Air Cargo Planning Search Heuristic Analysis

The results for both uninformed and heuristic based search for the 3 air cargo problem are tabulated below:

Search Type	Expansions	Goal Tests	New Nodes	Plan Length	Time(s)	Optimal
Breadth First Search	43	56	180	6	0.096	Yes
Depth First Graph	12	13	48	12	0.0081	No
Search						
Uniform Cost Search	55	57	224	6	0.0396	Yes
A* Search h_1	55	57	224	6	0.0458	Yes
A* Search Ignore	41	43	170	6	0.0535	Yes
Pre-conditions						
A* Search	11	13	50	6	1.569	Yes
h_pg_levelsum						

Air Cargo Problem 1

Search Type	Expansions	Goal Tests	New Nodes	Plan Length	Time(s)	Optimal
Breadth First Search	3401	4672	31049	9	15.396	Yes
Depth First Graph	350	351	3142	346	1.683	No
Search						
Uniform Cost Search	4761	4763	43206	9	16.802	Yes
A* Search h_1	4761	4763	43206	9	11.582	Yes
A* Search Ignore	1450	1452	13303	9	4.309	Yes
Pre-conditions						
A* Search	86	88	841	9	382.488	Yes
h_pg_levelsum						

Air Cargo Problem 2

Search Type	Expansions	Goal Tests	New Nodes	Plan Length	Time(s)	Optimal
Breadth First Search	14491	17947	128184	12	121.496	Yes
Depth First Graph	1948	1949	16253	1878	27.782	No
Search						
Uniform Cost Search	17783	17785	155920	12	54.524	Yes
A* Search h_1	17783	17785	155920	12	64.24	Yes
A* Search Ignore	5003	5005	44586	12	19.506	Yes
Pre-conditions						
A* Search	311	313	2863	12	1806.99	Yes
h_pg_levelsum						

Air Cargo Problem 3

Search Strategies Analysis

All three uninformed search strategies find the solution to the three problems. Only Breadth first search and Uniform Cost Search find an optimal solution. Depth first graph search is the fastest and takes the

least memory. However, depth first graph search explores a node without considering if it is better or not and hence gives a non-optimal solution [1].

All 3 heuristic based searches provide an optimal solution but A* search with level sum fails to get the solution within the 10 min time limit for Problem 3. Among the three, A* search with ignore pre conditions is the fastest while A*search with level sum takes the least memory.

Non heuristic based searches performed better in Problems 1 and 2 while heuristic based search performed better in Problem 3 indicating that heuristic based searches are better for complex problems. As the problem complexity grows more information is required for better performance.

Overall, A* search with level sum was able to minimize the number of nodes to be examined but at a heavy calculation cost. A* search with h1 finds an optimal solution within time but examines a very large number of nodes. A* search with ignore preconditions is a better heuristic as it takes both less time and memory [1]. Breath first search strategy can solve problem both optimally and fast and hence it can be used to start analysis when solving planning search problems.

As discussed in the video lectures, it is sometimes better to use a cheap to calculate heuristic over an expensive one (Artificial Intelligence Nanodegree, Build a Game-Playing Agent).

Optimal Sequence of Actions

The following table shows the optimal sequence of actions for the three problems:

Air Cargo Problem 1	Load(C2, P2, JFK)			
All cargo riobicin i	Load(C1, P1, SFO)			
	Fly(P2, JFK, SFO)			
	Unload(C2, P2, SFO)			
	Fly(P1, SFO, JFK)			
	Unload(C1, P1, JFK)			
Air Cargo Problem 2	Load(C3, P3, ATL)			
	Load(C2, P2, JFK)			
	Load(C1, P1, SFO)			
	Fly(P3, ATL, SFO)			
	Unload(C3, P3, SFO)			
	Fly(P2, JFK, SFO)			
	Unload(C2, P2, SFO)			
	Fly(P1, SFO, JFK)			
	Unload(C1, P1, JFK)			
Air Cargo Problem 3	Load(C2, P2, JFK)			
All Cargo Frobletti 3				
	Fly(P2, JFK, ORD)			
	Load(C4, P2, ORD)			
	Fly(P2, ORD, SFO)			
	Unload(C4, P2, SFO)			
	Load(C1, P1, SFO)			
	Fly(P1, SFO, ATL)			
	Load(C3, P1, ATL)			
	Fly(P1, ATL, JFK)			
	Unload(C3, P1, JFK)			

Unload(C2, P2, SFO)
Unload(C1, P1, JFK)

References:

1. Stuart J. Russell, Peter Norvig (2010), Artificial Intelligence: A Modern Approach (3rd Edition).