Math Booklet 1

Iago Mendes $^{\rm 2}$

2021 -

 $^{^1{\}rm A}$ booklet with notes of Math. $^2{\rm Oberlin}$ College; double major in Physics (Astrophysics) and Computer Science.

Contents

1	\mathbf{Alg}	ebra	
	1.1	Linear	Algebra
		1.1.1	Matrices
2	Geo	\mathbf{metry}	4
	2.1	Analy	tic Geometry
		2.1.1	Coordinate systems
3	Calo	culus	ϵ
	3.1	Single	Variable Calculus
		3.1.1	Limits
		3.1.2	Differentiation
		3.1.3	Applications of Differentiation
		3.1.4	Integration
		3.1.5	Techniques of Integration
		3.1.6	Applications of Integration
	3.2	Multiv	variable Calculus
		3.2.1	Partial Derivatives
		3.2.2	Vector-valued Functions
		3.2.3	Maxima and Minima
		00	Multiple Integration

Algebra

1.1 Linear Algebra

1.1.1 Matrices

• Notation

$$A = [a_{ij}]$$

 \bullet Matrix Addition

$$[a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$

• Scalar multiplication

$$c[a_{ij}] = [ca_{ij}]$$

• Transpose

$$(aT)_{ij} = a_{ji}$$

• Matrix Multiplication

$$c_{ij} = (\text{ith row of A})(\text{jth column of B}) = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Geometry

2.1 Analytic Geometry

2.1.1 Coordinate systems

- Cartesian coordinates (\mathbb{R}^2 and \mathbb{R}^3)
- (x,y) (x,y,z)

• Polar coordinates (\mathbb{R}^2)

 (r, θ)

- Typical restrictions

- $r \ge 0$ $0 \le \theta \le 2\pi$
- Polar/rectangular conversions

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \qquad \begin{cases} r^2 = x^2 + y^2 \\ \tan \theta = \frac{y}{x} \end{cases}$$

• Cylindrical coordinates (\mathbb{R}^3)

 (r, θ, z)

- Typical restrictions

$$r \ge 0$$
$$0 < \theta < 2\pi$$

- Cylindrical/rectangular conversions

- Spherical/cylindrical conversions

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases} \qquad \begin{cases} r^2 = x^2 + y^2 \\ \tan \theta = \frac{y}{x} \\ z = z \end{cases}$$

• Spherical coordinates (\mathbb{R}^3)

$$(\rho, \phi, \theta)$$

- Typical restrictions

$$\begin{aligned} \rho &\geq 0 \\ 0 &\leq \phi \leq \pi \end{aligned}$$

 $0 \le \theta \le 2\pi$

$$\begin{cases} r = \rho \sin \phi \\ \theta = \theta \\ z = \rho \cos \phi \end{cases} \qquad \begin{cases} \rho^2 = r^2 + z^2 \\ \tan \phi = \frac{r}{z} \\ \theta = \theta \end{cases}$$

- Spherical/rectangular conversions

$$\begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases} \qquad \begin{cases} \rho^2 = x^2 + y^2 + z^2 \\ \tan \phi = \frac{\sqrt{x^2 + y^2}}{z} \\ \tan \theta = \frac{y}{x} \end{cases}$$

Calculus

3.1 Single Variable Calculus

3.1.1 Limits

• Squeeze Theorem

$$\begin{cases} g(x) \le f(x) \le h(x) \\ \lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L \end{cases}$$

$$\therefore \lim_{x \to a} f(x) = L$$

• Fundamental Trigonometric Limit

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

• Fundamental Exponential Limit

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e$$

3.1.2 Differentiation

• Definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

- Constant function

$$\frac{d}{dx}c = 0$$

• Derivative of Transcendent Functions

- Sine function

$$\frac{d}{dx}\sin x = \cos x$$

- Cosine function

$$\frac{d}{dx}\cos x = -\sin x$$

- Logarithm function

$$\frac{d}{dx}\log x = \frac{1}{x}$$

- Exponential function

$$\frac{d}{dx}e^x = e^x$$

• Properties

- Sum and difference

$$(u+v)' = u' + v'$$

- Product

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

- Produc with a constant

$$(c \cdot u)' = c \cdot u'$$

- Quotient

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

* Polynomial function

$$\frac{d}{dx}x^n = \frac{d}{dx}\frac{1}{x^{-n}} = nx^{n-1}$$

* Tangent function

$$\frac{d}{dx}\tan x = \frac{d}{dx}\frac{\sin x}{\cos x} = \sec^2 x$$

* Secant function

$$\frac{d}{dx}\sec x = \frac{d}{dx}\frac{1}{\cos x} = \sec x \cdot \tan x$$

• Chain Rule

$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

- Exponential function (not natural)

$$\frac{d}{dx}a^x = a^x \cdot \log a$$

- Logarithm of a function

$$\frac{d}{dx}\log g(x) = \frac{g'(x)}{g(x)}$$

• Derivative of The Inverse Function

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

- Arcsine function

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$

- Arctangent function

$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$$

• Mean Value Theorem

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

in which a < c < b

- 3.1.3 Applications of Differentiation
- 3.1.4 Integration
- 3.1.5 Techniques of Integration
- 3.1.6 Applications of Integration
- 3.2 Multivariable Calculus

$$\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$$
$$f: X \subseteq \mathbb{R}^n \to \mathbb{R}$$

3.2.1 Partial Derivatives

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, ..., x_i + h, ..., x_n) - f(x_1, ..., x_n)}{h}$$

• Gradient

$$\nabla f = (f_{x_1}, \dots, f_{x_n})$$
$$\nabla f(\mathbf{a}) = (f_{x_1}(\mathbf{a}), \dots, f_{x_n}(\mathbf{a}))$$

• Derivative matrix

$$D\mathbf{f} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \qquad D\mathbf{f}(\mathbf{a}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \dots & \frac{\partial f_1}{\partial x_n}(\mathbf{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{a}) & \dots & \frac{\partial f_m}{\partial x_n}(\mathbf{a}) \end{bmatrix}$$

• Tangent plane

$$z = h(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
$$f_x(x_0, y_0, z_0)(x-x_0) + f_y(x_0, y_0, z_0)(y-y_0) + f_z(x_0, y_0, z_0)(z-z_0) = 0$$

- Normal vector

$$\mathbf{n} = -f_x(a,b)\hat{\mathbf{i}} - f_y(a,b)\hat{\mathbf{j}} + \hat{\mathbf{k}} = (-f_x(a,b), -f_y(a,b), 1)$$

- Hyperplane

$$\mathbf{h}(\mathbf{x}) = \mathbf{f}(\mathbf{a}) + D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a})$$
$$\nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) = 0$$

- Differentiability
 - 1. $D\mathbf{f}(\mathbf{a})$ exists

2.

$$\lim_{\mathbf{x} \to \mathbf{a}} \frac{\mathbf{f}(\mathbf{x}) - \mathbf{h}(\mathbf{x})}{||\mathbf{x} - \mathbf{a}||} = 0$$

• Higher-order partial derivative

$$\frac{\partial^k f}{\partial x_{i_k} \dots \partial x_{i_1}} = \frac{\partial}{\partial x_{i_k}} \dots \frac{\partial}{\partial x_{i_1}} f(x_1, \dots, x_n)$$

- Clairaut's Theorem

$$\frac{\partial^k f}{\partial x_{i_k} \dots \partial x_{i_1}} = \frac{\partial^k f}{\partial x_{j_1} \dots \partial x_{j_k}}$$

• Chain rule

$$D(\mathbf{f} \circ \mathbf{x})(\mathbf{t}_0) = D\mathbf{f}(\mathbf{x}_0)D\mathbf{x}(\mathbf{t}_0)$$
$$f'(\mathbf{x}(t)) = \nabla f(\mathbf{x}) \bullet \mathbf{x}'(t)$$

• Directional derivative

$$D_{\hat{\mathbf{u}}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \bullet \hat{\mathbf{u}} = ||\nabla f(\mathbf{a})|| \cos \theta$$

3.2.2 Vector-valued Functions

- Arclength
- Vector fields
- Del operator

$$\nabla = \left(\frac{\partial}{\partial x_1}, \ \frac{\partial}{\partial x_2}, \ \dots, \ \frac{\partial}{\partial x_n}\right)$$

• Gradient

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

• Divergence

$$\nabla \bullet \mathbf{F} = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} + \dots + \frac{\partial f}{\partial x_n}$$

• Curl

$$\nabla \times \mathbf{F} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

- Theorems
 - 1. If f is a scalar-valued function of class C^2 , then

$$\nabla \times (\nabla f) = \mathbf{0}$$

2. If **F** is a vector-valued function of class C^2 on $X \subseteq \mathbb{R}^3$, then

$$\nabla \bullet (\nabla \times \mathbf{F}) = 0$$

3.2.3 Maxima and Minima

- Taylor Polynomials
 - First-order

$$p_1(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^n f_{x_i}(\mathbf{a})(x_i - a_i)$$
$$p_1(\mathbf{x}) = f(\mathbf{a}) + Df(\mathbf{a})(\mathbf{x} - \mathbf{a})$$

- Second-order

$$p_2(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^n f_{x_i}(\mathbf{a})(x_i - a_i) + \frac{1}{2} \sum_{i,j=1}^n f_{x_i x_j}(\mathbf{a})(x_i - a_i)(x_j - a_j)$$
$$p_2(\mathbf{x}) = f(\mathbf{a}) + Df(\mathbf{a})(\mathbf{x} - \mathbf{a}) + \frac{1}{2}(\mathbf{x} - \mathbf{a})^T Hf(\mathbf{a})(\mathbf{x} - \mathbf{a})$$

• Differential

$$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$$

- Hessian Criterion
 - Hessian matrix

$$Hf(\mathbf{a}) = \begin{bmatrix} f_{x_1x_1(\mathbf{a})} & \cdots & f_{x_1x_n(\mathbf{a})} \\ \vdots & \ddots & \vdots \\ f_{x_nx_1(\mathbf{a})} & \cdots & f_{x_nx_n(\mathbf{a})} \end{bmatrix}$$

- Principal minor

 $d_k = \text{determinant of the upper leftmost } k \times k \text{ submatrix of } Hf(\mathbf{a})$

- 1. If all $d_k > 0$, then the critical point **a** gives a local minimum.
- 2. If $d_1 < 0$, $d_2 > 0$, $d_3 < 0$, ..., then the critical point **a** gives a local maximum.
- 3. If neither case 1 nor case 2 occurs, then **a** is a saddle point.

If $d_n = 0$, the critical point **a** is degenerate and the test fails.

• Extrema Value Theorem

If D is a compact region in \mathbb{R}^n and $f: D \to R$ is continuous, then f must have a (global) maximum and minimum values on D.

• Lagrange Multiplier Theorem

$$\nabla f(\mathbf{a}) = \lambda \nabla g(\mathbf{a})$$

- Constraint

$$S = \{ \mathbf{x} \in \mathbb{R}^n \mid g(\mathbf{x}) = c \}$$

3.2.4 Multiple Integration

• Double Integrals

$$\iint_{R} f \, dA = \lim_{\Delta x_{i}, \Delta y_{j} \to 0} \sum_{i,j=1}^{n} f(\mathbf{c}_{ij}) \Delta x_{i} \Delta y_{j}$$

• Fubini's Theorem (\mathbb{R}^2)

$$\iint_{R} f \, dA = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx dy = \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy dx$$

- Elementary Regions (\mathbb{R}^2)
 - Type 1
 - * Boundaries

$$x = a$$
 $x = b$
 $y = \gamma(x)$ $y = \delta(x)$

* Theorem

$$\iint_D f \ dA = \int_a^b \int_{\gamma(x)}^{\delta(x)} f(x,y) \ dy dx$$

- Type 2
 - * Boundaries

$$x = \alpha(y)$$
 $x = \beta(y)$
 $y = c$ $y = d$

* Theorem

$$\iint_D f \ dA = \int_c^d \int_{\alpha(y)}^{\beta(y)} f(x, y) \ dxdy$$

- Type 3

Simultaneously of type 1 and type 2.

• Triple Integrals

$$\iiint_B f \ dV = \lim_{\text{all } \Delta x_i, \Delta y_j, \Delta z_k \to 0} \sum_{i,j,k=1}^n f(\mathbf{c}_{ijk}) \Delta x_i \Delta y_j \Delta z_k$$

• Fubini's Theorem (\mathbb{R}^3)

$$\iiint_B f \ dV = \int_a^b \int_c^d \int_p^q f(x, y, z) \ dz dy dx = \text{other orders}$$

- Elementary Regions (\mathbb{R}^3)
 - Type 1
 - * Boundaries

$$z = \phi(x, y)$$
 $z = \psi(x, y)$

* Theorem

$$\iiint_B f \ dV = \iint_{\text{shadow}} \int_{\phi(x,y)}^{\psi(x,y)} f(x,y,z) \ dz dy dx$$

- Type 2
 - * Boundaries

$$x = \alpha(y, z)$$
 $z = \beta(y, z)$

* Theorem

$$\iiint_B f \ dV = \iint_{\mathrm{shadow}} \int_{\alpha(y,z)}^{\beta(y,z)} f(x,y,z) \ dx dy dz$$

- Type 3
 - * Boundaries

$$y = \gamma(x, z)$$
 $y = \delta(x, z)$

* Theorem

$$\iiint_B f \ dV = \iint_{\text{shadow}} \int_{\gamma(x,z)}^{\delta(x,z)} f(x,y,z) \ dy dx dz$$

- Type 4

Simultaneously of types 1, 2, and 3.

• The Jacobian

$$\mathbf{T}:D^*\to D$$

$$\mathbf{T}(u,v) = (x(u,v), \ y(u,v))$$

$$\frac{\partial(x,y)}{\partial(u,v)} = \det D\mathbf{T}(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

• Change of Integration

$$\iint_D f(x,y) \ dxdy = \iint_{D^*} f(x(u,v), \ y(u,v)) \left(\frac{\partial (x,y)}{\partial (u,v)} \right) \ dudv$$