ESTRUTURAS DE INDEXAÇÃO

ÍNDICES MULTINÍVEL

Rodrigo Salvador Monteiro

Slides adaptados do Prof Sean Siqueira (sean@uniriotec.br)

Índices Multinível

- Uma pesquisa binária sobre um um índice com b_i blocos
 - ► requer aproximadamente (log₂b_i) acessos a blocos
 - cada etapa do algoritmo reduz a parte do arquivo índice que continuamos a pesquisar por um fator de 2.
- índice multinível
 - ➤ Visa reduzir a parte do índice que continuamos a pesquisar através de bfr; (fator de bloco para o índice) maior do que 2.
- bfr_i = fan-out (fo) do índice multinível.
- Pesquisar em um índice multinível requer aproximadamente (log_{fo}b_i) acessos a blocos
 - número muito menor do que a pesquisa binária se o fan-out for maior do que 2.

Índices Multinível (cont.)

- primeiro nível ou nível base
 - arquivo ordenado com um valor distinto para cada K(i).
- Índice de segundo nível
 - índice principal para o primeiro nível
 - uma entrada para cada bloco do primeiro nível.
 - ▶ bfr; para o segundo nível e para todos os níveis subseqüentes
 - mesmo que para o índice do primeiro nível...
- Suponha...
 - ▶ Índice de primeiro nível com r₁ entradas e bfr₁ = fo
 - ► Então... o primeiro nível precisa de r₁/fo blocos, que é portanto o número de entradas r₂ necessárias no segundo nível de índice.

Índices Multinível (cont.)

- O terceiro nível
 - índice principal para o segundo nível
 - uma entrada para cada bloco do segundo nível
 - número de entradas do terceiro nível seja $r_3 = \Gamma r_2/fo_1$.
- Quando um segundo nível é necessário?
 - se o primeiro precisar de mais do que um bloco de armazenamento de disco
 - terceiro nível somente se o segundo precisar de mais do que um bloco, e assim sucessivamente...
- Até que todas as entradas de algum nível t do índice caibam em um único bloco.
 - ▶ t é chamado de **nível de índice superior**.

Exemplo

Exemplo

- Suponha que o índice secundário denso do exemplo anterior seja convertido em um índice multinível. Calculamos o fator de bloco do índice bfr_i = 68 entradas de índice por bloco, que é também o fan-out fo para o índice multinível; o número de blocos de primeiro nível b₁ = 442 blocos também foi calculado.
- Qual é o número de blocos de segundo nível?

$$b_2 = \Gamma b_1/fo = \Gamma 442/68 = 7 blocos$$

Qual é o número de blocos de terceiro nível?

$$b_3 = \Gamma b_2/fo = \Gamma 7/68 = 1 bloco$$

Qual é o número de blocos de quarto nível?

Não tem quarto nível

Qual e o índice superior?

t = 3; o terceiro é o nível superior do índice

Quantos acesos a blocos são necessários para acessar um registro utilizando este índice multinível?

$$3 + 1 = 4$$

Problemas com Índices Multinível

- Inclusões e exclusões
 - Todos os níveis de índices são arquivos fisicamente ordenados
 - ► Solução:
 - Adotar um índice multinível que deixa algum espaço em cada um de seus blocos para inserir novas entradas.
 - Índice multinível dinâmico

Árvores de busca...

Revisão de estrutura de árvore

- Uma árvore é formada por nós;
- Cada nó tem um pai (exceto o nó raiz) e vários nós filhos (zero ou mais)
- Nó que não possui filhos chama-se nó folha;
- Nó que não é nó folha é chamado nó interno;
- O nível de um nó é sempre uma unidade maior que seu pai, com o nível do nó raiz sendo zero;
- Uma subárvore de um nó consiste daquele nó e todos os seus descendentes

Árvores-B

- Árvore sempre balanceada
- Espaço desperdiçado através da exclusão, caso haja algum, nunca se torne excessivo
- Algoritmos para inclusão e exclusão mais complexos

Árvores-B

- Uma árvore-B de ordem p quando utilizada como uma estrutura de acesso em um campo chave para pesquisar registros em um arquivo de dados pode ser definida da seguinte maneira:
 - Cada nó interno da árvore-b é da forma <P₁, <K₁,Pr₁>, P₂, <K₂,Pr₂>, ..., <K_{q-1},Pr_{q-1}>,P_q>, onde q≤p.
 - ▶ Dentro de cada nó, K₁ < K₂ <...<Kզ-1</p>
 - Para todos os valores X do campo chave de pesquisa na subárvore referenciada por P_i, temos: K_{i-1}<X<K_i para 1<i<q; X<K_i para i=1; e K_{i-1} < X para i = q</p>
 - Cada nó possui no máximo p ponteiros de árvore

Árvores-B (cont.)

- Cada nó, exceto os nós raiz e as folhas, possui pelo menos ^Γ(p/2)[¬] = ponteiros de árvore. O nó raiz possui pelo menos dois ponteiros de árvore a não ser que ele seja o único nó na árvore.
- Um nó com q ponteiros de árvore, q≤p, possui q-1 valores de campo chave de pesquisa (e portanto possui q-1 ponteiros de dados).
- Todos os nós folhas encontram-se no mesmo nível.
- Os nós folhas possuem a mesma estrutura que os nós internos, exceto pelo fato de que todos os seus ponteiros de árvore P_i são nulos.

Inserção dos valores 8, 5, 1

Inserção dos valores 8, 5, 1, 7

Inserção dos valores 8, 5, 1, 7, 3

Inserção dos valores 8, 5, 1, 7, 3,12

Inserção dos valores 8, 5, 1, 7, 3, 12, 9

Inserção dos valores 8, 5, 1, 7, 3, 12, 9, 6

Inserção dos valores 8, 5, 1, 7, 3, 12, 9, 6

Exemplo

- Suponha que:
 - ▶ O campo de pesquisa seja V = 9 bytes de tamanho
 - ➤ O tamanho do bloco seja B = 512 bytes
 - ► Um ponteiro de registro (dados) seja Pr = 7 bytes
 - ► Um ponteiro de bloco seja P = 6 bytes
- Quantos ponteiros de árvore (ou ordem p) poderemos ter em cada nó de modo que cada nó da árvore-B corresponda a um bloco de disco?

$$(p*P) + ((p-1)*(Pr+V) \le B$$

 $(p*6) + ((p-1)*(7+9) \le 512$
 $(22*p) \le 528$
 $p \le 24$

p=23

Exemplo

- Suponha que:
 - ▶ o campo de pesquisa seja um campo chave sem ordenação
 - construímos uma árvore-b nesse campo
 - cada nó da árvore-B esteja 69% cheio
- Quantos ponteiros e valores teremos em média em cada nó? cada nó, em média, terá p * 0,69 = 23*0,69 = 15,87 ou aproximadamente 16 ponteiros e portanto 15 valores de campos chave
- Qual é o fan-out médio?

```
fan-out médio (fo) = 15
```

Supondo uma árvore-B até o nível 3, quantos nós, entradas e ponteiros temos em cada nível?

Raiz	1 nó	15 entradas	16 ponteiros
Nível 1	16 nós	240 entradas	256 ponteiros
Nível 2	256 nós	3840 entradas	4096 ponteiros
Nível 3	4096 nós	61.440 entradas	