6.2.11 Assume (f_n) and (g_n) are uniformly convergent sequences of functions on the set A.

(a) Show that $(f_n + g_n)$ is a uniformly convergent sequence of functions Proof: Let $\epsilon > 0$. Since $f_n \to f$ then there exists $N_1 \in \mathbb{N}$ such that for all $n \geq N_1, |f(x) - f_n(x)| < \frac{\epsilon}{2}$. Similarly for g_n , there exists $N_2 \in \mathbb{N}$ such that for all $n \geq N_2, |f(x) - f_n(x)| < \frac{\epsilon}{2}$. Therefore if we take $N = \max\{N_1, N_2\}$, then consider n > N, we have

$$|(f(x) - g(x)) - (f_n(x) - g_n(x))| = |(f(x) - f_n(x)) + (g(x) - g_n(x))|$$

$$\leq |f(x) - f_n(x)| + |g(x) - g_n(x)|$$
 triangle inequality
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

(b) Give an example to show that the product $(f_n g_n)$ may not converge uniformly. Take $f_n = \frac{1}{x} + \frac{1}{n}$, $g_n = \frac{x^2 + nx}{n}$. Since $f_n \to \frac{1}{x}$ and $g_n \to x$ then $f_n g_n \to 1$. Therefore if we compute their difference we find

$$|(\frac{1}{x} + \frac{1}{n})(\frac{x^2 + nx}{n}) - 1| = |\frac{x(x+n)(x+n)}{xn^2} - 1|$$

$$= |\frac{x^2 + 2nx + n^2}{n^2} - 1|$$

$$= |\frac{x^2 + 2nx}{n^2}|$$

$$= |\frac{x^2 + 2nx}{n}|$$

Therefore to have N be sufficiently large we must have $\frac{x^2+2x}{\epsilon} < N$. Since N depends on both x and ϵ then $f_n g_n$ is not uniformly continuous.

(c) Prove that if there exists an M > 0 such that $|f_n| \leq M$ and $|g_n| \leq M$ for all $n \in \mathbb{N}$, then $(f_n g_n)$ does converge uniformly.

Lemma: If $f_n \to f$ uniformly and $|f_n| \le M$ for all $n \in \mathbb{N}$ then $|f| \le M$. Since $f_n \to f$, then for every element in the sequence (k^{-1}) there exists $N_k \in \mathbb{N}$ such that for all $n \ge N_k$, $|f(x) - f_n| < \frac{1}{k}$. Therefore by the triangle inequality and applying the bound we have that $|f(x)| < M + \frac{1}{k}$. Therefore by the algebraic order theorem $|f(x)| \le M$

Proof: Let $\epsilon > 0$. Since $f_n \to f$ then there exists $N_1 \in \mathbb{N}$ such that for all $n \geq N_1, |f(x) - f_n(x)| < \frac{\epsilon}{2M}$. Similarly for g_n , there exists $N_2 \in \mathbb{N}$ such that for all $n \geq N_2, |f(x) - f_n(x)| < \frac{\epsilon}{2M}$. Therefore if we take $N = \max\{N_1, N_2\}$, then

consider $n \geq N$, we have

$$|f_n(x)g_n(x) - f(x)g(x)| = |f_n(x)g_n(x) - f_n(x)g(x) + f_n(x)g(x) - f(x)g(x)|$$

$$= |f_n(x)(g_n - g(x) + g(x)(f_n(x) - f(x))|$$

$$\leq |f_n(x)||(g_n - g(x)| + |g(x)||(f_n(x) - f(x))|$$
triangle inequality
$$\leq M|(g_n - g(x)| + M|(f_n(x) - f(x))|$$
bound on f and g

$$< M\frac{\epsilon}{2M} + M\frac{\epsilon}{2M}$$

$$= \epsilon.$$