P2.13.

A thin rectangular plate $a=30\,\mathrm{mm}\times b=15\,\mathrm{mm}$ is acted upon by a stress distribution (Fig. 1) resulting in the uniforms strain $\varepsilon_x=400\,\mu$, $\varepsilon_y=200\,\mu$, and $\gamma_{xy}=-300\,\mu$. Determine the changes in length of diagonals \overline{QB} and \overline{AC} .

Figure 1: A thin rectangular plate

P2.16.

A $3 \text{ m} \times 2 \text{ m}$ thin rectangular plate is deformed by the movement of point B to B' as shown by the dashed lines in Fig. 2. Assuming a displacement field of the form $u = c_1 xy$ and $v = c_2 xy$ where c_1 and c_2 are constants, determine,

- (a) expressions for displacements u and v.
- (b) strain components ε_x , ε_y , and γ_{xy} at point B.
- (c) the normal strain $\varepsilon_{x'}$ in the direction of \overline{QB} .

Verify that the strain field is possible.

Figure 2: A thin rectangular plate

P2.22.

At a point in a stressed body, the strains, related to the coordinate set xyz, are given by Eqn. (1).

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_x & \frac{1}{2} \gamma_{xy} & \frac{1}{2} \gamma_{xz} \\ \frac{1}{2} \gamma_{yx} & \varepsilon_y & \frac{1}{2} \gamma_{yz} \\ \frac{1}{2} \gamma_{zx} & \frac{1}{2} \gamma_{zy} & \varepsilon_z \end{bmatrix} = \begin{bmatrix} 400 & 100 & 0 \\ 100 & 0 & -200 \\ 0 & -200 & 600 \end{bmatrix} \boldsymbol{\mu}$$
 (1)

Due: Oct. 5, 23:55 MST

Determine,

- (a) the strain invariants.
- (b) the normal strain in the x' direction, which is directed at an angle 30° from the x-axis.
- (c) the principal strains ε_1 , ε_2 , and ε_3 .
- (d) the maximum shear strain.

Due: Oct. 5, 23:55 MST

P2.27.

A 40 mm diameter bar ABC is composed of an aluminum part AB and a steel part BC as shown in Fig. 3. After axial force P is applied, a strain gage attached to the steel measures normal strain at the longitudinal direction as $\varepsilon_s = 600 \,\mu$. Determine,

- (a) the magnitude of the applied force P.
- (b) the total elongation of the bar if each material behaves elastically. Take $E_{\rm aluminum}=70\,{\rm GPa}$ and $E_{\rm steel}=210\,{\rm GPa}$.

Figure 3: A composite steel rod

P2.31.

A solid sphere of diameter d experiences a uniform pressure of p. Given: $d=250\,\mathrm{mm},\,p=160\,\mathrm{MPa},\,E=70\,\mathrm{GPa},\,\mathrm{and}\,\,\nu=0.3.$ Determine,

- (a) the decrease in circumference of the sphere.
- (b) the decrease in volume of the sphere ΔV .

Note: Volume of a sphere is $V = \frac{4}{3}\pi r^3$, where $r = \frac{d}{2}$.

P2.36.

A 50 mm square plate is subjected to the stresses as shown in Fig. 4. What deformation is experienced by diagonal \overline{BD} ? Determine the stress on planes perpendicular and parallel to \overline{BD} and then employ **generalized Hooke's law** [Eqn. (2)]. Express the solution in terms of E for v = 0.3.

$$\varepsilon_x = \frac{1}{E} \left[\sigma_x - \nu \left(\sigma_y + \sigma_z \right) \right]$$
 (2a)

Due: Oct. 5, 23:55 MST

$$\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu \left(\sigma_{x} + \sigma_{z} \right) \right]$$

$$\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu \left(\sigma_{x} + \sigma_{y} \right) \right]$$
(2b)
(2c)

$$\varepsilon_z = \frac{1}{F} \left[\sigma_z - \nu \left(\sigma_x + \sigma_y \right) \right] \tag{2c}$$