MULTIVARIATE NORMAL MODEL

DR. OLANREWAJU MICHAEL AKANDE

FEB 19, 2020

ANNOUNCEMENTS

- Take Survey I
- Link: https://duke.qualtrics.com/jfe/form/SV_54rrMwDxp3hmagt
- Responses are anonymized.

OUTLINE

- Wrap up exercise from last class
- Multivariate normal/Gaussian model
 - Motivating example
 - Inference for mean
 - Inference for covariance

RECAP OF CONDITIONAL DISTRIBUTIONS

lacksquare Partition $oldsymbol{Y}=(Y_1,\ldots,Y_p)^T$ as

$$oldsymbol{Y} = egin{pmatrix} oldsymbol{Y}_1 \ oldsymbol{Y}_2 \end{pmatrix} \sim \mathcal{N}_p \left[egin{pmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{pmatrix}, egin{pmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{pmatrix}
ight],$$

where

- Y_1 and μ_1 are $q \times 1$,
- lacksquare $oldsymbol{Y}_2$ and $oldsymbol{\mu}_2$ are (p-q) imes 1,
- lacksquare Σ_{11} is q imes q, and
- lacksquare Σ_{22} is (p-q) imes (p-q), with $\Sigma_{22}>0$.
- Then,

$$m{Y}_1 | m{Y}_2 = m{y}_2 \sim \mathcal{N}_q \left(m{\mu}_1 + \Sigma_{12} \Sigma_{22}^{-1} (m{y}_2 - m{\mu}_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
ight).$$

WORKING WITH NORMAL DISTRIBUTIONS

■ Three real (univariate) random quantities x, y and z have a joint normal distribution given by p(x,y,z) = p(y|x)p(x|z)p(z).

Suppose

- $ullet p(y|x) = \mathcal{N}(x,w)$ independently of z, for some known variance w;
- $p(x|z) = \mathcal{N}(\theta z, v)$ for some known parameter θ , and known variance v; and
- $\mathbf{p}(z) = \mathcal{N}(m, M)$, with some known mean m, and known variance M.

What is

- p(x)? p(y)?
- p(x|y)? p(z|x)?
- To be done on the board.

MULTIVARIATE DATA

- Survey data often yield multivariate data of varied types.
- **Typical survey data:** response vector $y_i = (y_{i1}, \dots, y_{ip})^T$ for each person i in a sample of survey respondents, $i = 1, \dots, n$. For example, we could have
 - $y_{i1} = \mathsf{income}$
 - $y_{i2} =$ level of education
 - $y_{i3} = \text{number of children}$
 - lacksquare $y_{i4}=$ age
 - $ullet y_{i5} = \mathsf{attitude}$
- Interest is then often on inferring the potential associations among these variables.
- See https://www.stat.washington.edu/people/pdhoff/public/coptalk.pdf

GSS DATA

See https://www.stat.washington.edu/people/pdhoff/public/coptalk.pdf

CONDITIONAL MODELS

- Interest is often in conditional relationships between pairs of variables, accounting for heterogeneity in other variables of less interest.
- Consider the following models.
- GSS data:

Model 1

```
	ext{INC}_i = eta_0 + eta_1 	ext{CHILD}_i + eta_2 	ext{DEG}_i + eta_3 	ext{AGE}_i + eta_4 	ext{PCHILD}_i + eta_5 	ext{PINC}_i + eta_6 	ext{PDEG}_i + \epsilon_i p-value for eta_1 here is 0.11: "little evidence" that eta_1 
eq 0.
```

Model 2

```
CHILD<sub>i</sub> ~ Poisson (exp [\beta_0 + \beta_1 INC_i + \beta_2 DEG_i + \beta_3 AGE_i + \beta_4 PCHILD_i + \beta_5 PINC_i + \beta_6 PDEG_i])
p-value for \beta_1 here is 0.01: "strong evidence" that \beta_1 \neq 0.
```

- Not satisfactory; better to use multivariate models instead to do this jointly.
- See https://www.stat.washington.edu/people/pdhoff/public/coptalk.pdf

MULTIVARIATE NORMAL DISTRIBUTION RECAP

lacksquare Recall that if $oldsymbol{Y}=(Y_1,\ldots,Y_p)^T\sim \mathcal{N}_p(oldsymbol{ heta},\Sigma)$, then

$$f(oldsymbol{y}) = (2\pi)^{-rac{p}{2}} |\Sigma|^{-rac{1}{2}} \exp\left\{-rac{1}{2}(oldsymbol{y} - oldsymbol{ heta})^T \Sigma^{-1} (oldsymbol{y} - oldsymbol{ heta})
ight\}.$$

- $m{ heta}$ is the p imes 1 mean vector, that is, $m{ heta}=(heta_1,\ldots, heta_p)^T.$
- Σ is the $p \times p$ positive definite covariance matrix, that is, $\Sigma = \{\sigma_{jk}\}$, where σ_{jk} denotes the covariance between Y_j and Y_k .
- lacksquare For each $j=1,\ldots,p$, $Y_j \sim \mathcal{N}(heta_j,\sigma_{jj})$.
- How to do posterior inference if this is our sampling model?

READING COMPREHENSION EXAMPLE

- Twenty-two children are given a reading comprehension test before and after receiving a particular instruction method.
 - Y_{i1} : pre-instructional score for student i.
 - Y_{i2} : post-instructional score for student i.
- lacktriangle Vector of observations for each student: $oldsymbol{Y}_i = (Y_{i1}, Y_{i2})^T$.
- lacktriangle Clearly, we should expect some correlation between Y_{i1} and Y_{i2} .

READING COMPREHENSION EXAMPLE

- Questions of interest:
 - Do students improve in reading comprehension on average?
 - If so, by how much?
 - Can we predict post-test score from pre-test score?
 - If there is a "significant" improvement, does that mean the instructional method is good?
 - If we have students with missing pre-test scores, can we predict the scores?
- We will come back to this example. First, let's specify priors and see what the implied (conditional) posteriors look like.

MULTIVARIATE NORMAL LIKELIHOOD

lacksquare For data $m{y_i} = (y_{i1}, \dots, y_{ip})^T \sim \mathcal{N}_p(m{ heta}, \Sigma)$, the likelihood is

$$egin{aligned} L(oldsymbol{Y};oldsymbol{ heta},\Sigma) &= \prod_{i=1}^n (2\pi)^{-rac{p}{2}} |\Sigma|^{-rac{1}{2}} \exp\left\{-rac{1}{2} (oldsymbol{y}_i - oldsymbol{ heta})^T \Sigma^{-1} (oldsymbol{y}_i - oldsymbol{ heta})
ight\} \ &\propto |\Sigma|^{-rac{n}{2}} \exp\left\{-rac{1}{2} \sum_{i=1}^n (oldsymbol{y}_i - oldsymbol{ heta})^T \Sigma^{-1} (oldsymbol{y}_i - oldsymbol{ heta})
ight\}. \end{aligned}$$

■ It will be super useful to be able to write the likelihood in two different formulations depending on whether we about the posterior of θ or Σ .

MULTIVARIATE NORMAL LIKELIHOOD

lacksquare For $oldsymbol{ heta}$, it is convenient to write $L(oldsymbol{Y};oldsymbol{ heta},\Sigma)$ as

$$egin{aligned} L(oldsymbol{Y};oldsymbol{ heta},\Sigma) &\propto |\Sigma|^{-rac{n}{2}} \exp\left\{-rac{1}{2}\sum_{i=1}^n (oldsymbol{y}_i - oldsymbol{ heta})^T \Sigma^{-1} (oldsymbol{y}_i - oldsymbol{ heta})
ight\} \ &\propto \exp\left\{-rac{1}{2}\sum_{i=1}^n \left[oldsymbol{y}_i^T \Sigma^{-1} oldsymbol{y}_i - oldsymbol{y}_i^T \Sigma^{-1} oldsymbol{ heta} - oldsymbol{ heta}^T \Sigma^{-1} oldsymbol{ heta}
ight]
ight\} \ &\propto \exp\left\{-rac{1}{2}\sum_{i=1}^n \left[oldsymbol{ heta}^T \Sigma^{-1} oldsymbol{ heta} - 2oldsymbol{ heta}^T \Sigma^{-1} oldsymbol{y}_i
ight]
ight\} \ &= \exp\left\{-rac{1}{2}\sum_{i=1}^n oldsymbol{ heta}^T \Sigma^{-1} oldsymbol{ heta} - rac{1}{2}\sum_{i=1}^n (-2)oldsymbol{ heta}^T \Sigma^{-1} oldsymbol{y}_i
ight\} \ &= \exp\left\{-rac{1}{2}oldsymbol{ heta}^T \Sigma^{-1} oldsymbol{ heta} + oldsymbol{ heta}^T \Sigma^{-1} oldsymbol{\Sigma}^{-1} oldsymbol{ heta}_i
ight\} \ &= \exp\left\{-rac{1}{2}oldsymbol{ heta}^T (n \Sigma^{-1}) oldsymbol{ heta} + oldsymbol{ heta}^T (n \Sigma^{-1} oldsymbol{ heta})
ight\}, \end{aligned}$$

where $ar{m{y}}=(ar{y}_1,\ldots,ar{y}_n)^T$.

PRIOR FOR THE MEAN

- A convenient specification of the joint prior is $\pi(\theta, \Sigma) = \pi(\theta)\pi(\Sigma)$.
- As in the univariate case, a convenient conjugate prior distribution for θ is also normal (multivariate in this case).
- lacksquare Assume that $\pi(oldsymbol{ heta}) = \mathcal{N}_p(oldsymbol{\mu}_0, \Lambda_0).$
- The pdf will be easier to work with if we write it as

$$egin{aligned} \pi(oldsymbol{ heta}) &= (2\pi)^{-rac{p}{2}} |\Lambda_0|^{-rac{1}{2}} \exp\left\{-rac{1}{2}(oldsymbol{ heta} - oldsymbol{\mu}_0)^T \Lambda_0^{-1}(oldsymbol{ heta} - oldsymbol{\mu}_0)
ight\} \ &\propto \exp\left\{-rac{1}{2}igg[oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{ heta} - oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{\mu}_0 - oldsymbol{\mu}_0^T \Lambda_0^{-1} oldsymbol{ heta} + oldsymbol{\mu}_0^T \Lambda_0^{-1} oldsymbol{\mu}_0igg]
ight\} \ &\propto \exp\left\{-rac{1}{2}igg[oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{ heta} - 2oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{\mu}_0igg]
ight\} \ &= \exp\left\{-rac{1}{2}oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{ heta} + oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{\mu}_0igg\} \end{aligned}$$

PRIOR FOR THE MEAN

So we have

$$\pi(oldsymbol{ heta}) \propto \exp\left\{-rac{1}{2}oldsymbol{ heta}^T\Lambda_0^{-1}oldsymbol{ heta} + oldsymbol{ heta}^T\Lambda_0^{-1}oldsymbol{\mu}_0
ight\}.$$

- Key trick for combining with likelihood: When the normal density is written in this form, note the following details in the exponent.
 - In the first part, the inverse of the covariance matrix Λ_0^{-1} is "sandwiched" between θ^T and θ .
 - In the second part, the θ in the first part is replaced (sort of) with the mean μ_0 , with Λ_0^{-1} keeping its place.
- The two points above will help us identify updated means and updated covariance matrices relatively quickly.

CONDITIONAL POSTERIOR FOR THE MEAN

lacksquare Our conditional posterior (full conditional) $m{ heta}|\Sigma,m{Y}$, is then

$$\pi(\boldsymbol{\theta}|\Sigma,\boldsymbol{Y}) \propto L(\boldsymbol{Y};\boldsymbol{\theta},\Sigma) \cdot \pi(\boldsymbol{\theta})$$

$$\propto \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^{T}(n\Sigma^{-1})\boldsymbol{\theta} + \boldsymbol{\theta}^{T}(n\Sigma^{-1}\bar{\boldsymbol{y}})\right\} \cdot \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^{T}\Lambda_{0}^{-1}\boldsymbol{\theta} + \boldsymbol{\theta}^{T}\Lambda_{0}^{-1}\boldsymbol{\mu}_{0}\right\}$$

$$= \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^{T}(n\Sigma^{-1})\boldsymbol{\theta} - \frac{1}{2}\boldsymbol{\theta}^{T}\Lambda_{0}^{-1}\boldsymbol{\theta} + \underbrace{\boldsymbol{\theta}^{T}(n\Sigma^{-1}\bar{\boldsymbol{y}}) + \boldsymbol{\theta}^{T}\Lambda_{0}^{-1}\boldsymbol{\mu}_{0}}_{\text{Second parts from }L(\boldsymbol{Y};\boldsymbol{\theta},\Sigma) \text{ and }\pi(\boldsymbol{\theta})}\right\}$$

$$= \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^{T}\left[n\Sigma^{-1} + \Lambda_{0}^{-1}\right]\boldsymbol{\theta} + \boldsymbol{\theta}^{T}\left[n\Sigma^{-1}\bar{\boldsymbol{y}} + \Lambda_{0}^{-1}\boldsymbol{\mu}_{0}\right]\right\},$$

which is just another multivariate normal distribution.

CONDITIONAL POSTERIOR FOR THE MEAN

 To confirm the normal density and its parameters, compare to the prior kernel

$$\pi(oldsymbol{ heta}) \propto \exp\left\{-rac{1}{2}oldsymbol{ heta}^T\Lambda_0^{-1}oldsymbol{ heta} + oldsymbol{ heta}^T\Lambda_0^{-1}oldsymbol{\mu}_0
ight\}$$

and the posterior kernel we just derived, that is,

$$\pi(m{ heta}|\Sigma,m{Y}) \propto \exp\left\{-rac{1}{2}m{ heta}^T\left[\Lambda_0^{-1} + n\Sigma^{-1}
ight]m{ heta} + m{ heta}^T\left[\Lambda_0^{-1}m{\mu}_0 + n\Sigma^{-1}ar{m{y}}
ight]
ight\}.$$

lacksquare Easy to see (relatively) that $m{ heta}|\Sigma,m{Y}\sim\mathcal{N}_p(m{\mu}_n,\Lambda_n)$, with

$$\Lambda_n = \left[\Lambda_0^{-1} + n\Sigma^{-1}
ight]^{-1}$$

and

$$oldsymbol{\mu}_n = \Lambda_n \left[\Lambda_0^{-1} oldsymbol{\mu}_0 + n \Sigma^{-1} ar{oldsymbol{y}}
ight]$$

BAYESIAN INFERENCE

- As in the univariate case, we once again have that
 - Posterior precision is sum of prior precision and data precision:

$$\Lambda_n^{-1} = \Lambda_0^{-1} + n\Sigma^{-1}$$

Posterior expectation is weighted average of prior expectation and the sample mean:

$$m{\mu}_n = \Lambda_n \left[\Lambda_0^{-1} m{\mu}_0 + n \Sigma^{-1} ar{m{y}}
ight]$$
 $= \overbrace{\left[\Lambda_n \Lambda_0^{-1}
ight]}^{ ext{weight on prior mean}} m{\mu}_0 + \overbrace{\left[\Lambda_n (n \Sigma^{-1})
ight]}^{ ext{weight on sample mean}} ar{m{y}}_{ ext{sample mean}}$

 Compare these to the results from the univariate case to gain more intuition.

WHAT ABOUT THE COVARIANCE MATRIX?

- In the univariate case with $y_i \sim \mathcal{N}(\mu, \sigma^2)$, the common choice for the prior is an inverse-gamma distribution for the variance σ^2 .
- As we have seen, we can rewrite as $y_i \sim \mathcal{N}(\mu, \tau^{-1})$, so that we have a gamma prior for the precision τ .
- In the multivariate normal case, we have a covariance matrix Σ instead of a scalar.
- Appealing to have a matrix-valued extension of the inverse-gamma (and gamma) that would be conjugate.

Positive definite and symmetric

- One complication is that the covariance matrix Σ must be **positive** definite and symmetric.
- lacksquare "Positive definite" means that for all $x \in \mathcal{R}^p$, $x^T \Sigma x > 0$.
- Basically ensures that the diagonal elements of Σ (corresponding to the marginal variances) are positive.
- Also, ensures that the correlation coefficients for each pair of variables are between -1 and 1.
- Our prior for Σ should thus assign probability one to set of positive definite matrices.
- Analogous to the univariate case, the inverse-Wishart distribution is the corresponding conditionally conjugate prior for Σ (multivariate generalization of the inverse-gamma).
- The textbook covers the construction of Wishart and inverse-Wishart random variables. We will skip the actual development in class but will write code to sample random variates.

INVERSE-WISHART DISTRIBUTION

lacksquare A random variable $\Sigma \sim \mathrm{IW}_p(
u_0, oldsymbol{S}_0)$, where Σ is positive definite and p imes p, has pdf

$$p(\Sigma) \, \propto \, |\Sigma|^{rac{-(
u_0+p+1)}{2}} {
m exp} \left\{ -rac{1}{2} {
m tr}(oldsymbol{S}_0 \Sigma^{-1})
ight\},$$

where

- $\operatorname{tr}(\cdot)$ is the **trace function** (sum of diagonal elements),
- ullet $u_0>p-1$ is the "degrees of freedom", and
- S_0 is a $p \times p$ positive definite matrix.
- lacksquare For this distribution, $\mathbb{E}[\Sigma] = rac{1}{
 u_0 p 1} oldsymbol{S}_0$, for $u_0 > p + 1$.
- lacksquare Hence, $oldsymbol{S}_0$ is the scaled mean of the $\mathrm{IW}_p(
 u_0, oldsymbol{S}_0).$

WISHART DISTRIBUTION

- If we are very confidence in a prior guess Σ_0 , for Σ , then we might set
 - ullet u_0 , the degrees of freedom to be very large, and
 - $S_0 = (\nu_0 p 1)\Sigma_0$.

In this case, $\mathbb{E}[\Sigma]=rac{1}{
u_0-p-1}S_0=rac{1}{
u_0-p-1}(
u_0-p-1)\Sigma_0=\Sigma_0$, and Σ is tightly (depending on the value of u_0) centered around Σ_0 .

- If we are not at all confident but we still have a prior guess Σ_0 , we might set
 - $lacksquare
 u_0=p+2$, so that the $\mathbb{E}[\Sigma]=rac{1}{
 u_0-p-1}oldsymbol{S}_0$ is finite.
 - lacksquare $oldsymbol{S}_0=\Sigma_0$

Here, $\mathbb{E}[\Sigma] = \Sigma_0$ as before, but Σ is only loosely centered around Σ_0 .

WISHART DISTRIBUTION

- Just as we had with the gamma and inverse-gamma relationship in the univariate case, we can also work in terms of the Wishart distribution (multivariate generalization of the gamma) instead.
- The Wishart distribution provides a conditionally-conjugate prior for the precision matrix Σ^{-1} in a multivariate normal model.
- lacksquare Specifically, if $\Sigma \sim \mathrm{IW}_p(
 u_0, oldsymbol{S}_0)$, then $\Phi = \Sigma^{-1} \sim \mathrm{W}_p(
 u_0, oldsymbol{S}_0^{-1}).$
- lacksquare A random variable $\Phi \sim \mathrm{W}_p(
 u_0, oldsymbol{S}_0^{-1})$, where Φ has dimension (p imes p), has pdf

$$|f(\Phi)| \propto |\Phi|^{rac{
u_0-p-1}{2}} \mathrm{exp} \left\{ -rac{1}{2} \mathrm{tr}(oldsymbol{S}_0 \Phi)
ight\}.$$

- lacksquare Here, $\mathbb{E}[\Phi] =
 u_0 oldsymbol{S}_0.$
- Note that the textbook writes the inverse-Wishart as $\mathrm{IW}_p(\nu_0, \boldsymbol{S}_0^{-1})$. I prefer $\mathrm{IW}_p(\nu_0, \boldsymbol{S}_0)$ instead. Feel free to use either notation but try not to get confused.

BACK TO INFERENCE ON COVARIANCE

- For inference on Σ , we need to rewrite the likelihood a bit to match the inverse-Wishart kernel.
- First a few results from matrix algebra:
 - 1. $\operatorname{tr}(\boldsymbol{A}) = \sum_{j=1}^p a_{jj}$, where a_{jj} is the jth diagonal element of a square $p \times p$ matrix \boldsymbol{A} .
 - 2. Cyclic property:

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{C}\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{C}\boldsymbol{A}\boldsymbol{B}),$$

given that the product ABC is a square matrix.

3. If ${m A}$ is a $p \times p$ matrix, then for a $p \times 1$ vector ${m x}$,

$$oldsymbol{x}^T oldsymbol{A} oldsymbol{x} = \operatorname{tr}(oldsymbol{x}^T oldsymbol{A} oldsymbol{x})$$

holds by (1), since $x^T A x$ is a scalar.

4.
$$tr(A + B) = tr(A) + tr(B)$$
.

MULTIVARIATE NORMAL LIKELIHOOD AGAIN

lacksquare It is thus convenient to rewrite $L(oldsymbol{Y};oldsymbol{ heta},\Sigma)$ as

$$L(oldsymbol{Y};oldsymbol{ heta},\Sigma) \propto |\Sigma|^{-rac{n}{2}} \exp\left\{-rac{1}{2}\sum_{i=1}^n (oldsymbol{y}_i-oldsymbol{ heta})^T\Sigma^{-1}(oldsymbol{y}_i-oldsymbol{ heta})
ight\} \ = |\Sigma|^{-rac{n}{2}} \exp\left\{-rac{1}{2}\sum_{i=1}^n \operatorname{tr}\left[(oldsymbol{y}_i-oldsymbol{ heta})^T\Sigma^{-1}(oldsymbol{y}_i-oldsymbol{ heta})
ight]
ight\} \ = |\Sigma|^{-rac{n}{2}} \exp\left\{-rac{1}{2}\operatorname{tr}\left[\sum_{i=1}^n (oldsymbol{y}_i-oldsymbol{ heta})(oldsymbol{y}_i-oldsymbol{ heta})^T\Sigma^{-1}
ight]
ight\} \ = |\Sigma|^{-rac{n}{2}} \exp\left\{-rac{1}{2}\operatorname{tr}\left[oldsymbol{S}_i(oldsymbol{y}_i-oldsymbol{ heta})(oldsymbol{y}_i-oldsymbol{ heta})^T\Sigma^{-1}
ight]
ight\},$$

where $m{S}_{ heta} = \sum_{i=1}^n (m{y}_i - m{ heta}) (m{y}_i - m{ heta})^T$ is the residual sum of squares matrix.

CONDITIONAL POSTERIOR FOR COVARIANCE

• Assuming $\pi(\Sigma)=\mathrm{IW}_p(
u_0,S_0)$, the conditional posterior (full conditional) $\Sigma|\pmb{\theta},\pmb{Y}$, is then

$$egin{aligned} \pi(\Sigma|oldsymbol{ heta},oldsymbol{Y}) &\propto L(oldsymbol{Y};oldsymbol{ heta},\Sigma)\cdot\pi(oldsymbol{ heta}) \ &\propto |\Sigma|^{-rac{n}{2}}\exp\left\{-rac{1}{2}\mathrm{tr}\left[oldsymbol{S}_{ heta}\Sigma^{-1}
ight]
ight\}\cdot\left|\Sigma|^{rac{-(
u_0+p+1)}{2}}\exp\left\{-rac{1}{2}\mathrm{tr}\left[oldsymbol{S}_{ heta}\Sigma^{-1}
ight]
ight\}, \ &\propto |\Sigma|^{rac{-(
u_0+p+n+1)}{2}}\exp\left\{-rac{1}{2}\mathrm{tr}\left[\left(oldsymbol{S}_0\Sigma^{-1}+oldsymbol{S}_{ heta}\Sigma^{-1}
ight]
ight\}, \end{aligned}$$

which is $\mathrm{IW}_p(\nu_n, \boldsymbol{S}_n)$, or using the notation in the book, $\mathrm{IW}_p(\nu_n, \boldsymbol{S}_n^{-1})$, with

- lacksquare $u_n=
 u_0+n$, and
- $lacksquare S_n = [S_0 + S_{ heta}]$

CONDITIONAL POSTERIOR FOR COVARIANCE

- We once again see that the "posterior sample size" or "posterior degrees of freedom" ν_n is the sum of the "prior degrees of freedom" ν_0 and the data sample size n.
- S_n can be thought of as the "posterior sum of squares", which is the sum of "prior sum of squares" plus "sample sum of squares".
- lacksquare Recall that if $\Sigma \sim \mathrm{IW}_p(
 u_0, oldsymbol{S}_0)$, then $\mathbb{E}[\Sigma] = rac{1}{
 u_0 p 1} oldsymbol{S}_0.$
- ⇒ the conditional posterior expectation of the population covariance is

$$\mathbb{E}[\Sigma | oldsymbol{ heta}, oldsymbol{Y}] = rac{1}{
u_0 + n - p - 1} [oldsymbol{S}_0 + oldsymbol{S}_{ heta}]
onumber = rac{
u_0 - p - 1}{
u_0 + n - p - 1} [oldsymbol{rac{1}{
u_0 - p - 1} S_0}] + rac{n}{
u_0 + n - p - 1} [oldsymbol{rac{1}{n} S_{ heta}}],$$
weight on prior expectation weight on sample estimate

which is a weighted average of prior expectation and sample estimate.

