EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

11172330

PUBLICATION DATE

29-06-99

APPLICATION DATE

12-12-97

APPLICATION NUMBER

09343470

APPLICANT: NIPPON STEEL CORP;

INVENTOR: ASAHI HITOSHI;

 $P_1 = 2.7C + 0.4Si + Mn + 0.8Cr$

+0.45 (Ni+Cu)+Mo+V

INT.CL.

: C21D 8/02 C22C 38/00 C22C 38/14

C22C 38/58

TITLE

: PRODUCTION OF HIGH STRENGTH

STEEL PLATE EXCELLENT IN

TOUGHNESS AT LOW TEMPERATURE

ABSTRACT: PROBLEM TO BE SOLVED: To produce a steel plate excellent in toughness at a low temperature by successively applying respective treatments of reheating, rolling, cooling, reheating, and cooling to a steel slab of specific composition under respectively specified conditions.

> SOLUTION: A steel slab, having a composition which consists of, by weight, 0.03-0.10% $C_1 \le 0.6\% Si_1 \cdot 1.8 - 2.5\% Mn_2 \le 0.015\% P_3 \le 0.003\% S_1 \cdot 0.20 - 1.0\% Ni_1 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_1 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_1 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_1 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_1 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_1 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_2 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_2 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_2 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_2 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_2 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_3 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_3 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_3 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_3 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.60\% Mo_3 = 0.003\% S_3 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.003\% S_3 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.003\% S_3 \cdot 0.20 - 1.0\% Ni_2 \cdot 0.25 - 0.003\% S_3 \cdot 0.20 - 0.003\% S_3 \cdot 0.003\% S_3 \cdot 0.000000000000000000000000000000$ 0.01-0.10% Nb, 0.005-0.030% Ti, $\leq 0.06\%$ Al. 0.001-0.006% N, $\leq 0.005\%$ O, and the balance Fe with inevitable impurities and in which the value of P₁ defined by equation is regulated to 3.1-4.0, is reheated at 1000-1200°C, rolled under the conditions of ≥70% cumulative rolling reduction at ≤900°C and of 650-800±C rolling finishing temp., and cooled down to an arbitrary temp. not higher than 500°C at ≥10°C/sec cooling rate. Further, the resultant steel plate is reheated to 750-850°C and then cooled at ≥10°C/sec cooling rate. By this method, the high strength steel plate of ≥950 MPa tensile strength can be obtained.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-172330

(43)公開日 平成11年(1999)6月29日

(51) Int.Cl. ⁶	離別記号	F J
C 2 1 D 8/02		C 2 1 D 8/02 B
C 2 2 C 38/00	301	C 2 2 C 38/00 3 0 1 A
38/14		38/14
38/58		38/58
		審査請求 未請求 請求項の数3 〇L (全 9 頁)
(21)出顧番号	特願平9-343470	(71) 出願人 000006655
		新日本製鐵株式会社
(22) 山願日	平成9年(1997)12月12日	東京都千代田区大手町2丁目6番3号
		(72)発明者 寺田 好身
		千葉県君津市君津1番地 新日本製鐵株式
		会社君津製鐵所內
	•	(72)発明者 為広 博
	·	千葉県富津市新富20-1 新日本製鐵株式
		会社技術開発本部內
		(72)発明者 原 卓也
٠		千葉県富津市新富20-1 新日本製鐵株式
		会社技術開発本部内
		(74)代理人 弁理士 田村 弘明 (外1名)
		最終頁に続く

(54) 【発明の名称】 低温靱性の優れた高強度鋼板の製造法

(57)【要約】

【課題】 低温靭性、現地溶接性などの諸特性を同時に 達成できるAPI規格X100超の高強度鋼板を提供する。

【効果】 低温靱性、現地溶接性が優れた高強度ラインパイプ (X100超)の製造が可能となった。その結果、パイプラインの安全性が著しく向上するとともに、パイプライン施工能率の向上および輸送効率の向上が可能となった。

【特許請求の範囲】

【請求項1】 重量%にて、

 $C : 0.03 \sim 0.10\%$

Si: 0. 6%以下、

 $Mn: 1.8\sim 2.5\%$

P:0.015%以下、

S:0.003%以下、

 $Ni: 0.20 \sim 1.0\%$

 $Mo: 0.25 \sim 0.60\%$

 $Nb: 0.01 \sim 0.10\%$

 $Ti: 0.005\sim 0.030\%$

A1:0.06%以下、

 $N : 0.001 \sim 0.006\%$

〇 : 0.005%以下

を含有し、残部がFeおよび不可避的不純物からなり、下記(1)式で定義されるP₁値が3.1~4.0の範囲にある鋼片を1000~1200℃の温度に再加熱後、900℃以下の累積圧下量が70%以上で、圧延終了温度が650~800℃となるように圧延した後、10℃/秒以上の冷却速度で500℃以下任意の温度まで冷却した鋼板を750~850℃の温度域に再加熱して、その後10℃/秒以上の冷却速度で冷却することを特徴とする引張強さが950MPa以上の低温靭性の優れた高強度鋼板の製造法。

 $P_1 = 2.7C + 0.4Si + Mn + 0.8Cr$

 $+0.45 (Ni+Cu)+Mo+V \cdots (1)$

【請求項2】 重量%にて、

 $C : 0.03 \sim 0.10\%$

Si: 0.6%以下、

 $Mn: 1.7 \sim 2.2\%$

P:0.015%以下、

S:0.003%以下、

 $Ni: 0.10 \sim 1.0\%$

 $Mo: 0.15 \sim 0.50\%$

 $Nb: 0.01 \sim 0.10\%$

 $Ti: 0.005 \sim 0.030\%$

 $B : 0.0003 \sim 0.0020\%$

A1:0.06%以下、

N: 0.001~0.006%、 O: 0.005%以下

を含有し、残部がFeおよび不可避的不純物からなり、下記(2)式で定義されるP₂値が2.5~4.0の範囲にある鋼片を1000~1200℃の温度に再加熱後、900℃以下の累積圧下量が70%以上で、圧延終了温度が650~800℃となるように圧延した後、10℃/秒以上の冷却速度で500℃以下任意の温度まで冷却した鋼板を750~850℃の温度域に再加熱して、その後10℃/秒以上の冷却速度で冷却することを特徴とする引張強さが950MPa以上の低温靭性の優れた高強度鋼板の製造法。

 $P_2 = 2.7C + 0.4Si + Mn + 0.8Cr$

 $+0.45 (Ni+Cu) + 2Mo \cdots (2)$

【請求項3】 前記鋼片が、重量%にてさらに、

 $Cu: 0.1 \sim 1.0\%$

 $Cr: 0.1 \sim 1.0\%$

 $V : 0.01 \sim 0.10\%$

 $Ca: 0.001 \sim 0.005\%$

のうち1種または2種以上を含有することを特徴とする 請求項1または2記載の低温靭性の優れた高強度鋼板の 製造法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は950MPa以上の 引張強さ(TS)を有する低温靭性・溶接性の優れた高 強度鋼に関するもので、天然ガス・原油輸送用ラインパ イプをはじめ、各種圧力容器、産業機械などの溶接用鋼 材として広く使用できる。

[0002]

【従来の技術】原油や天然ガスを長距離輸送するためのパイプラインに使用されるラインパイプは、(1) 高圧化による輸送効率の向上や、(2) 薄肉化による現地での溶接能率向上のため、ますます高張力化する傾向にある。これまでに米国石油協会(API)規格でX80(降伏強さ551MPa以上、引張強さ620MPa以上)ま

でのラインパイプの実用化が進行中であるが、さらに高 強度のラインパイプに対するニーズが強くなってきた。

【0003】現在、高強度ラインパイプ製造法の研究は、従来のX80ラインパイプの製造技術(たとえばNKK技報 No.138(1992), pp24-31 およびThe 7th Offshore Mechanics and Arctic Engineering (1988), Volume V, pp179-185)を基本に検討されているが、これではせいぜい、X100(降伏強さ689MPa以上、引張強さ760MPa以上)ラインパイプの製造が限界と考えられる。

【0004】従来より、低炭素一高Mn-Nb-Mo鋼は微細なアシキュラーフェライト組織を有するラインパイプ用鋼としてよく知られている。例えば、特開平5-255744号公報では、低炭素-Mn-0.05~0.35%Mo-Nb鋼を900℃~1000℃に再加熱後、圧延することを特徴とする低温靭性の優れた高張力鋼板の製造法が開示されているが、その引張強さの上限はせいぜい750MPaが限界であった。また極低炭素-高Mn-Nb-(Mo)-(Ni)-微量B-微量Ti鋼は、微細なベイナイト組織を有するラインパイプ用鋼としてよく知られているが、その引張強さの上限もせいぜい750MPaが限界であった。

【0005】さらに高強度化をはかるためには、C量や 合金元素量を増加させることが必要であるが、合金元素 の増加によりスラブ再加熱時のオーステナイト粒が混粒 化し、制御圧延を施しても変態前のオーステナイト粒を 均一に微細化することが困難となり、変態後の組織は一 部粗大化した組織となって低温靭性が劣化する。

【0006】パイプラインの超高強度化は、強度・低温 **靭性バランスをはじめとして、溶接熱影響部(HAZ)** 靭性、現地溶接性、継手軟化など多くの問題を抱えてお り、これらを克服した画期的な高強度ラインパイプ(X 100超)の早期開発が要望されている。

[0007]

【発明が解決しようとする課題】本発明は溶接部および 母材の低温靭性、現地溶接性などの諸特性を同時に達成 できる引張強さ950N/mm²以上(API規格N10 O超)の高強度ラインパイプ用鋼板の製造方法を提供す ることを目的とする。

[0008]

$$P_1 = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45(Ni + Cu) + Mo + V + \cdots$$
 (1)

【0009】また第2発明法は、重量%にて、C:0. 03~0.10%、Si:0.6%以下、Mn:1.7 ~2.2%、P:0.015%以下、S:0.003% 以下、Ni:0.10~1.0%、Mo:0.15~ 0.50%, Nb:0.01~0.10%, Ti:0. $005\sim0.030\%$, B: 0.0003 ~0.002 0%、A1:0.06%以下、N:0.001~0.0 06%、0:0.005%以下を含有し、残部がFeお よび不可避的不純物からなり、下記(2)式で定義され

 $P_2 = 2.7C + 0.4Si + Mn + 0.8Cr$

+0.45(Ni+Cu)+2Mo $\cdots (2)$

【0010】そして、第1発明法および第2発明法にお いて、前記鋼片が、重量%にてさらに、Cu:0.1~ 1. 0%, Cr: 0. 1~1. 0%, V: 0. 01~ 0.10%, Ca: 0.001~0.005% oj 51 種または2種以上を含有することが好ましい。

[0011]

【発明の実施の形態】第1発明法の特徴は、(1) 低C-高Mn-Nb-Ni-Mo-微量Ti系の鋼片を制御圧 延・加速冷却して鋼板とした後、(2) 750~850℃ の温度域に再加熱して、その後空冷または10℃/秒以 上の冷却速度で冷却することにより、微細なベイナイト 主体組織とするところにあり、これによって高強度と優 れた低温靭性、現地溶接性を同時に達成している。

【0012】本発明者らはNb-Ni-Mo鋼におい て、化学成分、圧延条件およびその後の熱処理条件を厳 密に制御することにより、高強度と優れた低温靭性が達 成できることを見いだした。第1発明法による鋼板の特 徴は、焼入れ・焼戻し処理による鋼板に比較して降伏比 が低く、低温靭性に著しく優れることである。

【課題を解決するための手段】上記目的を達成する本発 明の第1発明法は、重量%にて、C:0.03~0.1 0%、Si:0.6%以下、Mn:1.8~2.5%、 P: 0. 015%以下、S: 0. 003%以下、Ni: $0.20 \sim 1.0\%$, $M \circ : 0.25 \sim 0.60\%$, N $b:0.01\sim0.10\%$, $Ti:0.005\sim0.0$ 30%、A1:0.06%以下、N:0.001~0. 006%、0:0.005%以下を含有し、残部がFe および不可避的不純物からなり、下記(1)式で定義さ れるP₁値が3.1~4.0の範囲にある鋼片を100 0~1200℃の温度に再加熱後、900℃以下の累積 圧下量が70%以上で、圧延終了温度が650~800 ℃となるように圧延した後、10℃/秒以上の冷却速度 で500℃以下任意の温度まで冷却した鋼板を750~ 850℃の温度域に再加熱して、その後10℃/秒以上 の冷却速度で冷却することを特徴とする引張強さが95 OMPa以上の低温靭性の優れた高強度鋼板の製造法で

るP2 値が2.5~4.0の範囲にある鋼片を1000

~1200℃の温度に再加熱後、900℃以下の累積圧

下量が70%以上で、圧延終了温度が650~800℃

となるように圧延した後、10℃/秒以上の冷却速度で

500℃以下任意の温度まで冷却した鋼板を750~8

50℃の温度域に再加熱して、その後10℃/秒以上の

冷却速度で冷却することを特徴とする引張強さが950

MPa以上の低温靭性の優れた高強度鋼板の製造法であ

【0013】引張強さ950MPa以上の高強度と優れ た低温靭性を達成するためには、組織を徹底的に微細化 する必要がある。特に多量のNbとMoを含有する鋼で は、スラブ再加熱時に一部粗大な結晶粒を含んだ混粒と なりやすく、この粗大粒をその後の制御圧延で微細化す ることは困難である。そこで、圧延・加速冷却した鋼板 を750~850℃の温度域に再加熱することにより結 晶粒を著しく微細化でき、高強度と優れた低温靭性を達 成することに成功した。

【0014】以下に第1発明法の製造条件の限定理由に ついて説明する。まず上記成分からなる鋼片を1000 ~1200℃の温度に再加熱後、900℃以下の累積圧 下量が70%以上で、圧延終了温度が650~800℃ となるように圧延を行い、その後10℃/秒以上の冷却 速度で500℃以下任意の温度まで冷却する。つぎに7 50~850℃の温度域に再加熱して、その後10℃/ 秒以上の冷却速度で冷却する。

【0015】鋼片(スラブ)の再加熱温度を1000℃ 以上とする理由は、粗大な鋳造組織である鋼片をオース テナイト域で十分に溶体化させて、できるだけ均一なオーステナイト粒を形成させるとともに、圧延終丁温度を確保するためである。しかし、加熱温度が1200℃を超えると、再加熱時のオーステナイトが著しく成長し、圧延後の結晶粒も大きくなって低温靭性の劣化を招く。このために鋼片の再加熱温度の上限を1200℃とした。

【0016】再加熱した網片は、900℃以下の累積圧下量が70%以上、かつ圧延終了温度が650~800℃となるように圧延しなければならない。900℃以下の累積圧下量を70%以上とする理由は、オーステナイト未再結晶域での圧延を強化し、変態前のオーステナイト組織の微細化をはかり、低温靭性を向上させるためである。

【0017】さらに、圧延終了温度を650~800℃とする必要がある。これは、オーステナイト未再結晶域で細粒化したオーステナイト組織を、一層微細化するためである。累積圧下量が適切であっても、その圧延温度が不適切であると、優れた低温靭性は達成できない。圧延終了温度が650℃より低いと、加工によるフェライトの脆化が顕著となるので、圧延終了温度の下限を650℃とした。しかし圧延終了温度が800℃より高いと、オーステナイト組織の微細化が十分でないため、圧延終了温度の上限を800℃に限定した。

【0018】圧延終了後、鋼板は10℃/秒以上の冷却速度で500℃以下任意の温度まで冷却する必要がある。冷却速度が10℃/秒より小であったり、水冷停止温度が500℃より高いと、変態強化による強度・低温 朝性バランスの向上が十分に期待できない。冷却速度は大きいほど変態強化に有効であり、特に上限は限定しない。実用上可能な冷却速度は板厚にも依存するが、40℃/秒程度である。

【0019】つぎに圧延・冷却後の鋼板は、750~850℃の温度に再加熱する必要がある。加熱温度が750℃未満では、オーステナイト化が不十分で強度の向上や降伏比の低下が得られないばかりか、旧オーステナイト粒界に粗大かつ列状に生成したMA(Martensite-Austenite Constituent)いわゆるマルテンサイトとオーステナイトが共存した組織などの硬化組織が生成し、低温靭性が劣化する。また850℃を超えるとオーステナイトが成長し、組織が微細化できない。このため加熱温度の上限を850℃とした。

【0020】加熱後、鋼板は10℃/秒以上の冷却速度で冷却する必要がある。10℃/秒以上の冷却速度で冷却する理由は、変態強化、組織の微細化をはかるためである。10℃/秒未満であると変態強化による強度・低温靭性バランスの向上が十分に期待できない。

【0021】つぎに第1発明法における成分元素の限定 理由について説明する。Cは0.03~0.10%に限 定する。Cは母材および溶接部の強度向上に有効な元素 であり、ベイナイトを主体とする組織において目的の強度を得るためには、最低 0.03%は必要である。またこの量は Nb、V添加による析出硬化、結晶粒の微細化効果の発現のための最小量でもある。しかし C量が多すぎると母材、HAZ(溶接熱影響部)の低温靭性、現地溶接性の著しい劣化を招くので、その上限を 0.10% とした。

【0022】Siは脱酸や強度向上のため添加する元素であるが、多く添加するとHAZ朝性、現地溶接性を著しく劣化させるので、上限を0.6%とした。鋼の脱酸はTiあるいはAIでも十分可能であり、Siは必ずしも添加する必要はない。Mnは強度、低温靭性を確保する上で不可欠な元素であり、その下限は1.8%である。しかしMnが多すぎると鋼の焼入性が増加してHAZ朝性、現地溶接性を劣化させるだけでなく、連続鋳造鋼片の中心偏析を助長し、母材の低温靭性をも劣化させるのでその上限を2.5%とした。

【〇〇23】Niを添加する目的は、本発明における低炭素成分系の強度を低温靭性や現地溶接性を劣化させることなく向上させるためである。Ni添加は、MnやCr、Mo添加に比較して圧延組織(特にスラブの中心偏析帯)中に低温靭性に有害な硬化組織を形成することが少なく、微量のNi添加がHAZ靭性の改善にも有効であることが判明した。この効果を発揮させるためには、O.2%以上の添加が必要である。しかし、添加量が多すぎると経済性だけでなく、HAZ靭性や現地溶接性を劣化させるので、その上限を1.0%とした。

【0024】Moを添加する理由は、鋼の焼入性を向上させ、目的とするベイナイトイ主体の組織を得るためである。このような効果を得るためには、Moは最低0.25%必要である。しかし過剰なMo添加はHAZ靭性、現地溶接性を劣化させるので、その上限を0.60%とした。

【0025】また本発明では、必須の元素としてNb: 0.01~0.10%、Ti:0.005~0.030%を含有する。NbはMoと共存して結晶粒の微細化や析出硬化に寄与し、鋼を強靭化する作用を有する。この効果を発揮させるための最小量として、その下限を0.01%とした。しかしNbを0.10%超添加すると、HAZ靭性や現地溶接性に悪影響をもたらすので、その上限を0.10%とした。

【0026】一方、Ti添加は微細なTiNを形成し、加熱時および溶接HAZのオーステナイト粒の粗大化を抑制してミクロ組織を微細化し、母材およびHAZの低温靭性を改善する。またAl量が少ないとき(たとえば0.005%以下)、Tiは酸化物を形成し、HAZにおいて粒内フェライト生成核として作用し、HAZ組織を微細化する効果も有する。このようなTi添加効果を発現させるためには、最低0.005%のTi添加が必要である。しかしTi量が多すぎると、TiNの粗大化

やTiCによる析出硬化が生じ、低温靭性が劣化するので、その上限は0.030%に限定した。

【0027】A1は通常脱酸材として鋼に含まれる元素で組織の微細化にも効果を有する。しかしA1量が0.06%を超えるとA1系非金属介在物が増加して鋼の清浄度を害するので、上限を0.06%とした。脱酸はTiあるいはSiでも可能であり、A1は必ずしも添加する必要はない。

【00.28】Nは、TiNを形成して加熱時および溶接HAZのオーステナイト粒の粗大化を抑制して母材、HAZの低温朝性を向上させる。このために必要な最小量は0.001%である。しかし多すぎるとスラブ表面疵や固溶NによるHAZ朝性の劣化の原因となるので、その上限は0.006%に抑える必要がある。

【0029】さらに本発明では、不純物元素であるP、S、O量をそれぞれ、0.015%以下、0.003%以下、0.005%以下とする。この主たる理由は母材、HAZ朝性の低温朝性をより一層向上させるためである。P量の低減は連続鋳造スラブの中心偏析を低減し、粒界破壊を防止し低温靭性を向上させる。またS量の低減は延伸化したMnSを低減して延靭性を向上させる効果がある。O量の低減は鋼中の酸化物を少なくして、低温靭性の改善に効果がある。

【0030】つぎに好ましい条件としてCu, Cr, V, Caを添加する理由について説明する。基本となる成分に加えて、さらにこれらの元素を添加する主たる目的は本発明の優れた特長を損なうことなく、製造可能な板厚の拡大や母材の強度・靭性などの特性の向上をはかるためである。したがって、その添加量は自ら制限されるべき性質のものである。

【0031】CuはNiとほぼ同様な効果を持つとともに、耐食性、耐水素誘起割れ特性の向上にも効果がある。またCu析出硬化によって強度を大幅に増加させる。この効果を発揮させるためには0.1%以上の添加が必要である。しかし過剰に添加すると析出硬化により母材、HAZの靭性低下や熱間圧延時にCuクラックが生じるので、その上限を1.0%とした。

【0032】Crは母材、溶接部の強度を増加させる効果があり、この効果を発揮させるためには0.1%以上の添加が必要である。しかし、多すぎるとHAZ靭性や現地溶接性を著しく劣化させる。このためCr量の上限を1.0%とした。VはほぼNbと同様の効果を有するが、その効果はNbに比較して弱い。しかし超高強度鋼におけるV添加の効果は大きい。この効果を発揮させるためには0.01%以上の添加が必要である。その上限はHAZ靭性や現地溶接性の点から0.10%まで許容できる。

【0033】Caは硫化物(MnS)の形態を制御し、 低温靭性を向上(シャルピー試験における吸収エネルギ ーの増加など)させる。しかしCa量が0.001%未 満では実用上効果がなく、また0.005%を超えて添加するとCaO-CaSが大量に生成してクラスター、大型介在物となり、鋼の清浄度を害するだけでなく、現地溶接性にも悪影響をおよぼす。このためCa添加量を0.001~0.005%に制限した。

【0034】以上の個々の添加元素の限定に加えて本発明法では、さらに(1)式で定義される P_1 値を3.1 $\leq P_1 \leq 4$.0の範囲に制限する。これはHAZ 靭性、現地溶接性を損なうことなく、目的とする強度・低温靭性バランスを達成すためである。 P_1 値の下限を3.1 としたのは950 N/m^2 以上の強度と優れた低温靭性を得るためである。また P_1 値の上限を4.0としたのは優れたHAZ 靭性、現地溶接性を維持するためである。

【 0 0 3 5 】つぎに第 2 発明法の特徴は、低 C - 高 M n - N b - N i - M o - 微量 B - 微量 T i 系の綱片を対象とし、第 1 発明法と同様の条件で制御圧延・加速冷却して鋼板とした後、第 1 発明法と同様の条件で再加熱し冷却することにより、微細なベイナイト主体組織とするところにあり、これによって高強度と優れた低温靭性、現地溶接性を同時に達成している。

【0036】本発明者らはNb-Ni-Mo-微量B綱において、化学成分、圧延条件およびその後の熱処理条件を厳密に制御することにより、高強度と優れた低温朝性が達成できることを見いだした。第2発明法による鋼板の特徴も、焼入れ・焼戻し処理による鋼板に比較して降伏比が低く、低温靭性に著しく優れることである。上記微量B添加鋼においても、スラブ再加熱時に一部租大な結晶粒を含んだ混粒となりやすく、この租大粒をその後の制御圧延で微細化することは困難である。そこで、圧延・加速冷却した鋼板を750~850℃の温度域に再加熱することにより結晶粒を著しく微細化でき、高強度と優れた低温靭性を達成することに成功した。第2発明法における製造条件およびその限定理由は、上記第1発明法におけると同様である。

【0037】そして第2発明法においては、添加元素としてBを含有している。Bは極微量で鋼の焼入性を飛躍的に高め、目的とするベイナイト主体の組織を得るために、第2発明法の成分系において必要不可欠の元素である。後述の P_2 値において1 に相当する、すなわち1% Mnに相当する効果がある。さらにBはMoの焼入性向上効果を高めるとともに、Nbと共存して相乗的に焼入性を増す。このような効果を得るためには、Bは最低でも0.0003%必要である。一方、過剰に添加すると、低温靭性を劣化させるだけでなく、かえってBの焼入性向上効果を消失せしめることもあるので、その上限を0.0020%とした。

【0038】このようにBを添加した結果、Mnは1.7%以上2.2%以下、Niは0.10%以上1.0%以下、Moは0.15%以上0.50%以下とし、その

他の元素C. Si. Nb, Ti, Al. N, P, SおよびOの量は第1発明法におけると同様である。そしてこれら各元素量の限定理由も、第1発明法におけると同様である。

【0039】また好ましい条件として、Cu, Cr, V, Caの1種または2種以上を添加する理由、およびその添加量の限定理由も第1発明法におけると同様である。さらに第2発明法においては、上記(2)式で定義されるP。値を2.5以上かつ4.0以下に制限する必要があり、その理由も第1発明法におけると同様である。

[0040]

【実施例】 [実施例1]: 転炉ー連続鋳造法により製造した、表1に示す種々の鋼成分の鋼片から、表2に示す種々の製造法により鋼板を製造して、諸性質を調査した結果を表2に示す。鋼板の機械的性質は圧延と直角方向で調査した。HAZ靭性は入熱5kJ/mm 相当の再現熱サイクルを付与して調査した(最高加熱温度:1400℃、800~500℃の冷却時間:28秒)。

【0041】本発明例No. 1~No. 4は、本発明の第1 発明法にしたがって製造したものであり、いずれもX1 00超の高強度および優れた低温靭性、HAZ靭性を有 する。これに対して比較例のNo. 5~No. 22は、化学 成分または鋼板製造条件が適切でなく、いずれかの特性 が劣る。

【0042】No. 5はC量が多すぎるため低温靭性およびHAZ靭性が悪い。No. 6はMn量が少ないため低温靭性が悪い。No. 7はMn量が多すぎるためHAZ靭性が悪い。No. 8はNi量が少ないためHAZ靭性が悪い。No. 9はMo量が少ないため強度が低い。No. 10はMo量が多すぎるためHAZ靭性が悪い。No. 11はP₁ 値が低いため強度および低温靭性を満足しない。No. 12はP₁ 値が高いためHAZ靭性が劣る。

【0043】No. 13はスラブ再加熱温度が低いため低温朝性が悪い。No. 14はスラブ再加熱温度が高いため低温朝性が悪い。No. 15は900℃以下での累積圧下量が少ないため低温靭性が劣る。No. 16は圧延終了温度が低すぎるため、低温靭性が劣る。No. 17は圧延終了温度が高すぎるため、低温靭性が劣る。No. 17は圧延終了温度が高すぎるため、低温靭性が劣る。No. 18は圧延後の鋼板の冷却速度が遅いため低温靭性が悪い。No. 20は鋼板の再加熱温度が低いため低温靭性が悪い。No. 21は鋼板の再加熱温度が低いため低温靭性が悪い。No. 22は鋼板の再加熱温度が遅いため低温靭性が悪い。No. 22は鋼板の再加熱温度が遅いため低温靭性が悪い。No. 22は鋼板の冷却速度が遅いため低温靭性が悪い。

【0044】 【表1】

1.7	, L	化 学 成 分 (vt%, *は pmm)												ъ				
区分	No	С	Si	Ľn	P#	\$*	Ni	Хo	Nb	Ti	Al	K *	0*	Co	Cr	Y	Ca#	P ₁
本発明例	1 2 3 4	0. 045 0. 072 0. 065 0. 055	0.23 0.26 0.27 0.33	2. 15 1. 90 1. 85 2. 05	58 71 80 53	18 10 25 18	0. 65 0. 38 0. 37 0. 75	0. 57 0. 45 0. 41 0. 55	0. 038 0. 032 0. 030 0. 038	0. 017 0. 015 0. 018 0. 017	0. 015 0. 022 0. 003 0. 015	31 35 39 31	22 25 27 22	0. 41	0. 61 0. 58 0. 45	0. 052 0. 049	28 32 -	3. 23 3. 58 3. 22 3. 58
比较匆	587890112 112 112 113 114 115 117 118 119 119 122 122	0. 115 0. 052 0. 069 0. 070 0. 072 0. 052 0. 066 0. 065 0. 065 0. 065 0. 065 0. 065 0. 065 0. 065	0. 24 0. 26 0. 26 0. 26 0. 26 0. 26 0. 27 0. 27 0. 27 0. 27 0. 27 0. 27 0. 27	1. 98 1. 65 2. 69 1. 96 1. 98 1. 98 1. 85 1. 85 1. 85 1. 85 1. 85 1. 85 1. 85 1. 85 1. 85	70 70 70 70 70 70 70 70 70 70 70 70 80 80 80 80 80 80 80 80	174421200555555555555555555555555555555555	0. 33 0. 33 0. 13 0. 33 0. 37 0. 37 0. 37 0. 37 0. 37 0. 37 0. 37 0. 37 0. 37	0. 45 0. 35 0. 45 0. 18 0. 73 0. 40 0. 55 0. 41 0. 41 0. 41 0. 41 0. 41 0. 41 0. 41 0. 41	0. 030 0. 033 0. 032 0. 032 0. 032 0. 042 0. 031 0. 030 0. 030 0. 030 0. 030 0. 030 0. 030 0. 030 0. 030	0. 015 0. 013 0. 015 0. 015 0. 015 0. 015 0. 017 0. 018 0. 018 0. 018 0. 016 0. 016 0. 016 0. 016 0. 016 0. 016	0.019 0.022 0.021 0.022 0.023 0.022 0.018 0.021 0.003 0.003 0.003 0.003 0.003 0.003	3256450233333333333	25 20 224 25 27 27 27 27 27 27 27 27 27 27 27 27 27	0. 41 0. 45 0. 41 0. 41 0. 54	0.61 0.61 0.61 0.61 0.65 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.5	0. 0ij2 0. 0ij2 0. 0ij2 0. 052 0. 052 0. 049 0. 049		3. 71 3. 62 3. 49 3. 81 3. 40 2. 81 4. 22 3. 22

F錬を付したものは比較条件を示す。

【0045】

			À	板板	の 製	造美	件			•	BAZ契性			
区分	No	再加熱 温度 (プ)	900℃以 下累積圧 下量(%)	圧延終 了温波 (℃)	水沿沿 製越駐 (8√℃)	水冷停 止温度 (℃)	領板厚さい	領板沿 熱温度 (℃)	水冷冷 却遠崖 (℃/s)	Y S	TS	VB-40	vTrs (°C)	▼E -20
<u> </u>		(0)	L ME (%)	()	(0/8)	(6)	(mm)	(6)	(()(6)	(,,	/ #B /	(1)	(6)	(1)
本発明例	1 2 3 4	1100 1150 1150 1050	83 85 75 75	753 776 751 706	25 25 20 15	320 400 370 250	20 20 25 30	800 780 800 820	20 20 20 15	873 856 890 878	1020 983 1054 985	240 276 255 248	-110 - 95 -102 -110	198 185 205 231
比較例	56789 10112 112 113 114 115 117 118 119 120 121 121 121 121 121 121 121 121 121	1150 1150 1150 1150 1150 1150 1150 1150	75 75 75 75 75 75 75 75 75 75 75 75 75 7	751 775 755 710 731 785 741 722 705 750 750 755 761 722 750	20 20 20 20 20 20 20 20 20 20 20 20 20 2	320 330 370 420 400 350 365 250 410 420 370 550 380 440 350	20 20 20 20 20 20 20 20 20 20 20 20 20 2	800 800 800 800 800 800 800 800 800 800	20 20 20 20 20 20 20 20 20 20 20 20 20 2	8000777425 9000777425 90007546990 90007777 90007546990 90007777	1154 964 1060 992 929 1884 913 995 1070 1055 1060 1072 1080 988 997 1028	555032585554PPBBBBBBBB	2552 855 85 75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	355 1 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

下線を付したものは比較条件を示す。

【0046】[実施例2]:転炉-連続鋳造法により製造した、表3に示す種々の鋼成分の鋼片から、表4に示す種々の製造法により鋼板を製造して、諸性質を調査した結果を表4に示す。調査方法は上記実施例1の場合と同様である。本発明例No.31~No.34は、本発明の第2発明法にしたがって製造したものであり、いずれもX100超の高強度および優れた低温靱性、HAZ靱性を有する。これに対して比較例のNo.35~No.54は、化学成分または鋼板製造条件が適切でなく、いずれかの特性が劣る。

【0047】No. 35はC量が多すぎるため低温靭性およびHAZ靭性が悪い。No. 36はMn量が少ないため低温靭性が悪い。No. 37はMn量が多すぎるためHAZ靭性が悪い。No. 38はNi量が少ないためHAZ靭性が悪い。No. 39はMo量が少ないため強度が低い。No. 40はMo量が多すぎるためHAZ靭性が悪い。No. 41はB量が少ないため十分な強度が得られない。No. 42はB量が多すぎるため低温靭性およびHAZ靭

性が悪い。No. 43は P_2 値が低いため強度および低温 靭性を満足しない。No. 44は P_2 値が高いためHAZ 靭性が劣る。

【0048】No. 45はスラブ再加熱温度が低いため低温靭性が悪い。No. 46はスラブ再加熱温度が高いため低温靭性が悪い。No. 47は900℃以下での累積圧下量が少ないため低温靭性が劣る。No. 48は圧延終了温度が低すぎるため、低温靭性が劣る。No. 49は圧延終了温度が高すぎるため、低温靭性が劣る。No. 50は圧延後の鋼板の冷却速度が遅いため低温靭性が悪い。No. 52は鋼板の再加熱温度が高いため低温靭性が悪い。No. 53は鋼板の再加熱温度が高いため低温靭性が悪い。No. 53は鋼板の再加熱温度が高いため低温靭性が悪い。No. 54は鋼板の冷却速度が遅いため低温靭性が悪い。No. 54は鋼板の冷却速度が遅いため低温靭性が悪い。No. 54は鋼板の冷却速度が遅いため低温靭性が悪い。No. 54は鋼板の冷却速度が遅いため低温靭性が悪い。No. 54は鋼板の冷却速度が遅いため低温靭性が悪い。

【0049】 【表3】

DZ.	ж					化	学	成 分	(4	t%. ≉	(d ppm)								P į
क्र	,,0	C	Si	Ľn	! *	S*	Ni	Ko	No	Ti	Al	B*	X *	0*	Cប	Cr	V	Ce*	ž
本党别例	31 32 33 34	0. 045 0. 071 0. 067 0. 048	0.23 0.09 0.24 0.14	2. 08 1. 83 1. 87 2. 13	53 76 81 58	18 5 22 9	0. 55 0. 35 0. 27 0. 31	0. 45 0. 30 0. 41 0. 35	0. 038 0. 031 0. 030 0. 032	0. 012 0. 013 0. 015 0. 018	0.017 0.018 0.003 0.005	10 8 6 10	28 31 33 31	25 24 31 20	0.35	0. 24 0. 55	0.041	23 29	3. 44 3. 01 3. 53 3. 31
比较例	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	0. 112 0. 055 0. 073 0. 068 0. 071 0. 052 0. 075 0. 081 0. 043 0. 084 0. 071 0. 071 0. 071 0. 071 0. 071 0. 071 0. 071 0. 071	0.24 0.24 0.24 0.24 0.27 0.09 0.09 0.09 0.09 0.09 0.09 0.09	1.87 1.63 2.38 1.96 1.88 1.87 1.84 2.01 1.74 2.10 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	558022 8822 8887 7786 7776 7776 7776 7776	17444 2212 22215 5555555555555555555555555	0. 33 0. 34 0. 32 0. 32 0. 33 0. 27 0. 33 0. 23 0. 33 0. 35 0. 35	0. 45 0. 45 0. 45 0. 73 0. 30 0. 41 0. 17 0. 35 0. 30 0. 30	0. 030 0. 033 0. 032 0. 034 0. 032 0. 042 0. 042 0. 031 0. 031 0. 031 0. 031 0. 031 0. 031 0. 031 0. 031 0. 031	0. 013 0. 014 0. 012 0. 015 0. 015 0. 016 0. 013 0. 015 0. 013 0. 013 0. 013 0. 013 0. 013 0. 013 0. 013	0. 021 0. 019 0. 015 0. 027 0. 020 0. 018 0. 021 0. 018 0. 018 0. 018 0. 018 0. 018 0. 018 0. 018 0. 018	8798562508888888888888888888888888888888888	36 34 35 35 35 36 28 31 31 31 31 31	24 25 25 25 20 18 24 24 24 24 24 24 24 24 24 24 24 24 24	0. 29 0. 23 0. 35 0. 23 0. 23 0. 27 0. 85 0. 60	0. 28 0. 29 0. 27 0. 28 0. 22 0. 24 0. 24 0. 24 0. 24 0. 24 0. 24 0. 24 0. 24 0. 24 0. 24	D. 046	2222223333333	3. 57 3. 26 3. 57 3. 49 2. 89 4. 10 3. 60 4. 18 3. 01 3. 01 3. 01 3. 01 3. 01 3. 01

下線を付したものは比較条件を示す。

[0050]

【表4】

			鋼板の製造条							5	板の数	模核的性	資	HAZ朝性	
区分	йо	腎加熱 温度 (℃)	\$00℃以 下黑粒圧 下量(k)	正延終 了温度 (℃)	水冷冷 却速度 (℃/s)	水冷停 止温度 (℃)	領板 厚さ (mm)	気気加 高温度 (で)	水冷冷 却速度 (℃/s)	Y S (N	TS /mm²)	νΕ ₋₄₀	vTrs (°C)	v≧ -20	
本発明例	31 32 33 34	1100 1150 1150 1050	83 85 75 75	750 770 750 710	25 25 20 15	330 390 400 265	20 20 25 30	800 780 800 820	20 20 20 15	882 867 881 888	1011 988 1047 990	233 256 279 230	-109 - 99 -105 -100	200 200 199 203	
比 敦 例	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	1150 1150 1150 1150 1150 1150 1150 1150	75 75 75 75 75 75 75 75 75 75 75 75 75 7	750 775 755 715 730 785 740 775 740 720 730 750 820 755 755 760	20 20 20 20 20 20 20 20 20 20 20 20 20 2	325 335 360 425 380 410 385 370 370 410 430 430 380 450 370	20 20 20 20 20 20 20 20 20 20 20 20 20 2	800 800 800 800 800 800 800 800 800 800	20 20 20 20 20 20 20 20 20 20 20 20 20 2	955220507050705050 955200055000550 955200055000550 95520005500550 955200550 955200550 955200550 955200550 955200550 95520050 95520 9	1159 959 1065 987 920 1089 925 1095 990 1065 1060 1056 1056 993 993 993 1023	38 81 232 207 219 202 212 202 214 209 48 50 38 55 55 44 42	- 51 - 62 - 100 -	200 200 174 445 199 199 199 199 199 199 199 199 199	

下選を付したものは比較条件を示す。

[0051]

【発明の効果】本発明法により低温靭性、現地溶接性が 優れた高強度の鋼板が安定して製造できるようになっ た。その結果、パイプラインの安全性が著しく向上する とともに、パイプラインの施工能率、輸送効率の飛躍的 な向上が可能となった。 フロントページの続き

(72) 発明者 朝日 均

千葉県富津市新富20-1 新日本製鐵株式 会社技術開発本部内