Hunter Lybbert Student ID: 2426454 12-04-24 AMATH 561

PROBLEM SET 8

Note: Exercises are from Matt Lorig's notes (link on course website).

1. Exercise 5.1. Patients arrive at an emergency room as a Poisson process with intensity λ . The time to treat each patient is an independent exponential random variable with parameter μ . Let $X = (X_t)_{t \geq 0}$ be the number of patients in the system (either being treated or waiting). Write down the generator of X. Show that X has an invariant distribution π if and only if $\lambda < \mu$. Find μ . What is the total expected time (waiting + treatment) a patient waits when the system is in its invariant distribution?

Hint: You can use Little's law, which states that the expected number of people in the hospital at steady-state is equal to the average arrival rate multiplied by the average processing time.

Solution:

TODO:

Hereyou

2. Exercise 5.3. Let $X=(X_t)_{t\geq 0}$ be a Markov chain with state space $S=0,1,2,\ldots$ and with a generator **G** whose *i*th row has entries

$$g_{i,i-1}=i\mu,\quad g_{i,i}=-i\mu-\lambda,\quad g_{i,i+1}=\lambda,$$

with all other entries being zero (the zeroth row has only two entries: $g_{0,0}$ and $g_{0,1}$). Assume $X_0 = j$. Find $G_{X_T}(s) := E(s^{X_t})$. What is the distribution of X_t as $t \to \infty$?

Solution:

TODO:

Here you

3. Exercise 5.4. Let N be a time-inhomogeneous Poisson process with intensity function $\lambda(t)$. That is, the probability of a jump of size one in the time interval $(t,t+\mathrm{d}t)$ is $\lambda(t)\mathrm{d}t$ and the probability of two jumps in that interval of time is $\mathcal{O}(\mathrm{d}t^2)$. Write down the Kolmogorov forward and backward equations of N and solve them. Let $N_0=0$ and let τ_1 be the time of the first jump of N. If $\lambda(t)=c/(1+t)$ show that $E(\tau)<\infty$ if and only if c>1.

Solution:

TODO:

Here you

4. Exercise 5.5. Let N be a poisson process with a random intensity Λ witch is equal to λ_1 with probability p and λ_2 with probability 1-p. Find $G_{N_t}(s)=E(s^{N_t})$. What is the mean and variance of N_t ?

Solution:

TODO:

Hereyou