Ayush Agrawal

■ ayushagrawal26@ucla.edu | 🔰 +1 (424) 430-5322 | 🚱 ayushagrawal149.github.io | in https://www.linkedin.com/in/ayush145agrawal/

EDUCATION _

University of California, Los Angeles

California, USA

Master of Science in Mechanical Engineering, specializing in Robotics

Sept 2024 - March 2026

• Recipient of the prestigious Narotam Sekhsaria Foundation PG Scholarship given to 15 students across India

2024

Indian Institute of Technology (IIT) Bombay

Mumbai, India

Bachelor of Technology in Mechanical Engineering with minors in Controls Engineering; GPA: 9.37/10.0 July 2017- June 2021 • Conferred with the MITACS Globalink Research Fellowship for conducting research at the University of Toronto

TECHNICAL SKILLS

C++ (Object Oriented Programming), Python, MATLAB, Maple, Git, Excel VBA **Programming**

Robotics ROS 1/2, Gazebo, Simulink, MATLAB - Robotics Toolbox, MATLAB - Control Systems Toolbox Software CarMaker 8.1, SolidWorks, ABAQUS, Agile Framework, Jira, Confluence, LaTex, 3D-Experience Relevant Coursework Linear and Nonlinear Control Systems, Computer Vision, Optimization, Dynamics of Machines

Professional Experience

Jaguar Land Rover TBSI Pvt. Ltd. | Motion Controls Engineer

Bangalore, India

Active Ride Functionality | Dept. of Chassis & Motion Controls Systems | Publication

August 2021 - August 2024

Active ride functionality is a vehicle ride enhancement algorithm designed to deliver superior comfort than JLR's adaptive dampers Spearheaded the model-based design of optimal controllers to reduce road-induced vibrations in Range Rover by 38.6%

- Tuned MPC to limit actuation power consumption to 0.08% of battery capacity for 30-minute-long WLTP test cycle
- Designed Kalman Filter for state-estimation of heave velocity, pitch, and roll angle signals with max RMS error = 0.11
- Responsible for maintaining the **Git repository** for the active ride functions, including **LOR**, **MPC**, and **H-infinity** algorithms
- Assessed the controller's performance in the presence of noise, delays, and 5% actuation bandwidth in Carmaker + Simulink

Torque Split for Efficiency (TSE) | Dept. of Powertrain Energy & Thermal Management Systems April 2023 - Sept 2023 TSE is an optimization algorithm for the most energy-efficient distribution of driver's torque demand between front and rear EDU

- Modified TSE for improved efficiency by integrating energy consumption maps for vanes, fans, & pumps in the cost function
- Designed the logic architecture diagram outlining the signal flow among EDUs, powertrain cooling and refrigeration circuits
- Reported **80Wh** energy saving using the updated algorithm by co-simulating 30min WLTP test cycle in GTSuite + Simulink

Crash Pulse Prediction | Dept. of Structural Integration

August 2021 - July 2022

A mathematical model for rapid assessment of vehicle crashworthiness in Full Wdith Rigid Barrier frontal crash test by NCAP

- Developed a physics engine to simulate vehicle crash kinematics with 92% accuracy in 4 minutes compared to 8-hour FEA
- Delivered the engine as a MATLAB application to save 20% workdays in CAD model development of Panthera's body-in-white
- · Utilized the app to estimate the crashworthiness of Lucid Air, BMW iX, Mercedes EQS to set the benchmark for JLR's EMA

AI & Robotics Technology Park | Robot Programming & Controls Intern | Publication Bangalore, India Formation control of differential-drive robot with input saturation and constraints on formation size May 2021 - August 2021

- Developed a novel path tracking controller ensuring 99% tracking accuracy and smooth saturation of robot's speed limits
- Extended the tracking controller as a scalable formation control framework for navigating goods inside a warehouse
- Verified the stability of control framework for a formation of n = 5 Turtle Bot 3 through simulations in ROS2/Gazebo
- Determined **constraints on the formation size** as a function of the path curvature (κ) to prevent instability while cornering

University of Toronto | Mitacs Globalink Research Intern | Report

Toronto, Canada

Seismic response of vertical post-tensioned connection for modular steel buildings (MSBs)

April 2020 - August 2020

- Modeled and simulated the novel vertical post-tensioned connection using Finite Element Analysis in ABAQUS for assessing the self-centering properties and 30% higher energy dissipation capabilities compared to welded steel structures
- Reported hysteresis and seismic capabilities of vertical post-tensioned connection with 91% accuracy relative to experiments
- Researched contact models and fracture criteria in ABAQUS to achieve 99.75% accuracy in the frictional dissipation model

PUBLICATIONS .

- · Agrawal, A., Negi, A., and Joshi, D., Exploring Capabilities of Hydraulic Actuators to Achieve Vehicle Ride Targets in Frequency Range beyond Their Operational Bandwidth, SAE Technical Paper 2024-26-0060, 2024. Link to Publication
- o A. Agrawal, M. Bharatheesha and S. Kolathaya, "Formation Control of Differential-Drive Robots with Input Saturation and Constraint on Formation Size," 2023 62nd IEEE Conference on Decision and Control (CDC), Singapore, pp. 8620-8627. Link