ЛЕКЦИЯ 1

Опр: Элементарные случайные события (далее ЭСС) - все возможные

исходы некоторого события

Обозн: $\omega_1, \dots, \omega_n$

Опр: Пространство ЭСС - совокупность всех ЭСС

Обозн: Ω

Пусть А, В - события, тогда:

Рис. 1: $A \cap B = A \cdot B$ (и A, и B)

Рис. 2: A \cup B = A + B (А или В)

Рис. 3: А \ В

Рис. 4: \overline{A}

Свойства операций:

Пусть А - событие

1.
$$A + A = A$$

$$2. A \cdot A = A$$

3.
$$A + B = B + A$$
 (коммутативность)

4.
$$A \cdot B = B \cdot A$$

5.
$$(A + B) + C = A + (B + C)$$
 (ассоциативность)

6.
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

7.
$$\overline{\overline{A}} = A$$

8.
$$\overline{\overline{\overline{A}}} = \overline{A}$$

9.
$$A \cdot \Omega = A$$

10.
$$A + \Omega = \Omega$$

11.
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Опр: Класс подмножеств на пространстве Ω называется σ -алгеброй (сигма-алгеброй) событий, если:

- 1. $\Omega \in \mathcal{A}$
- 2. $A \in \mathcal{A} \Longrightarrow \overline{A} \in \mathcal{A}$
- 3. $\forall A_1, \ldots, A_n, \ldots \in \mathcal{A} \Longrightarrow \Sigma_{i=1}^{\infty} A_i \in \mathcal{A}$ и $\prod_{i=1}^{\infty} A_i \in \mathcal{A}$

Обозн: \mathcal{A} (А рукописная)

Опр (классическое):

- 1. Конечное число исходов
- 2. Исходы взаимоисключающие
- 3. Все исходы равновозможны

 $|\mathbf{A}|$ - мощность события, т.е. количество благоприятных ЭСС

$$\mathbf{P}(\mathbf{A}) = rac{|A|}{|\Omega|}$$
 - вероятность от A

Свойства Р(А):

- 1. $\forall A : P(A) \ge 0$
- 2. $P(\Omega)=1$
- 3. Если $A \cdot B \neq \emptyset$, то P(A+B) = P(A) + P(B) (такие события называются несовместными)