

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikati n 6:

D01D 5/092

(11) Internationale Veröffentlichungsnummer:

WO 99/67450

A1

(43) Internati nales Veröffentlichungsdatum:

29. Dezember 1999 (29.12.99)

(21) Internationales Aktenzeichen:

PCT/EP99/04225

(22) Internationales Anmeldedatum:

17. Juni 1999 (17.06.99)

(30) Prioritätsdaten:

198 27 518.8 198 29 046.2 22. Juni 1998 (22.06.98) 29. Juni 1998 (29.06.98) DE DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BARMAG AG [DE/DE]; Leverkuser Strasse 65, D-42897 Remscheid (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): NITSCHKE, Roland [DE/DE]; Tückingschulstrasse 23a, D-58135 Hagen (DE). MEISE, Hansjörg [DE/DE]; Lerchenweg 51, D-50829 Köln (DE). HUTTER, Hans-Gerhard [DE/DE]; Lohengrinstrasse 24, D-42859 Remscheid (DE). ENDERS, Ulrich [DE/DE]; Schwelmer Strasse 54, D-42897 Remscheid (DE). SENGE, Peter [DE/DE]; Aufenangerstrasse 6, D-44229 Dortmund (DE). SCHULZ, Detlev [DE/DE]; Höhweg 16, D-42477 Radevormwald (DE). WIEMER, Dieter [DE/DE]; Berufsschulstrasse 29, D-42929 Wermelskirchen (DE).

(74) Anwalt: KAHLHÖFER, Hermann; Bardehle, Pagenberg, Dost, Altenburg, Geissler, Isenbruck, Uerdinger Strasse 5, D-40474 Düsseldorf (DE).

(81) Bestimmungsstaaten: CN, IN, JP, KR, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: SPINNER FOR SPINNING A SYNTHETIC THREAD

(54) Bezeichnung: SPINNVORRICHTUNG ZUM SPINNEN EINES SYNTHETISCHEN FADENS

(57) Abstract

The invention relates to a spinner for spinning a synthetic thread. The thread is formed by grouping a plurality of filaments and by winding said filaments on a spool using a spooler mounted downstream from the spinner. An intake cylinder with a gas-permeable wall and a cooling tube are mounted underneath the spinneret. The cooling tube is connected to an airflow generator in such a way that an airflow is formed in the cooling tube in the direction of thread travel. The airflow is formed by a volume of air that flows to the cooling tube through the intake cylinder. According to the invention, the intake cylinder is subdivided into several zones in the direction of thread travel, each of which has a different gas permeability for controlling the volume of air entering into the intake cylinder. It is thereby possible to advantageously influence pre-cooling and the formation of the airflow.

(57) Zusammenfassung

Die Erfindung betrifft eine Spinnvorrichtung zum Spinnen eines synthetischen Fadens. Der Faden wird hierbei durch Zusammenfassen einer Vielzahl von Filamenten gebildet und mittels einer der Spinnvorrichtung nachgeschalteten Aufspulvorrichtung zu einer Spule aufgewickelt. Unterhalb der Spinndüse sind ein Einlaßzylinder mit gasdurchlässiger Wand und ein Kühlrohr angeordnet. Das Kühlrohr ist mit einem Luftstromerzeuger derart verbunden, daß sich ein Luftstrom im Kühlrohr in Fadenlaufrichtung ausbildet. Hierbei wird der Luftstrom durch eine Luftmenge gebildet, die über den Einlaßzylinder zum Kühlrohr gelangt. Erfindungsgemäss ist der Einlasszylinder in Fadenlaufrichtung in mehrere Zonen mit jeweils unterschiedlicher Gasdurchlässigkeit zur Steuerung der in den Einlaßzylinder eintretenden Luftmenge unterteilt. Damit läßt sich ine Vorkühlung und die Ausbildung der Luftströmung vorteilhaft beeinflussen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

ļ							•
AL	Albanien	ES	Spanien	LS	Lesotho	SI	Słowenien
ÀM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑÜ	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	T.J	Tadschikistan
BE	Belgien	GN	Guinea ^	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	ÜA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Victnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	zw	Zimbabwe
CM	Kamerun		Котеа	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		•
cz	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	u	Liechtenstein	SD	Sudan		
, DK	Dänemark	LK	Sri Lanka	SE	Schweden		

Singapur

Liberia

EE

Estland

WO 99/67450 PCT/EP99/04225

Spinnvorrichtung zum Spinnen eines synthetischen Fadens

Die Erfindung betrifft eine Spinnvorrichtung zum Spinnen eines synthetischen Fadens gemäß dem Oberbegriff des Anspruchs 1 und des Oberbegriffs des Anspruchs 17, ein Verfahren zum Spinnen eines synthetischen Fadens gemäß dem Oberbegriff des Anspruchs 25 und eine Verwendung einer Spinnvorrichtung gemäß dem Oberbegriff des Anspruchs 26.

Diese Spinnvorrichtung und das Verfahren sind bekannt und in der WO 95/15409 beschrieben.

Hierbei werden die frisch extrudierten Filamente in ihrer Fortbewegung durch einen Luftstrom unterstützt. Damit wird erreicht, daß der Erstarrungspunkt der Filamente sich von der Spinndüse wegbewegt. Dies führt zu einer verzögerten Kristallisation, die sich günstig auf die physikalischen Eigenschaften des Fadens auswirkt. So konnte beispielsweise bei der Herstellung eines POY-Garns die Abzugsgeschwindigkeit und damit die Verstreckung erhöht werden, ohne daß sich für das Garn die für die Weiterverarbeitung erforderlichen Dehnungswerte verändern.

20

25

30

5

10

15

Die bekannte Spinnvorrichtung besteht aus einem Kühlrohr und einem Luftstromerzeuger, die unterhalb der Spinndüse angeordnet sind. Zwischen der Spinndüse und dem Kühlrohr ist ein Einlaßzylinder mit gasdurchlässiger Wandung angeordnet. Durch das Zusammenwirken des Einlaßzylinders und des Luftstromerzeugers wird eine Luftmenge innerhalb des Kühlschachtes eingeleitet und innerhalb des Kühlrohres zu einem beschleunigten Luftstrom in Fadenlaufrichtung geführt. Der Einlaßzylinder besteht aus einem perforierten, gasdurchlässigen Material. Dadurch ist die radial einströmende Luftmenge proportional der anliegenden Druckdifferenz, die sich mit zunehmender Fadengeschwindigkeit der Filamente erhöht. Somit wird mit zunehmendem

15

20

Abstand von der Spinndüse die in den Einlaßzylinder eintretende Luftmenge größer.

Es hat sich jedoch nun gezeigt, daß neben der Unterstützung der Fortbewegung die Filamente in ihren Randschichten gleichmäßig verfestigt sein müssen. Beim Durchlaufen des Einlaßzylinders werden die Filamente derart vorgekühlt, daß sich die Randschicht vor Einlauf in das Kühlrohr verfestigt hat. Im Kern sind die Filamente bei Eintritt in das Kühlrohr noch schmelzeflüssig, so daß die endgültige Erstarrung erst im Kühlrohr erfolgt. Daher ist auch eine gleichmäßige Vorkühlung aller Filamente erforderlich. Desweiteren muß erreicht werden, daß über den gesamten Querschnitt des Einlaßzylinders eine gleichmäßige Luftmenge vorhanden ist, damit jedes einzelne Filament im Kühlrohr gleichmäßig in seiner Fortbewegung unterstützt wird.

Bei der Herstellung eines Fadens wird die Qualität des Fadens durch das Zusammenwirken der Filamenteigenschaften bestimmt. Daher ist bekannt, daß zur Herstellung eines hochwertigen Garnes jedes Filament innerhalb eines Filamentbündels eine gleiche Behandlung erfahren muß. Bei dem bekannten Verfahren und der bekannten Vorrichtung wird bewußt der Erstarrungspunkt von der Spinndüse wegbewegt, so daß erst nach Durchlauf einer Vorkühlzone die Filamente in der durch das Kühlrohr gebildete Kühlzone erstarren. Damit durchlaufen die Filamente eine relativ große Strecke, in welcher sie unterschiedlichen Luftströmungen ausgesetzt sind.

Aus der US 5,034,182 ist eine Spinnvorrichtung bekannt, bei welcher der Einlaßzylinder in einer Druckkammer angeordnet ist. Der Einlaßzylinder weist eine siebförmige Wand auf, so daß aufgrund des außen am Einlaßzylinder vorherrschenden Überdrucks eine größere Druckdifferenz und damit eine größere einströmende Luftmenge erreicht wird. Das führt jedoch zu dem Problem, daß die Filamente innerhalb der Einlaufzone bereits einer erheblichen Kühlwirkung ausgesetzt sind.

Demgemäß ist es Aufgabe der Erfindung, eine Spinnvorrichtung der eingangs genannten Art derart weiterzubilden, daß eine auf die gleichmäßige Vorkühlung der Filamente abgestimmte Luftmenge und eine für die Unterstützung der Filamentbewegung erforderliche Luftmenge bereitgestellt werden kann.

5

Ein weiteres Ziel der Erfindung ist es, das eingangs genannte Verfahren und die eingangs genannte Spinnvorrichtung derart weiterzubilden, daß alle Filamente des Filamentbündels bis zur Erstarrung eine im wesentlichen gleichmäßige Behandlung erhalten.

10

Diese Aufgabe wird erfindungsgemäß durch eine Spinnvorrichtung mit den Merkmalen des Anspruchs 1 und einer Spinnvorrichtung mit den Merkmalen des Anspruchs 17, durch ein Verfahren mit den Merkmalen des Anspruchs 25 sowie durch die Verwendung einer Spinnvorrichtung nach Anspruch 26 gelöst.

15

Eine Lösung der Aufgabe ist erfindungsgemäß dadurch gegeben, daß der Einlaßzylinder in Fadenlaufrichtung in mehrere Zonen mit jeweils unterschiedlicher Gasdurchlässigkeit zur Steuerung der in den Einlaßzylinder eintretenden Luftmenge unterteilt ist.

20

Die Erfindung wurde auch nicht durch die bekannte Spinnvorrichtung gemäß EP 0 580 977 oder die bekannte Spinnvorrichtung gemäß DE 195 35 143 nahegelegt. Bei den bekannten Spinnvorrichtungen ist der Einlaßzylinder unterhalb der Spinndüse mit in Fadenlaufrichtung sich verändernder Luftdurchlässigkeit ausgeführt, um eine Abkühlung der Filamente in Abhängigkeit von der Fadenlaufgeschwindigkeit zu erhalten. Die bekannten Spinnvorrichtungen bezwecken eine vollkommene Abkühlung der Filamente innerhalb des Einlaßzylinders und sind somit völlig ungeeignet, um eine die Filamentbewegung unterstützende Luftströmung bei nur vorgekühlten Filamenten zu erzeugen.

30

Die Erfindung besitzt den Vorteil, daß unabhängig von der Filamentgeschwindigkeit und unabhängig vom Differenzdruck zwischen dem Spinnschacht und der Umgebung die in den Spinnschacht einströmende Lustmenge beeinflußt werden kann. Dadurch ist es möglich, gezielt auf die Eigenschaften der Filamente Einfluß zu nehmen, die aus unterschiedlichen Zonen der Spinndüse stammen. Die Einflußnahme kann zum einen darin liegen, daß alle Filamente möglichst unter gleichen Abkühlbedingungen eine Vorkühlung zur Verfestigung der Randzonen erhalten. Desweiteren läßt sich das Einlaufen der Filamente in das Kühlrohr sowie die Ausbildung der Luftströmung im Kühlrohr durch insbesondere die im unteren Bereich des Einlaufzylinders eintretende Luftmenge beeinflussen. Die durch die Wandung des Einlaßzylinders eintretende Luftmenge ist hierbei proportional abhängig von der Gasdurchlässigkeit bzw. der Porösität der Wandung. Bei großer Gasdurchlässigkeit wird dementsprechend eine bei ansonsten konstanten Bedingungen größere Luftmenge pro Zeiteinheit in den Spinnschacht eingeleitet. Im umgekehrten Fall tritt also bei kleinerer Gasdurchlässigkeit der Wandung eine in Relation geringere Luftmenge in den Spinnschacht ein.

Die besonders vorteilhafte Weiterbildung der Spinnvorrichtung gemäß Anspruch 2 besitzt den Vorteil, daß eine relativ große Luftmenge zur Kühlung der Filamente zur Verfügung steht. Ein weiterer Vorteil liegt darin, daß sich eine im wesentlichen gleichmäßige Luftmengenverteilung innerhalb des Spinnschachtes einstellt. Da im oberen Bereich die Filamentgeschwindigkeit gering ist und zudem die Filamente aufgrund des geringen Abstandes zu der Spinndüse relativ weit voneinander beabstandet, sind, kann in der oberen Zone des Einlaufzylinders die wesentlichen ungehindert über den Luftmenge sich im Spinnschachtquerschnitt verteilen. Damit wird erreicht, daß innerhalb des Filamentbündels sich eine gleichmäßige Luftströmung im Kühlrohr ausbilden kann.

10

15

20

Die Ausbildung der Erfindung gemäß Anspruch 3 ist insbesondere geeignet, um die Filamente in einer relativ schwachen Vorkühlung zu behandeln. Dadurch ergibt sich der Vorteil einer besonders schonenden Abkühlung, was eine weitere Verbesserung der Spinnsicherheit bedeutet. Unter der Spinnsicherheit wird hierbei die Quantität der Filamentbrüche verstanden. In der zum Kühlrohr gewandten unteren Zone wird jedoch eine relativ große Luftmenge in den Spinnschacht eingeleitet, die das Einlaufen des Filamentbündels in das Kühlrohr erleichtert. Damit wird vorteilhaft ein Anschlagen der Filamente an die Rohrwandung im Bereich des engsten Querschnitts verhindert.

10

15

20

25

30

5

Die Gasdurchlässigkeit der oberen Zone läßt sich hierbei jedoch derart verringern, daß die obere Zone gasundurchlässig wird. Dadurch wird eine Ruhezone unmittelbar unterhalb der Spinndüse ausgebildet, die ein stabiles Ausspinnen der Filamente gewährleistet und damit die Ausbildung einer gleichmäßigen Filamentstruktur begünstigt.

Die besonders vorteilhafte Weiterbildung der Spinnvorrichtung nach Anspruch 5 besitzt den Vorteil, daß sowohl eine gleichmäßige Luftmengenverteilung innerhalb des Spinnschachtes und somit auch eine gleichmäßige Vorkühlung der Filamente erreicht wird und zum andern das Einlaufen der Filamente in das Kühlrohr begünstigt. Da im mittleren Bereich des Einlaßzylinders relativ wenig Luft in den Spinnschacht eintritt, kann sich bereits eine in Fadenlaufrichtung ausgerichtete Luftströmung aufgrund der Filamentgeschwindigkeit ausbilden. Durch die unmittelbar vor Eintritt in das Kühlrohr zugeführte Luftmenge bildet sich somit ein an jedem Filament im wesentlichen gleichmäßig angreifender Luftstrom aus.

Da mit zunehmendem Abstand von der Spinndüse die Filamentgeschwindigkeit zunimmt und gleichzeitig der Abstand sich zwischen den Einzelfilamenten verringert, ist bei einer besonders vorteilhaften Ausbildung der Erfindung die Gasdurchlässigkeit des Einlaßzylinders innerhalb einer Zone in Fadenlaufrichtung gleich. Damit ist die in den Spinnschacht eintretende Lustmenge innerhalb der Zone abhängig von der Filamentgeschwindigkeit. Das heißt, bei höherer Fadengeschwindigkeit wird mehr Lust dem Spinnschacht zugeführt.

Die Ausbildung der Erfindung gemäß Anspruch 7 ermöglicht dagegen über der Länge des Einlaßzylinders ein Strömungsprofil zu erzeugen, welches keine stufenförmigen Änderungen der Luftmengenzufuhr enthält. Desweiteren läßt sich dadurch erreichen, daß die in den Spinnschacht eintretende Luftmenge unabhängig von der Fadengeschwindigkeit im wesentlichen über die Länge der Zone gleichgehalten werden kann.

Die Wandung des Einlaßzylinders läßt sich aus jedem beliebigen porösem Material herstellen. Insbesondere ist die Ausbildung gemäß Anspruch 8 von Vorteil. Hierbei kann die Gasdurchlässigkeit bzw. der Luftwiderstand innerhalb der Wandung sehr präzise vorgegeben werden. Die Gasdurchlässigkeit ist in diesem Fall über die Anzahl der Einlaßöffnungen der Lochungen und über den Durchmesser der Einlaßöffnungen der Lochungen definiert.

Die Ausführung der Spinnvorrichtung nach Anspruch 8 ist besonders geeignet, einen die Filamentbewegung unterstützenden Luftstrom zu erzeugen. Hierbei ist die Lochung zumindest einer Zone aus einer Vielzahl von Eintrittsöffnungen gebildet, die die Wandung des Einlaßzylinders schräg mit einer Neigung zur Fadenlaufrichtung durchdringen, daß ein in Fadenlaufrichtung gerichteter Luftstrom in den Einlaßzylinder eintritt.

25

15

20

Bei der besonders vorteilhaften Weiterbildung gemäß Anspruch 10 wird erreicht, daß über den gesamten Umfang des Einlaßzylinders eine hohe gleichmäßige radiale Luftströmung erzeugt wird.

30 Um die Zonen innerhalb des Einlaßzylinders ausbilden zu können, ist die Ausführung der Erfindung gemäß Anspruch 11 besonders vorteilhaft. Hierbei

können Einzelzylinder mit gleicher oder mit jeweils unterschiedlicher Gasdurchlässigkeit übereinander gesetzt sein. Dies kann durch unterschiedliche Maschenweiten der Drahtgewebe oder durch unterschiedliche Mehrlagigkeit der Lagen erreicht werden.

5

Desweiteren bietet die Ausbildung gemäß Anspruch 12 die Möglichkeit, die Gasdurchlässigkeit mittels einer Papiermanschette zu verändern. Hierbei besteht der Vorteil, daß die Papiermanschette eine Luftfilterung vornimmt, so daß keine Verschmutzungen in den Spinnschacht gelangen können.

10

15

20

30

Um eine gleichmäßige Strömung im Einlaßzylinder zu erzeugen und um Turbulenzen bei Eintritt in den Einlaßzylinder zu vermeiden ist die Weiterbildung der Spinnvorrichtung gemäß Anspruch 13 besonders vorteilhaft. Dabei sind an der Wandung im Innern des Einlaßzylinder im Bereich zumindest einer Zone mehrere Leitbleche befestigt, die von der Wandung aus eine Neigung in Fadenlaufrichtung haben.

Bei einer besonders vorteilhaften Weiterbildung der Erfindung ist der Einlaßzylinder wärmeübertragend mit der Spinndüse verbunden. Somit läßt sich insbesondere die obere Zone des Einlaßzylinders erwärmen, was wiederum zur Erwärmung der durch die Wandung strömenden Luft führt, so daß eine schockartige Kühlwirkung an den Filamenten verhindert wird.

Bei den zuvor beschriebenen Ausführungen der Erfindung läßt sich der 25 Luftstromerzeuger durch ein Gebläse im Bereich des Einlaßzylinders, durch einen Injektor unmittelbar vor Eintritt in das Kühlrohr oder durch eine Saugeinrichtung, die auf der Auslaßseite des Kühlrohrs mit dem Kühlrohr verbunden ist, ausbilden. Die Saugeinrichtung besitzt den besonderen Vorteil, daß alle während des Spinnens austretenden Partikel wie beispielsweise Monomere aus dem Spinnschacht entfernt werden. Damit wird eine Verschmutzung Spinnschachtes vermieden.

10

15

20

25

30

Um einen Faden mit sehr hoher gleichmäßiger Qualität zu erzeugen, ist die Spinnvorrichtung gemäß Anspruch 16 besonders vorteilhaft. Durch die erfindungsgemäße Anordnung der Düsenbohrungen innnerhalb der Spinndüse ist eine weitere Lösung der zugrunde liegenden Aufgabe gegeben. Es wird erreicht, daß im Kühlrohr an jedem einzelnen Filament gleichgerichtete und gleichgroße in Fadenlaufrichtung weisende Luftströmungen angreifen.

Die Erfindung wurde auch nicht durch die bekannte Spinnvorrichtung und das bekannte Verfahren gemäß DE 25 39 840 nahegelegt. Bei dem bekannten Verfahren und der bekannten Spinnvorrichtung wird ein gleichmäßiger zur Behandlung der Filamente eingesetzter Luftstrom in Richtung, quer oder entgegen der Fadenlaufrichtung, geführt. Das trifft jedoch für die erfindungsgemäße Spinnvorrichtung nicht zu. Durch die im Kühlrohr der erfindungsgemäßen Vorrichtung vorherrschende Unterdruckatmosphäre wird ein Luftstrom in Fadenlaufrichtung mit einem vom Rohrquerschnitt abhängigen Strömungsprofil mit unterschiedlichen Strömungsgeschwindigkeiten erzeugt.

Die erfindungsgemäße Spinnvorrichtung gemäß Anspruch 17 besitzt den Vorteil, daß das im Rohrquerschnitt vorherrschende Strömungsprofil des Luftstroms zugrundegelegt wird, um die Düsenbohrungen in der Spinndüse anzuordnen. Da die Filamente innerhalb des Kühlrohres in ihrer Fortbewegung durch den an dem Filament angreifenden Luftstrom unterstützt werden, ist es von besonderer Bedeutung, daß über der gesamten Strecke eine im wesentlichen gleichmäßige Unterstützung der Fortbewegung bei jedem der Filamente eingehalten wird. Das sich im Rohr einstellende Strömungsprofil des Luftstroms ist von der Einlaufgeometrie des Kühlrohres sowie von der inneren Beschaffenheit des Kühlrohres bis zuletzt vom Durchmesser des Kühlrohres und der Strömungsart abhängig. Hierbei können innerhalb des Rohrquerschnittes sich unterschiedliche Strömungsgeschwindigkeiten ausbilden, die bei gleichmäßiger Verteilung der Filamente zwangsläufig zu innerhalb Rohrquerschnittes des einer

unterschiedlichen Behandlung führen würden. Somit bietet die Erfindung eine Möglichkeit, die Filamente innerhalb des Filamentbündels derart zu ordnen, daß jedes Filament mit im wesentlichen gleicher Strömungsgeschwindigkeit durch das Kühlrohr geführt wird.

5

10

Die besonders bevorzugte Weiterbildung der Spinnvorrichtung gemäß Anspruch 18 besitzt den Vorteil, daß das Filamentbündel sicher in das Kühlrohr eingeführt wird und daß sich eine weniger turbulente Luftströmung im Eingangsbereich des Kühlrohres ausbildet. Dabei wurde festgestellt, daß die Luftströmung innerhalb des Kühlrohres ein Strömungsprofil aufweist, daß tendenziell in der Mitte des Kühlrohres eine maximale Strömungsgeschwindigkeit aufweist. Durch die Ausbildung der Spinndüse gemäß Anspruch 18 wird somit vermieden, daß Filamente im mittleren Bereich in das Kühlrohr eintreten.

15 Bei einem ovalen oder runden Rohrquerschnitt ist die Ausbildung der Spinnvorrichtung gemäß Anspruch 19 besonders geeignet, um die Filamente in Zonen gleicher Strömungsgeschwindigkeiten durch das Kühlrohr zu führen. Bei der Anordnung der Düsenbohrungen in einer geschlossenen Bohrungsreihe wird zudem erreicht, daß innerhalb des Einlaufzylinders eine Vergleichmäßigung der Vorkühlung erreicht wird.

Die Ausbildung der Spinnvorrichtung gemäß Anspruch 20 ist besonders von Vorteil, um bei mehreren Bohrungsreihen eine gleichmäßig Vorkühlung zu

25

erreichen.

Bei einer besonders vorteilhaften Weiterbildung der Spinnvorrichtung werden die Filamente mit einem im wesentlichen gleichen Abstand zu der Wandung des Einlaßzylinders geführt. Damit wird eine zusätzliche Vergleichmäßigung der Vorkühlung und damit eine reproduzierbare Randschichtenverfestigung erreicht.

30 Um ein zur Herstellung des Fadens günstiges Strömungsprofil im Kühlrohr zu erreichen, hat sich herausgestellt, daß der Abstand zwischen der Spinndüse und

dem Kühlrohr mindestens 100 mm bis max. 1000 mm betragen sollte. Hierbei besitzt das Kühlrohr einen Durchmesser im Bereich des engsten Rohrquerschnittes von mindestens 10 mm bis maximal 40 mm.

Um die Kristallisation der Filamente weiter zu verzögern und somit einen Faden mit höheren Dehnungswerten zu erzeugen, ist die Ausbildung der erfindungsgemäßen Spinnvorrichtung gemäß Anspruch 23 besonders von Vorteil. Hierbei ist zwischen der Spinndüse und dem Einlaßzylinder eine Heizeinrichtung zur thermischen Behandlung der Filamente vorgesehen.

10

15

20

25

Der gleiche Effekt ist auch durch die vorteilhafte Weiterbildung der Spinnvorrichtung nach Anspruch 24 erreichbar. Hierbei wird die Umgebungsluft außen am Umfang einer Zone -vorzugsweise der oberen Zone- des Einlaßzylinders auf eine Temperatur von 35°C bis 350°C erwärmt. Durch die in den Einlaßzylinder eintretende warme Luft werden die Filamente vor der eigentlichen Abkühlung in Abhängigkeit von der Lufttemperatur thermisch behandelt.

Die erfindungsgemäßen Spinnvorrichtungen, das erfindungsgemäße Verfahren und die erfinderische Verwendung einer Spinnvorrichtung ist geeignet, um textile Fäden oder technische Fäden aus Polyester, Polyamid oder Polypropylene herzustellen. Es können dabei verschiedene Behandlungseinrichtungen für den Faden nachgeschaltet sein, um beispielsweise einen vollverstreckten Faden (FDY), einen vororientierten Faden (POY) oder einen hochorientierten Faden (HOY) herzustellen.

Im folgenden werden unter Hinweis auf die beigefügten Zeichnungen einige Ausführungsbeispiele der erfindungsgemäßen Spinnvorrichtungen näher beschrieben.

Es stellen dar:

Fig. 1 eine erfindungsgemäße Spinnvorrichtung mit nachgeschalteter Aufspuleinrichtung;

5

- Fig. 2 einen Einlaßzylinder der in Fig. 1 gezeigten Spinnvorrichtung;
- Fig. 3 verschiedene Wandausführungen des Einlaufzylinders mit entsprechendem Strömungsprofil;

10

25

30

- Fig. 4 ein weiteres Ausführungsbeispiel der erfindungsgemäßen Spinnvorrichtung.
- Fig. 5 ein Beispiel eines Strömungsprofils innerhalb des Kühlrohres der in Fig. 1 gezeigten Spinnvorrichtung;
 - Fig. 6 mehrere Ausführungsbeispiele einer Spinndüse;
- In Fig. 1 ist ein erstes Ausführungsbeispiel einer erfindungsgemäßen
 20 Spinnvorrichtung zum Spinnen eines synthetischen Fadens gezeigt.

Ein Faden 12 wird aus einem thermoplastischen Material gesponnen. Das thermoplastische Material wird hierzu in einem Extruder oder einer Pumpe aufgeschmolzen. Die Schmelze wird über eine Schmelzeleitung 3 mittels einer Spinnpumpe zu einem beheizten Spinnkopf 1 gefördert. An der Unterseite des Spinnkopfes 1 ist eine Spinndüse 2 angebracht. Aus der Spinndüse 2 tritt die Schmelze in Form von feinen Filamentsträngen 5 aus. Die Filamente 5 durchlaufen einen Spinnschacht 6, der durch einen Einlaßzylinder 4 gebildet wird. Der Einlaßzylinder 4 ist hierzu unmittelbar unterhalb des Spinnkopfes 1 angeordnet und umschließt die Filamente 5. Am freien Ende des Einlaßzylinders 4 schließt sich in Fadenlaufrichtung ein Kühlrohr 8 an. Das Kühlrohr 8 ist über

10

15

20

25

30

einen Einlaufkegel 9 mit dem Einlaßzylinder 4 verbunden. Auf der gegenüberliegenden Seite des Einlaufkegels 9 weist das Kühlrohr 8 einen Auslaufkegel 10 auf, der in eine Auslaufkammer 11 mündet. Auf der Unterseite der Auslaufkammer 11 ist in der Fadenlaufebene eine Auslaßöffnung 13 in der Auslaufkammer 11 eingebracht. An einer Seite der Auslaufkammer 11 mündet ein Saugstutzen 14 in die Saugkammer 11. Über den Saugstutzen 14 ist ein am freien Ende des Saugstutzens 14 angeordneter Luftstromerzeuger 15 mit der Auslaufkammer 11 verbunden. Der Luftstromerzeuger 15 ist als Saugeinrichtung ausgebildet. Die Saugeinrichtung 15 kann beispielsweise eine Unterdruckpumpe oder ein Gebläse aufweisen, welche einen Unterdruck in der Auslaßkammer 11 und somit im Kühlrohr 8 erzeugen.

In der Fadenlaufebene unterhalb der Auslaufkammer 11 sind Präparationseinrichtung 16 und eine Aufspulvorrichtung 20 angeordnet. Die Aufspulvorrichtung 20 besteht aus einem Kopffadenführer Kopffadenführer 19 zeigt den Beginn des Changierdreiecks an, welches durch die Hin- und Herbewegung eines Changierfadenführers einer Changiereinrichtung 21 entsteht. Unterhalb der Changiereinrichtung 21 ist eine Andrückwalze 22 angeordnet. Die Andrückwalze 22 liegt am Umfang einer zu wickelnden Spule 22 an. Die Spule 23 wird auf einer rotierenden Spulspindel 24 erzeugt. Die Spulspindel 24 wird hierzu über den Spindelmotor 25 angetrieben. Der Antrieb der Spulspindel 25 wird hierbei in Abhängigkeit von der Drehzahl der Andrückwalze derart geregelt, daß die Umfangsgeschwindigkeit der Spule und damit die Aufwickelgeschwindigkeit während der Aufwicklung im wesentlichen konstant bleibt.

Zwischen der Präparationseinrichtung 16 und der Aufspulvorrichtung 20 ist eine Behandlungseinrichtung 17 zur Behandlung des Fadens 12 zwischengeschaltet. Bei dem in Fig. 1 gezeigten Ausführungsbeispiel wird die Behandlungseinrichtung 17 durch eine Verwirbelungsdüse 18 gebildet.

10

15

20

25

30

In Abhängigkeit von dem Herstellungsprozeß können in der Behandlungseinrichtung eine oder mehrere unbeheizte oder beheizte Galetten angeordnet sein, so daß der Faden vor der Aufwicklung in seiner Spannung beeinflußt oder verstreckt werden kann. Ebenso besteht die Möglichkeit, zusätzliche Heizeinrichtungen zur Verstreckung oder zur Relaxation innerhalb der Behandlungseinrichtung 17 anzuordnen.

Bei der in Fig. 1 gezeigten Spinnvorrichtung wird eine Polymerschmelze zum Spinnkopf 1 gefördert und über die Spinndüse 2 in eine Vielzahl von Filamenten 5 extrudiert. Das Filamentbündel wird von der Aufspulvorrichtung 20 abgezogen. Hierbei durchläuft das Filamentbündel mit zunehmender Geschwindigkeit den Spinnschacht 6 innerhalb des Einlaßzylinders 4. Anschließend tritt das Filamentbündel über den Einlaufkegel 9 in das Kühlrohr 8 ein. In dem Kühlrohr 8 wird über die Saugeinrichtung 15 ein Unterdruck erzeugt. Dadurch wird die außenam Einlaßzylinder 4 anstehende Umgebungsluft in den Spinnschacht 6: hineingesogen. Die in den Spinnschacht 6 eindringende Lustmenge ist hierbeiproportional der Gasdurchlässigkeit der Wandung 7 des Einlaßzylinders. Die einströmende Luft führt zu einer Vorkühlung der Filamente, so daß sich die Randschichten der Filamente verfestigen. Im Kern bleiben die Filamente jedoch schmelzflüssig. Die Luftmenge wird sodann über den Einlaufkegel 9 zusammen mit dem Filamentbündel in das Kühlrohr 8 eingesogen. Die Luftströmung wird aufgrund eines engsten Querschnitts im Kühlrohr 8 unter Wirkung der Saugeinrichtung 15 derart beschleunigt, daß im Kühlrohr keine der Filamenbewegung entgegenwirkende Luftströmung mehr vorhanden ist. Damit wird die Belastung an den Filamenten verringert.

Um im Austrittsbereich des Kühlrohres 8 möglichst wenig Turbulenzen zu erzeugen, wird die Luftströmung über den Auslaufkegel 10 in die Auslaufkammer 11 eingeleitet. In der Auslaufkammer 11 ist zur weiteren Luftberuhigung ein Siebzylinder 30 angeordnet, der das Filamentbündel umschließt. Die Luft wird sodann über den Stutzen 14 und die Saugeinrichtung 15 aus der Auslaufkammer

10

15

20

25

30

11 abgesogen und abgeführt. Die Filamente 5 treten auf der Unterseite der Auslaufkammer 11 durch die Auslaßöffnung 13 aus und laufen in die Präparationseinrichtung 16 ein. Bis zum Austritt der Filamente aus dem Kühlrohr kommt es zu einer kompletten Abkühlung der Filamente. Durch die Präparationseinrichtung 16 werden die Filamente zu einem Faden 12 zusammengeführt. Zur Erhöhung des Fadenschlusses wird der Faden 12 vor der Aufwicklung durch eine Verwirbelungsdüse verwirbelt. 18 In Aufspulvorrichtung wird der Faden 12 zu der Spule 23 aufgewickelt. Bei der in Fig. 1 gezeigten Anordnung kann beispielsweise ein Polyesterfaden erzeugt werden, der mit einer Aufwickelgeschwindigkeit von > 7.000 m/min aufgewickelt wird.

Die in Fig. 1 gezeigte Spinnvorrichtung zeichnet sich dadurch aus, daß die in den Einlaßzylinder eintretende Luftmenge auf die Wärmebehandlung der Filamente abgestimmt wird. Dabei kann vorteilhaft die Vorkühlung sowie die Saugströmung beeinflußt werden. In Fig. 2 ist der Einlaßzylinder 4 aus Fig. 1 nochmals gezeigt. Die Wandung 7 des Einlaßzylinders 4 ist hierbei als Lochblech mit zwei unterschiedlichen Lochungen 29 und 26 ausgebildet. In einer oberen Zone an dem Ende des Einlaßzylinders, welches zur Spinndüse 12 gewandt ist, ist eine mit kleinen Durchmessern ausgebildete Lochung 29 eingebracht. Die Lochung führt in der oberen Zone zu einem schematisch angegebenen Strömungsprofil 28. Das Strömungsprofil 28, welches durch Pfeile symbolisiert ist, gibt ein Maß für die in den Spinnschacht 6 eintretende Luftmenge. Die Lochung 29 ist innerhalb der oberen Zone gleich. Damit erhöhrt sich die Luftmenge mit zunehmendem Abstand von der Spinndüse aufgrund der Unterdruckwirkung im Kühlrohr 8 und aufgrund der zunehmenden Filamentgeschwindigkeit.

In einer unteren Zone, die an dem zum Kühlrohr 8 gewandten Ende ausgebildet ist, besitzt die Wandung 7 eine Lochung mit größerem Öffnungsquerschnitt. Wie durch das symbolisierte Strömungsprofil 27 dargestellt, wird in der unteren Zone eine größere Lustmenge in den Spinnschacht 6 eintreten. Auch hierbei ist die

10

15

20

Tendenz erkennbar, daß mit zunehmendem Abstand von der Spinndüse die einströmende Luftmenge zunimmt.

Das in Fig. 2 gezeigte Strömungsprofil über der Wandung des Einlaßzylinders ist besonders geeignet, um eine langsame und geringe Vorkühlung der Filamente zu erhalten. Das führt insbesondere zu einem sehr gleichmäßigen Fadenquerschnitt. In Fig. 3 sind weitere Ausführungsbeispiele eines Einlaufzylinders gezeigt, deren Wandung 7 zu unterschiedlichen Strömungsprofilen ausgebildet ist. Die Wandung 7 ist hierbei in den durchlässigen Zonen durch ein Drahtgewebe gebildet. Das Drahtgewebe kann jedoch auch vorteilhaft durch jedes andere poröse Material ersetzt werden wie beispielsweise einen Sinterwerkstoff.

Bei dem in Fig. 3.1 gezeigten Ausführungsbeispiel ist der Einlaufzylinder in eine obere und eine untere Zone aufgeteilt. Die obere Zone I weist eine größere Gasdurchlässigkeit auf als die untere Zone II. Das dadurch entstehende Strömungsprofil führt dazu, daß in der oberen Zone I eine größere Luftmenge eintritt als in der unteren Zone II. Eine derartige Anordnung ist insbeondere vorteilhaft, um eine hohe gleichmäßige Kühlwirkung und eine gleichmäßige Luftmengenverteilung innerhalb des Spinnschachtes zu erreichen. Insbesondere in der oberen Zone I ist die Filamentgeschwindigkeit relativ gering und der Abstand zwischen den Filamenten relativ groß, so daß die Luftmenge sich gleichmäßig im Spinnschacht verteilen kann. Wie bereits zu Fig. 2 beschrieben, tritt hierbei auch eine in Zunahme der Luftmenge innerhalb einer Zone aufgrund der gleichbleibenden Gasdurchlässigkeit auf.

25

30

Bei dem in Fig. 3.2 gezeigten Ausführungsbeispiel sind eine obere Zone I, eine mittlere Zone II und eine untere Zone III ausgebildet. Hierbei wird in der mittleren Zone II eine relativ geringe Luftmenge in den Spinnschacht geleitet. Dagegen ist die Luftmenge in der oberen Zone I und der unteren Zone III größer ausgeführt. Diese Anordnung begünstigt sowohl die Luftmengenverteilung innerhalb des Spinnschachtes sowie das Einlaufverhalten des Filamentbündels in

10

15

20

25

30

das Kühlrohr. Durch die große Luftmenge in der unteren Zone III wird das Filamentbündel bei Einlauf in das Kühlrohr stärker eingeschnürt, so daß keine Filamente an den Wandungen anschlagen können. Die Wandung der Zonen II und III ist derart ausgebildet, daß sich eine über der Länge der Zone gleichmäßige Luftmengenverteilung einstellt. Hierzu wird die Gasdurchlässigkeit in der Wandung mit zunehmendem Abstand von der Spinndüse geringer.

In Fig. 3.3 ist ein Ausführungsbeispiel gezeigt, bei welchem eine obere Zone I des Einlaßzylinders 4 ein gasundurchlässige Wandung 7 aufweist. Die untere Zone II weist ein dreieckförmiges Strömungsprofil auf, wobei im unteren Bereich die größte Luftmenge in den Spinnschacht 6 eintritt. Diese Anordnung ist besonders geeignet, um zunächst eine gleichmäßige Ausbildung der Filamentstränge in der Ruhezone zu erhalten. Erst wenn sich die Schmelze der Filamente in dem Außenbereich leicht verfestigt haben, wird ein Luftstrom in den Kühlschacht geleitet. Diese Anordnung ist insbesondere geeignet, um Fäden mit geringen Fadentitern herzustellen.

Bei der in Fig. 4 gezeigten Ausführung der Spinnvorrichtung ist zwischen dem Einlaßzylinder 4 und dem Spinnkopf 1 eine Heizeinrichtung 31 angeordnet. Die Heizeinrichtung 31 führt zu einer thermischen Behandlung der Filamente, so daß eine weitere verlangsamte Kühlung eintritt. Bei dieser in Fig. 4 gezeigten Anordnung kann die Heizeinrichtung mit jeder zuvor beschriebenen Ausführung des Einlaßzylinders kombiniert werden. Der Einlaßzylinder 4 weist eine obere Zone mit der Lochung 37 und eine untere Zone mit der Lochung 26 auf. Aufgrund der unterschiedlichen Lochdurchmesser der Lochungen 37 und 26 ergeben sich die sybolisiert dargestellten Strömungsprofile 28 und 27. Somit tritt in der oberen Zone des Einlaßzylinders 4 eine geringere Luftmenge als in der unteren Zone des Einlaßzylinders 4 in den Einlaßzylinder 4 ein. Gegenüber den zuvor beschriebenen Ausführungsbeispielen der Spinnvorrichtung wird in der in Fig. 4 dargestellten Ausführung der in den Einlaßzylinder 4 eintretende Luftstrom in Fadenlaufrichtung gelenkt, so daß die Filamente in ihrer Bewegung in Richtung

10

15

20

25

30

 (\cdot)

()

des Kühlrohres direkt mit Eintritt der Luftmenge Strömungskomponente unterstützt werden. Hierzu sind die Eintrittsöffnungen 38 der Lochung 37 in der oberen Zone des Einlaßzylinders 4 schräg mit einer Neigung in Fadenlaufrichtung in die Wandung 7 eingebracht. Die Länge und der Durchmesser der Eintrittsöffnung 38 ist hierzu in einem vorgegeben Verhältnis derart gewält, daß sich eine gerichtete Strömung bei Eintritt in den Einlaßzylinder 4 ausbildet. Die untere Zone des Einlaßzylinders 4 weist eine Lochung 26 mit radial gerichtete Eintrittsöffnungen 38 auf. Im Innern des Einlaßzylinders 4 sind mehere Leitbleche 39 an der Wandung 7 befestigt. Die Leitbleche 39 ragen von der Wandung 7 mit einer Neigung in Fadenlaufrichtung ins Innere des Einlaßzylinders 4 hinein. Somit wird die durch die Lochung 26 eintretende Lustmenge in der unteren Zone des Einlaßzylinders 4 in eine Strömung in Fadenlaufrichtung überführt. Zur Optimierung der Strömungsverhältnisse im Einlaßzylinder 4 könnten die Leitbleche 39 zusätzlich in ihrer Neigung verstellbar ausgeführt sein.

Grundsätzlich wird darauf hingewiesen, daß der Einlaßzylinder in eine Vielzahl von Zonen aufgeteilt werden kann, um ein gleichmäßiges Strömungsprofil zu erhalten. Zusätzlich ist durch Variation der Kombination Lochung und Leitbleche im Einlaßzylinder eine weitere Möglichkeit gegeben die Strömung der Kühlluft und die Kühlung der Filamente im Kühlrohr zu beeinflussen.

Damit alle Filamente des Filamentbündels innerhalb des Kühlrohres eine im wesentlichen gleiche Unterstützung ihrer Fortbewegung erhalten, ist es erforderlich, daß die Filamente von einer Luftströmung mit im wesentlichen gleicher Strömungsgeschwindgkeit umgeben sind. In Fig. 5 ist beispielhaft ein Strömungsprofil 32 gezeigt, wie es sich beispielsweise in der Mitte des Kühlrohres 8 der Spinnvorrichtung gemäß Fig. 1 tendenziell einstellt. Durch die Länge der Pfeile ist die Strömungsgeschwindigkeit der Luftströmung innerhalb des Strömungsprofils bzw. des Kühlrohres gekennzeichnet. Hierbei zeigt die durch die Saugeinrichtung erzeugte Luftströmung im mittleren Bereich des

;.;

Kühlrohres 8 eine maximale Strömungsgeschwindigkeit. Daher werden die Filamente beispielsweise auf einem Teilkreis D1 oder einem Teilkreis D2 geführt. Hierzu ist es erforderlich, daß die Düsenbohrungen eine entsprechende Anordnung innerhalb der Spinndüse 2 erhalten.

5

10

20

25

30

In Fig. 6 sind mehrere Ausführungsbeispiele von Düsenbohrungenanordnungen innerhalb der Spinndüse 2 gezeigt. In Fig. 6.1 ist eine Spinndüse 2 dargestellt, bei welcher die Düsenbohrungen 33 in einer Bohrungsreihe 34 ringförmig angeordnet sind. Die Düsenbohrungen 33 sind in der Bohrungsreihe 34 jeweils mit gleichem Abstand zueinander in der Spinndüse eingebracht. Durch die geschlossene Bohrungsreihe 34 wird eine im mittleren Bereich der Spinndüse ausgebildete Einlaufzone 35 eingeschlossen.

In Fig. 6.2 ist eine weitere Spinndüse 2 dargestellt, bei welcher zwei Bohrungsreihen 34 und 36 ringförmig in der Spinndüse eingebracht sind. Die 15 Düsenbohrungen 33 der beiden Bohrungsreihen 34 und 36 sind hierbei derart versetzt zueinander angeordnet, daß die Düsenbohrungen der innenliegenden Bohrungsreihe 36 jeweils zwischen zwei benachbarten Düsenbohrungen der außenliegenden Bohrungsreihe 34 angeordnet sind. Die Spinndüse aus Fig. 6.1 und die Spinndüse aus Fig. 6.2 sind in ihren Düsenbohrungsanordnungen auf das in Fig. 5 gezeigte Strömungsprofil im Kühlrohr ausgelegt. Die Auslegung basiert hierbei darauf, daß das Kühlrohr 8 aus Fig. 1 einen kreisförmigen Querschnitt aufweist. Damit führt das Strömungsprofil ebenfalls zu einer kreisförmigen Anordnung der Düsenbohrungen. Bei der Verwendung eines Kühlrohres mit einem ovalen Querschnitt oder einem quadratischen Querschnitt würden sich zwangsläufig andere Strömungsprofile ergeben, was zu einer geänderten Anordnung der Düsenbohrungen innerhalb der Spinndüse führt.

Bei der Herstellung eines Polyesterfadens mit einem Fadentiter von 2,4 dtex wurde die Spinnvorrichtung gemäß Fig. 1 eingesetzt. Hierbei wurde im Vergleich eine Spinndüse mit flächiger Anordnung der Düsenbohrungen und eine Spinndüse

10

15

gemäß der Ausführung nach Fig. 1 eingesetzt. Insgesamt waren beide Spinndüsen 55 mit Düsenbohrungen ausgeführt. Die Düsenbohrungen lagen innerhalb eines Teilungskreises von 60 mm. Das Kühlrohr war im engsten Rohrquerschnitt mit einem kleinsten Durchmesser von 16 mm ausgeführt. Der Abstand zwischen der Spinndüse und dem Kühlrohr betrug 260 mm. Das Kühlrohr war über einen Einlaufkegel mit 75 mm Länge an den Einlaßzylinder angebunden. Die Aufwickelgeschwindigkeit lag bei 6.000 m/min. In dem direkten Vergleich wurde festgestellt, daß die Spinndüse mit flächiger Verteilung der Düsenbohrungen zu einem Faden führte, der eine sehr hohe Flusigkeit zeigte. Der Faden besaß einen Kochschrumpf von 9,6% und eine Dehnung von 62%. Bei erfindungsgemäßen Verfahren mit der kreisringförmigen Düsenbohrungsanordnung wurde ein Faden hergestellt, der keine Flusenbildung zeigte. Der Kochschrumpf lag bei 3,1% und die Dehnung bei 56%. Damit liegt besondere Vorteil des erfindungsgemäßen Verfahrens erfindungsgemäßen Vorrichtung darin, daß ein qualitativ hochwertiger Faden mit hoher Spinnsicherheit hergestellt werden kann.

Die Erfindung ist nicht auf eine bestimmte Formgebung des Einlaßzylinders und des Kühlrohres beschränkt. Die in den Ausführungen dargestellten runden Formen sind beispielhaft und können ohne Schwierigkeit durch ovale Ausbildungen oder bei Rechteckspinndüsen sogar eckige Ausbildungen des Einlaßzylinders und des Kühlrohres ersetzt werden. Die Spinndüse ist dementsprechend in ihrer Formgebung variablen.

Bezugszeichenliste

	1	Spinnkopf
	2	Spinndüse
	5 3	Schmelzeleitung
	4	Einlaßzylinder
	5	Filamente
	6	Spinnschacht
	7	Wandung
10	8	Kühlrohr
	9	Einlaufkegel
	10-	Auslaufkegel
	11	Auslaufkammer
	12	Faden
15	13.	Auslaßöffnung
•	14	Saugstutzen
	15	Saugeinrichtung
	16	Präparationseinrichtung
	17	Behandlungseinrichtung
20	18	Verwirbelungsdüse
	19	Kopffadenführer
	20	Aufspulvorrichtung
	21	Changiereinrichtung
	22	Andrückwalze
25	23	Spule .
	24	Spulspindel
•	25	Spindelantrieb
	26	Lochung
	27	Einströmprofil
30	28	Einströmprofil
	29	Lochung

	30	Siebzylinder
	31	Heizeinrichtung
	32	Strömungsprofil
	33	Düsenbohrungen
5	34	Bohrungsreihe
	35	Einlaufzone
	36	Bohrungsreihe
	37	Lochung
	38	Eintrittsöffnung
10	39	Leitblech

Patentansprüche

- Spinnvorrichtung zum Spinnen eines synthetischen Fadens (12), welcher 1. durch Zusammenfassen einer Vielzahl von einzelnen Filamenten (5) 5 gebildet ist und welcher mittels einer der Spinnvorrichtung nachgeschaltetem Aufspulvorrichtung (20) zu einer Spule (23) aufgewickelt wird, mit einer Spinndüse (2), welche auf der Unterseite eine Vielzahl von Düsenbohrungen zum Extrudieren der Filamente (5) aufweist, mit einem unterhalb der Spinndüse (2) angeordnetem Kühlrohr (8), welches von den Filamenten (5) durchlaufen wird, mit einem Luftstromerzeuger (15), 10 welcher derart mit dem Kühlrohr (8) verbunden ist, daß ein Luftstrom im Kühlrohr (8) in Fadenlaufrichtung erzeugt wird, und mit einem zwischen der Spinndüse (2) und dem Kühlrohr (8) angeordneten gasdurchlässigen Einlaßzylinder (4), welcher von den Filamenten (5) durchlaufen wird und durch welchen eine im wesentlichen radial eintretende Luftmenge zur 15 Erzeugung des Luftstroms dem Kühlrohr (8) zugeführt wird, dadurch gekennzeichnet, daß der Einlaßzylinder (4) in Fadenlaufrichtung in mehrere Zonen mit jeweils unterschiedlicher Gasdurchlässigkeit der Wandung (7) zur Steuerung der in den Einlaßzylinder (4) eintretenden Lustmenge 20 unterteilt ist.
 - 2. Spinnvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Einlaßzylinder (4) eine zur Spinndüse (2) gewandte obere Zone und eine zum Kühlrohr (8) gewandte untere Zone aufweist und daß die obere Zone mit einer größeren Gasdurchlässigkeit in der Wandung (7) ausgebildet ist als die untere Zone.
 - Spinnvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Einlaßzylinder (4) eine zur Spinndüse (2) gewandte obere Zone und eine zum Kühlrohr (8) gewandte untere Zone aufweist und daß die obere Zone

mit einer kleineren Gasdurchlässigkeit in der Wandung (7) ausgebildet ist als die untere Zone.

- 4. Spinnvorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Wandung (7) der oberen Zone gasundurchlässig ausgeführt ist.
- 5 5. Spinnvorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß zwischen der oberen Zone und der unteren Zone zumindest eine mittlere Zone ausgebildet ist und daß die mittlere Zone mit einer kleineren Gasdurchlässigkeit in der Wandung (7) ausgebildet ist als die untere Zone und/oder die obere Zone.
- 10 6. Spinnvorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß die Gasdurchlässigkeit der Wandung (7) des Einlaßzylinders (4) innerhalb einer Zone in Fadenlaufrichtung gleich ist.
- Spinnvorrichtung nach einem der vorgenannten Ansprüche dadurch gekennzeichnet, daß die Gasdurchlässigkeit der Wandung (7) des
 Einlaßzylinders (4) innerhalb einer Zone in Fadenlaufrichtung ungleich ist.
 - 8. Spinnvorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß die Wandung (7) des Einlaßzylinders (4) aus einem Lochblech mit zonenweise unterschiedlicher Lochung (26, 29, 37) gebildet wird.
- Spinnvorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Lochung (37) zumindest einer Zone aus einer Vielzahl von Eintrittsöffnungen (38) besteht, die die Wandung (7) des Einlaßzylinders (4) schräg mit einer Neigung zur Fadenlaufrichtung derart durchdringen, daß ein in Fadenlaufrichtung gerichteter Luftstrom in den Einlaßzylinder (4) eintritt.

- 10. Spinnvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Wandung (7) des Einlaßzylinders (4) aus einem Drahtgewebe mit zonenweise unterschiedlicher Maschenweite gebildet wird.
- 5 11. Spinnvorrichtung nach Anspruch 8 oder 10, dadurch gekennzeichnet, daß mehrere Lochbleche und/oder Drahtgewebe hintereinander in der Wand des Einlaßzylinders zusammengefaßt sind.
 - 12. Spinnvorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß eine Papiermanschette mantelförmig an der Wandung (7) des Einlaßzylinders (4) angelegt ist.
 - 13. Spinnvorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß an der Wandung (7) im Innern des Einlaßzylinder (4) im Bereich zumindest einer Zone mehrere Leitbleche (39) befestigt sind, die von der Wandung (7) aus eine Neigung in Fadenlaufrichtung haben.
- 15 14. Spinnvorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Einlaßzylinder (4) wärmeübertragend mit einem die Spinndüse (2) haltenden Spinnkopf (1) verbunden ist.
- 15. Spinnvorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß der Luftstromerzeuger (15) eine Saugeinrichtung ist, welche auf der Auslaßseite des Kühlrohres (8) mit dem Kühlrohr (8) verbunden ist.
- Spinnvorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Anordnung der Düsenbohrungen (33) in der Spinndüse (2) derart gewählt ist, daß der beim Einlaufen des Filamentbündels in das Kühlrohr (8) erzeugte Luftstrom die Filamente (5) in ihrer Fortbewegung über den Rohrquerschnitt gleichmäßig unterstützt und gleichmäßig kühlt.

10

15

20

- Spinnvorrichtung zum Spinnen eines synthetischen Fadens (12), welcher 17. durch Zusammenfassen eines aus einer Vielzahl von einzelnen Filamenten (5) bestehenden Filamentbündels gebildet ist und welcher mittels einer der Spinnvorrichtung nachgeschalteten Aufspulvorrichtung (20) zu einer Spule (23) aufgewickelt wird, mit einer Spinndüse (2), welche auf der Unterseite eine Vielzahl von Düsenbohrungen (33) zum Extrudieren der Filamente (5) aufweist, mit einem im Abstand unterhalb der Spinndüse (2) angeordnetem Kühlrohr (8) mit einen zur Behandlung der Filamente (5) freien Rohrquerschnitt, welcher Rohrquerschnitt kleiner ist als der Querschnitt des Filamentbündels beim Austritt aus der Spinndüse (2), mit einer Saugeinrichtung (15), welche auf der Auslaßseite des Kühlrohres (8) derart mit dem Kühlrohr (8) verbunden ist, daß ein Luftstrom im Kühlrohr (8) in Fadenlaufrichtung erzeugt wird, und mit einem zwischen der Spinndüse (2) und der Einlaßseite des Kühlrohres (8) angeordneten Einlaßzylinder (4) mit gasdurchlässiger Wandung (7), welcher von den Filamenten (5) durchlaufen wird und durch welchen eine im wesentlichen radial eintretende Luftmenge zur Erzeugung des Luftstroms dem Kühlrohr (8) zugeführt wird, dadurch gekennzeichnet, daß die Anordnung der Düsenbohrungen (33) in der Spinndüse (2) derart gewählt ist, daß der beim Einlaufen des Filamentbündels in das Kühlrohr (8) erzeugte Luftstrom die Filamente (5) in ihrer Fortbewegung über den Rohrquerschnitt gleichmäßig unterstützt und gleichmäßig kühlt.
- 18. Spinnvorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß das Kühlrohr (8) auf der Einlaßseite einen trichterförmigen Einlaufkegel (9) aufweist und daß die Düsenbohrungen (33) um eine sich in der Mitte des Filamentbündels ausbildenden Einlaufzone (35) angeordnet sind.
 - 19. Spinnvorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß die Einlaufzone in der Spinndüse (2) durch eine oder mehrere in sich geschlossene Bohrungreihe/n (34, 36) mit jeweils mehreren im gleichen Abstand zueinander angeordneten Düsenbohrungen (33) gebildet ist.

- 20. Spinnvorrichtung nach Anspruch 19, dadurch gekennzeichnet, daß die Düsenbohrungen (33) benachbarter Bohrungsreihen (34, 36) in Richtung quer zur Spinndüse (2) versetzt zueinander angeordnet sind.
- 21. Spinnvorrichtung nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, daß die Düsenbohrungen (33) derart ringförmig angeordnet sind, daß die Filamente (5) des Filamentbündels mit einen im wesentlichen gleichen Abstand zu der Wandung (7) des Einlaßzylinders (4) in den Einlaßzylinder (4) einlaufen.
- 22. Spinnvorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß der Abstand zwischen der Unterseite der Spinndüse (7) und dem Kühlrohr (8) mindestens 100mm bis maximal 1000mm beträgt und daß das Kühlrohr im engsten Querschnitt einen Durchmesser von mindestens 10 mm bis maximal 40 mm aufweist.
- 23. Spinnvorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß eine Heizeinrichtung (31) zur thermischen Behandlung der Filamente zwischen der Spinndüse (2) und dem Einlaßzylinder (4) angeordnet ist.
 - 24. Spinnvorrichtung nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß die am Umfang zumindest einer Zone des .
 Einlaßzylinders (4) anstehende Umgebungsluft auf eine Temperatur von mindestens 35 °C bis maximal 350°C erwärmbar ist.
 - 25. Verfahren zum Spinnen eines synthetischen Fadens, welcher durch Zusammenfassen eines aus einer Vielzahl von einzelnen Filamenten bestehenden Filamentbündels gebildet ist und welcher mittels einer der Spinnvorrichtung nachgeschaltetem Aufspulvorrichtung zu einer Spule aufgewickelt wird, bei welchem die Filamente mittels einer Spinndüse mit einer Vielzahl von Düsenbohrungen extrudiert werden, bei welchem die Filamente zur thermischen Behandlung durch eine Vorkühlzone und eine

20

10

Kühlzone geführt werden, bei welchem die Kühlzone durch ein Kühlrohr mit einer Unterdruckatmosphäre gebildet ist, so daß ein Luftstrom im Rohrquerschnitt des Kühlrohres in Fadenlaufrichtung zur Unterstützung der Fortbewegung der Filamente erzeugt wird, und bei welchem die Filamente am Ende der Kühlzone zu dem Faden zusammengefaßt werden, dadurch gekennzeichnet, daß die Filamente innerhalb des Filamentbündels in Abhängigkeit vom Strömungsprofil des Luftstrom im Kühlrohr in den Rohrquerschnitt des Kühlrohres derart einlaufen, daß die Filamente im wesentlichen gleichmäßig in ihrer Fortbewegung unterstützt und gleichmäßig gekühlt werden.

- Verwendung einer Spinnvorrichtung gemäß dem Oberbegriff des Anspruch 17 zum Spinnen eines synthetischen Fadens, dadurch gekennzeichnet, daß die Filamente mittels einer Spinndüse mit ringförmig angeordneten Düsenbohrungen extrudiert werden.
- 15 27. Verwendung einer Spinnvorrichtung nach Anspruch 26, dadurch gekennzeichnet, daß die Düsenbohrungen in einer geschlossenen Bohrungsreihe mit gleichen Abstand zwischen den Düsenbohrungen angeordnet sind.
- 28. Verwendung einer Spinnvorrichtung nach Anspruch 27, dadurch gekennzeichnet, daß die Bohrungsreihe kreisringförmig ist.

(<u>)</u>

Q

 \bigcirc

6/6

INTERNATIONAL SEARCH REPORT

Inter year Application No PCT/EP 99/04225

A. CLAS	SIFICATION OF SUBJECT MATTER		
IPC 6	D01D5/092		
İ	•		
According	to International Patent Classification (IPC) or to both national clas	sification and IPC	
B. FIELDS	S SEARCHED		
IPC 6	focumentation searched (classification system followed by classifi 0010	cation symbols)	
Documenta	ation searched other than minimum documentation to the extent th	at such documents are included in the field.	
		and accompanies are included in the fields i	searched
Electronic	data base consulted during the international search (name of data		
	The state of data	base and, where practical, search terms use	d)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	colorest as a second	
	where appropriate, or the	relevant passages	Relevant to claim No.
X	US 5 219 582 A (ANDERSON HARVEY	G FT AL)	1 2 6 0
	15 June 1993 (1993-06-15)		1,2,6,8, 12,16
	abstract; figure 2 column 4, line 3 - line 12		•
	column 6, line 3 - line 10	-	
x	CU 679 422 A (COUNTYTERTONIE WY		
^	CH 678 433 A (SCHWEIZERISCHE VI 13 September 1991 (1991-09-13)	SCOSE)	17,18,
	abstract; claim 1; figure 1		21-26,28
	page 3, line 52 - line 55		
A	EP 0 613 966 A (AKZO NOBEL NV)		1,2,6,16
İ	7 September 1994 (1994-09-07)		1,2,0,10
	column 1, line 1 - line 18 column 2, line 17 - line 24		
	•		•
Furthe	or documents are listed in the continuation of box C.	X Patent family members are listed in	annov
Special cate	egories of cited documents :	<u> </u>	
A* documen	t defining the general state of the art which is not	"T" later document published after the intern or priority date and not in conflict with the	na anntication but . I
COLISION	red to be of particular relevance curnent but published on or after the international	invention	ory underlying the
L* document	Which may throw doubts on priority, claim(c) or	"X" document of particular relevance; the cla cannot be considered novel or cannot be	e considered to
citation	or other special reason (as specified)	involve an inventive step when the doct "Y" document of particular relevance; the cla	imed invention
O" documen other me	t referring to an oral disclosure, use, exhibition or eans	document is combined with one or more	ntive step when the other such docu-
document later that	published prior to the international filing date but n the priority date claimed	ments, such combination being obvious in the art. "&" document member of the same patent for	•
ate of the ac	tual completion of the international search	"&" document member of the same patent fa Date of mailing of the international search	
26	October 1000		
	October 1999	04/11/1999	
ame and ma	iling address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Hijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Handau	
	Fax: (+31-70) 340-3016	Westermayer, W	

1

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter mai Application No PCT/EP 99/04225

Patent document cited in search repor	rt	Publication date		Patent family member(s)	Publication date
US 5219582	. A	15-06-1993	US EP JP WO	5219506 A 0615554 A 7501588 T 9311285 A	15-06-1993 21-09-1994 16-02-1995 10-06-1993
CH 678433	A 	13-09-1991	WO EP	9215732 A 0527134 A	17-09-1992 17-02-1993
EP 0613966	A	07-09-1994	DE AT BR DE ES JP US	4306925 A 153085 T 9400682 A 59402699 D 2101372 T 6299405 A 5593705 A	08-09-1994 15-05-1997 18-10-1994 19-06-1997 01-07-1997 25-10-1994 14-01-1997

internationaler recherchenbericht

Inter viales Aktenzeichen PCT/EP 99/04225

A KLASS	SIFIZIERUNG DES ANMELDUNGSGEGENSTANDES	 	
IPK 6	D0105/092		
1			
1			
1	nternationalen Patentidassifikation (IPK) oder nach der nationalen i	(lassifikation und der iPK	
	RCHIERTE GEBIETE		
IPK 6	erter Mindestprüfstoff (Klassifikationssystem und Klassifikationssyn D01D	nbole)	
-			
Hecherchie	erte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen,	soweit diese unter die recherchierten Gebiete	fallen
			-
Während de	er internationalen Recherche konsuttlerte elektronische Datenbank	(Name der Datenbank und evtl. verwendete	Suchbegriffe)
			,
C. ALS WE	ESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Ange	abe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 219 582 A (ANDERSON HARVEY	G FT AL)	1,2,6,8,
	15. Juni 1993 (1993-06-15)	, , , ,	12,16
	Zusammenfassung; Abbildung 2		
	Spalte 4, Zeile 3 - Zeile 12		
	Spalte 6, Zeile 3 - Zeile 10		
χ	CH 678 433 A (SCHWEIZERISCHE VIS	(COSE)	17 10
	13. September 1991 (1991-09-13)	lcose)	17,18, 21-26,28
	Zusammenfassung; Anspruch 1: Abb	ilduna 1	21 20,20
	Seite 3, Zeile 52 - Zeile 55	•	
Α	EP 0 613 966 A (AKZO NOBEL NV) 7. September 1994 (1994-09-07)		1,2,6,16
	Spalte 1, Zeile 1 - Zeile 18		
	Spalte 2, Zeile 17 - Zeile 24		
	•		
.			
entne		X Siehe Anhang Patentfamilie	
° Besondere "A" Veröfferd	Kategorien von angegebenen Veröffentlichungen : lichung, die den allgemeinen Stand der Technik definiert,	"T" Spätere Veröffentlichung, die nach dem i oder dem Prioritätsdatum veröffentlicht v	nternationalen Anmeldedatum
aper uso	rnt als besonders bedeutsam anzusehen ist	Anmeldung nicht kollidiert, sondern nur : Erfindung zugrundeliegenden Prinzips o	zum Verständnis des der
Allineid	okument, das jedoch erst am oder nach dem internationalen edatum veröffentlicht worden ist	Theorie angegeben ist	- 1
	lichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- n zu lassen, oder durch die das Veröffentlichungsdatum einer	"X" Veröffentlichung von besonderer Bedeutt kann allein aufgrund dieser Veröffentlich	ung nicht als neu oder auf
anderer soll ode	n im Recherchenbericht genannten Veröffentlichungsdatum einer n der Auseiner anderen besonderen Grund angegeben ist (wie	erfinderischer Tätigkeit beruhend betrack "Y" Veröffentlichung von besonderer Bedeut:	ing; die beanspruchte Erfindung
ausyeiu	that) lichung, die sich auf eine mündliche Offenbarung,	werden, wenn die Veröffentlichung mit ei	ner oder mehreren anderen
eine Bei	RUIZUNG, EINE AUSSIGITUNG oder andere Magnehmen heriebt	Veröffentlichungen dieser Kategorie in V diese Verbindung für einen Fachmann n	erbindung gebracht wird und
dem bea	tichung, die vor dem internationalen Anmeldedatum, aber nach anspruchten Prioritätsdatum veröffentlicht worden ist	*&* Veröffentlichung, die Mitglied derselben P	
Datum des Ab	eschlusses der Internationalen Recherche	Absendedatum des internationalen Rech	erchenberichts
26	. Oktober 1999	04/11/1999	
<u> </u>		04/11/1333	
lame und Po	stanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2	Bevollmächtigter Bediensteter	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,		1
	Fax: (+31-70) 340-3016	Westermayer, W	j
			1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Interr nales Aktenzeichen PCT/EP 99/04225

Im Recherchenberich				101/21	337 04223
angeführtes Patentdokui	ment	Datum der Veröffentlichung		Aitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5219582	A	15-06-1993	US EP JP WO	5219506 A 0615554 A 7501588 T 9311285 A	15-06-1993 21-09-1994 16-02-1995 10-06-1993
CH 678433	A 	13-09-1991	WO EP	9215732 A 0527134 A	17-09-1992 17-02-1993
EP 0613966	A	07-09-1994	DE AT BR DE ES JP US	4306925 A 153085 T 9400682 A 59402699 D 2101372 T 6299405 A 5593705 A	08-09-1994 15-05-1997 18-10-1994 19-06-1997 01-07-1997 25-10-1994 14-01-1997