

Data structures with edges

- Representation based on ½ edges and vertices
 - ½ edge :
 - Access to the coupled ½ edge
 - Access to the next ½ edge
 - Access to the target vertex
 - Vertex :
 - Access to an ½ edge oriented towards the vertex
 - Access to the underlying point

38

Data structures

- Case of nD triangulations
 - n-simplex and vertex based structures
 - Combinatorial Maps
 - B_1 : next
 - $\beta_2,\,\beta_3$... β_n : coupled darts

1

Interest

- Local surface variations
 - Used to compute geometric information such as normal vectors, curvature, and higher order information ...
- Useful for:
 - Surface analysis
 - Surface rendering
 - Surface texturing
 - Constructing a better parameterization with less distorsion

43

Differential operators

- · Reminder:
 - Given a univariate function $f: \mathbb{R} \to \mathbb{R}$

- The derivative of f is another function $\frac{\partial f}{\partial x}$ that describes the growing speed of f

$$f^{\,\hat{}}:\,\mathbb{R}\,\rightarrow\,\mathbb{R}$$

$$f'(x) = \lim_{a \to 0} \frac{f(x+a) - f(x)}{a}$$

Differential operators

- Reminder:
 - The Laplacian (second derivative) of a function $f:\mathbb{R}\to\mathbb{R}$ is a measure of the difference between the value of f at any point P and the average value of f in the vicinity of P

 It is linked to the curvature of the curve (inverse of the osculating circle radius)

$$\kappa(x) = \frac{|f''(x)|}{(1 + (f'(x))^2)^{3/2}}$$

Differential operators

- In a multivariate context, differential operators are also used in differential equations
- Generally expressed in \mathbb{R}^k
- Spatial notation "nabla":
 Think of it as a vector of partial derivative operators!

 $\nabla = \begin{bmatrix} \delta_u \\ \delta_v \end{bmatrix}$

- Gradient operator of a scalar function f :
- Divergence operator of a a vector function \mathbf{V} : $\nabla \cdot \mathbf{V}$
- Laplacian operator of a scalar function f : $\Delta f = \nabla \cdot \nabla f$
- Curl (rotational) operator of a vector function ${f V}$: $abla imes {f V}$
- Expression of nabla depending on the coordinate system of the input domain coordinates u,v

Differential operator

- · A few reminders :
 - Gradient : direction (u_{max},v_{max}) of maximal slope
 - Divergence : flow traversing a unit element around (u,v)
 - Laplacian: measures the difference between the function and its mean value in a small neighborhood
 - Useful for several geometry processing tasks (interpolation, heat diffusion, spectral analysis, mean-curvature, smoothing)
 - Curl (Rotational) : does the vector field locally turn around one vector?
- · Questions :
 - How could you define the "gradient" of a vector field?
 Jacobian matrix
 - How could you define the "laplacian" of a vector field?
 Vector with the Laplacian of each component

Other use of Nabla

Nabla transpose

 $_{x}\delta$: Derivative of the scalar field on the left

$$\nabla^t = \left[{}_x \delta, y \delta, z \delta \right]$$

Jacobian matrix of a vector field V

$$\mathbb{J}_{\mathbf{V}} = \mathbf{V} \nabla^{\mathbf{t}} = \begin{bmatrix} \delta_x v_x, \delta_y v_x, \delta_z v_x \\ \delta_x v_y, \delta_y v_y, \delta_z v_y \\ \delta_x v_z, \delta_y v_z, \delta_z v_z \end{bmatrix}$$

• Remark : circulation of V around small parallelogram

$$A,B: \quad curl(V).(A \times B) = \mathbb{J}_V A.B - \mathbb{J}_V B.A$$

Differential operator

· Functions defining a curve

$$\mathbf{x}: [0, L] \to \mathrm{R}^3$$
 de classe C^3

Tangent, normal and binormal vectors?

Vecteur tangent : $\mathbf{t}(s) = \frac{\mathbf{x}'(s)}{\|\mathbf{x}'(s)\|}$

Vecteur normal : $\mathbf{m}(s) = \frac{x''(s)}{\|\mathbf{x}''(s)\|}$ Vecteur binormal : $\mathbf{b}(s) = \mathbf{t}(s) \times \mathbf{m}(s)$

Repère de Serret-Frénet : (x(s); t(s), m(s), b(s))

49

51

Differential operator

· Let s be the curvilinear abscissa

-s: length of curve between 0 and t

$$s(t) = \int_0^t \|\mathbf{X}'(t)\| dt$$

- parameterize the curve wrt s

- x'(s) is a unit vector

Courbure : $\kappa(s) = \mathbf{x}''(s)$

Mesure la déviation par rapport à une droite

Torsion : $\tau(s) = \frac{\det[\mathbf{x}'(s), \mathbf{x}''(s), \mathbf{x}'''(s)]}{\kappa^2(s)}$

► Mesure le défaut de planarité

50

Differential operator

· Functions defining a surface

 $\mathbf{X}:\Omega\subset\mathrm{R}^2 o\mathrm{R}^3$ de classe C^r

Analogues vecteurs tangent/normal/binormal?

On note $\mathbf{X}_u = \frac{\partial \mathbf{X}}{\partial v}$ et $\mathbf{X}_v = \frac{\partial \mathbf{X}}{\partial v}$ Plan tangent en $p:T_p\mathbf{X}=$ plan passant par p et engendré par les vecteurs

 $X_u(p)$ et $X_v(p)$

Vecteur normal : $\mathbf{n}(p) = \frac{\mathbf{X}_u(p) \times \mathbf{X}_v(p)}{\|\mathbf{X}_u(p) \times \mathbf{X}_v(p)\|}$ $(\mathbf{X}(p); \mathbf{X}_u(p), \mathbf{X}_v(p), \mathbf{n}(p))$ forme aussi un repère local

· How do unitary vectors are transformed by the parameterization?

Differential operator

- Length and angles distorsion?

 $\mathbf{X}:\Omega\subset\mathrm{R}^2 o\mathrm{R}^3$ de classe C'

· Functions defining a surface

Differential operator

· Functions defining a surface?

On note de manière analogue $\mathbf{X}_{uu} = \frac{\partial \mathbf{X}_{\mathbf{u}}}{\partial u} = \frac{\partial^2 \mathbf{X}}{\partial u^2}$, etc.

Première forme fondamentale :

$$\mathbf{I} = \left[\begin{array}{cc} E & F \\ F & G \end{array} \right] := \left[\begin{array}{cc} \mathbf{x}_u^T \mathbf{x}_u & \mathbf{x}_u^T \mathbf{x}_v \\ \mathbf{x}^T \mathbf{x}_u & \mathbf{x}^T \mathbf{x}_u \end{array} \right] \label{eq:interpolation}$$

Seconde forme fondamentale :

$$\mathbf{II} = \begin{bmatrix} e & f \\ f & q \end{bmatrix} := \begin{bmatrix} \mathbf{x}_{uu}^T \mathbf{n} & \mathbf{x}_{uv}^T \mathbf{n} \\ \mathbf{x}_{uu}^T \mathbf{n} & \mathbf{x}_{uv}^T \mathbf{n} \end{bmatrix}$$

Opérateur de forme/Application de Weingarten :

$$\mathbf{W} \ := \ \frac{1}{EG - F^2} \left[\begin{array}{cc} eG - fF & fG - gF \\ fE - eF & gE - fF \end{array} \right]$$

I = outil géométrique (tenseur métrique)

- ▶ Permet de mesurer aires locales, longueurs de courbes sur la surface, angles, $dA = \sqrt{EG - F^2} \, du dv$
- Exemple : anisotropie locale de la surface : décomposition spectrale de l

Propriétés différentielles ne dépendant que de I sont dites intrinsèques

- ▶ Ne dépendent pas de la paramétrisation
- Ne dépendent pas de l'espace 3D

Eigenvalues of I: maximal/minimal stretching of a tangent vector

II = propriétés extrinsèques de la surface

▶ Dépendent du plongement dans l'espace ambiant R³

W détermine les directions de courbure locale de la surface

- ► Valeurs propres = courbures principales
- Vecteurs propres = directions principales de courbure

55

Courbures principales et directions principales de courbure :

$$\mathbf{W} = \begin{bmatrix} \bar{\mathbf{t}}_1 & \bar{\mathbf{t}}_2 \end{bmatrix} \begin{bmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{bmatrix} \begin{bmatrix} \bar{\mathbf{t}}_1 & \bar{\mathbf{t}}_2 \end{bmatrix}^{-1}$$

Courbure moyenne : $H = \frac{\kappa_1 + \kappa_2}{2} = \frac{1}{2} trace(\mathbf{W})$

Courbure de Gauss : $K = \kappa_1 \cdot \kappa_2 = det(\mathbf{W})$

(a) (b) (c) (d)
Fig. 5. Curvature plots of a triangulated saddle using pseudo-colors: (a) Mean, (b)
Gaussian, (c) Minimum, (d) Maximum.

[Meyer et al. 2003]

56

Differential operators

- · Functions defined on a surface
 - Let u be a scalar function defined on a surface
 - We would like to express local variations of u
- Let consider the discrete case of a surface being approximated by a simplicial mesh
 - Function u discretized on vertices
 - Gradient of u discretized on triangles
 - Divergence of a vector (defined on triangles) discretized on vertices

Differential operators

· Simplicial meshes

– Laplacian Δ of u at vertex i = sum over neighbor vertices j

– Gradient ∇ of u inside a triangle = sum over the 3 vertices I

Divergence at vertex i of a vector X defined on faces

= sum over incident faces j

$$\nabla \cdot X = \frac{1}{2} \sum_{j} \cot \theta_1(e_1 \cdot X_j) + \cot \theta_2(e_2 \cdot X_j)$$

Area A_i

· Computed by duality to a vertex

59

Differential geometry

- · How to generalize normal, curvatures?
- Consider u corresponding to each coordinate fonction in turn

$$- \qquad u = {}^{t}(x,y,z)$$

$$\triangle_{\mathbf{X}}\mathbf{u} = -2H\mathbf{n}$$

H : mean curvature n : normal vector

60

Signals being studied in **Computer Graphics**

- Signals defined on $\,\mathbb{R}^2\,$
 - Scalar signals :
 - height value (terrain)
 - density of some fluid flowing in the plane
 - Vector fields
 - Surface parameterization $\Omega\subset\mathbb{R}^2\to\mathbb{R}^3$ Displacement field of some fluid flowing in the
- Signals defined in \mathbb{R}^3
 - Density of a volume material (scalar)
 - Displacement field of some fluid (scalar)

Computer Graphics

Signals being studied in

- Signals defined on a surface $\ensuremath{\mathbb{S}}$
 - Scalar values :
 - Temperature, grey color ...
 - Position coordinates (x, y or z)
 - Vector fields
 - Normal vector
 - Maximal/minimal curvature direction
 - Displacement field

61

62