9 Feb 2018: Finishing Weighted Internal Scheduling
Recap of Max Weight Interval Schedule (MWIS) algorithm from last time
MWIS (intervals 1,,k): If $A[k] \neq NUL$ return $A(k]$. Else intervals, for some intervals, Some MWIS (1,,k-1) Some MWIS (the set of intervals that finish before S_k) 4. Compute $w(S_0)$, $w(S_1, v(k))$. Shore the bother of these two sets as $A(k)$. 6. Return $A[k]$.
Running time devoted to MWIS (K): $O(k)$ first three the subroutines is called, (Line 4) $O(1)$ every subsequent time. $O(n)$ in total. (= $O(k)$ + $O(n-k)$)
That's O(n) for each K=1,,n. So the algorithm runs in O(12) total.
Improving the algorithm. [1] Change the argument of MWIS from a set to an integer k in $0,,n$. Representing the set of intervals $1,2,,k$.
[2] Change the ceturn value from Set to (Set, Int) — where the second part of the ordered pair is the weight of the set.
[3] Finding latest finish time before 5 (line 3) natively requires Sinary search — O(logn) repeated n times

LOOP MWIS:

1. Init. A[L]=NML VL.

2. Sort $\{S_1, ..., S_n, f_n\}$ 3. Precompute p(k) array.

4. for k=0, $A[k]=(\emptyset, \emptyset)$.

If k>0 $|e| (S_0, W_0) = A[k-1]$ $|e| (S_0, W_0) = A[k-1]$ $|f| (W_0 > W_0 + W_0)$ $|f| (S_0, W_0)$ |f