IN THE CLAIMS:

1.-62. (Cancelled)

63. (New) A compound represented by a formula:

(I),

or a pharmaceutically acceptable salt, prodrug, or ester thereof, wherein:

A is a group having a formula:

$$Z$$
 $(CH_2)_n$
 $(CH_2)_n$

R¹ is H, alkyl, alkenyl, alkynyl, cyclo-alkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclo-alkyl, heterocycloalkylalkyl, heteroaryl, or heteroaralkyl, wherein at least one hydrogen atom is optionally substituted with a substituent selected from the group consisting of OR⁷, SR⁷, CN, NO₂, N₃, and a halogen, and wherein R⁷ is H, unsubstituted alkyl, unsubstituted alkenyl, or unsubstituted alkynyl;

Y and Z, the same or different, are independently selected from the group consisting of CH_2 , O, S, SO, SO₂, NR⁸, R⁸C(O)N, R⁸C(S)N, R⁸OC(O)N, R⁸OC-(S)N, R⁸SC(O)N, R⁸R⁹NC(O)N, and R⁸R⁹NC(S)N, wherein R⁸ and R⁹ each are selected from the group consisting of H, unsubstituted alkyl, unsubstituted alkenyl, and unsubstituted alkynyl;

n is an integer from 1 to 5;

X is a covalent bond, CHR^{10} , $CHR^{10}CH_2$, CH_2CHR^{10} , O, NR^{10} , or S, wherein R^{10} is H, unsubstituted alkyl, unsubstituted alkenyl, or unsubstituted alkynyl;

Q is C(0), C(S), or SO_2 ;

 \mbox{R}^2 is H, $\mbox{C}_1\mbox{-}\mbox{C}_6$ alkynyl;

m is an integer from 0 to 6;

R³ is cycloalkyl, heterocycloalkyl, aryl, or heteroaryl wherein at least one hydrogen atom is optionally substituted with a substituent selected

from the group consisting of alkyl, $(CH_2)_pR^{11}$, OR^{12} , SR^{12} , CN, N_3 , NO_2 , $NR^{12}R^{13}$, $C(O)R^{12}$, $C(S)R^{12}$, CO_2R^{12} , $C(O)SR^{12}$, $C(O)NR^{12}R^{13}$, $C(S)NR^{12}R^{13}$, $NR^{12}C(O)R^{13}$, $NR^{12}C-(S)R^{13}$, $NR^{12}CO_2R^{13}$, $NR^{12}C(O)SR^{13}$, and halogen, and wherein p is an integer from 0 to 5;

R¹¹ is cycloalkyl, heterocycloalkyl, aryl, or heteroaryl wherein at least one hydrogen atom is optionally substituted with a substituent selected from the group consisting of a halogen, OH, OCH₃, NH₂, NO₂, SH, and CN; and

 ${
m R}^{12}$ and ${
m R}^{13}$ are independently selected from the group consisting of H, unsubstituted alkyl, unsubstituted alkenyl, and unsubstituted alkynyl;

 R^4 is OH, =O (keto), NH₂, or NHCH₃;

 R^5 is H, C_1 - C_6 alkyl radical, C_2 - C_6 alkenyl radical, or $(CH_2)_q R^{14}$, wherein q is an integer from 0 to 5, R^{14} is cycloalkyl, heterocycloalkyl, aryl, or heteroaryl radical wherein at least one hydrogen atom is optionally substituted with a substituent selected from the group consisting of a halogen, OH, OCH₃, NH₂, NO₂, SH, and CN;

W is C(0), C(S), or SO_2 ; and

 $R^{6} \text{ is cycloalkyl, heterocycloalkyl, aryl,} \\ \text{or heteroaryl radical wherein at least one hydrogen} \\ \text{atom is optionally substituted with a substituent} \\ \text{selected from the group consisting of halogen, } OR^{15}, \\ \text{SR}^{15}, \text{S}(\text{O})R^{15}, \text{SO}_{2}R^{15}, \text{SO}_{2}NR^{15}R^{16}, \text{SO}_{2}N(\text{OH})R^{15}, \text{CN,} \\ \text{CR}^{15} = NR^{16}, \text{CR}^{15} = N(\text{OR}^{16}), \text{N}_{3}, \text{NO}_{2}, \text{NR}^{15}R^{16}, \text{N}(\text{OH})R^{15}, \\ \text{C}(\text{O})R^{15}, \text{C}(\text{S})R^{15}, \text{CO}_{2}R^{15}, \text{C}(\text{O})\text{SR}^{15}, \text{C}(\text{O})\text{NR}^{15}R^{16}, \text{C}(\text{S}) - \\ \text{NR}^{15}R^{16}, \text{C}(\text{O})\text{N}(\text{OH})R^{15}, \text{C}(\text{S})\text{N}(\text{OH})R^{15}, \text{NR}^{15}\text{C}(\text{O})R^{16}, \text{NR}^{15}\text{C} - \\ \text{(S)}R^{16}, \text{N}(\text{OH})\text{C}(\text{O})R^{15}, \text{N}(\text{OH})\text{C}(\text{S})R^{15}, \text{NR}^{15}\text{CO}_{2}R^{16}, \text{N}(\text{OH}) - \\ \text{CO}_{2}R^{15}, \text{NR}^{15}\text{C}(\text{O})\text{SR}^{16}, \text{NR}^{15}\text{C}(\text{O})\text{NR}^{16}R^{17}, \text{NR}^{15}\text{C}(\text{S})\text{NR}^{16}R^{17}, \\ \end{array}$

N(OH)C(O)NR¹⁵R¹⁶, N(OH)C(S)NR¹⁵R¹⁶, NR¹⁵C(O)N(OH)R¹⁶, NR¹⁵C(S)N(OH)R¹⁶, NR¹⁵SO₂R¹⁶, NHSO₂NR¹⁵R¹⁶, NR¹⁵SO₂NHR¹⁶, P(O)(OR¹⁵)(OR¹⁶), alkyl, alkoxy, alkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryloxy, arylamino, arylthio, aralkyl, aryloxyalkyl, arylaminoalkyl, aralkoxy, (aryloxy)alkoxy, (arylamino)alkoxy, (arylthio)alkoxy, aralkylamino, (aryloxy)alkylamino, (arylamino)alkylamino, (arylamino)alkylamino, (arylthio)alkylamino, (arylthio)alkylamino, (arylthio, (arylthio)alkylthio, heteroaryl, heteroaryloxy, heteroarylamino, heteroarylthio, heteroaralkyl, heteroaralkoxy, heteroaralkylamino, and heteroaralkylthio, and wherein R¹⁵, R¹⁶, and R¹⁷ are H, unsubstituted alkyl, or unsubstituted alkenyl,

wherein, when at least one hydrogen atom of R^6 is substituted with a substituent other than halogen, OR^{15} , SR^{15} , CN, N_3 , NO_2 , $NR^{15}R^{16}$, $C(O)R^{15}$, $C(S)R^{15}$, CO_2R^{15} , $C(O)SR^{15}$, $C(O)NR^{15}R^{16}$, $C(S)NR^{15}R^{16}$, $C(S)NR^{15}CO_2R^{16}$, $C(S)R^{15}$, $C(S)R^{1$

 ${
m R}^5$ and ${
m R}^6$ together comprise a 12- to 18-membered ring comprising at least one additional heteroatom in the ring skeleton which includes the N-W bond of formula (I); and

wherein said compound inhibits a multidrug-resistant retroviral protease. 64. (New) The compound of claim 63 wherein A has the formula:

65. (New) The compound of claim 63 or 64 wherein:

when R^1 is alkyl, it is a C_1 - C_6 alkyl; when R^1 is alkenyl, it is a C_2 - C_6 alkenyl; when R^1 is cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, R^1 is a 4- to 7-membered ring; when R^7 , R^8 , or R^9 is unsubstituted alkyl, it is a C_1 - C_6 unsubstituted alkyl;

when R^7 , R^8 , or R^9 is unsubstituted alkenyl, it is a C_1 - C_6 unsubstituted alkenyl;

 R^3 is a 4- to 7-membered ring; R^{11} is a 4- to 7-membered ring;

when R^{12} or R^{13} is unsubstituted alkyl, it is a $C_1\text{--}C_6$ unsubstituted alkyl;

when R^{12} or R^{13} is unsubstituted alkenyl, it is a $C_2\!-\!C_6$ unsubstituted alkenyl;

when R¹⁴ is cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, R¹⁴ is a 4- to 7-membered ring; when R⁶ is cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, R⁶ is a 4- to 7-membered ring;

when R⁶ is substituted with a substituent that is alkyl, alkylthio, or alkylamino, the substituent comprises from one to six carbon atoms; and

when R⁶ is substituted with a substituent that is cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, the substituent is a 4- to 7-membered ring;

or a pharmaceutically acceptable salt, a prodrug, or an ester thereof.

- 66. (New) The compound of claim 63 or 64 wherein Q is C(O), R^2 is H, and W is SO_2 , or a pharmaceutically acceptable salt, prodrug, or ester thereof.
- $\,$ 67. (New) The compound of claim 64 represented by a formula:

(IA)

or

(IB)

68. (New) The compound of claim 67 represented by a formula:

wherein Ar is phenyl, optionally substituted with a substituent selected from the group consisting of methyl, amino, hydroxy, methoxy, methylthio, hydroxymethyl, aminomethyl, and methoxymethyl.

69. (New) The compound of claim 68 represented by a formula:

or

- 70. (New) The compound of claim 68 or 69 wherein X is oxygen.
- 71. (New) The compound of claim 68 or 69 wherein R^5 is isobutyl.
- 72. (New) The compound of claim 68 or 69 wherein Ar is phenyl substituted at the para position.
- 73. (New) The compound of claim 68 or 69 wherein Ar is phenyl substituted at the meta position.
- 74. (New) The compound of claim 68 or 69 wherein Ar is phenyl substituted at the ortho position.

- 75. (New) The compound of claim 68 or 69 wherein Ar is selected from the group consisting of para-aminophenyl, para-toluyl, para-methoxyphenyl, meta-methoxyphenyl, and meta-hydroxymethylphenyl.
- 76. (New) The compound of claim 69 represented by a formula

77. (New) A pharmaceutical composition comprising (a) compound of claim 63, 64, 67, 68, or 69 and (b) a pharmaceutically acceptable carrier.