- 1. For each given relation $R_i \subseteq M_i^2$, determine whether it is reflexive, irreflexive, coreflexive, symmetric, antisymmetric, asymmetric, transitive, antitransitive, semiconnex, connex, left/right Euclidean, dense. Provide a counterexample for each non-complying property (e.g., "transitivity does not hold for x, y, z = (3, 1, 2)"). Organize your answer in a table (e.g., columns—relations, rows—properties).
 - (a) $M_1 = \mathbb{R}$ $x R_1 y \leftrightarrow |x - y| \le 1$
 - (b) $M_2 = \mathcal{P}(\{a, b, c\})$ $R_2 = \text{``}\subseteq\text{''}$

- (c) $M_3 = \{a, b, c, d\}$ $||R_3|| = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
- (d) $M_4 = \{\text{"rock", "scissors", "paper"}\}\$ $R_4 = \{\langle x, y \rangle \mid x \text{ beats } y\}$
- 2. Prove (rigorously) or disprove (by providing a counterexample) the following statements about arbitrary homogeneous relations $R \subseteq M^2$ and $S \subseteq M^2$:
 - (a) If R and S are *reflexive*, then $R \cap S$ is so.
- (d) If R and S are *reflexive*, then $R \cup S$ is so.
- (b) If R and S are *symmetric*, then $R \cap S$ is so.
- (e) If R and S are *symmetric*, then $R \cup S$ is so.
- (c) If R and S are *transitive*, then $R \cap S$ is so.
- (f) If R and S are transitive, then $R \cup S$ is so.
- 3. An equinumerosity relation *R* over sets is defined as follows: $A R B \leftrightarrow |A| = |B|$.
 - (a) Show that *R* is an equivalence relation.
 - (b) Find the quotient set of $\mathcal{P}(\{a, b, c, d\})$ by R.
- 4. Let R_{θ} be a relation of θ -similarity of finite non-empty sets defined as follows: a set A is said to be θ -similar to B iff the Jaccard index \square Jac(A, B) for these sets is at least θ , i.e. A R_{θ} $B \leftrightarrow$ Jac $(A, B) \ge \theta$. Obviously, $\theta \in [0, 1] \subseteq \mathbb{R}$.
 - (a) Draw the graph of a relation $R_{\theta} \subseteq \{A_i\}^2$, where $\theta = 0.25$, $A_1 = \{1, 2, 5, 6\}$, $A_2 = \{2, 3, 4, 5, 7, 9\}$, $A_3 = \{1, 4, 5, 6\}$, $A_4 = \{3, 7, 9\}$, $A_5 = \{1, 5, 6, 8, 9\}$.
 - (b) Determine whether θ -similarity is a tolerance relation.
 - (c) Determine whether θ -similarity is an equivalence relation.
- 5. Let $H = \{1, 2, 4, 5, 10, 12, 20\}$. Consider a divisibility relation $R \subseteq H^2$ defined as follows: $xRy \leftrightarrow y : x$.
 - (a) Sort R (as a set of pairs) lexicographically¹.
 - (b) Show that *R* is a partial order.
 - (c) Determine whether *R* is a linear (total) order.
 - (d) Draw the Hasse diagram for a *graded poset* $\langle H, R, \rho \rangle$, where $\rho : H \to \mathbb{N}_0$ is a grading function which maps a number $n \in H$ to the sum of all exponents appearing in its prime factorization, e.g., $\rho(20) = \rho(2^2 \cdot 5^1) = 2 + 1 = 3$, so the number 20 would have the 3rd rank (bottom-up).
 - (e) Find the minimal, minimum (least), maximal and maximum (greatest) elements in the poset $\langle H, R \rangle$. If there are multiple or none, explain why.
 - (f) Perform a topological sort of the poset $\langle H, R \rangle$.
- 6. Prove that the transitive closure R^+ is in fact transitive.

Definition. $R^+ = \bigcup_{n \in \mathbb{N}^+} R^n$ is a transitive closure of $R \subseteq M^2$, where

- * $R^{k+1} = R^k \circ R$ is a compositional (functional) power²,
- $* R^{1} = R$
- * $S \circ R = \{\langle x, y \rangle \mid \exists z : (x R z) \land (z S y)\}$ is a composition (relative product) of relations R and S.

¹ Lexicographic order for pairs: $\langle a, b \rangle \leq \langle a', b' \rangle \leftrightarrow (a < a') \lor ((a = a') \land (b \leq b'))$

² Note: this *is not a Cartesian power*, despite of the same notation R^n . Another possible notation for compositional power is $R^{\circ n}$, but it is too wild to use it here.