Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama Telafi sınavı – 3 Ocak 2014

		Ö	ğrenci Adı:		
			Numarası:		
Soru 1. Aşağıdaki biri a=0x00235500	32bit diğeri 8bit olar =0x8D a+b=?	ı iki <u>işaretli</u> sayıy	ı toplayınız.		
<pre>leal (%eax,%eax sall \$2, %eax</pre>	,2), %eax	t <- x	+x*2 t << 2;		
Soru 2. Yukarıdaki örile çarpan kod	-	12 ₁₀ ile çarpılma	ktadır. Benzer l	oiçimde %eax yazn	19 ₁
Soru 3. %eax yazmacı Soru 4. Aşağıda onlu ta		du yazınız.			
10.25 =					
10.125 =					
Normalized Values Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp – Bias	Denormalized Values Condition: exp = 0000 E = -Bias + 1	Bias = 2 ^{k-1} - 1	s exp 1 4-bits	frac 3-bits	
Soru 5. Yukarıdaki bilş	giler kapsamında 14 ₁	o sayısını 8 bitlik	x kayan noktalı	sayı olarak kodlayı	nız.

Soru 6. Yukarıdaki bilgiler kapsamında 15₁₀/16₁₀ sayısını 8 bitlik kayan noktalı sayı olarak kodlayınız.

Soru 7. Aşağıdaki komut kümesini uyguladığınızda sonuç ne olur? Şekili güncelleyiniz.

%eax	
%edx	
% есх	
%ebx	,
%esi	
%edi	
%esp	
%ebp	0x104

movl 8(%ebp), %edx movl 12(%ebp), %ecx movl (%ecx), %ebx movl (%ecx), %eax movl %eax, (%edx) movl %ebx, (%ecx)

Soru 8. Aşağıdaki "call" komutunu uyguladığınızda elde edilen değerlerle şekilin sağ tarafını güncelleyiniz.

Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama 1. Ara sınav – 2 Aralık 2013

5.875

				Öğrenci Adı:	
				Numarası:	
Soru 1. C program nedir?	ıla dilinde	e"short in	t *p;"tanım	ındaki p değişkeni	nin boyu x86-64 mimarisi için
	6bit	c) 32bit	d) 64bit	e) Hiçbiri	
Soru 2. C program nedir?	ıla dilinde	e"short i	nt i;"tanım	ındaki i değişkenir	nin boyu x86-64 mimarisi için
a) 8bit b) 16	6bit	c) 32bit	d) 64bit	e) Hiçbiri	
Soru 3. Aşağıdaki	biri 32bit	t diğeri 8bit ol	an iki <u>işaretli</u> sa	ayıyı toplayınız.	
a=0x00235500	b=0xF	FC a+b=	·?		
Soru 4. Aşağıdaki	biri 32bit	t diğeri 8bit ol	an iki <u>işaretli</u> sa	ayıyı toplayınız.	
a=0x00235500	b=0x8	BC a+b=	: ?		
leal (%eax,%sall \$2, %eax	x		reti	- x+x*2 urn t << 2;	
Soru 5. Yukarıdak ile çarpan 1			eı 12 ₁₀ ile çarpı	lmaktadır. Benzer	biçimde %eax yazmacını 17 ₁₀
			• • • • • • • • • • • • • • • • • • •		
	• • • • • • • • •				
	• • • • • • • • • •				
Soru 6. %eax yazn	nacını 20	₁₀ ile çarpan k	•		
	• • • • • • • • •				
Soru 7. Aşağıda on	ılu taband	la verilen sayı	ların ikili taban	da karşılıklarını ya	zınız.
5.25 = 					
10.5 =					
5.125 =					

Normalized Values	Denormalized	Bias = $2^{k-1} - 1$			
Condition: $\exp \neq 000\cdots 0$			s	exp	frac
and exp ≠ 111…1	Condition: exp = 0000		1	4-bits	3-bits
$E = \exp - Bias$	$\mathbf{E} = -\mathbf{Bias} + 1$		'	4-0118	3-มเร

Soru 8. Y	/ukarıdal	ki bilgil	er kaps	samında 12	2 ₁₀ sayı	sını 8 bitlik ka	ayan noktalı say	ı olarak kodlayınız.
		• • • • • • •						
		• • • • • • •						
		• • • • • • •						
Soru 9. Y	/ukarıdal	ki bilgil	er kaps	samında 13	3 ₁₀ /16 ₁₀	sayısını 8 bit	tlik kayan noktal	ı sayı olarak kodlayınız.
Soru 9. Y	/ukarıdal	ki bilgil	er kaps	samında 13	3 ₁₀ /16 ₁₀	sayısını 8 bit	tlik kayan noktal	ı sayı olarak kodlayınız.
Soru 9. Y	Yukarıdal	ki bilgil	er kaps	samında 13	3 ₁₀ /16 ₁₀	sayısını 8 bit	tlik kayan noktal	ı sayı olarak kodlayınız.
Soru 9. Y	Yukarıdal	ki bilgil	er kaps	samında 13	3 ₁₀ /16 ₁₀	sayısını 8 bit	tlik kayan noktal	ı sayı olarak kodlayınız.

Soru 10. Aşağıdakilerden hangisi yanlıştır?

- a) movl (%ebp),%eax
- b) movl %ebp,%eax
- c) movl %ebp,(%eax)
- d) movl (%ebp),(%eax)
- e) Hiçbiri

Soru 11. Aşağıdaki komut kümesini uyguladığınızda sonuç ne olur? Şekili güncelleyiniz.

	4 5	Address
%eax	123	0x124
%edx	456	0x120 movl 8(%ebp), %edx
%ecx		0x11c mov1 12(%ebp), %ecx
		$0x^{118}$ movl (%edx), %ebx
%ebx		0x114 movl (%ecx), %eax
%esi	0x120	0×110 movl %eax, (%edx)
%edi	0x124	movl %ebx, (%ecx)
%esp	Rtn adr	0x108
%ebp 0x104		0x104
		0x100

Soru 12. Aşağıdaki "**call**" komutunu uyguladığınızda elde edilen değerlerle şekilin sağ tarafını güncelleyiniz.

Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama 2. Ara sınav – 30 Aralık 2013

Öğrenci Adı:	
Numarası	

Soru 1. Doğrudan bellek erişim (DMA: *Direct Memory Access*) yöntemini kullanarak bir disk sektörünün okunmasına ilişkin adımları aşağıdaki şekiller üzerinde gösteriniz. Her adımı bir/iki cümle ile açıklayınız.

Sor																									`					•	•																			•		_																																							,						•														
• • • •						۰				0	0	0	0								۰	۰	0	0			0	0	0	0		0						0	۰			0	0			0	۰			0	۰		0	0				0	0		0		0	0	0	0	0						0	0	0	0							۰																0	0	0	0	۰	0	0	0	0	0	۰	 	,
• • • •				۰		۰		0 0		0	0	0	0	0		0 0						۰	0	0		0	0	0	0	0		0	0					0	0			0	0			0	0			0	0		0	0				0	0		0		0	0	0	0	0				0		0	0	0	0																				0		0	0	0	0	0	0	0	0	0	0	0	۰	 	,
• • • •						۰				0	0	0	0								0	۰	0	0		0	0	0	0	0		0						0	0			0	0			0	0			0	0		0	0				0	0		0		0	0	0	0	0				0		0	0	0	0					۰		0	۰						۰								0	0	0	0	0	0	0	0	0	0	0	۰	 	,
• • • •						۰				0	0	0	0								۰	۰	0	0			0	0	0	0		0						0	۰			0	0			0	0			0	0		0	0	0			0	0		0		0	0	0	0	0						0	0	0	0																							0	0	0	0	۰	0	0	0	0	0	۰)
Sor	u	3	•]	K	O	n	ıl	11	r	15	S	a	1	•	Y	(9	r	Э.	[]	li	k		(S	Sį	p	C	ı	t	i	а	ıl	ļ	1	_	C)	C	c	G	ı	l	i	t)	v)		ŀ	<	ć	a	.\	V	r	8	u	1	1	11	n	1		ł)	i	r	/	i	k	1	ĺ	C	ci	ü	1	r	1	le	9	i	1	E	•	8	10	Ç	1]	k	1	2	ı.	y	1	n	11	12	Z											
Sor																									`		•																			•	•		_																																								,					•									•	•	•	•	0	•	•		
											۰	0	0											0				۰	0	0	۰							0				0					۰			0			0	0				0			0		0	0	0	0	0						0	0		0					۰			۰						۰									0	•	0	0									
• • • •			• •				0 1				•	0	0											0					0	•								0				0											0					0					0			0							0	0		0																				0		0	0	•	0	0		0	0		0	0		 	•

- **Soru 4.** %99 "hit" oranıyla yapılan veri erişimleri %95 oranıyla yapılanlara göre kaç kat daha iyidir? Ön bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız.
 - a) 2 kat
- b) 3 kat
- c) 4 kat
- d) 6 kat
- e) Hiçbiri

Soru 5. Aşağıda verilen iki kod kesimi derlenip (*compile*) bağlandığında (*link*) ne sonuç elde edilir? ("deg" adlı değişken kapsamında cevaplayınız.)

Soru 6. Aşağıda verilen iki kod kesimi derlenip (*compile*) bağlandığında (*link*) ne sonuç elde edilir? ("deg" adlı değişken kapsamında cevaplayınız.)

```
p1.c
int deg;
p1() {
}
```


Soru 7. Aşağıdakilerden hangisi bağlayıcı (Linker) kullanımının olumlu yanı değildir?

- a) Modüler gerçekleştirime izin verir.
- b) Derleme zamanını kısaltabilir.
- c) İşletim zamanını kısaltabilir.
- d) Yazılım kitaplıklarının yer gereksinimini azaltabilir.
- e) Hiçbiri.

Soru 8. Sayfa bulunamadı hatası (Page Fault) sonucunda aykırı durum nasıl ele alınır?

Soru 9. Aşağıdakilerden hangi ifade A, B ve C görevleri için yanlıştır?

- a) A ve B eşzamanlıdır (Concurrent).
- b) A ve C eşzamanlıdır (Concurrent).
- c) A ve D eşzamanlıdır (Concurrent).
- d) B ve C eşzamanlıdır (Concurrent).
- e) B ve D eşzamanlıdır (Concurrent).

Soru 10. Aşağıdaki kod kesimi uygulandığında çıktısı hangisi olamaz?

```
void fork3()
{
    printf("G0\n");
    fork();
    printf("G1\n");
    fork();
    printf("G2\n");
    fork();
    printf("Bye\n");
}
```

a)	G0	b)	G0	c)	G0	d)	G0	e)	G0
	G1		G1		G1		G1		G1
	G1		G2		G1		G2		G1
	G2		G1		G2		G1		G2
	Bye		Bye		Bye		Bye		G2
	G2		G2		G2		G2		G2
	Bye		Bye		Bye		G2		G2
	Bye		Bye		Bye		Bye		Bye
	G2		Bye		Bye		Bye		Bye
	Bye		G2		Bye		Bye		Bye
	Bye		Bye		G2		Bye		Bye
	Bye		Bye		Bye		Bye		Bye
	G2		G2		G2		G2		Bye
	Bye		Bye		Bye		Bye		Bye
	Bye		Bye		Bye		Bye		Bye

Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama Bütünleme Sınayı – 31 Ocak 2014

				Öğrenci Adı	:
				Numarası	:
	l (%eax,%ea	ax,2), %eax		t <- x+x*2 return t << 2;	
			nacı 12 ₁₀ il		∟ er biçimde %eax yazmacını 610 ile
• • • • • • • • •					
• • • • • • • •					
Soru 2.	. Aşağıda onlı	ı tabanda verilen s	ayıların iki	ili tabanda karşılıklarını	yazınız.
Soru 2. 0.25	. Aşağıda onlu =	ı tabanda verilen s	ayıların iki	ili tabanda karşılıklarını	yazınız.
		ı tabanda verilen s	ayıların iki	ili tabanda karşılıklarını	yazınız.
0.25	=	tabanda verilen s	ayıların iki	ili tabanda karşılıklarını]]	yazınız.
0.25 0.5	=	tabanda verilen s	ayıların iki	ili tabanda karşılıklarını	yazınız.
0.25 0.5 0.875	=	tabanda verilen s	ayıların iki	ili tabanda karşılıklarını	yazınız.
0.25 0.5 0.875 0.125	= = = = = = = = = = = = = = = = = = =	Denormalized		ili tabanda karşılıklarını	yazınız.
0.25 0.5 0.875 0.125 Normaliz		Denormalized		= 2 ^{k-1} - 1	yazınız.

Soru 3. Yukarıdaki bilgiler kapsamında 1₁₀ sayısını 8 bitlik kayan noktalı sayı olarak kodlayınız.

Soru 4. Aşağıdaki örnekte iki sayının arasındaki farkı bulan fonksiyonun C programlama dili ve x86 simgesel dili ile kodlamaları verilmiştir. Siz de üç sayının en büyüğünü bulan fonksiyon için kodlamaları C programlama dili ve x86 simgesel dili ile yapınız.

```
int absdiff(int x, int y)
{
    int result;
    if (x > y) {
       result = x-y;
    } else {
       result = y-x;
    }
    return result;
}
```

```
absdiff:
   pushl %ebp
   movl
          %esp, %ebp
   movl
          8 (%ebp), %edx
          12(%ebp), %eax
   movl
          %eax, %edx
   cmpl
   jle
           .L6
          ext{eax}, edx
   subl
   movl
          %edx, %eax
   jmp .L7
   subl %edx, %eax
   popl %ebp
   ret
```

Soru 5. Soru 4'de verilen örnek için yığıt yapısını çiziniz.

Soru 6. Soru 4'deki çözümünüz için yığıt yapısını çiziniz.

Soru 7. Soru 4'deki çözümünüzde geliştirdiğiniz kodu çağıran kesimi x86 simgesel dili ile kodlayınız.

Soru 8. Aşağıdaki kod kesimi uygulandığında olası bir çıktısını veriniz.

```
void fork4()
{
    printf("L0\n");
    if (fork() != 0) {
        printf("L1\n");
        if (fork() != 0) {
            printf("L2\n");
            fork();
        }
    }
    printf("Bye\n");
}
```

Soru 9. Görev anahtarlama (Context Switching) sırasında uygulanan adımları listeleyiniz.

Stack Pointer: %esp

Grows Down

IA32 Stack: Pop

Stack "Top"

Procedure Control Flow

- Use stack to support procedure call and return
- Procedure call: call label
 - Push return address on stack
 - Jump to label
- Return address:
 - Address of the next instruction right after call
 - Example from disassembly

804854e: e8 3d 06 00 00 call 8048b90 <main> 8048553: 50

- Return address = 0x8048553
- Procedure return: ret
 - Pop address from stackJump to address

Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama Genel sınav – 13 Ocak 2014

			Öğrenci Adı:		
			Numarası:		
Soru 1. C programla d a) 8bit b) 16bit	-	" tanımındaki p d) 64bit	değişkeninin bo e) Hiçbiri	yu x86-64 mimar	risi için nedir?
Soru 2. C programla da a) 8bit b) 16bit	=	tanımındaki p d d) 64bit	eğişkeninin boy e) Hiçbiri	u x86-32 mimaris	si için nedir?
Soru 3. Aşağıdaki biri	32bit diğeri 8bit ol	an iki <u>işaretli</u> sa <u>y</u>	yıyı toplayınız.		
a=0x00235500	o=0x80 a+b=	:?			
<pre>leal (%eax,%eax sall \$2, %eax</pre>	,2), %eax		x+x*2 rn t << 2;		
Soru 4. Yukarıdaki ör	•	ı 12 ₁₀ ile çarpılı	naktadır. Benze	r biçimde %eax y	yazmacını 36 ₁
ile çarpan kod	•				
• • • • • • • • • • • • • • • • • • • •					• • • •
Soru 5. Aşağıda onlu ta	abanda verilen sayıl	ların ikili taband	a karşılıklarını y	azınız.	
10.25 =					
7.5 =					
8.875 =					
15.125 =					
Normalized Values	Denormalized Values	Bias = 2 ^{k-1} - 1			
Condition: $\exp \neq 000\cdots 0$ and $\exp \neq 111\cdots 1$	Values Condition:		s ex	p frac	
E = exp - Bias	exp = 0000 E = -Bias + 1		1 4-b	its 3-bits	
Soru 6. Yukarıdaki bil	oiler kansamında 30)10	tlik kavan nokta	lı savı olarak kod	laviniz
Solu 0. Tukandaki on	gner kapsammaa 50	on sayısını o or	····· Kayan nokta	ii sayi olalak kod	

Soru 7. Aşağıdaki komut kümesini uyguladığınızda sonuç ne olur? Şekili güncelleyiniz.

Soru 8. Doğrudan bellek erişim (DMA: *Direct Memory Access*) yöntemini kullanarak bir disk sektörüne yazmaya ilişkin adımları aşağıdaki şekiller üzerinde gösteriniz. Her adımı bir/iki cümle ile açıklayınız.


```
sum = 0;
for (i = 0; i < n; i++)
   sum += a[i];
return sum;</pre>
```

Soru 10. %98 "hit" oranıyla yapılan veri erişimleri %95 oranıyla yapılanlara göre kaç kat daha iyidir? Ön bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız.

- a) 2 kat
- b) 3 kat
- c) 4 kat
- d) 6 kat
- e) Hiçbiri

Soru 11. Aşağıdaki kod kesimi uygulandığında çıktısı hangisi olamaz?

```
void fork4()
{
    printf("L0\n");
    if (fork() != 0) {
        printf("L1\n");
        if (fork() != 0) {
            printf("L2\n");
            fork();
        }
    }
    printf("Bye\n");
}
```

L0 a) **L0** b) **L0** c) L0 d) L0 e) L1 L1 Bye Bye Bye L2 L1 L1 L1 Bye L2 Bye Bye Bye Bye Bye Bye L2 Bye L2Bye Bye L2 Bye Bye Bye Bye Bye Bye Bye

Soru 12. Okunmak istenen verinin ön bellekte bulunaması (Read miss) durumunu içerecek şekilde veriye erişimin adımlarını çizim üzerinde gösteriniz ve her adımı kısa birer/ikişer cümleyle açıklayınız. (Örnek komut: movl (%edx), %ebx)

Soru 13. Aşağıdaki çizimde görev anahtarlama (*Context Switching*) için bir örnek verilmiştir. İşletim A görevinden B görevine aktarılırken uygulanan adımlarını sırasıyla birer cümleyle yazınız.

Soru 14. Aşağıdaki kod kesimi uygulandığında çıktısı ne olur? Kısaca açıklayınız.

void fork10()
{
<pre>pid_t pid[N];</pre>
int i;
<pre>int child_status;</pre>
for $(i = 0; i < N; i++)$
if ((pid[i] = fork()) == 0)
exit(100+i);
<pre>pid_t wpid = wait(&child_status);</pre>
<pre>printf("Child %d terminated with exit status %d\n",</pre>
<pre>wpid, WEXITSTATUS(child_status));</pre>
}

					 • •		 				0 0			0 0	0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0									• •						• •	0 0	0 0	0 0	0 0	• •	• •	0 0	• •	0 0		
• • •				• • •	 	• • •	 	• • •	• • •									• •	• •									• • •				• •			• •				• • •							• •						
• • •				• • •	 • •	• • •	 	• •	• • •									• •	• •		• •	• •			• •	• •		• • •				• • •		• •	• •				• • •		• •	• •	• •	• •	• •	• •	• •	• •	• •	• •		
• • •			• • •	• • •	 • •	• • •	 • •	• •	• • •		• • •	• • •		• • •			• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• • •			• •	• •	• • •	• •	• •	• • •		• • •	• • •		• •	• •	• •	• •	• •	• •	• •	• •	• •	• •		
• • •		• •			 • •	• • •	 											• •	• •			• •			• •	• •								• •	• •	• • •			• • •		• •	• •	• •	• •	• •	• •	• •		• •	• •		
					 • •		 											• •	• •																• •						• •			• •		• •				• •		
					 		 											• •																	• •																	
So	ru	ı 1				in			m	ni '	bi	ir	gö	ör	ev	ve	•	'S	ig	n	al	, ,,	g	Ö1	nd	eı	d	iğ	in	de	e g	gö	re	vi	n	gö	ist	er	eł	oil	ec	ce	ği	i t	eŗ	k	i 1	tü	rl	eı	rin	ni
So	ru	ı 1							m	ni ·	bi	ir	gö	ör	ev	ve		' S'	ig	n	al	,,,	g	Öı	nd	eı	d	iğ	in	de	e g	gö	re	vi	n	gö	st	er	el	oil	ec	ce	ği	i t	ep	ok 	i	tü	rl	eı	rin	ni
So	ru	. 1							m	ni i	bi	ir	gö	ör	ev	we		'S	ig	n	al	;;;	g	Ö1	nd	eı	rd:	iğ	in	de	e g	gö	re	vi	n	gö	ist	er	eł	oil	ec	ce	ği	i t	ep	ok	i 1	tü	rl	eı	rin	ni
So	ru	1							m	ni i	bi	ir	gö	ör	ev	ve		' S	ig	rn	al	,,,	g	Ö1	nd	eı	d	iğ	in	de	e <u>g</u>	gö	re	vi	n 	gö	ist.	cer	el	oil	ec	ce	ği	i t	ер	ok •••		tü ••	rl	eı	rin	ni
So	ru	1							m	ni ·	bi	ir	gö	ör	ev	we		' S'	ig	'n	al	•••	g	Ö1	nd	eı	d	iğ.	in	de	e g	gö	re	vi	n	gö	ist	cer	rel	oil	ec	ce	ği	i t	ep	ok	· · · · · · · · · · · · · · · · · · ·	tü	rl	eı	rin	ni

Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama 1. Ara sınav – 12 Kasım 2014

	Ŏ	ğrenci Adı:
		Numarası:
Soru 1. C pro a) 8bit	rogramla dilinde "float p;" tanımındaki p değ b) 16bit (c) 32bit d) 64bit e)	işkeninin boyu x86-64 mimarisi için nedir. Hiçbiri
Soru 2. C pro a) 8bit	rogramla dilinde "float *f;" tanımındaki i de b) 16bit c) 32bit d) 64bit e)	ğişkeninin boyu x86-64 mimarisi için nedir Hiçbiri
Soru 3. Aşağ	ğıdaki biri 32bit diğeri 8bit olan iki <u>işaretli</u> sayıyı	toplayınız.
a=0x0012340		0123400 =FFFFFF 01233FF
Soru 4. Aşağ	ğıdaki biri 32bit diğeri 8bit olan iki <u>işaretli</u> sayıyı	toplayınız.
a=0x0012340		0123400 000007F
	0x0012347F	000007F 012347F
sall \$2,		t << 2;
	arıdaki örnekte %eax yazmacı 1210 ile çarpılmak arpan kodu yazınız.	adır. Benzer biçimde %eax yazmacını 7210
	eal (% eax, %eax, 8), %e	
S	all \$3,%eax	
Soru 6. %eax	x yazmacını 4810 ile çarpan kodu yazınız.	
16	eal (%eax, %eax, 2),	%eax
	sall \$4, %eax	
Soru 7. Aşağıc	ıda onlu tabanda verilen sayıların ikili tabanda ka	rşılıklarını yazınız.
5.5 =	00010110000	
10.25 =	00101001000	
15.825 =	001111111010	
5.3 =	[00011011910011 your	arluma yoksa
	01010 you	arlama varsa

Scanned by CamScanner

Soru 8. Yukarıdaki bilgiler kapsamında 3010 sayısını 8 bitlik kayan noktalı sayı olarak kodlayınız.

Soru 10. %ebp yazmacında başlangıç adresi bulunan ve 32 bitlik sayılardan oluşan bir dizinin bir elemanını okuyup %eax yazmacına aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır.

Soru 11. Aşağıdaki fonksiyon için derleme işlemi yaparak simgesel dille (Intel 32 bit mimari) komutları yazınız.

Soru 12. Soru 11'deki fonksiyonu çağıran kod kesimi için simgesel dille (Intel 32 bit mimari) komutları yazınız.

Scanned by CamScanner

Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama 2. Ara sınav – 24 Aralık 2014

Öğrenci Adı:	
Numarası	

Soru 1. Doğrudan bellek erişim (DMA: *Direct Memory Access*) yöntemini kullanarak bir disk sektörünün erişimine ilişkin adımları aşağıdaki şekiller üzerinde gösteriniz.

Soru 2. *Zamansal Yerellik (Temporal Locality*) kavramı aşağıdaki kod kesiminde hangi verilere erişim için söz konusudur, bir/iki cümle ile açıklayınız.

```
sum = 0;
for (i = 0; i < n; i++)
    a[i]= b[i] + c[i];
return sum;</pre>
```

bru 4. %99 "hit" oranıyla yapılan veri erişimleri %91 oranıyla yapılanlara göre kaç kat daha iyidir? bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız. bru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg=5; p1() { } } p1() { } } bru 6. Bağlayıcı (Linker) birden fazla dosyayı biraraya getirip hedef dosyayı oluştururken dosy arasındaki referansları çözmede nasıl bir veri yapısı kullanır. Açıklayınız.		<pre>sum = 0; for (i = 0; i < n;</pre>	i++)	
bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız. bru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg; p1() { } p1		recurii sum,		
bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız. bru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg; p1() { } p1				
bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız. bru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg; p1() { } p1				
bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız. bru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg; p1() { } p1				
bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız. bru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg; p1() { } p1				
bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız. bru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg; p1() { } p1				
pru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg=5; p1() { } p1() { } p1 () { } p1 () { } p2 () () { } p3 () { } p4 () { } p4 () { } p5 () { } p6 () { } p7 () { } p8 () { } p9 () { } p9 () { } p1 () {				-
pru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg=5; p1() { } p1() { } p1 () { } p1 () { } p2 () () { } p3 () { } p4 () { } p4 () { } p5 () { } p6 () { } p7 () { } p8 () { } p9 () { } p9 () { } p1 () {				
pru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg=5; p1() { } p1() { } p1 () { } p1 () { } p2 () () { } p3 () { } p4 () { } p4 () { } p5 () { } p6 () { } p7 () { } p8 () { } p9 () { } p9 () { } p1 () {				
pru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg=5; p1() { } p1() { } p1 () { } p1 () { } p2 () () { } p3 () { } p4 () { } p4 () { } p5 () { } p6 () { } p7 () { } p8 () { } p9 () { } p9 () { } p1 () {	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg=5; p1() { } p1() { } p1 () { } p1 () { } p2 () () { } p3 () { } p4 () { } p4 () { } p5 () { } p6 () { } p7 () { } p8 () { } p9 () { } p9 () { } p1 () {				
pru 5. Aşağıda verilen iki kod kesimi derlenip (compile) bağlandığında (link) ne sonuç elde edilir? p1.c p2.c int deg=5; p1() { } p1() { } p1 () { } p1 () { } p2 () () { } p3 () { } p4 () { } p4 () { } p5 () { } p6 () { } p7 () { } p8 () { } p9 () { } p9 () { } p1 () {				
p1.c p2.c int deg; p1() { p1() { } } p1 () { } }				
int deg=5; p1() { } p1() { } bru 6. Bağlayıcı (Linker) birden fazla dosyayı biraraya getirip hedef dosyayı oluştururken dosy	oru 5. Aşağıda verile			ne sonuç elde edilir?
p1() { } p1() { } pru 6. Bağlayıcı (Linker) birden fazla dosyayı biraraya getirip hedef dosyayı oluştururken dosy		_	_	
pru 6. Bağlayıcı (Linker) birden fazla dosyayı biraraya getirip hedef dosyayı oluştururken dosy		int deg=5;	int deg;	
		p1() { }	p1() { }	
				• • • • • • • • • • • • • •

Soru 7. Kod içindeki soruları yanıtlayınız.

•••
<pre>/* a) Aşağıdaki satırda ne yapılmaktadır? */ addvec = dlsym(handle, "addvec"); if ((error = dlerror()) != NULL) { fprintf(stderr, "%s\n", error); exit(1); }</pre>
<pre>/* b) Aşağıdaki satırda ne yapılmaktadır? */ addvec(x, y, z, 2); printf("z = [%d %d]\n", z[0], z[1]);</pre>
<pre>/* c) Aşağıdaki satırda ne yapılmaktadır? */ if (dlclose(handle) < 0) { fprintf(stderr, "%s\n", dlerror()); exit(1); } return 0;</pre>
ı

\mathbf{a}) .	 		 			 			 				 			 			 						 		 	 		0 0						 		 		 	0 0	 	0 0		 0 1	 		0 0
• •																																																	
• •																																																	
• •																																																	
• •																																																	
b)																																																	
• •																																																	
• •																																																	
• •		 • •	• •	 •	• •	• •	 	• •	0 0	• •	0 0	•	• •		• •	• •	• •	 	• •	• •	• •	0 (• •		0 0	 • •	• •	• •	• •	 •	• •	۰	• •	 	• •	• •	•	• •	• •	• •	 • •	• •		• •		 • •	• •	۰	
c)		 	• •	 			 			 				 	• •	• •	 	 		 				• •		 		 • •	 	 				 		• •	 		 		 	• •	 			 		•	
••																																																	
				 			 											 												 															0 (0 4			
		 		 			 			 				 			 	 		 						 		 		 				 											0.1	 			

Soru 8. Kod içindeki soruyu yanıtlayınız.

```
void fork11()
{
    pid_t pid[N];
    int i;
    int child_status;
    for (i = 0; i < N; i++)
        if ((pid[i] = fork()) == 0)
            exit(100+i);
    for (i = N-1; i >= 0; i--) {
            /* Aşağıdaki satırda ne yapılmaktadır? */
            pid_t wpid = waitpid(pid[i], &child_status, 0);
            if (WIFEXITED(child_status))
                printf(" Falan filan %d\n");
            else
                printf(" Yine falan filan %d\n");
        }
}
```

Soru 9. Aşağıdaki kod kesimi uygulandığında çıktısı ne olur?

```
void fork4()
{
    printf("Falan \n");
    if (fork() != 0) {
        printf("Filan\n");
        if (fork() != 0) {
            printf("Yalan\n");
            fork();
        }
    }
    printf("Görüşürüz.\n");
}
```

													 				0 4	 			 				 			 					 																					• • •	۰
									• •	• •			 	• •	• •		0 4	 	• •				• •			• •		 		• •			 	• •	• •	• •	• •				• •	• •		• •	• •	• •	• •	• •							۰
									• •				 					 					• •					 		• •			 		• •				• •			• •		• •	• •	• •	• •							• • •	۰
		• •		• • •	• • •			• •	• •	• •	• •		 	• •		• •		 • •	• •	• •		• •	• •			• •		 	• •	• •	• •		 	• •	• •	• •		• •	• •	• •	• •	• •	• •	• •	• •	• •		• •	• •	• •	• •			• • •	
	• •	• •		• • •	• • •		• •	• •	• •	• •	• •		 	• •	• •	• •		 • •	• •	• •		• •	• •	• •		• •	• •	 	• •	• •	• •	• •	 	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •		• • •	0
		• •		• • •	• • •	• •		• •	• •	• •	• •		 	• •	• •	• •		 • •	• •	• •		• •	• •	• •		• •	• •	 	• •	• •	• •		 	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •		• • •	0
																																																						• • •	
		• •		• • •	• • •	• •	• •	• •	• •	• •	• •	• •	 • • •	• •	• •	• •		 • •	• •	• •		• •	• •	• •		• •	• •	 	• •	• •	• •	• •	 • •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	0 0		0
0 1	• •	• •		• • •	• • •	• •	• •	• •	• •	• •	• •		 	• •	• •	• •		 • •	• •	• •		• •	• •	• •	 	• •	• •	 	• •	• •	• •		 	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •			0
0 1	• •	• •		• • •		• •		• •	• •	• •	• •		 	• •	• •	• •		 • •	• •	• •		• •	• •	• •	 	• •	• •	 	• •	• •	• •	• •	 	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •		• • •	0
0	• •	• •		• • •	• • •	• •		• •	• •	• •	• •	• •	 • • •	• •	• •	• •		 • •	• •	• •		• •	• •	• •	 •	• •	• •	 	• •	• •	• •	• •	 • •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •		• • •	0
0 1	• •	• •	0 0					• •	• •	• •	• •	• •	 	• •	• •	• •		 • •	• •	• •	 	• •	• •	• •	 	• •	• •	 	• •	• •	• •		 	• •	• •	• •	• •	• •	• •	• •	• •	• •		• •	• •	• •	• •	• •	• •	• •	• •	• •			0

Soru 10. Aşağıdaki kod kesimi kapsamında P1() çağırıldığında çağırıldığında sonuç ne olur?

```
jmp_buf env;
P1()
{
    P2(); P3();
}
P2()
{
    if (setjmp(env)) {
        printf("Falan Filan \n");
    }
}
P3()
{
    longjmp(env, 1);
}
```

Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama Genel sınav – 14 Ocak 2015

Soru 4. %ebp yazmacında başlangıç adresi bulunan ve 32 bitlik sayılardan oluşan bir dizinin bir elemanına %eax yazmacındaki değeri aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır. Normalized Values Condition: exp ≠ 0000··0 and exp ≠ 111···1 Soru 4. %ebp yazmacında başlangıç adresi bulunan ve 32 bitlik sayılardan oluşan bir dizinin bir elemanına %eax yazmacındaki değeri aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır.	Soru 1. C programla o			Ogrenci Adi:		••••
nedir? a) 8bit b) 16bit c) 32bit d) 64bit e) Hiçbiri Soru 2. C programla dilinde "double p;" tanımındaki p değişkeninin boyu x86-64 mimarisi için nedir? a) 8bit b) 16bit c) 32bit d) 64bit e) Hiçbiri Soru 3. Aşağıdaki biri 32bit diğeri 8bit olan iki işaretli sayı için işlemin sonucunu hesaplayınız. a=0x00235590 b=0x81 a-b=? Soru 4. %ebp yazmacında başlangıç adresi bulunan ve 32 bitlik sayılardan oluşan bir dizinin bir elemanına %eax yazmacındaki değeri aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır. Normalized Values Condition: exp ≠ 000···0 and exp ≠ 111···1 exp = 0000 E = -Bias + 1 Soru 5. Yukarıdaki bilgiler kapsamında 120₁0 ve 121₁0 sayılarını 8 bitlik kayan noktalı sayı olarak	Soru 1. C programla d			Numarası:		
a) 8bit b) 16bit c) 32bit d) 64bit e) Hiçbiri Soru 2. C programla dilinde "double p;" tanımındaki p değişkeninin boyu x86-64 mimarisi için nedir? a) 8bit b) 16bit c) 32bit d) 64bit e) Hiçbiri Soru 3. Aşağıdaki biri 32bit diğeri 8bit olan iki işaretli sayı için işlemin sonucunu hesaplayınız. a=0x00235590 b=0x81 a-b=? Soru 4. %ebp yazmacında başlangıç adresi bulunan ve 32 bitlik sayılardan oluşan bir dizinin bir elemanına %eax yazmacındaki değeri aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır. Normalized Values Condition: exp ≠ 000···0 and exp ≠ 111···1	1 0	dilinde "double	*p;" tanımınd	aki p değişkeninin b	oyu x86-64 mimar	isi için
a) 8bit b) 16bit c) 32bit d) 64bit e) Hiçbiri Soru 3. Aşağıdaki biri 32bit diğeri 8bit olan iki işaretli sayı için işlemin sonucunu hesaplayınız. a=0x00235590 b=0x81 a-b=? Soru 4. %ebp yazmacında başlangıç adresi bulunan ve 32 bitlik sayılardan oluşan bir dizinin bir elemanına %eax yazmacındaki değeri aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır. Normalized Values Condition: exp ≠ 000···0 Values Condition: exp ≠ 000···0 values Condition: exp = 000···0 value		c) 32bit	d) 64bit	e) Hiçbiri		
Soru 4. %ebp yazmacında başlangıç adresi bulunan ve 32 bitlik sayılardan oluşan bir dizinin bir elemanına %eax yazmacındaki değeri aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır. Normalized Values Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp − Bias E = -Bias + 1 Soru 5. Yukarıdaki bilgiler kapsamında 120₁0 ve 121₁0 sayılarını 8 bitlik kayan noktalı sayı olarak					86-64 mimarisi içir	nedir?
Soru 4. %ebp yazmacında başlangıç adresi bulunan ve 32 bitlik sayılardan oluşan bir dizinin bir elemanına %eax yazmacındaki değeri aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır. Normalized Values Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp − Bias Denormalized Values Condition: exp = 0000 E = −Bias + 1 Soru 5. Yukarıdaki bilgiler kapsamında 120₁0 ve 121₁0 sayılarını 8 bitlik kayan noktalı sayı olarak	Soru 3. Aşağıdaki biri	32bit diğeri 8bit o	lan iki işaretli say	yı için işlemin sonucı	ınu hesaplayınız.	
%eax yazmacındaki değeri aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır. Normalized Values Condition: exp ≠ 000···0 Values Condition: exp ≠ 111···1 E = exp − Bias Soru 5. Yukarıdaki bilgiler kapsamında 120₁0 ve 121₁0 sayılarını 8 bitlik kayan noktalı sayı olarak	a=0x00235590 b	o=0x81 a-b=	=?			
%eax yazmacındaki değeri aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır. Normalized Values Condition: exp ≠ 000···0 Values Condition: exp ≠ 111···1 E = exp − Bias Soru 5. Yukarıdaki bilgiler kapsamında 120₁0 ve 121₁0 sayılarını 8 bitlik kayan noktalı sayı olarak						
%eax yazmacındaki değeri aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır. Normalized Values Condition: exp ≠ 000···0 Values Condition: exp ≠ 111···1 E = exp − Bias Soru 5. Yukarıdaki bilgiler kapsamında 120₁0 ve 121₁0 sayılarını 8 bitlik kayan noktalı sayı olarak						
Condition: $\exp \neq 000\cdots 0$ Values Condition: $\exp = 111\cdots 1$ E = $\exp - \text{Bias}$ Condition: $\exp = 000\ldots 0$ E = $-\text{Bias} + 1$ Soru 5. Yukarıdaki bilgiler kapsamında 120_{10} ve 121_{10} sayılarını 8 bitlik kayan noktalı sayı olarak	%eax yazmacı	ndaki değeri aktar				
Condition: $\exp \neq 000\cdots 0$ Values Condition: $\exp = 111\cdots 1$ E = $\exp - \text{Bias}$ Condition: $\exp = 000\ldots 0$ E = $-\text{Bias} + 1$ Soru 5. Yukarıdaki bilgiler kapsamında 120_{10} ve 121_{10} sayılarını 8 bitlik kayan noktalı sayı olarak			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • •	
Condition: $\exp \neq 000\cdots 0$ Values Condition: $\exp = 111\cdots 1$ E = $\exp - \text{Bias}$ Condition: $\exp = 000\ldots 0$ E = $-\text{Bias} + 1$ Soru 5. Yukarıdaki bilgiler kapsamında 120_{10} ve 121_{10} sayılarını 8 bitlik kayan noktalı sayı olarak						
Condition: $\exp \neq 000\cdots 0$ Values Condition: $\exp = 111\cdots 1$ $\exp = 000\ldots 0$ $\exp = 000\ldots 0$ $E = -Bias + 1$ Soru 5. Yukarıdaki bilgiler kapsamında 120_{10} ve 121_{10} sayılarını 8 bitlik kayan noktalı sayı olarak						
and $\exp \neq 111\cdots 1$ $E = \exp - \text{Bias}$ Condition: $\exp = 000\dots 0$ $E = -\text{Bias} + 1$ 1 4-bits 3-bits Soru 5. Yukarıdaki bilgiler kapsamında 120_{10} ve 121_{10} sayılarını 8 bitlik kayan noktalı sayı olarak						
E = \exp - Bias \exp = 0000 1 4-bits 3-bits Soru 5. Yukarıdaki bilgiler kapsamında 120 ₁₀ ve 121 ₁₀ sayılarını 8 bitlik kayan noktalı sayı olarak	Normalized Values	Denormalized	Bias = $2^{k-1} - 1$			
Soru 5. Yukarıdaki bilgiler kapsamında 120 ₁₀ ve 121 ₁₀ sayılarını 8 bitlik kayan noktalı sayı olarak	Condition: $\exp \neq 000 \cdots 0$	Values	Bias = 2 ^{k-1} - 1	s exp	frac	
·		Values Condition: exp = 0000	Bias = 2 ^{k-1} - 1		100000	
	Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp - Bias Soru 5. Yukarıdaki bi	Values Condition: exp = 0000 E = -Bias + 1		1 4-bits	3-bits	olarak
	Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp - Bias Soru 5. Yukarıdaki bi kodlayınız.	Values Condition: exp = 0000 E = -Bias + 1	120 ₁₀ ve 121 ₁	1 4-bits 0 sayılarını 8 bitlik	3-bits kayan noktalı sayı	olarak
	Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp - Bias Soru 5. Yukarıdaki bi kodlayınız.	Values Condition: exp = 0000 E = -Bias + 1	120 ₁₀ ve 121 ₁	1 4-bits 0 sayılarını 8 bitlik	3-bits kayan noktalı sayı	olarak
	Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp - Bias Soru 5. Yukarıdaki bi kodlayınız.	Values Condition: exp = 0000 E = -Bias + 1	120 ₁₀ ve 121 ₁	1 4-bits 0 sayılarını 8 bitlik	3-bits kayan noktalı sayı	olarak
	Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp - Bias Soru 5. Yukarıdaki bi kodlayınız.	Values Condition: exp = 0000 E = -Bias + 1	120 ₁₀ ve 121 ₁	1 4-bits 0 sayılarını 8 bitlik	3-bits kayan noktalı sayı	olarak
	Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp - Bias Soru 5. Yukarıdaki bi kodlayınız.	Values Condition: exp = 0000 E = -Bias + 1	n 120 ₁₀ ve 121 ₁	1 4-bits 0 sayılarını 8 bitlik	3-bits kayan noktalı sayı	olarak
	Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp - Bias Soru 5. Yukarıdaki bi kodlayınız.	Values Condition: exp = 0000 E = -Bias + 1	n 120 ₁₀ ve 121 ₁	1 4-bits 0 sayılarını 8 bitlik	3-bits kayan noktalı sayı	olarak
	Condition: exp ≠ 000···0 and exp ≠ 111···1 E = exp - Bias Soru 5. Yukarıdaki bi kodlayınız.	Values Condition: exp = 0000 E = -Bias + 1	n 120 ₁₀ ve 121 ₁	1 4-bits 0 sayılarını 8 bitlik	3-bits kayan noktalı sayı	olarak

123 0x124 %eax 456 0x120%edx mov1 8(%ebp), %edx 0x11c movl 12 (%ebp), %ecx **%есх** 0x118 movl (%edx), %ebx %ebx movl (%ecx), %eax 0x114movl %ebx, -8(%edx) %esi 0x120 0x110movl %eax, -8(%ecx) 0x124 %edi 0x10c Rtn adr 0x108 %esp 0x1040x104 %ebp 0x100 Soru 7. Konumsal Yerellik (Spatial Locality) kavramı kapsamında aşağıdaki kod kesimini etkin çalışan bir kod olarak değerlendirir misiniz? Neden? int sum array cols(int a[M][N]) int i, j, sum = 0; for (j = 0; j < N; j++)for (i = 0; i < M; i++)sum += a[i][j]; return sum; Soru 8. %2 "miss" oranıyla yapılan veri erişimleri %95 "hit" oranıyla yapılanlara göre kaç kat daha iyidir? Ön bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız. b) 3 kat c) 4 kat d) 6 kat e) Hiçbiri a) 2 kat Soru 9. Bağlayıcı (Linker) birden fazla dosyayı biraraya getirip hedef dosyayı oluştururken dosyalar arasındaki referansları çözmede nasıl bir veri yapısı kullanır. Açıklayınız.

Soru 6. Aşağıdaki komut kümesini uyguladığınızda sonuç ne olur? Şekili güncelleyiniz.

Address

Soru 10. Aşağıdaki kod kesimi uygulandığında çıktısı ne olur?

Soru 11. İşletim sistemi bir göreve "*signal*" gönderdiğinde görevin gösterebileceği tepki türlerini açıklayınız.

0	0 0		 	 		 			 	 	0 (0 0	 	0 0				 		 	 	 		 		 	 	 0 0	
0			 	 		 			 	 	0 (• •	 		 	 	 	 	 		 	 		
0			 	 		 			 	 	0 (
0			 	 		 			 	 	0 (

Soru 12. Aşağıdaki fonksiyon için derleme işlemi yaparak simgesel dille (Intel 32 bit mimari) komutları yazınız. Yığıt yapısını çiziniz.

```
int arith(int x, int y)
{
  return x+y;
}
```

Soru 13. Soru 12'deki fonksiyonu çağıran kod kesimi için simgesel dille (Intel 32 bit mimari) komutları yazınız.

Soru 14. movl %ebx, (%edx) komutu için verinin ön bellekte bulunamaması (*miss*) ve bulunması (*hit*) durumlarını içerecek şekilde veriye erişimin adımlarını çizim üzerinde gösteriniz ve birkaç anahtar sözcük kullanarak açıklayınız. (sorgula, adresle, oku, yaz, vb.)

Soru 15. Görüntü bellek (Virtual Memory) yönetimi kapsamında aşağıdaki şekildeki adımları birer cümle ile açıklayınız.

(1))			 			 		 		 				 										 			 		 								 					 				 	 		
• • •				 						• •											• •																	 					 • •	• •			 > o :	 		
(2))			 		• •	 		 		 	۰			 					• •					 		• •	 		 			• •				• •	 			• •	• •	 			• •	 • •		• •	• •
• • •																																																		
(3)		• •	• •	 	• •		• •	• •	• •	• •	• •	• •	0	• •	 • •	• •	• •	• •	• •		• •	0 0	• •	• •	• •	• •		• •	• •	• •	• •	• •		• •	• •	• •		• •	• •	• •			 • •	• •	• •	• •	 0 0	 • •	• •	۰
(3)																																																		
 (4																																																		
(=,	_																																																	
(5)																																																		

Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama 1. Ara sınay – 3 Kasım 2015

1.1114	311164 V	O ILUSII	11 2010										
							(Öğrenci	Adı:				
								Numa	rası:				
	C progr nedir? (1		nde "fl	.oat	*p;" ta	anımın	daki	i p değiş	skeninin	boyu 2	x86-64	mimarisi i	in
a) 8t			c) 32	bit	d) 64	4bit	(e) Hiçbir	i				
Gerekçe:	:												
Soru 2.	Aşağıda	ki biri 321	bit diğeri	i 8bit o	olan iki <u>is</u>	şaretli s	sayı	ıyı toplay	ınız. (1	puan)			
a=0x00F	FFFFF	b=0:	xFA	a+b=	=?								
Çözüm:													
3													
Soru 3. A	Aşağıda	onlu tabaı	nda veril	en say	ıların iki	ili taba	nda	karşılıkla	arını yaz	zınız. (1	puan)		
						\Box							
25.25	=												
50.50 15.15	=					$\overline{\Box}$							
0.30	=												
Çözüm:													

Normalized Values	Denormalized	Bias = $2^{k-1} - 1$				
Condition: $\exp \neq 000\cdots$ 0 and $\exp \neq 111\cdots1$	Values Condition:		s	exp	frac	
$E = \exp - Bias$	$\exp = 0000$		1	4-bits	3-bits	
•	$\mathbf{E} = -\mathbf{Bias} + 1$					

Soru 4. Yukarıdaki bilgiler kapsamında 60_{10} sayısını 8 bitlik kayan noktalı sayı olarak kodlayınız. (1 puan)

```
Çözüm:
```

Soru 5. İzleyen C programını GCC ile derlediğimizde aşağıdaki kodu elde ediyoruz. C programındaki boşlukları doldurunuz. (**2 puan**)

```
int test(int x, int y) {
 2
           int val =
           if ( x<-3 ) {
 3
                if (____
 5
                     val =
                else
 6
 7
                     val =
           } else if (
 8
 9
           return val;
10
      }
11
   x at %ebp+8, y at %ebp+12
      movl
              8(%ebp), %eax
              12(%ebp), %edx
 2
      movl
      cmpl
              $-3, %eax
 3
              .L2
      jge
      cmpl
              %edx, %eax
 5
              .L3
 6
      jle
              %edx, %eax
 7
      imull
 8
              .L4
      jmp
 9
     .L3:
              (%edx,%eax), %eax
10
      leal
              .L4
11
      jmp
12
     .L2:
13
       cmpl
              $2, %eax
              .L5
14
      jg
              %edx, %eax
15
      xorl
       jmp
               .L4
16
17
     .L5:
       subl
              %edx, %eax
18
19
     .L4:
```

6. 7. ve 8. Sorular için:

```
int proc(void)
{
    int x,y;
    scanf("%x %x", &y, &x);
    return x-y;
}
```

Yukarıdaki C kodunu GCC ile derlediğimizde aşağıdaki kodu elde ediyoruz.

```
proc:
2
        pushl
                %ebp
                %esp, %ebp
 3
        movl
        subl
                $40, %esp
 4
 5
        leal
                -4(%ebp), %eax
                %eax, 8(%esp)
        movl
 6
 7
        leal
                -8(%ebp), %eax
                %eax, 4(%esp)
        movl
 8
                $.LCO, (%esp)
 9
        movl
                                 Pointer to string "%x %x"
                scanf
        call
10
Bu noktadaki yığıt çerçevesini çiziniz.
                -4(%ebp), %eax
        movl
11
                -8(%ebp), %eax
12
        subl
        leave
13
       ret
14
```

"proc" fonksiyonunun aşağıdaki yazmaç değerleri ile başladığını varsayarak 6. 7. ve 8. soruları cevaplayınız.

Register	Value
%esp	0x800040
%ebp	0x800060

"proc" fonksiyonu satır 10'da "scanf" fonksiyonunu çağırıyor ve "scanf" girdi olarak 0x46 ve 0x53 değerlerini okuyor. "%x %x" dizgesinin 0x300070 hafiza adresinde bulunduğunu varsayın.

Soru 6. Üçüncü satırda %ebp yazmacına hangi değer atanır? Dördüncü satırda %esp yazmacına hangi değer atanır? (**1 puan**)

Çözüm:			

Soru	7.	Yerel	değişkenle	r olan x	ve v	değisker	ıleri hanı	gi adresle	erde sakla	anmıstır?	(1	puan))
		1 01 01	ac Signetii.	or orani z		ac 515HC1	men man	51 aaresie	or ac barri	ammingum.	\ -	paul,	-

Çözüm:		

Soru 8. "scanf" fonksiyonu döndükten sonra "proc" için olan yığıt görünümünü tamamlayınız ve yanına kısaca açıklayınız. Yığıtın "proc" tarafından kullanılmayan kesimlerini belirtiniz. (**2 puan**)

0x80003C	
0x800038	
0x800034	
0x800030	
0x80002C	
0x800028	
0x800024	
0x800020	
0x80001C	
0x800018	
0x800014	

Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama

2	A ro	sınav -	1 1	rolik	201	4
<i>L</i> .	Ara	SINAV -	– I A	rank	ZU 1	

Öğrenci Adı:	
Numarası:	

Soru 1. (10 Puan) Doğrudan bellek erişim (DMA: *Direct Memory Access*) yöntemini kullanarak bir disk sektörünün erişimine ilişkin adımları aşağıdaki şekiller üzerinde gösteriniz.

Soru 2. (10 Puan) *Zamansal Yerellik* (*Temporal Locality*) kavramı aşağıdaki kod kesiminde hangi verilere erişim için söz konusudur, bir/iki cümle ile açıklayınız.

```
int sum_array_cols(int a[M][N])
{
    int i, j, sum = 0;
    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}</pre>
```

Soru 3. (10 Puan) *Konumsal Yerellik* (*Spatial Locality*) kavramı aşağıdaki kod kesiminde hangi verilere erişim için söz konusudur, bir/iki cümle ile açıklayınız.

```
int sum_array_cols(int a[M][N])
{
   int i, j, sum = 0;
   for (i = 0; i < M; i++)
       for (j = 0; j < N; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

Soru 4. (10 Puan) %99 "hit" oranıyla yapılan veri erişimleri %93 oranıyla yapılanlara göre kaç kat daha iyidir? Ön bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 50 birim alınız.

Soru 5. (20 Puan) Aşağıdaki C kaynak kodunda M ve N değişmezlerinin #define ile tanımlandığını varsayınız.

```
int mat1[M][N];
int mat2[N][M];

int sum_element(int i, int j) {
         return mat1[i][j] + mat2[j][i];
}
```

Yukarıdaki C kaynak kodu derlendiğinde aşağıdaki liste elde edilmiştir. Buna göre tersine mühendislik yöntemini kullanarak M ve N değişmezlerinin değerini hesaplayınız.

	i at %ebp+	-8, j at %ebp+12	
1	movl	8(%ebp), %ecx	
2	movl	12(%ebp), %edx	
3	leal	0(,%ecx,4), %eax	$\mathbf{M} =$
4	subl	%ecx, %eax	
5	addl	%edx, %eax	N =
6	leal	(%edx,%edx,8), %edx	11 –
7	addl	%ecx, %edx	
8	movl	mat1(,%eax,4), %eax	
9	addl	mat2(,%edx,4), %eax	
	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• •	• • • • • • • • • • • • •		

Soru 6. (20 Puan) Aşağıda bir önbelleğin içeriği gösterilmiştir. Yazan tüm sayılar onaltılık sistemdedir. Her adres bir bayt uzunluğundaki bellek konumuna karşılık gelmektedir (4 baytlık değil). Adresler 13 bit uzunluğundadır. Ön bellekte 8 tane küme (S=8) vardır. Blok uzunluğu 4 bayttır (B=4). Her kümede iki satır vardır (E=2).

	2-way set associative cache													
			L	ine 0		Line 1								
Set index	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3		
0	09	1	86	30	3F	10	00	0	_	_		_		
1	45	1	60	4F	E0	23	38	1	00	BC	$0\mathbf{B}$	37		
2	EB	0	_	_	-	_	0B	0	_	-	_	_		
3	06	0	— ·	_	_	_	32	1	12	08	7B	AD		
4	C7	1	06	78	07	C5	05	1	40	67	C2	3B		
5	71	1	0B	DE	18	4B	6E	0	_	-	_	_		
6	91	1	A0	B 7	26	2D	F0	0	_	_	_	_		
7	46	0		_	-	-	DE	1	12	C0	88	37		

A. Aşağıdaki şekil her bit bir kutucuğa gelecek şekilde adres formatını göstermektedir. Kutucukları hangi alanların hangi amaçla kullanıldığını gösterecek şekilde işaretleyin. Kutucuklara ön bellek blok ofseti için CO, ön bellek küme indeksi için CI, ön bellek etiketi (tag) için CT yazınız.

12	11	10	9	8	7	6	5	4	3	2	1	0
										100		

B. Bir program 0x1239 adresindeki bayta erişmek istiyor. Adresi ikilik sistemde yazınız.

12	11	10	9	8	7	6	5	4	3	2	1	0
				1								

Aşağıdaki alanları buna göre doldurunuz:

Önbellek blok içi adresi (offset):

Önbellek küme indeksi:

Önbellek etiketi (tag):

Önbellek hit/miss?

Önbellektekten dönen değer:

C. Bir program 0x1E1A adresindeki bayta erişmek istiyor. Adresi ikilik sistemde yazınız.

12	11	10	9	8	7	6	5	4	3	2	1	0

Aşağıdaki alanları buna göre doldurunuz:

Önbellek blok içi adresi (offset):

Önbellek küme indeksi:

Önbellek etiketi (tag):

Önbellek hit/miss?

Önbellektekten dönen değer:

Soru 7. (20 Puan) Aşağıdaki "struct" için bileşenlerin başlangıç adreslerini (offset) ve veri yapısının toplam uzunluğunu tabloya yazınız.

```
struct P4 { short w[4]; char *c[4] ; int i};
```

A. 32 bitlik mimari için:

W	С	i	Toplam uzunluk

B. 64 bitlik mimari için:

W	С	i	Toplam uzunluk

Hacettepe University Computer Engineering Department BBM341 Systems Programming 1st Midterm – 27 November 2018

Name	:	 	 	
ID No				

Question 1. (10 points) Place the value 0x10 into the memory starting from the address 0x100. (32-bit data)

Big Endian	0x100	0x101	0x102	0x103	
Little Endian	0x100	0x101	0x102	0x103	

Question 2. (10 points) Apply shift operations in the following table.

Shift Operation	Arithmetic/Logical	Value (8 bits)	Result (8 bits)
Shift left 4 positions	Arithmetic	10101111	
Shift left 4 positions	Logical	10101111	
Shift right 4 positions	Arithmetic	10101111	
Shift right 4 positions	Logical	10101111	

Question 3. (10 points) For the unsigned/signed 8 bit integers, perform the operations below.

Unsigned	Signed	Unsigned
11101111	11101111	11101111
+ 11101111	<u>- 11101111</u>	<u>- 11101111</u>
	11101111	11101111 11101111

Question 4. (10 points) Encode the base 10 values in base 2.

10.25	=		Щ	Щ.		\perp
10.50	=					

leal (%eax,%eax,2), %eax
sall \$2, %eax

t <- x+x*2 return t << 2;

Question 5. (10 points) Write the code that multiplies %eax by 25. Use only "leal" and/or "shift" instructions.

Normalized Values	Denormalized	Bias = $2^{k-1} - 1$				
Condition: $\exp \neq 000\cdots 0$ and $\exp \neq 111\cdots 1$	Values Condition:		s	exp	frac	
$E = \exp - Bias$	exp = 0000 E = -Bias + 1		1	4-bits	3-bits	
	L Dias i I					

Question 6. (10 points) Based on the above information encode 0.1₁₀ as floating point number.

	Solution:
Į	

1	4-bits	3-bits	

Question 7. (10 points) Based on the above information encode 0.00000001₁₀ as floating point number.

Solution:				
	,	1 4-bits	3-bits	

Question 8. (10 points) Perform the rounding operations.

	\$0.80	\$0.50	-\$0.50
Towards zero			
Round down (−∞)			
Round up (+∞)			
Nearest Even (default)			

Question 9. (10 points) Fill in the table with proper addressing mode information ("Imm", "Reg" or "Mem").

	Source	Destination
movl (%eax),%ecx	
movl (%eax),\$0xf	
mov1 \$0x30	, %eax	
movl %eax,	0xf	
movl \$147,	(%eax)	

Question 10. (10 points) For the following C function, give the assembly listing for the 32-bit architecture, and draw the stack view while the "if statement" is being evaluated. Do not forget to depict where %esp and %ebp are pointing.

```
void compare(int x, int y)
{
  if(x > y)
    return x;
  else
    return y+1;
}
```

Hacettepe University Computer Engineering Department BBM341 Systems Programming 2nd Midterm – 18 December 2018

Name	:	
ID No	:	
Section		

Question 1. (20 points) Assume the following:

- o The memory is byte addressable.
- o Memory accesses are to **1-byte words** (not to 4-byte words).
- o Addresses are 13 bits wide.
- \circ The cache is two-way set associative (E = 2), with a 4-byte block size (B = 4) and eight sets (S = 8).
- **A.** The contents of the cache are as follows, with all numbers given in hexadecimal notation.

2-way set associative cache

	Line 0								Line 1					
Set index	Tag	Valid	Byte 0	DOLLE-DE PAR	Byte 2	Byte 3	Tag	Valid	Byte 0	Social Control of the	Byte 2	Byte 3		
0	09	1	86	30	3F	10	00	0	0.5		8-15	5 ./		
1	45	1	60	4F	E0	23	38	1	00	BC	0B	37		
2	EB	0	_	_	_	7 <u>—</u>	0B	0		<u> </u>				
3	06	0	_	-	88		32	1	12	08	7B	AD		
4	C7	1	06	78	07	C5	05	1	40	67	C2	3B		
5	71	1	0B	DE	18	4B	6E	0	23 	-	_	_		
6	91	1	A0	B 7	26	2D	F0	0	_					
7	46	0	_	_	-	5 3	DE	1	12	C0	88	37		

The following figure shows the format of an address (one bit per box). Indicate (by labeling the diagram) the fields that would be used to determine the following:

CO The cache block offset CI The cache set index

CT The cache tag

12	11	10	9	8	7	6	5	4	3	2	1	0

Suppose a program running on the machine references the byte at address 0x0E38. Indicate the cache entry accessed and the cache byte value returned **in hex**. Indicate whether a cache miss occurs. If there is a cache miss, enter "–" for "Cache byte returned."

	В.	Addre	ess forn	nat (or	ne bit	per b	ox):								
		12	11	10	9	8	7	6	5	4	3	2	1	0	
													,		
	C.	Memo	ory refe	erence	:										
		Param	eter			Val	lue								
			block o			0x									
			set inde)	0x									
			tag (C)			0x									
			hit? (Y			0		-							
		Cacne	byte re	turnea		UX		-							
Questio	on 2. (10 pa	ints) Lis	t the di	fferenc	es be	tweer	n DRA	AM ar	nd SR	AM.					
Questio	on 3. (10 p observed miss pena	in the	aver	age a											
	miss pena.	ity 01 100	Cycles	·.											

Question 4. (20 points) For the following matrix multiplication algorithm, explain how the algorithm benefits from Spatial and Temporal Localities. (For both instruction and data references)

```
float A[100][100], B[100][100], C[100][100];
int i, j, k, m, n, p;
...
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++)
        for (k = 0; k < p; k++)
        C[i][j]+= A[i][k] * B[k][j];</pre>
```

Question 5. (10 points) For mov1 (%edx), %ebx instruction, visualize data access steps for both *miss* and *hit* cases. Use arrows to depict dataflow, addressing, entry checks etc., and use keywords such as check, address, read and/or write to identify each step.

Question 6. (20 points) Using the following information fill in the content and addressing mode columns in the table below.

Address	Content	Register	Content
0x100	0xFF	%eax	0x100
0x104	0xAB	%ecx	0x1
0x108	0x13	%edx	0x3
0x10C	0x11		

Operand	Content	Addressing Mode
%eax	•••••	
0x104		
\$0x108		
(%eax)		
4(%eax)		
9(%eax,%edx)	•••••	
260(%ecx,%edx)	•••••	
0xFC(,%ecx,4)	•••••	
(%eax,%edx,4)	•••••	

Question 7. (10 points) List the differences between SSD and Rotating Disks.