Global Sensitivity Analysis

How to perform comprehensive, efficient, and robust Global Sensitivity Analysis?

Debraj Roy

Computational Science Lab, University of Amsterdam

Table of contents

- 1. Monte Carlo Integration
- 2. Low discrepancy sequences
- 3. Quasi Monte-carlo sequence

Monte Carlo Integration

Integration in one dimension

What is the area under the green curve?

Integration in one dimension

What is the area under the green curve?

Approximation: Area \approx sum of the areas of the 8 rectangles We get a better approximation with more rectangles

Integration in two dimension

What is the volume under the green surface?

Approximation: Volume \approx sum of the volumes of the 88=64 rectangular prisms

We get a better approximation with more prisms

Integration in two dimension

What is the volume under the green surface?

Approximation: Volume \approx sum of the volumes of the 88=64 rectangular prisms

We get a better approximation with finer grids 8^2 dots $\rightarrow k^2$ dots

Integration in s dimension

Integral in high dimensions \rightarrow "hyper volume"

Approximation by product grids:

- \mathbf{k}^2
- \mathbf{k}^3
- **...**
- ...
- k^s points in hyper cube

Approximation: $s=360, k=2; 2^{360}$ is astronomical (2^{20} one million) We need to stay away from product grids in high dimensions

Monte carlo methods

Integral \approx average of function values at random points in the hyper cube. drawbacks: big gaps, clusters, slow convergence

Low discrepancy sequences

Discrepancy

Given a sequence $x_1, ..., x_N$ in [0, 1), its extreme discrepancy is:

$$D_N(P) = \sup_{B \in J} \left| \frac{A(B; P)}{N} - \lambda_s(B) \right|$$

$$\prod_{i=1}^{s} [a_i, b_i] = \{ \mathbf{x} \in \mathbf{R}^s : a_i \le x_i \le b_i \}$$

where $0 \le a_i \le b_i \le 1$

The star-discrepancy $D_N^*(P)$ is defined similarly, except that the supremum is taken over the set J^* of rectangular boxes of the form:

$$\prod_{i=1}^{s} [0, u_i)$$

where u_i is in the half-open interval [0,1)

Low Discrepancy Sequences

Why are these sequences important in applications?

Theorem

A sequence $x_1, ..., x_N$ in I^s is u.d. mod 1 iff

$$\frac{1}{N}\sum_{i=1}^{N}f(x_i)=\int_{\bar{I}^s}f(u)\,du$$

for all Riemann integrable functions f on Is

Low Discrepancy Sequences

Why are these sequences important in applications?

Theorem

A sequence $x_1, ..., x_N$ in I^s is u.d. mod 1 iff

$$\frac{1}{N}\sum_{i=1}^{N}f(x_i)=\int_{\bar{I}^s}f(u)\,du$$

for all Riemann integrable functions f on I^s

Low Discrepancy Sequences

Why are these sequences important in applications?

Theorem

 $D_N(x_n) \to 0$ iff x_n is a u.d. mod 1 sequence.

Remark

Sequences with best known bounds for star-discrepancy satisfy $O((logN)^s/N)$. (The term low-discrepancy sequence is used for these sequences.). This is important because of the Koksma-Hlawka inequality.

Koksma-Hlawka inequality

$$\left|\frac{1}{N}\sum_{i=1}^{N}f(x_i)-\int_{\bar{I}^s}f(u)\,du\right|\leq V(f)\,D_N^*(x_1,\ldots,x_N).$$

It tells us about the asymptotic behaviour of the error $O((log N)^s/N)$.

Quasi Monte-carlo sequence

Definition

For $0 \le t \le m$, a finite sequence of b^m points in $[0,1)^s$ is a (t,m,s)-net in base b if every elementary interval in base b of volume b^{t-m} contains exactly b^t points of the sequence.

It is all about having the right number of points in various subdivisions.

2D Example:

we want to place 4 points in the unit square so that there is exactly one point in each of the 4 rectangles of the same shape and size, given by the three possible subdivisions:

2D Example:

we want to place 4 points in the unit square so that there is exactly one point in each of the 4 rectangles of the same shape and size, given by the three possible subdivisions:

2D Example:

we want to place 4 points in the unit square so that there is exactly one point in each of the 4 rectangles of the same shape and size, given by the three possible subdivisions:

2D Exercise:

2D Exercise:

2D Exercise:

2D Exercise:

Definition: An infinite sequence of points $q_1, q_2, ...$ is called a (t, s)-sequence in base b if the finite sequence $q_{kb^m+1}, ..., q_{(k+1)b^m}$ is a (t, m, s) - net in base b for all $k \ge 0$ and $m \ge t$.

Sobol sequences

The most popular QMC approach uses Sobol sequencesx(x^i) which have the property that for small dimensions d < 40 the subsequence:

$$2^m \le i < 2^{m+1}$$

of length 2^m has precisely 2^{md} points in each of the little cubes of volume 2^d formed by bisecting the unit hypercubein each dimension, and similar properties hold with otherpieces.

Sobol sequences

We can reuse points compared to Monte Carlo

Sobol sequences

Fig. 2. Space-filling process of $[0,1]^2$ using a two-dimensional Sobol' sequence, compared to MCS and LH

