Since a.g., we know that the g-coordinate of the vertex is a minimum. However to find the g-coordinate of our vertex we first need to find the h-coordinate of the vertex by using $h_2 - \frac{b}{2} = -\frac{10}{2} = -\frac{5}{2}$. Now that we have the h-coordinate, we can find the g-coordinate of the vertex by using $h_2 - \frac{b}{2} = -\frac{10}{2} = -\frac{5}{2}$. Now that we have the h-coordinate of the vertex by using $h_2 - \frac{b}{2} = -\frac{10}{2} = -\frac{5}{2}$.

Quadratic function: is a function that can be written in the form:

of the vertex by finding $g(-\frac{5}{2}) = 3(-\frac{5}{2})^2 + 10(-\frac{5}{2}) + 25 = \frac{25}{2} - \frac{59}{2} + 25 = \frac{59}{2}$ Minimum = $\frac{59}{2}$

we have g(h)=3 h² + 10 h + 25, note: 3 h² + 10 h + 25 is in hg-plane

Here, we know that a=3, b=10, c=25

Salution g(h)=ah²-bh+c where a, b, and c are real numbers and a+0