Naïve Discriminative Learning:

Theoretical and Experimental Observations

Stefan Evert¹ & Antti Arppe²

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany stefan.evert@fau.de

> ²University of Alberta, Edmonton, Canada arppe@ualberta.ca

QITL-6, Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015 1 / 53

Naïve Discriminative Learning

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 2 / 53

Naïve Discriminative Learning

Objectives

- Explain the mathematical foundations of Naïve Discriminative Learning (NDL) in one place and in a consistent way
- Highlight the theoretical similarities of NDL with linear/logistic regression and the single-layer perceptron
- Present some empirical simulations of stochastic NDL learners, in light of the theoretical insights

Tübingen, 6 Nov 2015 3 / 53 Tübingen, 6 Nov 2015 4 / 53

Naïve Discriminative Learning

Naïve Discriminative Learning

• Baayen (2011); Baayen et al. (2011)

- Incremental learning equations for direct associations between cues and outcomes (Rescorla and Wagner 1972)
- Equilibrium conditions (Danks 2003)
- Implementation as R package ndl (Arppe et al. 2014)

Naive: cue-outcome associations estimated separately for each outcome (this independence assumption is

similar to a naive Bayesian classifier)

Discriminative: cues predict outcomes based on total activation

level = sum of direct cue-outcome associations

Learning: incremental learning of association strengths

Tübingen, 6 Nov 2015

Naïve Discriminative Learning

Danks (2003) equilibrium conditions

- Presume an ideal stable "adult" state, where all cue-outcome associations have been fully learnt – further data points should then have no impact on the cue-outcome associations
- Provide a convenient short-cut to calculating the final cue-outcome association weights resulting from incremental learning, using relatively simple matrix algebra
- Most learning parameters of the Rescorla-Wagner equations drop out of the Danks equilibrium equation
- Circumvent the problem that a simulation of an R-W learner does usually not converge to a stable state unless the learning rate is gradually decreased

Naïve Discriminative Learning

The Rescorla-Wagner equations (1972)

Represent incremental associative learning and subsequent on-going adjustments to an accumulating body of knowledge.

Changes in cue-outcome association strengths:

- No change if a cue is not present in the input
- Increased if the cue and outcome co-occur
- Decreased if the cue occurs without the outcome
- If outcome can already be predicted well (based on all input cues), adjustments become smaller

Only results of incremental adjustments to the cue-outcome associations are kept - no need for remembering the individual adjustments, however many there are.

Naïve Discriminative Learning

Traditional vs. linguistic applications of R-W

- Traditionally: simple controlled experiments on item-by-item learning, with only a handful of cues and perfect associations
- Natural language: full of choices among multiple possible alternatives - phones, words, or constructions - which are influenced by a large number of contextual factors, and which often show weak to moderate tendencies towards one or more of the alternatives rather than a single unambiguous decision
- These messy, complex types of problems are a key area of interest in modeling and understanding language use
- Application of R-W in the form of a Naïve Discriminative Learner to such linguistic classification problems is sucessful in practice and can throw new light on research questions

Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015

Naïve Discriminative Learning

Introduction

An example

Related work

- R-W vs. perceptron (Sutton and Barto 1981, p. 155f)
- R-W vs. least-squares regression (Stone 1986, p. 457)
- R-W vs. logistic regression (Gluck and Bower 1988, p. 234)
- R-W vs. neural networks (Dawson 2008)
- similarities are also mentioned by many other authors ...

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 9 / 53

Simple vs. complex settings – QITL-1 revisited

- Arppe and Järvikivi (2002, 2007)
- Person (FIRST PERSON SINGULAR or not) and Countability (COLLECTIVE or not) of AGENT/SUBJECT of Finnish verb synonym pair miettiä vs. pohtia 'think, ponder':

Forced-choice		Frequency	Acceptability		
Dispreferred	Preferred	(relative)	Unacceptable	Acceptable	
Ø	miettiä+SG1 pohtia+COLL	Frequent	Ø	miettiä+SG1 pohtiaä+COLL	
miettiä+COLL pohtia+SG1	Ø	Rare	miettiä+COLL	pohtia+SG1	

Outline

Introduction

- Naïve Discriminative Learning
- An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression

Insights

- Theoretical insights
- Empirical observations
- Conclusion

An example

QITL-1 through the lens of NDL

Tübingen, 6 Nov 2015 11 / 53

Tübingen, 6 Nov 2015

QITL-1 through the lens of QITL-6

(courtesy of Dagmar Divjak)

QITL-4 revisited - NDL vs. statistical classifiers

$\lambda_{prediction}$	$ au_{classification}$	accuracy
0.368	0.488	0.645
0.360	0.482	0.640
0.358	0.481	0.640
0.358	0.481	0.640
0.340	0.466	0.629
0.286	0.422	0.599
0.326	0.455	0.621
0.346	0.471	0.632
	0.368 0.360 0.358 0.358 0.340 0.286	0.368 0.488 0.360 0.482 0.358 0.481 0.340 0.466 0.286 0.422 0.326 0.455

Table: Classification diagnostics for models fitted to the Finnish data set (n = 3404).

Simple vs. complex settings – QITL-2 revisited

Tübingen, 6 Nov 2015 14 / 53

The Rescorla-Wagner equations

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Tübingen, 6 Nov 2015 15 / 53 Tübingen, 6 Nov 2015 16 / 53 S. Evert & A. Arppe

The Rescorla-Wagner equations

- Goal of naïve discriminative learner: predict an outcome O based on presence or absence of a set of cues C_1, \ldots, C_n
- An event (c, o) is formally described by indicator variables

$$c_i = egin{cases} 1 & ext{if } C_i ext{ is present} \ 0 & ext{otherwise} \end{cases} \quad o = egin{cases} 1 & ext{if } O ext{ results} \ 0 & ext{otherwise} \end{cases}$$

• Given cue-outcome associations $\mathbf{v} = (V_1, \dots, V_n)$ of learner, the activation level of the outcome O is

$$\sum_{j=1}^{n} c_j V_j$$

• Associations $\mathbf{v}^{(t)}$ as well as cue and outcome indicators $(\mathbf{c}^{(t)}, o^{(t)})$ depend on time step t

Tübingen, 6 Nov 2015 18 / 53

The Rescorla-Wagner equations

The Widrow-Hoff rule

• The W-H rule (Widrow and Hoff 1960) is a widely-used simplification of the R-W equations:

$$\Delta V_{i} = \begin{cases} 0 & \text{if } c_{i} = 0 \\ \beta \left(1 - \sum_{j=1}^{n} c_{j} V_{j}\right) & \text{if } c_{i} = 1 \land o = 1 \\ \beta \left(0 - \sum_{j=1}^{n} c_{j} V_{j}\right) & \text{if } c_{i} = 1 \land o = 0 \end{cases}$$
$$= c_{i}\beta \left(o - \sum_{j=1}^{n} c_{j} V_{j}\right)$$

with parameters

target activation level for outcome O $\lambda = 1$

 $\alpha_i = 1$ salience of cue C_i

global learning rate for positive and $\beta_1 = \beta_2$ $=\beta>0$ negative events

Tübingen, 6 Nov 2015

The Rescorla-Wagner equations

 Rescorla and Wagner (1972) proposed the R-W equations for the change in associations given an event (\mathbf{c}, o) :

$$\Delta V_i = \begin{cases} 0 & \text{if } c_i = 0\\ \alpha_i \beta_1 \left(\lambda - \sum_{j=1}^n c_j V_j\right) & \text{if } c_i = 1 \land o = 1\\ \alpha_i \beta_2 \left(0 - \sum_{i=1}^n c_i V_i\right) & \text{if } c_i = 1 \land o = 0 \end{cases}$$

with parameters

 $\lambda > 0$ target activation level for outcome O

 $\alpha_i > 0$ salience of cue C;

 $\beta_1 > 0$ learning rate for positive ovents (o = 1)

learning rate for negative ovents (o = 0) $\beta_2 > 0$

The Rescorla-Wagner equations

A simple example: German noun plurals

t	word	o pl?	c ₁ -e	c ₂	c ₃	c ₄ umlaut	c ₅	c ₆
1	Bäume	1	1	0	0	1	0	1
2	Flasche	0	1	0	0	0	0	1
3	Baum	0	0	0	0	0	0	1
4	Gläser	1	0	0	0	1	0	1
5	Flaschen	1	0	1	0	0	0	1
6	Latte	0	1	0	0	0	1	1
7	Hütten	1	0	1	0	1	1	1
8	Glas	0	0	0	1	0	0	1
9	Bäume	1	1	0	0	1	0	1
10	Füße	1	1	0	0	1	0	1

The Rescorla-Wagner equations

	Μ	lat	hen

The Rescorla-Wagner equations

A simple example: German noun plurals

t 10	$\begin{array}{c c} \sum c_j V_j \\ .882 \end{array}$	<i>V</i> ₁ .077	V ₂ .217	<i>V</i> ₃ 070	.464	<i>V</i> ₅ −.038	<i>V</i> ₆ .340
Füße	1 0	1	0	0	1	0	1
	0	<i>C</i> ₁	C 2	C 3	C4	C 5	<i>C</i> ₆

The Rescorla-Wagner equations

A stochastic NDL learner

Effect of the learning rate β

A stochastic NDL learner

- A specific event sequence $(\mathbf{c}^{(t)}, o^{(t)})$ will only be encountered in controlled experiments
- For applications in corpus linguistics, it is more plausible to assume that events are randomly sampled from a population of event tokens $(\mathbf{c}^{(k)}, o^{(k)})$ for $k = 1, \dots, m$
 - event types listed repeatedly proportional to their frequency
- I.i.d. random variables $\mathbf{c}^{(t)} \sim \mathbf{c}$ and $o^{(t)} \sim o$
 - $lacktright{f c}$ distributions of ${f c}$ and o determined by population
- NDL can now be trained for arbitrary number of time steps, even if population is small (as in our example)
 - study asymptotic behaviour of learners
 - ► convergence → stable "adult" state of associations

Tübingen, 6 Nov 2015 22 / 53

The Rescorla-Wagner equations

A stochastic NDL learner

Effect of the learning rate β

Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015 23 / 53

Outline

- - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

The Danks equilibrium

Expected activation levels

$$\mathrm{E}[\Delta V_j^{(t)}] = \beta \cdot \left(\mathrm{Pr}(C_i, O) - \sum_{j=1}^n \mathrm{Pr}(C_i, C_j) \mathrm{E}[V_j^{(t)}] \right)$$

Expected activation levels

• Since we are interested in the general behaviour of a stochastic NDL, it makes sense to average over many individual learners to obtain expected associations $\mathrm{E}[V_i^{(t)}]$

$$\mathrm{E}[V_j^{(t+1)}] = \mathrm{E}[V_j^{(t)}] + \mathrm{E}[\Delta V_j^{(t)}]$$

$$\begin{split} \mathrm{E}\big[\Delta V_j^{(t)}\big] &= \mathrm{E}\left[c_i\beta\big(o - \sum_{j=1}^n c_j V_j^{(t)}\big)\right] \\ &= \beta \cdot \left(\Pr(C_i, O) - \sum_{j=1}^n \Pr(C_i, C_j) \mathrm{E}\big[V_j^{(t)}\big]\right) \end{split}$$

- ullet c_i and c_j are independent from $V_i^{(t)}$
- indicator variables: $E[c_i o] = Pr(C_i, O)$; $E[c_i c_i] = Pr(C_i, C_i)$

The Danks equilibrium

The Danks equilibrium

ullet If $\mathrm{E}[V_i^{(t)}]$ converges, the asymptote $V_i^* = \lim_{t o \infty} \mathrm{E}[V_i^{(t)}]$ must satisfy the Danks equilibrium conditions $E[\Delta V_i^*] = 0$, i.e.

$$\Pr(C_i,O) - \sum_{j=1}^n \Pr(C_i,C_j) V_j^* = 0 \quad \forall i$$

(Danks 2003, p. 113)

- Now there is a clear interpretation of the Danks equilibrium as the stable average associations reached by a community of stochastic learners with input from the same population
 - allows us to compute the "adult" state of NDL without carrying out a simulation of the learning process

Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015 27 / 53

The Danks equilibrium

The Danks equilibrium

The Danks equilibrium

Mathematics

The Danks equilibrium

Matrix notation: German noun plurals

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{z} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} .3 \\ .2 \\ .0 \\ .5 \\ .1 \\ .6 \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{z} \qquad \begin{bmatrix} .5 & .0 & .0 & .3 & .1 & .5 \\ .0 & .2 & .0 & .1 & .1 & .2 \\ .0 & .0 & .1 & .0 & .0 & .1 \\ .3 & .1 & .0 & .5 & .1 & .5 \\ .1 & .1 & .0 & .1 & .2 & .2 \\ .5 & .2 & .1 & .5 & .2 & 1 \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{X}$$

Matrix notation

$$\mathbf{X} = \begin{bmatrix} c_1^{(1)} & \cdots & c_n^{(1)} \\ c_1^{(2)} & \cdots & c_n^{(2)} \\ \vdots & & \vdots \\ c_1^{(m)} & \cdots & c_n^{(m)} \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} o^{(1)} \\ o^{(2)} \\ \vdots \\ o^{(m)} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} \Pr(C_1, O) \\ \vdots \\ \Pr(C_n, O) \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{z} \quad \begin{bmatrix} \Pr(C_1, C_1) & \cdots & \Pr(C_1, C_n) \\ \vdots & & \vdots \\ \Pr(C_n, C_1) & \cdots & \Pr(C_n, C_n) \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{X}$$

Danks equilibrium: $\mathbf{X}^T \mathbf{z} = \mathbf{X}^T \mathbf{X} \mathbf{w}^*$

Tübingen, 6 Nov 2015 29 / 53

NDL vs. the Perceptron vs. least-squares regression

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Tübingen, 6 Nov 2015 30 / 53

Tübingen, 6 Nov 2015 31 / 53

The single-layer perceptron (SLP)

SLP (Rosenblatt 1958) is most basic feed-forward neural network

- numeric inputs x_1, \ldots, x_n
- output activation h(y) based on weighted sum of inputs

$$y = \sum_{j=1}^{n} w_j x_j$$

- h = Heaviside step function intraditional SLP
- even simpler model: h(y) = y
- cost wrt. target output z:

$$E(\mathbf{w}, \mathbf{x}, z) = \left(z - \sum_{j=1}^{n} w_j x_j\right)^2$$

inputs weights

Tübingen, 6 Nov 2015 32 / 53

NDL vs. the Perceptron vs. least-squares regression

Batch training

- Neural networks often use batch training, where all training data are considered at once instead of one item at a time
- The corresponding batch training cost is

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} E(\mathbf{w}, \mathbf{x}^{(k)}, z^{(k)})$$
$$= \frac{1}{m} \sum_{k=1}^{m} \left(z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$

- Similar to stochastic NDL, batch training computes the expected weights $E[\mathbf{w}^{(t)}]$ for an SLP with stochastic input
- Minimization of $E(\mathbf{w}) = \text{linear least-squares regression}$

SLP training: the delta rule

• SLP weights are learned by gradient descent training: for a single training item (\mathbf{x}, z) and learning rate $\delta > 0$

$$\Delta w_i = -\delta \frac{\partial E(\mathbf{w}, \mathbf{x}, z)}{\partial w_i}$$

$$= 2\delta x_i \left(z - \sum_{j=1}^n x_j w_j \right)$$

$$= \beta c_i \left(o - \sum_{j=1}^n c_j V_j \right)$$

• Perfect correspondence to W-H rule with

$$V_i = w_i$$
 $c_i = x_i$ $o = z$ $\beta = 2\delta$

NDL vs. the Perceptron vs. least-squares regression

Linear least-squares regression

• Matrix formulation of the linear least-squares problem:

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \left(z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$
$$= \frac{1}{m} (\mathbf{z} - \mathbf{X} \mathbf{w})^T (\mathbf{z} - \mathbf{X} \mathbf{w})$$

• Minimum of $E(\mathbf{w})$, the L_2 solution, must satisfy $\nabla E(\mathbf{w}^*) = \mathbf{0}$, which leads to the normal equations

$$\mathbf{X}^T \mathbf{z} = \mathbf{X}^T \mathbf{X} \mathbf{w}^*$$

- Normal equations = Danks equilibrium conditions
- Regression theory shows that batch training / stochastic NLP converges to the unique* solution of the L_2 problem

Tübingen, 6 Nov 2015

Theoretical insights

What have we learned?

NDL

stochastic = batch = L_2 regression

These equivalences also hold for the general R-W equations with arbitrary values of α_i , β_1 , β_2 and λ (see paper)

SLP

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 36 / 53

Outline

- - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Theoretical insights

Effects of R-W parameters

 $\beta > 0$: learning rate \rightarrow convergence of individual learners

 $\lambda \neq 1$: linear scaling of associations / activation (obvious)

 $\alpha_i \neq 1$: salience of cue C_i determines how fast associations are learned, but does not affect the final stable associations (same L_2 regression problem)

 $\beta_1 \neq \beta_2$: different positive/negative learning rates do affect the stable associations; closely related to prevalence of positive and negative events in the population

Theoretical insights

What about logistic regression?

Logistic regression is the standard tool for predicting a categorical response from binary features

- can be expressed as SLP with probabilistic interpretation
- uses logistic activation function

$$h(y) = \frac{1}{1 + e^{-y}}$$

inputs weights

• and Bernoulli cost

$$E(\mathbf{w}, \mathbf{x}, z) = \begin{cases} -\log h(y) & \text{if } z = 1\\ -\log(1 - h(y)) & \text{if } z = 0 \end{cases}$$

Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015 39 / 53

What about logistic regression?

• Gradient descent training leads to delta rule that corresponds to a modified version of the R-W equations

$$\Delta V_i = \begin{cases} 0 & \text{if } c_i = 0\\ \beta \left(1 - h\left(\sum_{j=1}^n c_j V_j\right) \right) & \text{if } c_i = 1 \land o = 1\\ \beta \left(0 - h\left(\sum_{j=1}^n c_j V_j\right) \right) & \text{if } c_i = 1 \land o = 0 \end{cases}$$

- Same as original R-W, except that activation level is now transformed into probability h(y)
- But no easy way to analyze stochastic learning process (batch training \neq expected value of single-item training)
- Less robust for highly predictable outcomes → w diverges

Outline

- - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Empirical observations

Empirical observations

Some NDL simulation runs

Convergence vs. non-convergence – artificial data

word form	frequency	outcomes	cues
hand	10	hand_NIL	h_a_n_d
hands	20	hand_PLURAL	h_a_n_d_s
land	8	$land_NIL$	$l_a_n_d$
lands	3	$land_PLURAL$	$l_a_n_d_s$
and	35	$and_{L}NIL$	a_n_d
sad	18	$sad_{L}NIL$	s_a_d
as	35	as_NIL	a_s
lad	102	lad_NIL	l_a_d
lad	54	lad_PLURAL	l_a_d
lass	134	lass_NIL	l_a_s_s

Insight

Empirical observations

Insig

Empirical observations

Perfect positive association → convergence

sights Em

Empirical observations

Perfect positive association → convergence

Moderate positive association → non-convergence

Insights

Empirical observations

Moderate negative association → non-convergence

Evert & A. Arppe NDL: Theory & Experi

Tübingen, 6 Nov 2015 47 / 53

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Summary & next steps

L₂ regression stochastic = batch NDL SLP

- How many training steps are needed for a stochastic NDL learner to converge to the Danks equilibrium?
- Are there cases of non-convergence? If yes, why?
- Does NDL accuracy always improve with more cues and more training data? If not, why?
- How does logistic regression behave as incremental learner?
- Which sequences / patterns in the input data lead to significantly different behaviour from stochastic learner?

Conclusion

Conclusion

Acknowledgements 1/2

Follow me on Twitter: @RattiTheRat

The mathematical analysis was fuelled by large amounts of coffee and cinnamon rolls at Cinnabon, Harajuku, Tokyo

Acknowledgements 2/2

The empirical analyses were conducted in the natural environment of Ninase, Saaremaa, Estonia.

Tübingen, 6 Nov 2015 51 / 53

Conclusion

References I

- Arppe, Antti and Järvikivi, Juhani (2002). Verbal synonymy in practice: Combining corpus-based and psycholinguistic evidence. Presentation at the Workshop on Quantitative Investigations in Theoretical Linguistics (QITL-1).
- Arppe, Antti and Järvikivi, Juhani (2007). Every method counts: Combining corpus-based and experimental evidence in the study of synonymy. Corpus Linguistics and Linguistic Theory, **3**(2), 131–159.
- Arppe, Antti; Hendrix, Peter; Milin, Petar; Baayen, R. Harald; Shaoul, Cyrus (2014). ndl: Naive Discriminative Learning. R package version 0.2.16.
- Baayen, R. Harald (2011). Corpus linguistics and naive discriminative learning. Brazilian Journal of Applied Linguistics, 11, 295-328.
- Baayen, R. Harald; Milin, Petar; Đurđević, Dusica Filipović; Hendrix, Peter; Marelli, Marco (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, **118**(3), 438-81.
- Danks, David (2003). Equilibria of the Rescorla-Wagner model. Journal of Mathematical Psychology, 47, 109–121.
- Dawson, Michael R. W. (2008). Connectionism and classical conditioning. Comparative Cognition & Behavior Reviews, 3.

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 52 / 53

Conclusion

References II

- Gluck, Mark A. and Bower, Gordon H. (1988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology: General, 117(3), 227-247.
- Rescorla, Robert A. and Wagner, Allen R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black and W. F. Prokasy (eds.), Classical Conditioning II: Current Research and Theory, chapter 3, pages 64–99. Appleton-Century-Crofts, New York.
- Rosenblatt, Frank (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408.
- Stone, G. O. (1986). An analysis of the delta rule and the learning of statistical associations. In D. E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, chapter 11, pages 444-459. MIT Press, Cambridge, MA.
- Sutton, Richard S. and Barto, Andrew G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88(2), 135-170.
- Widrow, Bernard and Hoff, Marcian E. (1960). Adaptive switching circuits. In IRE WESCON Convention Record, pages 96-104, New York, IRE.

S. Evert & A. Arppe Tübingen, 6 Nov 2015 53 / 53