Exercises in Marine Ecological Genetics

02. Hardy-Weinberg equilibrium

- Calculate allele and genotype frequencies
- Test for Hardy-Weinberg equilibrium
- Work with data in Genepop format
- Learn to interpret HW test results

Martin Helmkampf

Working with the command line / bash

Windows

- Launch git bash from Start menu
- Alternatively, install Windows Subsystem for Linux (WSL) on Windows 10 or above (see https://learn.microsoft.com/en-us/windows/wsl/install)

macOS

Open Terminal app
 in /Applications/Utilities,
 type and execute "bash"

Typical usage

command [-options] [file]

Recap: basic bash commands

See also other/bash_cheatsheet_?.pdf

```
# List directory contents in long format
ls -l
cd dir
                                        # Change into directory
                                        # Move up one directory
cd ...
                                        # Print current directory
pwd
mkdir dir
                                        # Create new directory
                                       # Move or rename file or directory
mv file/dir1 file/dir2
cp file/dir1 file/dir2
                                        # Copy file or directory
rm file
                                        # Delete file
```

```
tab key # Autocomplete file or directory name
up arrow key # Cycle through previous commands
```

Download course materials using git

Go to project directory and check contents

```
cd dir # e.g. Documents/meg23_exercises
ls -l # -l: long format
```


Download course materials using git

Go to project directory and check contents

```
cd dir # e.g. Documents/meg23_exercises
ls -l # -l: long format
```

Update course repository

```
cd meg23_repo
git pull
```


Please do not save over files in the course repository. Instead, save your own scripts to the local subdirectory (including copies of course scripts you would like to edit), e.g with

```
cp code/02_hwe.R ../local/02_hwe_lc.R # cp [source] [destination]
```

In case of an error message ...

Delete old repository and re-download from GitHub

```
rm -rf meg23_repo
git clone https://github.com/mhelmkampf/meg23_repo.git
```

Diploid, sexual reproduction, 1 locus, 2 co-dominant alleles (yellow, blue)

HARDY-WEINBERG (1908)

Godfrey H. Hardy (1877-1947) Wilhelm Weinberg (1862-1937)

Establish the relationship between allele frequencies and genotype frequencies in a population

$$p^2 + 2pq + q^2 = 1$$
AA Aa/aA aa

p and q: allele frequencies for a locus with two alleles (A and a) (p + q = 1)

Pearson's chi-squared test

Chi-square statistic:

$$\chi^2 = \sum_{i=1}^n rac{(O_i-E_i)^2}{E_i}$$

Chi-square distribution:

HETEROZYGOSITY

In one population

 H_o = proportion of heterozygote individuals, observed heterozygosity

$$H_e = 2pq = 1 - p^2 - q^2$$
, expected heterozygosity (assuming HW equilibrium)

$$F = \frac{H_e - H_o}{H_e}$$

Fixation index: proportion by which heterozygosity is reduced or $F = \frac{H_e - H_o}{H_e}$ increased relative to the heterozygosity of a population at HW equilibrium with the same allele frequencies. equilibrium with the same allele frequencies.

Divided by $H_e \rightarrow proportion$ (of expected heterozygosity)

Varies between -1 and 1

F < 0: heterozygote excess

F > 0 heterozygote deficit (homozygote excess)

May be averaged over several loci -> reduces bias

May be extended to *k* alleles

A single generation of reproduction will result in a population that meets the expected Hardy-Weinberg frequencies, i.e. is at Hardy-Weinberg (HW) equilibrium

Assuming an "ideal" population, i.e.:

- Diploid organisms
- Sexual reproduction (as opposed to clonal)
- Random mating (as opposed to e.g. assortative) with respect to genotype
- Random union of gametes
- Discrete, non-overlapping generations
- Very large (infinite) population
- No migration
- No population structure
- No natural selection
- Two alleles
- Identical allele frequencies in both sexes

- -> Departures from HW equilibrium may indicate:
- Inbreeding
- Assortative mating
- Self-fertilization
- Natural selection
- Population structure
- ...

Genepop format

Genepop format

Barred hamlet (H. puella) microsatellite dataset

Ecology, 90(11), 2009, pp. 3087–3098 © 2009 by the Ecological Society of America

Estimating dispersal from genetic isolation by distance in a coral reef fish (*Hypoplectrus puella*)

Oscar Puebla, 1,2,3 Eldredge Bermingham, 1,2 and Frédéric Guichard 2

- 10 highly variable microsatellite loci
- 854 individuals
- 15 Caribbean locations

Exercises 2/3

Useful R functions for population genetics

```
## Import Genepop file as genind object
read.genepop(file, node = n)

## Locus statistics
locus_table(genind)

## Quick test for HWE
test.hw(genind)

## Detailed test for HWE, can write output to file
test_hw(file, outputFile = newfile)
```

Course outline

Class	Date	Topics	Script
01	Apr 14	Introduction, software installation	01_intro.R
02	Apr 21	Hardy-Weinberg equilibrium	02_hwe.R
03	Apr 28	Genetic drift and effective population size	03_Ne.R
04	May 05	Population structure and gene flow	04_structure.R
05	May 12	Isolation by distance (lecture online, exercises in person)	05_ibd.R
_	May 19	Himmelfahrt break	-
06	May 26	Whole-genome sequencing and genome assembly	06_genseq.sh
07	Jun 02	Genotyping, SNPs and population genomics	07_snps.R
08	Jun 09	Recombination and linkage disequilibrium	08_linkage.R
_	Jun 16	Student presentations	_
09	Jun 23	Selection and mutation	09_selection.R
10	Jun 30	DNA barcoding	10_barcode.sh
11	Jul 07	Metabarcoding	11_meta.sh
_	Jul 14	To be determined	_