ggplot2 ile Veri Görselleştirme : : REFERANS KAĞIDI

Temeller

ggplot2 grafiklerin dil bilgisi (grammar of graphics) prensiplerini temel alarak oluşturulmuştur. Bu prensiplere göre her grafik aynı parçalardan oluşturulabilir: bir veri seti, koordinat sistemi, ve "geom"lar - veri noktalarını temsil eden görsel işaretler.

Değerleri göstermek için, verideki değişkenleri ilgili geom'un parametrelerine (aes, estetikleri) atayın. Bu parametrelerin bazıları büyüklük (size), rénk (color), x ve y koordinatlarıdır.

Asağıdaki taslağı kullanarak bir grafik oluşturabilirsiniz.

ggplot(data = mpg, **aes(**x = cty, y = hwy**))** Katman ekleyerek bitirilmesi gereken bir grafiğin tabanını oluşturur. Her katman için bir geom fonksiyonu ekleyin.

qplot(x = cty, y = hwy, data = mpg, geom = "point")

Bir veri seti, geom ve parametre seti için tam teşekküllü bir grafik oluşturur. Çok sayıda faydalı varsayılan değer içerir.

last_plot() Son grafiği getirir

ggsave("plot.png", width = 5, height = 5) Son grafiği 5' x 5' boyutunda "plot.png" isimli bir dosya olarak çalışma klasörüne kaydeder. Dosya türünü, uzantısına (ör. png) göre

Geom

Veri noktalarının gösterimleri için bir geom fonksiyonu kullanın. Geom'un aes parametrelerini de değişken gösterimleri için kullanabilirsiniz. Her fonksiyon, grafiğe bir katman ekler.

BASIT GRAFIKLER

a <- ggplot(economics, aes(date, unemploy)) $b \leftarrow ggplot(seals, aes(x = long, y = lat))$

a + geom_blank() (Grafiğin sınırlarını genişletmek için faydalı.)

b + geom curve(aes(yend = lat + 1, xend=long+1,curvature=z)) - x, xend, y, yend, alpha, angle, color, curvature, linetype, size

a + geom_polygon(aes(group = group)**)** x, y, alpha, color, fill, group, linetype, size

a + geom_ribbon(aes(ymin=unemploy - 900, ymax=unemploy + 900)) - x, ymax, ymin, alpha, color, fill, group, linetype, size

CIZGI PARCALARI

ortak parametreler: x, y, alpha, color, linetype, size

b + geom_abline(aes(intercept=0, slope=1))
b + geom_hline(aes(yintercept = lat)) **b** + **geom vline**(aes(xintercept = long))

b + geom segment(aes(yend=lat+1, xend=long+1)) **b + geom spoke(**aes(angle = 1:1155, radius = 1))

TEK DEĞİŞKENLİ sürekli

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin")
x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian"**)** x, y, alpha, color, fill, group, linetype, size, weight

c + geom_dotplot() x, y, alpha, color, fill

c + geom_freqpoly() x, y, alpha, color, group,

c + geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight

kesikli d <- ggplot(mpg, aes(fl))</pre>

x, alpha, color, fill, linetype, size, weight

IKI DEĞİŞKENLİ

sürekli x . sürekli v e <- ggplot(mpg, aes(cty, hwy))

e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

e + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size

e + geom_quantile(), x, y, alpha, color, group, linetype, size, weight

e + geom_rug(sides = "bl"), x, y, alpha, color, **e + geom_smooth(**method = lm**)**, x, y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE), x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

kesikli x , sürekli v f <- ggplot(mpg, aes(class, hwy))

f + geom_col(), x, y, alpha, color, fill, group, linetype, size

f + geom_boxplot(), x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight f + geom_dotplot(binaxis = "y", stackdir = "center"), x, y, alpha, color, fill, group

f + geom_violin(scale = "area"**)**, x, y, alpha, color, fill, group, linetype, size, weight

kesikli x , kesikli v

g <- ggplot(diamonds, aes(cut, color))

g + geom_count(), x, y, alpha, color, fill, shape, size, strokě

sürekli iki değişkenli dağılım

h <- ggplot(diamonds, aes(carat, price))

h + geom_bin2d(binwidth = c(0.25, 500)) x, y, alpha, color, fill, linetype, size, weight

h + geom_density2d() x, y, alpha, colour, group, linetype, size

h + aeom hex()x, y, alpha, colour, fill, size

sürekli fonksivon

i <- ggplot(economics, aes(date, unemploy))

i + geom_area()
x, y, alpha, color, fill, linetype, size

i + geom_step(direction = "hv") x, y, alpha, color, group, linetype, size

hata değerlerini görsellestirmek

df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)j <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))</pre>

j + geom_crossbar(fatten = 2) x, y, ymax, ymin, alpha, color, fill, group, linetype, size

j + geom_errorbar(), x, ymax, ymin, alpha, color, group, linetype, size, width (also geom_errorbarh())

j + geom_linerange() x, ymin, ymax, alpha, color, group, linetype,

j + geom_pointrange() x, y, ymin, ymax, alpha, color, fill, group, linetype, shape, size

haritalar

data <- data.frame(murder = USArrests\$Murder, state = tolower(rownames(USArrests)))

map <- map data("state")

k <- ggplot(data, aes(fill = murder))

k + geom map(aes(map id = state), map = map) + expand limits(x = map\$long, y = map\$lat), map id, alpha, color, fill, linetype, size

ÜC DEĞİSKENLİ

seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)) I <- ggplot(seals, aes(long, lat))

I + geom contour(aes(z = z))x, y, z, alpha, colour, group, linetype,

I + geom_raster(aes(fill = z), hjust=0.5, vjust=0.5, interpolate=FALSE) x, y, alpha, fill

I + geom_tile(aes(fill = z)), x, y, alpha, color, fill, linetype, size, width

Katman oluşturmanın alternatif yolu. Bir stat grafik cizdirmek için yeni değiskenler kullanır. (ör., count, prop).

Bir istatistiği (ör. histogram), bir geom fonksiyonunun stat parametrešini değiştirerek geom_bar(stat="count") veya bir stat fonksiyonu kullanarak stat count(geom="bar") görselleştirebilirsiniz. Stat fonksiyonu geom fonksiyonuna denk bir katman oluşturur. Stat değişkenlerini aes parametrelerine atamak icin ..isim.. stilini kullanın.

c + stat_bin(binwidth = 1, origin = 10) x, y l ...count..., ..ncount..., ..density..., ..ndensity... c + stat_count(width = 1) x, y, | ...count..., ...prop... **c + stat_density(**adjust = 1, kernel = "gaussian"**) x, y,** l ...count.., ..density.., ..scaled..

e + stat_bin_2d(bins = 30, drop = T) x, y, fill T ...count.., ..density..

e + stat bin hex(bins=30) x, y, fill | ...count..., ..density.

e + stat_density_2d(contour = TRUE, n = 100) x, y, color, size | ...level..

e + stat ellipse(level = 0.95, segments = 51, type = "t")

I + stat_contour(aes(z = z)) x, y, z, order | ..level..

I + stat summary hex(aes(z = z); bins = 30; fun = max) **x**, **y**, **z**, **fill** I ..value..

 $I + stat_summary_2d(aes(z = z), bins = 30, fun = mean)$ x, v, z, fill | ..value..

f + stat_boxplot(coef = 1.5) x, y l ..lower.., ..middle.., ..upper.., ..width.., ..ymin.., ..ymax.. f + stat_ydensity(kernel = "gaussian", scale = "area") x, ..density.., ..scaled.., ..count.., ..n.., ..violinwidth.., ..widt

e + stat_ecdf(n = 40) x, y | ..x.., ..y..

e + stat_quantile(quantiles = c(0.1, 0.9), formula = y ~ log(x), method = "rq") x, y I ...quantile...

 $e + stat_smooth$ (method = "lm", formula = $y \sim x$, se=T, level=0.95) x, y l ..se.., ..x.., ..ymin.., ..ymax..

ggplot() + stat_function(aes(x = -3:3), n = 99, fun = dnorm, args = list(sd=0.5)) **x** linux...y..

e + stat_identity(na.rm = TRUE)

ggplot() + stat_qq(aes(sample=1:100), dist = qt, dparam=list(df=5)) sample, x, y ...sample.., ..theoretical..

e + stat_sum() x, y, size | ..n.., ..prop..

e + stat summary(fun.data = "mean cl boot")

h + stat_summary_bin(fun.y = "mean", geom = "bar")

e + stat unique()

Olcek (Scale)

Ölçekler (**scale**) veri değerlerinin görsel değerlerle ilişkilerini düzenler. Bir atamayı değiştirmek için yeni bir scale fonksiyonu kullanın.

GENEL AMAÇLI ÖLÇEKLER

Çoğu aes parametresine uygundur.

scale_*_continuous() - sürekli değerleri görsele atama

scale_*_discrete() - kesikli değerleri görsele atama

scale_*_identity() - veri değerlerini görsel değer yapma

scale_*_manual(values = c()) - kesikli değerleri elle seçili görsel değerlere atama

scale_*_date(date_labels = "%m/%d"), date_breaks = "2 weeks") - veri değerlerini tarih olarak kullanma.

scale_*_datetime() - veri x değerlerini tarih-zaman olarak atama. scale_x_date() ile aynı parametreleri kullanır. Etiket formatları için konsola ?strptime yazın.

X & Y KONUM ÖLÇEKLERİ

x ve y aes parametreleriyle kullanın (x örn. aşağıda)

scale_x_log10() - x değerleri log10 ölçeğinde scale_x_reverse() - x koordinatını ters yüz etme scale_x_sqrt() - x değerleri kare kök ölçeğinde

COLOR VE FILL ÖLCEKLERİ (KESİKLİ)

COLOR VE FILL ÖLÇEKLERİ (SÜREKLİ)

SHAPE VE SIZE ÖLCEKLERİ

p <- e + geom point(aes(shape = fl, size = cvl)) p + scale_shape() + scale_size() p + scale_shape_manual(values = c(3:7))

 $\Box \circ \triangle + \times \Diamond \neg \boxtimes * \oplus \circ \boxtimes \boxtimes \boxtimes \Box \circ \triangle \Diamond \circ \circ \circ \Box \Diamond \triangle \neg$

Koordinat Sistemleri

r <- d + geom_bar()

+ coord_cartesian(xlim = c(0, 5)) xlim, ylim Varsavılan değerdeki koordinat sistemi

r + coord_fixed(ratio = 1/2)

ratio, xiim, yiim x ve y birimleri arasındaki oranı sabitleyen koordinat sistemi

xlım, ylım Yan dönmüş kartezyen koordinatlar r + coord_polar(theta = "x", direction=1) theta, start, direction Kutupsal koordinatlar (daire grafiği)

r + coord trans(vtrans = "sart") trans, tyrans, limy, limy Dönüştürülmüş koordinatlar. xtrans ve ytrans parametrelerini özel fonksiyonlara atayabilirsiniz.

π + coord quickmap()

 π + coord_map(projection = "ortho", orientation=c(41, -74, 0))projection, orienztation, xlim, ylim mapproj paketindeki harita gösterimleri(mercator (varsayılan) azegualarea, lagrange, vs.)

Konum Düzenlemeleri

qeomların üst üste çakısmasını önlemek için yapılan konum (position) düzenlemeleri.

s + geom_bar(position = "dodge") Değerleri yan yana koyma.

s + geom_bar(position = "fill") Değerleri tepe tepeye koyup normalize etme.

e + geom_point(position = "jitter") X ve Y değerleriyle oynayarak noktaların üst üste çakışmasını engelleme

• A

e + geom_label(position = "nudge") Etiketleri noktalarla üst üste gelmesini engelleme.

s + geom_bar(position = "stack") Değerleri diğerlerinin tepesine koyma

Her pozisyon parametresi bir fonksiyon olarak çağırılabilir ve elle uzunluk ve genişlik parametreleri ayarlanabilir.

s + geom_bar(position = position_dodge(width = 1))

Temalar (Theme)

r + theme_bw() Beyaz arkaplan, ızgara çizgileri

karanlık tema

r + theme_classic() r + theme light()

r + theme linedraw() r + theme minimal() Minimal tema

r + theme void() Boş tema

Cephe(Facet)

Cepheler (facet) bir grafiği bir veya daha fazla kesikli değişkenin değerlerine göre alt grafiklere avırır.

t <- ggplot(mpg, aes(cty, hwy)) + geom_point()

t + facet_grid(. ~ fl) fl değişkenine göre sütunlara ayırma t + facet_grid(year ~ .) year değişkenine göre satırlara ayırma

t + facet_grid(year ~ fl)
year ve fl'ye göre hem satır hem sütuna ayırma

t + facet_wrap(~ fl)

cepheleri dikdörtgen düzeninde yerleştirme

Cephelerin genel koordinat limitleri için scales kullanın.

t + facet_grid(drv ~ fl, scales = "free") x ve y koordinat limitlerini ayrı ayrı ayarlayabilirsiniz "free_x" - x koordinatı limit ayarı "free_y" - y koordinatı limit ayarı

labeller parametresi ile cephe isimlerini verebilirsiniz.

t + facet grid(, ~ fl. labeller = label both) fl: c fl: d fl: e fl: p fl: r t + facet_grid(fl ~ ., labeller = label_bquote(alpha ^ .(fl))) $lpha^c$ $lpha^d$ $lpha^e$ $lpha^p$ $lpha^r$

t + facet_grid(. ~ fl, labeller = label_parsed) c de pr

Etiketler (label)

t + labs(x = "Yeni x doğrusu Etiketi", y = "Yeni y doğrusu etiketi". title ="Grafiğe başlık ekleme"

subtitle = "Ğrafiğe alt başlık ekleme" caption = "Grafiğe alt yazı ekle")

t + annotate(geom = "text", x = 8, y = 9, label = "A")

.ejant (Legend n + theme(legend.position = "bottom")

Place legend at "bottom", "top", "left", or "right" n + guides(fill = "none")

Set legend type for each aesthetic: colorbar, legend, or none (no legend)

n + scale_fill_discrete(name = "Title", labels = c("A", "B", "C", "D", "E")) Set legend title and labels with a scale function.

Zooming (Yakınlaştırma)

Without clipping (preferred)

t + coord cartesian($x\lim = c(0, 100), y\lim = c(10, 20)$

With clipping (removes unseen data points)

t + scale_x_continuous(limits = c(0, 100)) + scale_y_continuous(limits = c(0, 100))

