Concept learning

1. Definizione

Il problema del concept learning può essere definito come il problema di inferire attraverso uno spazio predefinito di potenziali ipotesi l'ipotesi che meglio fitta gli esempi di training.

2. Notazione

- X = insieme o **spazio delle istanze**, ovvero l'insieme degli elementi su cui è definito il concetto (o ipotesi) da inferire. Dati dunque n attributi $A_1, A_2, ..., A_n$, ognuno contenente un numero arbitrario ma finito di valori, $X = A_1 \times A_2 \times ... \times A_n$ e **un 'istanza** è un elemento $x \in X$
- c = **concetto** o funzione da inferire (target concept). In generale c può essere una qualsiasi funzione booleana definita sullo spazio delle istanze, ovvero $c: X \to \{0,1\}$
- H = insieme o **spazio delle ipotesi**, che contiene tutte le possibili ipotesi che l'algoritmo d'apprendimento può prendere in considerazione per inferire c. In generale si ha che $\forall h \in H, \ h: X \to \{0,1\}$. Ogni ipotesi può anche essere considerata come una congiunzione di attributi: avevndo n attributi, un'ipotesi può essere considerata come un vettore di n elementi $h = \langle a_1, a_2, ..., a_n \rangle = \langle A_1 = a_1 \wedge A_2 = a_2 \wedge ... \wedge A_n = a_n \rangle$ dove a_i rappresenta il valore assunto dall'attributo i-esimo. Inoltre vale che $a_i \in A_i \cup \{?,\emptyset\}$, dove $a_i = ?$ significa che l'attributo a_i può assumere qualsiasi valore in A_i , mentre $a_i = \emptyset$ significa che non può assumere nessun valore
- $D=\{\langle x_1,c(x_1)\rangle,\langle x_2,c(x_2\rangle,\ ...\ ,\langle x_n,c(x_n)\rangle\}$, insieme degli esempi o **training set**, dove $x_i\in X$ e $c(x_i)$ è il target concept associato a quell'istanza o esempio. Tutte le istanze per cui $c(x_i)=1$ sono chiamate **esempi postitvi**, mentre tutte le istanze per cui $c(x_i)=0$ sono chiamate **esempi negativi**

Nel concept learning dunque, dato un training set D, bisogna determinare un'ipotesi $h \in H \mid \forall x \in X(h(x) = c(x))$

2.1. Esempio

Attributi $A_i \in \{1,2,3\}$, con $i \in \{1,2,3\}$

- ullet Quante istanze ci sono in X? $|X|=|A_1 imes A_2 imes A_3|=3^3=27$
- Quante ipotesi <u>sintatticamente</u> distinte esistono in H? $(3+2)^3=|A_1\times A_2\times A_3|$, con $A_i\in\{1,2,3,?,\emptyset\}$

• Quante ipotesi <u>semanticamente</u> distinte esistono in H?

$$1+(3+1)^3=|\{\langle\emptyset,\emptyset,\emptyset
angle\}\cup(A_1 imes A_2 imes A_3)|$$
, con $A_i\in\{1,2,3,?\}$

3. Performance evaluation

Matrice di confusione:

	Positive	Negative
Positive	TP	FP
Negative	FN	TN

Dove:

- TP = Numero di True Positive
- FP = Numero di False Positive
- TN = Numero di True Negative
- FN = Numero di False Negative

Indici di performance:

- Sensitivity = $\frac{TP}{TP+FN}$, ovvero p(y=1|x=1)• Specificity = $\frac{TN}{FP+TN}$, ovvero p(y=0|x=0)
- Positive predictive value (PPV) = $\frac{TP}{TP+FP}$, ovvero p(x=1|y=1) Negative predictive value (NPV) = $\frac{TN}{TN+FN}$, ovvero p(x=0|y=0)
- Accuracy = $\frac{TP+TN}{TP+FP+TN+FN}$, ovvero p(y=x)

Dove x rappresenta la vera classe d'appartenenza, mentre y rappresenta la classe predetta

Concept learning come ricerca

Il concept learning può essere interpretato come la ricerca dell'ipotesi che meglio fitta gli esempi di training.

Molti algoritmi per il concept learning organizzano tale ricerca basandosi su un **ordine parziale** per lo sapzio delle ipotesi H:

$$orall x \in X, \ orall h \in H$$
, si dice che x soddisfa h sse $h(x) = 1$

Date $h_j, h_k \in H$, h_j è più generale o uguale di h_k $(h_j \geq_g h_k)$ sse $orall x \in X, (h_k(x) = h_k)$ $1) \to (h_j(x) = 1).$

Mentre h_j è più generale di h_k ($h_j > h_k$) sse $(h_j \geq_g h_k) \wedge (h_k \not\geq_q h_j)$

Insiemisticamente parlando un'ipotesi h_j è più generale o uguale di un'altra ipotesi h_k sse $h_k \subseteq h_j$.

Mentre h_j è più generale di un'altra ipotesi h_k sse $h_k \subset h_j$

Logicamente parlando un'ipotesi h_j è più generale di un'altra ipotesi h_k sse h_j impone meno vincoli rispetto a h_k

Ad esempio suppponiamo di avere uno spazio delle ipotesi H definito sugli attributi $A_i \in \{1,2\}$, con $i \in \{1,2\}$.

Allora l'ipotesi $h_1=\langle 1,?\rangle\geq_g h_2=\langle 1,1\rangle$, infatti $h_2=\{\langle 1,1\rangle\}\subseteq h_1=\{\langle 1,1\rangle,\langle 1,2\rangle\}$, inoltre h_1 vincola soltanto $A_1=1$, mentre h_2 vincola $A_1=1\land A_2=1$.

Si definisce inoltre la consistenza di un'ipotesi come:

Un'ipotesi $h \in H$ è **consistente** con un training set D sse $\forall \langle x, c(x) \rangle \in D, \ h(x) = c(x)$

1. Find-S

L'algoritmo Find-S parte dall'ipotesi più specifica (quella con tutti \emptyset) e cerca di generalizzarla man mano. Ad ogni passo l'algoritmo trova l'ipotesi più specifica consistente con i dati di training. L'algoritmo è il seguente:

- 1. Sia $h \in H$ l'ipotesi più specifica, ovvero quella per cui ogni $a_i = \emptyset$
- 2. $\forall \langle x, c(x)
 angle \in D \mid c(x) = 1$
 - $* \forall a_i \in h$

Se a_i non è soddisfatta da x, allora sostituisci ad a_i il vincolo più generale che è soddisfatto da x, dove $\emptyset \leq_g K \leq_g$?, dove $K \in A_i$

1.1. Esempio

Supponiamo D sia così composto:

	A_1	A_2	A_3	A_4	A_5	c(x)
x_1	0	1	1	1	1	1
x_2	1	0	1	1	1	0
x_3	0	1	1	1	0	1
x_4	0	1	0	1	0	1
x_5	1	0	1	0	1	0

allora l'algoritmo Find-S si comporterà così:

- 1. $h = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$
- 2. $c(x_1)=1$, dunque $h=\langle 0,1,1,1,1
 angle$, in quanto $a_i
 eq x_{1,i}$ e valendo la relazione $x_{1,j}\geq_g a_i$
- 3. $c(x_2)=0$, esempio scartato da Find-S
- 4. $c(x_3)=1$, dunque $h=\langle 0,1,1,1,? \rangle$, in quanto $(a_5=1) \neq (x_{3,5}=0)$ ed essendo $?\geq_g (a_5=1)$
- 5. $c(x_4)=1$, dunque $h=\langle 0,1,?,1,? \rangle$, in quanto $(a_3=1) \neq (x_{4,3})$, ed essendo $?\geq_g (a_3=1)$
- 6. $c(x_5)=0$, esempio scartato da Find-S

L'ipotesi prodotta da Find-S è dunque $h=\langle 0,1,?,1,?\rangle$ che estesa vale $h=\{\langle 0,1,0,1,0\rangle,\langle 0,1,1,1,0\rangle,\langle 0,1,0,1,1\rangle,\langle 0,1,1,1,1\rangle\}$

1.2. Pro

Supponendo che:

- ullet II training set D sia esente da errori
- · Lo spazio delle ipotesi sia composto dalla congiunzione di attributi
- $c \in H$

allora è garantito che l'ipotesi trovata da Find-S sia la più specifica in H consistente con D (positivi e negativi)

Ad esempio (from Zoppis), supponiamo:

• D sia così composto:

	A_1	A_2	A_3	c(x)
x_1	1	1	2	1
x_2	1	3	2	0
x_3	1	2	2	1

•
$$c = \langle A_1 = 1 \land (A_2 = 1 \lor A_2 = 2) \land A_3 = 2 \rangle = \{ \langle 1, 1, 2 \rangle, \langle 1, 2, 2, \rangle \}$$

Se applichiamo Find-S troveremo che l'ipotesi più specifica "consistente" con D è $h=\langle 1,?,2
angle
eq c$

1.3. Contro

- Impossibile determinare se l'ipotesi trovata è l'unica ipotesi consistente con D o se ne esistono altre
- Ignorando gli esempi negativi, Find-S non può capire se D contiene dati incosinstenti (contenti errori)

• Preferisce solo l'ipotesi più specifica consistente con D, perchè non la più generale? O un qualcosa in between?

2. Candidate elimination

L'algoritmo Candidate elimination cerca di ovviare ad alcuni dei problemi di Find-S andando a ricercare le ipotesi consistenti con il training set D, senza però enumerarle tutte, ovvero ritorna un sottoinsieme $VS_{H,D} \subseteq H$ denominato **version space** così definito:

$$VS_{H,D}\colon=\{h\in H\mid h\ consistente\ con\ D\}\equiv\{h\in H\mid (\exists s\in S)(\exists g\in G)(g\geq_g h\geq_g s)\}$$

dove

$$S = \{s \in H \mid s \ consistente \ con \ D \land (\neg \exists s' \in H)[(s>_g s') \land s' \ consistente \ con \ D]\}$$
 è l'insieme delle ipotesi più specifiche

$$G = \{g \in H \mid g \ consistente \ con \ D \land (\neg \exists g' \in H)[(g'>_g g) \land g' \ consistente \ con \ D]\}$$
 è l'insieme delle ipotesi più generali

In altre parole S e G fungono da lower e upper bound rispettivamente per le possibili ipotesi candidate.

L'algoritmo è il seguente:

Initialize G to the set of maximally general hypotheses in HInitialize S to the set of maximally specific hypotheses in H For each training example d, do

- If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - h is consistent with d, and some member of G is more general than h
 - Remove from S any hypothesis that is more general than another hypothesis in S
- If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - Remove g from G
 - Add to G all minimal specializations h of g such that
 - h is consistent with d, and some member of S is more specific than h
 - Remove from G any hypothesis that is less general than another hypothesis in G

2.1. Esempio

Supponiamo D sia così composto:

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	A_3	A_4	A_5	c(x)
--	-------	-------	-------	------

	A_1	A_2	A_3	A_4	A_5	c(x)
x_1	0	1	1	1	1	1
x_2	1	0	1	1	1	0
x_3	0	1	1	1	0	1
x_4	0	1	0	1	0	1
x_5	1	0	1	0	1	0

allora l'algortimo Candidate elimination si comporterà così:

- 1. $S = \{ \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle \}$
- 2. $G = \{\langle ?, ?, ?, ?, ? \rangle\}$
- 3. $c(x_1)=1$, ergo si generalizza S mantenendo la consistenza con G. G è consistente con x_1 , dunque si avrà:
 - $\circ \ S_1 = \{\langle 0,1,1,1,1
 angle \}$
 - $\circ G_1 = G$
- 4. $c(x_2)=0$, ergo si specializza G mantenendo la consistenza con S_1 . S_1 è cosistente con x_2 , infatti $s_1(x_2)=c(x_2)=0$, specializzo dunque G con tutte quelle ipotesi meno generali che siano consistenti con x_2 , ottenendo dunque:
 - \circ $S_2 = S_1$
 - $\circ \ G_2 = \{\langle 0,?,?,?,?\rangle \, \langle ?,1,?,?,?\rangle \, \langle ?,?,0,?,?\rangle \, \langle ?,?,?,0,?\rangle \, \langle ?,?,?,?,0\rangle \}, \text{ da cui vengono eliminate le ipotesi } \langle ?,?,0,?,?\rangle \, \langle ?,?,?,0,?\rangle \, \langle ?,?,?,?,0\rangle \text{ poichè non risultano essere più generali dell'unica ipotesi presente in } S_1, \text{ ergo:}$

$$G_2 = \{\left\langle 0,?,?,?,? \right
angle \left\langle ?,1,?,?,?
ight
angle \}$$

- 5. $c(x_3)=1$, ergo si generalizza S_2 mantenendo la consistenza con G_2 . Tutte le ipotesi in G_2 sono consistenti con x_3 , dunque si ottiene:
 - $\circ \ S_3 = \{\langle 0, 1, 1, 1, ? \rangle\}$
 - $\circ G_3 = G_2$
- 6. $c(x_4) = 1$, solito discorso. Si ottiene:
 - $\circ S_4 = \{\langle 0, 1, ?, 1, ? \rangle\}$
 - $\circ G_4 = G_3$
- 7. $c(x_5)=0$, si specializza G_4 mantenendo la consistenza con S_4 . Si ottiene:
 - $\circ \ S_5 = S_4 = \{\langle 0, 1, ?, 1, ? \rangle\}$
 - $\circ \ G_5 = G_4 = \{\langle 0, ?, ?, ?, ? \rangle, \langle ?, 1, ?, ?, ? \rangle\}$

Il version space è dunque composto da:

$$VS_{H,D} = S \cup G \cup \{\langle 0, 1, ?, ?, ? \rangle, \langle 0, ?, ?, 1, ? \rangle, \langle ?, 1, ?, 1, ? \rangle\}$$

2.2. Pro

Supponendo che:

- D non contenga errori
- $c \in H$

allora candidate elimination converge all'ipotesi corretta

2.3. Contro

- Se D contiene errori l'ipotesi corretta viene eliminata dal version space
- Possono essere appresi concetti composti solo dalla congiunzione di attributi
- Se $c \notin H$ allora l'output dell'algoritmo sarà l'ipotesi vuota