WHAT IS CLAIMED IS:

1	1. A system for recovering and angining synemonous data transmissions,		
2	comprising:		
3	a transmitter configured to transmit a source clock signal and a plurality of		
4	data groups over a plurality of channels, the plurality of data groups being transmitted during		
5	the same clock cycle pursuant to the source clock signal, each data group being transmitted		
6	over a corresponding channel; and		
7	a receiver configured to receive the source clock signal and the plurality of		
8	data groups over the plurality of channels, the receiver further configured to include:		
9	for each channel: (a) a local clock configured to generate a local clock		
10	signal based on the source clock signal, the local clock signal being phase-shifted from the		
11	source clock signal by a predetermined amount of phase shift, (b) a logic device configured to		
12	clock in the data group received over the channel using the local clock signal, (c) a sequence		
13	number generator configured to generate a sequence number associated with the data group,		
14	(d) a FIFO buffer configured to store and output the clocked-in data group and the associated		
15	sequence number, (e) a memory device configured to store the clocked-in data group from		
16	the FIFO buffer using the associated sequence number as a memory address, the memory		
17	device further configured to output a predetermined portion of its contents after a		
18	predetermined capacity threshold is reached.		
1	2. The system of claim 1 wherein the transmitter is further configured to		
2	transmit a start-of-cell signal to the receiver; and		
3	wherein upon the receiver detecting the start-of-cell signal having a specific		
4	value for a predetermined cycle period, the sequence number generators are synchronized.		
1	3. The system of claim 1 wherein the receiver is implemented using a		
2	plurality of field programmable gate arrays.		
1	4. The system of claim 3 wherein the local clock is implemented using a		
2	digital clock manager associated with a field programmable gate array.		
1	5. The system of claim 1 wherein the predetermined amount of phase		
2	shift is determined empirically.		

1	6. The system of claim I wherein the predetermined amount of phase		
2	shift is calculated based on respective latency delays of the source clock signal and a		
3	corresponding channel.		
1	7. The system of claim 1 wherein each data group includes a plurality of		
2	data signals; and		
3	wherein the plurality of data signals within each data group have the same		
4	latency delay over the corresponding channel.		
1	8. The system of claim 1 wherein the memory device is a dual port		
2	random access memory.		
1	9. The system of claim 1 wherein the sequence number generator is		
2	incremented every clock cycle pursuant to the local clock signal.		
1	10. A backplane incorporating the system as recited in claim 1.		
1	11. A system for recovering and aligning synchronous data transmissions		
2	comprising:		
3	a transmitter configured to transmit a source clock signal and a plurality of		
4	data groups of over a plurality of channels, wherein a set of data groups collectively forming		
5	a data word is transmitted during each clock cycle pursuant to the source clock signal, each		
6	data group in the set of data groups being transmitted over a corresponding channel; and		
7	a receiver configured to receive the source clock signal and sets of data group		
8	over corresponding channels, the receiver including:		
9	a plurality of local clocks, each local clock configured to generate a		
10	local clock signal based on the source clock signal, the local clock signal being phase-shifte		
11	from the source clock signal by a predetermined amount of phase shift;		
12	a plurality of devices, each device configured to receive and clock in		
13	corresponding data groups from a corresponding channel using the local clock signal from a		
14	corresponding local clock;		
15	a plurality of sequence number counters, each sequence number		
16	counter associated with a corresponding device and configured to provide respective		
17	sequence numbers for data groups received by the corresponding device;		

18	a plurality of buffers, each buffer configured to store and output		
19	clocked-in data groups from a corresponding device and their associated sequence numbers;		
20	and		
21	a plurality of memory devices, each memory device configured to sto		
22	the clocked-in data groups from a corresponding buffer using their associated sequence		
23	numbers as memory addresses, each memory device further configured to output a		
24	predetermined portion of its contents after a predetermined capacity threshold is reached.		
1	12. The system of claim 11 wherein the transmitter is further configured to		
2	transmit a start-of-cell signal to the receiver; and		
3	wherein upon the receiver detecting the start-of-cell signal having a specific		
4	value for a predetermined cycle period, the sequence number counters are synchronized.		
1	13. The system of claim 11 wherein the receiver is implemented using a		
2	plurality of field programmable gate arrays.		
1	14. The system of claim 13 wherein the local clocks are implemented		
2	using two or more digital clock managers associated with plurality of field programmable		
3	gate arrays.		
1	15. The system of claim 11 wherein the predetermined amount of phase		
2	shift associated with each local clock is determined empirically.		
1	16. The system of claim 11 wherein the predetermined amount of phase		
2	shift associated with each local clock is calculated based on respective latency delays of the		
3	source clock signal and a corresponding channel.		
1	17. The system of claim 11 wherein each data group includes a plurality		
2	data signals; and		
3	wherein the plurality of data signals within each group have the same latence		
4	delay over the corresponding channel.		
1	18. The system of claim 11 wherein the plurality of memory devices		
2	include a dual port random access memory.		

1	19.	The system of claim 11 wherein each sequence humber generator is		
2	incremented every c	lock cycle pursuant to the local clock signal associated with a		
3	corresponding local clock.			
1	20.	A backplane incorporating the system as recited in claim 11.		
1	21.	A method for recovering and aligning synchronous data transmissions,		
2	comprising:			
3	transı	mitting a source clock signal and a plurality of data groups from a		
4	transmitter to a receiver per clock cycle pursuant to the source clock signal, the plurality of			
5	data groups collectively forming a data word;			
6	at the	receiver:		
7		using the source clock signal to create a plurality of local clock signals,		
8	each local clock signal being phase-shifted from the source clock signal by a corresponding			
9	predetermined amount of phase shift;			
10		clocking in each data group using a corresponding local clock signal;		
l 1		assigning a sequence number to each clocked-in data group;		
12		storing each clocked-in data group and its assigned sequence number		
13	in a corresponding buffer;			
14		reading out each clocked-in data group and its assigned sequence		
15	number from its corresponding buffer; and			
16		storing each read-out data group into a corresponding dual port		
17	memory using the a	ssigned sequence as its memory address.		
1	22.	The method of claim 21 further comprising:		
2	send	ing a special start-of-cell signal and an alignment cell from the transmitter		
3	to the receiver;			
4	at the	e receiver, upon detecting the special start-of-cell signal, initializing		
5	sequence numbers to be assigned to clocked-in data groups to a starting value, the starting			
6	value being embedded in the alignment cell.			
1	23.	The method of claim 21 further comprising:		
2	at the	e receiver, incrementing the sequence number for future assignment to a		
3	next clocked-in data	a group.		

1	24. The method of claim 21 further comprising:		
2	at the receiver, reading out a predetermined portion of each dual port memory		
1	25. The method of claim 21 wherein the corresponding predetermined		
2	amount of phase shift for each local clock signal depends on the respective latency delays o		
3	the source clock signal and a corresponding data group.		
1	26. A backplane utilizing the method as recited in claim 21.		