

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración

Participantes

Observaciones (Cambios y justificaciones)

El programa se estructuró a partir de temas propuestos por: la academia de Hardware y Software de base.

Relación con otras asignaturas

Anteriores	Posteriores

Asignatura(s)

- a) Electronica industrial
- b) Mecanización, automatización y principios de robótica
- c) Máquinas de control numérico

Tema(s) No aplica

- a) Controladores
- b) Electroneumática
- c) Controlador Lógico Programable
- d) Principios de robótica
- e) Sistemas CAD/CAM

Nombre de la asignatura Departamento o Licenciatura

Laboratorio de manufactura integrado por computadora

Ingeniería Industrial

Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	II3426	6	Licenciatura Preespecialidad

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	HI
Taller	16	32	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Revisar soluciones a problemas automatizados de manufactura integrados por computadora para el aumento de la productividad de las organizaciones productoras de bienes y servicios dentro de un marco de mejora continua.

Objetivo procedimental

Evaluar los alcances de las técnicas de integración para la selección de los mejores elementos que permitan la optimización de los procesos productivos de la empresa.

Objetivo actitudinal

Propiciar el espíritu proactivo y emprendedor así como el trabajo colaborativo para el cumplimiento de los objetivos vinculados con la integración de los procesos de manufactura por computadora dentro de un esquema de responsabilidad compartida.

Unidades y temas

Unidad I. PRINCIPIOS DE AUTOMATIZACIÓN

Describir los principios de automatización para el entendimiento de sus elementos fundamentales.

- 1) Fundamentos de la automatización
- 2) Actuadores en la automatización
- 3) Sensores en la automatización
- 4) Control en la automatización
- 5) Aplicaciones de la automatización

Unidad II. SISTEMAS DE MANUFACTURA FLEXIBLE

Revisar los principios tecnológicos y los alcances de los sistemas para el entendimiento de la flexibilidad de manufactura.

1) Concepto de Sistema de Manufactura Flexible (FMS)
2) Análisis del flujo de producción
3) Beneficios de los grupos tecnológicos
4) Aplicaciones de los FMS
Unidad III. INTERCONEXIÓN DE SISTEMAS DE MANUFACTURA
Emplear los tipos de interconexión más comunes para su utilización en los sistemas de manufactura integrada.
1) Elementos básicos de las redes de computadoras
a) Topología
b) Medio
c) Métodos de acceso al medio
d) Señalización
e) Modelos estratificados de protocolos y OSI
2) Protocolo de fabricación automatizada (MAP)
a) Paso de testigo en bus (IEEE 802.4)
3) Protocolo técnico y de oficina (TOP)
a) Ethernet (IEEE 802.3)
4) Interconexión de MAP y TOP

Unidad IV. INTEGRACIÓN DEL EQUIPO DE VISIÓN AL SISTEMA DE MANUFACTURA INTEGRADA POR COMPUTADORA

Usar las operaciones básicas de los sistemas de visión de manufactura para la integración por computadora.

2) Composición de las in	imágenes	
3) Segmentación		
4) Métricas morfológicas	is	
5) Visión estereoscópica	a	
	MANUFACTURA INTEGRADOS POR COMPUTADORA ón para el entendimiento de los sistemas integrados por computadora.	
1) Fundamentos del CIM	M	
2) Elementos de la CIM	1	
3) Niveles jerárquicos er	en el CIM	
4) Administración del CII	IIM	
5) Aplicaciones del CIM	1	
Actividades que pror	mueven el aprendizaje	
Docente	Estudiante	
Actividades de apren	ndizaje en Internet	

Criterios y/o evidencias de evaluación y acreditación

1) Importancia de los sistemas de visión en el CIM

Criterios	Porcentajes
Desarrollo de proyecto final	30
Exámenes escritos	20
Participación en clase	10
Prácticas experimentales	30
Portafolio de soluciones a prácticas experimentales	10
Total	100

Fuentes de referencia básica

Bibliográficas

Ackerman, Robert. (1999). Controles lógicos programables, nivel básico. Sistema para la enseñanza de las técnicas de automatización y comunicaciones. FESTO KG. México. ISBN 3¿8127¿3317¿2

Álvarez Pulido, Manuel. (2004). Controladores Lógicos. Marcombo. España. ISBN 8426713475

Dorf R. C. y Kusiak, A. (1994). Handbook of design, manufacturing and automation. Wiley ISBN 0-471552186

Groover, Mikell P. (2008). Automation, Production Systems, and Computer ¿Integrated Manufacturing. Prentice Hall. ISBN 9780132393218

Hackworth, John R. (2003). Programmable Logic Controllers: Programming Methods and Applications. Prentice Hall. ISBN 978¿0130607188

Hannam, Roger. (1997). Computer integrated manufacturing: from concepts to realization. Prentice Hall, ISBN 978-0201175462

Ollero Baturone, Aníbal. (2001). Robótica; manipuladores y robots móviles. Marcombo. ISBN 8426713130

Piedrafita Moreno, R. (2001) Ingeniería de la automatización, Alfaomega, ISBN, 970-1506043

Regh, James A. (2004) Computer-Integrated Manufacturing. Prentice Hall. 3a. Ed. Prentice Hall, ISBN 978-0131134133 Rembold, Ulrich. (1993) Computer integrated manufacturing and engineering. Addison Wesley Publications, ISBN 978-0201565416

Webb. John W. Reis, Ronald A. (2003). Programmable Logic Controllers: Principles and Applications. Prentice Hall. ISBN 9780130416728

Web gráficas

El estudiante deberá acceder al portal para la lectura de artículos:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7812

http://www.informaworld.com/smpp/title~content=t713804665~db=all http://code.google.com/p/cam-occ/

http://www.3ds.com/products/delmia/solutions/all-delmia-solutions/

http://www.journals.elsevier.com/robotics-and-computer-integrated-manufacturing/

Control engineering magazine http://www.technologystudent.com/rmprp07/intman1.html

Fuentes de referencia complementaria

Bibliográficas

Ayres, R. U. (1991) Computer integrated manufacturing: Revolution in progress. Springer, ISBN 978-0412394706 Crowder, R. (1985) The MAP specification. Control engineering 22-25 (octubre 1985)

Kalpakjian, Serope y Schmid, Steven. (2002) Manufacturing engineering and technology. 5a. Ed, Prentice Hall, ISBN 9787302125358.

Koening, Daniel. (1990) Computer-Integrated Manufacturing: Theory and practice. Taylor & Francis, ISBN 978-0891168744 Singh, Nanua. (1995) Systems approach to computer-integrated design and manufacturing. Wiley, ISBN 978-0471585176

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con maestría en Ingeniería con experiencia en el área de automatización, control, o mecatrónica de, al menos, tres años en el área.

Docentes

Tener experiencia docente de tres años a nivel superior en la impartición de asignaturas tales como manufactura integrada por computadora, sistemas integrados de manufactura, automatización, robótica o control.

Profesionales

Tener experiencia en la integración tecnológica de aplicaciones automatizadas aplicadas al sector de la industria de procesos de manufactura o unitarios.