2019 Putnam A2

Tristan Shin

7 Dec 2019

(filler)

The condition $IG \parallel AB$ is equivalent to $\frac{r}{h_C} = \frac{1}{3}$, which (using $K = rs = \frac{ch_C}{2}$) implies that a + b = 2c. So $\sin \alpha + \sin \beta = 2\sin \gamma$ where $\gamma = \angle C$.

Let $x=e^{i\alpha},y=e^{i\beta},z=e^{i\gamma}$ so that xyz=-1. Then

$$\frac{x - x^{-1}}{2i} + \frac{y - y^{-1}}{2i} = \frac{z - z^{-1}}{i}$$

SO

$$(2y-1)x - (y-y^{-1}) + (1-2y^{-1})x^{-1} = 0.$$

With $y = \frac{(3+i)^2}{10} = \frac{4}{5} + i\frac{3}{5}$, this gives

$$(x-i)\left(\left(\frac{3}{5}+i\frac{6}{5}\right)-\left(\frac{6}{5}+i\frac{3}{5}\right)\right)=\left(\frac{3}{5}+i\frac{6}{5}\right)x-i\frac{6}{5}+\left(-\frac{3}{5}+i\frac{6}{5}\right)x^{-1}=0$$

so x = i and thus $\alpha = \boxed{\frac{\pi}{2}}$.