

Problem Definition

- Sensor data has clock drift
 - estimate: up to 4 seconds drift per day (worst case)
 - → Disadvantageous for classification task

Schütz et al. (2021), "Deep Canonical Correlation Alignment"

Signal Before and After Alignment

7000

Drifted Signal

Dataset

SCAI-SENSEI-V2

- 20 user recordings, ~45 min each
- Includes extrinsic (synching) events at start & end

Sensors:

- Corsano (Accelerometer, Temperature, RR interval, etc), 32 Hz
- Cosinuss (Accelerometer, Heart Rate, PPG, etc), 100 Hz -
- VivaLink (Accelerometer, ECG, Heart Rate, etc), 5 Hz
- Sensomative (Pressure Mat), 10 Hz
- and more

Dataset

- SCAI-SENSEI-V2
 - 20 user recordings, ~45 min each
 - Includes extrinsic (synching) events at start & end

Goal

- Algorithm for data synchronization across multimodal sensors (viable for online)
- Aimed error: < 20% of time from window for Activities of Daily Living (ADL) classifier

Identify 2 pairs of corresponding points (A, A') and (B, B')

Shift the whole align by

$$\tau = A_t' - A_t$$

Shift the whole align by

$$\tau = A_t' - A_t$$

Stretch everything by $\frac{T_r}{T}$, with A used as the reference point

$$P_t^* = A_t + \tau + (P_t - A_t) \frac{T_r}{T_a}$$

P: any point on the unaligned signal

05 December 2024

Shift the whole align by

$$\tau = A_t' - A_t$$

Stretch everything by $\frac{T_r}{T}$, with A used as the reference point

$$P_t^* = A_t + \tau + (P_t - A_t) \frac{T_r}{T_a}$$

$$\to A_t^* = A_t'$$

$$B_t^* = B_t'$$

→ total: 18 signals

Creating a Drifted Dataset

Shift whole signal by 1400

[0.25, 0.5, 0.75, 1,

1.25, 1.5, 1.75, 2] seconds

$$\tau = A_t^* - A_t$$

$$\tau = A_t^* - A_t$$
$$P_t = P_t^* + \tau$$

 P^* : any point on the ground truth signal

Methodology

- 'Hardware' based
 - sending current time to sensor via an api
 - → Not possible due to sensors not providing this functionality
- Correlation based
 - works decently for signals sharing similarities

Deep Canoncial Correlation Alignment, 2021 Schütz, N., Botros, A., Single, M., Naef, A. C., Buluschek, P., & Nef, T.

- Segment signals into smaller segments
- Signals passed through neural networks learning mapping to shared latent space
- Canonical Correlation Analysis to maximize correlation
- Construct warping function by combining local alignments

Methodology - Event Based

- Detect events in each signal
- Match corresponding events from both signals
- Align the signals

05 December 2024

Example

Detect Outliers

05 December 2024

Cluster Events

Cluster outliers to events

event conditions:

duration > 0.5s outlier fraction > 0.5

Match Events

Matching events

- Temporally close (2s)
- Normalize **Event**
- Dynamic time 3000 warping (DTW) distance < 150

Find synchronization Points

Align

Stretch signal linearly by adjusting the timestamps

$$P^* = A + (P - A) \frac{T_r^{\frac{\overline{R}}{60}}}{T_a}$$

A: last synchronization point

P: any point after A

 T_r : passed reference time, B' - A'

 T_a : passed sensor time, B - A

Resample

Resample to reference frequency (1D linear interpolation)

Synchronization with Pressure Mat

Pressure Mat:

- Signal is very different from accelerometer
- custom rules

Synchronization with Pressure Mat

reference signal (accelerometer) unaligned signal (pressure mat) unaligned signal (derivative)

Work on derivative

Synchronization Points

For matched events:

minimum of reference and maximum pressure mat, resp. other way round

unaligned signal (derivative)

reference signal

Synchronization with Pressure Mat

05 December 2024

Error Quantification

N synchronized signals

Mean Absolute Error (MAE):

$$\frac{1}{2N} \sum_{i=1}^{N} (|A_i^* - A_i| + |B_i^* - B_i|)$$

Standard deviation of error:

$$\sqrt{\frac{1}{2N}\sum_{1}^{N}((|A_{i}^{*}-A_{i}|-\mu)^{2}+(|B_{i}^{*}-B_{i}|-\mu)^{2})}$$

 μ : mean of differences

Timestamp

Root Mean Squared Error (RMSE):

$$\sqrt{\frac{1}{2N}\sum_{i=1}^{N}((A_i^* - A_i)^2 + (B_i^* - B_i)^2)}$$

Accelerometer - Accelerometer: 10 signals Accelerometer - Pressure Mat: 20 signals

Error Quantification Results

Error Quantification Results

05 December 2024

Error Quantification Results

Plots for all absolute differences points per drifted set

- Accelerometer: 20 datapoints
- Pressure Mat: 40 datapoints

Conclusion

- Aimed error: < 20% of time from window for ADL classifier
 - → currently not viable for 1s window
 - → for 2s window viable, if manage to synchronize at least every ~12 hours.

Accelerator synched to Accelerator

Drift (in s)	MAE	Standard Deviation
0.25	0.156	0.224
0.5	0.181	0.246
0.75	0.206	0.287
1	0.231	0.339
1.25	0.256	0.399
1.5	0.397	0.607
1.75	0.403	0.649
2	1.085	1.098

Pressure Mat synched to Accelerator

Drift (in s)	MAE	Standard Deviation
0.25	0.231	0.409
0.5	0.256	0.417
0.75	0.281	0.437
1	0.307	0.469
1.25	0.332	0.51
1.5	0.359	0.558
1.75	0.596	0.711
2	1.044	0.957

Potential Future Work

- Improve results by fine tuning parameters
- Do synch after multiple events found
- Swap method(s) in selective pipeline steps
- Test on larger dataset

