PLACE DE MARCHÉ

CLASSIFICATION AUTOMATIQUE DES BIENS DE CONSOMMATION

AOUT 2024 / LOKMAN AALIOUI

FEUILLE DE ROUTE

Mise en contexte

Exploration des données

Etudes de faisabilité texte et images

O4 Classification supervisée images

Test d'une API

CONTEXTE

- L'entreprise **Place de marché** souhaite lancer une marketplace e-commerce où des vendeurs proposeront des articles à des acheteurs en postant une photo et une description.
- Actuellement, l'attribution de la catégorie d'un article est effectuée manuellement
- Pour faciliter la mise en ligne de nouveaux articles, il faudrait automatiser cette tâche d'attribution de la catégorie.

MISSION

- Etudier la faisabilité d'un moteur de classification des articles en différentes catégories, à partir du texte de description d'une part et de l'image d'autre part
- Tester une API de collecte de données

LES DONNÉES

1. Fichier de données :

- 15 variables (Nom, description, catégorie, ...)
- 1050 individus (Chaque ligne correspond à un produit)

2. Dossier d'images :

 1050 images au format JPG (Chaque image correspond à un produit)

7 Catégories principales

ÉTUDE DE FAISABILITÉ: TEXTE

DÉMARCHE

- Prétraitement des descriptions des produits
- Réduction des dimensions
- Clustering (K-means)
- Calcul de similarité entre les catégories réelles et les clusters
- Visualisation sur 2 dimensions

ACP

• Réduit les dimensions de 3395 à 509

T-SNE

• Réduit les dimensions de 509 à 2

ARI (Adjusted Rand Index)

- Evalue la similarité entre deux clusters, compare avec les clusters de réference
- Un score élevé indique une concordance significative

PRÉTR AITEMENTS

Opération		Opération	
	 Convertit le texte en chaîne de caractères Convertit le texte en minuscule Supprime les balises HTMLou XML Supprime les URL Retire les chiffres Étiquete les mots avec leur catégorie grammaticale Filtre les mots pour garder seulement les noms et les verbes de plus de deux lettres 	RegxpTokenizer	 Divise le texte selon les règles données
Fonction		nltk_stopwords	 Supprime les mots les plus courant en anglais
		WordNetLemmati zer	 Utilise la base de données lexicale WordNet pour lemmatiser les mots, réduit les mots à leur forme canonique ou de base

NATURAL LANGUAGE PROCESSING

CountVectorizer

Calcul la fréquence des mots dans le texte

• TF-IDF

Calcule la fréquence des mots dans le texte par rapport à la fréquence de ces mots dans le corpus

Word2Vec

Transforme les mots en vecteurs, les mots ayant des significations similaires seront proches les uns des autres

• BERT

Analyse les mots à gauche et à droite dans la phrase pour en comprendre le sens

• USE

Analyse le corpus de texte dans son ensemble pour en comprendre le sens

RÉSULTATS

	Méthode	Score ARI
	CountVectorizer	0.3982
	TD-IDF	0.2804
	Word2Vec	0.3196
	BERT	0.3296
Ī	USE	0.3988

- Privilégier CountVectorizer si on a des ressources limitées, si nos descriptions sont courtes et simples
- Privilégier **USE** si on des descriptions de produits plus complexes, et si on dispose des ressources nécessaires

VISUALISATION: COUNTVECTORIZER

MATRICE DE CONFUSION : COUNTVECTORIZER

ÉTUDE DE FAISABILITÉ : IMAGES

PRÉTR AITEMENTS

Opération	
Couleurs	Charge l'image en niveaux de gris
equalizeHist	Egalise l'histogramme de l'image
detectAndCompute	Détecte les points clés et calcule les descripteurs
Résolution	• Standardise les images en 224*224

COMPUTER VISION

• SIFT

Détecte et décrit les points d'intérêt (keypoints) dans les images, efficace pour détecter des points caractéristiques robustes et distinctifs dans les images

CNN Transfer Learning

Utilise un modèle pré-entraîné sur un large jeu de données (comme ImageNet) et l'adapte à une nouvelle tâche avec un jeu de données plus petit

RÉSULTATS

Méthode	Score ARI
SIFT	0.0612
CNN Transfer Learning	0.4831

 Privilégier CNN Transfer
 Learning bien qu'il nécessite des ressources de calcul importantes (GPU)

VISUALISATION: CNN TRANSFER LEARNING

IMAGES: CLASSIFICATION SUPERVISÉE

DÉMARCHE

- Prétraitement des images des produits
- Séparation en train et test
- Création des modèles de CNN
- Création du Callback
- Mesure de la précision
- Visualisation

ModelCheckpoint:

 Sauvegarde le modèle à des intervalles réguliers, après chaque époque ou lorsque l'exactitude du modèle s'améliore

Accuracy

- Evalue la précision globale d'un modèle en indiquant la proportion d'éléments correctement classés
- Un score élevé indique une meilleure précision

RÉSEAUX DE NEURONES CONVOLUTIFS (CNN)

Approches

Modèle VGG16

Modèle VGG19

Séquences de couches de convolution et de pooling suivies de couches entièrement connectées, extrayant des caractéristiques locales et réduisant progressivement la dimension

Modèle RESNET50

Utilise des blocs résiduels avec connections directes pour faciliter l'appr des réseaux profonds

- Classification supervisée simplifiée
- Méthode avec augmentation des données pour l'entrainement du modèle
- ImageDataGenerator avec augmentation de donnée

- Méthode avec augmentation des données pour l'entrainement du modèle
- Méthode avec augmentation des données pour l'entrainement du modèle

RÉSUL TATS

Méthode	Validation Accuracy	Test Accuracy	Temps entrainement	Temps validation
VGG16 Classification supervisée simplifiée	0.8608	0.5810	369s	15s
VGG16 ImageDataGenerator avec augmentation	0.8347	0.5429	47s	16s
VGG16 approche avec augmentation intégrée	0.8644	0.5714	61s	25s
VGG19 approche avec augmentation intégrée	0.8305	0.5333	63s	22s
RESNET50 approche avec augmentation intégrée	0.8729	0.6000	27s	9s

RESNET50 APPROCHE AVEC AUGMENTATION DES DONNÉES

• Performance:

Le modèle généralise bien aux données non vues, mais il y a un écart notable par rapport à la précision d'entraînement

• Surapprentissage:

Une perte de test plus élevée par rapport à la perte d'entraînement indique un certain degré d'overfitting

TEST D'UNE API

DÉMARCHE

- Paramètrage d'un script python sur RapidAPI
- Importation JSON des données
- Transformation en Dataframe
- Requeter sur la catégorie
 Champagne
- Filtrer en assurant les règles
 RGPD
- Extraire au format CSV

API Edamam

 Interface de programmation d'application qui permet aux développeurs d'accéder à des données nutritionnelles, des recettes et des informations alimentaires

RGPD

 Utiliser exclusivement les données strictement nécessaires à notre utilisation

AFFICHAGE DES 10 PREMIERS PRODUITS LABELISÉS "CHAMPAGNE"

	foodld	label	category	foodContentsLabel	image
0	food_a656mk2a5dmqb2adiamu6beihduu	Champagne	Generic foods	NaN	https://www.edamam.com/food-img/a71/a718cf3c52
1	food_b753ithamdb8psbt0w2k9aquo06c	Champagne Vinaigrette, Champagne	Packaged foods	OLIVE OIL; BALSAMIC VINEGAR; CHAMPAGNE VINEGAR	NaN
2	food_b3dyababjo54xobm6r8jzbghjgqe	Champagne Vinaigrette, Champagne	Packaged foods	INGREDIENTS: WATER; CANOLA OIL; CHAMPAGNE VINE	https://www.edamam.com/food-img/d88/d88b64d973
3	food_a9e0ghsamvoc45bwa2ybsa3gken9	Champagne Vinaigrette, Champagne	Packaged foods	CANOLA AND SOYBEAN OIL; WHITE WINE (CONTAINS S	NaN
4	food_an4jjueaucpus2a3u1ni8auhe7q9	Champagne Vinaigrette, Champagne	Packaged foods	WATER; CANOLA AND SOYBEAN OIL; WHITE WINE (CON	NaN
5	food_bmu5dmkazwuvpaa5prh1daa8jxs0	Champagne Dressing, Champagne	Packaged foods	SOYBEAN OIL; WHITE WINE (PRESERVED WITH SULFIT	https://www.edamam.com/food-img/ab2/ab2459fc2a
6	food_alpl44taoyv11ra0lic1qa8xculi	Champagne Buttercream	Generic meals	sugar; butter; shortening; vanilla; champagne;	NaN
7	food_am5egz6aq3fpjlaf8xpkdbc2asis	Champagne Truffles	Generic meals	butter; cocoa; sweetened condensed milk; vanil	NaN
8	food_bcz8rhiajk1fuva0vkfmeakbouc0	Champagne Vinaigrette	Generic meals	champagne vinegar; olive oil; Dijon mustard; s	NaN
9	food_a79xmnya6togreaeukbroa0thhh0	Champagne Chicken	Generic meals	Flour; Salt; Pepper; Boneless, Skinless Chicke	NaN

CONCLUSIONS

- La classification automatique des produits est possible, la faisabilité a été démontrée pour le texte et l'image avec une approche simple et peu gourmande en ressources (CountVectorizer)
- Les résultats de la classification supervisée sont probants sur un modèle efficace (RESNET50)
- Il est possible pour augmenter la précision, d'utiliser des approches multi-modales en conjuguant données des textes et des images

MERCIPOUR VOTRE ATTENTION

AOUT 2024 / LOKMAN AALIOUI