CHAPTER 3

FUNCTIONAL ANALYSIS

3.1 Function spaces

For $p \in [1, \infty)$, we define

$$L^p[0,1] = \{f : [0,1] \to \mathbb{R} \cup \{\pm \infty\} \mid |f|^p \text{ (Lebesgue) integrable}\}.$$

Moreover, we have the norm

$$||f||_p = \left(\int_0^1 |f|^p \ dm\right)^{1/p}.$$

For the L_{∞} norm, we define the concept of essential supremum.

Definition 3.1.1. Let $f:[0,1]\to\mathbb{R}\cup\{\pm\infty\}$ be a function. Then, the *essential supremum* of f is the set

ess
$$\sup(f) = \inf\{a \in [0,1] \mid m(f(x) > a) = 0\}.$$

Then, we define

$$L^{\infty}[0,1] = \{f : [0,1] \to \mathbb{R} \cup \{\pm \infty\} \mid \text{ess sup } |f| \text{ exists} \}.$$

Moreover, we have the norm

$$||f||_{\infty} = \operatorname{ess sup} |f|.$$

We will now prove Holder's Inequality. First, we start with a lemma.

Lemma 3.1.2. *Let* $a, b \in [0, \infty)$, and $\lambda \in (0, 1)$. Then,

$$a^{\lambda}b^{1-\lambda} < \lambda a + (1-\lambda)b.$$

Moreover, we have equality if and only if a = b.

Proof. If b = 0, then

$$a^{\lambda}b^{1-\lambda} = 0 < \lambda a.$$

Instead, assume that $b \neq 0$. In that case, define the function $f:(0,\infty) \to \mathbb{R}$ given by

$$f(t) = \lambda t + 1 - \lambda - t^{\lambda}.$$

We have

$$f'(t) = \lambda - \lambda t^{\lambda - 1}, \qquad f''(t) = -(\lambda - 1)\lambda t^{\lambda - 2}.$$

So, f'(t) = 0 if and only if t = 1, with $f''(1) = -(\lambda - 1)\lambda > 0$. In that case, f has a global minimum at t = 1. Therefore, for all $t \in (0, \infty)$, $f(t) \ge f(1)$. Setting $t = \frac{a}{b}$, we find that

$$\lambda \frac{a}{b} + 1 - \lambda - \frac{a^{\lambda}}{b^{\lambda}} \ge 0 \implies a^{\lambda} b^{1-\lambda} \le \lambda a + (1 - \lambda)b.$$

Proposition 3.1.3 (Holder's Inequality). Let $p \in (1, \infty)$ and $q \in (1, \infty)$ such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Let $f, g: [0,1] \to \mathbb{R} \cup \{\pm \infty\}$ be measurable functions. Then,

$$||fg||_1 \le ||f||_p ||g||_q$$
.

In particular, if $f \in L^p[0,1]$ and $g \in L^q[0,1]$, then $fg \in L^1[0,1]$. Moreover, we have equality if and only if $\alpha |f|^p = \beta |g|^q$ almost everywhere in [0,1], for some $\alpha, \beta \in \mathbb{R}^{\times}$.

Proof. If $||f||_p = 0$ or $||g||_q = 0$, then the function is equal to 0 almost everywhere in [0,1]. In that case, fg = 0 almost everywhere, meaning that $||fg||_1 = 0$.

Instead, if $||f||_p = \infty$ or $||g||_q = \infty$, then we must have $||fg||_1 \le ||f||_p ||g||_q$. Otherwise, assume that $||f||_p$ and $||g||_p$ are finite are non-zero. Without loss of generality, assume that $||f||_p = 1$ and $||g||_q = 1$. In that case, set $a = |f(x)|^p$, $b = |g(x)|^q$ and $\lambda = \frac{1}{p}$. Then, the lemma above tells us that

$$f(x)g(x) = (|f(x)|^p)^{1/p} (|g(x)|^q)^{1/q}$$

$$= a^{\lambda}b^{1-\lambda}$$

$$\leq \lambda a + (1-\lambda)b$$

$$= \frac{1}{p}|f(x)|^p + \frac{1}{q}|g(x)|^q.$$

Integrating the inequality, we find that

$$\begin{split} \|fg\|_1 &= \int_0^1 |fg| \ dm \\ &\leq \int_0^1 \frac{1}{p} |f|^p + \frac{1}{q} |g|^q \ dm \\ &= \frac{1}{p} \|f\|_p^p + \frac{1}{q} \|g\|_q^q \\ &= \frac{1}{p} + \frac{1}{q} \\ &= 1 = \|f\|_p \|g\|_q. \end{split}$$

Now, we show that L^p are truly norms, by proving it satisfies the Triangle Inequality.

Proposition 3.1.4 (Minkowski Inequality). Let $p \in [1, \infty)$ and $f, g \in L^p$. Then,

$$||f+g||_p \le ||f||_p + ||g||_p.$$

Proof. If p=1, then the result follows from the Triangle Inequality in \mathbb{R} . Otherwise, we have $p\in(1,\infty)$. In that case,

$$|f+g|^p \le (|f|+|g|)|f+g|^{p-1}$$

¹This is possible since a (non-negative) scalar multiple does not affect the inequality.

2

Pete Gautam

using the Triangle Inequality on \mathbb{R} . Let $q \in (1, \infty)$ such that

$$\frac{1}{p} + \frac{1}{q} = 1 \iff (p-1)q = p.$$

Integrating the inequality, we find that

$$\int |f+g|^p \ dm \le \int |f||f+g|^{p-1} \ dm + \int |g||f+g|^{p-1} \ dm.$$

Using Holder's Inequality now, we find that

$$\int |f||f+g|^{p-1} dm = |||f| \cdot |f+g|^{p-1}||_1 \le ||f||_p ||(f+g)^{p-1}||_q$$
$$\int |g||f+g|^{p-1} dm = |||g| \cdot |f+g|^{p-1}||_1 \le ||g||_p ||(f+g)^{p-1}||_q.$$

We have

$$||(f+g)^{p-1}||_q = \left(\int (|f+g|^{p-1})^q \ dm\right)^{1/q} = \left(\int |f+g|^p \ dm\right)^{1/q}.$$

Putting this together, we find that

$$\int |f+g|^p \ dm \le (\|f\|_p + \|g\|_p) \left(\int |f+g|^p \ dm \right)^{1/q}.$$

This implies that

$$\left(\int |f+g|^p \ dm\right)^{1-1/q} \le ||f||_p + ||g||_p.$$

We have $1 - \frac{1}{q} = \frac{1}{p}$. So,

$$||f+g||_p \le ||f||_p + ||g||_p.$$

3.2 Completeness of L^p

Definition 3.2.1. Let V be a normed vector space over \mathbb{R} , and let $(x_n)_{n=1}^{\infty}$ be a sequence in V. We say that the series

$$\sum_{k=1}^{\infty} x_k$$

converges if the sequence of partial sums $(s_n)_{n=1}^{\infty}$ in V given by

$$s_n = \sum_{k=1}^n x_k$$

converges. Further, we say that the series converges absolutely if the sequence of partial sums $(y_n)_{n=1}^{\infty}$ in \mathbb{R} given by

$$y_n = \sum_{k=1}^n ||x_k||$$

converges.

Proposition 3.2.2. Let V be a normed vector space over \mathbb{R} . Then, V is complete if and only if every absolutely convergent series is convergent.

Proof.

• First, assume that V is complete. Let $(x_k)_{k=1}^{\infty}$ be a sequence such that the series $\sum x_k$ is absolutely convergent. In that case, the series $\sum ||x_k||$ is Cauchy. Now, define the partial sums $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ by

$$s_n = \sum_{k=1}^n x_k, \qquad t_n = \sum_{k=1}^n ||x_k||.$$

Next, let $\varepsilon > 0$. We can find an $N \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$ with $m \geq n$, if $m, n \geq N$, then

$$|t_m - t_n| = \sum_{k=n+1}^m ||x_k|| < \varepsilon.$$

In that case, for $m, n \in \mathbb{Z}_{\geq 1}$ with $m \geq n$, if $m, n \geq N$, then

$$||s_m - s_n|| = \left\| \sum_{k=n+1}^m x_k \right\| \le \sum_{k=n+1}^m ||x_k|| < \varepsilon.$$

Therefore, the series $\sum x_k$ is Cauchy. Since V is complete, this implies that $\sum x_k$ is convergent. So, every absolutely convergent series is convergent.

• Now, assume that every absolutely convergent series is convergent. Let $(x_n)_{n=1}^{\infty}$ be a Cauchy sequence in V. In that case, for each $k \in \mathbb{Z}_{\geq 1}$, we can find an $N_k \in \mathbb{Z}_{\geq 1}$, with $N_k \geq N_{k-1}$ for $k \geq 2$, such that for

 $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then $||x_m - x_n|| < \frac{1}{2^{k-1}}$. Now, define the sequence $(y_n)_{n=1}^{\infty}$ by $y_1 = x_{N_1}$ and $y_n = x_{N_n} - x_{N_{n-1}}$ for $n \geq 2$. We show that $\sum y_n$ is absolutely convergent. Let $\varepsilon > 0$. We find that

$$\sum_{j=1}^{\infty} ||y_j|| \le ||x_{N_1}|| + \sum_{j=2}^{\infty} ||x_{N_j} - x_{N_{j-1}}|| ||x_{N_1}|| + \sum_{j=2}^{\infty} \frac{1}{2^j} = x_{N_1} + 1.$$

This implies that $\sum y_n$ is absolutely convergent. Since every absolutely convergent series is convergent, we find that $\sum y_n$ is convergent. In that case, the sequence of partial sums $(s_n)_{n=1}^{\infty}$

$$s_n = \sum_{k=1}^n y_n = x_{N_n}$$

converges. So, the subsequence $(x_{N_n})_{n=1}^{\infty}$ converges. Since (x_n) is Cauchy, this implies that $(x_n)_{n=1}^{\infty}$ converges. Therefore, V is complete.

Proposition 3.2.3. Let $p \in [1, \infty)$. Then, $L^p[0, 1]$ is a Banach space, i.e. the function space is complete.

Proof. Let $(f_n)_{n=1}^{\infty}$ be a sequence in $L^p[0,1]$ such that $\sum f_n$ is absolutely convergent.

3.3 Linear Operators

Definition 3.3.1. Let V, W be normed vector spaces, and let $T: V \to W$ be a function. We say that T is a *linear operator* if

- $T\lambda v = \lambda T(v)$ for all $\lambda \in \mathbb{R}$ and $v \in V$;
- $T(\boldsymbol{v} + \boldsymbol{w}) = T(\boldsymbol{v}) + t(\boldsymbol{w})$ for all $\boldsymbol{v}, \boldsymbol{w} \in V$.

Definition 3.3.2. Let V, W be normed vector spaces, and let $T: V \to W$ be a linear operator. Then, T is bounded if there exists a c > 0 such that for all $\mathbf{v} \in V$, $||T(\mathbf{v})||_W \le c||\mathbf{v}||_V$.

Dimensional and linear operators

If V and W are both finite dimensional, then T can be represented by a matrix. Let the basis of V be

$$\{\boldsymbol{v}_1,\boldsymbol{v}_2,\ldots,\boldsymbol{v}_n\},\$$

and the basis for W be

$$\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_m\}.$$

Then, for all $i \in \{1, 2, ..., n\}$,

$$T(\boldsymbol{v}_i) = a_{1i}\boldsymbol{w}_1 + a_{2i}\boldsymbol{w}_2 + \dots + a_{mi}\boldsymbol{w}_m.$$

Now, define

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

Let $x \in V$. We have

$$\boldsymbol{x} = b_1 \boldsymbol{v}_1 + b_2 \boldsymbol{v}_2 + \dots b_n \boldsymbol{v}_n.$$

Then,

$$T(\mathbf{x}) = b_1(a_{11}\mathbf{w}_1 + a_{21}\mathbf{w}_2 + \dots + a_{m1}\mathbf{w}_m) + b_2(a_{12}\mathbf{w}_1 + a_{22}\mathbf{w}_2 + \dots + a_{m2}\mathbf{w}_m) + \dots + b_n(a_{1n}\mathbf{w}_1 + a_{2n}\mathbf{w}_2 + \dots + a_{mn}\mathbf{w}_m) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = A\mathbf{x}$$

Moreover, linear operators in finite dimensions are always bounded. To see this, define the set

$$S^n = \{ v \in V \mid ||v||_V = 1 \}.$$

Since V is finite-dimensional, Heine-Borel theorem tells us that the set S^n is compact. Moreover, the function $f: S^n \to \mathbb{R}$ given by $f(\mathbf{v}) = ||T(\mathbf{v})||_V$

is continuous. So, by the Extreme Value Theorem, the function attains a maximum. That is, for all $\boldsymbol{v} \in V$, if $\|\boldsymbol{v}\|_V = 1$, then $\|T(\boldsymbol{v})\|_W \leq K$, for some K > 0. Now, let $\boldsymbol{v} \in V$. If $\boldsymbol{v} = 0$, then we have

$$\|\boldsymbol{v}\|_{V} = 0 \le 0 = K\|T(\boldsymbol{v})\|_{W}.$$

Otherwise, if $\boldsymbol{v} \neq \boldsymbol{0}$, then we have

$$\left\| \frac{1}{\|\boldsymbol{v}\|_{V}} \boldsymbol{v} \right\|_{V} = \frac{1}{\|\boldsymbol{v}\|_{V}} \|\boldsymbol{v}\|_{V} = 1.$$

So, we have $\frac{1}{\|\boldsymbol{v}\|_V}\boldsymbol{v} \in S^n$. In that case,

$$\left\| T\left(\frac{1}{\|\boldsymbol{v}\|_{V}}\boldsymbol{v}\right) \right\|_{W} \leq K.$$

This implies that

$$||T(\boldsymbol{v})||_W \leq K||\boldsymbol{v}||_V.$$

So, for all $v \in V$,

$$||T(\boldsymbol{v})||_W \leq K||\boldsymbol{v}||_V.$$

Therefore, the linear operator is bounded.

In infinite dimensions, linear operators need not be bounded. To see this, define the function $T: \ell^{\infty} \to \ell^{\infty}$ by

$$T(x_1, x_2, x_3, \dots) = (x_1, 2x_2, 3x_3, \dots).$$

This is a linear function. But, it is not bounded- for all $n \in \mathbb{Z}_{\geq 1}$, let

$$e_n^{(k)} = \begin{cases} 1 & n = k \\ 0 & n \neq k \end{cases}.$$

We have $||e^{(k)}||_{\infty} = 1$, but $||T(e^{(k)})||_{\infty} = n$. So, for all $n \in \mathbb{Z}_{\geq 1}$,

$$||T(e^{(k)})||_{\infty} \ge n||e^{(k)}||_{\infty}.$$

Therefore, the operator cannot be bounded.

Bounded linear operator space

Proposition 3.3.3. Let V and W be normed vector spaces, and let $T: V \to W$ be a linear operator. Then, the following are equivalent:

- 1. T is continuous;
- 2. T is continuous at 0;
- 3. T is bounded.

Proof. We show $(1) \implies (2) \implies (3) \implies (1)$.

• We know that $(1) \implies (2)$.

• We show that (2) \Longrightarrow (3). Since T is continuous at $\mathbf{0}$, there exists a $\delta > 0$ such that for $\mathbf{x} \in V$, if $\|\mathbf{x}\|_V < \delta$, then $\|T(\mathbf{x})\|_W < 1$. Now, let $\mathbf{x} \in V$. If $\mathbf{x} = \mathbf{0}$, then

$$||T(x)||_W = 0 \le 0 = \frac{2}{\delta} ||x||_V.$$

Now, if $x \neq 0$, then we have

$$\left\|\frac{\delta}{2\|\boldsymbol{x}\|_{V}}\boldsymbol{x}\right\|_{V} = \frac{\delta}{2\|\boldsymbol{x}\|_{V}}\|\boldsymbol{x}\|_{V} = \frac{\delta}{2} < \delta.$$

So,

$$\left\| T\left(\frac{\delta}{2\|\boldsymbol{x}\|_{V}}\boldsymbol{x}\right) \right\|_{W} < 1.$$

We have

$$\left\| T\left(\frac{\delta}{2\|\boldsymbol{x}\|_{V}}\boldsymbol{x}\right) \right\|_{W} = \left\| \frac{\delta}{2\|\boldsymbol{x}\|_{V}}T(\boldsymbol{x}) \right\|_{W} = \frac{\delta}{2\|\boldsymbol{x}\|_{V}}\left\| T(\boldsymbol{x}) \right\|_{W}.$$

This implies that

$$\|T(\boldsymbol{x})\|_W < \frac{2}{\delta} \|\boldsymbol{x}\|_V.$$

So, for all $x \in V$,

$$||T(\boldsymbol{x})||_W \leq \frac{2}{\delta} ||\boldsymbol{x}||_V.$$

In that case, T is bounded.

• We show that (3) \Longrightarrow (1). Since T is bounded, there exists a c > 0 such that for all $\mathbf{v} \in V$, $||T(\mathbf{v})||_W \le c||\mathbf{v}||_V$. Let $\mathbf{v} \in V$. Let $\mathbf{u} \in V$ and $\varepsilon > 0$. Set $\delta = \frac{\varepsilon}{c}$. In that case, for $\mathbf{v} \in V$, if $||\mathbf{u} - \mathbf{v}||_V < \delta$, then

$$||T(\boldsymbol{u}) - T(\boldsymbol{v})||_{W} = ||T(\boldsymbol{u} - \boldsymbol{v})||_{W}$$

$$\leq c||\boldsymbol{u} - \boldsymbol{v}||_{V}$$

$$< c \cdot \delta = \varepsilon.$$

In that case, T is continuous.

So, the statements are equivalent.

Using properties of continuity, this implies that:

- if $T: V \to W$ is linear and $\lambda \in \mathbb{R}$, then λT is bounded; and
- if $T, U: V \to W$ are linear, then T+U is bounded.

So, the set of bounded linear operators from T to V is a vector space. It is denoted by L(V, W). Moreover, we can define a norm on the vector space.

Definition 3.3.4. Let V and W be normed vector spaces, and let $T: V \to W$ be a bounded linear operator. We define the *operator norm* of T to be:

$$||T|| = \sup_{\substack{\boldsymbol{v} \in V \\ ||\boldsymbol{v}||_V = 1}} ||T(\boldsymbol{v})||_W.$$

8

The value ||T|| is the smallest bound $c \ge 0$ that satisfies $||T(\boldsymbol{x})||_W \le c||\boldsymbol{x}||_V$. We will prove the inequality relating ||T|| and $||T(\boldsymbol{v})||_W$.

Proposition 3.3.5. Let V and W be normed vector spaces, and let $T: V \to W$ be a bounded linear operator. Then,

$$||T(x)||_W \leq ||T|| ||x||_V.$$

Proof. Let $v \in V$. If v = 0, then

$$||T(\mathbf{v})||_W = 0 \le 0 = ||T|| ||\mathbf{v}||_V.$$

Otherwise, we have $v \neq 0$. We know that

$$\left\| \frac{1}{\|\boldsymbol{v}\|_{V}} \boldsymbol{v} \right\|_{V} = \frac{1}{\|\boldsymbol{v}\|_{V}} \|\boldsymbol{v}\|_{V} = 1.$$

So,

$$\left\| T \left(\frac{1}{\|\boldsymbol{v}\|_{V}} \boldsymbol{v} \right) \right\|_{W} \leq \|T\|.$$

This implies that $||T(\boldsymbol{v})||_W \leq ||T|| ||\boldsymbol{v}||_V$.

Using this result, we characterise the operator norm as the supremum of all non-zero values.

Proposition 3.3.6. Let V and W be normed vector spaces, and let $T: V \to W$ be a bounded linear operator. Then,

$$||T|| = \sup_{\substack{\boldsymbol{v} \in V \\ \boldsymbol{v} \neq \boldsymbol{0}}} \frac{||T(\boldsymbol{v})||_W}{||\boldsymbol{v}||_V}.$$

Proof. Let $v \in V$ with $v \neq 0$. We know that $||T(v)||_W \leq ||T|| ||v||_V$. So,

$$||T|| \ge \sup_{\substack{\boldsymbol{v} \in V \\ \boldsymbol{v} \neq \boldsymbol{0}}} \frac{||T(\boldsymbol{v})||_W}{||\boldsymbol{v}||_V}.$$

Now, let $\varepsilon > 0$. Since

$$\|T\| = \sup_{\substack{\boldsymbol{v} \in V \\ \|\boldsymbol{v}\|_V = 1}} \|T(\boldsymbol{v})\|_W,$$

we can find a $v \in V$ with $||v||_V = 1$ such that $||T(v)||_W > ||T|| + \varepsilon$. In that case, $\frac{||T(v)||_W}{||v||_V} > ||T|| + \varepsilon$. So, we have

$$||T|| = \sup_{\substack{\boldsymbol{v} \in V \\ \boldsymbol{v} \neq \boldsymbol{0}}} \frac{||T(\boldsymbol{v})||_W}{||\boldsymbol{v}||_V}.$$

Next, we prove that the value ||T|| is the smallest bound $c \geq 0$ that satisfies $||T(\boldsymbol{x})||_W \leq c||\boldsymbol{x}||_V$.

Pete Gautam 9

Proposition 3.3.7. Let V and W be normed vector spaces, and let $T: V \to W$ be a bounded linear operator. Define

$$S = \{c > 0 \mid ||T(\mathbf{v})||_W < c||\mathbf{v}||_V \ \forall \mathbf{v} \in V\}.$$

Then,

$$||T|| = \inf(S).$$

Proof. We know that for all $\boldsymbol{v} \in V$, $\|T(\boldsymbol{v})\| \leq \|T\| \|\boldsymbol{v}\|_V$. So, $\|T\| \in S$. Now, let $c \in S$. We know that for all $\boldsymbol{v} \in V$, $c\|T(\boldsymbol{v})\|_W \leq c\|\boldsymbol{v}\|_V$. In that case, for all $\boldsymbol{v} \in V$ with $\|\boldsymbol{v}\|_V$, we find that $\|T(\boldsymbol{v})\|_W \leq c$. Since

$$||T|| = \sup_{\substack{\boldsymbol{v} \in V \\ ||\boldsymbol{v}||_{V} = 1}} ||T(\boldsymbol{v})||_{W},$$

we find that $c \ge ||T||$. Since $||T|| \in S$, we must have $||T|| = \inf(S)$.

Now, we show that L(V, W) is complete if W is complete.

Proposition 3.3.8. Let V and W be normed vector spaces, and let W be complete. Then, L(V,W) is complete.

Proof. Let $(T_n)_{n=1}^{\infty}$ be a Cauchy sequence in L(V,W). For all $v \in V$, we have the sequence $(T_n(v))_{n=1}^{\infty}$ in W. We show that $(T_n(v))$ is Cauchy. If $v = \mathbf{0}$, then we have $T_n(v) = \mathbf{0}$ for all $n \in \mathbb{Z}_{\geq 1}$. So, the sequence $(T_n(v))$ is Cauchy. Otherwise, we have $v \neq \mathbf{0}$. Then, let $\varepsilon > 0$. Since (T_n) is Cauchy, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$ such that if $m, n \geq N$, then $\|T_m - T_n\| < \frac{\varepsilon}{\|v\|_V}$. In that case, for $m, n \in \mathbb{Z}_{\geq 1}$, such that if $m, n \geq N$, then

$$||T_m(\boldsymbol{v}) - T_n(\boldsymbol{v})||_W = ||(T_m - T_n)(\boldsymbol{v})||_W$$

$$\leq ||T_m - T_n|||\boldsymbol{v}||_V$$

$$< \frac{\varepsilon}{||\boldsymbol{v}||_V} ||\boldsymbol{v}||_V = \varepsilon.$$

This implies that $(T_n(\boldsymbol{v}))$ is Cauchy. Since W is complete, for each $\boldsymbol{v} \in V$, we can find a $\boldsymbol{w_v}$ such that $T_n(\boldsymbol{v}) \to \boldsymbol{w_v}$. Now, define the function $T: V \to W$ by $T(\boldsymbol{v}) = \boldsymbol{w_v}$.

First, we claim that T is linear. For all $v_1, v_2 \in V$ and $n \in \mathbb{Z}_{>1}$,

$$T_n(v_1 + v_2) = T_n(v_1) + T_n(v_2).$$

We have $T_n(\boldsymbol{v}_1+\boldsymbol{v}_2)\to T(\boldsymbol{v}_1+\boldsymbol{v}_2),\ T_n(\boldsymbol{v}_1)\to T(\boldsymbol{v}_1)$ and $T_n(\boldsymbol{v}_2)\to T(\boldsymbol{v}_2).$ Since limits are unique, this implies that $T(\boldsymbol{v}_1+\boldsymbol{v}_2)=T(\boldsymbol{v}_1)+T(\boldsymbol{v}_2).$ Now, for $\boldsymbol{v}\in V,\ \lambda\in\mathbb{R}$ and $n\in\mathbb{Z}_{\geq 1},$

$$T_n(\lambda \mathbf{v}) = \lambda T_n(\mathbf{v}).$$

Since $T_n(\lambda v) \to T(\lambda v)$ and $T_n(v) \to T(v)$, we find that $T(\lambda v) = \lambda T(v)$. This implies that T is linear.

Next, we claim that T is bounded. Since (T_n) is Cauchy, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for all $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then $||T_m - T_n|| < 1$. In particular, for all $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then $||T_m(\mathbf{v}) - T_n(\mathbf{v})||_W \leq ||\mathbf{v}||_V$

for all $\boldsymbol{v} \in V$. We know that T_N is bounded. So, there exists a c > 0 such that for all $\boldsymbol{v} \in V$, $\|T_n(\boldsymbol{v})\|_W \leq c\|\boldsymbol{v}\|_V$. Now, let $\boldsymbol{v} \in V$. Since $T_n(\boldsymbol{v}) \to T(\boldsymbol{v})$, there exists an $N' \in \mathbb{Z}_{\geq 1}$ such that for all $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N'$, then $\|T_n(\boldsymbol{v}) - T(\boldsymbol{v})\|_W \leq \|\boldsymbol{v}\|_V$. Now, fix $n = \max(N, N')$. In that case,

$$||T(\mathbf{v})||_{V} \leq ||T(\mathbf{v}) - T_{n}(\mathbf{v})||_{W} + ||T_{n}(\mathbf{v}) - T_{N}(\mathbf{v})||_{W} + ||T_{N}(\mathbf{v})||_{W}$$

$$\leq (2+c)||\mathbf{v}||_{V}.$$

This implies that T is bounded.

Finally, we show that $T_n \to T$. Let $\varepsilon > 0$. Since (T_n) is Cauchy, we can find an $N \in \mathbb{Z}_{\geq 1}$ such that for all $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then $\|T_m - T_n\| < \frac{\varepsilon}{3}$. In particular, for all $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then $\|T_m(\boldsymbol{v}) - T_n(\boldsymbol{v})\|_W \leq \frac{\varepsilon}{3} \|\boldsymbol{v}\|_V$ for all $\boldsymbol{v} \in V$. Now, let $n \in \mathbb{Z}_{\geq 1}$ such that $n \geq N$. Moreover, let $\boldsymbol{v} \in V$ with $\|\boldsymbol{v}\|_V = 1$. Since $T_n(\boldsymbol{v}) \to T(\boldsymbol{v})$, we can find an $N' \in \mathbb{Z}_{\geq 1}$ such that for $m \in \mathbb{Z}_{\geq 1}$, if $m \geq N'$, then $\|T_m(\boldsymbol{v}) - T(\boldsymbol{v})\|_W < \frac{\varepsilon}{3}$. Now, fix $m = \max(N, N')$. In that case,

$$||T_n(\boldsymbol{v}) - T(\boldsymbol{v})||_W \le ||T_n(\boldsymbol{v}) - T_m(\boldsymbol{v})||_W + ||T_m(\boldsymbol{v}) - T(\boldsymbol{v})||_W$$
$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2}{3}\varepsilon.$$

That is, for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then for all $\boldsymbol{v} \in V$ with $\|\boldsymbol{v}\|_{V} = 1$,

$$||T_n(\boldsymbol{v}) - T(\boldsymbol{v})||_W < \frac{2}{3}\varepsilon.$$

This implies that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then

$$||T_n - T|| = \sup_{\substack{\boldsymbol{v} \in V \\ ||\boldsymbol{v}||_V = 1}} ||T_n(\boldsymbol{v}) - T(\boldsymbol{v})||_W \le \frac{2}{3}\varepsilon < \varepsilon.$$

So, $T_n \to T$. In that case, L(V, W) is complete.

3.4 Banach theory

Definition 3.4.1. Let V be a normed vector space. Then, a bounded linear map $T: V \to \mathbb{R}$ is a *linear functional*.

Definition 3.4.2. Let V be a normed vector space, and let $p:V\to\mathbb{R}$ be a function. Then, p is a *sub-linear functional* if:

- $p(\lambda v) = \lambda p(v)$ for all $v \in V$, $\lambda \in \mathbb{R}$, and
- $p(\boldsymbol{u} + \boldsymbol{v}) \le p(\boldsymbol{u}) + p(\boldsymbol{v})$ for all $\boldsymbol{u}, \boldsymbol{v} \in V$.

Theorem 3.4.3 (The Hahn-Banach Theorem). Let V be a normed vector space and $p:V\to\mathbb{R}$ be a sub-linear functional. Let H be a subspace of V, and $f:H\to\mathbb{R}$ be a linear such that $f(\boldsymbol{x})\leq p(\boldsymbol{x})$ for all $\boldsymbol{x}\in H$. Then, there exists a linear functional $F:V\to\mathbb{R}$ such that $F(\boldsymbol{x})=f(\boldsymbol{x})$ for all $\boldsymbol{x}\in H$ and $F(\boldsymbol{x})\leq p(\boldsymbol{x})$ for all $\boldsymbol{x}\in V$.

Proof. Let $\mathbf{y} \in V \setminus H$. We show that there exists a linear functional $G: S \to \mathbb{R}$ such that $G(\mathbf{x}) = f(\mathbf{x})$ for all $\mathbf{x} \in H$ and $G(\mathbf{x}) \leq p(\mathbf{x})$ for all $\mathbf{x} \in S$, where

$$S = \{ \boldsymbol{x} + \lambda \boldsymbol{y} \mid \boldsymbol{x} \in H, \lambda \in \mathbb{R} \}.$$

Now, let $x_1, x_2 \in H$. We find that

$$f(x_1) + f(x_2) = f(x_1 + x_2)$$

 $\leq p(x_1 + x_2)$
 $\leq p(x_1 - y) + p(x_2 + y).$

So, we find that for all $x_1, x_2 \in H$,

$$f(x_1) - p(x_1 - y) \le p(x_2 + y) - f(x_2).$$

This implies that

$$\sup_{\boldsymbol{x} \in H} f(\boldsymbol{x}) - p(\boldsymbol{x} - \boldsymbol{y}) \le \inf_{\boldsymbol{x} \in H} p(\boldsymbol{x} + \boldsymbol{y}) - f(\boldsymbol{x}).$$

Next, let $\alpha \in \mathbb{R}$ such that

$$\sup_{\boldsymbol{x}\in H} f(\boldsymbol{x}) - p(\boldsymbol{x} - \boldsymbol{y}) \le \alpha \le \inf_{\boldsymbol{x}\in H} p(\boldsymbol{x} + \boldsymbol{y}) - f(\boldsymbol{x}).$$

Define the function $G: S \to \mathbb{R}$ by $G(\boldsymbol{x} + \lambda \boldsymbol{y}) = f(\boldsymbol{x}) + \alpha \lambda$. Then, G is linear, with $G(\boldsymbol{x}) = f(\boldsymbol{x})$ for all $\boldsymbol{x} \in H$. Now, we show that $G(\boldsymbol{x}) \leq p(\boldsymbol{x})$ for all $\boldsymbol{x} \in S$. So, let $\boldsymbol{x} + \lambda \boldsymbol{y} \in S$. If $\lambda = 0$, then we have

$$G(\boldsymbol{x} + \lambda \boldsymbol{y}) = f(\boldsymbol{x}) \le p(\boldsymbol{x}) = p(\boldsymbol{x} + \lambda \boldsymbol{y}).$$

Next, assume that $\lambda > 0$. Then,

$$G(\mathbf{x} + \lambda \mathbf{y}) = f(\mathbf{x}) + \lambda \alpha$$

$$\leq f(\mathbf{x}) + \lambda (p(\mathbf{x}/\lambda + \mathbf{y}) - f(\mathbf{x}/\lambda))$$

$$= f(\mathbf{x}) + p(\mathbf{x} + \lambda \mathbf{y}) - f(\mathbf{x})$$

$$= p(\mathbf{x} + \lambda \mathbf{y}).$$

Otherwise, we have $\lambda < 0$. Then,

$$G(\boldsymbol{x} + \lambda \boldsymbol{y}) = f(\boldsymbol{x}) + \lambda \alpha$$

$$\leq f(\boldsymbol{x}) + \lambda (f(-\boldsymbol{x}/\lambda) - p(-\boldsymbol{x}/\lambda - y))$$

$$= f(\boldsymbol{x}) - f(\boldsymbol{x}) + p(\boldsymbol{x} + \lambda \boldsymbol{y})$$

$$= p(\boldsymbol{x} + \lambda \boldsymbol{y}).$$

So, for all $x + \lambda y \in S$, $G(x + \lambda y) \leq p(x + \lambda y)$. Now, we can keep extending the function G from S up to V, and get the required result.

Corollary 3.4.4. Let V be a normed vector space, $H \subseteq V$ be a closed subspace, $y \in V \setminus H$, and let

$$\delta = \inf_{\boldsymbol{x} \in H} \lVert \boldsymbol{y} - \boldsymbol{x} \rVert.$$

Then, we can find a non-trivial linear functional $F: V \to \mathbb{R}$ such that $H \subseteq \ker F$, ||F|| = 1 and $F(y) = \delta$.

Proof. Let

$$S = \{ \boldsymbol{x} + \lambda \boldsymbol{y} \mid \boldsymbol{y} \in H, \lambda \in \mathbb{R} \}.$$

Define the function $f: S \to \mathbb{R}$ by $f(\boldsymbol{x} + \lambda \boldsymbol{y}) = \lambda \delta$. By definition, it is a non-trivial linear functional. We find that for all $\boldsymbol{x} + \lambda \boldsymbol{y} \in S$,

$$|f(x + \lambda y)| = |\lambda \delta| \le |\lambda| \cdot ||y - (-\frac{x}{\lambda})|| = ||x + \lambda y||.$$

So, the Hahn-Banach theorem tells us that there exists an extension of f, given by $F:V\to\mathbb{R}$.

We know that for all $x \in H \subseteq S$,

$$F(\boldsymbol{x} + \lambda \boldsymbol{y}) = f(\boldsymbol{x}) = \boldsymbol{0}.$$

So, $H \subseteq \ker F$. Moreover, since $\mathbf{y} \in S$, we find that

$$F(\mathbf{y}) = f(\mathbf{y}) = f(\mathbf{0} + 1 \cdot \mathbf{y}) = \delta.$$

By the Hahn-Banach theorem, we know that for all $x \in V$, $||F(x)|| \le ||x||$. In that case, $||F|| \le 1$.

Now, let V be a normed vector space and let $\mathbf{x} \in V$ with $\mathbf{x} \neq \mathbf{0}$. Then, $\{\mathbf{0}\} \subseteq V$ is a closed subspace with $\mathbf{x} \notin \{\mathbf{0}\}$. So, the result above tells us that there exists a non-trivial linear functional $f: V \to \mathbb{R}$ such that ||f|| = 1 and $||f(\mathbf{x})|| = ||\mathbf{x}||$.

Corollary 3.4.5. Let V be a normed vector space, and let $\mathbf{x}, \mathbf{y} \in V$ with $\mathbf{x} \neq \mathbf{y}$. Then, there exists a linear functional $f: V \to \mathbb{R}$ such that $f(\mathbf{x}) \neq f(\mathbf{y})$.

Proof. Since $x \neq y$, the result above tells us that there exists a linear functional $f: V \to \mathbb{R}$ such that

$$||f(x - y)|| = ||x - y|| > 0.$$

This implies that $f(x - y) \neq 0$, and so $f(x) \neq f(y)$.

Corollary 3.4.6. Let V be a normed vector space. For each $\mathbf{v} \in V$, define the map $ev_{\mathbf{v}}: V^* \to \mathbb{R}$ by $ev_{\mathbf{v}}(f) = f(\mathbf{v})$. Then, the map $\iota: V \to V^{**}$ given by $\iota(\mathbf{v}) = ev_{\mathbf{v}}$ is a linear isometry.

Proof. We find that for $v_1, v_2 \in V$ and $f \in V^*$,

$$\iota(\mathbf{v}_1 + \mathbf{v}_2)(f) = ev_{\mathbf{v}_1 + \mathbf{v}_2}(f)
= f(\mathbf{v}_1 + \mathbf{v}_2)
= f(\mathbf{v}_1) + f(\mathbf{v}_2)
= ev_{\mathbf{v}_1}(f) + ev_{\mathbf{v}_2}(f)
= \iota(\mathbf{v}_1)(f) + \iota(\mathbf{v}_2)(f).$$

This implies that $\iota(\boldsymbol{v}_1 + \boldsymbol{v}_2) = \iota(\boldsymbol{v}_1) + \iota(\boldsymbol{v}_2)$. Now, for $\boldsymbol{v} \in V$ and $f \in V^*$,

$$\iota(\lambda \mathbf{v})(f) = ev_{\lambda \mathbf{v}}(f)$$

$$= f(\lambda \mathbf{v})$$

$$= \lambda f(\mathbf{v})$$

$$= \lambda ev_{\mathbf{v}}(f)$$

$$= \lambda \iota(\mathbf{v})(f).$$

So, $\iota(\lambda \boldsymbol{v}) = \lambda \iota(\boldsymbol{v})$. This implies that ι is a linear map. Now, for $\boldsymbol{v} \in V$ and $f \in V^*$,

$$\|\iota(\mathbf{v})(f)\| = \|f(\mathbf{v})\| \le \|f\|\|\mathbf{v}\|.$$

This implies that $\|\iota\|=1$, using the result above. So, ι is an isometry. \square

Open maps

Theorem 3.4.7 (Baire-Category Theorem). Let X be a complete metric space, and let $(U_n)_{n=1}^{\infty}$ be a collection of dense open sets in X. Then,

• the intersection

$$\bigcap_{n=1}^{\infty} U_n$$

 $is\ dense\ in\ X;$

• X cannot be written as a countable union of nowhere dense sets.

Proof.

• Let $W \subseteq X$ be open and non-empty. We show that

$$W \cap \bigcap_{n=1}^{\infty} U_n$$

is not empty. So, let $V_0=W$. We know that U_1 is dense, so $V_0\cap U_1$ is not empty. Moreover, since V_0 and U_1 are open, we find that the intersection is open. So, there exists an $x_1\in V_0\cap U_1$ such that $B_X(x_n,r_n)\subseteq V_0\cap U_1$. So, set $V_1=B_X(x_1,r_1)$. We can iteratively define V_n for $n\in\mathbb{Z}_{\geq 1}$. Without loss of generality, we may assume that $r_n<\frac{1}{2n}$ and

$$\overline{B}_X(x_n, r_n) \subseteq V_{n-1} \cap U_n$$
.

We claim that the sequence $(x_n)_{n=1}^{\infty}$ is Cauchy. Let $\varepsilon > 0$. Choose a natural number $N \in \mathbb{Z}_{\geq 1}$ such that $N > \frac{1}{\varepsilon}$. Let $m, n \in \mathbb{Z}_{\geq 1}$ with $m, n \geq N$. Then, we have $x_m, x_n \in V_N = B_X(x_N, \frac{1}{2N})$. This implies that

$$d(x_m, x_n) \le d(x_m, x_N) + d(x_N, x_n) < \frac{1}{2N} + \frac{1}{2N} = \frac{1}{N} < \varepsilon.$$

So, (x_n) is Cauchy. Since X is complete, there exists an $x \in X$ such that $x_n \to x$.

Finally, we claim that $x \in V_n$ for all $n \in \mathbb{Z}_{\geq 1}$. Let $n \in \mathbb{Z}_{\geq 1}$. For all $m \in \mathbb{Z}_{\geq 1}$, if m > n, then we know that $x_m \in V_{n+1}$. In that case, the sequence $(x_m)_{m=n+1}^{\infty}$ is in V_{n+1} . So, the limit x must be in the closure, i.e.

$$x \in \overline{V_{n+1}} \subseteq V_n \cap U_{n+1} \subseteq V_n.$$

This implies that $x \in V_n$. Therefore,

$$x \in W \cap \bigcap_{n=1}^{\infty} U_n$$
.

This implies that the intersection

$$\bigcap_{n=1}^{\infty} U_n$$

is dense.

• Assume, for a contradiction, that X can be written as a countable union of nowhere dense sets. So, let $(V_n)_{n=1}^{\infty}$ be a collection of nowhere dense sets in X such that

$$X = \bigcup_{n=1}^{\infty} V_n.$$

In that case,

$$\varnothing = X \setminus \bigcup_{n=1}^{\infty} \overline{V_n} = \bigcap_{n=1}^{\infty} X \setminus \overline{V_n}.$$

We know that for each $n \in \mathbb{Z}_{\geq 1}$, $X \setminus \overline{V_n}$ is open and dense. From the result above, we know that the intersection is dense, i.e. it is not empty. This is a contradiction. So, V cannot be written as a countable union of nowhere dense sets.

Definition 3.4.8. Let X and Y be topological spaces, and let $f: X \to Y$ be a function. Then, f is an *open map* if for all $U \subseteq X$, $f(U) \subseteq Y$ is open.

Proposition 3.4.9. Let X and Y be metric spaces and let $f: X \to Y$ be a function. Then, f is an open map if and only if for every $x \in X$ and $\delta > 0$, there exists an $\varepsilon > 0$ such that for $y \in X$, if $d_Y(f(x), f(y)) < \varepsilon$, then there exists a $z \in X$ such that $d_X(x, z) < \delta$ with f(y) = f(z).

Proof.

• Assume that f is an open map. Let $x \in X$ and $\delta > 0$. Let

$$U = B_X(x, \delta).$$

Since f is an open map, we know that f(U) is open. We have $f(x) \in f(U)$. In that case, there exists an $\varepsilon > 0$ such that for $y \in X$, if $d_Y(f(x), f(y)) < \varepsilon$, then $f(y) \in f(B_X(x, \delta))$. So, there exists a $z \in X$ with $d_X(x, z) < \delta$ with f(y) = f(z). That is, for all $x \in X$ and $\delta > 0$, there exists an $\varepsilon > 0$ such that for $y \in X$, if $d_Y(f(x), f(y)) < \varepsilon$, then there exists a $z \in X$ such that $d_X(x, z) < \delta$ with f(y) = f(z).

• Assume that for every $x \in X$ and $\delta > 0$, there exists an $\varepsilon > 0$ such that for $y \in X$, if $d_Y(f(x), f(y)) < \varepsilon$, then there exists a $z \in X$ such that $d_X(x,z) < \delta$ with f(y) = f(z). Let $U \subseteq X$ be open. We show that f(U) is open. So, let $x \in U$. Since U is open, there exists a $\delta_x > 0$ such that for all $y \in X$, if $d_X(x,y) < \delta_x$, then $y \in U$. Now, we can find an $\varepsilon_x > 0$ such that for $y \in X$, if $d_Y(f(x), f(y)) < \varepsilon_x$, then there exists a $z \in X$ such that $d_X(x,z) < \delta_x$ with f(y) = f(z). This implies that $z \in U$. So, $f(y) = f(z) \in f(U)$. In that case, for all $x \in X$, there exists an ε_x such that for all $y \in X$, if $d_Y(f(x), f(y)) < \varepsilon_x$, then $f(y) \in f(U)$. This implies that f(U) is open. In other words, f is an open map.

Another way of writing this is the following- $f: X \to Y$ is an open map if and only if for every $x \in X$ and $\delta > 0$, there exists an $\varepsilon > 0$ such that

$$B_Y(f(x),\varepsilon)\subseteq f(B_X(x,\delta)).$$

Proposition 3.4.10. Let V and W be normed vector spaces, and let $T: V \to W$ be a linear operator. Then, T is an open map if and only if there exists an $\varepsilon > 0$ such that for $\mathbf{v} \in V$, if $||T(\mathbf{v})||_W < \varepsilon$, then there exists a $\mathbf{u} \in V$ such that $||\mathbf{u}||_V < 1$ with $T(\mathbf{u}) = T(\mathbf{v})$.

Proof.

- Assume that T is an open map. Set $\boldsymbol{x}=\boldsymbol{0}$ and $\delta=1$. In that case, there exists an $\varepsilon>0$ such that for $\boldsymbol{v}\in V$, if $\|T(\boldsymbol{v})-T(\boldsymbol{x})\|_W<\varepsilon$, then there exists a $\boldsymbol{u}\in V$ such that $\|\boldsymbol{u}-\boldsymbol{x}\|_V<\delta$ with $T(\boldsymbol{u})=T(\boldsymbol{v})$. That is, there exists an $\varepsilon>0$ such that for $\boldsymbol{v}\in V$, if $\|T(\boldsymbol{v})\|_W<\varepsilon$, then there exists a $\boldsymbol{u}\in V$ such that $\|\boldsymbol{u}\|_V<1$ with $T(\boldsymbol{u})=T(\boldsymbol{v})$.
- Assume that there exists an $\varepsilon > 0$ such that for $\boldsymbol{v} \in V$, if $\|T(\boldsymbol{v})\|_W < \varepsilon$, then there exists a $\boldsymbol{u} \in V$ such that $\|\boldsymbol{u}\|_V < 1$ with $T(\boldsymbol{u}) = T(\boldsymbol{v})$. We show that T is an open map. Let $\boldsymbol{x} \in V$ and $\delta > 0$. We can find an $\varepsilon > 0$ such that for $\boldsymbol{v} \in V$, if $\|T(\boldsymbol{v} \boldsymbol{x})\|_W < \frac{\varepsilon}{\delta}$, then there exists a $\boldsymbol{u} \in V$ such that $\|\frac{1}{\delta}\boldsymbol{u}\|_V < 1$ with $T(\boldsymbol{u}) = T(\boldsymbol{v} \boldsymbol{x})$. Using linearity and replacing \boldsymbol{u} with $\boldsymbol{u} + \delta \boldsymbol{x}$; \boldsymbol{v} with $\delta \boldsymbol{v}$; \boldsymbol{x} with $\delta \boldsymbol{x}$, we find that for $\boldsymbol{v} \in V$, if $\|T(\boldsymbol{v}) T(\boldsymbol{x})\|_W < \varepsilon$, then there exists a $\boldsymbol{u} \in V$ such that $\|\boldsymbol{u} \boldsymbol{x}\|_V < \delta$ with $T(\boldsymbol{u}) = T(\boldsymbol{v})$. So, T is an open map.

Another way of writing this is the following- $T:V\to W$ is an open map if and only if there exists an $\varepsilon>0$ such that

$$B_W(0,\varepsilon) \subseteq f(B_V(0,1)).$$

Theorem 3.4.11 (Open Mapping Theorem). Let V and W be Banach spaces, and let $T: V \to W$ be a surjective bounded linear operator. Then, T is an open map.

Proof.

Corollary 3.4.12. Let V and W be Banach spaces, and let $T: V \to W$ be a bijective linear bounded operator. Then, T is an isomorphism.

Proof. Since T is surjective, the open mapping theorem tells us that T is an open map. In that case, for all $U \subseteq V$ open, $f(U) \subseteq W$ is open. That is, for all $U \subseteq V$ open, the preimage of the inverse $(f^{-1})^{-1}(U) = f(U)$ is open. So, T^{-1} is a bounded (linear) operator. Therefore, T is an isomorphism.

Graphs

Definition 3.4.13. Let X and Y be sets. Then, the graph of f is the set

$$Graph(f) = \{(x, f(x)) \mid x \in X\}.$$

For normed vector spaces V and W, we will use the following norm on $V \times W$:

$$\|(\boldsymbol{v}, \boldsymbol{w})\|_{\infty} = \max(\|\boldsymbol{v}\|_{V}, \|\boldsymbol{w}\|_{W}).$$

So, $V \times W$ is a normed vector space as well. By this definition, we can preserve properties that V and W both have in $V \times W$.

Proposition 3.4.14. Let V and W be normed vector spaces, let $(\mathbf{v}_n, \mathbf{w}_n)_{n=1}^{\infty}$ be a sequence in $V \times W$, and let $(\mathbf{v}, \mathbf{w}) \in V \times W$. Then, $(\mathbf{v}_n, \mathbf{w}_n) \to (\mathbf{v}, \mathbf{w})$ if and only if $\mathbf{v}_n \to \mathbf{v}$ and $\mathbf{w}_n \to \mathbf{w}$.

Proof.

• Assume that $(\boldsymbol{v}_n, \boldsymbol{w}_n) \to (\boldsymbol{v}, \boldsymbol{w})$. Let $\varepsilon > 0$. We can find an $N \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then

$$\|(\boldsymbol{v}_n, \boldsymbol{w}_n) - (\boldsymbol{v}, \boldsymbol{w})\|_{\infty} < \varepsilon.$$

In that case, we have

$$\max(\|v_n - v\|_V, \|w_n - w\|_W) = \|(v_n - v, w_n - w)\|_{\infty}$$
$$= \|(v_n, w_n) - (v, w)\|_{\infty} < \varepsilon.$$

So, we have both $\|\boldsymbol{v}_n - \boldsymbol{v}\|_V < \varepsilon$ and $\|\boldsymbol{w}_n - \boldsymbol{w}\|_W < \varepsilon$. This implies that $\boldsymbol{v}_n \to \boldsymbol{v}$ and $\boldsymbol{w}_n \to \boldsymbol{w}$.

• Assume that $v_n \to v$ and $w_n \to w$. Let $\varepsilon > 0$. We can find $N_1, N_2 \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N_1$, then

$$\|\boldsymbol{v}_n - \boldsymbol{v}\|_V < \varepsilon,$$

and if $n \geq N_2$, then

$$\|\boldsymbol{w}_n - \boldsymbol{w}\|_W < \varepsilon.$$

In that case, set $N = \max(N_1, N_2)$. Then, for $n \in \mathbb{Z}_{>1}$, if $n \geq N$, then

$$\|(\boldsymbol{v}_n, \boldsymbol{w}_n) - (\boldsymbol{v}, \boldsymbol{w})\|_{\infty} = \|(\boldsymbol{v}_n - \boldsymbol{v}, \boldsymbol{w}_n - \boldsymbol{w})\|_{\infty}$$

= $\max(\|\boldsymbol{v}_n - \boldsymbol{v}\|_{V}, \|\boldsymbol{w}_n - \boldsymbol{w}\|_{W}) < \varepsilon$.

Therefore, $(\boldsymbol{v}_n, \boldsymbol{w}_n) \to (\boldsymbol{v}, \boldsymbol{w})$

Proposition 3.4.15. Let V and W be normed vector spaces, let $(\mathbf{v}_n, \mathbf{w}_n)_{n=1}^{\infty}$ be a sequence in $V \times W$. Then, $(\mathbf{v}_n, \mathbf{w}_n)$ is Cauchy if and only if (\mathbf{v}_n) and (\mathbf{w}_n) are Cauchy.

Proof.

18

• Assume that $(\boldsymbol{v}_n, \boldsymbol{w}_n)$ is Cauchy. Let $\varepsilon > 0$. We can find an $N \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then

$$\|(\boldsymbol{v}_n, \boldsymbol{w}_n) - (\boldsymbol{v}_m, \boldsymbol{w}_m)\|_{\infty} < \varepsilon.$$

In that case, we have

$$\max(\|\boldsymbol{v}_{n} - \boldsymbol{v}_{m}\|_{V}, \|\boldsymbol{w}_{n} - \boldsymbol{w}_{m}\|_{W}) = \|(\boldsymbol{v}_{n} - \boldsymbol{v}_{m}, \boldsymbol{w}_{n} - \boldsymbol{w}_{m})\|_{\infty}$$
$$= \|(\boldsymbol{v}_{n}, \boldsymbol{w}_{n}) - (\boldsymbol{v}_{m}, \boldsymbol{w}_{m})\|_{\infty} < \varepsilon.$$

So, we have both $\|\boldsymbol{v}_n - \boldsymbol{v}_m\|_V < \varepsilon$ and $\|\boldsymbol{w}_n - \boldsymbol{w}_m\|_W < \varepsilon$. This implies that (\boldsymbol{v}_n) and (\boldsymbol{v}_n) are Cauchy.

• Assume that (\boldsymbol{v}_n) and (\boldsymbol{w}_n) are Cauchy. Let $\varepsilon > 0$. We can find $N_1, N_2 \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N_1$, then

$$\|\boldsymbol{v}_n - \boldsymbol{v}_m\|_V < \varepsilon,$$

and if $m, n \geq N_2$, then

$$\|\boldsymbol{w}_n - \boldsymbol{w}_m\|_W < \varepsilon.$$

In that case, set $N = \max(N_1, N_2)$. Then, for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then

$$\|(v_n, w_n) - (v_m, w_m)\|_{\infty} = \|(v_n - v_m, w_n - w_m)\|_{\infty}$$

= $\max(\|v_n - v_m\|_V, \|w_n - w_m\|_W) < \varepsilon$.

Therefore, $(\boldsymbol{v}_n, \boldsymbol{w}_n)$ is Cauchy.

Proposition 3.4.16. Let V and W be normed vector spaces. Then, $V \times W$ is a Banach space if and only if V and W are both Banach spaces.

Proof.

- Assume that $V \times W$ is a Banach space. Let $(\boldsymbol{v}_n)_{n=1}^{\infty}$ and $(\boldsymbol{w}_n)_{n=1}^{\infty}$ be Cauchy sequences in V and W respectively. In that case, the sequence $(\boldsymbol{v}_n, \boldsymbol{w}_n)$ is a Cauchy sequence. Since $V \times W$ is complete, there exists a $(\boldsymbol{v}, \boldsymbol{w}) \in V \times W$ such that $(\boldsymbol{v}_n, \boldsymbol{w}_n) \to (\boldsymbol{v}, \boldsymbol{w})$. So, we must have $\boldsymbol{v}_n \to \boldsymbol{v}$ and $\boldsymbol{w}_n \to \boldsymbol{w}$. This implies that V and W are complete.
- Assume that V and W are Banach spaces. Let $(\boldsymbol{v}_n, \boldsymbol{w}_n)_{n=1}^{\infty}$ be a Cauchy sequence in $V \times W$. In that case, the sequences (\boldsymbol{v}_n) and (\boldsymbol{w}_n) are Cauchy sequences in V and W respectively. Since V and W are complete, there exists a $\boldsymbol{v} \in V$ and a $\boldsymbol{w} \in W$ such that $\boldsymbol{v}_n \to \boldsymbol{v}$ and $\boldsymbol{w}_n \to \boldsymbol{w}$.

Definition 3.4.17. Let V, W be normed vector spaces and let $T: V \to W$ be a linear operator. We say that T is closed if $Graph(T) \subseteq V \times W$ is closed.

Proposition 3.4.18. Let V, W be normed vector spaces and let $T: V \to W$ be a bounded linear operator. Then, T is closed.

Proof. Let $(\boldsymbol{v}_n, T(\boldsymbol{v}_n))_{n=1}^{\infty}$ be a sequence in Graph(T), with $(\boldsymbol{v}_n, T(\boldsymbol{v}_n)) \to (\boldsymbol{v}, \boldsymbol{w})$, for some $(\boldsymbol{v}, \boldsymbol{w}) \in V \times W$. Under the $\|.\|_{\infty}$ norm, this implies that $\boldsymbol{v}_n \to \boldsymbol{v}$ and $T(\boldsymbol{v}_n) \to \boldsymbol{w}$. Since T is bounded, it is continuous. So, $T(\boldsymbol{v}) \to T(\boldsymbol{v})$ as well. In that case, $T(\boldsymbol{v}) = \boldsymbol{w}$. This implies that $(\boldsymbol{v}, \boldsymbol{w}) = (\boldsymbol{v}, T(\boldsymbol{v})) \in \operatorname{Grap}(T)$. So, $\operatorname{Graph}(T) \subseteq V \times W$ is closed.

Theorem 3.4.19 (Closed Graph Theorem). Let V, W be Banach spaces and let $T: V \to W$ be a closed linear operator. Then, T is bounded.

Proof. Since T is closed, we know that $\operatorname{Graph}(T) \subseteq V \times W$ is closed. The spaces V and W are complete, so the product space $V \times W$ is also complete. So, the closed subspace $\operatorname{Graph}(T)$ is complete. In particular, it is a Banach space under the $\|.\|_{\infty}$ norm.

Now, define the projection maps $\pi_V: V \times W \to V$ and $\pi_W: V \times W \to W$ by $\pi_V(\boldsymbol{v}, \boldsymbol{w}) = \boldsymbol{v}$ and $\pi_W(\boldsymbol{v}, \boldsymbol{w}) = \boldsymbol{w}$. We know that for all $(\boldsymbol{v}, \boldsymbol{w}) \in V \times W$,

$$\|\pi_V(v, w)\|_V = \|v\|_V \le \|v, w\|_{\infty}.$$

This implies that π_V is a bounded operator. Similarly, π_W is also bounded. Next, let $\pi : \operatorname{Graph}(T) \to V$ be the restriction of π_V . We claim that π_V is bijective. Let $(\boldsymbol{v}_1, T(\boldsymbol{v}_1)), (\boldsymbol{v}_2, T(\boldsymbol{v}_2)) \in V \times W$ with $\pi(\boldsymbol{v}_1, T(\boldsymbol{v}_1)) = \pi(\boldsymbol{v}_2, T(\boldsymbol{v}_2))$. In that case,

$$v_1 = \pi(v_1, T(v_1)) = \pi(v_2, T(v_2)) = v_2.$$

So, π is injective. Further, let $v \in V$. We have $(v, T(v)) \in Graph(T)$. In that case,

$$\pi(\boldsymbol{v}, T(\boldsymbol{v})) = \boldsymbol{v}.$$

So, π is surjective as well. This implies that π is a bijective linear bounded operator. Since $\operatorname{Graph}(T)$ and V are Banach spaces, this implies that the inverse map π^{-1} is a linear bounded operator as well.

Pete Gautam 19

Finally, we claim that $T = \pi_W \circ \pi^{-1}$. Let $v \in V$. We find that

$$(\pi_W \circ \pi^{-1})(\boldsymbol{v}) = \pi_W(\pi^{-1}(\boldsymbol{v}))$$
$$= \pi_W(\boldsymbol{v}, T(\boldsymbol{v}))$$
$$= T(\boldsymbol{v}).$$

So, $T = \pi_W \circ \pi^{-1}$. We know that both π^{-1} and π_W are bounded, so their composition T is also bounded.

Compact Operators

Definition 3.4.20. Let V, W be normed vector spaces and let $T: V \to W$ be a linear operator. Then, T is *compact* if for any bounded sequence $(v_n)_{n=1}^{\infty}$ in V, the sequence $(T(v)_n)$ in W has a convergent subsequence.

We can characterise the concept of a compact operator with a compact space.

Proposition 3.4.21. Let V, W be normed vector spaces and let $T : V \to W$ be a linear operator. Then, T is compact if and only if $T(\overline{B}_V(\mathbf{0}, 1))$ is compact.

Proof.

- First, assume that T is compact. Let $(\boldsymbol{x}_n)_{n=1}^{\infty}$ be a sequence in $\overline{B}_V(\mathbf{0}, 1)$. We know that (\boldsymbol{x}_n) is bounded. So, we know that $(T(\boldsymbol{x}_n))$ has a convergent subsequence. This implies that $T(\overline{B}_V(\mathbf{0}, 1))$ is compact.
- Now, assume that $T(\overline{B}_V(\mathbf{0},1))$ is compact. Let $(\boldsymbol{x}_n)_{n=1}^{\infty}$ be a bounded sequence. Without loss of generality, assume that for all $m,n\in\mathbb{Z}_{\geq 1}$, $\|\boldsymbol{x}_m-\boldsymbol{x}_n\|\leq 1.^2$ Next, define the sequence $(\boldsymbol{y}_n)_{n=1}^{\infty}$ in V given by $\boldsymbol{y}_n=\boldsymbol{x}_n-\boldsymbol{x}_1$. We know that for all $n\in\mathbb{Z}_{\geq 1}$, $\|\boldsymbol{x}_m-\boldsymbol{x}_1\|\leq 1$. So, the sequence (\boldsymbol{y}_n) is in $\overline{B}_V(\mathbf{0},1)$. This implies that (\boldsymbol{y}_n) has a convergent subsequence $(\boldsymbol{y}_{n_k})_{k=1}^{\infty}$. In that case, (\boldsymbol{x}_{n_k}) is also a convergent subsequence. This implies that T is compact.

We will now consider an example of a compact operator. Define the map $T:\ell^\infty\to\ell^\infty$ by

$$T(x_1, x_2, x_3, x_4, \dots) = (x_1, x_2, 0, 0, \dots).$$

This is a compact operator since for any $(x_n)_{n=1}^{\infty}$ in ℓ^{∞} , $T(\boldsymbol{x}_n)_{n=3}^{\infty}$ is a convergent subsequence of $(T(\boldsymbol{x}_n))_{n=1}^{\infty}$.

Now, we show that a compact operator must be bounded.

Proposition 3.4.22. Let V, W be normed vector spaces and let $T: V \to W$ be a compact operator. Then, T is bounded.

Proof. Assume that T is not bounded. So, there exists a sequence $(\boldsymbol{v}_n)_{n=1}^{\infty}$ in V such that for all $n \in \mathbb{Z}_{\geq 1}$, $\|\boldsymbol{v}_n\| \leq 1$ and $\|T(\boldsymbol{v}_n)\|_W \geq n$. Then, $(T(\boldsymbol{v}_n))$ cannot have a convergent subsequence, since the subsequence would need to be bounded. Therefore, T cannot be compact. So, if T is compact, then T is bounded.

²Since the sequence is bounded, we can find a K>0 such that for all $n\in\mathbb{Z}_{\geq 1}$, $\|\boldsymbol{x}_n\|\leq K$. In that case, we have $\|\boldsymbol{x}_m-\boldsymbol{x}_n\|\leq 2K$. So, we can scale by $\frac{1}{2K}$ to achieve this.

The converse of this statement is however false. Let $T: \ell^{\infty} \to \ell^{\infty}$ be the identity function. This is clearly a bounded function. Now, define the sequence $(e^{(k)})_{k=1}^{\infty}$ given by

$$e_n^{(k)} = \begin{cases} 1 & n = k \\ 0 & \text{otherwise.} \end{cases}$$

Then, for all $k \in \mathbb{Z}_{\geq 1}$, $\|e_k\|_{\infty} = 1$. So, $(e^{(k)})$ is bounded. However, it does not have a convergent subsequence- for all $k, m \in \mathbb{Z}_{>1}$, if $k \neq m$, then

$$\|e^{(m)} - e^{(k)}\|_{\infty} = 1.$$

In that case, any subsequence will not be Cauchy. This implies that $(T(e^{(k)})) = (e^{(k)})$ does not have a convergent subsequence. So, $T: V \to W$ is a bounded operator, but not compact.

Proposition 3.4.23. Let V, W be Banach spaces, and let $(T_n)_{n=1}^{\infty}$ be a sequence of compact operators from V to W, with $T_n \to T$. Then, T is a compact operator.

Proof. Let $(\boldsymbol{v}_n)_{n=1}^{\infty}$ be a bounded sequence in V. Since T_1 is compact, we can find a subsequence $(\boldsymbol{v}_{1n})_{n=1}^{\infty}$ of (\boldsymbol{v}_n) such that $(T_1(\boldsymbol{v}_{1n}))$ is convergent. Moreover, since T_2 is compact, we can find a subsequence $(\boldsymbol{v}_{2n})_{n=1}^{\infty}$ of (\boldsymbol{v}_{1n}) such that $(T_2(\boldsymbol{v}_{2n}))$ is convergent. Using this approach, we can inductively define the sequences $(\boldsymbol{v}_{kn})_{n=1}^{\infty}$ for all $k \in \mathbb{Z}_{\geq 1}$.

Now, define the sequence $(\boldsymbol{x}_n)_{n=1}^{\infty}$ by $\boldsymbol{x}_n = \boldsymbol{v}_{nn}$. By definition, this is a subsequence of (\boldsymbol{v}_n) . Without loss of generality, assume that for all $n \in \mathbb{Z}_{\geq 1}$, $\|\boldsymbol{x}_n\|_V \leq 1$. Next, we claim that $(T(\boldsymbol{x}_n))$ is Cauchy. So, let $\varepsilon > 0$. Since $T_n \to T$, we can find an $K \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq K$, then $\|T_n - T\| < \frac{\varepsilon}{3}$. In that case, for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq K$, then $\|T_n(\boldsymbol{x}_n) - T(\boldsymbol{x}_n)\|_W < \frac{\varepsilon}{3}$ for all $n \in \mathbb{Z}_{\geq 1}$. By definition, (\boldsymbol{x}_n) is a subsequence of (\boldsymbol{v}_{Kn}) . We know that $(T_K(\boldsymbol{v}_{Kn}))$ is Cauchy, so $(T_K(\boldsymbol{x}_n))$ is also Cauchy. In that case, there exists an $N' \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N'$, then $\|T_K(\boldsymbol{x}_m) - T_K(\boldsymbol{x}_n)\|_W < \frac{\varepsilon}{3}$. Now, set $N = \max(K, N')$. Then, for all $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then

$$||T(x_{m}) - T(x_{n})||_{W} \leq ||T(x_{n}) - T_{K}(x_{n})||_{W} + ||T_{K}(x_{n}) - T_{K}(x_{m})||_{W} + ||T_{K}(x_{m}) - T(x_{m})||_{W} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This implies that $(T(\boldsymbol{x}_n))$ is Cauchy. Since W is complete, $(T(\boldsymbol{x}_n))$ is convergent. So, T is a compact operator.

³We have to scale the vectors (x_n) so that the norm is always less than 1. Then, the original (x_n) is convergent if and only if the scaled (x_n) is convergent.

3.5 Hilbert Theory

Proposition 3.5.1. Let V be an inner product spaces and let $(\mathbf{v}_n)_{n=1}^{\infty}$ and $(\mathbf{w}_n)_{n=1}^{\infty}$ be sequences in V, with $\mathbf{v}_n \to \mathbf{v}$ and $\mathbf{w}_n \to \mathbf{w}$, for some $\mathbf{v}, \mathbf{w} \in W$. Then, $\langle \mathbf{v}_n, \mathbf{w}_n \rangle \to \langle \mathbf{v}, \mathbf{w} \rangle$.

Proof. We can find a $K_1 > 0$ such that $\|\mathbf{w}\| \leq K_1$. Since $\mathbf{v}_n \to \mathbf{v}$, the sequence (\mathbf{v}_n) is bounded. So, there exists a $K_2 > 0$ such that for all $n \in \mathbb{Z}_{\geq 1}$, $\|\mathbf{x}_n\| \leq K_2$.

Now, let $\varepsilon > 0$. Since $\boldsymbol{v}_n \to \boldsymbol{v}$, we can find an $N_1 \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N_1$, then $\|\boldsymbol{v} - \boldsymbol{v}_n\| < \frac{\varepsilon}{2K_1}$. Similarly, since $\boldsymbol{w}_n \to \boldsymbol{w}$, we can find an $N_2 \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N_2$, then $\|\boldsymbol{w} - \boldsymbol{w}_n\| < \frac{\varepsilon}{2K_2}$. Now, set $N = \max(N_1, N_2)$. In that case, for $n \in \mathbb{Z}_{>1}$, if $n \geq N$, then

$$\begin{split} |\langle \boldsymbol{v}, \boldsymbol{w} \rangle - \langle \boldsymbol{v}_n, \boldsymbol{w}_n \rangle| &= |\langle \boldsymbol{v}, \boldsymbol{w} \rangle - \langle \boldsymbol{v}_n, \boldsymbol{w} \rangle + \langle \boldsymbol{v}_n, \boldsymbol{w} \rangle - \langle \boldsymbol{v}_n, \boldsymbol{w}_n \rangle| \\ &= |\langle \boldsymbol{v} - \boldsymbol{v}_n, \boldsymbol{w} \rangle + \langle \boldsymbol{v}_n, \boldsymbol{w} - \boldsymbol{w}_n \rangle| \\ &\leq |\langle \boldsymbol{v} - \boldsymbol{v}_n, \boldsymbol{w} \rangle| + |\langle \boldsymbol{v}_n, \boldsymbol{w} - \boldsymbol{w}_n \rangle| \\ &\leq \|\boldsymbol{v} - \boldsymbol{v}_n\| \|\boldsymbol{w}\| + \|\boldsymbol{v}_n\| \|\boldsymbol{w} - \boldsymbol{w}_n\| \\ &\leq \frac{\varepsilon}{2K_1} \cdot K_1 + K_2 \cdot \frac{\varepsilon}{2K_2} = \varepsilon. \end{split}$$

This implies that $\langle \boldsymbol{v}_n, \boldsymbol{w}_n \rangle \to \langle \boldsymbol{v}, \boldsymbol{w} \rangle$.

Definition 3.5.2. Let V be an inner product space and let $E \subseteq V$ be a subspace. We define the *orthogonal complement of* E by the set

$$E^{\perp} = \{ \boldsymbol{v} \in V \mid \langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0 \ \forall \boldsymbol{w} \in E \}.$$

The set E^{\perp} is always closed.

Proposition 3.5.3. Let V be an inner product space and let $E \subseteq V$ be a subspace. Then, E^{\perp} is closed.

Proof. Let $(\boldsymbol{v}_n)_{n=1}^{\infty}$ be a sequence in E^{\perp} with $\boldsymbol{v}_n \to \boldsymbol{v}$, for some $\boldsymbol{v} \in V$. Let $\boldsymbol{w} \in E$. We know that for all $n \in \mathbb{Z}_{\geq 1}$, $\langle \boldsymbol{v}_n, \boldsymbol{w} \rangle = 0$. In that case,

$$\langle \boldsymbol{v}_n, \boldsymbol{w} \rangle \to 0.$$

Moreover, since $v_n \to v$, we know that $\langle v_n, w \rangle \to \langle v, w \rangle$. This implies that $v \in E^{\perp}$. So, E^{\perp} is closed.

Theorem 3.5.4 (Pythagoras' Theorem). Let V be an inner product space, and let x_1, x_2, \ldots, x_n are vectors in V that are mutually orthogonal. Then,

$$\left\| \sum_{k=1}^{n} x_k \right\|^2 = \sum_{k=1}^{n} \|x_k\|^2.$$

22

Proof. We find that

$$egin{aligned} \left\|\sum_{k=1}^n oldsymbol{x}_k
ight\|^2 &= \left\langle \sum_{k=1}^n oldsymbol{x}_k, \sum_{k=1}^n oldsymbol{x}_k
ight
angle \\ &= \sum_{j=1}^n \sum_{k=1}^n \langle oldsymbol{x}_j, oldsymbol{x}_k
angle \\ &= \sum_{k=1}^n \langle oldsymbol{x}_k, oldsymbol{x}_k
angle \\ &= \sum_{k=1}^n \|oldsymbol{x}_k\|^2. \end{aligned}$$

Proposition 3.5.5. Let V be a Hilbert space and let $H \subseteq V$ be a closed subspace. Then, for every $\mathbf{v} \in V$, there exists unique $\mathbf{x} \in H$ and $\mathbf{y} \in H^{\perp}$ such that $\mathbf{v} = \mathbf{x} + \mathbf{y}$.

Proof. Let

$$\delta = \inf_{\boldsymbol{x} \in H} \|\boldsymbol{v} - \boldsymbol{x}\|.$$

We know that there exists a sequence $(x_n)_{n=1}^{\infty}$ in H such that

$$\|\boldsymbol{v}-\boldsymbol{x}_n\| \to \delta.$$

We claim that (\boldsymbol{x}_n) is Cauchy. Let $\varepsilon > 0$. Fix $K \geq 1$ such that $K \geq \frac{\delta}{\varepsilon}$. Since $\|\boldsymbol{v} - \boldsymbol{x}_n\| \to \delta$, we can find an $N \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then

$$\delta \leq \|\boldsymbol{v} - \boldsymbol{x}_n\| < \delta + \frac{\varepsilon}{16K}.$$

Now, let $m, n \in \mathbb{Z}_{\geq 1}$ with $m, n \geq N$. By the Parallelogram Law, we know that

$$\|\boldsymbol{x}_m - \boldsymbol{x}_n\|^2 = 2\|\boldsymbol{x}_m - \boldsymbol{v}\|^2 + 2\|\boldsymbol{x}_n - \boldsymbol{v}\|^2 - 4\|\frac{1}{2}(\boldsymbol{x}_m + \boldsymbol{x}_n) - \boldsymbol{x}\|^2$$

Since $x_m, x_n \in H$, we find that $\frac{1}{2}(x_m + x_n) \in H$. Therefore,

$$\|\frac{1}{2}(\boldsymbol{x}_m + \boldsymbol{x}_n) - \boldsymbol{v}\| \ge \delta.$$

In that case,

$$\|\boldsymbol{x}_{m} - \boldsymbol{x}_{n}\|^{2} \leq 2\|\boldsymbol{x}_{m} - \boldsymbol{v}\|^{2} + 2\|\boldsymbol{x}_{n} - \boldsymbol{v}\|^{2} - 4\delta^{2}$$

$$< 4\left(\delta + \frac{\varepsilon}{16K}\right)^{2} - 4\delta^{2}$$

$$= \frac{\delta\varepsilon}{2K} + \frac{1}{256K^{2}}\varepsilon^{2}$$

$$\leq \frac{1}{2}\varepsilon^{2} + \frac{1}{256K^{2}}\varepsilon^{2}$$

$$= \left(\frac{1}{2} + \frac{1}{256K^{2}}\right)\varepsilon^{2} \leq \varepsilon^{2}.$$

⁴This is denoted by $V = H \oplus H^{\perp}$.

Pete Gautam

So, for all $m, n \in \mathbb{Z}_{>1}$, if $m, n \geq N$, then

$$\|\boldsymbol{x}_m - \boldsymbol{x}_n\| < \varepsilon.$$

This implies that (\boldsymbol{x}_n) is Cauchy. Since $H \subseteq V$ is closed, we find that H is complete. In that case, there exists an $\boldsymbol{x} \in H$ such that $\boldsymbol{x}_n \to \boldsymbol{x}$. Then, we have $\|\boldsymbol{v} - \boldsymbol{x}\| = \delta$.

Next, we show that the value $x \in H$ is unique. So, let $z \in H$ such that $||v - z|| = \delta$. By the Parallelogram Law, we know that

$$\|\boldsymbol{x} - \boldsymbol{z}\|^2 = 2\|\boldsymbol{x} - \boldsymbol{v}\|^2 + 2\|\boldsymbol{z} - \boldsymbol{v}\|^2 - 4\|\frac{1}{2}(\boldsymbol{x} + \boldsymbol{z}) - \boldsymbol{v}\|^2.$$

By construction, we have $\|x - v\| = \delta = \|v - z\|$. Moreover, since $x, z \in H$, we must find that

$$\|x - z\|^2 < 2\delta^2 + 2\delta^2 - 4\delta^2 = 0.$$

So, we have x = z.

Finally, set $\mathbf{y} = \mathbf{v} - \mathbf{x}$. We claim that $\mathbf{y} \in H^{\perp}$. So, let $\mathbf{w} \in H$. If $\mathbf{w} = \mathbf{0}$, then we know that $\langle \mathbf{w}, \mathbf{y} \rangle = 0$. Otherwise, we have $\mathbf{w} \neq \mathbf{0}$. In that case, define the function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(t) = \|\mathbf{y} + t\mathbf{w}\|^2 = \|\mathbf{y}\|^2 + 2t\langle \mathbf{w}, \mathbf{y} \rangle + t^2 \|\mathbf{w}\|^2.$$

Also,

$$f(t) = \|\mathbf{y} + t\mathbf{w}\|^2 = \|\mathbf{v} - (\mathbf{x} - t\mathbf{w})\|^2.$$

For $t \in \mathbb{R}$, we have $\boldsymbol{x}, \boldsymbol{w} \in H$, so $\boldsymbol{x} - t\boldsymbol{w} \in H$ as well. So, $f(t) \geq \delta^2$. Moreover, we saw that only $\boldsymbol{x} \in H$ satisfies $\|\boldsymbol{x} - \boldsymbol{v}\| = \delta$. So, we have $f(0) = \delta^2$, and $f(t) > \delta^2$ for $t \in \mathbb{R}^{\times}$. This implies that f'(0) = 0. We have

$$f'(t) = 2\langle \boldsymbol{w}, \boldsymbol{y} \rangle + 2t \|\boldsymbol{w}\|.$$

So,

$$f'(0) = 2\langle \boldsymbol{w}, \boldsymbol{y} \rangle = 0.$$

This implies that $\langle \boldsymbol{w}, \boldsymbol{y} \rangle = 0$. In that case, $\boldsymbol{y} \in H^{\perp}$. By the uniqueness of \boldsymbol{x} , we find that $\boldsymbol{y} \in H^{\perp}$ is unique.

Linear functionals

Proposition 3.5.6. Let V be an inner product space, and let $v \in V$. Then, the function $f_v : V \to \mathbb{R}$ given by $f_v(w) = \langle w, v \rangle$ is a linear functional.

Proof. We know that for $w_1, w_2 \in V$,

$$f_{\boldsymbol{v}}(\boldsymbol{w}_1 + \boldsymbol{w}_2) = \langle \boldsymbol{w}_1 + \boldsymbol{w}_2, \boldsymbol{v} \rangle = \langle \boldsymbol{w}_1, \boldsymbol{v} \rangle + \langle \boldsymbol{w}_2, \boldsymbol{v} \rangle = f_{\boldsymbol{v}}(\boldsymbol{w}_1) + f_{\boldsymbol{v}}(\boldsymbol{w}_2).$$

Moreover, for $\boldsymbol{w} \in V$ and $\lambda \in \mathbb{R}$,

$$f_{\boldsymbol{v}}(\lambda \boldsymbol{w}) = \langle \lambda \boldsymbol{w}, \boldsymbol{v} \rangle = \lambda \langle \boldsymbol{w}, \boldsymbol{v} \rangle = \lambda f_{\boldsymbol{v}}(\boldsymbol{w}).$$

So, f is a linear map. Furthermore, for $w \in V$,

$$f_{\boldsymbol{v}}(\boldsymbol{w}) = \langle \boldsymbol{v}, \boldsymbol{w} \rangle \le ||\boldsymbol{v}|| ||\boldsymbol{w}||.$$

In that case, f is a linear functional, with $||f_v|| \leq ||v||$.

Proposition 3.5.7. Let V be a Hilbert space, and let $f: V \to \mathbb{R}$ be a linear functional. Then, there exists a unique $\mathbf{v} \in V$ such that for all $\mathbf{w} \in V$, $f(\mathbf{w}) = \langle \mathbf{w}, \mathbf{v} \rangle$.

Proof. If f is the trivial map, then we know that for all $w \in V$,

$$f(\boldsymbol{w}) = 0 = \langle \boldsymbol{w}, \boldsymbol{0} \rangle.$$

Now, assume that f is a non-trivial map. Since f is bounded, we find that

$$\ker(f) = f^{-1}(0)$$

is a closed subspace. Moreover, since $V \setminus \ker(f)$ is non-empty, there exists a $z \in \ker(f)^{\perp}$ such that ||z|| = 1. Now, let $v \in V$. Define

$$u = f(v)z - vf(z).$$

We have

$$f(\boldsymbol{u}) = f(\boldsymbol{v})f(\boldsymbol{z}) - f(\boldsymbol{v})f(\boldsymbol{z}) = 0,$$

so $\boldsymbol{u} \in \ker(f)$. This implies that $\langle \boldsymbol{z}, \boldsymbol{u} \rangle = 0$. In that case,

$$f(z)\langle v, z \rangle = f(v)\langle z, z \rangle = f(v).$$

So, for all $v \in V$,

$$f(v) = \langle v, f(z)z \rangle.$$

Now, we show that the value $v \in V$ is unique. So, assume that there exist $x, y \in V$ such that for all $w \in V$,

$$\langle \boldsymbol{x}, \boldsymbol{w} \rangle = \langle \boldsymbol{y}, \boldsymbol{w} \rangle.$$

In that case, $\langle \boldsymbol{x} - \boldsymbol{y}, \boldsymbol{w} \rangle = 0$ for all $\boldsymbol{w} \in V$. In particular,

$$\|\boldsymbol{x} - \boldsymbol{y}\|^2 = \langle \boldsymbol{x} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{y} \rangle = 0.$$

Therefore, x = y. So, the value $v \in V$ is unique.

Linear algebra

Definition 3.5.8. Let V be an inner product space. Then, a subset $E \subseteq V$ is an *orthogonal set* if $\mathbf{0} \notin E$ and for all $\mathbf{u}, \mathbf{v} \in V$, if $\mathbf{u} \neq \mathbf{v}$, then $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Definition 3.5.9. Let V be an inner product space. Then, a subset $E \subseteq V$ is an *orthonormal set* if $\mathbf{0} \notin E$ and for all $\mathbf{u}, \mathbf{v} \in V$, if $\mathbf{u} \neq \mathbf{v}$, then $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, and if $\mathbf{u} = \mathbf{v}$, then $\langle \mathbf{u}, \mathbf{v} \rangle = 1$.

Lemma 3.5.10. Let V be an inner product space and let $E \subseteq V$ be an orthogonal set. Then, E is linearly independent.

Proof. Let

$$c_1\boldsymbol{x}_1+c_2\boldsymbol{x}_2+\cdots+c_n\boldsymbol{x}_n=\mathbf{0},$$

for $c_1, c_2, \ldots, c_n \in \mathbb{R}$ and $x_1, x_2, \ldots, x_n \in E$. We find that for all $i \in \{1, 2, \ldots, n\}$,

$$c_i \| \boldsymbol{x}_i \|^2 = c_i \langle \boldsymbol{x}_i, \boldsymbol{x}_i \rangle = \sum_{j=1}^n c_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle = \left\langle \boldsymbol{x}_i, \sum_{j=1}^n c_j \boldsymbol{x}_j \right\rangle = \langle \boldsymbol{x}_i, \boldsymbol{0} \rangle = 0.$$

Since $x_i \neq 0$, we must have $c_i = 0$. So, E is linearly independent.

⁵There exists a $v \in V \setminus \ker(f)$. So, v = x + y for $x \in \ker(f)$ and $y \in \ker(f)^{\perp}$. Then, we \square must have $y \neq 0$, so we can normalise y to get z.

We can use the Gram-Schmidt process to convert a (countable) collection of linearly independent vectors into an orthonormal set of vectors with the same span. Let V be an inner product space, and let

$$E = \{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots\} \subseteq V$$

be a linearly independent set. We will construct the set

$$F = \{ \boldsymbol{y}_1, \boldsymbol{y}_2, \dots \} \subseteq V$$

of orthonormal sets such that $\operatorname{span}(E) = \operatorname{span}(F)$. For $n \in \mathbb{Z}_{\geq 1}$, we define

$$oldsymbol{y}_n' = oldsymbol{x}_n - \sum_{k=1}^n \langle oldsymbol{x}_n, oldsymbol{y}_k
angle ,$$

and y_n is the normalised vector of y'_n .

It also has the same span since there is a bijection from the linearly independent set and the orthonormal set, and we can write all the x_n vectors as a linear combination of y_i , for $i \in \{1, 2, ..., n\}$.

We illustrate the Gram-Schmidt process in \mathbb{R}^3 . Consider the set

$$\{(1,0,0),(0,1,1),(1,0,1)\}.$$

This is a linearly independent set, but not orthonormal. To construct the set of orthonormal vectors, we first set $y'_1 = x_1$. Since y'_1 is a unit vector, we set $y_1 = x_1$. Now, we set

$$y_2' = (0,1,1) - \langle (1,0,0), (0,1,1) \rangle (1,0,0) = (0,1,1).$$

Therefore, we normalise y_2' to get:

$$\mathbf{y}_2 = \frac{1}{\|(0,1,1)\|_2}(0,1,1) = \frac{1}{\sqrt{2}}(0,1,1).$$

Next, we set

$$\mathbf{y}_3' = (1,0,1) - \langle (1,0,0), (1,0,1) \rangle (1,0,0) - \frac{1}{2} \langle (0,1,1), (1,0,1) \rangle (0,1,1)$$
$$= \frac{1}{2} (0,-1,1).$$

Finally, we normalise y_3' to get:

$$\mathbf{y}_3 = \frac{1}{\|(0, -1, 1)\|_2}(0, -1, 1) = \frac{1}{\sqrt{2}}(0, -1, 1).$$

Then, the set

26

$$\{y_1, y_2, y_3\}$$

has equal span and is orthonormal.

Proposition 3.5.11 (Bessel's Inequality). Let V be a Hilbert space and let $(\mathbf{x}_{\alpha})_{\alpha \in A}$ be an orthonormal collection in V, for some indexing set A. Then, for all $\mathbf{v} \in V$,

$$\sum_{lpha \in A} |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2 \leq \|oldsymbol{v}\|^2.$$

In particular, the set of α such that $\langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle \neq 0$ is countable.

Proof. Let $F \subseteq A$ be finite. Then, for all $v \in V$,

$$\begin{aligned} 0 &\leq \left\| \boldsymbol{v} - \sum_{\alpha \in F} \langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle \boldsymbol{x}_{\alpha} \right\|^{2} \\ &= \|\boldsymbol{v}\|^{2} - 2 \sum_{\alpha \in F} \langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle \cdot \langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle + \sum_{\alpha \in F} \sum_{\beta \in F} |\langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle|^{2} \cdot |\langle \boldsymbol{v}_{\alpha}, \boldsymbol{x}_{\beta} \rangle|^{2} \\ &= \|\boldsymbol{v}\|^{2} - 2 \sum_{\alpha \in F} |\langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle|^{2} + \sum_{\alpha \in F} |\langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle|^{2} \\ &= \|\boldsymbol{v}\|^{2} - \sum_{\alpha \in F} |\langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle|^{2}. \end{aligned}$$

Therefore,

$$\sum_{\alpha \in F} |\langle oldsymbol{v}, oldsymbol{x}_{lpha}
angle|^2 \leq \|oldsymbol{v}\|^2.$$

Now, let

$$A^{\times} = \{ \alpha \in A \mid \langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle \neq 0 \},$$

and for $n \in \mathbb{Z}_{>1}$, let

$$A_n = \{ \alpha \in A \mid \langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle > 1/n \}.$$

We claim that $|A_n| \leq n^2 \|\boldsymbol{y}\|^2$. Assume, for a contradiction, that $|A_n| > n^2 \|\boldsymbol{y}\|^2$. In that case, for a finite subset $A'_n \subseteq A_n$ with $|A'_n| > n^2 \|\boldsymbol{y}\|^2$,

$$\sum_{\alpha \in A_n'} |\langle \boldsymbol{v}, \boldsymbol{x}_\alpha \rangle|^2 > \sum_{\alpha \in A_n} \frac{1}{n^2} \geq \frac{1}{n^2} \cdot n^2 \|\boldsymbol{y}\|^2 = \|\boldsymbol{y}\|^2.$$

This is a contradiction. So, we must have that A_n is finite. Therefore, the countable union

$$A = \bigcup_{n=1}^{\infty} A_n$$

is also countable.

Finally, enumerate

$$A = \{x_1, x_2, \dots\}.$$

We have shown that for all $n \in \mathbb{Z}_{>1}$,

$$\sum_{lpha=1}^n |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2 \leq \|oldsymbol{v}\|^2.$$

Therefore,

$$\sum_{lpha=1}^{\infty} |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2 \leq \|oldsymbol{v}\|^2.$$

This implies that

$$\sum_{lpha\in A} |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2 = \sum_{lpha=1}^\infty |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2 \leq \|oldsymbol{v}\|^2.$$

Proposition 3.5.12. Let V be a Hilbert space and let $(\mathbf{x}_{\alpha})_{\alpha \in A}$ be an orthonormal collection in V, for some indexing set A. Then, the following are equivalent:

- 1. for all $\mathbf{v} \in V$, if $\langle \mathbf{v}, \mathbf{x}_{\alpha} \rangle = 0$ for all $\alpha \in A$, then $\mathbf{v} = \mathbf{0}$;
- 2. for all $v \in V$,

$$\|oldsymbol{v}\|^2 = \sum_{lpha \in A} |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2;$$

3. for all $\mathbf{v} \in V$,

$$oldsymbol{v} = \sum_{lpha \in A} \langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha.$$

If the collection (x_{α}) satisfies any of the conditions above, then we say that it forms an orthonormal basis for V.

Proof. We show $(1) \implies (3) \implies (2) \implies (1)$.

• Assume that for all $v \in V$, if $\langle v, x_{\alpha} \rangle = 0$ for all $\alpha \in A$, then v = 0. Let $v \in V$. By Bessel's inequality, we know that

$$\sum_{lpha \in A} |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2 \leq \|oldsymbol{v}\|^2.$$

So, the series

$$\sum_{lpha \in A} |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2$$

is Cauchy. Moreover, we know that the set of $\alpha \in A$ such that $\langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle \neq 0$ is countable. So, let $(\boldsymbol{x}_{\alpha})_{\alpha=1}^{\infty}$ be a collection of such values. Now, let $\varepsilon > 0$. Since the series is Cauchy, we can find an $N \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m \geq n \geq N$, then

$$\sum_{lpha=n+1}^m |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2 = \left|\sum_{lpha=1}^m |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2 - \sum_{lpha=1}^n |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2
ight| < arepsilon^2.$$

By Pythagoras' Theorem, we know that for $m, n \in \mathbb{Z}$ with $m \geq n$,

$$\left\|\sum_{lpha=n+1}^m \langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha
ight\|^2 = \sum_{lpha=n+1}^m \|\langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha \|^2 = \sum_{lpha=n+1}^m |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle \|^2.$$

Therefore, for $m, n \in \mathbb{Z}_{\geq 1}$, if $m \geq n \geq N$, then

$$egin{aligned} \left\| \sum_{lpha=1}^m \langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha - \sum_{lpha=1}^n \langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha
ight\| &= \left\| \sum_{lpha=n+1}^m \langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha
ight\| &= \sqrt{\sum_{lpha=n+1}^m |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle |^2} < arepsilon. \end{aligned}$$

This implies that the series

$$\sum_{lpha \in A} \langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha \geq \sum_{lpha = 1}^\infty \langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha$$

converges. Now, let

$$oldsymbol{z} = oldsymbol{v} - \sum_{lpha \in A} \langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha.$$

We find that for all $\beta \in A$,

$$egin{aligned} \langle oldsymbol{z}, oldsymbol{x}_eta
angle &= \langle oldsymbol{v}, oldsymbol{x}_eta
angle - \sum_{lpha \in A} \langle oldsymbol{v}, oldsymbol{x}_lpha
angle \cdot \langle oldsymbol{x}_lpha, oldsymbol{x}_eta
angle \ &= \langle oldsymbol{v}, oldsymbol{x}_eta
angle - \langle oldsymbol{v}, oldsymbol{x}_eta
angle = 0. \end{aligned}$$

This implies that z = 0. So, we find that

$$oldsymbol{v} = \sum_{lpha \in A} \langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha.$$

• Assume that for all $v \in V$,

$$oldsymbol{v} = \sum_{lpha \in A} \langle oldsymbol{v}, oldsymbol{x}_lpha
angle oldsymbol{x}_lpha.$$

In that case, for all $v \in V$,

$$egin{aligned} \|oldsymbol{v}\|^2 &= \langle oldsymbol{v}, oldsymbol{v}
angle \ &= \sum_{lpha \in A} \sum_{eta \in A} \langle oldsymbol{v}, oldsymbol{x}_lpha
angle \cdot \langle oldsymbol{v}, oldsymbol{x}_eta
angle \cdot |\langle oldsymbol{x}_lpha, oldsymbol{x}_lpha
angle |^2 \ &= \sum_{lpha \in A} |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle |^2. \end{aligned}$$

• Assume that for all $v \in V$,

$$\|oldsymbol{v}\|^2 = \sum_{lpha \in A} |\langle oldsymbol{v}, oldsymbol{x}_lpha
angle|^2.$$

Now, fix $v \in V$ such that $\langle v, x_{\alpha} \rangle = 0$ for all $\alpha \in A$. Then,

$$\|\boldsymbol{v}\|^2 = \sum_{\alpha \in A} |\langle \boldsymbol{v}, \boldsymbol{x}_{\alpha} \rangle|^2 = \sum_{\alpha \in A} 0 = 0.$$

This implies that v = 0.

Proposition 3.5.13. Let V be a Hilbert space. Then, it is separable if and only if it has a countable orthonormal basis. Moreover, if V has a countable orthonormal basis, then any orthonormal basis of V is countable.

Unitary operators

Definition 3.5.14. Let V and W be inner product spaces, and let $T: V \to W$ be a linear operator. Then, T is unitary if it is surjective and for all $u, v \in V$,

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle_V = \langle T(\boldsymbol{u}), T(\boldsymbol{v}) \rangle_W.$$

Proposition 3.5.15. Let V and W be inner product spaces, and let $T:V \to W$ be a linear operator. Then, T is unitary if and only if T is a surjective isometry.

Proof.

• Assume that T is unitary. In that case, for all $v \in V$,

$$||T(\boldsymbol{v})||^2 = \langle T(\boldsymbol{v}), T(\boldsymbol{v}) \rangle = \langle \boldsymbol{v}, \boldsymbol{v} \rangle = ||\boldsymbol{v}||^2.$$

So, ||T(v)|| = ||v||. This implies that T is a (surjective) isometry.

• Assume that T is a surjective isometry. Let $u, v \in V$. We find that

$$\langle T(\boldsymbol{u}), T(\boldsymbol{v}) \rangle = \frac{1}{4} \|T(\boldsymbol{u}) + T(\boldsymbol{v})\|^2 - \frac{1}{4} \|T(\boldsymbol{u}) - T(\boldsymbol{v})\|^2$$
$$= \frac{1}{4} \|\boldsymbol{u} + \boldsymbol{v}\|^2 - \frac{1}{4} \|\boldsymbol{u} - \boldsymbol{v}\|^2$$
$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle.$$

Therefore, T is unitary.

Proposition 3.5.16. Let V be a separable Hilbert space, with a countable orthonormal basis $(\boldsymbol{x}_k)_{k=1}^{\infty}$. For each $\boldsymbol{v} \in V$, define the sequence $(v_k)_{k=1}^{\infty}$ in \mathbb{R} by $v_k = \langle \boldsymbol{v}, \boldsymbol{x}_k \rangle$, and define the function $f: V \to \ell^2$ by $f(\boldsymbol{v}) = (\boldsymbol{v}_k)$. Then, f is a unitary map.

Proof. Since (x_k) forms an orthonormal basis, we know that

$$\|(m{v}_k)\|_2^2 = \sum_{k=1}^\infty |\langle m{v}, m{x}_k
angle|^2 = \|m{v}\|_V^2.$$

This implies that (v_k) is in ℓ^2 - the function f is well-defined. Moreover, it is an isometry.

Next, we show that f is linear. Let $v_1, v_2 \in V$. We find that for all $k \in \mathbb{Z}_{>1}$,

$$f(\mathbf{v}_1 + \mathbf{v}_2)_k = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{x}_k \rangle = \langle \mathbf{v}_1, \mathbf{x}_k \rangle + \langle \mathbf{v}_2, \mathbf{x}_k \rangle = f(\mathbf{v}_1)_k + f(\mathbf{v}_2)_k.$$

So, $f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$. Now, let $\mathbf{v} \in V$ and $\lambda \in \mathbb{R}$. We find that for all $k \in \mathbb{Z}_{\geq 1}$,

$$f(\lambda \boldsymbol{v})_k = \langle \lambda \boldsymbol{v}, \boldsymbol{x}_k \rangle = \lambda \langle \boldsymbol{v}, \boldsymbol{x}_k \rangle = \lambda f(\boldsymbol{v})_k.$$

So, $f(\lambda \mathbf{v}) = \lambda f(\mathbf{v})$. This implies that f is linear.

Pete Gautam

30

Finally, we show that f is surjective. Let $(x_n)_{n=1}^{\infty}$ be a sequence in ℓ^2 . Consider the series

$$\sum_{n=1}^{\infty} a_n \boldsymbol{x}_n.$$

We claim that the series is Cauchy. Since $(x_n)_{n=1}^{\infty}$ is in ℓ^2 , we can find an $N \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m \geq n \geq N$, then

$$\sum_{k=n+1}^{m} |a_k|^2 = \left| \sum_{k=1}^{m} |a_k|^2 - \sum_{k=1}^{n} |a_k|^2 \right| < \varepsilon.$$

Since (x_n) is an orthonormal collection, Pythagoras' Theorem tells us that for $m, n \in \mathbb{Z}_{\geq 1}$ with $m \geq n$,

$$\left\| \sum_{k=n+1}^{m} a_k \boldsymbol{x}_k \right\|^2 = \sum_{k=n+1}^{m} \|a_k \boldsymbol{x}_k\|^2 = \sum_{k=n+1}^{m} |a_k|^2.$$

In that case, for $m, n \in \mathbb{Z}_{\geq 1}$, if $m \geq n \geq N$, then

$$\left| \sum_{k=1}^{m} ||a_k \boldsymbol{x}_k||^2 - \sum_{k=1}^{n} ||a_k \boldsymbol{x}_k||^2 \right| = \sum_{k=n+1}^{m} |a_k|^2 < \varepsilon.$$

Therefore, the series is Cauchy. Since V is complete, we can find a $\boldsymbol{v} \in V$ such that

$$\sum_{n=1}^{\infty} a_n \boldsymbol{x}_n = \boldsymbol{v}.$$

In that case, for all $n \in \mathbb{Z}_{\geq 1}$,

$$f(\boldsymbol{v})_k = \langle \boldsymbol{v}, \boldsymbol{x}_k \rangle = \sum_{n=1}^{\infty} a_n \langle \boldsymbol{x}_n, \boldsymbol{x}_k \rangle = a_k \langle \boldsymbol{x}_k, \boldsymbol{x}_k \rangle = a_k.$$

This implies that $f(v) = (x_n)$. So, f is a surjective isometry- f is unitary. \square