Simple Regression Linear

Agnes Septilia

5/11/2021

library(tidyverse)

INTRODUCTION

In this program we will learn about how to make Simple Linear Regression, by breaking down to each formula.

First, we will start from making the dataset dummy

```
# define x value as predictor
predictor <- c(15, 20, 25, 37, 40, 45, 48, 50, 55, 61, 64, 67, 70)
# define y value as target
target <- c(100, 135, 135, 150, 250, 270, 290, 360, 375, 400, 500, 600,
700)
# set as dataframe
df <- data.frame(x = predictor, y = target)</pre>
##
      х у
## 1 15 100
## 2 20 135
## 3 25 135
## 4 37 150
## 5 40 250
## 6 45 270
## 7 48 290
## 8 50 360
## 9 55 375
## 10 61 400
## 11 64 500
## 12 67 600
## 13 70 700
```

PART 1: FIND THE REGRESSION FORMULA

In Linear Regression, the first information we have to check is the prediction formula : y = a + bx

```
n <- nrow(df) # amount of predictor

# assign `a` value
a <- (sum(df$y) * sum(df$x_sq) - sum(df$x) * sum(df$xy)) /
    (n * sum(df$x_sq) - (sum(df$x))**2)

# assign `b` value
b <- (n * sum(df$xy) - sum(df$x) * sum(df$y)) /
    (n * sum(df$x_sq) - (sum(df$x))**2)

paste(sprintf("The formula is y = %.3f + %.3fx", a, b))

## [1] "The formula is y = -118.420 + 9.723x"</pre>
```

We have got the formula: y = -118.420 + 9.723x. Now we calculate the predicted y using this formula

```
df$y_pred <- a + (b * df$x)
df
## x y xy x_sq y_sq y_pred
## 1 15 100 1500 225 10000 27.42085
      х у
                                y_pred
## 2 20 135 2700 400 18225 76.03439
## 3 25 135 3375 625 18225 124.64794
## 4 37 150 5550 1369 22500 241.32044
## 5 40 250 10000 1600 62500 270.48857
## 6 45 270 12150 2025 72900 319.10211
## 7 48 290 13920 2304 84100 348.27024
## 8 50 360 18000 2500 129600 367.71566
     55 375 20625 3025 140625 416.32920
## 10 61 400 24400 3721 160000 474.66546
## 11 64 500 32000 4096 250000 503.83359
## 12 67 600 40200 4489 360000 533.00171
## 13 70 700 49000 4900 490000 562.16984
```

We will check the R-squared value. This is to check whether the linear regression model will be the good fit for the data

```
r <- (n * sum(df$xy) - sum(df$x) * sum(df$y)) /
    sqrt ((n * sum(df$x_sq) - (sum(df$x))**2) * (n * sum(df$y_sq) -
    (sum(df$y))**2))

r_sq <- r ** 2 # this value is called Multiple R Squared

# Meanwhile, adjusted R-squared will be as follow
k <- 1 # we only have one independent variable
adjusted_r_sq <- 1 - (((1 - r_sq) * (n - 1)) / (n-k-1))

paste(sprintf("The model fits the data with percentage %.2f%",
adjusted_r_sq*100))

## [1] "The model fits the data with percentage 85.89%"</pre>
```

As the end of PART 1, let's see how the distribution of data, include with the regression line (predicted value line)

Data Distribution with Its Regression Line

PART 2: FIND THE RESIDUAL

Residual is the discrepancy between actual y value with predicted y value

```
df$residual <- df$y - df$y pred
df
                               y_pred
               xy x_sq
                                       residual
                       y_sq
## 1 15 100 1500 225 10000 27.42085 72.579155
## 2 20 135 2700 400 18225 76.03439 58.965610
## 3 25 135 3375 625 18225 124.64794 10.352065
## 4 37 150 5550 1369 22500 241.32044 -91.320443
## 5 40 250 10000 1600
                       62500 270.48857 -20.488570
                       72900 319.10211 -49.102115
## 6 45 270 12150 2025
## 7 48 290 13920 2304 84100 348.27024 -58.270242
## 8 50 360 18000 2500 129600 367.71566 -7.715660
## 9 55 375 20625 3025 140625 416.32920 -41.329205
## 10 61 400 24400 3721 160000 474.66546 -74.665459
## 11 64 500 32000 4096 250000 503.83359 -3.833586
```

```
## 12 67 600 40200 4489 360000 533.00171 66.998287
## 13 70 700 49000 49000 562.16984 137.830161
```

In Linear Regression analysis, we will check the distribution of Residual itself

```
df %>%
  ggplot(aes(x = y, y = residual)) +
  geom_point(size = 3) +
  geom_hline(yintercept = 0, size = 1, color = "red") +
  labs(title = "Residual Distribution Plot")
```

Residual Distribution Plot

PART 3: FIND THE STANDARDIZED RESIDUAL

Before we check the standardized residual, there are several supporting variable we need to make

```
df$residual_sq <- df$residual ** 2

predictor_mean <- mean(df$x)
df$predictor_sd <- (df$x - predictor_mean) ** 2 # deviation of predictor
data
predictor_ssdev <- sum(df$predictor_sd) # sum of square of predictor
standard deviation

RSE <- sqrt(sum(df$residual_sq) / (n-k-1))</pre>
```

We start by counting the leverage; which by definition, is how far an observation value, from those of the other observations.

```
df$leverage <- (1/n) + (((df$x - predictor_mean) ** 2) / predictor_ssdev)</pre>
df
##
               xy x_sq
                        y_sq
                               y_pred
                                       residual residual sq predictor sd
## 1 15 100 1500 225 10000 27.42085 72.579155 5267.73372 956.236686
## 2 20 135 2700 400 18225 76.03439 58.965610 3476.94316 672.005917
## 3 25 135 3375 625 18225 124.64794 10.352065 107.16525 437.775148
## 4 37 150 5550 1369 22500 241.32044 -91.320443 8339.42329 79.621302
                                                             35.082840
## 5 40 250 10000 1600 62500 270.48857 -20.488570 419.78149
## 6 45 270 12150 2025
                       72900 319.10211 -49.102115 2411.01768
                                                               0.852071
## 7 48 290 13920 2304 84100 348.27024 -58.270242 3395.42107
                                                               4.313609
## 8 50 360 18000 2500 129600 367.71566 -7.715660
                                                  59.53140 16.621302
## 9 55 375 20625 3025 140625 416.32920 -41.329205 1708.10316
                                                             82.390533
## 10 61 400 24400 3721 160000 474.66546 -74.665459 5574.93071 227.313609
## 11 64 500 32000 4096 250000 503.83359 -3.833586
                                                  14.69638 326.775148
## 12 67 600 40200 4489 360000 533.00171 66.998287 4488.77052 444.236686
## 13 70 700 49000 4900 490000 562.16984 137.830161 18997.15314 579.698225
##
       leverage
## 1 0.32446533
## 2 0.25088614
## 3 0.19025051
## 4 0.09753475
## 5 0.08600502
## 6 0.07714365
## 7 0.07803975
## 8 0.08122586
## 9 0.09825162
## 10 0.13576805
## 11 0.16151579
## 12 0.19192321
## 13 0.22699032
```

Then, we calculate the Standardized Residuals

```
df$residual_std <- df$residual / (RSE * sqrt(1 - df$leverage))</pre>
df
                               y_pred
                                       residual residual sq predictor sd
              xy x_sq
                       y_sq
## 1 15 100 1500 225 10000
                             27.42085 72.579155 5267.73372 956.236686
## 2 20 135 2700 400 18225 76.03439 58.965610 3476.94316 672.005917
## 3 25 135 3375 625 18225 124.64794 10.352065 107.16525 437.775148
## 4 37 150 5550 1369 22500 241.32044 -91.320443 8339.42329 79.621302
     40 250 10000 1600
                       62500 270.48857 -20.488570
                                                 419.78149
                                                              35.082840
                       72900 319.10211 -49.102115 2411.01768
## 6 45 270 12150 2025
                                                              0.852071
## 7 48 290 13920 2304 84100 348.27024 -58.270242 3395.42107
                                                              4.313609
## 8 50 360 18000 2500 129600 367.71566 -7.715660
                                                 59.53140 16.621302
## 9 55 375 20625 3025 140625 416.32920 -41.329205 1708.10316 82.390533
## 10 61 400 24400 3721 160000 474.66546 -74.665459 5574.93071 227.313609
                                                 14.69638 326.775148
## 11 64 500 32000 4096 250000 503.83359 -3.833586
## 12 67 600 40200 4489 360000 533.00171 66.998287 4488.77052
                                                            444,236686
## 13 70 700 49000 4900 490000 562.16984 137.830161 18997.15314
                                                            579.698225
       leverage residual_std
## 1 0.32446533 1.25730849
## 2 0.25088614 0.97001543
## 3 0.19025051 0.16379680
## 4 0.09753475 -1.36869452
## 5 0.08600502 -0.30513604
## 6 0.07714365 -0.72775787
## 7 0.07803975 -0.86406116
```

```
## 8  0.08122586   -0.11460998

## 9  0.09825162   -0.61968092

## 10  0.13576805   -1.14355838

## 11  0.16151579   -0.05960895

## 12  0.19192321   1.06118511

## 13  0.22699032   2.23205843
```

In R, we can plot standardized residual with qqplot directly. However, here we want to know where the calculation is from. Let's start by making another dataset.

```
# sort the value of Standardized Residuals
qq_df <- data.frame(residual_std = sort(df$residual_std))</pre>
# add rank -> start with 1 for the smallest value
qq_df$rank <- c(1:n)
# check percentile or quantile -> show the percentage of rank among
overall
qq_df$quantile <- (qq_df$rank - 0.5) / n
# check qnorm of each quantile
qq_df$qnorm <- qnorm(qq_df$quantile)</pre>
qq_df
## residual_std rank quantile
                                         qnorm
## 5 -0.61968092 5 0.34615385 -0.3957253
## 6 -0.30513604 6 0.42307692 -0.1940281
## 7 -0.11460998 7 0.50000000 0.0000000
## 8 -0.05960895 8 0.57692308 0.1940281

## 9 0.16379680 9 0.65384615 0.3957253

## 10 0.97001543 10 0.73076923 0.6151411

## 11 1.06118511 11 0.80769231 0.8694238

## 12 1.25730849 12 0.88461538 1.1983797
## 13 2.23205843 13 0.96153846 1.7688250
```

Plot the data to check normality

Normality Plot for Standardized Residuals

