

ISN.

Microcontrôleurs et cartes programmables

Term S

Premier test: pilotage d'une DEL

Réaliser un programme permettant de faire clignoter une DEL rouge toutes les 350 millisecondes.

Modifier votre programme pour qu'à chaque tour le délai diminue de **10 ms** et s'il devient inférieur ou égal à 20 ms le réinitialiser à **350 ms** (<u>Aide</u> : utiliser une variable)

Attention, dans la fonction **sleep** du module **time** les valeurs doivent être rentrées en seconde. Une pause de 200 ms s'obtient à l'aide de l'instruction **time.sleep(0.2)**

Deuxième test : DELs et bouton poussoir

Réaliser un programme pour qu'une Del rouge clignote toutes les demies secondes et qu'une Del verte clignote **10 fois** (avec un intervalle de 100 ms) si l'on appuie sur un bouton poussoir.

Compléter votre programme afin que le message « **poussoir appuyé** » s'affiche lors d'un appui sur le bouton. **Vérifier** en utilisant la **console série**

Réaliser un programme permettant de lire la tension aux bornes d'un potentiomètre toutes les 1/2 secondes. *Afficher* la valeur dans le moniteur série. (Vous pouvez visualiser la valeur dans la console série ou le **traceur série** si vous le souhaitez)

Compléter votre programme :

Si la tension dépasse 1,5 V allumer une Del rouge et afficher dans le moniteur série le message « DEL rouge allumee », sinon allumer une Del verte et afficher le message « DEL verte allumee ».

Quatrième test : pilotage de servomoteurs

Réaliser un programme simple permettant de faire varier alternativement toute les secondes la position d'un servo moteur de **30° à 90°**.

Réaliser un programme simple permettant faire varier la vitesse d'un servo moteur à rotation continue. On veut pouvoir répéter indéfiniment les instructions suivantes :

- Vitesse maximale dans 1 sens pendant 2 secondes
- Arrêt pendant 1 seconde
- Vitesse maximale dans sens inverse pendant 2 secondes
- Arrêt pendant 1 seconde

Pour les **servo moteurs continus** utilisés (**HSR 1425CR**): paramétrer les valeurs **min_pulse=1000** μ**s** et **max_pulse=2100** μ**s**)

Pour les **servo moteurs**

(Tiny-S): paramétrer les valeurs min_pulse=900 μs et max_pulse=2300 μs et actuation_range=140) (Nano-S): paramétrer les valeurs min_pulse=700 μs et max_pulse=2300 μs et actuation_range=140)

Pour aller plus loin:

Facile:

Réaliser un programme permettant de faire varier la vitesse du moteur continu progressivement de 50% de la vitesse max à -50% puis de -50 à 50%. Vous choisirez un délai adapté.

Réaliser un programme permettant de faire varier progressivement l'angle d'un servomoteur afin qu'il réalise des allers-retours entre 2 positions que vous aurez déterminées. Vous choisirez un délai adapté.

Plus difficile:

On veut contrôler la position d'un servo moteur à l'aide d'un capteur optique (ici une photorésistance)

Réaliser un programme permettant de lire la tension aux bornes du capteur optique et **d'afficher** la valeur dans le moniteur série.

➤ **Déplacer** votre main au-dessus du capteur et noter les valeurs de tension pour 2 positions différentes de votre main (position **basse** et position **haute**).

On souhaite que pour une position donnée de la main le servo moteur tourne à 50% de sa vitesse maximale dans un sens, puis bascule progressivement jusqu'à 50% de la vitesse max dans l'autre sens lorsque votre main arrive à la seconde position.

Proposer une solution!

Aide:

Si pour la photorésistance à la lumière on lit une tension de 1,00V et 1,50 V à l'ombre

On veut:

- Pour la tension de 1,00 V une vitesse de +50%
- Pour la tension de 1,50V une vitesse de -50%

Attention, prévoir une butée, si la vitesse dépasse 50%, la bloquer à 50% (idem dans l'autre sens)

Adapter votre programme afin cette fois ci de piloter un servomoteur à angle avec votre main (On souhaite que pour une position donnée de la main le servo moteur soit à 30 ° puis bascule progressivement jusqu'à 150 ° lorsque votre main arrive à la seconde position)

Aide

Modules: Quelques exemples de modules et de fonctions, ou classes associées

- digitalio contient (DigitalInOut , Direction , Pull)
- analogio contient (AnalogIn , AnalogOut)
- pulseio contient (PWOut)
- adafruit_motor contient le sous module servo qui contient (Servo , ContinuousServo)

Attention MUeditor utilise la syntaxe de python3

- ➤ Toujours mettre un espace avant et après les opérateurs et après une virgule. Le nombre de caractères par ligne est limité…etc. Dans la barre de menu cliquer sur *Check* pour vérifier votre programme.
- Check
- Pour l'affichage dans le moniteur série, lors de l'utilisation de la fonction print. Mettre des parenthèses.

Exemple print("coucou")

Pour afficher dans le traceur série, il faut envoyer les données sous forme de tuple <u>Exemple</u> print((a , b , c))

Pour tracer une valeur lue en continue, par exemple une tension :

Exemple print((U ,))

Pour réaliser un test sur une variable booléenne il faudra utiliser :
If capteur.value is True à la place de if capteur.value = = True

Quelques tutoriels pour l'utilisation de MUeditor: https://codewith.mu/en/tutorials/

Connexions des composants sur les différentes cartes

	MetroM4 express	Trinket	Metro M0express
	pattes	pattes	pattes
Bouton poussoir	D0	D0	D0
Potentiomètre	Α0	A0 (D1)	A0
photorésistance	A1	A0*	A1
Delrouge	D2	D2	D2
Delverte	D3	D3	D3
Servomoteurs	D4	D4	D4

^{*}les cartes **Trinket** n'ont qu'une entrée analogique, il faudra modifier la position d'un fil de connexion pour envoyer sur l'entrée **A0** le signal du potentiomètre ou celui de la photorésistance. **Appeler le professeur!**