פרויקט אופטימיזציות:

1. הבעיה:

Security structure optimization

Given a grid-based terrain, construct obstacles to make an attacker's task most difficult.

<u>קלט:</u>

<u>נתונים אודות הבסיס:</u>

- שם n עם n משבצות, המתאר שטח עבודה, עליו היינו רוצים להגן מפני תוקפים אפשריים. B לוח בסיס b עם n למשל:
 - שטח של מתקן צבאי נרצה להציב שומרים. ■
 - . בנק המכיל חדר כספות נרצה לשים חיישני אבטחה.
 - ▶ אזור גאוגרפי המכיל כבישים, בזמן מרדף משטרתי אחר עבריין.- נרצה להציב ניידות משטרה לפני שהוא נכנס לאזור זה.
- ◄ המשחק "clash of clans" בו צריך לבנות בסיס ולהציב שמירות בצורה שתגן על הפריטים שלך כאשר תוקפים אותך דוגמא אפשרית לפרזנטציה.

<u>נתונים סטטיסטים אודות התוקף:</u>

וקטור התחלה $r \in (0,1)^n$ הסתברויות כניסות אפשריות של תוקף לבסיס. - $r \in (0,1)^n$ הוקטור יראה כך: למשל, עבור בסיס עם 6 משבצות ושתי כניסות במיקומים 2,5 הוקטור יראה כך: $r = (0,0.3,\ 0,\ 0,\ 0.7,\ 0)$

אפשרי שבבסיס מלבני כל משבצת שאינה מסגרת תהיה עם הסתברות 0.

- http://u.math.biu.ac.il/~amirgi/ariel_notes2.pdf
- מטריצה $M_{i,l} : M_{i,l} = M$ המתארת הסתברויות לצעדים אפשריים של התוקף. $M \in (0,1)^{n\times n}$ היא ההסתברות למעבר בין משבצת j i המטריצה חייבת להיות סטוכסטית סכום כל שורה יהיה 1. (הגיוני כיוון שלכל משבצת מרחב הסתברות משלה במעברים).

למשל, $M_{2,3}$ הוא הסיכוי שהתוקף ינוע מהמשבצת ה2 ל3. ערכים אלו הם שקלול של תנאי הבסיס וסטטיסטיקה לגבי פעולת התוקף - כלומר עבור מעבר לא חוקי ההסתברות תהיה 0. אפשרי שבבסיס מלבני רוב המטריצה תהיה אפסים.

משאבי ההגנה:

אשר בלוח אשר מספר ההגנות הזמינים לרשותנו. הגנה היא שיבוץ מכשול על משבצת כלשהי בלוח אשר $k \subseteq N$ תופסת תוקף.

k = 2 - שומרים של 2 שומרים לדוגמא, אם למתקן צבאי יש כוח אדם של

<u>פלט:</u>

שיבוץ ההגנות המביא למקסימום את הסיכוי לתפוס את הפורץ. $D=\{d_1,\,d_2,\,...,\,d_l\}$ למשל בדוגמא של שדה התעופה, נקבל D מיקומים בהם עלינו לשים את הניידות על מנת לקבל אבטחה מקסימלית.

הערה: מדובר על l << n כלומר מספר ההגנות הזמינות קטן משמעותית מגודל הלוח, וקטן משמעותית ממספר הכניסות ללוח (אחרת יכלנו להציב הגנה בכל כניסה).

2. הפתרון:

1. הגדרת בעיית האופטימיזציה:

נרצה לחשב באיזה k משבצות למקם סנסורים כך שההסתברות לתפוס את הפורץ - ההסתברות שפורץ ידרוך באחת מהן תהיה מקסימלית.

כלומר אם נגדיר את $(p_1,...,p_k)$ להיות משבצות המסלול של הפורץ לכל , כאשר משבצת הכניסה מתאימה למוגדר בז והמסלול נלקח על פני כל המסלולים האפשריים המתאימים להסתברויות המוגדרות ב $(p_1,...,p_k)$

- ונגדיר $d_1, ..., d_l$ שיבוצי הסנסורים שלנו

נסמן k כלשהו עבור מופיע במסלול מופיע מופיע אם $d_i \in P$ נסמן ל

. $\max Pr_P \ (d_1 \in P \ \lor \dots \lor d_l \in P))$ נרצה

נפשט ראשית לסנסור אחד d ולאחר מכן נכליל.

2. נצטרך לחשב את ההסתברויות כתלות במשתנים - נשתמש בשרשראות מרקוב.

שרשרת מרקוב מאפשרת לנו פה לחשב את הסיכוי שפורץ ימצא במשבצת x_j בהנתן שהמסלול שלו . $Pr\left(p_k=x_k|\,p_1=x_1\ \land\ ...\ \land\ p_{k-1}=x_{k-1}\right),k$ עד כה היה $x_1,\ ...,\ x_{j-1}$ שבסופו של דבר - thttp://u.math.biu.ac.il/~amirgi/ariel_notes2.pdf) עד כה היא ווער להראות (http://u.math.biu.ac.il/~amirgi/ariel_notes2.pdf)

$$Pr(p_k = j \mid p_1 = i) = (M^k)_{i,j}$$

:r ולכן אם נקח בחשבון גם את הוקטור ההתחלתי

$$Pr(p_k = j) = \sum_{i=1}^{n} Pr(p_k = j \mid p_0 = i) \cdot Pr(p_0 = i) = \sum_{i=1}^{n} (M^k)_{i,j} \cdot r_i$$

 $p=(p_1^-,...,p_k^-)$ אינו ידוע ונקבל עבור אינו את העובדה שאורך המסלול k כעת נקח בחשבון גם את העובדה שאורך המסלול כאשר נסמן

$$Pr(j \in P) = \sum_{k=1}^{\infty} Pr(p_k = j) = \sum_{k=1}^{\infty} \sum_{i=1}^{n} (M^k)_{i,j} \cdot r_i$$

 $Pr(d \in P)$ יהיה ניתן לחשב ot לכן נקבל שאם נרצה לשים סנסור ל טר שההסתברות לכן נקבל שאם נרצה לשים סנסור

3. ננסח כבעיית אופטימיזציה:

אפשרות א': נגדיר ח משתנים בינארים, $D_1,\;...,\;D_n$ כאשר כל ח אפשרות משתנים בינארים, ח משתנים בינארים, D_i כאשר כל היב סנסור במשבצת ה משתנים בינארים, D_i

$$max D_1 \cdot Pr(1 \in P) + ... + D_n \cdot Pr(n \in P)$$

 $.D_1 + ... + D_n <= k$ תחת האילוץ

$$\max \; Pr(D_1 \subseteq P) + \ldots + Pr(D_k \subseteq P)$$

.i,j לכל $D_i \neq D_j$ לכל

4. ננסה לשלב את אופציה א' יחד עם החישוב של ההסתברויות:

נסמן F פונקציית הרווח אותה ננסה למקסם:

$$F = D_1 \cdot Pr(1 \in P) + ... + D_n \cdot Pr(n \in P)$$

$$F = \sum_{i=1}^{n} D_{j} \cdot \sum_{k=1}^{\infty} \sum_{i=1}^{n} (M^{k})_{i,j} \cdot r_{i} = \sum_{k=1}^{\infty} (\sum_{i=1}^{n} D_{j} \cdot \sum_{i=1}^{n} (M^{k})_{i,j} \cdot r_{i})$$

נסתכל רק על הביטוי שבתוך סיגמה של k - כלומר ההסתברויות בהנחה שהמסלול הוא באורך k:

$$F_{k} = \sum_{i=1}^{n} D_{j} \cdot \sum_{i=1}^{n} (M^{k})_{i,j} \cdot r_{i} = D_{1} \cdot r_{1} \cdot (M_{11}^{k} + \dots + M_{n1}^{k}) + \dots + D_{n} \cdot r_{n} \cdot (M_{1n}^{k} + \dots + M_{nn}^{k})$$

כלומר ניתן לראות שאם נחשב את M^k ו"נקבע אותה" וכנל לr, אנחנו סה"כ רואים פה גישה לכל איבר בr פעם אחת וגישה לכל איבר בr פעם אחת. ביחד נוצר משוואת

$$a_i = r_i \cdot (M_{1i}^{\ k} + ... + M_{ni}^{\ k})$$
 עבור הקבועים $F_k = a_1 \cdot D_1 + ... + a_n \cdot D_n$

ניתן לפתירה על ידי שיטות שלמדנו בכיתה - (הכנס שם של שיטה כאן).

: k כעת נרצה לשלב את זה לכל

ניתן בעצם לעשות כך:

$$F = \sum_{k=1}^{\infty} F_k = \sum_{k=1}^{\infty} a_{k1} \cdot D_1 + \dots + a_{kn} \cdot D_n = (\sum_{k=1}^{\infty} a_{k1}) \cdot D_1 + \dots + (\sum_{k=1}^{\infty} a_{kn}) \cdot D_n$$

עבור k שיהיה a_i ממקודם עבור a_{ki} זה.

ובעצם גם זה אותו סגנון של משוואה שלמדנו איך ממקסמים.

הבעיה - הקבועים הם חישוב של טור אינסופי של קבועים.

- הפתרון

אופציה אחת היא להגביל את אורך המסלול, למשל $k \leq n^2$ (כלומר מניחים שהפורץ לא חוזר על אף מעבר - אך דבר זה גורם שאנחנו מניחים הנחה לא ידועה על מסלול הפורץ

אופציה דומה אך טיפה יותר טובה היא לחשב את הגבול של טור הקבועים (הסבר למה זה מתכנס),

$$lpha_i = \sum\limits_{k=1}^{\infty} a_{ki} = \lim\limits_{k o \infty} \sum\limits_{i=1}^{k} a_{ji}$$
 את $1 <= i <= n$ כלומר לחשב לכל

$$.D_1+...+D_n <= k$$
 תחת האילוץ , $F=lpha_1\cdot D_1+...+lpha_n\cdot D_n$ שאז לנסות למקסם עבור ...+ מלך על זה.

- 5. בחירת אלגוריתם האופטימיזציה.
 - 6. קוד
 - 7. הרצה על דוגמאות.