УДК 574.631.417 (477)

МОНИТОРИНГОВЫЕ ИССЛЕДОВАНИЯ АТМОСФЕРНЫХ ОСАДКОВ В УСЛОВИЯХ ЗАПОВЕДНЫХ ЗОН (НА ПРИМЕРЕ КАРПАТСКОГО БИОСФЕРНОГО ЗАПОВЕДНИКА)

И.Д. Макаренко¹, Э.Я. Жовинский²

1. Департамент экологической политики и международной деятельности Министерства экологии и природных ресурсов Украины 03035, ул. Урицкого, 35, Киев, Украина

2. Институт геохимии, минералогии и рудообразования им. Н.П. Семененко НАН Украины 03680, просп. Палладина, 34. Киев. Украина

В результате многолетних исследований (2005–2010 г.) выявлено уменьшение в атмосферных осадках содержания ионов преимущественно антропогенного происхождения (SO_4^{2-} , CI^-) и увеличение содержания ионов преимущественно природного происхождения (Ca^{2+} , HCO_3^{-}). Изменения в химическом составе атмосферных осадков в холодный сезон (ноябрь~апрель) интенсивнее, чем в теплый. Результаты мониторинга свидетельствуют о сравнительно низком содержании токсичных элементов в атмосферных осадках.

Введение. На сегодняшний день существует глобальная проблема загрязнения атмосферы. С загрязнением атмосферных осадков отмечается ухудшение качества поверхностных и подземных вод.

Атмосферные осадки служат основным фактором очистки атмосферы от различных загрязняющих примесей и, соответственно, одним из основных источников поступления химических веществ на поверхность суши. Поступления химических веществ с атмосферными осадками не стабильно во времени и пространстве. Эта величина изменяется под воздействием целого комплекса природных и антропогенных факторов.

Заповедная система Карпатского биосферного заповедника (КБЗ) уникальна по своей системности, длительности существования, строгости режима природоохраны. Большое научное и прикладное значение имеет работа по слежению за естественными природными процессами. Наблюдения проводятся системно, что обеспечивает преемственность данных.

Мониторинг атмосферы позволяет не только зафиксировать степень загрязненности того или иного объекта, но и установить источник загрязнения и локализовать его.

Поступившие в атмосферу химические соединения подвергаются глубокому преобразованию. Значительная часть рассеянных элементов переходит в формы и соединения, способные к дальнейшему растворению.

Цель исследований. Выявить особенности химического состава атмосферных осадков в экологически чистой зоне.

© И.Д. Макаренко, Э.Я. Жовинский, 2011

Характеристика территории исследований. Наблюдения проведены в районе урочиша Пиддил, расположенного на территории КБЗ, в 15 км от г. Рахов, на правом берегу р. Тиса (рис. 1). Территория входит в состав Черногорского массива [3].

Территория исследований — низкогорный высотный пояс (абсолютная высота 400 м), годовое количество атмосферных осадков — 900—1000 мм, растительность представлена сосной и буком, преобладают светло-бурые лесные почвы.

Методы исследований. Исследование атмосферных осадков проведено в 2005—2010 гг. Для выявления химического состава компонентов окружающей среды наиболее важны методы химического анализа, который включает в себя следующие стадии: пробоотбор; разложение проб; разделение компонентов; идентификацию компонентов; определение содержания компонентов в пробе.

Определение pH, минерализации вод, а также значений содержания химических элемен-

Рис. 1. Расположение района работ (урочище Пиддил выделено заштрихованным квадратом)

Таблица 1. Данные химического анализа дождя (среднемесячные пробы) за 2010 г. (урочище Пиддил, метеопост, по данным "Летопись природы. 2010", КБЗ, г. Рахов)

Дата отбора проб	рН			Главные	Общая минерализа-				
		HCO ₃ -	CI-	SO ₄ ?-	Ca ²⁺	Mg²⁺	Na⁺+ K⁺	ция, мг/дм ³	Тип воды
декабрь- январь	5,32	5,1	2,2	6,5	1,4	-	5,2	20,4	SO₄-Na
март- апрель	5,42	7,6	2	6,5	1,2	-	6,3	23,6	SO₄-Na
май	5,71	5,1	2,2	3,5	0,6	_	4,6	16	HCO₃-Na
июнь	6	6,3	2,3	4,2	2,2	-	3,7	18,7	HCO ₃ -Na
июль (1~15)	6,3	4,4	1,8	2,5	1,4	-	2,6	12,7	HCO ₃ -Na
июль (16–30)	5,42	5,1	2	3,5	1,6	-	3,2	15,4	HCO ₃ -Na
август	5,3	3,2	2	3,7	3,1	-	3,9	13,2	SO ₄ -Na
сентябрь	5,38	3,2	2	3,8	1,2	-	3,1	13,3	SO₄-Na
октябрь	5,2	2,5	1,4	2,3	1,4	_	1,5	9,1	SO₄-Na
ноябрь	5.14	6,3	3,2	5,4	1,6	_	5,6	22,1	SO₄-Na

тов в водах проведено с помощью химического анализа, а также методов масс-спектрометрии и потенциометрии.

Результаты и обсуждение. В течение 2010 г. велись наблюдения за изменением химического состава атмосферных осадков (табл. 1). Всего отобрано 30 проб дождевых осадков.

После проведения аналитических исследований установлено, что максимальные содержания типичных антропогенных загрязнителей — Cl^- и SO_4^{2-} наблюдаются в ноябре (рис. 2.). В ноябре максимальное содержание Cl^- (3,2 мг/дм³) совпадает с повышенным содержанием SO_4^{2-} (5,4 мг/дм³), тогда же выпало и наибольшее количество кислых осадков (pH 5,14). Источником поступления хлора в атмосферный воздух служат предприя-

Рис. 2. Диаграмма распределения элементов в атмосферних осадках: светлое – SO₄²⁻, темное – Cl⁻

тия, производящие хлор, хлорную известь, соляную кислоту, неорганические и органические соединения хлора.

Известно, что превращение SO_2 в сульфат заметно ускоряется в присутствии аммиака, а также то, что сульфат аммония всегда обнаруживается в дождевой воде. Окисление SO_2 в жидкой фазе может происходить и за счет озона и пероксида водорода, источником которого служат фотохимические реакции в газовой фазе. Окисление SO_2 в каплях, содержащих частицы копоти, протекает достаточно энергично, указывая на явное влияние углеродистых материалов на процесс превращения в сульфат-ион.

Показатель pH за время наблюдений колебался в пределах 5,1-6,3. Обычная незагрязненная дождевая вода имеет pH=5,65. Кислотными называются дожди с pH менее 5,65 [1, 2]. Кислотность атмосферных осадков приблизительно на 65% определяется присутствием серной кислоты (H_2SO_4), на 30% — азотной (HNO_3) и на 5% — соляной кислоты (HCI).

Таким образом, на изучаемую территорию в течении всего года выпадают кислотные дожди (кроме мая и июня). Действие этих дождей на почвы неоднозначное. На территории урочища Пиддил, где распространены карбонатные почвы, происходит снижение щелочности и возрастает подвижность химических элементов и доступность их растениям.

За период 2005—2010 гг. определено содержание главных ионов в атмосферных осадках (табл. 2). Согласно результатам исследований наблюдается общая тенденция — резкое увеличе-

ние содержания хлора и сульфата в 2010 году. Это же касается и содержания кальция и натрия, что в целом определяет степень минерализации осадков.

Трансформация химического состава атмосферных осадков в течение периода наблюдений (2005—2010) обусловлена изменением антропогенной нагрузки и воздействием природных факторов на формирование химического состава осадков. По сравнению с 2006 г., когда в химическом составе осадков преобладали SO_4^{2-} и HCO_3^- , в 2007—2009 гг. происходило постепенное уменьшение относительного содержания SO_4^{2-} , HCO_3^- , CI^- . В 2010 году наблюдалось максимальное содержание SO_4^{2-} , HCO_3^- , CI^- и Ca^{2+} , а также значение минерализации за весь период наблюдений.

В период с 2006 по 2009 годы в целом наблюдалось уменьшение в атмосферных осадках содержания ионов преимущественно антропогенного происхождения (SO_4^{2-} , Cl^-) и увеличение содержания ионов преимущественно природного происхождения (Ca^{2+} , HCO_3^-). Изменения в химическом составе атмосферных осадков в холодный сезон (ноябрь—апрель) интенсивнее, чем в теплый.

Можно предположить, что в дождевых осадках присутствуют элементы, поступающие с атмосферным трансграничным переносом, так как на территории района отсутствуют промышленные предприятия. В целом, результаты мониторинга

Таблица 2. Данные химического анализа дождя (среднегодовые пробы) за 2005-2010 гг. (урочище Пиддил, метеопост)

		Ис	Общая				
Год наблю- дений	SO ₄ ² - CI- (Ca ² 1	Ca ² Na'+K'		минерали- зация, мг/дм³	ρН
2005	0,3	2,2	1,1	2	7,6	14,3	5,8
2006	4,4	2,7	1,6	4,1	7,2	15,9	5,2
2007	3,2	2,1	0,6	4,4	5,1	12,1	5,7
2008	2,8	1,4	0,8	2,5	2,4	9,9	4,7
2009	1,8	1,6	1,2	2,6	4,9	12,1	5,3
2010	5,4	3,2	1,6	5,6	6,3	22,1	5,1

свидетельствуют о сравнительно низком содержании токсичных элементов в атмосферных осадках.

Выводы. В результате многолетних исследований (2005—2010 гг.) в атмосферных осадках выявлено уменьшение значения содержания ионов преимущественно антропогенного происхождения (SO_4^{2-} , Cl^-) и увеличение содержания ионов преимущественно природного происхождения (Ca^{2-} , HCO_3^-). Изменения химического состава атмосферных осадков в холодный сезон (ноябрь—апрель) интенсивнее, чем в теплый.

Результаты мониторинга свидетельствуют о сравнительно низком солержании токсичных элементов в атмосферных осадках.

Поступила 25.11.2011.

- 1. Богдановский Г.А. Химическая экология: Учебное пособие. М.: Изд-во Моск. гос. Ун-та, 1994. 237 с.
- 2. *Микроэлементы* в природных водах и в атмосфере / Т.Н. Жигаловская, Э.П. Маханько, А.И. Шилина и др. // Тр. Ин-та экспериментальной метеорологии. М.: Гидрометеоиздат, 1974. Вып. 2 (41). 182 с.
- 3. *Папариеа П.С.* Природно-геологічні та геоморфологічні умовини Карпатського біосферного заповідника // Наук. вісник Волин. держ. ун-ту ім. Лесі Українки. 2007. Ч. 2. С. 260–265.

Макаренко І.Д., Жовинський Е.Я. Моніторингові дослідження атмосферних опадів в умовах заповідних зон (на прикладі Карпатського біосферного заповідника). У результаті багаторічних досліджень (2005–2010 р.) виявлено зменшення в атмосферних опадах вмісту іонів переважно антропогенного походження (SO_4^{2-} , Cl-) і збільшення вмісту іонів переважно природного походження (Ca^{2+} , HCO_3^{-}). Зміни хімічного складі атмосферних опадів у холодний сезон (листопад-квітень) інтенсивніщі, ніж у теплий. Результати моніторингу свідчать про порівняно низький вміст токсичних елементів у атмосферних опадах.

Makarenko I.D., Zhovinsky E.Ya. Monitoring studies of precipitation in protected areas (on example the Carpathian Biosphere Reserve). As a result of years of research (2005–2010) detected a decrease in precipitation ion content mainly of anthropogenic origin (SO_4^{2-} , Cl-) and an increase in ion content mainly of natural origin (Ca^{2+} , HCO_3^{-}). Changes in chemical composition of precipitation in the cold season (November-April), more intensive than in warm. The monitoring results indicate a relatively low content of toxic elements in atmospheric precipitation.