Team Reference Notes

v18.05 created by Imperez made in Cuba

This is the **Team Reference Notes**. This material is just for Formulas and Theorems. If you are looking for some code, please download the **Team Reference Code** from GitHub at https://github.com/lmperezCuba/TeamReferenceAlgorithms/tree/18.05.

Index

1.	Graph:	1
2.	Combinatory:	2
3.	Computational Geometry	2
4.	Mathematic	2

1. Graph

Cayley's Formula: There are nn-2 spanning trees of a complete graph with n labeled vertices. Example: UVa 10843 - Anne's game.

Erdős Gallai's Theorem gives a necessary and sufficient condition for a finite sequence of natural numbers to be the degree sequence of a simple graph. A sequence of nonnegative integers $d1 \ge d2 \ge \ldots \ge dn$ can be the degree sequence of a simple graph on n vertices if $f\sum_{i=1}^n di$ is even and $\sum_{i=1}^k di \le k \times (k-1) + \sum_{k=1}^n \min(di,k)$ holds for $1 \le k \le n$. Example : UVa 10720 - Graph Construction.

Euler's Formula for Planar Graph: V - E + F = 2, where F is the number of faces 7 of the Planar Graph. Example: UVa 10178 - Count the Faces.

The **number of spanning tree** of a complete bipartite graph $K_{n,m}$ is $m^{n-1} \times n^{m-1}$. Example: UVa 11719 - Gridlands Airport.

Graph Matching: Select a subset of edges M of a graph G(V,E) so that no two edges share. [1] page.349

Fig. 1: The Four Common Variants of Graph Matching in Programming Contests

the same vertex.

2. Combinatory

Derangement: A permutation of the elements of a set such that none of the elements appear in their original position. The number of derangements der(n) can be computed as follow: $der(n) = (n-1) \times (der(n-1) + der(n-2))$ where der(0) = 1 and der(1) = 0. A basic problem involving derangement is UVa 12024 - Hats (see Section 5.6).

3. Computational Geometry

Pick's Theorem: Let *I* be the number of integer points in the polygon, *A* be the area of the polygon, and *b* be the number of integer points on the boundary, then $A = i + \frac{b}{2} - 1$. Example: UVa 10088 - Trees on My Island.

4. Mathematic

Moser's Circle: Determine the number of pieces into which a circle is divided if n points on its circumference are joined by chords with no three internally concurrent. Solution: $C_4^n + C_2^n + 1$. Example: UVa 10213 - How Many Pieces of Land?

Bibliography

- [1] Competitive Programming 3, 2013, (Steven Halim, Felix Halim)
- [2] Análisis y diseño de algoritmos (Antonio Vallecillo Univ. Málaga)