Gas Chromatography

Mobile phase

Carrier gas

Uses a column to contain the stationary phase

Coil of packed metal tube

DNA

Gas Chromatography

DNA

GC vs TLC

TLC

Measure distance moved by components in a fixed time

 R_{f}

GC

Measure time taken by components to move to the end of the column

Retention time

Unknown sample

Known standards

GC Results

Unknown sample

Solvent peak

Can be ignored

Area under peak

Proportional to the amount of material

Gas Chromatography

Separate mixture into components

Measure amount of components present

Quantification

Types of Chromatography

1 Thin Layer Chromatography (TLC)

2 Gas Chromatography (GC)

High Performance Liquid Chromatography or High Pressure Liquid Chromatography (HPLC)

HPLC

Mobile phase

Liquid

Organic solvents or aqueous solutions

Steel columns

High pressures

Stationary phase densely packed in the column

- High pressures
- Get good flow rates
- Steel columns to withstand pressures

Similar to GC

Measure time taken by components to move to the end of the column

Measuring retention time

HPLC chromatogram

GC chromatogram

HPLC

HPLC chromatogram

Area under peak

Proportional to the amount of material

HPLC vs GC

- 1 Efficient, highly selective, widely applicable
- 2 Small amounts of sample required
- 3 Non-destructive of the sample
- 4 Quantitative
- 5 High resolution

DNA

HPLC vs GC

- 1 Simple
- Inexpensive
- Rapid

- 1 Non-volatile samples
- Samples that are thermally unstable