Modeling Ebola

Tachikawa infectious boot camp, 2019

Jonathan Dushoff, McMaster University

https://github.com/dushoff/Generation_talks

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error

Projection models

Some simple models

Burial transmission

Dynamic effects of sub-clinical infections

More on \mathcal{R}

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

Models

- ► A model is a simplified view of the world
- Allows linking between assumptions and outcomes

Dynamic models

Connect scales

Small-scale events ⇔ Large-scale patterns and outcomes

Measles

Dynamic modeling connects scales

Measles reports from England and Wales

Ebola

Dynamic modeling connects scales

Statistics and theory

- Dynamical models are required to bridge scales
- Statistical frameworks are required to interpret noisy data
- ► We need tools that can incorporate dynamical mechanisms into frameworks that allow statistical inference
- Simple dynamical theories allow clearer interpretation and inspire better techniques

Questions

- Your model is not reality
- But it may help you answer a specific research question
- ► The model you use should be tailored to your question
 - What are the relevant details?

Dynamic modeling of infectious diseases

Early Ebola models Process error and observation error

Projection models

Some simple models

Burial transmission

Dynamic effects of sub-clinical infections

More on \mathcal{R}

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error

Projection models

Some simple models

Burial transmission

Dynamic effects of sub-clinical infections

More on \mathcal{R}

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

Process error and observation error

- Observation error: we don't observe the world perfectly
- Process error: we think our dynamical system has a fundamental random component
 - This is usually the only way to model processes where we treat individuals as individuals
- Doing both of these things is hard

Lekone and Finkenstadt, 2006

- ▶ Modeled a small 1995 Ebola outbreak in DR Congo
- Used latent variables to consider both process error and observation error
- ▶ Result: More realistic model ⇒ more uncertainty
- DOI: 10.1111/j.1541-0420.2006.00609.x

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error

Projection models

Some simple models

Burial transmission

Dynamic effects of sub-clinical infections

More on \mathcal{R}

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

The CDC projection

- Meltzer 2014 estimated > 1 million cases by "Jan 20, 2015" unless effective action was taken
- Model contained contained many compartments for infected people
 - disease stage, linkage to treatment
- Very crude handling of contact patterns, susceptibles

Projection models

- Wrong level of detail
- ▶ But they did address a question:
 - Does the West Africa Ebola epidemic have the potential to be a global crisis?

The epidemic

Ebola outbreaks

- ▶ Before 2014, most Ebola outbreaks were either
 - very small, or
 - pretty large (compared to some estimate of population at risk in a remote village)
- ▶ More or less consistent with simple picture

Predicted outbreak size

- Simple models argue that outbreaks should (almost always) be:
 - Very small (sub-critical), or
 - Very large (at the scale of the population)

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error Projection models

Some simple models

Burial transmission Dynamic effects of sub-clinical infections More on \mathcal{R} .

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error Projection models

Some simple models

Burial transmission

Dynamic effects of sub-clinical infections More on $\ensuremath{\mathcal{R}}$

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

Ebola outbreak (repeat)

 $C \approx 1 \, \text{month}$.

Post-death transmission and safe burial

- What proportion of Ebola spread occurs before vs. after death?
- Highly context dependent
 - Funeral practices, disease knowledge
- What if it's more than we think?
 - Disease spreads slower?
- ► Weitz and Dushoff Scientific Reports 5:8751.

Standard disease model (present)

Disease model including post-death transmission (present)

Disease model including post-death transmission

Ebola burial example

- Burial transmission increases the mean generation interval
 - ightharpoonup Increases estimate of \mathcal{R}
- ... increases variation
 - ightharpoonup Decreases estimate of \mathcal{R}
- So what's the result?
 - It feels like it should increase
 - ► The filtered mean approach tells us: shifting transmission later must increase the estimate

Scenarios (repeat)

Summary

- Different parameters can produce indistinguishable early dynamics
- ► More after-death transmission implies
 - ▶ Higher \mathcal{R}_0
 - Larger epidemics
 - Larger importance of safe burials
- ightharpoonup r =strength something imes generation speed something

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error Projection models

Some simple models

Burial transmission

Dynamic effects of sub-clinical infections

More on \mathcal{R}

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

Dynamic effects of sub-clinical infections

- ► People with no history of clinical Ebola illness have Ebola-specific antibodies:
 - In forests where animals carry Ebola
 - ▶ In places where past Ebola outbreaks have occurred
- ▶ What if $\approx 50\%$ of infected people have *sub-clinical* infection?
- Bellan et al. Lancet 384:1499–1500, October 2014

Standard epidemic model (present)

Add an exposed class (present)

Add sub-clinical immunity

Simplify

What is the effect of sub-clinical immunity?

- ▶ What do we already know?
 - Parameters and starting conditions?
 - Incidence time series?

Ebola cases

Ebola infections

Estimation

- ► Indirect evidence
 - Not enough information, and too many complications
 - Population structure, changes through time
- Direct evidence
 - Easy: how common is sub-clinical infection?
 - More evidence is available now
 - ...but not as much as we expected.
 - Hard: how protected are people who recover from it?

Outline

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error Projection models

Some simple models

Burial transmission

Dynamic effects of sub-clinical infections

More on \mathcal{R} .

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

Fitting to Ebola (repeat)

- Simulate generation intervals based on data and approach from WHO report
- ► Use both lognormals and gammas
 - WHO used gammas
 - Lognormals should be more challenging

Approximating the distribution (repeat)

Single-gamma approximation

Approximating the curve (repeat)

Exponential growth rate (per generation)

Outline

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error

Projection models

Some simple models

Burial transmission

Dynamic effects of sub-clinical infections

More on \mathcal{R}

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

Compartment model approaches

Discrete-time renewal equation

What else do we need to add? (present)

Why do we see medium-sized epidemics?

Relevant detail

- ► The things we are good at estimating and modeling may not be sufficient to forecast Ebola spread
- ▶ We don't know enough about:
 - contact structures
 - beliefs and behaviours

Report what we don't know? (present)

What we don't know (present)

What we don't know (present)

What we don't know (present)

What we don't know!

Outline

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error

Some simple models

Burial transmission Dynamic effects of sub-clinical infections More on ${\mathcal R}$

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

Ethics

- ightharpoonup History of abuse ightarrow strong rules
- In general, you can't put public good ahead of participant interests
- It's hard to achieve clinical equipoise – would you want to be in the control arm?
- Bellan et al., BMJ 2014;349:g7518

Vaccine trials

- What are the ethics of controlled trials in the middle of a deadly epidemic?
- What are the *logistics* of controlled trials on the down-slope of an epidemic?

Outline

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error

Some simple models

Burial transmission Dynamic effects of sub-clinical infections More on ${\mathcal R}$

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

Randomized controlled trials

- ► The gold standard of medical evidence
- ▶ A plan is made, and then participants are individually and randomly assigned to **treatment** and **control** groups
- Control groups sometimes get something that is meant to be good for their health, too
 - ► E.g., a meningococcal vaccine

Stepped-wedge controlled trials (SWCT)

- Sometimes it's unethical to delay vaccination (or other treatment) to participants
- You still can't necessarily vaccinate everyone at once
- It may be possible to evaluate efficacy by randomizing the order in which people are vaccinated
 - A free lunch!
- ► This is a relatively fragile idea
 - Not as powerful as RCT
 - ► If RCT is not ethical, then it's also not ethical to make logistical concessions to study objectives

Simulated incidence

Vaccine rollout scenarios

Statistical validity

Statistical power

Summary

- Spatiotemporal variation undercuts SWCT
 - Reduces power
 - Reduces or eliminates ethical advantages
- RCTs surprisingly robust to all kinds of issues
 - Also allow prioritization
- Permutation tests can rescue statistical validity
- Changing landscapes
 - Hard to do an Ebola vaccine trial when incidence is very high or very low

Outline

Dynamic modeling of infectious diseases

Early Ebola models

Process error and observation error

Projection models

Some simple models

Burial transmission

Dynamic effects of sub-clinical infections

More on \mathcal{R}

Forecasting

Ethics

The statistical power and validity of Ebola vaccine trials

- Dynamic models allow us to explore the meaning of scientific hypotheses
- They are most useful when they help us understand mechanisms in a scientific way
 - Don't trust mathematical results that you can't explain
- We need to recognize what we don't know
 - Use statistical methods
 - Recognize when your uncertainty is large