Table 2: Detailed Architecture Configurations of Different EfficientViT Variants. We build a series of models to fit different efficiency constraints. 'C' denotes the number of channels. 'L' denotes the number of blocks. 'H' is the height of

the feature map, and 'W' is the width of the feature map.

	(65)V			(42)	
Variants	Feature Map Shape	EfficientViT-B0	EfficientViT-B1	EfficientViT-B2	EfficientViT-B3
Input Stem	$C \times \frac{H}{2} \times \frac{W}{2}$	C = 8, L = 1	C = 16, L = 1	C = 24, L = 1	C = 32, L = 1
Stage1	$C \times \frac{H}{4} \times \frac{W}{4}$	C = 16, L = 2	C = 32, L = 2	C = 48, L = 3	C = 64, L = 4
Stage2	$C \times \frac{H}{8} \times \frac{W}{8}$	C = 32, L = 2	C = 64, L = 3	C = 96, L = 4	C = 128, L = 6
Stage3	$C \times \frac{H}{16} \times \frac{W}{16}$	C = 64, L = 2	C = 128, L = 3	C = 192, L = 4	C = 256, L = 6
Stage4	$C \times \frac{H}{32} \times \frac{W}{32}$	C = 128, L = 2	C = 256, L = 4	C = 384, L = 6	C = 512, L = 9
Head	$C \times \frac{H}{8} \times \frac{W}{8}$	C = 32, L = 1	C = 64, L = 3	C = 96, L = 3	C = 128, L = 3

- 降维和升维
- 跨通道信息交互 ● 增加非线性特性

Figure 4: Macro Architecture of EfficientViT. We adopt the standard backbone-head/encoder-decoder design. In the backbone, we insert our lightweight MSA modules in Stages 3 and 4. Following the common practice, we feed the features from the last three stages (P2, P3, and P4) to the head. We use addition to fuse these features for simplicity and efficiency. As we already have lightweight MSA modules in the backbone, we adopt a simple head design that consists of several MBConv blocks and output layers.

C: 3,244,244->32,112,112 C: 32,112,112->32,112,112

ResBlock

Conv_3x3+bn+gelu

Conv_3x3+bn

shortcut

stage0

FusedMBConv Conv_3x3_s2+bn+gelu

C: 32->512->64,56,56

C: 64->256->64,56,56

FusedMBConv

Conv_3x3+bn+gelu

Conv_1x1+bn

shortcut

stage1

Conv_3x3_s2+bn+gelu Conv_1x1+bn

> FusedMBConv Conv_3x3+bn+gelu

C: 64->1024->128,28,28

C: 128->512->128,28,28

FusedMBConv

Conv_3x3_s2+bn+gelu

Conv_1x1+bn

Conv_1x1+bn shortcut

stage2

C: 512,7,7->512,7,7 C: 512,7,7->3072->512,7,7 MBConv

C: 128->2048->256,14,14

C: 256->1024->256,14,14

MBConv

Conv_1x1+gelu

Conv_3x3_s2+gelu

Conv_1x1+bn

MBConv (

Conv_1x1+gelu

Conv_3x3+gelu

Conv_1x1+bn

shortcut

stage3

Conv_1x1+gelu Conv_3x3_s2+gelu Conv_1x1+bn

C: 256->6144->512,7,7

EfficientViTBlock x 6 multi-scale-attention qkv: conv_1x1

aggreg: conv_5x5/1x1 kernel_fun: Relu proj: conv1x1+bn

> MBConv Conv_1x1+gelu Conv_3x3+gelu Conv_1x1+bn

C: 512->3072 C: 3072->3200 C: 3200->1000

MBConv Conv_1x1+bn+gelu AdaptiveAvgPool Linear+ln+gelu Linear

Head

stage4