DLP Lab3 EEG classification

1. Introduction

本次 Lab 使用 EEGNet 和 DeepConvNet 解決 classification 問題,這次使用的 dataset 為 BCI competition dataset,activation function 為 ReLU,Leaky ReLU 和 ELU。

400

300

2. Experiment set up

ó

• The detail of your model

100

200

。 EEGNet 網路架構:

500

600

700

實踐細節:

```
EEGNet(
  (firstconv): Sequential(
    (0): Conv2d(1, 16, kernel_size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
    (1): BatchNorm2d(16, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
  (depthwiseConv): Sequential(
    (0): Conv2d(16, 32, kernel_size=(2, 1), stride=(1, 1), groups=16, bias=False)
    (1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel_size=(1, 4), stride=(1, 4), padding=0)
    (4): Dropout(p=0.25)
  (separableConv): Sequential(
    (0): Conv2d(32, 32, kernel_size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0)
    (4): Dropout(p=0.25)
  (classify): Sequential(
    (0): Linear(in_features=736, out_features=2, bias=True)
```

使用 depthwise 和 separable convolution,是基於傳統 convolution 的輕量化版本,可降低參數數量,提升 training 和 evaluate 的速度,但不至於影響太多 accuracy。

DeepConvNet

實踐細節:

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	$\bmod e = \mathrm{valid}, \max \mathrm{norm} = 2$
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	mode = valid, max norm = 2
BatchNorm			2 * 25		epsilon = 1e-05, $momentum = 0$.
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25 * 50 * C + 50	Linear	mode = valid, max norm = 2
BatchNorm			2 * 50		epsilon = 1e-05, $momentum = 0$.
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * C + 100	Linear	mode = valid, max norm = 2
BatchNorm			2 * 100		epsilon = 1e-05, $momentum = 0$.
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * C + 200	Linear	mode = valid, max norm = 2
BatchNorm			2 * 200		epsilon = 1e-05, $momentum = 0$.
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	$\max \text{ norm} = 0.5$

這邊使用的 C = 2, T = 750 以及 N = 2, DeepConvNet 為傳統 CNN 架構, 運作機制為 C -> (CBAPD) -> (CBAPD) -> (CBAPD) -> fully convolution

C: convolution

B: batchnormalized

A: activation function

P: max pooling

D: dropout

• Explain the activation function

o ReLU

ReLU 在 x 為正值時與 y = x, x 在負值時 y = 0。

數學公式: ReLU(x) = max(0, x)

圖形:

o Leaky ReLU

在 x 為正值時與 ReLU 相同,不過在 x 為負值時 y = 0.01x,存在極小的斜率。 數學公式:

$$ext{LeakyRELU}(x) = egin{cases} x, & ext{if } x \geq 0 \\ ext{negative_slope} imes x, & ext{otherwise} \end{cases}$$

圖形:

Parametric ReLU: y=ax

o ELU

在 x 為正值時與 ReLU 和 Leaky ReLU 相同, x 為負值時則和 Leaky ReLU 相同存在一斜率,不過不是直線,而是 log 曲線。

數學公式:

$$\mathrm{ELU}(x) = \max(0, x) + \min(0, \alpha * (\exp(x) - 1))$$

圖形:

3. Experimental results

• EEGNet

Batch size = 256, Epochs = 500, Learning rate = 0.001

Optimizer: Adam, Loss function: torch.nn.CrossEntropyLoss()

ReLU_train max acc: 98.70
ReLU_test max acc: 87.69
LeakyReLU_train max acc: 98.61
LeakyReLU_test max acc: 87.50
ELU_train max acc: 93.61
ELU test max acc: 84.35

DeepConvNet

Batch size = 256, Epochs = 500, Learning rate = 0.001

Optimizer: Adam, Loss function: torch.nn.CrossEntropyLoss()

ReLU_train max acc: 96.30
ReLU_test max acc: 85.37
LeakyReLU_train max acc: 96.20
LeakyReLU_test max acc: 84.17
ELU_train max acc: 98.98
ELU test max acc: 82.59

4. Discussion

- dataset 需要先經過 TensorDataset()和 DataLodar()才能餵給 model 做讀取。
- 一開始沒將 model 放入.to(device)用 GPU 跑,計算完500 個 epochs 大約需要5分鐘, 之後將 model 放入後用 GPU 跑,只需約2分鐘就算完了。
- Optimizer 我嘗試使用 Adam 和 SGD (learning rate = 0.001)去計算,發現 Adam 的 Test accuracy 比較好。
- 在 EEGNet 訓練 300 和 500 個 epochs,500 次的 accuracy 比 300 次的稍微好一些,但 DeepConvNet 訓練 300 和 500 次的效果差不多。