Yitan Wang, Ph.D.

☑ yitanwang@ufl.edu

Education

2017 – 2021 Ph.D., University of Florida in Seismology and Geophysics.

2013 – 2014 M.Sc. University of Chicago in Geophysics.

Thesis title: Analysis of Seismic Signals within a Tabular Iceberg.

B.Sc.Nanjing University in Geochemistry.

Thesis title: P-wave Seismic Tomography Analysis in region of Weihe River Basin and its tectonic structure.

Research Publications

Journal Articles

- 1 孙晟, 王艺谭, 刘连文 Et al. (2016). 原地栖息真菌 talaromyces flavus 作用下不同粒径利蛇纹石的 风化作用研究. 岩石矿物学杂志, (2016 年 05), 885-892.
- MacAyeal, D. R., Wang, Y., & Okal, E. A. (2015). Ambient seismic, hydroacoustic, and flexural gravity wave noise on a tabular iceberg. *Journal of Geophysical Research: Earth Surface*, 120(2), 200–211.

Working Papers

- Wang, Y., Russo, R. M., Foster, D., Mueller, P., & Lin, Y. (2021). Exploration of the moho structure and density profile in western united states. Earth and Planetary Science Letters.
- Wang, Y., Russo, R. M., & Lin, Y. (2021). Using common conversion point stacking to explore the moho structure of western united states. Geophysical Journal International.

Conferences

- Wang, e. a., Yitan. (2020). Exploration of the moho structure and density profile in western united states.
- Wang, Y., & Russo, R. M. (2019). Using common conversion point stacking to explore the moho structure beneath the western united states.
- Wang, Y., & Russo, R. (2018). Using common conversion point stacking to explore upper mantle seismic discontinuities beneath the wyoming craton.
- Wang, Y., Okal, E., & MacAyeal, D. (2014). Ambient seismic noise correlation on iceberg c16, ross sea, antarctica.

Research Experiences

■ Using Decision Tree to Develop the Moho Structure in West U.s. 2020 -

> • Using single Decision Tree, Random Forest, and Adaboost to predict the Moho in West U.S.

2018 - 2020 Exploration of the Moho Structure and Density Profile in West United States

- Fully understand the History and Geology in the North American Continent, especially the Archean Cratons such as Wyoming and the successively accreted provinces like Mojave, Yavapai, and Mazatzal.
- Fully Understand and Proficiently use Receiver Functions (RFs) in the structure image
- Derived the Moho structure in Western U.S by Common Conversion Point stacking (CCP) and analyzed the uncertainty of CCP stacking image.
- Compare the ideal and actual P-SV Transmission coefficients and develop the method to generate lower crustal density in Western U.S.
- Analyze the uncertainty about the lower crustal density derived from the transmission coefficient.

■ Using Common Conversion Point Stacking to Explore the Moho Structure of 2018-2019 **Western United States**

- Fully understand the CCP stacking method and generate the Moho structure in Wester U.S.
- Use CCP stacking to image flat, antiform, synform, offset, slope, etc. layer models with actual station loci and evenly distribution of station loci.
- Analyze the image accuracy of CCP stacking derived from different structure models and the impact of the inhomogenous data distribution on the image.

01/2018-12/2018 Using CCP Stacking to Explore the 410 and 660 Discontinuity in North United

- Fully understand the P wave and S wave profile along with depth in West U.S.
- Use CCP stacking to find the discontinuity at 410 km and 660 km.
- We successively detected the 410 discontinuity from the west coast to longitude -95° in the latitude from 50° to 45°, but it disappeared after that. The discontinuity appeared even deeper than 410 km, around 450 to 500 km.
- We added moveout correction to CCP stacking method. The discontinuity moves up to 420 to 460 km. We did not find 660 discontinuity.

Research Experiences (continued)

09/2017-03/2018

- Use of Gravity Anomalies and Known Seismic Structure to Determine Locations of Anomalies Density Above the South America-Nazca Interplate Interface
 - Understand the geology in South America, especially Chile. Analyze the tectonic histories and compositions of basement terranes forming the composite South American forearc in the Maule and Illapel rupture regions
 - Analyze Bouguer and isostatic gravity anomalies in the Illapel and Maule rupture regions to identify areas of anomalously high density

2013-2015

- Analysis of Seismic Signals within a Tabular Iceberg
 - Use ambient noise in Seismograms to do cross-correlation to enhance the signal caused by Resonance. Fully understand the cross-correlation functions and the ambient noise in seismograms.
 - Separate different types of waves that propagate in ice and water, such as seismic waves, hydro-acoustic waves, etc.
 - Try to use ambient noise to study icebergs and expand the available data that can be used to study the iceberg structure.

2011-2013

- P-wave Seismic Tomography Analysis in Region of Weihe River Basin and its tectonic structure
 - Familiar with computer languages C and Fortran and uses the Fortran code to calculate P-wave seismic tomography and analyze anisotropy.
 - Understand the P-wave seismic tomography method and used it to analyze the underneath structure about 50 km depth in the Weihe River Basin region.
 - Try to image the anisotropy by using Fortran and Adobe Illustrator.

2011-2012

- Study the Weathering of Serpentine with Different Diameters under the Action of Talaromyces flavs
- Analyze the Feasibility and Economic Benefits of Carbon Dioxide Storage and Compression in Jinchuan Nickel Mine.

Skills

Languages Strong reading, writing and speaking competencies for English, Mandarin Chinese.

Coding Python, Matlab, C, Fortran, Bash Shell, GMT, SAC, Latex

Softwares Adobe Illustrator, Coral Draw, Photoshop