

Carlos Emmanuel Anguiano Pedraza

Gilberto Alexander Zing Pérez

5C

Análisis de señales

Erika Margarita Ramos Michel

La razón de porque usé el 180+30 es porque en GeoGebra no me dejaba poner el ángulo de 30° así que tracé una línea recta de 180° y le agregué los 3 grados que pedía con las 20 unidades que se desplaza

I Si z es la variable compleja, encontrar: zn: (cos 0 + isen 0) zn: (cos (0+2 ktt)+is60 tsen2ktt) Z=(cos 2 ktt+isen 2 ktt)/A 3 = (17/6,0) Z= e(12km/n) = 171, -18N Z= cos ((2km/n) + isen(2+1) z= r(o5(0)+ 13en(0))=reiθ 2. 21-22 Z= 0 1-121,0 12,221=121/22 es(0,40g) r= 121,0 3. 21 = 121 = 1x2+x2 22 = 1221 = 1p2+x2 = 121 3(0,-02) = 121 3(0,-02)

XII. Demostrar que:
1. $\cos\theta = e^{i\theta} + e^{-i\theta}$
$=\frac{e^{\theta}+e^{\theta}}{2}$ $e^{\theta}=1$
7 +7
$e^{i\theta}_{1}e^{-i\theta}=1$
XIII. Demostrar que:
$7. \sin^3\theta = \frac{3}{4} \sin\theta - \frac{1}{4} \sin^3\theta$
$\sin^3\theta = 0^3 = 0 = \frac{3}{4}\sin(0) - \frac{1}{4}\sin^3\theta = \sin^3\theta = 0^3 = 0$
= 0.3 = 0 = 0.1 = 0
=-0+0
$\sin^3\theta = \frac{3}{7}\sin\theta - 1\sin^3\theta$
$-\frac{3}{4}\cdot\theta-\frac{1}{4}\cdot\theta^3$

XII. Hallar el valor numérico de cada una de las siguientes expresiones:
1. [3 (cos 40° + isin 40°)] [4 (cos 80° + isin 80°)]
= $[3(\cos(4\pi))+\sin(2\pi))[4(\cos(4\pi)+\sin(4\pi))]$
$\cos(x) + j\sin(x) = e^{ix}$ = $(3e^{j\frac{2\pi}{q}})(4e^{j\frac{4\pi}{q}}) = 3e^{j\frac{2\pi}{q}} = (-1)^{\frac{2}{q}} = 3\cdot 4(-1)^{\frac{2}{q}}e^{j\frac{4\pi}{q}}$
$= e^{j4} = (-1)^{\frac{1}{4}} = 3.467)^{\frac{1}{4}}(-1)^{\frac{1}{4}}$
$= 3(-1)^{2/9} \cdot 4(-1)^{4/9} = 12(-1)^{2/9} (-1)^{4/9} = 12(-1)^{\frac{2}{9}} = 12(-1)^{\frac{2}$
$=12-(1)^{213}=(2)\cdot(3e^{140})(4e^{180})=13e^{1120}$
$2. \frac{(2/15^{\circ})^{7}}{(4/245^{\circ})^{3}} = \frac{(2^{7}(15^{\circ})^{7}}{(4/245^{\circ})^{3}} = \frac{(2^{7}(15^{\circ})^{7}}{(2^{7}(245^{\circ})^{3})^{3}} = \frac{(2^{7}(215^{\circ})^{7}}{(2^{7}(245^{\circ})^{3})^{3}} = \frac{(2^{7}(215^{\circ})^{7}}{(2^$
$-\frac{(2(15^{\circ})^{7}}{(45^{\circ})^{3}} - \frac{(2215^{\circ})^{7}}{480^{\circ\frac{3}{2}}} - \frac{7480^{\circ\frac{7}{2}}}{480^{\circ\frac{3}{2}}}$
-180° - 180° - 180° - 2180° 3 180° 3 - 30388980° 3
$=\frac{180^{\circ}7^{-3}}{279956}=\frac{180^{\circ}4}{279956}=0.00034$

XIII Encontror la raíz (-1+i)1/3 y localizarla gráticamente. 3-111 (-1+i)"= (Im(3-1+1)+Re(J-1+1) = 6/2 (cos(X) + isen(X)) = 6/2 e(in) A 2 ~ 0,79370+0,79370i