# CQFR: Alcènes I

# Réactivité Chimique:

• Savoir donner les HO et BV d'un alcène; identifier la réactivité chimique au système électronique  $\pi$ .



- Savoir énumérer donner le produit obtenu lorsqu'un alcène est mis en présence d'un réactif de type :
  - $-H^{\delta^+}X$
  - -m-CPBA
  - Borane
  - OsO<sub>4</sub>
  - OsO<sub>4</sub>/NaIO<sub>4</sub>
    - $\rightarrow$  en milieu réducteur
    - $\rightarrow$  en milieu oxydant

# Réaction avec $H^{\delta^+}X$ (type hydratation) :

- Donner le bilan de la réaction d'hydratation d'un alcène en mileu acide.
- Donner le mécanisme de la réaction d'hydratation d'un alcène en mileu acide : activation électrophile acide (= formation du carbocation) puis attaque du nucléophile.
- Donner la **règle de Markovnikov** et justifier la **régioselectivité** correspondante : passage par le **carbocation le plus stable**.
- Donner le type de contrôle de la réaction d'hydratation : contrôle cinétique de charge.
- Savoir identifier un sous produit issu d'une transposition.

#### Hydroboration des alcènes:

# Bilan:

- $\bullet$  Donner le bilan de la réaction d'hydroboration (1. ajout de  $BH_3$ , 2. hydrolyse oxydante :  $H_2O_2/NaOH$ ).
- Donner l'intérêt synthétique de cette réaction vis-à-vis de l'hydratation en milieu acide : **régiosélectivité** anti-Markovnikov.

# Réaction avec un borane (R<sub>2</sub>B-H):

- Donner le bilan de la réaction de BH3 avec un alcène :
  - Dans le cas d'un alcène symétrique
  - Dans le cas d'un alcène dissymétrique
- Dans le cas d'un alcène dissymétrique donner le type de contrôle expliquant la **régioselectivité obtenue** : contrôle **stérique**
- $\bullet$  Donner le mécanisme et l'état de transition de l'addition de  $BH_3$  sur l'éthène :
  - Il s'agit d'un mécanisme concerté
  - -L'addition de  $\mathrm{H}_2\mathbf{B}\text{-}\mathbf{H}$  sur la double liaison  $\pi$  est dite syn
  - Cette réaction est donc **stéréospécifique**

#### Hydrolyse oxydante du trialkylborane:

- Donner le bilan de l'hydrolyse oxydante du produit d'addition de BH3 sur un alcène.
- Donner le mécanisme de la réaction d'hydrolyse oxydante :
  - − Justifier les conditions basique employées : nucléophilie de HOO⁻/précipitation de Na<sub>3</sub>BO<sub>3</sub>.
  - Justifier/Connaître la rétention de configuration lors de la migration de la liaison C-B.

# Formation de diol vicinal - anti:

#### Peroxyacides/m-CPBA:

- Donner leur structure générale et leur réactivité.
- Donner le degré d'oxydation des oxygènes du peracide : -I (au lieu de -II) pour justifier l'électrophilie de ce réactif.

# **Epoxydation:**

- Donner la structure générale des époxydes et leur réactivité.
- $\bullet\,$  Donner le bilan de l'époxydation d'un alcène en présence de  $m-{\rm CPBA}.$
- $\bullet$  Donner le mécanisme de l'époxydation d'un alcène en présence de  $m{-}\mathrm{CPBA}$  :
  - mécanisme concerté.
  - Epoxydation syn ( $\simeq$  pléonasme)
- Savoir que l'alcène joue le rôle de nucléophile dans cette réaction.

#### Ouverture des époxydes :

- Savoir donner les mécanismes en milieu :
  - Acide : activation électrophile suivi de la substituion nucléophile (H<sub>2</sub>O) sur le carbone correspondant au carbocation le plus stable.
  - Basique : attaque nucléophile (HO⁻) sur le carbone le moins encombré.
  - Dans les deux cas il s'agit de  $\mathbf{S}_N2$  :
    - → On a donc un réaction stéréospécifique
    - → Formation de diols **anti** : formation des liaisons C-O de part et d'autre du plan de l'alcène.

# Formation de diol vicinal - syn:

- Donner le bilan de la réaction de OsO<sub>4</sub> avec un alcène après hydrolyse.
- Justifier de l'intérêt de la méthode par rapport à la synthèse de diols avec les peroxyacides : **obtention** de la stéréochimie complémentaire : diols syn.
- Donner l'intermédiaire réactionnel de la réaction.
- $\bullet$  Justifier l'emploi catalytique de  $OsO_4$ : coût, utilisation efficace d'un co-oxydant bon marché.