

Statystyczna analiza danych SAD-2020/2021

Wykład 1

STATYSTYCZNA ANALIZA DANYCH

III semestr studiów inżynierskich w PJATK, 2020/21

Prowadząca: dr hab. Elżbieta Ferenstein

Cel wykładu - poznanie podstaw analizy danych

- statystyka opisowa
- modelowanie probabilistyczne
- wnioskowanie statystyczne

Tematyka wykładu SAD

- Metody graficzne prezentacji danych jakościowych i ilościowych. Statystyki próbkowe. Histogramy, wykresy ramkowe.
- Prawdopodobieństwo, niezależność zdarzeń, twierdzenie Bayes'a.
- Zmienne losowe, rozkłady prawdopodobieństwa i ich parametry, wybrane rozkłady prawdopodobieństwa.
- Podstawowe statystyki i ich własności, przedziały ufności, testy parametryczne dla średnich i wariancji jednej i dwu populacji, regresja liniowa jednowymiarowa.

Informacje praktyczne

Kontakt:

elaw@pjwstk.edu.pl

Konsultacje: po umówieniu lub po (przed) wykładzie

Wykłady umieszczone są na

ftp/public/elaw/Informatyka dzienne

Ćwiczenia umieszczone są w katalogach Cx na

ftp/public/asier/Informatyka dzienne

Zaliczenie ćwiczeń: skala punktowa: 100 punktów = 90 punktów za 2 kolokwia plus 10 punktów za aktywność (m.in. obecności na ćwiczeniach)

Ocena z ćwiczeń: \geq 91 pkt: bdb; \geq 81pkt: db+; \geq 71: db; \geq 61: dost +; \geq 51: dost.

Ocena dostateczna zalicza ćwiczenia i jest warunkiem dopuszczenia do egzaminu.

Ćwiczenia laboratoryjne - 30% czasu, 70% czasu – ćwiczenia rachunkowe.

Na ćwiczeniach obowiązuje znajomość materiału omawianego na wykładach.

Egzamin: zadania z zakresu wykładu i ćwiczeń.

Wymagania wstępne: Analiza I i II, Matematyka Dyskretna. Software: (pakiet SAS), Excel.

Literatura podstawowa:

- Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodniczych, Wydawnictwa Naukowo-Techniczne 2001.
- Elżbieta Ferenstein: Statystyczna Analiza Danych, slajdy na FTP (public), katalog elaw, folder Informatyka dzienne 2020-2021

Literatura uzupełniająca:

- Janina Jóźwiak, Jarosław Podgórski: Statystyka od podstaw, PWE, Warszawa 2001(3), wyd. V (VI).
- Przemysław Grzegorzewski i inn.: Rachunek prawdopodobieństwa i statystyka, WSISiZ, Warszawa 2001.
- Amir D. Aczel: Statystyka w zarządzaniu, PWN, Warszawa 2000.
- K. Bobecka, P. Grzegorzewski, J. Pusz: Zadania z rachunku prawdopodobieństwa i statystyki, WSISiZ, Warszawa 2003.
- Mieczysław Sobczyk: Statystyka, PWN 2005.
- Marek Cieciura, Janusz Zacharski: Metody probabilistyczne w ujęciu praktycznym, Vizja 2007.

STATYSTYKA OPISOWA

Techniki wstępnej analizy danych i ich prezentacji:

- gromadzenie, przechowywanie danych, analiza danych surowych
- prezentacja danych: tabele, wykresy, parametry liczbowe obliczane dla danych.

Cel:

- charakteryzacja danych w zwięzłej formie odzwierciedlająca pewne ich cechy, np. średni dochód, średnie zużycie paliwa, ..
- odnalezienie różnego rodzaju regularności (nieregularności) ukrytych w danych, zależności między podzbiorami danych.

- Obejrzenie danych surowych nieprzetworzonych,
 niepogrupowanych, niezorganizowanych.
- Poznanie sposobu i celu zebrania danych:
- jaką cechę mierzono (obserwowano) ?,
- w jakich jednostkach ?,
- ile wykonano obserwacji (liczebność zbioru danych), w jakich warunkach – czy nie zgubiono części danych, dane brakujące, czy jest możliwość przekłamań ?
- czy celem zebrania danych ma być odpowiedź na konkretne pytania ?

- □ Cel badania statystycznego: poznanie charakterystyk dużej zbiorowości obiektów (osoby, przedmioty, zjawiska, możliwe wyniki eksperymentów ...) na podstawie obserwacji cech (danych) jedynie niektórych wylosowanych obiektów
- Populacja: zbiór obiektów badanych ze względu na określoną cechę nazywaną zmienną
- Próbka: zbiór cech zbadanych obiektów populacji

Rodzaje i przykłady cech statystycznych

Ilościowe

- Ciągłe: wzrost, waga itp.
- Dyskretne: liczba dzieci, liczba reklamacji itp.

Jakościowe

- O kategoriach uporządkowanych: miasta (małe, średnie, duże), rodziny (bezdzietne, wielodzietne) itp.
- Nominalne: grupa krwi, płeć, kolor oczu itp.

- **Badanie statystyczne pełne** (kompletne, całkowite, wyczerpujące) to badanie oparte o dane obejmujące wszystkie jednostki populacji.
- Badanie statystyczne częściowe (niekompletne, niepełne) to badanie oparte o dane obejmujące wybrane jednostki populacji.
- **Próba** to podzbiór populacji generalnej wykorzystywany w badaniu częściowym.
- **Próba reprezentatywna** to próba wybrana w sposób losowy i mająca dostateczną liczebność.

Aby wyniki badania próby można było odnieść do zbiorowości generalnej (uogólnić) próba <u>musi być</u> reprezentatywna.

Populacja	badana cecha (zmienna)	zebrane dane (próbka)		
zbiór detali	jakość detalu	zbiór jakości zbadanych detali		
zbiór komputerów w sieci	liczba awarii kompu- tera w danym okresie	zbiór liczb awarii wybranych komputerów w danym czasie		
zbiór projektów przysłanych na konkurs	ocena projektu	zbiór ocen wybranych projektów		
 zbiór osób w zespole pracowników 	staż pracy	zbiór staży pracy (lat pracy) wylosowanych osób		

Opracowanie materiału statystycznego

- •Szereg szczegółowy (wyliczający) uporządkowany ciąg obserwowanych wartości badanej cechy statystycznej.
- •Szereg rozdzielczy (strukturalny) materiał statystyczny podzielony na grupy (klasy) według wybranego kryterium, zapisany w postaci tabelarycznej, z podaniem liczebności (lub częstości) każdej z wyodrębnionych grup,.
- •Szeregi rozdzielcze są wynikiem operacji grupowania danych.
- W przypadku cechy mierzalnej z małą liczbą wariantów cechy tworzy się szeregi rozdzielcze punktowe.
- •Gdy wariantów jest dużo buduje się szeregi rozdzielcze **przedziałowe**.
- Szereg rozdzielczy cechy mierzalnej opisuje rozkład empiryczny badanej cechy.

Przykład (szereg rozdzielczy punktowy)

Liczba pracowników w poszczególnych przedsiębiorstwach pewnego koncernu wynosi:

```
100; 125; 170; 144; 144; 235; 301; 100; 100; 170; 144; 235; 100; 301; 170; 301; 125; 125; 235, 125:125; 100; 144; 301; 144; 144; 170; 144; 144; 144.
```

Są to tzw. dane surowe. Opisują cechę mierzalną skokową.

Po uporządkowaniu danych (np. rosnąco) dostajemy szereg wyliczający (zapisany 2 wierszach tabeli).

Ponieważ w zbiorze danych mamy tylko 5 wariantów cechy tworzymy szereg rozdzielczy punktowy postaci

Grupa	Liczebność
100	5
125	5
144	9
170	4
235	3
301	4
SUMA	30

Przykład (szereg rozdzielczy przedziałowy)

Powierzchnie użytkowe (w m²) badanych sklepów przedstawia uporządkowany szereg wartości cechy:

```
76; 81; 83; 85; 87; 91; 93; 94; 95; 97; 99; 104; 111; 112; 113; 114; 116; 118; 119; 120; 121; 122; 123; 125; 126; 127; 128; 128; 129; 130; 131; 132; 133; 133; 135; 135; 136; 137; 138; 138; 141; 141; 141; 141; 143; 144; 146; 146; 148; 148; 152; 155; 158; 159; 161; 162; 163; 165; 166; 167; 178; 179; 179; 182; 184; 184; 193, 198; 200.
```

Powierzchnia jest cechą mierzalną ciągłą, dlatego przeprowadzimy grupowanie statystyczne danych tworząc szereg rozdzielczy, z przedziałami klasowymi o rozpiętości 20 m² i początkiem pierwszego przedziału klasowego równym 70 m².

Otrzymany szereg rozdzielczy (liczebności) ma postać:

przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
liczebność	5	7	17	21	10	6	3

(przyjęto przedziały lewostronnie domknięte, prawostronnie otwarte)

Szereg rozdzielczy częstości uzyskujemy zastępując liczebności przez odpowiadające im częstości (częstości względne)

częstość = (liczebność grupy) / (liczebność łączna) (
$$w_i = \frac{n_i}{N}$$
)

Szereg rozdzielczy częstości dla prezentowanych danych ma postać

przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
częstość	0,07	0,10	0,25	0,30	0,14	0,09	0,04

w ujęciu procentowym

przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
częstość	7%	10%	25%	30%	14%	9%	4%

Szeregi rozdzielcze skumulowane

przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
liczebność skumulowana	5	12	29	50	60	66	69
przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
częstość skumulowana	0,07	0,17	0,42	0,72	0,87	0,96	1,00
przedział	70-90	90-110	110-130	130-150	150-170	170-190	190-210
częstość skumulowana (%)	7%	17%	42%	72%	87%	96%	100%

Opracowanie materiału statystycznego

Tworzenie szeregu rozdzielczego z przedziałami klasowymi wymaga ustalenia:

- liczby klas (k),
- rozpiętości przedziałów klasowych

Rekomendowane wartości liczby klas zależą od liczebności danych (n):

według tabeli

Liczba obserwacji	Liczba klas
40-60	6-8
60-100	7-10
100-200	9-12
200-500	11-17

- według wzorów
 - $k \approx \sqrt{n}$
 - $-k \approx 1+3{,}322\log n$

(W praktyce liczba przedziałów klasowych waha się od kilku do kilkunastu)

Opracowanie materiału statystycznego

Przybliżoną rozpiętość przedziałów klasowych (przy założeniu ich jednakowej rozpiętości) podaje wzór

$$h \approx \frac{x_{\text{max}} - x_{\text{min}}}{k}$$

Rzeczywiste rozpiętości przedziałów powinny być nieco większe, ponieważ:

- muszą być rozłączne,
- ich suma powinna obejmować wszystkie obserwacje,
- najmniejsza obserwowana wartość cechy powinna znajdować się w pobliżu środka pierwszego przedziału klasowego.

Dla cechy ciągłej nie mogą występować klasy bez elementów.

Wykorzystując komputerowe pakiety statystyczne można w trybie interaktywnym modyfikować omawiane parametry i generować różne szeregi rozdzielcze, co umożliwia lepsze poznanie rozkładu empirycznego badanej cechy.

Prezentacja graficzna danych

Alternatywną formą prezentacji szeregów statystycznych są wykresy. W zależności od potrzeb i typu danych wykorzystuje się różne typy wykresów (słupkowe, liniowe, kołowe, kartogramy itp.)

W przypadku szeregów rozdzielczych punktowych najczęściej stosuje się wykres słupkowy, bądź kołowy. Ich konstrukcję ilustruje poniższy przykład.

Tablica danych

Grupa kierunków	rok 19	90/91	rok1997/98		
	liczba	%	liczba	%	
pedagogiczne	99552	18,3	91100	7,2	
humanistyczne	69088	12,7	110565	8,7	
prawne i nauki społeczne	133824	24,6	566475	44,8	
nauki ścisłe i przyrodnicze	144704	26,6	292110	23,1	
medyczne	81600	15,0	95550	7,6	
pozostałe	15232	2,8	109200	8,6	
ogółem	544000	100,0	1265000	100,0	

Opis danych surowych:

- 2 próbki o licznościach $n_1 = 544000$ oraz $n_2 = 1265000$
- cecha jakościowa: grupa kierunków studiów
- 6 kategorii (atrybutów) cechy
- atrybuty: grupa kierunków pedagogicznych, humanistycznych, medycznych,

Najliczniejsze grupy kierunków:

- nauki ścisłe i przyrodnicze w 1990/91 roku
- prawo i nauki społeczne w 1997/98 roku

Procentowy udział klasy

(liczność klasy / liczność próbki) * 100% = częstość * 100%

Wykres słupkowy

Wykres słupkowy procentowego udziału grup kierunków studiów w roku akad. 1990/91

□ rok 1990/91

Wykres słupkowy procentowego udziału grup kierunków studiów w roku akad. oraz 1997/98

□ rok1997/98

Połączony wykres słupkowy

Wykres kołowy

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1990/91

Kąt wycinka koła dla grupy humanistycznej =

$$0,127 \times 360^{\circ} = 45,72^{\circ}$$

Kąt wycinka koła odpowiadającego określonej kategorii = Liczebność kategorii / liczebność próbki)×360°.

częstość kategorii x 100% =

= (pole wycinka / pole koła) x 100%

Wykres kołowy

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1997/98

Wykresy kołowe

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1990/91

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1997/98

Wykres słupkowy

Przykład

Wykres kołowy

Przykład

Tablica xx. Wartość eksportu krajów członkowskich UE w okresie2006 I-X (ceny bieżące w mld EUR)

Źródło:

Ograniczenia wykresów kołowych:

- można przedstawić jedynie dane procentowe
- w próbce musi być co najmniej 1 obserwacja każdej kategorii (bo łączna suma pól wycinków musi stanowić 100 % pola koła)
- mało czytelne przy dużej liczbie kategorii
- analiza dwóch wykresów kołowych bardziejkłopotliwa niż połączonego wykresu słupkowego.

METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH

Wykresy: diagramy, histogramy, łamane częstości, wykresy przebiegu.

Przykład. W stu kolejnych rzutach kostką sześcienną otrzymano wyniki (próbkę cechy dyskretnej o liczności 100):

522632531253625446164552461443424244 114531565615624552545511225526355414 5514321261216513615662235524

Rozkład liczby oczek w próbce

Wartość (I. oczek) 1 2 3 4 5 6 **Liczność** (I. wystąpień) 16 19 9 17 25 14

Rozkład częstości liczby oczek w próbce

Wartość (I. oczek) 1 2 3 4 5 6 **Częstość** 0,16 0,19 0,09 0,17 0,25 0,14

Zwięzły opis próbki: **rozkład cechy w próbce**, tzn. zapisanie jakie wartości wystąpiły w próbce i ile razy, lub z jaką częstością.

Diagram liczebności

Diagram częstości

Przykład. Wiek 25 osób, które ubezpieczyły się w III filarze emerytalnym w pewnym zakładzie pracy: 30, 49, 33, 35, 37, 20, 31, 30, 36, 46, 39, 40, 38, 41, 35, 37, 24, 27, 36, 43, 45, 25, 32, 29, 28.

- 21 różnych wartości: diagram rozkładu lat nieczytelny.
- Agregacja danych: przedziały wiekowe zawierające
 wszystkie obserwacje, liczba obserwacji w tych przedziałach.

Częstość **Przedział Obserwacje** Liczność (klasa) 20 1/25 = 0.04[18,23)3/25 = 0.12[23,28)24, 27, 25 3 [28,33)30, 30, 31, 32, 29, 28 6 6/25 = 0.247/25 = 0.28[33,38)33, 35, 37, 36, 35, 37, 36 [38,43)39, 40, 38, 41 4/25 = 0.163/25 = 0.12[43,48)43, 45, 46 3 [48,53) 1/25 = 0.04

49

Histogram

28+16+12+4=60% pracowników ma co najmniej 33 lata

Na osiach poziomych: granice klas wiekowych (przedziałów) wysokości słupków = procentowy udział każdej klasy w próbce

Wysokość słupka = częstość klasy x 100%.
Pole słupka =

stała długość przedziału x częstość x 100

Histogram liczebności: wysokość słupka = liczność klasy

Histogram częstości: wysokość słupka = częstość klasy

Szeregi rozdzielcze przedziałowe są prezentowane za pomocą:

- Histogramów,
- Diagramów (wieloboków liczebności),
- Krzywych liczebności (lub częstości).

Histogram to wykres słupkowy, w którym podstawy prostokątów, leżące na osi odciętych, odpowiadają przedziałom klasowym, natomiast wysokości są określone na osi rzędnych przez odpowiadające im liczebności (bądź częstości).

Diagram jest łamaną powstałą przez połączenie punktów, których współrzędnymi są środki przedziałów klasowych i odpowiadające im liczebności (lub częstości).

Krzywa liczebności to wygładzony wielobok liczebności.

Przykład (prezentacja graficzna danych ilościowych)

Histogram przedstawiający szereg rozdzielczy z przykładu (pow. sklepów - str.15, przepis – str.19 i 20)

Uwaga! Kształt histogramu dla szeregu częstości jest identyczny

Diagram szeregu rozdzielczego z przykładu (pow. sklepów)

Histogram oraz diagram przedstawiający szereg rozdzielczy przedziałowy

Krzywa liczebności szeregu rozdzielczego

Histogram przedstawiający szereg rozdzielczy skumulowany

Diagram szeregu rozdzielczego skumulowanego (wykres dystrybuanty empirycznej)

Zmienność.

KONSTRUKCJA HISTOGRAMU

(Str. 17 i 18 lub jak poniżej)

Początkowy wybór długości przedziałów:

$$h = 2,64 \times IQR \times n^{-1/3}$$

n = liczność próbki, IQR = rozstęp międzykwartylowy = zakres 50%
 "środkowych" wartości w próbce

Obserwacja wpływu stopniowego zwiększania lub zmniejszania długości przedziałów na kształt histogramu:

$$\alpha h, \alpha^2 h, \dots$$
 lub $\alpha^{-1} h, \alpha^{-2} h, \dots$; $\alpha > 1$

Mała długość przedziału to: nieregularność histogramu

Duża długość przedziału to: za duże wygładzenie histogramu

Przy ustaleniu kompromisu pomiędzy zbyt dużym wygładzeniem histogramu (redukcją informacji) a dużą nieregularnością histogramu pomocne są dodatkowe informacje o naturze obserwowanego zjawiska, np. obserwacje z kilku różnych populacji mogą dawać histogramy wielomodalne.

Początek histogramu: najmniejsza obserwacja stanowi środek pierwszego przedziału. Uśredniając kilka histogramów o nieznacznie przesuniętych początkach można uniezależnić się od wpływu początku histogramu na jego kształt.

Nr klasy <i>i</i>	Kla	asa	$\overline{\mathcal{X}}_i$	n_i	W_i	N_{i}	W_{i}
1	40,5	45,5	43	1	0,025	1	0,025
2	45,5	50,5	48	5	0,125	6	0,150
3	50,5	55,5	53	10	0,250	16	0,400
4	55,5	60,5	58	12	0,300	28	0,700
5	60,5	65,5	63	9	0,225	37	0,925
6	65,5	70,5	68	2	0,050	39	0,975
7	70,5	75,5	73	1	0,025	40	1,000

Histogram oraz łamana liczności

WSKAŹNIKI SUMARYCZNE

WSKAŹNIKI POŁOŻENIA (miary położenia, parametry położenia) charakteryzują najbardziej reprezentatywne dane, centralną "tendencję" danych, określają "środek" próbki:

Niech: x_1, x_2, \ldots, x_n - próbka o liczności n.

Wartość średnia w próbce (średnia próbkowa, średnia próbki)

$$\overline{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Przykład. Miesięczny dochód 10-ciu osób (w tys. PLN):

Dochód (PLN)	[1, 1,5)	[1,5, 2)	[2, 2,5)	[2,5, 3)
Liczba osób	2	2	4	2

Średnia na podstawie danych zgrupowanych:

$$\overline{x} = \sum_{i=1}^{k} \frac{n_i \widetilde{x}_i}{n} = \frac{2 \times 1,25 + 2 \times 1,75 + 4 \times 2,25 + 2 \times 2,75}{10} = 2,05$$

Mediana w próbce (mediana próbki, mediana próbkowa)

Niech
$$x_{(1)} \le x_{(2)} \le ... \le x_{(n-1)} \le x_{(n)}$$

uporządkowane w sposób rosnący wartości próbki:

$$x_{(1)} = \min\{x_1, x_2, ..., x_n\}, ..., x_{(n)} = \max\{x_1, x_2, ..., x_n\}$$

$$\mathbf{x}_{med} = x_{((n+1)/2)}, \quad \text{gdy n jest nieparzyste}$$

$$\mathbf{x}_{med}$$
 = $x_{((n+1)/2)}$, gdy n jest nieparzyste
 \mathbf{x}_{med} = $\frac{1}{2}(x_{(n/2)} + x_{(n/2+1)})$, gdy n jest parzyste.

Przykład. Miesięczny dochód 11-tu osób:

Dochód (PLN)	2000	2500	3500	19000
Liczba osób	4	4	2	1

Średnie wynagrodzenie tej grupy osób to:

$$\bar{x} = \frac{1}{11}(4 \times 2000 + 4 \times 2500 + 2 \times 3500 + 19000) = 4000$$

2000, 2000, 2000, 2000, 2500, <u>2500,</u> 2500, 2500, 3500, 3500, 19000

Mediana = 2500

Średnia wrażliwa na obserwacje odstające:

 $\bar{x} = 4000 > 3500 = x_{(10)}, \ x_{(11)} = 19000$ - średnia nie odzwierciedla "typowego" dochodu.

Mediana odporna (mało wrażliwa) na obserwacje odstające:

 $x_{med} = x_{(6)} = 2500$ - mediana jest lepszą miarą przeciętnego

wynagrodzenia niż średnia

Średnia ucinana (ucięta) (z parametrem k)

$$\overline{x}_{tk} = \frac{1}{n-2k} \sum_{i=k+1}^{n-k} x_{(i)},$$

stosowana gdy wartości odstające są wynikiem błędu (błędne przetworzenie danych lub błędy przyrządów pomiarowych).

Ostrzeżenie: obserwacje odstające mogą być bardzo istotne, np. są wynikiem rozregulowania procesu produkcji

Średnia winsorowska (z parametrem k)

$$\overline{x}_{wk} = \frac{1}{n} \left[(k+1)x_{(k+1)} + \sum_{i=k+2}^{n-k-1} x_{(i)} + (k+1)x_{(n-k)} \right]$$

Stosowana w sytuacjach gdy wartości skrajne (k najmniejszych lub k największych) niepewne co do ich prawdziwych wartości (np. zostały utracone z bazy danych; nie mogły być zaobserwowane w przypadku badania czasu życia lub czasu bezawaryjnej pracy urządzenia gdy eksperymentator ma ograniczony czas obserwowania zjawiska.

Moda – najczęściej występująca wartość (lub wartości) w próbce.

WSKAŹNIKI ROZPROSZENIA (miary rozproszenia,

parametry rozproszenia) charakteryzują rozrzut danych, rozproszenie wartości próbki wokół parametru położenia.

Rozstęp próbki

$$R = x_{(n)} - x_{(1)},$$

Wariancja próbki (w próbce)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2},$$

Przykład. Miesięczny dochód 10-ciu osób (w tys. PLN):

Dochód (PLN)	[1, 1,5)	[1,5, 2)	[2, 2,5)	[2,5, 3)
Liczba osób	2	2	4	2

Wariancja na podstawie danych zgrupowanych:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} n_{i} (\widetilde{x}_{i} - \bar{x})^{2} = 0,2889.$$

Odchylenie standardowe w próbce (próbki)

$$s = \sqrt{s^2}$$

Odchylenie przeciętne od wartości średniej

$$d_1 = \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$$

Dolny (pierwszy) kwartyl

 Q_1 = mediana podpróbki składającej się z elementów próbki "mniejszych" od mediany x_{med} .

Górny (trzeci) kwartyl

 Q_3 = mediana podpróbki składającej się z elementów próbki "większych" od mediany (w próbce uporządkowanej rosnąco są to elementy występujące na pozycjach po pozycji mediany.

Rozstęp międzykwartylowy

$$IQR = Q_3 - Q_1$$
.

Obserwacje odstające – obserwacje poza przedziałem

$$\left[Q_1 - \frac{3}{2}IQR, Q_3 + \frac{3}{2}IQR\right]$$

Przykład. Zanotowano liczby reklamacji w kolejnych 8 miesiącach w wybranym oddziale pewnego banku:

Obliczyć średnią i wariancję, medianę, dolny i górny kwartyl dla zaobserwowanych liczby reklamacji. Czy są obserwacje odstające?

$$\bar{x} = \frac{15 + 23 + 10 + 18 + 19 + 15 + 9 + 20}{8} = \frac{129}{8} = 16,125$$

$$s^2 = \frac{1}{7} \sum_{i=1}^{8} (x_i - 16,125)^2 = \frac{1}{7} \{ (15 - 16,125)^2 + \dots + (20 - 16,125)^2 \} = ?$$

Próbka uporządkowana rosnąco: 9 10 15 15 18 19 20 23

Mediana =
$$\frac{15+18}{2} = \frac{33}{2} = 16,5$$
, $Q_1 = \frac{10+15}{2} = 12,5$, $Q_3 = \frac{19+20}{2} = 19,5$

Obserwacje odstające = obserwacje poza przedziałem

$$\left[12,5 - \frac{3}{2}(19,5 - 12,5), 19,5 + \frac{3}{2}(19,5 - 12,5)\right] = [2,32]$$
, stąd nie ma odstających obserwacji.

WYKRES RAMKOWY (pudełkowy)

ilustruje wzajemne położenie pięciu wskaźników sumarycznych:

$$x_{(1)} = x_{min}$$
, Q_1 , x_{med} , Q_3 , $x_{(n)} = x_{max}$.

Obserwacja potencjalnie odstająca

Z wykresu odczytujemy następujące wskaźniki:

- Q₁ = 0,1 = rzut na oś poziomą lewego boku prostokąta
- Q₃ = 0,7 = rzut na oś poziomą prawego boku prostokąta
- Q₂ = 0,3 = rzut na oś poziomą pionowego odcinka wewnątrz prostokąta
- IQR = długość podstawy prostokąta

Wąsy wykresu ramkowego = linie po obu stronach prostokąta.

Rzut lewego wąsa na oś poziomą = przedział $[x_*, Q_1]$, gdzie

$$x_* = \min\{ x_k: Q_1 - 3/2 \cdot IQR \le x_k \le Q_1 \},$$

podobnie określamy rzut prawego wąsa = przedział $[Q_3,x^*]$, gdzie

$$x^* = \max\{x_k: Q_3 \le x_k \le Q_3 + 3/2 \cdot IQR \}$$

Count = 100

Average = 2,02544

Median = 1,46467

Variance = 3,16395

Standard deviation = 1,77875

Minimum = 0.0150559

Maximum = 8,05684

Range = 8,04179

Lower quartile = 0,638618

Upper quartile = 3,23695

Interquartile range = 2,59833

Coeff. of variation = 87,8206%

Box-and-Whisker Plot

Histogram

Box-and-Whisker Plot

Summary Statistics for RAND1

Count = 100

Average = -0,110696

Median = -0.0516888

Variance = 1,07775

Standard deviation = 1,03815

Minimum = -3,36516

Maximum = 2,26235

Range = 5,62751

Lower quartile = -0,726224

Upper quartile = 0,680553

Interquartile range = 1,40678

Stnd. skewness = -1,86072

Coeff. of variation = -937,836%

Box-and-Whisker Plot

Box-and-Whisker Plot

