

Department of Electronics & Telecommunication Engineering Experiment No.: SIX

Microcontroller & Applications

Name:	Batch/Rollno:
-------	---------------

SAP ID: Date:

Objective:	Assembly language programming in simulation environment for AVR's	
	microcontroller ATmega328p.	
Outcome:	Programs that demonstrate the understanding and use of arithmetic,	
	logical, rotate/shift and branching instructions in light of	
	accomplishing specific tasks.	
Tasks/Problem	Students Perform following tasks:	
Statement:	a. Write a program to add two 8-bit numbers stored in at data	
	memory location \$200 and \$201, data memory location and	
	store the result at memory location \$300 and \$301, MSB first	
	and then LSB. Verify the program working for worst case data	
	condition.	
	b. Repeat the above program to subtract two numbers ie [\$200] -	
	[\$201] (contents of location 201 subtracted from location 200)	
	c. Write a program to logically AND, OR and XOR two numbers	
	stored at memory locations \$300 and \$400 and store the result	
	of operation at location \$500.	
	d. Write a program that inspects the contents of memory location	
	\$200. If the content is zero (\$00) then store \$00 at memory	
	location \$300, else store \$ff at location \$300.	
	e. Write a program that inspects the lower nibble of the number	
	stored at memory location \$200. If the lower nibble is \$F (ie all	
	ones) then store \$ff at memory location \$300, if its \$0 (ie all	
	zeros) then store \$00 at memory location \$300, else store \$7f at	
	location \$300.	
	f. Write a program to toggle specific bits in a register and / or	
	logically shift (rotate the bits in register	
Programs,	A)	

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics & Telecommunication Engineering

comments, brief explanation and output:

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics & Telecommunication Engineering

OUTPUT:-

D:-

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics & Telecommunication Engineering

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics & Telecommunication Engineering

1) Write an AVR assembly language program to extract and add the nibbles of a byte. The input byte is initially loaded into a register. The lower and upper nibbles are separated, added individually with given constants, and then processed through bit manipulation. Show the result in a R18 & R19.

Attach screen shots of the output

NOTE: Each code output should display student SAP id as well as Name of student along with date of performance.

Conclusion:

This experiment successfully demonstrates the implementation and simulation of arithmetic, logical, conditional branching, and bit manipulation instructions in AVR assembly for the ATmega328P microcontroller. Through a series of structured tasks, gained hands-on experience in handling memory operations, evaluating register content, and controlling program flow based on specific data conditions—validating both normal and edge-case scenarios.

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department of Electronics & Telecommunication Engineering

