Constant delay enumeration for FO queries over nowhere dense graphs

Nicole Schweikardt¹, Luc Segoufin² and **Alexandre Vigny**³

¹Humboldt-Universität zu Berlin, Berlin

²Inria, ENS Ulm, Paris

³Université Paris Diderot, Paris

PODS, June 11, 2018

Query evaluation

- Query q
- Database D
- Compute q(D)

small

huge

gigantic

Examples :

query q first order logic

$$q(x,y) := \exists z (B(x) \land E(x,z) \land \neg E(y,z))$$

database D

relational structure

solutions q(D)

set of tuples

$$\{(1,2) (1,3) (1,4) (1,6) (1,7) \cdots (3,1) (3,2) (3,4) (3,6) (3,7) \cdots \}$$

Too many solutions!

Database: A given store that contains 50 items for less than 1€

Query: What can I buy with 10€?

Solutions: At least 50¹⁰ possibilities!

For practical reasons:

A set of 50^{10} solutions is not easy to store / display!

For theoretical reasons:

The time needed to compute the answer does not reflect the hardness of the problem.

Enumeration

Input : ||D|| := n & |q| := k (computation with RAM)

Goal : output solutions one by one (no repetition)

• STEP 1: Preprocessing

Prepare the enumeration : Database $D \longrightarrow \operatorname{Index} I$

Preprocessing time : $f(k) \cdot n \rightsquigarrow O(n)$

STEP 2 : Enumeration

Enumerate the solutions : Index $I \longrightarrow \overline{x_1}$, $\overline{x_2}$, $\overline{x_3}$, $\overline{x_4}$, \cdots

Delay: $O(f(k)) \rightsquigarrow O(1)$

Constant delay enumeration after linear preprocessing $(O(1) \circ O(n))$

```
Input:
```

```
- Database D:=\langle\{1,\cdots,n\};E\rangle \|D\|=|E|
- Query q(x,y):=\neg E(x,y)
```

Γ

$$(i,j+1)$$

$$(i,j+3)$$

Input:

- Database
$$D := \langle \{1, \cdots, n\}; E \rangle$$
 $||D|| = |E|$

- Query
$$q(x,y) := \neg E(x,y)$$

D Index
$$(1,1) \qquad (1,1) \qquad (1,2) \qquad (1,3)$$

$$(1,6) \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(2,3) \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(i,j) \qquad (i,j+1) \qquad (i,j+1) \rightarrow (i,j+2)$$

$$(i,j+3) \qquad (i,j+3) \rightarrow (k,l)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$(n,n) \qquad (n,n) \rightarrow \text{NULL}$$

Input:

- Database $D := \langle \{1, \cdots, n\}; E \rangle$ ||D|| = |E|
- Query $q(x,y) := \neg E(x,y)$

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $\|D\|=|E_1|+|E_2|$ $(E_i\subseteq D\times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

Input:

- Database $D := \langle \{1, \dots, n\}; E_1; E_2 \rangle \quad ||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

$$B$$
: Adjacency matrix of E_2

6 / 18

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $\|D\|=|E_1|+|E_2|$ $(E_i\subseteq D\times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

$$B$$
: Adjacency matrix of E_2

Compute the set of solutions

=

boolean matrix multiplication

Input:

- Database $D := \langle \{1, \dots, n\}; E_1; E_2 \rangle \quad ||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

$$\begin{pmatrix} E_2(1,1) & \dots & E_2(1,y) & \dots & E_2(1,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ E_2(z,1) & \dots & E_2(z,y) & \dots & E_2(z,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ E_2(n,1) & \dots & E_2(n,y) & \dots & E_2(n,n) \end{pmatrix}$$

$$\begin{bmatrix} E_1(1,1) & \dots & E_1(1,i) & \dots & E_1(1,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ E_1(x,1) & \dots & E_1(x,z) & \dots & E_1(x,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ E_1(n,1) & \dots & E_1(n,z) & \dots & E_1(n,n) \end{bmatrix}$$

A: Adjacency matrix of E_1

C: Result matrix

If we enumerate that efficiently:

- Linear preprocessing: $O(n^2)$
- Number of solutions: $O(n^2)$
- Algorithm for the boolean matrix multiplication in $O(n^2)$

Conjecture: "There are no algorithm for the boolean matrix multiplication working in time $O(n^2)$."

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $\|D\|=|E_1|+|E_2|$ $\big(E_i\subseteq D\times D\big)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

This query cannot be enumerated with constant delay¹

 $^{^{1}}$ Unless there is a breakthrough with the boolean matrix multiplication.

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $\|D\|=|E_1|+|E_2|$ $(E_i\subseteq D\times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

This query cannot be enumerated with constant delay¹

We need to put restrictions on queries and/or databases.

¹Unless there is a breakthrough with the boolean matrix multiplication.

Example 2 bis

Input:

- Database $D:=\langle\{1,\cdots,n\}; \underline{E_1};\underline{E_2}\rangle$ $\|D\|=|E_1|+|E_2|$ $(E_i\subseteq D\times D)$
- Query $q(x,y) := \exists z, \ \underline{E}_1(x,z) \land \underline{E}_2(z,y)$

and D is a tree!

Example 2 bis

Input:

- Database $D := \langle \{1, \dots, n\}; E_1; E_2 \rangle \quad ||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

and D is a tree!

Given a node x, every solutions y must be amongst:

It's "grandfather" It's "grandchildren"

It's "siblings"

What kind of restrictions?

No restriction on the database part

 \Downarrow

Only works for a **strict** subset of ACQ

Bagan, Durand, Grandjean

Highly expressive queries (MSO queries)

 \downarrow

Only works for trees (graphs with bounded tree width)

Courcelle, Bagan, Segoufin, Kazana FO queries

 \Downarrow

This talk!

Problems

For FO queries over a class $\mathscr C$ of databases.

Ideal running time

Model-Checking : Is this true ? O(n)

Enumeration : Enumerate the solutions $O(1) \circ O(n)$

Evaluation : Compute the entire set O(n+m)

Counting : How many solutions ? O(n)

Testing : Is this tuple a solution ? $O(1) \circ O(n)$

Problems

For FO queries over a class $\mathscr C$ of databases.

Ideal running time Model-Checking : Is this true? O(n)Enumeration Enumerate the solutions $O(1) \circ O(n)$ Evaluation O(n+m)Compute the entire set Counting How many solutions? O(n) $O(1) \circ O(n)$ Testing Is this tuple a solution? Testing Counting $O(n) \circ O(1)$ $O(1) \circ O(n)$ **Evaluation** O(n+m)Model-Checking AW[*] complete problem! O(n)(when no restriction)

Nowhere dense graphs

Defined by Nešetřil and Ossona de Mendez.¹

Examples:

- graphs with bounded degree
- graphs with bounded tree-width
- planar graphs
- graphs that exclude a minor

Can be defined using:

- the notion of locally excluding a minor
- a small asymptotic ratio edge/vertices
- an ordering of vertices with good properties
- a winning strategy for some two players game

 $^{^{1}}$ First order properties on nowhere dense structures '10

Results

Theorem: Schweikardt, Segoufin, V.

Over *nowhere dense* classes of graphs, for every FO query, after a pseudo-linear preprocessing, we can:

- enumerate every solution with constant delay.
- test whether a given tuple is a solution in constant time.

Theorem: Grohe, Schweikardt (tomorrow afternoon)

Over *nowhere dense* classes of graphs, for every FO query, the number of solution can be computed in pseudo-linear time

Pseudo-linear?

Definition

An algorithm is pseudo linear if:

$$\forall \epsilon > 0, \quad \exists N_{\epsilon}: \quad \bullet \|G\| \leq N_{\epsilon} \implies \text{Brut force: } O(1)$$

$$\bullet \|G\| > N_{\epsilon} \implies O(\|G\|^{1+\epsilon})$$

Examples: O(n), $O(n\log(n))$, $O(n\log^{i}(n))$

Counter examples: $O(n^{1,0001})$, $O(n\sqrt{n})$

Tools

We use:

- A new Hanf normal form for FO queries. 1
- The algorithm for the model checking.²
- Neighbourhood cover.²
- Game characterization of Nowhere-Dense classes.²
- Short-cut pointers dedicated to the enumeration.³

¹Grohe, Schweikardt PODS '18

²Grohe, Kreutzer, Siebertz STOC '14

³Segoufin, V. ICDT '17

Neighborhood cover

A neighborhood cover is a set of "representative" neighborhoods.

 $\mathscr{X} := X_1, \dots, X_n$ is a *r*-neighborhood cover if it has the following properties:

- $\forall a \in G$, $\exists X \in \mathcal{X}$, $N_r(a) \subseteq X$
- $\forall X \in \mathcal{X}$, $\exists a \in G$, $X \subseteq N_{2r}(a)$
- $\forall a \in G$, $|\{i \mid a \in X_i\}|$ is pseudo-constant (smaller than $|G|^{\epsilon}$)

The game characterization

Definition : (ℓ, r) -Splitter game

A graph *G* and two players, Splitter and Connector.

Each turn:

- Connector picks a node c
- Splitter picks a node s
- $G' = N_r^G(c) \setminus s$

If in less than ℓ rounds the graph is empty, Splitter wins.

The game characterization

Definition : (ℓ, r) -Splitter game

A graph *G* and two players, Splitter and Connector.

Each turn:

- Connector picks a node c
- Splitter picks a node s
- $G' = N_r^G(c) \setminus s$

If in less than ℓ rounds the graph is empty, Splitter wins.

Theorem

 $\mathscr C$ is nowhere dense if and only if there is a function $f_\mathscr C$ such that for every $G\in\mathscr C$ and every $r\in\mathbb N$:

Splitter has a wining strategy for the $(f_{\mathscr{C}}(r), r)$ -splitter game on G.

How to use the game

Here, the query is $q(x,y) := \exists z, \ E(x,z) \land E(z,y)$

(distance two query)

How to use the game

Here, the query is $q(x,y) := \exists z, \ E(x,z) \land E(z,y)$

when there is still a 2-path not using s

the new query is: q(x,y)

when s is on the only short path from a to b

the new query is: $R_1(x) \wedge R_1(y)$ $\vee q(x,y)$ when a = s(similarly for b = s)

the new query is: $R_2(y)$

Future work

- Classes of graphs that are not closed under subgraphs ¹
- Enumeration with update:
 What happens if a small change occurs after the preprocessing?

 Existing results for: words,² graphs with bounded degree ³ and ACQ ⁴.

18 / 18

¹Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk ICALP '18

²Niewerth, Segoufin PODS '18 (in two talks!)

³Berkholz, Keppeler, Schweikardt ICDT '17

⁴Berkholz, Keppeler, Schweikardt PODS '17 & ICDT '18

Future work

- Classes of graphs that are not closed under subgraphs ¹
- Enumeration with update:
 What happens if a small change occurs after the preprocessing?
 Existing results for: words,² graphs with bounded degree ³ and ACQ ⁴.

Thank you!

Questions?

¹Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk ICALP '18

²Niewerth, Segoufin PODS '18 (in two talks!)

³Berkholz, Keppeler, Schweikardt ICDT '17

⁴Berkholz, Keppeler, Schweikardt PODS '17 & ICDT '18