Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursior
- 5. Die Ackermannfunktion
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

LOOP-, WHILE-, und GOTO-Berechenbarkeit

Berechenbarkeit und Komplexität

LOOP-Programme I

Programmiersprache LOOP zur Berechnung von Funktionen $\mathbb{N}^k \to \mathbb{N}$:

Variablen: $x_0, x_1, ...$ Eingabe: $x_1, ..., x_k$ (alle anderen Variablen $x_i = 0$)

Konstanten: $0, 1, 2, \ldots$ Berechnungsergebnis: Wert von x_0 am Programmende

Trennsymbole: ; , := Operationen: +, -

Schlüsselwörter: LOOP, DO, END

Syntax	Semantik
$x_i := x_j + c$	Addition
$(x_i, x_j Variablen, \ c \in \mathbb{N})$	
$x_i := x_j - c$	Modifizierte Subtraktion
$(x_i, x_j \; Variablen, \; c \in \mathbb{N})$	$\max\{x_j-c,0\}$
$P_1; P_2$	Sequenz
$(P_1, P_2 \text{ LOOP Programme})$	erst P_1 , dann P_2
LOOP x _i DO P END	Schleife
$(x_i \text{ Variable, } P \text{ LOOP Programm})$	#Durchläufe = Wert von x_i vor der Anweisung!

LOOP-Programme II

Simulation anderer Rechenoperationen durch LOOP-Programme:

$x_i := x_j$	$x_i := x_j + 0$
$x_i := c$	$x_i := x_j + c$ (für ein x_j mit $x_j = 0$)
	$x_j := 1;$
IF $x_i = 0$ THEN P END	LOOP x_i DO $x_j := 0$ END;
	LOOP x_j DO $\stackrel{\circ}{P}$ END
$x_0 := x_1 + x_2$	$x_0 := x_1;$
~0 ·— ~1 + ~2	LOOP x_2 DO $x_0 := x_0 + 1$ END

Analog: Multiplikation, ganzzahlige Division, Modulo.

Frage: Wie sehen LOOP-Programme für div & mod aus?

WHILE-Programme

WHILE-Programme \(\heta\) LOOP-Programme + WHILE-Schleifen

Syntax	Semantik
WHILE $x_i \neq 0$ DO P END	While Schleife
$(x_i \text{ Variable, } P \text{ WHILE Programm})$	wiederhole P bis $x_i = 0$; x_i darf durch P modifiziert werden!

Berechnungsergebnis: Wert von x_0 am Programmende (falls Programm terminiert).

Definition (LOOP-/WHILE-Berechenbarkeit)

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar bzw. WHILE-berechenbar wenn es ein LOOP- bzw. WHILE-Programm P gibt, das f berechnet, d.h. für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff P$ hält bei Eingabe n_1, \ldots, n_k mit Berechnungsergebnis $x_0 = m$

Beobachtung: LOOP-Programme berechnen nur totale Funktionen.

Leitfrage: alle totalen intuitiv berechenbaren Funktionen über № LOOP-berechenbar?

Zentraler Ansatz nachfolgend: **Simulation**.

Frage: Wie kann eine LOOP Schleife durch eine WHILE Schleife simuliert werden?

WHILE-Programme & Turing-Maschinen

Theorem

Jede WHILE-berechenbare Funktionen ist Turing-berechenbar.

Beweis (Skizze)

Bauen TM M(P) durch Induktion über die "Termstruktur" eines WHILE-Programms P:

Fall 1:
$$P = x_i := x_i \pm c$$
 \sim klar Turing-berechenbar (vgl. Binärzahl-Inkrementierer)

Fall 2:
$$P = P_1$$
; P_2 \rightarrow Hintereinanderschaltung von $M(P_1)$ und $M(P_2)$

Identifiziere Endzustände von $M(P_1)$ mit Startzustand von $M(P_2)$.

Fall 3:
$$P = WHILE x_i \neq 0 DO P_1 END$$

 \sim Erweiterung von $M(P_1)$

- 1. neuer Startzustand z_0' , der prüft ob $x_i \neq 0$
 - $ja \sim Wechsel in Startzustand von <math>M_1$.
 - $\mathsf{nein} \leadsto \mathsf{Stoppe} \ \mathsf{in} \ \mathsf{einem} \ \mathsf{neuen} \ \mathsf{Endzustand}.$
- 2. Identifiziere Endzustände von M_1 mit z'_0 .

GOTO-Programme

Quelle: pixabay.com/en/mountain-goats-jumping-leaping-1156056/

GOTO-Programme I

GOTO-Programme

Marken und Anweisungen:

$$P = M_1 : A_1;$$

 $M_2 : A_2;$
:

 $M_k: A_k$

Konvention: Nicht benutzte Marken weglassen!

Syntax: Mögliche Anweisungen A_i :

- $\triangleright x_i := x_i \pm c$
- ► GOTO *M_i*
- ▶ IF $x_i = c$ THEN GOTO M_i

Semantik klar!

Definition

GOTO-Berechenbarkeit analog zu WHILE-Berechenbarkeit.

Theorem

Jede WHILE-berechenbare Funktion ist GOTO-berechenbar.

Beweis (simuliere WHILE $x_i \neq 0$ DO P END)

$$M_1: \mathbf{IF} \ x_i = 0 \ \mathbf{THEN} \ \mathbf{GOTO} \ M_2;$$

Р;

GOTO M_1 ;

 $M_2: \ldots$

GOTO-Programme II

Theorem

Jede GOTO-berechenbare Funktion ist WHILE-berechenbar.

Beweis (Skizze)

```
P = M_1 : A_1; \dots; M_k : A_k ein GOTO-Programm; ungenutzte Variable x_N
```

 $x_i := x_i \pm c$

GOTO M_i

 \sim WHILE-Programm P_W unter Benutzung des **IF-THEN**-Konstrukts:

```
x_N := 1;
```

WHILE
$$x_{N} \neq 0$$
 DO

IF
$$x_N = 1$$
 THEN A'_1 END;

IF
$$x_N = 2$$
 THEN A_2' END;

IF $x_N = k$ THEN A'_k END;

IF
$$x_N = k + 1$$
 THEN $x_N := 0$ END

IF
$$X_N = K + 1$$
 THEN $X_N := 0$ END

END

Bemerkung: Nur eine einzige WHILE-Schleife im Programm!

Mathias Weller (TU Berlin)

GOTO-Anweisung $A_i \sim WHILE$ -Anweisung A'_i

IF $x_i = c$ **THEN GOTO** $M_n \sim x_N := x_N + 1$;

 $\sim x_i := x_i \pm c$;

IF $x_i = c$ THEN $x_N := n$

 $x_{N} := x_{N} + 1$

 $x_{N} := i$

GOTO-Programme III

Theorem

Jede Turing-berechenbare Funktion ist GOTO-berechenbar.

Beweis (Skizze)

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{\square, 1, 2, ..., m-1\}$, $Z = \{z_1, ..., z_k\}$ eine DTM.

Idee: Darstellen der Konfiguration $\alpha z_{\ell} \beta$ als drei Zahlen (wobei $\Box = 0$):

 $x_1 = x = [\alpha]_m \sim \text{linker Bandinhalt}$

 $x_2 = y = [rev(\beta)]_m \sim rechter Bandinhalt$

 $x_3 = z = \ell \sim \text{Zustandsnummer}$

Das GOTO-Programm hat nun folgende Gestalt:

Phase 1: "Erzeugung von x, y, z aus der Startkonfiguration" (LOOP-berechenbar)

Phase 2: "Simulation von M"

Phase 3: "Rückübersetzung von y in Ausgabe x_0 " (LOOP-berechenbar)

GOTO-Programme IV

Beweis (Fortsetzung)

```
Zu zeigen: GOTO-Programm für Phase 2 ("Simulation von M").
  M_2: x_4:= y \text{ MOD } m;
  IF z = 1 AND x_4 = 0 THEN GOTO M_{(1,0)};
  IF z = 1 AND x_4 = 1 THEN GOTO M_{(1,1)};
  IF z = k AND x_4 = m - 1 THEN GOTO M_{(k,m-1)};
  M_{(1,0)}: Simulation von \delta(z_1, \Box); GOTO M_2;
  M_{(1,1)}: Simulation von \delta(z_1,1); GOTO M_2;
  M_{(k,m-1)}: Simulation von \delta(z_k, m-1); GOTO M_2;
```

```
Simulation von \delta
    \delta(\mathbf{z}_{\ell},i)=(\mathbf{z}_{j},k,L)
z := j;
y := y \text{ DIV } m;
y := y \cdot m + k;
y := y \cdot m + (x \text{ MOD } m);
x := x \text{ DIV } m
z_j \in E \leadsto \text{GOTO Phase 3}
\delta(z_\ell, i) = \bot
\leadsto \text{Endlosschleife}
```

Fazit dieses Kapitels: