Given the problem:

Minimize:
$$f(x)$$
 subject to: $c_0(x) = \sum_{i=1}^n x_i = 1$ and $c_i(x) = -x_i \le 0 \ \forall i$

Such that $\frac{\partial f}{\partial x_i}$ has this property:

(1):
$$\frac{\partial f}{\partial x_i}$$
 is a monotonically increasing function for $x_i \in [0,1]$

$$\frac{\partial f}{\partial x_i}(x_1) < \frac{\partial f}{\partial x_i}(x_2) \ \forall \ 0 \leq x_1 < x_2$$

Theorem 1 (Unique solution). Program has unique solution at $x_i = \frac{1}{n} \ \forall i$ Lagrangian function is

$$L(x, \mu, \lambda) = f(x) + \sum_{i=1}^{n} \mu_i c_i(x) + \lambda c_0(x)$$

If x* is a minimum, KKT conditions:

Stationary: $\frac{\partial L}{\partial x}(x*) = 0_n$

Primal feasibility: $c_0(x*) = 0$ and $c_i(x*) \le 0 \ \forall i$

Dual feasibility: $\mu_i \geq 0 \ \forall i$

Complementary slackness: $\mu_i c_i(x*) = 0 \ \forall i$

We have:

$$\frac{\partial L}{\partial x_k} = \frac{\partial f}{\partial x_k} - \mu_k + \lambda$$

Case 1: all $x_i > 0$, due to complementary slackness, all $\mu_i = 0$. So that, all $\frac{\partial f}{\partial x_i}$ must be equal. (1) deduces that the unique solution satisfying KKT conditions is $x_i = \frac{1}{n}$ Case 2: some $x_i = 0$, let $x_{i1} = 0$

$$\frac{\partial f}{\partial x_i}(x_{i1}) - \mu_{i1} + \lambda = 0$$

$$\lambda = \mu_{i1} - \frac{\partial f}{\partial x_i}(0)$$

Since dual feasibility, $\mu_{i1} \geq 0$, So

$$\lambda \geq -\frac{\partial f}{\partial x_i}(0)$$

There is at least one $x_i>0,$ let $x_{i2}>0,$ due to complementary slackness, $\mu_{i2}=0,$ So

$$\frac{\partial f}{\partial x_i}(x_{i2}) + \lambda = 0$$

$$\frac{\partial f}{\partial x_i}(x_{i2}) = -\lambda \le \frac{\partial f}{\partial x_i}(0)$$

(1) deduces contradiction.