# **Client Consultation Report**

# Project: Parkinson's Disease Prediction using AI/ML

**Project Goal**: To develop an AI/ML-powered system that accurately predicts Parkinson's Disease in its early stages using biometric and voice-based features, while also integrating 3D protein structure visualization (e.g., alpha-synuclein) to enhance understanding of disease progression and aid in potential drug target identification.

#### **Client Meetings and Questions**

This report consists of four meetings with the client, each addressing specific objectives. Below are the questions posed to the client and their responses.

### **Meeting 1: Understanding Parkinson's Disease Prediction Goals**

## **Objectives:**

- 1. Understand the client's vision and primary goals for Parkinson's detection.
- 2. Discuss expected use cases and beneficiaries (doctors, researchers, etc.).
- 3. Clarify scope, dataset needs, and model expectations.

### **Geotag Photo:**



Q: What is the goal of using SVM with PDB data?

A: To classify alpha-synuclein variants as aggregation-prone or stable based on structural features.

Q: Who uses this system?

A: Researchers, bioinformaticians, and drug developers.

Q: What features are used for prediction?

A: Amino acid composition, secondary structure, hydrophobicity, and aggregation scores from PDB files.

Q: Is it for research or clinical use?

A: Mainly research, with future clinical potential.

Q: What data is needed?

A: PDB structures of alpha-synuclein and its mutants.

Q: What does the system output?

A: Aggregation risk (Yes/No), confidence score, and structural visualization.

Q: How fast is the prediction?

A: Around 5–15 seconds per structure.

Q: What does the MVP include?

A: Upload PDB  $\rightarrow$  Feature extraction  $\rightarrow$  SVM prediction  $\rightarrow$  3D result view.

Q: Does it suggest treatments?

A: No, only predictive support.

Q: What challenge does it solve?

A: Detecting misfolding patterns and classifying structural risks efficiently.

# Meeting 2: Technical Design for Parkinson's Prediction System

# **Objectives:**

- 1. Define technical and model requirements.
- 2. Discuss feature engineering, algorithms, and training strategies.
- 3. Clarify deployment and data handling needs.

# **Geotag Photo:**



Q: What ML models fit this use case?

A: SVM for structural classification, Random Forest for feature selection, and CNNs for 3D pattern learning.

Q: What preprocessing is needed?

A: Structure cleaning, feature extraction (e.g., hydrophobicity, RMSD), and scaling.

Q: Should the model be explainable?

A: Yes, using SHAP/LIME to highlight influential structural features.

Q: Is 3D protein visualization required?

A: Yes, using PyMOL or Chimera to visualize alpha-synuclein aggregation zones.

Q: Which backend is preferred?

A: Flask, for a lightweight API and easy integration.

Q: Real-time or batch predictions?

A: Real-time for single PDB input; batch mode for multiple structures.

Q: What is the target accuracy?

A: Minimum 90%, with high precision to ensure structural prediction reliability.

Q: Will the model be built from scratch or fine-tuned?

A: Initially from scratch; later versions may use pre-trained structural models.

Q: What deployment platform is preferred?

A: AWS or Heroku for cloud hosting; GitHub for collaboration and versioning.

Q: Can users upload PDB or sequence files?

A: Yes, with clear file format instructions and data privacy measures.

### Meeting 3: User Experience and Model Interaction for Parkinson's Prediction

### Objectives:

- 1. Finalize how users interact with the system.
- 2. Design feedback, explanation, and error handling flow.
- 3. Improve accessibility for healthcare professionals.

### **Geotag Photo:**



Q: How should prediction results be shown?

A: As "Aggregation Likely" or "Stable Structure", with confidence score and feature explanation.

Q: Should users get post-result suggestions?

A: Yes, like "Review with Structural Biologist" or "Analyze Additional Variants."

Q: Will the system support PDB uploads only, or allow sequence input too?

A: Initially PDB uploads; future versions may support raw sequence input.

Q: How to handle invalid or unsupported files?

A: Show an error message with accepted formats (.pdb) and retry option.

Q: Is the UI designed for accessibility?

A: Yes, with readable fonts, simple layout, and keyboard-friendly design.

- Q: Can users download their results?
- A: Yes, a PDF report with prediction, visual highlights, and key structural features.
- Q: What if model confidence is low?
- A: Return an "Inconclusive" message and suggest manual structural review.
- Q: Will structural data visualization be available?
- A: Yes, with basic charts and interactive 3D model views (e.g., PyMOL snapshots).
- Q: Will language support be limited?
- A: Start with English; other languages can be added later.
- Q: Can users give feedback to improve predictions?
- A: Yes, with consent, user feedback will help retrain and refine the model.

#### Meeting 4: Deployment, Validation, and Final Checklist

### **Objectives:**

- 1. Confirm final deployment plans and hosting platform.
- 2. Discuss testing, security, and release timeline.
- 3. Final QA checks and go-live readiness.

### **Geotag Photo:**



Q: What is the target launch timeline?

A: Within 2 months after testing and model validation.

Q: What types of testing will be done?

A: Unit, functional, and structural prediction accuracy testing using real-world protein data.

Q: How will clinical validation be handled?

A: Using expert-reviewed predictions on anonymized research datasets.

Q: What privacy standards are followed?

A: GDPR-compliant storage, anonymized inputs, and encryption.

Q: Will user documentation be provided?

A: Yes, with a guide and demo video for onboarding.

Q: What happens if the system fails?

A: Auto-restart, failover backup, and crash notifications.

Q: Will the model be updated regularly?

A: Yes, retrained biannually with new structural or clinical data.

Q: Can system usage be monitored?

A: Yes, through an integrated analytics dashboard.

Q: Will users get update notifications?

A: Yes, through email or in-app alerts.

Q: Who handles support after deployment?

A: A dedicated technical team for maintenance and issue resolution.

S Kusumitha - 2320030302 S Prayukthika - 2320030153 P Navya Sree Reddy - 2320030266