CS 446: Machine Learning Homework

Due on Tuesday, Feb 13, 2018, 11:59 a.m. Central Time

1. [10 points] SVM Basics

Consider the following dataset \mathcal{D} in the two-dimensional space; $\mathbf{x}^{(i)} \in \mathbb{R}^2$ and $y^{(i)} \in \{1, -1\}$

i	$\mathbf{x}_1^{(i)}$	$\mathbf{x}_2^{(i)}$	$y^{(i)}$
1	-1	3	1
2	-2.5	-3	-1
3	2	-3	-1
4	4.7	5	1
5	4	3	1
6	-4.3	-4	-1

Recall a hard SVM is as follows:

$$\min_{w,b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b \ge 1) \quad , \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$$
 (1)

(a) What is the optimal \mathbf{w} and b? Show all your work and reasoning. (Hint: Draw it out.)

Your answer: Below there is the plot showing the different examples in our dataset.

Now it seems evident that the support vectors are (-1, 3), (4, 3), (-2.5, -3) and (2, -3). So the margin is defined by $x_2 = 3$ and $x_2 = -3$ and the width of the margin is 6. Since **w** has to be perpendicular to the margin we have that $w_1 = 0$. Now to find w_2 we can use the relation

$$\frac{2}{||\mathbf{w}||} = 6$$

Since $w_1 = 0$ we have that $w_2 = \frac{1}{3}$ and

$$\mathbf{w} = \begin{bmatrix} 0 \\ \frac{1}{3} \end{bmatrix}$$

To find b we can use one of the support vectors, lets take (-1, 3):

$$(1)\left(0 \cdot -1 + \frac{1}{3} \cdot 3\right) + b = 1$$

Then b = 0.

(b) Which of the examples are support vectors?

Your answer: The support vectors are instances 1, 2, 3, 5.

(c) A standard quadratic program is as follows,

Rewrite Equation (1) into the above form. (i.e. define $\mathbf{z}, P, \mathbf{q}, G, \mathbf{h}$ using \mathbf{w}, b and values in \mathcal{D}). Write the constraints in the **same order** as provided in \mathcal{D} and typeset it using bmatrix.

2

Your answer: Let D be the number of dimensions of \mathbf{x} and $N = |\mathcal{D}|$ the number of elements in our data set.

Lets first multiply the constraint by -1 so that we can match the components with the QP.

$$-y^{(i)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}+b) \le -1$$

Since this is true for all i we can write it in matrix form as follow

$$-\begin{bmatrix} y^{(1)} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & y^{(N)} \end{bmatrix} \begin{bmatrix} x^{(1)} & 1 \\ \vdots & \vdots \\ x^{(N)} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix} = \begin{bmatrix} -1 \\ \vdots \\ -1 \end{bmatrix}$$

where the first matrix is $N \times N$ and it is created by putting the $y^{(i)}$ in the *i*-th diagonal position; the second matrix is $N \times (D+1)$.

Now we can take $\mathbf{z} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$.

Then

$$G = -\begin{bmatrix} y^{(1)} & 0 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & y^{(N)} \end{bmatrix} \begin{bmatrix} x^{(1)} & 1 \\ \vdots & \vdots \\ x^{(N)} & 1 \end{bmatrix}$$
$$\mathbf{h} = \begin{bmatrix} -1 \\ \vdots \\ -1 \end{bmatrix}$$

Lets now remember that $||\mathbf{w}||^2$ can be written as $\mathbf{w}^{\mathsf{T}}\mathbf{w}$. We can take $\mathbf{q}^{\mathsf{T}} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix}$. Finally we want $\mathbf{z}^{\mathsf{T}}P\mathbf{z}$ to be $||\mathbf{w}||^2$.

$$\mathbf{z}^{\mathsf{T}} P \mathbf{z} = \begin{bmatrix} \mathbf{w} & b \end{bmatrix} P \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{w} & b \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

So P is a $(D+1) \times (D+1)$ matrix where the $D \times D$ upper-left matrix is an identity matrix and the last column and row are filled with zeros to get rid of the b.

(d) Recall that for a soft-SVM we solve the following optimization problem.

$$\min_{w,b} \frac{1}{2} \|\mathbf{w}\|^2 + C \cdot \sum_{i=1}^{|D|} \xi^{(i)} \quad \text{s.t.} \quad y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b \ge 1 - \xi^{(i)}), \xi^{(i)} \ge 0 \quad , \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$$
(2)

Describe what happens to the margin when $C = \infty$ and C = 0.

Your answer: When $C = \infty$ we are making the second term (the cost of the slack variables) to prevail over \mathbf{w} so the minimization process will need to minimize the $\xi^{(i)}$. This means that it will try to find a separation that perfectly classifies all the data.

When C = 0 we are saying that we don't care about the slack variables at all. They can be anything so there may be many mis-classifications. Note that this is equivalent to hard-SVM because minimizing $||\mathbf{w}||$ is the same as maximizing the margin $\left(\frac{2}{||\mathbf{w}||}\right)$.

2. [4 points] Kernels

(a) If $K_1(\mathbf{x}, \mathbf{z})$ and $K_2(\mathbf{x}, \mathbf{z})$ are both valid kernel functions, and α and β are positive, prove that

$$\alpha K_1(\mathbf{x}, \mathbf{z}) + \beta K_2(\mathbf{x}, \mathbf{z})$$

is also a valid kernel function.

Your answer:

$$K_{3}(\mathbf{x}, \mathbf{z}) = \alpha K_{1}(\mathbf{x}, \mathbf{z}) + \beta K_{2}(\mathbf{x}, \mathbf{z})$$

$$= \alpha \phi_{1}(\mathbf{x})^{\mathsf{T}} \phi_{1}(\mathbf{z}) + \beta \phi_{2}(\mathbf{x})^{\mathsf{T}} \phi_{2}(\mathbf{z})$$

$$= \begin{bmatrix} \sqrt{\alpha} \phi_{1}(\mathbf{x})^{\mathsf{T}} \\ \sqrt{\beta} \phi_{2}(\mathbf{x})^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} \phi_{1}(\mathbf{z}) & \sqrt{\beta} \phi_{2}(\mathbf{z}) \end{bmatrix}$$

Therefore, we can define our new ϕ function in terms of ϕ_1 and ϕ_2 . Suppose $\phi_1(\cdot) \in \mathbb{R}^m$ and $\phi_2(\cdot) \in \mathbb{R}^n$

$$\phi(\cdot) = \begin{bmatrix} \sqrt{\alpha}\phi_1(\cdot) & \sqrt{\beta}\phi_2(\cdot) \end{bmatrix} \in \mathbb{R}^{m+n}$$

(b) Show that $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z})^2$ is a valid kernel, for $\mathbf{x}, \mathbf{z} \in \mathbb{R}^2$. (i.e. write out the $\Phi(\cdot)$, such that $K(\mathbf{x}, \mathbf{z}) = \Phi(\mathbf{x})^{\mathsf{T}} \Phi(\mathbf{z})$

Your answer:

$$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z})^{2}$$

$$= (x_{1}z_{1} + x_{2}z_{2})^{2}$$

$$= (x_{1}z_{1})^{2} + 2x_{1}x_{2}z_{1}z_{2} + (x_{2}z_{2})^{2}$$

$$= x_{1}^{2}z_{1}^{2} + 2x_{1}x_{2}z_{1}z_{2} + x_{2}^{2}z_{2}^{2}$$

$$= \begin{bmatrix} x_{1}^{2} \\ \sqrt{2}x_{1}x_{2} \\ x_{2}^{2} \end{bmatrix} \begin{bmatrix} z_{1}^{2} & \sqrt{2}z_{1}z_{2} & z_{2}^{2} \end{bmatrix}$$

$$= \phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{z})$$

$$\therefore \phi(\mathbf{a}) = \begin{bmatrix} a_1^2 & \sqrt{2}a_1a_2 & a_2^2 \end{bmatrix}$$

where

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 \end{bmatrix}$$