

Applied Micro Design Inc. / FCCID: 2AES2-1473PA-RM-400

Page: 1 of 30

EMC Test Report

Report Number: 1918EMC01 Revision Level: 0

Project Number: 1918 SGS Reference: 4011465

Client: Applied Micro Design Inc.

Equipment Under Test: 400 MHz Amplifier / LNA

Model Number: 1473PA-RMT

FCC Rule Parts: FCC Part 90.219

935210 D05 Indus Booster Basic Meas v01r01

Report issued on: 15 June 2016

Test Result: Compliant

Tested by:

Kent Stewart, Project Engineer

Reviewed by:

David Schramm, EMC/RF/SAR/HAC Manager

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or Testing done by SGS International Electrical Approvals in connection with distribution or use of the product described in this report must be approved by SGS international Electrical Approvals in writing.

Page: 2 of 30

TABLE OF CONTENTS

GENERAL INFORMATION	4
CLIENT INFORMATION	4
TEST LABORATORY	
GENERAL INFORMATION OF EUT	4
OPERATING MODES AND CONDITIONS	
MODIFICATIONS REQUIRED TO COMPLIANCE	4
EUT CONNECTION BLOCK DIAGRAM	
Test Equipment	6
AGC THRESHOLD	7
Test Result	7
TEST METHOD	7
Test Data	7
OUT-OF BAND REJECTION	8
INPUT-VERSUS-OUTPUT SIGNAL COMPARISON	9
TEST RESULT	9
Test Method	9
Test Data	9
INPUT/OUTPUT POWER AND AMPLIFIER/BOOSTER GAIN	16
TEST RESULT	16
TEST METHOD	16
Test Data	16
NOISE FIGURE MEASUREMENTS	17
Test Result	17
· · · · · · · · · · · · · · · · · · ·	18
TEST SITE	23
	CLIENT INFORMATION TEST LABORATORY GENERAL INFORMATION OF EUT OPERATING MODES AND CONDITIONS MODIFICATIONS REQUIRED TO COMPLIANCE EUT CONNECTION BLOCK DIAGRAM. SYSTEM CONFIGURATIONS CABLE LIST TEST EQUIPMENT AGC THRESHOLD. TEST RESULT TEST METHOD. TEST METHOD. TEST DATA. DUT-OF BAND REJECTION. TEST RESULT TEST METHOD. TEST DATA. NPUT/OUTPUT POWER AND AMPLIFIER/BOOSTER GAIN. TEST RESULT TEST METHOD. TEST DATA NOISE FIGURE MEASUREMENTS TEST RESULT TEST METHOD. TEST DATA NOISE FIGURE MEASUREMENTS TEST RESULT TEST METHOD. TEST DATA MEASURING OUT-OF-BAND/OUT-OF-BLOCK (INCLUDING INTERMODULATION) AND SPURIOUS SIONS. TEST RESULT TEST METHOD. TEST DATA - INTERMODULATION PRODUCTS

Page: 3 of 30

10 RF	EVISION HISTORY	30
9.6	TEST DATA	26
9.5	TEST SETUP PHOTOGRAPHS	24
9.4	TEST EQUIPMENT	23

Applied Micro Design Inc. / FCCID: 2AES2-1473PA-RM-400

Page: 4 of 30

1 General Information

1.1 Client Information

Name: Applied Micro Design Inc.

Address: 19516 Amaranth Drive City, State, Zip, Country: Germantown, MD, 20874

1.2 Test Laboratory

Name: SGS North America, Inc.

Address: 620 Old Peachtree Road NW, Suite 100

City, State, Zip, Country: Suwanee, GA 30024, USA

Environmental Conditions over duration of testing

Min Max

Temperature: 20.2 °C 23.9 °C Relative Humidity: 45.2 % 53.6 %

1.3 General Information of EUT

Type of Product: 400 MHz Amplifier / LNA

Model Number: 1473PA-RMT Serial Number: 0616-201

Rated Voltage: 120Vac, 60Hz Tested Voltage: 120Vac, 60Hz Sample Received Date: 07 July 2016

Dates of testing: 12 to 15 July 2016

1.4 Operating Modes and Conditions

A signal generator was connected to the RF In of the 1473PAFOT. This RF signal was converted internally to a fiber optic interface and the fiber optic cable was connected to the FO IN port of the 1473PA-RMT (EUT). The Amplifier RF OUT port of the 1473PA-RMT was connected to the spectrum analyzer through 30 dB of attenuation. The RF signal fed to the input of the system was amplified at the output of the system.

1.5 Modifications Required to Compliance

None

SGS North America Inc. | Consumer and Retail 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024 t (770) 570-1800 www.us.sgs.com/cts

Page: 5 of 30

1.6 EUT Connection Block Diagram

System Configurations 1.1

Device reference	Manufacturer	Description	Model Number	Serial Number
Α	Applied Micro Design	LNA amplifier	1473PA-RMT	0616-201
В	Applied Micro Design	Fiber Optic Transmitter	1473FOT	0716-501
С	Rohde & Schwarz	Signal Generator	CMW-500	Asset # 15002

1.2 Cable List

Cable reference	Port Name	Start	End	Cable Length (m)	Ferrite installed?	Shielded?
1	AC Input	EUT	Power source	1.75	No	No
2	Fiber optic cable	EUT	Fiber Optic Transmitter	10	No	No

SGS North America Inc. | Consumer and Retail | 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

Page: 6 of 30

Test Equipment 1.3

Test Date: 12-Jul-2016

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
NETWORK/SPECTRUM ANALYZER	ZVL	ROHDE & SCHWARZ	B079799	17-Feb-2017
SIGNAL GENERATOR	SMBV100A	ROHDE & SCHWARZ	15002	18-Aug-2016
10DB ATTENUATOR	BW-S10W20+	MCL	B095595	5-Aug-2016
ATTENUATOR	BW-S10W2	MINI-CIRCUITS	15032	CNR
ATTENUATOR	BW-S10W2	MINI-CIRCUITS	15034	CNR
MULTIFLEX COAXIAL CABLE	141	HUBER&SUHNER	B095588	4-Aug-2016
MULTIFLEX COAXIAL CABLE	141	HUBER&SUHNER	B095585	4-Aug-2016
SIGNAL ANALYZER	FSV30	ROHDE & SCHWARZ	B085749	8-Oct-2017
SIGNAL GENERATOR	SMB 100A	ROHDE & SCHWARZ	B094876	2-Dec-2016
POWER SPLITTER	50PD-645	JFW INDUSTRIES	B079787	5-Aug-2016
ENVIRONMENTAL CHAMBER	SM-16-8200	THERMOTRON	39066	5-Apr-2017

Note: The calibration period equipment is 1 year, except for the FSV30, which is on a 3 year cal cycle based on manufacturer's recommendation.

> Test Date: 15-Jul-2016 Tester: KS

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
EMI TEST RECEIVER	ESU40	ROHDE & SCHWARZ	B079629	4-Aug-2016
SIGNAL ANALYZER	FSV30	ROHDE & SCHWARZ	B085749	8-Oct-2017
ANTENNA, BILOG	JB6	SUNOL	B079689	11-Sep-2016
DRG HORN (MEDIUM)	3117	ETS-LINDGREN	B079699	26-Apr-2017
PREAMPLIFIER	TS-PR18	ROHDE & SCHWARZ	B094463	16-Feb-2017
RF CABLE	NFS-290-78.7-NFS	FLORIDA RF LABS	B095019	4-Aug-2016
RF CABLE	NMS-290-236.2-NMS	FLORIDA RF LABS	B095020	4-Aug-2016
17 FT N TYPE COAX CABLE	HS 84133232	HUBER&SUHNER	B079661	3-Aug-2016
ULTRAFLEX COAXIAL CABLE	LMR-240	MES MICROWAVE SYSTEM	B091046	4-Aug-2016

SGS North America Inc. | Consumer and Retail | 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

Applied Micro Design Inc. / FCCID: 2AES2-1473PA-RM-400

Page: 7 of 30

AGC Threshold

Test Result 2.1

Test Description	Basic Standards	Test Result
AGC Threshold	935210 D05 Indus Booster Basic Meas v01r01	Reported

Test Method 2.2

Testing was performed according to KDB 935210 D05 Indus Booster Basic Meas v01r01, Section 4.2

Test Data 2.3

Frequency, MHz	Input signal level, dBm	Power Output, dBm
460.3625	-24.3	19.32
478.2500	-24.6	18.76

SGS North America Inc. | Consumer and Retail | 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

Page: 8 of 30

3 Out-Of Band Rejection

Test Result 3.1

Test Description	Basic Standards	Test Result
Out-Of Band Rejection	935210 D05 Indus Booster Basic Meas v01r01	Reported

Test Method 3.2

Testing was performed according to KDB 935210 D05 Indus Booster Basic Meas v01r01, Section 4.3

Test Data 3.3

Date: 13.JUL.2016 06:19:13

SGS North America Inc. | Consumer and Retail | 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

Applied Micro Design Inc. / FCCID: 2AES2-1473PA-RM-400

Page: 9 of 30

4 Input-versus-output signal comparison

4.1 Test Result

Test Description	Basic Standards	Test Result
Input-versus-output signal	935210 D05 Indus Booster Basic	Pass
comparison	Meas v01r01	

4.2 Test Method

Testing was performed according to KDB 935210 D05 Indus Booster Basic Meas v01r01, Section 4.4

4.3 Test Data

Test data starts on the next page.

SGS North America Inc. | Consumer and Retail | 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024 | t (

t (770) 570-1800

Page: 10 of 30

16K0F3E at ACG 4.3.1

Normalized Overlay

Page: 11 of 30

4.3.2 16K0F3E at ACG Plus 3dB

Normalized Overlay

Page: 12 of 30

4.3.3 11K3F3E at ACG

Normalized Overlay

Page: 13 of 30

4.3.4 11K3F3E at ACG Plus 3dB

Normalized Overlay

SGS North America Inc. | Consumer and Retail | 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

Page: 14 of 30

4.3.5 **4K00F1E at ACG**

Normalized Overlay

SGS North America Inc. | Consumer and Retail | 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

Page: 15 of 30

4.3.6 4K00F1E at ACG Plus 3dB

Normalized Overlay

SGS North America Inc. | Consumer and Retail | 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

Applied Micro Design Inc. / FCCID: 2AES2-1473PA-RM-400

Page: 16 of 30

5 Input/output power and amplifier/booster gain

5.1 Test Result

Test Description	Basic Standards	Test Result
Input/output power and	935210 D05 Indus Booster Basic	Reported
amplifier/booster gain	Meas v01r01	Reported

5.2 Test Method

Testing was performed according to KDB 935210 D05 Indus Booster Basic Meas v01r01, Section 4.5

5.3 Test Data

Frequency, MHz	Input Level, dBm	Output Level, dBm	Gain
460.3625	-25.28	18.50	43.78
478.2500	-25.20	18.38	43.58

SGS North America Inc. | Consumer and Retail 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024 t (770) 570-1800

Applied Micro Design Inc. / FCCID: 2AES2-1473PA-RM-400

Page: 17 of 30

Noise figure measurements

Test Result 6.1

Test Description	Basic Standards	Test Result
Noise figure measurements	935210 D05 Indus Booster Basic Meas v01r01	Pass

Test Method 6.2

Testing was performed according to KDB 935210 D05 Indus Booster Basic Meas v01r01, Section 4.6.

Since a Noise figure analyzer was not available, an alternate method utilizing the definition of Noise Figure was utilized.

$$F_n = P_n / (kT_oBG)$$

Where:

F_n is the Noise Factor P_n is the power of the channel noise k is Boltzmann's constant 1.38E-23 J/K T₀ is 290k B is the channel bandwidth G is the gain of the amplifier.

$$NF = 10Log F_n$$

Where:

F_n is the Noise Factor NF is the Noise Figure

Test Data 6.3

NF	Pn, Watts	B (kHz)	Gain (dB)
1.2	1.57E-12	12.5	43.78

Applied Micro Design Inc. / FCCID: 2AES2-1473PA-RM-400

Page: 18 of 30

7 Measuring out-of-band/out-of-block (including intermodulation) and spurious emissions

Test Result 7.1

Test Description		Test Result
Measuring out-of-band/out-of- block (including intermodulation) and spurious emissions	935210 D05 Indus Booster Basic Meas v01r01	Pass

Test Method 7.2

Testing was performed according to KDB 935210 D05 Indus Booster Basic Meas v01r01, Section 4.7.

Test Data - Intermodulation products

Test data starts on the next page.

SGS North America Inc. | Consumer and Retail 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

Page: 19 of 30

Intermodulation products with rated input 7.3.1

Date: 14.JUL.2016 01:11:59

Page: 20 of 30

7.3.2 Intermodulation products with rated input increased by 3dB

Date: 14.JUL.2016 01:14:39

Page: 21 of 30

Test Data - Spurious Emissions 7.4

Date: 14.JUL.2016 01:25:40

Page: 22 of 30

Frequency stability measurements

Test Result 8.1

Test Description		Test Result
Frequency stability	935210 D05 Indus Booster Basic	Pass
measurements	Meas v01r01	F ass

Test Method 8.2

Testing was performed according to KDB 935210 D05 Indus Booster Basic Meas v01r01, Section 4.8

Test Data 8.3

Voltage	Voltage	Temp	Frequency	Freq Dev	Freq Dev
%	V	°C	MHz	Hz	ppm
100%	120.00	+20 (Ref)	470.0000000	+0	+0.00
100%	120.00	-30	470.0000000	+0	+0.00
100%	120.00	-20	470.0000000	+0	+0.00
100%	120.00	-10	470.0000000	+0	+0.00
100%	120.00	0	470.0000000	+0	+0.00
100%	120.00	+10	470.0000000	+0	+0.00
100%	120.00	+20	470.0000000	+0	+0.00
100%	120.00	+30	470.0000000	+0	+0.00
100%	120.00	+40	470.0000000	+0	+0.00
100%	120.00	+50	470.0000000	+0	+0.00
115%	138.00	+20	470.0000000	+0	+0.00
85%	102.00	+20	470.0000000	+0	+0.00

SGS North America Inc. | Consumer and Retail

620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

Applied Micro Design Inc. / FCCID: 2AES2-1473PA-RM-400

Page: 23 of 30

Spurious emissions radiated measurements

Test Result 9.1

Test Description		Test Result
Spurious emissions radiated	935210 D05 Indus Booster Basic	Pass
measurements	Meas v01r01	1 833

Test Method 9.2

Testing was performed according to KDB 935210 D05 Indus Booster Basic Meas v01r01, Section 4.9

Test Site 9.3

10m Absorber Lined Shielded Enclosure (ALSE), Suwanee, GA

Environmental Conditions

Temperature: 23.9 °C Relative Humidity: 50.4 %

Test Equipment 9.4

Test Date: 15-Jul-2016 Tester: KS

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
EMI TEST RECEIVER	ESU40	ROHDE & SCHWARZ	B079629	4-Aug-2016
SIGNAL ANALYZER	FSV30	ROHDE & SCHWARZ	B085749	8-Oct-2017
ANTENNA, BILOG	JB6	SUNOL	B079689	11-Sep-2016
DRG HORN (MEDIUM)	3117	ETS-LINDGREN	B079699	26-Apr-2017
PREAMPLIFIER	TS-PR18	ROHDE & SCHWARZ	B094463	16-Feb-2017
RF CABLE	NFS-290-78.7-NFS	FLORIDA RF LABS	B095019	4-Aug-2016
RF CABLE	NMS-290-236.2-NMS	FLORIDA RF LABS	B095020	4-Aug-2016
17 FT N TYPE COAX CABLE	HS 84133232	HUBER&SUHNER	B079661	3-Aug-2016
ULTRAFLEX COAXIAL CABLE	LMR-240	MES MICROWAVE SYSTEM	B091046	4-Aug-2016

Note: The calibration period equipment is 1 year.

Software:

"RE 30-1000MHz" TILE! profile dated 12 2015

"RE 1-18GHz" TILE! profile dated 12 2015

SGS North America Inc. | Consumer and Retail 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

Applied Micro Design Inc. / FCCID: 2AES2-1473PA-RM-400

Page: 24 of 30

Test Setup Photographs 9.5

Page: 25 of 30

Page: 26 of 30

Test Data 9.6

Vertical Radiated Emissions Plot (30-1000MHz)

Vertical Emissions Data

									-13dBm	
Frequency	Raw QP	Polarity	Azimuth	Height	AF	Loss	Amp	QP Value	Limit	Margin
MHz	(dBuV)	(V/H)	(degrees)	(cm)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
36.27	48.5	V	1.0	100.0	17.3	0.6	32.2	34.2	82.2	-48.0
137.31	56.3	V	323.0	119.0	13.5	1.2	33.6	37.4	82.2	-44.8
137.82	57.4	V	302.0	100.0	13.4	1.2	33.6	38.4	82.2	-43.8
138.31	57.5	V	316.0	100.0	13.4	1.2	33.6	38.5	82.2	-43.7
139.28	56.0	V	283.0	100.0	13.3	1.2	33.6	36.9	82.2	-45.3
QP Value = Le	evel + AF + CL	Amp								
Margin = QP \	/alue - Limit									

Page: 27 of 30

Horizontal Radiated Emissions Plot (30-1000MHz)

Horizontal Emissions Date

					<u> </u>					
									-13dBm	
Frequency	Raw QP	Polarity	Azimuth	Height	AF	Loss	Amp	QP Value	Limit	Margin
MHz	(dBuV)	(V/H)	(degrees)	(cm)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
121.23	55.4	Н	252.0	259.0	13.9	1.1	33.6	36.8	82.2	-45.4
145.07	52.3	Н	260.0	166.0	13.1	1.2	33.6	33.0	82.2	-49.2
150.47	50.0	Н	282.0	260.0	13.1	1.2	33.6	30.8	82.2	-51.4
470.46	37.7	Н	121.0	250.0	18.0	2.2	33.2	24.7	82.2	-57.5
940.00	62.5	Н	322.0	184.0	23.6	3.1	33.1	56.1	82.2	-26.1
QP Value = Le	evel + AF + Cl	Amp								
Margin = QP \	/alue - Limit									

Page: 28 of 30

Vertical Radiated Emissions Plot (1000-5000MHz)

Vertical Radiated Emissions Data (1000-5000MHz)

Frequency	Raw Avg	Polarity	Azimuth	Height	AF	CL	Amp	Avg Value	Limit	Margin
MHz	(dBuV)	(V/H)	(degrees)	(cm)	(dB/m)	(dB)	(dB)	dBuV/m	(dBuV/m)	(dB)
1167.60	26.2	V	222.0	228.0	27.9	2.3	33.1	24.5	82.2	-57.7
3333.20	28.6	V	10.0	341.0	32.8	4.0	33.2	34.4	82.2	-47.8
4670.80	25.8	V	137.0	333.0	34.6	4.9	33.4	34.9	82.2	-47.3
Avg Value = I	Level + AF + C	CL - Amp								
Margin = Avg	Value - Limit									

Page: 29 of 30

Horizontal Radiated Emissions Plot (1000-5000MHz)

Horizontal Radiated Emissions Data (1000-5000MHz)

									-13dBm	
Frequency	Raw Peak	Polarity	Azimuth	Height	AF	CL	Amp	Peak Value	Limit	Margin
MHz	(dBuV)	(V/H)	(degrees)	(cm)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
4549.60	37.7	Η	143.0	100.0	34.3	4.9	33.3	46.2	82.2	-36.0
Avg Value = I	Level + AF + C	CL - Amp								
Margin = Avg	Value - Limit									

Page: 30 of 30

10 Revision History

Revision Level	Description of changes	Revision Date
0	Initial release	15 July 2016

SGS North America Inc. | Consumer and Retail | 620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800