Contents

1	Vectors	2
	Interpretations of Vectors	2
	Vector Addition, Subtraction, and Multiplication	2

1 Vectors

Interpretations of Vectors

- ▶ Vector: an ordered list of numbers.
- \triangleright Possible notations: $\vec{v} = v$ are most common.
- Dimensionality: the number of the elements in a vector.
- ▶ Geometric vector: an object with a magnitude and direction.
- ▷ Standard position: when the vector beings at the origin.

Vector Addition, Subtraction, and Multiplication

- > Vectors must have same dimensionality for addition and subtraction.
- ▷ Geometric and algebraic have same results.
- ▶ Scalar: scales each element in a vector, does not change direction. Generally represented with greek letters.
- ▶ **Dot product**: a single number that provides information about the relationship between two vectors. Must have same dimensionality.
- \triangleright Notation for dot product: $a \cdot b = a^T b = \langle ab \rangle = \sum a_i b_i$
- ▶ Algebraic dot product properties:
 - ∘ Associative: False; $a^T(b^Tc) \neq (a^Tb)^Tc$
 - o Distributive: True; $a^{T}(b+c) = a^{T}b + a^{T}c$
 - Commutative:
 - \circ Vector magnitude/length: $\| \mathbf{v} \| = \sqrt{\mathbf{v}^T \mathbf{v}}$
- ▶ Geometric dot product properties:
 - Magnitudes of vectors scaled by angle between them.
 - $\circ \vec{a} = |a||b|\cos(\theta_{ab})$
 - o Geometric and algebraic are really the same. The above equation can be rewritten as the algebraic vector length, i.e. $a^T b = \cos(\theta_{ab})|a||b|$