

Smart Watchdog Mechanism for Real-time Fault Detection in RISC-V

PhD Supervisors: Prof Jim Harkin Mr Malachy McElholm **Prof Liam McDaid**

School of Computing, Engineering and Intelligent Systems, Ulster University, Derry, UK

David Simpson simpson-d12@ulster.ac.uk

Background

- Error checking in modern processors is critical¹.
- Detection mechanisms (watchdogs) must exhibit minimal area overhead and power consumption².
- Spiking Neural Networks (SNNs) could offer a more hardware friendly and efficient implementation³.

SNN-based Smart Watchdog

SNN trained to detect control flow errors (CFEs) caused by hardware faults in a RISC-V processor⁴.

- Smarter watchdog paradigm
- **Smart Watchdog Aims:** (F)
 - Lower power consumption
 - More hardware friendly

Live Demonstration (FPGA)

- RISC-V processor executes a closedloop PI control algorithm on a DC motor and rotary quadrature encoder.
- Faults are injected at the program counter register of RISC-V processor.
- **Smart watchdog decisions observed in** detail on a custom Python-based GUI.
- Nexys A7-100T development board (AMD Artix-7 FPGA) used as hardware platform for live demonstration.
- See Github page for full details.

Correct

98

Samples

100

NEORV32

CORE

RISC-V 164 DATA

Accuracy

Stage 8 - Smart Watchdog Validation

Stage 7 - Smart Watchdog Implementation

Max Freq:

350MHz

Latency:

153 cycles

Inference:

438ns

Methodology

8-stages to develop a smart watchdog to monitor a RISC-V processor.

0.96 0.98 0.98 1.00 **New Samples from Heap Sort: 11/11** (100% accuracy)

NEORV32

data

Validation Dataset: Heap Sort (new application)

46

Precision

fifo empty

fifo rd en

fifo rd valid

FEATURE

LAYER

52

Recall

SMART WATCHDOG

instruction

executed

CONTROL

FSM

SNN input

F1 Score

SNN ready

SNN done

SNN

SNN trigger

Smart Watchdog Fault Detection Capability Applications Total **Applications Smart** with Control **Heap Sort** with Traps Watchdog **Applications** Flow Errors Triggered **Detection** 350 (100%) 490 (58.3%) 1,000 840

Smart watchdog detected all CFEs that were undetected in the RISC-V processor.

Component

Neorv32

Feature Layer

SNN

- AMD VC-709 (Virtex-7) FPGA used in this work.

Stage 1 - Data Collection

Fibonacci Series, Bubble Sort and Matrix Multiplication software applications were executed on RISC-V processor.

Faults were injected into the Program Counter register (PC) of RISC-V processor during execution.

UART and stored as text files (serial terminal).

Instruction data from RISC-V processor was extracted via

Builds a library of normal instructions and faulty instructions

Stage 6 - SNN Model Testing

Testing Dataset: Bubble Sort & Matrix Multiplication

Samples	Correct	TP	TN	FN	FP
155	152	78	74	3	0
Accuracy		Precision	Recall	F1 Score	
0.98		1.00	0.96	0.98	

Seen Test Samples at Training: 80/80 (100% accuracy)

Unseen Test Samples During Training: 72/75 (96% accuracy)

Stage 5 - SNN Model Training

Smart W-dog 10,264 6,733

Hardware Synthesis Results

1,993

LUTs | Power (W)

1,874

157

8,928 6,494

0.027

0.001

0.142

0.143

Training Dataset: Fibonacci Series Parameter Value **Binary Classifier Network Type Learning Type** Supervised SNNTorch⁵ (PyTorch) **Development Library Epochs** 400 **Optimizer** Adam **Batch Size Mean Square Error Loss Function** 0.1 / 0.01 / 0.001 **Learning Scheduler Rates Learning Rate Milestones** 10 / 200

Stage 2 – Feature Extraction

Features are extracted from each instruction executed, capturing information on control flow.

to train the SNN of the smart watchdog.

Stage 3 - Dataset Preprocessing

Datasets are pre-processed and produced for each of the three applications as shown below.

Training and testing datasets are used to develop the SNN model of the smart watchdog.

