IBM Quantum Composer

Kevin J. Joven

Qiskit Fall Fest

October 23, 2023

Microwave Electronics and cQED

Qiskit Pulse and
Transpile

Microwave Electronics and cQED

Qiskit Programming

Qiskit Pulse and
Transpile

Microwave Electronics and cQED

IBM Quantum Qiskit Composer October 24, 2023 2/13

How It looks like?

Divide and conquer

Tools Panel

Menu

Execution

Divide and conquer

+ Add

Quantum Gates

Quantum Circuit

Final State

Code Output

```
OpenQASM 2.0 ∨
    5
Open in Quantum Lab
   OPENQASM 2.0;
   include "gelib1.inc";
   greg q[3];
   creg c[3];
   h q[0];
   cx q[0],q[1];
   measure q[0] \rightarrow c[0];
```

IBM Quantum Qiskit Composer October 24, 2023 5/13

Divide and conquer

Visualization

IBM Quantum Qiskit Composer October 24, 2023 6/13

- 1. IBM Quantum account: https://quantum-computing.ibm.com/
- 2. Go to learning resources.
- 3. Open IBM Quantum Composer.
- 4. Start programming.

IBM Quantum Qiskit Composer October 24, 2023 8/13

IBM Quantum Qiskit Composer October 24, 2023 10/13

Quantum Teleportation

IBM Quantum Qiskit Composer October 24, 2023 10/13

IBM Quantum Qiskit Composer October 24, 2023 10/13

IBM Quantum October 24, 2023 11/13

```
த் Diagram
                In∏ Qasm
                            Ⅲ Oiskit
Original circuit
     OPENOASM 2.0:
     include "gelib1.inc";
     greg g[3];
     creg c[1];
     rx(pi/2) q[0];
     barrier q; // @phaseDisk
     h q[1];
     cx q[1], q[2];
     cx q[0], q[1];
     h q[0];
     barrier q[0], q[1], q[2];
     cz q[0], q[2];
     cx q[1], q[2];
     measure q[2] \rightarrow c[0];
```

```
■ Qiskit
  ஃ Diagram
               In∏ Oasm
Original circuit
     from qiskit import QuantumRegister, ClassicalRegister,
     OuantumCircuit
     from numpy import pi
     qreg q = QuantumRegister(3, 'q')
     creg c = ClassicalRegister(1, 'c')
     circuit = QuantumCircuit(qreg_q, creg_c)
     circuit.rx(pi / 2, qreg_q[0])
     circuit.barrier(greg g)
     # @phaseDisk
     circuit.h(qreg q[1])
     circuit.cx(qreg_q[1], qreg_q[2])
     circuit.cx(qreg_q[0], qreg_q[1])
     circuit.h(greg g[0])
     circuit.barrier(qreg_q[0], qreg_q[1], qreg_q[2])
```


Thanks!

THANKS!

References

- [1] IBM Quantum: https://quantum-computing.ibm.com/
- [2] Qiskit Documentation: https://qiskit.org/documentation/stable/0.25/qc_intro.html
- [3] Quantum Teleportation with Qiskit: https://www.youtube.com/watch?v=mMwovHK2NrE
- [4] Quantum Composer: https://learning.quantum-computing.ibm.com/tutorial/composer-user-guide