Lecture 3: Efficiency, Analysis, and Order Part 2

CS3310

In-Class Exercise

1. What is the time complexity T(n) of the nested loops below? Assume n is a power of 2

2. What is the time complexity T(n) of the following algorithm? Assume n is divisible by 4.

```
for (i = 2; i <= n; i++)
    for (j = 0; j <= n)
        cout << i << j;
        j = j + [n / 4];</pre>
```

What is the time complexity of the following algorithm, assuming n is divisible by 2?

```
for (i = 1; i <= 1.5n; i++)
     cout << i;
for (i = n; i >= 1; i--)
     cout << i;</pre>
```

What is the basic operation?

What is the time complexity of the following algorithm, assuming n is divisible by 2?

```
for (i = 1; i <= 1.5n; i++)
        cout << i;
for (i = n; i >= 1; i--)
        cout << i;</pre>
```

What is the basic operation? There are **two** basic operations, the printing of *i* in each loop

Does this algorithm have an every-case time complexity?

What is the time complexity of the following algorithm, assuming n is divisible by 2?

```
for (i = 1; i <= 1.5n; i++)
        cout << i;
for (i = n; i >= 1; i--)
        cout << i;</pre>
```

What is the basic operation? There are **two** basic operations, the printing of *i* in each loop

Does this algorithm have an every-case time complexity? Yes! There is no way to break out of either loop.

What is T(n)?

What is the time complexity of the following algorithm, assuming *n* is divisible by 2?

```
for (i = 1; i <= 1.5n; i++)
    cout << i;
for (i = n; i >= 1; i--)
    cout << i;</pre>
```

What is the basic operation? There are **two** basic operations, the printing of *i* in each loop

Does this algorithm have an every-case time complexity? Yes! There is no way to break out of either loop.

What is T(n)? 1.5n (first loop) + n (second loop)

$$T(n) = 2.5n$$

```
for (index i = 2; i <= n; i++)
    target = A[i]
    j = i - 1;
    while (j > 0 and target < A[j])
        A[j + 1] = A[j];
        j--;
    A[j + 1] = target;</pre>
```

What is the basic operation?

```
for (index i = 2; i <= n; i++)
    target = A[i]
    j = i - 1;
    while (j > 0 and target < A[j])
        A[j + 1] = A[j];
        j--;
    A[j + 1] = target;</pre>
```

What is the basic operation? The comparison of target and A[j]

Does this algorithm have an every-case time complexity?

```
for (index i = 2; i <= n; i++)
    target = A[i]
    j = i - 1;
    while (j > 0 and target < A[j])
        A[j + 1] = A[j];
        j--;
    A[j + 1] = target;</pre>
```

What is the basic operation? The comparison of target and A[j]

Does this algorithm have an every-case time complexity? **No!** Since we can break out of the while loop early, we need to find B(n), A(n), and W(n)

```
for (index i = 2; i <= n; i++)
    target = A[i]
    j = i - 1;
    while (j > 0 and target < A[j])
        A[j + 1] = A[j];
        j--;
    A[j + 1] = target;</pre>
```

What is the basic operation? The comparison of target and A[j]

What is the best case scenario?

```
for (index i = 2; i <= n; i++)
    target = A[i]
    j = i - 1;
    while (j > 0 and target < A[j])
        A[j + 1] = A[j];
        j--;
    A[j + 1] = target;</pre>
```

What is the basic operation? The comparison of target and A[j]

What is the best case scenario? The array is already sorted:

- The while loop immediately exits each time it is reached (target will always be less than A[j]).
- The for loop iterates from 2 to n, so B(n) = n 1

```
for (index i = 2; i <= n; i++)
    target = A[i]
    j = i - 1;
    while (j > 0 and target < A[j])
        A[j + 1] = A[j];
        j--;
    A[j + 1] = target;</pre>
```

What is the basic operation? The comparison of target and A[j]

What is the worst case scenario?

```
for (index i = 2; i <= n; i++)
    target = A[i]
    j = i - 1;
    while (j > 0 and target < A[j])
        A[j + 1] = A[j];
        j--;
    A[j + 1] = target;</pre>
```

What is the basic operation? The comparison of target and A[j]

What is the worst case scenario? The array is sorted in reverse order:

- The while loop iterates from *j* to 1 *n* times.
 - In the first iteration of the for loop, *j* starts at 1. In the second iteration, it starts at 2, etc..
- i.e. $1 + 2 + ... + n \longrightarrow W(n) = n(n+1)/2$

Order

There are an *infinite* number of time complexities, making algorithms difficult to compare.

With **Order**, we group algorithms with other algorithms of *similar* complexity.

- Algorithms with time complexities of n, 100n, etc. are **linear-time**
 - \circ Their time complexity grows linearly with n
- Algorithms with time complexities of n^2 , $0.01n^2$, etc. are quadratic-time
 - \circ Their time complexity grows quadratically with n

Every quadratic algorithm is worse than every linear algorithm given a large enough input!

Although n^2 and $0.01n^2$ are very different time complexities, we group them together because they both *grow* in a similar manner (quadratically).

Order

- $5n^2$ and $5n^2 + 100$ are *pure quadratic* functions as they do not contain a linear term
- $0.1n^2 + n + 100$ is a *complete quadratic* function since it contains a linear term, n
 - \circ **Note**: even though we multiply n^2 by 0.1, this term will still eventually dominate since quadratic terms grow much faster than linear ones:

n	$0.1n^{2}$	$0.1n^2 + n + 100$
10	10	120
20	40	160
50	250	400
100	1,000	1,200
1,000	100,000	101,100

For smaller inputs (10, 20, 50...) $0.1n^2 + n + 100$ is much less efficient than $0.1n^2$.

However, once the input size reaches 100 and above, the impact *n* and 100 have on performance are negligible.

Complexity Classes

The term that eventually dominates is the one we are interested in.

- In any function, we can throw away lower-order terms:
 - i.e. $0.1n^3 + 10n^2 + 5n + 25$ is a *complete cubic* function. We throw away $10n^2$, 5n, and 25, as they are each lower-order than $0.1n^3$. As n grows, $0.1n^3$ will eventually dominate the others.
- When a function is cubic, we say that it is in the complexity class $\Theta(n^3)$
 - We also say the function is "order n^3 "

Complexity Classes

Common complexity classes, from most efficient to least efficient $\Theta(1)$ $\Theta(\lg n)$ $\Theta(n)$ $\Theta(n \lg n)$ $\Theta(n^2)$ $\Theta(n^3)$ $\Theta(2^n)$ $\Theta(n!)$

If we know a function's complexity class, we know that it is more efficient than those to its right in this list and less efficient than those to its left.

Example:

As *n* grows, any function that is $\Theta(n \lg n)$ is more efficient than any function that is $\Theta(n^2)$ and less efficient than any function that is $\Theta(n)$, etc.

Complexity Classes

This chart displays that rate at which functions within common complexity classes *grow* based on input size

Complexity Class Example

What complexity class does the following function belong in?

$$f(x) = n + n^2 + 2^n + n^4$$

Complexity Class Example

What complexity class does the following function belong in?

$$f(x) = n + n^2 + 2^n + n^4$$

- $\Theta(2^n)$, because 2^n eventually dominates the other terms.
 - We can throw out n, n^2 , and n^4 .
- While we will usually use this type of intuition to determine a function's complexity class, there is a more rigorous way to prove it.

- For a complexity function f(n), O(f(n)) is the set of all complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer N such that for all $n \ge N$: $g(n) \le c * f(n)$
- i.e.: for the complexity function n^2 , we can prove that another complexity function g(n) is in the set $O(n^2)$ if we can find a function we know to be in the set $O(n^2)$ that has the same performance or worse over time (the bigger n gets).
 - \circ c is a constant, so multiplying it with a complexity function that is n^2 results in another function that is n^2
 - If we find **any** linear function that is always as good as or worse than g(n) over time, then we say $g(n) \subseteq O(n)$. We can also say that g(n) is "big O of n"

Let's determine the big O of $n^2 + 10n$

- We intuitively know it's $O(n^2)$, but we can prove it
- We need to find a function that is $\Theta(n^2)$ and pick values for c and N. When this function is multiplied by c, it must always bigger than $n^2 + 10n$ once n reaches size N.
- What's a function we know for certain is $\Theta(n^2)$?

Let's determine the big O of $n^2 + 10n$

- We intuitively know it's $O(n^2)$, but we can prove it
- We need to find a function that is $\Theta(n^2)$ and pick values for c and N. When this function is multiplied by c, it must always bigger than $n^2 + 10n$ once n reaches size N.
- What's a function we know for certain is $\Theta(n^2)$?
 - \circ n^2 (for obvious reasons)!

Therefore, we have $n^2 + 10n \le cn^2$ when $n \ge N$

• To prove $n^2 + 10n$ is $O(n^2)$, we need to determine values for c and N.

An easy way to do this:

• For what value of n does n^2 start to dominate 10n (so we can ignore that term)?

Let's determine the big O of $n^2 + 10n$

- We intuitively know it's $O(n^2)$, but we can prove it
- We need to find a function that is $\Theta(n^2)$ and pick values for c and N. When this function is multiplied by c, it must always bigger than $n^2 + 10n$ once n reaches size N.
- What's a function we know for certain is $\Theta(n^2)$?
 - \circ n^2 (for obvious reasons)!

Therefore, we have $n^2 + 10n \le cn^2$ when $n \ge N$

• To prove $n^2 + 10n$ is $O(n^2)$, we need to determine values for c and N.

An easy way to do this: For what value of *n* does n^2 start to dominate 10n? n = 10

$$10^2 + 10 \times 10 \le c10^2$$
$$200 \le 100c$$

$$2 \le c$$
, so we can pick $c = 2$

Picking c = 2 and N = 10 proves $n^2 + 10n \in O(n^2)$

- i.e. $2n^2$ will always be worse than $n^2 + 10n$ once $n \ge 10$.
- This is our goal in determining *Big O*.

Notice that g(n) can initially be larger than cf(n), but once $n \ge N$, g(n) is always less than cf(n)

Big O puts an upper bound on a function.

Big O Examples

- Show that $5n^2 \subseteq O(n^2)$
 - Pick a constant and a value N such that $5n^2 \le cn^2$ when $n \ge N$
 - This is easy because there is only one term!
 - i.e. since $5n^2 = 5n^2$, $5n^2$ is always $\leq 5n^2$. Hence, we can pick 0 for N and 5 for C
 - $5n^2 \le 5n^2$ for $n \ge 0$
- Show that $[n(n-1)]/2 \subseteq O(n^2)$
 - (n(n-1)) / 2 $\leq [n(n)] / 2$ $= \frac{1}{2}n^{2}$
- Now that we have a single term, we simply pick 0 for N and ½ for C:
 - $\frac{1}{2}n^2 < \frac{1}{2}n^2$ for n > 0

Big O Examples

Note: There are not unique values for *c* and N that show a function to be in a certain complexity class.

- We previously proved $n^2 + 10n \in O(n^2)$ using c = 2 and N = 10
- However, we could use different constants:

$$0 n^2 + 10n$$

$$\leq n^2 + 10n^2$$

$$= 11n^2$$

 $n^2 + 10n < 11n^2$ for n > 0. This time we used c = 11 and N = 0

Big O Examples

Note: Although $n \in O(n)$, it is also $\in O(n^2)$

- A complexity function doesn't need a quadratic term to be $O(n^2)$.
 - It only needs to eventually lie beneath some quadratic function on a graph.
- Therefore, any complexity function can be placed in a higher big O than the lowest big O it belongs in.
- Example: $n \in O(n^2)$
 - o $n \le 1 \times n^2$ with c = 1 and N = 1
- It is usually *not* useful to place a function into a higher Big O. We want to keep it as tight as possible. $n \in O(n)$ is much more useful.

Omega

- For a complexity function f(n), $\Omega(f(n))$ is the set of all complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer N such that for all $n \ge N$: $g(n) \ge c * f(n)$
- Just as Big O shows an *upper bound* on a function, Omega shows a *lower bound*.

For example

If we can find **some** cubic function that is always as good as or better than g(n) over time, then $g(n) \subseteq \Omega(n^3)$

Omega Example

Show that $n^2 + 10n \subseteq \Omega(n^2)$

- $n^2 + 10n \ge n^2$
 - o n^2 is a quadratic function that is always better than $n^2 + 10n$ when $n \ge 0$.
 - Therefore, picking c = 1 and N = 0 proves $n^2 + 10n \in \Omega(n^2)$

Theta

Earlier we discussed an intuitive technique for determining the *order* of a function. The more rigorous definition is:

- For a given complexity function f(n), $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$
- In other words, all functions that are **both** big O and omega of f(n) are order f(n).

Since we have proven

- $n^2 + 10n \in \Omega(n^2)$ and
- $n^2 + 10n \in O(n^2)$

we know that

• $n^2 + 10n \subseteq \Theta(n^2)$

In general, order is what we will be determining most often in this class.

Suppose a sorting algorithm has a complexity $(n \lg n)$

• If it takes 100 units of time for a list of length 64 to be sorted, how long will it take for a list of length 512 to be sorted?

 $64 \lg 64 : 100 \text{ units} = 512 \lg 512 : x \text{ units}$

•
$$64 \times 6 / 100 = 512 \times 9 / x$$

 $x(64 \times 6 / 100) = 512 \times 9$
 $x = (512 \times 9 \times 100) / (64 \times 6) = 1200 \text{ units}$

When given two functions, we can determine if they are in the same complexity class by seeing if they grow at about the same rate with n.

• If both functions can be multiplied by a constant that will cause it to always be larger than the other function, regardless of the size of *n*, then they are in the same complexity class.

Are n^23^n and n^32^n in the same complexity class?

Are n^23^n and n^32^n in the same complexity class?

- Throw away n^2 and n^3 as they are lesser terms. We are left with:
 - \circ 3ⁿ and 2ⁿ
 - Are they in the same complexity class?

Are n^23^n and n^32^n in the same complexity class?

- Throw away n^2 and n^3 as they are lesser terms. We are left with:
 - \circ 3ⁿ and 2ⁿ
 - Are they in the same complexity class? **No!**
 - \blacksquare 3ⁿ grows much faster than 2ⁿ.
 - There is no constant that we could multiply 2^n by to guarantee it will always be greater than 3^n .

Are 2^n and 2^{n+2} in the same complexity class?

Are n^23^n and n^32^n in the same complexity class?

- Throw away n^2 and n^3 as they are lesser terms. We are left with:
 - \circ 3ⁿ and 2ⁿ
 - Are they in the same complexity class? **No!**
 - \blacksquare 3ⁿ grows much faster than 2ⁿ.
 - There is no constant that we could multiply 2^n by to guarantee it will always be greater than 3^n .

Are 2^n and 2^{n+2} in the same complexity class?

- $2^{n+2} = 2^2 \times 2^n$
- We are left with 2^n and $2^2 \times 2^n$
- Throw away the constant (2^2) and both sides are 2^n .
- Therefore, they are in the same complexity class!

Order Wrap-Up

- While order is important in algorithm analysis, it is not the *only* important factor.
- Time complexity provides more info overall.
- Imagine two algorithms, *a* and *b*:
 - \circ a has a time complexity of 100n and b a time complexity of $0.01n^2$
 - Although $b \in \Theta(n^2)$ and $a \in \Theta(n)$, it will take a very large n for b to perform worse than a.
 - To determine how large, we find what n causes $0.01n^2 > 100n$ to be true.
 - Divide both sides by 0.01n. We get n > 10,000
 - \circ If *n* will always be less than 10,000, we should use algorithm *b*!
- While this example is extreme, it's still important to keep this principle in mind.

Order Wrap-Up

Although we will often rigorously prove an algorithm's order, there are some common-sense rules of thumb to determine order.

- If the input is traversed one time, it's most likely $\Theta(n)$
- If the input is traversed in two nested loops, it's likely $\Theta(n^2)$
- If the input is traversed in three nested loops, it's likely $\Theta(n^3)$
- If the input is cut in half each iteration, it's likely $\Theta(\lg n)$
- If the input is traversed one time, and inside that loop, the input is cut in half each iteration, it's likely $\Theta(n \lg n)$
- If our algorithm returns the result of two recursive calls, where the input is *not* cut in half but rather decremented by one each iteration, it's likely $\Theta(2^n)$

In-Class Exercise

1.
$$f(x) = 3n^2 + 10n \lg n + 1000n + 4 \lg n + 9999$$
 is in which complexity class? $\Theta(\lg n), \Theta(n^2 \lg n), \Theta(n), \Theta(n \lg n), \Theta(n^2)$

- 2. Determine whether the following are in the same complexity class:
 - a. $2^{\lg n}$ and n
 - b. $n^{1/2}$ and $(\lg n)^2$
 - c. (n-1)! and (n)!

3. Prove that $6n^2 + 20n \in O(n^2)$