Algoritmo (pa nome: di fibonacci)

$$F_n = \begin{cases} 1 \\ F_{n-1} + F_{n-2} \end{cases}$$
 $N = 1, 2$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-1} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$
 $\begin{cases} F_{n-1} + F_{n-2} \\ F_{n-1} + F_{n-2} \end{cases}$

Dimestrazia tramite passo indutivo

$$N=1 - \frac{1}{2} = \frac{1}{15} \left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2} \right) = \frac{1}{15} \left(\frac{2\sqrt{5}}{2} \right) = 1$$
 $N=2 - \frac{1}{15} = \frac{1}{15} \left(\frac{1+\sqrt{5}}{2} \right) - \left(\frac{1-\sqrt{5}}{2} \right) = 1$

La $\frac{1}{15} = \frac{1}{15} =$

par
$$n \ge 3$$
 lipatesi dice che la proprietà vale fino ad $n-1$ quindi se:

 $F_{n} = 1/\sqrt{5} \left(\frac{p}{2} - \frac{q}{2} \right)$
 $e \quad F_{n} = F_{n-1} + F_{n-2}$

par ipotesi induttiva allara

 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right) + 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$
 $f_{n} = 1/\sqrt{5} \left(\frac{q}{2} - \frac{q}{2} \right)$

Pseudococlice:

Fib (int n) -> int

if
$$n \le 2$$
 then vetum 1;

else votum Fib $(n-1)$ + Fib $(n-2)$

Complessité? Quante istruzioni sono ese quite?

 $n = \frac{n}{2}$

Albano delle vicasioni (esemplo pretico)

 $n=5$
 2 : atvano vell'o he due chiem

L'elho a pernette di celadere quelinque complemité

$$T(S) = 13 \longrightarrow 2 \cdot i(f_n) + f_n(T_n)$$
 $f_n = f_n f_n(f_n)$

Propriete 1 Sis Tr. l'elbos delle masioni retetivo elle chiemets

Fib(n).

Allare il numa di forfie di Tr. é peri a Fr. (enmeno noma di Fiboracai)

 $f_n(T_n) = f_n$

Dim: induttive su n (maglio can il disegno

Fib(n-1)

Fib(n-2)

vicado

a)
$$f(T_n) = f_n$$
 in viprendo
b) $i(T_n) = f(T_n) - 1$ successive

1 viprendo

quid posso simplificare le formule generale con:

$$T(n) = 2(F_n - 1) + F_n = 3F_n - 2$$

complassits asser "come i numari di Fibanzaci"

$$7(n) \approx F_n \qquad \forall n \geqslant 6$$

$$f_n \geqslant 2^{n/2}$$

Ind. sun (venifichiamo)

riprendo Formule

base n=1,2 -> non cismo modi kodia lel

n≥3

totale nodi Foofia = somma numar nodi Foofia sx edx

Se T é un albaro binario dave agni vertice interno ha esettamente a figli. allarz i(T) = f(T) - 1

Dimostrazione (ind sulla guandezza dell'albaro)

y non he noch fight!

$$i(T) = \frac{1}{2}(T) - 1$$

$$i(T) = i(T') + 1$$

$$i(T) = \frac{1}{2}(T') + 1$$

$$i(T) = i(T') + 1 = F(T')$$

$$i(T) = \frac{1}{2}(T') + 1$$

le domande del secolo per elgoritmi complessi: l'elgoritmo finire?

Fib3(int n) -> int

- 1. alloca apazio per un array F di n interi 2. F[1] = F[2] = 1;
- 3. For i=3 to h
- 4. F[i] = F[i-1]+F[i-2];
- 3. return F[n];