# INTRO TO HIGH SECURITY HPC (RIO)

#### Camden Duy

**Computational Scientist** 

E: cmd7ag@virginia.edu

**Paul Orndorff** 

**Computational Scientist** 

E: egg3xa@virginia.edu

# High Performance Computing (HPC) at UVA

HPC computing systems tailored to data sensitivity

- Rivanna/Afton (Standard Security)
  - To process and store public data, internal use data, or sensitive data.
  - Highly Sensitive Data is not permissible
  - More information on the SSZ HPC can be found in our <u>Intro to HPC slides</u>.
- Rio (High Security)
  - To process and store Highly Sensitive Data such as HIPAA, FERPA, ITAR, dbGAP etc.
  - Not CUI certified yet, use Ivy VM

For more information please see RC Systems Data Sensitivity



#### Highly Sensitive Data

Data that require restrictions on access under the law or that may be protected from release in accordance with applicable law or regulation.

#### Examples:

- Personally identifiable information (PII) is any information that can be used to identify a
  person. Examples include social security number, passport number, driver's license
  number, military identification number, or biometric records
- Health information that reveals an individual's health condition and/or medical history, including information defined by the Health Insurance Portability and Accountability Act (HIPAA)

#### Ivy and Rio (Overview)

#### lvy

- Secure computing environment, offering Virtual Machines (VM) with both Linux and Windows operating systems.
- Ivy VM is designed for interactive and small-scale analysis of highly sensitive data including HIPAA, FERPA, CUI, and ITAR.
- Access to Ivy platform is project based. Each project gets a VM.
- Project-specific storage volumes are mounted to the VM and available on the HPC system enabling a seamless transition between tasks on VM and HPC environment.
- Ivy Linux VMs can serve as a frontend for accessing the Rio HPC system (available upon request).

#### Rio

For large scale analysis of HIPAA, FERPA, dbGaP and ITAR data



## Terminology

- Node
  - Nodes are a type of computer called a server
  - They generally have more power than a typical computer.
  - They may have specialty hardware like graphical processing units
  - Two types of Nodes:
    - Login node a server used for logging in and submitting jobs.
    - Compute node a server that carries out the computational work.
- Core
  - An individual processor on a computer
- Memory
  - The random-access memory on a node
- Storage
  - Disk storage visible from a node







# Requesting Access to HSZ HPC (Rio)

- Principal Investigators (PIs) can request access by submitting an Ivy Linux VM request through the <u>services app</u>
  - Research staff may apply for an exception.
  - Students must be sponsored by a faculty or research staff.
  - In addition to being a login node to Rio, a Linux VM can be used for preliminary computations as well
  - VMs comes in different sizes. Request a VM sized appropriately for your workflow. For larger groups or projects with computationally intensive tasks, choose a larger VM. We recommend Small and above.
  - VMs exist in a private, secure network and cannot reach outside resources on the Internet. Most inbound and outbound data transfer is managed through the Data Transfer Node (DTN).
  - More information on requesting a VM can be found <u>here</u> on our website.



# VM Provisioning

After access is requested, the Research Computing (RC) team will handle the provisioning of the Virtual Machine (VM).

The following steps are carried out by the RC team

- RC will create a Grouper group for Rio access
- RC will request access to the High Security VPN (HSVPN) on your group's behalf and provision 1 TB of High Security Research Standard storage for your project.
   This storage volume will also be available when using Rio HPC for your project.
- The PI and researchers will be notified upon the completion of the VM provisioning, and the associated IP address and group name will be provided to them.



# **User Provisioning**

- Any users of the VM must be added to the project in the <u>services app</u> by the PI
- Once a project is approved, a PI and her/his researchers must sign a RUDA (one for every researcher on each project).
  - Each researcher must also complete the <u>High Security Awareness Training (HSAT)</u>
  - This must be completed to permit each researcher access to the HSVPN filter
- More information on security training and HSVPN access can be found <a href="here">here</a>
   on our website



#### Connecting to the System

- Before connecting to your VM, you must install the following on your personal machine/device.
  - Install the Cisco AnyConnect Secure Mobility Client.
  - Install Opswat.
  - Install Duo MFA on personal smartphone.
  - See <u>here</u> for details.
- There are two ways to connect to your Linux VM:
  - Accessing the VM from a browser window
  - Using SSH (Secure Shell)
    - Use a terminal window with Mac/Linux
    - Windows users will need to install an SSH client application. We recommend <u>MobaXTerm</u>.
  - In either case, you need the IP address of your VM along with your Netbadge credentials to connect to the VM.

## Accessing from SSH

- Start the HSVPN
- Open your SSH client and type: ssh <u>mst3k@10.xxx.xxx.xxx</u>, where mst3k is replaced with your user ID and the x's are replaced with your VM's IP address (given in the Services app).



When prompted for a password, use your EServices password.

This login method provides only command line access to the VM. No graphical user interfaces (GUIs) are usable.



#### SSH Clients

- SSH clients mostly use instructions typed at the command prompt.
- You will need to become familiar with Linux/Unix commands.
  - See <u>learning.rc.virginia.edu/tutorials/unix-tutorial/</u> to learn more
- Some useful Unix/Linux commands:

```
$ ls
$ pwd
$ cd folder_name
$ cp file_1 file_2
$ rm file_1
$ cd ..
```



#### Accessing from a Browser

- Start the HSVPN
- Open a web browser and enter the IP address for your VM (e.g., https://10.xxx.xxx.xxx)
  - If you get a warning message, you may need to click on Advanced Settings and/or a Connect Anyway option, depending on your web browser.
- Upon login, you will see a selection of different graphical applications that you can use.
  - Jupyterhub
  - RStudio
  - FastX Desktop





These applications run on the VM itself and do not use HPC resources.



# Working with Files Using FastX

- FastX Desktop is a great tool for managing files and launching applications with a graphical user interface.
- Once signed-in, you can select either a "MATE" (GUI Linux Desktop) or "Terminal" session
- MATE sessions provide a terminal (black box in menu bar) and a file browser (white box) in menu bar. The CAJA file browser can help with management and navigation of the filesystem.
- More information on using FastX can be found on <u>our website</u> and in our <u>Intro to HPC</u> <u>slides</u>.



FastX Dashboard

MATE Desktop with CAJA file browser open (white box on menu bar)



#### How to edit a file in Linux VM

#### Editors you can use:

- When in a Terminal Window, use vi/emacs/pluma.
  - vi/emacs uses all keyboard shortcuts and may take a while to learn.
  - pluma is a very basic editor. To launch, type: pluma myfile.txt

In Desktop, you can use Pluma Text Editor.

## **Storing Data**

- VMs do not come with any significant disk storage of their own.
- A PI specifies the storage space they would like to have when requesting access to Ivy.
  - Default of 1TB of Research Standard Storage
  - Mounted under /data/ivy-hip-name where "ivy-hip-name" is replaced by the name of your ivy project's Grouper group name
  - Storage can be resized upon request. Submit your request here
- JupyterLab, RStudio, Rio, and FastX can all save data into the shared storage at */data/ivy-hip-name*.

## **Transferring Data**

- Globus is the only permitted data-transfer protocol for highly sensitive data.
- **UVA IVY-DTN** is the the official collection for moving files into High-Security Research Standard Storage.
  - To transfer data to High-Security Research Standard Storage, please see the special instructions <a href="here">here</a> on our website.
  - Ensure that you are **NOT** connected to the HSVPN. Data transfer will not work if you are connected to the HSVPN.
- Additional instructions and information on using Globus can be found here on our learning site.



#### Preinstalled Software

- Every VM comes with a base installation of software by default. See <a href="here">here</a> for a list of preinstalled software and how to request new software installations.
  - Additional software packages are pre-approved and available for installation upon request.
  - Software not already approved will need to undergo a security evaluation to determine if it is suitable for a High Security environment.
  - Python and R packages are available to users through the normal pip, conda, and CRAN library installation methods.
- Access to installed software is done using the lmod Module System.

#### Modules

 Any application software that you want to use will need to be loaded with the module load command.

- For example:
  - module load apptainer/1.3.1
- You will need to load the module any time that you create a new shell
  - Every time that you log out and back in
  - Every time that you run a batch job on a compute node



#### **Modules Basics**

#### Some basic commands to use lmod:

- module avail lists every module avaiable to load
- module key <keyword> searches for modules in a category specified
  - Example: module key bio
- module spider <module-name> prints information about the software including different offered versions
- module load <module-name> load the desired software
  - Use module load <module-name/ver-number> to load a specific version
- module unload <module-name> unloads the desired software
- module list prints all currently loaded modules
- module purge unloads all modules



#### Partitions (Queues)

- Rio has several partitions (or queues) for job submissions.
  - You will need to specify a partition when you submit a job.
  - To see the partitions that are available to you, type **qlist** at the command-line prompt.

| [[jus2yw@ivy-t | st-rc-1    | ~]\$ qlist | t       |         |                          |
|----------------|------------|------------|---------|---------|--------------------------|
| Queue          | Total      | Free       | Jobs    | Jobs    | Time                     |
| (partition)    | Cores      | Cores      | Running | Pending | Limit                    |
|                |            |            |         | ======  |                          |
| neo            | 960        | 840        | Θ       | Θ       | 7-00:00:00               |
| neo<br>neo-gpu | 960<br>104 | 840<br>104 | 0<br>0  | 0<br>0  | 7-00:00:00<br>7-00:00:00 |



#### Slurm

- Slurm manages the hardware resources on the cluster (e.g. compute nodes/cpu cores, compute memory, etc.).
- Slurm allows you to request resources within the cluster to run your code.
  - It is used for submitting jobs to compute nodes from an access point (Ivy VM).
  - Frontends are intended for editing, compiling, and very short test runs.
  - Production jobs go to the compute nodes through the resources manager.
- Slurm documentation:
  - https://www.rc.virginia.edu/userinfo/hpc/slurm/
  - https://slurm.schedmd.com/



# SLURM Script Example

• A SLURM script is a bash script with SLURM directives (#SBATCH) and command-line instructions for running your program.

```
#!/bin/bash
#SBATCH --nodes=1  #total number of nodes for the job
#SBATCH --ntasks-per-node=1  #how many copies of code to run
#SBATCH --time=1-12:00:00  #amount of time for the whole job
#SBATCH --partition=standard  #the queue/partition to run on
#SBATCH --account=myGroupName #the account/allocation to use

module purge
module load goolf R  #load modules that my job needs
Rscript myProg.R  #command-line execution of my job
```



#### Submitting a Slurm Job

- To submit the Slurm command file to the queue, use the **sbatch** command at the command line prompt.
  - /home only exists on VM. Compute nodes do not have access to /home.
  - Job submission needs to be done from /standard/storage/
  - Recommended to include the complete file paths in the script
- For example, if the script on the previous slide is in a file named job\_script.slurm, we can submit it as follows:

[jus2yw@ivy-tst-rc-1 ivy-tst-rc]\$ sbatch job\_script.slurm Submitted batch job 18316



## Submitting an Interactive SLURM Job

- To submit an interactive SLURM job to the queue, use the **ijob** command at the command line prompt.
- For example, if you want to run an interactive application on a compute node in the standard queue using one cpu, we can submit it as follows:

```
-bash-4.1$ ijob -c 1 -p standard -A MyGroupName -t 06:00:00 salloc: Pending job allocation 21640112 salloc: job 21640112 queued and waiting for resources salloc: job 21640112 has been allocated resources salloc: Granted job allocation 21640112 srun: Step created for job 21640112 udc-aw34-21c0-teh1m$
```



## **Checking Job Status**

- To display the status of only your active jobs, type: squeue -u
   <your\_user\_id>
- The squeue command will show pending jobs and running jobs, but not failed, canceled or completed job.

```
-bash-4.2$ squeue -u mst3k

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

18316 standard job_sci mst3k R 1:45 1 udc-aw38-34-1
```

- A job's status is indicated by:
  - PD pending, R running, CG exiting



## **Checking Job Status**

To display the status of all jobs, type: sacct -S <start\_date>

| lobID        | JobName<br> | Partition<br> | Account   | AllocCPU | S State    | ExitCode |
|--------------|-------------|---------------|-----------|----------|------------|----------|
| 3104009      | RAxML NoC+  | standard      | hpc build | 20       | COMPLETED  | 0:0      |
| 3104009.bat+ | batch       |               | hpc build | 20       | COMPLETED  | 0:0      |
| 3104009.0    | raxmlHPC-+  |               | hpc build | 20       | COMPLETED  | 0:0      |
| 3108537      | sys/dashb+  | gpu           | hpc build | 1        | CANCELLED+ | 0:0      |
| 3108537.bat+ | batch       |               | hpc build | 1        | CANCELLED  | 0:15     |
| 3108562      | sys/dashb+  | gpu           | hpc build | 1        | TIMEOUT    | 0:0      |
| 3108562.bat+ | batch       |               | hpc build | 1        | CANCELLED  | 0:15     |
| 3109392      | sys/dashb+  | gpu           | hpc build | 1        | TIMEOUT    | 0:0      |
| 109392.bat+  | batch       |               | hpc_build | 1        | CANCELLED  | 0:15     |
| 3112064      | srun        | gpu           | hpc build | 1        | FAILED     | 1:0      |
| 3112064.0    | bash        |               | hpc build | 1        | FAILED     | 1:0      |

• The sacct command lists all jobs (pending, running, completed, canceled, failed, etc.) since the specified date.



## Canceling a Job

• To delete a job from the queue, use the **scancel** command with the job ID number at the command line prompt:

```
-bash-4.2$ scancel 18316
```

• To cancel all your jobs, run this command:

```
-bash-4.2$ scancel -u $USER
```

- We use scontrol to print information of a running job
  - scontrol show job <jobid>



#### More Commands

- sacct will return accounting information about your job. See <u>Slurm's documentation</u> for a full list of options.
  - Use the option -j <jobid> to inspect a particular job
- seff will return information about the utilization (called the "efficiency") of core and memory.



#### NEED HELP?

**Research Computing Zoom Office Hours** 

Tuesdays: 3 pm - 5 pm

Thursdays: 10 am – noon To connect to the Zoom sessions,

https://www.rc.virginia.edu/supp ort/#office-hours and click on the "Join us via Zoom" button

Or, contact us through the forms at:

https://www.rc.virginia.edu/support/





