Politechnika Wrocławska Wydział Elektroniki Automatyka i Robotyka Wizualizacja danych sensorycznych - projekt

WIZUALIZACJA DANYCH Z CZUJNIKÓW LINE FOLLOWERA

Autorzy: Beata Berajter 218629 Ada Weiss 218641

Prowadzącyc: dr inż. Bogdan Kreczmer

Spis treści

1	Cel projektu	2
2	Założenie projektowe	2
3	Harmonogram 3.1 Dekompozycja projektu na zadania	2 2 2
4	Komunikacja z urządzeniem4.1 Odczyt danych pomiarowych	3 4
5	Opis działania programu5.1 Rozmieszczenie obiektów5.2 Diagram klas5.3 Diagram czynności	4 4 4
6	Opis poszczególnych elementów interfejsu graficznego6.1 Dane z czujników optycznych6.2 Dane z enkoderów6.3 Rysowanie trasy6.4 Informacja o danych sensorycznych w wybranym punkcie	7 7 8 8
7	Opis urządzenia 7.1 Schematy elektroniczne robota	8 9 9 9 9
8	Integracja, testowanie i poprawki projektu	13
9	Dokumentacja	13
10) Podsumowanie	13

1 Cel projektu

Celem projektu jest zapoznanie się z metodami wizualizacji danych pochodzących z sensorów robota.

2 Założenie projektowe

Założeniem projektu jest zebranie danych pobranych z czujników line followera. Czujniki, z których należy pobrać informacje to czujniki optyczne oraz enkodery. Dane zbierane są w celu ich wizualizacji. W projekcie zostanie umieszczona animacja, która pokaże rozmieszczenie czujników, oraz w przypadku transoptorów odbiciowych pokaże, który z nich aktualnie wykrył linię. Dane z czujników będą przetwarzane na wykresy oraz ilustracje "słupkowe". Narysowana zostala również droga/ścieżka, którą podąża robot.

3 Harmonogram

3.1 Dekompozycja projektu na zadania

Wydzielono następujące zadania do wykonania w czasie realizacji projektu:

- Z1 Określenie harmonogramu i podziału zadań
- Z2 Zapoznanie ze środowiskiem QT
- Z3 Projekt okienek programu
- Z4 Opracowanie metody wczytywania danych w celu zastosowania jej do momentu przygotowania hardware'u
- Z5 Opracowanie przedstawienia danych z czujników optycznych
- Z6 Opracowanie przedstawiania danych słupkowych z enkoderów
- Z7 Projekt wykresów do przestawiania danych historycznych
- Z8 Stworzenie metody obliczającej na podstawie danych z enkoderów położenie aktualne robota
- Z9 Zaprojektowanie wizualizacji trasy robota
- Z10 Zaprojektowanie dodatkowego okna do przedstawiania danych historycznych w wybranym punkcie
- Z11 Integracja z działającym robotem
- Z12 Testowanie programu
- Z13 Tworzenie dokumentacji projektu.

3.2 Kamienie milowe

Kolejne kamienie milowe zostały oznaczone na rys. 1. czerwonymi gwiazdkami.

Wybór tematu projektu : Data 19.03.2017 r.
 Do niedzieli 19 marca należało wybrać temat projektu oraz zrobić wstępny opis, w którym ogólnie trzeba było określić cel zadania.

Rysunek 1: Diagram Gantta wraz z przydzieleniem osób do zadań

- Opis zadania i harmonogram : Data 26.03.2017 r.
 W tym terminie należało szczegółowo opisać założenia projektu, podział zadań oraz terminy, w których poszczególne elementy powinny być wykonane.
- Wstępne rezultaty: Data 23.04.2017 r.
 W raporcie przestawiono wyniki dotychczasowych prac nad projektem wraz z opisem co zostało zrobione bądź nie i dlaczego.
- Rezultaty prawie końcowe: Data 14.05.2017 r.
 Sprawozdanie należało uzupełnić o wykonane zadania oraz przedstawić efekty prac.
- Oddanie projektu : 19.06.2017 r.

 Jest to końcowy termin oddania projektu do oceny.

4 Komunikacja z urządzeniem

Line follower jest realizowany w ramach projektu z robotów mobilnych w tym semestrze. Do momentu gdy robot będzie nieukończony posługujemy się zastępczym urządzeniem symulującym, które będzie wysyłało dane do komputera. Ponieważ komunikacja przez bluetooth jest podobna jak w przypadku interfejsu szeregowego do symulacji wykorzystamy płytkę STM32L476G Discovvery podłączoną do portu USB komputera. Wizualizowane dane pochodzą z 7 czujników optycznych i 2 enkoderów. Czujniki optyczne informują o wykryciu zmiany koloru - linii. Na ten sygnał robot reaguje zmianą kierunku jazdy. Sygnał z czujników jest przekazywany wprost do pinów ADC mikrokontrolera. W mikrokontrolerze informacje zostają przetworzone na formę 0-1. W takiej postaci zostaną przesyłane przez moduł bluetooth do komputera (docelowo, w tym momecie przez USB)

4.1 Odczyt danych pomiarowych

Odczyt informacji z przesłanych z mikrokontrolera do programu realizowany jest poprzez czytanie danych z portu szeregowego komputera. W tym celu należało dodać

Rysunek 2: Rozmieszczenie widgetów na oknie głównym

użytkownika do grupy dialout. Pojawiające się urządzenie jest widoczne w /dev jako ttyACMx, gdzie x jest liczbą większą równą 0.

4.2 Ramka danych

Dane wysyłane będą poprzez moduł bluetooth HC-05 jako string w postaci:

Dane z enkoderów będą reprezentowane przez dwie wartości w systemie szesnastkowym. Suma kontrolna będzie obliczana jako suma odczytów czujników modulo 2^8 .

5 Opis działania programu

5.1 Rozmieszczenie obiektów

Obiekty zostały rozmieszczone w sposób przedstawiony na rys. 2, by można było łatwo odczytywać dane. Wizualizacje dotyczące enkoderów pogrupowano w jednym miejscu. Dzięki temu nie trzeba szukać powiązanych ze sobą informacji po całym ekranie.

5.2 Diagram klas

Diagram klas w obecnej fazie projektu prezentuje się jak pokazano na rys. 3

5.3 Diagram czynności

Uproszczony model działania programu realizujący założenia projektowe przedstawia 4. Ma on jedynie w sposób przybliżony opisać funkcjonowanie aplikacji.

Rysunek 3: Diagram klas

Rysunek 4: Schemat działania programu

Rysunek 5: Okno główne programu

6 Opis poszczególnych elementów interfejsu graficznego

Interfejs graficzny programu (okno główne) został wykonany przy użyciu bibliotek Qt oraz QtDesignera i jest przedstawiony na rys. 5. Dalszy opis poszczególnych elementów odnosić się będzie do tego rys.

6.1 Dane z czujników optycznych

Czujniki optyczne zostaną przedstawione w postaci kółek zielonych (1 - aktywne) lub czerwonych (0 - nieaktywne) znajdujących się w odpowiednich miejscach na rys. płytki PCB.

6.2 Dane z enkoderów

Dane z enkoderów przedstawiane są w postaci słupków (aktualne) oraz wykresów (historyczne) znajdujących się w prawej części okna. Dane historyczne są gromadzone od wciśnięcia przycisku START do wciśnięcia przycisku Clear data, który je usuwa.

6.3 Rysowanie trasy

Dane z enkoderów zostały także użyte w funkcji obliczające położenie robota (x, y oraz jego orientację), dzięki czemu będzie można narysować ścieżkę, którą robot podąża. Możliwe jest również skalowane ścieżki. Dane o położeniu są gromadzone, aby możliwe było wyświetlenie danych sensorycznych w wybranym punkcie trasy.

6.4 Informacja o danych sensorycznych w wybranym punkcie

Kliknięcie na wybrany punkt trasy robota na polu ROBOT's ROUTE umożliwia wyświetlenie informacji o danych sensorycznych w danym momencie na trasie co przedstawia rys. 6

Rysunek 6: Okno główne programu z wyświetlonym dodatkowym okienkiem o informacji na temat danych w konkretnym punkcie

7 Opis urządzenia

Robot jest wyposażony w:

- 7 transoptorów odbiciowych, z których sygnał będzie przetwarzany przez przetwornik analogowo-cyfrowy mikrokontrolera,
- 2 miniaturowe enkodery dla silników Pololu 3.3V

- łącze bluetooth, które umożliwi wysyłanie danych z powyższych czujników do komputera,
- pozostałe elementy iterfejsu sprzętowego: mikroprocesor ATmega32, układ zasilający, stabilizator, mostek h, programator.

7.1 Schematy elektroniczne robota

7.1.1 Czujniki

Jak zostało pokazane na schemacie (rys. 7.) czujniki optyczne zostały bezpośrednio dołączone do pinów ADC mikrokontrolera.

7.1.2 Stabilizator

W trakcie projektowania płytki wynikła konieczność użycia dwóch stabilizatorów na 5V i 3V3. Stało się tak, ponieważ silniki zasilane będą nie bezpośrednio z akumulatora, jak zakładano, ale poprzez enkodery. Zostaną one podłączone jak na rys. 8.

7.1.3 Mostek H

Na schemacie (rys. 9.) zostało pokazane podłączenie obu silników poprzez mostek H i enkodery.

7.1.4 Mikrokontroler

Jeden z najważniejszych elementów - Atmega32. Do niej dochodzą sygnały odebrane z czujników (CBL1-7) oraz enkoderów (E1-4). Połączona jest także z modułem bluetooth (J5), z niej wychodzą sygnały PWM sterujące silnikiem. Schemat został przedstawiony na rys. 10.

7.1.5 Płytka PCB

Zaprojektowana została płytka PCB (rys. 11.). Ma ona wymiary 10cm x 16cm. Przy jej rysowaniu nieocenioną pomocą okazał się tutorial na youtube.com.

Rysunek 7: Schemat połączenia czujników

Rysunek 8: Schemat podłączenia stabilizatorów.

Rysunek 9: Schemat mostka H

Rysunek 10: Schemat podłączenia mikroprocesora

Rysunek 11: Projekt płytki wykonany w programie KiCad.

8 Integracja, testowanie i poprawki projektu

Ze względu na opóźnienie w budowie robota nie udało się jeszcze zintegrować robota z oprogramowaniem. Wymagałoby to drobnych modyfikacji, np. w rysowaniu trasy (modyfikacja skali). Do celów testowania mikrokontroler został zaprogramowany tak, że generuje losowe dane z czujników optycznych oraz po naciśnięciu przycisku zmieniana jest prędkość na inną losowo wygenerowaną dla każdego z kół.

9 Dokumentacja

Dokumentację projektu stanowi dokument html wygenerowany za pomocą Doxygena, który został dostarczony wraz ze sprawozdaniem oraz kodem źródłowym programu.

10 Podsumowanie

Udało się wykonać wszystkie zaplanowane zadania z wyjątkiem integracji z robotem. Wybrana metoda symulacji robota powinna jednak być na tyle skuteczna, że integracja robota z oprogramowaniem powinna przebiec pomyślnie.