Einführung Constraints

Carsten Gips (HSBI)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

Motivation: Einfärben von Landkarten

Einfärben von Landkarten: Formalisierung

- Variablen: A, B, C, D, E, F
- Werte: {red, green, blue}
- Constraints: Benachbarte Regionen müssen unterschiedliche Farben haben
- Mögliche Lösung: Zuweisung an Variablen ("Belegung")
 {A = red, B = blue, C = green, D = red, E = blue, F = blue}

Definition: Constraint Satisfaction Problem (CSP)

- Ein CSP $\langle V, D, C \rangle$ besteht aus:
 - Menge von **Variablen** $V = \{V_1, V_2, \dots, V_n\}$
 - Je V_i nicht leere **Domäne** $D_i = \{d_{i,1}, d_{i,2}, \dots, d_{i,m_i}\}$
 - Menge von Constraints $C = \{C_1, C_2, \dots, C_p\}$ (Randbedingungen, Abhängigkeiten zwischen Variablen)
- Zuweisung/Belegung (Assignment) α:
 - Zuweisung von Werten an (einige/alle) Variablen: $\alpha = \{X = a, Y = b, ...\}$ (aus den jeweiligen Wertebereichen)
 - Konsistente Belegung: Randbedingungen sind nicht verletzt
 - Vollständige Belegung: Alle Variablen sind belegt
- Lösung eines CSP: Vollständige und konsistente Belegung

Constraint-Graph

Constraints - Arität

 unär: betrifft einzelne Variablen Beispiel: A ≠ red

 binär: betrifft Paare von Variablen Beispiel: A ≠ B

• höhere Ordnung: betrifft 3 oder mehr Variablen

Präferenzen: "soft constraints"

Roispiel: "rot ist besser als grün"

Beispiel: "rot ist besser als grün"

Abbildung über Gewichtung => Constraint-Optimierungsproblem (COP)

Constraints – Wertebereiche

- Endliche Domänen: d Werte => $O(d^n)$ mögliche Zuweisungen (exponentiell in der Zahl der Variablen)
- Unendliche Domänen: reelle Zahlen, natürliche Zahlen
 - => Keine Auflistung der erlaubten Wertekombinationen mehr möglich
 - => Übergang zu Gleichungen/Ungleichungen: $job_1 + 5 < job_2$
 - lineare Constraints
 - nichtlineare Constraints

Historische Unterscheidung:

- Constraint Satisfaction: endliche Domänen, kombinatorische Methoden
- Constraint Solving: unendliche Domänen

CSP sind überall ...

- Stundenpläne (Klassen, Räume, Zeiten)
- Konfiguration (Computer, Autos, ...)
- Fahrpläne (Zug, Flug, ...)
- Planung von komplexen Projekten
- Sudoku :-)
- ...

Wrap-Up

- Definitionen und Begriffe:
 - Variable, (un-) endliche Domänen, Wertemenge
 - Constraint, Arität, CSP
 - Zuweisung, Lösung, . . .

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.