Total No	o. of Questions : 8]	SEAT No. :	
PB38	340	[Total No. of Pages	s: 2
	[6262] 102		
	T.E. (E & TC)		
	DIGITAL IMAGE PROCESS	ING	
	(2019 Pattern) (Semester - II) (304195(A)) (Elective - II)	
	(2015) Lutterin, (301) (301) (301))) (Elective II)	
Time: 2	½ Hours]	[Max. Marks	: 70
Instruct	ions to the candidates:		
1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.	9	
2)	Neat diagrams must be drawn wherever necessary.		
3)	Figures to the right indicate full marks.		
<i>4</i>)	Your answers will be valued as a whole.		
5)	Assume suitable data, if necessary.		
6)	Use of logarithmic tables slide rule, Mollier charts,	electronic pocket calculo	ator
	and steam tables is allowed.		
0.51			
Q1) a)			
	Otsu's method.		[6]
b)	What is edge linking? Explain its approaches.		[6]
c)	What is region growing? Explain techniques of	region splitting and reg	ion
- ,	merging.		[6]
	, ` \	•	
	OR		
Q2) a)	How are discontinuties detected in Image? Wit	h the help of suitable m	ask
- '	explain point detection and line detection.	-	[6]
b)		n in detail.	[6]
c)	Explain how Hough Transform is useful for ed	ge linking.	[6]

- Q3) a) What is DCT? Give forward and reverse transform equations and
 - b) Explain Quantitative and Qualitative fidelity criteria in image compression.[6]

important properties of DCT. How DCT helps to achieve compression.[6]

Explain how motion estimation plays important role in video compression?
Explain Block based motion estimation.

OR

Q 4)	a)	Explain image compression using JPEG with suitable block diagram. [6]		
	b)		one [6]	
	c)	What is entropy of an image? Write significance of it in image compression.	[5]	
Q5)	a)	What is noise model? Explain any three noise models.	[6]	
	b)	How Weiner filter is used for restoration of images in the presence o		
			[6]	
	c)	Explain the method of estimation of degradation function.	[6]	
		OR SEE		
Q6)	a)	Draw and explain Image degradation model.	[6]	
	b)	How the constrained Least square filtering is used for image restoration.	[6]	
	c)	Explain the three Geometric transformation in the images.	[6]	
Q7)	a)	What is image classification? Explain one image classification algorithms	hm	
		in detail.	[6]	
	b)	Explain in detail character recognition with it's steps in detail.	[6]	
	c)	Explain object recognition using structural method.	[5]	
		OR OR		
Q8)	a)	Explain the recognition based on decision theoretic methods.	[6]	
	b)	Explain content based image retrival application in detail.	[6]	
	c)	Explain how Deep learning using CNN is useful in classification of images.	[5]	
	NB.			