Finding the Most Powerful Test: the Neyman-Pearson Lemma

The goodness of a test is measured by α and β , the probabilities of type I and type II errors, respectively. Typically, the value of α is chosen in advance and determines the location of the rejection region. A related but more useful concept for evaluating the performance of a test is called the power of the test. Basically, the power of a test is the probability that the test will lead to rejection of the null hypothesis.

If a random sample is taken from a distribution with parameter θ , a hypothesis is said to be a simple hypothesis if that hypothesis uniquely specifies the distribution of the population from which the sample is taken. Any hypothesis that is not a simple hypothesis is called a composite hypothesis.

The hypothesis $H_a: \lambda = 2$ is therefore an example of a simple hypothesis. In contrast, the hypothesis $H_a^*: \lambda > 2$ is a composite hypothesis because under H_a^* the density function is not *uniquely* determined. The form of the density is known, but the parameter λ could be 3 or 15 or any value greater than 2.

The Neyman-Pearson Lemma: Suppose that we wish to test the simple null hypothesis H_o : $\theta=\theta_o$ versus the simple alternative hypothesis H_a : $\theta=\theta_a$, based on a random sample from a distribution with parameter θ . Let $L(\theta)$ denote the likelihood of the sample when the value of the parameter is θ . Then, for a given α , the test that maximizes the power at θ_a has a rejection region, RR, determined by

$$\frac{L(\theta_o)}{L(\theta_a)} < k$$

The value of k (critical region) is chosen so that the test has the desired value for α . Such a test is a most powerful α -level test for H_o versus H_a .

Example 1: Suppose $X_1, X_2, ..., X_n$ is a random sample from an exponential distribution with parameter β . Is the hypothesis H: $\beta = 3$ a simple or a composite hypothesis?

Example 2: Suppose X_1 , X_2 ,..., X_n is a random sample from a normal distribution with mean μ and unknown variance σ^2 . Is the hypothesis H: μ (=) 12 a simple or a composite hypothesis?

CAnnot specify Dist of hypothesis (5?)? De composite.

Example 3: Suppose X is a single observation from a population with probability density function given by: $f_X(x) = \theta x^{\theta - 1},$ 0 < x < 1

Find the test with the best critical region, that is, find the most powerful test, with significance level $\alpha = 0.05$, for testing the simple null hypothesis H_0 : $\theta = 3$ against the simple alternative hypothesis H_a : $\theta = 2$.

most powerful tost RHo when x, LO.3684 (d=0.05)

Here 7, =0.7 => RHo Curde The Most for Stat 323 @Scott Robison 2017

16 dbs. what could median?

Example 4: Suppose X_1 , X_2 ,..., X_{16} is a random sample from a normal distribution with mean μ and known variance $\sigma^2 = 16$. Find the most powerful test, with significance level $\alpha = 0.05$, for testing the simple null hypothesis H_o : $\theta = 10$ against the simple alternative hypothesis H_a : $\theta = 15$.

$$\frac{1}{10} \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10}{10} = \frac{1}{10} \cdot \frac$$

11 0=0.05 most power fel test 8445... RR> CV

(V = T XNNorm (M=10, 0=4/00)

CV = qnorm (0.95, 10, 1) = 11.64485

Example 5: Suppose X_1, X_2, \ldots, X_n is a random sample from a Bernoulli distribution with probability p. Find the most powerful test, with significance level $\alpha = 0.05$, for testing the simple null hypothesis H_o: p = 0.6 against the simple alternative hypothesis H_a : p = 0.4.

simple alternative hypothesis
$$H_a$$
: $p = 0.4$.

Ha: $p = 0.6$

Ha: $p = 0.4$.

 $k(\theta) = \sqrt{\frac{2}{12}}$
 $k(\theta) = \sqrt{$

What is The Dist of EXi? When X NBurn (p=0.6). And Xi independent

H. . pr 0.6

whom n Big Ex: = p~ Norm (0.6, 6= 0.24)

Stat323@ScottRobison2017 extis. Ho:0=0.6.

Ho: p=0.6.

Ha: p=0.4.

CV =7 qbinom (0.05, n, 0.6)

What Powerful RR it 2x 2cv RHo. dwine FRA.

CV=3 . X=0.0122945536.

Example 6: Suppose $X_1, X_2, ..., X_n$ is a random sample from an exponential distribution with mean β . Find the most powerful test, with significance level $\alpha = 0.05$, for testing the simple null hypothesis H_o : $\beta = \beta_o$ against the simple alternative hypothesis H_a : $\beta = \beta_a$, where $\beta_a > \beta_o$.

example of suppose
$$A_1, X_2, \dots, X_n$$
 is a random sample from an exponential astronucin with mean β . Find the most powerful test, with significance level $\alpha = 0.05$, for testing the simple null hypothesis $H_0: \beta = \beta_0$ against the imple alternative hypothesis $H_a: \beta = \beta_a$, where $\beta_a > \beta_0$.

Ho: $\beta = \beta_0$

L(β) = L(β) = β_0 =

(ZX; ~... myf [[1-Bit]] = [1-Bit] Comme (v=n, B=Bo)

Gramme)

Filo

Filo

X ~ ... [1-Bo)t

X ~ Comme (v=n, B=Bo)

when n. Big EXi = x ~ Norm (M= Po, 5 = Por.)

Ho: B=4

Ho: B>4

CV of most powerful test.

RR i] EXi > gamma (0.95, 17, 48)

Example 7: Suppose $X_1, X_2, ..., X_n$ is a random sample from a uniform distribution $[0, \theta]$. Find the most powerful test, with significance level $\alpha = 0.05$, for testing the simple null hypothesis H_0 : $\theta = 4$ against the simple alternative hypothesis H_a : $\theta < 4$.

Recall
$$f_{\chi(n)}(x) = \frac{n\chi^{n-1}}{e^n}$$
 for $0 < \chi < 0$

$$0.05 = \int_0^{e^n} \frac{\chi^{n-1}}{4^n} d\chi = 7 \cdot 0.05 = \frac{n}{4^n} \left[\frac{\chi^{n-1}}{n} \right]_{\chi=0}^{\chi=1}$$

$$0.05 = \frac{cv^n}{4^n}$$

		* y y
		i.
		i.