Hands-On with Jupyter Notebooks: Virtual Fields Method for Material Identification

José Xavier

UNIDEMI, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal

CISM Advanced School (C2516) Udine, Italy • 6–10 October 2025

Learning Outcomes

VFM: Hands-On Jupyter Notebooks

losipescuTest FE Model User-Defined VF Piecewise VF

1. Advanced VF Strategies

- Special VFs for direct ID
- Optimized VFs for noise robustness
- Piecewise VFs for localized identification

3. Practical Implementation

- System conditioning assessment
- Noise sensitivity analysis
- Experimental validation procedures

2. Orthotropic Material ID

- Four-parameter identification
- Engineering constants recovery
- Physical interpretation of results

4. Critical Evaluation Skills

- VF selection criteria
- Error source identification
- Method comparison capabilities

Gateway to Advanced Applications: Ability to apply VFM to complex material characterization problems with confidence in results

Hands-On Implementation: Jupyter Notebook Approach

VFM: Hands-On Jupyter Notebooks

IosipescuTest FE Model User-Defined VF Piecewise VF

Why Jupyter Notebooks?

- Interactive environment: combine code, equations, and results in one place
- Transparent workflow: all steps of the VFM analysis are explicit and reproducible
- Immediate feedback: modify parameters, re-run, and visualize outputs on the spot
- Ideal for learning: seamless mix of theory, simulation, and experimental data

Tools for Implementation

- Python scientific stack: NumPy, SciPy, pandas
- Plotting & visualization: matplotlib, seaborn
- Symbolics: SymPy for analytical derivations
- Jupyter widgets: interactive sliders and controls for parameter studies

Key Advantage

A **reproducible**, **exploratory**, **and didactic platform** to implement and test the Virtual Fields Method with real experimental data or synthetic benchmarks.

Case Study: Unnotched Iosipescu Test

VFM: Hands-On Jupyter Notebooks

losipescuTest FE Model User-Defined VF Piecewise VF

Topics	Slide
Introduction	5
Configuration: Geometry, material model and Loading	6
VFM: Orthotropic Material Model	7
FE model:	
Data generation	
Strain Field Analysis	9
Virtual Fields:	
Selection Strategies	10
Rigid-Body Constraints	11
Manually-Selected (implementation, results and discussion)	12
Piecewise (implementation, results and discussion)	26

Introduction

Classical Iosipescu Test

VFM-Hands-On Jupyter Notebooks

losipescuTest EE Model User-Defined VF Piecewise VF

> Engineering shear strain:

$$\varepsilon_6 = \varepsilon_{+45} \circ - \varepsilon_{-45} \circ$$

Nominal shear

$$\sigma_6 = P/A$$

stress:

modulus:

$$\sigma_6 = f_{12}(\varepsilon_6)$$

Stress-strain relationship: Correct shear

$$G_{12}^a = \sigma_6/\varepsilon_6 CS$$

Apparent ultimate shear strength:

$$S_{12}^a = P^{ult}/A$$

where:

- $\varepsilon_{\pm 45}\circ$: strains at $\pm 45^{\circ}$ to loading

- P: applied load

A: cross-sectional area

Unnotched Iosipescu Test

- Research Question: Can all in-plane stiffness parameters Q_{ij} be simultaneously identified using the losipescu loading system?
- Test design: How can we generate the required heterogeneous strain field for multi-parameter identification?
- VFM Implementation: How does the selection of virtual fields (VF) influence identification robustness?

Configuration: geometry, material model and Loading

VFM: Hands-On Jupyter Notebooks

FE Model
User-Defined VF
Piecewise VF

Design variables:

L and θ for optimal strain field generation

• Material model:

Orthotropic with 4 unknown parameters:

 Q_{11} , Q_{22} , Q_{12} , Q_{66}

Global measurements:

Applied load (P) only

VF selection strategies:

- Manual design
- Noise-sensitivity optimisation
- Piecewise formulation

VFM: Orthotropic Material Model

Constitutive Relations:

VFM: Hands-On Jupyter Notebooks

FE Model
User-Defined VF
Piecewise VF

 $\begin{cases}
 \sigma_{11} \\
 \sigma_{22} \\
 \sigma_{12}
 \end{cases} = \begin{bmatrix}
 Q_{11} & Q_{12} & 0 \\
 Q_{12} & Q_{22} & 0 \\
 0 & 0 & Q_{66}
 \end{bmatrix} \begin{Bmatrix} \varepsilon_{11} \\
 \varepsilon_{22} \\
 2\varepsilon_{12}
 \end{cases}$

VFM Equation:

$$Q_{11} \int_{S} \varepsilon_{1} \varepsilon_{1}^{*} dS + Q_{22} \int_{S} \varepsilon_{2} \varepsilon_{2}^{*} dS$$
$$+ Q_{12} \int_{S} (\varepsilon_{1} \varepsilon_{2}^{*} + \varepsilon_{2} \varepsilon_{1}^{*}) dS + Q_{66} \int_{S} \varepsilon_{6} \varepsilon_{6}^{*} dS = \int_{L_{f}} T_{i} u_{i}^{*} dl$$

Key Requirement

Need 4 independent virtual fields to solve for 4 unknown parameters

Engineering Constants:

$$E_1 = Q_{11} - \frac{Q_{12}^2}{Q_{22}} \quad \land \quad \nu_{12} = \frac{Q_{12}}{Q_{22}} \quad \land \quad E_2 \qquad = Q_{22} - \frac{Q_{12}^2}{Q_{11}} \quad \land \quad G_{12} = Q_{66}$$

Data Generation: FE Model

VFM: Hands-On Jupyter Notebooks IosipescuTest

FE Model User-Defined VF Piecewise VF

Material and Geometric Parameters:

Value
0°
34 mm
20 mm
5 mm
15.1 GPa
1.91 GPa
0.471
1.109 GPa
-0.5 mm

Computed Stiffness Matrix:

$$\mathbf{Q} = \begin{bmatrix} 15.54 & 0.93 & 0.0 \\ 0.93 & 1.97 & 0.0 \\ 0.0 & 0.0 & 1.109 \end{bmatrix} \mathsf{GPa}$$

FE Strain Field

VFM: Hands-On Jupyter Notebooks

FE Model User-Defined VF Piecewise VF

Key Observations:

- Shear dominance: ε_6 is the primary strain component
- Gauge section uniformity: Relatively constant strain in central region
- Load introduction effects: Strain concentrations near loading points
- Heterogeneity: Complex strain distribution requires careful VF selection

VFs Selection Strategies

Key Challenges for Iosipescu Test:

VFM: Hands-On Jupyter Notebooks IosipescuTest

losipescuTest
FE Model
User-Defined VI

1. Unknown Load Distribution:

- Complex contact conditions
- Non-uniform stress at loading points
- Need to filter unknown external work

2. Four Parameter Identification:

- \bullet Q_{11} , Q_{22} , Q_{12} , Q_{66}
- Linear independence requirement
- Well-conditioned system needed

3. Strain Field Heterogeneity:

- Load introduction effects
- Edge effects
- Noise sensitivity

4. Strategy for Designing Virtual Fields:

- Eliminate unknown load contributions
- Provide sensitivity to each parameter
- Minimize noise amplification
- Respect kinematic admissibility
- Manual VFs: Linear system of equations
- Optimized VFs: Minimize noise effects
- Piecewise VFs: Localized approach

VFs: Rigid-Body Constraints

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model

User-Defined VI

Piecewise VF

VWP:

$$\begin{split} &-t\int_{S_1} \boldsymbol{\varepsilon}^* : \boldsymbol{\sigma} \, dS - t\int_{S_2} \boldsymbol{\varepsilon}^* : \boldsymbol{\sigma} \, dS \\ &-t\int_{S_3} \boldsymbol{\varepsilon}^* : \boldsymbol{\sigma} \, dS + t\int_{\partial S_1} \mathbf{u}^* \cdot \overline{\mathbf{T}} \, dl \\ &+t\int_{\partial S_2} \mathbf{u}^* \cdot \overline{\mathbf{T}} \, dl + t\int_{\partial S_2} \mathbf{u}^* \cdot \overline{\mathbf{T}} \, dl = 0 \end{split}$$

where ∂S_i is the line boundary of surface S_i and dl the elementary line unit.

VF Selection

- 1. Exploit Symmetry on S_1 : All contributions from S_1 vanish by assuming: $u_1^{*(S_1)} = u_2^{*(S_1)} = 0$
- 2. Rigid-Body Motion on $S_3\colon$ Impose a rigid-body-like virtual displacement on $S_3\colon$

$$u_1^{*(S_3)} = ax_2 + b \quad \land \quad u_2^{*(S_3)} = -ax_1 + c$$

3. Eliminate Unknown $f_1(x_1)$: To eliminate the unknown horizontal force distribution, set:

$$\therefore \quad \mathbf{u}^{*(S_3)} = \left\{0 \quad c\right\}^T \quad \land \quad t \int_{\partial S_3} \left\{\begin{matrix} 0 \\ c \end{matrix}\right\} \cdot \left\{\begin{matrix} f_1(x_1) \\ f_2(x_1) \end{matrix}\right\} \, \mathrm{d}x_1 = F \cdot c$$

4. Continuity on S_2 Boundaries:

$$u_1^{*(S_2)}(x_1 = 0, x_2) = 0 \quad \wedge \quad u_2^{*(S_2)}(x_1 = 0, x_2) = 0$$

 $u_1^{*(S_2)}(x_1 = L, x_2) = 0 \quad \wedge \quad u_2^{*(S_2)}(x_1 = L, x_2) = c$

Virtual Field Set 1: 4 Independent Manually-Selected VF

Displacement VFs:

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model

User-Defined VF

VF1:
$$u_1^{*(1)} = 0$$
, $u_2^{*(1)} = -x_1$
VF2: $u_1^{*(2)} = x_1(L - x_1)x_2$, $u_2^{*(2)} = \frac{x_1^3}{3} - \frac{Lx_1^2}{2}$
VF3: $u_1^{*(3)} = 0$, $u_2^{*(3)} = x_1(L - x_1)x_2$
VF4: $u_1^{*(4)} = \frac{L}{2\pi}\sin(2\pi x_1/L)$, $u_2^{*(4)} = 0$

Strains VFs:

$$\begin{split} \text{VF1:} \quad & \varepsilon_1^{*(1)} = 0, \quad \varepsilon_2^{*(1)} = 0, \quad \varepsilon_6^{*(1)} = -1 \\ \text{VF2:} \quad & \varepsilon_1^{*(2)} = (L - 2x_1)x_2, \quad \varepsilon_2^{*(2)} = 0, \quad \varepsilon_6^{*(2)} = 0 \\ \text{VF3:} \quad & \varepsilon_1^{*(3)} = 0, \quad \varepsilon_2^{*(3)} = x_1(L - x_1), \quad \varepsilon_6^{*(3)} = (L - 2x_1)x_2 \\ \text{VF4:} \quad & \varepsilon_1^{*(4)} = \cos(2\pi x_1/L), \quad \varepsilon_2^{*(4)} = 0, \quad \varepsilon_6^{*(4)} = 0 \end{split}$$

Virtual Field Set 1: System of Equations

AQ = B:

VFM: Hands-On Jupyter Notebooks IosipescuTest

FE Model

User-Defined VF Piecewise VF

$$\begin{bmatrix} 0 & 0 & 0 & \overline{\varepsilon_6} \\ -\overline{\varepsilon_1(L-2x_1)x_2} & 0 & -\overline{\varepsilon_2(L-2x_1)x_2} & 0 \\ 0 & -\overline{\varepsilon_2x_1(L-x_1)} & -\overline{\varepsilon_1x_1(L-x_1)} & -\overline{\varepsilon_6(L-2x_1)x_2} \\ \overline{\varepsilon_1\cos(2\pi x_1/L)} & 0 & \overline{\varepsilon_2\cos(2\pi x_1/L)} & 0 \end{bmatrix} \begin{bmatrix} Q_{11} \\ Q_{22} \\ Q_{12} \\ Q_{66} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{F}{wt} \\ \frac{FL^2}{6wt} \\ 0 \\ 0 \end{bmatrix}$$

where the overbar denotes spatial averaging over the domain.

Virtual Field Set 1: Results

Table: Identified Stiffness Parameters - Set 1

Parameter	Computed (GPa)	Reference (GPa)	Error (%)
Q_{11}	15.54	15.54	0.053
Q_{22}	1.96	1.97	0.287
Q_{12}	0.92	0.93	0.205
Q_{66}	1.11	1.11	0.0

Key Features:

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model User-Defined VF

- Sinusoidal virtual field captures periodic behaviour
- Excellent accuracy for all parameters
- \bullet Matrix condition number: $\sim 10^6$
- Residual norm: $< 10^{-12}$

Virtual Field Set 2: Modified Fourth Field

Displacement VFs:

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model

User-Defined VF

VF1:
$$u_1^{*(1)} = 0$$
, $u_2^{*(1)} = -x_1$
VF2: $u_1^{*(2)} = x_1(L - x_1)x_2$, $u_2^{*(2)} = \frac{x_1^3}{3} - \frac{Lx_1^2}{2}$
VF3: $u_1^{*(3)} = 0$, $u_2^{*(3)} = x_1(L - x_1)x_2$
VF4: $u_1^{*(4)} = 0$, $u_2^{*(4)} = x_1(L - x_1)x_3^3$

Strains VFs:

$$\begin{split} \text{VF1:} \quad & \varepsilon_1^{*(1)} = 0, \quad \varepsilon_2^{*(1)} = 0, \quad \varepsilon_6^{*(1)} = -1 \\ \text{VF2:} \quad & \varepsilon_1^{*(2)} = (L - 2x_1)x_2, \quad \varepsilon_2^{*(2)} = 0, \quad \varepsilon_6^{*(2)} = 0 \\ \text{VF3:} \quad & \varepsilon_1^{*(3)} = 0, \quad \varepsilon_2^{*(3)} = x_1(L - x_1), \quad \varepsilon_6^{*(3)} = (L - 2x_1)x_2 \\ \text{VF4:} \quad & \varepsilon_1^{*(4)} = 0, \quad \varepsilon_2^{*(4)} = 3x_1(L - x_1)x_2^2, \quad \varepsilon_6^{*(4)} = (L - 2x_1)x_2^3 \end{split}$$

Virtual Field Set 2: System of Equations

AQ = B:

VFM: Hands-On Jupyter Notebooks IosipescuTest

FE Model
User-Defined VE

Piecewise VF

$$\begin{bmatrix} 0 & 0 & 0 & \overline{\varepsilon_6} \\ -\overline{\varepsilon_1(L-2x_1)x_2} & 0 & -\overline{\varepsilon_2(L-2x_1)x_2} & 0 \\ 0 & -\overline{\varepsilon_2x_1(L-x_1)} & -\overline{\varepsilon_1x_1(L-x_1)} & -\overline{\varepsilon_6(L-2x_1)x_2} \\ 0 & -3\overline{\varepsilon_2x_1(L-x_1)x_2^2} & -3\overline{\varepsilon_1x_1(L-x_1)x_2^2} & -\overline{\varepsilon_6(L-2x_1)x_2^3} \end{bmatrix} \begin{bmatrix} Q_{11} \\ Q_{22} \\ Q_{12} \\ Q_{66} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{F}{wt} \\ \frac{FL^2}{6wt} \\ 0 \\ 0 \end{bmatrix}$$

where the overbar denotes spatial averaging over the domain.

Virtual Field Set 2: Results

Table: Identified Stiffness Parameters - Set 2

VFM:
Hands-On
Jupyter
Notebooks
IosipescuTest
FE Model
User-Defined \

Parameter	Computed (GPa)	Reference (GPa)	Error (%)
Q_{11}	15.49	15.54	0.280
Q_{22}	1.96	1.97	0.107
Q_{12}	0.98	0.93	6.228
Q_{66}	1.11	1.11	0.0

Key Features:

- Cubic virtual field in x_2 direction
- Enhanced sensitivity to through-thickness variations
- Matrix condition number: $\sim 10^7$
- Slightly higher sensitivity to noise

Virtual Field Set 3: Modified First Field

Displacement VFs:

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model

User-Defined VF

$$\begin{aligned} & \text{VF1:} \quad u_1^{*(1)} = 0, \quad u_2^{*(1)} = -x_1^3 \\ & \text{VF2:} \quad u_1^{*(2)} = x_1(L - x_1)x_2, \quad u_2^{*(2)} = \frac{x_1^3}{3} - \frac{Lx_1^2}{2} \\ & \text{VF3:} \quad u_1^{*(3)} = 0, \quad u_2^{*(3)} = x_1(L - x_1)x_2 \\ & \text{VF4:} \quad u_1^{*(4)} = \frac{L\sin(2\pi x_1/L)}{2\pi}, \quad u_2^{*(4)} = 0 \end{aligned}$$

Strains VFs:

$$\begin{split} \text{VF1:} \quad & \varepsilon_1^{*(1)} = 0, \quad \varepsilon_2^{*(1)} = -3x_1^2, \quad \varepsilon_6^{*(1)} = 0 \\ \text{VF2:} \quad & \varepsilon_1^{*(2)} = (L - 2x_1)x_2, \quad \varepsilon_2^{*(2)} = 0, \quad \varepsilon_6^{*(2)} = 0 \\ \text{VF3:} \quad & \varepsilon_1^{*(3)} = 0, \quad \varepsilon_2^{*(3)} = x_1(L - x_1), \quad \varepsilon_6^{*(3)} = (L - 2x_1)x_2 \\ \text{VF4:} \quad & \varepsilon_1^{*(4)} = \cos(2\pi x_1/L), \quad \varepsilon_2^{*(4)} = 0, \quad \varepsilon_6^{*(4)} = 0 \end{split}$$

Virtual Field Set 3: System of Equations

AQ = B:

VFM: Hands-On Jupyter Notebooks IosipescuTest

FE Model

User-Defined VF

$$\begin{bmatrix} 0 & 0 & 0 & 3\overline{\varepsilon_{6}x_{1}^{2}} \\ -\overline{\varepsilon_{1}(L-2x_{1})x_{2}} & 0 & -\overline{\varepsilon_{2}(L-2x_{1})x_{2}} & 0 \\ 0 & -\overline{\varepsilon_{2}x_{1}(L-x_{1})} & -\overline{\varepsilon_{1}x_{1}(L-x_{1})} & -\overline{\varepsilon_{6}(L-2x_{1})x_{2}} \\ \overline{\varepsilon_{1}\cos(2\pi x_{1}/L)} & 0 & \overline{\varepsilon_{2}\cos(2\pi x_{1}/L)} & 0 \end{bmatrix} \begin{bmatrix} Q_{11} \\ Q_{22} \\ Q_{12} \\ Q_{66} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{FL^2}{wt} \\ \frac{FL^2}{6wt} \\ 0 \\ 0 \end{bmatrix}$$

where the overbar denotes spatial averaging over the domain.

Note: First VF: cubic in x_1 , highlighting lengthwise variation

Virtual Field Set 3: Results

VFM: Hands-On Jupyter Notebooks losipescuTest FE Model

User-Defined VF

Piecewise VF

Table: Identified Stiffness Parameters - Set 3

Parameter	Computed (GPa)	Reference (GPa)	Error (%)
Q_{11}	15.54	15.54	0.053
Q_{22}	1.96	1.97	0.284
Q_{12}	0.92	0.93	0.205
Q_{66}	1.11	1.11	0.004

Key Features:

- Cubic virtual field in x_1 direction
- Enhanced sensitivity to length-wise variations
- Matrix condition number: $\sim 10^5$
- Good numerical stability

Comparison of Virtual Field Sets

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model User-Defined VF

Piecewise VF

FE Noisy Strain Fields

Noise Analysis Parameters

Noise amplitude (std dev): 1.0×10^{-4}

Monte Carlo iterations: 30

VFM: Hands-On Jupyter Notebooks

FE Model User-Defined VF

Piecewise VF

Orthotropic VFM — Noise Analysis Summary

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model

User-Defined VF Piecewise VF

	Param	Ref Value	$Mean\pmStd$	CV%	Err%
	Q_{11}	15.54	15.62 ± 0.32	2.02	0.54
Set 1	Q_{22}	1.97	1.98 ± 0.04	2.21	0.72
	Q_{12}	0.93	0.93 ± 0.18	19.16	0.09
	Q_{66}	1.11	1.11 ± 0.00	0.26	0.00
	Q_{11}	15.54	15.60 ± 0.53	3.38	0.41
	Q_{22}	1.97	1.98 ± 0.06	2.93	0.85
Set 2	Q_{12}	0.93	0.95 ± 0.58	60.60	2.48
	Q_{66}	1.11	1.11 ± 0.00	0.26	0.00
	Q_{11}	15.54	15.62 ± 0.32	2.02	0.54
C	Q_{22}	1.97	1.98 ± 0.04	2.24	0.79
Set 3	Q_{12}	0.93	0.93 ± 0.18	19.16	0.09
	Q_{66}	1.11	1.11 ± 0.00	0.31	0.08

Orthotropic VFM — Noise Analysis Summary

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model User-Defined VF

Piecewise VF

Virtual Field Selection Guidelines

Notebooks losipescuTest

FE Model User-Defined VF

Piecewise VF

Set 1 - Original Formulation

- Best for: General applications, balanced sensitivity to all parameters
- Advantages: Sinusoidal field captures periodic behavior, proven reliability

- Set 2 Through-Thickness Enhanced Best for: Applications with significant x_2 (thickness) variations
 - Advantages: Enhanced sensitivity to transverse effects, good for thick specimens

Set 3 - Length-wise Enhanced

- Best for: Applications with significant x_1 (length) variations
- Advantages: Best numerical conditioning, excellent for longitudinal effects

Piecewise VFs

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model User-Defined VF

- Bilinear shape functions with 4-noded elements
- Virtual fields expanded as: $\mathbf{u}^* = \mathbf{N}\hat{\mathbf{u}}^{*(e)}$
- Key advantages:
 - More flexible for complex geometries
 - Easier boundary condition implementation

Mesh Configuration

Implementation Parameters:

• Elements: $3 \times 2 = 6$ elements

• Nodes: 12 total nodes

• DOFs $\to 2(m+1)(n+1)$: 24 (2 per node)

• Element size: $L_{el} = L/3$, $w_{el} = w/2$

Constraint Conditions:

• Left boundary: $u_1^* = u_2^* = 0$

• Right boundary: $u_1^* = 0$, $u_2^* = constant$

• Total constraints: 4n + 3 = 11

VFs Visualisation

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model

User-Defined VF Piecewise VF

Piecewise VFM Results & Sensitivity Analysis

Identification Results (mesh: 2×3):

Param	Piecewise	Ref.	Error (%)	
$\overline{Q_{11}}$	15.51	15.54	0.20	
Q_{22}	1.96	1.97	0.41	
Q_{12}	0.98	0.93	6.27	
Q_{66}	1.11	1.11	0.00	

Noise Sensitivity (η/Q):

VFM:

Hands-On Jupyter

Notebooks IosipescuTest

FE Model

Piecewise VF

1 Q_{66} : 2.51 (most stable)

2 Q_{11} : 22.06 (good)

3 Q_{22} : 40.85 (moderate)

4 Q_{12} : 87.79 (highest)

Physical Interpretation:

 $\checkmark~Q_{66}$: Direct shear measurement — highly stable

 $\checkmark \ Q_{11}$: Strong bending signature — excellent accuracy

 $\sim Q_{22}$: Limited by small $arepsilon_2$ strain levels

imes Q_{12} : Coupling effects challenging to separate

Key Observations:

Convergence in 2-3 iterations

• Excellent for Q_{11} and Q_{66}

 \bullet Higher η/Q ratio indicates noise sensitivity

Test Limitation: losipescu not optimal for Q_{22} and Q_{12} due to low transverse strain levels

Piecewise VFM Results: Mesh Sensitivity

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model User-Defined VF

Table: VFM piecewise identification: mesh convergence study

Mesh	Elem.	Nodes	Q_{11}	Q_{22}	Q_{12}	Q_{66}	Err.	Err.	Err.	Err.
			(GPa)	(GPa)	(GPa)	(GPa)	Q_{11} (%)	Q_{22} (%)	Q_{12} (%)	Q ₆₆ (%)
Ref.	_	_	15.54	1.97	0.93	1.11	_	_	_	_
3×2	6	12	15.51	1.96	0.98	1.11	0.20	0.41	6.27	0.00
5×4	20	30	15.55	1.96	0.93	1.11	0.11	0.43	0.34	0.01
7×6	42	56	15.57	1.92	0.93	1.11	0.21	2.29	0.17	0.27
10×8	80	99	15.57	1.92	0.92	1.11	0.24	2.06	0.34	0.24

- Optimal mesh: 5×4 (best accuracy-to-cost ratio)
- Q_{11} and Q_{66} show excellent stability (< 0.5% error)
- Q_{22} converges to ~ 1.92 GPa with finer meshes

Comparison: Manual VF Sets vs Piecewise

Table: Performance Comparison (All Methods)

Method	Q_{11} (GPa)	Q_{22} (GPa)	Q_{12} (GPa)	Q_{66} (GPa)
Set 1 (Manual)	15.54	1.96	0.92	1.11
Set 2 (Manual)	15.49	1.96	0.98	1.11
Set 3 (Manual)	15.54	1.96	0.92	1.11
Piecewise (5×4)	15.55	1.96	0.93	1.11
Reference	15.54	1.97	0.93	1.11

Advantages of Piecewise Approach:

VFM: Hands-On Jupyter Notebooks IosipescuTest FE Model User-Defined VF

- Systematic and automated (no manual virtual field derivation required)
- Excellent agreement with reference values (all parameters within 0.5%)
- Comparable accuracy to manual VF sets while being generalizable
- Enables systematic mesh refinement for convergence studies
- More intuitive boundary condition implementation

Virtual Fields Method: Monte Carlo Noise Sensitivity Analysis

 Q_{66}

1.109

Analysis Configuration

• Material: Wood (orthotropic)

• Mesh: 5×4 elements (20 total)

• Noise amplitude: $\sigma = 10^{-3}$

Monte Carlo iterations: 100

Virtual fields: Piecewise special

Key Findings:

VFM-

Hands-On Jupyter

Notebooks

EE Model

IosipescuTest

User-Defined VF

Piecewise VF

- Q_{66} (shear stiffness) shows highest robustness (CV = 0.29%)
- Q_{12} exhibits highest sensitivity to noise (CV = 5.63%)
- All parameters within 2.0% error from reference values
- Method demonstrates good stability under measurement noise

0.003

0.29

1.109

0.00

Piecewise VF: Summary and Implementation

Key Characteristics and Advantages:

- Continuous virtual displacements across element boundaries
- Element-wise constant strain distribution (discontinuous virtual strains)
- Automatic satisfaction of equilibrium requirements
- Robust numerical performance with scalable mesh refinement
- Compatible with standard FE software frameworks

Computational Benefits:

VFM:

Hands-On Jupyter

Notebooks

FE Model

Piecewise VI

- Assembly procedure similar to standard FEM
- Direct nodal constraint application
- Natural handling of complex geometries and boundaries

Implementation Guidelines:

- Start with coarse mesh ensuring sufficient DOFs > constraints
- Rule of thumb: DOFs $\approx 2 \times$ number of constraints
- Monitor conditioning of optimization matrix
- Validate with known reference cases

Summary

Technical Mastery:

- Successfully identified material parameters from a single test configuration
- Demonstrated alternative strategies for VF selection
- Established criteria for robustness against noise

Methodological Insights:

- Full-field measurements provide comprehensive information
- VF selection is a critical step in the identification process
- Optimisation enhances performance in the presence of noise
- Direct identification reduces the overall computational cost
- The VFM enables efficient material characterisation

Next Steps

Apply VFM principles to your specific material systems and experimental configurations!

Thank you for your attention! Questions and Discussion

Hands-On with Jupyter Notebooks: Virtual Fields Method for Material Identification

José Xavier

UNIDEMI, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal

CISM Advanced School (C2516)
Udine, Italy • 6–10 October 2025