$11n_{144} (K11n_{144})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 19u^{18} - 215u^{17} + \dots + 32b + 896, \ -14u^{18} + 191u^{17} + \dots + 32a - 1760, \\ &u^{19} - 15u^{18} + \dots + 544u - 64 \rangle \\ I_2^u &= \langle -25111a^{11}u + 473518a^{10}u + \dots - 96138a - 81801, \ a^{11}u - 6a^{10}u + \dots - 155a + 167, \ u^2 + u - 1 \rangle \\ I_3^u &= \langle 3u^{10} + 8u^9 + u^8 - 3u^7 + 8u^6 - u^5 - u^4 + 3u^3 - 9u^2 + b + u - 1, \\ &- u^{10} - u^9 + 4u^8 + u^7 - 5u^6 + 5u^5 - 2u^3 + 5u^2 + a - 5u + 1, \\ &u^{11} + 4u^{10} + 4u^9 + 2u^7 + 3u^6 - u^5 + u^4 - 2u^3 - 4u^2 - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 54 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 19u^{18} - 215u^{17} + \dots + 32b + 896, -14u^{18} + 191u^{17} + \dots + 32a - 1760, u^{19} - 15u^{18} + \dots + 544u - 64 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{7}{16}u^{18} - \frac{191}{32}u^{17} + \cdots - \frac{743}{2}u + 55 \\ -\frac{19}{32}u^{18} + \frac{25}{32}u^{17} + \cdots + 183u - 28 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{63}{64}u^{18} + \frac{883}{64}u^{17} + \cdots + \frac{1901}{4}u - 64 \\ \frac{31}{32}u^{18} - \frac{435}{32}u^{17} + \cdots - \frac{941}{4}u + 63 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{64}u^{18} + \frac{13}{64}u^{17} + \cdots + \frac{19}{4}u - 1 \\ \frac{31}{32}u^{18} - \frac{435}{32}u^{17} + \cdots - \frac{941}{2}u + 63 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{53}u^{18} + \frac{3}{32}u^{17} + \cdots - \frac{977}{2}u + 27 \\ -\frac{13}{32}u^{18} + \frac{215}{32}u^{17} + \cdots + 183u - 28 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{5}{32}u^{18} + \frac{3}{4}u^{17} + \cdots - \frac{377}{2}u + 27 \\ \frac{115}{32}u^{18} - \frac{1551}{32}u^{17} + \cdots - 674u + 74 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{307}{64}u^{18} - \frac{3931}{12}u^{17} + \cdots - \frac{3381}{4}u + 100 \\ -\frac{177}{132}u^{18} + \frac{2313}{32}u^{17} + \cdots + \frac{2457}{2}u - 149 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{307}{64}u^{18} + \frac{1597}{64}u^{17} + \cdots - 61u + \frac{37}{2} \\ \frac{339}{32}u^{18} - \frac{4473}{32}u^{17} + \cdots - 2502u + 303 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0156250u^{18} + 0.203125u^{17} + \cdots - 10.3750u^{2} + 3.75000u \\ \frac{1}{32}u^{18} - \frac{13}{32}u^{17} + \cdots - \frac{15}{2}u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0156250u^{18} + 0.203125u^{17} + \cdots - 10.3750u^{2} + 3.75000u \\ \frac{1}{32}u^{18} - \frac{13}{32}u^{17} + \cdots - \frac{15}{2}u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{107}{8}u^{18} + \frac{1433}{8}u^{17} + \dots + 4122u 534u^{18}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{19} - 5u^{18} + \dots - 14u + 4$
c_2	$u^{19} + 9u^{18} + \dots + 44u + 16$
$c_3, c_5, c_8 \\ c_9$	$u^{19} + u^{18} + \dots + 4u + 1$
c_4,c_{10}	$u^{19} + 15u^{17} + \dots + 3u + 1$
	$u^{19} + 15u^{18} + \dots + 544u + 64$
c_{11}	$u^{19} - 15u^{18} + \dots - 990u + 196$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{19} - 9y^{18} + \dots + 44y - 16$
c_2	$y^{19} + 3y^{18} + \dots + 2288y - 256$
c_3, c_5, c_8 c_9	$y^{19} - 9y^{18} + \dots + 12y - 1$
c_4, c_{10}	$y^{19} + 30y^{18} + \dots - 25y - 1$
c_7	$y^{19} - 11y^{18} + \dots + 95232y - 4096$
c_{11}	$y^{19} + 3y^{18} + \dots + 237260y - 38416$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.068838 + 1.152610I		
a = 0.509367 - 0.020838I	-1.40681 - 1.74274I	-5.94701 + 3.80028I
b = -0.059082 - 0.585665I		
u = 0.068838 - 1.152610I		
a = 0.509367 + 0.020838I	-1.40681 + 1.74274I	-5.94701 - 3.80028I
b = -0.059082 + 0.585665I		
u = -0.655172 + 0.270735I		
a = 0.180740 - 0.531477I	1.11792 - 1.95845I	-4.20644 + 5.46350I
b = -0.025474 - 0.397141I		
u = -0.655172 - 0.270735I		
a = 0.180740 + 0.531477I	1.11792 + 1.95845I	-4.20644 - 5.46350I
b = -0.025474 + 0.397141I		
u = 1.244400 + 0.434239I		
a = 0.558407 + 1.198070I	5.25710 - 1.54392I	-8.61355 - 2.51619I
b = -0.17463 - 1.73336I		
u = 1.244400 - 0.434239I		
a = 0.558407 - 1.198070I	5.25710 + 1.54392I	-8.61355 + 2.51619I
b = -0.17463 + 1.73336I		
u = 0.525160 + 1.295010I		
a = -0.477990 - 0.189359I	-5.26090 + 2.36693I	-9.94736 - 1.06990I
b = 0.005800 + 0.718444I		
u = 0.525160 - 1.295010I		
a = -0.477990 + 0.189359I	-5.26090 - 2.36693I	-9.94736 + 1.06990I
b = 0.005800 - 0.718444I		
u = 1.37929 + 0.44772I		
a = -0.340635 - 1.191440I	6.12748 + 4.38921I	-5.85287 - 6.32556I
b = -0.06359 + 1.79584I		
u = 1.37929 - 0.44772I		
a = -0.340635 + 1.191440I	6.12748 - 4.38921I	-5.85287 + 6.32556I
b = -0.06359 - 1.79584I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.07036 + 1.50415I		
a = -0.374863 + 0.006918I	-4.57325 - 6.41400I	-8.03245 + 7.39287I
b = -0.015967 + 0.564338I		
u = -0.07036 - 1.50415I		
a = -0.374863 - 0.006918I	-4.57325 + 6.41400I	-8.03245 - 7.39287I
b = -0.015967 - 0.564338I		
u = 1.57100 + 0.65066I		
a = 0.118849 + 0.926036I	-1.49409 + 5.07243I	-11.25567 - 3.29320I
b = 0.41582 - 1.53213I		
u = 1.57100 - 0.65066I		
a = 0.118849 - 0.926036I	-1.49409 - 5.07243I	-11.25567 + 3.29320I
b = 0.41582 + 1.53213I		
u = 1.63033 + 0.51703I	4.00000 + 0.000447	F 0 4 4 9 F 4 9 CF C 4 I
a = -0.023365 - 1.061980I	4.00668 + 8.26944I	-5.84435 - 4.36564I
b = -0.51099 + 1.74346I $u = 1.63033 - 0.51703I$		
a = 1.03033 - 0.317031 a = -0.023365 + 1.0619801	4.00668 - 8.26944I	$\begin{bmatrix} -5.84435 + 4.36564I \end{bmatrix}$
·	4.00000 - 6.209441	-9.64450 + 4.303041
b = -0.51099 - 1.74346I $u = 1.69551 + 0.51970I$		
a = -0.052766 + 1.037060I	1.54987 + 13.80210I	-8.55217 - 7.85507I
b = 0.62842 - 1.73093I	1.04301 10.002101	0.00217 7.000071
u = 1.69551 - 0.51970I		
a = -0.052766 - 1.037060I	1.54987 - 13.80210I	$\begin{bmatrix} -8.55217 + 7.85507I \end{bmatrix}$
b = 0.62842 + 1.73093I		
u = 0.222014		
a = 1.80451	-0.778408	-13.4960
b = -0.400627		

II.
$$I_2^u = \langle -2.51 \times 10^4 a^{11} u + 4.74 \times 10^5 a^{10} u + \dots - 9.61 \times 10^4 a - 8.18 \times 10^4, \ a^{11} u - 6a^{10} u + \dots - 155a + 167, \ u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.13517a^{11}u - 21.4058a^{10}u + \dots + 4.34601a + 3.69789 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -35.3361a^{11}u - 18.9502a^{10}u + \dots + 8.81063a + 0.563175 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -35.3361a^{11}u - 18.9502a^{10}u + \dots + 8.81063a + 0.563175 \\ -35.3361a^{11}u - 18.9502a^{10}u + \dots + 8.81063a + 0.563175 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.13517a^{11}u - 21.4058a^{10}u + \dots + 8.81063a + 0.563175 \\ 1.13517a^{11}u - 21.4058a^{10}u + \dots + 4.34601a + 3.69789 \\ 1.13517a^{11}u - 21.4058a^{10}u + \dots + 5.34601a + 3.69789 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.13517a^{11}u - 21.4058a^{10}u + \dots + 5.34601a + 3.69789 \\ -1.83504a^{11}u + 34.6362a^{10}u + \dots - 7.86737a - 8.59712 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 22.6625a^{11}u + 16.1085a^{10}u + \dots - 7.94413a - 2.81597 \\ 18.9641a^{11}u + 15.2801a^{10}u + \dots - 6.71073a - 2.33606 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 7.69685a^{11}u - 29.9099a^{10}u + \dots + 6.05140a + 8.17657 \\ -4.02676a^{11}u - 39.3625a^{10}u + \dots + 8.68333a + 9.01768 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -21.8411a^{11}u - 11.7229a^{10}u + \dots + 4.19271a + 0.957552 \\ a^{2}u - a^{2} + 2u \end{pmatrix}$$

$$a_{2}u - a^{2} + 2u$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{413176}{22121}a^{11}u - \frac{1916164}{22121}a^{10}u + \cdots + \frac{545276}{22121}a + \frac{178130}{22121}a + \frac{1781$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^4$
c_2, c_{11}	$(u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^4$
c_3, c_5, c_8 c_9	$u^{24} + u^{23} + \dots + 94u + 29$
c_4, c_{10}	$u^{24} - u^{23} + \dots + 166u + 79$
C ₇	$(u^2 - u - 1)^{12}$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^4$
c_2,c_{11}	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^4$
c_3, c_5, c_8 c_9	$y^{24} - 9y^{23} + \dots - 8372y + 841$
c_4, c_{10}	$y^{24} + 15y^{23} + \dots + 63136y + 6241$
<i>C</i> ₇	$(y^2 - 3y + 1)^{12}$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 0.378632 + 0.673935I	-2.05724 + 0.92430I	-4.28328 - 0.79423I
b = -1.387580 - 0.061682I		
u = 0.618034		
a = 0.378632 - 0.673935I	-2.05724 - 0.92430I	-4.28328 + 0.79423I
b = -1.387580 + 0.061682I		
u = 0.618034		
a = -0.347430 + 1.244240I	-3.94784 - 5.69302I	-8.00000 + 5.51057I
b = 1.52296 - 0.13510I		
u = 0.618034		
a = -0.347430 - 1.244240I	-3.94784 + 5.69302I	-8.00000 - 5.51057I
b = 1.52296 + 0.13510I		
u = 0.618034		
a = 0.812996 + 1.057280I	-5.83845 + 0.92430I	-11.71672 - 0.79423I
b = 1.195370 - 0.421798I		
u = 0.618034		
a = 0.812996 - 1.057280I	-5.83845 - 0.92430I	-11.71672 + 0.79423I
b = 1.195370 + 0.421798I		
u = 0.618034		
a = -1.93415 + 0.68248I	-5.83845 + 0.92430I	-11.71672 - 0.79423I
b = -0.502459 - 0.653436I		
u = 0.618034		
a = -1.93415 - 0.68248I	-5.83845 - 0.92430I	-11.71672 + 0.79423I
b = -0.502459 + 0.653436I		
u = 0.618034		
a = 2.24514 + 0.09980I	-2.05724 + 0.92430I	-4.28328 - 0.79423I
b = -0.234007 - 0.416515I		
u = 0.618034		
a = 2.24514 - 0.09980I	-2.05724 - 0.92430I	-4.28328 + 0.79423I
b = -0.234007 + 0.416515I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = -2.46421 + 0.21859I	-3.94784 - 5.69302I	-8.00000 + 5.51057I
b = 0.214724 - 0.768984I		
u = 0.618034		
a = -2.46421 - 0.21859I	-3.94784 + 5.69302I	-8.00000 - 5.51057I
b = 0.214724 + 0.768984I		
u = -1.61803		
a = 0.086187 + 1.029040I	5.83845 + 0.92430I	-4.28328 - 0.79423I
b = 0.47994 - 1.48236I		
u = -1.61803		
a = 0.086187 - 1.029040I	5.83845 - 0.92430I	-4.28328 + 0.79423I
b = 0.47994 + 1.48236I		
u = -1.61803		
a = -0.417397 + 0.869872I	3.94784 + 5.69302I	-8.00000 - 5.51057I
b = 0.01162 - 1.75281I		
u = -1.61803		
a = -0.417397 - 0.869872I	3.94784 - 5.69302I	-8.00000 + 5.51057I
b = 0.01162 + 1.75281I		
u = -1.61803		
a = 0.296617 + 0.916149I	5.83845 - 0.92430I	-4.28328 + 0.79423I
b = 0.13945 - 1.66501I		
u = -1.61803		
a = 0.296617 - 0.916149I	5.83845 + 0.92430I	-4.28328 - 0.79423I
b = 0.13945 + 1.66501I		
u = -1.61803		
a = 0.007184 + 1.083300I	3.94784 - 5.69302I	-8.00000 + 5.51057I
b = -0.67536 - 1.40748I		
u = -1.61803		
a = 0.007184 - 1.083300I	3.94784 + 5.69302I	-8.00000 - 5.51057I
b = -0.67536 + 1.40748I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.61803		
a = 0.051210 + 0.866179I	2.05724 + 0.92430I	-11.71672 - 0.79423I
b = -0.347529 - 0.990805I		
u = -1.61803		
a = 0.051210 - 0.866179I	2.05724 - 0.92430I	-11.71672 + 0.79423I
b = -0.347529 + 0.990805I		
u = -1.61803		
a = -0.214785 + 0.612351I	2.05724 - 0.92430I	-11.71672 + 0.79423I
b = 0.082860 - 1.401510I		
u = -1.61803		
a = -0.214785 - 0.612351I	2.05724 + 0.92430I	-11.71672 - 0.79423I
b = 0.082860 + 1.401510I		

$$I_3^{u} = \langle 3u^{10} + 8u^9 + \dots + b - 1, -u^{10} - u^9 + \dots + a + 1, u^{11} + 4u^{10} + \dots - 4u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{10} + u^{9} - 4u^{8} - u^{7} + 5u^{6} - 5u^{5} + 2u^{3} - 5u^{2} + 5u - 1 \\ -3u^{10} - 8u^{9} - u^{8} + 3u^{7} - 8u^{6} + u^{5} + u^{4} - 3u^{3} + 9u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{9} - 3u^{8} - u^{7} + u^{6} - 3u^{5} + u^{3} - 2u^{2} + 4u \\ -u^{10} - 3u^{9} - u^{8} + u^{7} - 3u^{6} + u^{4} - 2u^{3} + 4u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{10} - 4u^{9} - 4u^{8} - 2u^{6} - 3u^{5} + u^{4} - u^{3} + 2u^{2} + 5u \\ -u^{10} - 3u^{9} - u^{8} + u^{7} - 3u^{6} + u^{4} - 2u^{3} + 4u^{2} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{10} - 7u^{9} - 5u^{8} + 2u^{7} - 3u^{6} - 4u^{5} + u^{4} - u^{3} + 4u^{2} + 4u \\ -3u^{10} - 8u^{9} - u^{8} + 3u^{7} - 8u^{6} + u^{5} + u^{4} - 3u^{3} + 9u^{2} - u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{10} - 7u^{9} - 5u^{8} + 2u^{7} - 3u^{6} - 4u^{5} + u^{4} - u^{3} + 4u^{2} + 4u \\ -2u^{10} - 6u^{9} - 2u^{8} + 3u^{7} - 8u^{6} - 4u^{5} + u^{4} - u^{3} + 4u^{2} + 4u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{10} - 7u^{9} - 5u^{8} + 2u^{7} - 3u^{6} - 4u^{5} + u^{4} - u^{3} + 4u^{2} + 4u \\ -2u^{10} - 6u^{9} - 2u^{8} + 3u^{7} - 4u^{6} - u^{5} + 2u^{4} - u^{3} + 5u^{2} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{10} - 6u^{9} - 3u^{8} - 5u^{6} - 2u^{4} - 3u^{3} + 7u^{2} + u + 2 \\ u^{10} + 2u^{9} - u^{8} + 4u^{6} - 2u^{5} + u^{3} - 3u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{10} - 6u^{9} - 3u^{8} - 5u^{6} - 2u^{4} + 3u^{3} - 5u^{2} + u + 1 \\ -2u^{10} - 6u^{9} - 3u^{8} - 5u^{6} - u^{4} - u^{3} + 7u^{2} + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{10} + 4u^{9} + 4u^{8} + 2u^{6} + 3u^{5} - u^{4} + u^{3} - 2u^{2} - 4u + 1 \\ -u^{2} + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{10} + 4u^{9} + 4u^{8} + 2u^{6} + 3u^{5} - u^{4} + u^{3} - 2u^{2} - 4u + 1 \\ -u^{2} + 1 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$5u^{10} + 14u^9 + 3u^8 - 4u^7 + 15u^6 + u^5 + 2u^4 + 4u^3 - 15u^2 + 3u - 16u^2 + 3u^2 + 3u^3 + 3u^2 + 3u^2 + 3u^3 + 3u^3$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1	$u^{11} - 3u^9 + 5u^7 - 4u^5 + u^4 + 2u^3 - 2u^2 + 1$		
c_2	$u^{11} + 6u^{10} + \dots + 4u + 1$		
c_{3}, c_{8}	$u^{11} - u^{10} - 3u^9 + 3u^8 + 2u^7 - u^6 + u^5 - 3u^4 - u^3 + 2u^2 + 1$		
c_4, c_{10}	$u^{11} + 2u^9 + u^8 - 3u^7 - u^6 - u^5 - 2u^4 + 3u^3 + 3u^2 - u - 1$		
c_5, c_9	$u^{11} + u^{10} - 3u^9 - 3u^8 + 2u^7 + u^6 + u^5 + 3u^4 - u^3 - 2u^2 - 1$		
c_6	$u^{11} - 3u^9 + 5u^7 - 4u^5 - u^4 + 2u^3 + 2u^2 - 1$		
<i>C</i> ₇	$u^{11} + 4u^{10} + 4u^9 + 2u^7 + 3u^6 - u^5 + u^4 - 2u^3 - 4u^2 - 1$		
c_{11}	$u^{11} + u^9 + 4u^8 + u^7 + 8u^5 - 5u^4 + 9u^3 - 3u^2 + 1$		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{11} - 6y^{10} + \dots + 4y - 1$
c_2	$y^{11} + 2y^{10} + \dots + 4y - 1$
$c_3,c_5,c_8 \ c_9$	$y^{11} - 7y^{10} + \dots - 4y - 1$
c_4, c_{10}	$y^{11} + 4y^{10} + \dots + 7y - 1$
c_7	$y^{11} - 8y^{10} + \dots - 8y - 1$
c_{11}	$y^{11} + 2y^{10} + \dots + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.658661 + 0.780836I		
a = 0.334333 - 0.641044I	-6.99914 + 2.24617I	-15.2425 - 3.4100I
b = 0.720763 - 0.161171I		
u = 0.658661 - 0.780836I		
a = 0.334333 + 0.641044I	-6.99914 - 2.24617I	-15.2425 + 3.4100I
b = 0.720763 + 0.161171I		
u = -0.071195 + 0.899946I		
a = -0.435703 - 0.871171I	-5.80784 - 5.68354I	-14.5040 + 4.4186I
b = 0.815027 - 0.330086I		
u = -0.071195 - 0.899946I		
a = -0.435703 + 0.871171I	-5.80784 + 5.68354I	-14.5040 - 4.4186I
b = 0.815027 + 0.330086I		
u = 0.895531		
a = -0.811062	-4.44260	-6.63260
b = -0.726331		
u = -1.345990 + 0.064656I		
a = 0.175003 - 1.238530I	5.44803 + 2.65181I	-6.56642 - 4.06839I
b = -0.15547 + 1.67836I		
u = -1.345990 - 0.064656I		
a = 0.175003 + 1.238530I	5.44803 - 2.65181I	-6.56642 + 4.06839I
b = -0.15547 - 1.67836I		
u = 0.049939 + 0.484753I		
a = 0.21633 + 1.89590I	-3.30665 - 0.86798I	-12.51115 + 0.41084I
b = -0.908242 + 0.199545I		
u = 0.049939 - 0.484753I		
a = 0.21633 - 1.89590I	-3.30665 + 0.86798I	-12.51115 - 0.41084I
b = -0.908242 - 0.199545I		
u = -1.73918 + 0.14158I		
a = 0.115568 - 0.650407I	3.01730 - 1.31614I	-1.85963 + 5.09190I
b = -0.108908 + 1.147540I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.73918 - 0.14158I		
a = 0.115568 + 0.650407I	3.01730 + 1.31614I	-1.85963 - 5.09190I
b = -0.108908 - 1.147540I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{6} + u^{5} - u^{4} - 2u^{3} + u + 1)^{4}$ $\cdot (u^{11} - 3u^{9} + \dots - 2u^{2} + 1)(u^{19} - 5u^{18} + \dots - 14u + 4)$
c_2	$((u^{6} + 3u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + u + 1)^{4})(u^{11} + 6u^{10} + \dots + 4u + 1)$ $\cdot (u^{19} + 9u^{18} + \dots + 44u + 16)$
c_3, c_8	$(u^{11} - u^{10} - 3u^9 + 3u^8 + 2u^7 - u^6 + u^5 - 3u^4 - u^3 + 2u^2 + 1)$ $\cdot (u^{19} + u^{18} + \dots + 4u + 1)(u^{24} + u^{23} + \dots + 94u + 29)$
c_4, c_{10}	$(u^{11} + 2u^9 + u^8 - 3u^7 - u^6 - u^5 - 2u^4 + 3u^3 + 3u^2 - u - 1)$ $\cdot (u^{19} + 15u^{17} + \dots + 3u + 1)(u^{24} - u^{23} + \dots + 166u + 79)$
c_5, c_9	$(u^{11} + u^{10} - 3u^9 - 3u^8 + 2u^7 + u^6 + u^5 + 3u^4 - u^3 - 2u^2 - 1)$ $\cdot (u^{19} + u^{18} + \dots + 4u + 1)(u^{24} + u^{23} + \dots + 94u + 29)$
<i>c</i> ₆	$(u^{6} + u^{5} - u^{4} - 2u^{3} + u + 1)^{4}$ $\cdot (u^{11} - 3u^{9} + \dots + 2u^{2} - 1)(u^{19} - 5u^{18} + \dots - 14u + 4)$
c ₇	$(u^{2} - u - 1)^{12}(u^{11} + 4u^{10} + 4u^{9} + 2u^{7} + 3u^{6} - u^{5} + u^{4} - 2u^{3} - 4u^{2} - 1)$ $\cdot (u^{19} + 15u^{18} + \dots + 544u + 64)$
c_{11}	$(u^{6} + 3u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + u + 1)^{4}$ $\cdot (u^{11} + u^{9} + 4u^{8} + u^{7} + 8u^{5} - 5u^{4} + 9u^{3} - 3u^{2} + 1)$ $\cdot (u^{19} - 15u^{18} + \dots - 990u + 196)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$((y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^4)(y^{11} - 6y^{10} + \dots + 4y - 1)$ $\cdot (y^{19} - 9y^{18} + \dots + 44y - 16)$
c_2	$((y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^4)(y^{11} + 2y^{10} + \dots + 4y - 1)$ $\cdot (y^{19} + 3y^{18} + \dots + 2288y - 256)$
c_3, c_5, c_8 c_9	$(y^{11} - 7y^{10} + \dots - 4y - 1)(y^{19} - 9y^{18} + \dots + 12y - 1)$ $\cdot (y^{24} - 9y^{23} + \dots - 8372y + 841)$
c_4, c_{10}	$(y^{11} + 4y^{10} + \dots + 7y - 1)(y^{19} + 30y^{18} + \dots - 25y - 1)$ $\cdot (y^{24} + 15y^{23} + \dots + 63136y + 6241)$
<i>C</i> ₇	$((y^{2} - 3y + 1)^{12})(y^{11} - 8y^{10} + \dots - 8y - 1)$ $\cdot (y^{19} - 11y^{18} + \dots + 95232y - 4096)$
c_{11}	$((y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^4)(y^{11} + 2y^{10} + \dots + 6y - 1)$ $\cdot (y^{19} + 3y^{18} + \dots + 237260y - 38416)$