Matplotlib's math rendering engine

Matplotlib's math rendering engine
$$U_{\delta_1,\alpha_2}^{2\beta} - \alpha_2'$$

$$W_{\delta_{1}\rho_{1}\sigma_{2}}^{3\beta} = U_{\delta_{1}\rho_{1}}^{3\beta} + \frac{1}{8\pi^{2}} \int_{\alpha_{2}}^{\alpha_{2}} d\alpha'_{2} \left[\frac{U_{\delta_{1}\rho_{1}}^{2\beta} - \alpha'_{2}U_{\rho_{1}\sigma_{2}}^{1\beta}}{U_{\rho_{1}\sigma_{2}}^{0\beta}} \right]$$

$$_{1}\sigma_{2}$$
 – $_{\delta_{1}\rho_{1}}$ – $_{\overline{8\pi2}}$ $_{\sigma_{2}}$

$$\alpha_i > \beta_i, \ \alpha_{i+1}^j = \sin(2\pi f_j t_i) e^{-5t_i/\tau}, \ \dots$$

Fractions, binomials and stacked numbers:

$$3 \left(5-\frac{1}{x}\right)$$

$$\frac{3}{4}$$
, $\binom{3}{4}$, $\frac{3}{4}$, $\left(\frac{5-\frac{1}{x}}{4}\right)$, ...

$\sqrt{2}$, $\sqrt[3]{x}$, ...

Fonts:

Greek, Hebrew:

$$\alpha$$
, β , χ , δ , λ , μ , Δ , Γ , Ω

$$\stackrel{.}{a}$$
, \bar{a} , $\stackrel{.}{a}$, $\stackrel{.}{a}$, $\stackrel{.}{a}$, $\stackrel{.}{a}$, $\stackrel{.}{a}$, $\stackrel{.}{xyz}$, $\stackrel{.}{xyz}$, ...

Roman, *Italic*, Typewriter or *CALLIGRAPHY*

$$\alpha$$
, β , χ , δ , λ , μ , Δ , Γ , Ω , Φ , Π , Y , ∇ , \aleph , \beth , \urcorner , \beth ,

$$\coprod$$
, \int , \oint , \prod , \sum , log, sin, \approx , \oplus , \star , \propto , ∞ , ∂ , \Re ,