

用戶流失指標與解決方案 Customer Churn Analysis and Prediction

涂靜勻 Jean Tu 2022.01

資料分析流程

定義商業問題 Define Business Issue

資料準備 Data Preparation

資料前處理 Data Preprocessing

數據分析與預測 Data Analyze & Prediction

結果應用 Conclusion

Why Customers Churn?

Internal Factors

External Factors

Plan Price

Spotify

Rental days

YouTube Premium

Use rage

Apple Music

Service Quality

Line Music

是否能用過去用戶的行為數據 找出關鍵特徵以預測用戶流失機率 針對退租高風險用戶進行續留

kagge*

Data Explorer

8.95 GB

- WSDMChurnLabeller.scala
- members_v3.csv.7z
- sample_submission_v2.csv.7z
- sample_submission_zero.cs...
- train.csv.7z
- train_v2.csv.7z
- transactions.csv.7z
- transactions_v2.csv.7z
- user_logs.csv.7z
- user_logs_v2.csv.7z

Glance at all tables

Data Cleaning

Data Exploration

Data Analysis

- Missing Data
- Noisy
- Duplicate Data
- Augmenting Data
- Descriptive analytics
- Visualization

Multivariate Analyses

- 資料: 部分缺失,僅34%用戶具生理資料
- 性別: 有性別資料用戶,用戶男女比占比相當
- 年龄*: 將用戶年齡分為10組,以20~25歲占43%為主;次之為26-30歲占23%
- 城市: 69%的用戶集中於單一縣市
- 註冊: 兩主要管道,分別占**47%、37%**

transcations.csv: (21547746, 9)

Remove duplicate user id by the latest transactions record

```
df_T.nunique()
                          2363626
msno
payment method id
                                            #drop duplicates user id & keep the lastest transactions record
payment plan days
                               37
                                            df_t=df_T.sort_values('transaction_date',ascending=(False)).drop_duplicates('msno')
plan list price
                               51
actual amount paid
                               57
is auto renew
transaction date
                              790
membership_expire_date
                             1559
is_cancel
```

Count total transaction records as user loyalty and split it into 6 groups

Data Cleaning

```
#calculate the total transaction records per user
df T['t times']=1
                                                                                          User Loyalty
transactionstime=df_T.groupby(['msno','DATE'])['t_times'].count()
transactionstime=transactionstime.count('msno')
                                                                                               787689
                                                                                                         New
df t=pd.merge(df t,transactionstime,on='msno',how='left')
                                                                                                         2-4 times
                                                                                               386877
                                                                                                         5-12 times
                                                                                               437879
#grouping the transaction time as user loyalty
                                                                                               305617 12-18 times
tt=df t.t times.value counts()
bins = [0,1,4,12,18,24,\max(df t.t times)]
                                                                                                         18-24 times
                                                                                               240935
df t['user level'] = pd.cut(df t.t times, bins, labels= np.arange(1, len( bins) ) )
                                                                                                         25+ times
                                                                                               204629
df_t['user_level'] = df_t['user_level'].astype('int')
user level=df t['user level'].value counts().sort index(ascending=True)
df t.user level.value counts().sort index()
```

- 資料: 每用戶具一至多筆資料,依方案到期日排序,取得最近資料
- 方案: \$149 個人方案占43%,\$0 試用方案占21%,\$99 享樂方案占18%
- **訂閱**: 30天月租占**74%** · 7天試用占**19%**
- 交易: 依交易次數將用戶分為新客戶、老客戶共六個層級(0-5)
- 付款: 兩主要管道,分別占45%、20%

user_logs.csv : (18396362, 9)

Calculate the average of unique songs, total seconds, and ratio of songs played per users

```
df userlog.nunique()
               1103894
msno
date
                     31
num 25
                    743
num 50
                    356
                   193
num 75
                    340
num 985
                  1115
num 100
                   776
num_unq
total secs
              10701475
```

```
#last 1 month user data
#find avg seconds played per user/ ratio songs played of song length
user_engagement='''Select msno,COUNT(msno) as log_counts, round(avg(num_unq),0) avg_unisongs_listened,
round(avg(total_secs),0) 'avg_totalseconds' ,
round((sum(num_25)*0.25+sum(num_50)*0.5+sum(num_75)*0.75+sum(num_985)*0.985+sum(num_100))/
sum(num_25+num_50+num_75+num_985+num_100),1) listening_rate
FROM userlog
GROUP BY MSNO'''
cursor.execute(user_engagement)
conn.commit()
```

	count	mean	std	min	25%	50%	75%	max
log_counts	1103894.0	16.664971	10.303328	1.0	7.0	18.0	26.0	31.0
avg_unisongs_listened	1103894.0	23.981450	20.658422	1.0	11.0	19.0	30.0	1560.0
avg_totalseconds	1103894.0	6295.604971	6532.292049	0.0	2631.0	4573.0	7622.0	536354.0
listening_rate	1103894.0	0.814200	0.153109	0.3	0.7	8.0	0.9	1.0

- 資料: 計算用戶每月平均聽歌長度、不重複歌曲數、和歌曲總播放秒數
- 聆聽率: 以用戶平均聽歌完整率進行計算, 歌曲聆聽率90%達最高占34%, 整體用戶歌曲完整聆聽率高
- 歌曲量: 平均用戶每月聆聽不重複歌曲23首
- 聆聽量: 平均用戶每月聆聽秒6,300s · 1.5- 2小時之間為最多(30min切割)

Variable Selection

Definition of Churn:

Not continue the subscription within 30 days

參考資料: 電信預測流失模型

資費:除\$0適用外,用戶資費越高流失風險越大

Age Groups:

不同年齡區間具特有退租行為,惟此類資料量不足

Churn by age groups

Loyalty:

新用戶/試用用戶之大幅高於其他

Churn by user loyalty

Register Channels:

不同的註冊方法具有不同的退租率高 (去識別化資料)

Churn by registered channels

Payment methods:

特定付款方式之用戶退租機率高 (去識別化資料)

Total seconds played:

每月聆聽總長度超過每月30分鐘後即降低可嘗試以超過30分鐘為觀察流失門檻

Chunr by total seconds

Songs played rate:

近一個月聆聽率越完整相對退租率越低,不具有聆聽率之用戶,則風險高

Churn by ratio of songs played

測試資料中25%的用戶 於近1個月內沒有聆聽紀錄

退租率為有聆聽紀錄的兩倍

Auto Renew:

因此指標微系統預設 故此用戶行為可歸類為高流失指標

Cancel Records:

具取消行為用戶之流失率高 為未取消之19倍之高,達77%

Contract Duration:

合約已到期,但未自動續約 延長期到期日期者,超過52%流失機率

Prediction Model - Logistic Regression

	payment_method_id	plan_list_price	is_auto_renew	is_cancel	DATE	totalcharges	user_level	contract	listening_rate	secs_range	registered_via	Group
0	0.571429	0.0745	0.0	0.0	0.999787	0.018307	0.2	1.0	0.0	0.000000	0.692308	
1	0.714286	0.0745	1.0	1.0	1.000000	0.406561	0.8	0.0	1.0	0.166667	0.000000	
2	0.714286	0.0745	1.0	1.0	0.999787	0.183315	0.4	1.0	0.0	0.000000	0.692308	
3	0.571429	0.8940	0.0	0.0	0.999787	0.219683	0.2	1.0	0.7	0.666667	0.000000	
4	0.571429	0.0745	0.0	0.0	0.999787	0.439366	0.4	1.0	1.0	1.000000	0.692308	
5	0.000000	0.0745	1.0	1.0	0.999787	0.292911	0.8	1.0	0.0	0.000000	0.692308	
6	0.285714	0.0900	0.0	0.0	0.999787	0.217471	0.4	1.0	0.0	0.000000	0.000000	
7	0.571429	0.0745	0.0	0.0	0.999787	0.395872	0.8	1.0	1.0	0.166667	0.692308	
8	0.285714	0.0900	0.0	0.0	1.000000	0.452513	0.8	0.0	1.0	0.666667	0.692308	
9	0.571429	0.0745	0.0	0.0	0.999787	0.073228	0.4	1.0	1.0	0.333333	0.000000	
10	0.571429	0.0745	0.0	0.0	1.000000	0.457673	1.0	0.0	0.9	0.833333	0.000000	
11	0.285714	0.0900	0.0	0.0	0.999787	0.022116	0.0	1.0	0.0	0.000000	0.000000	
12	0.285714	0.0900	0.0	0.0	0.999787	0.264652	0.4	1.0	0.0	0.000000	0.000000	
13	0.285714	0.0900	0.0	0.0	0.999787	0.372282	0.6	1.0	0.0	0.000000	0.692308	
14	0.571429	0.2385	0.0	0.0	0.999787	0.186755	0.4	1.0	0.0	0.000000	0.692308	

```
pred=logistic.predict(Xtest)
print('logistic Accuracy: ',logistic.score(Xtest,ytest))
```

logistic Accuracy: 0.9685754066867587

	precision	recall	f1-score	support	
0	0.98	0.99	0.98	371740	
1	0.78	0.70	0.74	25433	
accuracy			0.97	397173	
macro avg	0.88	0.84	0.86	397173	
weighted avg	0.97	0.97	0.97	397173	

```
coef of payment_method_id : -1.13876515
coef of plan_list_price : -0.50425810
coef of DATE : -0.02788801
coef of totalcharges : 5.63510357
coef of user_level : -3.14288920
coef of contract : 4.26235797
coef of listening_rate : -2.03088726
coef of secs_range : -1.05875721
coef of registered_via : -0.00091885
coef of Groupage : 0.54700893
coef of planday group : -0.95127204
```


結果應用

- 1 年齡為用戶使用數據及退租行為的有效特徵,應強化此類數據蒐集 以完善分析準確性,以利優化使用者體驗及降低流失 如:學生族群流失率高,則可推學生組團方案,考慮經濟來源為父母則可往提供以親子/家族方案規劃 有資料用戶主要集中於21-25歲,可依不同年齡層調整平台歌單推薦內容及推薦順序
- 2 **資費方案 種類及行為明確,可針對其制定對應分眾方案規劃** 試用方案續約轉換率低,可於到期提供優惠,如延長免費2個月_(需鄉約一年),再度強化免費誘因,以達締結 多人方案/長約方案因貢獻度高,且已具有此案行申辦意願,故可強化續約優惠折扣,透過人力外撥等
- 3 可透過使用行為數據進行顧客分級貼標,用以行銷層面溝通,以強化顧客參與及黏著度 從用戶交易次數、聽歌時間、聆聽率等數據將分類,年資、使用率、累計金額等 並可藉由此標籤將用戶分及為不同等級,再續約或活動時提供分級的優惠內容,強化品牌黏著度
- 4 流失指標 取消自動續約、取消交易、約滿但未續約、近一個月內無聆聽紀錄 等行為皆為有效的流失指標,前三項可視為事件行指標,可依此進行用戶溝通 例如當用戶首次取消自動續約時,可觸發簡訊提供開啟自動續約,可換取\$xx元等機制