HOMEWORK 1

- (1) Prove using the epsilon-delta definition of continuity and/or the concept of limits, that the function g from $[0,1] \cup [2,3]$ to \mathbb{R} defined by g([0,1]) = 0 and g([2,3]) = 1 is a continuous function.
- (2) Show explicitly that (x, ∞) is an open set in $(\mathbb{R}, \mathscr{T}_{\mathbb{R}})$ for any real number x. Prove explicitly that [a, b) is not open in $(\mathbb{R}, \mathscr{T}_{\mathbb{R}})$.
- (3) When X is an infinite set, show that the finite complement topology \mathscr{T}_f is strictly coarser than the discrete topology $\mathscr{T}_{\mathrm{disc}}$, i.e. $\mathscr{T}_f \subsetneq \mathscr{T}_{\mathrm{disc}}$.
- (4) What can you say about the standard topology $\mathscr{T}_{\mathbb{R}}$ on \mathbb{R} and the ray+ topology $\mathscr{T}_{\text{ray+}}$ on \mathbb{R} ? Is one of them coarser or finer than the other? Justify your assertion.
- (5) Under what assumptions on the set X is the finite complement topology (X, \mathcal{T}_f) equal to the countable complement topology (X, \mathcal{T}_c) ?
- (6) Topology (Munkres), Chapter 1, Section 7, Exercise 4.
- (7) Topology (Munkres), Chapter 1, Section 7, Exercise 6.
- (8) Topology (Munkres), Chapter 1, Section 10, Exercise 6.
- (9) Topology (Munkres), Chapter 2, Section 13, Exercise 6. (Read the definition of \mathbb{R}_K from Section 13 for this problem.)