Arrays

Kuan-Yu Chen (陳冠宇)

2018/09/19 @ TR-212, NTUST

Review

- Space and Time complexity
 - Big-Oh
 - Omega
 - Theta
- Data Type
- Abstract Data Type

Array

- An array is a set of pairs < *index*, *value* >, such that each index is associated with a value
 - In C++, the index is starting at 0

1	2	3	4	5	6	7	8
<0,1>	<1,5>	<2,4>	<3,7>	<4,9>	<5,0>	<6,2>	<7,1>

- The array *A* maps into continuous memory locations
 - $A_1 = A[0] = 1$
 - $A_6 = A[5] = 0$
 - Location of A_1 is l_s , i.e., A[0]
 - Location of A_6 is $l_s + 5d$, i.e., A[5]

<0,1>	<1,5>	<2,4>	<3,7>	<4,9>	<5,0>	<6,2>	<7,1>	

2D Array.

- 2D array is also named matrix
- A matrix is a mathematical object that arises in may physical problems
 - A general matrix consists of m rows and n columns of numbers
 - If m is equal to n, we call the matrix square

	col	1 col 2	2 col 3		col	l col 2	col 3	col 4	col	5 col 6
row 1	-27	3	4	row 1	15	0	0	22	0	-15
row 2	6	82	-2	row 2	0	11	3	0	0	0
row 3	109	-64	11	row 3	0	0	0	-6	0	0
row 4	12	8	9	row 4	0	0	0	0	0	0
row 5	48	27	47	row 5	91	0	0	0	0	0
				row 6	0	0	28	0	0	0
	(a)	l			(b)	Spar	se N	/latrix	

2D Array..

- For a matrix A, we can work with any element by writing $A_{i,j} = A[i-1][j-1]$, and the element can be found very quickly
 - It should be noted that the index is starting at 0 in C++

•
$$A_{1.1} = A[0][0] = -27$$

•
$$A_{3,2} = A[2][1] = -64$$

- There are two ways to store a matrix in the memory
 - Row-major
 - Column-major

	col 1	col 2	col 3
row 1	-27	3	4
row 2	6	82	-2
row 3	109	-64	11
row 4	12	8	9
row 5	48	27	47

2D Array – Row-Major

• Given a matrix A, row-major will rearrange all of the elements, $A_{1,1}$, $A_{1,2}$, $A_{1,3}$, $A_{2,1}$, ..., $A_{5,3}$, and then store in the memory

	-27	3	4	6	82	-2	109	-64	11	
l	l_s d									ol 2 col 3
								row 2 row 3	6 82 109 -64	
		= A[0 $= A[3$						row 4 row 5	12 8 48 27	

- Location for $A_{4,3} = l_s + [(4-1) \times 3 + (3-1)] \times d$
- Location for $A_{i,j} = l_s + [(i-1) \times 3 + (j-1)] \times d$
- More generally, given an $m \times n$ matrix A, location for $A_{i,j}$ is $l_s + \lceil (i-1) \times n + (j-1) \rceil \times d$

2D Array - Column-Major

• Given a matrix A, row-major will rearrange all of the elements, $A_{1,1}$, $A_{2,1}$, $A_{3,1}$, $A_{4,1}$, ..., $A_{5,3}$, and then store in the memory

	-27	6	109	12	48	3	82	-64	8	
l	es s	d						row 1 row 2	col 1 co	

- $-A_{1,1} = A[0][0] = -27$
- $-A_{4,3} = A[3][2] = 9$
- Location for $A_{4,3} = l_s + [(3-1) \times 5 + (4-1)] \times d$
- Location for $A_{i,j} = l_s + [(j-1) \times 5 + (i-1)] \times d$
- More generally, given an $m \times n$ matrix A, location for $A_{i,j}$ is $l_s + \lceil (j-1) \times m + (i-1) \rceil \times d$

row 3

Examples – 1

- Given a 2D array A, the location for $A_{3,2}$ is 1110, and the location for $A_{2,3}$ is 1115. If the size for each element is 1, please indicate the location for $A_{5,4}$.
 - Since the location for $A_{3,2}$ is 1110 and the location for $A_{2,3}$ is 1115, so the storage method is column-major!
 - Assume the size of row is *m*

Location
$$(A_{i,j}) = l_s + ((j-1) \times m + (i-1)) \times d$$

Location $(A_{2,3}) = l_s + ((3-1) \times m + (2-1)) \times 1 = 1115$
Location $(A_{3,2}) = l_s + ((2-1) \times m + (3-1)) \times 1 = 1110$
 $l_s + 2 \times m + 1 = 1115$
 $l_s + m + 2 = 1110$
 $l_s = 1102$ $m = 6$

Examples – 2

- Given a matrix A, if $Location(A_{2,3}) = 18$, $Location(A_{3,2}) = 28$, and $Location(A_{1,1}) = 2$, please calculate $Location(A_{4,5}) = ?$
 - It is row-major

$$- l_{S} = Location(A_{1,1}) = 2$$

$$Location(A_{i,j}) = l_{S} + [(i-1) \times n + (j-1)] \times d$$

$$Location(A_{2,3}) = 18 = 2 + [(2-1) \times n + (3-1)] \times d = 2 + n \times d + 2 \times d$$

$$Location(A_{3,2}) = 28 = 2 + [(3-1) \times n + (2-1)] \times d = 2 + 2 \times n \times d + d$$

$$10 = n \times d - d$$

$$d = 2 \qquad n = 6$$

 $Location(A_{4.5}) = 2 + [(4-1) \times 6 + (5-1)] \times 2 = 46$

Lower-Triangular Matrix.

- Given a **square matrix** *A* with *n* rows
 - The maximum number of nonzero terms in row i is i
 - $A_{i,j} = 0, if i < j$
 - Such a matrix is lower-triangular matrix
 - The total number of non-zero terms is $1 + 2 + \cdots + n = \frac{n(n+1)}{n}$
 - For large *n*, it would be worthwhile to save the memory space by only storing non-zero part
 - Row-major

$$\begin{aligned} \forall i \geq j, \ Location \left(A_{i,j}\right) &= l_s + \left[\left(\frac{\left(1+(i-1)\right)}{2} \times (i-1) + j\right) - 1\right] \times d \\ &= l_s + \left[\frac{i \times (i-1)}{2} + j - 1\right] \times d \end{aligned}$$

Column-major

• Column-major
$$\forall i \geq j, \ Location(A_{i,j}) = l_s + \left[\frac{(1+n)}{2} \times n - \frac{(1+(n-j+1))}{2} \times (n-j+1) + (i-j+1) - 1\right] \times d$$
$$= l_s + \left[i + n \times (j-1) - \frac{j \times (j-1)}{2} - 1\right] \times d$$
10

x x x x x x x x x x

Lower-Triangular Matrix...

The inference for column-major

$$\forall i \ge j, \ Location(A_{i,j}) = l_s + \left[\frac{(1+n)}{2} \times n - \frac{(1+(n-j+1))}{2} \times (n-j+1) + (i-j+1) - 1\right] \times d$$
$$= l_s + \left[i + n \times (j-1) - \frac{j \times (j-1)}{2} - 1\right] \times d$$

Lower-Triangular Matrix...

The inference for column-major

$$\forall i \geq j, \ Location(A_{i,j}) = l_s + \left[\frac{(1+n)}{2} \times n - \frac{(1+(n-j+1))}{2} \times (n-j+1) + (i-j+1) - 1 \right] \times d$$

$$= l_s + \left[i + n \times (j-1) - \frac{j \times (j-1)}{2} - 1 \right] \times d$$

Upper-Triangular Matrix

- Given a **square matrix** A with n columns
 - The maximum number of nonzero terms in column j is j
 - $A_{i,j} = 0, if i > j$
 - Such a matrix is upper-triangular matrix
 - The total number of non-zero terms is $1 + 2 + \dots + n = \frac{n(n+1)}{2}$
 - - Row-major

$$\forall i \leq j$$
, $Location(A_{i,j}) = l_s + \left[\frac{j \times (j+1)}{2} + i - 1\right] \times d$

• Column-major

$$\forall i \leq j, \ Location \left(A_{i,j}\right) = l_s + \left[j + n \times (i-1) - \frac{i \times (i-1)}{2} - 1\right] \times d$$

upper triangular

Example

- Given a lower-triangular matrix A, the size of columns and rows are both 100. If we leverage a memory B to store the matrix by using row-major
 - 1. How many memory elements do we need?

$$1 + 2 + 3 + \dots + 100 = \frac{1 + 100}{2} \times 100 = 5050$$

2. Which memory block will store $A_{70,50}$? (the starting number in the memory is 1)

$$(1+2+3+\cdots+69)+50 = \frac{1+69}{2} \times 69 + 50 = 2465$$

3. Which element in A will be stored in B_{152} ?

$$(1+2+3+\cdots+(i-1))+j=\frac{1+(i-1)}{2}\times(i-1)+j=152$$

 $\because i \ge j$
 $\therefore i = 17 \ j = 16$

Questions?

kychen@mail.ntust.edu.tw