

A.Y. 2022-2023

Course: Sustainable Energy Prof. Giampaolo Manfrida

Ing. Alessia Manfredi

Candidates: Gradi Pietro, Hosen Farid, Nardomarino Valerio

Site structure ●

Tools |

Teleport | •

Teleport

Directory of files

Input data in HTML ●

```
<form class="home-form" method="POST" action="/results">
  <div class="home-container02">
    <span class="home-text003">
      Enter below what you eat in a typical week
    </span>
 </div>
 <div class="home-container03">
    <div class="home-container04">
      <h1 class="home-text004">Protein</h1>
      <div class="home-container05">
        <span class="home-text005">
          <span>Beef</span>
          <br />
          <span class="home-text008">(beef herd)</span>
          <br />
        </span>
        <input
          type="text"
          placeholder="[g/week]"
          class="home-textinput input"
         name="beef herd"
```

```
@app.route('/')
def home():
    if os.path.isfile('output.csv'):
        os.remove('output.csv')
    return render template('index.html')
@app.route('/home')
def home1():
    return render template('index.html')
@app.route('/results', methods = ['POST', 'GET'])
def result():
    if request.method == 'POST':
          dati_html=request.form
   return render_template('results.html',output= output)
```


Output data to HTML •

```
<span class="results-text09">Total amount:</span>
<span class="results-text10">{{output[0]}}</span>
<span class="results-text11">[kgCO2/day]</span>
```


Pythonanywhere •

A.Y. 2022-2023

Course: Sustainable Energy Prof. Giampaolo Manfrida

Ing. Alessia Manfredi

Candidates: Gradi Pietro, Hosen Farid, Nardomarino Valerio

General approach: LCA ●

| TES Environmental issues of home appliances |

Carbon footprint of an average italian family

Function	Parameter	Value	Sources
Cooking food	Meals per year per person	200 pasta, 200 tomato sauce, 200 vegetables, 200 omelettes	Favi et al. (2018)
Heating food	Meals per year per person	60 chilled meals, 60 frozen meals, 60 home- made meals	Landi et al. (2019)
Making coffee	Number of cups per year per person	300	Brommer et al. (2011)
	Coffee mass per cup	7 g	Brommer et al. (2011)
	Cup volume	0.125 1	Brommer et al. (2011)
Heating tea	Number of cups per year per person	365	Considering 1 couple per day per person
	Cup volume	0.25 1	Gallego-Schmid et al. (2018b)
Washing dishes	Uses per year per person	280	European Commission (2010)
Watching television	Use per year on-mode	1342 + 7419 (stand-by) hours/year	Austin et al. (2015)
Reading	Number of new books acquired per year per family	18	Moberg et al. (2010)
	Annual use per person of e-reader	182.5 h/year	Moberg et al. (2010)
	Number of e-readers per family	3	Assumption
Personal	Uses per year per person	300	Piroozfar et al. (2016)
cleaning	Time per shower	7 min	Piroozfar et al. (2016)
	Water temperature	37 °C (hot), 15 °C (cold)	Piroozfar et al. (2016)
	Uses per year per person of bathtub (in alternative to shower)	300	Equal to shower
	Bathtub volume 100 l Assumption	Assumption	
Washing clothes	Uses per year	80.6 (IT), 85.5 (DE), 72.8 (FR)	Average between Schmitz and Stamminger (2014) and Presutto et al. (2007)
Domestic cleaning	Uses per year	0.57 h/m ² year	European Commission (2013)
Using car	Annual distance	12000 km/year	Gallego-Schmid et al. (2016)
Using scooter	Annual distance	2270 km/year	Lesteven and Leurent (2016)

FU: an average family of 3 people living in a 100 m^2 house

Home appliances carbon footprint breakdown

Environmental assessment of domestic boilers: A comparison of condensing and traditional technology using life cycle assessment methodology Giuseppe Vignali
Comparative life cycle assessment of electric and gas ovens in the Italian context: An environmental and technical evaluation Daniele Landi, Andrea Consolini, Michele Germani, Claudio Favi
Life Cycle Assessment of Electronics Otto Andersen John Hille Geoffrey Gilpin Anders S. G. Andrae
Assessing domestic environmental impacts through LCA using data from the scientific literature Christian Spreafico, Davide Russo

The importance of the energy grid mix

Home appliances: results

Refrigerator			0,14kg CO2/day
Food cooking	5		0,05048kg CO2/meal
Coffee			0,05953kg CO2/cup
Oven			0,7091kg CO2/meal
Washing machine		0,6283kg CO2/cycle	
Shower			0,6057kg CO2/shower
	North	Insulated	2,995kg CO2/day
		Not insulated	6,795kg CO2/day
Heating	Center	Insulated	2,393kg CO2/day
Heating		Not insulated	5,37kg CO2/day
	South	Insulated	1,556kg CO2/day
		Not insulated	2,63kg CO2/day
Laptop			100kg CO2/device
Mobile phone		120kg CO2/device	

Environmental tips •

- Use very efficient appliances
- Use smart control
- Increase the share of consumption from renewables

Carbon footprint in textiles •

Textiles carbon footprint breakdown

The carbon footprint of textiles, Norbert Jungmichel, Systain Consulting
Life Cycle Assessment of Four Different Sweaters, Sarah Nolimal, Dr. Christie Klimas
Haode Evaluating the Life-cycle Environmental Impacts of Polyester Sports T-shirts, Wu Zequan
Shanghai American School, Shanghai, 201200, China

Textiles: results •

Long shirt (cotton)	10,75 kgCO2/product
Sweat jacket(cotton)	13,42kgCO2/product
Jacket for kid (acrylic)	13,67kgCO2/product
Sweater (wool)	13,12kgCO2/product
Polyester shirt	81,62kgCO2/product
Jeans	90,37kgCO2/product

A.Y. 2022-2023

Course: Sustainable Energy Prof. Giampaolo Manfrida

Ing. Alessia Manfredi

Candidates: Gradi Pietro, Hosen Farid, Nardomarino Valerio

LCA Structure of Automobiles

^{*}System Boundary: Entire LC of the Vehicle

^{*}Source: LCA of Automotive sector, Author: Francesco Del Pero, M. delogu, Marco, University of Florence, Italy

Carbon Footprint of Automobiles

*FU: 150000 KM, *System Boundary: Entire LC of the Vehicle

^{*}Source: LCA of Automotive sector, Author: Francesco Del Pero, M. delogu, Marco, University of Florence, Italy

TES Italy & UK Comparison

^{*}FU: 150000 KM, *System Boundary: Entire LC of the Vehicle

^{*}Source: LCA of Automotive sector, Unifi, Florence, Italy.

^{*}Source: Automotive sustainability report archive. 2000-2017, Durham University UK, Author: A. Giampieria, J. Ling-Chinb, Z. Mah

□ES ICEV & BEV Process Comparison

■ Production ■ Use-Energy production ■ Use-Operation emissions ■ EoL

*FU: 150000 KM, *System Boundary: Entire LC of the Vehicle

^{*}Source: LCA of Automotive sector, Author: Francesco Del Pero, M. delogu, Marco, University of Florence, Italy

GWP of three Vehicles Mode

*FU: 150000 KM, *System Boundary: Entire LC of the Vehicle (BoL, MoL, EoL)

^{*}Source: LCA of environmental impact in European context, *Author: Emiliano Pipitone, Salvatore & Leonardo, University of Palermo, 90128 Palermo, Italy*

TES Carbon Footprint Travel Guide

Carbon footprint of travel per kilometer, 2018

The carbon footprint of travel is measured in grams of carbon dioxide-equivalents¹ per passenger kilometer. This includes the impact of increased warming from aviation emissions at altitude.

Source: UK Department for Business, Energy & Industrial Strategy. Greenhouse gas reporting: conversion factors 2019.

Note: Data is based on official conversion factors used in UK reporting. These factors may vary slightly depending on the country, and assumed occupancy of public transport such as buses and trains.

OurWorldInData.org/transport • CC BY

<u>-5</u> CF Guide on Food via Supply Chain

Note: Greenhouse gas emissions are given as global average values based on data across 38,700 commercially viable farms in 119 countries.

Data source: Poore and Nemecek (2018). Reducing food's environmental impacts through producers and consumers. Science. Images sourced from the Noun Project.

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the author Hannah Ritchie.

TES Pasta CF Variation in Packaging

^{*}Source: LCA of Cradle-to-grave carbon footprint of dried organic pasta, Author: Alessio Cimini, Matteo Cibelli and Mauro Moresi, Supported by the Italian Ministry of Instruction, University and Research.
*LP better than SP, here data SP. 0.5 kg pp bags is more environment friendly than others.

Impactful Mitigation Strategies

Mitigation strategy	CF_{CG} (kg CO_{2e} kg $^{-1}$)
Reference case	1.807
Eco-sustainable cooking procedure	1.283
Organic rotation cropping system	1.056
Thermal energy from biogas	0.923
Photovoltaic electric energy	0.767
Pasta rail transport	0.731
Pasta shipping transport	0.720
Regional distribution of pasta	0.695
Local supply of durum wheat	0.675

^{*}Effect of the sequential mitigation strategies used to minimize the cradle-to-grave carbon footprint (CFCG), as referred to the production of 1 kg of dry organic pasta packed in 0.5 kg PP bags in the large-sized pasta factory accounted for. The sequential stepwise procedure started from the most impactful parameter.

^{*}Source: LCA of Cradle-to-grave carbon footprint of dried organic pasta, Author: Alessio Cimini, Matteo Cibelli and Mauro Moresi, Supported by the Italian Ministry of Instruction, University and Research.

Cooking Modes of Pasta

- > Electric cooking is more environment friendly.
- > No Smoke.
- > Less emission.

^{*}Source: RENEW (Technology for sustainable future magazine), Author: Rory Anderson

Conclusions and Future Developments

Data issues

- Only secondary data were collected
- Data came from different countries and world regions
- The FU was not well defined in every study

Future development

- Direct involvement of manufacturers
- Using the app to make customized environmental tips
- Make the app more user friendly

Developed Web Link

http://pietrogradu.pythonanywhere.com/home