Bibliométrie Indirecte par Analyse de Réseaux Complexes

J. Raimbault^{1,2}

¹Géographie-cités (UMR 8504 CNRS) ²LVMT (UMR-T 9403 IFSTTAR)

Cybergo: 20 ans déjà! Jeudi 26 mai 2016

Contexte

"You are what you cite": Quels sont les environnements disciplinaires voisins de Cybergeo? Sont-ils diffrents des contenus des articles (PO) et des contenus déclarés (HC)?

- \rightarrow Enjeu par rapport à la ligne éditoriale de la revue : interdisciplinarité et ouverture
- \rightarrow Contre une bibliométrie quantitative pure en SHS : approche semi-qualitative nécessaire

Objectif

Question de recherche : Dans quelle mesure le croisement des données de citation et des données sémantiques peut-il permettre d'analyser le contexte disciplinaire de la revue ?

- \rightarrow Elaboration d'une approche par *Hyperréseau* : croisement du réseau de citations au réseau sémantique. Gain d'information par croisement des couches (démarche transversale)
- → Données difficiles d'accès : base à construire

Collecte des données

Données des articles : bases de fonctionnement (production de la revue)

→ Structuration et Consolidation

Données de citation : revue non référencée par base "classiques" (de plus non libres !)

 \rightarrow crawling de google scholar par utilisation de l'option "cité par" [Noruzi, 2005]

Données textuelles : besoin des résumés pour l'ensemble des références liées

 \rightarrow utilisation de l'API Mendeley [Mendeley, 2015] (gratuite mais non ouverte).

Architecture de collecte des données

Caractéristiques du réseau

- \rightarrow Après raffinement, \simeq 947 références de cybergeo exploitables, sur \simeq 1200
- \rightarrow 418670 Noeuds et 570352 Liens ; Diamétre : 9 ; Densité : 3.25E-6 ; degré moyen : 2.724284

Degree distribution, mean (impact factor) = 3.18

Structure du Réseau

Degrés : Loi rang-taille

Gauche : Cybergéo ; Droite : Ensemble du réseau

Cliques

Réseau sémantique

Réseau sémantique. Collection des résumés/années/auteurs/mots-clés pour les 400000 références via l'API Mendeley $\to \sim 215000$ références avec données complètes.

Statistiques

Langues: anglais 206607, français 4109, espagnol 2029, allemand 892, portugais 891, néerlandais 124, autres 182

Repartitions par années :

Extraction des mots-clés

Text-mining en python avec nltk [Bird, 2006], méthode adaptée de [Chavalarias and Cointet, 2013]

- Detection de la langue par stop-words (mots vides de sens)
- Parsing et tokenizing (isolation des mots) /pos-tagging (fonction des mots) /stemming (extraction de la racine) effectués différemment selon la langue :
 - Anglais : pos-tagger intégré à nltk, combiné à un PorterStemmer
 - Français ou autre : utilisation de TreeTagger [Schmid, 1994]
- Selection des *n*-grams potentiels (avec $1 \le n \le 4$) : anglais $\bigcap \{NN \cup VBG \cup JJ\}$; franais $\bigcap \{NOM \cup ADJ\}$
- ullet Insertion en base pour extraction quasi-instantane plus tard (10j ightarrow 5min)
- Estimation de la pertinence des *n-grams* selon répartition statistique des co-occurrences

Construction du réseau sémantique

- Noeuds : Mots-clés avec la plus grande pertinence cumulée
- Liens : Co-occurrences pondérées
- Filtrage des liens en dessous d'un seuil ; ajustement manuel de mots parasites
- Detection de communautés par maximisation de modularité
 [Blondel et al., 2008] après suppression des hubs (ex. model, space, structure, process)

Influence des paramètres

Importance du règlage fin des paramètres

- ightarrow Sensibilité des modèles **et** traitements de données aux parametres. Exploration systématique via OpenMole par exemple.
- → Importance du jugement d'expert : pas de dichotomie "quanti-quali"
- \rightarrow Sensibilité aux conditions initiales : *Space matters* [Cottineau et al., 2015]

Domaines extraits

Communautés obtenues pour $\theta_V=1200, \theta_E=50$:

- Political sciences/critical geography (535): decision-mak, polit ideolog, democraci, stakehold, neoliber
- Biogeography (394): plant densiti, wood, wetland, riparian veget
- Economic geography (343): popul growth, transact cost, socio-econom, household incom
- Environnment/climate (309): ice sheet, stratospher, air pollut, climat model
- Complex systems (283): scale-fre, multifract, agent-bas model, self-organ
- Physical geography (203): sedimentari, digit elev model, geolog, river delta
- Spatial analysis (175): spatial analysi, princip compon analysi, heteroscedast, factor analysi

Domaines extraits (suite)

- Microbiology (118): chromosom, phylogenet, borrelia
- Statistical methods (88): logist regress, classifi, kalman filter, sampl size
- Cognitive sciences (81): semant memori, retrospect, neuroimag
- GIS (75): geograph inform scienc, softwar design, volunt geograph inform, spatial decis support
- Traffic modeling (63): simul model, lane chang, traffic flow, crowd behavior
- Health (52): epidem, vaccin strategi, acut respiratori syndrom, hospit
- Remote sensing (48): land-cov, landsat imag, lulc
- Crime (17): crimin justic system, social disorgan, crime

Réseau

Interdisicplinarit'e

Interdisicplinarit'e de citation

Degré d'interdisciplinarité par articles

Un article peut être associé aux communautés sémantiques par ses mots clés : probas p_i pour chaque communauté.

Mesure d'interdisciplinarité (pour un article, au premier ordre) :

$$o=1-\sum p_i^2$$

Mean orig: 0.79

Conclusion

- ightarrow Un environnement disciplinaire tr
s varié et une interdicisplinarité affirmée
- \rightarrow Approche à croiser avec autres types de classifications (thématique (POC), mots-clés (HC), géographique (CC) pour en apprendre plus sur la revue et la pratique de la géographie qui lui est associée
- \rightarrow Méthode générique pouvant s'appliquer tout réseau dont les noeuds ont une description textuelle

Reserve Slides

Reserve Slides

Collecte des données

Crawling de données semi-ouvertes : exemples en géographie

Données de mobilité : statuts des stations Vlib en temps réel (API) [?]

Collecte des données

Exemples en géographie (suite)

Traffic routier : collecte de sytadin (pas d'API : scrapping nécéssaire)

Centralité (citation)

Centralités faibles (rq : impossibilité des clusters forts pour des citations car causalité temporelle). Gauche : Cybergéo ; Droite : Ensemble du réseau

Clustering (citation)

Composante géante : plus de 99% des noeuds.

Cliques(citation)

Estimation de la pertinence

Estimation exacte de la pertinence via la repartition statistique des cooccurrences (score de χ^2) : termhood définie, avec M_{ij} nombre d'articles o i et j apparaissent simultanment,

$$t_i = \sum_{j \neq i} \frac{\left(M_{ij} - \sum_k M_{ik} \sum_k M_{jk}\right)^2}{\sum_k M_{ik} \sum_k M_{jk}}$$

en $\Theta(\sum_i N_i^2)$ (N_i taille des résumés) : difficile sur un corpus où $\sum_i N_i^2 \simeq N < N_i >^2 \simeq 8 \cdot 10^7$

References I

Bird, S. (2006).

NItk: the natural language toolkit.

In Proceedings of the COLING/ACL on Interactive presentation sessions, pages 69–72. Association for Computational Linguistics.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008).

Fast unfolding of communities in large networks.

Journal of statistical mechanics: theory and experiment, 2008(10):P10008.

Chavalarias, D. and Cointet, J.-P. (2013).

Phylomemetic patterns in science evolution—the rise and fall of scientific fields.

Plos One, 8(2):e54847.

References II

Cottineau, C., Le Néchet, F., Le Texier, M., and Reuillon, R. (2015).

Revisiting some geography classics with spatial simulation. In Plurimondi, An International Forum for Research and Debate on Human Settlements, volume 7.

Mendeley (2015). Mendeley reference manager.

http://www.mendeley.com/.

Noruzi, A. (2005).

Google scholar: The new generation of citation indexes. Libri, 55(4):170–180.

Schmid, H. (1994).

Probabilistic part-of-speech tagging using decision trees.

In Proceedings of the international conference on new methods in language processing, volume 12, pages 44-49. Citeseer.