

计算机软件 技术测试报告

(成果鉴定测试)

<u>软</u>测字 第<u>HB-J-201608003</u>号

软件名称	狮图空间 CPU+GPU 高性能计算 环境遥感监测系统		
版本号	V1. 0		
委托单位	武汉狮图空间信息技术有限公司		
测试单位	湖北软件评测中心 		

二〇一六年八月二十二日

目 录

1.	测试报告基本信息3
	1.1 软件名称
	1.2 送测物品
	1.3 送测物品状态及特性
	1.4 接收日期
	1.5 测试日期
	1.6 测试依据
	1.7 测试方法
	1.8 测试地点
	1.9 测试环境
	1.10 委托单位
	1.11 测试单位
	1.12 系统介绍
	1.13 测试结论
	1.14 测试人
	1.15 审核人
	1.16 批准人
2.	狮图空间 CPU+GPU 高性能计算环境遥感监测系统软件特性测试结果7
	2.1 软件特性总体测试结果7
	2.2 功能适合性
	2.3 狮图空间 CPU+GPU 高性能计算环境遥感监测系统技术指标测试8
	2.3.1 遥感数据大规模并行处理8
	2.3.2 环境遥感数据吞吐量9
	2.3.3 可视化数据建模10
	2.3.4 影像数据自动分割处理11
	2.3.5 数据分配负载均衡策略13

1. 测试报告基本信息

软件名称	狮图空间 CPU+GPU 高性能计算环境遥感监测系统	版本号	V1.0	
送测物品	《狮图空间 CPU+GPU 高性能计算环境遥感监测系约《狮图空间 CPU+GPU 高性能计算环境遥感监测系约			
送测物品 状态及特性	用户文档完好、软件光盘质量可靠			
接收日期	2016-08-16			
测试日期	2016-08-17 至 2016-08-19			
测试依据	GB/T 25000.51—2010《软件工程 软件产品质量等商业现货(COTS)软件产品的质量要求和测试细度《狮图空间 CPU+GPU 高性能计算环境遥感监测系统	训》		
测试方法	黑盒测试			
测试地点	武汉市东湖高新技术开发区武大科技园兴业楼北村	——— 娄 2-201		

湖北软件评测中心 第3页 共14 页

	数据库服	硬 件	机型: Dell PowerEdge T420 CPU: Intel(R) Xeon(R) CPU E5606 2.13GHz 内存: 1.0GB 硬盘: 2.0TB
	务器	软 件	Microsoft Windows Server 2008 R2 Oracle 11g
测	应用服	硬 件	机型:兼容机 CPU: Intel(R) Core(TM) i5-6400 2.70GHz 内存: 8.0GB 硬盘: 2.0TB
试环境	务器	软 件	Microsoft Windows 10 企业版 Microsoft .net Framework 4.0 Microsoft IIS 10.0.10240.16384
	客户端	硬 件	机型: 兼容机 CPU: Intel(R) Core(TM) i5-6400 2.70GHz 内存: 8.0GB 硬盘: 2.0TB
		软 件	Microsoft Windows 10 企业版 QGIS 2.12.2 Google Chrome 52.0.2743.116m
		网络	武汉狮图空间信息技术有限公司内网(100Mbps)

湖北软件评测中心 第4页 共14页

委	名	称	武汉狮图空间信息技术有限公司		
托单	地	址	武汉市东湖高新技术开发区武大科技园兴业楼北楼 2-201	邮编	430223
位	电	话	027-86816665	传真	027-86816665
	名	称	湖北软件评测中心		
测试	地	址	湖北省武汉市关山一路 光谷软件园 C6 栋 203 室	邮编	430073
单 位	电	话	027-87788601 027-87789058	传真	027-87788602
	邮	箱	xqm@whu.edu.cn		

狮图空间 CPU+GPU 高性能计算环境遥感监测系统主要包括 GPU 并行分割、单线程分割、环境遥感数据管理、图形化建模等功能模块。

系统介绍

GPU 并行分割: 打开原始影像、保存 GPU 并行分割处理结果、设置 GPU 并行分割参数、对原始影像进行 GPU 并行分割处理;单线程分割:打开原始影像、保存单线程串行处理结果、设置单线程串行参数、对原始影像进行单线程串行分割处理;环境遥感数据管理:查询卫星影像数据、下载卫星影像数据;图形化建模:定义参数和算法、创建遥感应用流程、打开遥感应用流程、保存遥感应用流程、运行遥感应用流程。

湖北软件评测中心 第5页 共 14 页

测试结论

湖北软件评测中心(以下简称"中心")受武汉狮图空间信息技术有限公司的委托,于 2016年08月17日至2016年08月19日对《狮图空间CPU+GPU高性能计算环境遥感监测系统V1.0》进行了全面、严格的成果鉴定测试,中心根据测试依据的要求,对该系统的功能性和效率等质量特性进行了测试。

功能测试包括 GPU 并行分割、单线程分割、环境遥感数据管理、图形化建模等功能,详细功能测试结果请参照报告"软件特性测试结果"功能适合性部分。

技术指标测试包括遥感数据大规模并行处理、环境遥感数据吞吐量、可视化数据建模、影像数据自动分割处理、数据分配负载均衡策略等。通过对该系统的技术指标测试,各项指标均在需求允许的范围之内,具体技术指标测试数据请参照狮图空间 CPU+GPU 高性能计算环境遥感监测系统技术指标测试。

通过测试,确认系统符合以下技术指标:

- 1. 实现遥感数据大规模并行处理,可将原有的串行处理任务分解为 2 个以上并行处理线程:
- 2. 具备海量数据快速存取与管理的能力,在以太网环境下吞吐量可达 10Mbit/s 以上;
- 3. 能够快速可视化数据建模,系统支持工作流,可通过工作流搭建新的环境遥感应用流程:
- 4. 实现影像数据自动分割处理,分割速度比常规串行方法快 20 倍以上;
 - 5. 具备数据分配负载均衡策略。提供静态和动态 2 种任务分配策略。

测试结论:通过

湖北软件评测中心(盖章)

2016年08月22日

测试人	日期	年 月 日
审核人	日期	年 月 日
批准人	日期	年 月 日

湖北软件评测中心 第6页 共14页

2. 狮图空间 CPU+GPU 高性能计算环境遥感监测系统软件特性测试结果

2.1 软件特性总体测试结果

质量特性		测试说明	测试结果
功能性	适合性	为指定的任务和用户目标提供一组合适的功能的能力。	通过

2.2 功能适合性

序号	功能	子功能	功能简要说明	测试结果
1		打开原始影像	打开一个用于 GPU 并行分割原始影像	通过
2	GPU 并行	保存分割结果	保存 GPU 并行分割处理结果	通过
3	分割	设置分割参数	设置 GPU 并行分割参数	通过
4		分割	对原始影像进行 GPU 并行分割处理	通过
5		打开原始影像	打开一个用于单线程串行分割原始影像	通过
6	单线程分割	保存分割结果	保存单线程串行处理结果	通过
7	半线性分割	设置分割参数	设置单线程串行参数	通过
8		分割	对原始影像进行单线程串行分割处理	通过
9	环境遥感	查询	输入查询条件,查询卫星影像数据	通过
10	数据管理	下载	下载选中的卫星影像数据	通过
11		创建遥感应用流程	定义参数和算法,创建遥感应用流程	通过
12	图形化建模	打开模型	打开一个遥感应用流程	通过
13	凶沙化建铁	保存模型	保存创建的遥感应用流程	通过
14		运行模型	运行创建的遥感应用流程	通过

湖北软件评测中心 第7页 共14页

2.3 狮图空间 CPU+GPU 高性能计算环境遥感监测系统技术指标测试

2.3.1 遥感数据大规模并行处理

2.3.1.1 测试依据

测试指标内容:实现遥感数据大规模并行处理,可将原有的串行处理任务分解为 2 个以上并行处理线程。

2.3.1.2 测试方法

- (1) 通过查看任务管理器,获得遥感影像 GPU 并行分割工具执行分割操作前的线程数量;
- (2) 执行分割操作,通过查看任务管理器,获得遥感影像 GPU 并行分割工具执行分割操作中的线程数量:
 - (3) 通过以下公式计算遥感数据并行分割处理的线程数量: 遥感数据并行分割处理的线程数量 = 分割处理中线程数量 - 分割处理前线程数量

2.3.1.3 测试结果

启动狮图空间 CPU+GPU 高性能计算环境遥感监测系统的遥感影像 GPU 并行分割工具,进入多尺度分割页面,通过查看任务管理器,遥感影像 GPU 并行分割工具的线程数量为 9; 执行遥感数据并行分割处理,通过查看任务管理器,遥感影像 GPU 并行分割工具的线程数量为 34。遥感数据并行分割处理前的线程数量和分割处理中的线程数量如图 1 和图 2 所示:

图 1: 遥感数据并行分割处理前线程数量

图 2: 遥感数据并行分割处理中线程数量

湖北软件评测中心 第8页 共 14 页

遥感数据并行分割处理的线程数量 = 34 - 9 = 25

2.3.1.4 测试结论

通过以上测试结果的数据可以得出:系统实现了遥感数据大规模并行处理,可将原有的串行处理任务分解为 2 个以上并行处理线程。

2.3.2 环境遥感数据吞吐量

2.3.2.1 测试依据

测试指标内容:具备海量数据快速存取与管理的能力,在以太网环境下吞吐量可达 10Mbit/s 以上。

2.3.2.2 测试方法

- (1) 在环境遥感数据管理中,选取5个数据文件进行下载操作;
- (2)记录数据文件的大小,以及下载文件的耗时;
- (3) 通过以下公式计算海量数据快速存取的吞吐量: 吞吐量(Mbit/s)=文件大小(KB)/下载耗时(秒)/1024

2.3.2.3 测试结果

在环境遥感数据管理中,下载数据文件,海量数据快速存取吞吐量情况如表1所示:

表一:海量数据快速存取吞吐量情况

序号	文件名称	文件大小 (KB)	下载耗时 (秒)	吞吐量 (Mbit/s)
1	HJ1A-CCD1-450-116- 20140321-L20001136121-1.TIF	213, 475	19. 400	85. 97
2	HJ1B-IRS-28-63-20140327- L20001136678-4.TIF	14, 834	1. 342	86. 36
3	ZY3_MUX_E125.7_N45.7_ 20130912_L1A0001616571.tiff	639, 865	55. 710	89. 73
4	GF1_PMS2_E128.0_N42.9_2013 1101_L1A0000184534-MSS2.tiff	159, 926	14. 730	84. 82
5	TH01-01_P201111259051672_ 1B_GFB_08_042_139.TIF.tif	163, 554	14. 195	90. 02

湖北软件评测中心 第9页 共 14 页

2.3.2.4 测试结论

通过以上测试结果的数据可以得出:系统具备海量数据快速存取与管理的能力,在以太网环境下吞吐量可达 10Mbit/s 以上。

2.3.3 可视化数据建模

2.3.3.1 测试依据

测试指标内容: 能够快速可视化数据建模,系统支持工作流,可通过工作流搭建新的环境遥感应用流程。

2.3.3.2 测试方法

- (1) 在系统的图像化建模界面中创建一个遥感应用流程;
- (2)选择实例图像,运行创建的遥感应用流程。

2.3.3.3 测试结果

(1)在图像化建模界面,通过定义参数和算法,搭建新的环境遥感应用流程,如图 3 所示;

图 3: 创建的遥感应用流程

(2)打开一图像文件,运行创建的遥感应用流程,得出运行结果,如图 4 所示:

湖北软件评测中心 第10页 共14页

图 4: 运行创建的遥感应用流程结果

2.3.3.4 测试结论

通过以上测试结果可以看出:系统能够快速可视化数据建模,系统支持工作流,可通过工作流搭建新的环境遥感应用流程。

2.3.4 影像数据自动分割处理

2.3.4.1 测试依据

测试指标内容:实现影像数据自动分割处理,分割速度比常规串行方法快 20 倍以上。

2.3.4.2 测试方法

- (1)对一个遥感影像数据进行 GPU 并行分割处理;
- (2)对同一遥感影像数据进行单线程串行分割处理;
- (3) 计算 GPU 并行分割处理与单线程串行分割处理耗时比例, 耗时比例=串行耗时/并行耗时;
- (4)选择 5幅不同的遥感影像数据进行 GPU 并行分割处理与单线程串行分割处理,取其中最小值。

湖北软件评测中心 第11页 共14页

2.3.4.3 测试结果

(1) 启动狮图空间 CPU+GPU 高性能计算环境遥感监测系统的遥感影像 GPU 并行分割工具, 打开一遥感影像数据并执行分割处理,再启动单线程串行分割工具,并对同一遥感影像数据 执行分割处理,遥感影像数据执行 GPU 并行分割和单线程串行分割如图 5 和图 6 所示;

图 5: 执行 GPU 并行分割处理

图 6: 执行单线程串行分割处理

(2)根据 GPU 并行分割处理耗时与单线程串行分割处理耗时(如图 7 和图 8 所示),计算两种处理方式的耗时比例(只保留 2 位小数);

图 7: 执行 GPU 并行分割处理

图 8: 执行单线程串行分割处理

执行 GPU 并行分割和单线程串行分割耗时比例=28. 246/0. 48=58. 85

(3) 选择 5 幅不同的遥感影像数据重复上述步骤,取其中最小值(耗时比例只保留 2 位

湖北软件评测中心 第12页 共 14 页

小数),如表二所示;

表二: 5幅不同的遥感影像数据并行分割与串行分割处理耗时比例

序号	遥感影像数据	并行分割耗时(秒)	串行分割耗时(秒)	耗时比例 (秒)
1	500 像素	0. 48 28. 246		58.85
2	1000 像素	1. 115	31. 375	28. 14
3	2000 像素	4. 212	129. 667	30. 79
4	4000 像素	16. 438	528. 136	32. 13
	28. 14			

2.3.4.4 测试结论

通过以上测试结果的数据可以看出:实现影像数据自动分割处理,分割速度比常规串行方法快 20 倍以上。

2.3.5 数据分配负载均衡策略

2.3.5.1 测试依据

测试指标内容: 系统具备数据分配负载均衡策略, 提供静态和动态 2 种任务分配策略。

2.3.5.2 测试方法

- (1) 在遥感影像 GPU 并行分割工具中,使用数据静态分配负载均衡策略进行分割操作, 获取分割结果;
- (2) 在遥感影像 GPU 并行分割工具中,使用数据动态分配负载均衡策略进行分割操作, 获取分割结果。

2.3.5.3 测试结果

(1) 启动狮图空间 CPU+GPU 高性能计算环境遥感监测系统的遥感影像 GPU 并行分割工具,进入多尺度分割页面,使用数据静态分配负载均衡策略进行分割操作,操作过程和分割结果如图 9 所示:

湖北软件评测中心 第13页 共 14 页

图 9: 系统使用数据静态分配负载均衡策略进行分割操作

(2) 启动狮图空间 CPU+GPU 高性能计算环境遥感监测系统的遥感影像 GPU 并行分割工具,进入多尺度分割页面,使用数据动态分配负载均衡策略进行分割操作,操作过程和分割结果如图 10 所示:

图 10: 系统使用数据动态分配负载均衡策略进行分割操作

2.3.5.4 测试结论

通过以上测试结果的数据可以得出:系统具备数据分配负载均衡策略,提供静态和动态 2 种任务分配策略。

[本页以下无报告内容]

湖北软件评测中心 第14页 共 14 页