

ADVANCEDDATA SCIENCE

Métodos No Supervisados

SESIÓN II

Docente: Jimmy Salazar

REGLAS

Se requiere **puntualidad** para un mejor desarrollo del curso.

Para una mayor concentración **mantener silenciado el micrófono** durante la sesión.

Las preguntas se realizarán **a través del cha**t y en caso de que lo requieran **podrán activar el micrófono**.

Realizar las actividades y/o tareas encomendadas en los plazos determinados.

Identificarse en la sala Zoom con el primer nombre y primer apellido.

ITINERARIO

07:00 PM - 07:30 PM **Soporte técnico DMC**

07:30 PM – 08:30 PM **Módulo 1**

08:30 PM - 09:30 PM **Módulo 2**

Horario de Atención Área Académica 09:00 am a 10:00 pm

AGENDA

- 1. Reducción de Dimensionalidad
- 2. Segmentación DBSCAN
 - Metodología
 - PCA
 - Perfil y Visualización
 - Caso práctico real

EVALUACIÓN

Asistencia (Curso):

mínimo 80% sesiones para recibir la certificación

Examen Final (30%)

+

Trabajo

(70%)

DATA SCIENCE

Reducción de Dimensionalidad

ADVANCEDDATA SCIENCE

6 VARIABLES

- Ojo derecho
- Ojo izquierdo
- Nariz completa
- Boca completa
- Oreja derecho
- Oreja izquierda

4 VARIABLES

- Ojo izquierdo
- Nariz media
- Boca media
- Oreja izquierda

ADVANCEDDATA SCIENCE

- Ojo derecho
- Ojo izquierdo
- Nariz completa
- Boca completa
- Oreja derecho
- Oreja izquierda

4 VARIABLES

- Ojo izquierdo
- Nariz media
- Boca media
- Oreja izquierda

Podemos Identificar a la imagen original

Características

- ✓ Procedimiento matemático que reduce un conjunto de variables posiblemente correlacionadas a un conjunto de variables no correlacionadas.
- ✓ El objetivo es obtener un conjunto de variables que expliquen la mayor variabilidad posible de las variables originales.
- ✓ Es una técnica solo applicable para variables numéricas.
- ✓ Sensible a la escala de las variables (transformación para homologar sus dimensiones)

Proyección para obtener una dimension reducida

Saigayatri Vadali , ene-18

DATA SCIENCE

Agrupamiento basado en Densidad

Características

- ✓ Los métodos basados en la distancia tienden a funcionar bien con clusteres esféricos y mal con clusteres de otras formas.
- ✓ Para solucionar este problema otros métodos han desarrollado el concepto de densidad, el cual permite descubrir clusteres con *formas arbitrarias* (conjunto de datos que determinan un volúmen).
- ✓ La idea es hacer crecer un cluster siempre cuando la densidad en el entorno del objeto exceda de un *umbral*.

Segmentación DBSCAN

Características

- ✓ Asume que la densidad alrededor de los datos normales es similar a la densidad alrededor de sus vecinos.
- ✓ La densidad alrededor de los valores atípicos es considerablemente diferente a la densidad alrededor de sus vecinos.
- ✓ Hace crecer regiones con suficiente alta densidad en grupos
- ✓ Los grupos que separan las regiones son de baja densidad de objetos (*ruidos*).

1.0

0.5

0.0

-0.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

DBSCAN

Número estimado de cluster: 2

2.0

Número estimado de cluster: 4

DBSCAN

- ✓ El algoritmo requiere dos parámetros principales:
 - *El parámetro epsilon (eps),* define el radio de vecindad alrededor de un punto.
 - *El número mínimo de puntos (MinPts)* de vecinos en un radio **eps.**
- ✓ Cualquier punto en el set de datos, con un número mayor o igual que *MinPts* se considera un <u>punto núcleo</u>.
- ✓ Un punto se considera <u>punto frontera</u> si tiene menos de MinPts vecinos pero el es vecino de un punto núcleo.
- ✓ Un punto que no es ni núcleo ni frontera, se considera un <u>punto de ruido</u> o valor atípico (outlier).

?Online | **`Di!iC**

DBSCAN

¿Cómo funciona?

- Eps: 5u

- **Pts min:** 3

DBSCAN

✓ Ventajas:

- No necesita asumir un número fijo de clusteres.
- No depende de las condiciones de inicio.

✓ Desventajas:

- Asume densidades similares en todos los clusteres.
- Puede tener problemas al separar clusteres.

Para el caso de un cluster muy disperso y otro compacto uno cercano al otro ¿qué pasaría?

Metodología

Proceso de Segmentación

Análisis y Exploración	Transformación	Outliers	Reducción de dimensión	Modelamiento Evaluaci	Perfil y Visualización
 Construcción de matriz. Filtro de negocio. Estudio de variables 	 Dimensión de variables. Se transforma en una única dimensión para las variables en estudio. 	 Análisis de outliers. Eliminación o agrupamiento de outliers. 	 Análisis de reducción de dimensión de variables. Método <i>PCA</i> Características de componentes. 	 Modelo de segmentación. Análisis de indicadores de segmentación. Segmento K-Means. Segmento DBSCAN Análisis de distribucto de segmento de segmentación. 	de los segmentos. ión de Visualización de migración de segmentos. del Visualización

— PROGRAMA DE — ESPECIALIZACIÓN ANALÍTICA

ADVANCEDDATA SCIENCE

