Week04 project

Wenqi Cai

Problem 1 Given to the 3 types of price returns and $rt \sim N(0, \sigma^2)$, we know that the mean and standard deviation as following:

Method	Model	Expected Value	Standard Deviation	
Classical	$P_t = P_{t-1} + r_t$	P_{t-1}	σ	
Brownian				
Motion				
Arithmetic	$P_t = P_{t-1}(1+r)$	P_{t-1}	$P_{t-1}*\sigma$	
Return System				
Log Return or	$P_t = P_{t-1}e^{r_t}$	σ^2	Γ	
Geometric		$P_{t-1}*e^{\frac{\sigma^2}{2}}$	$P_{t-1}\sqrt{e^{\sigma^2}-1}$	
Brownian				
Motion				

Using python to calculate, we can see the tiny difference between estimated one and expected one as following:

Method	Expected Value	Estimated Value	Expected Std	Estimated Std
Classical	100	99.9988	0.1	0.0996
Brownian				
Motion				
Arithmetic	100	99.8815	10	9.9642
Return System				
Log Return or	100.5012	100.3785	10.0250	10.0226
Geometric				
Brownian				
Motion				

Problem 2

2.1

The process and arithmetic returns for all prices can be seen in the python.

SPY	AAPL MSFT	AMZN	TSLA	SYK	GM	TFC	TJX	Date
0 -0.006723 -0.0	935793 -0.002009	-0.013914	-0.017817	0.009815	-0.013822	-0.023653	-0.009387	2023-09-06 00:00:00
1 -0.003070 -0.0	029249 -0.008922	0.018395	-0.001707	-0.000277	-0.007617	-0.015141	0.007602	2023-09-07 00:00:00
2 0.001506 0.0	903492 0.013216	0.002757	-0.011889	0.001799	0.011667	0.017424	0.000000	2023-09-08 00:00:00
3 0.006577 0.0	906623 0.010979	0.035231	0.100925	0.035159	-0.010015	0.011081	0.001422	2023-09-11 00:00:00
4 -0.005486 -0.0	917061 -0.018258	-0.013068	-0.022297	-0.016515	0.026058	-0.003321	0.006552	2023-09-12 00:00:00

Using the stock prices of META and 5 methods to calculate VaR, the results of VaR (%) are as following:

	VaR
Normal Distribution	-0.0382
EWMA	-0.0319
MLE T Distribution	-0.0324
AR(1)	-0.0380
Historical Simulation	-0.0288

- (1) The Normal Distribution method shows a VaR of approximately -0.0382, indicating a potential daily loss of over 3.82% in META.
- (2) The EWMA method results in a VaR of about -0.0319, suggesting a slightly lower potential loss than the normal distribution.
- (3) The MLE T Distribution provides a VaR of around -0.0324, reflecting similar risks to the EWMA method due to its consideration of fat tails in returns.
- (4) The AR(1) Model yields a VaR of roughly -0.0380, close to the normal distribution's value, indicating that it captures similar risk levels.
- (5) The Historical Simulation method shows a VaR of about -0.0288, representing the lowest potential loss based on past data.

Problem 3

I chose Delta Normal, Monte Carlo, and Historical Simulation models to compare different approaches for calculating VaR. Delta Normal assumes normally distributed returns, which simplifies the calculation. Monte Carlo uses simulations to account for more complex risks, while Historical Simulation relies on actual past returns, which can better capture extreme events.

Using Delta Normal, Monte Carlo, and Historical methods to calculate the VaR for portfolios:

	A	В	С	ALL
Delta Normal	20037.39	11829.61	27219.96	54418.03
Monte Carlo	17311.31	10740.21	24870.65	49413.94
Historic	16884.39	8976.78	20198.81	46410.02

During the process, I found that some stocks in portfolio C couldn't be matched with corresponding values in DailyPrices.csv. So, when calculating the portfolio VaR, I removed the missing values. The specific stock names are as follows:

I found that the VaR values calculated using the Delta Normal model were the highest, followed by Monte Carlo, with the Historical model giving the lowest values. I think this difference is due to the assumptions of each model: Delta Normal assumes normally distributed returns, leading to higher risk estimates, while Monte Carlo simulates a range of outcomes based on historical data, and Historical Simulation uses actual past returns, which may have fewer extreme events and thus lower risk estimates.