Fully-Connected Layer

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Contents

- Computation model
- Learnable parameters
- Back-propagation through FC layer
 - ♣ Derivation of ΔW
 - ♣ Derivation of Δb
 - ♣ Derivation of ΔX
- **Summary**

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$

$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

Notation:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$W = \begin{bmatrix} W_{1,1} & W_{1,2} & W_{1,3} \\ W_{2,1} & W_{2,2} & W_{2,3} \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

y = W * x + b*: Matrix-vector multiplication

X1

X2

X3

W 1,1	W 1,2	W 1,3
W 2,1	W2,2	W _{2,3}

Learnable Parameters

	W1,1	W1,2	W1,3	 W _{1,M}
$\mathbf{W} =$	W 2,1	W 2,2	W 2,3	 W ₂ ,M
	WN,1	W2,2	W 2,3	 W _N ,M

#parameters $= M \times N + N$

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, **HCMUT**

G LAB

Derivation of AW

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

$$\delta w_{n,m} = \frac{\partial J}{\partial w_{n,m}} = ?$$

G LAB

Derivation of \Delta W

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

$$\frac{\partial J}{\partial w_{1,1}} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial w_{1,1}}$$

$$\frac{\partial J}{\partial w_{1,2}} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial w_{1,2}}$$

$$\frac{\partial J}{\partial w_{1,2}} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial w_{1,2}}$$

$$\frac{\partial J}{\partial w_{1,3}} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial w_{1,3}}$$

Derivation of AW

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

$$\frac{\partial J}{\partial w_{2,1}} = \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial w_{2,1}}$$

$$\frac{\partial J}{\partial w_{2,2}} = \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial w_{2,2}}$$

$$\frac{\partial J}{\partial w_{2,2}} = \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial w_{2,2}}$$

$$\frac{\partial J}{\partial w_{2,3}} = \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial w_{2,3}}$$

Derivation of AW

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

 ∂b

$$\frac{\partial J}{\partial w_{1,1}} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial w_{1,1}} = \delta y_1 x_1$$

$$\frac{\partial J}{\partial w_{1,2}} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial w_{1,2}} = \delta y_1 x_2$$

$$\frac{\partial J}{\partial w_{1,3}} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial w_{1,3}} = \delta y_1 x_3$$

$$\frac{\partial J}{\partial w_{2,1}} = \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial w_{2,1}} = \delta y_2 x_1$$

$$\frac{\partial J}{\partial w_{2,2}} = \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial w_{2,2}} = \delta y_2 x_2$$

$$\frac{\partial J}{\partial w_{2,3}} = \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial w_{2,3}} = \delta y_2 x_3$$

Back-propagation through FC-Layer Derivation of ΔW

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

дb

$\delta w_{1,1} = \delta y_1 x_1$	$\delta w_{1,2} = \delta y_1 x_2$	$\delta w_{1,3} = \delta y_1 x_3$
$\delta w_{2,1} = \delta y_2 x_1$	$\delta w_{2,2} = \delta y_2 x_2$	$\delta w_{2,3} = \delta y_2 x_3$

Back-propagation through FC-Layer **Derivation of AW**

Notation:

$$\Delta \mathbf{y} = \begin{bmatrix} \delta y_1 \\ \delta y_2 \end{bmatrix}$$

partial derivatives of loss function with respect to each value in the output of fully-connected layer

$$\Delta \mathbf{W} = \begin{bmatrix} \delta w_{1,1} & \delta w_{1,2} & \delta w_{1,3} \\ \delta w_{2,1} & \delta w_{2,2} & \delta w_{2,3} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Derivation of ΔW

$$\Delta \mathbf{W} = \Delta \mathbf{y} * \mathbf{x}^T$$

$$\mathbf{x}^T = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}$$

$$\Delta \mathbf{y} = \frac{\delta y_1}{\delta y_2}$$

$$\delta w_{1,1} = \delta y_1 x_1$$
 $\delta w_{1,2} = \delta y_1 x_2$ $\delta w_{1,3} = \delta y_1 x_3$ $\delta w_{2,1} = \delta y_2 x_1$ $\delta w_{2,2} = \delta y_2 x_2$ $\delta w_{2,3} = \delta y_2 x_3$

 $\Delta \mathbf{W}$

G LAB

Derivation of \Delta b

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

$$\delta b_n = \frac{\partial J}{\partial b_n} = ?$$

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

$$\frac{\partial J}{\partial y_1} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial b_1} = \delta y_1$$

$$\frac{\partial J}{\partial y_2} = \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial b_2} = \delta y_2$$

Derivation of \Delta b

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

$$\delta b_1 = \delta y_1$$
$$\delta b_2 = \delta y_2$$

$$\Delta \mathbf{b} = \Delta \mathbf{y} = \frac{\delta y_1}{\delta y_2}$$

G LAB

Derivation of \Delta X

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

$$\delta x_m = \frac{\partial J}{\partial x_m} = ?$$

G LAB

Derivation of \Delta X

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

$$\frac{\partial J}{\partial x_1} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial x_1} + \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial x_1} = \delta y_1 w_{1,1} + \delta y_2 w_{2,1}$$

$$\frac{\partial J}{\partial x_2} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial x_2} + \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial x_2} = \delta y_1 w_{1,2} + \delta y_2 w_{2,2}$$

$$\frac{\partial J}{\partial x_3} = \frac{\partial J}{\partial y_1} \frac{\partial y_1}{\partial x_3} + \frac{\partial J}{\partial y_2} \frac{\partial y_2}{\partial x_3} = \delta y_1 w_{1,3} + \delta y_2 w_{2,3}$$

Derivation of \Delta X

$$y_1 = w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}x_3 + b_1$$
$$y_2 = w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}x_3 + b_2$$

$$\delta x_1 = \delta y_1 w_{1,1} + \delta y_2 w_{2,1}$$

$$\delta x_2 = \delta y_1 w_{1,2} + \delta y_2 w_{2,2}$$

$$\delta x_3 = \delta y_1 w_{1,3} + \delta y_2 w_{2,3}$$

Back-propagation through FC-Layer Derivation of ΔX

Notation:

$$\Delta \mathbf{y} = \begin{bmatrix} \delta y_1 \\ \delta y_2 \end{bmatrix}$$

дЬ

$$\mathbf{W} = \begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,2} \\ w_{2,1} & w_{2,2} & w_{2,3} \end{bmatrix} \longrightarrow \mathbf{W}^T = \begin{bmatrix} w_{1,1} & w_{2,1} \\ w_{1,2} & w_{2,2} \\ w_{1,2} & w_{2,3} \end{bmatrix}$$

Derivation of ΔX

$$\Delta \mathbf{X} = \mathbf{W}^T * \Delta \mathbf{y}$$

$$\Delta \mathbf{y} = \frac{\delta y_1}{\delta y_2}$$

$$W^{T} = \begin{bmatrix} W_{1,1} & W_{2,1} \\ W_{1,2} & W_{2,2} \end{bmatrix}$$

$$\delta x_1 = \delta y_1 w_{1,1} + \delta y_2 w_{2,1}$$

$$\delta x_2 = \delta y_1 w_{1,2} + \delta y_2 w_{2,2}$$

$$\delta x_3 = \delta y_1 w_{1,3} + \delta y_2 w_{2,3}$$

 ΔX

Summary

дh

Forward-pass:

$$y = W * x + b$$

(Matrix multiplication)

Summary

дь

Backward-pass:

$$\Delta \mathbf{X} = \mathbf{W}^T * \Delta \mathbf{y}$$

(Matrix multiplication)

Summary

 ∂b

Backward-pass:

$$\Delta \mathbf{W} = \Delta \mathbf{y} * \mathbf{x}^T$$
$$\Delta \mathbf{b} = \Delta \mathbf{y}$$

(Matrix multiplication)