4. The Second Law of Thermodynamics

CHM 301
Cal Poly Pomona
Dr. Yujung Dong

Spontaneous Processes

At 20°C and 1 atm, ice melts

At -10°C and 1 atm, water freezes

Sugar dissolves into water

A ball rolling downhills

An ice pack cools down our muscles

Combustion (reaction with O_2) reaction of fuel:

fuel + $O_2 \rightarrow CO_2 + H_2O$

A spontaneous process is a **naturally occurring process** that once started will continue to **happen without outside intervention**.

Nonspontaneous Processes

At 20°C and 1 atm, water freezes

Precipitation of dissolved sugar particles

A ball rolling uphills

Compression of gases

Photosynthesis (only proceeds with light):

 $CO_2 + H_2O \rightarrow C_6H_{12}O_6$ (glucose) + O_2

A nonspontaneous process is an **unnatural** process that after it is started **will NOT continue to happen without outside intervention**.

How do you determine if a process is spontaneous?

"Exothermic" does NOT always mean spontaneous.

Cold Pack

- When the membrane is ruptured, the solid mixes with and dissolves in water.
- Endothermic reaction (surroundings are cooled down)
- Endothermic, but spontaneous.
- NH₄⁺ and NO₃⁻ ions in solution are 1) more spread out and 2) have more freedom of motion.

Spontaneous does NOT mean fast: Rusting of iron is a slow but happens without intervention.

Entropy (S)

• a measure of how *dispersed* the system is

Second Law of Thermodynamics

- The entropy of the universe increases in any spontaneous process (ΔS_{univ} > 0).
- Easy way to think of it: degree of chaos, disorder

Statistical View of Entropy/2nd Law

There is a higher **probability** to have a more dispersed arrangement.

(There are more ways to be messy than to be tidy.)

Entropy and Number of Probable Arrangements(W)

- Boltzmann related:
 - Entropy and number of probable arrangements (W)

$$S = k_B \ln W$$

• Boltzmann constant $k_{\rm B} = \frac{R}{N_{\rm A}} = \frac{8.314 \frac{\rm J}{\rm mol \cdot K}}{6.0221 \times 10^{23}/\rm mol} = 1.381 \times 10^{-23} \, \rm J/K$

same macrostate same macrostate

each are different microstates => six microstates number of probable arrangements (W) = 6

Ref: Macrostate vs. Microstate

W incorporates particle movement (momentum) as well as position: translational, rotational, vibrational - quantized

Macrostate: P, V, T

Microstate 1: particle #1: (x, y, z), v particle #2: (x, y, z), v

Microstate 2: particle #1: (x, y, z), v particle #2: (x, y, z), v particle #3: (x, y, z), v particle #3: (x, y, z), v

13

Factors that Affect Entropy

- Mixing: higher mixing => higher entropy
- (higher probability to be mixed)

- Volume: larger volume => higher entropy
- (higher probability to occupy higher volume)

Factors that Affect Entropy

- **Temperature**: higher temperature => higher entropy
- (higher kinetic energy with more motion)
- Number of Particles: more molecules => higher entropy
- (more ways to arrange)

Factors that Affect Entropy

• Physical State:

solid < liquid < gas
=> higher entropy

(higher degree of freedom to move around)

more spread out/ more freedom of movement

Third Law of Thermodynamics

a perfect *crystalline solid* has zero entropy at absolute zero (0 K).

$$S=0$$
 at $T=0$ K

- If the particles of a crystalline solid are perfectly aligned and in their lowest possible energy states, the crystal has only one microstate, therefore, entropy is zero.
 - $S = k_B \ln W = k_B \ln 1 = 0$
- · Provides a point of reference or baseline for entropy.
- We can calculate *absolute* entropy values (S) unlike enthalpy values, for which we could only calculate the △H values

Standard Molar Entropy

Third law of thermodynamics

- ⇒reference point for zero entropy at 0 K
- ⇒We know the absolute entropy values of substances.

Standard molar entropy (S°):

The absolute entropy of 1 mol of a substance in its standard state at 298 K and 1 bar (~1 atm) of pressure

•
$$S_{solid} < S_{liquid} < S_{gas}$$

TABLE 18.1 Standard Entropies of Some Typical Substances at 298.15 K									
Substance	<i>S</i> ° Substance (J mol ^{−1} K ^{−1})		<i>S</i> ° (J mol ⁻¹ K ⁻¹)	Substance	<i>S</i> ° (J mol ^{−1} K ^{−1})				
Ag(s)	42.55	CaO(s)	40	$N_2(g)$	191.5				
AgCl(s)	96.2	$Ca(OH)_2(s)$	76.1	$NH_3(g)$	192.5				
Al(s)	28.3	$CaSO_4(s)$	107	$NH_4Cl(s)$	94.6				
$Al_2O_3(s)$	51.0	$CaSO_4 \cdot \frac{1}{2}H_2O(s)$	131	NO(g)	210.6				
C(s) (graphite)	5.69	$CaSO_4 \cdot 2H_2O(s)$	194.0	$NO_2(g)$	240.5				
CO(g)	197.9	$Cl_2(g)$	223.0	$N_2O(g)$	220.0				
$CO_2(g)$	213.6	Fe(s)	27	$N_2O_4(g)$	304				
$CH_4(g)$	186.2	$Fe_2O_3(s)$	90.0	Na(s)	51.0				
$CH_3Cl(g)$	234.2	$H_2(g)$	130.6	$Na_2CO_3(s)$	136				
$CH_3OH(l)$	126.8	$H_2O(g)$	188.7	NaHCO ₃ (s)	102				
$CO(NH_2)_2(s)$	104.6	$H_2O(l)$	69.96	NaCl(s)	72.38				
$CO(NH_2)_2(aq)$	173.8	HCl(g)	186.7	NaOH(s)	64.18				
$C_2H_2(g)$	200.8	$HNO_3(l)$	155.6	Na ₂ SO ₄ (s)	149.4				
$C_2H_4(g)$	219.8	$H_2SO_4(l)$	157	$O_2(g)$	205.0				
$C_2H_6(g)$	229.5	$HC_2H_3O_2(l)$	160	PbO(s)	67.8				
$C_8H_{18}(l)$	466.9	Hg(l)	76.1	S(s)	31.9				
$C_2H_5OH(l)$	161	Hg(g)	175	$SO_2(g)$	248.5				
Ca(s)	41.4	K(s)	64.18	$SO_3(g)$	256.2				
CaCO ₃ (s)	92.9	KCl(s)	82.59						
CaCl ₂ (s)	114	$K_2SO_4(s)$	176						

The Second Law of Thermodynamics

The entropy of the universe increases in any *spontaneous* process.

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} > 0$$

- If $\Delta S_{\rm univ}$ > 0, the process is spontaneous.
- If $\Delta S_{\rm univ}$ <0, the process is nonspontaneous.

Entropy and Heat

- When a ball bounces, in reality, all the gravitational potential is not converted into kinetic energy.
- Part of it is converted into heating the ground.
 Therefore, due to the loss of energy, the ball does not bounce back up to its original position.
- Same thing with heat engines, energy lost into heat cannot be easily collected and used.
- It can be seen that heat is a lower grade of energy, or loss of energy because the degree of freedom of the energy is high.
- The relation of heat and entropy can be seen in these examples: heat as energy form can be seen as increase in randomness.

Figure 5.2

Entropy and Heat

- Entropy (S) increases with heat (q) : ΔS is proportional to q
- Heating particles that are already hot produces smaller gain in entropy than heating the same particles at a lower temperature.
 - ΔS is inversely proportional to T

$$\Delta S = \frac{q}{T}$$

$$\Delta S_{sys} = \frac{q_{sys}}{T} \qquad \Delta S_{sur} = \frac{q_{surr}}{T}$$

• For infinitesimal changes,

$$dS = \frac{dq_{rev}}{T}$$

Entropy and Heat

$$dS = \frac{dq_{rev}}{T}$$
 > integrate
$$\Delta S = \int_{T_1}^{T_2} \frac{dq_{rev}}{T}$$
 > from chapter 3, $dq_{rev} = C_p dT$
$$\Delta S = \int_{T_1}^{T_2} \frac{C_p}{T} dT$$
 > at T=0, S=0 (Third Law) > set T₁=0,
$$S_{T_2} - S_0 = \int_0^{T_2} \frac{C_p}{T} dT$$
 > absolute entropy value at T₂

Second Law ($\Delta S_{univ} > 0$) in Other Words

$$dS_{univ} = dS_{sys} + dS_{surr} > 0$$
 : second law of thermodynamics
$$dS_{surr} = \frac{dq_{surr}}{T}$$

$$= dS_{sys} + \frac{dq_{surr}}{T} > 0$$

$$q_{surr} = -q_{sys}$$
 thing
$$= dS_{sys} - \frac{dq_{sys}}{T} > 0$$

$$= dS_{sys} - \frac{dH_{sys}}{T} > 0$$
 at const P, $\Delta H = q$
$$= dS_{sys} - \frac{dH_{sys}}{T} > 0$$
 multiply each side with (-T)
$$dH_{sys} - Td\Delta S_{sys} < 0$$

Second Law ($\Delta S_{\text{univ}} > 0$) in Other Words

The second law of thermodynamics:

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$$

The entropy of the universe increases in any spontaneous processes

translates to:

 $\Delta H_{sys} - T\Delta S_{sys} < 0$ or $\Delta G_{sys} < 0$ (or just $\Delta G < 0$)

The Gibbs free energy of the system decreases in any spontaneous processes

Therefore, $\Delta G = \Delta H - T \Delta S < 0$ for any spontaneous processes

Only another form of second law!

Gibbs Free Energy and Spontaneity

• When $\Delta G = \Delta H - T \Delta S < 0$ Spontaneous Exergonic

• When $\Delta G = \Delta H - T \Delta S = 0$ Equilibrium

• When $\Delta G = \Delta H - T \Delta S > 0$ Nonspontaneous Endergonic

 $\Delta G = \Delta H - T \Delta S$

- Two factors that contribute to $\Delta G < 0$ (spontaneous)
 - 1) Increase in entropy ΔS > 0
 - 2) Exothermic ΔH < 0

Signs of ΔG , ΔH , and ΔS

 $\Delta G = \Delta H - T \Delta S < 0$: Spontaneous

ΔH	Δ5	ΔG	Spontaneity
9 <u>—</u> 3	+	Always < 0	Always spontaneous
-	-	< 0 at lower temperature	Spontaneous at lower temperature
+	+	< 0 at higher temperature	Spontaneous at higher temperature
+	-	Always > 0	Never spontaneous

Would you expect the following reactions to be spontaneous?

(a)
$$2N_2(g) + O_2(g) \longrightarrow 2N_2O(g)$$

$$\Delta H = +163.2 \text{ kJ}$$

(b)
$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$$
 $\Delta H = -2044 \text{ kJ}$

$$\Delta H = -2044 \text{ kJ}$$

(c)
$$2H_2O_2(l) \longrightarrow 2H_2O(l) + O_2(g)$$

$$\Delta H = -98.0 \text{ kJ}$$

(Hint: Remember how entropy and enthalpy affect spontaneity.)

What change in temperature would make the process spontaneous?

(a)
$$H_2O(l) \longrightarrow H_2O(g)$$

(b)
$$Ag^+(aq) + Cl^-(aq) \longrightarrow AgCl(s)$$

At constant volume?

Second law of thermodynamics : If $\Delta S_{univ} > 0$, the process is spontaneous.

- At constant P, equivalent to $\Delta G_{Sys} < 0$ (G = H-TS)
- At constant V, equivalent to $\Delta A_{sys} < 0$ (A = U-TS: Helmholtz energy)

Review: Calculating $\Delta H_{\rm rxn}^{\circ}$

Since we do not know the absolute enthalpy values of substances, we use enthalpy of formation ($\Delta H_{\rm f}^{\rm o}$) of the reactants and products to calculate the enthalpy of reactions at standard state.

$$\Delta H_{\rm rxn}^{\ \ o}$$
 = [sum of $\Delta H_{\rm f}^{\ o}$ of all the products]
- [sum of $\Delta H_{\rm f}^{\ o}$ of all the reactants]

$$\Delta H^{\circ}_{rxn} = \sum n_{p} \Delta H_{f}^{\circ} \text{ (products)} - \sum n_{r} \Delta H_{f}^{\circ} \text{ (reactants)}$$

Calculating ΔS_{rxn}° of Reactions

We use absolute entropy (S°) of reactants and products to calculate the enthalpy of reactions (ΔS_{rxn} °) at standard state.

$$\Delta S_{rxn}^{\circ}$$
 = [sum of S° of all the products]
- [sum of S° of all the reactants]

$$\Delta S_{rxn}^{\circ} = \sum n_p S^{\circ}(products) - \sum n_r S^{\circ}(reactants)$$

Calculating ΔG_{rxn}° of Reactions (1st method)

• $\Delta G = \Delta H - T \Delta S$. Therefore,

$$\Delta G_{rxn}^{\circ} = \Delta H_{rxn}^{\circ} - T \Delta S_{rxn}^{\circ}$$

• Calculate the ΔG_{rxn}° for the following reaction at 298 K:

$$CO(NH_2)_2(aq) + H_2O(l) \longrightarrow CO_2(g) + 2NH_3(g)$$

- Is the reaction exothermic or endothermic?
- Is the reaction spontaneous?

Substance		Substance	ΔH_l^o (kJ mol ⁻¹)						
Ag(s)	0	$H_2O_2(l)$	-187.6	TABLE 18.1	Standard I	Entropies of So	me Typical S	ubstances a	t 298.15 K
AgBr(s)	-100.4	HBr(g)	-36	The second second			71		
AgCl(s)	-127.0	HCl(g)	-92.30	Substance	<i>5</i> ° (J mol ^{−1} K ^{−1})	Substance	<i>5</i> ° (J mol ^{−1} K ^{−1})	Substance	<i>S</i> ° (J mol ⁻¹ K ⁻¹
Al(s)	0	HI(g)	26.6	2.42					
$Al_2O_3(s)$	-1669.8	$HNO_3(I)$	-173.2	Ag(s)	42.55	CaO(s)	40	$N_2(g)$	191.5
C(s) (graphite)	0	$H_2SO_4(l)$	-811.32	AgCl(s)	96.2	$Ca(OH)_2(s)$	76.1	$NH_3(g)$	192.5
CO(g)	-110.5	$HC_2H_3O_2(l)$	-487.0	Al(s)	28.3	$CaSO_4(s)$	107	NH ₄ Cl(s)	94.6
$CO_2(g)$	-393.5	Hg(I)	0	$Al_2O_3(s)$	51.0	$CaSO_4 \cdot \frac{1}{2}H_2O(s)$	131	NO(g)	210.6
$CH_4(g)$	-74.848	Hg(g)	60.84			1 2 2 3			
CH ₃ Cl(g)	-82.0	$I_2(s)$	0	C(s) (graphite)	5.69	$CaSO_4 \cdot 2H_2O(s)$	194.0	$NO_2(g)$	240.5
$CH_3I(g)$	14.2	K(s)	0	CO(g)	197.9	$Cl_2(g)$	223.0	$N_2O(g)$	220.0
CH ₃ OH(l)	-238.6	KCl(s)	-435.89	$CO_2(g)$	213.6	Fe(s)	27	$N_2O_4(g)$	304
CO(NH ₂) ₂ (s) (urea)	-333.19	$K_2SO_4(s)$	-1433.7	$CH_4(g)$	186.2	Fe ₂ O ₃ (s)	90.0	Na(s)	51.0
CO(NH ₂) ₂ (aq)	-391.2	$N_2(g)$	0			= 800			
$C_2H_2(g)$	226.75 52.284	NH ₃ (g)	-46.19	$CH_3Cl(g)$	234.2	$H_2(g)$	130.6	$Na_2CO_3(s)$	136
$C_2H_4(g)$ $C_2H_6(g)$	-84.667	NH ₄ Cl(e) NO(g)	-315.4 90.37	$CH_3OH(l)$	126.8	$H_2O(g)$	188.7	NaHCO ₃ (s)	102
C ₂ H ₅ OH(I)	-84.667 -277.63	NO(g) $NO_2(g)$	33.8	$CO(NH_2)_2(s)$	104.6	H ₂ O(l)	69.96	NaCl(s)	72.38
Ca(s)	-2/7.65	$N_2O(g)$	81.57	CO(NH ₂) ₂ (aq)	173.8	HCl(g)	186.7	NaOH(s)	64.18
CaBr ₂ (s)	-682.8	N ₂ O ₄ (g)	9.67	CO(11112)2(mq)	1/3.0	Tich(g)	100.7	144011(5)	0 1.10
CaCO ₄ (s)	-1207	N ₂ O ₅ (g)	11						
CaCl ₂ (s)	-795.0	Na(s)	0	$C_2H_2(g)$	200.8	$HNO_3(l)$	155.6	$Na_2SO_4(s)$	149.4
CaO(s)	-635.5	NaHCO ₃ (s)	-947.7	$C_2H_4(g)$	219.8	$H_2SO_4(l)$	157	$O_2(g)$	205.0
Ca(OH) ₂ (s)	-986.59	Na ₂ CO ₃ (s)	-1131	$C_2H_6(g)$	229.5	HC ₂ H ₃ O ₂ (l)	160	PbO(s)	67.8
CaSO ₄ (s)	-1432.7	NaCl(s)	-411.0	$C_8H_{18}(I)$	466.9	Hg(l)	76.1	S(s)	31.9
$CaSO_4 \cdot \frac{1}{2}H_2O(s)$	-1575.2	NaOH(s)	-426.8						
CaSO ₄ · 2H ₂ O(s)	-2021.1	$Na_2SO_d(s)$	-1384.5	$C_2H_5OH(l)$	161	Hg(g)	175	$SO_2(g)$	248.5
$Cl_2(g)$	0	$O_2(g)$	0	Ca(s)	41.4	K(s)	64.18	$SO_3(g)$	256.2
Fe(s)	0	Pb(s)	0	$CaCO_3(s)$	92.9	KCl(s)	82.59		
$Fe_2O_3(s)$	-822.2	PbO(s)	-219.2	CaCl ₂ (s)	114	K ₂ SO ₄ (s)	176		
$H_2(g)$	0	S(s)	0	Ca C 2 (5)		1020040)	., 5		
$H_2O(g)$	-241.8	$SO_2(g)$	-296.9						
$H_2O(l)$	-285.9	$SO_3(g)$	-395.2						

• Calculate the ΔG_{rxn}° for the following reaction at 298 K:

- Is the reaction exothermic or endothermic?
- Is the reaction spontaneous?

$$\Delta M_{ryn} = 2 m_0 1 \times (-822.2) LJ_{m_0} 1^{-1} - \left[4 m_0 1 \times 0 LJ_{m_0} 1^{-1} + 3 m_0 1 \times 0 LJ_{m_0} 1^{-1} \right] = -1644.4 LJ$$

$$\Delta S_{ryn} = 2 m_0 1 \times 40.0 J K^{-1} m_0 1^{-1} - \left[4 m_0 1 \times 27 J K^{-1} m_0 1^{-1} + 3 m_0 1 \times 265.0 J K^{-1} m_0 1^{-1} \right]$$

$$= -543 J K^{-1}$$

$$\Delta G_{rwh} = \Delta H_{ryn} - T \Delta S_{ryn} = -1644.4 LJ - 298 K \times (-543) J K^{-1} \times 10^{-3} LJ J$$

$$= -1483 LJ < 6 Spontaneous$$

Calculating ΔG_{rxn}° of Reactions (2nd method)

From standard free energy of formation (ΔG_f°),

$$\Delta G_{\rm rxn}^{\ \ o}$$
 = [sum of $\Delta G_{\rm f}^{\ o}$ of all the products]
- [sum of $\Delta G_{\rm f}^{\ o}$ of all the reactants]

$$\Delta G^{\circ}_{rxn} = \sum n_p \Delta G_f^{\circ}$$
 (products) - $\sum n_r \Delta G_f^{\circ}$ (reactants)

TABLE 40 2	Standard Free Energies of Formation of Typical Substances at 298.15 K					
Substance	ΔG° (kJ mol ^{−1})	Substance	$\Delta G_{ m f}^{\circ}$ (kJ mol ⁻¹)	Substance	$\Delta G_{ m f}^{\circ}$ (kJ mol $^{-1}$)	
Ag(s)	0	CaO(s)	-604.2	$K_2SO_4(s)$	-1316.4	
AgCl(s)	-109.7	$Ca(OH)_2(s)$	-896.76	$N_2(g)$	0	
Al(s)	0.00	CaSO ₄ (s)	-1320.3	$NH_3(g)$	-16.7	
$Al_2O_3(s)$	-1576.4	$CaSO_4 \cdot \frac{1}{2}H_2O(s)$	-1435.2	NH ₄ Cl(s)	-203.9	
C(s) (graphite)	0	CaSO ₄ ·2H ₂ O(s)	-1795.7	NO(g)	+86.69	
CO(g)	-137.3	$Cl_2(g)$	0	$NO_2(g)$	+51.84	
$CO_2(g)$	-394.4	Fe(s)	0	$N_2O(g)$	+103.6	
$CH_4(g)$	-50.79	$\text{Fe}_2\text{O}_3(s)$	-741.0	$N_2O_4(g)$	+98.28	
$CH_3Cl(g)$	-58.6	$H_2(g)$	0	Na(s)	0	
$CH_3OH(l)$	-166.2	$H_2O(g)$	-228.6	Na ₂ CO ₃ (s)	-1048	
$CO(NH_2)_2(s)$	-197.2	$H_2O(l)$	-237.2	NaHCO ₃ (s)	-851.9	
$CO(NH_2)_2(aq)$	-203.8	HCl(g)	-95.27	NaCl(s)	-384.0	
$C_2H_2(g)$	+209	$HNO_3(l)$	-79.91	NaOH(s)	-382	
$C_2H_4(g)$	+68.12	$H_2SO_4(l)$	-689.9	$Na_2SO_4(s)$	-1266.8	
$C_2H_6(g)$	-32.9	$HC_2H_3O_2(l)$	-392.5	$O_2(g)$	0	
$C_2H_5OH(l)$	-174.8	Hg(l)	0	PbO(s)	-189.3	
$C_8H_{18}(l)$	+17.3	Hg(g)	+31.8	S(s)	0	
Ca(s)	0	K(s)	0	$SO_2(g)$	-300.4	
$CaCO_3(s)$	-1128.8	KCl(s)	-408.3	$SO_3(g)$	-370.4	
CaCl ₂ (s)	-750.2					

• Calculate the $\Delta G_{rxn}{}^{\circ}$ for the following reaction at 298 K using the second method :

$$C_{2}H_{5}OH(l) + 3O_{2}(g) \longrightarrow 2CO_{2}(g) + 3H_{2}O(g)$$

$$\Delta G_{l} = 2 \text{ mol} \times (-394.4) \text{ [J mol}^{-1} + 3 \text{ mol} \times (-228.6) \text{ [J mol}^{-1} - [1 \text{ mol} \times (-174.8) \text{ [J mol}^{-1} + 3 \text{ mol} \times 0 \text{ [J mol}^{-1}]]$$

$$= -1299.8 \text{ [L]} < 0 \text{ Spontaneous}$$

Physical Meaning of Free Energy

- $\Delta E = q + w$: Energy is converted into work or heat.
- In systems such as combustion engines, we want to maximize the efficiency of energy: we want the energy to be converted into work rather than heat.

 $\Delta G = \Delta H - T \Delta S = > \Delta H = \Delta G + T \Delta S$

Gibbs Free Energy: maximum energy that can be theoretically be converted into useful work not usable, portion of energy that spreads out

Physical Meaning of Free Energy

- Conversion of chemical energy into mechanical energy (ΔG) is never 100 % efficient due to T ΔS .
- · Maximum efficiency when reversible.
- Some portion of ΔG (maximum energy) also wasted (non-reversible processes).
- Gasoline engine: 30% efficiency.
- Reversible process: happens so slowly that after an incremental change in the system has occurred, the process can be reversed by a tiny change that restores the original state of the system with no net flow of energy.
- In reality, a process can be only approximately reversible.

• When $\Delta G = \Delta H - T \Delta S < 0$ Spontaneous

• When $\Delta G = \Delta H - T \Delta S = 0$ Equilibrium

• When $\Delta G = \Delta H - T \Delta S > 0$ Nonspontaneous

Spontaneity of Phase Changes

•
$$H_2O$$
 (s) \rightarrow $H_2O(I)$ $\Delta H^\circ = 6.01 \times 10^3 \text{ J/mol}; \Delta S^\circ = 22.0 \text{ J/(mol} \cdot \text{K)}$

- $\Delta G = \Delta H T\Delta S$
- We will assume that ΔH and ΔS does not change significantly with temperature.

$$\triangleright$$
 ($\triangle H = \triangle H^{\circ}$, $\triangle S = \triangle S^{\circ}$)

• $\Delta G = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = (6.01 \times 10^3 \text{ J/mol}) - T[22.0 \text{ J/(mol} \cdot \text{K})] = 0$

$$T = \frac{6.01 \times 10^3 \text{ J/mol}}{22.0 \text{ J/(mol} \cdot \text{K)}} = 273 \text{ K} = 0^{\circ}\text{C} \text{ Melting point of water!!}$$

- at T>0, ΔG <0 : ice melting is spontaneous
- at T<0, ΔG>0 : ice melting is nonspontaneous

Spontaneity of Phase Changes

Phase A → Phase B

If you know the ΔH and ΔS of the phase change, you can calculate the temperature of phase change (boiling point, melting point ...)

by setting the $\Delta G = \Delta H - T\Delta S = 0$

because the point of phase change is the point where the two phases are in equilibrium.

• Calculate the boiling point of Br_2 at 1 atm assuming that ΔH and ΔS are nearly temperature independent.

$$\Delta H_{\text{vap}}^{\circ} = +31.0 \text{ kJ mol}^{-1} \text{ and } \Delta S_{\text{vap}}^{\circ} = 92.9 \text{ J mol}^{-1} \text{ K}^{-1}$$
boiling point is when $l \rightarrow g$ and $g \rightarrow l$ is in equilibrium $\Delta h = 0$

$$\text{Corresponding exp.} : B_{2}(0) \longrightarrow B_{12}(g) \qquad \Delta H_{\text{vap}} \qquad \Delta S_{\text{vap}}^{\circ}$$

$$\Delta G_{\text{vap}} = \Delta H_{\text{vap}} - T_{\text{eq}} \Delta S \qquad = 0$$

$$31.0 \text{ kJ mol}^{-1} - T_{\text{eq}} \times 92.9 \text{ J mol}^{-1} \text{ K}^{-1} = 0$$

$$T_{\text{eq}} = \frac{31.6 \text{ Jmol}^{-1}}{92.9 \text{ J mol}^{-1} \text{ K}^{-1}} = \frac{31.6 \times 10^{3} \text{ J mol}^{-1}}{92.9 \text{ J mol}^{-1} \text{ K}^{-1}} = 334 \text{ K}$$

Spontaneity of Reactions vs Temperature

• For reactions,

$$\Delta G = \Delta H - T \Delta S$$

- ullet Spontaneity (ΔG) changes with temperature.
- The thermodynamic charts provide ΔH and ΔS values at 293 K at standard condition.
- The variations of ΔH and ΔS are relatively insensitive to the temperature, so we can approximate $\Delta H^\circ = \Delta H^\circ_{298}$ and $\Delta S^\circ = \Delta S^\circ_{298}$.
- Therefore,

$$\Delta G_T^\circ = \Delta H_{298}^\circ - T \Delta S_{298}^\circ$$

- For the reaction $N_2O_4(g) \rightarrow 2 NO_2(g)$,
- ΔH°_{rxn} = 57.9 kJ and ΔS°_{rxn} = 177 J/K at 298 K.
- What is the ΔG°_{rxn} at 105°C?

$$\Delta G_{rm}^{\circ} = \Delta H_{rm}^{\circ} - T \Delta S_{rm}^{\circ}$$

$$= 57.9 \square - 378 K \times 177 \square / K \times 10^{-3} k \square / 3$$

$$- 9.01 k \square$$

 What is the lowest temperature at which the following reaction is spontaneous?

$$H_{2}O(g) + C(s) \rightarrow H_{2}(g) + CO(g)$$

$$\Delta H_{1}^{\circ} - 241.8 \quad 0 \quad 0 \quad -110.5 \quad kT \text{ mol}^{-1}$$

$$S^{\circ} 188.7 \quad 5.69 \quad 130.6 \quad 197.9 \quad J \text{ mol}^{-1}K^{-1}$$

$$\Delta M_{1}v_{1}^{\circ} = I_{1}v_{1} \cdot X \quad (-110.5) \quad kJ \text{ mol}^{-1} - I_{1}v_{1} \cdot Y \quad (-241.8) \quad kJ \text{ kol}^{-1} = 131.5 \quad kJ$$

$$\Delta S_{1}v_{1}^{\circ} = I_{1}v_{1} \cdot X \quad (30.6 \quad J_{1}v_{1}^{\circ})^{-1} + I_{1}v_{1} \cdot X \quad (97.9 \quad J_{1}v_{1}^{\circ})^{-1} = 134.11 \quad JK^{-1}$$

$$- [I_{1}v_{1} \cdot X \mid 88.7 \quad J_{1}v_{1}^{\circ})^{-1} + I_{1}v_{1} \cdot X \quad 5.69 \quad J_{1}v_{1}^{\circ})^{-1} = 134.11 \quad JK^{-1}$$

$$\Delta H_{1}v_{1}^{\circ} = T_{1}L\Delta S_{1}v_{1}^{\circ} \qquad T_{2}v_{1}^{\circ} = \Delta H_{1}v_{1}^{\circ} - T_{1}L\Delta S_{1}v_{1}^{\circ} \quad = 980.5 \quad K$$

• Above what temperature does nitrogen monoxide form from nitrogen and oxygen?

$$N_2(g) + O_2(g) \rightarrow 2 NO(g)$$

• Assume that the values of ΔH°_{rxn} and ΔS°_{rxn} do not change appreciably with temperature.

colculate from their mody namic tables.

$$\Delta H_{TX}^{2} = 190.74 \text{ kJ}_{mol}^{-1} \Delta S_{rxn} = 24.7 \text{ J}_{nol}^{-1}$$

$$\Delta \Delta G = 0 \cdot \text{ equilibrium } \Delta G = \Delta H - T \Delta S = 0$$

$$\Delta H = T\Delta S \qquad T = \frac{\Delta H}{\Delta S} = \frac{180.74 \times 10^{3} \text{ J mol}^{-1}}{24.7 \text{ J mol}^{-1} \text{ k}^{-1}}$$

$$7317 \text{ K}$$

Extensive vs. Intensive Properties

- Extensive property
 - A property that depends on the amount of substance
 - volume, heat capacity, mass, etc.
- Intensive property
 - A property that is independent of the amount of substance
 - temperature, density, pressure, specific heat, etc.

Product Rule

$$(f\cdot g)'=f'\cdot g+f\cdot g'$$

$$rac{d}{dx}(u\cdot v)=u\cdotrac{dv}{dx}+v\cdotrac{du}{dx}$$

$$d(uv) = u \, dv + v \, du$$

Dependence of Gibbs Free Energy on T and P

- G = H TS dG = dH T dS S dT
- H = U + PV dH = dU + V dP + P dV
- dU = dq + dw 1st Law
- $dq_{rev} = T dS$ $2^{nd} Law$
- Combination of 1st and 2nd laws
- dG = V dP S dT
- dU = T dS P dV

Dependence of Gibbs Free Energy on T and P

constant P

$$dG = VdP - SdT$$

constant T

- dG = -S dT
- $\bullet \left(\frac{\partial G}{\partial T} \right)_P = -S$
- $\bullet \left[\frac{\partial \left(\frac{\Delta G}{T} \right)}{\partial T} \right]_{P} = -\frac{\Delta H}{T^{2}}$
- Gibbs-Helmholtz egn.
- Temperature dependence of G

- dG = V dP
- $\left(\frac{\partial G}{\partial P}\right)_T = V$
- $\Delta G = \int_{P_1}^{P_2} V \ dP = \int_{P_1}^{P_2} \frac{nRT}{P} \ dP$
 - $\Delta G = nRT \ln \frac{P_2}{P_1}$
 - $G = G^{\circ} + nRT \ln \frac{P_2}{1 \ bar}$
 - $\bar{G} = \bar{G}^{\circ} + RT \ln \frac{P_2}{1 \ bar}$
 - Pressure dependence of G

A 0.590-mol sample of an ideal gas initially at 300 K and 1.50 bar is compressed isothermally to a final pressure of 6.90 bar. Calculate the change in Gibbs energy for this process.

$$\Delta G = nRT ln \frac{P_z}{P_i} = 0.590 \text{ mol} \times 8.3 \text{ [45 J K' mol}^{-1} \times 360 \text{ K}$$

$$\times ln \frac{6.90 \text{ ber}}{1.50 \text{ ber}}$$

$$= 2.25 \times 16^3 \text{ J}$$

Dependence of Gibbs Free Energy on T and P

$$\left(\frac{\partial G}{\partial T}\right)_{P} = -S \qquad \quad \left(\frac{\partial G}{\partial P}\right)_{T} = V$$

- S>0 for all substances
 - G always decreases with temperature
 - G decreases most sharply when entropy is large
- V>0 for all substances
 - G always increases with pressure

$$\Delta G = \Delta H - T \Delta S < 0$$

Spontaneous

Processes proceed in the direction of "decreasing G":

more stable in terms of Gibbs free energy

Phase Equilibria

- **Phase**: a form of matter that is uniform throughout in chemical composition and physical state
 - separated with other phases through boundaries
- If two phases are in equilibrium (boiling point, freezing point, etc.)

$$\Delta G = \bar{G}_{\alpha} - \bar{G}_{\beta} = 0$$
$$\bar{G}_{\alpha} = \bar{G}_{\beta}$$

• For example, at boiling point,

$$H_2O(I) \longleftrightarrow H_2O(g)$$

$$\Delta G = \bar{G}_{H2O(g)} - \bar{G}_{H2O(l)} = 0$$

Phase Equilibria

- $\left(\frac{\partial \bar{G}}{\partial T}\right)_P = -\bar{S}$: slope in G vs. T graph
- The slope in the G vs. T graph is -S (entropy).
- Entropy of gas is highest => gas has the most negative slope :
 - G of gas decreases fastest with temperature
- |Slope (-S)|: gas >> liquid > solid

Figure 6.2

Phase Equilibria

- $\left(\frac{\partial \bar{G}}{\partial P}\right)_T = \bar{V}$: slope in G vs. P graph
- Since V>0, G always increases with pressure
- Generally, freezing point and boiling point increases with increasing pressure.
- Except for water (V_{solid} > V_{liquid}: the volume of ice is higher than water)

Lower Density of Ice than Water

- Due to the hydrogen bonding, an hexagonal lattice is formed within the solid water (ice).
- The structure has a lot of hollow volume within the structure.
- Therefore water is denser than ice.

In general, the solid phase is denser than the liquid phase. However, water is denser than ice due to the hexagonal structure formed due to the hydrogen bonding.

Phase Diagram: Water

The slopes (dP/dT) are generally positive but water is an exception because the slope for solid-liquid boundary is negative due to the higher volume of ice compared to water.

- A phase diagram shows the phase of a substance at a given temperature and pressure
- X axis: temperature, Y axis: pressure
- **Triple point**: The temperature and pressure at which all three phases s, l, and g exist in equilibrium
- The boiling point of water at 1 atm is 100°C, freezing point is 0°C.

Phase Diagram: CO₂

- The slope for solid-liquid boundary is positive, like all other boundaries, following the general trend.
- CO₂ sublimates from solid to gas at atmospheric pressure: it does not exist as liquid at atmospheric pressure.

Phase Diagrams

- Critical Point (critical temperature T_c and critical pressure P_c):
- the highest temperature and pressure where the liquid and gas phase are separated by a interface
- Liquid and gas densities become equal after the critical point.
- The phase takes on intermediate properties of gas and liquid.

The substance is called a **supercritical fluid** after the critical point.

Supercritical Fluids

- Excellent solvents
- Supercritical fluid of CO₂: used for decaffeination of coffee

https://youtu.be/GEr3NxsPTOA

Phase Equilibria

• Two phases α and β are in equilibrium:

•
$$\bar{G}_{\alpha} = \bar{G}_{\beta}$$

$$d\bar{G} = \bar{V}dP - \bar{S}dT$$

•
$$d\bar{G}_{\alpha} = d\bar{G}_{\beta}$$
 «

$$\begin{split} d\bar{G}_{\alpha} &= \bar{V}_{\alpha} dP - \bar{S}_{\alpha} dT \\ d\bar{G}_{\beta} &= \bar{V}_{\beta} dP - \bar{S}_{\beta} dT \end{split}$$

•
$$\bar{V}_{\alpha}dP - \bar{S}_{\alpha}dT = \bar{V}_{\beta}dP - \bar{S}_{\beta}dT$$

•
$$(\bar{S}_{\beta} - \bar{S}_{\alpha})dT = (\bar{V}_{\beta} - \bar{V}_{\alpha})dP$$

at equilibrium,

$$\Delta G = \Delta H - T \Delta S = 0$$

 $\Delta S = \Delta \overline{H} / T$

$$\bullet \, \frac{dP}{dT} = \frac{\Delta \overline{H}}{T\Delta \overline{V}}$$

Clapeyron equation (general equation for equilibrium between any phases)

Phase Equilibria

Equilibrium between liquid/solid and gas (vaporation)

liquid/solid ↔ gas

•
$$\frac{dP}{dT} = \frac{\Delta \overline{H}}{T\Delta \overline{V}}$$
 \longleftrightarrow $\Delta \overline{H} = \Delta_{vap} \overline{H}$
$$\Delta \overline{V} = \Delta_{vap} \overline{V} = \overline{V}_{vap} - \overline{V}_{liquid} \approx \overline{V}_{vap} = \frac{RT}{P}$$

$$\bullet \frac{dP}{dT} = \frac{P \, \Delta_{vap} \overline{H}}{RT^2}$$

$$\bullet \frac{dP}{P} = \frac{\Delta_{vap}\overline{H}}{RT^2} dT$$

Clausius-Clapeyron equation

(for evaporation, sublimation)

•
$$\ln P = -\frac{\Delta_{vap}\overline{H}}{RT} + const$$

$$\ln \frac{P_2}{P_1} = \frac{\Delta_{vap} \overline{H}}{RT} \frac{(T_2 - T_1)}{T_1 T_2}$$

Clausius-Clapeyron Equation

•
$$\ln(P_{vap}) = -\frac{\Delta H_{vap}}{R} \left(\frac{1}{T}\right) + C$$

$$y = a x + b$$

$$ightharpoonup$$
 slope a = $-\frac{\Delta H_{vap}}{R}$ => determine ΔH_{vap}

$$\triangleright \Delta H_{vap} = -\text{slope } \mathbf{a} \times R$$

The unit of the slope is K.

