# HTS Background and Theory

Josh Granek

## HTS Experiment: Major Components

Sample Collection

2. Nucleic Acid Extraction

3. Library Preparation



## HTS Experiment: Major Components

Sample Collection

2. Nucleic Acid Extraction

3. Library Preparation



### Library Preparation

Purified Nucleic Acid



### Sanger Sequencing

#### DNA Synthesis

 What are the minimum components for DNA Replication?

#### DNA Synthesis

- What are the minimum components for DNA Replication?
  - Template
  - Primer
  - Nucleoside triphosphates
  - DNA Polymerase\*

#### DNA Synthesis



#### Sanger Sequencing



### Sanger Sequencing

5464 Biochemistry: Sanger et al.

Proc. Natl. Acad. Sci. USA 74 (1977)



#### Dye-terminator

PCR in presence of fluorescent, chain-terminating nucleotides



Fluorescent fragments detected by laser and represented on a chromatogram

### Radiolabel vs. Dye



# High-Throughput Sequencing

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGA



















































# Dye-terminator Sanger Sequencing



#### Double Sequence



#### How?

#### How?

- Separate
- Detect
- Removable Terminator

#### Template immobilization

#### a Roche/454, Life/APG, Polonator Emulsion PCR

One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion







Billions of primed single-molecule templates

d Helicos BioSciences: two-pass sequencing Single molecule: template immobilized



Billions of primed, single-molecule templates



Thousands of primed, single-molecule templates

#### A Flow Cell



# Pass Around Flow Cells!!!

# SBS: Sequencing by Synthesis

An Illumina Story

#### A Flow Cell



#### Bind Library































#### 50th Cycle

#### GAATTCTAAAACAGTTGCATTCTATAATTACAAAATAATTGAAACACTTC



#### Illumina Short Reads

• 50 - 300bp

#### Cluster generation – hybridization and amplification





#### Hybridization

5'-CTGATCTGACTGATGCGTATGCTAGT-3'

+

3'-GCATAC-5'

=

5'-CTGATCTGACTGATGCGTATGCTAGT-3'
3'-GCATAC-5'

#### Cluster generation – hybridization and amplification





#### Cluster generation – hybridization and amplification



#### PCR



https://www.genome.gov/ images/content/ pcr\_factsheet.jpg

#### Cluster generation – hybridization and amplification



#### Library Preparation

Purified Nucleic Acid



#### Why Adapters?

#### DNA Synthesis

 What are the minimum components for DNA Replication?

#### DNA Synthesis

- What are the minimum components for DNA Replication?
  - Template
  - Primer
  - Nucleoside triphosphates
  - DNA Polymerase\*

#### DNA Synthesis



#### Why Adapters?

- Universal Priming Sites
  - Sequencing Primers
  - PCR Primers
- Hybridization to Flow Cell
- (more to come)

# Additional Sequencing Details

#### Read Length

bases
50 ----



```
bases
50 →
100 →
```



```
bases
50 →
100 →
150 →
```





#### Paired-End



#### Paired-End



AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGA GACACACCT

bases
50 ----



```
bases
50 →
100 →
```



```
bases
50 →
100 →
150 →
```





bases

bases
50 ----

bases
50 →
100 →



```
bases
50 →
100 →
150 →
```







# MiSeq, NextSeq, and More Seqs

|                             | MiSeq      | NextSeq     | HiSeq 4000   | NovaSeq 6000 |
|-----------------------------|------------|-------------|--------------|--------------|
| Maximum<br>Output           | 15 Gb      | 120 Gb      | 750 Gb       | 3000 Gb      |
| Maximum<br>Reads per<br>Run | 25 million | 400 million | 2.5 billion  | 10 billion   |
| Maximum Read Length         | 2 × 300 bp | 2 x 150 bp  | 2 × 150 bp   | 2 × 150 bp   |
| Run Time                    | 4-56 hours | 15-29 hours | < 1–3.5 days | 13-45 hours  |
| Cost*                       | \$1,787    | \$4,695     | \$19,206     | \$35,538     |
| Cost/Mbp*                   | \$0.119    | \$0.039     | \$0.026      | \$0.012      |

<sup>\*</sup> Duke Sequencing and Genomic Technologies Shared Resource, July 2018

#### Illumina Video

https://www.youtube.com/watch?v=HMyCqWhwB8E

## Acknowledgements

- NEB
- Illumina

#### Patterned Flow Cells

- ExAmp
- Machines
  - HiSeq X
  - HiSeq 3000/4000
  - NovaSeq 6000

