Álgebra I: Teoría de Grupos Examen parcial 1 (diferido / repetido)

Universidad de El Salvador. Ciclo impar 2018

Problema 1 (1 punto). Sea *G* un grupo.

1) Demuestre que

$$g \sim h \iff h = k g k^{-1}$$
 para algún $k \in G$.

es una relación de equivalencia sobre los elementos de G.

Si $g \sim h$, se dice que los elementos g y h son **conjugados**. Las clases de equivalencia correspondientes se llaman las **clases de conjugación**.

- 2) Demuestre que $g \in G$ forma una clase de conjugación $\{g\}$ si y solamente si $g \in Z(G)$.
- 3) Supongamos que $g \sim h$. Demuestre que $g^n = 1$ si y solamente si $h^n = 1$.

Problema 2 (2 puntos). Describa las clases de conjugación en el grupo diédrico $D_4 = \{id, r, r^2, r^3, f, fr, fr^2, fr^3\}$.

Para los problemas 3, 4, 5 necesitamos la siguiente noción. Sea G un grupo. Para dos elementos $g,h \in G$ su **conmutador** es el elemento dado por $[g,h] := ghg^{-1}h^{-1}$.

Problema 3 (2 puntos). Consideremos el grupo diédrico $D_n = \{id, r, r^2, \dots, r^{n-1}, f, fr, fr^2, \dots, fr^{n-1}\}$. Demuestre que para cualesquiera $g, h \in D_n$ se tiene $[g, h] = r^{2i}$ para algún $i \in \mathbb{Z}$, y de hecho todo elemento $r^{2i} \in D_n$ puede ser expresado como un conmutador.

Problema 4 (1 punto). Demuestre que para cualesquiera $\sigma, \tau \in S_n$ se cumple $[\sigma, \tau] \in A_n$.

Problema 5 (2 puntos).

- 1) Fijemos un número natural $n \ge 3$. En el grupo simétrico S_n calcule los conmutadores $[(1\ 2), (1\ i)]$ para $i \ge 3$. Deduzca que todo elemento del grupo alternante A_n es un producto de conmutadores $[\sigma, \tau]$ donde $\sigma, \tau \in S_n$.
- 2) Fijemos un número natural $n \ge 5$. En el grupo alternante A_n calcule los conmutadores $[(1\ 2\ 4), (1\ 3\ 5)],$ $[(1\ 2\ 3), (1\ 4\ 5)],$ y $[(1\ 2\ 3), (1\ i\ 4)]$ para $i \ge 5$. Deduzca que todo elemento de A_n es un producto de conmutadores $[\sigma, \tau]$ donde $\sigma, \tau \in A_n$.

Indicación. Haga los cálculos de conmutadores y luego recuerde la tarea 1.

Problema 6 (2 puntos). Consideremos el plano \mathbb{R}^2 con la distancia euclidiana d. Una **isometría** de \mathbb{R}^2 es una aplicación $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ que satisface $d(f(\underline{x}), f(\underline{y})) = d(\underline{x}, \underline{y})$ para cualesquiera $\underline{x}, \underline{y} \in \mathbb{R}^2$. Demuestre que las isometrías de \mathbb{R}^2 forman un grupo respecto a la composición. ¿Es abeliano?

Indicación. Se puede asumir el siguiente resultado: toda isometría del plano es una composición de translaciones, rotaciones y reflexiones. Demuestre que las isometrías forman un subgrupo del grupo de biyecciones $\mathbb{R}^2 \to \mathbb{R}^2$.