Bevezetés az R nyelv és statisztikai számítási környezet használatába

Ferenci Tamás

2025. június 16.

Tartalomjegyzék

ΕI	őszó		3								
1	R sz	zkriptek és az RStudio	5								
2	Ada	Adattípusok, adatszerkezetek									
	2.1 Értékadás										
	2.2	Adattípusok	9								
		2.2.1 Numerikus	10								
		2.2.2 Szöveg	11								
		2.2.3 Logikai	12								
		2.2.4 Az adattípusokhoz kapcsolódó néhány fontos művelet	13								
	2.3	Adatszerkezetek és indexelés	15								
		2.3.1 Vektor	15								
		2.3.2 Mátrix	20								
		2.3.3 Tömb (array)	21								
		2.3.4 Data frame	21								
		2.3.5 Lista	32								
3	Függvények										
	3.1	Függvényhívások									
	3.2	Saját függény definiálása	37								
4	Az I	R programozása	38								
	4.1	Funkcionális programozás	38								
5	Data table: egy továbbfejlesztett adatkeret										
	5.1	Sebesség és nagyméretű adatbázisok kezelése									
	5.2	Jobb kiíratás									
	5.3	Kényelmesebb sorindexelés (sor-szűrés és -rendezés)									
	5.4										
	5.5	Csoportosítás (aggregáció)									
	5.6	Indexelések láncolása egymás után	67								
	5.7	Referencia szemantika	71								

Előszó

Az R egy ingyenes, nyílt forráskódú, rendkívüli tudású és folyamatosan fejlődő programozási nyelv illetve statisztikai számítási környezet, mely kiválóan alkalmas a legkülönfélébb statisztikai és adattudományi feladatok megoldására.

Az R egyik fontos jellemzője, hogy lényegében minden feladat elvégzéshez egy szkriptet kell írnunk – szemben más statisztikai programokkal¹, ahol csak egy grafikus felületen kell kattintgatnunk. Ez elsőre ijesztőnek hangozhat, és csakugyan igaz, hogy más programokhoz képest a tanulási görbe meredekebben indul, hiszen a kattintgatással szemben itt már két szám átlagolásához is programot kell írni. A dolog azonban kifizetődő: lehet, hogy egyszerű dolgokat más statisztikai környezetekben könnyebb végrehajtani, itt meg bonyolultabb, de cserében itt a bonyolultabbakat sem sokkal nehezebb, míg más statisztikai programokban az, vagy egyenesen lehetetlen. Kicsit is komolyabb elemzések, kutatások végzésekor az R megtanulásába befektettt munka hamar – és pláne: busásan – megtérül.

A fentiekből már érthető, hogy ahhoz, hogy el tudjunk kezdeni statisztikai elemzéseket végezni R-ben, először az R-rel mint programozási nyelvvel kell megismerkedni. Nagyon fontos hangsúlyozni, hogy ez a jegyzet kizárólag az R nyelvi kérdéseivel és programozásával foglalkozik, az R statisztikai célokra történő felhasználása egy másik jegyzetem (Ferenci Tamás: Bevezetés a biostatisztikába²) témája.

Az R talán legnagyobb erejét a hozzá megírt, megszámlálhatatlan sok³ kiegészítő csomag adja, amikkel jószerével minden elképzelhető (és számos nehezen elképzelhető...) statisztikai feladat, adott esetben rendkívül bonyolultak is megoldhatóak, sokszor mindössze egy-egy függvényhívással. Számos kitűnő, jól dokumentált kiegészítő csomag érhető el (melyek maguk is ingyenesek és nyílt forráskódúak); nagyon tipikus, hogy a vadonatúj statisztikai módszereket is R-ben implementálják első közlésükkor. Az R csomagok központi repozitóriuma CRAN⁴ (Comprehensive R Archive Network).

Mindezek alapja az R mögött álló, rendkívül széles és erős nemzetközi közösség. Ingyenes programként bárki számára elérhető, nyílt forráskódú programként pedig jól bővíthető, illetve

¹Megjegyzendő, hogy az R-hez is létezik ilyen grafikus felület, az R Commander, azonban használata komolyabb elemzési feladatok elvégzéséhez nem szükséges, illetve nem hasznos, kezdők számára azonban kitűnő bevezető eszköz lehet, mivel a jól ismert statisztikai programokhoz teljesen hasonló grafikus felülettel ruházza fel az R-et.

 $^{^2} https://tamas-ferenci.github.io/FerenciTamas_Bevezetes ABiostatisztikaba/$

 $^{^32021}$ őszén már több mint 18 ezer!

 $^{^4}$ https://cran.r-project.org/

ez sokaknak a tudományra vonatkozó általános filozófiájával – "open science", nyílt tudomány – is találkozik (így az enyémmel is). Számos statisztikus fejleszt R alá csomagokat, általában nagyon segítőkészek mind az esetleges hibák javításában, mind az új funkciók megvalósítására vonatkozóan. Több fórum érhető el (pl. a Stackoverflow⁵), ahol a kezdőszintű egyszerű problémáktól a legspeciálisabb nehézségekig mindenben segítséget lehet kérni (és nem ritka, hogy a legnevesebb R fejlesztők válaszolnak!). Nagyon sok csomag jelen van a Github⁶-on is, ami szintén kiváló platform az eszmecserére.

Az R különösen erős az eredmények kommunikálásban. Kiegészítő csomagokkal könnyedén lehetséges ún. dinamikus dokumentumok készítése, melyek együtt tartalmazzák a kódokat, és a kapcsolódó leírást.

A reprodukálható kutatás jegyében a cikkekkel együtt közzétett elemzések is nagyon gyakran R-ben íródtak, ezekből szintén sok ötlet meríthető.

⁵https://stackoverflow.com/

⁶https://github.com/

1 R szkriptek és az RStudio

Egy R-ben írt program, gyakrabban használt nevén szkript, R-beli utasítások sorozata. Lehet egyetlen sor, mely két számot átlagol, vagy több ezer utasításból felépülő komplex elemzés. Az R interpretált nyelv, nem fordított, ami azt jelenti, hogy nem a szkript egészét, egyben fordítja le számítógép által végrehajtható kóddá az R, hanem az utasításokat egyesével hajtja végre, utasításról utasításra.

Az RStudio fejlesztői környezet alapbeállításában a bal oldali rész alján látható a konzol, ahol közvetlenül beküldhetünk utasításokat az R-nek, illetve az – akár közvetlenül, akár a lent vázolt módon szkriptből – beküldött utasítások eredményei láthatóak. A konzol felett találjuk a megnyitott szkriptet, vagy szkripteket. Új szkriptet megnyitni (vagy az elsőt megnyitni, ha még egy sincs nyitva – ez esetben a konzol az egész bal oldalt elfoglalja) a Ctrl-Shift-N billentyűkombinációval, vagy az ikonsor bal szélső ikonjára (fehér lap zöld plusz-jellel) kattintva, és ott az R Script pontot választva lehet.

A konzolba írt utasítások azonnal végrehajtódnak (amint Enter-t ütünk, és ezzel beküldjük az utasítást az R-nek), a szkriptbe írt parancsok pedig a Ctrl-Enter billentyűkombinációval futtathatóak. (Valójában ez sem mond ellent annak a szabálynak, hogy a konzolba írt dolgok futtatódnak, mert ha jobban megfigyeljük, akkor láthatjuk, hogy a Ctrl-Enter igazából csak átmásolja az utasítást a konzolba, majd beküldi.) Ha a szkriptben nincs kijelölve semmi, akkor a Ctrl-Enter azt a sort futtatja, amiben a kurzur áll, ha ki van jelölve valami, akkor a kijelölést. (Függetlenül attól, hogy az milyen, lehet több sor is, de egy sor részlete is). Amint volt róla szó, egy utasítás több sorba is átnyúlhat, ez nem okoz problémát, ilyenkor az R megáll, és várja a további sorokat. Az RStudio ezeket szinte mindig felismeri, és okosan jár el: ilyenkor a Ctrl-Enter valójában nem egy sort fog beküldeni, hanem az egész utasítást, fontos azonban, hogy ehhez a legelső sorban kell állnunk. Az egész szkript Ctrl-Alt-R kombinációval futtatható le, az egész szkript addig a sorig, amiben a kurzor áll, a Ctrl-Alt-B kombinációval, az egész szkript az aktuális sortól a végéig Ctrl-Alt-E kombinációval futtatható.

Az egyes utasításokat új sorban kell kezdeni (tehát enter-rel kell elválasztani egymástól). Elvileg egy sorba több utasítás is írható, ekkor az egyes utasításokat pontosvesszővel (;) kell elválasztani, de ezt minden körülmények között kerüljük.

Egy utasítás több sorba is átnyúlhat, ezt az R érzékeli, tehát, ha a sor végén még nem záródott be egy utasítás, akkor a következő sorban folytatja a feldolgozást. Azt, hogy új utasítást vár az R, onnan lehet látni, hogy a konzol elején a > jel látható. Ha az utasítás nem ér véget a sorban (ezt az R magától érzékeli, például onnan, hogy egy kinyitott zárójel nem lett bezárva a beküldött sorban), akkor automatikusan azt feltételezi, hogy ez azért van, mert a következő

sorban folytatjuk az utasítást. Ilyenkor a konzol elején a > helyett a + jel látható. Ez jelzi, hogy a beküldött utasítást a következő folytatásának tekinti. Amint látja az R, hogy bezárult az utasítás, végrehajtja, és a konzol átugrik újra a > jelre: várja a következő utasítást. Ez a viselkedés egy gyakori hiba forrása: ha beküldünk egy utasítást, amiből véletlenül lehagyjuk a záró zárójelet, akkor az R várni fogja a folytatást. Ha azonban ezt nem vesszük észre, és beküldjük a következő utasítást, akkor nem azt fogja végre hajtani (ahogy várnánk), hanem az előző folytatásának tekinti, és úgy próbálja értelmezni. Az eredmény vagy hiba lesz, vagy az, hogy továbbra is + üzemmódban fogja várni az utasításokat, mi pedig nem kapunk eredményt. Ha ilyen történik, tehát küldjük be az utasításokat, amik teljesen helyesek, és mégsem kapunk eredményt, akkor érdemes megnézni, hogy nem + (folytatás) üzemmódban van-e az R. Ha igen, akkor küldjünk be záró zárójelet, ha ezzel sikerül lezárnunk az utasítást, akkor nyilván hibát kapunk, de legalább visszavehetjük az irányítást.

Az aktuálisan szerkesztett szkript Ctrl-S utasítással, vagy az ikonsorban a kék színű, egy darab floppy-lemezes ikonra kattintva menthető. A R-szkriptek alapértelmezett kiterjesztése a R. Fontos, hogy ezt betartsuk, ugyanis az RStudio funkcionalitása csak akkor fog működni, ha a fájlról tudja, hogy az egy R szkript, és ezt a kiterjesztés alapján azonosítja. A Ctrl-Alt-S parancs, vagy a kék színű, több floppy-lemezes ikon az összes megnyitott szkriptet menti. Az RStudio képes megőrizni a nem mentett szkripteket is kilépésnél (a nevük Untitled majd utána egy sorszám), de erre a lehetőségre azért ne nagyon építsünk, mert egy összeomlásnál elveszhetnek; a biztos a névvel lementett szkript. Mentett szkriptet megnyitni a Ctrl-O billentyűparanccsal, vagy az ikonsorban a mappából kifelé mutató zöld nyilas ikonnal lehet.

Minden kicsit is komolyabb munkánkat érdemes szkriptben megírni, hiszen így lesz az elemzési munkafolyamat reprodukálható. A konzolt tipikusan csak gyors, ismétlődően nem igényelt egyszerű számításokhoz használjuk, aminek az eredményére később nem lesz szükségünk, vagy szkriptírás közben az apróbb bizonytalanságok eldöntéséhez (mi is lesz ennek a parancsnak az eredménye?) használjuk.

A kódunkat érdemes kommentelni, hogy később is világos legyen a működése. A komment olyan része a szkriptnek, melyet az R nem hajt végre, hiszen tudja, hogy nem R utasítás, hanem természetes nyelven írt megjegyzés. Ennek elkülönítésére a kommentjel szolgál, ez az R-ben a #: amennyiben az R egy ilyenhez ér, onnantól átugorja a leírtakat egészen a sor végéig. (Ez tehát ún. egysoros kommentjel.) A # az RStudio-ban a Ctrl-Shift-C-vel szúrható be gyorsan: azon sort kommentezi, mégpedig az elejétől fogva, amelyikben a kurzur áll, illetve ha ki van kommentezve, akkor ezt megszünteti. Többsoros kommentre nincs külön jel R-ben, viszont RStudio-ban a Ctrl-Shift-C használható több sort kijelölve is, ekkor mindegyiket kommentezi (vagy eltünteti a kommentjelet, ha ki vannak kommentezve).

Az R kisbetű/nagybetű különbségre érzékeny (case sensitive) nyelv, tehát az a és az A nem ugyanaz, két különböző dolog.

Az RStudio nagyon sok eszközzel segíti a kódolást: színekkel jelöli a különböző tartalmú szintaktikai elemeket, elkezdve egy nevet beírni, Tab-bal kiegészíti azt (automatikusan, ha csak egy lehetőség van, egy listát ad, ha több is), rövidebb vagy hosszabb súgót jelenít meg

közvetlenül a beírt kód mellett stb. Segíti a kód identálását: a Ctrl-I kombináció szépen beindentálja a kijelölt részt. (Tipikus a Ctrl-A majd Ctrl-I kombináció: az előbbi kijelöli az egész szkriptet, így tehát ez mindent identál.)

Az R kódolási stílus kapcsán csak egyetlen megjegyzés elöljáróban: vessző után rakjunk szóközt, de nyitó zárójel után, illetve záró zárójel előtt ne.

2 Adattípusok, adatszerkezetek

Az R programozásának megértéséhez szükséges egyik alapelemünk a változó: változóban tudunk információt tárolni, legyen az egyetlen szám vagy egy egész adatbázis, vagy akár egy regressziós modell. Mit jelent az, hogy információt tárolni? A változóban elmenthetünk információt (értékadás), azt módosíthatjuk, majd kiolvashatjuk és felhasználhatjuk. Változóból tetszőleges számút létrehozhatunk. Elsőként meg kell ismerkednünk a változó fogalmával, a neki történő értékadással, és azzal, hogy milyen típusú adatokat tudunk változóban tárolni

2.1. Értékadás

Változó értéket az értékadás művelettel kap; ez kb. a "legyen egyenlő" módon olvasható ki. Az értékedás jele az R-ben a <-. (A más programnyelveken megszokottabb =-t ne használjuk értékadásra, mert bár működne, de az R-es hagyományok szerint ezt egy másik helyzetre tartjuk fent, amit később látni is fogunk). A nyíl bal oldalára kerül a változó, a jobb oldalára az érték, amit adni akarunk neki. Elvileg használható a -> is értékadásra, ilyenkor értelemszerűen fordul a helyzet, de ezt ritkán szokták alkalmazni.

Íme egy értékadás:

a <- 1

Ami szembeötlik (pláne, ha valakinek más, szigorúbb programnyelvből van háttere): ez az utasítás gond nélkül lefut, miközben sehol nem deklaráltuk, hogy az a legyen egy változó, pláne nem adtuk meg, hogy milyen típusú adatot akarunk benne tárolni! Az R "intelligensen" kitalált mindent: mivel látja, hogy korábban a nevű változó még nem létezett, ezért egyetlen szó nélkül, automatikusan létrehozza, illetve abból, hogy mit adtunk neki értékül, azt is meghatározta, hogy milyen legyen a típusa, jelen esetben szám. Majd természetesen az értékét is beállítja arra, amit megadtunk. Már létező változónak történő értékadásnál az előző érték elveszlik, és felülíródik az aktuálisan megadottal.

Ez egy példa az R egy meglehetősen általános filozófiájára, amire később még sok további példát fogunk látni: hogy az R "megengedi trehányságot" és igyekszik kitalálni, hogy mit akarhattunk. Bár ez első ránézésre rendkívül kényelmesnek hangzik, fontos hangsúlyozni, hogy ez egy kétélű fegyver! Egyfelől ugyanis valóban nagyon kényelmes, jelen esetben, hogy nem kell törődnünk a változók előzetes deklarálásával, típusuk megadásával, de másrészt így kiesik egy

védővonal, ami megóvhatna minket a saját hibáinktól – hiszen a deklaráció rákényszerít(ett volna) minket arra, hogy jobban végiggondoljuk a változókkal kapcsolatos kérdéseket. Így viszont könnyebben előfordulhat, hogy olyat csinálunk, amit igazából nem szeretnénk, ráadásul úgy, hogy észre sem vesszük! Elírjuk a változó nevét, és nem figyelmeztetést kapunk, hogy de hát ilyen változó nem létezik, hanem egyetlen hang nélkül létrejön egy új, hibás nevű (miközben az igazi értéke marad változatlan). Egy eredetileg szám típusú változónak értékül adunk egy szöveget, és ez egyetlen hang nélkül lefut, lecserélve a változó típusát.

R-ben a változónév karakterekből, számokból, a . és a _ jelekből állhat, de nem kezdődhet számmal vagy _ jellel, és ha . jellel kezdődik, akkor utána nem jöhet szám. (Bizonyos, úgynevezett foglalt szavakat, amiket az R nyelv használ, nem választhatunk változónévnek. Ezekből nagyon kevés van, így annyiban óvatosnak kell lenni, hogy az R egy sor szokásos függvényét simán felüldefiniálhatjunk, ha létrehozunk olyan nevű változót.) Érdekes módon az, hogy az R mit ért karakter alatt, függhet az adott számítógép beállításaitól, de a legbiztosabb, ha a standard latin betűs (ASCII) karaktereket használjuk csak. (Azaz: lehetőleg ne használjunk ékezetes betűt változónévként. Elvileg el lehet vele boldogulni – adott esetben speciális szimbólummal jelölve, hogy az egy változónév – de nem éri meg a vesződséget, csomagokban kiszámíthatatlan gondokat okozhat.)

Egy fontos általános szabály, hogy ha egy utasításban értékadás van, akkor az eltárolás a "háttérben" történik meg, a konzolra nem íródik ki semmi. (Természetesen vannak kivételek, olyan számítások, amik mellékhatásként mindenképp kiírnak valamit a konzolra.) Értékadás nélküli utasítás futtatásánál viszont épp fordított a helyzet: az eredmény kiíratódik a konzolra, de nem tárolódik el sehol. Ha egy értékadást gömbölyű zárójelekbe ágyazunk ((a <- 1)), akkor el is tárolódik és ki is íratódik az eredmény; a gyakorlatban ritkán használjuk.

(Egy apró jótanács. Mi van akkor, ha lefuttatunk egy rendkívül hosszú utasítást, de véletlenül elfelejtjük benyilazni egy változóba... azaz az eredmény megjelenik a konzolon, viszont nem tárolódott le! Most futtathatjuk az egészet újra?! Szerencsére nem: az R valójában nyíl nélkül is eltárolja egy speciális változóban az eredményt, a neve .Last.value. Ha tehát ilyen történik, akkor ne essünk kétségbe, ezt speciális változót adjuk értékül a változónknak. De vigyázzunk, ilyen módon mindig csak a legutóbbi utasítás eredménye érhető el.)

2.2. Adattípusok

Elsőként meg kell ismerkednünk azzal, hogy a korábban említett típusok pontosan milyenek lehetnek – ez lényegében azt adja meg, hogy milyen jellegű adatot tárolunk az adott változóban. Az R-ben 4 fontos adattípus van: numerikus, amelybe a valós és az egész típusok tartoznak alcsoportként, a szöveg és a logikai. (Elvileg még két további típus létezik, a complex és a raw, ezek nagyon ritkán használatosak.) Létezik még egy fogalom, a factor, ami adattípusnak tűnik, de mégsem az (egy másik típus speciális esete), erről később fogunk szót ejteni.

A változó típusát az R többféle módon is értelmezi, de a gyakorlatban inkább az str függvény ismerete a fontosabb, mellyel komplexebb adatszerkezetekről is jól áttekinthető információt tudunk nyerni.

2.2.1. Numerikus

Számok tárolására a numerikus típus (numeric, rövidítve num) szolgál.

Alapbeállításban ez a típus valós számokat tárol (precízen: double pontosságú lebegőpontos). A double pontossága jellemzően 53 bit (kb. $2 \cdot 10^{-308}$ -tól $2 \cdot 10^{308}$ -ig nagyjából $2 \cdot 10^{-16}$ felbontással; az adott architektúra vonatkozó értéket a .Machine megmondja).

Az R-ben a tizedestörteket angol stílusban kell megadni, tehát a tizedesjelölő a pont, nem a vessző.

Így néz ki egy numerikus adattal történő értékadás:

```
szam <- 3.1
szam
```

[1] 3.1

```
str(szam)
```

num 3.1

Nézzük meg, hogy csakugyan case sensitive a nyelv:

Error: object 'SZAM' not found

Szam

SZAM

Error: object 'Szam' not found

szaM

Error: object 'szaM' not found

Fontos megjegyezni, hogy attól mert valami történetesen egész, az R még nem fogja egész számként kezelni, ugyanúgy valósnak veszi:

```
szam <- 3
str(szam)</pre>
```

num 3

Ha egészet (integer) akarunk, azt explicite jelölni kell a szám után fűzött L utótaggal:

```
egesz <- 3L
egesz
```

[1] 3

```
str(egesz)
```

int 3

2.2.2. Szöveg

Szemben más programnyelvvek, az R-ben nincs megkülönböztetve az egy karakter, és a több karakterből álló karakterfüzér (sztring). Számára mindkettő ugyanolyan típusú (character, rövidítve chr).

A szöveget idézőjelek közé kell tenni, ebből tudja az R, hogy az egy – szöveget tartalmazó – konstans, és nem egy kiértékelendő kifejezés (különben a kiskutya beírásakor egy ilyen nevű változót kezdene keresni az R):

```
szoveg <- "kiskutya"
szoveg</pre>
```

[1] "kiskutya"

```
str(szoveg)
```

chr "kiskutya"

typeof(szoveg)

[1] "character"

A sztringkonstansokat idézőjellel kell jelölni. Az R megengedi a dupla (" ") és a szimpla (' ') idézőjel használatát is, de az előbbi a preferált (az R általi kiírás is mindenképp ilyennel történik), az utóbbit érdemes az egymásbaágyazott esetekre használni (tehát, ha egy sztringkonstans tartalmaz egy idézőjeles részt¹). Természetesen az "1" kifejezés nem az 1 számot, hanem az 1-et (mint karaktert) tartalmazó sztringet jelenti.

Az RStudio-ban a szintaxis highlighting segít, a szövegek alapértelmezés szerint zöld színnel jelennek meg.

A szövegben elhelyezhetünk különféle speciális jeleket is, mint a tabulátor vagy sortörés, ezeket backslash jelöli (például a tabulátor \t).

https://www.youtube.com/watch?v=QiTaaQFhPJc

2.2.3. Logikai

Logikai (logical, rövidítve logi) típusú változóban bináris, azaz igaz/hamis (igen/nem) értékeket tárolhatunk. A két értéket foglalt szavak jelzik, az igazat a TRUE, a hamisat a FALSE (a case sensitivity miatt természetesen fontos, hogy csupa nagybetű!):

```
logikai <- TRUE
logikai
```

[1] TRUE

```
str(logikai)
```

logi TRUE

```
typeof(logikai)
```

[1] "logical"

¹Ellenkező esetben a escape-elni kellene a dupla idézőjelet – egy elé írt backslash-sel, \" formában – különben az R nem tudhatná, hogy az nem a szöveg végét jelenti.

A TRUE rövidíthető T-nek, a FALSE pedig F-nek.

Természetesen ilyen bináris adatokat nyugodtan tárolhatnánk numerikus változóként is (például 0 és 1 formájában), de a logikai változó előnye, hogy van szemantikája, azaz maga az adattípus is kifejezi, hogy az egyes értékek mit jelentenek, igazat és hamisat (nem pedig számokat), ez sokszor kényelmesebb és tisztább. Emellett értelemszerűen a memóriaigénye is kisebb, bár ennek a legtöbb esetben valószínűleg nincs érdemi jelentősége.

https://www.youtube.com/watch?v=FuBE1Csgmi4

2.2.4. Az adattípusokhoz kapcsolódó néhány fontos művelet

Adott típus tesztelése az is.<tipus> alakban lehet:

```
is.integer(szam)

[1] FALSE

is.integer(egesz)

[1] TRUE

is.integer(szoveg)

[1] FALSE

is.integer(logikai)

[1] FALSE

Az is.numeric azt jelenti, hogy is.integer vagy is.double:
is.double(szam)

[1] TRUE

is.double(egesz)
```

```
is.numeric(szam)
```

[1] TRUE

```
is.numeric(egesz)
```

[1] TRUE

Adott típussá alakítás as. <tipus> alakban lehet:

```
as.character(szam)
```

[1] "3"

```
as.numeric(szoveg)
```

Warning: NAs introduced by coercion

[1] NA

```
as.numeric("2.4")
```

[1] 2.4

```
as.numeric(logikai)
```

[1] 1

A sémát már a fentiek is mutatják: a konvertálásnál egy "erősorrend'', jelesül character < double = integer < logical, amely irányban mindig lehet konvertálni (a T 1-re, a F 0-ra alakul, a többi értelemszerű). A sorrenddel ellentétesen is elképzelhető, hogy lehet konvertálni, de ez már nem biztos, azon múlik, hogy értelmesen végrehajtható-e (a "kiskutya" nem konvertálható számmá, az "1" igen). Sok függvény automatikusan konvertál, például ha egy logikai igaz értékhez hozzáadunk 1-et, akkor 2-t kapunk, mert a háttérben, szó nélkül, át fogja konvertálni számmá.

A sikertelen konverziók NA-t adnak, amely az R-ben lényegében a "hiányzó érték" jele.

Speciális szerepe van még a NULL-nak (ez inkább olyasmit jelöl, hogy "üres objektum"), illetve az NaN-nek (not-a-number, tipikusan olyan adja, mint például ha negatív szám logaritmusát vesszük).

2.3. Adatszerkezetek és indexelés

Most, hogy ismerjük az adattípusokat, azzal kell folytatnunk, hogy ezekből milyen komplexebb struktúrák rakhatóak össze.

2.3.1. Vektor

A vektor homogén, egydimenziós adatszerkezet. Egydimenziós, mert egy "kiterjedése" van, egy indexszel hivatkozhatunk az elemeire, és homogén, mert minden benne lévő adat ugyanolyan típusú kell legyen. Szemben a "vektor" matematikai fogalmával, nem kötelező, hogy ezek számok legyenek, de mindenképp ugyanolyannak kell lennie a típusuknak.

Vektor legegyszerűbb módon az elemei felsorolásával hozható létre, ehhez a c függvény használható:

```
szamvektor <- c(1, 4, 5, -2, 3.5, 10)
szamvektor
```

```
[1] 1.0 4.0 5.0 -2.0 3.5 10.0
```

Sok függvény vektort ad vissza eredményül, például a seq-val generálhatunk egy reguláris sorozatot. A függvényekről később lesz szó, úgyhogy most kommentár nélkül: a seq(1, 101, 2) hívás kidobja a számokat 1-től 101-ig 2-esével:

```
seq(1, 101, 2)
```

```
[1]
                  5
                       7
                            9
                                              17
                                                                  25
                                                                                                37
        1
             3
                                11
                                    13
                                         15
                                                    19
                                                        21
                                                             23
                                                                       27
                                                                            29
                                                                                 31
                                                                                      33
                                                                                           35
[20]
       39
            41
                 43
                     45
                          47
                                49
                                    51
                                         53
                                              55
                                                   57
                                                        59
                                                             61
                                                                  63
                                                                       65
                                                                            67
                                                                                 69
                                                                                      71
                                                                                           73
                                                                                                75
[39]
       77
            79
                 81
                     83
                                87
                                    89
                                              93
                                                   95
                                                        97
                                                             99 101
                          85
                                         91
```

Az eredmény egy vektor.

Arra a speciális esetre, hogy 1-esével lépkedünk, olyan sűrűn van szükség, hogy arra van egy külön, rövidebb jelölés, a ::

```
1:100
```

```
[1]
             2
                  3
                        4
                             5
                                  6
                                       7
                                                 9
        1
                                            8
                                                     10
                                                          11
                                                               12
                                                                    13
                                                                         14
                                                                               15
                                                                                    16
                                                                                         17
                                                                                              18
[19]
                           23
                                                          29
                                                               30
                                                                    31
                                                                               33
                                                                                    34
                                                                                              36
       19
            20
                 21
                      22
                                 24
                                      25
                                           26
                                                27
                                                     28
                                                                          32
                                                                                         35
[37]
       37
            38
                 39
                      40
                           41
                                 42
                                      43
                                           44
                                                45
                                                     46
                                                          47
                                                               48
                                                                    49
                                                                         50
                                                                               51
                                                                                    52
                                                                                         53
                                                                                              54
[55]
                           59
                                                                                         71
                                                                                              72
       55
            56
                 57
                      58
                                 60
                                      61
                                           62
                                                63
                                                     64
                                                          65
                                                               66
                                                                    67
                                                                          68
                                                                               69
                                                                                    70
[73]
       73
            74
                 75
                      76
                           77
                                 78
                                      79
                                           80
                                                81
                                                     82
                                                          83
                                                               84
                                                                    85
                                                                         86
                                                                               87
                                                                                    88
                                                                                         89
                                                                                              90
[91]
       91
            92
                 93
                           95
                      94
                                96
                                      97
                                           98
                                                99 100
```

A sorok elején lévő, szögletes zárójelbe írt számok nem részei a vektornak, az az olvashatóságot segíti: ha nagyon hosszú vektorban kell egy adott elem pozícióját megtalálni, akkor nem a legelejétől kell számolni, elég a sor elejétől menni.

Feltűnhet, hogy a korábbi szam kiíratás esetén is megjelent egy [1] a sor elején. Ez nem véletlen: a valóságban "skalár" nincs az R-ben, igazából a szam is egy vektor (csak épp egy elemből áll).

Ahogy volt róla szó, nem csak numerikus adatokból képezhető vektor, hanem bármilyenből:

```
karaktervektor <- c("a", "b", "xyz")
karaktervektor</pre>
```

```
[1] "a" "b" "xyz"
```

A vektor homogén, ezért az alábbi utasítások csak és kizárólag azért futnak le mégis, mert a háttérben ilyenkor az R a "leggyengébbre'' konvertálja az összeset (hogy kikényszerítse a homogenitást):

```
c(1, "a")
```

[1] "1" "a"

```
c(2, TRUE)
```

[1] 2 1

A vektor elemei el is nevezhetőek; a nevek később a names-zel lekérhetőekk:

```
szamvektor <- c(elso = 4, masodik = 1, harmadik = 7)
szamvektor</pre>
```

```
elso masodik harmadik
4 1 7
```

names(szamvektor)

```
[1] "elso" "masodik" "harmadik"
```

A names érdekesen viselkedik, mert nem csak megadja a neveket, de bele is nyilazhatunk értéket, ez esetben beállítja:

```
names(szamvektor) <- c("egy", "ketto", "harom")
szamvektor</pre>
```

```
egy ketto harom 4 1 7
```

Az adatszerkezetek esetén egy alapvető kérdés az indexelés, tehát, hogy hogyan hivatkozhatunk adott pozicióban lévő elemre vagy elemekre. Ennek az R-ben meglehetősen sok módja lehetséges, de általános, hogy az indexelést a szögletes zárójel jelöli. (Később fogunk még egy szintaktikai elemet látni indexelésre.)

A legegyszerűbb eset, ha egyetlen számmal indexelünk: ekkor az adott pozícióban lévő elemet kapjuk meg. Például:

szamvektor[3]

harom

7

Megtehetjük azt is, hogy nem egy számot, hanem egy vektort adunk át, ekkor a felsorolt pozícióban lévő elemeket kapjuk, a felsorolás sorrendjében:

szamvektor[c(1, 3)]

```
egy harom
```

(Ugye látjuk, hogy ez a kettő igazából ugyanaz? Az előbbi példa is vektorral indexeltm hiszen "egy szám"' nincsen, az is vektor.)

Egy elem kiválasztható többször is, illetve tetszőleges sorrendben:

```
szamvektor[c(2, 2, 1, 3, 2, 3, 1, 1)]
```

```
ketto ketto egy harom ketto harom egy egy 1 \quad 1 \quad 4 \quad 7 \quad 1 \quad 7 \quad 4 \quad 4
```

Nemlétező elem indexelése NA-t ad:

```
szamvektor[10]
```

<NA>

A második alapvető megoldás a logikai vektorral való indexelés: ekkor egy ugyanolyan hosszú vektort kell átadnunk, mint az indexelendő vektor, és azokat az elemeke választja ki, ahol logikai igaz érték van:

```
szamvektor[c(TRUE, FALSE, TRUE, TRUE, FALSE, TRUE)]
```

```
egy harom <NA> <NA> 4 7 NA NA
```

Valójában azonban ez is működik, hiába rövidebb az indexelő vektor:

```
szamvektor[c(TRUE, TRUE, FALSE)]
```

```
egy ketto 4 1
```

Ez egy újabb példa a kétélű flexibilitásra: azért fog működni, mert ilyenkor az R "reciklálja" az indexelő vektort.

Lehetséges negatív indexelés is, ez kiválaszt mindent, kivéve amit indexeltünk:

```
szamvektor[-3]
```

```
egy ketto 4 1
```

```
szamvektor[-c(1, 3)]
ketto
    1
Ha vannak elnevezések, akkor azok használhatóak indexelésre is:
szamvektor["masodik"]
<NA>
  NA
szamvektor[c("masodik", "utolso")]
<NA> <NA>
  NA
       NA
Az indexelés és az értékadás kombinálható is:
szamvektor[ 3 ] <- 99</pre>
szamvektor
  egy ketto harom
    4
           1
szamvektor[ 10 ]
<NA>
  NA
```

Ha nemlétezőnek adunk értéket, automatikusan kiterjeszti a vektort, a többi helyre pedig NA kerül (megint újabb példa a kétélű flexibilitásra):

```
szamvektor[ 10 ] <- 999
szamvektor

egy ketto harom
4  1  99  NA  NA  NA  NA  NA  NA  999</pre>
```

2.3.2. Mátrix

A mátrix homogén, kétdimenziós adatszerkezet.

Legegyszerűbben úgy tölthető fel, ha egy vektort áttördelünk, a matrix függvény használatával (az nc argumentummal az oszlopok, az nr argumentummal a sorok számát állíthatjuk be, értelemszerűen elég a kettőből egyet megadni):

```
szammatrix <- matrix( 1:6, nc = 2 )
szammatrix</pre>
```

```
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
```

Alapból oszlopok szerint tördel, de a byrow argumentummal ezt átállíthatjuk:

```
matrix( 1:6, nc = 2, byrow = TRUE )
```

```
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
```

A dimenzió, illetve külön a sorok és oszlopok száma könnyen lekérhető:

```
dim( szammatrix )

[1] 3 2

nrow( szammatrix )

[1] 3

ncol( szammatrix )
```

[1] 2

A mátrix oszlopai és sorai is elnevezhetőek, emiatt itt nem egy names van, hanem egy row.names és egy names, ez utóbbi az oszlopnév, de egyebekben teljesen hasonlóan viselkednek.

Indexelés ugyanúgy végezhető, csak épp mindkét dimenzióra mondanunk kell valamit; a kettő vesszővel választandó el:

```
szammatrix[ c( 2, 3 ), 2 ]
```

[1] 5 6

Mindkét dimenzió tetszőleges korábban látott módon indexelhető, tehát a különböző módok keverhetőek is:

```
szammatrix[ c( 1, 2 ), c( T, F ) ]
```

[1] 1 2

Ha egy dimenziót nem indexelünk, akkor az R úgy érti, hogy onnan minden elem (de a vessző ekkor sem hagyható el!):

```
szammatrix[ 2, ]
```

[1] 2 5

2.3.3. Tömb (array)

A tömb (array) homogén, n-dimenziós adatszerkezet (nem foglalkozunk vele részletesebben, ritkán használatos).

2.3.4. Data frame

A data frame (adatkeret) heterogén, kétdimenziós, rektanguláris adatszerkezet. Pontosabban szólva félig heterogén: az oszlopok homogének, de a különböző oszlopok típusai eltérhetnek egymástól. Lényegében tehát - nem feltétlenül ugyanolyan típusú - vektorok összefogva; a rektanguláris azt jelenti, hogy minden vektor ugyanolyan hosszú kell legyen.

Ez a legtipikusabb adatszerkezet orvosi adatok tárolására: sorokban a megfigyelési egységek, oszlopokban a változók.

A data paranccsal egy kiegészítő csomagban található kész adat tölthető be:

	low	age	lwt	race	smoke	ptl	ht	ui	ftv	bwt
85	0	19	182	2	0	0	0	1	0	2523
86	0	33	155	3	0	0	0	0	3	2551
87	0	20	105	1	1	0	0	0	1	2557
88	0	21	108	1	1	0	0	1	2	2594
89	0	18	107	1	1	0	0	1	0	2600
91	0	21	124	3	0	0	0	0	0	2622
92	0	22	118	1	0	0	0	0	1	2637
93	0	17	103	3	0	0	0	0	1	2637
94	0	29	123	1	1	0	0	0	1	2663
95	0	26	113	1	1	0	0	0	0	2665
96	0	19	95	3	0	0	0	0	0	2722
97	0	19	150	3	0	0	0	0	1	2733
98	0	22	95	3	0	0	1	0	0	2751
99	0	30	107	3	0	1	0	1	2	2750
100	0	18	100	1	1	0	0	0	0	2769
101	0	18	100	1	1	0	0	0	0	2769
102	0	15	98	2	0	0	0	0	0	2778
103	0	25	118	1	1	0	0	0	3	2782
104	0	20	120	3	0	0	0	1	0	2807
105	0	28	120	1	1	0	0	0	1	2821
106	0	32	121	3	0	0	0	0	2	2835
107	0	31	100	1	0	0	0	1	3	2835
108	0	36	202	1	0	0	0	0	1	2836
109	0	28	120	3	0	0	0	0	0	2863
111	0	25	120	3	0	0	0	1	2	2877
112	0	28	167	1	0	0	0	0	0	2877
113	0	17	122	1	1	0	0	0	0	2906
114	0	29	150	1	0	0	0	0	2	2920
115	0	26	168	2	1	0	0	0	0	2920
116	0	17	113	2	0	0	0	0	1	2920
117	0	17	113	2	0	0	0	0	1	2920
118	0	24	90	1	1	1	0	0	1	2948
119	0	35	121	2	1	1	0	0	1	2948
120	0	25	155	1	0	0	0	0	1	2977
121	0	25	125	2	0	0	0	0	0	2977
123	0	29	140	1	1	0	0	0	2	2977
124	0	19	138	1	1	0	0	0	2	2977
125	0	27	124	1	1	0	0	0	0	2922

126	0	31	215	1	1	0	0	0	2	3005
127	0	33	109	1	1	0	0	0	1	3033
128	0	21	185	2	1	0	0	0	2	3042
129	0	19	189	1	0	0	0	0	2	3062
130	0	23	130	2	0	0	0	0	1	3062
131	0	21	160	1	0	0	0	0	0	3062
132	0	18	90	1	1	0	0	1	0	3062
133	0	18	90	1	1	0	0	1	0	3062
134	0	32	132	1	0	0	0	0	4	3080
135	0	19	132	3	0	0	0	0	0	3090
136	0	24	115	1	0	0	0	0	2	3090
137	0	22	85	3	1	0	0	0	0	3090
138	0	22	120	1	0	0	1	0	1	3100
139	0	23	128	3	0	0	0	0	0	3104
140	0	22	130	1	1	0	0	0	0	3132
141	0	30	95	1	1	0	0	0	2	3147
142	0	19	115	3	0	0	0	0	0	3175
143	0	16	110	3	0	0	0	0	0	3175
144	0	21	110	3	1	0	0	1	0	3203
145	0	30	153	3	0	0	0	0	0	3203
146	0	20	103	3	0	0	0	0	0	3203
147	0	17	119	3	0	0	0	0	0	3225
148	0	17	119	3	0	0	0	0	0	3225
149	0	23	119	3	0	0	0	0	2	3232
150	0	24	110	3	0	0	0	0	0	3232
151	0	28	140	1	0	0	0	0	0	3234
154	0	26	133	3	1	2	0	0	0	3260
155	0	20	169	3	0	1	0	1	1	3274
156	0	24	115	3	0	0	0	0	2	3274
159	0	28	250	3	1	0	0	0	6	3303
160	0	20	141	1	0	2	0	1	1	3317
161	0	22	158	2	0	1	0	0	2	3317
162	0	22	112	1	1	2	0	0	0	3317
163	0	31	150	3	1	0	0	0	2	3321
164	0	23	115	3	1	0	0	0	1	3331
166	0	16	112	2	0	0	0	0	0	3374
167	0	16	135	1	1	0	0	0	0	3374
168	0	18	229	2	0	0	0	0	0	3402
169	0	25	140	1	0	0	0	0	1	3416
170	0	32	134	1	1	1	0	0	4	3430
172	0	20	121	2	1	0	0	0	0	3444
173	0	23	190	1	0	0	0	0	0	3459
174	0	22	131	1	0	0	0	0	1	3460

175	0	32	170	1	0	0	0	0	0	3473
176	0	30	110	3	0	0	0	0	0	3544
177	0	20	127	3	0	0	0	0	0	3487
179	0	23	123	3	0	0	0	0	0	3544
180	0	17	120	3	1	0	0	0	0	3572
181	0	19	105	3	0	0	0	0	0	3572
182	0	23	130	1	0	0	0	0	0	3586
183	0	36	175	1	0	0	0	0	0	3600
184	0	22	125	1	0	0	0	0	1	3614
185	0	24	133	1	0	0	0	0	0	3614
186	0	21	134	3	0	0	0	0	2	3629
187	0	19	235	1	1	0	1	0	0	3629
188	0	25	95	1	1	3	0	1	0	3637
189	0	16	135	1	1	0	0	0	0	3643
190	0	29	135	1	0	0	0	0	1	3651
191	0	29	154	1	0	0	0	0	1	3651
192	0	19	147	1	1	0	0	0	0	3651
193	0	19	147	1	1	0	0	0	0	3651
195	0	30	137	1	0	0	0	0	1	3699
196	0	24	110	1	0	0	0	0	1	3728
197	0	19	184	1	1	0	1	0	0	3756
199	0	24	110	3	0	1	0	0	0	3770
200	0	23	110	1	0	0	0	0	1	3770
201	0	20	120	3	0	0	0	0	0	3770
202	0	25	241	2	0	0	1	0	0	3790
203	0	30	112	1	0	0	0	0	1	3799
204	0	22	169	1	0	0	0	0	0	3827
205	0	18	120	1	1	0	0	0	2	3856
206	0	16	170	2	0	0	0	0	4	3860
207	0	32	186	1	0	0	0	0	2	3860
208	0	18	120	3	0	0	0	0	1	3884
209	0	29	130	1	1	0	0	0	2	3884
210	0	33	117	1	0	0	0	1	1	3912
211	0	20	170	1	1	0	0	0	0	3940
212	0	28	134	3	0	0	0	0	1	3941
213	0	14	135	1	0	0	0	0	0	3941
214	0	28	130	3	0	0	0	0	0	3969
215	0	25	120	1	0	0	0	0	2	3983
216	0	16	95	3	0	0	0	0	1	3997
217	0	20	158	1	0	0	0	0	1	3997
218	0	26	160	3	0	0	0	0	0	4054
219	0	21	115	1	0	0	0	0	1	4054
220	0	22	129	1	0	0	0	0	0	4111

221	0	25	130	1	(0	0	0	0	2	4153
222	0	31	120	1	(0	0	0	0	2	4167
223	0	35	170	1	(0	1	0	0	1	4174
224	0	19	120	1		1	0	0	0	0	4238
225	0	24	116	1	(0	0	0	0	1	4593
226	0	45	123	1	(0	0	0	0	1	4990
4	1	28	120	3		1	1	0	1	0	709
10	1	29	130	1	(0	0	0	1	2	1021
11	1	34	187	2		1	0	1	0	0	1135
13	1	25	105	3	(О	1	1	0	0	1330
15	1	25	85	3	(О	0	0	1	0	1474
16	1	27	150	3	(О	0	0	0	0	1588
17	1	23	97	3	(О	0	0	1	1	1588
18	1	24	128	2	(О	1	0	0	1	1701
19	1	24	132	3	(О	0	1	0	0	1729
20	1	21	165	1		1	0	1	0	1	1790
22	1	32	105	1	:	1	0	0	0	0	1818
23	1	19	91	1	:	1	2	0	1	0	1885
24	1	25	115	3	(0	0	0	0	0	1893
25	1	16	130	3	(0	0	0	0	1	1899
26	1	25	92	1	:	1	0	0	0	0	1928
27	1	20	150	1	:	1	0	0	0	2	1928
28	1	21	200	2	(0	0	0	1	2	1928
29	1	24	155	1	:	1	1	0	0	0	1936
30	1	21	103	3	(О	0	0	0	0	1970
31	1	20	125	3	(0	0	0	1	0	2055
32	1	25	89	3	(0	2	0	0	1	2055
33	1	19	102	1	(0	0	0	0	2	2082
34	1	19	112	1		1	0	0	1	0	2084
35	1	26	117	1		1	1	0	0	0	2084
36	1	24	138	1	(0	0	0	0	0	2100
37	1	17	130	3		1	1	0	1	0	2125
40	1	20	120	2		1	0	0	0	3	2126
42	1	22	130	1		1	1	0	1	1	2187
43	1	27	130	2	(О	0	0	1	0	2187
44	1	20	80	3		1	0	0	1	0	2211
45	1	17	110	1		1	0	0	0	0	2225
46	1	25	105	3	(О	1	0	0	1	2240
47	1	20	109	3	(О	0	0	0	0	2240
49	1	18	148	3	(0	0	0	0	0	2282
50	1	18	110	2		1	1	0	0	0	2296
51	1	20	121	1		1	1	0	1	0	2296
52	1	21	100	3		0	1	0	0	4	

```
54
          26
              96
                      3
                             0
                                 0
                                     0
                                        0
                                             0 2325
      1
          31 102
                                     0
                                             1 2353
56
      1
                      1
                             1
                                 1
                                        0
                                             0 2353
57
      1
          15 110
                      1
                             0
                                 0
                                     0
                                        0
59
          23 187
                      2
                                 0
                                     0
                                        0
                                             1 2367
      1
                             1
          20 122
                      2
                                             0 2381
60
      1
                             1
                                 0
                                     0
                                        0
          24 105
                      2
                                     0
                                             0 2381
61
      1
                             1
                                 0
                                        0
62
      1
          15 115
                      3
                             0
                                     0
                                             0 2381
63
      1
          23 120
                      3
                             0
                                 0
                                     0
                                        0
                                             0 2410
          30 142
                                 1
                                     0
                                        0
                                             0 2410
65
      1
                      1
                             1
          22 130
                                             1 2410
67
      1
                      1
                             1
                                 0
                                     0
                                        0
          17 120
                                     0
                                             3 2414
68
      1
                      1
                                 0
                                        0
                             1
      1
          23 110
                                 1
                                             0 2424
69
                      1
                             1
                                     0
                                        0
                      2
                                             2 2438
71
          17 120
                             0
                                 0
                                     0
                                        0
      1
75
          26 154
                      3
                                             1 2442
      1
                             0
                                 1
          20 105
                                     0
                                             3 2450
76
      1
                      3
                             0
                                 0
                                        0
77
      1
          26 190
                             1
                                 0
                                     0
                                        0
                                             0 2466
                      1
78
      1
          14 101
                      3
                             1
                                 1
                                     0
                                        0
                                             0 2466
79
      1
          28
               95
                                 0
                                     0
                                        0
                                             2 2466
                      1
                             1
81
      1
          14 100
                      3
                             0
                                 0
                                     0
                                        0
                                             2 2495
          23
82
      1
               94
                      3
                             1
                                 0
                                    0
                                        0
                                             0 2495
83
      1
          17 142
                      2
                             0
                                 0
                                     1
                                        0
                                             0 2495
          21 130
                      1
                                             3 2495
84
                             1
                                 0
                                     1
                                        0
```

Csak a felső néhány sor a head paranccsal kérhető le (az alsó néhány sor pedig a tail-lel):

head(birthwt)

```
low age lwt race smoke ptl ht ui ftv
                                             bwt
85
     0
        19 182
                    2
                           0
                               0
                                   0
                                      1
                                          0 2523
86
     0
        33 155
                    3
                               0
                                  0
                                      0
                                          3 2551
                           0
87
     0
        20 105
                    1
                           1
                               0
                                  0
                                      0
                                          1 2557
88
     0
        21 108
                    1
                           1
                               0
                                  0
                                     1
                                          2 2594
89
     0
        18 107
                    1
                           1
                               0
                                  0
                                      1
                                          0 2600
        21 124
                    3
                           0
                               0
                                  0
                                          0 2622
91
     0
                                     0
```

Az oszlopok és a sorok is elnevezhetőek:

str(birthwt)

```
'data.frame': 189 obs. of 10 variables: $ low : int 0 0 0 0 0 0 0 0 0 ...
```

```
$ age : int 19 33 20 21 18 21 22 17 29 26 ...
$ lwt : int 182 155 105 108 107 124 118 103 123 113 ...
$ race : int 2 3 1 1 1 3 1 3 1 1 ...
$ smoke: int 0 0 1 1 1 0 0 0 1 1 ...
 $ ptl : int 0000000000...
$ ht
       : int 0000000000...
       : int 1001100000...
$ ftv : int 0 3 1 2 0 0 1 1 1 0 ...
$ bwt : int 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
names( birthwt )
 [1] "low"
                           "race" "smoke" "ptl"
            "age"
                   "lwt"
                                                  "ht"
                                                         "ui"
                                                                 "ftv"
[10] "bwt"
colnames( birthwt )
 [1] "low"
                           "race" "smoke" "ptl"
                                                                 "ftv"
            "age"
                   "lwt"
                                                  "ht"
[10] "bwt"
Az adatkeret a mátrixhoz hasonlóan indexelhető:
birthwt[ 3, ]
  low age lwt race smoke ptl ht ui ftv bwt
87 0 20 105
                1 1 0 0 0
                                   1 2557
birthwt[3,4]
[1] 1
birthwt[ 3, c( 5, 6 ) ]
  smoke ptl
87
      1
```

Sőt, ha vannak elnevezéseink, az is használható. A következő 4 mind egyenértékű:

birthwt[, 10]

```
[1] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750 2769 [16] 2769 2778 2778 2807 2821 2835 2835 2836 2863 2877 2877 2906 2920 2920 2920 [31] 2920 2948 2948 2977 2977 2977 2977 2922 3005 3033 3042 3062 3062 3062 3062 [46] 3062 3080 3090 3090 3090 3100 3104 3132 3147 3175 3175 3203 3203 3203 3225 [61] 3225 3232 3232 3234 3260 3274 3274 3303 3317 3317 3317 3321 3331 3374 3374 [76] 3402 3416 3430 3444 3459 3460 3473 3544 3487 3544 3572 3572 3586 3600 3614 [91] 3614 3629 3629 3637 3643 3651 3651 3651 3651 3699 3728 3756 3770 3770 3770 [106] 3790 3799 3827 3856 3860 3860 3884 3884 3912 3940 3941 3941 3969 3983 3997 [121] 3997 4054 4054 4111 4153 4167 4174 4238 4593 4990 709 1021 1135 1330 1474 [136] 1588 1588 1701 1729 1790 1818 1885 1893 1899 1928 1928 1928 1936 1970 2055 [151] 2055 2082 2084 2084 2100 2125 2126 2187 2187 2211 2225 2240 2240 2282 2296 [166] 2296 2301 2325 2353 2353 2367 2381 2381 2381 2410 2410 2410 2414 2424 2438 [181] 2442 2450 2466 2466 2466 2495 2495 2495 2495
```

birthwt\$bwt

```
[1] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750 2769 [16] 2769 2778 2782 2807 2821 2835 2835 2836 2863 2877 2877 2906 2920 2920 2920 [31] 2920 2948 2948 2977 2977 2977 2977 2922 3005 3033 3042 3062 3062 3062 3062 [46] 3062 3080 3090 3090 3090 3100 3104 3132 3147 3175 3175 3203 3203 3203 3225 [61] 3225 3232 3232 3234 3260 3274 3274 3303 3317 3317 3317 3321 3331 3374 3374 [76] 3402 3416 3430 3444 3459 3460 3473 3544 3487 3544 3572 3572 3586 3600 3614 [91] 3614 3629 3629 3637 3643 3651 3651 3651 3651 3651 3699 3728 3756 3770 3770 3770 [106] 3790 3799 3827 3856 3860 3860 3884 3884 3912 3940 3941 3941 3969 3983 3997 [121] 3997 4054 4054 4111 4153 4167 4174 4238 4593 4990 709 1021 1135 1330 1474 [136] 1588 1588 1701 1729 1790 1818 1885 1893 1899 1928 1928 1928 1936 1970 2055 [151] 2055 2082 2084 2084 2100 2125 2126 2187 2187 2211 2225 2240 2240 2282 2296 [166] 2296 2301 2325 2353 2353 2367 2381 2381 2381 2410 2410 2410 2414 2424 2438 [181] 2442 2450 2466 2466 2495 2495 2495 2495
```

birthwt[, "bwt"]

```
[1] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750 2769 [16] 2769 2778 2782 2807 2821 2835 2835 2836 2863 2877 2877 2906 2920 2920 2920 [31] 2920 2948 2948 2977 2977 2977 2977 2922 3005 3033 3042 3062 3062 3062 3062 [46] 3062 3080 3090 3090 3090 3100 3104 3132 3147 3175 3175 3203 3203 3203 3225 [61] 3225 3232 3232 3234 3260 3274 3274 3303 3317 3317 3317 3321 3331 3374 3374 [76] 3402 3416 3430 3444 3459 3460 3473 3544 3487 3544 3572 3572 3586 3600 3614
```

```
[91] 3614 3629 3629 3637 3643 3651 3651 3651 3651 3699 3728 3756 3770 3770 3770 [106] 3790 3799 3827 3856 3860 3860 3884 3884 3912 3940 3941 3941 3969 3983 3997 [121] 3997 4054 4054 4111 4153 4167 4174 4238 4593 4990 709 1021 1135 1330 1474 [136] 1588 1588 1701 1729 1790 1818 1885 1893 1899 1928 1928 1928 1936 1970 2055 [151] 2055 2082 2084 2084 2100 2125 2126 2187 2187 2211 2225 2240 2240 2282 2296 [166] 2296 2301 2325 2353 2353 2367 2381 2381 2381 2410 2410 2410 2414 2424 2438 [181] 2442 2450 2466 2466 2466 2495 2495 2495 2495
```

birthwt[["bwt"]]

```
[1] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750 2769 [16] 2769 2778 2778 2807 2821 2835 2835 2836 2863 2877 2877 2906 2920 2920 2920 [31] 2920 2948 2948 2977 2977 2977 2977 2922 3005 3033 3042 3062 3062 3062 3062 [46] 3062 3080 3090 3090 3090 3100 3104 3132 3147 3175 3175 3203 3203 3203 3225 [61] 3225 3232 3232 3234 3260 3274 3274 3303 3317 3317 3317 3321 3331 3374 3374 [76] 3402 3416 3430 3444 3459 3460 3473 3544 3487 3544 3572 3572 3586 3600 3614 [91] 3614 3629 3629 3637 3643 3651 3651 3651 3651 3699 3728 3756 3770 3770 3770 [106] 3790 3799 3827 3856 3860 3860 3884 3884 3912 3940 3941 3941 3969 3983 3997 [121] 3997 4054 4054 4111 4153 4167 4174 4238 4593 4990 709 1021 1135 1330 1474 [136] 1588 1588 1701 1729 1790 1818 1885 1893 1899 1928 1928 1928 1936 1970 2055 [151] 2055 2082 2084 2084 2100 2125 2126 2187 2187 2211 2225 2240 2240 2282 2296 [166] 2296 2301 2325 2353 2353 2367 2381 2381 2381 2410 2410 2410 2414 2424 2438 [181] 2442 2450 2466 2466 2466 2495 2495 2495 2495
```

A nem dupla szögletes zárójellel történő indexelés eltérése, hogy nem a kiválasztott vektort, hanem egy csak a kiválasztott vektorból álló data frame-et ad vissza:

birthwt[["bwt"]]

```
[1] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750 2769 [16] 2769 2778 2782 2807 2821 2835 2835 2836 2863 2877 2877 2906 2920 2920 2920 [31] 2920 2948 2948 2977 2977 2977 2977 2922 3005 3033 3042 3062 3062 3062 3062 [46] 3062 3080 3090 3090 3090 3100 3104 3132 3147 3175 3175 3203 3203 3203 3225 [61] 3225 3232 3232 3234 3260 3274 3274 3303 3317 3317 3317 3321 3331 3374 3374 [76] 3402 3416 3430 3444 3459 3460 3473 3544 3487 3544 3572 3572 3586 3600 3614 [91] 3614 3629 3629 3637 3643 3651 3651 3651 3651 3651 3699 3728 3756 3770 3770 3770 [106] 3790 3799 3827 3856 3860 3860 3884 3884 3912 3940 3941 3941 3969 3983 3997 [121] 3997 4054 4054 4111 4153 4167 4174 4238 4593 4990 709 1021 1135 1330 1474 [136] 1588 1588 1701 1729 1790 1818 1885 1893 1899 1928 1928 1928 1936 1970 2055 [151] 2055 2082 2084 2084 2100 2125 2126 2187 2187 2211 2225 2240 2240 2282 2296 [166] 2296 2301 2325 2353 2353 2367 2381 2381 2381 2410 2410 2410 2414 2424 2438 [181] 2442 2450 2466 2466 2466 2495 2495 2495 2495
```

```
str( birthwt[[ "bwt" ]] )
 int [1:189] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
head( birthwt[ "bwt" ] )
    bwt
85 2523
86 2551
87 2557
88 2594
89 2600
91 2622
str( birthwt[ "bwt" ] )
'data.frame':
                189 obs. of 1 variable:
 $ bwt: int 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
Használhatunk különféle módszereket (az alábbiak közül a második a logikai indexelés miatt
fog működni):
head( birthwt[ , c( "lwt", "smoke" ) ] )
   lwt smoke
85 182
           0
86 155
           0
87 105
           1
88 108
           1
89 107
           1
91 124
           0
head( birthwt[ birthwt$smoke==1, ] )
    low age lwt race smoke ptl ht ui ftv bwt
87
      0
        20 105
                   1
                          1
                              0
                                 0
                                    0
                                        1 2557
88
      0 21 108
                              0 0
                                   1
                                        2 2594
                   1
                          1
      0 18 107
                              0 0
                                        0 2600
89
                   1
                          1
                                   1
94
         29 123
                          1
                              0 0
                                    0
                                        1 2663
      0
                   1
                              0 0
         26 113
                    1
                                    0
                                        0 2665
95
                          1
100
      0 18 100
                          1
                              0 0 0
                                        0 2769
```

head(birthwt[birthwt\$smoke==1&birthwt\$race==1,])

```
low age lwt race smoke ptl ht ui ftv bwt
87
     0 20 105
                1
                     1
                         0
                           0
                             0
                                 1 2557
88
     0 21 108
                         0 0 1
                                 2 2594
                1
                     1
89
    0 18 107
                        0 0 1 0 2600
                1
                     1
94
    0 29 123
                1
                     1
                       0 0 0
                                 1 2663
95
     0 26 113
                       0 0 0
                                 0 2665
              1
                    1
100
    0 18 100
              1
                     1
                       0 0 0 0 2769
```

Az adatkeret heterogén:

```
birthwt$nev <- "a"
head( birthwt )</pre>
```

```
low age lwt race smoke ptl ht ui ftv bwt nev
85
    0
      19 182
               2
                     0
                        0
                           0 1
                                 0 2523
                        0 0 0
86
    0 33 155
               3
                                 3 2551
                     0
                                         а
87
    0 20 105
               1
                     1
                        0 0 0 1 2557
                                         а
    0 21 108
                     1 0 0 1
                                 2 2594
88
               1
89
    0 18 107
                     1
                        0 0 1
                                 0 2600
               1
    0 21 124
               3
                        0 0 0
                                 0 2622
91
                     0
```

str(birthwt)

```
'data.frame': 189 obs. of 11 variables:
$ low : int 0 0 0 0 0 0 0 0 0 0 ...
$ age : int 19 33 20 21 18 21 22 17 29 26 ...
$ lwt : int 182 155 105 108 107 124 118 103 123 113 ...
$ race : int 2 3 1 1 1 3 1 3 1 1 ...
$ smoke: int 0 0 1 1 1 0 0 0 1 1 ...
$ ptl : int 0 0 0 0 0 0 0 0 0 0 ...
$ ht : int 0 0 0 0 0 0 0 0 0 ...
$ iii : int 1 0 0 1 1 0 0 0 0 0 ...
$ ftv : int 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
$ nev : chr "a" "a" "a" "a" ...
```

2.3.5. Lista

A lista heterogén, egydimenziós adatszerkezet.

Legegyszerűbben elemei felsorolásával hozható létre, a list függvényt használva:

```
lista <- list( sz = szamvektor, k = karaktervektor, m = szammatrix, df = birthwt[ 1:5, ] )
lista
$sz
  egy ketto harom
                                                    NA
                                                         999
    4
          1
               99
                     NA
                           NA
                                  NA
                                        NA
                                              NA
$k
[1] "a"
          "b"
                "xyz"
$m
     [,1] [,2]
[1,]
        1
[2,]
        2
             5
[3,]
        3
             6
$df
   low age lwt race smoke ptl ht ui ftv bwt nev
85
        19 182
                  2
                        0
                               0
                                   1
                                       0 2523
86
        33 155
                  3
                             0
                               0
                                 0
                                       3 2551
                        0
                                                а
87
        20 105
                  1
                        1
                             0 0 0
                                       1 2557
88
     0
        21 108
                  1
                        1
                             0
                               0 1
                                       2 2594
                                                а
89
     0
        18 107
                  1
                        1
                             0 0 1
                                       0 2600
str(lista)
List of 4
 $ sz: Named num [1:10] 4 1 99 NA NA NA NA NA NA 999
  ..- attr(*, "names")= chr [1:10] "egy" "ketto" "harom" "" ...
 $ k : chr [1:3] "a" "b" "xyz"
 $ m : int [1:3, 1:2] 1 2 3 4 5 6
 $ df:'data.frame': 5 obs. of 11 variables:
  ..$ low : int [1:5] 0 0 0 0 0
  ..$ age : int [1:5] 19 33 20 21 18
  ..$ lwt : int [1:5] 182 155 105 108 107
  ..$ race : int [1:5] 2 3 1 1 1
```

```
..$ smoke: int [1:5] 0 0 1 1 1
  ..$ ptl : int [1:5] 0 0 0 0 0
  ..$ ht
           : int [1:5] 0 0 0 0 0
  ..$ ui
           : int [1:5] 1 0 0 1 1
  ..$ ftv : int [1:5] 0 3 1 2 0
  ..$ bwt : int [1:5] 2523 2551 2557 2594 2600
  ..$ nev : chr [1:5] "a" "a" "a" "a" ...
Számmal és – ha van neki – névvel is indexelhető:
lista[[ 1 ]]
  egy ketto harom
    4
          1
               99
                      NA
                            NA
                                  NA
                                         NA
                                               NA
                                                      NA
                                                           999
lista$sz
  egy ketto harom
    4
          1
               99
                      NA
                                         NA
                                               NA
                                                      NA
                                                           999
                            NA
                                  NA
lista[[ "sz" ]]
  egy ketto harom
    4
          1
               99
                      NA
                            NA
                                  NA
                                         NA
                                               NA
                                                      NA
                                                           999
Az egy zárójellel történő indexelés látszólag ugyanaz, de csak látszólag:
lista[ 1 ]
$sz
  egy ketto harom
    4
          1
                      NA
                                         NA
                                               NA
                                                      NA
                                                           999
               99
                            NA
                                  NA
typeof( lista[[ 1 ]] )
[1] "double"
```

```
typeof( lista[ 1 ] )
```

```
[1] "list"
```

Tartomány is indexelhető:

```
lista[ 1:2 ]
$sz
  egy ketto harom
    4
           1
                99
                                                            999
                      NA
                                          NA
                                                NA
                                                       NA
                             NA
                                   NA
[1] "a"
          "b"
                 "xyz"
lista[[ 1:2 ]]
```

[1] 1

4

1

99

Az előbbi dolgok természetesen kombinálhatóak is:

NA

NA

```
idx <- "sz"
lista[[ idx ]]
egy ketto harom</pre>
```

Az adatkeret igazából egy, az oszlopokból - mint vektorokból - összerakott lista (tehát két szűkítés van: az elemek csak vektorok lehetnek és ugyanolyan hosszúaknak kell lenniük).

NA

NA

NA

999

NA

3 Függvények

A függvényekről

```
data(birthwt, package = "MASS")
```

3.1. Függvényhívások

Függvény úgy hívható, hogy megadjuk a nevét, majd utána zárójelben az argumentumát, vagy argumentumait (lehet, hogy egy sincs, de a zárójelet ekkor is ki kell írni):

```
quantile( birthwt$bwt )
```

0% 25% 50% 75% 100% 709 2414 2977 3487 4990

Függvényről súgó a kérdőjellel kapható (két kérdőjel az összes ismert függvényt végigkeresi, akár névtöredékre is): ?quantile.

Aminél egyenlőségjellel adva van érték a specifikációban, ott az default-ként viselkedik, nem kötelező megadni, viszont a default-tal nem rendelkezőket muszáj:

```
quantile()
```

Error in quantile.default(): argument "x" is missing, with no default

Ha több argumentumot adunk meg, akkor azok a felsorolás sorrendjében osztódnak ki:

```
quantile(birthwt$bwt, 0.23)
```

23% 2387.96

```
quantile( birthwt$bwt, c( 0.23, 0.5, 0.6 ) )
```

```
23% 50% 60%
2387.96 2977.00 3169.40
```

Argumentumra hivatkozhatunk névvel is, ez esetben nem kell a felsorolás sorrendjével törődnünk:

```
quantile( birthwt$bwt, c( 0.23, 0.5, 0.6 ), type = 6 )

23% 50% 60%
2381 2977 3175

quantile( probs = c( 0.23, 0.5, 0.6 ), type = 6, x = birthwt$bwt )

23% 50% 60%
2381 2977 3175
```

Az általános gyakorlat az, hogy az első két-három argumentumot adhatjuk meg név nélkül (ezeknél elvárható, hogy fejből is tudja az ember, hogy mit jelent), de a többinél elegánsabb, ha mindenképp adunk nevet (tehát akkor is, ha sorrendben írjuk).

Egy függvény hívásánál az argumentumai elkülöníthetőek egy listába, majd ugyanaz a hatása a do.call használatával elérhető (első argumentum a függvény, második az átadandó argumentumok listája):

```
quantile( probs = c( 0.23, 0.5, 0.6 ), type = 6, x = birthwt$bwt )

23% 50% 60%
2381 2977 3175

do.call( quantile, list( probs = c( 0.23, 0.5, 0.6 ), type = 6, x = birthwt$bwt ) )

23% 50% 60%
2381 2977 3175
```

Ez akkor jön jól, ha nem tudjuk előre, hogy mik az argumentumok (akár azt sem, hogy hány darab van belőlük!), pl. mert egy lapply-jal gyártottuk le, lásd később:

```
rbind( c( 1, 2 ), c( 3, 4 ), c( 5, 6 ) )
     [,1] [,2]
[1,]
[2,]
        3
             4
[3,]
        5
             6
do.call( rbind, lapply( birthwt, function( x ) c( mean( x ), median( x ) ) )
              [,1] [,2]
      3.121693e-01
low
age
      2.323810e+01
                     23
lwt
      1.298148e+02
                   121
race 1.846561e+00
                    1
smoke 3.915344e-01
                      0
ptl
      1.957672e-01
                      0
ht
      6.349206e-02
      1.481481e-01
                      0
ui
ftv
      7.936508e-01
      2.944587e+03 2977
bwt
```

3.2. Saját függény definiálása

Ilyet is lehet.

4 Az R programozása

Programozás.

```
data(birthwt, package = "MASS")
```

4.1. Funkcionális programozás

Az R, bár többféle paradigmában is tud dolgozni, érezhető funkcionális nyelv. Ezt elegáns is, célszerű is kihasználni!

Egy példa:

```
mean( birthwt$bwt[ 1:100 ] )

[1] 3130.16

elsoszazatlag <- function( data ) {
   result <- mean( data[ 1:100 ] )
   return( result )
}

elsoszazatlag <- function( data ) {
   result <- mean( data[ 1:100 ] )
   result
}
elsoszazatlag <- function( data ) {
   mean( data[ 1:100 ] )
}
elsoszazatlag (birthwt$bwt )</pre>
```

[1] 3130.16

```
sd( birthwt$bwt[ 1:100 ] )

[1] 323.7243

elsoszazf <- function( data, f = mean ) {
   f( data[ 1:100 ] )
}
elsoszazf( birthwt$bwt )

[1] 3130.16

elsoszazf( birthwt$bwt, f = sd )</pre>
[1] 323.7243
```

A lapply az első argumentumban megadott lista minden elemére ráereszti a második argumentumban megadott függvényt, és az eredményt összefűzi egy listává (a sapply csak annyiban tér el, hogy lista helyett vektort ad vissza, ha lehetséges a listát vektorrá konvertálni):

```
[[1]]
[1] 3
[[2]]
[1] 3
[[3]]
[1] 3
lapply( c( "age", "lwt", "bwt" ), function( x ) mean( birthwt[[ x ]] ) )
[[1]]
[1] 23.2381
[[2]]
[1] 129.8148
[[3]]
[1] 2944.587
sapply( c( "age", "lwt", "bwt" ), function( x ) mean( birthwt[[ x ]] ) )
                lwt
                          bwt
      age
  23.2381 129.8148 2944.5873
sapply( birthwt, mean )
         low
                                   lwt
                                                            smoke
                                                                           ptl
                      age
                                               race
3.121693e-01 2.323810e+01 1.298148e+02 1.846561e+00 3.915344e-01 1.957672e-01
                                   ftv
6.349206e-02 1.481481e-01 7.936508e-01 2.944587e+03
lapply( birthwt, function( x ) c( mean( x ), median( x ) )
$low
[1] 0.3121693 0.0000000
$age
[1] 23.2381 23.0000
```

```
$1wt
[1] 129.8148 121.0000
$race
[1] 1.846561 1.000000
$smoke
[1] 0.3915344 0.0000000
$ptl
[1] 0.1957672 0.0000000
$ht
[1] 0.06349206 0.00000000
$ui
[1] 0.1481481 0.0000000
$ftv
[1] 0.7936508 0.0000000
$bwt
[1] 2944.587 2977.000
```

A harmadik sor példát mutat arra, hogy anonim függvény is használható, az utolsó előtti pedig arra, hogy a data.frame igazából lista, aminek az elemei az oszlopai.

Az apply az első argumentumban megadott mátrix vagy adatkeret minden sorára vagy oszlopára (ezt a második argumentum dönti el) ráereszti a harmadik argumentumban megadott függvényt:

```
apply( birthwt, 2, mean )

low age lwt race smoke ptl
3.121693e-01 2.323810e+01 1.298148e+02 1.846561e+00 3.915344e-01 1.957672e-01
    ht ui ftv bwt
6.349206e-02 1.481481e-01 7.936508e-01 2.944587e+03

apply( birthwt, 1, function( x ) x[ 1 ] )
```

```
88
                   89
                       91
                            92
                                 93
                                     94
                                          95
                                              96
                                                   97
                                                       98
                                                            99 100 101 102 103 104 105
  0
      0
                    0
                             0
                                           0
                                                    0
                                                                           0
           0
               0
                         0
                                  0
                                      0
                                                0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                                0
106 107 108 109 111 112 113 114 115 116 117 118 119 120 121 123 124 125 126 127
                    0
                         0
                             0
                                  0
                                      0
                                           0
                                                0
                                                    0
                                                         0
                                                                  0
                                                                       0
                                                                           0
                                                                                0
                                                             0
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
                    0
                         0
                             0
                                  0
                                      0
                                           0
                                                0
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                           0
148 149 150 151 154 155 156 159 160 161 162 163 164 166 167 168 169 170 172 173
           0
                    0
                             0
                                  0
                                      0
                                           0
                                                    0
                                                         0
                                                                           0
                                                                                0
174 175 176 177 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 195
                             0
                                           0
                                                0
                                                    0
                                                                       0
                                                                           0
           0
               0
                    0
                         0
                                  0
                                      0
                                                         0
                                                             0
                                                                  0
                                                                                0
196 197 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  0
               0
                    0
                         0
                             0
                                  0
                                      0
                                           0
                                                0
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                           0
                                                                                0
                                                                                    0
                                                                                         0
      0
           0
217 218 219 220 221 222 223 224 225 226
                                                                 15
                                                                          17
                                                                                        20
                                                4
                                                   10
                                                       11
                                                            13
                                                                     16
                                                                              18
                                                                                   19
  0
      0
                    0
                         0
                             0
                                      0
                                           0
                                                1
                                                    1
               0
                                  0
                                                         1
                                                             1
                                                                  1
                                                                      1
                                                                                1
                                                                                         1
                                     30
 22
     23
          24
              25
                   26
                       27
                            28
                                 29
                                          31
                                              32
                                                   33
                                                       34
                                                            35
                                                                 36
                                                                     37
                                                                          40
                                                                              42
                                                                                   43
                                                                                        44
  1
                             1
                                  1
                                           1
                                                1
                                                    1
                                                         1
                                                             1
                                                                  1
                                                                      1
                                                                           1
                                                                                1
                                                                                         1
      1
           1
               1
                    1
                         1
                                      1
                                                                                    1
 45
     46
          47
              49
                   50
                       51
                            52
                                54
                                     56
                                          57
                                              59
                                                   60
                                                       61
                                                            62
                                                                 63
                                                                     65
                                                                          67
                                                                              68
                                                                                   69
                                                                                        71
  1
      1
           1
                    1
                        1
                             1
                                  1
                                      1
                                           1
                                                1
                                                    1
                                                         1
                                                             1
                                                                  1
                                                                       1
                                                                           1
                                                                                1
                                                                                    1
                                                                                         1
               1
 75
    76
              78
                   79
                       81
                            82
                                83
                                     84
          77
  1
      1
           1
               1
                    1
                         1
                             1
                                  1
                                      1
```

A tapply az első argumentumban megadott változó második argumentum szerint képezett csoportjaira ráereszti a harmadik argumentumban megadott függvényt:

```
mean( birthwt$bwt[ birthwt$race==1 ] )
```

[1] 3102.719

```
tapply( birthwt$bwt, birthwt$race, mean )
```

1 2 3 3102.719 2719.692 2805.284

5 Data table: egy továbbfejlesztett adatkeret

Amint volt már róla szó korábban, az adatkeret (data frame) az alapvető struktúra a feldolgozandó adatok, adatbázisok tárolására és kezelésére az R-ben. Noha ennek a célnak megfelel, számos téren kiegészíthető, továbbfejleszthető. Az évek alatt két nagy lehetőség kristályosodott ki és ment át széleskörű használatba, mely ilyen továbbfejlesztést jelent: a dplyr csomag és a data.table csomag. Jelen fejezet a data.table működését és jellemzőit fogja bemutatni, különös tekintettel a hagyományos data frame-mel való összevetésre.

A data.table csomag első verziója 2008-ban jelent meg, eredeti megalkotója Matt Dowle. Nagyon erőteljes, gyors, erősen optimalizált, némi gyakorlás után logikus, kompakt, konzisztens, könnyen lekódolható és jól olvasható szintaktikájú, jól támogatott¹ csomag. A data.tablenek semmilyen függősége nincs az R-en kívül (ott is törekednek a nagyon régi változatok támogatására is), így kifejezetten problémamentesen beépíthető R kódokba, csomagokba.

Központi weboldala: https://rdatatable.gitlab.io/data.table/. Github-oldala: https://github.com/Rdatatable/data.table. CRAN-oldala: https://cran.r-project.org/web/packages/data.table/index.html.

A data.table mint csomag egy azonos nevű új adatstruktúrát definiál; ez lényegében egy "továbbfejlesztett data frame". Ez az új adatstruktúra, a data table egyrészt olyan lehetőségeket biztosít, amik valamilyen módon megvalósíthatóak lennének szokásos data frame-mel is, de csak lassabban/nehézkesebben/több hibalehetőséggel, másrészt elérhetővé tesz olyan funkciókat is, amik data frame-mel egyáltalán nem megoldhatóak.

A következőkben át fogjuk tekinteni ezek legfontosabb példait.

A gyakorlati szemléltetésekhez töltsük be a könyvtárat (a data.table nem jön az alap R installációval, így ha korábban nem tettük meg, elsőként telepíteni kell):

library(data.table)

Ebben a fejezetben a magyar Nemzeti Rákregiszter adatait² fogjuk példa adatbázisnak használni.

Elsőként töltsük be a következő fájlt, ami eleve data.table formátumban tartalmazza az adatokat:

¹https://github.com/Rdatatable/data.table?tab=readme-ov-file#community

 $^{^2}$ https://github.com/tamas-ferenci/RakregiszterVizualizator

```
if(!file.exists("RawDataLongWPop.rds"))
  download.file(paste0(
    "https://github.com/tamas-ferenci/RakregiszterVizualizator/",
    "raw/refs/heads/master/RawDataLongWPop.rds"),
    "RawDataLongWPop.rds")
RawData <- readRDS("RawDataLongWPop.rds")
```

Néhány esetben össze fogjuk vetni a data.frame-et a data.table-lel, ehhez "minősítsük vissza" az adatbázist data frame-mé, és ezt mentsük el egy új változóba:

```
RawDataDF <- data.frame(RawData)
```

Érdemes ránézni egy data table felépítésére:

```
str(RawData)
```

```
Classes 'data.table' and 'data.frame': 1313280 obs. of 7 variables:
                   "Baranya megye" "Baranya megye" "Baranya megye" "Baranya megye" ...
$ County
            : chr
$ Sex
                   "Férfi" "Férfi" "Férfi" ...
            : chr
$ Age
            : num 0000000000...
                   2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 ...
$ Year
            : num
$ ICDCode
                   "C00" "C01" "C02" "C03" ...
            : chr
$ N
            : int
                   0 0 0 0 0 0 0 0 0 0 ...
$ Population: num 9876 9876 9876 9876 9876 ...
- attr(*, ".internal.selfref")=<externalptr>
- attr(*, "sorted") = chr [1:4] "County" "Sex" "Age" "Year"
```

Ami feltűnhet, hogy az objektumnak egyaránt van data.table és data.frame osztálya, egyebekben azonban a fenti információk megfelelnek egy data frame által mutatott felépítésnek. A két osztály jelenléte egyfajta visszafele kompatibilitást³ jelent: egy data table olyan számítógépen is betölthető, ahol nincs data.table csomag, és működni fog (természetesen csak mint hagyományos data frame). Ezen túl az is igaz ennek következtében, hogy olyan függvénynek, ami data.frame-et vár mindig átadható data.table is.

³Arra azért vigyázni kell, hogy van példa arra, hogy pontosan ugyanaz a hívás mást ad vissza a data frame-nél és data table-nél. Egyébként ez a válasz arra a gyakran felmerülő kérdésre, hogy ha olyan jó a data.table, akkor miért nem győzik meg egyszerűen a fejlesztői az R fejlesztőit, hogy építsék be a tulajdonságait az R-es alap data frame-be is. Egyébként volt példa ilyenre is, de az előbbi ok miatt ez nem lehet általános, hiszen ez azt jelentené, hogy meglevő kódok működése is megváltozna, ami végeláthatlan sok R kód működését ronthatná el. Ilyen módosítást ma már nem igen lehet megtenni a data.frame-mel.

Visszatérve a tábla felépítésére, a fentiek alapján már elmondható, hogy a tábla mit tartalmaz: az új rákos esetek előfordulását Magyarországon évenként (2000-től 2018-ig), megyénként, nemenként, életkoronként (ez 5 éves felbontású, tehát a 40 igazából azt jelenti, hogy "40-45 év"), és a rák típusa szerint. Ez utóbbi ún. BNO-kóddal⁴ van megadva: a Betegségek Nemzetközi Osztályozása (BNO, angol rövidítéssel ICD) egy nemzetközileg egységes rendszer, mely minden betegséghez egy kódot rendel. A kód első karaktere egy betű, ez a főcsoport; a rákos betegségek a C főcsoportban, illetve a D elején vannak, a második és harmadik karakter egy szám, ami konkrét betegséget vagy betegségcsoport azonosít; például C00 az ajak rosszindulatú daganata, C01 a nyelvgyök rosszindulatú daganata és így tovább⁵. Az esetek számát az N nevű változó tartalmazza, a háttérpopuláció lélekszámát⁶, tehát, hogy hány fő volt adott évben, adott megyében, adott nemben, adott életkorban – pedig a Population. (Ez tehát azonos lesz azokra a sorokra, amelyek csak a rák típusában térnek el, hiszen ezekre a háttérpopuláció lélekszáma természetesen ugyanaz.)

5.1. Sebesség és nagyméretű adatbázisok kezelése

Ez a probléma a legtöbb szokásos elemzési feladatnál nem jelentkezik, itt sem fogunk rá részletes példát nézni, de röviden érdemes arról megemlékezni, hogy a hagyományos adatkeret (data frame) adatstuktúra nem szerencsés, ha nagyméretű adatbázisokat kell kezelnünk.

Az első probléma kapásból az adatok beolvasásánál fog jelentkezni: a read.csv (és társai) egész egyszerűen lassúak. Pár százezer sorig ennek semmilyen érzékelhető hatása nincsen, mert még így is elég gyors a beolvasás, így a legtöbb feladatnál ez a probléma nem jelentkezik, de millió soros, több millió soros adatbázisoknál, ha a tábla mérete több gigabájt vagy több tíz gigabájt, akkor a beolvasás a méret növekedtével gyorsan lassul, míg végül teljesen reménytelenné válik. A data.table definiálja az fread függvényt mely ezzel szemben villámgyors, és még ilyen méretű adatok beolvasásánál is elfogadható sebességet produkál. (Az fread-nek ezen kívül van pár további előnye is az R beépített beolvasó függvényeihez képest, olyan, amik kis méretű adatbázisoknál is érdekesek lehetnek, például nagyon okosan detektálja az oszlopelválasztókat és az oszloptípusokat.) Hasonló a helyzet kiírásnál: a write.csv és társai nagyon nagy adatbázisoknál elfogadhatatlanul lassúak lesznek, de a data.table könyvtár fwrite függvénye ilyenkor is jól működik.

A második probléma, hogy még ha valahogy be is olvastuk az adatbázist a memóriába, akkor is bajban leszünk az adattranszformációkkal: a data frame nincs túl jól optimalizálva ilyen szempontból, egy sor művelet nagyon lassú. Ismét csak: ennek kis, közepes és a legtöbb terület mércéje szerinti nagy adatbázisoknál nincs jelentősége, mert még így is gyors, de a nagyon nagy

⁴https://icd.who.int/browse10/2019/en

⁵A kód folytatható, ami finomabb felbontást ad, például a C00.0 a felső ajak külső felszínének daganata, a C00.1 az alsó ajak külső felszínének daganata stb., de a táblázatunk a háromjegyű besorolást tartalmazza.

⁶Ez ún. évközepi lélekszám, tehát az év alatti – folyamatosan változó – lélekszámok átlaga. Ezért lehet az értéke törtszám is.

adatbázisoknál bajban leszünk data frame-et használva. A data table ezzel szemben nagyon jól optimalizált, képest többmagú processzoroknál bizonyos műveletek párhuzamos végrehajtására is, így az adattranszformációs műveleteknél⁷ (aggregáció, táblaegyesítések, de akár új változó létrehozása) sokkal jobb sebességet tud produkálni.

A fentieket többféle benchmark vizsgálat⁸ is megerősíti.

5.2. Jobb kiíratás

A data frame kiíratásánál (tehát ha egyszerűen beírjuk, hogy RawDataDF, ami ekvivalens a print(RawDataDF) függvény meghívásával) az alapbeállítás az, hogy kiírja a konzolra az első jó sok sorát az adatbázisnak⁹. Ez nem túl praktikus: az 587. sor ismerete jellemzően nem sokat ad hozzá az első 586-hoz, cserében hosszasan kell görgetnünk a rengeteg sor miatt, hogy elérjünk a kiíratás tetejére, aminek viszont volna jelentősége, mert ott látjuk az oszlopok neveit. (Nem véletlenül gyakori, hogy sokan eleve a head(RawDataDF) típusú kéréssel íratják ki a data frame-eket!)

A data table alapértelmezett kiíratása okosabb, mert csak az első néhány és az utolsó néhány sort 10 írja ki:

RawData

Key:	<county,< th=""><th>Sex,</th><th>Age,</th><th>Year></th></county,<>	Sex,	Age,	Year>

	County	Sex	Age	Year	ICDCode	N	Population
	<char></char>	<char></char>	<num $>$	<num $>$	<char></char>	<int></int>	<num></num>
1:	Baranya megye	Férfi	0	2000	C00	0	9876.0
2:	Baranya megye	Férfi	0	2000	C01	0	9876.0
3:	Baranya megye	Férfi	0	2000	C02	0	9876.0
4:	Baranya megye	Férfi	0	2000	C03	0	9876.0
5:	Baranya megye	Férfi	0	2000	C04	0	9876.0
1313276:	Zala megye	Nő	85	2018	D06	0	4483.5
1313277:	Zala megye	Nő	85	2018	D07	0	4483.5

⁷Ezek egy részénél nem kell külön függvényt hívni, csak "maga a data table" gyorsabb lesz mint a data frame. Más részénél szükség van egy külön függvényre, például a táblaegyesítésnél a merge-re. De ez is gyorsabb lesz, aminek a hátterében az van, hogy a data.table-nek van saját, ugyanilyen nevű függvénye (data.table::merge), és ez fog a data frame-hez tartozó alapváltozat, tehát a base::merge helyett futni.

⁸https://duckdblabs.github.io/db-benchmark/

⁹Egész pontosan annyit, amennyi a max.print opció értéke; ez a getOption("max.print") paranccsal kérdezhető le. Az alapbeállítása tipikusan 1000.

¹⁰A precizitás kedvéért: ezt csak akkor teszi, ha a sorok száma nagyobb mint a datatable.print.nrows opció értéke, ami alapbeállítás szerint 100. De ez is logikus: kis adatbázisnál érdemes az egészet kiíratni, hiszen úgy is áttekinthető, nagyoknál lesz fontos csak az első néhány és az utolsó néhány sor kiíratása.

1313278:	Zala megye	Nő	85	2018	D09	0	4483.5
1313279:	Zala megye	Nő	85	2018	D30	0	4483.5
1313280:	Zala megye	Nő	85	2018	D33	0	4483.5

Természetesen láthatóak az oszlopfejlécek (változónevek) is, sőt, itt van még egy további apró fejlesztés: a data table kiírja az egyes oszlopok adattípusát is, standard rövidítéssel.

5.3. Kényelmesebb sorindexelés (sor-szűrés és -rendezés)

Data frame indexeléséhez szögletes zárójelet kell írnunk a változó neve után, abba vesszőt tennünk, majd a vessző elé kerül az sor indexelése. Ezt tipikusan szűréshez használjuk. Például, ha ki akarjuk választani csak a 2010-es év adatait:

```
head(RawDataDF[RawDataDF$Year == 2010,])
```

	(County	Sex	Age	Year	${\tt ICDCode}$	N	${\tt Population}$
961 Ba	ranya	megye	Férfi	0	2010	C00	0	9430
962 Ba	ranya	megye	Férfi	0	2010	C01	0	9430
963 Ba	ranya	megye	Férfi	0	2010	C02	0	9430
964 Ba	ranya	megye	Férfi	0	2010	C03	0	9430
965 Ba	ranya	megye	Férfi	0	2010	C04	0	9430
966 Ba	ranya	megye	Férfi	0	2010	C05	0	9430

Ez lényegében a "logikai vektorral indexelés" esete: a RawDataDF\$Year == 2010 egy adatbázissal sorainak számával azonos hosszúságú logikai vektor lesz.

Ha ki akarjuk választani 2010 évben a 40 évnél idősebbek adatait, akkor a logikai ÉS operátort (&) kell használnunk; ez egyúttal azt is szemlélteti, hogy a feltételek természetesen nem csak egyenlőségek lehetnek:

```
head(RawDataDF[RawDataDF$Year == 2010 & RawDataDF$Age >= 40,])
```

	(County	Sex	Age	Year	ICDCode	N	Population
15553	Baranya	megye	Férfi	40	2010	C00	0	13076
15554	Baranya	megye	Férfi	40	2010	C01	0	13076
15555	Baranya	megye	Férfi	40	2010	C02	0	13076
15556	Baranya	megye	Férfi	40	2010	C03	0	13076
15557	Baranya	megye	Férfi	40	2010	C04	0	13076
15558	Baranya	megye	Férfi	40	2010	C05	0	13076

A dolog hasonlóan folytatódik, ha további feltételek vannak. Például 2010 évben a 40 évnél idősebb budapesti vagy Pest megyei férfiak körében előforduló vastagbélrákos (BNO-kód: C18) esetek kiválasztása:

```
N Population
        County
                 Sex Age Year ICDCode
146899 Budapest Férfi
                      40 2010
                                   C18
                                         3
                                              57445.5
148723 Budapest Férfi 45 2010
                                   C18 10
                                              42410.0
150547 Budapest Férfi 50 2010
                                   C18
                                        17
                                              45329.0
152371 Budapest Férfi 55 2010
                                   C18
                                        44
                                              55633.5
154195 Budapest Férfi 60 2010
                                   C18
                                        59
                                              45170.0
156019 Budapest Férfi 65 2010
                                   C18 120
                                              39588.0
```

A dolog tökéletesen működik, ámde nem túl kényelmes: folyton be kell írni a RawDataDF\$t a feltételek közé. A kód hosszú, lassabb megírni, és az olvashatóság is romlik. Fontos hangsúlyozni, hogy ez nem hagyható el, és teljesen igaza is van az R-nek, hogy nem hagyható el: Year nevű változó nem létezik, tehát teljes joggal ad hibát, ha előle – vagy bármelyik másik elől – elhagyjuk a data frame nevét.

Mégis: a gyakorlatban az esetek 99,99%-ában, ha egy változó nevére hivatkozunk miközben egy adatkeret sorindexelését végezzük, akkor azt természetesen úgy értjük, hogy annak az adatkeretnek az adott nevű oszlopa (és nem egy külső változó). Éppen emiatt a data table megengedi ezt a szintaktikát: ha pusztán egy változó nevére hivatkozunk, akkor ő megnézi, hogy nincs-e olyan nevű oszlopa az indexelt adattáblának, és ha van, akkor úgy veszi, hogy arra szerettünk volna hivatkozni. Éppen ezért az alábbi kód data.frame-mel nem, de data.table-lel működik:

```
Key: <County, Sex, Age, Year>
        County
                  Sex
                        Age Year ICDCode
                                              N Population
        <char> <char> <num> <num>
                                   <char> <int>
                                                     <num>
     Budapest Férfi
                         40 2010
                                      C18
                                                   57445.5
 1:
                                              3
 2:
      Budapest Férfi
                         45 2010
                                      C18
                                                   42410.0
                                             10
 3:
      Budapest Férfi
                         50 2010
                                      C18
                                             17
                                                   45329.0
```

```
4:
      Budapest
                           55
                               2010
                                         C18
                                                44
                                                       55633.5
                 Férfi
                               2010
 5:
      Budapest
                 Férfi
                           60
                                         C18
                                                59
                                                       45170.0
6:
      Budapest
                 Férfi
                           65
                               2010
                                         C18
                                                       39588.0
                                               120
7:
      Budapest
                 Férfi
                           70
                               2010
                                         C18
                                                80
                                                       27335.5
      Budapest
8:
                Férfi
                           75
                               2010
                                         C18
                                                75
                                                       22253.5
9:
      Budapest
                               2010
                                                72
                                                       15775.5
                Férfi
                           80
                                         C18
10:
      Budapest
                Férfi
                           85
                               2010
                                         C18
                                                35
                                                       10922.0
11: Pest megye
                Férfi
                           40
                               2010
                                         C18
                                                 8
                                                       48086.0
12: Pest megye Férfi
                           45
                               2010
                                                 6
                                         C18
                                                       36113.5
13: Pest megye
               Férfi
                           50
                               2010
                                         C18
                                                14
                                                       37167.0
14: Pest megye
                           55
                               2010
                                         C18
                                                32
                                                       41154.0
                Férfi
15: Pest megye
                               2010
                Férfi
                           60
                                         C18
                                                43
                                                       32527.0
16: Pest megye
                           65
                               2010
                                         C18
                                                56
                                                       26071.0
                Férfi
17: Pest megye
                 Férfi
                           70
                               2010
                                         C18
                                                62
                                                       16926.5
18: Pest megye
                 Férfi
                           75
                               2010
                                         C18
                                                45
                                                       11964.5
19: Pest megye
                           80
                               2010
                                         C18
                                                23
                                                        7015.0
                Férfi
20: Pest megye
                 Férfi
                           85
                               2010
                                         C18
                                                11
                                                        4250.5
        County
                               Year ICDCode
                                                 N Population
                   Sex
                          Age
```

A kapott kód világosabb, gyorsabban beírható és jobban olvasható!

A data table azt is megengedi, hogy a vesszőt elhagyjuk (a data frame nem, ott hibát adna ha nem írnánk vesszőt!):

```
Key: <County, Sex, Age, Year>
        County
                                                  N Population
                   Sex
                          Age
                               Year ICDCode
        <char> <char> <num>
                              <num>
                                      <char> <int>
                                                          <num>
 1:
      Budapest
                 Férfi
                               2010
                                         C18
                                                  3
                                                       57445.5
                           40
 2:
      Budapest
                 Férfi
                           45
                               2010
                                         C18
                                                 10
                                                       42410.0
 3:
      Budapest
                 Férfi
                           50
                               2010
                                         C18
                                                 17
                                                       45329.0
 4:
      Budapest
                 Férfi
                           55
                               2010
                                         C18
                                                 44
                                                       55633.5
      Budapest
 5:
                 Férfi
                           60
                               2010
                                         C18
                                                 59
                                                       45170.0
 6:
      Budapest
                 Férfi
                           65
                               2010
                                         C18
                                                120
                                                       39588.0
 7:
      Budapest Férfi
                           70
                               2010
                                         C18
                                                 80
                                                       27335.5
      Budapest
 8:
                 Férfi
                           75
                               2010
                                         C18
                                                 75
                                                       22253.5
 9:
      Budapest
                 Férfi
                           80
                               2010
                                         C18
                                                 72
                                                       15775.5
      Budapest
                               2010
10:
                 Férfi
                           85
                                         C18
                                                 35
                                                       10922.0
                               2010
                                                  8
                                                       48086.0
11: Pest megye
                 Férfi
                           40
                                         C18
```

12:	Pest megye	Férfi	45	2010	C18	6	36113.5
13:	Pest megye	Férfi	50	2010	C18	14	37167.0
14:	Pest megye	Férfi	55	2010	C18	32	41154.0
15:	Pest megye	Férfi	60	2010	C18	43	32527.0
16:	Pest megye	Férfi	65	2010	C18	56	26071.0
17:	Pest megye	Férfi	70	2010	C18	62	16926.5
18:	Pest megye	Férfi	75	2010	C18	45	11964.5
19:	Pest megye	Férfi	80	2010	C18	23	7015.0
20:	Pest megye	Férfi	85	2010	C18	11	4250.5
	County	Sex	Age	Year	${\tt ICDCode}$	N	Population

Fontos azonban, hogy ez csak ebben az esetben, tehát sorindexelésnél használható: ha nincs vessző, akkor automatikusan úgy veszi, hogy amit beírtunk, az sorindex (e megállapodás nélkül nem tudhatná, hogy mit akartunk indexelni).

A tény, hogy nem kell hivatkozni az adatkeret nevére, nem csak szűrésnél igaz, hanem rendezésnél is. Ezt ugyanis az order függvény valósítja meg, ami elérhető volt a data frame-hez is, csak ott ilyen módon kellett használnunk:

head(RawDataDF[order(RawDataDF\$N),])

	County		Sex	Age	Year	ICDCode	N	Population
1	Baranya	megye	Férfi	0	2000	C00	0	9876
2	Baranya	megye	Férfi	0	2000	C01	0	9876
3	Baranya	megye	Férfi	0	2000	C02	0	9876
4	Baranya	megye	Férfi	0	2000	C03	0	9876
5	Baranya	megye	Férfi	0	2000	C04	0	9876
6	Baranya	megye	Férfi	0	2000	C05	0	9876
	•							

 ${\bf A}$ data table azonban itt is megengedi 11 a fenti – nagyon logikus – egyszerűsítést:

RawData[order(N),]

County Sex Age Year ICDCode N Population <a hr

¹¹Egyébként ez utóbbi esetben nem ugyanaz az order fut le: a data.table definiál egy saját order-t, tehát az előbbi esetben a base::order, az utóbbinál a data.table::order fut. A data.table csomag order-je egyébként is okosabb, például sokkal kényelmesebb ha több változó szerint és változó irányban kell rendeznünk: egyszerűen fel kell sorolnunk az order-en belül a változókat, és amelyik szerint csökkenő sorrendben akarunk rendezni, ott ki kell tennünk a változó neve elé egy – jelet.

2:	Baranya megye	Férfi	0	2000	C01	0	9876.0
3:	Baranya megye	Férfi	0	2000	C02	0	9876.0
4:	Baranya megye	Férfi	0	2000	C03	0	9876.0
5:	Baranya megye	Férfi	0	2000	C04	0	9876.0
1313276:	Budapest	Nő	60	2008	C50	307	64674.0
1313277:	Budapest	Nő	55	2000	C50	308	67218.5
1313278:	Budapest	Nő	55	2002	C50	308	69118.0
1313279:	Budapest	Nő	70	2018	C44	331	56508.0
1313280:	Budapest	Nő	55	2003	C50	350	69396.5

Természetesen a "szűrés" és "rendezés" csak felhasználói szempontból két külön művelet. Az R számára a kettő ugyanaz: sorindexelés, csak annyi eltéréssel, hogy az előbbi esetben logikai vektort kap, az utóbbiban pedig számvektort (hiszen az order egyszerűen megadja sorban minden elemre, hogy az adott elem hányadik a nagyság szerinti sorrendben).

5.4. Kibővített oszlopindexelés: oszlop-kiválasztás és oszlop-létrehozás műveletekkel

Hagyományos data frame esetén a vessző után jön az oszlopindexelés, ami egy dolgot jelenthet: oszlopok kiválasztását. Tehát, dönthetünk, hogy mely oszlopokat kérjük (és melyeket nem), de más lehetőségünk nincs. Oszlopok kiválasztását célszerű mindig névvel és nem számmal végeznünk (hogy a kód az adatbázis esetleges későbbi módosításaira robusztusabb legyen, ne romoljon el új oszlop beszúrásától vagy törlésétől, valamint, hogy önállóan is jobban olvasható legyen a kód). Ekkor lényegében egy sztring-vektort kell átadnunk. A példa kedvéért itt – az előzőekkel szemben – a 40-45 éves budapesti férfiak vastagbélrákos eseteire szorítsuk meg magunkat, viszont tartsuk meg az összes évet. Ez esetben logikus csak az évet – és persze az N-et és a Population-t – kiíratni, hiszen a többi konstans:

```
Year N Population
145939 2000 8 51602.0
146035 2001 4 47836.0
146131 2002 4 45296.5
146227 2003 4 43632.5
```

```
146323 2004 4 43085.0
146419 2005 5 43442.5
```

Ez a szintaktika a data.table-lel is működik¹²:

	Year	N	Population
	<num></num>	<int></int>	<num></num>
1:	2000	8	51602.0
2:	2001	4	47836.0
3:	2002	4	45296.5
4:	2003	4	43632.5
5:	2004	4	43085.0
6:	2005	5	43442.5
7:	2006	5	44511.5
8:	2007	6	46903.5
9:	2008	4	50505.5
10:	2009	6	54015.0
11:	2010	3	57445.5
12:	2011	8	60721.0
13:	2012	7	62471.5
14:	2013	5	63746.5
15:	2014	8	66250.5
16:	2015	13	70511.5
17:	2016	11	74622.0
18:	2017	6	77902.0
19:	2018	10	80555.0

A data.table-nek van azonban egy saját, külön szintaktikája erre, és célszerű is azt megszokni és használni mindig, mert a későbbi funkciókat az teszi elérhetővé:

¹² Valójában van egy különbség, ami akkor jelentkezik, ha a kiválasztandó oszlopok neveit eltároljuk egy változóban, és az indexelésnél ezt a változót szeretnénk felhasználni ahelyett, hogy kézzel beírjuk a neveket. Legyen például colsel <- c("Year", "N", "Population"). Ekkor a data frame-nél mindegy, hogy a RawDataDF[, c("Year", "N", "Population")] vagy a RawDataDF[, colsel] formát használjuk, az eredmény ugyanaz lesz. Ami logikus is, hiszen látszólag ugyanazt írtuk be kétszer. Nagyon meglepő módon azonban a data table-nél nem mindegy: a RawData[, c("Year", "N", "Population")] működni fog, de a RawData[, colsel] nem! Ennek az az oka, hogy RawData[, colsel] összeakad egy szintaktikával, amit később fogunk látni, és amelyben ez azt jelentené, hogy "válaszd ki a colsel nevű oszlopot és add vissza vektorként". Ami természetesen nem fog sikerülni, hiszen ilyen nevű oszlop nincs. Van azonban megoldás: ha erre volna szükségünk akkor vagy a RawData[, ..colsel] vagy a RawData[, colsel, with = FALSE] alakot kell használnunk.</p>

	Year	N	Population
	<num></num>	<int></int>	<num></num>
1:	2000	8	51602.0
2:	2001	4	47836.0
3:	2002	4	45296.5
4:	2003	4	43632.5
5:	2004	4	43085.0
6:	2005	5	43442.5
7:	2006	5	44511.5
8:	2007	6	46903.5
9:	2008	4	50505.5
10:	2009	6	54015.0
11:	2010	3	57445.5
12:	2011	8	60721.0
13:	2012	7	62471.5
14:	2013	5	63746.5
15:	2014	8	66250.5
16:	2015	13	70511.5
17:	2016	11	74622.0
18:	2017	6	77902.0
19:	2018	10	80555.0

Megjegyzendő, hogy a . egyszerűen egy rövidítés, amit a data.table csomag bevezet arra, hogy list, magyarán itt az történik, hogy egy listát kell átadnunk¹³, benne az – idézőjelek nélküli – oszlopnevekkel. A listás megoldás előnye, hogy valójában nem kötelező explicite kiírni, hogy . majd felsorolni a változóneveket zárójelben, bármilyen függvényt is használhatunk a vessző után ami listát ad eredményül. Később látunk majd erre példát.

Az is érthető a listás megoldás fényében, hogy data table-lel átnevezhetünk változót úgymond "menet közben" (data frame-mel már ezt sem lehetett!):

¹³Ez elsőre meglepő lehet, de valójában teljesen logikus: ha visszaemlékszünk, akkor már a data.frame-nél is láttuk, hogy az igazából az oszlopokból, mint vektorokból alkotott lista. Innen nézve teljesen érthető, hogy az oszlopokat egy lista elemeiként kell felsorolni!

	Year	${\tt Esetszam}$	Lelekszam
	<num $>$	<int></int>	<num></num>
1:	2000	8	51602.0
2:	2001	4	47836.0
3:	2002	4	45296.5
4:	2003	4	43632.5
5:	2004	4	43085.0
6:	2005	5	43442.5
7:	2006	5	44511.5
8:	2007	6	46903.5
9:	2008	4	50505.5
10:	2009	6	54015.0
11:	2010	3	57445.5
12:	2011	8	60721.0
13:	2012	7	62471.5
14:	2013	5	63746.5
15:	2014	8	66250.5
16:	2015	13	70511.5
17:	2016	11	74622.0
18:	2017	6	77902.0
19:	2018	10	80555.0

Ez már utat mutat a következő, igazi újdonsághoz.

Előtte még említsük meg, hogy a data table egyik jellegzetessége, hogy a RawData[, .(Year)] típusú hívások mindig data table-t adnak vissza¹⁴. Ha egyetlen változót választunk ki, de azt vektorként szeretnénk visszakapni (ez a kérdés nyilván csak egyetlen változó kiválasztásakor merül fel), akkor használjuk a RawData\$Year vagy a RawData[["Year"]] formát¹⁵.

Ez eddig nem nagy változás, még csak azt sem igazán lehet mondani, hogy az előzőhöz hasonló kényelmi továbbfejlesztés, hiszen ez a szintaktika nem sokkal tér el a korábbitól. Az igazán érdekes rész azonban most jön, a data.table ugyanis lehetővé tesz valamit, ami a data.framenél fel sem merült: nem csak passzívan kiválaszthatunk oszlopokat, hanem műveleteket is végezhetünk velük, így új oszlopokat hozva létre! Lényegében "on the fly", azaz menet közben végezhetünk műveleteket és hozhatunk létre új oszlopokat, anélkül, hogy azokat fizikailag le kellene tárolnunk az adatbázisba. A data table vessző utáni pozíciójában tehát

¹⁴Ez nem nyilvánvaló: a RawDataDF[, "Year"] egy vektor lesz! Természetesen a RawDataDF[, c("Year", "County")] megint csak data frame; vagyis lényegében az történik, hogy a data frame automatikusan egyszerűsít: ha lehet – azaz egyetlen változót (oszlopot) választottunk ki – akkor egyszerűsíti vektorrá, ha nem, mert többet, akkor marad a data frame. Ez kényelmes is lehet, de közben mégis csak egy inkonzisztencia, hogy ugyanolyan típusú hívások eredménye teljesen eltérő adatstruktúra is lehet. Ezzel szemben a data.table-nél a RawData[, .(...)] típusú hívások mindig data table-t adnak vissza.

¹⁵Elvileg a RawData[, Year] is használható, de ezt talán jobb kerülni, ritkán fordul elő.

Például a rákos megbetegedéseknél fontos az incidencia, tehát a lélekszámhoz viszonyított előfordulás. (Értelemszerűen nem mindegy, hogy 10 vagy 10 ezer ember közül került ki 1 rákos adott évben.) Ezt tipikusan 100 ezer lakosra vonatkoztatva szokták megadni. Nézzük meg a következő data table-t használó megoldást:

Inc	Population	N	Year	
<num></num>	<num></num>	<int></int>	<num></num>	
15.503275	51602.0	8	2000	1:
8.361903	47836.0	4	2001	2:
8.830704	45296.5	4	2002	3:
9.167478	43632.5	4	2003	4:
9.283974	43085.0	4	2004	5:
11.509467	43442.5	5	2005	6:
11.233052	44511.5	5	2006	7:
12.792222	46903.5	6	2007	8:
7.919930	50505.5	4	2008	9:
11.108026	54015.0	6	2009	10:
5.222341	57445.5	3	2010	11:
13.175014	60721.0	8	2011	12:
11.205110	62471.5	7	2012	13:
7.843568	63746.5	5	2013	14:
12.075381	66250.5	8	2014	15:
18.436709	70511.5	13	2015	16:
14.740961	74622.0	11	2016	17:
7.701985	77902.0	6	2017	18:
12.413879	80555.0	10	2018	19:

Azaz az Inc oszlopot létrehoztuk a nélkül, hogy előzetesen azt le kellett volna tárolnunk magába az adatbázisba! Menet közben számoltuk ki, és még nevet is adtunk neki. Az oszlopok tehát itt, a vessző utáni pozícióban úgy viselkednek egy data table-nél mintha szokásos változók lennének!

Ebből is adódik, hogy a lehetőségeink még ennél is bővebbek: nem csak egyszerű aritmetikai műveleteket végezhetünk egy oszloppal (vagy épp több oszloppal! – mint arra ez előbbi kód is példát mutat), hanem *bármilyen* R függvényt rájuk ereszthetünk! Tekintsünk példának a következő kódot, mely megadja, hogy a 40-45 éves budapesti férfiak körében összesen hány vastagbélrákos eset volt az adatbázis által lefedett 19 év alatt:

```
N <int>
1: 121
```

Az N oszlop egy vektor, tehát azon túl, hogy oszthatjuk – elemenként – egy másik vektorral, mint ahogy az előbbi esetben tettük, nyugodtan összegezhetjük is példának okáért. Ebből mellesleg az is látszik, hogy még az sem jelent problémát, ha a művelet által visszaadott eredménynek a hossza is eltér a bemenő változóétól! Hiszen a sum(N) 1 hosszú, míg a Year 19. (Az azonban fontos, hogy itt már a Year nem szerepel a kiválasztott oszlopok között: megtarthattuk volna a Year-t is, de mivel az 19 hosszú, így a mellette lévő oszlopban ugyanaz az összeg 19-szer meg lett volna ismételve.)

A fenti példákban egyszerre szűrtünk sorokat és számoltunk oszlopokat. (Ez természetesen nem kötelező, lehet csak az egyiket csinálni a másik nélkül.) Egyetlen példa a data.table optimalizálására: ilyenkor nem azt csinálja, hogy leszűri az egész adatbázist, és aztán végzi az oszlopműveleteket, hanem először megnézi, hogy mely oszlopokra van egyáltalán szükség – például csak a Year-re, N-re és Population-re – és ilyenkor csak azokat szűri le, így kerülve el, hogy olyan oszlopok szűrését is el kelljen végeznie, amik később nem is jelennek meg az eredményben. Ez azért lehetséges, mert a data.table "egyben látja" az egész feladatot, és így tud ilyen optimalizálásokat tenni.

Visszatérve, a dolog még jobban kombinálható: legyen a példa kedvéért a feladatunk az, hogy számoljuk ki az egész 19 éves periódusra az incidenciát. (Egy pillanatra érdemes itt megállni, és végiggondolni, hogy mi egyáltalán az ehhez szükséges művelet!) Íme a megvalósítás data.table használatával:

```
Inc
<num>
1: 11.1515
```

Amint láthatjuk, tetszőleges komplexitású műveletet, számítást elvégezhetünk a vessző után! És ezt szó szerint kell érteni: bármilyen R függvényt használhatunk az oszlopindexelés pozíciójában, a vessző után, bármilyen műveletet vagy számítást végezhetünk (tehát még csak

olyan megkötés sincs, hogy csak bizonyos függvényeket, műveleteket tesz csak elérhetővé a data.table). Íme egy példa; lognormális eloszlást illesztünk az esetszámok különböző években mért értékeiből kapott eloszlásra:

V1 <num> 1: 1.772807

Szépen látszik itt is, hogy nyugodtan használhatjuk az N-et csak így, minden további nélkül – ugyanúgy viselkedik, mint egy szokásos változó, ugyanúgy használhatjuk egy számítás során.

Ráadásul, ha visszaemlékszünk, akkor szerepelt, hogy a vessző utáni pozícióban egy listának kell szerepelnie – de ezt előállíthatja egy függvény is! Például a fitdistrplus::fitdist eredményének estimate nevű komponense egy vektor. De ha ez as.list-tel átalakítjuk, akkor egy listát kapunk, így közvetlenül átadható a vessző utáni pozícióban (természetesen ilyenkor. nem kell, hiszen az as.list eleve egy listát ad vissza!):

```
meanlog sdlog
<num> <num>
1: 1.772807 0.3902478
```

Ez tehát már messze-messze nem csak egyszerűen oszlopkiválasztás, amire itt módunk van, ha data.table-t használunk.

Egyetlen megjegyzés a végére: mi van akkor, ha kíváncsiak vagyunk arra, hogy hány sor van egy adattáblában (esetleg szűkítés után)? A RawData[Age == 40 & County == "Budapest" & Sex == "Férfi" & ICDCode == "C18", length(N)] kézenfekvő megoldás, de nem túl elegáns (miért pont az N hosszát néztük meg? bármi más is ugyanezt az eredményt adná!). Erre a célra a data.table bevezet egy speciális szimbólumot, a .N-et, ami egyszerűen visszaadja¹⁶ a sorok számát:

¹⁶Észrevehető, hogy az eredmény egy szám lesz, nem egy data table. Ennek az oka, hogy a .N – hiába van a nevében egy . – nem egy lista. Ha data frame-et szeretnénk visszakapni, akkor a korábbiakkal összhangban azt kell írnunk, hogy .(.N).

[1] 19

5.5. Csoportosítás (aggregáció)

A data.table második, rendkívül erőteljes bővítése a hagyományos data frame funkcionalitásához képest a csoportosítás (aggregáció) lehetősége. A data.table bevezet egy harmadik pozíciót a szögletes zárójelen belül: megtehetjük, hogy két vesszőt teszünk ki a szögletes zárójelen belül, ez esetben az első vessző előtt van a sorindexelés (ahogy eddig is), az első és a második vessző között az oszlopkiválasztás és -számítás (ahogy eddig is), viszont a második vessző után megadhatunk egy listát egy vagy több változóból. (A . ugyanúgy használható a list helyett. Megadhatunk sztring-vektort is, benne a változók neveivel; ez különösen jól jön akkor, ha gépi úton állítjuk elő, hogy mik ezek a változók.) Mi fog ilyenkor történni? A data.table elsőként végrehajtja a sorok szűrését, ha kértünk ilyet, ezután pedig az új, harmadik pozícióban megadott változó vagy változók szerint csoportokat képez. Mit jelent az, hogy "csoport"? Azok a sorai a táblának, amelyekben a csoportosító változó egy adott értéket vesz fel: ahány lehetséges értéke van a csoportosító változónak a táblában, annyi csoport képződik, úgy, hogy csoporton belül a csoportosító változó homogén lesz. Ezt követően a data.table végrehajtja a megadott oszlopkiválasztásokat és/vagy oszlopműveleteket csoportonként különkülön, végül pedig a kapott eredményeket újra összerakja egy táblába, úgy, hogy mindegyik csoport eredménye mellé beteszi oszlopként azt, hogy ott mi volt a csoportosító változó értéke. Az egyes csoportok abban a sorrendben fognak szerepelni az eredményben, ahogy egymás után jöttek a kiinduló táblában.

A jobb megértés kedvéért nézzünk egy gyakorlati példát! Kíváncsiak vagyunk az egész időintervallumra vonatkozó incidenciára, de az összes rák-típus esetén külön-külön megadva. Mit tudunk tenni? Fent láttuk a kódot, mely egy adott típusra ezt kiszámolja. Az remélhetőleg senkinek nem jut az eszébe, hogy kézzel lefuttassa először C00-val, aztán C01-gyel, aztán C02-vel... Működőképesebb megoldás ennek valamilyen R paranccsal történő automatizálása. Rosszabb esetben a for jut az eszünkbe, jobb esetben az apply család valamely tagja. (A for-ciklus rosszabb eset, mert az R-ben a legtöbb esetben illendő kerülni, és jelen esetben tényleg meg is oldható a probléma megfelelő apply használatával, így ez is a célszerű választás.) Ha azonban a data.table-t használjuk, akkor még csak erre sincs szükség!

Nézzük ugyanis meg a következő hívást:

	ICDCode	Inc
	<char></char>	<num></num>
1:	C00	0.36864474
2:	C01	2.21186843
3:	C02	2.58051316
4:	C03	1.01377303
5:	C04	2.48835198
6:	C05	0.73728948
7:	C06	0.55296711
8:	C07	0.92161184
9:	C08	0.73728948
10:	C09	1.65890132
11:	C10	3.13348027
12:	C11	1.19809540
13:	C12	0.46080592
14:	C13	4.42373685
15:	C14	0.82945066
16:	C15	4.14725330
17:	C16	6.72776646
18:	C17	1.75106250
19:	C18	11.15150331
20:	C19	2.58051316
21:	C20	7.09641120
22:	C21	0.55296711
23:	C22	3.87076974
24:	C23	1.01377303
25:	C24	1.47457895
26:	C25	7.37289475
27:	C26	0.46080592
28:	C30	0.64512829
29:	C31	1.10593421
30:	C32	7.46505593
31:	C33	0.09216118
32:	C34	30.78183558
33:	C37	0.46080592
34:	C38	1.10593421
35:	C39	0.36864474
36:	C40	1.01377303
37:	C41	2.94915790
38:	C43	17.41846385
39:	C44	43.13143429
40:	C45	0.64512829
41:	C46	0.46080592

```
42:
         C47
              0.0000000
43:
         C48
              2.39619079
44:
         C49 10.78285857
45:
         C50
              2.76483553
46:
         C51
              0.00000000
47:
         C52
              0.00000000
48:
         C53
              0.00000000
49:
         C54
              0.0000000
50:
         C55
              0.00000000
51:
         C56
              0.0000000
52:
         C57
              0.0000000
53:
         C58
              0.0000000
54:
         C60
              0.92161184
55:
         C61
              2.94915790
         C62 22.11868425
56:
57:
         C63
              0.64512829
58:
         C64 12.25743752
59:
         C65
              0.27648355
              0.0000000
60:
         C66
61:
         C67
              8.38666778
              0.18432237
62:
         C68
63:
         C69
              1.10593421
64:
         C70
              0.55296711
65:
         C71
              8.75531252
66:
         C72
              1.10593421
67:
         C73
              5.06886514
         C74
68:
              0.73728948
69:
         C75
              0.27648355
70:
         C76
              2.67267435
71:
         C80
              2.39619079
72:
         C81
              3.40996382
73:
         C82
              2.58051316
74:
         C83
              3.96293093
75:
         C84
              0.92161184
76:
         C85
              4.42373685
77:
         C88
              0.0000000
78:
         C90
              2.21186843
79:
         C91
              3.31780264
80:
         C92
              4.51589803
81:
         C93
              0.0000000
82:
         C94
              0.18432237
83:
         C95
              0.09216118
84:
         C96
              1.56674013
```

```
85:
        C97
              0.0000000
86:
        D00
              0.46080592
87:
        D01
              0.18432237
88:
        D02
              0.09216118
89:
        D03
              4.60805922
90:
        D04
              1.75106250
91:
        D05
              0.0000000
92:
        D06
              0.0000000
93:
        D07
              0.36864474
94:
        D09
              0.27648355
95:
        D30
              1.38241777
96:
        D33
              6.26696054
    ICDCode
                      Inc
```

Mi történt itt? Először is, a sor-szűrések közül kivettük a konkrét rák-típust – ez értelemszerű, hiszen az összes ráktípusra vonatkozó adatot szeretnénk kapni, épp ez volt a feladat, tehát ebben nyilván nem szűrhetjük le előzetesen az adatbázist. Másodszor, bekerült a harmadik pozíciója, csoportosító változóként a rák típusa. Mit jelent ez? Azt, hogy a szűrés után a data.table a leszűrt adatbázisból rák-típus szerint csoportokat képez, tehát szétszedi az adatbázist kis táblákra úgy, hogy mindegyikben egy adott rák-típus adatai legyenek, mindegyikre elvégzi a második pozícióban, az oszlopindexelésnél megadott műveleteket (jelen esetben: kiszámítja az incidenciákat), majd ezeket az eredményeket, ami itt most egyetlen sor lesz, újra összerakja egy nagy táblába, jelezve, hogy az adott eredmény melyik kódhoz tartozik.

Nagyon szájbarágós, de talán egyszer érdemes a dolgot megnézni lépésről-lépésre. A data.table elsőként leszűri a táblát a sorindex szerint:

```
RawData[Age == 40 & County == "Budapest" & Sex == "Férfi"]
```

```
Key: <County, Sex, Age, Year>
        County
                   Sex
                                Year ICDCode
                                                   N Population
                          Age
         <char> <char> <num>
                              <num>
                                      <char> <int>
                                                          <num>
   1: Budapest
                 Férfi
                           40
                                2000
                                          C00
                                                   1
                                                          51602
   2: Budapest
                                2000
                                          C01
                                                   6
                                                          51602
                 Férfi
                           40
   3: Budapest
                                2000
                                                   2
                 Férfi
                           40
                                          C02
                                                          51602
   4: Budapest
                 Férfi
                           40
                                2000
                                          C03
                                                   1
                                                          51602
   5: Budapest
                                2000
                                                   2
                 Férfi
                           40
                                          C04
                                                          51602
1820: Budapest
                 Férfi
                           40
                                2018
                                          D06
                                                   0
                                                          80555
1821: Budapest
                                2018
                 Férfi
                           40
                                          D07
                                                   0
                                                          80555
1822: Budapest
                           40
                                2018
                                          D09
                                                   2
                                                          80555
                 Férfi
1823: Budapest
                           40
                                2018
                                          D30
                                                   0
                                                          80555
                 Férfi
1824: Budapest
                 Férfi
                           40
                                2018
                                          D33
                                                   4
                                                          80555
```

Ezt követően megnézi, hogy a csoportosító változó milyen értékeket vesz fel:

```
[1] "C00" "C01" "C02" "C03" "C04" "C05" "C06" "C07" "C08" "C09" "C10" "C11" [13] "C12" "C13" "C14" "C15" "C16" "C17" "C18" "C19" "C20" "C21" "C22" "C23" [25] "C24" "C25" "C26" "C30" "C31" "C32" "C33" "C34" "C37" "C38" "C38" "C39" "C40" [37] "C41" "C43" "C44" "C45" "C46" "C47" "C48" "C49" "C50" "C51" "C52" "C53" [49] "C54" "C55" "C56" "C57" "C58" "C60" "C61" "C62" "C63" "C64" "C65" "C66" [61] "C67" "C68" "C69" "C70" "C71" "C72" "C73" "C74" "C75" "C76" "C80" "C81" [73] "C82" "C83" "C84" "C85" "C88" "C90" "C91" "C92" "C93" "C94" "C95" "C96" [85] "C97" "D00" "D01" "D02" "D03" "D04" "D05" "D06" "D07" "D09" "D30" "D33"
```

Majd ezek mindegyikére leszűkíti a (szűrt) táblát, lényegében kis táblákat készítve. Így néz ki a C00-hoz tartozó:

```
Key: <County, Sex, Age, Year>
                     Age Year ICDCode
                                           N Population
     County
               Sex
     <char> <char> <num> <num>
                                <char> <int>
                                                  <num>
                      40 2000
 1: Budapest Férfi
                                   C00
                                                51602.0
2: Budapest Férfi
                      40 2001
                                   C00
                                                47836.0
                      40 2002
                                                45296.5
                                   C00
3: Budapest Férfi
                                           0
                      40 2003
                                                43632.5
4: Budapest Férfi
                                   C00
                                                43085.0
                      40 2004
                                   C00
5: Budapest Férfi
                                           0
6: Budapest Férfi
                      40 2005
                                   C00
                                                43442.5
7: Budapest Férfi
                      40 2006
                                   C00
                                                44511.5
                                           0
8: Budapest Férfi
                      40 2007
                                   C00
                                           0
                                                46903.5
                      40 2008
9: Budapest Férfi
                                   C00
                                           0
                                                50505.5
10: Budapest Férfi
                      40 2009
                                   C00
                                           0
                                                54015.0
11: Budapest Férfi
                      40 2010
                                   C00
                                                57445.5
                                           0
                                                60721.0
12: Budapest Férfi
                      40 2011
                                   C00
                                           1
                      40 2012
                                   C00
                                                62471.5
13: Budapest Férfi
14: Budapest Férfi
                      40 2013
                                   C00
                                                63746.5
15: Budapest Férfi
                      40 2014
                                   C00
                                                66250.5
                                           0
                      40 2015
                                   C00
                                                70511.5
16: Budapest Férfi
                                           0
                      40 2016
                                   C00
                                           0
                                                74622.0
17: Budapest Férfi
                      40 2017
                                                77902.0
18: Budapest Férfi
                                   C00
                                           0
19: Budapest Férfi
                      40 2018
                                   C00
                                           0
                                                80555.0
```

Így a C01-hez:

```
Key: <County, Sex, Age, Year>
     County
               Sex
                     Age Year ICDCode
                                           N Population
     <char> <char> <num> <num>
                                <char> <int>
                                                  <num>
 1: Budapest Férfi
                      40 2000
                                   C01
                                                51602.0
                                           6
 2: Budapest Férfi
                      40 2001
                                   C01
                                                47836.0
                                           1
 3: Budapest Férfi
                      40 2002
                                   C01
                                                45296.5
4: Budapest Férfi
                      40 2003
                                   C01
                                           3
                                                43632.5
 5: Budapest Férfi
                      40 2004
                                   C01
                                           2
                                                43085.0
                      40 2005
6: Budapest
             Férfi
                                   C01
                                           0
                                                43442.5
7: Budapest
                      40 2006
                                   C01
                                           3
                                               44511.5
             Férfi
                      40 2007
                                   C01
                                           2
8: Budapest
             Férfi
                                                46903.5
9: Budapest Férfi
                      40 2008
                                   C01
                                           0
                                                50505.5
                      40 2009
                                   C01
                                           2
10: Budapest Férfi
                                                54015.0
11: Budapest Férfi
                      40 2010
                                   C01
                                           0
                                                57445.5
12: Budapest Férfi
                      40 2011
                                   C01
                                           3
                                                60721.0
13: Budapest Férfi
                      40 2012
                                   C01
                                           1
                                                62471.5
14: Budapest Férfi
                      40 2013
                                   C01
                                                63746.5
                                           1
                      40 2014
                                   C01
15: Budapest Férfi
                                           0
                                                66250.5
16: Budapest Férfi
                      40 2015
                                   C01
                                           0
                                              70511.5
17: Budapest Férfi
                      40 2016
                                   C01
                                               74622.0
                                           0
18: Budapest Férfi
                      40 2017
                                   C01
                                           0
                                                77902.0
19: Budapest
             Férfi
                      40 2018
                                   C01
                                                80555.0
```

És így tovább.

Ezt követően minden kis táblára elvégzi az oszlopindexelésnél kijelölt műveletet. Így fog kinézni az eredmény a COO-s kis táblára:

Inc <num> 1: 0.3686447 Így a C01-es kis táblára:

```
Inc
<num>
1: 2.211868
```

Majd ezeket a kis táblákat egymás alá rendezi, abban a sorrendben, ahogy az eredeti táblában előfordultak a csoportosító változó értékei, és úgy, hogy mindegyikhez melléírja, hogy az adottnál mi volt a csoportosító változó értéke, tehát jelen esetben, hogy melyik ráktípushoz tartozik.

Így kaptuk a fent látható táblát (menjünk vissza és ellenőrizzük)...!

Nézzünk meg – most már nagyon részletes levezetés nélkül – még egy példát csoportosításra. Kíváncsiak vagyunk egy adott ráktípus korspecifikus incidenciájára, tehát, hogy mennyi az incidencia adott életkorban. Ha mindezt rögzített évre, nemre és megyére kérdezzük, akkor célt érhetünk így:

```
Age
                  Inc
    <num>
                <num>
1:
        0
             0.00000
 2:
        5
             0.000000
3:
       10
             0.000000
 4:
             0.000000
       15
5:
       20
             1.960054
6:
       25
             3.072716
7:
             2.321088
       30
8:
       35
           11.088472
9:
       40
             5.222341
10:
       45
           23.579344
11:
       50
           37.503585
           79.089038
12:
       55
13:
       60 130.617667
14:
       65 303.122158
```

```
15: 70 292.659728
16: 75 337.025636
17: 80 456.403917
18: 85 320.454129
```

A dolog azonban nagyon nem szerencsés: kizárólag azért fog működni, mert a leszűkítés után egy adott életkorhoz már csak egyetlen sor tartozik. De ha ez nem így lenne, például kitörlünk valamit a feltételek közül, akkor teljesen rossz eredményt fog adni, hiszen ilyenkor ugyanaz az életkor többször fog megjelenni az eredményben, míg nekünk össze kellene adnunk az adott életkorhoz tartozó különböző megfigyeléseket.

A megoldás a csoportosítás az életkor szerint, és az összeadás adott életkoron belül:

	Age	Inc
	<num></num>	<num></num>
1:	0	0.000000
2:	5	0.000000
3:	10	0.000000
4:	15	0.000000
5:	20	1.960054
6:	25	3.072716
7:	30	2.321088
8:	35	11.088472
9:	40	5.222341
10:	45	23.579344
11:	50	37.503585
12:	55	79.089038
13:	60	130.617667
14:	65	303.122158
15:	70	292.659728
16:	75	337.025636
17:	80	456.403917
18:	85	320.454129

Ez immár működik másféle szűréssel is, például ha Budapest helyett az egész országra vagyunk kíváncsiak:

```
Age
                  Inc
    <num>
                <num>
        0
            0.4013437
1:
2:
        5
            0.0000000
3:
            0.3909763
       10
4:
       15
            0.3278087
5:
       20
            1.2121488
6:
       25
            2.2652654
7:
       30
            3.2732344
8:
       35
           7.1454000
9:
       40 11.2810011
10:
       45
           21.7613797
          46.2794518
11:
       50
12:
       55 94.8719665
13:
       60 130.8683356
       65 246.5976935
14:
15:
      70 293.1432072
16:
      75 367.2073711
17:
      80 347.1158754
18:
       85 323.4103513
```

Érdemes végiggondolni (ez általában is hasznos): ilyenkor az életkor szerinti kis táblákban 20 sor lesz – az egyes megyékkel – és ezek fölött fogunk összegezni.

Megjegyzendő, hogy a csoportosító változónak nevet is adhatunk:

```
Eletkor
                    Inc
     <num>
                  <num>
1:
         0
              0.4013437
2:
         5
              0.000000
3:
              0.3909763
        10
4:
        15
              0.3278087
5:
        20
              1.2121488
6:
        25
              2.2652654
```

```
7:
         30
               3.2732344
8:
         35
               7.1454000
9:
              11.2810011
         40
              21.7613797
10:
         45
11:
         50
              46.2794518
12:
              94.8719665
13:
         60 130.8683356
14:
         65 246.5976935
15:
         70 293.1432072
16:
         75 367.2073711
17:
         80 347.1158754
18:
         85 323.4103513
```

Ami azonban sokkal izgalmasabb, hogy műveletet is végezhetünk! Itt is igaz, hogy nem kell a változót külön letárolni, hanem menet közben kiszámolhatjuk, majd építhetünk is rá rögtön (jelen esetben egy csoportosítást). Például, ha ki akarjuk számolni az incidenciát külön a 70 év alattiak és felettiek körében:

```
Idos Inc
<lgcl> <num>
1: FALSE 43.83737
2: TRUE 352.54419
```

5.6. Indexelések láncolása egymás után

A data.table következő újítása, hogy megengedi egy már indexelt tábla (RawData[...]) újabb indexelését. Tehát használhatjuk a RawData[...][...] alakot, ahol a második indexelés pontosan ugyanúgy fog viselkedni, mint az első (ugyanúgy használhatunk sorindexelést, szűrést és rendezést, oszlopkiválasztást és -transzformációt, csoportosítást), de úgy, hogy az az első, már indexelt táblára vonatkozik! Lényegében mintha elmentettük volna a RawData[...]-t egy változóba, és utána azt a változót indexelnénk szokásos módon – csak itt nem kell semmit külön elmenteni. Az, hogy a második indexelés már az első indexelésben átalakított táblára vonatkozik, egy kritikusan fontos előny, amint az rögtön világossá is fog válni.

Ha pontosak akarunk lenni, akkor ezt az egymás utáni többszöri indexelést igazából a hagyományos data frame is megengedi, tehát például a RawDataDF[101:200,][5:15,] egy teljesen szabályos hívás (és természetesen egyenértékű lesz azzal, hogy RawDataDF[105:115,]). A

probléma az, hogy a használhatósága nagyon korlátozott, mert a második indexben, ha változóra hivatkozunk, az az eredeti adatkeret változója tud csak lenni, nem az első indexelésben már áttranszformálté! (Értelemszerűen, hiszen az nincs is elmentve, nincs is semmilyen külön neve, ahogy hivatkozhatnánk rá.) Ha csak a legegyszerűbb transzformációt, a sorok szűrését vesszük: a RawDataDF[RawDataDF\$Sex == "Férfi",][RawDataDF\$Year == 2010,] nem fog működni, ez onnan is kapásból látszik, hogy a RawDataDF\$Year == 2010 ugyanolyan hosszú, mint a a RawDataDF, viszont a RawDataDF[RawDataDF\$Sex == "Férfi",] már rövidebb, tehát ez így biztosan nem lehet jó, mert az adattáblát hosszabb vektorral próbáljuk indexelni, mint ahány sora van. Data frame használatával erre a problémára nincs megoldás, hiszen a RawDataDF [RawDataDF\$Sex == "Férfi",] táblázat Year változójára nem tudunk sehogy sem hivatkozni a második indexelésben, hiszen az nincs elmentve, nincs is külön neve, amivel hivatkozhatnánk.

A data table esetében azonban, kihasználva, hogy a változóra hivatkozhatunk csak a nevével, a táblázat neve nélkül, erre nagyon egyszerű a megoldás: annyi a feladat, hogy a második indexben szereplő Year alatt a data.table azt értse, hogy az első indexelés után kapott táblázat Year nevű változója (ne azt, hogy az eredetié). És így is van megírva a data.table, ezért szerepelt korábban az a megfogalmazás, hogy a második index az első indexeléssel már transzformált táblára vonatkozik. Így aztán a következő hívás tökéletesen működik data table-

1447.5

1447.5

RawData[Sex == "Férfi"][Year == 2010]

Zala megye

Zala megye

34559:

34560:

				<u>r</u> >	ge, Year	Sex, Ag	<county,< th=""><th>Key:</th></county,<>	Key:
Population	N	${\tt ICDCode}$	Year	Age	Sex	County		
<num></num>	<int></int>	<char></char>	<num></num>	<num></num>	<char></char>	<char></char>		
9430 0	0	COO	2010	0	Fárfi	a megwe	l · Barany	

Δ.	Daranya megye	ICIII	U	2010	000	0	3100.0
2:	Baranya megye	Férfi	0	2010	C01	0	9430.0
3:	Baranya megye	Férfi	0	2010	C02	0	9430.0
4:	Baranya megye	Férfi	0	2010	C03	0	9430.0
5:	Baranya megye	Férfi	0	2010	C04	0	9430.0
34556:	Zala megye	Férfi	85	2010	D06	0	1447.5
34557:	Zala megye	Férfi	85	2010	D07	0	1447.5
34558:	Zala megve	Férfi	85	2010	D09	0	1447.5

85

85

Férfi

Férfi

Ez még nem a legátütőbb példa – bár sokszor az ilyenek is nagyon jól jönnek – hiszen használhattunk volna egyszerűen & jelet és egyetlen indexelést. A dolog igazi erejét az adja, hogy – ismét csak abból fakadóan, hogy a második index már az elsőnek indexelt táblát látja, neki nem is számít, hogy az nem egy lementett tábla, hanem egy már átalakított – módunk van menet közben létrehozott változókra is hivatkozni! Például miután kiszámoltuk rák-típusonként

2010

2010

D30

D33

0

4

az incidenciát, szeretnénk a táblázatot az incidenciák szerint növekvő sorba rakni. Íme a megoldás:

```
ICDCode
                     Inc
     <char>
                   <num>
1:
        C47
             0.00000000
2:
        C51
             0.00000000
 3:
        C52
              0.00000000
4:
        C53
             0.00000000
5:
        C54
             0.00000000
6:
        C55
              0.0000000
7:
        C56
              0.0000000
8:
        C57
              0.00000000
9:
        C58
             0.00000000
10:
        C66
              0.0000000
11:
        C88
             0.00000000
12:
        C93
             0.00000000
13:
        C97
             0.00000000
14:
        D05
             0.00000000
        D06
15:
             0.00000000
16:
        C33
              0.09216118
17:
        C95
              0.09216118
18:
        D02
             0.09216118
19:
        C68
             0.18432237
20:
        C94
             0.18432237
21:
        D01
             0.18432237
22:
        C65
              0.27648355
23:
        C75
              0.27648355
24:
        D09
              0.27648355
25:
        C00
              0.36864474
26:
        C39
             0.36864474
27:
        D07
              0.36864474
28:
        C12
             0.46080592
29:
        C26
             0.46080592
30:
        C37
              0.46080592
31:
        C46
              0.46080592
32:
        D00
              0.46080592
33:
        C06
             0.55296711
```

```
34:
        C21 0.55296711
35:
        C70
              0.55296711
36:
        C30
              0.64512829
37:
        C45
              0.64512829
        C63
38:
              0.64512829
39:
        C05
              0.73728948
40:
        C08
              0.73728948
41:
        C74
              0.73728948
42:
        C14
              0.82945066
43:
        C07
              0.92161184
44:
        C60
              0.92161184
45:
        C84
              0.92161184
46:
        C03
              1.01377303
              1.01377303
47:
        C23
48:
        C40
              1.01377303
49:
        C31
              1.10593421
50:
        C38
              1.10593421
51:
        C69
              1.10593421
52:
        C72
              1.10593421
53:
        C11
              1.19809540
54:
        D30
              1.38241777
55:
        C24
              1.47457895
56:
        C96
              1.56674013
57:
        C09
              1.65890132
58:
        C17
              1.75106250
59:
        D04
              1.75106250
60:
        C01
              2.21186843
        C90
61:
              2.21186843
62:
        C48
              2.39619079
63:
        C80
              2.39619079
64:
        C04
              2.48835198
              2.58051316
65:
        C02
66:
        C19
              2.58051316
67:
        C82
              2.58051316
68:
        C76
              2.67267435
69:
        C50
              2.76483553
70:
        C41
              2.94915790
71:
        C61
              2.94915790
72:
        C10
              3.13348027
73:
        C91
              3.31780264
74:
        C81
              3.40996382
75:
        C22
              3.87076974
76:
        C83
              3.96293093
```

```
77:
             4.14725330
        C15
78:
        C13
              4.42373685
79:
        C85
              4.42373685
80:
        C92
              4.51589803
81:
        D03
              4.60805922
82:
        C73
              5.06886514
83:
        D33
              6.26696054
84:
        C16
              6.72776646
85:
        C20
             7.09641120
86:
        C25
             7.37289475
87:
        C32
              7.46505593
88:
        C67
              8.38666778
89:
        C71
              8.75531252
90:
        C49 10.78285857
91:
        C18 11.15150331
92:
        C64 12.25743752
93:
        C43 17.41846385
94:
        C62 22.11868425
95:
        C34 30.78183558
96:
        C44 43.13143429
    ICDCode
                     Inc
```

Hiába nem is létezik Inc nevű változó az eredeti adattáblában, ez a hívás mégis tökéletesen fog működni! Megint csak: azért, mert a második index már az első indexeléssel átalakított táblát kapja meg, és azt látja, pontosan ugyanúgy, mintha az egy lementett tábla lenne.

5.7. Referencia szemantika

A data.table bevezet egy új megközelítést arra, hogy új változót definiáljunk egy táblában – ám hamar ki fog derülni, hogy itt jóval többről van szó, mint egyszerűen egy alternatív jelölésről.

Például számoljuk ki, és ezúttal a táblázatban is tároljuk el az incidenciákat¹⁷:

RawData\$Inc <- RawData\$N / RawData\$Population * 1e5</pre>

¹⁷Az összes fenti esetben ezt el tudtuk kerülni, és jobb is elkerülni: gondoljunk arra, hogy ha csoportosítást is csinálunk, akkor ezekkel az előre kiszámolt rétegenkénti incidenciákkal nem megyünk semmire. (Általában is igaz, hogy a kiszámítható dolgok közül csak azokat érdemes fizikailag letárolni az adatbázisban, amik kiszámítása sok időt venne igénybe.) Tehát ez most szigorúan csak illusztratív példa új változó létrehozására.

A data.table által bevezett új megoldás esetén az értékadás jele a :=, de ami talán még fontosabb, hogy ezt, elsőre elég meglepő módon, úgy kell megadni, mintha indexelnénk, tehát szögleges zárójelek között! A második pozícióba, az oszlopindex helyébe kell kerüljön:

```
RawData[, Inc2 := N / Population * 1e5]
```

A kettő valóban ugyanazt eredményezi:

```
identical(RawData$Inc, RawData$Inc2)
```

[1] TRUE

Ebben van egy újdonság: az összes eddigi példában új táblát hoztunk létre (még ha csak ki is írattuk, és nem mentettük el változóba), ez az első eset, ahol meglevő táblát módosítunk. Ez nagyon fontos: mint láthatjuk is, nem kell az eredményt belementenünk egy változóba, azért nem, mert az utasítás lefuttatásakor maga az eredeti tábla módosult! Ezt szokták az informatikában referencia szerinti módosításnak hívni. (És igen, ezt az indexelés szintaktikájával éri el a data.table, még ha elég meglepő is első látásra.)

Kiíratás ilyenkor ugyanúgy nincs, mint általában az értékadásos utasításoknál R-ben. Ha szeretnénk az értékadás után rögtön ki is íratni a táblát akkor egy [] jelet kell tennünk a parancs után, pl. RawData[, Inc2 := N / Population * 1e5][].

Használhatjuk ezt a megoldást meglevő változó felülírására, nem csak új létrehozására. Például, ha meggondoljuk magunkat, és az incidenciát per millió fő mértékegységben szeretnénk megadni:

```
RawData[, Inc2 := Inc2 * 10]
```

Egyszerre több változót is definiálhatunk (lehet vegyesen új definiálása és régi felülírása, ennek nincs jelentősége), ennek módszere:

Mivel az értékadás bal oldalán sztring-vektor áll, így könnyen előállítható gépi úton is. A jobb oldalon pedig lista szerepel, így itt is igaz, hogy nem muszáj kézzel felsorolni, bármilyen olyan függvény szerepelhet ott, ami listát ad vissza.

Változó törölhető is ilyen módon:

¹⁸Ez problémát jelenthet akkor, ha egy függvényen belül csinálunk ilyet, hiszen ez azt fogja maga után vonni, hogy a bemenetként átadott adattábla át fog alakulni. Ez esetben a copy függvény segíthet: ezzel készíthetünk első lépésben egy másolatot a tábláról, és ha utána azon dolgozunk, akkor az eredeti, bemenetként megkapott tábla nem fog átalakulni.

```
RawData[, Inc2 := NULL]
```

Ha több változót törölnénk:

```
RawData[, c("logPop", "sqrtPop") := NULL]
```

Mi értelme van mindennek? Az első válasz az, hogy bizonyos esetekben gyorsabb¹⁹. A második, hogy mindez kombinálható a data.table többi elemével, tehát a sorindexeléssel és a csoportosítással.

Például szeretnénk a "Budapest" kifejezést lecserélni arra, hogy "Főváros" a megye változóban. Ezt megoldhatjuk így:

```
RawData[County == "Budapest", County := "Főváros"]
```

Tehát: ha az értékadást szűréssel kombináljuk, akkor a nem kiválasztott soroknál nem változik az érték. (Ha pedig nem meglevő változót módosítunk, hanem újat hozunk létre, akkor a nem kiválasztott soroknál NA kerül az új változóba.)

Ezt könnyen megoldhattuk volna másképp is, de nézzük egy izgalmasabb példát. Szeretnénk minden nemre, életkorra, megyére és ráktípusra eltárolni, hogy az adott nemből, életkorból, megyéből és ráktípusból mi volt a legkisebb feljegyzett incidencia (a különböző évek közül, tehát). Ezt data.table nélkül csak macerásabban tudnánk megtenni, de a data.table használatával nagyon egyszerű (és nagyon logikus) a megoldás:

```
RawData[, MinInc := min(Inc), .(County, Sex, Age, ICDCode)]
```

A csoportosító változót kell használnunk, ami teljesen logikus is: képezi a csoportokat nem, életkor, megye és ráktípus szerint (tehát az egyes csoportokban a különböz évek fognak szerepelni), veszi azok körében az Inc minimumát, és azt menti el MinInc néven – az adott csoport különböző soraihoz mindig ugyanazt az értéket. Íme:

```
RawData[ICDCode == "C18" & Age == 70 & County == "Főváros"]
```

¹⁹Az R a 3.1.0-s verzió előtt minden ilyen változó-értékadási műveletnél deep copy-t csinált az adatbázisról, ami azt jelenti, hogy nem csak a memóriamutatókat frissítette (ez lenne a shallow copy), hanem az egész adatbázist fizikailag átmásolta egy másik memóriaterületre. Ez nagyon gazdaságtalan, pláne, mert értelmetlen is, hiszen egy új változó definiálásától a meglevő tartalom maradhatna ugyanott. Ezt a 3.1.0-s verzióban orvosolták, de az továbbra is megmaradt, hogy nem az egész oszlop kap értéket, csak egy része, akkor deep copy készül. Ezzel szemben a data.table minden esetben és minden verzióban shallow copy-t csinál értékadásnál.

	County	Sex	Age	Year	ICDCode	N	Population	Inc	MinInc
	<char></char>	<char></char>	<num></num>	<num></num>	<char></char>	<int></int>	<num></num>	<num></num>	<num></num>
1:	Főváros	Férfi	70	2000	C18	97	30697.5	315.9866	217.0223
2:	Főváros	Férfi	70	2001	C18	111	32326.5	343.3715	217.0223
3:	Főváros	Férfi	70	2002	C18	108	31711.5	340.5705	217.0223
4:	Főváros	Férfi	70	2003	C18	99	30984.0	319.5198	217.0223
5:	Főváros	Férfi	70	2004	C18	100	30205.5	331.0655	217.0223
6:	Főváros	Férfi	70	2005	C18	97	29194.5	332.2544	217.0223
7:	Főváros	Férfi	70	2006	C18	90	28123.5	320.0171	217.0223
8:	Főváros	Férfi	70	2007	C18	96	27422.5	350.0775	217.0223
9:	Főváros	Férfi	70	2008	C18	95	27080.5	350.8059	217.0223
10:	Főváros	Férfi	70	2009	C18	102	26957.0	378.3804	217.0223
11:	Főváros	Férfi	70	2010	C18	80	27335.5	292.6597	217.0223
12:	Főváros	Férfi	70	2011	C18	97	28288.0	342.9016	217.0223
13:	Főváros	Férfi	70	2012	C18	89	30601.5	290.8354	217.0223
14:	Főváros	Férfi	70	2013	C18	118	32451.0	363.6252	217.0223
15:	Főváros	Férfi	70	2014	C18	108	34269.5	315.1490	217.0223
16:	Főváros	Férfi	70	2015	C18	103	35428.0	290.7305	217.0223
17:	Főváros	Férfi	70	2016	C18	107	35831.5	298.6199	217.0223
18:	Főváros	Férfi	70	2017	C18	101	36012.0	280.4621	217.0223
19:	Főváros	Férfi	70	2018	C18	78	35941.0	217.0223	217.0223
20:	Főváros	Nő	70	2000	C18	115	52434.0	219.3233	161.1007
21:	Főváros	Nő	70	2001	C18	99	53138.5	186.3056	161.1007
22:	Főváros	Nő	70	2002	C18	95	51751.0	183.5713	161.1007
23:	Főváros	Nő	70	2003	C18	110	50498.5	217.8283	161.1007
24:	Főváros	Nő	70	2004	C18	92	49073.0	187.4758	161.1007
25:	Főváros	Nő	70	2005	C18	102	47308.5	215.6061	161.1007
26:	Főváros	Nő	70	2006	C18	74	45934.0	161.1007	161.1007
27:	Főváros	Nő	70	2007	C18	95		210.3399	
28:	Főváros	Nő	70	2008	C18	94		210.7883	
29:	Főváros	Nő	70	2009	C18	84		188.5162	
	Főváros	Nő	70	2010	C18	81		178.9719	
31:	Főváros	Nő	70	2011	C18	101	46479.0	217.3024	161.1007
	Főváros	Nő	70	2012	C18	104		216.0725	
	Főváros	Nő	70	2013	C18	134		265.6042	
	Főváros	Nő	70	2014	C18	124	52854.0	234.6085	161.1007
35:	Főváros	Nő	70	2015	C18	94		172.3680	
	Főváros	Nő	70	2016	C18	120		216.9295	
	Főváros	Nő	70	2017	C18	95		169.6838	
38:	Főváros	Nő	70	2018	C18	113		199.9717	
	County	Sex	Age	Year	ICDCode	N	${\tt Population}$	Inc	${\tt MinInc}$