- 1 import seaborn as sns
- 2 import pandas as pd
- 3 import numpy as np
- 4 from tensorflow.keras.layers import Dense, Dropout, Activation
- 5 from tensorflow.keras.models import Model, Sequential
- 6 from tensorflow.keras.optimizers import Adam
- wine_quality = pd.read_csv('https://raw.githubusercontent.com/shrikant-temburwar/Wine-Quality-Dataset/master/winequality-white.csv', sep=';')
- 8 wine_quality.head()

₽		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
	1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
	2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
	3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
	4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

- 1 X = wine_quality.drop(['quality'], axis=1).values
- y = wine_quality[['quality']].values
- 3 from sklearn.model_selection import train_test_split
- 4 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)
- 1 from sklearn.preprocessing import StandardScaler
- 2 sc = StandardScaler()
- 3 X_train = sc.fit_transform(X_train)
- 4 X_test = sc.transform(X_test)
- 1 def create_model_regression(learning_rate, dropout_rate):
- 2 model = Sequential()
- 3 model.add(Dense(100, input_dim=X_train. shape[1], activation='relu'))
- 4 model.add(Dropout(dropout_rate))
- 5 model.add(Dense(50, activation='relu'))
- 6 model.add(Dropout(dropout_rate))
- 7 model.add(Dense(25, activation='relu'))
- 8 model.add(Dropout(dropout_rate))
- 9 model.add(Dense(1))
- 10 adam = Adam(Ir=learning_rate)
- 11 model.compile(loss='mean_squared_error', optimizer=adam, metrics=['mae'])
- 12 return model
- 13 dropout_rate = 0.1
- 14 epochs = 50
- 15 batch_size = 1
- 16 learn_rate = 0.001
- model = create_model_regression(learn_rate, dropout_rate)
- 18 from tensorflow.keras.utils import plot_model
- 19 plot_model(model, to_file='model_plot1.png', show_shapes=True, show_layer_names=True)

1 model_history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.2, verbose=1)

```
Epoch 1/50
3134/3134 [=
                                :======] - 5s 1ms/step - loss: 5.4308 - mae: 1.6737 - val_loss: 0.6364 - val_mae: 0.6080
Epoch 2/50
3134/3134 [:
                                        =] - 4s 1ms/step - loss: 1.0957 - mae: 0.8279 - val_loss: 0.5881 - val_mae: 0.5909
Epoch 3/50
3134/3134 [=
                                       ==] - 4s 1ms/step - loss: 0.9402 - mae: 0.7606 - val_loss: 0.6170 - val_mae: 0.6050
Epoch 4/50
3134/3134 [:
                                       =] - 4s 1ms/step - loss: 0.8466 - mae: 0.7266 - val loss: 0.5558 - val mae: 0.5704
Epoch 5/50
                                   ====] - 4s 1ms/step - loss: 0.7268 - mae: 0.6684 - val_loss: 0.6244 - val_mae: 0.6052
3134/3134 [=
Epoch 6/50
3134/3134 [=
                                      ==] - 4s 1ms/step - loss: 0.6829 - mae: 0.6465 - val_loss: 0.6833 - val_mae: 0.6317
Epoch 7/50
3134/3134 [==
                       :==========] - 4s 1ms/step - loss: 0.6873 - mae: 0.6534 - val_loss: 0.5296 - val_mae: 0.5560
Epoch 8/50
3134/3134 [:
                                       =] - 4s 1ms/step - loss: 0.6713 - mae: 0.6425 - val_loss: 0.5467 - val_mae: 0.5707
Epoch 9/50
3134/3134 [=:
                                       ==] - 4s 1ms/step - loss: 0.6224 - mae: 0.6188 - val_loss: 0.5274 - val_mae: 0.5598
Epoch 10/50
3134/3134 [=
                                         - 4s 1ms/step - loss: 0.5986 - mae: 0.6053 - val_loss: 0.5347 - val_mae: 0.5589
Epoch 11/50
3134/3134 [==
                                       ==] - 4s 1ms/step - loss: 0.5938 - mae: 0.6031 - val_loss: 0.5176 - val_mae: 0.5507
Epoch 12/50
3134/3134 [=
                                         - 4s 1ms/step - loss: 0.6035 - mae: 0.6056 - val_loss: 0.5011 - val_mae: 0.5445
Epoch 13/50
3134/3134 [==
                                      ==] - 4s 1ms/step - loss: 0.6005 - mae: 0.6115 - val_loss: 0.5377 - val_mae: 0.5600
Epoch 14/50
3134/3134 [=
                                        =] - 4s 1ms/step - loss: 0.5812 - mae: 0.5955 - val_loss: 0.5344 - val_mae: 0.5612
Epoch 15/50
3134/3134 [=====
                  Epoch 16/50
3134/3134 [=
                                         - 4s 1ms/step - loss: 0.5455 - mae: 0.5807 - val_loss: 0.5115 - val_mae: 0.5539
Epoch 17/50
3134/3134 [==
                                      ==] - 4s 1ms/step - loss: 0.5246 - mae: 0.5765 - val_loss: 0.5190 - val_mae: 0.5569
Epoch 18/50
3134/3134 [=
                                       :=] - 4s 1ms/step - loss: 0.5576 - mae: 0.5887 - val_loss: 0.5107 - val_mae: 0.5466
Epoch 19/50
3134/3134 [==
                                   ====] - 4s 1ms/step - loss: 0.5127 - mae: 0.5625 - val_loss: 0.5101 - val_mae: 0.5465
Epoch 20/50
3134/3134 [=
                                       ==] - 4s 1ms/step - loss: 0.5288 - mae: 0.5647 - val loss: 0.5039 - val mae: 0.5492
Epoch 21/50
3134/3134 [==
                   Epoch 22/50
3134/3134 [=
                                  =====] - 4s 1ms/step - loss: 0.4729 - mae: 0.5361 - val_loss: 0.4991 - val_mae: 0.5483
Epoch 23/50
3134/3134 [==
            Epoch 24/50
3134/3134 [=
                           :==============] - 4s 1ms/step - loss: 0.4509 - mae: 0.5266 - val_loss: 0.5241 - val_mae: 0.5586
Epoch 25/50
                    3134/3134 [==
Epoch 26/50
3134/3134 [=
                        ===========] - 4s 1ms/step - loss: 0.4373 - mae: 0.5214 - val_loss: 0.4913 - val_mae: 0.5407
Epoch 27/50
3134/3134 [==
             Epoch 28/50
3134/3134 [=
                         ==========] - 5s 1ms/step - loss: 0.4146 - mae: 0.5005 - val_loss: 0.4965 - val_mae: 0.5498
Epoch 29/50
Epoch 30/50
                                        1 46 1ma/stan loss: 0.2040 mas: 0.400E val loss: 0.40E4 val mas: 0.5200
1 4 0 4 0/4 0 4 0
```

¹ accuracies = model.evaluate(X_test, y_test, verbose=1)

² print('Test Score:', accuracies[0])

³ print('Test MAE:', accuracies[1])

31/31 [============================] - 0s 1ms/step - loss: 0.4585 - mae: 0.5135

Test Score: 0.4585132300853729 Test MAE: 0.5134637355804443

```
    import matplotlib.pyplot as plt
    plt.plot(model_history.history['mae'], label = 'mae')
    plt.plot(model_history.history['val_mae'], label = 'val_mae')
    plt.legend(['train','test'], loc='lowerleft')
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:4: MatplotlibDeprecationWarning: Unrecognized location 'lowerleft'. Falling back on 'best'; valid location 'lowerleft'.

upper right
upper left
lower left
lower right
right
center left
center right
lower center
upper center

center

5

This will raise an exception in 3.3. after removing the cwd from sys.path.

<matplotlib.legend.Legend at 0x7f0057d5e588>

