Project: Creditworthiness

Step 1: Business and Data Understanding

Key Decisions:

- What decisions needs to be made?
 To determine if a customer is credit worthy to be given a loan and to figure out how to process all the new loans.
- What data is needed to inform those decisions?
 - 1. Data of the old applications
 - 2. The new list of customers that should be processed in the next few days for scoring
- What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?
 I will be testing the business problem as a classification binary model thus, I will be using logistic regression, decision tree, forest model, and boosted model to find out the best suitable model to figure out If we could give a loan or not.

Step 2: Building the Training Set

Build your training set given the data provided to you. The data has been cleaned up for you already so you shouldn't need to convert any data fields to the appropriate data types.

Since the data has already been cleaned up, I have started to explore the coloration between the variables by using a field summary tool.

I will remove Duration-in-Current-address as it is missing 69% of the data and if we impute it will skew our results

Figure 1: summary tool results of duration-in-current-address

I will also be removing the following fields as they are showing small number of unique values

- 1. Telephone
- 2. Occupation
- 3. No-of-dependents (low variability)
- 4. Foreign-worker (low variability)
- 5. Guarantors (low variability)
- 6. Concurrent-Credits (low variability)

Figure 2: field summery tool results of Telephone, Occupation, number of dependents, foreign workers, and duration in current address

Figure~3: field~summery~tool~report~that~shows~low~variability~of~guarantors, for eign~workers, &~no~of~independents

In age-years I have noticed a 2% missing data and instead of removing the whole column because it is a small percentage and losing the whole column could cause us to lose much more than we need to. I will only be imputing the missing values and replace it with the 33 medians by using the imputation tool

Figure 4: field summary tool showing the 2% of missing data

I will choose the following columns to be used in testing the classification models

- 1) Account-Balance
- 2) **Age-years** (average = 35.6372950819672= 36)
- 3) Credit-amount
- 4) Credit-application-result
- 5) Duration-of-credit-month
- 6) Instalments-per-cent
- 7) Length-of-current-employment
- 8) Most-valuable-available-asset
- 9) Payment-status-of-previous-credit
- 10) Purpose
- 11) Type-of-apartment
- 12) Value-saving-stocks
- 13) No-of-credits-at-this-bank

Step 3: Train your Classification Models

Create all of the following models: Logistic Regression, Decision Tree, Forest Model, Boosted Model

Logistic Regression

Min	1Q	Median		3Q	Max
-2.164	-0.700	-0.435		0.719	2.546
Coefficients:					
		Estimate	Std. Error	z value	Pr(> z)
(Intercept)		-2.7783868	9.808e-01	-2.83273	0.00462 ***
Account.BalanceSome Balance		-1.5231387	3.244e-01	-4.69573	2.65e-06 ****
Age.years		-0.0119847	1.539e-02	-0.77883	0.43608
Credit.Amount		0.0001705	6.975e-05	2.44413	0.01452 **
Duration.of.Credit.Month		0.0074678	1.398e-02	0.53435	0.5931
Instalment.per.cent		0.2851378	1.417e-01	2.01166	0.04426 **
Length.of.current.employment4-7 yrs		0.3789472	4.961e-01	0.76390	0.44493
Length.of.current.employment< 1yr		0.7765793	3.969e-01	1.95640	0.05042.
Most.valuable.available.asset		0.3222263	1.595e-01	2.02084	0.0433 **
Payment.Status.of.Previous.CreditPaid Up		0.2503065	3.139e-01	0.79738	0.42523
Payment.Status.of.Previous.CreditSome Probl	ems	1.1649690	5.204e-01	2.23861	0.02518 **
PurposeNew car		-1.7352840	6.268e-01	-2.76849	0.00563 ***
PurposeOther		16.6582032	6.543e+02	0.02546	0.97969
PurposeUsed car		-0.8729287	4.057e-01	-2.15152	0.03144 *
Type.of.apartment		-0.2714173	3.047e-01	-0.89064	0.37312
Value.Savings.StocksNone		0.6632144	5.117e-01	1.29606	0.19496
Value.Savings.Stocks£100-£1000	0.2187149	5.714e-01	0.38278	0.70188	

Figure 5: logistic regression report

Account.balance has showed high significance in logistic regression report, bias in predicting creditworthy

Decision Tree

Figure 6: Decision tree report of variable importance

Account.balance has showed high importance in decision tree report

Forest Model

Figure 7: Forest Model report of variable importance

Credit amount is the variable with the highest importance in forest model, No bias in predicting creditworthy or non-credit worthy

Boosted Model

Figure 8: Boosted Model report of variable importance

Account balance and credit amount are both showing variable importance in the boosted model

Step 4: Writeup

Decide on the best model and score your new customers. For reviewing consistency, if Score_Creditworthy is greater than Score_NonCreditworthy, the person should be labeled as "Creditworthy"

Answer these questions:

- Which model did you choose to use? Please justify your decision using **all** of the following techniques. Please only use these techniques to justify your decision:
 - Overall Accuracy against your Validation set

As per my previous comparisons between models, forest tree has showed the highest results with 81% accuracy thus I'm going to conclude with it

O Accuracies within "Creditworthy" and "Non-Creditworthy" segments

Model Comparison Report							
Fit and error measures							
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy		
Logistic_Regression_P4	0.7800	0.8507	0.7359	0.8952	0.5111		
Decision_Tree_p4	0.6867	0.7854	0.6270	0.8190	0.3778		
Forest_tree_p4	0.8200	0.8831	0.7363	0.9714	0.4667		
boost_p4	0.7933	0.8670	0.7505	0.9619	0.4000		

Figure 9: model comparison report of all models

Accuracies of non-creditworthy are a bit low which could be concerning

O ROC graph

Figure 10: ROC curve of models

ROC has proven that the forest tree has the highest curve and highest true positive rate. It has also reached the top the quickest which means this model will give the best number of true positive predictions

O Bias in the Confusion Matrices

Forest tree shows the highest accuracy rate and decision tree shows the lowest. The model predicted lower numbers in the accuracy of non-credit worthy which shows bias thus, it means the forest tree will be showing the highest true variables for this business problem based on the confusion matrix.

Figure 11: confusion matrix report of all models

• How many individuals are creditworthy?

My model summed that 406 customers are credit worthy

	Sum_Score_Creditworthy	Sum_Score_Non-Creditworthy
1	406	94

Figure 12: sum of credit worthy and non-credit worthy

Figure 13: Alteryx workflow 1

Figure 14: Alteryx workflow 2