IRM研究背景

口 OOD泛化数学刻画:

Problem 1 (Supervised Learning). Given a set of n training samples of the form $\{(x_1, y_1), \ldots, (x_n, y_n)\}$, which are drawn from training distribution $P_{tr}(X, Y)$, a supervised learning problem is to find an optimal model f_{θ}^* which can generalize best on data drawn from test distribution $P_{te}(X, Y)$:

$$egin{aligned} f_{ heta}^* &= rg \min_{f_{ heta}} \mathbb{E}_{X,Y \sim P_{te}}[\ell(f_{ heta}(X),Y)] \ & ext{I.I.D: } P_{tr}(X,Y) = P_{te}(X,Y) \ & ext{OOD: } P_{tr}(X,Y)
eq P_{te}(X,Y) \ & ext{} P_{te}(Y|X) P_{te}(X) \end{aligned}$$

传统机器学习不能有效解决OOD泛化

IRM研究背景

口两类OOD泛化问题:

Shift Type		$\mathbb{P}(\mathbf{X})$	P	(Y X)	Traini	ng	Test	ing
Marginal	\mathbb{P}_{tr}	$(\mathbf{X}) eq \mathbb{P}_{\mathrm{te}}(\mathbf{X})$	$\mathbb{P}_{tr}(Y \mathbf{X})$	$= \mathbb{P}_{te}(Y X)$		Contract of the second		
Conditional	$\sup_{\mathbb{R}^n} \mathbb{P}_{\mathrm{tr}}(\mathbb{R}^n)$	$(\mathbf{X})) \approx \operatorname{supp}(\mathbb{P}_{\operatorname{te}}(\mathbf{X}))$	$\mathbb{P}_{tr}(Y \mathbf{X}_{s})$	$\neq \mathbb{P}_{\text{te}}(Y X_s)$		M	À	May .
		Causal Feature(Xc)	* PSF					
		Spurious Feature(<u>Xs</u>)		i i i i i i i i i i i i i i i i i i i		_		
		Label(Y)	Cow		Caṃgle @林夏	j		

IRM学习依赖不变特征的模型,解决条件概率变化的OOD泛化

不变风险最小化

□ I.I.D:

$$\min_{\substack{\Phi: \mathcal{X}
ightarrow \mathcal{H} \ w: \mathcal{H}
ightarrow \mathcal{Y}}} \sum_{e \in \mathcal{E}_{\mathrm{tr}}} R^e(w \circ \Phi)$$

经验风险最小化ERM

口 IRM问题定义:

$$\min_{\substack{\Phi:\mathcal{X} o\mathcal{H}\wall} w:\mathcal{H} o\mathcal{Y}}\sum_{e\in\mathcal{E}_{\mathrm{tr}}}R^e(w\circ\Phi)$$

不变风险最小化IRM

 $w \in rg \min_{ar{w}: \mathcal{H}
ightarrow \mathcal{Y}} R^e(ar{w} \circ \Phi), ext{ for all } e \in \mathcal{E}_{ ext{tr}}.$

- **理解**: 增加的约束确保H为因果特征 (跨环境不变特征)
- 缺点:双层优化问题,无法通过梯度下降求解

将优化目标转为梯度下降可以求解的形式

From IRM to IRMv1

口第一步:将约束转为惩罚项

$$L_{ ext{IRM}}(\Phi, w) = \sum_{e \in \mathcal{E}_{ ext{tr}}} R^e(w \circ \Phi) + \lambda \cdot \mathbb{D}(w, \Phi, e)$$

预测能力 (ERM) 不变性

- \blacktriangleright λ : $\lambda \in [0,\infty)$, 平衡ERM与不变性
- igwarpu に 歴史の igwarpu に 無いない igwarpu に igwa
- \triangleright 增加假设: 考虑 w 为线性分类器

口 第二步: 给线性分类器选择惩罚项

考虑最小二乘回归:

$$Y^e=w\circ \Phi(X^e)$$

显式解为:

$$w_{\Phi}^e = \mathbb{E}_{X^e} \Big[\Phi(X^e) \Phi(X^e)^ op \Big]^{-1} \mathbb{E}_{X^e,Y^e} [\Phi(X^e)Y^e]$$

From IRM to IRMv1

两个分类器之间差距定义为:

$$\mathbb{D}_{ ext{dist}}\left(w,\Phi,e
ight)=\left\|w-w_{\Phi}^{e}
ight\|^{2}$$

因为 $w^e_\Phi=\mathbb{E}_{X^e}\Big[\Phi(X^e)\Phi(X^e)^ op\Big]^{-1}\mathbb{E}_{X^e,Y^e}[\Phi(X^e)Y^e]$,存在求**逆运算**,导致距离

函数不连续,改为:

$$\mathbb{D}_{ ext{lin}}(w,\Phi,e) = \left\| \mathbb{E}_{X^e} \Big[\Phi(X^e) \Phi(X^e)^ op \Big] w - \mathbb{E}_{X^e,Y^e} [\Phi(X^e)Y^e]
ight\|^2.$$

上式满足: $\mathbb{D}_{\mathrm{lin}}(w,\Phi,e)=0$ 当且仅当 $w\in rg\min_{ar{w}}R^e(ar{w}\circ\Phi)$

口 第三步: 固定线性分类器

当考虑 $\left(\gamma\Phi, \frac{1}{\gamma}w\right)$,随着 γ 趋于0,可使ERM项不变,但 $\mathbb{D}_{\mathrm{lin}}(w,\Phi,e)=0$

考虑对任何可逆映射Ψ, 重写不变预测器:

$$w\circ\Phi=\underbrace{\left(w\circ\Psi^{-1}
ight)}_{ ilde{w}}\circ\underbrace{\left(\Psi\circ\Phi
ight)}_{ ilde{\Phi}}$$

From IRM to IRMv1

将所有环境最优分类器固定在 \tilde{w} , IRM定义改写为:

$$L_{\mathrm{IRM},w= ilde{w}}(\Phi) = \sum_{e\in\mathcal{E}_{\mathrm{tr}}} R^e(ilde{w}\circ\Phi) + \lambda\cdot\mathbb{D}_{\mathrm{lin}}(ilde{w},\Phi,e)$$
 IRM relaxed version

ullet 更一般地,固定 $ilde{w}=1$

$$L_{\mathrm{IRM},w=1.0}ig(\Phi^ opig) = \sum_{e\in\mathcal{E}_{\mathrm{tr}}} R^eig(\Phi^ opig) + \lambda\cdot \mathbb{D}_{\mathrm{lin}}ig(1.0,\Phi^ op,eig)$$

考虑最小二乘损失:

$$R^e(w \cdot \Phi) = \frac{1}{2} (w \cdot \Phi(X^e) - Y^e)^T (w \cdot \Phi(X^e) - Y^e)$$

$$\|\nabla_{w|w=1.0} R^e(w \cdot \Phi)\|^2 = \|\Phi(X)\Phi(X)^T w - \Phi(X)Y\|^2$$

$$\mathbb{D}(1.0, \Phi, e) = \|\nabla_{w|w=1.0} R^e(w \cdot \Phi)\|^2$$
 惩罚项最终表达式

$$\min_{\Phi:\mathcal{X} o\mathcal{Y}}\sum_{e\in\mathcal{E}}R^e(\Phi)+\lambda\cdot\left\|
abla_{w|w=1.0}R^e(w\cdot\Phi)
ight\|^2$$
 IRMv1

IRM实验一

□ IRM提出ColoredMNIST数据集:目标是预测数字,二分类任务

Dataset	X_{ν}	X _s	Training	Testing	Bias Ratio: $corr(Y, X_s)$	$corr(Y, X_{\nu})$
ColoredMNIST	Digit	Color	10	10	(0.9, 0.8, 0.1)	0.75
ColoredObject	Object	Background		of the second	(0.999, 0.7, <mark>0.1</mark>)	0.95
CIFARMNIST	CIFAR	MNIST	01	10	(0.999, 0.7, <mark>0.)</mark>	@ 祿勇

- ・ IRM特征学习: 输入X(n, 14*14), 学习MLP: Φ , 深度学习输出Z(n, 1), 分类器w(1,), $X\Phi w = Y^{\wedge}$, Y(n, 1)
- ・ ICP特征选择

> IRM特征学习对数据集要求:

- 明确 X_v 和 X_s
- 划分环境使 P(Y | Xs) 发生变化

现实情况很难满足

IRM实验一环境划分


```
def make_environment(images, labels, e):
 def torch_bernoulli(p, size):
   return (torch.rand(size) < p).float()</pre>
 def torch_xor(a, b):
   return (a-b).abs() # Assumes both inputs are either 0 or 1
 # 2x subsample for computational convenience
 images = images.reshape((-1, 28, 28))[:, ::2, ::2]
 # Assign a binary label based on the digit; flip label with probability 0.25
 labels = (labels < 5).float()
 labels = torch_xor(labels, torch_bernoulli(0.25, len(labels)))
 # Assign a color based on the label; flip the color with probability e
 colors = torch_xor(labels, torch_bernoulli(e, len(labels)))
 # Apply the color to the image by zeroing out the other color channel
 images = torch.stack([images, images], dim=1)
 images[torch.tensor(range(len(images))), (1-colors).long(), :, :] *= 0
 return {
    'images': (images.float() / 255.).cuda(),
    'labels': labels[:, None].cuda()
envs = [
 make_environment(mnist_train[0][::2], mnist_train[1][::2], 0.2),
 make_environment(mnist_train[0][1::2], mnist_train[1][1::2], 0.1),
 make_environment(mnist_val[0], mnist_val[1], 0.9)
```

- ▶ 将60000张MNIST训练 集中前50000张作为训 练集,后10000张作为 测试集。
- 》对于每张28×28图片: 通过子采样得到14×14 图片;若图片中数字0-4则 $\tilde{y} = 0$,否则 $\tilde{y} = 1$, 再以0.25的概率翻转 \tilde{y} 得到最终标签y。
- 对标签 y 以概率e进行
 翻转得到颜色标签 z,
 z = 1 图像为红色,
 否则为绿色。

IRM实验一结果

Algorithm	Acc. train envs.	Acc. test env.
ERM	87.4 ± 0.2	17.1 ± 0.6
IRM (ours)	70.8 ± 0.9	66.9 ± 2.5
Random guessing (hypothetical)	50	50
Optimal invariant model (hypothetical)	75	75
ERM, grayscale model (oracle)	73.5 ± 0.2	73.0 ± 0.4

口 实验结论:

- > ERM主要根据颜色进行分类,训练集精度高,测试集精度低。
- > IRM训练集表现较差,但对颜色依赖较少,可以更好泛化到测试集。
- > 忽略颜色信息的ERM (oracle): 训练集和测试集表现略微优于IRM。

IRM实验一结果

口 实验结论:

- ➤ IRM模型比ERM更易实现不变性。
- > IRM模型并未实现完美的不变性,可能是由于有限样本问题。

IRM实验二-合成实验

Figure 3: In our synthetic experiments, the task is to predict Y^e from $X^e = S(Z_1^e, Z_2^e)$

- Scrambled (S) observations, where S is an orthogonal matrix, or unscrambled (U) observations, where S = I.
- Fully-observed (F) graphs, where $W_{h\to 1} = W_{h\to y} = W_{h\to 2} = 0$, or partially-observed (P) graphs, where $(W_{h\to 1}, W_{h\to y}, W_{h\to 2})$ are Gaussian.
- Homoskedastic (O) Y-noise, where $\sigma_y^2 = e^2$ and $\sigma_2^2 = 1$, or heteroskedastic (E) Y-noise, where $\sigma_y^2 = 1$ and $\sigma_2^2 = e^2$.
- ・ IRM: 输入X(n,10), 学习矩阵: $\Phi(10,10)$, 输出Z(n,10), 分类器w(10,), $X\Phi w = Y^{\hat{}}(n,1)$

IRM将维数设置很低,是为了和ICP作对比

IRM实验二结果

IRM与ICP中环境的区别

➤ IRM: 允许Y的噪声方差在有限范围内变化

Definition 7. Consider a SEM \mathcal{C} governing the random vector (X_1, \ldots, X_d, Y) , and the learning goal of predicting Y from X. Then, the set of all environments $\mathcal{E}_{all}(\mathcal{C})$ indexes all the interventional distributions $P(X^e, Y^e)$ obtainable by valid interventions e. An intervention $e \in \mathcal{E}_{all}(\mathcal{C})$ is valid as long as (i) the causal graph remains acyclic, (ii) $\mathbb{E}[Y^e|Pa(Y)] = \mathbb{E}[Y|Pa(Y)]$, and (iii) $\mathbb{V}[Y^e|Pa(Y)]$ remains within a finite range.

➤ ICP: Y的SCM不能变

for all $e \in \mathcal{E}$, X^e has an arbitrary distribution and

$$Y^e = g(X^e_{S^*}, \varepsilon^e), \qquad \qquad \varepsilon^e \sim F_{\varepsilon} \text{ and } \varepsilon^e \perp \!\!\!\perp X^e_{S^*},$$

 $Y^e \mid X^e_{S^*} ext{ and } Y^f \mid X^f_{S^*} ext{ are identical for all environments } e,f \in \mathcal{E}$