同济大学课程考核试卷(B卷) 2009—2010 学年第一学期

课名:线性代数 B

考试考查:考试

一、填空题(每空3分,共24分)

1、 已知 4 阶方阵为
$$A = (\alpha_2, \alpha_1, \alpha_3, \beta_1)$$
, $B = (\alpha_1, 2\alpha_2, \alpha_3, \beta_2)$, 且 $|A| = -4$,

$$|B| = -2$$
, 则行列式 $|A + B| = 6$.

解: 因为 $A + B = (\alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, 2\alpha_3, \beta_1 + \beta_2)$,

所以 $|A+B|=|(\alpha_1+\alpha_2,\alpha_1+2\alpha_2,2\alpha_3,\beta_1+\beta_2)|$,根据行列式的性质(书上的貌似是最后一个性质),原式化简为:

$$\left|\left(\alpha_{1},2\alpha_{2},2\alpha_{3},\beta_{1}\right)\right|+\left|\left(\alpha_{1},2\alpha_{2},2\alpha_{3},\beta_{2}\right)\right|+\left|\left(\alpha_{2},\alpha_{1},2\alpha_{3},\beta_{1}\right)\right|+\left|\left(\alpha_{2},\alpha_{1},2\alpha_{3},\beta_{2}\right)\right|$$

$$=-4|A|+2|B|+2|A|-|B|=16-4-8+2=6$$

$$2$$
、 设行列式 $D = \begin{vmatrix} 1 & 1 & 3 & 1 \\ 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 3 \\ 4 & 5 & 1 & 2 \end{vmatrix}$, A_{ij} 是 D 中元素 a_{ij} 的代数余子式,则 $A_{41} + A_{42} =$

-9

解: 这种题是代数余字式常出的一种,根据 $A_{41} + A_{42} + 0 \times A_{43} + 0 \times A_{44}$ 前面的系数,我

们可以把题目理解成求
$$D'=\begin{vmatrix} 1 & 1 & 3 & 1 \\ 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 3 \\ 1 & 1 & 0 & 0 \end{vmatrix}$$
 ,最后按第二行展开后,得到 $A_{41}+A_{42}=-9$

3、已知矩阵
$$A = \begin{pmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{pmatrix}$$
, 伴随矩阵 $A^* \neq 0$, 且 $A^* x = 0$ 有非零解,则C.

(A) a = 2;

(B)
$$a = 2 \vec{x} = -4$$
;

(C) a = -4;

(D)
$$a \neq 2 \perp a \neq -4$$
.

解:因为 $A^*x=0$ 有非零解,所以 A^* 绝对不满秩,在根据之前我给出的秩与原矩阵的关

系,不难得出
$$\begin{cases} R(A^*) = 1, & R(A) = 2 \\ R(A^*) = 0, & R(A) < 2 \end{cases}$$
 ,因为 $A^* \neq 0$,所以 $R(A^*) = 1$ 。变相得出 $R(A) = 2$ 。

对 A 进行初等变换,得到 a=-4 (你也可以算一下 A 的行列式来找到 a 的值)

- 4、向量组 α_1 , α_2 ,…, α_s ($s \ge 2$) 线性无关,且可由向量组 β_1 , β_2 ,…, β_s 线性表示,则以下结论中不能成立的是 B .
- (A) 向量组 β_1 , β_2 ,..., β_s 线性无关;
- (B) 对任一个 α_i (1 $\leq j \leq s$), 向量组 α_i , β_2 ,..., β_s 线性相关;
- (C) 向量组 α_1 , α_2 ,..., α_s 与向量组 β_1 , β_2 ,..., β_s 等价.

解: B 举个反例,当 $\alpha_1, \alpha_2, \dots, \alpha_s$ 与 $\beta_1, \beta_2, \dots, \beta_s$ 对应相等时, $\alpha_1, \beta_2, \dots, \beta_s$ 仍然线性无关。

A 反证法可得, C 根据 A 的结论和等价的性质, 可得。

$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

解: 一般看到很高的幂的算式,很有可能要用到 $\alpha^T \alpha = 常数k$ (α 为n维列向量)

在根据相似的定义,我们先对 A 求其特征之。解得它的特征值分别为-1, i,-i (做到这里,其实我不想写这道题了,因为考试考的都是实在对称阵)

 $A \sim B = diag(-1, i, -i)$, diag 是对角阵简写,是在不明白 diag 请百度。

$$B^{2012} - 2A^2 = A \sim B = diag((-1)^{2012}, (i)^{2012}, (-i)^{2012}) - 2A$$

最后算得

$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- 6、 设 η_0 是非齐次线性方程组Ax = b的特解, $\xi_1, \xi_2, \dots, \xi_s$ 是齐次方程组Ax = 0的基础解系,则以下命题中错误的是 B .
- (A) $\eta_0, \eta_0 \xi_1, \eta_0 \xi_2, \dots, \eta_0 \xi_s$ 是 Ax = b 的一组线性无关解向量;
- (B) $2\eta_0 + \xi_1 + \xi_2 + \dots + \xi_s \neq Ax = b$ 的解;
- (C) Ax = b 的每个解均可表为 $\eta_0, \eta_0 + \xi_1, \eta_0 + \xi_2, \dots, \eta_0 + \xi_s$ 的线性组合.

解: A. 用定义形式, 假设存在一组k, 使得

 $k_0\eta_0 + k_1(\eta_0 - \xi) + k_2(\eta_0 - \xi) + \dots + k_s(\eta_0 - \xi_s) = 0$ 然后对这个等式,左乘 A,然后根据基础解析里的 $\xi_1, \xi_2, \dots, \xi_s$ 线性无关,得到 A 正确

- B. 错的太明显了,直接左乘 A。
- C. 用 A 的思路, 先证明 $\eta_0, \eta_0 + \xi_1, \eta_0 + \xi_2, \dots, \eta_0 + \xi_s$ 带进去后的确乘出来是 Ax = b,

然后证明 $\eta_0+\xi_1,\eta_0+\xi_2,\cdots,\eta_0+\xi_s$ 是齐次的通解,则由非齐次解的组成,能得到 齐次的通解 $\eta_0+\xi_1,\eta_0+\xi_2,\cdots,\eta_0+\xi_s$ 加上非齐次的特解 η_0 ,为 Ax=b 的解

7、 设 4 阶矩阵 A 有一个特征值为 -2 且满足 $AA^T = 5E$, |A| > 0,则其伴随矩阵 A^* 的一

解:由 $AA^T=5E$,对等式两边取行列式,因为 $|A|=|A^T|$,所以有 $|A^2|=5^4$ (记住这里是取矩阵的行列式,所以是 5^4),|A|>0,所以|A|=25。由因为 $A^*=|A|A^{-1}$,所以行列式 $\lambda_{A^*}=|A|\frac{1}{\lambda_A}$,带入数据,得到 $-\frac{25}{2}$

范围为_______. 解: 既然实二次型正定,那么它的对应标准型的矩阵的顺序主子式应该都大于 0

,对应矩阵为
$$\begin{bmatrix} 1 & 0 & a \\ 0 & 2 & 2 \\ a & 2 & 6 \end{bmatrix}$$
 ,因为第一阶和第二阶顺序主子式明显都大于 0 ,现在只要第

三阶大于 0 就行,即行列式大于 0,解得(-2<a<2)

二、
$$(10 分)$$
 设矩阵 A 的伴随矩阵 $A^* = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix}$,且 $\left|A\right| > 0$, $ABA^{-1} = BA^{-1} + 3E$,

求矩阵B.

解: (题目里已经使用了 A 的逆,说明 A 是可逆的)

因为 $A^* = |A|A^{-1}$,又因为 |A| > 0,所以很明显,这道题会用到 |A|, $|A^*| = |A|^{3-1}$,所以

$$|A^*|=1, : |A|=1$$
, $\mathbb{P}[A^*=A^{-1}]$, $AA^*=|A|E$, $\mathbb{F}[A]$ $\mathbb{F}[A]$ $\mathbb{F}[A]$ $\mathbb{F}[A]$, $\mathbb{F}[A]$ $\mathbb{F}[A]$ $\mathbb{F}[A]$ $\mathbb{F}[A]$ $\mathbb{F}[A]$ $\mathbb{F}[A]$ $\mathbb{F}[A]$

$$(A-E)B=3A$$
,因为 $(|A-E|)\neq 0$,所以 $(A-E)$ 可逆,即 $B=3(A-E)^{-1}A=\begin{bmatrix} 3 & -3 & -3 \\ -3 & 3 & 0 \\ 0 & -3 & 3 \end{bmatrix}$

三、(10 分)已知 α_1 , α_2 , α_3 与 β_1 , β_2 , β_3 为所有 3 维实向量构成的线性空间 R^3 的两组

基,
$$\alpha_1$$
, α_2 , α_3 到 β_1 , β_2 , β_3 的过渡矩阵为 $P = \begin{pmatrix} 0 & 2 & -1 \\ -1 & 0 & 2 \\ 1 & 0 & 0 \end{pmatrix}$ 且

$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

试求: (1) 基 β_1 , β_2 , β_3 ; (2) 在基 α_1 , α_2 , α_3 与 β_1 , β_2 , β_3 下有相同坐标的全体向量.

解: (1)由过度矩阵的定义有, $(\alpha_1 \quad \alpha_2 \quad \alpha_3)P = (\beta_1 \quad \beta_2 \quad \beta_3)$,

(2)设在基 $\alpha_1,\alpha_2,\alpha_3$ 与 β_1,β_2,β_3 下有相同坐标的向量为 $X=\begin{pmatrix}x_1&x_2&x_3\end{pmatrix}^T$,根据坐标公 式 分 别 代 入 两 组 基 本 , 有 $(\alpha_1,\alpha_2,\alpha_3)X=(\beta_1,\beta_2,\beta_3)X$, 由 第 一 问 , $\begin{pmatrix}\alpha_1&\alpha_2&\alpha_3\end{pmatrix}P=\begin{pmatrix}\beta_1&\beta_2&\beta_3\end{pmatrix}$,所以 $\begin{pmatrix}\alpha_1,\alpha_2,\alpha_3\end{pmatrix}X=\begin{pmatrix}\alpha_1,\alpha_2,\alpha_3\end{pmatrix}PX$,因为 $\alpha_1,\alpha_2,\alpha_3$ 是构成线性空间 R^3 的一组基,所以 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,所以有(P-E) X=0,

解得
$$X = k \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, k 为任意常数,则对应的坐标向量为 $(\alpha_1, \alpha_2, \alpha_3) k \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = k \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ 。

四、 $(10\, \beta)$ 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶方阵,其中 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是 4 维列向量,且 $\alpha_2, \alpha_3, \alpha_4$ 线性无关, $\alpha_4 = \alpha_1 + \alpha_2 + \alpha_3$. 已知向量 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,试求 线性方程组 $Ax = \beta$ 的通解.

解: 因为
$$\beta = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$$
 $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ 所以,可得非齐次的一个特解为 $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$,

现在来求导出组的通解,即
$$Ax = 0$$
 的通解,设 $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$,有 $\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = 0$

因为 $\alpha_4 = \alpha_1 + \alpha_2 + \alpha_3$, 所以上式可化简为

$$(x_1 + x_4)\alpha_1 + (x_2 + x_4)\alpha_2 + (x_3 + x_4)\alpha_3 = 0$$

因为 $\alpha_2, \alpha_3, \alpha_4$ 线性无关,所以解方程组 $\begin{cases} (x_1 + x_4) = 0 \\ (x_2 + x_4) = 0 \end{cases}$,解得通解为 $(x_3 + x_4) = 0$

$$k\begin{bmatrix} -1\\ -1\\ -1\\ 1\end{bmatrix}$$
, k 为任意常数。所以 $Ax = \beta$ 的通解为 $k\begin{bmatrix} -1\\ -1\\ -1\\ 1\end{bmatrix} + \begin{bmatrix} 1\\ 1\\ 1\\ 1\end{bmatrix}$, k 为任意常数

五、(20 分) 已知二次型
$$f(x_1,x_2,x_3) = x_1^2 + x_2^2 + 4x_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$$
,

(1). 设矩阵
$$A$$
 为二次型 $f(x_1,x_2,x_3)$ 所对应的对称阵,试证 $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ 为 A 与 A^4 共同的特征向

量.

(2). 用正交变换将此二次型化为标准型.

解:(1)由题目可知,二次型标准矩阵为
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -1 \\ -1 & -1 & 4 \end{bmatrix}$$
,所以令 $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -1 \\ -1 & -1 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

解得
$$k = 2$$
, $|A-2E| = 0$ $A^4 = [109 110 -203]$,
-203 -203 422

所以
$$A^4 = \begin{pmatrix} 110 & 109 & -203 \\ 109 & 110 & -203 \\ -203 & -203 & 422 \end{pmatrix}$$
, $\begin{pmatrix} 110 & 109 & -203 \\ 109 & 110 & -203 \\ -203 & -203 & 422 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $= k^{'} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $, k^{'} = 16$ $, |A^4 - 16E| = 0$ $, |A^4 - 16E| = 0$

所以
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 为 $A = A^4$ 共同的特征向量.

(简便算法: 因为
$$\begin{pmatrix}1\\1\\1\\1\end{pmatrix}$$
 是对应 A 特征值为 2 的特征向量,所以 $A^4\begin{pmatrix}1\\1\\1\\1\end{pmatrix}=2^4\begin{pmatrix}1\\1\\1\\1\end{pmatrix}$,所以, A^4 对

应的是 A^4 特征值为 16 的特征向量)

(2) 求 A 的特征值分别为-1, 2, 5, 由于特征值都不相等,所以 3 个特征向量一定正交,当特征值为-1 时,单位化后的正交向量 $p1=\frac{1}{\sqrt{2}}\begin{pmatrix} -1\\1\\0 \end{pmatrix}$,当特征向量为 2,单位化后的正交向量为

$$p2=\frac{1}{\sqrt{3}}\begin{pmatrix}1\\1\\1\\1\end{pmatrix}$$
, 当特征值为 5 时,单位化后的特征向量为 $p3=\frac{\sqrt{6}}{2}\begin{pmatrix}-\frac{1}{2}\\-\frac{1}{2}\\1\end{pmatrix}$,

所以正交阵 Q= (p1, p2, p3), 正交变化为 x=Qy。

标准型为:
$$f(Y) = -y_1^2 + 2y_2^2 + 5y_3^2$$

六、(12分)

设 a_1,a_2,a_3 为3维线性空间V的一组基,V上的线性变换T在 a_1,a_2,a_3 下的矩阵为

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

- (1). 求线性变换T 在V 的基 $a_1, a_1 + a_2, a_1 + a_3$ 下的矩阵;
- (2). 试证V 中不存在一组基使T 在该基下的矩阵为对角阵.

解: 因为
$$V$$
 上的线性变换 T 在 a_1,a_2,a_3 下的矩阵为 $A=\begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$, 因为

$$(a_1, a_1 + a_2, a_1 + a_3) = (a_1, a_2, a_3) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, 所以可知从 a_1, a_2, a_3 到 a_1, a_1 + a_2, a_1 + a_3 的$$

过度矩阵是
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,设线性变换 T 在 V 的基 $a_1, a_1 + a_2, a_1 + a_3$ 下的矩阵为 C,则

$$C = P^{-1}AP = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} A \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

(2) 反证法:

假设V中存在一组基使T在该基下的矩阵为对角阵.则由向量空间的性质可知,A一定与一个对角阵相似,即说明A也可对角化,求得A的特征值为1,1,1. 将特征值=1带入特征多项

式,解得多项式方程的解为 0 ,因为它的基础解系中只含有一个向量组,固A不可对角化, 0

所以与假设矛盾,所以试证V中不存在一组基使T在该基下的矩阵为对角阵. 七、 $(14\ \mathcal{H})$ 证明题:

- (1). 设A为2阶实方阵,且|A|=-1,试证A可对角化.
- (2). 设向量组 $\{a_1, a_2, a_3, a_4\}$ 线性无关,

$$b_1 = a_1 + k_1 a_4, b_2 = a_2 + k_2 a_4, b_3 = a_3 + k_3 a_4, b_4 = a_4$$

证明向量组 b_1,b_2,b_3,b_4 线性无关.

证:(1)因为 A 为 2 阶实方阵,所以 A 有两个特征值 λ_1 , λ_2 , 由特征值的性质 $|A|=\lambda_1\lambda_2=-1$, 所以 λ_1 , λ_2 异号,即 λ_1 , λ_2 不相等,对于是对称矩阵,特征值不等时,则实对称阵一定可对角化。

(2)
$$(b_1, b_2, b_3, b_4) = (a_1, a_2, a_3, a_4) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ k_1 & k_2 & k_3 & 1 \end{bmatrix}$$
, $\Leftrightarrow C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ k_1 & k_2 & k_3 & 1 \end{bmatrix}$, $\bowtie C$ in

行列式不为 $\mathbf{0}$,所以 (b_1,b_2,b_3,b_4) 与 (a_1,a_2,a_3,a_4) 秩相同,均为 $\mathbf{4}$,所以 (b_1,b_2,b_3,b_4) 线性无关。