Day45 Stop Overfitting With L1 Lasso and L2 Ridge

July 15, 2025

Day 45 – Regularization Techniques in Machine Learning (L1, L2, ElasticNet)

This notebook demonstrates how **L1** and **L2** regularization techniques help prevent overfitting in Machine Learning models.

We'll explore:

- What overfitting is and why it's bad
- How Ridge (L2) shrinks coefficients (keeps all features)
- How Lasso (L1) removes unnecessary features (sets some coefficients to 0)
- Visual and numeric comparison of Linear, Ridge, and Lasso regression
- Model evaluation using R², Adjusted R², RMSE, and Residual Plots

Outcome:

By the end, you'll understand:

- How to choose between Ridge and Lasso
- When regularization improves your model
- Why simpler models often perform better on unseen data

Use L1 & L2 to make your models more robust, generalizable, and interpretable!

What is Machine Learning? (Recap)

Machine Learning (ML) is a branch of Artificial Intelligence where computers learn from data to make predictions or decisions without being explicitly programmed.

Machine Learning is like teaching a computer how to learn from past examples — just like humans learn from experience. For example:

- If a kid sees that touching fire hurts, they learn not to do it again.
- ML algorithms do the same they find patterns from data to predict or decide things.

Types of Machine Learning:

- Supervised Learning (Labeled data):
 - Like a teacher guiding. You give input + correct answer.
 - * e.g., Regression (Predicting prices), Classification (classifying emails.)
- Unsupervised Learning (Unlabeled data):
 - No answers, the algorithm finds patterns on its own.
 - * e.g., Clustering (Grouping similar customers.)
- Reinforcement Learning:

- Learning by reward and punishment.

* e.g., Games, robots learning to walk.

Linear Regression - Predicting with Lines

Regression is about predicting numbers. For example, predicting:

- Salary based on years of experience
- Mileage (mpg) of a car based on features like horsepower, weight, etc.
- Simple Linear Regression:
 - Predicts using one feature \rightarrow Equation:

$$y = mx + b$$

- Multiple Linear Regression (MLR):
 - Uses multiple features \rightarrow

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

Underfitting vs Overfitting

- Underfitting: Model is too simple \rightarrow Poor on both train/test (misses patterns)
- Overfitting: Model is too complex \rightarrow Great on training, bad on test (memorizes data)

Techniques to Handle Overfitting

- Regularization
- Cross-validation
- Simpler models
- More data
- Dropout
- Pruning

What is Regularization?

Regularization helps prevent overfitting by penalizing large coefficients in the model.

Types of Regularization

Type	Penalty	Behavior
Ridge	L2	Shrinks coefficients (not zero)
Lasso	L1	Some coefficients become 0
${\bf ElasticNet}$	L1 + L2	Combines both

Analogy:

- Lasso = Removing unhelpful friends
- Ridge = Asking loud people to speak softer

Steps in This Notebook:

- Build baseline MLR model
- Apply Lasso, Ridge, and ElasticNet
- Compare performance

1 Import Required Libraries

```
[1]: import pandas as pd
  import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt
  %matplotlib inline

from sklearn import preprocessing
  from sklearn.model_selection import train_test_split
  from sklearn.linear_model import LinearRegression, Ridge, Lasso
  from sklearn.metrics import r2_score
```

2 Load and Explore the Dataset

```
[2]: data = pd.read csv(r"C:\Users\Lenovo\Downloads\car-mpg.csv")
     data.head()
[2]:
         mpg
              cyl
                    disp
                           hp
                                  wt
                                                origin
                                                        car_type
                                       acc
                                            yr
        18.0
                  307.0
                          130
                               3504
                                      12.0
                                            70
                                                     1
       15.0
     1
                8 350.0
                          165
                               3693
                                      11.5
                                            70
                                                     1
                                                                0
     2 18.0
                8 318.0
                          150
                               3436
                                      11.0
                                            70
                                                     1
                                                                0
                8 304.0
     3 16.0
                                            70
                                                                0
                          150
                               3433
                                     12.0
                                                     1
     4 17.0
                8 302.0
                          140
                               3449
                                     10.5 70
                                                     1
                                                                0
                         car name
        chevrolet chevelle malibu
     1
                buick skylark 320
```

3 Data Cleaning & Encoding

plymouth satellite

amc rebel sst

ford torino

- Drop irrelevant columns (car_name)
- Convert and encode origin

2

3

4

• Replace? with NaN, fill with median

3.1 Drop car name as it's not a useful feature

```
[3]: # Drop car_name as it's not a useful feature data = data.drop(['car_name'], axis=1)
```

3.2 Convert 'origin' to categorical labels

```
[4]: # Convert 'origin' to categorical labels data['origin'] = data['origin'].replace({1: 'america', 2: 'europe', 3: 'asia'})
```

3.3 One-hot encode the 'origin' column

```
[5]: # One-hot encode the 'origin' column
data = pd.get_dummies(data, columns=['origin'],dtype=int)
```

3.4 Replace '?' with NaN and then fill missing values with median

```
[6]: # Step 1: Replace '?' with NaN (if applicable)
data = data.replace('?', np.nan)

# Step 2: Convert all columns to numeric where possible
data = data.apply(pd.to_numeric, errors='coerce')

# Step 3: Select only numeric columns
numeric_cols = data.select_dtypes(include=[np.number]).columns

# Step 4: Fill missing values in numeric columns with the median
data[numeric_cols] = data[numeric_cols].apply(lambda x: x.fillna(x.median()))
```

```
[7]: data.head()
```

```
[7]:
        mpg cyl
                  disp
                          hp
                                             car_type origin_america
                                wt
                                     acc yr
    0
      18.0
              8 307.0
                       130.0 3504 12.0
                                        70
                                                    0
                                                                   1
    1 15.0
              8 350.0
                       165.0 3693 11.5 70
                                                    0
                                                                   1
    2 18.0
              8 318.0
                              3436 11.0 70
                                                    0
                                                                   1
                        150.0
    3 16.0
              8 304.0
                       150.0 3433 12.0 70
                                                    0
                                                                   1
    4 17.0
              8 302.0 140.0 3449 10.5 70
                                                    0
                                                                   1
```

```
origin_asia origin_europe
0 0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
```

4 Feature and Target Separation

```
[8]: X = data.drop(['mpg'], axis=1) # Independent Variables
y = data[['mpg']] # Dependent Variable
```

5 Scaling

Scale columns so none dominate (e.g., weight vs hp)

```
[9]: # Scale the data
X_s = preprocessing.scale(X)
X_s = pd.DataFrame(X_s, columns=X.columns)
```

```
[10]: X_s
```

```
[10]:
                         disp
                                                                   yr car_type \
                cyl
                                     hp
                                               wt
                                                        acc
           1.498191 1.090604 0.673118 0.630870 -1.295498 -1.627426 -1.062235
      1
           1.498191
                     1.503514 1.589958
                                         0.854333 -1.477038 -1.627426 -1.062235
      2
           1.498191 1.196232 1.197027 0.550470 -1.658577 -1.627426 -1.062235
      3
                             1.197027 0.546923 -1.295498 -1.627426 -1.062235
           1.498191 1.061796
           1.498191 1.042591 0.935072 0.565841 -1.840117 -1.627426 -1.062235
                                                             1.621983 0.941412
      393 -0.856321 -0.513026 -0.479482 -0.213324 0.011586
      394 -0.856321 -0.925936 -1.370127 -0.993671 3.279296
                                                             1.621983
                                                                       0.941412
      395 -0.856321 -0.561039 -0.531873 -0.798585 -1.440730
                                                             1.621983
                                                                       0.941412
      396 -0.856321 -0.705077 -0.662850 -0.408411 1.100822
                                                             1.621983 0.941412
      397 -0.856321 -0.714680 -0.584264 -0.296088 1.391285
                                                             1.621983 0.941412
           origin_america origin_asia origin_europe
      0
                 0.773559
                             -0.497643
                                            -0.461968
      1
                 0.773559
                             -0.497643
                                            -0.461968
      2
                 0.773559
                             -0.497643
                                            -0.461968
      3
                 0.773559
                             -0.497643
                                            -0.461968
      4
                 0.773559
                             -0.497643
                                            -0.461968
      393
                 0.773559
                             -0.497643
                                            -0.461968
      394
                -1.292726
                             -0.497643
                                             2.164651
      395
                 0.773559
                             -0.497643
                                            -0.461968
      396
                 0.773559
                             -0.497643
                                            -0.461968
      397
                 0.773559
                             -0.497643
                                            -0.461968
```

[398 rows x 10 columns]

```
[11]: y_s = preprocessing.scale(y)
y_s = pd.DataFrame(y_s, columns=y.columns)
```

```
[12]: y_s
```

```
[12]:
                mpg
          -0.706439
      0
         -1.090751
      1
      2
         -0.706439
      3
          -0.962647
          -0.834543
      393 0.446497
      394 2.624265
      395 1.087017
      396 0.574601
      397 0.958913
      [398 rows x 1 columns]
```

6 Train test split

70% training, 30% testing for validation

```
[13]: X_train, X_test, y_train, y_test = train_test_split(X_s, y_s, test_size=0.3,_u \( \text{-grandom_state} = 1 \)
```

7 Train a Simple Linear Regression Model

Uses all features directly

```
[14]: regression_model = LinearRegression()
    regression_model.fit(X_train, y_train)

# Print coefficients and intercept
    for idx, col_name in enumerate(X_train.columns):
        print(f"The coefficient for {col_name} is {regression_model.coef_[0][idx]}")

    print("Intercept:", regression_model.intercept_[0])
```

```
The coefficient for cyl is 0.321022385691611
The coefficient for disp is 0.32483430918483897
The coefficient for hp is -0.22916950059437569
The coefficient for wt is -0.7112101905072298
The coefficient for acc is 0.014713682764191237
The coefficient for yr is 0.3755811949510748
The coefficient for car_type is 0.3814769484233099
The coefficient for origin_america is -0.07472247547584178
The coefficient for origin_asia is 0.044515252035677896
The coefficient for origin_europe is 0.04834854953945386
Intercept: 0.019284116103639764
```

8 Ridge Regression (L2 Regularization)

Shrinks coefficients to control overfitting

9 Lasso Regression (L1 Regularization)

Drops unnecessary features by zeroing out coefficients

10 Tips

- Use R² when starting
- Use Adjusted R² when comparing models with different number of features
- Use RMSE (or MAE) to see real prediction error
- Use visuals (like scatter plots & residual plots) to validate behavior

11 R² Score Comparison

 ${\bf R^2}$ (Coefficient of Determination) tells us how much variation in the target (e.g. mpg) is explained by the model.

- $R^2 = 1$: Perfect prediction
- $R^2 = 0$: Model explains nothing
- $R^2 < 0$: Worse than just predicting the mean
- Ideal range: Closer to 1 is better

```
[17]: print("Linear Train R2:", regression_model.score(X_train, y_train))
    print("Linear Test R2:", regression_model.score(X_test, y_test))

print("Ridge Train R2:", ridge_model.score(X_train, y_train))
    print("Ridge Test R2:", ridge_model.score(X_test, y_test))

print("Lasso Train R2:", lasso_model.score(X_train, y_train))
    print("Lasso Test R2:", lasso_model.score(X_test, y_test))
```

Linear Train R^2 : 0.8343770256960538 Linear Test R^2 : 0.8513421387780066 Ridge Train R^2 : 0.8343617931312616 Ridge Test R^2 : 0.8518882171608506 Lasso Train R^2 : 0.7938010766228453 Lasso Test R^2 : 0.8375229615977083

11.1 Interpretation:

- All models do well ($R^2 > 0.79$).
- Ridge gives the best generalization.
- Lasso is slightly less accurate, but it simplifies the model by eliminating less useful features.

12 Adjusted R² Using statsmodels (Like in R)

Adjusted R^2 improves over plain R^2 by considering how many predictors you're using. It penalizes unnecessary features.

- Adjusted $R^2 = 1 \rightarrow \text{Perfect prediction (just like R}^2)$
- Adjusted $R^2 < R^2 \to \text{Penalizes too many features}$
- Adjusted $R^2 < 0 \rightarrow$ Model likely overfits or uses irrelevant features
- Best for comparing models with different numbers of predictors
- Closer to 1 is better just like R², but more honest!

View summary print(ols1.summary())

OLS Regression Results									
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Tue, 1	Least Squares Tue, 15 Jul 2025 13:30:17 278 268 9 nonrobust		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.834 0.829 150.0 3.12e-99 -146.89 313.8 350.1			
0.975]	coef			P> t	[0.025				
Intercept 0.069	0.0193	0.025	0.765	0.445	-0.030				
cyl 0.542	0.3210	0.112	2.856	0.005	0.100				
disp 0.576	0.3248	0.128	2.544	0.012	0.073				
hp -0.074	-0.2292	0.079	-2.915	0.004	-0.384				
wt -0.539	-0.7112	0.088	-8.118	0.000	-0.884				
acc 0.092	0.0147	0.039	0.373	0.709	-0.063				
yr 0.432	0.3756	0.029	13.088	0.000	0.319				
<pre>car_type 0.513</pre>	0.3815	0.067	5.728	0.000	0.250				
origin_america -0.035	-0.0747	0.020	-3.723	0.000	-0.114				
origin_europe 0.090	0.0483	0.021	2.270	0.024	0.006				
origin_asia 0.085	0.0445	0.020	2.175	0.031	0.004				
Omnibus: Prob(Omnibus): Skew: Kurtosis:		22.678 0.000 0.513 4.438	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		2.105 36.139 1.42e-08 1.59e+16				

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 6.14e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

12.1 Adjusted R² from statsmodels:

R-squared: 0.834 Adj. R-squared: 0.829

- Close values \rightarrow most features are useful
- If Adjusted R² was much lower than R², it would mean too many unhelpful features

13 Root Mean Squared Error (RMSE)

RMSE shows the average prediction error in the same units as the target variable.

- RMSE $\geq 0 \rightarrow$ Cannot be negative
- RMSE = $0 \rightarrow \text{Perfect prediction (no error)}$
- The **lower**, the better
- Same unit as the predicted variable (e.g., mpg, price, etc.)
 Example: RMSE = 2.5 → on average, your predictions are off by 2.5 units

```
[19]: mse = np.mean((regression_model.predict(X_test) - y_test) ** 2)
import math
rmse = math.sqrt(mse)
print("Root Mean Squared Error:", rmse)
```

Root Mean Squared Error: 0.37766934254087847

Very low RMSE! Your model is off by just ± 0.38 on average when predicting mpg.

14 Residual Plot – Check for Patterns

Why plot it?

- To check if the model is missing any patterns
- A good residual plot has no shape it looks random

Our plots look random \rightarrow model fits well

```
[20]: fig = plt.figure(figsize=(10, 6))
sns.residplot(x=X_test['hp'], y=y_test['mpg'], color='green', lowess=True)
```

```
fig = plt.figure(figsize=(10, 6))
sns.residplot(x=X_test['acc'], y=y_test['mpg'], color='green', lowess=True)
```

[20]: <Axes: xlabel='acc', ylabel='mpg'>

15 Prediction vs Actual – Visualization

```
[21]: y_pred = regression_model.predict(X_test)

plt.figure(figsize=(8, 5))
 plt.scatter(y_test['mpg'], y_pred)
 plt.xlabel("Actual MPG")
 plt.ylabel("Predicted MPG")
 plt.title("Actual vs Predicted MPG")
 plt.show()
```


This plot compares:

Actual mpg values vs predicted mpg

- A good model will show points clustered around the diagonal line
- Your plot shows this predictions are close to real-world values

16 Final Summary

• Linear Regression is simple and accurate, but it may overfit when the model becomes too complex or when irrelevant features are included.

- Ridge Regression (L2) is the best performer in this case it shrinks coefficients slightly to prevent overfitting while maintaining good accuracy and generalization.
- Lasso Regression (L1) is slightly less accurate but more interpretable it can automatically remove weak or unnecessary features by setting their coefficients to zero.
- Adjusted R² helps evaluate model quality more fairly when you have many features it penalizes complexity.
- RMSE (Root Mean Squared Error) tells how far your predictions are from actual values
 — lower RMSE is better.
- Residual and Scatter Plots help visualize errors and check how well your model fits unseen data.

16.1 Recommendation:

Use a combination of \mathbb{R}^2 , Adjusted \mathbb{R}^2 , RMSE, and visual plots to compare and select the most reliable model — not just raw accuracy.

In this case:

Ridge Regression strikes the best balance between accuracy, simplicity, and generalization.