Finite State Verification

CSCE 747 - Lecture 19 - 04/03/2018

So, You Want to Perform Verification...

- You have a property that you want your program to obey.
- Great! Let's write some tests!
- Does testing guarantee that the requirement is met?
 - Not quite...
 - Testing can make a statistical argument in favor of verification, but usually cannot guarantee that the requirement holds in all situations.

Testing

- Any real system has a near-infinite number of possible inputs.
- Some faults trigger failures extremely rarely, or under conditions that are hard to control and recreate through testing.
- How can we prove that our system meets the property?

What About a Model?

- We have previously used models to analyze programs, and to generate test cases.
- Models can be used to "tame" the complexity of the program.
 - Models are simpler than the real program.
 - By abstracting away unnecessary details, we can learn important insights.
- Perhaps models can be used to verify the full programs!

What Can We Do With This Model?

If we can show that the model satisfies the requirement, then the program should as well.

Finite-State Verification

- Express specification as a set of logical properties, written as Boolean formulae.
- Exhaustively search the state space of the model for violations of those properties.
- If the property holds proof that the model is correct.
- Contrast with testing no violation might just
 mean bad tests.

Today's Goals

- Formulating specification statements as formal logical expressions.
 - Introduction to temporal logic.
- Building behavioral models in NuSMV.
- Performing finite-state verification over the model.
 - Exhaustive search algorithms.

Expressing Specification Statements as Provable Properties

Expressing Properties

- Properties expressed in a formal logic.
 - Temporal logic ensures that properties hold over execution paths, not just at a single point in time.
- Safety Properties
 - System never reaches bad state.
 - Always in some good state.
- Liveness Properties
 - Eventually useful things happen.
 - Fairness criteria.

Temporal Logic

- Sets of rules and symbolism for representing propositions qualified over time.
- Linear Time Logic (LTL)
 - Reason about events over a timeline.
- Computation Tree Logic (CTL)
 - Branching logic that can reason about multiple timelines.
- We need both forms of logic each can express properties that the other cannot.

Linear Time Logic Formulae

Formulae written with propositional variables (boolean properties), logical operators (and, or, not, implication), and a set of modal operators:

X (next)	X hunger	In the next state, I will be hungry.	
G (globally)	G hunger	In all future states, I will be hungry.	
F (finally)	F hunger	Eventually, there will be a state where I am hungry.	
U (until)	hunger U burger	I will be hungry until I start to eat a burger.	
R (release)	hunger R burger	I will cease to be hungry after I eat a burger.	

LTL Examples

- X (next) This operator provides a constraint on the next moment in time.
 - (sad && !rich) -> X(sad)
 - \circ ((x==0) && (add3)) -> X(x == 3)
- F (finally) At some point in the future, this property will be true.
 - (funny && ownCamera) -> F(famous)
 - sad -> F(happy)
 - send -> F(receive)

LTL Examples

- G (globally) This property must always be true.
 - winLottery -> G(rich)
- U (until) One property must be true until the second becomes true.
 - startLecture -> (talk U endLecture)
 - born -> (alive U dead)
 - request -> (!reply U acknowledgement)

More LTL Examples

- G (requested -> F (received))
- G (received -> X (processed))
- G (processed -> F (G (done)))
- If the above are true, can this be true?
 - G (requested) && G (!done)

Computation Tree Logic Formulae

Combines quantifiers over all paths and path-specific quantifiers:

A (all)	A hunger	Starting from the current state, I must be hungry on all paths.	
E (exists)	E hunger	There must be some path, starting from the current state, where I am hungry.	

X (next)	X hunger	In the next state on this path, I will be hungry.	
G (globally)	G hunger	In all future states on this path, I will be hungry.	
F (finally)	F hunger	Eventually on this path, there will be a state where I am hungry.	
U (until)	hunger U burger	On this path, I will be hungry until I start to eat a burger. (I must eventually eat a burger)	
W (weak until)	hunger W burger	On this path, I will be hungry until I start to eat a burger. (There is no guarantee that I eat a burger)	

CTL Examples

- chocolate = "I like chocolate."
- warm = "It is warm outside."
- AG chocolate
- EF chocolate
- AF (EG chocolate)
- EG (AF chocolate)
- AG (chocolate U warm)
- EF ((EX chocolate) U (AG warm))

Examples

- requested: if true, a request has been made
- acknowledged: if true, the request has been acknowledged.
 - CTL: AG (requested -> AF acknowledged)
 - On all paths (A) from an initial state, at every state in the path (G), if requested holds true, then (->) for all paths (A) from that state, eventually (F) at some other state, acknowledge holds true.
 - LTL: G (requested -> F acknowledged)
 - On all paths from an initial state, at every state in the path (G), if requested holds true, then (->) eventually (F) at some other state, acknowledge holds true.

Examples

- It is always possible to reach a state where we can reset.
 - AG (EF reset)
 - Is the LTL formula G (F reset) the same expression?
- Eventually, the system will reach a good state and remain there.
 - F (G good)
 - Is the CTL formula AF (AG good) the same?

Building Models

Building Models

- Many different modeling languages.
- Most verification tools use their own language.
- Conceptually, most map to state machines.
 - Define a list of variables.
 - Describe how their values are calculated.
 - Each "time step", recalculate the values of these variables.
 - The state is the current set of values for all variables.

Building Models in NuSMV

- NuSMV is a symbolic model checker.
 - Models written in a basic language, represented using Binary Decision Diagrams (BDDs).
 - BDDs translate concrete states into compact summary states.
 - Allows large models to be processed efficiently.
 - Properties may be expressed in CTL or LTL.
 - If a model may be falsified, it provides a concrete counterexample demonstrating how it was falsified.

A Basic NuSMV Model

```
MODULE main
                       Models consist of one or more modules, which execute in parallel.
                       The state of the model is the current value of all variables.
VAR
     request: boolean;
     status: {ready, busy};
ASSIGN
                       Expressions define how the state of each variable can change.
     init(status) := ready;
                                       "request" is set non-deterministically. Models
                                       and environmental factor out of our control.
     next(status) :=
     case
           status=ready & request: busy;
           status=ready & !request : ready;
           TRUE: {ready, busy};
     esac;
                           Property we wish to prove over the model.
SPEC AG(request -> AF (state = bust))
```

A More Complicated NuSMV Model

```
MODULE main
                                                init(ped light) := WAIT;
VAR
                                                    next(ped light) := case
   traffic light: {RED, YELLOW, GREEN};
                                                       ped light=WAIT &
   ped light: {WAIT, WALK, FLASH};
                                                                  traffic light=RED: WALK;
   button: {RESET, SET};
                                                       ped light=WAIT: WAIT;
ASSIGN
                                                       ped light=WALK: {WALK,FLASH};
    init(traffic light) := RED;
                                                       ped light=FLASH: {FLASH, WAIT};
    next(traffic light) := case
                                                       TRUE: {WAIT};
        traffic light=RED & button=RESET:
                                                    esac;
                    GREEN;
                                                    next(button) := case
        traffic light=RED: RED;
                                                       button=SET & ped light=WALK: RESET;
        traffic light=GREEN & button=SET:
                                                       button=SET: SET;
                   {GREEN, YELLOW};
                                                       button=RESET & traffic light=GREEN:
        traffic light=GREEN: GREEN;
                                                                {RESET, SET};
        traffic light=YELLOW:
                                                       button=RESET: RESET;
                   {YELLOW, RED};
                                                       TRUE: {RESET};
        TRUE: {RED};
                                                    esac;
    esac;
```

Activity

• For this model:

- Briefly describe a safety-property (nothing "bad" ever happens) for this model and formulate it in CTL.
- Briefly describe a liveness-property (something "good" eventually happens) for this model and formulate it in LTL.

Activity - Potential Solutions

- Safety Property
 - System never reaches bad state.
 - Always in some good state.
- AG (pedestrian_light = walk -> traffic_light != green)
 - The pedestrian light cannot indicate that I should walk when the traffic light is green.
 - This is a safety property. We are saying that something should NEVER happen.

Activity - Potential Solutions

- Liveness Property
 - Eventually useful things happen.
 - Fairness criteria.
- G (traffic_light = RED & button = RESET ->
 F (traffic_light = green))
 - If the light is red, and the button is reset, then eventually, the light will turn green.
 - This is a liveness property, as we assert that something will eventually happen.

Proving Properties Over Models

Proving Properties

- To perform verification, we take properties and exhaustively search the state space of the model for violations.
- Violations give us counter-examples
 - A path that demonstrates how the property has been violated.
- Implications:
 - Property is incorrect.
 - Model does not reflect expected behavior.
 - Real issue found in the system being designed.

Test Generation from FS Verification

- We can also take properties and negate them.
 - Called a "trap property" we assert that a property can never be met.
- The counter-example shows one way the property can be met.
- This can be used as a test for the real system - to demonstrate that the final system meets its specification.

Exhaustive Search

- Algorithms exhaustively comb through the possible execution paths through the model.
- Major limitation state space explosion.

Exhaustive Search - Dining Philosophers

- Problem X philosophers sit at a table with Y forks between them. Philosophers may think or eat. When they eat, they need two forks.
- Goal is to avoid deadlock a state where no progress is possible.
 - 5 philosophers/forks deadlock after exploring 145 states
 - 10 philosophers/forks deadlock after exploring 18,313 states
 - 15 philosophers/forks deadlock after exploring 148,897 states
 - 9 philosophers/10 forks deadlock found after exploring 404,796 states

Search Based on SAT

 Express properties as conjunctive normal form expressions:

```
o f = (!x2 \mid | x5) \&\& (x1 \mid | !x3 \mid | x4) \&\& (x4 \mid | !x5) \&\& (x1 \mid | x2)
```

- Examine reachable states and choose a transition based on how it affects the CNF expression.
 - \circ If we want x2 to be false, choose a transition that imposes that change.
- Continue until CNF expression is satisfied.

Branch & Bound Algorithm

- Set a variable to a particular value (true/false).
- Apply that value to the CNF expression.
- See whether that value satisfies all of the clauses that it appears in.
 - If so, assign a value to the next variable.
 - If not, backtrack (bound) and apply the other value.
- Prune branches of the boolean decision tree as values are applies.

Branch & Bound Algorithm

```
f = (!x2 \mid | x5) \&\& (x1 \mid | !x3 \mid | x4) \&\& (x4 \mid | !x5) \&\& (x1 \mid | x2)
```

1. Set x1 to false.

$$f = (!x2 \mid | x5) \&\& (0 \mid | !x3 \mid | x4) \&\& (x4 \mid | !x5) \&\& (0 \mid | x2)$$

2. Set x2 to false.

$$f = (1 \mid | x5) \&\& (0 \mid | !x3 \mid | x4) \&\& (x4 \mid | !x5) \&\& (0 \mid | 0)$$

3. Backtrack and set x1 to true.

$$f = (0 \mid | x5) \&\& (0 \mid | !x3 \mid | x4) \&\& (x4 \mid | !x5) \&\& (0 \mid | 1)$$

DPLL Algorithm

- Set a variable to a particular value (true/false).
- Apply that value to the CNF expression.
- If the value satisfies a clause, that clause is removed from the formula.
- If the variable is negated, but does not satisfy a clause, then the variable is removed from that clause.
- Repeat until a solution is found.

DPLL Algorithm

```
f = (!x2 \mid | x5) \&\& (x1 \mid | !x3 \mid | x4) \&\& (x4 \mid | !x5) \&\& (x1 \mid | x2)
```

1. Set x2 to false.

```
f = (1 \mid | x5) \&\& (x1 \mid | !x3 \mid | x4) \&\& (x4 \mid | !x5) \&\& (x1 \mid | 0)

f = (x1 \mid | !x3 \mid | x4) \&\& (x4 \mid | !x5) \&\& (x1)
```

2. Set x1 to true.

```
f = (1 \mid | !x3 \mid | x4) && (x4 \mid | !x5) && (1)

f = (x4 \mid | !x5)
```

3. Set x4 to false, then x5 to false.

Model Refinement

- Models have to balance precision with efficiency.
- Abstractions that are too simple may introduce spurious failure paths that may not be in the real system.
- Models that are too complex may render model checking infeasible due to resource exhaustion.

We Have Learned

- We can perform verification by creating models of the system and proving that the specification properties hold over the model.
- To do so, we must express specifications as sets of logical formulae written in a temporal logic.
- Finite state verification exhaustively searches the state space for violations of properties.

We Have Learned

- By performing this process, we can gain confidence that the system will meet the specifications.
 - We can even generate test cases from the model to help demonstrate that properties still hold over the final system.

Next Time

- Symbolic execution and proof of properties
- Reading: Chapter 7

- Homework:
 - Reading assignment 3 is out.
 - Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats P.E. Heimdahl. Proving the Shalls: Early Validation of Requirements Through Formal Methods
 - Due April 10th.
 - Assignment 3 due tonight.

Backup Slides

Intensional Models

- State space can be limited by replacing extensional representations with intensional representations
 - A positive even integer < 20:
 - Extensional: {2, 4, 6, 8, 10, 12, 14, 16, 18}
 - (All concrete values)
 - Intensional: $\{x \in N \mid x \mod 2 = 0 \land 0 < x < 20\}$
 - (Symbolic representation)
 - Equation called the characteristic function
 - A predicate true for all elements in the set of values and false otherwise.

Ordered Binary Decision Diagrams

- We can represent whether or not there is a transition between two states using a characteristic function.
 - o f(m,n) = true if there is a transition from m to n.
- OBDDs are a data structure representing the calculation of a binary function.
 - Such as a characteristic function.
 - Can be used to represent a subset of the state space.

OBDD Example

- !a v (b ^ c)
 - Can be thought of as a function: f(a,b,c)
 - Returns true if the property is satisfied, false if not.

Ordered Binary Decision Diagrams

- Built by iteratively expanding the set of states reachable in k+1 steps.
 - Stabilizes when the number of transitions that can occur in the next step are already included.
- Most basic form what states can we reach from the current state in n transitions?
- Often, merged with specification properties:
 - The set of transitions leading to a violation of the property.
 - If that set if empty, the property is verified.
 - Symbolic model checking.

Building OBDDs

 Assign each state and symbol a boolean label.

 Encode transitions as tuples (sym, from, to)

X0	X1X2	X3X4
0	00	00
1	00	01
1	01	10
sym	from state	to state

Benefits of OBDDs

- OBDDS allow us to represent sets of states symbolically.
 - Rather than reasoning over the entire state space, we can reason over a small representation of a set of states (the boolean characteristic function).
- Allows verification of much larger models than explicit model checking.
 - As long as we can represent states with such a function.
 - Best when there is a large degree of regularity in the state space.