STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 9: Outliers and Influence

Outliers

- quote from textbook: "cases that do not follow the same model as the rest of the data are called outliers"
- note: outliers are defined with respect to a model
- not all outliers are bad
- e.g., a geologist searching for oil deposits may be looking for outliers

Models for Outliers

- two main types: (i) mean shift and (ii) inflated variance
- we will use mean shift outlier model
- non-outlier: $E(Y|\mathbf{X}=\mathbf{x}_i)=\mathbf{x}_i'\beta$

outlier: $E(Y|\mathbf{X}=\mathbf{x}_i)=\mathbf{x}_i'\beta+\delta$

test $NH: \delta = 0$ (the *i*th observation is not an outlier)

- the variance function assumption $\mathrm{Var}(Y|\mathbf{X}) = \sigma^2$ stays the same
- inflated variance model: change the model assumption on $Var(Y|\mathbf{X})$ but keep $E(Y|\mathbf{X}=\mathbf{x}_i)$ the same

An Outlier Test

- suppose the ith case is suspected to be an outlier
- define a dummy variable U : $\left\{ egin{array}{l} u_j = 0 \ {
 m for} \ j
 eq i \ u_i = 1 \end{array} \right.$
- then we fit the model using least squares

$$E(Y|X) = X\beta + \delta U$$

- $oldsymbol{\hat{\delta}}$ is the estimated mean shift
- do a two-sided *t*-test: NH: $\delta = 0$, AH: $\delta \neq 0$.
- ullet what is df of this t-statistic under NH?

An Alternative Approach

- this leads to the same test as before, but from a different angle
- and there is a good reason to use it
- suppose again that the ith case is suspected to be an outlier
- Step 1: delete the ith case from the data (so n-1 data points left)
- Step 2: with the reduced dataset, estimate β and σ^2 . Denote the resulting estimates as $\hat{\beta}_{(i)}$ and $\hat{\sigma}^2_{(i)}$. Note that df for $\hat{\sigma}^2_{(i)}$ is n-p'-1.

An Alternative Approach -cont

Step 3: compute the fitted value for the deleted case:

$$\hat{y}_{i(i)} = \mathbf{x}_i' \hat{\boldsymbol{\beta}}_{(i)}$$

Since y_i and $\hat{y}_{i(i)}$ are independent (why?),

$$Var(y_i - \hat{y}_{i(i)}) = Var(y_i) + Var(\hat{y}_{i(i)})$$
$$= \sigma^2 + \sigma^2 \mathbf{x}'_i (\mathbf{X}'_{(i)} \mathbf{X}_{(i)})^{-1} \mathbf{x}_i$$

where $X_{(i)}$ is the matrix X with the ith row deleted

An Alternative Approach -cont

Step 4: under the mean shift model, we have

$$E(y_i) = \mathbf{x}_i' \boldsymbol{\beta} + \delta, \quad E(\hat{y}_{i(i)}) = E(\mathbf{x}_i' \hat{\boldsymbol{\beta}}_{(i)}) = \mathbf{x}_i' \boldsymbol{\beta}$$
$$\Rightarrow E(y_i - \hat{y}_{i(i)}) = \delta$$

and the *t*-statistic for $\delta = 0$ is:

$$t_i = \frac{y_i - \hat{y}_{i(i)}}{\hat{\sigma}_{(i)} \sqrt{1 + \mathbf{x}'_i (\mathbf{X}'_{(i)} \mathbf{X}_{(i)})^{-1} \mathbf{x}_i}}$$

- use $\hat{\sigma}_{(i)}$ to replace σ
- with $\hat{\sigma}_{(i)}$, the df is n-p'-1, and it is identical to the previous t-test we discussed

Why do we prefer the second approach?

- there is a nice formula for t_i
- first define standardized residual

$$r_i = \frac{\hat{e}_i}{\hat{\sigma}\sqrt{1 - h_{ii}}}$$

- ullet try to make all r_i 's to have the same variance
- (so it may be better to plot r_i 's instead of \hat{e}_i 's)
- then from Appendix A.12, we have

$$t_{i} = \frac{\hat{e}_{i}}{\hat{\sigma}_{(i)}\sqrt{1 - h_{ii}}} = r_{i} \left(\frac{n - p' - 1}{n - p' - r_{i}^{2}}\right)^{\frac{1}{2}}$$

Vhy do we prefer the second approach? -con't

- so what is the good thing about this?
- suppose we want to perform outlier tests for 100 cases, then we do not need to fit 100 regressions by removing one case each time
- we only need to fit the regression using full data once, then compute all t_i 's for cases to be tested using

$$t_i = r_i \left(\frac{n - p' - 1}{n - p' - r_i^2} \right)^{\frac{1}{2}}$$

- \bullet t_i is also called the studentized residual
- another useful formula: $\hat{e}_{i(i)} = \hat{e}_i/(1-h_{ii})$ called predicted residual or PRESS residual

Significance levels for outlier test

- two situations:
 - 1. <u>before</u> even looking at the data, you suspect <u>in advance</u> that the *i*th case is an outlier
 - you <u>first</u> look at the scatterplot or fit the regression and examine residual plots, <u>then</u> suspect the case with the largest residual is an outlier
- what is the problem? if $r_1, \dots, r_n \overset{\text{i.i.d.}}{\sim} N(0, 1)$ case 1 is like: $P(|r_i| > 2)$ for an arbitrary fixed i (is it possible to choose i before you check the data?) case 2 is like: $P(\max\{|r_i|: i=1,\dots,n\}>2)$ (this probability is surely large with sufficient n)

Bonferroni Adjustment

- ullet so we need to do adjustment decrease α
- idea: if we have n data points, we apply the above t-test to all cases and adjust the overall significance level to be α
- we will use Bonferroni adjustment
- if we will perform n tests, change the significance level for each individual test to $\frac{\alpha}{n}$
- then the overall significance level for all tests will not be bigger than α
- we could also multiply the p-value by n

An Example

- Forbe's data: case 12 was suspected to be an outlier
- $\hat{e}_{12} = 1.36, \hat{\sigma} = 0.379, h_{12,12} = 0.0639$ $\implies r_{12} = \frac{1.36}{0.379\sqrt{1 0.0639}} = 3.7078$ $\implies t_{12} = 3.7078 \left(\frac{17 2 1}{17 2 3.7078^2}\right)^{\frac{1}{2}} = 12.40$
- the p-value is 6.13×10^{-9} (from t with df = 14)
- multiply by n = 17: $1.04 \times 10^{-7} << 0.05$
- so it supports that case 12 is an outlier
- similarly, we can examine other cases under suspicion and draw conclusions simultaneously
- what do we do then? find the cause if possible

Influence Analysis

- general idea: to study changes in an analysis when the data are slightly perturbed
- the most useful and important method is to remove one data point at a time and re-do the analysis
- using similar notation as before, we want to compare

$$\hat{\boldsymbol{\beta}}_{(i)} = (\mathbf{X}'_{(i)}\mathbf{X}_{(i)})^{-1}\mathbf{X}'_{(i)}\mathbf{Y}_{(i)}$$

for different values of i

- ullet how the estimate of eta is affected by each case
- let's look at an example

Plots of $\hat{oldsymbol{eta}}_{(i)}$

FIG. 9.1 Estimates of parameters in the UN data obtained by deleting one case at a time.

Plotting is not always possible

- this is good, but not always possible, especially for large data set with many predictors
- we need a one-number numerical summary that can be calculated easily and quickly

Cook's distance

definition:

- $m \square$ a normalized distance between $\hat{m eta}_{(i)}$ and $\hat{m eta}$
- $m extbf{ iny}$ a scaled Euclidean distance between $\hat{f Y}_{(i)}$ and $\hat{f Y}$
- large $D_i \rightarrow \text{potential problem}$
- how larger is large? cross-compare (as compare h_{ii} 's)

Rat Data

- X terms: BodyWt, LiverWt, Dose (injected to 19 rats)
- response: dose in liver

TABLE 9.1 Regression Summary for the Rat Data

FIG. 9.2 Scatterplot matrix for the rat data.

- BodyWt and Dose are almost perfectly correlated → they measure the same thing!
- $m y \sim {\sf BodyWt + LiverWt + Dose}$ BodyWt and Dose are significant
- same conclusion if LiverWt is removed
- but $y \sim \text{BodyWt}$ does not show any relationship, nor $y \sim \text{Dose}$
- however, jointly they are useful
- what do you think from the scatterplot plot?
- seems a paradox, let's have a closer look

FIG. 9.3 Diagnostic statistics for the rat data.

- case 3 is problematic: though not an outlier, but has a large leverage and Cook's distance
 - remove this case and re-do the analysis

TABLE 9.2 Regression Summary for the Rat Data with Case 3 Deleted

- case 3: incorrect amount of dose was injected
- added-variable plots also help detect influential cases
- x-axis: residuals from $E(X_i | others)$
 - y-axis: residuals from E(Y | others)

FIG. 9.4 Added-variable plots for BodyWt and Dose.

Normal Probability Plots

- ullet aim: check for normality of e_i
- Q-Q plot: we have i.i.d. random numbers $\{x_1, \ldots, x_n\}$
 - (i) sort $x_{(1)} \leq \ldots \leq x_{(n)}$, the sample order statistic
 - (ii) find the expected order statistic $u_{(1)} \leq \ldots \leq u_{(n)}$ from N(0,1), $u_{(i)}$ is actually the 100i/nth percentile,

$$P(Z \le z_{(i)}) = \frac{i}{n}, \quad Z \sim N(0, 1)$$

(iii) if $x_i \sim N(\mu, \sigma^2)$, then $E(x_{(i)}) = \mu + \sigma u_{(i)}$. this suggests the Q-Q plot, also referred to as "sample quantile v.s. population quantile"

Normal Probability Plots - con't

 if the residuals are (approximately) normal, we should see a (approximately) straight line

