oad

Converter

Solar panel r_g

28

 $d_1 T_S < t < d T_S$ dTS < t < TS**@** (a) dT_S T_2 S 0 VD. V_{C}

Fig. 1 Equivalent circuit of a solar panel connecting to a converter.

Fig. 2 SEPIC converter circuit.

Fig. 3 Operating principle. (a) Topology sequence. (b) Theoretical waveforms of νC and νD .

2 16 8 7

perturbation Error amplifier Driver $\delta \widetilde{V}_{i,max}$ Peak detector Peak detector 0.047µF Нπ006 Solar panel

220Vac ► Connected to MPP tracking circuit Solar panel Tungsten halogen lamp

Fig. 4 Block diagram of proposed MPP tracking method.

Fig. 5 Experimental setup for the solar panel.

Fig. 6 Solar panel characteristics at different Plamp. (a) ig versus vg . (b) Poversus rį.

94 Acqs

Tek Story 20MS/s

Inventor: HUI et al.
Docket 11: 12364.27USU1
Title: MUM POWER TRACKING TECHNIQUE FOR SOLAR PANE
Attorn No.: 612.336.4638
Sheet 3 of 13

Fig. 8 Experimental waveforms of the SEPIC converter. Ch2: switch voltage stress, 50V/div; Ch3: input voltage, 10V/div; Ch4: input current, 0.5A/div.

Fig. 7 Detailed experimental waveforms of the SEPIC converter. (a) Ch1: gate signal, 10V/div; Ch2: switch voltage stress, 50V/div. (b) Ch1: input voltage, 10V/div; Ch2: input current, 0.5A/div.

16 Acqs

Tek Story 50KS/s

from 500W to 900W. Ch1: input voltage, 10V/div. Ch2: input current, 0.5A/div. Fig. 10 Transient waveforms of the SEPIC converter subject to P_{lamp} changed

5 Acqs

Tek Story Soks/s

9

Fig. 11 Comparison of maximum solar panel output power using proposed method and the ideal ones in Fig. 6(b), under different Plamp.

Fig. 9 Waveform of $\delta \tilde{v_i}$ with respect to different value of \mathfrak{R} . (a) $\mathfrak{R}=0.02$. (b) \mathfrak{R} = 0.05. (c) $\Re = 0.1$.

છ

Inventor: HUI et al.
Docket No. 12364.27USU1
Title: M. JM POWER TRACKING TECHNIQUE FOR SOLAR PANELS
Attorney Michael D. Schumann (Reg. No. 30,422)
Phone No.: 612.336.4638
Sheet 5 of 13

Fig. 12 Circuit diagram of the Cuk converter.

Fig. 13 Relationships between ε_1/β and k.

Fig. 14 The proposed MPP tracking method.

Fig. 15 Relationships between ε_2/β and k'.

Fig. 16 Experimental setup for studying the proposed MPP tracking technique.

Inventor: HUI et al.
De Set No.: 12364.27USU1

AXIMUM POWER TRACKING TECHNIQUE FOR SOLAR F
y Name: Michael D. Schumann (Reg. No. 30,422)

Phone No.: 612.336.4638

Sheet 8 of 13

Fig. 17. $P_o - r_i$ characteristics of the solar panel at different P_{lamp} .

(b) DCVM. (v_i : 2V/div. i_1 : 0.2A/div.) Fig.18. Experimental waveforms of v_i and i_1 of the two SEPIC prototypes at the MPP when P_{lamp} equals 900W.

Inventor: HUI et al.
Dock No.: 12364.27USU1
Tile XIMUM POWER TRACKING TECHNIQUE FOR SOLAR PA
An Name: Michael D. Schumann (Reg. No. 30,422)
Phone No.: 612.336.4638
Sheet 10 of 13

(a) Voltage and current stress on S in DICM. (Ch1: 10V/div. Ch2: 2A/div.)

(a) Voltage and current stress on S in DCVM. (Ch1: 50V/div. Ch2: 2A/div.)

(c) Voltage and current stress on D in DICM. (Ch1: 10V/div. Ch2: 2A/div.)

(d) Voltage and current stress on D in DCVM. (Ch1: 50V/div. Ch2: 2A/div.)

Fig. 19. Experimental voltage and current stresses on S and D. (Timebase: $10\mu s/div$)

Sheet 12 of 13

(b) DCVM. Fig. 20. Experimental waveforms of the SEPIC converters when P_{lamp} is subject to a change from 400W to 900W. (Ch1: V_i , 10V/div. Ch2: I_1 , 0.5A/div.)

Inventor: HUI et al.
Docket 12364.27USU1
Title: MUM POWER TRACKING TECHNIQUE FOR SOLAR PANF
Attor
ne: Michael D. Schumann (Reg. No. 30,422)
Phone No.: 612.336.4638
Sheet 13 of 13

(a) Voltage and current waveforms of L_1 and L_2 in DICM.

(b) Current and voltage waveforms of C in DCVM.

Fig. 21 Key waveforms of SEPIC and Cuk converter.