Sistemas de Numeração.

Definições

Numeral: é todo o símbolo que representa um número.

Sistema de Numeração: é um conjunto de símbolos e regras culturalmente aceitos que possibilita a escrita de números.

Classificação de Sistemas de Numeração

Os sistemas de numeração podem classificar-se em: Posicionais e Não posicionais.

- Não posicionais ou Sistema de Numeração Aditivo: A posição recíproca dos constituintes não é relevante.
 - Considere-se o número cento e vinte e sete escrito no sistema de numeração romana: (CXXVII). Nem o valor de I nem o de X depende da posição que ocupam esses símbolos.
- **Posicionais:** O valor de cada algarismo depende do lugar que ocupa.
 - Considere-se o número trezentos e vinte e dois, escrito no sistema indo-árabe (322). A primeira menção do algarismo dois representa duas unidades simples; a segunda duas unidades de 1ª ordem (dezenas) e a terceira menção do algarismo três representa duas unidades de 2ª ordem (centenas).

Postulados

- I Um sistema de Numeração de Base B possui B símbolos válidos todos menores que B.
- II Todo e qualquer sistema de Numeração inicia-se em Zero, "0".

Exemplos:

Sistema	Base	Símbolos
Binário	2	$\{0,1\}$
Octal	8	{0, 1, 2, 3, 4, 5, 6, 7,}
Decimal	10	{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Hexadecimal	16	{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A , B , C , D , E , F }

Tabela com a Evolução Indo-Arábico do Sistema Decimal

Potências em Sistemas de Numeração Posicionais

	Posição no Sistema de Numeração								
Base	8	7	6	5	4	3	2	1	0
2	256	128	64	32	16	8	4	2	1
8	88	8 ⁷	8^{6}	32768	4096	512	64	8	1
10	108	10^{7}	10^{6}	10 ⁵	10^{4}	1000	100	10	1
16	16 ⁸	16 ⁷	16 ⁶	16 ⁵	16 ⁴	4096	256	16	1

Tabela de Equivalências entre Decimal, Binário, Octal e Hexadecimal

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Conversão entre sistema de Numeração

1. Mudança da Base B para Base 10

Algoritmo:

Efetuar sucessivas somas de multiplicações dos dígitos, até o último, na Base B pelo valor ponderado da justaposição do dígito.

Exemplo.

1 0 1 1)₂
$$\Rightarrow$$
 X)₁₀
X)₁₀ = 1*2⁰ + 1*2¹ + 0*2² + 1*2³
Logo, X)₁₀ = 1*1 + 1*2 + 0*4 + 1*8
Então: X)₁₀ = 11)₁₀

2. Base 10 para Qualquer Base B.

Algoritmo:

Efetuar sucessivas divisões por B (base destino) enquanto o quociente da divisão for maior que B.

Exemplo.

Então:
$$13)_{10} \rightarrow 1 \ 1 \ 0 \ 1)_2$$

b)
$$1084)_{10} \rightarrow X)_{16}$$

$$\begin{array}{c|cccc}
 & 1084 & 16 \\
\hline
 & 67 & 16 \\
\hline
 & 3 & 4
\end{array}$$

c)
$$108)_{10} \rightarrow X)_{8}$$

$$\begin{array}{c|cccc}
 & 108 & 8 \\
\hline
 & 4 & 13 & 8 \\
\hline
 & 5 & 1 \\
\end{array}$$

Então: $108)_{10} \rightarrow 154)_8$

3. Mudança da Base 16 para Base 2

Algoritmo 1:

Efetuar sucessivas fatorações pelos valores correspondentes a 4 (quatro) dígitos Binários na mesma posição que ocupam, pois sempre se pode substituir 1 dígito Hexa por 4 Binários ($2^4 = 16$).

Exemplo.

CAFE)₁₆
$$\rightarrow$$
 X)₂
CAFE)₁₆ \rightarrow 1100 A F E \rightarrow 1100 1010 F E \rightarrow 1100 1010 1111 E \rightarrow 1100 1010 1111 1110

$$CAFE)_{16} = 1100 \ 1010 \ 1111 \ 1110)_2$$

Algoritmo 2:

Efetuar a mudança da Base 16 para Base 10, em seguida efetuar a mudança da Base 10 para Base 2, conforme já mostrado anteriormente. Este método é eficaz, porém obriga-se a efetuar muitas operações aritméticas em cascata.

4. Mudança da Base 2 para Base 16

Algoritmo 1:

Efetuar sucessivos agrupamentos pelos valores correspondentes a 4 (quatro) dígitos Binários na mesma posição que ocupam, pois sempre se pode substituir 4 Binários por 1 dígito Hexa ($2^4 = 16$).

Exemplo.

```
1100 1010 1111 1110)<sub>2</sub> \rightarrow X)<sub>16</sub>
X)<sub>2</sub> \rightarrow 1100 1010 1111 1110)<sub>2</sub> \rightarrow 1100 1010 1111 E)<sub>16</sub> \rightarrow 1100 1010 F E)<sub>16</sub> \rightarrow 1100 A F E)<sub>16</sub> \rightarrow C A F E)<sub>16</sub>
```

Algoritmo 2:

Efetuar a mudança da Base 2 para Base 10, em seguida efetuar a mudança da Base 10 para Base 16, conforme já mostrado anteriormente. Este método é eficaz, porém obriga-se a efetuar muitas operações aritméticas em cascata.