CS5112: Algorithms and Data Structures for Applications

Streaming algorithms

Ramin Zabih

Some content from: Wikipedia;

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Administrivia

- Prelim feedback
- Reduction (duck) problem
 - NP-completeness did not figure in the problem
 - Answers that used NP-completeness were usually incorrect
 - An NP-hard problem does not really have a lower bound, but we gave students credit for writing O(1) or O(n)
 - The $O(n \log n)$ lower bound is for a problem that can solve sorting
 - Writing a polynomial lower bound is incorrect, such lower bounds include $O(n^3)$, $O(n^{5112})$, ...

Non-binding grade estimates from prelim

- The below is **NOT** a promise, just a guess
- Assuming the class follows the same curve as in 2018:
 - About $\frac{1}{2}$ A's of some kind, mostly A-
 - prelim score 80-100
 - About $\frac{1}{3}$ B's of some kind
 - prelim score 60-80
 - About $\frac{1}{6}$ lower grades
 - prelim score <60

Lecture Outline

- Online data processing
- Histogram properties
 - Majority estimation via Boyer Moore
 - Misra-Gries generalization
- Hashing-based streaming algorithms
 - Flajolet-Martin
 - Bloom filters

Online algorithms and approximations

- Many AI/ML applications hinge on understanding the distribution of your input data
 - Classification is just one example (is this a cat video?)
- Classically we assume that all the input data is available
 - You can run an offline algorithm over it
 - Then do NN classification, etc.
- This assumption is often wrong: data comes streaming in
 - And you cannot afford to store the entire data set

Welford's online mean algorithm

- Suppose we know that cats come from a Gaussian distribution but we have too many cats to store all their weights
- Can we estimate the mean (and variance) online?
- Online algorithms are very important for modern applications
- For the mean we have

$$\mu_n = \frac{1}{n} \sum_{i=1}^n x_i$$

Some natural histogram queries

Why approximation?

- Suppose you want an (exact) histogram of your data
- This requires space linear in the number of data points
- This is intractable for many internet applications!
 - Examples:
 - IP addresses for DDOS detection
 - Most popular page/item to buy
 - Is this web site worth caching or is it a 'one hit wonder'?

Streaming algorithms

- We will use a small amount of space but solve the problem approximately
 - But, not precisely the same problem
- Instead of computing the histogram we will look at several key properties of a histogram we can efficiently approximate
 - Typically with constant or logarithmic space and time

Relevant quantities to compute

- Majority: if there is a single item comprising more than half the input stream, find it
- Frequent items: find all items that comprise more than a given percent ϕ of the input stream
 - Approximate version: find all items that comprise between $\phi \epsilon$ and ϕ percent of the input stream (exact when $\epsilon = 0$)
 - Recent version: find and update the most recent popular items
- Distinct items: how many different items are there?
- Membership: have we seen this item before?

1. Boyer-Moore majority algorithm

- Majority: one element is more than half the population
 - Easy offline. How do we do this online??
- Algorithm according to Moore:

As we sweep we maintain a pair consisting of a *current candidate* and a counter. Initially, the current candidate is unknown and the counter is 0.

When we move the pointer forward over an element e:

- If the counter is 0, we set the current candidate to e and we set the counter to 1.
- If the counter is not 0, we increment or decrement the counter according to whether e is the current candidate.

When we are done, the current candidate is the majority element, if there is a majority.

Source

Boyer-Moore algorithm example

2. Misra-Gries

- Generalization of Boyer-Moore majority algorithm
- Store k-1 counters, for a parameter k
 - Larger k means more space and accuracy
- Any item that appears more than $\frac{n}{k}$ times in the input stream of size n will be present when the algorithm terminates
- If $k=1/\epsilon$ then each count is at most ϵn below its true value

Misra-Gries algorithm in action

Figure 2. Counter-based data structure: the blue (top) item is already stored, so its count is incremented when it is seen. The green (middle) item takes up an unused counter, then a second occurrence increments it.


```
Algorithm 1: FREQUENT(k)

n \leftarrow 0;
T \leftarrow \emptyset;

foreach i do

n \leftarrow n+1;

if i \in T then

c_i \leftarrow c_i+1;

else if |T| < k-1 then

T \leftarrow T \cup \{i\};

c_i \leftarrow 1;

else forall j \in T do

c_j \leftarrow c_j-1;

if c_j = 0 then T \leftarrow T \setminus \{j\};
```


3. Find popular recent items

- Want to be able to naturally update this over time
 - Think of popular: movies, shopping items, web pages, etc.
- We could run, e.g., Misra-Gries on a sliding window
 - This is both impractical and wrong
- Wrong because the importance of an item should not "fall off a cliff" when it moves outside of our window
- Our input will be, for an item, a series of counts
 - 100 people bought this yesterday, 50 people the day before, etc.

Weighted average in a sliding window

- Computing the average of the last k inputs can be viewed as a dot product with a constant vector $v = \left[\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}\right]$
- Sometimes called a box filter
 - Easy to visualize
- This is also a natural way to smooth, e.g., a histogram
 - To average together adjacent bins, $v = \begin{bmatrix} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix}$
- This kind of weighted average has a famous name

Decaying windows

- Let our input at time t be $\{a_1, a_2, \dots, a_t\}$
- With a box filter over all of these elements we computed

$$\frac{1}{t} \sum_{i=0}^{t-1} a_{t-i}$$

Instead let us pick a small constant c and compute

$$\hat{a}_t = \sum_{i=0}^{t-1} a_{t-i} (1-c)^i$$

Easy to update this

• Update rule is simple, let the current dot product be \hat{a}_t $\hat{a}_{t+1} = (1-c)\hat{a}_t + a_{t+1}$

• This downscales the previous elements correctly, and the new element is scaled by
$$(1-c)^0=1$$

- This avoids falling off the edge
- Gives us an easy way to find popular items

4. Popular items with decaying windows

- We keep a small number of weighted sum counters
- When a new item arrives for which we already have a counter, we update it using decaying windows, and update all counters
- How do we avoid getting an unbounded number of counters?
- We set a threshold, say ½, and if any counter goes below that value we throw it away
- The number of counters is bounded by $\frac{2}{c}$

How many distinct items are there?

- This tells you the size of the histogram, among other things
- To solve this problem exactly requires space that is linear in the size of the input stream
 - Impractical for many applications
- Instead we will compute an efficient estimate via hashing

Hashing in one diagram

What makes a good hash function?

- Almost nobody writes their own hash function
 - Like a random number generator, very easy to get this wrong!
- Deterministic
- Uniform
 - With respect to your input!
 - Technical term for this is entropy
- (Sometimes) invariant to certain changes
 - Example: punctuation, capitalization, spaces

Examples of good and bad hash functions

- Suppose we want to build a hash table for CS5112 students
- Is area code a good hash function?
- How about zip code?
- Social security numbers?
 - https://www.ssa.gov/history/ssn/geocard.html
- What is the best and worst hash function you can think of?

