WHAT IS CLAIMED IS:

- 1. A method of bulk-dyeing partially crystalline plastics, which comprises using
- Q H
 a pigment containing at least one each of groups --C-- and --N--, which are joined to
 OH
 one another as --C-N-- or are in conjugation with one another, and

 R_1 , R_2 , R_3 and R_4 independently of one another are hydrogen, halogen, R_6 , OR_6 or SR_6 , R_5 is hydrogen or linear or branched C_1 - C_{12} alkyl, benzyl or phenethyl, and R_6 is an apolar group which is unsubstituted or substituted one or more times by halogen or by OC_1 - C_6 alkyl, with the proviso that if R_5 is hydrogen, R_1 , R_2 , R_3 or R_4 is R_6 , OR_6 or SR_6 .

- 2. A method according to claim 1, in which
- · a partially crystalline plastic,
- a pigment containing at least one each of groups --C-- and --N--, which are joined to O H one another as --C-N-- or are in conjugation with one another, and
- a colorant of the formula

$$R_3$$
 $N-R_5$ (I), in which R_2

 R_1 , R_2 , R_3 and R_4 independently of one another are hydrogen, halogen, R_6 , OR_6 or SR_6 , R_5 is hydrogen or linear or branched C_1 - C_{12} alkyl, benzyl or phenethyl, and R_6 is an apolar group which is unsubstituted or substituted one or more times by halogen or by OC_1 - C_6 alkyl, with the proviso that if R_5 is hydrogen, R_1 , R_2 , R_3 or R_4 is R_6 , OR_6 or SR_6 ,

are injection moulded.

3. A composition comprising

• a pigment containing at least one each of the groups --C-- and --N--, which are joined to one another as --C-N-- or are in conjugation with one another, and

 R_1 , R_2 , R_3 and R_4 independently of one another are hydrogen, halogen, R_6 , OR_6 or SR_6 , R_5 is hydrogen or linear or branched C_1 - C_{12} alkyl, benzyl or phenethyl, and R_6 is an apolar group which is unsubstituted or substituted one or more times by halogen or by

OC₁-C₆alkyl, with the proviso that if R₅ is hydrogen, R₁, R₂, R₃ or R₄ is R₆, OR₆ or SR₆.

- 4. A composition according to claim 3, which is a colorant composition consisting essentially of
- one or more pigments containing at least one each of groups --C-- and --N--, which

 O H

 are joined to one another as --C-N-- or are in conjugation with one another,
- one or more colorants of the formula (I), and
- if desired, one or more colorants selected from the group consisting of inorganic white, black and colour pigments, further organic colour pigments, and compounds of the

formula HN NH (Ia) and
$$R_5$$
 N- R_5 (Ib), in which R_2

 R_1 , R_2 , R_3 , R_4 and R_5 have the same meaning as in formula (I) according to claim 3.

- 5. A composition according to claim 3, additionally comprising an organic material, the total weight of pigments and other colorants being from 0.01 to 70% by weight based on the overall weight of pigments, other colorants and organic material.
- 6. A method according to claim 1, wherein in formula (I) R_1 and R_2 are OR_6 or SR_6 and R_3 and R_4 are hydrogen, or wherein R_1 and R_2 are hydrogen and R_3 and R_4 are OR_6 or SR_6 .
- 7. A composition according to claim 3, wherein in formula (I) R_1 and R_2 are OR_6 or SR_6 and R_3 and R_4 are hydrogen, or wherein R_1 and R_2 are hydrogen and R_3 and R_4 are OR_6 or OR_6 o
- 8. A method according to claim 1, wherein the pigment contains at least two each of groups

 O

 H

 --C-- and --N--

- 9. A composition according to claim 3, wherein the pigment contains at least two each of O H groups --C-- and --N-- .
- 10. A method according to claim 1, wherein, per part by weight of pigment, the amount of the colorant of the formula (I) is from 0.001 to 9 parts by weight.
- 11. A method according to claim 10, wherein, per part by weight of pigment, the amount of the colorant of the formula (I) is from 0.01 to 1 part by weight.
- 12. A method according to claim 11, wherein, per part by weight of pigment, the amount of the colorant of the formula (I) is up to 0.2 part by weight.
- 13. A composition according to claim 3, wherein, per part by weight of pigment, the amount of the colorant of the formula (I) is from 0.001 to 9 parts by weight.
- 14. A method according to claim 13, wherein, per part by weight of pigment, the amount of the colorant of the formula (I) is from 0.01 to 1 part by weight.
- 15. A method according to claim 14, wherein, per part by weight of pigment, the amount of the colorant of the formula (I) is up to 0.2 part by weight.
- 16. A method according to claim 1, wherein the partially crystalline plastic or the organic material is a homopolymer or a block or random copolymer or terpolymer of ethylene, propylene, butylene, styrene and/or divinylbenzene, a polyester, a polyamide or a thermoplastic ionomer.
- 17. A composition according to claim 5, wherein the partially crystalline plastic or the organic material is a homopolymer or a block or random copolymer or terpolymer of ethylene, propylene, butylene, styrene and/or divinylbenzene, a polyester, a polyamide or a thermoplastic ionomer.

18. A compound of the formula
$$\begin{array}{c} R_{13} \\ HN \\ N-R_{15} \end{array}$$
 (III), in which $\begin{array}{c} R_{13} \\ R_{14} \end{array}$

 R_{11} , R_{12} , R_{13} and R_{14} independently of one another are hydrogen, halogen, R_{16} , OR_{16} or SR_{16} , R_{15} is linear or branched C_1 - C_{12} alkyl, benzyl or phenethyl, and R_{16} is an apolar group which is unsubstituted or substituted by halogen or OC_1 - C_6 alkyl, wherein at least one of R_{11} , R_{12} , R_{13} or R_{14} is R_{16} , OR_{16} or SR_{16} .

19. A method according to claim 8, wherein the pigment is a pigment of the formula

 R_7 , R_8 , R_9 and R_{10} independently of one another are hydrogen, halogen, cyano, carbamoyl, C_1 - C_4 alkyl or phenyl.

20. A composition according to claim 9, wherein the pigment is a pigment of the formula

 R_7 , R_8 , R_9 and R_{10} independently of one another are hydrogen, halogen, cyano, carbamoyl, C_1 - C_4 alkyl or phenyl.