Operadores Lineales: Generalidades

L. A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

14 de septiembre de 2020

Agenda de Operadores Lineales

Definición

Ejemplos transformaciones lineales

Ejercicios

Operadores Lineales

Definiremos como operador lineal (o transformación lineal) a una operación, $\mathbf{V}_1 \to \mathbf{V}_2$, que asocia un vector $|v\rangle \in \mathbf{V}_1$ un vector $|v'\rangle \in \mathbf{V}_2$ y que respeta la linealidad:

$$\left|v'\right\rangle = \mathbb{T}\left|v\right\rangle/\mathbb{T}\left[\alpha \mid v_{1}\rangle + \beta \mid v_{2}\rangle\right] = \alpha \,\mathbb{T}\left|v_{1}\rangle + \beta \,\mathbb{T}\left|v_{2}\rangle \,\,\forall \,\,\left|v_{1}\right\rangle \,\,\mathbf{y} \,\,\left|v_{2}\right\rangle \in \mathbf{V}_{1}$$

Algunos ejemplos triviales de transformaciones lineales son:

▶ Multiplicar por un número: $\mathbb{T} | v \rangle = | v' \rangle = \lambda | v \rangle \Rightarrow$ $\mathbb{T} [\alpha | v \rangle + \beta | w \rangle] = \alpha \mathbb{T} | v \rangle + \beta \mathbb{T} | w \rangle = \alpha \lambda | v \rangle + \beta \lambda | w \rangle$.

Operadores Lineales

Definiremos como operador lineal (o transformación lineal) a una operación, $\mathbf{V}_1 \to \mathbf{V}_2$, que asocia un vector $|v\rangle \in \mathbf{V}_1$ un vector $|v'\rangle \in \mathbf{V}_2$ y que respeta la linealidad:

$$\left|v'\right\rangle = \mathbb{T}\left|v\right\rangle/\mathbb{T}\left[\alpha \mid v_{1}\rangle + \beta \mid v_{2}\rangle\right] = \alpha \,\mathbb{T}\left|v_{1}\rangle + \beta \,\mathbb{T}\left|v_{2}\rangle \,\,\forall \,\,\left|v_{1}\right\rangle \,\,\mathbf{y} \,\,\left|v_{2}\right\rangle \in \mathbf{V}_{1}$$

Algunos ejemplos triviales de transformaciones lineales son:

- ▶ Multiplicar por un número: $\mathbb{T} | v \rangle = | v' \rangle = \lambda | v \rangle \Rightarrow$ $\mathbb{T} [\alpha | v \rangle + \beta | w \rangle] = \alpha \mathbb{T} | v \rangle + \beta \mathbb{T} | w \rangle = \alpha \lambda | v \rangle + \beta \lambda | w \rangle$.
- ► El producto interno: $\mathbb{T} | v \rangle = \lambda \rightleftharpoons \langle u | v \rangle \equiv \lambda$, con lo cual $\mathbb{T} [\alpha | v \rangle + \beta | w \rangle] = \langle u | [\alpha | v \rangle + \beta | w \rangle] = \alpha \langle u | v \rangle + \beta \langle u | w \rangle$,

Operadores Lineales

Definiremos como operador lineal (o transformación lineal) a una operación, $\mathbf{V}_1 \to \mathbf{V}_2$, que asocia un vector $|v\rangle \in \mathbf{V}_1$ un vector $|v'\rangle \in \mathbf{V}_2$ y que respeta la linealidad:

$$\left|v'\right\rangle = \mathbb{T}\left|v\right\rangle/\mathbb{T}\left[\alpha \mid v_{1}\rangle + \beta \mid v_{2}\rangle\right] = \alpha \,\mathbb{T}\left|v_{1}\rangle + \beta \,\mathbb{T}\left|v_{2}\rangle \,\forall \,\left|v_{1}\rangle \right. \, \mathbf{y} \,\left|v_{2}\rangle \in \mathbf{V}_{1}$$

Algunos ejemplos triviales de transformaciones lineales son:

- ▶ Multiplicar por un número: $\mathbb{T} | v \rangle = | v' \rangle = \lambda | v \rangle \Rightarrow$ $\mathbb{T} [\alpha | v \rangle + \beta | w \rangle] = \alpha \mathbb{T} | v \rangle + \beta \mathbb{T} | w \rangle = \alpha \lambda | v \rangle + \beta \lambda | w \rangle$.
- ▶ El producto interno: $\mathbb{T} | v \rangle = \lambda \rightleftharpoons \langle u | v \rangle \equiv \lambda$, con lo cual $\mathbb{T} [\alpha | v \rangle + \beta | w \rangle] = \langle u | [\alpha | v \rangle + \beta | w \rangle] = \alpha \langle u | v \rangle + \beta \langle u | w \rangle$,
- ▶ Un proyector $[|s\rangle \langle s|] |v\rangle = \langle s|v\rangle |s\rangle = |v_s\rangle$. $|s\rangle \langle s| [\alpha |v\rangle + \beta |w\rangle] = \alpha \langle s|v\rangle |s\rangle + \beta \langle s|w\rangle |s\rangle$ por lo tanto para $\mathbb{T}: \mathbf{V}_m \rightarrow \mathbf{S}_n$ tendremos $\mathbb{P}_m |v\rangle \equiv (|u_i\rangle \langle u^i|_m) |v\rangle = \langle u^i |v\rangle_m |u_i\rangle = |v_m\rangle$,

Las ecuaciones lineales también pueden verse como transformaciones lineales $\mathbb{T}: \mathbf{V}_n \rightarrow \mathbf{V}_m$. Esto es $|y\rangle = \mathbb{T}\,|x\rangle \Rightarrow (y^1, y^2, y^3, \cdots, y^m) = \mathbb{T}\,\big[\big(x^1, x^2, x^3, \cdots, x^n\big)\big]$, entonces $y^i = a^i_j \; x^j \; \mathrm{donde} \; \left\{ \begin{array}{l} i = 1, 2, \cdots, m \\ j = 1, 2, \cdots, n \end{array} \right.$, con $a^i_j, \; n \times m$ números,

- Las ecuaciones lineales también pueden verse como transformaciones lineales $\mathbb{T}: \mathbf{V}_n \rightarrow \mathbf{V}_m$. Esto es $|y\rangle = \mathbb{T}\,|x\rangle \Rightarrow (y^1, y^2, y^3, \cdots, y^m) = \mathbb{T}\,\big[\big(x^1, x^2, x^3, \cdots, x^n\big)\big]$, entonces $y^i = a^i_j \ x^j \ \mathrm{donde} \ \left\{ \begin{array}{l} i = 1, 2, \cdots, m \\ j = 1, 2, \cdots, n \end{array} \right.$, con a^i_j , $n \times m$ números,
- La derivada es un operador lineal $|v'
 angle = \mathbb{T}\,|v
 angle o |y'
 angle = \mathbb{D}\,|y
 angle o \mathbb{D}\,[y(x)] \equiv rac{\mathrm{d}y(x)}{\mathrm{d}x} \equiv y'(x)\,,$

- Las ecuaciones lineales también pueden verse como transformaciones lineales $\mathbb{T}: \mathbf{V}_n \rightarrow \mathbf{V}_m$. Esto es $|y\rangle = \mathbb{T}\,|x\rangle \Rightarrow (y^1, y^2, y^3, \cdots, y^m) = \mathbb{T}\,\big[\big(x^1, x^2, x^3, \cdots, x^n\big)\big]$, entonces $y^i = a^i_j \; x^j \; \mathrm{donde} \; \left\{ \begin{array}{l} i = 1, 2, \cdots, m \\ j = 1, 2, \cdots, n \end{array} \right.$, con a^i_j , $n \times m$ números,
- ▶ La derivada es un operador lineal $|v'\rangle = \mathbb{T}\,|v\rangle \to |y'\rangle = \mathbb{D}\,|y\rangle \to \mathbb{D}\,[y(x)] \equiv \frac{\mathrm{d}y(x)}{\mathrm{d}x} \equiv y'(x)\,,$
- Las ecuaciones diferenciales también lo son $y'' 3 y' + 2 y = (\mathbb{D}^2 3\mathbb{D} + 2) y(x)$,

- Las ecuaciones lineales también pueden verse como transformaciones lineales $\mathbb{T}: \mathbf{V}_n \rightarrow \mathbf{V}_m$. Esto es $|y\rangle = \mathbb{T}\,|x\rangle \Rightarrow (y^1, y^2, y^3, \cdots, y^m) = \mathbb{T}\,\big[\big(x^1, x^2, x^3, \cdots, x^n\big)\big]$, entonces $y^i = a^i_j \; x^j \; \mathrm{donde} \; \left\{ \begin{array}{l} i = 1, 2, \cdots, m \\ j = 1, 2, \cdots, n \end{array} \right.$, con $a^i_j, \; n \times m$ números,
- ▶ La derivada es un operador lineal $|v'\rangle = \mathbb{T} |v\rangle \rightarrow |y'\rangle = \mathbb{D} |y\rangle \rightarrow \mathbb{D} [y(x)] \equiv \frac{\mathrm{d}y(x)}{\mathrm{d}x} \equiv y'(x)$,
- Las ecuaciones diferenciales también lo son $y'' 3 y' + 2 y = (\mathbb{D}^2 3\mathbb{D} + 2) y(x)$,
- ▶ La integral también : $g(x) = \int_a^x f(t) dt \iff \mathbb{T}[f(t)].$
- y las transformaciones integrales

$$F(s) = \int_a^b \mathcal{K}(s,t) \ f(t) dt \iff \mathbb{T}[f(t)],$$

donde $\mathcal{K}(s,t)$ es una función conocida de s y t, denominada el *núcleo* de la transformación.

Nombre	$F(s) = \mathbb{T}\left\{f(t)\right\}$	$f(t) = \mathbb{T}^{-1} \left\{ F(s) \right\}$
Laplace	$F(s) = \int_0^\infty e^{-st} f(t) dt$	$f(t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{st} F(s) ds$
Fourier de senos y cosenos	$F(s) = \int_0^\infty \frac{\operatorname{sen}(st)}{\cos(st)} f(t) dt$	$f(t) = \int_0^\infty \frac{\sin(st)}{\cos(st)} F(s) ds$
Fourier compleja	$F(s) = \int_{-\infty}^{\infty} e^{ist} f(t) dt$	$f(t) = \int_{-\infty}^{\infty} e^{-ist} F(s) ds$
Hankel	$F(s) = \int_0^\infty t J_n(st) f(t) dt$	$f(t) = \int_0^\infty s J_n(ts) F(s) \mathrm{d}s$
Mellin	$F(s) = \int_0^\infty t^{s-1} \ f(t) \mathrm{d}t$	$f(t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} s^{-t} F(s) ds$

Ejercicios de Operadores

- 1. Diga si las siguientes transformaciones, $|x'\rangle=\mathbb{T}\,|x\rangle$ son lineales
 - 1.1 $\mathbb{T}: \mathbb{R}^3 \to \mathbb{R}^2$, $\mathbb{T}[(x, y, z)] = (x + y, x + z)$.
 - 1.2 $\mathbb{T}: \mathbb{R}^3 \to \mathbb{R}^3$, $\mathbb{T}[(x, y, z)] = (x, y, y + z)$.
 - 1.3 $\mathbb{T}: \mathbb{R}^3 \to \mathbb{R}^3$, $\mathbb{T}[(x, y, z)] = (x, x + y, x y)$.
 - 1.4 $\mathbb{T}: \mathbb{R}^3 \to \mathbb{R}^4$, $\mathbb{T}[(x, y, z)] = (x + y, x + z, 2x + y + z, y z)$.
 - 1.5 $\mathbb{T}: \mathbb{R}^3 \to \mathbb{R}^3$, $\mathbb{T}[(x, y, z)] = (\text{sen}(x), \cos(y), 0)$.
- 2. ¿ Cuál de las siguientes transformaciones son lineales ?
 - 2.1 $\mathbb{T}|x\rangle = |x\rangle + |a\rangle$ donde $|a\rangle$ es un vector constante $\neq 0$
 - 2.2 $\mathbb{T}|x\rangle = |a\rangle$.
 - 2.3 $\mathbb{T}|x\rangle = \langle a|x\rangle |a\rangle$.
 - 2.4 $\mathbb{T}|x\rangle = \langle a|x\rangle |x\rangle$.
- 3. Considere las siguientes operaciones en el espacio de los polinomios en *x* y diga si son a transformaciones lineales:
 - 3.1 La multiplicación por x.
 - 3.2 La multiplicación por x^2 .
 - 3.3 La diferenciación.