

Indian Institute of Information Technology, Design and Manufacturing, Jabalpur

CS 3011: Artificial Intelligence

PDPM

Knowledge-Based Agents and Logic

Instructors: Dr. Durgesh Singh

CSE Discipline, PDPM IIITDM, Jabalpur -482005

First Order Logic

Limitation of Propositional Logic

P: All dogs are faithful

Q: Tommy is a dog

C: Tommy is faithful

We cannot infer this in propositional logic

- Problem of infinite model
- propositional logic can deal with only a finite number of propositions
- for example, If there are only dogs: Tommy, Jimmy, Laika then I could have written such that T: Tommy is faithful, J: Jimmy is faithful, L: Laika is faithful then all dogs are faithful will be $T \wedge J \wedge L$.

Example

- Propositional logic lacks the expressive power to concisely describe an environment with many objects.
- For example, we were forced to write a separate rule about breezes and pits for each square, such as $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$

 $R_3: \quad B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$.

- In English, on the other hand, it seems easy enough to say, once and for all, "Squares adjacent to pits are breezy."
- In First-order logic,

 $\forall s \ Breezy(s) \Leftrightarrow \exists r \ Adjacent(r,s) \land Pit(r)$

First-Order Logic

- First-Order logic or Predicate Logic is a generalization of Propositional Logic and allows us to express and infer arguments in infinite models like
 - All man are mortal
 - Some birds cannot fly

Syntax of First-order Logic

```
Sentence → AtomicSentence | ComplexSentence
           AtomicSentence \rightarrow Predicate | Predicate(Term,...) | Term = Term
          ComplexSentence \rightarrow (Sentence)
                                     ¬ Sentence
                                     Sentence ∧ Sentence
                                     Sentence ∨ Sentence
                                     Sentence ⇒ Sentence
                                     Sentence \Leftrightarrow Sentence
                                     Quantifier Variable,... Sentence
                        Term \rightarrow Function(Term,...)
                                     Constant
                                     Variable
                  Quantifier \rightarrow \forall \mid \exists
                   Constant \rightarrow A \mid X_1 \mid John \mid \cdots
                    Variable \rightarrow a \mid x \mid s \mid \cdots
                   Predicate → True | False | After | Loves | Raining | · · ·
                   Function → Mother | LeftLeg | · · ·
OPERATOR PRECEDENCE : \neg,=,\wedge,\vee,\Rightarrow,\Leftrightarrow
```

First-order logic

- First-order logic (FOL) models the world in terms of
 - Objects (term), which are things with individual identities
 - Properties of objects that distinguish them from other objects
 - Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one "value" for any given "input"

Examples:

- Objects: Students, lectures, companies, cars ...
- Relations: bigger-than, outside, part-of, has-color, occurs-after, owns, visits, ...
- Properties: blue, even, large, ...
- Functions: father-of, best-friend, one-more-than ...

<u>User provides</u>

- Constant symbols, which represent individuals in the world
 - Tom
 - **3**
 - Green
- Function symbols, which map individuals to individuals
 - father-of(Tom) = John
 - color-of(Sky) = Blue
- Predicate symbols, which map individuals to truth values
 - greater(5,3); green(Grass); color(Grass, Green)

FOL Provides

Variable symbols

• E.g., x, y, foo

Connectives

■ Same as in PL: not (\neg) , and (\land) , or (\lor) , implies (\rightarrow) , if and only if (biconditional \leftrightarrow)

Quantifiers

- Universal ∀x
- Existential ∃x

Sentences are built from terms and atoms

- A term (denoting a real-world individual) is a constant symbol, a variable symbol, or an n-place function of n terms.
 x and f(x₁, ..., x_n) are terms, where each x_i is a term.
- A complex sentence is formed from atomic sentences connected by the logical connectives.
- A quantified sentence adds quantifiers \forall and \exists

 $(\forall x)P(x,y)$ has x bound as a universally quantified variable, but y is free

Examples

If x is a man then x is mortal

$$man(x) \rightarrow mortal(x)$$

- If n is a natural number, then n is either even or odd Natural(n) → even(n) V odd(n)
- All dogs are faithful $\forall x (dog(x) \rightarrow faithful(x))$
- All birds cannot fly $\exists x \text{ (bird (x) } \land \neg \text{fly (x))}$

Quantifiers

Universal quantification

• $(\forall x)P(x)$ means that P holds for **all** values of x in the domain associated with that variable

E.g.,
$$\forall x (dog(x) \rightarrow faithful(x))$$

Existential quantification

• $(\exists x)P(x)$ means that P holds for **some** value of x in the domain associated with that variable

E.g.,
$$(\exists x)$$
 (bird $(x) \land \neg fly(x)$)

Quantifiers

• Universal quantifiers are often used with "implies" to form "rules":

 $(\forall x)$ (student(x) \rightarrow smart(x)) means "All students are smart"

 Existential quantifiers are usually used with "and" to specify a list of properties about an individual:

 $(\exists x)$ (student(x) \land smart(x))means "There is a student who is smart"

Quantifier Scope

- Switching the order of universal quantifiers does not change the meaning:
 - $(\forall x)(\forall y)P(x,y) \longleftrightarrow (\forall y)(\forall x) P(x,y)$
- Similarly, you can switch the order of existential quantifiers:
 - $(\exists x)(\exists y)P(x,y) \leftrightarrow (\exists y)(\exists x)P(x,y)$
- Switching the order of universal and existential *does* change meaning:
 - There is a person who likes everyone in the world: $(\exists x)(\forall y)$ likes(x,y)
 - Everyone in the world is liked by at least one person: $(\forall y)(\exists x)$ likes(x,y)

Connections between All and Exists

We can relate sentences involving \forall and \exists using De Morgan's laws:

$$(\forall x) \neg P(x) \longleftrightarrow \neg(\exists x) P(x)$$
$$\neg(\forall x) P(x) \longleftrightarrow (\exists x) \neg P(x)$$
$$(\forall x) P(x) \longleftrightarrow \neg(\exists x) \neg P(x)$$
$$(\exists x) P(x) \longleftrightarrow \neg(\forall x) \neg P(x)$$

Inference in First Order Logic

Inference Rules in FOL

Substitution: SUBST(θ , α) denote the result of applying the substitution θ to the sentence α .

• Inference rules for quantifier:

- Universal Elimination
- Existential Elimination/ Skolemization
- Existential Introduction

Universal Elimination/Instantiation

• we can infer any sentence P(c) by substituting a ground term c (a constant within domain x) from $\forall x P(x)$.

e.g., ∀ x Likes(x, apple)
substituting x by Tom gives
Likes(Tom, apple)

Existential Elimination/Instantiation

- Replace an existentially quantified variable with a single new constant symbol.
- The constant symbol that does not appear elsewhere in the knowledge base.
 - The new name is called a Skolem constant.

e.g., \exists x Likes(x, apple)

substituting x by Person gives

Likes(Person, apple)

Existential introduction

Likes(Tom, apple)

Can be written as

∃x Likes(x, apple)

Unification

 Unification is the process of finding a substitution that makes two atomic sentences identical

```
e.g.,

Unify(Prime(7), Prime(x)) = (x/7)

Unify(Divides(49,x), Divides(y,7)) = (x/7, y/49)
```

Example Knowledge Base (EKB)

- If a perfect square is divisible by a prime number, then it is also divisible by square of that prime number.
- Every perfect square is divisible by some prime.
- 36 is a perfect square.
- Does there exist a prime q such that square of q divides 36?

[Use inference rules]

Resolution

Full first-order version:

$$\frac{\ell_1\vee\dots\vee\ell_k, \qquad m_1\vee\dots\vee m_n}{(\ell_1\vee\dots\vee\ell_{i-1}\vee\ell_{i+1}\vee\dots\vee\ell_k\vee m_1\vee\dots\vee m_{j-1}\vee m_{j+1}\vee\dots\vee m_n)\theta}$$
 where $\mathrm{Unify}(\ell_i, \blacksquare m_j) = \theta$.

For example,

$$\frac{\neg Rich(x) \lor Unhappy(x)}{Rich(Ken)}$$
$$\frac{Unhappy(Ken)}{}$$

with
$$\theta = \{x/Ken\}$$

Apply resolution steps to $CNF(KB \wedge \neg \alpha)$; complete for FOL

Example: Conversion to CNF

Everyone who loves all animals is loved by someone:

$$\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$$

1. Eliminate biconditionals and implications

$$\forall x \ [\neg \forall y \ \neg Animal(y) \lor Loves(x,y)] \lor [\exists y \ Loves(y,x)]$$

2. Move \neg inwards: $\neg \forall x, p \equiv \exists x \neg p, \neg \exists x, p \equiv \forall x \neg p$:

```
\forall x \ [\exists y \ \neg(\neg Animal(y) \lor Loves(x,y))] \lor [\exists y \ Loves(y,x)] \\ \forall x \ [\exists y \ \neg\neg Animal(y) \land \neg Loves(x,y)] \lor [\exists y \ Loves(y,x)] \\ \forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists y \ Loves(y,x)]
```

Conversion to CNF

3. Standardize variables: each quantifier should use a different one

$$\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists z \ Loves(z,x)]$$

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

$$\forall x \ [Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

5. Drop universal quantifiers:

$$[Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

6. Distribute ∧ over ∨:

$$[Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]$$

Example

- All people who are graduating are happy
- All happy people are smiling
- Some one is graduating

Conclusion: some one is smiling

[Use Resolution algorithm]