Texto

IAA-2023 Clase 8: Validación Cruzada

Repaso: Sesgo y Varianza

Repaso: Sesgo y Varianza

$$\mathbb{E}_{\mathcal{D}}(MSE) = (\text{bias})^2 + \text{variance} + \sigma^2$$

Validación Cruzada

Validación Cruzada

Val. 1	Entrenamiento	Validación	val. score 1	val. preds 1
Val. 2	Validación	Entrenamiento	val. score 2	val. preds 2

- **cross_val_score** = (val. score 1, val. score 2) -> Promedio, desviación
- cross_val_predict = {va. preds 1} U {val. preds 2} -> Predicciones "no sesgadas"

Validación Cruzada: K-Folds

Validación Cruzada: K-Folds

			Validación	Fold 1
		Validación		Fold 2
	Validación			Fold 3
Validación				Fold 4

• Validación cruzada consiste en dividir el dataset en subconjuntos (*folds*), y hacer varias rondas donde en cada una, uno de los conjuntos es utilizado como validación y el resto como entrenamiento.

- Validación cruzada consiste en dividir el dataset en subconjuntos (*folds*), y hacer varias rondas donde en cada una, uno de los conjuntos es utilizado como validación y el resto como entrenamiento.
- El resultado son un monton de modelos *distintos* (entrenados en distintos datasets) pero con el mismo método de entrenamiento e hiperparámetros.

- Validación cruzada consiste en dividir el dataset en subconjuntos (*folds*), y hacer varias rondas donde en cada una, uno de los conjuntos es utilizado como validación y el resto como entrenamiento.
- El resultado son un monton de modelos *distintos* (entrenados en distintos datasets) pero con el mismo método de entrenamiento e hiperparámetros.
- Estos modelos pueden ser evaluados en sus conjuntos de validación para obtener una estimación más objetiva del poder de generalización de esa combinación de hiperparámetros.

- Validación cruzada consiste en dividir el dataset en subconjuntos (*folds*), y hacer varias rondas donde en cada una, uno de los conjuntos es utilizado como validación y el resto como entrenamiento.
- El resultado son un monton de modelos *distintos* (entrenados en distintos datasets) pero con el mismo método de entrenamiento e hiperparámetros.
- Estos modelos pueden ser evaluados en sus conjuntos de validación para obtener una estimación más objetiva del poder de generalización de esa combinación de hiperparámetros.
- Validación Cruzada permite, de esta forma, independizarnos de la elección del split Entrenamiento/Validación, reduciendo el riesgo de sobre-ajuste de hiperparámetros.

- Validación cruzada consiste en dividir el dataset en subconjuntos (*folds*), y hacer varias rondas donde en cada una, uno de los conjuntos es utilizado como validación y el resto como entrenamiento.
- El resultado son un monton de modelos *distintos* (entrenados en distintos datasets) pero con el mismo método de entrenamiento e hiperparámetros.
- Estos modelos pueden ser evaluados en sus conjuntos de validación para obtener una estimación más objetiva del poder de generalización de esa combinación de hiperparámetros.
- Validación Cruzada permite, de esta forma, independizarnos de la elección del split Entrenamiento/Validación, reduciendo el riesgo de sobre-ajuste de hiperparámetros.
- Al dividir en K *folds*, cada conjunto de validación resultante es más pequeño, con lo que las predicciones individuales sobre este conjunto son peores, pero la estimación dada por el promedio del score es mejor.

- Validación cruzada consiste en dividir el dataset en subconjuntos (*folds*), y hacer varias rondas donde en cada una, uno de los conjuntos es utilizado como validación y el resto como entrenamiento.
- El resultado son un monton de modelos *distintos* (entrenados en distintos datasets) pero con el mismo método de entrenamiento e hiperparámetros.
- Estos modelos pueden ser evaluados en sus conjuntos de validación para obtener una estimación más objetiva del poder de generalización de esa combinación de hiperparámetros.
- Validación Cruzada permite, de esta forma, independizarnos de la elección del split Entrenamiento/Validación, reduciendo el riesgo de sobre-ajuste de hiperparámetros.
- Al dividir en K folds, cada conjunto de validación resultante es más pequeño, con lo que las predicciones individuales sobre este conjunto son peores, pero la estimación dada por el promedio del score es mejor.
- El costo de performance escala linealmente con el número de Folds.

TP Final

Consideraciones

- Equipos de 2 o 3 personas.
- Cada equipo elegirá una problemática con un dataset asociado.
- La elección de equipo, problemática y dataset cierra el Jueves 1ro de Junio.
- La presentación del proyecto se hará en forma oral con uso de diapositivas, en las últimas dos semanas de cursada.
- Se suplementará la presentación con el envío por email del notebook / código fuente utilizado para obtener los resultados, junto a la presentación en PDF.
 De contar con varios archivos de código, estos deberan ser comprimidos en formato .zip.
- El envío por email es a la casilla <u>ifabre@unsam.edu.ar</u> o a cualquier otro docente. Deberá ser enviado antes del dia de la presentación.

Evaluación

La evaluación se hará en base a **la presentación oral.** Los siguientes puntos servirán como guía:

- Respetar las etapas del flujo de trabajo:
 - Presentación del problema y cómo se abordará usando ML
 - Presentación del dataset (de donde fue obtenido, créditos, etc.)
 - Exploración del dataset
 - Preparación de los datos
 - Elección de métricas y modelos
 - Ajuste de hiper-parámetros con técnicas de validación cruzada
 - Evaluación del modelo resultante, y análisis de sus resultados
 - Conclusiones
- La correcta implementación de las técnicas vistas en clase
- El entendimiento y análisis de los resultados obtenidos en cada paso
- La clara exposición de estos pasos, y presentación general.