01. 기본- 결정트리(decision tree)

- · Machine Learning with sklearn @ DJ,Lim
- date: 21/07

데이터 셋 다운로드

- UCI: https://www.kaggle.com/uciml/pima-indians-diabetes-database (<a href="https://www.kaggle.com/uciml/pima-indians-database (<a href="https://www.kaggle.com/uciml/pima-indians-database (<a href="https://ww
 - (가) decision tree는 classification(분류)와 regression(회귀) 문제에 널리 사용하는 모델이다.
 - (나) 스무고개 놀이의 질문과 비슷하다.

In [7]: ▶

라이브러리 불러오기

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

Data Fields

구분	설명
Pregnancies	임신
Glucose	포도당
BloodPressure	혈압
SkinThickness	피부두께
Insulin	인슐린
ВМІ	ВМІ
Diabetes Pedigree Function	당뇨병혈통기능
Age	나이
Outcome	결과

In [8]:

pima = pd.read_csv("diabetes.csv")

In [9]: ▶

pima.columns

Out [9]:

In [10]:

pima.head()

Out[10]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67:
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28

Feature Selection

In [11]:

pima.columns

Out[11]:

```
In [12]:

pima.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64
dtvn	es: $float64(2)$ int64(7)		

dtypes: float64(2), int64(7) memory usage: 54.1 KB

In [13]:

pima.head(3)

Out[13]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.672

```
In [15]: ▶
```

pima.columns

Out[15]:

```
In [16]:
```

데이터 나누기

```
In [17]:
                                                                                               H
# 데이터 셋 나누기
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 70% train
In [18]:
                                                                                               H
print(X_test.columns)
print(X_train.columns)
print(y_train.shape)
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
       'BMI', 'DiabetesPedigreeFunction', 'Age'],
      dtype='object')
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
       'BMI', 'DiabetesPedigreeFunction', 'Age'],
      dtype='object')
(537,)
In [26]:
# 의사결정 트리 모델 생성 및 학습
model = DecisionTreeClassifier(max_depth=5).fit(X_train,y_train)
# 예측
y_pred = model.predict(X_test)
모델 평가
In [27]:
                                                                                               M
from sklearn import metrics
In [28]:
# Model Accuracy, 얼마나 정확한가? 정확도
```

Accuracy: 0.75757575757576

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

시각화 1

```
In [30]:
```

<graphviz.files.Source at 0x7fe14fc2d590>

시각화 2

• png파일로 만들기

```
In [36]:

from sklearn.tree import export_graphviz
from sklearn.externals.six import StringIO
import pydotplus
from IPython.display import Image
```

```
In [44]:
```

```
import graphviz
# model : 모델명,
# class_n : 클래스명,
# feature n : 특징 이름
def tree_plot(model, class_n, feature_n):
  export_graphviz(model, out_file="tree.dot",
               class_names = class_n,
               feature_names = feature_n,
               impurity = True, # gini 계수
               filled=True,
               rounded=True.
               special_characters=True)
                                              # color
 with open("tree.dot") as f:
    dot_graph = f.read()
  display(graphviz.Source(dot_graph))
tree_plot(model, ['당뇨', '당뇨X'], feature_cols)
```

<graphviz.files.Source at 0x7fe14f2efc50>

모델 성능 개선

```
In [45]:
```

```
model = DecisionTreeClassifier(criterion="entropy", max_depth=3) # 의사결정트리 모델
model.fit(X_train,y_train) # 학습
y_pred = model.predict(X_test) # 데이터 셋 예측

# 정확도 확인
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Accuracy: 0.7705627705627706

시각화 -> 파일쓰기

In [47]: ▶

Out [47]:

In []: