Evolutionary Computation

- Khaled Rasheed
- Computer Science Dept.
 - University of Georgia
- http://www.cs.uga.edu/~khaled

Presentation outline

- Genetic algorithms
- Genetic programming
- Evolution strategies
- Classifier systems
- Evolution programming
- Conclusion

In the forest

- Fitness = Height
- Survival of the fittest

Reproduction

Genome: ATTGCGCCATGAT

ATTAAACCATAGT

Crossover:

ATTG CGCCATGAT
ATTA AACCATAGT

ATTG AACCATAGT

Mutation:

ATTGAA CCATAGT
ATTGAA GCATAGT

Genetic Algorithms

- Maintain population of potential solutions
- New solutions are generated by combining and modifying existing solutions
 - Crossover
 - Mutation
- Objective function = "Fitness function"

Example: numerical optimization

• maximize 2X^2-y+5 where X:[0,3],Y:[0,3]

Example with binary representation

maximize 2X^2-y+5 where X:[0,3],Y:[0,3]

Elements of a generational genetic algorithm

- Representation
- Fitness function
- Initialization strategy
- Selection strategy
- Crossover operators
- Mutation operators

Elements of a steady state genetic algorithm

- Representation
- Fitness function
- Initialization strategy
- Selection strategy
- Crossover operators
- Mutation operators
- Replacement strategy

Selection strategies

- Proportional selection (roulette wheel)
 - selection probability of individual=fitness/sum of fitnesses
- Rank based selection
 - Example: decreasing arithmetic/geometric series
 - better when fitness range is very large

Crossover Operators

• Point crossover (classical)

- Parent1=x1,x2,x3,x4,x5,x6
- Parent2=y1,y2,y3,y4,y5,y6
- Child =x1,x2,x3,x4,y5,y6

Random crossover

- Parent1=x1,x2,x3,x4,x5,x6
- Parent2=y1,y2,y3,y4,y5,y6
- Child =x1,x2,y3,x4,y5,y6

Arithmetic crossover

- Parent1=x1,x2,x3
- Parent2=y1,y2,y3
- Child =(x1+y1)/2,(x2+y2)/2,(x3+y3)/2

Mutation Operators

- change one or more components
- Let Child=x1,x2,P,x3,x4...
- Gaussian mutation:
 - $P \leftarrow P \pm \Delta p$
 - Δp : (small) random normal value
- Uniform mutation:
 - $P \leftarrow P$ new
 - *p new* : random uniform value
- boundary mutation:
 - $P \leftarrow Pmin \ OR \ Pmax$
- Binary mutation=bit flip

Advantages of Genetic-Algorithm based optimization

- Finds global optima
- Can handle discrete, continuous and mixed variable spaces
- Easy to use (short programs)
- Robust (less sensitive to noize, ill conditions)

Disadvantages of Genetic-Algorithm based optimization

- Relatively slower than other methods (not suitable for easy problems)
- Theory lags behind applications

Global parallel GA

Coarse-grained parallel GA

Fine-grained parallel GA

Hybrid parallel GA

- Coarse-grained GA at high level
- Fine-grained GA at low level

Hybrid parallel GA

- Coarse-grained GA at high level
- Global parallel GA at low level

Hybrid parallel GA

- Coarse-grained GA at high level
- Coarse-grained GA at low level

Genetic Programming (GP)

- Introduced (officially) by John Koza in his book (genetic programming, 1992)
- Early attempts date back to the 50s (evolving populations of binary object codes)
- Idea is to evolve computer programs
- Declarative programming languages usually used (Lisp)
- Programs are represented as trees

GP individuals

- A population of trees representing programs
- The programs are composed of elements from the FUNCTION SET and the TERMINAL SET
- These sets are usually fixed sets of symbols
- The function set forms "non-leaf" nodes. (e. g. +,-,*,sin,cos)
- The terminal set forms leaf nodes. (e.g. x,3.7, random())

Example: GP individual

GP operation

- Fitness is usually based on I/O traces
- Crossover is implemented by randomly swapping subtrees between individuals
- GP usually does not extensively rely on mutation (random nodes or subtrees)
- GPs are usually generational with a generation gap
- GP usually uses huge populations (1M individuals)

Example: GP crossover

Advantages of GP over GAs

- More flexible representation
- Greater application spectrum
- If tractable, evolving a way to do things is more useful than evolving the things.
- Example: evolving a learning rule for neural networks (Amr Radi, GP98) vs. evolving the weights of a particular NN.

Disadvantages of Genetic Programming

- Extremely slow
- Very poor handling of numbers
- Very large populations needed
- Criticism from classical GA community: no schema theory or any theory!

Recent Trends

- Genetic programming with linear genomes (Wolfgang Banzaf)
 - Kind of going back to the evolution of binary program codes
- Hybrids of GP and other methods that better handle numbers:
 - Least squares methods
 - Gradient based optimizers
 - Genetic algorithms, other evolutionary computation methods
- Evolving things other than programs
 - Example: electric circuits represented as trees (Koza, AI in design 1996)

Evolution Strategies (ES)

- Were invented to solve numerical optimization problems
- Originated in Europe in the 1960s
- Initially: two-membered or (1+1) ES:
 - one PARENT generates one OFFSPRING per GENERATION
 - by applying normally distributed (Gaussian) mutations
 - until offspring is better and replaces parent
 - This simple structure allowed theoretical results to be obtained (speed of convergence, mutation size)
- Later: enhanced to a (μ+1) strategy which incorporated crossover

Normal (Gaussian) mutation

Modern evolution strategies

- Schwefel introduced the multimembered ESs now denoted by $(\mu+\lambda)$ and (μ,λ)
- (μ,λ) ES: The parent generation is disjoint from the child generation
- $(\mu + \lambda)$ ES: Some of the parents may be selected to "propagate" to the child generation

ES individuals

- Real valued vectors consisting of two parts:
 - Object variable: just like real-valued GA individual
 - Strategy variable: a set of standard deviations for the Gaussian mutation
- This structure allows for "Self-adaptation" of the mutation size
 - Excellent feature for dynamically changing fitness landscape

Machine learning and evolutionary computation

- In machine learning we seek a good hypothesis
- The hypothesis may be a rule, a neural network, a program ... etc.
- GAs and other EC methods can evolve rules, NNs, programs ...etc.
- Classifier systems (CFS) are the most explicit GA based machine learning tool.

Elements of a classifier system

- Rule and message system
 - if <condition> then <action>
- Apportionment of credit system
 - Based on a set of training examples
 - Credit (fitness) given to rules that match the example
 - Example: Bucket brigade (auctions for examples, winner takes all, existance taxes)
- Genetic algorithm
 - evolves a population of rules or a population of entire rule systems

The Michigan approach: population of rules

- Evolves a population of rules, the final population is used as the rule and message system
- Diversity maintenance among rules is hard
- If done well converges faster
- Need to specify how to use the rules to classify
 - what if multiple rules match example?
 - exact matching only or inexact matching allowed?

The Pitt approach

- Each individual is a complete set of rules or complete solution
- Avoids the hard credit assignment problem
- Slow because of complexity of space

Evolution programming (EP)

- Evolves finite state machines (or similar structures)
- Relies on mutation
- Fitness based on training sequence(s)
- Uses rank based selection
- Good for sequence problems (DNA) and prediction in time series

EP individual

EP mutation operators

- Add a state (with random transitions)
- Delete a state (reassign state transitions)
- Change an output symbol
- Change a state transition
- Change the start state

Other evolutionary computation "ways"

- Variable complexity representations (Peter Gage, AI in design 96)
- Representations based on description of transformations
 - instead of enumerating the parameters of the individual, describe how to change another (nominal) individual to be it.
 - Good for dimension reduction, at the expense of optimality
- Response surface methods (alvarez, GP 98)
 - Good when objective function is very expensive
 - fit a surface to some points and optimize the surface

Related Topics

Artificial life

- An individual's fitness depends on genes + lifetime experience
- An individual can pass the experience to offspring

Co-evolution

- Several populations of different types of individuals co-evolve
- Interaction between populations changes fitness measures

The bigger picture

- All evolutionary computation models are getting closer to each other
- The choice of method is important for success
- EC provides a very flexible architecture
 - easy to combine with other paradigms
 - easy to inject domain knowledge

EC journals

- Evolutionary Computation
- IEEE transactions on evolutionary computation
- Genetic programming
- other: AIEDAM, AIENG ...

EC conferences

- Genetic and evolutionary computation conference (GECCO)
- Congress on evolutionary computation (CEC)
- evolutionary programming (EP)
- Parallel problem solving from nature (PPSN)
- other: AI in design, IJCAI, AAAI ...