61. Плотность и сила тока. Основы теории Друде для классической электропроводности металлов (плотность тока в проводнике)

Белорусский государственный университет информатики и радиоэлектроники Кафедра физики

Электрическим током называется всякое упорядоченное движение электрических зарядов (заряженных частиц).

В проводящей среде, где организован электрический ток, распределение зарядов может изменяться не только от точки к точке этой среды, но и со временем.

Поэтому в общем случае объемная плотность заряда ρ является функцией координат и времени: $\rho = \rho(\vec{r},t)$.

Основной количественной характеристикой электрического тока в точке является *вектор плотности тока* \vec{j} , равный:

$$\vec{j} = \rho \cdot \vec{v} \,, \tag{10.31}$$

где $\rho = \rho(\vec{r},t)$ и $\vec{v} = \vec{v}(\vec{r},t)$ — соответственно объемная плотность и скорость упорядоченного движения заряда в точке с радиусвектором \vec{r} в момент времени t.

B СИ $[j] = A/M^2$.

В общем случае в каждой точке области тока \vec{j} зависит от координат и времени: $\vec{j} = \vec{j}(\vec{r},t)$.

Физический смысл $|\vec{j}|$.

В области тока выделим площадку (dS). Проходящий через (dS) за время dt заряд по величине равен заряду |dq|, содержащемуся в косоугольном параллелепипеде длиной $v \cdot dt$ и основанием (dS):

$$|dq| = |\rho| \cdot dV = |\rho| \cdot dS_{\perp} \cdot \upsilon \cdot dt = \begin{vmatrix} u_3(10.31) : \\ |\vec{j}| = |\rho| \cdot \upsilon \end{vmatrix} = |\vec{j}| \cdot dS_{\perp} \cdot dt, \quad (10.32)$$

где $dV = dS_{\perp} \cdot \upsilon \cdot dt$ – объем параллелепипеда, $dS_{\perp} = dS \cdot \cos \alpha$ – площадь его ортогонального сечения, α – угол между \vec{j} и вектором нормали \vec{n} к (dS).

Из (10.32) следует, что
$$|\vec{j}| = \frac{|dq|}{dS_{\perp} \cdot dt}$$
 (10.33)

модуль вектора плотности тока $|\vec{j}|$ численно равен заряду, проходящему в единицу времени через единичную площадку, перпендикулярную направлению тока.

Кафедра физики

Заряженные частицы, образующие электрический ток, называются носителями тока (электроны, протоны, положительно и отрицательно заряженные ионы и т. д.).

Из (10.31) следует, что если
$$\begin{cases} \rho > 0, & \text{то} \quad \vec{j} \uparrow \uparrow \vec{\upsilon}, \\ \rho < 0, & \text{то} \quad \vec{j} \uparrow \downarrow \vec{\upsilon}. \end{cases}$$

Когда ток образован зарядами разных знаков, то

$$\vec{j} = \rho^{(+)} \cdot \vec{v}^{(+)} + \rho^{(-)} \cdot \vec{v}^{(-)}, \tag{10.34}$$

 $\vec{j} = \rho^{(+)} \cdot \vec{\upsilon}^{(+)} + \rho^{(-)} \cdot \vec{\upsilon}^{(-)},$ (10 и $\rho^{(-)}$ — объемная плотность положительного отрицательного заряда соответственно;

 $\vec{v}^{(+)}$ и $\vec{v}^{(-)}$ – скорость упорядоченного движения положительного и отрицательного заряда соответственно.

Из (9.14):

$$\rho = \frac{dq}{dV} = \left| dq = dN \cdot q_0 \right| = \frac{dN}{dV} \cdot q_0 = n \cdot q_0, \qquad (10.35)$$

где dN – количество носителей тока в малом объеме dV; q_0 — заряд каждого из носителей тока; n = dN/dV – концентрация носителей тока.

 $(10.35) \rightarrow B (10.34)$:

$$\vec{j} = n^{(+)} \cdot q_0^{(+)} \cdot \vec{v}^{(+)} + n^{(-)} \cdot q_0^{(-)} \cdot \vec{v}^{(-)}, \qquad (10.36)$$

43

где индексы (+) и (–) обозначают принадлежность величин к положительно и отрицательно заряженным носителям тока.

Сила тока I — скалярная физическая величина, численно равная заряду, переносимому через произвольную поверхность в единицу времени:

$$I = \pm \frac{\left|\delta q\right|}{dt},\tag{10.37}$$

где $|\delta q|$ — величина заряда, проходящего через произвольную поверхность за малый промежуток времени dt. В СИ [I] = A.

1151

Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

Найдем связь между силой тока I и вектором плотности тока \vec{j} . Рассмотрим ориентированную поверхность (S), через которую проходит ток и вычислим поток вектора \vec{j} через (S):

$$\int_{(S)} \vec{n} \int_{(S)} (\vec{j}, \vec{n}) dS = \int_{(S)} j \cdot dS \cdot \cos \alpha = \begin{vmatrix} \text{M3}(10.31) \Rightarrow j = |\rho| \cdot \upsilon \\ dS \cdot \cos \alpha = \pm dS_{\perp} \end{vmatrix} =$$

$$= \pm \int_{(S)} |\rho| \cdot \upsilon \cdot dS_{\perp} = \begin{vmatrix} \upsilon = \frac{d\ell}{dt} \end{vmatrix} = \pm \int_{(S)} \frac{|\rho| \cdot d\ell \cdot dS_{\perp}}{dt} =$$

$$= \begin{vmatrix} d\ell \cdot dS_{\perp} = dV \\ |\rho| \cdot dV = |dq| \end{vmatrix} = \pm \int_{(S)} \frac{|dq|}{dt} = \pm \int_{(S)} \frac{|\delta q|}{dt} = 1,$$

где $\int_{(S)} |dq| = |\delta q|$ — полный заряд, переносимый через (S) за время dt.

Сила тока I, идущего через поверхность (S), равна потоку вектора плотности тока \vec{j} через эту поверхность:

$$I = \int_{(S)} (\vec{j}, \vec{n}) dS. \tag{10.38}$$