通信协议 ——充电桩读卡器底层通讯协议

文件状态:	文件标识:	
[]草稿	当前版本:	1.0
[] 正式发布	作 者:	Lii
[] 正在修改	完成日期:	2010-10-20

目录

目录		2
—,	更改记录	3
_,	规约定义	4
	2.1、通讯格式	4
	2.2、通讯数据帧格式	4
	2.3、STX 和 ETX	4
	2.4、长度 <length></length>	5
	2.5、命令参数	5
	2.6、返回状态字	5
	2.7、数据	6
	2.8、BCC 数据异或校验	6
三、	读卡器	6
	3.1 非接 A 卡	6
	激活命令	6
	C-APDU 应用命令	6
	DESELECT 命令	7
	3.2 非接 B 卡	7
	激活射频卡	7
	C-APDU 应用命令	7
	DESELECT 命令	8
	3.3 ESAM/PSAM 卡	8
	复位命令	8
	下电命令	9
	C-APDU 应用命令	9
	3.4 射頻 M1 卡操作	.10
	寻射频卡	.10
	寻卡并获取序列号	.10
	验证 Key_A 密码	.10
	验证 Key_B 密码	. 11
	读扇区块数据	. 11
	更改密码	.12
	初始化值	. 13
	增值操作	. 13
	减值操作	. 14

一、更改记录

版本/状态	作者	参与者	起止日期	备注
1.0/N	Lii		2010-10-20	新建读卡器底层协议
1.1/A	Lii		2012-12-6	增加 MF1 部分协议的描述

N-->新建

M-->修改

A -->添加

二、规约定义

该协议有深圳市铭特科技有限公司定义,为读卡器与充电控制器之间的应用通信协议。

2.1、通讯格式

采用 RS232、全双工通讯方式,读卡器接收到完整数据包 10ms 后响应。 波特率: 默认 9600、数据格式: 1 位起始位, 8 位数据位, 1 位停止位。 数据帧之间的发送时间间隔>20ms。

2.2、通讯数据帧格式

表 2.1 数据包定义格式

序号	字节数	
1	1	STX
2	2	长度 <length></length>
3	1	命令字
4	1	命令参数
5	LENGTH-2	数据
6	1	ETX
7	1	BCC

各字节定义详细请参考以下几节说明。

表 2.2 卡机返回数据包定义格式

VC = 1 V VC E JAC E JC JC III - V							
序号	字节数	说明					
1	1	STX					
2	2	长度 <length></length>					
3	1	命令字					
4	1	命令参数					
5	1	状态字					
6	LENGTH-2	数据					
7	1	ETX					
8	1	BCC					

2.3、STX和ETX

定义发送开始字节 STX<x02>和 ETX<0x03>

2.4、长度<LENGTH>

发送长度<LENGTH>:长度<LENGTH>=命令字<1>+命令参数<1>+数据<length-2>接收长度<LENGTH>:长度<LENGTH>=命令字<1>+命令参数<1>+状态字<1>+数据<length-2>

2.5、命令参数

表 2.2 命令参数定义表

命令	命令字CM	命令参数PM	描述
		0x40	复位(上电)
SIM卡		0x41	
SIM≠	0x3d	0x42	休眠 (下电)
OIM P	OASG	0x43	APDU通信
		0x44	
		0x30	寻射频卡
		0x31	获取Mefarel 卡序列号
	0x34	0x32	验证Key_A密码
射频 M1 卡操作		0x39	验证Key_B密码
		0x33	读扇区块数据
		0x34	写扇区块数据
		0x35	更改密码
		0x37	增值操作
		0x38	减值操作
		0x40	激活射频卡(TYPE A)
TYPE A CPU卡	0x34	0x41	APDU通信(TYPE A)
		0x42	Deselect(TYPE A)
		0x40	激活射频卡(TYPE B)
TYPE B CPU卡	0x35	0x41	APDU通信(TYPE B)
		0x42	Deselect(TYPE B)

注: 发送和接收命令字相同。

2.6、返回状态字

表 2.3 返回状态字定义表

命令	说明
0x59	命令操作成功
0x4E	命令操作失败

2.7、数据

根据不同的命令存不同的数据。具体参考下章节定义。

2.8、BCC数据异或校验

BCC 为数据帧的校验,算法为异或。校验区为 STX 至 ETX。

三、读卡器

此章针对读卡器的各个命令分析。

3.1 非接A卡

激活命令

HOST 发送:

0x02	0x00	0x02	0x34	0x40	0x03	BCC

READER 返回:

0x02	通讯包长度	0x34 0x40	操作状态	ATS长度H	ATS长度L	ATS 数	0x03	BCC
	2BYTE		P			据		

操作状态字 P='Y'(0x59) 卡激活成功

P= 'N' (0x4E) 卡激活不成功

P= 'E' (0x45) 卡机内无卡 (610型号)

P= 'W'(0x57) 卡不在允许操作的位置上(610型号)。

C-APDU应用命令

HOST 发送:

0x02	通讯包长度 2BYTE	0x34	0x41	APDU 包长度 H	APDU 包长度 L	APDU	0x03	BCC
READE	R 返回.							

0x02	通讯包长度	0x34	0x41	操作状	响应数据长	响应数据长	响应数	0x03	BCC
	2BYTE			态P	度H	度L	据		

操作状态字 P='Y'(0x59) APDU 成功

P='N'(0x4E) APDU 不成功

P= 'E' (0x45) 卡机内无卡 (610型号)

P= 'W' (0x57) 卡不在允许操作的位置上 (610 型号)。

DESELECT命令

HOST 发送:

READER 返回:

 0x02
 通讯包长度 2BYTE
 0x34
 0x42
 操作状态 P
 0x03
 BCC

操作状态字 P='Y'(0x59) DESELECT 成功

P= 'N' (0x4E) DESELECT 不成功

P= 'E' (0x45) 卡机内无卡 (610型号)

P= 'W'(0x57) 卡不在允许操作的位置上(610型号)。

3.2 非接B卡

激活射频卡

HOST 发送:

0x02	0x00	0x02	0x35	0x40	0x03	BCC
------	------	------	------	------	------	-----

READER 返回:

0x02	通讯包长度	0x35	0x40	操作状态	ATS 长度	ATS 长度	ATS 数	0x03	BCC
	2BYTE			Р	Н	L	据		

操作状态字 P='Y'(0x59) 卡激活成功

P= 'N' (0x4E) 卡激活不成功

P= 'E' (0x45) 卡机内无卡 (610型号)

P= 'W'(0x57) 卡不在允许操作的位置上(610型号)。

C-APDU应用命令

HOST 发送:

0x02 通讯包长度 2BYTE 0x35 0x41 APDU 包长度 H APDU 包长度 L APDU 0x03 E	0x02	通讯包长度 2BYTE	0x35	0x41	APDU 包长度 H	APDU 包长度 L	APDU	0x03	BCC
--	------	-------------	------	------	------------	------------	------	------	-----

READER 返回:

0x02	通讯包长度	0x35	0x41	操作状	响应数据长	响应数据长	响应数	0x03	BCC
	2BYTE			态P	度L	度H	据		

操作状态字 P='Y'(0x59) APDU 成功

P= 'N' (0x4E) APDU 不成功

P= 'E' (0x45) 卡机内无卡 (610型号)

P='W'(0x57) 卡不在允许操作的位置上(610型号)。

DESELECT命令

HOST 发送:

0x02 0x00	0x02	0x35	0x42	0x03	BCC
-----------	------	------	------	------	-----

READER 返回:

 0x02
 通讯包长度 2BYTE
 0x35
 0x42
 操作状态 P
 0x03
 BCC

操作状态字 P='Y'(0x59) DESELECT 成功

P= 'N' (0x4E) DESELECT 不成功

P= 'E' (0x45) 卡机内无卡 (610型号)

P= 'W' (0x57) 卡不在允许操作的位置上 (610 型号)。

3.3 ESAM/PSAM卡

复位命令

HOST 发送:

ı								
	0x02	0x00	0x03	0x3D	Pm	SIM 卡座号	0x03	BCC

Pm= 0x40 对工作电压是 3.0 V的 SIM 卡进行复位操作

Pm= 0x41 对工作电压是 5.0 V的 SIM 卡进行复位操作

Reader 操作成功返回: T=0 SIM 卡复位成功返回操作状态字 P='Y'(0x59)

(0x02	通讯包长度	0x3D	Pm	SIM 卡	操作状	复位数据包长	复位数据 n	0x03	BCC
		2 byte			座号	态字 P	度2 byte	byte		

通讯包长度=6+ 复位数据长度 n

Reader 操作成功返回: T=1 SIM 卡复位成功返回操作状态字 P= 'Z'(0X5A)

0x02	通讯包长度	0x3D	Pm	SIM 卡	操作状	复位数据包长	复位数据 n	0x03	BCC
	2 byte			座号	态字 P	度2 byte	byte		

通讯包长度=6+ 复位数据长度 n

SIM 卡座号 =0x30 操作 SIM 卡 1

=0x31 操作 SIM 卡 2

=0x32 操作 SIM 卡 3 (610 型号)

=0x33 操作 SIM 卡 4 (610 型号)

Reader 操作失败返回:

操作状态字 P='N'(0x4E) 复位不成功

注:对 SIM 卡进行操作,只有复位成功后才能进行 C-APDU 包操作。使用 SIM 卡时请核对 SIM 卡工作电压,否则有可能损坏 SIM 卡。

下电命令

Host 发送:

1							
	0x02	0x00	0x02	0x3D	0X42	0x03	BCC

Reader 返回:

操作状态字 P='Y'(0x59) 操作成功

P= 'N' (0x4E) 操作失败

P= 'E' (0x45) 卡机内无卡 (610型号)

P= 'W'(0x57) 卡不在允许操作的位置上(610型号)。

注: 当卡不在有持卡位置上或不在卡机内时再执行 IC 卡下电命令时,将返回"卡不在允许操作位置"的信息上。

无 IC 卡机型执行 IC 卡下电命令时,读卡器将返回"命令不能执行"的信息,进行 IC 卡下电操作位无效。

C-APDU应用命令

0x02	通讯包长度 2	0x3D	0x43	SIM 卡座	C-APDU	包长度	2	C-APDU	包	n	0x03	BCC
	byte			号	byte			byte				

通讯包长度=5+ C-APDU 包长度 n (n=4--263byte)

Reader 操作成功返回: 操作状态字 P= 'Y' (0x59)

0x02	通讯包长	0x3D	043	SIM卡	操作状	C-APDU 操作返回	C-APDU 操作返	0x03	BCC
	度2 byte			座号	态字 P	包长度 2 byte	回包 n byte		

通讯包长度=6+ C-APDU 返回包长度 n (n=4-263byte)

Reader 操作失败返回:

0x02	0x00	0x04	0x3D	0x43	SIM 卡座号	操作状态字 P	0x03	BCC
------	------	------	------	------	---------	---------	------	-----

操作状态字 P='N'(0x4E) 操作不成功

3.4 射频M1卡操作

寻射频卡

HOST 发送:

0x02 0x00	0x02	0x34	0x30	0x03	BCC
-----------	------	------	------	------	-----

READER 返回:

0x02 0x00 0x03 0x34 0x30 操作状态 P 0x03 BCC
--

操作状态字 P='Y'(0x59) 寻卡成功

P= 'N' (0x4E) 寻卡不成功

寻卡并获取序列号

HOST 发送:

	0x02	0x00	0x02	0x34	0x31	0x03	BCC
--	------	------	------	------	------	------	-----

READER 操作返回:

0x02	0x00	0x07	0x34	0x31	操作状态 P	4 byte hex 卡序列号	0x03	BCC
------	------	------	------	------	--------	-----------------	------	-----

操作状态字 P='Y'(0x59) 获取卡序列号成功,并返回卡序列号

P= 'N' (0x4E) 获取卡序列号失败,并返回空序列号 (0X00, 0X00, 0X00, 0X00) 4byte 卡序列号用十六进制传送: 如 " C6B272AE"

例: 上传的通讯包为: 0x02 0x00 0x06 0x35 0x31 0xC6 0xB2 0x72 0xAE 0x03 BCC

验证Key_A密码

HOST 发送:

0x02	0x00	0x09	0x34	0x32	扇区号	6 byte hex 密码	0x03	bcc
------	------	------	------	------	-----	---------------	------	-----

READER 操作返回:

操作状态字 P='Y'(0x59) 下载密码成功

P='0'(0X30) 寻不到射频卡

验证Key_B密码

HOST 发送:

0x02	0x00	0x09	0x34	0x39	扇区号	6 byte hex 密码	0x03	bcc
------	------	------	------	------	-----	---------------	------	-----

READER 操作返回:

0x02	0x00	0x04	0x34	0x39	扇区号	操作状态字 P	0x03	bcc
------	------	------	------	------	-----	---------	------	-----

操作状态字 P='Y'(0x59) 验证密码成功

P='0'(0X30) 寻不到射频卡

P='3'(0X33) 密码错误

注: 扇区号= $0x00 \sim 0x28$ (其中 S50 卡片扇区号是 $0x00 \sim 0x0F$, S70 卡片扇区号是 $0x00 \sim 0x28$) 块号= $0x00 \sim 0x0F$ (其中 S50 卡片每个扇区有 4 个地块,块号分别是 0x00 0x01 0x02 0x03, S70 卡片第 0-31 扇区中每一扇区有 4 个块,块号分别是 0x00 0x01 0x02 0x03,第 32-39 扇区每一扇区有 16 个块,块号分别是 $0x00 \sim 0x0F$)

要对扇区块数据进行读、写、值操作必须验证该扇区密码成功后才能进行。

读扇区块数据

HOST 发送:

0x02	0x00	0x04	0x34	0x33	扇区号	块号	0x03	BCC
------	------	------	------	------	-----	----	------	-----

当卡片为 S50 时,扇区号= 0x00~0x0F (S50 卡有 16 个扇区)

当卡片为 S70 时,扇区号= 0x00~0x28 (S70 卡有 40 个扇区)

块号= 0x00 0x01 0x02 0x03 (S50 卡片块号, S70 卡片的块号=0x00~0x0F)

READER 读数据块操作成功返回: P= 'Y' (0x59)

0x02 0x00 0x15 0x34 0x33	扇区号 块号	操作状态字 P	16 byte 数据	0x03	BCC
--------------------------	--------	---------	------------	------	-----

读扇区块数据成功,并上传 16BYTE 读出的数据

READER 读扇区块操作错误返回:

0x02 0x00 0x05 0x34 0x33 扇区号 块号 操作状态字	P 0x03 BCC
---	------------

操作状态字 P='0'(0X30) 寻不到 RF 卡

P='1'(0X31) 操作扇区号错(不是验证密码后的扇区)

P= '2' (0X32) 操作的卡序列号错

P= '3' (0X33) 密码验证错

P='4'(0X34) 读数据错

注: 扇区号= $0x00 \sim 0x28$ (其中 S50 卡片扇区号是 $0x00 \sim 0x0F$, S70 卡片扇区号是 $0x00 \sim 0x28$) 块号= $0x00 \sim 0x0F$ (其中 S50 卡片每个扇区有 4 个地块,块号分别是 0x00 0x01 0x02 0x03, S70 卡片第 0-31 扇区中每一扇区有 4 个块,块号分别是 0x00 0x01 0x02 0x03,第 32-39 扇区每一扇区有 16 个块,块号分别是 $0x00 \sim 0x0F$)

写扇区块数据

HOST 发送:

ń									
	0x02	0x00	0x14	0x34	0x34	扇区号	块号	16 byte hex 数据 0x	203 BCC

READER 写扇区块操作返回:

0x02	0x00	0x05	0x35	0x33	扇区号	块号	操作状态字P	0x03	BCC
------	------	------	------	------	-----	----	--------	------	-----

操作状态字 P='0'(0X30) 寻不到 RF 卡

P='1'(0X31) 操作扇区号错(不是验证密码后的扇区)

P= '2' (0X32) 操作的卡序列号错

P= '3' (0X33) 密码验证错

P='4'(0X34) 校验写入块数据错

P= 'Y '(0X59) 操作成功

注: 扇区号= $0x00\sim0x28$ (其中 S50 卡片扇区号是 $0x00\sim0x0F$, S70 卡片扇区号是 $0x00\sim0x28$) 块号= $0x00\sim0x0F$ (其中 S50 卡片每个扇区有 4 个地块,块号分别是0x000x010x020x03, S70 卡片第0-31扇区中每一扇区有4个块,块号分别是0x000x010x020x03, 第32-39扇区每一扇区有16个块,块号分别是 $0x00\sim0x0F$)

S50, S70 第 0-31 扇区中每个扇区的第 0X03 块, S70 第 32-40 扇区中第 0X0F 块是 KEYA、控制字、KEYB 的存储区域,对其进行写操作可能会遭成卡片锁死报废,需要谨慎操作,详见飞利浦 M1 卡片技术资料。

更改密码

执行该命令只能对 KEYA 的密码更改操作,并对 KEYB 密码的改写成: "0xFF, 0xFF, 0x

HOST 发送:

0x02	0x00	0x09	0x34	0x35	扇区号	6 byte hex 密码	0x03	bcc	
------	------	------	------	------	-----	---------------	------	-----	--

扇区号= 0x00~0x28 (其中 S50 卡片扇区号是 0x00~0x0F, S70 卡片扇区号是 0x00 ~0x28)

READER 返回:

0x02	0x00	0x04	0x34	0x35	扇区号	操作状态字 P	0x03	bcc
------	------	------	------	------	-----	---------	------	-----

操作状态字 P='Y'(0x59) 更改密码成功

P='0'(0X30) 寻不到 RF 卡

P='1'(0X31) 操作扇区号错(不是验证密码后的扇区)

P= '2' (0X32) 操作的卡序列号错

P='3'(0X33) 密码验证错

要完全对扇区操作密码(KeyA 或 KeyB)和扇区存取控制字修改,在验证操作密码成功后对每扇区的块3进行写扇区块数据命令操作来完成。其格式如下(详见飞利浦 M1 卡片技术资料):

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
6	6 byte KeyA 密码字节				节	4 by	te 扇区	存取控	制字	6		e Key	B 密荷	冯字节	j

初始化值

如果区块要就进行值操作,在第一次使用之前要对要进行值操作的区块初始化。 HOST 发送:

0x02	0x00	0x08	0x34	0x36	扇区号	块号	4 byte hex	数据	0x03	BCC
READE	R 返回:									

0x02 0x00 0x05 0x34 0x36	扇区号 块号	操作状态字 P	0x03	BCC
--------------------------	--------	---------	------	-----

4 byte hex 数据为指定的扇区的指定块的初始化的值(低字节在前高字节在后)。如第 5 扇区块 0 初始化为 0x10, 发送的 4 byte hex 数据为: "0x10, 0x00, 0x00, 0x00"

操作状态字

P='1'(0X31) 操作扇区号错(不是验证密码后的扇区)

P= '3' (0X33) 密码验证错

P='Y'(0x59) 操作成功

P= 'Y' (0x4E) 操作失败

扇区号= $0x00^{\circ}0x28$ (其中 S50 卡片扇区号是 $0x00^{\circ}0x0F$, S70 卡片扇区号是 $0x00^{\circ}0x28$) 块号= $0x00^{\circ}0x0E$ (其中 S50 卡片块号范围是 0x00--0x02,S70 卡片第 0-31 扇区块号范围是 0x00--0x02,第 32-39 扇区块号范围是 $0x00^{\circ}0x0E$)每一扇区的最后一块不能进行值操作。

增值操作

HOST 发送:

0x02	0x00	0x08	0x34	0x37	扇区号	块号	4 byte hex 数据	0x03	BCC
------	------	------	------	------	-----	----	---------------	------	-----

4 byte hex 数据为指定的扇区的指字块的值要增加的值(低字节在前高字节在后)。如第 5 扇区块 0 要增加 0x10, 发送的 4 byte hex 数据为: "0x10, 0x00, 0x00, 0x00 "

READER 返回:

0x02	0x00	0x05	0x34	0x37	扇区号	块号	操作状态字 P	0x03	BCC	
------	------	------	------	------	-----	----	---------	------	-----	--

操作状态字 P='0'(0X30) 寻不到 RF 卡

P='1'(0X31) 操作扇区号错(不是验证密码后的扇区)

P= '2' (0X32) 操作的卡序列号错

P='3'(0X33) 密码验证错

P= '4'(0X34) 块数据格式错误(该块存贮数据没有写成值数据形式)

P='5'(0X35) 增值溢出

P= 'Y' (0x59) 操作成功

扇区号= 0x00~0x28 (其中 S50 卡片扇区号是 0x00 ~0x0F, S70 卡片扇区号是 0x00 ~0x28) 块号= 0x00 ~0x0E (其中 S50 卡片块号范围是 0x00 0x01 0x02, S70 卡片第 0-31 扇区块号范是 0x00 0x01 0x02, 第 32-39 扇区块号范围是 0x00 ~0x0E) 每一扇区的最后一块不能进行增减值操作。

减值操作

HOST 发送:

0x02	0x00	0x08	0x34	0x38	扇区号	块号	4 byte hex 数据	0x03	BCC
					744 4	<i>></i> • •	J Jy (4 H		

4 byte hex 数据为指定的扇区的指字块的值要减的值(低字节在前高字节在后)。不允许为 0 值, 否则操作不成功。

READER 返回:

	0x02	0x00	0x05	0x34	0x38	扇区号	块号	操作状态字 P	0x03	BCC
--	------	------	------	------	------	-----	----	---------	------	-----

操作状态字 P='0'(0X30) 寻不到 RF 卡

P='1'(0X31) 操作扇区号错(不是验证密码后的扇区)

P= '2' (0X32) 操作的卡序列号错

P='3'(0X33) 密码验证错

P= '4'(0X34) 块数据格式错误(该块存贮数据没有写成值数据形式)

P='5'(0X35) 减值溢出

P= 'Y' (0x59) 操作成功

扇区号= 0x00 ~0x28 (其中 S50 卡片扇区号是 0x00 0x01 0x02 ······0x0F, S70 卡片扇区号是 0x00 0x01 0x02 ······0x28)

块号= $0x00 \sim 0x0E$ (其中 S50 卡片块号范围是 0x00 0x01 0x02,S70 卡片第 0-31 扇区块号范是 0x00 0x01 0x02,第 32-39 扇区块号范围是 $0x00 \sim 0x0E$),每一扇区的最后一块不能进行增减值操作。