参会记录: 2020 Intel Packet Processing Virtual Summit

1 会议信息

(1) 会议时间: 11月16日-21日

(2) 参与时间: 11月16日,11月17日

(3) 会议日程:

日期	时间 Time	主题 Subject	演讲嘉宾
Date			Speaker
	77.00.0000		张祺 英特尔资深网络软件工程师
16-Nov	20:00 - 20:45	E810 DPDK PMD 简介 E810 DPDK PMD Introduction	Qi Zhang,Intel Senior Network Software Engineer
			王潇 英特尔资深网络软件工程师
			Xiao Wang,Intel Senior Network Software Engineer
	20:45 - 21:30	DPDK -iAVF后端设备虚拟化	卢秀春 英特尔资深网络软件工程师
		Device Virtualization in DPDK -iAVF Backend	Xiuchun Lu,Intel Senior Network Software Engineer
17-Nov	20:00 - 20:45	CPU动态负载均衡模块来自Intel的新	
		eventdev设备	王栋 英特尔资深平台应用工程师
		CPU dynamic load balancing module-new eventdev device	Dong Wang,Intel Senior Platform Application Engineer
		from Intel	
			胡雪焜 英特尔资深平台应用工程师
			Xuekun Hu,Intel Senior Platform Application Engineer
	20:45 - 21:30	面向数据中心的Intel Big Spring Canyon	
		(BSC) SmartNIC	许炜华 英特尔资深平台应用工程师
		Intel Big Spring Canyon (BSC) SmartNIC for Cloud Data	Rosen Xu,Intel Senior Platform Application Engineer
		Center	
			刘勇 英特尔资深网络软件工程师
			Yong Liu,Intel Senior Network Software Engineer
18-Nov	20:00 - 20:45	从低级加密指令到高性能IPsec/TLS:安全传	虞平 英特尔资深网络软件工程师
		输加速的全面覆盖	Ping Yu,Intel Senior Network Software Engineer
		From low level crypto instructions to high performance	
		IPsec/TLS: a full coverage of secure transportation	张宇巍 英特尔资深网络软件工程师
		acceleration	Yuwei Zhang,Intel Senior Network Software Engineer
	20:45 - 21:30	面向云友好的IPsec大象流:使用QAT或多核	
		软件调度引擎的VPP异步加密	张帆 英特尔资深网络软件工程师
		Towards Cloud-friendly IPsec Elephant Flow: VPP	Fan Zhang,Intel Senior Network Software Engineer
		Asynchronous Crypto with QAT or Multi-core SW scheduler	Tan Zhang, mer senior Network sortware Engineer
		engines	
	20:00 - 20:45		张攀 英特尔资深平台应用工程师
			Pan Zhang,Intel Senior Platform Application Engineer
		HDSLB简介: 高密度可扩展负载均衡器	倪红军 英特尔资深网络软件工程师
		Introduction to HDSLB: High Density Scalable Load Balancer	Hongjun Ni,Intel Senior Network Software Engineer
19-Nov			祝涛 文思海辉网络开发技术负责人
			Tao Zhu,Pactera Network Software Technical Lead
	20:45 - 21:30	基于DDP的Intel NIC的高级功能和5G UPF	马建伟 英特尔资深平台应用工程师
		加速	Jianwei Ma,Intel Senior Platform Application Engineer
		Advanced features of Intel NIC and 5G UPF Acceleration	
		based on DDP	张光华 英特尔资深平台应用工程师
			Guanghua Zhang,Intel Senior Platform Application Enginee
21-Nov	09:00 - 09:45	Intel OpenNESS边缘计算平台参考设计及	佟晓鹏 英特尔资深网络软件工程师
		Testbed实践	Xiaopeng Tong,Intel Senior Network Software Engineer
		Intel OpenNESS edge computing platform reference design	春旬时 苯酰复数液亚人大枣加热 压
		and Testbed practice	高纪明 英特尔资深平台方案架构师
			Jiming Gao,Intel Senior Platform Solution Architect
	09:45 - 10:30	圆桌会议	全体参会者
		Panel Discussion	all presenters

2 会议内容

2.1 E810 DPDK PMD 简介

- 1) E810 DPDK PMD 文档: https://doc.dpdk.org/guides/rel_notes/release_20_11.html#tested-platforms
- 2) 首先介绍了 E810 DPDK 的发布版本及各版本特点,目前版本是 20.11,它对小包处理有 15-35%的性能提升,具体可以查看性能报告。

Intel® Ethernet 800 Series PMD Key Milestones

图 1 DPDK 发布版本及特点

然后介绍了800系列的特点,它有更多的硬件资源,可以有更多的VF, Queue,可以卸载更多的Flow。

From I40E PMD to ICE PMD

Function	ltem	I40E	ICE
	Queue Pair Number	Max to 1024	Max to 2048
	VF Number	Max to 128	Max to 256
	Extract Match Flow	8K	20K ~ 30K
PF	Wildcard Match Flow	NO	512 ~ 2K
	Host Features for SR-IOV	Private API	Removed (DCF as replacement)
	DDP / PTYPE / Input Set	Private API	Generic Flow API (RTE_FLOW)
	Driver	I40EVF	IAVF
	Queue Pair Number	Max to 16	Max to 256
VF	Flow Offloading	NO	YES (resource shared with PF and other VFs)
Both	Performance	AVX2	AVX2 / AVX512

图 2 功能特性

接着介绍了 DPDK 的三种使用模式。

Deployment Mode

图 3 DPDK 使用模式

然后具体介绍了 DCF PMD 和 VF PMD。

Device Configure Function (DCF)

- A trusted VF driver backend by Kernel PF driver
- A complement for kernel tools (ethtool, ip, tc ...) to supported advanced flow offloading (Eg. PPPoE, PFCF, IPSec, L2TP ...)
- Use DPDK Hardware Acceleration Interface for NFVi, eg. RTE_FLOW to steering Package to VF

How to use DCF

- Create SR-IOV #echo 4 > /sys/bus/pci/devices/0000\:18\:00.0/sriov_numvfs
- Turn on trust mode for VFO
 #ip link set dev enp24s0f0 vf 0 trust on
- Use devargs "cap=dcf" to probe PMD #testpmd -c 0x3 -n 4 -w 18:01.0,cap=dcf -- -i
- DCF Support RTE_FLOW
 #flow create 0 priority 0 ingress pattern eth / ipv4 src is 192.168.0.2 dst is 192.168.0.3 / end actions vf id 2 / end

NOTE:

DCF make sure rule still works after destination VF reset

图 4 DCF PMD 及其用法

然后举了一个 DPDK 的应用实例,即使用 800 系列优化 OVS (OpenvSwitch): 介绍 OVS 中 VXLAN overlay 的拓扑, 然后概括 OVS 中的数据包处理流水线, 之后介绍如何通过 SW 和 HW 的协同设计优化 OVS。

OVS Packet Pipeline

图 5 OVS 数据包流水线

Accumulative Improvement by SW Opti

- Adaptive polling instead of round robin
 - Avoids overhead of polling vhost ports that have no packets
 - · Give more weight to active ports
- Reuse hash value for packets from the same microflow
 - Compute hash for first packet in a batch, use same hash for rest of the packets in a batch
- Compile time DPCLS lookup optimization for VXLAN
 - Leverage the helper MACRO provided by OVS
 - Adds two more dpcls lookup functions for VXLAN scenario
- A faster key extraction for common packet types (e.g. IP/UDP)
 - Mini flow extract is optimized for most common packet types
- Batching of header encap/decap
 - Encap and decap performed in batch, rather than on packet basis, same flow
- Queue size config for smaller memory footprint
 - Reduce LLC-load-miss events significantly

图 6 SW 优化

Rte flow semantics of outer flow and inner flow

Attributes: ingress=1, egress=0, prio=0, group=0, transfer=0

Spec: src=10:00:00:00:00:00; dst=10:00:00:00:00:00; type=0x0800

Mask: src=ff:ff:ff:ff:ff, dst=ff:ff:ff:ff:ff, type=0xffff

rte flow ipv4 pattern

Spec: tos=0x0, ttl=40, proto=0x11, src=172.1.0.200, dst=172.1.0.100

Mask: tos=0x0, ttl=0, proto=0x0, src=0.0.0.0, dst=255.255.255.255

Spec: src_port=1000, dst_port=4789

Mask: src_port=0x0, dst_port=0xffff

rte flow mark action:

Mark: id=0

RSS: queue num=4

rte flow RSS action:

Attributes: ingress=1, egress=0, prio=0, group=0, transfer=0

Spec = null Mask = null

rte flow ipv4 pattern

Spec: tos=0x0, ttl=40, proto=0x0, src=172.1.0.0, dst=172.1.0.100

Mask: tos=0xff, ttl=0, proto=0x0, src=255.255.255.255, dst=255.255.255.255

rte flow udp pattern

Spec: src_port=34233, dst_port=4789

Mask: src_port=0x0, dst_port=0x0

Spec: vni=1001 Mask: vni=0xffffff

rte flow eth pattern:

Spec: src=a0:00:00:00:00:02, dst=a0:00:00:00:00:01, type=0x0800

Mask: src=00:00:00:00:00:00, dst=ff:ff:ff:ff:ff, type=0xffff

Spec: tos=0x0, ttl=40, proto=0x11, src=192.1.0.200, dst=192.1.0.1

Mask: tos=0x0, ttl=0, proto=0x0, src=0.0.0.0, dst=255.255.255.255

Mark: id=0

rte flow RSS action:

RSS: queue num=4

VXLAN Flow Offload with Flow Director

- First packet goes to slow path and trigger flow offload
- Subsequent packets are forwarded directly, reduce twice parsing and lookup
- 75% throughput up (bidirectional 1million flow) by SW + HW optimizations

图 8 使用 Flow Director 卸载 VXLAN 流

2. 2 DLB

17 日主要听了一个多核转发模型(DLB),多核转发模型可以动态分配规则,识别所有报文类型,调度规则灵活,但占用额外的 CPU 核心。DLB 的主要组成部分包括队列、端口、事件。

多核转发模型: DLB

- ✓ 动态分配规则
- ✓ 可识别所有报文类型
- ✓ 调度规则灵活:按流/按包
- ✓ 硬件保序

□ 占用额外的CPU核心

图 9 多核转发模型优缺点

DLB主要组成部分

图 10 多和转发模型组成

3 心得体会

比起去年参加的 SD-WAN 好多了,至少知道在讲什么了,但是等想明白讲的这部分已 经又讲过去好多内容了,继续努力吧。