

CAI 4104/6108 — Machine Learning Engineering: Logistic Regression & SVM

Prof. Vincent Bindschaedler

Spring 2024

Reminder: Supervised Learning

Classification

- Task: predict the corresponding label
- Different types:
 - Binary classification: there are only two classes (0,1; +,-, etc.)
 - Multiclass: more than two classes
 - Multi-label: each instance can belong to more than one class
 - One-class: there is only one class, we want to distinguish it from everything else

Regression

- Task: predict the corresponding value (typically a real number) or target
 - * E.g.: you want to predict a person's future income based on their high school GPA

Sequence-to-sequence, similarity learning/metric learning, learning to rank, etc.

Reminder: Linear Regression

Dataset

- Matrix **X** $(n \times m)$ and the target vector **y** $(n \times 1)$
 - * Let x_i be the feature vector for example i and $y_i \in \mathbb{R}$ is the corresponding target/value
- Prediction task:
 - ullet Given a feature vector $oldsymbol{x}$, predict the target/value $y \in \mathbb{R}$ as accurately as possible
- Linear Regression:
 - The model is: $h_{\theta}(x) = h_{w,b}(x) = w x + b$
 - The prediction is: $y = h_{\theta}(x)$
- Training:
 - We want to minimize the Mean Squared Error (MSE) [this is called OLS]
 - * $MSE(w,b) := MSE(h_{w,b}, X, y) = 1/n \sum_{i} [h_{w,b}(x_i) y_i]^2 = 1/n \sum_{i} [w x_i + b y_i]^2$
 - Optimal parameters: $\theta^* = (w^*, b^*) = \operatorname{argmin}_{w,b} \operatorname{MSE}(w,b)$
 - Remark: MSE is the expected squared error loss
 - * Squared Error Loss (L₂ loss): $L(\theta) = [y h_{\theta}(x)]^2$

Reminder: Polynomial Regression

- What if the data is non-linear?
 - Then a linear model won't fit (it will have high bias)
- Can we still use linear regression?
 - Yes, we can fit a linear model on non-linear data!
 - How? Add features that can capture non-linearity!
 - Example: suppose we have a single feature
 - * The linear regression model is: $h_{\theta}(x) = wx + b$
 - # If we add x^2 as a feature, then the model is: $h_{\theta}(x) = w_1 x + w_2 x^2 + b$

Polynomial regression

- If we have several features, say x, y, z, then we can consider all combinations of features up to some degree. That is:
 - * x^3 , y^3 , z^3 , x^2y , x^2z , y^2x , y^2z , z^2x , z^2y , xyz (and x, y, z, 1)
- Q: If we have m features and want all combinations up to degree k, how many features do we get?
 - * m+k choose k: C(m+k, k) = (m+k)! / (m! k!)

Reminder: Bias and Variance

- Bias
 - Error due to incorrect assumptions in the model
 - Inability to capture the true relationship
- Variance
 - Sensitivity to small variations in the training data
- Ideally, we want: low bias and low variance
 - Strategies to lower bias:
 - Increase model complexity
 - Use more features
 - Strategies to lower variance:
 - Reduce model complexity
 - Use more training data

Reminder: Bias-Variance Tradeoff

- Generalization error (aka out-of-sample error or risk)
 - Prediction error on unseen data
 - Related to overfitting
 - If the model overfits, then the generalization error will be large
- Bias-Variance Tradeoff
 - Generalization error: bias² + variance + irreducible error
 - For more details:
 - Geman et al. "Neural networks and the bias/variance dilemma." Neural computation (1992)
 - Kohavi et al. "Bias plus variance decomposition for zero-one loss functions." ICML, 1996.
 - Why is it a tradeoff?
 - Increasing model complexity => lower bias
 - Decreasing model complexity => lower variance
 - Note: there has been some debate of whether this applies to neural networks
 - E.g.: see Neal et al. "A modern take on the bias-variance tradeoff in neural networks." arXiv, 2018.

Overfitting & Regularization

- Most models can be regularized
 - Typically tuned through a regularization constant (hyperparameter)
 - Effect: lower variance at the cost of higher bias
- Regularization reduces model complexity
 - It decreases the degrees of freedom of the model
- If your model is overfitted
 - Regularization is (one of) the first things you should try
- How?
 - Regularization linear regression: Minimize $MSE(w,b) + \lambda ||w||^2$
 - * In other words: we are adding a penalty term with regularization constant λ to the loss function

Types of Regularization

- Suppose our loss function is $L(\theta)$ and let λ be our regularization constant
- L₁-regularization: minimize $J(\theta) = L(\theta) + \lambda ||w||_1 = L(\theta) + \lambda \sum_i |w_i|$
 - Effect: encourage sparsity in the weights (i.e., weights of least important features will be close 0)
 - In the context of linear regression, this is also called Least Absolute Selection and Shrinkage Operator (LASSO) regression
- L₂-regularization: minimize $J(\theta) = L(\theta) + \lambda ||w||_2 = L(\theta) + \lambda \sum_i |w_i|^2$
 - Effect: encourage minimization of the weights (i.e., weights will be close to 0)
 - In the context of linear regression, this is also called Tikhonov regularization or Ridge regression
- Elastic net regularization: minimize $J(\theta) = L(\theta) + \lambda_1 ||w||_1 + \lambda_2 ||w||_2$
 - If we let $\alpha = \lambda_1/(\lambda_1 + \lambda_2)$, then if $\alpha = 0$, we get L₂ regularization; if $\alpha = 1$, we get L₁ regularization
- L₀-regularization: minimize $J(\theta) = L(\theta) + \lambda ||w||_0$
 - Effect: encourage as few non-zero entries in the weights vector as possible
 - Note: $||\boldsymbol{w}||_0 = \sum_i 1(w_i) \neq 0$. In other words: $||\boldsymbol{w}||_0$ is the number of non-zero weights

(More) Types of Regularization

- Suppose our loss function is $L(\theta)$ and let λ be our regularization constant
- L₁-regularization: minimize $J(\theta) = L(\theta) + \lambda ||w||_1 = L(\theta) + \lambda \sum_i |w_i|$
- L₂-regularization: minimize $J(\theta) = L(\theta) + \lambda ||w||_2 = L(\theta) + \lambda \sum_i |w_i|^2$
- Elastic net regularization: minimize $J(\theta) = L(\theta) + \lambda_1 ||w||_1 + \lambda_2 ||w||_2$
- L₀-regularization: minimize $J(\theta) = L(\theta) + \lambda ||w||_0$
- Best practice:
 - Rescale the data (min-max normalize or standardize) before regularizing! Why?
- There are other approaches for regularization. For example:
 - Early stopping: stop when the validation error starts increasing
 - Dilution (aka Dropout) for neural networks

Logistic Regression

- Can we do binary classification with a linear regression model?
 - Or phrased differently: what does binary classification with a simple linear model look like?
- Logistic regression:
 - Setup: Let x_i be the feature vector for example i and $y_i \in \{0,1\}$ is the corresponding label
 - Note: it has regression in the name, but it is a classification model!
 - Idea: recast predicting the class label as predicting the probability of the class label
 - * Informally: use a linear model to predict a score z_i for each example x_i such that the larger z_i is, the more likely it is that the label is 1 (or the smaller z_i is the more likely it is the label is 0)
 - The model is: $h_{\theta}(x) = h_{w,b}(x) = 1 / [1 + \exp\{-(w x + b)\}]$ [$h_{\theta}(x) = 1/(1 + e^{-z})$ where z = w x + b]
 - * The function $f(z) = 1 / (1 + e^{-z})$ is a link function; it is called the logistic function or sigmoid function
 - * The logistic function is the inverse of the logit function: logit(p) = log [p/(1-p)]
 - Prediction: if $p \ge 0.5$, we predict 1 otherwise we predict 0. Here: $p = h_{\theta}(x)$
 - * We can interpret $p = h_{\theta}(x)$ as the probability of label being 1 (and 1-p as the probability of label being 0)

Logistic Regression

Logistic regression:

- Setup: Let x_i be the feature vector for example i and $y_i \in \{0,1\}$ is the corresponding label
- The model is: $h_{\theta}(x) = h_{w,b}(x) = 1 / [1 + \exp\{-(w x + b)\}]$ [$h_{\theta}(x) = 1/(1 + e^{-z})$ where z = w x + b]
 - * The function $f(z) = 1 / (1 + e^{-z})$ is a link function; it is called the logistic function or sigmoid function
 - * The logistic function is the inverse of the logit function: logit(p) = log [p/(1-p)]
- Prediction: Let $p = h_{\theta}(x)$
 - \clubsuit If *p* ≥ 0.5, we predict 1 otherwise we predict 0
 - * We can interpret $p = h_{\theta}(x)$ as the probability of label being 1 (and 1-p as the probability of label being 0)

How do we train the model?

- How do we find optimal parameters w*, b*?
 - floor For examples with label 1, the probability p should be high
 - ullet For examples with label 0, the probability p should be low

Logistic Regression

Logistic regression:

- Setup: Let x_i be the feature vector for example i and $y_i \in \{0,1\}$ is the corresponding label
- The model is: $h_{\theta}(x) = h_{w,b}(x) = 1 / [1 + \exp\{-(w x + b)\}]$ [$h_{\theta}(x) = 1/(1 + e^{-z})$ where z = w x + b]
- Prediction: Let $p = h_{\theta}(x)$
 - * If $p \ge 0.5$, we predict 1 otherwise we predict 0
- Training: how do we find optimal parameters w^* , b^* ?
 - $L(\theta) = -1/n \sum_i y_i \log(p_i) + (1-y_i) \log(1-p_i)$ where $p_i = h_{\theta}(x_i)$
 - * This is called the *logistic loss*, *binary cross-entropy* and also *log loss*
 - How do we minimize $L(\theta)$?
 - * There is no closed form!
 - * But we can use optimization techniques like gradient descent

Logistic Regression & Multiclass

- What if there c>2 classes? Can we use logistic regression?
 - Reminder: we can transform multiclass classification into a binary classification
 - * One-vs-rest (OvR): Train c binary classifiers. f_i to classify class i versus not i
 - * One-vs-one (OvO): Train c(c-1)/2 binary classifiers. $f_{i,j}$ to classify class i versus class j
- Alternative: (sometimes called softmax regression)
 - Idea: Train c classifiers each to predict a logit score z_i for each class i, then use softmax to combine into a probability distribution over the c labels
 - How? Train c distinct linear functions (each with their own weights and bias terms)
 - * So the parameters are W, b where W is a $c \times m$ matrix and b is a $c \times 1$ vector. $W^{(i)}$ is the ith row of the matrix containing weights for class i
 - Softmax: $f(z_j) = \frac{\exp(\frac{z_j}{T})}{\sum_{i=1}^c \exp(\frac{z_i}{T})}$ Here: T > 0 is called the *temperature*, we often set T = 1
 - * The softmax function is also called *normalized exponential*
 - Loss function: $L(\theta) = -1/n \sum_{i} \sum_{j} y_i^{(j)} \log(p_i^{(j)})$ called cross-entropy loss

Understanding Softmax

Softmax:
$$f(z_j) = \frac{\exp(\frac{z_j}{T})}{\sum_{i=1}^c \exp(\frac{z_i}{T})}$$

- T > 0 is called the *temperature*, we often set T=1 (e.g., for logistic regression)
 - * T controls the shape of the probability distribution
 - * $T\rightarrow\infty$ means uniform distribution; $T\rightarrow0$ means 1 for class with max logit score (0 otherwise)
- **Example:** suppose z = [1.78, 5.7, 4.42, -2.34, 0.9]

Reminder: Avocado Ripeness & SVM

- Prediction task:
 - Given the features (i.e., color, softness, texture), predict ripe (+1) or unripe/overripe (0)
- Dataset
 - Matrix X and the labels vector y
- Let's use a Support Vector Machine (SVM) model:
 - We need to relabel unripe/overripe as -1, so the labels are +1 and -1
 - The SVM is represented as the hyperplane w x b = 0,
 - $m{ ilde{w}}$ $m{x}$ is a feature vector and $m{w}$ and b are the model's parameters
 - Define $f_{\theta}(x) = \operatorname{sign}(w \ x b)$, where $\theta = (w, b)$
 - If $w x b \ge 0$, then we predict +1 (ripe)
 - Otherwise, we predict -1 (unripe/overripe)
 - Note: w x is the dot-product of w and x
 - $w x = w_1x_1 + w_2x_2 + ... + w_mx_m$

Hard-Margin SVM

Dataset

- Matrix X and the labels vector y
- Let x_i be the feature vector for example i and y_i be the corresponding label

Training the SVM

- We need to learn the optimal parameter values w^* , b^* given our dataset
- We want the hyperplane that best separates positive from negative examples
 - The one with the largest distance (called "margin") between the closest examples of each class (called support vectors)
 - * The margin width is 2 / ||w|| so maximizing the margin means minimizing ||w||
- Optimization with constraints: we want: $w x_i b \ge +1$ if $y_i = +1$ and $w x_i b \le -1$ if $y_i = -1$
- Minimize ||w|| subject to: $y_i(w x_i b) \ge 1$ for i=1,2,...,n
 - * Equivalent to: $\min 1/2 ||w||^2$ such that $y_i(w x_i b) \ge 1$ for i=1,2,...,n
 - Can be solved using quadratic programming optimization!
- Note: this is the primal problem, we could instead solve the corresponding dual problem

Soft-Margin SVM

Dataset

- Matrix X and the labels vector y
- Let x_i be the feature vector for example i and y_i be the corresponding label
- What if the data is not linearly separable?
 - This can happen if there is noise in the data...
 - We need to relax our constraints that: $y_i(\boldsymbol{w} \, \boldsymbol{x_i} b) \ge 1$ for i=1,2,...,n
 - Define the hinge loss: $max(0, 1 y_i(\boldsymbol{w} \boldsymbol{x_i} b))$
 - * If x_i is on the correct side of the decision boundary then the loss is 0, otherwise loss is proportional to distance from decision boundary
 - Minimize the cost function: $||\boldsymbol{w}||^2 + C \sum_i \max(0, 1 y_i(\boldsymbol{w} \boldsymbol{x_i} b))$

- \bullet Here C is a regularization constant (hyperparameter) that controls the trade-off
- * $C{ o}\infty$ must separate the data! $C{ o}0$ (extreme regularization) ignore data!
- Note: the support vectors will be the points that are wrongly classified or within the margin

Non Linearity?

- What do we do if the data is inherently non linear?
 - What if add features of features?
 - * For example: add x_1^2 , x_1 , x_2 , x_2^3 , $\exp(x_1)$, etc
 - Note: this increases the risk of overfitting
 - Idea:
 - Transform our dataset to a higher dimensional space
 - Find a hyperplane to separate the data in this higher dimensional space!

The Kernel Trick

- Wait! It is (computationally) expensive to transform our data to higher dimensional space
 - Can we do this transformation implicitly?
 - In other words: can we only reflect the transformation only in our cost function for optimization?
 - Yes! This is called the kernel trick!
 - Suppose we have a mapping Φ such that $\Phi(x)$ is in the higher dimensional space
 - * For example: if $x=(x_1,x_2)$ we can take: $\Phi(x)=(x_1^2, x_1 x_2, x_2^2)$
 - In the formulation of the *dual problem*, the only term involving feature vectors is their dot-product $x_i x_j$
 - * So we define kernels in terms of x_i , x_j . That is: $K(x_i, x_j) = \Phi(x_i) \Phi(x_j)$ (dot-product)
 - Popular kernels
 - $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = (\boldsymbol{x}_i \boldsymbol{x}_j)^2$
 - $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = (\boldsymbol{x}_i \boldsymbol{x}_j)^k$
 - * $K(x_i, x_j) = \exp(-||x_i x_j||^2/(2\sigma^2))$
 - * $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tanh(\gamma \boldsymbol{x}_i \boldsymbol{x}_j + r)$

- ("quadratic kernel")
- ("polynomial kernel" of degree exactly k)
- ("RBF kernel") [feature space has infinite dimensions]
- ("sigmoid kernel")
- * Note: σ , γ , and r are hyperparameters. For RBF we can set $\gamma = 1/(2\sigma^2)$ to be consistent with Scikit-learn!

SVM & Quadratic Programming

Hard-margin linear SVM:

 $\min_{\boldsymbol{w},b} \frac{1}{2} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{w}$ subject to: $u_i(\boldsymbol{w} \ \boldsymbol{x}_i - b) \geq 1$

Note: $\mathbf{w}^{\mathsf{T}}\mathbf{w} = ||\mathbf{w}||^2$ We minimize $\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$ instead of $||\mathbf{w}||$ because it has a nice derivative (whereas $||\mathbf{w}||$ is not differentiable at $\mathbf{w} = 0$).

subject to: $y_i(\boldsymbol{w} | \boldsymbol{x_i} - b) \ge 1$ for i=1,2,...,n

Soft-margin linear SVM:

 $\min_{\boldsymbol{w},b,z} \frac{1}{2} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{w} + C \sum_{i} z_{i}$ subject to: $y_{i}(\boldsymbol{w} \ \boldsymbol{x}_{i} - b) \geq 1 - z_{i}$ for i = 1, 2, ..., n

Regularization hyperparameter. It defines the **tradeoff** between maximizing the margin and minimizing margin violations

 $z_i \ge 0$ is the "*slack*" variable for example i. The larger z_i the more example i can violate the margin

We want to minimize the overall

- Both are convex and quadratic optimization problems (with linear constraints)
 - We can use quadratic programming (QP) solvers

SVM & Primal - Dual Problems

- For the dual problem to have the same solution as the primal problem
- Dual linear SVM problem:

$$\min_{\boldsymbol{\alpha}} \frac{1}{2} \sum_{i} \sum_{j} \boldsymbol{\alpha}_{i} \boldsymbol{\alpha}_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j} - \sum_{i} \boldsymbol{\alpha}_{i}$$
subject to: $\boldsymbol{\alpha}_{i} \geq 0$ for $i=1,2,...,n$ and $\sum_{i} \boldsymbol{\alpha}_{i} \boldsymbol{\alpha}_{j} y_{i} = 0$

- We solve this problem (e.g., using a QP solver) to find the best vector α^*
 - Then we transform the dual solution into the primal solution (i.e., we compute w^*, b^*)

$$\boldsymbol{w^*} = \sum_i \boldsymbol{\alpha_i}^* y_i \boldsymbol{x_i}$$

$$b^* = \underbrace{n_s}^{-1} \sum_{i:\alpha(i)^* > 0} (y_i - \boldsymbol{w^{*T}} \boldsymbol{x_i})$$

 n_s is the number of support vectors. If $\alpha_i^* > 0$ then example i is a support vector.

Kernel Trick: Why Does it Work?

- Mercer's Theorem:
 - If a function $K(x_i, x_j)$ satisfies some conditions then there exists some mapping Φ to possibly much higher dimension such that $K(x_i, x_j) = \Phi(x_i)^T \Phi(x_j)$
- Why does this matter?
 - ullet The dual formulation depends only (for the data) on the dot-product: $x_i^T x_j$

$$\min_{\boldsymbol{\alpha}} \frac{1}{2} \sum_{i} \sum_{j} \boldsymbol{\alpha}_{i} \boldsymbol{\alpha}_{j} y_{i} y_{j} \boldsymbol{x_{i}}^{T} \boldsymbol{x_{j}} - \sum_{i} \boldsymbol{\alpha}_{i}$$
 such that: $\boldsymbol{\alpha}_{i} \geq 0$ for $i=1,2,...,n$ and $\sum_{i} \boldsymbol{\alpha}_{i} \boldsymbol{\alpha}_{i} y_{i} = 0$

- So we can replace that term by $K(\boldsymbol{x}_i, \boldsymbol{x}_j)$ since $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \Phi(\boldsymbol{x}_i)^T \Phi(\boldsymbol{x}_j)$
- ullet Observe: we do not need to know how to compute Φ
 - In some cases we cannot even compute it
 - * For example: RBF kernel

 ↑ maps points to infinite-dimensional space

 * The space is a space in the space in the space is a space in the space in the space is a space in the space in the space in the space is a space in the sp

Support Vector Machines: Takeaways

- SVM is an important class of models to know about
 - It can be used to perform both linear and non-linear classification (using kernels)
 - It can be used for regression
 - It can even be used for outlier detection
- SVM is well-suited to small datasets (i.e., < 100k instances)</p>
 - In practice it works well even if the dataset is very complex, or if it has lots of features
 - Even if the number of features far exceeds the number of instances
 - But, training can be very slow!
 - Especially if you have lots of examples or lots of features

Next Time

Friday (2/2): Exercise

- Upcoming:
 - Homework 1 is due 2/2 by 11:59pm