Heart Disease Prediction Project

Project Overview

This project aims to predict the presence of heart disease in patients using machine learning techniques. The model is trained on a dataset containing various medical attributes and is capable of classifying whether a patient is likely to have heart disease.

Dataset

• File: dataset.csv

Attribute Description

			D :		
A •3	Code/Column		Data		
Attribute	Name	Unit	Type Description/Values		
Age	age	years	NumeriPatient age in years		
Sex	sex	-	Binary $0 = \text{female}, 1 = \text{male}$		
Chest pain	chest	-	Nomina \mathbf{l} = typical angina, 2 = atypypical		
type	pain type		angina, $3 = \text{non-anginal pain}$, $4 = \text{asymptomatic}$		
Resting	resting	mm	NumeriResting blood pressure		
blood	bp s	Hg			
pressure	•	Ü			
Serum	cholesterol	mg/dl	Numeri8erum cholesterol		
cholesterol		O,			
Fasting	fasting	-	Binary $1 = \text{sugar} > 120 \text{mg/dL}, 0 = \text{sugar}$		
blood sugar	blood		$< 120 \mathrm{mg/dL}$		
	sugar		-		
Resting	resting	-	Nomina 0 = normal, $1 = \text{ST-T}$ wave		
electrocar- diogram	ecg		abnormality, $2 = LV$ hypertrophy by Estes' criteria		
Maximum	max	$_{ m bpm}$	NumeriMaximum heart rate achieved		
heart rate	heart	_			
	rate				
Exercise	exercise	-	Binary $0 = \text{no}, 1 = \text{yes}$		
induced	angina				
angina	O				
ST	oldpeak	-	Numeri8T depression induced by exercise		
depression			relative to rest		
(oldpeak)					
Slope of ST segment	ST slope	-	Nominal = upward, $2 = \text{flat}$, $3 = \text{downward}$		
Target	target	-	Binary $0 = Normal$, $1 = Heart Disease$		

• Features:

- age
- sex
- chest pain type
- resting bp s
- cholesterol
- fasting blood sugar
- resting ecg
- max heart rate
- exercise angina
- oldpeak
- ST slope

• Target:

- target (1 = heart disease, 0 = no heart disease)

Methodology

• Preprocessing:

- Loaded the dataset and selected features.
- One-hot encoded categorical features.
- Split the data into training and test sets (80/20 split).

• Model:

- Used a Random Forest Classifier.
- Performed hyperparameter tuning using GridSearchCV with 5-fold cross-validation.
- Parameters tuned: n_estimators, max_depth, min_samples_split.

• Evaluation:

 Evaluated the best model on the test set using accuracy and classification report.

Results

- Best Parameters: { 'max_depth': None, 'min_samples_split': 2, 'n_estimators': 200 }
- Test Accuracy: 0.937
- Classification Report:

	precision	recall	f1-score	support
0	0.93	0.94	0.93	112
1	0.94	0.94	0.94	126
accuracy			0.94	238
macro avg	0.94	0.94	0.94	238
weighted avg	0.94	0.94	0.94	238

• Model Saved: heart_disease_model.joblib

Usage

- 1. Place the dataset (dataset.csv) in the project directory.
- 2. Run the script:

```
python heart_disease_prediction.py
```

3. The script will output the best parameters, test accuracy, and save the trained model as heart_disease_model.joblib.

Requirements

- Python 3.x
- pandas
- \bullet scikit-learn
- joblib

Install dependencies with:

pip install pandas scikit-learn joblib

Notes

- The script can be modified to include additional preprocessing or feature engineering as needed.
- For more details, see the script heart_disease_prediction.py.