LiDAR-Based Robot Pose Estimation with Deep Learning

Dennis Lindt, Svenja Schuirmann, Sven Schultze

Robotics 2

October 23rd, 2020

Introduction Project Group MyRob

Related Work
Indoor LiDAR relocalization based on Deep Learning using a 3D Model

Localization based on 3D Model

- Real and Synthetic LiDAR Data
- Trained with known locations [1]

Real lidar point cloud (top) and synthetic point cloud (bottom) [Zhao et al., 2020]

Related Work

- Optical sensors (LiDAR)
- Odometry
- Generates a Map
- Estimates position with map and last location
- GMapping, Lama [2]

Map generated with Gmapping in Gazebo

Concept Our Approach

Concept Gazebo Dataset Generator

Convolution [9, 64]

Concept Architecture: Convolution Block

[2.42 2.39 2.38 2.40 2.41 ... 2.44 2.41 2.41 2.39 2.38]

Cyclic Padding: $\left|\frac{9}{2}\right| = 4$

2.41 2.41 2.39 2.38 2.42 2.39 2.38 2.40 2.41 ... 2.44 2.41 2.41 2.39 2.38 2.42 2.39 2.38 2.40]

Kernel of size 9

Convolution: 64 Kernels

Tensor with shape (360, 64)

Batch Normalization

Activation: ReLU

Concept Architectures

Architecture A

857218 params

Architecture B

652946 params

Concept Architecture Performance Comparison

Concept Architecture Performance Comparison

	Mean Squared Error	Mean Average Error	Mean Absolute Percentage Error	Average Error
Architecture A	0.0210	0.0332	4.3%	5.2cm
Architecture B	0.0006	0.0183	2.9%	2.8cm

Analysis Problematic Regions

Analysis CNN Activations

Analysis CNN Activations

Evaluation
Performance Testing with different Layouts

Sample Random Layout with Random Robot Position

Evaluation

Performance Testing with different Layouts

3 Room Apartment

7 Room Apartment

Evaluation

Performance Testing with different Layouts

Mean Absolute Percentage Error

orange: large apartment (7 room) small apartment (3 room) red:

EvaluationPerformance Testing with different Layouts

Sample Layout with Obstacles

EvaluationPerformance Testing with different Layouts

Mean Absolute Percentage Error of Apartment with Obstacles

Testdata blue:

orange: Trainingsdata

Application Combination with GMapping

Discussion Use-Cases

Combination with SLAM

- Determine initial position
- Detect errors (e.g. faulty odometry, drifting)

Stateless Localization

- Reliable: errors do not add up
- No odometry required
- Low computation cost
- Problems
 - Setup is complicated and expensive in real world
 - Effected by dynamic changes in environment (e.g. moved furniture)

Conclusion Summary

- Dataset generated in Gazebo
- Model architecture based on ResNet [3]
- Trained with LiDAR data
- Compared networks against each other
- Evaluated with different techniques
 - Problematic regions
 - CNN Activations
 - Apartments of different complexity

Conclusion Future Work

Real-world application

- Different types of LiDAR
- Indoor Positioning System (e.g. Bluetooth Beacons) to create dataset
- Orientation-invariant estimation
- Evaluate robustness of model against perturbations
 - e.g. humans moving around in the apartment

Any Questions?

References Bibliography

- 1. Zhao, H., Acharya, D., Tomko, M., & Khoshelham, K. (2020). Indoor LIDAR Relocalization Based on Deep Learning Using a 3d Model. *The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, 43, 541-547.
- 2. Scott Martin. (2019). What Is Simultaneous Localization and Mapping?SLAM is a commonly used method to help robots map areas and findtheir way. https://blogs.nvidia.com/blog/2019/07/25/what-is-simultaneous-localization-and-mapping-nvidia-jetson-isaac-sdk/
- 3. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).