Local Kummer theory for Drinfeld modules

M. Mornev*
(joint with Richard Pink)

EPFL

2nd Joint Meeting of UMI – AMS Palermo 2024

* Supported by Swiss National Science Foundation (SNSF Ambizione project 202119)

The setting

K local field of characteristic p > 0

Algebraic closure K^a , $G_K := \operatorname{Aut}(K^a/K)$, inertia $I_K \subset G_K$

Drinfeld module $\varphi \colon A \to K[\tau]$, $\partial \varphi \colon A \to K$

Assumption: $\partial \varphi(A) \subset \mathcal{O}_K$, i.e. φ has finite residual characteristic

$$\overline{\mathfrak{p}}:=\partial arphi^{-1}(\mathfrak{m}_{\mathcal{K}})$$

Local monodromy of Drinfeld modules $(\mathfrak{p} \neq \overline{\mathfrak{p}})$

Aim: Understand the local monodromy representation

$$I_K \longrightarrow \operatorname{GL}(T_{\mathfrak{p}}(\varphi))$$

$$\varphi$$
 has stable reduction: $\varphi = \psi/M$

$$0 \longrightarrow T_{\mathfrak{p}}(\psi) \longrightarrow T_{\mathfrak{p}}(\varphi) \longrightarrow A_{\mathfrak{p}} \otimes_{A} M \longrightarrow 0$$

The action differs from the identity by

$$I_{\mathcal{K}} \longrightarrow \operatorname{\mathsf{Hom}}_{A} (M, T_{\mathfrak{p}}(\psi))$$

$$J_{\mathcal{K}} := I_{\mathcal{K}}^{\operatorname{ab}} / (I_{\mathcal{K}}^{\operatorname{ab}})^{\times p}$$

The modified Tate module

Need a convenient version of the adelic Tate module:

$$T_{\mathrm{ad}}^{\circ}(\varphi) := \mathrm{Hom}_{A}\Big(F/A, \ (K^{a}/\mathfrak{m}_{K^{a}}, \ \varphi)\Big).$$

This is a module over $A_{ad} := End_A(F/A)$.

Properties:

$$T_{\mathrm{ad}}^{\circ}(\varphi) = \prod_{\mathfrak{p}} T_{\mathfrak{p}}^{\circ}(\varphi), \quad T_{\mathfrak{p}}^{\circ}(\varphi) = T_{\mathfrak{p}}(\varphi), \quad \mathfrak{p} \neq \overline{\mathfrak{p}}$$

$$T_{\overline{\mathfrak{p}}}(\varphi) \longrightarrow T_{\overline{\mathfrak{p}}}^{\circ}(\varphi).$$

The image of inertia

$$arphi = \psi/M$$
, $J_K := I_K^{\mathsf{ab}}/(I_K^{\mathsf{ab}})^{\times p}$, $B_{\mathrm{ad}}^{\circ} := \mathbb{F}_p[[G_k]]$
 $ho \colon J_K \longrightarrow \mathsf{Hom}_A(M, T_{\mathrm{ad}}^{\circ}(\psi))$

Theorem 1 (M. – Pink)

The image $\rho(J_K)$ is a free B_{ad}° -module of rank divisible by $d:=[k/\mathbb{F}_p]$ and is a direct summand of $\mathrm{Hom}(\dots)$ up to finite index.

The image of the ramification filtration

$$\varphi = \psi/M, \quad J_K := I_K^{ab}/(I_K^{ab})^{\times p}, \quad B_{ad}^{\circ} := \mathbb{F}_p[[G_k]], \quad d := [k/\mathbb{F}_p]$$

$$\rho \colon J_K \longrightarrow \operatorname{Hom}_A(M, T_{ad}^{\circ}(\psi))$$

Ramification subgroup J_K^i , $i \in \mathbb{Z}_{\geqslant 0}$.

Theorem 2 (M. – Pink)

There is a *finite* subset $S \subset \mathbb{Z}_{\geq 0} \setminus p\mathbb{Z}_{\geq 0}$ such that:

- ▶ If $i \notin S$ then $\rho(J_K^i)/\rho(J_K^{i+1})$ is finite.
- ▶ If $i \in S$ then $\rho(J_K^i)/\rho(J_K^{i+1})$ is a free B_{ad}° -module of rank d.

The B_{ad}° -module $\rho(J_{K}^{i})$ is free of rank $d \cdot |\{j \in S \mid j \geqslant i\}|$ and is a direct summand of $\mathrm{Hom}(\dots)$ up to finite index.

In particular, $\rho(J_K^i) = 0$ for $i \gg 0$.

The local Kummer pairing

$$arphi = \psi/M$$
, $J_K := I_K^{\mathrm{ab}}/(I_K^{\mathrm{ab}})^{\times p}$, $B_{\mathrm{ad}}^{\circ} := \mathbb{F}_p[[G_k]]$, $d := [k/\mathbb{F}_p]$
 $\rho \colon J_K \longrightarrow \operatorname{\mathsf{Hom}}_A \big(M, \ T_{\mathrm{ad}}^{\circ}(\psi) \big)$

The local Kummer pairing of ψ

$$[\ ,\)_{\psi} \colon K \times J_{K} \longrightarrow T_{\mathrm{ad}}^{\circ}(\psi)$$
$$[\xi, \ g)_{\psi} \colon \ [\frac{b}{a}] \mapsto g(\psi_{b}(\xi_{a})) - \psi_{b}(\xi_{a}), \quad \psi_{a}(\xi_{a}) = \xi$$

$$[\ ,\)_{\psi} \colon \mathcal{P}_{\mathsf{K}} \times J_{\mathsf{K}} \longrightarrow \mathcal{T}_{\mathrm{ad}}^{\circ}(\psi), \quad \mathcal{P}_{\mathsf{K}} := \mathsf{K}/\mathcal{O}_{\mathsf{K}}$$

Perfectness of the Kummer pairing

$$\begin{split} B := \mathbb{F}_p[s], \quad \overline{\omega} \colon B \to k[\tau], \quad \overline{\omega}_s := \tau^d, \quad B^\circ := B[s^{-1}], \quad k \hookrightarrow K \\ \mathcal{P}_K := K/\mathcal{O}_K \\ \left[\; , \; \right)_{\overline{\omega}} \colon \mathcal{P}_K \times J_K \; \longrightarrow \; T_{\mathrm{ad}}^\circ(\overline{\omega}) \end{split}$$

$$R := \operatorname{End}(\overline{\omega}) = k[\tau]$$

Theorem 3 (M. – Pink)

The local Kummer pairing of $\overline{\omega}$ induces an isomorphism

$$J_K \xrightarrow{\sim} \operatorname{\mathsf{Hom}}_R(\mathcal{P}_K, \ T_{\operatorname{ad}}^{\circ}(\overline{\omega}))$$

that identifies J_K^i with the subgroup of homomorphisms vanishing on

$$W_i \mathcal{P}_K := \langle [\xi] \mid \xi \in K \setminus \mathcal{O}_K, \ v(\xi) > -i \rangle$$

 $W_i \mathcal{P}_K$ is a free left *R*-module of finite rank

Comparison with the classical theory

For \mathbb{G}_m , have the local Kummer pairing

$$(\ ,\)_{\mathbb{G}_m}\colon \mathcal{V}_K\times \mathcal{T}_K\ \longrightarrow \mathcal{T}_{\mathrm{ad}}^{\circ}(\mathbb{G}_m)$$

with

$$\mathcal{V}_K:=\mathbb{G}_m(K)/\mathbb{G}_m(\mathcal{O}_K)\ \stackrel{\sim}{\longrightarrow}\ \mathbb{Z}.$$

and

$$T_{\mathrm{ad}}^{\circ}(\mathbb{G}_m) = \prod_{\ell \neq p} \mathbb{Z}_{\ell}(1).$$

Theorem

The local Kummer pairing of \mathbb{G}_m induces an isomorphism

$$T_K \xrightarrow{\sim} \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(\mathcal{V}_K, \ T^{\circ}_{\operatorname{ad}}(\mathbb{G}_m))$$

Some consequences

Corollary 4 (M. – Pink)

$$\operatorname{\sf gr}^i(J_{\mathsf K})\cong\left\{egin{array}{ll} (B_{\operatorname{ad}}^\circ)^{\oplus d}, & p\nmid i, \\ 0, & p\mid i. \end{array}
ight.$$

In particular the B_{ad}° -module J_{K}/J_{K}^{i} is finitely generated free for all $i \geq 0$.

Reason:

$$\operatorname{\sf gr}^i(J_K) \, \stackrel{\sim}{\longrightarrow} \, \operatorname{\sf Hom}_R \big(\operatorname{\sf gr}^W_i(\mathcal{P}_K), \, \, \mathcal{T}^\circ_{\operatorname{ad}}(\overline{\omega}) \big).$$

The reduced case

$$\bar{\varphi} \colon A \to k[\tau], \quad k \hookrightarrow K$$

Proposition 5 (M. – Pink)

There is a canonical B_{ad}° -linear isomorphism

$$T_{\mathrm{ad}}^{\circ}(\bar{\omega}) \stackrel{\sim}{\longrightarrow} T_{\mathrm{ad}}^{\circ}(\bar{\varphi})$$

that is compatible with the local Kummer pairing.

$$J_K \hookrightarrow \operatorname{\mathsf{Hom}}_A((\mathcal{P}_K, \bar{\varphi}), \ T_{\operatorname{ad}}^{\circ}(\bar{\varphi}))$$

The fundamental isomorphism

Any $\varphi \colon A \to K[\tau]$ extends uniquely to

$$\varphi_{\infty} \colon \mathcal{F}_{\infty} \longrightarrow \mathcal{K}^{\mathrm{perf}}((\tau^{-1}))$$

Theorem 6 (M. – Pink)

There is a canonical isomorphism

$$\chi \colon \bar{\varphi}_{\infty} \xrightarrow{\sim} \psi_{\infty}$$

that induces an isomorphism

$$\chi \colon (\mathcal{P}_{K^{\mathrm{perf}}}, \bar{\varphi}) \xrightarrow{\sim} (\mathcal{P}_{K^{\mathrm{perf}}}, \psi)$$

and is compatible with the local Kummer pairing.

$$\chi = \sum\nolimits_{j\leqslant 0} x_j \tau^j, \quad x_j \in \mathfrak{m}_{\mathcal{K}} \text{ for } j < 0$$

A perfectness theorem in general

Theorem 7 (M. – Pink)

For each $\xi \in K$ of $v(\xi) = -i$ and $p \nmid i$ we have an isomorphism

$$[\xi, \)_{\psi} \colon \operatorname{gr}^{i}(J_{K}) \stackrel{\sim}{\longrightarrow} T_{\operatorname{ad}}^{\circ}(\psi).$$

The general case

Corollary 8 (M. – Pink)

The image $\rho(J_K)$ is open if and only if $\operatorname{rank}_A(M) = \operatorname{rank}_R(\overline{M})$.

In particular, $\rho(J_K)$ is open if $\operatorname{rank}_A(M) = 1$.

A sufficient condition for open image

$$v(\xi) := -p^n j, \quad j(\xi) := j$$
$$j(M) := \{j(\xi) : \xi \in M \setminus \{0\}\}$$

Theorem 9 (M. – Pink)

We have

$$|j(M)| \leqslant \operatorname{rank}_R(\overline{M}) \leqslant \operatorname{rank}_A(M)$$

and if $|j(M)| = \operatorname{rank}_A(M)$ then $\rho(J_K)$ is open.

 \mathfrak{p} -independence of the conductor $(\mathfrak{p}
eq \overline{\mathfrak{p}})$

$$\rho_{\mathfrak{p}} \colon J_{K} \ \longrightarrow \ \mathsf{GL}\big(T_{\mathfrak{p}}(\varphi)\big)$$

$$\mathfrak{f}_{\mathfrak{p}} := \min \big\{ i \colon \rho_{\mathfrak{p}}(J_{K}^{i+1}) = \{1\} \big\}$$

Theorem 10 (M. – Pink)

 $\mathfrak{f}_{\mathfrak{p}}$ is independent of \mathfrak{p} .

Furthermore, for each $i \geqslant 0$ either $\rho_{\mathfrak{p}}(J_K^i) = \{1\}$ or $|\rho_{\mathfrak{p}}(J_K^i)| = \infty$.

Inertia invariants $(\mathfrak{p} \neq \overline{\mathfrak{p}})$

$$\varphi = \psi/M$$

$$0 \longrightarrow T_{\mathfrak{p}}(\psi) \longrightarrow T_{\mathfrak{p}}(\varphi) \longrightarrow A_{\mathfrak{p}} \otimes_{A} M \longrightarrow 0$$

Theorem 11 (M. – Pink)

$$T_{\mathfrak{p}}(\varphi)^{I_{\kappa}}=T_{\mathfrak{p}}(\psi)$$

Gardeyn: same for coinvariants