#### Normal distribution (W5.1)

Notebook: INIAD Statistics
Created: 10/25/2018 7:52 PM

Author: danganhvu1998

**Updated:** 11/13/2018 8:06 PM

# **Normal distribution**

#### Normal distribution

- Applied to very various kinds of phenomena in natural and social physics.
- The most important distribution in statistics

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- $\bullet E(X) = \mu$
- $V(X) = \sigma^2$
- Denoted as  $N(\mu, \sigma^2)$

## Z-distribution

- Symmetric with expected value of z=0.
- You can discuss the peculiarity of data by using the distance from z=0.
- The integral from z=0 is known(z-table)



# . Calculate Z

#### o Z table

```
#norm.cdf(A, loc=B, scale=C) -> Ratio that value from -oo -> A if Mean(Expected Value) = B, Standard Deviation = C
print(norm.cdf(25, loc=10, scale=5)) #0.9986501019683699
#Value from -oo->25 is about 99.86% in total of a set with Mean(Expected Value) = 10, Standard Deviation = 5
#norm.ppf(A)*B+C -> Value D that from -oo -> D with Mean(Expected Value) = C, Standard Deviation = C has Ratio = A
print(norm.ppf(0.1)*15+60) #40.77672651683099
#Value from -oo->40.78 is about 10% in total of a set with Mean(Expected Value) = 60, Standard Deviation = 15
```

#### Z-table

Stands for the integral from z=0. Of course, the integral over the whole real umber should be 1.



For instance, for z=1.00,the corresponding value is 0.3413, the hatched area occupies 34.13%.

| Z   | 0     | 0.01  | 0.02  | 0.03  | 0.04  | 0.05  | 0.06  | 0.07  | 0.08  | 0.09  |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .0000 | .0040 | .0080 | .0120 | .0160 | .0199 | .0239 | .0279 | .0319 | .0359 |
| 0.1 | .0398 | .0438 | .0478 | .0517 | .0557 | .0596 | .0636 | .0675 | .0714 | .0753 |
| 0.2 | .0793 | .0832 | .0871 | .0910 | .0948 | .0987 | .1026 | .1064 | .1103 | .1141 |
| 0.3 | .1179 | .1217 | .1255 | .1293 | .1331 | .1368 | .1406 | .1443 | .1480 | .1517 |
| 0.4 | .1554 | .1591 | .1628 | .1664 | .1700 | .1736 | .1772 | .1808 | .1844 | .1879 |
| 0.5 | .1915 | .1950 | .1985 | .2019 | .2054 | .2088 | .2123 | .2157 | .2190 | .2224 |
| 0.6 | .2257 | .2291 | .2324 | .2357 | .2389 | .2422 | .2454 | .2486 | .2517 | .2549 |
| 0.7 | .2580 | .2611 | .2642 | .2673 | .2704 | .2734 | .2764 | .2794 | .2823 | .2852 |
| 0.8 | .2881 | .2910 | .2939 | .2967 | .2995 | .3023 | .3051 | .3078 | .3106 | .3133 |
| 0.9 | .3159 | .3186 | .3212 | .3238 | .3264 | .3289 | .3315 | .3340 | .3365 | .3389 |
| 1.0 | .3413 | .3438 | .3461 | .3485 | .3508 | .3531 | .3554 | .3577 | .3599 | .3621 |
| 1.1 | .3643 | .3665 | .3686 | .3708 | .3729 | .3749 | .3770 | .3790 | .3810 | .3830 |
| 1.2 | .3849 | .3869 | .3888 | .3907 | .3925 | .3944 | .3962 | .3980 | .3997 | .4015 |
| 1.3 | .4032 | .4049 | .4066 | .4082 | .4099 | .4115 | .4131 | .4147 | .4162 | .4177 |
| 1.4 | .4192 | .4207 | .4222 | .4236 | .4251 | .4265 | .4279 | .4292 | .4306 | .4319 |
| 1.5 | .4332 | .4345 | .4357 | .4370 | .4382 | .4394 | .4406 | .4418 | .4429 | .4441 |
| 1.6 | .4452 | .4463 | .4474 | .4484 | .4495 | .4505 | .4515 | .4525 | .4535 | .4545 |
| 1.7 | .4554 | .4564 | .4573 | .4582 | .4591 | .4599 | .4608 | .4616 | .4625 | .4633 |
| 1.8 | .4641 | .4649 | .4656 | .4664 | .4671 | .4678 | .4686 | .4693 | .4699 | .4706 |
| 1.9 | .4713 | .4719 | .4726 | .4732 | .4738 | .4744 | .4750 | .4756 | .4761 | .4767 |
| 2.0 | .4772 | .4778 | .4783 | .4788 | .4793 | .4798 | .4803 | .4808 | .4812 | .4817 |
| 2.1 | .4821 | .4826 | .4830 | .4834 | .4838 | .4842 | .4846 | .4850 | .4854 | .4857 |
| 2.2 | .4861 | .4864 | .4868 | .4871 | .4875 | .4878 | .4881 | .4884 | .4887 | .4890 |
| 2.3 | .4893 | .4896 | .4898 | .4901 | .4904 | .4906 | .4909 | .4911 | .4913 | .4916 |
| 2.4 | .4918 | .4920 | .4922 | .4925 | .4927 | .4929 | .4931 | .4932 | .4934 | .4936 |
| 2.5 | .4938 | .4940 | .4941 | .4943 | .4945 | .4946 | .4948 | .4949 | .4951 | .4952 |
| 2.6 | .4953 | .4955 | .4956 | .4957 | .4959 | .4960 | .4961 | .4962 | .4963 | .4964 |
| 2.7 | .4965 | .4966 | .4967 | .4968 | .4969 | .4970 | .4971 | .4972 | .4973 | .4974 |
| 2.8 | .4974 | .4975 | .4976 | .4977 | .4977 | .4978 | .4979 | .4979 | .4980 | .4981 |
| 2.9 | .4981 | .4982 | .4982 | .4983 | .4984 | .4984 | .4985 | .4985 | .4986 | .4986 |
| 3.0 | .4987 | .4987 | .4987 | .4988 | .4988 | .4989 | .4989 | .4989 | .4990 | .4990 |

statistic.py 11/10/2018 11:17 AM, 583 B

Python

```
#norm.cdf(A, loc=B, scale=C) -> Ratio that value from -oo -> A if Mean(Expected Value) = B, Standard Deviation = C
print(norm.cdf(25, loc=10, scale=5)) #0.9986501019683699
#Value from -oo->25 is about 99.86% in total of a set with Mean(Expected Value) = 10, Standard Deviation = 5
#norm.ppf(A)*B+C -> Value D that from -oo -> D with Mean(Expected Value) = C, Standard Deviation = C has Ratio = A
print(norm.ppf(0.1)*15+60) #40.77672651683099
#Value from -oo->40.78 is about 10% in total of a set with Mean(Expected Value) = 60, Standard Deviation = 15
```

# Example

• Mean = 10, Standard Deviation = 5

### [Exercise 1: Normal distribution] [Answer]

 Let x is subject to N(10, 5<sup>2</sup>). Then, find P(5<X<25).</li>

(5-10)/5=-1, (25-10)/5=3.  
Thus,  

$$P(5 < X < 25) = P(-1 < z < 3)$$
  
 $= 0.3413 + 0.4987 = 0.84$ 

• Mean = 60, Standard Deviation = 10

### Exercise 2: Normal distribution Answer

 Let a r.v. X is subject to N (60, 10<sup>2</sup>). Then, find P(45<X<70).</li>

$$(45-60)/10=-1.5$$
,  $(70-60)/10=1$ .  
Thus,  
 $P(45 < X < 70) = P(-1.5 < z < 1)$   
 $= 0.4332 + 0.3413 = 0.7745$ 

o Top 10% so need to find A where 90% value from -oo -> A

### [ Exercise 3: Normal distribution ] [Answer]

- The commute of workers in a certain cooperation is subject to the normal distribution, whose expected value and standard deviation are 60 [minutes] and 15[minutes], respectively.
- Then, find range of the commute of top 10% workers.

Since P(0
P(
$$-\infty$$
Thus, it is at least  
 $60+15\times1.28=79.2$ [minutes]





## Exercise 4: Normal distribution [Answer]

- The weight of a canned juice is subject to the normal distribution, whose expected value and standard deviation are 150.3[g] and 5[g], respectively. Assume you have 200 canned juice.
- 1) Find the weight of the canned juice of the 50<sup>th</sup> place.

Since P(0 < z < 0.67) = 0.2468,  $P(-\infty < z < 0.67) = 0.7468$ . Thus,  $150.3 + 5 \times 0.67 = 153.65$  [g].

