Теорема об изоморфизме деревьев

Определение 1. A и B – ∂ ва ∂ ерева c множествами вершин $a_1, a_2, ..., a_n$ и $b_1, b_2, ..., b_n$ соответственно. $c(a_i)$ – (n-1)-вершинный подграф, полученный из A удалением вершины a_i и всех смежных c ней ребер. Нам известно, что $c(a_i) \cong c(b_i)$.

Лемма 1. Каждый тип собственного подграфа, который встречается в A или B, встречается одинаковое количесто раз в обоих, и a_i и b_i встречаются в одинаковом числе этих подграфов.

Лемма 2. Вершины a_i и b_i имеют одинаковую степень для $\forall i$.

Определение 2. Эксцентриситет v – наибольшее расстроения от v до любой другой вершины.

Центр графа – вершина с наименьшим эксцентриситетом.

Радиус графа – наименьший эксцентриситет. (Но в статье считаем, что радиус графа – наибольшее среди расстояний от вершины до ближайшего к ней центра)

Утверждение 1. У дерева может быть либо один, либо два центра. Такие деревья называются центральные и двуцентральные, соответственно.

Лемма 3. Деревья A и B имеют одинаковый радиус r, и одновременно являются центральными или двуцентральными.

Далее считаем, что оба дерева у нас двуцентральные.

Определение 3. r-точка — это такая точка, что расстояние от нее до ближайшего центра ровно r.

Определение 4. a_i – несущественная точка, если $c(a_i)$ – остается двуцентральным графом с радиусом r.

Определение 5. Пусть \overline{a}_1 и \overline{a}_2 – центры дерева A. F – компонента в $A \setminus \{\overline{a}_1, \overline{a}_2\}$. Компонента F в A соединена ровно с одним центром (пусть с \overline{a}_1). Тогда граф $F \cup \overline{a}_1$ называется радиальным лимбом, если он содержит r-точку, а иначе нерадиальным.

 A_r – совокупность всех радиальных лимбов в A.

Лемма 4. a_i – r-точка $\Leftrightarrow b_i$ – r-точка

Лемма 5. Если a_i – несущественная точка A в A_r , то b_i – несущественная точка B в B_r

Теорема 1. Если A и B – деревъя c вершинами $a_1, a_2, ..., a_n$ и $b_1, b_2, ..., b_n$ и $c(a_i) \cong c(b_i)$ для $\forall i \Rightarrow A \cong B$

Доказательство состоит из разбора 3-х случаев:

- 1. Одно из деревьев имеет нерадиальный лимб
- 2. Нет нерадиальных лимбов, но одно из деревьев содержит хотя 3 радиальных лимба
- 3. У каждого дерева по два радиальных лимба