Using the psych package to generate and test structural models $\,$

William Revelle

May 25, 2009

Contents

1	The psych package					
	1.1	Preface	3			
	1.2	Creating and modeling structural relations	9			
${f 2}$	Fun	Functions for generating correlational matrices with a particular struc-				
	ture	-	9			
	2.1	1 sim.congeneric				
	2.2	sim.hierarchical				
	sim.item and sim.circ	Ć				
	2.4	sim.structure				
		2.4.1 \vec{f}_x is a vector implies a congeneric model	Ć			
		2.4.2 \vec{f}_x is a matrix implies an independent factors model:	11			
		2.4.3 \vec{f}_x is a matrix and Phi $\neq I$ is a correlated factors model	11			
		2.4.4 \vec{f}_x and \vec{f}_y are matrices, and Phi $\neq I$ represents their correlations	14			
		2.4.5 A hierarchical structure among the latent predictors	17			
3	Exploratory functions for analyzing structure					
	3.1	1 Exploratory simple structure models				
	3.2	Exploratory hierarchical models	24			
		3.2.1 A bifactor solution	24			
		3.2.2 A hierarchical solution	26			
4	Con	Confirmatory models				
	4.1	·				
	4.2	Testing a congeneric model versus a tau equivalent model	29			
	4.3	Testing the dimensionality of a hierarchical data set by creating the model.	32			
4.4 Testing the dimensionality based upon an exploratory analysis						

		Allowing for an oblique solution	
	4.7	Extract a bifactor solution using omega and then test that model using sem	40
		4.7.1 sem of Thurstone 9 variable problem	40
	4.8	Examining a hierarchical solution	43
_		nmary and conclusion	4.5

1 The psych package

1.1 Preface

The psych package (Revelle, 2009) has been developed to include those functions most useful for teaching and learning basic psychometrics and personality theory. Functions have been developed for many parts of the analysis of test data, including basic descriptive statistics (describe and pairs.panels), dimensionality analysis (ICLUST, VSS, principal, factor.pa), reliability analysis (omega, guttman) and eventual scale construction (cluster.cor, score.items). The use of these and other functions is described in more detail in the accompanying vignette (overview.pdf) as well as in the complete user's manual and the relevant help pages. (These vignettes are also available at http://personality-project.org/r/overview.pdf) and http://personality-project.org/r/psych_for_sem.pdf).

This vignette is concerned with the problem of modeling structural data and using the *psych* package as a front end for the much more powerful *sem* package of John Fox Fox (2006, 2009). The first section discusses how to simulate particular latent variable structures. The second considers several Exploratory Factor Analysis (EFA) solutions to these problems. The third section considers how to do confirmatory factor analysis and structural equation modeling using the *sem* package but with the input prepared using functions in the *psych* package.

1.2 Creating and modeling structural relations

One common application of psych is the creation of simulated data matrices with particular structures to use as examples for principal components analysis, factor analysis, cluster analysis, and structural equation modeling. This vignette describes some of the functions used for creating, analyzing, and displaying such data sets. The examples use two other packages: Rgraphviz and sem. Although not required to use the psych package, these two libraries are required for these examples. Rgraphviz is used for the graphical displays, but the analyses themselves require only the sem package to do the structural modeling.

2 Functions for generating correlational matrices with a particular structure

The sim family of functions create data sets with particular structure. Most of these functions have default values that will produce useful examples. Although graphical summaries

of these structures will be shown here, some of the options of the graphical displays will be discussed in a later section.

To make these examples replicable for readers, all simulations are prefaced by setting the random seed to a fixed (and for some, memorable) number (Adams, 1980). For normal use of the simulations, this is not necessary.

2.1 sim.congeneric

Classical test theory considers tests to be *tau* equivalent if they have the same covariance with a vector of latent true scores, but perhaps different error variances. Tests are considered *congeneric* if they each have the same true score component (perhaps to a different degree) and independent error components. The sim.congeneric function may be used to generate either structure.

The first example considers four tests with equal loadings on a latent factor (that is, a τ equivalent model). If the number of subjects is not specified, a population correlation matrix will be generated. If N is specified, then the sample correlation matrix is returned. If the "short" option is FALSE, then the population matrix, sample matrix, and sample data are all returned as elements of a list.

```
> library(psych)
> set.seed(42)
> tau <- sim.congeneric(loads = c(0.8, 0.8, 0.8, 0.8))
> tau.samp <- sim.congeneric(loads = c(0.8, 0.8, 0.8, 0.8), N = 100)
> round(tau.samp, 2)
     V1
          ٧2
               VЗ
V1 1.00 0.68 0.72 0.66
V2 0.68 1.00 0.65 0.67
V3 0.72 0.65 1.00 0.76
V4 0.66 0.67 0.76 1.00
> tau.samp <- sim.congeneric(loads = c(0.8, 0.8, 0.8, 0.8), N = 100,
> tau.samp
Call: NULL
 $model (Population correlation matrix)
          V2
               V3
     V1
                    V4
V1 1.00 0.64 0.64 0.64
V2 0.64 1.00 0.64 0.64
```

```
V3 0.64 0.64 1.00 0.64

V4 0.64 0.64 0.64 1.00

$r (Sample correlation matrix for sample size = 100)

V1 V2 V3 V4

V1 1.00 0.70 0.62 0.58

V2 0.70 1.00 0.65 0.64

V3 0.62 0.65 1.00 0.59

V4 0.58 0.64 0.59 1.00

> dim(tau.samp$observed)

[1] 100 4
```

In this last case, the generated data are retrieved from tau.samp\$observed. Congeneric data are created by specifying unequal loading values. The default values are loadings of c(.8,.7,.6,.5). As seen in Figure 1, tau equivalence is the special case where all paths are equal.

```
> cong <- sim.congeneric(N = 100)
> round(cong, 2)

     V1     V2     V3     V4
V1     1.00     0.57     0.53     0.46
V2     0.57     1.00     0.35     0.41
V3     0.53     0.35     1.00     0.43
V4     0.46     0.41     0.43     1.00
```

2.2 sim.hierarchical

The previous function, sim.congeneric, is used when one factor accounts for the pattern of correlations. A slightly more complicated model is when one broad factor and several narrower factors are observed. An example of this structure might be the structure of mental abilities, where there is a broad factor of general ability and several narrower factors (e.g., spatial ability, verbal ability, working memory capacity). Another example is in the measure of psychopathology where a broad general factor of neuroticism is seen along with more specific anxiety, depression, and aggression factors. This kind of structure may be simulated with sim.hierarchical specifying the loadings of each sub factor on a general factor (the g-loadings) as well as the loadings of individual items on the lower order factors (the f-loadings). An early paper describing a bifactor structure was by Holzinger and Swineford (1937). A helpful description of what makes a good general factor is that of Jensen and Weng (1994).

Structural model

Figure 1: Tau equivalent tests are special cases of congeneric tests. Tau equivalence assumes a=b=c=d

For those who prefer real data to simulated data, six data sets are included in the bifactor data set. One is the original 14 variable problem of Holzinger and Swineford (1937) (holzinger), a second is a nine variable problem adapted by ? from Thurstone and Thurstone (1941) (the data set is used as an example in the SAS manual and discussed in great detail by McDonald (1999)), a third is from a recent paper by Reise et al. (2007) with 16 measures of patient reports of interactions with their health care provider.

```
> set.seed(42)
> gload = matrix(c(0.9, 0.8, 0.7), nrow = 3)
> fload <- matrix(c(0.9, 0.8, 0.7, rep(0, 9), 0.7, 0.6, 0.5, rep(0,
      9), 0.6, 0.5, 0.4), ncol = 3)
> fload
      [,1] [,2] [,3]
 [1,]
      0.9
           0.0 0.0
 [2,]
      0.8
           0.0 0.0
 [3,]
      0.7
           0.0
 [4,]
      0.0
           0.7
                 0.0
 [5,]
      0.0
           0.6
                0.0
 [6,]
      0.0
           0.5 0.0
 [7,]
      0.0
           0.0 0.6
 [8,]
      0.0 0.0 0.5
 [9,]
      0.0 0.0 0.4
> bifact <- sim.hierarchical(gload = gload, fload = fload)
> round(bifact, 2)
          V2
               VЗ
                    ۷4
                         ۷5
                              ۷6
                                        V8
                                             ۷9
     V1
                                   ٧7
V1 1.00 0.72 0.63 0.45 0.39 0.32 0.34 0.28 0.23
V2 0.72 1.00 0.56 0.40 0.35 0.29 0.30 0.25 0.20
V3 0.63 0.56 1.00 0.35 0.30 0.25 0.26 0.22 0.18
V4 0.45 0.40 0.35 1.00 0.42 0.35 0.24 0.20 0.16
V5 0.39 0.35 0.30 0.42 1.00 0.30 0.20 0.17 0.13
V6 0.32 0.29 0.25 0.35 0.30 1.00 0.17 0.14 0.11
V7 0.34 0.30 0.26 0.24 0.20 0.17 1.00 0.30 0.24
V8 0.28 0.25 0.22 0.20 0.17 0.14 0.30 1.00 0.20
V9 0.23 0.20 0.18 0.16 0.13 0.11 0.24 0.20 1.00
```

These data can be represented as either a bifactor (Figure 2) or hierarchical (Figure ??) factor solution. The analysis was done with the omega function. The graphs require the Rgraphviz package.

```
> if (require(Rgraphviz)) {
+      op <- par(mfrow = c(1, 2))
+      m.bi <- omega(bifact, title = "A bifactor model")
+      m.hi <- omega(bifact, sl = FALSE, title = "A hierarchical model")
+      op <- par(mfrow = c(1, 1))
+ } else {
+      plot(1:10, main = "Figure missing", typ = "l")
+      points(10:1, typ = "l")
+      text(5, 2, "Rgraphviz needs to be installed")
+ }</pre>
```

A bifactor model

A hierarchical model

Figure 2: (Left panel) A bifactor solution represents each test in terms of a general factor and a residualized group factor. (Right Panel) A hierarchical factor solution has g as a second order factor accounting for the correlations between the first order factors

2.3 sim.item and sim.circ

Many personality questionnaires are thought to represent multiple, independent factors. A particularly interesting case is when there are two factors and the items either have *simple structure* or *circumplex structure*. Examples of such items with a circumplex structure are measures of emotion (Rafaeli and Revelle, 2006) where many different emotion terms can be arranged in a two dimensional space, but where there is no obvious clustering of items. Typical personality scales are constructed to have simple structure, where items load on one and only one factor.

An additional challenge to measurement with emotion or personality items is that the items can be highly skewed and are assessed with a small number of discrete categories (do not agree, somewhat agree, strongly agree).

The more general sim.item function, and the more specific, sim.circ functions simulate items with a two dimensional structure, with or without skew, and varying the number of categories for the items. An example of a circumplex structure is shown in Figure ??

2.4 sim.structure

A more general case is to consider three matrices, \vec{f}_x , $\vec{\phi}_{xy}$, \vec{f}_y which describe, in turn, a measurement model of x variables, \vec{f}_x , a measurement model of y variables, \vec{f}_x , and a covariance matrix between and within the two sets of factors. If \vec{f}_x is a vector and \vec{f}_y and $\vec{p}hi_{xy}$ are NULL, then this is just the congeneric model. If \vec{f}_x is a matrix of loadings with n rows and c columns, then this is a measurement model for n variables across c factors. If $\vec{p}hi_{xy}$ is not null, but \vec{f}_y is NULL, then the factors in \vec{f}_x are correlated. Finally, if all three matrices are not NULL, then the data show the standard linear structural relations (LISREL) structure.

Consider the following examples:

2.4.1 \vec{f}_x is a vector implies a congeneric model

```
> set.seed(42)
> fx <- c(0.9, 0.8, 0.7, 0.6)
> cong1 <- sim.structure(fx)
> cong1
Call: NULL
```

```
> circ <- sim.circ(16)
> f2 <- factor.pa(circ, 2)
> plot(f2, main = "16 simulated variables in a circumplex pattern")
Use ICLUST.graph to see the hierarchical structure
```

16 simulated variables in a circumplex pattern

Figure 3: Emotion items or interpersonal items frequently show a circumplex structure. Data generated by sim.circ and factor loadings found by the principal axis algorithm using factor.pa.

```
$model (Population correlation matrix)
     V1
        V2
               VЗ
V1 1.00 0.72 0.63 0.54
V2 0.72 1.00 0.56 0.48
V3 0.63 0.56 1.00 0.42
V4 0.54 0.48 0.42 1.00
$reliability (population reliability)
[1] 0.81 0.64 0.49 0.36
2.4.2 \vec{f}_x is a matrix implies an independent factors model:
> set.seed(42)
> fx \leftarrow matrix(c(0.9, 0.8, 0.7, rep(0, 9), 0.7, 0.6, 0.5, rep(0, 9))
      9), 0.6, 0.5, 0.4), ncol = 3)
> three.fact <- sim.structure(fx)</pre>
> three.fact
Call: NULL
 $model (Population correlation matrix)
                         V5 V6 V7 V8
     V1 V2
             V3
                   V4
V1 1.00 0.72 0.63 0.00 0.00 0.00 0.00 0.0 0.00
V2 0.72 1.00 0.56 0.00 0.00 0.00 0.00 0.0 0.00
V3 0.63 0.56 1.00 0.00 0.00 0.00 0.00 0.0 0.00
V4 0.00 0.00 0.00 1.00 0.42 0.35 0.00 0.0 0.00
V5 0.00 0.00 0.00 0.42 1.00 0.30 0.00 0.0 0.00
V6 0.00 0.00 0.00 0.35 0.30 1.00 0.00 0.0 0.00
V7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.3 0.24
V8 0.00 0.00 0.00 0.00 0.00 0.00 0.30 1.0 0.20
V9 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.2 1.00
$reliability (population reliability)
[1] 0.81 0.64 0.49 0.49 0.36 0.25 0.36 0.25 0.16
2.4.3 \vec{f}_x is a matrix and Phi \neq I is a correlated factors model
> Phi = matrix(c(1, 0.5, 0.3, 0.5, 1, 0.2, 0.3, 0.2, 1), ncol = 3)
> cor.f3 <- sim.structure(fx, Phi)</pre>
> fx
```

Structural model

Figure 4: Three uncorrelated factors generated using the sim.structure function and drawn using structure.graph.

```
[,1] [,2] [,3]
 [1,]
      0.9
            0.0
                0.0
 [2,]
       0.8
            0.0
                 0.0
 [3,]
       0.7
            0.0
                 0.0
 [4,]
       0.0
            0.7
                 0.0
 [5,]
       0.0
            0.6
                0.0
 [6,]
            0.5
       0.0
                 0.0
 [7,]
            0.0
                 0.6
       0.0
 [8,]
       0.0
           0.0 0.5
 [9,]
       0.0 0.0 0.4
> Phi
     [,1] [,2] [,3]
[1,] 1.0
           0.5
                0.3
[2,]
      0.5
           1.0
                0.2
[3,]
      0.3
          0.2
                1.0
> cor.f3
Call: NULL
 $model (Population correlation matrix)
           ٧2
                       ۷4
     ۷1
                 ٧3
                             ۷5
                                  ۷6
                                        ۷7
                                              ٧8
                                                    ۷9
V1 1.00 0.720 0.630 0.315 0.270 0.23 0.162 0.14 0.108
V2 0.72 1.000 0.560 0.280 0.240 0.20 0.144 0.12 0.096
V3 0.63 0.560 1.000 0.245 0.210 0.17 0.126 0.10 0.084
V4 0.32 0.280 0.245 1.000 0.420 0.35 0.084 0.07 0.056
V5 0.27 0.240 0.210 0.420 1.000 0.30 0.072 0.06 0.048
V6 0.23 0.200 0.175 0.350 0.300 1.00 0.060 0.05 0.040
V7 0.16 0.144 0.126 0.084 0.072 0.06 1.000 0.30 0.240
V8 0.14 0.120 0.105 0.070 0.060 0.05 0.300 1.00 0.200
V9 0.11 0.096 0.084 0.056 0.048 0.04 0.240 0.20 1.000
$reliability (population reliability)
[1] 0.81 0.64 0.49 0.49 0.36 0.25 0.36 0.25 0.16
```

Using symbolic loadings and path coefficients For some purposes, it is helpful not specify particular values for the paths, but rather to think of them symbolically. This can be shown with symbolic loadings and path coefficients by using the structure.list and phi.list functions to create the fx and Phi matrices (Figure 5).

```
> fxs <- structure.list(9, list(F1 = c(1, 2, 3), F2 = c(4, 5, 6),
      F3 = c(7, 8, 9))
> Phis <- phi.list(3, list(F1 = c(2, 3), F2 = c(1, 3), F3 = c(1, 3)
+
      2)))
> fxs
            F2
                 F3
      F1
 [1,] "a1"
           "0"
                 "0"
 [2,] "a2" "0"
 [3,] "a3"
           "0"
                 "0"
            "b4" "0"
 [4,] "0"
           "b5" "0"
 [5,] "0"
 [6,] "0"
            "b6" "0"
 [7,] "0"
            "0"
 [8,] "0"
                 "c8"
 [9.] "0"
                 "c9"
> Phis
   F1
         F2
                F3
         "rba" "rca"
F1 "1"
F2 "rab" "1"
F3 "rac" "rbc" "1"
```

The structure.list and phi.list functions allow for for creation of fx, Phi, and fy matrices in a very compact form, just by specifying the relevant variables.

Drawing path models from Exploratory Factor Analysis solutions Alternatively, this result can represent the estimated factor loadings and oblique correlations found using factanal (Maximum Likelihood factoring) or factor.pa (Principal axis or minimum residual (minres) factoring) followed by a promax rotation using the Promax function (Figure 6. Comparing this figure with the previous one (Figure 5), it will be seen that one path was dropped because it was less than the arbitrary "cut" value of .2.

```
> f3.p <- Promax(factor.pa(cor.f3$model, 3))</pre>
```

2.4.4 \vec{f}_x and \vec{f}_y are matrices, and Phi $\neq I$ represents their correlations

A more complicated model is when there is a $\vec{f_y}$ vector or matrix representing a set of Y latent variables that are associated with the a set of y variables. In this case, the Phi matrix is a set of correlations within the X set and between the X and Y set.

```
> if (require(Rgraphviz)) {
+    corf3.mod <- structure.graph(fxs, Phis)
+ } else {
+    plot(1:10, main = "Figure missing", typ = "l")
+    points(10:1, typ = "l")
+    text(5, 2, "Rgraphviz needs to be installed")
+ }</pre>
```

Structural model

Figure 5: Three correlated factors with symbolic paths. Created using structure.graph and structure.list and phi.list for ease of input.

```
> if (require(Rgraphviz)) {
+    mod.f3p <- structure.graph(f3.p, cut = 0.2)
+ } else {
+    plot(1:10, main = "Figure missing", typ = "1")
+    points(10:1, typ = "1")
+    text(5, 2, "Rgraphviz needs to be installed")
+ }</pre>
```

Structural model

Figure 6: The empirically fitted structural model. Paths less than cut (.2 in this case, the default is .3) are not shown.

```
> set.seed(42)
> fx < -matrix(c(0.9, 0.8, 0.7, rep(0, 9), 0.7, 0.6, 0.5, rep(0, 9))
      9), 0.6, 0.5, 0.4), ncol = 3)
> fy \leftarrow c(0.6, 0.5, 0.4)
> Phi <- matrix(c(1, 0.48, 0.32, 0.4, 0.48, 1, 0.32, 0.3, 0.32,
      0.32, 1, 0.2, 0.4, 0.3, 0.2, 1), ncol = 4)
> twelveV <- sim.structure(fx, Phi, fy)$model
> colnames(twelveV) <- rownames(twelveV) <- c(paste("x", 1:9, sep = ""),</pre>
      paste("y", 1:3, sep = ""))
> round(twelveV, 2)
          x2
     x1
               xЗ
                    x4
                         x5
                              x6
                                    x7
                                         8x
                                              x9
                                                   y1
                                                        y2
x1 1.00 0.72 0.63 0.30 0.26 0.22 0.17 0.14 0.12 0.22 0.18 0.14
x2 0.72 1.00 0.56 0.27 0.23 0.19 0.15 0.13 0.10 0.19 0.16 0.13
x3 0.63 0.56 1.00 0.24 0.20 0.17 0.13 0.11 0.09 0.17 0.14 0.11
x4 0.30 0.27 0.24 1.00 0.42 0.35 0.13 0.11 0.09 0.13 0.10 0.08
x5 0.26 0.23 0.20 0.42 1.00 0.30 0.12 0.10 0.08 0.11 0.09 0.07
x6 0.22 0.19 0.17 0.35 0.30 1.00 0.10 0.08 0.06 0.09 0.08 0.06
x7 0.17 0.15 0.13 0.13 0.12 0.10 1.00 0.30 0.24 0.07 0.06 0.05
x8 0.14 0.13 0.11 0.11 0.10 0.08 0.30 1.00 0.20 0.06 0.05 0.04
x9 0.12 0.10 0.09 0.09 0.08 0.06 0.24 0.20 1.00 0.05 0.04 0.03
y1 0.22 0.19 0.17 0.13 0.11 0.09 0.07 0.06 0.05 1.00 0.30 0.24
y2 0.18 0.16 0.14 0.10 0.09 0.08 0.06 0.05 0.04 0.30 1.00 0.20
y3 0.14 0.13 0.11 0.08 0.07 0.06 0.05 0.04 0.03 0.24 0.20 1.00
```

Data with this structure may be created using the sim.structure function, and shown either with the numeric values or symbolically using the structure.graph function (Figure 7).

```
> fxs <- structure.list(9, list(X1 = c(1, 2, 3), X2 = c(4, 5, 6),
+ X3 = c(7, 8, 9))
> phi <- phi.list(4, list(F1 = c(4), F2 = c(4), F3 = c(4), F4 = c(1, 2, 3))
> fyx <- structure.list(3, list(Y = c(1, 2, 3)), "Y")
```

2.4.5 A hierarchical structure among the latent predictors.

Measures of intelligence and psychopathology frequently have a general factor as well as multiple group factors. The general factor then is thought to predict some dependent latent variable. Compare this with the previous model (see Figure 7).

These two models can be compared using structural modeling procedures (see below).

```
> if (require(Rgraphviz)) {
+    sg3 <- structure.graph(fxs, phi, fyx)
+ } else {
+    plot(1:10, main = "Figure missing", typ = "1")
+    points(10:1, typ = "1")
+    text(5, 2, "Rgraphviz needs to be installed")
+    sg3 <- structure.sem(fxs, phi, fyx)
+ }</pre>
```

Structural model

Figure 7: A symbolic structural model. Three independent latent variables are regressed on a latent Y.

Structural model

Figure 8: A symbolic structural model with a general factor and three group factors. The general factor is regressed on the latent Y variable.

3 Exploratory functions for analyzing structure

Given correlation matrices such as those seen above for congeneric or bifactor models, the question becomes how best to estimate the underlying structure. Because these data sets were generated from a known model, the question becomes how well does a particular model recover the underlying structure.

3.1 Exploratory simple structure models

The technique of *principal components* provides a set of weighted linear composites that best aproximates a particular correlation or covariance matrix. If these are then *rotated* to provide a more interpretable solution, the components are no longer the *principal* components. The **principal** function will extract the first n principal components (default value is 1) and if n>1, rotate to *simple structure* using a varimax, quartimin, or Promax criterion.

```
> principal(cong1$model)
  V PC1
1 1 0.89
2 2 0.85
3 3 0.80
4 4 0.73
                PC1
SS loadings
               2.69
Proportion Var 0.67
Test of the hypothesis that 1 factor is sufficient.
The degrees of freedom for the model is 2 and the fit was 0.14
Validity of unit weighted factor scores
                                                1
> factor.pa(cong1$model)
  V PA1
1 1 0.9
2 2 0.8
3 3 0.7
4 4 0.6
```

PA1 SS loadings 2.30 Proportion Var 0.57

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the model is 2 and the fit was 0

Measures of factor score adequacy	PA1
Correlation of scores with factors	0.94
Multiple R square of scores with factors	0.88
Minimum correlation of factor score estimates	0.76
Validity of unit weighted factor scores	0.92

It is important to note that although the principal components function does not exactly reproduce the model parameters, the factor.pa function, implementing principal axes or minimum residual (minres) factor analysis, does.

Consider the case of three underlying factors as seen in the bifact example above. Because the number of observations is not specified, there is no associated χ^2 value. The factor.congruence function reports the cosine of the angle between the factors.

```
> pc3 <- principal(bifact, 3)</pre>
> pa3 <- factor.pa(bifact, 3)</pre>
> ml3 <- factanal(covmat = bifact, factors = 3)</pre>
> pc3
   V PC1 PC3 PC2
V1 1 0.82
V2 2 0.82
V3 3 0.82
V4 4 0.32 0.68
          0.70
V5 5
          0.77
V6 6
V7 7
                0.66
V8 8
                0.68
V9 9
                0.71
                     PC3 PC2
                 PC1
SS loadings
                2.25 1.73 1.53
Proportion Var 0.25 0.19 0.17
Cumulative Var 0.25 0.44 0.61
```

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the model is 12 and the fit was 0.71

Validity of unit weighted factor scores 0.94 0.95 0.97

> pa3

V PA1 PA3 PA2 V1 1 0.78 -0.34 V2 2 0.70 V3 3 0.61 V4 4 -0.63 -0.54 V5 5 V6 6 -0.45V7 7 0.55 V8 8 0.47 V9 9 0.37

PA1 PA3 PA2
SS loadings 1.67 1.21 0.93
Proportion Var 0.19 0.13 0.10
Cumulative Var 0.19 0.32 0.42

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the model is 12 and the fit was 0

Measures of factor score adequacy	PA1 PA3 PA2
Correlation of scores with factors	0.85 0.73 0.67
Multiple R square of scores with factors	0.72 0.53 0.45
Minimum correlation of factor score estimates	0.44 0.06 -0.11
Validity of unit weighted factor scores	0.8 0.72 0.66

> m13

Call:

factanal(factors = 3, covmat = bifact)

Uniquenesses:

V1 V2 V3 V4 V5 V6 V7 V8 V9 0.19 0.36 0.51 0.51 0.64 0.75 0.64 0.75 0.84

Loadings:

```
Factor1 Factor2 Factor3
V1 0.785
           0.336
                   0.286
V2 0.697
           0.298
                   0.254
                   0.222
V3 0.610
           0.261
V4 0.242
           0.631
                   0.182
V5 0.207
           0.541
                   0.156
V6 0.173
           0.451
                   0.130
V7 0.167
           0.148
                   0.557
V8 0.139
           0.124
                   0.464
V9 0.112
                   0.371
```

Factor1 Factor2 Factor3

SS loadings	1.666	1.212	0.933
Proportion Var	0.185	0.135	0.104
Cumulative Var	0.185	0.320	0.423

The degrees of freedom for the model is 12 and the fit was 0

> factor.congruence(pc3, pa3)

```
PA1 PA3 PA2
PC1 0.99 -0.70 0.65
PC3 0.57 -0.96 0.50
PC2 0.45 -0.43 0.95
```

> factor.congruence(pa3, ml3)

Factor1 Factor2 Factor3 PA1 1.00 0.72 0.67 PA3 -0.72 -1.00 -0.62 PA2 0.67 0.62 1.00

By default, all three of these procedures use the varimax rotation criterion. Perhaps it is useful to apply an oblique transformation such as Promax or oblimin to the results. The Promax function in *psych* differs slightly from the standard promax in that it reports the factor intercorrelations.

VЗ	3	0.6	35			
۷4	4			0.69		
٧5	5			0.59		
۷6	6			0.49		
٧7	7				0.60	
8V	8				0.50	
۷9	9				0.40	
				Factor1	Factor2	Factor3
SS	load	ings	3	1.66	1.08	0.77
Proportion Var			Var	0.18	0.12	0.09
Cumulative Var			Var	0.18	0.30	0.39
With factor correlations of						
Factor1 Factor2 Factor3						
Fac	ctor1		1.00	0.6	7 0.59	9
Fac	ctor2		0.67	1.00	0.5	5

3.2 Exploratory hierarchical models

0.55

1.00

0.59

In addition to the conventional oblique factor model, an alternative model is to consider the correlations between the factors to represent a higher order factor. This can be shown either as a bifactor solution Holzinger and Swineford (1937); Schmid and Leiman (1957) with a general factor for all variables and a set of residualized group factors, or as a hierarchical structure. An exploratory hierarchical model can be applied to this kind of data structure using the omega function. Graphic options include drawing a Schmid - Leiman bifactor solution (Figure 9) or drawing a hierarchical factor solution f(Figure 10).

3.2.1 A bifactor solution

Factor3

The bifactor solution has a general factor loading for each variable as well as a set of residual group factors. This approach has been used extensively in the measurement of ability and has more recently been used in the measure of psychopathology (Reise et al., 2007). Data sets included in the bifactor data include the original (Holzinger and Swineford, 1937) data set (holzinger) as well as a set from Reise et al. (2007) (reise) and a nine variable problem from Thurstone.

```
> if (require(Rgraphviz)) {
+    om.bi <- omega(bifact)
+ } else {
+    plot(1:10, main = "Figure missing", typ = "1")
+    points(10:1, typ = "1")
+    text(5, 2, "Rgraphviz needs to be installed")
+    om.bi <- omega(bifact, plot = FALSE)
+ }</pre>
```

Omega

Figure 9: An exploratory bifactor solution to the nine variable problem

3.2.2 A hierarchical solution

Both of these graphical representations are reflected in the output of the omega function. The first was done using a Schmid-Leiman transformation, the second was not. As will be seen later, the objects returned from these two analyses may be used as models for a sem analysis. It is also useful to examine the estimates of reliability reported by omega.

> om.bi

Omega Total

Omega

Call: omega(m = bifact)
Alpha: 0.79
G.6: 0.79
Omega Hierarchical: 0.72
Omega H asymptotic: 0.86

Schmid Leiman Factor loadings greater than 0.2

0.83

```
F1* F2* F3* h2
                             u2
V1 0.81 0.39
                        0.81
V2 0.72 0.35
                        0.64 0.36
V3 0.63 0.31
                        0.49 0.51
V4 0.56
                        0.49 0.51
             0.42
V5 0.48
             0.36
                        0.36 0.64
V6 0.40
             0.30
                        0.25 0.75
V7 0.42
                  0.43 0.36 0.64
V8 0.35
                  0.36 0.25 0.75
V9 0.28
                  0.29
                             0.84
```

```
With eigenvalues of:
```

```
g F1* F2* F3*
2.65 0.37 0.40 0.40
```

```
general/max 6.66 max/min = 1.08
The degrees of freedom for the model is 12 and the fit was 0
```

Yet one more way to treat the hierarchical structure of a data set is to consider hierarchical cluster analysis using the ICLUST algorithm (Figure 11). ICLUST is most appropriate for forming item composites.

```
> if (require(Rgraphviz)) {
+    om.hi <- omega(bifact, s1 = FALSE)
+ } else {
+    plot(1:10, main = "Figure missing", typ = "1")
+    points(10:1, typ = "1")
+    text(5, 2, "Rgraphviz needs to be installed")
+ }</pre>
```

Omega

Figure 10: An exploratory hierarchical solution to the nine variable problem.

Hierarchical cluster analysis of bifact data

Figure 11: A hierarchical cluster analysis of the bifact data set using ICLUST

4 Confirmatory models

Although the exploratory models shown above do estimate the goodness of fit of the model and compare the residual matrix to a zero matrix using a χ^2 statistic, they estimate more parameters than are necessary if there is indeed a simple structure, and they do not allow for tests of competing models. The sem function in the *sem* package by John Fox allows for confirmatory tests. The interested reader is referred to the *sem* manual for more detail (Fox, 2009).

4.1 Using psych as a front end for the sem package

Because preparation of the sem commands is a bit tedious, several of the psych package functions have been designed to provide the appropriate commands. That is, the functions structure.list, phi.list, structure.graph, structure.sem, and omega.graph may be used as a front end to sem. Usually with no modification, but sometimes with just slight modification, the model output from the structure.graph, structure.sem, and omega.graph functions is meant to provide the appropriate commands for sem.

4.2 Testing a congeneric model versus a tau equivalent model

The congeneric model is a one factor model with possibly unequal factor loadings. The tau equivalent model model is one with equal factor loadings. Tests for these may be done by creating the appropriate structures. Either the structure.graph function which requires Rgraphviz or the structure.sem function which does not may be used.

The following example tests the hypothesis (which is actually false) that the correlations found in the cong data set (see 2.1) are tau equivalent. Because the variable labels in that data set were V1 ... V4, we specify the labels to match those.

```
7 V3<->V3 x3e
8 V4<->V4 x4e
9 X1<->X1 <fixed>
> sem.tau <- sem(mod.tau, cong, 100)
> summary(sem.tau, digits = 2)
Model Chisquare = 6.6 Df = 5 Pr(>Chisq) = 0.25
Chisquare (null model) = 105
                              Df = 6
Goodness-of-fit index = 0.97
Adjusted goodness-of-fit index = 0.94
RMSEA index = 0.057 90% CI: (NA, 0.16)
Bentler-Bonnett NFI = 0.94
Tucker-Lewis NNFI = 0.98
Bentler CFI = 0.98
SRMR = 0.07
BIC = -16
Normalized Residuals
  Min. 1st Qu. Median
                        Mean 3rd Qu.
                                       Max.
 -1.030 -0.442 -0.250 -0.079
                               0.527
                                       0.888
Parameter Estimates
   Estimate Std Error z value Pr(>|z|)
   0.69
           0.064
                    10.8
                            0.0e+00 V1 <--- X1
x1e 0.43
           0.082
                     5.2
                            1.8e-07 V1 <--> V1
x2e 0.56
           0.098
                      5.7
                           1.5e-08 V2 <--> V2
x3e 0.58
           0.101
                      5.7
                            1.1e-08 V3 <--> V3
x4e 0.59
           0.103
                      5.8
                            8.3e-09 V4 <--> V4
Iterations = 10
Test whether the data are congeneric. That is, whether a one factor model fits. Compare
this to the prior model using the anova function.
1:4, sep = "")
> mod.cong
```

Parameter StartValue

```
4 X1->V4 d
5 V1<->V1 x1e
6 V2<->V2 x2e
7 V3<->V3 x3e
8 V4<->V4 x4e
9 X1<->X1 <fixed>
                   1
> sem.cong <- sem(mod.cong, cong, 100)
> summary(sem.cong, digits = 2)
Model Chisquare = 2.9 Df = 2 Pr(>Chisq) = 0.23
Chisquare (null model) = 105
                               Df = 6
Goodness-of-fit index = 0.99
 Adjusted goodness-of-fit index = 0.93
RMSEA index = 0.069
                       90% CI: (NA, 0.22)
 Bentler-Bonnett NFI = 0.97
 Tucker-Lewis NNFI = 0.97
Bentler CFI = 1
 SRMR = 0.03
BIC = -6.3
Normalized Residuals
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                          Max.
 -0.574 -0.070
                 0.034
                         0.011
                                 0.160
                                         0.541
Parameter Estimates
   Estimate Std Error z value Pr(>|z|)
                              0.0e+00 V1 <--- X1
            0.098
                      8.4
   0.83
b
   0.66
            0.100
                      6.6
                              3.4e-11 V2 <--- X1
                      6.2
                              6.4e-10 V3 <--- X1
   0.63
            0.102
С
   0.59
            0.105
                      5.7
                              1.5e-08 V4 <--- X1
x1e 0.31
            0.101
                      3.1
                              2.1e-03 V1 <--> V1
x2e 0.56
            0.100
                      5.6
                              2.1e-08 V2 <--> V2
x3e 0.61
            0.104
                      5.8
                              6.5e-09 V3 <--> V3
```

Iterations = 12

x4e 0.65

> anova(sem.cong, sem.tau)

0.111

LR Test for Difference Between Models

Model Df Model Chisq Df LR Chisq Pr(>Chisq)

5.9

4.7e-09 V4 <--> V4

```
Model 1 2 2.9417
Model 2 5 6.5935 3 3.6518 0.3016
```

The anova comparison of the congeneric versus tau equivalent model shows that the change in χ^2 is significant given the change in degrees of freedom.

4.3 Testing the dimensionality of a hierarchical data set by creating the model

The bifact correlation matrix was created to represent a hierarchical structure. Various confirmatory models can be applied to this matrix.

The first example creates the model directly, the next several create models based upon exploratory factor analyses. mod.one is a congeneric model of one factor accounting for the relationships between the nine variables. Although not correct, with 100 subjects, this model can not be rejected. However, an examination of the residuals suggests serious problems with the model.

```
> mod.one <- structure.sem(letters[1:9], labels = paste("V", 1:9,
> mod.one
           Parameter StartValue
   Path
1
  X1->V1
2
  X1->V2
           b
3
  X1->V3
           С
4
  X1->V4
           d
5
  X1->V5
  X1->V6
7
  X1->V7
  X1->V8
8
  X1->V9
           i
10 V1<->V1 x1e
11 V2<->V2 x2e
12 V3<->V3 x3e
13 V4<->V4 x4e
14 V5<->V5 x5e
15 V6<->V6 x6e
16 V7<->V7 x7e
17 V8<->V8 x8e
18 V9<->V9 x9e
19 X1<->X1 <fixed>
                      1
```

```
> sem.one <- sem(mod.one, bifact, 100)</pre>
> summary(sem.one, digits = 2)
Model Chisquare = 19
                        Df = 27 Pr(>Chisq) = 0.88
 Chisquare (null model) = 235
                                 Df = 36
 Goodness-of-fit index = 0.96
 Adjusted goodness-of-fit index = 0.93
RMSEA index = 0
                   90% CI: (NA, 0.040)
Bentler-Bonnett NFI = 0.92
Tucker-Lewis NNFI = 1.1
Bentler CFI = 1
 SRMR = 0.053
BIC = -106
Normalized Residuals
   Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                 Max.
-2.7e-01 -1.8e-01 -1.4e-06 1.4e-01 1.2e-01
                                             1.6e+00
Parameter Estimates
    Estimate Std Error z value Pr(>|z|)
a
   0.88
             0.084
                       10.5
                               0.0e+00 V1 <--- X1
   0.80
             0.088
                        9.1
                               0.0e+00 V2 <--- X1
b
   0.70
             0.092
                        7.6
                               3.8e-14 V3 <--- X1
С
                               4.9e-08 V4 <--- X1
d
   0.54
             0.099
                        5.5
                               3.5e-06 V5 <--- X1
   0.47
             0.101
                        4.6
е
f
   0.39
             0.103
                        3.8
                               1.3e-04 V6 <--- X1
                               8.3e-05 V7 <--- X1
   0.40
             0.103
                        3.9
g
                               1.1e-03 V8 <--- X1
   0.34
             0.104
                        3.3
                               9.1e-03 V9 <--- X1
   0.27
             0.105
                        2.6
x1e 0.23
             0.061
                        3.7
                               2.4e-04 V1 <--> V1
x2e 0.36
             0.069
                        5.3
                               1.1e-07 V2 <--> V2
x3e 0.51
             0.084
                        6.1
                               1.0e-09 V3 <--> V3
                               4.1e-11 V4 <--> V4
x4e 0.71
                        6.6
             0.107
x5e 0.78
                               1.6e-11 V5 <--> V5
             0.116
                        6.7
                        6.8
                               7.5e-12 V6 <--> V6
x6e 0.84
             0.123
x7e 0.84
             0.122
                        6.8
                               7.9e-12 V7 <--> V7
x8e 0.88
             0.128
                        6.9
                               5.0e-12 V8 <--> V8
```

7.0

Iterations = 14

x9e 0.92

> round(residuals(sem.one), 2)

0.133

3.5e-12 V9 <--> V9

```
۷5
      ۷1
            V2
                  ٧3
                        ۷4
                                     ۷6
                                           ۷7
                                                 V8
                                                       V9
V1
   0.00
          0.02
                0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01
   0.02
          0.00
                0.00 -0.03 -0.03 -0.03 -0.02 -0.02 -0.02
   0.02
          0.00
                0.00 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02
                                        0.02
V4 -0.02 -0.03 -0.02
                     0.00
                           0.17 0.14
                                               0.01
                            0.00
V5 -0.02 -0.03 -0.03
                      0.17
                                  0.11
                                         0.01
                                               0.01
                                                     0.01
V6 -0.02 -0.03 -0.02
                            0.11
                                  0.00
                      0.14
                                         0.01
                                               0.01
                                                     0.00
                            0.01
V7 -0.02 -0.02 -0.02
                      0.02
                                  0.01
                                         0.00
                                               0.16
V8 -0.02 -0.02 -0.02
                      0.01
                            0.01
                                  0.01
                                         0.16
                                               0.00
                                                     0.11
V9 -0.01 -0.02 -0.02 0.01 0.01
                                  0.00
                                         0.13
                                               0.11
                                                     0.00
```

4.4 Testing the dimensionality based upon an exploratory analysis

Alternatively, the output from an exploratory factor analysis can be used as input to the structure.sem function.

```
> f1 <- factanal(covmat = bifact, factors = 1)
> mod.f1 <- structure.sem(f1)</pre>
> sem.f1 <- sem(mod.f1, bifact, 100)
> sem.f1
Model Chisquare = 18.72871
                                Df = 27
       V1
                 V2
                            ٧3
                                       V4
                                                 ۷5
                                                            V6
                                                                      ۷7
                                                                                 V8
0.8801449 0.7978613 0.6986695 0.5401625 0.4691098 0.3944311 0.4036073 0.3400459
       V9
                           x2e
                                                           x5e
                x1e
                                      хЗе
                                                x4e
                                                                     x6e
0.2742160 0.2253461 0.3634188 0.5118600 0.7082243 0.7799344 0.8444243 0.8371012
      x8e
                x9e
0.8843691 0.9248059
Iterations = 14
```

The answers are, of course, identical.

4.5 Specifying a three factor model

An alternative model is to extract three factors and try this solution. The factor.pa factor analysis function is used to detect the structure. Alternatively, the factanal could have been used.

```
> f3 <- factor.pa(bifact, 3)</pre>
> mod.f3 <- structure.sem(f3)</pre>
> sem.f3 <- sem(mod.f3, bifact, 100)
> summary(sem.f3, digits = 2)
Model Chisquare = 49
                        Df = 26 Pr(>Chisq) = 0.0037
Chisquare (null model) = 235
                                 Df = 36
Goodness-of-fit index = 0.9
 Adjusted goodness-of-fit index = 0.82
RMSEA index = 0.095 90% CI: (0.053, 0.14)
Bentler-Bonnett NFI = 0.79
Tucker-Lewis NNFI = 0.84
Bentler CFI = 0.88
SRMR = 0.20
BIC = -70
Normalized Residuals
```

Min. 1st Qu. Median Mean 3rd Qu. Max. -2.0e-05 1.9e-05 1.8e+00 1.7e+00 2.6e+00 4.0e+00

Parameter Estimates

Estimate Std Error z value Pr(>|z|) F1V1 0.79 0.094 8.4 0.0e+00 V1 <--- PA1 F2V1 0.23 0.089 2.6 1.0e-02 V1 <--- PA3 F1V2 0.80 0.093 8.6 0.0e+00 V2 <--- PA1 F1V3 0.70 0.095 7.4 1.7e-13 V3 <--- PA1 5.4 F2V4 0.70 0.129 6.1e-08 V4 <--- PA3 4.8 V5 <--- PA3 F2V5 0.60 0.124 1.2e-06 4.2 F2V6 0.50 0.120 3.1e-05 V6 <--- PA3 F3V7 0.60 0.190 3.2 1.5e-03 V7 <--- PA2 F3V8 0.50 0.167 3.0 2.8e-03 V8 <--- PA2 F3V9 0.40 0.147 2.7 6.5e-03 V9 <--- PA2 8.5e-03 V1 <--> V1 x1e 0.19 0.074 2.6 x2e 0.36 0.085 4.2 2.5e-05 V2 <--> V2 V3 <--> V3 x3e 0.51 5.7 1.2e-08 0.089 V4 <--> V4 x4e 0.51 0.152 3.4 7.8e-04 x5e 0.64 0.136 4.7 2.4e-06 V5 <--> V5 x6e 0.75 5.8 8.3e-09 V6 <--> V6 0.130 x7e 0.64 0.219 2.9 3.5e-03 V7 <--> V7 4.3 V8 <--> V8 x8e 0.75 0.175 1.8e-05 x9e 0.84 5.6 1.6e-08 V9 <--> V9 0.149

Iterations = 34

> round(residuals(sem.f3), 2)

```
V1
          V2
               V3
                    ۷4
                         ۷5
                              ۷6
                                    V7
                                         V8
                                              V9
V1 0.13 0.09 0.08 0.29 0.25 0.21 0.34 0.28 0.23
V2 0.09 0.00 0.00 0.40 0.35 0.29 0.30 0.25 0.20
V3 0.08 0.00 0.00 0.35 0.30 0.25 0.26 0.22 0.18
V4 0.29 0.40 0.35 0.00 0.00 0.00 0.24 0.20 0.16
V5 0.25 0.35 0.30 0.00 0.00 0.00 0.20 0.17 0.13
V6 0.21 0.29 0.25 0.00 0.00 0.00 0.17 0.14 0.11
V7 0.34 0.30 0.26 0.24 0.20 0.17 0.00 0.00 0.00
V8 0.28 0.25 0.22 0.20 0.17 0.14 0.00 0.00 0.00
V9 0.23 0.20 0.18 0.16 0.13 0.11 0.00 0.00 0.00
```

The residuals show serious problems with this model. Although the residuals within each of the three factors are zero, the residuals between groups are much too large.

4.6 Allowing for an oblique solution

That solution is clearly very bad. What would happen if the exploratory solution were allowed to have correlated (oblique) factors? This analysis is done on a sample of size 100 with the bifactor structure created by sim.hierarchical.

```
> set.seed(42)
> bifact.s <- sim.hierarchical()</pre>
> f3 <- factor.pa(bifact.s, 3)
> f3.p <- Promax(f3)
> mod.f3p <- structure.sem(f3.p)</pre>
> mod.f3p
             Parameter StartValue
   Path
1 PA1->V1
             F1V1
  PA1->V2
             F1V2
3 PA1->V3
             F1V3
4
  PA3->V4
             F2V4
 PA3->V5
5
             F2V5
 PA3->V6
             F2V6
6
7 PA2->V7
             F3V7
8
 PA2->V8
             F3V8
  PA2->V9
             F3V9
```

```
10 V1<->V1
             x1e
11 V2<->V2
             x2e
12 V3<->V3
             хЗе
13 V4<->V4
             x4e
14 V5<->V5
             x5e
15 V6<->V6
             x6e
16 V7<->V7
             x7e
17 V8<->V8
             x8e
18 V9<->V9
19 PA3<->PA1 rF2F1
20 PA2<->PA1 rF3F1
21 PA2<->PA3 rF3F2
22 PA1<->PA1 <fixed>
                        1
23 PA3<->PA3 <fixed>
                        1
24 PA2<->PA2 <fixed>
                        1
```

Unfortunately, the model as created automatically by structure.sem is not identified and would fail to converge if run. The problem is that the covariances between items on different factors is a product of the factor loadings and the between factor covariance. Multiplying the factor loadings by a constant can be compensated for by dividing the between factor covariances by the same constant. Thus, one of these paths must be fixed to provide a scale for the solution. That is, it is necessary to fix some of the paths to set values in order to properly identify the model. This can be done using the edit function and hand modification of particular paths. Set one path for each latent variable to be fixed.

```
e.g.,
```

 $mod.adjusted \leftarrow edit(mod.f3p)$

Alternatively, the model can be adjusted by specifying the changes directly.

When this is done

```
> mod.f3p.adjusted <- mod.f3p
> mod.f3p.adjusted[c(1, 4), 2] <- NA
> mod.f3p.adjusted[c(1, 4), 3] <- "1"
> sem.f3p.adjusted <- sem(mod.f3p.adjusted, bifact.s, 100)
> summary(sem.f3p.adjusted, digits = 2)

Model Chisquare = 8.7   Df = 26 Pr(>Chisq) = 1
   Chisquare (null model) = 169   Df = 36
   Goodness-of-fit index = 0.98
   Adjusted goodness-of-fit index = 0.97
   RMSEA index = 0 90% CI: (NA, NA)
```

```
Bentler-Bonnett NFI = 0.95
Tucker-Lewis NNFI = 1.2
Bentler CFI = 1
SRMR = 0.14
BIC = -111
```

Normalized Residuals

Min. 1st Qu. Median Mean 3rd Qu. Max. -2.19 -1.05 -0.64 -0.81 -0.41 -0.16

Parameter Estimates

	Estimate	Std Error	z value	Pr(> z)	
F1V2	0.78	0.112	7.0	3.1e-12	V2 < PA1
F1V3	0.67	0.115	5.9	4.6e-09	V3 < PA1
F2V5	0.66	0.129	5.1	3.5e-07	V5 < PA3
F2V6	0.55	0.129	4.3	2.0e-05	V6 < PA3
F3V7	0.64	0.138	4.6	3.6e-06	V7 < PA2
F3V8	0.53	0.135	4.0	7.8e-05	V8 < PA2
F3V9	0.43	0.135	3.2	1.5e-03	V9 < PA2
x1e	0.31	0.094	3.3	1.1e-03	V1 <> V1
x2e	0.53	0.098	5.4	6.3e-08	V2 <> V2
хЗе	0.65	0.107	6.1	9.9e-10	V3 <> V3
x4e	0.39	0.127	3.1	2.0e-03	V4 <> V4
x5e	0.68	0.118	5.7	9.3e-09	V5 <> V5
x6e	0.77	0.123	6.3	3.3e-10	V6 <> V6
x7e	0.64	0.146	4.4	1.2e-05	V7 <> V7
x8e	0.75	0.137	5.5	4.0e-08	V8 <> V8
x9e	0.84	0.136	6.2	6.6e-10	V9 <> V9
rF2F1	0.74	0.090	8.3	2.2e-16	PA1 <> PA3
rF3F1	0.68	0.121	5.6	2.4e-08	PA1 <> PA2
rF3F2	0.60	0.140	4.3	1.8e-05	PA3 <> PA2

Iterations = 18

The structure being tested may be seen using structure.graph

Structural model

Figure 12: A three factor, oblique solution.

4.7 Extract a bifactor solution using omega and then test that model using sem

A bifactor solution has previously been shown (Figure 9). The output from the omega function includes the sem commands for the analysis. As an example of doing this with real rather than simulated data, consider 9 variables from Thurstone. For completeness, the std.coef from sem is used as well as the summary function.

4.7.1 sem of Thurstone 9 variable problem

The sem manual includes an example of a hierarchical solution to 9 mental abilities originally reported by Thurstone and used in the SAS manual for PROC CALIS and discussed in detail by McDonald (1999). The data matrix, as reported by Fox may be found in the bifactor data set. Using the commands just shown, it is possible to analyze this data set using a bifactor solution (Figure 13).

```
> sem.bi <- sem(om.th.bi$model, Thurstone, 213)
> summary(sem.bi, digits = 2)
Model Chisquare = 24
                        Df = 18 Pr(>Chisq) = 0.15
Chisquare (null model) = 1102
                                  Df = 36
Goodness-of-fit index = 0.98
Adjusted goodness-of-fit index = 0.94
RMSEA index = 0.04
                      90% CI: (NA, 0.078)
Bentler-Bonnett NFI = 0.98
Tucker-Lewis NNFI = 0.99
Bentler CFI = 1
SRMR = 0.035
BIC = -72
Normalized Residuals
   Min. 1st Qu.
                   Median
                              Mean 3rd Qu.
                                                 Max.
-8.2e-01 -3.3e-01 -8.9e-07 2.8e-02 1.6e-01 1.8e+00
Parameter Estimates
                  Estimate Std Error z value Pr(>|z|)
Sentences
                   0.77
                           0.073
                                      10.57
                                              0.0e + 00
Vocabulary
                   0.79
                           0.072
                                      10.92
                                              0.0e+00
```

0.75

0.61

0.60

Sent.Completion

First.Letters

4.Letter.Words

10.27

8.43

8.09

0.0e+00

0.0e+00

6.7e-16

0.073

0.072

0.074

Omega

Figure 13: A bifactor solution to the Thurstone 9 variable problem. All items load on a general factor of ability, the residual factors account for the correlations between items within groups.

Suffixes	0.57	0.071	8.00	1.3e-15
Letter.Series	0.57	0.074	7.63	2.3e-14
Pedigrees	0.66	0.069	9.55	0.0e+00
Letter.Group	0.53	0.079	6.71	2.0e-11
F1*Sentences	0.49	0.085	5.71	1.1e-08
F1*Vocabulary	0.45	0.090	5.00	5.7e-07
F1*Sent.Completion	0.40	0.093	4.33	1.5e-05
F2*First.Letters	0.61	0.086	7.16	8.2e-13
F2*4.Letter.Words	0.51	0.085	5.96	2.5e-09
F2*Suffixes	0.39	0.078	5.04	4.7e-07
F3*Letter.Series	0.73	0.159	4.56	5.1e-06
F3*Pedigrees	0.25	0.089	2.77	5.6e-03
F3*Letter.Group	0.41	0.122	3.35	8.1e-04
e1	0.17	0.034	5.05	4.4e-07
e2	0.17	0.030	5.65	1.6e-08
e3	0.27	0.033	8.09	6.7e-16
e4	0.25	0.079	3.18	1.5e-03
e5	0.39	0.063	6.13	8.8e-10
e6	0.52	0.060	8.68	0.0e+00
e7	0.15	0.223	0.67	5.0e-01
e8	0.50	0.060	8.39	0.0e+00
e9	0.55	0.085	6.51	7.4e-11

Sentences Sentences <--- g Vocabulary Vocabulary <--- g Sent.Completion <--- g Sent.Completion First.Letters First.Letters <--- g 4.Letter.Words 4.Letter.Words <--- g Suffixes Suffixes <--- g Letter.Series Letter.Series <--- g Pedigrees <--- g Pedigrees Letter.Group Letter.Group <--- g F1*Sentences Sentences <--- F1* Vocabulary <--- F1* F1*Vocabulary F1*Sent.Completion Sent.Completion <--- F1* F2*First.Letters First.Letters <--- F2* F2*4.Letter.Words 4.Letter.Words <--- F2* F2*Suffixes Suffixes <--- F2* F3*Letter.Series Letter.Series <--- F3* F3*Pedigrees Pedigrees <--- F3* F3*Letter.Group Letter.Group <--- F3*

```
Sentences <--> Sentences
е1
e2
                   Vocabulary <--> Vocabulary
                   Sent.Completion <--> Sent.Completion
еЗ
                   First.Letters <--> First.Letters
e4
e5
                   4.Letter.Words <--> 4.Letter.Words
e6
                   Suffixes <--> Suffixes
e7
                   Letter.Series <--> Letter.Series
                   Pedigrees <--> Pedigrees
е8
                   Letter.Group <--> Letter.Group
e9
```

Iterations = 72

> std.coef(sem.bi, digits = 2)

		Std. Estimate	
Sentences	Sentences	0.77	Sentences < g
Vocabulary	Vocabulary	0.79	Vocabulary < g
Sent.Completion	Sent.Completion	0.75	Sent.Completion < g
First.Letters	First.Letters	0.61	First.Letters < g
4.Letter.Words	4.Letter.Words	0.60	4.Letter.Words < g
Suffixes	Suffixes	0.57	Suffixes < g
Letter.Series	Letter.Series	0.57	Letter.Series < g
Pedigrees	Pedigrees	0.66	Pedigrees < g
Letter.Group	Letter.Group	0.53	Letter.Group < g
F1*Sentences	F1*Sentences	0.49	Sentences < F1*
F1*Vocabulary	F1*Vocabulary	0.45	Vocabulary < F1*
F1*Sent.Completion	F1*Sent.Completion	0.40	Sent.Completion < F1*
F2*First.Letters	F2*First.Letters	0.61	First.Letters < F2*
F2*4.Letter.Words	F2*4.Letter.Words	0.51	4.Letter.Words < F2*
F2*Suffixes	F2*Suffixes	0.39	Suffixes < F2*
F3*Letter.Series	F3*Letter.Series	0.73	Letter.Series < F3*
F3*Pedigrees	F3*Pedigrees	0.25	Pedigrees < F3*
F3*Letter.Group	F3*Letter.Group	0.41	Letter.Group < F3*

Compare this solution to the one reported below, and to the sem manual.

4.8 Examining a hierarchical solution

A hierarchical solution to this data set was previously found by the omega function (Figure 10). The output of that analysis can be used as a model for a sem analysis. Once again, the std.coef function helps see the structure. Alternatively, using the omega function on

the Thurstone data (in the bifactor data set) will create the model for this particular data set.

Omega

Figure 14: Hierarchical analysis of the Thurstone 9 variable problem using an exploratory algorithm can provide the appropriate sem code for analysis using the sem package.

```
> sem.hi <- sem(om.hi$model, Thurstone, 213)
> summary(sem.hi, digits = 2)

Model Chisquare = 38   Df = 24 Pr(>Chisq) = 0.033
Chisquare (null model) = 1102   Df = 36
Goodness-of-fit index = 0.96
Adjusted goodness-of-fit index = 0.92
RMSEA index = 0.053   90% CI: (0.015, 0.083)
Bentler-Bonnett NFI = 0.97
```

Tucker-Lewis NNFI = 0.98 Bentler CFI = 0.99 SRMR = 0.044 BIC = -90

Normalized Residuals

Min. 1st Qu. Median Mean 3rd Qu. Max. -9.7e-01 -4.2e-01 -1.3e-06 4.0e-02 9.4e-02 1.6e+00

Parameter Estimates

	${\tt Estimate}$	Std Error	z value	Pr(> z)
gF1	1.44	0.264	5.5	4.6e-08
gF2	1.25	0.217	5.8	7.1e-09
gF3	1.41	0.279	5.0	4.8e-07
F1Sentences	0.52	0.065	7.9	2.2e-15
F1Vocabulary	0.52	0.065	8.0	1.3e-15
F1Sent.Completion	0.49	0.062	7.8	5.8e-15
F2First.Letters	0.52	0.063	8.3	2.2e-16
F24.Letter.Words	0.50	0.060	8.3	0.0e+00
F2Suffixes	0.44	0.056	7.8	8.7e-15
F3Letter.Series	0.45	0.071	6.3	2.3e-10
F3Pedigrees	0.42	0.061	6.8	8.1e-12
F3Letter.Group	0.41	0.065	6.3	2.7e-10
e1	0.18	0.028	6.4	1.7e-10
e2	0.16	0.028	5.9	3.0e-09
e3	0.27	0.033	8.0	1.6e-15
e4	0.30	0.051	5.9	2.7e-09
e5	0.36	0.052	7.0	3.4e-12
e6	0.51	0.060	8.4	0.0e+00
e7	0.39	0.062	6.3	2.3e-10
e8	0.48	0.065	7.4	1.8e-13
e9	0.51	0.065	7.7	9.5e-15

gF1 F1 <--- g
gF2 F2 <--- g
gF3 F3 <--- g
F1Sentences Sentences <--- F1
F1Vocabulary Vocabulary <--- F1
F1Sent.Completion Sent.Completion <--- F1
F2First.Letters First.Letters <--- F2
F24.Letter.Words 4.Letter.Words <--- F2

```
F2Suffixes
                  Suffixes <--- F2
F3Letter.Series
                  Letter.Series <--- F3
F3Pedigrees
                  Pedigrees <--- F3
F3Letter.Group
                  Letter.Group <--- F3
е1
                  Sentences <--> Sentences
e2
                  Vocabulary <--> Vocabulary
еЗ
                  Sent.Completion <--> Sent.Completion
e4
                  First.Letters <--> First.Letters
                  4.Letter.Words <--> 4.Letter.Words
e5
                  Suffixes <--> Suffixes
e6
e7
                  Letter.Series <--> Letter.Series
                  Pedigrees <--> Pedigrees
e8
e9
                  Letter.Group <--> Letter.Group
```

Iterations = 53

> std.coef(sem.hi, digits = 2)

		Std. Estimate	
gF1	gF1	0.82	F1 < g
gF2	gF2	0.78	F2 < g
gF3	gF3	0.82	F3 < g
F1Sentences	F1Sentences	0.90	Sentences < F1
F1Vocabulary	F1Vocabulary	0.91	Vocabulary < F1
F1Sent.Completion	F1Sent.Completion	0.86	Sent.Completion < F1
F2First.Letters	F2First.Letters	0.84	First.Letters < F2
F24.Letter.Words	F24.Letter.Words	0.80	4.Letter.Words < F2
F2Suffixes	F2Suffixes	0.70	Suffixes < F2
F3Letter.Series	F3Letter.Series	0.78	Letter.Series < F3
F3Pedigrees	F3Pedigrees	0.72	Pedigrees < F3
F3Letter.Group	F3Letter.Group	0.70	Letter.Group < F3

> anova(sem.hi, sem.bi)

LR Test for Difference Between Models

```
Model Df Model Chisq Df LR Chisq Pr(>Chisq)

Model 1 24 38.196

Model 2 18 24.216 6 13.980 0.02986 *
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Using the Thurstone data set, we see what happens when a hierarchical model is applied to real data. The exploratory structure derived from the omega function (Figure 14) provides estimates in close approximation to those found using sem. The model definition created by using omega is the same hierarchical model discussed in the sem help page. The *bifactor* model, with 6 more parameters does provide a better fit to the data than the hierarchical model.

Similar analyses can be done with other data that are organized hierarchically. Examples of these analyses are analyzing the 14 variables of holzinger and the 16 variables of reise. The output from the following analyses has been limited to just the comparison between the bifactor and hierarchical solutions.

```
> data(bifactor)
> om.holz.bi <- omega(Holzinger, 4)
> sem.holz.bi <- sem(om.holz.bi$model, Holzinger, 355)
> om.holz.hi <- omega(Holzinger, 4, sl = FALSE)
> sem.holz.hi <- sem(om.holz.hi$model, Holzinger, 355)
> anova(sem.holz.bi, sem.holz.hi)
LR Test for Difference Between Models
        Model Df Model Chisq Df LR Chisq Pr(>Chisq)
Model 1
              63
                     147.179
Model 2
              73
                     183.047 10
                                  35.868 8.868e-05 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

5 Summary and conclusion

The use of exploratory and confirmatory models for understanding real data structures is an important advance in psychological research. To understand these approaches it is helpful to try them first on "baby" data sets. To the extent that the models we use can be tested on simple, artificial examples, it is perhaps easier to practice their application. The *psych* tools for simulating structural models and for specifying models are a useful supplement to the power of packages such as *sem*. The techniques that can be used on simulated data set can also be applied to real data sets.

References

- Adams, D. (1980). The hitchhiker's guide to the galaxy. Harmony Books, New York, 1st American edition.
- Fox, J. (2006). Structural equation modeling with the sem package in R. Structural Equation Modeling, 13:465–486.
- Fox, J. (2009). sem: Structural Equation Models. R package version 0.9-15.
- Holzinger, K. and Swineford, F. (1937). The bi-factor method. Psychometrika, 2(1):41–54.
- Jensen, A. R. and Weng, L.-J. (1994). What is a good g? Intelligence, 18(3):231–258.
- McDonald, R. P. (1999). Test theory: A unified treatment. L. Erlbaum Associates, Mahwah, N.J.
- Rafaeli, E. and Revelle, W. (2006). A premature consensus: Are happiness and sadness truly opposite affects? *Motivation and Emotion*, 30(1):1–12.
- Reise, S., Morizot, J., and Hays, R. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. *Quality of Life Research*, 16(0):19–31.
- Revelle, W. (2009). psych: Procedures for Personality and Psychological Research. R package version 1.0-67.
- Schmid, J. J. and Leiman, J. M. (1957). The development of hierarchical factor solutions. *Psychometrika*, 22(1):83–90.
- Thurstone, L. L. and Thurstone, T. G. (1941). Factorial studies of intelligence. The University of Chicago press, Chicago, Ill.

\mathbf{Index}

anova, 30, 32	edit, 37
bifactor, 5, 7, 24, 40, 44, 47	factanal, 14, 34
0114001, 0, 1, 24, 40, 44, 41	factor.congruence, 21
circumplex structure, 9	factor.pa, 3, 14, 21, 34
cluster.cor, 3	guttman, 3
congeneric, 4	holzinger, 24, 47
	ICLUST, 3, 26
describe, 3	oblimin, 23
edit, 37	omega, 3, 7, 24, 26, 40, 43, 47
	omega.graph, 29
factanal, 14, 34	pairs.panels, 3
factor.congruence, 21	phi.list, 13, 14, 29 principal, 3, 20, 21
factor.pa, 3, 14, 21, 34	Promax, 14, 20, 23
	promax, 23
guttman, 3	psych, 3
hierarchical, 7	psych package
holzinger, 24, 47	bifactor, 7, 24, 40, 44
	cluster.cor, 3
ICLUST, 3, 26	describe, 3
oblimin, 23	factor.congruence, 21
omega, 3, 7, 24, 26, 40, 43, 47	factor.pa, 3, 14, 21, 34
omega.graph, 29	guttman, 3
omega.graph, 20	holzinger, 24, 47
pairs.panels, 3	ICLUST, 3, 26
phi.list, 13, 14, 29	omega, $3, 7, 24, 26, 40, 43, 47$
principal, 3, 20, 21	omega.graph, 29
principal components, 20	pairs.panels, 3
Promax, 14, 20, 23	phi.list, 13, 14, 29
promax, 23	principal, 3, 20, 21
psych, 3, 23, 29, 47	Promax, 14, 20, 23
quartimin, 20	psych, 3
quarumini, 20	reise, 24, 47
R function	score.items, 3
anova, 30, 32	$ \sin, 3 $
bifactor, 7, 24, 40, 44	sim.circ, 9
cluster.cor, 3	sim.congeneric, 4, 5
describe, 3	sim.hierarchical, 5, 36

sim.item, 9
sim.structure, 9, 17
structure.graph, 17, 29, 38
structure.list, 13 , 14 , 29
structure.sem, 29, 37
Thurstone, 44
VSS, 3
quartimin, 20
reise, 24, 47
Rgraphviz, 29
score.items, 3
sem, 26, 29, 40, 43, 47
sim, 3
sim.circ, 9
sim.congeneric, 4, 5
sim.hierarchical, 5, 36
sim.item, 9
sim.structure, 9, 17
std.coef, 40, 43
structure.graph, $17, 29, 38$
structure.list, 13, 14, 29
structure.sem, $29, 37$
summary, 40
Thurstone, 44
varimax, 20
VSS, 3
R package
psych, 3, 23, 29, 47
Rgraphviz, 3, 7
sem, 3, 29, 40, 47
reise, 24, 47
Rgraphviz, 3, 7, 29
rotated, 20
score.items, 3
sem, 3, 26, 29, 40, 43, 47
\sin , 3
sim.circ, 9
sim.congeneric, 4, 5
sim.hierarchical, 5, 36
sim.item, 9

sim.structure, 9, 17 simple structure, 9, 20 std.coef, 40, 43 structure.graph, 17, 29, 38 structure.list, 13, 14, 29 structure.sem, 29, 37 summary, 40

tau, 4 Thurstone, 44

 $\begin{array}{c} varimax,\ 20 \\ VSS,\ 3 \end{array}$