Introduction to Secure Multi-Party Computation

Ryan Moreno

Secure Multi-Party Computation

- Requirements
 - o n actors with private data $x_1, x_2, ... x_n$
 - \circ compute $F(x_1, x_2, \dots x_n)$
 - o don't leak any other information
 - o no trusted third parties

Secure Multi-Party Computation

- Requirements
 - o n actors with private data $x_1, x_2, ... x_n$
 - \circ compute $F(x_1, x_2, \dots x_n)$
 - o don't leak any other information
 - no trusted third parties
- Applications
 - Distributed voting
 - Private bidding and auctions

Do you have more money?

you, a multi-millionaire

Do you have more money?

- Don't leak any other information
- No trusted third-party

you, a multi-millionaire

Does Alice have more money? Effectively: $A \ge B$

- Assume $A, B \in \{1, 2, ... 10\}$
- Alice has public RSA key (e, n) and private (d, n)

Alice, \$A Million

Alice, \$A Million

- choose random x such that |x| = |n|
- c = encrypt(x) using Alice's public key (e, n)
- $m = c B + 1 \mod n$

Bob, \$B Million

Alice, \$A Million

- choose random x such that |x| = |n|
- c = encrypt(x) using Alice's public key (e, n)
- $m = c B + 1 \mod n$

 \leftarrow m looks random

Bob, \$B Million

- choose random x such that |x| = |n|
- c = encrypt(x) using Alice's public key (e, n)
- $m = c B + 1 \mod n$

 \leftarrow *m* looks random

• $X_i = \text{decrypt}(m + i - 1), i \in [1, 10] X_B = x, \text{ but all } X_i \text{ look random}$

Alice, \$A Million

- choose random x such that |x| = |n|
- c = encrypt(x) using Alice's public key (e, n)
- $m = c B + 1 \mod n$

 \leftarrow *m* looks random

- $X_i = \text{decrypt}(m + i 1), i \in [1, 10] X_B = x, \text{ but all } X_i \text{ look}$ random
- choose a random prime p such that |p| = |n|/2and calculate X, mod p X, mod p all look random
- $W_i = (X_i \mod p + (i > A)) \mod p, i \in [1, 10]$ add 1 (mod p) iff i is greater than Alice's wealth

Alice, \$A Million

- choose random x such that |x| = |n|
- c = encrypt(x) using Alice's public key (e, n)
- $m = c B + 1 \mod n$

 \leftarrow *m* looks random

- $X_i = \text{decrypt}(m + i 1), i \in [1, 10] X_B = x, \text{ but all } X_i \text{ look random}$
- choose a random prime p such that |p| = |n|/2and calculate $X_i \mod p$ $X_i \mod p$ all look random
- $W_i = (X_i \mod p + (i > A)) \mod p, i \in [1, 10]$ add 1 (mod p) iff i is greater than Alice wealth

 $p, W_1... W_{10} \rightarrow$

1 was added to W_B iff B > A W_i looks random and Bob can't tell when 1 was added

Alice, \$A Million

- choose random x such that |x| = |n|
- c = encrypt(x) using Alice's public key (e, n)
- $m = c B + 1 \mod n$

 \leftarrow m looks random

- $X_i = \text{decrypt}(m + i 1), i \in [1, 10] X_B = x, \text{ but all } X_i \text{ look random}$
- choose a random prime p such that |p| = |n|/2and calculate $X_i \mod p$ $X_i \mod p$ all look random
- $W_i = (X_i \mod p + (i > A)) \mod p, i \in [1, 10]$ add 1 (mod p) iff i is greater than Alice's wealth

$$p,W_1...W_{10} \rightarrow$$

1 was added to W_B iff B > A W_i looks random and Bob can't tell when 1 was added

 $result = (W_R \equiv x \pmod{p})$

Alice, \$A Million

- choose random x such that |x| = |n|
- c = encrypt(x) using Alice's public key (e, n)
- $m = c B + 1 \mod n$

 \leftarrow *m* looks random

- $X_i = \text{decrypt}(m + i 1), i \in [1, 10] X_B = x, \text{ but all } X_i \text{ look random}$
- choose a random prime p such that |p| = |n|/2and calculate $X_i \mod p$ all look random
- $W_i = (X_i \mod p + (i > A)) \mod p, i \in [1, 10]$ add 1 (mod p) iff i is greater than Alice's wealth

$$p, W_1 \dots W_{10} \rightarrow$$

1 was added to W_B iff B > A W_i looks random and Bob can't tell when 1 was added

result =
$$(W_B \equiv x \pmod{p})$$

If $A \ge B$, then 0 added, so

$$W_B = X_B \mod p = x \mod p$$

$$\leftarrow$$
 result 1 iff A ≥ B

- Correctness
 - ∘ result is 1 iff $A \ge B$
- Security
 - Alice learns random number m
 - Bob learns random prime p
 - \circ Bob learns $W_1 \dots W_{10}$
 - Bob can't calculate X_i except when i = B, so Bob can't calculate other W_i
 - Bob can't recover X_i from W_i due to loss of information with mod p

- Assumptions
 - Actors will follow protocol
 - Actors won't lie about wealth
 - Actors won't broadcast their wealth
- Ideal vs. Real World
 - Ideal has a trusted third-party
 - Real world must mimic ideal level of security

Oblivious Transfer (OT)

- Alice offers *n* messages, Bob selects and receives one
 - Alice doesn't know which Bob chose
 - Bob doesn't know the other messages

Alice, has $m_1, m_2, \dots m_n$

Bob, wants m_i

Oblivious Transfer (OT)

- Alice offers *n* messages, Bob selects and receives one
 - o Alice doesn't know which Bob chose
 - Bob doesn't know the other messages
 - Without loss of generality, we will assume single-bit messages

Alice, has $b_1, b_2, \dots b_n$

Bob, wants b_i

• choose (f, f^{-1}, B_f) random trapdoor permutation (function, inverse function, hard-core bit)

$$f, B_f \rightarrow$$

Alice, has $b_1, b_2, \dots b_n$

Bob, wants b_i

• choose (f, f^{-1}, B_f) random trapdoor permutation (function, inverse function, hard-core bit)

$$f, B_f \rightarrow$$

- choose random $x_1, x_2, ... x_n$ $(y_1, y_2, ... y_i, ... y_n) = (x_1, x_2, ... f(x_i), ... x_n)$

 $\leftarrow (y_1, ... y_n)$ looks random

• choose (f, f^{-1}, B_f) random trapdoor permutation (function, inverse function, hard-core bit)

$$f, B_f \rightarrow$$

- choose random $x_1, x_2, \dots x_n$
- $(y_1, y_2, ... y_i, ... y_n) = (x_1, x_2, ... f(x_i), ... x_n)$ $\leftarrow (y_1, ... y_n)$ looks random

• compute
$$(c_1, \dots c_n) = (B_f(f^{-1}(y_1)), \dots B_f(f^{-1}(y_n))) c_i = B_f(x_i)$$

• compute
$$(d_1, ... d_n) = (b_1 \oplus c_1, ... b_1 \oplus c_n) d_i = b_i \oplus x_i$$

looks random $(d_1, ... d_n) \rightarrow$

choose (f, f^{-1}, B_f) random trapdoor permutation (function, inverse function, hard-core bit)

$$f, B_f \rightarrow$$

- choose random $x_1, x_2, ... x_n$
- $(y_1, y_2, \dots y_i, \dots y_p) = (x_1, x_2, \dots f(x_i), \dots x_p)$

 $\leftarrow (y_1, ... y_n)$ looks random

- compute $(c_1, ... c_n) = (B_f(f^{-1}(y_1)), ... B_f(f^{-1}(y_n))) c_i = X_i$
- compute $(d_1, \dots d_n) = (b_1 \oplus c_1, \dots b_1 \oplus c_n)$ $d_i = b_i \oplus x_i$ looks random $(d_1, \dots d_n) \rightarrow$

• result =
$$d_i \oplus x_i$$
 result = b_i

Bob, wants b_i

- Correctness
 - o result is b;
- Security
 - Alice learns $(y_1, ..., y_n)$ which all look random
 - Alice doesn't learn anything about i
 - Bob learns $(d_1, ... d_n)$ which all look random except d_i
 - \triangleright Bob can't calculate any other b_i

 - xor with random loses all information

- Alice and Bob have private inputs x and y respectively
- Want to compute boolean function F(x, y)

Alice, has x

- Alice computes $b_0 = F(x, 0)$ and $b_1 = F(x, 1)$
- Bob uses OT to learn $b_y = F(x, y)$
- Bob shares the answer with Alice

Alice, has x

- Alice computes $b_0 = F(x, 0)$ and $b_1 = F(x, 1)$
- Bob uses OT to learn $b_y = F(x, y)$
- Bob shares the answer with Alice

- Consider $F(x, y) = x \wedge y$
 - Alice has x = 0: F(0, y) doesn't leak y
 - Bob has y = 0: F(x, 0) doesn't leak x
 - Alice has x = 1: F(1, y) leaks y
 - Holds up to security of ideal world

Alice, has x

Bob, has y

- Alice computes $b_0 = F(x, 0)$ and $b_1 = F(x, 1)$
- Bob uses OT to learn $b_y = F(x, y)$
- Bob shares the answer with Alice

- Single-gate, single-bit boolean functions only
 - o Otherwise Alice would gain information at each individual OT

Alice, has x

Bob, has y

- Alice and Bob have private inputs x and y respectively
- Want to compute boolean function F(x, y) where F consists of multiple gates and x and y are multiple bits

Alice, has x

- Alice and Bob have private inputs x and y respectively
- Want to compute boolean function F(x, y) where F consists of multiple gates and x and y are multiple bits
 - Each step will consider a single gate with single-bit inputs f(a, b)
 with the output encoded

Alice, has a

1: S₆

- create encryption schemes S₁ = (E₁, D₁) to S₆
- randomly select p, s, m, and u
- randomly assign S₃ and S₄ complimentary bits
- randomly assign S₅ and S₆ complimentary bits
- create table for f(a, b)
- ← table with rows permuted and no private values
- $\leftarrow D_3$ or D_4 dependent on b

Example:
$$F(a, b) = a \wedge b$$

 $p \oplus q = D_5$ $(0 \wedge 0 = 0)$
 $s \oplus t = D_5$ $(0 \wedge 1 = 0)$
 $m \oplus n = D_5$ $(1 \wedge 0 = 0)$
 $u \oplus v = D_6$ $(1 \wedge 1 = 1)$

0: S₃

1: S₄

- create encryption schemes $S_1 = (E_1, D_1)$ to S_6
- randomly select p, s, m, and u
- randomly assign S_3 and S_4 complimentary bits
- randomly assign S₅ and S₆ complimentary bits
- create table for f(a, b)
- ← table with rows permuted and no private values
- $\leftarrow D_3$ or D_4 dependent on b
- \leftarrow D₁ or D₂ sent using OT dependent on a

Example: $F(a, b) = a \land b$ $p \oplus q = D_5$ $(0 \land 0 = 0)$ $s \oplus t = D_5$ $(0 \land 1 = 0)$ $m \oplus n = D_5$ $(1 \land 0 = 0)$ $u \oplus v = D_6$ $(1 \land 1 = 1)$

0: S₃

1: S₄

Bob, has b

- use the pair of decryption keys to decode the pair of values *k*, *l* in a row
- $D_i = k \oplus l D_i = D_5 \text{ or } D_6$
- result = 0 if D₅, 1 otherwise result = f(a, b)

 $result \rightarrow \\$

Alice, has a

- create encryption schemes and table
- ← table with rows permuted and no private values
- \leftarrow D₃ or D₄ dependent on b
- \leftarrow D₁ or D₂ sent using OT dependent on a

- combine single-bit, single-gate steps
 - keep intermediate output assignments private
 - Use intermediate outputs as inputs

- Correctness
 - \circ result of each step is f(x, y)
 - final result is F(a, b)
 - \circ any boolean function can be composed with \wedge and \neg
- Security
 - Alice learns either D_3 or D_4 , uncorrelated with b
 - Alice learns only D_1 or D_2 , according to a
 - \circ Alice can only compute either D_5 or D_6 with both k and l
 - xor with random renders partial information useless
 - Alice doesn't learn intermediate outputs because correlation is private
 - Bob learns only the final result
 - o Bob doesn't learn intermediate outputs because no information transfer

Secure Multi-Party Computation

- Recap
 - we've shown any boolean function can be securely computed
 - constraints two actors, passive adversaries
- Goldreich, Micali, and Widgerson proved completeness for *n* actors
 - o can have malicious adversaries provided at least n/2 are honest

Works Cited

- A. C. Yao, "Protocols for Secure Computations," in SFCS '82 Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 160-164.
- O. Goldreich, S. Micali, and A. Wigderson, "How to Play ANY Mental Game," in STOC '87 Proceedings of the nineteenth annual ACM Symposium on Theory of Computing, 1987, pp. 218-229.
- M. J. Fischer, "Lecture Notes: CPSC 461b: Foundations of Cryptography." *Yale University Department of Computer Science*, 2009.