CloudyPoints

A Monocular Depth Estimation Tool

Amar Hamouma Wim Looijmans

Project Description

- Monocular Depth Estimation (MDE)
 - Estimates depth in RGB image
- Outdoor Scenes
- Cityscapes Dataset
- Applications
 - Autonomous systems
 - Video surveillance
 - Augmented and virtual reality

Cityscapes Dataset

- Urban street scenes
 - German cities
- Stereo camera
 - Left and right image
 - Disparity
- 5000 images
 - Training set: 2975
 - Validation set: 500
 - Test set: 1525

Data Preparation

- Depth map
 - o Crop
 - Inpainting
 - Blur to decrease noise
 - o Clip at max 500
- Resize to height 400
 - Less storage
 - Faster model training
- Stored in GCS
 - o cp-bucket-1

Models

Two models tested

- intel-isl/MiDaS/DPT_Hybrid (122M)
- inel-isl/MiDaS_small (22.3M)

Metrics: (Trained for 15 epochs)

- 1. Structural Similarity Index Measure (SSIM): (0.90 0.88)
- 2. L1Loss: (0.027 0.032)

Trained in PyTorch Lightning

Model Serving API

- Model weights stored in GCS
 - Loaded through URL
- Flask App
 - Loads model
 - /predict
 - POST request
 - Image -> GCS
 - Resize
 - Inference -> depth map
 - -> GCS
 - -> response

Model Serving API - Deployment

- Google Cloud Run
- Memory: 8 Gi
- CPU: 2
- Mount GCS bucket cp_bucket_user_data
 - Store original image and predicted depth map

```
gcloud run deploy ${{ inputs.model-serving-api-name }} \
--region=europe-west1 \
--source=$(pwd) \
--allow-unauthenticated \
--memory=8Gi \
--cpu=2 \
--add-volume name=cp_volume_user_data,type=cloud-
storage,bucket=cp_bucket_user_data \
--add-volume-mount volume=cp_volume_user_data,mount-
path=/mnt/user_data_storage \
--build-service-account "SERVICE ACCOUNT" \
--quiet
```

Streamlit Interface

- Separate Cloud Run Service
- Home page
- Depth Estimation
 - Upload Image
 - Predicted Depth Image
- Select Image from Test Set
 - Select City
 - Select Image with slider
 - Shows Image and Predicted Depth Map

Streamlit Interface - Deployment

- Google Cloud Run
- Base image python:3.9-slim
- Environment variable MODEL_SERVING_BASE_URL

```
gcloud run deploy ${{ inputs.interface-name }} \
--region=europe-west1 \
--source=$(pwd)/interface \
--platform managed \
--allow-unauthenticated \
--memory=512Mi \
--cpu=1 \
--update-env-vars=CP_BASE_URL="${{ env.MODEL_SERVING_BASE_URL }}" \
--build-service-account "SERVICE ACCOUNT" \
--quiet
```

CICD

- Github Actions
- Pipeline defined in:
 - o reusable-Cl.yml
 - o reusable-CD.yml
 - Requires inputs -> service names
- Triggers
 - Pull request and Push
 - CICD-develop.yml
 - CICD-main.yml

CICD - Continuous Integration

- reusable-Cl.yml
- Pre-commit
 - Pre commit hooks
 - check-yaml
 - end-of-file-fixer
 - trailing-whitespace
 - Ruff linter
 - Black formatter
- Pytest
 - Testing Flask app
 - Testing Streamlit helper functions

CICD - Continuous Deployment

- reusable-CD.yml
- Requires inputs:
 - o model-serving-api-name
 - o interface-name
- Environment variable MODEL_SERVING_BASE_URL
- Workflow
 - Checkout code
 - Google authentication
 - Set up the Google Cloud SDK
 - Deploy Model Serving API to Cloud
 - Deploy Interface

CICD

Improvements

- Use GitHub Secrets
 - Instead of service accounts etc. in .yml files
- Implement storage of images on interface side
 - instead of in Model Serving API
- Place code and deployment files of Model Serving API in separate folder
 - o instead of partially in src/ and root folder of project

Demo

https://cp-interface-436098836644.europe-west1.run.app