Problem Solving Set 1

Sven Bergmann

January 24, 2024

Warning: package 'knitr' was built under R version $4.3.2\,$

```
set.seed(1401)
```

Part 1

- $\bullet\,$ spikes between 50 and 70
- ullet centered around 2
- no patterns / random scatter

Y_2

- more variation than Y_1
- \bullet still centered at 2
- no patterns

Y_3

- similar to Y_1
- spike at 70

Y_4

- ullet centered at 2
- spike near 60
- random scatter

- similar to Y_1, Y_3
- spike at / around 90

```
par(mfrow = c(3, 2))
for (i in 1:5) {
    qqnorm(series_list[, i], main = expression(paste("Normal Probability Plot of Y"[i[t]])))
    abline(a = 0, b = 1, col = "red")
}
```


- not linear, - heavy right tail -> skewed right

```
par(mfrow = c(3, 2))
for (i in 1:5) {
   hist(series_list[, i], xlab = expression(paste("Y"[i[t]])),
        main = expression(paste("Histogram of Y"[i[t]])))
}
```


Expectations

- properties of a t-dist.
- look somewhat normal
- unimodal
- \bullet symmetric
- ullet centered about 0
- random scatter / no patterns property of random sample

series_list <- replicate(5, as.ts(rt(n, 5, ncp = 0)))</pre>

```
n <- 100
```

```
par(mfrow = c(3, 2))
for (i in 1:5) {
    plot(series_list[, i], type = "l", xlab = expression("Time"),
        ylab = expression(paste("Y"[i][t])), main = expression(paste("Time Series Plot of Y"[1[i]])))
}
```


 Y_1

- \bullet centered at 0
- spike at 50
- random scatter / no patterns

- \bullet signs of uneven spread
- suggests nonstationary series
- \bullet centered at 0
- no patterns

Y_3

- centered at 0
- \bullet random scatter
- fairly even spread

Y_4

- ullet centered at 0
- possible periodic pattern
- fairly even spread

- centered at 0
- random scatter
- fairly even spread

```
par(mfrow = c(3, 2))
for (i in 1:5) {
    qqnorm(series_list[, i], main = expression(paste("Normal Probability Plot of Y"[i[t]])))
    abline(a = 0, b = 1, col = "red")
}
```


Y_1

- heavy right tail
- left side tail resembles that of a normal distribution

Y_2

- two heavy tails
- middle looks really normal

Y_3

• heavy tails

- middle looks okay
- lighter than tails of Y_2

- both tails are heavy
- $\bullet \;$ middle is linear

 Y_5

• similar to Y_4

```
par(mfrow = c(3, 2))
for (i in 1:5) {
    hist(series_list[, i], xlab = expression(paste("Y"[i[t]])),
        main = expression(paste("Histogram of Y"[i[t]])))
}
```


Histogram of Y_{i_t}