

Roll No: 20PH20014

Name: Jessica John Britto

Date: 29/10/2021

ELECTROMAGNETISM LABORATORY

EXPERIMENT-5 Title: Fresnel's Equations

Aim:

- To determine the refractive index of the material.
- To plot experimental and theoretical amplitude reflection coefficients for different incident angles for both parallel and perpendicular polarizations.

Apparatus and Accessories:

- 1. He-Ne laser (1.0 mW, =632.8 nm)
- 2. Polariser
- 3. Prism (A=60 degrees) which is made of flint glass
- 4. Analyzer
- 5. Photodetector
- 6. Prism table with angular scale
- 7. Multirange meter with amplifier

Theory:

Fig.1

In figure 1, we consider the reflection and refraction of a plane of electromagnetic wave incident at the interface of two dielectrics characterised by (ϵ_1, μ_1) and (ϵ_2, μ_2) .

where ϵ_1 and ϵ_2 are the dielectric permittivity

 $\boldsymbol{\mu}_1 and \; \boldsymbol{\mu}_2 are \; magnetic \; permeability.$

We assume that the media are non-absorbing, isotropic and homogeneous.

Let-

$$egin{aligned} ec{E_1} &= ec{A_1} \exp \left(i \Big(\omega_1 t - ec{k_1} \cdot ec{r} \Big) \Big) \ ec{E_2} &= ec{A_2} \exp \left(i \Big(\omega_2 t - ec{k_2} \cdot ec{r} \Big) \Big) \ ec{E_3} &= ec{A_3} \exp \left(i \Big(\omega_3 t - ec{k_3} \cdot ec{r} \Big)
ight) \end{aligned}$$

where \vec{A}_1, \vec{A}_2 and \vec{A}_3 are amplitudes

 $\vec{k_1}, \vec{k_2}$ and $\vec{k_3}$ are propagation vectors

 $\vec{\theta_1}, \vec{\theta_2}$ and $\vec{\theta_3}$ are the angles that $\vec{k_1}, \vec{k_2}$ and $\vec{k_3}$ make with the normal to the interface.

Since these fields satisfy the wave equation, we have the following equations-

$$k_1^2 = \omega_1^2 \epsilon_1 \mu_1 \ k_2^2 = \omega_2^2 \epsilon_2 \mu_2 \ k_3^2 = \omega_3^2 \epsilon_3 \mu_3$$

Case-1: \vec{E} is lying in the plane of incidence-

We resolve \vec{E} along the x-axis and z-axis, and since the z-component is tangential to the surface, we must have \vec{E}_z continuous across the interface.

Thus,
$$E_{1Z} + E_{3Z} = E_{2Z} \rightarrow (1)$$

$$\left[\vec{A}_1 \exp \left[i \left(\omega_1 \mathbf{t} - \vec{k}_1 \cdot \vec{r} \right) \right] \cos \theta_1 - \vec{A}_3 \exp \left[i \left(\omega_3 \mathbf{t} - \vec{k}_3 \cdot \vec{r} \right) \right] \cos \theta_3 \right]_{\mathbf{x} = \mathbf{0}} = \left[\vec{A}_2 \exp \left[i \left(\omega_2 \mathbf{t} - \vec{k}_2 \cdot \vec{r} \right) \right] \cos \theta_2 \right]_{\mathbf{x} = \mathbf{0}} \right]$$

Now, at the surface, i.e, x=0, we have the following-

$$ec{k}\cdotec{r}=k_{x}x+k_{y}y+k_{z}z=k_{y}y+k_{z}z\,(at\,the\,surface)$$

The above condition has to be true for all values of y and z (on the plane x=0), and therefore we must have -

$$egin{aligned} \omega_1 &= \omega_2 = \omega_3 = \omega \ k_{1y} &= k_{2y} = k_{3y} \ k_{1z} &= k_{2z} = k_{3z} \end{aligned}$$

Thus the frequencies associated with the reflected and refracted ray must be the same as that of the incident wave, which is also physically obvious. Therefore, we get the following-

$$k_1 = \omega(\epsilon_1 \mu_1)^{1/2} = k_3 = \omega n_1
onumber \ k_2 = \omega(\epsilon_2 \mu_2)^{1/2} = \omega n_2$$

Now, $k_{1y} = k_{2y} = k_{3y} = 0$, i.e, $\vec{k_1}$, $\vec{k_2}$ and $\vec{k_3}$ will all be parallel to the x-z plane and $k_1 sin\theta_1 = k_2 sin\theta_2 = k_3 sin\theta_3$ and therefore, $\theta_1 = \theta_3 \rightarrow$ angle of incidence equals angle of reflection. Again, we have-

$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{k_2}{k_1} = \left(\frac{\epsilon_1\mu_1}{\epsilon_2\mu_2}\right)^{1/2} = \frac{n_2}{n_1}$$

Or, $n_1 sin\theta_1 = n_2 sin\theta_2$ which is Snell's Law of refraction.

Putting the values of ω and k in equation -1, we get,

$$-A_1\cos\theta_1 - A_3\cos\theta_1 = -A_2\cos\theta_2 \rightarrow (3)$$

Similarly, since the normal component of the electric displacement vector $\overrightarrow{D} (= \overrightarrow{D_x})$ is aso continuous across the interface, we must have-

$$D_{1x} + D_{3x} = D_{2x}$$
 or $\epsilon_1 A_1 \sin \theta_1 - \epsilon_1 A_3 \sin \theta_3 = \epsilon_2 A_2 \sin \theta_2 \rightarrow (2)$

We assume both media are non-magnetic, i.e, $\mu_1 = \mu_2 = \mu_0$

Using eqs (2) and (3), we can get-

$$r_p = rac{E_3}{E_1} = rac{-\epsilon_1 \sin heta_1 \cos heta_2 + \epsilon_2 \sin heta_2 \cos heta_1}{\epsilon_2 \sin heta_2 \cos heta_1 + \epsilon_1 \sin heta_1 \cos heta_2}
ightarrow (4)$$

where r_p is the amplitude reflection coefficient.

Whereas, amplitude transmission coefficient t_p ,

$$t_p = \frac{E_2}{E_1} = \frac{2\epsilon_1 \sin \theta_1 \cos \theta_1}{\epsilon_2 \sin \theta_2 \cos \theta_1 + \epsilon_1 \sin \theta_1 \cos \theta_2} \rightarrow (5)$$

In terms of refractive index, we can rewrite the equations (4) and (5) as -

$$egin{aligned} r_p &= rac{n_2\cos heta_1 - n_1\cos heta_2}{n_2\cos heta_1 + n_1\cos heta_2} \, - - (6) \ t_p &= rac{2n_1\cos heta_1}{n_2\cos heta_1 + n_1\cos heta_2} \, - - (7) \end{aligned}$$

These equations above are the Fresnel's Equations.

$$R_P = \left| r_p
ight|^2 = rac{\left(n_2 \cos heta_1 - n_1 \cos heta_2
ight)^2}{\left(n_2 \cos heta_1 + n_1 \cos heta_2
ight)^2} = Reflectivity$$

$$T_P = |\mathsf{t_p}|^2 = \left(\frac{2n_1 \cos heta_1}{n_2 \cos heta_1 + n_1 \cos heta_2}\right)^2 = Transmittivity$$

$$\begin{split} |\mathsf{t_p}|^2 &= \left(\frac{2n_1 \mathrm{cos}\theta_1}{n_2 \mathrm{cos}\theta_1 + n_1 \mathrm{cos}\theta_2}\right)^2 \\ &= \left(\frac{1}{n_2 \mathrm{cos}\theta_1 + n_1 \mathrm{cos}\theta_2}\right)^2 4n_1 \mathrm{cos}\theta_1 n_2 \mathrm{cos}\theta_2 \\ &= Transmittivity \end{split}$$

Assuming $R_P + T_P = 1$, i.e, assuming no absorption.

- a) When $n_2 = n_1$, $\theta_2 = \theta_1$, $r_p = 0$, this implies that there is no reflected wave. Thus, if we put a transparent substance (like glass) inside a liquid which has the same refractive index as glass, then the glass will not be visible from outside.
- b) r_p can also be written as -

$$\begin{split} r_p &= \frac{n_2^2 \cos \theta_1 \sin \theta_2 - n_1^2 \sin \theta_1 \cos \theta_2}{n_1^2 \sin \theta_1 \cos \theta_2 + n_2^2 \cos \theta_1 \sin \theta_2} \\ r_p \text{ will be zero when,} \\ n_1^2 \sin \theta_1 \cos \theta_2 &= n_2^2 \cos \theta_1 \sin \theta_2 \\ \text{Or } n_1^2 \sin \theta_1 \cos \theta_2 \sin \theta_2 &= n_2^2 \sin^2 \theta_2 \cos \theta_1 \\ \text{Or } n_1^2 \sin \theta_1 \cos \theta_2 \sin \theta_2 &= n_1^2 \sin^2 \theta_2 \cos \theta_1 \\ \sin 2\theta_1 &= \sin 2\theta_2 \end{split}$$

Thus, either $\theta_1 = \theta_2$ [case-a] or $-\theta_2 + \frac{\pi}{2} = \theta_1$

Thus, when $\frac{\pi}{2} = \theta_1 + \theta_2$ [i.e, when the reflected and transmitted rays are at right angles to each other], there is no reflection for the parallel complement of \vec{E} . The corresponding angle of incidence can readily be found: $\cos \theta_1 = \sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1$

or, $\theta_1 = \theta_p = \arctan\left(\frac{n_1}{n_2}\right)$, $r_p = 0$. Thus, if the incident wave is unpolarised, then only the perpendicular component of \vec{E} will be reflected and the reflected light will be linearly polarized. This is Brewster's Law and θ_p is the Brewster's angle.

Case-2: Fis lying perpendicular to the plane of incidence-

The incident wave is along the y-axis. The electric field vectors associated with the reflective and transmitted waves will also be perpendicular to the plane of incidence.

$$egin{aligned} ec{E_1} &= ec{A_1} \exp \left(i \Big(\omega t - ec{k_1} \cdot ec{r} \Big) \Big) \, \hat{y} \ ec{E_2} &= ec{A_2} \exp \left(i \Big(\omega t - ec{k_2} \cdot ec{r} \Big) \Big) \hat{y} \ ec{E_3} &= ec{A_3} \exp \left(i \Big(\omega t - ec{k_3} \cdot ec{r} \Big) \Big) \hat{y} \end{aligned}$$

The magnetic field is given by -

$$\overrightarrow{H} = \frac{\overrightarrow{k} \times \overrightarrow{E}}{\omega \mu} = \frac{1}{\omega \mu} [\widehat{x} (-k_z E_y) + \widehat{z} (k_x E_y)]$$

[since $k_v = 0$]

Using boundary condition, tangential component of magnetic field is continuous across the interface -

$$\left(\frac{\varepsilon_1}{\mu_1}\right)^{1/2} A_1 \cos \theta_1 - \left(\frac{\varepsilon_1}{\mu_1}\right)^{1/2} A_3 \cos \theta_1 = \left(\frac{\varepsilon_2}{\mu_2}\right)^{1/2} A_2 \cos \theta_2 \longrightarrow (1)$$

Also since \vec{E} has only a y-component which is longitudinal to the interface, we have -

$$A_1 + A_3 = A_2 \rightarrow (2)$$

Solving these two equations, we get -

$$\mathsf{r}_{\mathsf{s}} = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

$$\mathsf{t}_{\mathsf{s}} = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

From the graph of r^{\parallel} versus incident angle, we will get Brewster's angle (θp) from which we can calculate the reflective index of prism material (n), $n = \tan \theta_p$.

From n and θ_1 , using Snell's law we can get θ_2 - $\theta_2 = \sin^{-1}(\frac{\sin \theta_1}{n})$

For the refractive index of air is 1, then, we get the following equations -

$$r_S = \frac{cos\theta_1 - ncos\theta_2}{cos\theta_1 + ncos\theta_2}$$
 [where we have taken $n_2 = n$]

$$r_{S} = -\frac{\sin(\theta_{1} - \theta_{2})}{\sin(\theta_{1} + \theta_{2})} \rightarrow (1)$$

and
$$r_P = \frac{\cos\theta_2 - n\cos\theta_1}{\cos\theta_2 + n\cos\theta_1}$$

$$r_{P} = -\frac{tan(\theta_{1} - \theta_{2})}{tan(\theta_{1} + \theta_{2})} \rightarrow (2)$$

Experimental Setup

When we plot r^{\parallel} and r^{\perp} versus θ , we will get the following curves -

Observations:

Table-1-

$$i_0^{\parallel} = 235 \text{ } \mu\text{A} \ {i_0}^{\perp} = 230 \text{ } \mu\text{A}$$

SI No.	a (in degree)	$i^{\parallel}(\mu A)$	$oxed{r^\parallel}$	$i^\perp(\mu A)$	r^{\perp}
1	10	11.5	0.221	13.5	0.243
2	15	11.0	0.216	15	0.255
3	20	10.5	0.211	16.5	0.268
4	25	9.4	0.200	18.0	0.280
5	30	8.2	0.187	20.0	0.292
6	40	5.2	0.149	27.0	0.343
7	45	3.6	0.124	31.0	0.367
8	50	2.2	0.097	35.0	0.390
9	52.5	1.6	0.083	38.5	0.409
10	55	1.1	0.068	41.0	0.422
11	56	0.77	0.057	43.0	0.432
12	57	0.71	0.055	44.0	0.437
13	58	0.65	0.052	46.0	0.447

14	59	0.67	0.053	47.0	0.452
15	60	0.73	0.056	49.0	0.462
16	62.5	1.6	0.082	60.0	0.511
17	70	7.3	0.176	72.0	0.560
18	75	20.0	0.292	110.0	0.692
19	80	43.0	0.428	140.0	0.780
20	85	87.0	0.608	180.0	0.885

Graphs:

Graph-1 of Observation Table-1-

r|| and $r\perp$ vs θ (in degrees)

Scale of the above graph:

- X-axis- 1 unit = 20°
- Y-axis 1 unit = 0.25

Calculations:

The brewster's angle can calculated using the formula - $\tan \theta_P = n$, where n is the refractive index of the material of prism.

Clearly, from the graph, we can get - $\theta_P = 58^{\circ}$.

Therefore, $n = \tan(58^\circ) = 1.60033452904 \approx 1.60$

Error:

We have $n = \tan \theta_P$

$$\therefore \frac{\Delta n}{n} = sec^{2}(\theta_{p}) \frac{\Delta \theta_{p}}{tan(\theta_{p})}$$

Here,
$$\theta_{P} = 58^{\circ}$$
, $\Delta \theta_{p} = 0.01^{\circ}$, $n = 1.60$

$$\therefore \frac{\Delta n}{n} = sec^2 (58^\circ) \frac{0.01^\circ}{tan(58^\circ)}$$

$$\therefore \frac{\Delta n}{n} = 0.0222520388 \approx 0.02$$

$$\therefore \frac{\Delta n}{n} \times 100 = 2.22520388\% \approx 2\%$$

•

$$\Delta n = 0.0222520388 \times 1.60 = 0.03560326209 \approx 0.03$$

The fractional error in R is 0.03 and its percentage error is 2%.

Result:

- 1. The value of the refractive index of the material of glass prism is (1.60 ± 0.03)
- 2. The fractional error in n is 0.03 and its percentage error is 2%.

Precautions:

- 1. The laser beam should not penetrate into eyes as this may damage the eyes permanently.
- 2. The photo detector should be as away from the slit as possible.
- 3. The laser should be operated at a constant voltage 220V obtained from a stabilizer.
- 4. Laser should be started at least 15 minutes before starting the experiment.
- 5. Scale of the vernier should be rotated slowly.
- 6. Room should be perfectly dark.

Discussion:

- 1. Application of Fresnel equations include improving interface reflection of inclined exposure and developing micro-mirrors for blu-ray DVDs.
- 2. The Fresnel equations (or Fresnel coefficients) describe the reflection and transmission of light (or electromagnetic radiation in general) when incident on an interface between different optical media.
- 3. Fresnel Equations can be used to find the refractive index of a material.