# Tracking in a Spaghetti Bowl: Monitoring Transactions Using Footprints

# Anima Anandkumar<sup>1,2</sup> Chatschik Bisdikian<sup>2</sup> Dakshi Agrawal<sup>2</sup>

<sup>1</sup>ECE Dept., Cornell University, Ithaca, NY 14853.

<sup>2</sup>Networking Tech., IBM Watson Research, Hawthorne, NY 10532.

#### **ACM SIGMETRICS 2008**

3 June 2008, Annapolis, MD, USA











#### End-to-End Service Level Transactions



## Goals

- Consider systems in absence of monitoring instrumentation
- Limited information available as footprints

















# Monitoring

 Footprints may not have identifiers or tokens



# Monitoring

- Footprints may not have identifiers or tokens
- Which transaction had the wrong login?



# Monitoring

- Footprints may not have identifiers or tokens
- Which transaction had the wrong login?

# Probabilistic Monitoring Using Footprints Without Tokens

Maximum likelihood rule: best probabilistic guarantee



# Monitoring

- Footprints may not have identifiers or tokens
- Which transaction had the wrong login?

# Probabilistic Monitoring Using Footprints Without Tokens

Maximum likelihood rule: best probabilistic guarantee

#### Maximum Likelihood Rule

Maximize probability that each footprint is matched correctly to the unique transaction that generated it



## Information in Footprint

• State & time stamp, optionally tokens (identifiers)



#### Information in Footprint

- State & time stamp, optionally tokens (identifiers)
- Real-time match: all footprints may not yet have been generated



#### Information in Footprint

- State & time stamp, optionally tokens (identifiers)
- Real-time match: all footprints may not yet have been generated



#### Information in Footprint

- State & time stamp, optionally tokens (identifiers)
- Real-time match: all footprints may not yet have been generated

#### Problem Statement

Given footprints and transaction model, find maximum likelihood match between footprints and transactions



#### Information in Footprint

- State & time stamp, optionally tokens (identifiers)
- Real-time match: all footprints may not yet have been generated

#### Problem Statement

Given footprints and transaction model, find maximum likelihood match between footprints and transactions

#### Questions & Issues

• Complexity of maximum likelihood?



#### Information in Footprint

- State & time stamp, optionally tokens (identifiers)
- Real-time match: all footprints may not yet have been generated

#### Problem Statement

Given footprints and transaction model, find maximum likelihood match between footprints and transactions

#### Questions & Issues

• Complexity of maximum likelihood? Decentralized implementation?



#### Information in Footprint

- State & time stamp, optionally tokens (identifiers)
- Real-time match: all footprints may not yet have been generated

#### Problem Statement

Given footprints and transaction model, find maximum likelihood match between footprints and transactions

- Complexity of maximum likelihood? Decentralized implementation?
- Probabilistic bounds on accuracy?



#### Information in Footprint

- State & time stamp, optionally tokens (identifiers)
- Real-time match: all footprints may not yet have been generated

#### Problem Statement

Given footprints and transaction model, find maximum likelihood match between footprints and transactions

- Complexity of maximum likelihood? Decentralized implementation?
- Probabilistic bounds on accuracy? Effect of transaction model ?



Transaction Model

#### Information in Footprint

- State & time stamp, optionally tokens (identifiers)
- Real-time match: all footprints may not yet have been generated

#### Problem Statement

Given footprints and transaction model, find maximum likelihood match between footprints and transactions

- Complexity of maximum likelihood? Decentralized implementation?
- Probabilistic bounds on accuracy? Effect of transaction model ?



#### Transaction Model

• IID transitions of transactions

#### Information in Footprint

- State & time stamp, optionally tokens (identifiers)
- Real-time match: all footprints may not yet have been generated

#### Problem Statement

Given footprints and transaction model, find maximum likelihood match between footprints and transactions

- Complexity of maximum likelihood? Decentralized implementation?
- Probabilistic bounds on accuracy? Effect of transaction model ?



#### Transaction Model

- IID transitions of transactions
- Acyclic semi-Markov process

#### Information in Footprint

- State & time stamp, optionally tokens (identifiers)
- Real-time match: all footprints may not yet have been generated

#### Problem Statement

Given footprints and transaction model, find maximum likelihood match between footprints and transactions

- Complexity of maximum likelihood? Decentralized implementation?
- Probabilistic bounds on accuracy? Effect of transaction model ?

## Problem Statement

Maximum likelihood match between footprints & transactions

#### **Problem Statement**

Maximum likelihood match between footprints & transactions

Maximum Likelihood for Two-state Systems



#### **Problem Statement**

Maximum likelihood match between footprints & transactions

# Maximum Likelihood for Two-state Systems





Reduction to bipartite minimum weight perfect matching

#### Problem Statement

Maximum likelihood match between footprints & transactions

# Maximum Likelihood for Two-state Systems





- Reduction to bipartite minimum weight perfect matching
- Reduction to FIFO for a class of transition-time pdfs

#### Problem Statement

Maximum likelihood match between footprints & transactions

# Maximum Likelihood for Two-state Systems





- Reduction to bipartite minimum weight perfect matching
- Reduction to FIFO for a class of transition-time pdfs

#### Problem Statement

Maximum likelihood match between footprints & transactions

# Maximum Likelihood for Two-state Systems





- Reduction to bipartite minimum weight perfect matching
- Reduction to FIFO for a class of transition-time pdfs

# Worst Case Analysis of Maximum Likelihood Performance

• Uniform and exponential transition times are worst-case distributions

#### Problem Statement

Maximum likelihood match between footprints & transactions

# Maximum Likelihood for Two-state Systems





- Reduction to bipartite minimum weight perfect matching
- Reduction to FIFO for a class of transition-time pdfs

# Worst Case Analysis of Maximum Likelihood Performance

- Uniform and exponential transition times are worst-case distributions
- Equal to reciprocal of number of unique perfect matchings

#### Maximum Likelihood for Multi-state Systems

• Series of bipartite matchings in high-level two-state systems

- Series of bipartite matchings in high-level two-state systems
- Constructive proof of optimality: Decentralized rules

- Series of bipartite matchings in high-level two-state systems
- Constructive proof of optimality: Decentralized rules

- Series of bipartite matchings in high-level two-state systems
- Constructive proof of optimality: Decentralized rules



- Series of bipartite matchings in high-level two-state systems
- Constructive proof of optimality: Decentralized rules



#### Maximum Likelihood for Multi-state Systems

- Series of bipartite matchings in high-level two-state systems
- Constructive proof of optimality: Decentralized rules



#### Presence of Tokens

For linear model, ML rule is still decentralized bipartite matching

#### **Outline**

- Introduction
- 2 Two-state System
- Multi-state System
- 4 Conclusion























































































Real Time Matching: All Footprints Not Yet Available









Real Time Matching: All Footprints Not Yet Available

Add virtual node: event that transaction is still resident at  $S_0$ 

 $\textbf{Maximum Likelihood} \equiv \textbf{Minimum Weight Perfect Match}$ 

Definition

Definition

Worst Case ML Performance= 
$$\frac{1}{\text{No. of Unique Matches}}$$

#### Definition



#### Definition



#### Definition



#### Definition

 $\mathbf{Y}_1$ 

Minimum probability of correct match over transition time pdfs

ccdf Node



Footprint Node

#### Definition

Minimum probability of correct match over transition time pdfs



No. of Unique Matches

- No. of unique matches =2
- Prob. of correct ML match  $=\frac{1}{2}$

### Worst Case Maximum Likelihood Performance

#### Definition

Minimum probability of correct match over transition time pdfs



No. of Unique Matches

- No. of unique matches =2
- Prob. of correct ML match  $=\frac{1}{2}$

Partial Batch

Exponential = Worst Case

### Worst Case Maximum Likelihood Performance

#### **Definition**

Minimum probability of correct match over transition time pdfs

ccdf Node



Footprint Node

No. of Unique Matches

- No. of unique matches =2
- Prob. of correct ML match =  $\frac{1}{2}$

#### Partial Batch

 $\mathbf{Y}_1$ 

Exponential = Worst Case

### Complete Batch

Uniform, Exponential = Worst Case



FIFO = Match footprint with earliest unmatched transaction



FIFO = Match footprint with earliest unmatched transaction Always valid, Distribution free, Simpler rule than maximum likelihood



FIFO = Match footprint with earliest unmatched transaction Always valid, Distribution free, Simpler rule than maximum likelihood

Can FIFO and maximum likelihood coincide?



FIFO = Match footprint with earliest unmatched transaction Always valid, Distribution free, Simpler rule than maximum likelihood

Can FIFO and maximum likelihood coincide?

Yes: Quadrangle Inequality

$$f_T(t_1)f_T(t_2) > f_T(t_1 - \tau)f_T(t_2 - \tau)$$



### **Outline**

- 1 Introduction
- 2 Two-state System
- Multi-state System
- 4 Conclusion



Transaction Model

Acyclic semi-Markov process

Definition of Semi-Markov Process



### Transaction Model

- Acyclic semi-Markov process
- IID transitions of transactions

Definition of Semi-Markov Process



### Transaction Model

- Acyclic semi-Markov process
- IID transitions of transactions

### Definition of Semi-Markov Process

Sequence of states visited is a Markov chain



### Transaction Model

- Acyclic semi-Markov process
- IID transitions of transactions

### Definition of Semi-Markov Process

- Sequence of states visited is a Markov chain
- 2 Transition time depends only on states involved in transition



### Transaction Model

- Acyclic semi-Markov process
- IID transitions of transactions

### Definition of Semi-Markov Process

- Sequence of states visited is a Markov chain
- 2 Transition time depends only on states involved in transition



### Transaction Model

- Acyclic semi-Markov process
- IID transitions of transactions

#### Definition of Semi-Markov Process

- Sequence of states visited is a Markov chain
- 2 Transition time depends only on states involved in transition

#### Maximum Likelihood Rule

Maximize probability that each footprint is matched correctly to the unique transaction that generated it

$$[\hat{\boldsymbol{\pi}}_1^{\mathsf{ML}}, \dots, \hat{\boldsymbol{\pi}}_{N_s}^{\mathsf{ML}}] := \argmax_{\boldsymbol{\pi}_1, \dots, \boldsymbol{\pi}_{N_s}} \mathbb{P}(\mathbf{Y}_1^{\boldsymbol{\pi}_1}, \dots, \mathbf{Y}_{N_s}^{\boldsymbol{\pi}_{N_s}} | \mathbf{Y}_0).$$



### Transaction Model

- Acyclic semi-Markov process
- IID transitions of transactions

#### Definition of Semi-Markov Process

- Sequence of states visited is a Markov chain
- 2 Transition time depends only on states involved in transition

#### Maximum Likelihood Rule

Maximize probability that each footprint is matched correctly to the unique transaction that generated it

$$[\hat{\boldsymbol{\pi}}_1^{\mathsf{ML}}, \dots, \hat{\boldsymbol{\pi}}_{N_s}^{\mathsf{ML}}] := \argmax_{\boldsymbol{\pi}_1, \dots, \boldsymbol{\pi}_{N_s}} \mathbb{P}(\mathbf{Y}_1^{\boldsymbol{\pi}_1}, \dots, \mathbf{Y}_{N_s}^{\boldsymbol{\pi}_{N_s}} | \mathbf{Y}_0).$$

### Linear Model With Snapshot of Footprints



### Linear Model With Snapshot of Footprints



## Linear Model With Snapshot of Footprints





### Linear Model With Snapshot of Footprints





# Linear Model With Snapshot of Footprints





# Linear Model With Snapshot of Footprints





### Linear Model With Snapshot of Footprints



### Maximum Likelihood in Linear Model



# Linear Model With Snapshot of Footprints



### Maximum Likelihood in Linear Model





# Linear Model With Snapshot of Footprints



### Maximum Likelihood in Linear Model





### Linear Model With Snapshot of Footprints



### Maximum Likelihood in Linear Model





### Linear Model With Snapshot of Footprints



### Maximum Likelihood in Linear Model





### Linear Model With Snapshot of Footprints



### Maximum Likelihood in Linear Model



### Tree Model



ML ≡ Series of Bipartite Matchings

Acyclic Semi Markov Process: Two-Stage Systems

Acyclic Semi Markov Process: Two-Stage Systems



Acyclic Semi Markov Process: Two-Stage Systems



Acyclic Semi Markov Process: Two-Stage Systems



Acyclic Semi Markov Process: Two-Stage Systems



Acyclic Semi Markov Process: Two-Stage Systems



Acyclic Semi Markov Process: Two-Stage Systems



Acyclic Semi Markov Process: Two-Stage Systems



Acyclic Semi Markov Process: Two-Stage Systems



Acyclic Semi Markov Process: Two-Stage Systems



ML Rule ≡ Series of Bipartite Matchings in 2-State Systems

#### Linear Semi Markov Process





#### Linear Semi Markov Process





#### Linear Semi Markov Process





## Linear Semi Markov Process



#### Maximum Likelihood in Presence of Tokens



ML ≡ Series of Bipartite Matchings for Tokenized Linear Model

# **Simulation Results**



ML vs. FIFO for 2-state System

# **Simulation Results**





# **Outline**

- 1 Introduction
- 2 Two-state System
- Multi-state System
- 4 Conclusion

## **Conclusion**

# Summary

- End-to-end monitoring of transactions using footprints
- Optimal maximum likelihood rule for matching footprints to transactions
- Reduction of ML rule to bipartite matching for two-state systems
- Reduction of ML rule to a series of bipartite matching for multi-state systems

#### Outlook

- General transaction models e.g., higher order Markov, petri-nets
- Relaxation of assumptions
  - Perfect knowledge of transaction model
  - Missing footprints, lack of synchronization

#### Related Work

#### Identification of Global System States

- Classical work by Chandy & Lamport (85)
- Do not deal with monitoring individual transaction instances

#### Whitebox/Tokenized Methods (Chen et al. 04, Schmid et al. 07)

- Require industry standards like Open Group ARM instrumentation
- Not applicable if such instrumentation is not available

#### Blackbox Methods (Aguilera et al. 03, Liu et al. 07)

- Do not require token generating instrumentation
- Do not deal with monitoring individual transaction instances

#### Discovery of Transaction Model

• Extensive work in this area (Agrawal, Gunopulos, Leymann 98)

# Related Publication (Sengupta, Banerjee, Anandkumar, Bisdikian NOMS 08)

- Implementation of monitoring system, experimental results on response times
- Bounds on aggregate number of transactions in any state of the model

# Thank You!