Sherlock's Array Merging Algorithm

Watson gave Sherlock a collection of arrays V. Here each V_i is an array of variable length. It is guaranteed that if you merge the arrays into one single array, you'll get an array, M, of n distinct integers in the range [1,n].

Watson asks Sherlock to merge $oldsymbol{V}$ into a sorted array. Sherlock is new to coding, but he accepts the challenge and writes the following algorithm:

- $M \leftarrow []$ (an empty array).
- $k \leftarrow$ size of the collection V.
- ullet While there is at least one non-empty array in V:
 - $T \leftarrow [\]$ (an empty array) and $i \leftarrow 1$.
 - While i < k:
 - If V_i is not empty:
 - ullet Remove the first element of V_i and push it to T.
 - $i \leftarrow i + 1$.
 - ullet While T is not empty:
 - ullet Remove the minimum element of T and push it to M.
- ullet Return M as the *output*.

Let's see an example. Let V be $\{[3,5],[1],[2,4]\}$.

The image below demonstrates how Sherlock will do the merging according to the algorithm:

Sherlock isn't sure if his algorithm is correct or not. He ran Watson's input, V, through his pseudocode algorithm to produce an output, M, that contains an array of n integers. However, Watson forgot the contents of V and only has Sherlock's M with him! Can you help Watson reverse-engineer M to get the

original contents of V?

Given m, find the number of different ways to create collection V such that it produces m when given to Sherlock's algorithm as input. As this number can be quite large, print it modulo 10^9+7 .

Notes:

- Two collections of arrays are *different* if one of the following is *true*:
 - Their sizes are different.
 - Their sizes are the same but at least one array is present in one collection but not in the other.
- ullet Two arrays, $oldsymbol{A}$ and $oldsymbol{B}$, are different if one of the following is \emph{true} :
 - Their sizes are different.
 - ullet Their sizes are the same, but there exists an index i such that $a_i
 eq b_i$.

Input Format

The first line contains an integer, n, denoting the size of array M.

The second line contains n space-separated integers describing the respective values of $m_0, m_1, \ldots, m_{n-1}$.

Constraints

- $1 \le n \le 1200$
- $1 \leq m_i \leq n$

Output Format

Print the number of different ways to create collection \it{V} , modulo 10^9+7 .

Sample Input 0

3 1 2 3

Sample Output 0

4

Explanation 0

There are four distinct possible collections:

1.
$$V = \{[1, 2, 3]\}$$

2.
$$V = \{[1], [2], [3]\}$$

3.
$$V = \{[1, 3], [2]\}$$

4.
$$V = \{[1], [2, 3]\}.$$

Thus, we print the result of $4 \mod (10^9 + 7) = 4$ as our answer.

Sample Input 1

```
2
2 1
```

Sample Output 1

1

Explanation 1

The only distinct possible collection is $V=\{[2,1]\}$, so we print the result of $1 \mod (10^9+7)=1$ as our answer.