Cours de Génétique L3

François Bretagnolle

Email: francois.bretagnolle@u-bourgogne.fr

Plan

- Introduction à la génétique: Quelques rappels
- 1 Évolution des génomes: Les mutations
- 2 Quelques notions de biotechnologies et outils de génétique moléculaire
- 3 Génomique structurale: Structure du génome eucaryote
- · 4 Quelques notions de génomique évolutive

Introduction: Quelques rappels

Mendel: le concept de gènes et les lois de transmission des caractères

Les trois lois de Mendel sur la transmission des caractères au fil des générations

La révolution mendélienne

Caractères héréditaires = Entités discrètes transmises indépendamment les unes des autres

Êtres vivants : mosaïques de caractères à transmission indépendante

Moins d'un siècle sépare Mendel et l'ADN

Génétique

"Science qui étudie les mystères de l'hérédité et les variations"

(William Bateson, 1906)

Branche de la biologie qui s'intéresse à l'hérédité et à la variation héréditaire

Théorie chromosomique de l'hérédité

Sutton (1903) et Boveri (1904)

Chromosomes: Support des gènes Emplacement exact d'un gène sur le chromosome: Locus du gène

Thomas Morgan, Alfred Sturtevant, Calvin Bridges, Herman Muller

Les liaisons génétiques et la première carte

chromosomique

La nature chimique du gène est l'ADN

Avery, McLeod & McCarty (1944)

La structure de l'ADN est une double hélice de brins complémentaires

James Watson & Francis Crick (1953)

Désoxyribonucléotidetriphosphate dNTP

Ponts hydrogènes

presque

Deux molécules d'ADN identiques en séquence = 2 chromosomes homologues

Chromosome 21: 46,9 Mb

La succession des 47 millions de bases est (presque) identique entre les deux homologues

ETHAN HAWKE UMA THURMAN

Transcription de l'ADN et code

GATTACA

Le dogme central de la génétique moléculaire

Code génétique standard

Dha		Son	1161	T	11411	Com	LICH
Phe	UUU	Ser	UCU	Tyr	UAU	Cys	UGU
	UUC		UCC		UAC		UGC
Leu	UUA		UCA	Stop	UAA	Stop	UGA
	UUG		UCG	Stop	UAG	Trp	UGG
Leu	CUU	Pro	CCU	His	CAU	Arg	CGU
	CUC		CCC		CAC		CGC
	CUA		CCA	Gln	CAA		CGA
	CUG		CCG		CAG		CGG
Ile	AUU	Thr	ACU	Asn	AAU	Ser	AGU
	AUC		ACC		AAC		AGC
	AUA		ACA	Lys	AAA	Arg	AGA
Met	AUG		ACG		AAG		AGG
Val	GUU	Ala	GCU	Asp	GAU	Gly	GGU
	GUC		GCC		GAC		GGC
	GUA		GCA	Glu	GAA		GGA
	GUG		GCG		GAG		GGG

L'expression du gène : de l'ADN au phénotype

Le cas de la drépanocytose (anémie falciforme)

Deux chaînes a-globine et deux chaînes β -globine

B-globine normale

ADN

$$\cdots\cdots\cdots T-G-A \quad G-G-A \quad C-T-C \quad C-T-C\cdots\cdots\cdots$$

ARNm

a.a.

B-globine mutante

ADN

ARNm

a.a.

Homozygote mutant : drépanocytose

Molécule d'hémoglobine avec β -globine* : Capable de transporter O_2

Capacité à s'associer en longues fibres : étirent le globule en

faucille

Blocage de la circulation dans les capillaires, fragilité des globules : réduction du n^{bre} et anémie

Population atteinte de l'anémie falciforme en Afrique

25 % de la population en Afrique centrale est porteuse du trait drépanocytaire, 15 à 20% en Afrique de l'ouest; 10 à 12 % dans les DOM antillais; 1 à 15% selon les régions méditerranéennes

Autrefois : anomalie génétique létale (100 000 morts / an)

80% des homozygotes HbS/HbS mourraient avant l'âge de la reproduction

Pourquoi dans certaines populations humaines la fréquence de Hb5 > 10% ??

Répartition de la population porteuse du parasite du paludisme

l'hétérozygote Hb/HbS résiste mieux au paludisme!

A l'ère de l'ADN recombinant et de la génomique

1970 : Découverte des enzymes de restriction chez les bactéries

On peut couper l'ADN de manière spécifique en petits fragments

Polymérase: Le clonage (multiplication) en grand nombre devient possible (PCR)

Une technologie de l'ADN de plus en plus performante

Séquençage des génomes (projet génome humain, 1990)

2001 : Projet génome humain (subvention publique) + projet privé de séquençage (Celera Corporation)

96% des segments génomiques porteurs de gènes

Accélération des projets de séquençages

Émergence de la génomique

Analyser les séquences pour étudier la structure, la fonction et l'évolution des gènes et des génomes

Nouvelle génération de séquenceurs : des millions de paires de bases séquencées en un seul run

Nouveaux enjeux: séquençage de génomes de centaines d'individus

Importance croissante des biotechnologies

De réels problèmes de société

OGM, brevetage du vivant, clonage, thérapies géniques...etc

La technologie génétique avance bcp + vite que les lois, les débats publics et les règles sociales

Le génome

Ensemble des molécules d'ADN présent dans une cellule

Génome

Terme crée en 1920 : Ensemble des gènes contenu dans un organisme

Jeu complet d'ADN d'un organisme

Souvent plusieurs molécules ADN: Chromosomes (noyau)

Mitochondries et chloroplaste : Un ADN $(ADN_m \text{ et } ADN_c)$

Définition moléculaire du gène

La séquence d'acides nucléiques entière qui est nécessaire à la synthèse d'un polypeptide fonctionnel ou d'un ARN

Génome humain: 3 milliards de bases

Séquence en caractères 10:7500 km

Peut être stocké sur un seul CD-Rom

Biologiquement codé: tient facilement dans une cellule

Génomique

Étude des génomes : Caractérisation moléculaire de génomes complets

Génomique structurale

Génomique fonctelle

Génomique comparative (évolutive)

Génomique structurale

Caractérise la nature physique des génomes entiers (séquence et identification)

Intègre cartographie physique et génétique ainsi que séquençage des génomes

Génomique structurale

Organisation des séquences

Localisation des loci sur les chromosomes

Cartes chromosomiques à haute résolution

Séquençage de génomes

Utilisation des cartes génomiques pour analyse génétique

Génomique fonctionnelle

Protéome et mode d'expression des gènes (régulation)

Comprendre l'expression du génome en fonction des stades de dév[†] et de l'en[†]

Quels gènes sont activés (switch on) ou désactivés (off)?

TGT AAT AGT TAT ATT TTC
ATT ATA AAT TGT GTT TGT
AGA CAT CAT AAA TTT AAA
ACA TGG CTT TTT AAC CTG
ATA AAT CCT ACG AAT ATT
TGT AAT AGT TAT GTT ATT
GCA GTA AGT ACC GTT TGT
ATT ATA AAT TGT GTT CTG

TGT AAT AGT TAT ATT TTC
ATT ATA AAT TGT GTT TGT
AGA CAT CAT AAA TTT AAA
ACA TGG CTT TTT AAC CTG
ATA AAT CCT ACG AAT ATT
TGT AAT AGT TAT GTT ATT
GCA GTA AGT ACC GTT TGT
ATT ATA AAT TGT GTT CTG

Young Moo Lee, 2000

Génomique comparative

Comparaison de séquence et évolution des génomes

Les informations obtenues sur un organisme peuvent avoir des applications sur d'autres organismes

Exemples: relations synténiques

5' Notion de Séquence d'ADN

3'-T-G-G-A-T-C-A-5' 5'-A-C-C-T-A-G-T-3'

> Séquence ACCTAGT

Taille d'une séquence

La taille d'une séquence peut s'exprimer:

· En nombre de bases

- ➤ Milliers de bases → Kilobases kb
- ➤ Millions de bases → Megabases Mb
- ➤ Milliards de bases → Gigabases Gb
- En paires de bases $\rightarrow pb$

Séquençage de génomes entiers

- Déterminer la séquence nucléotidique de l'ADN total présent dans chaque ¢ d'un organisme
- Pb : Taille et richesse en séquences répétées ↑ difficulté
- Virus, bactéries: Petits génomes et pas de séquences répétées
- Virus: 3 000 à 150 000 pb
- · Bactéries : qqs millions pb (Mb)

Eucaryotes

- · Paramécie: 100 Mb
- · Mammifères: 2 à 3 milliards pb (Gb)
- Homme: 3 000 Mb (Gb)
- · Eucaryotes : Grande taille des génomes
- · Eucaryotes: très nombreuses séquences répétées

Février 2005

- Virus : > 1000 séquencés
- · Archaebactéries : près de 20 souches
- Bactéries : > 125 souches et espèces
- · Eucaryotes: 21 espèces

```
Saccharomyces cerevisiae (levure)
Neurospora crassa (ascomycète) - ébauche
Caenhorabditis elegans (ver nématode)
Drosophila melanogaster (mouche du vinaigre)
Anopheles gambiae (moustique) - ébauche
Takifugu rubripes (fugu: poisson-ballon - ébauche)
Mus musculus (souris)
Homo sapiens (nous...)
Plasmodium falciparum (paludisme)
Arabidopsis thaliana,
Oriza sativa (ébauches)
```

Complete Published Genome Projects Feb., 2007

Archaeal 35

Bacterial 421

Eukaryal 47

Organelle 1089

Phage 346

Plasmid 480

Viroid 39

Virus 1260

Nature des gènes

· Région d'ADN transcrite en ARN

Structure des gènes

- Gène eucaryote → Région centrale transcrite (région codante)
- Séquences régulatrices → Expression du gène et son rythme

Gènes eucaryotes (exons & introns)

Pléiotropie

Quelques personnages célèbres

Paganini

Rachmaninov

Amenophis IV

Lincoln

Quels liens entre ces personnages?

Syndrome de Marfan: Aspects phénotypiques

Scoliose

Grande taille

Disfonctionnement des valves cardiaques

Doigts allongés Problèmes de rétine

Degrés variables de sévérité du syndrome!!

Syndrome de Marfan

Plusieurs caractéristiques phénotypiques

Origine?

Désordre du tissu connectif → Anomalie de distribution des fibres élastiques du connectif

Tissu connectif

Un tissu fondamental!!

Flexibilité et déformabilité des tissus dynamiques d'un organisme

aisseaux sanguins

Fibrilline-1 → Protéine majeure des µfibrilles

Protéine EGF (Epidermal Growth Factor) riche en cystéine (14% des a.a.)

43 sites d'accrochages Ca⁺⁺

Cystéines + sites d'accrochages Ca⁺⁺ → Agrégation et élasticité

Tissu connectif

Chromosom 15

Gène de la Fibrilline-1 → Gène FBN1

FBN1→ Chromosome 15

Gène = 110 kb avec 65 exons, transcrit de 10 kb

Le syndrome de Marfan est lié à des mutations sur le gène FBN1

1ère mutation identifiée en 1991

Transversion $G \rightarrow C$ au nucléotide 716

Pro→Arg au codon 239

Depuis, des centaines de mutations \neq identifiées (substitution, délétion)

Syndrome de Marfan

De caractères

multiples

touchés

phénotypiques

Relation pléïotropique

La relation entre gène et phénotype peut être plurivalente

Pléiotropie

Un gène affecte plusieurs caractères

Mutations pléiotropiques

Une mutation qui affecte plusieurs caractères différents

Pourquoi des degrés variables de sévérité du syndrome ??

Des centaines de mutations \(\neq \) identifiées

Chaque mutation = 1 allèle =

Chaque mutation → Conséquence ± importante sur la fonctionnalité de la protéine

Bcp de substitutions synonymes

Bcp de mutations sur introns

Délétions

Bcp de substitutions non-synonymes

Substitutions non-sens

Des hétérozygotes → Dominance incomplète

I - Les Mutations

Mutations: source de la variabilité génétique

Fondement de la sélection naturelle

A l'origine des lésions génétiques

Les mutations permettent l'analyse génétique

Mutation

Une altération de la séquence d'ADN

Peut impliquer de grandes régions d'un ou de plusieurs chromosomes

Peut concerner que qqs nucléotides sur n'importe quelle zone de la molécule d'ADN

Toutes les séquences sont mutables

Une mutation peut avoir un phénotype si elle touche :

une séquence codante

une séquence régulatrice (promoteur, enhancer...)

une séquence d'épissage ou de polyadénylation

Deux grandes catégories de mutations

(1) Mutations géniques (mutations ponctuelles): Changement dans la séquence

(2) Mutations chromosomiques: Changements mutationnels: Chromosomes entiers ou des morceaux de chromosomes

Les mutations peuvent affecter les ¢ somatiques ou les ¢ germinales

¢ somatiques → mort ¢, dysfonc^{ment}, tumeurs

¢ germinales → héréditaires