DIRART

the Deformable Image Registration + Adaptive Radiotherapy Software Suite

Deshan Yang, PhD
Radiation Oncology
Washington University in Saint Louis
03/24/2009

What is DIRART?

- DIRART = DIR (deformable image registration)
 + ART (Adaptive Radiotherapy)
- It is
 - A collection of DIR algorithms plus visualization and validation features
 - An ART toolkit to perform dose and structure remapping, dose accumulation and analysis using the DIR results
 - A complimentary package to CERR to provide additional DIR and ART functions

What will DIRART do (for you)?

- Interacts with TPS using DICOM-RT (via CERR)
- Computes deformation between scans
- Applies deformation for planning adaptation purposes
 - Daily dose deformation, accumulation, comparison, etc
 - Structure propagation, deformation, etc
- Visualizes and analyzes the results

System Flow Chart

DIRART

- Deformable image registration
 - Dose deformation
- Structure propagation and manipulation
 - Visualization
 - Evaluation and dose metrics analysis

Integrated GUI, Project management, Image Processing, Statistics analysis, etc.

RT Objects and Interactions

Image Processing and Registration Work Flow

Screen Shot

Dose visualization features

Figure 34: Examples of structures displayed with contours and color filling

Figure 35: Examples of structures displayed with different line thickness and transparency settings

Figure 36: (a) Only fixed image contours are display. (b) Both moving image contours and fixed image contours are displayed on top of the fixed image

Structure objects visualization features

Example 1: Dose summation for initial plan and re-plan

- 1. Export plans as DICOM-RT files from TPS
- 2. In CERR
 - a. Load both DICOM-RT plan
 - b. Save as CERR plan (MATLAB) files

In DIRART

- a. Load the two CT scans from CERR plans
- b. Aligning, cropping, re-sampling
- c. Deformable registration and obtain DVF
- d. Load doses from the CERR plans
- e. Deform the initial plan dose to the re-plan CT coordinate
- f. Export the deformed initial dose to CERR

4. In CERR

- a. Sum the re-plan dose and the deformed initial dose
- b. Compute DVH on the sum dose
- c. Export the sum dose to DICOM-RT, to be loaded back to TPS

Screen shot of dose functions

Dose Deformation Examples

Example 2: Structure Contour Deformable Propagation

- Export plans as DICOM-RT files from TPS
- In CERR, load both DICOM-RT plans, save as CERR plan (MATLAB) files
- In DIRART
 - Load the two CT scans from CERR plans
 - Aligning, cropping, re-sampling
 - Deformable registration and obtain DVF
 - Load structures from the CERR plans
 - Deform the structures from one plan to the other plan
 - Export the deformed structures to CERR
- In CERR, export the deformed structures to DICOM-RT, to be loaded back to TPS

Screen shots of the structure functions

Structure Deformation Work Flow 1

Examples of Structure Deformation

Deformable Image Registration in DIRART

- Two frameworks
 - The asymmetric DIR framework
 - The inverse consistency DIR framework
- 20+ algorithms, including optical flow algorithms, demons algorithms, algorithms from ITK, etc
- Multi-resolution and multiple-pass approaches
- Special features: structure-assistance, for partially overlapping images, image intensity manipulation, etc
- Use configurable settings

DIR Example

Image Processing in DIRART

- Smoothing (Gaussian, edge-perservation)
- Contrast enhancement (histogram based, window level transformation, intensity remapping, intensity manipulation, etc)
- Cropping and padding
- Re-sampling

Performance of DIR

- Features in DIRART to improve performance
 - Cropping, re-sampling, multi-resolution, image processing, etc.
- Computation speed
 - 1 to 10 minutes
- Future
 - GPU acceleration

Post-Processing on DVF

- Smoothing
- Computing the inverse DVF
- Converting to the transformation vector fields

Visualization of DVF

DVF backward

DVF forward

DVF deformation grid

DVF in L-R

DVF in A-P

DVF in S-I

DVF magnitude

Jacobian of DVF

Inverse consistency errors

Validation of deformable image registration in DIRART

- Landmark based validation
- Ground truth based validation (phantoms, or digitally synthesized phantoms)
- DVF analysis
 - Jacobian, divergence, Inverse consistency analysis
- Image intensity based analysis
 - MSE, MI, CC, CR (correlation-ratio)
- Structure based analysis
 - Structure volume overlay (Dice similarity measurement)
 - Structure point geometry error analysis

File and Project Management

- Save and load projects
- Save and load DVFs
 - For the same image datasets

Data inside DIRART

```
qui handles: [1x1 struct]
                                                y: [73x74x51 single]
       info: [1x1 struct]
                                                x: [73x74x51 single]
                                                z: [73x74x51 single]
qui options: [1x1 struct]
       req: [1x1 struct]
                                                info: [1x1 struct] →
        ART: [1x1 struct]
                                                voxelsize: [2 2 3]
     images: [1x2 struct]
                                                origin: [72.9492 -74.1211 -25]
                                                voxel_spacing_dir: [-1 1 1]
                                                type: 'DVF'
                                                class: 'single'
                                                UID: 'DVF.2322009.101924.439379.481'
                                                Fixed_Image_UID: 'CT.1412009.165134.797173.3886'
                                                Moving_Image_UID: 'CT.1412009.165440.405190.9237'
                                                GenerateBy: 'Reg3dGUI'
image: [134x160x86 single]
                                                structures: {1x16 cell}
voxelsize: [2 2 3]
                                                structure colors: [16x3 double]
origin: [67.8281 -160.5469 -317.9999]
                                                structure display: [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
voxel spacing dir: [-1 1 1]
                                                structure names: {1x16 cell}
original_voxelsize: [1.1719 1.1719 3.0000]
                                                 structure assocScanIDs: [1 2 4 4 4 4 4 4 4 4 5 5 4 5 5]
image_deformed: [134x160x86 single]
                                                structure_scanInfos: {1x5 cell}
filename: [1x63 char]
                                                structure_structInfos: {1x16 cell}
type: 'unknown'
                                                structure assocImgIdxes: [2 1 1 1 1 1 1 1 1 1 1 1 2 1 2]
class: 'int16'
UID: 'CT.1412009.165440.405190.9237'
DICOM_Info: [1x1 struct]
original_CERR_Scan_Struct: [1x1 struct]
LoadFrom: 'CERR'
```

Summary

- DIRART works together with CERR on DICOM-RT
- DIRART works on images, doses and structures
- Performs deformation and (off-line) plan adaptation
- For DIR and ART research works