Fondamenti dell'Informatica

Quiz

28 luglio 2005

Cognome:	
Nome:	
Matricola:	

Note

- 1. Per i quiz a risposta multipla, fare una croce sulla/e lettera/e che identifica/no la/e risposta/e desiderata/e.
- 2. Per i quiz a risposta multipla, c'è sempre almeno una risposta corretta. Talvolta ci sono più risposte corrette. Si richiede che siano marcate *tutte e sole* le risposte corrette. In altre parole, una crocetta in più o in meno invalida l'esercizio.
- 3. Per i quiz descrittivi e gli esercizi, la risposta va data sulla stessa facciata che contiene il testo dell'esercizio. Lo spazio lasciato a questo scopo è sempre sufficiente.
- 4. È possibile usare il retro dei fogli per eventuali calcoli e verifiche.
- 5. L'orario di consegna scritto alla lavagna è tassativo.
- 6. Non è consentita la consultazione di alcunché.
- 7. L'esame orale è consigliato solo a chi totalizza abbastanza punti nei quiz. Le soglie sono:
 - per i matematici, 12 punti riducibili a 10 a patto che le risposte ai quiz 1, 3, 4, 5 e 8 siano corrette.
 - per gli informatici, 15 punti riducibili a 13 a patto che le risposte ai quiz 1, 3, 4, 5, 8, 10 e 11 siano corrette.

Quiz per tutti

- 1. (1 punto) Un linguaggio finito
- (A) è vuoto; (B) è regolare; (C) è accettato da qualche DFA;
- (D) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C).
- (2 punti) Quali dei seguenti automi si arrestano dopo aver effettuato un numero finito di transizioni se ricevono in input una sequenza finita di simboli?
 - (A) DFA; (B) NFA; (C) ϵ -NFA; (D) Macchina di Turing;
 - (E) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C) $n\acute{e}$ (D).
- 3. (2 punti) I linguaggi regolari sono chiusi rispetto a:¹
- (B) concatenazione; (C) intersezione; (A) complementazione;
- (D) stella di Kleene: (E) unione: (F) differenza simmetrica;
- (G) nessuna di queste.
- **4.** (2 punti) Si consideri la relazione $R \subset \{a, b, c, d, e\}^2$ data dalla tabella qui sotto, dove 1 o 0 all'incrocio tra la riga x e la colonna yindicano se $(x,y) \in R$ o se $(x,y) \notin R$, rispettivamente:

R	a	b	c	d	e
a	1	0	0	0	0
b	0	1	0	1	0
c	0	0	1	0	1
d	0	1	0	1	0
e	0	0	1	0	1

Le classi di equivalenza di R sono

- (A) (a,c), (c,d), (d,a), (b,e), (e,b); (B) $\{a\}$, $\{b\}$, $\{c,e\}$, $\{d\}$;
- (C) $\{a\}, \{b, d\}, \{c, e\};$
- (D) nessuna: R non è di equivalenza.
- **5.** (3 punti) Siano $L_1, \ldots, L_{10} \subseteq \{a, b\}^*$ i linguaggi seguenti:

 $L_1 = \{ x \mid \text{la lunghezza di } x \text{ è pari } \}, \qquad L_2 = \{ x \mid x \text{ inizia e finisce con } a \},$

 $L_3 = \{ x \mid x \text{ ha almeno due } a \},$ $L_4 = \{ x \mid x \text{ finisce con } a \},$ $L_5 = \{ x \mid x \text{ inizia con } a \},$ $L_6 = \{ x \mid x \text{ inizia con } aa \}$ $L_6 = \{ x \mid x \text{ inizia con } aa \},$

 $L_7 = \{ x \mid \text{il numero di } a \text{ in } x \text{ è pari } \}, \quad L_8 = \{ x \mid x \text{ ha esattamente una } a \},$

 $L_9 = \{ x \mid x \text{ ha almeno una } a \},$ $L_{10} = \{ x \mid x \text{ contiene la sottostringa } aa \}.$

¹La differenza simmetrica $A\Delta B$ di due insiemi A e B è definita come $A\Delta B=(A\setminus B)\cup$ $(B \setminus A)$.

Per ognuno degli NFA seguenti si dica quali linguaggi, tra quelli sopra citati, vengono accettati. Si scriva 'nessuno' se nessuno di tali linguaggi viene accettato.

Linguaggi accettati:

Linguaggi accettati:

Linguaggi accettati:

Linguaggi accettati:

Linguaggi accettati:

 ${f 6.}~~(3~{
m punti})$ Si converta il seguente NFA in DFA.

7. (3 punti) Quali delle seguenti espressioni regolari definiscono il linguaggio

 $L = \{ w \in \{a, b, c\}^* \mid \text{il numero di occorrenze di } a \text{ in } w \text{ è dispari } \}?$

$$e_{1} = (a(b+c)^{*})((b+c)^{*}a(b+c)^{*}a(b+c)^{*})^{*};$$

$$e_{2} = ((b+c)^{*}a)((b+c)^{*}a(b+c)^{*}a(b+c)^{*})^{*};$$

$$e_{3} = ((b+c)^{*}a(b+c)^{*}a)^{*}((b+c)^{*}a(b+c)^{*});$$

$$e_{4} = ((b+c)^{*}a(b+c)^{*})((b+c)^{*}a(b+c)^{*}a)^{*};$$

$$e_{5} = ((b+c)^{*}a(b+c)^{*}a(b+c)^{*})^{*}(a(b+c)^{*}).$$

- (A) e_1 ; (B) e_2 ; (C) e_3 ; (D) e_4 ; (E) e_5 ; (F) nessuna di esse.

8. (2 punti) Si consideri la MdT definita dal seguente programma:

Q	0	1	\$
q_0			$q_1 \$ R
q_1	$q_2 1 L$	$q_1 \ 0 \ \mathrm{R}$	
q_2		q_2 1 L	

Si supponga che la MdT cominci la computazione nello stato q_0 , avendo per input sul nastro la stringa "111010", con la testina posizionata sul primo simbolo \$ alla sinistra della stringa stessa. Allora la computazione suddetta:

- (A) termina dopo 3 passi; (B) termina dopo 5 passi;
- (C) termina dopo 6 passi; (D) non termina.

Quiz per gli "informatici"

- **9.** (2 punti) L'affermazione "Se L è un linguaggio regolare e $L' \subseteq L$ è un linguaggio libero dal contesto allora $L \setminus L'$ è libero dal contesto" (A) è vera solo se L è finito; (B) è sempre vera; (C) è falsa.
- 10. (1 punto) Avendo un linguaggio L che sospetto non essere libero dal contesto, tento di dimostrare che L non è libero dal contesto usando il "pumping lemma". Tento cioè di dimostrare:

(A)
$$\forall n \in \mathbb{N} : \exists z \in L . |z| \ge n \land \forall u, v, w, x, y \in \Sigma^*$$

 $: ((z = uvwxy \land |vx| \ge 1 \land |vwx| \le n) \implies \exists i \in \mathbb{N} . uv^i wx^i y \notin L)$

(B)
$$\forall z \in L : \exists n \in \mathbb{N} . |z| \ge n \land \forall u, v, w, x, y \in \Sigma^*$$

 $: ((z = uvwxy \land |vx| \ge 1 \land |vwx| \le n) \implies \exists i \in \mathbb{N} : uv^i wx^i y \notin L)$

(C)
$$\forall n \in \mathbb{N} : \exists z \in L . |z| \ge n \land \forall u, v, w, x, y \in \Sigma^*$$

 $: ((z = uvwxy \land |vx| \ge 1 \land |vwx| \le n) \implies \forall i \in \mathbb{N} : uv^i wx^i y \notin L)$

- 11. (2 punti) I linguaggi liberi dal contesto sono chiusi rispetto alle operazioni di:²
- (A) complementazione; (B) concatenazione; (C) intersezione;
- (D) stella di Kleene; (E) unione; (F) differenza simmetrica;
- (G) nessuna di queste.
- 12. (2 punti) Si dia un esempio di grammatica ambigua con un solo simbolo non terminale. Se il linguaggio generato è intrinsecamente ambiguo, lo si dica. Altrimenti, si esibisca una grammatica non ambigua equivalente.

²La differenza simmetrica $A\Delta B$ di due insiemi A e B è definita come $A\Delta B=(A\setminus B)\cup(B\setminus A)$.