

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2017

Marking Scheme

Mathematics

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

Contents	Page
Paper 1	
Solutions and Marking Scheme	2
Structure of the marking scheme	3
Summary of mark allocations and scales to be applied	4
Model solutions and detailed marking notes	5
Paper 2	
Solutions and Marking Scheme	22
Structure of the marking scheme	23
Summary of mark allocations and scales to be applied	24
Model solutions and detailed marking notes	25
Marcanna breise as ucht freagairt trí Ghaeilge	41

Blank Page

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate Examination 2017

Mathematics

Higher Level

Paper 1

Solutions and Marking scheme

300 marks

Marking Scheme - Paper 1, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	А	В	С	D	E
No of categories	2	3	4	5	6
5 mark scales	0, 5	0, 3, 5	0, 3, 4, 5	0, 2 ,3, 4, 5	
10 mark scales	0, 10	0, 4, 10	0, 5, 8, 10	0, 4, 7, 8, 10	
15 mark scales	0, 15	0, 7, 15	0, 5, 10, 15	0, 5, 8, 12, 15	
20 mark scales	0, 20	0, 10, 20	0, 10, 18, 20	0, 5, 14, 17, 20	
25 mark scales	0, 25	0, 12, 25	0, 8, 17, 25	0, 6, 12, 19, 25	0, 5, 10, 15, 20, 25

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response
- correct response

B-scales (three categories)

- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)

- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)

- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

E-scales (six categories)

- response of no substantial merit
- response with some merit
- response almost half-right
- response more than half-right
- almost correct response
- correct response

Summary of mark allocations and scales to be applied

Section A		Section B
Question 1		Question 7
(a)	5D	(a) 10B
(b)	10B	(b) 10B
(c)(i)	5B	(c) 5C
(ii)	5C	(d) 15C
		(e) 5C
Question 2		(f) 5C
(a)	15D	(g) 5C
(b)	10D	
		Question 8
Question 3		(a) 5C
(a)	20D	(b)(i) 10B
(b)	5C	(b)(ii) 10B
		(b)(iii) 10C
Question 4		(b)(iv) 5C
(a)	15D	(b)(v) 10C
(b)	10C	(b)(vi) 5B
Question 5		Question 9
(a)	15C	(a) 20C
(b)	5C	(b)(i) 10C
(c)	5B	(b)(ii) 5C
		(c) 5C
Question 6		
(a)	15C	
(b)	10C	

NOTE: In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Rounding and units penalty to be applied only once in each section (a), (b), (c) etc. Throughout the scheme indicate by use of * where an arithmetic error occurs.

Detailed marking notes

Model Solutions & Marking Notes

Note: The model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner

Q1	Model Solution – 25 Marks	Marking Notes
(a)	$2\left(x^{2} - \frac{7}{2}x - 5\right)$ $= 2\left(\left(x - \frac{7}{4}\right)^{2} - \frac{129}{16}\right)$ $= 2\left(\left(x - \frac{7}{4}\right)^{2}\right) - \frac{129}{8}$	 Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: • a = 2 identified explicitly or as factor Mid partial Credit: • Completed square High partial Credit: • h or k identified from work
(b)	$\left(\frac{7}{4}, \frac{-129}{8}\right)$	Scale 10B (0, 4, 10) Partial Credit: • One relevant co-ordinate identified

(c) (i)	$f(x)$ has min point as $a>0$ y co-ordinate of min <0 \Rightarrow graph must cut x -axis twice hence two real roots. or $b^2-4ac=49+80>0$ Therefore real roots	Scale 5B (0, 3, 5) Partial Credit: • Mention of $a > 0$ • $b^2 - 4ac$ • Identifies location of one or two roots, e.g. between 4 and 5.
c (ii)	$2x^{2} - 7x - 10 = 0$ $2\left(\left(x - \frac{7}{4}\right)^{2}\right) - \frac{129}{8} = 0$ $\left(x - \frac{7}{4}\right)^{2} = \frac{129}{16}$ $x - \frac{7}{4} = \pm \frac{\sqrt{129}}{4}$ $x = \frac{7}{4} \pm \sqrt{\frac{129}{16}}$ OR $2x^{2} - 7x - 10 = 0$ $x = \frac{7 \pm \sqrt{49 + 80}}{4}$	 Scale 5C (0, 3, 4, 5) Low Partial Credit: Formula with some substitution Equation rewritten with some transpose High Partial Credit: x - ⁷/₄ = ± √(129)/4 or equivalent
	$= \frac{7 \pm \sqrt{129}}{4}$ $x = \frac{7}{4} \pm \sqrt{\frac{129}{16}}$	

Q2	Model Solution – 25 Marks	Marking Notes
(a)		
	$\tau = 2\left(\cos^{5\pi} + i\sin^{5\pi}\right)$	Scale 15D (0, 5, 8, 12, 15)
	$z = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$	Low Partial Credit:
	$z^4 = \left(2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)\right)^4$	• θ or $ z $ found
	$z^{+} = \left(2\left(\cos\frac{-}{6} + i\sin\frac{-}{6}\right)\right)$	Mid Partial Credit:
	, (10π 10π)	 z written in polar form
	$z^4 = 16\left(\cos\frac{10\pi}{3} + i\sin\frac{10\pi}{3}\right)$	2 written in polar form
	$= -8 - 8\sqrt{3}i$	High Partial Credit:
	3 3,31	 De Moivre's Theorem applied
		correctly
		Note:
		Not using De Moivre:
		Low partial credit for fully correct
		work
(b)	2(20 1 (20)	6 1 400 (0 4 7 0 40)
	$w = 3(\cos 30 + i\sin 30)$	Scale 10D (0, 4, 7, 8, 10)
	$_{2}$ (5π , 5π)	Low Partial Credit:
	$zw = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) \times$	 Work towards w in Cartesian or polar
	$3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$	form
	(6 6)	
	$zw = 6(\cos\pi + i\sin\pi)$	Mid Partial Credit
		• zw expressed as a product
	=6(-1+0i)	High Partial Credit:
		 zw in Cartesian or polar form
	= -6	car costan or polar to
	OR (contd)	

$$w = a + bi$$

$$a^{2} + b^{2} = 9$$

$$\frac{b}{3} = \sin 30^{\circ} = \frac{1}{2}$$

$$b = \frac{3}{2}$$

$$a^{2} + \left(\frac{3}{2}\right)^{2} = 9$$

$$a^{2} = \frac{27}{4}$$

$$a = \sqrt{\frac{27}{4}} = \frac{3\sqrt{3}}{2}$$

$$w = a + bi = \frac{3\sqrt{3}}{2} + \frac{3}{2}i$$

$$z = -\sqrt{3} + i$$

$$zw = (-\sqrt{3} + i)\left(\frac{3\sqrt{3}}{2} + \frac{3}{2}i\right)$$
$$= -\frac{9}{2} - \frac{3\sqrt{3}i}{2} + \frac{3\sqrt{3}i}{2} - \frac{3}{2}$$
$$= -6$$

Q3	Model Solution – 25 Marks	Marking Notes
(a)		3
	$f(x+h) = \frac{1}{3}(x+h)^2 - (x+h) + 3$	Scale 20D (0, 5, 14, 17, 20)
	3 (2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Low Partial Credit
	$f(x) = \frac{1}{2}x^2 - x + 3$	• any $f(x+h)$
	3	Mid Partial Credit
	$f(x+h) - f(x) = \frac{2xh}{3} + \frac{h^2}{3} - h$	• $f(x+h) - f(x)$ with some correct work
	$\frac{f(x+h) - f(x)}{h} = \frac{2x}{3} + \frac{h}{3} - 1$	High Partial Credit
	$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{2x}{3} - 1$	$ \bullet \frac{\frac{1}{3}(x+h)^2 - (x+h) + 3 - \left(\frac{x^2}{3} - x + 3\right)}{h} \text{ simplified} $
		Notes:
		 omission of limit sign penalised once only
		• answer not from 1st Principles merits 0 marks
(b)		
	$\frac{d(fg(x))}{dx} =$	Scale 5C (0, 3, 4, 5)
	dx $-$	Low Partial Cradity
	$\frac{1}{(3(x+5)^2+2)}(6(x+5))$	Low Partial Credit:Any correct differentiation
		• $fg(x)$ formulated
	$\frac{d(fg\left(\frac{1}{4}\right))}{dx} = \frac{6(\frac{21}{4})}{3(\frac{21}{4})^2 + 2} = \frac{504}{1355}$	
	$\frac{dx}{dx} = \frac{1}{3(\frac{21}{21})^2 + 2} = \frac{1}{1355}$	High Partial Credit: $d(fg(x)) = 0$
	T	• $\frac{d(fg(x))}{dx}$ found
	= 0.372	
		Note:
	OR	Work with $f(x) \times g(x)$ merits low partial
	$f(x) = \ln(3x^2 + 2)$	credit at most
	g(x) = (x+5)	
	$f[g(x)] = \ln[3(x+5)^2 + 2]$	
	$= \ln(3x^2 + 30x + 77)$	
	6x + 30	
	$f'(x) = \frac{6x + 30}{3x^2 + 30x + 77}$	
	$x = \frac{1}{4}$: $f'(x) = \frac{31.5}{84.6875} = 0.3719$	
	= 0.372	
	_ 0 3, 2	

Q4	Model Solution – 25 Marks	Marking Notes
(a)		
	$r = \frac{42.75}{95} = \frac{9}{20} \qquad T_n = ar^{n-1} < 0.01$ $95 \left(\frac{9}{20}\right)^{n-1} < 0.01$ $\left(\frac{9}{20}\right)^{n-1} < \frac{0.01}{95}$ $(n-1)\log\left(\frac{9}{20}\right) < \log\left(\frac{0.01}{95}\right)$ $(n-1) > \frac{\log\left(\frac{0.01}{95}\right)}{\log\left(\frac{9}{20}\right)}$ (since $\log\left(\frac{9}{20}\right)$ is negative) $n-1 > 11.47$ $n > 12.47$	Scale 15D (0, 5, 8, 12, 15) Low Partial Credit: • r found • T _n of a GP with some substitution Mid Partial Credit: • Inequality in n written High Partial Credit: • Inequality in n simplified (log handled) Full Credit: • Accept n =12·47
	12 th day	
(b)	$4(2) + 4\sqrt{2} + 4 + \cdots$ $a = 8 r = \frac{1}{\sqrt{2}}$ $S_{\infty} = \frac{a}{1 - r}$ $S_{\infty} = \frac{8}{1 - \frac{1}{\sqrt{2}}}$ $S_{\infty} = \frac{8}{1 - \frac{1}{\sqrt{2}}} \cdot \frac{1 + \frac{1}{\sqrt{2}}}{1 + \frac{1}{\sqrt{2}}}$ $S_{\infty} = \frac{8\left(1 + \frac{1}{\sqrt{2}}\right)}{\frac{1}{2}}$ $S_{\infty} = 16 + 8\sqrt{2}$	Scale 10C (0, 5, 8, 10) Low Partial Credit: • length of one side of new square High Partial Credit: • S_{∞} fully substituted • Correct work with one side only

Q5	Model Solution – 25 Marks	Marking Notes
(a)		
	$f(x) = 2x^3 + 5x^2 - 4x - 3$	Scale 15C (0, 5, 10, 15)
	$f(-3) = 2(-3)^3 + 5(-3)^2 - 4(-3)$	Low Partial Credit:
		• Shows $f(-3) = 0$
	- 3	
	= -54 + 45 + 12 - 3	High Partial Credit:
	f(-3) = 0	• quadratic factor of $f(x)$ found
	\Rightarrow (x + 3) is a factor	Note:
	$2v^2 - v = 1$	No remainder in division may be stated
	$\frac{2x^2 - x - 1}{x + 3 \overline{\smash{\big)}\ 2x^3 + 5x^2 - 4x - 3}}$	as reason for $x = -3$ as root
	$2x^3 + 6x^2$	
	$-x^2-4x$	
	$-x^2-3x$	
	-x-3	
	-x-3	
	$f(x) = (x+3)(2x^2 - x - 1)$	
	f(x) = (x+3)(2x+1)(x-1)	
	$x = -3 \qquad x = -\frac{1}{2} \qquad x = 1$	

(b)	$y = 2x^{3} + 5x^{2} - 4x - 3$ $\frac{dy}{dx} = 6x^{2} + 10x - 4 = 0$ $3x^{2} + 5x - 2 = 0$ $(x + 2)(3x - 1) = 0$ $3x - 1 = 0 x + 2 = 0$ $x = \frac{1}{3} x = -2$ $f\left(\frac{1}{3}\right) = \frac{-100}{27} f(-2) = 9$ $Max = (-2, 9) Min = \left(\frac{1}{3}, \frac{-100}{27}\right)$	Scale 5C (0, 3, 4, 5) Low Partial Credit: • dy/dx found (Some correct differentiation) High Partial Credit • roots and one y value found Note: One of Max/Min must be identified for full credit
(c)	$a > \frac{100}{27}$ or $a < -9$	Scale 5B (0, 3, 5) Partial Credit: one value identified no range identified (from 2 values)

Q6 Model Solution – 25 Marks

(a)

g(x) h(x)

$$g(x) = e^x$$
 $h(x) = e^{-x} = \frac{1}{e^x}$

 $g(x) = e^x$:

x	0	0.2	0.4	0.6	0.8	1.0
y	1	1.22	1.49	1.82	2.23	2.72

$$h(x) = \frac{1}{e^x}$$
:

					0.6		
J	v	1	0.82	0.67	0.55	0.45	0.37

Marking Notes

Scale 15C (0, 5, 10, 15)

Low Partial Credit:

• one point correct

High Partial Credit

• Graph not in required domain

(b)

$$A = \int_0^{0.75} e^x dx - \int_0^{0.75} e^{-x} dx$$
$$= \int_0^{0.75} (e^x - e^{-x}) dx$$
$$= e^x + e^{-x}$$
$$e^{0.75} + e^{-0.75} - [e^0 + e^0]$$
$$= 0.5894$$

Scale 10C (0, 5, 8, 10)

Low Partial Credit:

• Formulates integration for area under one curve with limits

High Partial Credit

• integrates twice for correct area under both curves

Note: Trapezoidal rule must have at least 5 divisions <u>AND</u> fully correct work gets Low Partial Credit

Q7	Model Solution – 55 Marks	Marking Notes
(a)	$Se^{\cdot 1(0)} \times 10^6 = 1100000$ $S = 1 \cdot 1$ $p(5) = 1 \cdot 1e^{0 \cdot 1(5)} \times 10^6$ $= 1 \cdot 813593 \times 10^6$ = 1813593	Scale 10B (0, 4, 10) Partial Credit • equation in S with substitution Scale 10B (0, 4, 10) Partial Credit • substitution into formula for p(5)
(c)	$p(6) = 1 \cdot 1e^{0.6} \times 10^{6}$ $p(5) = 1 \cdot 1e^{0.5} \times 10^{6}$ $p(6) - p(5) = (1 \cdot 1e^{0.6} - 1 \cdot 1e^{0.5}) \times 10^{6}$ $= 0 \cdot 1907372 \times 10^{6}$ $= 190737$	Scale 5C (0, 3, 4, 5) Low Partial Credit: • substitution into formula for $p(6)$ • use of $p(5)$ from previous part • $p(6) - p(5)$ written or implied High partial Credit • Formulates $p(6) - p(5)$ with some substitution

(d)	$q(t) = 3.9e^{kt} \times 10^{6}$ $3709795 = 3.9e^{k} \times 10^{6}$ $\frac{3.709795}{3.9} = e^{k}$ $\log_{e} \frac{3.709795}{3.9} = k$ $k = -0.0499 = -0.05$	Scale 15C (0, 5, 10, 15) Low Partial Credit Either substitution into formula for k Verifies k value only. High Partial Credit relevant equation in k
(e)	$p(t) = q(t)$ $1 \cdot 1e^{0 \cdot 1t} \times 10^6 = 3 \cdot 9e^{-0 \cdot 05t} \times 10^6$ $1 \cdot 1e^{0 \cdot 1t} = 3 \cdot 9e^{-0 \cdot 05t}$ $\frac{e^{0 \cdot 1t}}{e^{-0 \cdot 05t}} = \frac{3 \cdot 9}{1 \cdot 1}$ $e^{0 \cdot 15t} = \frac{39}{11}$ $\ln \frac{39}{11} = 0 \cdot 15t$ $t = 8 \cdot 44 \text{ years}$ In 2018 both populations equal	Scale 5C (0, 3, 4, 5) Low Partial Credit • $p(t) = q(t)$ written or implied High Partial Credit • relevant equation in t
(f)	$ \frac{1}{15} \int_{0}^{15} 3.9e^{-0.05t} \times 10^{6} dt $ $ \frac{1}{15} \left[\frac{3.9}{-0.05} e^{-0.05(15)} - \frac{3.9}{-0.05} e^{-0.05(0)} \right] $ $ \times 10^{6} $ $ 2.743694 \times 10^{6} $ $ 2743694 $	Scale 5C (0, 3, 4, 5) Low Partial Credit: • integral formulated (with limits) High Partial Credit: • integration with full substitution
(g)	$q(t) = 3.9e^{-0.05t} \times 10^{6}$ $q'(t) = -0.05(3.9e^{-0.05t} \times 10^{6})$ $q'(8) = -0.05(3.9e^{-0.05(8)} \times 10^{6})$ $= -130712$	Scale 5C (0, 3, 4, 5) Low Partial Credit • $q'(t)$ High Partial Credit • $q'(t)$ fully substituted

Q8	Model Solution	– 55 Marks		Markin	ig Notes	
(a)	$P = \frac{A}{1+i} + \frac{A}{(1+i)^2} + \dots + \frac{A}{(1+i)^t}$ $P = \frac{\left(\frac{A}{1+i}\right)\left(1 - \left(\frac{1}{1+i}\right)^t\right)}{1 - \frac{1}{1+i}}$		Low Pa • $P =$ • $A =$ • S_n f High Pa • full	C (0, 3, 4, 5) ortial Credit: $\frac{A}{1+i}$ $P(1+i)$ formula with some ortial Credit: substitution for P (formula.		
(b) (i)	$2.5\% \times 5000 = 125$		Scale 10B (0, 4, 10) Partial Credit Any one unknown			
(b) (ii)	$(1+i)^{\frac{1}{12}} = (1.2175)^{\frac{1}{12}} = 1.016535$ $Rate = 1.65\%$		Scale 10B (0, 4, 10) Partial Credit Formula with some substitution			
(b) (iii)						
(,	Payment number	Fixed monthly payment, €A	Inter	_	Previous balance reduced by (€)	New balance of debt (€)
	0					5000
	1	125	82.50		42·50	4957·50
	2	125	81.80	1	43·20	4914·30
	3	125	81.09		43·91	4870·39
(b) (iii)				• One High Po • 6 co	OC (0, 5, 8, 10) ortial Credit: correct additional ortial Credit: orrect additional en Where interest rate, then check the va	tries e in b(ii) is not

(iv)

$$A = p \left[\frac{i(1+i)^t}{(1+i)^t - 1} \right]$$

$$A[(1+i)^t - 1] = pi(1+i)^t$$

$$A(1+i)^t - A = pi(1+i)^t$$

$$A = (1+i)^t [A-pi]$$

$$\frac{A}{A-pi} = (1+i)^t$$

$$\frac{125}{125 - 5000 \left(\frac{1 \cdot 65}{100} \right)} = \left(1 + \frac{1 \cdot 65}{100} \right)^t$$

$$\frac{125}{42 \cdot 5} = (1 \cdot 0165)^t$$

$$\log \left(\frac{125}{42 \cdot 5} \right) = t \log(1 \cdot 0165)$$

$$t = \frac{\log \left(\frac{125}{42 \cdot 5} \right)}{\log(1 \cdot 0165)}$$

$$t = 65 \cdot 920$$

$$t = 66 \text{ months}$$

OR

$$A = p \left[\frac{i(1+i)^t}{(1+i)^t - 1} \right]$$

$$125 = \frac{5000(0.0165)(1.0165)^t}{(1.0165)^t - 1}$$

$$125 = \frac{82.5(1.0165)^t}{(1.0165)^t - 1}$$

$$\frac{125}{82.5} = \frac{1.0165^t}{1.0165^t - 1}$$

$$\frac{50}{33} = \frac{1.0165^t}{1.0165^t - 1}$$

$$50(1.0165^t - 1) = 33(1.0165^t)$$

$$50(1.0165^t) - 50 = 33(1.0165^t)$$

$$50(1.0165^t) - 33(1.0165^t) = 50$$

$$1.0165^t(50 - 33) = 50$$

$$1.0165^t(17) = 50$$

$$1.0165^t = \frac{50}{17}$$

$$t \log 1.0165 = \log \frac{50}{17}$$

$$t = \frac{\log \left(\frac{50}{17}\right)}{\log 1.0165} = 65.92$$

t = 66 months

Scale 5C (0, 3, 4, 5)

Low Partial Credit:

- Formula with some substitution
- Some relevant manipulation of formula.

High Partial Credit:

• Equation in *t* (*t* no longer an index)

(11)		
(v)	$A = \frac{pi(1+i)^t}{(1+i)^t - 1}$ $= \frac{5000 \left(1.085^{\frac{1}{52}} - 1\right) (1.085)^3}{(1.085)^3 - 1}$ $= £36.16$ OR Weekly interest rate $(1+i)^{52} = 1.085$ $1+i = 1.085^{\frac{1}{52}}$ $1+i = 1.00157$ $i = 0.00157$ $A = \frac{pi(1+i)^t}{(1+i)^t - 1}$ $A = \frac{5000(0.00157)(1.00157)^{156}}{(1.00157)^{156} - 1}$ $= £36.16$	Scale 10C (0, 5, 8, 10) Low Partial Credit: • r (weekly) found High Partial Credit: • Fully substituted equation
(vi)	125 × 66 − (36·16)(156) =€2609·04	Scale 5B (0, 3, 5) Partial Credit: Total repayment by either method found

Q9		Marking Notes
(b) (i)	$f(t) = a + b \cos ct$ $Range: [(a+b), (a-b)]$ $a+b=5.5 a-b=1.7$ $a=3.6 b=1.9$	Scale 10C (0, 5, 8, 10) Low Partial Credit: • one equation in a and b • Range in terms of a and b High Partial Credit: • a or b found Note: Accept correct answer without work
(b) (ii)	Time between two successive high tides is: $12\frac{34}{60}$ hours $period = 12\frac{34}{60}$ $period = \frac{2\pi}{c}$ $c = \frac{2\pi}{12\frac{34}{60}} = 0.4999 = 0.5$	Scale 5C (0, 3, 4, 5) Low Partial Credit: • Period identified or $\frac{2\pi}{c}$ or 12.34 High Partial Credit: • equation in c with some substitution
(c)	$5.2 = a + b \cos ct$ $5.2 = 3.6 + 1.9 \cos 0.5t$ $0.5t = \cos^{-1} \frac{1.6}{1.9} = 0.569621319$ 0.5t = 0.5696 t = 1.139 hours (before and after high tide at 14:34) Time = 1 hour 8 minutes Times: $(14:34) \pm 1$ hour 8 min $\Rightarrow 13:26$ and $15:42$	Scale 5C (0, 3, 4, 5) Low Partial Credit: • equation with some substitution High Partial Credit: • solution for t Note: Low partial at most if formula not used

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate Examination 2017

Mathematics

Higher Level

Paper 2

Solutions and Marking scheme

300 marks

Marking Scheme - Paper 1, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	Α	В	С	D	E
No of categories	2	3	4	5	6
5 mark scales	0, 5	0, 3, 5	0, 2, 4, 5	0, 2, 3, 4, 5	
10 mark scales		0, 5, 10	0, 4, 5, 10	0, 3, 5, 8, 10	
15 mark scales			0, 6, 9, 15	0, 5, 7, 9, 15	

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response
- correct response

B-scales (three categories)

- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)

- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)

- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

E-scales (six categories)

- response of no substantial merit
- response with some merit
- response almost half-right
- response more than half-right
- almost correct response
- correct response

Summary of mark allocations and scales to be applied

Section A		Section B	
Question 1 (a) (b) (c) (d)	10C 5D 5B 5C	Question 7 (a) (b)(i) (b)(ii) (b)(iii) (c)	10C 10B 10C 5C 5C
Question 2 (a) (b) (c) (d)(i) (d)(ii)	5A 5C 5B 5C 5C	Question 8 (a) (i) (a) (ii) (a)(iii) (b)(i) (b)(ii)	10D 5D 15D 15C 10C
Question 3 (a) (b) (c)	10C 5C 10C	(b)(iii) Question 9 (a) (b)	5C 10B 5C
Question 4 (a) (b)	10D 15C	(c) (d) (e) (f)	10C 10B 5C 10C
Question 5 (a) (b) (c) (d)	10C 5C 5C 5C		
Question 6 (a) (b)	15C 10C		

NOTE: In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Rounding and units penalty to be applied only once in each section (a), (b), (c) etc. Throughout the scheme indicate by use of * where an arithmetic error occurs.

Detailed marking notes

Model Solutions & Marking Notes

Note: The model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner

Q1	Model Solution – 25 Marks	Marking Notes
(a)	$\frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} = \frac{256}{78125}$ or $= 0.0032768$	Scale 10C (0, 4, 5, 10) Low Partial Credit: • $\frac{4}{5}$ • $(\frac{1}{5})^3$ High Partial Credit: • $\frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5}$ in any order
(b)	${\binom{6}{3}\left(\frac{1}{5}\right)^3\left(\frac{4}{5}\right)^3\left(\frac{1}{5}\right)}$ $= \frac{1280}{78125} \text{ or } \frac{256}{15625}$ $\text{ or } 0.016384$	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: • $\binom{6}{3}$ or $\left(\frac{1}{5}\right)^3$ or $\left(\frac{4}{5}\right)^3$ • $\frac{1}{5}$ for last day Mid Partial Credit: • $\binom{6}{3}\left(\frac{1}{5}\right)^3\left(\frac{4}{5}\right)^3$ and stops or continues • $\binom{7}{4}\left(\frac{1}{5}\right)^4\left(\frac{4}{5}\right)^3$ and continues High Partial Credit: • $\binom{6}{3}\left(\frac{1}{5}\right)^3\left(\frac{4}{5}\right)^3\left(\frac{1}{5}\right)$

(c)	$1-\left(\frac{4}{5}\right)^n$	Scale 5B (0, 3, 5) Partial Credit: • 1 or $\left(\frac{4}{5}\right)^n$ • any correct term from the expansion
(d)	$1 - \left(\frac{4}{5}\right)^n > 0.99$ $\left(\frac{4}{5}\right)^n < 0.01$ $\left(\frac{4}{5}\right)^{20.6377} \approx 0.01000000517$ $n = 21$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • Ans (c) > 0.99 High Partial Credit: • viable solution to inequality • $n = 20.6377$ and stops

Q2	Model Solution – 25 Marks	Marking Notes
(a)	Correlation coefficient $= -0.957$	Scale 5A (0, 5)
(b)	Plots Line of Best Fit on Graph	Scale 5C (0, 2, 4, 5) Low Partial Credit: • 3 correct plots High Partial Credit: • All plots correct with an incorrect line of best fit • All plots correct and no line of best fit
(c)	As speed increases by 1 km/h the average distance travelled on 1 litre of fuel decreases by 0·15km or The rate at which fuel consumption in km/l is decreasing as the speed in km/h increases	Scale 5B (0, 3, 5) Partial Credit: • Some reference to speed and fuel consumption • Reference to rate of change
(d) (i)	$\frac{260}{96} - \frac{260}{112} = \frac{65}{168} = 0.3869 \text{ hrs}$ $= 23.21$ $= 23 \text{ to nearest minute}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • $\frac{260}{96}$ or $\frac{260}{112}$ High Partial Credit: • $\frac{260}{96} - \frac{260}{112}$ or equivalent • Answer in hours
(d) (ii)	$\left(\frac{260}{9} \times 1.329\right) - \left(\frac{260}{11} \times 1.329\right)$ $= €6.98$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • Amount of Mary's fuel or amount of Jane's fuel High Partial Credit: $\left(\frac{260}{9} - \frac{260}{11}\right) \times 1.329 \text{ or equivalent}$

Q3	Model Solution – 25 Marks	Marking Notes
(a)	A(0,6) $\rightarrow G\left(\frac{2}{3}, \frac{4}{3}\right)$ $\rightarrow P\left(\frac{2}{3} + \frac{1}{2}\left(\frac{2}{3}\right), \frac{4}{3} + \frac{1}{2}\left(\frac{-14}{3}\right)\right)$ $= \left(\frac{3}{3}, -\frac{3}{3}\right)$ $P = (1, -1)$ or $P = (x, y)$ $\left(\frac{2x + 1(0)}{3}, \frac{2y + 6}{3}\right) = \left(\frac{2}{3}, \frac{4}{3}\right)$ $x = 1, y = -1$ or $P = (x, y)$ $\left(\frac{3(\frac{2}{3}) - 1(0)}{3 - 1}, \frac{3(\frac{4}{3}) - 1(6)}{3 - 1}\right)$ $= \left(\frac{2}{2}, \frac{-2}{2}\right) = (1, -1)$	Scale 10C (0, 4, 5, 10) Low Partial Credit: • $P\left(\frac{4}{3}, -\frac{10}{3}\right)$ or equivalent, i.e ratio 1:1 • $\frac{2}{3}$ or $\frac{1}{3}$ identified as part of change in x ordinate • $-\frac{14}{3}$ or $-\frac{7}{3}$ identified as part of change in y ordinate • Ratio formula with some substitution High Partial Credit: • one relevant co-ordinate of P found
(b)	$C(4,2) \to P(1, -1) \to B(1-3, -1-3)$ $= (-2, -4)$ $B(x,y) \to \left(\frac{4+x}{2}, \frac{2+y}{2}\right) = (1, -1)$ $x = -2, y = -4$ $B = (-2, -4)$	Scale 5C (0, 2, 4, 5) Low Partial Credit: P as mid-point of BC High Partial Credit: one relevant co-ordinate of B found Note: Accept (-2, -4) without work Accept correct graphical solution

(c)

$$AC \perp BC$$

$$AC = \frac{2-6}{4-0} = -1$$

$$BC = \frac{2+4}{4+2} = 1$$

$$-1 \times 1 = -1$$

lines are perpendicular

or

Slope AB = 5.

Altitude from C:
$$y - 2 = -\frac{1}{5}(x - 4)$$

 $\to x + 5y = 14 \dots$ (i).

Slope AC = -1.

Altitude from B:

$$y + 4 = 1(x + 2)$$

$$\rightarrow x - y = 2 \dots (ii)$$

→ Solving (i)and (ii)

$$x = 4$$

$$y = 2$$

Scale 10C (0, 4, 5, 10)

Low Partial Credit:

- Identifies significance of right-angled triangle
- one equation of perpendicular from vertex to opposite side found

High Partial Credit:

- slope of AC and slope of BC found but no conclusion
- two equations of perpendiculars from vertex to opposite side found

Q4	Model Solution – 25 Marks	Marking Notes
(a)	$x^{2} + y^{2} + 2gx + 2fy + c = 0$ $(0,0) \Rightarrow 0 + 0 + 0 + 0 + c = 0$ $\Rightarrow c = 0$ $(6.5,0) \Rightarrow 42.25 + 0 + 13g + 0 + 0 = 0$ $\Rightarrow g = -3.25$ $(10,7) \Rightarrow 100 + 49 + 2(-3.25)(10)$ $+ 2f(7) = 0$ $14f = -84$ $f = -6$ $x^{2} + y^{2} - 6.5x - 12y = 0$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: • c = 0 • One relevant equation in g and/or f Mid Partial Credit: • 2 of g, f, c found High Partial Credit: • g, f, and c found or equivalent
	or \bot Bisector of $[AB]$ $x = \frac{13}{4}$ (l_1) \bot Bisector of $[AC]$ Midpoint $[AC] = \left(5, \frac{7}{2}\right)$, Slope $[AC] = \frac{7}{10}$ Eq. of mediator $[AC]$ $y - \frac{7}{2} = -\frac{10}{7}(x - 5)$ $10x + 7y = \frac{149}{2}$ (l_2) $l_1 \cap l_2 = \left(\frac{13}{4}, 6\right)$ $r = \sqrt{\left(\frac{13}{4} - 0\right)^2 + (6 - 0)^2} = \frac{\sqrt{745}}{4}$ $\left(x - \frac{13}{4}\right)^2 + (y - 6)^2 = \frac{745}{16}$ or	 Low Partial Credit: Effort at formulating equation of 1 ⊥ bisector Mid Partial Credit: Point t of intersection of 2 ⊥ bisectors found High Partial Credit: Point of intersection of 2 ⊥ bisectors and radius
	$(-g, -f) \in \text{mediator } (0,0) \text{ and } (6\cdot 5, 0).$ $\therefore -g = 3\cdot 25$ $\text{Centre } (3\cdot 25, -f).$ Since $(0,0) \in \text{ of circle } \therefore c = 0.$ Equation of circle $x^2 + y^2 - 6\cdot 5x + 2fy + 0 = 0$ $(10,7) \text{ on circle: } 100 + 49 - 65 + 14f = 0$ $84 + 14f = 0$ $f = -6$ $x^2 + y^2 - 6\cdot 5x - 12y = 0$	 Low Partial Credit: c = 0 One point substituted into equation of circle Midpoint (0,0) and (6⋅5,0) formulated Mid Partial Credit: 2 of g, f, c found High Partial Credit: g , f, and c found or equivalent

(b)

Slope
$$AC = \frac{7}{10}$$

Slope
$$CB = \frac{0-7}{6 \cdot 5 - 10} = 2$$

$$\tan \theta = \pm \frac{\frac{7}{10} - 2}{1 + \frac{7}{5}} = \pm \frac{-13}{24}$$

$$\theta = 28.44$$

or

Cosine rule

$$|AB|^2 = 42.25$$
,

$$|AC|^2 = 149$$

$$|BC|^2 = 61.25$$

$$\cos \theta = \frac{149 + 61.25 - 42.25}{2 \times \sqrt{149} \times \sqrt{61.25}} = 0.8793$$
$$\Rightarrow \theta = 28.44$$

Scale 15C (0, 6, 9, 15)

Low Partial Credit:

• one relevant slope

High Partial Credit:

• $\tan \theta$ fully substituted

Low Partial Credit:

• one relevant length

High Partial Credit:

• $\cos \theta$ fully substituted

Q5	Model Solution – 25 Marks	Marking Notes
(a)	Proof: $ \langle AEF = \langle AED \dots right \ angles$ $ \langle FAE + \langle EAD = 90^{\circ}$ $ \langle EAD + \langle ADE = 90^{\circ}$ $remaining \ angles \ in \ \Delta AED$ $\therefore \langle FAE = \langle ADE $ or $\therefore \langle AFE = \langle DAE $ $\therefore \Delta AFE \ and \ \Delta DAE \ equiangular$ $\therefore similar$	Scale 10C (0, 4, 5, 10) Low Partial Credit: Identifies one angle of same size in each triangle High Partial Credit: Identifies second angle of same size in each triangle Implies triangles are similar without justifying < FAE = < ADE
(b)	$\frac{ AD }{13} = \frac{12}{5}$ $ AD = 31.2 \text{ cm}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • $ AF = 13$ • One set of corresponding sides identified, e.g. $\frac{ AD }{13}$ or $\frac{12}{5}$ High Partial Credit: • $\frac{ AD }{13} = \frac{12}{5}$ or equivalent
(c)	$\frac{39}{13} = \frac{ AB }{12}$ $ AB = 3 \times 12 = 36 \text{ cm}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • $ AG = 39$ • One set of corresponding sides identified High Partial Credit: • $\frac{39}{13} = \frac{ AB }{12}$ or equivalent

(d)

Area = AreaABCD – Area ΔAFD

 $-\Delta$ AreaABG+ Area ΔAFE

$$= (31\cdot2)(36) - \frac{1}{2}(31\cdot2)(13)$$
$$-\frac{1}{2}(36)(15) + \frac{1}{2}(5)(12)$$

 $= 680.4 \text{ cm}^2$

or (method 2)

Area = AreaABCD - Area ΔABG - Area ΔAED

$$= (31\cdot2)(36) - \frac{1}{2}(36)(15)$$
$$-\frac{1}{2}(12)\sqrt{31\cdot2^2 - 12^2}$$
$$= 1123\cdot2 - 270 - 172\cdot8$$

$$= 680.4 \text{ cm}^2$$

or (method 3)

Area = Area ΔDCG + Area ΔGED

$$= \frac{1}{2}(36)(16\cdot2) + \frac{1}{2}(27)\sqrt{31\cdot2^2 - 12^2}$$
$$= 291\cdot6 + 388\cdot8$$

$$= 680.4 \text{ cm}^2$$

Scale 5C (0, 2, 4, 5)

Low Partial Credit:

- · One relevant area formulated
- Relevant equation for area GCDE

High Partial Credit:

- Relevant individual areas found but fails to finish
- Area calculated but with one relevant area omitted (except method 3)

Q6	Model Solution – 25 Marks	Marking Notes
(a)		
	AJ = 6371 + 0.214	Scale 15C (0, 6, 9, 15)
	$ JH ^2 = AJ ^2 - AH ^2$	Low Partial Credit:
	$ JH = \sqrt{(6371 + 0.214)^2 - 6371^2}$	• AJ formulated
	·	 indication of Pythagoras
	= 52.21 = 52	High Partial Credit:
		Pythagoras fully substituted
(b)		
		Scale 10C (0, 4, 5, 10)
	$\cos 53^{\circ} = \frac{r}{6371}$ or $\sin 37^{\circ} = \frac{r}{6371}$	Low Partial Credit:
		• cos 53° or sin 47°
		High Partial Credit:
	$r_{S_1} = 6371 \times \cos 53 = 3834 \cdot 1635$	 radius of s₁ calculated and stops
	$l_{S_1} = 2\pi r_{S_1} = 2\pi (3834 \cdot 1635) = 24091$	length of circle formula fully substituted
	$i_{S_1} - 2\pi i_{S_1} - 2\pi (3034^*1033) - 24091$	

Vol of space = Cylinder - 2×Cone $= \pi R^{2}(2R) - \frac{2}{3}\pi R^{2}(R)$ $= 2\pi R^{3} - \frac{2}{3}\pi R^{3}$ $= \frac{4}{3}\pi R^{3}$	 Scale 10C (0, 4, 5, 10) Low Partial Credit: A relevant volume formulated High Partial Credit: Vol of space formulated in terms of π and R
$12^{2} = 6^{2} + AB ^{2}$ $ AB = \sqrt{12^{2} - 6^{2}} = \sqrt{108} = 6\sqrt{3}$	Scale 10B (0, 5, 10) Partial Credit: • indication of Pythagoras
$\frac{h_1}{h_2} = \frac{6}{12} = \frac{r}{12}$ $r = 6 \text{ cm}$	Scale 10C (0, 4, 5, 10) Low Partial Credit: indication of similar triangles indication of a relevant ratio High Partial Credit: corresponding ratios identified but fails to finish Note: Accept correct answer without work
Cylinder = $\pi 12^2 - \pi 6^2 = 108\pi$ Sphere = $\pi (6\sqrt{3})^2 = 108\pi$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • Surface Area in Fig. 3 substituted • Surface Area in Fig 4 substituted High Partial Credit: • One Surface Area found
Vol = $\pi(12^2)(6)$ $-\left(\frac{1}{3}\pi 12^2 \times 12 - \frac{1}{3}\pi 6^2 \times 6\right)$ Vol = 360π cm ³	Scale 5C (0, 2, 4, 5) Low Partial Credit: Vol of cylinder found Vol of truncated cone substituted Vol of one cone found (12 or 6) High Partial Credit: Volume fully substituted but fails to finish Volume of truncated cone found
	$r = 6 \text{ cm}$ $Cylinder = \pi 12^2 - \pi 6^2 = 108\pi$ $Sphere = \pi (6\sqrt{3})^2 = 108\pi$ $Vol = \pi (12^2)(6)$ $-\left(\frac{1}{3}\pi 12^2 \times 12 - \frac{1}{3}\pi 6^2 \times 6\right)$

Q8	Model Solution – 60 Marks	Marking Notes
(a) (i)	$\mu = 63.5 \qquad \sigma = 10$ $z = \frac{50 - 63.5}{10} = -1.35$ $P(z > -1.35) = P(z < 1.35)$ $= 0.9115$ 91.15%	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: • μ or σ identified Mid Partial Credit: • z found High Partial Credit: • $P(z < 1.35)$ and stops
(a) (ii)	$P(x > Z) = 0.015$ $P(x < Z) = 0.985$ $Z = 2.17$ $\frac{x - 63.5}{10} = 2.17$ $x = 85.2 \text{ kg}$	Scale 5D(0, 2, 3, 4, 5) Low Partial Credit: • identifies 0.985 Mid Partial Credit: • identifies 2.17 High Partial Credit: • formula for x fully substituted
(a) (iii)	$n=150, \bar{x}=62, s=10 \mathrm{kg}$ $H_o \rightarrow \mathrm{mean} \mathrm{weight} \mathrm{has} \mathrm{not} \mathrm{changed}$ $H_1 \rightarrow \mathrm{mean} \mathrm{weight} \mathrm{has} \mathrm{changed}$ $z = \frac{62 - 63 \cdot 5}{10}$ $= -1 \cdot 8371 > -1 \cdot 96$ Mean weight has not changed or Confidence interval: $\bar{x} \pm 1 \cdot 96 \frac{\sigma}{\sqrt{n}}$ $62 \pm 1 \cdot 96 \frac{10}{\sqrt{150}}$ $62 \pm 1 \cdot 96 (0 \cdot 8165)$ $62 \pm 1 \cdot 6003$ $[60 \cdot 3997, 63 \cdot 6003]$ $63 \cdot 5 \mathrm{falls} \mathrm{within} \mathrm{this} \mathrm{interval}$ $\therefore \mathrm{insufficient} \mathrm{evidence} \mathrm{to} \mathrm{reject}$ $\mathrm{the} \mathrm{null} \mathrm{hypothesis}$ The mean weight has not changed	Scale 15D (0, 5, 7, 9, 15) Low Partial Credit: • z formulated with some substitution • states null/alternative hypothesis only • reference to ± 1.96 Mid Partial Credit: • z fully substituted High Partial Credit: • $z = -1.8371 > -1.96$ • fails to contextualise the answer

(b) (ii)	$\frac{1}{12} + \frac{1}{30} + \frac{2}{60} + \frac{6}{96} = \frac{17}{80} \text{ or } 0.2125$	Scale 10C (0, 4, 5, 10) Low Partial Credit: • 2 relevant fractions transferred High Partial Credit: • 4 relevant fractions identified but fails to complete
(b) (iii)	$P(R L) = \frac{P(R \cap L)}{P(L)} = \frac{\frac{1}{12} + \frac{1}{30}}{\frac{17}{80}}$ $= \frac{28}{51} \text{ or } 0.5490$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • $P(L)$ • $P(R \cap L)$ High Partial Credit: • Formula fully substituted

Q9	Model Solution – 50 Marks	Marking Notes
(a)	$\tan 60^{\circ} = \frac{ TE }{ CT }$ $\sqrt{3} CT = TE $	Scale 10B (0, 5, 10) Partial Credit: • tan 60° • effort to express TE in terms of another side of the triangle
(b)	$\tan 30^{\circ} = \frac{ TE }{ DT }$ $ TE = DT \frac{1}{\sqrt{3}}$ $ TE = \frac{\sqrt{225 + CT ^2}}{\sqrt{3}}$ $ TE = \sqrt{\frac{225 + CT ^2}{3}}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • tan 30° • Use of Pythagoras for $ DT $ • Effort at expressing $ DT $ in terms of another side of ΔDET High Partial Credit: • $ TE = DT \frac{1}{\sqrt{3}}$
(c)	$\sqrt{3} CT = \sqrt{\frac{225 + CT ^2}{3}}$ $ CT = \sqrt{\frac{225}{8}}$ $= 5.3033 \text{ m}$ $= 5.3 \text{ m}$	Scale 10C (0, 4, 5, 10) Low Partial Credit: • equates both expressions High Partial Credit: • Isolate CT in equation

Q9		Marking Notes
(d)	$ TE = \sqrt{3} CT = 9.17986 \text{ m} = 9.2 \text{ m}$	Scale 10B (0, 5, 10) Low Partial Credit Substitution into formula for TE
(e)	$\cos \theta = \frac{ CT }{ FT } = \frac{ CT }{ TE } = \frac{ CT }{\sqrt{3} CT } = \frac{1}{\sqrt{3}}$ $\theta = 54.7$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • Some relevant substitution for $\cos \theta$ High Partial Credit: • Formula for $\cos \theta$ substituted in terms of $ CT $
(f)	$P = \frac{(54.7)(2)}{360}$ = 0.3038 = 30.4	Scale 10C (0, 4, 5, 10) Low Partial Credit: • (Answer to part (e))×2 • 360° High Partial Credit: • P fully formulated

Marcanna breise as ucht freagairt trí Ghaeilge

(Bonus marks for answering through Irish)

Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d'iomlán na marcanna don pháipéar. Ba chóir freisin an marc bónais sin a shlánú **síos**.

Déantar an cinneadh agus an ríomhaireacht faoin marc bónais i gcás gach páipéir ar leithligh.

Is é 5% an gnáthráta agus is é 300 iomlán na marcanna don pháipéar. Mar sin, bain úsáid as an ngnáthráta 5% i gcás iarrthóirí a ghnóthaíonn 225 marc nó níos lú, e.g. 198 marc \times 5% = $9.9 \Rightarrow$ bónas = 9 marc.

Má ghnóthaíonn an t-iarrthóir níos mó ná 225 marc, ríomhtar an bónas de réir na foirmle $[300 - \text{bunmharc}] \times 15\%$, agus an marc bónais sin a shlánú **síos**. In ionad an ríomhaireacht sin a dhéanamh, is féidir úsáid a bhaint as an tábla thíos.

Bunmharc	Marc Bónais
226	11
227 – 233	10
234 – 240	9
241 – 246	8
247 – 253	7
254 – 260	6
261 – 266	5
267 – 273	4
274 – 280	3
281 – 286	2
287 – 293	1
294 – 300	0

Blank Page

Blank Page

Blank Page