

## REPRODUCING KERNELS

## Why

## Definition

Let X be nonempty (index) set. For example, X may be  $\{1, 2, ..., N\}$ ,  $\mathbf{Z}$ , [0, 1],  $\mathbf{R}^d$ ,  $\{x \in \mathbf{R}^3 \mid ||x|| \le 1\}$  (the unit sphere), or  $\{x \in \mathbf{R}^3 \mid \alpha \le ||x|| \le \beta\}$  (the atmosphere, or volume between two concentric spheres).

A symmetric, real-valued function  $k: X \times X \to \mathbf{R}$  of two variables is said to be *positive semidefinite* if for any  $n \in \mathbf{N}$ , for any real  $a_1, \ldots, a_n \in \mathbf{R}$  and  $x_1, \ldots, x_n \in X$ , we have

$$\sum_{i,j=1}^{n} a_i a_j k(x_i, x_j) \ge 0,$$

and positive definite if the above holds with ">".1"

Positive semidefinite kernels are useful for the following constructive reason:

**Proposition 1.** Let  $X \neq \emptyset$  be a set. If  $k: X \times X \to \mathbb{R}$  is positive semidefinite, then there exists a probability space  $(\Omega, \mathcal{A}, \mathbf{P})$  and a family of zero-mean normal real-valued random variables  $\{f_x: \Omega \to \mathbb{R}\}_{x \in X}$  with covariance function k, that is,

$$\mathsf{E} f(a) f(b) = k(a,b), \quad \textit{for all } a,b \in X.^2$$

<sup>&</sup>lt;sup>1</sup>Some authors use the term "positive definite" for our term positive semidefinite and the term "strictly positive definite" for our term positive definite.

<sup>&</sup>lt;sup>2</sup>Future editions will prove this result.

This result is known by the names Kolmogorov extension theorem, Kolmogorov existence theorem, Kolmogorov consistency theorem and Daniell-Kolmogorov theorem.

