lacksquare C_{gd1} :

$$R_{gd1}^{0} = R_S + R_{L1} + g_{m1}R_SR_{L1} = 320 \text{ k}\Omega$$

 $\Rightarrow \tau_2 = R_{gd1}^{0}C_{gd1} = 320 \text{ ns}$

• C_{db1} and C_{gs2} in parallel

$$\Rightarrow$$
 Club them to a single capacitor $C_3 = C_{db1} + C_{gs2}$
= 12 pF

$$R_3^0 = R_{11} = 10 \text{ k}\Omega$$

$$\Rightarrow \tau_3 = R_3^0 C_3 = 120 \text{ ns}$$

lacksquare C_{gd2} :

$$R_{gd2}^{0} = R_{L1} + R_{L2} + g_{m2}R_{L1}R_{L2} = 315 \text{ k}\Omega$$

 $\Rightarrow \tau_4 = R_{gd2}^{0}C_{gd2} = 315 \text{ ns}$

■ C_{db2} :

$$R_{db2}^{0} = R_{L2} = 5 \text{ k}\Omega$$

$$\Rightarrow \tau_{5} = R_{db2}^{0} C_{db2} = 10 \text{ ns}$$

Thus:

$$\tau_{net} = 815 \text{ ns and } f_H = 195.3 \text{ kHz}$$

Such a low value of f_H is the result of the presence of a large number of capacitors in the circuit

- Limitations of the ZVTC Technique:
 - ➤ One obvious limitation is the suppression of information of all other poles and zeros of the system except the DP
 - This limitation is not that acute since we are actually interested in only the DP, which gives the information about f_H
 - The other limitation is the error, which can reach as high as 22%
 - ➤ However, *this error is negative*, i.e., *underestimation* (far better than *overestimation*)

- The *maximum error* of 22% occurs if the *actual circuit* has *two overlapping poles*
- In *real situations*, this is *highly unlikely*, due to the effect of *pole splitting* caused by *compensation* (*to be discussed in the next chapter*)
- The resulting circuit after compensation would have a single DP

> Proof that the maximum error is 22%

- Consider a circuit having 2 negative real poles at the same angular frequency ω_x
- The *Transfer Function*:

$$A(j\omega) = A_0/(1 + j\omega/\omega_x)^2$$

A₀: *Midband gain*

$$\Rightarrow |A(j\omega)| = A_0/[1 + (\omega/\omega_x)^2]$$

• At the upper cutoff frequency ω_H , the gain would drop to $1/\sqrt{2}$ of its maximum value

$$\Rightarrow 1 + (\omega_H/\omega_x)^2 = \sqrt{2}$$

$$\Rightarrow \omega_{\rm H} = [\sqrt{(\sqrt{2} - 1)}]\omega_{\rm x} = 0.64\omega_{\rm x}$$

 Now, using the ZVTC technique, the net time constant

$$\tau_{\text{net}} = \sum_{i=1}^{n} \left(-1/p_{i} \right)$$

i = number of poles

 $p_i = individual poles$

- For the *given problem*, i = 2 and $p_i = -\omega_x$ (*for both*)
- Thus:

$$\tau_{\rm net} = 2/\omega_{\rm x}$$
 and $\omega_{\rm H} = 1/\tau_{\rm net} = 0.5\omega_{\rm x}$

- Therefore, the *maximum error is about -22%*
- This being an underestimation, is not that dangerous:)

• Rise/Fall Time:

- ightharpoonup Recall: f_L caused tilt/sag in the output for square-wave input
- \triangleright On the other side of the frequency spectrum, f_H causes rise/fall time of the output for square-wave input
- These two phenomena can be thought of as an interlinking between the analog and digital domains
- Assume that a circuit has some ω_H , with the *corresponding pole* at $p_1 (= -\omega_H)$

> The *Transfer Function* is *single-pole*:

$$v_0(s)/v_i(s) = A_0/(1 - s/p_1)$$

A₀: Midband gain

Now, consider v_i to be **step input** of **amplitude** $V_A \implies v_i = V_A/s$

$$\Rightarrow v_0(s) = (A_0 V_A/s)/(1 - s/p_1)$$
$$= A_0 V_A [1/s - 1/(s - p_1)]$$

> Taking *inverse Laplace Transform*:

$$v_0(t) = A_0 V_A[1 - \exp(p_1 t)]$$

 \Rightarrow Output approaches its maximum value of A_0V_A with a time constant $1/|p_1|$ (p_1 negative)

> Calculation of Rise/Fall Time:

- Time taken
 for the output
 to rise (fall)
 from 10%
 (90%) to 90%
 (10%)
- Can be calculated from the figure

