Optimized Techniques for Semi-Supervised Support Vector Machine

Hyunjoo Bae

Department of Statistics, Korea University

July 18, 2019

Overview

- Introduction
- Semi-supervised SVM
- Combinatorial Optimization
 - Branch-and-Bound for global optimization
 - S³VM^{light}
 - Deterministic Annealing S³VM
 - Convex Relaxation
- 4 Continuous Optimization
 - Concave Convex Procedure
 - $\nabla S^3 VM$
 - Continuation S³VM
 - Newton S³VM
- Conclusion

1. Introduction

Support Vector Machine

- Constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional space.
- Minimize

$$\left[\frac{1}{n}\sum_{i=1}^{n}\max(0,1-y_{i}(\vec{w}\cdot\vec{x_{i}}-b))\right]+\lambda\|\vec{w}\|^{2}$$
 (1)

- $oldsymbol{\circ}$ λ determines the trade-off between increasing the margin size.
- $\max(0, 1 y_i(\vec{w} \cdot \vec{x_i} b))$ is the hinge loss function.

2. Semi-Supervised SVM

Assumption

• Cluster Assumption for Semi-supervised learning:

Points in a data cluster have similar labels.

Figure: There are 2 labeled points (triangle and cross) and 100 unlabeled points.

Datasets

- training sets (n = l + u)
 - I labeled sets $\{(\mathbf{x}_i, y_i)\}_{i=1}^{I}, y_i = \pm 1$
 - u unlabeled sets $\{\mathbf{x}_i\}_{i=l+1}^n$
- Balancing constraints with the estimated ratio of positive class in the unlabeled data, r
 - $\bullet \ \frac{1}{u} \sum_{i=l+1}^{n} \max (y_i, 0) = r$
 - or equivalently $\frac{1}{u} \sum_{i=l+1}^{n} y_i = 2r 1$

Semi-Supervised SVM

• Minimization problem over *both* the hyperparameters (\mathbf{w}, b) and the label vector $\mathbf{y}_{u} := [y_{l+1} \dots y_{n}]^{\top}$

$$\min_{(\mathbf{w},b),\mathbf{y}_{u}} I(\mathbf{w},b,\mathbf{y}_{u}) = \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{l} V(y_{i},o_{i}) + C^{*} \sum_{i=l+1}^{n} V(y_{i},o_{i})$$
(2)

- *C* and *C** needs to be set different for the optimization general performance.
- $V(y_i, o_i) = \max(0, 1 y_i o_i)^p$ is the hinge loss function. (p = 2)

Strategies

Combinational Optimization

Optimize over (\mathbf{w}, b) while fixing \mathbf{y}_u

$$J(\mathbf{y}_u) = \min_{\mathbf{w},b} I(\mathbf{w}, b, \mathbf{y}_u)$$
 (3)

Continuous Optimization

For a fixed (\mathbf{w}, b) , arg min_y $V(y, o) = \text{sign}(o) = \text{sign}(\mathbf{w}^T \mathbf{x}_i + b)$ Non-convex optimization function will be changed into

$$\frac{1}{2}\|\mathbf{w}\|^2 + C\sum_{i=1}^{l} \max(0, 1 - y_i o_i)^2 + C^* \sum_{i=l+1}^{n} \max(0, 1 - |o_i|)^2$$
 (4)

Strategies

Figure: The plot of $o = (\mathbf{w}^{ op}\mathbf{x} + b)$ and effective loss $\max(0, 1 - |o|)^2$

3. Combinatorial Optimization

BB for global optimization

- Produce globally optimal solutions for small-sized problems
- 1. Perform standard SVM for labeled datasets.
- Add additional loss for unlabeled datasets and delete the greater objective values.

Figure: Branch-and-Bound Tree

 lower bound at a node and a sequence of the unlabeled examples to branch on

S^3VM^{light}

- Local combinational search guided by a label switching procedure
- A pair of unlabeled datasets y_i and y_j should satisfy the following condition

$$y_i = 1$$

 $y_j = -1$
 $V(1, o_i) + V(-1, o_j) > V(-1, o_i) + V(1, o_j)$

S^3VM^{light}

```
Algorithm 1 S<sup>3</sup>VM<sup>light</sup>
```

```
Train an SVM with the labeled points. o_i \leftarrow \mathbf{w} \cdot \mathbf{x}_i + b. Assign y_i \leftarrow 1 to the ur largest o_i, -1 to the others. \tilde{C} \leftarrow 10^{-5}C^{\star} while \tilde{C} < C^{\star} do repeat Minimize (1) with \{y_i\} fixed and C^{\star} replaced by \tilde{C}. if \exists (i,j) satisfying (6) then Swap the labels y_i and y_j end if until No labels have been swapped \tilde{C} \leftarrow \min(1.5C, C^{\star}) end while
```

Figure: Algorithm of S³VM^{light}

Deterministic Annealing Algorithm

- In non-convex cases, there are multiple minima and doesn't exist any local to global inference.
- Deterministic Annealing (DA) solves a related but simpler problem where simpler problem converges to the original one.
- DA computes the expectation of global quantities with respect to the Gibbs distribution.
- EM algorithm is special version of DA.

Deterministic Annealing S^3VM

- Relax the discrete label variables \mathbf{y}_u to probabilities \mathbf{p}_u
- Objective function is changed into

$$I''(\mathbf{w}, b, \mathbf{p}_u; T) = I'(\mathbf{w}, b, \mathbf{p}_u) - TH(\mathbf{p}_u) \text{ where}$$

$$H(\mathbf{p}_u) = -\sum_i p_i \log p_i + (1 - p_i) \log (1 - p_i)$$

$$I'(\mathbf{w}, b, \mathbf{p}_u) = E[I(\mathbf{w}, b, \mathbf{y}_u)]$$

$$= \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{I} V(y_i, o_i)$$

$$+ C^* \sum_{i=I+1}^{n} p_i V(1, o_i) + (1 - p_i) V(-1, o_i)$$

Deterministic Annealing S^3VM

Balancing constraint is

$$\frac{1}{u}\sum_{i=l+1}^{n}p_{i}=r$$

- \bullet T >= 0 is 'temperature'
 - T = 0, I'' reduces to $I'(\mathbf{w}, b, \mathbf{p}_u)$
 - $T = \infty$, I'' is dominated by the entropy $H(\mathbf{p}_u)$

Deterministic Annealing S^3VM

Alternating Minimization (DA)

- 1. Keeping \mathbf{p}_u fixed, train SVM.
- 2. Keeping (\mathbf{w}, u) fixed, I'' is minimized subject to the balance constraint $\frac{1}{u} \sum_{i=l+1}^{n} p_i = r$.
- 3. Then, $p_i = \frac{1}{1+e^{(g_i-v)/T}}$ where $g_i = C^*[V(1,o_i) V(-1,o_i)]$
- The alternating optimization proceeds until \mathbf{p}_u stabilizes in a KL divergence.

Gradient Method (∇DA)

- 1. Substitue the optimal \mathbf{p}_u into p_i in Alternating Minimization.
- 2. The gradient techniques can be used on $S(\mathbf{w}, b) := \min_{\mathbf{p}_u} I''(\mathbf{w}, b, \mathbf{p}_u; T)$ which is a function of (\mathbf{w}, b) .

Deterministic Anealing S^3VM

Algorithm 2 DA/∇DA

```
Initialize p_i = r i = l+1, \ldots, n

Set T = 10C^*, R = 1.5, \varepsilon = 10^{-6}.

while H(\mathbf{p}_{uT}) > \varepsilon do

Solve (\mathbf{w}_T, b_T, \mathbf{p}_{uT}) = \operatorname{argmin}_{(\mathbf{w},b),\mathbf{p}_u} I''(\mathbf{w},b,\mathbf{p}_u;T) subject to: \frac{1}{u} \sum_{i=l+1}^n p_i = r (find local minima starting from previous solution—alternating optimization or gradient methods can be used.)

T = T/R end while
```

Figure: Algorithm of DA S³VM^{light}

Return \mathbf{w}_T, b_T

Deterministic Anealing S^3VM

Figure: The loss functions when using T

- DA parameterizes a family of loss functions over unlabeled examples.
- ullet As T o 0, the loss function goes to the original loss function.
- ∇DA is faster than DA.

Convex Relaxation

• Objective function of S^3VM :

$$I(\mathbf{w}, b, \mathbf{y}_u) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{l} \max(0, 1 - y_i o_i)^2$$

$$+ C^* \sum_{i=l+1}^{n} \max(0, 1 - |o_i|)^2$$

$$= \min_{(\mathbf{w}, b), \mathbf{y}_u} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{l} \xi_i^2 + C^* \sum_{i=l+1}^{n} \xi_i^2$$

subject to: $y_i o_i \ge 1 - \xi_i$, i = 1, ..., n

Convex Relaxation

• This objective function can be transformed into dual problem:

$$\min_{\{y_i\}} \max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j K_{ij}$$
subject to:
$$\sum_{i=1}^{n} \alpha_i y_i = 0, \alpha_i \ge 0$$

$$\mathcal{K}_{ij} = \mathbf{x}_i^{\top} \mathbf{x}_j + D_{ij}$$
 D is a diagonal matrix given by $D_{ii} = \frac{1}{2C}, i = 1 \dots, n$ and $D_{ii} = \frac{1}{2C^{\star}}, i = l+1, \dots, n$

Convex Relaxation

Optimization problem can be reformulated as:

$$\min_{\Gamma} \max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \Gamma_{ij} K_{ij}$$

under constraints
$$\sum_{i=1}^{n} \alpha_i y_i = 0, \alpha_i \geq 0, \Gamma = yy^{\top}$$

- The objective function above is convex.
- The constraints above are not convex, so replace the constraint $\Gamma = yy^{\top}$ by the following set of convex constraints.

$$\Gamma \succeq 0$$

$$\Gamma_{ij} = y_i y_j, \quad 1 \le i, j \le l$$

$$\Gamma_{ii} = 1, \quad l+1 \le i \le n$$

$$\frac{1}{u^2} \sum_{i,j=l+1}^{n} \Gamma_{ij} = (2r-1)^2$$

4. Continuous Optimization

Balancing Constraints

Enforce a linear constraint

$$\frac{1}{u} \sum_{i=l+1}^{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b = 2\tilde{r} - 1$$

- By standardization of the unlabeled points, $\sum_{i=l+1}^{n} \mathbf{x}_i = 0$
- The constraint is equivalent to $b = 2\tilde{r} 1$ and unconstrained optimization problem on **w**.

Primal Optimization

- Solve (4) with a non-convex loss function over unlabeled datasets using "kernel trick"
 - Method 1
 - 1. Find z_i such that $z_i \cdot z_i = k(x_i, x_i)$
 - 2. Let B the matrix having columns \mathbf{z}_i and $K = B^{\top}B$.
 - 3.1. Use Cholesky factor of K.
 - 3.2. Perform eigen decomposition of K as $K = B^{T}B$ ("kernel PCA map")
 - Method 2
 - 1. Let $\mathbf{w} = \sum_{i=1}^{n} \beta_i \phi(\mathbf{x}_i)$
 - 2. By the Representer theorem, the optimal solution has the above form.
 - 3. Substitute this form in (4) and use the kernel function.

Concave Convex Procedure

- Concave Convex Procedure (CCCP) decomposes non-convex function f into a convex component f_{vex} and a concave component f_{cave} .
- Concave part is replaced by a linear function and the sum of this linear function and the convex part is minimized.

```
Algorithm 3 CCCP for minimizing f = f_{vex} + f_{cave}

Require: Starting point \mathbf{x}_0

t \leftarrow 0

while \nabla f(\mathbf{x}_t) \neq 0 do

\mathbf{x}_{t+1} \leftarrow \arg\min_{\mathbf{x}} f_{vex}(\mathbf{x}) + \nabla f_{cave}(\mathbf{x}_t) \cdot \mathbf{x}

t \leftarrow t+1

end while
```

Figure: Algorithm of CCCP for minimizing $f = f_{vex} + f_{cave}$

Concave Convex Procedure

Objective function

$$\frac{1}{2}\|\mathbf{w}\|^2 + C\sum_{i=1}^{l} \max(0, 1 - y_i o_i)^2 + C^* \sum_{i=l+1}^{n} \max(0, 1 - |o_i|)^2$$

- The first two terms are convex.
- Split the last term into convex and concave function.

$$\max(0, 1 - |t|)^2 = \underbrace{\max(0, 1 - |t|)^2 + 2|t|}_{\text{convex}} \underbrace{\frac{-2|t|}_{\text{concave}}}_{\text{concave}}$$
 where $t = y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$

• The effective loss on the unlabeled point will be

$$ilde{\mathcal{L}}(t) = \left\{ egin{array}{ll} 0 & ext{if } t \geq 1 \ (1-t)^2 & ext{if } |t| < 1 \ -4t & ext{if } t \leq -1 \end{array}
ight.$$

Concave Convex Procedure

Algorithm 4 CCCP for S³VMs

Starting point: Use the \mathbf{w} obtained from the supervised SVM solution.

repeat

$$y_i \leftarrow \operatorname{sign}(\mathbf{w} \cdot \mathbf{x}_i + b), \quad l+1 \le i \le n.$$

$$(\mathbf{w}, b) = \arg\min \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{l} \max(0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))^2 + C^{\star} \sum_{i=l+1}^{n} \tilde{L}(y_i(\mathbf{w} \cdot \mathbf{x}_i + b)).$$
until convergence of y_i , $l+1 \le i \le n$.

Figure: Algorithm of CCCP for S³VMs

$\nabla S^3 VM$

- Minimize the objective function directly by gradient descent.
- Since $t \mapsto \max(0, 1 |t|)^2$ is not differentiable, it is replaced by $t \longmapsto \exp(-st^2)$.
- Changed objective function:

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{l} \max \left(0, 1 - y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b\right)\right)^2 \\
+ C^* \sum_{i=l+1}^{n} \exp\left(-s \left(\mathbf{w} \cdot \mathbf{x}_i + b\right)^2\right) \tag{5}$$

ullet s is chosen and $abla S^3 \mathbf{VM}$ performs annealing in an outer loop on C^\star .

Continuation S³VM

- Continuation method for minimize (5)
- C_{\star} is fixed and a continuation technique is used to transform the objective function.

```
Algorithm 5 Continuation method for solving \min_{\mathbf{x}} f(\mathbf{x})
Require: Function f: \mathbb{R}^d \mapsto \mathbb{R}, initial point \mathbf{x}_0 \in \mathbb{R}^d
Require: Sequence \gamma_0 > \gamma_1 > \dots \gamma_{p-1} > \gamma_p = 0.
Let f_{\gamma}(\mathbf{x}) = (\pi_{\gamma})^{-d/2} \int f(\mathbf{x} - \mathbf{t}) \exp(-\|\mathbf{t}\|^2/\gamma) d\mathbf{t}.
for i = 0 to p do

Starting from \mathbf{x}_i, find local minimizer \mathbf{x}_{i+1} of f_{\gamma_i}.
end for
```

Figure: Algorithm of Continuation S^3VM

Continuation S^3VM

Figure: Illustration of the continuation method

- The original objective function has 2 local minima.
- By reducing the smoothing, the minimum goes toward the global minimum of the original function.

Continuation S³VM

- In the algorithm, smoothing is achived by convolution with Gaussian.
- Other smoothing functions can also be used.
- The unlabeled part of the objective function vanishes and the optimization is identical to a standard SVM.
 - 1. With enough smoothing, the global minimum can be easily found.
 - 2. The smoothing is decreased in steps and the minimum is tracked.

Newton S^3VM

- $\nabla S^3 VM$ and Continuation $S^3 VM$ requires $O(n^3)$.
- Newton S^3VM make efficiency by minimization on β where $\mathbf{w} = \sum_{i=1}^n \beta_i \phi(\mathbf{x}_i)$.
- Objective function is transformed into:

$$\min_{\beta} \frac{1}{2} \beta^{\top} K \beta + C \sum_{i=1}^{I} \ell_{L} \left(y_{i} \left(K_{i}^{\top} \beta + b \right) \right) + C^{*} \sum_{i=I+1}^{n} \ell_{U} \left(K_{i}^{\top} \beta + b \right)$$
(6)

K is the kernel matrix and $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ ℓ_L and ℓ_U is the general loss functions for the labeled points and the unlabeled points.

Newton S^3VM

Figure: Piecewise quadratic loss function ℓ_U

Newton S³VM

Gradient of objective function

$$K\mathbf{g} \text{ with } g_{i} = \begin{cases} \beta_{i} + C\ell_{L}^{\prime} \left(y_{i} \left(K_{i}^{\top} \beta + b \right) \right) y_{i} & 1 \leq i \leq l \\ \beta_{i} + C^{\star}\ell_{U}^{\prime} \left(K_{i}^{\top} \beta + b \right) & l+1 \leq i \leq n \end{cases}$$

- Hessian of objective function K + KDK, with D diagonal, $D_{ii} = \left\{ \begin{array}{ll} C\ell_L''\left(y_i\left(K_i^{\top}\beta + b\right)\right) & 1 \leq i \leq I \\ C^{\star}\ell_U''\left(K_i^{\top}\beta + b\right) & I + 1 \leq i \leq n \end{array} \right.$
- Update β as $\beta \leftarrow \beta (K + KDK)^{-1}Kg$

Newton S^3VM

- If Hessian is not positive definite, the step might not be a descent direction.
- Use Levenberg-Marquardt Algorithm

```
Algorithm 6 Levenberg-Marquardt method  β \leftarrow 0. 
λ \leftarrow 1. 
repeat  Compute g and <math>D using (16) and (17) 
sv \leftarrow \{i, D_{ii} \neq 0\} and nsv \leftarrow \{i, D_{ii} = 0\}. 
A_{sv} \leftarrow Cholesky decomposition of <math>K_{sv}. 
Do the Cholesky decomposition of VJ_{n_{sv}} + A_{sv}D_{sv}A_{sv}^{\top}. If it fails, λ \leftarrow 4λ and try again.  Compute the step s as given by (18). 
 ρ \leftarrow \frac{1}{4s}\frac{(β(β+s)-Ω(β)}{(k+KDK)s+s^{\top}Kg}. 
 % If the obj fun Ω were quadratic, ρ would be 1. 
If ρ < 0.75, λ \leftarrow β + s. 
If ρ < 0.25, λ \leftarrow 4λ.  
If ρ > 0.75, λ \leftarrow min(1, \frac{λ}{2}). 
until Norm(g) ≤ ε
```

Figure: Algorithm of Levenberg-Marquardt Method

Newton S^3VM

- Similar with Newton minimization but a large enough ridge is added to the Hessian, so that it becomes positive definite.
- Choose a $\lambda \geq 1$ such that

$$\lambda K + KDK = A^{\top} \left(\lambda I_n + ADA^{\top} \right) A$$

A is the Cholesky decomposition of K. $(A^TA = K)$ K and A is invertible.

Newton S³VM

 $\bullet \ \lambda K + KDK > 0 \Leftrightarrow B := \lambda I_{n_{\mathrm{sv}}} + A_{\mathrm{sv}} D_{\mathrm{sv}} A_{\mathrm{sv}}^\top > 0$

$$-(\lambda K + KDK)^{-1}K\mathbf{g} = \begin{pmatrix} A_{\text{sv}}^{-1}B^{-1}A_{\text{sv}}\left(\mathbf{g}_{\text{sv}} - \frac{1}{\lambda}D_{\text{sv}}K_{\text{sv,nsv}}\mathbf{g}_{\text{nsv}}\right) \\ \frac{1}{\lambda}\mathbf{g}_{\text{nsv}} \end{pmatrix}$$

 n_{sv} : the number of support vectors

 A_{sv} : the Cholesky decomposition of K_{sv}

 K_{sv} : the matrix formed using the first n_{sv} rows and columns of K

5. Conclusion

Conclusion

- Change loss function
 - Logistic loss
 - Cross-entropy loss
- Select techniques
 - Convex Relaxation
 - Newton S³VM
 - Continuation S³VM

References

- Chapelle, Olivier, Vikas Sindhwani, and Sathiya S. Keerthi.
 "Optimization techniques for semi-supervised support vector machines." Journal of Machine Learning Research 9.Feb (2008): 203-233.
- Ueda, Naonori, and Ryohei Nakano. "Deterministic annealing EM algorithm." Neural networks 11.2 (1998): 271-282.
- Yuille, Alan L., and Anand Rangarajan. "The concave-convex procedure (CCCP)." Advances in neural information processing systems. 2002.