The Order Topology and the First Uncountable Ordinal David Yang and Spencer Martin

1 Introduction

Definition 1.1 (Order Topology)

Let X be a set with a simple order relation and assume that X has more than one element. Let \mathcal{B} be the collection of all sets of the following types:

- 1. All open intervals (a, b) in X.
- 2. All intervals of the form $[a_0, b)$ where a_0 is the smallest element (if any) of X.
- 3. All intervals of the form $(a, b_0]$ where b_0 is the largest element (if any) of X.

The collection \mathcal{B} is a basis for a topology on X, known as the **order topology**.

If X has no smallest element, there are no sets of type 2, and if X has no largest element, there are no sets of type 3.

Lemma 1.1 (Lemma 13.1, page 80). Let X be a set; let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B} .

Lemma 1.2 (Lemma 10.2, page 66). There exists a well-ordered set A having a largest element Ω , such that S_{Ω} of A by Ω is uncountable but every other section of A is uncountable.

We can actually construct such a well-ordered set! Assuming the existence of an uncountable well-ordered set B (a weaker result following from the axiom of choice), define C to be the well-ordered set $\{1,2\} \times B$ in the dictionary order; a section of C is uncountable (for example, the section of C by any element of the form $2 \times b$). Let Ω be the smallest element of C for which the section of C by Ω is uncountable, and let A be this section along with Ω .

Definition 1.2 (Minimal Uncountable Well-Ordered Set)

 S_{Ω} is an uncountable well-ordered set, every section of which is countable; it is known as the **minimal uncountable well-ordered set**.

Alternatively, S_{Ω} is known as the **first uncountable ordinal**, and the closure of \overline{S}_{Ω} is $\overline{S}_{\Omega} = S_{\Omega} \cup \{\Omega\}$.

2 The Order Topology of the First Uncountable Ordinal

- Sets of type 2 in the order topology can be thought of as sections of S_{Ω} , and are countable.
- By problem 10.6(a) on page 67, S_{Ω} has no largest element, so no set of type 3 exists in S_{Ω} .
- Since S_{Ω} is well-ordered, any nonempty subset has to have a minimal element; consequently, all basis elements in the order topology can be written in the form [a, b).
- We can characterize all open sets of S_{Ω} : they must be unions of our basis elements. These look like unions of disjoint intervals of open sets, or are of the form of our basis elements.