(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-34956 (P2002-34956A)

(43)公開日 平成14年2月5日(2002.2.5)

(51) Int.Cl.7	識別記号	FI	ラーマコード(参考)
A 6 1 B 5/145		G01N 33/52	B 2G045
5/15		33/66	D 4C038
G 0 1 N 33/52		A61B 5/14	3 1 0
33/66			300G
			300D
		審査請求 未請求 請求	項の数10 OL (全 18 頁)
(21)出願番号	特願2000-225936(P2000-225936)	(71)出願人 000109543	
		テルモ株式会	社
(22)出願日	平成12年7月26日(2000.7.26)	東京都渋谷区	幡ヶ谷2丁目44番1号
		(72)発明者 滝浪 雅夫	
		神奈川県足柄	上郡中井町井ノ口1500番地
		テルモ株式会	社内
		(74)代理人 100091292	
		弁理士 増田	達哉
		Fターム(参考) 20045 AA	·
			10 KL00 KL01 KL07 KM01
			01 TA02 TA04 UE03 UE10
		. UG	:10

(54) 【発明の名称】 成分測定装置

(57)【要約】

【課題】短時間で、正確かつ確実に血液中の所定成分の 測定を行うことができる成分測定装置を提供する。

【解決手段】成分測定装置 1 は、主として本体 2 と、指当て部 3 と、ハウジング 5 内に収納された穿刺手段 4 と、チップ退避機構 6 と、ポンプ 8 と、電磁弁と、血液の採取を検出するとともに採取された血液中の所定成分を測定する測定手段 7 とを備えている。チップ 1 3 をかつジング 5 に装着し、指先を指当て部 3 に押し当てチップ 1 3 の先端を封止する。操作ボタン 2 2 2 を押圧すると、チップ 1 3 が備える穿刺針が指先を穿刺し、ポンプ 8 がハウジング 5 内および穿刺部位を減圧状態とする。穿刺部位からは血液が吸い出され、この血液の採取が検出されると、ボンブ 8 が停止し、電磁弁が開いて前記減圧状態が解除される。この後、所定成分が測定手段 7 で測定され、制御手段 1 1 で処理され、その結果が表示部 1 2 で表示される。

【特許請求の範囲】

【請求項 】】 穿刺針および試験紙を備えるチップを装着して使用する成分測定装置であって、

穿刺する指を当てがう指当て部と、

前記指当て部に当てがわれた指を穿刺するよう前記穿刺針を作動させる穿刺手段と、

前記穿刺針および前記試験紙の収納空間とともに、前記 穿刺針による指の穿刺部位を減圧状態にする減圧手段 と

前記穿刺部位より採取され、前記試験紙に展開された血 10 液中の所定成分の量を測定する測定手段と、

前記血液の採取を検出する血液採取検出手段と、

少なくとも前記試験紙の収納空間の減圧状態を解除また は緩和する減圧解除手段とを有し、

前記血液採取検出手段により前記血液の採取が検出されると、前記減圧解除手段により少なくとも前記試験紙の収納空間の減圧状態を解除または緩和し、その後、前記測定手段により前記採取された血液中の所定成分の量を測定するよう構成されていることを特徴とする成分測定装置。

【請求項2】 前記測定には大気中の所定成分を必要とする請求項1に記載の成分測定装置。

【請求項3】 前記滅圧解除手段は、前記収納空間と外部とを連通する流路と、該流路を開閉する弁とを有する請求項1または2に記載の成分測定装置。

【請求項4】 前記減圧解除手段は、前記収納空間と外部とを連通する流路を有し、該流路は、その少なくとも一部に、空気の通過抵抗が比較的大きい部分を有する請求項1または2に記載の成分測定装置。

【請求項5】 前記測定手段の少なくとも一部と、前記 30 血液採取検出手段の少なくとも一部とが、互いに兼用のものである請求項1ないし4のいずれかに記載の成分測定装置。

【請求項6】 前記成分測定装置は、前記チップを保持し、前記穿刺手段を内蔵するハウジングを有し、

前記減圧手段は、前記ハウジング内の前記収納空間を減 圧状態とする請求項1ないし5のいずれかに記載の成分 測定装置。

【請求項7】 前記減圧解除手段は、前記ハウジング内 の前記収納空間の減圧状態を解除または緩和する請求項 40 6 に記載の成分測定装置。

【請求項8】 前記穿刺手段の作動と前記減圧手段の作動とをほぼ同時に開始することができる請求項1ないし7のいずれかに記載の成分測定装置。

【請求項9】 前記チップは、指に当接する当接部を有し、該当接部の内側に形成される開口を指で塞ぐようにして使用される請求項1ないし8のいずれかに記載の成分測定装置。

【請求項10】 前記試験紙は、血糖測定用の試験紙である請求項1ないし9のいずれかに記載の成分測定装

置。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、成分測定装置、特に、血液の検査に際し、指先を穿刺針で穿刺して血液を採取するとともに、その血液中の例えばブドウ糖のような特定成分の量を測定する成分測定装置に関する。

[0002]

【従来の技術】近年、糖尿病患者の増加に伴い、日常の 血糖値の変動を患者自身がモニターする自己血糖測定が 推奨されてきている。

【0003】 この血糖値の測定は、血中のブドウ糖量に 応じて呈色する試験紙を装着し、該試験紙に血液を供 給、展開して呈色させ、その呈色の度合いを光学的に測 定(測色)して血糖値を定量化する血糖測定装置を用い て行われる。

【0004】 この測定に先立ち、患者が自分の血液を採取する方法としては、穿刺針や小刀を備えた穿刺装置を用いて指先の皮膚を穿刺した後、その穿刺部周辺を指等20 で圧迫して血液を絞り出すことが行われる。

【0005】しかしながら、指先は毛細血管が集中しており血液の採取に適している反面、神経も集中しており痛みが伴うことから、患者へ与える苦痛、負担が大きく、また、穿刺することによる恐怖感を伴うことから、自己血糖測定が続けられなくなる患者も多い。

【0006】また、従来の血糖測定では、穿刺操作と、血液採取操作と、測定操作とを別々に行うため、操作性にも劣っている。

[0007]

0 【発明が解決しようとする課題】本発明の目的は、短時間で、正確かつ確実に血液中の所定成分の測定を行うととができる成分測定装置を提供することにある。

[0008]

【課題を解決するための手段】 このような目的は、下記 $(1) \sim (10)$ の本発明により達成される。

【0009】(1) 穿刺針および試験紙を備えるチップを装着して使用する成分測定装置であって、穿刺する指を当てがう指当て部と、前記指当て部に当てがわれた指を穿刺するよう前記穿刺針を作動させる穿刺手段と、前記穿刺針および前記試験紙の収納空間とともに、前記穿刺針による指の穿刺部位を減圧状態にする減圧手段と、前記穿刺部位より採取され、前記試験紙に展開された血液中の所定成分の量を測定する測定手段と、前記血

と、前記穿刺部位より採取され、前記試験紙に展開された血液中の所定成分の量を測定する測定手段と、前記血液の採取を検出する血液採取検出手段と、少なくとも前記試験紙の収納空間の減圧状態を解除または緩和する減圧解除手段とを有し、前記血液採取検出手段により前記血液の採取が検出されると、前記減圧解除手段により少なくとも前記試験紙の収納空間の減圧状態を解除または緩和し、その後、前記測定手段により前記採取された血液中の所定成分の量を測定するよう構成されていること

を特徴とする成分測定装置。

【0010】(2) 前記測定には大気中の所定成分を 必要とする上記(1)に記載の成分測定装置。

【0011】(3) 前記減圧解除手段は、前記収納空 間と外部とを連通する流路と、該流路を開閉する弁とを 有する上記(1)または(2)に記載の成分測定装置。

【0012】(4) 前記滅圧解除手段は、前記収納空 間と外部とを連通する流路を有し、該流路は、その少な くとも一部に、空気の通過抵抗が比較的大きい部分を有 する上記(1)または(2)に記載の成分測定装置。

【0013】(5) 前記測定手段の少なくとも一部 と、前記血液採取検出手段の少なくとも一部とが、互い に兼用のものである上記(1)ないし(4)のいずれか に記載の成分測定装置。

【0014】(6) 前記成分測定装置は、前記チップ を保持し、前記穿刺手段を内蔵するハウジングを有し、 前記減圧手段は、前記ハウジング内の前記収納空間を減 圧状態とする上記(1)ないし(5)のいずれかに記載 の成分測定装置。

ング内の前記収納空間の減圧状態を解除または緩和する 上記(6) に記載の成分測定装置。

【0016】(8) 前記穿刺手段の作動と前記減圧手 段の作動とをほぼ同時に開始することができる上記

(1)ないし(7)のいずれかに記載の成分測定装置。*

*【0017】(9) 前記チップは、指に当接する当接 部を有し、該当接部の内側に形成される開口を指で塞ぐ ようにして使用される上記(1)ないし(8)のいずれ かに記載の成分測定装置。

【0018】(10) 前記試験紙は、血糖測定用の試 験紙である上記(1)ないし(9)のいずれかに記載の 成分測定装置。

[0019]

【発明の実施の形態】本発明者は、従来の問題点を解決 するため、穿刺装置と測定装置とを一体化し、かつ、血 液を絞り出すための吸引手段を備えた血糖測定装置を開 発し、特許出願した(特願平10-183794号、特 願平10-330057号)。

【0020】これらの血糖測定装置では、まず、チップ 先端に指先を押し当て、この先端開口を気密性を保持す るように封止する。

【0021】次に、先端開口から突出する穿刺針で指先 を穿刺した後、この状態で吸引手段を作動させ(減圧状 態とし)、穿刺部位から血液を吸い出し、その血液を採 【0015】(7) 前記減圧解除手段は、前記ハウジ 20 取する。そして、測定装置により、採取された血液の血 糖値を測定する。下記に、血糖値を測定する際の、血液 中のブドウ糖(D-Glucose)と試薬との化学反 応式の一例を示す。

[0022]

【化1】

D-Glucose+ O_2 + H_2O \xrightarrow{GOD} D-Glucono- δ -lactone+ H_2O_2

2 H₂O₂ + 4-aminoantipyrine + Phenol POD Quinoncimine dye + 4 H₂O

【0023】上記化学反応式から判るように、血糖値の 測定には、十分な量の酸素を必要とし、その酸素の量が 不充分であると、正確な血糖値を得ることができない。 【0024】しかしながら、前記血糖測定装置では、減 圧状態のままで血糖値を測定することがあり、この場合 は、酸素が不足し、正確な血糖値を得ることができない おそれがある。

【0025】そこで、本発明者は、このような欠点を解 消するために、測定に先立って、減圧状態を解除または 40 1 実施形態の成分測定装置(血液成分測定装置) 1 は、 緩和することで、酸素(測定に必要な大気中の成分)を 十分に供給することができることを見い出し、本発明を 完成するに至った。

【0026】以下、本発明の成分測定装置を添付図面に 示す好適実施形態に基づいて詳細に説明する。

【0027】図1は、本発明の成分測定装置の第1実施 形態を模式的に示す斜視図、図2は、本発明において使 用するチップの構成例を示す縦断面図、図3および図4 は、それぞれ、第1実施形態の成分測定装置が有する穿

示す縦断面図、図5~図10は、それぞれ、第1実施形 態の成分測定装置における主要部の構成例を示す縦断面 図、図11は、第1実施形態の成分測定装置の回路構成 を示すブロック図、図12は、第1実施形態の成分測定 装置の制御手段の制御動作(一部、操作者の動作等を含 む)を示すフローチャートである。なお、図1~図10 中、右側を「基端」、左側を「先端」として説明する。 【0028】図1、図5および図11に示すように、第 本体2と、本体2に設置された指当て部3と、ハウジン グ5内に収納された穿刺手段4と、ハウジング5の基端 側に設けられたチップ退避機構6と、血液の採取を検出 するとともに採取された血液中の所定成分を測定する測 定手段7と、ハウジング5内を減圧状態とするポンプ8 と、ハウジング5内の減圧状態を解除、緩和または保持 する電磁弁26と、電池(電源)9と、回路基板10上 に設けられた制御手段11と、表示部12とを備えてい

刺手段および穿刺手段を内蔵するハウジングの構成例を 50 【0029】この成分測定装置1は、チップ13を装着

して使用され、血液中の所定成分の測定の際の化学反応 において、大気中の所定成分 (例えば、酸素、二酸化炭 素、水蒸気等)を必要とする。以下、各構成要素につい て説明する。

【0030】本体2は、対向する筐体21と蓋体22と で構成されている。この本体2は、その内部に収納空間 23が形成されており、この収納空間23内には、前記 穿刺手段4、ハウジング5、チップ退避機構6、測定手 段7、ポンプ8、電磁弁26、電池9、回路基板10、 制御手段11および表示部12が、それぞれ収納されて 10

【0031】筐体21の先端側の壁部211には、筐体 21の内外を貫通し、横断面での形状が円形の開口21 2が形成されている。この開口212を介して後述のハ ウジング5にチップ13が装着(保持)される。

【0032】また、壁部211の先端側の面には、開口 212の外周を囲んで、指先(指)の形状に対応して形 成された指当て部3が設置されている。この指当て部3 の先端側には、指当て面31が形成されている。指当て 部3(指当て面31)に指先を当接させつつ、成分測定 20 装置1を作動させる。これにより、指先が穿刺され、採 取された血液中の所定成分(以下、本実施形態では、ブ ドウ糖を代表として説明する。)の量が測定される。

【0033】蓋体22の上面には、蓋体22の内外を貫 通する表示窓(開□)221が形成されており、その表 示窓221は、透明な材料で構成される板状部材で塞が れている。

【0034】との表示窓221に対応する収納空間23 内の位置には、表示部12が設置されている。したがっ て、表示窓221を介して、表示部12で表示される各 30 種情報を確認することができる。

【0035】表示部12は、例えば、液晶表示素子(L CD) 等で構成されている。この表示部12には、例え ば、電源のオン/オフ、電源電圧(電池残量)、測定 値、測定日時、エラー表示、操作ガイダンス等を表示す るととができる。

【0036】また、蓋体22の上面には、操作ボタン2 22が設置されている。成分測定装置1では、との操作 ボタン222を押圧することにより、後述の穿刺手段4 に作動するよう構成されている。

【0037】なお、この操作ボタン222を押圧すると とにより、成分測定装置1の電源がオンされる構成とし てもよい。

【0038】表示部12の図1中下側には、回路基板1 0が設置され、この回路基板10上には、マイクロコン ビュータで構成される制御手段11が搭載されている。 この制御手段11は、例えば、血液が採取されたか否か の判別等、成分測定装置1の諸動作を制御する。また、 この制御手段11は、測定手段7からの信号に基づいて、50 で、発光素子71を点灯させると、発光素子71から発

血液中のブドウ糖量(血糖値)を算出する演算部を内蔵 している。

【0039】回路基板10の図1中左下側には、減圧手 段(吸引手段)として、ポンプ8が設置されている。こ のポンプ8は、電力により作動するものであり、後述の ハウジング5に形成された通気路54とチューブ81を 介して連結されている。このチューブ81は、可撓性を 有しており、例えば、ポリ塩化ビニル、ポリエチレン、 ポリプロピレン、エチレン-酢酸ビニル共重合体(EV A) 等のポリオレフィン、ポリアミド、ポリエステル、 シリコーンゴム、ボリウレタン等の高分子材料で構成さ れている。

【0040】このポンプ8は、ハウジング5の内腔部5 2内の空気を吸引、排出することにより、ハウジング5 の内腔部52を減圧状態とする。

【0041】また、ボンプ8は、指先の穿刺部位から血 液を吸い出すことができる程度(例えば、100~40 0mmHg程度)に、ハウジング5の内腔部52および 指先の穿刺部位を減圧状態とすることができるようなも のであればよい。

【0042】回路基板10の図1中右下側には、電源と して電池9が設置されている。この電池9は、ポンプ 8、電磁弁26、制御手段11、表示部12等と電気的 に接続され、これらの作動に必要な電力を供給する。

【0043】ポンプ8の図1中手前側には、測定手段7 が設置されている。この測定手段7は、後述のチップ1 3が備える試験紙18に血液が供給(採取)されるのを 光学的に検出するとともに、試験紙18に展開された血 液中のブドウ糖量を光学的に測定するものであり、その 設置位置は、チップ13をハウジング5に装着、保持し た状態で、試験紙18が位置する側位近傍とされる。

【0044】 このように、測定手段7は、血液の採取を 検出する機能と、試験紙18に展開された血液中のブド ウ糖 (所定成分) の量を測定する機能とを兼ね備えてい るので、とれらの手段をそれぞれ別個に設ける場合に比 べ、部品点数を削減することができ、構成を簡素化する ことができ、また、装置の組立工数を減少させることが できる。

【0045】この測定手段7は、発光素子(発光ダイオ に続き、ポンプ(減圧手段)8が順次あるいはほぼ同時 40 ード)71と受光素子(フォトダイオード)72とを有 している。

> 【0046】発光素子71は制御手段11と電気的に接 続され、受光素子72は、増幅器24およびA/D変換 器25を介して制御手段11と電気的に接続されてい

> 【0047】発光素子71は、制御手段11からの信号 により作動し、光を発する。この光は、所定の時間間隔 で間欠的に発光するバルス光であるのが好ましい。

> 【0048】チップ13をハウジング5に装着した状態

せられた光は試験紙18に照射され、その反射光は、受 光素子72に受光され、光電変換される。受光素子72 からは、その受光光量に応じたアナログ信号が出力さ れ、その信号は、増幅器24で所望に増幅された後、A /D変換器25にてデジタル信号に変換され、制御手段 11に入力される。

【0049】制御手段11では、入力された信号に基づ いて、血液が採取されたか否か、すなわち、血液がチッ プ13の試験紙18に展開されたか否かを判別する。

【0050】また、制御手段11では、入力された信号 10 に基づき、所定の演算処理を行い、また、必要に応じ補 正計算を行って、血液中のブドウ糖の量(血糖値)を求 める。求められた血糖値は、表示部12に表示される。 【0051】測定手段7の図1中手前側には、穿刺手段 4を内蔵するハウジング5とハウジング5の基端側に連

結して設けられたチップ退避機構6とが設置されてい

【0052】チップ退避機構6は、筐体21に固着さ れ、一方、ハウジング5は、筐体21には、固着され ず、チップ退避機構6により、その軸方向(図1中左右 20 の方向) に移動し得るように設置されている。

【0053】前述したように、この成分測定装置1は、 ハウジング5にチップ13を装着して使用される。この チップ13は、図2に示すように、穿刺針14と、穿刺 針14を摺動可能に収納する第1のハウジング15と、 第1のハウジング15の外周部に設置された第2のハウ ジング16と、第2のハウジング16の外周部に設置さ れた試験紙固定部17と、試験紙固定部17に固定され た試験紙18とで構成されている。

【0054】穿刺針14は、針体141と、針体141 の基端側に固着されたハブ142とで構成され、第1の ハウジング15の内腔部152内に収納されている。

【0055】針体141は、例えば、ステンレス鋼、ア ルミニウム、アルミニウム合金、チタン、チタン合金等 の金属材料よりなる中空部材または中実部材で構成さ れ、その先端には、鋭利な刃先(針先)が形成されてい る。この刃先により、指先の表面(皮膚)が穿刺され る。

【0056】また、ハブ142は、ほぼ円柱状の部材で 構成され、その外周部が第1のハウジング15の内周面 40 紙18が設置された試験紙固定部17が装着されてい 151に当接しつつ摺動する。

【0057】このハブ142の基端部には、縮径した縮 径部143が形成されている。この縮径部143は、後 述の穿刺手段4を構成するプランジャ41の針ホルダ4 11と嵌合する。

【0058】第1のハウジング15は、壁部153を底 部とする有底筒状の部材で構成され、その内部には内腔 部152が形成されている。

【0059】壁部153のほぼ中央部には、横断面での

には、指先(指)の穿刺に際し、針体141が通過す る。また、孔154の孔径は、ハブ142の先端外径よ り小さく設定されている。このため、穿刺針14が内腔 部152の先端方向へ移動し、ハブ142の先端と壁部 153の基端とが当接すると、それ以上、穿刺針14が 先端方向へ移動することが防止される。したがって、針 体141は、指先の穿刺に際し、チップ13の先端から の突出長さが一定に保たれる。このため、針体141の 刃先が指先を必要以上に深く穿刺してしまうことをより 確実に防止することができる。

【0060】また、後述のプランジャ41の移動距離を 調節する機構を設け、これにより、針体141の刃先に よる指先の穿刺深さを調節するようにしてもよい。

【0061】第1のハウジング15の外周部には、第2 のハウジング16が固着されている。

【0062】第2のハウジング16は、ほぼ円筒状の部 材で構成され、その内部には、内腔部161が形成され

【0063】また、第2のハウジング16の先端には、 リング状に突出した当接部163が形成されている。こ の当接部163は、指先を押し当る部位であり、その内 側には、内腔部161が開放する先端開口(開口)16 2が形成されている。当接部163の先端外周縁は、指 先に押し当られたときに穿刺周辺部を刺激し穿刺時の痛 みを和らげる効果を発揮するのに適した形状をなしてい る。また、ポンプ8により減圧状態となったとき、当接 部163の先端と指先の表面との間から空気が流入する ととを極力抑制し得るような形状となっている。なお、 第2のハウジング16の先端には、当接部163が設け 30 られず、第2のハウジング16の先端面が平坦な面を構 成してもよい。

【0064】第2のハウジング16には、当接部163 の基端付近の外周部に、外側に向かって突出するリング 状のフランジ164が形成されている。このフランジ1 64は、後述のハウジング5に装着した状態で、その基 端がハウジング5の先端に当接し、ハウジング5に対す る位置を規定する。

【0065】第2のハウジング16の外周部には、凹部 165が形成され、との凹部165には、円盤状の試験 る。

【0066】また、第2のハウジング16の内周面に は、内腔部161に向かって突出する血液導入ガイド1 66が形成されている。この血液導入ガイド166は、 指先の穿刺後、先端開口162から内腔部161に流入 した血液 (検体) を、受け止める機能を有するものであ

【0067】このようなチップ13では、第2のハウジ ング16、試験紙固定部17を経て、第2のハウジング 形状が円形の孔154が形成されている。この孔154 50 16の内腔部161と外部とを連通する血液通路19が

る。

形成されている。この血液通路19は、穿刺により得ら れた血液を試験紙18へ導くための流路であり、内腔部 161へ開放する通路開口191とチップ13の外部へ 開放する通路開□192とを有している。なお、通路開 □192は、試験紙18の中心部に位置している。

【0068】また、血液導入ガイド166は、通路開口 191付近に形成されている。このため、血液導入ガイ ド166で受け止められた血液は、効率よく通路開口1 91から血液通路19に導かれる。この血液は、毛細管 現象により通路開口192まで到達し、通路開口192 10 を塞ぐように設置された試験紙18の中心部に供給さ れ、放射状に展開する。

【0069】この試験紙18は、血液を吸収・展開可能 な担体に、試薬を担持させたものである。

【0070】担体としては、例えば、不織布、織布、延 伸処理したシート等のシート状多孔質体が挙げられる。 この多孔質体は、親水性を有するものが好ましい。

【0071】担体に担持される試薬は、血液(検体)中 の測定すべき成分により、適宜決定される。例えば、血 糖値測定用の場合、グルコースオキシターゼ(GOD) と、ペルオキシターゼ (POD) と、例えば4-アミノ アンチピリン、N-エチルN-(2-ヒドロキシ-3-スルホプロビル)-m-トルイジンのような発色剤(発 色試薬)とが挙げられ、その他、測定成分に応じて、例 えばアスコルビン酸オキシダーゼ、アルコールオキシダ ーゼ、コレステロールオキシダーゼ等の血液成分と反応 するものと、前記と同様の発色剤(発色試薬)とが挙げ られる。また、さらにリン酸緩衝液のような緩衝剤が含 まれていてもよい。なお、試薬の種類、成分について は、これらに限定されないことは言うまでもない。

【0072】このようなチップ13は、前述した筐体2 1の開口212を介してハウジング5(嵌合部53)に 着脱自在に装着(嵌合)される。

【0073】ハウジング5は、図3および図4に示すよ うに、壁部51を底部とする有底筒状の部材で構成さ れ、その内部には、内腔部(収納空間)52が形成され ている。また、ハウジング5の先端側は、その内径がチ ップ13の外周の形状に対応して縮径した嵌合部53が 形成されている。この嵌合部53にチップ13が挿入さ れ、嵌合(固定)される。なお、図3および図4では、 説明の理解を容易にするために、チップ13の構造を簡 略化して示した。

【0074】ハウジング5の側部には、内腔部52と外 部とを連通する通気路54が形成され、この通気路54 は、チューブ81を介してポンプ8に接続されている。 内腔部52内の空気は、通気路54およびチューブ81 を介してポンプ8により吸引され、内腔部52(チップ 13内を含む)は、減圧状態とされる。

【0075】また、図5に示すように、チューブ81の 途中には、チューブ82の一端が接続され、そのチュー 50 【0085】プランジャ41の先端部には、カップ状の

ブ82の他端は、本体21の外部に開放している。この チューブ82は、可撓性を有しており、例えば、前記チ ューブ81と同様の材料で構成することができる。

【0076】チューブ82の途中には、その流路を開閉

(開放/閉鎖) する電磁弁26が設置されている。 【0077】電磁弁26が閉じているとき(閉状態のと き)は、前記内腔部52(チップ13内を含む)の減圧 状態が保持され、電磁弁26が開くと(開状態になる と)、前記減圧状態の内腔部52内に、チューブ82、 81 および通気路54を介して、外部から空気(大気) が導入され、その減圧状態が解除または緩和される。 【0078】したがって、前記チューブ(流路)81、 82 および電磁弁26 により、減圧解除手段が構成され

【0079】図3および図4に示すように、ハウジング 5の壁部51には、そのほぼ中央部に孔511が形成さ れている。との孔511には、内部にオリフィス(通 路) 651が形成された細管65が設置されている。と のオリフィス651を介して、細管65の両側に設けら 20 れた内腔部 52 と後述の容積可変室 631 との間を空気 が流通する。

【0080】ハウジング5の先端には、リング状のシー ルリング(封止部材)55が嵌合されている。これによ り、チップ13をハウジング5に装着すると、チップ1 3のフランジ164の基端とシールリング55とが当接 し、内腔部52の気密性が保持される。

【0081】このシールリング55は、弾性体で構成さ れている。このような弾性体としては、例えば、天然ゴ ム、イソプレンゴム、ブタジエンゴム、スチレンーブタ 30 ジェンゴム、ニトリルゴム、クロロプレンゴム、ブチル ゴム、アクリルゴム、エチレンープロピレンゴム、ヒド リンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム のような各種ゴム材料や、スチレン系、ポリオレフィン 系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル 系、ポリアミド系、ポリブタジエン系、フッ素ゴム系等 の各種熱可塑性エラストマーが挙げられる。

【0082】ハウジング5は、その基端部外周に、外側 に向かって突出するリング状のフランジ56が形成さ れ、また、その基端には、円筒状の凸部59が形成され 40 ている。

【0083】とのようなハウジング5の嵌合部53より 基端側の内腔部52内には、穿刺手段4が収納されてい る。との穿刺手段4は、それに装着される穿刺針14を 先端方向へ移動させ、針体141の刃先により指先の表 面を穿刺する。

【0084】穿刺手段4は、プランジャ41と、プラン ジャ41を先端方向へ付勢するコイルバネ(付勢部材) 42と、プランジャ41を基端方向へ付勢するコイルバ ネ(付勢部材)43とを有している。

針ホルダ411が設けられている。この針ホルダ411 には、穿刺針14の縮径部143が着脱自在に嵌合され る。また、ブランジャ41の基端部には、先端に突起状 の係止部413を有する弾性変形可能な弾性片412が 設けられている。

【0086】チップ13をハウジング5に装着する前の 状態、すなわち、穿刺針14をプランジャ41に装着す る前の状態 (図3参照)では、係止部413は、弾性片 412の弾性力により図3中上方向へ付勢されてハウジ ング5の内周面に当接している。一方、チップ13をハ 10 ウジング5に装着した状態、すなわち、穿刺針14をプ ランジャ41に装着した状態(図4参照)では、係止部 413は、ハウジング5の内外を貫通するように形成さ れた開口57内に挿入され、その縁部に係止する。これ により、プランジャ41の先端方向への移動が規制され る。なお、開口57は、平板状のシール部材(封止部 材) 58で塞がれ、内腔部52の気密性が保持されてい る。このシール部材58は、前記シールリング55と同 様の材料で構成することができる。

【0087】コイルバネ(穿刺用バネ)42は、プラン 20 ジャ41の基端側に設置され、その両端は、それぞれ、 プランジャ41および壁部51に当接している。一方、 コイルバネ(押し戻し用バネ)43は、プランジャ41 の先端側に設置され、その両端は、それぞれ、プランジ ャ41および嵌合部53に当接している。

【0088】また、図3および図4に示すように、ハウ ジング5の外部には、係止部413を内腔部52内に向 かって (図中矢印方向へ) 移動させることができる係止 解除部材223が設けられている。この係止解除部材2 23は、前述の操作ボタン222の押圧に連動して移動 30 する。

【0089】係止部413が開口57に係止している状 態では、コイルバネ42は、圧縮状態とされ、プランジ ャ41を先端方向へ付勢する。操作ボタン222を押圧 し、係止解除部材223を、図中矢印方向へ移動させ、 係止部413の係止状態を解除すると、コイルバネ42 は、伸張してプランジャ41を先端方向へ移動させ、針 体141の刃先が指先の表面(皮膚)を穿刺する。

【0090】一方、このとき、コイルバネ43は、圧縮 され、プランジャ41を基端方向へ付勢、すなわち、プ 40 ランジャ41を基端方向へ押し戻そうとする。その後、 プランジャ41は、減衰運動し、コイルパネ42の弾性 力とコイルバネ43の弾性力とが釣り合う位置で静止す る。

【0091】なお、プランジャ41が静止した状態で は、針体141の刃先は、チップ13内に収納されてい

【0092】ハウジング5の基端側には、チップ退避機 構6が設けられている。チップ退避機構6は、ハウジン グ5 およびそれに装着されたチップ13を指先200か 50 ので空気の通過抵抗が大きい。このようなオリフィス6

ら離間する方向(基端方向)へ移動させるものである。 [0093] このチップ退遊機構6は、図5~図10に 示すように、本体部61と、シールリング64と、細管 65とを有している。

[0094]本体部61は、壁部62を底部とする有底 筒状の部材で構成され、その内部には、内腔部63が形 成されている。この内腔部63には、ハウジング5の基 端側が挿入されている。

【0095】本体部61の先端には、その中心方向に向 かって突出するリング状の凸部611が形成されてい る。チップ退避機構6の作動前の状態では、凸部611 の基端とフランジ56の先端とが当接している。これに より、ハウジング5は、先端方向への移動が規制され る。すなわち、ハウジング5が本体部61から抜けてし まうのを防止することができる。

【0096】また、このとき、当接部163の先端は、 指当て面31とほぼ同じ位置か、もしくは、指当て面3 1から若干突出している(図5参照)。これにより、指 当て部3に指先200を当接すると、指先200の表面 は、確実に当接部163に当接し、先端開口162を塞 ぐことができる。

【0097】壁部62には、そのほぼ中央部に、横断面 での形状が円形の凹部621が形成されている。この凹 部621の径は、凸部59の外径とほぼ等しく設定さ れ、この凹部621に凸部59が挿入されている。ま た、フランジ56の外径は、本体部61の内径とほぼ等 しく設定されている。このような構成とすることによ り、ハウジング5の軸方向の位置にかかわらず、例え は、図中上下方向のズレ(ハウジング5と本体部61と の中心のズレ)をより確実に防止することができる。 【0098】凸部59の外周、すなわち、ハウジング5 の基端と壁部62の先端側の面622との間には、リン グ状のシールリング64が設置されている。このシール リング64は、ハウジング5の基端と面622とのそれ ぞれに気密的に密着している。これにより、シールリン グ64とハウジング5の基端と面622と凹部621の 内面とで囲まれる領域には、気密性を有する容積可変室 (減圧室) 631が画成されている。

【0099】また、シールリング64は、弾性体で構成 され、チップ退避機構6の作動状態(図8に示す状態) では、その弾性力によりハウジング5を先端方向へ付勢 している。すなわち、このシールリング64は、付勢手 段としても機能するものである。とのような弾性体とし ては、前記のシールリング55等と同様の材料を用いる ことができる。

【0100】細管65は、円筒状の部材で構成され、そ の内部には、オリフィス(通路) 651が形成されてい る。このオリフィス651は、ハウジング5の内腔部5 2と容積可変室631とを連通する通路であり、細径な 51の径は、特に限定されないが、例えば、0.01~0.3mm程度であるのが好ましい。オリフィス651の径を前記の範囲内とすることにより、必要かつ十分な空気の通過(流通)抵抗が得られる。

【0101】また、オリフィス651の径を調節することにより、ポンプ8の作動とチップ退避機構6の作動との開始のタイミングを調節することができる。

【0102】なお、細管65は、図示のものに限定されるものではなく、また、その設置数も、必要に応じて、複数としてもよい。

【0103】このようなチップ退避機構6では、当接部163に指先200を当接し、先端開口162を封止した状態でポンプ8を作動させると、まず、内腔部52(チップ13内を含む)が減圧状態とされ、オリフィス651を介して、容積可変室631内の空気が内腔部52内へ流入し、容積可変室631の減圧が開始される。オリフィス651の空気の通過抵抗が高いことから、容積可変室631の容積は徐々に減少し、ハウジング5およびそれに装着されたチップ13が指先200から離間する方向へ徐々に移動する。

【0104】やがて、凸部59の基端591と凹部621の底面とが当接すると、ハウジング5およびそれに装着されたチップ13の基端方向への移動が停止する(図8参照)。よって、この凸部59の軸方向の長さを調節することにより、チップ13が指先200から必要以上に離間するのを防止することができる。すなわち、凸部59とこれに当接する凹部621の底面とで、チップ13の指先200からの移動距離(最大退避距離)を規定する手段(移動距離規定手段)が構成される。

【0105】このようなチップ13と指先200との離 30間距離(チップ13の最大退避距離)は、特に限定されないが、例えば、0.2~2.5mm程度とするのが好ましく、0.5~1.5mm程度とするのがより好ましい。離間距離を前記の範囲内とすることにより、より確実かつ短時間で、十分な血液量を確保することができる。また、指先200が先端開口162から外れてしまうことをより確実に防止することができる。

【0106】また、チップ退避機構6は、ポンプ8の作動に続いて作動する。すなわち、このチップ退避機構6は、ポンプ8により内腔部52を減圧して、先端開口162で指先200を吸着してから、チップ13を徐々に基端方向へ退避(移動)させるよう構成されている。このため、チップ退避機構6は、指先200の穿刺部位210を減圧状態に維持しつつ、チップ13を指先200から離間することができる。

【0107】このようなチップ退避機構6は、ポンプ8 により生じる減圧力を利用して作動するものである。つまり、ポンプ(減圧手段)8は、チップ退避機構6の構成要素の一つとも言うことができる。

[0108] また、このようなチップ退避機構6は、他 50 ている。

14

の駆動源の追加を必要としないため、成分測定装置1の 小型化、軽量化や製造コストの削減に有利である。

【0109】また、この成分測定装置1では、図6に示すように、指当て部3に指先200を押し当てると、指先200の表面は、当接部163の先端に当接し、この当接部163の先端により穿刺部位210の周辺部位の毛細血管は、圧迫されるが、指先200の穿刺部位210を減圧状態に維持しつつ、チップ13を指先200から離間することができるので、当接部163の先端で圧迫されていた穿刺部位210の周辺部位の毛細血管が開放され、血液220がより確実にしかも短時間で穿刺部位210から吸い出され、ブドウ糖量の測定に必要かつ十分な血液量を確保することができる。

【0110】また、チップ退避機構6の作動状態(図8に示す状態)では、ハウジング5が基端方向へ移動し、シールリング64が圧縮状態とされる。前述したように、シールリング64は、弾性体で構成されているため、図8に示す状態では、ハウジング5を先端方向に付勢している。よって、電磁弁26を開いてこの減圧状態20を解除すると、シールリング64は、自らの弾性力によりほぼ元の形状に戻り、ハウジング5を先端方向へ移動する(図9、図10参照)。このとき、ハウジング5のフランジ56の先端は、本体部61の凸部611の基端と当接し、それ以上、先端方向へ移動することが規制される(図10参照)。すなわち、ハウジング5およびそれに装着されたチップ13は、チップ退避機構6の作動前の位置に戻る。

【0111】次に、成分測定装置1を用いて穿刺、血液の採取、展開および血糖値測定を行う場合の各部の動作および制御手段の制御動作について、図2~図10および図12に示すフローチャートを参照しつつ説明する。【0112】[1] まず、チップ13を筐体21の開口212を介して、ハウジング5の嵌合部53に挿入し、穿刺針14の縮径部143を針ホルダ411に嵌合する(図4参照)。

【0113】さらに、チップ13を基端方向へ押し込むと、コイルバネ42の付勢力に抗して、プランジャ41が基端方向へ移動する。係止部413は、弾性片412の弾性力により付勢されて内腔部52の内周面に当接しているが、係止部413が開口57の位置にくると、開口57内に挿入される(図4参照)。これにより、チップ13による基端方向の押圧力を解除しても、係止部413が開口57に係止し、プランジャ41は先端方向への移動が規制される。このとき、コイルバネ42は、圧縮状態とされている。この状態で、穿刺手段4による穿刺の準備および血液(検体)採取の準備が完了する。

【0114】[2] 次に、図示しない電源スイッチをオンとする。これにより、成分測定装置1の各部が起動し、測定可能な状態となる。なお、電磁弁26は、閉じている。

[0115] [3] 次に、指当て部3に指先(指)2 0を押し当てる。これにより、チップ13の当接部16 3に指先200が圧着される。このとき、空気の漏れが できるだけ少なくなるように、先端開口162を指先2 00で塞ぐようにする(図5参照)。

15

【0116】[4] 次に、操作ボタン222を押圧操 作し、指先200の表面を穿刺する(図12のステップ S101).

【0117】操作ボタン222を押圧すると、操作ボタ ン222と連結している係止解除部材223が図4中下 10 側へ移動する。これにより、係止解除部材223が係止 部413に当接し、これを内腔部52側へ押し戻す。こ れにより、係止部413の係止が外れ、圧縮されていた コイルバネ42の弾性力により、プランジャ41が先端 方向に移動し、針体141が先端開口162より突出 し、指先200の表面を穿刺する(図6参照)。針体1 41による穿刺部位210からは、出血が生じる。

【0118】また、前記操作ボタン222の押圧によ り、ポンプ8の作動スイッチ(図示せず)もほぼ同時に オンされる。

【0119】[5] 針体141が指先200を穿刺し た後は、コイルバネ43がプランジャ41を基端方向へ 押し戻す。プランジャ41は減衰運動を経て、コイルバ ネ42の弾性力とコイルバネ43の弾性力とが釣り合う 位置で静止する(図7参照)。このとき、針体141の 刃先は、チップ13内に収納されている。このように、 針体141の刃先は、穿刺時以外は先端開口162から 突出しないようになっており、誤って皮膚等を傷つける ことが無く、また、感染も防止することができ、安全性

【0120】 [6] 前記ポンプ8の作動スイッチがオ ンすると、制御手段は、ポンプ8を作動させる(図12 のステップS102)。

[0121] すなわち、前記[4] の操作とほぼ同時に ポンプ8が作動し、ハウジング5の内腔部52内の空気 の吸引が開始される。これにより、内腔部52(チップ 13内を含む)は、その圧力が低下し、減圧状態とされ る。

【0122】このとき、指先200の針体141による 穿刺部位210も減圧状態となっている。ただし、この 40 状態では、当接部163の内側(先端開口162)に位 置する指先200は、丘陵状にチップ13の内部に向か って盛り上がり、当接部163の先端が当接している穿 刺部位210の周辺部位では、毛細血管が圧迫されてい

【0123】[7] さらに、ポンプ8による内腔部5 2の吸引を継続すると、容積可変室631内の空気は、 オリフィス65]を介して徐々に内腔部52内へ流出 し、容積可変室631は、徐々にその容積が減少する。 これにより、ハウジング5 およびそれに装着されたチッ 50 【0132】このステップS103では、測定手段7の

プ13は、基端方向へ向かって、すなわち、指先200 ・から離間する方向に向かって、徐々に移動を開始する。 【0124】このとき、内腔部52および指先200の 穿刺部位210の減圧状態は、維持されているため、先 端開口162から指先200が外れることはない。ま た、チップ13が指先200から離間する方向へ移動し ても、指先200は、指当て部3に当接しているのでチ ップ13に追従して移動することがない。このため、チ

【0125】チップ13が指先200から離間すること により、当接部163の先端で圧迫されていた穿刺部位 210の周辺部位の毛細血管は、徐々に開放され、穿刺 部位210から血液220が吸い出される(図8参 照)。すなわち、指先200とチップ13との離間を行 わない場合に比べて出血が促進され、必要な血液量を短 時間で確保することができる。

ップ13は、指先200から確実に離間する。

【0126】なお、このようなポンプ8により生じる最 低圧力は、例えば100~400mmHg程度であるの が好ましい。

【0127】やがて、凸部59の基端591と凹部62 20 1の底面とが当接する。これにより、ハウジング5およ びそれに装着されたチップ13の基端方向への移動が停 止する。このように、チップ13は、指先200から適 度な距離離間したところで停止するので、指先200が 先端開口162から外れてしまうことがない。このた め、穿刺部位210から吸い出された血液220が飛散 し、周囲を汚染するのをより確実に防止することがで き、安全性が高い。

【0128】以上のように、成分測定装置1では、1回 30 の操作ボタン222の押圧により、穿刺動作と減圧動作 とがほぼ同時に行われ、また、チップ13の退避動作 は、ポンプ8による減圧力を利用して行なわれ、また、 後述する減圧解除動作も自動的に開始されるため、その 操作性が極めて良い。

【0129】[8] 前記[7]の操作で、穿刺部位2 10上に粒状に隆起した血液220は、チップ13内に 吸引され、その内部に形成された血液導入ガイド166 に接触し、血液通路19を介して試験紙18へ導かれ、 試験紙18の中心部に供給され、放射状に展開される (図2参照)。

【0130】試験紙18上への血液220の供給、展開 に伴い、血液220中のブドウ糖(測定すべき成分)と 試験紙18に担持された試薬とが反応し、試験紙18 は、ブドウ糖量に応じて呈色する。

【0131】一方、制御手段11は、図12に示すステ ップS102を実行した後、測定手段7を駆動し、その 測定手段7を介して試験紙18の呈色を監視(モニタ) し、血液が採取されたか否かを判断する(図12のステ ップS103)。

受光素子72から入力される信号の電圧レベルが予め設定されているしいき値を超えた場合には、血液が採取されたと判断し、前記信号の電圧レベルがそのしいき値以下である場合には、血液が採取されていないと判断する。

17

【0133】なお、前記しきい値は、試験紙18が呈色する前の前記信号の電圧レベルより十分大きく、かつ、 呈色したときの前記信号の電圧レベルより十分小さい値 に設定される。

【0134】前記ステップS103において、血液が採 10 取されていないと判断した場合には、タイムアップか否 かを判断する(図12のステップS104)。

【0135】前記ステップS104において、タイムアップではないと判断した場合には、ステップS102以降を実行し、タイムアップと判断した場合には、エラー処理を行う(図12のステップS105)。

【0136】とのステップS105では、ポンプ8を停止し、電磁弁26を開いて、前記減圧状態を解除するとともに、エラーである旨を示す表示(エラー表示)を表 20示部12に表示する。

【0137】操作者(使用者)は、このエラー表示により、エラーであること(何らかのトラブルがあったこと)を把握することができる。

【0138】なお、前記電磁弁26を開いたときの作用は、後に詳述する。また、前記ステップS103において、血液が採取されたと判断した場合には、ボンプ8を停止する(図12のステップS106)。

【0139】次いで、電磁弁26を開いて、前記減圧状態を解除する(図12のステップS107)。

【0140】電磁弁26が開くと、チューブ82、81 および通気路54を介して、内腔部52(チップ13内を含む) および穿刺部位210に外気(大気)が流入し、内腔部52(チップ13内を含む)および穿刺部位210は、大気圧に復帰する(図9参照)。

【0141】また、シールリング64は、自らの弾性力によりほぼ元の形状に戻り、ハウジング5を先端方向へ移動する(図9、図10参照)。このとき、ハウジング5のフランジ56の先端は、本体部61の凸部611の基端と当接し、それ以上、先端方向へ移動することが規40制される(図10参照)。

【0142】指先200の穿刺部位210の周辺部位の吸引感がなくなり、大気圧に戻ったことが確認されたら、チップ13の当接部163を指先200から離す。【0143】[9] 制御手段11は、図12に示すステップS107を実行した後、前記試験紙18の呈色の度合いを測定手段7により測定し、得られたデータに基づき演算処理し、温度補正計算、ヘマトクリット値補正計算等の補正を行い、血糖値を定量化する(図12のステップS108)。

【0144】この場合、内腔部52(チップ13内を含む)の減圧状態、すなわち、試験紙18の収納空間の減圧状態が解除されているので、前記血液220中のブドウ糖(測定すべき成分)と試験紙18に担持された試薬との反応に必要な大気中の成分が十分に供給され、これにより血糖値を正確に測定することができる。

【0145】次いで、前記算出された血糖値を表示部12に表示する(図12のステップS109)。これにより、血糖値を把握することができる。

【0146】以上説明したように、この成分測定装置1 によれば、短時間で、確実に、測定に必要かつ十分な量の血液を採取することができるとともに、血糖値(血液中の所定成分の量)を正確かつ確実に測定することができる。

【0147】また、チップ13に試験紙18が設けられているので、穿刺、血液の採取および試験紙18への展開、測定(成分の定量化)を連続的に行うことができ、血糖値測定(成分測定)を容易かつ短時間で行うことができる。

0 【0148】また、使用に際しての準備操作が容易であり、とのため、定期的に使用する場合や繰り返し使用する場合にも有利である。

【0149】また、一旦穿刺した後、誤って再度生体表面を穿刺する等の事故が防止され、安全性が高い。しかも、穿刺針14が直接見えないので、穿刺の際の恐怖感も軽減される。

【0150】以上のことから、この成分測定装置1は、 患者自身が自己の血糖値等を測定する際に使用するのに 適している。

30 【0151】また、この成分測定装置1は、構成が簡単、小型、軽量であり、安価で、量産にも適する。

【0152】次に、本発明の成分測定装置の第2実施形態について説明する。との第2実施形態の成分測定装置と、前述した第1実施形態の成分測定装置1とは、減圧解除手段の構成が異なる。

【0153】図13は、第2実施形態の成分測定装置に おける主要部の構成例を示す縦断面図、図14は、第2 実施形態の成分測定装置の回路構成を示すブロック図で ある。

(0154)以下、前述した第1実施形態の成分測定装置1との相違点を中心に説明し、同様の事項については、その説明を省略する。また、以下の説明では、図13中の右側を「基端」、左側を「先端」という。

[0155]図13および図14に示すように、この第2実施形態の成分測定装置1では、前述した第1実施形態の成分測定装置1の電磁弁26の代わりに、細管83が設けられている。

【0156】細管83は、円筒状の部材で構成され、その内部には、オリフィス(流路)831が形成されている。この細管83は、チューブ82の端部に接合(接

10

続) されており、細管83 (オリフィス831) の先端 は、本体21の外部に開放している。

【0157】この細管83のオリフィス831は、細径 なので空気の通過抵抗が大きい。このようなオリフィス 831の径は、特に限定されないが、例えば、0.01 ~0.3 mm程度であるのが好ましい。また、オリフィ ス831の長さは、特に限定されないが、5~15mm 程度であるのが好ましい。オリフィス831の径を前記 の範囲内とすることにより、必要かつ十分な空気の通過 (流通)抵抗が得られる。

【0158】前記チューブ(流路)81、82および細 管83により、減圧解除手段が構成される。

【0159】なお、細管83は、図示のものに限定され るものではなく、また、その設置数やオリフィスの数 は、必要に応じて、複数としてもよい。

【0160】次に、この成分測定装置1の動作につい て、図12に示すフローチャートを参照しつつ、前述し た第1実施形態の成分測定装置1との相違点を中心に説 明する。

【0161】まず、図12に示すステップS101~ス 20 テップS106は、前述した第1実施形態の成分測定装 置1とほぼ同様である。

【0162】との場合、との成分測定装置1では、細管 83のオリフィス831から流入する外気(大気)の流 **量より、ポンプ8の作動により吸引される空気の流量の** 方が大きい(多い)ので、ステップS102でポンプ8 が作動すると、ハウジング5の内腔部52内の空気の吸 引が開始され、これにより、内腔部52(チップ13内 を含む)は、その圧力が低下し、減圧状態とされる。

【0163】そして、この成分測定装置1では、ステッ 30 プS106でポンプ8を停止すると、細管83のオリフ ィス831、チューブ82、81および通気路54を介 して、内腔部52 (チップ13内を含む) および穿刺部 位210に外気(大気)が流入し、内腔部52(チップ 13内を含む) および穿刺部位210の減圧状態が解除 される(図12のステップS107)。すなわち、内腔 部52 (チップ13内を含む) および穿刺部位210 は、大気圧に復帰する。

【0164】以下、図12に示すステップS108およ びステップS109は、前述した第1実施形態の成分測 40 定装置1と同様である。

【0165】この成分測定装置1によれば、前述した第 1 実施形態の成分測定装置 1 と同様の効果が得られる。

【0166】以上、本発明の成分測定装置を図示の各実 施形態に基づいて説明したが、本発明は、これらに限定 されるものではなく、例えば、各部の構成は、同様の機 能を発揮し得る任意の構成のものに置換することができ る。

【0167】また、前記実施形態では、測定目的とする 成分として、ブドウ糖(血糖値)を代表として説明した 50 算、表示するものに限らず、例えば、検体中の成分の量

が、本発明では、測定目的の成分は、これに限らず、例 えば、タンパク、コレステロール、尿酸、クレアチニ ン、アルコール、ナトリウム等の無機イオン等であって もよい。

【0168】また、前記実施形態では、血液の採取を検 出する血液採取検出手段と、血液中の所定成分の量を測 定する測定手段とを兼用する手段(実施形態では、この 手段を「測定手段」と呼んでいる)を設けているが、本 発明では、血液採取検出手段と、測定手段とをそれぞれ 別個に設けてもよい。

【0169】また、前記実施形態では、血液採取検出手 段として、血液の採取を光学的に検出する手段を用いて いるが、本発明では、これに限らず、この他、例えば、 電気的に検出する手段を用いてもよい。

【0170】また、本発明では、血液の採取を光学的に 検出する血液採取検出手段を用いる場合、前述したよう な血液中の成分と試薬との反応による試験紙の呈色(発 色)を検出するものに限らず、この他、例えば、チップ の試験紙に血液を供給する血液通路(血液流路)への血 液の導入を検出するものでもよい。

【0171】この血液通路への血液の導入を検出する場 合には、例えば、チップのうちの少なくとも血液通路の 近傍を光透過性を有する(透明な)部材で形成し、血液 採取検出手段により、その血液通路へ向けて光を照射 し、その反射光または透過光を受光し、光電変換し、制 御手段により、前記血液採取検出手段からの出力電圧を モニタするように構成する。前記血液通路へ血液が導入 されると、その部位の色が略赤黒色に変化し、これによ り、その部位からの反射光または透過光の光量が変化 し、前記血液採取検出手段からの出力電圧が変化するの で、この出力電圧(光量)の変化の検出をもって、血液

【0172】また、前記血液の採取を電気的に検出する 血液採取検出手段としては、例えば、チップの血液通路 等のインピーダンスを検出(測定)するセンサ(電 極)、バイオセンサ等が挙げられる。

の採取の検出とする。

【0173】前記バイオセンサを用いる場合には、例え は、前記血液通路へ血液が導入されると、そのバイオセ ンサからの出力電流が変化するので、この出力電流(電 流値)の変化の検出をもって、血液の採取の検出とす る。

【0174】また、前記インピーダンスを検出するセン サを用いる場合には、例えば、前記血液通路へ血液が導 入されると、そのセンサの電極間のインピーダンスが変 化するので、このインピーダンスの変化の検出をもっ て、血液の採取の検出とする。

【0175】また、本発明の成分測定装置は、前述した ような血液中の成分と試薬との反応により呈色した試験 紙の呈色強度を光学的に測定(測色)し、測定値へ換

に応じて生じる電位変化を電気的に測定し、測定値へ換 算、表示するものでもよい。

【0176】また、前記実施形態では、測定に先立って 減圧状態を解除するように構成されているが、本発明で は、測定に先立って減圧状態を緩和するように構成され

【0177】また、本発明では、減圧手段およびチップ 退避機構の作動は、ぞれぞれ、手動で開始するようにし てもよいし、自動で開始するようにしてもよい。後者の の穿刺に際し、穿刺針の先端方向への移動を磁気的に感 知するよう構成されたセンサ等を設置し、このセンサの 情報に基づいて減圧手段およびチップ退避機構が作動す るようにすることができる。

[0178]

【発明の効果】以上述べたように、本発明によれば、短 時間で、血液中の所定成分の測定を正確かつ確実に行う ことができる成分測定装置を提供することができる。

【0179】また、チップに試験紙が設けられているの で、穿刺、血液の採取および試験紙への展開、測定(成 20 る主要部を示す縦斜視図である。 分の定量化)を連続的に行うことができ、成分測定を容 易かつ短時間で行うことができる。

【0180】また、使用に際しての準備操作が容易であ るため、定期的に使用する場合や繰り返し使用する場合 にも有利である。

【0181】また、一旦穿刺した後、誤って再度生体表 面を穿刺する等の事故が防止され、安全性が高い。しか も、穿刺針が直接見えないので、穿刺の際の恐怖感も軽 減される。

【0182】以上のことから、本発明の成分測定装置 は、患者自身が自己の血糖値等を測定する際に使用する のに適している。

【0183】また、本発明の成分測定装置は、構成が簡 単、小型、軽量であり、安価で、量産にも適する。

【図面の簡単な説明】

【図1】本発明の成分測定装置の第1実施形態を模式的 に示す斜視図である。

【図2】本発明において使用するチップの構成例を示す 縦断面図である。

【図3】第1実施形態の成分測定装置が有する穿刺手段 40 および穿刺手段を内蔵するハウジングの構成例を示す縦 断面図(チップをハウジングに装着する前の状態)であ る。

【図4】第1実施形態の成分測定装置が有する穿刺手段 および穿刺手段を内蔵するハウジングの構成例を示す縦 断面図 (チップをハウジングに装着した状態)である。

【図5】第1実施形態の成分測定装置における主要部の 構成例を示す縦断面図 (穿刺手段の作動前の状態) であ

【図6】第1実施形態の成分測定装置における主要部の 50 56

構成例を示す縦断面図(穿刺手段の作動時の状態)であ

【図7】第1実施形態の成分測定装置における主要部の 構成例を示す縦断面図(減圧手段の作動時の状態)であ

【図8】第1実施形態の成分測定装置における主要部の 構成例を示す縦断面図(チップ退避機構の作動時の状 態)である。

【図9】第1実施形態の成分測定装置における主要部の 場合、ハウジングの嵌合部の側位近傍に、例えば、指先 10 構成例を示す縦断面図(減圧解除手段の作動時の状態) である。

> 【図10】第1実施形態の成分測定装置における主要部 の構成例を示す縦断面図(最終状態)である。

> 【図11】第1実施形態の成分測定装置の回路構成を示 すブロック図である。

> 【図12】第1実施形態の成分測定装置の制御手段の制 御動作 (一部、操作者の動作等を含む) を示すフローチ ャートである。

> 【図13】本発明の成分測定装置の第2実施形態におけ

【図14】第2実施形態の成分測定装置の回路構成を示 すブロック図である。

【符号の説明】

1	成分測定装置
2	本体
2 1	筐体
2 1 1	壁部
2 1 2	開口
2 2	蓋体
221	表示窓
222	操作ボタン
223	係止解除部材
2 3	収納空間
3	指当て部
3 1	指当て面
4	穿刺手段
4 1	プランジャ
4 1 1	針ホルダ
412	弾性片
4 1 3	係止部
4 2	コイルバネ
4 3	コイルバネ
5	ハウジング
5 1	壁部
5 1 1	ŦL
5 2	内腔部
5 3	嵌合部
5 4	通気路
5 5	シールリング
5 6	フランジ

*

5 7	開口
5 8	シール部材
5 9	凸部
591	基端
6	チップ退避機構
6 1	本体部
611	凸部
6 2	壁部
621	凹部
622	面
6 3	内腔部
631	容積可変室
6 4	シールリング
6 5	細管
651	オリフィス
7	測定手段
7 1	発光素子
7 2	受光素子
8	ポンプ
81,82	チューブ
8 3	細管
831	オリフィス
9	電池
10	回路基板
1 1	制御手段
1 2	表示部
1 3	チップ
1 4	穿刺針

*	141	針体
	142	ハブ

143

15 第1のハウジング 151 内周面 内腔部

縮径部

152 壁部 153 154 ŦL

16 第2のハウジング 10 161 内腔部 162 先端開口

163 当接部 164 フランジ 凹部 165

166 血液導入ガイド 17 試験紙固定部 18 試験紙 19 血液通路 191 通路開口

20 192 通路開口 24 増幅器 25 A/D変換器 26 電磁弁 200 指先 210 穿刺部位

> 220 血液 S101~S109 ステップ

【図1】

【図11】

【図2】

【図3】

【図4】

【図6】

【図8】

【図9】

【図10】

