SEMAINE DU 20/11

1 Cours

Réduction algébrique

Polynômes d'endomorphismes Définition. Algèbre commutative $\mathbb{K}[u]$ pour $u \in \mathcal{L}(E)$ et $\mathbb{K}[A]$ pour $A \in \mathcal{M}_n(\mathbb{K})$.

Polynômes annulateurs Définition. Les valeurs propres sont **des** racines d'un polynôme annulateur. Lemme des noyaux. Une matrice/un endomorphisme est diagonalisable si et seulement si il admet un polynôme annulateur scindé à racines simples. Si un endomorphisme est diagonalisable, tout endomorphisme induit l'est également. Théorème de Cayley-Hamilton. Une matrice/un endomorphisme est trigonalisable si et seulement si il admet un polynôme annulateur scindé. Si $u \in \mathcal{L}(E)$ est trigonalisable, il existe des sous-espaces supplémentaires sur lesquels les endomorphismes induits par u sont la somme d'une homothétie et d'un endomorphisme nilpotent. Interprétation matricielle.

2 Méthodes à maîtriser

- Déterminer des valeurs propres à l'aide d'un polynôme annulateur.
- Caractériser la diagonalisabilité/trigonalisabilité à l'aide d'un polynôme annulateur.
- Calculer l'inverse d'une matrice à l'aide d'un polynôme annulateur.
- Calculer les puissances d'une matrice à l'aide d'un polynôme annulateur (division euclidienne de Xⁿ par un polynôme annulateur P puis considérer les racines de P).

3 Questions de cours

Banque CCP Exos 62, 65, 88, 93