Data Example

Three diets with seven observations per diet. The data are fish lengths, in cm.

raw data:

summary statistics:

$$\bar{y}_1$$
. = 18.61 s_1^2 = 1.358 \bar{y}_2 . = 17.66 s_2^2 = 1.410 \bar{y}_3 . = 16.84 s_3^2 = 1.393 \bar{y} .. = 17.70 N = 21

corresponding ANOVA table:

Source	$\mathrm{d}\mathrm{f}$	SS	MS
Trt	2	11.01	5.505
Error	18	24.96	1.387
Total	20	35.97	

and
$$F = \frac{\text{MSTrt}}{\text{MSErr}} = \frac{5.505}{1.387} = 3.97$$
. Comparing this with $F_{2,18}$ yields a p-value of 0.037.

Thus, there is moderate evidence against H_0 : $\alpha_i = 0$ for all i.

Examples of Contrasts

• Comparison of Diet 1 and Diet 2:

$$\bar{y}_{1.} - \bar{y}_{2.}$$

• Comparison of the average of Diets 1 and 2 with Diet 3:

$$\frac{1}{2}(\bar{y}_{1.}+\bar{y}_{2.})-\bar{y}_{3.}$$

Orthogonal Polynomial Contrasts

The table lists contrast coefficients (c_i) , for k treatments, for polynomial degrees $1, \ldots, k-1$, and assuming a balanced design and equal spacing in the treatment means μ_i .

k	degree	\bar{y}_{1} .	\bar{y}_2 .	\bar{y}_3 .	\bar{y}_4 .	$ar{y}_{5}$.	$ar{y}_{6\cdot}$
2	1	-1	+1				
3	1	-1	0	+1			
	2	+1	-2	+1			
4	1	-3	-1	+1	+3		
	2	+1	-1	-1	+1		
	3	-1	+3	-3	+1		
5	1	-2	-1	0	+1	+2	
	2	+2	-1	-2	-1	+2	
	3	-1	+2	0	-2	+1	
	4	+1	-4	+6	-4	+1	
6	1	-5	-3	-1	+1	+3	+5
	2	+5	-1	-4	-4	-1	+5
	3	-5	+7	+4	-4	-7	+5
	4	+1	-3	+2	+2	-3	+1
	5	-1	+5	-10	+10	-5	+1

Another Set of Orthogonal Contrasts

These are not polynomial contrasts, but can be used to form sets that are occasionally of use.

k	number	\bar{y}_{1} .	\bar{y}_2 .	\bar{y}_3 .	\bar{y}_{4} .	\bar{y}_{5} .
2	1	+1	-1			
3	1	+1	-1	0		
	2	+1	+1	-2		
4	1	+1	-1	0	0	
	2	+1	+1	-2	0	
	3	+1	+1	+1	-3	
5	1	+1	-1	0	0	0
	2	+1	+1	-2	0	0
	3	+1	+1	+1	-3	0
	4	+1	+1	+1	+1	-4

etc.