Neutrino Masses in an Extended Gauge Model with E₆ Particle Content

Ernest Ma

Department of Physics University of California Riverside, California 92521

Abstract

Naturally light singlet neutrinos which mix with the usual doublet neutrinos are possible if the supersymmetric standard gauge model is extended to include a specific additional U(1) factor derivable from an E_6 decomposition. The low-energy particle content of the model is limited to the fundamental $\mathbf{27}$ representations of E_6 .

The three known neutrinos ν_e , ν_μ , and ν_τ are each a component of an $SU(2) \times U(1)$ doublet, pairing with the left-handed projections of the charged leptons e, μ , and τ respectively. They are generally considered to be Majorana fermions with very small masses arising from the so-called "seesaw" mechanism.[1] This means that there should be three heavy neutral fermion singlets $N_{1,2,3}$ which also couple to $\nu_{e,\mu,\tau}$ through the usual Higgs doublet $\Phi = (\phi^+, \phi^0)$ of the standard model. As ϕ^0 acquires a nonzero vev (vacuum expectation value), a Dirac mass term m_D linking ν and N is obtained, yielding the well-known result $m_{\nu} \simeq m_D^2/m_N$. The most natural origin of $N_{1,2,3}$ is that associated with a left-right model where they can be identified as the right-handed counterparts of the left-handed neutrinos. As the $SU(2)_L \times SU(2)_R \times U(1)$ gauge symmetry breaks down to the standard $SU(2) \times U(1)$, a large m_N may be obtained.

Whereas the usual seesaw mechanism is based on a 2×2 matrix

$$\mathcal{M}_2 = \begin{pmatrix} 0 & m_D \\ m_D & m_N \end{pmatrix} \tag{1}$$

with the doublet neutrino getting a small mass, there is also the simple variation where it is the <u>singlet</u> neutrino which gets a small mass. Consider the left-handed fermion doublets (ν_E, E) and (E^c, N_E^c) transforming as (2, -1/2) and (2,1/2) respectively under the standard $SU(2) \times U(1)$. Add a neutral fermion singlet S and forbid it to have a Majorana mass term by an appropriate symmetry. The 3×3 mass matrix spanning ν_E , N_E^c , and S may then be given by

$$\mathcal{M}_3 = \begin{pmatrix} 0 & m_E & m_1 \\ m_E & 0 & m_2 \\ m_1 & m_2 & 0 \end{pmatrix}, \tag{2}$$

where $m_{1,2}$ are proportional to the *vev* of an appropriate Higgs doublet and m_E is now an allowed gauge-invariant mass. For $m_{1,2} \ll m_E$, we then have $m_S \simeq 2m_1m_2/m_E$. If \mathcal{M}_3 is also linked to \mathcal{M}_2 , then the light singlet S will also mix with the usual doublet neutrinos.

If a light singlet neutrino exists in addition to the three doublet neutrinos, a compre-

hensive picture of neutrino oscillations and hot dark matter becomes possible.[2] This is especially so because of the recent results of the LSND (Liquid Scintillator Neutrino Detector) experiment[3] which may be interpreted as ν_{μ} oscillating to ν_{e} with a Δm^{2} of a few eV². To avoid the severe constraint on the effective number of neutrinos from big-bang nucleosynthesis,[4] the singlet neutrino may be used only to account for the solar data by mixing with ν_{e} in the matter-enhanced small-angle solution or the long-wavelength large-angle solution.

A good model for a light singlet neutrino should have an appropriate symmetry which forbids it to have a Majorana mass term, as already noted. It is of course easy to impose such a symmetry, but for it to be natural, it should come from a more fundamental framework, such as grand unification or string theory for example. As it turns out, Eq. (2) is a natural consequence of the superstring-inspired E_6 model.[5] Unfortunately, the corresponding m_N of Eq. (1) is zero there.[6] This means that $\nu_{e,\mu,\tau}$ combine with $N_{1,2,3}$ to form Dirac neutrinos and their small masses are unexplained. On the other hand, gravitationally induced non-renormalizable interactions[7] may produce large Majorana mass terms for both N and S, in which case $\nu_{e,\mu,\tau}$ are again naturally light by virtue of the seesaw mechanism, but they will be the only ones.

The low-energy gauge symmetry of a superstring-inspired E_6 model is often taken to be $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_\eta$, because the flux mechanism of symmetry breaking in string theory involves the adjoint representation and it is not possible[5] to break E_6 all the way down to the gauge symmetry of the standard model. If only one extra U(1) factor is present, then it is necessarily $U(1)_\eta$, according to which both N and S transform nontrivially. They are thus protected by this gauge symmetry from acquiring large Majorana masses. For the nonrenormalizable mechanism of Ref. [7] to work, the $U(1)_\eta$ must also be broken at an intermediate scale by vev's along the N and S directions. To obtain a light neutrino doublet

with Eq. (1) as well as a light neutrino singlet with Eq. (2), the idea then is to replace $U(1)_{\eta}$ with another U(1) under which N is trivial but S is not, so that only the former may acquire a large Majorana mass. In the following this extended gauge model is described.

Consider the maximal subgroup $SU(3)_C \times SU(3)_L \times SU(3)_R$ of E_6 . The fundamental **27** representation of E_6 is then given by

$$\mathbf{27} = (3,3,1) + (3^*,1,3^*) + (1,3^*,3). \tag{3}$$

Under the decompositions $SU(3)_L \to SU(2)_L \times U(1)_{Y_L}$ and $SU(3)_R \to U(1)_{T_{3R}} \times U(1)_{Y_R}$, the individual left-handed fermionic components are defined as follows.[8]

$$(u,d) \sim (3; 2, \frac{1}{6}; 0, 0),$$
 (4)

$$(\nu_e, e) \sim (1; 2, -\frac{1}{6}; 0, -\frac{1}{3}),$$
 (5)

$$u^c \sim (3^*; 0, 0; -\frac{1}{2}, -\frac{1}{6}),$$
 (6)

$$d^c \sim (3^*; 0, 0; \frac{1}{2}, -\frac{1}{6}),$$
 (7)

$$e^c \sim (1; 0, \frac{1}{3}; \frac{1}{2}, \frac{1}{6}),$$
 (8)

$$N \sim (1; 0, \frac{1}{3}; -\frac{1}{2}, \frac{1}{6}),$$
 (9)

$$h \sim (3; 0, -\frac{1}{3}; 0, 0),$$
 (10)

$$h^c \sim (3^*; 0, 0; 0, \frac{1}{3}),$$
 (11)

$$(\nu_E, E) \sim (1; 2, -\frac{1}{6}; -\frac{1}{2}, \frac{1}{6}),$$
 (12)

$$(E^c, N_E^c) \sim (1; 2, -\frac{1}{6}; \frac{1}{2}, \frac{1}{6}),$$
 (13)

$$S \sim (1; 0, \frac{1}{3}; 0, -\frac{1}{3}).$$
 (14)

Note that the electric charge is given here by

$$Q = T_{3L} + Y_L + T_{3R} + Y_R, (15)$$

and there are three families of these fermions and their bosonic superpartners.

Consider now the SO(10) decomposition of the 27 representation:

$$27 = 16 + 10 + 1. \tag{16}$$

Two options are available. The conventional one (Option A) is

$$\mathbf{16} = (u,d) + u^c + e^c + d^c + (\nu_e, e) + N, \tag{17}$$

$$\mathbf{10} = h + (E^c, N_E^c) + h^c + (\nu_E, E), \tag{18}$$

$$1 = S. (19)$$

The alternative one (Option B) is[9]

$$\mathbf{16} = (u,d) + u^c + e^c + h^c + (\nu_E, E) + S, \tag{20}$$

$$\mathbf{10} = h + (E^c, N_E^c) + d^c + (\nu_e, e), \tag{21}$$

$$1 = N. (22)$$

The latter is obtained from the former by the exchange[9]

$$d^c \leftrightarrow h^c, \quad (\nu_e, e) \leftrightarrow (\nu_E, E), \quad N \leftrightarrow S,$$
 (23)

so that $SU(3)_R$ is broken along a different direction, namely that given by

$$T'_{3R} = \frac{1}{2}T_{3R} + \frac{3}{2}Y_R, \quad Y'_R = \frac{1}{2}T_{3R} - \frac{1}{2}Y_R.$$
 (24)

As far as the standard $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge symmetry is concerned, the two options are identical because

$$T'_{3R} + Y'_R = T_{3R} + Y_R = Q - T_{3L} - Y_L. (25)$$

In the $U(1)_{\eta}$ extension, it can also be shown that there is no difference because Q_{η} is proportional to $T_{3L} + 5Y_L - Q$.[8] Furthermore, the same Yukawa terms are allowed by either option,

independent of any additional U(1). This is easily seen by expressing the **27** representation in terms of its (SO(10), SU(5)) components:

$$27 = (16, 10) + (16, 5^*) + (16, 1) + (10, 5) + (10, 5^*) + (1, 1).$$
 (26)

The allowed terms must then be of the form (16,10)(16,10)(10,5), $(16,10)(16,5^*)(10,5^*)$, $(10,5)(16,5^*)(16,1)$, and $(10,5)(10,5^*)(1,1)$, which remain the same if $(16,5^*)$ and $(10,5^*)$ are exchanged together with (16,1) and (1,1), in accordance with Eq. (23).

Two U(1) factors are conventionally defined in Option A by the symmetry breaking chain

$$E_6 \to SO(10) \times U(1)_{\psi}, \quad SO(10) \to SU(5) \times U(1)_{\chi}.$$
 (27)

If the extended gauge model contains only one additional U(1) factor, it must be a linear combination of $U(1)_{\psi}$ and $U(1)_{\chi}$. Let

$$Q(\alpha) = Q_{\psi} \cos \alpha + Q_{\chi} \sin \alpha, \tag{28}$$

then the $U(1)_{\eta}$ from flux breaking corresponds to $\tan \alpha = \sqrt{3/5}$. On the other hand, the U(1) factor for which N is trivial is clearly that which would be called $U(1)_{\chi}$ in Option B. This turns out to be given by $\tan \alpha = -\sqrt{1/15}$. To obtain this factor which will be called $U(1)_N$ from now on, the flux breaking of E_6 must be augmented by the usual Higgs mechanism, presumably at near the same scale. Consider then a pair of superheavy 27 and 27* representations. Assume that they develop vev's along the N and N^* directions respectively. Then E_6 is broken down to the SO(10) of Option B. Assume also that the flux mechanism breaks $SU(3)_L$ to $SU(2)_L \times U(1)_{Y_L}$, i.e. along the (1,0) direction, and $SU(3)_R$ to $U(1)_{T_{3R}} \times U(1)_{Y_R}$, i.e. along the (3,0) direction. Then the resulting gauge symmetry is exactly $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_N$ with

$$Q_N = 6Y_L + T_{3R} - 9Y_R. (29)$$

The individual particle assignments under $U(1)_N$ are then

$$(u,d), u^c, e^c : 1,$$
 (30)

$$d^c, (\nu_e, e) : 2,$$
 (31)

$$h, (E^c, N_E^c) : -2,$$
 (32)

$$h^c, (\nu_E, E) : -3,$$
 (33)

$$S : 5, (34)$$

$$N : 0.$$
 (35)

As in any other superstring-inspired E_6 model, a discrete symmetry must be imposed to eliminate rapid proton decay.[10] Here a Z_2 symmetry is assumed where all superfields are odd except one copy each of (ν_E, E) , (E^c, N_E^c) , and S, which are even. Consequently, the allowed cubic terms of the superpotential are $u^c(uN_E^c - dE^c)$, $d^c(uE - d\nu_E)$, $e^c(\nu_e E - e\nu_E)$, $S(EE^c - \nu_E N_E^c)$, Shh^c , and $N(\nu_e N_E^c - eE^c)$. As the scalar components of the even superfields ν_E , N_E^c , and S acquire vev's, all particles obtain masses in the usual way. In addition, since N is now a gauge singlet, it may acquire a large Majorana mass from nonrenormalizable interactions.[7] The quadratic terms $d^c h$ and $\nu_e N_E^c - eE^c$ are also gauge singlets, and allowed by the discrete Z_2 symmetry. [The latter term is of course restricted to the two odd (E^c, N_E^c) doublets.] They are soft terms which reduce the symmetries of the Lagrangian and may thus be assumed to be naturally small.[11] Their origin is presumably also from nonrenormalizable interactions. Note that both baryon number and lepton number remain conserved.

Consider now the 5×5 mass matrix spanning ν_e , N, ν_E , N_E^c , and S. It is exactly given by combining Eq. (1) with Eq. (2) and adding a $\nu_e N_E^c$ term:

$$\mathcal{M}_{5} = \begin{pmatrix} 0 & m_{D} & 0 & m_{3} & 0 \\ m_{D} & m_{N} & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{E} & m_{1} \\ m_{3} & 0 & m_{E} & 0 & m_{2} \\ 0 & 0 & m_{1} & m_{2} & 0 \end{pmatrix}, \tag{36}$$

where m_D and m_1 come from $\langle \tilde{N}_E^c \rangle$, m_2 from $\langle \tilde{\nu}_E \rangle$, and m_E from $\langle \tilde{S} \rangle$. The S fermion corresponding to the last vev is even under Z_2 and it becomes massive because $U(1)_N$ is broken by $\langle \tilde{S} \rangle$ through which a mass term is generated, linking it with the corresponding gauge fermion. The two odd S's remain light and are naturally suited to be light singlet neutrinos. For illustration, let $m_1 = m_2 = m_e = 0.5$ MeV and $m_E = 2 \times 10^5$ GeV, then $m_S \simeq 2m_1m_2/m_E = 2.5 \times 10^{-3}$ eV. Assuming that m_{ν_e} is much smaller, then $\nu_e - \nu_S$ oscillations occur with $\Delta m^2 \simeq 6 \times 10^{-6}$ eV² which is in the right range to account for the solar data. The mixing angle between ν_e and ν_S is given by $m_3/2m_2$ and should be about 0.04 for $\sin^2 2\theta \simeq 6 \times 10^{-3}$.

In conclusion, a supersymmetric extended gauge model based on $SU(3)_C \times SU(2)_L \times$ $U(1)_Y \times U(1)_N$ has been proposed. This gauge symmetry is derivable from an E_6 superstring model through a combination of flux breaking and the usual Higgs mechanism with a pair of superheavy 27 and 27* representations. Its particle content consists of three supermultiplets belonging to the fundamental 27 representation of E_6 as listed in Eqs. (4) to (14) and Q_N is given by Eq. (29). The three N singlets are trivial under $U(1)_N$ and naturally acquire large Majorana masses from gravitationally induced nonrenormalizable interactions. One of the S singlets has a vev which breaks $U(1)_N$ at an unspecified scale and renders all remaining particles heavy except for those of the supersymmetric standard model and the other two S singlets. At and below the electroweak energy scale, this model differs from the minimal supersymmetric standard model (MSSM) in the following important ways. (1) The three known doublet neutrinos ν_e , ν_μ , and ν_τ have small Majorana masses instead of being massless as in the MSSM. (2) Two light singlet neutrinos exist and they may have small mixings with ν_e, ν_μ , and ν_τ . This allows for a comprehensive understanding of neutrino oscillations as well as hot dark matter in the face of all available data. (3) The scalar partners of one set of the (ν_E, E) and (E^c, N_E^c) superfields are identified with the two usual Higgs doublets Φ_1 and Φ_2 of the MSSM. However, the Higgs potentials are different because the superpotential here has the cubic term $(\nu_E N_E^c - E E^c) S$ whereas the MSSM has the quadratic term $\phi_1^0 \phi_2^0 - \phi_1^- \phi_2^+$. Hence the corresponding higgsino mass is bounded here by $\langle \tilde{S} \rangle$ whereas in the MSSM, there is no understanding as to why this mass should be much smaller than the unification scale of 10^{16} GeV or the Planck scale of 10^{19} GeV. The Higgs potential of this model has only two doublets at the electroweak energy scale, but because of the above-mentioned cubic term in the superpotential, it differs from that of the MSSM by one extra coupling. Previous such examples have been given for other gauge extensions.[12]

ACKNOWLEDGEMENT

I thank A. Mendez for hospitality and a discussion at the Univ. Autonoma de Barcelona which led to this investigation. This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837.

References

- [1] T. Yanagida, in *Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe*, Tsukuba, Ibaraki, Japan, 1979, edited by O. Sawada and A. Sugamoto (KEK Report No. 79-18, Tsukuba, Japan, 1979); M. Gell-Mann, P. Ramond, and R. Slansky, in *Supergravity*, Proceedings of the Workshop, Stony Brook, New York, 1979, edited by P. van Nieuwenhuizen and D. Z. Freedman (North-Holland, Amsterdam, 1979), p. 315.
- [2] J. T. Peltoniemi and J. W. F. Valle, Nucl. Phys. B406, 409 (1993); D. O. Caldwell and R. N. Mohapatra, Phys. Rev. D 48, 3259 (1993); J. R. Primack, J. Holtzman, A. Klypin, and D. O. Caldwell, Phys. Rev. Lett. 74, 2160 (1995); E. Ma and P. Roy, Univ.

- of California, Riverside Report No. UCRHEP-T145 (April 1995); E. J. Chun, A. S. Joshipura, and A. Yu. Smirnov, hep-ph/9505275; G. Berezhiani and R. N. Mohapatra, hep-ph/9505385.
- [3] C. Athanassopoulos *et al.*, Los Alamos National Laboratory Report No. LA-UR-95-1238 (April 1995).
- [4] X. Shi, D. N. Schramm, and B. D. Fields, Phys. Rev. D 48, 2563 (1993); K. Enqvist,
 K. Kainulainen, and M. Thomson, Nucl. Phys. B373, 498 (1992).
- [5] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B258, 46 (1985); J. L. Hewett and T. G. Rizzo, Phys. Rept. 183, 193 (1989).
- [6] E. Ma, Phys. Lett. **B191**, 287 (1987).
- [7] S. Nandi and U. Sarkar, Phys. Rev. Lett. **56**, 564 (1986).
- [8] V. Barger, N. G. Deshpande, and K. Whisnant, Phys. Rev. Lett. 56, 30 (1986); Phys. Rev. D 33, 1912 (1986).
- [9] E. Ma, Phys. Rev. D **36**, 274 (1987).
- [10] E. Ma, Phys. Rev. Lett. **60**, 1363 (1988).
- [11] G. 't Hooft, in *Recent Developments in Gauge Theories*, Proc. of the NATO Advanced Study Institutes, Ser. B, Vol. 59, edited by G. 't Hooft *et al.* (Plenum, New York, 1980).
- [12] E. Ma and D. Ng, Phys. Rev. D 49, 6164 (1994); T. V. Duong and E. Ma, Phys. Lett.
 B316, 307 (1993); J. Phys. G21, 159 (1995).