Answer TD2 Portfolio Optimization

Xiaopeng ZHANG

September 23, 2025

We consider $d \geq 1$ risky assets S_1, \ldots, S_d and a risk-free asset S_0 . We note $R_T = (R_T^1, \ldots, R_T^d)'$ the random vector for the returns of S_1, \ldots, S_d over the period [0, T], M the expectation of R_T and R_0 the deterministic return of S_0 . We assume that the variance-covariance matrix Σ of R_T is invertible and that $\mathbb{E}(R_T) \neq R_0 1_d$. We note $\Pi = (\pi_0, \pi)'$ the vector of allocations for an investment portfolio where $\pi \in \mathbb{R}^d$ defines the allocation in the risky assets and π_0 in the risk-free asset. We denote by $R_{\pi} = \pi' R_T$ the return of the risky part of the portfolio.

Exercise 2.1. Consider a portfolio $\Pi = (\pi_0, \pi)' \in \mathbb{R}^{d+1}, d \geq 1$.

1) Give the expression of the terminal wealth $W_T^{\Pi}(x_0)$ at time T for the buy and hold strategy Π and the initial capital x_0 .

We consider now the optimisation problem

$$(P_{\sigma}) \quad \begin{cases} \sup_{\pi \in \mathbb{R}^d} \mathbb{E}(W_T^{\Pi}(x_0)) \\ \operatorname{var}(W_T^{\Pi}(x_0)) = x_0^2 \sigma^2 \end{cases}$$

where $\sigma > 0$ is fixed.

2) Show that (P_{σ}) is equivalent to

$$\begin{cases} \sup_{\pi \in \mathbb{R}^d} \mathbb{E}(W_T^{\Pi}(x_0)) \\ \operatorname{var}(W_T^{\Pi}(x_0)) \le x_0^2 \sigma^2 \end{cases}$$

3) For $\lambda > 0$, we define the Lagrangian

$$L_{\lambda}(\pi) := \mathbb{E}[R_{\pi}] - \lambda(\operatorname{Var}(R_{\pi}) - \sigma^2).$$

- (a) Show that $\sup_{\pi \in \mathbb{R}^d} L_{\lambda}(\pi) < +\infty$ and that the supremum is attained for a particular value of π that we note π_{λ} .
- (b) Can you choose $\lambda(\sigma) > 0$ such that $\operatorname{Var}(R_{\pi_{\lambda(\sigma)}}) = \sigma^2$?
- (c) Explain why the efficient frontier is $\{(\sigma(\pi_{\lambda(\sigma)}), \mathbb{E}(R_{\pi_{\lambda(\sigma)}})), \sigma > 0\}.$

Réponse:

1. The terminal wealth $W_T^{\Pi}(x_0)$ at time T for the buy and hold strategy $\Pi = (\pi_0, \pi)'$ with initial capital x_0 can be expressed as:

1

$$W_T^{\Pi}(x_0) = x_0 \pi_0 R^0 + x_0 \pi' R_T$$

2. Calculation the variance, we have

$$var(W_T^{\Pi}(x_0)) = x_0^2 var(\pi' R_T) = x_0^2 \pi' \Sigma \pi$$

 $\pi'\Sigma\pi$ is a quadratic form and Σ is positive definite. We have $\pi'\Sigma\pi \geq 0$ and the equality holds if and only if $\pi = 0$. Thus, we have that the constraint set $\{\pi \in \mathbb{R}^d : \text{var}(W_T^{\Pi}(x_0)) = x_0^2\sigma^2\} = \{\pi \in \mathbb{R}^d : \pi'\Sigma\pi = \sigma^2\}$ is a compact set (closed and bounded ellipsoid in \mathbb{R}^d).

Since the objective function $\mathbb{E}(W_T^{\Pi}(x_0))$ is continuous and linear in π , and we are maximizing over a compact set, the maximum is attained by the **Extreme** Value Theorem.

Moreover, since the constraint set is the boundary of the ellipsoid $\{\pi : \pi' \Sigma \pi \leq \sigma^2\}$, any point in the interior would give a strictly smaller variance. By the scaling argument (if $\pi' \Sigma \pi < \sigma^2$, then $k\pi$ with k > 1 appropriately chosen gives $(k\pi)' \Sigma (k\pi) = \sigma^2$ and higher expected return), the maximum over the inequality constraint is achieved on the boundary, i.e., where the equality constraint holds.