A new efficient simulation method for multiple access channel

Yicheng Cui

Supervisor: Cheuk Ting Li

Department of Information Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong.

Background

- The multiple access channel is widely used in reality. Usually there are one decoder and more than two encoders.
- By simulating multiple access channel, we can solve a lot of problems. For example, the rate region of the quadratic Gaussian CEO problem[2].
- We know point-to-point channel well. However, the channel simulation method for the multiple assess channel is still not well researched.
- This poster serves as an introduction to the channel simulation of the multiple access channel. It aims to solve for some basic results with the experience we have in point-to-point channel.

Setting: Basic model, Requirement and Goal

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left(0, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$

W: the common randomness m_1, m_2 : descriptions using Huffman Z: An output determined by all above things. Some linear combination of X, Y $H(m_1|W)$ and $R_1 = H(m_1|W)$). plus some Gaussian noise $N \sim N(0, \sigma_N)$.

$$Z = aX + bY + N$$

Requirement:

- 1. We would like our output \hat{Z} follow the same distribution of Z. $\hat{Z} =$ $\tilde{a}\hat{X} + \tilde{b}\hat{Y}$
- 2. We want the output satisfy $\delta_{TV}((X,Y,\hat{Z}),(X,Y,Z) \leq \epsilon$

Goal:

We want to find the trade off between the average length of m_1 , m_2 ($R_1 =$

Scheme Design: Basic Idea

- 1. Choose α such that $Y = K\alpha + B$, $0 \le B < \alpha$
- 2. Do a channel simulation to allow Encoder 1 and Decoder to simulate an additive noise channel, get \hat{X} .
- 3. 1. Do a channel simulation to allow Encoder 2 and Decoder to simulate an additive noise channel, get \hat{B} .
- 4. Solve σ_{N_X} , σ_{N_R} , \tilde{a} , \tilde{b} such that our output \hat{Z} follow the same distribution of Z. $\hat{Z} = \tilde{a}\hat{X} + \tilde{c}\hat{x}$ $\tilde{b}\hat{Y}$
- $\hat{X} X \sim N(0, \sigma_{N_X}^2), \hat{X} X \perp \!\!\!\perp X.$

$$\hat{B} - B \sim N(0, \sigma_{N_B}^2), \, \hat{B} - B \perp \!\!\!\perp B.$$

$$\hat{Y} = \underset{Y:Y \bmod \alpha = \hat{B}}{\arg \min} |Y - \mathbf{E}[Y|\hat{X}]|.$$

Here, we state this theorem. We are going to prove this theorem in later parts.

Theorem: The requirement and the goal is satisfied if $R_1 \leq \frac{1}{2} \log(1 + \frac{1}{\sigma_{N_N}^2})$,

 $R_2 \leq \frac{1}{2}\log(1+\frac{\alpha^2}{4\sigma_{NR}^2})$ and $\epsilon \leq 2Q(\frac{\alpha}{2\sigma_{\theta}})$, where $\sigma_{\theta}^2 = 1-\frac{\rho^2}{1+\sigma_{NR}^2}+\sigma_{NR}^2$. This holds when $\tilde{a}^2 \sigma_{N_Y}^2 + \tilde{b}^2 \sigma_{N_R}^2 = \sigma_N^2$, \hat{Z} follows the same distribution as Z.

Scheme Design: Computation of $E[Y|\widehat{X}]$

Gaussian!

Using **linear MMSE** to solve $E[Y|\widehat{X}]$

Now, we have the mean and the variance of
$$Y|\hat{X}$$

$$Var(Y - \gamma \hat{X} + N_B) = 1 - \frac{\rho^2}{1 + \sigma_{N_Y}^2} + \sigma_{N_B}^2.$$

$$1 + \sigma_{N_Y}^2$$

$$Y - \gamma \hat{X} + N_B \sim N(0, 1 - \frac{\rho^2}{1 + \sigma_{N_X}^2} + \sigma_{N_B}^2).$$

Link Capacity and Total Variation Distance

$$I(B; \hat{B}) = h(\hat{B}) - h(\hat{B}|B)$$

$$= h(\hat{B}) - h(N_B)$$

$$= h(B + N_B) - h(N_B)$$

$$\leq \frac{1}{2} \log(2\pi e(\frac{\alpha^2}{4} + \sigma_{N_B}^2)) - \frac{1}{2} \log(2\pi e \sigma_{N_B}^2)$$

$$\leq \frac{1}{2} \log(1 + \frac{\alpha^2}{4\sigma_{N_B}^2}).$$

The decoder estimated $\hat{Y} = \tilde{K}\alpha + \hat{B}$, the actual output will be: $\hat{Y} = K\alpha + \hat{B}$.

Suppose the decoder estimated *K* correctly, i.e., $\widetilde{K} = K$. Then $\hat{Y}' = K\alpha + \hat{B}$.

We want to create \hat{Z}' that has the correct distribution, and make $\hat{Z}' = \hat{Z}$ with high probability. Suppose $\hat{Z}' = \tilde{a}\hat{X} + \tilde{b}\hat{Y}'$.

We can estimate the total variation distance between (X, Y, \hat{Z}) and (X, Y, Z):

 $\delta_{TV}((X,Y,\hat{Z}),(X,Y,Z)) \leq \delta_{TV}((X,Y,\hat{Z}'),(X,Y,Z)) + \delta_{TV}((X,Y,\hat{Z}'),(X,Y,\hat{Z})) \leq P(K \neq \widetilde{K}) = 2Q(\frac{\alpha}{2\sigma_{\theta}}).$

One-Shot Channel Simulation

This part aims to find the minimum amount of communication needed to simulate this setup. Suppose m_1 and m_2 are prefixfree descriptions of *X* and *Y*. The problem is to find the minimum expected description length of m_1 and m_2 . Several setting of this problem have been studied. One of them is [3]. With this result, we can get the average length.

$$E[L(m_1)] \le I(X; \widetilde{X}) + \log(I(X; \widetilde{X}) + 1) + 5$$

$$\le \frac{1}{2} \log(1 + \frac{1}{\sigma_{N_X}^2}) + \log(\frac{1}{2} \log(1 + \frac{1}{\sigma_{N_X}^2}) + 1) + 5.$$

$$E[L(m_2)] \le I(B; \hat{B}) + \log(I(B; \hat{B}) + 1) + 5$$

$$\le \frac{1}{2} \log(1 + \frac{\alpha^2}{4\sigma_{N_B}^2}) + \log(\frac{1}{2} \log(1 + \frac{\alpha^2}{4\sigma_{N_B}^2}) + 1) + 5.$$

Conclusion

With all of the results above, we can prove that the theorem stated above is true. The requirement and the goal is satisfied if $R_1 \leq \frac{1}{2} \log(1 + \frac{1}{\sigma_{N_Y}^2})$,

 $R_2 \leq \frac{1}{2}\log(1+\frac{\alpha^2}{4\sigma_{N_B}^2})$ and $\epsilon \leq 2Q(\frac{\alpha}{2\sigma_{\theta}})$, where $\sigma_{\theta}^2 = 1-\frac{\rho^2}{1+\sigma_{N_Y}^2}+\sigma_{N_B}^2$. This holds when $\tilde{a}^2 \sigma_{N_X}^2 + \tilde{b}^2 \sigma_{N_B}^2 = \sigma_N^2$, \hat{Z} follows the same distribution as Z.

References

[1] Thomas M. Cover, Joy A. Thomas (2006). Elements of Information Theory. John Wiley & Sons, New York. [2] V. Prabhakaran, D. Tse and K. Ramachandran, "Rate region of the quadratic Gaussian CEO problem," International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings., Chicago, IL, USA, 2004, pp. 119-, doi: 10.1109/ISIT.2004.1365154.

[3] C. T. Li and A. El Gamal, "Strong Functional Representation Lemma and Applications to Coding Theorems," in IEEE Transactions on Information Theory, vol. 64, no. 11, pp. 6967-6978, Nov. 2018, doi: 10.1109/TIT.2018.2865570.

Contact:

Yicheng Cui Email: yccui@link.cuhk.edu.hk Supervisor: Cheuk Ting Li Email: ctli@ie.cuhk.edu.hk