Intro to Machine Learning PHYS 6260

Slides borrowed from Stanford CS229, Spring 2020, modified slightly

Announcements:

Project Proposal: Due Friday 3/7

Definition of Machine Learning

Arthur Samuel (1959): Machine Learning is the field of study that gives the computer the ability to learn without being explicitly programmed.

A. L. Samuel*

Some Studies in Machine Learning
Using the Game of Checkers. II—Recent Progress

Definition of Machine Learning

Tom Mitchell (1998): a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Experience (data): games played by the program (with itself)

Performance measure: winning rate

Taxonomy of Machine Learning (A Simplistic View Based on Tasks)

Supervised Unsupervised Learning Learning Reinforcement Learning

Taxonomy of Machine Learning (A Simplistic View Based on Tasks)

can also be viewed as tools/methods

Supervised Learning

Housing Price Prediction

 \triangleright Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

 \triangleright Task: if a residence has x square feet, predict its price?

Housing Price Prediction

 \triangleright Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

 \triangleright Task: if a residence has x square feet, predict its price?

More Features

- Suppose we also know the lot size
- > Task: find a function that maps

(size, lot size)
$$\rightarrow$$
 price features/input label/output $x \in \mathbb{R}^2$ $y \in \mathbb{R}$

- ➤ Dataset: $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$ where $x^{(i)} = (x_1^{(i)}, x_2^{(i)})$
- \succ "Supervision" refers to $y^{(1)}, \dots, y^{(n)}$

High-dimensional Features

- $\triangleright x \in \mathbb{R}^d$ for large d
- ➤ E.g.,

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} --- living size$$
--- lot size
--- # floors
--- condition
--- zip code
$$\vdots$$

$$\vdots$$

$$\vdots$$

Can include infinite dimensional features; select features based on the data

Regression vs Classification

- \triangleright regression: if $y \in \mathbb{R}$ is a continuous variable
 - > e.g., price prediction
- > classification: the label is a discrete variable
 - > e.g., the task of predicting the types of residence

(size, lot size) \rightarrow house or townhouse?

Supervised Learning in Computer Vision

- Image Classification
 - $\triangleright x = \text{raw pixels of the image}, y = \text{the main object}$

Supervised Learning in Computer Vision

- Object localization and detection
 - $\triangleright x = \text{raw pixels of the image}, y = \text{the bounding boxes}$

kit fox

airplane

croquette

frog

Supervised Learning in Natural Language Processing

Machine translation

Google Translate

Unsupervised Learning

Unsupervised Learning

- \triangleright Dataset contains no labels: $x^{(1)}$, ... $x^{(n)}$
- Goal (vaguely-posed): to find interesting structures in the data

Clustering

Clustering

>k-mean clustering, mixture of Gaussians

Clustering Genes

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. '06]

Latent Semantic Analysis (LSA)

documents

See: Principal component analysis (tools used in LSA)

Image credit: https://commons.wikimedia.org/wiki/File:Topic_ detection in a document-word matrix.gif

Word Embeddings

Unlabeled dataset

Represent words by vectors

Clustering Words with Similar Meanings (Hierarchically)

	logic	graph	boson	polyester	acids
	deductive	subgraph	massless	polypropylene	amino
	propositional	bipartite	particle	resins	biosynthesis
	semantics	vertex	higgs	epoxy	peptide
tag	logic	graph theory	particle physics	polymer	biochemistry

Reinforcement Learning

Reinforcement Learning

> The algorithm can collect data interactively

Try the strategy and collect feedbacks

Improve the strategy based on the feedbacks

Taxonomy of Machine Learning (A Simplistic View Based on Tasks)

can also be viewed as tools/methods

Other Tools/Topics in Machine Learning

Deep learning basics

- Learning theory
 - Bias variance tradeoff
 - Feature selection
 - ML advice
- Broader aspects of ML
 - Robustness/fairness

What are areas of deep learning?

Convolutional NN Image

Deep RL Control System

Recurrent NN
Time Series

Graph NN
Networks/Relational

What are areas of deep learning?

Recurrent NN

Deep RL

Graph NN

Let us look at images in detail

Filters

Why not extract features using filters?

Better, why not let the data dictate what filters to use?

Learnable filters!!

1,	1,0	1,	0	0
0,×0	1,	1,0	1	0
0,1	0 _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Convolved Feature

Convolution on multiple channels

Images are generally RGB!!

How would a filter work on a image with RGB channels?

The filter should also have 3 channels.

Now the output has a channel for every filter we have used.

Filters? Layers of filters?

Images that maximize filter outputs at certain layers. We observe that the images get more complex as filters are situated deeper

How deeper layers can learn deeper embeddings. How an eye is made up of multiple curves and a face is made up of two eyes.

How do we use convolutions?

Let convolutions extract features and let normal cnn's decide on them.

Image credit: LeCun et al. (1998)

Convolution really is just a linear operation

$$\begin{pmatrix} x1 & x2 & x3 \\ x4 & x5 & x6 \\ x7 & x8 & x9 \end{pmatrix} * \begin{pmatrix} k1 & k2 \\ k3 & k4 \end{pmatrix}$$

$$\begin{pmatrix} k1 & k2 & 0 & k3 & k4 & 0 & 0 & 0 & 0 \\ 0 & k1 & k2 & 0 & k3 & k4 & 0 & 0 & 0 \\ 0 & 0 & 0 & k1 & k2 & 0 & k3 & k4 & 0 \\ 0 & 0 & 0 & k1 & k2 & 0 & k3 & k4 & 0 \\ 0 & 0 & 0 & k1 & k2 & 0 & k3 & k4 \end{pmatrix} \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \\ x5 \\ x6 \\ x7 \\ x8 \\ x9 \end{pmatrix}$$

$$\begin{pmatrix} k1 & x1 + k2 & x2 + k3 & x4 + k4 & x5 \\ k1 & x2 + k2 & x3 + k3 & x5 + k4 & x6 \\ k1 & x4 + k2 & x5 + k3 & x7 + k4 & x8 \\ k1 & x5 + k2 & x6 + k3 & x8 + k4 & x9 \end{pmatrix}$$

In fact convolution is a giant matrix multiplication.

We can expand the 2 dimensional image into a vector and the convolution operation into a matrix.