WHAT IS CLAIMED IS:

1	1. A method for generating a ring map for optical network applications,
2	the method comprising:
3	sending a first discovery message to a first node through a portion of an
4	optical network, the first node corresponding to a first node identification and a first
5	predetermined identification, the first discovery message including at least a source node
6	identification associated with a source node, a source predetermined identification associated
7	with the source node, and a first ring connectivity map;
8	processing at least information associated with the source node identification
9	and the first node identification;
10	if the source node identification and the first node identification are different,
11	updating the first ring connectivity map;
12	if the source node identification and the first node identification are identical,
13	processing at least information associated with the source
14	predetermined identification and the first predetermined identification;
15	if the source predetermined identification and the first predetermined
16	identification are different, sending a first alarm message indicating multiple assignments of
17	the source node identification.
1	2. The method of claim 1, and further comprising:
2	if the source node identification and the first node identification are identical
3	and if the source predetermined identification and the first predetermined identification are
4	identical, storing a first ring map including at least information associated with the first ring
5	connectivity map at the source node.
J	· · · · · · · · · · · · · · · · · · ·
1	3. The method of claim 2, and further comprising:
2	sending a validation message to a second node for validating the first ring
3	map, the validation message including at least information associated with the first ring map.
1	A The most of of claim 1 and foother commissions
1	4. The method of claim 1, and further comprising:
2	if the first node includes a second ring map,
3	processing at least information associated with the second ring map
4	and the source node identification;

5	if the source node identification is not present in the second ring map,
6	sending a first initialization message.
1	5. The method of claim 4, and further comprising:
2	if the first node includes the second ring map and if the source node
3	identification is absent from the second ring map, sending a second discovery message.
1	6. The method of claim 1 wherein the first node is the same as the source
2	node.
1	7. The method of claim 1 wherein the first node is different from the
2	source node.
1	8. The method of claim 1 wherein updating the first ring connectivity
2	map comprises adding the first node identification to the first ring connectivity map.
1	9. The method of claim 1, and further comprising:
2	if the source node identification and the first node identification are different,
3	increasing a number of nodes by one, the number of nodes stored in the first discovery
4	message.
1	10. The method of claim 1 wherein the first predetermined identification is
2	a first unique identification, and the source predetermined identification is a source unique
3	identification.
1	11. A method for validating a ring map for optical network applications,
2	the method comprising:
3	sending a first validation message from a source node through at least a
4	portion of an optical network, the source node associated with a first ring map, the first
5	validation message including at least a source node identification associated with the source
6	node and a first ring connectivity map associated with the source node, the first ring map
7	including at least information associated with the source node identification and the first ring
8	connectivity map;
9	receiving the first validation message at a first node directly from the source
10	node, the first node associated with a second ring map;

11	processing at least information associated with the source node identification
12	and the second ring map;
13	if the source node identification is not associated with a predetermined node,
14	sending a first initialization message;
15	if the source node identification is associated with the predetermined node,
16	processing at least information associated with the first ring map and
17	the second ring map;
18	if the first ring map and the second ring map are inconsistent, sending a
19	first alarm message.
1	12. The method of claim 11 wherein processing at least information
2	associated with the first ring map and the second ring map comprises:
3	determining whether the mth node identification in the first ring map is the
4	same as the (m-1)th node identification or the (m+1)th node identification in the second ring
5	map, m being an integer.
1	13. The method of claim 12 wherein processing at least information
2	associated with the first ring map and the second ring map further comprises:
3	if the source node identification is the second node identification in the second
4	ring map, determining whether the mth node identification in the first ring map is the same as
5	the (m+1)th node identification in the second ring map;
6	if the source node identification is the last node identification in the second
7	ring map, determining whether the mth node identification in the first ring map is the same as
8	the (m-1)th node identification in the second ring map.
1	14. The method of claim 11, and further comprising:
2	receiving a first discovery message at the source node, the first discovery
3	message including at least a second node identification associated with a second node;
4	processing at least information associated with the second node identification
5	and the first ring map;
6	if the second node identification is absent from the first ring map,
7	sending a second discovery message for generating a third ring map at
8	the source node;
Q	sending a second initialization message

l	15. The method of claim 11 wherein the first node is the nearest node to
2	the source node in a ring in a clockwise direction.
	16. The method of claim 11 wherein the first node is the nearest node to
1	
2	the source node in a ring in a counterclockwise direction.
1	17. The method of claim 11, and further comprising if the source node
2	identification is a node identification other than the second node identification or the last
3	node identification in the second ring map, sending a first discovery message for generating a
4	third ring map at the first node.
1	18. A method for processing a discovery message for optical network
1	
2	applications, the method comprising:
3	sending a first discovery message to a first node through a portion of an
4	optical network, the first node associated with a first node identification and a first
5	predetermined identification, the first discovery message including at least a source node
6	identification associated with a source node, a source predetermined identification associated
7	with the source node, and a first ring connectivity map;
8	if the first node includes a second ring map,
9	processing at least information associated with the second ring map
0	and the source node identification;
1	if the source node identification is absent from the second ring map,
12	sending a first initialization message;
13	if the first node is free from the second ring map,
14	processing at least information associated with the source node
15	identification and the first node identification;
16	if the source node identification and the first node identification are
17	different, updating the first ring connectivity map and sending the first discovery message to
18	a second node;
19	if the source node identification and the first node identification are
20	identical,
21	processing at least information associated with the source
22	predetermined identification and the first predetermined identification;

23	if the source predetermined identification and the first
24	predetermined identification are different, sending a first alarm message indicating multiple
25	assignments of the source node identification.
1	19. The method of claim 18, and further comprising:
2	if the source node identification and the first node identification are identical
3	and if the source predetermined identification and the first predetermined identification are
4	identical, storing at least information associated with the first ring connectivity map at the
5	source node.
1	20. The method of claim 18 wherein updating the first ring connectivity
2	map comprises adding the first node identification to the first ring connectivity map.
1	21. The method of claim 18 wherein the first predetermined identification
2	is a first unique identification, and the source predetermined identification is a source unique
3	identification.
1	22. A method for processing a validation message for optical network
2	applications, the method comprising:
3	sending a first validation message from a source node through at least a
4	portion of an optical network, the source node associated with a first ring map, the first
5	validation message including at least a source node identification associated with the source
6	node and a first ring connectivity map associated with the source node, the first ring map
7	including at least information associated with the source node identification and the first ring
8	connectivity map;
9	receiving the first validation message at a first node directly from the source
10	node;
11	if the first node includes a second ring map;
12	processing at least information associated with the source node
13	identification and the second ring map;
14	if the source node identification is not associated with a predetermined
15	node, sending a first initialization message;
16	if the source node identification is associated with the predetermined
17	node,

18	processing at least information associated with the first ring
19	map and the second ring map;
20	if the first ring map and the second ring map are inconsistent,
21	sending a first alarm message.
4	The weeth of a falcing 22, and frusther communicing if the first node
1	23. The method of claim 22, and further comprising if the first node
2	includes the second ring map and if the source node identification is not associated with the
3	predetermined node, sending a first discovery message.
1	24. An apparatus for generating a ring map for optical network
2	applications, the apparatus comprising:
3	a message receiver configured to receive a first discovery message, the first
4	discovery message including at least a first node identification associated with a first node, a
5	first predetermined identification associated with the first node, and a first ring connectivity
6	map;
7	a message sender configured to send an alarm message and send a second
8	discovery message, the second discovery message including at least a second node
9	identification associated with a second node, a second predetermined identification associated
10	with the second node, and a second ring connectivity map;
11	a memory system configured to store at least information associated with a
12	ring map;
13	a processing system coupled to the message receiver, the message sender, and
14	the memory system and associated with a third node identification and a third predetermined
15	identification;
16	wherein the processing system is configured to
17	process at least information associated with the first node identification
18	and the third node identification;
19	if the first node identification and the third node identification are
20	different, update the first ring connectivity map;
21	if the first node identification and the third node identification are
22	identical,
23	processing at least information associated with the first
24	predetermined identification and the third predetermined identification;

25	if the first predetermined identification and the third
26	predetermined identification are different, instruct the message sender to send the alarm
27	message indicating multiple assignments of the first node identification.
1	25. The system of claim 24 wherein the second ring connectivity map is
2	the updated first ring connectivity map.
1	26. The system of claim 25 wherein the second node identification is the
2	same as the first node identification, and the second predetermined identification is the same
3	as the first predetermined identification.
1	27. The apparatus of claim 24 wherein the processing system is further
2	configured to store the ring map in the memory system if the first node identification and the
3	third node identification are identical and if the first predetermined identification and the
4	third predetermined identification are identical, the ring map including information associated
5	with the first ring connectivity map and the first node identification.
1	28. An apparatus for validating a ring map for optical network
2	applications, the apparatus comprising:
3	a message receiver configured to receive a first validation message, the first
4	validation message including at least a first node identification associated with a first node
5	and a first ring connectivity map associated with the first node, the first validation message
6	associated with a first ring map including at least information associated with the first node
7	identification and the first ring connectivity map;
8	a message sender configured to
9	send an initialization message;
10	send an alarm message;
11	send a second validation message, the second validation message
12	including at least a second node identification associated with a second node and a second
13	ring connectivity map associated with the second node, the second validation message
14	associated with a second ring map including at least information associated with the second
15	node identification and the second ring connectivity map;
16	a memory system configured to store at least information associated with the
17	second ring map;

18	a processing system coupled to the message receiver, the message sender, and
19	the memory system and associated with the second node identification and the second
20	predetermined identification;
21	wherein the processing system is configured to
22	process at least information associated with the first node identification
23	and the second ring map;
24	if the first node identification is not associated with a predetermined
25	node, send the initialization message;
26	if the first node identification is associated with the predetermined
27	node,
28	process at least information associated with the first ring map
29	and the second ring map;
30	if the first ring map and the second ring map are inconsistent,
31	instruct the message sender to send the alarm message.
1	29. The apparatus of claim 28 wherein the predetermined node is one of
1	29. The apparatus of claim 26 wherein the predetermined hode is one of
2	the two nodes nearest to a second node associated with the second node identification and the
3	second predetermined identification.