CAŁKI

nieoznaczona

oznaczona

Rodzaje całek:

\mathcal{J}_a				
	$ a <\infty$, $ b <\infty$	$ a < \infty, b = \infty$	$a=-\infty$, $ b <\infty$	$a=-\infty$, $b=\infty$
	właściwa	niewłaściwa	niewłaściwa	niewłaściwa

Podstawienie trygonometryczne uniwersalne:

$$t = tg\frac{x}{2}$$

$$dx = \frac{2}{1+t^2} dt$$

$$sinx = \frac{2t}{1+t^2}$$

$$cosx = \frac{1-t^2}{1+t^2}$$

Całka oznaczona w zakresie $\langle a, b \rangle$, gdzie a > b:

$$\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx$$
 Średnia wartość funkcji $f(x)$ w zakresie $\langle a,b \rangle$:

Całka oznaczona funkcji f(x):

w zakresie $\langle a, b \rangle$

w zakresie $\langle a, \infty \rangle$

 $\acute{S}r = \frac{1}{h - a} \int_{a}^{b} f(x) dx$

$$\lim_{h \to \infty} \int_a^b f(x) \, dx = \lim_{h \to \infty} F(b) - F(a)$$

 $\int_a^b f(x) \, dx = F(b) - F(a)$

w zakresie $\langle -\infty, \infty \rangle$

$$\int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$
$$c \in \mathbb{R}, \ |c| \neq \infty$$

 \boldsymbol{c}^{b}

Pole między wykresem funkcji f(x) a osią OX w zakresie $\langle a,b\rangle$:

$$P = \int_{a}^{b} f(x) \, dx$$

 $L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx$

Długość krzywej funkcji f(x) w zakresie $\langle a, b \rangle$:

Pole między wykresami funkcji
$$f(x)$$
 i $g(x)$, gdzie $f(x) > g(x)$, w zakresie $\langle a,b \rangle$:

 $P = \int_a^b (f(x) - g(x)) dx$

$$J_a$$
 J_a J_a

w przypadku, gdy wyresy funkcji przecinają się w punkcie $c \in \langle a, b \rangle$, zakres należy rozbić na dwa zakresy $\langle a, c \rangle$ i $\langle c, b \rangle$, dla których policzyć całkę dostosowując kolejność odejmowania funkcji.

 $|A^{-1}| = |A|^{-1}$

MACIERZE I WEKTORY

Wyznacznik wielokrotności macierzy:

Wyznacznik macierzy odwrotnej:

 $n \cdot |A| = |A| \cdot n^{rank(A)}$

$$\vec{a} \times \vec{b} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}, \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix}, \begin{vmatrix} x_1 & y_1 \\ x_2 & z_2 \end{vmatrix}, \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} \end{bmatrix}$$

lloczyn skalarny:

Iloczyn wektorowy:

$$\vec{a} \circ \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$$

wektory są równoległe, gdy:

Własności wektorów:

$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$$

 $\vec{a} = k \cdot \vec{b}$

wektory są prostopadłe, gdy:

 $\vec{a} \circ \vec{b} = 0$

Wyrażenie f(x,y) dx + g(x,y) dy jest różniczką zupełną wtedy i tylko wtedy gdy:

FUNKCJE WIELU ZMIENNYCH, POCHODNE CZĄSTKOWE

 $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial x}$

jeżeli $\lim_{t\to 0} \frac{f(x_0+at,y_0+bt)-f(x_0,y_0)}{ct}=n$

to pochodna kierunkowa jest równa
$$\frac{n}{\sqrt{a^2+b^2}} \cdot c$$