ANGEWANDTE PROGRAMMIERUNG Einführung und Data Analysis Lifecycle Modelle

Vorlesung 01 Dennis Glüsenkamp

8. März 2022

Vorstellung & Einführung in das Modul

Prüfungsleistungen

Datenquellen, Tools und Programmiersprache

git

GitHub

Kaggle

Pythor

Anaconda

Data Analysis Lifecycle Modelle

_

Modul

Vorstellung & Einführung in das

Persönliche Vorstellung

Berufliche Erfahrungen

- Aktuell seit Jan. 2020 als Data Strategist bei HDI AG
- Seit 2010 bei verschiedenen Unternehmen als Data Scientist und weiteren Rollen tätig
- Seit Jan. 2020 nebenberuflicher Lehrbeauftragter der FOM mit Schwerpunkt "Angewandte Programmierung"

Akademischer Hintergrund:

- Studium der Physik (Diplom) in Osnabrück und Bonn
- Berufbegleitendes Studium Business Intelligence Systems & Data Mining (MSc) in Leicester, UK

Kontaktdaten

Wenn Sie mich dringend/schnell erreichen möchten, rufen Sie mich am besten an. Bei E-Mails geben Sie mir bitte 7 Tage Antwortzeit. Sollte ich bis dahin nicht zurückgeschrieben haben, erinnern Sie mich bitte!

 $\begin{array}{lll} \hbox{Telefon} & +49 \ (0) \ 176 \ 73900073 \\ \hbox{E-Mail} & \hbox{data@gluesenkamp.info} \end{array}$

 ${\sf GitHub\text{-}Repo} \quad \text{https://github.com/dgluesen/ss22-applied-programming}$

Website https://dgluesen.github.io/

Modulziele (1/2)

- Den für Big-Data-Analysen typischen Anwendungszyklus beschreiben und in der Praxis begleiten
- Im Anwendungszyklus häufig eingesetzte Systeme,
 Programmiersprachen und Programmierumgebungen benennen
- Relevante Programmiermodelle beschreiben

Modulziele (2/2)

- In einer typischen Systemumgebung mithilfe ausgewählter Programmierwerkzeuge strukturierte, semistrukturierte und unstrukturierte Daten
 - für die Analyse aufbereiten,
 - in Analysesysteme integrieren,
 - automatisch und manuell analysieren,
 - visualisieren sowie
 - Ergebnisse für weitere Verarbeitungen bereitstellen
- Die eingesetzten Methoden und Werkzeuge im Rahmen von umfangreichen Analyse- und Consultingprojekten effektiv und programmgesteuert anwenden

Planung der Inhalte

	8.03.2022	Einführung und Data Analysis Lifecycle Modelle
വാ വ	0 00 0000	
02 2	2.03.2022	SQL
03 2	5.03.2022	Einführung Python 1
04 0	9.04.2022	Einführung Python 2
05 2	6.04.2022	Wichtige Packages für Python
06 2	9.04.2022	Einführung Machine Learning
07 0	3.05.2022	Machine Learning 1
08 0	7.05.2022	Machine Learning 2
09 2	0.05.2022	Machine Learning Beispiele
10 2	1.05.2022	Präsentationen der Jupyter Notebooks
11 3	1.05.2022	Wiederholung und Fragen zur Klausur

Änderungen vorbehalten

Prüfungsleistungen

Prüfungsleistungen

- Für das Bestehen und die Benotung müssen zwei Prüfungsleistungen erbracht werden
- Leistungen müssen jeweils unabhängig voneinander mindestens ausreichend sein um das Modul zu bestehen
- Teilleistungen sind:
 - Jupyter Notebook und Präsentation, 25% der Gesamtnote, Termin ist 21.05.2022
 - Klausur, 75% der Gesamtnote, Termin ist 18.06.2022

Notebook-Präsentation (1/2)

- Vorstellung findet im Rahmen einer Vorlesung statt
- Zeit für Präsentation ohne Zwischenfragen ist 7 Minuten ein Überziehen der Zeit führt zu Punktabzug!
- Fragen, Diskussion und Austausch mit dem Kurs direkt im Anschluss ohne Zeitbegrenzung
- Juypter Notebook, Präsentation und Diskussion nach eigener Wahl in deutsch oder englisch
- Thema und Datensatz für Ausarbeitung soll selbstständig gewählt werden (z.B. von Kaggle)

Notebook-Präsentation (2/2)

Aufgabenstellung, Zielsetzung und Bewertungsmaßstäbe:

- Formulierung einer zentralen Forschungsfrage und ggf. untergeordneter bzw. angegliederter Nebenfragestellungen
- Auswahl eines geeigneten Datensatzes aus beliebiger Quelle
- Erschließung, Exploration, Prädiktion etc. der Daten und entsprechend der Fragestellung im Jupyter Notebook
- Gestaltung des Notebooks in für ein Fachpublikum geeigneter Weise, d.h. angemessene Kommentierung, grafische Gestaltung, Nutzung von Interaktivität etc.
- Fachkundige und verständliche Präsentation bei Einhaltung des Zeitlimits
- Kompentente Beantwortung der in der Diskussion aufgeworfenen Fragen

Datenquellen, Tools und

Programmiersprache

- Versionsverwaltung von Dateien
- Ähnliche Werkzeuge: CVS, BitKeeper
- konsistente Fortentwicklung von Programmcode

- Dateien mit Versionskontrolle online verwalten
- Ähnliche Werkzeuge: Bitbucket, GitLab
- Setzt auf Versionsverwaltungssoftware git auf
- Möglichkeit Projekte über eigenen Websites zu präsentieren
- Einfache, agile Tools inkludiert

- Online-Community für Data Scientists und verwandte Berufsgruppen
- Datensätze und Beispielcodes sind frei verfügbar
- Foren für datenbezogene Diskussionen
- Anwendung und Vertiefung der eigenen Kenntnisse
- Modul nutzt vielfach die dort verfügbaren Daten

Python

- Höhere Programmiersprache, die in diesem Modul eingesetzt wird
- Ziel der Entwickler:innen war möglichst hoher Grad an Einfachheit sowie Übersichtlichkeit
- Standardsprache für viele Data Science und Machine Learning Entwicklungen/Anwendungen

- Python arbeitet sehr stark mit verschiedenen Paketen
- Pakete müssen installiert und eingebunden werden
- Paketkombinationen und verschiedene -versionen können Konflikte hervorrufen
- Anaconda als Distribution für Python adressiert dieses Problem
- Jupyter Notebooks f
 ür interaktive Entwicklung und explorative Datenanalyse sind inkludiert

Data Analysis Lifecycle Modelle

Verbindlichkeit durch Prozessmodell

- Prozessbeschreibung von Schritten, die bei der Durchführung von datengetriebenen Aktivitäten erforderlich sind, erzeugt
 - Vollständigkeit, da Schritte systematisch abgearbeitet werden
 - Iterationsfähigkeit, da in bestimmten Zyklen Fortentwicklung und Ergebnisbereitstellung erfolgt
 - Nachvollziehbarkeit, da eine logische und sinnvolle Struktur abgearbeitet wird
 - Transparenz, da Rollen und Zuständigkeiten geklärt sind
 - Sicherheit, da Schutzmechnismen integriert werden können
- Vermeidung von Fehlern oder nicht notwendiger Ineffizienz durch mangelnde Organisation
- Steigender Komplexitätsgrad bei Daten-Projekten erfordert höheres Maß an Struktur um Sackgassen oder Chaos zu verhindern

CRISP-DM Life Cycle

- CRoss-Industry Standard
 Process for Data Mining [1]
- 1996 im Rahmen von EU-Förderprojekt entwickelt
- Offenes, freies Prozessmodell zur Durchführung von Data Mining Vorhaben
- Prozess kann flexibel und unabhängig von Branche, Toolset und Anwendung verwendet werden

Figure 1: CRISP-DM
Prozessmodelldiagramm (Quelle: Kenneth
Jensen, CC BY-SA 3.0)

Phasen von CRISP-DM (1/6)

1. Business Understanding:

- Formulierung von konkreten Fragestellungen und Zielen
- Abgleich von Aufgaben und Erwartungen
- Vereinbarung eines Vorgehens/einer Planung
- Identifikation von wichtigen Einflussfaktoren
- Verständnis des Geschäftsmodells
- Definition von Erfolgskriterien

Phasen von CRISP-DM (2/6)

2. Data Understanding:

- Betrachtung des Datenbestands
- Auswertung der Datenverfügbarkeit, -reliabilität, -qualität
- (Statistische)
 Auffälligkeiten in den Daten
- Abstimmung zum Datenschutz

Figure 2: Anzahl von Preisanfragen für Kfz-Versicherungen über Aggregator- bzw. Vergleichswebsites bei einem deutschen Versicherer [2]

Phasen von CRISP-DM (3/6)

3. Data Preparation:

- Datenbereinigung und Transformationen
- Datenverknüpfung und -aggregation
- Feature Engineering
- Feature Selection

Figure 3: Verteilung von Verkaufsflächen von verschiedenen Märkten eines fiktiven Handelskonzerns, getrennt nach Fachabteilungen [3]

Phasen von CRISP-DM (4/6)

4. Modeling:

- Definition der Annahmen und Rahmenbedingungen der Modellierung
- Auswahl von geeigneten Algorithmen
- Test Design
- Training des Modells
- Tiefgreifende, zielgerichtete Datenexploration

Phasen von CRISP-DM (5/6)

5. Evaluation:

- Vergleich der verschiedenen Modelle anhand von Gütekriterien
- Betrachtung der Interpretierbarkeit des Modells
- Kritische Analyse des Modellierungsprozesses
- Abgleich mit (wirtschaftlichen) Erfolgskriterien
- Definition von Folgeaktivitäten

Phasen von CRISP-DM (6/6)

6. Deployment:

- Kommunikation der Ergebnisse
- Integration des Modells in die Systemlandschaft und Entscheidungsprozesse
- Wartung und Pflege des Modells
- Dokumentation der Erkenntnisse und Funktionsweise

Andere Lifecycle Modelle

- KDD ist Prozessmodell f
 ür Knowledge Discovery in Databases [4]
- 1996 von Fayyad, Piatetsky-Shapiro, Smyth publiziert
- Sample, Explore, Modify, Model, and Assess ist ein von SAS vorgeschlagenes Prozessmodell [5]
- Prozess wird trotz Tool-Unabhängigkeit vornehmlich in enger Verknüpfung zu SAS-Lösungen genutzt

Referenzen

- Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000).
 CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc, 9, 13.
- [2] Gluesenkamp, D. (2018). Prediction of customer churn with premium online calculation data in insurance business. DeMontfort University, Leicester, United Kingdom.
- [3] Gluesenkamp, D. (2019). Wrangling and cleansing business data. Retrieved from https://dgluesen.github.io/wrangling-sales-workload/
- [4] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. Al magazine, 17(3), 37-37.
- [5] SAS Institute. SAS® Enterprise Miner. Retrieved from https://www.sas.com/content/dam/SAS/en_us/doc/factsheet/sas-enterprise-miner-101369.pdf.
 Publisher website: https://www.sas.com/