FROM SQL PANDAS

SELECT

SELECT ALL COLUMNS
SELECT SINGLE COLUMN
SELECT MULTIPLE COLUMNS

WHERE

EQUAL TO (=)

NOT EQUAL TO (!=)

GREATER THAN (>)

GREATER THAN EQUAL TO (>=)

LESS THAN (<)

LESS THAN EQUAL TO (<=)

AND

OR

IN

NOT IN

ORDER BY

SORT BY SINGLE COLUMN ASC
SORT BY SINGLE COLUMN DESC
SORT BY MULTIPLE COLUMNS ASC
SORT BY MULTIPLE COLUMNS DESC
SORT BY ASC AND DESC

LIMIT & OFFSET

TOP N ROWS OFFSET **GROUP**

GROUP BY SINGLE COLUMN
GROUP BY MULTIPLE COLUMNS

JOINS

INNER JOIN

LEFT JOIN

RIGHT JOIN

FULL JOIN

CROSS JOIN

UNION & UNION ALL

UNION BY SINGLE COLUMN
UNION BY ALL COLUMNS

UNION ALL BY SINGLE COLUMN

UNION ALL BY ALL COLUMNS

INSERT

ADD SINGLE COLUMN

UPDATE

UPDATE SINGLE COLUMN SINGLE ROW
UPDATE MULTIPLE COLUMN MULTIPLE ROWS
UPDATE MULTIPLE COLUMNS MULTIPLE ROWS
UPDATE SINGLE COLUMN ALL ROWS
UPDATE MULTIPLE COLUMNS ALL ROWS

DROP

DROP SINGLE COLUMN
DROP MULTIPLE COLUMNS

RENAME

RENAME SINGLE COLUMN
RENAME MULTIPLE COLUMNS

COUNT

COUNT OF DISTINCT VALUES
COUNT OF TOTAL VALUES
COUNT OF UNIQUE VALUES

AGGREGATIONS

DESCRIPTIVE STATISTICS

DUPLICATES

DISTINCT VALUES

DROP ROW - ALL COLUMNS DUPLICATED

DROP ROW - KEY COLUMN DUPLICATED

DDL

STRUCTURE OF TABLE

SELECT ALL COLUMNS


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df";
```

***	ID	NAME
	1	Joe
	2	Doe
	3	Paula


```
import pandas as pd

data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}
```

```
df = pd.DataFrame(data)
df
```

```
    ID Name
    1 Joe
    1 2 Doe
    2 3 Paula
```


SELECT SINGLE COLUMN


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT "NAME"
FROM "df";
```

```
Joe
Doe
Paula
```

```
import pandas as pd

data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df['Name']

Ø     Joe
1     Doe
2     Paula
Name: Name, dtype: object
```

SELECT MULTIPLE COLUMNS


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10),
"AGE" INTEGER
);

INSERT INTO "df" VALUES
(1, 'Joe', 10),
(2, 'Doe', 20),
(3, 'Paula', 30);

SELECT "NAME", "AGE"
FROM "df";
```

NAME	AGE
Joe	10
Doe	20
Paula	30


```
import pandas as pd
```

```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula'],
    'Age': [10, 20, 30]
}

df = pd.DataFrame(data)

df[['Name', 'Age']]
```

	Name	Age
0	Joe	10
1	Doe	20
2	Paula	30

EQUAL TO (=)


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df"
WHERE "ID" = '2';
```

ID	NAME
2	Doe


```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df
```

```
ID Name0 1 Joe1 2 Doe2 3 Paula
```

1 2 Doe

import pandas as pd

```
df.query('ID == 2')
ID Name
```

NOT EQUAL TO (!=)


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df"
WHERE "ID" != '2';
```

ı	ID	NAME ···
	1	Joe
	3	Paula


```
import pandas as pd
```

```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df
```

```
ID Name0 1 Joe1 2 Doe2 3 Paula
```

```
df.query('ID != 2')
```

```
ID Name0 1 Joe2 3 Paula
```


GREATER THAN (>)


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df"
WHERE "ID" > '2';
```

```
ID NAME
3 Paula
```



```
import pandas as pd
```

```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df
```

```
ID Name0 1 Joe1 2 Doe2 3 Paula
```

```
df.query('ID > 2')
```

```
1D Name
2 3 Paula
```


GREATER THAN EQUAL TO (>=)


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df"
WHERE "ID" >= '2';
```

***	ID	NAME
	2	Doe
	3	Paula


```
import pandas as pd
```

```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df
```

	ID	Name
0	1	Joe
1	2	Doe
2	3	Paula

```
df.query('ID >= 2')
```

	ID	Name
1	2	Doe
2	3	Paula

LESS THAN (<)


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df"
WHERE "ID" < '2';
```

***	ID	NAME
	1	Joe

import pandas as pd

```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df
```

	ID	Name
0	1	Joe
1	2	Doe
2	3	Paula

```
df.query('ID < 2')
```

```
ID Name0 1 Joe
```


LESS THAN EQUAL TO (<=)


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df"
WHERE "ID" <= '2';</pre>
```

•••	ID	NAME
	1	Joe
	2	Doe


```
import pandas as pd

data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df
```

	ID	Name
0	1	Joe
1	2	Doe
2	3	Paula

```
df.query('ID <= 2')</pre>
```

	ID	Name
0	1	Joe
1	2	Doe


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df"
WHERE "ID" = '1'
AND "NAME" = 'Joe';
```

ID	NAME	•••
1	Joe	


```
import pandas as pd
```

```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df
```

```
    ID Name
    1 Joe
    1 2 Doe
    2 3 Paula
```

```
df.query('ID == 1 and Name == "Joe"')
```

	ID	Name
0	1	Joe


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df"
WHERE "ID" = '1'
OR "NAME" = 'Doe';
```

***	ID NAME	
	1	Joe
	2	Doe


```
import pandas as pd
```

```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df
```

1D Name0 1 Joe1 2 Doe2 3 Paula

```
df.query('ID == 1 or Name == "Doe"')
```

	ID	Name
0	1	Joe
1	2	Doe


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df"
WHERE "ID" IN ('1', '3');
```

***	ID NAME	
	1	Joe
	3	Paula


```
import pandas as pd
```

```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df
```

```
    ID Name
    1 Joe
    1 2 Doe
    2 3 Paula
```

```
df.query("ID in (1, 3) ")
```

	ID	Name
0	1	Joe
2	3	Paula

NOT IN


```
CREATE TABLE "df"
(
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Joe'),
(2, 'Doe'),
(3, 'Paula');

SELECT *
FROM "df"
WHERE "ID" NOT IN ('1', '3');
```

***	ID	NAME
	2	Doe


```
import pandas as pd
```

```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Doe', 'Paula']
}

df = pd.DataFrame(data)

df
```

```
ID Name0 1 Joe1 2 Doe2 3 Paula
```

```
df.query("ID not in (1, 3) ")
```

```
1 2 Doe
```


SORT BY SINGLE COLUMN ASC


```
create or replace table "df" (
"ID" INTEGER,
"Name" VARCHAR(10)
);

INSERT INTO "df" values
(5, 'Joe'),
(2, 'Doe'),
(4, 'Paula'),
(3, 'John'),
(1, 'Terry')
;
```

```
SELECT *
FROM "df"
ORDER BY "ID";
```

 ID	Name
1	Terry
2	Doe
3	John
4	Paula
5	Joe


```
import pandas as pd

df = {
    'ID': [5, 2, 4, 3, 1],
    'NAME': ['Joe', 'Doe', 'Paula', 'John', 'Terry']
}
```

```
df = pd.DataFrame(df)

df.sort_values(by=['ID'])
```

```
    ID NAME
    4 1 Terry
    1 2 Doe
    3 3 John
    2 4 Paula
    0 5 Joe
```


SORT BY SINGLE COLUMN DESC


```
CREATE TABLE "data" (
"ID" INTEGER,
"NAME" VARCHAR(10)
);

INSERT INTO "data" VALUES
(5, 'Joe'),
(2, 'Doe'),
(4, 'Paula'),
(3, 'John'),
(1, 'Terry')
;

SELECT *
FROM "data"
ORDER BY "ID" DESC;
```

 ID	NAME	
5	Joe	
4	Paula	
3	John	
2	Doe	
1	Terry	


```
import pandas as pd
```

```
data = {
    'ID': [5, 2, 4, 3, 1],
    'Name': ['Joe', 'Doe', 'Paula', 'John', 'Terry']
}
df = pd.DataFrame(data)
df
```

```
    ID Name
    5 Joe
    2 Doe
    4 Paula
    3 John
    1 Terry
```

```
df.sort_values(by=['ID'], ascending=False)
```

```
ID Name

0 5 Joe

2 4 Paula

3 3 John

1 2 Doe

4 1 Terry
```


SORT BY MULTIPLE COLUMNS ASC


```
SELECT *
FROM "df"
ORDER BY "ID", "AGE";
```

ID	Name	AGE
1	Terry	30
1	John	40
2	Paula	10
2	Doe	50
5	Joe	20


```
import pandas as pd

df = {
    'ID': [5, 2, 2, 1, 1],
    'NAME': ['Joe', 'Doe', 'Paula', 'John', 'Terry'],
    'AGE': [20, 50, 10, 40, 30]
}
```

```
df = pd.DataFrame(df)
df.sort values(by=['ID', 'AGE'])
   ID NAME AGE
               30
        Terry
                    Sorted by default
3
               40
        John
                    in ascending order
    2 Paula
               10
               50
        Doe
0 5
         Joe
               20
```


SORT BY MULTIPLE COLUMNS DESC


```
CREATE OR REPLACE TABLE "data" (
"ID" INTEGER,
"NAME" VARCHAR(10),
"AGE" INTEGER
);

INSERT INTO "data" VALUES
(5, 'Joe', 20),
(2, 'Doe', 50),
(2, 'Paula', 10),
(1, 'John', 40),
(1, 'Terry', 30);
;

SELECT *
FROM "data"
ORDER BY "ID" DESC, "AGE" DESC;
```

 ID	NAME	AGE
5	Joe	20
2	Doe	50
2	Paula	10
1	John	40
1	Terry	30


```
import pandas as pd
```

```
data = {
    'ID': [5, 2, 2, 1, 1],
    'Name': ['Joe', 'Doe', 'Paula', 'John', 'Terry'],
    'Age': [20, 50, 10, 40, 30]
}

df = pd.DataFrame(data)

df
```

	ID	Name	Age
0	5	Joe	20
1	2	Doe	50
2	2	Paula	10
3	1	John	40
4	1	Terry	30

```
df.sort_values(by=['ID', 'Age'], ascending=False)
```

	ID	Name	Age
0	5	Joe	20
1	2	Doe	50
2	2	Paula	10
3	1	John	40
4	1	Terry	30

SORT BY ASC AND DESC


```
CREATE OR REPLACE TABLE "data"
"ID"
       INTEGER.
"NAME" VARCHAR (10),
"AGE"
      INTEGER
);
INSERT INTO "data" VALUES
(5, 'Joe', 20),
(2, 'Doe', 50),
(2, 'Paula', 10),
(1, 'John', 40),
(1, 'Terry', 30)
SELECT *
FROM "data"
ORDER BY "ID" ASC, "AGE" DESC
```

ID	NAME	AGE
1	John	40
1	Terry	30
2	Doe	50
2	Paula	10
5	Joe	20


```
: import pandas as pd
: data = {
      'ID': [5, 2, 2, 1, 1],
      'Name': ['Joe', 'Doe', 'Paula', 'John', 'Terry'],
      'Age': [20, 50, 10, 40, 30]
  df = pd.DataFrame(data)
  df
     ID Name Age
         Joe
               20
   1 2 Doe
               50
    2 Paula
      1 John
               30
     1 Terry
: df.sort_values(by=['ID', 'Age'],
                 ascending=[True, False])
     ID Name Age
  3 1 John
               40
    1 Terry
               30
        Doe
     2 Paula
               20
       Joe
```


TOP N ROWS


```
CREATE OR REPLACE TABLE "df"
"ID"
       INTEGER,
"NAME" VARCHAR(10),
"AGE"
       INTEGER
);
INSERT INTO "df" VALUES
(1, 'Joe', 10),
(2, 'Doe', 20),
(3, 'Paula', 40),
(4, 'Alex', 30),
(5, 'John', 15);
SELECT "NAME", "AGE"
FROM "df"
ORDER BY "AGE" DESC
LIMIT 3
```

NAME	AGE
Paula	40
Alex	30
Doe	20


```
: import pandas as pd
: data = {
      'ID': [1, 2, 3, 4, 5],
      'Name': ['Joe', 'Doe', 'Paula', 'Alex', 'John'],
      'Age': [10, 20, 40, 30, 15]
  df = pd.DataFrame(data)
  df
     ID Name Age
  0 1
          Joe
               10
     2
         Doe
               20
     3 Paula
               40
         Alex
               30
     5 John
               15
 df.sort_values(by='Age', ascending=False).head(3)
     ID Name Age
  2 3 Paula
               40
  3 4 Alex
               30
  1 2
         Doe
               20
```



```
CREATE OR REPLACE TABLE "df"
"ID" INTEGER,
"NAME" VARCHAR(10),
"AGE" INTEGER
);
INSERT INTO "df" VALUES
(1, 'Joe', 10),
(2, 'Doe', 20),
(3, 'Paula', 40),
(4, 'Alex', 30),
(5, 'John', 15);
SELECT "NAME", "AGE"
FROM "df"
ORDER BY "AGE" DESC
LIMIT 2
OFFSET 1;
```

NAME ···	AGE
Alex	30
Doe	20

OFFSET

import pandas as pd

```
data = {
    'ID': [1, 2, 3, 4, 5],
    'Name': ['Joe', 'Doe', 'Paula', 'Alex', 'John'],
    'Age': [10, 20, 40, 30, 15]
}

df = pd.DataFrame(data)

df
```

	ID	Name	Age
0	1	Joe	10
1	2	Doe	20
2	3	Paula	40
3	4	Alex	30
4	5	John	15

```
df.sort_values(by='Age', ascending=False).head(3).tail(2)
```

	ID	Name	Age
3	4	Alex	30
1	2	Doe	20

GROUP BY SINGLE COLUMN


```
CREATE TABLE "df" (
    "State" |VARCHAR(20)
, "City" |VARCHAR(20)
, "Profit" INTEGER);

INSERT INTO "df" |VALUES
('TX', 'Dallas', 100),
('TX', 'Austin', 200),
('TX', 'Austin', 400),
('OH', 'Toledo', 500);

SELECT
"State",
SUM("Profit") | AS "Profit"
FROM "df"
GROUP BY "State";
;
```

State ···	Profit
TX	700
ОН	500


```
import pandas as pd
```

```
data = {
    'State': ['TX', 'TX', 'TX', 'OH'],
    'City': ['Dallas', 'Austin', 'Austin', 'Toledo'],
    'Profit': [100, 200, 400, 500]
}

df = pd.DataFrame(data)

df.groupby(['State', 'City']).sum()df
```

	State	City	Profit
0	TX	Dallas	100
1	TX	Austin	200
2	TX	Austin	400
3	ОН	Toledo	500

```
df_group = df.groupby(['State'], as_index=False).sum()
df_group[['State', 'Profit']]
```

	State	Profit
0	ОН	500
1	TX	700

GROUP BY MULTIPLE COLUMNS


```
CREATE TABLE "df" (
    "State" VARCHAR(20)
, "City" VARCHAR(20)
, "Profit" INTEGER);

INSERT INTO "df" VALUES
('TX', 'Dallas', 100),
('TX', 'Austin', 200),
('TX', 'Austin', 400),
('OH', 'Toledo', 500);

SELECT
"State",
"City",
SUM("Profit") AS "Profit"
FROM "df"
GROUP BY "State", "City";
```

State	··· City	Profit
TX	Dallas	100
TX	Austin	600
ОН	Toledo	500


```
import pandas as pd

data = {
    'State': ['TX', 'TX', 'TX', 'OH'],
    'City': ['Dallas', 'Austin', 'Austin', 'Toledo'],
    'Profit': [100, 200, 400, 500]
}

df = pd.DataFrame(data)

df.groupby(['State', 'City']).sum()df
```

	State	City	Profit
0	TX	Dallas	100
1	TX	Austin	200
2	TX	Austin	400
3	ОН	Toledo	500

```
df.groupby(['State', 'City'], as_index=False).sum()
```

	State	City	Profit
0	ОН	Toledo	500
1	TX	Austin	600
2	TX	Dallas	100

INNER JOIN


```
create or replace table "df1" (
"ID"
         INTEGER.
"NAME" VARCHAR(10)
):
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack'),
(3, 'Paula');
create or replace table "df2" (
"ID"
       INTEGER,
"AGE" INTEGER
);
INSERT INTO "df2" values
(1, 10),
(2, 20),
(4, 40);
SELECT "df1".ID, NAME, AGE
FROM "df1"
INNER JOIN "df2"
ON "df1".ID = "df2".ID;
```

 ID	NAME	AGE
1	Joe	10
2	Jack	20


```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 2, 4],
    'Age': [10, 20, 40],
}

df2 = pd.DataFrame(df2)
```

```
df = pd.merge(df1, df2, on='ID', how='inner')
df
```

Age	Name	ID	
10	Joe	1	0
20	Jack	2	1

LEFT JOIN


```
create or replace table "df1" (
"ID"
          INTEGER.
"NAME" VARCHAR(10)
);
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack'),
(3, 'Paula');
create or replace table "df2" (
"ID" INTEGER.
"AGE" INTEGER
);
INSERT INTO "df2" values
(1, 10),
(2, 20),
(4, 40);
SELECT "df1".ID, NAME, AGE
FROM "df1"
LEFT JOIN "df2"
ON "df1".ID = "df2".ID;
```

ID	NAME	AGE
1	Joe	10
2	Jack	20
3	Paula	null


```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 2, 4],
    'Age': [10, 20, 40],
}

df2 = pd.DataFrame(df2)
```

```
df = pd.merge(df1, df2, on='ID', how='left')
df
```

	ID	Name	Age
0	1	Joe	10.0
1	2	Jack	20.0
2	3	Paula	NaN

RIGHT JOIN


```
create or replace table "df1" (
"ID"
          INTEGER.
"NAME" VARCHAR(10)
) :
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack'),
(3. 'Paula'):
create or replace table "df2" (
"ID" INTEGER,
"AGE" INTEGER
);
INSERT INTO "df2" values
(1, 10),
(2, 20),
(4, 40);
SELECT "df2".ID, NAME, AGE
FROM "df1"
RIGHT JOIN "df2"
ON "df1".ID = "df2".ID:
```

ID	NAME ···	AGE
1	Joe	10
2	Jack	20
4	null	40


```
: import pandas as pd
```

```
df1 = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 2, 4],
    'Age': [10, 20, 40],
}

df2 = pd.DataFrame(df2)
```

```
df = pd.merge(df1, df2, on='ID', how='right')
df
```

```
1D Name Age

0 1 Joe 10

1 2 Jack 20

2 4 NaN 40
```

FULL JOIN


```
create or replace table "df1" (
"ID"
         INTEGER,
"NAME" VARCHAR(10)
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack'),
(3, 'Paula');
create or replace table "df2" (
"ID"
       INTEGER,
"AGE" INTEGER
);
INSERT INTO "df2" values
(1, 10),
(2, 20),
(4, 40);
SELECT COALESCE("df1".ID, "df2".ID) AS ID,
       NAME.
      AGE
FROM "df1"
FULL JOIN "df2"
ON "df1".ID = "df2".ID;
ORDER BY 1:
```

ID	NAME	AGE
1	Joe	10
2	Jack	20
3	Paula	null
4	null	40


```
import pandas as pd

df1 = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 2, 4],
    'Age': [10, 20, 40],
}

df2 = pd.DataFrame(df2)
```

```
df = pd.merge(df1, df2, on='ID', how='outer')
df
```

```
    ID
    Name
    Age

    0
    1
    Joe
    10.0

    1
    2
    Jack
    20.0

    2
    3
    Paula
    NaN

    3
    4
    NaN
    40.0
```

CROSS JOIN


```
create or replace table "df1" (
"ID"
         INTEGER.
"NAME" VARCHAR (10)
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack');
create or replace table "df2" (
"ID" INTEGER,
"AGE" INTEGER
INSERT INTO "df2" values
(1, 10),
(2, 20):
SELECT *
FROM "df1"
CROSS JOIN "df2"
```

ID	NAME	ID_2	AGE
1	Joe	1	10
1	Joe	2	20
2	Jack	1	10
2	Jack	2	20


```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2],
    'Name': ['Joe', 'Jack']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': ['1', '2'],
    'AGE': [10, 20]
}

df2 = pd.DataFrame(df2)
```

```
df = pd.merge(df1, df2, how='cross')
df
```

	ID_x	Name	ID_y	AGE
0	1	Joe	1	10
1	1	Joe	2	20
2	2	Jack	1	10
3	2	Jack	2	20

UNION BY SINGLE COLUMN


```
CREATE OR REPLACE TABLE "df1" (
"TD"
    INTEGER.
"NAME" VARCHAR (10)
):
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack');
CREATE OR REPLACE TABLE "df2" (
"ID"
         INTEGER.
"NAME" VARCHAR(10)
INSERT INTO "df2" values
(1, 'Joe'),
(4, 'Doe');
SELECT NAME
FROM "df1"
UNION
SELECT NAME
FROM "df2"
```

```
Joe
Jack
Doe
```



```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2],
    'Name': ['Joe', 'Jack']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 4],
    'Name': ['Joe', 'Doe']
}

df2 = pd.DataFrame(df2)
```

```
df = pd.concat([df1['Name'], df2['Name']], ignore_index=True).drop_duplicates()
# ignore_index=True will reindex the dataframe
df
```

```
0 Joe
1 Jack
3 Doe
```


UNION BY ALL COLUMNS


```
CREATE OR REPLACE TABLE "df1" (
"TD"
         INTEGER.
"NAME" VARCHAR(10)
);
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack');
CREATE OR REPLACE TABLE "df2" (
"ID"
         INTEGER.
"NAME" VARCHAR(10)
INSERT INTO "df2" values
(1, 'Joe'),
(4, 'Doe');
SELECT *
FROM "df1"
UNION
SELECT *
FROM "df2"
```

ID	NAME
1	Joe
2	Jack
4	Doe


```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2],
    'Name': ['Joe', 'Jack']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 4],
    'Name': ['Joe', 'Doe']
}

df2 = pd.DataFrame(df2)
```

```
df = pd.concat([df1, df2],ignore_index=True).drop_duplicates()
df
```

Name	ID	
Joe	1	0
Jack	2	1
Doe	4	3

UNION ALL BY SINGLE COLUMN


```
CREATE OR REPLACE TABLE "df1" (
"TD"
         INTEGER.
"NAME" VARCHAR (10)
):
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack');
CREATE OR REPLACE TABLE "df2" (
"ID"
         INTEGER.
"NAME" VARCHAR(10)
);
INSERT INTO "df2" values
(1, 'Joe'),
(4, 'Doe');
SELECT NAME
FROM "df1"
UNION ALL
SELECT NAME
```

FROM "df2"

```
NAME
Joe
Jack
Joe
Doe
```



```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2],
    'Name': ['Joe', 'Jack']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 4],
    'Name': ['Joe', 'Doe']
}

df2 = pd.DataFrame(df2)
```

```
df = pd.concat([df1['Name'], df2['Name']], ignore_index=True)
# ignore_index=True will reindex the dataframe
df
```

```
0 Joe
1 Jack
2 Joe
3 Doe
```


UNION ALL BY ALL COLUMNS


```
CREATE OR REPLACE TABLE "df1" (
"ID"
         INTEGER.
"NAME" VARCHAR(10)
);
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack');
CREATE OR REPLACE TABLE "df2" (
"ID"
         INTEGER,
"NAME" VARCHAR (10)
);
INSERT INTO "df2" values
(1, 'Joe'),
(4, 'Doe');
SELECT *
FROM "df1"
UNION ALL
SELECT *
FROM "df2"
```

ID	NAME
1	Joe
2	Jack
1	Joe
4	Doe


```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2],
    'Name': ['Joe', 'Jack']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 4],
    'Name': ['Joe', 'Doe']
}

df2 = pd.DataFrame(df2)
```

```
df = pd.concat([df1, df2], ignore_index=True)
# ignore_index=True will reindex the dataframe
df
```

	ID	Name
0	1	Joe
1	2	Jack
2	1	Joe
3	4	Doe

ADD SINGLE COLUMN


```
CREATE TABLE "data" (
    "ID" INTEGER
, "NAME" VARCHAR(10)
);

INSERT INTO "data" VALUES
(1, 'Joe'),
(2, 'Jack'),
(3, 'Paula')
;

ALTER TABLE "data" ADD COLUMN AGE INTEGER;

UPDATE "data" SET AGE = 10 WHERE ID = '1';
UPDATE "data" SET AGE = 20 WHERE ID = '2';
UPDATE "data" SET AGE = 40 WHERE ID = '3';

SELECT * FROM "data";
```

 ID	NAME	AGE
1	Joe	10
2	Jack	20
3	Paula	40


```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula']
}
```

```
df = pd.DataFrame(data)
```

```
df
```

	ID	Name
0	1	Joe
1	2	Jack
2	3	Paula

```
df['Age'] = [10, 20, 40]
```

df

	ID	Name	Age
0	1	Joe	10
1	2	Jack	20
2	3	Paula	40

UPDATE SINGLE COLUMN SINGLE ROW


```
CREATE OR REPLACE TABLE "data" (
    "ID" INTEGER
, "NAME" VARCHAR(10)
, "AGE" INTEGER
);

INSERT INTO "data" VALUES
(1, 'Joe', 10),
(2, 'Jack', 20),
(3, 'Paula', 30);

UPDATE "data"
SET "NAME" = 'John'
WHERE "ID" = '3';

SELECT * FROM "data";
```

ID	NAME ···	AGE
1	Joe	10
2	Jack	20
3	John	30


```
: import pandas as pd

: data = {
     'ID': [1, 2, 3],
     'Name': ['Joe', 'Jack', 'Paula'],
     'Age': [10, 20, 30]
}

df = pd.DataFrame(data)

df
```

	ID	Name	Age
0	1	Joe	10
1	2	Jack	20
2	3	Paula	30

```
: df.loc[df['ID'] == 3, 'Name'] = ['John']
df
```

	ID	Name	Age
0	1	Joe	10
1	2	Jack	20
2	3	John	30

UPDATE MULTIPLE COLUMNS SINGLE ROW


```
CREATE OR REPLACE TABLE "data" (
    "ID" INTEGER
, "NAME" VARCHAR(10)
, "AGE" INTEGER
);

INSERT INTO "data" VALUES
(1, 'Joe', 10),
(2, 'Jack', 20),
(3, 'Paula', 40)
;

UPDATE "data"
SET "NAME" = 'John', "AGE" = '30'
WHERE "ID" = '3';

SELECT * FROM "data";
```

 ID	NAME	AGE
1	Joe	10
2	Jack	20
3	John	30


```
import pandas as pd
```

```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula'],
    'Age': [10, 20, 40]
}

df = pd.DataFrame(data)

df
```

	ID	Name	Age
0	1	Joe	10
1	2	Jack	20
2	3	Paula	40

```
df.loc[df['ID'] == 3, ['Name', 'Age']] = ['John', 30]
df
```

	ID	Name	Age
0	1	Joe	10
1	2	Jack	20
2	3	John	30

UPDATE SINGLE COLUMN MULTIPLE ROWS


```
CREATE OR REPLACE TABLE "data" (
    "ID" INTEGER
, "NAME" VARCHAR(10)
, "AGE" INTEGER
);

INSERT INTO "data" VALUES
(1, 'Joe', 10),
(2, 'Jack', 200),
(3, 'Paula', 400);

UPDATE "data"
SET "AGE" = '99'
WHERE "AGE" > '100';

SELECT * FROM "data";
```

 ID	NAME	AGE
1	Joe	10
2	Jack	99
3	Paula	99


```
import pandas as pd

data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula'],
```

'Age': [10, 200, 400]
}

df = pd.DataFrame(data)

df

	ID	Name	Age
0	1	Joe	10
1	2	Jack	200
2	3	Paula	400

```
df.loc[df['Age'] > 100, 'Age'] = 99
df
```

	ID	Name	Age
0	1	Joe	10
1	2	Jack	99
2	3	Paula	99

UPDATE MULTIPLE COLUMNS MULTIPLE ROWS


```
CREATE OR REPLACE TABLE "data" (
        "ID" INTEGER
,       "NAME" VARCHAR(10)
,       "AGE" INTEGER
);

INSERT INTO "data" VALUES
(1, 'Joe', 10),
(2, 'Jack', 200),
(3, 'Paula', 400);

UPDATE "data"
SET "AGE" = '99', "NAME" = 'John'
WHERE "AGE" > '100';

SELECT * FROM "data";
```

ID	NAME	AGE
1	Joe	10
2	John	99
3	John	99


```
import pandas as pd

data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula'],
    'Ass': [40, 200, 400]
```

'Age': [10, 200, 400]
}

df = pd.DataFrame(data)

df

	ID	Name	Age
0	1	Joe	10
1	2	Jack	200
2	3	Paula	400

```
df.loc[df['Age'] > 100, ['Name', 'Age']] = ['John', 99]
df
```

	ID	Name	Age
0	1	Joe	10
1	2	John	99
2	3	John	99

UPDATE SINGLE COLUMN ALL ROWS


```
CREATE OR REPLACE TABLE "data" (
    "ID" INTEGER
, "NAME" VARCHAR(10)
, "AGE" INTEGER
);

INSERT INTO "data" VALUES
(1, 'Joe', 10),
(2, 'Jack', 20),
(3, 'Paula', 30);

UPDATE "data"
SET "AGE" = 99;

SELECT * FROM "data";
```

 ID	NAME	AGE
1	Joe	99
2	Jack	99
3	Paula	99


```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula'],
    'Age': [10, 20, 30]
}

df = pd.DataFrame(data)

df
```

	ID	Name	Age
0	1	Joe	10
1	2	Jack	20
2	3	Paula	30

```
df['Age'] = 99
df
```

Age	Name	ID	
99	Joe	1	0
99	Jack	2	1
99	Paula	3	2

UPDATE MULTIPLE COLUMNS ALL ROWS


```
CREATE OR REPLACE TABLE "data" (
    "ID" INTEGER
, "NAME" VARCHAR(10)
, "AGE" INTEGER
);

INSERT INTO "data" VALUES
(1, 'Joe', 10),
(2, 'Jack', 20),
(3, 'Paula', 30)
;

UPDATE "data"
SET "NAME" = 'John', "AGE" = 99;

SELECT * FROM "data";
```

 ID	NAME	AGE
1	John	99
2	John	99
3	John	99


```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula'],
    'Age': [10, 20, 30]
}

df = pd.DataFrame(data)

df
```

		ID	Name	Age
)	1	Joe	10
•	1	2	Jack	20
	2	3	Paula	30

```
df[['Name', 'Age']] = ['John', 99]
df
```

	ID	Name	Age
0	1	John	99
1	2	John	99
2	3	John	99

DROP SINGLE COLUMN


```
CREATE or replace TABLE "data" (
    "ID" INTEGER
, "NAME" VARCHAR(10)
, "AGE" INTEGER
);

INSERT INTO "data" VALUES
(1, 'Joe', '10'),
(2, 'Jack', '20'),
(3, 'Paula', '40')
;

ALTER TABLE "data" DROP COLUMN "AGE";

SELECT * FROM "data";
```

 ID	NAME
1	Joe
2	Jack
3	Paula


```
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula']
    'Age': [10, 20, 40]
}
```

```
df = pd.DataFrame(data)
```

```
df
```

Age	Name	ID		
10	Joe	1	0	
20	Jack	2	1	
40	Paula	3	2	

```
df.drop(['Age'], axis=1, inplace=True)
```

df

Name	ID	
Joe	1	0
Jack	2	1
Paula	3	2

DROP MULTIPLE COLUMNS


```
CREATE or replace TABLE "data" (
    "ID" INTEGER
, "NAME" VARCHAR(10)
, "AGE" INTEGER
);

INSERT INTO "data" VALUES
(1, 'Joe', '10'),
(2, 'Jack', '20'),
(3, 'Paula', '40')
;

ALTER TABLE "data"
DROP COLUMN "AGE", "NAME";

SELECT * FROM "data";
```

```
1 2 3
```



```
import pandas as pd
: | data = {
     'ID': [1, 2, 3],
     'Name': ['Joe', 'Jack', 'Paula'],
     'Age': [10, 20, 40]
: df = pd.DataFrame(data)
: df
     ID Name Age
          Joe
               10
  1 2 Jack
               20
   2 3 Paula
               40
: df.drop(['Age', 'Name'], axis=1, inplace=True)
: df
     ID
  1 2
  2 3
```


RENAME SINGLE COLUMN


```
CREATE TABLE "data" (
    "ID" INTEGER
, "NAME" VARCHAR(10)
, "AGE" INTEGER
, "HEIHT" VARCHAR(10)
);

ALTER TABLE "data"
RENAME COLUMN "HEIHT" to "HEIGHT";

DESC TABLE "data";
```

name	type
ID	NUMBER(38,0)
NAME	VARCHAR(10)
AGE	NUMBER(38,0)
HEIGHT	VARCHAR(10)


```
import pandas as pd
data = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula'],
    'Age': [10, 20, 40],
    'Heiht': ['1.65', '1.78', '1.82']
df = pd.DataFrame(data)
df.rename(columns = {'Heiht':'Height'}, inplace = True)
df.info()
 <class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 4 columns):
 # Column Non-Null Count Dtype
           3 non-null
                            int64
 0 ID
 1 Name 3 non-null
                          object
                         int64
 2 Age 3 non-null
 3 Height 3 non-null
                            object
dtypes: int64(2), object(2)
memory usage: 228.0+ bytes
```

RENAME MULTIPLE COLUMNS


```
CREATE TABLE "data" (
    "ID" INTEGER
, "NME" VARCHAR(10)
, "AGE" INTEGER
, "HEIHT" VARCHAR(10)
);

ALTER TABLE "data"
RENAME COLUMN "NME" to "NAME";

ALTER TABLE "data"
RENAME COLUMN "HEIHT" to "HEIGHT";

DESC TABLE "data";
```

name	type
ID	NUMBER(38,0)
NAME	VARCHAR(10)
AGE	NUMBER(38,0)
HEIGHT	VARCHAR(10)


```
import pandas as pd
data = {
   'ID': [1, 2, 3],
   'Nme': ['Joe', 'Jack', 'Paula'],
   'Age': [10, 20, 40],
   'Heiht': ['1.65', '1.78', '1.82']
df = pd.DataFrame(data)
df.rename(columns = {'Nme':'Name',
                    'Heiht':'Height'},
         inplace = True)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 4 columns):
    Column Non-Null Count Dtype
    ID 3 non-null
                           int64
1 Name 3 non-null object
    Age 3 non-null
                           int64
    Height 3 non-null
                           object
dtypes: int64(2), object(2)
memory usage: 228.0+ bytes
```


COUNT OF DISTINCT VALUES


```
create |table "df" (
  "CustID" INTEGER
);

INSERT INTO df values
(10),
(20),
(10);

SELECT COUNT(DISTINCT "CustID")
FROM df;
```

```
··· COUNT(DISTINCT "CUSTID")
```



```
import pandas as pd

df = pd.DataFrame(
          columns = ['CustID']
)

df['CustID'] = [10, 20, 10]

print(df)

CustID
0     10
1     20
2     10
```

```
print(df.CustID.nunique())
2
```

in Uzwal Goud Vaddeboina

COUNT OF TOTAL VALUES

table/dataframe

CustID	Name
10	Doe
20	Jo
30	Tod


```
SELECT COUNT(*) * (
    SELECT COUNT(*)
    FROM INFORMATION_SCHEMA.columns
    WHERE TABLE_CATALOG = 'DATABASE_NAME'
    AND TABLE_SCHEMA = 'SCHEMA_NAME'
    AND TABLE_NAME='df'
) AS "Size"
from "df";
```


df.size

6

COUNT OF UNIQUE VALUES


```
create or replace table "df" (
"NAME"     VARCHAR(10)
);

INSERT INTO "df" values
('Joe'),
('Doe'),
('Paula'),
('Joe'),
('Doe');

SELECT "NAME", COUNT(*)
FROM "df"
GROUP BY "NAME"
ORDER BY COUNT(*) DESC;
```

NAME	··· COUNT(*)
Joe	2
Doe	2
Paula	1


```
import pandas as pd

df = ['Joe', 'Doe', 'Paula', 'Joe', 'Doe']

df = pd.DataFrame(df)
```

```
df.value_counts()

Doe 2
Joe 2
Paula 1
Name: count, dtype: int64
```

DESCRIPTIVE STATISTICS

SELECT

FROM desc_stats;

```
In [21]: df.describe()
Out[21]: count
                 5.0000
         mean
                 3.0000
                 1.5811
         std
         min
                 1.0000
         25%
                 2.0000
         50%
                 3.0000
         75%
                 4.0000
                 5.0000
         max
         Name: AGE, dtype: float64
```



```
COUNT(age) AS "count"

, AVG(age) AS "mean"

, STDDEV(age) as "std"

, MIN(age) as "min"

, PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY age) "25%"

, PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY age) "50%"

, PERCENTILE_CONT(0.75) WITHIN GROUP (ORDER BY age) "75%"

, MAX(age) as "max"
```

***	count	mean	std	min	25%	50%	75%	max
	5	3.000000	1.58113883	1	2.000	3.000	4.000	5

DISTINCT VALUES

CREATE TABLE "df" (

```
"CustID" INTEGER,
"Name" VARCHAR
);

INSERT INTO "df" VALUES
(1, 'Doe'),
(2, 'Jo'),
(1, 'Tod');

SELECT DISTINCT "CustID"
  FROM "df";
```

```
CustID

1
```



```
import pandas as pd

df = pd.DataFrame(
    columns = ['CustID', 'Name']
)

df['CustID'] = [1, 2, 1]

df['Name'] = ['Doe', 'Jo', 'Tod']

print(df)

CustID Name
0    1    Doe
1    2    Jo
```

```
print(df.CustID.unique())
[1 2]
```

1 Tod

DROP ROW - ALL COLUMNS DUPLICATED

 ID	NAME
1	Joe
2	Jack
3	Paula


```
: import pandas as pd
df = {
    'ID': [1, 2, 3, 1],
     'Name': ['Joe', 'Jack', 'Paul', 'Joe']
: df = pd.DataFrame(df)
: df
    ID Name
  0 1 Joe
  1 2 Jack
  2 3 Paul
  3 1 Joe
  df.drop_duplicates()
     ID Name
  0 1
           Joe
  1 2 Jack
  2 3 Paul
```


DROP ROW - KEY COLUMN DUPLICATED


```
create or replace table "df" (
"ID" INTEGER,
        VARCHAR (10)
"NAME"
INSERT INTO "df" values
(1, 'Joe'),
(2, 'Jack'),
(3, 'Paula'),
(1, 'Doe')
DELETE FROM "df" T1
USING
    SELECT
       ID,
       NAME
    FROM "df"
   QUALIFY ROW_NUMBER() OVER (PARTITION BY ID ORDER BY ID ASC) = '2'
WHERE T1."ID" = T2."ID" AND T1."NAME" = T2."NAME"
SELECT *
FROM "df"
```

 ID	NAME
1	Joe
2	Jack
3	Paula


```
import pandas as pd

df = {
    'ID': [1, 2, 3, 1],
    'Name': ['Joe', 'Jack', 'Paul', 'Doe']
}

df = pd.DataFrame(df)

df

ID Name
    1    Joe
    1    2    Jack
    2    3    Paul
    3    1    Doe
```

```
df.drop_duplicates(subset=['ID'])

ID Name

0 1 Joe

1 2 Jack
2 3 Paul
```

STRUCTURE OF TABLE

table/dataframe

CustID	Name
10	Doe
20	Jo
30	Tod

name ···	type	kind
CustID	NUMBER(38,0)	COLUMN
Name	VARCHAR(20)	COLUMN


```
df.info()
```


That's a wrap!

If you liked this content, follow <u>Uzwal</u> on LinkedIn and click the bell icon for updates.