

Vector & Linear Combination

 $V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$ $W = \begin{bmatrix} W_1 \\ W_2 \end{bmatrix}$ \longrightarrow $V + W = \begin{bmatrix} V_1 + W_1 \\ V_2 + W_2 \end{bmatrix}$ $- > 2V = \int 2V_1 \int 2V_2 \int 2V_$

· V · W = [V_1], [W_1] = V, W_1 + V_2 V_2

Dot product

V&W are perpendicular

length of vow = Tv.w

 $w = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $v = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $w = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $w = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ $w = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $v + w = \begin{bmatrix} 4 \\ 2 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad v - w = \begin{bmatrix} 4 \\ 2 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$

-> zero vactor = Space or O

vector addition (head to tail)

Angle between 2 vector

- Angle is $< 90^{\circ}$ when $v \cdot w$ is positive Angle is $> 90^{\circ}$ when $v \cdot w$ is negative
- ❖ Perpendicular vectors: $||v||^2 + ||w||^2 = ||v w||^2$
- Cosine Formula If v and w are nonzero vectors, then $\frac{v \cdot w}{||v|| ||w||} = \cos \theta$

Matrices

1: variable column = row of end to do multiplication

ex. (3/2) × (2/4) result (2 by 1)

Independence w is not in the plane of u and v
 Dependence w* is in the plane of u and v
 Why? → if we can find the combination of u and v
 w* is a linear combination of u and v

Identity Matrix อาน matrix จะ กำเทาเกิม

nverse only if ad-bcto

 $\begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} 1 & -b \end{bmatrix}$ $\begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a & -b \end{bmatrix}$

* (AB) = B A = 1 * (ABC) = C B A = 1

· Granss-Jordan Elimination

Step 1 K: [K] ex. K: [-21], [K] = [-2110] Step Z ediminate until KI = IK-1 ex. [K] = [2 -1 0 1 0 0]

1 mn spose

row -> column

 $(A+B)^{T} = A^{T} + B^{T}$ $(AB)^{T} = B^{T}A^{T}$ $(A^{-1})^{T} = (A^{T})^{-1}$

