MIDTERM: 90 Minutes

Last Name:	
First Name:	
RIN:	
Section:	

Answer ALL questions. You may use one double sided $8\frac{1}{2} \times 11$ crib sheet. NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

1	2	3	4	5	Total
50	50	50	50	50	250

1 Circle one answer per question. 10 points for each correct answer.

- (a) Compute the sum $\sum_{i=0}^{10} (i+1+2^{i+1})$
 - A 4150.
 - B 5160.
 - C 4149.
 - D 4160.
- (b) Give a formula for the sum $S(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} (i+j)$
 - $\boxed{\mathbf{A}} \; S(n) = n^3$
 - $\boxed{\mathbf{B}} S(n) = n^2(n+1)$
 - $\boxed{\mathbf{C}} S(n) = \frac{1}{2}n(n+1)$
 - $\boxed{\mathbf{D}} S(n) = i^3 + j^3$
- (c) Let $S(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} (i+j)$. Then,
 - $\boxed{\mathbf{A}} \; S(n) \in \Theta(n^3)$
 - $\boxed{\mathbf{B}} S(n) \in \Theta(n^2 \log n)$
 - C $S(n) \in \Theta(n)$
 - $\boxed{\mathbf{D}}\,S(n)\in\Theta(n^4)$
- (d) Compute the remainder when 2015^{2015} is divided by 3? [Hint: $2015 \equiv -1 \pmod{3}$.]
 - $\boxed{\mathbf{A}} \; r = 1$
 - $\boxed{\mathrm{B}} \ r = 2$
 - \boxed{C} r=3
 - $\boxed{\mathrm{D}} r = 7$
- (e) A friendship network has 7 people and each person has 4 friends. How many edges (friendship links) are there in this friendship network?
 - A 14 edges
 - B 15 edges
 - C Not enough information to determine the number of edges
 - D This friendship network cannot possibly exist

2 Computing and Proving a Sum

Give a formula for the sum $S(n) = \sum_{i=1}^{2n} (-1)^i i$. Prove your answer.

3 Greatest Common Divisor (GCD)

For an integer d and integers m, n, suppose that gcd(d, m) = 1 and d|mn. **Prove** that d|n.

$4 \quad {\rm Regular \ Graphs}$

A graph is r-regular if every node has degree r. Let n be the number of nodes in the graph.

(a) **Prove** that if n and r are both odd, then there is no r-regular graph on n nodes.

(b) Draw examples of r-regular graphs in these two cases:

(i)
$$n = 7; r = 4$$

(ii)
$$n = 6; r = 3$$

5 Rooted Full Binary Trees
Give the <u>recursive definition of rooted full binary trees.</u> (State your base cases and constructor rules.)
<u>Prove</u> that the number of nodes in any rooted full binary tree is odd.

SCRATCH