Bitcoin Tweet Sentiment Analysis

By Natalya Doris Flatiron School, Data Science Phase 4

Business Problem

In this project, we help Crypto Consultancy firm X build a model that can accurately **classify** Tweets about Bitcoin as having either positive or negative **sentiment**. Firm X would like to use the model to classify **unlabeled** Tweets and **understand** any characteristics distinguishing the positive and negative Tweets.

Breaking it Down

Explore the Data

- Understand trends

 and key takeaways to
 bring to the client
- Clean the text data so that it is ready to be used in modeling

Build a Model

Test and **tune**:

- Three vectorizers
- Four classification models

Evaluate the Model

Score each model, selecting a final best-performing model

The Data: One million Tweets referencing Bitcoin, spanning a six-month period from February 2021 to August 2021

Word Cloud of Positive Tweets

Word Cloud of Negative Tweets

Hashtags

#Trending

#Trending

Modeling

	f1_train	f1_test	accuracy_train	accuracy_test	roc_auc	pr_auc	model	vectorizer
baseline	0.575926	0.575227	0.619592	0.619370	0.615580	0.547573	MultinomialNB()	TfidfVectorizer(max_features=10)
base_tf	0.873472	0.853652	0.883644	0.865230	0.863466	0.809588	MultinomialNB()	TfidfVectorizer()
base_cv	0.967555	0.858882	0.969429	0.869114	0.867714	0.813043	MultinomialNB()	CountVectorizer(ngram_range=(2, 2),\n
base_cv2	0.958314	0.867798	0.960734	0.875402	0.874822	0.817498	MultinomialNB()	CountVectorizer(ngram_range=(2, 2))
logreg	0.991206	0.917310	0.991740	0.925155	0.922720	0.901446	LogisticRegression()	CountVectorizer(ngram_range=(2, 2))
svc	0.999980	0.926771	0.999981	0.933035	0.931121	0.909578	LinearSVC()	CountVectorizer(ngram_range=(2, 2))

Final model is Linear SV with Count Vectorizer, achieving ~93% accuracy and F1 score!

Conclusions

Period of higher Twitter volume associated Conversation Matters with period of lower Bitcoin price Spike in positive sentiment occurred around Sentiment Impactful same time as rise in Bitcoin price Positive sentiment Tweets tend to have more **#Positive** hashtags on average Final model can classify unlabeled Tweets as Model Accuracy positive or negative with ~90% accuracy

Next Steps

- Pull more recent Tweets on Bitcoin via Twitter API
- Run final model on unseen data,
 i.e. new Tweets
- Use model-labeled Tweets to conduct Time Series Analysis, with the aim of understanding the predictive power of Tweet sentiment on the price of BTC
- Use deep learning models to classify Tweets, comparing these results to previous model