AlgoEcon Final Project

May 2023

1 Natarajan Dimension

In problem 5 we are given the hypothesis class, $\mathcal{H}' = \{h'_{\tau} : \tau \in \mathbb{R}\}$, where h'_{τ} applies the threshold rule element-wise to the input, i.e. for $\vec{x} \in \mathbb{R}$ and $\vec{y} = h'_{\tau}(\vec{x})$; then $\vec{y}(i) = 1 \Leftrightarrow \vec{x}(i) \geq \tau, i \in \{1, ...n\}$.

Our definition of shattering in the multi class setting is given as follows:

A set S of vectors in \mathbb{R}^n is shattered by the hypothesis class \mathcal{H}' if the follow conditions are satisfied:

- 1. $\forall \vec{x}_k \in S, \exists \vec{x}_{k,A}, \vec{x}_{k,B} \in \{0,1\}^n$, such that $\vec{x}_{k,A} \neq \vec{x}_{k,B}$.
- 2. $\forall \phi \in \Phi$ where $\Phi = \{\phi \in \mathcal{F} : \phi : \{\vec{x}_k \in S\} \to \{\vec{x}_{k,A}, \vec{x}_{k,B}\}\}\ \exists h'_{\tau} \in \mathcal{H}'$ such that $\forall \vec{x}_k \in S \ h'_{\tau}(\vec{x}_k) = \phi(\vec{x}_k)$, (I've denoted Φ this way to suggest that each \vec{x}_k need not be mapped to the same co-domain).

The Natarajan dimension is then given by the cardinality of the largest set \mathcal{H}' can shatter. The proof proceeds by first showing that \mathcal{H}' cannot shatter any |S| = 2 and second, arguing that a hypothesis class cannot shatter any set larger than the smallest set it cannot shatter.

1. Claim: \mathcal{H}' cannot shatter any set S of two vectors $\vec{x}_1, \vec{x}_2 \in \mathbb{R}^2$, |S| = 2.

Proof: We proceed by contradiction, showing that no h'_{τ} can reproduce all ϕ for an arbitrary choice of vectors $S = \{\vec{x}_1, \vec{x}_2\}$. Suppose condition 1 holds. Take $\{\vec{x}_{1,1}, \vec{x}_{1,2}\}$, $\vec{x}_{1,1} \neq \vec{x}_{1,2}$, and $\{\vec{x}_{2,1}, \vec{x}_{2,2}\}$, $\vec{x}_{2,1} \neq \vec{x}_{2,2}$ to be the sets of arbitrary vectors in $\{0,1\}^n$ associated with \vec{x}_1 and \vec{x}_2 respectively. Since, $\vec{x}_{1,1} \neq \vec{x}_{1,2}$ and $\vec{x}_{2,1} \neq \vec{x}_{2,2}$, $\exists i,j \in \{1,2\}$ such that $\vec{x}_{1,1}(i) \neq \vec{x}_{1,2}(i)$ and $\vec{x}_{2,1}(j) \neq \vec{x}_{2,2}(j)$ where here $\vec{x}_{1,1}(i)$ denotes the i^{th} index of $\vec{x}_{1,1}$, etc. WLOG take $\vec{x}_{1,1}(i) = \vec{x}_{2,1}(j) = 0$, $\vec{x}_{1,2}(i) = \vec{x}_{2,2}(j) = 1$, and $\vec{x}_1(i) \leq \vec{x}_2(j)$ (*). Now suppose condition 2 holds. This implies that $\forall \phi \in \Phi_2$, $\exists h'_{\tau} \in \mathcal{H}'$ such that both $\phi(\vec{x}_1) = h'_{\tau}(\vec{x}_1)$ and $\phi(\vec{x}_2) = h'_{\tau}(\vec{x}_2)$ where in this regime, $\Phi_2 = \{\phi \in \mathcal{F} : \phi : \{\vec{x}_k \in S\} \to \{\vec{x}_{k,1}, \vec{x}_{k,2}\}\}$. Now take a particular $\phi_0 \in \Phi_2$ such that $\phi_0(\vec{x}_1) = \vec{x}_{1,2}$ and $\phi_0(\vec{x}_2) = \vec{x}_{2,1}$. Since we are assuming condition 2 holds we must have h'_{τ} such that $h'_{\tau}(\vec{x}_1) = \vec{x}_{1,2}$ and $h'_{\tau}(\vec{x}_2) = \vec{x}_{2,1}$. However, since $\vec{x}_{2,1}(j) = 0$ this implies $\vec{x}_2(j) < \tau$. Transitively, we achieve $\vec{x}_1(i) < \vec{x}_2(j) \Rightarrow \vec{x}_1(i) < \tau$ and hence by definition $h'_{\tau}(\vec{x}_1)(i) = \vec{x}_{1,2}(i) = 0$. Comparing with the first generalization in (*), we arrive at a contradiction. Since our choices of \vec{x}_1, \vec{x}_2 , the corresponding $\vec{x}_{1,1}, \vec{x}_{1,2}, \vec{x}_{2,1}, \vec{x}_{2,2}$, and i,j are general up to relabelling, we have shown that if condition 1 holds then condition 2 must necessarily fail for an arbitrary choice of S. Thus, \mathcal{H}' cannot shatter any S, |S| = 2.

2. Claim: Any hypothesis class \mathcal{H} which cannot shatter any set S, |S| = m, cannot shatter any set T, |T| = l, l > m, where S and T are subsets of some feature space \mathcal{X} .

Proof: This is an informal proof of the contra-positive. Suppose \mathcal{H} shatters T. Then take $S = T \setminus U$ where $U \subset T, U \neq \emptyset$. Since \mathcal{H} shatters T by definition $\forall \vec{x}_k \in T, \exists \vec{x}_{k,A}, \vec{x}_{k,B} \in \{0,1\}^n$, such that $\vec{x}_{k,A} \neq \vec{x}_{k,B}$ and $\forall \phi \in \Phi$ where $\Phi = \{\phi \in \mathcal{F} : \phi : \{\vec{x}_k \in T\} \rightarrow \{\vec{x}_{k,A}, \vec{x}_{k,B}\}\} \exists h'_{\tau} \in \mathcal{H}'$ such that $\forall \vec{x}_k \in T \ h'_{\tau}(\vec{x}_k) = \phi(\vec{x}_k)$. Take an arbitrary $\vec{x} \in S$. Since $S \subset T \Rightarrow \vec{x} \in T$, but $\vec{x} \in T$ implies \vec{x} satisfies the previous two shattering conditions. Since our choice of \vec{x} is arbitrary, it is clear that all $\vec{x} \in S$ satisfy the shattering conditions. Hence, \mathcal{H} shatters S.

Combining the two proofs we have that \mathcal{H}' cannot shatter any set S of vectors in \mathbb{R}^n , $|S| \geq 2$. Showing that H' can shatter a set S, |S| = 1, reduces to problem 1. Hence, the $Ndim(\mathcal{H}') = 1$.

2 Bonus

Claim: The $Ndim(\hat{\mathcal{H}}) = n$

Proof: To prove, we need only to show that $\hat{\mathcal{H}}$ shatters a single set S, |S| = n, of vectors in \mathbb{R}^n . To do this, we will show that, $\mathcal{H}^{\dagger} \subset \hat{\mathcal{H}}$, $\mathcal{H}^{\dagger} = \{\hat{h_{\Gamma}} \in \hat{\mathcal{H}} : \forall i \in \{1,..,n\}, \Gamma_i > 0\}$, shatters such a set. For ease of calculation we will take S to be the standard set of unit vectors which form an orthonormal basis for \mathcal{R}^n . We proceed by induction on m up to n:

Base Case: Take $n=1, S=\{\vec{e_1}=1\}, 1\in\mathbb{R}$. We have only two vectors with which 1 can be associated, namely 0, 1. Likewise, there are only two mappings ϕ , $1\to 0$, $1\to 1$. For each mapping we can generate a corresponding \hat{h}_{Γ} , simply by setting $\Gamma_1=\Gamma<1$ and $\Gamma\geq 1$ respectively. We are done.

Induction: Suppose \mathcal{H}^{\dagger} shatters some set $T_m = \{\vec{e_1}, \dots, \vec{e_m}\}$ and $T_m \subseteq S$, $|T_m| = m \le n$, where $\forall \vec{e_k} \in T_m$, $\vec{0}$, $\vec{e_k}$ are the vectors associated with $\vec{e_k}$. By our inductive hypothesis, we assume $\forall \phi \in \Phi_m = \{ \phi \in \mathcal{F} : \phi : \{ \vec{e_k} \in T_m \} \to \{ \vec{0}, \vec{e_k} \} \} \exists h_{\Gamma}^{\dagger} \in \mathcal{H}^{\dagger} \text{ such that } \forall \vec{e_k} \in T_m, \ h_{\Gamma}^{\dagger}(\vec{e_k}) = \phi(\vec{e_k}).$ Notice, if $T_m = S$, then we are done. Else, $T_m \neq S \Rightarrow T_m \subset S$ and m < n. $T_m \subset S \Rightarrow \exists \vec{e_j} \in S$ such that $\vec{e_j} \notin T$. We define a new set $T_{m+1} = T_m \cup \{\vec{e_j}\}$ where $|T_{m+1}| = m+1 \leq n$. Clearly, $T \subseteq S$. Let us introduce a new set of functions $\Phi_{m+1} = \{\phi \in \mathcal{F} : \phi : \{x_k \in T_{m+1}\} \to \{\vec{0}, \vec{e_k}\}\}$. Take $\phi_o \in \Phi_{m+1}$. Now define $\phi_r = \phi_o|_{T_m}$, where ϕ_r is the restriction of ϕ_o to the domain of T_m . Note, $\phi_r = \phi_o|_{T_m} \Rightarrow \forall \vec{e_k} \in S, \ \phi_o(\vec{e_k}) = \phi_r(\vec{e_k}) \Rightarrow \phi_r \in \Phi_m \ (\text{since otherwise we'd have a contradiction}).$ Further, $\phi_r \in \Phi_m \Rightarrow \exists h_{\Gamma^*}^{\dagger} \in \mathcal{H}^{\dagger}$ such that $\forall \vec{e_k} \in T_m \ h_{\Gamma^*}^{\dagger}(\vec{e_k}) = \phi_r(\vec{e_k}) = \phi_o(\vec{e_k})$. Since our choice of ϕ_o was arbitrary, we have that $\forall \phi_o \in \Phi_{m+1} \exists h_{\Gamma^*}^{\dagger}$ such that $\forall \vec{e_k} \in T_m, h_{\Gamma^*}^{\dagger}(\vec{e_k}) = \phi_o(\vec{e_k})$. If we can show that, for a particular choice of $\Gamma_j \in \Gamma^*$, $h_{\Gamma^*}^{\dagger}(\vec{e_j}) = \phi_o(\vec{e_j})$ and still retain $\forall \vec{e_k} \in T_m$ $h_{\Gamma^*}^{\dagger}(\vec{e_k}) = \phi_o(\vec{e_k})$ then we will have proven \mathcal{H}^{\dagger} , and therefore $\hat{\mathcal{H}}$, shatters T_{m+1} . First we show that the action of $h_{\Gamma^*}^{\dagger}$ on T_m is invariant for a change of $\Gamma^* \to \Gamma'$ by varying only Γ_i^* . That is $\forall \Gamma^*, \Gamma' \in \mathbb{R}^n, \ \forall i \in \{1, ..., n\}, i \neq j \ \Gamma_i^* = \Gamma_i', \ \forall \vec{e_k} \in T_m, \ h_{\Gamma^*}^{\dagger}(\vec{e_k}) = h_{\Gamma'}^{\dagger}(\vec{e_k}).$ Suppose not: this implies $\exists \vec{e_k} \in T_m \text{ such that } h_{\Gamma^*}^{\dagger}(\vec{e_k}) \neq h_{\Gamma'}^{\dagger}(\vec{e_k}). \text{ We know } \forall i \neq j, \Gamma_i^* = \Gamma_i' \Rightarrow h_{\Gamma^*}^{\dagger}(\vec{e_k})_i = h_{\Gamma'}^{\dagger}(\vec{e_k})_i. \text{ Now }$ note that $h_{\Gamma^*}^{\dagger}(\vec{e_k})_j = \phi_r(\vec{e_k})_j = 0$; this is because $\phi_r(\vec{e_k})$, and therefore $h_{\Gamma^*}^{\dagger}(\vec{e_k})$, are in $\{\vec{0}, \vec{e_k}\}$, but $k \neq j$ since $\vec{e_j}$ is defined such that $\vec{e_j} \notin T_m$ and all of $\vec{e_l} \in S$ distinct from the definition of a basis. Likewise, $h_{\Gamma'}^{\dagger}(\vec{e_k})_j = 0$ since $\vec{e_{kj}} = \delta_{k,j} = 0$, (where here we've used the definition of the standard set of unit vectors that form a basis for \mathcal{R}^n), and $h_{\Gamma'}^{\dagger} \in \mathcal{H}^{\dagger} \Rightarrow \Gamma' > 0 \Rightarrow (\vec{e_k})_j \not\geq \Gamma'$. Thus we have achieved $\not\exists i$ such that $h_{\Gamma^*}^{\dagger}(\vec{e_k})_i \neq h_{\Gamma'}^{\dagger}(\vec{e_k})_i$, a contradiction. Now we are ready to complete the proof. Consider our arbitrary choice $\phi_o \in \Phi_{m+1}$. Take $h_{\Gamma^*}^{\dagger}$ as before. Suppose $\phi_o(\vec{e_j}) = \vec{0}$, then we take $h_{\Gamma'}^{\dagger}$, where $i \neq j, \Gamma'_i = \Gamma_i^*, \Gamma'_j = 1$. If instead, $\phi_o(\vec{e_j}) = \vec{e_j}$, we take $\Gamma'_j = \frac{1}{2}$. In both cases, we get that $h_{\Gamma'}^{\dagger}(\vec{e_j}) = \phi_o(\vec{e_j})$ and by the invariance lemma above we retain $h_{\Gamma'}^{\dagger}(\vec{e_k}) = \phi_o(\vec{e_k}), \vec{e_k} \in T_m$. Thus, $\forall phi \in \Phi_{m+1} \; \exists h_{\Gamma'}^{\dagger} \in \mathcal{H}^{\dagger} \; \text{such that} \; \forall \vec{e_k} \in T_{m+1} \; h_{\Gamma'}^{\dagger}(\vec{e_k}) = phi(\vec{e_k}) \; \text{or} \; \mathcal{H}^{\dagger} \; \text{and therefore} \; \hat{\mathcal{H}} \; \text{shatters}$ T_{m+1} .

Our assumption that $|T| = m \le n$ holds up to m = n. So by the principle of induction up to n we have shown for any $m \le n$ there exists a set S, |S| = m of unit vectors such that \mathcal{H}^{\dagger} and therefore $\hat{\mathcal{H}}$ shatters S. Taking m = n we see that this implies $Ndim(\hat{\mathcal{H}}) = n$