Vibrations and Waves by A. P. French Notes

Chris Doble

May 2022

Contents

1	Periodic motions	1
2	The superposition of periodic motions	1

1 Periodic motions

- Fouriers theorem states that any repeating signal of period T can be expressed as a sum of sin waves with periods T, T/2, etc.
- It's important to define the domain of a SHM equation, e.g. for what values of t is the motion defined?
- SHM can be considered a projection of uniform circular motion
- That uniform circular motion can be represented by a number in the complex plane, with the projection being its real part
- Multiplication by j can be considered a counter-clockwise rotation of 90° in the complex plane
- Euler's formula states

$$e^{j\theta} = \cos\theta + j\sin\theta$$

• Multiplication of a complex number z by $e^{j\theta}$ is equivalent to a counter-clockwise rotation of z by an angle of θ

2 The superposition of periodic motions

• The combination of two SHM's of the same period

$$x_1 = A_1 \cos(\omega t + \alpha_1)$$

$$x_2 = A_2 \cos(\omega t + \alpha_2)$$

is given by

$$x = A\cos(\omega t + \alpha)$$

where

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\alpha_{2} - \alpha_{1}),$$

$$A\sin\beta = A_{2}\sin(\alpha_{2} - \alpha_{1}),$$

and

$$\alpha = \alpha_1 + \beta$$
.

• The combination in complex representation

$$z_1 = A_1 e^{j(\omega t + \alpha_1)}$$

$$z_2 = A_2 e^{j(\omega t + \alpha_2)}$$

is given by

$$z = e^{j(\omega t + \alpha_1)} [A_1 + A_2 e^{j(\alpha_2 - \alpha_1)}]$$

• In the case where $A_1=A_2$ if we denote $\delta=\alpha_2-\alpha_1$ then

$$\beta = \frac{\delta}{2}$$

and

$$A = 2A_1 \cos \beta = 2A_1 \cos \frac{\delta}{2}$$

• The superposition of two sinusoids with different periods will itself be periodic if there exist integers n_1 and n_2 such that

$$T = n_1 T_1 = n_2 T_2$$

where T_1 and T_2 are the periods of the two sinusoids

Periodic motion in two or more dimensions can be represented by extending the "projection of a rotating vector" approach, with one vector for each axis, e.g.

$$x = A_1 \cos \omega t$$

$$y = A_2 \cos \omega t$$

where differing amplitudes, frequencies, and phase differences product different curves called ${f Lissajous~curves}$