- \bullet Eine Abbildung f: I $-> \mathbb{R}$ (I $\subseteq \mathbb{R}$, zumeist ein Intervall) heißt reelle Funktion
 - injektiv
 - * Element der Zielmenge höchstens einmal von f(x) abgebildet
 - surjektiv
 - * jedes Element in Zielmenge mindestens einmal von f(x) abgebildet
 - bijektiv
 - * injektiv und surjektiv
 - * jedes Element in Zielmenge genau einmal von f(x) abgebildet
- Graph von f
 - $\ \{(x,\!y){\in}I{\times}B \ | \ y{=}f(x)\}$
 - x und y=f(x) als Achsen des Graphen
- Beispiel
 - f: $\mathbb{R} \mathbb{R}, x = \mathbb{R} = x^2 + 1$
 - Kurzform: $f(x) = x^2 + 1$

Eigenschaften von Funktionen

- x ist ein Fixpunkt, wenn f(x) = x
- Monotonie
 - monoton wachsend, wenn jedes $f(xn) \le f(xn+1)$
 - * streng, wenn f(xn) < f(xn+1)
 - monoton fallend, wenn jedes $f(xn) \ge f(xn+1)$
 - * streng, wenn f(xn) > f(xn+1)
 - strenge Monotonie impliziert Injektivität
- Gerade Funktion
 - symmetrisch zur y-Achse
 - f(x) = f(-x)
- $\bullet\,$ Ungerade Funktion
 - symmetrisch zum Ursprung
 - f(-x) = -f(x)