Redes Industriais e Sistemas Supervisórios

Bacharelado em Engenharia de Controle e Automação

Redes Industriais

Modelo OSI

Critérios para dimensionamento

- Meio físico de comunicação
- Cobertura geográfica (topologia e distância)
- Método de acesso
- Desempenho (Velocidade x Throughput)
- Confiabilidade (Determinístico x Probabilístico)
- Protocolo de comunicação

Protocolos de comunicação: Modelo OSI

- Open System Interconnection OSI
- É um modelo conceitual criado pela
 Organização Internacional de
 Normalização
 - International Organization for
 Standardization ISO
 - Permite que diversos sistemas de comunicação se comuniquem usando protocolos padronizados.

Características do Modelo OSI

- Desenvolvido em 1970 e formalizado em 1983;
- Modelo de referência para os demais protocolos;
- Nunca foi e nunca será implementado na prática;
- Subdividido em 7 camadas que se comunicam entre si.

Website

- É a única camada que interage diretamente com os dados do usuário.
- Os softwares aplicativos, como navegadores web e clientes de e-mail, dependem da camada de aplicação para iniciar as comunicações.
 - o softwares aplicativos clientes não fazem parte da camada de aplicação.

Website

- Os protocolos da camada de aplicação incluem:
 - HTTP Hypertext Transfer Protocol
 - SMTP Simple Mail Transfer Protocol
 - IMAP Internet Message Access Protocol
 - o POP Post Office Protocol

Request content -Return content in required format -

Website

▼ Request Headers

:authority: www.google.com

:method: GET

:path: /

:scheme: https accept: text/html

accept-encoding: gzip, deflate, br

accept-language: en-US, en; q=0.9

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0

▼ Response Headers

cache-control: private, max-age=0

content-encoding: br

content-type: text/html; charset=UTF-8 date: Thu, 21 Dec 2017 18:25:08 GMT

status: 200

strict-transport-security: max-age=86400

x-frame-options: SAMEORIGIN

1xx Informativo

3xx Redirecionamento

4xx Erro no cliente

5xx Erro no servidor

2xx Sucesso

Camada 6 - Apresentação

- PRESENTATION LAYER
- Em conexão criptografada:
 - o adicionar a criptografia na extremidade do remetente
 - o decodificar a criptografia na extremidade do destinatário

Encryption Compression Translation

- Compactar os dados recebidos da camada de aplicação antes de entregá-los à camada 5.
 - Aumentar a velocidade e a eficiência da comunicação ao minimizar a quantidade de dados que serão transferidos.
- Tradução dos dados de entrada em uma sintaxe que a camada de aplicação do dispositivo receptor possa entender.

Camada 5 - Sessão

- SESSION LAYER
- Abre e fecha a comunicação entre os dois dispositivos
 O tempo decorrido é conhecido como "sessão"

- Garante que a sessão permaneça aberta pelo tempo necessário para transferir todos os dados que estão sendo trocados e, em seguida, fecha imediatamente a sessão para evitar o desperdício de recursos.
- A camada de sessão também sincroniza a transferência de dados com pontos de verificação.

- Responsável pela comunicação de ponta a ponta entre os dois dispositivos.
 - No transmissor, pega os dados da camada de sessão e divide-os em porções chamadas segmentos antes de enviá-los para a camada 3.
 - No receptor, remonta os segmentos em dados que a camada de sessão possa consumir.

- Controle de fluxo
 - o determina uma velocidade de transmissão ideal para garantir que um remetente com uma conexão rápida não sobrecarregue um receptor com uma conexão lenta.
- Controle de erros
 - No receptor, garante que os dados recebidos estejam completos e solicitando uma retransmissão caso não estejam.

TRANSPORT LAYER

- Os protocolos da camada de transporte incluem:
 - Transmission Control Protocol (TCP)
 - O User Datagram Protocol (UDP)

SESSION LAYER	5
TRANSPORT LAYER	4
NETWORK LAYER	3
DATA LINK LAYER	2

- User Datagram Protocol (UDP)
- Os pacotes UDP são denominados "datagramas"
- Transmissões especialmente sensíveis ao tempo
 - o reproduções de vídeo
 - o pesquisas de DNS.

1111111111

Receiver

- **NETWORK LAYER**
- Facilita a transferência de dados entre duas redes diferentes.
- Desnecessária se os dispositivos estiverem na mesma rede.
- Divide os segmentos da camada de transporte em unidades menores denominadas pacotes no dispositivo remetente e remonta esses pacotes no dispositivo receptor.

Packets Creation

NETWORK LAYER

 Encontra o melhor caminho físico para que os dados chequem ao seu destino, roteamento.

Câmpus Salto

- **NETWORK LAYER**
- Os protocolos da camada de rede incluem:
 - o IP
 - Internet Control Message Protocol (ICMP)
 - Notifica Erros
 - Diagnóstico de redes (traceroute e ping)
 - Internet Group Message Protocol (IGMP)
 - Multicast
 - o IPsec

• Internet Protocol (IP)

- O Sistema de endereços da internet
- O Principal maneira de conectar redes
- O Conecta origem e destino.
- Não processa a ordem dos pacotes nem verifica erros
- A principal versão IPv4
- O mais recente é o IPv6 que disponibiliza mais endereços.

NETWORK LAYER

Internet Protocol (IP)

IPv4 Address Format

4 bytes = 32 bits

SESSION LAYER	5
TRANSPORT LAYER	4
NETWORK LAYER	3
DATA LINK LAYER	2

Class	Private address range	
	start address	finish address
Α	10.0.0.0	10.255.255.255
В	172.16.0.0	172.31.255.255
С	192.168.0.0	192.168.255.255

	Public address range		
Class	start address	finish address	
Α	0.0.0.0	126.255.255.255	
В	128.0.0.0	191.255.255.255	
С	192.0.0.0	223.255.255.255	
D	224.0.0.0	239.255.255.255	
E	240.0.0.0	254.255.255.255	

NETWORK LAYER

Internet Protocol (IP)

IPv6 address

2001:0DC8:E004:0001:0000:0000:0000:F00A

16 bits : 16 bits

128 Bits

- **NETWORK LAYER**
- Internet Protocol (IP)
 - Domain Name Service (DNS)

Camada 2 - Enlace

- **DATA LINK LAYER**
- A camada de enlace de dados é muito semelhante à camada de rede.
- Facilita a transferência de dados entre dois dispositivos na mesma rede.

Camada 2 - Enlace

- DATA LINK LAYER
- Pega os pacotes da camada de rede e os divide em pedaços menores denominados "quadros".
- Também é responsável pelo controle de fluxo e pelo controle de erros na comunicação intra rede.
 - o a camada de transporte: inter rede.

Frame Creation

Camada 1 - Física

INSTITUTO FEDERAL

Câmpus Salto

-ISOLADOR

BLINDAGEM

PHYSICAL LAYER

Camada 1 - Física

PHYSICAL LAYER

A camada física de ambos os dispositivos também precisa aceitar, de comum acordo, uma convenção de sinais para que se possa distinguir os 1s dos 0s em ambos os dispositivos.

Protocolos na Hierarquia do Modelo OSI

Modelo OSI x Referência TCP/IP

Modelo OSI x EtherCAT

Modelo OSI x Fieldbus

Modelo OSI x HART

Command oriented, predefined data types Application and application procedures Presentation Session Auto-segmented transfer of large data set, reliable Transport stream transport, negotiated segment sizes Power-optimized, redundant Network path mesh network Token passing master/slave Time-synchronized, frequency **Data link** hopping protocol protocol Simultaneous analog & digital IEEE 802.15.4-2006, **Physical** signalling (4-20mA wire) 2.4GHz

Modelo OSI x MODBUS

Câmpus Salto