Income and Population: Key Drivers for Targeted Expansion

Chenny Rose Castillo

The aim of this analysis is to understand how income levels and population significantly influence our expansion choices. These fundamental drivers will guide us in expanding and nurturing the startup company's growth.

Data Analysis Overview

This project involves the analysis of data to support the expansion and growth of a startup company in the "Health Tracker Smart Watch" business. By leveraging various data analysis techniques and tools, the project aims to provide insights that will guide the selection of the most promising states for the company's expansion.

Type of Data Analyzed: The data analyzed in this project includes a combination of financial and demographic information. It includes financial metrics from competitor companies, such as gross profit and operating expenses, which are used to compute financial viability metrics. Additionally, demographic data related to income levels and population sizes of different states is utilized.

Business Questions

Which states are the most suitable for expansion based on State Income Analysis, Population and Profit Correlation, Healthcare Spending Analysis, and Operational Efficiency Analysis?

State Income Analysis:

Q1: Which states are among the top 5 with the highest income per capita?

Q2: What is the average income for each state, and how do they rank based on their income?

Population and Profit Correlation:

Q3: Is there a correlation between the population of a state and its profit?

Healthcare Spending Analysis:

Q4: How is healthcare spending distributed across different states?

Q5: How does the average healthcare spending per person vary among different states?

Q6: Is there a relationship between healthcare spending per person and the income of a state?

Operational Efficiency Analysis

Q7: Which state exhibits the highest and lowest level of market competition based on the analysis of financial viability metrics, specifically focusing on Operating Profit Margin.

Methodology for Analyzing Expansion Opportunities

Data Cleaning and Preparation:

- ✓ Removed District of Columbia as it's not a state but a federal district.
- ✓ Addressed null values and incomplete data as best as possible given limited resources.

Identifying Suitable States for Expansion:

- ✓ Utilized various tools and platforms for analysis: Postgres, Excel, Power BI, Python.
- ✓ Income Level Analysis, Correlation Analysis, Financial Viability Metrics, Health Spending and Income Analysis

Visualization, Conclusions, and Recommendations:

- ✓ Present findings from income analysis, population correlation, financial viability metrics, and healthcare spending.
- ✓ Made recommendations based on the analysis, such as selecting states with high income per capita and potential correlation between population and profit.

Assumptions and Limitations

Assumptions and Limitations

- For Financial Viability Metrics, the profit mentioned in the "Competitors" dataset is interpreted as "Gross profit" the total revenue minus the cost of goods sold (COGS).
- For Financial Viability Metrics, since we only have operating expense and gross profit, we used "Operating Profit Margin".

Challenges in the Analysis

- Scarcity of resources and the presence of null values or incomplete data.
- ✓ Due to the limited availability of domain experts for consultation, proactively made reasonable assumptions to address the gaps in information.

Postgres

Top 5 States with the Highest Income per Capita

	state_usa character varying	income_per_capita numeric	estimate_population numeric
1	Maryland	89392	6045680
2	Massachusetts	82427	6892503
3	New Jersey	81740	8882190
4	California	80440	39512223
5	Connecticut	79287	3565287

Correlation between Population and Profit

	correlation double precision
1	-0.044687707330842145

During the analysis, the top 5 states with the highest income per capita are Maryland, Massachusetts, New Jersey, California, and Connecticut. A correlation of -0.0447 indicates a weak negative correlation between population and profit. This implies that changes in population are not strongly linked to changes in profit.

Average Income for each State and Rank based on Average Income

	state_usa character varying	average_income numeric	income_rank bigint		state_usa character varying	average_income numeric	income_rank bigint
1	Maryland	89392	1	26	Wyoming	60434	26
2	Massachusetts	82427	2	27	Nevada	60106	27
3	New Jersey	81740	3	28	Nebraska	59929	28
4	California	80440	4	29	Kansas	59046	29
5	Connecticut	79287	5	30	Georgia	58932	30
6	New Hampshire	78676	6	31	Vermont	58305	31
7	Hawaii	78084	7	32	Florida	58108	32
8	Washington	77338	8	33	Indiana	57881	33
9	Alaska	76440	9	34	Ohio	56583	34
10	Colorado	76240	10	35	South Dakota	56499	35
11	Virginia	75417	11	36	Missouri	55685	36
12	Utah	72558	12	37	Tennessee	55107	37
13	Minnesota	72027	13	38	Maine	54927	38
14	Illinois	70387	14	39	Montana	54875	39
15	New York	70137	15	40	North Carolina	54560	40
16	Pennsylvania	65135	16	41	Idaho	53545	41
17	Rhode Island	64962	17	42	South Carolina	52536	42
18	Delaware	64040	18	43	Oklahoma	51424	43
19	Oregon	63835	19	44	Alabama	51113	44
20	Wisconsin	63795	20	45	Louisiana	50686	45
21	North Dakota	63715	21	46	Kentucky	50675	46
22	Texas	63656	22	47	Arkansas	48829	47
23	Arizona	62283	23	48	New Mexico	48701	48
24	Iowa	62075	24	49	Mississippi	47131	49
25	Michigan	61347	25	50	West Virginia	46254	50

Excel

Correlation between Population and Profit

The scatter plot suggests a **weak negative correlation**. Other factors and variables could be influencing the observed relationship. The Top 5 States with the highest Income Per Capita by State remain the same with the output in Postgres.

Pivot Table: Income Per Capita by State (Top 5 States Highlighted)

US State	Income per Capita	Michigan	USD 61,347
Maryland	USD 89,392	Wyoming	USD 60,434
Massachusetts	USD 82,427	Nevada	USD 60,106
New Jersey	USD 81,740	Nebraska	USD 59,929
California	USD 80,440	Kansas	USD 59,046
Connecticut	USD 79,287	Georgia	USD 58,932
New Hampshire	USD 78,676	Vermont	USD 58,305
Hawaii	USD 78,084	Florida	USD 58,108 USD 57,881
Washington	USD 77,338	LICE 77 220	
Alaska	USD 76,440	1100 76 440	
		South Dakota	USD 56,499
Colorado	USD 76,240	Missouri	USD 55,685
Virginia	USD 75,417	Tennessee	USD 55,107
Utah		Maine	USD 54,927
Minnesota	USD 72,027	Montana	USD 54,875
Illinois	USD 70,387	North Carolina	USD 54,560
New York	USD 70,137	Idaho	USD 53,545
Pennsylvania	USD 65,135	South Carolina	USD 52,536
Rhode Island	USD 64,962	Oklahoma	USD 51,424
Delaware	USD 64,040	Alabama	USD 51,113
Oregon	USD 63,835	Louisiana	USD 50,686
Wisconsin	USD 63,795	Kentucky	USD 50,675
North Dakota	USD 63,715	Arkansas	USD 48,829
Texas	USD 63,656	New Mexico	USD 48,701
Arizona	USD 62,283	Mississippi	USD 47,131
Iowa	USD 62,075	West Virginia	USD 46,254
Michigan	USD 61,347	Grand Total	USD 3,157,304
		•	

Power BI

Correlation between Population and Profit

The upper-left box and lower right box correlation of 1 represents the correlation of population and profit with itself, which will always be 1.00 (perfect positive correlation) since a variable is perfectly correlated with itself.

The upper-right box and the lower-left box has a **correlation of -.04** which implies a **weak negative correlation** between population and profit.

Note that Correlation does not imply Causation and Correlation only captures linear relationships.

As depicted in the charts on the right side, the top 5 states with the highest income per capita remain **Maryland**, **Massachusetts**, **New Jersey**, **California**, **and Connecticut**, in that respective order.

Python

Consistent with our observations from Excel, Postgres, and Power BI, the top 5 states with the highest income per capita are Maryland, Massachusetts, New Jersey, California, and Connecticut, in that respective order.

Additionally, the correlation analysis indicates a **weak negative correlation**.

Healthcare Spending Analysis

Ang Spending •\$1255 •\$150 •\$175 •\$1752 •\$1755 •\$1200 •\$120025 •\$12055 •\$12257 •\$12557 \$12557 \$17525

Top states with the highest average healthcare spending per person **are Hawaii**, **Massachusetts**, **New Jersey**, **Rhode Island**, **and Alaska**, in that respective order.

A Correlation **coefficient of 0.704** suggests a **moderately strong positive linear correlation** between the average income and average healthcare spending per person. This means that as the average income increases, the average healthcare spending per person tends to increase as well, and vice versa.

Financial Viability Metrics of Competitors: Operating Profit Margin

This metric represents the portion of gross profit that remains after subtracting operating expenses. It offers insights into how effectively the company is handling its operating costs.

Additionally, it helps identify the states with the **highest and lowest competition levels**.

Summary and Implications

Summary of Findings and Insights

In this analysis, we discovered that the top 5 states with the highest income per capita are **Maryland**, **Massachusetts**, **New Jersey**, **California**, **and Connecticut**. We also determined that there's a **weak negative correlation** of -0.04 between population and profit. It's important to recognize that Correlation does not imply Causation, and Correlation specifically pertains to linear relationships. In cases where the association between two variables is nonlinear, the correlation coefficient may not effectively capture the true underlying relationship.

Additionally, we identified the top states with the highest average healthcare spending per person: Hawaii, Massachusetts, New Jersey, Rhode Island, and Alaska. The correlation coefficient of 0.704 indicates a moderately strong positive linear correlation between average income and healthcare spending per person. This suggests that higher average income is associated with higher healthcare spending per person. While a positive correlation suggests that there is a relationship between the two variables, it does not necessarily mean that changes in one variable are causing changes in the other variable. Other factors and variables could be influencing the observed relationship.

Lastly, we found that the top 5 states with the highest average operating profit margin are **Arizona**, **Delaware**, **Nevada**, **Ohio**, **and Tennessee**, in that order. On the other hand, the states with the lowest average operating profit margins are **Arkansas**, **Massachusetts**, **Idaho**, **New York**, **and California**, in that order.

Summary and Implications

Strategic Directives

After reviewing the analysis, it's advisable to consider expanding into **New Jersey**. This state stands out in the data with both high income per capita and average healthcare spending per person. This suggests that New Jersey residents might have the financial capacity to invest in our products.

If you're exploring another state, I would recommend **Massachusetts**. This state also stands out in the data with high income per capita and average healthcare spending per person. However, be aware that they have one of the lowest average operating profit margins. Therefore, before recommending an expansion there, it's important to investigate other factors such as **market demand**, **consumer behavior**, and **economic trends**.

Lastly, due to our limited data, to further enhance our expansion decision, I would suggest that the company assess the state's **talent pool**. Evaluate the availability of skilled talent in the technology and healthcare sectors. Additionally, explore **partnerships and collaborations** by researching potential partnerships with local businesses, healthcare providers, or technology hubs that can support your expansion efforts.

END.