

7in1 Soil Nutrient Sensor with RS485 Output

(measures 7 Soil parameters of Temperature, Moisture, EC-electrical conductivity, pH, N-nitrogen, P-pottasium, K-phosphorus)

Data Sheet User Manual v1.5

Table of Contents

1. Product introduction	3
product description	3
Features	3
The main parameters	4
System frame work diagram	5
product model	6
2.Hardware connection	7
Inspection before equipment installation	7
Interface Description	7
3.Instructions	8
Quick test method	9
Buried measurement method	9
Note	10
4. Configuration software installation and use	10
Connect the sensor to the computer	10
Use of sensor monitoring software	11
5. Output Format	12
Basic communication parameters	12
Data frame format definition	12
Register address	13
Communication protocol example and explanation	16
6. Common problems and solutions	17

1. Product introduction

Product description

The transmitter has stable performance, high sensitivity, fast response, stable output, and is suitable for various soil qualities. It is an important tool for observing and studying the occurrence, evolution and improvement of saline soil and the dynamics of water and salt. By measuring the dielectric constant of the soil, it can directly and stably reflect the true moisture content of various soils. It can measure the volume percentage of soil moisture, which is a soil moisture measurement method that meets the current international standards. Can be buried in the soil for a long time, resistant to long-term electrolysis, corrosion resistance, vacuum potting, and completely water proof. The transmitter is suitable for soil moisture monitoring, scientific experiments, water-saving irrigation, greenhouses, flowers and vegetables, grassland pastures, soil rapid testing, plant cultivation, sewage treatment, precision agriculture and other occasions for temperature and humidity, electrical conductivity, PH value testing.

Features:

- The seven items of soil moisture content, electrical conductivity, temperature, nitrogen, phosphorus, potassium, and pH value are combined inane.
- Low threshold, few steps, fast measurement, no Low reagents, unlimited detection times
- The electrode is made of specially treated alloy material, which can withstand strong external impact and is not easy to damage.
- Completely sealed, resistant to acid and alkali corrosion, can be buried in the soil or directly into the water for long-term dynamic testing.
- High precision, fast response, good interchangeability, probe insertion design to ensure accurate measurement and reliable performance.

- It can also be used for the conductivity of water and fertilizer integrated solutions, as well as other nutrient solutions and substrates.
- High pH measurement accuracy, up to ±0.3PH accuracy, fast response speed and good interchangeability.

Specification:

DC power supply	DC 4.5-30V				
Maximum power consumption	0.7W (24V DC power supply)				
Operating temperature	-20°C~+60°	-20°C~+60°C			
Core chip temperature	85°C				
resistance					
Conductivity parameter	Range	0-20000us/cm			
	Resolution	10us/cm			
	Accuracy	±3% in the range of 0-10000us/cm;			
		±5% within the range of 10000-			
		20000us/cm			
Soil moisture parameters	Range	0-100%			
	Resolution				
		2% within 0-50%, 3% within 50-100%			
Soil temperature parameter	Range	-40~80°C			
	Resolution				
	Accuracy	±0.5°C (25°C)			
Soil PH parameter	Range	3~9PH			
	Resolution				
	Accuracy	±0.3PH			
NPK parameters	Range	1-1999 mg/kg(mg/L)			
	Resolution	1 mg/kg(mg/L)			
	Accuracy	±2%FS			
Conductivity		perature compensation sensor			
temperature compensation	•	ion range 0-50°C			
Protection level	IP68				
Probe material	Anti-corrosion special electrode				
Sealing material	Black flame-retardant epoxy resin				
Default cable length	Default 2 meters, can be customized				
Dimensions	45*15*123mm				
Output signal	RS485 (Modbus protocol)				
Country of Origin	China				

Shell Size

Equipment size drawing (unit: mm)

Connection:

This product can also be combined with multiple sensors on a 485 bus. It can be interfaced with PC or PLC or any other hardware board as shown in below image

> with PC

- via Ethernet (Use our RS485 to Ethernet Converter or Gateway)
- o via WiFi (Use our RS485 to WiFi Converter or Gateway)
- via USB (Use our RS485 to USB Converter)

> with PLC

- via RS485 port directly
- > with Your Own hardware or Arduino or Raspberry Pi
 - via RS485 circuit or use above converters for Ethernet, Wi-Fi or UART

Product Model Selection

		Base Code
TR	!-	Soil Detector Housing
	NPKPH-	Nitrogen Phosphorus Potassium pH
	THNPKPH-	Temperature Moisture Nitrogen Phosphorus Potassium pH
	ECNPKPH-	Conductivity Nitrogen Phosphorus Potassium pH
	ECTHNPKPH-	Conductivity Temperature Moisture Nitrogen Phosphorus Potassium pH
	THPH-	Temperature Moisture pH
	ECPH-	Conductivity pH
	ECTHPH-	Conductivity Temperature Moisture pH
		N01 RS485 (Modbus-RTU protocol)

2. Hardware Connection

Inspection before equipment installation

Check the equipment list before equipment installation:

- Transmitter equipment1
- Certificate of conformity, wiring instructions, etc.
- USB to 485(optional)

Interface Description

Wide voltage power input can be 4.5~30V. When wiring the 485 signal line, pay attention to the A/B two lines cannot be reversed, and the addresses of multiple devices on the bus cannot conflict.

Sensor wiring

Line color	Description	Remarks
brown	Power supply	4.5~30V DC
black	Power ground	GND
yellow	485-A	485-A
blue	485-B	485-B

3.Instructions

Since the electrode directly measures the conductivity of the soluble salt ions in the soil, the soil volumetric water content needs to be higher than about 20% in order to accurately reflect the conductivity of the soil. In the long-term observation, the measured value after irrigation or rainfall is closer to the true level. If you conduct a quick test, you can first water the soil to be tested, Measure after the moisture has penetrated sufficiently.

If you are measuring on a hard surface, you should drill holes first (the hole diameter should be smaller than the diameter of the probe), then insert the soil and compact the soil before measuring; the transmitter should be protected from severe vibration and impact, let alone knocked with hard objects hit. Because the transmitter is a black package, the transmitter will heat up rapidly (up to 50°C) under strong sunlight. In order to prevent excessive temperature from affecting the temperature measurement of the transmitter, please place it in the field or in the field. Pay attention to shading and protection when using.

Quick test method

Select a suitable measurement location, avoid rocks, ensure that the steel needle does not touch hard objects, throw away the surface soil according to the required measurement depth maintain the original tightness of the soil below, hold the sensor vertically and insert it into the soil. Do not shake left and right. It is recommended to measure multiple times to find the average value within a small range of a measuring point.

Buried measurement method

Dig a pit with a diameter of >20cm vertically, insert the transmitter steel needle horizontally in to the pit wall at a predeter mined depth, and fill the pit tightly. After a period, stability, measurement and Measurement can be carried out for several days, months or even longer recording.

Note:

- 1. All steel needles must be inserted into the soil during measurement.
- 2. Avoid strong sunlight directly shining on the transmitter and cause excessive temperature. Pay attention to lightning protection when using in the field.
- 3. Do not bend the steel needle violently, pull the lead wire of the transmitter forcefully, and do not hit or violently hit the transmitter.
- 4. The transmitter protection level is IP68, and the transmitter can be soaked in water.
- 5. Due to the presence of radio frequency electromagnetic radiation in the air, it is not suitable to stay energized in the air for a longtime.

4. Configuration software installation and use

Tools Required

We need below tools to set or change the parameters of the sensors.

- RS485 to USB Converter (To connect the sensor with your laptop. You should get a RS485 to USB converter and install corresponding driver. You can purchase from us too)
- 2. Power Supply Unit (To give power supply to the sensor)
- 3. RS485 Parameter Configuration Tool (You can download from our website or contact us)

Parameter settings

After Connected RS485-USB converter and Sensor and PC as shown in below image, open RS485 Parameter Configuration Tool. (Also you can check the sensor with modscan or similar software)

- 1. Choose CM port Serial Number
- 2. Click this button to test the baud rate
- 3. Click this button to check the Modbus device ID
- 4. Click this button to check the Baud rate of the device
- 5. Enter a value in the [Device] field and click this button to change the device ID
- 6. Enter a value in the [baud rate] field and click this button to change the baud rate
- 7. Choose your sensor from Main Tab and then Sub Tab
 Click Inquire button to read the values from the sensor

5.Output Format

Basic communication parameters:

Code	8-bit binary
Data bit	8 digits
Parity bit	No
Stop bit	1person
Error check	CRC (redundant cyclic code)
Baud rate	2400bit/s, 4800bit/s, 9600 bit/s can be set, the factory default is 4800bit/s

Data frame format definition:

Adopt Modbus-RTU communication protocol, the format is as follows:

Initial structure ≥ 4 bytes of time

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC code

End structure ≥ 4 bytes of time

Address code: It is the address of the transmitter, which is unique in the communication network (factory default 0x01).

Function code: The command function instruction issued by the host, this transmitter only uses function code 0x03 (read register data).

Data area: The data area is the specific communication data, pay attention to the 16bits data high byte first!

CRC code: Two-byte check code. Host inquiry

address code	function code	Register start address	Register length	CRC Checksum LOW	CRC Checksum HIGH
1 byte	1 byte	2 bytes	2 bytes	1 byte	1 byte

Frame structure:

Slave machine response frame structure:

Address code	function code	Effective number of bytes	1 st Data	2 nd Data	N th Data	CRC
1 byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes	2 bytes

Address

Register	PLC or	Content	Read	Definition description
address	Config address		Write Type	
0000 H	40001	Moisture content	Read	Real-time value of water content
000011	(decimal)	Worsture content	only	(expanded by 10 times)
0001 H	40002	Temperature	Read	Real-time temperature value (expanded
000111	(decimal)	Temperature	only	10 times)
0002 H	40003	Conductivity	Read	Conductivity real-time value
000211	(decimal)	Jonadouvil,	only	Conductivity roar time value
0003 H	40004	PH value	Read	PH real-time value
	(decimal)		only	(expanded 10 times)
0004H	40005	Nitrogen content	Read	Actual value of N
	(decimal)		only	Nitrogen content
0005H	40006	Phosphorus	Read	Actual value of P
	(decimal)		only	Phosphorus content
0006H	40007	Potassium	Read	Actual value of K
	(decimal)		only	potassium content
0007 H	40008	Salinity	Read	Salinity real-time value
	(decimal)		only	
0008 H	40009	Total dissolved	Read	TDS real-time value
	(decimal)	solids TDS	only	
0022 H	40035	Conductivity	Read	0-100
	(Decimal)	temperature	&	Corresponds to 0.0%-10.0%
		coefficient	write	Default 0.0%
0023 H	40036	Salinity coefficient	Read	0-100
	(decimal)		&	Corresponds to 0.00-1.00,
			write	Default 55 (0.55)
0024 H	40037	TDS coefficient	Read	0-100
	(decimal)		& write	Corresponds to 0.00-1.00,
				Default 50 (0.5)

0050 H	40081	Temperature	Read	Integer (extended by 10 times)
	(Decimal)	calibration value	& write	
0051 H	40082	Water content	Read	Integer (extended by 10 times)
	(Decimal)	calibration value	&	
			write	
0052 H	40083	Conductivity	Read	Integer
	(Decimal)	calibration value	&	
			write	
0053 H	40083	PH calibration value	Read	Integer
	(Decimal)		&	
			write	
04E8 H	41001	Nitrogen content	Read	Real value (IEEE754
	(decimal)	coefficient	&	standard floating point type)
		16 bits Upper	write	
04E9 H	41002	Nitrogen content	Read	
	(decimal)	coefficient	&	
		16 bits Lower	write	
04EA H	41003	Nitrogen content	Read	Integer
	(decimal)	calibration value	&	
			write	
04F2 H	41011	Phosphorus content	Read	Real value (IEEE754
	(decimal)	Coefficient	&	standard floating point type)
		16 bit Upper	write	
04F3 H	41012	Phosphorus Content	Read	
	(decimal)	Coefficient	&	
		16 bit Lower	write	
04F4 H	41013	Phosphorus	Read	Integer
	(decimal)	Content Calibration	&	
		value	write	
04FCH	41021	Potassium	Read	Real value (IEEE754
	(decimal)	content coefficient	&	standard floating point type)
		16 bits Upper	write	
04FDH	41022	Potassium	Read	
	(decimal)	content coefficient	&	
		16 bits Lower	write	
04FE H	41023	Potassium content	Read	Integer
	(decimal)	calibration value	&	
			write	
07D0 H	42001	Device address	Read	1~254 (factory default 1)
	(decimal)		&	
			write	
07D1 H	42002	Device baud rate	Read	0 means 2400
	(decimal)		&	1 means 4800
			write	2 means 9600

Example Modbus Polling and explanation

Example: Read the conductivity and temperature and moisture value of a four-in-one device with conductivity, temperature and moisture (address 0x01)

Command Frame:

Address code	Function code	Starting address	Data length	CRC LOW	CRC HIGH
0x01	0x03	0x00 0x00	0x00 0x04	0x44	0x09

Response frame:

Address	Function	Number of	Humidity	Temperature		1	
code	code	bytes	value	value	value	LOW	HIGH
0x01	0x03	0x08	0x02 0x92	0XFF 0x9B	0x00 0x38	0x57	0xB6

Temperature calculation:

When the temperature is lower than $0^{\circ}\mathrm{C}$, the temperature data is uploaded in the form of complement code.

Temperature: FF9B H (hexadecimal) = -101 => temperature = -10.1°C

Moisture calculation:

Moisture: 292 H (hexadecimal) = 658 => Humidity = 65.8%, that is, the soil volumetric moisture content is65.8%

Conductivity calculation:

Conductivity: 3E8 H (hexadecimal) = 1000 Conductivity = 1000 us/cm

PH value calculation:

PH value: 38H (hexadecimal) = 56 => PH value = 5.6

4. Common problems and solutions

No output or output error

possible reason:

- 1 The computer has a COM port, and the selected port is incorrect.
- (2) The baud rate is wrong.
- ③ The 485 bus is disconnected, or the A and B wires are connected reversely.
- 4 There are too many devices or the wiring is too long, the nearest power supply should be added, and a 485 booster should be added and a 120 Ω terminal resistance should be added at the same time.
- (5) The USB to 485 driver is not installed or damaged.
- 6 The equipment is damaged.

6.Contact information

EmbSys Technologies Pvt Ltd

3/50, 2nd Cross Street

Sundar Nagar, Ekkattuthangal

Chennai, India. Pincode – 600032

For Purchase :	Visit: www.embsys.in	
	e-Mail: sales@embsys.in	
	Call/Whatsapp/Signal/Telegram +91 8148834200	
For Technical Support :	e-Mail: support@embsys.in	
	Call / Whatsapp +91 8148834211	