Einführung in die Wahrscheinlichkeitstheorie Ubungsserie 2

Name: Maurice Wenig

Aufgabe 3:

- (A) $\binom{13}{9}$
- $(U) 5^9$
- (a) (A) 1
 - (U) 5!
- (b) (A) $\binom{9}{5}$
 - (U) 9^{5}

Aufgabe 5:

(a)
$$\sum_{k=0}^{n} {n \choose k} \cdot 1^k \cdot 1^{n-k} - (n+1) = (1+1)^n - (n+1) = \underline{2^n - n - 1}$$

(b)
$$\sum_{k=0}^{n} 2^{-k+1} \binom{n}{k} = 2 \cdot \sum_{k=0}^{n} \binom{n}{k} \cdot \left(\frac{1}{2}\right)^k = \underbrace{2(1+\frac{1}{2})^n}_{k=0}$$

(c)
$$\sum_{n=0}^{5} {12 \choose k} {13 \choose 5-k} \stackrel{\text{Vandermonde}}{=} \underbrace{25 \choose 5}$$

(d) Hilfssatz:
$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n}{k} \cdot \frac{(n-1)!}{(k-1)! \cdot (n-k)} = \frac{n}{k} \cdot \binom{n-1}{k-1}$$
$$\sum_{k=1}^{n} k \binom{n}{k} \stackrel{\text{Hilfssatz}}{=} n \cdot \sum_{k=1}^{n} \binom{n-1}{k-1} \stackrel{\text{shift}}{=} n \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} = \underline{n \cdot 2^{n-1}}$$

(e)
$$\sum_{n=10}^{19} {19 \choose k} = \sum_{n=0}^{19} {19 \choose k} - \sum_{n=0}^{9} {19 \choose k} \stackrel{\text{Sym.}}{=} \sum_{n=0}^{19} {19 \choose k} - \sum_{n=10}^{19} {19 \choose k} = \frac{1}{2} \sum_{n=0}^{19} {19 \choose k} = \underline{2^{18}}$$

Aufgabe 6:

Addigate 6:
$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!}{k! \cdot (n-k)!} + \frac{n!}{(k-1)! \cdot (n-k+1)!} = \frac{n! \cdot (n-k+1)}{k! \cdot (n-k+1)!} + \frac{n! \cdot k}{k! \cdot (n-k+1)!} = \frac{n! \cdot (n+1)}{k! \cdot (n-k+1)!} = \underbrace{\binom{n+1}{k}}$$