Lecture 18: Linear quadratic regulator

Jie Fu jfu2@wpi.edu RBE 502

April 11, 2017

Outline

- continuous-time LQR problem
- dynamic programming solution
- infinite horizon LQR
- discrete-time LQR and nonlinear LQR.

The slide is partially adapted from Lecture notes by Prof. Stephen Boyd 1 .

¹http://stanford.edu/class/ee363/lectures/clqr.pdf

Introduction

Consider the linear time invariant (LTI) system

$$\dot{x} = Ax + Bu$$

Control objective: bring the system from an arbitrary initial state to the origin.

- A LTI system, if stabilizable, can always be stabilized by a linear feedback law u = Kx.
- If it is controllable, the close-loop poles can be placed anywhere on the S-plane. Thus the convergence can be made arbitrarily fast, which means large input amplitudes.

E.g. $\dot{x} = x + u$, choosing u = -kx and k = 1.1, 1000, 10000.

Formulating an optimization problem

Considerations:

- The bounded input amplitudes.
- The speed of convergence.

Natually an optimization problem, let's see how it is formulated.

Criterion 1: Fast convergence.

$$\int_0^T x^T(t) Qx(t) dt$$

where Q is a **nonnegative-definite symmetric** matrix and T is the **final time**.

- $-x^TQx$: a measure of how much x deviates from the origin.
- Q: weighting matrix.
- the integral is the cumulative deviation of x from the zero during the interval [0, T].

Formulating an optimization problem

Criterion 2: Bound the input amplitudes.

$$\int_0^T u^T(t) R u(t) dt$$

where R is a nonnegative definite symmetric matrix.

- $u^T R u$: a measure of how much u deviates from the zero.
- To reduce the amplitudes we have the total value as small as possible.

Criterion 3: Converge to the origin. the terminal cost, if $x(T) \neq 0$.

$$x(T)^T Q_f x(T)$$

Remark: Weighting matrices Q, R, Q_f may need to be selected via trials and errors.

Formulating an optimization problem

problem: Choosing $u:[0,T]\to \mathbf{R}^m$ to minimize the total cost

$$J = \int_0^T \left(x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) \right) d\tau + x(T)^T Q_f x(T)$$

- T is time horizon.
- $Q = Q^T \ge 0$, $Q_f = Q_f^T \ge 0$, and $R = R^T > 0$ are state cost, final state cost, and input cost matrices.

...an *infinite-dimensional problem*: (the input $u:[0,T] \to \mathbb{R}^m$ is variable)

LQR Problem: linear quadratic regulator (regulating the controller).

we'll solve LQR problem using dynamic programming for $0 \le t \le T$ we define the **value function** $V_t : \mathbf{R}^n \to \mathbf{R}$ by

$$V_t(z) = \min_{u} \int_{t}^{T} x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) d\tau + x(T)^T Q_f x(T)$$

subject to x(t) = z, $\dot{x} = Ax + Bu$.

 $V_t(z) =$ "minimal total cost for completing the task starting from state z at time t".

- minimum is taken over all possible input signals $u:[t,T]\to \mathbf{R}^m$
- $V_t(z)$ is also called minimum LQR cost-to-go from z at time t.
- $V_T(z) = z^T Q_f z$ where z = x(T) is the final state.

A simple dynamic programming example

Let V_t be the optimal cost to go from time t.

fact

 V_t is quadratic, *i.e.*, $V_t(z) = z^T P_t z$, where $P_t = P_t^T \ge 0$ (symmetric, positive definite).

What do we know about V_t ?

We start with x(t) = z, let's take $u(t) = w \in \mathbf{R}^m$, a constant, over the time interval [t, t+h], where h > 0 is small The cost incurred over [t, t+h] is and the state is

Recall $V_t = x(t)^T P_t x(t)$, and $P_{t+h} \approx P_t + h \dot{P}_t$. min-cost-to-go from where we land is approximately

$$V_{t+h}(x(t+h)) \approx V_{t+h}(z+h(Az+Bw))$$

cost plus incurred cost at t is approximately

To optimize

$$V_t(z) \approx \min_{w} \left[z^T P_t z + h \left(z^T Q z + w^T R w + (A z + B w)^T P_t z + z^T P_t (A z + B w) + z^T \dot{P}_t z \right) \right]$$
minimize over w to get (approximately) optimal w :

HJB equation

now let's substitute w^* into equation.

$$z^{T} P_{t} z = V_{t}(z) \approx z^{T} P_{t} z + + h \left(z^{T} Q z + w^{*T} R w^{*} + (A z + B w^{*})^{T} P_{t} z + z^{T} P_{t} (A z + B w^{*}) + z^{T} \dot{P}_{t} z \right)$$

after simplification,

$$-\dot{P}_t = A^T P_t + P_t A - P_t B R^{-1} B^T P_t + Q$$

which is the *Riccati differential equation* for the LQR problem we can solve it (numerically) using the *final condition* $P_T = Q_f$.

Summary of LQR for LTI system via DP

solve Riccati differential equation

$$-\dot{P}_t = A^T P_t + P_t A - P_t B R^{-1} B^T P_t + Q, \qquad P_T = Q_f$$

(backward in time)

optimal u is $u_{lqr}(t) = K_t x(t)$, $K_t := -R^{-1}B^T P_t$

DP method readily extends to time-varying A, B, Q, R, and tracking problem (define $e(t) = x(t) - x_d(t)$ and drive the tracking error to 0.)

Solve P(t) backward in time

- 1. select a time step δt and total number of steps $N = \frac{T}{\delta t}$. By final condition $P_N = P(T) = Q_f$.
- 2. $-\dot{P}_t = A^T P_t + P_t A P_t B R^{-1} B^T P_t + Q$ in numerical computation via Eular approximation of \dot{P}_t .

Steady-state regulator

$$-\dot{P}_t = A^T P_t + P_t A - P_t B R^{-1} B^T P_t + Q, \qquad P_T = Q_f$$

Usually P_t rapidly converges as t decreases below T. by convergence, $\dot{P}_t = 0, P_t = P_{t^+} = P$ as the limit of P_t which satisfies a

quadratic matrix equation — algebraic Riccati equation

- P can be found by direct method or numerically integrating the Riccati differential equation. In matlab,
 [X,L,G] = care(A,B,Q,R,S,E) computes the unique solution X of the continuous-time algebraic Riccati equation.
- for t not close to horizon T, LQR optimal input is approximately a linear, constant state feedback

$$u(t) = K_{ss}x(t), K_{ss} = -R^{-1}B^{T}P_{ss}$$

Variation: Infinite horizon

The infinite horizon cost function

$$J = \int_0^\infty x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) d\tau$$

The value function as

$$V(z) = \min_{u} \int_{0}^{\infty} x(\tau)^{T} Q x(\tau) + u(\tau)^{T} R u(\tau) d\tau$$

subject to x(0) = z, $\dot{x} = Ax + Bu$

- we assume that (A, B) is controllable, so V is finite for all z
- V is quadratic and time-invariant: $V(z) = z^T P z$, where $P = P^T \ge 0$
- the optimal u is u(t) = Kx(t), where $K = -R^{-1}B^TP$ (i.e., a constant linear state feedback)

For infinite horizon, in matlab, K = Iqr(A, B, Q, R).

Remarks

- For finite-horizon [0, T] optimal control, need to solve P(t) backward in time and apply $u(t) = -R^{-1}B^TP(t)x$ which is a **time varying** feedback control.
- For infinite-horizon $[0,\infty)$ optimal control, P is a constant and u is a *time-invariant* control input.
- Require R > 0, $Q \ge 0$, and there exists $Q = H^T H$.

Example: Aircraft roll-dynamics ²

$$\begin{split} \dot{\theta} &= \omega \\ \dot{\omega} &= -.875\omega - 20\tau \\ \dot{\tau} &= -50\tau + 50u \end{split}$$

$$x = \begin{bmatrix} \theta & \omega & \tau \end{bmatrix}'$$

with

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -.875 & -20 \\ 0 & 0 & -50 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 50 \end{bmatrix}.$$

Consider

$$J := \int_{0}^{\infty} ||x||^{2} + \rho ||u||^{2} dt,$$

where ρ is a positive constant, corresponding to Q = diag(1,1); $R = \rho$.

²Hespanha, J. "Lecture notes on lqr/lqg controller design:" notes, online note (2005).

Example

The control is u := -Kx, $K := R^{-1}B^TP$ where P solves the algebraic Riccati equation

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

$$x_{t+1} = Ax_t + Bu_t$$

and objective function

$$J = \sum_{\tau=0}^{N-1} (x_{\tau}^{T} Q x_{\tau} + u_{\tau}^{T} R u_{\tau}) + x_{N}^{T} Q_{f} x_{N}$$

For t = 0, ..., N define the value function

$$V_{t}(z) = \min_{u_{t},...,u_{N-1}} \sum_{\tau=t}^{N-1} (x_{\tau}^{T} Q x_{\tau} + u_{\tau}^{T} R u_{\tau}) + x_{N}^{T} Q_{f} x_{N}$$

subject to x(t) = z and the dynamics.

- $V_t(z)$ is the minimum LQR cost-to-go, starting from z at time t;
- $V_0(x_0)$ is the min cost (from state x_0 at time 0.)

- V_t is quadratic, i.e., $V_t(z) = z^T P_t z$ where $P_t = P_t^T \ge 0$.
- ullet $P_T=Q_f$ and can be computed backward in time and

$$P_t = Q + A^T P_{t+1} A - A^T P_{t+1} B (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A$$

$$V_t = z^T Q z + \min_{u} (u^T R u + V_{t+1}(z_{t+1}))$$

since $z_{t+1} = Az + Bu$,

$$V_t = z^T Q z + \min_{u} (u^T R u + V_{t+1} (A z + B u))$$

is the dynamic programming, Bellman or Hamilton-Jacobi equation.

$$V_t = z^T Q z + \min_{u} (u^T R u + V_{t+1}(z_{t+1}))$$

since $z_{t+1} = Az + Bu$,

$$V_t = z^T Q z + \min_{u} (u^T R u + V_{t+1} (A z + B u))$$

is the dynamic programming, Bellman or Hamilton-Jacobi equation. minimize \boldsymbol{u} gives optimal input at time t

$$u_t^{\text{lqr}} = \arg\min_{u} (u^T R u + V_{t+1} (Az + Bu))$$

take derivative and since $V_{t+1}(z) = z^T P_{t+1} z$

$$\frac{\partial (u^T R u + (Az + Bu)^T P_{t+1} (Az + Bu))}{\partial u} = 0$$

$$u^* = -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} Az$$

put in V_t obtain the relation between P_t and P_{t+1} and P_{t+1}

Conclusion

- continuous and discrete LQR for time invariant systems.
- extension to for time varying systems is straightforward.

Further readings ...

- the dual problem: linear quadratic estimator and Kalman filter.
- linear quadratic gaussian (LQG) control.