Lista 04 - Aprendizado de Máquinas

10 março, 2025

Discussão Preliminar

Antes de iniciar a lista, gostaria de apresentar algumas ferramentas da biblioteca tidymodels que serão muito úteis para:

- 1. pré-processamento dos dados para treinamento e testes através de receitas;
- 2. a escolha de "hiper-parâmetros" que são usados nos algoritmos por um processo de validação cruzada.

1. Preparando Receitas para seus Dados

Primeiro, usamos "receitas" para preparamos os dados (do pacote recipes). Nestas receitas, dizemos ao R como o conjunto que vamos usar deve ser processado antes do treinamento e do teste.

No exemplo abaixo, o conjunto de dados é dividido em treinamento e teste para ilustrar este processo:

```
library(tidymodels)
df <- as_tibble(mtcars)

init.split <- initial_split(df, prop = 0.8)
train <- training(init.split)
test <- testing(init.split)</pre>
```

Vamos criar agora nossa receita de processamento dos dados. O banco de dados df é passado aqui somente como um *template* para informar a função recipe que tipo de colunas temos nos nossos dados.

```
receita <- recipe( mpg ~ ., data = df ) %>%
  step_center(all_predictors()) %>% # Centra os dados pela média
  step_scale(all_predictors()) # Escalona os preditores com o desvio padrão
```

Note que criamos uma receita onde iremos centrar os dados pela média (com a função step_center) e iremos dividir pelo desvio padrão (com o passo step_scale). A função all_predictors seleciona todos os preditores que serão usados no nosso modelo (nesse caso todas colunas exceto mpg). As funções step_são passos para processar nossos dados. Existem várias opções de passos para sua receita de preparo dos dados, veja o link abaixo para maiores detalhes:

https://recipes.tidymodels.org/reference/index.html

Ao declarar a receita como acima, ainda não calculamos nada nem fizemos alterações nos dados. Para fazer o cálculo da receita, precisamos chamar a função prep e, para aplicarmos a receita no conjunto de treinamento, precisamos chamar a função juice. Vamos preparar a receita usando um conjunto de treinamento. Ao preparar a receita, calculamos médias e desvios padrões do conjunto de treinamento e não queremos expor nossos dados de testes nessa etapa, para que nossos modelos não tenham nenhum acesso à eles.

Abaixo chamamos a função de **prep** para preparar a receita usando os dados do conjunto de treinamento e depois usamos **bake** para gerar os novos dados de treinamento corretamente preparados:

```
# de acordo com nossa receita de preparação
# dos dados. Você também pode usar
# bake(receita_prep,new_data = train)
```

Note que train_prep foi escalonada para ter preditores com média 0 e desvio padrão 1 em relação às colunas:

```
map_dbl(train_prep,mean)
```

```
## cyl disp hp drat wt

## -1.842797e-16 -6.495238e-17 -4.828820e-17 -4.407499e-16 1.249001e-16

## qsec vs am gear carb

## -1.157126e-16 1.774622e-17 1.774622e-17 -1.776292e-16 3.939557e-17

## mpg

## 1.965600e+01
```

```
map_dbl(train_prep,sd)
```

```
## cyl disp hp drat wt qsec vs am
## 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## gear carb mpg
## 1.00000 1.00000 6.21799
```

A função map_dbl(a,f) aplica a função f nos elementos de a. Como a é um dataframe, a é interpretada como uma lista cujos elementos são as colunas da tabela a. O resultado é concatenando em um vetor de reais (doubles, por isso o pós-fixo _dbl).

Para rodar a receita preparada sobre os dados de teste, usamos a função bake, que altera a base de treinamento com os passos da receita. Isso é ilustrado no código abaixo:

```
test_prep <- bake(receita_prep,new_data = test) # < Altera o conjunto de testes
# de acordo com nossa receita de
# preparação dos dados.
```

O banco de testes é centralizada **com a média e desvio padrão do conjunto de treinamento**, como pode ser visto com os comando abaixo (o resultado foi omitido para reduzir espaço - execute-os em sua máquina):

```
map_dbl(test_prep,mean)
map_dbl(test_prep,sd)
```

2. Escolhendo hiper-parâmetros

Para escolher hiper-parâmetros por um processo de validação cruzada, precisamos aplicar o seguinte algoritmo:

- a. Para cada hiper-parâmetro θ de interesse fazer:
 - i. Para cada fold do nosso conjunto de validação cruzada, fazer:
 - 1. preparar a receita para o conjunto de treinamento (ou de análise analysis) do fold atual;
 - 2. treinar o modelo com os dados preparados pela receita;
 - 3. aplicar o modelo resultante no conjunto de testes (ou de assessment) do fold atual, devidamente "baked" com nossa receita;
 - 4. calcular a medida de interesse, como o rmse.
 - ii. Coletar medidas de interesse, como o rmse e tirar a média dos valores dentre os diferentes folds.
- b. Escolher parâmetro θ com o melhor valor de medida.

Esse processo acima é o mesmo que usamos na Lista02 e Lista03, exceto que agora preparamos os dados antes de treinar e testar com a receita. A biblioteca tidymodels possui uma função que implementa o algoritmo

acima. Para rodar este algoritmo, você precisa passar o modelo com parâmetros marcados para ajuste com a função tune(), uma receita - sem preparo - para preprocessar os dados, e uma malha que será usada para buscar os parâmetros, como ilustrado abaixo:

```
## Define um modelo de regressão linear regularizada,
## queremos encontrar o melhor parâmetro de penalização
## \lambda (= penalty)
lin.model <- linear_reg( penalty = tune(), # marcamos a penalização para ajuste com tune()
                        mixture = 1) %>% # 0 = Ridge, 1 = Lasso, (0,1) = Elastic-Net
            set engine("glmnet")
## Malha para buscar o melhor valor para o parâmetro penalty.
## A função penalty() indica que queremos uma malha para este
## parâmetro e indica limiares recomendados para o parâmetro.
## Rode 'penalty()' no console do R para ver o que faz.
lm.grid <- grid regular(# Define intervalo e escala recomendada para o
                        # parâmetro penalty. Neste caso, alterei para
                        # o intervalo de busca para [0.0001,2] (chamei
                        # a função log10 porque os parâmetros são escalonados
                        # em uma escala de log na base 10).
                       penalty(range = log10(c(0.0001,2))),
                       levels = 5)# Defini o número de pontos que desejamos gerar
                                   # para cada parâmetro testado
```

Depois de definir nosso modelo e a malha onde queremos buscar os parâmetros, podemos calcular o erro de validação cruzada usando a função tune_grid, como ilustrado abaixo:

```
## Gerando 10-folds para validação cruzada
vfolds <- vfold_cv(df, v = 10)

## Calculando parâmetros
tune.res <- tune_grid(
    lin.model,  # Nosso modelo de aprendizado de máquina
    receita,  # Nossa receita de preparo de dados
    resamples = vfolds,  # O nosso conjunto de validação cruzada
    grid = lm.grid  # Malha de parâmetros para busca
)</pre>
```

Por fim, podemos coletar as medidas e fazer um gráfico para escolher o melhor parâmetro. Os resultados abaixo (incluindo gráfico e tabela) foram omitidos - gere-os em sua máquina.

```
tune.res %>%
  collect_metrics() %>%
  filter(.metric == "rmse") %>%
  ggplot(aes(x = penalty, y = mean)) +
  geom_line() +
  geom_point()

#Podemos ver os melhores com o comando:
  show_best(tune.res,metric = "rmse")
```

Exercício 01

Vamos usar o banco de dados da FIFA novamente da aula passada. Vamos fazer o mesmo pré-processamento (exceto que usaremos um conjunto menor de preditores para agilizar a análise - você pode usar todos da Lista 03 se desejar):

Rode o método Lasso e escolha, por um processo de validação cruzada, o melhor valor para λ , ou seja, a melhor escolha de penalização para a norma ℓ_1 dos coeficientes. Após a escolha do melhor parâmetro, ajuste o modelo sobre todos os dados e veja quais variáveis escolhidas e faça um gráfico do decaimento dos coeficientes a medida que aumentamos a penalização, como ilustrado abaixo:

```
# Com o processo de validação cruzada,
# suponha que a penalização que faz o rmse
# ser mínimo (dentre os valores do grid) é
# quando \setminus lambda = 0.5. Vamos ver os
# coeficientes \beta_i para o modelo com
# esse valor de penalização:
library(tidymodels)
lin.fit <- linear_reg( penalty = 0.5, #<--- menor penalização
                       mixture = 1) %>%
             set_engine("glmnet") %>%
             fit( Wage ~ . , data = df )
# Extraindo os coeficientes \beta j do ajuste
betas <- lin.fit %>%
   pluck("fit") %>% # Extrai o objeto do modelo ajustado
    coef(s = 0.5) # Calcula os coeficientes para penalização 0.5
# Os valores com um `.` valem exatamente zero.
betas
# Fazendo o gráfico do decaimento
plot( lin.fit %>% pluck("fit"), xvar = "lambda")
```

Exercício 02

Repita o exercício anterior usando o método de regressão Ridge. Note que podemos fazer isso alterando o parâmetro mixture para 0 na função linear_reg. Compare e discuta os resultados do decaimento dos parâmetros β_j a medida que a penalização aumenta em relação ao resultado do exercício anterior. Compare e justifique o número de valores β_j anulados usando o Lasso e a regressão Ridge.

Exercício 03

Neste exercício, vamos ajustar um modelo de regressão Elastic-Net aos dados Salaries da biblioteca car. Você pode carregar este banco rodando o seguinte código:

```
library(car)
df <- as_tibble(Salaries)</pre>
```

Este banco de dados possui salários de professores em uma faculdade. Note que o banco contém várias variáveis categóricas (ou qualitativas nominais), representadas por fatores. Podemos adicionar variáveis dummy para fazer regressão em nossa receita! Com a função step_dummy, você pode passar all_nominal() para ter todas as colunas correspondentes à variáveis qualitativas nominais.

Para rodar o Elastic-Net, escolha um valor para o parâmetro mixture entre (0,1). Use a função tune() para ajustar tanto o parâmetro penalty quanto o mixture. Use o seguinte grid para a busca de cross-validação:

Exercício 04

Vamos gerar um banco de dados artificial para esse exercício usando o código abaixo:

```
df <- tibble( x = runif(100,-1,1),
y = 2*x^3 + x + 10 + rnorm(100,0,0.3))
```

Note que é um polinômio de grau 3. Suponha que não soubéssemos que estes dados foram produzidos por um polinômio de grau 3 e desejamos escolher o melhor grau para a nossa regressão polinomial. Vamos fazer isso variando o grau do polinômio de 1 até 5. Podemos fazer isso, marcando o grau do polinômio na função set_poly com a função tune(), como ilustrado abaixo:

```
receits <- recipe(y ~ . ,df) %>%
    step_poly(x,degree = tune())
```

Para fazer uma regressão simples, sem penalização, use set_engine("lm") na definição do modelo.

Depois de fazer o ajuste, guarde o resultado da função tune_grid na variável tune.res e faça o gráfico resultante usando o código abaixo:

```
tune.res %>%
collect_metrics() %>%
filter(.metric == "rmse") %>%
ggplot(aes(x = degree, y = mean)) +
geom_line()
```

Exercício 05 (opcional)

Repita o exercício acima usando uma regressão spline. Faça um ajuste para os graus de liberdade da spline e no final, faça um gráfico do RMSE a medida que os graus de liberdade variam. Use a função step_ns() para introduzir as novas colunas relacionadas às splines. O parâmetro deg_free pode ser usado para definir o grau de liberdade.

Exercício 06 (opcional)

Fazer exercício 1 do livro ISL na página 297.