Ripple Adder

• e.g., 4-bit adder (MSB is right)

Signal Delay

- Ripple Adder slow carry needs to propagate
- linear in number of bits

- speed up: Carry Lookahead Adder
 - extra (more complex) circuits to determine carry
 - gates can switch in parallel
 - hierarchical application

Carry Lookahead

- determine carry bits in parallel to main addition
- unroll sequential computation
- AND and OR can have more than 2 inputs

- basic observation about bit pair A,B:
 - Carry Generate: $G(A,B) = A \wedge B$
 - Carry Propagate: P(A,B) = A V B

4-Bit Carry Computation

- input: A₀...A₃, B₀...B₃, C₀
- output: C₁...C₄
- intermediate: $G_0...G_3$, $P_0...P_3$

$$C_1 = G_0 \vee P_0 \wedge C_0$$

 $C_2 = G_1 \vee P_1 \wedge C_1 = G_1 \vee P_1 \wedge G_0 \vee P_1 \wedge P_0 \wedge C_0$
 $C_3 = G_2 \vee P_2 \wedge C_2 = ...$
 $C_4 = G_3 \vee P_3 \wedge C_3 = ...$

4-Bit Carry Computation

•
$$C_4 = G_3 V$$

 $P_3 \wedge G_2 V$
 $P_3 \wedge P_2 \wedge G_1 V$
 $P_3 \wedge P_2 \wedge P_1 \wedge G_0 V$
 $P_3 \wedge P_2 \wedge P_1 \wedge P_1 \wedge C_0$

- · with
- $G_x = A_x \wedge B_x$
- $P_x = A_x \vee B_x$

Computing C₄

Partial Full Adder

- Note: $(A \wedge B) \vee (A \vee B) = (A \wedge B) \vee (A \oplus B)$
- $\cdot =$ Can use $P = A \oplus B$

Carry Lookahead Adder

- Step 1: Compute all P_i, G_i
- Step 2: Compute all C_i
- Step 3: Compute all S_i

- in practice: limited to 4 bits
 - scheme can be used recursively/hierarchical

Principles

- sequential execution
 - turned into parallel execution
 - trade-off: number of gates vs. speed

Basic Memory Circuit – Flip-flop gate

stored bit is at Q;

One of the fastest ways that we can store 1-bit (and more) of data

 Output depends on the inputs and the previous output (stored bit)

Input: R and NOT Q

- 1. Start from S NOR Q to get NOT Q
- 2. Use the value of NOT Q to get Q_next = R NOR (NOT Q)

Input: S and Q

• S – set, R – reset

We want a way to:

- hold the value at Q
- reset the value at Q to 0
- set the value at Q to 1

Q_next is the next value of Q, i.e. the output of the circuit in the next instance after something has been changed (set, reset, hold)

Revisit Binary Addition

- If you are building circuits to handle the data, then you have a limit to the number of bits available to represent values
- fixed width n-bit representation: overflow
 - modular arithmetic
 - 4 bits: 14 + 4 = 2

Exceeding the n-bit representation, e.g 100 + 111 + 011

Sign Representation

- fixed width n-bit representation
 - most significant bit: left-most (highest value)
 - least significant bit: right-most (lowest value)
- sign extension: treat MSB as sign
 - 0 means positive, 1 means negative e.g. 110 -> -2, 010 -> +2
- two zeros: 0000 and 1000
- cannot use basic addition Sign extension can lead to this
 - e.g. 3-1 = -4??

Ones' Complement

- negative number: invert bits
- still two zeros: 0000 and 1111
- addition possible
 - add carry-over to sum

Arithmetic

```
. 00001101 13
```

$$\cdot + 111111011 - 4$$

$$\cdot = 100001000$$
 8 3

$$\cdot = 00001001$$
 9

Two's Complement

- negative number: invert bits and add 1
- single zero: 0000

$$-2^{n-1}...2^{n-1}-1$$

- range:
- straightforward addition

Arithmetic

```
. 00001101 13
```

$$\cdot + 11111100 - 4$$

$$\cdot = 100001001$$
 9

ignore carry over

Overflow

assume 8-bit integers in two's complement

$$100 + 50 - 25 = ?$$

$$100 + (50 - 25) = 100 + 25 = 125$$

$$(100 + 50) - 25 = -106 - 25 = -131 = 125$$

More Arithmetic

- addition, subtraction done
- multiplication, division? *Not In Course*
- integer vs. fraction?

Shift Operations

- shift bitstring to left or right
 - with or without carry-over
 - simplest: no carry-over
- equivalent to multiplication/division by 2
- very fast machine instructions
- programming languages, operators << and >>
 - a << b a * 2^b
 - a >> b $a / 2^b$