Report - 4

1-Dimensional

After converting the differential equation into a recursion,

$$prob[t+1][pos] = prob[t][pos] + Drac{dt}{dx^2}(prob[t][pos+1] + prob[t][pos-1] - 2prob[t][pos])$$

Probability density plot for every tenth time step

Probability density plot for every time step

2-Dimensional

After converting the differential equation into a recursion

$$egin{aligned} &prob[t+1][y][x] = prob[t][y][x] + D_x rac{dt}{dx^2} (prob[t][y][x+1] + prob[t][y][x-1] \\ &1] - 2prob[t][y][x]) + D_y rac{dt}{dy^2} (prob[t][y+1][x] + prob[t][y-1][x] - 2prob[t][y][x]) \end{aligned}$$

dx = dy

dx > dy

dx < dy

Report - 4

Report - 4