MPI* Maths Théorèmes d'analyse

Les fondamentaux

Séries numériques ou à valeurs vectorielles

Proposition - Série de Riemann

Soit $\alpha \in \mathbb{R}$, on a alors

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \text{ converge } \Leftrightarrow \alpha > 1$$

Proposition - $CVABS \Rightarrow CV$

Soient $(E, \|.\|_E)$ un \mathbb{K} -e.v.n de dimension finie et $(u_n)_n \in E^{\mathbb{N}}$.

 $\sum_{n} u_n$ converge absolument $\Rightarrow \sum_{n} u_n$ converge

Théorème - Critère de convergence des séries alternées (CCSA)

Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$.

 $(H_1) \forall n \in \mathbb{N}, u_n \text{ est du signe de } (-1)^n.$

 (H_2) $(|u_n|)_n$ est décroissante.

 $(H_3) |u_n| \rightarrow 0$

ALORS

 $\sum_{n} u_n$ converge

et R_n est du signe de u_{n+1} $\forall n \in \mathbb{N}, |R_n| \le |u_{n+1}|$

Proposition - Règle de d'Alembert

Soit $(u_n)_n \in (\mathbb{R}_+^*)^{\mathbb{N}}$. On suppose que $\frac{u_{n+1}}{u_n} \to l \in \mathbb{R}_+ \cup \{+\infty\}$.

1. Si l < 1, alors $\sum_{n} u_n$ converge.

2. Si l > 1, alors $\sum_{n} u_n$ diverge.

3. Si l = 1, on ne peut rien dire...

Théorème de sommation des relations de comparaison (cas convergent)

Soient $(u_n), (v_n) \in (\mathbb{R}_+)^{\mathbb{N}}$.

1. Si $u_n = \mathcal{O}(v_n)$ et $\sum_n v_n$ converge, ALORS $\begin{cases} \sum_n u_n \text{ converge} \\ R_n(u) = \mathcal{O}(R_n(v)) \end{cases}$ 2. Si $u_n = o(v_n)$ et $\sum_n v_n$ converge, ALORS $\begin{cases} \sum_n u_n \text{ converge} \\ R_n(u) = o(R_n(v)) \end{cases}$

3. Si $u_n \sim v_n$ et $\sum_n v_n$ converge, ALORS $\begin{cases} \sum_n u_n \text{ converge} \\ R_n(u) \sim (R_n(v)) \end{cases}$

Théorème de Cesàro

Soit $(u_n)_n \in \mathbb{C}^{\mathbb{N}}$ telle que $u_n \to l \in \mathbb{C}$. Alors,

$$\lim_{n \to +\infty} \frac{1}{n+1} \sum_{k=0}^{n} u_k = l$$

Proposition - Comparaison suite-série

Soit $(E, \|.\|_E)$ un \mathbb{K} -e.v.n et soit $(u_n)_n \in E^{\mathbb{N}}$. Alors,

$$(u_n)_n$$
 converge $\Leftrightarrow \sum_n u_{n+1} - u_n$ converge

Proposition - Comparaison série-intégrale

Soit $(E, \|.\|_E)$ un \mathbb{K} -e.v.n et soit $(u_n)_n \in E^{\mathbb{N}}$.

Notons la fonction $f: \mathbb{N} \to E$ qui dénote (u_n) (par ex. si $u_n = n+1$, on prendra $f: x \mapsto x+1$). Alors,

$$\sum_{n=0}^{+\infty} f(n) \text{ et } \int_0^{+\infty} f(x) dx \text{ sont de même nature.}$$

Théorème de sommation par paquets (2 versions)

Soit $I = \bigsqcup_{i \in I} I_j$ avec J fini ou dénombrable et $\forall j \in J, I_j$ fini ou dénombrable.

Alors,

1. Soit $(u_i)_i \in (\mathbb{R}_+)^I$, alors :

$$\sum_{i \in I} u_i = \sum_{j \in J} \left(\sum_{i \in I_j} u_i \right)$$

2. Soit $(u_i)_i \in \mathbb{C}^I$ qu'on suppose sommable, alors :

$$\sum_{i \in I} u_i = \sum_{j \in J} \left(\sum_{i \in I_j} u_i \right)$$

Proposition - Formule de Stirling

Soit $n \in \mathbb{N}^*$, on a alors

$$n! \sim_{+\infty} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Proposition - Séries de Bertrand

Soient $\alpha, \beta \in \mathbb{R}$, alors

$$\sum_{n} \frac{1}{n^{\alpha} \ln(n)^{\beta}} \text{ converge} \iff \begin{cases} \alpha > 1 \\ \mathbf{OU} \\ \alpha = 1 \text{ et } \beta > 1 \end{cases}$$

Fonctions à valeurs vectorielles

Proposition - Caractérisation séquentielle de la continuité

Soient $(E, ||.||_E)$ et $(F, ||.||_F)$ 2 K-e.v.n.

Soient $A \subset E$ et $f : A \to F$ une application. Soit $a \in A$

Alors:

$$f$$
 continue en $a \Leftrightarrow \forall (x_n)_n \in A^{\mathbb{N}}$ tq. $x_n \to a$, $\lim_{n \to +\infty} f(x_n) = f(a)$

Proposition

Soient $(E, ||.||_E)$ et $(F, ||.||_F)$ 2 K-e.v.n.

Soient $A \subset E$ et $f : A \to F$ une application.

Alors

$$f$$
 lipschitzienne $\Rightarrow f C^0$ sur A

Proposition - Une équivalence pratique

Soient $I \subset \mathbb{R}$ un intervalle, $(F, \|.\|_F)$ un \mathbb{R} -e.v.n et $f: \begin{cases} I & \to F \\ x & \mapsto f(x) \end{cases}$ une application. Soit $a \in I$.

On suppose $f \mathcal{C}^0$ sur I. Alors:

f est dérivable en $a \Leftrightarrow f$ admet un DL_1 en a.

Dans ce cas,
$$f(a+h) = f(a) + hf'(a) + o(h)$$

Définition - Somme de Riemann

Soient $I \subset \mathbb{R}$ un intervalle, $(F, \|.\|_F)$ un \mathbb{R} -e.v.n et $f: \begin{cases} I & \to F \\ x & \mapsto f(x) \end{cases}$ une application **continue ou continue par mor-**

ceaux

Soient $[a;b] \subset I$ et $n \in \mathbb{N}$.

(1) On appelle Somme de Riemann (à gauche) la quantité :

$$S_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n})$$

(2) Généralement, on aura a = 0 et b = 1, d'où

$$S_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} f(\frac{k}{n})$$

Théorème - Convergence d'une somme de Riemann

(mm notations) On a:

$$\lim_{n \to +\infty} S_n(f) = \int_a^b f(t) dt$$

Théorème de Rolle

Soient $a, b \in \mathbb{R}$ tq. a < b. Soit $f \in \mathcal{C}^0([a;b],\mathbb{R})$, dérivable sur]a;b[et telle que f(a) = f(b). Alors :

$$\exists c \in a; b[, f'(c) = 0$$

Théorème - Égalité des Accroissements Finis

Soit $I = [a; b] \subset \mathbb{R}$ un intervalle, soit $f: I \to \mathbb{R}$ continue sur I et dérivable sur]a; b[...]

Alors:

Il existe
$$c \in a$$
; b [tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$

Théorème - Inégalité des Accroissements Finis

(mm notations). On suppose qu'il existe $m, M \in \mathbb{R}_+$ tels que $m \le f' \le M$. Alors :

$$\forall (x,y) \in I^2, x \ge y \Rightarrow m(x-y) \le f(x) - f(y) \le M(x-y)$$

Proposition - Formule de Taylor-Young

Soit $I \subset \mathbb{R}$ un intervalle, soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soit $n \in \mathbb{N}$ et $f : I \to \mathbb{R}$ de classe \mathbb{C}^n , alors : $\forall a, b \in I$,

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + o(|b-a|^n)$$

Proposition - Formule de Taylor Reste Intégral

Soit $I \subset \mathbb{R}$ un intervalle, soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soit $n \in \mathbb{N}$ et $f : I \to \mathbb{R}$ de classe C^{n+1} , alors : $\forall a, b \in I$,

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

Proposition - Caractérisation séquentielle d'un point adhérent à une partie

(mm notations)

On dit de $a \in E$ qu'il est adhérent à A si :

$$\exists (x_n)_n \in A^{\mathbb{N}} \text{ tq. } x_n \to a$$

Proposition - Inégalité arithmético-géométrique

Soient $x_1, ..., x_n \in \mathbb{R}_+^*$, alors :

$$(x_1 \times \ldots \times x_n)^{\frac{1}{n}} \le \frac{x_1 + \ldots + x_n}{n}$$

Théorème fondamental du calcul intégral

Soient $I \subset \mathbb{R}$ et $f: I \to \mathbb{R}$ de classe C^0 . Soit $a \in I$. Alors, l'application

$$F: \begin{array}{ccc} I & \to & \mathbb{R} \\ x & \mapsto & \int_a^x f(t)dt \end{array}$$

est C^1 sur I et pour tout $x \in I$, F'(x) = f(x).

LE mémo indispensable

> Inégalités

$$\circ \ \forall x \in \mathbb{R}_+,$$

$$\circ \ \forall x \in]1; +\infty[,$$

$$\circ \ \forall a,b \in \mathbb{R},$$

$$ab \le \frac{1}{2}(a^2 + b^2)$$

 $\sin(x) \le x$

 $\ln(1+x) \le x$

$$\circ \forall x_1, \dots, x_n \in \mathbb{R}_+^*,$$

$$(x_1 \times \dots \times x_n)^{\frac{1}{n}} \le \frac{x_1 + \dots + x_n}{n}$$

> Fonctions

o $f \mathcal{C}^0$, dérivable sur \mathbb{R} mais pas \mathcal{C}^1 au voisinage de 0 :

$$f: x \longmapsto \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

$$\circ f \mathcal{C}^{\infty}$$
 et $\forall k \in \mathbb{N}, f^{(k)}(0) = 0$:

$$f: x \longmapsto \begin{cases} \exp(-\frac{1}{x^2}) & \text{si } x \neq 0\\ 0 & \text{sinon} \end{cases}$$

Suites et séries de fonctions

Théorème de continuité (Suite de fonctions)

Soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soient $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ et $f \in \mathcal{F}(I, E)$ où $I \subset \mathbb{R}$ est un intervalle.

- $(H_1) \forall n \in \mathbb{N}, f_n \text{ est } C^0 \text{ sur } I.$
- (H_2) $(f_n)_n$ CVU vers f sur I.

ALORS

$\binom{\mathsf{C_1}}{f}$ est \mathcal{C}^0 sur I.

Théorème de la double limite (Suite de fonctions)

Soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie.

Soient $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ et $f \in \mathcal{F}(I, E)$ où $I \subset \mathbb{R}$ est un intervalle. Soit $a \in I$.

- H_1 $\forall n \in \mathbb{N}, f_n$ admet une limite finie en a (qu'on note $l_n \in \mathbb{R}$).
- (H_2) $(f_n)_n$ CVU vers f sur I.

ALORS

- $(l_n)_n$ converge vers $l \in \mathbb{R}$
- $\lim_{x \to a} f(x) = \lim_{n \to +\infty} l_n = l$
- i.e $\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right)$

Rmq: On échange les limites!

Théorème d'intégration sur un segment (Suite de fonctions)

Soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soient $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ et $f \in \mathcal{F}(I, E)$ où $I = [a; b] \subset \mathbb{R}$ est un segment.

- $(H_1) \forall n \in \mathbb{N}, f_n \text{ est } C^0 \text{ sur } I.$
- (H_2) $(f_n)_n$ CVU vers f sur I.

ALORS

- C_1 $f \operatorname{est} C^0 \operatorname{sur} I.$
- $\frac{\mathbb{C}_2}{\lim_{n \to +\infty} \int_a^b f_n(t) dt} = \int_a^b f(t) dt$

Théorème de « dérivation » (Suites de fonctions)

Soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soient $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ et $f, g \in \mathcal{F}(I, E)$ où $I \subset \mathbb{R}$ est un intervalle.

- $(H_1) \forall n \in \mathbb{N}, f_n \text{ est } \mathcal{C}^1 \text{ sur } I.$
- (H_2) $(f_n)_n$ CVS vers f sur I.
- (H_3) $(f'_n)_n$ CVU vers g sur I.

ALORS

- C_1 $f \operatorname{est} C^1 \operatorname{sur} I.$
- C_3 $\forall [a;b] \subset I, (f_n)_n \text{ CVU vers } f$ sur [*a*; *b*]

Théorème de continuité (Série de fonctions)

Soit $I \subset \mathbb{R}$ un intervalle, soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$. Notons $S: x \mapsto \sum_{n=1}^{\infty} f_n(x)$.

- $(H_1) \forall n \in \mathbb{N}, f_n \text{ est } \mathcal{C}^0 \text{ sur } I.$
- (H_2) $\sum_n f_n$ CVU (ou CVN) sur I.

ALORS

S est C^0 sur I.

Théorème de la double limite (Série de fonctions)

Soit $I \subset \mathbb{R}$ un intervalle, soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$. Notons $S: x \mapsto \sum_n f_n(x)$.

Soit $a \in \overline{I}$.

- $(H_1) \forall n \in \mathbb{N}, f_n \text{ admet une limite en } a \text{ (qu'on note } l_n \in \mathbb{R}).$
- (H_2) $\sum_n f_n$ CVU (ou CVN) sur I.

ALORS

$$\sum_{n} l_n$$
 converge

$$\sum_{n} l_{n} \text{ converge}$$

$$\lim_{x \to a} S(x) = \sum_{n} l_{n}$$

i.e
$$\lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n(x) \right) = \sum_{n=0}^{+\infty} \left(\lim_{x \to a} f_n(x) \right)$$

Théorème d'intégration termes à termes sur un segment (Série de fonctions)

Soit $I = [a; b] \subset \mathbb{R}$ un segment, soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$. Notons $S: x \mapsto \sum f_n(x)$.

- $(H_1) \forall n \in \mathbb{N}, f_n \text{ est } C^0 \text{ sur } I.$
- (H_2) $\sum_n f_n$ CVU (ou CVN) sur I.

ALORS

- C_1 S est C^0 sur I.
- C_2 $\int_a^b S(x)dx = \sum_n \int_a^b f_n(x)dx$

Théorème de « primitivation » (Suites de fonctions)

Soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soient $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ et $f \in \mathcal{F}(I, E)$ où $I = [a; b] \subset \mathbb{R}$ est un segment. Soit $c \in [a; b]$.

- $(H_1) \forall n \in \mathbb{N}, f_n \text{ est } C^0 \text{ sur } I.$
- (H_2) $(f_n)_n$ CVU vers f sur I.

ALORS

- C_1 $f \operatorname{est} C^0 \operatorname{sur} I.$
- $(F_n)_n$ CVU vers F sur I.

avec $F_n: x \mapsto \int_c^x f_n(t) dt$ et $F: x \mapsto \int_c^x f(t) dt$.

Théorème de « dérivation » (Série de fonctions)

Soit $I\mathbb{R}$ un intervalle, soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$. Notons $S: x \mapsto \sum_n f_n(x)$.

- $(H_1) \forall n \in \mathbb{N}, f_n \text{ est } \mathcal{C}^1 \text{ sur } I.$
- (H_2) $\sum_n f_n$ CVS sur I.
- (H_3) $\sum_n f'_n$ CVU (ou CVN) sur I.

ALORS

- C₁ $S \operatorname{est} C^1 \operatorname{sur} I.$ C₂ $\forall x \in I, S'(x) = \sum_n f'_n(x)$

Théorème de « dérivation » -> extension C^k (Série de fonctions)

Soit $I\mathbb{R}$ un intervalle, soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$. Notons $S: x \mapsto \sum_n f_n(x)$.

Soit $k \in \mathbb{N}^*$.

- $(H_1) \forall n \in \mathbb{N}, f_n \text{ est } C^k \text{ sur } I.$
- H_2 $\forall p \in [0; k-1] \sum_n f_n^{(p)}$ CVS sur I.
- H_3 $\sum_{n} f_n^{(k)}$ CVU (ou CVN) sur I.

ALORS

S est C^k sur I.

C₂ $\forall p \in [0; p], \forall x \in I, S^{(p)}(x) = \sum_{n} f_n^{(p)}(x)$

Théorème d'approx uniforme d'une fonction continue sur un segment par fonctions en escalier

"Toute fonction continue **sur un segment** peut être approximée uniformément par des fonctions en escalier."

i.e, en considérant $I = [a; b] \subset \mathbb{R}$ un segment quelconque :

$$\forall f \in \mathcal{C}^0(I, \mathbb{K}), \exists (g_n) \in \operatorname{Esc}(I, \mathbb{K})^{\mathbb{N}} \text{ tq. } (f_n)_n \text{ CVU vers } f \text{ sur } I.$$

Rmq: Ceci est l'écriture séquentielle. Maintenant, on peut aussi écrire ce théorème de la façon suivante :

$$\forall f \in \mathcal{C}^0(I,\mathbb{K}), \forall \varepsilon > 0, \exists g_{\mathrm{esc}} \in \mathrm{Esc}(I,\mathbb{K}) \ \mathrm{tq.} \ \|f - g_{\mathrm{esc}}\|_{\infty} \leq \varepsilon$$

Théorème de Weierstrass

"Toute fonction continue sur un segment peut être approximée uniformément par des fonctions polynomiales."

i.e, en considérant $I = [a; b] \subset \mathbb{R}$ un segment quelconque :

$$\forall f \in \mathcal{C}^0(I,\mathbb{K}), \exists (P_n)_n \in \widetilde{\mathbb{K}}[X]^{\mathbb{N}} \text{ tq. } (P_n)_n \text{ CVU vers } f \text{ sur } I.$$

Rmq: Ceci est l'écriture séquentielle. Maintenant, on peut aussi écrire ce théorème de la façon suivante :

$$\forall f \in \mathcal{C}^0(I, \mathbb{K}), \exists P_{\varepsilon} \in \tilde{K}[X] \text{ tq. } ||f - P_{\varepsilon}||_{\infty} \leq \varepsilon$$

