Imperial College London

M4/5P6

BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May-June 2017

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science

Probability Theory

Date: Tuesday 23 May 2017

Time: 10:00 - 12:30

Time Allowed: 2.5 Hours

This paper has 5 Questions.

Candidates should use ONE main answer book.

Supplementary books may only be used after the relevant main book(s) are full.

All required additional material will be provided.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers to each question as per the table below.

Raw Mark	Up to 12	13	14	15	16	17	18	19	20
Extra Credit	0	1/2	1	1 ½	2	2 ½	3	3 ½	4

- Each question carries equal weight.
- Calculators may not be used.

- 1. (i) Give the definition of a random variable, its distribution and distribution function.
 - (ii) Let F(x) be the distribution function of a random variable. Let $a \in \mathbb{R}$. Is it possible that the limit $\lim_{x\to a} F(x)$ exists but is not equal to F(a)? Give a reason for your answer.
 - (iii) Formulate the central limit theorem for independent identically distributed random variables.
- 2. (i) Give any two definitions of what it means that a sequence of random variables ζ_n converges to a random variable ζ in distribution.
 - (ii) Are $f_1(t) = \cos(t/2)$, $f_2(t) = \cos^6(t)$, $f_3(t) = \exp\{-t^6\}$ characteristic functions of some random variables? In each case, if yes: (a) describe this random variable, for example, by providing its distribution; (b) find its expectation and variance.
- 3. (i) Let \mathcal{P} be a family of probability measures on \mathbb{R} which is relatively compact with respect to weak convergence. Prove that \mathcal{P} is tight.
 - (ii) Let ζ_n , $n=1,2,\ldots$, be independent Bernoulli random variables with parameters $1/n^2$, namely $P(\zeta_n=1)=1/n^2$, $P(\zeta_n=0)=1-1/n^2$. Prove or disprove that $\zeta_n\to 0$ a.s.
- 4. Let X_k , $k=1,2,\ldots$ be positive independent identically distributed random variables, $Y_k=\frac{X_{2k-1}}{X_{2k-1}+X_{2k}}$, and $S_n=Y_1+\cdots+Y_n$. Is it true that $\frac{S_n}{n}\to a$ a.s. for some constant a? If yes, what is the value of a? Justify your answers.

- 5. (i) Let $\zeta_n, \ n=1,2,\ldots$, be independent identically distributed random variables such that $E\zeta_1=0,\ 0< E\zeta_1^2<\infty.$ Let $S_n=\zeta_1+\cdots+\zeta_n.$ Show that $\lim_{n\to\infty}E\frac{|S_n|}{n}=0.$
 - (ii) Let ζ , η be independent identically distributed random variables such that $\zeta + \eta$ has the same distribution as $\zeta + 1$. What can be said about the distribution of ζ ? Justify your answer.

	EXAMINATION SOLUTIONS 2016-17	Prob.
Question 1		Marks & seen/unseen
Parts	Let (P, F, P) be a probabi- lity space. A function 3: P-> R is called random variable if 5'(B) & F for any B & B(R) - Borel sets. The distribution P3 of 3 is a probability measure on (R, B(R)) given by	2 seen
	DIDI = P(E'(B)) & BEOSCK	2 seen
	The distribution function F ₅ (x) = P ₅ (-∞, x] ∀x∈R	2 seen
li	No, since distribution function is nondecreasing	6 ижеец
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-14	Course Prob
Question		Marks & seen/unseen
Parts	Let $5_1, 5_2,$ be i.i.d. $7.V$. with $0 < E 5_1^2 < \infty$; $V 5_1 \neq 0$; $S_n = 5_1 + 5_2 + + 5_n$.	2. seen
	Then $P\left(\frac{S_{n}-ES_{n}}{\sqrt{VS_{n}}} \leq X\right) \xrightarrow{N \gg \infty}$ $\Rightarrow P(X) = \frac{1}{\sqrt{2\pi}} \left\{ e^{-u^{2}/2} du \right\}$ i.e. $\frac{1}{\sqrt{VS_{n}}} \xrightarrow{N(0,1)} .$	6 secn
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-14	Course
		Prob
Question 2		Marks & seen/unseeπ
Parts		
i	Sn d if	
	$Ef(s_n) \rightarrow Ef(s)$	2
	for any bounded continuous	seen
	function f(x).	
	Equivalently, if the distribution functions	
	the distribution	:
	$F_{s}(x) \rightarrow F_{s}(x)$ at any	2
	point of continuity of F ₅ (x).	seen
s:	f.(t) = Cost/2 is the charac.	
ll	teristic function of Bernoulli	
	r.v. y such that	6
	<u> </u>	unsen
	P(y=1/2) = P(y=-1/2) = 1/2	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2014-14	Course Prob
Question 2		Marks & seen/unseen
Parts	Ey=0, $Vy=Ey^2=1/4$. $f_2(t)=\cos t$ is the characteristic function of the sum of 6 i.id. Beapulli 2.v. such that $P(y=1)=P(y=-1)=\frac{1}{2}$;	6 unsien
	$E(\sum_{j=1}^{6} \sum_{j}) = 0$ $V(\sum_{j=1}^{6} \sum_{j}) = \sum_{j=1}^{6} V_{5j} = 0$ $= 6 \cdot 1 = 6 (by independence)$ $f_{3}(+) = e^{-t6} \text{ is not a charace}$	Ų
	teristic function by Marcinkiewicz theorem.	u nseen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-17	Course Prob
Question 3		Marks & seen/unseen
Parts	Suppose P is not tight, i.e. $\exists E > 0$ s.t. for any compact $K \subset \mathbb{R}$, $\sup_{\alpha} P_{\alpha}(\mathbb{R} \setminus K) > E$, where $P = \{P_{\alpha}\}$. Take $K = [-n, n]$. Therefore, for any n $\exists P_{\alpha} \in P$ s.t. $P_{\alpha}(\mathbb{R} \setminus (-n, n)) > E$. (1)	1
	By relative compactness, there exists a subsequence Pan converging weakly to a probability measure Q. Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-17	Prob.
Question 3		Marks & seen/unseen
Parts	By one of the definitions of weak convergence, limsup Panx (RI(-n,n)) \(\in \mathbb{R}(R\(-n,n\)) \rightarrow 0 \text{ as } n \rightarrow \infty, \text{ which contradicts inequality (1).} Therefore, P is tight.	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-17	Course Prob
Question 3		Marks & seen/unseen
Parts	We have that $\sum_{n=1}^{\infty} P(S_n=1) = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$ Therefore, by Borel-Cantelli lemma, $P(S_n=1 \ i.o.) = 0$ The probability of the complement event $P(S_n=0 \ ev.) = 1$ i.e. $S_n \to 0 \ a.s.$	10 unseen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-17	Course Prob.
Question 4		Marks & seen/unseen
Parts	in deed P(YKEB) = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(,5) (_{2k})
	identically distributed. 2) Y's are independent, since, similarly,	
	$P(y_{\kappa} \in B_{\kappa}, y_{j} \in B_{j}) =$ $= \int \chi_{\{\frac{t}{t+s} \in B_{\kappa}\}} \chi_{\{\frac{u}{u+v} \in B_{j}\}} \chi_{2j-1, \chi_{2j-1}, \chi_{2j}}$	۲,
	$= P(y_{k} \in B_{k}) P(y_{j} \in B_{j}),$ $k \neq j.$	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-17	Course Prob
Question 4		Marks & seen/unseen
Parts	3) $E Y_{R} = E\left \frac{X_{2k-1}}{X_{2k-1}+X_{2k}}\right \leq$	umseen
	≤ E(1) = 1 < ∞	
	Therefore, by Kolmogorov's strong LLN,	
	$S_n \longrightarrow EY, a.s.$	12
	$2EY_{1} = 2\int \frac{t}{t+s} dP(t) dP(s)$	
	$= \int \frac{t}{t+s} dP(t) dP(s) +$	
	+ S = AP(t) dP(s)	
	= 1	
	\Rightarrow $E^{y}, = \frac{1}{2}$.	8
	Setter's initials Checker's initials	Page number

•

	EXAMINATION SOLUTIONS 2016-174	Course Prob Mastezs V.
Question 5		Marks & seen/unseen
Parts		
i	3,32, i.i.d.	
	Es,=0, 0< Es,2<	
	$S_n = S_1 + \cdots + S_n$	
	By Lyapunov inequality,	
	$\left(E\frac{ S_n }{n}\right)^2 \leqslant E\frac{ S_n }{n^2} =$	
	$= \frac{1}{N^2} E\left(\sum_{j=1}^{n} z_j^2 + \sum_{j \neq k} z_j z_k\right)$	
	$= \frac{1}{N^2} \left(n E S_i^2 + \sum_{j \neq k} E S_j \cdot E J_k \right)$	
	(by independence)	
	= 1/n Es,2, (since Es,=0)	
	-> 0, as n→∞	
	Thus, $E^{\lfloor \frac{S_n}{h} \rfloor} \rightarrow 0$, $n \rightarrow \infty$.	12 unseen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-17	Course Prob masters 2
Question 5		Marks & seen/unseen
Parts	We have for the characte-	8
	ristic functions:	unseen
	$\psi_{s}^{2}(t) = \psi_{s+n}(t) = \psi_{s+n}(t)$	
	$=e^{it}\varphi_{s}(t)$.	
	Therefore for any t,	
}	either 4. (+)= e or Tylt)=0	
	D. I come P. (+) is a charac-	
: 	Lanietic Amorion, telester,	
	And Since I = 1 continue	
	:L. of characteristic punction	
	implies that (2(t)=6.	
	Hence by uniqueness of charac.	
:	teristic functions, 5=1 a.s.	
	Setter's initials Checker's initials	Page number