

# Space-X First Stage Reuse Rate

Brandon 03-25-2023

# OUTLINE



- Executive Summary
- Introduction
- Methodology
- Results
  - Visualization Charts
  - Dashboard
- Discussion
  - Findings & Implications
- Conclusion
- Appendix

## **EXECUTIVE SUMMARY**



- Important Cases of A Larger Success Margin
  - Payload between 2500 and 4000 kg
  - KSC LC-39A Launch Site with a 76.9% Success Rate
  - Time: as SpaceX has aged it has improved its chances dramatically, the first three years saw no success.
- The Booster Type May Play A Role In Success
- Two Major Keys To Cost Savings.
  - Land Transportation i.e. Train or Highway
  - Near Sea, presumably to reacquire wreckage and or a successfully landed rocket.
- Distance From Cities is not close

# INTRODUCTION



- Can information be gleamed about the chances of a successful landing.
- What factors contribute to a successful landing
- Under what circumstances does a successful landing take place
- Are there any lessons that can be learned by SpaceX to help SpaceY progress more quickly/efficiently

# **METHODOLOGY**



- All data sourced came from the SpaceX Api via Skills Network or through Scraping Wikipedia
- Data Cleansing and Processing took place in Jupyter Notebook using a variety of packages.
- Data Visualizations were produced using Plotly/Dash, Seaborn, and Matplotlib
- Data Analysis was conducted using a number of Algorithms until the best results were found i.e.
  - Logistic Regression
  - Decision Tree
  - Support Vector Machine
  - K Nearest Neighbors ++ seems to be the best model

Optimal Parameters Were Found Using GridSearchCV For Each



# **RESULTS**



As Can Be Seen Here:

The Best Model: KNN

Could quite accurately determine a landing but false positives were abundant and essentially means you would have a 50/50 chance of accurately predicting a Failure. However, Landings seem quite easy to predict otherwise and the final result was an 83su[% chance of being correct. The failures of this model can be mitigated using the information further included in this presentation.

# **TRENDS**

#### Success By Year



#### Success Failure Year

### Failures By Year



# Successful Landing Trends

## **Findings**

- Since 2017 Higher % Successes
- More Fails than Successes Overall
- Successes are dependent on a number of factors

#### **Implications**

- Something Changed Here
- Starting SpaceY Will Probably Start In Failure To Some Extent
- Factors That Contribute To Success Should Be Optimized and Prioritized

# Best Payload Criterium



As Discussed Before, different payload weights 'x-axis' are seemingly a strong contributor to success This Graph Shows Only Those Launch Sites From KSC LC-39A as it too has a high success rate.

# All Weights



In Contrast This Graph Shows All Weights and All Launch Sites. Seemingly Launch Site Is A Stronger Indicator, But The Payload Has A Sweet Spot: Roughly 2000kg -> 6000kg Overall.

# Launch Site KSC LC-39A Success Rate

Pie Chart



Launch Site KSC LC-39A shows a 76.9% chance of success, not accounting for load.

## Launch Site KSC CCAFS LC-40 Success Rate

Pie Chart



In Contras KSC CCAFS LC-40 shows about the opposite in terms of odds.

# Overall Successes By Landing

Rank the count of successful landing\_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

```
%sql
SELECT COUNT("Landing Outcome") as success count, "Landing Outcome" FROM spacex
WHERE "Date" BETWEEN '04-06-2010' AND '20-03-2017'
AND "Landing Outcome" LIKE '%Success%'
GROUP BY "Landing Outcome"
ORDER BY success count DESC
```

3 rows affected.

|   | success_count | Landing _Outcome     |
|---|---------------|----------------------|
| 0 | 20            | Success              |
| 1 | 8             | Success (drone ship) |
| 2 | 6             | Success (ground pad) |

We Can See Here All The Different Types Of Landings Given And How Many Each Has Provided A Successful Landing.

# Best Booster Type

|    | Booster Version | class |
|----|-----------------|-------|
| 0  | F9 B4 B1039.2   | 0     |
| 1  | F9 B4 B1040.2   | 0     |
| 2  | F9 B4 B1041.2   | 0     |
| 3  | F9 B4 B1043.2   | 0     |
| 4  | F9 B4 B1039.1   | 1     |
| 5  | F9 B4 B1040.1   | 1     |
| 6  | F9 B4 B1041.1   | 1     |
| 7  | F9 B4 B1042.1   | 1     |
| 8  | F9 B4 B1043.1   | 1     |
| 9  | F9 B4 B1044     | 0     |
| 10 | F9 B4 B1045.1   | 1     |
| 11 | F9 B5 B1046.1   | 1     |
| 12 | F9 FT B1021.2   | 1     |
| 13 | F9 FT B1029.2   | 1     |
| 14 | F9 FT B1031.2   | 1     |
| 15 | F9 FT B1032.2   | 0     |
| 16 | F9 FT B1035.2   | 1     |
| 17 | F9 FT B1036.2   | 0     |
| 18 | F9 FT B1038.2   | 0     |
| 19 | F9 FT B1019     | 1     |
| 20 | F9 FT B1020     | 0     |
| 21 | F9 FT B1021.1   | 1     |
| 22 | F9 FT B1022     | 1     |
| 23 | F9 FT B1023.1   | 1     |
| 24 | F9 FT B1024     | 0     |
| 25 | F9 FT B1025.1   | 1     |
| 26 | F9 FT B1026     | 1     |
| 27 | F9 FT B1029.1   | 1     |
| 28 | F9 FT B1030     | 0     |
| 29 | F9 FT B1031.1   | 1     |
| 30 | F9 FT B1032.1   | 1     |
| 31 | F9 FT B1034     | 0     |
| 32 | F9 FT B1035.1   | 1     |
| 33 | F9 FT B1036.1   | 1     |
| 34 | F9 FT B1037     | 0     |

Class is a representation of success or failure:

1 = Success

0 = Failure

The Two Best Booster Types **B4** and **FT**:

FT has a Success Rate of 16/24 = 66.66R%

**B4** has a Success Rate of 6/11 = 54.54R%

# OVERALL FINDINGS & IMPLICATIONS

## **Findings**

 At Site KSC LC-39A With 2500kg > Payload < 5500kg Has Never Failed.

 KSC LC-39A & CCAFS LC-40 both have a high absolute number of successes. (10) and (7) respectively

#### **Implications**

 Specifics reasons should be learned to determine how to take advantage of these variables.

 These Locations and subsequent landings should be considered for future prospects

# CONCLUSION



- Emulate Launch Sites
- Emulate Payloads
- Emulate Booster Types

#### **Final Statements:**

- Research is needed to learn exactly why certain launch sites lend themselves to better results.
- The end goal should be to create a niche for SpaceY using the information herein and after the above mentioned recommendation, thus becoming competetive at a substantially lesser startup cost.

# **APPENDIX**



SVM Did Equally Well In Prediction



Chart of Squared Mean of (Success - Failure) of the charts shown earlier.



As Described, here is an example of a Launch Site Near the Ocean, Near a Highway as well as a railroad in top right corner. There are No Cities nearby, so a bit remote.

Thanks To IBM For Providing And Mostly Curing This Data:)