Cálculo de Determinantes mediante Diferentes Métodos

1. Método de Pivote (Expansión de Laplace)

Se tiene la matriz general:

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

El método de pivote (Expansión de Laplace) consiste en descomponer el determinante en términos de determinantes menores:

$$\det(A) = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= a(ei - fh) - b(di - fg) + c(dh - eg)$$
$$= (aei + bfg + cdh) - (ceg + bdi + afh)$$

Este método se generaliza a matrices de cualquier tamaño.

2. Método de la Lluvia y Método de la Estrella (La regla de Sarrus)

El método de la lluvia (La regla de Sarrus) se basa en expandir la matriz copiando las dos primeras columnas a la derecha:

$$\left[\begin{array}{ccc|c} a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h \end{array}\right]$$

Luego, se suman los productos de las diagonales descendentes y se restan los productos de las diagonales ascendentes:

$$det(A) = (aei + bfg + cdh) - (ceg + bdi + afh)$$

El método de la estrella es idéntico al método de la lluvia, pero sin copiar las primeras dos columnas. Se observa que estos métodos son equivalentes al método de pivote.

3. Problema a Resolver

Aplique el método de la lluvia a la siguiente matriz 4×4 :

$$B = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$

- 1. ¿Es posible aplicar el método de la lluvia a una matriz 4×4 ? Justifique su respuesta.
- 2. Si no es posible, explique por qué y qué método alternativo recomendaría para calcular el determinante.