Formulario JSE J. 3-4

-des de Amdals) para máxima ganascia actuardo sobre solo una parte

-> xeus de Amdahl paux varias megoras

-> SAR
Modo interadivo: [tiempo_nuesties, [w-nuestian]]
-3 -> Fichero de donde extraer Por insormerción, por
desecto 3 hour.
-e-> Hora Sin de la monitorianción
- = - Home de conjenço de la mondonación.
-u -> Utilización del procesador lopisón por desecto)
-p-> Mostiai estadísticas por cada procesordor.
-I -> Estadísticas sobre intempciones
Line de contexto
-w-> Cambios de contexto -q-> Tamaño de Za color y cargo medio del sestema.
-q-s ramano de la tronsquercias
-b-> Estadísticas de tianssevercias
-d -> Transquenciar para codor disco.
-n -> Conexion de red
-r-> Utilización de memorion
-P-> Estadísticas sobre Par memoria.
-A -> Toda Va informacción disposible
Tema 3
-5 Tours de exerción
- Tradición - NEX CPEX TRADE = NEX CPE
Tesecución = NE x CPE x Tradi = NE x CPE Sieles
-> MPPC
NI SHI
MICPS = NI - SANOS - CPE × 306
de regerencier.
-> MIPS rélations: Présendos or una mégerina de référencia.
MISPS relations = Tejec-magning referencials. x MISPS uniq-reference

MFLOPS = Operaciones de coma stante seculios das Tejac x 306

-> MFLOPS normalizados

No todas Par operaciones valers Po mismo;

Biemplo de normalización de operaciones en FP

> ADD, SUB, COMPARE, MULT => Soperación nometroda

-> DEUTIDE, SOURT => 4 operaciones normalizandas

-> EXP, SEN, ATAN > 8 operaciones normalizadas

->- Éndice SPEC

-> Media aitmética

$$\bar{t} = \frac{3}{N} \stackrel{\circ}{\underset{i=1}{\sim}} t_i$$

-> Media autmética ponderada

-> Media geomética

$$\overline{\underline{ra}} = \sqrt{\frac{1}{11}} \times K = \left(\frac{1}{11} \times K\right)^{3} N$$

- Distribución Normal Viene dada por sei media il y ser vacionera Frob(x) = 1 (x-u)2 e 952 E/ -- PESSON de probabilidad de dotener un elements en El rougo [u-25, u+25] es del 95% -> Intervalos de consioura Para un vivel de seguigreatevidad A (tip 0.05 = 5/3), buscamos que cumpla Prob (1t1 > taja) = 0 equivalentementes Frob (-ta/a 5 t 5 ta/a) = 3 - 0 Diremos que para un rivel de constarra 3-a (tip 0'95 = 95%) & valor de t debe situaux en & intervalo; -tax tax A didio intervato se te denomina intervato de confarrer de Teniendo en cuentos que;

La medida parer un vivel de signizicaturidad de X

(Abb (-tage st stage) = 8-9 x Prob (ts-tage)= 3-2x Prob(t>taya) Prob(t5-taja)=Prob(t>taja)= 0/2

Tema 4

Variables temporales

W → Tiempo de espera en cola: Tiempo que tarda desde que solicita la petición hasta que lo usa.

S → **Tiempo de servicio**: Tiempo que tarda un trabajo desde que se inicia hasta que termina.

R → Tiempo de respuesta: Tiempo que tarda en total, desde que entra en la cola hasta que termina el trabajo.

Z → Tiempo de reflexión: Tiempo que tarda el usuario desde que termina el trabajo hasta que vuelve a pedirlo.

N₀ → **Número de trabajos:** Número de trabajos que hay en el servidor.

N_z → **Número de trabajos en reflexión:** Esperando a que los usuarios vuelvan a introducirlos en el servidor.

Variables operacionales básicas

T → Tiempo que tarda el análisis o la medida. (segundos)

A → Número de trabajos solicitados.

 $\mathsf{B} \to \mathsf{Tiempo}$ que el dispositivo está ocupado. (segundos)

C → Número de trabajos completados por la estación.

 $\lambda
ightarrow$ Tasa de llegada. (trabajos/segundo) $\lambda = \frac{A}{T}$

au
ightarrow au Tiempo entre llegadas. (trabajos/segundo) $au = rac{T}{A} = rac{1}{\lambda}$

 $X \rightarrow$ Productividad. (trabajos/segundo) $X = \frac{C}{T}$

U → Utilización. Sin unidad

Cuando hablamos de los tiempos de W, S, R hablamos **siempre** de tiempo medio y se mide en (segundos/trabajo)

$$S = \frac{B_i}{C_i} \quad R = W + S$$

Las variables de arriba pueden ser para el **servidor** (subíndice o) o para una **estación** (subíndice i)

N_i → Número medio de trabajos.

Q_i → Número medio de trabajos en cola.

 $\mathbf{U_i}
ightarrow \mathbf{N}$ úmero medio de trabajos siendo servidos. $U_i = \frac{B}{T} = N_i - Q_i$

 $V_i \rightarrow$ Razón de visita. $V_i = \frac{C_i}{C_o}$

 ${\sf D_i}
ightarrow {\sf Demanda}$ de servicio. $D_i = \frac{B_i}{C_o} = V_i * S_i$

Leyes operacionales

Hipótesis del equilibrio de flujo \rightarrow Para un servidor no saturado el número de trabajos que entra es igual al que sale o lo que es lo mismo A=C, por tanto la tasa de llegada es igual a la productividad o lo que es lo mismo X= λ

Ley de Little \rightarrow Bajo la hipótesis del equilibrio de flujos relaciona las dos variables más importantes que reflejan el rendimiento de un servidor: su productividad (X_o) y su tiempo de respuesta (R_o).

$$N = \lambda * R = X * R$$

También es aplicable al número medio de trabajos en cola.

$$Q_i = \lambda_i * W_i = X_i * W_i$$

Ley de la Utilización → Relaciona la utilización de un dispositivo con el número de trabajos que es capaz de realizar por unidad de tiempo.

$$U_i = X_i * S_i = \lambda_i * S_i$$

Ley del flujo forzado \rightarrow Las productividades (flujos) a diferentes niveles del servidor tienen que ser proporcionales a las razones de visita.

$$V_i = \frac{X_i}{X_o} \quad X_i = V_i * X_o$$

Relación Utilización-Demanda de Servicio

$$U_i = X_i * S_i = X_o * D_i$$

Ley general del tiempo de respuesta

$$R_o = \sum_{i=1}^k V_i * R_i$$

Ley del tiempo de respuesta interactivo

$$N_T = N_z + N_o \qquad R_o = \frac{N_T}{X_o} - Z$$