AN eCONCORDIA EXAMINATION

CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	m Section(s)
Mathematics	209	EC
Examination	Date	Pages
Final	December 2012	3
Instructors		Course Examiner
Dr. Hal Proppe		Dr. Hal Proppe
Dr. Fred E Szabo		Dr. Fred E Szabo

Special Instructions

Only approved calculators are allowed.

Evaluation

The examination counts for 50% towards your final grade.

MARKS

[9] **1.** (a) Let
$$f(x) = \frac{3-x^2}{2x^3-x^2+9}$$
. Find the limits:

(i)
$$\lim_{x \to 1} f(x)$$

(i)
$$\lim_{x \to 1} f(x)$$
 (ii) $\lim_{x \to \infty} f(x)$

(b) Given that
$$\lim_{x\to -3} g(x)=4$$
 and $\lim_{x\to -3} h(x)=-5$, find the limit $\lim_{x\to -3} \sqrt{g(x)-h(x)}$.

(c) True or False: if
$$\lim_{x\to 4} g(x) = 5$$
, then $\lim_{x\to 3} g(x) = 4$. Explain your answer.

[13] **2.** (a) If
$$g(x) = -3x^4 + 2x^2 - \pi$$
, find $g'(x)$.

(b) If
$$f(x) = (\ln(x) + x)(2x^2 - 5)$$
, find $f'(x)$.

(c) If
$$y = \frac{(e^x - x)}{(x^2 - 2x)}$$
, find y' .

(d) If If
$$y = \sqrt[3]{x^5 - 7}$$
, then $y' = ?$

(e) Find
$$y'$$
 if $e^y = y^3 - 2x$.

[11] **3.** Given the price-demand equation

$$.03x + 4p = 30$$

- (A) Express the demand x as a function of price p.
- (B) Express the revenue R as a function of the price p.
- (C) Find the elasticity of demand, E(p).
- [11] **4.** A small machine shop manufactures drill bits used in the petroleum industry. The shop manager estimates that the total daily cost (in dollars) of producing x bits is

$$C(x) = 1,000 + 25x - 0.1x^2$$

- (A) Find $\bar{C}(x)$ and $\bar{C}'(x)$.
- (B) Find $\bar{C}(10)$ and $\bar{C}'(10)$, and interpret these quantities.
- (C) Use the results in part (B) to estimate the average cost per bit at a production level of 11 bits per day.
- [10] **5.** Find dy for $y = \sqrt{x} + 3$. Evaluate dy for
 - (A) x = 4 and dx = 0.1.
 - (B) x = 9 and dx = 0.12.
- [12] **6.** Compute the following:

(a)
$$\int e^{-3x} dx$$

(b)
$$\int (4x^3 - 7x^6) dx$$

$$(c) \int (x+9)^{-8} dx$$

(d)
$$\int (ex^5 - x^2) \ dx$$

(e)
$$\int \frac{x^2}{7 - x^3} dx$$

(f)
$$\int x(x^2-5)^{-6} dx$$

- [6] 7. Find the absolute maximum and absolute minimum value of $f(x) = x^3 12x$ on the interval [-3,3].
- [6] 8. Is there a function f from the reals to the reals which is not continuous, but has a continuous square? Justify your answer.
- [11] 9. Find all pertinent information about the function

$$h(x) = \frac{2x - 1}{x^2},$$

and sketch a graph of h.

[11] **10.** The Gini index for a Lorenz curve f(x) is $2\int_0^1 (x-f(x))dx$. The Lorenz curve for a small country is $x^{2\cdot 3}$. Graph the curve and find the Gini index for this country.