CVPR2012 Tutorial: Looking at People

Benchmarking Human Activity Recognition

Haowei Liu, Perceptual Computing, Intel Rogerio Feris, IBM T.J. Watson Research Center Ming-Ting Sun, University of Washington 6/21/2012

Introduction & Motivation

- Need datasets to benchmark different aspects of algorithms
- Need a common ground for researchers to evaluate/compare the performances of their approaches
- Need datasets that are good representatives of the problem being solved (solving the dataset vs. solving the problem)
- Focus and introduce the state of the art benchmarking video datasets for activity recognition

Outline

- Benchmark for Kinematic Activities
- Movie/Web Videos Benchmarks
- Benchmarks for Assisted Daily Life (ADL) Activities
- Video Surveillance Benchmarks
- Benchmarks for Group Activities
- Multi-Camera Benchmarks
- RGB-D Benchmarks
- Egocentric Benchmarks

Benchmarks for Kinematics Activities

KTH* and Weizmann+

- Low resolution (<200x200)
- Few background clutters
- Mostly frontal and side-on camera viewing angles
- High accuracy reported by many papers already

[SchuldtICPR2004Recognizing],[GorelickICCV2005Action],¹[LeCVPR01Learnin g],²[SubhabrataCVPR2011Probabilistic],³[WangCVPR2011Action],⁴[WangCVPR2 011ActionST],⁵[LiCVPR2011Activity],⁶[XieCvpr11Unified],¹[ChenCVPR11Modeling],⁶[SunICCV2011Action],⁶[HoaiCVPR2011Joint],¹0[BrendelICCV2011Learning]

Movie/Web Benchmarks

- Multiple camera viewing angles
- Camera motions
- Video qualities/ resolutions and clutters vary
- Multiple moving objects

HMDB51 Dataset*

- Large set (51) of activity categories
- High intra-category variations
- Drastic appearance, scale, position changes of actors. Variations in camera motion and viewpoints
 *[KuehnelCCV2011HMDB]

HMDB51 sample frames

Reported accuracy: 38.00% in [SadanandCVPR2012Action]

Movie/Web Benchmarks

Other datasets and reported results

	Classes	Clips	Resolution	Accuracy
UCF Youtube ¹	11	3185	240*320	84.2%9
UCF 50 ³	50	>5000	240*320	76.4% ¹²
UCF Sports ²	9	182	480*720	$95.0\%^{12}$
Coffee/Cigarette ⁴	2	264	240*500	57%8
Hollywood1 ⁵	8	400	240*500	56.8%11
Hollywood2 ⁶	12	1707	240*500	58.3% ⁹
Olympics ⁷	16	800	360*450	77.3%10
TRECVID MED ¹⁴	15	32061	vary	38%~54% 14

¹[LiuCVPR09Recognizing],²[RodriguezCVPR2008Action],³[UCF50],

⁴[LaptevICCV07Retrieve],⁵[LaptevCVPR2008Learning],⁶[MarszalekCVPR2009Actions],⁷[NieblesECCV2010Modeling],⁸[GaidonCVPR2011Actom],⁹[WangCVPR2011Action],¹⁰ [BrendelICCV2011Learning], ¹¹[GilbertPAMI2010Action], ¹²[SadanandCVPR2012Action], ¹³ [TangCVPR2012Learning], ¹⁴[TRECVID2011]

Benchmarks for Assisted Daily Living (ADL) Activities

ADL65 Dataset*

- Large set (65 categories) of highresolution kitchen activities
- Fine-grained activities (low inter-class variability)
- Detailed annotations including time intervals and poses
- Provide classification & detection tasks
- Similar dataset: URADL⁺
 - high-res 10 kitchen activities.
 - reported accuracy: 96% in [WangCVPR2011ActionST]
- Scene and object info highly correlates with the activities

*[RohrbachCVPR2012Database] +[MessingICCV2009Activity]

sample frames

Reported average precision for

Classification: 59.2%

Detection: 45.0%

in [RohrbachCVPR2012Database]

Benchmarks for Group Activities

UT-Interaction*

- 6 classes of 2-person interaction activities
- Detailed annotation with time intervals/bounding boxes
- Camera jittering
- Pedestrians in the background
- Concurrent activities
- Similar datasets: Collective Dataset¹, BEHAVE²

*[RyooICPR2010Overview]

¹[ChoiICCV2009Collective]

²[BlunsdenBMVA2010Behave]

UT-Interaction sample frames

	Accuracy
AmerICCV2011Chain	75.75%
BrendelICCV2011Learning	78%
RyooICCV2011Early	85%
GaurICCV2011SFG	72%

Benchmarks for Long Term Surveillance

Virat Ground Video Dataset*

- Realistic scenarios (non-actors)
- Multi spatial-temporal resolutions
- Diverse scenes (16 scenes) and event types (23)
- Multiple objects and concurrent activities
- Different camera perspectives
- Detailed annotations including time intervals, bounding boxes, and tracks
- People/facility, people/vehicle interaction

sample annotations

sample frames

* [OhCVPR2011Virat]

Benchmarks for Long Term Surveillance

Virat Aerial Video Dataset

- Camera motion
- Low resolution of human figures
- Similarity across actions from high altitude
- Time-varying viewpoints and scales
- Shadows and interrupted tracking

sample frames for different scenes and viewpoints

Benchmarks for Long Term Surveillance Evaluations

Average hit rate on ground dataset: 33% in [OhCVPR2011Virat]
Average accuracy on aerial dataset: 38% in [ChenCVPR11Modeling]

standing	.43	.42	.13	.01	.00	.00
gesturing	.45	.45	.05	.00	.05	.00
digging	.36	.29	.31	.00	.04	.00
walking	.03	.01	.01	.30	.33	.31
carrying	.05	.01	.00	.30	.36	.28
running	.01	.02	.04	.33	.22	.37
	Standi	Gestyn	digging	Walking	Carryin	TUNNING

[SubhabrataCVPR2011Probabilistic]

Benchmarks for Long Term Surveillance

TRECVID 2011 Surveillance Event Detection (SED) Dataset

- ~100 hours indoor airport surveillance videos
- 7 events including 2 single person events, 2 person-object interaction events and 3 multi-person events
- Different background clutters and traffic due to different camera placements
- Best Normalized Detection Cost Rate (NDCR): 0.8~2

$$NDCR = P_{miss} + \frac{Rate_{FA}}{Rate_{event}}$$

Perfect NDCR: 0

camera placements: controlled access door, waiting area, debarkation area, elevator door, transit area

Multi-Camera Benchmarks

IXMAS Dataset*

- Provide 5-view videos of 13 kinematic activities
- Provide silhouette, reconstructed volumes, and calibration information
- 3D information is available
- Suitable to evaluate view dependent models

Multi-Camera Benchmarks

IXMAS Dataset - Evaluations

Accuracy by using multi-cameras*

1,2,3,4,5	1,2,3,4	1,2,3,5	1,2,3	1,3,5	1,3	2,4	3,5
88.20%	88.20%	89.40%	87.70%	88.40%	86.60%	82.40%	83.30%

Recognition using multi-view information (5~15% improvements over single view)

View transfer evaluations⁺
 Evaluating cross-view model effectiveness

%	1	2	3	4	5
1		81.8	88.1	87.5	81.4
2	87.5		82	92.3	74.2
3	85.3	82.6		82.6	76.5
4	82.1	81.5	80.2		70
5	78.8	73.8	77.7	78.7	

+[LiCVPR2012Discriminative]
*[WuCVPR2011Action]

RGB-D Benchmarks

MSRAction3D and DailyActivity3D*

- Both recorded with commercially available depth sensor
- MSRAction3D consists of 20 kinematic activities
- DailyActiviy3D consists of 16 living room activities involving different objects e.g. writing on a paper, answering phone

Accuracy: 88.2% *

MSRAction3D sample frames

Accuracy: 85.7%*

*[WangCVPR2012Mining]

DailyActivity3D sample frames

Egocentric Benchmarks

Egocentric ADL Datasets¹

- Complex object interactions (42 objects)
- Large set of actions (18 actions), and sites (20 homes)
- Longer activities
- Large variations of object appearance
- Scene/Clutter variations
- Similar datasets: GTEA²
 (GeorgiaTech Egocentric)
 and Intel Egocentric Dataset³
- Strong priors for hand locations

Reported classification accuracy: 40.6% in [PirsiavashCVPR2012 Detecting]

¹[PirsiavashCVPR2012Detecting] ²[FathilCCV2011Understanding] ³[RenEgo2009Ego]

appearance variations

scene variations

Egocentric Benchmarks

Other Egocentric Datasets

- UEC Sports¹
 - Large set of outdoor activities
 - Large motion and blur
- GeorgiaTech²
 - Egocentric social activity recognition
- Other datasets: Egocentric novelty detection³, and egocentric video summary⁴

¹[KitaniCVPR2011Fast], ²[FathiCVPR2012Social], ³[AghazadehCVPR2011Novelty], ⁴[LeeCVPR2012Discovering]

UEC Dataset

FPSI Result in [FathiCVPR2012Social],

Summary Table

	classes	res.	seqs	frames	url	annotation
KTH	6	160*120	600	~500k	http://www.nada.kth.se/cvap/actions/	N.A
Weizmann	10	180*144	90	~8k	http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html	extracted foreground mask
HMDB51	51	~240*480	7000	~800K	http://serre- lab.clps.brown.edu/resources/HMD B/	meta info regarding video quality, angle, and camera motion
UCF Youtube	11	240*320	1168		http://www.cs.ucf.edu/vision/public_ html/data.html#UCF%20YouTube% 20Action%20Dataset	N.A
UCF Sports	9	480*720	182		http://www.cs.ucf.edu/vision/public_ html/data.html#UCF%20Sports%20 Action%20Dataset	N.A
UCF 50	50	240*320	>500	>150K	http://www.cs.ucf.edu/vision/public_ html/data.html#UCF50	N.A
Coffee/Cigarette	2	240*500	1	36K	http://www.di.ens.fr/~laptev/downlo ad.html	Space-time cuboid, key frame and head position
Hollywood1	8	240*500	~600	~400K	http://www.di.ens.fr/~laptev/downlo ad.html	Time interval
Hollywood2	12	240*500	~600	~600K	http://www.di.ens.fr/~laptev/downlo ad.html	Time interval

Summary Table

	classes	res.	seqs	frames	url	annotation
MED11	10	N.A	10K	35M	http://www- nlpir.nist.gov/projects/tv2011	event intervals
ADL65	65	1624x122 4	44	~881K	N.A	time-interval and body pose
URADL	10	1280x720	50	~75K	http://www.cs.rochester.edu/~rmessing/ uradl/	N.A
Ut- interaction	6	480*720	20	~36K	http://cvrc.ece.utexas.edu/SDHA2010/H uman Interaction.html	time-interval and bounding boxes of subjects
Collective	5	480*720	44	~13K	http://www.eecs.umich.edu/vision/activi ty-dataset.html	locations of the subjects, bounding box, and pose info
BEHAVE	10	480*640	4	~300K	http://groups.inf.ed.ac.uk/vision/BEHA VEDATA/INTERACTIONS/	Interval, group id, bounding box
IXMAS	13	390x291	36	~40K*	http://4drepository.inrialpes.fr/	silhouettes, reconstructed volume
VIRAT	23	1920 x 1080	N.A	~1620K	http://www.viratdata.org/	object tracks, subject bounding boxes, event interval
SED11	7	720x576	N.A	~9M	http://www- nlpir.nist.gov/projects/tv2011	event intervals, bounding boxes

Summary Table

	classes	res.	seqs	frames	url	annotation
MSRAction3 D	20	320*240	320	9.6K	http://research.microsoft.com/en- us/um/people/zliu/actionrecorsrc/default .htm	joints
DailyAvtivity 3D	16	320*240	567	~15K	http://research.microsoft.com/en- us/um/people/zliu/actionrecorsrc/default .htm	joints
EgoADL	18	N.A	N.A	1M	N.A	object bounding box, tracks and labels, hand positions

Conclusions and Challenges

- We covered most of the major benchmarking datasets good starting points for people new to the field
- Creating a benchmark that captures the level of complexity of real world problems is still hard
- Few reported cross dataset performance or model generality evaluation
- The trend is to create large scale benchmarking datasets with detailed annotations need better tools (e.g. LabelMe Video) or technology (e.g. Machine-aided Mechanical Turk) for good quality and large annotation tasks

Bibliography

[AghazadehCVPR2011Novelty] Omid Aghazadeh, Josephine Sullivan, and S. Carlsson, "Novelty Detection from an Ego-Centric Perspective," in CVPR, 2011.

[AmerICCV2011Chain] Mohamed Amer and S. Todorovic, "A Chains Model for Localizing Participants of Group Activities in Videos," in ICCV, 2011.

[BrendellCCV2011Learning] William Brendel and S. Todorovic, "Learning Spatiotemporal Graphs of Human Activities," in ICCV, 2011.

[BlunsdenBMVA2010Behave] S Blunsden and R. B. Fisher, "The BEHAVE video dataset: ground truthed video for multi-person behavior classification," *Annals of the BMVA*, pp. 1-11, 2010.

[ChenCVPR11Modeling] Chia-Chih Chen and J. K. Aggarwal, "Modeling Human Activities as Speech," in CVPR, 2011.

[ChoilCCV2009Collective] W. Choi, K. Shahid, and S. Savarese., "What are they doing?Collective activity classification using spatio-temporal relationship among people," in ICCV, 2009.

[FathilCCV2011Understanding] Alireza Fathi, Ali Farhadi, and J. Rehg, "Understanding Egocentric Activities," in ICCV, 2011.

[FathiCVPR2012Social] Alireza Fathi, Jessica Hodgins, and J. Rehg, "Social Interactions: A First-Person Perspective," in CVPR, 2012.

[GaurlCCV2011SFG] U. Gaur, Y. Zhu, B. Song, and A. Roy-Chowdhury, "A "String of Feature Graphs" Model for Recognition of Complex Activities in Natural Videos," in ICCV, 2011.

[GaidonCVPR2011Actom] Adrien Gaidon, Zaid Harchaoui, and C. Schmid, "Actom Sequence Models for Efficient Action Detection," in CVPR, 2011.

[GilbertPAMI2010Action] Andrew Gilbert, John Illingworth, and R. Bowden, "Action Recognition using Mined Hierarchical Compound Features," TPAMI, 2010.

[HoaiCVPR2011Joint] Minh Hoai, Zhen-Zhong Lan, and F. D. I. Torre, "Joint Segmentation and Classification of Human Actions in Video," in CVPR, 2011.

[KitaniCVPR2011Fast] Kris Kitani, Takahiro Okabe, Yoichi Sato, and A. Sugimoto, "Fast Unsupervised Ego-Action Learning for First-Person Sports Videos," in CVPR, 2011.

[KuehnelCCV2011HMDB] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, "HMDB: A Large Video Database for Human Motion Recognition," in ICCV, 2011.

[LaptevICCV07Retrieve] Ivan Laptev and Patrick Perez, "Retrieving actions in movies," in ICCV, 2007.

[LaptevCVPR2008Learning] Ivan Laptev, Marcin Marszałek, Cordelia Schmid, and Benjamin Rozenfeld, "Learning realistic human actions from movies," in CVPR, 2008.

[LeeCVPR2012Discovering] Yong Jae Lee, Joydeep Ghosh, and K. Grauman, "Discovering Important People and Objects for Egocentric Video Summarization," in CVPR, 2012.

[LeCVPR2011Learning] Quoc Le, Will Zhou, and A. Ng, "Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis," in CVPR, 2011.

[LiCVPR2012Discriminative] Ruonan Li and T. Zickler, "Discriminative Virtual Views for Cross-View Action Recognition," in CVPR, 2012.

[LiCVPR2011Activity] Binlong Li, Mustafa Ayazoglu, Teresa Mao, Octavia Camps, and M. Sznaier, "Activity Recognition using Dynamic Subspace Angles," in CVPR, 2011.

[LiuCVPR09Recognizing] Jingen Liu, Jiebo Luo, and Mubarak Shah, "Recognizing realistic actions from videos in the wild," in CVPR, 2009.

[MarszalekCVPR2009Actions] Marcin Marszałek, Ivan Laptev, and Cordelia Schmid, "Actions in Context," in CVPR, 2009.

[MessingICCV2009Activity] Ross Messing, Chris Pal, and Henry Kautz, "Activity recognition using the velocity histories of tracked keypoints," in ICCV, 2009.

[NieblesECCV2010Modeling] Juan Niebles, Chih-Wei Chen, and F.-F. Li, "Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification," in ECCV 2010.

[OhCVPR2011Virat] Sangmin Oh and e. al., "A Large-scale Benchmark Dataset for Event Recognition in Surveillance Video," in CVPR, 2011.

[PirsiavashCVPR2012Detecting] Hamed Pirsiavash and D. Ramanan, "Detecting Activities of Daily Living in First-person Camera Views," in CVPR, 2012.

[RenEgo2009Ego] Xiaofeng Ren and M. Philipose, "Egocentric Recognition of Handled Objects: Benchmark and Analysis.," in Egovision Workshop, 2009.

[RohrbachCVPR2012Database] Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka, and B. Schiele, "A Database for Fine Grained Activity Detection of Cooking Activities," in CVPR, 2012.

[RodriguezCVPR2008Action] Mikel Rodriguez, Javed Ahmed, and Mubarak Shah, "Action MACH: a spatio-temporal maximum average correlation height filter for action recognition," in CVPR, 2008.

[RyooICPR2010Overview] M. S. Ryoo, Chia-Chih Chen, J. K. Aggarwal, and A. Roy-Chowdhury, "An Overview of Contest on Semantic Description of Human Activities," in ICPR, 2010.

[RyooICCV2011Early] M. S. Ryoo, "Human Activity Prediction: Early Recognition of Ongoing Activities from Streaming Videos," in ICCV, 2011

[SadanandCVPR2012Action] Sreemanananth Sadanand and J. Corso, "Action Bank: A High-Level Representation of Activity in Video," in CVPR, 2012.

[SubhabrataCVPR2011Probabilistic] Subhabrata Bhattacharya, R. Sukthankar, R. Jin, and M. Shah, "A Probabilistic Representation for Efficient Large Scale Visual Recognition Tasks," in CVPR, 2011.

[SunICCV2011Action] Chuan Sun, Imran Junejo, and H. Foroosh, "Action Recognition using Rank-1 Approximation of Joint Self-Similarity Volume," in ICCV, 2011.

[TangCVPR2012Learning] Kevin Tang, Li Fei-Fei, and D. Koller, "Learning Latent Temporal Structure for Complex Event Detection," in CVPR, 2012.

[TRECVID2011] P. Over, "An Overview of the Goals, Tasks, Data, Evaluation Mechanisms, and Metrics," in TRECVID, 2011.

[UCF50] http://www.cs.ucf.edu/vision/public_html/data.html

[WangCVPR2011Action] Heng Wang, Alexander Klaser, Cordelia Schmid, and C.-L. Liu, "Action Recognition by Dense Trajectories," in CVPR, 2011.

[WangCVPR2011ActionST] Jiang Wang, Zhuoyuan Chen, and Y. Wu, "Action Recognition with Multiscale Spatio-Temporal Contexts," in CVPR, 2011.

[WangCVPR2012Mining] Jiang Wang, Zicheng Liu, Ying Wu, and J. Yuan, "Mining Actionlet Ensemble for Action Recognition with Depth Cameras," in CVPR, 2012.

[WeinlandICCV07Action] Daniel Weinland, Edmond Boyer, and Remi Ronfard, "Action Recognition from Arbitrary Views using 3D Exemplars," in ICCV, 2007.

[WuCVPR2011Action] Xinxiao Wu, Dong Xu, Lixin Duan, and J. Luo, "Action Recognition using Context and Appearance Distribution Features," in CVPR, 2011.

[WulCCV2011Action] Shandong Wu, Omar Oreifej, and M. Shah, "Action Recognition in Videos Acquired by a Moving Camera Using Motion Decomposition of Lagrangian Particle Trajectories," in ICCV, 2011.

[XieCvpr2011Unified] Yuelei Xie, Hong Chang, Zhe Li, Luhong Liang, Xilin Chen, and D. Zhao, "A Unified Framework for Locating and Recognizing Human Actions," in CVPR, 2011.