Lecture 20 - Cluster Analysis

Introduction

- Classification involves using data to group places, events, things into types.
- In geography we are often interested classifying places into regions.
- A "gentrifying neighborhood" evokes multidimensional picture of a place.

Cluster Analysis vs. an Atlas

- Traditionally geographers would explore multivariate spatial data by producing an atlas.
- Each page of the atlas would describe a single variable (e.g. income, homeownership, third-wave coffee shop density, dog salons per capita...).
- We could to identify "gentrifying" neighborhoods by cross referencing maps.

Cluster Analysis vs. an Atlas

- However, as our data grew in complexity the task of identifying interesting patterns in the data would become more complex.
- If we had 50 variables we would need to have an atlas with at least 50 pages.
- We would have to cross reference many maps. Identifying patterns would be difficult.

Cluster Analysis vs. an Atlas

- Cluster Analysis is a set of statistical techniques to let people "discover" groups in data.
- What you could do visually in 2 or 3 dimensions cluster analysis does in high dimensions.
- Each data point is labeled by group membership.
- Each cluster has an **attribute profile**...kind of like a "bookmarked" set of atlas pages that best describe places in that cluster.

Example

- A: Hispanic and Kids
- B: Wealthy Nuclear Families
- C: Middle income, single family homes
- D: Native American
- E: Wealthy Urbanites
- F: Low Income and Diverse
- G: Old, Wealthy White
- H: Low Income Minority Mix
- I: African—American Adversity
- J: Residential Institutions, Young People

(Singleton and Spielman 2015)

Geographic Cluster Analysis

- Cluster analysis joins areas that are close together in "attribute space".
- We might want to add a spatial constraint to this process.
- Cluster analysis with a spatial constraint is sometimes called regionalization.

Regionalization Example

Figure 8. Nebraska eco-region map consisting of the two highest of three hierarchical levels generated by the Spatial Pattern Analysis Model.

Space-Time Clustering

We can also use cluster analysis to describe how places change over time:

Space-Time Clustering

We can also use cluster analysis to describe how places change over time:

Clusters in Attribute Space

- Clusters are sometimes visually obvious in high-density regions of the "attribute space".
- $\bullet\,$ High-density regions = lots of mutual nearest-neighbors.
- We can also describe each cluster's members as being closer to an "exemplar" or "centroid" than any other.

Clustering in a Perfect World

Clustering Around Centroids: K-Means

- 1. Randomly place k number of points (centroids) in the attribute space.
- 2. Each dot (observation) is assigned to the nearest centroid.
- 3. Centroid is recalculated as the mean of the points assigned to it.
- 4. Repeat steps 2 3 until "convergence" (centroids stop moving).

K-Means Example on "Real World" Data

```
# perform k-means and extract group labels
kmclust = kmeans(clust_dat_z, centers = 7)$cluster
```

```
## map the clusters in physical space
den_map = as(den,'sf')
den_map$kmeans_cluster = factor(kmclust)
plot(den_map['kmeans_cluster'],main = paste('Denver Tracts 2012: k-means with k=7 clusters'))
```

Denver Tracts 2012: k-means with k=7 clusters

Clustering by (Dis)similarity

- A dissimilarity matrix is like a "mileage chart" for our data.
- An **affinity matrix** is like inverse of a mileage chart (i.e. measuring *proximity* by subtracting every distance from the max distance).
- Both measures support different clustering tasks.
 - e.g. hierarchical vs. nearest-neighbors clustering

	Philadelphia	New York	Boston	Charleston
Philadelphia	0.00	1.39	4.76	8.61
New York	1.39	0.00	3.37	9.91
Boston	4.76	3.37	0.00	13.06
Charleston	8.61	9.91	13.06	0.00

Clustering by (Dis)similarity

- Dissimilarity/affinity matrices can be built from:
 - Continuous data (i.e. Euclidean or Manhattan distance)
 - Categorical data (i.e. Matching or Jaccard distance)
 - **Mixed-type** data (i.e. Gower distance)

Hierarchical Clustering

- Use dissimilarities to organize data into a dendrogram, a tree-like diagram.
 - The "leaves" describe individual observations.
 - The "stems" describe more specific clusters.
 - The "branches" describe more general clusters.
- Clusters are recovered by "cutting" the dendrogram at a desired ${\tt k}$ or height.

Hierarchical Clustering: Linking/Sorting Strategies

- Distance-based: merge the groups closest on some criterion
 - **Single linkage** (nearest-neighbor)
 - Complete linkage (furthest-neighbor)
 - Average linkage (centroid)
- Variance-based: Ward's Method
 - Each merge minimizes the "error sum of squares" (ESS), a measure of within-cluster dissimilarity.

A Dendrogram of Denver Tracts

- Generate a euclidean distance matrix using R's dist function.
- Generate a dendrogram from the distance matrix using R's hclust function.
- Use the Ward linkage method (minimize within-cluster variance).

```
## add neighborhood ids to rownames for readability
rownames(clust_dat_z) = den$Nghbrhd

## generate distance matrix
d = dist(clust_dat_z)

## ward dendrogram
dend = hclust(d = d, method = 'ward.D2')
```

A Dendrogram of Denver Tracts

```
## view the dendrogram
plot(dend)
```


Finding a Suitable k

- Clusters should be internally consistent and well separated.
- Often useful to consider variance-based and separation-based criteria.
- Can iterate k groups and measure each of these criteria to find a "best" solution.

Finding a Suitable k: Variance-Based Criteria

$$GVF = \frac{BSS}{TSS}$$

where

$$TSS = BSS + WSS$$

Sometimes called **Goodness of Variance Fit (GVF)**. - **Total Sum of Squares (TSS)**: sum of squared distances from data centroid - **Between Sum of Squares (BSS)**: sum of squared distances between all group centroids and the data centroid - **Within Sum of Squares (WSS)**: sum of squared distances between all group members and their centroid

Finding a Suitable k: Variance-Based Criteria

$$GVF = \frac{BSS}{TSS}$$

where

Look familiar? - This is kind of like an R^2 diagnostic for clustering. - Instead of a "line of best fit", we have cluster centroids. - Instead of "fitted values", we have cluster labels. - The "explained" part (BSS) tells us how distinct from data centroid the cluster centroids are. - The "unexplained" part (WSS) tells us how much observations vary about their own centroid.

Finding a Suitable k: Separation-Based Criteria

- Clusters should be well separated: they should inhabit their own "high density" portions of the attribute space.
- Information provided by each cluster should be distinct, and shared as little as possible with other clusters
- Average Silhouette Width: to what degree do clusters overlap?
 - -0 = high overlap
 - -1 = high separation
 - -1 = incorrect labels.

Selecting k for Denver Tracts

- 1. Specify a desired range of cluster numbers (here k = 3...10).
- 2. Cut the dendogram at each k and...
- Compute variance-based measure (Goodness of Variance Fit).
- Compute separation-based measure (Average Silhouette Width in R library cluster).
- 4. Compare the measures visually and identify an optimal solution.

```
## Specify a range of cluster numbers
krange = 3:10

# goodness of variance fit
gvf = sapply(krange, function(k){
    kclust = cutree(dend, k)
    fastClusterGVF(dat = clust_dat, clust = kclust)

})

# average silhouette width
sil = sapply(krange, function(k){
    kclust = cutree(dend, k)
    mean(silhouette(x = kclust, dist = d)[,3])
})
```

Selecting k for Denver Tracts

```
## output diagnostics
cl_diag = cbind(k = krange, gvf = gvf, sil = sil)
par(mfrow=c(1,2))
plot(gvf ~ k, data = cl_diag, type='l', main = 'Goodness of Variance Fit')
plot(sil ~ k, data = cl_diag, type='l', main = 'Average Silhouette Width')
```

Goodness of Variance Fit

Average Silhouette Width

kable(round(data.frame(cl_diag), 2))

k	gvf	sil
3	0.25	0.15
4	0.25	0.15
5	0.26	0.15
6	0.28	0.14
7	0.28	0.15
8	0.29	0.14
9	0.29	0.13
10	0.30	0.13
<th>t></th> <th></th>	t>	

Map the Final Solution

```
## cut dendrogram at best k and assign it to our sf object
best_k = 7
den_map['cluster'] = factor(cutree(dend, best_k))

## plot the map
plot(den_map['cluster'], main = paste('Denver Tracts 2012: k = ', best_k, 'clusters'))
```

Denver Tracts 2012: k = 7 clusters

Examining the Clusters

- How well do the clusters match with prior expectations of data under analysis?
 - e.g. We know "Downtown Denver" is distinct from the rest of the city.
- How well do the clusters suit the objectives of the analysis?
 - e.g. Revealing different "socially vulnerable" groups.

Examining the Clusters

Outcome measures or a "ground-truth" can be useful.

- Do the clusters align well with a particular outcome?
 - e.g. Are flood losses concentrated more heavily in one cluster than others?
- Do the clusters match a "ground truth" well?
 - e.g. Observations/categories from a field assessment.

Comparing the Denver Tract Clusters to an Outcome Measure

```
## re-plot map
plot(den_map['cluster'],main = paste('Denver Tracts 2012: k =',best_k,'clusters'))
```

Denver Tracts 2012: k = 7 clusters


```
## assign cluster labels to full data
den@data$cluster = factor(cutree(dend, best_k))

## sort clusters by median of outcome variable, highest to lowest
health_uninsured_by_cluster = with(den@data, aggregate(Hlth_Un ~ cluster, FUN = 'median'))
health_uninsured_by_cluster = health_uninsured_by_cluster[order(health_uninsured_by_cluster$Hlth_Un, de
den$cluster = factor(den$cluster, levels = health_uninsured_by_cluster$cluster)

## plot outcome variable
cols = brewer.pal(best_k, 'Set2')[as.numeric(levels(den$cluster))]
with(den@data, plot(Hlth_Un ~ cluster, col = cols, main = 'Percent of Population without Health Insuran
abline(h = median(den$Hlth_Un), col = 'red')
```

Percent of Population without Health Insurance by Cluster

Profiling Clusters

An average profile plot tells us how far a above/below the data average a cluster is on variables of interest:

```
## generate average profile of a cluster
den_cent = colMeans(clust_dat) # the data centroid
cl = levels(den$cluster)[1] # our target cluster
cl_cent = colMeans(clust_dat[den$cluster==cl,]) # the cluster centroid
avp = (cl_cent - den_cent) / den_cent # difference from data mean
## format the data for plotting
# plot vars greatest to smallest
avp_melt = melt(avp)
var_order = rownames(avp_melt)[order(avp_melt$value, decreasing = T)]
avp_melt$variable = factor(rownames(avp_melt), levels = var_order)
cl_col = cols[which(levels(den$cluster) == cl)] # for coloring barplot
ggplot(avp_melt, aes(x = variable, y = value)) +
  geom_bar(fill = cl_col, color = 'black', stat = 'identity') +
  theme bw() +
  theme(axis.text.x=element_text(angle=45,hjust=1)) +
  ggtitle(paste('Average Profile for Cluster',cl))
```


Side Notes: "Built-in" Selection of k

Some methods handle selection of k themselves...

- Mutual nearest-neighbors (Community Detection)
- Threshold distance neighbors (DBSCAN)
- Mutual similarity to an exemplar (Affinity Propagation)

Tradeoff: Sometimes these methods generate a lot of "noise" (i.e, one-member clusters).

Side Notes: Clustering Categorical Data

- Useful for grouping e.g. survey responses.
- Uses "model-based" clustering techniques like Latent Class Analysis (LCA).
- Model parameters are determined using criteria similar to logistic regression (i.e. maximum likelihood).
- Information-theoretic criteria (i.e. AIC, BIC) are used to find a suitable k.

Conclusion

- Cluster analysis provides geographers insight into latent conditions and processes in place.
- Clustering design depends on the *objectives* of the research (i.e. knowledge discovery vs. confirmatory analysis).
- Careful attention should be paid to:
 - Variable selection
 - Comparing cases
 - Clustering method
 - Interpretation