Cahier rose

Théorie des modèles I

22 mars 2019

Question 1. Donner une axiomatisation de la théorie des groupes abéliens sans torsion, divisibles das le langage $\{+, -, 0\}$. Cette théorie est-elle \aleph_0 -catégorique?

Question 2. Soient \mathcal{M} , \mathcal{N} deux \mathcal{L} structures, $\bar{a} \in M^n$ et $\bar{b} \in N^n$.

Montrer que tp^M $(\bar{a}) = \text{tp}^{\mathcal{N}}(\bar{b})$ est équivalent à $f: M \to N: \bar{a} \mapsto \bar{b}$ est une application partielle élémentaire.

Question 3. Soit \mathcal{L} un langage et \mathcal{M} une \mathcal{L} -structure.

- 1. Définir l'expression « \mathcal{M} est κ -saturée, où κ est un cardinal.
- 2. Existe-t-il une \mathscr{L} -structure infinie \mathscr{N} $|N|^+$ -saturée (où si κ est un cardinal, κ^+ désigne le successeur de κ).

Devoir 4. Soit $\mathscr{L} = \{+, -, 0, \cdot q, q \in \mathbb{Q}\}$ où $\cdot q$ est un symbole de fonction unaire. Soit $T_{\mathbb{Q}}$ la \mathscr{L} -théorie des \mathbb{Q} -espaces vectoriels non triviaux.

- 1. Donner une axiomatisation de $\mathbb{T}_{\mathbb{Q}}$.
- 2. Montrer que $T_{\mathbb{Q}}$ admet l'élimination des quantificateurs (dans le langage \mathscr{L}).
 - (a) Montrer que dans $T_{\mathbb{Q}}$, toute formule existentielle est équivalente à une formule sans quantificateur.
 - (b) En déduire que $T_{\mathbb{Q}}$ a l'éliminatation des quantificateurs.
- 3. Montrer que \mathbb{R} vu comme \mathbb{Q} -espace vectoriel est l'union d'une chaîne élémentaire de \mathbb{Q} -sous-espaces vectoriels propres.

Question 5. Soit $\mathcal{L} = \{+, -, \cdot, 0, 1\}$. Soit K un corps commutatif vu comme \mathcal{L} -structure. Soit $M_2(K)$ l'anneau des matrices 2×2 à coefficients dans K.

Montrer que le groupe des matrices inversibles de $M_2(K)$ est un sous-ensemble définissable de K^4 , modulo l'identification suivante :

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(K) \to (a_{11}, a_{12}, a_{21}, a_{22}) \in K^4$$

Question 6. Énoncer le théorème de Lowenheim-Skolem descendant.

Devoir 7. Soit E un symbole de relation binaire $\mathcal{L} = \{E\}$. Écrire une \mathcal{L} -théorie qui exprime que E est une relation d'équivalence avec pour chaque naturel $n \geq 1$ une seule classe d'équivalence contenant exactement n éléments.

- 1. T est-elle \aleph_0 catégorique?
- 2. Montrer que $|S_1(T)| \geq \aleph_0$.

3. Comme \mathcal{L} ne contient pas de constante, on dira que T a l'élimination des quantificateurs si pour tout \mathcal{L} formule $\varphi(x_1,\ldots,x_n)$, il existe une formule sans quantificateur $\psi(x_1,\ldots,x_{n+1})$ telle que

$$T \models \forall x_1 \dots \forall x_{n+1} (\varphi \leftrightarrow \psi).$$

Est-ce que T a l'élimination des quantificateurs ? Justifiez votre réponse.