

FACULTY OF ENGINEERING

Building a better VHDL testing environment

Joren Guillaume

FEA Ghent University

Thesis presentation

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work and commentaries
 - Conclusion

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work and commentaries
 - Conclusion

VHDL

VHDL

- VHSIC Hardware Description Language
- Used for describing digital and mixed-signal systems
- Developed by U.S. Department of Defense
 - ▶ Document → Simulate → Synthesize

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work and commentaries
 - Conclusion

Testing VHDL

Test benches

- Unit Under Test (UUT)
- Drivers, processes & stimuli
- Assertions and output tracking
 - Comparison to desired result (Manual or automated)
 - Wave-check

Problems

- Non-standardized process
- Single point of failure
- Time consuming

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work and commentaries
 - Conclusion

Software development techniques

Unit testing

- Unit = smallest behaviour in code
- Test failure → exact location

Test First Development

- Create test before the code
- Work from how the code will behave

Test Driven Development

- TFD & short development cycle
- Proven to significantly reduce errors

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- 2 Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work and commentaries
 - Conclusion

VHDL testing framework

Standardized testing framework

- Based on previously mentioned software techniques
- Cross platform
- At the core: Python script
- Utility library
- Continuous Integration (CI) system

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work and commentaries
 - Conclusion

Utility library

Bitvis utility library

- Compatible with all VHDL versions
- Expands VHDL functions
 - Easy value checking
 - String handling & random generation
 - Formatted output
- Quick & uniform coding
 - Reduces time spent coding
 - Improves readability

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work and commentaries
 - Conclusion

Continuous Integration

Hudson-CI

- Centralized, automated testing
- Revision control integration (e.g. Git)
- Very customizable (many modules)
- Standardized test reports (XML)
- Displays statistics

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work and commentaries
 - Conclusion

Python script

Features

- Test bench parser
- Customizable process
 - ► Command-line arguments
- Multiple useful outputs
 - Processed text-based report
 - Processed XML report
 - Unmodified console output

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- 2 Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work and commentaries
 - Conclusion

Preparing the test bench

Preparing the test bench:

- Import the utility library
- Decide on separation method
 - Line by line → No editing test bench
 - Start/Stop
 - Partitioned (recommended)
- Oreate command file if needed

Modified test bench example

Old test bench:

```
...

assert q = '0'

report "Wrong output value at startup" severity FAILURE;

d <= '1';

WAIT FOR clk_period;

assert q = '1'

report "Wrong output value at first test" severity FAILURE;
...
```

Modified test bench:

```
...

— Test 1
check_value(q = '0', FAILURE, "Wrong output value at startup");
write(d, '1', "DFF");
check_value(q = '1', FAILURE, "Wrong output value at first test");
...

— End 1
...
```

Running the job

Running the job:

- Create new job at Hudson-CI
- Optional: set for import from revision control source
- Set correct parser flags in shell command
- Build & check results

python src\testbench_parser.py -m partitioned -l sim\tb_dff_r.vhd

Script workflow

Specialized python script

Steps of the parser are logged separately

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- 3 Concluding
 - Results
 - Future work and commentaries
 - Conclusion

Results

- Multiple open-source projects converted
- Tested with Git, Hudson-CI & Bitvis

- → Successful runs when VHDL code OK
- → Partially completed test-runs even with faults in code
- → Unsuccessful runs only due to compilation errors

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- 3 Concluding
 - Results
 - Future work and commentaries
 - Conclusion

Future work

- Wider tool support
 - Extensive support for current tool (ModelSim)
 - Greater variety of tools
- Lexical analysis
 - Full code analysis
 - Smart test bench generation
 - Automated partitioning
- Adapted CI tool
 - Specific needs of hardware development

Commentaries on developing VHDL

- Outdated practices
 - ► An industry stuck in 1993
 - "Don't fix what isn't broken"
- Hardware engineers are not software developers
 - Little to no software development experience
 - Taught by seniors at work
- VHDL has no reflection or introspection
 - Could make test benches even more compact

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- 3 Concluding
 - Results
 - Future work and commentaries
 - Conclusion

Conclusion

- Software methods are applicable to an extent if:
 - ► Tailored to development needs
 - Integrated with existing methods
- Framework provided:
 - Easier to read code
 - Precise debugging information
 - Faster development

- Introduction
 - VHDL
 - Testing VHDL
 - Software development techniques
- 2 Proposed solution
 - VHDL testing Framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- 3 Concluding
 - Results
 - Future work and commentaries
 - Conclusion

Demo

