

The Basis Set LCAO

Core Concept:

Place basis functions centered on atomic nuclei

Important Features:

- Basis set overlap depends implicitly on interatomic distance
- Can be used periodic and non-periodic
- Number of basis functions depends on
 - Number of atoms
 - Number of electrons

Slater-type orbitals (STO)

Inspired by hydrogen-like solutions

Distance decay

$$\phi = Y_{l,m} \times r^{n-1} e^{-\zeta r}$$

Spherical harmonics

Advantages:

Highest accuracy / basis function

Disadvantages:

No analytical integrals

Gaussian-type orbitals (GTO)

Angular Distribution

Distance decay

Advantages:

Analytical integrals

Disadvantages:

- \triangleright No "cusp" at r = 0
- > Falls off too quickly

http://blog.atoms.eu/quantenchemie-1-atomorbital/

STO Approximation with GTOs

By using multiple Gaussian functions

Distance [a.u.]

These basis functions (contracted orbitals), consisting of the gaussian functions (primitve functions), are then used, whereby the parameters c_n and ς_n stay fixed.

Hierarchy:

- Single zeta: Only one basis function per orbital
- Double zeta: Two basis functions per orbital
- Triple zeta: Three basis functions per orbital
- **-**

In practise, it is sufficient to multiply only the valence orbitals → Split-valence basis sets

Only "natural" orbitals are insufficient

Add higher angular momentum ("polarization functions)

6-31G*

Especially important for correlated methods

> Angular correlation

Angular correlation: Electrons are preferrably found at opposite sides of the nucleus

Weakly bonded electrons require special functions with small ζ

Diffuse Functions

Important for anions and excited states or if properties depend primarily on least bound electrons, e.g. polarizability.

Common problem: Linear dependence of basis set

Pople-type Basis sets:

$$6-31+G*$$

Dunning-Type-basis sets:

Karlsruhe basis sets:

Different basis sets pursue different strategies. All are designed to give good relative energies, but not absolute energies.

Never compare energies across different basis sets!

Other LCAO basis set types

Correlation consistent:

Recover comparable amount of static correlation

Polarization consistent:

Recover comparable amount of dynamic correlation

F₁₂ basis sets:

Not localized on nucleus, but depend excplicitely on interatomic distance

Limitations of LCAO

- Basis set incompleteness error: Atom-centered are centered on atoms do not form a complete basis!
- Basis set superposition error: Esp. for small basis sets, functions on one moiety can "help" describing the wave-function on another moiety
 → Quality of basis set depends on geometry

$$\Delta E_{bind} = E(AB) - (E(A) + E(B))$$

$$\Delta \textbf{E overestimated}$$

Impact of BSSE

Spuriously favors compact structures with large wave-function overlap (e.g. 3D > 2D clusters)

Mathis Gruber, Georg Heimel, Lorenz Romaner, Jean-Luc Brédas, and Egbert Zojer, Phys. Rev. B 77, 165411

Counterpoise Correction: "Ghost Atoms"

Calculate energy of monomer a and b in the presence of wave-functions both monomers (ab)

$$\Delta E^{CP} = E(A)_{ab} + E(B)_{ab} - E(A)_a - E(B)_b$$
$$\Delta E^{CP}_{bind} = \Delta E_{Bind} - \Delta E^{CP}$$

Counterpoise correction is only an estimate, and neither an upper nor a lower limit

Counterpoise correction is large for

- correlated methods
- small basis sets

Integration Grids

In analogy to BSSE, numerical affects occur when the integration grid is atom-centered

Particularly problematic when calculating vibrations ("moving grid problem")

Basis Set Extrapolation

Concept: Use ever better basis

6-31G(d,p) 6-311G(2d,2p) 6-311G++(3df,3pd) ...

Problems:

- Larger basis set guarantees better energy, but not better "property"
- Unclear which function should be added next ("unbalanced" basis sets)

Solution:

> Specifically designed, hierarchic basis sets (e.g. correlation consistent)

Basis Set Extrapolation

cc-pVNZ: correlation consistent basis set with N split valence functions

Energy convergence for HF / DFT : $E(N) \approx E(CBS) + Ae^{-B\sqrt{(N)}}$

Extrapolation requires 2 or 3 points (but DZ gives poor results) Only analysis, should always be done!

Mind the remaining errors!

(Vibrations, frozen core for correlation methods, Born-Oppenheimer, relativistic, ...)

Composite Extrapolation Schemes

- > Select geometry (fixed)
- Estimate Hartree-Fock limit energy
- Estimate electron correlation limit energy
- > Add energy from translation/rotation/vibration

Gaussian-n Models

Empirical Model with Pople-Type Basis sets

- ➤ Optimize Geometry @ B3LYP / 6-31G**
- > Vibrations @ B3LYP / 6-31G**, scale with 0.9854
- Calculate HF limit with exponential extrapolation from aug-cc-pVQZ / aug-cc-pV5Z
- Calculate energy with CCSD(T)/6-31G*
- Calculate energy for MP4/6-31G**
- Add empirical correction