GRASS 开发者手册

1 make 选项说明

1.1 Synopsis:

make [-jn] [DEBUG=d] [GUI2D=g] [PARALLEL=p] [clean] [distclean]

- 1. -jn
 - -j 使编译过程并行化; n 指定了并行编译的进程数. 这是 make 程序自带的选项
- 2. GUI2D=g
 - q=[0|1]. GUI2D=0 为默认值,编译生成的是 3 维 GUI; GUI2D=1 则会生成 2 维 GUI.
- 3. PARALLEL=p
 - *p*=[0|1]. PARALLEL=0 为默认值, 编译生成的程序只能用单线程方式运行; PARALLEL=1 将在编译过程中加入 OpenMP 并行库, 编译生成的程序 (部分代码) 以多线程方式运行.
- 4. clean
 - 清除编译过程中产生的所有中间文件
- 5. distclean
 - 清除编译过程中产生的所有中间文件以及最终生成的程序

2 GRASS 运行语法

编译生成的程序名称与当前编译的平台和编译的选项相关,具有如下形式:

grass-GUI_TYPE-PLATFORM-release_type-thread_type

其中

- **GUI_TYPE**=[GUI2D|GUI3D]
- **PLATFORM**=[Linux|CYGWIN|MINGW32]
- release_type=[debug|release]
- *thread_type*=[Serial|Parallel]

例 1, 在 cygwin 中用下面的命令编译 GRASS:

\$ make -j2 GUI2D=1

生成的程序名为 grass-GUI2D-CYGWIN-release-Serial.

例 2, 在 Linux 下 (Redhat, SuSe, 或 Ubuntu 等发行版本) 用下面的命令编译 GRASS:

\$ make -j2 DEBUG=1 PARALLEL=1

2010-02-03, 李骥 Page 1

生成的程序名为 grass-GUI3D-Linux-debug-Parallel.

为叙述方便,以后均用 grass-GUI2D 和 grass-GUI3D 来表示各种编译版本的 GRASS.

2.1 带 2 维 GUI 的 GRASS

带 2 维 GUI 的 GRASS 只接收一个参数 (网表文件名), 运行方式和 HSPICE 类似,

\$ grass-GUI2D spice_netlist

其他操作都在 GTK+界面上完成.

2.2 带 3 维 GUI 的 GRASS

带 3 维 GUI 的 GRASS 运行方式如下:

\$ grass-GUI3D spice_netlist -c configure_file

其中 configure_file 的格式比较复杂,下面是这类文件的一个模版:

Parameter1 alias1
Lower_bound1 Upper_bound1
Number_of_linear_samples1

Parameter2 alias2 Lower_bound2 Upper_bound2 Number_of_linear_samples2

Threshold_on_magnitude_of_tf_for_evaluating_phase_margin Threshold_on_magnitude_of_tf_for_evaluating_band_width

Start_freq End_freq Number_of_logarithmic_samples

Standard_variation_of_2D_normal_distribution_refering_to_parameter1 Standard_variation_of_2D_normal_distribution_refering_to_parameter2 corrcoef

例如, 网表文件中的两个器件 C1 和 R1 是待分析参数, configure file 的内容如下:

C1 C

1e-12 1e-10

60

R1 R

20 2000

70

2010-02-03, 李骥 Page 2

0

-3

1 1e7

200

3.67e-12

73.3

0.0

这个设置文件对3维符号仿真进行了如下设置(设置文件中的关键参数均用黑体标出):

- 3 维曲面上的两个变量轴 "C" 和 "R" 分别代表器件 C1 和 R1 的取值.
- C1 的取值范围是[1e-12, 1e-10], 单位 F.
- C1 在取值范围内线性 (等距) 取 60 点,用于绘制空间曲面.
- R1 的取值范围是[20, 2000], 单位 Ω.
- R1 在取值范围内线性 (等距) 取 70 点, 用于绘制空间曲面.
- Phase Margin (PM, 单位 Degree) 按如下方式计算: 找到使[$H(j2\pi f)$]=**0**dB 的最小频率 f_{PM} ,则 PM=180 - arg $H(j2\pi f_{PM})$.
- Band Width (BW, 单位 Hz) 按如下方式计算:
 找到使 | H(j2πf)|=-3dB 的最小频率 f_{BW}, 则 BW=f_{BW}.
- 各种频域指标的计算局限在[1, 1e7]频率范围内,单位 Hz.
- 在指定频率范围内按对数尺度 (log10) 采点, 采点数为 200.
- 寻找设计中心的过程中用到的 2 维正态分布的标准差分别为 $σ_{c1}$ =3.67 e^{-12} 和 $σ_{R1}$ =3.67 e^{-12} , 相 关系数 ρ=0.0, 两个均值由用户从等高线 GUI 窗口(contour window)中选择.

3 维窗口中有很多热键可以用于控制约束曲线等辅助的显示和保存. 由于以后用 QT4 改写代码后这些热键可能会大面积调整, 这里就不再一一描述. 如果想了解热键的实现方式, 请参考源文件 src/opengl gui/callback.cpp 中的两个函数: keyboard surface()和 keyboard contour().

2010-02-03, 李骥 Page 3