Ujian I Inversi

Avif Maulana Azis - 140710180048

GEOFISIKA - FMIPA

June 6, 2021

Tujuan

- 1. Membuat finite difference Laplace Equation
- 2. Membuat finite difference Poisson Equation
- 3. Membuat finite difference Diffussion Equation
- 4. Membuat kondisi syarat batas Dirichlet
- 5. Membuat kondisi syarat batas Neumann
- 6. Membuat kondisi syarat batas Robin

Penurunan Rumus Numerik Laplace 2D

Persamaan Laplace¹:

$$\nabla^2 U = 0 \tag{1}$$

Turunkan dengan differensial parsial 2D :

$$\frac{\partial U}{\partial x^2} + \frac{\partial U}{\partial y^2} = 0 \tag{2}$$

Bentuk persamaan dengan pendekatan numerik 2D :

$$\frac{U_{i+1,j}-2*U_{i,j}+U_{i-1,j}}{\Delta x^2} + \frac{U_{i,j+1}-2*U_{i,j}+U_{i,j-1}}{\Delta y^2} = 0 \quad (3)$$

2011)

⁽Mathematical Methods In The Phisical Science 3rd edition, Mary L. Boas, DePaul University,

Penurunan Rumus Numerik Poisson 2D

Persamaan Poisson:

$$\nabla^2 U = f(x) \tag{4}$$

Turunkan dengan differensial parsial 2D:

$$\frac{\partial U}{\partial x^2} + \frac{\partial U}{\partial y^2} = f(x) \tag{5}$$

Bentuk persamaan dengan pendekatan numerik 2D :

$$\frac{U_{i+1,j}-2*U_{i,j}+U_{i-1,j}}{\Delta x^2} + \frac{U_{i,j+1}-2*U_{i,j}+U_{i,j-1}}{\Delta y^2} = f(x) \quad (6)$$

Penurunan Rumus Numerik Diffussion 2D

Persamaan Difusi (Heat Eq):

$$\nabla^2 U = \frac{\partial U}{\partial t} \frac{1}{\alpha} \tag{7}$$

Turunkan dengan differensial parsial 2D:

$$\frac{\partial U}{\partial x^2} + \frac{\partial U}{\partial y^2} = \frac{\partial U}{\partial t} \frac{1}{\alpha} \tag{8}$$

Bentuk persamaan dengan pendekatan numerik 2D :

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^2} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + U_{i,j-1,k}}{\Delta y^2} = \frac{U_{i,j,k+1} - U_{i,j,k}}{\Delta t} \frac{1}{\alpha}$$
(9)

Diskritisasi Domain - Finite Differencing

Gambar 1. Contoh diskrit domain.

Syarat Batas Dirichlet

Ciri syarat batas ini yaitu bernilai tetap (tidak berubah seiring berjalannya iterasi).

$$U_{:,1,:} = 100 (10)$$

Contoh: kondisi syarat batas bagian atas adalah dirichlet 100 kemudian i adalah index X, j adalah index Y, dan k adalah index T (jika difusi). Maka persamaan dibagian bawah yang awalnya seperti ini:

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^2} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + U_{i,j-1,k}}{\Delta y^2} = \frac{U_{i,j,k+1} - U_{i,j,k}}{\Delta t}$$
(11)

Akan berubah menjadi seperti ini :

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^2} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + 100}{\Delta y^2} = \frac{U_{i,j,k+1} - U_{i,j,k}}{\Delta t}$$
(12)

Syarat Batas Neumann

Ciri syarat batas ini yaitu bernilai turunan pertama dari dimensi panjangnya (berubah seiring berjalannya iterasi).

$$\frac{\partial U_{(i,0,k)}}{\partial y} = 100\tag{13}$$

Kondisi syarat batas Neumann ini bukanlah merupakan nilai tetap. Sehingga masuk ke iterasi perhitungan. Kemudian karena tuntutan persamaan FDnya, syarat batas ini membutuhkan sebuah "ghost point".

Contoh: apabila kondisi syarat batas bagian atas adalah Neumann 100 kemudian i adalah index X, j adalah index Y, dan k adalah index T (jika difusi). Maka perhitungan di batas atas tersebut pasti membutuhkan index j-1, dimana dalam diskritisasi domainnya tidak terdapat titik lagi. Oleh karena itu "ghost point" ini perlu kita cari nilainya.

Syarat Batas Neumann

Pencarian "ghost point" di batas ini cocok dengan pendekatan backward yaitu sebagai berikut :

$$\frac{\partial U_{(i,0,k)}}{\partial y} = 100$$

$$\frac{U_{(i,j,k)} - U_{(i,j-1,k)}}{\Delta y} = 100$$

$$\frac{U_{(i,0,k)} - U_{(i,-1,k)}}{\Delta y} = 100$$

$$U_{(i,-1,k)} = U_{(i,0,k)} - 100 * \Delta y$$
(14)

Dengan persamaan diatas, maka kita tidak membutuhkan nilai yang ada di titik sebelumnya.

Svarat Batas Neumann

Persamaan totalnya akan menjadi

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^2} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + U_{i,j-1,k}}{\Delta y^2} = \frac{U_{i,j,k+1} - U_{i,j,k}}{\Delta t}$$
(15)

Akan berubah menjadi seperti ini :

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^{2}} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + U_{(i,j,k)} - 100 * \Delta y}{\Delta y^{2}} = \frac{U_{i,j,k+1} - U_{i,j,k}}{\Delta t}$$
(16)

 $^{^{1}(\}text{src}: \text{http://lorenskambuaya.blogspot.com/2013/10/jenis-jenis-akuifer}_{2}0.\text{html}) \\ \text{?} \\ \text{?$

Syarat Batas Robin

Syarat batas ini marupakan campuran antara syarat batas Dirichlet dengan Neumann.

$$a * U_{(i,0,k)} - b * \frac{\partial U_{(i,0,k)}}{\partial y} = 100$$
 (17)

a dan b disini merupakan koefisien syarat batas.

Contoh : apabila kondisi syarat batas bagian atas adalah Robin 100 kemudian i adalah index X, j adalah index Y, dan k adalah index T (jika difusi). Maka persamaannya akan menjadi:

$$a * U_{(i,0,k)} - b * \frac{U_{(i,0,k)} - U_{(i,-1,k)}}{\Delta y} = 100$$
 (18)

$$b*\frac{U_{(i,0,k)}-U_{(i,-1,k)}}{\Delta y}=a*U_{(i,0,k)}-100$$
 (19)

Syarat Batas Robin

$$U_{(i,-1,k)} = \frac{\Delta y}{b} (a * U_{(i,0,k)} - 100) - U_{(i,0,k)}$$
 (20)

Persamaan totalnya yang semula ini:

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^2} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + U_{i,j-1,k}}{\Delta y^2} = \frac{U_{i,j,k+1} - U_{i,j,k}}{\Delta t}$$
(21)

Akan berubah menjadi seperti ini :

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^{2}} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + \frac{\Delta y}{b} (a * U_{(i,0,k)} - 100) - U_{(i,0,k)}}{\Delta y^{2}} = \frac{U_{i,j,k+1} - U_{i,j,k}}{\Delta t}$$
(22)

Untuk persamaan Laplace final nomor 1 setelah disesuaikan syarat batasnya adalah sebagai berikut :

1. Atas - Dirichlet 1

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^2} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + 100}{\Delta y^2} = 0 \quad (23)$$

Bawah - Neumann 0

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^2} + \frac{U_{i,j,k} - 2 * U_{i,j,k} + U_{i,j-1,k}}{\Delta y^2} = 0 \quad (24)$$

3. Kiri - Neumann -70

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i,j,k} + 70 * \Delta x}{\Delta x^2} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + U_{i,j-1,k}}{\Delta y^2} = 0 \quad (25)$$

4. Kanan - Neumann 70

$$\frac{U_{i-1,j,k} - 2 * U_{i,j,k} + U_{i,j,k} + 70 * \Delta x}{\Delta x^2} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + U_{i,j-1,k}}{\Delta y^2} = 0 \quad (26)$$

Gambar 2. Hasil nomor 1.

Untuk persamaan Laplace final nomor 3 setelah disesuaikan syarat batasnya adalah sebagai berikut :

1. Atas - Neumann -1

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^2} + \frac{U_{i,j+1,k} - U_{i,j,k} + 70 * \Delta x}{\Delta y^2} = 0 \quad (27)$$

Bawah - Neumann 0

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i-1,j,k}}{\Delta x^2} + \frac{U_{i,j,k} - 2 * U_{i,j,k} + U_{i,j-1,k}}{\Delta y^2} = 0 \quad (28)$$

3. Kiri - Neumann -70

$$\frac{U_{i+1,j,k} - 2 * U_{i,j,k} + U_{i,j,k} + 70 * \Delta x}{\Delta x^2} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + U_{i,j-1,k}}{\Delta y^2} = 0 \quad (29)$$

4. Kanan - Neumann 70

$$\frac{U_{i-1,j,k} - 2 * U_{i,j,k} + U_{i,j,k} + 70 * \Delta x}{\Delta x^2} + \frac{U_{i,j+1,k} - 2 * U_{i,j,k} + U_{i,j-1,k}}{\Delta y^2} = 0 \quad (30)$$

Gambar 3. Hasil Nomor 3.

Gambar 4. Hasil Nomor 2.

Gambar 5. Hasil Nomor 4.

Persamaan Poisson nomor 5 setelah disesuaikan syarat batasnya dan letak sourcenya adalah sebagai berikut :

Gambar 6. Hasil Nomor 5 kiri(n=10),kanan(n=7).

Persamaan Poisson nomor 6 setelah disesuaikan dengan syarat batasnya dan letak sourcenya adalah sebagai berikut :

Gambar 7. Hasil Nomor 6.

Hasil Nomor 7

Persamaan Laplace nomor 7 setelah disesuaikan dengan syarat batasnya adalah sebagai berikut :

Gambar 8. Hasil Nomor 7.

References

- ▶ Boas, Mary L. Mathematical Methods in the Physical Sciences. New York: Wiley, 1983.
- Riley, K., Hobson, M., Bence, S. (2006). Mathematical Methods for Physics and Engineering: A Comprehensive Guide (3rd ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511810763
- ► Thomas L. Harman, James Dabney, and Norman Richert. 2000. Advanced Engineering Mathematics with MATLAB (2nd. ed.). Brooks/Cole Publishing Co., USA.
- ▶ Duffy, D.G. (2010). Advanced Engineering Mathematics with MATLAB (4th ed.). CRC Press.
- Wikipedia: Robin boundary condition.
- Wikipedia: Convection—diffusion equation.
- Dokumentasi catatan serta program modelling perkuliahan komputasi lanjutan

Hatur Nuhun