Nice Endings, or Mortifying Overcomplications?

4th NEMO, 6 October 2016

Problem 1. Prove that the sum of any n entries from the following table situated in different rows and different columns is not less than 1.

1	$\frac{1}{2}$	$\frac{1}{3}$	 $\frac{1}{n}$
$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	 $\frac{1}{n}$
•			•
$\frac{1}{n}$	$\frac{1}{n+1}$	$\frac{1}{n+2}$	 $\frac{1}{2n-1}$

Problem 2. P(x), Q(x) are two polynomials such that P(x) = Q(x) has no real solution, and $P(Q(x)) \equiv Q(P(x)) \forall x \in R$. Prove that P(P(x)) = Q(Q(x)) has no real solution.

Problem 3. 2016 nonnegative integers are written on a board. In each step, you can erase two of the numbers and replace them with their sum and their difference. Is it possible, in a finite number of steps, to reach a state where applying the operation to any pair of numbers does not change any of the numbers?

Problem 4. We denote the circumcircle of a triangle XYZ by (XYZ). Let ABC be an acute angled triangle and P a point inside the triangle such that $\angle BPC = 180^{\circ} - \angle A$. BP,CP intersect CA,AB at E,F. Circle (AEF) intersects (ABC) again at G. The circle with diameter G intersects G again at G. Prove that the circle G and G are tangent.