$(2 \times 5 = 10 \text{ Marks})$

7

CO₁

L3

QP Code: RF21BTECH009

PART - A

Reg. No

B. Tech (First Semester) Examinations, February – 2022

21BBSES10002 – Elements of Mechanical Engineering

(Common to all branches)

Time: 3 hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

Q.1.	Answer ALL questions	CO#	Bloom's Level
a.	Define and specify a force.		L1
b.	State Lami's theorem. Illustrate the forces with a mathematical equation.		L1
c.	Sketch and define an Equilibriant.		L1
d.	Sketch P-V and T-S diagram for a polytropic process		L1
e.	What do you understand by CNC. State the significance of G and M codes.		L1

 $PART - B ag{15 x 4} = 60 Marks$

Answer ALL the questions		Marks	CO#	Blooms Level
2. a.	State parallelogram law of forces with its corollaries. Two forces of 100 N and 150 N are acting simultaneously at a point. What is the resultant of these two forces, if the angle between them is 45°?	8	CO1	L3

b. Find the centre of gravity of a 100 mm \times 150 mm \times 30 mm T-section shown 7 CO1 L3 below.

(OR)

c. A beam AB 1.7m long is loaded as shown in Fig. below. Determine the 8 CO1 L4 reactions at A and B.

- d. Two identical rollers P and Q, each of weight W, are supported by an inclined plane and a vertical wall as shown in Fig. below. Assume all the surfaces to be smooth. Draw the free body diagrams of:
 - (i) roller Q, (ii) roller P and (iii) rollers P and Q taken together.

Page 1 of 2

3.a. Find the forces in the members AB, AC and BC of the truss as shown in CO₂ L4 Figure.

b. Define the terms: i) Friction ii) limiting force of friction iii) co-efficient of CO₂ friction iv) angle of friction

L2

8

8

CO4

L2

CO₂

L4

A ladder 5m long and 250N weight is placed against a vertical wall in a position where its inclination to the vertical is 30° as shown in the figure below. A man weighing 800 N climbs the ladder. At what position will he induce slipping? The co-efficient of friction for both the contact surfaces of the ladder i.e., with the wall and the floor is 0.2.

(OR)

- d. Explain the terms i) Perfect truss, ii) Imperfect truss iii) deficient truss CO₂ 7 L2 iv) redundant truss.
- 4.a. Explain as steady flow system. Show with a neat diagram that total energy 8 CO₃ L3 remains constant.
 - A gas occupies a volume of 0.1 m³ at a temperature of 20° C and a pressure of 7 L3 CO3 1.5 bar. Find the final temperature of the gas, if it is compressed to a pressure of 7.5 bar and occupies a volume of 0.04 m³.

- c. Enumerate the applications of Steady Flow Energy Equations in Engineering 8 CO₃ L3 System. Apply SFEE for a boiler.
- d. 0.1 m³ of air at a pressure of 1.5 bar is expanded isothermally to 0.5 m³. 7 CO₃ L3 Calculate the final pressure of the gas and heat supplied during the process.
- 5.a. Explain Automation and Robotics with examples. 8 CO₄ L2
 - Explain with a block diagram CNC machine. What are advantages of CNC 7 CO₄ L2 b. machines?

(OR)

- What is a Robot? Classify Robots.
- Concept CNC system. What are the disadvantages of CNC d. Explain the CO₄ L2 machines.

--- End of Paper ---