LINEAR ALGEBRA

Incalculas

Updated on: November 25, 2022

CONTENTS

1		TOR SPACE	
		What is a Vector Space?	
	1.2	Definition of Fields	- 2
		Definition of Vector Spaces	
	1.4	Vector Subspaces	- 4
2	SPAN	A AND LINEAR INDEPENDENCE	- 4
		Definition of Span	
	2.2	Linear (In)dependence	- 5
3	Basis	S AND DIMENSION OF A VECTOR SPACE	- 6
	3.1		
	3.2	Replacement Theorem	- 7
	3.3	Direct Sum	. 8
4	Quot	TIENT SPACES · · · · · · · · · · · · · · · · · · ·	- 10
	4.1	Quotient Spaces	. 10
5	LINE	ar Maps	- 11
	5.1	Linear Maps	- 11
	5.2	Null Space	
	5.3	3	
		Null space and Range as vector subspaces	
		Rank Nullity Theorem	
6		ORPHISM, MATRICES AND LINEAR MAPS AS VECTOR SPACES	
		Linear Isomorphism	
		Linear maps as vectors	
		Ordered Basis	
		Matrix Representation	
7	DUAL	SPACES AND DUAL MAPS.	
	7.1		
	7.2		
	7.3	Dual Maps	25
8	MATE	RICES	
	8.1	Expected properties of matrix multiplication	- 26
	8.2	3	- 27
	8.3	Invertibility	- 28
		Similar matrices	
	8.5	Trace	- 30

1 VECTOR SPACE

1.1 What is a Vector Space?

Vector space is a set with a binary operation

$$+: V \times V \rightarrow V$$

Key properties of a vector space:

• i) Commutativity

$$A + B = B + A$$

• ii) Associativity

$$A + (B + C) = (A + B) + C$$

• iii) Identity

$$\exists 0 \in V$$

s.t
$$v + 0 = v, \forall v \in V$$

• iv) Inverse

given
$$v \in V$$
, $\exists v' \in V$

s.t
$$v + v' = 0$$

A set of scalars associated with a vector space is a Field

1.2 Definition of Fields

DEFINITION 1.1 (Fields)

$$(F, +, \cdot)$$

- (F, +) Satisfies i) to iv) [an abelian group]
- $(F \{0\}, \cdot)$ Satisfies i) to iv) [an abelian group]
- · is distributive over +

Example 1.2 (Binary field)

$$\{0,1\}$$

Addition:

$$0+1=1=1+0$$

$$1 + 1 = 0$$

Multiplication:

$$1 \cdot 0 = 0 = 0 \cdot 1$$

$$1 \cdot 1 = 1$$

$$0 \cdot 0 = 0$$

What a field does to a vector in a vector space:

$$\gamma, \mu \in F, v, w \in V$$

$$\gamma \cdot (v + w) = (\gamma v + \gamma w)$$

$$(\gamma + \mu) v = \gamma v + \mu v$$

$$\mu\left(\gamma \cdot v\right) = \left(\mu\gamma\right)v$$

Properties of a vector space *V* over field *F*: $u, v, w \in V$ and $a, b \in F$

- 1) u + v = w = v + u
- 2) u + (v + w) = (u + v) + w
- 3) $\exists 0 \in V, \text{ s.t } 0 + v = v$
- 4) $\exists v' \in V, \text{ s.t } v + v' = 0$
- 5) $\exists 1 \in F$, s.t $1 \cdot v = v$
- 6) $(ab) \cdot v = a \cdot (bv)$
- 7) $a \cdot (v + w) = a \cdot v + a \cdot w$
- 8) $(a+b) \cdot v = a \cdot v + b \cdot v$

Example 1.3 set $V = \{0\}$ over the field \mathbb{R}

Example 1.4 set \mathbb{R} , \mathbb{R}^2 , $\mathbb{R}^3 \dots \mathbb{R}^n$ over the field \mathbb{R}

1.3 Definition of Vector Spaces

DEFINITION 1.6 (Vector Space)

$$(V, F, +, \cdot)$$

- (V, +) is an Abelian group
- $\cdot: F \times V \to V$ is associative and follows distributivity

EXAMPLE 1.7

 \mathbb{Q} , \mathbb{R} , \mathbb{C} are all fields

Proposition 1.8 Any field $F \subset \mathbb{R}$ contains \mathbb{Q}

Proof | We assume normal addition and multiplication

$$\forall a \in \mathbb{Q}, a = \frac{p}{q}$$

where $p, q \in \mathbb{Z}$

 $0,1 \in F$, as (F,+) and $(F-\{0\},\times)$ is an abelian groups. As + is closed $1+1=2 \in F$ and $2+1=3\in F$ and so on. By inverse property of +, we know $-1,-2,-3\cdots\in F$, therefore $\mathbb{Z}\in F$. By inverse property of \times , we know $\{1/a : a \in \mathbb{Z}\} \in F$. Since \times is closed, $S = \{a/b : a, b \in \mathbb{Z}\} \in F$, set *S* is just \mathbb{Q} . Therefore $Z \in F$ if $F \subset \mathbb{R}$ is a field.

Properties of fields:

1) Cancellation law, If a + b = a + c then b = c

- 2) Additive identity is unique
- 3) Additive inverse is unique
- 4) Multiplicative identity is unique
- 5) Multiplicative inverse is unique
- 6) if $a \cdot b = a \cdot c$ then b = c if $a \neq 0$

Properties of Vector spaces:

- 1) Cancellation law, If a + b = a + c then b = c
- 2) Additive identity is unique
- 3) Additive inverse is unique
- 4) $0 \cdot v = 0 \rightarrow$ is the null vector

Matrices as Vector spaces:

$$M_{n\times m}\left(\mathbb{R}\right)$$

- Addition is entry wise
- $0_{n \times m}$ the additive identity
- Scaling is entry wise

 $M_{n\times m}$ looks like $\mathbb{R}^{n.m}$

1.4 Vector Subspaces

DEFINITION 1.9 (Vector Subspace) W is said to be a vector subspace of V if

- W ⊆ V
- W is a vector subspace

Example 1.10 $P(\mathbb{R})$ is the set of all polynomials. $P_n(\mathbb{R})$ is the set of all polynominals of degree at most n.

•
$$P_0(\mathbb{R}) \subset P_1(\mathbb{R}) \subset P_1(\mathbb{R}) \subset P_3(\mathbb{R}) \subset \dots P_n(\mathbb{R})$$

• $\{a_0 + a_2 x^2 + a_4 x^4 \cdots : a_i \in \mathbb{R}\}$

Example 1.11 $M_n(\mathbb{R})$ is the set of all $n \times n$ matrices

- Set of all symmetric matrices, $S = \{A : A \in M_n(\mathbb{R}), A = A^t\}$
- $T = \{A : A \in M_n(\mathbb{R}), Tr(A) = 0\}$

2 Span and Linear Independence

2.1 Definiton of Span

DEFINITION 2.1 (Span)

$$\mathrm{span}(S) = \{ \gamma_1 v_1 + \gamma_2 v_2 \dots \gamma_k v_k : v_i \in S, \gamma_i \in F \}$$

$$S = \{1, x, x^2\}$$

$$\operatorname{span}(S) = P_2(\mathbb{R})$$

Example 2.3

$$S = \{(1,0,0), (0,1,0), (0,0,1)\}$$

$$span(S) = \mathbb{R}^{2}$$

EXAMPLE 2.4

$$S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \right\}$$
$$\operatorname{span}(S) = M_2(\mathbb{R})_{sym}$$

Properties of Span:

- 1) span(S) is always a subspace containing S as,
 - + is closed and

Scaling operation is also closed.

- 2) For a subspace $S \subseteq W$, $S \subseteq \text{span}(S) \subseteq W$
- 3) span (S) is the smallest subspace containg S.

That is, span (*S*) is the intersection of all subspaces containing *S*.

4) span $(\emptyset) = \{0\}$

This is more of a convention, or you can arrive at this by following the above definition of Span.

- 5) $S_1 \subseteq S_2$ implies span $(S_1) \subseteq$ span (S_2)
- 6) $\operatorname{span}(\operatorname{span}(S)) = \operatorname{span}(S)$
- 7) span (W) = W if and only if W is a subspace.
- 8) $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$ where $A + B = \{a + b : a \in A, b \in B\}$

2.2 Linear (In)dependence

Given a non empty set S, consider span (S). Is there an element $v \in S$ such that, span (S) = span $(S - \{v\})$?

Then *S* is linearly dependent.

EXAMPLE 2.6

$$S = \{(0,0,0), (0,1,0), (0,0,e)\}$$

$$span(S) = \{(0,a,b) : a,b \in \mathbb{R}\} = span(S - \{(0,0,0)\})$$

For span $(S) = \text{span}(S - \{v\})$, there exists $v_1, v_2, \dots, v_k \in S - \{v\}$ and scalars $\gamma_1, \gamma_2, \dots, \gamma_k \in F$ such that,

$$V = \sum_{i=1}^{k} \gamma_i v_i$$

as $0 \notin S$, not all γ_i can be 0.

DEFINITION 2.7 (Linear Dependence) A subset $S \subseteq V$ is said to be linearly dependent if there exists scalars, $\gamma_1, \gamma_2, \ldots, \gamma_k \in F$ such that for $v_1, v_2, \ldots, v_k \in S$

$$\gamma_1 v_1 + \gamma_2 v_2 + \dots + \gamma_k v_k = 0$$

Where not all $\gamma_i = 0$ and v_i are all distinct.

Definition 2.8 (Linear Independence) A subset $S \subseteq V$ is said to be linearly independent if there exists no scalars, $\gamma_1, \gamma_2, \dots \gamma_k \in F$ such that for $v_1, v_2, \dots, v_k \in S$

$$\gamma_1 v_1 + \gamma_2 v_2 + \dots + \gamma_k v_k = 0$$

Where not all $\gamma_i = 0$ and v_i are all distinct.

Example 2.9 $V = P(\mathbb{R}), S = \{1 + x, 1 - x, x^2, 2x^2 - 1\}$

$$\frac{1}{2}(1+x) + \frac{1}{2}(1-x) + (2x^2 - 1) + (-2)x^2 = 0$$

$$S' = \{1 + x, 1 - x, x^2\}$$

PROPOSITION 2.11 if *S* is linearly independent and $\exists v \notin \text{span}(S)$ then $S \cup \{v\}$ is linearly independent.

Proof | let γ , γ_1 , ..., $\gamma_k \in F$ and v_1 , ..., $v_k \in S$

$$\gamma_1 v 1 + \dots + \gamma_k v_k + \gamma v = 0$$

case 1: $\gamma = 0$,

$$\gamma_1 v 1 + \cdots + \gamma_k v_k = 0$$

as *S* is linearly independent $\gamma_i = 0$ therefore,

$$\gamma_1, \gamma_2, \ldots, \gamma_k, \gamma = 0$$

therefore $S \cup \{v\}$ is linearly independent.

case 2: $\gamma \neq 0$,

$$v = \frac{-\gamma_1}{\gamma}v_1 + \dots + \frac{-\gamma_k}{\gamma}v_k$$

but $v \notin \text{span}(S)$, therefore this case is not possible.

3 Basis and Dimension of a vector space

3.1 Basis and Dimension

DEFINITION 3.1 (Basis) set $\beta \subseteq V$ is called the basis of V if

- 1) β is linearly independent.
- 2) β spans V

DEFINITION 3.2 (Dimension) For β being a basis of V, $\dim_F V = |\beta|$

3.2 Replacement Theorem

THEOREM 3.3 (Replacement Theorem) Let $S \subseteq V$ be a finite set which spans V and let $L \subseteq V$ be a finite linearly independent subset, then,

- 1) $|L| \le |S|$
- 2) $\exists T \subseteq S$ (T is of size |S| |L|) such that $T \cup L$ spans V

Proof

$$L = \{u_1, \dots, u_m\}$$
$$S = \{v_1, \dots, v_n\}$$
$$u_m \in V = \operatorname{span}(S)$$

therefore,

$$u_m = a_1 v_1 + \dots + a_n v_n$$

as u_m is in L a linearly independent set, u_m cannot be 0, therefore, all of a_i cannot be zero as well. Let $a_n \neq 0$.

$$v_n = \frac{1}{a_n} u_m + \frac{-a_1}{a_n} v_1 + \dots + \frac{-a_{n-1}}{a_n} v_{n-1}$$
$$v_n \in \text{span}\{v_1, \dots, v_{n-1}, u_m\} = \text{span}(S) = V$$

similarly,

$$u_{m-1} \in V = \operatorname{span}\{v_1, \dots, v_{n-1}, u_m\}$$

therefore,

$$u_{m-1} = a_1v_1 + \cdots + a_{n-1}v_{n-1} + b_mu_m$$

as u_{m-1} and u_m are linearly independent, therefore all of a_i cannot be 0

$$v_{n-1} = \frac{1}{a_{n-1}} u_{m-1} + \frac{-b_m}{a_{n-1}} u_m + \frac{-a_1}{a_{n-1}} v_1 \dots + \frac{-a_{n-2}}{a_{n-1}} v_{n-2}$$

$$v_{n-1} \in \text{span}\{v_1, \dots, v_{n-1}, u_{m-1}, u_m\} = \text{span}(S) = V$$

Now iterate this process to get,

$$S' = \{v_1, \ldots, v_{n-m}, u_1, \ldots, u_m\}$$

Where S' spans V,

$$\operatorname{span}(S') = V$$

If n < m then, there will be a point when iterating the steps where a proper subset of L will span V, which would not be possible since this breaks the linear independence of L. The set *T* from the theorem is,

$$T = S' - L$$

If $S \subseteq V$ spans V and $L \subseteq V$ is an linearly independent subset, then $|L| \leq |S|$.

COROLLARY 3.5 Given 2 basis of the same vector space V, β and β' .

$$|\beta| = |\beta'|$$

Proof | Set $S = \beta$ and $L = \beta'$. β spans V by definition of basis and β' is linearly independent by definition of basis.

Now according to 1) of replacement theorem, we get.

$$|\beta| \leq |\beta'|$$

Similarly, we can swap *S* and *L* to get,

$$|\beta| \ge |\beta'|$$

$$|\beta| = |\beta'|$$

Corollary 3.7 Let V be a vector space of finite dimension n, then

- 1) Any finite spanning set S, $|S| \ge n$, if |S| = n then S is a basis.
- 2) Any linearly independent set L, $|L| \le n$, if |L| = n, then L spans V.
- 3) Any linearly independent set *L* can be extended to form a basis of *V*.

Corollary 3.8 Let V be a finite dimensional vector space over the field F and let $W \subseteq V$ be a subspace, then,

$$\dim_F(W) \leq \dim_F(V)$$

If equality holds, then, V = W.

Proof Let β be a basis of V of size n. Now look at span $\{\emptyset\} = \{0\}$, if it is W then we are done, if not, we choose $u_1 \in W$ which is non zero, $L_1 = \{u_1\} \subseteq W$ is linearly independent. We check again if span $(L_1) = W$, if it is then we are donem, if it isn't then we choose $u_2 \in W \setminus \text{span}(L_1)$. We iterate this process until we get $\beta_\circ = \{u_1, \dots, u_k\}$ which spans W. This set is linearly independent by construction (refer to proposition 2.11). Using 1) from replacement theorem, using β as S and β_c irc as L, we get,

$$|\beta_{\circ}| < |\beta|$$

which is the same as,

$$\dim_F(W) \leq \dim_F(V)$$

And using corollary 3.8 we can say that the equality implies V = W.

Given subspace W of vector space V, with β_{\circ} as the basis of W, we can extend the basis β_{\circ} to β as a basis for V

3.3 Direct Sum

Let W_1 and W_2 be subspaces of a finite dimensional vector space V. Then $W_1 + W_2$ is also a subspace.

Case A:
$$W_1 \cap W_2 = \{0\}$$

DEFINITION 3.10 (Direct Sum) Given subspaces W_1 and W_2 of a finite dimensional vector space V, if $W_1 \cap W_2 = \{0\}$ then the vector subspace $W_1 + W_2$ is known as the direct sum.

Case B: $W_1 \cap W_2 \neq \{0\}$

$$\dim_F (W_1 + W_2) = \dim_F (W_1) + \dim_F (W_2) - \dim_F (W_1 \cap W_2)$$

Proof | Start with basis of $W_1 \cap W_2$, $\beta_\circ = \{u_1, \ldots, u_k\}$. Now extend this basis to a basis of W_1 , $\beta_1 = \{u_1, \dots, u_k, w_1, \dots, w_l\}$ and similarly for $W_2, \beta_2 = \{u_1, \dots, u_k, w_1', \dots, w_m\}$

$$\beta = \beta_1 \cup \beta_2$$

$$\beta = \{u_1, \dots, u_k, w_1, \dots, w_l, w_1', \dots, w_m'\}$$

As any element in $W_1 + W_2$ can be represented by a linear combination of elements of β , β spans $W_1 + W_2$. To show that β is linearly independent,

$$c_1u_1 + \cdots + c_ku_k + d_1w_1 + \cdots + d_lw_l + \gamma_1w_1' + \cdots + \gamma_mw_m' = 0$$

$$=> c_1u_1 + \cdots + c_ku_k + d_1w_1 + \cdots + d_lw_l = -\gamma_1w_1' - \cdots - \gamma_mw_m' = v$$

Clearly $v \in W_1$ and $v \in W_2$, therefore $v \in W_1 \cap W_2$, therefore v can be written as,

$$v = c_1'u_1 + \cdots + c_k'u_k$$

$$=> c_1u_1 + \cdots + c_ku_k + d_1w_1 + \cdots + d_lw_l = -\gamma_1w_1' - \cdots - \gamma_mw_m' = v = c_1'u_1 + \cdots + c_k'u_k$$

From these 2 equations, we are able to determine that β is linearly independent, We have,

$$-\gamma_1 w_1' - \cdots - \gamma_m w_m' = c_1' u_1 + \cdots + c_k' u_k$$

 $\{u_1,\ldots,u_k,w_1',\ldots,w_m'\}$ is a linear independent set, therefore,

$$\gamma_1 = \cdots = w_m' = c_1' = \cdots = c_k' = 0$$

Similarly, we have,

$$c_1u_1 + \cdots + c_ku_k + d_1w_1 + \cdots + d_lw_l = c_1'u_1 + \cdots + c_k'u_k$$

We know $c_1' = \cdots = c_k' = 0$, therefore,

$$c_1u_1 + \cdots + c_ku_k + d_1w_1 + \cdots + d_1w_1 = 0$$

 $\{u_1, \ldots, u_k, w_1, \ldots, w_l\}$ is a linear independent set, therefore,

$$\gamma_1 = \cdots = w_m' = c_1 = \cdots = c_l = 0$$

Therefore the only solution for

$$c_1u_1 + \cdots + c_ku_k + d_1w_1 + \cdots + d_lw_l + \gamma_1w_1' + \cdots + \gamma_mw_m' = 0$$

is all the scalars being equal to zero, which implies linear independence of β . Therefore β is both linearly independent and spans $W_1 + W_2$, which makes it a basis for $W_1 + W_2$.

$$\dim_{F}(W_{1}) = |\beta_{1}| = k + l$$

$$\dim_{F}(W_{2}) = |\beta_{1}| = k + m$$

$$\dim_{F}(W_{1} + W_{2}) = |\beta| = k + l + m$$

$$\dim_{F}(W_{1} \cap W_{2}) = |\beta_{\circ}| = k$$

$$:: \dim_F (W_1 + W_2) = \dim_F (W_1) + \dim_F (W_2) - \dim_F (W_1 \cap W_2)$$

Proposition 3.11 If V is the direct sum, $W_1 + W_2$ then $v \in V$ can be uniquely expressed as $w_1 + w_2$ where $w_1 \in W_1$ and $w_2 \in W_2$.

Proof | Let, $v = w_1 + w_2 = w_1' + w_2'$ then, $w_1 - w_1' = w_2 - w_2' = x$. therefore $x \in W_1 \cap W_2$ and by definition of direct sum, $x \in \{0\}$, therefore x = 0. Which gives us, $w_1 = w_1$ and $w_2 = w_2$.

4 QUOTIENT SPACES

4.1 Quotient Spaces

Goal is to create a new vector space out of $W \subseteq V$, define an equivalence relation \sim_W on V. $v_1 \sim_W v_2$ if and only if $v_1 - v_2 \in W$

- *Reflexive* Yes, if $0 \in W$.
- *Symmetric* Yes, if whenever, $v_1 v_2 \in W$ implies $v_2 v_1 \in W$, ie, $-(v_1 v_2) \in W$.
- transitivity Yes, if whenever $v_1 v_2 \in W$ and $v_2 v_3 \in W$ implies $v_1 v_3 = (v_1 v_2) +$ $(v_2-v_3)\in W.$

Starting with any arbitary subset of *V* we end with a subspace of *V* due to the conditions that needs to be satisfied for \sim_W to be an equivalence relation.

For any eqivalence relation \sim on an arbitary set S, an equivalence class is given by.

$$[s] = \{s' : s' \in S, s' \sim s\}$$

Equivalence relations are disjoined and partition the set. that is either $[s] \cap [s'] = \emptyset$ or [s] = [s'].

For \sim_W ,

$$[v] = \{v_1 : v_1 - v \in W\}$$
$$[v] = \{v_1 = v + w : w \in W\}$$
$$[v] = v + W$$

 $[v_1] = [v_2]$ we translate via W,

$$v_1 + W = v_2 + W$$
$$v_1 = v_2 + W$$
$$v_1 - v_2 = w \in W$$

Therefore $[v_1] = [v_2]$ if and only if $v_1 - v_2 \in W$.

We can create a new vector space, where each element is an equivalence class of the equivalence relation \sim_W . Consider the set of all equivalence class of the relation \sim_W , V/W.

Addition under the vector space V/W,

$$+: V/W \times V/W \rightarrow V/W$$

$$[v_1] + [v_2] = [v_1 + v_2]$$

Scaling,

$$\times : F \times V/W \rightarrow V/W$$

$$(\gamma, [v]) \rightarrow [\gamma v]$$

5 LINEAR MAPS

5.1 Linear Maps

Given vector spaces *V*, *W* (over the same field *F*) and linear map *T*.

$$T: V \to W$$

T should be compatible with the structures of the vector spaces $\forall v_1, v_2, v \in V$ and $\forall \gamma \in F$.

•
$$T(v_1 + v_2) = Tv_1 + Tv_2$$

•
$$T(\gamma v) = \gamma T v$$

EXAMPLE 5.1 (Scaling Linear Map)

$$T: \mathbb{R} \to \mathbb{R}, x \to \gamma_{\circ} x$$

$$T(x+y) = \gamma_{\circ}(x+y) = \gamma_{\circ}x + \gamma_{\circ}y = Tx + Ty$$

$$T\left(\gamma y\right)=\gamma _{\circ }\left(\gamma y\right)=\gamma \left(\gamma _{\circ }y\right)=\gamma \left(Tx\right)$$

Example 5.3 (Dilation)

$$T: V \rightarrow V, v \rightarrow 2v (= v + v)$$

$$\gamma v \rightarrow 2 (\gamma v) = \gamma (2v) = \gamma (Tv)$$

If in the field, 2 = 0 then the map is the zero map, if not then it's a bijective map.

EXAMPLE 5.4 (Identity map)

$$I: V \rightarrow V, v \rightarrow v$$

Example 5.5 (Trivial map)

$$T_0: V \to W, v \to 0_w$$

Example 5.6 (Matrices)

$$A \in M_{n \times n} \left(\mathbb{R} \right)$$

$$L_A: \mathbb{R}^n \to \mathbb{R}^n$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \to A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$L_A \begin{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \end{pmatrix} = L_A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + L_A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$L_A \begin{pmatrix} \gamma \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \to \gamma L_A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

EXAMPLE 5.7 (Reflection)

$$T: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \to (x,-y)$$

This is for reflection across x-axis, for any other reflection the line as to pass through the origin because 0 has to be mapped to 0 and in general *T.T* gives us the identity map.

EXAMPLE 5.8 (Rotation)

$$T: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \to (-y, x)$$

This is rotaion of $\pi/2$ clockwise, for a more general rotaion,

$$T_{\theta}: \mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$||T(x,y)|| = ||(x,y)||$$

This is a property of every rotation linear map.

EXAMPLE 5.9 (Projection)

$$P: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \to (x,0)$$

$$Q: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \to (x-y,0)$$

$$P^2 = P.P = P$$

$$Q^2 = Q.Q = Q$$

This is the defining property of a projection map.

EXAMPLE 5.10 (Inclusion)

$$T: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \to (x,y,0)$$
$$T': \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \to (x,y,ax+by)$$

5.2 Null Space

Definition 5.11 (Null Space) Given $T: V \to W$, null space N(T) is given by,

$$N(T) = \{v \in V : T(v) = 0_w\}$$

Example 5.12 (Scaling Linear Map)

$$T: \mathbb{R} \to \mathbb{R}, x \to \gamma_{\circ} x$$

$$N(T) = \{0\}$$

Example 5.13 (Dilation)

$$T: V \to V, v \to 2v \ (=v+v)$$

$$N(T) = \begin{cases} V & 2 = 0 \text{ in } F \\ \{0\} & 2 \neq 0 \text{ in } F \end{cases}$$

EXAMPLE 5.14 (Identity map)

$$I: V \to V, v \to v$$
$$N(T) = \{0\}$$

Example 5.15 (Trivial map)

$$T_0: V \to W, v \to 0_w$$

 $N(T) = V$

EXAMPLE 5.16 (Reflection)

$$T: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \to (x,-y)$$

$$N(T) = \{0\}$$

EXAMPLE 5.17 (Rotation)

$$T_{\theta}: \mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$N(T) = \{0\}$$

EXAMPLE 5.18 (Projection)

$$P: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \to (x,0)$$

$$N(P) = \{(0,y)\}$$

$$Q: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \to (x-y,0)$$

$$N(Q) = \{(x,y): x = y\}$$

Example 5.19 (Inclusion)
$$T:\mathbb{R}^2\to\mathbb{R}^3, (x,y)\to(x,y,0)$$

$$N\left(T\right)=\{0\}$$

$$T':\mathbb{R}^2\to\mathbb{R}^3, (x,y)\to(x,y,ax+by)$$

$$N\left(T\right)=\{0\}$$

5.3 Range

Definition 5.20 (Range) Given $T: V \to W$, null space R(T) is given by,

$$R(T) = \text{Image of } V \text{ under } T$$

Example 5.21 (Scaling Linear Map)

$$T: \mathbb{R} \to \mathbb{R}, x \to \gamma_{\circ} x$$

$$R(T) = \mathbb{R}$$

Example 5.22 (Dilation)

$$T: V \to V, v \to 2v (= v + v)$$

$$R(T) = \begin{cases} 0 \\ V \end{cases} \quad 2 = 0 \text{ in } F$$

$$2 \neq 0 \text{ in } F$$

Example 5.23 (Identity map)

$$I: V \to V, v \to v$$
$$R(T) = V$$

Example 5.24 (Trivial map)

$$T_0: V \to W, v \to 0_w$$

 $R(T) = \{0\}$

EXAMPLE 5.25 (Reflection)

$$T: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \to (x,-y)$$

 $R(T) = \mathbb{R}^2$

EXAMPLE 5.26 (Rotation)

$$T_{\theta}: \mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$R(T) = \mathbb{R}^{2}$$

Example 5.27 (Projection)
$$P:\mathbb{R}^2\to\mathbb{R}^2, (x,y)\to(x,0)$$

$$R\left(P\right)=\{(x,0)\}$$

$$Q:\mathbb{R}^2\to\mathbb{R}^2, (x,y)\to(x-y,0)$$

$$R\left(Q\right)=\{(x,0)\}$$

Example 5.28 (Inclusion)
$$T:\mathbb{R}^2\to\mathbb{R}^3, (x,y)\to(x,y,0)$$

$$R\left(T\right)=\{(x,y,0)\}$$

$$T':\mathbb{R}^2\to\mathbb{R}^3, (x,y)\to(x,y,ax+by)$$

$$R\left(T\right)=\{(x,y,ax+by)\}$$

5.4 Null space and Range as vector subspaces

$$v_1, v_2 \in N(T), \gamma \in F$$

$$T(v_1 + v_2) = Tv_1 + Tv_2$$

$$T(v_1 + v_2) = 0 + 0 = 0$$

$$\therefore v_1 + v_2 \in N(T)$$

$$T(\gamma v_1) = \gamma T v_1 = \gamma 0 = 0$$

$$\therefore \gamma v_1 \in N(T)$$

Therefore N(T) is a subspace.

$$w_{1}, w_{2} \in R(T), \gamma \in F$$
 $w_{1} = Tv_{1}$
 $w_{2} = Tv_{2}$
 $w_{1} + w_{2} = Tv_{1} + Tv_{2} = T(v_{1} + v_{2})$
 $\therefore w_{1} + w_{2} \in R(T)$
 $w_{1} = Tv_{1}$
 $\gamma Tv_{1} = \gamma w_{1} = T(\gamma v_{1})$

$$\therefore \gamma w_1 \in R(T)$$

Therefore R(T) is a subspace.

EXAMPLE 5.29 (Differentiation)

$$D: P(\mathbb{R}) \to P(\mathbb{R}), P \to P'$$

$$a_0 + a_1 x + \dots + a_k x^k \to a_1 + 2a_2 x + \dots + ka_k x^{k-1}$$

$$D. (P_1 + P_2) = D.P_1 + D.P_2$$

$$D. (\gamma P_1) = \gamma D.P_1$$

$$D: P_n(\mathbb{R}) \to P_n(\mathbb{R})$$

$$N(D) = \{a_0 \in \mathbb{R}\}$$

$$R(D) = P_{n-1}(\mathbb{R})$$

EXAMPLE 5.30 (Integration)

$$I: P(\mathbb{R}) \to P(\mathbb{R}), P \to \int P dx$$

$$a_0 + \dots + a_k x^k \to a_0 x + \dots + \frac{a_k x^{k+1}}{k+1}$$

$$N(I) = \{0\}$$

$$R(I) = \{J(x) \in P_{n+1}(\mathbb{R}) : J(0) = 0\}$$

DEFINITION 5.31 (Nullity) Given a linear map, nullity of the linear map is the dimension of the null space.

DEFINITION 5.32 (Rank) Given a linear map, rank of the linear map is the dimension of the

5.5 Rank Nullity Theorem

THEOREM 5.33 (Rank Nullity) Let V be a finite dimensional vector space and W be any vector space, if $T: V \to W$ is a linear map then,

$$\dim_{F}(R(T)) + \dim_{F}(N(T)) = \dim_{F}V$$

Proof | Let $\beta_{\circ} = \{v_1, \dots, v_k\}$ be a basis of N(T), now extend this to a basis of V, β

$$\beta = \{v_1, \ldots, v_k, v_1', \ldots, v_l'\}$$

We know,

$$T(\beta) = \{0_w, T(v_1'), \dots, T(v_{l'})\}$$
$$L = \{T(v_1'), \dots, T(v_{l'})\}$$

Let's take,

$$\gamma_1 T\left(v_1'\right) + \dots + \gamma_l T\left(v_l'\right) = 0$$

$$T (\gamma_1 v_1' + \dots + \gamma_l v_l') = 0$$

$$\gamma_1 v_1' + \dots + \gamma_l v_l' \in N (T)$$

$$\gamma_1 v_1' + \dots + \gamma_l v_l' = \gamma_1' v_1 + \dots + \gamma_l' v_k$$

$$\gamma_1 v_1' + \dots + \gamma_l v_l' - \gamma_1' v_1 - \dots - \gamma_l' v_k = 0$$

By the linear independence of β we can conclude that,

$$\gamma_1 = \dots = v_l' = \gamma_1' = \gamma_l' = 0$$

Which gives us that L is linearly independent and this is a set which spans R(T) which makes it a basis of R(T)

$$\dim_{F}(R(T)) + \dim_{F}(N(T)) = |L| + |\beta_{\circ}| = l + k$$
$$\dim_{F}V = |\beta| = l + k$$
$$\therefore \dim_{F}(R(T)) + \dim_{F}(N(T)) = \dim_{F}V$$

Given a linear map $T: V \to W$, if $S \subseteq V$ spans V, then T(S) spans R(T).

Proof | Given
$$w = T(v) \in R(T)$$
, express $v = \sum \gamma_i v_i$, where $v_i \in S$ and $\gamma_i \in F$. $T(v) = \sum \gamma_i T(v_i) \implies T(v) \in \operatorname{span}(T(S))$

Corollary 5.35 Given a linear map, $T: V \to V$, where V is a finite dimensional vector space, then the following are equivalent.

- 1) *T* is injective
- 2) *T* is surjective

Proof | T is injective implies, $N(T) = \{0\} \implies \text{Nullity} = 0 \implies \text{Rank} = \dim_F V - 0 =$ $\dim_F V \implies R(T) = V \implies T$ is surjective.

T is surjective implies, $R(T) = V \implies \text{rank} = \dim_F V \implies \text{Nullity} = 0 \implies N(0) = \{0\}.$ If $Tv_1=Tv_2$ and $N\left(0\right)=\left\{0\right\}$, then, $T\left(v_1-v_2\right)=0 \implies v_1-v_2 \in N\left(T\right) \implies v_1-v_2 \in V$ $\{0\} \implies v_1 = v_2.$

Therefore, *T* is surjective implies injectivity as well.

As part of the above proof, we also proved that Null space being zero implies injectivity.

6 ISOMORPHISM, MATRICES AND LINEAR MAPS AS VECTOR SPACES

6.1 Linear Isomorphism

DEFINITION 6.1 (Linear Isomorphism) A linear map $T: V \to W$ between vector spaces V and W both over a common field *F* is called an isomorphism if *T* is bijective.

$$T: P_2(\mathbb{R}) \to \mathbb{R}^3, a + bx + cx^2 \to (a, b, c)$$

Zero in \mathbb{R}^3 is (0,0,0), clearly only polynominal which is mapped to it is 0. Therefore $N(T) = \{0\}$ and Nullity = 0. If $Tp_1 = Tp_2$, then, $T(p_1 - p_2) = (0,0,0)$ $T(a_1 - a_2 + (b_1 - b_2)x + (c_1 - c_2)x^2) = (0,0,0) \implies (a_1 - a_2, b_1 - b_2, c_1 - c_2) =$ $(0,0,0) \implies a_1 = a_2, b_1 = b_2, c_1 = c_2 \implies p_1 = p_2$, therefore T is injective. Rank = $\dim_F P_2(\mathbb{R}) - 0 = 3 \implies R(T) = \mathbb{R}^3$, therefore *T* is surjective. Therefore *T* is bijective.

When we say a vector space looks like another vector space, we mean that there exists a linear isomorphism from one vector space to another, ie V is isomorphic to W as a vector space.

EXAMPLE 6.4

$$T: M_2(\mathbb{R}) \to \mathbb{R}^4$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \to \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

Properties of isomorphic linear maps (we will take $T: V \to W$ as our isomorphic linear map to discuss the properties):

1) $T^{-1}: W \to V$ is a linear map

Proof | For $w_1, w_2 \in W$ there exists unique $v_1, v_2 \in V$ such that, $Tv_1 = w_1$ and $Tv_2 = w_2$ because of bijectivity of T, there also exists unique $v \in V$ such that, $Tv = w_1 + w_2$.

$$T^{-1}w_{1} = v_{1}, T^{-1}w_{2} = v_{2}$$

$$\implies v_{1} + v_{2} = T^{-1}w_{1} + T^{-1}w_{2}$$

$$\implies T(v_{1} + v_{2}) = T(T^{-1}w_{1} + T^{-1}w_{2})$$

$$\implies T(v_{1} + v_{2}) = T(T^{-1}w_{1}) + T(T^{-1}w_{2}) = w_{1} + w_{2}$$

$$\implies T(v_{1} + v_{2}) = w_{1} + w_{2}$$

Therefore unique $v = v_1 + v_2$. Therefore $T^{-1}(w_1 + w_2) = T^{-1}w_1 + T^{-1}w_2$.

For $w \in W$ there exists unique $v \in V$ such that, Tv = w because of bijectivity of T, there also exists unique $v' \in V$ such that, $Tv = \gamma w$.

$$T^{-1}w = v$$

$$\gamma T^{-1}w = \gamma v$$

$$\implies T(\gamma v) = T(\gamma T^{-1}w)$$

$$\implies T(\gamma v) = \gamma T(T^{-1}w) = \gamma w$$

$$\implies T(\gamma v) = \gamma w$$

Therefore unique $v' = \gamma v$. Therefore $T^{-1}(\gamma w) = \gamma T^{-1}w$

Showing that addition and scaling is closed is suffice to show that T^{-1} is a linear map.

2) $\gamma T: V \to W, V \to \gamma Tv$ is an isomorphic linear map.

Proof | Take v_1 , v_2 ∈ V, such that,

$$\gamma T v_1 = \gamma T v_2$$

$$\implies \gamma T (v_1 - v_2) = 0$$

$$\implies T (v_1 - v_2) = 0$$

$$\implies v_1 = v_2$$

This implies injectivity of γT .

Suppose γT is not surjective, then $\exists w \in W$ such that, $\forall v \in V$,

$$\gamma Tv \neq w$$

$$Tv \neq w/\gamma$$

But this is a contradiction given we know T to be a bijection, therefore γT has to be surjective, therefore is bijective and an isomorphism.

3) • a) If $T: V \to W$ is an injective linear map and $\{v_1, \ldots, v_n\}$ is a linearly independent set, then $\{Tv_1,\ldots,Tv_n\}$ is also a linearly independent set.

Proof

$$\gamma_1 T v_1 + \dots + \gamma_n T v_2 = 0$$

$$\implies T (\gamma_1 v_2 + \dots + \gamma_n v_n) = 0$$

Injectivity of the linear map implies,

$$\gamma_1 v_2 + \dots + \gamma_n v_n = 0$$

Linear independence of $\{v_1, \ldots, v_n\}$

$$\gamma_1 = \cdots = \gamma_n = 0$$

• *b*) If $T: V \to W$ is an surjective linear map and let $\{w_1, \ldots, w_n\}$ be a subset of W and choose $v_i \in V$ such that $Tv_i = w_i$ and if $\{v_1, \ldots, v_n\}$ spans V, then $\{w_1, \ldots, w_n\}$ spans W.

Proof We know for a given $w \in W$ there exists at one $v \in V$ such that, Tv = w.

$$v = \gamma_1 v_1 + \dots + \gamma_n v_n$$

$$Tv = T (\gamma_1 v_1 + \dots + \gamma_n v_n)$$

$$w = T (\gamma_1 v_1) + \dots + T (\gamma_n v_n)$$

$$w = \gamma_1 T v_1 + \dots + \gamma_n T v_n$$

$$w = \gamma_1 w_1 + \dots + \gamma_n w_n$$

Since we choose an arbitart w, $\{w_1, \ldots, w_n\}$ spans the set W.

6.2 Linear maps as vectors

Convention 6.5 $\mathcal{L}(V, W)$ represents set of all linear maps from $V \to W$ and $\mathcal{L}(V)$ represents set of all linear maps from $V \rightarrow V$.

$$+:\mathcal{L}\left(V,W\right)\times\mathcal{L}\left(V,W\right)\rightarrow\mathcal{L}\left(V,W\right)$$

$$(T_1 + T_2): V \to W, v \to T_1v + T_2v$$

$$(T_1 + T_2) \in \mathcal{L}(V, W)$$
 $\times : F \times \mathcal{L}(V, W) \to \mathcal{L}(V, W)$
 $(\gamma T) : V \to W, v \to \gamma T v$
 $(\gamma T) \in \mathcal{L}(V, W)$

Example 6.6 (Dual of V) $W = \mathbb{R}$, where V is a vector space over R. Represented by $V^* = \mathcal{L}(V,\mathbb{R})$ and $\dim_F(V^*) = \dim_F(V)$.

Example 6.7 $V = \mathbb{R}$, where W is a vector space over R. $\mathcal{L}(\mathbb{R}, W)$ is a vector space, any element in $\mathcal{L}(\mathbb{R}, W)$ has unique property where the map is determined by just where 1 is mapped to.

$$T : \mathbb{R} \to W$$
$$T(\gamma) = \gamma T(1)$$
$$\Phi : \mathcal{L}(\mathbb{R}, W) \to W$$

 Φ is an isomorphism.

Proof | For every $w \in W$ there is an unique $T_w \in \mathcal{L}(\mathbb{R}, W)$ such that, $T_w : \mathbb{R} \to W, \gamma \to \gamma w$ or $T_w(\gamma) = \gamma w$. set of all T_w is the same as $\mathcal{L}(\mathbb{R}, W)$ since if there exists an element T' which is not in the set of all T_w then the property that the map is determined by where 1 is mapped to will yield a contradiction. Therefore, we have a bijective between W and $\mathcal{L}(\mathbb{R}, W)$. Therefore, Φ is an isomorphism.

Conjecture 6.8 $\dim_F \mathcal{L}(V, W) = \dim_F V \times \dim_F W$

6.3 Ordered Basis

DEFINITION 6.9 (Ordered Basis) An ordered basis of a vector space V is $\beta = \{v_1, \dots, v_n\}$ where β is an ordered set.

Example 6.10
$$V = \mathbb{R}^2$$
, $\beta = \{(1,0), (0,1)\}$

Example 6.11
$$V = P_2(\mathbb{R}), \beta = \{1, x, x^2\}$$

6.4 Matrix Representation

Goal is to create a matrix to represent $T: V \to W$, let $\beta = \{v_1, \dots, v_m\}$ be an ordered basis of V, let $\alpha = \{w_1, \dots, w_n\}$ be an ordered basis of W.

It will be assumed you know basics of matrices, although everything will be revisted later in the notes with formal definitions.

$$Tv_{j} = \sum_{i=1}^{n} \gamma_{ij} w_{i}$$

$$\begin{pmatrix} Tv_{1} \\ Tv_{2} \\ \vdots \\ Tv_{m} \end{pmatrix} = \begin{pmatrix} w_{1} & w_{2} & \cdots & w_{n} \end{pmatrix} \begin{pmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \\ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{n1} & \gamma_{n2} & \cdots & \gamma_{nm} \end{pmatrix}$$

$$\begin{pmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \\ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{n1} & \gamma_{n2} & \cdots & \gamma_{nm} \end{pmatrix} \in M_{m \times n} (F)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Aim is to associate a matrix $[T]^{\alpha}_{\beta}$ for a linear map $T:V\to W$, where $\beta=\{v_1,\ldots,v_m\}$ is an ordered basis of V and $\alpha=\{w_1,\ldots,w_n\}$ is an ordered basis of W.

$$S_{\beta}:V\to F^m$$

Where S_{β} is given by, for any $v \in V$,

$$v = \sum_{i=1}^{m} \gamma_i v_i
ightarrow egin{pmatrix} \gamma_1 \ dots \ \gamma_m \end{pmatrix} \in F^m$$
 $S_{lpha}: W
ightarrow F^n$

Where S_{α} is given by, for any $w \in W$,

$$w = \sum_{i=1}^{n} \gamma_{i} w_{i} \to \begin{pmatrix} \gamma_{1} \\ \vdots \\ \gamma_{n} \end{pmatrix} \in F^{n}$$

$$T : V \to W$$

$$S_{\beta} : V \to F^{m}$$

$$S_{\alpha} : W \to F^{n}$$

$$S_{\alpha} : T \cdot S_{\beta}^{-1} : F^{m} \to F^{n}$$

We now define $[T]^{\alpha}_{\beta}$ to be the matrix associated with the map $S_{\alpha} \cdot T \cdot S_{\beta}^{-1} : F^m \to F^n$

?

Conjecture 6.12 $[Tv]^{\alpha} = [T]^{\alpha}_{\beta} [v]^{\beta}$

$$I:V \to V$$

For
$$\beta = \alpha$$
,

$$[I]^{\alpha}_{\beta} = I_n$$

For
$$\beta=\{e_1,e_2\}$$
 and $\alpha=\{e_2,e_1\}$,
$$[I]^\alpha_\beta=\begin{pmatrix}0&1\\1&0\end{pmatrix}$$

EXAMPLE 6.14 (Differentiation)

$$D: P_{2}(\mathbb{R}) \to P_{2}(\mathbb{R}), P(x) \to P'(x)$$

$$\beta = \{1, x, x^{2}\}$$

$$[D]_{\beta}^{\beta} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\alpha = \{2x, 1, x^{2}\}$$

$$[D]_{\beta}^{\alpha} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

To associate a matrix to a linear map,

$$T:V\to W$$

$$w\left(\in W\right) = \sum_{i=1}^{n} = \gamma_i w_i$$

 $[T]^{\alpha}_{\beta}$ is the matrix obtaining by evaulting T on V with basis β with respect to α .

$$\left([T]^{\alpha}_{\beta} \right)_{ij} = \gamma_{ij}$$

Where,

$$Tv_J = \gamma_{1j}w_1 + \dots + \gamma_{ij}w_i + \dots + \gamma_{nj}w_n$$

$$[Tv]^{\alpha} = [Tv]^{\alpha}_{\beta}[v]^{\beta}$$

Convention 6.15 $[a]^b$ represents a vector a represented as a linear combination of elements of the set β , where β is a basis for a vector space with a in it.

 $\beta = \{v_1, \dots, v_m\}$, represents ordered basis of V and $\alpha = \{w_1, \dots, w_n\}$, represents ordered basis of W.

The jth column of $[T]^{\alpha}_{\beta}$ is given by the coefficients obtained by expanding $T\left(v_{j}\right)$ in terms of α

Convention 6.16 Just $[a]^b$ will be used instead of $[a]^b_b$

EXAMPLE 6.17

$$I: V \rightarrow V, v \rightarrow v$$

Given $\dim_F V = n$,

$$[I]^{\beta}_{\beta} = I_n$$

$$R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$$

Rotation anti clock-wise by θ ,

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\beta = \{(1,0), (0,1)\}$$

$$\gamma = \{(1,1), (1,-1)\}$$

$$[R_{\theta}]_{\beta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

$$[R_{\theta}]_{\beta}^{\gamma} = [I_{2}]_{\beta}^{\gamma} [R_{\theta}]_{\beta}^{\beta}$$

$$[R_{\theta}]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

$$[R_{\theta}]_{\beta}^{\gamma} = \begin{pmatrix} \cos\theta + \sin\theta & -\sin\theta + \cos\theta \\ \cos\theta - \sin\theta & -\sin\theta - \cos\theta \end{pmatrix}$$

$$[R_{\theta}]_{\gamma} = \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

igoplus Sum of diagonal elements of $[R_{ heta}]_{\gamma}$ and $[R_{ heta}]_{eta}$ are the same, and so is the determinant of both matrices.

EXAMPLE 6.20

$$D: P_{n}(\mathbb{R}) \to P_{n}(\mathbb{R}), P(x) \to P'(x)$$

$$\beta = \{1, x, \dots, x^{n}\}$$

$$[D]_{\beta} = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & & n \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

We could look at $P_n(\mathbb{R}) \to P_{n-1}(\mathbb{R})$ but let's stick to square matrices for now, and $P_{n-1}(\mathbb{R})$ is clearly a subspace of $P_n(\mathbb{R})$.

We can see that the sum of diagonal elements is clearly 0 and the determinant is 0 as well.

PROPOSITION 6.21 Given $\dim_F V = m$ and $\dim_F W = n$ and given $\beta = \{v_1, \dots, v_m\}$ a basis of V and $\gamma = \{w_1, \dots, w_m\}$ a basis of W.

$$\Phi:\mathcal{L}\left(V,W
ight)
ightarrow M_{n imes m}\left(F
ight)$$
 , $T
ightarrow\left[T
ight]_{eta}^{\gamma}$

 Φ is an isomorphism.

This statement says that the matrix representation of linear maps between 2 finite dimensional vector spaces is "equivalent" (i.e: isomorphic) to the linear map itself.

Proof | Is
$$[S+T]^{\gamma}_{\beta} = [S]^{\gamma}_{\beta} + [T]^{\gamma}_{\beta}$$

Jthcolumn of $[S+T]^{\gamma}_{\beta} = \text{coefficient of } (S+T) v_j$
Jthcolumn of $[S]^{\gamma}_{\beta} = \text{coefficient of } Sv_j$
Jthcolumn of $[T]^{\gamma}_{\beta} = \text{coefficient of } Tv_j$

$$\therefore [S+T]^{\gamma}_{\beta} = [S]^{\gamma}_{\beta} + [T]^{\gamma}_{\beta}$$

Is
$$[\lambda T]^{\gamma}_{\beta} = \lambda [T]^{\gamma}_{\beta}$$
.

 J^{th} column of $[\lambda T]^{\gamma}_{\beta}$ = coefficient of $\lambda Tv_j = \lambda$ coefficient of $Tv_j = j^{th}$ coefficient of $\lambda [T]^{\gamma}_{\beta}$. Therefore Φ is a linear map.

Zero in $M_{n\times m}(F)$ is the zero matrix.

$$\forall v \in V, [v]^{\gamma} \times 0_{n \times m} = [0]^{\beta}$$

Therefore the only preimage of $0_{n \times m}$ is the zero map between V and W, therefore the null space of Φ is $\{0\}$, now we know that Φ is injective.

Given a matrix $A \in M_{n \times m}$, define $T_A : V \to W$, $[v]_{\beta} \to [v]_{\beta} A$, where $[v]_{\beta} A$ (a $1 \times n$ matrix) represents a vector w as a linear sum of the vectors in basis γ . T_A is a well defined linear map from $V \to W$ (proof of this is trivial but skipped here), therefore $T_A \in \mathcal{L}(V, W)$ is a preimage for $A \in M_{n \times m}$. Therefore Φ is bijective and hence an isomorphism.

7 DUAL SPACES AND DUAL MAPS

7.1 Dual Spaces

DEFINITION 7.1 (Dual Space) Given a finite dimensional vector space V over field F, dual space is given by $V^* = \mathcal{L}(V, F)$, called as dual of V.

$$\dim_{F} V^{*} = \dim_{F} M_{1 \times n} (F) = n = \dim_{F} V$$

There is no natural linear isomorphism between V and V^* .

"There cannot be a cannonical or God-given isomorphism"

We can take dual of a dual, known as double dual.

"In a sense, double duals are more well behaved"

7.2 Dual basis

let $\beta = \{v_1, \dots, v_n\}$ be a basis of V.

$$v_i^*: V \to F, a_1v_1 + \cdots + a_nv_n \to a_i$$

$$v_i^* v_i = \delta_{ii}$$

 $\{v_1^*,\ldots,v_n^*\}$ is a basis of V^* .

Proof | Given $T ∈ V^*$, T : V → F and v ∈ V, where $β = {v_1, ..., v_n}$ is a basis of V,

$$Tv = T (a_1v_1, \dots, a_nv_n)$$

$$Tv = a_1Tv_1 + \dots + a_nTv_n$$

$$Tv = Tv_1a_1 + \dots + Tv_na_n$$

$$Tv = Tv_1v_1^*v + \dots + Tv_nv_n^*v$$

$$Tv = (Tv_1v_1^* + \dots + Tv_nv_n^*) v$$

$$T = Tv_1v_1^* + \dots + Tv_nv_n^*$$

 Tv_i 's are fixed scalars, therefore the set $\beta^*\{v_1^*,\ldots,v_n^*\}$ spans V^* , linear independence follows from the fact that $\dim_F V^* = n$

Example 7.2 For fixed $v \in \mathbb{R}^n$,

$$L_v: \mathbb{R}^n \to \mathbb{R}, w \to v \cdot w = \sum_{i=1}^n v_i w_i$$

From properties of dot product, it follows that L_v is a linear map, hence $L_v \in (\mathbb{R}^n)^*$

Example 7.3

$$T_{\operatorname{tr}}: M_n\left(\mathbb{R}\right), A \to \operatorname{tr}\left(A\right)$$

Since trace of a matrix is a linear map, $T_{tr} \in (M_n(\mathbb{R}))^*$.

7.3 Dual Maps

DEFINITION 7.4 (Dual Map) Given a linear map $T: V \to W$, Dual map T^* of T is given by,

$$T^*:W^* \rightarrow V^*$$
, $L \rightarrow L \cdot T$

Example 7.5

$$T_{\gamma}: \mathbb{R} \to \mathbb{R}, x \to \gamma x$$

$$T_{\gamma}^*: \mathbb{R}^* \to \mathbb{R}^*, (L: \mathbb{R} \to \mathbb{R}, x \to Lx) \to (\gamma L: \mathbb{R} \to \mathbb{R}, x \to \gamma Lx)$$

We know dimension of \mathbb{R}^* to be 1, and the identity map is not equal to the zero map, therefore it is a basis for \mathbb{R}^*

Example 7.6

$$T_{\text{tr}}: M_n\left(\mathbb{R}\right), A \to \text{tr}\left(A\right)$$

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$\gamma = \{1\}$$

 β and γ are basis for $M_n(\mathbb{R})$ and \mathbb{R} respectively. $\gamma^* = \{1^*\}$ where $1^*(c) = 1^*(c \cdot 1) = c \cdot 1^*(c) = c$, therefore γ^* is the dual basis of \mathbb{R} ($1^*(1) = 1$ is by definition/construction of dual basis.)

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}$$

$$T_{\operatorname{tr}}^*: \mathbb{R}^* o M_n\left(\mathbb{R}\right)^*$$
 , $L_{\lambda} o L_{\lambda} \cdot T_{\operatorname{tr}}$

Where $L_{\lambda} \in \mathbb{R}^*$, L_{λ} is given by $L_{\lambda} : \mathbb{R} \to \mathbb{R}$, $a \to \lambda a$, therefore,

$$T_{\mathsf{tr}}^*: \mathbb{R}^* \to M_n\left(\mathbb{R}\right)^*$$
, $L_{\lambda} \to \lambda T_{\mathsf{tr}}$

$$[T_{\operatorname{tr}}^*]_{\gamma^*}^{eta^*} = egin{pmatrix} 1 \ 0 \ 0 \ 1 \end{pmatrix}$$

We can see that $[T_{\mathrm{tr}}^*]_{\gamma^*}^{\beta^*}$ is the transpose of $[T_{\mathrm{tr}}]_{\beta}^{\gamma}$.

Now let's see proof for matrix representation of dual of a map to be the transpose of the matrix representation of the map.

Proof | Let $T: V \to W$ be a linear map from a finite dimensional vector space to another finite dimensional vector space. Let $\beta = \{v_1, \ldots, v_m\}$ be a basis of V and let $\gamma = \{w_1, \ldots, w_n\}$ be a basis of vector space W.

$$\left([T]_{\beta}^{\gamma}\right)_{ij}=\mathrm{i}^{\mathrm{th}}$$
 coefficient in the expansion of Tv_{j} in terms of γ

$$\left([T]_{\beta}^{\gamma} \right)_{ij} = C_{ij} \text{ if } Tv_j = \sum_{k=i}^n C_{kj} w_k$$

 $\left([T^*]_{\gamma^*}^{\beta^*} \right)_{ji} = \mathbf{j}^{th}$ coefficient in the expansion of $T^*w_i^*$ in terms of β^*

$$\left(\left[T^*\right]_{\gamma^*}^{\beta^*}\right)_{ji} = \widetilde{C}_{ji} \text{ if } Tv_j = \sum_{k=j}^m \widetilde{C}_{ki} v_k^*$$

$$(T^*w_i^*) v_j^* = \left(\widetilde{C}_{1i}v_1^* + \dots + \widetilde{C}_{mi}v_m^*\right) v_j$$

$$(T^*w_i^*) v_j^* = \widetilde{C}_{ji}v_j^*v_j$$

$$(T^*w_i^*) v_j^* = \widetilde{C}_{ji}$$

$$(T^*w_i^*) v_j^* = w_i^* (Tv_j) = w_i^* (C_{1j}w_1 + \dots + C_{nj}w_n)$$

$$(T^*w_i^*) v_j^* = C_{ij}$$

$$\therefore \widetilde{C}_{ji} = C_{ij}$$

$$\therefore \left([T^*]_{\gamma^*}^{\beta^*}\right)^t = [T]_{\beta}^{\gamma}$$

8 MATRICES

8.1 Expected properties of matrix multiplication

Let $R: U \to V$, $S: V \to W$ and $T: W \to X$ be linear maps between finite dimensional vector spaces and let an ordered basis of U be α , of V be β , of W be γ and of X be δ .

• i) Associativity

$$[T]_{\gamma}^{\delta}\left([S]_{\beta}^{\gamma}[R]_{\alpha}^{\beta}\right) = \left([T]_{\gamma}^{\delta}[S]_{\beta}^{\gamma}\right)[R]_{\alpha}^{\beta}$$

ii)

$$[T \cdot S]^{\delta}_{\beta} = [T]^{\delta}_{\gamma} [S]^{\gamma}_{\beta}$$

ii) implies i)

Proof

$$[T]_{\gamma}^{\delta}\left([S]_{\beta}^{\gamma}[R]_{\alpha}^{\beta}\right) = [T]_{\gamma}^{\delta}[S \cdot R]_{\alpha}^{\gamma} = [T \cdot (S \cdot R)]_{\alpha}^{\delta}$$

$$\left([T]_{\gamma}^{\delta}\left[S\right]_{\beta}^{\gamma}\right)[R]_{\alpha}^{\beta}=[T\cdot S]_{\beta}^{\delta}\left[R\right]_{\alpha}^{\beta}=\left[(T\cdot S)\cdot R\right]_{\alpha}^{\delta}$$

i) |

$$S:V\to W$$

$$T:W\to X$$

Let $\beta = \{v_1, \dots, v_l\}$ be an ordered basis of V, $\gamma = \{w_1, \dots, w_m\}$ be an ordered basis of W and $\delta = \{x_1, \dots, x_n\}$ be an ordered basis of X.

$$[T]_{\gamma}^{\delta} \implies t_{ij}$$

$$[S]^{\gamma}_{\beta} \implies s_{ij}$$

$$(T \cdot S) v_j = T \left(S v_j \right) = T \left(\sum_{i=1}^m s_{ij} w_i \right)$$

$$T \left(\sum_{i=1}^m s_{ij} w_i \right) = \sum_{i=1}^m s_{ij} T w_i = \sum_{i=1}^m s_{ij} \left(\sum_{k=1}^n t_{ki} \right) x_k = \sum_{k=1}^n \left(\sum_{i=1}^m t_{ki} s_{ij} \right) x_k$$

Therefore $(k,j)^{th}$ entry of $[T \cdot S]^{\delta}_{\beta}$ is equal to the $(k,j)^{th}$ entry of $[T]^{\delta}_{\gamma}[S]^{\gamma}_{\beta}$

8.2 Change of coordinates

COROLLARY 8.1 Let $T: V \to V$ be a linear map from a vector space of dimension n to itself and let β and γ be two ordered basis of V then.

• i)
$$[I_V]^{\gamma}_{\beta} [I_V]^{\beta}_{\gamma} = I_n$$

•
$$i$$
) $[I_V]^{\gamma}_{\beta} [I_V]^{\beta}_{\gamma} = I_n$
• ii) $[T]^{\beta}_{\beta} [I_V]^{\beta}_{\gamma} = [T]^{\beta}_{\gamma}$ and $[I_V]^{\beta}_{\gamma} [T]^{\beta}_{\beta} = [T]^{\beta}_{\gamma}$

Proof

•
$$i$$
) $[I_V]^{\gamma}_{\beta}[I_V]^{\beta}_{\gamma}=[I_V\cdot I_V]^{\gamma}_{\gamma}=I_{\alpha}$

•
$$i$$
) $[I_V]^{\gamma}_{\beta}[I_V]^{\beta}_{\gamma} = [I_V \cdot I_V]^{\gamma}_{\gamma} = I_n$
• ii) $[T]^{\beta}_{\beta}[I_V]^{\beta}_{\gamma} = [T \cdot I_V]^{\beta}_{\gamma} = [T]^{\beta}_{\gamma}$ and $[I_V]^{\beta}_{\gamma}[T]^{\beta}_{\beta} = [I_V \cdot T]^{\beta}_{\gamma} = [T]^{\beta}_{\gamma}$

Definition 8.2 (Change of basis) The matrix $[I_V]^{\gamma}_{\beta}$ associated to the indentity map $I_V:V\to V,v\to v$ and the two ordered basis β and γ of V is called the change of coordinate (or change of basis) matrix.

Let $\beta = \{v_1, \dots, v_n\}$ and $\gamma = \{v_1', \dots, v_n'\}$ be an ordered basis of V (a vector space over the field F) and define linear maps from F^n to V,

$$\phi_{\beta}: F^n \to V, (c_1, \ldots, c_n) \to c_1 v_1 + \cdots + c_n v_n$$

$$\phi_{\gamma}: F^n \to V, (c_1,\ldots,c_n) \to c_1 v_1' + \cdots + c_n v_n'$$

The above 2 map are linear isomorphisms. (Hint: same dimsion and nullity is zero) Consider the map,

$$T = \phi_{\gamma}^{-1} \cdot \phi_{\beta} : F^n \to F$$

Let's find the matrix representation of T with respect to the standard basis of F^n . The jth column is given by $\phi_{\gamma}^{-1} \cdot \phi_{\beta}(e_j) = \phi_{\gamma}^{-1} v_j$.

$$\phi_{\gamma}^{-1}v_{j} = \phi_{\gamma}^{-1}\left(a_{1j}v_{1}' + \cdots + a_{nj}v_{n}'\right)$$

$$\phi_{\gamma}^{-1}v_{j} = a_{1j}\phi_{\gamma}^{-1}v_{1}' + \dots + a_{nj}\phi_{\gamma}^{-1}v_{n}'$$

$$\phi_{\gamma}^{-1}v_j=a_{1j}e_1+\cdots+a_{nj}e_n$$

Entries of the above matrix is precisely the entries of $[I_V]^{\gamma}_{\beta}$.

8.3 Invertibility

DEFINITION 8.3 (Invertible maps) A linear map $T:V\to W$ is called invertible if there exists $S:W\to V$ such that $T\cdot S=I_W$ and $S\cdot T=I_V$.

 \bigcirc Due to rank-nullity, if $T:V\to W$ is invertible then both V and W are of same dimension.

DEFINITION 8.5 (Invertible matrices) A matrix $A \in M_{m \times n}(\mathbb{R})$ is called invertible if there exists $B \in M_{n \times m}$ such that $AB = I_m$ and $BA = I_n$.

 $igcolon{igcap}{igcap}$ If $A\in M_{m imes n}\left(\mathbb{R}
ight)$ is invertible then m=n.

THEOREM 8.7 Linear map $T:V\to W$ with β and γ being ordered basis of V and W is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible.

Proof | If T is invertible then dim $V = \dim W = n$ and $[T]_{\beta}^{\gamma} \in M_n(\mathbb{R})$. As $T \cdot T^{-1} = I_W$ and $T^{-1} \cdot T = I_V$, we get.

$$I_n = [I_V]_{\beta} = \left[T^{-1} \cdot T\right]_{\beta} = \left[T^{-1}\right]_{\gamma}^{\beta} [T]_{\beta}^{\gamma}$$

$$I_n = [I_W]_{\gamma} = \left[T \cdot T^{-1}\right]_{\gamma} = [T]_{\beta}^{\gamma} \left[T^{-1}\right]_{\gamma}^{\beta}$$

This proves, $[T]^{\gamma}_{\beta}$ is invertible if T is invertible.

For converse, assume $A = [T]_{\beta}^{\gamma}$ is invertible with B as its invertible, we know m = n. It suffices to show that T is injective. If $v \in N(T)$, then Tv = 0. As,

$$A[v]^{\beta} = [T]^{\gamma}_{\beta}[v]^{\beta} = [Tv]^{\gamma} = 0$$

Multiplying by B on the left, we conclude that $[v]^{\beta} = 0$. This implies that v = 0 and that T is injective.

8.4 Similar matrices

DEFINITION 8.8 (Similar matrices) We say A, $B \in M_n(\mathbb{R})$ are similar if there exists an invertible matrix $Q \in M_n(\mathbb{R})$ such that $QAQ^{-1} = B$.

Q is not unique, as λQ also will satisfy the condition if Q does.

 $A \sim B$ if A is similar to B. \sim is an equivalence relation on $M_n(\mathbb{R})$.

- i) [Reflexive] $I_n A I_n^{-1} = A$.
- ii) [Symmetric] If $QAQ^{-1} = B$ then $Q^{-1}BQ = A$.
- iii) [Transitive] If $QAQ^{-1} = B$ and $PBP^{-1} = C$ then, $(PQ)A(PQ)^{-1} = PQAQ^{-1}P^{-1} = PBP^{-1} = C$.

Example 8.10 (Cross product) $a \in \mathbb{R}^3$, $a = (x_1, x_2, x_3)$ and $||a|| = x_1^2 + x_2^2 + x_3^2 = 1$.

$$X_a: \mathbb{R}^3 \to \mathbb{R}^3, v \to a \times v$$

$$a \times (v + w) = a \times v + a \times w$$

$$a \times (\lambda v) = \lambda a \times v$$

Therefore X_a is a linear map.

$$a^{\perp} = \{ w \in \mathbb{R}^3 | a \cdot w = 0 \}$$

Range of $X_a = a^{\perp}$, Null space of $X_a = \text{span}(a)$.

$$\beta = \{e_1, e_2, e_3\}$$

$$\gamma = \{a, b, a \times b\}$$

Where $b \in a^{\perp}$

$$[X_a]_{\beta} = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}$$

$$[X_a]_{\gamma} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$[X_a]_{\gamma}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

 $[X_a]_g$ and $[X_a]_b$ are similar matrices where $Q = [I_{\mathbb{R}^3}]_{\gamma}^{\beta}$.

$$Q = [I_{\mathbb{R}^3}]_{\gamma}^{\beta} = \begin{pmatrix} | & | & | \\ a & b & a \times b \\ | & | & | \end{pmatrix}$$

8.5 Trace

DEFINITION 8.11 (Trace) For $A \in M_n(F)$, $tr(A) = a_{11} + \cdots + a_{nn}$. Where,

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

DEFINITION 8.12 (Trace) Given a linear map $T:V\to V$ from a finite dimensional vector space to itself, trace of the linear map is given by $\mathrm{tr}(T)=\mathrm{tr}\left([T]_{\beta}\right)$ where β is a basis of V.

Observation: tr(AB) = tr(BA)

Proof

$$\operatorname{tr}(AB) = (AB)_{11} + \dots + (AB)_{nn} = \sum_{i=1}^{n} a_{1i}b_{i1} + \dots + \sum_{i=1}^{n} a_{ni}b_{in} = \sum_{i,j=1}^{n} a_{ij}b_{ij}$$
$$\sum_{i,j=1}^{n} a_{ij}b_{ij} = \sum_{i,j=1}^{n} b_{ij}a_{ij} = \operatorname{tr}(BA)$$

Therefore,

$$\operatorname{tr}\left([T]_{\gamma}^{\gamma}\right) = \operatorname{tr}\left([I_{V}]_{\beta}^{\gamma} [T]_{\beta}^{\beta} [I_{V}]_{\gamma}^{\beta}\right) = \operatorname{tr}\left(\left([I_{V}]_{\beta}^{\gamma} [T]_{\beta}^{\beta}\right) [I_{V}]_{\gamma}^{\beta}\right) = \operatorname{tr}\left([I_{V}]_{\beta}^{\beta} [T]_{\beta}^{\beta}\right)\right)$$

$$\operatorname{tr}\left([I_{V}]_{\gamma}^{\beta} \left([I_{V}]_{\beta}^{\gamma} [T]_{\beta}^{\beta}\right)\right) = \operatorname{tr}\left([I_{V}]_{\gamma}^{\beta} [I_{V}]_{\beta}^{\gamma} [T]_{\beta}^{\beta}\right) = \operatorname{tr}\left([T]_{b}^{\beta}\right)$$

This proves that the definition of trace of a linear map is well defined.

EXAMPLE 8.14

$$I_V: V \to V, v \to v$$

 $[I_V] = I_n$ where n is the dimension of V, trace = n.