VYSOKÉ UČENÍ FAKULTA ELEKTROTECHNIKY TECHNICKÉ A KOMUNIKAČNÍCH V BRNĚ TECHNOLOGIÍ

MPC-AUP
Projekt Tanky
Jan Antoš, Pavel Vítek

Obsah

Zadání projektu	3
Technologický proces	3
Popis technologie	3
Hazardní stavy	4
Předejití hazardním stavům	4
Popis funkce	4
PI diagram	5
Tabulka komponent	6
Volba vhodné instrumentace	7
Napouštěcí ventil:	7
Vypouštěcí ventil:	7
Třícestný ventil:	7
Míchadlo (motor):	8
Snímač hladiny:	8
Čerpadlo:	8
Snímač teploty:	9
Průtokoměr:	9
Tabulka zvolené instrumentace	10
Elektrotechnické schéma	11
Tabulka zapojení komponent do PLC SIMATIC S7-1500	11
Schéma	12
UML diagramy	13
Use-case diagram	13
Specifikace – Konfigurace systému	13
Sekvenční diagram	14
Stavový diagram	16

Zadání projektu

Cílem celosemestrální laboratorní úlohy Tanky je zpracovat kompletní projekt pro automatizaci části technologického procesu, konkrétně pasterizační jednotky. Jednotlivými dílčími úkoly jsou:

- Analýza zadání
- Vytvoření P+I diagramu
- Volba vhodné instrumentace
- Vytvoření elektrotechnického schématu
- Implementace řídicího SW pro PLC
- Ladění regulátorů technologie
- Tvorba vizualizace
- Tvorba dávek pomocí BATCH systému
- Funkční testy a protokol o testování
- Závěrečná zpráva

Technologický proces

Technologický proces sestává z nerezového dvouplášťového tanku (nádrže s vnějším ohřevem. Do tohoto tanku je potrubím přiváděna vstupní surovina. Dalším potrubím je z tanku odváděn hotový výrobek. Napouštění a vypouštění suroviny je řízeno ventily. V tanku se rovněž nachází mixovací jednotka, pomocí které jsou homogenizovány vlastnosti celého objemu kapaliny (míchání). Pro ohřev tanku je využívána externí cirkulační jednotka s plynule nastavitelným výkonem, která do dvoupláště nádrže vhání horké médium za účelem ohřevu kapaliny na požadovanou teplotu. Popisovaná technologie lze vidět na následujícím obrázku.

Popis technologie

Technologický proces slouží k pasterizaci kapalin. Nerezová nádrž je vysoká 2000 mm a její objem je přesně 2 m3. Pro přívod materiálu je využito vstupní a pro odvod výstupní potrubí. Vstupní potrubí o průměru DN125 je konstantně tlakováno vstupním materiálem. Výstupní potrubí, rovněž o průměru DN125 je přivedeno do zásobníků, které uchovávají výstupní produkt pro další zpracování. Technologie je vybavena mechanismem pro míchání materiálu uvnitř tanku (mixérem), jehož statický krouticí moment v okamžiku kdy je tank zcela plný je 380 N/m a jehož maximální přípustná rychlost je 40 ot./min. Tento mechanismus je vybaven převodovkou s převodovým poměrem 38:1. Pro ohřev je k technologii připojen tepelný okruh z přidružené výroby (jaderné elektrárny) s plynule regulovatelným jmenovitým výkonem 25MW. Maximální přípustná teplota veškerých mechanických částí jee 95 °C, po jejímž překročení dojde k nenávratným škodám a technologie bude zničena.

Hazardní stavy

- 1) Selhání sensoru teploty -> přehřátí kapaliny/materiálu
- 2) Prasknutí nádrže -> únik kapaliny, zničení výroby/technologie
- 3) Selhání sensoru výšky hladiny (např. zanesením) -> nesprávné měření -> materiálu bude v nádrži málo, nebo materiálu bude více než je povoleno a dojde k přeplnění nádrže
- 4) Lopatky míchadla se zlomí -> materiál nebude správně promíchán + může dojít ke kontaminaci materiálu
- 5) Netěsnící potrubí -> únik kapaliny/materiálu...zničení technologie
- 6) Zaseknutí/zanesení míchadla -> materiál nebude správně promíchán
- 7) Výpadek el. sítě -> zastavení výroby a odčerpání materiálu z nádrže (pokud by to bylo nezbytné)
- 8) Selhání ventilů -> možné zamezení přívodu nebo odčerpání kapaliny z nádrže
- 9) Selhání asynchronního motoru pro míchání -> kapalina nebude správně promíchána

Předejití hazardním stavům

- 1) Redundantní systém -> mít 2 sensory teploty, které budou měřit to samé
- 2) Zamezení vzniku škod, kde nádrž bude umístěna tak, aby co nejméně při případném prasknutí, zničila výrobu anebo ohrozila lidské životy -> použití přetlakového ventilu
- 3) Redundantní systém -> mít 2 sensory výšky hladiny, které budou měřit to samé
- 4) Pravidelná revize, použití vhodného materiálu pro lopatky
- 5) Pravidelná revize
- 6) Přidání čidla, které bude hlídat zanesení míchadla
- 7) Použití naftového generátoru, pokud to technologie vyžaduje
- 8) Plánovaná výměna ventilů a čištění
- 9) Podle důležitosti technologie včas detekovat poruchu a vypnout ohřev materiálu

– použití 2 motorů, kdy se 2. motor spustí v případě zničení 1.

Popis funkce

- 1) Otevření vstupního ventilu
- 2) Podle sensoru výšky hladiny je hlídáno množství materiálu po požadované množství
- 3) Zavření vstupního ventilu
- 4) Zapnutí ohřevu -> materiál je ohříván
- 5) Teplota materiálu dosáhne 40°C -> zapnutí míchání
- 6) Dosažení požadované teploty -> snížení výkonu ohřevu
- 7) Čekání, než bude materiál promíchán a připraven na odčerpání
- 8) Zahájení odčerpávání -> otevření výstupního ventilu

PI diagram

Tabulka komponent

OZNAČENÍ	TYP KOMPONENTY
V01.01	Vypouštěcí ventil (motoricky ovládaný)
V01.02	Napouštěcí ventil (motoricky ovládaný)
F01.01	Snímač průtoku – při napouštění (FIC)
F01.02	Snímač průtoku – při vypouštění (FIC)
T01.01	Snímač teploty uvnitř tanku (TIC)
T01.02	Snímač teploty motoru (TSH)
X01.01	Snímač otáček míchadla (XI)
L01.01	Snímač výšky hladiny v tanku (LIC)
M01.01	Motor
G01.01	Převodovka
A01.01	Tank
V02.01	Povolovací ventil za čerpadlem B (mechanicky ovládaný)
V02.02	Povolovací ventil před čerpadlem B (mechanicky ovládaný)
V02.03	Povolovací ventil před čerpadlem A (mechanicky ovládaný)
V02.04	Povolovací ventil za čerpadlem A (mechanicky ovládaný)
V02.05	Směšovací třícestný ventil (motoricky ovládaný)
P02.01A	Čerpadlo pro přívod ohřáté vody
P02.01B	Čerpadlo pro přívod ohřáté vody (náhradní)
T02.01	Snímač teploty použité ohřáté vody (TIC)
V03.01	Vypouštěcí ventil pro čistou vodu (motoricky ovládaný)
V03.02	Vypouštěcí ventil pro použitou vodu (motoricky ovládaný)
V03.03	Vypouštěcí ventil pro odtok použité vody (motoricky ovládaný)
V03.04	Vypouštěcí ventil pro louh (motoricky ovládaný)
V03.05	Napouštěcí ventil pro louh (motoricky ovládaný)
V03.06	Blokující ventil pro napuštění nádrže s louhem (motoricky ovládaný)
V03.07	Napouštěcí ventil pro použitou vodu (motoricky ovládaný)
V03.08	Blokující ventil pro napuštění nádrže s použitou vodou (motoricky ovládaný)
V03.09	Napouštěcí ventil pro čistou vodu (motoricky ovládaný)
V03.10	Napouštěcí ventil pro přítok nové čisté vody (motoricky ovládaný)
V03.11	Blokující ventil pro čištění tanku (motoricky ovládaný)
L03.01	Limitní snímač max. výšky hladiny – louh (LSH)
L03.02	Limitní snímač min. výšky hladiny – louh (LSH)
L03.03	Limitní snímač max. výšky hladiny – použitá voda (LSH)
L03.04	Limitní snímač min. výšky hladiny – použitá voda (LSH)
L03.05	Limitní snímač max. výšky hladiny – čistá voda (LSH)
L03.06	Limitní snímač min. výšky hladiny – čistí voda (LSH)
P03.01	Čerpadlo pro čištění tanku

Volba vhodné instrumentace

Napouštěcí ventil:

- a) Mechanické vlastnosti: Průměr DN125, tělo litá ocel, disk poniklovaná tvarná litina/nerezová ocel, těsnění EPDM, 9.8 kg
- b) Provozní podmínky: Pracovní teplota -20 ÷ 130 °C, pracovní tlak PN16, max tlak 16 barů,
- c) Maximální průtok: není uvedeno
- d) Doba přestavení(otevírání/zavírání): < 30 s
- e) Způsob otevírání (NC, NO, servopohon, elektromotor) servopohon s ukazatelem polohy

Parametry servopohonu:

50 W, 160 Nm, provozní teplota -10 ÷ 60 °C, tepelná ochrana motoru, možnost manuálního otevření pomocí klíče – drážkový imbusový klíč namontovaný na krytu

Důvod výběru: Dobrá pracovní teplota, stejně tak tlak... Má servopohon a tepelnou ochranu a jde otevřít manuálně

Datasheet: https://hpcontrol.cz/przepustnica-zawor-motylowy-dn125-silownik-a1600.html
https://hpcontrol.cz/katalog/ONLINE-HPCONTROL/Napedy_elektryczne/Manual_A1600.pdf

Vypouštěcí ventil:

Stejný jako napouštěcí

Důvod výběru: Stejný jako u napouštěcího

Třícestný ventil:

- a) Mechanické vlastnosti: Průměr DN125, nerez, montážní deska pro pohon
- b) Provozní podmínky: Pracovní teplota -30 ÷ 250 °C, pracovní tlak PN16, max tlak 16 barů,
- c) Maximální průtok: plný
- d) Doba přestavení (otevírání/zavírání): bude záležet na servopohonu
- e) Způsob otevírání (NC, NO, servopohon, elektromotor) není uvedeno, předpokládám NO

Důvod výběru: Dobré pracovní podmínky, lze přidat pohon, jiný jsem nenašel

Datatsheet: https://www.obchod-vtp.cz/esbe-3-f125-trojcestny-ventil-dn125-kvs-280

Je potřeba kliknou na "Ke stažení" a datsheet si stahnout

Míchadlo (motor):

Asynchronní motor

a) Krouticí moment: 9,90 Nm

b) Jmenovité napětí: 230/400 V D/Y

c) Jmenovitý proud: 3,15 Ad) Jmenovité otáčky: 1445

e) Provozní podmínky: Použití jako průmyslový pohon, pro provoz s připojením na síť či ve spojení s frekvenčními měniči, 4 póly, 1.5 kW

Důvod výběru: Lze si při objednání vybrat z mnoha parametrů, takže je vysoká pravděpodobnost, že bude vybrán optimální motor

Datasheet: https://www.elektromotory.cz/goods/index/id/1811

https://www.elektromotory.cz/public/data/documentation/MAN-SIMOT-GP+SD+DP-CZ.pdf

Snímač hladiny:

a) Rozsah: do 6 m

b) Citlivost: až 2.7 – 9mm

c) Rozlišení: 5–18 mm

- d) Provozní podmínky: -80 ÷ 200 °C, pro kapaliny v potravinářském a nápojovém průmyslu, vakuum až 2,5 MPa
- e) Chyba měření: neuvedeno
- f) Mechanické vlastnosti: materiál nerez, velikost 80 x 75 x 57 mm, IP66/68
- g) Rozhraní: 4-20 mA s možností HART

Důvod výběru: Dobrý rozsah, je vhodný do potravinářství, bezkontaktní, takže se nic při míchání nenamotá, 4-20 mA

Datasheet: https://www.dex.cz/produkt/odporovy-snimac-hladiny-flr-f-do-potravinarstvi/#zalozka-vlastnosti

https://www.dex.cz/uploads/2020/07/DS LM2006 en co 104306.pdf

Čerpadlo:

3x400 V, pro DN125, 7.5 kW, 13.4 A, pro média teploty -20 ÷ 120 °C

Důvod výběru: Bylo na DN125, vhodný i pro horké kapaliny, dobrý pracovní tlak

Datasheet: https://zamenycerpadel.cz/cerpadla/stavajici-cerpadlo/obehova-a-cirkulacni/tpe-125-1604

 $\underline{\text{https://wilo.com/cz/cs/Produkty-a-aplikace/cs/vyrobky-a-expertiza/wilo-yonos-giga 2-0-i/yonos-giga 2-0-i-125-1-17-7-5}$

Snímač teploty:

a) Rozsah: -50 ÷ 250 °Cb) Citlivost: neuvedeno

c) Rozlišení: ± 0.1 °C / $< \pm 0.25$ °C

d) Provozní podmínky: -40 ÷ 160 °C, pro kapaliny

e) Chyba měření: na výběr z mnoha, příklad 1/1 B ± (0,3 +(0,005 x T))°C

 f) Mechanické vlastnosti: průměr stonku 6mm/ 8mm, materiál nerez, délka min 20mm, max3000 mm

g) Rozhraní: 4-20 mA s možností HART

Důvod výběru: Přesnost dostačující na pasterizaci, dobré pracovní podmínky, 4-20 mA

Datasheet:

https://www.profess.cz/cs/pci/produkty/mereni teploty/teplotni cidla pro hygienicke aplikace/pt100-teplotni-cidlo-v-hygienickem-provedeni-s-displejem

 $\underline{https://www.profess.cz/resource/1533196441924/pci/12307/13087/15185/files/tfrh.pdf}$

Průtokoměr:

a) Rozsah: 0,06 dm³/min až 600 m³/h (0.015 gal/min až 2 650 gal/min

b) Citlivost: neuvedenoc) Rozlišení: 0.38 μA

d) Provozní podmínky: -20 ÷ 150 °C, hygienické aplikace, PN 40, třída 150, 20K

- e) Chyba měření: Objemový průtok (standard): ±0,5 % o. h. ±1 mm/s (0.04 in/s) Objemový průtok (volitelně): ±0,2 % o. h. ±2 mm/s (0.08 in/s)
- f) Mechanické vlastnosti: Výstelka z PFA, těleso senzoru z nerezové oceli, materiály dotýkající se média jsou čistitelné, displej je dotykový s ovládáním přes WLAN, lze vybrat verzi s odděleným displejem
- g) Rozhraní: 4-20 mA s možností HART

Důvod výběru: Vhodný i pro horké kapaliny, vhodný pro hygienické aplikace, dostačující chyba měření, 4-20 mA

Datasheet: https://www.cz.endress.com/cs/Polni-instrumentace-sita-na-miru/mereni-prutoku/Proline-Promag-H300?t.tabId=product-overview

https://bdih-

 $\underline{download.endress.com/files/DLA/005056A500261EDD839CC484F6833A54/TI01223DEN_0822-00.pdf}$

Tabulka zvolené instrumentace

Komponenta	Požadavky na vlastnosti	Vlastnosti vybrané komponenty	Splňuje	
	komponenty			
Napouštěcí ventil	DN125, automatický	DN125, automatický	ANO	
Vypouštěcí ventil	DN125, automatický,	DN125, automatický,	ANO	
	vhodný pro horké kapaliny	prac. teplota až 130 °C		
Trojcestný ventil	DN125, pro horké	DN125, prac teplota až	ANO	
	kapilny, automatický	250 °C, možnost		
		instalace pohonu		
Motor	Alespoň 10 Nm, min.	9,90 Nm, 1445 ot/min.	ANO	
	40 ot./min			
Hladina	ina Kontinuální měření, Kontinuální měření,		ANO	
	rozsah min do 2000 mm,	rozsah do 6000 mm, bez		
	hygienický	plováku, hygienický		
Teplota	Měření alespoň do	Měření do 250 °C,	ANO	
	80 °C, přesnost na	přesnost na jednu		
	desetiny, hygienický	desetinu, hygienický		
Průtokoměr	Průtokoměr DN125, pro hygienické DN1		ANO	
	aplikace	aplikace		
Čerpadlo	DN125, pro horké	DN125, pro kapaliny do	ANO	
	kapaliny	120 °C		

Elektrotechnické schéma

Tabulka zapojení komponent do PLC SIMATIC S7-1500

ANALOG INPUT		ANALOG OUTPUT			
Komponenta	Označení	Port	Komponenta	Označení	Port
Snímač hladiny	L01.01	AI0+, AI0-	-	-	AO0+, AO0-
Snímač teploty média	T01.01	AI1+, AI1-	-	-	AO1+, AO1-
Snímač průtoku odvod	F01.02	AI2+, AI2-	-	-	AO2+, AO2-
Snímač průtoku přívod	F01.01	AI3+, AI3-	-	-	AO3+, AO3-
Snímač teploty motoru	T01.02	AI4+, AI4-	-	-	AO4+, AO4-
DIGITAL INPUT			DIGITAL OUTPUT		
Komponenta	Označení	Port	Komponenta	Označení	Port
Snímač otáček motoru	X01.01	DI0+, DI0-	Relé ventil V01.01	K1	DO0+, DO0-
-	-	DI1+, DI1-	Relé ventil V01.02	K2	DO1+, DO1-
-	-	DI2+, DI2-	Relé ventil V02.05	K3	DO2+, DO2-
-	-	DI3+, DI3-	Cívka stykače síť	K4	DO3+, DO3-
-	-	DI4+, DI4-	Cívka stykače motor	K5	DO4+, DO4-

Schéma

UML diagramy

Use-case diagram

Specifikace – Konfigurace systému

Krátký popis: Tento use-case umožňuje úpravy v systému

Aktéři: ověřený uživatel, systém

Podmínky pro spuštění: uživatel musí být ověřen, že je mu přiřazena role "Technolog" a má tím pádem práva na úpravy systému

Základní tok:

- 1) Systém zobrazí ve SCADA vizualizaci tlačítko s tužkou , která slouží pro zobrazení konfiguračního okna
- 2) Uživatel klikne na tlačítko a zobrazí se mu nové okno, kde může provádět úpravy na systému
- 3) Systém zobrazí uživateli změny, které provedl a požádá ho o potvrzení provedených změn
- 4) Systém ověří, zda jsou zadaná data proveditelná -> jestli uživatel např. nenastavil požadovanou teplotu na 1000°C
- 5) Systém požádá uživatele autorizaci pomocí pinu
- 6) Systém uloží změny

Alternativní tok 1:

- 4.1. Pokud uživatel zadal špatné/nereálná data -> zobrazí se mu červeně podbarvené hodnoty, které zadal nesprávně
- 4.2. Pokud uživatel neopraví špatně zadané hodnoty z bodu 4.1, tak se změny neprovedou a uživatel je vrácen na bod 2 hlavního toku, kde bude mít možnost provést změny znovu

Alternativní tok 2:

- 5.1. Pokud uživatel není autorizován pomocí pinu, zobrazí se hláška, že není autorizován a nemůže tak provést změny na systému
- 5.2. Uživatel je znova požádán o zadání pinu a pokud na potřetí neuspěje, tak budou změny smazány a uživatel je vrácen do bodu 1 hlavního toku

Podmínky pro dokončení: Zadané změny uživatelem (Technolog) jsou uloženy v systému

Sekvenční diagram

Na další stránce ->

Stavový diagram

