Two-Way Fixed Effects, the Two-Way Mundlak Regression, and Difference-in-Differences Estimators

Jeff Wooldridge Department of Economics Michigan State University

September 23, 2021

- 1. Introduction
- 2. Equivalence of TWFE and Two-Way Mundlak
- 3. Interventions with Common Treatment Timing
- 4. Staggered Interventions
- 5. Comparison with Other Approaches
- 6. Testing and Relaxing Parallel Trends
- 7. Simulations
- 8. Concluding Remarks

1. Introduction

- For panel data, two-way fixed effects (TWFE) is a staple in empirical research.
 - ► Applied to "structural" models say, production functions.
 - ► Applied to policy analysis difference-in-differences.
- Used for all configurations of *N* and *T*.
- With small T, large N, time effects often absorbed into covariates.
 - ► Analyze as a one-way FE estimator.

- One-way Mundlak regression has proven useful for many purposes.
- ► Leads to simple, robust, regression-based comparisons between FE and random effects estimation: Arellano (1993).
- ► Produces insight into the pre-testing problem with Hausman tests.
- ➤ Suggests how to allow heterogeneity to correlate with covariates in nonlinear models: Mundlak-Chamberlain device.

- Wooldridge (2019): The one-way Mundlak regression applies to unbalanced panels.
- ► In the linear case, Mundlak still produces the complete-cases FE estimator.
- ➤ Suggests correlated random effects for heterogeneous slopes and nonlinear models.

- Current paper: Shows the equivalence between the TWFE estimator and the obvious two-way Mundlak regression.
- ► In latter case, focus is on pooled OLS, but results also hold for RE.
- Equivalence is simple but useful.
 - ► Further reveals the workings of TWFE.
 - ▶ Applications to staggered interventions and DiD.

- Advantages of TWFE for event studies:
- 1. We know properties of TWFE when the panel is unbalanced.
- 2. It is easy to test the null that treatment effects are homogeneous in a robust way.
- 3. Immediately extensions of the TWFE etimator to removing unit-specific trends can be applied with heterogenous treatment effects.
- Advantages of POLS for event studies:
- ► Given equivalence in the linear case, POLS can be extended to nonlinear models.

2. Equivalence of TWFE and Two-Way Mundlak

• Motivation for TWFE estimation:

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + c_i + f_t + u_{it}, \ t = 1, ..., T; i = 1, ..., N$$

- $ightharpoonup \mathbf{x}_{it}$ is $1 \times K$.
- $ightharpoonup c_i$ are the unit-specific effects.
- $\blacktriangleright f_t$ are the time-specific effects.

- Equivalence results are algebraic.
- The two-way dummy variable regression:

$$y_{it}$$
 on \mathbf{x}_{it} , 1, $c2_i$, ..., cN_i , $f2_t$, ..., fT_t , $t = 1, ..., T$; $i = 1, ..., N$.

- ► Coefficients on \mathbf{x}_{it} are $\hat{\boldsymbol{\beta}}_{FE}$ ($K \times 1$).
- \mathbf{x}_{it} only includes variables that have some variation across i and t.

• Baltagi (2001): Two-way within transformation gives $\hat{\beta}_{FE}$.

$$\mathbf{\bar{x}}_{i\cdot} = T^{-1} \sum_{t=1}^{T} \mathbf{x}_{it}$$

$$\mathbf{\bar{x}}_{\cdot t} = N^{-1} \sum_{i=1}^{N} \mathbf{x}_{it}$$

$$\bar{\mathbf{x}} = (NT)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it} = N^{-1} \sum_{i=1}^{N} \bar{\mathbf{x}}_{i \cdot} = T^{-1} \sum_{t=1}^{T} \bar{\mathbf{x}}_{\cdot t}$$

$$\ddot{\mathbf{x}}_{it} = (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i \cdot}) - N^{-1} \sum_{i=1}^{N} (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i \cdot}) = \mathbf{x}_{it} - \overline{\mathbf{x}}_{i \cdot} - \overline{\mathbf{x}}_{i \cdot} + \overline{\mathbf{x}}$$

$$\ddot{y}_{it} = y_{it} - \bar{y}_i - \bar{y}_t + \bar{y}$$

• $\hat{\beta}_{FE}$ is also the pooled OLS estimator from

$$\ddot{y}_{it}$$
 on $\ddot{\mathbf{x}}_{it}$, $t = 1, ..., T$; $i = 1, ..., N$.

- Alternatively, consider the two-way Mundlak regression.
- Pooled OLS of

$$y_{it}$$
 on 1, \mathbf{x}_{it} , $\mathbf{\bar{x}}_{i\cdot}$, $\mathbf{\bar{x}}_{\cdot t}$, $t = 1, ..., T$; $i = 1, ..., N$.

▶ Let $\hat{\beta}_M$ be the coefficients \mathbf{x}_{it} .

THEOREM: Provided the $K \times K$ matrix

$$\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{x}}_{it}' \ddot{\mathbf{x}}_{it}$$

is nonsingular,

$$\hat{oldsymbol{eta}}_{M}=\hat{oldsymbol{eta}}_{FE}$$

Moreover, in the extended regression

$$y_{it}$$
 on 1, \mathbf{x}_{it} , $\mathbf{\bar{x}}_{i\cdot}$, $\mathbf{\bar{x}}_{\cdot t}$, \mathbf{z}_{i} , \mathbf{m}_{t} , $t = 1, ..., T$; $i = 1, ..., N$

for time-constant variables \mathbf{z}_i and unit-constant variables \mathbf{m}_t , the coefficients on \mathbf{x}_{it} are still $\hat{\boldsymbol{\beta}}_{FE}$. \square

- Proof uses Frisch-Waugh partialling out.
- Coefficients on $\bar{\mathbf{x}}_i$ and $\bar{\mathbf{x}}_{\cdot t}$ do change with the inclusion of \mathbf{z}_i , \mathbf{m}_t .
 - ▶ Basis of robust, regression-based Hausman tests.
- Suppose a regressor is an interaction of the form

$$x_{itj} = z_{ij} \cdot m_{tj}$$

► Then

$$\bar{x}_{i \cdot j} = z_{ij} \cdot \bar{m}_j, \ \bar{x}_{\cdot tj} = \bar{z}_j m_{tj}$$

▶ Mundlak regression includes z_{ij} , m_{tj} as controls.

3. Interventions with Common Treatment Timing

- *T* time periods.
 - ▶ t = 1,...,q-1 are control periods.
 - ▶ Intervention happens at t = q, remains in place.
- Treatment indicator:

$$w_{it} = d_i \cdot p_t$$

 $d_i = 1$ if (eventually) treated

 $p_t = fq_t + \cdots + fT_t = 1$ if a post treatment period

- Homogeneous treatment effect.
- Equation that motivates TWFE:

$$y_{it} = \beta w_{it} + c_i + g_t + u_{it}, t = 1, \dots, T; i = 1, 2, \dots, N$$

$$\bar{w}_{i \cdot} = d_i \bar{p}$$

$$\bar{w}_{\cdot t} = \bar{d} p_t$$

• TWM regression is equivalent to the DID regression

$$y_{it}$$
 on 1, w_{it} , d_i , p_t , $t = 1,...,T$; $i = 1,...,N$

 $\blacktriangleright \hat{\beta}_{DD} = \hat{\beta}_{FE}$. Enough to control for d_i, p_t .

• The TWFE estimator has the familiar form

$$\hat{\beta}_{FE} = \hat{\beta}_{DD} = (\bar{y}_1^{post} - \bar{y}_0^{post}) - (\bar{y}_1^{pre} - \bar{y}_0^{pre})$$

- Using separate time dummies $f2_t$, ..., fT_t in place of p_t has no effect on $\hat{\beta}_{DD}$.
- Adding time-constant controls, \mathbf{x}_i or $d_i \cdot \mathbf{x}_i$, has no effect on $\hat{\boldsymbol{\beta}}_{DD}$.

• Allow TEs to change over treatment period:

$$y_{it} = \beta_q(w_{it} \cdot fq_t) + \cdots + \beta_T(w_{it} \cdot fT_t) + c_i + g_t + u_{it}$$

• Can use TWFE to estimate the β_r .

$$w_{it} \cdot fr_t = d_i \cdot p_t \cdot fr_t = d_i (fq_t + \dots + fT_t) fr_t = d_i fr_t$$

- Time averages are proportional to d_i .
- Cross-sectional averages proportional to fr_t .
- TWM equation:

$$y_{it} = \alpha + \beta_q(w_{it} \cdot fq_t) + \cdots + \beta_T(w_{it} \cdot fT_t) + \zeta d_i + \theta_q fq_t + \cdots + \theta_T fT_t + e_{it}$$

• POLS and RE give identical estimates.

- Allow time-constant covariates, \mathbf{x}_i .
 - ▶ Adding \mathbf{x}_i or $d_i \cdot \mathbf{x}_i$ to the regression does not change the $\hat{\beta}_r$.
- Instead, also include interactions with time dummies and treatment:

$$y_{it} = \beta_q(w_{it} \cdot fq_t) + \dots + \beta_T(w_{it} \cdot fT_t) + [w_{it} \cdot fq_t \cdot (\mathbf{x}_i - \mathbf{\mu}_1)] \mathbf{\gamma}_q$$

$$+ \dots + [w_{it} \cdot fT_t \cdot (\mathbf{x}_i - \mathbf{\mu}_1)] \mathbf{\gamma}_T$$

$$+ (fq_t \cdot \mathbf{x}_i) \mathbf{\delta}_q + \dots + (fT_t \cdot \mathbf{x}_i) \mathbf{\delta}_T + c_i + g_t + u_{it}$$

$$\mathbf{\mu}_1 = E(\mathbf{x}_i | d_i = 1)$$

• Can estimate by TWFE or TWM.

- TWM includes the time-constant variables d_i , \mathbf{x}_i , d_i \mathbf{x}_i .
- Need time dummies for fq_t , ..., fT_t .

$$y_{it} = \alpha + \beta_{q}(w_{it} \cdot fq_{t}) + \dots + \beta_{T}(w_{it} \cdot fT_{t}) + [w_{it} \cdot fq_{t} \cdot (\mathbf{x}_{i} - \boldsymbol{\mu}_{1})]\boldsymbol{\gamma}_{q}$$

$$+ \dots + [w_{it} \cdot fT_{t} \cdot (\mathbf{x}_{i} - \boldsymbol{\mu}_{1})]\boldsymbol{\gamma}_{T}$$

$$+ (fq_{t} \cdot \mathbf{x}_{i})\boldsymbol{\delta}_{q} + \dots + (fT_{t} \cdot \mathbf{x}_{i})\boldsymbol{\delta}_{T} + \zeta d_{i} + \mathbf{x}_{i}\boldsymbol{\xi} + (d_{i} \cdot \mathbf{x}_{i})\boldsymbol{\lambda}$$

$$+ \theta_{q}fq_{t} + \dots + \theta_{T}fT_{t} + e_{it}$$

- ▶ Harmless to include fs_t for s = 2, ..., q 1.
- Replace μ_1 with $\bar{\mathbf{x}}_1 = N_1^{-1} \sum_{i=1}^N d_i \cdot \mathbf{x}_i$.

Pooled OLS regression

$$y_{it}$$
 on 1, d_i , \mathbf{x}_i , $d_i \cdot \mathbf{x}_i$, f_{t} , ..., f_{t} , f_{t} , f_{t} , ..., f_{t

- \triangleright Estimation is same without w_{it} .
- ▶ Introducing w_{it} is convenient for obtaining standard errors that account for sampling error in $\bar{\mathbf{x}}_1$.

• To use Stata's margins option, do not center the covariates:

$$y_{it}$$
 on $1, d_i, \mathbf{x}_i, d_i \cdot \mathbf{x}_i, f2_t, ..., fT_t, f2_t \cdot \mathbf{x}_i, ..., fT_t \cdot \mathbf{x}_i,$

$$w_{it} \cdot d_i \cdot fq_t, ..., w_{it} \cdot d_i \cdot fT_t,$$

$$w_{it} \cdot d_i \cdot fq_t \cdot \mathbf{x}_i, ..., w_{it} \cdot d_i \cdot fT_t \cdot \mathbf{x}_i$$

```
reg y d x1 ... xK c.d#c.x1 ... c.d#c.xK
i.year i.year#c.x1 ... i.year#c.xK
c.w#c.d#c.fq ... c.w#c.d#c.fT
c.w#c.d#c.fq#c.x1 ... c.w#c.d#c.fq#c.xK

:
    c.w#c.d#c.fT#c.x1 ... c.w#c.d#c.fT#c.xK
    vce(cluster id)
```

```
margins, dydx(w) at (d = 1 fq = 1 fqp1 = 0)
  ... fT = 0), subpop(if d == 1) vce(uncon)
margins, dydx(w) at (d = 1 fq = 0 fqp1 = 1
  ... fT = 0), subpop(if d == 1) vce(uncon)
margins, dydx(w) at (d = 1 fq = 0 fqp1 = 0)
  ... fT = 1), subpop(if d == 1) vce(uncon)
• Same with TWFE.
```

• See did 4.do.

23

What is Being Estimated?

- Potential outcomes, $y_t(0)$ and $y_t(1)$.
- Treatment effect for a generic unit:

$$te_t = y_t(1) - y_t(0)$$

• ATT in each treated period:

$$\tau_t \equiv E[y_t(1) - y_t(0)|d = 1], t = q, q + 1, ..., T$$

Assumption NA (No Anticipation): For t < q,

$$E[y_t(1) - y_t(0)|d = 1] = 0.$$

► The ATTs prior to the intervention are zero.

Assumption CT (Common Trend): With the (eventually) treated indicator d,

$$E[y_t(0) - y_1(0)|d] = E[y_t(0) - y_1(0)] \equiv \theta_t, \ t = 2, ..., T.$$

▶ Does not depend on treatment status.

• With time-constant covariates:

Assumption CCT (Conditional Common Trends): For treatment indicator d and covariates \mathbf{x} ,

$$E[y_t(0) - y_1(0)|d, \mathbf{x}] = E[y_t(0) - y_1(0)|\mathbf{x}], t = 2, ..., T.$$

- Abadie (2005) uses this with T = 2.
- Similar to Callaway and Sant'Anna (2021); Sun and Abraham (2021); and others.
- Add a linearity (in x) assumption for the conditional means

• Under NA, CCT, and linearity, I show

$$E(y_t|d,\mathbf{x}) = \eta + \lambda d + \dot{\mathbf{x}}\mathbf{\kappa} + (d \cdot \dot{\mathbf{x}})\mathbf{\varphi} + \theta_2 f 2_t + \dots + \theta_T f T_t$$

$$+ (f 2_t \cdot \dot{\mathbf{x}})\mathbf{\pi}_q + \dots + (f T_t \cdot \dot{\mathbf{x}})\mathbf{\pi}_T$$

$$+ \tau_q (d \cdot f q_t) + \dots + \tau_T (d \cdot f T_t)$$

$$+ (d \cdot f q_t \cdot \dot{\mathbf{x}})\mathbf{\rho}_q + \dots + (d \cdot f T_t \cdot \dot{\mathbf{x}})\mathbf{\rho}_T$$

$$\dot{\mathbf{x}} = \mathbf{x} - E(\mathbf{x}|d = 1)$$

4. Staggered Interventions

- Wooldridge (2005): Usual TWFE with heterogeneous slopes.
- TWFE under recent scrutiny for staggered (and more general) interventions.
- de Chaisemartin and D'Haultfœuille (2020), Goodman-Bacon (2021), Callaway and Sant'Anna (2021), Sun and Abraham (2021).
- Just showed TWFE is fine in common timing case.
 - \blacktriangleright Allow TEs to change across t and with \mathbf{x} .
- Can use TWFE or TWM in staggered case and allow lots of heterogeneity.

- First intervention period is t = q.
- Subsequent treatment in each period after q, up to T.
 - ► Might have gaps.
- No reversibility.
- Initially, a never treated group.

• Define potential outcomes:

 $y_t(\infty)$: never treated state

 $y_t(r), r \in \{q, q+1, \dots, T\}$: first exposure in r

- Define treatment cohorts by dummies: d_q , ..., d_T .
 - $ightharpoonup d_r = 1$ if unit first enters treatment in period r.

• Define ATTs relative to the never treated state:

$$\tau_{rt} \equiv E[y_t(r) - y_t(\infty)|d_r = 1], r = q, ..., T; t = r, ..., T$$

▶ For cohort r, can estimate ATTs for t = r, r + 1, ..., T.

Assumption NA (No Anticipation, Staggered): For treatment cohorts r = q, q + 1, ..., T,

$$E[y_t(r) - y_t(\infty)|\mathbf{d}] = 0, t < r.$$

Assumption CTS (Common Trend, Staggered): With the exposure dummies d_q , ..., d_T ,

$$E[y_t(\infty) - y_1(\infty)|d_q, \dots, d_T] = E[y_t(\infty) - y_1(\infty)] \equiv \theta_t, \ t = 2, \dots, T. \ \Box$$

- Similar to Callaway and Sant'Anna; Sun and Abraham; others.
- Under Assumptions NA and CTS for a random draw *i*:

$$E(y_{it}|\mathbf{d}_{i}) = \eta + \lambda_{q}d_{iq} + \dots + \lambda_{T}d_{iT} + \sum_{s=2}^{T} \theta_{s}fs_{t}$$

$$+ \sum_{r=q}^{T} \sum_{s=r}^{T} \tau_{rs}(w_{it} \cdot d_{ir} \cdot fs_{t}), t = 1, \dots, T$$

- This is the Mundlak equation.
 - ▶ Time dummies for t < q are redundant.
- Mundlak regression:

$$y_{it}$$
 on $1, d_{iq}, ..., d_{iT}, fq_t, ..., fT_t$,
$$w_{it} \cdot d_{iq} \cdot fq_t, ..., w_{it} \cdot d_{iq} \cdot fT_t, ..., w_{it} \cdot d_{iT} \cdot fT_t$$

- ► Include every interaction that makes sense as a treatment indicator.
 - ▶ The cohort and year dummies are controls.
 - ▶ If there is no cohort r, drop all terms with d_{ir} .

• Equivalently, can use TWFE:

$$y_{it} = \sum_{r=q}^{T} \sum_{s=r}^{T} \tau_{rs}(w_{it} \cdot d_{ir} \cdot f_{st}) + c_i + f_t + u_{it}, t = 1, ..., T; i = 1, ..., N$$

• This "extended" TWFE allows more heterogeneity than imposing

$$\tau_{rs} = \tau, r = q, \ldots, T; s = r, \ldots, T$$

- Can aggregate the estimates or impose restrictions.
- Note: New Stata command xtdidregress estimates constant effect model.

• Add covariates.

Assumption CCTS (Conditional Common Trends, Staggered):

For exposure indicators d_r and covariates \mathbf{x} ,

$$E[y_t(0) - y_1(0)|d_q, \dots, d_T, \mathbf{x}] = E[y_t(0) - y_1(0)|\mathbf{x}], t = 2, \dots, T.$$

- \bullet Assume all conditional expectations are linear in \mathbf{x} .
- This means linearity conditional on each $d_r = 1, r = q, ..., T$.

$$\dot{\mathbf{x}}_r \equiv \mathbf{x} - E(\mathbf{x}|d_r = 1), r = q, \dots, T$$

• Under Assumptions NA, CCTS, and linearity:

$$E(y_t|d_q,...,d_T,\mathbf{x}) = \eta + \sum_{r=q}^T \lambda_r d_r + \mathbf{x}\mathbf{\kappa} + \sum_{r=q}^T (d_r \cdot \mathbf{x}) \zeta_r$$

$$+ \sum_{s=2}^T \theta_s f s_t + \sum_{s=2}^T (f s_t \cdot \mathbf{x}) \pi_t$$

$$+ \sum_{r=q}^T \sum_{s=r}^T \tau_{rs} (d_r \cdot f s_t) + \sum_{r=q}^T \sum_{s=r}^T (d_r \cdot f s_t \cdot \dot{\mathbf{x}}_r) \rho_{rs}.$$

• The regression is

$$y_{it}$$
 on $1, d_{iq}, ..., d_{iT}, \mathbf{x}_i, d_{iq} \cdot \mathbf{x}_i, ..., d_{iT} \cdot \mathbf{x}_i,$

$$f2_t, ..., fT_t, f2_t \cdot \mathbf{x}_i, ..., fT_t \cdot \mathbf{x}_i,$$

$$w_{it} \cdot d_{iq} \cdot fq_t, ..., w_{it} \cdot d_{iq} \cdot fT_t, ...,$$

$$w_{it} \cdot d_{i,q+1} \cdot f(q+1)_t, ..., w_{it} \cdot d_{i,q+1} \cdot fT_t, ..., w_{it} \cdot d_{iT} \cdot fT_t,$$

$$w_{it} \cdot d_{iq} \cdot fq_t \cdot \dot{\mathbf{x}}_{iq}, ..., w_{it} \cdot d_{iq} \cdot fT_t \cdot \dot{\mathbf{x}}_{iT},$$

$$w_{it} \cdot d_{i,q+1} \cdot f(q+1)_t \cdot \dot{\mathbf{x}}_{iq}, ..., w_{it} \cdot d_{i,q+1} \cdot fT_t \cdot \dot{\mathbf{x}}_{iT}, ...,$$

$$w_{it} \cdot d_{iT} \cdot fT_t \cdot \dot{\mathbf{x}}_{iT}$$

$$\dot{\mathbf{x}}_{ir} = \mathbf{x}_i - \overline{\mathbf{x}}_r = \mathbf{x}_i - N_r^{-1} \sum_{h=1}^N d_{hr} \mathbf{x}_h.$$

- RE gives identical estimates.
- ► Improving over POLS requires allowing more general patterns of serial correlation and maybe time-varying variances.
- Equivalently, drop everything in the first two lines except $f2_t \cdot \mathbf{x}_i$, ..., $fT_t \cdot \mathbf{x}_i$ and use TWFE.
- Can use Stata and margins to account for sampling variation in $\bar{\mathbf{x}}_r$.
 - ► See staggered_6.do.

- Often want to aggregate the effects.
 - ► Can average all ATTs for a single effect.
 - ► Average by cohort.
- Or, impose restrictions before estimation.
 - ► Treatment effect only differs by intensity, not calendar time.

Efficiency of POLS

THEOREM 6.2: Write the conditional mean equation with a composite error as

$$y_{it} = \eta + \sum_{r=q}^{T} \lambda_r d_{ir} + \mathbf{x}_i \mathbf{\kappa} + \sum_{r=q}^{T} (d_{ir} \cdot \mathbf{x}_i) \boldsymbol{\zeta}_r + \sum_{s=2}^{T} \theta_s f s_t + \sum_{s=2}^{T} (f s_t \cdot \mathbf{x}_i) \boldsymbol{\pi}_s$$

$$+ \sum_{r=q}^{T} \sum_{s=r}^{T} \tau_{rs} (w_{it} \cdot d_{ir} \cdot f s_t) + \sum_{r=q}^{T} \sum_{s=r}^{T} (w_{it} \cdot d_{ir} \cdot f s_t \cdot \dot{\mathbf{x}}_{ir}) \boldsymbol{\rho}_{rs} + a_i + u_{it}$$

$$E(a_i|\mathbf{d}_i,\mathbf{x}_i) = 0, E(\mathbf{u}_i|a_i,\mathbf{d}_i,\mathbf{x}_i) = \mathbf{0}$$
$$\mathbf{u}_i' \equiv (u_{i1},u_{i2},\ldots,u_{iT})$$

• Assume in addition that

$$Var(a_i|\mathbf{d}_i,\mathbf{x}_i) = \sigma_a^2$$
$$Var(\mathbf{u}_i|a_i,\mathbf{d}_i,\mathbf{x}_i) = \sigma_u^2 \mathbf{I}_T$$

- The POLS estimator $\hat{\tau} = (\hat{\tau}_{rs})$ has the following properties:
- (i) $\hat{\tau}$ is the BLUE of $\hat{\tau}$ conditional on (D, X) for any realization where the rank condition holds.
- (ii) $\hat{\tau}$ is asymptotically efficient in the class of estimators consistent under NA, CCTS, linearity. \Box

- POLS is BLUE because it equals RE using the true variance-covariance matrix.
 - ▶ POLS = RE follows from Wooldridge (2019).
- Under assumptions similar in spirit, Borusyak, Jaravel, and Spiess (2021) show their imputation estimator is BLUE.
- POLS is not efficient under serial correlation in $\{u_{it} : t = 1,...,T\}$ or heteroskedasticity in (c_i, u_{it}) .
 - ► Could use, say, an unrestricted feasible GLS estimator.
- How to improve efficiency of imputation?

All Units Eventually Treated

- Regression approach (POLS/ETWFE) extends immediately if all units are treated by period *T*.
- Generally, the TEs are

$$y_t(r) - y_t(T), r = q, ..., T-1; t = r, ..., T$$

ightharpoonup The gain in period t from first being treated in the earlier period r rather than the last period.

• The identified parameters are

$$\tau_{(r:T),t} \equiv E[y_t(r) - y_t(T)|d_r = 1], r = q, ..., T-1; t = r, ..., T$$

- The NA and CT assumptions are stated for the potential outcome $y_t(T)$.
- If there *could* have been a never treated group, under NA

$$y_t(T) = y_t(\infty), t < T$$

5. Comparision with Other Methods Long Differencing with Regression Adjustment/IPW

- Callaway and Sant'Anna (2021) extend Abadie (2005) to multiple periods, staggered interventions.
- ► Also combine regression with inverse probability weighting for "doubly robust" estimation.
- Long differencing is inefficient: Does not use all control units available.
 - ► Can be more resilient to violations of parallel trends.

• Consider T = 3 with staggered entry in t = 2 and t = 3.

$$\tau_{22} = E[y_2(2) - y_2(\infty)|d_2 = 1]$$

- POLS/ETWFE will use the $d_{\infty} = 1$ and $d_3 = 1$ cohorts as control groups to estimate τ_{22} .
 - ▶ Neither group has been treated at t = 2.
- Callaway and Sant'Anna use the never treated group.
- ► Can see this in the output of the Stata user-written command csdid.

Imputation Estimators

- Recall two ways to estimate τ_{att} in the cross-sectional treatment effect setting assuming unconfoundedness.
- 1. Pooled OLS:

$$y_i$$
 on $1, d_i, \mathbf{x}_i, d_i \cdot (\mathbf{x}_i - \overline{\mathbf{x}}_1), i = 1, \dots, N$

- $ightharpoonup \hat{\tau}_{att}$ is the coefficient on d_i .
- 2. Imputation. Using only the N_0 controls,

$$y_i$$
 on 1, \mathbf{x}_i if $d_i = 0$

▶ For each of the N_1 treated units, impute an estimate of $y_i(0)$:

$$\hat{y}_i(0) = \hat{\alpha}_0 + \hat{\boldsymbol{\beta}}_0 \mathbf{x}_i \text{ if } d_i = 1$$

$$\widehat{te}_i \equiv y_i - \widehat{y}_i(0) = y_i - \widehat{\alpha}_0 - \widehat{\beta}_0 \mathbf{x}_i,$$

$$\tilde{\tau}_{att} = N_1^{-1} \sum_{i=1}^{N} d_i \cdot \hat{te}_i = \bar{y}_1 - N_1^{-1} \sum_{i=1}^{N} d_i \cdot \hat{y}_i(0) = \bar{y}_1 - (\hat{\alpha}_0 + \bar{\mathbf{x}}_1 \hat{\boldsymbol{\beta}}_0)$$

Well known that

$$\tilde{ au}_{att} = \hat{ au}_{att}$$

• Same is true in the staggered DiD setting.

$$E(y_{it}|d_{iq},...,d_{iT},\mathbf{x}_{i}) = \eta + \sum_{r=q}^{T} \lambda_{r}d_{ir} + \mathbf{x}_{i}\mathbf{\kappa} + \sum_{r=q}^{T} (d_{ir} \cdot \mathbf{x}_{i})\zeta_{r}$$

$$+ \sum_{s=2}^{T} \theta_{s}fs_{t} + \sum_{s=2}^{T} (fs_{t} \cdot \mathbf{x}_{i})\pi_{s}$$

$$+ \sum_{r=q}^{T} \sum_{s=r}^{T} \tau_{rs}(w_{it} \cdot d_{ir} \cdot fs_{t})$$

$$+ \sum_{r=q}^{T} \sum_{s=r}^{T} (w_{it} \cdot d_{ir} \cdot fs_{t} \cdot \dot{\mathbf{x}}_{ir}) \rho_{rs}.$$

- (i) Using the $w_{it} = 0$ observations, run the pooled regression and obtain the $\hat{\eta}$, $\hat{\lambda}_r$, $\hat{\zeta}_r$, $\hat{\theta}_s$, $\hat{\pi}_s$.
- (ii) For the $w_{it} = 1$ subsample, obtain

$$\widehat{te}_{it} = y_{it} - \left[\hat{\eta} + \sum_{r=q}^{T} \hat{\lambda}_r d_{ir} + \mathbf{x}_i \hat{\mathbf{k}} + \sum_{r=q}^{T} (d_{ir} \cdot \mathbf{x}_i) \hat{\boldsymbol{\zeta}}_r + \sum_{s=2}^{T} \hat{\theta}_s f s_t + \sum_{s=2}^{T} (f s_t \cdot \mathbf{x}_i) \hat{\boldsymbol{\pi}}_s \right]$$

$$\tilde{\tau}_{rt} = N_{rt}^{-1} \sum_{i=1}^{N} d_{ir} \hat{te}_{it}$$

Can show that

$$\tilde{\tau}_{rt} = \hat{\tau}_{rt}, r = q, \ldots, T, t = r, \ldots, T$$

- Also, the estimates $\hat{\eta}$, $\hat{\lambda}_r$, $\hat{\zeta}_r$, $\hat{\theta}_s$, $\hat{\pi}_s$ from the imputation method are the same as the POLS estimates.
- Not quite the same as BJS (2021): they use fixed effects in the first step.

6. Testing and Relaxing Parallel Trends

- Need at least two pre-treatment periods.
- Suppose T = 3, intervention at t = 3.
- Without covariates, run the regression

$$\Delta y_{i2}$$
 on 1, d_i , $i = 1,...,N$

▶ Heteroskedasticity-robust t statistic on d_i .

• Two pooled OLS approaches yield the same statistic:

$$y_{it}$$
 on 1, d_i , $f2_t$, $d_i \cdot f2_t$, $f3_t$, $d_i \cdot f3_t$, $t = 1, 2, 3$; $i = 1, ..., N$

- ► Cluster-robust t statistic on $d_i \cdot f2_t$.
- Or use a heterogeneous linear time trend:

$$y_{it}$$
 on 1, d_i , $f2_t$, $d_i \cdot t$, $f3_t$, $d_i \cdot f3_t$, $t = 1, 2, 3$; $i = 1, ..., N$

- ▶ Cluster-robust t statistic on $d_i \cdot t$.
- Statistics are identical.
 - ► Coefficients on $d_i \cdot f3_t$ can be very different.

• Using $d_i \cdot t$, the coefficient on $d_i \cdot f3_t$ is a DiDiD estimator:

$$\hat{\tau}_{3} = N_{1}^{-1} \sum_{i=1}^{N} d_{i} \cdot \Delta^{2} y_{i3} - N_{0}^{-1} \sum_{i=1}^{N} (1 - d_{i}) \cdot \Delta^{2} y_{i3}$$

$$= \left[(\bar{y}_{3,treat} - \bar{y}_{2,treat}) - (\bar{y}_{2,treat} - \bar{y}_{1,treat}) \right]$$

$$- \left[(\bar{y}_{3,control} - \bar{y}_{2,control}) - (\bar{y}_{2,control} - \bar{y}_{1,control}) \right]$$

$$= (\overline{\Delta y}_{3,treat} - \overline{\Delta y}_{3,control}) - (\overline{\Delta y}_{2,treat} - \overline{\Delta y}_{2,control})$$

- Testing strategies in the general case:
- 1. In the full POLS regression, add interactions $d_{ir}fs_t$ for s < r, do joint test.
- 2. In the full POLS regression, add heterogenous linear trends

$$d_{iq} \cdot t, ..., d_{iT} \cdot t$$

and use a joint test.

► This works as a correction, too, if the differences in trends are linear in *t*.

- The imputation result holds for adding heterogeneous trends.
- ► So the test is identical to using only the $w_{it} = 0$ observations and doing a joint test on

$$d_{iq} \cdot t, ..., d_{iT} \cdot t$$

- ► The test for pre-trends is not contaminated by using the long regression and all observations provided a full set of heterogeneous treatment effects is allowed.
 - ► Same property as the BJS (2021) test for pre-trends.

7. Simulations

- N = 500, T = 6, staggered entry at q = 4.
- \bullet One covariate. CT imposed conditional on x.
- $\bullet R^2 = 0.127.$
- Cohort shares: $\rho_{\infty} = 0.241, \, \rho_4 = 0.358, \, \rho_5 = 0.291, \, \rho_6 = 0.225.$
- 1,000 replications.

	ATT	No Control		POLS		CS		Het. Trend	
N = 500	Mean	Mean	SD	Mean	SD	Mean	SD	Mean	SD
τ 44	3.99	3.99	0.287	3.99	0.288	3.99	0.362	3.99	0.396
τ45	4.19	4.19	0.288	4.19	0.289	4.20	0.367	4.20	0.513
τ46	4.59	4.60	0.307	4.60	0.316	4.60	0.372	4.61	0.662
τ 55	3.03	3.02	0.322	3.03	0.326	3.03	0.446	3.02	0.423
τ 56	3.62	3.62	0.326	3.63	0.358	3.63	0.430	3.62	0.521
τ66	2.05	2.05	0.410	2.04	0.474	2.04	0.644	2.05	0.546

• Rejection rate of common trends test (3 df, 5% level): 0.045

• Generate outcomes with different linear trends for d_4 , d_5 , and d_6 .

	ATT	POLS		CS		Het. Trend	
N = 500	Mean	Mean	SD	Mean	SD	Mean	SD
τ44	3.99	2.42	0.288	2.99	0.362	3.99	0.396
τ45	4.19	1.52	0.291	2.20	0.367	4.20	0.513
τ46	4.59	0.75	0.317	1.60	0.372	4.61	0.662
τ 55	3.03	1.99	0.329	2.53	0.446	3.02	0.423
τ 56	3.62	1.91	0.358	2.63	0.430	3.62	0.521
τ66	2.05	1.05	0.474	1.70	0.644	2.05	0.546

8. Concluding Remarks

- Equivalence between TWFE and TWM has applications to DiD estimators with common and staggered entry.
 - ▶ "Extended" TWFE allows for flexible treatment effects.
 - ► TWFE some resilience to unbalanced panels.

• The FE approach extends to exponential mean functions:

$$E(y_{it}|d_{iq},...,d_{iT},\mathbf{x}_{i},c_{i}) = c_{i} \exp \left[\sum_{s=2}^{T} \theta_{s} f s_{t} + \sum_{s=2}^{T} (f s_{t} \cdot \mathbf{x}_{i}) \boldsymbol{\pi}_{s} \right]$$

$$+ \sum_{r=q}^{T} \sum_{s=r}^{T} \tau_{rs} (w_{it} \cdot d_{ir} \cdot f s_{t})$$

$$+ \sum_{r=q}^{T} \sum_{s=r}^{T} (w_{it} \cdot d_{ir} \cdot f s_{t} \cdot \dot{\mathbf{x}}_{ir}) \boldsymbol{\rho}_{rs}$$

▶ Use FE Poisson estimator with cluster-robust inference.

• Pooled methods can be used with any nonlinear model.

$$E(y_{it}|d_{iq},...,d_{iT},\mathbf{x}_{i}) = G \left[\eta + \sum_{r=q}^{T} \beta_{r}d_{ir} + \mathbf{x}_{i}\mathbf{\kappa} + \sum_{r=q}^{T} (d_{ir} \cdot \mathbf{x}_{i})\eta_{r} \right]$$

$$+ \sum_{s=2}^{T} \gamma_{s}fs_{t} + \sum_{s=2}^{T} (fs_{t} \cdot \mathbf{x}_{i})\pi_{s}$$

$$+ \sum_{r=q}^{T} \sum_{s=r}^{T} \delta_{rs}(w_{it} \cdot d_{ir} \cdot fs_{t})$$

$$+ \sum_{r=q}^{T} \sum_{s=r}^{T} (w_{it} \cdot d_{ir} \cdot fs_{t} \cdot \mathbf{x}_{i})\xi_{rs}$$

- $G(\cdot) = \exp(\cdot)$ for $y_{it} \ge 0$.
- $G(\cdot) = \Lambda(\cdot) = \exp(\cdot)/[1 + \exp(\cdot)]$ for $0 \le y_{it} \le 1$ (binary or fractional)
 - ▶ Use pooled quasi-MLE in the linear exponential family.
- ▶ Benefit to using the canonical link: pooled and imputation methods are identical, as in the linear case.

- Can combine insights from regression which uses all information in the assumptions with IPW for efficient doubly robust estimation.
 - ▶ Details to be worked out.
 - ▶ Have to be explicit about overlap assumptions.
- Currently thinking about staggered exit.
 - ► Cohorts are now indexed by entry and exit date.