HACKER EARTH - On The Plague Trail

https://www.kaggle.com/shivammittal99/hackerearth-on-the-plague-trail (https://www.kaggle.com/shivammittal99/hackerearth-on-the-plague-trail)

Predict the total number of people infected by the 7 different pathogens.

Plague is an epidemic event caused by Bacteria. A group of senior scientists misplaced a package containing fatal plague bacteria during one of their trips. With no means of tracking where the package is, scientists are now trying to come up with a solution to stop the plague. This plague has 7 different strains that are unique for each continent. This strain is expanding rapidly in each continent.

The dataset contains escalations of the plague for all the seven strains. The dataset is a time series in which the training set contains the number of individuals that are infected by the plague over a defined period of time.

Your mission, should you choose to accept it, is to defend the world against this plague by building an algorithm that can minimize the damage.

No. Column Label Column Description

- 1.ID A calculated unique ID for each research.
- 2.DateTime Represents the data and time on which the event is recorded
- 3.TempOut Outside Temperature
- 4.HiTemp Highest Temperature
- 5.LowTemp Lowest Temperature
- 6.OutHum Outside Humidity
- 7.DewPt Dew Point
- 8.WindSpeed Wind Speed
- 9.WindDir Wind Direction
- 10.WindRun Wind Run Flow
- 11.HiSpeed Highest Speed of the wind
- 12.HiDir Direction of the wind which has highest speed
- 13.WindChill Chillness of the wind
- 14. HeatIndex Heat Index
- 15.THWIndex THW Index
- 16.Bar Barometer Reading
- 17.Rain Rain
- 18.RainRate Frequency of Rain
- 19.HeatDD Heat DD
- 20.CoolDD Cool DD
- 21.InTemp Temperature Inside
- 22.InHum Humidity Inside
- 23.InDew Dew Inside
- 24.InHeat Heat Inside
- 25.InEMC EMC Inside
- 26.InAirDensity Air Density
- 27.WindSamp Wind Attribute 1
- 28.WindTx Wind Attribute 2
- 29.ISSRecpt Reception
- 30.ArcInt Attribute
- 31.PA Total No of People infected by Pathogen A
- 32.PB Total No of People infected by Pathogen B
- 33.PC Total No of People infected by Pathogen C
- 34.PD Total No of People infected by Pathogen D
- 35.PE Total No of People infected by Pathogen E
- 36.PF Total No of People infected by Pathogen F
- 37.PG Total No of People infected by Pathogen G

Data Given:

- 1. Train Data 30 input variables, 7 target variables.
- 2. Test Data 30 input variables.
- 3. sample.csv Need to predict 7 target variables of test data and create a csv file.

What to do

Given is the train data where based on the features, no. of people infected by Pathogen A,B,C,D,E,F,G are given. A model has to be built and trained with the data provided such that for a given set of conditions/features(test) it has to predict the no. of people that will get infected due to Pathogen A,B,C,D,E,F,G accurately.

As we have to predict the number of people infected due to the Pathogens this is a Regression Problem.

Root Mean Squared Error: Used to measure the differences between actual and predicted values.

RMSE = sqrt(mean(actual-predicted)^2)

Evaluation based on Root Mean Squared Error (RMSE).

```
score = max(0,(100 - rmse))
```

Reading train and test data into a dataframe

In [46]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
```

In [2]:

In [3]:

4

```
print(data.head(5))
                   DateTime TempOut HiTemp
                                             LowTemp OutHum DewPt
        ID
0
  PR00001
           07/12/2040 0:15
                               53.5
                                        53.6
                                                 53.5
                                                           85
                                                               49.1
  PR00002 07/12/2040 0:30
                                        53.5
                                                                49.1
                                53.5
                                                 53.4
                                                           85
1
2
  PR00003 07/12/2040 0:45
                                53.3
                                        53.5
                                                 53.2
                                                           85
                                                                48.9
3
  PR00004 07/12/2040 1:00
                                53.1
                                        53.3
                                                 53.0
                                                           86
                                                                49.0
```

86

48.8

52.9

```
WindSpeed WindDir WindRun ... WindTx ISSRecpt ArcInt PA PB
                                                                    PC
                                                                        PD \
                         0.5 ...
0
          2
                SSE
                                             100.0
                                                        15
                                   1
                                                             1
                                                                 1
                                                                     1
                                                                         1
1
           2
                 SSE
                         0.5
                                        1
                                             100.0
                                                        15
                                                             1
                                                                 1
                                                                     1
                                                                         1
                              . . .
                         0.5 ...
           2
                 SSE
                                             100.0
                                                        15
                                                                 1
                                                                     1
                                                                         1
2
                                        1
                                                             1
                         0.5 ...
3
           2
                  S
                                        1
                                             100.0
                                                        15
                                                             1
                                                                 1
                                                                     1
                                                                         1
           2
                         0.5 ...
                                             100.0
                                                        15
                                                             1
                                                                 1
                                                                     1
                                                                         1
```

53.1

52.9

```
PΕ
         ΡF
               PG
0
     1
          1
                1
1
     1
          1
                1
2
     1
           1
                1
3
     1
           1
                1
4
     1
           1
                1
```

[5 rows x 37 columns]

PR00005 07/12/2040 1:15

```
In [47]:
```

```
test=pd.read_csv("test.csv")
print(test.columns)
Index(['ID', 'DateTime', 'TempOut', 'HiTemp', 'LowTemp', 'OutHum', 'DewPt',
          'WindSpeed', 'WindDir', 'WindRun', 'HiSpeed', 'HiDir', 'WindChill', 'HeatIndex', 'THWIndex', 'Bar', 'Rain', 'RainRate', 'HeatDD', 'CoolDD', 'InTemp', 'InHum', 'InDew', 'InHeat', 'InEMC', 'InAirDensity',
          'WindSamp', 'WindTx', 'ISSRecpt', 'ArcInt'],
         dtype='object')
```

In [48]:

```
print(test.head(5))
                   DateTime TempOut HiTemp LowTemp OutHum DewPt \
0 PR40001 08-04-2041 11:30
                             82.6
                                      83.6
                                              80.8
                                                          38
                                                              54.4
  PR40002 08-04-2041 11:45
                                82.6
                                       83.2
                                                82.1
                                                              52.9
  PR40003 08-04-2041 12:00
                                83.6
                                       84.5
                                                82.4
                                                          38
                                                               55.3
2
  PR40004 08-04-2041 12:15
                                85.1
                                       85.5
                                                83.4
                                                          37
                                                               55.9
4 PR40005 08-04-2041 12:30
                               86.5
                                       87.3
                                                85.1
                                                          37
                                                               57.1
  WindSpeed WindDir WindRun ... InTemp InHum InDew InHeat InEMC \
0
          4
                SSE
                         1.0
                                     68.3
                                            29
                                                 34.8
                                                         64.6
                                                               6.08
                             . . .
                         1.0 ...
          4
                 S
                                     69.3
                                            58
                                                 53.9
                                                         68.5 10.75
1
2
          4
                  S
                         1.0 ...
                                     68.4
                                            30
                                                 35.7
                                                         64.8 6.25
                                                         68.7 10.35
68.7 12.38
3
          4
                         1.0 ...
                                     69.9
                                            56
                  S
                                                 53.5
          4
                SSE
                         1.0
                              . . .
                                     68.5
                                            67
                                                 57.1
   InAirDensity WindSamp WindTx ISSRecpt ArcInt
0
        0.0748
                     351
                            1
                                     100.0
                                               15
1
        0.0741
                     351
                               1
                                     100.0
                                               15
2
        0.0747
                     351
                                     100.0
                                               15
                               1
3
        0.0740
                     352
                                     100.0
                                               15
4
        0.0740
                     351
                                     100.0
                                               15
                               1
```

[5 rows x 30 columns]

Exploratory Data Analysis on Train & Test Data

In [4]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40000 entries, 0 to 39999
Data columns (total 37 columns):
                40000 non-null object
                40000 non-null object
DateTime
TempOut
                40000 non-null float64
HiTemp
                40000 non-null float64
                40000 non-null float64
LowTemp
OutHum
                40000 non-null int64
DewPt
                40000 non-null float64
                40000 non-null int64
WindSpeed
WindDir
                40000 non-null object
                40000 non-null float64
WindRun
HiSpeed
                40000 non-null int64
                40000 non-null object
HiDir
WindChill
                40000 non-null float64
HeatIndex
                40000 non-null float64
THWIndex
                40000 non-null float64
                40000 non-null float64
Bar
Rain
                40000 non-null float64
                40000 non-null float64
RainRate
HeatDD
                40000 non-null float64
Cool DD
                40000 non-null float64
InTemp
                40000 non-null float64
                40000 non-null int64
TnHum
InDew
                40000 non-null float64
InHeat
                40000 non-null float64
InEMC
                40000 non-null float64
InAirDensity
                40000 non-null float64
WindSamp
                40000 non-null int64
                40000 non-null int64
WindTx
ISSRecpt
                40000 non-null float64
                40000 non-null int64
ArcInt
PA
                40000 non-null int64
PR
                40000 non-null int64
                40000 non-null int64
PC
PD
                40000 non-null int64
PF
                40000 non-null int64
ΡF
                40000 non-null int64
PG
                40000 non-null int64
dtypes: float64(19), int64(14), object(4)
memory usage: 11.3+ MB
```

In [49]:

test.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22446 entries, 0 to 22445
Data columns (total 30 columns):
                22446 non-null object
DateTime
                22446 non-null object
TempOut
                22446 non-null float64
HiTemp
                22446 non-null float64
LowTemp
                22446 non-null float64
                22446 non-null int64
OutHum
DewPt
                22446 non-null float64
WindSpeed
                22446 non-null int64
WindDir
                22446 non-null object
                22446 non-null float64
WindRun
HiSpeed
                22446 non-null int64
                22446 non-null object
HiDir
WindChill
                22446 non-null float64
HeatIndex
                22446 non-null float64
THWIndex
                22446 non-null float64
                22446 non-null float64
Bar
Rain
                22446 non-null float64
RainRate
                22446 non-null float64
                22446 non-null float64
HeatDD
CoolDD
                22446 non-null float64
InTemp
                22446 non-null float64
                22446 non-null int64
InHum
InDew
                22446 non-null float64
InHeat
                22446 non-null float64
InEMC
                22446 non-null float64
InAirDensity
                22446 non-null float64
                22446 non-null int64
WindSamp
WindTx
                22446 non-null int64
ISSRecpt
                22446 non-null float64
                22446 non-null int64
ArcInt
dtypes: float64(19), int64(7), object(4)
memory usage: 5.1+ MB
```

Obervations

1. Wind Direction(WindDir) and HiDir (Direction of the wind which has highest speed) are Categorical features and the all other features are numerical(int & float).

WindDir & HiDir categorical unique counts

```
In [5]:
```

```
# Wind Direction Categories
data['WindDir'].value_counts()
Out[5]:
SSE
       9870
       6625
       4513
SW
       3842
WSW
       2567
SE
       2188
SSW
       1860
WNW
       1609
       1549
       1172
N
NW
       1148
ESE
        724
NNW
        714
ENE
        508
        494
NNE
        320
        297
Name: WindDir, dtype: int64
In [6]:
# HiDir Categories
data['HiDir'].value_counts()
Out[6]:
SSE
       8470
       6624
S
       3862
SW
       3313
WSW
       2968
SE
       2745
```

SSW 2551 2051 1444 N WNW 1408 NW 1066 ESE 1056 NNW 941 534 ENE 419 NNE 321 NE 227 Name: HiDir, dtype: int64

Removing WindDir, HiDir (Categories), PA, PB, PC, PD, PE, PF, PG(labels) to describe the other fields and see the mean,std,percentiles

In [7]:

data_mod1=data.drop(['WindDir','HiDir','PA','PB','PC','PD','PE','PF','PG'],axis=1)
data_mod1.describe()

Out[7]:

	TempOut	HiTemp	LowTemp	OutHum	DewPt	WindSpeed	WindRun	HiSpeed	WindCl
count	40000.000000	40000.000000	40000.000000	40000.000000	40000.000000	40000.000000	40000.000000	40000.000000	40000.0000
mean	58.508625	58.975230	58.056785	72.915750	48.156873	2.348650	0.587163	6.028675	58.3733
std	12.119640	12.323427	11.916335	20.873482	7.895771	2.346365	0.586591	4.808251	12.1670
min	29.300000	29.500000	29.300000	4.000000	1.200000	0.000000	0.000000	0.000000	29.0000
25%	51.100000	51.300000	50.800000	58.000000	43.600000	0.000000	0.000000	2.000000	50.8000
50%	56.400000	56.800000	56.100000	79.000000	49.700000	2.000000	0.500000	5.000000	56.3000
75%	65.300000	66.000000	64.700000	91.000000	53.900000	4.000000	1.000000	9.000000	65.2000
max	110.300000	111.000000	108.600000	98.000000	66.900000	16.000000	4.000000	33.000000	110.3000

8 rows × 26 columns

In [51]:

test_mod1=test.drop(['WindDir','HiDir'],axis=1)
test_mod1.describe()

Out[51]:

									4
	TempOut	HiTemp	LowTemp	OutHum	DewPt	WindSpeed	WindRun	HiSpeed	Winc
count	22446.000000	22446.000000	22446.000000	22446.000000	22446.000000	22446.000000	22446.000000	22446.000000	22446.00
mean	55.093451	55.505908	54.692956	77.012964	46.563579	2.150138	0.537535	5.672637	54.86
std	10.841577	11.030381	10.651194	20.310674	8.407785	2.292685	0.573171	4.876028	10.92
min	30.200000	30.400000	30.100000	7.000000	6.700000	0.000000	0.000000	0.000000	30.20
25%	48.700000	49.000000	48.400000	65.000000	41.300000	0.000000	0.000000	2.000000	48.30
50%	53.700000	54.000000	53.500000	85.000000	48.500000	2.000000	0.500000	4.000000	53.50
75%	60.000000	60.500000	59.500000	93.000000	52.600000	3.000000	0.750000	9.000000	59.90
max	93.600000	93.700000	93.000000	98.000000	66.300000	15.000000	3.750000	32.000000	93.60
a rows	x 26 columns								
1									b

Observations:

1. Test data min and max range are within the train data min and max range. Performing further analysis on train data only.

Profile Report of Train data

Overview

Dataset info		Variables typ	es
Number of variables	41	Numeric	18
Number of observations	40000	Categorical	4
Missing cells	0 (0.0%)	Boolean Date	0
Duplicate rows	0 (0.0%)	URL	0
Total size in memory	12.5 MiB	Text (Unique) Rejected	1 17
Average record size in memory	328.0 B	Unsupported	0
·			
Varnings	"15"		Rejected
Varnings ArcInt has constant value			Rejected Zeros
Varnings ArcInt has constant value CoolDD has 29824 (74.6%)	zeros		
Varnings ArcInt has constant value CoolDD has 29824 (74.6%) HeatDD has 10258 (25.6%)	zeros		Zeros
Varnings ArcInt has constant value CoolDD has 29824 (74.6%) HeatDD has 10258 (25.6%) HiSpeed has 6624 (16.6%)	zeros zeros zeros	= 0.9959465518)	Zeros Zeros
Varnings ArcInt has constant value CoolDD has 29824 (74.6%) HeatDD has 10258 (25.6%) HiSpeed has 6624 (16.6%)	zeros zeros with HeatIndex (p	,	Zeros Zeros Zeros
Varnings ArcInt has constant value CoolDD has 29824 (74.6%) HeatDD has 10258 (25.6%) HiSpeed has 6624 (16.6%) HiTemp is highly correlated	zeros zeros with HeatIndex (ρ vith InDew (ρ = 0.93	399179535)	Zeros Zeros Rejected
Varnings ArcInt has constant value CoolDD has 29824 (74.6%) HeatDD has 10258 (25.6%) HiSpeed has 6624 (16.6%) HiTemp is highly correlated InEMC is highly correlated v	zeros zeros vith HeatIndex (ρ vith InDew (ρ = 0.99 vith InEMC (ρ = 0.99		Zeros Zeros Zeros Rejected Rejected

Out[52]:

Observation:

- 1. Constants variable : ArcInt, WindTx

Correlation Matrix

- 1. As this is regression data, constructing a correlation matrix will help us understand the correlations between input variables.
- $2. \ \ \ With \ below \ correlation \ we \ can \ find \ positively, \ negatively \ and \ zero \ correlated \ features.$

In [9]:

```
from scipy.stats import spearmanr
corr_matrix=data_mod1.corr()
plt.figure(figsize=(20,20))
sns.heatmap(corr_matrix,annot=True,cmap = 'viridis')
```

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x1274fc499e8>

Observations:

- 1. WindTx,ArcInt has 0 correlation so need to drop this feature as this does not any value to the data.
- 2. WindSamp and ISSRecpt has almost 0 correlation with all the other input variables. We can see for any ways to convert these and use these features to construct a model

In [10]:

```
data_mod1.drop(['ID','DateTime'],axis=1,inplace=True)
```

Variable Inflation Factor for checking multicollinearity

The Variance Inflation Factor (VIF) is a measure of colinearity among input variables within a multiple regression

```
In [12]:
```

C:\Users\srila\AppData\Local\Continuum\anaconda3\lib\site-packages\statsmodels\stats\outliers_influe
nce.py:185: RuntimeWarning: divide by zero encountered in double_scalars
 vif = 1. / (1. - r_squared_i)

Variance Inflation Factor values

```
***********
     VIF values
                   Features
0
   2.246645e+07
                    TempOut
1
   6.609406e+02
                     HiTemp
   3.191581e+02
                    LowTemp
   2.664789e+01
3
                     OutHum
   2.985874e+01
                      DewPt
           inf
5
                  WindSpeed
6
           inf
                    WindRun
7
   1.122731e+01
                    HiSpeed
                  WindChill
8
   2.246853e+07
                  HeatIndex
9
   2.131593e+07
                   THWIndex
10 2.153310e+07
```

CoolDD

16 2.244822e+02 InTemp 17 5.969054e+02 InHum 18 1.368182e+02 InDew

15 4.474921e+04

19 1.152392e+02 InHeat 20 1.782872e+02 InEMC 21 4.512283e+02 InAirDensity 22 2.493382e+00 WindSamp 23 0.0000000e+00 WindTx

24 2.492902e+00 ISSRecpt 25 0.000000e+00 ArcInt

C:\Users\srila\AppData\Local\Continuum\anaconda3\lib\site-packages\statsmodels\regression\linear_mod
el.py:1636: RuntimeWarning: divide by zero encountered in double_scalars
 return 1 - self.ssr/self.centered_tss

Observations

- 1. Windspeed, WindRun has infinity as Variation Inflation factor. Need to remove either Windspeed or Windrun as they explain the same variance within the dataset for further analysis.
- 2. WindTx & ArcInt has 0 Variance Inflation factor so both can be removed from the data set.
- 3. WindSamp & ISSRecpt has 2.493 as Variation Inflation factor. Need to remove either WindSamp or ISSRecpt as they explain the same variance within the dataset.

Removing WindSpeed, WindTx, ISSRecpt, ArcInt as per above observations

In [16]:

```
data_mod1.drop(['WindSpeed','WindTx','ISSRecpt','ArcInt'],axis=1,inplace=True)
corr_matrix=data_mod1.corr()
plt.figure(figsize=(20,20))
sns.heatmap(corr_matrix,annot=True,cmap = 'viridis')
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x1274b3c0438>

Observations:

- 1. TempOut,HiTemp,LowTemp and WindChill,HeatIndex,THWIndex are highly correlated as their values are 1.0.
- 2. HeatDD has negative correlation with many input variables.
- 3. This data has suffers with multicollinearity as 1 input variable can be linearly predicted using other input variables.
- 4. This data has input variables with both positive and negative correlations.

Variable Inflation Factor for checking multicollinearity after removing the features.

```
In [17]:
#data=pd.read_csv('train.csv')
#data_mod2=data.drop(['ID','DateTime','WindDir','HiDir','WindSpeed','WindTx','ISSRecpt','ArcInt','PA','PB','PC','
PD', 'PE', 'PF', 'PG'], axis=1)
from statsmodels.stats.outliers_influence import variance_inflation_factor
var=list(range(data_mod1.shape[1]))
vif = pd.DataFrame()
vif['VIF values'] = [variance_inflation_factor(data_mod1.iloc[:, var].values, ix)
               for ix in range(data_mod1.iloc[:, var].shape[1])]
vif['Features'] = data_mod1.columns
print("Variance Inflation Factor values")
print("*"*50)
print(vif)
Variance Inflation Factor values
**************
     VIF values
                      Features
0
   5.417530e+08
                       TempOut
    1.579306e+04
                        HiTemp
   7.888574e+03
                       LowTemp
   3.516639e+02
                        OutHum
   1.140542e+03
                         DewPt
    2.515497e+01
                       WindRun
   2.887488e+01
                       HiSpeed
6
7
   5.396512e+08
                     WindChill
8
   5.336829e+08
                     HeatIndex
9
    5.320822e+08
                      THWIndex
10 6.087825e+06
                          Bar
11 2.168366e+00
                          Rain
12 2.085821e+00
                      RainRate
13
   1.533457e+04
                        HeatDD
14 4.264942e+03
                        CoolDD
15 2.538391e+05
                        InTemp
   7.464862e+03
                         InHum
16
17
   4.489725e+03
                         InDew
18 7.265917e+04
                        InHeat
19 2.677534e+03
                         InEMC
20
   5.893110e+06 InAirDensity
21
   2.424477e+05
                      WindSamp
In [49]:
print(data_mod1.columns)
Index(['TempOut', 'HiTemp', 'LowTemp', 'OutHum', 'DewPt', 'WindRun', 'HiSpeed',
       'WindChill', 'HeatIndex', 'THWIndex', 'Bar', 'Rain', 'RainRate', 'HeatDD', 'CoolDD', 'InTemp', 'InHum', 'InDew', 'InHeat', 'InEMC',
       'InAirDensity', 'WindSamp'],
      dtype='object')
Checking for Outliers in INT Fields - OutHum, HiSpeed, InHum
In [19]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(0,100,10):
    var =data_mod1["OutHum"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
0 percentile value is 4
10 percentile value is 42
20 percentile value is 53
30 percentile value is 63
40 percentile value is 71
50 percentile value is 79
60 percentile value is 85
70 percentile value is 89
80 percentile value is 92
90 percentile value is 95
100 percentile value is 98
```

```
In [21]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(0,100,10):
    var =data_mod1["HiSpeed"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
0 percentile value is 0
10 percentile value is 0
20 percentile value is 2
30 percentile value is 3
40 percentile value is 4
50 percentile value is 5
60 percentile value is 7
70 percentile value is 8
80 percentile value is 10
90 percentile value is 13
100 percentile value is 33
In [22]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(0,100,10):
    var =data_mod1["InHum"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
0 percentile value is 16
10 percentile value is 30
20 percentile value is 34
30 percentile value is 38
40 percentile value is 42
50 percentile value is 46
60 percentile value is 51
70 percentile value is 55
80 percentile value is 60
90 percentile value is 67
100 percentile value is 88
```

Observations:

1. No Outliers found in the above INT features

Removing OutHum, HiSpeed, InHum(as these are INT) to plot Boxplots, distplots & ProbPlots.

```
In [23]:
```

19

```
data_mod3=data_mod1.drop(['OutHum', 'HiSpeed', 'InHum'], axis=1)
print(data_mod3.columns)
print(len(data mod3.columns))
Index(['TempOut', 'HiTemp', 'LowTemp', 'DewPt', 'WindRun', 'WindChill'
         'HeatIndex', 'THWIndex', 'Bar', 'Rain', 'RainRate', 'HeatDD', 'CoolDD', 'InTemp', 'InDew', 'InHeat', 'InEMC', 'InAirDensity', 'WindSamp'],
       dtype='object')
```

https://nbviewer.jupyter.org/github/PBPatil/Exploratory_Data_Analysis-Wine Quality Dataset/blob/master/winequality_white.ipynb (https://nbviewer.jupyter.org/github/PBPatil/Exploratory Data Analysis-Wine Quality Dataset/blob/master/winequality white.ipynb)

Plotted BoxPlots, DistPlots, ProbPlots for few features at a time to see if there are any outliers and the how the distribution of the data

BoxPlots, DistPlots, ProbPlots for TempOut, HiTemp,LowTemp,DewPt,WindRun

In [27]:

```
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(0,5):
   plt.subplot(rows + 1,cols,i+1)
   sns.set_style('whitegrid')
   sns.boxplot(data_mod3[val[i]],color='green',orient='v')
   #plt.tight_layout()
```


Observations

1. Looking at the box plots, DewPt & WindRun might have some outliers. Other features look good.

In [28]:

```
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(0,5):
    plt.subplot(rows + 1,cols,i+1)
    #sns.set_style('whitegrid')
    sns.distplot(data_mod3[val[i]],kde=True)
    #plt.tight_layout()
```

C:\Users\srila\AppData\Local\Programs\Python\Python36\Lib\site-packages\scipy\stats\stats.py:1713: F
utureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple
(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.arr
ay(seq)]`, which will result either in an error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [30]:

```
import scipy
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(0,5):
    plt.subplot(rows + 1,cols,i+1)
    #sns.set_style('whitegrid')
    scipy.stats.probplot(data_mod3[val[i]].values, plot=plt)
    plt.title(val[i])
    #sns.distplot(data_mod3[val[i]],kde=True)
    #plt.tight_layout()
```


Checking for Outliers in DewPt,WindRun

In [67]:

```
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(90,100):
    var =data_mod3["TempOut"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
```

```
90 percentile value is 76.1
91 percentile value is 76.9
92 percentile value is 77.7
93 percentile value is 78.7
94 percentile value is 79.9
95 percentile value is 81.1
96 percentile value is 82.6
97 percentile value is 84.4
98 percentile value is 86.9
99 percentile value is 91.6
100 percentile value is 110.3
```

In [68]:

```
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(90,100):
    var =data_mod3["HiTemp"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
```

```
90 percentile value is 76.9
91 percentile value is 77.7
92 percentile value is 78.5
93 percentile value is 79.6
94 percentile value is 80.7
95 percentile value is 82.0
96 percentile value is 83.4
97 percentile value is 85.3
98 percentile value is 87.7
99 percentile value is 92.3
100 percentile value is 111.0
```

```
In [69]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(90,100):
    var =data_mod3["LowTemp"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
90 percentile value is 75.3
91 percentile value is 76.1
92 percentile value is 76.9
93 percentile value is 77.8
94 percentile value is 79.0
95 percentile value is 80.4
96 percentile value is 81.7
97 percentile value is 83.6
98 percentile value is 86.0
99 percentile value is 90.8
100 percentile value is 108.6
In [31]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(90,100):
    var =data_mod3["DewPt"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
90 percentile value is 56.9
91 percentile value is 57.1
92 percentile value is 57.4
93 percentile value is 57.8
94 percentile value is 58.1
95 percentile value is 58.5
96 percentile value is 59.0
97 percentile value is 59.5
98 percentile value is 60.1
99 percentile value is 61.2
100 percentile value is 66.9
In [32]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(90,100):
    var =data_mod3["WindRun"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
90 percentile value is 1.5
91 percentile value is 1.5
92 percentile value is 1.5
93 percentile value is 1.5
94 percentile value is 1.5
95 percentile value is 1.75
96 percentile value is 1.75
97 percentile value is 2.0
98 percentile value is 2.0
99 percentile value is 2.5
100 percentile value is 4.0
```

Observations:

1. No notable Outliers found in DewPt,WindRun

Boxplots, Distplots, Probplots for WindChill, HeatIndex, THWIndex, Bar, Rain, RainRate

In [35]:

```
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(5,11):
   plt.subplot(rows + 1,cols,i+1)
    sns.set_style('whitegrid')
    sns.boxplot(data_mod3[val[i]],color='green',orient='v')
    #plt.tight_layout()
```


Observaions

1. Rain & RainRate may have outliers. Other features look good.

In [36]:

```
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(5,11):
   plt.subplot(rows + 1,cols,i+1)
    #sns.set_style('whitegrid')
    sns.distplot(data_mod3[val[i]],kde=True)
   #plt.tight_layout()
```

C:\Users\srila\AppData\Local\Programs\Python\Python36\Lib\site-packages\scipy\stats\stats.py:1713: F utureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple (seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.arr ay(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [37]:

```
import scipy
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(5,11):
    plt.subplot(rows + 1,cols,i+1)
    #sns.set_style('whitegrid')
    scipy.stats.probplot(data_mod3[val[i]].values, plot=plt)
    plt.title(val[i])
    #sns.distplot(data_mod3[val[i]],kde=True)
    #plt.tight_layout()
```


Checking for Outliers in Rain & RainRate

In [61]:

```
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(90,100):
    var =data_mod3["WindChill"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
```

```
90 percentile value is 76.0
91 percentile value is 76.8
92 percentile value is 77.6
93 percentile value is 78.7
94 percentile value is 79.8
95 percentile value is 81.1
96 percentile value is 82.6
97 percentile value is 84.4
98 percentile value is 86.9
99 percentile value is 91.6
100 percentile value is 110.3
```

In [63]:

```
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(90,100):
    var =data_mod3["HeatIndex"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
```

```
90 percentile value is 75.9
91 percentile value is 76.5
92 percentile value is 77.2
93 percentile value is 78.1
94 percentile value is 79.1
95 percentile value is 80.3
96 percentile value is 81.9
97 percentile value is 83.8
98 percentile value is 85.8
99 percentile value is 90.0
100 percentile value is 107.1
```

```
In [65]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(90,100):
    var =data_mod3["THWIndex"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
90 percentile value is 75.8
91 percentile value is 76.4
92 percentile value is 77.2
93 percentile value is 78.0
94 percentile value is 79.1
95 percentile value is 80.3
96 percentile value is 81.9
97 percentile value is 83.7
98 percentile value is 85.8
99 percentile value is 90.0
100 percentile value is 107.1
In [66]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(0,100,10):
    var =data_mod3["Bar"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
0 percentile value is 29.619
10 percentile value is 29.904
20 percentile value is 29.945
30 percentile value is 29.98
40 percentile value is 30.017
50 percentile value is 30.055
60 percentile value is 30.094
70 percentile value is 30.141
80 percentile value is 30.20199999999998
90 percentile value is 30.276
100 percentile value is 30.534000000000002
In [57]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(0,100,10):
    var =data_mod3["Rain"].values
    var = np.sort(var,axis = None)
    print("{{}} percentile value is {{}}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
0 percentile value is 0.0
10 percentile value is 0.0
20 percentile value is 0.0
30 percentile value is 0.0
40 percentile value is 0.0
50 percentile value is 0.0
60 percentile value is 0.0
70 percentile value is 0.0
80 percentile value is 0.0
```

90 percentile value is 0.0 100 percentile value is 0.19

In [59]:

```
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(90,100):
    var =data_mod3["RainRate"].values
    var = np.sort(var,axis = None)
    print("{{}} percentile value is {{}}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
90 percentile value is 0.0
91 percentile value is 0.0
```

```
91 percentile value is 0.0
92 percentile value is 0.0
93 percentile value is 0.0
94 percentile value is 0.0
95 percentile value is 0.0
96 percentile value is 0.0
97 percentile value is 0.0
98 percentile value is 0.0
99 percentile value is 0.11
100 percentile value is 5.94
```

No notable outlier found for Rain & RainRate

BoxPlots, DistPlots, ProbPlots fro CoolDD, InTemp, InDew, InHeat, inEMC

In [40]:

```
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(12,17):
    plt.subplot(rows + 1,cols,i+1)
    sns.set_style('whitegrid')
    sns.boxplot(data_mod3[val[i]],color='green',orient='v')
    #plt.tight_layout()
```


In [41]:

```
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(12,17):
   plt.subplot(rows + 1,cols,i+1)
   #sns.set_style('whitegrid')
   sns.distplot(data_mod3[val[i]],kde=True)
   #plt.tight_layout()
```

C:\Users\srila\AppData\Local\Programs\Python\Python36\Lib\site-packages\scipy\stats\stats.py:1713: F
utureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple
(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.arr
ay(seq)]`, which will result either in an error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [42]:

```
import scipy
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(12,17):
    plt.subplot(rows + 1,cols,i+1)
    #sns.set_style('whitegrid')
    scipy.stats.probplot(data_mod3[val[i]].values, plot=plt)
    plt.title(val[i])
    #sns.distplot(data_mod3[val[i]],kde=True)
    #plt.tight_layout()
```


Checking for Outliers in CoolDD

In [43]:

```
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(90,100):
    var =data_mod3["CoolDD"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
```

In [51]:

```
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(0,100,10):
   var =data_mod3["InTemp"].values
   var = np.sort(var,axis = None)
   print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
```

```
0 percentile value is 58.9
10 percentile value is 67.7
20 percentile value is 68.2
30 percentile value is 68.5
40 percentile value is 68.8
50 percentile value is 69.2
60 percentile value is 69.6
70 percentile value is 69.9
80 percentile value is 70.3
90 percentile value is 70.7
100 percentile value is 82.0
```

```
In [53]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(0,100,10):
    var =data_mod3["InDew"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
0 percentile value is 21.1
10 percentile value is 35.3
20 percentile value is 39.0
30 percentile value is 42.2
40 percentile value is 45.5
50 percentile value is 48.3
60 percentile value is 50.7
70 percentile value is 52.7
80 percentile value is 54.9
90 percentile value is 57.4
100 percentile value is 66.6
In [55]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(0,100,10):
    var =data_mod3["InHeat"].values
    var = np.sort(var.axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
0 percentile value is 55.9
10 percentile value is 64.5
20 percentile value is 65.7
30 percentile value is 66.5
40 percentile value is 67.2
50 percentile value is 67.7
60 percentile value is 68.1
70 percentile value is 68.5
80 percentile value is 69.0
90 percentile value is 69.8
100 percentile value is 81.1
In [56]:
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(0,100,10):
    var =data_mod3["InEMC"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
0 percentile value is 3.94
10 percentile value is 6.25
20 percentile value is 6.85
30 percentile value is 7.53
40 percentile value is 8.03
50 percentile value is 8.64
60 percentile value is 9.44
70 percentile value is 10.19
80 percentile value is 11.05
```

BoxPlots, DistPlots, ProbPlots for InAirDensity, WindSamp

90 percentile value is 12.35 100 percentile value is 19.36

In [45]:

```
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(17,19):
    plt.subplot(rows + 1,cols,i+1)
    sns.set_style('whitegrid')
    sns.boxplot(data_mod3[val[i]],color='green',orient='v')
    #plt.tight_layout()
```


In [46]:

```
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(17,19):
    plt.subplot(rows + 1,cols,i+1)
    #sns.set_style('whitegrid')
    sns.distplot(data_mod3[val[i]],kde=True)
    #plt.tight_layout()
```

C:\Users\srila\AppData\Local\Programs\Python\Python36\Lib\site-packages\scipy\stats\stats.py:1713: F
utureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple
(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.arr
ay(seq)]`, which will result either in an error or a different result.
 return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [47]:

```
import scipy
val = data_mod3.columns.values
cols=19
rows = len(val)-1/cols
plt.figure(figsize=(50,70))
for i in range(17,19):
    plt.subplot(rows + 1,cols,i+1)
    #sns.set_style('whitegrid')
    scipy.stats.probplot(data_mod3[val[i]].values, plot=plt)
    plt.title(val[i])
    #sns.distplot(data_mod3[val[i]],kde=True)
    #plt.tight_layout()
```


Checking for Outliers

0 percentile value is 0.0729

```
In [50]:

#calculating 99-100th percentile to find a the correct percentile value for removal of outliers

for i in range (0.100.10):
```

```
for i in range(0,100,10):
    var =data_mod3["InAirDensity"].values
    var = np.sort(var,axis = None)
    print("{} percentile value is {}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
```

```
10 percentile value is 0.0738
20 percentile value is 0.07400000000000001
30 percentile value is 0.0742
40 percentile value is 0.0743
50 percentile value is 0.0745
60 percentile value is 0.0746
70 percentile value is 0.0748
80 percentile value is 0.075
90 percentile value is 0.0754
100 percentile value is 0.0774
```

In [48]:

```
#calculating 99-100th percentile to find a the correct percentile value for removal of outliers
for i in range(0,100,10):
    var =data_mod3["WindSamp"].values
    var = np.sort(var,axis = None)
    print("{{}} percentile value is {{}}".format(i,var[int(len(var)*(float(i)/100))]))
print ("100 percentile value is ",var[-1])
```

```
0 percentile value is 323
10 percentile value is 351
20 percentile value is 351
30 percentile value is 351
40 percentile value is 351
50 percentile value is 351
60 percentile value is 351
70 percentile value is 351
80 percentile value is 352
90 percentile value is 352
100 percentile value is 353
```

EDA Summary

- 1. As per the EDA on train data, there are 2 categorical variables WindDir & HiDir & all others are numerical variables(Int & Float).
- 2. There are 7 labels PA,PB,PC,PD,PE,PF,PG in the train data and using the train data need to predict 7 labels for the given test data.
- 3. Data description looks good with no outliers as the min, max, percententiles, mean & std are within a range for both train and test data.
- 4. TempOut is highly correlated with HiTemp,LowTemp,WindChill,HeatIndex,THWIndex and many other variables are highly correlated with each other.
- 5. HeatDD is negatively correlated with TempOut,HiTemp,LowTemp,WindChill,HeatIndex,THWIndex and many other variables are negatively correlated with each other.
- 6. This data suffers with multicollinearity problem as this data has postive and negative correaltions.
- 7. Using Variable inflation factor, measure of collinearity between input variables can be found and avoided for further analysis.
- 8. Based on VIF- Windspeed, WindRun has infinity as Variation Inflation factor. Need to remove either Windspeed or Windrun as they explain the same variance within the dataset.
- 9. WindTx & ArcInt has 0 Variance Inflation factor so both can be removed from the data set.
- 10. WindSamp & ISSRecpt has 2.493 as Variation Inflation factor. Need to remove either WindSamp or ISSRecpt as they explain the same variance within the dataset. 11.. Almost all the input variables are skewed and target labels are highly correlated.
- Random Forest & XGBoost are immune to multicollinearity by nature as the tree splits based on the perfectly correlated features.
 (https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4 (https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4))

Training a model based on the features without any feature engineering.

In [2]:

```
import keras
from keras.datasets import cifar10
from keras.models import Model, Sequential
from keras.layers import Dense, Dropout, Flatten, Input, AveragePooling2D, merge, Activation
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras.layers import Concatenate
from keras.optimizers import Adam
from tensorflow.keras import models, layers
from tensorflow.keras.models import Model
from tensorflow.keras.layers import BatchNormalization, Activation, Flatten
from tensorflow.keras.optimizers import Adam,RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras import regularizers
from keras.callbacks import LearningRateScheduler
import numpy as np
import pandas as pd
```

Using TensorFlow backend.

In [27]:

```
data_train=pd.read_csv("train.csv")
data_test=pd.read_csv("test.csv")
cols = ['Date' if x=='DateTime' else x for x in list(data_train.columns)]
data_train['Date']=pd.to_datetime(data_train['DateTime'])
data_train.drop(['DateTime'],axis=1,inplace=True)
data_train.sort_values(by=['Date'],inplace=True)
cols = ['Date' if x=='DateTime' else x for x in list(data_test.columns)]
data_test['Date']=pd.to_datetime(data_test['DateTime'])
data_test.drop(['DateTime'],axis=1,inplace=True)
data_test.sort_values(by=['Date'],inplace=True)
data_train['Year'] = data_train['Date'].dt.year
data_train['Month'] = data_train['Date'].dt.month
data_train['Day'] = data_train['Date'].dt.day
data_test['Year'] = data_test['Date'].dt.year
data_test['Month'] = data_test['Date'].dt.month
data_test['Day'] = data_test['Date'].dt.day
print(data_train.columns)
print(data_test.columns)
Index(['ID', 'TempOut', 'HiTemp', 'LowTemp', 'OutHum', 'DewPt', 'WindSpeed',
```

In [28]: label=data_train[['PA', 'PB', 'PC', 'PD','PE', 'PF', 'PG']] train=data_train.drop(['ID','Date','PA', 'PB', 'PC', 'PD','PE', 'PF', 'PG','ArcInt','WindTx'],axis=1) test=data_test.drop(['ID','Date','ArcInt','WindTx'],axis=1) print("Train columns",train.columns) print("Label columns", label.columns) print("Test columns", test.columns) 'THWIndex', 'Bar', 'Rain', 'RainRate', 'HeatDD', 'CoolDD', 'InTemp', 'InHum', 'InDew', 'InHeat', 'InEMC', 'InAirDensity', 'WindSamp', 'ISSRecpt', 'Year', 'Month', 'Day'], dtype='object') Label columns Index(['PA', 'PB', 'PC', 'PD', 'PE', 'PF', 'PG'], dtype='object') Test columns Index(['TempOut', 'HiTemp', 'LowTemp', 'OutHum', 'DewPt', 'WindSpeed', 'WindDir', 'WindRun', 'HiSpeed', 'HiDir', 'WindChill', 'HeatIndex', 'THWIndex', 'Bar', 'Rain', 'RainRate', 'HeatDD', 'CoolDD', 'InTemp', 'InHum', 'InDew', 'InHeat', 'InEMC', 'InAirDensity', 'WindSamp', 'ISSRecpt', 'Year', 'Month', 'Day'], dtype='object') In [29]: x_train,x_test=train,test y_train=label print("Data Train, Test shapes:",x_train.shape,x_test.shape) print("Label Train, Test shapes:",y_train.shape) Data Train, Test shapes: (40000, 29) (22446, 29) Label Train, Test shapes: (40000, 7)

Vectorizing WindDir, HiDir

In [30]:

```
from sklearn.preprocessing import LabelEncoder
cols = ('WindDir','HiDir')

for c in cols:
    lbl=LabelEncoder()
    lbl.fit(list(x_train[c].values))
    x_train[c]=lbl.transform(list(x_train[c].values))
    x_test[c]=lbl.transform(list(x_test[c].values))

print("Shape of train,test data",x_train.shape,x_test.shape)
```

Shape of train, test data (40000, 29) (22446, 29)

Vectorizing Numerical features

In [31]:

```
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings("ignore")

numerical_cols = list(x_train.columns)

vectorizer = StandardScaler()
vectorizer.fit(x_train[numerical_cols])
x_train[numerical_cols] = vectorizer.transform(x_train[numerical_cols])
x_test[numerical_cols] = vectorizer.transform(x_test[numerical_cols])
```

Models

Random Forest

```
In [32]:
```

In [33]:

```
print("Tuning hyper-parameters for ROC_AUC")
print("****50)
print()
clf = GridSearchCV(estimator = rf, param_grid = random_grid, cv = 5, n_jobs = -1, scoring='neg_mean_squared_error
')
result=clf.fit(x_train,y_train)

print("Best Estimator:",clf.best_estimator_)
print("Best Score:",clf.best_score_)
print("Best Params:",clf.best_params_)
```

Tuning hyper-parameters for ROC_AUC

```
Best Estimator: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=9, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None, oob_score=False, random_state=None,
```

verbose=0, warm_start=False)
Best Score: -97274.2143382412
Best Params: {'max_depth': 9, 'n_estimators': 100}

In [35]:

```
rfr_score = pd.DataFrame()
rfr_score['ID'] = data_test['ID']
```

```
In [36]:
from sklearn.metrics import mean_squared_error
rfr=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=9,
                   max_features='sqrt', max_leaf_nodes=None,
                   min_impurity_decrease=0.0, min_impurity_split=None,
                   min_samples_leaf=1, min_samples_split=2,
                   min_weight_fraction_leaf=0.0, n_estimators=100,
                   n_jobs=None, oob_score=False, random_state=None,
                   verbose=0, warm_start=False)
output_columns = ['PA','PB','PC','PD','PE','PF','PG']
for i in output_columns:
   y_train_l = y_train[i]
   #y_test_l = y_test[i]
   rfr.fit(x_train,y_train_l)
   test_predict = rfr.predict(x_test)
   train_predict=rfr.predict(x_train)
   print("RMSE scores for:",i)
   print("*"*50)
   #rmse_test=np.sqrt(mean_squared_error(y_test_l, test_predict))
   #print("Test RMSE is :",rmse_test)
   #score_test=max(0,(100 - rmse_test))
   #print("Test Score is:",score_test)
   rmse_train=np.sqrt(mean_squared_error(y_train_l, train_predict))
   print("Train RMSE is:",np.sqrt(mean_squared_error(y_train_l, train_predict)))
   score_train=max(0,(100 - rmse_train))
   print("Train Score is:",score_train)
   print("*"*50)
   rfr_score[i] = [ round(p,0) for p in test_predict]
RMSE scores for: PA
************
Train RMSE is: 212.3624664652438
Train Score is: 0
************
RMSE scores for: PB
*************
Train RMSE is: 102.34676106224074
Train Score is: 0
***********
RMSE scores for: PC
***********
```

Train RMSE is: 57.54735702024344 Train Score is: 42.45264297975656

Train RMSE is: 31.64813397108407 Train Score is: 68.35186602891594

Train RMSE is: 21.91043609727262 Train Score is: 78.08956390272738

Train RMSE is: 16.006419847106592
Train Score is: 83.9935801528934

Train RMSE is: 10.302806853865476 Train Score is: 89.69719314613452

RMSE scores for: PD

RMSE scores for: PE

RMSE scores for: PF

RMSE scores for: PG

print(rfr_score)

	ID	PA	РВ	PC	PD	PE	PF	PG
Θ	PR40001	1883.0	911.0	527.0	338.0	223.0	139.0	115.0
1	PR40002	2095.0	1032.0	562.0	351.0	213.0	149.0	112.0
2	PR40003	1999.0	959.0	541.0	343.0	233.0	140.0	114.0
3	PR40004	2037.0	1035.0	565.0	364.0	216.0	152.0	112.0
4	PR40005	2146.0	1052.0	583.0	375.0	237.0	154.0	117.0
5	PR40006	2076.0	981.0	581.0	367.0	246.0	146.0	121.0
6	PR40007	2152.0	982.0	590.0	363.0	222.0	156.0	115.0
7	PR40008	2203.0	1048.0	597.0	370.0	236.0	158.0	117.0
8	PR40009	1976.0	961.0	567.0	347.0	234.0	140.0	119.0
9	PR40010	2263.0	1058.0	595.0	373.0	234.0	158.0	117.0
10	PR40011	1957.0	958.0	575.0	353.0	238.0	140.0	120.0
11	PR40012	2306.0	1079.0	597.0	376.0	233.0	161.0	120.0
12	PR40013	2344.0	1080.0	608.0	377.0	243.0	157.0	119.0
13	PR40014	2012.0	981.0	559.0	351.0	233.0	141.0	117.0
14	PR40015	2288.0	1081.0	590.0	373.0	235.0	156.0	120.0
15	PR40016	2183.0	1057.0	562.0	361.0	231.0	157.0	113.0
16	PR40017	1910.0	908.0	521.0	320.0	202.0	136.0	109.0
17	PR40018	2150.0	1067.0	575.0	362.0	222.0	153.0	117.0
18	PR40019	2143.0	1053.0	558.0	370.0	228.0	154.0	110.0
19	PR40020	1885.0	858.0	492.0	322.0	200.0	137.0	110.0
20	PR40021	1887.0	894.0	531.0	362.0	225.0	140.0	112.0
21	PR40022	2085.0	1005.0	551.0	370.0	223.0	154.0	110.0
22	PR40023	1831.0	899.0	532.0	326.0	215.0	136.0	113.0
23	PR40024	2144.0	1001.0	573.0	363.0	219.0	155.0	113.0
24	PR40025	1941.0	907.0	517.0	348.0	214.0	135.0	112.0
25	PR40026	2042.0	1036.0	550.0	353.0	206.0	144.0	111.0
26	PR40027	1893.0	818.0	486.0	307.0	210.0	124.0	111.0
27	PR40028	2068.0	967.0	544.0	349.0	213.0	152.0	109.0
28 29	PR40029 PR40030	1803.0 1982.0	807.0 975.0	505.0 528.0	296.0	213.0 212.0	125.0 150.0	106.0 108.0
					339.0			
		• • •						
 319	PR40320	313.0	205.0	110.0	 75.0	 55.0	44.0	34.0
 319 2339	PR40320 PR42340	313.0 518.0	 205.0 276.0	110.0 154.0	75.0 98.0	55.0 62.0	44.0 55.0	34.0 42.0
319 2339 2340	PR40320 PR42340 PR42341	313.0 518.0 652.0	205.0 276.0 300.0	110.0 154.0 212.0	75.0 98.0 137.0	55.0 62.0 84.0	44.0 55.0 61.0	34.0 42.0 48.0
 319 2339	PR40320 PR42340	313.0 518.0 652.0 368.0	 205.0 276.0	110.0 154.0 212.0 112.0	75.0 98.0	55.0 62.0 84.0 57.0	44.0 55.0 61.0 44.0	34.0 42.0 48.0 31.0
319 2339 2340 1155	PR40320 PR42340 PR42341 PR41156	313.0 518.0 652.0	205.0 276.0 300.0 215.0	110.0 154.0 212.0	75.0 98.0 137.0 74.0	55.0 62.0 84.0	44.0 55.0 61.0	34.0 42.0 48.0
319 2339 2340 1155 1156	PR40320 PR42340 PR42341 PR41156 PR41157	313.0 518.0 652.0 368.0 369.0	205.0 276.0 300.0 215.0 200.0	110.0 154.0 212.0 112.0 123.0	75.0 98.0 137.0 74.0 76.0	55.0 62.0 84.0 57.0 59.0	44.0 55.0 61.0 44.0 42.0	34.0 42.0 48.0 31.0 31.0
319 2339 2340 1155 1156 1157	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158	313.0 518.0 652.0 368.0 369.0 360.0	205.0 276.0 300.0 215.0 200.0	110.0 154.0 212.0 112.0 123.0 106.0	75.0 98.0 137.0 74.0 76.0 72.0	55.0 62.0 84.0 57.0 59.0 56.0	44.0 55.0 61.0 44.0 42.0 41.0	34.0 42.0 48.0 31.0 31.0
319 2339 2340 1155 1156 1157 2341	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342	313.0 518.0 652.0 368.0 369.0 360.0 395.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0	34.0 42.0 48.0 31.0 31.0 30.0
319 2339 2340 1155 1156 1157 2341 2342	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0 67.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0
319 2339 2340 1155 1156 1157 2341 2342 5073	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 338.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 115.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 79.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0 67.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 38.0 35.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 338.0 336.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 192.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 115.0 120.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 79.0 77.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0 67.0 57.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR45091	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 192.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 115.0 120.0 123.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 79.0 77.0 72.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0 67.0 58.0 58.0 64.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 43.0 40.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0 36.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR45091 PR45092	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 334.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 192.0 195.0 211.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 115.0 120.0 123.0 130.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 79.0 77.0 72.0 85.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0 67.0 58.0 58.0 64.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 43.0 40.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0 36.0 37.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR45091 PR45092 PR45093	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 334.0 320.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 192.0 195.0 211.0 185.0 189.0 187.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 115.0 120.0 123.0 130.0 125.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 79.0 77.0 72.0 85.0 83.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0 67.0 58.0 58.0 64.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 43.0 40.0 47.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR45091 PR45092 PR45093 PR45094	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 334.0 320.0 345.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 195.0 211.0 185.0 189.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 115.0 120.0 123.0 130.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 72.0 85.0 83.0 79.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0 67.0 58.0 58.0 64.0 64.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 43.0 40.0 47.0 48.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0 37.0 33.0 35.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093 4478	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR45091 PR45092 PR45093 PR45094 PR44479	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 340.0 345.0 326.0 286.0 319.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 195.0 211.0 185.0 187.0 193.0 172.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 145.0 120.0 123.0 130.0 125.0 130.0 110.0 103.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 72.0 85.0 83.0 79.0 78.0 67.0 70.0	55.0 62.0 84.0 57.0 59.0 56.0 57.0 58.0 67.0 58.0 64.0 64.0 59.0 67.0 53.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 43.0 40.0 47.0 48.0 45.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093 4478 4479 4480 4481	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR450974 PR41278 PR450991 PR450992 PR450993 PR450994 PR44479 PR44480 PR44481 PR44481	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 334.0 320.0 345.0 326.0 286.0 319.0 309.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 195.0 211.0 185.0 187.0 193.0 172.0 176.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 120.0 123.0 130.0 125.0 130.0 110.0 103.0 105.0 113.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 72.0 85.0 83.0 79.0 78.0 67.0 70.0	55.0 62.0 84.0 57.0 59.0 56.0 57.0 58.0 67.0 58.0 64.0 69.0 67.0 53.0 52.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 48.0 47.0 48.0 41.0 40.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093 4478 4479 4480 4481 1535	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR45091 PR450991 PR450992 PR450993 PR450994 PR44479 PR44480 PR44481 PR44482 PR41536	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 320.0 320.0 326.0 286.0 319.0 309.0 327.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 195.0 211.0 185.0 189.0 187.0 193.0 172.0 176.0 192.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 120.0 123.0 130.0 125.0 130.0 105.0 113.0 113.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 85.0 83.0 79.0 79.0 79.0 79.0 79.0 79.0 79.0 79.0	55.0 62.0 84.0 57.0 59.0 58.0 67.0 58.0 64.0 64.0 67.0 59.0 67.0 53.0 55.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 47.0 48.0 49.0 49.0 49.0 49.0 49.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0 37.0 33.0 35.0 35.0 35.0 35.0 36.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093 4478 4479 4480 4481 1535 1536	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR45091 PR45099 PR45099 PR450994 PR44479 PR44480 PR44480 PR44481 PR44482 PR41536 PR41537	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 334.0 320.0 345.0 326.0 286.0 319.0 309.0 327.0 306.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 195.0 211.0 185.0 189.0 187.0 193.0 172.0 176.0 192.0 179.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 123.0 123.0 130.0 125.0 130.0 105.0 113.0 113.0 118.0 106.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 85.0 83.0 79.0 78.0 67.0 70.0 75.0 74.0 75.0	55.0 62.0 84.0 57.0 59.0 56.0 57.0 58.0 64.0 64.0 69.0 67.0 53.0 52.0 53.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 47.0 48.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0 37.0 33.0 35.0 35.0 35.0 35.0 33.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5093 4478 4479 4480 4481 1535 1536 4482	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR45091 PR45099 PR45099 PR45099 PR44479 PR44480 PR44481 PR44482 PR41536 PR41537 PR44483	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 320.0 326.0 286.0 319.0 309.0 327.0 306.0 277.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 195.0 195.0 185.0 187.0 189.0 172.0 176.0 192.0 179.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 120.0 123.0 130.0 125.0 130.0 105.0 110.0 103.0 113.0 118.0 106.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 85.0 83.0 79.0 78.0 67.0 70.0 75.0 74.0 75.0 76.0 77.0	55.0 62.0 84.0 57.0 59.0 56.0 57.0 58.0 64.0 64.0 59.0 67.0 53.0 52.0 53.0 52.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 48.0 47.0 45.0 41.0 42.0 45.0 44.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5093 4478 4479 4480 4481 1535 1536 4482 5402	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR450991 PR450992 PR450993 PR450994 PR44479 PR44480 PR44481 PR44482 PR41536 PR41537 PR44483 PR45403	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 320.0 326.0 286.0 319.0 309.0 327.0 306.0 277.0 285.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 195.0 211.0 185.0 187.0 189.0 172.0 172.0 179.0 179.0 179.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 120.0 123.0 130.0 130.0 130.0 105.0 113.0 118.0 106.0 101.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 85.0 83.0 79.0 78.0 67.0 70.0 75.0 74.0 75.0 75.0 76.0 77.0	55.0 62.0 84.0 57.0 59.0 56.0 57.0 58.0 64.0 64.0 59.0 67.0 53.0 52.0 53.0 52.0 51.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 48.0 45.0 41.0 42.0 45.0 44.0	34.0 42.0 48.0 31.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 4480 4481 1535 1536 4482 5402 5403	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR450991 PR450992 PR450993 PR450994 PR44479 PR44480 PR44481 PR44482 PR41536 PR41537 PR44483 PR45403 PR45403	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 320.0 345.0 326.0 286.0 319.0 309.0 327.0 306.0 277.0 285.0 269.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 195.0 211.0 185.0 187.0 187.0 193.0 172.0 179.0 179.0 179.0 177.0 172.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 120.0 120.0 130.0 110.0 103.0 110.0 113.0 113.0 113.0 113.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 85.0 83.0 79.0 75.0 76.0 77.0 70.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0 67.0 58.0 64.0 67.0 59.0 67.0 59.0 52.0 53.0 52.0 53.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 45.0 41.0 42.0 45.0 44.0 44.0	34.0 42.0 48.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 32.0 34.0 35.0 35.0 31.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093 4478 4479 4480 4481 1535 1536 4482 5402 5403 5404	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR45091 PR45099 PR450993 PR450994 PR44479 PR44480 PR44481 PR44482 PR41536 PR41537 PR44483 PR45403 PR45404 PR45405	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 320.0 345.0 326.0 326.0 319.0 309.0 327.0 306.0 277.0 285.0 269.0 272.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 195.0 211.0 185.0 187.0 187.0 192.0 176.0 192.0 179.0 179.0 179.0 170.0 160.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 115.0 120.0 130.0 130.0 130.0 110.0 103.0 113.0 113.0 113.0 113.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 85.0 83.0 79.0 75.0 74.0 75.0 74.0 72.0 68.0 72.0 71.0 71.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0 67.0 58.0 64.0 69.0 67.0 59.0 53.0 52.0 53.0 52.0 53.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 48.0 47.0 45.0 41.0 42.0 44.0 44.0 44.0 44.0 44.0 44.0	34.0 42.0 48.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093 4478 4479 4480 4481 1535 1536 4482 5402 5403 5404 3968	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR45091 PR45099 PR450993 PR450994 PR44479 PR44480 PR44481 PR44482 PR41536 PR41537 PR44483 PR45403 PR45403 PR45404 PR45405 PR45405 PR43969	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 320.0 345.0 326.0 327.0 309.0 327.0 306.0 277.0 285.0 269.0 272.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 195.0 211.0 185.0 187.0 193.0 172.0 176.0 192.0 179.0 179.0 179.0 170.0 160.0 168.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 115.0 120.0 130.0 130.0 103.0 105.0 113.0 105.0 113.0 105.0 113.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 72.0 85.0 83.0 79.0 70.0 75.0 74.0 72.0 68.0 72.0 71.0 71.0 72.0	55.0 62.0 84.0 57.0 59.0 56.0 58.0 67.0 58.0 64.0 67.0 53.0 52.0 53.0 52.0 53.0 52.0 53.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 45.0 41.0 45.0 41.0 42.0 44.0 43.0 44.0 44.0 44.0	34.0 42.0 48.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 32.0 35.0 31.0 31.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093 4478 4479 4480 4481 1535 1536 4482 5402 5403 5404 3968 5405	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR45091 PR450992 PR450993 PR450994 PR44480 PR44481 PR44482 PR41536 PR41537 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR45403 PR45405 PR45405 PR45406	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 320.0 345.0 326.0 319.0 306.0 277.0 285.0 269.0 272.0 270.0 267.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 195.0 211.0 185.0 187.0 172.0 176.0 179.0 179.0 179.0 179.0 160.0 168.0 166.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 120.0 123.0 125.0 130.0 105.0 110.0 105.0 113.0 106.0 101.0 105.0 110.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 72.0 85.0 79.0 75.0 74.0 75.0 74.0 72.0 68.0 71.0 71.0 71.0	55.0 62.0 84.0 57.0 59.0 56.0 57.0 58.0 64.0 64.0 67.0 53.0 52.0 53.0 52.0 53.0 55.0 53.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 47.0 45.0 41.0 42.0 44.0 44.0 44.0 44.0 44.0 44.0	34.0 42.0 48.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0 35.0 32.0 34.0 35.0 31.0 31.0 34.0 33.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093 4478 4479 4480 4481 1535 1536 4482 5402 5403 5404 3968 5405 5406	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR45091 PR45092 PR45093 PR450994 PR44480 PR44481 PR44482 PR41536 PR41537 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR45403 PR45404 PR45405 PR45406 PR45406	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 326.0 326.0 326.0 319.0 306.0 277.0 285.0 269.0 272.0 270.0 267.0 314.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 195.0 211.0 185.0 187.0 172.0 176.0 179.0 179.0 179.0 179.0 160.0 168.0 168.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 120.0 123.0 125.0 130.0 105.0 110.0 105.0 113.0 105.0 113.0 106.0 101.0 105.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 72.0 85.0 79.0 70.0 75.0 74.0 72.0 68.0 71.0 71.0 71.0 71.0 71.0	55.0 62.0 84.0 57.0 59.0 56.0 57.0 58.0 64.0 64.0 67.0 53.0 52.0 53.0 52.0 53.0 55.0 55.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 45.0 41.0 42.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0	34.0 42.0 48.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0 32.0 34.0 35.0 31.0 31.0 33.0 33.0 33.0 33.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093 4478 4479 4480 4481 1535 1536 4482 5402 5403 5404 3968 5405 5406 5407	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR45091 PR45092 PR45093 PR45093 PR44480 PR44481 PR44482 PR41536 PR41537 PR44483 PR4503 PR4503 PR4503 PR4503 PR45003 PR45003 PR45404 PR45405 PR45405 PR45406 PR45407 PR45408	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 320.0 345.0 326.0 286.0 286.0 290.0 327.0 306.0 277.0 285.0 269.0 272.0 270.0 267.0 314.0 310.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 195.0 211.0 185.0 187.0 172.0 176.0 179.0 179.0 179.0 179.0 160.0 168.0 168.0 168.0 169.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 120.0 123.0 125.0 130.0 105.0 110.0 105.0 113.0 113.0 106.0 101.0 105.0 105.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 72.0 85.0 83.0 79.0 75.0 74.0 75.0 71.0 71.0 71.0 75.0 75.0	55.0 62.0 84.0 57.0 59.0 56.0 57.0 58.0 64.0 64.0 67.0 53.0 52.0 52.0 53.0 52.0 53.0 52.0 53.0 52.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 45.0 41.0 45.0 41.0 42.0 44.0 44.0 44.0 44.0 43.0 44.0 44.0 44.0 44.0 44.0	34.0 42.0 48.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0 35.0 32.0 34.0 31.0 31.0 32.0 33.0 32.0 33.0 32.0 33.0 33.0
319 2339 2340 1155 1156 1157 2341 2342 5073 1277 5090 5091 5092 5093 4478 4479 4480 4481 1535 1536 4482 5402 5403 5404 3968 5405 5406	PR40320 PR42340 PR42341 PR41156 PR41157 PR41158 PR42342 PR42343 PR45074 PR41278 PR45091 PR45092 PR45093 PR450994 PR44480 PR44481 PR44482 PR41536 PR41537 PR4503 PR4503 PR4503 PR4503 PR4503 PR4503 PR45403 PR45404 PR45405 PR45406 PR45406	313.0 518.0 652.0 368.0 369.0 360.0 395.0 485.0 336.0 335.0 326.0 326.0 326.0 319.0 306.0 277.0 285.0 269.0 272.0 270.0 267.0 314.0	205.0 276.0 300.0 215.0 200.0 204.0 213.0 221.0 198.0 195.0 211.0 185.0 187.0 172.0 176.0 179.0 179.0 179.0 179.0 160.0 168.0 168.0	110.0 154.0 212.0 112.0 123.0 106.0 143.0 146.0 120.0 123.0 125.0 130.0 105.0 110.0 105.0 113.0 105.0 113.0 106.0 101.0 105.0	75.0 98.0 137.0 74.0 76.0 72.0 99.0 103.0 77.0 72.0 85.0 79.0 70.0 75.0 74.0 72.0 68.0 71.0 71.0 71.0 71.0 71.0	55.0 62.0 84.0 57.0 59.0 56.0 57.0 58.0 64.0 64.0 67.0 53.0 52.0 53.0 52.0 53.0 55.0 55.0	44.0 55.0 61.0 44.0 42.0 41.0 48.0 52.0 44.0 47.0 47.0 45.0 41.0 42.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0	34.0 42.0 48.0 31.0 30.0 38.0 35.0 35.0 35.0 35.0 35.0 32.0 34.0 35.0 31.0 31.0 33.0 33.0 33.0 33.0

[22446 rows x 8 columns]

XGBoost

```
import xgboost as xgb
# initialize Our first XGBoost model...
xgbr = xgb.XGBRegressor(silent=False, random_state=15)
#regr = MultiOutputRegressor(regr1)
# declare parameters for hyperparameter tuning
parameters = {'learning_rate':[0.001,0.01,0.1,0.15,0.2],'n_estimators':[100,300,500,700,900,1100],'max_depth':[1,
3,5,7,9,11]}
# Perform cross validation
clf = GridSearchCV(xgbr,
                   param_grid = parameters,
                   scoring="neg_mean_squared_error",
                   cv=10,
                   n jobs = -1,
                   verbose = 1)
output_columns = ['PA','PB','PC','PD','PE','PF','PG']
for i in output_columns:
   y_train_l = y_train[i]
   result = clf.fit(x_train, y_train_l)
   print("Best Parameters for:",i)
   print("*"*50)
   print("Best Estimator:",clf.best_estimator_)
   print("Best Score:",clf.best_score_)
   print("Best Params:",clf.best_params_)
   print("*"*50)
Fitting 10 folds for each of 180 candidates, totalling 1800 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=-1)]: Done 26 tasks
                                         | elapsed:
                                                     46.2s
[Parallel(n_jobs=-1)]: Done 176 tasks
                                         | elapsed: 13.2min
[Parallel(n_jobs=-1)]: Done 426 tasks
                                         elapsed: 51.9min
[Parallel(n_jobs=-1)]: Done 776 tasks
                                        | elapsed: 103.9min
                                        | elapsed: 162.5min
| elapsed: 250.1min
[Parallel(n_jobs=-1)]: Done 1226 tasks
[Parallel(n_jobs=-1)]: Done 1776 tasks
[Parallel(n_jobs=-1)]: Done 1800 out of 1800 | elapsed: 258.7min finished
[03:54:58] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regression_obj.cu:
152: reg:linear is now deprecated in favor of reg:squarederror.
Best Parameters for: PA
************
Best Estimator: XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
            colsample_bynode=1, colsample_bytree=1, gamma=0,
            importance_type='gain', learning_rate=0.01, max_delta_step=0,
            max_depth=5, min_child_weight=1, missing=None, n_estimators=300,
            n_jobs=1, nthread=None, objective='reg:linear', random_state=15,
            reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
            silent=False, subsample=1, verbosity=1)
Best Score: -122913.64456468185
Best Params: {'learning_rate': 0.01, 'max_depth': 5, 'n_estimators': 300}
***********
Fitting 10 folds for each of 180 candidates, totalling 1800 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=-1)]: Done 26 tasks
                                         | elapsed: 43.5s
[Parallel(n_jobs=-1)]: Done 176 tasks
                                         | elapsed: 13.5min
[Parallel(n_jobs=-1)]: Done 426 tasks
                                         | elapsed: 51.8min
[Parallel(n_jobs=-1)]: Done 776 tasks
                                        | elapsed: 103.7min
                                        | elapsed: 162.3min
| elapsed: 250.5min
[Parallel(n_jobs=-1)]: Done 1226 tasks
[Parallel(n_jobs=-1)]: Done 1776 tasks
[Parallel(n_jobs=-1)]: Done 1800 out of 1800 | elapsed: 258.6min finished
[08:13:53] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regression_obj.cu:
152: reg:linear is now deprecated in favor of reg:squarederror.
Best Parameters for: PB
************
Best Estimator: XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
            colsample_bynode=1, colsample_bytree=1, gamma=0,
            importance_type='gain', learning_rate=0.01, max_delta_step=0,
            max_depth=5, min_child_weight=1, missing=None, n_estimators=300,
            n_jobs=1, nthread=None, objective='reg:linear', random_state=15,
            reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
            silent=False, subsample=1, verbosity=1)
Best Score: -27790.391450822855
Best Params: {'learning_rate': 0.01, 'max_depth': 5, 'n_estimators': 300}
***********
Fitting 10 folds for each of 180 candidates, totalling 1800 fits
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=-1)]: Done 26 tasks
                                          | elapsed:
KeyboardInterrupt
                                           Traceback (most recent call last)
<ipython-input-38-3f4a29780c06> in <module>()
     19 for i in output_columns:
     20
           y_train_l = y_train[i]
            result = clf.fit(x_train, y_train_l)
---> 21
           print("Best Parameters for:",i)
     22
     23
           print("*"*50)
~\AppData\Local\Programs\Python\Python36\Lib\site-packages\sklearn\model_selection\_search.py in fit
(self, X, y, groups, **fit_params)
    685
                        return results
    686
--> 687
                    self._run_search(evaluate_candidates)
    688
    689
                # For multi-metric evaluation, store the best_index_, best_params_ and
~\AppData\Local\Programs\Python\Python36\Lib\site-packages\sklearn\model_selection\_search.py in _ru
n_search(self, evaluate_candidates)
   1146
            def _run_search(self, evaluate_candidates):
   1147
                """Search all candidates in param_grid"""
-> 1148
                evaluate_candidates(ParameterGrid(self.param_grid))
   1149
   1150
~\AppData\Local\Programs\Python\Python36\Lib\site-packages\sklearn\model_selection\_search.py in eva
luate_candidates(candidate_params)
    664
                                        for parameters, (train, test)
                                        in product(candidate_params,
    665
--> 666
                                                   cv.split(X, y, groups)))
    667
                        if len(out) < 1:</pre>
    668
~\AppData\Local\Programs\Python\Python36\Lib\site-packages\joblib\parallel.py in __call__(self, iter
able)
    932
    933
                    with self._backend.retrieval_context():
 -> 934
                        self.retrieve()
                    # Make sure that we get a last message telling us we are done
    935
                    elapsed_time = time.time() - self._start_time
    936
~\AppData\Local\Programs\Python\Python36\Lib\site-packages\joblib\parallel.py in retrieve(self)
                        if getattr(self._backend, 'supports_timeout', False):
    832
   833
                            self._output.extend(job.get(timeout=self.timeout))
    834
                        else:
    835
                            self._output.extend(job.get())
~\AppData\Local\Programs\Python\Python36\Lib\site-packages\joblib\_parallel_backends.py in wrap_futu
re_result(future, timeout)
    519
                AsyncResults.get from multiprocessing."""
    520
                try:
 -> 521
                    return future.result(timeout=timeout)
                except LokyTimeoutError:
    522
                    raise TimeoutError()
    523
~\AppData\Local\Continuum\anaconda3\lib\concurrent\futures\_base.py in result(self, timeout)
                        return self.__get_result()
    425
    426
 -> 427
                    self. condition.wait(timeout)
    428
                    if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
    429
~\AppData\Local\Continuum\anaconda3\lib\threading.py in wait(self, timeout)
    293
                       # restore state no matter what (e.g., KeyboardInterrupt)
                try:
    294
                    if timeout is None:
--> 295
                        waiter.acquire()
    296
                        gotit = True
    297
                    else:
KeyboardInterrupt:
In [39]:
import xgboost as xgb
xgb_scores = pd.DataFrame()
xgb_scores['ID'] = data_test['ID']
```

```
from sklearn.metrics import mean_squared_error
warnings.filterwarnings("ignore")
xgbr= xgb.XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
           colsample_bynode=1, colsample_bytree=1, gamma=0,
           importance_type='gain', learning_rate=0.01, max_delta_step=0,
           max_depth=5, min_child_weight=1, missing=None, n_estimators=300,
           n_jobs=1, nthread=None, objective='reg:linear', random_state=15,
           reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
           silent=False, subsample=1, verbosity=1)
output_columns = ['PA','PB','PC','PD','PE','PF','PG']
for i in output_columns:
   y_train_l = y_train[i]
   #y_test_l = y_test[i]
   xgbr.fit(x_train,y_train_l)
   test_predict = xgbr.predict(x_test)
   train_predict=xgbr.predict(x_train)
   print("RMSE scores for:",i)
   print("*"*50)
   #rmse_test=np.sqrt(mean_squared_error(y_test_l, test_predict))
   #print("Test RMSE is :",rmse_test)
   #score_test=max(0,(100 - rmse_test))
   #print("Test Score is:",score_test)
   rmse_train=np.sqrt(mean_squared_error(y_train_l, train_predict))
   print("Train RMSE is:",np.sqrt(mean_squared_error(y_train_l, train_predict)))
   score_train=max(0,(100 - rmse_train))
   print("Train Score is:",score_train)
   print("*"*50)
   xgb_scores[i] = [ round(p,0) for p in test_predict]
[08:26:29] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regression_obj.cu:
152: reg:linear is now deprecated in favor of reg:squarederror.
RMSE scores for: PA
*************
Train RMSE is: 108.3126842605122
Train Score is: 0
***********
[08:26:49] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regression_obj.cu:
152: reg:linear is now deprecated in favor of reg:squarederror.
RMSE scores for: PB
**************
Train RMSE is: 53.89643721591441
Train Score is: 46.10356278408559
************
[08:27:08] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regression_obj.cu:
152: reg:linear is now deprecated in favor of reg:squarederror.
RMSE scores for: PC
***************
Train RMSE is: 30.043703321318393
Train Score is: 69.95629667868161
***************
[08:27:26] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regression_obj.cu:
152: reg:linear is now deprecated in favor of reg:squarederror.
RMSE scores for: PD
************
Train RMSE is: 18.253331619400576
Train Score is: 81.74666838059943
**************
[08:27:44] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regression_obj.cu:
152: reg:linear is now deprecated in favor of reg:squarederror.
RMSE scores for: PE
***************
Train RMSE is: 11.916117330255442
Train Score is: 88.08388266974455
************
[08:28:02] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regression_obj.cu:
152: reg:linear is now deprecated in favor of reg:squarederror.
RMSE scores for: PF
***************
Train RMSE is: 8.286591693501665
Train Score is: 91.71340830649834
[08:28:20] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regression_obj.cu:
152: reg:linear is now deprecated in favor of reg:squarederror.
RMSE scores for: PG
***************
Train RMSE is: 6.025240895455415
Train Score is: 93.97475910454459
****************
```

In [42]: print(xgb_scores) PB PC PD PE PF ID PA PG PR40001 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 0 PR40002 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 1 PR40003 2731.0 1323.0 724.0 434.0 PR40004 2731.0 1323.0 724.0 434.0 2 280.0 192.0 138.0 280.0 192.0 PR40005 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 5 PR40006 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 PR40007 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 6 PR40008 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 280.0 192.0 138.0 PR40009 2731.0 1323.0 724.0 434.0 8 PR40010 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 PR40011 2731.0 1323.0 724.0 434.0 PR40012 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 280.0 192.0 138.0 10 11 PR40013 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 12 PR40014 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 13 PR40015 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 PR40016 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 14 15 PR40017 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 16 17 PR40018 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 PR40019 2731.0 1323.0 724.0 434.0 PR40020 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 280.0 192.0 138.0 18 19 PR40021 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 20 21 PR40022 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 PR40023 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 PR40024 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 22 23 PR40025 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 24 25 PR40026 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 PR40027 2731.0 1323.0 724.0 434.0 PR40028 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 280.0 192.0 138.0 26 27 PR40029 2731.0 1323.0 724.0 434.0 28 280.0 192.0 138.0 29 PR40030 2731.0 1323.0 724.0 434.0 280.0 192.0 138.0 . PR40320 319 455.0 241.0 139.0 88.0 62.0 46.0 35.0 313.0 174.0 106.0 2339 PR42340 661.0 68.0 50.0 40.0 2340 PR42341 692.0 353.0 213.0 139.0 94.0 64.0 48.0 266.0 153.0 266.0 153.0 1155 PR41156 499.0 97.0 64.0 47.0 37.0 97.0 1156 PR41157 499.0 64.0 47.0 37.0 266.0 153.0 1157 PR41158 499.0 97.0 64.0 47.0 37.0 2341 PR42342 562.0 296.0 171.0 111.0 75.0 53.0 41.0 313.0 192.0 127.0 208.0 123.0 80.0 2342 PR42343 610.0 85.0 57.0 42.0 5073 PR45074 393.0 56.0 42.0 33.0 208.0 123.0 1277 PR41278 393.0 80.0 56.0 42.0 33.0 5090 PR45091 393.0 208.0 123.0 80.0 57.0 43.0 33.0 208.0 123.0 208.0 123.0 5091 PR45092 393.0 80.0 57.0 43.0 34.0 5092 PR45093 57.0 393.0 80.0 43.0 34.0 208.0 123.0 5093 PR45094 393.0 80.0 57.0 43.0 34.0 4478 PR44479 208.0 123.0 80.0 393.0 56.0 43.0 34.0 208.0 123.0 208.0 123.0 4479 PR44480 393.0 79.0 56.0 43.0 34.0

79.0

79.0

79.0

79.0

79.0

79.0

79.0

79.0

79.0

79.0

79.0

79.0

79.0

79.0

208.0 123.0

208.0 123.0 208.0 123.0 208.0 123.0

206.0 121.0

206.0 121.0

206.0 121.0

206.0 121.0

206.0 121.0

206.0 121.0

206.0 121.0 206.0 121.0

206.0 121.0

43.0

43.0

43.0

43.0

43.0

43.0

43.0

43.0

43.0

43.0

43.0

43.0

43.0

43.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

56.0

56.0

56.0

56.0

56.0

56.0

56.0

56.0

56.0

56.0

56.0

56.0

56.0

56.0

[22446 rows x 8 columns]

Pretty Table

4480 PR44481

4481 PR44482

1535 PR41536

4482 PR44483

5402 PR45403

5403 PR45404

3968 PR43969

5405 PR45406

1536

5404

5406

5407

5408

5218

PR41537

PR45405

PR45407

PR45408

PR45409

PR45219

393.0

393.0

393.0

393.0

393.0

391.0

391.0

391.0

391.0

391.0

391.0

391.0

391.0

384.0

```
from prettytable import PrettyTable

t = PrettyTable()

t.field_names = ["Model","Label", "RMSE", "score = max(0,(100 - rmse))"]

t.add_row(["","PB",102.35,0])

t.add_row(["","PC",57.55,42.45])

t.add_row(["","PE",21.91,78.08])

t.add_row(["","PE",16.01,83.99])

t.add_row(["","PF",16.01,83.99])

t.add_row(["","PA",10.30,89.69])

t.add_row(["","PA",10.30,89.69])

t.add_row(["","PB",53.89,46.10])

t.add_row(["","PB",53.89,46.10])

t.add_row(["","PB",30.04,69.95])

t.add_row(["","PC",30.04,69.95])

t.add_row(["","PF",11.91,88.08])

t.add_row(["","PE",11.91,88.08])

t.add_row(["","PF",8.28,91.71])

t.add_row(["","PF",8.28,91.71])

t.add_row(["","PA",6.02,93.97])

print(t)
```

+	+	·	++
Model	Label	RMSE	score = max(0,(100 - rmse))
Random Forest	PA	212.36	
İ	PB	102.35	j 0
İ	PC	57.55	42.45
İ	PD	31.65	68.35
İ	PE	21.91	78.08
İ	PF	16.01	83.99
Ì	PA	10.3	89.69
XGBoost	PA	108.31	0
	PB	53.89	46.1
	PC PC	30.04	69.95
	PD	18.25	81.74
	PE	11.91	88.08
	PF	8.28	91.71
	PA	6.02	93.97
+	.	L — — — — — —	LL

EDA Summary

- 1. As per the EDA on train data, there are 2 categorical variables WindDir & HiDir & all others are numerical variables(Int & Float).
- 2. There are 7 labels PA,PB,PC,PD,PE,PF,PG in the train data and using the train data need to predict 7 labels for the given test data.
- 3. Data description looks good with no outliers as the min, max, percententiles, mean & std are within a range for both train and test data.
- 4. TempOut is highly correlated with HiTemp,LowTemp,WindChill,HeatIndex,THWIndex and many other variables are highly correlated with each other.
- 5. HeatDD is negatively correlated with TempOut,HiTemp,LowTemp,WindChill,HeatIndex,THWIndex and many other variables are negatively correlated with each other.
- 6. This data suffers with multicollinearity problem as this data has postive and negative correaltions.
- 7. Using Variable inflation factor, measure of collinearity between input variables can be found and avoided for further analysis.
- 8. Based on VIF- Windspeed, WindRun has infinity as Variation Inflation factor. Need to remove either Windspeed or Windrun as they explain the same variance within the dataset.
- 9. WindTx & ArcInt has 0 Variance Inflation factor so both can be removed from the data set.
- 10. WindSamp & ISSRecpt has 2.493 as Variation Inflation factor. Need to remove either WindSamp or ISSRecpt as they explain the same variance within the dataset. 11.. Almost all the input variables are skewed and target labels are highly correlated.
- 11. Random Forest & XGBoost are immune to multicollinearity by nature as the tree splits based on the perfectly correlated features.

 (https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4 (https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4))

Basic Model Summary:

- 1. As per the EDA there are 2 categorical featureas and rest are numerical features.
- 2. Used label encoding on categorical features & standardised all the data.
- 3. Trained a Random Forest model & recorded RMSE for 7 labels.
- 4. RMSE's & scores are not as expected and this data needs some feature engineering to get lower RMSE and higher scores.
- 5. srilaxmik15@gmail.com_27_model_train_test In this notebook, I have used some feature engineering to lower the RMSE and increase the scores.

In []: