Digital Logic Design

Gate-Level Minimization

June 8, 2021 1

3-1 Introduction

Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.

3-2 The Map Method

- The complexity of the digital logic gates
 - □ The complexity of the algebraic expression
- Logic minimization
 - Algebraic approaches: lack specific rules
 - The Karnaugh map
 - A simple straight forward procedure
 - A pictorial form of a truth table
 - Applicable if the # of variables < 7
- A diagram made up of squares
 - □ Each square represents one minterm

Review of Boolean Function

Boolean function

- Sum of minterms
- Sum of products (or product of sum) in the simplest form
- A minimum number of terms
- A minimum number of literals
- The simplified expression may not be unique

Two-Variable Map

A two-variable map

- Four minterms
- x' = row 0; x = row 1
- y' = column 0; y = column 1
- A truth table in square diagram
- □ Fig. 3.2(a): $xy = m_3$
- □ Fig. 3.2(b): $x+y = x'y+xy'+xy = m_1+m_2+m_3$

Figure 3.1 Two-variable Map

Figure 3.2 Representation of functions in the map

A Three-variable Map

- A three-variable map
 - Eight minterms
 - The Gray code sequence
 - Any two adjacent squares in the map differ by only on variable
 - Primed in one square and unprimed in the other
 - \circ e.g., m_5 and m_7 can be simplified
 - $m_5 + m_7 = xy'z + xyz = xz(y'+y) = xz$

Figure 3.3 Three-variable Map

A Three-variable Map

 \square m_0 and m_2 (m_4 and m_6) are adjacent

$$m_0 + m_2 = x'y'z' + x'yz' = x'z'(y'+y) = x'z'$$

$$m_4 + m_6 = xy'z' + xyz' = xz'(y'+y) = xz'$$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

(a)

(b)

Z.

Fig. 3-3 Three-variable Map

- Example 3.1: simplify the Boolean function $F(x, y, z) = \Sigma(2, 3, 4, 5)$
 - \Box $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Figure 3.4 Map for Example 3.1, $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

- Example 3.2: simplify $F(x, y, z) = \Sigma(3, 4, 6, 7)$
 - \neg $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Figure 3.5 Map for Example 3-2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Four adjacent Squares

Consider four adjacent squares

- □ 2, 4, and 8 squares
- $m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz' = x'z'(y'+y) + xz'(y'+y) = x'z' + xz' = z'$
- $m_1 + m_3 + m_5 + m_7 = x'y'z + x'yz + xy'z + xyz = x'z(y'+y) + xz(y'+y) = x'z + xz = z$

				x	00	01	11	10
m_0	m_1	m_3	m_2	0	x'y'z'	x'y'z	x'yz	x'yz'
m_4	m_5	m_7	m_6	$x \begin{cases} 1 \end{cases}$	xy'z'	xy'z	xyz	xyz'
(a) (b)								

Figure 3.3 Three-variable Map

Example 3.3: simplify $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$ $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Figure 3.6 Map for Example 3-3, $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

- Example 3.4: let F = A'C + A'B + AB'C + BC
 - a) Express it in sum of minterms.
 - b) Find the minimal sum of products expression.

Ans:

$$F(A, B, C) = \Sigma(1, 2, 3, 5, 7) = C + A'B$$

Figure 3.7 Map for Example 3.4, A'C + A'B + AB'C + BC = C + A'B

3.3 Four-Variable Map

The map

- 16 minterms
- □ Combinations of 2, 4, 8, and 16 adjacent squares

Figure 3.8 Four-variable Map

9, 12, 13, 14)

Figure 3.9 Map for Example 3-5; $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$ June 8, 2021

14

Example 3-6: simplify F = A'B'C' + B'CD' + A'BCD' + AB'C'

Note: A'B'C'D' + A'B'CD' = A'B'D' AB'C'D' + AB'CD' = AB'D' A'B'D' + AB'D' = B'D'A'B'C' + AB'C' = B'C'

Figure 3.9 Map for Example 3-6; $A \mathcal{B}'C' + B\mathcal{C}D' + A\mathcal{B}\mathcal{C}\mathcal{D}' + A\mathcal{B}\mathcal{C}' + B\mathcal{C}D' + B\mathcal{C}' + B\mathcal{C}D'$

Prime Implicants

Prime Implicants

- All the minterms are covered.
- Minimize the number of terms.
- A prime implicant: a product term obtained by combining the maximum possible number of adjacent squares (combining all possible maximum numbers of squares).
- Essential P.I.: a minterm is covered by only one prime implicant.
- □ The essential P.I. must be included.

Prime Implicants

- Consider $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$
 - □ The simplified expression may not be unique
 - = F = BD + B'D' + CD + AD = BD + B'D' + CD + AB'
 - =BD+B'D'+B'C+AD=BD+B'D'+B'C+AB'

Figure 3.11 Simplification Using Prime Implicants ₁₇

3.4 Five-Variable Map

- Map for more than four variables becomes complicated
 - □ Five-variable map: two four-variable map (one on the top of the other).

Figure 3.12 Five-variable Map

■ Table 3.1 shows the relationship between the number of adjacent squares and the number of literals in the term.

Table 3.1The Relationship between the Number of Adjacent Squares and the Number of Literals in the Term

	Number of Adjacent Squares	Number of Literals in a Term in an <i>n</i> -variable Map			
K	2 ^k	n = 2	n = 3	n = 4	n = 5
0	1	2	3	4	5
1	2	1	2	3	4
2	4	0	1	2	3
3	8		0	1	2
4	16			0	1
5	32				0

■ Example 3.7: simplify $F = \Sigma(0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

$$F = A'B'E' + BD'E + ACE$$

3-5 Product of Sums Simplification

Approach #1

- □ Simplified *F'* in the form of sum of products
- \square Apply DeMorgan's theorem F = (F')'
- \Box F': sum of products \rightarrow F: product of sums

Approach #2: duality

- Combinations of maxterms (it was minterms)
- $M_0M_1 = (A+B+C+D)(A+B+C+D') = (A+B+C)+(DD') = A+B+C$

	CD			
AB \	00	01	11	10
00	M_0	M_1	M_3	M_2
01	M_4	M_5	M_7	M_6
11	M_{12}	M_{13}	M_{15}	M_{14}
10	M_8	M_9	M_{11}	M_{10}

■ Example 3.8: simplify $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$ into (a) sum-of-products form, and (b) product-of-sums form:

- a) $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$
- b) F' = AB + CD + BD'
 - » Apply DeMorgan's theorem; F=(A'+B')(C'+D')(B'+D)
 - » Or think in terms of maxterms

Figure 3.14 Map for Example 3.8, $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

Example 3.8 (cont.)

Gate implementation of the function of Example 3.8

Figure 3.15 Gate Implementation of the Function of Example 3.8

Sum-of-Minterm Procedure

- Consider the function defined in Table 3.2.
 - □ In sum-of-minterm:

$$F(x, y, z) = \sum (1, 3, 4, 6)$$

In sum-of-maxterm:

$$F'(x, y, z) = \Pi(0, 2, 5, 7)$$

Taking the complement of F'

$$F(x, y, z) = (x' + z')(x + z)$$

Truth Table of Function F					
x	y	Z	F		
0	0	0	0		
0	0	1	1		
0	1	0	0		
0	1	1	1		
1	0	0	1		
1	0	1	0		
1	1	0	1		

Table 3.2

Sum-of-Minterm Procedure

- Consider the function defined in Table 3.2.
 - Combine the 1's:

$$F(x, y, z) = x'z + xz'$$

Combine the 0's :

$$F'(x, y, z) = xz + x'z'$$

Figure 3.16 Map for the function of Table 3.2

3-6 Don't-Care Conditions

- The value of a function is not specified for certain combinations of variables
 - BCD; 1010-1111: don't care
- The don't-care conditions can be utilized in logic minimization
 - Can be implemented as 0 or 1
- **Example 3.9:** simplify $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ which has the don't-care conditions $d(w, x, y, z) = \Sigma(0, 2, z)$ 5).

Example 3.9 (cont.)

- \Box F = yz + w'x'; F = yz + w'z
- $F = \Sigma(0, 1, 2, 3, 7, 11, 15)$; $F = \Sigma(1, 3, 5, 7, 11, 15)$
- Either expression is acceptable

Figure 3.17 Example with don't-care Conditions

3-7 NAND and NOR Implementation

- NAND gate is a universal gate
 - Can implement any digital system

Figure 3.18 Logic Operations with NAND Gates

NAND Gate

Two graphic symbols for a NAND gate

Figure 3.19 Two Graphic Symbols for NAND Gate

June 8, 2021 29

Two-level Implementation

- Two-level logic
 - NAND-NAND = sum of products
 - □ Example: F = AB + CD
 - $\neg F = ((AB)'(CD)')' = AB + CD$

Example 3-10: implement F(x, y, z) =

$$F(x, y, z) = \sum (1, 2, 3, 4, 5, 7)$$

$$F(x, y, z) = xy' + x'y + z$$

Figure 3.21 Solution to Example 3-10

Procedure with Two Levels NAND

The procedure

- Simplified in the form of sum of products;
- A NAND gate for each product term; the inputs to each NAND gate are the literals of the term (the first level);
- A single NAND gate for the second sum term (the second level);
- □ A term with a single literal requires an inverter in the first level.

June 8, 2021 32

Multilevel NAND Circuits

- Boolean function implementation
 - □ AND-OR logic → NAND-NAND logic
 - AND → AND + inverter
 - OR: inverter + OR = NAND
 - For every bubble that is not compensated by another small circle along the same line, insert an inverter.

Figure 3.22 Implementing $F = A(CD + B) + BC'_{33}$

NAND Implementation

Figure 3.23 Implementing $F = (AB' + AB)(C + D_{34}')$

NOR Implementation

- NOR function is the dual of NAND function.
- The NOR gate is also universal.

Two Graphic Symbols for a NOR Gate

Figure 3.25 Two Graphic Symbols for NOR Gate

Example:
$$F = (A + B)(C + D)E$$

Figure 3.26 Implementing $F = (A + B)(C + D)E_{36}$

Example

Example: F = (AB' + A'B)(C + D')

Figure 3.27 Implementing F = (AB' + A'B)(C + D') with NOR gates

3-8 Other Two-level Implementations (

Wired logic

- A wire connection between the outputs of two gates
- Open-collector TTL NAND gates: wired-AND logic
- The NOR output of ECL gates: wired-OR logic

$$F = (AB)' \cdot (CD)' = (AB + CD)' = (A' + B')(C' + D')$$
$$F = (A + B)' + (C + D)' = [(A + B)(C + D)]'$$

AND-OR-INVERT function OR-AND-INVERT function

Figure 3.28 Wired Logic

Non-degenerate Forms

- 16 possible combinations of two-level forms
 - □ Eight of them: degenerate forms = a single operation
 - AND-AND, AND-NAND, OR-OR, OR-NOR, NAND-OR, NAND-NOR, NOR-AND, NOR-NAND.
 - □ The eight non-degenerate forms
 - AND-OR, OR-AND, NAND-NAND, NOR-NOR, NOR-OR, NAND-AND, OR-NAND, AND-NOR.
 - AND-OR and NAND-NAND = sum of products.
 - OR-AND and NOR-NOR = product of sums.
 - NOR-OR, NAND-AND, OR-NAND, AND-NOR = ?

June 8, 2021 39

AND-OR-Invert Implementation

- AND-OR-INVERT (AOI) Implementation
 - □ NAND-AND = AND-NOR = AOI
 - \Box F = (AB + CD + E)'
 - \Box F' = AB + CD + E (sum of products)

Figure 3.29 AND-OR-INVERT circuits, F = (AB + CD + E)'

OR-AND-Invert Implementation

- OR-AND-INVERT (OAI) Implementation
 - □ OR-NAND = NOR-OR = OAI
 - \Box F = ((A+B)(C+D)E)'
 - \Box F' = (A+B)(C+D)E (product of sums)

Figure 3.30 OR-AND-INVERT circuits, F = ((A+B)(C+D)E)'

Tabular Summary and Examples

Example 3-11: F = x'y'z' + xyz'

$$\Box$$
 $F' = x'y + xy' + z$

 \Box F = (x'y+xy'+z)'

 $\Box F = x'y'z' + xyz'$

 \Box F = ((x+y+z)(x'+y'+z))' (F: OAI)

(*F'*: sum of products)

(F: AOI implementation)

(*F*: sum of products)

Tabular Summary and Examples

Table 3.3 *Implementation with Other Two-Level Forms*

Equivalent Nondegenerate Form		Implements the	Simplify F'	To Get
(a)	(b)*	Function	into	an Output of
AND-NOR	NAND-AND	AND-OR-INVERT	Sum-of-products form by combining 0's in the map.	F
OR–NAND	NOR-OR	OR-AND-INVERT	Product-of-sums form by combining 1's in the map and	
			then complementing.	F

^{*}Form (b) requires an inverter for a single literal term.

Figure 3.31 Other Two-level Implementations 44

3-9 Exclusive-OR Function

- Exclusive-OR (XOR)
- Exclusive-NOR (XNOR)
- Some identities
- Commutative and associative
 - \Box $A \oplus B = B \oplus A$

Exclusive-OR Implementations

Implementations

$$(x'+y')x + (x'+y')y = xy'+x'y = x \oplus y$$

Figure 3.32 Exclusive-OR Implementations

Odd Function

- □ $A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C = AB'C' + A'BC' + ABC + A'B'C'$ = $\Sigma(1, 2, 4, 7)$
- □ XOR is a odd function \rightarrow an odd number of 1's, then F = 1.
- □ XNOR is a even function \rightarrow an even number of 1's, then F = 1.

(a) Odd function $F = A \oplus B \oplus C$

(b) Even function $F = (A \oplus B \oplus C)'$

Figure 3.33 Map for a Three-variable Exclusive-OR Function

XOR and XNOR

Logic diagram of odd and even functions

Figure 3.34 Logic Diagram of Odd and Even Functions

Four-variable Exclusive-OR

function

- Four-variable Exclusive-OR function
 - $A \oplus B \oplus C \oplus D = (AB'+A'B) \oplus (CD'+C'D) = (AB'+A'B)(CD+C'D') + (AB+A'B')(CD'+C'D)$

Figure 3.35 Map for a Four-variable Exclusive-OR Function
June 8, 2021

49

Parity Generation and Checking

- Parity Generation and Checking
 - □ A parity bit: $P = x \oplus y \oplus z$
 - □ Parity check: $C = x \oplus y \oplus z \oplus P$
 - C=1: one bit error or an odd number of data bit error
 - C=0: correct or an even # of data bit error

Figure 3.36 Logic Diagram of a Parity Generator and Checker

Parity Generation and Checking

Table 3.4 *Even-Parity-Generator Truth Table*

Three-Bit Message			Parity Bit
X	y	Z	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

June 8, 2021 51

Parity Generation and Checking

Table 3.5 *Even-Parity-Checker Truth Table*

	Four Rece	Parity Error Check		
x	y	z	P	C
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Thanks To Mustafa Kemal Uyguroğlu