بسمه تعالى

هوش مصنوعی عاملین منطقی – ۲ نیمسال اول ۱۴۰۲–۱۴۰۱

دکتر مازیار پالهنگ آزمایشگاه هوش مصنوعی دانشکدهٔ مهندسی برق و کامپیوتر دانشگاه صنعتی اصفهان

یادآوری

- عامل دانش مبنا
- سطح دانش، سطح منطق، سطح پیاده سازی
 - دنیای دیو
- اکتشاف در دنیای دیو دانش
 - منطق
 - ایجاب کردن
 - مدلها =
 - استنتاج
- یکی از دو وظیفه: تولید جملاتی که ایجاب می شوند، یا چک ایجاد شدن یک جمله
 - موثق
 - کامل
 - منطق گزاره ای

مازيار پالهنگ

هوش مصنوعي - نيمسال اول ١٤٠١-١٤٠١

2

جملات در دنیای دیو

- فرض کنید $P_{x,y}$ درست باشد اگر یک گودال در [X,y] باشد.
 - فرض کنید $\overline{B}_{x,y}$ درست باشد اگر نسیم در [X,y] باشد.
- برای هر جمله یک برچسب R_i جهت رجوع در نظر می گیریم.
 - می دانیم سلول [1،1] گودال نیست:

یک قانون است

 $R_1: \neg P_{1,1}$

■ یک خانه نسیم دار است اگر و تنها اگر در خانهٔ مجاور آن یک گودال باشد (یک جمله برای هر خانه):

$$R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$$

 $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$

مازيار پالهنگ

هوش مصنوعي - نيمسال اول ١٤٠١-١٤٠١

جملات در دنیای دیو

د يو .	دنیای	در هر	درست	قبل	جملات	
→ **	•		•	U •	•	

برای مثال ما:

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 V OK	2,1 A B OK	3,1	4,1

 $R_4: \neg B_{1,1}$: سيم نيست

 $R_5: B_{2,1}$.

- موثق چون همان تعریف ایجاب کردن را پیاده سازی می کند.
 - ابد. α کار می کند و پایان می یابد. α کار می کند و پایان می یابد.
 - با $\frac{O(n)}{n}$ بیچیدگی زمانی $O(2^n)$ و پیچیدگی فضا

چون هردفه یکی از متغیرها مقدار میگیره و ما تا عمق ان پایین میریم

مجموعه مدل های مجمو عه مدلهای بتا آلفا زيرمجموعه ي زيرمجموعه ي مجموعه مدلهاي بتا مجموعه مدلهاي آلفا هم ارزی منطقی ■ دو اجملهٔ هم ارز المنطقی هستند اگر و تنها اگر <mark>در مدلهای یکسانی درست باشند</mark> $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$ جابهجايي $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \vee \beta) \equiv (\beta \vee \alpha)$ commutativity of \vee شرکت پذیری و $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma))$ associativity of \vee حذف نقيض دوگانه $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination عكس و نقيض $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(lpha \Rightarrow eta) \equiv (\neg lpha \lor eta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan حذف دو شر طی $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$ distributivity of \wedge over \vee $(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$ distributivity of \vee over \wedge هوش مصنوعي - نيمسال اول ١٤٠١-١٤٠ ماز بار يالهنگ 8 توزیع پذیری یا روی

اعتبار و قابل ارضا بودن

■ یک جمله معتبر است اگر در همهٔ مدلها درست باشد e.g., True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$ ■ استنتاج و اعتبار بصورت زیر به یکدیگر مرتبط هستند $KB = \alpha$ if and only if $(KB \Rightarrow \alpha)$ معتبر باشد حداقل یک مدل ■ یک جمله قابل ارضا است اگر در مدلی درست باشد ■ e.g., A∨ B, ■ یک جمله غیر قابل ارضا است اگر در هیچ مدلی درست نباشد e.g., $A \land \neg A$ قابل ارضا بودن و استنتاج بصورت زیر به یکدیگر مرتبط هستند: $KB \models \alpha \text{ if and only if } (KB \land \neg \alpha)$ قابل ارضا نباشد

هوش مصنوعي - نيمسال اول ١٤٠١-١٤٠١

ماز بار يالهنگ

(

9

■ مسئلهٔ قابل ارضا بودن یک جمله در منطق گزاره ای، به مسئلهٔ SAT معروف است.

مازيار پالهنگ

هوش مصنوعي - نيمسال اول ١٤٠١-١٤٠١

11

خلاصه

- نمایش جملات دنیای دیو در منطق گزاره ای
 - جدول درستی برای استنتاج
 - هم ارزیها
 - قوانین استنتاج

دانشگاه صنعتی اصفهان - مجموعهٔ تالارها هوش مصنوعی - نیمسال اول ۰۲-۱۴۰۱ مازیار پالهنگ

- دقت نمائید که پاورپوینت ابزاری جهت کمک به یک ارائهٔ شفاهی می باشد و به هیچ وجه یک جزوهٔ درسی نیست و شما را از خواندن مراجع درس بی نیاز نمی کند.
 - لذا حتماً مراجع اصلى درس را مطالعه نمائيد.
 - در تهیهٔ اسلایدها از سایت کتاب استفاده شده است.