Digital Image Processing

Dr. Mohammad Abu Yousuf Associate Professor IIT, JU

II. Digital Image Fundamentals

- 1. Elements of the human visual perception
- 2. Light and electromagnetic spectrum
- 3. Image sensing and acquisition
- 4. Image sampling and quantization
 - Basic concepts
 - Representing digital images
 - Spatial and intensity resolution
 - Image interpolation
- 5. Some basic relationships between pixels
 - Neighbors of a pixel
 - Adjacency, connectivity, regions, and boundaries
 - Distance measure

Brightness Adaptation and Discrimination

- The eye is able to adapt to a huge range of light intensity levels (on the order of 10^{10}).
- Subjective brightness is a logarithmic function of the light intensity incident on the eye.
- The total range that can be perceived simultaneously is much
 - The eye adapts itself to a narrower range (B_a, B_b in figure)
 - → Brightness adaptation

Mach Band Effect

- Although the intensity of the stripes is constant, we actually perceive a brightness pattern that is strongly scalloped, especially near the boundaries.
- These seemingly scalloped bands are called Mach bands after Ernst Mach, who first described the phenomenon in 1865.
- In neurobiology, lateral inhibition is the capacity of an excited neuron to reduce the activity of its neighbors.

Human Visual Perception

- Nonlinear
- Small range of discrimination
- Very subjective
- → Enhancement

Light and the Electromagnetic Spectrum

The EM spectrum. Note that the visible spectrum is a rather narrow portion of the EM

Image Sensing and Acquisition

Sensor: Incoming energy → a voltage by combination of input electrical power and sensor material (photon → electron → voltage)

Types of sensor:

spectrum

- Single sensor
- Line sensor

Mechanical scan

- Array sensor

Single sensor

- Mechanical scan and/or moving mirrors
- High precision but slow
- Very large FOV

Spatial Resolution

- A measure of the smallest discernible detail in a image
- Line pairs per unit distance, dots (pixels) per unit per distance (ex. lpi, dpi)

Coarse sampling → Poor resolution
Aliasing ex) Moiré Pattern

Moiré Pattern

A moiré pattern, formed by two sets of parallel lines, one set inclined at an angle of 5° to the other

A moiré pattern formed by incorrectly downsampling the left image

Quantization Noise

- Probability density function $p(e)=1/\Delta$ $(-\Delta/2 \le e \le \Delta/2)$,
 - 0 (otherwise)

step size $\Delta = D/2^N$ (N: bit depth)

- Mean of e = 0
- Variance of *e* (noise power)

$$\sigma_e^2 = \int_{-\infty}^{\infty} e^2 p(e) de = \int_{-\Delta/2}^{\Delta/2} e^2 \cdot \frac{1}{\Delta} de = \frac{\Delta^2}{12} \qquad (\sigma_e = \frac{\Delta}{\sqrt{12}})$$

ex) D=10[v], N=8 $\Delta=10/2^8=10/256 \ [v]$ quantization noise σ_e = $\Delta/12^{1/2}$ =0.0113[v]

Trade-off

- Spatial Resolution
- Intensity Resolution/Dynamic Range
- SNR
- Acquisition time (timing resolution)
- · Amount of data
- Cost

Image Interpolation

- · A basic tool used extensively in lots of tasks
 - Zooming, shrinking, rotating, geometric correction
 - Reconstruction
- Resampling

- Nearest neighbor interpolation (0th order)
 - : pixel duplication
- Linear interpolation (1st order)

f(x)=f(ix)*(1-dx)+f(ix+1)*dx

- Bicubic interpolation (higher order)

Example: Zooming Digital Images

Images zoomed from 128x128, 64x64 32x32 pixels to 1024x1024 pixels.

Top row : nearest neighbor interpolation Bottom row : bilinear interpolation

Some Basic Relationships between Pixels - Neighbors

- 8 neighbor pixels of p : N₈(p)
 - -4 horizontal and vertical neighbors : $N_4(p)$
 - -4 diagonal neighbors : $N_D(p)$
- * if p is on the border of the image...?
- 3D: 26 neighbors

Some Basic Relationships between Pixels – Adjacency, Connectivity

- 4-adjacent
 - i......
- 8-adjacent
- m-adjacent
 - 4-adjacent or 8-adjacent
 - 4-adjacency has a priority
- Connected

Some Basic Relationships between Pixels – Boundary, Edge

- Boundary (border, contour)
 - the set of pixels that have at least 1 background neighbor.
- Specify the connectivity to define adjacency
- Inner or outer border
 - → border following algorithm
- Boundary: closed paths
 - Edge: intensity discontinuities

Some Basic Relationships between Pixels - Distance Measure

• Euclidean distance : $D_e(p_1, p_2) = [(x_1 - x_2)^2 + (y_1 - y_2)^2]^{1/2}$

 \bigcirc

• D₄ (city-block) distance : D₄(p₁,p₂)= $|(x_1-x_2)|+|y_1-y_2|$

• D_8 (chessboard) distance : $D_8(p_1,p_2)=max(|(x_1-x_2|, |y_1-y_2|)$

2 2 2 2 2 2 1 1 1 2 2 1 0 1 2 2 1 1 1 2 2 2 2 2 2

An introduction to the mathematical tools used in DIP

- Matrix operations
- Linear and nonlinear operations

$$H[af_1(x,y)+bf_2(x,y)]=aH[f_1(x,y)]+bH[f_2(x,y)]$$

additivity, homogeneity

•

Additive Noise

- g(x, y) = f(x, y) + n(x, y)
 - f(x, y): noiseless image
 - n(x, y): uncorrelated noise

with zero average value

- Averaging $\bar{g}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x,y)$
 - $E\{\overline{g}(x,y)\} = f(x,y)$

$$\sigma_{\overline{g}(x,y)}^2 = \frac{1}{K} \sigma_{n(x,y)}^2 \qquad (\sigma_{\overline{g}(x,y)} = \frac{1}{\sqrt{K}} \sigma_{n(x,y)})$$

- → Improve SNR
 - ex) MRI

Geometric Spatial Transformation

- Modify the spatial relationship between pixels
 - i) Spatial transformation of coordinates $(x, y) = T\{(v, w)\}$
 - ii) Intensity interpolation
 - ex) Affine transform

[x y 1] = [v w 1]T = [v w 1]
$$\begin{bmatrix} t_{11} & t_{12} & 0 \\ t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & 1 \end{bmatrix}$$

T: scale, rotate, translate, shear

Affine Transform

TABLE 2.2

Affine transformations based on Eq. (2.6–23)

Transformation Name	Affine Matrix, T	Coordinate Equations	Example
Identity	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$ \begin{aligned} x &= v \\ y &= w \end{aligned} $	T y
Scaling	$\begin{bmatrix} c_{X} & 0 & 0 \\ 0 & c_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x = c_x v$ $y = c_y w$	
Rotation	$\begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x = v \cos \theta - w \sin \theta$ $y = v \cos \theta + w \sin \theta$	
Translation	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{bmatrix}$	$x = v + t_x$ $y = w + t_y$	
Shear (vertical)	$\begin{bmatrix} 1 & 0 & 0 \\ s_v & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x = v + s_{\theta}w$ $y = w$	
Shear (horizontal)	$\begin{bmatrix} 1 & s_n & O \\ O & 1 & O \\ O & O & 1 \end{bmatrix}$	$x = v$ $y = s_h v + w$	7