Data Analysis 차량 데이터에 따른 연비 분석 이 한 길

STACKS

분석환경 Google colab

분석 언어 python

분석 도구 scikit

INDEX

분석 목표 설정

분석 목적 / 활용 데이터

2 데이터 준비

데이터 수집 및 데이터 전처리

3 데이터 분석

자동차 연비 예측을 위한 선형 회귀 분석 모델 구축 4 분석 결과 시각화

산점도, 선형 회귀 그래프로 시각화

분석 목표 설정 단계

- 차량별 스펙 데이터 활용
- 머신러닝 기반의 회귀 분석을 수행
- 항목별 연비에 미치는 영향을 확인

최종 분석결과로 차량 연비 예측

분석 데이터 조사와 선정

차량의 관성 주행 영향력

- ✔ 연비 산출시 배기량과 가속에 의한 엔진 회전수가 연관
- ✔ 차량 가속시 퓨얼 컷 오프(Fuel Cut Off) 구역 에 돌입하고 연비에 큰 영향

Fuel Cut Off: 가속에 의한 관성 주행 구간

출처: 한국에너지공단 수송에너지 자료

최종 데이터 선정

Model_year(연식), Acceleration(가속도 성능), Displacement(배기량), weight(무게), cylinders(실린더)

2. 데이터 준비

	•								
	Α	В	С	D	E	F	G	Н	I
1	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	car_name
2	18	8	307	130	3504	12	70	1	chevrolet chevelle malibu
3	15	8	350	165	3693	11.5	70	1	buick skylark 320
4	18	8	318	150	3436	11	70	1	plymouth satellite
5	16	8	304	150	3433	12	70	1	amc rebel sst
6	17	8	302	140	3449	10.5	70	1	ford torino
7	15	8	429	198	4341	10	70	1	ford galaxie 500
8	14	8	454	220	4354	9	70	1	chevrolet impala
9	14	8	440	215	4312	8.5	70	1	plymouth fury iii
10	14	8	455	225	4425	10	70	1	pontiac catalina
11	15	8	390	190	3850	8.5	70	1	amc ambassador dpl
12	15	8	383	170	3563	10	70	1	dodge challenger se
13	14	8	340	160	3609	8	70	1	plymouth 'cuda 340
14	15	8	400	150	3761	9.5	70	1	chevrolet monte carlo
15	14	8	455	225	3086	10	70	1	buick estate wagon (sw)
16	24	4	113	95	2372	15	70	3	toyota corona mark ii
17	22	6	198	95	2833	15.5	70	1	plymouth duster
18	18	6	199	97	2774	15.5	70	1	amc hornet

- 선정 데이터 확인
- 데이터 전처리

데이터 선별 후 조회

```
↑ ✔ ☞ 目 ☞ 記 章 :

data_df = data_df.drop(['car_name','origin','horsepower'],axis=1, inplace = False)

# drop 메서드를 axis=1(열을 기준으로 수행) // axis=0(행을 기준으로 수행)

# inplace = False로 설정하여 메서드 수행 후 원본은 유지하며 결과값만 산출

print('데이터셋 크기 : ', data_df.shape)
data_df.head()
```

3. 데이터 분석

사이킷런 선형회귀 분석

- 성능 측정을 위한 평가 지표인 mean_squared_error, r2_score 임포트
- test_size=0.3, train_test_split() → 데이터를 7:3 비율로 분할하여 학습 데이터와 평가 데이터로 설정

3. 데이터 분석 – 회귀식 확인


```
[] coef = pd.Series(data = np.round(lr.coef_,2), index = x.columns)
coef.sort_values(ascending = False)

model_year     0.76
acceleration     0.20
displacement     0.01
weight     -0.01
cylinders     -0.14
dtype: float64
```

사이킷런 최종 회귀식 산출

Ympg =

-0.14Xcylinders + 0.01Xdisplacement - 0.01Xweight + 0.20Xacceleration + 0.76Xmodel_year - 17.55

산점도 와 선형 그래프로 데이터 시각화

→ 독립변수 시각화 데이터로 개별 피처의 영향력 확인

분석 결론 , 연비 예측

- 시각화된 결과로 독립 변수5개에 대한 개별 연비 영향력 확인
- → 연식이 낮을 수록, 가속능력이 좋을수록 연비가 높으며, 이와 반대로 배기량, 무게, 실린더(기통)이 낮을수록 연비가 높다

```
C→ 연비를 예측할 차량의 정보를 입력해 주세요!
cylinders : 8
displacement : 350
weight : 3200
acceleration : 22
model_year : 99
이 자동차의 예상 연비(MPG)는 41.32입니다.
```

• 분석 모델을 통한 연비 예측