Midterm 1 - KEY

Tuesday, September 27, 2016

The exam has 2+24 questions to bubble in. Maximum is 44 points.

2 pts except 1 pt for questions 1, 5, 8, 11, 15, 20,

Correct answers are either in bold or indicated by **

- 1. I have spelled out and bubbled in **correctly** my first name, last name, and Purdue ID.
 - A True
- B False
- 2. Your version is Version A. Bubble in the version below. If you do not bubble in the version, your score will be 0/44.
 - A Version A
- **B** Version B
- 3. Algorithm X has a running time of $2n^2 4n \log n + 16n$. Which big-O expressions hold for algorithm X's time?
 - 1. O(n)
 - 2. $O(n \log n)$
 - 3. $O(n^2)$
 - 4. $O(n^3)$
 - 5. $O(2^n)$
 - **A** 1, 2, and 3
 - B 3, 4, and 5
 - **C** 2 and 3
 - ${f D}$ 3 and 4
 - \mathbf{E} 3
- 4. The asymptotic ordering of the four running times from smallest to largest corresponds to what order? Running times: $2\sqrt{n}$, $\frac{6n}{\log n}$, $8n + \sqrt{n}$, $16\log n$
 - **A** $16 \log n, \frac{6n}{\log n}, 2\sqrt{n}, 8n + \sqrt{n}$
 - **B** $2\sqrt{n}$, $16\log n$, $\frac{6n}{\log n}$, $8n + \sqrt{n}$
 - **C** $16 \log n, 2\sqrt{n}, 8n + \sqrt{n}, \frac{6n}{\log n}$
 - **D** **16 log n, $2\sqrt{n}$, $\frac{6n}{\log n}$, $8n + \sqrt{n}$
- 5. The running time of your algorithm is $4n^{3/2} + \frac{12n^2}{\log n} + 14n^2 \log n + 1024$. Which bound below is the tightest asymptotic bound?
 - $\mathbf{A} n \log n$
- $\mathbf{B} n^2$
- $C **n^2 \log n$
- **D** $n^{3/2}$

6. Consider the code segment below. How many times is function help called? Mark the tightest bound.

```
for (int i = 1; i < n; i++)  j = i+1  while (j < n) {  help()   j = j + 4  }  A O(n) \qquad B O(n \log n) \qquad C **O(n^2) \qquad D O(n^3)
```

7. Consider the code segment below. How many times is function help called? Mark the tightest bound.

```
for (int a = 1; a < n; a++) b = n while (b > 1) { help() \\ b = (b - 2)/2 } A O(\log n) \qquad B **O(n \log n) \qquad C O(n) \qquad D O(n^2)
```

8. Suppose an **intermixed** sequence of push and pop operations are performed on a stack. The pushes operations push the six integers 0 through 5 in that order. The pops happen at arbitrary times (when the stack is not empty) and each pop prints out the return value.

Which of the following printed sequences could **not** occur?

9. An infix expression can be evaluated by using two stacks, one for operators and one for operands. For the expression ((8/2) + (5 * (6-3))), what is on the operand stack **after 3** has been read, but before) is read? Top of stack is rightmost entry.

10. The prefix expression + + A * B C D is equivalent to what **postfix** notation?

A
$$A B + C D + *$$

$$C A B C * + D +$$

$$\mathbf{D} A + B * C + D$$

11. Consider a sorted circular doubly-linked list where the head element points to the smallest element in the list. One can find the largest element in what time? Mark the tightest bound.

A **
$$O(1)$$

$$\mathbf{B} O(n)$$

$$\mathbf{C} O(\log n)$$

12. Consider a sorted circular doubly-linked list where the head element points to the smallest element in the list. Given an entry x, we can determine whether x is in the list in what time? Mark the tightest bound.

$$\mathbf{A} O(\log n)$$

$${\bf B} **O(n)$$

$${\bf C} O(1)$$

13. A queue contains the elements A, B, C, D, E with A being at the front of the queue. What is the minimum number of dequeue and enqueue operations needed to generate a queue containing D, E, C, A, B (in that order, with D being at the front of the queue)?

- A 2 dequeues and 2 enqueues
- B 3 dequeues and 3 enqueues
- C 4 dequeues and 4 enqueues
- **D** 2 dequeues and 3 enqueues

14. A 180 student implemented a queue with a linked list as shown below. The lab assignments asks the students to achieve constant time per operation. Using the implementation illustrated, what performance is achieved (on a queue containing n elements)?

A dequeue =
$$O(1)$$
, enqueue = $O(1)$

B dequeue =
$$O(n)$$
, enqueue = $O(1)$

$$\mathbf{C}$$
 dequeue = $O(1)$, enqueue = $O(n)$

D dequeue =
$$O(n)$$
, enqueue = $O(n)$

15.	15. What is the most appropriate data structure for modeling a supermarket checkout lane? Customers enter at the back and are checked out at the front. Sometimes, the last customer in line leaves.						
	\mathbf{A} stack	${f B}$ queue	\mathbf{C}	heap	D deque		
16.	. Given are two arrays A and B, each of size n and each containing integers sorted in increasing order. For a given target value T , one can determine whether there exist an entry a in array A and an entry b in array B such that $a + b = T$ in what time? Mark the tightest bound.						
	$\mathbf{A}^{**}O(n)$						
	$\mathbf{B} \ O(\log n)$						
	$\mathbf{C} \ O(n \log n)$						
	$\mathbf{D} \ O(n^2)$						
	E none of the above holds						
17.	17. Consider the number of array exchanges made when sorting n elements. What is the maximum number of array exchanges made by Selection sort? Mark the tightest bound. A ** $O(n)$ B $O(n \log n)$ C $O(n^2)$ D $O(n^3)$						
18.	. A heap contains 36 entries. How many nodes are on the lowest (last) level?						
	A 2	B 4	C 5	D 6	E 8		
19.	9. Randomized Quicksort with 3-way partition happens to run on input data consisting of three distinct elements (e.g., 5, 22, and 38). How many times is the partition routine invoked?						
	A 1	B 2	C 3	D 4	$\mathbf{E} \log n$		
20.	20. Assume Quicksort sorts an array of size n containing n distinct elements and always uses the median element as the pivot. There is no additional cost in obtaining the median. The resulting running time is $O(n \log n)$ because						
	A we choose a good pivot.						
	B we generate two subproblems whose size differs by at most 1.						
	${f C}$ the number of levels of recursion is now constant.						
	D It is not $O(n \log n)$. The worst case remains $O(n^2)$.						

21. What does the max-heap look like when the six element sequence 5 2 3 4 8 1 is inserted (one by one) into an empty heap?

C is the correct answer

- 22. In a general binary tree, a node can have 0, 1 or 2 children. The **level** of a node is the number of links on the path from the root to the node. The root is at level 0. In a general binary tree consisting of n nodes, the maximum level of a node is
 - **A** 1
 - $\mathbf{B} \lfloor \log n \rfloor$
 - $\mathbf{C} \ n/2$
 - **D** ***n* − 1
 - \mathbf{E} n
- 23. Given is a flow grid of size n by n. Assume the flow factors are 0, 1, 2, 3, and 4. If the earliest flow path contains k cells, what is the **latest time** the flow on this path **can leave** row n-1?
 - $\mathbf{A} k$
- **B** 4(k-1)
- **C** n 1
- $\mathbf{D} \ 3k$
- **E** **4k
- 24. An array of size n contains records with keys -15, 1, 5.5, 25, 125. The records can be sorted in O(n) time using what algorithm?
 - 1. Heapsort
 - 2. Insertion Sort
 - 3. Counting Sort
 - 4. Standard Merge Sort
 - **A** 1
 - \mathbf{B} 2
 - C 3
 - **D** 4
 - ${f E}$ 2 and 3

- 25. It is 2026 and you are the Director of Software Engineering at MacroHard. You happen to interview a senior from Purdue who has taken ECE 368 and who claims to know a lot about Quicksort. He makes the following claims:
 - 1. There exist input sequences having all distinct elements on which Quicksort achieves O(n) time.
 - 2. Quicksort has an $O(n \log n)$ worst-case performance.
 - 3. Quicksort is a stable sort.
 - 4. Partitioning always uses O(n) additional space.
 - 5. Randomized Quicksort always beats deterministic Quicksort.

You remember what you learned in CS 251 and realize the correct claims are:

- **A** 1 and 2
- **B** 3 and 4
- \mathbf{C} 5
- **D** 1
- E None
- 26. You are asked to sort N inventory IDs. These IDs consist of 8 characters: six digits, followed by two characters chosen from a set of size K. For example, for K=2 and the set containing A and B, 485567AB is a valid ID while A123466B is not. Using Radix sort, the N IDs can be sorted in time proportional to (check the most accurate bound)
 - $\mathbf{A} \ 10N \log N$
 - **B** 600N
 - C **8N + 2K + 60
 - **D** 14N + 2K + 160
 - **E** 2N + 10K + 60