

[19]中华人民共和国专利局

[51]Int.Cl⁶

C07C 31 / 20

C07C 29 / 149 B01J 23 / 86

[12]发明专利申请公开说明书

[21]申请号 96120492.3

[43]公开日 1998年5月27日

[11]公开号 CN 1182732A

[22]申请日 96.11.15

[71]申请人 中国石油化工总公司

地址 100029北京市朝阳区惠新东街甲6号

共同申请人 中国石油化工总公司石油化工科学
研究院

[72]发明人 王海京 冯薇荪 童立山

高国强 周怡然

[74]专利代理机构 石油化工科学研究院专利事务所

代理人 邓颐

权利要求书 1页 说明书 5页 附图页数 0页

[54]发明名称 一种气相加氢制1,4-丁二醇的方法

[57]摘要

一种顺丁烯二酸酐和/或其酯气相加氢制备1,4-丁二醇的方法，是将顺丁烯二酸酐或其酯气化后，在200~250℃、3.0~7.0MPa条件下与预先还原的具有CuCr_aA_bO_x通式组成的催化剂的存在下加氢制得1,4-丁二醇。催化剂中A为Al或Ti，a=0.5~1.5，b=0.01~0.7，x为满足各金属元素化合价的氧原子数。该方法可在较高的气相体积空速下使原料酐几乎完全转化，并使1,4-丁二醇的选择性达到70~90摩尔%。

权 利 要 求 书

- 1、一种顺丁烯二酸酐和/或其酯气相加氢制1, 4- 丁二醇的方法，是将顺丁烯二酸酐和/或其酯气化后，与预先还原的具有通式组成 $\text{CuCr}_a\text{A}_b\text{O}_x$ 的催化剂接触，在200℃ ~ 250℃、3.0 ~ 7.0 MPa 压力下进行加氢反应制得1, 4- 丁二醇，所述催化剂中A为Al 或 Ti， $a=0.5\sim1.5$ ， $b=0.01\sim0.7$ ， x 为满足各金属元素化合价的氧原子数。
- 2、按照权利要求1所述的方法，其特征在于顺丁烯二酸酐和/或其酯的气化是将其与等摩尔比的溶剂混合后，在过量氢气中进行的。
- 3、按照权利要求2所述的方法，其特征在于所述溶剂为γ - 丁内酯、丁醇或二者的混合物。
- 4、按照权利要求1所述的方法，其特征在于反应时氢与顺丁烯二酸酐的摩尔比为100 ~ 200 : 1。
- 5、按照权利要求1所述的方法，其特征在于所述催化剂是将Cu、Cr、Al/Ti 的前身物混合液，加碱至PH值为5.0~8.0 共沉淀制得的。
- 6、按照权利要求5所述的方法，其特征在于Cu、Cr、Al/Ti 的前身物为各自的硝酸盐。
- 7、按照权利要求5所述的方法，其特征在于Cr的前身物为CrO₃。
- 8、按照权利要求5所述的方法，其特征在于Ti的前身物为TiO₂。

说 明 书

一种气相加氢制1, 4- 丁二醇 的方法

本发明是关于一种顺丁烯二酸酐和/或其酯气相加氢制1, 4- 丁二醇的方法。具体地说，是使用了一种含Cu、Cr、Al/Ti的催化剂制备1, 4- 丁二醇的方法。

顺丁烯二酸酐及其酯催化加氢制1,4-丁二醇的工艺自六十年代开发成功以来，以反应步骤少、投资低、可调节所得产物的特点而备受注目。早期的顺丁烯二酸酐气相加氢方法采用Zn-Cu-Cr催化剂(特公昭44-32567)以及CuO-BeO-ZnO催化剂(特公昭47-23294)，但只能得到γ-丁内酯而不能直接得到1,4-丁二醇，而要得到1,4-丁二醇只能借助于含VII副族元素的催化剂，通过顺丁烯二酸酐的液相加氢实现(特开昭51-133212)，但液相加氢工艺所需要的反应压力高(例如达200Kg/cm²)，导致设备投资和操作费用高。后来开发了顺丁烯二酸的二酯在亚铬酸铜催化剂存在下，气相催化加氢制1,4-丁二醇的工艺(特开昭61-22035)，而这一工艺需要将顺丁烯二酸酐预先转化为二酯，增加了反应步骤。

日本专利特开平2-25434提出了用顺丁烯二酸酐和/或琥珀酸酐经气相加氢制1,4-丁二醇的方法，反应以还原后的ZnO-CuO为催化剂，在180~280℃、20~70千克/厘米²下实施，产物为1,4-丁二醇和四氢呋喃等。当以顺丁烯二酸酐为反应原料，γ-丁内酯为反应原料酐的溶剂，以摩尔比为1:4的酐和酯进料，氢与酐、酯的摩尔比为1:200时，在230℃、40千克/厘米²条件下，如气相体积空速为9000时⁻¹(常温常压下的值，下同；该值换算成酐的气相体积空速为9时⁻¹)，则酐和酯的转化率分别为100%和25.2%，相对于进料总摩尔数而言，1,4-丁二醇产率为31.9%(1,4-丁二醇的选择性为93.5%)。

日本专利特开平2-233630公开了一种在Cu-Cr或Cu-Cr-A(A选自Ba、Zn、Mn-Ba或Mn-Ba-Si)催化剂存在下气相氢化顺丁烯二酸酐的方法，反应在170~280℃、10~100千克/厘米²下进行，例如以顺丁烯二酸酐为反应原料，在220℃、60千克/厘米²、氢酐摩尔比为600:1、气相体积空速4800时⁻¹(相当酐的气相体积空速8时⁻¹)条件下反应，转化率为100%，1,4-丁二醇的选择性为80.6摩尔%。而当气相体积空速增大到9600时⁻¹(相当酐的气相体积空速23.9时⁻¹)时，酐转化率为100%，1,4-丁二醇的选择性降为50.1摩尔%。

EP0373947A公开了一种含Cu-Cr-Mn的催化剂，可用于气相加氢制1,4-丁二醇。该专利实例1以Cu、Cr、Mn氧化物为催化剂，在180℃、40千克/厘米²下（原料酐的气相体积空速为22.5时⁻¹）时，酐的转化率为100摩尔%，1,4-丁二醇选择性为60.5摩尔%。

总之，现有用于顺丁烯二酸酐和/或其酯气相加氢制1,4-丁二醇的催化剂在一定的原料空速范围内都能使转化率达到几乎100摩尔%，但1,4-丁二醇的选择性却随原料的空速升高而迅速下降，当原料酐的气相体积空速提高至20时⁻¹以上时，现有催化剂的1,4-丁二醇选择性只能达到50~60摩尔%。

本发明的目的在于提供一种顺丁烯二酸酐和/或其酯气相加氢制1,4-丁二醇的方法，该方法可在较高的原料空速下，使反应原料几乎完全转化，并使1,4-丁二醇的选择性至少达到70摩尔%。

本发明采用的方法为：将顺丁烯二酸酐和/或其酯气化后通入反应器，在200℃~250℃、3.0~7.0 MPa条件下，与预先还原的含Cu、Cr、Al/Ti的催化剂接触进行加氢反应制得1,4-丁二醇。

本发明所用的顺丁烯二酸酐和/或其酯在的反应前需进行气化，气化可用常规的方式进行，如将顺丁烯二酸酐和/或其酯溶于γ-丁内酯、丁醇或它们的混合物中，然后在热的氢气流中气化，再与催化剂接触反应。

为使反应在气相下进行，反应温度必须高于该反应条件下反应物的露点，反应温度过低，即使是高于反应物的露点，也会使转化率下降，而过高的反应温度将会产生四氢呋喃、丁醇等副产物，所以本发明选择的适宜的反应温度为200℃~250℃。

对于加氢反应，增加压力将有利于提高顺丁烯二酸酐和/或其酯的转化率，但过高的压力将使能耗增加，并增加设备投资和操作费用，为便于工业化生产，选择的适宜压力为3.0~7.0 MPa。

反应体系中过量的氢气也将有利于顺丁烯二酸酐和/或其酯的转化，且可使原料酐在较低的温度下气化，以避免酐的受热分解。但氢气过量太多，将会减少酐与催化剂的接触时间，导致1,4-丁二醇选择性下降，并增加体系能耗。所以本发明方法中选择的氢酐摩尔比为100~200:1，反应后过剩氢气可循环使用。

本发明方法中采用的催化剂具有如下通式组成:

其中 A 为 Al 或 Ti, $a=0.5\sim1.5$, $b=0.01\sim0.7$, x 为满足各金属元素化合价的氧原子数。

该催化剂采用常规的共沉淀法制备: 即将 Cu、Cr、Al/Ti 的可溶性盐制成混合液后, 加碱至 PH 为 5.0~8.0, 收集沉淀, 在 100~200°C 干燥 2~6 小时, 400~600°C 烘烧 2~24 小时即得催化剂。

所述 Cu、Cr、Al、Ti 的可溶性盐为各自的硝酸盐, 也可用 CrO_3 、 TiO_2 代替 Cr、Ti 的可溶性盐制成催化剂。

所述碱为碱金属氢氧化物或氨水, 优选氨水。

本发明方法中由于使用了特定组成的 Cu、Cr、Al/Ti 催化剂, 使得顺丁烯二酸酐和/或其酯能在较高的原料空速下几乎完全转化, 并获得较高的 1, 4-丁二醇选择性, 如可在原料气相体积空速为 34 时⁻¹, 使转化率达到 99 摩尔% 以上, 1, 4-丁二醇选择性不低于 70 摩尔%, 另外, 本发明方法中采用的三组分催化剂, 与现有技术中披露的 Cu-Cr-Mn-Ba 四组分催化剂相比, 1, 4-丁二醇的选择性有较大幅度的提高, 说明本发明方法中使用的催化剂具有优良的催化性能。

下面通过实施例进一步说明本发明, 但并不因此而限制本发明。在所有实施例和比较例中, 顺丁烯二酸酐和/或其酯的气相空速均折合成顺丁烯二酸酐在常温常压下的值(此时, 顺丁烯二酸酐的密度为 1.48 克/毫升)。催化剂金属组成用 X 光荧光分析法测定, 反应后产物分布用气相色谱法分析(PEG 20000 填充柱, FID 检测)。

实施例 1

将 52.2 克 $\text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O}$ (北京化工厂生产, 化学纯)、56.1 克 $\text{Cr}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ (北京化工厂生产, 化学纯)、1.6 克 $\text{Al}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ (北京化工厂生产, 化学纯) 溶于 600 毫升去离子水中, 搅拌均匀后加入氨水(北京化工厂生产, 浓度 23-25 重%), 直至 PH 为 5.0 ± 0.2 , 过滤, 洗涤, 收集沉淀, 200 °C 干燥 4 小时, 450 °C 烘烧 24 小时, 得到催化剂 A: $\text{CuCr}_{0.65}\text{Al}_{0.02}\text{O}_{2.0}$ (氧含量为计算值, 下同)。

取26~50目催化剂A 3毫升装入直径8毫米、长400毫米的不锈钢管式反应器中,以500毫升/分钟流速通入氢气,在300℃、2.0MPa压力下还原11小时。将床层温度调至220℃、压力调至4.0MPa,体系稳定后进料,进料是摩尔比为1:1的顺丁烯二酸酐(MAN)和γ-丁内酯(GBL),其中MAN为反应原料,GBL为原料溶剂,反应时氢酐摩尔比为400:1,MAN气相体积空速为34时⁻¹,反应结果见表1。

实例2

将26.1克Cu(NO₃)₂·3H₂O、22.0克Cr(NO₃)₃·9H₂O、12.5克Al(NO₃)₃·9H₂O溶于300毫升去离子水中,搅拌均匀后加入氨水,控制溶液PH为6.0±0.2,然后以实例1的方式制得催化剂B: CuCr_{0.5}Al_{0.3}O_{2.2}。

将催化剂B按实例1中的方式还原,然后以MAN为原料进行加氢反应,不同的是反应条件为210℃、6.0MPa、氢与酐的摩尔比为400:1,反应结果见表1。

实例3

将52.2克Cu(NO₃)₂·3H₂O、28.1克CrO₃(北京化工厂生产,化学纯)、7.0克TiO₂(北京化工厂生产,化学纯)溶于600毫升去离子水中,搅拌均匀后加入氨水,控制溶液PH为7.5±0.2,然后以实例1的方式制得催化剂C: CuCr_{1.3}Ti_{0.5}O_{3.95}。

按实例1的方式还原、反应,不同的是反应时氢与酐的摩尔比为300:1,反应结果见表1。

比较例1

以特开平2-233630实例1为比较例,将该实例中所用催化剂定为A', A'的组成为: CuCr_{1.4}Mn_{0.11}Ba_{0.1}O_{5.32}, MAN加氢反应条件为230℃、4.0MPa,反应时氢与MAN摩尔比为400:1,MAN气相体积空速23.9时⁻¹,MAN与GBL的摩尔比为1:1,反应结果见表1。

表1

	实例1	实例2	实例3	比较例1
催化剂编号	A	B	C	A'
反应温度, ℃	220	210	220	230
反应压力, MPa	4.0	6.0	4.0	4.0
MAN/GBL, 摩尔	1:1	1:1	1:1	1:1
H ₂ /MAN, 摩尔	400:1	400:1	300:1	400:1
MAN气相体积空速, 时 ⁻¹	34	34	34	23.9
MAN转化率, 摩尔%	>99	>99	>99	100
选择性, 摩尔%	1, 4-丁二醇	89.7	87.1	73.5
	四氢呋喃	7.8	9.8	9.8
				39.7