Machine Learning in Practice

Rayid Ghani and Kit Rodolfa

Carnegie Mellon University

What do you want/expect to learn from this class?

Why does this class exist?

What we want you to learn from this class

- How to responsibly and effectively solve real-world problems using ML
 - Understand the *entire* Machine Learning process (and get hands-on experience doing most of it)
 - Build (and use) reusable ML pipelines
 - Learn how to formulate ML problems, use, understand, evaluate, and communicate ML methods (that you have covered in earlier classes) in the context of a real problem

How is this course different than typical ML classes you've taken before?

We'll assume everyone knows

- Methods/algorithms/models
- Assumptions behind them
- How to implement them

And focus on everything else that comes before the matrix and after the models are built (99% of the work done in a real-world project)

Grading

- Pass/Fail
- We want the focus to be on learning and not on the grade.
- Levels of learning
 - Exposed to information covered in this course
 - Applying the information (correctly) covered to the class project
 - Generalizing to the next ML problem you tackle

Pre-requisites

- Machine Learning (methods and overall process)
- Python (pandas, sklearn, tensorflow, matplotlib)
- Ideally: experience with SQL, command line (bash), git(hub), working on remote servers

Skills needed to solve real-world problems (with ML)

Skills needed to solve real-world problems (with ML)

Structure of the class

- Module 1: End-to-end ML Pipeline
 - o Formulation, Modeling Setup, Features, Models, Model Selection
- Module 2: Model Interpretability

Module 3: Fairness

Class Schedule

Week	Dates	Topic	Required Readings	Assignments
1	Tu: Aug 31	Class Intro and Overview		
1	Th: Sep 2	ML Project Scoping	ML Project Scoping Guide	Project Team Selection
2	Tu: Sep 7	Getting, Storing, and Linking Data	Optional readings on github	
2	Th: Sep 9	Analytical Formulation / Baselines	List on github	
3	Tu: Sep 14	Model Selection Methodology		Project Assignment 1: Formulation and Baseline (due Monday)
3	Th: Sep 16	Performance Metrics		
4	Tu: Sep 21	Feature Engineering and Imputation		Project Assignment 2: Validation set up Initial pipeline with train and validation set(s) and baseline implemented (due Monday)
4	Th: Sep 23	Hands-on Session for ML Pipeline review		
5	Tu: Sep 28	Models/hyperparameters in practice		Project Assignment 3: list of features and some subset implemented (due Monday)
5	Th: Sep 30	Temporal Model Selection		
6	Tu: Oct 5	Module 1 Review: Applied ML - End to End Pipelines		Project Assignment 4: modeling results (due Monday)
6	Th: Oct 7	Mid-term week - no class		Mid-term exam due Friday
7	Tu: Oct 12	Interpretability: Intro and Overview, taxonomy		
7	Th: Oct 14	No Class - Mid-semester break		

Class Schedule

Week	Dates	Topic	Required Readings	Assignments
8	Tu: Oct 19	Understanding the Models		
8	Th: Oct 21	Interpretability Methods: Inherently Interpretable (GA2Ms, RiskSLIM, etc.)		
9	Tu: Oct 26	Interpretability Methods:: Post-Hoc Local/Feature-based (LIME, SHAP, MAPLE)		
9	Th: Oct 28	Interpretability Methods: Other methods (counterfactual, example-based, etc.)		
10	Tu: Nov 2	Module 2 Review: ML Interpretability		
10	Th: Nov 4	ML Ethics Issues Overview		Interpretability Writeup Due on Friday
11	Tu: Nov 9	Fairness in ML Overview		
11	Th: Nov 11	Fairness Methods: Pre-processing (removing sensitive attribute, sampling)		
12	Tu: Nov 16	Fairness Methods: In-processing (Zafar, Celis, fairlearn, etc.)		
12	Th:Nov 18	Post-Processing: Hardt, LA, etc		
13	Tu: Nov 23	Module 3 Review: ML Fairness		
13	Th: Thanksgiving	Thanksgiving holiday		
14	Tu: Nov 30	Field Trials and Causality		Bias Writeup Due
14	Th: Dec 2	Wrap-Up		
15	Tu: Dec 7	No Class - Finals Week		
15	Th: Dec 9	No Class - Finals Week		Final Research Writeup Due

Logistics

- Attendance (is not optional)
- Platforms:
 - Latest content will be on github
 - Canvas (for assignment submissions)
 - Slack (and email) for communications and project and teamwork
- Wednesday sessions
- Office hours
- TAs: to help manage and help access AWS infrastructure

Project Teams

- Make sure to fill out the survey: We need your github username and public SSH key
- You should create 5-person teams by the end of this week (and fill out the spreadsheet to let us know)

Project

Support a classroom. Build a future.

DONORS CHOOSE

Teachers and students need your support more than ever. Get crayons, books, cleaning supplies, technology, and more to help students get back to learning.

See classroom projects

Our efficiency and transparency have earned us the highest rating on Charity Navigator.

Tech Setup Options

- Get set up on github for your project
- Compute Infrastructure
 - Use your own laptop/machine for running things locally
 - Or use AWS resources we have set up to run larger jobs
- Data Infrastructure
 - Use CSVs on your own laptop/machine
 - Or use Postgres database we have set up with data loaded
- If you use AWS, make sure you have the following things set up:
 - o ssh (to connect to the server) server.mlinpractice.dssg.io
 - o dbeaver and psql (to connect to the database) **server.mlinpractice.dssg.io**
- Nice to have: get familiar with
 - Postgresql (to analyze and query data)
 - *nix command line
 - Remote server workflow

Prep for next class

- Reading
 - Project Scoping guide
- Assignments
 - Survey (if you haven't already): link from email
 - Project Team Selections: link in canvas
- No Wednesday Session This Week