

COMP3600/6466 Algorithms Review and Applications 1

S2 2016

Dr. Hassan Hijazi Prof. Weifa Liang

Show that
$$10^5 \cdot 2^n = o(3^n)$$

Show that
$$2^n = \omega(n^3)$$

Let $p(n) = \sum_{i=0}^{d} a_i n^i$ where $a^d > 0$. p(n) is a degree-d polynomial in n. Given a constant k, prove the following properties:

- 1. If $k \geq d$, then $p(n) = O(n^k)$.
- 2. If $k \leq d$, then $p(n) = \Omega(n^k)$.
- 3. If k = d, then $p(n) = \Theta(n^k)$.
- 4. If k > d, then $p(n) = o(n^k)$.
- 5. If k < d, then $p(n) = \omega(n^k)$.

Explain why the following statement is meaningless: "The running time of algorithm A is at least $O(n^2)$ "

Show that
$$2^{n+1} = O(2^n)$$
, but $2^{2n} \neq O(2^n)$

Show that $\lceil \lg n \rceil!$ is not polynomially bounded, but $\lceil \lg \lg n \rceil!$ is.

```
COUNTING-SORT (A, B, k)

1 let C[0..k] be a new array

2 for i = 0 to k

3 C[i] = 0

4 for j = 1 to A.length

5 C[A[j]] = C[A[j]] + 1

6 //C[i] now contains the number of elements equal to i.

7 for i = 1 to k

8 C[i] = C[i] + C[i - 1]

9 //C[i] now contains the number of elements less than or equal to i.

10 for j = A.length downto 1

11 B[C[A[j]]] = A[j]

12 C[A[j]] = C[A[j]] - 1
```

How much time does counting sort require in Θ notation? (Analyse each "for" loop. Don't bother proving it formally.)

Give an asymptotic upper bound for
$$\sum_{k=1}^{n} k^{11/4}$$

Give an asymptotic upper bound for

1.
$$T(n) = 8T(n/2) + n^3$$

2.
$$T(n) = T(\sqrt{n}) + 1$$