α) Πρέπει να ισχύει $\frac{1}{2} \left| \det(\overrightarrow{AM}, \overrightarrow{AB}) \right| = 12$, άρα $\left| \begin{vmatrix} x+2 & y+3 \\ 9 & 12 \end{vmatrix} \right| = 24$. Αναπτύσσοντας την ορίζουσα παίρνουμε $\left| 12(x+2) - 9(y+3) \right| = 24 \Leftrightarrow 3|4(x+2) - 3(y+3)| = 24$, άρα $|4x+8-3y-9|=8 \Leftrightarrow |4x-3y-1|=8$. Τελικά έχουμε: 4x-3y-1=8 ή 4x-3y-1=-8, δηλαδή 4x-3y=9 ή 4x-3y=-7 οι οποίες είναι εξισώσεις των ευθειών (ε_1) και (ε_2) .

Οι ευθείες είναι παράλληλες αφού έχουν κοινό συντελεστή διεύθυνσης $\lambda = \frac{4}{3}$.

β) Παρατηρούμε ότι $\lambda_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{9 - (-3)}{7 - (-2)} = \frac{4}{3}$, άρα η ευθεία AB είναι παράλληλη στις (ε_1) και (ε_2) . Επομένως αρκεί να αποδείξουμε ότι ένα οποιοδήποτε σημείο της AB ισαπέχει από τις (ε_1) και (ε_2) . Για ευκολία βρίσκουμε το μέσο του AB που είναι το σημείο $K\left(\frac{-2+7}{2},\frac{-3+9}{2}\right)$ δηλαδή το $K\left(\frac{5}{2},3\right)$.

Τώρα
$$d(K, \varepsilon_1) = \frac{\left|4\cdot\frac{5}{2} - 3\cdot 3 - 9\right|}{\sqrt{4^3 + (-3)^2}} = \frac{8}{5} \text{ και } d(K, \varepsilon_2) = \frac{\left|4\cdot\frac{5}{2} - 3\cdot 3 + 7\right|}{\sqrt{4^3 + (-3)^2}} = \frac{8}{5}$$

γ) Με βάση το παρακάτω σχήμα, διαπιστώνουμε ότι οποιοδήποτε σημείο M_1 της (ε_1) σχηματίζει με το σταθερό ευθύγραμμο τμήμα AB, τρίγωνο σταθερού εμβαδού, αφού το ύψος h του τριγώνου AMB που αντιστοιχεί στην AB είναι σταθερό και ίσο με το μισό της απόστασης των (ε_1) και (ε_2) , οπότε $(AM_1B)=\frac{1}{2}\cdot AB\cdot h=\frac{1}{2}\cdot 15\cdot \frac{8}{5}=12$, αφού

 $AB = \sqrt{(7+2)^2 + (9+3)^2} = \sqrt{225} = 15$. Ανάλογα, $(AM_2B) = 12$, έτσι $(AM_1BM_2) = 24$. Όστε (AXBY) = 24 για οποιαδήποτε σημεία X,Y των (ε_1) και (ε_2) αντίστοιχα, αρκεί να σχηματίζεται τετράπλευρο (να μην είναι για παράδειγμα τα σημεία M_1 , M_2 συνευθειακά). Άρα υπάρχουν άπειρα τετράπλευρα AXBY με σταθερό εμβαδόν 24.

