Reihen

Def 4.1: Sei (an) ne/11) eine Folge reeller oder komplexer Zahlen.

Die Reihe $\sum_{k=1}^{\infty} a_k$ ist die Folge $(s_n)_{n \in \mathbb{N}} = (\sum_{k=1}^{n} a_k)_{n \in \mathbb{N}}$. Falls die Folge s_n gegen a konvergiert, so sagt man, die Reihe konvergiert und bezeichnet den Grenzwert a mit $\sum_{k=0}^{\infty} a_k$. Das n-te Folgenglied $\sum_{k=0}^{\infty} a_k$ heißt n-te Partialsumme der Reihe. Die Elemente a_k heißen die Reihenglieder der Reihe.

Bop:
$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 ist die harmonische Reihe. divergent! $\sum_{k=1}^{\infty} \frac{1}{k^2}$ ist konvergent mit Grenzwert $\frac{71^2}{6}$.

· Tier q e R (oder C) définieren viv die geométrische Reihe $\sum_{k=0}^{\infty} q^k$. Sie honvergiert für |q| < 1 mit $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$. $\sum_{k=0}^{\infty} \frac{1}{k!}$ ist monoton wachsend.

Wit suchen nach einer oberen Schroenlie $\frac{1}{k!} = \frac{1}{1 \cdot 2 \cdot \ldots \cdot k} = \frac{1}{2^{k-1}}$ $\frac{1}{k-1}$ Faltoren

Daher gilt für alle Partial summen

$$S_n = \sum_{k=0}^{n} \frac{1}{k!} \leq \sum_{k=0}^{n} \frac{1}{2^{k+1}} \leq \sum_{k=0}^{n} \frac{1}{2^{k+1}} = 2 \cdot \sum_{k=0}^{n} \frac{1}{2^k}$$

Def 4.2: Det Grenzwert $e = \sum_{k=0}^{\infty} \frac{1}{k!}$ heißt eulereche Zahl. $(e \approx 2.71828...)$

Satz 4.3: Wenn & an honvergent ist, dann ist an eine Nullfolge.

Def. 4.4: Line Reihe & an heißt absolut honvergiert, wenn & law honvergiert.

Satz 4.5: Eine absolute bonvergente Reihe ist bonvergent Bern: Satz gilt auch Für Lamplexe Zahlen.

Setz 4.6:

Es seien \tilde{Z} an = a und \tilde{Z} bn = b honvergente Reihen und ce R oder C. Dann gilt

- i) $\sum_{n=0}^{\infty} (a_n \pm b_n) = a \pm b$
- ii) \(\frac{2}{2} \cdot \cdot \alpha_1 = \cdot \alpha \)
- iii) Sei $Z_n = x_n + iy_n$ eine Lemplexe Folge und $Z_n = x_n + iy_n$ eine Lemplexe Folge und $Z_n = x_n + iy_n = x_n = x_n$

iv) Wenn $\tilde{\mathbb{Z}}$ an und $\tilde{\mathbb{Z}}$ by absolut honvergent sind, dann istauch $\tilde{\mathbb{Z}}$ ($\tilde{\mathbb{Z}}$ ah. b_{n-k}) absolut honvergent.

In diesem $\tilde{\mathbb{Z}}$ ($\tilde{\mathbb{Z}}$ ah. $\tilde{\mathbb{Z}}$ ($\tilde{\mathbb{Z}}$ ah. $\tilde{\mathbb{Z}}$ ah. $\tilde{\mathbb{Z}}$) = a. b

Satz 4.7: Majcrantenkriterium

Sei $\sum_{n=0}^{\infty}$ by absolut honvergent and so gilt $|a_n| \leq |b_n|$ für alle $n \in \mathbb{N}$, so ist auch $\sum_{n=0}^{\infty}$ an absolut honvergent and so gilt $\sum_{n=0}^{\infty} |a_n| \leq \sum_{n=0}^{\infty} |b_n|$.

Satz 4.8: Quotientenkriterium

Sei 0 < q < 1 and $\frac{2}{n=0}$ an eine Reihe, so does für hinreichend große n gilt $\left|\frac{a_{n+1}}{a_{n}}\right| \le q$, dann ist $\frac{2}{n}$ an

absclut konvergent.

Wenn für hinreichend große n stets | ante | > 1 gilt, dann ist die Reihe divergent.

Bem: Haufiger Mostz ist hier $\frac{7}{2}$, does $\lim_{n\to\infty} \left| \frac{a_n+1}{a_n} \right| = q<1$

Satz 4.9:

Für alle ZEC ist die Reihe \(\frac{2}{n=0} \frac{z^n}{n!}\) absolut konvergent

Bew.:

Wir rechnen $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{z^{n+1}}{\lfloor n+1\rfloor!}\right| = \left|\frac{z}{n+1}\right| = \frac{|z|}{n+1}$

Und wegen lim 12) = 0 folgt absolute konvergenz

nach Quotientenkriterium.

Dof. 4.10
Die Flot. exp: C-> C, z -> \(\frac{z^n}{n!} \)
heißt Exponential funktion.

Satz 4.11:

Für alle Z, WEC gilt

i)
$$\exp(z+w) = \exp(z) \cdot \exp(w)$$

ii)
$$\exp(\overline{z}) = \overline{\exp(z)}$$

Satz 4.12:

 $t = |z| \le 1 + \frac{\pi}{2}$ gift five den Kest $|r_{n+1}(z)| = \frac{z}{(n+1)!}$