MOTION SENSOR

2020년도 I학기 앱 프로그래밍 8주차 수업

목 차

- I. 센서의 분류
- 2. 모션 센서
 - I. 중력
 - 2. 가속도
 - 3. 직선 가속도
 - 4. 자이로스코프
- 3. 구현 실습
- 4. 앱 프로그래밍 학습을 위한 복습

一교시

2020년도 I학기 앱 프로그래밍 – SENSOR

I. 센서의 분류

- 정의
 - 안드로이드 디바이스의 하드웨어를 통한 센서 정보 제공
- 센서의 구분
 - 모션 센서 → 스마트폰의 세가지 축에 따른 가속도와 회전력 정보 측정
 - 환경 센서 → 온도, 기압, 조도, 습도 등의 환경 정보 측정
 - 위치 센서 → 위치 정보 제공 센서 [Tmap 샘플 실습]
- 금주 학습 주제
 - 모션 센서 -> 중력, 가속도, 직선 가속도, 자이로스코프 센서

I. 센서의 분류 (계속)

- 모션 센서 값을 표현하기 위한 세가지 축
 - X
 - y
 - Z
- 세가지 축의 정보
 - 각 모션 센서에 따른 상태 값 정보

2.1 모션센서 - 중력 센서

- 정의
 - 중력 가속도에 대한 값을 반환하는 센서
- 센서 정보
 - 중력 정보 표시
 - 가속 센서와의 차이 → 중력 정보 이외의 어떠한 값도 포함하지 않음
 - 총 중력 값 → 9.8 유지 [z 축의 값이 9.8인 경우 수평 상태]
 - 중력 총량
 - 중력 총량 = $\sqrt{x^2 + y^2 + z^2}$
 - 각 축으로부터 받은 중력을 합한 중력 총량

2.2 모션센서 - 가속도 센서

• 정의

- 직선 방향의 움직임을 측정하는 센서
 - 특정 지점에서 특정 지점으로 이동하는 벡터(Vector)형태의 인지
- 실제로 위치 이동(직선) 이외의 곡선 이동을 인지하지는 못함
 - 위치 이동만 계측 → 트위스트(꽈배기) 형태의 움직임 인지 못함
 - 자이로스코프 센서의 정보와 혼합하여 다양한 형태의 움직임 감지

• 센서 정보

- 중력 가속도와 관련 정보
- 가속도 센서는 중력 영향을 받음
- 우측 안드로이드 참고 자료 확인

표 1. Android 플랫폼에서 지원되는 동작 센서.				
센서	센서 이벤트 데이터	설명	측정 단위	
TYPE_ACCELEROMETER	SensorEvent. values[0]	x축의 가속력(중력 포함).	m/s ²	
	SensorEvent. values[1]	y축의 가속력(중력 포함).		
	SensorEvent. values[2]	z축의 가속력(중력 포함).		

2.3 모션센서 - 선형 가속도 센서

- 정의
 - 중력 가속도를 제거한 가속도 센서
 - 가속도 센서는 중력의 영향을 받는다!
 - 따라서 실제 응용 프로그램 제작 시 중력가속도 값의 상쇄가 필요
 - 구글에서 제공하는 선형 가속도 센서 제공
 - TYPE_LINEAR_ACCELERATION
- 센서 정보
 - 가속도 센서에 중력 값을 제거한 값

TYPE_LINEAR_ACCELERATION	SensorEvent. values[0]	x축의 가속력(중력 제외).	m/s ²
	SensorEvent. values[1]	y축의 가속력(중력 제외).	
	SensorEvent. values[2]	z축의 가속력(중력 제외).	

2.4 모션센서 - 자이로스코프 센서

- 정의
 - 운동하는 모든 물체는 각도를 갖는다! → 회전 운동과 관련
 - 디바이스의 평행 상태를 측정하는데 사용
 - 운동하는 물체의 각도를 계산하는 센서
 - 구의 회전축을 기준으로 기준 축에 대한 기울기 측정
- 센서 정보
 - 각도 정보 표시
 - 가속 센서와의 차이 → X,Y,Z 축의 변화를 추적하여 회전 및 회전율 감지

2교시

2020년도 I학기 앱 프로그래밍 – 샘플 프로젝트 구현 실습

3. 구현 실습

- MotionSensorSample 프로젝트 구현
 - 모션 센서 정보 출력
 - Gravity
 - Accelerometer
 - Linear Acceleration
 - Gyroscope

3교시

2020년도 I학기 앱 프로그래밍 – 구현 실습 및 과제

4. 앱 프로그래밍 학습을 위한 실습 (과제)

- 실습 및 복습 문제
 - 수업 시간에 설명한 가속도 센서를 이용한 점프 카운드 프로젝트 구현
 - 사용 값
 - 중력 가속도 센서의 x, y, z 값 사용
 - 가속도 값 빼기 중력 값(9.8)의 크기가 5 이상인 경우 점프 상태
 - 점프 상태에서 중력 값(9.8)에서 가속도 값을 뺀 값이 5이상인 경우 착지 상태
 - 앱의 동작
 - 착지 상태에서 점프 후 착지의 횟수를 측정하여 출력한다.
 - 위 기능을 추가 구현
- 제출 방법
 - http://ctl.gtec.ac.kr 의 과제 제출란에 제출
 - Java 파일과 xml 파일을 제출한다.
 - 실행 화면을 캡쳐하여 위 파일들과 함께 압축 파일하여 제출한다.
 - 압축파일은 자신의 "반_학번_이름.zip" 로 한다.
 - 제출 일자와 시간을 엄수하여 제출하세요!