The ATOMPAW generator

Natalie Holzwarth (and many collaborators) ^a

Wake Forest University, Winston-Salem, NC, USA

- Brief history
- Validation
- Extensions

^aCollaborators include Alan Tackett (Vanderbilt U.), Marc Torrent and François Jollet (CEA, France), and Xiao Xu (WFU). Yann Pouillon (UPV/EHU) implemented the build scripts. Work Supported by NSF grants DMR-0405456, 0427055, and 0705239; computations were performed on the Wake Forest University DEAC cluster.

Brief History Leading to PAW

- Kleinman and Bylander, PRL **48** 1425 (1982) "Efficacious Form for Model Pseudopotentials."
 - Separable Form for Non-Local Pseudopotentials $\hat{\mathbf{V}}_{\mathbf{NL}} = \sum_{\mathbf{LM}} |\xi_{\mathbf{LM}}\rangle \delta \mathbf{V}_{\mathbf{L}}\langle \xi_{\mathbf{LM}}|$
- Gonze, Stumpf, and Scheffler, PRB **44** 8503 (1991) "*Analysis of Separable Potentials*."
 - Recipes for taming lurking "ghosts"
- Vanderbilt, PRB 41 7892 (1990) "Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism."
 Ultra-Soft Pseudopotentials (USPP)
- Blöchl, PRB 50 17953 (1994) "Projector augmented-wave method."
 PAW

The PAW Formalism

PAW transformation for a valence wavefunction:

$$\Psi_{v}(\mathbf{r}) = \widetilde{\Psi}_{v}(\mathbf{r}) + \sum_{ai} \left(\phi_{i}^{a} (\mathbf{r} - \mathbf{R}^{a}) - \widetilde{\phi}_{i}^{a} (\mathbf{r} - \mathbf{R}^{a}) \right) \langle p_{i}^{a} | \widetilde{\psi}_{v} \rangle. \tag{1}$$

Partitioning of evaluation space. For example, the valence electron energy:

$$E_{tot}^{\text{vale}} = \underbrace{\widetilde{E}_{tot}}_{\text{pseudo energy}} + \sum_{a} \underbrace{\left(E_{tot}^{a} - \widetilde{E}_{tot}^{a}\right)}_{\text{atom-centered corrections}}.$$
 (2)

Partitioning of the Coulomb Interactions

Both Hartree and Fock interactions can be expressed in terms of pair densities derived from products of two wavefunctions $\rho_{vw}(\mathbf{r}) \equiv \Psi_v^*(\mathbf{r})\Psi_w(\mathbf{r})$. The PAW transformation the these products take the form:

$$\rho_{vw}(\mathbf{r}) = \widetilde{\rho}_{vw}(\mathbf{r}) + \sum_{a} \left\{ \rho_{vw}^{a}(\mathbf{r} - \mathbf{R}^{a}) - \widetilde{\rho}_{vw}^{a}(\mathbf{r} - \mathbf{R}^{a}) \right\}, \tag{3}$$

where

$$\widetilde{\rho}_{vw}(\mathbf{r}) \equiv \widetilde{\Psi}_v^*(\mathbf{r})\widetilde{\Psi}_w(\mathbf{r}),$$
(4)

and

$$\rho_{vw}^{a}(\mathbf{r}) - \tilde{\rho}_{vw}^{a}(\mathbf{r}) \equiv \sum_{ij} \langle \tilde{\Psi}_{v} | p_{i}^{a} \rangle \langle p_{j}^{a} | \tilde{\Psi}_{w} \rangle \left\{ \phi_{i}^{a*}(\mathbf{r}) \phi_{j}^{a}(\mathbf{r}) - \tilde{\phi}_{i}^{a*}(\mathbf{r}) \tilde{\phi}_{j}^{a}(\mathbf{r}) \right\}. \tag{5}$$

Equivalently, we can write:

$$\rho_{vw}(\mathbf{r}) = \widetilde{\rho}_{vw}(\mathbf{r}) + \widehat{\rho}_{vw}(\mathbf{r}) + \sum_{a} \left(\rho_{vw}^{a}(\mathbf{r} - \mathbf{R}^{a}) - \widetilde{\rho}_{vw}^{a}(\mathbf{r} - \mathbf{R}^{a}) - \widehat{\rho}_{vw}^{a}(\mathbf{r} - \mathbf{R}^{a})\right), \tag{6}$$

where the "compensation charge"

$$\widehat{\rho}_{vw}(\mathbf{r}) \equiv \sum_{a} \widehat{\rho}_{vw}^{a}(\mathbf{r} - \mathbf{R}^{a}) \tag{7}$$

is a smooth function localized within the atomic augmentation spheres such that:

$$\int d^3r' \frac{\rho_{vw}^a(\mathbf{r}') - \tilde{\rho}_{vw}^a(\mathbf{r}') - \hat{\rho}_{vw}^a(\mathbf{r}') - \hat{\rho}_{vw}^a(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} = \begin{cases} V_{vw}^a(\mathbf{r}) & \text{for } |\mathbf{r} - \mathbf{R}^a| \le r_c^a \\ 0 & \text{otherwise} \end{cases} . \tag{8}$$

ATOMPAW is 10 years old!

Computer Physics Communications 135 (2001) 329–347

Computer Physics Communications

www.elsevier.nl/locate/cpc

A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: *atompaw* for generating atom-centered functions

N.A.W. Holzwarth ^{a,*}, A.R. Tackett ^b, G.E. Matthews ^a

^a Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA ^b Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA

$$\Rightarrow \{\phi_i(r), \widetilde{\phi}_i(r), \widetilde{p}_i(r)\} \text{ and } V_{loc}(r)$$

Generate input to pwpaw, abinit, socorro, quantum-espresso

Database of PAW Atomicdata Files http://pwpaw.wfu.edu

Periodic Table of the Elements for PAW Functions

27	28	59	60	61	62	63	64	65	66	67	68	69	70	71	
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Modified Elements (using ≥atompaw 2.1) **Unmodified Elements** (2005)

Comments

The contents of this periodic table were created by John Tumbleston (currently a graduate student at UNC) and modified by Nick Dellaripa, David Harris, and Xiao Xu under the guidance of N.A.W. Holzwarth

ATOMPAW User's Manual by Marc Torrent

A user's guide for atompaw code

Marc Torrent

Commissariat à l'Energie Atomique et aux Energies Alternatives DAM, DIF. F-91297 Arpajon - France

Natalie A. W. Holzwarth Wake Forest University. Winston-Salem, NC 27109 - USA

Contact emails: marc.torrent@cea.fr, natalie@wfu.edu

Source code URL: http://pwpaw.wfu.edu

Revised November 4th, 2010

Compatible with atompaw v3.0 and later

Consistency of abinit and pwpaw

Computer Physics Communications 181 (2010) 1862-1867

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Electronic structure packages: Two implementations of the projector augmented wave (PAW) formalism

Marc Torrent a, N.A.W. Holzwarth b,*, François Jollet a, David Harris b, Nicholas Lepley b, Xiao Xu b

^a CEA, DAM, DIF, F-91297 Arpajon, France

^b Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA

Mystery < **2010**

LDA binding energy curve for LiF

GGA binding energy curve for LiF

Mystery Traced to Exchange-Correlation Terms

Blöchl's formulation

(PRB **50**, 17953 (1994))

$$E_{xc}^{\mathrm{B}} = E_{xc}[\widetilde{n} + \widetilde{n}_c] + \sum_{a} (E_{xc}^a[n^a + n_c^a] - E_{xc}^a[\widetilde{n}^a + \widetilde{n}_c^a]).$$

Kresse's formulation

(PRB **59**, 1758 (1999))

$$E_{xc}^{K} = E_{xc}[\tilde{n} + \tilde{n}_c + \hat{n}] + \sum_{a} (E_{xc}^{a}[n^a + n_c^a] - E_{xc}^{a}[\tilde{n}^a + \tilde{n}_c^a + \hat{n}^a]).$$

Example Exchange-Correlation Potentials

Li GGA $(1s^22s^1)$

Si GGA $(2s^23s^22p^63p^2)$

Mystery Solved – abinit and pwpaw now agree

Bind energy curves for fcc Cu using GGA, comparing Blöchl and Kresse formulations.

Validation: Consistency between various codes

Heats of formation $\Delta H_{\rm cal}$ (eV per formula unit) calculated for the lithium (thio)phosphate and related materials, comparing USPP, PAW and experiment (CRC or NIST).

Material	(USPP)	(PAW)	exp
Li_2O	-6.18	-6.19	-6.20
Li_2O_2	-6.53	-6.52	-6.57
β -Li $_3$ PO $_4$	-21.41	-21.39	
γ -Li $_3$ PO $_4$	-21.38	-21.36	-21.72
$Li_4P_2O_6$	-30.02	-29.93	
$Li_4P_2O_7$	-34.25	-34.21	
$\text{Li}_{7}\text{P}_{3}\text{O}_{11}$	-55.26	-55.26	
Li ₂ S	-4.30	-4.30	-4.57
Li_2S_2	-4.10	-4.10	
β -Li $_3$ PS $_4$	-8.39	-8.35	
γ -Li $_3$ PS $_4$	-8.19	-8.16	
$\text{Li}_4\text{P}_2\text{S}_6$	-12.45	-12.38	
$Li_4P_2S_7$	-11.62	-11.54	
$\text{Li}_7\text{P}_3\text{S}_{11}$	-20.06	-19.94	
$\overline{SO_3}$	-4.83	-4.86	-4.71
Li_2SO_4	-14.74	-14.76	-14.89

Ongoing work – extension of PAW formalism to orbital dependent functionals

- Motivation
- Treatment of core electrons
- Hartree-Fock equations
- Approximate OEP equations (KLI)

"Post-processing" estimate of Fock exchange relative to self-consistent LDA or GGA Results

$$E_{xc}^{\text{GGA/LDA}} - E_{x}^{\text{Fock}}$$

Comparison of Self-Consistent and "post-processing" Treatments of Fock exchange

$$E_{tot}^{OEP/KLI/PP} - E_{tot}^{HF}$$

"KLI" reference: Krieger, Li, and Iafrate, PRA 45, 101 (1992)

More recent perspective on OEP and KLI: Bulat and Levy, PRB 80, 052510 (2009)

Orbital Dependent Functionals

Fock Exchange Energy

$$E_x \equiv -e^2 \sum_{pq} \int \int d^3r d^3r' \frac{\Psi_p^*(\mathbf{r})\Psi_q(\mathbf{r})\Psi_q^*(\mathbf{r}')\Psi_p(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Core and Valence Electron Contributions to Fock Exchange Energy

$$E_x \equiv E_x^{vv} + E_x^{cv} + E_x^{cc}$$

Core-Valence contributions in Fock Exchange

√ Frozen Core *Orbital* Approximation to Fock Exchange Energy

$$E_x^{cv} \approx -e^2 \sum_{vc} \int \int d^3r d^3r' \frac{\Psi_v^*(\mathbf{r}) \bar{\Psi}_c(\mathbf{r}) \bar{\Psi}_c^*(\mathbf{r}') \Psi_v(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Frozen Core Potential Approximation to Fock Exchange Energy

$$E_x^{cv} pprox \int d^3r V_x^{cv}(\mathbf{r})
ho_v(\mathbf{r})$$

Frozen core *orbital* and frozen core *potential* errors in various excitation energies.

Hartree Fock Equations for Atoms

Xu and Holzwarth, PRB 81, 245105 (2010)

$$H^{\rm HF}(r)\psi_p^{\rm HF}(r) + X_p(r) - \sum_{q;N_q>0} \lambda_{qp}\psi_q^{\rm HF}(r) = 0.$$

Here,

$$H^{\rm HF}(r) \equiv \mathcal{K} + V_N(r) + V_H(r). \tag{9}$$

The exchange kernel function is given by

$$X_{p}(r) \equiv \frac{1}{N_{p}} \frac{\delta E_{x}}{\delta \psi_{p}^{*}} = -\sum_{q} \sum_{L=|l_{p}-l_{q}|}^{l_{p}+l_{q}} \frac{1}{N_{p}} \Theta_{pq}^{L} W_{qp}^{L}(r) \psi_{q}^{HF}(r),$$

where

$$W_{qp}^{L}(r) \equiv e^{2} \int dr' \; \frac{r_{<}^{L}}{r_{>}^{L+1}} \psi_{q}^{HF*}(r') \psi_{p}^{HF}(r').$$

Hartree Fock PAW Equations for Atoms

$$\mathcal{H}_{\mathrm{HF}}^{\mathrm{PAW}}(\mathbf{r})\widetilde{\Psi}_{v}^{\mathrm{HF}}(r) + X_{v}^{\mathrm{PAW}}(\mathbf{r}) - \sum_{q} \lambda_{qv} \mathcal{O}_{\mathrm{HF}}^{\mathrm{PAW}} \widetilde{\Psi}_{q}^{\mathrm{HF}}(\mathbf{r}) = 0.$$

The single particle term takes the form

$$\mathcal{H}_{\mathrm{HF}}^{\mathrm{PAW}}(\mathbf{r}) = \widetilde{\mathcal{H}}^{\mathrm{HF}} + \sum_{aij} |\widetilde{P}_{i}^{a}\rangle D_{ij}^{a\mathrm{HF}} \langle \widetilde{P}_{j}^{a}|,$$

where the pseudo Hamiltonian-like terms depend on the pseudopotentials due to the nuclear and Hartree interactions:

$$\widetilde{\mathcal{H}}^{HF}(\mathbf{r}) \equiv \mathcal{K} + \widetilde{V}_N(\mathbf{r}) + \widetilde{V}_H(\mathbf{r}).$$
 (10)

The exchange function term takes the form

$$X_v^{\text{PAW}}(\mathbf{r}) = \widetilde{X}_v(\mathbf{r}) + \sum_{ai} |\widetilde{P}_i^a\rangle X_{iv}^a,$$

where the pseudo-exchange kernel function takes the form:

$$\widetilde{X}_{v}(r) \equiv -\sum_{q} \sum_{L=|l_{v}-l_{q}|}^{l_{v}+l_{q}} \frac{1}{N_{v}} \Theta_{vq}^{L} \widetilde{W}_{qv}^{L}(r) \widetilde{\psi}_{q}^{HF}(r).$$

$$\widetilde{W}_{qv}^{L}(r) \equiv e^{2} \int dr' \, \frac{r_{<}^{L}}{r_{>}^{L+1}} \left(\widetilde{\psi}_{q}^{\mathrm{HF}*}(r') \widetilde{\psi}_{v}^{\mathrm{HF}}(r') + M_{qv}^{L}(r') \right).$$

Hartree Fock PAW Equations for Atoms – (continued)

$$\begin{split} X_{iv}^{a} = & -\sum_{v'} \sum_{L=|l_{v}-l_{v'}|}^{l_{v}+l_{v'}} \frac{1}{N_{v}} \Theta_{vv'}^{L} \\ \times \left(\sum_{jkl} \langle \widetilde{P}_{j}^{a} | \widetilde{\Psi}_{v'}^{\mathrm{HF}} \rangle \langle \widetilde{\Psi}_{v'}^{\mathrm{HF}} | \widetilde{P}_{k}^{a} \rangle \langle \widetilde{P}_{l}^{a} | \widetilde{\Psi}_{v}^{\mathrm{HF}} \rangle \left(R_{ij;kl}^{aL} - \widetilde{R}_{ij;kl}^{aL} \right) \\ & + \sum_{j} \langle \widetilde{P}_{j}^{a} | \widetilde{\Psi}_{v'}^{\mathrm{HF}} \rangle Z_{v'v;ij}^{aL} \right) \\ - \sum_{c} \sum_{L=|l_{v}-l_{c}|}^{l_{v}+l_{c}} \frac{1}{N_{v}} \Theta_{vc}^{L} \left(\sum_{j} \langle \widetilde{P}_{j}^{a} | \widetilde{\Psi}_{v}^{\mathrm{HF}} \rangle \left(R_{ic;cj}^{aL} - \widetilde{R}_{ic;cj}^{aL} \right) \\ & + Z_{cv;ic}^{aL} \right), \end{split}$$

where

$$Z_{qv;ij}^{aL} \equiv \int dr \widetilde{W}_{qv}^{L}(r) \widehat{m}_{ij}^{aL}(r). \tag{11}$$

Some details about "extended" core states

Radial Hartree-Fock wavefunction $\psi_c(r)$ for the 3d core state of Ge compared with the constructed pseudo-wavefunction $\widetilde{\psi}_c(r)$.

Radial PAW projector functions for 4p states of Ge, comparing effects of including and excluding pseudo-core orbital functions $\widetilde{\psi}_c(r)$ within the Hartree-Fock (HF) formulation and also comparing the corresponding LDA projector.

Some details about Kohn-Sham vs Hartree-Fock projector functions

Kohn-Sham

$$\left(\widetilde{\mathcal{H}}^{\mathrm{KS}}(r) - \varepsilon_i^a\right) \widetilde{\Phi}_i^a(\mathbf{r}) = \sum_j \widetilde{P}_j^a(\mathbf{r}) \langle \widetilde{\Phi}_j^a | \widetilde{\mathcal{H}}^{\mathrm{KS}} - \varepsilon_i^a | \widetilde{\Phi}_i^a \rangle$$

Hartree-Fock

$$\widetilde{H}^{\mathrm{HF}}(\mathbf{r})\widetilde{\Phi}_{i}^{a}(\mathbf{r}) + \widetilde{X}_{i}(\mathbf{r}) - \sum_{q;N_{q}>0} \lambda_{qi}\widetilde{\Psi}_{q}^{\mathrm{HF}}(\mathbf{r}) =$$

$$\sum_{j} \widetilde{P}_{j}^{a}(\mathbf{r}) \left(\langle \widetilde{\Phi}_{j}^{a} | \widetilde{H}^{\mathrm{HF}} | \widetilde{\Phi}_{i}^{a} \rangle + \langle \widetilde{\Phi}_{j}^{a} | \widetilde{X}_{i} \rangle - \sum_{q; N_{q} > 0} \lambda_{qi} \langle \widetilde{\Phi}_{j}^{a} | \widetilde{\Psi}_{q}^{\mathrm{HF}} \rangle \right),$$

Orbital Dependent Functionals + **Kohn-Sham** =

Optimized Effective Potential (OEP) Formalism

Fock Exchange Energy

$$E_x \equiv -e^2 \sum_{pq} \int \int d^3r d^3r' \frac{\Psi_p^*(\mathbf{r})\Psi_q(\mathbf{r})\Psi_q^*(\mathbf{r}')\Psi_p(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Kohn-Sham Equations

$$H^{KS}(\mathbf{r})\Psi_p(\mathbf{r}) = \varepsilon_p \Psi_p(\mathbf{r})$$

$$H^{KS}(\mathbf{r}) \equiv \mathcal{K} + V_N(\mathbf{r}) + V_H(\mathbf{r}) + V_x(\mathbf{r})$$

$$V_x(\mathbf{r}) = \frac{\delta E_x}{\delta \rho(\mathbf{r})}$$

KLI* approximation to Optimized Effective Potential

(OEP) Formalism

* Krieger, Li, and Iafrate, PRA **45**, 101 (1992)

$$V_x^{\mathrm{KLI}}(r) \ n(r) = \sum_p N_p \psi_p(r) X_p^{\mathrm{KLI}}(r) + \sum_p N_p \left| \psi_p(r) \right|^2 \left(\bar{V}_{x p}^{\mathrm{KLI}} - \bar{U}_{x p}^{\mathrm{KLI}} \right)$$

where

$$n(r) \equiv \sum_{p} N_{p} \left| \psi_{p}(r) \right|^{2}$$

$$\sum_{q \neq o} \left[\delta_{pq} - \Gamma_{pq} N_q \right] \bar{V}_{x \ q}^{\text{KLI}} = \Xi_p - \sum_{q \neq o} \Gamma_{pq} N_q \bar{U}_{x \ q}^{\text{KLI}}.$$

Here

$$\Gamma_{pq} \equiv \int dr \; \frac{\left|\psi_p(r)\right|^2 \left|\psi_q(r)\right|^2}{n(r)},$$

and

$$\Xi_p \equiv \int dr \; \frac{|\psi_p(r)|^2 \sum_q N_q \psi_q(r) X_q^{\text{KLI}}(r)}{n(r)}.$$

Relationship between KLI approximation to OEP

Bulat and Levy, PRB **80**, 052510 (2009)

$$V_x^{\rm OEP}(r) = \underbrace{V_x^{occ}(r)}_{\rm slight\ extension\ to\ KLI} + f(\{\phi_q^{unocc}(r)\}).$$

Orbital shift function of full OEP

$$(\mathcal{H} - \epsilon_p) g_p(r) = X_p(r) - V_x(r) \psi_p(r) - (\bar{U}_{x p} - \bar{V}_{x p}) \psi_p(r); \quad \sum_p N_p g_p(r) \psi_p(r) = 0.$$

Comparison of $V_x(r)$ AE-OEP, AE-KLI, and PAW-KLI

PAW-KLI formalism

$$V_x^{\mathrm{KLI}}(r) \ n(r) \Rightarrow \widetilde{V}_x^{\mathrm{KLI}}(r) \ \widetilde{n}(r) + \left(V_x^{a\mathrm{KLI}}(r) \ n^a(r) - \widetilde{V}_x^{a\mathrm{KLI}}(r) \ \widetilde{n}^a(r) \right).$$

⇒ Assume that each term satisfies the KLI equations in their respective spacial and functional domains.

$$\begin{split} \widetilde{V}_{x}^{\mathrm{KLI}}(r) \ \widetilde{n}(r) &= \sum_{v} N_{v} \widetilde{\psi}_{v}(r) \widetilde{X}_{v}^{\mathrm{KLI}}(r) + \sum_{v} N_{v} \left| \widetilde{\psi}_{v}(r) \right|^{2} \left(\bar{V}_{x \ v}^{\mathrm{KLI}} - \bar{U}_{x \ v}^{\mathrm{KLI}} \right). \\ V_{x}^{a\mathrm{KLI}}(r) \ n^{a}(r) &= \sum_{p} N_{p} \psi_{p}^{a}(r) X_{p}^{a\mathrm{KLI}}(r) + \sum_{p} N_{p} \left| \psi_{p}^{a}(r) \right|^{2} \left(\bar{V}_{x \ p}^{\mathrm{KLI}} - \bar{U}_{x \ p}^{\mathrm{KLI}} \right), \\ \widetilde{V}_{x}^{a\mathrm{KLI}}(r) \ \widetilde{n}^{a}(r) &= \sum_{v} N_{v} \widetilde{\psi}_{v}^{a}(r) \widetilde{X}_{v}^{a\mathrm{KLI}}(r) + \sum_{v} N_{v} \left| \widetilde{\psi}_{v}^{a}(r) \right|^{2} \left(\bar{V}_{x \ v}^{\mathrm{KLI}} - \bar{U}_{x \ v}^{\mathrm{KLI}} \right). \end{split}$$

Summary and Conclusions

- Thanks to the *abinit* community for continuously providing excellent computational tools, productive framework for collaboration, . . .
- *atompaw* now produces atomic datasets for *abinit*, *quantum espresso*, *pwpaw*, *socorro*
- For Fock exchange, we argue that the frozen core *orbital* approach offers better accuracy and is compatible with the PAW formalism.
- We have formulated the PAW equations for Hartree-Fock and KLI and are currently testing them in *pwpaw*.
- Future work
 - Finish testing Hartree-Fock and KLI in *pwpaw*.
 - Extend approach to hybrid functionals ??
 - Possibly extend Hartree-Fock and KLI in other codes.

