LECTURE 5 & 6

Karnaugh MAP (K – Map)
Contd.... Examples from last class

EXAMPLE 5:

De gn a combinational circuit with 4- input lines that represents a decimal digit in BCD and 4- output line that generates 2's complement of input digit.

EXAMPLE 7:

n a combinational circuit that multiplies by '5' an input decimal digit represented in BCD. The

CODE CONVERTERS

Lecture 7 & 8

Complements: Are used for simplifying the subtraction operation and for logical manipulation.

There are two complements for each base:

- (R-1)'s complement (Diminished radix complement)
- R's complement (Radix complement)
- (R-1)'s complement:

(R-1)'s complement of a number is $(R^{D} - 1) - N$

Where $R \rightarrow base$

N → number who's complement is to be taken

n > number of digits/bits in the number N

BINARY: Base=2=R Diningled Redix=0-1=1=(R-1) 1's Complements: Example $(1001)_2 = N = 1001_2$ Diminished Radix confunct

1001

1001

A digit base 2 Number

1001

4-6it Number 1's complement of a number is $(R^n - 1) - N$ Where $R \rightarrow base 2$ N \rightarrow number who's complement is to be taken 1 0 0 1 2 \rightarrow number of digits/bits in the number N = 4

DECIMAL R=10, R-1=10-1=9

9's Complements: Example N = 1234

9's complement of a number is $(\underline{\mathbb{R}}^n - 1) - N = (\underline{10}^4 - \underline{1}) - 1234$

Where R → base 9

N → number who's complement is to be taken 1234

 $n \rightarrow$ number of digits/bits in the number N = 4

HEXADECIMAL R=16 R-1 = 15

15's Complements: Example N = 123B

15s complement of a number is $(R^n - 1) - N$

Where R \rightarrow base 16

N → number who's complement is to be taken 123B

 \rightarrow number of digits/bits in the number N = 4

$$(16^4 - 1) - (123B)$$

(FFFE-1) - 123B - FDC4 - 15's complement

$$(FFFF-1)_{16} - 123B = EDC4 = 15$$
's complement
Try for A3EDC $= 5C123$ N

R's complement (Radix complement)

(R)'s complement of a number is $R^n - N$

Where R → base

N -> number who's complement is to be taken

n → number of digits/bits in the number N

Note in (R-1)'s complement:

(R-1)'s complement of a number is $(R^n-1)-N=[(R^n-1)-N]+1=R^n-N$

Binary

```
2's complement (Radix complement) 0 1 1 0

(R)'s complement of a number is R<sup>n</sup> − N

Where R → base 2

N → number who's complement is to be taken 0 1 1 0

n → number of digits/bits in the number N = 4
```

$$R^n - N = 2^4 - 0110_2 = 16 - 0110_2 = 10000_2 - 0110_2 = 1010$$

Using 1's complement

Decimal

```
    10's complement (Radix complement) 562<sub>10</sub>
    (R)'s complement of a number is R<sup>n</sup> − N
    Where R → base 10
```

N → number who's complement is to be taken 562

 $n \rightarrow$ number of digits/bits in the number N = 3

$$R^n - N = 10^3 - 562 = 1000 - 562 = 438$$

Using 9's complement

$$999 - 562 + 1$$

$$437 + 1 = 438$$

Code converters

ABCD

- A code converter circuit will convert coded information in one form toga different coding form.
- Coded representation for 10 decimal symbols is known as binary coded decimal (or BCD) or decimal codes.

- Minimum 4-bits are required to represent decimal symbol.
- Out of 16, 4-bit combinations, only 10 combinations are used to represent 10 decimal symbols and remaining 6 will not be used (don't cares)

Difference between binary and BCD representation

(28)₁₀ 2 dugit BCD Number

Binary representation: (11100)₂

8421 BCD representation: (0010 1000)₂

2 dust

2 dust

4 bit 800

4 bit 800

Ext.

(5843) 10 BCD

Each digit must be replaced with BCD

27 must be replaced with BCD

29 must be replaced with BCD

20 000 0000 0000 BCD

5843

Introduction to BCD codes

Decimal digit	8421 (BCD)	Excess 3	84-2-1	2421 John J	Gray code	-
0 · •	0000	0011	0000 <	0000	0000	
1	0001	70100	0111	0001	0001	
2	0010	0101	0110	70010	0011	_
Symbols 3	0011	0110	0101	7 0011	0010	
4	0100	0111	0100	60100	0110	
5	0101	1000	1011	1011	0111	
6 9-1-6	0110	1001	1910	1100	اني	٥
5 7 /92-7 Symbols 8	0111	1010	1000	1101/7	0100	Ī
Spring 8	1000	1011	4000	1110	1100	
9	1001	1100	11111	1111	1101	
	1010,1011, 1100,1101, 1110,1111	0000,0001, 0010,1101, 1110,1111	0001,0010, 0011,1100, 1101,1110	0101,0110, 0111,1000, 1001,1010	1000 1001	<u> </u>

(1) weighted number

Every 4-bit- representation

23 22 2 2

Excess = BCD + 3

0-10+3=3

1-71+3=4

Oway htd shuber N.

Disco+3

Stlf-complementary

84-2-1

Overytted Number

2-N=

242)

2/2)
Till dyild, BCD
2-7 1000X

Adjacent two codes

Venes with only I bit

parilis

Code converter design steps:

- 1. Write the truth table
- 2. Identify the don't care inputs from input code
- 3. Write the minterms/maxterms for every output variable
- 4. Simplify the expressions for output variables
- 5. Draw the circuit using the specified gates.

Design a 3 bit binary to gray code converter.

1P [G2 G2
B1	aut so so
BO	

G2 ≥ 4,5,6,7
G1= 2,3,4,5
40= 5 1,2,5,6

	3-bit Binary	Gray
mintims	B2 B1 B0	G2 G1 G0
O	000 💦	000
1	001 👩	001
2	010 m _L	011
3	011 ጣ3	010
4	100 _{M4}	1 1 0
5	101 mc	1 1 1
<u>_</u>	410 or	1 0 1
7	111 m>	100

		ల	000
\	2 2	1	ا در
		3	DII
-15	7 6	2	010
2		6	φιP
-		7	LLI
		5	101

Solve	for	42	4	۲,

Design a code converter to convert a decimal digit represented in 8421 code to a decimal digit represented in Excess 3 code.

Decim	8421	Excess 3 code	_
al digit	A B C D	E3 E2 E1 E0	A B
0	0000	0011	8 C D
1	0001	0100	605 (82
2	0010	0101	۷
3	0011	0110	
4	0100	0111	
5	0101	1000	500
6	0110	1001	<i></i>
7	0111	1010	
8	1000	1011	<u> </u>
9	1001	1100	, '/0
Don't	1010,1011,	4 404	φ 1°10 1°11
cares	1100,1101,11	7	
	10,1111	3	φ 1 × 00 φ 11 10 φ 11 11

A 8 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -	Code = E3 Lonvala = E1 E0 ExcESS 3 code
800	المرابع المرابع
E32	
P Es=	
	50,3,4,7,8+510,11,12,13,14,15
E = 2	$\leq 0,2,4,6,8 + \leq 10,11,12,13,14,15$
<i>'\p</i>	Pls Note: 1/p > 4 Variable >> 4-Variable K-MAP
ilo) hap hall	HOWMany K-maps? observe olp -> 4 vaniable We require to solve 4 K-boops
1(10	one can't alp Es, Ez, E, Eo