Il est possible de stocker différents types d'informations (textes, images, sons...) sur un ordinateur, sous réserve qu'on ait pu les traduire sous forme numérique. Cela suppose qu'on dispose :

- D'un système de codage : l'information est transformée en une suite de nombres,
- D'un système de décodage : la suite de nombres est transformée en information.

L'ordinateur traite essentiellement des nombres. Pour des raisons techniques, il ne peut se servir que de deux chiffres : le « 0 », le courant ne passe pas et le « 1 », le courant passe. Il lui faut donc écrire les nombres uniquement avec des 0 et des 1. Le système d'écriture des nombres qui n'utilise que le 0 et le 1 est le **système binaire**. Comme dans le système décimal, qui lui utilise 10 chiffres (0 ; 1 ; 2 ; ... ; 8 ; 9), c'est la position d'un chiffre dans l'écriture du nombre qui donne à ce chiffre sa valeur : ainsi dans le système décimal :

$$234\ 056 = 2 \times 100\ 000 + 3 \times 10\ 000 + 4 \times 1000 + 0 \times 100 + 5 \times 10 + 6 \times 1$$
$$= 2 \times 10^5 + 3 \times 10^4 + 4 \times 10^3 + 0 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$$

Quand un nombre a une partie inférieure à 1, on utilise le séparateur constitué par la virgule (ou le point) :

$$20,504 = 2 \times 10 + 5 \times \frac{1}{10} + 0 \times \frac{1}{100} + 4 \times \frac{1}{1000} = 2 \times 10^{1} + 5 \times 10^{-1} + 0 \times 10^{-2} + 4 \times 10^{-3}.$$

L'ordinateur n'utilise donc que le 0 et le 1 pour écrire des nombres, mais le principe est le même que dans le système décimal : c'est la position du chiffre dans l'écriture du nombre qui lui donne sa valeur.

Exercice 1

Compléter le tableau ci-dessous en écrivant dans l'ordre croissant tous les nombres entiers que l'on peut écrire en n'utilisant que le 0 et le 1 et compléter leur valeur en base 10.

	come on in demodric que le d'et le 2 et completer leur valeur en base 201											
Base 2	0	1	10	11								
Base 10	0	1	2	3								
Base 2												
Base 10												
Base 2												
Base 10												

Entourer les nombres dont l'écriture en base 2 est constituée de 1 suivi de zéros. A quel type d'entiers
correspondent-ils ?
Quel est le nombre dont l'écriture en base 2 est 100 000 ?
Quel est le nombre dont l'écriture en base 2 est 1 000 000 ?
Quel est le nombre dont l'écriture en base 2 est 10 000 000 000 ?

Exercice 2

Compléter la deuxième ligne du tableau des puissances de 2 ci-dessous :

n	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2 ⁿ															
13	-	-	ı	ı	ı	-	-	-	-	-	-	1	1	0	1

Dans la deuxième ligne	, comment passe-t-on d'un	e case à la précédente î	?
------------------------	---------------------------	--------------------------	---

Écrire comme une somme de nombres contenus dans la deuxième ligne du tableau les nombres suivants et en déduire leur écriture en base 2 : (attention ! chaque nombre de la deuxième ligne ne peut être utilisé qu'une seule fois ! Exemple : 13 = 8 + 4 + 1 donc 13 = 1101 en base 2. On peut aussi écrire 13 = 4 + 4 + 4 + 1, mais cette écriture utilise 3 fois le 4, ce qui est interdit).

24 =	; 5/ =	• ,
64 =	; 65 =	.;
273 =	; 1858 =	.;
Les réponses dans le désordre 1 000 000 ;	: 111 001 ; 11 000 ; 100 010 001 ; 1 000 001 ; 1	1 101 000 010.

Exercice 3

Problème inverse, trac	duire en nombres décimaux	र les nombres suivants é	crits en base 2:
100 011 =	; 1 000 111 111 =	; 1 010 010 =	

Quel est le plus grand entier que l'on puisse coder sur 32 bits ?.....

sur 64 bits ?
sur n bits ?

On va prendre le complément à 2^n : pour représenter un entier négatif en binaire, on inverse tous les bits, on ajoute 1. Par exemple sur 8 bits : $10_{10} = 00001010_2$ et $-10_{10} = 11110110_2$

_			1	4.00.4	
(adar	മ	hinaira · _	- 109410 =	
L	ouei	CII	Dillalie	- エレンチ10 =	

A quel nombre décimal correspond le code suivant ? 100000111₂ =

Avec 8 bits quel est le plus petit entier négatif que l'on puisse coder ? Le plus grand entier positif ? Avec n bits ?.....