抽象代数综合测验

一、不定项选择

- 1. G 是群, e 是单位元, H 是 G 的子集, 下面说法正确的是:
 - (a) 如果 H 是 G 的子群,则 $e \in H$ 且 $\forall a, b \in H, ab \in H$
 - (b) 如果 $\forall a \in H$ 有 $a^{-1} \in H$,且 $\forall a, b \in H$ 有 $ab \in H$,则 H 是 G 的子群
 - (c) 如果 $e \in H$ 且对任意 $a, b \in H$ 有 $ab \in H$, 则 H 是 G 的子群
 - (d) H 是 G 的子群当且仅当 $\forall a,b \in H$ 有 $b^{-1}a \in H$

答案与解析: A, B, D. A 是子群的必要条件。B 是两步判别法(充分条件)。D 是一步判别法(充要条件)。B 和 D 在严格意义上都隐含了 H 非空的假设。C 是错误的,缺少逆元条件。

- 2. 下面哪些集合及其上面的加法、乘法运算不构成域:
 - (a) $\mathbb{Q}[i] = \{a + bi \mid a, b \in \mathbb{Q}\}$ 关于普通复数加法和乘法构成的环
 - (b) $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ 关于普通实数加法和乘法构成的环
 - (c) $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ 关于模 6 加法和模 6 乘法构成的环
 - (d) $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ 关于模 7 加法和模 7 乘法构成的环

答案与解析: C. 这是一个"选非题"。环 \mathbb{Z}_n 是域当且仅当 n 是素数。6 不是素数, \mathbb{Z}_6 中有零因子(如 $2 \cdot 3 = 0$),所以不是域。其他选项都是域。

- 3. $U(9) = \{1, 2, 4, 5, 7, 8\}$ 关于正规子群 $N = \{1, 8\}$ 得到商群 G = U(9)/N,下列说 法正确的是:
 - (a) $G = \{\{1, 8\}, \{2, 4\}, \{5, 7\}\}$
 - (b) G 的单位元是 {2,4}
 - (c) 2N 的逆元是 4N
 - (d) 2N 和 5N 的运算结果是 7N

答案与解析: C. 只有一个选项是事实正确的。A 的陪集计算错误。B 的单位元应为 $N = \{1,8\}$ 。D 的运算结果应为 N。C 的计算 $(2N)(4N) = (2 \cdot 4)N = 8N = N$ 正确。

- $4. R \neq S$ 的子环,下面说法正确的是:
 - (a) 若S无零因子,则R也无零因子
 - (b) 若 R 无零因子,则 S 也无零因子
 - (c) 若 S 有单位元,则 R 也有单位元
 - (d) 若 R 有单位元,则 S 也有单位元

答案与解析: A. 只有一个选项是普遍成立的。无零因子(整环)的性质会被子环继承。B, C, D 都有明确的反例。

- 5. 环同态 $\varphi: S \to S'$ 下面说法正确的是:
 - (a) 若 $R \in S$ 的子环,则 $R' = \varphi(R) \in S'$ 的子环
 - (b) 若 $I \in S$ 的理想,则 $I' = \varphi(I) \in S'$ 的理想
 - (c) 若 R' 是 S' 的子环,则 $R = \varphi^{-1}(R')$ 是 S 的子环
 - (d) 若 I' 是 S' 的理想,则 $I = \varphi^{-1}(I')$ 是 S 的理想

答案与解析: A, C, D. A, C, D 都是环同态的基本定理。B 是错误的,理想的同态像一般只是子环,不一定是理想(除非 φ 是满射)。

二、计算与证明

 $6. U(9) = \{1, 2, 4, 5, 7, 8\}$ 是循环群吗,并求出其所有非平凡子群。

解:

(a) 判断是否是循环群: 检验元素 2 的阶:

 $2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 \equiv 7, 2^5 \equiv 5, 2^6 \equiv 1 \pmod{9}$

因为元素 2 的阶为 6,等于群的阶,所以 U(9) 是由 2 生成的循环群。

- (b) **求非平凡子群:** 子群的阶必须是 6 的因子 (1, 2, 3, 6)。非平凡子群的阶为 2 和 3。
 - 阶为 2 的子群: 由 $2^{6/2} = 2^3 = 8$ 生成, 为 $\langle 8 \rangle = \{1, 8\}$.
 - 阶为 3 的子群: 由 $2^{6/3} = 2^2 = 4$ 生成,为 $\langle 4 \rangle = \{1, 4, 7\}$ 。

结论: U(9) 是循环群。它有两个非平凡子群: $\{1,8\}$ 和 $\{1,4,7\}$ 。

7. 求 \mathbb{Z}_6 到 \mathbb{Z}_{12} 的所有环同态。

解: 设 $\varphi: \mathbb{Z}_6 \to \mathbb{Z}_{12}$ 是环同态, 令 $k = \varphi(1)$ 。k 必须满足:

- (i) k 是幂等元: $k^2 \equiv k \pmod{12}$ 。
- (ii) 映射良定义: $6k \equiv 0 \pmod{12}$ 。

步骤 1: 在 \mathbb{Z}_{12} 中找幂等元,解得 $k \in \{0,1,4,9\}$ 。

步骤 2: 检验这些幂等元是否满足 $6k \equiv 0 \pmod{12}$ 。

- $k = 0: 6 \cdot 0 = 0 \equiv 0 \pmod{12}$ (满足)
- $k = 1 : 6 \cdot 1 = 6 \not\equiv 0 \pmod{12}$ (不满足)
- $k = 4: 6 \cdot 4 = 24 \equiv 0 \pmod{12}$ (满足)
- $k = 9: 6 \cdot 9 = 54 \equiv 6 \pmod{12}$ (不满足)

结论: 存在两个环同态,由 k = 0 和 k = 4 确定: $\varphi_1(x) = 0$ 和 $\varphi_2(x) = 4x \pmod{12}$.

8. 在商环 $\mathbb{Z}_3[x]/\langle x^2+1\rangle$ 中进行如下计算。

基本关系: 在商环中, $x^2 + 1 = 0$, 即 $x^2 = -1 \equiv 2 \pmod{3}$ 。

(a) 求加法单位元和乘法单位元

答:加法单位元是 0,乘法单位元是 1。

(b) **计算** $2x + 1 \otimes 2x + 2$

答:

$$(2x+1)(2x+2) = 4x^2 + 4x + 2x + 2$$

$$\equiv x^2 + 6x + 2 \pmod{3}$$

$$\equiv x^2 + 2$$

$$\equiv 2 + 2 \pmod{3}$$

$$\equiv 4 \equiv 1 \pmod{3}$$

(c) 计算 $2x + 1 \oplus 2x + 2$ 及其加法阶

答:

- **计算:** $(2x+1) + (2x+2) = 4x + 3 \equiv x \pmod{3}$.
- m**法** \mathfrak{h} : 我们求 x 的加法阶。

$$-1 \cdot x = x$$

$$-2 \cdot x = x + x = 2x$$

$$-3 \cdot x = x + x + x = 3x = 0$$

所以 x 的加法阶是 3。

- (d) 计算 $x + 2 \otimes 2x + 1$ 及其乘法阶 答:
 - 计算:

$$(x+2)(2x+1) = 2x^2 + x + 4x + 2$$

$$\equiv 2x^2 + 5x + 2 \pmod{3}$$

$$\equiv 2x^2 + 2x + 2$$

$$\equiv 2(2) + 2x + 2 \pmod{3}$$

$$\equiv 4 + 2x + 2 = 2x + 6 \equiv 2x \pmod{3}$$

• **乘法阶**: 我们求 2x 的乘法阶。 $\Rightarrow y = 2x$.

$$-y^{1} = 2x$$

$$-y^{2} = (2x)^{2} = 4x^{2} \equiv x^{2} \equiv 2$$

$$-y^{3} = y^{2} \cdot y = 2 \cdot 2x = 4x \equiv x$$

$$-y^{4} = (y^{2})^{2} = (2)^{2} = 4 \equiv 1$$

所以 2x 的乘法阶是 4。

9. 设 $(R, +, \cdot)$ 是一个有单位元 1 的环, 定义新运算:

$$x \oplus y = x + y - 1$$
 $\Re x \otimes y = x + y - xy$

求证 (R, \oplus, \otimes) 也是一个有单位元的环。

证明:

- (R, \oplus) **是阿贝尔群**: 封闭性、结合律、交换律易证。
 - 加法单位元 e_{\oplus} : $x \oplus e_{\oplus} = x \implies x + e_{\oplus} 1 = x \implies e_{\oplus} = 1$.
 - 加法逆元 x': $x \oplus x' = 1 \implies x + x' 1 = 1 \implies x' = 2 x$ 。
- (R, \otimes) 结合律: 经计算 $(x \otimes y) \otimes z = x \otimes (y \otimes z) = x + y + z xy xz yz + xyz$.
- 分配律: $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$ 。经计算, 等式两边均为 2x + y + z xy xz 1。
- **乘法单位元** e_{\otimes} : $x \otimes e_{\otimes} = x \implies x + e_{\otimes} xe_{\otimes} = x \implies e_{\otimes}(1 x) = 0$ 。 为对所有 x 成立,必有 $e_{\otimes} = 0$ 。

结论: (R, \oplus, \otimes) 满足所有环公理,且有乘法单位元 0,是一个有单位元的环。

10. 求证 $\langle x^2 + 1 \rangle$ 是否为 $\mathbb{Z}_2[x]$ 的极大理想。

证明: 根据定理,在域 F 上,理想 $\langle p(x) \rangle$ 是极大理想当且仅当 p(x) 在 F 上不可约。这里 $F = \mathbb{Z}_2 = \{0,1\}$,多项式为 $p(x) = x^2 + 1$ 。我们检验 p(x) 在 \mathbb{Z}_2 中是否有根:

- $p(0) = 0^2 + 1 = 1 \neq 0$
- $p(1) = 1^2 + 1 = 1 + 1 = 0 \pmod{2}$

因为 p(x) 在 \mathbb{Z}_2 中有根 x=1,所以 p(x) 在 \mathbb{Z}_2 上是可约的 (事实上 $x^2+1=(x+1)^2$)。 **结论:** 由于 x^2+1 在 \mathbb{Z}_2 上可约,所以 $\langle x^2+1 \rangle$ **不是** $\mathbb{Z}_2[x]$ 的极大理想。

A 附录: 补充证明

A.1 一般环同态性质的证明

设 $\varphi: R \to S$ 是一个环同态。

命题 A.1 (子环的像). 若 $A \in R$ 的子环,则 $\varphi(A) \in S$ 的子环。

证明. 要证明 $\varphi(A)$ 是 S 的子环,需验证其对减法和乘法封闭且非空。

- (1) **非空性**: 因为 A 是子环, 所以 $0_R \in A$ 。根据同态性质, $\varphi(0_R) = 0_S$, 因此 $0_S \in \varphi(A)$, 故 $\varphi(A)$ 非空。
- (2) **对减法封闭**: 任取 $s_1, s_2 \in \varphi(A)$ 。则存在 $a_1, a_2 \in A$ 使得 $s_1 = \varphi(a_1)$ 且 $s_2 = \varphi(a_2)$ 。 于是 $s_1 - s_2 = \varphi(a_1) - \varphi(a_2) = \varphi(a_1 - a_2)$ 。因为 A 是子环,' $a_1 - a_2 \in A$ ',所以 $\varphi(a_1 - a_2) \in \varphi(A)$ 。
- (3) **对乘法封闭**: $s_1 \cdot s_2 = \varphi(a_1) \cdot \varphi(a_2) = \varphi(a_1 \cdot a_2)$ 。因为 A 是子环,' $a_1 \cdot a_2 \in A$ ',所以 $\varphi(a_1 \cdot a_2) \in \varphi(A)$ 。

因此, $\varphi(A)$ 是 S 的子环。

命题 A.2 (理想/子环的原像). 若 I' 是 S 的理想 (或子环),则 $\varphi^{-1}(I')$ 是 R 的理想 (或子环)。

证明. 这里的 $\varphi^{-1}(I')$ 指的是原像集 $\{r \in R \mid \varphi(r) \in I'\}$ 。

- (1) 我们先证明若 I' 是子环,则 $\varphi^{-1}(I')$ 是子环。
 - **非空性**: 因为 I' 是子环,所以 $0_S \in I'$ 。由于 $\varphi(0_R) = 0_S$,所以 $0_R \in \varphi^{-1}(I')$,故 ' $\varphi^{-1}(I')$ ' 非空。
 - **对减法封闭**: 任取 $a,b \in \varphi^{-1}(I')$ 。这意味着 $\varphi(a) \in I'$ 且 $\varphi(b) \in I'$ 。于是 $\varphi(a-b) = \varphi(a) \varphi(b) \in I'$ 。因此,' $a-b \in \varphi^{-1}(I')$ '。
 - **对乘法封闭**: $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b) \in I'$ 。 因此,' $a \cdot b \in \varphi^{-1}(I')$ '。
- (2) 现在证明若 I' 是理想,则 $\varphi^{-1}(I')$ 满足吸收律。任取 $x \in \varphi^{-1}(I')$ 和环中任意元素 $r \in R$ 。根据定义, $\varphi(x) \in I'$ 。我们有 $\varphi(rx) = \varphi(r) \cdot \varphi(x)$ 。因为 I' 是 S 的理想,它能吸收来自 S 的任何元素 $\varphi(r)$ 的乘积。所以 $\varphi(r) \cdot \varphi(x) \in I'$ 。因此, ' $rx \in \varphi^{-1}(I')$ '。同理可证 ' $xr \in \varphi^{-1}(I')$ '。

综上, 若 I' 是理想, 则 $\varphi^{-1}(I')$ 是 R 的理想。

A.2 极大理想与不可约多项式

定理 A.3. 设 F 是一个域, p(x) 是多项式环 F[x] 中的一个多项式。由 p(x) 生成的理想 $\langle p(x) \rangle$ 是 F[x] 中的极大理想, 当且仅当 p(x) 在域 F 上是不可约多项式。

证明. 若 $\langle p(x) \rangle$ 是极大理想,则 p(x) 不可约。

我们用反证法。假设 p(x) 是**可约**的。则存在次数更低的多项式 $a(x),b(x) \in F[x]$ 使得 p(x) = a(x)b(x)。这导致理想链 $\langle p(x) \rangle \subset \langle a(x) \rangle \subset F[x]$ 。由于 $\langle p(x) \rangle$ 是极大理想,任何 严格包含它的理想只能是 F[x]。所以 $\langle a(x) \rangle = F[x]$ 。这意味着 a(x) 是一个单位(非零常数),其次数为 0。这与 a(x) 是 p(x) 的一个次数更低的非平凡因子相矛盾。故 p(x) 必须是不可约的。

若 p(x) 不可约,则 $\langle p(x) \rangle$ 是极大理想。

设 I 是 F[x] 中的一个理想,且 $\langle p(x) \rangle \subseteq I \subseteq F[x]$ 。因为 F[x] 是主理想整环,所以 $I = \langle g(x) \rangle$ 。包含关系 $\langle p(x) \rangle \subseteq \langle g(x) \rangle$ 意味着存在 $h(x) \in F[x]$ 使得 p(x) = g(x)h(x)。由于 p(x) 是不可约的,这个分解只有两种可能:(1) g(x) 是一个单位,此时 $I = \langle g(x) \rangle = F[x]$ 。(2) h(x) 是一个单位,此时 g(x) 与 p(x) 相伴,这意味着 $I = \langle g(x) \rangle = \langle p(x) \rangle$ 。因此, $\langle p(x) \rangle$ 是一个极大理想。

A.3 绕过定理的直接证明方法

命题 A.4. 在 $\mathbb{Z}_3[x]$ 中,理想 $I_0 = \langle x^2 + 1 \rangle$ 是极大理想。

证明. 设 I 是一个理想,且满足 $I_0 \subset I \subseteq \mathbb{Z}_3[x]$ 。我们的目标是证明 $I = \mathbb{Z}_3[x]$ 。

- (1) 因为 $I_0 \subset I$,所以 I 中至少存在一个多项式 $f(x) \notin I_0$ 。
- (2) 使用除法算法: $f(x) = q(x)(x^2 + 1) + r(x)$, 其中 r(x) = 0 或 deg(r) < 2。
- (3) $r(x) = f(x) q(x)(x^2 + 1)$ 。由于 $f(x) \in I$ 且 $q(x)(x^2 + 1) \in I_0 \subset I$,则 $r(x) \in I_0$
- (4) 因为 $f(x) \notin I_0$,所以余式 r(x) 不能为零。因此 r(x) = ax + b,其中 $a, b \in \mathbb{Z}_3$ 不全为零。
- (5) 既然 $ax + b \in I$, 那么 $(ax + b)(ax b) = a^2x^2 b^2$ 也在 I 中。
- (6) 在 $\mathbb{Z}_3[x]$ 中,我们有 $x^2 \equiv -1 \equiv 2 \pmod{I_0}$ 。因此 $a^2x^2 b^2 = a^2(2) b^2 = 2a^2 b^2$ 。 这个常数 $c = 2a^2 - b^2$ 在理想 I 中。
- (7) 我们证明这个常数 c 不为零。假设 $2a^2 = b^2$ 。若 a = 0,则 b = 0,与 ax + b 非零矛盾。若 $a \neq 0$,则 $a^2 = 1$,代入得 $2 = b^2$,但在 \mathbb{Z}_3 中没有元素的平方等于 2。
- (8) 因此,常数 c 是一个非零常数 (即 1 或 2),它是一个单位。

- (9) 既然单位 $c \in I$,它的逆元 c^{-1} 存在于 $\mathbb{Z}_3[x]$ 中。根据理想的吸收律, $c^{-1} \cdot c = 1$ 也必须在理想 I 中。
- (10) 一旦理想 I 包含了乘法单位元 1, 那么它必然是整个环, 即 $I = \mathbb{Z}_3[x]$ 。

证明 6 阶群 G 的元素只能是 1 阶、2 阶、3 阶和 6 阶,显然不可能是都是 1 阶元,如果都是 2 阶元,则对任意的 $a \in G$ 有 $a^2 = e$,从而 $a = a^{-1}$,即 G 的任意元素的逆都是这个元素自己。从而对任意 $a,b \in G$,

$$(ab)(ba) = a(bb)a = a(e)a = aa = e$$

也即 $(ab)^{-1} = ba$,但每个元素的逆元就是它自己,所以以 ab = ba,也即这时 G 是交换群,从而对于非单位元的两个不同元素 $a,b,H = \{e,a,b,ab\}$ 是 G 的子群,但 G 阶群不可能有 G 外子群,矛盾!因此 G 阶群不可能所有元素都是 G 阶元,也即存在 G 阶元 G 或者 G 阶元 G 。若 G 是 G 阶元,则 G 是 G 的

若 6 阶群 G 存在两个不同的 3 阶子群 H 和 K, 那么 $H \cap K$ 也 G 的子群, 且由于 $H \cap K$ 也都是 H 和 K 的真子群, 因此根据拉格朗日定理, 必有 $H \cap K = \{e\}$, 从而

$$|G| \ge |HK| = \frac{|H| \cdot |K|}{|H \cap K|} = \frac{3 \cdot 3}{1} = 9$$

与G是6阶群矛盾!因此必有H = K,即G只有1个3阶子群。