

Temporal Knowledge Graph

Dong-Ho Lee

Recap: Knowledge Graph

Link Prediction

- (Lily, is a friend of, ?)
- (Lily, ? James)

Node Classification

Which class does Paris belong to?

Graph Classification

Which class does the whole graph belong to?

Temporal Knowledge Graph

Link Prediction

- (Lily, is a friend of, ?)
- (Lily, ? James)
 - (Lily, ?, James, 2023)
 - (Lily, ?, James, 2024)
- (Mark, ?, James, 2025)

Node Classification

Which class does Paris belong to?

Graph Classification

Which class does the whole graph belong to?

- KG changes over time
 - Relation can change over time
 - New node can appear over time

Temporal Knowledge Graph: Knowledge graphs, where facts occur, recur, or evolve over time, and each edge in the graphs has temporal information associated with it (Trivedi et al., 2017)

Goal

- Model time dependency of changes in graph
- Infer hidden links and other information by taking both
 - Present graph structure
 - Past graph embeddings

TODO

- 1. Extend triple to Quadruples! $(s, p, o) \rightarrow (s, p, o, t)$
- 2. Learn graph embeddings over Quadruples.

Deep Temporal Reasoning for Dynamic Knowledge Graphs., ICML 2017

TKG Approaches

1. Time in node/edge

Country X _ls_capital_of Appeal for change Country X 2018-01-01 Heavily Person Z Continent K Population Country X 2018-02-0 Police Country Y Country X Government Country Y Person K Police Country Y Population Country Y

2. Graph snapshot per time

- 1. **Shallow KG Embeddings** (TransE, ComplEx, ... etc.)
 - Lecture 9. Representation Learning
- 2. **Graph Neural Networks** (GraphSAGE, GCN, ... etc.)
 - Lecture 16. Advanced Representation Learning

Recap: Graph Representations

Shallow KG embedding

Represent each node in the network into embedding.

embedding space

Representation Learning on Networks, WWW 2018 Tutorial

Recap: Graph Representations
Shallow KG embedding

Score function

- score = f(USC, Located_In, LA)

Loss function

- Observed triple scores higher than negative ones.
- f(USC, Located_In, LA) > f(NYU, Located_In, LA)

 $\operatorname{ENC}(u)$ encode nodes $\operatorname{ENC}(v)$ original network embedo

Represent each node in the network into embedding.

embedding space

Representation Learning on Networks, WWW 2018 Tutorial

S

Recap: Graph Representation
Shallow KG embedding

Model	Score Function		
SE (Bordes et al., 2011)	$-\left\ oldsymbol{W}_{r,1}\mathbf{h}-oldsymbol{W}_{r,2}\mathbf{t} ight\ $	$\mathbf{h},\mathbf{t}\in\mathbb{R}^{k},oldsymbol{W}_{r,\cdot}\in\mathbb{R}^{k imes k}$	
TransE (Bordes et al., 2013)	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
TransX	$-\ g_{r,1}(\mathbf{h}) + \mathbf{r} - g_{r,2}(\mathbf{t})\ $	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$	
DistMult (Yang et al., 2014)	$\langle {f r}, {f h}, {f t} angle$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$	
ComplEx (Trouillon et al., 2016)	$\operatorname{Re}(\langle \mathbf{r}, \mathbf{h}, \overline{\mathbf{t}} \rangle)$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{C}^k$	
HolE (Nickel et al., 2016)	$\langle {f r}, {f h} \otimes {f t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
ConvE (Dettmers et al., 2017)	$\langle \sigma(\operatorname{vec}(\sigma([\overline{\mathbf{r}},\overline{\mathbf{h}}]*\Omega))\boldsymbol{W}),\mathbf{t} \rangle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
RotatE	$-\ \mathbf{h} \circ \mathbf{r} - \mathbf{t}\ ^2$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k, r_i = 1$	

ENC(u)encode nodes ENC(v)original network

Represent each node in the network into embedding.

embedding space

Representation Learning on Networks, WWW 2018 Tutorial

Temporal Shallow KG Embedding

Dimension/size

of embeddings

original network

(s, p, o, t) $\operatorname{ENC}(u)$ $\operatorname{encode} \operatorname{nodes}$ $\operatorname{ENC}(v)$

Represent each node in the network into time-aware embedding.

embedding vector for a specific node

one column per node

embedding space

embedding matrix

 $\mathbf{Z} =$

Temporal Shallow KG Embedding

TransE → TTransE

TransE Score function

- s+r-o = 0
- Mark + born in = LA
- Mark + died_in = NY

TTransE Score function

- s+r+t-o=0
- Mark + born_in + 1950 = LA
- Mark + died_in + 2020 = NY

Towards Time-Aware Knowledge Graph Completion, COLING 2016

Temporal Shallow KG Embedding Complex → TComplex

$$\hat{X}_{i,j,k} = \langle U_i, V_j, \overline{U}_k \rangle, U \in \mathbb{C}^{N \times d}, V \in \mathbb{C}^{P \times d}$$

$$\hat{X}_{i,j,k,t} = \langle U_i, V_j, \overline{U}_k, T_t \rangle = \overline{\langle U_i, V_j \odot T_t, \overline{U}_k \rangle}$$

Time-dependent predicate representation

Tensor Decompositions for Temporal Knowledge Base Completion., ICLR 2020

Recap: Graph Representations

Shallow KG embedding - Limitations

- 1. Cannot handle node attributes
- 2. Not inductive
 - a. Cannot handle new nodes -

Text, Image, Categorical Attributes (e.g., age, gender, ... etc.)

Recap: Graph Representations

Graph Neural Networks

Message passing over Time

Interpolation vs. Extrapolation

Message passing over Time

(Person K, ?, Country Y)

Extrapolation (Forecasting)

t = 2

Interpolation (Person K, ?, Country Y) : (Inference on missing link in the past)

Terminology

Transductive vs. Inductive

Inference with seen nodes \rightarrow (Chelsea, ?, Tottenham, t4)

Terminology Transductive vs. Inductive

Inference with New nodes \rightarrow (Author A, ?, Publication P, 2019)

Slides by Kian Ahrabian

Time

247

247

248

248

248

Data looks

Subject	Relation	Object	Time	Relation_to_idx / Entity_to_idx	Subject	Relation	Object	
DRC	Conflict:Attack	bandits	04/14/2021		548	2	549	
leaders	Contact:Meet	Maputo	04/14/2021		391	9	79	
north	Life:Die	people	04/15/2021		47	1	2	
Mozambique	Movement:Transport	north	04/15/2021		42	3	47	
province	Conflict:Attack	insurgents	04/15/2021		32	2	16	
				4				

Train 80% / Valid 10% / Test 10% Train time < Valid time < Test time

Autoregressive Model: RE-Net (2020)

Autoregressive Model: RE-Net (2020)

Autoregressive Model: RE-Net (2020)

Autoregressive Model: RE-Net (2020)

Autoregressive Model: RE-Net (2020)

Autoregressive Model: RE-Net (2020)

Autoregressive Model: RE-Net (2020)

Autoregressive Model: RE-Net (2020)

$$p(G2) = p(A, love, B \mid G1) p(A, hate, C \mid G1) P(C, love, D \mid G1)$$

$$p(A, love, B \mid G1)$$

= $p(A \mid G1) p(love \mid A, G1) p(B \mid A, love, G1)$
= $p(A \mid H(G1)) p(love \mid A, h1(A)) p(love \mid A, love, h1(A, love))$

$$egin{aligned} oldsymbol{H}_t &= ext{RNN}^1(g(G_t), oldsymbol{H}_{t-1}), \ oldsymbol{h}_t(ext{s}, ext{r}) &= ext{RNN}^2(g(ext{N}_t^{(ext{s})}), oldsymbol{H}_t, oldsymbol{h}_{t-1}(ext{s}, ext{r})), \ oldsymbol{h}_t(ext{s}) &= ext{RNN}^3(g(ext{N}_t^{(ext{s})}), oldsymbol{H}_t, oldsymbol{h}_{t-1}(ext{s})), \end{aligned}$$

Autoregressive Model: RE-Net (2020)

 $p(G2) = p(A, love, B \mid G1) p(A, hate, C \mid G1) P(C, love, D \mid G1)$

```
p(A, love, B \mid G1)
= p(A \mid G1) p(love \mid A, G1) p(B \mid A, love, G1)
= p(A \mid H(G1)) p(love \mid A, h1(A)) p(love \mid A, love, h1(A, love))
```

H(G1) = RNN(mean(G1), H(G0)) h1(A, love) = RNN(mean(N1(A)), H(G1), h0(A, love))h1(A) = RNN(mean(N1(A)), H(G1), h0(A))

N1(A) = Graph of all the historical events associated with A.

Autoregressive Model: RE-Net (2020)

```
def get history(
   self.
   hist: List[int].
   node: int.
   rel: int,
) -> Tuple[Tensor, Tensor]:
   hists, ts = [], []
   for s in range(seg len):
        h = hist[node][s]
        hists += h
        ts.append(torch.full((len(h), ), s, dtype=torch.long))
   node, r = torch.tensor(hists, dtype=torch.long).view(
        -1, 2).t().contiguous()
   node = node[r == rel]
   t = torch.cat(ts, dim=0)[r == rel]
   return node, t
```

```
p(G2) = p(A, love, B \mid G1) p(A, hate, C \mid G1) P(C, love, D \mid G1)
```

```
p(A, love, B \mid G1)
= p(A \mid G1) p(love \mid A, G1) p(B \mid A, love, G1)
= p(A \mid H(G1)) p(love \mid A, h1(A)) p(love \mid A, love, h1(A, love))
```

```
H(G1) = RNN(mean(G1), H(G0))
h1(A, love) = RNN(mean(<mark>N1(A)</mark>), H(G1), h0(A, love))
h1(A) = RNN(mean(<mark>N1(A)</mark>), H(G1), h0(A))
```

N1(A) = Graph of all the historical events associated with A.

Autoregressive Model: RE-Net (2020)

 $\left(\mathsf{C}\right)$

D

$$p(G) = \prod_{t} \prod_{(s_t, r_t, o_t) \in G_t} p(s_t, r_t, o_t | G_{t-m:t-1})$$

$$= \prod_{t} \prod_{(s_t, r_t, o_t) \in G_t} p(s_t | G_{t-m:t-1}) \cdot p(r_t | s_t, G_{t-m:t-1})$$

 $\cdot p(o_t|s_t, r_t, G_{t-m:t-1}). \quad (1)$

Heuristic-based Relevance: CyGNET (2021)

Motivation: Many facts occur repeatedly along the history.

→ Capture the repetition of temporal facts

Global economic crises

Brazil wins a lot

FOOTBALL HIGHLIGHTS

USC

national championships

37 conference championships

Rose Bowl wins (in 33 appearances)

Heisman Trophy winners

UCLA

national championship

17 conference championships

Rose Bowl wins (in 12 appearances)

Heisman Trophy winner

Heuristic-based Relevance: CyGNET (2021)

Generation Mode

Copy Mode

Heuristic-based Relevance: CyGNET (2021)

For each query (s, p, ?, t), extend historical vocabulary specific to (s, p, t)

Heuristic-based Relevance: CyGNET (2021)

For each query (s, p, ?, t), extend historical vocabulary specific to (s, p, t)

Ht2(Tottenham, Wins): Chelsea Newcastle Arsenal

	Arsenal	1
•	Mancity	0
	Chelsea	1
	Newcastle	1
	Southhampton	0

Heuristic-based Relevance: CyGNET (2021)

Copy Mode: Select known facts based on the historical vocabulary of Htk(s, p)

Tottenham, wins, t $\mathbf{v}_q = anh(\mathbf{W}_c[\mathbf{s},\mathbf{p},\mathbf{t_k}] + \mathbf{b}_c)$ Trainable parameters

Ht1(s1, p3) + Ht2(s1, p3) + HtT(s1, p3) = Ht(T+1)(s1, p3)

Heuristic-based Relevance: CyGNET (2021)

Copy Mode: Select known facts based on the historical vocabulary of Htk(s, p)

$$\mathbf{v}_q = \mathrm{tanh}(\mathbf{W}_c[\mathbf{s}, \mathbf{p}, \mathbf{t_k}] + \mathbf{b}_c)$$

$$\mathbf{c}_q = \mathbf{v}_q + \mathbf{\dot{H}}_{t_k}^{(s,p)}$$

Uninterested word (not in history word) = -1

Ht1(s1, p3) + Ht2(s1, p3) + HtT(s1, p3) = Ht(T+1)(s1, p3)

Heuristic-based Relevance: CyGNET (2021)

Copy Mode: Select known facts based on the historical vocabulary of Htk(s, p)

Ht2'(Tottenham, Wins): Chelsea Newcastle Arsenal

	Arsenal	1
•	Mancity	-1
	Chelsea	1
	Newcastle	1
	Southhampton	-1

Learning from History: Modeling Temporal knowledge Graphs with Sequential Copy Generation Networks., AAAI 2021

Heuristic-based Relevance: CyGNET (2021)

Copy Mode: Select known facts based on the historical vocabulary of Htk(s, p)

$$\mathbf{v}_q = \tanh(\mathbf{W}_c[\mathbf{s}, \mathbf{p}, \mathbf{t_k}] + \mathbf{b}_c)$$

$$\mathbf{c}_q = \mathbf{v}_q + \mathbf{\dot{H}}_{t_k}^{(s,p)}$$

$$\mathbf{p}(c) = \operatorname{softmax}(\mathbf{c}_q)$$

Probability of the whole entity vocabulary

Ht1(s1, p3) + Ht2(s1, p3) + HtT(s1, p3) = Ht(T+1)(s1, p3)

Learning from History: Modeling Temporal knowledge Graphs with Sequential Copy Generation Networks., AAAI 2021

Heuristic-based Relevance: CyGNET (2021)

Generation Mode: Predict future facts from the whole entity vocabulary

$$\mathbf{g}_q = \mathbf{W}_g[\mathbf{s}, \mathbf{p}, \mathbf{t_k}] + \mathbf{b}_g$$

$$\mathbf{p}(g) = \operatorname{softmax}(\mathbf{g}_q)$$

Ht1(s1, p3) + Ht2(s1, p3) + HtT(s1, p3) = Ht(T+1)(s1, p3)

Learning from History: Modeling Temporal knowledge Graphs with Sequential Copy Generation Networks., AAAI 2021

RE-Net, RE-GCN, CyGNet

Datasets	$ \mathcal{V} $	$ \mathcal{R} $	$ \mathcal{E}_{train} $	$ \mathcal{E}_{valid} $	$ \mathcal{E}_{test} $	$ \mathcal{E}^s $	$ \mathcal{V}^s $	Time interval
ICEWS18	23,033	256	373,018	45,995	49545	29,774	8,647	24 hours
ICEWS14	6,869	230	74,845	8,514	7,371	8,442	3,499	24 hours
ICEWS05-15	10,094	251	368,868	46,302	46,159	12,392	5,179	24 hours

Model		ICI	E18			ICE14				ICE05-15			
Wiodei	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	
DistMult	13.86	5.61	15.22	31.26	20.32	6.13	27.59	46.61	19.91	5.63	27.22	47.33	
ComplEx	15.45	8.04	17.19	30.73	22.61	9.88	28.93	47.57	20.26	6.66	26.43	47.31	
R-GCN	15.05	8.13	16.49	29.00	28.03	19.42	31.95	44.83	27.13	18.83	30.41	43.16	
ConvE	22.81	13.63	25.83	41.43	30.30	21.30	34.42	47.89	31.40	21.56	35.70	50.96	
ConvTransE	23.22	14.26	26.13	41.34	31.50	22.46	34.98	50.03	30.28	20.79	33.80	49.95	
RotatE	14.53	6.47	15.78	31.86	25.71	16.41	29.01	45.16	19.01	10.42	21.35	36.92	
НуТЕ	7.41	3.10	7.33	16.01	16.78	2.13	24.84	43.94	16.05	6.53	20.20	34.72	
TTransE	8.44	1.85	8.95	22.38	12.86	3.14	15.72	33.65	16.53	5.51	20.77	39.26	
TA-DistMult	16.42	8.60	18.13	32.51	26.22	16.83	29.72	45.23	27.51	17.57	31.46	47.32	
RGCRN	23.46	14.24	26.62	41.96	33.31	24.08	36.55	51.54	35.93	26.23	40.02	54.63	
CyGNet	24.98	15.54	28.58	43.54	34.68	25.35	38.88	53.16	35.46	25.44	40.20	54.47	
RE-NET	26.17	16.43	29.89	44.37	35.77	25.99	40.10	54.87	36.86	26.24	41.85	57.60	

Train 80% / Valid 10% / Test 10%
Train time < Valid time < Test time

Subject	Relation	Object	Time		Subject	Relation	Object	Time
DRC	Conflict:Attack	bandits	04/14/2021		548	2	549	247
leaders	Contact:Meet	Maputo	04/14/2021	Relation_to_idx / Entity_to_idx	391	9	79	247
north	Life:Die	people	04/15/2021		47	1	2	248
Mozambique	Movement:Transport	north	04/15/2021		42	3	47	248
province	Conflict:Attack	insurgents	04/15/2021		32	2	16	248

Same as Transductive TKG setting.

Only difference: Validation, Test sets contain triples with "unseen entity (Not in the train data)"

Evaluation

		Wikip	oedia	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Transductive	Inductive	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	GAE*	91.44 ± 0.1	Ť	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VAGE*	91.34 ± 0.3	†	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DeepWalk*	90.71 ± 0.6	†	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Node2Vec*	91.48 ± 0.3	†	Facily change the setting to ind
CTDNE 92.17 ± 0.5 † Jodie 94.62 ± 0.5 93.11 ± 0.4 TGAT 95.34 ± 0.1 93.99 ± 0.3 DyRep 94.59 ± 0.2 92.05 ± 0.3	GAT*	94.73 ± 0.2	91.27 ± 0.4	
Jodie 94.62 ± 0.5 93.11 ± 0.4 TGAT 95.34 ± 0.1 93.99 ± 0.3 DyRep 94.59 ± 0.2 92.05 ± 0.3	GraphSAGE*	93.56 ± 0.3	91.09 ± 0.3	by different sampling strategy.
TGAT 95.34 \pm 0.1 93.99 \pm 0.3 DyRep 94.59 \pm 0.2 92.05 \pm 0.3	CTDNE	92.17 ± 0.5	†	
DyRep 94.59 ± 0.2 92.05 ± 0.3	Jodie	94.62 ± 0.5	93.11 ± 0.4	
	TGAT	95.34 ± 0.1	93.99 ± 0.3	
TGN-attn 98.46 \pm 0.1 97.81 \pm 0.1	DyRep	94.59 ± 0.2	92.05 ± 0.3	
	TGN-attn	98.46 ± 0.1	97.81 ± 0.1	

Same as Transductive TKG setting.

Only difference: Validation, Test sets contain triples with "unseen entity (Not in the train data)"

Temporal Graph Networks for Deep Learning on Dynamic Graphs., ICML workshop 2020

inductive

Inductive TKG Reasoning TGN (2020)

TGN is an encoder model which is able to generate temporal node embeddings **z(t)** for any node and time.

Inductive TKG Reasoning TGN (2020) - Train

TGN (2020) - Memory

Database (Cache)

- state for each node the model has seen so far.
- Compressed representation of all past interactions of a node.
- Not a parameter, just storage.

TGN (2020) - Message Function

Message Function

Given an interaction between nodes i and j at the time t, the message function (MLP layer) computes two messages one for i and one for j.

$$\mathbf{m}_i(t) = \text{msg}\left(\mathbf{s}_i(t^-), \mathbf{s}_j(t^-), t, \mathbf{e}_{ij}(t)\right)$$

$$\mathbf{m}_j(t) = \text{msg}\left(\mathbf{s}_j(t^-), \mathbf{s}_i(t^-), t, \mathbf{e}_{ij}(t)\right)$$

TGN (2020) - Aggregate Function

Aggregate Function

 Aggregate multiple messages for the same node in a batch.

$$\bar{\mathbf{m}}_i(t) = \mathrm{agg}\left(\mathbf{m}_i(t_1), \dots, \mathbf{m}_i(t_b)\right)$$

TGN (2020) - Update Memory

Update Memory

- Replace it. (Update the memory)

$$\mathbf{s}_i(t) = \text{mem}\left(\bar{\mathbf{m}}_i(t), \mathbf{s}_i(t^-)\right)$$

TGN (2020) - Temporal Graph Embedding

Temporal Graph Embedding

- Computes the embedding of a node.

$$\mathbf{z}_i(t) = \operatorname{emb}(i, t) = \sum_{j \in \mathcal{U}_i^k([0, t])} h\left(\mathbf{s}_i(t), \mathbf{s}_j(t), \mathbf{e}_{ij}, \mathbf{v}_i(t), \mathbf{v}_j(t)\right)$$

TGN (2020) - Experiments (Future Edge Prediction)

Whether there should be a edge between new nodes or new node and existing node?

TGN (2020) - Experiments (Future Edge Prediction)

	Wikip	pedia	Red	ldit	Twi	Twitter		
	Transductive	Inductive	Transductive	Inductive	Transductive	Inductive		
GAE*	91.44 ± 0.1	t	93.23 ± 0.3	†	s -	†		
VAGE*	91.34 ± 0.3	†	92.92 ± 0.2	†	82 <u></u>	†		
DeepWalk*	90.71 ± 0.6	†	83.10 ± 0.5	†		†		
Node2Vec*	91.48 ± 0.3	†	84.58 ± 0.5	†	P——	†		
GAT*	94.73 ± 0.2	91.27 ± 0.4	97.33 ± 0.2	95.37 ± 0.3	67.57 ± 0.4	$62.32 \pm 0.$		
GraphSAGE*	93.56 ± 0.3	91.09 ± 0.3	97.65 ± 0.2	96.27 ± 0.2	65.79 ± 0.6	$60.13 \pm 0.$		
CTDNE	92.17 ± 0.5	†	91.41 ± 0.3	†	85 	†		
Jodie	94.62 ± 0.5	93.11 ± 0.4	97.11 ± 0.3	94.36 ± 1.1	85.20 ± 2.4	79.83 ± 2 .		
TGAT	95.34 ± 0.1	93.99 ± 0.3	98.12 ± 0.2	96.62 ± 0.3	70.02 ± 0.6	$66.35 \pm 0.$		
DyRep	94.59 ± 0.2	92.05 ± 0.3	97.98 \pm 0.1	95.68 ± 0.2	83.52 ± 3.0	78.38 \pm 4.		
TGN-attn	98.46 ± 0.1	97.81 \pm 0.1	98.70 ± 0.1	97.55 ± 0.1	94.52 ± 0.5	91.37 \pm 1.		

Challenge 1: Time granularity / Distance

Time granularity:

- Example: month-granularity (Jan 2021 = 1, Feb 2021 = 2, ...)
 - Interpolation Question:
 - Trump was no longer president of the US at Jan 19, 2021? \rightarrow time index = 1
 - Trump was no longer president of the US at Jan 20, 2021? → time index = 1
 - Trump was no longer president of the US at Jan 21, 2021? \rightarrow time index = 1
 - Can't capture daily granularity in month granularity setup.
 - Time granularity needs to be chosen accordingly.

Time distance:

- Example:
 - going to a vacation for **3 weeks**.
 - Trump was the president of the United states from **2017** to **2021**
- Need to create multiple quadruples facts within the time range.

Challenge 2: Sparse graph (Small train data for supervised learning)

Datasets	V	$ \mathcal{R} $	$ \mathcal{E}_{train} $	$ \mathcal{E}_{valid} $	$ \mathcal{E}_{test} $	$ \mathcal{E}^s $	$ \mathcal{V}^s $	Time interval
ICEWS18	23,033	256	373,018	45,995	49545	29,774	8,647	24 hours

We have 23,033 node embeddings and 256 relation embeddings to train.

We have 373,018 triples that consists of nodes and relations to train.

Real world...

Dataset	taset # Entity # Relation		# Train	# Valid	# Test	# Total
ACLED	243	2 (violence, Battle)	1,778 (2003-11-08 ~ 2021-06-27)	222 (2021-07-02 ~ 2021-10-06)	226 (2021-10-07 ~ 2022-01-27)	2,226
News	555	25	1,005 (2019-02-08 ~ 2021-03-15)	142 (2021-03-16 ~ 2021-03-28)	121 (2021-03-29 ~ 2021-04-16)	1,268
Telegram	522	21	6,450 (2021-01-01 ~ 2021-04-29)	571 (2021-04-30 ~ 2021-05-11)	1,014 (2021-05-12 ~ 2021-05-25)	8,035
Tweets	402	16	438 (2020-02-26 ~ 2020-07-06)	55 (2020-07-07 ~ 2020-07-28)	55 (2020-07-29 ~ 2020-08-26)	548

Challenge 3: Explainability

(Catherine Ashton, Make a visit, ?, 2014-11-09) Which subgraph contributes more for prediction?

Explainable Subgraph reasoning for Forecasting on Temporal Knowledge Graphs., ICLR 2021

Challenge 3: Explainability

Confidence	Head	Body
0.963	$(E_1, demonstrate or rally, E_2, T_4)$	$(E_1, riot, E_2, T_1) \land (E_2, make statement, E_1, T_2) \land (E_1, riot, E_2, T_3)$
0.818	$(E_1, share\ information, E_2, T_2)$	$(E_1, express intent to ease sanctions^{-1}, E_2, T_1)$
0.750	$(E_1, provide\ military\ aid, E_3, T_3)$	$(E_1, provide\ military\ aid, E_2, T_1) \land (E_2, intend\ to\ protect^{-1}, E_3, T_2)$
0.570	(Merkel, consult, Obama, 14/08/09)	(Merkel, discuss by telephone, Obama, 14/07/22)
0.500	(Merkel, consult, Obama, 14/08/09)	(Merkel, express intent to meet, Obama, $14/05/02$) \land (Obama, consult ⁻¹ , Merkel, $14/07/18$) \land (Merkel, consult ⁻¹ , Obama, $14/07/29$)

(Angela Merkel, Consult, ?, 2014/08/09)

Rules that lead to the correct answer Barack Obama

TLogic: Temporal Logical Rules for Explainable Link Forecasting on Temporal Knowledge Graphs, AAAI 2022 Explainable Subgraph reasoning for Forecasting on Temporal Knowledge Graphs., ICLR 2021

Challenge 4: Difficult to deal with practical forecasting questions

Existing temporal KG methods (Graph Snapshot@t) - <u>RE-Net</u>, <u>CYGNet</u>

- $G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow ... \rightarrow G_t$
 - Which region will be attacked by terrorists next? (terrorists, attack, <o>, t)
 - Who will attack cabo delgado next?

(<s>, attack, cabo delgado, t)

Avoid strong assumption ("Will the attack be in Cabo Delgado")

Our forecasting questions (querying pair / triple)

- G_t (Conflict = any violence or battle)
 - Who are the most likely actors and their actions in cabo delgado?
 - Pair-level: (<s>, , cabo delgado, t)
 - What will happen next in Mozambique?
 - Triple-level: (<s>, , <o>, t)

Other research lines of forecasting Language Models

Other research lines of forecasting Temporal QA data for Language Models

(Entity, Time) Prediction Questions

Reasoning	Example Template
Simple time	When did {head} hold the position of {tail}
Simple entity	Which award did {head} receive in {time}
Before/After	Who was the {tail} {type} {head}
First/Last	When did {head} play their {adj} game
Time join	Who held the position of {tail} during {event}

Example Question

When did Obama hold the position of President of USA Which award did Brad Pitt receive in 2001 Who was the President of USA before Obama When did Messi play their first game Who held the position of President of USA during WWII

(Saxena et al., 2021)

Converting KG -> Natural Language Question

Yes-No Questions

(Sudan, x, x, 2021-08-01)

 \rightarrow

Will Sudan host Ramtane on 2021-08-01?

Forecast QA (Jin et al., 2020) BoolQ (Clark et al., 2019)

Other research lines of forecasting

Forecast QA data for Language Models

	Train	Valid	Test
1-Hop Entity Prediction	252,246	42,991	39,786
2-Hop Entity Prediction	128,810	18,138	16,624
Yes-No	251,537	42,884	39,695
Fact Reasoning	10,103	2694	1859
Total	642,696	106,707	97,964

Fact Reasoning questions

Which of the following statements contributes most to the fact that <u>Envoy (United States)</u> visited <u>China</u> on <u>2021-08-31</u>?

A. Envoy (United States) expressed the intent to meet or negotiate with China on 2021-08-30.

B. <u>Envoy (United States)</u> expressed the intent to meet or negotiate with <u>Japan</u> on <u>2021-08-30</u>.

C. North Korea criticized or denounced South Korea on 2021-08-22.

D. South Korea had a consolation or a meeting with Tajikistan on 2021-08-19.

1-hop questions

(Sudan, host, Romatane, 2021-08-01)

-> Who will Sudan host on 2021-08-01?

2-hop questions

(Juan, make a visit, US, 2021-08-03)

(UK, engage in diplomatic cooperation, US, 2021-08-03)

-> Who will visit a country, while UK engages in diplomatic cooperation along with this country on 2021-08-03?

Yes-no questions

Answer

Median

Negative

Hard Negative

(Sudan, host, Romatane, 2021-08-01)

-> Will sudan host Romtane on 2021-08-01?

Forecasting Question Answering over Temporal Knowledge Graphs., 2022.08 ArXiv

Other research lines of forecasting Fine-tune LM

	Train	Valid	Test			MRR	
1 Han Entity Duadiction				Model	Overall	1-Hop	2-Hop
1-Hop Entity Prediction 2-Hop Entity Prediction	252,246 128,810	42,991 18,138	39,786 16,624	RoBERTa	0.158	0.166	0.141
Yes-No	251,537	42,884	39,695	BERT	0.260	0.291	0.187
Fact Reasoning	10,103	2694	1859			Accurac	
Total	642,696	106,707	97,964		-	Accurac	. <u>y</u>
				Question Type	Yes-No	Fact	Reasoning
				RoBERTa	0.750	- 1	0.514
				BERT	0.823		0.567

Fine-tuning LM with such a huge train data can lead a decent performance without time-aware KG (e.g., TComplEX, ... etc.)

→ Can be a good option to play with different type of questions.

Other research lines of forecasting LM+KG

Question Answering over Temporal Knowledge Graph., ACL 2021

Other research lines of forecasting LM+KG

Model	Hits@1					Hits@10				
	Overall	Question Type		Answer Type		Overall	Question Type		Answer Type	
		Complex	Simple	Entity	Time	Overall	Complex	Simple	Entity	Time
BERT	0.071	0.086	0.052	0.077	0.06	0.213	0.205	0.225	0.192	0.253
RoBERTa	0.07	0.086	0.05	0.082	0.048	0.202	0.192	0.215	0.186	0.231
KnowBERT	0.07	0.083	0.051	0.081	0.048	0.201	0.189	0.217	0.185	0.23
T5-3B	0.081	0.073	0.091	0.088	0.067	_		2	-	_
EmbedKGQA	0.288	0.286	0.29	0.411	0.057	0.672	0.632	0.725	0.85	0.341
T-EaE-add	0.278	0.257	0.306	0.313	0.213	0.663	0.614	0.729	0.662	0.665
T-EaE-replace	0.288	0.257	0.329	0.318	0.231	0.678	0.623	0.753	0.668	0.698
CRONKGQA	0.647	0.392	0.987	0.699	0.549	0.884	0.802	0.992	0.898	0.857

Question Answering over Temporal Knowledge Graph., ACL 2021

Any Questions?