32. Valores Nominais (rede) e Valores Estipulados (receptores)

	Lâmpada feita para trabalhar a uma tensão de 230V. Quando tal acontece, absorve uma potência de 40W.	Motor de indução	Motor de indução (receptor indutivo) feito para trabalhar a uma tensão de 230V. Quando tal acontece, se o motor funcionar à
230V	Uma lâmpada de incandescência é um receptor resistivo. Uma lâmpada fluorescente e o respectivo balastro formam um	230V 50W rendimento = 80%	plena carga então • fornece uma potência mecânica de 50W à carga accionada; • absorve uma potência eléctrica dada por $\frac{50}{0.8} = 62,5W$
40W	receptor indutivo. Arrancador Arrancador Rede	230V / 16A	Interruptor feito para • suportar uma tensão de 230V quando se encontra aberto; • ser percorrido por uma corrente de 16A quando se encontra fechado.
Rede eléctrica monofásica de 230V / 16A 16A 230V (Rede eléctrica monofásica cujas linhas foram dimensionadas para correntes de 16A. O fornecedor de energia eléctrica compromete-se a colocar entre as duas linhas uma tensão de 230V.	17,6Ω / 3kW	Receptor resistivo com uma resistência de $17,6\Omega$, que foi dimensionado para absorver uma potência de $3kW$.
$\bullet - \boxed{ 115V \\ 580W \\ \cos \varphi = 1 }$	Receptor resistivo feito para trabalhar a uma tensão de 115V. Quando tal acontece, absorve uma potência de 580W. A resistência do receptor é dada por $R = \frac{U^2}{P} = \frac{115^2}{580} = 73,5\Omega$	230V / 3kW	Receptor resistivo feito para trabalhar a uma tensão de 230V. Quando tal acontece, absorve uma potência de 3kW. A resistência do receptor é dada por $R = \frac{U^2}{P} = \frac{230^2}{3000} = 17,6\Omega$
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	Receptor indutivo feito para trabalhar a uma tensão de 400V. Quando tal acontece, absorve uma corrente de 8A. A tensão e a corrente estão desfasadas de um ângulo cujo valor é dado por arcos(0,707). A corrente está atrasada relativamente à tensão.	400V / 3kVA	Receptor puramente indutivo feito para trabalhar a uma tensão de 400V. Quando tal acontece, absorve uma potência aparente de 3kVA. A reactância indutiva do receptor é dada por $\omega L = \frac{U^2}{S} = \frac{400^2}{3000} = 53,3\Omega$
$200V$ $10kVA$ $\cos \varphi = 0.5 \text{ (c)}$	Receptor capacitivo feito para trabalhar a uma tensão de 200V. Quando tal acontece, absorve uma potência aparente de 10kVA. A tensão e a corrente estão desfasadas de um ângulo cujo valor é dado por arcos(0,5). A corrente está adiantada relativamente à tensão.	230V / 2kVA	Receptor puramente capacitivo feito para trabalhar a uma tensão de 230V. Quando tal acontece, absorve uma potência aparente de 2kVA. A reactância capacitiva do receptor é dada por $\frac{1}{\omega C} = \frac{U^2}{S} = \frac{230^2}{2000} = 26,5\Omega$

Exercício A

Rede monofásica de 230V / 50 Hz

Preencha o quadro:

	I ₁ =
Desfasamento angular entre a tensão da rede e a corrente que alimenta a instalação	
Desfasamento temporal entre a tensão da rede e a corrente que alimenta a instalação	
Potência activa da instalação	
Potência reactiva da instalação	
Potência aparente da instalação	
Factor de potência da instalação	
Potência reactiva do componente que, uma vez acrescentado à instalação, permite eliminar o consumo de energia reactiva da mesma	

Complete o diagrama fasorial da instalação.

Tópicos de Resolução

Em cada receptor, marcar o sentido positivo da corrente de acordo com o sentido positivo da tensão:

Rede monofásica de 230V / 50 Hz

$$U_1 = \omega L \cdot I_A$$
 $\Rightarrow I_A = \frac{U_1}{\omega L} = \frac{U_1}{2\pi f L} = \frac{230}{2\pi \cdot 50 \cdot 366.24 \cdot 10^{-3}} = 2A$

 $\phi_A = 90^{\text{o}}~$ (a corrente está atrasada 90° da tensão porque se trata de uma bobina ideal)

$$S_B = U_1 \cdot I_B$$
 $\Rightarrow I_B = \frac{S_B}{U_1} = \frac{0.541 \cdot 10^3}{230} = 2.352A$

$$Q_B = U_1 \cdot I_B \cdot sen \phi_B \quad \Rightarrow \quad sen \phi_B = \frac{Q_B}{U_1 \cdot I_B} = \frac{-345}{541} = -0,6377$$

 \Rightarrow $\phi_B = -39,62^{\circ}$ (a corrente está adiantada 39,62° da tensão)

$$S_C = U_1 \cdot I_C$$
 \Rightarrow $I_C = \frac{S_C}{U_1} = \frac{0.23 \cdot 10^3}{230} = 1A$

Como $S_C = P_C$, então $Q_C = 0$ e $\phi_C = 0^o$ (receptor puramente resistivo)

$$P_D = U_1 \cdot I_D \cdot \cos \phi_D$$
 \Rightarrow $I_D = \frac{P_D}{U_1 \cdot \cos \phi_D} = \frac{648.6}{230 \cdot 0.94} = 3A$

$$\cos\phi_D = 0.94(i) \hspace{1cm} \Rightarrow \hspace{1cm} \phi_D = 20^o \hspace{0.2cm} \text{(a corrente está atrasada } 20^o \hspace{0.2cm} \text{da tensão)}$$

Definir um sistema de eixos conveniente e decompor os fasores segundo os eixos. Depois, determinar I₁.

$$\begin{split} &\bar{I}_{B} = \bar{I}_{Bx} + \bar{I}_{By} \\ &I_{Bx} = I_{B} \cdot \cos \phi_{B} = 2,352 \cdot \cos(-39,62^{\circ}) = 1,81A \\ &I_{By} = I_{B} \cdot \text{sen}\phi_{B} = 2,352 \cdot \text{sen}(-39,62^{\circ}) = -1,5A \end{split}$$

$$\begin{split} & \bar{I}_{D} = \bar{I}_{Dx} + \bar{I}_{Dy} \\ & I_{Dx} = I_{D} \cdot \cos(20^{\circ}) = 3 \cdot \cos(20^{\circ}) = 2,82A \\ & I_{Dy} = I_{D} \cdot \sin(20^{\circ}) = 3 \cdot \sin(20^{\circ}) = 1,03A \end{split}$$

$$\begin{split} &I_{1x} = I_C + I_{Bx} + I_{Dx} = 1 + 1,81 + 2,82 = 5,63A \\ &I_{1y} = I_A + I_{By} + I_{Dy} = 2 - 1,5 + 1,03 = 1,53A \\ &I_{1} = \sqrt{(I_{1x})^2 + (I_{1y})^2} = \sqrt{(5,63)^2 + (1,53)^2} = 5,83A \\ &\cos \phi = \frac{I_{1x}}{I_1} = \frac{5,63}{5,83} = 0,966A \quad \Rightarrow \quad \phi = 15,05^{\circ} \end{split}$$

Exercício B

Oito receptores de uma instalação funcionam nos respectivos valores estipulados, sempre em conjunto, 16 horas por dia. Complete o quadro.

Os receptores funcionam nos respectivos valores estipulados, sempre em conjunto, 16 horas por dia.			
		Potência activa em jogo no receptor	Potência reactiva em jogo no receptor
Receptor 1 (puramente resistivo):	7kVA	$P_1 =$	$Q_1 =$
Receptor 2: 11kW, 15kVAr		$P_2 =$	$Q_2 =$
Receptor 3 (bobina): 15kVA		$P_3 =$	$Q_3 =$
Receptor 4: 8kW, -4kVAr		P ₄ =	Q ₄ =
Receptor 5: 5kW		P ₅ =	Q ₅ =
Receptor 6 (indutivo): 4kW, 5kV	'A	P ₆ =	$Q_6 =$
Receptor 7: 10kVA, -6kVAr		P ₇ =	Q ₇ =
Receptor 8 (condensador): 1kVA		P ₈ =	$Q_8 =$
Potência activa em jogo no conjunto dos receptores: $P_{conj} =$			
Potência reactiva em jogo no conjunto dos receptores: Q _{conj} =			
Tipo d	Tipo de receptor formado pelo conjunto dos receptores:		
Potência aparente em jogo no conjunto dos receptores: $S_{conj} =$			
Factor de potência da instalação: fp _{conj} =			
Energia activa consumida pelo conjunto dos receptores em 7 dias: $W_{a \text{ conj}} =$			
Energia reactiva consumida pelo conjunto dos receptores em 7 dias: $W_{r \text{ conj}} =$			
Custo da energia eléctrica consumida pelo conjunto dos receptores em 7 dias: $C_{conj} =$			
Energia activa	Energia reactiva		
	Fornec	ida pela rede (indutiva)	Fornecida à rede (capacitiva)
0,15€/kWh		0,1€/kVArh	0,08€/kVArh

Exercício C

Uma oficina é alimentada por uma rede monofásica de 230V / 50Hz e dispõe dos seguintes receptores monofásicos:

- Um motor de 1750W / 230V / 50Hz / η =0,951 / $\cos \varphi$ =0,8 (i)
- 10 lâmpadas de incandescência de 230V / 60W

O motor funciona 8 horas por dia e as lâmpadas funcionam – todas em simultâneo – 16 horas por dia. A energia activa e a energia reactiva são cobradas às taxas apresentadas na tabela.

Enongia activa	Energia reactiva		
Energia activa	Fornecida pela rede (indutiva) Fornecida à rede (capaci	Fornecida à rede (capacitiva)	
0,15€/kWh	0,1€/kVArh	0,08€/kVArh	

- a) Determine o valor nominal da impedância do motor.
- b) Calcule o valor da corrente fornecida pela rede à oficina quando todos os receptores estão ligados.
- c) Determine o factor de potência da oficina quando todos os receptores estão ligados.
- d) Calcule o custo mensal da energia eléctrica consumida pela oficina.
- e) Determine os valores da potência activa e da potência reactiva em jogo na oficina quando todos os receptores estão ligados.
- f) Investigue um dispositivo que, ligado à rede de forma conveniente, permita reduzir ao mínimo o custo mensal da energia eléctrica consumida pela oficina. Devem verificar-se as seguintes condições:
 - Todos os receptores previamente instalados devem funcionar nas respectivas condições estipuladas e durante os períodos indicados;
 - 2. O novo dispositivo não deve consumir energia activa.
- g) Determine a tensão e a corrente em jogo no novo dispositivo.
- h) Determine a impedância do novo dispositivo.
- i) Determine a característica eléctrica do novo dispositivo.
- j) Quando é que o novo dispositivo deve estar ligado?
- k) Quando é que o novo dispositivo deve estar desligado?
- 1) Em que ponto da instalação deve ser introduzido o novo dispositivo?
- m) Determine o valor da corrente fornecida pela rede à oficina quando todos os receptores estão ligados, incluindo o novo dispositivo.
- n) Determine o valor do factor de potência da oficina quando todos os receptores estão ligados, incluindo o novo dispositivo.
- o) Determine os valores da potência activa e da potência reactiva em jogo na oficina quando todos os receptores estão ligados, incluindo o novo dispositivo.

Tópicos de Resolução

a) Determine o valor nominal da impedância do motor.

Um motor de 1750W (potência nominal do motor, que é uma potência mecânica) e rendimento nominal 0,951 absorve à rede uma potência activa estipulada dada por

$$P_{\rm M} = \frac{1750}{0.951} = 1840 \text{W}$$

Uma vez que o motor é monofásico, com tensão nominal $U_N = 230V$ e $cos\phi = 0.8$ (valor nominal do factor de potência), então

$$P_{M} = 1840 = 230 \cdot I_{N} \cdot 0.8 \implies I_{N} = 10A$$

O valor nominal da impedância do motor é dado por

$$Z_{N} = \frac{U_{N}}{I_{N}} = \frac{230}{10} = 23\Omega$$

b) Calcule o valor da corrente fornecida pela rede à oficina quando todos os receptores estão ligados.

Cada lâmpada tem uma potência estipulada P_{1Lamp} e absorve uma corrente \bar{I}_{1Lamp} . Para efeitos do cálculo da corrente fornecida pela rede à oficina, pode considerar-se que o conjunto das lâmpadas constitui um único receptor monofásico com uma potência estipulada $P_{Lamp} = 10 \times P_{1Lamp} = 10 \times 60 = 600 \text{W}$ e que absorve uma corrente $\bar{I}_{Lamp} = 10 \times \bar{I}_{1Lamp}$ (isto pode fazer-se porque as lâmpadas são idênticas e funcionam todas em simultâneo).

Para calcular a corrente fornecida pela rede à oficina, o primeiro passo é calcular as correntes absorvidas por cada receptor.

A corrente \overline{I}_M absorvida pelo motor, com **sentido positivo definido de 1 para N** (como se mostra na figura) está **atrasada** (porque o motor é um receptor indutivo) **de um ângulo \phi_M da tensão que lhe dá origem**, que é a tensão \overline{U}_1 .

Uma vez que se desconhecem mais pormenores sobre o funcionamento do motor, deve-se assumir que este funciona em regime nominal (apesar de que, regra geral, isso não acontece). Então, o valor da corrente absorvida pelo motor é a sua corrente estipulada, calculada na alínea anterior: I_M =10A . Além disso, $\cos\phi_M$ = 0,8 \Rightarrow $|\phi_M|$ = 36,9°.

A corrente \overline{I}_{Lamp} absorvida pelo conjunto das lâmpadas, com **sentido positivo definido de 1 para N** (como se mostra na figura) está **em fase** (porque as lâmpadas são receptores puramente resistivos) **com a tensão que lhe dá origem**, que é a tensão \overline{U}_1 .

O valor da corrente \bar{I}_{Lamp} é dado por:

$$I_{Lamp} = \frac{P_{Lamp}}{U_1 \cdot \cos \phi_{Lamp}} = \frac{600}{230 \cdot 1} = 2,6A$$

A corrente \bar{I}_1 fornecida pela rede à oficina é a soma das correntes absorvidas pelo motor e pelas lâmpadas.

$$\overline{\mathbf{I}}_{1}=\overline{\mathbf{I}}_{\mathrm{M}}+\overline{\mathbf{I}}_{\mathrm{Lamp}}$$

Para calcular o valor de \overline{I}_1 e também o valor de ϕ , a corrente \overline{I}_M pode decompor-se nas correntes \overline{I}_{Mf} (em fase com \overline{U}_1) e \overline{I}_{Mq} (em quadratura com \overline{U}_1).

$$I_{Mf} = I_M \cdot \cos \phi_M = 10 \cdot 0.8 = 8A$$

$$I_{Mq} = I_M \cdot sen\phi_M = 10 \cdot sen(36,9^{\circ}) = 6A$$

$$I_{1f} = I_{Lamp} + I_{Mf} = 2.6 + 8 = 10.6A$$

$$I_{1q} = I_{Mq} = 6A$$

$$I_1 = \sqrt{(I_{1f})^2 + (I_{1q})^2} = \sqrt{(10.6)^2 + (6)^2} = 12.2A$$

$$\cos \phi = \frac{I_{1f}}{I_1} = \frac{10.6}{12.2} = 0.869 \implies |\phi| = 29.7^{\circ}$$

c) Determine o factor de potência da oficina quando todos os receptores estão ligados.

$$\frac{P_{Total}}{S_{Total}} = \frac{U_1 \cdot I_1 \cdot \cos \phi}{U_1 \cdot I_1} = \cos \phi = \frac{I_{1f}}{I_1} = \frac{10.6}{12.2} = 0,869$$

d) Calcule o custo mensal da energia eléctrica consumida pela oficina.

Energia Activa		
Potência activa em jogo no motor	$P_{\rm M} = 1840 W = 1,84 kW$	
Potência activa em jogo nas lâmpadas	$P_{Lamp} = 600W = 0.6kW$	
Energia activa consumida pelo motor num mês (funciona 8 horas por dia)	$W_{aM} = P_{M} \cdot \Delta t_{M} = \underbrace{1.84}_{\begin{subarray}{c} Potência \\ activa \\ em \\ jogo \\ no \\ motor \end{subarray}} \cdot \underbrace{8 \cdot 30}_{\begin{subarray}{c} A \le 1.6kWh \\ Número \\ de \\ horas \\ mensais \\ mensais \end{subarray}}$	
Custo mensal da energia activa consumida pelo motor	$C_{\text{WaM}} = 441,6 \cdot 0,15 = 66,24 $	
Energia activa consumida pelas lâmpadas num mês (funcionam 16 horas por dia)	$W_{aLamp} = P_{Lamp} \cdot \Delta t_{Lamp} = \underbrace{0,6}_{\begin{subarray}{c} Potência \\ activa \\ em \\ jogo \\ nas \\ lâmpadas \end{subarray}} \cdot \underbrace{16 \cdot 30}_{\begin{subarray}{c} Vimero \\ de \\ horas \\ mensais \end{subarray}} = 288kWh$	
Custo mensal da energia activa consumida pelas lâmpadas	$C_{\text{WaL}} = 288 \cdot 0.15 = 43.2 $	
Custo mensal da energia activa consumida pela oficina	$C_{Wa} = C_{WaM} + C_{WaL} = 66,24 + 43,2 = 109,44$	

Energia Reactiva		
Potência reactiva em jogo no motor	$Q_{M} = U_{1} \cdot I_{M} \cdot sen\phi_{M} = 230 \cdot 10 \cdot 0,6 = 1380VAr = 1,38kVAr$	
Potência reactiva em jogo nas lâmpadas	$Q_{Lamp} = 0kVAr$ (porque as lâmpadas são receptores puramente resistivos)	
Potência reactiva em jogo na oficina	$Q = Q_M + Q_{Lamp} = Q_M = 1,38kVAr$	
(apenas a do motor, que funciona 8 horas por dia)	(quando o motor funciona)	
Energia reactiva consumida pela oficina num mês (apenas a do motor, que funciona 8 horas por dia)	$W_{r} = Q \cdot \Delta t_{M} = \underbrace{1.38}_{\begin{subarray}{c} Potência \\ reactiva \\ em \\ jogo \\ no \\ motor\end{subarray}} \cdot \underbrace{8 \cdot 30}_{\begin{subarray}{c} Potência \\ koras \\ mensais\end{subarray}} = 331,2kVArh$	
Custo mensal da energia reactiva consumida pela oficina	$C_{Wr} = 331.2 \cdot 0.10 = 33.12 $ €	

Total	
Custo mensal da energia eléctrica consumida pela oficina	$C_T = C_{Wa} + C_{Wr} = 109,44 + 33,12 = 142,56 $

e) Determine os valores da potência activa e da potência reactiva em jogo na oficina quando todos os receptores estão ligados.

$$P_{\text{Total}} = P_{\text{M}} + P_{\text{Lamp}} = 1840 + 600 = 2440 \text{W}$$

$$Q_{Total} = Q_M = 1380VAr$$

- f) Investigue um dispositivo que, ligado à rede de forma conveniente, permita reduzir ao mínimo o custo mensal da energia eléctrica consumida pela oficina. Devem verificar-se as seguintes condições:
 - 1. Todos os receptores previamente instalados devem funcionar nas respectivas condições nominais e durante os períodos indicados;
 - 2. O novo dispositivo não deve consumir energia activa.

Para que os receptores previamente instalados continuem a funcionar nas respectivas condições nominais e durante os períodos indicados, o novo dispositivo deve ser ligado em paralelo com esses receptores. Assim, o dispositivo ficará sujeito à tensão \overline{U}_1 .

Com todos os receptores previamente instalados a funcionar nas respectivas condições nominais e durante os períodos indicados, não é possível reduzir o consumo de energia activa.

A energia reactiva consumida pela instalação deve-se, exclusivamente, à corrente \bar{I}_{Ma} .

Para eliminar a energia reactiva consumida pela instalação, é necessário ligar à rede um dispositivo que absorva uma corrente tal que a sua componente em quadratura com \overline{U}_1 tenha um valor I_{Mq} e esteja em oposição de fase com \overline{I}_{Mq} .

O novo dispositivo não deve consumir energia activa, o que só é conseguido por um receptor sem resistência. Assim, o dispositivo deverá ser puramente indutivo ou puramente capacitivo, não possuindo componente em fase com \overline{U}_1 .

As condições anteriores são satisfeitas por um dispositivo que, submetido à tensão \overline{U}_1 , absorve uma corrente de valor I_{Mq} que se encontra avançada de 90° relativamente a \overline{U}_1 . Tal dispositivo é puramente capacitivo: o seu circuito equivalente (com um número mínimo de componentes) é um condensador ideal.

g) Determine a tensão e a corrente em jogo no novo dispositivo.

Ao ser ligado em paralelo com os outros receptores, o condensador fica sujeito à tensão \overline{U}_1 , cujo valor é de 230V.

A corrente \bar{I}_C que passa no condensador tem um valor $\underline{I}_C = \underline{I}_{Mq} = 6A$

h) Determine a impedância do novo dispositivo.

$$Z_{C} = \frac{U_{1}}{I_{C}} = \frac{230}{6} = 38,3\Omega$$

i) Determine a característica eléctrica do novo dispositivo.

$$Z_{\rm C} = \frac{1}{\omega {\rm C}} = \frac{1}{2\pi {\rm fC}} = \frac{1}{2\pi \cdot 50 \cdot {\rm C}} = 38{,}3\Omega \implies {\rm C} = \frac{1}{2\pi \cdot 50 \cdot 38{,}3} = 83{,}1\mu{\rm F}$$

<u>Em resumo</u>: para reduzir ao mínimo o custo mensal da energia eléctrica consumida pela oficina deve ligar-se à rede, em paralelo com os outros receptores, um **condensador de 83,1μF** preparado para ser percorrido por uma **corrente de 6A** e submetido a uma **tensão de 230V**.

j) Quando é que o novo dispositivo deve estar ligado?

O condensador deve estar ligado sempre que o motor também o estiver. Se o condensador permanecer desligado quando o motor for ligado, a oficina irá consumir energia reactiva (indutiva).

k) Quando é que o novo dispositivo deve estar desligado?

O condensador deve estar desligado sempre que o motor também o estiver. Se o condensador permanecer ligado quando o motor for desligado, a oficina irá fornecer energia reactiva (capacitiva) à rede.

l) Em que ponto da instalação deve ser introduzido o novo dispositivo?

O condensador deve situar-se tão próximo quanto possível do motor, que é o único componente da oficina que consome energia reactiva.

m) Determine o valor da corrente fornecida pela rede à oficina quando todos os receptores estão ligados, incluindo o novo dispositivo.

$$I'_1 = I_{1f} = 10,6A$$

n) Determine o valor do factor de potência da oficina quando todos os receptores estão ligados, incluindo o novo dispositivo.

A corrente \overline{I}'_1 está em fase com a tensão \overline{U}_1 . Por isso, $\phi'=0^{\circ}$ (ϕ' é o ângulo existente entre \overline{I}'_1 e \overline{U}_1).

$$\frac{P'_{Total}}{S'_{Total}} = \frac{U_1 \cdot I'_1 \cdot \cos \phi'}{U_1 \cdot I'_1} = \frac{U_1 \cdot I'_1 \cdot 1}{U_1 \cdot I'_1} = 1$$

 Determine os valores da potência activa e da potência reactiva em jogo na oficina quando todos os receptores estão ligados, incluindo o novo dispositivo.

A potência activa não se altera quando se liga à rede o novo componente, que é puramente capacitivo.

$$P'_{Total} = U_1 \cdot I'_1 \cdot \cos \varphi' = P_{Total} = U_1 \cdot I_1 \cdot \cos \varphi = 2440W$$

$$Q'_{Total} = U_1 \cdot I'_1 \cdot \text{sen} \varphi' = U_1 \cdot I'_1 \cdot 0 = 0 \text{VAr}$$