Section 3.1: The Knapsack Problem

Krapsack

Input:

Knapsack with a capacity $B \in \mathbb{Z}^+$

Items $T = \{1, 2, ..., n\}$

Item i has size $s_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{Z}^+$

Objective:

Find a set of items with total size < B and largest possible total value

Greedy alg.

Consider items in order of decreasing 5/0 ratio

Does not have any constant approximation Jactor: Ex:

$$\frac{1}{|\mathcal{S}_{1}|} = \frac{|\mathcal{S}_{2}|}{|\mathcal{S}_{2}|} = \frac{|\mathcal{S}_{2}|}{|\mathcal{S}_{2}|} = \frac{1}{|\mathcal{S}_{1}|} = \frac{1}{|\mathcal{S}_{1}|} = \frac{1}{|\mathcal{S}_{2}|} = \frac{1}{|\mathcal{S}_{1}|} = \frac{1}{|\mathcal{S}_{1}|} = \frac{1}{|\mathcal{S}_{2}|} = \frac{1}{|\mathcal{S}_{$$

Dynamic prz alg:

So,i: smallest possible total size of a subset of 11,...,if with total value v, i.e.,

<B

$$S_{0,i} = \min_{\mathbb{I} \leq \{1,...,i\}} \left\{ \sum_{j \in \mathbb{I}} S_j \mid \sum_{j \in \mathbb{I}} U_j = 0 \right\}$$

 $\underline{\mathsf{Ex}}$:

How to fill the table

If
$$i=0$$
 and $1 \le v \le V_{total}$

$$S_{v,i} = \infty$$
Otherwise,
$$S_{v,i} = \begin{cases} S_{v,i-1}, & \text{if } 0 \le v < v_i \\ \text{min } \int S_{v,i-1}, & \text{So-vi}, i-1 + S_i \end{cases}, & \text{if } v \geqslant v_i \end{cases}$$
best solution best solution without item i with item i

Not necessary to fill in the 00-extries (A[i] corresponds to column:):

Alg 3.1:

A[i]
$$\leftarrow \{(0,0), (s_1, v_1)\}$$

For $i \leftarrow 2$ to n
 $A[i] \leftarrow A[i-1]$
For each $(s,v) \in A$ prev
 $1 \mid s+s_i \in B$
 $A[i] \leftarrow A[i] \cup \{(s+s_i, v+v_i)\}$
Remove dominated pairs from $A[i]$
Return $\max_{(s,v) \in A[n]} \{v\}$

$$A[1] = \{ (0,0), (3,\lambda) \}$$

$$A[2] = A[1] \cup \{ (1,3), (4,5) \}$$

$$= \{ (0,0), (1,3), (3,\lambda), (4,5) \}$$

$$A[3] = A[2] \cup \{ (2,\lambda), (3,5), (5,4) \}$$

$$= \{ (0,0), (1,3), (2,\lambda), (3,\lambda), (3,5), (4,5), (5,4) \}$$

$$dominated$$
by

Analysis

Running time: O(n. Vtotal)

Input size: $O(\log B + n(\log M + \log S))$, where $M = \max_{1 \le i \le n} \{v_i\}$ and $S = \max_{1 \le i \le n} \{s_i\}$.

Poly. time?

Ex: Consider a family of instances where $V_{total} = 2^n$ and $B_1S \leq 2^n$. Then Running time $T(n) \in \Omega(n \cdot 2^n)$ and Input size $S(n) \in O(n^2)$ $\Rightarrow T(n) \in \Omega((S(n))^{c \vee n})$

No

But if the numeric part of the input (i.e., B, v_i , s_i) were written in unary, the input size would be $\Theta(B+V_{total}+S_{total})$, and the running time would be poly. in the input size. Hence, the running time is pseudopolynomial.

Note if Vtotal is poly. in n for all possible input instances, the dyn. prg. alg. is poly. Leading to the following idea...

Idea for approximation algorithm:

Round values st. there are only a poly. number of (equidistant) values:

- · Choose a value je
- · Round down each item value to the nearest multiple of u
- · Do dyn. prg. on the rounded values

How to choose u?

· Approximation:

When rounding, each item losses a value of less than μ . Hence, the value of any solution is charged by less than $n\mu$.

Thus, if we want a precision of ε , $\mu = \frac{\varepsilon N}{n}$

will do, since then $n\mu = EM \leq E \cdot OPT$. (We will add more detail to this argument in the proof of Thrn 3.5.)

· Running time:

$$n \cdot \frac{\sqrt{\text{total}}}{\mu} \leq n \cdot \frac{nM}{\mu} = n \cdot nM \cdot \frac{n}{\epsilon M} = \frac{1}{\epsilon} \cdot n^{s}$$

Since each rounded value is a multiple of μ , we might as well scale by a factor of $\frac{1}{\mu}$ s.t. the possible values will be $1,2,...,\lfloor \frac{V_{total}}{\mu} \rfloor$ instead of μ , 2μ ,..., $\lfloor \frac{V_{total}}{\mu} \rfloor \mu$:

Alg 3.2

$$M \leftarrow \max_{1 \neq i \neq n} \sigma_i$$

$$\mu = \frac{\varepsilon M}{n}$$

$$\text{for } i \leftarrow 1 \text{ to } n$$

$$\sigma_i' \leftarrow \lfloor \frac{\upsilon_i}{\mu} \rfloor$$

Oo dyn. prg. with values v_i^* (and sizes s_i^*)

Theorem 3.5

Alg. 3.2 is a $(1-\varepsilon)$ -approx. alg. with a running time poly. in both input size and $\frac{1}{\varepsilon}$

Proof:							
Approximat	ian ratio:		n	•		Λ Λ	7
tor ead	h item i nearest	μ_{i}	equals	i G	randia	d down) (ok
Thus.	$v_{i} - \mu v_{i}$	< u (e	ach. it	u. en lo:	ses" le	ss than	7
u in	the rou	nding.)) (aka
,		0 /					
			U; d			oì	

Let A be the set of items selected by Alg. 3.2

This is an optimal solution to the instance with values vi', and hence, to the instance with values $\mu v_i'$.

with values $\mu\nu_i^2$.
Let 0 be the set of items in an optimal solution to the original instance with values ν_i^2 .

The total value produced by Alg. 3.2 is

$$\sum_{i \in A} \sigma_{i} \geqslant \sum_{i \in A} \mu \sigma_{i}', \quad \text{by (4)}$$

$$\geqslant \sum_{i \in O} \mu \sigma_{i}', \quad \text{by (44)}$$

$$\geqslant \sum_{i \in O} (\sigma_{i} - \mu), \quad \text{by (44)}$$

$$\geqslant \left(\sum_{i \in O} \sigma_{i}\right) - n\mu, \quad \text{since |O| } \leq n$$

$$= OPT - n \cdot \frac{\epsilon H}{n}$$

$$= OPT - \epsilon H$$

$$\geqslant (1-\epsilon) OPT, \quad \text{since OPT } \geqslant H$$

Running time;

 $O(\frac{1}{\varepsilon} \cdot n^s)$ as proven above.

According to Thm 3.5, Alg. 3.2 is a fully polynomial time approximation scheme (FPTAS) also poly. in input Family dA_{E} of alg., where A_{E} poly. Size has precision E. in E ((1-E)-approx. alg for max. problems, (1+E)-approx. alg for min. problems)

Thus, Thm 3.5 could also be stated like this:

Theorem 3.5: Alg 3.2 is a FPTAS

Multiple Knapsack problem: Fixed #knapsacks
Bin Packing can be seen as a dual version of
Multiple Knapsack.

Bin Packing

Input: n items with sizes between 0 and 1.

Objective: Pack items in bins of size 1,

using as few bins as possible.

Simple approximation algorithms:

Alg.	Running time	Asymp. approx. Jactor
Next-Fit	O(n)	2
First-Fit	O(nlogn)	1.7
Best-Fit	— h —	-11-
Next-Fit-Decreasing	—— n——	≈ 1.69
First-Fit-Decreasing		1.2
Best-Fit-Decreasing	—— II ———	—- N

Approximation schune?

Can we do the same kind of rounding for Bin Packing as we did for Knapsack?

No:

Assume that each item size is rounded up to the nearest multiple of μ , for some $0<\mu<1$. (We need to round up to ensure the packing will be valid.)

Let a = max{ku| k \in Z \ ku \ \frac{1}{4}.

Thun, $\frac{1}{2} - \mu < \alpha \leq \frac{1}{2}$.

Assume $\mu < \frac{1}{6}$. (An approx. Scheme should work for any $\mu > 0$.) Thun, $\frac{1}{3} < \alpha \leq \frac{1}{2}$.

- Consider an input consisting of \cdot m items of size $a-1/2 \rightarrow randed$ up to $a>\frac{1}{3}$
- · m items of size $|-\alpha+\mu/2|$

For this instance, the items fit pairwise in m bins, but for the rounded instance, $m + \frac{m}{2}$ bins are needed.

This would yield an approx. Jactor of at least 3/2.