Analyse I

David Wiedemann

Table des matières

1	Intr	oduction	3
	1.1	Buts du Cours	3
2	Def	$\mathbf{nir} \; \mathbb{R}$	4
	2.1	Exemple d'utilisation	6
3	Suit	es et limites 1	1
	3.1	Convergence	1
4	Lim	sup et liminf 1	6
\mathbf{L}	ist (of Theorems	
	1	Theorème (env400)	3
	2	Lemme (Lemme)	3
		Preuve	3
		Preuve	3
	3	Axiom (Nombres Reels)	4
	4	Lemme (Theorem name)	5
		Preuve	5
	5	Proposition (Annulation de l'element neutre)	5
		Preuve	5
	6	Corollaire (x fois moins 1 egale -x)	5
		Preuve	5
	7	Axiom (Nombres Reels II)	6

	Preuve
15	Corollaire (Propriete archimedienne)
	Preuve
16	Theorème (La racine de deux existe)
	Preuve
18	Proposition (\mathbb{Q} est dense dans \mathbb{R})
19	Lemme
	Preuve
	Preuve (Preuve de la densite)
20	Proposition (Densite des irrationnels)
	Preuve
4	Definition (Suite)
5	Definition (Convergence de suites)
23	Lemme (Unicite de la limite)
	Preuve
6	Definition
25	Lemme
	Preuve
	Preuve
27	Proposition
	Preuve
28	Lemme
	Preuve
30	Proposition (Inversion d'une limite)
31	Corollaire
32	Lemme
	Preuve
	Preuve
34	Proposition
35	Proposition
	Preuve
	Preuve
37	Lemme (Deux gendarmes)
	Preuve
7	Definition (Limsup et liminf)

Lecture 1: Introduction

Mon 14 Sep

1 Introduction

1.1 Buts du Cours

Officiel:

Suites, series, fonctions, derivees, integrales, ...

Secrets:

Apprendre le raisonnement rigoureux

Creativite

Esprit Critique

Ne croyez rien tant que c'est pas prouve

On construit sur ce qu'on a fait, on recommence pas toujours a 0, par rapport a d'autres domaines(lettres par exemple)

Theorème 1 (env. -400)

Il n'existe aucin nombre (fraction) x tel que $x^2 = 2$.

Ca contredit pythagore nn?

On va demontrer le theoreme. ¹

Lemme 2 (Lemme)

Soit $n \in \mathbb{N}$ Alors n pair $\iff n^2$ pair.

Preuve

 \Rightarrow Si n pair \Rightarrow n² pair.

Hyp. $n = 2m (m \in \mathbb{N})$

Donc $n^2 = 4m^2$, pair.

Par l'absurde, n impair. $n = 2k + 1(k \in \mathbb{N})$.

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

impair. Donc si n est impair, alors n^2 est forcement impair. Absurde.

Preuve

Supposons par l'absurde $\exists x \ t.q. \ x^2=2 \ et \ x=\frac{a}{b}(a,b\in\mathbb{Z},b\neq 0).$

On peut supposer a et b non tous pairs.(sinon reduire).

$$x^2=2\Rightarrow \frac{a^2}{b^2}=2\Rightarrow a^2=2b^2\Rightarrow a^2$$

^{1.} On demontre d'abord un lemme

pair.

Lemme : a pair, i.e. $a = 2n(n \in \mathbb{N})$.

$$a^2 = 4n^2 = 2b^2 \Rightarrow 2n^2 = b^2, i.e.b^2$$
 pair.

Lemme: b pair.

Donc a et b sont les deux pairs, on a une contradiction.

En conclusion, le theoreme est bel et bien vrai, et contredit donc pythagore. Donc les fractions (\mathbb{Q}) ne suffisent pas a decrire/mesurer les longueurs geometriques. Il faut les nombres reels, on les comprends seulement vraiment depuis 2 siecles

C'est important de chercher ce genre d'erreurs.

Prochain but : definir les nombres reels (\mathbb{R}). L'interaction entre les fractions et les nombres reels.

2 Definir \mathbb{R}

On commence avec la definition axiomatique des nombres reels.

Axiom 3 (Nombres Reels)

 \mathbb{R} est un corps, en d'autres termes :

Ils sont munis de deux operations : plus et fois.

- Associativite $x + (y + z) = (x + y) + z(x, y, z \in \mathbb{R})^2$
- Commutativite x + y = y + x.
- Il existe un element neutre 0 t.q. $0 + x = x, x \in \mathbb{R}$.
- Distributivite x(yz) = (xy)z
- Il existe un element inverse, unique $-x \in \mathbb{R}$ t.q. x + (-x) = 0

Remarque : Il existe beaucoup d'autres corps que $\mathbb{R},$ par exemple $\mathbb{Q},\mathbb{C},$ $\{0,1,2\}\mod 3$

Attention: $\{0, 1, 2, 3\} \mod 4$ n'est pas un corps! Presque tous marchent, ils satisfont 8 des 9 axiomes.

 $^{2.\} L'associativite n'est pas forcement vraie$ (octonions)

^{3.} Il y a aucune difference entre les regles pour l'addition que pour la multiplication.

Lemme 4 (Theorem name)

 $\forall x \exists ! y \ t.q. \ x + y = 0.$

Preuve

Supposons x + y = 0 = x + y'

A voir : y = y'.

y = y + 0 = y + (x + y') = (y + x) + y'= (x + y) + y' = 0 + y' = y'

CQFD.

Exercice

Demontrer que 0 est unique.

Proposition 5 (Annulation de l'element neutre)

 $0 \cdot x = 0$

Preuve

 $x = x \cdot 1 = x(1+0) = x \cdot 1 + x \cdot 0 = x + x \cdot 0$

 $0 = x + (-x) = x + (-x) + x \cdot 0$

 $\Rightarrow 0 = x \cdot 0$

Corollaire 6 (x fois moins 1 egale -x)

 $x + x \cdot (-1) = 0$

Preuve

A voir : $x \cdot (-1)$ satisfait les proprietes de -x.

Or

 $x + x(-1) = x(1-1) = x \cdot 0 = 0.$

Exercice

Montrer que $\forall x : -(-x) = x$ et que ceci implique (-a)(-b) = ab.

Rien de tout ca n'a quelque chose a voir avec \mathbb{R} .

Il nous faut plus d'axiomes!!

4. a - b = a + (-b)

Axiom 7 (Nombres Reels II)

 \mathbb{R} est un corps ordonne. Ce qui revient a dire que les assertions suivantes sont verifiees.

- $\ x \leq y \ et \ y \leq z \ impliquent \ x \leq z$
- $-(x \le y e t y \le x) \Rightarrow x = y$
- pour tout couple de nombres reels x et y: ou bien $x \leq y$ ou bien $x \geq y$.

Exemple de corps ordonnnes :

(1) \mathbb{R} , (2) \mathbb{Q} , (3) $\{0,1,2\} \mod 3$ n'est pas un corps ordonne.

Exercice

 $x \le y \iff -x \ge -y$ Exercice

$$x \le y$$
 et $z \ge 0 \Rightarrow xz \le yz$

$$x \le y$$
 et $z \le 0 \Rightarrow xz \ge yz$.

Il nous manque encore un axiome, et c'est le dernier : pour mercredi!

Lecture 2: Cours Mercredi

Wed 16 Sep

2.1 Exemple d'utilisation

Definition 1 (valeur absolue)

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Proposition 8 (Inegalite du triangle)

Elle dit que

$$\forall x, y : |x + y| \le |x| + |y|$$

Preuve

 $Cas \; x,y \geq 0 \; : \; alors \; x+y \geq 0$

$$\iff x + y \le x + y$$

Ce qui est toujours vrai.

 $Cas \ x \ge 0 \ et \ y < 0.$

 $Si \ x + y \ge 0, \ alors$

$$\iff |x+y| \le x - y$$

$$\iff x + y \le x - y$$

$$y \le -y$$

c'est vrai car y < 0.

 $Si \ x + y < 0, \ alors$

$$\iff -x - y \le x - y$$

 $Donc -x \le x \ vrai \ car \ x \ge 0$.

Definition 2 (Bornes)

 $Terminologie: Soit \ A \subseteq E \ , \ E \ corps \ ordonne.$

— Une borne superieure (majorant) pour A et un nombre b tq

$$a \le b \forall a \in A$$
.

— Une borne inferieure (minorant) pour A et un nombre b tq

$$a \ge b \forall a \in A$$
.

On dira que l'ensemble A est borne si il admet une borne.

Axiom 9 (Axiome de completude)

$$\forall A\subseteq \mathbb{R}\neq\emptyset$$

et majoree $\exists s \in \mathbb{R} \ t.q$

1. s est un majorant pour A.

2. \forall majorant b de A, $b \geq s$.

Cet axiome finis la partie axiomatique du cours.

Remarque 10

1.
$$\forall s' < s \exists a \in A : a > s'$$
.

2. s est unique.

Definition 3 (Supremum)

Ce s s'appelle le supremum de A, note sup(A).

Remarque 11

 \exists (pour A minore et \neq \emptyset) une borne inferieure plus grande que toutes les autres, notee inf(A) (infimum).

$$\inf(A) = -\sup(-A)$$

Remarque 12

 $Si \operatorname{sup}(A) \in A$, on l'appelle le maximum.

Remarque 13

 $Si \inf(A) \in A$, on l'appelle le minimum.

Proposition 14

 $\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n \ge x.$

Preuve

Par l'absurde,

Alors

$$\exists x \in \mathbb{R} \forall n \in \mathbb{N} : n < x$$

 $\Rightarrow \mathbb{N} \ borne \ et \neq \emptyset \Rightarrow \exists s = \sup(\mathbb{N})$

$$s - \frac{1}{2} < s \Rightarrow \exists n \in \mathbb{N} : n > s - \frac{1}{2}$$

 $n+1 \in \mathbb{N} \ et \ n+1 > s - \frac{1}{2} + 1 = s + \frac{1}{2}$

 $donc \ n+1 > s \ absurde.$

Corollaire 15 (Propriete archimedienne)

1. $\forall x \forall y > 0 \exists n \in \mathbb{N} : ny > x$.

2. $\forall \epsilon > 0 \exists n \in \mathbb{N} : \frac{1}{n} < \epsilon$

Preuve

Pour 2, appliquer la proposition a $x = \frac{1}{\epsilon} \exists n \in \mathbb{N} : n > x = \frac{1}{\epsilon}$

Alors

$$\Rightarrow \epsilon > \frac{1}{n}$$

Pour montrer le 1.

Considerer $\frac{x}{y}$

On peut maintenant montrer que la racine de deux existe.

Theorème 16 (La racine de deux existe)

$$\exists x \in \mathbb{R} : x^2 = 2$$

Preuve

$$A:=\{y|y^2<2\}$$

Clairement $A \neq \emptyset$ car $1 \in A$. De plus, A est majore : 2 est une borne. (si $y > 2, y^2 > 4 > 2 \Rightarrow y \notin A$).

 $Donc \exists x = \sup(A)$

Supposons (par l'absurde) que $x^2 < 2$

Soit $0 < \epsilon < 1, \frac{2-x^2}{4x}$.

Clairement, par hypothese $2-x^2>0$ et idem pour 4x car $x\geq 1$. Soit $y=x+\epsilon$, alors

$$y^2 = x^2 + 2\epsilon x + \epsilon^2 < x^2 + \frac{2 - x^2}{2} + \frac{2 - x^2}{2} = 2$$

 \Rightarrow $y \in A$ Mais $y = x + \epsilon > x$. Absurde car $x = \sup(A)$. Donc $x^2 \ge 2$. Deuxiemement, supposons (absurde) $x^2 > 2$.

Soit $0 < \epsilon < \frac{x^2 - 2}{2x} > 0$.

Posons $b = x - \epsilon$.

$$b < x \Rightarrow \exists y \in A : y > b$$

$$\Rightarrow y^2 > b^2 = x^2 - 2\epsilon x + \epsilon^2 > x^2 - \underbrace{2\epsilon x}_{< x^2 - 2}$$

$$> x^2 - (x^2 - 2) = 2.$$

Conclusion: $y^2 > 2$ contredit $y \in a$.

$$Donc \ x^2 = 2.$$

Remarque 17

Preuve similaire:

$$\forall y > 0 \exists ! x > 0 : x^2 = y$$

Proposition 18 (\mathbb{Q} est dense dans \mathbb{R})

$$\forall x < y \in \mathbb{R} \exists z \in \mathbb{Q} : x < z < y$$

Lemme 19

$$\forall x \exists n \in \mathbb{Z} : |n - x| \le \frac{1}{2}$$

Ou encore:

$$\forall x \exists [x] \in \mathbb{Z} tq$$

$$\begin{cases} [x] \le x \\ [x] + 1 > x \end{cases}$$

Preuve

$$\exists n \in \mathbb{Z} : n > x(Archimede).$$

$$Soit [x] = \inf\{n \in \mathbb{Z} : n > x\} - 1$$

Preuve (Preuve de la densite)

Archimede : $\exists q \in \mathbb{N} : q > \frac{1}{y-x}$.

Donc

$$qy - qx > 1.$$

$$\Rightarrow \exists p \in \mathbb{Z} : qx$$

 $par\ exemple\ :$

$$p = [qy]$$

 $si \ qy \notin \mathbb{Z} \ ou \ bien$

$$p = qy - 1$$

 $si\ qy\in\mathbb{Z}$

Lecture 3: Suites

Wed 23 Sep

0,999

0, 9

0.99

0.999

0.9999

Proposition 20 (Densite des irrationnels)

 $\mathbb{R} \setminus \mathbb{Q}$, les irrationnels sont dense dans \mathbb{R} .

Preuve

Soit x < y (dans \mathbb{R}).

Cherche $z \notin \mathbb{Q} \ tq \ x < z < y$.

$$\exists \frac{p}{q} \in \mathbb{Q} tqx < \frac{p}{q} < y$$

Propr. $archimedienne \Rightarrow \exists n \in \mathbb{N} :$

$$\underbrace{\frac{p}{q} + \sqrt{2}\frac{\sqrt{2}}{n}}_{:=z} < y$$

car

$$\exists n: \frac{1}{n} < \underbrace{y - \frac{1}{q}}_{>0} / \sqrt{2}$$

Il reste a voir que : $z = \frac{p}{q} + \sqrt{2}/n \notin \mathbb{Q}$

$$\sqrt{2} = n(z - \frac{p}{q})$$

$$z \in \mathbb{Q} \Rightarrow \sqrt{2} \in \mathbb{Q} \not z$$

3 Suites et limites

Definition 4 (Suite)

Une suite $(x_n)_{n=1}^{\infty}$ dans \mathbb{R} est une application (= fonction) $\mathbb{N} \to \mathbb{R}$

Remarque 21

Suite $(x_n) \neq ensemble \{x_n\}$ Il arrive qu'on indice x_n par une partie de \mathbb{N} . Mais suite = suite infinie

Exemple 22

$$x_n = \frac{1}{n}(n = 1, 2, ...)$$

 $x_n = (-1)^n; x_n = n!; F_n : 0, 1, 1, 2, 3, 5, 8, 13$
 $3, 3.1, 3.14, 3.141, 3.1415$

3.1 Convergence

Definition 5 (Convergence de suites)

L'expression $\lim_{n\to+\infty} x_n = l$ signifie :

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0 : |x_n - l| < \epsilon$$

On dit alors que (x_n) converge (vers l). Sinon, (x_n) diverge.

Lemme 23 (Unicite de la limite)

Si (x_n) converge, il existe un unique $l \in \mathbb{R}$ $tq \lim_{n \to +\infty} x_n = l$

Preuve

Supposons l, l' limites. Si $l \neq l'$, alors |l - l'| > 0 Donc $\exists n_0 \forall n > n_0 : |x_n - l| < \frac{|l - l'|}{2}$

De meme $\exists n_1 \forall n > n_1 : |x_n - l'| < \frac{|l - l'|}{2}$ Soit $n > n_0, n_1$ Alors :

$$|l - l'| = |l - x_n + x_n - l'| \le \underbrace{|l - x_n|}_{<|l - l'|/2} + \underbrace{|x_n - l'|}_{|x_n - l'|}$$

Donc

$$|l-l'|<2\cdot\frac{|l-l'|}{2}$$

Exemple 24

1. Si (x_n) est constante $(\exists a \forall n : x_n = a)$ alors

$$\lim_{n\to +\infty}\frac{1}{n}=0$$

2. $\lim_{n\to+\infty} \frac{1}{n} = 0$ (Archimede)

Definition 6

Terminologie:

 (x_n) est bornee, majoree, minoree, rationnelle, ... etc si l'ensemble $\{x_n\}$ l'est.

La suite (x_n) est croissante si $x_n \leq x_{n+1} \forall n$ Idem decroissante Dans les deux cas, on dit que la suite (x_n) est monotone

Lemme 25

Toute suite convergente est bornee.

Preuve

Posons $\epsilon = 7$.

$$\exists N \in \mathbb{N} \forall n > N : |x_n - l| < 7$$

Soit $B_1 \ge |x_1|, |x_2|, \dots, |x_N|$

Posons $B = max(B_1, |l| + 7)$ Alors $|x_n| \le B \forall n$.

Attention la reciproque n'est pas vraie!!

Exemple 26

 $x_n = (-1)^n$ definit une suite bornee non convergente.

Preuve

Supposons $\lim_{n\to+\infty} (-1)^n = l$.

Posons $\epsilon = \frac{1}{10} \ alors \ \exists n_0 \forall n > n_0 : |(-1)^n - l| < \frac{1}{10}$

 $n > n_0$ pair $\Rightarrow |1 - l| < \frac{1}{10}$

 $n > n_0 \ impair \Rightarrow |-1 - l| < \frac{1}{10}$

 $ceci\ implique$

$$\Rightarrow |1 - (-1)| \le |1 - l| + |-1 - l| < \frac{1}{10} + \frac{1}{10} = \frac{1}{5}$$

Proposition 27

Supposons $\lim_{n\to+\infty} x_n = l$ et $\lim_{n\to+\infty} x'_n = l'$

Alors 1.: $\lim_{n\to+\infty} (x_n + x'_n) = l + l'$, et 2.: $\lim_{n\to+\infty} x_n \cdot x'_n = l \cdot l'$

Preuve

1:

Soit $\epsilon > 0$ Cherche n_0 tq $\forall n > n_0 : |x_n + x'_n - (l + l')| < \epsilon$.

Appliquons les deux hypothese $a \in \Xi: \exists N \forall n > N: |x_n - l| < \varepsilon \text{ et } \frac{\epsilon}{2}: \exists N' \forall n > N': |x'_n - l| < \varepsilon \text{ Posons } n_0 = \max(N, N')$ Si $n > n_0$, alors

$$|x_n + x'_n - (l + l')| \le |x_n - l| + |x'_n - l'| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

2:

Par le lemme, $\exists B \ tq. \ |x_n|, |x'_n| < B \forall n.$ Soit $\epsilon > 0$. Appliquons les hypotheses a $\frac{\epsilon}{2B}$.

$$\exists N \forall n > N : |x_n - l| < \frac{\epsilon}{2B}$$

 $Si \ n > n_0 := \max(N, N') :$

$$|x_n x_n' - ll'| \le |x_n x_n' - x_n l'| + |x_n l' - ll'|$$

$$= \underbrace{|x_n|}_{$$

Mon 28 Sep

Lemme 28

On a utilise : lemme Si $x_n \leq B \forall n$ et $\lim_{n \to +\infty} x_n = l$ alors $l \leq B$

Preuve

 $Par\ l'absurde:$

Si l > B, posons $\epsilon = l - B > 0$

 $\exists n_0 \forall n > n_0 : |x_n - l| < \epsilon$ en particulier $x_n > l - \epsilon = B \nleq$

Lecture 4: lundi

Remarque 29

- $\lim_{n\to+\infty} |x_n| = |\lim_{n\to+\infty} x_n|$, ce qui est sous-entendu ici est que la limite existe.
- $(x_n)_{n=1}^{\infty}$ convergence et limite sont inchangees si on modifie un nombre fini de termes.
 - En particulier $(x_n)_{n=17}^{\infty}$, rien ne change.
- $-x_n \to l \ (n \to \infty), \ equivalent \ a \lim_{n \to +\infty} x_n = l$
- On dit que (x_n) converge vers $+\infty$ et on note $\lim_{n\to+\infty} x_n = +\infty$, si (x_n) diverge de la facon suivante :

$$\forall R \in \mathbb{R}, \exists n_0 \forall n > n_0 : x_n > R$$

La definition est la meme si x_n converge vers $-\infty$

Proposition 30 (Inversion d'une limite)

Supposons que (x_n) converge vers $l \neq 0$, alors $\lim_{n \to +\infty} \frac{1}{x_n} = \frac{1}{l}$

Corollaire 31

 $Si(x_n)$ converge vers l et

 $Si(y_n)$ converge vers $m \neq 0$ alors

$$\lim_{n \to +\infty} \frac{x_n}{y_n} = \frac{l}{m}$$

$$Car \, \frac{x_n}{y_n} = x_n \cdot \frac{1}{y_n}$$

Lemme 32

 $Sous\ les\ hypotheses\ de\ la\ proposition,$

$$\exists n_0 \forall n \ge n_0 : x_n \ne 0$$

Preuve

Appliquons la convergence a $\epsilon = \frac{|l|}{2}$ (car $l \neq 0$)

$$|x_n - l| < \epsilon \Rightarrow x_n \neq 0$$

Preuve

Preuve de la proposition

Soit $\epsilon > 0$.

 $On\ veut\ estimer$

$$\left| \frac{1}{x_n} - \frac{1}{l} \right| = \underbrace{\frac{|l - x_n|}{|x_n - l|}}_{\geq \frac{|l|}{2}|l|} < ?\epsilon$$

 $pour \ n \ comme \ dans \ le \ lemme. \ On \ veut \ donc$

$$|l - x_n| < \epsilon \frac{|l|^2}{2}$$

Donc $\exists n_1 \forall n \geq n_1$, on a bien $|l - x_n| < \epsilon$

Exemple 33

On peut a present calculer

$$\lim_{n \to +\infty} \frac{a_0 + a_1 n + a_2 n^2 + \ldots + a_d n^d}{b_0 + \ldots + b_f n^f}$$

$$a_d \neq 0, b_f \neq 0$$

$$Si \ d > f \ alors \ lim = \pm \infty$$

$$Si \ d < f \ alors \ lim = 0$$

$$Si\ d = f$$
, $alors\ lim = \frac{a_d}{b_f}$

Justification

La suite peut s'ecrire

$$\frac{a_d + a^{d-1} \frac{1}{n} + \ldots + a_0 \frac{1}{n^{d-1}}}{b_0 \frac{1}{n^d + \ldots + b_f n^{f-d}}}$$

$$Si\ f = d, \rightarrow \frac{a_d}{b_f}$$

$$Si \ f > d, \rightarrow 0$$

Si $f < d, \rightarrow \pm \infty$, selon signe de $\frac{a_d}{b_f}$

Proposition 34

Soit $a \in \mathbb{R}$ avec |a| < 1, alors

$$\lim_{n \to +\infty} a^n = 0$$

Proposition 35

 $Si(x_n)$ est monotone et bornee, alors elle converge.

Preuve

Soit (x_n) croissante. Affirmation, $x_n \to s := \sup\{x_n : n \in \mathbb{N}\}\$

Soit $\epsilon > 0$, $\exists n : x_n > s - \epsilon$ (def. de sup)

 $\forall n \ge n_0 : s - \epsilon < x_{n_0} \le x_n \le s \Rightarrow |x_n - s| < \epsilon$

Idem, si elle etait decroissante.

Preuve

Remarque: $(x_n) \to 0 \iff (|x_n| \to 0).$

$$\dots |x_n - 0| < \epsilon$$

Donc on va traiter le cas a > 0, alors $(a^n)_{n=1}^{\infty}$ est decroissante.

Bornee (par zero et 1) \Rightarrow elle admet une limite l.

 $Or \lim_{n \to +\infty} a^n = \lim_{\substack{n \to +\infty \\ a \cdot \lim_{n \to +\infty} a^n}} a^{n+1} \quad Donc \ l = al. \ Si \ l \neq 0, \ 1 = a \ absurde, \ donc \ l$

nul.

Exemple 36

 $Def(x_n)en \ posant \ x_{n+1} = 2 + \frac{1}{x_n}$

Observons que $x_n \ge 2 > 0 \forall n$

 $Si(x_n)$ converge, alors

$$l = \lim_{n \to +\infty} x_n = \lim_{n \to +\infty} (2 + \frac{1}{x_n}) = 2 + \frac{1}{l}$$

Donc

$$l^2 - 2l - 1 = 0 \Rightarrow 1 + \sqrt{1+1} = l$$

Or $l \ge 2 \Rightarrow l = 1 + \sqrt{2}$ si l existe.

A present, estimons $|x_n - l|$:

$$\left| x_n - 1 - \sqrt{2} \right| = \left| 2 + \frac{1}{x_{n-1}} = \left(2 + \frac{1}{l} \right) \right| = \frac{|l - x_{n-1}|}{x_{n-1}l} \le \frac{|x_{n-1} - l|}{4}$$

$$\le \dots \le \frac{|x_{n-2} - l|}{4^2} \le \frac{|2 - l|}{4^n} \to 0$$

 $car \frac{1}{4^n} \to 0$

Lemme 37 (Deux gendarmes)

Soit $(x_n), (y_n), (z_n)$ trois suites avec

$$\lim_{n \to +\infty} x_n = l = \lim_{n \to +\infty} z_n$$

 $si \ x_n \le y_n \le z_n \forall n, \ alors$

$$\lim_{n \to +\infty} y_n = l$$

Preuve

 $repose\ sur\ le\ fait\ que$

$$|x_n - l|, |z_n - l| < \epsilon \Rightarrow l - \epsilon < x_n \le y_n \le z_n < l + \epsilon$$

montre $|y_n - l| < \epsilon$

4 Limsup et liminf

Definition 7 (Limsup et liminf)

Soit (x_n) une suite quelconque.

On definit la limite superieure par :

$$\limsup_{n \to \infty} x_n := \inf_n \sup \{x_k, k \ge n\}$$

Attention: Ici on convient que

$$\sup(A) = +\infty$$

 $si\ A\ non\ majore$

$$\inf(A) = -\infty$$

 $si\ A\ non\ minore$

On definit la limite superieure par :

$$\liminf_{n \to \infty} x_n := \sup_n \inf \{x_k, k \ge n\}$$

Notez : $z_n := \sup \{x_k : k \ge n\}$

Cela definit une suite decroissante et donc (z_n) converge vers son inf. Conclusion : $\limsup_{n\to\infty} x_n = \lim_{n\to+\infty} z + n = \lim_{n\to+\infty} \sup_{k\geq n} x_k$