SEQUENCE LISTING

			SEQUENCE BISIING												
		(1) GENERAL INFORMATION:													
	5	(i)	APPLICANT: Genentech, Inc. Klein, Robert D. Moore, Mark W. Rosenthal, Arnon Ryan, Anne M.												
		(ii)	TITLE OF INVENTION: USES OF GDNF AND GDNF RECEPTOR												
		(iii)	NUMBER OF SEQUENCES: 12												
	10 15	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Genentech, Inc. (B) STREET: 460 Point San Bruno Blvd (C) CITY: South San Francisco (D) STATE: California (E) COUNTRY: USA												
			(F) ZIP: 94080												
enter three three Trues distant the first the	20	(♥)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: 3.5 inch, 1.44 Mb floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: WinPatin (Genentech)												
i.	25	(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:													
		(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 08/615902 (B) FILING DATE: 14-MAR-96												
all good only him. All	30	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 08/618236 (B) FILING DATE: 14-MAR-96												
	35	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Torchia, PhD., Timothy E. (B) REGISTRATION NUMBER: 36,700 (C) REFERENCE/DOCKET NUMBER: P0996P1PCT												
		(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 415/225-8674 (B) TELEFAX: 415/952-9881 (C) TELEX: 910/371-7168												
	40	(2) IN	FORMATION FOR SEQ ID NO:1:												
	45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 2378 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear												
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:1:												
		TTCTA	TCGAT TGAATTCCCC GGGGATCCTC TAGAGATCCC TCGACCTCGA 50												
CCCACGCGTC CGCCGGGCGG CGGCTTTGGA TTTTGGGGGG GCGGGGA															

-74-

GCTGCGCGGC GGCACC ATG TTC CTA GCC ACT CTG TAC TTC 140

50

		_											
					Met 1	Phe	Leu	Ala	Thr 5	Leu	Tyr	Phe	
	5				GAT Asp							GTG Val	179
					CTG Leu							GAT Asp	218
	10				CAG Gln 40							CGC Arg	257
					GTG Val							TTC Phe 60	296
	15				CTT Leu							CGT Arg	335
Hand Hand	20				TTG Leu							AAC Asn	374
The state of the s					GGC Gly							TGT Cys	413
1	25				AGC Ser 105							GGA Gly	452
					GAT Asp							AAC Asn 125	491
2	30				ATA Ile							ATA Ile	530
	35				CAA Gln							GGG Gly	569
					GCA Ala							GAC Asp	608
	40				TAC Tyr 170							CCC Pro	647
					TCC Ser							CGT Arg 190	686

AAG TGC CAC AAG GCC CTC AGG CAG TTC TTC GAC AAG GTT 725 Lys Cys His Lys Ala Leu Arg Gln Phe Phe Asp Lys Val

CCG GCC AAG CAC AGC TAC GGG ATG CTC TTC TGC TCC TGC 764
Pro Ala Lys His Ser Tyr Gly Met Leu Phe Cys Ser Cys
205 210 215

195

CGG GAC ATC GCC TGC ACC GAG CGG CGG CGA CAG ACT ATC 803

Leu Ala Gly Ala Ser Ser His Ile Thr Thr Lys Ser Met

15

30

35

40

GCT GCT CCT CCC AGC TGC AGT CTG AGC TCA CTG CCG GTG 1466 Ala Ala Pro Pro Ser Cys Ser Leu Ser Ser Leu Pro Val 440 445

5 CTG ATG CTC ACC GCC CTT GCT GCC CTG TTA TCT GTA TCG 1505 Leu Met Leu Thr Ala Leu Ala Ala Leu Leu Ser Val Ser 455 460

TTG GCA GAA ACG TCG TAGCTGCATC CGGGAAAACA GTATGAAAAG 1550 Leu Ala Glu Thr Ser 465 468

ACAAAAGAGA ACCAAGTATT CTGTCCCTGT CCTCTTGTAT ATCTGAAAAT 1600
CCAGTTTTAA AAGCTCCGTT GAGAAGCAGT TTCACCCAAC TGGAACTCTT 1650
TCCTTGTTTT TAAGAAAGCT TGTGGCCCTC AGGGGCTTCT GTTGAAGAAC 1700
TGCTACAGGG CTAATTCCAA ACCCATAAGG CTCTGGGGCG TGGTGCGGCT 1.750
TAAGGGGACC ATTTGCACCA TGTAAAGCAA GCTGGGCTTA TCATGTGTTT 1800
GATGGTGAGG ATGGTAGTGG TGATGATGAT GGTAATTTTA ACAGCTTGAA 1850
CCCTGTTCTC TCTACTGGTT AGGAACAGGA GATACTATTG ATAAAGATTC 1900
TTCCATGTCT TACTCAGCAG CATTGCCTTC TGAAGACAGG CCCGCAGCCT 1.950
AGTGTGAATG ACAAGTGGAG GTTGGCCTCA AGAGTGGACT TGGCAGACTC 2.000
TACCTTGTAG TAATGTTCAC CTTTCCGTGT ATGGTCTCCA CAGAGTGTTT 2.050
ATGTATTTAC AGACTGTTCT GTGATCCCCC AACAACAACA ACCACAAATT 2.100
CCTTGGTCAC CTCCAAATGT AACCGGTCCT TTAGCCCAGT AGAGGAGGGT 2.150
GGGTGTGGCC CTGGCACAGC TCCCGGATTG TTGATGGGCA CTCTCCTGAG 2.200

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 468 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear

(ix) FEATURE:

- (A) NAME/KEY: Extracellular Domain
- (B) LOCATION: 25
- (C) IDENTIFICATION METHOD:
- (D) OTHER INFORMATION:

(ix) FEATURE:

- (A) NAME/KEY: Mature Protein N-terminal
- (B) LOCATION: 25-427
- (C) IDENTIFICATION METHOD:
- (D) OTHER INFORMATION:

5	<pre>(ix) FEATURE: (A) NAME/KEY: Potential Glycosolation Site (B) LOCATION: 349 (C) IDENTIFICATION METHOD: (D) OTHER INFORMATION:</pre>														
10	 (ix) FEATURE: (A) NAME/KEY: Potential Glycosolation Site (B) LOCATION: 408 (C) IDENTIFICATION METHOD: (D) OTHER INFORMATION: 														
15	<pre>(ix) FEATURE: (A) NAME/KEY: Potential Glycosolation Site (B) LOCATION: 61 (C) IDENTIFICATION METHOD: (D) OTHER INFORMATION:</pre>														
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:															
	Met 1	Phe	Leu	Ala	Thr 5	Leu	Tyr	Phe	Ala	Leu 10	Pro	Leu	Leu	Asp .	Leu 15
20	Leu	Met	Ser	Ala	Glu 20	Val	Ser	Gly	Gly	Asp 25	Arg	Leu	Asp	Cys	Val 30
	Lys	Ala	Ser	Asp	Gln 35	Cys	Leu	Lys	Glu	Gln 40	Ser	Cys	Ser	Thr	Lys 45
	Tyr	Arg	Thr	Leu	Arg 50	Gln	Cys	Val	Ala	Gly 55	Lys	Glu	Thr	Asn	Phe 60
25	Ser	Leu	Thr	Ser	Gly 65	Leu	Glu	Ala	Lys	Asp 70	Glu	Суѕ	Arg	Ser	Ala 75
:	Met	Glu	Ala	Leu	Lys 80	Gln	Lys	Ser	Leu	Tyr 85	Asn	Cys	Arg	Cys	Lys 90
30	Arg	Gly	Met	Lys	Lys 95	Glu	Lys	Asn	Суѕ	Leu 100	Arg	Ile	Tyr	Trp	Ser 105
•					110				Asp	115					120
	_				125				Ser	130					135
35					140				Gln	145					150
					155				Lys	160					165
40					170				Tyr	175					180
					185				Arg	190					195
	Leu	Arg	Gln	Phe	Phe 200	Asp	Lys	Val	Pro	Ala 205	Lys	His	Ser	Tyr	Gly 210
45	Met	Leu	Phe	Cys	Ser 215	Суѕ	Arg	Asp	Ile	Ala 220		Thr	Glu	Arg	Arg 225
	Arg	Gln	Thr	Ile	Val	Pro	Val	Cys	Ser	Tyr	Glu	Glu	Arg	Glu	Arg

						230					235					240
	5	Pro	Asn	Cys	Leu	Ser 245	Leu	Gln	Asp	Ser	Cys 250	Lys	Thr	Asn	Tyr	Ile 255
		Cys	Arg	Ser	Arg	Leu 260	Ala	Asp	Phe	Phe	Thr 265	Asn	Cys	Gln	Pro	Glu 270
		Ser	Arg	Ser	Val	Ser 275	Asn	Cys	Leu	Lys	Glu 280	Asn	Tyr	Ala	Asp	Cys 285
	10	Leu	Leu	Ala	Tyr	Ser 290	Gly	Leu	Ile	Gly	Thr 295	Val	Met	Thr	Pro	Asn 300
		Tyr	Val	Asp	Ser	Ser 305	Ser	Leu	Ser	Val	Ala 310	Pro	Trp	Суѕ	Asp	Cys 315
	15	Ser	Asn	Ser	Gly	Asn 320	Asp	Leu	Glu	Asp	Cys 325	Leu	Lys	Phe	Leu	Asn 330
		Phe	Phe	Lys	Asp	Asn 335	Thr	Суѕ	Leu	Lys	Asn 340	Ala	Ile	Gln	Ala	Phe 345
		Gly	Asn	Gly	Ser	Asp 350	Val	Thr	Met	Trp	Gln 355	Pro	Ala	Pro	Pro	Val 360
PH, 11114, 111	20	Gln	Thr	Thr	Thr	Ala 365	Thr	Thr	Thr	Thr	Ala 370	Phe	Arg	Val	Lys	Asn 375
mill Year 19		Lys	Pro	Leu	Gly	Pro 380	Ala	Gly	Ser	Glu	Asn 385	Glu	Ile	Pro	Thr	His 390
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Val	Leu	Pro	Pro	Cys 395	Ala	Asn	Leu	Gln	Ala 400	Gln	Lys	Leu	Lys	Ser 405
all all sing	25	Asn	Val	Ser	Gly	Ser 410	Thr	His	Leu	Cys	Leu 415	Ser	Asp	Ser	Asp	Phe 420
may than the		Gly	Lys	Asp	Gly	Leu 425	Ala	Gly	Ala	Ser	Ser 430	His	Tle	Thr	Thr	Lys 435
ļ.		Ser	Met	Ala	Ala	Pro 440	Pro	Ser	Cys	Ser	Leu 445	Ser	Ser	Leu	Pro	Val 450
	30	Leu	Met	Leu	Thr	Ala 455	Leu	Ala	Ala	Leu	Leu 460	Ser	Val	Ser	Leu	Ala 465
		Glu	Thr	Ser 468												

- (2) INFORMATION FOR SEQ ID NO:3:
- 35 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
- 40 His Gln Asn Leu Ser Asp Gly Lys 1 5 8
 - (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 8 amino acids

- (B) TYPE: Amino Acid (D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: His Gln Asn Ile Ser Asp Gly Lys 5 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: Amino Acid 10 (D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: His Gln Ser Leu Gly Thr Gln (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: Amino Acid (D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: 20 Val Ile Ser Ser His Leu Gly Gln 5 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: Amino Acid (D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: Pro Lys Asn Ser Ser Met Ile Ser Asn Thr Pro (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 418 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single 35 (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

 CCGGCACTGA ATCTAGGAAG GAGCCCAGGA TGAGCGGCAG GTTGGGTCGG 50

 AACTGAACCC CTAAAA3CGG GTCCGCCTCC CGCCCTCGCG CCCGCTCGGA 100

 GCTGAGTCCC TGGCGGCGGT GGGCGGCAGA GCAACGGGGA GTCTGCTCTC 150

 ACCCTGGATG GAGCTTAACT TTGAGTGGCC AGAGGAGCGC AGTCGCCCGG 200

 GGATCTCTGC ACGCTGAGCT CTCTCCGCGA GATCCGGTGG CGGCTTTGGA 250

 TTTTGGGGGG GCGGGGACCA GCTGCGCGGT GGCACCATGT TCCTAGCCAC 300

20

30

TCTGTACTTC GTGCTGCCAC TCCTGGATTT GCTGATGTCG GCCGAGGTGA 350 GTGGTGGGGA CCGCCTGGAC TGTGTGAAAG CCAGTGATCA GTGCCTGAAG 400 GAACAGAGCT GCAGCACC 418

- (2) INFORMATION FOR SEQ ID NO:9:
- 5 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 840 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- 10 (xi) SEQUENCE DESCRIPTION: SEO ID NO:9:
 - CGCCGCAAGT GCCACAAAGC CCTCAGGCAG TTCTTCGACA AAGTTCCAGC 50
 CAAGCACAGC TACGGGATGC TCTTCTGCTC CTGCCGGGAC GTCGCCTGCA 100
 CCGAGAGGCCG GCGACAGACT ATCGTCCCTG TGTGCTCCTA TGAAGAACGA 1.50
 GAGAGGCCCA ACTGCCTGAA TCTGCAAGAC TCCTGCAAGA CAAATTACAT 200
 CTGCAGATCT CGCCTTGCAG ATTTTTTTAC CAACTGCCAG CCAGAGTCAA 2.50
 GGTCTGCAG CAACTGTCTT AAGGAGAACT ACGCAGACTG CCTCCTGGCC 3.00
 TACTCGGGAC TGATTGGCAC AGTCATGACT CCTAACTACA TAGACTCCAG 3.50
 CAGCCTCAGT GTGGCGCCGT GGTGCGATTG CAGCAACAGT GGCAATGACC 4.00
 TGGAAGATTG CCTGAAGTTT CTGAATTTTT TTAAGGACAA TACGTGTCTC 4.50
 AAAAATGCAA TTCAAGCCTT TGGCAATGGC TCGGATTGA CCATGTGGCA 5.00
 GCCAGCCCCC CCAGTCCAGA CCACCACTGC CACGACTACC ACTGCCTTCC 5.50
 GGATCAAGAA CAAGCCTCTA GGGCCAGCAG GCTCTGAGAA TGAGATTCCC 6.00

ACACACGTTT TACCACCGTG TGCTAATTTG CAGGCACAGA AGCTGAAATC 650

- CAATGTATCG GGCAGTACAC ATCTCTGTCT TTCTGATAAT GATTACGGAA 700

 25 AGGATGGTCT CGCTGGTGCC TCCAGCCACA TAACCACAAA ATCAATGGCT 750

 GCTCCTCCCA GCTGCGGTCT GAGCTCACTG CCGGTGATGG TGTTCACCGC 800

 TCTGGCTGCC CTGTTGTCTG TATCATTGGC AGAAACATCG 840
 - (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 351 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
- 35 AGGGAATTTG GCCCTCGAGG AAGGAGATTC GGCACGAGGC CAAGAGCAAC 50
 CATTGCCTGG ATGCTGCCAA GGCCTGCAAC CTGAATGACA ACTGCAAGAA 100
 GCTGCGCTCC TCCTACATCT CCATCTGCAA CCGCGAGATC TCGCCCACCG 150

AGCGCTGCAA CCGCCGCAAG TGCCACAAGG CCCTGCGCCA GTTCTTCGAC 200
CGGGTGCCCA GCGAGTACAC CTACCGCATG CTCTTCTGCT CCTGCCAAGA 250
TCAGGCGTGC GCTGAGCNCG CGGNCAAAAC CATCCTGCCC AGCTGCTCCT 300
ATGAGGACAA GGAGAAGCCC AACTGCNTGG ACNTGCGTGG CGTGTGCCGG 350

5 A 351

10

15

20

25

CAT 453

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 453 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

AAGAACCATTG CCTGGATGCT GCCAAGGCCT GCAACCTGAA TGACAACTGC 50

AAGAAGCTGC GCTCCTCTA CATCTCCATC TGCAACCGCG AGATCTCGCC 100

CACCGAGCGC TGCAACCGCC GCAAGTGCCA CAAGGCCCTG CGCCAGTTCT 150

TCGACCGGGT GCCCAGCGAG TACACCTACC GCATGCTCTT CTGCTCCTGC 200

CAAGACCAGG CGTGCGCTGA GCGCGCGGGC AAAACCATCC TGCCCAGCTG 250

CTCCTATGAG GACAAGGAGA AGCCCAACTG CCTGGACCTG CGTGGCGTGT 300

GCCGGACTGA CCACCTGTGT CGGTCCCGGC TNGCCGACTT TCCATGCCAA 350

TTTGTTCGAG CCTTCCTACC AGACGGGTCA CCAGGCTGCC CTNGCGGACA 400

ATTTACCAGG GCGTGTCTTG GGGTCTTNAT GTTGGCATGA TTGGGTTTGA 450

- (2) INFORMATION FOR SEQ ID NO:12:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 201 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
- 30 GCAACCATTG CCTGGATGCT GCCAAGGCCT GCAACCTGAA TGACAACTGC 50

 AAGAAGCTGC GCTCCTCCTA CATCTCCATC TGCAACCGCG AGATCTCGCC 100

 CACCGAGCGC TGCAACCGCC GCAAGTGCCA CAAGGCCCTG CGCCAGTTCT 150

 TCGACCGGGT GCCCAGCGAG TACACCTACC GCATGCTCTT CTGCTCCTGC 200

 C 201