Homework 2, MATH 9010

Due on Thursday, September 8 Shuai Wei

Problem 1 Suppose \mathcal{C} is a collection of subsets of Ω that satisfies the following properties: (i) $\Omega \in \mathcal{C}$; (ii) if $A \in \mathcal{C}$, then $A^c \in \mathcal{C}$; (iii) If $\{A_i\}_{i=1}^{\infty}$ is a collection of disjoint subsets in \mathcal{C} , then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{C}$. Show that \mathcal{C} is a λ -system.

Proof. We will show \mathcal{C} satisfies the definition of λ -system.

- (1) $\Omega \in \mathcal{C}$ by property (i).
- (2) If $A, B \in \mathcal{C}$ and $A \subset B$, then $B \setminus A = B \cap A^c = (B^c \sqcup A)^c$. $B^c \in \mathcal{C}$ by property (ii), and then $(B^c \sqcup A) \subset \mathcal{C}$ by property (iii) since $B^c \cap A = \emptyset$. So $B \setminus A = (B^c \sqcup A)^c \in \mathcal{C}$.
- (3) Let $A_n \in \mathcal{C}, n \geq 1$ and $A_1 \subset A_2 \subset A_3 \subset \dots$ Define $B_1 = A_1 \in \mathcal{C}$ and $B_n = A_n \setminus A_{n-1}$ for $n \geq 2$. Then $B_n \in \mathcal{C}$ by (2) and $B_j \cap B_k = \emptyset$. So $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n \in \mathcal{C}$ by property (iii).

Thus, C is a λ -system.