DK responses in surveys on inflation expectations

Natsuki Arai¹ Biing-Shen Kuo² Yasutomo Murasawa³ SNDF 2025

¹Gettysburg College

²National Chengchi University

³Konan University

Plan

Motivation

Regression model with DK responses

Robust Heckit estimator

Reexamination of Sheen and Wang (2023, EER)

Results

Conclusion

Plan

Motivation

Regression model with DK responses

Robust Heckit estimator

Reexamination of Sheen and Wang (2023, EER)

Results

Conclusion

Survey questions with many missing responses:

- · wage
- voting behavior
- quantitative inflation expectation

- 1. nonresponse
 - a) unit nonresponse
 - b) item nonresponse
- 2. DK response

Survey questions with many missing responses:

- · wage
- voting behavior
- quantitative inflation expectation

- 1. nonresponse
 - a) unit nonresponse
 - b) item nonresponse
- 2. DK response

Survey questions with many missing responses:

- wage
- voting behavior
- quantitative inflation expectation

- 1. nonresponse
 - a) unit nonresponse
 - b) item nonresponse
- 2. DK response

Survey questions with many missing responses:

- wage
- voting behavior
- quantitative inflation expectation

- 1. nonresponse
 - a) unit nonresponse
 - b) item nonresponse
- 2. DK response

Survey questions with many missing responses:

- · wage
- · voting behavior
- quantitative inflation expectation

- 1. nonresponse
 - a) unit nonresponse
 - b) item nonresponse
- 2. DK response

Survey questions with many missing responses:

- · wage
- voting behavior
- quantitative inflation expectation

- 1. nonresponse
 - a) unit nonresponse
 - b) item nonresponse
- 2. DK response

Survey questions with many missing responses:

- wage
- · voting behavior
- quantitative inflation expectation

- 1. nonresponse
 - a) unit nonresponse
 - b) item nonresponse
- 2. DK response

Survey questions with many missing responses:

- · wage
- · voting behavior
- quantitative inflation expectation

- 1. nonresponse
 - a) unit nonresponse
 - b) item nonresponse
- 2. DK response

Missing response rates for inflation expectations (Michigan Survey of Consumers)

Proportion of DK responses + item nonresponses

Recent works (on inflation expectations) discard DK responses in regression analysis:

- · Sheen and Wang (2023, Eur. Econ. Rev.)
- · Tsiaplias (2021, J. Appl. Econom.)
- · Tsiaplias (2020, J. Econ. Dyn. Control)
- Wang, Sheen, Trück, Chao, and Härdle (2020, Macroecon. Dyn.)
- Ehrmann, Pfajfar, and Santoro (2017, Int. J. Cent. Bank.)

Recent works (on inflation expectations) discard DK responses in regression analysis:

- · Sheen and Wang (2023, Eur. Econ. Rev.)
- · Tsiaplias (2021, J. Appl. Econom.)
- Tsiaplias (2020, J. Econ. Dyn. Control)
- · Wang et al. (2020, Macroecon. Dyn.)
- Ehrmann et al. (2017, Int. J. Cent. Bank.)

Recent works (on inflation expectations) discard DK responses in regression analysis:

- · Sheen and Wang (2023, Eur. Econ. Rev.)
- Tsiaplias (2021, J. Appl. Econom.)
- · Tsiaplias (2020, J. Econ. Dyn. Control)
- · Wang et al. (2020, Macroecon. Dyn.)
- Ehrmann et al. (2017, Int. J. Cent. Bank.)

Recent works (on inflation expectations) discard DK responses in regression analysis:

- · Sheen and Wang (2023, Eur. Econ. Rev.)
- Tsiaplias (2021, J. Appl. Econom.)
- · Tsiaplias (2020, J. Econ. Dyn. Control)
- · Wang et al. (2020, Macroecon. Dyn.)
- Ehrmann et al. (2017, Int. J. Cent. Bank.)

Possible excuse for discarding DK responses

- 1. They are $\mathsf{ignorable} \Longrightarrow \mathsf{need}$ justification
- Heckman-type bias correction requires strong assumptions
 - normality
 - homoskedasticity
 - exclusion restriction
 - ⇒ use a robust estimator

Possible excuse for discarding DK responses:

- 1. They are $\mathsf{ignorable} \Longrightarrow \mathsf{need}$ justification
- Heckman-type bias correction requires strong assumptions
 - normality
 - homoskedasticity
 - exclusion restriction
 - ⇒ use a robust estimator

Possible excuse for discarding DK responses:

- 1. They are ignorable ⇒ need justification
- Heckman-type bias correction requires strong assumptions
 - normality
 - homoskedasticity
 - exclusion restriction
 - ⇒ use a robust estimator

Possible excuse for discarding DK responses:

- 1. They are ignorable \Longrightarrow need justification
- Heckman-type bias correction requires strong assumptions
 - normality
 - homoskedasticity
 - exclusion restriction
 - ⇒ use a robust estimator

Possible excuse for discarding DK responses:

- 1. They are ignorable \implies need justification
- Heckman-type bias correction requires strong assumptions
 - normality
 - homoskedasticity
 - exclusion restriction

⇒ use a robust estimator

Possible excuse for discarding DK responses:

- 1. They are ignorable \implies need justification
- 2. Heckman-type bias correction requires strong assumptions
 - normality
 - homoskedasticity
 - exclusion restriction

⇒ use a robust estimator

- Use a robust Heckit estimator to handle DK responses
 - developed by Zhelonkin, Genton, and Ronchetti (2016)
 - · available as an R package ssmrob
- Reexamine an analysis in Sheen and Wang (2023, EER)
 - Study the influence of monetary condition news on household inflation expectations
 - Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
 - · Compare OLS, ML, Heckit, and robust Heckit estimates

- Use a robust Heckit estimator to handle DK responses
 - · developed by Zhelonkin et al. (2016)
 - · available as an R package **ssmrob**
- Reexamine an analysis in Sheen and Wang (2023, EER)
 - Study the influence of monetary condition news on household inflation expectations
 - Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
 - · Compare OLS, ML, Heckit, and robust Heckit estimates

- Use a robust Heckit estimator to handle DK responses
 - · developed by Zhelonkin et al. (2016)
 - available as an R package ssmrob
- 2. Reexamine an analysis in Sheen and Wang (2023, EER)
 - Study the influence of monetary condition news on household inflation expectations
 - Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
 - · Compare OLS, ML, Heckit, and robust Heckit estimates

- Use a robust Heckit estimator to handle DK responses
 - · developed by Zhelonkin et al. (2016)
 - · available as an R package ssmrob
- 2. Reexamine an analysis in Sheen and Wang (2023, EER)
 - Study the influence of monetary condition news on household inflation expectations
 - Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
 - · Compare OLS, ML, Heckit, and robust Heckit estimates

- Use a robust Heckit estimator to handle DK responses
 - · developed by Zhelonkin et al. (2016)
 - · available as an R package ssmrob
- 2. Reexamine an analysis in Sheen and Wang (2023, EER)
 - Study the influence of monetary condition news on household inflation expectations
 - Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
 - · Compare OLS, ML, Heckit, and robust Heckit estimates

- Use a robust Heckit estimator to handle DK responses
 - · developed by Zhelonkin et al. (2016)
 - · available as an R package ssmrob
- 2. Reexamine an analysis in Sheen and Wang (2023, EER)
 - Study the influence of monetary condition news on household inflation expectations
 - Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
 - · Compare OLS, ML, Heckit, and robust Heckit estimates

Plan

Motivation

Regression model with DK responses

Robust Heckit estimator

Reexamination of Sheen and Wang (2023, EER)

Results

Conclusion

Sample selection model

Let

- · y* be the latent numerical response
- · d be the (numerical) response dummy

Sample selection model

$$y = \begin{cases} y^* & \text{if } d = 1\\ NA & \text{if } d = 0 \end{cases}$$
$$d = [x'\alpha + z > 0]$$
$$y^* = x'\beta + u$$
$$\begin{pmatrix} z\\ u \end{pmatrix} |x \sim N \begin{pmatrix} 0, \begin{bmatrix} 1 & \sigma_{zu}\\ \sigma_{uz} & \sigma_u^2 \end{bmatrix} \end{pmatrix}$$

Sample selection model

Let

- y* be the latent numerical response
- \cdot d be the (numerical) response dummy

Sample selection model

$$y = \begin{cases} y^* & \text{if } d = 1\\ NA & \text{if } d = 0 \end{cases}$$
$$d = [x'\alpha + z > 0]$$
$$y^* = x'\beta + u$$
$$\begin{pmatrix} z\\ u \end{pmatrix} |x \sim N \begin{pmatrix} 0, \begin{bmatrix} 1 & \sigma_{zu}\\ \sigma_{uz} & \sigma_u^2 \end{bmatrix} \end{pmatrix}$$

Sample selection model

Let

- y* be the latent numerical response
- · d be the (numerical) response dummy

Sample selection model

$$y = \begin{cases} y^* & \text{if } d = 1\\ NA & \text{if } d = 0 \end{cases}$$
$$d = [x'\alpha + z > 0]$$
$$y^* = x'\beta + u$$
$$\begin{pmatrix} z\\ u \end{pmatrix} |x \sim N \begin{pmatrix} 0, \begin{bmatrix} 1 & \sigma_{zu}\\ \sigma_{uz} & \sigma_u^2 \end{bmatrix} \end{pmatrix}$$

Outcome equation for the selected sample

$$E(y|d=1,x) = x'\beta + E(u|z > -x'\alpha, x)$$

Consider estimation of @

- OLS estimator is inconsistent
- ML and Heckit estimators are consistent, but not widely used in the context of DK responses

Outcome equation for the selected sample

$$\mathsf{E}(y|d=1,\mathbf{x})=\mathbf{x}'\boldsymbol{\beta}+\mathsf{E}(u|z>-\mathbf{x}'\boldsymbol{\alpha},\mathbf{x})$$

Consider estimation of @

- OLS estimator is inconsistent
- ML and Heckit estimators are consistent, but not widely used in the context of DK responses

Outcome equation for the selected sample

$$\mathsf{E}(y|d=1,\mathbf{x})=\mathbf{x}'\boldsymbol{\beta}+\mathsf{E}(u|z>-\mathbf{x}'\boldsymbol{\alpha},\mathbf{x})$$

Consider estimation of β

- OLS estimator is inconsistent
- ML and Heckit estimators are consistent, but not widely used in the context of DK responses

Outcome equation for the selected sample

$$\mathsf{E}(y|d=1,\mathbf{x})=\mathbf{x}'\boldsymbol{\beta}+\mathsf{E}(u|z>-\mathbf{x}'\boldsymbol{\alpha},\mathbf{x})$$

Consider estimation of β

- OLS estimator is inconsistent
- ML and Heckit estimators are consistent, but not widely used in the context of DK responses

Sample selection bias

Outcome equation for the selected sample

$$\mathsf{E}(y|d=1,\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta} + \mathsf{E}(u|z> -\mathbf{x}'\boldsymbol{\alpha},\mathbf{x})$$

Consider estimation of β

- OLS estimator is inconsistent
- ML and Heckit estimators are consistent, but not widely used in the context of DK responses

Plan

Motivation

Regression model with DK responses

Robust Heckit estimator

Reexamination of Sheen and Wang (2023, EER)

Results

Conclusion

Moment restrictions:

Selection equation (probit)

$$\mathsf{E}(\mathsf{s}\mathsf{x}\mathsf{h}(\mathsf{s}\mathsf{x}'\alpha))=\mathbf{0}$$

where s := 2d - 1 gives the sign, and $h(.) := \phi(.)/\Phi(.)$ gives the inverse Mill's ratio

$$E(x(y - x'\beta - \sigma_{uz}h(x'\alpha))d) = 0$$

$$E(h(x'\alpha)(y - x'\beta - \sigma_{uz}h(x'\alpha))d) = 0$$

Moment restrictions:

Selection equation (probit)

$$\mathsf{E}(\mathsf{sxh}(\mathsf{sx}'\alpha)) = \mathbf{0}$$

where s := 2d - 1 gives the sign, and $h(.) := \phi(.)/\Phi(.)$ gives the inverse Mill's ratio

$$E(x(y - x'\beta - \sigma_{uz}h(x'\alpha))d) = 0$$

$$E(h(x'\alpha)(y - x'\beta - \sigma_{uz}h(x'\alpha))d) = 0$$

Moment restrictions:

· Selection equation (probit):

$$\mathsf{E}(\mathsf{s}\mathsf{x}\mathsf{h}(\mathsf{s}\mathsf{x}'\alpha))=\mathsf{0}$$

where s := 2d - 1 gives the sign, and $h(.) := \phi(.)/\Phi(.)$ gives the inverse Mill's ratio

$$E(x(y - x'\beta - \sigma_{uz}h(x'\alpha))d) = 0$$

$$E(h(x'\alpha)(y - x'\beta - \sigma_{uz}h(x'\alpha))d) = 0$$

Moment restrictions:

· Selection equation (probit):

$$\mathsf{E}(\mathsf{s}\mathsf{x}\mathsf{h}(\mathsf{s}\mathsf{x}'\alpha))=\mathsf{0}$$

where s := 2d - 1 gives the sign, and $h(.) := \phi(.)/\Phi(.)$ gives the inverse Mill's ratio

$$E(x(y - x'\beta - \sigma_{uz}h(x'\alpha))d) = 0$$

$$E(h(x'\alpha)(y - x'\beta - \sigma_{uz}h(x'\alpha))d) = 0$$

Let

$$\psi_1(z; \theta) := \operatorname{sxh}(\operatorname{sx}'\alpha)$$

$$\psi_2(z; \theta) := \begin{pmatrix} x \\ h(x'\alpha) \end{pmatrix} (y - x'\beta - \sigma_{uz}h(x'\alpha))\alpha$$

where $\mathbf{z} := (d, s, y, \mathbf{x}')'$ and $\mathbf{\theta} := (\boldsymbol{\alpha}', \boldsymbol{\beta}', \sigma_{uz})'$ Let

$$\psi(\mathsf{z};\theta) := egin{pmatrix} \psi_1(\mathsf{z};\theta) \ \psi_2(\mathsf{z};\theta) \end{pmatrix}$$

M-estimator of θ solves

$$\frac{1}{n}\sum_{i=1}^{n}\psi\left(\mathbf{z}_{i};\hat{\boldsymbol{\theta}}\right)=0$$

 $(=Heckit\ estimator\ of\ \beta)$

Let

$$\psi_1(\mathbf{z}; \boldsymbol{\theta}) := \mathsf{sx}h(\mathsf{sx}'\boldsymbol{\alpha})$$

$$\psi_2(\mathbf{z}; \boldsymbol{\theta}) := \begin{pmatrix} \mathsf{x} \\ h(\mathsf{x}'\boldsymbol{\alpha}) \end{pmatrix} (\mathsf{y} - \mathsf{x}'\boldsymbol{\beta} - \sigma_{\mathsf{uz}}h(\mathsf{x}'\boldsymbol{\alpha}))d$$

where $\mathbf{z} := (d, s, y, \mathbf{x}')'$ and $\mathbf{\theta} := (\alpha', \beta', \sigma_{uz})'$

$$\psi(z; oldsymbol{ heta}) := egin{pmatrix} \psi_1(z; oldsymbol{ heta}) \ \psi_2(z; oldsymbol{ heta}) \end{pmatrix}$$

M-estimator of θ solves

$$\frac{1}{n}\sum_{i=1}^{n}\psi\left(\mathbf{z}_{i};\hat{\boldsymbol{\theta}}\right)=0$$

 $(=Heckit\ estimator\ of\ \beta)$

Let

$$\psi_1(\mathbf{z}; \boldsymbol{\theta}) := \mathsf{sx}h(\mathsf{sx}'\boldsymbol{\alpha})$$

$$\psi_2(\mathbf{z}; \boldsymbol{\theta}) := \begin{pmatrix} \mathsf{x} \\ h(\mathsf{x}'\boldsymbol{\alpha}) \end{pmatrix} (\mathsf{y} - \mathsf{x}'\boldsymbol{\beta} - \sigma_{\mathsf{uz}}h(\mathsf{x}'\boldsymbol{\alpha}))d$$

where $\mathbf{z} := (d, s, y, \mathbf{x}')'$ and $\mathbf{\theta} := (\boldsymbol{\alpha}', \boldsymbol{\beta}', \sigma_{\mathsf{uz}})'$ Let

$$\psi(\mathsf{z}; heta) := egin{pmatrix} \psi_1(\mathsf{z}; heta) \ \psi_2(\mathsf{z}; heta) \end{pmatrix}$$

M-estimator of θ solves

$$\frac{1}{n}\sum_{i=1}^{n}\psi\left(\mathbf{z}_{i};\hat{\boldsymbol{\theta}}\right)=0$$

 $(=Heckit\ estimator\ of\ \beta)$

Let

$$\psi_1(\mathbf{z}; \boldsymbol{\theta}) := \mathsf{s} \mathbf{x} h(\mathsf{s} \mathbf{x}' \boldsymbol{\alpha})$$

$$\psi_2(\mathbf{z}; \boldsymbol{\theta}) := \begin{pmatrix} \mathbf{x} \\ h(\mathbf{x}' \boldsymbol{\alpha}) \end{pmatrix} (\mathbf{y} - \mathbf{x}' \boldsymbol{\beta} - \sigma_{\mathsf{u} \mathsf{z}} h(\mathbf{x}' \boldsymbol{\alpha})) d$$

where $\mathbf{z} := (d, s, y, \mathbf{x}')'$ and $\mathbf{\theta} := (\alpha', \beta', \sigma_{uz})'$ Let

$$\psi(\mathsf{z}; heta) := egin{pmatrix} \psi_1(\mathsf{z}; heta) \ \psi_2(\mathsf{z}; heta) \end{pmatrix}$$

M-estimator of θ solves

$$\frac{1}{n}\sum_{i=1}^n \psi\left(\mathbf{z}_i; \hat{\boldsymbol{\theta}}\right) = \mathbf{0}$$

(=Heckit estimator of β)

- An estimator is robust if its influence function is bounded
- Influence function of an M-estimator:

$$ext{IF}(\mathbf{z}) \propto \psi(\mathbf{z}; oldsymbol{ heta})$$

- An estimator is robust if its influence function is bounded
- Influence function of an M-estimator:

$$\mathrm{IF}(\mathsf{z}) \propto \psi(\mathsf{z}; oldsymbol{ heta})$$

- An estimator is robust if its influence function is bounded
- Influence function of an M-estimator:

$$\mathrm{IF}(\mathbf{z}) \propto \psi(\mathbf{z}; \boldsymbol{\theta})$$

- An estimator is robust if its influence function is bounded
- Influence function of an M-estimator:

$$\mathrm{IF}(\mathsf{z}) \propto \psi(\mathsf{z}; \theta)$$

- · Bound $\psi(.; \theta)$ to obtain a robust estimator
- Huber function:

$$\Psi(z) := \begin{cases} z & \text{for } |z| \le K \\ \operatorname{sgn}(z)K & \text{for } |z| > K \end{cases}$$

- Apply a Huber function to the standardized prediction error
- · Bound covariates if necessary
- · Implementation is easy using ssmrob package for R

- · Bound $\psi(.;\theta)$ to obtain a robust estimator
- · Huber function:

$$\Psi(z) := \begin{cases} z & \text{for } |z| \le K \\ \operatorname{sgn}(z)K & \text{for } |z| > K \end{cases}$$

- Apply a Huber function to the standardized prediction error
- · Bound covariates if necessary
- Implementation is easy using ssmrob package for R

- · Bound $\psi(.; \theta)$ to obtain a robust estimator
- Huber function:

$$\Psi(z) := \begin{cases} z & \text{for } |z| \le K \\ \operatorname{sgn}(z)K & \text{for } |z| > K \end{cases}$$

- Apply a Huber function to the standardized prediction error
- Bound covariates if necessary
- Implementation is easy using ssmrob package for R

- · Bound $\psi(.;\theta)$ to obtain a robust estimator
- Huber function:

$$\Psi(z) := \begin{cases} z & \text{for } |z| \le K \\ \text{sgn}(z)K & \text{for } |z| > K \end{cases}$$

- Apply a Huber function to the standardized prediction error
- · Bound covariates if necessary
- Implementation is easy using ssmrob package for R

- · Bound $\psi(.;\theta)$ to obtain a robust estimator
- Huber function:

$$\Psi(z) := \begin{cases} z & \text{for } |z| \le K \\ \operatorname{sgn}(z)K & \text{for } |z| > K \end{cases}$$

- Apply a Huber function to the standardized prediction error
- Bound covariates if necessary
- Implementation is easy using ssmrob package for R

- · Bound $\psi(.;\theta)$ to obtain a robust estimator
- Huber function:

$$\Psi(z) := \begin{cases} z & \text{for } |z| \le K \\ \operatorname{sgn}(z)K & \text{for } |z| > K \end{cases}$$

- Apply a Huber function to the standardized prediction error
- Bound covariates if necessary
- Implementation is easy using ssmrob package for R

Plan

Motivation

Regression model with DK responses

Robust Heckit estimator

Reexamination of Sheen and Wang (2023, EER)

Results

Conclusion

- Study the influence of monetary condition news on SR and LR household inflation expectations
- Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
- Estimate a regression equation for the percentage of inflation by OLS, ignoring nonresponses
- Find that monetary condition news was insignificant

- Study the influence of monetary condition news on SR and LR household inflation expectations
- Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
- Estimate a regression equation for the percentage of inflation by OLS, ignoring nonresponses
- · Find that monetary condition news was insignificant

- Study the influence of monetary condition news on SR and LR household inflation expectations
- Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
- Estimate a regression equation for the percentage of inflation by OLS, ignoring nonresponses
- Find that monetary condition news was insignificant

- Study the influence of monetary condition news on SR and LR household inflation expectations
- Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
- Estimate a regression equation for the percentage of inflation by OLS, ignoring nonresponses
- Find that monetary condition news was insignificant

- Study the influence of monetary condition news on SR and LR household inflation expectations
- Use data from the MSC during 2008M12–2015M12 ('zero lower bound' period)
- Estimate a regression equation for the percentage of inflation by OLS, ignoring nonresponses
- Find that monetary condition news was insignificant

Q1: Direction

```
px1q1 prices up/down next year
px5q1 prices up/down next 5 years
```

Q2: Size (only if up/down to Q1)

```
px1q2 prices % up/down next year
px5q2 prices % up/down next 5 years
```

Percentage

```
px1 price expectations 1yr recodedpx5 price expectations 5yr recoded
```

Q1: Direction

```
px1q1 prices up/down next year
px5q1 prices up/down next 5 years
```

Q2: Size (only if up/down to Q1)

```
px1q2 prices % up/down next year
px5q2 prices % up/down next 5 years
```

Percentage

```
px1 price expectations 1yr recodedpx5 price expectations 5yr recoded
```

Q1: Direction

```
px1q1 prices up/down next year
px5q1 prices up/down next 5 years
```

Q2: Size (only if up/down to Q1)

```
px1q2 prices % up/down next yearpx5q2 prices % up/down next 5 years
```

Percentage

```
px1 price expectations 1yr recodedpx5 price expectations 5yr recoded
```

```
Q1: Direction
```

```
px1q1 prices up/down next year
px5q1 prices up/down next 5 years
```

Q2: Size (only if up/down to Q1)

```
px1q2 prices % up/down next yearpx5q2 prices % up/down next 5 years
```

Percentage

```
px1 price expectations 1yr recodedpx5 price expectations 5yr recoded
```

Covariates

Micro

```
MPN news: monetary condition

IN news: inflation

ytl income quartiles

age age of respondent

female female dummy

hsize household size

edu education of respondent
```

Macro

```
UR unemployment rate (at t - 1)

PI consumer price index (growth rate at t - 1)
```

Covariates

Micro

```
MPN news: monetary condition

IN news: inflation

ytl income quartiles

age age of respondent

female female dummy

hsize household size

edu education of respondent
```

Macro

```
UR unemployment rate (at t-1)

CPI consumer price index (growth rate at t-1)
```

Covariates

Micro

```
MPN news: monetary condition

IN news: inflation

ytl income quartiles

age age of respondent

female female dummy

hsize household size

edu education of respondent

Macro
```

UR unemployment rate (at t-1)
CPI consumer price index (growth rate at t-1)

IP industrial production (growth rate at t-1)

Sample selection

We follow Sheen and Wang (2023):

- Use only wave 2 data to include lagged px1/px5
- Exclude respondents with missing news or demographic variables

Sample selection

We follow Sheen and Wang (2023):

- Use only wave 2 data to include lagged px1/px5
- Exclude respondents with missing news or demographic variables

Sample selection

We follow Sheen and Wang (2023):

- Use only wave 2 data to include lagged px1/px5
- Exclude respondents with missing news or demographic variables

Sample selection

We follow Sheen and Wang (2023):

- Use only wave 2 data to include lagged px1/px5
- Exclude respondents with missing news or demographic variables

Sample size

wave	· 1	
	wave 1	
observed	missing	
13426	960	
734	417	
13234	997	
789	517	
	13426 734 13234	

- Higher inflation uncertainty may increase the likelihood of DK responses, but not the level of inflation expectations
- Include the absolute change of the CPI inflation rate in the previous month in the selection equation
- · Correct sign, but insignificant
- Still better to include

- Higher inflation uncertainty may increase the likelihood of DK responses, but not the level of inflation expectations
- Include the absolute change of the CPI inflation rate in the previous month in the selection equation
- Correct sign, but insignificant
- Still better to include

- Higher inflation uncertainty may increase the likelihood of DK responses, but not the level of inflation expectations
- Include the absolute change of the CPI inflation rate in the previous month in the selection equation
- Correct sign, but insignificant
- Still better to include

- Higher inflation uncertainty may increase the likelihood of DK responses, but not the level of inflation expectations
- Include the absolute change of the CPI inflation rate in the previous month in the selection equation
- · Correct sign, but insignificant
- Still better to include

- Higher inflation uncertainty may increase the likelihood of DK responses, but not the level of inflation expectations
- Include the absolute change of the CPI inflation rate in the previous month in the selection equation
- · Correct sign, but insignificant
- Still better to include

Plan

Motivation

Regression model with DK responses

Robust Heckit estimator

Reexamination of Sheen and Wang (2023, EER)

Results

Conclusion

Classical estimation

- · Compare OLS, ML, and Heckit estimates
- Use sampleSelection package for R

- 1. Coefficient on MPN
- 2. Coefficient on the bias correction term (IMR)

Classical estimation:

- Compare OLS, ML, and Heckit estimates
- Use sampleSelection package for R

- 1. Coefficient on MPN
- 2. Coefficient on the bias correction term (IMR)

Classical estimation:

- · Compare OLS, ML, and Heckit estimates
- Use sampleSelection package for R

- 1. Coefficient on MPN
- 2. Coefficient on the bias correction term (IMR)

Classical estimation:

- · Compare OLS, ML, and Heckit estimates
- Use sampleSelection package for R

- Coefficient on MPN
- 2. Coefficient on the bias correction term (IMR)

Classical estimation:

- · Compare OLS, ML, and Heckit estimates
- Use sampleSelection package for R

- Coefficient on MPN
- Coefficient on the bias correction term (IMR)

Classical estimation:

- · Compare OLS, ML, and Heckit estimates
- Use sampleSelection package for R

- 1. Coefficient on MPN
- 2. Coefficient on the bias correction term (IMR)

Classical estimation:

- · Compare OLS, ML, and Heckit estimates
- Use sampleSelection package for R

- 1. Coefficient on MPN
- 2. Coefficient on the bias correction term (IMR)

Classical estimation (SR)

Outcome equation for px1			
	OLS	ML	Heckit
MPN	0.17 (0.20)	0.17 (0.20)	0.22 (0.21)
IN	0.65 (0.18)***	0.65 (0.18)***	0.64 (0.19)***
Lpx1	0.24 (0.01)***	0.24 (0.01)***	0.25 (0.01)***
MPN:Lpx1	0.04 (0.04)	0.04 (0.04)	0.04 (0.04)
IN:Lpx1	0.08 (0.03)*	0.08 (0.03)*	0.09 (0.03)**
	:		
rho	-	- <mark>0.01</mark> (0.05)	-0.72
invMillsRatio			_2 77 (2 00)

invMillsRatio		` ,	-2.77 (2.00)
Num. obs.	13426	14160	14160
Censored		734	734

Classical estimation (LR)

Outcome equation for px5			
	OLS	ML	Heckit
MPN	-0.13 (0.19)	-0.13 (0.19)	-0.03 (0.22)
IN	0.53 (0.15)*	** 0.53 (0.15)* [*]	** 0.58 (0.18)**
Lpx5	0.29 (0.01)*	** 0.29 (0.01)* [*]	** 0.32 (0.01)***
MPN:Lpx5	0.06 (0.05)	0.06 (0.05)	0.05 (0.05)
IN:Lpx5	-0.07(0.03)	-0.07(0.03)	-0.06(0.04)
	:		
rho		-0.01(0.05)	-1.30
invMillsRat	tio		-4.13 (1.42)**
Num. obs.	13234	14023	14023
Censored		789	789

Why are the ML and Heckit estimates different?

⇒ Model misspecification

Possible cases:

- 1. Only Heckit is consistent
- 2. Both ML and Heckit are inconsistent

- Compare classical and robust Heckit estimates
- · Use ssmrob package for R
- Set K = 100 (classical) or K = 1.345 (robust)

Why are the ML and Heckit estimates different?

⇒ Model misspecification

- 1. Only Heckit is consistent
- 2. Both ML and Heckit are inconsistent

- Compare classical and robust Heckit estimates
- Use ssmrob package for R
- Set K = 100 (classical) or K = 1.345 (robust)

Why are the ML and Heckit estimates different?

→ Model misspecification

Possible cases:

- 1. Only Heckit is consistent
- Both ML and Heckit are inconsistent

- Compare classical and robust Heckit estimates
- Use ssmrob package for R
- Set K = 100 (classical) or K = 1.345 (robust)

Why are the ML and Heckit estimates different?

→ Model misspecification

Possible cases:

- 1. Only Heckit is consistent
- Both ML and Heckit are inconsistent

- Compare classical and robust Heckit estimates
- Use ssmrob package for R
- Set K = 100 (classical) or K = 1.345 (robust)

Why are the ML and Heckit estimates different?

→ Model misspecification

Possible cases:

- 1. Only Heckit is consistent
- Both ML and Heckit are inconsistent

- Compare classical and robust Heckit estimates
- Use ssmrob package for R
- Set K = 100 (classical) or K = 1.345 (robust)

Why are the ML and Heckit estimates different?

→ Model misspecification

Possible cases:

- 1. Only Heckit is consistent
- 2. Both ML and Heckit are inconsistent

- Compare classical and robust Heckit estimates
- Use ssmrob package for R
- Set K = 100 (classical) or K = 1.345 (robust)

Why are the ML and Heckit estimates different?

→ Model misspecification

Possible cases:

- 1. Only Heckit is consistent
- 2. Both ML and Heckit are inconsistent

- Compare classical and robust Heckit estimates
- · Use ssmrob package for R
- Set K = 100 (classical) or K = 1.345 (robust)

Why are the ML and Heckit estimates different?

→ Model misspecification

Possible cases:

- 1. Only Heckit is consistent
- 2. Both ML and Heckit are inconsistent

- Compare classical and robust Heckit estimates
- Use ssmrob package for R
- Set K = 100 (classical) or K = 1.345 (robust)

Why are the ML and Heckit estimates different?

→ Model misspecification

Possible cases:

- 1. Only Heckit is consistent
- 2. Both ML and Heckit are inconsistent

- Compare classical and robust Heckit estimates
- Use ssmrob package for R
- Set K = 100 (classical) or K = 1.345 (robust)

Why are the ML and Heckit estimates different?

→ Model misspecification

Possible cases:

- 1. Only Heckit is consistent
- 2. Both ML and Heckit are inconsistent

- Compare classical and robust Heckit estimates
- Use ssmrob package for R
- Set K = 100 (classical) or K = 1.345 (robust)

Robust estimation (SR)

Outcome equation for px1		
	classical ($K = 100$)	robust ($K = 1.345$)
MPN	0.22 (0.25)	0.12 (0.19)
IN	0.64 (0.19)***	0.60 (0.14)***
Lpx1	0.25 (0.01)***	0.24 (0.02)***
MPN:Lpx1	0.04 (0.06)	0.04 (0.06)
IN:Lpx1	0.09 (0.05)	0.04 (0.05)
	:	
IMR1	-2.78 (2.49)	0.61 (6.23)
Num. obs.	14160	14160
Censored	734	734

Robust estimation (LR)

Outcome equation for px5		
	classical ($K = 100$)	robust ($K = 1.345$)
MPN	-0.03 (0.30)	0.15 (0.22)
IN	0.58 (0.21)**	0.43 (0.19)*
Lpx5	0.32 (0.02)***	0.31 (0.02)***
MPN:Lpx5	0.05 (0.10)	-0.01(0.06)
IN:Lpx5	-0.06(0.06)	-0.04(0.06)
	:	
IMR1	-4.13 (1.92)*	-3.90 (3.54)
Num. obs.	14023	14023
Censored	789	789

Plan

Motivation

Regression model with DK responses

Robust Heckit estimator

Reexamination of Sheen and Wang (2023, EER)

Results

Conclusion

- For both SR and LR inflation expectations, OLS and ML estimates are almost identical
 - ⇒ No sample selection bias (?)
- ML and Heckit estimates somewhat differ. For LR
 expectations, the bias correction term is significant

 ⇒ Sample selection bias
- 3. Classical and robust Heckit estimates somewhat differ
 - ⇒ Robust estimate is more reliable
- 4. Monetary condition news remains insignificant
 ⇒ Support the conclusion of Sheen and Wang (2023)

- For both SR and LR inflation expectations, OLS and ML estimates are almost identical
 - ⇒ No sample selection bias (?)
- ML and Heckit estimates somewhat differ. For LR
 expectations, the bias correction term is significant

 ⇒ Sample selection bias
- 3. Classical and robust Heckit estimates somewhat differ
 - ⇒ Robust estimate is more reliable
- Monetary condition news remains insignificant
 ⇒ Support the conclusion of Sheen and Wang (2023)

- For both SR and LR inflation expectations, OLS and ML estimates are almost identical
 - \Longrightarrow No sample selection bias (?)
- ML and Heckit estimates somewhat differ. For LR
 expectations, the bias correction term is significant

 ⇒ Sample selection bias
- 3. Classical and robust Heckit estimates somewhat differ
 - ⇒ Robust estimate is more reliable
- Monetary condition news remains insignificant
 ⇒ Support the conclusion of Sheen and Wang (2023)

- For both SR and LR inflation expectations, OLS and ML estimates are almost identical
 - \implies No sample selection bias (?)
- ML and Heckit estimates somewhat differ. For LR expectations, the bias correction term is significant
 ⇒ Sample selection bias
- Classical and robust Heckit estimates somewhat differ
 - ⇒ Robust estimate is more reliable
- Monetary condition news remains insignificant
 ⇒ Support the conclusion of Sheen and Wang (2023)

- For both SR and LR inflation expectations, OLS and ML estimates are almost identical
 - \implies No sample selection bias (?)
- 2. ML and Heckit estimates somewhat differ. For LR expectations, the bias correction term is significant ⇒ Sample selection bias
- Classical and robust Heckit estimates somewhat differ
 - ⇒ Robust estimate is more reliable
- 4. Monetary condition news remains insignificant
 ⇒ Support the conclusion of Sheen and Wang (2023)

- For both SR and LR inflation expectations, OLS and ML estimates are almost identical
 - \implies No sample selection bias (?)
- 2. ML and Heckit estimates somewhat differ. For LR expectations, the bias correction term is significant ⇒ Sample selection bias
- 3. Classical and robust Heckit estimates somewhat differ
 - ⇒ Robust estimate is more reliable
- Monetary condition news remains insignificant
 ⇒ Support the conclusion of Sheen and Wang (2023)

- For both SR and LR inflation expectations, OLS and ML estimates are almost identical
 - \implies No sample selection bias (?)
- 2. ML and Heckit estimates somewhat differ. For LR expectations, the bias correction term is significant
 ⇒ Sample selection bias
- 3. Classical and robust Heckit estimates somewhat differ
 - ⇒ Robust estimate is more reliable
- 4. Monetary condition news remains insignificant
 ⇒ Support the conclusion of Sheen and Wang (2023)

- For both SR and LR inflation expectations, OLS and ML estimates are almost identical
 - \implies No sample selection bias (?)
- 2. ML and Heckit estimates somewhat differ. For LR expectations, the bias correction term is significant ⇒ Sample selection bias
- 3. Classical and robust Heckit estimates somewhat differ
 - ⇒ Robust estimate is more reliable
- 4. Monetary condition news remains insignificant
 - \implies Support the conclusion of Sheen and Wang (2023)

- For both SR and LR inflation expectations, OLS and ML estimates are almost identical
 - \implies No sample selection bias (?)
- 2. ML and Heckit estimates somewhat differ. For LR expectations, the bias correction term is significant
 ⇒ Sample selection bias
- 3. Classical and robust Heckit estimates somewhat differ
 - ⇒ Robust estimate is more reliable
- 4. Monetary condition news remains insignificant
 ⇒ Support the conclusion of Sheen and Wang (2023)

- One cannot assume a priori that DK responses are ignorable. Use a sample selection model.
- ML and Heckit estimates may be quite different, perhaps because of model misspecification.
- Use a robust Heckit estimator for robustness checks.

- One cannot assume *a priori* that DK responses are ignorable. Use a sample selection model.
- ML and Heckit estimates may be quite different, perhaps because of model misspecification.
- Use a robust Heckit estimator for robustness checks.

- One cannot assume a priori that DK responses are ignorable. Use a sample selection model.
- ML and Heckit estimates may be quite different, perhaps because of model misspecification.
- Use a robust Heckit estimator for robustness checks.

- One cannot assume a priori that DK responses are ignorable. Use a sample selection model.
- ML and Heckit estimates may be quite different, perhaps because of model misspecification.
- Use a robust Heckit estimator for robustness checks.

- 1. Global misspecification
 - · Our model may not be even approximately correct
 - Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - Can include them using DK dummies
 conditional heteroskedasticity
 - Need a robust generalized Heckit estimator
- Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

1. Global misspecification

- · Our model may not be even approximately correct
- Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - Can include them using DK dummies
 ⇒ conditional heteroskedasticity
 - Need a robust generalized Heckit estimator
- 3. Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

- 1. Global misspecification
 - · Our model may not be even approximately correct
 - Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - Can include them using DK dummies
 ⇒ conditional heteroskedasticity
 - Need a robust generalized Heckit estimator
- Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

- 1. Global misspecification
 - · Our model may not be even approximately correct
 - Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - Can include them using DK dummies
 conditional heteroskedasticity
 - Need a robust generalized Heckit estimator
- Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

- 1. Global misspecification
 - Our model may not be even approximately correct
 - Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - Can include them using DK dummies
 conditional heteroskedasticity
 - Need a robust generalized Heckit estimator
- Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

- 1. Global misspecification
 - · Our model may not be even approximately correct
 - Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - · Can include them using DK dummies
 - \Longrightarrow conditional heteroskedasticity
 - Need a robust generalized Heckit estimator
- 3. Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

- 1. Global misspecification
 - · Our model may not be even approximately correct
 - Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - Can include them using DK dummies
 ⇒ conditional heteroskedasticity
 - Need a robust generalized Heckit estimator
- Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

- 1. Global misspecification
 - · Our model may not be even approximately correct
 - Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - Can include them using DK dummies
 ⇒ conditional heteroskedasticity
 - · Need a robust generalized Heckit estimator
- 3. Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

- 1. Global misspecification
 - · Our model may not be even approximately correct
 - Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - Can include them using DK dummies
 ⇒ conditional heteroskedasticity
 - Need a robust generalized Heckit estimator
- 3. Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

- 1. Global misspecification
 - · Our model may not be even approximately correct
 - Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - Can include them using DK dummies
 ⇒ conditional heteroskedasticity
 - · Need a robust generalized Heckit estimator
- 3. Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

- 1. Global misspecification
 - · Our model may not be even approximately correct
 - Need a robust semi/non-parametric estimator
- 2. DK responses in explanatory variables
 - Can include them using DK dummies
 ⇒ conditional heteroskedasticity
 - Need a robust generalized Heckit estimator
- 3. Unit nonresponses
 - Need additional information, e.g., regional nonresponse rates
- 4. Qualitative information in DK responses
 - Combine data on the direction and percentage of inflation expectations

- Ehrmann, M., Pfajfar, D., & Santoro, E. (2017). Consumers' attitudes and their inflation expectations.

 International Journal of Central Banking, 47, 225–259.
- Sheen, J., & Wang, B. Z. (2023). Do monetary condition news at the zero lower bound influence households' expectations and readiness to spend? *European Economic Review, 152*(104345).
- Tsiaplias, S. (2020). Time-varying consumer disagreement and future inflation. *Journal of Economic Dynamics and Control*, 116(103903).
- Tsiaplias, S. (2021). Consumer inflation expectations, income changes and economic downturns. *Journal of Applied Econometrics*, 36, 784–807.

- Wang, B. Z., Sheen, J., Trück, S., Chao, S.-K., & Härdle, W. K. (2020). A note on the impact of news on US household inflation expectations. *Macroeconomic Dynamics*, 24, 995–1015.
- Zhelonkin, M., Genton, M. G., & Ronchetti, E. (2016). Robust inference in sample selection models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 78, 805–827.