A Performance Evaluation of Federated Learning algorithms

Adrian Nilsson, Simon Smith, Gregor Ulm, Emil Gustavsson,
Mats Jirstrand

Presented by Simon Smith at DIDL'18

- Distributed machine learning
 - Communicate a model, not data.

- Distributed machine learning
 - Communicate a model, not data.

- Distributed machine learning
 - Communicate a model, not data.
- Massive number of clients
 - Slow, unreliable network
 - 250M connected vehicles by 2020¹

- Distributed machine learning
 - Communicate a model, not data.
- Massive number of clients
 - Slow, unreliable network
 - 250M connected vehicles by 2020¹

- Distributed machine learning
 - Communicate a model, not data.
- Massive number of clients
 - Slow, unreliable network
 - 250M connected vehicles by 2020¹
 - GDPR

- Implemented and compared three FL algorithms
- Compared with fully centralized approach

- Implemented and compared three FL algorithms
- Compared with fully centralized approach

- Implemented and compared three FL algorithms
- Compared with fully centralized approach

- Implemented and compared three FL algorithms
- Compared with fully centralized approach

CO-OP

Age filters: b_l , b_u

Server age: a

Client age: a_k

Algorithms

	Synchronous	Opt. Algorithm	New hyperparam.	Note
FedAvg	✓	SGD	C, E	C – fraction of clients E – epoch before upload
FSVRG	✓	SVRG	h	
CO-OP		SGD	b_l , b_u	"Age filters" - Mitigate staleness

Evaluation approach

MNIST digit recognition

Feed-forward ANN with 2 hidden layers

100 clients

```
000000000
2 2 2 2 2 2 2 2 2 2 2
444444444
5 5 5 5 5 5 5 5 5 5 5
666666666
 11777777
888888888
999999999
```


Evaluation approach

IID & non-IID partitionings

Evaluation approach

- Hyperparameter search
 - Learning rate, decay, epochs, batch size, global step size, age filter
- Cross-validation
 - We allow 10,000 uploads from 100 simulated clients

Bayesian comparisons

- x-axis shows mean difference in accuracy between A and B
- Region of practical equivalence (rope)
- Area is interpreted as a probability.

Benchmarking on IID data

Results – Federated Learning IID

FedAvg vs CO-OP

FedAvg vs FSVRG

CO-OP vs FSVRG

Results – Federated Learning IID vs Centralized Learning

Benchmarking on non-IID data

Results - FL non-IID

FedAvg vs CO-OP

FedAvg vs FSVRG

CO-OP vs FSVRG

Results - FL non-IID

Results – FL non-IID vs Centralized Learning

Allowing more communication for FSVRG and CO-OP

Results – FL non-IID; more uploads

FedAvg vs CO-OP(×5)

FedAvg vs FSVRG (*10)

CO-OP (×5) vs FSVRG (×10)

Results – FL non-IID; more uploads vs Centralized Learning

FSVRG (×10)

CO-OP(×5)

Practical considerations

- FSVRG
 - Requires more communication per global update
- CO-OP
 - Age filters are difficult to tune

Future work

- Evaluate on multiple datasets
- Examine unevenly distributed data
 - i.e. a few cars hold most of the data
- New algorithms

Algorithm + "Federated Learning"

– Hits on Google Scholar (from 2016)

What has happened since?

- Non-IID is still an issue [1,2]
- More privacy [3,4]
- New Algorithms
 - Asynchronous FL [5]
 - Dynamic Averaging Protocol [6]
 - Federated Kernelized Multi-task Learning [7]

Thank you

References

(Non-IID)

- [1] Federated Learning with Non-IID Data, Zhao et al., 2018 (arXiv:1806.00582)
- [2] Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data, Jeong et al., 2018 (arXiv:1811.11479)

(Privacy)

- [3] Biscotti: A Ledger for Private and Secure Peer-to-Peer Machine Learning, Shayan et al., 2018 (arXiv:1811.09904)
- [4] cpSGD: Communication-efficient and differentially-private distributed SGD, Agarwal et al., 2018 (arXiv:1805.10559)

(Algorithms)

- [5] **Asynchronous Federated Learning for Geospatial Applications,** Sprague et al., DMLE'18, https://dmle.iais.fraunhofer.de/papers/sprague2018asynchronous.pdf
- [6] Efficient Decentralized Deep Learning by Dynamic Model Averaging, Kamp et al., 2018 (arXiv:1807.03210)
- [7] Federated Kernelized Multi-Task Learning, Caldas et al., Poster at SysML 2018, https://www.sysml.cc/doc/30.pdf

