FUTURE VISION BIE

One Stop for All Study Materials
& Lab Programs

Future Vision

By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit: https://hemanthrajhemu.github.io

Gain Access to All Study Materials according to VTU,

CSE – Computer Science Engineering,

ISE – Information Science Engineering,

ECE - Electronics and Communication Engineering

& MORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

MICROELECTRONICS

B.E., VI Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) Scheme]

Course Code	17EC655	CIE Marks	40
Number of Lecture Hours/Week	03	SEE Marks	60
Total Number of Lecture Hours	40 (8 Hours / Module)	Exam Hours	03

CREDITS - 03

Course Objectives: This course will enable students to:

- Be familiar with the MOSFET physical structure and operation, terminal characteristics, circuit models and basic circuit applications.
- Confront integrated device and/or circuit design problems, identify the design issues, and develop solutions.
- Analyze and design microelectronic circuits for linear amplifier and digital applications.
- Contrast the input/output and gain characteristics of single-transistor, differential and common two-transistor linear amplifier building block stages.

Module-1

MOSFETS: Device Structure and Physical Operation, V-I Characteristics, MOSFET Circuits at DC, MOSFET as an amplifier and as a switch. **L1, L2**

Module-2

MOSFETS (continued): Biasing in MOS amplifier Circuits, Small Signal Operation and Models, Basic MOSFET amplifier, MOSFET internal capacitances, frequency response of CS amplifier. **L1, L2**

Module-3

MOSFETS (continued): Discrete circuit MOS amplifiers.

Single Stage IC Amplifier: Comparison of MOSFET and BJT, Current sources, Current mirrors and Current steering circuits, high frequency response- general considerations.

L1, L2, L3

Module-4

Single Stage IC Amplifier (continued): CS with active loads, high frequency response of CS, CG amplifiers with active loads, high frequency response of CG, Cascode amplifiers. CS with source degeneration (only MOS amplifiers to be dealt). **L1, L2**

Module-5

Differential and Multistage Amplifiers: The MOS differential pair, small signal operation of MOS differential pair, Differential amplifier with active loads, and frequency response of the differential amplifiers. Multistage amplifiers (only MOS amplifiers to be dealt). **L1, L2**

Course outcomes: After studying this course, students will be able to:

- Explain the underlying physics and principles of operation of Metaloxidesemiconductor (MOS) capacitors and MOS field effect transistors (MOSFETs).
- Describe and apply simple large signal circuit models for MOSFETs.
- Analyze and design microelectronic circuits for linear amplifier for digital applications.
- Use of discrete MOS circuits to design Single stage and Multistage amplifiers to

meet stated operating specifications.

Text Book:

"Microelectronic Circuits", Adel Sedra and K.C. Smith, 6th Edition, Oxford University Press, International Version, 2009.

Reference Books:

- 1. **"Microelectronics An integrated approach",** Roger T Howe, Charles G Sodini, Pearson education.
- 2. **"Fundamentals of Microelectronics",** Behzad Razavi, John Wiley India Pvt. Ltd, 2008.
- **3. "Microelectronics Analysis and Design",** Sundaram Natarajan, Tata McGraw-Hill, 2007.