Intelligence Artificielle

Agents intelligents

Sommaire

- Agents et environnements.
- Décisions rationnelles.
- Modèle PEAS (Performance measure, Environment, Actuators, Sensors).
- Types d'environnements.
- Types d'agent.

Agents intelligent

- Un agent intelligent est une entité qui peut
- percevoir son environnement à l'aide de ses capteurs; et
- agir dans son environnement à l'aide de ses effecteurs.
- Humains:
- yeux, oreilles, etc.;
- mains, pieds, bouche, etc.,
- Robot:
- sonars, caméras, laser de proximité, etc.;
- Moteurs (roues), etc.

Exemples d'agents intelligents

(1) Système d'aide à la décision; (2) Azimut-3; (3) Rover de la NASA; (4) Radarsat-II de l'ASC; (5) Mario de Nintendo.

Capteurs et effecteurs d'un robot

9

Agent dans son environnement

L'intelligence d'un agent peut être vu comme une fonction qui associe un historique de données sensorielles (percept *history*) à une action :

$$[f: P^* \rightarrow A]$$

- En pratique le processus est un implémenté par un **programme** sur une **architecture** matérielle et logicielle particulière.
- Intelligence d'un agent = Architecture + Programme.

Ébauche d'un agent

function Skeleton-Agent(percept) returns action static: memory, the agent's memory of the world

memory ← UPDATE-MEMORY(memory, percept)
uction ← CHOOSE-BEST-ACTION(memory)
memory ← UPDATE-MEMORY(memory, uction)
return uction

Monde du robot aspirateur

- Observations (données sensorielles):
- Observation = paire [position, état de saleté]
- Exemples: [A,Sale], [A,Propre], [B,Sale], [B,Propre]

Actions: G, D, Aspire, NoOp

Agent robot aspirateur

```
-
```

```
[A,Propre] \rightarrow D
```

[B,Propre]
$$\rightarrow$$
 G

Agents rationnels

- fonction de ce qu'il perçoit et de ses capacités d'action: Un **agent rationnel** doit agir « correctement » en
- L'action correcte est celle permettant à l'agent de réussir le «mieux».

Mesure de performance :

- Une fonction objective mesurant la qualité d'un comportement de l'agent.
- Par exemple, une mesure de performance pour le robot aspirateur pourrait être :
- la quantité de déchets aspirés;
- la propreté des lieux;
- la durée de la tâche;
 - le bruit généré.

Agents rationnels

- Étant donné :
- une séquence d'observations (données sensorielles); et
 - des connaissances sur ses actions,
- un agent rationnel devrait choisir une action (des actions) qui maximise(nt) la mesure de performance.

Agent rationnels

- Rationalité ≠ omniscience (connaissances infinies).
- Un agent peut effectuer des actions dans le but d'adapter son comportement dans le futur d'acquérir de nouvelles informations afin (exploration).
- déterminé par sans interventions externe et par sa Un agent est **autonome** si son comportement est propre expérience (capacités d'apprentissage et/ou d'adaptation).

Modèle PEAS

PEAS = Performance, Environnement, Actuateurs, Senseurs

Mesure de **p**erformance;

Connaissance de l'<u>e</u>nvironnement;

Les actions que l'agent peut effectuer (<u>a</u>ctuateurs),

 La séquence des perceptions par les <u>s</u>enseurs (capteurs) de l'agent.

Modèle PEAS pour un robot taxi

- **Agent**: robot taxi.
- Mesure de performance : sécurité, vitesse, respect du code routier, voyage confortable, maximisation des
- Environnement : Route, trafic, piétons, clients.
- **Actuateurs** : Volant, changement de vitesse, accélérateur, frein, clignotants, klaxon.
- **Capteurs** : Caméras, sonars, *speedometer*, GPS, odomètre, témoins du moteur, etc.

5

robot-classeur dans une usine Modèle PEAS pour un

- **Agent**: Robot-Classeur de pièces.
- Mesure de performance: taux (pourcentage) de pièces correctement classées.
- Environnement: pièces, compartiments, etc.
- **Effecteurs**: Bras robot.
- Capteurs: Caméra, joints du bras robot.

Modèle PEAS pour un système de diagnostique médical automatisé

- Agent: Système de diagnostique médical.
- minimisation des coûts, satisfaction des patients. **Mesure de performance**: Santé des patients,
- Environnement: Patients, hôpital, personnel solgnant.
- **Actuateurs**: Moniteur pour afficher des questions, les résultats de tests ou de diagnostique, le traitement, etc.
- symptômes, les réponses aux questions, etc. Capteurs: Clavier et souris pour saisir les

Types d'environnement

- Complètement observable (vs. partiellement observable):
- Grâce à ses senseurs, l'agent a accès un état complet de l'environnement à chaque instant.
- Déterministe (vs. stochastique): L'état suivant de
- l'environnement est entièrement déterminé par l'état courant et l'action effectuée par l'agent.
- Épisodique (vs. séquentiel): Les opérations/comportements de l'agent sont divisés en épisodes:
- chaque épisode consistant à observer l'environnement et effectuer une seule action,
- et le choix de chaque action dans un épisode ne dépendant que de cet épisode.

Types d'environnements

- Statique (vs. dynamique): L'environnement ne change pas lorsque l'agent n'agit pas.
- Discret (vs. continu): Un nombre limité et clairement distincts de données sensoriels et d'actions.
- Agent unique (vs. multi-agent): Un agent opérant seul dans un environnement.

19

Types d'environnements

	Jeu de taquin	Jeu d'échecs	Taxi
Totalement observable	Oui	Oui	Non
Déterministe	Oui	Stratégie	Non
Épisodique	Non	Non	Non
Statique	Oui	Oui	Non
Discret	Oui	Oui	Non
Agent unique	Oui	Non	Non

- Le type d'environnement détermine généralement l'architecture de l'agent.
- Le monde réel est complexe : partiellement observable, stochastique, séquentiel, dynamique, continue, multi-agent.

20

Fonction agent et Programmes

données sensorielles à une séquence d'actions. fonction agent qui associe une séquences de Un agent est complètement spécifié par sa

ll existe une fonction (ou une classe de fonctions) qui est rationnelle.

Objectif: implémenter une fonction d'agent rationnelle

Approche: agent basé sur une table

Table associative :

données sensoriels → action.

Lacunes:

Tables de grande taille.

Demande beaucoup de temps pour construire la table.

Table pour agent aspirateur

+

[A,Propre] \rightarrow D [A,Sale] \rightarrow Aspire [B,Propre] \rightarrow G [B,Sale] \rightarrow Aspire

Types d'agent

Quatre types ordonnés en ordre de généralité:

- Simple reflex

Model-based reflex

— Goal-based

Utility-based

Simple reflex agents

Leaming

Critic

feedback

element

learn ing

goals

generator

Agent

Problem

28