Junior N.T. Problem Set 1

- 1. Prove that gcd(21n+4,14n+3)=1 for any integer n.
- **2.** What is the largest positive integer n for which $n^3 + 100$ is divisible by n + 10?
- **3.** Let m and n be positive integers such that lcm(m,n) + gcd(m,n) = m + nProve that one of the two numbers is divisible by the other.
- **4.** Find all primes p for which $p^2 + 20$ is also a prime.
- **5.** Find all primes p and positive integer n such that $p^3 + 1 = n^2$.
- **6.** If $a \equiv b \pmod{n}$, prove that $a^n \equiv b^n \pmod{n^2}$.
- **7.** For coprime positive integers a, b, prove that $\frac{(a+b-1)!}{a! \, b!}$ is also an integer.
- **8.** Prove that for integer $a, m, n \neq 0$, $\gcd(a^m 1, a^n 1) = a^{\gcd(m,n)} 1$ (More generally, if $a^m \equiv b^m \pmod{c}$ and $a^n \equiv b^n \pmod{c}$, then $a^{\gcd(m,n)} \equiv b^{\gcd(m,n)} \pmod{c}$)
- **9.** Show that for any positive integers a and b, the number (36a + b)(a + 36b) can't be a perfect power of 2.
- **10.** Given that

$$a \equiv b \pmod{c}$$
 and $a \equiv b \pmod{d}$

Prove that $a \equiv b \pmod{[c,d]}$ where [c,d] denotes the lcm of c,d.

- 11. Prove that for all integers n,
- i) $n^5 5n^3 + 4n$ is divisible by 120.
- ii) $n^2 + 3n + 5$ is not divisible 121.
- **12.** Suppose k is an odd positive integer. Prove that for all positive integer n, n(n+1) divides $2(1^k+2^k+...+n^k)$.
- 13. Find the greatest positive integer x such that 23^{6+x} divides 2000!
- **14.** Find **an** integer n such that $n^3 \equiv 2 \pmod{101}$.

(Hint: $51^{100} \equiv 1 \pmod{101}$ and $99 = 33 \times 3$)

- **15.** Let n be a non-negative integer such that $2^n = (n+1)^2$. Find all such n's.
- **16.** p is an odd prime. Let k be an integer between 1 and p-1 i.e. $1 \le k \le p-1$.

^{1.} The famous exponent gcd lemma. This is very much useful. So don't forget!

Prove that,

$$i) p | {p \choose k}.$$

$$(ii) \binom{p-1}{k} \equiv (-1)^k \pmod{p}$$

17. Two sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ are defined in the following way:

 $x_1 = 1, \ x_2 = 3, \ x_n = 3x_{n-1} - 2x_{n-2} \text{ for } n \geqslant 2. \text{ And } y_n = \frac{x_n^2 + 1}{x_{n-1}} \text{ for } n \geqslant 2. \text{ Find all integers } n \text{ for which } n | y_n.$

- 18. b boys and 13 girls took part in a mathematical compitation. After the result, it was seen that all the students have got $b^2 + 10b + 17$ marks in total and their average mark is an integer. Determine at most how many boys took part in that compitation.
- 19. Find the largest divisor of 1001001001 that does not exceed 10000.
- **20.** Prove that $gcd(2^{21}+1, 2^{12}+1) = 1$
- **21.** Let n be a positive integer and let $a_1, a_2 ... a_k$ $(k \ge 2)$ be distinct integers in the set $\{1, 2, 3.... n\}$ such that n divides $a_i(a_{i+1} 1)$ for i = 1, 2, 3...k 1. Prove that n does not divide $a_k(a_1 1)$.
- **22.**²A function $f: \mathbb{N} \to \mathbb{N}$ satisfies the following conditions-
- i) For any two primes p, q, f(p+q) = f(p) + f(q)
- ii) For any two coprime integers $a, b, f(ab) = f(a) \cdot f(b)$

Prove f(3) = 3.

- **23.** Let p be an odd prime. Suppose k is any integer such that $1 \le k \le p-2$. Prove that $p|1^k+2^k+\ldots+(p-1)^k$.
- **24.** Let a, b, c be three integers such that a < b and a < c. If $\frac{bc}{a}$ is an integer, prove that it must be composite.⁴
- **25.** Suppose p is a prime and $p \not\equiv 1 \pmod{8}$. Let x, y be two integers. Prove that if $p \mid x^4 + y^4$, then $p \mid x$ and $p \mid y$.

(Hint: Use Fermat's Little Theorem and problem 8)

26. Let a, b, c, d are four positive integers such that ab = cd. Prove that a + b + c + d is not a prime.

(Hint: Think about gcd(a, c) and gcd(b, d).)

27. a, b are two non-negative integers such that $2^a \equiv 2^b \pmod{101}$. Prove that $a \equiv b \pmod{100}$.

^{2.} It is from France team selection test 2000. The original problem asks to find f(1999).

^{3.} This result is often useful. If you can solve this, try IMO shortlist 1997/12.

^{4.} Surprisingly this problem can be solved by induction on a. For details, see mathemetical excalibur V.12 No.1 P.4.

- 28. The sum of two positive integers is 5432 and their lcm is 223020. Find the smaller number.
- **29.** Find all primes p such that 17p+1 is a perfect square.
- **30.** Suppose that n > 1 is an integer. Prove that $n \mid \phi(2^n 1)$.
- **31.** Determine all pairs (x, y) of positive integers such that $xy^2 + y + 7|x^2y + x + y$.
- **32.** Find all pairs (k, n) of positive integers for which $7^k 3^n |k^4 + n^2$.

All problems are collected by

Adib Hasan

Class X, Mymensingh Zilla School

BGD 5, IMO 2012