Recitation 8. April 22

Focus: eigenvectors, eigenvalues and eigendecomposition.

Notation. For the rest of this worksheet, let A be an $n \times n$ matrix operating on an n-dimensional vector space V, so $A:V\to V$.

Definition. A nonzero vector $v \in V$ is called an eigenvector for the matrix A if for some real or complex scalar λ we have $Av = \lambda v$.

Definition. The value λ is then called the *eigenvalue* corresponding to this eigenvector v.

Remark. Since for the eigenvector v we have $(A - \lambda)v = 0$, the matrix $A - \lambda I$ is not invertible, and so an eigenvalue is necessarily a root of the polynomial $\chi_A(\lambda) = \det(A - \lambda I)$.

Definition. If all roots of $\chi_A(\lambda)$ are different, then A is diagonalizable, which means that we can write $A = X\Lambda X^{-1}$ for some diagonal matrix Λ and invertible matrix X. This representation of A as $X\Lambda X^{-1}$ is called eigendecomposition.

- 1. Suppose we have $B = XAX^{-1}$.
 - a) Prove that $\chi_B(\lambda) = \chi_A(\lambda)$.
 - b) How are eigenvalues of B related to those of A?
 - c) How are eigenvectors of B related to those of A?

Solution:				
ive an evample o	f a diagonalizable matriy with	a pair of equal eigenva	lues	
	f a diagonalizable matrix with	a pair of equal eigenva	lues.	
ive an example o	f a diagonalizable matrix with	a pair of equal eigenva	lues.	
Solution:	f a diagonalizable matrix with odd-dimensional, then $A:V\to$			

4.	Closed formula for Fibonacci numbers. Let F_i denote the ith element in the Fibonacci sequence, defined by setting $F_0 = 0$,
	$F_1 = 1$ and $F_{i+2} = F_{i+1} + F_i$ for all natural values of i (including zero).

- a) Find a matrix A such that $A \begin{pmatrix} F_{i+1} \\ F_i \end{pmatrix} = \begin{pmatrix} F_{i+2} \\ F_{i+1} \end{pmatrix}$.
- b) Find the eigenvalues of A. Let φ denote the largest eigenvalue.

c) Find the eigenvectors of A.

- d) Compute A^{50} up to nine decimal points. You can only use simple calculators (e.g. Google engine), no matrix calculators are needed.
- e) Using the result of part (c), explain why $\frac{F_{51}}{F_{50}}$ is very close to φ .