Measure Theory

Floris van Doorn

University of Pittsburgh

January 4, 2021

Measure Theory in Lean

Measure theory in Lean currently contains 10k lines of code + 2k lines of comments (slightly less than 4% of mathlib).

Some highlights:

- Yury Kudryashov: FTC-1, Jensen's inequality, ...
- Benjamin Davidson: FTC-2 (as of 12 hours ago)
- ullet Rémy Degenne: L^p -spaces and Hölder's inequality.
- Markus Himmel: Borel-Cantelli lemma (one direction)
- Martin Zinkevich: working towards the Radon–Nikodym theorem
- Sebastien Gouezel: refactor of the Bochner integral
- Me: Haar Measure, Fubini's Theorem

Much of the original library was built by Johannes Hölzl, Mario Carneiro and Zhouhang Zhou.

Refresher on Measure Theory

Definition

A σ -algebra Σ on X is a collection of subsets of X that contains the empty set, is closed under complement and countable unions.

Definition

If Σ is a σ -algebra on X, then a measure on Σ is a function $\mu: \Sigma \to [0, \infty]$ such that $\mu(\varnothing) = 0$ and μ is *countably additive*: For pairwise disjoint sets $\{A_i\}_i$ we have

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\mu(A_i).$$

Definition

An outer measure on X is a monotone function $m: \mathcal{P}(X) \to [0, \infty]$ such that $m(\emptyset) = 0$ and m is countably subadditive: for any sets $\{A_i\}_i$ we have

$$m\left(\bigcup_{i\in\mathbb{N}}^{\infty}A_i\right)\leq\sum_{i\in\mathbb{N}}m(A_i).$$

Design Decisions

- A σ -algebra on a type X is given by the typeclass [measurable_space X].
- We define a measure as an outer measure with two extra properties:
 - It is countably additive on measurable sets
 - For a (non-measurable) set s

$$\mu(s) = \prod_{\substack{s \subseteq t \\ t \text{ measurable}}} \mu(t)$$

This means that we can nicely evaluate a measure on any set, not just measurable ones.

You can talk about measures by either having
 example {α} [measurable_space α] (μ : measure α) or
 example {α} [measure_space α].
 In the second case, the measure is called volume. All results about arbitrary measures are written using the first option.

Lebesgue integral

The library contains two integrals.

Definition

If $g:X\to [0,\infty]$ is a simple function (a function with finite range), we can define

$$\int g d\mu = \int g(x) \mu(dx) = \sum_{y \in g(X)} \mu(g^{-1}{y}) \cdot y.$$

If $f: X \to [0, \infty]$ is any function, we can define the (lower) Lebesgue integral of f as the supremum of $\int g \, \mu(\mathrm{d}x)$ for all simple $g \le f$ (pointwise).

Bochner integral

Definition

If E is a (second-countable) Banach space then we call a function $f: X \to E$ (μ -)integrable if

$$\int \|f\| \, \mathrm{d}\mu < \infty$$

Definition

We define $L^1(X, E; \mu)$ to be the μ -integrable functions $f: X \to E$ modulo a.e. equality. So $f \sim g$ iff $\mu\{x \mid f(x) \neq g(x)\} = 0$.

Definition

The Bochner integral $\int f d\mu \in E$ is defined first for simple L^1 functions.

The simple functions are dense $L^1(X, E; \mu)$, so we can continuously extend it to all integrable functions.

Product measures

Definition

A measure μ on X is σ -finite if X can be covered by a countable collection of measurable sets $\{A_i\}_i$ such that $\mu(A_i) < \infty$.

If μ is a σ -finite measure on X and ν a σ -finite measure on Y then we can define the product measure $\mu \times \nu$ on $X \times Y$. It can be defined as

$$(\mu \times \nu)(A) = \int_X \nu\{y \mid (x,y) \in A\} \, \mu(\mathrm{d}x).$$

Product measures

Definition

A measure μ on X is σ -finite if X can be covered by a countable collection of measurable sets $\{A_i\}_i$ such that $\mu(A_i) < \infty$.

If μ is a σ -finite measure on X and ν a σ -finite measure on Y then we can define the product measure $\mu \times \nu$ on $X \times Y$. It can be defined as

$$(\mu \times \nu)(A) = \int_X \nu\{y \mid (x,y) \in A\} \, \mu(\mathrm{d}x).$$

Fun fact: using the Giry monad, it can be defined as

$$\mu \times \nu = \text{do } x \leftarrow \mu,$$

 $y \leftarrow \nu,$
return $(x, y).$

Tonelli's theorem

Theorem (Tonelli's theorem)

Let $f: X \times Y \to [0, \infty]$ be a measurable function (i.e. the preimage of measurable sets under f are measurable).

Then

$$\int_{X\times Y} f\operatorname{d}(\mu\times\nu) = \int_X \int_Y f(x,y)\,\nu(\mathrm{d}y)\mu(\mathrm{d}x) = \int_Y \int_X f(x,y)\,\mu(\mathrm{d}x)\nu(\mathrm{d}y),$$

and all the functions in the integrals above are measurable.

Fubini's theorem

Theorem (Fubini's theorem for the Bochner integral)

Let E be a second-countable Banach space and $f: X \times Y \to E$ be an integrable function (i.e. $\int_{X \times Y} \|f\| \mathrm{d}(\mu \times \nu) < \infty$).

Then

$$\int_{X\times Y} f\operatorname{d}(\mu\times\nu) = \int_X \int_Y f(x,y)\,\nu(\mathrm{d}y)\mu(\mathrm{d}x) = \int_Y \int_X f(x,y)\,\mu(\mathrm{d}x)\nu(\mathrm{d}y),$$

Moreover, all the functions in the integrals above are measurable.

Remark. $f: X \times Y \rightarrow E$ is integrable iff the following two conditions hold:

- for almost all $x \in X$ the function $y \mapsto f(x, y)$ is integrable;
- The function $x \mapsto \int_{V} \|f(x,y)\| \, \nu(\mathrm{d}y)$ is integrable.

Remarks

- I followed Isabelle's formalization for some key lemmas in the proof of Fubini's theorem.
- Since yesterday we can take finite products of measures.
- The following two induction principles are useful:
 - **1** To show a property P for all measurable functions $X \to [0, \infty]$ it is sufficient to show it for $c \cdot \chi_A$, and that the property is closed under addition and countable monotone supremum.
 - ② To show a property P for all integrable functions $X \to E$ it is sufficient to show it for $c \cdot \chi_A$, that the property is closed under addition and a.e.-equality and that $\{f \in L^1(X, E; \mu) \mid P(f)\}$ is a closed set.

Regular measures

Definition

A measure μ is regular if the following properties hold.

- if K is compact then $\mu(K) < \infty$;
- ullet μ is outer regular: if A is measurable, then

$$\mu(A) = \inf_{U \supseteq A \text{ open}} \mu(U);$$

ullet μ is inner regular: if U is open, then

$$\mu(U) = \sup_{K \subseteq U \text{ compact}} \mu(K).$$

Invariant measures

Definition

A topological group is a group $(G,\cdot,^{-1})$ that is also a topological space such that the multiplication $\cdot: G \times G \to G$ and inversion $^{-1}: G \to G$ are continuous.

Definition

A (left) invariant measure on a topological group G (equipped with the Borel σ -algebra) is a measure μ such that for all $g \in G$ and all measurable A we have

$$\mu(gA) = \mu(A).$$

Here $qA = \{qh \mid h \in A\}.$

Haar measure

Theorem

Given a locally compact^a Hausdorff^b topological group G. Then there is a nonzero left invariant regular measure μ on G, called the (left) Haar measure on G. Moreover, if ν is another left Haar measure on G, then ν is a multiple of μ .

Example: $(\mathbb{R},+)$ is a locally compact Hausdorff group, and the Haar measure of \mathbb{R} is (a multiple of) the Lebesgue measure λ , which is the unique measure with the property that $\lambda([a,b]) = b-a$ for all a and b.

^aevery point has a compact neighborhood

bevery pair of distinct points has a pair of disjoint neighborhoods

Proof sketch (existence)

- If K is compact and U is open, we can cover K with finitely many left-translates gU for $g \in G$. Define (K : U) to be the least number of left-translates needed.
- Fix any compact set K_0 with non-empty interior. We can approximate the Haar measure of K by $h_U(K) = (K:U)/(K_0:U)$.
- Let h(K) be the "limit" of this quotient as U becomes a smaller and smaller open neighborhoods of 1.1
- ullet We can now define the Haar measure on open sets U as

$$\mu(U) = \sup_{K \subseteq U \text{ compact}} h(K).$$

We can extend it to all measurable sets A by

$$\mu(A) = \inf_{U \supseteq A \text{ open}} \mu(U).$$

¹The technical details involve infinite products and Tychonoff's theorem.

Uniqueness

ullet If μ is left invariant, then for each y we have

$$\int_G f(yx)\mu(\mathrm{d}x) = \int_G f(x)\mu(\mathrm{d}x).$$

- Uniqueness can be proven by computing a certain double integral in a smart way, and using Tonelli's theorem to swap the order of integration.
- It is almost sorry-free[™].

Future work

Some important future directions:

- Using Haar measure we can start on abstract harmonic analysis, Pontryagin duality, and representation theory of locally compact groups.
- Multivariate calculus: Green's theorem and Stokes' theorem.
- Complex calculus: Cauchy's integral formula.

Thank You