June 9, 2016

Algorithm 1 Gram-Schmidt algorithm

Input: A basis $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_n]$ of a full-rank lattice $L \subset \mathbb{R}^m$.

Output: The GSO B* of B

- 1: **for** i = 1 to n **do**
- 2: $\mathbf{b}_i^{\star} \leftarrow \mathbf{b}_i$
- 3: **for** j = 1 to i 1 **do**
- 4: $\mathbf{b}_{i}^{\star} \leftarrow \mathbf{b}_{i}^{\star} \frac{\langle \mathbf{b}_{i}^{\star}, \mathbf{b}_{j}^{\star} \rangle}{\|\mathbf{b}_{j}^{\star}\|^{2}} \cdot \mathbf{b}_{j}^{\star}$
- 5: return $\mathbf{B}^{\star} = [\mathbf{b}_1^{\star}, \dots, \mathbf{b}_n^{\star}]$

Algorithm 2 Round'off algorithm

Input: A basis **B** of a full-rank lattice $L \subset \mathbb{R}^n$, a target point $\mathbf{t} \in \mathbb{R}^n$.

Output: A decomposition $\mathbf{t} = \mathbf{v} + \mathbf{f}$ where $\mathbf{v} \in L$ and $\mathbf{w} \in \mathcal{P}(\mathbf{B})$

- 1: $\mathbf{x} \leftarrow \mathbf{B}^{-1}\mathbf{t}$
- $2: \mathbf{y} \leftarrow (|x_1|, \dots, |x_n|)$
- 3: $\mathbf{v} \leftarrow \mathbf{B}\mathbf{y}$
- 4: f = t v
- 5: return (\mathbf{v}, \mathbf{f})

Algorithm 3 Nearest Plane Algorithm

Input: A basis **B** of a full-rank lattice $L \subset \mathbb{R}^n$, its GSO \mathbf{B}^* , and a target point $\mathbf{t} \in \mathbb{R}^n$.

Output: A decomposition $\mathbf{t} = (\mathbf{v} + \mathbf{f})$ where $\mathbf{v} \in L$ and $\mathbf{w} \in \mathcal{P}(\mathbf{B}^*)$

- 1: $\mathbf{f} \leftarrow \mathbf{t}$
- 2: $\mathbf{v} \leftarrow \mathbf{0}$
- 3: for i = n downto 1 do
- 4: $y \leftarrow \langle \mathbf{t}, \mathbf{b}_i^{\star} \rangle / \|\mathbf{b}_i^{\star}\|^2$
- 5: $z_i = |y|$
- 6: $\mathbf{f} \leftarrow \mathbf{f} z_i \mathbf{b}_i$
- 7: $\mathbf{v} \leftarrow \mathbf{v} + z_i \mathbf{b}_i$
- 8: return (\mathbf{v}, \mathbf{f})