

CIA TRIAD

- ➤ Confidentiality: Preserving authorized restrictions on information access and disclosure.
 - >A loss of confidentiality is the unauthorized disclosure of information.
- ➤ Integrity: Guarding against improper information modification or destruction.
 - A loss of integrity is the unauthorized modification or destruction of information.
- ➤ Availability: Ensuring timely and reliable access to information.
 - A loss of availability is the disruption of access to or use of information or an information system.

OTHER SECURITY REQUIREMENTS

- ➤ Authenticity: The property of being genuine and being able to be verified and trusted.
 - >This means verifying that users are who they say they are and that each input arriving at the system came from a trusted source.
- > Accountability: The security goal that generates the requirement for actions of an entity to be traced uniquely to that entity.
 - We must be able to trace a security breach to a responsible party.
 - > Systems must keep records of their activities to permit later forensic analysis to trace security breaches or to aid in transaction disputes.

BASIC SITUATION IN CRYPTOGRAPHY Passive intruder Active intruder can just listens alter messages Decryption Encryption **Plaintext Plaintext** Communication Channel Algorithm, **D** Algorithm, E Ciphertext

Passive attack: the attacker only monitors the traffic attacking the confidentiality of the data

 $C = E_K(P)$

Active attack: the adversary attempts to alter the transmission attacking data integrity, confidentiality, and authentication, system resources or affect their operations

Encryption key: K

Decryption key: K'

CLASSIFICATION OF CRYPTOSYSTEMS

SYMMETRIC CIPHERS

- Stream cipher is one that encrypts a digital data stream one bit (or byte) at a time
 - > Example: autokey Vigenère system

- ➤ Block cipher is one in which the plaintext is divided in blocks and one block is encrypted at one time producing a ciphertext of equal length
 - ➤ 64 bits or 128 bits are typical blocklengths
 - ➤ Many modern ciphers are block ciphers

ADVANCED ENCRYPTION STANDARD

- ➤ AES competition
 - ➤ Started in January 1997 by NIST
 - ▶4-year cooperation between
 - > U.S. Government
 - ➤ Private Industry
 - > Academia
- ➤ Why?
 - ➤ Replace 3DES
 - >Provide a publicly disclosed encryption algorithm, available royalty-free, worldwide

THE FINALISTS

> MARS

>IBM

>RC6

RSA Laboratories

Rijndael

>Joan Daemen (Proton World International) and Vincent Rijmen (Katholieke Universiteit Leuven)

> Serpent

➤ Ross Anderson (University of Cambridge), Eli Biham (Technion), and Lars Knudsen (University of California San Diego)

> Twofish

>Bruce Schneier, John Kelsey, and Niels Ferguson (Counterpane, Inc.), Doug Whiting (Hi/fn, Inc.), David Wagner (University of California Berkeley), and Chris Hall (Princeton University)

AES

VERSIONS OF AES

- ➤ Rijndael supports block sizes and key sizes of 128, 160, 192, 224 and 256 bits.
- Only 128-bit block size, and 128, 192, and 256 key sizes are specified in the AES.

Version	Key Size	Number of rounds
AES-128	128 bits	10
AES-192	192 bits	12
AES-256	256 bits	14

AES KEY SIZE

➤ Uses really big numbers

- ▶1 in 2⁶¹ odds of winning the lotto and being hit by lightning on the same day
- ≥292 atoms in the average human body
- ≥2¹²⁸ possible keys in AES-128
- ≥2¹⁷⁰ atoms in the planet
- > 2¹⁹⁰ atoms in the sun
- ≥ 2¹⁹² possible keys in AES-192
- ≥2²³³ atoms in the galaxy
- ≥2²⁵⁶ possible keys in AES-256

STREAM CIPHER

- > A faster alternative for encryption is a stream cipher.
- >We generate a pseudorandom *key stream* from a seed, a "real key" much shorter than the full key stream added to the message.
- >We try to make the set of possible seeds, the real keys, so large that exhaustive search is impossible in practice.
- > We try to eliminate any shortcuts to finding this key from the key stream.

TESTING RANDOMNESS

- There are RNG tests have been collected into test suites to examine the randomness of a generated bitstream.
 - > Diehard (Marsaglia, 1995), good for simple PRNGs, but notwell-documented
 - > NIST STS (2010), well documented but from NIST
 - > Dieharder (Brown et al, 2013), easy to use and well documented
- ➤ Can I use randomness tests to make sure my PRNG's output is random?

CLASSIFICATION OF CRYPTOSYSTEMS

PROBLEMS WITH SYMMETRIC CIPHERS

- Key management: changing the secret key or establishing one is nontrivial.
 - ➤ Change the keys two users share (should be done reasonably often)
 - >Establish a secret key with somebody you do not know and cannot meet in person: (e.g., visiting secure websites such as e-shops)
 - > This could be done via a trusted Key Distribution Center (KDC)
 - ➤ Can (or should) we really trust the KDC?
 - "What good would it do after all to develop impenetrable cryptosystems, if their users were forced to share their keys with a KDC that could be compromised by either burglary or subpoena?" – Diffie, 1988
- Digital signatures: a mathematical scheme for demonstrating the authenticity of digital messages or documents

A BREAKTHROUGH IDEA

- ➤ Rather than having a secret key that the two users must share, each users has **two keys**
- > One key is secret and he is the only one who knows it
- ➤ The other key is public and anyone who wishes to send him a message uses that key to encrypt the message
- ➤ Diffie and Hellman's groundbreaking 1976 paper, "New Directions in Cryptography," introduced the ideas of public-key cryptography
- ➤ NSA claims to have known it since mid-1960s!
- Communications-Electronic Security Group (British counterpart of NSA) documented the idea in a classified report in 1970.

Martin Hellman & Whitfield Diffie

INVENTION OF PUBLIC KEY CRYPTOGRAPHY

Diffie and Hellman's invention of public-key cryptography and digital signatures revolutionized computer security

They received the 2015 ACM A.M. **Turing Award** for critical contributions to modern cryptography

