Paper Sharing Conference of CVPR'2019 Apr 2, 2019 @ Tsinghua

Snapshot Distillation: Teacher-Student Optimization in One Generation

Authors: Chenglin Yang, Lingxi Xie, Siyuan Qiao, Alan L. Yuille

Speaker: Lingxi Xie

Highlights

- What are we doing?
 - Generic network optimization
- Who can benefit from this work?
 - Any work related to network optimization
- Is this approach complicated?
 - No, it can be implemented with a few lines of code

- Introduction: Teacher-Student Optimization
- Why Teacher-Student Optimization Works?
- How to Accelerate Teacher-Student Optimization?
- Conclusion and Future Work

- Introduction: Teacher-Student Optimization
- Why Teacher-Student Optimization Works?
- How to Accelerate Teacher-Student Optimization?
- Conclusion and Future Work

Deep Learning and Network Optimization

- Two key components of a deep neural network
 - Backbone: AlexNet, VGGNet, GoogLeNet, ResNet, DenseNet, SENet, etc.
 - Loss function: cross-entropy, etc.
- · Mini-batch-based optimization in the context of deep learning

$$\mathcal{L}(\mathcal{B}; \theta) = \frac{1}{|\mathcal{B}|} \sum_{(\mathbf{x}_n, \mathbf{y}_n) \in \mathcal{B}} \{-\mathbf{y}_n^{\mathsf{T}} \ln \mathbf{F}(\mathbf{x}_n; \theta)\}$$

 \mathbf{x}_n : input image; \mathbf{y}_n : output label; \mathcal{B} : mini-batch;

 $F(\mathbf{x}_n; \theta)$: model; θ : parameters; $\mathcal{L}(\mathcal{B}; \theta)$: loss function

Teacher-Student Optimization

- In the early age, it was used to compress a neural network [KD]
 - Core idea: using a deeper (teacher) model to assist training a shallower (student) model

Teacher-Student Optimization (cont.)

- Since 2018, researchers started using this idea for training better models [BAN]
 - Teacher and student models are equally complex, but the student gets better trained

- Introduction: Teacher-Student Optimization
- Why Teacher-Student Optimization Works?
- How to Accelerate Teacher-Student Optimization?
- Conclusion and Future Work

Why Teacher-Student Optimization Works?

- A plausible explanation on why teacher-student optimization works
 - "Work": improving the performance of a model under the same complexity
 - Both KD and BAN explained it as a kind of "dark knowledge", which "carries information on the similarity between output categories"
- Our work [TT] discusses this problem in details, and develops a new way of enhancing such "dark knowledge"

[KD] **G. Hinton** *et al.*, Distilling the Knowledge in a Neural Network, *NIPS workshop*, 2014.

[BAN] **T. Furlanello** *et al.*, Born Again Neural Networks, *ICML*, 2018.

[TT] **C. Yang** *et al.*, Training Deep Neural Networks in Generations: A More Tolerant Teacher Educates Better Students, *AAAI*, 2019.

Part of Dark Knowledge is Secondary Information

- Secondary information
 - When an image (or any sample in general) is classified into a class, a small fraction of scores or probability is assigned to other classes – they deliver useful knowledge

All these images are labeled "sunglasses"

"croquet ball"

[TT] **C. Yang** *et al.*, Training Deep Neural Networks in Generations: A More Tolerant Teacher Educates Better Students, *AAAI*, 2019.

Part of Dark Knowledge is Secondary Information

- What is the best teacher?
 - A strict (one-hot) teacher? No!
 - A more tolerant teacher works better

	Top-1	Top-2	Top-3	Top-4	Train	Test
Gen #0	99.28	0.57	0.09	0.03	99.74	71.55
Gen #1	98.68	1.00	0.18	0.06	99.63	71.41
Gen #2	98.42	1.13	0.23	0.09	99.60	72.30
Gen #3	98.33	1.19	0.24	0.09	99.62	72.26
Gen #4	98.28	1.24	0.25	0.09	99.59	72.52

Confidence distribution (%) on top-4 classes, obtained in a born-again process (with 4 more generations). The dataset is CIFAR100, and the network is ResNet-110.

Confusion matrices of the first teacher model and the first student model (row: the ground-truth class, column: the 2nd highest class, yellow indicates large value).

[TT] **C. Yang** *et al.*, Training Deep Neural Networks in Generations: A More Tolerant Teacher Educates Better Students, *AAAI*, 2019.

How a "Tolerant Teacher" Works

- We deliberately reduce the confidence of the first teacher model
 - Original teacher optimization

$$\mathcal{L}(\mathcal{B}; \theta) = \frac{1}{|\mathcal{B}|} \sum_{(\mathbf{x}_n, \mathbf{y}_n) \in \mathcal{B}} \{-\mathbf{y}_n^{\mathrm{T}} \ln \mathbf{F}(\mathbf{x}_n; \theta)\}$$

Modified teacher optimization

$$\mathcal{L}(\mathcal{B}; \theta) = \frac{1}{|\mathcal{B}|} \sum_{(\mathbf{x}_n, \mathbf{y}_n) \in \mathcal{B}} \left\{ -\eta \cdot \mathbf{y}_n^{\mathrm{T}} \ln \mathbf{F}(\mathbf{x}_n; \theta) + (1 - \eta) \cdot \left[f_{a_1} - \frac{1}{K - 1} \sum_{k=2}^{K} f_{a_k} \right] \right\}$$

 η : mixing parameter; f_{a_k} : the k-th largest score

Results on CIFAR100

• 300 epochs per generation, 5 + 1 generations

	Gei	n #0	Gen #1	Gen #2	Ger	n #3	Gen #4	(Gen #5
Baseline (100 layers)	22.20	(22.89)	_	_		_	_		_
$\mathfrak{D}(0.6, 0.6)$	23.96	(25.00)	21.29 (21.34)	20.51 (21.59)	20.83	(20.99)	21.01 (21.53)	21.3	27 (21.61)
+Ensemble		_	20.20	18.38	3	17.79	17.37		17.25
$\mathfrak{D}(0.7, 0.6)$	22.98	(23.43)	21.24 (21.50)	21.48 (21.80)	20.94	(21.47)	21.51 (21.69)	21.8	87 (22.28)
+Ensemble		_	19.63	18.83		17.70	17.56		17.23
Baseline (190 layers)	17.22	(17.62)	_	_		_	_		_
$\mathfrak{D}(0.6, 0.6)$	18.87	(19.40)	17.42 (17.99)	17.26 (18.00)	17.13	(17.52)	17.24 (17.75)	17.0	O1 (17.22)
+Ensemble		_	16.83	15.94	:	15.43	15.18		15.21
$\mathfrak{D}(0.7, 0.6)$	18.63	(19.12)	17.44 (17.78)	16.72 (17.21)	16.89	(16.98)	17.39 (17.71)	17.5	24 (17.41)
+Ensemble		_	16.37	15.20		15.11	14.93		14.47
(Zhang et al. 2017b)		19.25	(Huang et al.	2017a)	17.40	(Han,	Kim, and Kim 20	017)	17.01
(Zhang et al. 2017a)		16.80	(Gastaldi 201	7)	15.85	(Furla	nello et al. 2018)		14.90

Results on ImageNet

- ResNet-18
- 90 epochs per generation
- 5 + 1 generations

	Gen	#0	Gen	n #1	Gen	ı #2	Ger	n #3	Gen	1 #4	Ger	n #5
Baseline	30.50	11.07	_	_	-	_	_	_	_	_	_	
$\mathfrak{D}(0.6, 0.6)$	32.52	11.23	30.28	10.23	30.12	10.15	29.92	10.25	29.77	10.19	29.60	10.11
+Ensemble	_	_	30.01	9.98	28.94	9.53	28.51	9.36	28.23	9.28	28.08	9.23

- Introduction: Teacher-Student Optimization
- Why Teacher-Student Optimization Works?
- How to Accelerate Teacher-Student Optimization?
- Conclusion and Future Work

How to Accelerate Teacher-Student Optimization?

- Conventional teacher-student optimization is too slow!
- How to solve this issue?
 - Finishing the entire teacher-student optimization within one generation!

A One-Generation Flowchart

Core idea: using a previous snapshot as the teacher

```
Input: training set \mathcal{D}, number of iterations L, training configurations \left\{\gamma_{l}, \lambda_{l}^{\mathrm{T}}, \lambda_{l}^{\mathrm{S}}, c_{l}\right\}_{l=1}^{L};

1 Initialize \boldsymbol{\theta}_{0};

2 for l=1,2,\ldots,L do

3 | Sample a mini-batch \mathcal{B}_{l} from \mathcal{D};

4 | Compute loss \mathcal{L}(\mathcal{B}_{l};\boldsymbol{\theta}_{l-1}) using Eqn (3);

5 | \boldsymbol{\theta}_{l} \leftarrow \boldsymbol{\theta}_{l-1} - \gamma_{l} \cdot \nabla_{\boldsymbol{\theta}_{l-1}} \mathcal{L}(\mathcal{B}_{l};\boldsymbol{\theta}_{l-1})

6 end

Return: \mathbb{M}: \mathbf{y} = \mathbf{f}(\mathbf{x}; \boldsymbol{\theta} = \boldsymbol{\theta}_{L}).
```

$$\mathcal{L}(\mathcal{B}_{l}; \boldsymbol{\theta}_{l-1}) = -\frac{1}{|\mathcal{B}_{l}|} \sum_{(\mathbf{x}_{n}, \mathbf{y}_{n}) \in \mathcal{B}_{l}} \left\{ \lambda_{l}^{S} \cdot \mathbf{y}_{n}^{\top} \ln \mathbf{f}(\mathbf{x}_{n}; \boldsymbol{\theta}_{l-1}) + \lambda_{l}^{T} \cdot \text{KL}[\mathbf{f}(\mathbf{x}_{n}; \boldsymbol{\theta}_{c_{l}}) \| \mathbf{f}(\mathbf{x}_{n}; \boldsymbol{\theta}_{l-1})] \right\}.$$

 λ_l : Adaptive weights of teacher (T) and student (S)

 γ_l : the learning rate

 c_l : the iteration number when the snapshot is taken

Principles and Solution

- Three principles
 - #1: high quality of the teacher model: a good teacher guarantees reliable supervision
 - #2: teacher and student shall be sufficiently different: otherwise, the impact of the teacher signal becomes rather weak
 - #3: secondary information: this is based on our previous observations
- Solution: cyclic, cosine-annealing learning-rates with asymmetric distillation
 - Each local minimum corresponds to a teacher (#1)
 - A jump in the learning rate guarantees sufficient difference (#2)
 - At each teacher signal, divide the *logits* by a temperature of T (#3)

Connections to Snapshot Ensemble (SE)

- Snapshot ensemble: training a single model with a few cycles of learning rate annealing, and obtaining good performance with the ensemble of multiple snapshots
- If we switch off teacher-student optimization, SD will degenerate to SE
- By adding teacher-student optimization, SD achieves better performance than SE in either single models or model ensemble

Results on CIFAR100

- 300 epochs
- 4 mini-generations

Backbone	Alg.	T	$\mathbb{M}_{\#L_1}$	$\mathbb{M}_{\#L_2}$	$\mathbb{M}_{\#L_3}$	$\mathbb{M}_{\#L_4}$	best	ensemble
ResNet20	BL	N/A	_	_	_	33.57	33.57	_
	SE	N/A	36.17	33.36	32.98	32.66	32.54	30.86
	SD	2	36.17	33.78	32.98	32.31	32.31	32.08
	SD	3	36.17	33.69	32.24	31.97	31.76	30.76
	BL	N/A	_	_	_	31.61	31.61	_
ResNet32	SE	N/A	33.78	32.15	31.41	30.74	30.51	28.93
RCSIACI32	SD	2	33.78	32.07	31.05	30.67	30.57	29.80
	SD	3	33.78	31.52	30.64	30.32	30.16	28.71
	BL	N/A	_	_	_	30.23	29.94	_
ResNet56	SE	N/A	32.85	31.60	30.45	29.68	29.55	27.93
Resnetso	SD	2	32.85	30.47	29.72	29.29	29.22	28.11
	SD	3	32.85	30.82	29.55	29.37	29.28	27.74
	BL	N/A	_	_	_	28.77	28.53	_
ResNet110	SE	N/A	31.89	29.81	29.07	28.27	28.09	26.45
Resident	SD	2	31.89	29.84	28.71	27.71	27.52	27.19
	SD	3	31.89	29.22	28.37	27.87	27.75	26.19
	BL	N/A	_	-	_	22.49	22.00	_
DenseNet100	SE	N/A	24.31	22.76	22.16	22.18	22.00	19.63
Densenet100	SD	2	24.31	23.10	22.06	21.78	21.59	20.27
	SD	3	24.31	23.19	21.60	21.17	21.17	19.71
DenseNet190	BL	N/A	_	-	_	16.82	16.69	_
	SE	N/A	18.98	18.12	16.95	16.84	16.70	15.70
	SD	2	18.98	17.48	16.32	18.02	16.06	15.72
	SD	3	18.98	17.67	16.95	18.65	16.33	15.92

Results on ImageNet and Beyond

- ImageNet
 - 90 epochs
 - 2 mini-generations
- PASCALVOCo₇ (det)
 - Faster R-CNN
- PASCALVOC12 (seg)
 - DeepLab-v3

Backbone	Alg.	$\mathbb{M}_{ eta}$	$ eq L_1$	$\mathbb{M}_{\#L_2}$			
Dackbone	Aig.	Top-1	Top-5	Top-1	Top-5		
ResNet101	BL	_	_	21.62	5.80		
ResNet101	SE	22.94	6.51	22.14	6.07		
ResNet101	SD	22.94	6.51	21.25	5.55		
ResNet152	BL	_	_	21.17	5.66		
ResNet152	SE	22.56	6.44	21.84	5.84		
ResNet152	SD	22.56	6.44	20.93	5.55		
Backbone		mAP @	2007	mIOU @ 2012			
ResNet152	2-BL	73.	.49	77.53			
ResNet152	2-SD	74.	.93	77.97			

- Introduction: Teacher-Student Optimization
- Why Teacher-Student Optimization Works?
- How to Accelerate Teacher-Student Optimization?
- Conclusion and Future Work

Conclusions and Future Work

- Teacher-student optimization is useful
 - Model compression and acceleration
 - Model optimization and regularization
- Teacher-student optimization needs to be better explained
 - Why it works: this is what we have done, but needs more exploration
- Teacher-student optimization can be associated with other methods
 - Acceleration: this is what we have done, but needs more exploration
 - Applications 1: incremental learning we have a submission to ICCV 2019
 - Applications 2: neural architecture search we have an ongoing work

Thanks

Questions, please?