스마트모빌리티설계 [과제5] Hough 변환 과제

1. 과정

A. 이미지 전처리

i. Gray scale

1. 원본 컬러 이미지를 Grayscale로 변환하여 불필요한 색상 정보를 제거하고 계산 량을 줄인다.

ii. Blur 처리

1. Gaussian Blur를 적용하여 노이즈를 줄이고, edge 검출에서의 안정성을 높인다.

iii. Canny edge detection

1. 이미지의 edge를 검출하여 line detection을 위한 기초 데이터를 생성한다.

B. ROI 선정

i. 이미지의 하단부를 ROI(Region of Interest)로 사용하여 차선이 존재하는 영역에 집중하고, 위쪽의 불필요한 정보를 제거한다.

C. 차선 인식

i. HoughLineP

1. ROI 영역에 해당하는 canny edge 이미지에 Hough Transform을 적용하여 직선을 검출한다.

ii. 기울기 필터링

1. 검출된 직선의 기울기를 계산하여 수직에 가까운 노이즈 직선을 제거한다.

iii. 좌우 각각 대표 직선 선택

1. 기울기에 따라 좌측 차선과 우측 차선을 분리한 후, 각각의 평균 기울기와 위치를 기반으로 대표 직선을 선정한다.

2. 결과 분석

A. Number of lines

i. Canny edge detection을 한 전체 영상에서 검출된 직선의 총 개수

B. After ROI, number of lines

- i. ROI 영역으로 제한한 후 검출된 직선의 수
- ii. 필요 없는 직선이 제거됨

C. Number of lines after slope filtering

i. 기울기가 수직에 가까운 직선을 제거한 후의 직선의 수

D. Number of left lines

i. 왼쪽에 위치하고 기울기가 음수인 직선의 수

E. Number of right lines

i. 오른쪽에 위치하고 기울기가 음수인 직선의 수

F. Left/Right Lane Positions

i. 좌/우 차선 각각의 특정 높이에서의 차선의 x 좌표 값.

G. Lane Midpoint

- i. 좌/우 차선의 x 좌표의 평균
- ii. 차선의 중심점

H. Gap from the View_center

- i. 차량 카메라의 중앙과 차선 중심 간의 거리
- ii. 이 값을 통해 차량 조향을 결정

```
Number of right lines : 9
Left/Right Lane Positions : 150 531
Lane Midpoint : 340
Gap from the View_center: 20
Number of lines: 37
After ROI, number of lines : 23
Number of lines after slope filtering: 18
Number of left lines : 10
Number of right lines : 8
Left/Right Lane Positions : 138 525
Lane Midpoint : 331
Gap from the View center : 11
Number of lines : 44
After ROI, number of lines : 24
Number of lines after slope filtering : 13
Number of left lines : 8
Number of right lines : 5
Left/Right Lane Positions : 147 519
Lane Midpoint : 333
Gap from the View_center : 13
```