mk 31/07/23

```
In [212]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [213]: x=pd.read_csv(r"C:\Users\user\Downloads\3_Fitness-1.csv")
x

Out[213]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	Α	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

In [214]: x.head(10)

Out[214]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	Α	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

```
In [215]: x.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9 entries, 0 to 8
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Row Labels	9 non-null	object
1	Sum of Jan	9 non-null	object
2	Sum of Feb	9 non-null	object
3	Sum of Mar	9 non-null	object
4	Sum of Total Sales	9 non-null	int64

dtypes: int64(1), object(4)
memory usage: 488.0+ bytes

```
In [216]: x.columns
```

In [217]: x.describe()

Out[217]:

Sum of Total Sales

count	9.000000
mean	255.555556
std	337.332963
min	75.000000
25%	127.000000
50%	167.000000
75%	171.000000
max	1150.000000

In [218]: sns.pairplot(x)

Out[218]: <seaborn.axisgrid.PairGrid at 0x110f5006310>


```
In [219]: sns.distplot(x['Sum of Total Sales'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[219]: <AxesSubplot:xlabel='Sum of Total Sales', ylabel='Density'>


```
In [220]: x1=x[['Sum of Total Sales','Sum of Jan']]
```

In [221]: sns.heatmap(x1.corr())

Out[221]: <AxesSubplot:>


```
In [226]: a=x1[['Sum of Total Sales']]
b=x1['Sum of Total Sales']
```

```
In [227]: from sklearn.model_selection import train_test_split
a_train,a_test, b_train, b_test=train_test_split(a,b,test_size=0.3)
```

```
from sklearn.linear model import LinearRegression
In [228]:
          lr=LinearRegression()
          lr.fit(a_train,b_train)
Out[228]: LinearRegression()
In [229]:
          print(lr.intercept_)
          2.842170943040401e-14
In [230]: coeff=pd.DataFrame(lr.coef ,a.columns,columns=['Co-efficient'])
Out[230]:
                           Co-efficient
           Sum of Total Sales
                                  1.0
In [231]: prediction=lr.predict(a test)
          plt.scatter(b_test,prediction)
Out[231]: <matplotlib.collections.PathCollection at 0x110f6ebe460>
           1000
            800
            600
            400
            200
                           400
                                   600
                                            800
                                                    1000
                  200
In [232]: lr.score(a_test,b_test)
Out[232]: 1.0
In [233]: from sklearn.linear_model import Ridge,Lasso
In [234]: rr=Ridge(alpha=10)
          rr.fit(a_train,b_train)
Out[234]: Ridge(alpha=10)
In [235]: |rr.score(a_test,b_test)
Out[235]: 0.999998034952742
```

```
In [236]: la=Lasso(alpha=10)
          la.fit(a train,b train)
Out[236]: Lasso(alpha=10)
In [237]: la.score(a_test,b_test)
Out[237]: 0.9999291008588174
In [238]: | from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(a train,b train)
Out[238]: ElasticNet()
In [239]: en.coef
Out[239]: array([0.99933293])
In [240]: en.predict(a_test)
Out[240]: array([1149.32392017, 170.97698594, 159.98432375])
In [241]: en.intercept
Out[241]: 0.09105564511645525
In [242]: en.score(a_test,b_test)
Out[242]: 0.9999992914814593
In [243]: from sklearn import metrics
In [244]: |print("Mean Absolute Error",metrics.mean_absolute_error(b_test,prediction))
          Mean Absolute Error 7.579122514774402e-14
In [245]: print("Mean Squared Error",metrics.mean_squared_error(b_test,prediction))
          Mean Squared Error 1.7232929428188076e-26
In [246]: print("Root Mean Squared Error",np.sqrt(metrics.mean squared error(b test,prediction))
          Root Mean Squared Error 1.3127425272378462e-13
 In [ ]:
```