Université Pierre et Marie Curie - LM223 - Année 2012-2013

Examen final, 16 janvier 2013

Exercice 1:

- 1. Donner 3 matrices de $O(2) \setminus SO(2)$ (c'est à dire des matrices qui sont dans O(2) mais pas dans SO(2)).
- 2. Montrer que si $P,Q\in O(3)$, alors $PQ\in O(3)$.

Exercice 2:

Soit f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 dont la matrice dans la base canonique est $\begin{pmatrix} 2 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$.

- 1. Montrer que $\operatorname{Im}(f)$ est un plan de \mathbb{R}^3 dont on donnera une équation cartésienne.
- 2. Est-ce que $v = (1, 1, 1) \in \text{Im}(f)$?
- 3. Montrer qu'il existe un unique $u \in \mathbb{R}^2$ tel que ||f(u) v|| soit minimale, et déterminer ce u.
- 4. Donner la matrice (dans la base canonique) de la symétrie orthogonale par rapport à Im(f).

Exercice 3:

Soit q la forme quadratique de \mathbb{R}^3 définie par

$$q(x, y, z) = 3x^2 + y^2 + 2z^2 + 4xz + 4yz$$

- 1. Donner la matrice associée à q dans la base canonique de \mathbb{R}^3 .
- 2. Déterminer \mathcal{B} une base orthonormée (pour le produit scalaire usuel de \mathbb{R}^3) qui soit aussi orthogonale pour q.
- 3. Existe-t-il $u \in \mathbb{R}^3$ tel que q(u) < 0 et si oui donner un tel u.
- 4. Montrer que si $v \in \mathbb{R}^3$ et $||v|| \le 1$, alors $-1 \le q(v) \le 5$.

Exercice 4:

Soit

$$f: \mathbb{R}_2[X] \times \mathbb{R}_2[X] \to \mathbb{R}$$

 $(P,Q) \mapsto \int_{-1}^1 x P(x) Q(x) dx$

- 1. Montrer brièvement que f est une application bilinéaire symétrique.
- 2. Soit $\mathcal{B} = \{1, X, X^2\}$ la base canonique de $\mathbb{R}_2[X]$. Calculer la matrice M de f dans la base \mathcal{B} .
- 3. Calculer la signature de la forme quadratique q associée à f.