Hanoi University of Science and Technology School of Engineering Physics

LAB REPORT

For Electrics and Thermodynamics

Experiment 6

Student name: Nguyen Viet Anh

Student ID : 20150143

Group number: 1

Name: Nguyen Viet Anh

Date: 8st April 2017

ID : 20150143

Experiment 6

DETERMINATION OF SPECIFIC HEAT RATIO OF AIR BASED ON CLEMENT DESORME'S METHOD

I. EXPERIMENT MOTIVATION

- To determine the specific heat ratio $\gamma = Cp/Cv$ for air.

II. EXPERIMENTAL RESULTS

1. Measurement result:

H = 240mm			
Trial	L ₁ (mm)	L ₂ (mm)	$h = L_1 - L_2$
1	355	297	58
2	356	296	60
3	354	298	56
4	355	297	58
5	354	298	56
6	355	297	58
7	356	296	60
8	356	296	60
9	357	295	62
10	357	295	62
	$\overline{L_1} = 355.5$	$\overline{L_2} = 296.5$	$\bar{h} = 59.0$

2. Calculation average value and uncertainly measuring

$$\bar{h} = \frac{1}{10} \sum_{i=1}^{10} h_i = 59.0$$

The uncertain of $L_{1:}$

$$\Delta L_1 = \text{s.d} = \sqrt{\frac{\sum_{i=1}^{10} (L_i - \overline{L_1})^2}{10}} = 1.02 \ (mm)$$

The uncertain of L_2 :

$$\Delta L_2 = \text{s.d} = \sqrt{\frac{\sum_{i=1}^{10} (L - \overline{L_2})^2}{10}} = 1.02 (mm)$$

The uncertain of h:

$$\Delta h = \sqrt{1.02^2 + 1.02^2} = 1.44 \text{ (mm)}$$

Hence:

$$h = \bar{h} \pm \Delta h = 59.0 \pm 1.44 (mm)$$

3. Calculation of heat ratio of air

- The formula: $\gamma = \frac{H}{H-h}$
- We have:

$$\bar{\gamma} = \frac{250}{250 - 59.0} = 1.31$$

$$\Delta \gamma = \gamma \sqrt{\left(\frac{\Delta H}{H}\right)^2 + \left(\sqrt{\left(\frac{\Delta H}{H}\right)^2 + \left(\frac{\Delta h}{h}\right)^2} \times \frac{1}{H - h}\right)^2} = 0.01$$

Hence:

$$\gamma = \bar{\gamma} \pm \Delta \gamma = 1.31 \pm 0.01$$

4. Theoretical result and comparison

- The formula: $\gamma = \frac{i+2}{i}$

Where i is the Degree of Freedom of ideal gas (in this case is air), which mean i=5 . We got:

$$\gamma = \frac{5+2}{5} = 1.40$$

The theoretical result is a little higher than the directly measured result.