8.1 Reversing Oblivious Transfer

8.1.1 Correctness

We can raise the following equation:

$$\alpha = m \oplus r$$

$$= z \oplus y_0 \oplus r$$

$$= x_c \oplus y_0 \oplus r$$

$$= x_{y_0 \oplus y_1} \oplus y_0 \oplus r$$

If $y_0 = y_1$, then the $\binom{2}{1}$ -OTS, will return the value of $x_0 = r$, so for our equation we get:

$$\alpha = x_0 \oplus y_0 \oplus r$$
$$= r \oplus y_0 \oplus r$$
$$= y_0 = y_1$$

,which is obviously the correct value S wants to have.

If $y_0 = \neg y_1$, then the $\binom{2}{1}$ -OTS, will return the value of $x_1 = r \oplus d$, so for our equation we get:

$$\alpha = x_1 \oplus y_0 \oplus r$$
$$= r \oplus d \oplus y_0 \oplus r$$
$$= d \oplus y_0$$

, which is $\alpha = y_0$, if d = 0, and $\alpha = y_1$, if d = 1.

8.1.2 Security for S

The receiver \mathbb{R} only learns the blinded values of either x_0 or x_1 . Therefore it cannot derive from these values what the chosen value of d was.

8.1.3 Security for R

Because \mathbb{R} is calculating $x_c \oplus y_0$, \mathbb{S} cannot calculate the other value, which \mathbb{S} did not receive, because it cannot work back the index of which $x_c \mathbb{R}$ has gotten from the $\binom{2}{1}$ -OTS. Therefore also the security for \mathbb{R} is given.

8.2 More efficient Oblivious Transfer

8.2.1 Protocol

Key Generation

We know that $n = 2^k$ is the number of inputs. Let $l_1, ..., l_k$ and $r_1, ..., r_k$ be random bits. Furthermore $j_0 = 0$. We now consider a balanced binary tree of depth k and j_0 as its root node. Let $j_{i,x}$ be any non-root node in the tree, whereas $i \ge 1$ and $x \in \{l, r\}^i$ which indicates which left and right edges to travers to reach each node.

All $j_{i,x}$ are defined as follows:

$$j_{i,x'l} = j_{i-1,x'} \oplus l_i$$
 For left children nodes $j_{i,x'r} = j_{i-1,x'} \oplus r_i$ For right children nodes

 $x' \in \{l, r\}^{i-1}$ describes the sequence of edges to reach the predecessor of node $j_{i,x}$. The leaf nodes of the tree are named $k_0, ..., k_{n-1}$. This leaves are random bits, which are the solution

of an XOR operation of random bits. Furthermore for each k_i , k_j , where $j \neq i$ the XOR operation sequence differs in at least one instance applied to j_0 to produce it. Because all l_i and r_i are randomly chosen the knowledge of any k_i does not leak any information of another k_i where $i \neq j$.

$\binom{n}{1}$ -Oblivious Transfer

We are now constructing a protocol for an $\binom{n}{1}$ -OT, where $n=2^k$:

$\begin{aligned} j_0 &= 0 \\ k_y &= 0 \\ \text{Binary representation of } y \\ (y_1y_k)_2 &:= y \end{aligned}$ $Key \ generation \ as \ shown \ in \ the \ previous \ section \\ \text{For } i &= 1 \ \text{To } k: \\ l_i &\leftarrow \{0,1\} \\ r_i &\leftarrow \{0,1\} \\ j_{i,x'l} &= j_{i-1,x'} \oplus l_i \\ j_{i,x'r} &= j_{i-1,x'} \oplus r_i \\ \text{Setting } up \ the \ leaves: \\ k_0,,k_{n-1} &= j_{k,ll},,j_{k,rr} \end{aligned}$ $c_i &= x_i \oplus k_i \\ \text{For } i &= 1 \ \text{To } k: $ $For \ i &= 1 \ \text{To } k:$		(1) '	
Binary representation of y (y_1y_k) $_2 := y$ Key generation as shown in the previous section FOR $i = 1$ TO k : $l_i \leftarrow \{0, 1\}$ $r_i \leftarrow \{0, 1\}$ $j_{i,x'l} = j_{i-1,x'} \oplus l_i$ $j_{i,x'r} = j_{i-1,x'} \oplus r_i$ Setting up the leaves: $k_0,, k_{n-1} = j_{k,ll},, j_{k,rr}$ $c_i = x_i \oplus k_i$ FOR $i = 1$ TO k :	$S(x_0,, x_{n-1})$		$\mathbf{R}(\mathbf{y})$
FOR $i=1$ to k : $l_{i} \leftarrow \{0,1\}$ $r_{i} \leftarrow \{0,1\}$ $j_{i,x'l} = j_{i-1,x'} \oplus l_{i}$ $j_{i,x'r} = j_{i-1,x'} \oplus r_{i}$ Setting up the leaves: $k_{0},, k_{n-1} = j_{k,ll},, j_{k,rr}$ $c_{i} = x_{i} \oplus k_{i}$ FOR $i=1$ to k : FOR $i=1$ to k :	$j_0 = 0$		Binary representation of <i>y</i> :
$\begin{aligned} &l_i \leftarrow \{0,1\} \\ &r_i \leftarrow \{0,1\} \\ &j_{i,x'l} = j_{i-1,x'} \oplus l_i \\ &j_{i,x'r} = j_{i-1,x'} \oplus r_i \\ &Setting \ up \ the \ leaves: \\ &k_0,, k_{n-1} = j_{k,ll},, j_{k,rr} \end{aligned}$ $c_i = x_i \oplus k_i$ $\text{For } i = 1 \text{ To } k$:	Key generation as shown in the previous section		
$r_{i} \leftarrow \{0, 1\}$ $j_{i,x'l} = j_{i-1,x'} \oplus l_{i}$ $j_{i,x'r} = j_{i-1,x'} \oplus r_{i}$ Setting up the leaves: $k_{0},, k_{n-1} = j_{k,ll},, j_{k,rr}$ $c_{i} = x_{i} \oplus k_{i}$ For $i = 1$ To k : For $i = 1$ To k :	FOR $i = 1$ TO k :		
$r_{i} \leftarrow \{0,1\}$ $j_{i,x'l} = j_{i-1,x'} \oplus l_{i}$ $j_{i,x'r} = j_{i-1,x'} \oplus r_{i}$ Setting up the leaves: $k_{0},, k_{n-1} = j_{k,ll},, j_{k,rr}$ $c_{i} = x_{i} \oplus k_{i}$ FOR $i = 1$ TO k : FOR $i = 1$ TO k :	$l_i \leftarrow \{0,1\}$		
$\begin{aligned} j_{i,x'l} &= j_{i-1,x'} \oplus l_i \\ j_{i,x'r} &= j_{i-1,x'} \oplus r_i \\ Setting up the leaves: \\ k_0,, k_{n-1} &= j_{k,ll},, j_{k,rr} \end{aligned}$ $c_i &= x_i \oplus k_i$ For $i = 1$ To k :	•		
$\begin{aligned} j_{i,x'r} &= j_{i-1,x'} \oplus r_i \\ Setting \ up \ the \ leaves: \\ k_0,,k_{n-1} &= j_{k,ll},,j_{k,rr} \end{aligned}$ $c_i &= x_i \oplus k_i \\ \text{For } i &= 1 \text{ To } k: $ $For \ i &= 1 \text{ To } k:$	· · · · · · · · · · · · · · · · · · ·		
Setting up the leaves: $k_0,, k_{n-1} = j_{k,ll},, j_{k,rr}$ $c_i = x_i \oplus k_i$ $For \ i = 1 \text{ To } k$: $For \ i = 1 \text{ To } k$:			
$k_0,, k_{n-1} = j_{k,ll},, j_{k,rr}$ $c_i = x_i \oplus k_i$ For $i = 1$ to k : $c_0,, c_{n-1} \rightarrow \cdots$ For $i = 1$ to k :			
For $i = 1$ to k :	~ ·		
For $i = 1$ to k :		$c_0,,c_{n-1}$	
		\rightarrow	
$\stackrel{l_i,r_i}{\longrightarrow} \left {\binom{2}{1}}\text{-OT} \right \stackrel{y_i}{\longleftarrow} $	FOR $i = 1$ TO k :		For $i = 1$ to k :
		$\stackrel{l_i,r_i}{\longrightarrow} \left[\binom{2}{1} \text{-OT} \right] \stackrel{y_i}{\stackrel{j_i}{\longleftarrow}}$	
$k_{v} = k_{v} \oplus j_{i}$			$k_{\cdot \cdot} = k_{\cdot \cdot} \oplus i_{i}$
RETURN $c_v \oplus k_v$			

8.2.2 Cost

We assume that the $\binom{2}{1}$ -OT is implemented as defined in the lecture. Therefore this protocol uses a total of:

- $k\binom{2}{1}$ -OT are used, therefore:
 - 2k public-key operations
 - 3k message rounds

Exercise 08

-
$$O(k(1 + \lambda)) = O(k + k\lambda)$$
 bits

- 2k random bits
- $2^{k+1} 2$ XOR operations for key generation
- 2^k XOR operations for encryption
- k XOR operations for key retrieval
- 1 XOR operation for decryption
- $2^k = n$ bits and one message round for the transfer of the ciphertexts

Therefore our total costs are:

Computational Cost

 $2k = 2\log_2(n)$ expensive public-key operations and O(n) cheap XOR operations

Latency

3k + 1 message rounds

Communication Complexity

 $O(n + k\lambda)$ bits transferred