Álgebra Linear CC

Licenciatura em Ciências da Computação

Carla Mendes

2022/2023

Departamento de Matemática

Conceitos básicos

Neste capítulo introduz-se o conceito de matriz e estudam-se operações e propriedades relacionadas com matrizes.

São bastantes os contextos na área da matemática e suas aplicações em que o conceito de matriz se revelou ser fundamental. Por exemplo, para a representação e tratamento de informação que esteja dependente de parâmetros é frequente o recurso a matrizes.

Ao longo deste capítulo designamos por $\mathbb K$ o conjunto dos números reais ou o conjunto dos números complexos; quando necessário indicaremos explicitamente se nos referimos ao conjunto $\mathbb R$ dos números reais ou ao conjunto $\mathbb C$ dos números complexos. Aos elementos de $\mathbb K$ damos a designação de **escalares**.

Definição

Chama-se **matriz do tipo** $m \times n$ (ou **de ordem** $m \times n$) **sobre** \mathbb{K} a uma aplicação $A: \{1, \ldots, m\} \times \{1, \ldots, n\} \to \mathbb{K}$ definida por $A(i,j) = a_{ij}$ e que se representa por um quadro em que os m elementos a_{ij} são dispostos em m filas horizontais e n filas verticais do seguinte modo

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1\,n-1} & a_{1\,n} \\ a_{21} & a_{22} & \cdots & a_{2\,n-1} & a_{2\,n} \\ a_{31} & a_{32} & \cdots & a_{3\,n-1} & a_{3\,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m-1\,1} & a_{m-1\,2} & \cdots & a_{m-1\,n-1} & a_{m-1\,n} \\ a_{m1} & a_{m2} & \cdots & a_{m\,n-1} & a_{m\,n} \end{bmatrix}.$$

Definição (continuação)

- Para cada $i \in \{1, ..., m\}$, chama-se **finha** i **da matriz** A ao elemento $(a_{i1}, ..., a_{in})$ de \mathbb{K}^n .
- Para cada $j \in \{1, ..., n\}$, chama-se coluna j da matriz A ao elemento $(a_{1j}, ..., a_{mj})$ de \mathbb{K}^m .
- Ao elemento a_{ij} de K, i ∈ {1,..., m}, j ∈ {1,..., n}, chama-se entrada (i,j) ou elemento da posição (i,j) da matriz A. Por vezes, representa-se a entrada (i,j) da matriz A por A_{i,j}.

Notação e terminologia:

- O conjunto das matrizes do tipo $m \times n$ sobre \mathbb{K} representa-se por $\mathcal{M}_{m \times n}(\mathbb{K})$.
- O conjunto de todas as matrizes sobre $\mathbb K$ é representado por $\mathcal M(\mathbb K)$.
- Em geral, representaremos as matrizes por letras maiúsculas e as suas entradas pela mesma letra, minúscula ou maiúscula, com índices que indicam a respetiva posição na matriz. Havendo ambiguidade coloca-se uma virgula a separar o índice da linha e o índice da coluna. Por exemplo, escreveremos a_{2,34} ou A_{2,34} para indicar o elemento na linha 2 e coluna 34 da matriz A.

Notação e terminologia:

Se

$$A = \left[\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{array}\right] \in \mathcal{M}_{m \times n}(\mathbb{K}),$$

escreve-se abreviadamente $A=\left[a_{ij}\right]_{m\times n}$ ou $A=\left[a_{ij}\right]\in\mathcal{M}_{m\times n}(\mathbb{K})$ ou $A=\left[a_{ij}\right]_{i=1,\ldots,m\atop j=1,\ldots,n}$. Quando o tipo da matriz for claro pelo contexto ou se não for importante para o estudo em questão, podemos escrever simplesmente $A=\left[a_{ij}\right]$.

 Uma matriz diz-se real ou complexa consoante os seus elementos sejam reais ou complexos.

Exemplo

A matriz

$$A = \left[\begin{array}{rr} 1 & 0 \\ 3 & 4 \\ 1 & -1 \end{array} \right]$$

é uma matriz real do tipo 3×2 , i.e. $A \in \mathcal{M}_{3 \times 2}(\mathbb{R})$.

A linha 2 da matriz A é o elemento (3, 4) de \mathbb{R}^2 .

A coluna 2 da matriz A é o elemento (0, 4, -1) de \mathbb{R}^3 .

O elemento a_{32} (situado na linha 3 e coluna 2 da matriz) é o real -1.

Exemplo

A matriz
$$B = \begin{bmatrix} \frac{1}{2} & 2 & \frac{\sqrt{3}}{2} \end{bmatrix}$$
 é uma matriz de ordem 1×3 .

Exemplo

Por $C = [c_{ij}]_{2\times 3}$, onde $c_{ij} = i^j$, para $i \in \{1,2\}$ e $j \in \{1,2,3\}$, representa-se a matriz

$$\left[\begin{array}{ccc} 1 & 1^2 & 1^3 \\ 2 & 2^2 & 2^3 \end{array}\right].$$

Definição

Sejam $m, n \in \mathbb{N}$. Uma matriz $A = [a_{ij}]_{m \times n}$ diz-se **matriz nula de ordem** $m \times n$, e representa-se por $0_{m \times n}$ (ou apenas por 0, caso não haja ambiguidade), se, para todo $i \in \{1, ..., m\}$ e para todo $j \in \{1, ..., n\}$, tem-se $a_{ij} = 0$.

Exemplo

$$0_{2\times 3} = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

Definição

Sejam $m, n, p, q \in \mathbb{N}$. Diz-se que as matrizes $A = [a_{ij}]_{m \times n}$ e $B = [b_{ij}]_{p \times q}$ são **iguais**, e escreve-se A = B, se m = p, n = q e $a_{ij} = b_{ij}$, quaisquer que sejam $i \in \{1, ..., m\}$ e $j \in \{1, ..., n\}$.

Exemplo

As matrizes

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{array} \right]$$

e $B = [b_{ij}]_{3\times 3}$, com $b_{ij} = m.d.c.(i,j)$ são matrizes iguais.

Definição

Sejam m, $n \in \mathbb{N}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Diz-se que:

- $A \in uma \ matriz \ linha \ se \ m = 1;$
- $A \in uma \ matriz \ coluna \ se \ n = 1;$
- A é uma **matriz quadrada** se m = n.

Exemplo

$$A \ \textit{matriz} \ A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \ \textit{\'e uma matriz coluna (do tipo } 3 \times 1) \ \textit{\'e a matriz}$$

$$B = \begin{bmatrix} 5 & 6 & 7 & 8 \end{bmatrix} \ \textit{\'e uma matriz linha (do tipo } 1 \times 4).$$

Notação e terminologia:

 É usual representar matrizes coluna e matrizes linha por letras minúsculas; além disso, é usual omitir o índice 1 que é comum a todos os elementos. Por exemplo,

$$x = \left[\begin{array}{ccc} x_1 & x_2 & x_3 & x_4 \end{array} \right] \qquad \text{e} \qquad y = \left[\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array} \right]$$

representam uma matriz linha de ordem 4 e uma matriz coluna de ordem 3, respectivamente.

• O conjunto $\mathcal{M}_{n\times n}(\mathbb{K})$ das matrizes quadradas do tipo $n\times n$ também se representa por $\mathcal{M}_n(\mathbb{K})$. Uma matriz A pertencente a $\mathcal{M}_n(\mathbb{K})$ diz-se uma matriz quadrada de ordem n ou, simplesmente, uma matriz de ordem n e pode representar-se por $A=[a_{ij}]_n$.

Definição

Sejam $n \in \mathbb{N}$ e $A = [a_{ij}]_n$ uma matriz quadrada sobre \mathbb{K} . Os elementos a_{ii} , $i \in \{1, ..., n\}$, designam-se por **elementos principais de** A. Diz-se que os elementos $a_{11}, a_{22}, ..., a_{nn}$ se dispõem na **diagonal principal de** A e que os elementos $a_{1n}, a_{2n-1}, ..., a_{n1}$ se dispõem na **diagonal** secundária de A.

Exemplo

Os elementos principais da matriz

$$A = \left[\begin{array}{rrr} -1 & 0 & 1 \\ -3 & 0 & -1 \\ -4 & 1 & 2 \end{array} \right]$$

são -1, 0 e 2 e os elementos que se dispõem na sua diagonal secundária são 1, 0 e -4.

Definição

Seja $n \in \mathbb{N}$. Uma matriz quadrada $A = [a_{ij}]_n$ diz-se:

- **triangular superior** se, para todos $i, j \in \{1, 2, ..., n\}$,

$$i > j \Longrightarrow a_{ij} = 0;$$

- triangular inferior se, para todos $i, j \in \{1, 2, ..., n\}$,

$$i < j \Longrightarrow a_{ij} = 0;$$

- **diagonal** se é simultaneamente triangular superior e triangular inferior, i.e., se, para todos $i, j \in \{1, 2, ..., n\}$,

$$i \neq j \Longrightarrow a_{ij} = 0.$$

Exemplo

Sejam

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 4 & 5 \end{bmatrix} e \quad C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

A matriz A é uma matriz triangular superior, B é uma matriz triangular inferior e C é uma matriz diagonal.

Notação: Uma matriz diagonal $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ pode representar-se abreviadamente por $A = \text{diag}(a_{11}, a_{22}, \dots, a_{nn})$.

Exemplo

No exemplo anterior, tem-se C = diag(1, 0, 2, 3).

Definição

Uma matriz diagonal em que todos os elementos diagonais são iguais diz-se uma **matriz escalar**.

Definição

Dá-se a designação de **matriz identidade de ordem n**, e representa-se por I_n , à matriz escalar de ordem n em que todos os elementos diagonais são iguais a 1, i.e., se para todos $i, j \in \{1, ..., n\}$, tem-se

$$(I_n)_{ij} = \begin{cases} 1 & \text{se } i = j; \\ 0 & \text{se } i \neq j. \end{cases}$$

Exemplo

$$I_3 = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight].$$

Operações com matrizes

Nesta secção definem-se algumas operações envolvendo matrizes: adição de matrizes, multiplicação de um escalar por uma matriz e multiplicação de matrizes.

Adição de matrizes

Definição

Sejam $m, n \in \mathbb{N}$ e $A = [a_{ij}], B = [b_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se **matriz** soma de A e B, e representa-se por A + B, à matriz cuja entrada (i,j) é o elemento $a_{ij} + b_{ij}$, i.e.,

$$A+B=[a_{ij}+b_{ij}]_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}.$$

Exemplo

Sejam
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix}$$
 e $B = \begin{bmatrix} 3 & 0 & 4 \\ 2 & -1 & 3 \end{bmatrix}$. Então

$$A+B=\left[\begin{array}{ccc} 1+3 & 2+0 & 3+4 \\ 2+2 & 1+(-1) & 0+3 \end{array}\right]=\left[\begin{array}{ccc} 4 & 2 & 7 \\ 4 & 0 & 3 \end{array}\right].$$

Teorema

Sejam m, $n \in \mathbb{N}$ e A, B, $C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Então

- i) A+B=B+A. (comutatividade da adição em $\mathcal{M}_{m\times n}(\mathbb{K})$)
- ii) A + (B + C) = (A + B) + C. (associatividade da adição em $\mathcal{M}_{m \times n}(\mathbb{K})$)
- iii) $0_{m\times n}+A=A=A+0_{m\times n}.$ $\left(0_{m\times n} \text{ elemento neutro da adição em } \mathcal{M}_{m\times n}(\mathbb{K})\right)$
- iv) existe uma matriz A' tal que $A+A'=0_{m\times n}=A'+A$. (existência de elemento oposto, para a adição, de qualquer $A\in\mathcal{M}_{m\times n}(\mathbb{K})$)

Demonstração.

i) Sejam $A = [a_{ij}], B = [b_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$. As matrizes A + B e B + A são ambas do tipo $m \times n$. Além disso,

$$A + B = [a_{ij} + b_{ij}]_{\substack{i = 1, \dots, m \ j = 1, \dots, n}}$$
,
 $B + A = [b_{ij} + a_{ij}]_{\substack{i = 1, \dots, m \ j = 1, \dots, n}}$

e, como a adição em \mathbb{K} é comutativa, temos $a_{ij}+b_{ij}=b_{ij}+a_{ij}$, para quaisquer $i\in\{1,\ldots,m\}$ e $j\in\{1,\ldots,n\}$. Portanto, as matrizes A+B e B+A são iguais.

Demonstração (continuação).

iv) Seja $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$ e seja $A' = [a'_{ij}]$ a matriz de $\mathcal{M}_{m \times n}(\mathbb{K})$ tal que $a'_{ij} = -a_{ij}$. Então $A + A' \in \mathcal{M}_{m \times n}(\mathbb{K})$ e temos

$$A + A' = [a_{ij} + a'_{ij}]_{\substack{i = 1, ..., m \\ j = 1, ..., n}}$$
,

onde $a_{ij}+a'_{ij}=a_{ij}+(-a_{ij})=0$, para quaisquer $i\in\{1,\ldots,m\}$ e $j\in\{1,\ldots,n\}$. Logo, $A+A'=0_{m\times n}$. Por i), temos $A'+A=0_{m\times n}$.

Observação:

- Sendo A, B e C matrizes do mesmo tipo, podemos escrever, sem ambiguidade, A+B+C para representar (A+B)+C e A+(B+C), atendendo à associatividade da adição em $\mathcal{M}_{m\times n}(\mathbb{K})$.
- A matriz A' da proposição anterior representa-se por -A.
- Dadas duas matrizes A e B com a mesma ordem, representa-se por A-B a soma de matrizes A+(-B).

Multiplicação de um escalar por uma matriz

Definição

Sejam $m, n \in \mathbb{N}, \alpha \in \mathbb{K}$ e $A = [a_{ij}]_{m \times n} \in \mathcal{M}_{m,n}(\mathbb{K})$. Chamases **produto do escalar** α **pela matriz** A, e representa-se por αA , a matriz de $\mathcal{M}_{m \times n}(\mathbb{K})$ cujo elemento (i,j) é αa_{ij} , i.e.,

$$\alpha A = \left[\alpha a_{ij}\right]_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}.$$

Exemplo

$$Se \ A = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 2 & 0 & -1 & 3 \end{array} \right] \ ent \ \tilde{ao} \ 2A = \left[\begin{array}{cccc} 2 & 4 & 6 & 8 \\ 4 & 0 & -2 & 6 \end{array} \right].$$

Teorema

Sejam m, $n \in \mathbb{N}$, A, $B \in \mathcal{M}_{m \times n}(\mathbb{K})$ e α , $\beta \in \mathbb{K}$. Então

i)
$$(\alpha\beta)A = \alpha(\beta A)$$
.

ii)
$$(\alpha + \beta) A = \alpha A + \beta A$$
.

iii)
$$\alpha(A+B) = \alpha A + \alpha B$$
.

iv)
$$0A = 0_{m \times n}$$
.

v)
$$1A = A$$
.

vi)
$$(-\alpha)A = \alpha(-A) = -(\alpha A)$$
.

Demonstração.

i) Sejam $\alpha, \beta \in \mathbb{K}$ e $A = [a_{ij}] \in \mathcal{M}_{m,n}(\mathbb{K})$. Então $(\alpha\beta)A \in \mathcal{M}_{m,n}(\mathbb{K})$ e, uma vez que $(\beta A) \in \mathcal{M}_{m,n}(\mathbb{K})$, também temos $\alpha(\beta A) \in \mathcal{M}_{m,n}(\mathbb{K})$. Verifica-se ainda que

$$(lphaeta)A = [(lphaeta)a_{ij}]_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}$$
 , $lpha(eta A) = [lpha(eta a_{ij})]_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}$

e, considerando que o produto de elementos de \mathbb{K} é associativo, tem-se $(\alpha\beta)a_{ij}=\alpha(\beta a_{ij})$, para quaisquer $i\in\{1,...,m\},\,j\in\{1,...,n\}$. Portanto, $(\alpha\beta)A=\alpha(\beta A).\square$

Multiplicação de matrizes

Definição

Sejam m, n, $p \in \mathbb{N}$, $A = [a_i j] \in \mathcal{M}_{m \times p}(\mathbb{K})$, $B = [b_{ij}] \in \mathcal{M}_{p \times n}(\mathbb{K})$. Designa-se por **produto de** A **por** B, e representa-se por AB, a matriz de $\mathcal{M}_{m \times n}(\mathbb{K})$ cuja entrada (i,j) é $\sum_{k=1}^{p} a_{ik} b_{kj}$, isto é,

$$AB = \left[\sum_{k=1}^{p} a_{ik} b_{kj}\right]_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}$$

$$= \left[a_{i1} b_{1j} + a_{i2} b_{2j} + \ldots + a_{i p-1} b_{p-1 j} + a_{ip} b_{pj}\right]_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}.$$

Exemplo

Sejam

$$A = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 2 & 3 & 1 \end{array} \right] \ e \ B = \left[\begin{array}{ccc} 2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 2 \\ 1 & 1 & 2 & 1 \end{array} \right].$$

Então AB é a matriz do tipo 2×4 sobre $\mathbb R$ tal que

$$\begin{array}{l} (AB)_{11} = 0 \times 2 + 1 \times 1 + 0 \times 1 = 1, & (AB)_{12} = 0 \times 0 + 1 \times 2 + 0 \times 1 = 2, \\ (AB)_{13} = 0 \times 1 + 1 \times 0 + 0 \times 2 = 0, & (AB)_{14} = 0 \times 0 + 1 \times 2 + 0 \times 1 = 2, \\ (AB)_{21} = 2 \times 2 + 3 \times 1 + 1 \times 1 = 8, & (AB)_{22} = 2 \times 0 + 3 \times 2 + 1 \times 1 = 7, \\ (AB)_{23} = 2 \times 1 + 3 \times 0 + 1 \times 2 = 4, & (AB)_{24} = 2 \times 0 + 3 \times 2 + 1 \times 1 = 9, \end{array}$$

i.e.,

$$AB = \left[\begin{array}{rrrr} 1 & 2 & 0 & 2 \\ 8 & 7 & 4 & 9 \end{array} \right].$$

Observação: Contrariamente ao que sucede com a adição de matrizes, a multiplicação de matrizes não é, em geral, comutativa, tal como se pode verificar nos exemplos que a seguir se apresentam.

Exemplo

Considerando as matrizes A e B do exemplo anterior, concluímos que BA não está definido, pois o número de colunas de B não coincide com o número de linhas de A.

Exemplo

Sejam

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right] e B = \left[\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array} \right].$$

Então

$$AB = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} \neq \begin{bmatrix} 23 & 34 \\ 31 & 46 \end{bmatrix} = BA.$$

Definição

Sejam $n \in \mathbb{N}$ e A e B duas matrizes quadradas de ordem n. Diz-se que as matrizes A e B são **comutáveis** ou **permutáveis** se AB = BA.

Teorema

Sejam m, n, $p \in \mathbb{N}$, $\alpha \in \mathbb{K}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e B, C matrizes tais que as operações a seguir indicadas estejam definidas. Então

- i) (AB) C = A(BC). (associatividade da multiplicação)
- ii) A(B+C) = AB + AC. (distributividade, à esquerda, da multiplicação em relação à adição)
- iii) (A+B)C = AC + BC. (distributividade, à direita, da multiplicação em relação à adição)
- iv) $\alpha(AB) = (\alpha A)B = A(\alpha B)$.
- v) $0_{p \times m} A = 0_{p \times n}$, $A0_{n \times p} = 0_{m \times p}$.
- vi) $AI_n = A$, $I_mA = A$.
- vii) se m = n, $I_n A = AI_n = A$.

Demonstração.

Sejam $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$, $B = [b_{ij}] \in \mathcal{M}_{n \times p}(\mathbb{K})$ e $C = [c_{ij}] \in \mathcal{M}_{p \times q}(\mathbb{K})$. As matizes A(BC) e (AB)C são ambas do tipo $m \times q$. Além disso, para quaisquer $i \in \{1, \ldots, m\}$ e $j \in \{1, \ldots, q\}$, tem-se

$$(A(BC))_{ij} = \sum_{k=1}^{n} a_{ik} (BC)_{kj} = \sum_{k=1}^{n} a_{ik} \sum_{t=1}^{p} b_{kt} c_{tj}$$

$$= \sum_{k=1}^{n} \sum_{t=1}^{p} a_{ik} b_{kt} c_{tj},$$

$$((AB)C))_{ij} = \sum_{t=1}^{p} (AB)_{it} c_{tj} = \sum_{t=1}^{p} (\sum_{k=1}^{n} a_{ik} b_{kt}) c_{tj}$$

$$= \sum_{k=1}^{n} \sum_{t=1}^{p} a_{ik} b_{kt} c_{tj},$$
pelo que $(A(BC))_{ij} = ((AB)C))_{ij}$. Logo, $A(BC) = (AB)C$. \square

Observação: Sejam A, B e C matrizes tais que os produtos (AB)C e A(BC) estão definidos. Então, atendendo à associatividade da multiplicação, podemos escrever ABC para representar qualquer um dos produtos indicados.

Sejam $m, n \in \mathbb{N}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Atendendo à definição de multiplicação de matrizes, é simples concluir que a multiplicação de A por A está definida se e só se m=n. Neste caso, faz sentido a definição seguinte.

Definição

Sejam $n \in \mathbb{K}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Chamamos potência de expoente k de A, com $k \in \mathbb{N}_0$, à matriz de $\mathcal{M}_n(\mathbb{K})$, que representamos por A^k , definida por

$$A^k = \left\{ \begin{array}{cc} I_n & \text{se } k = 0 \\ A^{k-1}A & \text{se } k \in \mathbb{N} \end{array} \right..$$

Teorema

Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ e k, $l \in \mathbb{N}_0$. Então

- i) $A^{k}A^{l} = A^{k+l}$.
- ii) $(A^k)^l = A^{kl}$.

Matrizes invertíveis

Definição

Seja $n \in \mathbb{N}$. Uma matriz $A \in \mathcal{M}_n(\mathbb{K})$ diz-se **invertível** se existe uma matriz $X \in \mathcal{M}_n(\mathbb{K})$ tal que $AX = XA = I_n$.

Exemplo

A matriz
$$A=\begin{bmatrix}1&2\\1&1\end{bmatrix}$$
 é invertível, pois existe $X=\begin{bmatrix}-1&2\\1&-1\end{bmatrix}$ tal que

$$AX = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2 e$$

$$XA = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2.$$

Teorema

Seja $n \in \mathbb{N}$. Se $A \in \mathcal{M}_n(\mathbb{K})$ é uma matriz invertível, então existe uma e uma só matriz $A' \in \mathcal{M}_n(\mathbb{K})$ tal que $AA' = I_n = A'A$.

Demonstração.

(Existência) Se A é uma matriz invertível, então existe uma matriz A' tal que $AA' = I_n$ e $A'A = I_n$.

(Unicidade) Sejam X e Y matrizes de $\mathcal{M}_n(\mathbb{K})$ tais que $AX = XA = I_n$ e $AY = YA = I_n$. Então

$$X = XI_n = X(AY) = (XA)Y = I_nY = Y.$$

Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$ uma matriz invertível. A única matriz $A' \in \mathcal{M}_n(\mathbb{K})$ tal que $A'A = I_n = AA'$ designa-se por matriz inversa de A e representa-se por A^{-1} .

Exemplo

Seja
$$A=\begin{bmatrix}1&2\\1&1\end{bmatrix}$$
. Do exemplo anterior sabe-se que A é invertível e tem-se
$$A^{-1}=\begin{bmatrix}-1&2\\1&-1\end{bmatrix}.$$

39

Nem toda a matriz quadrada é invertível.

Exemplo

A matriz
$$A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$
 não é invertível. Com efeito, se admitirmos que existe $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ tal que $AX = XA = I_2$, tem-se

$$AX = \begin{bmatrix} a+c & b+d \\ -a-c & -b-d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a-b & a-b \\ c-d & c-d \end{bmatrix} = XA,$$

pelo que 0 = c - d = 1. (contradição).

Definição

Uma matriz quadrada que não admite inversa diz-se uma matriz singular ou não invertível.

Dadas matrizes $A, A' \in \mathcal{M}_n(\mathbb{K})$, diz-se que A' é a inversa de A se ambas as igualdades $AA' = I_n$ e $A'A = I_n$ são satisfeitas. Contudo, sabendo que A é invertível, pode-se concluir que A' é a inversa de A verificando apenas uma das igualdades indicadas: $AA' = I_n$ ou $A'A = I_n$.

Teorema

Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ uma matriz invertível e $A' \in \mathcal{M}_n(\mathbb{K})$ tal que $A'A = I_n$ (respectivamente, $AA' = I_n$). Então $A' = A^{-1}$ e, portanto, $AA' = I_n$ (respectivamente, $A'A = I_n$).

Demonstração.

Seja $n \in \mathbb{N}$ e admitamos que A é uma matriz invertível de ordem n e que A' é uma matriz quadrada de ordem n tal que $A'A = I_n$. Então,

$$A'A = I_n \Rightarrow A'AA^{-1} = I_nA^{-1} \Rightarrow A'I_n = A^{-1} \Rightarrow A' = A^{-1}$$
,

e, portanto, $AA' = I_n$.

Teorema

Sejam $n \in \mathbb{N}$ e $A, B, C \in \mathcal{M}_n(\mathbb{K})$. Se $AB = I_n$ e $CA = I_n$, então B = C, A é invertível e $A^{-1} = B = C$.

Demonstração.

Admitamos que $AB = I_n$ e $CA = I_n$. Então

$$C = CI_n = C(AB) = (CA)B = I_nB = B.$$

Portanto, A é invertível e $A^{-1} = B$.

Os dois resultados anteriores podem ser generalizados. De facto, se A e B são matrizes quadradas de ordem n tais que $AB = I_n$, então também se tem $BA = I_n$, pelo que A e B são matrizes invertíveis e $A = B^{-1}$ e $B = A^{-1}$. A prova desta generalização é apresentada no próximo capítulo.

A respeito de matrizes invertíveis prova-se também o resultado seguinte.

Teorema

Sejam $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_n(\mathbb{K})$ matrizes invertíveis. Então:

- i) A^{-1} é invertível e $(A^{-1})^{-1} = A$.
- ii) $AB \ \'e \ invert\'ivel \ e \ (AB)^{-1} = B^{-1}A^{-1}.$

Demonstração.

- i) Imediata pela própria definição de matriz invertível.
- ii) Como

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$

е

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}I_nB = B^{-1}B = I_n$$

conclui-se que a inversa de AB existe e é a matriz $B^{-1}A^{-1}$.

Transposta e transconjugada de uma matriz

Definição

Sejam $m, n \in \mathbb{N}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se **transposta de** A, e representa-se por A^T , à matriz de $\mathcal{M}_{n \times m}(\mathbb{K})$ cuja entrada (i,j) é a_{ji} , i.e., tal que $A^T = [b_{ij}]_{\substack{i=1,\ldots,n \\ j=1,\ldots,m}}$, onde $b_{ij} = a_{ji}$.

Exemplo

Se
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
, então $A^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

Teorema

Sejam $\alpha \in \mathbb{K}$ e A, B matrizes sobre \mathbb{K} tais que as operações seguintes estejam definidas. Então

i)
$$(A^T)^T = A$$
.

ii)
$$(A + B)^T = A^T + B^T$$
.

iii)
$$(\alpha A)^T = \alpha A^T$$
.

iv)
$$(AB)^T = B^T A^T$$
.

Demonstração.

Demonstramos a propriedade *iv*), ficando a prova das restantes propriedades como exercício.

iv) Sejam $m, n, p \in \mathbb{N}$, $A = [a_{ij}]_{m \times p}$ e $B = [b_{ij}]_{p \times n}$. Então $(AB)^T$ e B^TA^T são ambas matrizes do tipo $n \times m$. Além disso, para quaisquer $i \in \{1, \ldots, n\}$ e $j \in \{1, \ldots, m\}$, tem-se

$$(B^T A^T)_{ij} = \sum_{k=1}^n b_{ki} a_{jk} = \sum_{k=1}^n a_{jk} b_{ki} = (AB)_{ji} = ((AB)^T)_{ij}.$$

$$Logo, (AB)^T = B^T A^T.$$

Teorema

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A é uma matriz invertível, então A^T é invertível e $(A^T)^{-1} = (A^{-1})^T$.

Demonstração.

Pela alínea iv) da proposição anterior, tem-se

$$(A^{-1})^T A^T = (AA^{-1})^T = (I_n)^T = I_n \quad \epsilon$$

 $A^T (A^{-1})^T = (A^{-1}A)^T = (I_n)^T = I_n.$

Logo, a matriz A^T é invertível e $(A^T)^{-1} = (A^{-1})^T$.

Definição

Seja $n \in \mathbb{N}$. Uma matriz quadrada $A \in \mathcal{M}_n(\mathbb{K})$ diz-se:

- i) **simétrica** se $A^T = A$;
- ii) antissimétrica se $A^T = -A$.

Exemplo

$$A \ matriz \ A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} \ \acute{e} \ uma \ matriz \ sim\'etrica, \ mas \ a \ matriz$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 7 & 5 & 6 \end{bmatrix} \ n\~ao \ \acute{e}, \ uma \ vez \ que \ os \ elementos \ b_{13} \ e \ b_{31} \ n\~ao \ s\~ao$$

50

Teorema

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Então

- i) $A + A^T$ é uma matriz simétrica.
- ii) $A A^T$ é uma matriz antissimétrica.

Demonstração.

Pelas alíneas i) e ii) da Proposição 1.46, tem-se

$$(A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = A + A^{T},$$

 $(A - A^{T})^{T} = A^{T} - (A^{T})^{T} = A^{T} - A = -(A - A^{T}).$

Logo, $A + A^T$ é uma matriz simétrica e $A - A^T$ é uma matriz antissimétrica.

Teorema

Seja $n \in \mathbb{N}$. Toda a matriz $A \in \mathcal{M}_n(\mathbb{K})$ pode ser expressa como a soma de uma matriz simétrica e de uma matriz antissimétrica.

Demonstração.

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Tem-se

$$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T}).$$

Pela proposição anterior, $A + A^T$ é uma matriz simétrica e $A - A^T$ é uma matriz anstissimétrica. Logo, $\frac{1}{2}(A + A^T)$ é uma matriz simétrica e $\frac{1}{2}(A - A)^T$ é uma matriz antissimétrica. Portanto, toda a matriz A é a soma de matriz simétrica e de uma matriz antissimétrica.

Teorema

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A é uma matriz simétrica e invertível, então A^{-1} é uma matriz simétrica.

Demonstração.

Se A é uma matriz simétrica, temos $A^T = A$. Então,

$$(A^{-1})^T = (A^T)^{-1} = A^{-1}$$

e, portanto, A^{-1} é uma matriz simétrica.

Definição

Seja $n \in \mathbb{N}$. Uma matriz $A \in \mathcal{M}_n(\mathbb{K})$ diz-se **ortogonal** se $AA^T = I_n = A^T A$.

Observação: Se A é uma matriz ortogonal, então A é uma matriz invertível e $A^{-1} = A^T$.

Exemplo

A matriz
$$A = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$
 é uma matriz ortogonal, pois

$$AA^{T} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2}$$

е

$$A^{T}A = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2}.$$

Teorema

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A é uma matriz ortogonal, então, A^{-1} é também uma matriz ortogonal.

Demonstração.

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A é uma matriz ortogonal, temos

$$AA^T = A^TA = I_n.$$

Então

$$A^{-1}(A^{-1})^T = A^{-1}(A^T)^{-1} = (A^T A)^{-1} = I_n^{-1} = I_n$$

е

$$(A^{-1})^T A^{-1} = (A^T)^{-1} A^{-1} = (AA^T)^{-1} = I_n^{-1} = I_n,$$

pelo que A^{-1} é também uma matriz ortogonal.

Definição

Sejam $m, n \in \mathbb{N}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se **conjugada de** A, e representa-se por \overline{A} , à matriz de $\mathcal{M}_{m \times n}(\mathbb{K})$ tal que, para cada $i \in \{1, ..., m\}$ e $j \in \{1, ..., n\}$, $(\overline{A})_{ij} = \overline{A_{ij}}$. Define-se a **transconjugada** de A, e representa-se por A^* , como sendo a transposta da conjugada de A.

Observação: Se $\mathbb{K} = \mathbb{R}$, tem-se $\overline{A} = A$ e, portanto, $A^* = A^T$.

Exemplo

Seja

$$A = \left[\begin{array}{cccc} 1 - i & 0 & 3 \\ 2 + 3i & 4 & i \\ 0 & 0 & 6 - 4i \end{array} \right].$$

Então

$$\overline{A} = \begin{bmatrix} 1+i & 0 & 3 \\ 0 & 4 & -i \\ 0 & 0 & 6+4i \end{bmatrix} \quad e \quad A^* = \begin{bmatrix} 1+i & 2-3i & 0 \\ 2-3i & 4 & 0 \\ 3 & -i & 6+4i \end{bmatrix}.$$

Teorema

Sejam A e B matrizes sobre \mathbb{K} e $\alpha \in \mathbb{K}$. Então, sempre que as operações seguintes estejam definidas, tem-se:

- i) $(A^*)^* = A$;
- ii) $(A+B)^* = A^* + B^*$;
- iii) $(\alpha A)^* = \overline{\alpha} A^*$;
- iv) $(AB)^* = B^*A^*$;
- v) $(A^k)^* = (A^*)^k$, onde $k \in \mathbb{N}$.

Definição

Seja $n \in \mathbb{N}$. Uma matriz $A \in \mathcal{M}_n(\mathbb{K})$ diz-se **hermítica** se $A^* = A$.

Exemplo

$$A \text{ matriz } A = \begin{bmatrix} 1 & 0 & 2+3i \\ 0 & 2 & -i \\ 2-3i & i & 6 \end{bmatrix} \text{ \'e uma matriz herm\'itica}.$$

Definição

Seja $n \in \mathbb{N}$. Uma matriz $A \in \mathcal{M}_n(\mathbb{K})$ diz-se **unitária** se $AA^* = I_n = A^*A$.

Observação: Se A é uma matriz unitária, então A é uma matriz invertível e $A^{-1}=A^*$.

Teorema

Sejam $n \in \mathbb{N}$ e A, $B \in \mathcal{M}_n(\mathbb{K})$. Então

- i) Se A é uma matriz unitária, então A^{-1} é uma matriz unitária.
- ii) Se A e B são matrizes unitárias, então AB é uma matriz unitária.