

BC Stats

Text Analytics:

Quantifying the Responses to Open-Ended Survey Questions

Carlina Kim, Karanpal Singh, Sukriti Trehan, Victor Cuspinera Partner: BC Stats | Mentor: Varada Kolhatkar 2020-06-19

Introduction

The Survey

Work Environment Survey (WES)

- conducted by BC Stats for employees within BC Public Service
- measures the health of work environments and identifies areas for improvement
- ~80 multiple choice questions (5 point scale) and 2 open-ended questions

Data

Open-ended Question Responses

Question 1

· What one thing would you like your organization to focus on to improve your work environment?

Example: "Better health and social benefits should be provided."

Question 2

 Have you seen any improvements in your work environment and if so, what are the improvements?

Example: "Now we have more efficient vending machines."

^{*}Note: these examples are fake comments for privacy reasons.

Data Example of Question 1

What one thing would you like your organization to focus on to improve your work environment?

Comments*	CPD	СВ	EWC	 CB_Improve_benefits	CB_Increase_salary
Better health and social benefits should be provided	0	1	0	 1	0

Theme: CB = Compensation and Benefits

Sub-theme: CB_Improve_benefits = Improve benefits

Question 1: +31,000 labelled comments for 2013, 2018, 2020, +12,000 additional comments from 2015

Question 2: +6,000 labelled comments for 2018, +9,000 additional comments from 2015, 2020

^{*}Note: this is a fake comment as an example of the data.

Objectives

1) Build a model to automate multi-label text classification that:

- predicts label(s) for Question 1 and 2's main themes
- predicts label(s) for Question 1's sub-themes

2) Visualizations on discovery of text analysis:

- mapping words for both questions to identify common texts
- · identify potential needs & resolutions using sentimental analysis
- · identify theme trends across ministries over given years

Challenges with data

Sparsity

There are 12 themes and 63 subthemes that comments can be encoded into.

· Label cardinality for themes: ~1.4 and for subthemes: ~1.6

Challenges with data

Class Imbalance

Imbalanced data in each theme

Text classification methodology

Data Split & Preprocessing

- Raw -> 80% train, 20% test.
- Training -> 80% train, 20% validation
- remove sensitive information using Named Entity Recognition (NER) to remove person, organization, location, and geopolitical entity from data
- · all social media handles to "social media" instead of "Facebook", "Instagram", "Twitter"
- removed punctuation and lowercase for tokenization

Example comment to get flagged: "George and I love when the department gives us new coupons!"

Baseline Model: Classifier Chains

- TF-IDF Vectorizer uses weights instead of token counts (CountVectorizer)
- · Classifier Chains preserves order and occurence of labels
 - multiple scikit-learn base classifiers tried (RandomForest, GaussianNB, etc)
 - best result with LinearSVC

Source: Multi-Label Classification: Classifier Chains, by Analytics Vidhya

Advanced Model: Pre-Trained Embeddings

Fasttext, Glove, Universal Sentence Encoder

- · explored several embeddings on various models
- built embedding matrix & maximized vocab coverage for each embedding
- transformed comments to padded data to fit into embedding size
- removed sensitive data using embeddings to upload into public cloud services for our advanced models

How we measured success

Precision & Recall

Source: Precision and Recall

- Precision Recall curve: plotting precision vs recall at various threshold rates
- Micro-average: weighted average of the precision and recall

Precision Recall Curve for Q1 Themes

Our advanced model: Fasttext + BiGru

Threshold	Accuracy	Precision	Recall	F1
0.3	0.513	0.714	0.744	0.7287
0.4	0.531	0.751	0.709	0.7293
0.5	0.534	0.781	0.674	0.7234
0.6	0.534	0.811	0.638	0.6979
0.7	0.526	0.836	0.599	0.6726

Model Results for Theme Labelling

Model	Accuracy	Precision	Recall	F1
TFID + LinearSVC	0.50	0.79	0.63	0.70
Fasttext + BiGru	0.54	0.75	0.71	0.73

2019 Capstone team's results

Model	Accuracy	Precision	Recall
Bag of Words + LinearSVC	0.45	0.74	0.64
Fasttext + BiGru	0.53	0.83	0.66

Source: BC Stats Capstone 2019-Final Report, by A. Quinton, A. Pearson, F. Nie

Results for Fasttext + BiGru

Predicting each theme

Theme	Accuracy	Precision	Recall	Theme	Accuracy	Precision	Recall
CPD	0.94	0.77	0.79	RE	0.94	0.69	0.51
СВ	0.97	0.90	0.90	Sup	0.92	0.66	0.57
EWC	0.94	0.69	0.56	SW	0.92	0.74	0.65
Exec	0.92	0.64	0.71	TEPE	0.95	0.92	0.85
FEW	0.97	0.73	0.77	VMG	0.90	0.62	0.66
SP	0.95	0.76	0.75	ОТН	0.96	0.43	0.29

Labelling Subthemes

Subthemes are predicted based on the theme(s) our model has assigned to the comment.

Precision Recall Plot for Subtheme Models

Question 2: Predicting Themes

Results using sample data of Question 2 manually encoded by BC Stats (at 0.4 threshold):

Accuracy	Precision	Recall	F1
0.46	0.77	0.63	0.69

Dashboard

Methodologies that did not work

- overfitting in CNNs and multi-channel CNNs
- USE and BERT embeddings
- · Topic modelling for Question 2 (too much overlap in words, ambiguity)

Recommendations

- observed better results with more more data
- · Try BERT (could not get embeddings due to sentitive data not being able to upload to cloud platforms)
- using embeddings and padded training & validation data on **public cloud services** (Google Gollab, AWS) which can pave way for applying more complex machine learning algorithms on sensitive data
- · Topic modelling for Question 2 can be tried out after removing commonly repeated words

Thank you!