Cooperative Games in Social Network

Dengji Zhao

Shanghai Tech University, Shanghai, China

Outline

- The Shapley Value
- Invitation Incentive Mechanisms

Coalitional/Cooperative Game

- A set of agents N.
- Each subset of agents(coalition) $S \subseteq N$ cooperate together can generate some value $v(S) \in R$. Assume $v(\emptyset) = 0$. N is called grand coalition. $v : 2^N \to R$ is called the characteristic function of the game. v is often assumed to be monotonic: $S \subseteq T \to v(S) \le v(T)$.
- The possible outcomes of the game is defined by $V(S) = \{x \in R^S : \sum_{i \in S} x_i \le v(S)\}.$

Example

- Three agents {1,2,3}.
- $v(\{1\}) = v(\{2\}) = 10, v(\{3\}) = 1;$ $v(\{1,2\}) = 20, v(\{1,3\}) = v(\{2,3\}) = 12;$ $v(\{1,2,3\}) = 22.$

Shapley Value: a Fair Distribution of Payoffs

Given a coalitional game (N, v), the Shapley value of each player i is:

$$\phi_i(v) = \sum_{S \subset N \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!} (v(S \cup \{i\}) - v(S))$$

- Three agents {1,2,3}.
- $v(\{1\}) = v(\{2\}) = 10, v(\{3\}) = 1;$ $v(\{1,2\}) = 20, v(\{1,3\}) = v(\{2,3\}) = 12;$ $v(\{1,2,3\}) = 22.$

Shapley Value: a Fair Distribution of Payoffs

 $v(S \cup \{i\}) - v(S)$:marginal contribution for agent i, which is denoted as c_i

- Initially, the coalition is empty and agent 1 comes. $c_1 = v(\{1\}) - v(\emptyset) = 10$
- Agent 2 comes. $c_2 = v(\{1,2\}) v(\{1\}) = 10$
- Agent 3 comes. $c_3 = v(\{1,2,3\}) v(\{1,2\}) = 2$

Shapley Value: a Fair Distribution of Payoffs

 List all the permutations and get respective marginal contributions.

Permutation	<i>C</i> ₁	<i>c</i> ₂	<i>c</i> ₃
1,2,3	10	10	2
1,3,2	10	10	2
2,3,1	10	10	2
2,1,3	10	10	2
3,1,2	11	10	1
3,2,1	10	11	1

Get the final payoff: $\phi_i = \frac{\sum c_i}{6}$

•
$$\phi_1 = \frac{61}{6}, \phi_2 = \frac{61}{6}, \phi_3 = \frac{10}{6}$$

- We want to incentivize participants to invite more participants.
- What if agent 1 invites agent 1' who can complete the same task?

(i.e.
$$v(\{1\} \cup S) = v(\{1'\} \cup S) = v(\{1, 1'\} \cup S)$$
)

- Without agent 1': $c_1 = 10$, $c_2 = 10$, $c_3 = 2$
- With agent 1': $c'_{1'} = 10, c'_{1} = 0, c'_{2} = 10, c'_{3} = 2$

- Without agent 1': $c_1 = 10$, $c_2 = 10$, $c_3 = 2$
- With agent 1': $c_1' = 10, c_1' = 0, c_2' = 10, c_3' = 2$

- Without agent 1': $c_1 = 10$, $c_2 = 10$, $c_3 = 2$
- With agent 1': $c_1' = 10, c_2' = 10, c_{11}' = 0, c_3' = 2$

- Without agent 1': $c_1 = 10$, $c_2 = 10$, $c_3 = 2$
- With agent 1': $\mathbf{c}'_1 = 10$, $\mathbf{c}'_2 = 10$, $\mathbf{c}'_3 = 2$, $\mathbf{c}'_{1'} = 0$

 Similarly, we can get all the permutations and marginal contributions.

Permutation	<i>C</i> ₁	c ₂	<i>c</i> ₃	C _{1′}
1,2,3,1'	10 → 10	10	2	0
1,3,2,1'	10 → 10	10	2	0
3,1′,1,2	11 → 0	10	1	11
1′,3,2,1	10 → 0	10	2	10

• For the permutation where agent 1' is before $1, c_1 = 0$ since agent 1' performs the same as agent 1.

Outline

- The Shapley Value
- Invitation Incentive Mechanisms

A Layer-based Solution

Main idea

- Divide the agents into layers in terms of distance
- Lower layers always join the game earlier than higher layers

Layered Shapley Value

- Recalling the previous example, agents 1,2,3 are in the first layer while agent 1' is in the second layer.
- We only retain the permutation where 1' is after the set {1,2,3} (i.e 1,3,2,1') and remove others

- (1)
- (2)
- 3
- 1'

- \bigcirc 1
- 1'

(3)

 $\left(2\right)$

Layered Shapley Value

 The permutations in blue dotted box are retained, others are removed.

Layered Shapley Value

 Similarly, we can get marginal contributions for the remaining permutation.

Permutation	<i>C</i> ₁	c ₂	c ₃	C _{1′}
1,2,3,1'	10	10	2	0
1,3,2,1'	10	10	2	0
2,1,3,1'	10	10	2	0
2,3,1,1'	10	2	10	0
3,1,2,1'	11	10	1	0
3,2,1,1'	10	11	1	0

A General Solution: Permission Shapley Value

- In the previous example, suppose agent 1' invites agent 4.
- $v(\{1\}) = v(\{2\}) = 10.$ $v(\{3\}) = 1;$ $v(\{1,2\}) = 20;$ $v(\{1,3\}) = v(\{2,3\}) = 12;$ $v(\{1,2,3\}) = 22.$
- $v(\{1'\} \cup S) = v(\{1\} \cup S) = v(\{1, 1'\} \cup S)$
- $v(\{4\} \cup S) = v(S) + 100$

A General Solution: Permission Shapley Value

Permission structure:

- A permission structure on N is an asymmetric mapping $p:N \to 2^N$, i.e., $j \in p(i)$ implies that $i \notin p(j)$
- p(i): the set of players who invited i into the coalition.
- In the graph, $p(1') = \{1\}, p(4) = \{1'\}.$

Autonomous

A coalition $S \subseteq N$ is autonomous in a permission structure p if for all $i \in S$, $p(i) \subseteq S$.

• In this graph, $S = \{1, 2, 1'\}$ is autonomous, but $S = \{1, 2, 4\}$ is not autonomous since $p(4) = \{1'\} \not\subseteq S$.

Largest Autonomous Part

Let p be a permission structure on N. Then the largest automonous part of a coalition $S \subset N$ is defined by $\alpha(S) = \bigcup \{T | T \subseteq S \text{ and } T \in A_p\}$ where A_p denotes the collection of all autonomous coalitions in p.

• In the graph, $\alpha(\{2,3,1',4\}) = \{2,3\}$

Permission Shapley value $v^p(S)$.

• $v^p(S) = v(\alpha(S))$

• In the graph, e.g. $v^p(\{1,2,3,4\}) = v(\{1,2,3\}) = 22$ since $\alpha(\{1,2,3,4\}) = \{1,2,3\}.$

• Use permutation{1,2,4,3,1'} as an example.

Set S	$\alpha(S)$	v(S)	$v^p(S)$
1	1	10	10
1,2	1,2	20	20
1,2,4	1,2	120	20
1,2,4,3	1,2,3	122	22
1,2,4,3,1′	1,2,4,3,1′	122	122

•
$$\phi_1 = \frac{61}{6} + \frac{100}{3}, \phi_2 = \frac{61}{6}, \phi_3 = \frac{10}{6}$$

•
$$\phi_{1'} = \frac{100}{3}, \phi_4 = \frac{100}{3}$$