

操作系统——硬钢文件系统

自我介绍一哈子

你脑子进咸鱼了吧

咸鱼学长

王道数据结构、操作系统、计组主讲

本科: BIT软件工程

读研: PKU大数据技术

考研成绩: 总分386, 专业课143

工作经历: 两年多游戏服务器开发

王道考研/CSKAOYAN.COM

思考

- "目录文件"是什么逻辑结构?
- "目录文件"可以用什么物理结构存储?

目录文件

文件名	类型	存取权限		物理位置
qianlong	目录	只读		外存7号块
QMDownLoa d	目录	读/写		外存18号块
照片	目录	读/与		外存643号块
对账单4.txt	txt	只读		外存324号块
文件名	索引结点	指针	索马	
qianlong			→ 新丁 结点	
QMDownLoa d			7 1-711	<u>`</u>
			索引	
照片		_	索引	

思考如何用C语言实现?

几个问题

- "目录文件"是什么逻辑结构?
- "目录文件"可以用什么物理结构存储?

目录	目录	目录	目录	目录	目录	
项0	项1	项2	项3	项4	项5	

目录文件的物理结构

连续分配:逻辑上相邻的块物理上也相邻

用户视角: 每个目录项记录占 64B

 目录
 目录
 目录
 目录
 目录
 目录

 项0
 项1
 项2
 项3
 项4
 项5

操作系统视角:反正就是一堆二进制数据,每个磁盘块可存储1KB,拆就完了!

1KB #0	1KB #1	1KB #2	1KB #3	1KB #4	1KB #5	
#0	#1	#2	#3	#4	#5	

目录文件的物理结构

链接分配:逻辑上相邻的块在物理上用链接指针表示先后关系

用户视角: 每个目录项记录占 64B

 目录
 目录
 目录
 目录
 目录
 目录

 项0
 项1
 项2
 项3
 项4
 项5

操作系统视角:反正就是一堆二进制数据,每个磁盘块可存储1KB,拆就完了!

1KB	1KB	1KB	1KB	1KB	1KB	
#0	#1	#2	#3	#4	#5	•••

目录文件的物理结构

索引分配:操作系统为每个文件维护一张索引表,其中记录了逻辑块号 > 物理块号的映射关系

用户视角: 每个目录项记录占 64B

 目录
 目录
 目录
 目录
 目录
 目录

 项0
 项1
 项2
 项3
 项4
 项5

操作系统视角:反正就是一堆二进制数据,每个磁盘块可存储1KB,拆就完了!

1KB	1KB	1KB	1KB	1KB	1KB	
#0	#1	#2	#3	#4	#5	•••••

某文件系统为一级目录结构,文件的数据一次性写入磁盘,已写入的文件不可修改,但可多次创建新文件。请回答如下问题。

- 1) 在连续、链式、索引三种文件的数据块组织方式中,哪种更合适?要求说明理由。为定位文件数据块,需要FCB中设计哪些相关描述字段?
- 2) 为快速找到文件,对于FCB,是集中存储好,还是与对应的文件数据块连续存储好?要求说明理由。

【2011年计算机联考真题】

某文件系统为一级目录结构,文件的数据一次性写入磁盘,已写入的文件不可修改,但可多次创建新文件。请回答如下问题。

- 1) 在连续、链式、索引三种文件的数据块组织方式中,哪种更合适?要求说明理由。为定位文件数据块,需要FCB中设计哪些相关描述字段?
- 2) 为快速找到文件,对于FCB,是集中存储好,还是与对应的文件数据块连续存储好?要求说明理由。

【2011年计算机联考真题】

在实现文件系统时,为加快文件目录的检索速度,可利用"FCB分解法"。假设目录文件存放在磁盘上,每个盘块512B。FCB占64B。其中文件名占8B。通常将FCB分解成两部分,第一部分占10B(包括文件名和文件内部号),第二部分占56B(包括文件内部号和文件其他描述信息)。

- 1) 假设某一目录文件共有254个FCB,试分别给出采用分解法前和分解法后,查找该目录文件的某一个FCB的平均访问磁盘次数。
- 2) 一般地,若目录文件分解前占用n个盘块,分解后改用m个盘块存放文件名和文件内部号,请给出访问磁盘次数减少的条件。

文件目录采用多级树形目录结构,由根目录结点、作为目录文件的中间结点和作为信息文件的树叶组成,每个目录项占127B,每个物理块放4个目录项,根目录的第一块常驻内存。试问:

- 1) 若文件的物理结构采用链式存储方式,链指针地址占2B, 那么要将文件A读入内存, 至少需要存取几次 硬盘?
- 2) 若文件为连续文件, 那么要读文件A的第487个记录至少要存取几次硬盘?
- 3) 一般为减少读盘次数,可采取什么措施,此时可减少几次存取操作?

文件目录采用多级树形目录结构,由根目录结点、作为目录文件的中间结点和作为信息文件的树叶组成,每个目录项占127B,每个物理块放4个目录项,根目录的第一块常驻内存。试问:

1) 若文件的物理结构采用链式存储方式,链指针地址占2B, 那么要将文件A读入内存, 至少需要存取几次 硬盘?

文件目录采用多级树形目录结构,由根目录结点、作为目录文件的中间结点和作为信息文件的树叶组成,每个目录项占127B,每个物理块放4个目录项,根目录的第一块常驻内存。试问:

1) 若文件的物理结构采用链式存储方式,链指针地址占2B, 那么要将文件A读入内存,至少需要存取几次硬盘?

文件目录采用多级树形目录结构,由根目录结点、作为目录文件的中间结点和作为信息文件的树叶组成,每个目录项占127B,每个物理块放4个目录项,根目录的第一块常驻内存。试问:

1) 若文件的物理结构采用链式存储方式,链指针地址占2B, 那么要将文件A读入内存, 至少需要存取几次 硬舟?

文件目录采用多级树形目录结构,由根目录结点、作为目录文件的中间结点和作为信息文件的树叶组成,每个目录项占127B,每个物理块放4个目录项,根目录的第一块常驻内存。试问:

文件目录采用多级树形目录结构,由根目录结点、作为目录文件的中间结点和作为信息文件的树叶组成,每个目录项占127B,每个物理块放4个目录项,根目录的第一块常驻内存。试问:

1) 若文件的物理结构采用链式存储方式,链指针地址占2B, 那么要将文件A读入内存, 至少需要存取几次 硬盘?

1) 将文件A读入内存:

由内存中 root 目录文件的第一块,确定第二块块号,读入 root 的第二块,并由usr 的FCB 确定 usr 的第一块块号; 读入 usr 的第一块;

读入 usr 的第二块,并由 he 的 FCB 确定 he 的第一块块号; 读入 he 的第一块,并由 dir1 的 FCB 确定 dir1 的第一块块号; 读入 dir1 的第一块,并由 A 的 FCB 确定 A 的第一块块号;

读入 A 的第一块;

读入 A 的第二块;

.

读入 A 的第 598/2= 299 块;

读磁盘次数 = 5+299 = 304 次

文件目录采用多级树形目录结构,由根目录结点、作为目录文件的中间结点和作为信息文件的树叶组成,每个目录项占127B,每个物理块放4个目录项,根目录的第一块常驻内存。试问:

2) 若文件为连续文件, 那么要读文件A的第487个记录至少要存取几次硬盘?

文件目录采用多级树形目录结构,由根目录结点、作为目录文件的中间结点和作为信息文件的树叶组成,每个目录项占127B,每个物理块放4个目录项,根目录的第一块常驻内存。试问:

- 2) 若文件为连续文件, 那么要读文件A的第487个记录至少要存取几次硬盘?
- 2) 将文件A的第487个记录读入内存:

读入 root 的第二块,并由usr 的FCB 确定 usr 的第一块块号; 读入 usr 的第一块:

读入 usr 的第二块, 并由 he 的 FCB 确定 he 的第一块块号; 读入 he 的第一块, 并由 dir1 的 FCB 确定 dir1 的第一块块号; 读入 dir1 的第一块, 并由 A 的 FCB 确定 A 的第一块块号 n;

487/2 = 243.5 → 第487个记录在 A 的第 244个块 读入 A 的第 244个块 (物理块号 = n+243);

读磁盘次数 = 5+1 = 6 次

文件目录采用多级树形目录结构,由根目录结点、作为目录文件的中间结点和作为信息文件的树叶组成,每个目录项占127B,每个物理块放4个目录项,根目录的第一块常驻内存。试问:

3) 一般为减少读盘次数,可采取什么措施,此时可减少几次存取操作?

查询目录——按照下一级文件的名字依次对比 FCB 中的文件名

每个目录项占127B,每个物理块放4个目录项,因此每对比4个FCB就需要再读入下一块

采用UNIX的"索引结点"方案——文件的详细信息存放在 inode中,可使每个物理块存放更多个目录项,减少查询目录时的读盘次数

读文件A的某个记录时,查询 A 的 inode 中存放的索引表

21考研·408计算机统考全程提分

券后999

王道计算机讲师团

£ 4514

¥1199 ¥2116

± 5566

21慕课408全程班咨询群 扫一扫二维码,加入群聊。

扫码进群咨询领优惠券

扫码咨询客服定向班

21 慕课 408 全程班咨询群 扫一扫二维码,加入群聊。

扫码进群咨询领优惠券

扫码咨询客服定向班