SIPMOS ® Small-Signal Transistor

- N channel
- Enhancement mode
- Logic Level
- $V_{GS(th)} = 0.8...2.0V$

Pin 1	Pin 2	Pin 3
D	G	S

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Marking	
SN 7000	60 V	0.25 A	5 Ω	TO-92	SN 7000	
Туре	Orderin	g Code	Tape and F	Reel Information	_	
SN 7000	Q62702	-S638	E6288		_	

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain source voltage	V _{DS}	60	V
Drain-gate voltage	V _{DGR}		
$R_{\text{GS}} = 20 \text{ k}\Omega$		60	
Gate source voltage	V_{GS}	± 14	
Gate-source peak voltage,aperiodic	$V_{\rm gs}$	± 20	
Continuous drain current	I _D		А
$T_{A} = 25 ^{\circ}\text{C}$		0.25	
DC drain current, pulsed	I _{Dpuls}		
<i>T</i> _A = 25 °C		1	
Power dissipation	P _{tot}		W
<i>T</i> _A = 25 °C		0.63	

Maximum Ratings

Parameter	Symbol	Values	Unit
Chip or operating temperature	T _j	-55 + 150	°C
Storage temperature	$T_{ m stg}$	-55 + 150	
Thermal resistance, chip to ambient air 1)	R _{thJA}	≤ 200	K/W
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 0.25 \text{ mA}, T_{\rm j} = 25 \text{ °C}$		60	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$		0.8	1.4	2	
Zero gate voltage drain current	I _{DSS}				μΑ
$V_{\rm DS} = 60 \; {\rm V}, \; V_{\rm GS} = 0 \; {\rm V}, \; T_{\rm j} = 25 \; {\rm ^{\circ}C}$		-	0.1	1	
$V_{\rm DS} = 60 \text{ V}, \ V_{\rm GS} = 0 \text{ V}, \ T_{\rm j} = 125 \text{ °C}$		-	-	5	
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$		-	1	10	
Drain-Source on-state resistance	R _{DS(on)}				Ω
$V_{GS} = 10 \text{ V}, I_D = 0.5 \text{ A}$		-	2	5	
$V_{GS} = 4.5 \text{ V}, I_D = 0.075 \text{ A}$		-	3	5.3	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g _{fs}				S
$V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}, I_{\rm D} = 0.2 \text{ A}$		0.1	0.2	-	
Input capacitance	C_{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	60	80	
Output capacitance	C_{oss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	15	25	
Reverse transfer capacitance	C_{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	15	25	
Turn-on delay time	t _{d(on)}				ns
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.29 \; {\rm A}$					
$R_{\rm G}$ = 50 Ω		-	5	8	
Rise time	t_{r}				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.29 \; {\rm A}$					
$R_{\rm G}$ = 50 Ω		-	5	8	
Turn-off delay time	$t_{d(off)}$				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.29 \; {\rm A}$					
$R_{G} = 50 \ \Omega$		-	12	16	
Fall time	t _f				
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 0.29 A					
$R_{G} = 50 \ \Omega$		-	13	17	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	IS				А
<i>T</i> _A = 25 °C		-	-	0.17	
Inverse diode direct current,pulsed	I _{SM}				
<i>T</i> _A = 25 °C		-	-	0.68	
Inverse diode forward voltage	V_{SD}				V
$V_{GS} = 0 \text{ V}, I_{F} = 0.5 \text{ A}$		-	1	1.2	

Power dissipation

$$P_{\text{tot}} = f(T_{A})$$

Safe operating area I_D =f(V_{DS}) parameter : D = 0.01, T_C =25°C

Drain current

$$I_{\mathsf{D}} = f(T_{\mathsf{A}})$$

parameter: $V_{GS} \ge 10 \text{ V}$

Drain-source breakdown voltage

$$V_{(BR)DSS} = f(T_j)$$

Typ. output characteristics

 $I_{\mathsf{D}} = f(V_{\mathsf{DS}})$

parameter: $t_{\rm p}$ = 80 $\mu \rm s$, $T_{\rm j}$ = 25 °C

Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Typ. drain-source on-resistance

 $R_{\rm DS \, (on)} = f(I_{\rm D})$

parameter: $t_p = 80 \mu s$, $T_i = 25 °C$

Typ. forward transconductance $g_{fS} = f(I_D)$

parameter: $t_p = 80 \mu s$,

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{DS (on)} = f(T_j)$

parameter: $I_D = 0.5 \text{ A}$, $V_{GS} = 10 \text{ V}$

Gate threshold voltage

 $V_{\text{GS (th)}} = f(T_{j})$

parameter: $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$

Typ. capacitances

 $C = f(V_{DS})$

parameter: V_{GS} =0V, f = 1 MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_{j} , t_{p} = 80 μ s

