第三节、函数的极限

- 一、自变量趋于有限值时函数的极限
- 二、自变量趋于无穷大时函数的极限
- 三、函数极限的性质
- 四、无穷小与无穷大
- 五、无穷小的性质

一、自变量趋于有限值时函数的极限

问题: 函数 y = f(x) 在 $x \to x_0$ 的<u>过程中</u>,对应 函数值 f(x) 是否无限<u>趋近于</u>确定值 A ?

引例. 测量正方形面积. (真值: 边长为 x_0 ; 面积为A)

直接观测值 边长 *x*

间接观测值 面积 x^2 确定直接观测值精度 δ :

$$|x-x_0|<\delta$$

$$\uparrow$$

$$A$$

任给精度 ε , 要求 $|x^2 - A| < \varepsilon$

 $|f(x)-A| < \varepsilon$ 中的 ε 表示f(x)与A 的接近程度; $0 < |x-x_0| < \delta$ 表示 $x \to x_0$ 的过程.

点 x_0 的去心 δ 邻域, δ 体现x接近 x_0 程度.

1. f(x)在点 x_0 处的极限

定义1 设函数 f(x) 在点 x_0 的某去心邻域内有定义, 若 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists 0 < |x - x_0| < \delta$ 时, $f(x) - A | < \varepsilon$ 则称常数A 为函数 f(x) 当 $x \to x_0$ 时的极限,记作 $\lim_{x \to x_0} f(x) = A$ 或 $f(x) \to A$ (当 $x \to x_0$)

即 $\lim_{x \to x_0} f(x) = A \Longrightarrow \forall \varepsilon > 0, \ \exists \delta > 0, \ \exists x \in U(x_0, \delta)$ 时,有 $|f(x) - A| < \varepsilon$

注: 1) $0 < |x - x_0| < \delta$ 表示 $x \neq x_0$,所以 f(x) 在点 x_0 是否有极限与 f(x) 在点 x_0 处 是否有定义无关。

2) 几何解释:

例1. 证明 $\lim_{x\to x_0} C = C(C$ 为常数).

$$|f(x)-A| = |C-C| = 0$$

故∀ ε >0,对任意的 δ >0,当 0<|x-x₀|< δ 时,

总有
$$|C-C|=0<\varepsilon$$

因此
$$\lim_{x\to x_0} C = C$$

例2. 证明
$$\lim_{x\to 2} (2x-1) = 3$$
.

i.
$$|f(x)-A| = |(2x-1)-3| = 2|x-2|$$

$$\forall \varepsilon > 0$$
, 欲使 $|f(x)-A| < \varepsilon$, 只要 $|x-2| < \frac{\varepsilon}{2}$,

取
$$\delta = \frac{\varepsilon}{2}$$
, 则当 $0 < |x-2| < \delta$ 时,必有
$$|f(x) - A| = |(2x-1) - 3| < \varepsilon$$

因此
$$\lim_{x\to 2}(2x-1)=3$$

例3. 证明
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$$
.

证
$$|f(x)-A| = \left|\frac{x^2-4}{x-2}-4\right| = |x+2-4| = |x-2|$$

故 $\forall \varepsilon > 0$,取 $\delta = \varepsilon$,当 $0 < |x-2| < \delta$ 时,必有

$$\left|\frac{x^2-4}{x-2}-4\right|<\varepsilon$$

因此
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = 4.$$

例4. 证明: 当
$$x_0 > 0$$
 时 $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$.

$$|f(x)-A| = \left|\sqrt{x}-\sqrt{x_0}\right| = \left|\frac{x-x_0}{\sqrt{x}+\sqrt{x_0}}\right| \le \frac{|x-x_0|}{\sqrt{x_0}}$$

 $\forall \varepsilon > 0$,欲使 $|f(x) - A| < \varepsilon$,只要 $|x - x_0| < \sqrt{x_0} \varepsilon$,且 $x \ge 0$.而 $x \ge 0$ 可用 $|x - x_0| \le x_0$ 保证.故取 $\delta = \min \{ \sqrt{x_0 \varepsilon}, x_0 \}$,则当 $0 < |x - x_0| < \delta$ 时,必有

$$\left| \sqrt{x} - \sqrt{x_0} \right| < \varepsilon$$

因此 $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$

2. 单侧极限

例如

设
$$f(x) = \begin{cases} 1-x, & x < 0 \\ x^2 + 1, & x \ge 0 \end{cases}$$
 证明 $\lim_{x \to 0} f(x) = 1$.

x从左侧无限趋近 x_0 , 记作 $x \to x_0^-$;

x从右侧无限趋近 x_0 , 记作 $x \to x_0^+$;

左极限:
$$f(x_0^-) = \lim_{x \to x_0^-} f(x) = A$$
 $\forall \varepsilon > 0, \exists \delta > 0, \exists x \in (x_0 - \delta, x_0)$
时,有 $|f(x) - A| < \varepsilon$.

右极限:
$$f(x_0^+) = \lim_{x \to x_0^+} f(x) = A$$
 $\forall \varepsilon > 0, \exists \delta > 0, \overset{\text{def}}{=} x \in (x_0, x_0 + \delta)$
时,有 $|f(x) - A| < \varepsilon$.

定理
$$\lim_{x \to x_0} f(x) = A$$
 \Longrightarrow $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A$

例5 验证
$$\lim_{x\to 0} \frac{|x|}{x}$$
 不存在.

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x}$$

$$= \lim_{x \to 0^{-}} (-1) = -1,$$

$$\lim_{x\to 0^+} \frac{|x|}{x} = \lim_{x\to 0^+} \frac{x}{x} = \lim_{x\to 0^+} 1 = 1.$$

左右极限存在但不相等, :: $\lim_{x\to 0} f(x)$ 不存在.

 \boldsymbol{x}

二、自变量趋于无穷大时函数的极限

观察函数 $\frac{\sin x}{x}$ 当 $x \to \infty$ 时的变化趋势.

问题: 函数y = f(x)在 $x \to \infty$ 的过程中,对应函数值 f(x)是否无限<u>趋近于</u>确定值A ?

通过上面演示实验的观察:

当
$$x$$
 无限增大时, $f(x) = \frac{\sin x}{x}$ 无限接近于 0.

问题: 如何用数学语言刻划函数"无限接近".

$$|f(x)-A|<\varepsilon$$
 表示 $|f(x)-A|$ 任意小;

$$|x| > X$$
 表示 $x \to \infty$ 的过程.

定义2. 设函数 f(x)当|x|大于某一正数时有定义, 若 $\forall \varepsilon > 0$, $\exists X > 0$, 当|x| > X时,有 $|f(x) - A| < \varepsilon$, 则称常数 A为函数 f(x)当 $x \to \infty$ 时的极限,记作 $\lim_{x\to\infty} f(x) = A \mid \vec{x} \mid f(x) \to A \quad (\stackrel{\text{def}}{=} x \mid f(x))$ $x < -X \xrightarrow{} x > X$ $A - \varepsilon < f(x) < A + \varepsilon$ 几何解释:

直线 y = A 为曲线 y = f(x) 的水平渐近线。

例6. 证明
$$\lim_{x\to\infty}\frac{1}{x}=0.$$

$$\left|\frac{1}{x}-0\right|=\frac{1}{|x|}$$

故
$$\forall \varepsilon > 0$$
,欲使 $\left| \frac{1}{x} - 0 \right| < \varepsilon$,只要 $|x| > \frac{1}{\varepsilon}$,

取
$$X = \frac{1}{\varepsilon}$$
, 当 $|x| > X$ 时, 就有 $\left| \frac{1}{x} - 0 \right| < \varepsilon$

因此
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

注:
$$y = 0$$
为 $y = \frac{1}{x}$ 的水平渐近线.

两种特殊情况:

$$\lim_{x \to +\infty} f(x) = A \implies \forall \varepsilon > 0, \exists X > 0, \stackrel{\text{d}}{=} x > X \text{ 时, 有}$$

$$\lim_{x \to -\infty} f(x) = A \implies \forall \varepsilon > 0, \exists X > 0, \stackrel{\text{d}}{=} x < -X \text{ 时, 有}$$

$$|f(x) - A| < \varepsilon$$

$$|f(x) - A| < \varepsilon$$

几何意义: 直线 y = A 仍是曲线 y = f(x) 的渐近线.

例如
$$f(x) = \frac{1}{\sqrt{x}}, \quad g(x) = \frac{1}{\sqrt{1-x}}$$

都有水平渐近线 y=0;

又如,
$$f(x)=1-2^{-x}$$
, $g(x)=1+2^x$ 都有水平渐近线 $y=1$.

定理
$$\lim_{x \to \infty} f(x) = A$$
 $\Longrightarrow \lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = A$

三、函数极限的性质

定理 (函数极限的唯一性) 若 $\lim_{x \to x_0} f(x)$ 存在,则极限 唯一.

定理 (函数极限的局部有界性) 若 $\lim_{x\to x_0} f(x) = A$,则存在M > 0和 $\delta > 0$,使得当 $x \in U(x_0, \delta)$ 时, $|f(x)| \leq M$.

证明 由 $\lim_{x \to x_0} f(x) = A$,取 $\varepsilon = 1$,则 $\exists \delta > 0$,当 $0 < |x - x_0| < \delta$ 时,有 |f(x) - A| < 1, $\Rightarrow |f(x)| < 1 + |A|$.

定理 (函数极限的局部保号性) 若 $\lim f(x) = A$,且 A>0 (或A<0),则 $\exists \delta>0$,使得当 $x \in U(x_0,\delta)$ 时,有 f(x) > 0 (或 f(x) < 0). 证 : $\lim f(x) = A$, 则 $\forall \varepsilon > 0$, $\exists U(x_0, \delta)$, 当 $x \in U(x_0, \delta)$ 时,有 $A - \varepsilon < f(x) < A + \varepsilon$. 当A > 0时,取正数 $\varepsilon \leq A$, $A + \varepsilon \int_{---}^{y}$ (<0) $(\varepsilon \leq -A)$ 则在对应的邻域 $U(x_0,\delta)$ 上

 $x_0 - \delta x_0 x_0 + \overline{\delta x}$

f(x) > 0.

(<0)

定理 若 $\lim_{x \to x_0} f(x) = A \neq 0$,对任意 $r \in (0, |A|)$,则存在 $U(x_0, \delta)$,使当 $x \in U(x_0, \delta)$ 时,有 |f(x)| > r.

分析 $A-\varepsilon < f(x) < A+\varepsilon$

若取 $\varepsilon = |A|-r$,则在对应的邻域 $U(x_0,\delta)$ 上

A > 0: r < f(x) < 2A - r

 $A < 0: \quad 2A + r < f(x) < -r$

推论 若在 x_0 的某去心邻域内 $f(x) \ge 0$ ($f(x) \le 0$), 且 $\lim_{x \to x_0} f(x) = A$,则 $A \ge 0$ ($A \le 0$).

证 (用反证法) 当 $f(x) \ge 0$ 时,假设A < 0,则由定理5,存在 x_0 的某去心邻域,使在该邻域内 f(x) < 0,

与已知条件矛盾,所以假设不真,故 $A \ge 0$. (同样可证 $f(x) \le 0$ 的情形)

思考: 若推论中的条件改为 f(x) > 0,是否必有 A > 0? 不能! 如 $\lim_{x\to 0} x^2 = 0$

定理 (函数极限与数列极限的关系) 若 $\lim f(x)$ 存在, $\{x_n\}$ 为函数f(x)的定义域内任一收敛于 x_0 的数列,且 满足 $x_n \neq x_0 (n \in N^+)$,则相应的函数值数列 $\{f(x_n)\}$ 必收敛,且 $\lim_{n\to\infty} f(x_n) = \lim_{x\to x_0} f(x)$. 证明:设 $\lim_{x \to 0} f(x) = A$,则对 $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $0 < |x-x_0| < \delta$ 时,有 $|f(x)-A| < \varepsilon$. 又 $\lim x_n = x_0$, 故对上述 δ , 存在N, 当n > N时,有 $|x_n - x_0| < \delta$, 由假设 $x_n \neq x_0 (n \in N^+)$, 故当n > N时, $0 < |x_n - x_0| < \delta$,从而 $|f(x_n) - A| < \varepsilon$. 即 $\lim f(x_n) = A$.

函数极限的统一定义

$$\lim_{n\to\infty} f(n) = A;$$

$$\lim_{x\to\infty} f(x) = A; \quad \lim_{x\to+\infty} f(x) = A; \quad \lim_{x\to-\infty} f(x) = A;$$

$$\lim_{x \to x_0} f(x) = A; \quad \lim_{x \to x_0^+} f(x) = A; \quad \lim_{x \to x_0^-} f(x) = A.$$

过	程	$n \to \infty$	$x \to \infty$	$x \to +\infty$	$x \to -\infty$
时	刻	N			
从此时	刻以后	n > N	x > N	x > N	x < -N
f(x)		$ f(x)-A <\varepsilon$			

过程	$x \to x_0$	$x \rightarrow x_0^+$	$x \rightarrow x_0^-$	
时 刻	δ			
从此时刻以后	$ 0< x-x_0 <\delta$	$0 < x - x_0 < \delta$	$-\delta < x - x_0 < 0$	
f(x)	$ f(x)-A <\varepsilon$			

四、无穷小

定义1. 若 $x \to x_0$ 时,函数 $f(x) \to 0$,则称函数 f(x) (或 $x \to \infty$)

为 $x \to x_0$ 时的无穷小 . (或 $x \to \infty)$

例如 $\lim_{x\to 2} (x-2) = 0$,函数 x-2为 $x\to 2$ 时的无穷小; $\lim_{x\to \infty} \frac{1}{x} = 0$,函数 $\frac{1}{x}$ 为 $x\to \infty$ 时的无穷小; $\lim_{x\to -\infty} \frac{1}{\sqrt{1-x}} = 0$,函数 $\frac{1}{\sqrt{1-x}}$ 为 $x\to -\infty$ 时的无穷小.

- 注意(1)无穷小是变量,不能与很小的数混淆;
 - (2) 零是可以作为无穷小的唯一的数.

定理.(无穷小与函数极限的关系)

证
$$\lim_{x \to x_0} f(x) = A$$
 $\Longrightarrow \forall \varepsilon > 0, \exists \delta > 0, \text{ if } 0 < |x - x_0| < \delta \text{ if } \eta$
 $\alpha = f(x) - A \mid < \varepsilon$
 $\lim_{x \to x_0} \alpha = 0.$

对自变量的其它变化过程类似可证.

五、无穷大

绝对值无限增大的变量称为无穷大.

定义2. 若任给M > 0,总存在 $\delta > 0$ (正数 X),使对一切满足不等式 $0 < |x - x_0| < \delta (|x| > X)$ 的 x,总有 $|f(x)| > M \qquad \text{①}$ 则称函数 f(x) 当 $x \to x_0(x \to \infty)$ 时为无穷大,记作 $\lim_{x \to x_0} f(x) = \infty . \qquad (\lim_{x \to \infty} f(x) = \infty)$ 若在定义中将 ①式改为 f(x) > M (f(x) < -M),则记作

$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = +\infty \qquad \qquad (\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = -\infty)$$

注意:

- 1. 无穷大不是很大的数,它是描述函数的一种状态.
- 2. 函数为无穷大,必定无界. 但反之不真!

例如, 函数
$$f(x) = x \cos x, x \in (-\infty, +\infty)$$

$$f(2n\pi) = 2n\pi \to \infty \quad (\stackrel{\text{def}}{=} n \to \infty)$$

但
$$f(\frac{\pi}{2} + n\pi) = 0.$$

所以 $x \to \infty$ 时,

f(x) 不是无穷大!

例 证明 $\lim_{x\to 2}\frac{1}{x-2}=\infty$.

证: 任给正数M,要使 $\left| \frac{1}{x-2} \right| > M$,即 $\left| x-2 \right| < \frac{1}{M}$,只要取 $\delta = \frac{1}{M}$,则对满足 $0 < \left| x-2 \right| < \delta$ 的一切 x,有 $\left| \frac{1}{M} \right| > M$

所以
$$\lim_{x\to 2} \frac{1}{x-2} > M$$

说明: 若 $\lim_{x\to x_0} f(x) = \infty$,则直线

 $x = x_0$ 为曲线 y = f(x) 的铅直渐近线.

无穷小与无穷大的关系

定理. 在自变量的同一变化过程中,

居住日交重的同一支化度程中,
若
$$f(x)$$
 为无穷大,则 $\frac{1}{f(x)}$ 为无穷小;
若 $f(x)$ 为无穷小,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 为无穷大.
分析: $\forall \varepsilon > 0$,欲使 $\left| \frac{1}{f(x)} \right| < \varepsilon$,只要 $|f(x)| > \frac{1}{\varepsilon}$,
证 设 $\lim_{x \to x_0} f(x) = \infty$. $\therefore \forall \varepsilon > 0$,取 $M = \frac{1}{\varepsilon}$, $\exists \delta > 0$,
使得当 $0 < |x - x_0| < \delta$ 时,恒有 $|f(x)| > M$,即 $\left| \frac{1}{f(x)} \right| < \varepsilon$.
 $\therefore \exists x \to x_0$ 时, $\frac{1}{f(x)}$ 为无穷小.

六 无穷小的性质

定理1 有限个无穷小的和还是无穷小.

证 考虑两个无穷小的和. 设
$$\lim_{x \to x_0} \alpha = 0$$
, $\lim_{x \to x_0} \beta = 0$, $\forall \varepsilon > 0$, $\exists \delta_1 > 0$, $\exists 0 < |x - x_0| < \delta_1$ 时,有 $|\alpha| < \frac{\varepsilon}{2}$ $\exists \delta_2 > 0$, $\exists 0 < |x - x_0| < \delta_2$ 时,有 $|\beta| < \frac{\varepsilon}{2}$ 取 $\delta = \min\{\delta_1, \delta_2\}$, 则当 $0 < |x - x_0| < \delta$ 时,有 $|\alpha + \beta| \le |\alpha| + |\beta| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. 因此 $\lim_{x \to x_0} (\alpha + \beta) = 0$. 这说明当 $x \to x_0$ 时, $\alpha + \beta$ 为无穷小量.

类似可证:有限个无穷小之和仍为无穷小.

说明: 无限个无穷小之和不一定是无穷小!

例如
$$\lim_{n\to\infty} n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \dots + \frac{1}{n^2 + n\pi} \right) = 1.$$

定理2 有界函数与无穷小的乘积是无穷小.

即 $u\alpha$ 是 $x \rightarrow x$ 。时的无穷小、

推论 1. 常数与无穷小的乘积是无穷小.

推论 2. 有限个无穷小的乘积是无穷小.

例. 求
$$\lim_{x\to\infty}\frac{\sin x}{x}$$
.

解: :
$$|\sin x| \le 1$$
, $\lim_{x \to \infty} \frac{1}{x} = 0$

利用定理 2 可知 $\lim_{x\to\infty} \frac{\sin x}{x} = 0$

说明:
$$y = 0$$
 是 $y = \frac{\sin x}{x}$ 的渐近线

思考题

试问函数
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x > 0 \\ 10, & x = 0 \\ 5 + x^2, & x < 0 \end{cases}$$
 在 $x = 0$ 处的左、

右极限是否存在? 当 $x \to 0$ 时, f(x)的极限是否存在?

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x > 0 \\ 10, & x = 0 \\ 5 + x^2, & x < 0 \end{cases}$$

思考题解答

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} (5+x^{2}) = 5, \quad 左极限存在,$$

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x \sin \frac{1}{x} = 0,$$
 右极限存在,

$$\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x) \qquad \therefore \lim_{x\to 0} f(x)$$
 不存在.

五、作业

练习题

一、填空题:

- 1、当 $x \to 2$ 时, $y = x^2 \to 4$,问当 δ 取____时,只要 $0 < |x-2| < \delta$,必有|y-4| < 0.001.
- 2、当 $x \to \infty$ 时, $y = \frac{x^2 1}{x^2 + 3} \to 1$,问当z取_____ 时,只要 |x| > z,必有 |y - 1| < 0.01.
- 二、用函数极限的定义证明:

1.
$$\lim_{x \to -\frac{1}{2}} \frac{1 - 4x^2}{2x + 1} = 2$$

$$2, \lim_{x\to +\infty} \frac{\sin x}{\sqrt{x}} = 0$$

三、试证:函数 f(x) 当 $x \to x_0$ 时极限存在的充分 必要条件是左极限、右极限各自存在并且相等.

四、讨论: 函数 $\phi(x) = \frac{|x|}{x}$ 在 $x \to 0$ 时的极限是否存在?

练习题答案

一、1、0.0002;

 $2\sqrt{397}$.

四、不存在.