Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Tarea 1: **Ejercicios**

 $\begin{array}{c} Luis\ Erick\ Montes\ Garcia\ \mbox{-}\ 419004547\\ Hele\ Michelle\ Salazar\ Zaragoza\ \mbox{-}\ 316068895 \end{array}$

- 2. Sea la función vectorial $r(\overrightarrow{t}) = (4\cos(\frac{t}{2}), 4\sin(\frac{t}{2}))$, donde $t \in [0, 2\pi]$. A continuación responda lo
 - (a) Calcule los vectores de velocidad y aceleración.

Obtenemos la derivada de la función $r(\overrightarrow{t})$ para obtener la **velocidad**:

$$r'(\overrightarrow{t'}) = (-2sin(\frac{t}{2}), 2cos(\frac{t}{2}))$$

Obtenemos la derivada de la función $r'(\overrightarrow{t})$ para obtener la **aceleración**:

$$r''(\overrightarrow{t}) = (-\cos(\frac{t}{2}), -\sin(\frac{t}{2}))$$
t velocidad aceleración
0 (0,2) (-1,0)
 2π (-0.109, 1.99) (-0.99, -0.054)

(b) Grafique la función vectorial, en el intervalo de t indicado.

(c) En la gráfica de la función vectorial (inciso anterior), agregue los vectores de velocidad y aceleración en el instante $t=\pi$

-	t	velocidad		aceleración		
7	π	(-0.054,	1.99)	(-0.99,	-0.02)	
			3			
		(00-	20			
		(-0.054	, 1.99)			
			1			
	(-	-0.99, -0.02)				
-4 -3		-2 -1	0	1	2 3	3 4
			-1			

(d) Obtenga el ángulo entre los vectores velocidad y aceleración.

Decimos que el vector de velocidad es el vector \overrightarrow{a} y que el vector de aceleración es \overrightarrow{b} . Para obtener el ángulo \overrightarrow{a} formamos un triángulo, siendo $\overrightarrow{a} - \overrightarrow{b}$ el lado opuesto al ángulo.

Aplicando ley de cosenos, tenemos que:
$$||\overrightarrow{a}-\overrightarrow{b}||^2=||\overrightarrow{a}||^2+||\overrightarrow{b}||^2-2||\overrightarrow{a}||||\overrightarrow{b}||cos\theta$$

3.

- 4. Proporcione la función vectorial $r(\overrightarrow{t})$, tal que cumpla las siguientes condiciones:
 - (a) a(t) = (-1, -1, -1)
 - (b) v(0) = (0, 0, 0)
 - (c) r(0) = (10, 10, 10)

5.

- 6. Considere la función vectorial $r(\overrightarrow{t}) = ([cost]^3, [sint]^3)$. Responda lo siguiente:
 - (a) Obtenga el vector tangente unitario a la curva.
 - (b) Calcule la longitud de la curva para $t \in [0, \frac{\pi}{2}]$

7.

- 8. Obtenga la ecuación del círculo osculador para la función y=sinx en el punto de coordenadas $(\frac{\pi}{2},1)$. Proponga $r(\overrightarrow{t})$ a partir de la "parametrización trivial" de la función. Calcule lo siguiente:
 - (a) (\overrightarrow{T}) , (\overrightarrow{N}) y k.

Haga una gráfica con la siguiente información:

- (a) La función y = sinx
- (b) El círculo osculador y además localizar el punto de coordenadas $(\frac{\pi}{2}, 1)$
- (c) Los vectores (\overrightarrow{T}) , (\overrightarrow{N}) .

9.