

무[無]계획

서태원, 신재환, 최승렬, 류은환

Contents

- Capstone Design 개요
- Capstone Project 진행도
- To-Be
- Q&A

Capstone Design 개요

딥러닝 모델의 <mark>최적화</mark>를 통한

임베디드보드에서의 추론 속도 향상

Capstone Design 개요

연구의 필요성

딥러닝 모델은 고성능의 GPU 또는 서버 등 별도의 자원이 필요

저사양 임베디드보드 환경에서 성능의 한계로 딥러닝 모델을 활용하기 어려움

따라서, 온디바이스 AI를 구현하기 위해 딥러닝 모델의 경량화 필요

Capstone Design 개요

연구의 목표

기존 YOLOv9 (논문 주장) 모델 대비

Inference time 10배 향상, *mAP 15%p 미만 하락 *mean Average Precision

YOLOv9-C	53.0%	70.2%	8908.2ms
Model	APval	AP50val	RPI Inference time

YOLOv9

2024년 2월 발표한 최신 객체 탐지 모델로 YOLOv7의 저자 Chien-Yao Wang가 공개함

Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

프로젝트 진행도

회의 기록

총 회의 횟수(개강 이후): 40 회

주당 평균 회의 시간: 20.7 시간

월 평균 회의 시간: 82.8 시간

2024 캡스턴 진행 일정 및 회의록 Aa 이름 □ 날짜 회의 장소생성자 최종 편집자 2-33차 회의 2024년 5월 9일 • 완료 디스코드 18:30 ~ 20:30 📻 승렬 최 🔐 승렬 최 2-32차 회의 2024년 5월 7일 • 완료 오프라인 😝 승렬 최 13:00 ~ 21:30 😝 승렬최 2-31차 회의 2024년 5월 6일 • 완료 18:00 ~ 23:00 오프라인 📻 승렬 최 🔐 승렬 최 2-30차 회의 2024년 5월 3일 13:00 ~ 16:00 • 완료 오프라인 🖚 계획 무 🔐 승렬 최 2-29차 회의 2024년 5월 2일 15:00 ~ 21:30 • 완료 오프라인 😝 승렬 최 🔐 승렬 최 • 완료 2-28차 회의 2024년 5월 1일 18:30 ~ 23:00 오프라인 📵 은환류 🔐 승렬 최 2-27차 회의 2024년 4월 30일 18:00 ~ 23:00 • 완료 오프라인 😝 승렬 최 🔐 승렬 최 2-26차 회의 2024년 4월 29일 • 완료 오프라인 16:00 ~ 23:00 📵 은환류 🐽 은함류 • 완료 😝 승렬 최 2-25차 회의 2024년 4월 26일 15:00 ~ 22:30 오프라인 📵 은환류 2-24차 회의 2024년 4월 25일 • 완료 14:00 ~ 23:00 오프라인 🐽 승렬 최 🐽 승렬 최 • 완료 오프라인 😝 승렬 최 2-23차 회의 2024년 4월 16일 18:00 ~ 22:30 🔠 은함류 🖺 LINC 신청마리 2024년 4월 16일 • 완료 오프라인 🚇 서태원 🔐 승렬 최 😱 서태원 2-22차 회의 2024년 4월 15일 • 완료 15:00 ~ 22:30 오프라인 제 재환신 • 완료 오프라인 🔐 승렬 최 2-20차 회의 2024년 4월 11일 14:00 ~ 22:00 💼 은환류 2-19차 회의 2024년 4월 10일 14:00 ~ 22:30 • 완료 오프라인 📵 은환류 🔐 승렬 최 2-18차 회의 2024년 4월 9일 • 완료 18:30 ~ 22:00 오프라인 💼 은환류 🔐 승렬 최 2-17차 회의 2024년 4월 8일 15:00 ~ 22:30 • 완료 오프라인 💼 은환류 🔐 승렬 최 • 완료 오프라인 2-16차 회의 2024년 4월 5일 16:00 ~ 23:00 🐽 은환류 🔐 승렬 최 2-15차 회의 2024년 4월 4일 16:30 ~ 22:00 • 완료 오프라인 📵 은함류 🔐 승렬 최 2-14차 회의 2024년 4월 2일 19:00 ~ 23:00 • 완료 오프라인 📵 은환류 🔐 승렬 최 2-13차 회의 2024년 4월 1일 • 완료 오프라인 18:30 ~ 23:00 🚱 서태원 🐽 승렬 최 • 완료 😝 승렬 최 🔐 승렬 최 2-12차 회의 2024년 3월 29일 15:00 ~ 24:00 오프라인 2-11차 회의 2024년 3월 28일 • 완료 😝 승렬 최 🔐 승렬 최 16:00 ~ 18:00 오프라인 • 완료 🔐 승렬 최 2-10차 회의 2024년 3월 26일 18:30 ~ 22:30 오프라인 🔑 서태원 2-9차 회의 2024년 3월 25일 18:30 ~ 22:30 • 완료 오프라인 📻 승렬 최 🔐 승렬 최 2-8차 회의 2024년 3월 23일 • 완료 20:30 ~ 23:40 디스코드 💼 은환류 🔐 승렬 최 🖺 2-7차 회의 2024년 3월 22일 09:30 ~ 11:00 • 완료 디스코드 🔐 승렬 최 🧰 은함류 2-6차 회의 2024년 3월 21일 • 완료 디스코드 🔐 승렬 최 14:30 ~ 23:00 😱 서태원 2024년 3월 20일 • 완료 오프라인 🔐 승렬 최 2-5차 회의 13:00 ~ 16:30 🖺 2-4차 회의 2024년 3월 19일 17:00 ~ 21:00 • 완료 오프라인 🔑 서태원 🔐 승렬 최

개별 기여 성과 - 서태원

역할

팀장, Architecture Part

프로젝트 일정 관리, 주간 목표 수립, 개발 회의 진행, 역할 분배

개별 기여 성과 - 서태원

개별 기여 성과 - 서태원

딥러닝 모델 이해를 위한 배경 공부 수행 아키텍처 개발을 위한 함수 구조 분석 수행

개별 기여 성과 - 류은환

역할

팀원, Architecture Part

YOLOv9 아키텍처 분석

파라미터 경량화 실험 (레이어 크기 조절)

하이퍼 파라미터 실험

개별 기여 성과 - 신재환

역할

팀원, Post-process & Simulation Part

	Original Model	Simplified Model
Add	15	2
AveragePool	5	5
Concat	22	22
Constant	220	141
Conv	65	65
Div	14	1
Gather	13	θ
MaxPool	8	8
Mul	85	59
Reshape	5	5
Resize	2	2
Shape	13	θ
Sigmoid	59	59
Slice	26	26
Softmax	1	1
Split	2	2
Sub	2	2
Transpose	2	2
Model Size	10.1MiB	10.0MiB

학습모델을 ONNX로 모델변환 & prunning

ONNX Runtime Quantization

OpenVINO, TFLite Quantization

Raspberry pi에서 후처리 모델 simulation

개별 기여 성과 - 최승렬

역할

팀원, Post-process Part


```
Section (1997)
Sectio
```

Raspberry pi에서 후처리 모델 mAP, inference time 측정 및 비교

Dataset Class filtering 코드 제작

ONNX 모델을 NCNN으로 변환

실험 결과 및 성과정리

Model	APval	AP50val	RPI Inference time
YOLOv9-C	53.0%	70.2%	8908.2ms

Model: test5

RepNCSPELAN4의 Sequential구조를 Conv로 변경 multi-level reversible auxiliary branch 삭제 레이어 최대 크기를 128로 고정

mAP50: 0.505 mAP50-95: 0.352

RPI Inference time: 1591.4ms

Model: test5_ONNX

test5모델을 정적그래프를 사용하는 ONNX 형식으로 변경 연산자 노드와 constant 노드 pruning float 32를 float 16으로 quantization

mAP50: 0.504

mAP50-95: 0.351

RPI Inference time: 608.8ms

To-Be

실험 방향

아키텍처 분석 및 최적의 레이어 크기와 레이어 수를 실험을 통해 탐색다양한 후처리 방법 조사 및 적용 실험 진행

논문 작성

개발 모델 실험 결과 정리 및 분석 YOLOv9 경량화 논문 작성

Thank you