Sourasish Mitra Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Atomic Structure:

- For the given orbital in Column 1, the only CORRECT combination for any hydrogen-like species is
 - (A) (IV) (iv) (R)
- (B) (II) (ii) (P)
- (C) (III) (iii) (P)
- (D) (I) (ii) (S)
- Which of the following could be derived from Rutherford's α-particle scattering experiment-
 - (A) Most of the space in the atom is empty
 - (B) The radius of the atom is about 10⁻¹⁰ m while that of nucleus is 10⁻¹⁵m
 - (C) Electrons move in a circular path of fixed energy called orbits
 - (D) Radius of nucleus is directly proportional to cubic root of mass number.
- Consider the following nuclear reactions involving X & Y.

$$X \longrightarrow Y + {}_{4}^{2}He$$

$$Y \longrightarrow {}_8O^{18} + {}_1H^1$$

If both neutrons as well as protons in both the sides are conserved in nuclear reaction then moles of neutrons in 4.6 gm of X

- (A) 2.4 N_A
- (B) 2.4
- (C) 4.6
- (D) 0.2 N_A
- 20. The electrons identified by quantum numbers n and 1:

[AIEEE-2012]

(a)
$$n = 4$$
, $\ell = 1$

(b)
$$n = 4$$
, $\ell = 0$

(c)
$$n = 3$$
, $\ell = 2$

(d)
$$n = 3$$
, $\ell = 1$

Can be placed in order of increasing energy as

42.	If p is the momentum of the fastest electron ejected from a metal surface after the irradiation of	
	light having wavelength λ , then for 1.5 p momentum of the	ne photoelectron, the wavelength of
	the light should be: (Assume kinetic energy of ejected	photoelectron to be very high in
	comparison to work function):	[JEE Main (April) 2019]

- (1) $\frac{3}{4}\lambda$ (2) $\frac{4}{9}\lambda$
- $(3) \frac{1}{2} \lambda$
- $(4) \frac{2}{3} \lambda$

Functions:

38. Let R_1 and R_2 be relations on the set $\{1, 2, ..., 50\}$ such that $R_1 = \{(p, p^n) : p \text{ is a prime and } n \ge 0 \text{ is an integer} \}$ and $R_2 = \{(p, p^n) : p \text{ is a prime and } n = 0 \text{ or } 1\}.$ Then, the number of elements in R1 - R2 is _____.

[JEE - Main 2022]

3. If the functions f(x) and g(x) are defined on $R \rightarrow R$ such that

$$f(x) = \begin{cases} x+3, & x \in \ rational \\ 4x, & x \in \ irrational \end{cases} \text{ and } g(x) = \begin{cases} x+\sqrt{5}, & x \in \ irrational \\ -x, & x \in \ rational \end{cases} \text{ then } (f-g)(x) \text{ is }$$

(A) one - one and onto

(B) neither one-one nor onto

(C) one-one but not onto

(D) onto but not one-one

35. Let α , β and γ be three positive real numbers, let $f(x) = \alpha x^5 + \beta x^3 + \gamma x$, $x \in R$ and $g: R \to R$ be such that g(f(x)) = x for all $x \in R$. If $a_1, a_2, a_3, ... a_n$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n}\sum_{i=1}^{n}f\left(a_{i}\right)\right)\right)$ is equal to [JEE - Main 2022]

- (A) 0
- (B) 3
- (C) 9
- (D) 27

42. Let $A = \{1, 2, 3, 4, ..., 10\}$ and $B = \{0, 1, 2, 3, 4\}$. The number of elements in the relation $R = \{(a, b) \in A \times A : 2 (a - b)^2 + 3 (a - b)^2 + 3 (a - b) \in B\}$ is ____. [JEE - Main 2023]

9. The set of real values of 'x' satisfying the equality \[\frac{a}{x} \] + \[\frac{4}{x} \] = 5 (where [] denotes the greatest integer function) belongs to the interval (a, b/c] where a, b, c ∈ N and b/c is in its lowest form. Find the value of a +b + c + abc.