Practical 3: The random intercept model with covariates

Data

Recall that High School & Beyond is a nationally representative survey of U.S. public and Catholic high schools conducted by the National Center for Education Statistics (NCES). The data are a sub-sample of a survey conducted in 1982 and involving 7,185 students from 160 schools and are described in the book *Hierarchical Linear Models* by Raudenbush and Bryk.

1. The High-School-and-Beyond data.

Data are held in hsb_selected.dta. The variables are:

minority Indicator of student ethnicity (1=minority, 0=other)
female Indicator of student being female
ses Standardized Socio-Economic Status score
mathach Measure of mathematics achievement
size School's total number of students
sector School's sector: 1=Catholic, 0=not Catholic
schoolid School identifier

Questions

- 1. Load and familiarize yourself again with the High-School-and-Beyond data. Create the indicator variable that picks up only one record per school:
 - . egen pickone=tag(schoolid)
- 2. Fit a random intercept model for mathach on ses using both ML and REML. Are the results different in any way? Enter the results for $\hat{\sigma}_u$ and $\hat{\sigma}_e$ in the table on the next page.
- 3. Examine the distribution of the variable sector. Include it in the model as an explanatory variable: what happens to $\hat{\sigma}_u$ and $\hat{\sigma}_e$? Does it make a difference if you use ML or REML?

- 4. Now add **size** to the model. Consider centering it and dividing it by 100 to facilitate interpretation (i.e. 'per 100 extra students above the mean'). What happens to $\hat{\sigma}_u$ and $\hat{\sigma}_e$?
- 5. Assess whether the effect of size interacts with sector. What test will you use?
- 6. Summarize the results concerning $\hat{\sigma}_u$ and $\hat{\sigma}_e$ in the table below. Does $\hat{\sigma}_e$ change? Why? Is there a difference between the ML and REML results?

		\mathbf{REML}		ML	
	Model with	$\hat{\sigma}_u$	$\hat{\sigma}_e$	$\hat{\sigma}_u$	$\hat{\sigma}_e$
1	ses				
2	ses $\&$ sector				
3	ses, size $\&$ sector				
4	ses, size $\&$ sector $\&$				
	interaction size-sector				

- 7. Now add female and minority to the model for the intercept and use REML to fit it. What happens now to $\hat{\sigma}_u$ and $\hat{\sigma}_e$? Why?
- 8. Examine whether female and minority are associated with the school level variable sector using:
 - . tab sector minority, chi col nokey
 - . tab sector female, chi col nokey

Then assess whether the effect of female and minority on the school intercepts is modified by the school's sector. Make a note of the estimated σ_u and σ_e .

- 9. Predict the school level and the pupil level EB residuals corresponding to the last fitted model with:
 - . predict uhat_eb, reffects reses(uhat_eb_se)
 - . predict ehat, rstandard

Then standardize the level 2 residuals using the marginal variance $R_j \hat{\sigma}_u^2$ and check the distribution of both residuals.

10. Identify the schools with the more extreme u.

The next two questions are optional

- 11. Generate the school level mean SES and also for each pupil his/her difference in SES relative to the school mean with:
 - . egen mean_ses=mean(ses),by(schoolid)
 - . gen dif_ses=ses-mean_ses

Refit the model with only SES as the explanatory variable for the intercept and then the model with only mean_ses and dif_ses. Compare their results and interpret the regression coefficients.

- 12. Test whether the second specification of the model for the effect of SES gives a better fit to the data. Use the Wald test with the command:
 - . test $mean_ses==dif_ses$