ReTransformer

ReRAM-based Processing-in-Memory Architecture for Transformer Acceleration

Reza Adinepour

Amirkabir University of Technology (Tehran Polytechnic)

adinepour@aut.ac.ir

Computer Engineering Department June 28, 2024

Presentation Overview

Introduction to Transformer Network Why Use Transformers? Strengths of Transformer Weaknesses of Transformers

- 2 Motivation
- ReRAM Concept

Vector-Matrix Multiplication (VMM) Matrix-Matrix Multiplication (MatMul) In-Memory Logic Operations

- Overall Architecture
 Key Features
 Workflow
- S Experimental Setup
- 6 Results and Analysis
- References

What is a Transformer Network?

- Introduced in "Attention is All You Need" (2017)
- Unlike traditional RNNs and LSTMs, Transformers do not process data sequentially but use a mechanism called "self-attention" to draw global dependencies between input and output.

Why Use Transformers?

Parallelization:

Unlike RNNs, Transformers can process input data in parallel, leading to faster training times.

Self-Attention Mechanism:

This allows the model to weigh the importance of different words in a sentence, capturing long-range dependencies more effectively.

Scalability:

Transformers can be scaled up effectively, leading to improved performance with more data and larger models.

Versatility:

They are used in various applications, from machine translation and text generation to image processing and more.

Strengths of Transformer

• Efficiency:

Due to parallel processing, they train faster on large datasets.

2 Accuracy:

State-of-the-art performance in many tasks, particularly in NLP.

S Flexibility:

Applicable to a wide range of tasks beyond language, such as image and speech processing.

4 Transfer Learning:

Pre-trained models like BERT and GPT can be fine-tuned for specific tasks with relatively small amounts of data.

Weaknesses of Transformers

Resource-Intensive:

Require significant computational power and memory, especially for large models.

2 Complexity:

More challenging to understand and implement compared to simpler models.

3 Data Requirements:

Performance often hinges on the availability of large-scale datasets for pre-training.

4 Inference Speed:

Performance bottlenecks during inference due to the scaled dot-product attention mechanism.

Motivation

In this paper:

- Developed ReTransformer, a ReRAM-based Processing-in-Memory (PIM) architecture specifically designed to accelerate Transformer models.
- Implemented optimized MatMul operations to reduce data dependency and intermediate result handling
- Oesigned a hybrid softmax mechanism combining in-memory logic and look-up tables for efficient softmax calculations.
- Introduced a sub-matrix pipeline design for better utilization of ReRAM crossbars and improved throughput.

Motivation (Cont.)

And Improvements Made is:

- Computing Efficiency:
 23.21x improvement over GPU, 3.25x over PipeLayer.
- Power Consumption: 1086x reduction compared to GPU, 2.82x compared to PipeLayer.
- Latency Reduction:
 1.32x for smaller models, 1.16x for larger models.
- Softmax Efficiency: 32% lower power consumption compared to traditional CMOS-based designs.
- **6** Throughput Enhancement: 1.18x increase in computational throughput.

Motivation (Cont.)

This concept use in CNNs and RNNs. but we can't and cant be directly applied to Transformer due to the following reasons:

• Matrix-Matrix Multiplication:

Transformers require frequent matrix-matrix multiplications, causing potential slowdowns and reduced efficiency due to intermediate result storage.

② Different Computations:

Unlike CNNs, Transformers use scaled dot-product attention, necessitating different computational approaches.

3 Finer Pipeline Granularity:

Transformer accelerators need a more detailed pipeline design compared to the layer-level granularity used in previous designs.

ReRAM Concept

ReRAM Basics:

- 1 Is a Non-volatile memory with:
 - High density
 - Low access energy
 - And support for multi-level cell and 3D integration
- ReRAM-based Vector-Matrix & Matrix-Matrix Multiplication:
 - Vector-Matrix Multiplication (VMM)
 - Matrix-Matrix Multiplication (MatMul)
- In-Memory Logic Operations:
 - NOR Logic
 - XOR Logic
 - And other Logic Operations

Vector-Matrix Multiplication (VMM)

- Conductance of ReRAM cells represents elements in a matrix.
- ② Input voltage vector $(V_I = [v_0, v_1, v_2, v_3])$ fed to word lines (WLs) generates output current through bit lines (BLs).

3 One read cycle completes the

VMM operation.

Figure: ReRAM-based vector-matrix multiplication

According to Kirchhoff's law the output current calculate as bellow:

$$i_j = \sum_{i=0}^{3} \frac{v_i}{R(i,j)} = \sum_{i=0}^{3} v_i G(i,j)$$

Matrix-Matrix Multiplication (MatMul)

- Input matrix separated into vectors for sequential VMM operations
- Results of VMM operations combined to obtain MatMul results

In-Memory Logic Operations

NOR Logic:

Uses high and low conductance values to represent logic states. Operations performed using specific voltage settings.

XOR Logic:

Implemented using a combination of OR and NAND operations, leveraging ReRAM's programmable conductance.

Other Logic Operations: INV and OR implemented in one or two cycles respectively.

A B out SET A B 1	A X	B X	Out 1			
V _{a,NOR} V _{a,NOR} GND A, B, A+B,	A 0	B 0	Out 1			
A B A+B	0	1	0			
	1	0	0			
(a) NOR						
Initialization A B out A B 0	A	В	Out			
	X	X	0			
V RESET CAMP V	A	В	Out			
GND GND V _{0,OR} A B A+B	0	0	0			
	1	0	1			
	1	1	1			
		В	Out			
$V_{_{0.NAND}} V_{_{0.NAND}} GND$	Α					
V _{0,NAND} V _{0,NAND} GND A B A+B A B A⊕B	0	0	0			
Cycle2 A B A+B A B A+B		0				
	0	0				

Figure: ReRAM-based in-memory logic: (a) NOR, (b) XOR.

Overall Architecture

A ReRAM-based PIM module is divided into three types of functional components:

Processing Subarrays:

Execute computations such as MatMul and feed-forward operations.

Buffer Subarrays:

Serve as caches to store intermediate data and results.

Memory Subarrays: Store original input data and final output results.

Figure: Overview of the proposed ReRAM-based PIM design for Transformer

Key Features

ReRAM Crossbars:

Enable efficient in-memory computations.

Optimized MatMul: Reduces data dependency and intermediate writes.

Hybrid Softmax Mechanism:

Combines in-memory logic with look-up tables for efficiency.

Sub-Matrix Pipeline: Slices input matrices for parallel processing.

Figure: Remove data dependency in scaled dot-product attention layer: (a) a CWC dependency caused by the in- termediate result K. (b) The optimized MatMul eliminates the CWC dependency by decomposing the computation into two cascaded multiplications.

Workflow

Data Loading:

Input data is stored in memory subarrays.

Computation:

Processing subarrays perform operations using data from buffer subarrays.

Intermediate Handling:

Buffer subarrays temporarily store intermediate results, reducing the need for frequent memory writes.

Output Storage:

Final results are stored back in memory subarrays.

Experimental Setup

Configurations:

- GPU: NVIDIA TITAN RTX, 24GB memory, 672 GB/s bandwidth.
- ReTransformer: ReRAM crossbar arrays, 2-bit cell precision, 128x128 subarray size.

Evaluation Metrics:

- Computing Efficiency: Operations per second per watt.
- Power Consumption: Total power used during computations.

Results and Analysis

MatMul Optimization:

Reduces computation latency by 1.32x for Model A and 1.16x for Model B.

Figure: MatMul computation latency comparisons

Results and Analysis (Cont.)

Hybrid Softmax Efficiency:

Lowers power consumption by 32% compared to CMOS-based design.

Figure: Softmax design comparison

Results and Analysis (Cont.)

Pipeline Performance:

Finer granularity pipeline improves throughput by 1.18x for both models.

Model	Layer	Finer	Improvement
Model A	69.24 GOPs/s	81.85 GOPs/s	1.18x
Model B	67.89 GOPs/s	80.07 GOPs/s	1.18x

Table: Performance comparison of two pipeline designs

Results and Analysis (Cont.)

Overall Comparison:

- ReTransformer achieves 23.21x improvement in computing efficiency and 1086x reduction in power consumption compared to GPU.
- Compared to PipeLayer, ReTransformer improves computing efficiency by 3.25x and reduces power by 2.82x.

Figure: Performance comparison with GPU and PipeLayer

References

◀ Back to start

X. Yang, B. Yan, H. Li, and Y. Chen, "Retransformer: Reram-based processing-in-memory architecture for transformer acceleration," in *Proceedings of the 39th International Conference on Computer-Aided Design*, 2020, pp. 1–9.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is all you need," *Advances in neural information processing systems*, vol. 30, 2017.

The End

Questions? Comments?

You can find this slides here:

github.com/M-Sc-AUT/M.Sc-Computer-Architecture/Memory Technologies

I delivered three presentations this semester on the following topics:

- Multiprocessors shared-memory Architecture
- Exploring CACTI and NVSIM Simulators
- 3 Exploring DRAMSim and SimpleScaler Simulators