第三章 数学公式

3.1 基本知识

IPTEX 使用一种特殊的模式来排版数学符号和公式 (mathematics)。 段落中的数学表达式应该置于 \(和 \), \$ 和 \$ 或者 \begin{math} 和 \end{math} 之间。

Add \$a\$ squared and \$b\$ squared to get \$c\$ squared. Or, using a more mathematical approach: \$c^{2}=a^{2}+b^{2}\$

Add a squared and b squared to get c squared. Or, using a more mathematical approach: $c^2 = a^2 + b^2$

\TeX{} is pronounced as
\$\tau\epsilon\chi\$.\\[6pt]
100~m\$^{3}\$ of water\\[6pt]
This comes from my \$\heartsuit\$

TeX is pronounced as $\tau \epsilon \chi$. 100 m³ of water

This comes from my \heartsuit

对于较大的数学式子,最好的方法是使用显示式样来排版:将它们放置于\[和\]或\begin{displaymath}和\end{displaymath}之间。这样排版出的公式是没有编号的。如果你希望IMTEX 对其添加编号的话,可以使用 equation 环境来达到这一目的。

¹CTAN:/tex-archive/macros/latex/required/amslatex

Add \$a\$ squared and \$b\$ squared to get \$c\$ squared. Or, using a more mathematical approach: \begin{displaymath} \c^{2}=a^{2}+b^{2} \end{displaymath} And just one more line.

Add a squared and b squared to get c squared. Or, using a more mathematical approach:

$$c^2 = a^2 + b^2$$

And just one more line.

利用 \label 和 \ref 对公式加以引用。

\begin{equation} \label{eq:eps}
\epsilon > 0
\end{equation}
From (\ref{eq:eps}), we gather
\ldots

$$\epsilon > 0$$
 (3.1)

From (3.1), we gather ...

对比一下用不同式样排版所得到的结果:

\$\lim_{n \to \infty}
\sum_{k=1}^n \frac{1}{k^2}
= \frac{\pi^2}{6}\$

$$\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6}$$

\begin{displaymath}
\lim_{n \to \infty}
\sum_{k=1}^n \frac{1}{k^2}
= \frac{\pi^2}{6}
\end{displaymath}

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k^2}=\frac{\pi^2}{6}$$

数学模式和文本模式有很多不同之处。例如在数学模式中:

- 1. 空格和分行都将被忽略。所有的空格或是由数学表达式逻辑的衍生,或是由特殊的命令如\,,\quad 或\qquad 来得到。
- 2. 不允许有空行,每个公式中只能有一个段落。
- 3. 每个字符都将被看作是一个变量名并以此来排版。如果你希望在公式中出现普通的文本(使用正体字并可以有空格),那么你必须使用命令\textrm{...}来输入这些文本。

\begin{equation}
\forall x \in \mathbf{R}:
\qquad x^{2} \geq 0
\end{equation}

$$\forall x \in \mathbf{R}: \qquad x^2 \ge 0 \tag{3.2}$$

数学家们通常对使用什么样的符号非常挑剔:习惯上使用"空心粗体"(blackboard bold)来表示实数集合。这种字体可用 amsfonts 或 amssymb 宏包中的命令 \mathbb 来得到。上面的例子变为:

\begin{displaymath}
x^{2} \geq 0\qquad
\textrm{for all }x\in\mathbb{R}
\end{displaymath}

 $x^2 \ge 0$ for all $x \in \mathbb{R}$

3.2 数学模式中的分组

数学模式中的命令仅对其后面第一个字符起作用。所以,如果你希望某一命令作用于多个字符的话,那么你就必须将它们放置于括号中:{...}。

\begin{equation}
a^x+y \neq a^{x+y}
\end{equation}

$$a^x + y \neq a^{x+y} \tag{3.4}$$

3.3 建立数学公式模块

在这一节中将介绍排版数学符号和公式的最重要的命令。详细的命令 列表可参考第 50 页第 3.10 节。

小写希腊字母 (Lowercase Greek letters)的输入命令为:\alpha, \beta, \gamma, ..., 相应地 ,大写形式的输入命令为:\Gamma, \Delta, ...。

\$\lambda,\xi,\pi,\mu,\Phi,\Omega\$

$$\lambda, \xi, \pi, \mu, \Phi, \Omega$$

指数和下标可用 ^ 和 _ 后加相应的字符来实现。

 $^{^2\}mathrm{L\!AT}_{\mathrm{E\!X}}\,2_{\varepsilon}$ 没有定义 Alpha 的大写形式,因为它和普通的罗马字体 A 很像。也许新的数学编码完成后会有所变化。

\$a_{1}\$ \qquad \$x^{2}\$ \qquad
\$e^{-\alpha t}\$ \qquad
\$a^{3}_{ij}\$\\
\$e^{x^2} \neq {e^x}^2\$

$$a_1 x^2 e^{-\alpha t} a_{ij}^3$$
$$e^{x^2} \neq e^{x^2}$$

平方根(square root)的输入命令为:\sqrt, n 次方根相应地为: \sqrt [n]。方根符号的大小由 \LaTeX [X]自动加以调整。也可用 \surd 仅给出符号。

\$\sqrt{x}\$ \qquad
\$\sqrt{ x^{2}+\sqrt{y} }\$
\qquad \$\sqrt[3]{2}\$\\[3pt]
\$\surd[x^2 + y^2]\$

$$\sqrt{x} \qquad \sqrt{x^2 + \sqrt{y}} \qquad \sqrt[3]{2}$$

$$\sqrt{x^2 + y^2}$$

命令 \overline 和 \underline 在表达式的上、下方画出水平线。

\$\overline{m+n}\$ \qquad
\$\underline{m+n}\$

$$\overline{m+n}$$
 $\underline{m+n}$

命令 \overbrace 和 \underbrace 在表达式的上、下方给出一水平的大括号。

\$\underbrace{ a+b+\cdots+z }_{26}\$

$$\underbrace{a+b+\cdots+z}_{26}$$

数学重音符号如小箭头和 $^{\sim}$ (tilde) 等的输入命令可参考第 50 页中的表 3.1。可覆盖多个字符的宽重音符号可由 \widetilde 和 \widehat 等得 到。字符,将生成 $^{\prime}$ (prime)。

\begin{displaymath}
y=x^{2}\qquad y'=2x\qquad y''=2
\end{displaymath}

$$y = x^2 \qquad y' = 2x \qquad y'' = 2$$

向量(Vectors)通常用上方有小箭头(arrow symbols)的变量表示。这可由 \vec 得到。另两个命令 \overrightarrow 和 \overleftarrow 在定义从 A 到 B 的向量时非常有用。

\begin{displaymath}
\vec a\quad\overrightarrow{AB}
\end{displaymath}

$$ec{a} \quad \overrightarrow{AB}$$

一般情况下,乘法算式中的圆点符可以省略。然而有时为了帮助读者解读复杂的公式,也有必要用命令 \cdot 将圆点符表示出来。

$$v = \sigma_1 \cdot \sigma_2 \tau_1 \cdot \tau_2$$

函数名通常用罗马字体正体排版,而不是像变量名一样用意大利体排版。因此,IAT_FX提供下述命令来排版最重要的一些函数名。

\[\lim_{x \rightarrow 0}
\frac{\sin x}{x}=1\]

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

排版模函数 (modulo function) 有两个命令: \bmod 用于二元运算符 " $a \mod b$ ", \pmod 用于表达式,例如 " $x \equiv a \pmod b$ "。

分数 (fraction) 使用 $frac{...}{...}$ 排版。一般来说,1/2 这种形式更受欢迎,因为对于少量的分式,它看起来更好些。

\$1\frac{1}{2}\$^hours
\begin{displaymath}
\frac{ x^{2} }{ k+1 }\qquad
x^{ \frac{2}{k+1} }\qquad
x^{ 1/2 }
\end{displaymath}

$$1\frac{1}{2}$$
 hours
$$\frac{x^2}{k+1} \qquad x^{\frac{2}{k+1}} \qquad x^{1/2}$$

排版二项系数或类似的结构可以使用命令 $\{...\$ \choose $...\}$ 或 $\{...\$ \atop $...\}$ 。第二个命令与第一个命令的输出相同,只是没有括 \exists^3 。

\begin{displaymath}
{n \choose k}\qquad {x \atop y+2}
\end{displaymath}

$$\begin{pmatrix} n \\ k \end{pmatrix} \qquad \begin{array}{c} x \\ y+2 \end{array}$$

对于二元关系,将符号堆在一起可能更有用。\stackrel 将第一项中的符号以上标大小放在处于正常位置的第二项上。

 $^{^3}$ 注意这些旧命令在 amsmath 宏集中禁止使用,而是用 \binom和 \genfrac来代替。后者是所有相关结构的超集,例如可以通过 \newcommand{\newatop}[2]% \genfrac{}{{0pt}{1}{#1}{#2}} 来得到 \atop 的一个类似结构

\begin{displaymath}
\int f_N(x) \stackrel{!}{=} 1
\end{displaymath}

$$\int f_N(x) \stackrel{!}{=} 1$$

积分运算符(integral operator)用\int来生成。求和运算符(sum operator)由\sum 生成。乘积运算符(product operator)由\prod 生成。上限和下限用²,来生成,类似于上标和下标⁴。

\begin{displaymath}
\sum_{i=1}^{n} \qquad
\int_{0}^{\frac{\pi}{2}} \qquad
\prod_\epsilon
\end{displaymath}

$$\sum_{i=1}^n \qquad \int_0^{rac{\pi}{2}} \qquad \prod_{\epsilon}$$

对于括号(braces)和其它分隔符(delimiters),在 T_EX 中有各种各样的符号(例如 [〈 $\parallel \uparrow$)。圆括号和方括号可以用相应的键输入。花括号用\{。其它的分隔符用专门命令(例如 \updownarrow)来生成。所有可使用的分隔符列表可以参考第 52 页中的表 3.8。

\begin{displaymath}
{a,b,c}\neq\{a,b,c\}
\end{displaymath}

$$a, b, c \neq \{a, b, c\}$$

如果将命令 \left 放在开分隔符前,TEX会自动决定分隔符的正确大小。注意必须用对应的右分隔符 \right 来关闭每一个左分隔符 \left,并且只有当这两个分隔符排在同一行时大小才会被正确确定。如果不想在右边放任何东西,使用隐藏的 '\right.'!

\begin{displaymath}
1 + \left(\frac{1}{ 1-x^{2} }
 \right) ^3
\end{displaymath}

$$1 + \left(\frac{1}{1 - x^2}\right)^3$$

某些情况下有必要手工指出数学分隔符的正确大小,这可以使用命令\big, \Big, \bigg 及 \Bigg 作为大多数分隔符命令的前缀⁵。

⁴AMS-IATEX另外有多行上标/下标。

⁵如果使用了改变大小的命令或者指定了 11pt 或 12pt 选项,这些命令并不像预料的那样起作用。使用 exscale或 amsmath宏集来修正这种行为。

3.4 数学空格 43

$$\frac{\left((x+1)(x-1)\right)^2}{\left(\left(\left(\left(\begin{array}{c} \\ \end{array}\right)\right\}\right)\right)} \left\| \left\| \left\| \right\| \right\|$$

将三个圆点(three dots)输入公式可以使用几种命令。\ldots 将点排在基线上。\cdots 将它们设置为居中。除此之外,可用 \vdots 命令使其垂直,而用 \ddots 将得到对角型 (diagonal dots)。第 3.5 节中还有其它的例子。

\begin{displaymath}
x_{1},\ldots,x_{n} \qquad
x_{1}+\cdots+x_{n}
\end{displaymath}

$$x_1, \ldots, x_n \qquad x_1 + \cdots + x_n$$

3.4 数学空格

如果公式中由 T_E X选择的的空格不令人满意,可以通过插入特殊的空格命令来进行调节。有几个命令用于小空格:\, 对应于 $\frac{3}{18}$ quad (\mathbb{I}), \: 对应于 $\frac{4}{18}$ quad (\mathbb{I}), \: 对应于 $\frac{5}{18}$ quad (\mathbb{I})。脱离的空格符号 _ 生成中等大小的空格。\quad (\mathbb{I}) 和 \qquad (\mathbb{I}) 产生大空格。\quad 的大小对应于目前字体中字符 ' \mathbb{M} ' 的宽度。\! 命令生成负空格 $-\frac{3}{18}$ quad (\mathbb{I})。

\newcommand{\ud}{\mathrm{d}}
\begin{displaymath}
\int\!\!\int_{D} g(x,y)
 \, \ud x\, \ud y
\end{displaymath}
instead of
\begin{displaymath}
\int\int_{D} g(x,y)\ud x \ud y
\end{displaymath}

$$\iint_D g(x,y) \,\mathrm{d}x \,\mathrm{d}y$$
 instead of
$$\iint_D g(x,y) \,\mathrm{d}x \,\mathrm{d}y$$

注意微分中的'd'按惯例设为罗马字体。

AMS-IATEX提供微调多重积分符号间空格的另一种方式,也就是 \iint, \iiint, \iiint 和 \idotsint 等命令。使用 amsmath 宏集,以上的例子可以用下面这种方式来排版。

\newcommand{\ud}{\mathrm{d}}
\begin{displaymath}
\iint_{D} \, \ud x \, \ud y
\end{displaymath}

$$\iint_D \, \mathrm{d}x \, \mathrm{d}y$$

更详细的介绍请参考电子文件 testmath.tex (包括在 $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -LFTEX中) 或 "The LaTeX Companion" 中的第八章。

3.5 垂直对齐

排版 arrays 使用 array 环境来排版数组 (arrays)。它有些类似于tabular环境,使用\\命令来分行。

\begin{displaymath}
\mathbf{X} =
\left(\begin{array}{ccc}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \\
\vdots & \vdots & \ddots

\end{array} \right)
\end{displaymath}

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots \\ x_{21} & x_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

array 环境也可以使用 "." 作为隐藏右分隔符来排版只有一个大分隔符的表达式。

\begin{displaymath}
y = \left\{ \begin{array}{ll}
a & \textrm{if \$d>c\$}\\
b+x & \textrm{in the morning}\\
l & \textrm{all day long}

 $y = \begin{cases} a & \text{if } d > c \\ b + x & \text{in the morning} \\ l & \text{all day long} \end{cases}$

\end{displaymath}

\end{array} \right.

像在 tabular 环境中一样,也可以在 array 环境中画线。例如分隔矩阵中的元素。

\begin{displaymath}
\left(\begin{array}{c|c}
1 & 2 \\
\hline
3 & 4
\end{array}\right)

 $\left(\begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \end{array}\right)$

\end{displaymath}

3.5 垂直对齐 45

对于分布于几行的公式或者方程组(equation system),可以使用 eqnarray和 eqnarray*环境来代替 equation。在 eqnarray中,每一行都会有一个方程编号。eqnarray*不对方程进行编号。

eqnarray 和 eqnarray* 环境类似于 {rcl} 形式的三列表格。中间的一列可以用作等号或不等号,或者其它看起来适合的符号。使用 \\ 命令分行。

$$f(x) = \cos x \qquad (3.5)$$

$$f'(x) = -\sin x \qquad (3.6)$$

$$\int_0^x f(y)dy = \sin x \qquad (3.7)$$

注意等号每边的空格都很大。可通过设定 \setlength\arraycolsep{2pt}来减小空格,如下一个例子中所示。

长方程不会自动地分割成小的。作者必须指定在哪里分割以及缩进多少。以下是最常使用的两种方法。

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
 (3.8)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
 (3.9)

\nonumber 命令将阻止 IATFX为此方程生成一个编号。

使用这些方法很难得到垂直对齐的方程。amsmath 提供了一些更有用的方法(见 split 和 align 环境)。

3.6 幻影

我们无法看到幻影(phantom),但是它们在许多人印象中仍然会占据一些空间。IAT_PX没有不同,我们也可以使用这些作一些有趣的空格技巧。

垂直对齐文本时使用 [^] 和 _。L^MT_EX 有时只是有一点帮助。使用 \phantom 命令可以为不在最终输出中出现的字符预留空间。最好参考 下面的例子。

\Gamma_{ij}^{k} \qquad \textrm{versus} \qquad \Gamma_{ij}^{k} \end{displaymath}

 Γ_{ij}^{k} versus Γ_{ij}^{k}

3.7 数学字体大小

在数学模式中,TeX根据上下文选择字体大小。例如,使用较小的字体排版上标。如果想用罗马字体排版方程中的一部分,不要使用\textrm 命令,因为当\textrm 暂时脱离文本模式时字体大小交换机制不起作用。这时可以使用\mathrm 来确保字体大小交换机制起作用。但是需要注意的是,\mathrm 只对于较短的项才起作用。空格仍然不起作用,并且重音字符也不起作用⁶。

尽管如此,有时必须告诉 \LaTeX 证确的字体大小。在数学模式中,字体大小用四个命令来设定:

⁶AMS-IATEX宏集使得 \textrm 命令与字体大小改变相兼容。

3.8 定理、定义 ... 47

\displaystyle (123), \textstyle (123), \scriptstyle (123) and \scriptscriptstyle (123).

改变式样也会影响上下界显示的方式。

\begin{displaymath}
\mathop{\mathrm{corr}}(X,Y)=
\frac{\displaystyle
 \sum_{i=1}^n(x_i-\overline x)
 (y_i-\overline y)}
 {\displaystyle\biggl[
 \sum_{i=1}^n(x_i-\overline x)^2
\sum_{i=1}^n(y_i-\overline y)^2
\biggr]^{1/2}}
\end{displaymath}

$$corr(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2\right]^{1/2}}$$

这个例子中,我们需要比标准的 \left[\right]还要大一些的括号。

3.8 定理、定义 ...

写数学文档时有可能需要一种方式来排版"引理"、"定义"、"公理"以及类似的结构。LATPX为此提供了下述命令:

```
\newtheorem{name}[counter]{text}[section]
```

name 是短关键字,用于标识"定理"。 text 定义"定理"的真实名称,会在最终文件中打印出来。

方括号中的选项是任意的,可以用于指定"定理"中使用的标号。*counter* 可以指定先前声明的"定理"的 *name*。然后新"定理"会按同样的顺序编号。*section* 指定"定理"编号所在的章节层次。

在文件的导言中执行 \newtheorem 命令之后,在文件中可以使用如下命令。

\begin{name} [text]
This is my interesting theorem
\end{name}

理论上这是足够的。下面的例子有望尽释前疑,并使人清楚地意识到,\newtheorem 环境非常复杂,很难理解。

% definitions for the document
% preamble
\newtheorem{law}{Law}
\newtheorem{jury}[law]{Jury}
%in the document
\begin{law} \label{law:box}
Don't hide in the witness box
\end{law}
\begin{jury}[The Twelve]
It could be you! So beware and
see law~\ref{law:box}\end{jury}
\begin{law}No, No, No\end{law}

Law 1 Don't hide in the witness box

Jury 2 (The Twelve) It could be you! So beware and see law 1

Law 3 No, No, No

"Jury" 定理和 "Law" 定理使用同一个计数器。因此,编号是顺序排列的。方括号中的选项用于为这个定理指定一个标题或者类似的东西。

\flushleft

\newtheorem{mur}{Murphy}[section]
\begin{mur}

If there are two or more ways to do something, and one of those ways can result in a catastrophe, then someone will do it.\end{mur}

Murphy 3.8.1 If there are two or more ways to do something, and one of those ways can result in a catastrophe, then someone will do it.

"Murphy" 定理的编号与当前节相链接。也可以使用其它单位,例如章或小节。

3.9 粗体符号

在 IATEX中很难得到粗体符号。这也许是故意的,因为业余排版者总是过份使用粗体。字体改变命令 \mathbf 给出粗体字母,但是这些是罗马字体(竖直的),而数学符号通常是斜体。有一个 \boldmath 命令,但是这只能用于数学模式之外。对于符号也是如此。

\begin{displaymath}
\mu, M \qquad \mathbf{M} \qquad
\mbox{\boldmath \$\mu, M\$}
\end{displaymath}

 μ, M **M** μ, M

注意逗号也是粗体,这可能不是所需要的。

3.9 粗体符号 49

使用工具包中的 amsbsy (包括在 amsmath 中)和 bm 很容易办到这点,因为它们包含\boldsymbol命令。

\begin{displaymath}
\mu, M \qquad
\boldsymbol{\mu}, \boldsymbol{M}
\end{displaymath}

μ, M	$oldsymbol{\mu}, oldsymbol{M}$

3.10 数学符号表

下面的表格中将给出在数学模式中常用的所有符号。使用表 3.12–3.167 所列出的符号,必须事先安装 AMS 数学字库并且在文档的导言区加载宏包: amssymb。如果你的系统中没有安装 AMS 宏包和数学字库,可去下述地址下载:

CTAN:/tex-archive/macros/latex/required/amslatex

表 3.1: 数学模式重音符

\hat{a}	\hat{a}	\check{a}	\check{a}	\tilde{a}	\tilde{a}	\acute{a}	\acute{a}
\grave{a}	\grave{a}	\dot{a}	\dot{a}	\ddot{a}	\ddot{a}	$reve{a}$	\breve{a}
\bar{a}	\bar{a}	\vec{a}	\vec{a}	\widehat{A}	\widehat{A}	\widetilde{A}	\widetilde{A}

表 3.2: 小写希腊字母

α	\alpha	θ	\theta	0	0	v	\upsilon
β	\beta	ϑ	\vartheta	π	\pi	ϕ	\phi
γ	\gamma	ι	\iota	ϖ	\varpi	φ	\varphi
δ	\delta	κ	\kappa	ρ	\rho	χ	\chi
ϵ	\epsilon	λ	\lambda	ϱ	\varrho	ψ	\psi
ε	$\vert varepsilon$	μ	\mu	σ	\sigma	ω	\omega
ζ	\zeta	ν	\nu	ς	\varsigma		
η	\eta	ξ	\xi	au	\tau		

表 3.3: 大写希腊字母

Γ	\Gamma	Λ	Λ	\sum	\Sigma	Ψ	\Psi
Δ	\Delta	Ξ	\Xi	Υ	\Upsilon	Ω	\Omega
Θ	\Theta	П	\Pi	Φ	\Phi		

⁷这些表格来自 David Carlisle 的 symbols.tex, 随后根据 Josef Tkadlec 的建议作了较大的改动。

3.10 数学符号表 51

表 3.4: 二元关系符

你可以在下述命令的前面加上 \not 来得到其否定形式。

<	<	>	>	=	=
\leq	$\leq or \leq o$	\geq	\geq or \ge	\equiv	\equiv
\ll	\11	\gg	\gg	\doteq	\doteq
\prec	\prec	\succ	\succ	\sim	\sim
\preceq	\preceq	\succeq	\succeq	\simeq	\simeq
\subset	\subset	\supset	\supset	\approx	\approx
\subseteq	\subseteq	\supseteq	\supseteq	\cong	\cong
	\sqsubset a		\sqsupset a	\bowtie	$\$ Join a
	\sqsubseteq	\supseteq	\sqsupseteq	\bowtie	\bowtie
\in	\in	\ni	\n , \o	\propto	\propto
\vdash	\vdash	\dashv	\dashv	=	\models
	\mid		\parallel	\perp	\perp
$\overline{}$	\smile	$\overline{}$	\frown	\asymp	\asymp
:	:	∉	\notin	\neq	\neq or \ne

 a 使用宏包 latexsym 来得到这个符号

表 3.5: 二元运算符

+	+	_	-		
\pm	\pm	\mp	\mp	\triangleleft	\triangleleft
	\cdot	÷	\div	\triangleright	\triangleright
X	\times	\	\setminus	*	\star
\bigcup	\cup	\cap	\cap	*	\ast
\sqcup	\sqcup	П	\sqcap	0	\circ
\vee	\vee , \lor	\wedge	\wedge , \land	•	\bullet
\oplus	\oplus	\ominus	\ominus	\Diamond	\diamond
\odot	\odot	\oslash	\oslash	\forall	\uplus
\otimes	\otimes	\bigcirc	\bigcirc	П	\amalg
\triangle	\bigtriangleup	∇	\bigtriangledown	†	\dagger
\triangleleft	\backslash lhd a	\triangleright	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	‡	\ddagger
\leq	\backslash unlhd a	\trianglerighteq	\unrhd a	?	\wr

表 3.6: 大尺寸运算符

\sum	\sum	\bigcup	\bigcup	\vee	\bigvee	\oplus	\bigoplus
П	\prod	\cap	\bigcap	\wedge	\bigwedge	\otimes	\bigotimes
\coprod	\coprod		\bigsqcup			\odot	\bigodot
ſ	\int	∮	\oint			+	\biguplus

表 3.7: 箭头

\leftarrow	\leftarrow or \gets		\longleftarrow	\uparrow	\uparrow
\longrightarrow	\rightarrow or \to	\longrightarrow	\longrightarrow	\downarrow	\downarrow
\longleftrightarrow	\leftrightarrow	\longleftrightarrow	$\label{longleftrightarrow}$	\uparrow	\updownarrow
\Leftarrow	\Leftarrow	\leftarrow	\Longleftarrow	\uparrow	\Uparrow
\Rightarrow	\Rightarrow	\Longrightarrow	\Longrightarrow	\Downarrow	\Downarrow
\Leftrightarrow	\Leftrightarrow	\iff	\Longleftrightarrow	1	\Updownarrow
\mapsto	\mapsto	\longmapsto	\longmapsto	7	\nearrow
\longleftrightarrow	\hookleftarrow	\hookrightarrow	\hookrightarrow	\	\searrow
	\leftharpoonup	\rightarrow	\rightharpoonup	/	\swarrow
$\overline{}$	\leftharpoondown	\rightarrow	\rightharpoondown	_	\nwarrow
\rightleftharpoons	\rightleftharpoons	\iff	\iff (bigger spaces)	\sim	$\$ leadsto a

^a使用宏包 latexsym 来得到这个符号

表 3.8: 定界符

表 3.9: 大尺寸定界符

(\lgroup	\rgroup	\lmoustache \	\rmoustache
\arrowvert	\Arrowvert	\bracevert	

3.10 数学符号表 53

表 3.10: 其它符号

	\dots		\cdots	:	\vdots	٠.	\ddots
\hbar	\hbar	\imath	\imath	J	\j math	ℓ	\ell
\Re	\Re	\Im	\Im	X	\aleph	\wp	\wp
\forall	\forall	\exists	\exists	Ω	\mho a	∂	\partial
′	,	1	\prime	Ø	\emptyset	∞	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
∇	\nabla	\triangle	\triangle		ackbox^a	\Diamond	$\$ Diamond a
\perp	\bot	Τ	\top	_	\angle	$\sqrt{}$	\surd
\Diamond	\diamondsuit	\Diamond	\heartsuit	4	\clubsuit	\spadesuit	\spadesuit
\neg	$$ or $\$	b	\flat	þ	\natural	#	\sharp
		a /± 🗆	nd	クロカルナ	. A && 🖂		

^a使用宏包 latexsym 来得到这个符号

表 3.11: 非数学符号

这些符号也可以在文本模式中使用。

† \dag \S \S \Cilon \copyright † \dag \P \P \pounds \pounds

表 3.12: AMS 定界符

表 3.13: AMS 希腊和希伯来字母

 \digamma \digamma \varkappa \varkappa \beth \beth \gimel \daleth \gimel \gimel

表 3.14: AMS 二元关系符

\lessdot \gtrdot \doteqdot or \Doteq < > ÷ \leq \leqslant \geqslant \geqslant <u>=</u> \risingdotseq \eqslantless \geqslant \eqslantgtr =\fallingdotseq \leq \legg \geqq \eqcirc \lll or \llless \ggg or \gggtr **/// >>>** \circeq Y NIIVNIV W SV SV $\sim \sim \sim$ \triangleq \lesssim \gtrsim \triangleq \lessapprox \gtrapprox <u>~</u> \bumpeq \lessgtr \gtrless \Bumpeq ≎ \lesseqgtr \gtreqless \thicksim \lesseqqgtr \gtreqqless \thickapprox \approx \succcurlyeq \preccurlyeq \approxeq \succcurlyeq \approx \curlyeqprec \curlyeqsucc \backsim \sim \\ \\ \\ \\ \\ \succeq \succsim \precsim \backsimeq \geq ⊩∪ ≋Y \succapprox ⊨ \vDash \precapprox \subseteqq \supseteqq |<u>|</u> \Vdash \Supset $\parallel \vdash$ \Vvdash \subseteq \Subset \supseteq \sqsubset \sqsupset \backepsilon \therefore \because \varpropto α \shortmid \shortparallel \between 11 \smallsmile \smallfrown ф \pitchfork \vartriangleleft \vartriangleright \blacktriangleleft \triangleleft \triangleright \triangleleft \trianglelefteq \triangleright \trianglerighteq \blacktriangleright

表 3.15: AMS 箭头

←	\dashleftarrow	 →	\d	_0	\multimap
otin	\leftleftarrows	\Rightarrow	\rightrightarrows	$\uparrow\uparrow$	\upuparrows
$\stackrel{\longleftarrow}{\Longrightarrow}$	\leftrightarrows	\Longrightarrow	\rightleftarrows	$\downarrow\downarrow$	\downdownarrows
\Leftarrow	\Lleftarrow	\Rightarrow	\Rrightarrow	1	\upharpoonleft
₩	\twoheadleftarrow	\longrightarrow	\t	_	\upharpoonright
\longleftrightarrow	\leftarrowtail	\rightarrowtail	\rightarrowtail	1	\downharpoonleft
\leftrightharpoons	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\rightleftharpoons	\rightleftharpoons		\downharpoonright
	\Lsh	ightharpoons	\Rsh	\rightsquigarrow	\rightsquigarrow
\leftarrow	\looparrowleft		$\label{looparrowright}$	~~~	\leftrightsquigarrow
$ \leftarrow $	\curvearrowleft	\Diamond	\curvearrowright		

\circlearrowright

 \bigcirc

\circlearrowleft

3.10 数学符号表 55

表 3.16: AMS 二元否定关系符和箭头

\angle	\nless	\nearrow	\ngtr	$\not\subseteq$	\varsubsetneqq
\leq	\lneq	\geq	\gneq	$ \supseteq $	\varsupsetneqq
\nleq	\nleq	$\not\geq$	\ngeq	$\not\sqsubseteq$	\nsubseteqq
≰	\nleqslant	$\not\geq$	\ngeqslant	$\not\supseteq$	\nsupseteqq
\leq	\lneqq	\geq	\gneqq	1	\nmid
$\stackrel{ ext{ ext{ ext{\left}}}}{=}$	\lvertneqq	\geqq	\gvertneqq	#	\nparallel
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\nleqq	≱	\ngeqq	ł	\nshortmid
\lesssim	\label{lnsim}	≱	\gnsim	Ħ	\nshortparallel
≨	\lnapprox	⋧	\gnapprox	~	\nsim
\angle	\nprec	$\not\succ$	\nsucc	\ncong	\ncong
$\not\preceq$	\npreceq	$\not\succeq$	\nsucceq	$\not\vdash$	\nvdash
$\not\equiv$	\precneqq	$\not\succeq$	\succneqq	¥	\nvDash
$\stackrel{\sim}{\sim}$	\precnsim	\searrow	\succnsim	\mathbb{H}	\nVdash
∀ ≈	\precnapprox	∠ ≉	\succnapprox	$\not \Vdash$	\nVDash
\subsetneq	\subsetneq	\supseteq	\supsetneq	$\not \Delta$	\ntriangleleft
\subseteq	$\vert var subsetneq$	\supseteq	$\vert var supsetneq$	\not	\ntriangleright
$\not\sqsubseteq$	\nsubseteq	$\not\supseteq$	\nsupseteq	⊉	\n
\subseteq	\subsetneqq	$\displaystyle\mathop{\supseteq}_{\not\equiv}$	\supsetneqq	⊭	\ntrianglerighteq
\leftarrow	\nleftarrow	$\rightarrow \rightarrow$	\nrightarrow	$\leftrightarrow \rightarrow$	\nleftrightarrow
#	\nLeftarrow	\Rightarrow	\nRightarrow	#	\nLeftrightarrow

表 3.17: AMS 二元运算符

$\dot{+}$	\dotplus		\centerdot	Т	\intercal
\bowtie	\ltimes	\rtimes	\rtimes	*	\divideontimes
$\displaystyle \bigcup$	\Cup or \doublecup	$\qquad \qquad \bigcap$	\Cap or \doublecap	\	\smallsetminus
$\underline{\vee}$	\veebar	$\overline{\wedge}$	\barwedge	$\bar{\wedge}$	\doublebarwedge
\blacksquare	\boxplus		\boxminus	\bigcirc	\circleddash
\boxtimes	\boxtimes	$\overline{}$	\boxdot	0	\circledcirc
\geq	\leftthreetimes	\angle	\rightthreetimes	*	\circledast
Υ	\curlvvee	人	\curlywedge		

表 3.18: AMS 其它符号

\hbar	\hbar	\hbar	\hslash	\Bbbk	\Bbbk
	\square		\blacksquare	\odot	\circledS
Δ	\vert riangle		\blacktriangle	C	\complement
∇	\triangledown	\blacksquare	\blacktriangledown	G	\Game
\Diamond	\lozenge	•	\blacklozenge	*	\bigstar
_	\angle	4	\measuredangle	\triangleleft	\sphericalangle
/	\diagup		\diagdown	1	\backprime
∄	\nexists	\exists	\Finv	Ø	$\vert varnothing$
\mathfrak{g}	\eth	Ω	\mho		

表 3.19: 数学字母

例子	命令	所需宏包
ABCdef	\mathrm{ABCdef}	
ABCdef	\mathit{ABCdef}	
ABCdef	\mathnormal{ABCdef}	
\mathcal{ABC}	\mathcal{ABC}	
ABC	\mathcal{ABC}	mathrsfs
\mathcal{ABC}	\mathcal{ABC}	eucal with option: mathcal or
	\mathscr{ABC}	eucal with option: mathscr
ABCdef	\mathfrak{ABCdef}	eufrak
\mathbb{ABC}	\mathbb{ABC}	amsfonts or amssymb