Example of Error Back Propagation

Example of Error Back Propagation (1)

Example : XOR

Iteration: 0

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1	1	0	0.52
1	0	1	0.50
0	1	11/	0.52
0	0	0	0.55

Iteration: 1000

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1		0	0.50
1	0	1	0.48
0	1	11	0.50
0	0	0	0.52

Example of Error Back Propagation (2)

Example : XOR

Iteration: 2000

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1	1	0	0.53
1	0	1	0.48
0	1	11/	0.50
0	0	0	0.48

Iteration: 3000

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1	1_{rn}	0	0.30
1	0	1	0.81
0	1	1	0.81
0	0	0	0.11

Example of Error Back Propagation (3)

Example : XOR

Iteration: 5000

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1	1	0	0.05
1	0	110	0.96
0	1	11/	0.96
0	0	0	0.03

Iteration: 10000

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1		0	0.02
1	0	1	0.98
0	1	11	0.98
0	0	0	0.02

Example of Error Back Propagation (4)

- Example : XOR
 - Error graph

Example of Error Back Propagation (5)

• Example2:

Hidden nodes: 4

Iteration: 500,000

Learning rate: 0.7

$$f(x) = 4x * (1-x)$$

Input	Output
0.00	0.00
0.10	0.36
0.20	0.64
0.30	0.84
0.40	0.96
0.50	1.00
0.60	0.96
0.70	0.84
0.80	0.64
0.90	0.36
1.00	0.00

Example of Error Back Propagation (6)

Example 2

Generalization and Overfitting (1)

- We gave only 11 points
 - A NN learned only that 11 points

Can the NN answer to the un-learned points?

Generalization and Overfitting (2)

Yes, NNs generalize what they have learned

Generalization and Overfitting (3)

Which one is better?

Training data

Generalization and Overfitting (4)

Which is Better?

Generalization and Overfitting (5)

Which is Better?

Generalization and Overfitting (6)

Generalization and Overfitting (7)

Early Stopping

Generalization and Overfitting (8)

- To increase generalization accuracy
 - Find the optimal number of neurons
 - Find the optimal number of training iterations
 - Use regularization
 - Use more training data