Программирование микроконтроллеров STM32

Прямой доступ к памяти

Зачем нужен модуль прямого доступа к памяти? (DMA - direct memory access)

- Разгрузить основной процессор
 - Ядро инициирует работу DMA
 - Выполняет свои задачи
 - Получает прерывание по окончанию работы DMA

credits: pcmag.com

DMA B STM32

- 5 каналов
- 4 уровня приоритетов между каналами
- Конфигурируемый мин. размер сообщения (слово, полуслово, байт)
- Поддержка кольцевого режима
- 3 флага для всех каналов с прерыванием (через лог. "ИЛИ")
- Передача данных между перифериями, между памятью, между памятью и периферией
- Максимальная длина пакета 65536 сообщений

Пример транзакции в DMA

DMA. Параметры передачи

Размер сообщения конфигурируется как для источника, так и для получателя: В данном случае: размер сообщения для источника - 1 байт (USART_RDR), размер сообщения для получателя - 1 байт (SRAM)

DMA. Параметры передачи

Source port width	Destination port width	Number of data items to transfer (NDT)	Source content: address / data	Transfer operations	Destination content: address / data
8	8	4	@0x2 / B2	1: READ B0[7:0] @0x0 then WRITE B0[7:0] @0x0 2: READ B1[7:0] @0x1 then WRITE B1[7:0] @0x1 3: READ B2[7:0] @0x2 then WRITE B2[7:0] @0x2 4: READ B3[7:0] @0x3 then WRITE B3[7:0] @0x3	@0x0 / B0 @0x1 / B1 @0x2 / B2 @0x3 / B3
8	32	4	@0x0 / B0 @0x1 / B1 @0x2 / B2 @0x3 / B3	1: READ B0[7:0] @0x0 then WRITE 000000B0[31:0] @0x0 2: READ B1[7:0] @0x1 then WRITE 000000B1[31:0] @0x4 3: READ B2[7:0] @0x2 then WRITE 000000B2[31:0] @0x8 4: READ B3[7:0] @0x3 then WRITE 000000B3[31:0] @0xC	@0x0 / 000000B0 @0x4 / 000000B1 @0x8 / 000000B2 @0xC / 000000B3
			•		•
32	8	4	@0x4 / B7B6B5B4 @0x8 / BBBAB9B8	1: READ B3B2B1B0[31:0] @0x0 then WRITE B0[7:0] @0x0 2: READ B7B6B5B4[31:0] @0x4 then WRITE B4[7:0] @0x1 3: READ BBBAB9B8[31:0] @0x8 then WRITE B8[7:0] @0x2 4: READ BFBEBDBC[31:0] @0xC then WRITE BC[7:0] @0x3	@0x0 / B0 @0x1 / B4 @0x2 / B8 @0x3 / BC

DMA. Инициализация

- Подача тактирования на модуль DMA
- Указание адреса памяти LL_DMA_SetMemoryAddress [CMAR]
- Указание адреса периферии *LL_DMA_SetPeriphAddress* [CPAR]
- Настройка направления передачи данных
 - LL_DMA_SetDataTransferDirection [CCR]
- Настройка длины пакета LL_DMA_SetDataLength [CNDTR]
- Параметры работы с сообщениями
 - LL_DMA_SetMemoryIncMode [CCR]
 - LL_DMA_SetPeriphIncMode [CCR]
 - LL_DMA_SetPeriphSize [CCR]
 - LL_DMA_SetMemorySize [CCR]
- Настройка режима DMA *LL_DMA_SetMode* [CCR] (кольцевой или нет)
- Включение модуля DMA LL_DMA_EnableChannel [CCR]

Peripherals	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
ADC	ADC ⁽¹⁾	ADC ⁽²⁾	-	-	-
SPI	-	SPI1_RX	SPI1_TX	SPI2_RX	SPI2_TX
USART	-	USART1_TX ⁽¹⁾	USART1_RX ⁽¹⁾	USART1_TX ⁽²⁾ USART2_TX	USART1_RX ⁽²⁾ USART2_RX
I2C	_	I2C1_TX	I2C1_RX	I2C2_TX	I2C2_RX
TIM1	-	TIM1_CH1	TIM1_CH2	TIM1_CH4 TIM1_TRIG TIM1_COM	TIM1_CH3 TIM1_UP
TIM2	TIM2_CH3	TIM2_UP	TIM2_CH2	TIM2_CH4	TIM2_CH1
TIM3	-	ТІМ3_СН3	TIM3_CH4 TIM3_UP	TIM3_CH1 TIM3_TRIG	=
TIM6 / DAC	-	-	TIM6_UP DAC_Channel1	-	-
TIM15	-	-	-	-	TIM15_CH1 TIM15_UP TIM15_TRIG TIM15_COM
TIM16	-	-	TIM16_CH1 ⁽¹⁾ TIM16_UP ⁽¹⁾	TIM16_CH1 ⁽²⁾ TIM16_UP ⁽²⁾	-
TIM17	TIM17_CH1 ⁽¹⁾ TIM17_UP ⁽¹⁾	TIM17_CH1 ⁽²⁾ TIM17_UP ⁽²⁾	-	-	-

DMA. Прерывания

Interrupt event	Event flag	Enable control bit	
Half-transfer	HTIF	HTIE	
Transfer complete	TCIF	TCIE	
Transfer error	TEIF	TEIE	

- Включение прерывания LL_DMA_EnableIT_TC [CCR]
- Настройка NVIC

DMA1_Channel1_IRQHandler DMA1_Channel2_3_IRQHandler DMA1_Channel4_5_IRQHandler

- Проверка флага LL_DMA_IsActiveFlag_TCx [ISR]
- Сброс флага *LL_DMA_ClearFlag_TC5* [IFCR]

Репозиторий

https://github.com/edosedgar/stm32f0_ARM