

Grafos

Marcos Castro

Mas o que é grafo?

- Grafo é uma entidade composta de duas partes:
 - Vértices (nós)
 - Arestas (linhas)
- Os nós são as "bolinhas" (entidades que você quer modelar).
- As arestas são as relações dessas entidades.

Exemplo

O exemplo ilustra a relação: a cidade São Paulo está ligada a cidade Buenos Aires e vice-versa com uma distância de 1680 km.

E para 1 bilhão de nós?

- Com dois nós (vértices) é fácil de visualizar...
- E para milhões, bilhões de nós?
- È necessário uma boa estrutura de dados!
- È aí que entra as formas de representar um grafo.

Matriz de adjacência

- A primeira forma de representar um grafo que iremos ter contato é chamada de matriz de adjacência.
- Matriz é uma estrutura matemática organizada na forma de tabela com linhas e colunas.
- Adjacência: próximo, proximidade.

Matriz de adjacência - Exemplo

	Α	В	C	D	E
A	0	0	1	0	0
В	0	0	1	0	0
С	1	1	0	1	1
D	0	0	1	0	1
E	0	0	1	1	0

Linha A e coluna E foi preenchida com 0 indicando que NÃO há ligação de A para E.

Matriz de adjacência - Exemplo

	Α	В	C	D	E
A	0	0	1	0	0
В	0	0	1	0	0
С	1	1	0	1	1
D	0	0	1	0	1
E	0	0	1	1	0

Linha C e coluna A foi preenchida com 1 indicando que há ligação de C para A.

Matriz de adjacência

- Se tiver ligação, então é 1.
- Se não tiver ligação, então é 0.

Por que 1 ou 0?

- Não precisava ser 1 ou 0, não existe essa obrigatoriedade.
- O nosso símbolo de existe é "1" e o símbolo de não existe é "0". Essa foi uma escolha que iremos utilizar na nossa estrutura de dados.
- Inicialmente isso pode não fazer muito sentido, mas vai ajudar nos algoritmos. Exemplo: ajuda se eu quiser contar algo.

Matriz de adjacência

Perceba que não há nenhum número ou algo do tipo nas arestas. Nesse exemplo só estamos verificando se há ou não ligação.

Dica

- Antes de programar, represente (desenhe) o grafo adequado para resolver o seu problema.
- Modele, desenhe, escreva! Você NÃO estará perdendo tempo, mas sim ganhando.

Pergunta - É simétrico?

	Α	В	С	D	E
A	0	0	1	0	0
В	0	0	1	0	0
С	1	1	0	1	1
D	0	0	1	0	1
E	0	0	1	1	0

Um grafo é simétrico se para cada arco (u,v), existe um correspondente arco reverso (v,u).

Grafo não-dirigido

	Α	В	С	D	E
A	0	0	1	0	0
В	0	0	1	0	0
С	1	1	0	1	1
D	0	0	1	0	1
E	0	0	1	1	0

O exemplo acima trata-se de um grafo NÃO dirigido. Um grafo não dirigido é um tipo especial de grafo simétrico.

 O grau de um vértice é o número de arestas que o vértice tem.

Exemplo: o vértice C tem grau 4.

Algoritmo para mostrar o grau de um vértice:

Voltando ao algoritmo...

Perceba que usando matriz de adjacência, precisa-se de um loop dentro de outro loop!!

O custo é O(n^2), isso não é bom. Já pensou um grafo de amigos do Facebook?

Matriz de Adjacência

- Custo de O(n^2) é grande.
- E se for um grafo de milhões de vértices?
- No caso dos amigos do Facebook, eu não irei ser amigo de uma pessoa duas vezes, então basta ter um vetor de amigos.

Lista de adjacência

- É por isso que agora iremos aprender outra forma de representar um grafo chamada de lista de adjacência.
- A lista de adjacência nada mais é do que criar um vetor para cada vértice.
- Esse vetor contém cada vértice que o vértice conhece.

Lista de adjacência

Dependendo de como você programa, as buscas são bem mais rápidas, pois você só irá passar pelos vértices "amigos" do vértice corrente.

A lista consiste em escrever para cada número de linha (vértice) os amigos.

Lista de adjacência - Exemplo

1 tem como amigos o 2 e o 3.

Matriz de incidência

- Ideia: associar vértices às linhas e arestas às colunas.
 - Elemento da matriz indica se aresta incide sobre o vértice.
- Matriz n x m (n vértices e m arestas)
 - aij = 1, se o vértice i incide sobre a aresta j
 - aij = 0, caso contrário
 - Obs.: para um grafo NÃO orientado

Matriz de incidência

Grafo não orientado

	e ₁	e_{2}	e_3	e_4
1	1	1	0	0
2	1	0	1	0
3	0	1	1	1
4	0	0	0	1

Matriz de incidência

Grafo orientado

1 se chega no vértice0 se não há ligação-1 se sai do vértice

Qual representação utilizar?

- A matriz de adjacência é boa para saber se um vértice é amigo de outro, pois basta testar matriz[v][w].
- Em alguns casos, o mais barato é usar as duas representações juntas.

Qual representação utilizar?

- Numa lista de adjacência, é fácil encontrar todos os vértices adjacentes a um vértice.
- Em um teste de vizinhança em dois vértices, uma matriz de adjacência proporciona isso na hora.
- A representação matricial tem grande consumo de memória para grafos grandes (muitos vértices) e com poucas arestas.

Pergunta: o grafo é completo?

Grafo completo é um grafo não direcionado no qual todos os pares de vértices são adjacentes. Exemplo:

Pontes de um grafo

- Ponte é a aresta de corte de um grafo.
- Se você retirar a aresta ponte, então o número de componentes do grafo aumentará.
- A remoção de uma ponte desconecta um grafo.

Pontes de um grafo

Exemplo de grafo com ponte:

Pontes de um grafo

- Como detectar as pontes de um grafo?
- Para cada aresta (u,v) faça:
 - Remova a aresta (u,v) do grafo
 - Verifique se o grafo permanece conectado (pode-se usar a busca em profundidade - DFS).
 - Adicione a aresta (u,v) de volta ao grafo.
- Vamos detectar todas as pontes de um grafo?

Dúvidas?

Contato

mcastrosouza@live.com www.geeksbr.com

Link da apresentação:

<u>www.slideshare.net/mcastrosouza/grafos-</u> <u>representao</u>