Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.11.29

Key words: Projective Plane, Resolvable Design, Affine Plane

Recall.

- (1) A (v, k, λ) design (X, \mathcal{D}) : $|X| = v, \mathcal{D} \subset {X \choose k}$ such that $\forall \{x, y\} \subset X$, $\{x, y\}$ appears in exactly λ blocks. r: replication number. $\Rightarrow r(k-1) = \lambda(v-1), \ bk = vr, \ b = |\mathcal{D}| = \frac{\lambda v(v-1)}{k(k-1)} \geqslant v.$
- (2) A (v, k, λ) difference set D. $(G, \{a + D : a \in G\})$ is a (v, k, λ) design.
- (3) Finite linear space (X, \mathcal{L}) : $\mathcal{L} \subseteq 2^X$; $\forall L \in \mathcal{L}, |L| \geqslant 2$ such that $\forall \{x,y\} \subset X$ determine exactly one line. $|\mathcal{L}| \geqslant 2 \Rightarrow |\mathcal{L}| \geqslant |X|$. Equality holds \iff Every two lines intersect in exactly one point.

Projective Plane (PG(q))

Definition. A projective plane of order $q \ge 1$ is a finite linear space with $q^2 + q + 1$ points, and each line has q + 1 points.

Remark. A projective plane of order q, denoted by PG(q), is a $(q^2 + q + 1, q + 1, 1)$ symmetric design. \nearrow

hometric design.
$$C_{3}^{2} = 2 + 2 + 1$$

$$C_{3}^{2} = 2 + 2 + 1$$

$$C_{3}^{2} = 2 + 2 + 1$$

事实上,线和上地企相同,例以 圣校.

Example.

(1) q = 1:

(2) q = 2: Fano plane, (7, 3, 1) design:

Proposition. In PG(q):

- (1) Any point lies on q + 1 lines.
- (2) There are in total $q^2 + q + 1$ lines.
- (3) Any two lines meet in a unique point.

Construction of PG(q) for prime power $q \ge 2$.

Consider \mathbb{F}_q^3 : 3-dim vector space over \mathbb{F}_q . $V = \{(x_0, x_1, x_2) \in \mathbb{F}_q^3 \ \& \ (x_0, x_1, x_2) \neq (0, 0, 0)\}$, then $|V| = q^3 - 1$.

- (1) **points:** $[x_0, x_1, x_2] := \{(cx_0, cx_1, cx_2) : c \in \mathbb{F}_q \setminus \{0\}\}$. So there are $\frac{|V|}{q-1} = \frac{q^3-1}{q-1} = q^2+q+1$ points.
- (2) **lines:** $L(a_0, a_1, a_2)$, where $(a_0, a_1, a_2) \in V$, is defined to be the set of points $[x_0, x_1, x_2]$ for which $a_0x_0 + a_1x_1 + a_2x_2 = 0$. There are $q^2 1$ solutions to this equation, so there are $\frac{q^2 1}{q 1} = q + 1$ points in line $L(a_0, a_1, a_2)$.
- (3) CHECK any two points lie on a unique line: i.e. $\forall [x_0, x_1, x_2] \neq [y_0, y_1, y_2], \exists ! L(a_0, a_1, a_2)$ such that

$$\begin{cases} a_0x_0 + a_1x_1 + a_2x_2 = 0 \\ a_0y_0 + a_1y_1 + a_2y_2 = 0 \end{cases}.$$

Since $\begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \end{bmatrix}$ has rank 2, the solution space has dimension 1, i.e. \exists ! line $L(a_0, a_1, a_2)$ containing both $[x_0, x_1, x_2]$ and $[y_0, y_1, y_2]$.

Remark. $\forall q \geqslant 2$: prime power, $\exists (q^2 + q + 1, q + 1, 1)$ design: PG(q).

Conjecture (open). If q is not a prime power, $\exists PG(q)$?

Resolvable Design

Definition. (X, \mathcal{D}) is a (v, k, λ) design, r: replication number. A parallel class is a set of blocks from \mathcal{D} such that they partition X. (\Rightarrow Each parallel class has $\frac{v}{k}$ blocks.)

A partition of \mathcal{D} into r parallel classes is called a resolution.

A design is said to be resolvable if it has a resolution.

Problem 1 (Kirkman's schoolgirl problem).

15 girls in a school walk out 3 abreast for 7 days in succession. Is it possible to arrange them daily so that no two shall walk twice abreast?

Solution. \Leftrightarrow Find (15, 3, 1) resolvable design.

Known results:

- (1) $\exists (v,3,1)$ design for $v \equiv 1,3 \pmod{6}$: Steiner Triple System (STS)
- (2) $\exists (v, 3, 1)$ resolvable design for $v \equiv 3 \pmod{6}$: Kirkman Triple System (KTS)

Example. KTS (9,3,1)

Problem 2. A football league of 2n teams. Is it possible to arrange a schedule such that they play in 2n-1 days, and on each day every team plays one match?

Solution. The answer is a resolvable (2n, 2, 1) design (X, \mathcal{D}) .

Let
$$X = \{*\} \cup [2n-1]$$
, $\mathcal{D} = {X \choose 2}$, $\mathcal{D} = \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{2n-1}$ where $\mathcal{D}_i := \{\{i, *\}\} \cup \{\{a, b\} : a + b \equiv 2i \pmod{2n-1}\}$ for $i \in [2n-1]$.

- (1) $\forall a \neq b \in X : \text{If } a = *, \text{ then } \{a, b\} \in \mathcal{D}_b. \text{ If } a \neq *, b \neq *, \text{ then } \exists ! \ i \in [2n-1] \text{ s.t. } a+b \equiv 2i \pmod{2n-1}, \text{ i.e. } \exists ! \mathcal{D}_i \text{ s.t. } \{a, b\} \in \mathcal{D}_i. \Longrightarrow \mathcal{D} = \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{2n-1} \text{ is a partition.}$
- (2) Given $i \in [2n-1]$, CHECK \mathcal{D}_i is a parallel class. $\forall a \in X$: If a = *, then the unique block in D_i containing a is $\{i, *\}$. If $a \neq *$, then $\exists ! \ b \ \text{s.t.} \ a + b \equiv 2i \pmod{2n-1}$, i.e. the unique block in D_i containing a is $\{a, b\}$.

Affine Plane AG(q)

Definition. Affine plane AG(q) is a finite linear space such that all lines form a $(q^2, q, 1)$ design.

Remark. For
$$AG(q)$$
, we have: $r = \frac{q^2 - 1}{q - 1} = q + 1$, $b = \frac{vr}{k} = q^2 + q$.

Construction of AG(q) from PG(q).

Construction 1.

 (X, \mathcal{L}) : PG(q). Then $|X| = q^2 + q + 1$, $|\mathcal{L}| = q^2 + q + 1$, |L| = q + 1. Fix $L_0 \in \mathcal{L}$. Let $X' = X \setminus \{L_0\}$, $\mathcal{L}' = \{L \setminus L_0 : L \in \mathcal{L}, L \neq L_0\}$. Then it's easy to see that (X', \mathcal{L}') is AG(q).

Next, we show resolvability. $\forall x \in L_0$, let $\mathcal{L}_x = \{L \setminus \{x\} : L_0 \neq L \in \mathcal{L}, x \in L\}$. Then \mathcal{L}_x is a parallel class. Since in PG(q), every $L \neq L_0$ intersects L_0 in exactly one point, we know that $\bigcup_{x \in L_0} \mathcal{L}_x$ is a partition of \mathcal{L}' .

Construction 2.

 $q \geqslant 2$: prime power. Consider \mathbb{F}_q .

Let $X = \mathbb{F}_q \times \mathbb{F}_q$. Let \mathcal{L} be the set of all lines of the form

$$L(a,b) = \{(x,y) \in X : y = ax + b\}, \ a,b \in \mathbb{F}_q,$$

and

$$L(c) = \{(c, y) \in X : y \in \mathbb{F}_q\}, c \in \mathbb{F}_q.$$

Then (X, \mathcal{L}) is AG(q).

proof:
$$|X| = q^2$$
, $|L| = q$. For $\forall (x_1, y_1) \neq (x_2, y_2) \in X$,

- (1) If $x_1 = x_2$, then the unique line containing them is $L(x_1)$.
- (2) If $x_1 \neq x_2$, then

$$\begin{cases} y_1 = ax_1 + b \\ y_2 = ax_2 + b \end{cases}$$

has a unique solution (a, b), i.e. the unique line containing them is L(a, b).

Next, show resolvability. $\{L(a,b):b\in\mathbb{F}_q\}\ (a\in\mathbb{F}_q),\ \{L(c):c\in\mathbb{F}_q\}$ is a resolution. (Note that r=q+1.)

Fact. Any AG(q) is resolvable.