine Hydantoinase und/oder Carbamoylase aufweist, ist er im Stande racemische Hydantoine zur Gänze in enantiomerenangereicherte
- 35 Aminosäuren umzuwandeln. Ohne ein kloniertes

10

15

20

30

35

Carbamoylasegen stoppt die Reaktion auf der Stufe der N-

Carbamoyl-Aminosäuren. Vorzugsweise wird ein Organismus wie in der DE10155928 genannt als Wirtsorganismus eingesetzt. Der Vorteil eines derartigen Organismus ist die gleichzeitige Expression aller beteiligten Enzyme, womit nur noch ein rec-Organismus für die Gesamtreaktion angezogen werden muss. Um die Expression der Enzyme im Hinblick auf ihre Umsetzungsgeschwindigkeiten abzustimmen, können die entsprechenden codierenden Nukleinsäuresequenzen in unterschiedliche Plasmide mit unterschiedlichen Kopienzahlen kloniert und/oder unterschiedlich starke Promotoren für eine unterschiedlich starke Expression der Nukleinsäuresequenzen verwendet werden. Bei derart abgestimmten Enzymsystemen tritt vorteilhafterweise eine Akkumulation einer ggf. inhibierend wirkenden Zwischenverbindung nicht auf und die betrachtete Reaktion kann in einer optimalen Gesamtgeschwindigkeit ablaufen. Dies ist dem Fachmann jedoch hinlänglich bekannt

(Gellissen, G.; Piontek, M.; Dahlems, U.; Jenzelewski, V.; Gavagan, J. W.; DiCosimo, R.; Anton, D. L.; Janowicz, Z. A. (1996), Recombinant Hansenula polymorpha as a biocatalyst. Coexpression of the spinach glycolate oxidase (GO) and the S. cerevisiae catalase T (CTT1) gene, Appl. Microbiol. Biotechnol. 46, 46-54; Farwick, M.; London, M.; Dohmen, J.; Dahlems, U.; Gellissen, G.; Strasser, A. W.; DE19920712). Die Herstellung eines derartigen Ganzzellkatalysators ist dem Fachmann hinlänglich bekannt (Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2^{nd} ed., Cold Spring Harbor Laboratory Press, New York; Balbas, P. und Bolivar, F. (1990), Design and construction of expression plasmid vectors in E.coli, Methods Enzymol. 185, 14-37; Rodriguez, R.L. und Denhardt, D. T (eds) (1988), Vectors: a survey of molecular cloning

vectors and their uses, 205-225, Butterworth, Stoneham).

In einer nächsten Ausgestaltung bezieht sich die Erfindung auf Plasmide oder Vektoren aufweisend eine oder mehrere der erfindungsgemäßen Nukleinsäuresequenzen.

Als Plasmide oder Vektoren kommen im Prinzip alle dem

Fachmann für diesen Zweck zur Verfügung stehenden
Ausführungsformen in Frage. Derartige Plasmide und Vektoren
können z. B. von Studier und Mitarbeiter (Studier, W. F.;
Rosenberg A. H.; Dunn J. J.; Dubendroff J. W.; (1990), Use
of the T7 RNA polymerase to direct expression of cloned

- genes, Methods Enzymol. 185, 61-89) oder den Broschüren der Firmen Novagen, Promega, New England Biolabs, Clontech oder Gibco BRL entnommen werden. Weiter bevorzugte Plasmide und Vektoren können gefunden werden in: Glover, D. M. (1985), DNA cloning: a practical approach, Vol. I-III, IRL Press
- 15 Ltd., Oxford; Rodriguez, R.L. und Denhardt, D. T (eds) (1988), Vectors: a survey of molecular cloning vectors and their uses, 179-204, Butterworth, Stoneham; Goeddel, D. V. (1990), Systems for heterologous gene expression, Methods Enzymol. 185, 3-7; Sambrook, J.; Fritsch, E. F. und
- Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York.

Plasmide, mit denen das die erfindungsgemäße Nukleinsäure aufweisende Genkonstrukt in ganz bevorzugter Weise in den Wirtsorganismus kloniert werden kann, sind Derivate von pUC18 und pUC19 (Roche Biochemicals), pKK-177-3H (Roche Biochemicals), pBTac2 (Roche Biochemicals), pKK223-3 (Amersham Pharmacia Biotech), pKK-233-3 (Stratagene) oder pET (Novagen). Weiterebevorzugte Plasmide sind pBR322

(DSM3879),pACYC184 (DSM4439) und pSC101 (DSM6202), welche von der DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany bezogen werden können.

Als bevorzugt anzusehende Plasmide Gleichfalls ist die
35 Erfindung auf Mikroorganismen aufweisend eine oder mehrere
erfindungsgemäße Nukleinsäuresequenzen gerichtet.
Der Mikroorganismus, in den die die erfindungsgemäßen

30

35

Nukleinsäuresequenzen enthaltenen Plasmide kloniert werden, dient zur Vermehrung und Gewinnung einer ausreichenden Menge des rekombinanten Enzyms. Die Verfahren hierfür sind dem Fachmann wohlbekannt (Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York). Als Mikroorganismen können im Prinzip alle dem Fachmann für diesen Zweck in Frage kommenden Organismen wie z.B. Hefen wie Hansenula polymorpha, Pichia sp.,

- Saccharomyces cerevisiae, Prokaryonten, wie E. coli, Bacillus subtilis oder Eukaryonten, wie Säugerzellen, Insektenzellen herangezogen werden. Vorzugsweise sind E. coli-Stämme für diesen Zweck zu benutzen. Ganz besonders bevorzugt sind: E. coli XL1 Blue, W3110, DSM14459
- 15 (PCT/US00/08159), NM 522, JM101, JM109, JM105, RR1, DH5α, TOP 10 oder HB101. Plasmide, mit denen das die erfindungsgemäße Nukleinsäure aufweisende Genkonstrukt vorzugsweise in den Wirtsorganismus kloniert wird, sind weiter oben angegeben.
 - Ein folgender Aspekt der Erfindung richtet sich auf Primer zur Herstellung der erfindungsgemäßen Gensequenzen mittels aller Arten von PCR. Mitumfasst sind die Sense- und Antisense-Primer codierend für die entsprechenden Aminosäuresequenzen, bzw. komplementären DNA-Sequenzen. Geeignete Primer können prinzipiell nach dem Fachmann bekannten Verfahren gewonnen werden. Das Auffinden der erfindungsgemäßen Primer erfolgt durch Vergleich mit bekannten DNA-Sequenzen oder durch Übersetzung der ins Auge gefaßten Aminosäuresequenzen in das bevorzugte Codon des betrachteten Organismus (z.B. für Streptomyces: Wright F. und Bibb M. J. (1992), Codon usage in the G+C-rich Streptomyces genome, Gene 113, 55-65). Gemeinsamkeiten in der Aminosäuresequenz von Proteinen von sogenannten Superfamilien sind hierfür ebenfalls von Nutzen (Firestine, S. M.; Nixon, A. E.; Benkovic, S. J. (1996), Threading your way to protein function, Chem. Biol. 3, 779-783). Weitere

Informationen diesbezüglich können gefunden werden in Gait, M. J. (1984), Oligonucleotide synthesis: a practical approach, IRL Press Ltd., Oxford; Innis, M. A.; Gelfound, D. H.; Sninsky, J. J. und White, T.J. (1990), PCR Protocols: A guide to methods and applications, Academic Press Inc., San Diego.

Bevorzugte Primer sind die der Seq.ID.Nr. 11 und 12. Für die Anwendung können die betrachteten Enzyme (Hydantoinrazemase, Hydantoinasen und/oder Carbamoylasen) 10 wie schon angedeutet in freier Form als homogen aufgereinigte Verbindungen oder als rekombinant (rec-) hergestelltes Enzym verwendet werden. Weiterhin können die Enzyme auch als Bestandteil eines intakten Gastorganismus eingesetzt werden oder in Verbindung mit der 15 aufgeschlossenen und beliebig hoch aufgereinigten Zellmasse des Wirtsorganismus. Möglich ist ebenfalls die Verwendung der Enzyme in immobilisierter Form (Sharma B. P.; Bailey L. F. und Messing R. A. (1982), Immobilisierte Biomaterialiern -20 Techniken und Anwendungen, Angew. Chem. 94, 836-852). Vorteilhafterweise erfolgt die Immobilisierung durch Lyophilisation (Paradkar, V. M.; Dordick, J. S. (1994), Aqueous-Like Activity of α -Chymotrypsin Dissolved in Nearly Anhydrous Organic Solvents, J. Am. Chem. Soc. 116, 5009-5010; Mori, T.; Okahata, Y. (1997), A variety of lipi-

Lett. 38, 1971-1974; Otamiri, M.; Adlercreutz, P.;
Matthiasson, B. (1992), Complex formation between

30 chymotrypsin and ethyl cellulose as a means to solbilize the enzyme in active form in toluene, Biocatalysis 6, 291-305). Ganz besonders bevorzugt ist die Lyophilisation in Gegenwart von oberflächenaktiven Substanzen, wie Aerosol OT oder Polyvinylpyrrolidon oder Polyethylenglycol (PEG) oder

catalysts in homogeneous organic solvents, Tetrahedron

coated glycoside hydrolases as effective glycosyl transfer

35 Brij 52 (Diethylenglycol-mono-cetylether) (Kamiya, N.; Okazaki, S.-Y.; Goto, M. (1997), Surfactant-horseradish

10

20

peroxidase complex catalytically active in anhydrous benzene, Biotechnol. Tech. 11, 375-378). Äußerst bevorzugt ist die Immobilisierung an Eupergit®, insbesondere Eupergit C® und Eupergit 250L® (Röhm) (Eupergit.RTM. C, a carrier for immobilization of enzymes of industrial potential. Katchalski-Katzir, E.; Kraemer, D. M. Journal of Molecular Catalysis B: Enzymatic (2000), 10(1-3), 157-176.)

Gleichfalls bevorzugt ist die Immobilisierung an Ni-NTA in Kombination mit dem His-Tag (Hexa-Histidin) ergänzten Polypeptid (Purification of proteins using polyhistidine affinity tags. Bornhorst, Joshua A.; Falke, Joseph J. Methods in Enzymology (2000), 326, 245-254).Die Verwendung als CLECs ist ebenfalls denkbar (St. Clair, N.; Wang, Y.-F.; Margolin, A. L. (2000), Cofactor-bound cross-linked enzyme crystals (CLEC) of alcohol dehydrogenase, Angew. Chem. Int. Ed. 39, 380-383). Durch diese Maßnahmen kann es gelingen aus Polypeptiden, welche durch organische Solventien instabil werden, solche zu generieren, die in Gemischen von wässrigen und organischen Lösungsmitteln bzw. ganz in Organik stabil sind und arbeiten können.

Ganzzellkatalysatoren werden im Allgemeinen in Form freier oder immobilisierter Zellen eingesetzt. Hierzu wird die aktive Zellmasse in einer hydantoinhaltigen Lösung resuspendiert. Die Zellkonzentration beträgt dabei zwischen 1-100g/l. Die Konzentration des Hydantoins liegt zwischen 0,1 und 2 molar. Als Lösungsmittel wird bevorzugt H2O verwendet, wobei jedoch auch Mischungen von organischen Lösungsmitteln und H2O einsetzbar sind. Der pH-Wert wird entweder nicht geregelt oder mittels gängiger Puffer bzw. durch kontinuierliche pH-Statisierung zwischen pH6 und pH1O konstant gehalten. Die Reaktionstemperatur liegt typischerweise zwischen 20°c und 90°C. In Abhängigkeit der verwendeten Hydantoinase werden zweiwertige Metall-Ionen in Konzentrationen von 0,1-5mM hinzugesetzt. Bevorzugte

: 30

Metallionen sind dabei Mn²⁺, Zn²⁺ oder Co²⁺. In Bezug auf den Einsatz der einzelnen Enzyme kann in äquvalenter Art und Weise verfahren werden.

Die durch den Einsatz der erfindungsgemäßen

5 Hydantoinrazemasen in wie z.B. oben beschriebener Weise hergestellten Produkte werden nach gängigen Verfahren aufgearbeitet. Vorteilhaft ist jedoch die Aufarbeitung durch Ionenaustauschchromatographie. Hierdurch wird das Produkt vom bei der Reaktion entstehenden Salzen befreit.

Das Eluat wird ggf. mit Aktivkohle geklärt und die entstandene enantiomerenangereicherte Aminosäure oder N-Carbamoyl-Aminosäure durch Einengung des Lösungsmittels ausgefällt und getrocknet.

Die Kopplung einer enzymatischen Razemisierung mit einer enantioselektiven Hydrolyse zum Screenen von Hydantoinrazemaseaktivitäten wurde bisher nicht zur Erzeugung verbesserter Hydantoinrazemasen angewendet. Für eine besonders erfolgreiche Anwendung des erfindungsgemäßen Verfahrens sollten mehrere Vorraussetzungen erfüllt sein:

- 1. Die chemische Razemisierungsgeschwindigkeit des im Screening verwendeten enantiomerenreinen Hydantoins muss sehr viel kleiner sein, als die Geschwindigkeit der enzymatisch katalysierten Reaktion.
- Die enantioselektive enzymatische Hydrolyse mittels der
 Hydantoinase muss sehr viel schneller erfolgen als die enzymatische Razemisierung des Hydantoins.

Für aliphatisch substituierte Hydantoine ist, durch deren langsame chemische Razemisierung bedingt, Punkt 1 gegeben. Punkt 2 kann durch eine gezielte Auswahl von geeigneten Hydantoinasen (s. weiter vorne) erfüllt werden.

Mit den Aussagen des Standes der Technik wird die vorliegende Erfidnung nicht nahegelegt, da diesem keinerlei

25

30

Hinweise auf die weiter oben genannten Voraussetzungen zu entnehmen sind.

Sämtliche der gezeigten Mutanten weisen an der Aminosäureposition 79 eine Mutation auf, was die Bedeutung dieser Position für die Enzymfunktion erstmalig aufzeigt. Interessant ist, dass die Aminosäuren, welche diese Position umgeben, für sämtliche bekannten Hydantoinrazemasen vollständig konserviert sind. Hieraus ergibt sich, dass für andere Hydantoinrazemasen welche das oben beschriebene Sequenzmotif enthalten und eine hohe Homologie (>40% Sequenzidentität) aufweisen durch ortsspezifische Mutagenese an Pos. 79 verbesserte Enzymvarianten erzeugt werden können, was bisher aus dem Stand der Technik nicht herleitbar war.

Unter optisch angereicherten (enantiomerenangereicherten, enantiomer angereicherten) Verbindungen wird im Rahmen der Erfindung das Vorliegen einer optischen Antipode im Gemisch mit der anderen in >50 mol-% verstanden.

Unter dem Begriff Nukleinsäuresequenzen werden alle Arten
von einzelsträngiger oder doppelsträngiger DNA als auch RNA
oder Gemische derselben subsumiert.

Die Verbesserung der Aktivität und/oder Selektivität und/oder Stabilität bedeutet erfindungsgemäß, dass die Polypeptide aktiver und/oder selektiver bzw. weniger selektiv oder unter den verwendeten Reaktionsbedingungen stabiler sind. Während die Aktivität und die Stabilität der Enzyme für die technische Anwendung naturgemäß möglichst hoch sein sollte, ist in Bezug auf die Selektivität dann von einer Verbesserung die Rede, wenn entweder die Substratselektivität abnimmt, die Enantioselektivität der Enzyme jedoch gesteigert ist.

Von den beanspruchten Polypetiden und den Nukleinsäuresequenzen werden erfindungsgemäß auch solche Sequenzen umfaßt, die eine Homologie (exclusive der

15

20

30

natürlichen Degeneration) größer als 70% (in Bezug auf die Nukleinsäuresequenz) bzw. > 40% oder 80% (in Bezug auf die Polypetide), bevorzugt größer als 90%, 91%, 92%, 93% oder 94%, mehr bevorzugt größer als 95% oder 96% und besonders bevorzugt größer als 97%, 98% oder 99% zu einer dieser Sequenzen aufweisen, sofern die Wirkungsweise bzw. Zweck einer solchen Sequenz erhalten bleibt. Der Ausdruck "Homologie" (oder Identität) wie hierin verwendet, kann durch die Gleichung H (%) = $[1 - V/X] \times 100$ definiert werden, worin H Homologie bedeutet, X die Gesamtzahl an Nukleobasen/Aminosäuren der Vergleichssequenz ist und V die Anzahl an unterschiedlichen Nukleobasen/Aminosäuren der zu betrachtenden Sequenz bezogen auf die Vergleichssequenz ist. Auf jeden Fall sind mit dem Begriff Nukleinsäuresequnezen, welche für Polypeptide codieren, alle Sequenzen umfaßt, die nach Maßgabe der Degeneration des genetischen Codes möglich erscheinen.

Der Ausdruck "unter stringenten Bedingungen" wird hierin wie bei Sambrook et al. (Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York) beschrieben, verstanden. Bevorzugt liegt eine stringente Hybridisierung gemäß der vorliegenden Erfindung vor, wenn nach Waschen für eine Stunde mit 1 x SSC (150 mM Natriumchlorid, 15 mM Natriumcitrat, pH 7.0) und 0,1 % SDS (Natriumdodecylsulfat) bei 50 °C, bevorzugt bei 55 °C, mehr bevorzugt bei 62 °C und am meisten bevorzugt bei 68 °C und mehr bevorzugt für 1 Stunde mit 0,2 x SSC und 0,1 % SDS bei 50 °C, bevorzugter bei 55 °C, mehr bevorzugt bei 62 °C und am meisten bevorzugt bei 62 °C und am meisten bevorzugt bei 62 °C und am meisten bevorzugt bei 68 °C noch ein positives Hybridisierungssignal beobachtet wird.

Die in dieser Schrift genannten Literaturstellen gelten als von der Offenbarung mitumfaßt.

Der Organismus *Arthrobacter aurescens* DSM3747 wurde durch die Rütgerswerke Aktiengesellschaft am 28.05.86 bei der

Deutschen Sammlung für Mikroorganismen GmbH, Mascheroder Weg 1b, 38124 Braunschweig hinterlegt.

Beispiele

Beispiel 1: Erzeugung Hydantoinrazemasemutanten - Zufallsmutagenese

5 0,25ng des Vektors pOM21 (Plasmidkarte siehe Fig.1; Sequenz siehe Seq.ID.Nr.13) (PCT/US00/08159) wurde als Template in einem 100µl PCR Reaktionsmix bestehend aus PCR-Puffer (10 mM Tris, 1.5 mM MgCl2, 50 mM KCl, pH 8.5), 200 µM dTTP, 200 µM dGTP, 200 µM dATP, 200 µM dCTP, 50 pmol des jeweiligen

Primers (siehe Seq.ID.Nr.11 und 12) und 2,5 U TaqPolymerase (Roche) eingesetzt. Nach 30 Zyklen wurde das
Amplifikat mittels Gelextraktion (QiaexII GelExtraktionskit) aufgereinigt und in den Vektor pOM21
mittels den Restriktionsenzymen NdeI und PstI subkloniert.

15 Das Ligationsprodukt wurde zur Transformation von hydantoinasepositiver Stämme verwendet (siehe Beispiel 2).

Beispiel 2: Herstellung von hydantoinasepositiven Stämmen und einer Mutantenbank

Chemisch kompetente E. coli JM109 (z.B. von Promega) wurden mit 10ng des Plasmids pDHYD (siehe Fig.2; siehe Seq.ID.Nr. 20 15) (Herstellung?) transformiert, welches das D-Hydantoinasegen aus Arthrobacter crystallopoietes DSM20117 unter Kontrolle eines Rhamnose-Promotors trägt. Die vollständige Sequenz des Plasmids ist in Seq.ID.Nr. 15 angegeben. Der so erzeugte hydantoinasepositive Stamm wurde 25 wiederum chemisch kompetent gemacht und zur Herstellung der Mutantenbank mit dem Ligationsprodukt der Hydantoinrazemase-Zufallsmutagenese aus Beispiel 1 transformiert. Die auf Ampicillin- und Chloramphenicolhaltigen Agarplatten ausgestrichenen Kolonien der 30 Mutantenbank wurden anschliessend einem Screening

unterworfen, welches in Beispiel 3 beschrieben wird.

10

20

25

30

Beispiel 3: Screening nach Hydantoinrazemasemutanten mit verbesserten Enzymeigenschaften

Einzelne Kolonien der Mutantenbank wurden in 96-WellPlatten überimpft, welche mit 100µl pro Well Rhamnose
(2g/l) und ZnCl₂ (1mM) supplementiertem LB-Medium (5g/l
Hefeextrakt, 10g/l Trypton, 10g/l NaCl) gefüllt waren. Die
Platten wurden für 20 Stunden bei 30°C inkubiert.
Anschliessen wurden 100µl Screening-Substrat (100mM LEthylhydantoin,50mg/l Cresol Rot, pH 8.5) zu jedem Well
zugegeben und die Platten für 4 Stunden bei 20°C inkubiert.
Wells mit verbesserten Hydantoinrazemasemutanten konnten
durch eine intensivere Gelbfärbung im Vergleich zum Wildtyp
direkt per Auge, oder unter Verwendung eines
Spektralphotometers bei 580nm identifiziert werden.

15 Beispiel 4: Charakterisierung von Hydantoinrazemasemutanten mit verbesserten Enzymeigenschaften

Die im Screening identifizierten Razemasemutanten wurden anschliessend mittels HPLC-Analyse auf ihre Aktivität im Vergleich zum Wildtyp untersucht und die entsprechenden Mutationen mittels Sequenzierung bestimmt. Hierzu wurde von einzelnen Kolonien der unterschiedlichen Klone Plasmide isoliert (Qiagen Mini-Prep Kit) und sequenziert. Die selben Klone wurden zur Herstellung aktiver Biomasse verwendet. Eine Übernachtkultur (OD600=4) der jeweiligen Klone wurde hierzu 1:100 in 100ml Rhamnose (2g/1) und ZnCl₂ (1mM) supplementiertem LB-Medium (5g/l Hefeextrakt, 10g/l Trypton, 10g/1 NaCl) verdünnt und 18 Stunden bei 30°C und 250UPM inkubiert. Die Biomasse wurde mittels Zentrifugation (10min, 10.000g) pelletiert und der Überstand verworfen. 2g aktive Biomasse wurde anschliessend in 50ml der Substratlösung (100mM L-Ethylhydantoin, pH 8.5) resuspendiert und bei 37°C inkubiert. Nach verschiedenen Zeiten wurden Proben genommen, die Biomasse durch Zentrifugation (5min, 13.000 UPM) abgetrennt und der

Überstand mittels HPLC auf die Konzentration der entstandenen N-Carbamoyl-aminobuttersäure analysiert.

Beispiel 5 Herstellung von L-Aminosäuren unter Verwendung verbesserter Hydantoinrazemasen

Ein mit pOM21-BB5 und pOM22 Fig. 3 (siehe Seq.ID.Nr.14) 5 (PCT/US00/08159) transformierter Stamm von E.coli JM109 wurde bei 30°C in Ampicillin (100µg/l) und Chloramphenicol (50μg/l)-haltigem sowie mit 2g/l Rhamnose versetztem LB-Medium für 18 Stunden unter Schütteln (250 U/min) 10 inkubiert. Die Biomasse wurde durch Zentrifugation pelletiert und mit einem entsprechenden Volumen von 100mM DL-Ethlyhydantoinlösung, pH 8,5 und 1mM CoCl₂ so resuspendiert, dass sich eine Zellkonzentration von 30g/l ergibt. Diese Reaktionslösung wurde für 10 Stunden bei 37°C inkubiert. Anschliessend wurden die Zellen durch 15 Zentrifugation (30 min, 5000g) abgetrennt und der klare Überstand mittels HPLC auf die entstandene Aminosäure analysiert. Zur Aufarbeitung der enstandenen Aminosäure wurde das Volumen des Überstandes auf die Hälfte reduziert und 1:2 mit Methanol versetzt. Die ausgefällte Aminosäure 20

wurde anschliessend filtriert und getrocknet. Die Gesamtausbeute der Aminosäure betrug >60%.

Beispiel 6 Herstellung von D-Aminosäuren unter Verwendung verbesserter Hydantoinrazemasen

Ein mit pOM21-BB5 und pJAVIER16 Fig. 4 (siehe Seq.ID.Nr.16)
(Herstellung?) transformierter Stamm von E.coli JM109 wurde
bei 30°C in Ampicillin (100µg/l) und Chloramphenicol
(50µg/l)-haltigem sowie mit 2g/l Rhamnose versetztem LBMedium für 18 Stunden unter Schütteln (250 U/min)
inkubiert. Die Biomasse wurde durch Zentrifugation
pelletiert und mit einem entsprechenden Volumen von 100mM
DL-Ethlyhydantoinlösung, pH 8,5 und 1mM CoCl2 so
resuspendiert, dass sich eine Zellkonzentration von 30g/l
ergibt. Diese Reaktionslösung wurde für 10 Stunden bei 37°C

inkubiert. Anschliessend wurden die Zellen durch Zentrifugation (30 min, 5000g) abgetrennt und der klare Überstand mittels HPLC auf die entstandene Aminosäure analysiert. Zur Aufarbeitung der enstandenen Aminosäure wurde das Volumen des Überstandes auf die Hälfte reduziert und 1:2 mit Methanol versetzt. Die ausgefällte Aminosäure wurde anschliessend filtriert und getrocknet. Die Gesamtausbeute der Aminosäure betrug >60%.

Patentansprüche:

5

10

30

- Screeningverfahren für Hydantoinrazemasen, dadurch gekennzeichnet, dass man
 - a) eine enantioselektive Hydantoinase und
 - b) die zu prüfende Hydantoinrazemase, welche eine verglichen mit der Hydantoinase unter a) langsamere Umsetzungsrate aufweist, auf
 - c) ein chirales Hydantoin einwirken lässt, welches in zur Selektivität der Hydantoinase entgegengesetzter enantiomerenangereicherten Form eingesetzt wird, und
 - d) die resultierende N-Carbamoyl-Aminosäure oder die freigesetzten Protonen zeitabhängig detektiert.
- Verfahren nach Anspruch 1,
 dadurch gekennzeichnet, dass man
 ein aliphatisch substituiertes Hydantoin einsetzt.
- Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man ein Hydantoinase aus Arthrobacter crystallopoietes einsetzt.
- Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass
 das Verhältnis der Geschwindigkeitskonstanten der Hydantoinase zur Hydantoinrazemase (k_{Hyd}/k_{Raz}) > 2 ist.
 - 5. Verfahren zur Herstellung von verbesserten
 Hydantoinrazemasen,
 dadurch gekennzeichnet, dass man
 a) die Nukleinsäuresequenz codierend für die
 Hydantoinrazemase einer Mutagenese unterwirft,
 b) die aus a) erhältlichen Nukleinsäuresequenzen in

einen geeigneten Vektor kloniert und diesen in ein

10

15

20

25

.30

geeignetes Expressionsystem transferiert und c) die gebildeten Hydantoinrazemasen mit verbesserter Aktivität und/oder Selektivität und/oder Stabilität mittels eines Verfahrens nach einem oder mehreren der Ansprüche 1 bis 4 detektiert und isoliert.

- rec-Polypeptide oder diese codierende
 Nukleinsäuresequenzen erhältlich nach Anspruch 5.
- 7. Verwendung der Polypeptide gemäß Anspruch 6 zur Herstellung von enantiomerenangereicherten N-Carbamoyl-Aminosäure oder Aminosäuren.
- 8. Verwendung der Nukleinsäuresequenzen gemäß 6 zur Herstellung von Ganzzellkatalysatoren.
- 9. Hydantoinrazemase aufweisend in Position 79 einen Aminosäureaustausch mit einer Aminosäure ausgewählt aus der Gruppe bestehend aus A, R, N, D, C, Q, E, H, I, L, K, M, F, P, S, T, Y oder V.
- 10. Hydantoinrazemasen aufweisend die Konsensussequenz FX_1DX_2GL (Seq. 1), wobei X_2 P oder T darstellt und X_1 in der Position 79 eine Aminosäure ausgewählt aus der Gruppe A, R, N, D, C, Q, E, H, I, L, K, M, F, P, S, T, Y oder V darstellt darstellt.
- 11. Isolierte Nukleinsäuresequenz codierend für eine Hydantoinrazemase ausgewählt aus der Gruppe:
 - a) einer Nukleinsäuresequenz codierend für eine Hydantoinrazemase gemäß Anspruch 9 und/oder 10,
 - b) einer Nukleinsäuresequenz, die unter stringenten Bedingungen mit der Nukleinsäuresequenz codierend für eine Hydantoinrazemase gemäß Anspruch 9 und/oder 10 oder der dazu komplementären Sequenz hybridisiert,
 - c) einer Nukleinsäuresequenz gemäß den Seq.ID.Nr. 3, 5, 7 oder 9 oder solchen mit einer Homologie von > 80% zu diesen,

- d) einer Nukleinsäuresequenz aufweisend 15 aufeinanderfolgende Nukleotide der Sequenzen Seq.ID.Nr. 3, 5, 7 oder 9..
- 12. Ganzzellkatalysator aufweisend ein kloniertes Gen für eine Hydantoinrazemase gemäß den Ansprüchen 9 und/oder 10.
 - 13. Plasmide, Vektoren oder Mikroorganismen aufweisend eine Nukleinsäuresequenz gemäß Anspruch 9 und/oder 10.
 - 14. Primer zur Herstellung der Nukleinsäuresequenzen nach Anspruch 9 und/oder 10 mittels PCR.

Zusammenfassung:

Die vorliegende Erfindung bezieht sich auf ein Screeningverfahren für Hydantoinrazemasen und neue Hydantoinrazemasen, die sie codierenden Nukleinsäuresequenzen und ein Verfahren zur Mutagenese.

Hydantoinrazemasen sind im Zusammenhang mit der Erzeugung von enantiomerenangereicherten Aminosäuren aus racemischen Hydantoinen von Interesse.

Abb. 1:

Abb. 2:

Fig: 3

Fig. 4

10

SEQUENZPROTOKOLL

<110> Degussa AG

<120> Screeningverfahren für Hydantoinrazemasen .5

<130> 030115 AM / IP

<140>

10 <141>

<160> 16

<170> PatentIn Ver. 2.1

15

<210> 1

<211> 6

<212> PRT

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: Konsensussequenz

25 <400> 1

> Phe Xaa Asp Xaa Gly Leu 1 5

. 30 <210> 2

<211> 236

<212> PRT

<213> Arthrobacter crystallopoietes

35 <400> 2

Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ala Leu Thr Glu 1

Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile 20

Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe

Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala 45

Glu Arg Glu Asn Pro Pro Asp Ala Tyr Val Ile Ala Cys Phe Gly Asp

50 Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly

Val Ala Glu Ala Ala Ile His Met Ser Ser Phe Val Ala Ala Thr Phe 55 100

Ser Ile Val Ser Ile Leu Pro Arg Val Arg Lys His Leu His Glu Leu 125 120 115

•	Val A	rg Gl 30	n Ala	a Gly	Ala	Thr 135	Asn .	Arg	Leu	Ala	Ser 140		Lys	Leu.	Pro	
5	Asn Lo	eu Gl	y Va	l Met	Ala 150	Phe	His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160	
	Thr L	eu Ly	/s Gl	n Ala 165		Lys	Glu		Val 170	Gln	Glu	Asp	Gly	Ala 175	Glu	
10	Ser I	le Va	al Le		Сув	Ala	Gly	Met 185	Val	Gly	Phe	Ala	Arg 190	Gln	Leu	
15	Ser A		lu Le 95	u Gly	Val	Pro	Val 200	Ile	Asp	Pro	Val	Glu 205	Ala	Ala	Cys	
13	Arg V	al Al 10	la Gl	u Ser	Leu	Val 215	Ala	Leu	Gly	Tyr	Gln 220	Thr	Ser	ГÄз	Ala [.]	,
0	Asn S 225	er Ty	yr Gl	n Lys	230		Glu	Lys	Gln	Tyr 235	Leu					
25	<210> <211> <212> <213>	711 DNA		he Se	equen	z										
30	<220><223> <220> <221> <222>	Bes CDS	l		der	küns	tlic	nen s	Segue	enz:	1BG7				· .	
35	<400> atg a Met A 1	ga a	itc ci :le Le	eu Va	g ato 1 Ile 5	aac Asn	ccc Pro	aac Asn	agt Ser 10	Ser	agc Ser	gcc Ala	ctt Leu	act Thr 15	gaa Glu	48
	tcg g Ser V	rtt g Val A	la A	ac gc sp Al 20	a gca a Ala	a caa a Gln	caa Gln	gtt Val 25	Val	gcg Ala	acc Thr	ggc Gly	acc Thr 30	Ile	att Ile	96
45	tct g Ser A	rcc a la I	itc a le A 35	ac cc sn Pr	c tc	c aga r Arg	gga Gly 40	Pro	gcc Ala	gtc Val	att Ile	gaa Glu 45	ggc	agc Ser	ttt Phe	144
50	gac g Asp G	raa g Slu A 50	gca c Ala L	tg go eu Al	c ac	g tto r Phe 55	e His	ctc Leu	att Ile	gaa Glu	gag Glu 60	Val	gag Glu	cgc Arg	gct Ala	192
55	gag c .Glu A 65	rg (gaa a Glu A	ac co sn Pr	g cc o Pr 7	o Ası	gco Ala	tac Tyr	gtc Val	ato Ile 75	Ala	tgt Cys	ttc Phe	agg Arg	gat Asp 80	240
	ccg g Pro G	ga o	ctt g Leu A	sp Al	g gt La Va 35	c. aaq 1 Ly:	g gag s Glu	g ctg 1 Leu	act Thr	: Asp	agg Arg	cca Pro	gtg Val	gta Val 95	gga Gly	288

. •	gtt Val	gcc Ala	gaa Glu	gct Ala 100	gca Ala	atc Ile	cac His	atg Met	tct Ser 105	tca Ser	ttc Phe	gtc Val	gcg Ala	gcc Ala 110	acc Thr	ttc Phe	336
5	tcc Ser	att Ile	gtc Val 115	agc Ser	atc Ile	ctc Leu	ccg Pro	agg Arg 120	gtc Val	agg Arg	aaa Lys	cat His	ctg Leu 125	cac His	ġaa Glu	ctg Leu	384
10	gta Val	cgg Arg 130	caa Gln	gcg Ala	Gly ggg	gcg Ala	acg Thr 135	aat Asn	Arg Cgc	ctc Leu	gcc Ala	tcc Ser 140	atc Ile	aag Lys	ctc Leu	cca Pro	432
15	aat Asn 145	Leu	GJÀ aaa	gtg Val	atg Met	gcc Ala 150	ttc Phe	cat His	gag Glu	gac Asp	gaa Glu 155	cat His	gcc Ala	gca Ala	ctg Leu	gag Glu 160	480
	acg Thr	ctc Leu	aaa Lys	caa Gln	gcc Ala 165	gcc Ala	aag Lys	gag Glu	gcg Ala	gtc Val 170	cag Gln	gag Glu	gac Asp	ggc Gly	gcc Ala 175	gag Glu	528
	tcg Ser	ata Ile	gtg Val	ctc Leu 180	gga Gly	tgc Cys	gcc Ala	ggc	atg Met 185	gtg Val	Gly ggg	ttt Phe	gcg Ala	cgt Arg 190	caa Gln	ctg Leu	576
25	agc Ser	gac Asp	gaa Glu 195	Leu	ggc	gtc Val	cct Pro	gtc Val 200	atc Ile	gac Asp	ccc Pro	gtc Val	gag Glu 205	gca Ala	gct Ala	tgc Cys	624
30	cgc Arg	gtg Val 210	Ala	gag Glu	agt Ser	ttġ Leu	gtc Val 215	Ala	ctg Leu	ggc	tac Tyr	cag Gln 220	Thr	agc Ser	aaa Lys	gcg Ala	672
35	aac Asn 225	Ser	tat Tyr	caa Gln	aaa Lys	ccg Pro 230	Thr	gag Glu	aag Lys	cag Gln	tac Tyr 235	Leu	tag	•			711
	<21 <21 <21	0> 4 1> 2 2> F 3> K 3> F	37 PRT ünst	:lich hreik	ne Se	equer der	ız küns	stlic	hen	Segu	enz:	1BG7					
45	<40 Met		l J Ile	e Lev		l Ile	e Ası	n Pro	Asn	Ser 10	Ser	Ser	Ala	Leu	Thr 15	Glu	
	Ser	Va]	Ala	a Às _l		a Ala	a Glı	ı Glr	val 25	. Val	. Ala	Thir	Gly	Thr 30	Ile	Ile	•
50			3	5			•	40)		val		45				
55	Asp	Gl: 50		a Le	u Ala	a Thi	r Pho		s Lev	ı Ile	e Glu	60 60	Val	Glu	Arg	Ala	
	G1: 65		g Gl	u As	n Pr	o Pro		p Ala	а Туг	r Val	1 Ile 75	a Ala	Суз	Phe	Arg	qaA 08	

	Pro	Gly	Leu	Asp	Ala 85	Val	Lys	Glu	Leu	Thr 90	Asp	Arg	PIO	vai	95	GTĀ	
5	Val	Ala	Glu	Ala 100	Ala	Ile	His	Met	Ser 105	Ser	Phe	Val	Ala	Ala 110	Thr	Phe	
	Ser	Ile	Val 115	Ser	Ile	Leu	Pro	Arg 120	Val	Arg	Lys	His	Leu 125	His	Glu į	Leu	
10	Val	Arg 130		Ala	Gly	Ala	Thr 135	Asn	Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro	
15	Asn 145	Leu	Gly	Val	Met	Ala 150	Phe	His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160	·
	Thr	Leu	Lys	Gln	Ala 165	Ala	Lys	Gļu	Ala	Val 170	Gln	Glu	Asp	Gly	Ala 175	Glu [.]	:
0				180					185			Phe		190			
			195					200				Val	205		•	. •	
25	Arg	Val 210		. Glu	Ser	Leu	Val 215		Leu	Gly	Tyr	Gln 220	Thr	Ser	Lys	Ala	•
30	Asn 225	Ser	Tyr	Gln	Lys :	230		Glu	. Lys	Gln	Tyr 235	Leu	1		•	•	
35	<21:	0> 5 1> 7 2> D 3> K	11 NA	lich	ne Se	equer	ız					•					
	<22 <22		esch	nreil	oung	der	kün	stlic	chen	Sequ	enz:	3CH1	1	-	. •	-	
		1> C		. (71:	1)					•							
45	ato	Arg	ate	c ct e Le	u Va	g at 1 Il 5	c aa e As	c cco	c aac o Asr	agt Ser 10	: Ser	ago Ser	gcc Ala	ctt Lev	act Thr 15	gaa Glu	4.8
50	tcg Ser	gtt Val	gc	a As	c gc p Al 0	a gc a Al	a ca a Gl	a ca n Gl:	a gti n Vai 2!	L Val	c gcg L Ala	g acc	ggc Gly	acc Thr	TTE	att Elle	96
55	tct	gcc	at Il 3	e As	c cc n Pr	c to o Se	c ag r Ar	a gg g Gl 4	y Pro	geo Ala	c gto a Vai	att l Ile	gaa Glu 45	r GTZ	ago Y Sei	ttt Phe	144
	gac Asp	gaa Glu	ı Al	a ct a Le	g gc au Al	c ac a Th	ır Ph	c ca ne Hi 55	t cto s Le	c ati	t gaa e Gl	a gag ı Glu 60	ı val	g gag L Glu	g cgo	g gct g Ala	192

•	gag Glu 65	cgg Arg	gaa Glu	aac Asn	ccg Pro	ccc Pro 70	gac Asp	gcc Ala	tac Tyr	gtc Val	atc Ile 75	gca Ala	tgt Cys	ttc Phe	gag Glu	gat Asp 80	240
5	ccg Pro	gga Gly	ctt Leu	gac Asp	gcg Ala 85	gtc Val	aag Lys	gag Glu	ctg Leu	act Thr 90	gac Asp	agg Arg	cca Pro	gtg Val	gta Val 95	gga Gly	288
10	gtt Val	gcc Ala	gaa Glu	gct Ala 100	gca Ala	atc Ile	cac His	atg Met	tct Ser 105	tca Ser	ttc Phe	gtc Val	gcg Ala	gcc Ala 110	Thr.	ttc Phe	336
15	tcc Ser	att Ile	gtc Val 115	agc Ser	atc Ile	ctc Leu	ccg Pro	agg Arg 120	gtc Val	agg Arg	aaa Lys	cat His	ctg Leu 125	cac His	gaa Glu	ctg Leu	384
0.	gta Val	cgg Arg 130	caa Gln	gcg Ala	ggg	gcg Ala	acg Thr 135	aat Asn	cgc Arg	ctc Leu	gcc Ala	tcc Ser 140	atc Ile	aag Lys	ctc Leu	cca Pro	432
25	aat Asn 145	ctg Leu	ggg	gtg Val	Met	gcc Ala 150	Phe	cat His	gag Ģlu	gac Asp	gaa Glu 155	His	gcc Ala	gca Ala	ctg Leu	gag Glu 160	480
23	acg Thr	ctc Leu	aaa Lys	caa Gln	gcc Ala 165	Ala	aag Lys	gag Glu	gcg	gtc Val 170	GIn	gag Glu	gac Asp	ggc Gly	gcc Ala 175	gag Glu	528
30	Ser	Ile	Val	180	Gly	Cys	Ala	. Gly	Met 185	Val	. Gly	Phe	Ala	190	GIN	ctg Leu	576
35	Ser	Asp	Glu 195	Lev	ı Gly	y Val	. Pro	200	. Il∈	e Asp	Pro	vaı	205	. Ala	ALG	tgc Cys	624
	cgc Arg	gtg Val 210	Ala	gaç Glu	g agt 1 Sei	t ttg Lei	g gto 1 Val 21	L Ala	ctg Lei	r Gl ⁷	tac Tyr	Gln 220	Thr	ago Ser	aaa Lys	gcg Ala	672
45	aac Asn 225	Ser	tai Ty:	caa c Gl	a aaa n Lya	a cce s Pro 23	o Thi	a gag r Glu	gʻaaq 1 Lys	g cag s Gli	g tao n Tyr 23!	r Leu	tag				711
50	<21 <21 <21	0> 6 1> 2 2> E 3> F	37 PRT Cüns	tlic	he S	eque	nz					2000					
	<40 Met	0> 6 Arg				<u>ı</u> 11	-	stli n Pr		n Se		•		a Le	u Thi	r Glu	٠
55	1 Ser		Al		sp Al	5 .a Al	a Gl	n Gl	n Va . 2	l Va		a Th	r Gly	y Th	r Il	e Ile	

Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe

•			35					40					45				
5	Asp	Glu 50	Ala	Leu	Ala	Thr	Phe 55	His	Leu	Ile	Glu	Glu 60	Val	Glu	Arg	Ala	
	Glu 65	Arg	Glu	Asn	Pro	Pro 70	Asp	Ala	Tyr	Val	Ile 75	Ala	Сув	Phe	Glu	qaA 08	
10	Pro	Gly	Leu	Asp	Ala 85	Val	Lys	Glu	Leu	Thr 90	Asp	Arg	Pro	Val	Val 95	Gly	
15	Val	Ala	Glu	Ala 100	Ala	Ile	His	Met	Ser 105	Ser	Phe	Val	Ala	Ala 110		Phe	
23	Ser	Ile	Val 115	Ser	Ile	Leu	Pro	Arg 120	Val	Arg	Lys	His	Leu 125	His	Glu	Leu	·
0	Val	Arg 130		Ala	Gly	Ala	Thr 135	Asn	Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro	
	Asn 145		Gly	Val	Met	Ala 150		His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160	
25	Thr	Leu	Lys	Gln	Ala 165		Lys	Glu	Ala	Val 170		Glu	Asp	Gly	Ala 175	Glu	
30				180)				185	i	,			190		Leu	•
			195	5				200)			•	205			Cys	•
35	Arg	Val 210		a Glu	ı Ser	. Leu	val 215		Lev	Gly	тух	Gln 220		Ser	Lys	Ala	
	Asn 225		Туз	c Glı	ı Lys	230	Thr	Glu	. Lys	Glr.	235		L				•
		0> 7 1> 7						•								٠.	
45	<21			tlic	he S	eguei	nz							,			
		3> E	Besc:	hrei	bung	der	küns	stli	chen	Sequ	ienz:	AE3					
50		1> C		. (71	1)												
55	atg	Arg	at	c ct e Le	c gt u Va	g at 1 I1 5	c aa e As	c cc n Pr	c aa o As	c ag n Se: 1	r Se	c ago r Sei	e ged c Ala	c ctt a Lei	act Thr	gaa Glu	48
	tcg Ser	gtt Va]	gc . Al	g ga a As	c gc	a go a Al	a ca .a Gl	a ca n Gl	a gt n Va	t gt 1 Va	c gc	g aco a Thi	c ggd c Gly	c acc	ata r Ile	a att e Ile	96

<213> Künstliche Sequenz

					20					25					30			
•	5	tct Ser	gcc Ala	atc Ile 35	aac Asn	ccc Pro	tcc Ser	Arg	gga Gly · 40	ccc Pro	gcc Ala _.	gtc Val	att Ile	gaa Glu 45	ggc Gly	agc Ser	ttt Phe	144
4	. 0	gac Asp	gaa Glu 50	gca Ala	ctg Leu	gcc Ala	acg Thr	ttc Phe 55	cat His	ctc Leu	att Ile	gaa Glu	gag Glu 60	gtg Val	gag Glu	cgc Arg	gct Ala	192
4	LO	gag Glu 65	cgg Arg	gaa Glu	aac Asn	ccg Pro	ccc Pro 70	gac Asp	gcc Ala	tac Tyr	gtc Val	atc Ile 75	gca Ala	tgt Cys	ttc Phe	cag Gln	gat Asp 80	240
. 1	15	ccg Pro	gga Gly	ctt Leu	gac Asp	gcg Ala 85	gtc Val	aag Lys	gag Glu	ctg Leu	act Thr 90	gac Asp	agg Arg	cca Pro	gtg Val	gta Val 95	gga Gly	288
	0	gtt Val	gcc Ala	gaa Glu	gct Ala 100	gca Ala	atc Ile	cac His	atg Met	tct Ser 105	tca Ser	ttc Phe	gtc Val	gcg Ala	gcc Ala 110	acc Thr	ttc Phe	336
	25	tcc Ser	att Ile	gtc Val 115	Ser	atc Ile	ctc Leu	ccg Pro	agg Arg 120	gtc Val	agg Arg	aaa Lys	cat His	ctg Leu 125	cac His	gaa Glu	ctg Leu	384
•		gta Val	cgg Arg 130	Gln	gcg Ala	ggg	gcg Ala	acg Thr 135	aat Asn	cgc Arg	ctc Leu	gcc Ala	tcc Ser 140	тте	aag Lys	ctc Leu	cca Pro	432
•		aat Asn 145	Leu	Gly ggg	g gtg Val	atg Met	gcc Ala 150	Phe	cat His	gag Glu	gac Asp	gaa Glu 155	His	gcc Ala	gca Ala	ctg Leu	gag Glu 160	480
	35	acg Thr	cto Lev	aaa Lys	a caa s Glr	gco Ala 165	a Ala	aag Lys	gag Glu	gcg Ala	gto Val	. Gln	gag Glu	gac Asp	ggc Gly	gcc Ala 175	gag Glu	528
		tcg Ser	ata Ile	gtç Val	g cto l Leu 180	ı Gly	a tgo y Cys	gco s Ala	ggc a Gly	atg Met 185	. Val	G17 8 8 8 9 9 9	ttt Phe	gcg Ala	cgt Arg 190	· GIII	ctg Leu	576
,	45	ago Ser	gac Asr	gaa Gli 19	u Lei	gg u Gl	c gte y Vai	c cci	t gto Val 200	l Ile	gac Asp	c ccc	gto Val	gag Glu 205	I ATS	gct Ala	tgc Cys	624
	:	cgc	gtg Va: 210	L Al	c.ga a Gl	g ag u Se	t tt r Le	g gt u Va 21	l Ala	cto Lev	g ggd	tac y Tym	c cag Glr 220	ı Tnı	ago Ser	aaa Lys	gcg Ala	672
	50	aac Asr 225	Se:	g ta r Ty	t ca r Gl	a aa n Ly	a cc s Pr 23	o Th	a gaq r Gli	g aag u Ly:	g cag s Gli	g tac n Tyr 235	r Lei	c tag 1	ı			711
•	55	<21	.0> .1> .2>	237						·								

<221> CDS

																•
	<223>	Be	schr	eibu	ng d	er k	ünst	lich	en S	eque	nz:A	E3			•	
5	<400> Met A	8 rg :	Ile	Leu	Val 5	Ile	Asn	Pro	Asn	Ser 10	Ser	Ser	Ala	Leu	Thr 15	Glu
	Ser V	al	Ala '	Asp 20	Ala	Ala	Gln	Gln	Val 25	Val	Ala	Thr	Gly	Thr 30	Ile	Ile
10	Ser A	la	Ile 35	Asn	Pro	Ser	Arg	Gly 40	Pro	Ala	Val	Ile	Glu 45	Gly	Ser	Phe
	Asp G	31u 50	Ala	Leu	Ala	Thr	Phe 55	His	Leu	Ile	Glu	Glu 60	Val	Glu	Arg	Ala
15	Glu A	\rg	Glu	Asn	Pro	Pro 70	Asp	Ala	туг	Val	11e 75	Ala	Cys	Phe	Gln	Asp 80
0	Pro 0	3ly	Leu	Asp	Ala 85		Lys	Glu	Leu	Thr 90	Asp	Arg	Pro	Val	Val 95	Gly
•	Val A	Ala	Glu	Ala 100		Ile	His	Met	Ser 105		Phe	Val	Ala	Ala 110	Thr	Phe
25	Ser :	Ile	Val 115		Ile	e Leu	Pro	Arg 120	Val	Arg	Lys	His	Leu 125	His	Glu	Leu
30	Val i	Arg 130		ı Ala	Gly	/ Ala	Thr 135		Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro
30	Asn :	Leu	Gly	y Val	. Met	150		e His	Glu	a Asp	Glu 155	His	Ala	Ala	Leu	Glu 160
35	Thr	Leu	Ly	s Glr	16		Lys	s Glu	ı Ala	170	Gln	Glu	Asp	Gly	Ala 175	Glu
	Ser	Ile	. Va	1 Le: 18		у Суя	s Ala	a Gly	y Met 18	val	L Gly	y Phe	Ala	190	Gln	Leu
	•	•	19	5 .				200	0				200)		(Cys
45		Val 210		a Gl	u Se	r Le	u Va 21	1 Ala 5	a Le	u Gl	у Туі	r Glr 220	n Thr	s Ser	. Lys	a Ala
	Asn 225	Ser	ту	r Gl	n Ly	rs Pr 23		r Gl	u Ly	s Gl	n Ty: 23!	r Let				
50	<210 <211 <212 <213	L> 7 2> I	711 ONA	stlic	che s	Seđn∈	enz									
55	<220 <223)> 3> 1	Besc	chrei	ibung	g dei	- kür	nstli	cher	Seq	uenz	: BB5				
	·<220	0>														

<222> (1)..(711)

5	<400 atg Met 1	aga	atc (ctc (Leu '	gtg Val 5	atc Ile	aac Asn	ccc Pro	aac Asn	agt Ser 10	tcc Ser	agc Ser	gcc Ala	ctt Leu	act Thr 15	gaa Glu	48
10	tcg Ser	gtt Val	gcg Ala	gac Asp 20	gca Ala	gca Ala	caa Gln	caa Gln	gtt Val 25	gtc Val	gcg Ala	acc Thr	ggc Gly	acc Thr 30	ata Ile	att Ile	96
4-	tct Ser	gcc Ala	atc Ile 35	Asn	ccc Pro	tcc Ser	aga Arg	gga Gly ·40	ccc Pro	gcc Ala	gtc Val	att Ile	gaa Glu 45	ggc Gly	agc Ser	ttt Phe	144
15	gac Asp	gaa Glu 50	gca Ala	ctg Leu	gcc Ala	acg Thr	ttc Phe 55	cat His	ctc Leu	att Ile	gaa Glu	gag Glu 60	gtg Val	gag Glu	cgc Arg	gct Ala	192
0	gag Glu 65	cgg Arg	gaa Glu	aac Asn	ccg Pro	ccc Pro 70	gac Asp	gcc Ala	tac Tyr	gtc Val	atc Ile 75	gca Ala	tgt Cys	ttc Phe	ьeu	gat Asp 80	240
25	ccg Pro	gga Gly	ctt Leu	gac Asp	gcg Ala 85	gtc Val	aag Lys	gag Glu	ctg Leu	act Thr 90	gac Asp	agg Arg	cca Pro	gtg Val	gta Val 95	gga Gly	288
30	gtt Val	gcc Ala	gaa Glu	gct Ala 100	Ala	atc Ile	cac	atg Met	tct Ser 105	Ser	ttc Phe	gtc Val	gcg Ala	gcc Ala 110	Thr	ttc Phe	336
	tcc Ser	att Ile	gtc Val 115	Ser	atc Ile	ctc Leu	ccg Pro	agg Arg	Val	agg Arg	aaa Lys	cat His	ctg Leu 125	His	gaa Glu	ctg Leu	384
35	gta Val	cgg Arg 130	Gln	gcg Ala	Gly ggg	gcg Ala	acg Thr	Asr	. cgc	cto Lev	gcc Ala	tcc Ser 140	. TIG	aag Lys	cto Leu	cca Pro	432
	aat Asn 145	Leu	GJ7 aaa	g gtg Val	ato L Met	gcc : Ala 150	a Phe	cat His	gag Glu	g gad 1 As <u>r</u>	gaa Glu 155	His	gec Ala	gca Ala	ctg Lev	gag Glu 160	480
45	acg Thr	cto	aaa Lys	a caa s Glr	a gco n Ala 16	a Ala	a aag	g gag s Glu	g gcg ı Ala	g gto a Val 170	r GTI	g gag n Glu	g gac 1 Asp	ggo Gly	gcc Ala 175	gag Glu	528
50	tcg Ser	ata Ile	gtç Val	g cto l Le 18	u Gl	a tg y Cy	c gco s Ala	gge a Gl	c ato y Med 18	t Va.	1 G1 ⁷ 3 339	g ttt / Phe	gcg Ala	g cgt Arg 190	a GTI	ctg Leu	576
	ago Ser	gac	gaa Gl: 19	u Le	c gg u Gl	c gt y Va	c cc	t gto o Va . 20	l Il	c ga e As	c cco	g gto Val	gag l Glu 205	1 Ale	a gct a Ala	t tgc a Cys	624
55 _.	cgc	gtg Val 210	. Al	c ga a Gl	g ag u Se	t tt r Le	g gt u Va 21	l Al	t ct a Le	g gg u Gl	c ta y Ty:	c cas r Gli 22	נמידי מ	c age	c aaa r Ly	a gcg s Ala	672

711

					Lys :			gag (Glu)					tag			
5	<21:	0> 10 1> 23 2> PR	7 ET			,			·							·
10						uenz er k		lich	en S	eque	enz:B	B 5				
15		0> 1(Arg		Leu	Val 5	Ile	Asn	Pro	Asn	Ser 10	Ser	Ser	Ala	Leu	Thr 15	Glu
	Ser	·Val	Ala	Asp 20	Ala	Ala	Gln	Gln	Val. 25	Val	Ala	Thr	Gly	Thr 30	Ile	Ile
0	Ser	Ala	Ile 35	Asn	Pro	Ser	Arg	Gly 40	Pro	Ala	Val	Ile	Glu 45	Gly	Ser	Phe
	Asp	Glu 50	Ala	Leu	Ala	Thr	Phe 55	His	Leu	Ile	Glu	G1u 60	Val	Glu	Arg	Ala
25	Glu 65		Glu	Asn	Pro	Pro 70	Asp	Ala	Tyr	Val	Ile 75	Ala	Cys	Phe	Leu	Asp 08
30	Pro	Gly	Leu	Asp	Ala 85	Val	Lys	Ģlu	Leu	Thr 90		Arg	Pro	Val	Val 95	Gly
	Val	Ala	Glu	Ala 100	Ala	Ile	His	Met	Ser 105	Ser	Phe	Val	Ala	Ala 110	Thr	Phe
35	Ser	Ile	Val 115		Ile	Leu	Pro	Arg 120	Val	Arg	Lys	His	Leu 125	His	Glu	Leu
	Val	Arg 130		Ala	Gly	Ala	Thr 135	Asn	Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro
	Asn 145		Gly	· Val	Met	Ala 150		His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160
4 5	Thr	Leu	Lys	Gln	Ala 165		Lys	Glu	Ala	Val 170	Gln	Glu	Asp	Gly	Ala 175	Glu
	Ser	Ile	Val	. Lev 180		Cys	Ala	a Gly	Met 185		. Gly	Phe	Ala	Arg 190	Gln	Leu
50	Ser	Asp	Glu 195		ı Gly	y Val	Pro	Val 200		. Asr) Pro	Val	Glu 205	Ala	Ala	Cys .
٠	Arg	Val 210		a Glu	ı Seı	Lev	va: 21!	l Ala 5	Lev	ı Gly	у Туг	Gln 220	Thr	Ser	Lys	Ala
55	Asn 225		Туз	c Glr	n Lys	230		r Glu	ı Lys	Glr	1 Tyr 235	Leu	i			

	<211> 25	•	
	<212> DNA		
	<213> Künstliche Sequenz		•
5	<220>		
	<223> Beschreibung der künstlichen Sequenz: Primer5	•	
	<400> 11		•
10	gccgcaagga atggtgcatg catcg		25
10			
	<210> 12		
	<211> 30 <212> DNA		
15	<213> Künstliche Sequenz		•
	<220>	•	
	<223> Beschreibung der künstlichen Sequenz: Primer6		
0	·		
	<400> 12 ggtcaggtgg gtccaccgcg ctactgccgc		30
	<210> 13		
25	<211> 5777		
	<212> DNA <213> Künstliche Sequenz	•	
	1919 Kunstitche Sequenz		
30	<220>		
J U	<223> Beschreibung der künstlichen Sequenz:Plasmid pOM21	*	•
	<400> 13		
	aattettaag aaggagatat acatatgaga ateetegtga teaaccecaa cagt	tccagc	60
35 -	gcccttactg aatcggttgc ggacgcagca caacaagttg tcgcgaccgg cacc	ataatt	120
	tetgecatea acceetecag aggaceegee gteattgaag geagetttga egaa	acacta	180
			-
	gccacgttcc atctcattga agaggtggag cgcgctgagc gggaaaaccc gccc	gacgcc	240
	tacgtcatcg catgtttcgg ggatccggga cttgacgcgg tcaaggagct gact	gacagg	300
	ccagtggtag gagttgcega agctgcaatc cacatgtett cattegtege ggee	accttc	360
		,	
45	tccattgtca gcatcctccc gagggtcagg aaacatctgc acgaactggt acgg	caagcg	420
	ggggcgacga atcgcctcgc ctccatcaag ctcccaaatc tgggggtgat ggcc	ttccat	480
			E40
50	gaggacgaac atgccgcact ggagacgctc aaacaagccg ccaaggaggc ggtc	Jaggag	540
	gacggcgccg agtcgatagt gctcggatgc gccggcatgg tggggtttgc gcgtc	caactg	600
	agcgacgaac teggegteee tgteategae eeegtegagg eagettgeeg egtg	accaaa	660
= E	·		
55	agtttggtcg ctctgggcta ccagaccagc aaagcgaact cgtatcaaaa accga	acagag	720
	aagcagtacc tctagctgca gccaagcttc tgttttggcg gatgagagaa gattt	tcagc	780
	ctgatacaga ttaaatcaga acgcagaagc ggtctgataa aacagaattt gcctg	מכממר	840
		ים האחר בי	2±0

agtagegegg tggteecace tgaceceatg eegaacteag aagtgaaaeg eegtagegee 900 gatggtagtg tggggtctcc ccatgcgaga gtagggaact gccaggcatc aaataaacg 960 5 aaaggctcag tcgaaagact gggcctttcg ttttatctgt tgtttgtcgg tgaacgctct 1020 cctgagtagg acaaatccgc cgggagcgga tttgaacgtt gcgaagcaac ggcccggagg 1080 10 9^t99^c99gca ggacgcccgc cataaactgc caggcatcaa attaagcaga aggccatcct 1140 gacggatggc ctttttgcgt ttctacaaac tcttttgttt atttttctaa atacattcaa 1200 atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat cgtccattcc 1260 15 gacagcateg ceagteacta tggegtgetg ctagegetat atgegttgat geaatteta 1320 tgcgcacccg ttctcggagc actgtccgac cgctttggcc gccgcccagt cctgctcgct 1380 0 tegetacttg gagecactat egactaegeg atcatggega ecacaecegt cetgtggate 1440 ctctacgccg gacgcatcgt ggccggcatc accggcgcca caggtgcggt tgctggcgcc 1500 tatategeeg acateacega tggggaagat egggetegee actteggget catgageget 1560 25 tgtttcggcg tgggtatggt ggcaggcccc gtggccgggg gactgttggg cgccatctcc 1620 ttgcatgcac cattccttgc ggcggcggtg ctcaacggcc tcaacctact actgggctgc 1680 30 tteetaatge aggagtegea taagggagag egtegacega tgeeettgag ageetteaae 1740 ccagtcaget cetteeggtg ggegegggge atgactateg tegeogeaet tatgactgte 1800 ttetttatea tgeaactegt aggacaggtg ceggeagege tetgggteat ttteggegag 1860 35 gaccgcttte getggagege gacgatgate ggcetgtege ttgeggtatt eggaatettg 1920 cacgccctcg ctcaagcctt cgtcactggt cccgccacca aacgtttcgg cgagaagcag 1980 gccattatcg ccggcatggc ggccgacgcg ctgggctacg tcttgctggc gttcgcgacg 2040 cgaggetgga tggcettece cattatgatt ettetegett eeggeggeat egggatgeee 2100 gcgttgcagg ccatgctgtc caggcaggta gatgacgacc atcagggaca gcttcaagga 2160 45 tegetegegg etettaceag cetaactteg atcactggae egetgategt caeggegatt 2220 tatgccgcct cggcgagcac atggaacggg ttggcatgga ttgtaggcgc cgccctatac 2280 50 ettgtetgee teeeegegtt gegtegeggt geatggagee gggeeacete gaeetgaatg 2340 gaagccggcg gcacctcgct aacggattca ccactccaag aattggagcc aatcaattct 2400 tgcggagaac tgtgaatgcg caaaccaacc cttggcagaa catatccatc gcgtccgcca 2460 55 tetecageag eegeaegegg egeatetegg geagegttgg gteetggeea egggtgegea 2520 tgatcgtgct cetgtegttg aggaccegge taggetggeg gggttgcett actggttage 2580

agaatgaatc accgatacgc gagcgaacgt gaagcgactg ctgctgcaaa acgtctgcga 2640 cctgagcaac aacatgaatg gtcttcggtt tccgtgtttc gtaaagtctg gaaacgcgga 2700 5 agtecectae gtgetgetga agttgeeege aacagagagt ggaaccaacc ggtgatacca 2760 cgatactatg actgagagte aacgecatga geggeeteat ttettattet gagttacaac 2820 agtccgcacc gctgtccggt agctccttcc ggtgggcgcg gggcatgact atcgtcgccg 2880 10 cacttatgac tgtcttcttt atcatgcaac tcgtaggaca ggtgccggca gcgcccaaca 2940 gtcccccggc cacggggcct gccaccatac ccacgccgaa acaagcgccc tgcaccatta 3000 15 tgttccggat ctgcatcgca ggatgctgct ggctaccctg tggaacacct acatctgtat 3060 taacgaagcg ctaaccgttt ttatcaggct ctgggaggca gaataaatga tcatatcgtc 3120 aattattacc tccacgggga gagcctgagc aaactggcct caggcatttg agaagcacac 3180 ggtcacactg cttccggtag tcaataaacc ggtaaaccag caatagacat aagcggctat 3240 ttaacgaccc tgccctgaac cgacgaccgg gtcgaatttg ctttcgaatt tctgccattc 3300 25 atccgcttat tatcacttat tcaggcgtag caccaggcgt ttaagggcac caataactgc 3360 cttaaaaaaa ttacgccccg ccctgccact catcgcagta ctgttgtaat tcattaagca 3420 ttctgccgac atggaagcca tcacagacgg catgatgaac ctgaatcgcc agcggcatca 3480 3.0 gcaccttgtc gccttgcgta taatatttgc ccatggtgaa aacgggggcg aagaagttgt 3540 ccatattggc cacgtttaaa tcaaaactgg tgaaactcac ccagggattg gctgagacga 3600 35 aaaacatatt ctcaataaac cctttaggga aataggccag gttttcaccg taacacgcca 3660 catcttgcga atatatgtgt agaaactgcc ggaaatcgtc gtggtattca ctccagagcg 3720 atgaaaacgt ttcagtttgc tcatggaaaa cggtgtaaca agggtgaaca ctatcccata 3780 tcaccagctc accgtctttc attgccatac gaattccgga tgagcattca tcaggcgggc 3840 aagaatgtga ataaaggccg gataaaactt gtgcttattt ttctttacgg tctttaaaaa 3900 ggccgtaata tccagctgaa cggtctggtt ataggtacat tgagcaactg actgaaatgc 3960 45 ctcaaaatgt tctttacgat gccattggga tatatcaacg gtggtatatc cagtgatttt 4020 tttctccatt ttagcttcct tagctcctga aaatctcgat aactcaaaaa atacgcccgg 4080 50 tagtgatett attteattat ggtgaaagtt ggaacetett aegtgeegat caaegtetea 4140 ttttcgccaa aagttggccc agggcttccc ggtatcaaca gggacaccag gatttattta 4200 ttctgcgaag tgatcttccg tcacaggtat ttattcggcg caaagtgcgt cgggtgatgc 4260 55 tgccaactta ctgatttagt gtatgatggt gtttttgagg tgctccagtg gcttctgttt 4320 ctatcagctg tccctcctgt tcagctactg acggggtggt gcgtaacggc aaaagcaccg 4380

	•	ccggacatca	gcgctagcgg	agtgtatact	ggcttactat	gttggcactg	atgagggtgt	4440
	5	cagtgaagtg	cttcatgtgg	caggagaaaa	aaggctgcac	cggtgcgtca	gcagaatatg	4500
	,	tgatacagga	tatattccgc	ttcctcgctc	actgactcgc	tacgctcggt	cgttcgactg	4560
		cggcgagcgg	aaatggctta	cgaacggggc	ggagatttcc	tggaagatgc	caggaagata	4620
	10	cttaacaggg	aagtgagagg	gccgcggcaa	agccgttttt	ccataggctc	cgccccctg	4680
		acaagcatca	cgaaatctga	cgctcaaatc	agtggtggcg	aaacccgaca	ggactataaa	4740
	1 =	gataccagge	gtttcccctg	geggeteect	cgtgcgctct	cctgttcctg	cctttcggtt	4800
	15	taccggtgtc	attccgctgt	tatggccgcg	tttgtctcat	tccacgcctg	acactcagtt	4860
_		ccgggtaggc	agttcgctcc	aagctggact	gtatgcacga	accccccgtt	cagtccgacc	4920
	0	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	ggaaagacat	gcaaaagcac	4980
		cactggcagc	agccactggt	aattgattta	gaggagttag	tcttgaagtc	atgcgccggt	5040
	2 =	taaggctaaa	ctgaaaggac	aagttttggt	gactgcgctc	ctccaagcca	gttacctcgg	5100
	25	ttcaaagagt	tggtagctca	gagaaccttc	gaaaaaccgc	cctgcaaggc	ggttttttcg	5160
		ttttcagagc	aagagattac	gegeagacea	aaacgatctc	aagaagatca	tcttattaat	5220
	30	cagataaaat	atttcaagat	ttcagtgcaa	tttatctctt	caaatgtagc	acctgaagtc	5280
		agccccatac	gatataagtt	gtaattetea	tgtttgacag	cttatcatcg	ataagcttta	5340
	35	atgcggtagt	: ttatcacagt	. taaattgcta	acgcagtcag	gcaccgtgta	tgaaatctaa	5400
	33	caatgegete	atcgtcatcc	: tcggcaccgt	caccctggat	gctgtaggca	taggcttggt	5460
		tatgccggta	ctgccgggcc	tcttgcggga	ttagtcatgo	ceegegeee <u>a</u>	ccggaaggag	5520
Į		ctgactgggt	: tgaaggctct	: caagggcatc	ggtcgacgct	. ctcccttatg	cgactcctgc	5580
	_	attaggaago	agcccagtag	g taggttgagg	g ccgttgagca	cegeegeege	aaggaatggt	5640
	45	gcatgcatco	g atcaccacaa	a ttcagcaaat	: tgtgaacato	atcacgttca	tctttccctg	5700
	40	gttgccaatq	g gcccattttc	c ctgtcagtaa	cgagaaggto	gcgaattcag	gcgctttta	5760
		gactggtcgt	aatgaac	•				5777
	50	· <210> 14				,		
		-21U> 14						

<211> 7175

^{.&}lt;212> DNA

<213> Künstliche Sequenz

⁵⁵

<223> Beschreibung der künstlichen Sequenz:Plasmid pOM22

<400> 14

	aattcttaag	aaggagatat	acatatgacc	ctgcagaaag	cgcaagcgna	gcgcattgag	60
•	aaagagatct	gggagctctc	ccggttctcg	gcggaaggcc	ccggtgttac	ccggctgacc	120
5	tacactccag	agcatgccgc	cgcgcgggaa	acgctcattg	cggctatgga	agcggccgct	180
	ttgagcgttc	gtgaagacgc	tctcgggaac	atcatcggcc	gacgtgaagg	cactgatccg	240
4.0	cagctccctg	cgatcgcggt	cggttcacac	ttcgattctg	tccgaaacgg	cgggatgttc	300
10	gatggcactg	caggcgtggt	gtgcgccctt	gaggctgccc	gggtgatgct	ggagagcggc	360
	tacgtgaatc	ggcatccatt	tgagttcatc	gcgatcgtgg	aggaggaagg	ggcccgcttc	420
15	agcagtggca	tgttgggcgg	ccgggccatt	gcaggtttgg	tcgccgacag	ggaactggac	480
	tctttggttg	atgaggatgg	agtgtccgtt	aggcaggcgg	ctactgcctt	cggcttgaag	540
	ccgggcgaac	tgcaggctgc	agecegetee	gcggcggacc	tgcgtgcttt	tatcgaacta	600
0	cacattgaac	aaggaccgat	cctcgagcag	gagcaaatag	agatcggagt	tgtgacctcc	660
	atcgttggcg	ttegegeatt	gegggttget	gtcaaaggca	gaagcgcaca	cgccggcaca	720
25	acccccatgo	acctgcgcca	ggatgcgctg	gtacccgccg	ctctcatggt	gcgggaggtc	780
	aaccggttcg	g tcaacgagat	cgccgatggc	acagtggcta	ccgttggcca	cctcacagtg	840
	gccccggtg	g gcggcaacca	ggtcccgggg	g gaggtggagt	tcacactgga	cctgcgttct	900
30	ccgcatgagg	g agtcgctccg	g ggtgttgato	e aaccgcatct	cggtcatggt	cggcgaggtc	960
•	gcctcgcag	g ceggtgtgg	c tgccgatgtg	g gatgaatttt	tcaatctcag	cccggtgcag	1020
35	ctggctcct	a ccatggtgg	a cgccgttcg	c gaagcggcct	. cggccctgca	gttcacgcac	الع 1080
	cgggatatc	a gcagtgggg	c gggccacga	c tcgatgttca	tegeceaggt	cacggacgtc	1140
	ggaatggtt	t tcgttccaa	g ccgtgctgg	c cggagccacg	, ttcccgaaga	atggaccgat	1200
	ttcgatgac	c ttcgcaagg	g aactgaggt	t gtcctccggg	g taatgaaggc	acttgaccgg	1260
	ggatcccat	c atcatcatc	a tcattgact	g .cagccaagct	tctgttttgg	cggatgagag	1320
45	aagattttc	a gcctgatac	a gattaaatc	a gaacgcagaa	a gcggtctgat	aaaacagaat	1380
	ttgcctggc	g gcagtagcg	c ggtggtccc	a cctgacccc	a tgccgaactc	agaagtgaaa	1440
	cgccgtagc	g ccgatggta	g tgtggggtc	t ccccatgcg	a gagtagggaa	ctgccaggca	1500
50	tcaaataaa	a cgaaaggct	c agtcgaaag	a ctgggcctt	t cgttttatct	gttgtttgtc	1560
	ggtgaacgc	t ctcctgagt	a ggacaaato	c gccgggagc	g gatttgaacg	ttgcgaagca	. 1620
5 5	acggcccgg	a gggtggcgg	gg caggacgco	ec gecataaac	t gccaggcato	: aaattaagca	1680
	gaaggccat	c ctgacggat	g gcctttttg	gc gtttctaca	a actctttgt	ttattttct	1740
	aaatacatt	c aaatatota	at cogotoato	ga gacaataac	c ctgataaatg	g cttcaataat	1800

attgaaaaag gaagagtatg agtattcaac atttccgtgt cgcccttatt cccttttttg 1860 cggcattttg ccttcctgtt tttgctcacc cagaaacgct ggtgaaagta aaagatgctg 1920 5 aagatcagtt gggtgcacga gtgggttaca tcgaactgga tctcaacagc ggtaagatcc 1980 ttgagagttt tcgccccgaa gaacgttttc caatgatgag cacttttaaa gttctgctat 2040 10 gtggcgcggt attatecegt gttgacgceg ggcaagagea acteggtege egeatacaet 2100 attctcagaa tgacttggtt gagtactcac cagtcacaga aaagcatctt acggatggca 2160 tgacagtaag agaattatgc agtgctgcca taaccatgag tgataacact gcggccaact 2220 15 tacttctgac aacgatcgga ggaccgaagg agctaaccgc ttttttgcac aacatggggg 2280 atcatgtaac tcgccttgat cgttgggaac cggagctgaa tgaagccata ccaaacgacg 2340 0 agcgtgacac cacgatgcct gtagcaatgg caacaacgtt gcgcaaacta ttaactggcg 2400 aactacttac tctagcttcc cggcaacaat taatagactg gatggaggcg gataaagttg 2460 caggaccact tetgegeteg gecetteegg etggetggtt tattgetgat aaatetggag 2520 25 ccggtgagcg tgggtctcgc ggtatcattg cagcactggg gccagatggt aagccctccc 2580 gtatcgtagt tatctacacg acggggagtc aggcaactat ggatgaacga aatagacaga 2640 30 tcgctgagat aggtgcctca ctgattaagc attggtaact gtcagaccaa gtttactcat 2700 tttttgataa tctcatgacc aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag 2820 35 accccgtaga aaagatcaaa ggatcttctt gagatccttt ttttctgcgc gtaatctgct 2880 gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg tttgccggat caagagctac 2940 caactetttt teegaaggta aetggettea geagagegea gataceaaat aetgteette 3000 tagtgtagcc gtagttaggc caccacttca agaactctgt agcaccgcct acatacctcg 3060 ctctgctaat cctgttacca gtggctgctg ccagtggcga taagtcgtgt cttaccgggt 3120 45 tggactcaag acgatagtta ccggataagg cgcagcggtc gggctgaacg gggggttcgt 3180 gcacacagcc cagcttggag cgaacgacct acaccgaact gagataccta cagcgtgagc 3240 50 tatgagaaag cgccacgctt cccgaaggga gaaaggcgga caggtatccg gtaagcggca 3300 gggtcggaac aggagagcgc acgagggagc ttccaggggg aaacgcctgg tatctttata 3360 gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg 3420 55 ggcggagcct atggaaaaac gccagcaacg cggccttttt acggttcctg gccttttgct 3480 ggccttttgc tcacatgttc tttcctgcgt tatcccctga ttctgtggat aaccgtatta 3540

ccgcctttga gtgagctgat accgctcgcc gcagccgaac gaccgagcgc agcgagtcag 3600 tgagcgagga agcggaagag cgcctgatgc ggtattttct ccttacgcat ctgtgcggta 3660 tttcacaccg catatatggt gcactctcag tacaatctgc tctgatgccg catagttaag 3720 5 ccagtataca ctccgctatc gctacgtgac tgggtcatgg ctgcgccccg acacccgcca 3780 acaccegetg acgegeettg acgggettgt etgeteeegg cateegetta cagacaaget 3840 10 gtgaccgtct ccgggagctg catgtgtcag aggttttcac cgtcatcacc gaaacgcgcg 3900 aggcagctgc ggtaaagctc atcagcgtgg tcgtgaagcg attcacagat gtctgcctgt 3960 teatecgegt ceagetegtt gagtttetee agaagegtta atgtetgget tetgataaag 4020 15 cgggccatgt taagggcggt tttttcctgt ttggtcactt gatgcctccg tgtaaggggg 4080 aatttctgtt catgggggta atgataccga tgaaacgaga gaggatgctc acgatacggg 4140 ttactgatga tgaacatgcc cggttactgg aacgttgtga gggtaaacaa ctggcggtat 4200 ggatgcggcg ggaccagaga aaaatcactc agggtcaatg ccagcgcttc gttaatacag 4260 atgtaggtgt tccacagggt agccagcagc atcctgcgat gcagatccgg aacataatgg 4320 25 tgcagggcgc tgacttccgc gtttccagac tttacgaaac acggaaaccg aagaccattc 4380 atgttgttgc tcaggtcgca gacgttttgc agcagcagtc gcttcacgtt cgctcgcgta 4440 30 teggtgatte attetgetaa eeagtaagge aacceegeea geetageegg gteeteaacg 4500 acaggagcac gatcatgcgc accegtggcc aggacccaac gctgcccgag atgcgccgcg 4560 tgcggctgct ggagatggcg gacgcgatgg atatgttctg ccaagggttg gtttgcgcat 4620 35 tcacagttct ccgcaagaat tgattggctc caattcttgg agtggtgaat ccgttagcga 4680 ggtgccgccg gcttccattc aggtcgaggt ggcccggctc catgcaccgc gacgcaacgc 4740 ggggaggcag acaaggtata gggcggcgcc tacaatccat gccaacccgt tccatgtgct 4800 cgccgaggcg gcataaatcg ccgtgacgat cagcggtcca gtgatcgaag ttaggctggt 4860 aagagccgcg agcgatcctt gaagctgtcc ctgatggtcg tcatctacct gcctggacag 4920 45 catggcctgc aacgcgggca tcccgatgcc gccggaagcg agaagaatca taatggggaa 4980 ggccatccag cctcgcgtcg cgaacgccag caagacgtag cccagcgcgt cggccgccat 5040 50 gccggcgata atggcctgct tctcgccgaa acgtttggtg gcgggaccag tgacgaaggc 5100 ttgagcgagg gcgtgcaaga ttccgaatac cgcaagcgac aggccgatca tcgtcgcgct 5160 ccagegaaag eggteetege egaaaatgae eeagageget geeggeaeet gteetaegag 5220 55 ttgcatgata aagaagacag tcataagtgc ggcgacgata gtcatgcccc gcgcccaccg 5280 gaaggagetg actgggttga aggeteteaa gggeateggt egaegetete eettatgega 5340

ctcctgcatt aggaagcagc ccagtagtag gttgaggccg ttgagcaccg ccgccgcaag 5400 gaatggtgca tgcatcgatc accacaattc agcaaattgt gaacatcatc acgttcatct 5460 5 ttccctggtt gccaatggcc cattttcctg tcagtaacga gaaggtcgcg aattcaggcg 5520 ctttttagac tggtcgtaat gaacaattct taagaaggag atatacatat gtttgacgta 5580 10 atagttaaga actgccgtat ggtgtccagc gacggaatca ccgaggcaga cattctggtg 5640 aaagacggca aagtcgccgc aatcagctcg gacacaagtg atgttgaggc gagccgaacc 5700 attgacgcgg gtggcaagtt cgtgatgccg ggcgtggtcg atgaacatgt gcatatcatc 5760 15 gacatggatc tgaagaaccg gtatggccgc ttcgaactcg attccgagtc tgcggccgtg 5820 ggaggcatca ccaccatctt tgagatgccg tttaccttcc cgcccaccac cactttggac 5880 gccttcctcg aaaagaagaa gcaggcgggg cagcggttga aagttgactt cgcgctctat 5940 ggcggtggag tgccgggaaa cctgcccgag atccgcaaaa tgcacgacgc cggcgcagtg 6000 ggcttcaagt caatgatggc agcctcagtt ccgggcatgt tcgacgccgt cagcgacggc 6060 25 gaactgttcg aaatcttcca ggagatcgca gcctgtggtt cagtcgccgt ggtccatgcc 6120 gagaatgaaa cgatcattca agcgctccag aagcagatca aagccgctgg tcgcaaggac 6180 30 atggccgcct acgaggcatc ccaaccagtt ttccaggaga acgaggccat tcagcgtgcg 6240 ttactactgc agaaagaagc cggctgtcga ctgattgtgc ttcacgtgag caaccctgac 6300 ggggtcgagc tgatacatcg ggcgcaatcc gagggccagg acgtccactg cgagtcgggt 6360 35 ccgcagtatc tgaatatcac cacggacgac gccgaacgaa tcggaccgta tatgaaggtc 6420 gcgccgcccg tccgctcagc cgagatgaac gtcagattat gggaacaact tgagaacggg 6480 ctcatcgaca cccttgggtc agaccacggc ggacatcctg tcgaggacaa agaacccggc 6540 tggaaggacg tgtggaaagc cggcaacggt gcgctgggcc ttgagacatc cctgcctatg 6600 atgctgacca acggagtgaa taaaggcagg ctatccttgg aacgcctcgt cgaggtgatg 6660 45 tgcgagaaac ctgcgaagct ctttggcatc tatccgcaga agggcacgct acaggttggt 6720 tccgacgccg atctgctcat cctcgatctg gatattgaca ccaaagtgga tgcctcgcag 6780 50 ttccgatccc tgcataagta cagcccgttc gacgggatgc ccgtcacggg tgcaccggtt 6840 ctgacgatgg tgcgcggaac ggtggtggca gagaagggag aagttctggt cgagcaggga 6900 tteggeeagt tegteaceeg teaegaetae gaggegtega agtgaggate tegaegetet 6960 55 cccttatgcg actcctgcat taggaagcag cccagtagta ggttgaggcc gttgagcacc 7020 gccgccgcaa ggaatggtgc atgcatcgat caccacaatt cagcaaattg tgaacatcat 7080

cacgttcatc tttccctggt tgccaatggc ccattttcct gtcagtaacg agaaggtcgc 7140 7175 gaattcaggc gctttttaga ctggtcgtaa tgaac 5 <210> 15 <211> 5989 <212> DNA <213> Künstliche Sequenz 10 <220> <223> Beschreibung der künstlichen Sequenz:Plasmid pDHYH aattettaag aaggagatat acatatggat gcaaagctac tggttggcgg cactattgtt 60 15 tectegaceg geaaaateeg ageegaegtg etgattgaaa aeggeaaagt egeegetgte 120 ggcatgctgg acgccgcgac gccggacaca gttgagcggg ttgactgcga cggcaaatac 180 gtcatgcccg gcggtatcga cgttcacacc cacatcgact ccccctcat ggggaccacc 240 accgccgatg attttgtcag cggaacgatt gcagccgcta ccggcggaac aacgaccatc 300 gtcgatttcg gacagcagct cgccggcaag aacctgctgg aatccgcaga cgcgcaccac 360 25 aaaaaggcgc aggggaaatc cgtcattgat tacggcttcc atatgtgcgt gacgaacctc 420 tatgacaatt togattocca tatggcagaa ctgacacagg acggaatotc cagtttcaag 480 30 gtcttcatgg cctaccgcgg aagcctgatg atcaacgacg gcgaactgtt cgacatcctc 540 aagggagteg getecagegg tgecaaacta tgegtecaeg cagagaaegg egaegteate 600 gacaggateg cegeegacet etacgeecaa ggaaaaaceg ggeeegggae ceaegagate 660 35 gcacgcccgc cggaatcgga agtcgaagca gtcagccggg ccatcaagat ctcccggatg 720 gccgaggtgc cgctgtattt cgtgcatctt tccacccagg gggccgtcga ggaagtagct 780 geogegeaga tgacaggatg gecaatcage geogaaacgt geacecacta cetgtegetg 840 ageegggaca tetaegacea geegggatte gageeggeea aagetgteet cacaceaceg 900 ctgcgcacac aggaacacca ggacgcgttg tggagaggca ttaacaccgg tgcgctcagc 960 45 gtcgtcagtt ccgaccactg ccccttctgc tttgaggaaa agcagcggat gggggcagat 1020 gacttccggc agatccccaa cggcgggccc ggcgtggagc accgaatgct cgtgatgtat 1080 50 gagaccggtg tcgcggaagg aaaaatgacg atcgagaaat tcgtcgaggt gactgccgag 1140 aacccggcca agcaattcga tatgtacccg aaaaagggaa caattgcacc gggctccgat 1200 gcagacatca tcgtggtcga ccccaacgga acaaccctca tcagtgccga cacccaaaaa 1260 55 caaaacatgg actacacgct gttcgaaggc ttcaaaatcc gttgctccat cgaccaggtg 1320 ttctcgcgtg gcgacctgat cagcgtcaaa ggcgaatatg tcggcacccg cggccgcggc 1380

gaattcatca agcggagcgc ttggagccac ccgcagttcg aaaaataaaa gcttggctgt 1440 tttggcggat gagagaagat tttcagcctg atacagatta aatcagaacg cagaagcggt 1500 5 ctgataaaac agaatttgcc tggcggcagt agcgcggtgg tcccacctga ccccatgccg 1560 aactcagaag tgaaacgccg tagcgccgat ggtagtgtgg ggtctcccca tgcgagagta 1620 gggaactgcc aggcatcaaa taaaacgaaa ggctcagtcg aaagactggg cctttcgttt 1680 10 tatctgttgt ttgtcggtga acgeteteet gagtaggaca aateegeegg gageggattt 1740 gaacgttgcg aagcaacggc ccggagggtg gcgggcagga cgcccgccat aaactgccag 1800 15 gcatcaaatt aagcagaagg ccatcctgac ggatggcctt tttgcgtttc tacaaactct 1860 tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa taaccctgat 1920 aaatgettea ataatattga aaaaggaaga gtatgagtat teaacattte egtgtegeee 1980 ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa acgctggtga 2040 aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa ctggatctca 2100 25 acageggtaa gateettgag agttttegee eegaagaaeg tttteeaatg atgageaett 2160 ttaaagttct gctatgtggc gcggtattat cccgtgttga cgccgggcaa gagcaactcg 2220 gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc acagaaaagc 2280 30 atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc atgagtgata 2340 acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta accgcttttt 2400 35 tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag ctgaatgaag 2460 ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca acgttgcgca 2520 aactattaac tggcgaacta cttactctag cttcccggca acaattaata gactggatgg 2580 aggeggataa agttgeagga ceaettetge geteggeeet teeggetgge tggtttattg 2640 ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca ctggggccag 2700 45 atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca actatggatg 2760 aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg taactgtcag 2820 accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa tttaaaagga 2880 50 tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt gagttttcgt 2940 tccactgage gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat cctttttttc 3000 55 tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg gtttgtttgc 3060 cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga gcgcagatac 3120

caaatactgt cettetagtg tageegtagt taggecacca etteaagaac tetgtageac 3180 cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt ggcgataagt 3240 cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag cggtcgggct 3300 .5 gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc gaactgagat 3360 acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag gcggacaggt 3420 10 atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca gggggaaacg 3480 cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt cgatttttgt 3540 gatgctcgtc aggggggggg agcctatgga aaaacgccag caacgcggcc tttttacggt 3600 15 tectggeett ttgetggeet tttgeteaca tgttetttee tgegttatee cetgattetg 3660 tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc cgaacgaccg 3720 agegeagega gteagtgage gaggaagegg aagagegeet gatgeggtat ttteteetta 3780 cgcatctgtg cggtatttca caccgcatat atggtgcact ctcagtacaa tctgctctga 3840 tgccgcatag ttaagccagt atacactccg ctatcgctac gtgactgggt catggctgcg 3900 25 ccccgacacc cgccaacacc cgctgacgcg ccctgacggg cttgtctgct cccggcatcc 3960 gcttacagac aagctgtgac cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca 4020 30 tcaccgaaac gcgcgaggca gctgcggtaa agctcatcag cgtggtcgtg aagcgattca 4080 cagatgtctg cctgttcatc cgcgtccagc tcgttgagtt tctccagaag cgttaatgtc 4140 tggcttctga taaagcgggc catgttaagg gcggtttttt cctgtttggt cacttgatgc 4200 35 ctccgtgtaa gggggaattt ctgttcatgg gggtaatgat accgatgaaa cgagagagga 4260 tgctcacgat acgggttact gatgatgaac atgcccggtt actggaacgt tgtgagggta 4320 aacaactggc ggtatggatg cggcgggacc agagaaaaat cactcagggt caatgccagc 4380 gettegttaa tacagatgta ggtgttecae agggtageca geageateet gegatgeaga 4440 teeggaacat aatggtgeag ggegetgaet teegegttte cagaetttae gaaacaegga 4500 45 aaccgaagac cattcatgtt gttgctcagg tcgcagacgt tttgcagcag cagtcgcttc 4560 acgttcgctc gcgtatcggt gattcattct gctaaccagt aaggcaaccc cgccagccta 4620 50 gccgggtcct caacgacagg agcacgatca tgcgcacccg tggccaggac ccaacgctgc 4680 ccgagatgcg ccgcgtgcgg ctgctggaga tggcggacgc gatggatatg ttctgccaag 4740 ggttggtttg cgcattcaca gttctccgca agaattgatt ggctccaatt cttggagtgg 4800 55 tgaatccgtt agcgaggtgc cgccggcttc cattcaggtc gaggtggccc ggctccatgc 4860 accgcgacgc aacgcgggga ggcagacaag gtatagggcg gcgcctacaa tccatgccaa 4920

cccgttccat gtgctcgccg aggcggcata aatcgccgtg acgatcagcg gtccagtgat 4980 cgaagttagg ctggtaagag ccgcgagcga tccttgaagc tgtccctgat ggtcgtcatc 5040 5 tacctgcctg gacagcatgg cctgcaacgc gggcatcccg atgccgccgg aagcgagaag 5100 aatcataatg gggaaggcca tccagcctcg cgtcgcgaac gccagcaaga cgtagcccag 5160 10 egegteggee gecatgeegg egataatgge etgetteteg eegaaaegtt tggtggeggg 5220 accagtgacg aaggettgag egagggegtg caagatteeg aatacegeaa gegacaggee 5280 gatcatcgtc gcgctccage gaaagcggtc ctcgccgaaa atgacccaga gcgctgccgg 5340 15 cacctgtcct acgagttgca tgataaagaa gacagtcata agtgcggcga cgatagtcat 5400 gccccgcgcc caccggaagg agctgactgg gttgaaggct ctcaagggca tcggtcgacg 5460 etetecetta tgegaeteet geattaggaa geageecagt agtaggttga ggeegttgag 5520 caccgccgcc gcaaggaatg gtgcatgctc gatggctacg agggcagaca gtaagtggat 5580 ttaccataat cccttaattg tacgcaccgc taaaacgcgt tcagcgcgat cacggcagca 5640 25 gacaggtaaa aatggcaaca aaccacccta aaaactgcgc gatcgcgcct gataaatttt 5700 aaccgtatga atacctatgc aaccagaggg tacaggccac attaccccca cttaatccac 5760 30 tgaagetgee attitteatg gitteaceat eecagegaag ggeeatgeat geategaaat 5820 taatacgacg aaattaatac gactcactat agggcaattg cgatcaccac aattcagcaa 5880 attgtgaaca tcatcacgtt catctttccc tggttgccaa tggcccattt tcctgtcagt 5940 35 5989 aacgagaagg tcgcgaattc aggcgctttt tagactggtc gtaatgaac

<210> 16 <211> 6958

50

55

<212> DNA

<213> Künstliche Sequenz

<220>

45 <223> Beschreibung der künstlichen Sequenz:Plasmid pJAVIER16

<400> 16
aattettaag aaggagatat acatatggeg aaaaacttga tgetegeggt egeteaagte 60
ggeggtateg atagttegga ateaagacee gaagtegteg eeegettgat tgeeetgetg 120
gaagaageag etteeeaggg egeggaactg gtggtettte eegaacteae getgaeeaeg 180
ttetteeege gtaeetggtt egaagaagge gaettegagg aataettega taaateeatg 240
eccaatgaeg aegtegegee eettttegaa egegeeaaag aeettggegt gggettetae 300
eteggataeg eggaactgae eagtgatgag aageggtaea acacateaat tetggtgaae 360

aagcacggcg acatcgtcgg caagtaccgc aagatgcatc tgccgggcca cgccgataac 420 cgggaaggac tacccaacca gcaccttgaa aagaaatact tccgcgaagg agatctcgga 480 5 ttcggtgtct tcgacttcca cggcgtgcag gtcggaatgt gtctctgcaa cgaccggcga 540 tggccggagg tctaccgctc tttggccctg cagggagcag agctcgtcgt cctgggctac 600 aacacccccg atttcgttcc cggctggcag gaagagcctc acgcgaagat gttcacgcac 660 10 cttctttcac ttcaggcagg ggcataccag aactcggtat ttgtggcggc tgccggcaag 720 tegggetteg aagaegggea ceacatgate ggeggateag eggtegeege geeeagegge 780 15 gaaateetgg caaaagcage eggegaggge gatgaagteg tegttgtgaa agcagacate 840 gacatgggca agccctataa ggaaagcgtc ttcgacttcg ccgcccatcg gcgccccgac 900 gcatacggca tcatcgccga aaggaaaggg cggggcgccc cactgcccgt cccgttcaac 960 gtgaatgact aaggatccga aggagatata catatggatg caaagctact ggttggcggc 1020 actattgttt cctcgaccgg caaaatccga gccgacgtgc tgattgaaaa cggcaaagtc 1080 25 geegetgteg geatgetgga egeegegaeg eeggaeaeag ttgagegggt tgaetgegae 1140 ggcaaatacg tcatgcccgg cggtatcgac gttcacaccc acatcgactc ccccctcatg 1200 gggaccacca ecgeegatga ttttgteage ggaacgattg eageegetae eggeggaaca 1260 30 acgaccateg tegatttegg acageagete geeggeaaga acetgetgga ateegeagae 1320 gegeaceaca aaaaggegea ggggaaatee gteattgatt aeggetteea tatgtgegtg 1380 35 acgaacctct atgacaattt cgattcccat atggcagaac tgacacagga cggaatctcc 1440 agtttcaagg tettcatgge etacegegga ageetgatga teaaegaegg egaaetgtte 1500 gacatectea agggagtegg etceageggt gecaaactat gegteeaege agagaaegge 1560 gacgtcatcg acaggatcgc cgccgacctc tacgcccaag gaaaaaccgg gcccgggacc 1620 cacgagateg caegeeegee ggaateggaa gtegaageag teageeggge cateaagate 1680 45 teceggatgg ecgaggtgee getgtattte gtgcatettt ecacecaggg ggeegtegag 1740 gaagtagetg cegegeagat gacaggatgg ceaateageg eegaaaegtg cacecactae 1800 ctgtcgctga gccgggacat ctacgaccag ccgggattcg agccggccaa agctgtcctc 1860 50 acaccaccgc tgcgcacaca ggaacaccag gacgcgttgt ggagaggcat taacaccggt 1920 gegeteageg tegteagtte egaceactge ecettetget ttgaggaaaa geageggatg 1980 55 ggggcagatg acttccggca gatccccaac ggcgggcccg gcgtggagca ccgaatgctc 2040 gtgatgtatg agaccggtgt cgcggaagga aaaatgacga tcgagaaatt cgtcgaggtg 2100

actgccgaga acccggccaa gcaattcgat atgtacccga aaaagggaac aattgcaccg 2160 ggctccgatg cagacatcat cgtggtcgac cccaacggaa caaccctcat cagtgccgac 2220 acccaaaaac aaaacatgga ctacacgctg ttcgaaggct tcaaaatccg ttgctccatc 2280 5 gaccaggtgt tetegegtgg egacetgate agegteaaag gegaatatgt eggeaceege 2340 ggccgcggcg aattcatcaa gcggagcgct tggagccacc cgcagttcga aaaataaaag 2400 10 cttggctgtt ttggcggatg agagaagatt ttcagcctga tacagattaa atcagaacgc 2460 agaagcggtc tgataaaaca gaatttgcct ggcggcagta gcgcggtggt cccacctgac 2520 cccatgccga actcagaagt gaaacgccgt agcgccgatg gtagtgtggg gtctccccat 2580 15 gcgagagtag ggaactgcca ggcatcaaat aaaacgaaag gctcagtcga aagactgggc 2640 ctttcgtttt atctgttgtt tgtcggtgaa cgctctcctg agtaggacaa atccgccggg 2700 agcggatttg aacgttgcga agcaacggcc cggagggtgg cgggcaggac gcccgccata 2760 aactgccagg catcaaatta agcagaaggc catcctgacg gatggccttt ttgcgtttct 2820 25 acaaactett ttgtttattt ttetaaatae atteaaatat gtateegete atgagacaat 2880 aaccctgata aatgcttcaa taatattgaa aaaggaagag tatgagtatt caacatttcc 2940 gtgtcgccct tattcccttt tttgcggcat tttgccttcc tgtttttgct cacccagaaa 3000 30 cgctggtgaa agtaaaagat gctgaagatc agttgggtgc acgagtgggt tacatcgaac 3060 tggatctcaa cagcggtaag atccttgaga gttttcgccc cgaagaacgt tttccaatga 3120 tgagcaettt taaagttetg etatgtggeg eggtattate eegtgttgae geegggeaag 3180 35 agcaactcgg tcgccgcata cactattctc agaatgactt ggttgagtac tcaccagtca 3240 cagaaaagca tettaeggat ggeatgaeag taagagaatt atgeagtget geeataacca 3300 tgagtgataa cactgeggee aacttactte tgacaacgat eggaggaeeg aaggagetaa 3360 ccgctttttt gcacaacatg ggggatcatg taactcgcct tgatcgttgg gaaccggagc 3420 tgaatgaagc cataccaaac gacgagcgtg acaccacgat gcctgtagca atggcaacaa 3480 45 cgttgcgcaa actattaact ggcgaactac ttactctagc ttcccggcaa caattaatag 3540 actggatgga ggcggataaa gttgcaggac cacttctgcg ctcggccctt ccggctggct 3600 50 ggtttattgc tgataaatct ggagccggtg agcgtgggtc tcgcggtatc attgcagcac 3660 tggggccaga tggtaagccc tcccgtatcg tagttatcta cacgacgggg agtcaggcaa 3720 ctatggatga acgaaataga cagatcgctg agataggtgc ctcactgatt aagcattggt 3780 55 aactgtcaga ccaagtttac tcatatatac tttagattga tttaaaaactt catttttaat 3840 ttaaaaggat ctaggtgaag atcctttttg ataatctcat gaccaaaatc ccttaacgtg 3900

agttttcgtt ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc 3960 cttttttttt gcgcgtaatc tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg 4020 5 tttgtttgcc ggatcaagag ctaccaactc tttttccgaa ggtaactggc ttcagcagag 4080 cgcagatacc aaatactgtc cttctagtgt agccgtagtt aggccaccac ttcaagaact 4140 ctgtagcacc gcctacatac ctcgctctgc taatcctgtt accagtggct gctgccagtg 4200 10 gcgataagtc gtgtcttacc gggttggact caagacgata gttaccggat aaggcgcagc 4260 ggtcgggctg aacggggggt tcgtgcacac agcccagctt ggagcgaacg acctacaccg 4320 15 aactgagata cctacagcgt gagctatgag aaagcgccac gcttcccgaa gggagaaagg 4380 cggacaggta tccggtaagc ggcagggtcg gaacaggaga gcgcacgagg gagcttccag 4440 ggggaaacgc ctggtatett tatagteetg tegggttteg ceaectetga ettgagegte 4500 gatttttgtg atgctcgtca ggggggggga gcctatggaa aaacgccagc aacgcggcct 4560 ttttacggtt cetggeettt tgetggeett ttgeteacat gttettteet gegttatece 4620 25 ctgattctgt ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc 4680 gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga agagcgcctg atgcggtatt 4740 ttctccttac gcatctgtgc ggtatttcac accgcatata tggtgcactc tcagtacaat 4800 30 ctgctctgat gccgcatagt taagccagta tacactccgc tatcgctacg tgactgggtc 4860 atggetgege ecegacacee gecaacacee getgacgege eetgacggge ttgtetgete 4920 35 ccggcatccg cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt 4980 tcaccgtcat caccgaaacg cgcgaggcag ctgcggtaaa gctcatcagc gtggtcgtga 5040 agegattcae agatgtetge etgtteatee gegteeaget egttgagttt etecagaage 5100 gttaatgtct ggcttctgat aaagcgggcc atgttaaggg cggttttttc ctgtttggtc 5160 acttgatgcc tccgtgtaag ggggaatttc tgttcatggg ggtaatgata ccgatgaaac 5220 45 gagagaggat gctcacgata cgggttactg atgatgaaca tgcccggtta ctggaacgtt 5280 gtgagggtaa acaactggcg gtatggatgc ggcgggacca gagaaaaatc actcagggtc 5340 aatgccagcg cttcgttaat acagatgtag gtgttccaca gggtagccag cagcatcctg 5400 50 cgatgcagat ccggaacata atggtgcagg gcgctgactt ccgcgtttcc agactttacg 5460 aaacacggaa accgaagacc attcatgttg ttgctcaggt cgcagacgtt ttgcagcagc 5520 -55 agtcgcttca cgttcgctcg cgtatcggtg attcattctg ctaaccagta aggcaacccc 5580 gccagcctag ccgggtcctc aacgacagga gcacgatcat gcgcacccgt ggccaggacc 5640

5

10

15

25

30

35

caacgctgcc cgagatgcgc cgcgtgcggc tgctggagat ggcggacgcg atggatatgt 5700 tctgccaagg gttggtttgc gcattcacag ttctccgcaa gaattgattg gctccaattc 5760 ttggagtggt gaatccgtta gcgaggtgcc gccggcttcc attcaggtcg aggtggcccg 5820 gctccatgca ccgcgacgca acgcggggag gcagacaagg tatagggcgg cgcctacaat 5880 ccatgccaac ccgttccatg tgctcgccga ggcggcataa atcgccgtga cgatcagcgg 5940 tccagtgatc gaagttaggc tggtaagagc cgcgagcgat ccttgaagct gtccctgatg 6000 gtcgtcatct acctgcctgg acagcatggc ctgcaacgcg ggcatcccga tgccgccgga 6060 agcgagaaga atcataatgg ggaaggccat ccagcctcgc gtcgcgaacg ccagcaagac 6120 gtagcccagc gcgtcggccg ccatgccggc gataatggcc tgcttctcgc cgaaacgttt 6180 ggtggcggga ccagtgacga aggcttgagc gagggcgtgc aagattccga ataccgcaag 6240 cgacaggccg atcatcgtcg cgctccagcg aaagcggtcc tcgccgaaaa tgacccagag 6300 cgctgccggc acctgtccta cgagttgcat gataaagaag acagtcataa gtgcggcgac 6360 gatagtcatg ccccgcgccc accggaagga gctgactggg ttgaaggctc tcaagggcat 6420 cggtcgacgc tctcccttat gcgactcctg cattaggaag cagcccagta gtaggttgag 6480 gccgttgagc accgccgccg caaggaatgg tgcatgctcg atggctacga gggcagacag 6540 taagtggatt taccataatc ccttaattgt acgcaccgct aaaacgcgtt cagcgcgatc 6600 acggcagcag acaggtaaaa atggcaacaa accaccctaa aaactgcgcg atcgcgcctg 6660 ataaatttta accgtatgaa tacctatgca accagagggt acaggccaca ttacccccac 6720 ttaatccact gaagetgeca tttttcatgg tttcaccate ceagegaagg gecatgcatg 6780 catcgaaatt aatacgacga aattaatacg actcactata gggcaattgc gatcaccaca 6840 attcagcaaa ttgtgaacat catcacgttc atctttccct ggttgccaat ggcccatttt 6900 cctgtcagta acgagaaggt cgcgaattca ggcgcttttt agactggtcg taatgaac