Chapitre 3

Les fonctions réelles à variables réelles : limites et continuité

Sommaire)	
1	Gé	néralités
	1.1	Opérations sur les fonctions numériques
	1.2	Fonctions bornées
	1.3	Fonctions monotones
	1.4	Fonctions paires et fonction impaires
	1.5	Fonctions périodiques
2	Lin	nites d'une fonction
	2.1	Valeurs limites en un point
	2.2	Limites infinies en un point
	2.3	Valeur limite d'une fonction à l'infini
	2.4	Limites à droite et à gauche
	2.5	Propriétés des limites
	2.6	Limites et relation d'ordre
	2.7	Théorème de la limite monotone
3	For	nctions continues
	3.1	Opération sur les fonctions continues
	3.2	Prolongement par continuité
4	Les	théorèmes fondamentaux
	4.1	Continuité sur un segment
	4.2	Théorème des valeurs intermédiaires
	4.3	Application du TVI
	4.4	Théorème de la bijection
5	For	nctions uniformément continues
	5.1	Fonctions Lipschitziennes
	5.9	Continuitá uniforma 62

1 Généralités

Dans tout ce chapitre, I désigne un intervalle non trivial de \mathbb{R} (c'est à dire non vide et non réduit à un point) ou une réunion d'intervalles.

Définition 1.1. On appelle fonction numérique sur I, toute application $f: I \to \mathbb{R}$. L'élément y = f(x) est l'image de x par f. On note par $\mathcal{F}(I,\mathbb{R})$ l'ensemble des fonctions numériques définie sur I. L'ensemble

$$Im(f) = \{ y \in \mathbb{R} / \exists x \in I \text{ avec } y = f(x) \}$$

est appelé l'image de I par f, on le note f(I).

Définition 1.2. Soit f une fonction numérique.

On appelle domaine de définition de f l'ensemble noté D_f des réels x tel que f(x) soit définie, en général un D_f est un intervalle à valeurs dans \mathbb{R} .

1.1 Opérations sur les fonctions numériques

Définition 1.3. Soient f et g deux fonctions, On définit sur l'ensemble $\mathcal{F}(I,\mathbb{R})$ les lois isuivantes :

- Addition. Si $(f,g) \in \mathcal{F}(I,\mathbb{R})^2$, on définit l'application $(f+g) \in \mathcal{F}(I,\mathbb{R})$ par :

$$\forall x \in I, \quad (f+g)(x) = f(x) + g(x)$$

- Multiplication par un réel. Si $(\alpha, f) \in \mathbb{R} \times \mathcal{F}(I, \mathbb{R})$, on définit l'application $(\alpha f) \in \mathcal{F}(I, \mathbb{R})$ par

$$\forall x \in I, \quad (\alpha f)(x) = \alpha f(x)$$

- Multiplication de deux fonctions. Si $(f,g) \in \mathcal{F}(I,\mathbb{R})^2$, on définit l'application $(fg) \in \mathcal{F}(I,\mathbb{R})$ par

$$\forall x \in I, \quad (fg)(x) = f(x)g(x)$$

- Valeur absolue d'une fonction. Si $f \in \mathcal{F}(I,\mathbb{R})$, on définit l'application $|f| \in \mathcal{F}(I,\mathbb{R})$ par

$$\forall x \in I, \quad |f|(x) = |f(x)|$$

- Maximum, Minimum de deux fonctions. Si $(f,g) \in \mathcal{F}(I,\mathbb{R})^2$, on définit les deux applications $\sup(f,g) \in \mathcal{F}(I,\mathbb{R})$ et $\inf(f,g) \in \mathcal{F}(I,\mathbb{R})$ par

$$\forall x \in I$$
, $\sup(f,g)(x) = \sup(f(x),g(x))$, et $\inf(f,g)(x) = \inf(f(x),g(x))$

Remarque 1.1. La relation d'ordre $\leq sur \mathbb{R}$ s'étend naturellement à $\mathcal{F}(I,\mathbb{R})$ en posant, pour $(f,g) \in \mathcal{F}(I,\mathbb{R})^2$

$$f \le g \Longleftrightarrow \forall x \in \mathcal{I}, \quad f(x) \le g(x)$$

Proposition 1.1. Soient $(f,g) \in \mathcal{F}(I,\mathbb{R})^2$. On a

$$|f| = \sup(f, -f), \quad \sup(f, g) = \frac{f + g + |f - g|}{2}, \quad \inf(f, g) = \frac{f + g - |f - g|}{2}$$

Remarque 1.2. En posant
$$\begin{cases} f^+ &= \sup(f,0) \\ f^- &= \sup(-f,0) = -\inf(f,0) \end{cases}$$
 on vérifie que

$$\begin{cases} f^{+} &= \frac{|f| + f}{2} \\ f^{-} &= \frac{|f| - f}{2} \end{cases} et \begin{cases} f &= f^{+} - f^{-} \\ |f| &= f^{+} + f^{-} \end{cases}$$

Remarque 1.3. – $(\mathcal{F}(I,\mathbb{R}),+,.)$ (où « . » désigne la multiplication par un scalaire) possède une structure d'espace vectoriel sur \mathbb{R} .

- $-(\mathcal{F}(I,\mathbb{R}),+, imes)$ (où «imes » désigne le produit entre deux fonctions) possède une structure d'anneau.
- L'élément neutre pour l'addition est la fonction identiquement nulle, $0_{\mathcal{F}(\mathrm{I},\mathbb{R})}: \left\{ \begin{array}{ccc} \mathrm{I} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 0 \end{array} \right.$ et l'élément neutre pour la multiplication est la fonction constante $1_{\mathcal{F}(\mathrm{I},\mathbb{R})}: \left\{ \begin{array}{ccc} \mathrm{I} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 1 \end{array} \right.$

1.2 Fonctions bornées

Définition 1.4. Soit $f \in \mathcal{F}(I,\mathbb{R})$. On dit que f est :

- Majorée si et seulement si $\exists M \in \mathbb{R}, \quad \forall x \in I, \ f(x) \leq M$. Lorsque c'est le cas l'ensemble Im(f) admet une borne supérieure dans \mathbb{R} , que l'on appelle borne supérieure de f et que l'on note : $\sup_{I} f$ ou encore $\sup_{I} f(x)$.
- Minorée si et seulement si $\exists m \in \mathbb{R}, \quad \forall x \in I, \ f(x) \geq m$. Lorsque c'est le cas l'ensemble Im(f) admet une borne inférieure dans \mathbb{R} , que l'on appelle borne inférieure de f et que l'on note : $\inf_{x \in I} f$ ou encore $\inf_{x \in I} f(x)$.
- Bornée si elle est majorée et minorée, ce qui équivaut à :

$$\exists A > 0; \ \forall x \in I; \ |f(x)| \le A$$

 $Lors que \ c'est \ le \ cas \ l'ensemble \ \{|f(x)|; x \in I\} \ poss\`e de \ une \ borne \ sup\'erieure \ que \ l'on \ notera \ \sup_{I} |f| = \|f\|_{\infty}.$

Proposition 1.2. – Toute combinaison linéaire de fonctions bornées est bornée (l'ensemble des fonctions bornées forme un sous espace vectoriel de $\mathcal{F}(I,\mathbb{R})$).

- Tout produit de deux fonctions bornées est encore borné.

1.3 Fonctions monotones

Définition 1.5. *Soit* $f \in \mathcal{F}(I, \mathbb{R})$

- La fonction f est dite croissante sur I si

$$\forall x_1, x_2 \in I$$
, on a $x_1 \le x_2 \Rightarrow f(x_1) \le f(x_2)$.

- La fonction f est dite décroissante sur I si

$$\forall x_1, x_2 \in I$$
, on a $x_1 \leq x_2 \Rightarrow f(x_1) \geq f(x_2)$.

- La fonction f est dite monotone sur I si elle est croissante ou décroissante sur I.

Lorsque les inégalités sont strictes on parle de fonctions strictement croissante (resp. décroissante).

Proposition 1.3. – Soient $f, g \in \mathcal{F}(I, \mathbb{R})$

- Si f et g sont croissantes alors f + g est croissante. En plus, si l'une d'elles est strictement croissante alors f + g est strictement croissante.
- Si f et g sont définies positives et croissantes (resp. décroissantes) alors f.g est croissante (resp. décroissante).
- Si $f \in \mathcal{F}(I, \mathbb{R})$ et $g \in \mathcal{F}(J, \mathbb{R})$ avec $f(I) \subset J$ alors
 - Si f et g sont croissantes (resp. décroissantes) alors $g \circ f$ est croissante.
 - $\bullet \ \ Si\ g\ est\ croissante\ (resp.\ décroissante)\ et\ f\ est\ décroissantes\ (resp.\ croissante)\ alors\ g\circ f\ est\ décroissante$

Démonstration. Supposons par exemple f croissante sur I et g décroissante sur J. Montrons que $g \circ f$ est décroissante. Soient $(x_1, x_2) \in I$ tels que $x_1 \leq x_2$. Comme f est croissante, $f(x_1) \leq f(x_2)$ et puisque g est décroissante, $g(f(x_1)) \geq g(f(x_2))$ et donc $g \circ f(x_1) \geq g \circ f(x_2)$.

Exemple 3. La fonction $h(x) = \frac{1}{x^2 + 1}$ définie sur \mathbb{R} est décroissante sur \mathbb{R}^+ car elle s'écrit comme la composée de deux fonctions $h = g \circ f$, l'une f croissante sur \mathbb{R} : $f(x) = x^2 + 1$ et l'autre g décroissante sur \mathbb{R}^+ : $g(x) = \frac{1}{x}$

Théorème 1.1. $Soit f : [a, b] \longrightarrow \mathbb{R}$

Si f est monotone sur le segment [a, b] alors f est bornée.

 $D\'{e}monstration$. Supposons que f est décroissante

soit $x \in [a,b] \iff a \le x \le b \iff f(b) \le f(x) \le f(a) \implies f$ est bornée.

Remarque 1.4. Si f est monotone sur un intervalle ouvert, elle n'est pas nécessairement bornée.

Exemple 4. $f(x) = \frac{1}{x}$ si $x \in]0,1]$, f est décroissante mais f n'est pas bornée.

1.4 Fonctions paires et fonction impaires

On suppose f définie sur un domaine symétrique par rapport à 0 (c'est-à-dire que si $x \in I$ alors $-x \in I$). Si cette condition n'est pas verifiée, la parité est une notion creuse : inutile de perdre du temps en le precisant à chaque fois.

Définition 1.6. Soit $f \in \mathcal{F}(I, \mathbb{R})$

- f est paire si et seulement si, $\forall x \in I : f(-x) = f(x)$. Dans ce cas la courbe représentative de f admet l'axe des ordonnées comme axe de symétrie.
- f est impaire si et seulement si, $\forall x \in I : f(-x) = -f(x)$. Si c'est le cas, alors la courbe de f admet un centre de symétrie, l'origine du repère.

Remarque 1.5. Plus généralement, si $\forall x \in I$, $2a - x \in I$ et f(2a - x) = 2b - f(x), alors la courbe de f admet le point A(a,b) comme centre de symétrie.

Exemple 5. La fonction $f(x) = \sqrt{x^2 - 1}$ est paire. Son domaine de définition est $]-\infty;1] \cup [1;+\infty[$. La fonction $f(x) = x^3 - x$ est impaire Son domaine de définition est \mathbb{R} .

1.5 Fonctions périodiques

Définition 1.7. Soit $f \in \mathcal{F}(I,\mathbb{R})$. f est dite périodique de période T si

$$f(x+T) = f(x), \quad \forall x \in I/x + T \in I.$$

Remarque 1.6. – Ainsi, si T est une période pour f, tous les nombres de la forme kT, $k \in \mathbb{Z}$, sont aussi des périodes pour f.

- Si f est périodique, on appelle période fondamentale de f la plus petite période strictement positive si elle existe.
- L'ensemble des fonctions T-périodiques sur $\mathbb R$ est stable par combinaison linéaire et par produit. En particulier, c'est un sous espace vectoriel de $\mathcal F(I,\mathbb R)$.
- Pour construire le graphe d'une fonction T-périodique, il suffit de construire l'arc relatif à $[\alpha, \alpha + T, \alpha]$ quelconque. Le reste se déduit par des translations parallèles à l'axe des abscisses.

Exemple - La fonction f(x) = x - E(x) est 1-périodique

2 Limites d'une fonction

Définition 2.1. Point adhérent

Soit $A \subset \mathbb{R}$ une partie de \mathbb{R} . On dit qu'un réel x est adhérent à la partie A lorsque

$$\forall \eta > 0 \quad \exists a \in A, \ tel \ que \ |x - a| \le \eta$$

On note \overline{A} l'ensemble des points adhérents de la partie A.

Définition 2.2. Propriété vraie au voisinage d'un point

Soient f une fonction définie sur une partie I de \mathbb{R} et $a \in \overline{I}$

- On dit que la fonction f est définie au voisinage du point a si et seulement s'îl existe un voisinage V_a de a telle que $V_a \subset I$.
- On dit que f vérifie la propriété (\mathcal{P}) au voisinage du point a si et seulement s'il existe un voisinage $V_a \subset I$ de a tel que la restriction de f à V_a vérifie la propriété (\mathcal{P}) .

2.1 Valeurs limites en un point

Définition 2.3. Soient $f \in \mathcal{F}(I, \mathbb{R})$, $x_0 \in \overline{I}$ et $\ell \in \mathbb{R}$. On dit que la fonction f admet pour limite le réel ℓ en x_0 lorsque:

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ tel \ que \quad (x \in \mathcal{I}, \ x \neq x_0, \ |x - x_0| \leq \eta) \ \Rightarrow \ |f(x) - \ell| \leq \varepsilon.$$

Le réel ℓ est appelé limite de f en x_0 . On note alors $\lim_{x\to x_0} f(x) = \ell$ ou encore $f(x) \underset{x\to x_0}{\longrightarrow} \ell$.

Exemple 6. On considère la fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ définie par f(x) = 2x - 1. Nous allons montrer que f tend vers 1 quand x tend vers 1.

 $Soit \; \varepsilon > 0, \; on \; cherche \; \eta > 0 \; tel \; que \; si \; |x-1| \leq \eta \; alors \; |f(x)-1| = 2|x-1| \leq \varepsilon. \; Il \; suffit \; de \; prendre \; \eta = \frac{\varepsilon}{2}.$

Proposition 2.1. (Définition de la limite à l'aide des voisinages)

Soient $f \in \mathcal{F}(I, \mathbb{R}), x_0 \in I \text{ et } \ell \in \mathbb{R}.$

$$f(x) \underset{x \to x_0}{\longrightarrow} \ell \Longleftrightarrow \forall W \in \mathcal{V}_{\ell}, \quad \exists V \in \mathcal{V}_{x_0}, \quad f(V \cap I) \subset W$$

Proposition 2.2. (Unicité de la limite)

Si f admet une limite au point x_0 , alors cette limite est unique.

 $D\acute{e}monstration$. Si f admet deux limites ℓ_1 et ℓ_2 au point x_0 , alors on a, par définition :

$$\forall \varepsilon > 0, \ \exists \eta_1 > 0, \ \mathbf{tel que} \quad |x - x_0| \le \eta_1 \ \Rightarrow \ |f(x) - \ell_1| \le \frac{\varepsilon}{2}.$$

$$\forall \varepsilon > 0, \ \exists \eta_2 > 0, \ \mathbf{tel} \ \mathbf{que} \quad |x - x_0| \le \eta_2 \ \Rightarrow \ |f(x) - \ell_2| \le \frac{\varepsilon}{2}.$$

Posons $\eta = \min(\eta_1, \eta_2)$, alors

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \mathbf{tel que} \quad |x - x_0| \le \eta \ \Rightarrow \ |\ell_1 - \ell_2| \le |f(x) - \ell_1| + |f(x) - \ell_2| \le \varepsilon.$$

Comme ε est quelconque alors $|\ell_1 - \ell_2| \le \varepsilon$ entraine que $\ell_1 = \ell_2$.

Proposition 2.3. Soit $f \in \mathcal{F}(I,\mathbb{R})$, une fonction admettant une limite finie ℓ en $x_0 \in \overline{I}$. Alors il existe un voisinage V du point x_0 sur lequel la fonction f est bornée.

Démonstration. Remarquons d'abord que d'après l'inégalité triangulaire, on a

$$|f(x)| \le |f(x) - \ell| + |\ell|$$

Prenons $\varepsilon = 1$ dans la définition de la limite, il existe $\eta > 0$ tel que

$$\forall x \in I, \quad |x - x_0| \le \eta \Longrightarrow |f(x) - \ell| < 1$$

Posons $V =]x_0 - \eta, x_0 + \eta [\in \mathcal{V}_{x_0} \text{ et } A = |\ell| + 1. \text{ Donc}$

$$\forall x \in V \cap I, \quad |f(x)| \le 1 + \ell \Longrightarrow |f(x)| \le A$$

Proposition 2.4. (Caractérisation séquentielle)

Soit $f \in \mathcal{F}(I, \mathbb{R})$. Les assertions suivantes sont équivalentes :

- (i) $\lim_{x \to x_0} f(x) = \ell$
- (ii) Pour toute suite $(x_n)_{n\geq 0}$ de points de I telle que $\lim_{n \to +\infty} x_n = x_0$, on $\lim_{n \to +\infty} f(x_n) = \ell$.

 $egin{aligned} D\'{e}monstration. \Rightarrow). & ext{Supposons que } \lim_{x \longrightarrow x_0} f(x) = \ell & \text{et } (x_n)_{n \ge 0} & \text{une suite de points de I qui converge} \\ ext{vers } x_0. & ext{Nous allons montrer que la suite } (f(x_n))_{n \ge 0} & \text{converge vers } \ell. & ext{Soit } \forall \varepsilon > 0. & ext{Donc par définition :} \end{aligned}$

$$\exists \eta > 0 \text{ tel que } |x - x_0| \le \eta \Rightarrow |f(x) - \ell| \le \varepsilon.$$
 (1)

Comme $\lim_{n \to +\infty} x_n = x_0$, il existe un $N \ge 0$, tel que

$$\forall n \ge N, \ |x_n - x_0| \le \eta. \tag{2}$$

donc de (1) et (2), on obtient

$$\forall n \geq N, |f(x_n) - \ell| \leq \varepsilon$$

ce qui signifie bien que $\lim_{n \to +\infty} f(x_n) = \ell$.

 \iff Par absurde, supposons que f ne tend pas vers ℓ quand x tend vers x_0 . La contraposée de la définition de la limite nous donne

$$\exists \varepsilon > 0, \ \forall \eta > 0, \ (\exists x \in I, \ |x - x_0| \le \eta) \quad \text{et} \quad |f(x) - \ell| > \varepsilon.$$

Pour tout $n \geq 1$, en prenant $\eta = \frac{1}{n}$, il existera un réel $x_n \in I$ et tel que $|x_n - x_0| \leq \frac{1}{n}$ et $|f(x_n) - \ell| > \varepsilon$. La suite $(x_n)_{n \geq 1}$ ainsi construite converge vers x_0 cependant, ℓ n'est pas limite de la suite $(f(x_n)_{n\geq 1}.$

Remarque 2.1. La prosition ci-dessus sert surtout à montrer que certains fonctions n'ont pas de limites.

aple 7. 1. La fonction $f(x) = \sin(\frac{1}{x}) \ \forall x \in \mathbb{R}^*$ n'admet pas de limite au point 0:

En effet, considérons les suites $x_n = \frac{1}{n\pi}$ et $y_n = \frac{1}{2n\pi + \frac{\pi}{2}}$. Elles convergent toutes les deux vers 0 lorsque n tend vers l'infini, et pourtant on a $f(x_n) = 0$ et $f(y_n) = 1$. Comme les deux limites sont différentes donc f n'admet pas de limite au point 0.

2. La fonction f(x) = E(x) n'admet pas de limite au point k: En effet considérons les deux suites $x_n = k + \frac{1}{n}$ et $y_n = k - \frac{1}{n}$ avec $k \in \mathbb{Z}$. Elles convergent toutes les deux vers k lorsque n tend vers l'infini, et pourtant on a $E(x_n) = k$ et $E(y_n) = k - 1$. Comme les deux limites sont défférentes donc f n'admet pas de limite au point k.

Proposition 2.5. Pour que $f \in \mathcal{F}(I,\mathbb{R})$ admet une limite au point $x_0 \in \overline{I}$ il faut et il suffit qu'elle vérifie le critère de Cauchy

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ (x, x' \in I, \ |x - x_0| \le \eta, |x' - x_0| \le \eta) \Rightarrow |f(x) - f(x')| \le \varepsilon$$

 $D\acute{e}monstration. \iff$ Par définition.

 (\Leftarrow) Soit $\varepsilon > 0$, il existe $\eta > 0$ tel que $x, x' \in I$, $|x - x_0| < \eta$ et

$$|x' - x_0| < \eta \Longrightarrow |f(x) - f(x')| < \varepsilon$$

Soit (x_n) une suite de point de I qui tend vers x_0 , alors il existe N>0 tel que pour tout n>N, $|x_n-x_0|<\eta$.

Il en résulte que si p > N et q > N, $|f(x_p) - f(x_q)| < \varepsilon$. La suite $(f(x_n))_n$ est une suite de Cauchy et par suite elle converge.

Limites infinies en un point

Définition 2.4. Soit $f \in \mathcal{F}(I, \mathbb{R})$.

- 1. On dit que f tend vers $+\infty$ quand x tend vers x_0 et on notera $\lim_{x \to x_0} f(x) = +\infty$ si l'une des prriétés équivalentes suivantes est vérifiée :
 - (a) $\forall A \in \mathbb{R} \ \exists \eta > 0, \ \forall x \in I \ (|x x_0| < \eta \Rightarrow f(x) > A).$
 - (b) Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de I qui converge vers x_0 , on a

$$\lim_{n \to +\infty} f(x_n) = +\infty.$$

- 2. On dit que f tend vers $-\infty$ quand x tend vers x_0 et on note $\lim_{x \to x_0} f(x) = -\infty$ si l'une des prriétés équivalentes suivantes est vérifiée :
 - (a) $\forall B \in \mathbb{R} \ \exists \eta > 0, \ \forall x \in I \ (|x x_0| < \eta \Rightarrow f(x) < B)$.
 - (b) Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de I qui converge vers x_0 , on a

$$\lim_{n \to +\infty} f(x_n) = -\infty.$$

Valeur limite d'une fonction à l'infini 2.3

1. Soit $f \in \mathcal{F}(I,\mathbb{R})$ avec $I =]a, +\infty[$. On dit que f tend vers ℓ quand x tend vers $+\infty$ et on note $\lim_{x \to \infty} f(x) = \ell$ si l'une des prriétés équivalentes suivantes est vérifiée :

- (a) $\forall \varepsilon > 0 \ \exists \delta \in \mathbb{R}^+, \ \forall x \in I \ (x > \delta \Rightarrow |f(x) \ell| < \varepsilon)$.
- (b) Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de I qui diverge vers $+\infty$, on a

$$\lim_{n \to +\infty} f(x_n) = \ell.$$

- 2. Soit $f \in \mathcal{F}(I,\mathbb{R})$ avec $I =]-\infty,a[$. On dira que f tend vers ℓ quand x tend vers $-\infty$ et on note $\lim_{x \longrightarrow -\infty} f(x) = \ell$ si l'une des prriétés équivalentes suivantes est vérifiée :
 - (a) $\forall \varepsilon > 0 \ \exists \delta \in \mathbb{R}^-, \ \forall x \in \mathbf{I} \quad (x < \delta \Rightarrow |f(x) \ell| < \varepsilon)$.
 - (b) Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de I qui diverge vers $-\infty$, on a

$$\lim_{n \to +\infty} f(x_n) = \ell.$$

Remarque 2.2. En combinant les définitions 2.4 et 2.5, on peut facilement définir aussi les limites

$$\lim_{x \to \pm \infty} f(x) = \pm \infty.$$

1. $f(x) = \frac{1}{x^n} \text{ pour tout } n \in \mathbb{N}^*. \text{ Alors } \lim_{x \longrightarrow \pm \infty} \frac{1}{x^n} = 0.$

- 2. $f(x) = \sin x$. La limite en $x \longrightarrow \pm \infty$ n'existe pas. Idem pour $\cos x$.
- 3. $f(x) = \frac{\sin x}{x}$. Alors $\lim_{x \to \infty} \frac{\sin x}{x} = 0$.
- 4. $f(x) = \frac{P(x)}{Q(x)} = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_n x^m}$. Alors

$$\lim_{x \to \infty} \frac{P(x)}{Q(x)} = \lim_{x \to \infty} \frac{a_n}{a_m} \frac{x^n}{x^m}$$

-
$$Si \ m = n$$
, $alors \lim_{x \to \infty} \frac{P(x)}{Q(x)} = \frac{a_n}{a_m} = a$
- $Si \ m > n \ alors \lim_{x \to \infty} \frac{P(x)}{Q(x)} = 0$

$$-Si \ m > n \ alors \lim_{x \to \infty} \frac{P(x)}{O(x)} = 0$$

$$-$$
 Si $m < n$ alors $\lim_{x \longrightarrow \infty} \frac{P(x)}{Q(x)} = \infty$

2.4 Limites à droite et à gauche

Nous avons vu dans la section précédente que la notion de limite d'une fonction en un point x_0 est liée au comportement de la fonction quand on s'approche de x_0 par des suites qui convergent vers x_0 . Si on ne considère que les suites $(x_n)_{n\in\mathbb{N}}$ telles que $x_n \leq x_0$ (respectivement $x_n \geq x_0$) on dira qu'on approche x_0 à gauche (respectivement à droite). Ceci justifie la définition suivante.

Définition 2.6. 1. On dit que f tend vers ℓ quand x tend vers x_0 à droite si

$$\forall \varepsilon > 0 \ \exists \eta > 0, \quad (x_0 < x < x_0 + \eta \Rightarrow |f(x) - \ell| < \varepsilon).$$

cette limite est dite limite à droite de f en x_0 .

On note alors
$$\ell = \lim_{x \longrightarrow x_0^+} f(x)$$
 ou encore $\ell = \lim_{x \longrightarrow x_0, x > x_0} f(x)$

2. On dit que f tend vers ℓ quand x tend vers x_0 à gauche si

$$\forall \varepsilon > 0 \ \exists \eta > 0, \quad (x_0 - \eta < x < x_0 \Rightarrow |f(x) - \ell| < \varepsilon).$$

cette limite est dite limite à gauche de f en x_0 .

On note alors
$$\ell = \lim_{x \longrightarrow x_0^-} f(x)$$
 ou encore $\ell = \lim_{x \longrightarrow x_0, x < x_0} f(x)$

Proposition 2.6. Soit $f: I \setminus \{x_0\} \longrightarrow \mathbb{R}$. On a

$$\lim_{x \longrightarrow x_0} f(x) = \ell \quad \text{si et seulement si} \quad \lim_{x \longrightarrow x_0^-} f(x) = \lim_{x \longrightarrow x_0^+} f(x) = \ell.$$

Démonstration. Exercice

Remarque 2.3. En combinant les définitions 2.4 et 2.6, on peut facilement définir aussi les limites

$$\lim_{x \longrightarrow x_0^+} f(x) = \pm \infty \quad et \quad \lim_{x \longrightarrow x_0^-} f(x) = \pm \infty.$$

Exemple 9. 1. Considérons la fonction définie par $f: \mathbb{R}^* \longrightarrow \mathbb{R}$, $x \mapsto \frac{|x|}{x}$. Elle admet 1 comme limite à droite de 0 et -1 comme limite à gauche de 0. En effet,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x}{x} = 1,$$

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{-x}{x} = -1.$$

On déduit que la fonction f n'admet pas de limite en 0.

2. $f(x) = \frac{1}{x^n}$ pour tout $n \in \mathbb{N}^*$. Alors

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{1}{x^{n}} = +\infty,$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{1}{x^{n}} = \pm \infty.$$

2.5 Propriétés des limites

Les propriétés des limites de suites se généralisent facilement au cas des fonctions.

Proposition 2.7. Soient $(f,g) \in \mathcal{F}(I,\mathbb{R})^2$ et $x_0 \in \overline{I}$. On suppose que $\lim_{x \longrightarrow x_0} f(x) = \ell_1$ et $\lim_{x \longrightarrow x_0} g(x) = \ell_2$. Alors:

- 1. $\lim_{x \to x_0} (f+g)(x) = \ell_1 + \ell_2$,
- 2. $\lim_{x \to x_0} (fg)(x) = \ell_1 \ell_2$, en particulier $\lim_{x \to x_0} \alpha f(x) = \alpha \ell_1$, $\forall \alpha \in \mathbb{R}$.
- $3. \lim_{x \longrightarrow x_0} |f| = |\ell_1|.$
- 4. $si \ \ell_2 \neq 0 \ et \ g(x) \neq 0, \ \lim_{x \to x_0} \left(\frac{1}{g}\right)(x) = \frac{1}{\ell_2}.$

Démonstration.

1. Soit $\varepsilon > 0$. Puisque $f(x) \underset{x \to x_0}{\longrightarrow} \ell_1$,

$$\exists \eta_1>0 \text{ tel que } \forall x\in \mathrm{I}, |x-x_0|\leq \eta_1\Longrightarrow |f(x)-\ell_1|<\frac{\varepsilon}{2}$$

De même, $g(x) \underset{x \to x_0}{\longrightarrow} \ell_2$, alors

$$\exists \eta_2 > 0 \text{ tel que } \forall x \in \mathcal{I}, |x - x_0| \leq \eta_2 \Longrightarrow |g(x) - \ell_2| < \frac{\varepsilon}{2}$$

Posons $\eta = \min(\eta_1, \eta_2)$. Soit $x \in I$ tel que $|x - x_0| \le \eta$, on a bien

$$|(f+g)(x) - (\ell_1 + \ell_2)| \le |f(x) - \ell_1| + |g(x) - \ell_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2. On commence par écrire

$$|(fq)(x) - \ell_1 \ell_2| = |f(x)[q(x) - \ell_2] + \ell_2 [f(x) - \ell_1]| < |f(x)||q(x) - \ell_2| + |\ell_2||f(x) - \ell_1||$$

Soit $\varepsilon > 0$. Comme f admet une limite finie au point x_0 , elle est bornée sur un voisinage de x_0 donc il existe $\eta_3 > 0$ et M > 0 tel que

$$\forall x \in I, \quad |x - x_0| \le \eta_3 \Longrightarrow |f(x)| \le M.$$

Puisque $f(x) \underset{x \to x_0}{\longrightarrow} \ell_1$

$$\exists \eta_1 > 0 \text{ tel que } \forall x \in I, |x - x_0| \le \eta_1 \Longrightarrow |f(x) - \ell_1| < \frac{\varepsilon}{2(|\ell_2| + M)}$$

Puisque $g(x) \underset{x \to x_0}{\longrightarrow} \ell_2$,

$$\exists \eta_2 > 0 \text{ tel que } \forall x \in \mathcal{I}, |x - x_0| \le \eta_2 \Longrightarrow |g(x) - \ell_2| < \frac{\varepsilon}{2(|\ell_2| + M)}$$

Posons $\eta = \min(\eta_1, \eta_2, \eta_3) > 0$. Soit $x \in I$ tel que $|x - x_0| \le \eta$, en remplaçant dans la majoration

précédente,

$$|(fg)(x) - \ell_1 \ell_2| \le M \frac{\varepsilon}{2(|\ell_2| + M)} + |\ell_2| \frac{\varepsilon}{2(|\ell_2| + M)} = \varepsilon$$

3. C'est facile à déduire de la minoration de l'inégalité triangulaire,

$$|f(x)| - |\ell_1| \le |f(x) - \ell_1|$$

4. Soit $\varepsilon > 0$. Notons $k = \frac{|\ell_2|}{2}$. Puisque $\ell_2 \neq 0$, $k < |\ell_2|$ et comme $|g(x)| \underset{x \to x_0}{\longrightarrow} |\ell_2|$, il existe $\eta_1 > 0$ tel que

$$\forall x \in I, |x - x_0| \le \eta_1 \Longrightarrow k < |g(x)|.$$

d'autre part il

$$\exists \eta_2 > 0 \text{ tel que } \forall x \in I, |x - x_0| \leq \eta_2 \Longrightarrow |g(x) - \ell_2| < k|\ell_2|\varepsilon$$

Posons $\eta = \min(\eta_1, \eta_2)$. Soit $x \in I$ tel que $|x - x_0| \le \eta$

$$\left|\frac{1}{g(x)} - \frac{1}{\ell_2}\right| = \frac{|g(x) - \ell_2|}{|g(x)||\ell_2|} < \varepsilon$$

On peut étendre le théorème précédent aux limites infinies. Soient $f,g: I \longrightarrow \mathbb{R}$ deux fonctions, $x_0 \in \overline{I}$, éventuellement infini et un réel α . On suppose que $f(x) \underset{x \to x_0}{\longrightarrow} \ell \in \overline{\mathbb{R}}$ et $g(x) \underset{x \to x_0}{\longrightarrow} \ell' \in \overline{\mathbb{R}}$. Nous avons résumé dans les tableaux suivants les limites de la somme, produit et quotient des deux fonctions dans tous les cas de figure. Les cases vide correspondent à des « formes indéterminées » où l'on ne peut rien dire de général.

- Somme f + g

$\ell \backslash \ell'$	$-\infty$	\mathbb{R}	$+\infty$
$-\infty$	$-\infty$	$-\infty$	
\mathbb{R}	$-\infty$	$\ell + \ell'$	$+\infty$
$+\infty$		$+\infty$	$+\infty$

- Produit fg

$\ell \backslash \ell'$	$-\infty$	\mathbb{R}^{-*}	{0}	\mathbb{R}^{+*}	$+\infty$
$-\infty$	$+\infty$	$+\infty$		$-\infty$	$-\infty$
\mathbb{R}^{-*}	$+\infty$	$\ell\ell'$	0	$\ell\ell'$	$-\infty$
{0}		0	0	0	
\mathbb{R}^{+*}	$-\infty$	$\ell\ell'$	0	$\ell\ell'$	$+\infty$
$+\infty$	$-\infty$	$-\infty$		$+\infty$	$+\infty$

- Inverse $\frac{1}{f}$

l	2	$-\infty$	\mathbb{R}^{-*}	$\{0^-\}$	$\{0^+\}$	\mathbb{R}^{+*}	$+\infty$
	<u>.</u>	0	$\frac{1}{\ell}$	$-\infty$	$+\infty$	$\frac{1}{\ell}$	0

Théorème 2.1. (Théorème de composition des limites)

Soient deux intervalles $I \subset \mathbb{R}$, $J \subset \mathbb{R}$ et deux fonctions $f: I \longrightarrow \mathbb{R}$ et $g: J \longrightarrow \mathbb{R}$ telles que $f(I) \subset J$. Soient

 $a \in \overline{I}$ et $b \in \overline{J}$. On suppose que

$$\lim_{x \to a} f(x) = b \quad et \quad \lim_{y \to b} g(y) = \ell \in \overline{\mathbb{R}}$$

Alors

$$\lim_{x \to a} (g \circ f)(x) = \ell$$

 $D\'{e}monstration$. Écrivons la preuve dans le cas où a et ℓ sont finis.

Soit $\varepsilon > 0$.

Puisque $g(y) \xrightarrow[y \to b]{} \ell$,

$$\exists \alpha > 0 \text{ tel que } \forall y \in J, \ |y - b| \le \alpha \Longrightarrow |g(y) - \ell| \le \varepsilon$$

Puisque $f(x) \xrightarrow[x \to a]{} b$,

$$\exists \eta > 0 \text{ tel que } \forall x \in I, |x - a| \leq \eta \Longrightarrow |f(x) - b| \leq \alpha$$

Soit $x \in I$ tel que $|x - a| \le \eta$. Comme $y = f(x) \in J$ et que $|f(x) - b| \le \alpha$, on a $|g(f(x)) - \ell| \le \varepsilon$ d'où $|(g \circ f)(x) - \ell| \le \varepsilon$.

2.6 Limites et relation d'ordre

Proposition 2.8. Soit $f \in \mathcal{F}(I,\mathbb{R})$, une fonction admettant une limite finie ℓ en $x_0 \in \overline{I}$. On suppose qu'il existe $k, k' \in \mathbb{R}$ tels que $k < \ell < k'$. Alors il existe un voisinage V du point x_0 tel $\forall x \in V \cap I$, $k \leq f(x) \leq k'$.

 $m{D\'emonstration.}$ Posons $arepsilon=\min(\ell-k,k'-\ell).$ Puisque $\lim_{x\to x_0}f(x)=\ell,$ il existe un voisinage V du point x_0 tel que $\forall x\in V\cap I,\, |f(x)-\ell|\leq arepsilon$ d'où si $x\in V\cap I,\, f(x)-\ell\leq arepsilon$ ce qui donne $f(x)\leq \ell+arepsilon\leq \ell+(k'-\ell)\leq k'$ et aussi $\ell-f(x)\leq arepsilon$ ce qui donne $f(x)\geq \ell-arepsilon\geq k.$

Théorème 2.2. Soit une fonction $f: I \longrightarrow \mathbb{R}$, un point $x_0 \in \overline{I}$ (éventuellement infini) et $k \in \mathbb{R}$. On suppose que $f(x) \xrightarrow[x \to x_0]{} \ell$ telle qu'il existe un voisinage V du point x_0 tel que $\forall x \in V \cap I$, $k \leq f(x)$ (resp. k < f(x)). Alors $k \leq \ell$.

Démonstration. Écrivons la démonstration dans le cas où x_0 est ℓ sont finis. Supposons par l'absurde que $\ell < k$ et posons $\varepsilon = k - \ell > 0$. Puisque $f(x) \underset{x \to x_0}{\longrightarrow} \ell$, il existe $\eta_1 > 0$ tel que

$$\forall x \in I, |x - x_0| < \eta_1 \Longrightarrow |f(x) - \ell| < \varepsilon.$$

Puisque V est un voisinage du point x_0 , il existe $\eta_2 > 0$ tel que $]x_0 - \eta_2, x_0 + \eta_2[\subset V$. Posons alors $\eta = \min(\eta_1, \eta_2)$. Puisque le point x_0 est adhérent à I, il existe $x \in I$ tel que $|x - x_0| \le \eta$ et on doit avoir d'une part $k \le f(x)$ et $|f(x) - \ell| < \varepsilon$ mais alors,

$$k < f(x) < \ell + \varepsilon = \ell + (k - \ell) = k$$

ce qui est absurde.

Corollaire 6. Soient deux fonctions $f, g: I \longrightarrow \mathbb{R}$, $x_0 \in I$ et $\ell_1, \ell_2 \in \mathbb{R}$ telles que

$$f(x) \underset{x \to x_0}{\longrightarrow} \ell_1 \ et \ g(x) \underset{x \to x_0}{\longrightarrow} \ell_2$$

On suppose qu'il existe un voisinage V du point x_0 tel que $\forall x \in V \cap I$, $f(x) \leq g(x)$ (resp f(x) < g(x) alors

$$\ell_1 < \ell_2$$

Démonstration. Définissons la fonction h=g-f. D'après les propriétés des limites, $h(x)\underset{x\to x_0}{\longrightarrow}\ell_2-\ell_1$. D'autre part, sur un voisinage de x_0 , on a $k=0\leq h(x)$. D'après le théorème précédent, $0\leq \ell_2-\ell_1$ d'où $\ell_1\leq \ell_2$.

Le principe des gendarmes est aussi valable pour les limites des fonctions.

Proposition 2.9. (Le principe des gendarmes). Soient f, g et h des fonctions réelles, définies sur un voisinage V d'un point adhérent $x_0 \in \overline{I}$.

1. Si pour tout $x \in V$ on a $f(x) \le h(x) \le g(x)$ alors

$$\left(\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \ell\right) \implies \left(\lim_{x \to x_0} h(x) = \ell\right).$$

2. Si pour tout $x \in V$ on a $f(x) \leq g(x)$ alors

(a)
$$\left(\lim_{x \to x_0} f(x) = +\infty\right) \Longrightarrow \left(\lim_{x \to x_0} g(x) = +\infty\right).$$

(b)
$$\left(\lim_{x \to x_0} g(x) = -\infty\right) \Longrightarrow \left(\lim_{x \to x_0} f(x) = -\infty\right).$$

Démonstration.

1. Écrivons la preuve dans le cas où x_0 est fini.

Soit
$$\varepsilon > 0$$
. Puisque $f(x) \underset{x \to x_0}{\longrightarrow} \ell$,

$$\exists \eta_1 > 0 \text{ tel que } \forall x \in I, |x - x_0| \leq \eta_1 \Longrightarrow |f(x) - \ell| \leq \varepsilon$$

De même, puisque $g(x) \xrightarrow[x \to x_0]{} \ell$,

$$\exists \eta_2 > 0 \text{ tel que } \forall x \in I, |x - x_0| \leq \eta_2 \Longrightarrow |g(x) - \ell| \leq \varepsilon$$

Comme V est un voisinage du point x_0 ,

$$\exists \eta_3 > 0 \text{ tel que }]x_0 - \eta_3, x_0 + \eta_3 [\subset V.$$

Posons $\eta = \min(\eta_1, \eta_2, \eta_3)$. Soit $x \in I$ tel que $|x - x_0| \le \eta$. Puisque $|x - x_0| \le \eta \le \eta_1$, $\ell - \varepsilon \le f(x)$. Puisque $|x - x_0| \le \eta \le \eta_2$, $g(x) \le \ell + \varepsilon$ et puisque $|x - x_0| \le \eta \le \eta_3$, $f(x) \le h(x) \le g(x)$. On a finalement

$$\ell - \varepsilon < f(x) < h(x) < g(x) < \ell + \varepsilon$$

d'où $|h(x) - \ell| \leq \varepsilon$.

2. Les démonstrations sont les mêmes que dans le cas des suites.

Proposition 2.10. Soient f et g deux fonctions réelles. Si $\lim_{x \to \infty} f(x) = 0$ et g(x) est bornée, alors

$$\lim_{x \to \infty} f(x)g(x) = 0.$$

Exemple 10. 1. $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ définie sur $\mathbb{R} \setminus \{0\}$. Alors $\lim_{x \to 0} f(x) = 0$. En effet on a

$$-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2, \quad et \quad \lim_{x \to 0} x^2 = \lim_{x \to 0} (-x^2) = 0$$

on déduit, par le principe des gendarmes que

$$\lim_{x \longrightarrow 0} f(x) = 0.$$

2. $f(x) = \frac{\sqrt{2x^4 + x^2 + 3}}{x^4}$, définie sur \mathbb{R}^* . On a $\sqrt{3} \le \sqrt{2x^4 + x^2 + 3}$. En multipliant par $\frac{1}{x^4}$ qui est positif, on déduit que $\frac{\sqrt{3}}{x^4} \le f(x)$, et puisque $\lim_{x \to 0} \frac{\sqrt{3}}{x^4} = +\infty$, on déduit que

$$\lim_{x \to 0} f(x) = +\infty.$$

3.
$$f(x) = \frac{x^4 + 3x^2}{x^6} \sin^2(x)$$
, définie $\sup \mathbb{R} \setminus \{0\}$. On $\lim_{x \to \infty} \frac{x^4 + 3x^2}{x^6} = 0$ et $\sin^2(x)$ est bornée alors
$$\lim_{x \to \infty} f(x) = 0.$$

2.7 Théorème de la limite monotone

Théorème 2.3. Soient $(a,b) \in \mathbb{R}^2$ et I =]a,b[. Si une fonction $f : I \longrightarrow \mathbb{R}$ est croissante (respectivement décroissante), alors il y a deux possibilités.

- 1. Si f est majorée, alors f admet une limite finie ℓ lorsque x tend vers b (resp a) et on a alors $\ell = \sup_{x \in \mathcal{X}} f$.
- 2. Si f n'est pas majorée, alors $f(x) \underset{x \to b}{\longrightarrow} +\infty$ (resp $f(x) \underset{x \to a}{\longrightarrow} +\infty$).

De même,

- 1. Si f est minorée, alors f admet une limite finie ℓ lorsque x tend vers a (resp b) et on a alors $\ell = \inf_{x} f$.
- 2. Si f n'est pas minorée, alors $f(x) \underset{x \to a}{\longrightarrow} -\infty$ (resp $f(x) \underset{x \to b}{\longrightarrow} -\infty$) .

 $\textbf{\textit{D\'emonstration}}.$ Posons $\mathcal{E} = \{f(x); x \in]a, b[\}$. La partie $\mathcal{E} \subset \mathbb{R}$ est non vide. Étudions les deux cas.

1. Si la fonction f est majorée, alors la partie $\mathcal E$ est majorée et d'après la propriété de la borne supérieurs, elle possède une borne supérieure $\ell \in \mathbb R$. Montrons qu'alors $f(x) \underset{x \to b}{\longrightarrow} \ell$. Soit $\varepsilon > 0$. D'après la de caractérisation de la borne supérieure, il existe $y \in \mathcal E$ tel que $\ell - \varepsilon < y \le \ell$. Puisque $y \in \mathcal E$, il existe $x_0 \in]a,b[$ tel que $y = f(x_0)$. Posons $\eta = b - x_0 > 0$. Soit $x \in I$ tel que $|x - b| \le \eta$, on a $x_0 \le x \le b$. Puisque la fonction f est croissante, $f(x_0) \le f(x)$ et comme ℓ est un majorant de $\mathcal E$, on a également $f(x) \le \ell$. Finalement,

$$\ell - \varepsilon \le f(x_0) \le f(x) \le \ell < \ell + \varepsilon \Longrightarrow |f(x) - \ell| < \varepsilon$$

2. Si la fonction f n'est pas majorée, montrons que $f(x) \underset{x \to b}{\longrightarrow} +\infty$. Soit A > 0. Puisque f n'est pas majorée, il existe $x_0 \in]a,b[$ tel que $A < f(x_0)$. Posons $\eta = b - x_0 > 0$. Soit $x \in I$ tel que $|x-b| \le \eta$. Puisque $x_0 \le x$ et que f est croissante, on a $A < f(x_0) \le f(x)$.

3 Fonctions continues

Définition 3.1. Soient $f \in \mathcal{F}(I, \mathbb{R})$ et $x_0 \in I$

1. On dit que la fonction f est <u>continue</u> au point x_0 si f(x) tend vers $f(x_0)$, quand x tend vers x_0 pour tout $x \in I$, ce qui s'écrit

$$\lim_{x \longrightarrow x_0} f(x) = f(x_0).$$

On peut formuler ceci de la façon suivante

$$\forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } |x - x_0| \le \eta \implies |f(x) - f(x_0)| \le \varepsilon$$

2. On dit que f est continue sur l'intervalle I si elle est continue en tout point de I. On notera $\mathcal{C}(I,\mathbb{R})$ l'ensemble des fonctions continues en tout point de I.

Exemple 11. 1. On considère la fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ définie par f(x) = 2x - 1. Nous avons montrer que f tend vers f(1) = 1 quand x tend vers 1. Donc f est continue au point $x_0 = 1$.

2. Soit la fonction réelle f définie par

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & si \quad x \neq 0, \\ 0 & si \quad x = 0 \end{cases}$$

Au point $x_0 = 0$ on a

$$|f(x) - f(0)| = |x \sin(\frac{1}{x})| \le |x|.$$

En prenant $\eta = \varepsilon$ on aura

$$|x| \le \eta \implies |f(x) - f(0)| \le \varepsilon.$$

Donc f est continue au point $x_0 = 0$.

- 3. De même en appliquant directement la définition, on peut montrer facilement que la fonction $h(x) = \sqrt{x}$ est continue en tout point de \mathbb{R}_*^+ .
- 4. pour tout $x_0 \in \mathbb{R}$, $\lim_{x \longrightarrow x_0} x^2 = x_0^2$. Ceci montre que la fonction $f(x) = x^2$ est continue en en tout point x_0 de \mathbb{R} .
- 5. En général toutes les fonctions usuelles sont continues en tout point de leur domaine de définition : x^n , $\sin x$, $\cos x$, $\ln x$, e^x ...

La proposition suivante est une conséquence de la proposition 2.4.

Proposition 3.1. (Caractérisation séquentielle de la continuité)

f est continue en x_0 si et seulement si pour toute suite $(x_n)_{n\geq 0}$ de points de I telle que $\lim_{n\longrightarrow +\infty} x_n=x_0$, on a $\lim_{n\longrightarrow +\infty} f(x_n)=f(x_0)$.

 $D\'{e}monstration$. La démonstration est une conséquence immédiate du critère sequentiel.

- **Exemple 12.** 1. Nous avons vu que la fonction $f(x) = \sin(\frac{1}{x}) \ \forall x \in \mathbb{R}^*$ n'admet pas de limite au point θ . Ceci montre que cette fonction n'est pas continue en θ .
 - 2. La fonction f(x) = E(x) n'admet pas de limite au point $k \in \mathbb{Z}$. Ceci montre que cette fonction n'est pas continue sur \mathbb{Z} .

Définition 3.2. Soient $f \in \mathcal{F}(I, \mathbb{R})$ et $x_0 \in I$

1. f est continue à droite en x_0 si $\lim_{x \longrightarrow x_0^+} f(x) = f(x_0)$.

2. f est continue à gauche en x_0 si $\lim_{x \to x_0^-} f(x) = f(x_0)$.

La proposition suivante est une conséquence de la proposition 2.6.

Proposition 3.2. La fonction f est continue en x_0 si et seulement si

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0).$$

Exemple 13. Nous avons vu que la fonction définie par, $f: \mathbb{R}^* \longrightarrow \mathbb{R}$, $x \mapsto \frac{|x|}{x}$, admet 1 comme limite à droite en 0 et -1 comme limite à gauche en 0. Donc la fonction f n'est pas continue 0.

3.1 Opération sur les fonctions continues

Théorème 3.1. Soient $f, g \in \mathcal{F}(I, \mathbb{R})$. Si f et g sont des fonctions réelles continues en x_0 alors

- 1. les fonctions |f|, sup(f,g), inf(f,g), f+g, f-g et αf sont continues en x_0 ,
- 2. si de plus $g(x_0) \neq 0$ alors la fonction $\frac{f}{g}$ est définie sur un voisinage du point x_0 et est continue en x_0 .

Démonstration. (1) est une conséquence directe des propriétés sur les limites.

Vérifions (2). Puisque $|g(x_0)| \neq 0$ et que g est continue au point $x_0, g(x) \xrightarrow[x \to x_0]{} g(x_0)$ donc $|g(x)| \xrightarrow[x \to x_0]{} g(x_0)|$. Posons $k = \frac{|g(x_0)|}{2}$, on a $0 < k < |g(x_0)|$ donc il existe un voisinage V du point x_0 tel que $\forall x \in I \cap V, \ 0 < \frac{|g(x_0)|}{2} < |g(x)|$ et donc la fonction g ne s'annule pas sur V. La fonction $\frac{f}{g}$ est donc définie sur $I \cap V$ et d'après les proriétés des limites, $(\frac{f}{g})(x) \xrightarrow[x \to x_0]{} \frac{f}{g}(x_0)$.

Théorème 3.2. (Continuité de la composée de deux applications)

Soient deux intervalles $I \subset \mathbb{R}$, $J \subset \mathbb{R}$ et deux fonctions $f: I \longrightarrow \mathbb{R}$ et $g: J \longrightarrow \mathbb{R}$ telles que $f(I) \subset J$. On suppose que f est continue en x_0 et g est continue en $y_0 = f(x_0)$ alors $g \circ f$ est continue en x_0 .

De manière générale, si f est continue sur I et g est continue sur J. Alors $(g \circ f)$ est continue sur I.

Démonstration. C'est une conséquence immédiate du théorème 2.1.

3.2 Prolongement par continuité

Définition 3.3. On dit que f est <u>discontinue</u> en x_0 si f n'est pas continue en x_0 .

Exemple 14. 1. La fonction définie par :

$$f(x) = \begin{cases} 1 & si \ x > 0 \\ 0 & si \ x \le 0 \end{cases}$$

n'est pas continue en 0. En effet, au point x=0, la fonction f est continue à gauche, mais elle ne l'est pas à droite car $\lim_{x \to 0^{-}} f(x) = f(0)$ et $\lim_{x \to 0^{+}} f(x) = 1 \neq f(0)$.

2. La fonction $f(x) = \frac{1}{x}$ n'est pas définie en 0 de plus $\lim_{x \to 0} f(x) = \pm \infty$, d'où f n'est pas continue en 0.

Définition 3.4. Si la fonction f n'est pas définie au point $x_0 \in \bar{I}$ et qu'elle admet en ce point une limite $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$, alors la fonction \widetilde{f} définie par :

$$\widetilde{f}(x) = \begin{cases} f(x) & si \ x \in I \setminus \{x_0\} \\ \ell & si \ x = x_0 \end{cases}$$

est continue au point x_0 et appelée prolongement par continuité de f au point x_0 .

Exemple 15. On considère la fonction $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par

$$f(x) = \frac{\sin x}{r}.$$

Cette fonction est continue sur \mathbb{R}^* comme quotient de deux fonctions continues et $\lim_{x \to 0} f(x) = 1$. Ainsi f est prolongeable par continuité en 0 et la fonction $\widetilde{f}: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$\widetilde{f}(x) = \begin{cases} \frac{\sin x}{x} & si \quad x \neq 0, \\ 1 & si \quad x = 0 \end{cases}$$

est le prolongement par continuité de f en 0.

Les théorèmes fondamentaux 4

4.1Continuité sur un segment

Une fonction f définie sur l'intervalle fermé borné [a,b] est continue sur [a,b] signifie qu'elle est continue en tout point de l'intervalle ouvert]a,b[et continue à droite en a $(\lim_{x\to a^+} f(x) = f(a))$ et à gauche en b $(\lim_{x\longrightarrow b^-}f(x)=f(b))$. Le théorème suivant est fondamental en analyse.

Théorème 4.1. (Théorème du maximum) Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue alors f est bornée et atteint ses bornes càd si

$$m = \inf_{x \in [a,b]} f(x)$$
 et $M = \sup_{x \in [a,b]} f(x)$

alors

$$\exists x_1, x_2 \in [a, b]/ f(x_2) = m \text{ et } f(x_1) = M$$

Démonstration. La preuve utilise le théorème de Bolzano-Weierstrass.

- Montrons, par l'absurde, que la fonction f est majorée : en supposant que la fonction f n'est pas majorée:

$$\forall M \in \mathbb{R}, \exists x \in [a, b], \ f(x) > M$$

Soit un entier $n \in \mathbb{N}$. En prenant M = n, il existe $x_n \in [a, b]$ vérifiant $f(x_n) > n$. On construit ainsi une suite de points (x_n) du segment [a,b] telle que $f(x_n) \underset{n \to +\infty}{\longrightarrow} +\infty$. Puisque la suite (x_n) est bornée, d'après le théorème de Bolzano-Weierstrass, il existe une suite extraite $(x_{\varphi(n)})$ qui converge vers $c \in \mathbb{R}$. Puisque $\forall n \in \mathbb{N}, a \leq x_n \leq b$, par passage à la limite dans les inégalités, $a \leq b$ $c \leq b$. Mais la fonction f est continue au point c donc d'après la caractérisation séquentielle de la continuité, $f(x_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(c)$. On obtient une contradiction puisque $f(x_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} +\infty$.

- Définissons la partie de \mathbb{R} , $F = \{f(x); x \in [a, b]\}$. Elle est non vide puisque $f(a) \in F$. De plus, elle est majorée puisqu'on a vu que f était majorée. Elle admet donc une borne supérieure, $M = \sup_{I} F = \sup_{I} f$. Montrons que cette borne supérieure est atteinte. D'après la caractérisation de la borne supérieure,

$$\forall \varepsilon > 0, \ \exists x \in [a, b], \ \mathbf{tel que} \ M - \varepsilon < f(x) \leq M$$

Pour tout entier n non nul, en prenant $\varepsilon = \frac{1}{n}$, il existe $x_n \in [a, b]$ tel que

$$M - \frac{1}{n} < f(x_n) \le M$$

La suite (x_n) étant bornée, d'après le théorème de Bolzano-Weierstrass, il existe une suite extraite $(x_{\varphi(n)})$ qui converge vers une limite $x_1 \in [a,b]$. Puisque la fonction f est continue au point x_1 , $f(x_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(x_1)$. On a d'autre part,

$$\forall n \in \mathbb{N}^*, M - \frac{1}{n} \le M - \frac{1}{\varphi(n)} \le f(x_{\varphi(n)}) \le M$$

Par passage à la limite dans cette inégalité, on obtient que $M \leq f(x_1) \leq M$ d'où $M = f(x_1)$.

- Pour montrer que f possède une borne inférieure et que cette borne inférieure est atteinte, on utilise les mêmes techniques.

4.2 Théorème des valeurs intermédiaires

Théorème 4.2. (TVI)

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue sur [a,b] tel que $f(a) \neq f(b)$. Alors, pour tout $c \in f(]a,b)$ [, il existe un $x_0 \in]a,b[$ tel que $f(x_0) = c$.

Remarque 4.1. Attention le point x_0 n'est pas unique.

Démonstration. Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue sur [a,b] tel que $f(a) \neq f(b)$. On peut supposer que f(a) < f(b) et soit $c \in]f(a), f(b)[$.

Soit A l'ensemble

$$A = \{x \in [a, b], f(x) \le c\}.$$

On a clairement $a \in A$ et donc A est non vide et en plus A est majoré par b. D'après le théorème de la borne supérieure, A admet une borne supérieure.

Soit $x_0 = \sup A$. Donc il existe une suite $(a_n)_{n \in \mathbb{N}}$ de points de A tell que $\lim_{n \to +\infty} a_n = x_0$. Pour tout $n \in \mathbb{N}$, $a_n \in A$ et donc $f(a_n) \leq c$ et puisque f est continue en x_0 , on a $\lim_{n \to +\infty} f(a_n) = f(x_0)$ d'où $f(x_0) \leq c$.

D'un autre côté, on a $x_0 < b$ car c < f(b) et donc pour tout $x \in]x_0, b[$, on a f(x) > c. Il en résulte alors que $\lim_{x \longrightarrow x_0^+} f(x) = f(x_0) \ge c$. Finalement, $f(x_0) = c$.

Une variante du théorème des valeurs intermédiaires, qui permet de résoudre certaines équations numériques, est donnée par :

Théorème 4.3. Soit f une fonction continue sur [a,b]. Si on a f(a)f(b) < 0 alors il existe $\alpha \in]a,b[$ tel que $f(\alpha) = 0$.

Attention là aussi le point x_0 n'est pas unique.

Exemple 16. Nous allons montrer que l'équation $x^3 - 2x + 2 = 0$ admet une solution sur]-2,1[. On considère la fonction

$$f(x) = x^3 - 2x + 2.$$

Cette fonction est continue sur [-2,1] et f(-2)f(1) = -2 < 0. D'après le corollaire 4.3, il existe $x_0 \in]-2,1[$ tel que $f(x_0) = 0$. L'équation f(x) = 0 admet au moins une racine x_0 sur l'intervalle]-2,1[.

4.3 Application du TVI

Corollaire 7. L'image d'un intervalle par une application continue est un intervalle.

Démonstration. On suppose que $f: I \longrightarrow \mathbb{R}$ et que f est continue sur un intervalle I. Soit J un intervalle de I. Nous allons montrer que f(J) est encore un intervalle de \mathbb{R} . Cela revient à prouver que pour tout $y_1, y_2 \in f(J)$, on a $[y_1, y_2] \subset f(J)$. Soit $y_1, y_2 \in f(J)$. Il existe $x_1, x_2 \in J$ tels que $f(x_1) = y_1$ et $f(x_2) = y_2$. Soit $y \in [y_1, y_2]$. D'après le théorème des valeurs intermédiaires, il existe $x \in [x_1, x_2]$ tel que y = f(x). Par conséquent, $y \in f(J)$. On prouve ainsi que $[y_1, y_2] \subset f(J)$.

Corollaire 8. L'image d'un segment [a,b] par une application continue est un segment et si $m = \inf_{[a,b]} f$ et $M = \sup_{[a,b]} f$ alors f([a,b]) = [m,M].

Démonstration. Puisque M est un majorant de f([a,b]) et m un minorant de f([a,b]), on a $f([a,b]) \subset [m,M]$. Montrons que $[m,M] \subset f([a,b])$. Soit $y \in [m,M]$. Comme les bornes sont atteintes, il existe $x_1,x_2 \in [a,b]$ tel que $M=f(x_1)$ et $m=f(x_2)$. Un segment est un intervalle, donc d'après le théorème des valeurs intermédiaires, puisque $y \in [f(x_1),f(x_2)]$, il existe $x \in [x_1,x_2] \subset [a,b]$ tel que y=f(x) ce qui montre que $y \in f([a,b])$.

4.4 Théorème de la bijection

Théorème 4.4. Soit f continue et strictement monotone sur un intervalle I. Alors f est bijective de I sur J = f(I) et $f^{-1}: J \longrightarrow I$ est continue strictement monotone de même type de monotonie que f.

Preuve. Supposons par exemple que f est strictement croissante. Montrons qu'alors f est injective. Soient $(x,y) \in I^2$ tels que f(x) = f(y), montrons que x = y par l'absurde. Si l'on avait $x \neq y$, on aurait x < y ou y < x, mais alors, puisque f est strictement croissante, on aurait f(x) < f(y) ou f(y) < f(x) ce qui est absurde. D'autre part le théorème des VI prouve que f est surjective. Ainsi f est une bijection de I sur J.

Soient $(X,Y) \in J^2$ tels que X < Y. Notons $x = f^{-1}(X)$ et $y = f^{-1}(Y)$. Si l'on avait $y \le x$, puisque f est croissante, on aurait $f(y) \le f(x)$ et donc $Y \le X$ ce qui est faux. On en déduit que x < y donc que $f^{-1}(X) < f^{-1}(Y)$.

Nous allons montrer maintenant que $f^{-1}: J \longrightarrow I$ est continue.

Soit $y_0 = f(x_0) \in J$ avec $x_0 \in I$ et soit $(f(x_n))_{n \in N}$ une suite qui converge vers y_0 . Nous allons montrer

que la suite $(f^{-1}(f(x_n))_{n\in\mathbb{N}}=(x_n)_{n\in\mathbb{N}}$ converge vers $f^{-1}(y_0)=x_0$. Soit $\varepsilon>0$ tel que $[x_0-\varepsilon,x_0+\varepsilon]\in I$. Puisque f est continue et strictement croissante, d'après le théorème 4.1, on a

$$f([x_0 - \varepsilon, x_0 + \varepsilon]) = [f(x_0 - \varepsilon), f(x_0 + \varepsilon)] = [y_1, y_2]$$

et $f(x_0) = y_0 \in [y_1, y_2]$. Puisque la suite $(f(x_n))_{n \in N}$ converge vers y_0 , il existe donc un $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, $f(x_n) \in [y_1, y_2]$, soit $x_n \in [x_0 - \varepsilon, x_0 + \varepsilon]$, d'où

$$\lim_{n \to +\infty} x_n = x_0.$$

Remarque 4.2. Soit f une fonction bijective sur I. Le graphe de f^{-1} , dans un repère orthonormé, se déduit de celui de f par une symétrie d'axe par rapport à la première bissectrice

5 Fonctions uniformément continues

5.1 Fonctions Lipschitziennes

Définition 5.1. – Soit un réel k > 0. On dit qu'une fonction $f : I \longrightarrow \mathbb{R}$ est k-lipschitzienne sur l'intervalle I si et seulement si

$$\forall (x,y) \in I^2, |f(x) - f(y)| \le k|x - y|$$

On note $\mathcal{L}(I)$ l'ensemble des fonctions lipschitziennes sur l'intervalle I.

- $Si \ 0 \le k < 1$, et f est k-lipschitzienne, on dit que f est contractante.

Proposition 5.1. 1. Une combinaison linéaire de deux fonctions lipschitzienne est encore lipschitzienne. Si $f, g \in \mathcal{L}(I)$, alors $\alpha f + \beta g \in \mathcal{L}(I)$.

- 2. La composée de deux fonctions lipschitziennes est encore lipschitzienne. Si $f \in \mathcal{L}(I)$ et $g \in \mathcal{L}(J)$ avec $f(I) \subset J$, alors $(g \circ f) \in \mathcal{L}(I)$.
- 3. Soit $c \in I$, on note $I_1 = I \cap]-\infty, c]$ et $I_2 = I \cap [c, +\infty[$. Si f est lipschitzienne sur I_1 et sur I_2 , alors elle est lipschitzienne sur I.

Démonstration.

1. Puisque f et g sont lipschitziennes sur I, il existe deux constantes $k_1, k_2 > 0$ telles que $\forall (x,y) \in I^2$, $|f(x) - f(y)| \le k_1|x - y|$ et $|g(x) - g(y)| \le k_2|x - y|$. Posons $k = |\alpha|k_1 + |\beta|k_2$. Soit $(x,y) \in I^2$, utilisons l'inégalité triangulaire

$$|(\alpha f + \beta g)(x) - (\alpha f + \beta g)(y)| \le |\alpha||f(x) - f(y)| + |\beta||g(x) - g(y)| \le (|\alpha|k_1 + |\beta|k_2)|x - y| = k|x - y|$$

2. Comme f est lipschitzienne sur I, il existe $k_1 > 0$ tel que $\forall (x,y) \in I^2$, $|f(x) - f(y)| \le k_1 |x - y|$. Puisque g est lipschitzienne sur J, il existe $k_2 > 0$ tel que $\forall (X,Y) \in J^2$, $|g(X) - g(Y)| \le k_2 |X - Y|$. Posons $k = k_1 k_2$. Soient $(x,y) \in I^2$, puisque $X = f(x) \in J$ et $Y = f(y) \in J$,

$$|g \circ f(x) - g \circ f(y)| = |g(X) - g(Y)| \le k_2 |X - Y| = k_2 |f(x) - f(y)| \le k_1 k_2 |x - y|$$

3. Exercice.

Théorème 5.1. (Théorème de point fixe)

Soit f une fonction contractante de rapport k sur un segment I = [a,b] tel que $f(I) \subset I$. L'équation f(x) = x admet une solution unique α dans I.

On dit que α est l'unique point fixe de f.

Démonstration. Il suffit d'appliquer le TVI à la fonction g(x) = f(x) - x sur [a, b].

5.2 Continuité uniforme

Définition 5.2. Soit une fonction $f: I \longrightarrow \mathbb{R}$ définie sur un intervalle I. On dit qu'elle est uniformément continue sur I lorsque

$$\forall \varepsilon > 0, \ \exists \eta > 0: \ \forall (x,y) \in I^2, \ |x-y| \le \eta \Longrightarrow |f(x) - f(y)| \le \varepsilon$$

Le nombre η est indépendant des réels (x,y) et s'appelle un module d'uniforme continuité.

Proposition 5.2. Soit une fonction $f: I \longrightarrow \mathbb{R}$ définie sur un intervalle I.

f Lipschitzienne sur I $\Longrightarrow f$ uniformément continue sur I $\Longrightarrow f$ continue sur I

$D\'{e}monstration.$

- Supposons f lispchitzienne sur I, il existe k > 0 tel que $\forall (x,y) \in I^2$, $|f(x) - f(y)| \le k|x - y|$. Montrons que f est uniformément continue sur I.

Soit $\varepsilon > 0$. Posons $\eta = \frac{\varepsilon}{k} > 0$.

Soient $(x,y) \in I^2$ tels que $|x-y| \le \eta$, on a

$$|f(x) - f(y)| \le k|x - y| \le k\eta = \varepsilon$$

- Supposons f uniformément continue sur I et montrons que f est continue sur I. Soit $a \in I$, montrons que la fonction f est continue au point a.

Soit $\varepsilon > 0$, Puisque f est uniformément continue sur I, il existe $\eta > 0$ tel que

$$\forall (x,y) \in I^2, |x-y| < \eta \Longrightarrow |f(x) - f(y)| < \varepsilon$$

Soit $x \in I$ tel que $|x - a| \le \eta$, on a bien $|f(x) - f(a)| \le \varepsilon$.

Théorème 5.2. (Théorème de Heine)

Une fonction continue sur un segment [a, b] est uniformément continue sur ce segment

Démonstration. Nous allons construire des suites et utiliser le théorème de Bolzano-Weirstrass. Nous devons montrer que

$$\forall \varepsilon > 0, \ \exists \eta > 0, \forall (x,y) \in [a,b]^2, \ |x-y| \le \eta \Longrightarrow |f(x) - f(y)| \le \varepsilon$$

Raisonnons par l'absurde en supposant que cette propriété est fausse :

$$\exists \varepsilon > 0, \ \forall \eta > 0, \ \exists (x,y) \in [a,b]^2, |x-y| \le \eta \text{ et } |f(x)-f(y)| > \varepsilon$$

Soit $n \in N^*$, en prenant $\eta = \frac{1}{n}$, on peut trouver deux réels $(x_n, y_n) \in [a, b]^2$ vérifiant

$$|x_n - y_n| \le \frac{1}{n}$$
 et $|f(x_n) - f(y_n)| > \varepsilon$

On construit ainsi deux suites (x_n) et (y_n) de points du segment [a,b]. Puisque la suite (x_n) est bornée, d'après le théorème de Bolzano-Weierstrass, on peut en extraire une suite convergente, $(x_{\varphi(n)})$ vers une limite $c \in [a,b]$. Puisque

$$|y_{\varphi(n)}) - c| \le |x_{\varphi(n)} - y_{\varphi(n)}| + |x_{\varphi(n)} - c| \le \frac{1}{\varphi(n)} + |x_{\varphi(n)} - c| \le \frac{1}{n} + |x_{\varphi(n)} - c| \xrightarrow[n \to +\infty]{} 0$$

la suite $(y_{\varphi(n)})$) converge également vers la même limite c. Puisque la fonction f est continue au point c, d'après la caractérisation séquentielle de la continuité, $f(x_{\varphi(n)})) \underset{n \to +\infty}{\longrightarrow} f(c)$ et $f(y_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(c)$. Mais comme $\forall n \in \mathbb{N}, \ \varepsilon < |f(x_{\varphi(n)}) - f(y_{\varphi(n)})|$, par passage à la limite dans les inégalités, on obtient que $0 < \varepsilon < |f(c) - f(c)| = 0$ ce qui est absurde.