CHEMISTRY ATAR COURSE

DATA BOOKLET

2016

Copyright

© School Curriculum and Standards Authority, 2016

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia licence.

This document is valid for teaching and examining until 31 December 2016.

Table of contents

Periodic table of the elements	3
Formulae	
Units	4
Constants	4
Solubility rules for ionic solids in water	4
Colours of selected substances	5
α-amino acids6	3 – 7
Standard reduction notentials	8

<u>o</u>
0
ta
<u>ပ</u>
0
0
Ξ.
a a
щ

9	2 Heium heium 4.003	10	Ne	neon 20.18	18	Ar	argon	39.95	36	ス	krypton 83.80	54	Xe	xenon 131.3	86	Ru	radon	118	Ono	ununoctium
17		6	ш	fluorine 19.00	17	S	chlorine	35.45	35	Ŗ	bromine 79.90	53		iodine 126.9	85	At	astatine	117	Nus	ununseptium
16		∞	0	oxygen 16.00	16	S	sulfur	32.07	34	Se	selenium 78.96	52	Te	tellurium 127.6	84	Ро	polonium	116	_	livermorium
15		7	Z	nitrogen 14.01	15	<u>_</u>	phosphorus	30.97	33	As	arsenic 74.92	51	Sp	antimony 121.8	83	<u>M</u>	bismuth 209.0	115	dnn	ununpentium
14		9	ပ	carbon 12.01	14	S	silicon	28.09	32	Ge	germanium 72.59	20	Sn	tin 118.7	82	Pb	lead 207.2	114	F6	flerovium
13		2	m	boron 10.82	13	Ae	aluminium	20.98	31	Ga	gallium 69.72	49	In	indium 114.8	81	3	thallium 204.4	113	Uut	ununtrium
12									30	Zn	zinc 65.38	48	ဝ	cadmium 112.4	80	6 H	mercury 200.6	112	Cu	copernicium
#									29	CC	copper 63.55	47	Ag	silver 107.9	79	Au	gold 197.0	111	Rg	roentgenium
10									28	Z	nickel 58.69	46	Pd	palladium 106.4	78	F	platinum 195.1	110	Ds	darmstadtium
တ								;	27	ဝိ	cobalt 58.93	45	Rh	rhodium 102.9	77	1	iridium 192.2	109	M	meitnerium
œ									26	Fe	iron 55.85	44	Ru	ruthenium 101.1	9/	Os	osmium 190.2	108	H	hassium
7								ı	25	Z Z	manganese 54.94	43	ည	technetium	75	Re	rhenium 186.2	107	Bh	bohrium
9								;	24	S	chromium 52.00	42	o ⊠	molybdenum 95.94	74	>	tungsten 183.9	106	Sg	seaborgium
2									23	>	vanadium 50.94	41	Q Z	niobium 92.91	73	<u>T</u> a	tantalum 180.9	105	Db	dubnium
4									22	F	titanium 47.88	40	Zr	zirconium 91.22	72	Ŧ	hafnium 178.5	104	R	rutherfordium
က									21	SC	scandium 44.96	39	>	yttrium 88.91	57–71	*	lanthanum 138.9	89-103	**AC	actinium
2		4	Be	beryllium 9.012	12	Mo	magnesium	24.31	20	Ca	40.08	38	S	strontium 87.62	99	Ba	barium 137.3	88	Ra	radium 226.0
~	hydrogen 1.008	က	<u>-</u>	lithium 6.968	11	Z	sodium	22.99	19	Y	39.10	37	Ro	rubidium 85.47	55	Cs	caesium 132.9	87	F	francium

	atolline weight
--	-----------------

Key:

		Ę
69 H	168.9	101 Md
68 Er	167.3	100 Fm fermium
67 H0	164.9	99 ES einsteinium
D S	dysprosium 162.5	98 californium
95 T	158.9	97 BK berkelium
²⁰ D	157.3	96 C m curium
es Eu	152.0	95 Am americium
Sm	150.4	94 Pu plutonium
Pm		93 Np neptunium
© 7		92 Uranium 238.0
59 Pr	140.9	Pa protactinium
Sering Cerimo	140.1	90 Th thorium 232.0
* Lanthanide series		** Actinide series

Lu Iutetium 175.0 103 Lr

70 Ytherbium 173.0 102 No nobelium

[Data source: The International Union of Pure and Applied Chemistry Periodic Table of the Elements (2016)]

Formulae

Number of moles $n = \frac{m}{M} = \frac{\text{mass}}{\text{molar mass}}$

Number of moles of solute n = cVNumber of moles of a gas at STP $n = \frac{V}{22.71}$

Ideal gas law PV = nRT

Parts per million $ppm = \frac{mass of solute (mg)}{mass of solution (kg)}$

pH of a solution $pH = -log [H^+]$

Units

Volumes are given in the units of litres (L), or millilitres (mL)

Temperatures are given in the units of degrees Celsius (°C) or kelvin (K)

It may be assumed that 0.0 °C = 273.15 K

Energy changes are given in kilojoules (kJ)

Pressures are given in kilopascals (kPa)

Solution concentrations are given in the units moles per litre (mol L-1),

grams per litre (g L-1) or parts per million (ppm)

Constants

Universal gas constant, R = 8.314 J K⁻¹ mol⁻¹

Avogadro constant, N = 6.022×10²³ mol⁻¹

Volume of 1.00 mol of an ideal gas at 0.0 °C and 100.0 kPa is 22.71 L

S.T.P. is 0.0 °C and 100.0 kPa

Equilibrium constant for water at 25 °C, $K_w = 1.00 \times 10^{-14}$

Solubility rules for ionic solids in water

Soluble in water

Soluble	Exceptions						
	Insoluble	Slightly soluble					
Most chlorides	AgCl	PbCl ₂					
Most bromides	AgBr	PbBr ₂					
Most iodides	AgI, PbI ₂						
All nitrates	No exceptions						
All ethanoates	ino exceptions						
Most sulfates	SrSO ₄ , BaSO ₄ , PbSO ₄	CaSO ₄ , Ag ₂ SO ₄					

Insoluble in water

Insoluble	Exceptions						
	Soluble	Slightly soluble					
Most hydroxides	NaOH, KOH, Ba(OH) ₂ NH ₄ OH*, AgOH**	Ca(OH) ₂ , Sr(OH) ₂					
Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃						
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄						
Most sulfides	Na ₂ S, K ₂ S, (NH ₄) ₂ S						

* NH₃ dissolves in water to form both NH₃ (aq) and NH₄⁺(aq)/OH⁻(aq)

** Ag⁺(aq) reacts with OH⁻(aq) to form insoluble Ag₂O

Soluble = more than 0.1 mole dissolves per litre

Slightly soluble = between 0.01 and 0.1 mole dissolves per litre

Insoluble = less than 0.01 mole dissolves per litre

Colours of selected substances

In general, ionic solids have the same colour as that of any coloured ion they contain. Two colourless ions in general produce a white solid. Selected exceptions to these two basic rules are noted below.

Ionic Solid	Colour
copper(II) carbonate	green
copper(II) chloride	green
copper(II) oxide	black
copper(II) sulfide	black
lead(II) iodide	yellow
lead(II) sulfide	grey
manganese(IV) oxide	black
silver carbonate	yellow
silver iodide	pale yellow
silver oxide	brown
silver sulfide	black

Other coloured substances

Most gases and liquids are colourless, and most metals are silvery or grey. Selected exceptions to these basic rules are noted below.

Substance	Colour
copper(s)	salmon pink
gold(s)	yellow
nitrogen dioxide(g)	brown
sulfur(s)	yellow

Coloured halogens

Halogen	Colour of free element
F ₂ (g)	yellow
Cl ₂ (g)	greenish-yellow
Br ₂ (ℓ)	red
$I_2(g)$	purple

Halogen	Colour of halogen in aqueous solution
Cl ₂ (aq)	pale yellow
Br ₂ (aq)	orange
I ₂ (aq)	brown

Halogen	Colour of halogen in organic solvent
Br ₂	red
I ₂	purple

Coloured ions in aqueous solution

Cation	Colour
Cr³+	deep green
Co ²⁺	pink
Cu ²⁺	blue
Fe ²⁺	pale green
Fe ³⁺	pale brown
Mn ²⁺	pale pink
Ni ²⁺	green

Anion	Colour
CrO ₄ ²⁻	yellow
Cr ₂ O ₇ ²⁻	orange
MnO ₄ -	purple

Name	Symbol	Structure
alanine	Ala	CH ₃
		H ₂ N — CH — COOH
arginine	Arg	NH
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		H ₂ N — CH— COOH
asparagine	Asn	$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ $
		H ₂ N — CH— COOH
aspartic acid	Asp	CH ₂ — COOH
		H ₂ N — CH— COOH
cysteine	Cys	CH ₂ — SH
		H ₂ N — CH— COOH
glutamine	Gln	$\begin{array}{c} O \\ \parallel \\ CH_2 -\!$
		H ₂ N — CH— COOH
glutamic acid	Glu	CH ₂ — CH ₂ — COOH
		H ₂ N — CH— COOH
glycine	Gly	H ₂ N — CH ₂ — COOH
histidine	His	CH ₂ ——N
		H₂N — CH— COOH
isoleucine	Ile	$CH_3 -\!$
		H ₂ N — CH— COOH

Name	Symbol	Structure
leucine	Leu	CH ₃ — CH — CH ₃ CH ₂
		H ₂ N — CH — COOH
lysine	Lys	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		H ₂ N — CH — COOH
methionine	Met	$\begin{array}{c} \operatorname{CH_2} \longrightarrow \operatorname{CH_2} \longrightarrow \operatorname{S} \longrightarrow \operatorname{CH_3} \\ \end{array}$
		H ₂ N — CH — COOH
phenylalanine	Phe	CH ₂ —
		H ₂ N — CH— COOH
proline	Pro	H COOH
serine	Ser	CH OH
Schile	OCI	CH_2 — OH $\Big $ H_2 N — CH — COOH
threonine	Thr	CH ₃ — CH — OH
		H ₂ N — CH— COOH
tryptophan	Trp	H N
		CH ₂
		H ₂ N — CH— COOH
tyrosine	Tyr	CH ₂ —OH
		H ₂ N — CH— COOH
valine	Val	CH ₃ —CH—CH ₃
		CH_3 — CH — CH_3 $ $ H_2N — CH — $COOH$

Half-reaction		E°(volts)
$F_2(g) + 2 e^- \rightleftharpoons$	2 F-(aq)	+ 2.89
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \rightleftharpoons$	2 H ₂ O(ℓ)	+ 1.76
$PbO_{2}(s) + SO_{4}^{2-}(aq) + 4 H^{+}(aq) + 2 e^{-} \rightleftharpoons$	$PbSO_{\scriptscriptstyle{4}}(s) + 2\;H_{\scriptscriptstyle{2}}O(\ell)$	+ 1.69
2 HCℓO(aq) + 2 H⁺(aq) + 2 e⁻ ⇌	$C\ell_{2}(g) + 2 H_{2}O(\ell)$	+ 1.63
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \rightleftharpoons$	$Mn^{2+}(aq) + 4 H_2O(\ell)$	+ 1.51
Au³+(aq) + 3 e⁻ ⇌	Au(s)	+ 1.50
HCℓO(aq) + H⁺(aq) + 2 e⁻ <i>⇌</i>	$C\ell^-(aq) + H_2O(\ell)$	+ 1.49
$PbO_2(s) + 4 H^+(aq) + 2 e^- \rightleftharpoons$	$Pb^{2+}(aq) + 2 H_2O(\ell)$	+ 1.46
$Cl_2(g) + 2 e^- \rightleftharpoons$	2 Cl-(aq)	+ 1.36
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- =$	$2 \text{ Cr}^{3+}(\text{aq}) + 7 \text{ H}_2\text{O}(\ell)$	+ 1.36
$O_2(g) + 4 H^+(aq) + 4 e^- \rightleftharpoons$	2 H ₂ O(ℓ)	+ 1.23
$Br_2(\ell) + 2 e^- \rightleftharpoons$	2 Br ⁻ (aq)	+ 1.08
Ag⁺(aq) + e⁻ <i>⇌</i>	Ag(s)	+ 0.80
Fe³+(aq) + e⁻ <i>⇐</i>	Fe ²⁺ (aq)	+ 0.77
$O_2(g) + 2 H^+(aq) + 2 e^- \rightleftharpoons$	$H_2O_2(aq)$	+ 0.70
$I_2(s) + 2 e^- \rightleftharpoons$	2 I ⁻ (aq)	+ 0.54
$O_2(g) + 2 H_2O(\ell) + 4 e^- \rightleftharpoons$	4 OH-(aq)	+ 0.40
Cu²+(aq) + 2 e⁻ <i>⇐</i>	Cu(s)	+ 0.34
$S(s)+ 2 H^{+}(aq) + 2 e^{-} \rightleftharpoons$	H ₂ S(aq)	+ 0.17
2 H⁺(aq) + 2 e⁻ <i>⇐</i>	$H_2(g)$	0 exactly
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons$	Pb(s)	- 0.13
Sn²+(aq) + 2 e⁻ <i>⇐</i>	Sn(s)	-0.14
Ni ²⁺ (aq) + 2 e ⁻ ⇌	Ni(s)	-0.24
$Co^{2+}(aq) + 2 e^{-} \rightleftharpoons$	Co(s)	- 0.28
$PbSO_4(s) + 2 e^- \rightleftharpoons$	$Pb(s) + SO_4^{2-}(aq)$	-0.36
$Cd^{2+}(aq) + 2e^{-} \rightleftharpoons$	Cd(s)	-0.40
$2 CO_{2}(g) + 2 H^{+}(aq) + 2 e^{-} \rightleftharpoons$	$H_2C_2O_4(aq)$	-0.43
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons$	Fe(s)	-0.44
Cr³+(aq) + 3 e⁻ <i>←</i>	Cr(s)	-0.74
Zn²+(aq) + 2 e⁻ ⇌	Zn(s)	- 0.76
$2 H_2O(l) + 2 e^- \rightleftharpoons$	$H_2(g) + 2 OH^-(aq)$	- 0.83
Mn²+(aq) + 2 e⁻ ⇌	Mn(s)	– 1.18
Aℓ³⁺(aq) + 3 e⁻ <i>←</i>	Al(s)	– 1.68
$Mg^{2+}(aq) + 2 e^{-} \rightleftharpoons$	Mg(s)	- 2.36
Na⁺(aq) + e⁻ <i>⇌</i>		- 2.71
Ca ²⁺ (aq) + 2 e ⁻ ⇌		– 2.87
Sr ²⁺ (aq) + 2 e ⁻ ⇌		- 2.90
Ba²⁺(aq) + 2 e⁻ <i>⇌</i>		- 2.91
K⁺(aq) + e⁻ <i>←</i>	K(s)	- 2.94

[Data source: Aylward, G.H., & Findlay, T. (2008). SI Chemical Data (6th ed.). Queensland: John Wiley & Sons Australia, Ltd.]