FORMULAS DE ESTADISTICA II

INFERENCIA SOBRE UNA POBLACION

$\overline{X} \pm Z_{\phi} \sqrt[\sigma]{\sqrt{n}}$	$\overline{X}_c = \mu_0 \pm Z_\phi \sqrt[\sigma]{n}$	$\hat{p} \pm Z_{\phi} \sqrt{\frac{\hat{p}\hat{q}}{n}}$	$\hat{ ho}_c = ho_0 \pm Z_{\phi} \sqrt{rac{ ho_0 q_0}{n}}$
$n = \left(\frac{Z_{\phi}\sigma}{E}\right)^2$	$n = \left[\frac{\left(Z_{1-\alpha} + Z_{1-\beta}\right)\sigma}{\mu_0 - \mu_1}\right]^2$	$n = \frac{Z_{\phi}^{2}\hat{p}\hat{q}}{E^{2}}$	$n = \left(\frac{Z_{1-\alpha}\sqrt{p_0 q_0} + Z_{1-\beta}\sqrt{p_1 q_1}}{p_1 - p_0}\right)^2$
$\overline{X} \pm t_{\nu;\phi} \sqrt[S]{\sqrt{n}}$ $n = \left(\frac{t_{\nu;\phi}S}{E}\right)^{2}$		$\left\{ \frac{S^{2}(n-1)}{\chi^{2}_{\nu;1-\alpha/2}}; \frac{S^{2}(n-1)}{\chi^{2}_{\nu;\alpha/2}} \right\}$	$\chi^2 = \frac{S^2(n-1)}{\sigma^2}$

PRUEBAS NO PARAMETRICAS

$$\chi^2 = \sum_i \frac{\left(O_i - E_i\right)^2}{E_i} \qquad \qquad \chi^2 = \sum_i \sum_j \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$$

INFERENCIA SOBRE DOS POBLACIONES

$F = \frac{S_1^2}{S_2^2}$	$Z = \frac{(\bar{x}_1 - \bar{x}_2) - \mu_{(\bar{x}_1 - \bar{x}_2)}}{\sigma_{(\bar{x}_1 - \bar{x}_2)}} = \frac{(\bar{x}_1 - \bar{x}_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
$t = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - D_0}{S_a \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$t = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - D_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$
donde: $S_a^2 = \frac{S_1^2(n_1 - 1) + S_2^2(n_2 - 1)}{n_1 + n_2 - 2}$	$donde: v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 \frac{1}{v_1} + \left(\frac{S_2^2}{n_2}\right)^2 \frac{1}{v_2}}$
$t = \frac{\overline{d} - \mu_d}{S_d / \sqrt{n}}$	
donde: $\overline{\mathbf{d}} = \frac{\sum \mathbf{d}_{i}}{\mathbf{n}}$ y $\mathbf{S}_{d} = \sqrt{\frac{\sum_{i=1}^{n} (d_{i} - \overline{d})^{2}}{n-1}}$	

ANÁLISIS DE REGRESIÓN Y CORRELACION LINEAL

Cálculos Auxiliares:
$$S_{xx} = \sum x^2 - n\overline{x}^2$$

$$S_{yy} = \sum y^2 - n\overline{y}^2$$

$$S_{xy} = \sum xy - n\overline{xy}$$

$$S_{xy} = \sum xy - n\overline{xy}$$

$$S_{xy}^2 = S_e^2 = \frac{\sum_{i=1}^n (y_i - \hat{y})^2}{n-2} = \frac{SCResiduos}{n-2} = \frac{1}{n-2} \left[S_{yy} - (b^2 * S_{xx}) \right]$$

$$\hat{y} \pm t_{v;\phi} S_{\hat{y}}$$

$$S_g = S_e \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}$$

$$S_{y_0} = S_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}$$

$$S_y = \frac{SCResiduos}{n-2} = \frac{1}{n-2} \left[S_{yy} - (b^2 * S_{xx}) \right]$$

$$S_y = \frac{b - \beta}{S_b}; t_{v;\phi}$$

$$S_y = \frac{S_e^2}{S_{xx}} = \frac{S_e^2}{S_{xx}}$$

$$S_y = \frac{S_e^2}{S_{xx}} = \frac{S_e^2}{S_{xx}}$$