Math 104 Spring 2016

Assignment #7

Nikhil Unni

- 13.4 Prove (iii) and (iv) in Discussion 13.7.
 - (iii) Given the union of open sets: $\bigcup \{E_i\}$, take any point in the union: $e \in \bigcup \{E_i\}$. We know that $e \in E_i$, for some i from the definition of set union. Since E_i is open, for some r > 0, $\{e_1 \in E : d(e, e_1) < r\} \subseteq E_i \subseteq \bigcup \{E_i\}$. Since any $e \in \bigcup \{E_i\}$ is interior to $\bigcup \{E_i\}$, $\bigcup \{E_i\}$ must be open.
 - (iv) Given the intersection of a finite number of open sets: $\bigcap_{i=1}^n \{E_i\}$, take any point $e \in \bigcap_{i=1}^n \{E_i\}$. So we have n "r" values, since e is interior to all $\{E_i\}$. If we pick $r = \min(r_1, \dots, r_n)$, which has to be an actual real number, since e is finite, then we see that $\{e_1 \in \bigcap_{i=1}^n \{E_i\} : d(e, e_1) < r\} \in \bigcap_{i=1}^n$.
- 13.5 (a) Verify one of DeMorgan's Laws for sets:

$$\bigcap \{S \setminus U : U \in \mathbb{U}\} = S \setminus \bigcup \{U : U \in \mathbb{U}\}\$$

For
$$S = [0, 1]$$
, $\mathbb{U} = \{[0, 0.25], [0.75, 1]\}$:
$$\bigcap \{S \setminus U : U \in \mathbb{U}\} = \{[0, 1] \setminus [0, 0.25]\} \cap \{[0, 1] \setminus [0.75, 1]\}$$
$$= (0.25, 1] \cap [0, 0.75) = (0.25, 0.75)$$
$$= [0, 1] \setminus ([0, 0.25] \cup [0.75, 1])$$
$$= S \setminus \bigcup \{U : U \in \mathbb{U}\}$$

(b) Show that the intersection of any collection of closed sets is a closed set.

A collection of closed sets is equivalent to a set of the total metric set S minus some open set U. So:

$$\bigcap \{C_i\} = \bigcap \{S \setminus U_i\}$$

From that DeMorgan Law:

$$= S \setminus \bigcup \{U_i\}$$

And the union of any collection of open sets is open from 13.4(iii). And S minus any open set is a closed set, meaning the intersection of any collection of closed sets is a closed set as well.

- 13.6 Prove Proposition 13.9.
 - (a) The set E is closed iff $E = E^-$.

Nikhil Unni 2

If $E = E^-$: since E^- is the intersection of all closed sets containing E, from 13.5b, we know that E^- is closed. So then E must be closed.

If E is closed: note that the intersection of all closed sets containing E now contains E itself. So we know that the intersection is the smallest such set, which we know has to be E itself. So by definition, if E is the intersection of all closed sets containing E, meaning that $E = E^-$.

- (b) The set E is closed iff it contains the limit of every convergent sequence of points in E.
- (c) An element is in E^- iff it is the limit of some sequence of points in E.
- (d) A point is in the boundary of E iff it belongs to the closure of both E and its complement.
- 13.10 Show that the interior of each of the following sets is the empty set.

For conciseness, I'll refer to each set as "E" in each problem.

(a) $\{\frac{1}{n}: n \in \mathbb{N}\}$

Suppose that the interior is not the empty set. Then there must be some $s_1 \in E$ s.t. for some r > 0, $\{s \in \mathbb{R} : |s_1 - s| < r\} \subseteq E$. We know that $s_1 = \frac{1}{n_1}$, for some n_0 . We also know the closest point to s_1 is $\frac{1}{n_1+1}$. The smallest r that will contain another point in E has to be $r = \left|\frac{1}{n_1} - \frac{1}{n_1+1}\right|$, but all points $s \in \mathbb{R}$ s.t. $\frac{1}{n_1+1} < s < \frac{1}{n_1}$ are **not** in E, and we know that there are an infinite number of such points from the Denseness of \mathbb{Q} theorem. Since there cannot be such a point, the interior is the empty set.

(b) Q, the set of rational numbers

Again, let's prove that there cannot exist a point interior to $\mathbb{Q} = E$. If we pick some $q \in \mathbb{Q}$, example the interval (q - r, q + r), for any r > 0. Since the set of all rationals in a nonempty interval is a strict subset of the interval itself, there must exist irrational numbers in the interval. Because there are elements in the neighborhood **not** in \mathbb{Q} , then, for any q, q cannot be interior to \mathbb{Q} , meaning the interior is the empty set.

- (c) The Cantor set in Example 5.
- 13.11 Let E be a subset of \mathbb{R}^k . Show that E is compact if and only if every sequence in E has a subsequence converging to a point in E.

If every sequence in E has a subsequence converging to a point in E: from 13.6b, we know that E is closed. Also, we know that if E was unbounded, then it would have to contain a sequence s.t. $\lim d(s_n, 0)$ diverges, and obviously would not be a convergant sequence. So if E is closed and unbounded, by Theorem 13.12, we know E is compact.

If E is compact: by theorem 13.12, E is bounded and closed. By Theorem 13.5, we know that any sequence (s_n) in E will converge. Since E is closed, every such convergence point must be inside E.

- 13.12 Let (S,d) be any metric space.
 - (a) Show that if E is a closed subject of a compact set F, then E is also compact.

Nikhil Unni 3

- (b) Show that the finite union of compact sets in S is compact.
- 13.13 Let E be a compact nonempty subset of \mathbb{R} . Show sup E and inf E belong to E.

We know that E is closed and bounded from Theorem 13.12, and so must contain a sequence that converges to $\sup E$ and $\inf E$. And since E is closed, from 13.6b, we know that the limits of every convergant sequence is in E itself, and thus $\sup E$, $\inf E \in E$.

13.14 Let E be a compact nonempty subset of \mathbb{R}^k , and let $\delta = \sup\{d(x,y) : x,y \in E\}$. Show E contains points x_0, y_0 such that $d(x_0, y_0) = \delta$.

Again, from Theorem 13.12, we know E is closed and bounded. Since E is closed and bounded, we know that set $\{d(x,y): x,y \in E\}$ is closed, and is bounded by δ . Since the set is closed and bounded, then δ must be an element of $\{d(x,y): x,y \in E\}$, meaning that there must exist some x_0,y_0 s.t. $d(x_0,y_0) = \delta$.