Lecture 9.

Direct Datagram Forwarding:

Address Resolution Protocol (ARP)

Giuseppe Bianchi =

Manual mapping

→A possibility, indeed!!

- ⇒Nothing contrary, in principle
 - →actually done in X.25, ISDN (do not support broadcast)
- ⇒ Simply keep in every host a mapping between IP address and hardware address for every IP device connected to the considered network

→ drawbacks

- ⇒tedious
- ⇒error prone
- ⇒requires manual updating
 - →e.g. when attaching a new PC, must touch all others...

==== Giuseppe Bianchi =

Problem statement

- →Routing decision for packet X has two possible outcomes:
 - ⇒You are arrived to the final network: go to host X
 - ⇒You are not arrived to the final network: go through router interface Y
- →In both cases we have an IP address on THIS network. How can we send data to the interface?
- → Need to use physical network facilities!

==== Giuseppe Bianchi ==

ARP

- → Dynamic mapping
 - ⇒not a concern for application & user
 - ⇒not a concern for system administrator!
- →Any network layer protocol
 - ⇒not IP-specific
- → supported protocol in datalink layer
 - ⇒not a datalink layer protocol !!!!
- → Need datalink with broadcasting capability
 - $\mathop{\Rightarrow} \text{e.g.}$ ethernet shared bus

==== Giuseppe Bianchi ==

Reaching a physical host

- → IP addresses only make sense to TCPIP protocol suite
- → physical networks have their own hardware address
 - \Leftrightarrow e.g. 48 bits Ethernet address, 16 or 48 bits Token Ring, 16 or 48 bit FDDI, ...
 - ⇒ datalink layers may provide the basis for several network layers, not only IP!

Address Resolution Protocol RFC 826

Here described for Ethernet, but more general: designed for any datalink with broadcast capabilities

Giuseppe Bianchi =

ARP idea 131.175.15.8 131.175.15.12 ???? Not me! | It's me! I have 0:0:a2:32:5a:3 | Who has IP address | 131.175.15.124 | Yes me! I have 0:0:a2:32:5a:3 | Send broadcast request | → receive unicast response | Giuseppe Bianchi | | Giuseppe Bianchi | | |

1

Gratuitous ARP

- →ARP request issued by an IP address and addressed to the same IP address!!
 - ⇒Clearly nobody else than ME can answer!
 - ⇒WHY asking the network which MAC address do I have???
- → Two main reasons:
 - ⇒ determine if another host is configured with the same IP address
 - →in this case respond occurs, and MAC address of duplicated IP address is known
 - $\mathrel{\mathrel{\Rightarrow}} \mathsf{Use}$ gratuitous ARP when just changed hardware address
 - →all other hosts update their cache entries!
 - →A problem is that, despite specified in RFC, not all ARP cache implementations operate as described....

Giuseppe Bianchi =

The problem

- →Bootstrapping a diskless terminal
 - ⇒this was the original problem in the 70s and 80s
- → Reverse ARP [RFC903]
 - ⇒a way to obtain an IP address starting from MAC address
- → Today problem: dynamic IP address assignment
 - \Rightarrow limited pool of addresses assigned only when needed
- → RARP not sufficiently general for modern usage
 - ⇒BOOTP (Bootstrap Protocol RFC 951): significant changes to RARP (a different approach)
 - ⇒ DHCP (Dynamic Host Configuration Protocol RFC 1541): extends and replaces BOOTP

Giuseppe Bianchi =

ARP: not only this mechanism!

- →Described mechanism for broadcast networks (e.g. based on shared media)
- →Non applicable for non broadcast networks
 - ⇒in this case OTHER ARP protocols are used
 - →e.g. distributed ARP servers
 - →e.g. algorithms to map IP address in network address

==== Giuseppe Bianchi =

Getting an IP address:

Reverse Address Resolution Protocol (RARP)

=== Giuseppe Bianchi =

RARP problems

→ Network traffic

- ⇒ for reliability, multiple RARP servers need to be configured on the same Ethernet
 - →to allow bootstrap of terminals even when one server is
- ⇒But this implies that ALL servers simultaneously respond to RARP request
 - →contention on the Ethernet occurs

→RARP requests not forwarded by routers

⇒being hardware level broadcasts...

==== Giuseppe Bianchi =

BOOTP parameters exchange

→ Many more parameters

- ⇒client IP address (when static IP is assigned)
- ⇒your IP address (when dynamic server assignment)
- ⇒gateway IP address (bootp relay agent router IP)
- ⇒server hostname
- ⇒boot filename

→ Fundamental: vendor-specific information field (64 bytes)

- ⇒ seems a lot of space: not true!
- ⇒DHCP uses a 312 vendor-specific field!

Giuseppe Bianchi =

RARP fundamental limit

→Allows only to retrieve the IP address information

- ⇒ and what about all the remaining full set of TCPIP configuration parameters???
 - →Netmask?
 - →name of servers, proxies, etc?
 - →other proprietary/vendor/ISP-specific info?

→This is the main reason that has driven to engineer and use BOOTP and DHCP

==== Giuseppe Bianchi =

Vendor specific information format allows general information exchange

Tag Len 1 byte 1 byte

Parameter exchanged

→ E.g.: subnet mask:

⇒ tag=1, len=4, parameter=32 bit subnet mask

→ e.g.: time offset:

⇒tag=2, len=4, parameter=time (seconds after midnight, jan 1 1900 UTC)

→ e.g. gateway (variable item)

⇒tag=3, len=N, list of gateway IPaddr (first preferred)

→ e.g. DNS server (tag 6)

==== Giuseppe Bianchi =

BOOTP/DHCP approach

→ Requests/replies encapsulated in UDP datagrams

- \Rightarrow may cross routers
- \Rightarrow no more dependent on physical medium

→request addressing:

- ⇒ destination IP = 255.255.255.255
- ⇒source IP = 0.0.0.0
- ⇒destination port (BOOTP): 67
- ⇒source port (BOOTP): 68

→router crossing:

- ⇒router configured as BOOTP relay agent
- ⇒forwards broadcast UDP requests with destination port 67

Giuseppe Bianchi