9과 [예제] 범주 vs 범주

1.환경준비

• 라이브러리 불러오기

In []:

```
import pandas as pd
import numpy as np
import random as rd

import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.graphics.mosaicplot import mosaic #mosaic plot!

import scipy.stats as spst
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: Fut ureWarning: pandas.util.testing is deprecated. Use the functions in the publ ic API at pandas.testing instead.

import pandas.util.testing as tm

- 데이터 불러오기 : 다음의 예제 데이터를 사용합니다.
 - ① 타이타닉 생존자
 - ② 보스톤 시, 타운별 집값
 - ③ 아이리스 꽃 분류
 - ④ 뉴욕 공기 오염도

In []:

- 1 # 타이타닉 데이터
- 2 titanic = pd.read_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/titanic.
- 3 titanic.head()

Out[16]:

	Passengerld	Survived	Pclass	Title	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	1	0	3	Mr	male	22.0	1	0	A/5 21171	7.2500	NaN
1	2	1	1	Mrs	female	38.0	1	0	PC 17599	71.2833	C85
2	3	1	3	Miss	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
3	4	1	1	Mrs	female	35.0	1	0	113803	53.1000	C123
4	5	0	3	Mr	male	35.0	0	0	373450	8.0500	NaN
4											•

In []:

```
1 # 아이리스 꽃 분류
2 iris = pd.read_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/iris.csv')
3 iris.head()
```

Out[3]:

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In []:

```
1 # 보스톤 집값 데이터
2 boston = pd.read_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/boston2_N
3 boston.head()
```

Out[4]:

	crim	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv	znź
0	0.00632	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0	1.(
1	0.02731	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6	0.0
2	0.02729	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7	0.0
3	0.03237	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4	0.0
4	0.06905	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2	0.0
4														•

In []:

```
1 # 뉴욕시 공기 오염도 데이터

2 air = pd.read_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/air2.csv')

3 air['Date'] = pd.to_datetime(air['Date'])

4 air['Month'] = air.Date.dt.month

5 air['Weekday'] = air.Date.dt.weekday

6 air.head()
```

Out[5]:

	Ozone	Solar.R	Wind	Temp	Date	Month	Weekday
0	41	190.0	7.4	67	1973-05-01	5	1
1	36	118.0	8.0	72	1973-05-02	5	2
2	12	149.0	12.6	74	1973-05-03	5	3
3	18	313.0	11.5	62	1973-05-04	5	4
4	19	NaN	14.3	56	1973-05-05	5	5

2.교차표(pd.crosstab)

교차표를 연습해 봅시다.

- ① 타이타닉의 성별에 따른 생존여부의 관계를 교차표로 만들어 봅시다.
 - 전체 갯수

In []:

```
1 # 두 범주별 빈도수를 교차표로 만들어 봅시다.
2 pd.crosstab(titanic['Survived'], titanic['Sex'])
```

Out[6]:

```
        Sex
        female
        male

        Survived
        81
        468

        1
        233
        109
```

• 칼럼기준 비율

In []:

```
pd.crosstab(titanic['Survived'], titanic['Sex'], normalize = 'columns')
```

Out[7]:

Sex	female	male		
Survived				
0	0.257962	0.811092		
1	0.742038	N 1880N8		

• 행 기준 비율

In []:

```
pd.crosstab(titanic['Survived'], titanic['Sex'], normalize = 'index')
```

Out[8]:

```
        Sex
        female
        male

        Survived
        0 0.147541 0.852459

        1 0.681287 0.318713
```

• 전체 기준 비율

```
In [ ]:
```

```
pd.crosstab(titanic['Survived'], titanic['Sex'], normalize = 'all')
```

Out[9]:

Sex female male

- 0 0.090909 0.525253
- **1** 0.261504 0.122334
- 교차표를 통해 성별에 따라 생존여부가 관련 있다고 보이나요?
- 위 교차표 중 어떤 것이 성별-->생존여부 관련성을 확인하기에 적합한가요?

In []:

1

- ② 타이타닉의 객실등급에 따른 생존여부의 관계를 교차표로 만들어 봅시다.
 - 전체 갯수

In []:

```
1 # 두 범주별 빈도수를 교차표로 만들어 봅시다.
2 pd.crosstab(titanic['Survived'], titanic['Pclass'])
```

Out[10]:

Pclass 1 2 3

Survived

- **0** 80 97 372
- **1** 136 87 119
- 칼럼기준 비율

In []:

```
pd.crosstab(titanic['Survived'], titanic['Pclass'], normalize = 'columns')
```

Out[11]:

Pclass 1 2 3

Survived

- **0** 0.37037 0.527174 0.757637
- **1** 0.62963 0.472826 0.242363
- 행 기준 비율

```
In [ ]:
 1 pd.crosstab(titanic['Survived'], titanic['Pclass'], normalize = 'index')
Out[12]:
  Pclass
                            3
Survived
      0 0.145719 0.176685 0.677596
     1 0.397661 0.254386 0.347953
 • 전체 기준 비율
In [ ]:
 pd.crosstab(titanic['Survived'], titanic['Pclass'], normalize = 'all')
Out[13]:
             1
                     2
  Pclass
                            3
Survived
     0 0.089787 0.108866 0.417508
      1 0.152637 0.097643 0.133558
 • 교차표를 통해 객실 등급에 따라 생존여부가 관련 있다고 보이나요?
 • 위 교차표 중 어떤 것이 성별-->생존여부 관련성을 확인하기에 적합한가요?
In [ ]:
 1
③ 성별과 객실등급 중 어떤 변수가 생존여부를 예측하는데 더 중요한 변수인가요?
In [ ]:
```

3.시각화 : bar chart, mosaic

1 Sex --> Survived

1

• 100% bar chart을 그려봅시다.

```
In [ ]:
```

```
temp = pd.crosstab(titanic['Sex'], titanic['Survived'], normalize = 'index')
print(temp)
temp.plot.bar(stacked=True)
plt.axhline(1-titanic['Survived'].mean(), color = 'r')
plt.show()
```

```
Survived 0 1
Sex
female 0.257962 0.742038
male 0.811092 0.188908
```


• 모자익 플롯을 그려봅시다.

In []:

```
1 # Pclass별 생존여부를 mosaic plot으로 그려 봅시다.
2 mosaic(titanic, [ 'Sex', 'Survived'])
3 plt.axhline(1- titanic['Survived'].mean(), color = 'r')
4 plt.show()
```


• 두 차트로 볼 때, 성별에 따라 생존여부가 달라지나요?

In []:

1

2 Pclass --> Survived

• 100% bar chart을 그려봅시다.

In []:

```
temp = pd.crosstab(titanic['Pclass'], titanic['Survived'], normalize = 'index')
print(temp)
temp.plot.bar(stacked=True)
plt.axhline(1-titanic['Survived'].mean(), color = 'r')
plt.show()
```

Survived	0	1
Pclass		
1	0.370370	0.629630
2	0.527174	0.472826
3	0.757637	0.242363

• 모자익 플롯을 그려봅시다.

In []:

```
1 # Pclass별 생존여부를 mosaic plot으로 그려 봅시다.
2 mosaic(titanic, [ 'Pclass', 'Survived'])
3 plt.axhline(1- titanic['Survived'].mean(), color = 'r')
4 plt.show()
```


• 두 차트로 볼 때, 성별에 따라 생존여부가 달라지나요?

```
In [ ]:

1
```

4.수치화: 카이제곱검정

1 Sex --> Survived

```
In [ ]:
```

② Pclass --> Survived

In []:

```
1 # 먼저 집계
2 table = pd.crosstab(titanic['Survived'], titanic['Pclass'])
3 print('교차표\n', table)
4 print('-' * 100)
5
6 # 카이제곱검정
7 result = spst.chi2_contingency(table)
8 print('카이제곱통계량', result[0])
9 print('p-value', result[1])
10 print('기대빈도\n', result[3])
```