Universidade Federal Fluminense

LISTA 1 - 2011-2

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

Integral definida Teorema Fundamental do Cálculo Área de regiões planas

Nos exercícios 1 a 10, calcule a integral indicada.

1.
$$\int_{-1}^{1} \left((\sqrt[3]{t})^2 - 2 \right) dt$$

4.
$$\int_{1}^{2} \sqrt{\frac{2}{x}} dx$$

1.
$$\int_{-1}^{1} \left((\sqrt[3]{t})^2 - 2 \right) dt$$
 4. $\int_{1}^{2} \sqrt{\frac{2}{x}} dx$ 7. $\int_{0}^{4} \left| x^2 - 4x + 3 \right| dx$ 10. $\int_{0}^{\frac{1}{2}} \frac{x}{\sqrt{1 - x^4}} dx$

10.
$$\int_0^{\frac{1}{2}} \frac{x}{\sqrt{1-x^4}} \, dx$$

2.
$$\int_0^1 \frac{x - \sqrt{x}}{3} dx$$
 5. $\int_0^2 (2 - s)\sqrt{s} ds$ 8. $\int_0^{\frac{\pi}{4}} \cos^3 x dx$

5.
$$\int_{0}^{2} (2-s)\sqrt{s} \ ds$$

8.
$$\int_0^{\frac{\pi}{4}} \cos^3 x \ dx$$

3.
$$\int_{1}^{3} \left(\frac{3}{x^2} - 1 \right) dx$$
 6. $\int_{-1}^{1} |x| dx$

6.
$$\int_{-1}^{1} |x| \ dx$$

$$9. \int_2^3 \frac{x}{\sqrt{x-1}} \ dx$$

11. Se aplicarmos o Teorema Fundamental do Cálculo em $\int_{-1}^{1} \frac{1}{x^2} dx$, obteremos a seguinte igualdade: $\int_{-1}^{1} \frac{1}{x^2} dx = 1$ $-\frac{1}{x}\Big|_{1}^{1}=-2$. Como a função $f(x)=\frac{1}{x^{2}}>0$, isto não faz sentido. O que está errado?

Nos exercícios 12 a 16, derive a função dada.

12.
$$f(x) = \int_{-x}^{1} \frac{t^2 - 2t}{t^2 + 4} dt$$

12.
$$f(x) = \int_{-x}^{1} \frac{t^2 - 2t}{t^2 + 4} dt$$
 14. $f(x) = x^2 \int_{1}^{2\sqrt{x}} \sqrt{t^2 + 1} dt$ 16. $F(x) = \int_{0}^{\sqrt{x}} e^{t^2 + 1} dt$

16.
$$F(x) = \int_0^{\sqrt{x}} e^{t^2 + 1} dt$$

13.
$$f(x) = \int_{-\sin^2 x}^{x^4} \cos t^3 dt$$
 15. $F(x) = \int_{1}^{|\sin x|} \ln t dt$

15.
$$F(x) = \int_{1}^{|\sin x|} \ln t \ dt$$

Nos exercícios 17 e 18, calcule o limite indicado.

17.
$$\lim_{x \to \pi} \frac{\int_{\frac{\pi}{2}}^{\frac{x}{2}} \cos(\sin t) \ dt}{(x - \pi)^3}$$

18.
$$\lim_{x \to -1} \frac{\int_{-x}^{1} e^{t^2} dt}{(x+1)^3}$$

Nos exercícios 19 a 25, calcule a área da região R descrita.

- 19. R é a região entre os gráficos de $y = x^2 1$ e y = x + 5.
- 20. R é a região limitada pela curva de equação $y=x^2-2x$, pelo eixo x e pelas retas x=-2 e x=4.
- 21. R é a região entre a reta x=2 e a curva de equação $x=y^2+1$.
- 22. R é o conjunto dos pontos (x,y) tais que $x^2 \le y \le \sqrt{x}$.
- 23. R é a região entre os gráficos de y=|x| e $y=x^2$, com $-3 \le x \le 3$.
- 24. R é a região delimitada pelas curvas de equações $y=x,\ xy^2=1$ e y=2.
- 25. R é a região delimitada pelos gráficos de $y = \operatorname{sen} x$ e $y = -\operatorname{sen} 2x$; $0 \le x \le \pi$.
- 26. Esboce e encontre a área da região compreendida entre o eixo x e a hipérbole de equação $y = \frac{4}{x-1}$, para $2 \le x \le 3$.
- 27. Esboce e encontre a área da região delimitada pelo gráfico de $y = \frac{3}{r-1}$, pela reta x = -4 e pelos eixos x e y.
- 28. Esboce e encontre a área da região limitada pelo gráfico de $y = e^x$ e pela reta que contém os pontos (0,1) e
- 29. Determine m de modo que a área da região limitada por y = mx e $y = 2x x^2$ seja 36.

- 30. A reta de equação y=1-x divide a região compreendida entre as parábolas de equações $y=2x^2-2x$ e $y=-2x^2+2$ em duas partes. Mostre que as áreas das regiões obtidas são iguais e calcule o seu valor.
- 31. Seja f diferenciável. Calcule $\int_0^1 x f'(x) \ dx$, sabendo que f(1) = 2 e que $\int_0^1 f(t) \ dt$ é igual a área da região R entre o gráfico de $y = -x^2$ e as retas y = 1, x = 0 e x = 1. (sugestão: $\frac{d}{dx}(xf(x)) = f(x) + xf'(x)$)

EXERCÍCIOS COMPLEMENTARES:

- 1. Determine f(4), se $\int_0^{x^2} f(t) dt = x \cos \frac{\pi x}{8}$.
- 2. Mostre que $y(x) = \frac{1}{a} \int_0^x f(t) \ sena(x-t) \ dt$ é solução do problema de valor inicial : y'' + ay = f(x), y'(0) = y(0) = 0, onde $a \in \mathbb{R}^*$ é constante. Sugestão: Use a identidade do seno da diferença e derive duas vezes.
- 3. Determine a curva que é gráfico de y = y(x), passa por (1,-1) e tal que, $y'(x) = 3x^2 + 2$.
- 4. Calcule $\lim_{n\to\infty} \frac{1^5+2^5+3^5+4^5+\ldots+n^5}{n^6}$, mostrando que o limite é $\int_0^1 x^5 \ dx$ e calculando a integral.
- 5. Determine x, onde ocorre o mínimo da função $f(x) = \int_{x^2}^x \ln t \ dt$, para $x \in (0,1)$.
- 6. Mostre que a função $\int_a^{1/x} \frac{1}{t^2+1} dt + \int_a^x \frac{1}{t^2+1} dt$, para x>0, é constante.
- 7. Mostre que se a função integrável f for periódica, de período p, então a função $g(x) = \int_x^{x+p} f(t) \ dt$ será constante. Dê um exemplo.

RESPOSTAS

- 1. $-\frac{14}{5}$
- 4. $(4-2\sqrt{2})$
- 6. 1
- 9. $\frac{1}{3} \left(10\sqrt{2} 8 \right)$

 $2. -\frac{1}{18}$

7. 4

- 3. 0
- 5. $\frac{16}{15}\sqrt{2}$
- 8. $\frac{5}{12}\sqrt{2}$
- 10. $\frac{1}{2} \arcsin \frac{1}{4}$
- 11. De acordo com as hipóteses do Teorema Fundamental do Cálculo a função $f(x) = \frac{1}{x^2}$ teria que ser definida e contínua no intervalo [-1,1]. Neste caso, a função não está definida em todos os pontos do intervalo [-1,1], pois não está definida em x = 0. Logo, não é possível aplicar o teorema para calcular a integral.
- 12. $f'(x) = \frac{x^2 + 2x}{x^2 + 4}$

- 21. $\int_{-1}^{1} (2 (y^2 + 1)) dy = \frac{4}{3}$
- 13. $f'(x) = 4x^3 \cos x^{12} + \sin 2x \cos (\sin^6 x)$
- 14. $f'(x) = \sqrt{(4x+1)x^3} + 2x \int_1^{2\sqrt{x}} \sqrt{t^2+1} dt$
- 22. $\int_0^1 (\sqrt{x} x^2) \, dx = \frac{1}{3}$

15. $F'(x) = \frac{\operatorname{sen} x}{|\operatorname{sen} x|} (\cos x) \ln|\operatorname{sen} x|$

23. $2\int_0^1 (x-x^2) dx +$

16. $F'(x) = \frac{e^{x+1}}{2\sqrt{x}}$

 $+2\int_{1}^{3} (x^{2}-x) dx = \frac{29}{3}$

- $17. \infty$
- 18. ∞
- 19. $\int_{-2}^{3} ((x+5) (x^2 1)) dx$
- 20. $\int_{-2}^{0} (x^2 2x) dx + \int_{0}^{2} -(x^2 2x) dx +$
 - $+ \int_{2}^{4} (x^{2} 2x) dx = \frac{44}{3}$

- 24. $\int_{1}^{2} (y y^{-2}) \, dy = 1$
- 25. $\int_0^{\frac{2\pi}{3}} (\sin x + \sin 2x) \, dx +$
 - $+2\int_{\frac{2\pi}{2}}^{\pi} -(\sin x + \sin 2x) \ dx = \frac{5}{2}$

26.

Cálculo II - A

área = $4 \ln 2$

27.

área = $3 \ln 5$

30.
$$\int_{-\frac{1}{2}}^{1} \left[\left(2 - 2x^2 \right) - \left(1 - x \right) \right] dx =$$
$$= \int_{-\frac{1}{2}}^{1} \left[\left(1 - x \right) - \left(2x^2 - 2x \right) \right] dx = \frac{9}{8}$$

31.
$$\frac{2}{3}$$

RESPOSTAS DOS EXERCÍCIOS COMPLEMENTARES:

1.
$$\frac{\sqrt{2}}{32}(4-\pi)$$

3.
$$y(x) = x^3 + 2x - 4$$
.

5.
$$x = 1/4$$

7.
$$f(x) = \cos x, p = 2\pi$$
.