

Université de Monastir

Cours: Conception et Analyse d'Algorithmes

Chapitre 1: La récursivité (Parie 1)

Réalisé par:

Dr. Sakka Rouis

https://github.com/srtaoufik/AnalyseAlgorithmes

1

Chapitre 1: La récursivité

I. Définition et classifications

La récursivité est un outil très puissant en programmation. Lorsqu'elle est bien utilisée, elle rend la programmation plus facile. C'est avant tout une méthode de résolution de problème.

On distingue plusieurs types de récursivité :

- ▶récursivité directe : lorsqu'un module fait appel à lui-même.
- ▶récursivité indirecte ou croisée : lorsqu'un module A fait appel à un module B qui appelle A.
- **>récursivité circulaire** : lorsqu'un module A fait appel à un module B, B fait appel à un module C qui appelle A.

I. Définition et classifications

Concernant les méthodes, on peut trouver d'autres classifications de récursivité :

récursivité non terminale : Une méthode récursive est dite non terminale si le résultat de l'appel récursif est utilisé pour réaliser un traitement (en plus du retour du module).

récursivité terminale : Une méthode récursive est dite terminale si aucun traitement n'est effectué à la remontée d'un appel récursif (sauf le retour du module).

I. Définition et classifications

Étude d'un exemple : la fonction factorielle

Dénotée par n ! (se lit factorielle n), c'est le produit de nombres entiers positifs de 1 à n inclus.

Exemples:

```
4! = 1*2*3*4,
5! = 1*2*3*4*5,
```

Noter que 4 ! peut s'écrire 4*3*2*1 = 4 * 3 ! et que 5 ! peut s'écrire 5*4*3*2*1 = 5 * 4 !

→ On peut conclure que : n! = 1 si (n=1) n! = n* (n-1)! si non

5

Chapitre 1: La récursivité

I. Définition et classifications

Étude d'un exemple : la fonction factorielle (Solution non terminale)

I. Définition et classifications

Étude d'un exemple : la fonction factorielle (Solution terminale)

```
Algorithmiquement

Fonction Facto (n: entier, resultat: entier): entier

Début

Si (n=1) alors
retourne resultat;
Sinon
retourne Facto (n-1, n* resultat);

Fin Fn

Traduction en C

int facto (int n, int res)

{
    if (n == 1)
        return res;
    else
    return
facto (n-1, n*res);
}
```

7

Chapitre 1: La récursivité

II. Mécanisme de fonctionnement de la récursivité

Chaque cas est réduit à un cas plus simple. Le calcul de 4! se ramène à celui de 3!, le calcul de 3! se ramène au calcul de 2! ... jusqu'à arriver à 1! qui donne directement 1.

Après on fait un retour arrière. Le résultat d'une ligne i sert au calcul de la ligne i-1.

<u>Illustration</u>: Considérons le calcul de 4! par la fonction récursive définie ci-dessus :

```
Facto(4) renvoie 4 * Facto(3)
Facto(3) renvoie 3 * Facto(2)
Facto(2) renvoie 2 * Facto(1)
Facto(1) renvoie 1 (arrêt de la récursivité)
Facto(2) renvoie 2 * 1 = 2
Facto(3) renvoie 3 * 2 = 6
Facto(4) renvoie 4 * 6 = 24
```

III. Conseils d'écriture d'une méthode récursive :

Ces conseils sont illustrés par l'exemple suivant :

Écrire une fonction récursive permettant de calculer la somme des chiffres d'un entier n positif

Exemple: n = 528, donc la somme des chiffres de n est 15

1. Observer le problème afin de :

- a) Paramétrer le problème : on détermine les éléments dont dépend la solution et qui caractérisent la taille du problème.
- b) Décrire la condition d'arrêt : quand peut-on trouver "facilement" la solution ? (une solution triviale) : Si on a le choix entre n = 528 et n = 8, il est certain qu'on choisit n = 8. La somme des chiffres de 8 est 8.
- → Conclusion: Si n a un seul chiffre, on arrête. La somme des chiffres est n lui-même.

9

Chapitre 1: La récursivité

III. Conseils d'écriture d'une méthode récursive :

c) réduire le problème à un problème d'ordre inférieur pour que la condition d'arrêt soit atteinte un moment donné : somChif (528) =8+somChif (52)

= 8 + (2 + somChif(5)) = 8 + (2 + 5)

2. Écriture de la fonction :

4

Chapitre 1: La récursivité

III. Conseils d'écriture d'une méthode récursive :

Exercice:

Illustrer les conseils précédents pour écrire une fonction récursive qui permet de calculer le produit de deux entiers positifs a et b sans utilisé l'opérateur de multiplication (*).

Solution:

- a) la solution de ce problème dépond des deux opérandes n1 et n2
- b) Si vous avez le choix entre : 12 x 456, 12 x 0 , 12 x 1 Lesquels des trois calculs sont le plus simple ?

c)
$$12 \times 9 = 12 + 12 + 12 + ... + 12$$
 (9 fois)
= $12 + (12 + 12 + ... + 12)$ (8 fois)
= $12 + 12 \times 8$

etc ...

11

12

Chapitre 1: La récursivité

IV. Exercices d'application

Exercice 2: Récursivité simple

Écrire **une fonction récursive** qui calcule les valeurs de polynôme d'Hermite H_n(x) définie comme suit :

$$H_0(x) = 1$$
;

$$H_1(x) = 2^*x$$
;

$$H_n(x)=2^*x^*H_{n-1}(x) - 2^*(n-1)^*H_{n-2}(x)$$
 pour tout n >1

Indication cette fonction possède deux paramètres n et x

<u>Exercice 3: Récursivité Simple avec appelle</u> imbriquée:

Écrire **une fonction récursive** qui calcule les valeurs de la fonction d'Ackermann, définie comme suit :

$$A(m, n) = \begin{cases} & n+1 & \text{si} & m=0 \\ & A(m-1, 1) & \text{si} & m > 0 \text{ et } n=0 \\ & A(m-1, A(m, n-1)) & \text{sinon} \end{cases}$$

Chapitre

Chapitre 1: La récursivité

IV. Exercices d'application

Exercice 4: Récursivité simple

Ecrire une fonction PGCD_Euc qui retourne le PGCD de 2 entiers a et b en utilisant l'algorithme d'Euclide :

L'algorithme d'Euclide consiste à répéter plusieurs fois le traitement : $PGCD(a,b) = PGCD(b,a\ Mod\ b)$

jusqu'à obtenir PGCD(x,0). Le PGCD est alors x.

Exemple : PGCD(36,16) = PGCD(16,4) = PGCD(4,0) = 4.

Exercice 5: Récursivité croisée

Écrire deux fonctions C ou Java qui permettent de calculer les nèmes (n passé en argument) termes des suites entières Un et Vn définies ci-dessous.

13

Chapitre 1: La récursivité

IV. Exercices d'application

Exercice 6: Tours de Hanoi

Le problème des tours de Hanoi est un grand classique de la récursivité car la solution itérative est relativement complexe. On dispose de 3 tours appelées A, B et C. La tour A contient n disques empilés par ordre de taille décroissante qu'on veut déplacer sur la tour B dans le même ordre en respectant les contraintes suivantes :

- On ne peut déplacer qu'un disque à la fois
- On ne peut empiler un disque que sur un disque plus grand ou sur une tour vide.

Illustration

IV. Exercices d'application

1) Observation

a) Ainsi, le paramétrage de la procédure déplacer sera le suivant :

Procédure déplacer(n : Entier ; A, B, C : Caractère)

b) Lorsque la tour A ne contient qu'un seul disque (n=1), la solution est évidente :

il s'agit de réaliser un transfert de la tour A vers B. Ce cas constitue donc la condition de sortie

- c) Ainsi, pour déplacer n (n>1) disques de A vers B en utilisant éventuellement C, il faut :
 - 1- déplacer (n-1) disques de A vers C en utilisant éventuellement
 - 2- réaliser un transfert du disque de A sur B
 - 3- déplacer (n-1) disques de C vers B en utilisant éventuellement A.

2) Écriture de la procédure :