

Reporte Técnico de Actividades Práctico-Experimentales Nro. 00X

1. Datos de Identificación del Estudiante y la Práctica

Nombre del estudiante(s)	Alison Micaela Tapia Morocho		
Asignatura	Teoría de la programación		
Ciclo	1 A		
Unidad	1		
Resultado de aprendizaje de la unidad	Identifica los conceptos fundamentales de la teoría de la programación, bajo los principios de solidaridad, transparencia, responsabilidad y honestidad.		
Práctica Nro.	002		
Tipo	Individual		
Título de la Práctica	Del diseño del algoritmo con estructuras secuenciales a la construcción del programa.		
Nombre del Docente	Lissette Geoconda López Faicán		
Fecha	Martes 28 de octubre del 2025		
Horario	10h30 – 13h30		
Lugar	Aula física asignada al paralelo.		
Tiempo planificado en el Sílabo	6 horas		

2. Objetivo(s) de la Práctica

- Desarrollar la capacidad de transformar un problema en una solución computacional.
- Aplicar estructuras secuenciales en el diseño del algoritmo.
- Validar la lógica del algoritmo mediante pruebas de escritorio.
- Implementar y ejecutar la solución en un lenguaje de programación.

3. Materiales, Reactivos, Equipos y Herramientas

- Herramienta de pseudocódigo y diagramación de algoritmos: PSeInt.
- IDE de programación: Visual Studio Code u otro entorno compatible.
- Lenguaje de programación: C (según los contenidos de la unidad).

4. Procedimiento / Metodología Ejecutada

1. Se leyó la guía proporcionada por la docente.

- 2. Se realizó el análisis del problema, identificando los datos de entrada, las constantes y el valor a calcular.
- 3. Se determinó el proceso y las fórmulas a utilizar, realizando los respectivos despejes.
- 4. Se diseñó el algoritmo en PSeInt.
- 5. Se realizaron las pruebas de escritorio.
- 6. Se implementó el código en lenguaje C utilizando Visual Studio Code.
- 7. Se comprobó el correcto funcionamiento del código, verificando que los resultados coincidieran con los obtenidos en las pruebas de escritorio.

5. Resultados

Código PSeInt

```
nota3.psc* X
    Algoritmo nota3
 1
 2
         // Variables
 3
         Definir c1 Como Real;
 4
        Definir c2 Como Real;
 5
        Definir c3 Como Real;
 6
        Definir notaLaboratorio Como Real;
 7
         Definir NOTAFINAL como Entero;
 8
        NOTAFINAL = 60;
 9
10
        // Entrada
11
         Escribir "Ingrese nota del primer certámen: ";
12
        Escribir "Ingrese nota del segundo certámen: ";
13
14
        Leer c2;
15
        Escribir "Ingrese nota de laboratorio: ";
16
        Leer notaLaboratorio;
17
18
        // Proceso
        c3 = (((NOTAFINAL-notaLaboratorio*0.3)/0.7)*3) - (c1+c2);
19
20
21
         // Salida
         Escribir "La nota que debe obtener en el tercer certamen es: ", c3;
22
23
     FinAlgoritmo
```

• Pruebas de escritorio

C 1	C2	NL	c3 = (((60 - (NL * 0.3)) / 0.7) * 3) - (c1 + c2)	Resultado
60	37	69	c3 = (((60 - (80 * 0.3)) / 0.7) * 3) - (50 + 80)	71.43
23	76	82	c3 = (((60 - (90 * 0.3)) / 0.7) * 3) - (80 + 85)	52.72
47	53	38	c3 = (((60 - (40 * 0.3)) / 0.7) * 3) - (70+ 60)	108.28

Diagrama de flujo

Código en C

```
C nota3.c > ...
    #include <stdio.h>
    int main (){
         //Variables
         float c1, c2, c3, notaLaboratorio;
         int const NOTAFINAL = 60;
         //Entarda
         printf("Ingrese nota del primer certamen: ");
         scanf("%f", &c1);
         printf("Ingrese nota del segundo certamen: ");
         scanf("%f", &c2);
         printf("Ingrese nota de laboratorio: ");
         scanf("%f", &notaLaboratorio);
         c3 = (((NOTAFINAL - notaLaboratorio * 0.3)/0.7)*3) - (c1 + c2);
         //Salida
         printf("La nota que debe obtener en el tercer certamen es: %.2f", c3);
```

6. Preguntas de Control

• ¿Qué elementos deben identificarse en el análisis de un problema computacional?

En el análisis de un problema computacional deben identificare os datos de entrada, las constantes, los procesos o fórmulas necesarias y los resultados o datos de salida.

• ¿Por qué es importante validar un algoritmo mediante pruebas de escritorio? FEIRNNR - Carrera de Computación?

La validación de un algoritmo mediante pruebas de escritorio es importante porque permite verificar el funcionamiento del algoritmo y la pronta detección de errores antes de la aplicación en el lenguaje de programación.

• ¿Cómo se traslada un algoritmo en pseudocódigo a un lenguaje de programación?

El traslado de un algoritmo en pseudocódigo a un lenguaje de programación se realiza traduciendo las instrucciones lógicas y estructuras del algoritmo a la sintaxis propia del lenguaje de programación.

7. Conclusiones

Se desarrolló la capacidad de transformar un problema en una solución computacional, mediante el diseño de un algoritmo que aplica estructuras secuenciales, validando su funcionamiento a través de pruebas de escritorio e implementando posteriormente la solución en el lenguaje C.

8. Recomendaciones

Se recomienda identificar correctamente las variables de entrada, realizar el despeje adecuado de las fórmulas y efectuar pruebas de escritorio para verificar la exactitud de los resultados, además de comprobar que todas las variables hayan sido declaradas correctamente.