Universidade do Minho 2° Semestre 2015/16 (MIEI, 3°Ano)

Modelos Estocásticos de Investigação Operacional

Trabalho Prático Nº 2

(Gestão de Inventários)

Identificação do Grupo

<u>Número:</u>	Nome completo:	Rubrica:
(ordem decrescente)		
A57816	Filipe Costa Oliveina	Filipe Olivene.
A57812	Filip ch Souse Hargues	Filip Hagus
A57754	Luis Gonçalo Ecucino Mendes	Luis Mendes
	- 0 .	

Gestão de Inventários Modelos Estocásticos de Investigação Operacional Trabalho Prático Nº 2

Filipe Marques, Filipe Oliveira, Luís Mendes

Departamento de Informática Universidade do Minho

Email: a57812@alunos.uminho.pt, a57816@alunos.uminho.pt, a57754@alunos.uminho.pt,

1. Parte 1

Considere-se o caso de uma empresa – W&W – que comercializa um determinado artigo que que **adquire** diretamente ao fabricante, a um preço de **70 euros por unidade**. A empresa armazena as quantidades compradas no seu armazém central e distribui-as depois convenientemente pelas suas três lojas de venda ao público. O preço de **venda** praticado na loja é de **100 euros por unidade**. Situações de quebra na loja equivalem a "vendas perdidas".

1.1. Contextualização de dados relativos ao armazém central

A W&W paga um custo fixo de operação de 200 euros de cada vez que lança uma ordem de encomenda à fábrica. Todas as encomendas chegam ao armazém exatamente 12 dias¹ depois do lançamento da respetiva ordem, e o custo anual de posse de inventário no armazém é de 21% do custo de aquisição, ou seja 14,70 euros. (Considera-se que 1 ano = 365 dias).

1.2. Contextualização de dados relativos às três lojas de venda ao público

Para cada uma das lojas verifica-se que:

- as vendas diárias seguem uma distribuição uniforme entre 0 e 5 unidades de artigo;
- o custo anual de posse de inventário é de 25%, ou seja i = 0,25;
- as entregas a partir do armazém demoram 3 dias a chegar;
- o custo fixo por entrega é de 2.75 euros;

1.3. Aplicação de políticas de gestão de inventário do tipo nível de encomenda para as entregas às lojas

Do enunciado podemos desde já retirar as seguintes variáveis:

- b = 100 €/unidade
- $C_1 = b * i = 100 * 0, 25 = 25$ \leq /unidade/ano
- $C_2 = b = 100 \in \text{/unidade}$
- $C_3 = 2.75 \in \text{/encomenda}$
- 1 = 3 dias
- ano = 365 dias

É possível também calcular as variáveis aleatórias:

- $X \in [0, 5]$
- Procura na unidade de tempo:

-
$$r = \frac{a+b}{2} = \frac{0+5}{2} = 2.5$$
 unidades/dia

$$-\sigma_r = \frac{5-0}{\sqrt{12}} = 1.4434$$
 unidades/dia

- Prazo de entrega:
 - l=3 dias
 - $\sigma_l = 0$ dias

É possível demonstrar que a média e a variância da procura durante o prazo de entrega (DDLT) são dadas pelas equações:

•
$$\mu_{DDLT} = rl = 2.5 * 3 = 7.5$$

•
$$\sigma_{DDLT} = re = 2.5 * 6 = 1.8$$
• $\sigma_{DDLT} = \sqrt{l\sigma_r^2 + r^2\sigma_l^2} = \sqrt{3*1.4434^2 + 2.5^2*0^2} = 2.5$

Assumindo que DDLT = $Normal(\mu_{DDLT}, \sigma_{DDLT})$, podemos determinar o nível de encomenda a partir da redução deste parâmetro à correspondente variável (Z) da distribuição Normal Standard.

^{1.} Dados gerados a partir do número de aluno 57816, d1 = 5 \rightarrow prazo de entrega = 10 + int(5/2) = 12

1.3.1. Determinação da quantidade ótima de encomenda e E[DDLT>S].

$$E[DDLT] = 0$$

• 1ª iteração

-
$$q = \sqrt{\frac{2r(C_2 * E[DDLT > S] + C_3)}{C_1}} = 14.1686$$

-
$$P[DDLT > S] = \frac{C_1*q}{C_1*q*C_2*r} = \frac{25*14.1686}{25*14.1686*100*2.5*365} = 0.0040$$

$$Z \approx 2.65$$

$$-N = \frac{100*Z}{3} = 88$$

$$-$$
 2° Integral = 0.000342

-
$$E[DDLT > 0] = 2^{\circ}$$
 Integral $*\sigma_{DDLT} = 0.000342 * 2.5 = 0.000855$

• 2ª iteração

-
$$q = \sqrt{\frac{2r(C_2*E[DDLT>S]+C_3)}{C_1}} = 14.3872$$

-
$$P[DDLT > S] = \frac{C_1*q}{C_1*q*C_2*r} = \frac{25*14.3872}{25*14.3872*100*2.5*365} = 0.0040$$

$$Z \approx 2.65$$

$$-N = \frac{100*Z}{3} = 88$$

$$-$$
 2° Integral = 0.000342

-
$$E[DDLT > 0] = 2^{\circ}$$
 Integral $*\sigma_{DDLT} = 0.000342 * 2.5 = 0.000855$

Resultados

$$- q* = 14$$

-
$$S = \mu_{DDLT} + Z * \sigma_{DDLT} = 7.5 + 2.65 * 2.5 \approx 14$$

- SS =
$$Z * \sigma_{DDLT} \approx 7$$

- frequência de encomenda =
$$\frac{r}{q} = \frac{2.5}{14}$$
 = 0.179 anos

- Ciclo de encomendas =
$$\frac{1}{frequência} = \frac{1}{0.179}$$

 ≈ 6 encomendas

- Custo_{Posse} =
$$365*C1*(\frac{q}{2}+S-E[DDLT])$$

= $365*25*(\frac{14}{2}+14-7)=127750$ €

- Custo_{Quebra} =
$$365 * C2 * (frequência * E[DDLT > S]) = 365 * 100 * (0.179 * 8.5500 e^{-04}) = 6€$$

- Custo_{Encomenda} =
$$365 * C3 * frequência$$

= $365 * 3 * 0.179 = 179$ €

Custo_{total}

$$= Custo_{Posse} + Custo_{Quebra} + Custo_{Encom}$$
$$= 127750 \in +6 \in +179 \in = 127930 \in$$

1.4. Aplicação de políticas de gestão de inventário do tipo nível de encomenda para as encomendas à fábrica

Do enunciado podemos desde já retirar as seguintes variáveis:

•
$$C_1 = b * i = 70 * 0.21 = 14.70$$
 €/unidade/ano

•
$$C_2 = b = 70 \in \text{/unidade}$$

•
$$C_3 = 200$$
 \in /encomenda

•
$$1 = 12 \text{ dias}$$

• ano =
$$365$$
 dias

É possível também calcular as variáveis aleatórias:

•
$$X \in [0, 15]$$

X	n	p(x)	$\frac{(x_i-\mu)^2}{(n-1)}$
0	1	0 0.005	3,75
1	3	0.014	2,82
2	6	0.028	2,02
3	10	0.046	1,35
4	15	0.069	0,82
5	21	0.097	0,42
6	25	0.116	0,15
7	27	0.125	0,02
8	27	0.125	0,02
9	25	0.116	0,15
10	21	0.097	0,42
11	15	0.069	0,82
12	10	0.046	1,35
13	6	0.028	2,02
14	3	0.014	2,82
15	1	0.005	3,75
Total	216	1	22,67

• Procura na unidade de tempo:

$$- r = \frac{a+b}{2} = \frac{0+15}{2} = 7.5$$
 unidades/dia

$$\sigma_r = \sqrt{22.67} = 4.761$$
 unidades/dia

• Prazo de entrega:

-
$$l = 12 \text{ dias}$$

-
$$\sigma_l = 0$$
 dias

É possível demonstrar que a média e a variância da procura durante o prazo de entrega (DDLT) são dadas pelas equações:

•
$$\mu_{DDLT} = rl = 7.5 * 12 = 90$$

•
$$\sigma_{DDLT} = \sqrt{l\sigma_r^2 + r^2\sigma_l^2} = \sqrt{12*4.761^2 + 7.5^2*0^2} = 16.49$$

Assumindo que $DDLT = Normal(\mu_{DDLT}, \sigma_{DDLT})$, podemos determinar o nível de encomenda a partir da redução deste parâmetro à correspondente variável (Z) da distribuição Normal Standard.

1.4.1. Determinação da quantidade ótima de encomenda e E[DDLT>S].

$$E[DDLT] = 0$$

• 1ª iteração

$$- q = \sqrt{\frac{2r(C_2 * E[DDLT > S] + C_3)}{C_1}} = 272.9282$$

-
$$P[DDLT > S] = \frac{C_1*q}{C_2*r} = \frac{14.70*272.9282}{70*7.5*365} = 0.02094$$

- $Z \approx 2.87$
- $-N = \frac{100*Z}{3} = 96$
- 2° Integral = 0.000036
- $E[DDLT > 0] = 2^{\circ}$ Integral $*\sigma_{DDLT} = 0.000036 * 16.49 = 0,000594$

2ª iteração

$$- q = \sqrt{\frac{2r(C_2*E[DDLT>S]+C_3)}{C_1}} = 272.9565$$

-
$$P[DDLT > S] = \frac{C_1*q}{C_2*r} = \frac{14.70*272.9565}{70*7.5*365} = 0.02094$$

- $Z \approx 2.87$
- $-N = \frac{100*Z}{3} = 96$
- 2° Integral = 0.000036
- $E[DDLT > 0] = 2^{\circ}$ Integral $*\sigma_{DDLT} = 0.000036 * 16.49 = 0.000594$

Resultados

- q* = 273
- $\mathbf{S} = \mu_{DDLT} + Z * \sigma_{DDLT} = 90 + 2.87 * 16.49 \approx 137$
- SS = $Z * \sigma_{DDLT} \approx 47$
- frequência de encomenda = $\frac{r}{q} = \frac{7.5}{273}$ = 0.027 anos
- Ciclo de encomendas = $\frac{1}{frequ\hat{e}ncia} = \frac{1}{0.027}$ ≈ 36 encomendas
- Custo_{Posse} = $365*C1*(\frac{q}{2}+S-E[DDLT])$ = $365*14.7*(\frac{273}{2}+137-90) = 984570€$
- Custo_{Quebra} = 365 * C2 * (frequência * E[DDLT > S]) = 365 * 70 * (0.027 * Custo State Stat

$$0.000594) = 0.42 \in$$

- Custo_{Encomenda} =
$$365 * C3 * frequência$$

= $365 * 200 * 0.027 = 2005.50$ €

Custo_{total}

$$= Custo_{Posse} + Custo_{Quebra} + Custo_{Encom}$$
$$= 984570 + 0.42 + 2005.50 \approx 986580 \in$$

1.5. Comentário de resultados obtidos

Analisando os valores obtidos para o armazém, temos que a quantidade fixa a encomendar \mathbf{q}^* será de 273 unidades, sendo o nível de encomenda $\mathbf{S}=137$ unidades em armazém.

Relativamente às lojas, as mesmas deverão encomendar 14 unidades por encomenda, sendo o nível de encomenda de 14 unidades em loja.

2. Parte 2

O Jogo da Distribuição é um jogo de simulação com dois níveis de sistemas de distribuição - o armazém e as lojas. Como proprietário da empresa, temos controlo sobre os dois níveis de distribuição ao decidir quando comprar e que quantidade comprar aos fornecedores e quando enviar e a quantidade a enviar do armazém para cada uma das lojas. O objetivo é gerir eficazmente o fluxo de bens para satisfazer a procura por parte dos clientes nas diferentes lojas de forma a ter o maior lucro possível.

2.1. Metodologia

Foram feitas duas rondas de simulação no jogo. Numa primeira ronda tentamos seguir religiosamente os valores obtidos na parte I, o que se traduziu em tentar sempre manter um stock de segurança de 47 unidades no armazém e 7 unidades em cada loja e o número de unidades enviadas em cada remessa foi de 273 do fornecedor para o armazém e 14 unidades do armazém para cada uma das lojas. Na segunda ronda fizemos um pouco diferente. Jogamos apenas e só seguindo a nossa intuição.

Em ambas as rondas, fizemos uma colheita dos dados fornecidos pelo jogo a cada 40 dias de simulação e analisamos a adequabilidade e utilidade dos cálculos efetuados na parte I na obtenção de bons resultados no jogo.

2.2. Vamos jogar

2.2.1. Ronda I. Nesta ronda seguimos de perto os resultados que obtivemos na parte I. O que se traduz na seguinte tabela.

	Stock de segurança	Quantidade por remessa
Armazém	47	273
Cada loja	7	14

Foi usada uma estratégia onde sempre que o stock no armazém ficava abaixo das 47 unidades encomendavam-se 273 unidades. No caso das lojas, sempre que o stock descia para as 7 unidades encomendavam-se 14 unidades.

O saldo final obtido foi de 33341,81.

O saldo obtido ao longo do jogo pode ser observado através do seguinte gráfico.

Figure 1. Variação do saldo ao longo do tempo na primeira ronda de simulação

2.2.2. Ronda II. Aqui jogamos fazendo uso da nossa intuição de gestor, ou seja, encomendamos sempre as quantidades que achamos suficiente para satisfazer a necessidade do cliente e ao mesmo tempo tentamos não encomendar produtos em demasia para evitar a sua depreciação enquanto a mesma se encontra parada.

O saldo final obtido foi de 36121,134.

O saldo obtido ao longo do jogo pode ser observado através do seguinte gráfico.

Figure 2. Variação do saldo durante os 200 dias da segunda ronda de simulação

2.3. Análise dos Resultados

Pelos valores que obtivemos no final de cada ronda, rapidamente chegamos à conclusão que a segunda ronda deu bem melhores resultados do que a primeira. De notar ainda que poderia-mos obter melhores resultados na ronda II, tal como se pode observar no gráfico da figura 2, no dia 150 houve uma ligeira distração da nossa parte e temporariamente houve uma quebra nos stocks levando a uma redução substancial no lucro obtido naquela janela temporal.

A estratégia seguida na primeira ronda teve diversos momentos de quebra de stock o que se traduziu numa situação

de vendas perdidas. Durante vários dias, quer o armazém, quer as lojas tiveram um stock de zero. Tal situação teve um grande impacto negativo no lucro final.

Na estratégia seguida na segunda ronda, bem mais racional, tentou-se sempre satisfazer as necessidades dos clientes, com envios sucessivos de remessas para o armazém e para as lojas.

Pode-se daqui concluir que seguir uma estratégia de aplicação "cega" sem olhar aos condicionamentos de cada situação poderá trazer maus resultados. É necessário ponderar caso a caso, os valores a encomendar e a frequência com que se encomenda para cada loja e armazém. De notar que a procura em cada uma das lojas segue uma distribuição aleatória normal, pelo que a quantidade de venda diária tem uma certa aleatoridade, assim, para alturas em que a procura dispara, é necessário ajustar o nível de encomendas à tal procura.

TABLE 1. PRIMEIRA RONDA

Dia	Armazém	Saldo
0	125	0 €
40	189	7058,95 €
80	231	13334,84 €
120	0	20094,82 €
160	21	26835,84 €
200	77	33341,81 €

TABLE 2. SEGUNDA RONDA

Dia	Armazém	Saldo
0	125	0 €
40	90	7511,2 €
80	140	15900,1 €
120	120	223303,3 €
160	60	28077,6 €
200	0	36121,134 €

Appendix

Anexo A1 - Ronda I

Figure 3. Variação da quantidade em stock para as 3 lojas e armazém durante os 200 dias de jogo, para a Ronda I

Figure 4. Variação da quantidade em stock para a loja 1 durante os 200 dias de jogo, para a Ronda I

Figure 5. Variação da quantidade em stock para a loja 2 durante os 200 dias de jogo, para a Ronda I

Figure 6. Variação da quantidade em stock para a loja 3 durante os 200 dias de jogo, para a Ronda I

Figure 7. Variação do saldo ao longo do tempo na primeira ronda de simulação

Figure 8. Estatísticas finais para loja e armazém após 200 dias de jogo, para a Ronda II

Figure 9. Variação da quantidade em stock para a loja 1 durante os 200 dias de jogo, para a Ronda II

Figure 10. Variação da quantidade em stock para a loja 2 durante os 200 dias de jogo, para a Ronda II

Figure 11. Variação da quantidade em stock para a loja 3 durante os 200 dias de jogo, para a Ronda II

Figure 12. Variação do saldo durante os 200 dias da segunda ronda de simulação

```
%%
                       Universidade do Minho
%%
                    Deparmanto de Informatica
%%
% Autores: Filipe Marques, Filipe Oliveira, Luis Mendes
            a57812@alunos.uminho.pt, a57816@alunos.uminho.pt,
% Email:
%%
            a57754@alunos.uminho.pt
%%
% Criado:
            Maio 2016
b = 100;
i = 0.25;
C1 = i * b;
C2 = b;
C3 = 2.75;
x = [0 \ 1 \ 2 \ 3 \ 4 \ 5];
r = mean(x);
sigma_r = (5 - 0) / sqrt(12);
1 = 3;
sigma_1 = 0;
media_ddlt = r * 1;
sigma_ddlt = sqrt(1 * (sigma_r ^2) + (r^2) * (sigma_l^2));
%% primeira iteracao
E_DDLT_maior_S_1 = 0;
q1 = sqrt((2 * 365 * r *(C2 * E_DDLT_maior_S_1 + C3))/(C1));
P_DDLT_maior_S1 = (C1*q1)/(C1*q1*C2*r);
%% pela tabela do 10 integegral z = 2.65
Z = 2.65;
N = 100 * Z / 3;
segundo_integral_1 = 0.000342;
E_DDLT_maior_S_2 = sigma_ddlt * segundo_integral_1;
%% segunda iteracao
q2 = sqrt((2 * 365 * r * (C2 * E_DDLT_maior_S_2 + C3))/(C1));
P_DDLT_maior_S2 = (C1*q2)/(C1*q2*C2*r);
\%\% pela tabela do lo integegral z = 2.65
Z = 2.65;
N = 100 * Z / 3;
segundo_integral_2 = 0.000342;
E_DDLT_maior_S_3 = sigma_ddlt * segundo_integral_2;
9/8/8/8/8/6
q_asterisco = round(q2);
%% nivel de encomenda
S = round(media_ddlt + Z * sigma_ddlt);
‰ stock de seguranca
SS = round(Z * sigma_ddlt);
SS_inteiro = round(SS);
```

```
frequencia_encomenda = r / q_asterisco; %% encomendas / dia
numero_encomendas = 1 / frequencia_encomenda;
custo_posse = 365 * C1 * (q_asterisco / 2 + S - (S - SS));
custo_quebra = 365 * C2 * (r/q_asterisco) * E_DDLT_maior_S_3;
custo_encomenda = 365 * C3 * r/q_asterisco;
custo_total = custo_posse + custo_quebra + custo_encomenda;
```

Anexo A4 – Cálculos para armazém

```
%%
                       Universidade do Minho
%%
                     Deparmanto de Informatica
%%
% Autores: Filipe Marques, Filipe Oliveira, Luis Mendes
             a57812@alunos.uminho.pt, a57816@alunos.uminho.pt,
% Email:
             a57754@alunos.uminho.pt
%%
%%
% Criado:
           Maio 2016
b = 70:
i = 0.21:
C1 = i * b;
C2 = b:
C3 = 200;
x = [0 \ 1 \ 2 \ 3 \ 4 \ 5];
r = (0 + 15)/2;
X = [0 : 15];
N = [ 1 \ 3 \ 6 \ 10 \ 15 \ 21 \ 25 \ 27 \ 27 \ 25 \ 21 \ 15 \ 10 \ 6 \ 3 \ 1 ];
total_N = sum(N);
pX = N./total_N;
variancia = sum (((X - r).^2) ./ (15));
sigma_r = sqrt(variancia);
1 = 12;
sigma_1 = 0;
media_ddlt = r * 1;
sigma_ddlt = sqrt(1 * (sigma_r ^2) + (r^2) * (sigma_l^2));
%% primeira itera??o
E_DDLT_maior_S_1 = 0;
q1 = sqrt((2 * 365 * r * (C2 * E_DDLT_maior_S_1 + C3))/(C1));
P_DDLT_maior_S1 = (C1*q1)/(C2*r*365);
\%\% pela tabela do 1? integegral z = 2.65
Z = 2.87;
N = 100 * Z / 3;
segundo_integral_1 = 0.000036;
E_DDLT_maior_S_2 = sigma_ddlt * segundo_integral_1;
%% segunda itera??o
q2 = sqrt((2 * 365 * r * (C2 * E_DDLT_maior_S_2 + C3))/(C1));
P_DDLT_maior_S2 = (C1*q2)/(C1*q2*C2*r);
%% pela tabela do 1? integegral z = 2.65
Z = 2.87;
```

```
N = 100 * Z / 3;
segundo_integral_2 = 0.000036;
E_DDLT_maior_S_3 = sigma_ddlt * segundo_integral_2;

%**CHENCENCE

q_asterisco = round(q2);

%**M nivel de encomenda
S = round(media_ddlt + Z * sigma_ddlt);

%**M stock de seguran?a
SS = round(Z * sigma_ddlt);
SS_inteiro = round(SS);

frequencia_encomenda = r / q_asterisco; %**M encomendas / dia
numero_encomendas = 1 / frequencia_encomenda;

custo_posse = 365 * C1 * (q_asterisco / 2 + S - (S - SS));
custo_quebra = 365 * C2 * (r/q_asterisco) * E_DDLT_maior_S_3;
custo_encomenda = 365 * C3 * r/q_asterisco;
custo_total = custo_posse + custo_quebra + custo_encomenda;
```