

Desenvolvimento de Sistemas Software

Aula Teórica 20: Modelação Comportamental / Diagramas de Actividade

* 〇

Diagramas da UML 2.x

<u>Diagramas de Actividade</u>

- Úteis para especificar comportamento
 - Software / Hardware
 - Processos de negócio
- Baseados em modelos de fluxos de dados
 - adaptados para o paradigma OO

José Creissac Campos/António Nestor Ribeiro Desenvolvimento de Sistemas Software

Fazer

alguma coisa

Notação base

- Nodos de Acção
 - Unidade fundamental de funcionalidade
 - Alguma transformação ou processo no sistema modelado
- **Fluxos**
 - Representam a passagem de controlo / dados entre as acções

Mais sobre nodos

- Nodos de controlo
 - Nodo inicial

 - Nodos de Fork e Join
 - Nodo de fim de Actividade

 uma coisa [e o seu estado]

Exemplo

Outro exemplo

• Actividade - receber uma encomenda e efectuar o processo

correspondente

<u>Pins</u>

- Acções podem ter input e output através de pins
- Inputs são mantidos nos pins de entrada até a acção começar e nos de saída até serem consumidos pela acção seguinte

Pins especiais

- Streaming
 - Aceitam/produzem mais que um valor enquanto a acção está activa

<u>Pins especiais</u>

- De excepção (output)
 - Identificados por um triangulo
 - A acção termina imediatamente
 - Mais nenhum output é produzido

Pins especiais

- Conjuntos de parâmetros
 - Agrupam parâmetros
 - A acção só aceita / produz valores num dos conjuntos

<u>Mais sobre fluxos</u>

- Em cada fluxo passam tokens (valores) isoladamente ou em grupo
 - Peso: determina o número mínimo de tokens que devem passar em

Podemos utilizar etiquetas para simplificar os diagramas

Mais sobre fluxos

• Regras de transformação

Mais sobre nodos objecto

- Multiplicidades
 - definem o número de valores que cada pin aceita / fornece
 - quando o minimo é atingido, a acção pode começar
 - se existirem mais que o número máximo de valores, só o número máximo é utilizado

<u>Mais sobre nodos objecto</u>

- Limite superior
 - definem o número máximo de valores que um nodo objecto pode conter
 - quando máximo é atingido, o fluxo pára

Mais sobre nodos objecto

- Ordem de processamento
 - define a ordem em que os objectos são passados para o output
 - LIFO, FIFO, definida no modelo

<u>Mais sobre nodos objecto</u>

- Efeitos (*effects*)
 - os pins podem indicar que efeito têm nos objectos
 - create (pins de output), read, update ou delete (pins de input)

Mais sobre nodos objecto

«centralBuffer»

o centralBuffer recolhe as encomendas das lojas 1 e 2, cada encomenda pode ser enviada (correio) ou entregue (directamente) ao cliente

objecto que gere multiplos fluxos de entrada e saída

Mais sobre nodos objecto (e fluxos)

- «datastore»
 - guarda objectos de forma persistente
 - valores são copiados para o output
 - não é possível remover valores

Actividades

- Permitem estruturar modelos
- Utilizam parâmetros para receber / passar valores de/para quem as invoca

Diagrama de Actividades (cont.)

- Um exemplo mais complexo: Inscrição de Aluno numa Universidade.
- Está tudo bem neste diagrama?

<u>Partições</u>

- Dividem as acções, identificando subconjuntos relacionados
- Muitas vezes correspondem a unidades organizacionais, num modelo de negócio
- Podem ser hierarquicas e multidimensionais

Dimension name		on name	
		Partition Name-3	Partition Name-4
Dimension name	Partition Name-2		
	Partition Name-1		

c) Partition using a multidimensional hierarchical swimlane notation

Diagrama de Actividades (cont.)

• Partições permitem capacidade expressiva de associar papeis e responsabilidades às actividades

Diagrama de Actividades da actividade Levantar Dinheiro

Diagrama de Actividades (cont.)

• Sinais - um sinal pode denotar a passagem do tempo ou o desencadear de uma acção

Diagrama de Actividades (cont.)

• Sinais - receber e enviar sinais

Diagrama de Actividades (cont.)

• Situações de excepção

Especificação de uma região interrompível

Desenvolvimento de Sistemas Software

Diagrama de Actividades (cont.)

• Regições de Expansão - descrição de iterações

Modelação Comportamental

Sumário

- Diagramas de actividade motivação
- Notação Base: Nodos e transições
- Fluxo de controlo vs. fluxo de objectos
- Estruturação dos modelos: sub-actividades e partições
- Sinais
- Excepções e Regiões interruptíveis
- Regiões de expansão

Sobre o trabalho prático

Deliverables fase II

- Modelos do relatório da fase I (eventualmente alterados)
- Modelo de controlo de diálogo da interface (diagrama de estado)
- Diagrama de Sequência de Sistema (para cada use case)
- Diagrama de Package com subsistemas (poderá ser posteriormente refinado)
- Diagrama de Sequência com subsistemas (para cada use case)
- Diagrama de Classe
 - Vários níveis de detalhe: de especificação, de implementação com maps, de implementação com DAO
- Diagrama de Sequência de Implementação (para os use cases mais importantes)
- Outros Diagramas de Sequência de Implementação (para operações consideradas relevantes)
- Código (documentação)