Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha}$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} = 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \partial_{\delta}) == 0$	

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\tau_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{lpha}$	$\tau_{1}^{\#1}\alpha$	$ au_1^{\#2}$
$\sigma_1^{\#1} + ^{lphaeta}$	0		$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_1^{#2} + \alpha^{\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#_1} +^{lpha}$	0	0	0	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{1}{\sqrt{2} \; (k^2 + 2 \; k^4) \; (2 \; r_3 + r_5)}$	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\sigma_{1}^{\#2} + ^{lpha}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_1^{\#1} +^\alpha$	0	0	0	0	0	0	0
$\tau_1^{\#2} + \alpha$	0	0	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$

$\omega_{2}^{#1} = \alpha \beta \chi$	0 2	$\sigma_{0}^{\#1}$	0	0	0 4	t ₁	
$\sigma_{2^{+}\alpha\beta}^{\#1} \qquad \tau_{2^{+}\alpha\beta}^{\#1} \qquad \sigma_{2^{-}\alpha\beta\chi}^{\#1} \qquad \tau_{2^{+}\alpha\beta}^{\#2} \qquad \sigma_{2^{-}\alpha\beta\chi}^{\#1} \qquad \sigma_{2^{+}\alpha\beta\chi}^{\#2} \qquad \sigma_{2^{+}\alpha\gamma\chi}^{\#2} \qquad \sigma_{2^{+}\alpha\chi}^{\#2} \qquad \sigma_{2^{+}\alpha\chi}^{\#2} \qquad \sigma_{2^{+}\alpha\chi}^{\#2} \qquad \sigma_{2^{+}\alpha\chi}^{\#2} \qquad \sigma_{2^{+}\alpha\chi}$	<i>t</i> ₁	$\tau_0^{\#2}$	0	0 (0 0		
$\sigma_{2^{+}\alpha\beta}^{\#1} \qquad \tau_{2^{+}\alpha\beta}^{\#1} \qquad \sigma_{2^{-}\alpha\beta\chi}^{\#1} \qquad \vdots \qquad $	$k^2 t_1$	$\tau_0^{\#1}$	0	0 (0 0		r ₃ 0
# N 1 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2	$\frac{\sqrt{2}}{\sqrt{2}}$	$\sigma_{0}^{\#1}$	$\frac{1}{6 k^2 r_3}$		0 0	ω_{i+1}^{*1}	0
${}^{\prime}2^{+}$ $(1+2k^2)^2t_1$ $(1+2k^2)^2t_1$ $(1+2k^2)^2t_1$	$f_2^{#1} + ^{\alpha\beta}$ $\omega_2^{#1} + ^{\alpha\beta\chi}$	·	$\sigma_{0}^{\#1}\dagger$	$\tau_{0}^{\#1} +$	$\tau_0^{\#}$ † † $\sigma_0^{\#}$ 1 †	-	$\omega_{0}^{\#1}$ \dagger
$\sigma_{2^{-}}^{\#1} + \alpha\beta\chi \qquad \qquad 0 \qquad \qquad \frac{2}{t_1} \qquad \qquad \overset{\square+}{3}$	$f_{2}^{#1}$						
		$f_{1^-}^{\#2} \alpha$	0	0	0	<i>ikt</i> 1 3	<i>i</i> √2 kt ₁
$f^{\alpha i}$		α					3 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$f_{1}^{\#1}$	0	0	0	0	0
$f^{\alpha}_{\alpha} - \ddot{\beta} = 6 \partial_{\alpha}$		$\omega_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	3
4 $\omega_{,\theta}^{\theta}$ $\partial' f^{\alpha}_{\alpha} - 2 \partial_{,f}$ 1 $f^{\alpha}_{\alpha} \partial_{\theta} f_{,\theta}^{\theta} - 6 \partial_{\alpha} f_{,\theta}^{\theta}$ 2 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$ 2 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$ 3 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$ 4 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$ 5 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$ 6 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$ 7 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$ 8 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$ 9 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$ 9 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$ 1 $f^{\alpha}_{\alpha} \partial_{\theta} f_{\alpha}^{\theta} \partial_{\theta} f_{\alpha}^{\theta}$		\mathcal{E}_{1}				3 8	41
$u' + 4 \omega'_{, \theta} \partial' f^{\alpha}_{\alpha} - 2 \partial_{ij}$ $4 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f'_{, \theta} - 6 \partial_{\alpha} f_{, \theta}$ $\theta f^{\alpha i} + 3 \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} +$ $\omega^{\alpha i\theta}_{\alpha} + 2 \partial^{\theta} f^{\alpha i}) -$ $\omega^{\alpha \beta}_{\alpha} + \partial_{\alpha} \omega^{\alpha \beta i} \partial_{\theta} \omega^{\beta}_{\beta} -$ $u^{\beta}_{\alpha} + \partial_{\alpha} \omega^{\alpha \beta i} \partial_{\theta} \omega^{\beta}_{\beta} -$ $u^{\beta}_{\alpha} \partial^{\theta} \omega^{\alpha \beta} +$ $u^{\beta}_{\alpha} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\alpha \beta} +$ $u^{\beta}_{\alpha} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\beta} +$ $u^{\beta}_{\alpha} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\beta} +$ $u^{\beta}_{\alpha} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\beta} +$ $u^{\beta}_{\alpha} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\beta} \partial^{\beta} \omega^{\beta} $						$+\frac{t_1}{6}$	
$\begin{array}{c} \partial_{i}f^{\alpha i} \\ \partial_{j}f^{\alpha i} \\ \alpha \theta + 2 \\ \alpha \theta \theta \\ \alpha \theta \theta \theta \partial^{i}u \\ \alpha \omega^{\alpha \beta i} \\ \alpha \omega^{\alpha \beta i} \\ \beta \theta \omega^{\alpha i} \\ \end{array}$		$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	3 + 1/5)	t ₁ 3 √2
ction $\omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + \\ \partial_i f^{\alpha_i} - 2 \partial_i f^{\alpha_i} + 4 \omega_i^{\theta} \partial^i f^{\alpha_i} - 2 \partial_i f^{\theta} \\ \partial^i f^{\alpha_i} - 2 \partial_i f^{\alpha_i} \partial_{\theta} f^{\alpha} + 4 \partial^i f^{\alpha} \partial_{\theta} f^{\alpha} + 6 \partial_{\theta} f^{\alpha_i} + 3 \partial_{\theta} f^{\alpha} $		3				$k^2 (2 r_3 + r_5) +$	
$ \begin{vmatrix} \theta & -4 \\ -2 & 0, f \end{vmatrix} $ $ \begin{vmatrix} \theta & 4 \\ 0 & \alpha \end{vmatrix} $ $ \begin{vmatrix} \alpha & \beta & \mu \\ \alpha & 0 & \mu \end{vmatrix} $ $ \begin{vmatrix} \alpha & 0 & \mu \\ \alpha & 0 & \mu \end{vmatrix} $ $ \begin{vmatrix} \alpha & 0 & \mu \\ \alpha & 0 & \mu \end{vmatrix} $ $ \begin{vmatrix} \alpha & 0 & \mu \\ \alpha & 0 & \mu \end{vmatrix} $ $ \begin{vmatrix} \alpha & 0 & \mu \\ \alpha & 0 & \mu \end{vmatrix} $ $ \begin{vmatrix} \alpha & 0 & \mu \\ \alpha & 0 & \mu \end{vmatrix} $ $ \begin{vmatrix} \alpha & 0 & \mu \\ \alpha & 0 & \mu \end{vmatrix} $		$^{:1}_{+\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$a \beta x + a \beta $		$\omega_{1}^{\#2}_{+lphaeta}f_{1}^{\#1}_{+lphaeta}$					
λ		$\omega_1^{\#2}$	$-\frac{t_1}{\sqrt{2}}$		0	0	0
actio $\frac{1}{6}t_1$		β	$(5) - \frac{t_1}{2}$				
free) $\tau^{\alpha\beta}$		$\omega_{1}^{\#1}{}_{\alpha\beta}$	13+1	- 1	$\frac{i k t_1}{\sqrt{2}}$	0	0
$\iint (f^c)$			k^2 (2				
Quadratic (free) action $S == \iiint (f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + \frac{1}{6} t_1 (2 \ \omega^{\alpha\prime} \ \sigma^{\beta}) $ $= 3 \partial_{\alpha} f_{\beta\prime} $ $= 3 \partial_{\beta} f_{\beta\prime} $ $= 2 \partial_{\gamma} \omega^{\alpha\beta} $			$\omega_{1+}^{\#1} +^{\alpha\beta} k^2 (2 r_3 + r_5) - \frac{t_1}{2}$	$\omega_1^{#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{-}}^{\#_{1}} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$
			$\varepsilon_{_{1}}$	$\varepsilon_{_1}$	f_1^4	3	3

0

0

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_5 < -2 r_3 \&\& t_1 < 0 || t_1 > 0$$