ELEMENTÁRNÍ TEORIE KÓDOVÁNÍ [1, 7, 10]

- jedna z nejzajímavějších součástí současné informatiky
- zabývá se jak konstrukcemi kódu, tak studiem jejich vlastností.
- vznik současné teorie kódování je v podstatě datován již od čtyřicátých let 20. století, a to pracemi Shannona, které byly věnovány teorii informace a dále hlavně Hamminga s Golayem, kteří zkonstruovali první lineární kódy.
- praktický boom pak nastal s příchodem "použitelné" výpočetní techniky.
 - počítače běžně pracují s dvojkovou (binární) soustavou
 - nevýhodná pro lidské uvažování neumíme v ní běžně počítat.
 - proto k převodu mezi "lidskými" informacemi a počítači existují převodní pravidla kódy.

Kód je množina symbolů, kterými vyjadřujeme různé stavy systému.

Kód lze libovolně převádět jeden na druhý, aniž by se změnila velikost a množství informace.

ELEMENTÁRNÍ TEORIE KÓDOVÁNÍ

Kódování lze dle účelu rozdělit na několik samostatných částí, které se v praxi mohou dokonce velmi často prolínat:

Minimální kódování (komprese dat)

- Jedná se o způsob kódování, jehož účelem je zmenšit objem dat ve zprávě.
- Bezztrátové představiteli této skupiny jsou komprimační programy (ARJ, ZIP, RAR, aj.)
- Ztrátové reprezentanty jsou většinou nástroje pracující s obrazem nebo zvukem, a z nich vyplývající datové formáty (JPEG, MPG, MP3, aj.).

Bezpečnostní kódování (samoopravné kódy)

- užívá se při přenosu informace reálným přenosovým kanálem -- může dojít k chybám
- smyslem bezpečnostního kódování je detekovat, případně i přímo opravit vzniklou chybu.
- Příkladem může být realizace zabezpečení paketů v síti internet, tzv. CRC kódem

Kryptografické kódování (kryptografie) - šifrování

- Kódování za účelem utajení informace
- Obecně zahrnuje, jak jednoduché postupy známé z rébusů či skautských her, tak opravdu silné algoritmy k jejichž prolomení bychom potřebovaly mnoho času a špičkovou techniku

Kódování

můžeme charakterizovat jako převod jednoho kódu na druhý a to buď pomocí tabulky anebo algoritmu.

Příklad: Význam (vysvětlení) pojmu "kódování" lze ukázat na systému hrací kostky.

Po hodu se může kostka nacházet v jednom ze šesti stavů (poloh). Stav (poloha) kostky se nejčastěji vyjadřuje pomocí množiny tečkových symbolů (kódu):

Pokud chceme zaznamenat výsledek náhodného pokusu

- neuděláme to zápisem tečkových symbolů,
- Zapíšeme pomocí číslic (1,2,3,4,5,6)
- **převedeme** z jedné množiny symbolů do druhé (jeden kód na druhý)

Kódování

Vztah mezi zdrojovými symboly (zdrojovou abecedou), kódem a kódováním nám znázorňuje obrázek (ukázka kódování do třech různých kódů [11]).

Při přenosu informací používáme dvě základní abecedy.

Zdrojová (abeceda zdroje)

konečná množina znaků (symbolů), kterou chceme přenést přes nějaké přenosové zařízení (přenosový kanál) - $A=\{a_1,\ldots,a_N\}$

Přenosová abeceda (abeceda přenosového kanálu)

konečná množina znaků, kterou můžeme přenášet přes nějaké přenosové zařízení

$$Y = \{ y_1, ..., y_R \}$$

Příklad: Přenos zprávy (textu) pomocí binárního kanálu.

Zdrojovou abecedou jsou všechna písmena a znaky české abecedy A={ a,b T,K, 0,2,3,...}

Přenosovou abecedou budou pouze dvě hladiny (úrovně) binárního signálu, například 10 V, 0 V. V praxi vyjadřujeme jako 0 a 1. **Y={ 0, 1 }**

Pod *kódováním* pak rozumíme zobrazení, které každému znaku zdrojové abecedy **a**¡∈**A** přiřadí nějakou skupinu znaků přenosové abecedy **y**¡∈**Y** - **kódové slovo**.

Množina všech kódových slov se pak nazývá kód.

Délka kódu – počet kódových slov daného kódu

Pokud uvažujeme konstantní délku kódového slova **m,** pak maximální délka kódu je dána vztahem:

$$L = R^{m}$$

R – počet prvků přenosové abecedy

- Dále se budeme zabývat pouze dvojkovými (binárními) kódy
 přenosová abeceda má jen dva prvky {0, 1}
- Délka kódu L se bude tedy pohybovat v rozmezí daném nerovností:

$$1 \le L \le 2^m$$

Kombinační možnost vzájemného přiřazení množiny kódových slov a množiny znaků zdrojové abecedy je dána permutací, tj. 2^m!

Říkáme, že kód má 2^m! kódovacích klíčů.

Výskyt jednotlivých znaků zdrojové abecedy = různá pravděpodobnost

- ⇒ pravděpodobnost výskytu kódových slov se liší
- ⇒ rozdílná hodnota kódovacích klíčů

Výhodnější jsou takové kódovací klíče, které přiřazují odolnější kódové slova (kratší) nejčastěji se vyskytujícím znakům zdrojové abecedy.

Je výhodnější nevyužívat maximální délky kódu L, nýbrž počítat (s ohledem na zvýšení bezpečnosti přenosu) pouze s délkou zkrácenou L_z .

$$L_z \leq L$$

Kódování však nemá pouze mechanicky nahrazovat jednu konkrétní abecedu jinou.

Mění-li se při kódování množina použitých symbolů i rozložení pravděpodobností, **mění** se také **entropie** na symbol zprávy.

Hlavním cílem je zajistit nejmenší počet symbolů na dané množství informace.

Důležité je, aby bylo možné ze zakódované zprávy získat zprávu zdrojovou

kódování musí být jednoznačně dekódovatelné.

Kódování je jednoznačně **dekódovatelné** tehdy, jestliže zobrazení, které každému znaku a_i∈A přiřadí nějakou skupinu znaků y_i∈Y je *prostým zobrazením*.

Pojem slovo (kódové slovo) nad danou abecedou se liší od pojmu slova používaného v běžném hovorovém jazyce (slovem rozumíme nejmenší samostatnou jazykovou jednotku mající věcný a mluvnický význam).

Umělým jazykem (stručně jazykem) nazýváme nějakou abecedu spolu s pravděpodobnostními zákony, podle nichž vzniká z dané abecedy zpráva.

Je-li H entropie daného jazyka a H_{max} je maximální entropie při použití téže abecedy pak můžeme definovat redundanci (nadbytečnost) daného jazyka jako:

$$R = 1 - \frac{H}{H_{\text{max}}}$$

Redundance evropských jazyků je větší než 0.5 a podle některých propočtů se pohybuje od 0.68 do 0.75.

Rozdělení kódů

Podle použití se dělí dvojkové kódy

- kódy určené k matematickým operacím,
- kódy určené k přenosu zpráv

Podle struktury na

- kódy nesystematické
- kódy systematické

Podle délky na

- kódy rovnoměrné
- kódy nerovnoměrné

Rovnoměrné kódy

Rovnoměrné kódy jsou takové kódy, u kterých se každému znaku zdrojové abecedy přiřadí stejný počet kódových znaků.

Z toho důvodu mají tyto kódy velkou **výhodu** při dekódování.

Nerozšířenější příklady rovnoměrných kódů jsou:

- telegrafní kód
- ASCII kód

Telegrafní kód – MTA2 [5]

- pětibitová abeceda, používaná zejména v dálnopisném provozu.
- označuje se jako MTA-2 (mezinárodní telegrafní abeceda)
 - kód Baudot.
- každému znaku zdrojové abecedy je přiřazena konkrétní pětice kódových znaků 0 a 1.
- Zdrojová abeceda obsahuje
 - všechna písmena anglické abecedy, číslice 0, 1, ..., 9
 - a některá interpunkční znaménka.
- Vzhledem k tomu, že pětibitový kód není schopen pokrýt veškerou množinu znaků, používají se řídící znaky přepínání registru.
- Abeceda má nulovou redundanci a využívá plně celý prostor kódu.

Jak to vlastně funguje?

Kapacita pětimístného binárního kódu je $2^5 = 32$ kódových slov.

Zdrojová abeceda obsahuje:

- Minimálně 26 písmen anglické abecedy
- 10 cifer
- nějaká interpunkční znaménka

kapacita kódu je nedostačující

Tento problém se řeší tak, že se většina pětic znaků využívá dvakrát.

K jejich rozlišení se používá vyhrazená kódová slova - tzv. změna registru

- Pro písmenovou změnu kódové slovo **11111**
- pro číslicovou změnu kódové slovo 11011.

To umožňuje, abychom mohli zakódovat 2.25-2 = 62 zdrojových znaků.

Tabulka Mezinárodního telegrafní kódu MTA-2

	Písmena	Číslice	Kód		Písmena	Číslice	Kód
1.	A	-	11000	17.	Q	1	11101
2.	В	?	10011	18.	R	4	01010
3.	C	•	01110	19.	S	•	10100
4.	D	kdo tam?	10010	20.	T	5	00001
5.	E	3	10000	21.	U	7	11100
6.	F	66	10110	22.	V	ů	01111
7.	G	~	01011	23.	\mathbf{W}	2	11001
8.	H	,	00101	24.	X	/	10111
9.	I	8	01100	25.	Y	6	10101
10.	J	zvonek	11010	26.	Z	+	10001
11.	K		11110	27.	návrat vozíku		00010
12.	L		01001	28.	posun o řádek		01000
13.	M	•	00111	29.	písmenová		11111
					změna		
14.	N	,	00110	30.	číslicová změna		11011
15.	Ο	9	00011	31.	mezera		00100
16.	P	0	01101	32.	nepoužito		00000

Pomocí tabulky mezinárodního telegrafního kódu MTA-2 zakódujte zprávu "MS DOS 7.0"

	Písmena	Číslice	Kód		Písmena	Číslice	Kód
1.	A	-	11000	17.	Q	1	11101
2.	В	?	10011	18.	R	4	01010
3.	C	:	01110	19.	S	,	10100
4.	D	kdo tam?	10010	20.	T	5	00001
5.	E	3	10000	21.	U	7	11100
6.	F	66	10110	22.	V	ů	01111
7.	G	~	01011	23.	\mathbf{W}	2	11001
8.	H	,	00101	24.	X	/	10111
9.	I	8	01100	25.	Y	6	10101
10.	J	zvonek	11010	26.	Z	+	10001
11.	K		11110	27.	návrat vozíku		00010
12.	L		01001	28.	posun o řádek		01000
13.	M	•	00111	29.	písmenová		11111
					změna		
14.	N	,	00110	30.	číslicová změna		11011
15.	O	9	00011	31.	mezera		00100
16.	P	0	01101	32.	nepoužito		00000

11111	00111	10100	00100	10010	00011	10100	00100	11011	11100	00111	01101
Písmenová změna	M	S	Mezera	D	0	S	Mezera	Číslicová změna	7	•	0

Abecedou zdroje je pět stavů výrobního stroje A={Porucha, Seřízení, Volný, Pracující, Blokovaný}. Zakódujte znaky zdroje (stavy stroje) rovnoměrným kódem.

Musíme najít minimální délku kódového slova, abychom mohli použít pět různých kódových slov.

Kódová slova o délce 2 nám stačit nebudou, protože existují pouze $2^2 = 4$ různé dvojice kódových znaků 0 a 1.

Je tedy třeba použít kódová slova o délce 3. V tomto případě máme k dispozici **2**³ **= 8** kódových slov, ze kterých 5 využijeme pro kódování jednotlivých stavů stroje. Například takto:

Porucha – 101

Seřízení – 010

Volný – 000

Pracující – 111

Blokovaný - 110

ASCII kód (American Standard Code for Information Interchange

- V současné době, době počítačů a počítačových sítí ztrácí dálnopisy význam.
- Telegrafní kód je již dlouho nepostačující současným potřebám přenosu dat.
- V šedesátých letech proto vznikl v USA kód vyvinutý speciálně pro mikropočítače ASCII

Zdrojová abeceda obsahuje kromě písmen anglické abecedy a číslic i znaky používané ve výpočetní technice (malá písmena, algebraické znaky +,—,*,=...).

Každému z 2⁷=128 znaků zdrojové abecedy se přiřadí sedmice kódových znaků 0 a 1.

Zdokonalováním ASCII kódu se vyvinulo mnoho dalších rovnoměrných kódů (např. ISO-7, ISO-8), z ISO-7 se vycházelo při sestavování osmi prvkového kódu ISO-8.

 Osmý paritní bit ISO-7 byl nahrazen významovým bitem umožňujícím vyjádřit malá i velká písmena např. azbuky a v české verzi písmena s háčky a čárkami.

DEC	BIN	ZNAK (Význam)	DEC	BIN	ZNAK (Význam)	DEC	BIN	ZNAK Význam)	DEC	BIN	ZNAK (Význam)	DEC	BIN	ZNAK (Význam)	DEC	BIN	ZNAK (Význam)	DEC	BIN (ZNAK Význam)	DEC	BIN	ZNAK (Význam)
0	00000000	null	32	00100000	mezera	64	01000000	@	96	01100000	•	128	10000000	Ä	160	10100000	†	192	11000000	ņ	224	11100000	ŗ
1	00000001	Start of Header	33	00100001	. !	65	01000001	Α	97	01100001	а	129	10000001	Ā	161	10100001	۰	193	11000001	Ń	225	11100001	Š
2	00000010	Start of Text	34	00100010	"	66	01000010	В	98	01100010	b	130	10000010	ā	162	10100010	Ę	194	11000010	7	226	11100010	,
3	00000011	End of Text	35	00100011	. #	67	01000011	С	99	01100011	С	131	10000011	É	163	10100011	£	195	11000011	√	227	11100011	"
4	00000100	End of Transmission	36	00100100	\$	68	01000100	D	100	01100100	d	132	10000100	Ą	164	10100100	§	196	11000100	ń	228	11100100	š
5	00000101	Enquiry	37	00100101	· %	69	01000101	E	101	01100101	е	133	10000101	Ö	165	10100101	•	197	11000101	Ň	229	11100101	Š
6	00000110	Acknowledge	38	00100110	&	70	01000110	F	102	01100110	f	134	10000110	Ü	166	10100110	q	198	11000110	Δ	230	11100110	Ś
7	00000111	Bell	39	00100111	'	71	01000111	G	103	01100111	g	135	10000111	á	167	10100111	ß	199	11000111	«	231	11100111	À
8	00001000	Backspace	40	00101000	(72	01001000	Н	104	01101000	h	136	10001000	ą	168	10101000	®	200	11001000	»	232	11101000	Ť
9	00001001	Horizontal Tab	41	00101001	.)	73	01001001	ı	105	01101001	i	137	10001001	Č	169	10101001	©	201	11001001	•••	233	11101001	ť
10	00001010	Line feed	42	00101010	*	74	01001010	J	106	01101010	j	138	10001010	ä	170	10101010	14	202	11001010		234	11101010	İ
11	00001011	Vertical Tab	43	00101011	+	75	01001011	K	107	01101011	k	139	10001011	č	171	10101011	ę	203	11001011	ň	235	11101011	Ž
12	00001100	Form Feed	44	00101100	,	76	01001100	L	108	01101100	l	140	10001100	Č	172	10101100		204	11001100	Ö	236	11101100	ž
13	00001101	Carriage return	45	00101101		77	01001101	М	109	01101101	m	141	10001101	ć	173	10101101	≠	205	11001101	Õ	237	11101101	Ū
14	00001110	Shift Out	46	00101110	•	78	01001110	N	110	01101110	n	142	10001110		174	10101110	ģ	206	11001110	ő	238	11101110	0
15	00001111	Shift In	47	00101111	- /	79	01001111	0	111	01101111	0	143	10001111		175	10101111	Į	207	11001111	0	239	11101111	Ö
16	00010000	Data Link Escape	48	00110000	0	80	01010000	Р	112	01110000	р	144	10010000	Ź	176	10110000	<u>į</u>	208	11010000	-	240	11110000	ū
17	00010001	Device control 1	49	00110001	_	81	01010001	Q	113	01110001	q	145	10010001	Ď	177	10110001	Ī	209	11010001	_	241	11110001	Ů
18	00010010	Device control 2	50	00110010	2	82	01010010	R	114	01110010	r	146	10010010	Í	178	10110010	≤	210	11010010	"	242	11110010	Ů
19	00010011	Device control3	51	00110011	3	83	01010011	S	115	01110011	S	147	10010011	ď	179	10110011	≥	211	11010011	"	243	11110011	ů
20	00010100	Device control4	52	00110100	4	84	01010100	Т	116	01110100	t	148	10010100	Ē	180	10110100	ī	212	11010100	6	244	11110100	Ű
21	00010101	Negative Acknowledge	53	00110101	5	85	01010101	U	117	01110101	u	149	10010101	ē	181	10110101	Ķ	213	11010101	,	245	11110101	ű
22	00010110	Synchronous Idle	54	00110110	6	86	01010110	V	118	01110110	V	150	10010110	Ė	182	10110110	9	214	11010110	÷	246	11110110	Ų
23	00010111	End of Transmission Block	55	00110111	. 7	87	01010111	w	119	01110111	w	151	10010111	ó	183	10110111	Σ	215	11010111	◊	247	11110111	ų
24	00011000	Cancel	56	00111000	8	88	01011000	X	120	01111000	X	152	10011000	ė	184	10111000	ł	216	11011000	ō	248	11111000	Ý
25	00011001	End of Medium	57	00111001	9	89	01011001	Υ	121	01111001	у	153	10011001	ô	185	10111001	Ļ	217	11011001	Ŕ	249	11111001	ý
26	00011010	Substitute	58	00111010	:	90	01011010	Z	122	01111010	Z	154	10011010	ö	186	10111010	ļ	218	11011010	ŕ	250	11111010	ķ
27	00011011	Escape	59	00111011	;	91	01011011	[123	01111011	{	155	10011011	õ	187	10111011	Ľ	219	11011011	Ř	251	11111011	Ż
28	00011100	File Separator	60	00111100	<	92	01011100	\	124	01111100		156	10011100	ú	188	10111100	ľ	220	11011100	(252	11111100	Ł
29	00011101	Group Separator	61	00111101	. =	93	01011101]	125	01111101	}	157	10011101	Ě	189	10111101	Ĺ	221	11011101	>	253	11111101	ż
30	00011110	Record Separator	62	00111110	>	94	01011110	٨	126	01111110	~	158	10011110	ě	190	10111110	ĺ	222	11011110	ř	254	11111110	Ģ
31	00011111	Unit Separator	63	00111111	. ?	95	01011111	_	127	01111111	•	159	10011111	ü	191	10111111	Ņ	223	11011111	Ŗ	255	11111111	į.

Příklad:

Pomocí tabulky ASCII kódu zakódujte zprávu "FAI – Zlín 2006"

F	A	I	
01000110	01000001	01001001	
Z	l	Í	n
01011010	01101100	10010010	01101110
2	0	0	6
00110010	00110000	00110000	00110110

Nerovnoměrné kódy

Nerovnoměrné kódy jsou takové kódy, kdy se jednotlivým znakům zdrojové abecedy přiřazují kódová slova, která mají **různý počet znaků**.

Nejznámějším a nejrozšířenějším Morseův kód - Morseova abeceda [8, 7].

- k písmenovým symbolům (zdrojová abeceda) přiřazeny elektrické impulsy dvou délek prezentovány znaky .(tečka) a (čárka).
- Vedle elektrického signálu lze použít i akustický (píšťalka,..), optický (světlo, praporky..) atd.
- Charakteristickou vlastností tohoto kódu je, že zohledňuje pravděpodobnostní strukturu zdrojové abecedy.
- To znamená, že znakům s vyšší frekvencí výskytu je přiřazeno kratší kódové slovo a naopak znakům s nižší frekvencí výskytu delší kódové slovo.
- Rychlost komunikace se pohybuje od 60 do 250 znaků za minutu

Morseův kód - Morseova abeceda

Přestože se kód prezentuje v podobě teček a čárek **není binární**

Jedná se o *ternárni kód*

- krátký impuls (tečka)
- dlouhý impuls (čárka)
- mezera ve vysílání jakoby "neslyšíme", ale je nezbytně nutný ke správnému dekódování kódu
- Kódovou abecedou je tedy: y= {krátký impuls, dlouhý impuls, mezera}

Obecně v tomto kódu nebyla stanovena maximální délka slova nebo dokonce počet jednotlivých prvků v kódovém slově.

Pro kvalitní a bezchybný příjem zpráv je třeba dodržet pravidla vysílání:

- 1. Určující jednotkou času je délka tečky
- 2. Jedna čárka trvá stejně jako tři tečky
- 3. Pauza v rámci jednoho znaku má stejnou délku jako jedna tečka
- 4. Pauza mezi jednotlivými znaky má stejnou délku jako jedna čárka

Morseův kód – Morseova abeceda

Pro kvalitní a bezchybný příjem zpráv je třeba dodržet pravidla vysílání:

- 1. Určující jednotkou času je délka tečky
- 2. Jedna čárka trvá stejně jako tři tečky
- 3. Pauza v rámci jednoho znaku má stejnou délku jako jedna tečka
- 4. Pauza mezi jednotlivými znaky má stejnou délku jako jedna čárka

Kódovou abecedou může tedy být: $y = \{y_1, y_2, y_3\}$

kde:

y₁ – impuls o délce 1 časové jednotky + mezera (pausa) o délce 1 časové jednotky

y₂ – impuls o délce 3 časových jednotek + mezera (pausa) o délce 1 časové jednotky

y₃ – mezera (pausa) o délce 3 časových jednotek

TABULKA MORSEOVY ABECEDY

Písmena	Kód	Písmena	Kód	Písmena	Kód	Písmena	Kód
A	• -	K	- , -	U	• • =	5	••••
В		L		V	• • • =	6	
C		M		W		7	
D		N		X		8	
E	•	0		Y	-,	9	
\mathbf{F}		P		Z		0	
G		Q	,-	1		pozor	
Н	• • • •	R		2		nerozumím	• • • • • • •
I	• •	S	• • •	3	• • •	konec	
J		T	-	4	• • • •	rozumím	,-

Pomocí tabulky Morseové abecedy zakódujte zprávu "AHOJ LIDI"

- Do Morseovy abecedy
- Do kódové abecedy

Řešení:

Α	н	0	J		L	I	D	I
• -	• • • •					• •		• •
$y_1 y_2 y_3$	$y_1 y_1 y_1 y_1 y_3$	$y_2 y_2 y_2 y_3$	$y_1 y_2 y_2 y_2 y_3$	y_3y_3	$y_1 y_2 y_1 y_1 y_3$	$y_1y_1y_3$	$y_2y_1y_1y_3$	$y_1y_1y_3$

ZDE JE MOŽNO SI VYZKOUŠET MORSEOVU ABECEDU

Konstrukce nerovnoměrných kódů

Ke konstrukci nerovnoměrných kódů se využívají grafy.

• V teorii grafů se takovýto graf nazývá strom.

Strom obsahuje *uzly* a z každého uzlu stromu vycházejí dvě *hrany*.

Posloupnost za sebou následujících hran se nazývá *cesta*.

Po dohodě, že při pohybu po stromě od jednoho uzlu k druhému přiřadíme:

- směrem doprava 1
- směrem doleva 0

každé cestě začínající v kořeni stromu odpovídá nějaké kódové slovo a každému kódovému slovu je jednoznačně přiřazena nějaká cesta začínající v kořeni stromu.

Platí:

Přiřadíme-li zdrojovému znaku a_i nějakou cestu začínající v kořeni stromu, pak žádné jiné zdrojové slovo $a_i \neq a_i$ nemůže mít přiřazenou cestu, která by obsahovala celou cestu přiřazenou znaku a_i .

Toto pravidlo se označuje jako *vlastnost předpony - P* (*prefix property*) a takovéto kódy se nazývají *P-kódy*.

Tyto kódy jsou jednoznačně dekódovatelné!

Jejich dekódování spočívá v postupném ověřování patří-li přijaté kódové slovo (nebo jeho část) do kódu, nebo ne.

Dekódovatelnost prefixových kódů [1]

Při konstrukci prefixových kódů stačí znát délky kódových slov, které chceme použít. Pomocí známých délek lze snadno sestavit prefixový kód.

Délky určuje tzv. Kraftova nerovnost

Uvažujme, že při binárním kódování použijeme pro zdrojové znaky $\{a_1, a_2,...,a_N\}$ kódová slova s délkami $\{d_1, d_2,...,d_N\}$.

Prefixový kód lze sestavit právě tehdy když platí Kraftova nerovnost:

$$2^{-d_1} + 2^{-d_2} \cdots 2^{-d_n} \le 1$$

$$\sum_{i=1}^{N} 2^{-d_i} \le 1$$

Mc Millan (1956) dokázal, že pro každý jednoznačně dekódovatelný kód platí Kraftova nerovnost – McMillanova věta

Sestrojte prefixový kód pro zdrojovou abecedu, která obsahuje 7 písmen, jsou-li dány délky jednotlivých kódových slov takto: 2, 2, 3, 3, 4, 5, 5.

Řešení:

1) Zjistíme, zda lze takový jednoznačně dekódovatelný kód sestrojit.

Využijeme Mc Millanovu větu resp. Kraftovu nerovnost.

Dostáváme tedy:

$$\sum_{i=1}^N 2^{-d_i} \le 1$$

$$2^{-2} + 2^{-2} + 2^{-3} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-5} \le 1$$

$$0.25 + 0.25 + 0.125 + 0.125 + 0.125 + 0.0625 + 0.03125 + 0.03125 \le 1$$

$$0.875 \le 1$$

Sestrojte prefixový kód pro zdrojovou abecedu, která obsahuje 7 písmen, jsou-li dány délky jednotlivých kódových slov takto: 2, 2, 3, 3, 4, 5, 5.

Řešení:

- 2) Kód sestrojíme pomocí binárního stromu tak, že obsadíme libovolně:
 - 2 uzly na 2. úrovni
 - 2 uzly na 3. úrovni
 - 1 uzel na 4. úrovni
 - 2 uzly na 5. úrovni
 - sestrojíme kódová slova, která budou tvořit jednoznačně dekódovatelný kód

Sestrojení jednoho z možných kódů pomocí binárního stromu

Výsledný kód je { 00, 01, 100, 101, 1111, 11010, 11011 }.

Doposud jsme uvažovali pouze sestavení jednoznačně dekódovatelného kódu dle známých délek kódových slov.

Neuvažovali jsme frekvenci výskytu zdrojových znaků

Cíl:

- častějším zdrojovým znakům přiřadit kratší kódová slova a naopak
- Najít nejkratší kód (prefixový kód jehož průměrná délka kódového slova bude co možná nejkratší)

Uvažujme zdrojovou abecedu $A=\{a_1,a_2,...,a_N\}$. Označme pravděpodobnosti výskytu jednotlivých zdrojových znaků $\{p_1, p_2,...,p_N\}$ a délky odpovídajících kódových slov $\{d_1, d_2,...,d_N\}$.

Z teorie pravděpodobnosti pak vyplývá, že **průměrná (střední) délka kódového slova** je dána ve tvaru:

$$\overline{d} = d_1 \cdot p_1 + d_1 \cdot p_1 + \dots + d_1 \cdot p_1 = \sum_{i=1}^{N} d_i \cdot p_i$$

Uvažujme kód sestavený dle předchozího příkladu a pravděpodobnosti jednotlivých zdrojových znaků včetně přiřazení k jednotlivým kódovým slovům dle uvedené tabulky. Vypočítejte kolik kódových znaků musíme vyslat, chceme-li poslat zprávu obsahující 1000 zdrojových znaků.

Zdrojový znak	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆	a ₇
Pravděpodobnost výskytu	0.25	0.05	0.2	0.15	0.05	0.1	0.2
Kódové slovo	00	01	100	101	1111	11010	11011
Délka kódového slovo	2	2	3	3	4	5	5

$$\overline{d} = \sum_{i=1}^{N} d_i \cdot p_i = (2 \cdot 0.25 + 2 \cdot 0.05 + 3 \cdot 0.2 + 3 \cdot 0.15 + 4 \cdot 0.05 + 5 \cdot 0.1 + 5 \cdot 0.2 = 3.35$$

- na jeden zdrojový znak připadne 3.35 kódového znaku
 - průměrná délka kódového slova.

Při vysílání 1000 zdrojových znaků musíme vyslat 3350 kódových znaků.

Uvažujme stejný příklad jako předchozí. Přiřaďme tentokrát krátká kódová slova častějším zdrojovým znakům. Vypočítejte kolik kódových znaků musíme vyslat, chceme-li poslat zprávu obsahující 1000 zdrojových znaků.

Zdrojový znak	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆	a ₇
Pravděpodobnost výskytu	0.25	0.05	0.2	0.15	0.05	0.1	0.2
Kódové slovo	00	11011	01	100	11010	1111	101
Délka kódového slovo	2	5	2	3	5	4	3

$$\overline{d} = \sum_{i=1}^{N} d_i \cdot p_i = (2 \cdot 0.25 + 5 \cdot 0.05 + 2 \cdot 0.2 + 3 \cdot 0.15 + 5 \cdot 0.05 + 4 \cdot 0.1 + 3 \cdot 0.2 = 2.85$$

- na jeden zdrojový znak připadne 2.85 kódového znaku
 - průměrná délka kódového slova.

Při vysílání 1000 zdrojových znaků musíme vyslat 2850 kódových znaků.

EFEKTIVNÍ KÓDY

U běžného kódování známe pravděpodobnosti výskytu znaku \mathbf{a}_i zdrojové abecedy $\mathbf{P}(\mathbf{a}_i) = \mathbf{p}_i$ ale neznáme délky kódových slov \mathbf{d}_i .

Musíme proto hledat délky kódových slov tak, aby průměrný počet kódových znaků připadajících na jeden zdrojový znak byl minimální.

• takové kódy nazýváme *EFEKTIVNÍ nebo MINIMÁLNÍ*.

V minulosti se objevilo mnoho algoritmů pro nalezení vhodné délky kódových slov, tak aby kód byl jednoznačně dekódovatelný a co možná nejkratší – co nejmenší průměrná délka kódového slova.

Prvotní myšlenka – algoritmus:

• Pro nezávislé vysílání znaků zdrojové abecedy $A=\{a_1, a_2, ..., a_N\}$ s pravděpodobností jednotlivých znaků $P(a_i)=p_i, i=1,...,N$, volíme délku kódového slova d_i tak, že platí:

$$2^{-d_i} \le p_i < 2^{-d_i+1}$$

Zjistěte délku kódových slov pro znaky zdrojové abecedy s pravděpodobnostmi dle předchozího příkladu. Tzn. Zdrojová abeceda má 7 znaků s pravděpodobnostmi výskytu **0.25, 0.05, 0.2, 0.15, 0.05, 0.1, 0.2.**

Dle předchozího pravidla musí platit:

$$2^{-2} \le 0.25 < 2^{-1}$$
 $2^{-5} \le 0.05 < 2^{-4}$ $2^{-3} \le 0.2 < 2^{-2}$ $2^{-3} \le 0.15 < 2^{-2}$ $2^{-5} \le 0.05 < 2^{-4}$ $2^{-4} \le 0.1 < 2^{-3}$ $2^{-3} \le 0.2 < 2^{-2}$

Délky kódových slov jsou: 2, 3, 3, 3, 4, 5, 5.

$$\overline{d} = \sum_{i=1}^{N} d_i \cdot p_i = (2 \cdot 0.25 + 5 \cdot 0.05 + 3 \cdot 0.2 + 3 \cdot 0.15 + 5 \cdot 0.05 + 4 \cdot 0.1 + 3 \cdot 0.2 = 3.05$$

⇒ tento algoritmus není optimální (hledá pouze jednoznačně dekódovatelný kód)

Zjistěte délku kódových slov pro znaky zdrojové abecedy, která má 7 znaků s pravděpodobnostmi výskytu **0.22, 0.2, 0.16, 0.16, 0.1, 0.1, 0.04, 0.02.** Výsledný kód sestrojte pomocí binárního stromu.

Dle předchozího pravidla musí platit:

$$2^{-3} \le 0.22 < 2^{-2}$$
 $2^{-3} \le 0.2 < 2^{-2}$ $2^{-3} \le 0.16 < 2^{-2}$ $2^{-3} \le 0.16 < 2^{-2}$ $2^{-4} \le 0.1 < 2^{-3}$ $2^{-4} \le 0.1 < 2^{-3}$ $2^{-5} \le 0.04 < 2^{-4}$ $2^{-6} \le 0.02 < 2^{-5}$

Délky kódových slov jsou: 3, 3, 3, 3, 4, 4, 5, 6.

Konstrukce kódu je stejná jako u nerovnoměrných kódů – použijeme binární strom (viz následující snímek)

$$\overline{d} = \sum_{i=1}^{\infty} d_i \cdot p_i =$$

 $= (3 \cdot 0.22 + 3 \cdot 0.2 + 3 \cdot 0.16 + 3 \cdot 0.16 + 4 \cdot 0.1 + 4 \cdot 0.1 + 5 \cdot 0.04 + 6 \cdot 0.02) = 3.34$

Je zřejmé, že použitý algoritmus nevede ke konstrukci efektivního kódu

• ve stromě se nacházejí neobsazené volné uzly

Abychom mohli porovnat jednotlivé návrhy kódů z hlediska úspornosti, byly zavedeny tyto proměnné:

Průměrná délka kódového slova: $\overline{d} = \sum_{i=1}^{n} d_i \cdot p_i$

Efektivnost kódu:
$$\eta = \frac{H}{\overline{d}} \cdot 100\% = \frac{\sum_{i=1}^{N} p_i \cdot log_2 p_i}{\sum_{i=1}^{N} d_i \cdot p_i} \cdot 100\%$$

Pro předcházející příklad:

Průměrná délka kódového slova:

$$\overline{d} = \sum_{i=1}^{N} d_i \cdot p_i = (3 \cdot 0.22 + 3 \cdot 0.2 + 3 \cdot 0.16 + 3 \cdot 0.16 + 4 \cdot 0.1 + 4 \cdot 0.1 + 5 \cdot 0.04 + 6 \cdot 0.02) = 3.34$$

Efektivnost kódu
$$\eta = \frac{H}{\overline{d}} \cdot 100\% = \frac{2.754}{3.34} \cdot 100\% = 82.5\%$$

Shannon-Fanova metoda návrhu efektivního kódu [2]

- Shannon-Fanovo kódování je technika pro sestavení prefixového kódu založená na seznamu symbolů a počtech jejich výskytů (případně pravděpodobnostech).
- Metodu nezávisle na sobě publikovali v roce 1949 Claude Elwood Shannon s Warrenem Weaverem a Robert Mario Fano.
- Shannon-Fanův algoritmus lze využít i pro kompresi dat
- Je to metoda
 - statistická,
 - dvouprůchodová,
 - semiadaptivní
 - asymetrická.
- Narozdíl od Huffmanova kódování není optimalita výsledného kódu zaručena.
- Ke konstrukci je třeba použít určitý postup **algoritmus** (viz následující snímek)

Shannonova-Fanova metoda - algoritmus

- 1. Zdrojové znaky se uspořádají postupně podle pravděpodobnosti p_i v klesajícím pořadí.
- 2. Zdrojové znaky se rozdělí na dvě podskupiny tak, aby součet pravděpodobností v obou skupinách byl přibližně stejný.
- 3. První skupině se přiřadí kódový znak **1** a druhé znak **0**.
- 4. Každou podskupinu opět rozdělíme na dvě podskupiny s přibližně stejným součtem pravděpodobností.
- 5. Prvním podskupinám se přiřadí znak **1** a druhým **0**. Tak získáme druhý kódový znak.
- 6. V dělení na skupiny pokračujeme dokud v každé podskupině nezůstane pouze jeden zdrojový znak.

Příklad:

Zjistěte délku kódových slov pomocí Shannonovy – Fanovy metody na základě předcházejícího zadání.

a)	znaky	P(ai)			I		I		1	ı	
	a 5	0,28		1	0,22	1					11
	a2	0,20	0,58	1	0,36	0	0,20	1			101
	a8	0,02		1	0,30	0	0,16	0			100
	a 4	0,06	0,42	0	0,26	1	0,16	1			011
	a5	0,16		0		1	0,10	0			010
	a €	0,22		0		0	0,10	1			001
	a7	0, 00		0	0,16	0	0,06	0	0,04	1	0001
	a6	0,22		0		0	0,00	0	0,02	0	0000

$$d = 2, 3, 3, 3, 3, 3, 4, 4$$

$$\overline{d} = 2.84$$

$$\overline{d} = 2.84 \quad \eta = 96.97 \%$$

b)

znaky	P(ai)							1			ı
a 5	0,28		1	0,22	1						11
a2	0,20	0,42	1	0,20	0						10
a8	0,02	0,58	0	_	1	0,16	1				011
a 4	0,06		0	0,32	1	0,16	0				010
a5	0,16		0		0	0,10	1	_			001
a 6	0,22		0	0,26	0	0,16	0	0,10	1		0001
a7	0,00		0		0		0		0	0,041	00001
a6	0,22		0		0		0		0	0,020	00000

$$d = 2, 2, 3, 3, 3, 4, 5, 5$$

$$\overline{d} = 2.8$$

$$\overline{d} = 2.8 \quad \eta = 98.36 \%$$

Shannonova-Fanova - zhodnocení

- Na řešení má vliv **subjektivní** rozhodnutí řešitele.
- Tato metoda tedy nedává jednoznačný výsledek, ani z hlediska délky kódových slov, ani z hlediska efektivnosti.
- Pokud lze soubor pravděpodobností rozdělit dvojím způsobem volíme rozdělení tak abychom dostali dvě skupiny s **rozdílnějším** počtem členů
 - Toto vede k efektivnímu řešení

Huffmanova metoda návrhu efektivního kódu [1, 2, 7]

- Tato matematická metoda konstrukce minimálního kódu je složitější než předchozí metoda, vede ale vždy ke kódu s maximální efektivnosti.
- David Huffman objevil algoritmus v roce 1952. (Chtěl se vyhnout zkoušce tak se snažil vyřešit problém zadaný učitelem.)
- **Hoffmanův algoritmus kódování** je jedním z klasických algoritmů užívaných pro bezeztrátovou kompresi dat (bezeztrátové komprese PKZIP, BZIP2, PBZIP2 aj., v jistém kroku jinak ztrátové komprese JPEG, MP3).
- Prakticky existují dva typy Huffmanova kódování
 - Kódování statické
 - Kódování adaptivní (dynamické).
- Dále se budeme věnovat statické variantě, stěžejní myšlenka se nejdříve objevila v Shannon-Fanově kódu
- Ke konstrukci je třeba použít určitý postup algoritmus (viz následující snímek)

Huffmanova metoda - algoritmus

- Zdrojové znaky se uspořádají postupně podle pravděpodobnosti p; v klesajícím pořadí.
- 2. Sečteme poslední dvě pravděpodobnosti a výsledek zařadíme podle velikosti mezi ostatní pravděpodobnosti *redukce*.
- 3. Znovu sečteme dvě poslední pravděpodobnosti a výsledek opět zařadíme podle velikosti.
- 4. Sečítání pravděpodobností provádíme tak dlouho, až dojdeme k součtu 1.
- 5. Posledním dvěma znakům přiřadíme kódové znaky **0** a **1**.
- 6. Zpětným postupem přiřazujeme jednotlivým sčítancům vždy kódové znaky **0** a **1**, dokud nepřiřadíme kódové znaky všem zdrojovým znakům.

Příklad:

Zjistěte délku kódových slov pomocí Huffmanovy metody na základě předcházejícího zadání.

Výsledný kód: {10, 11, 000, 001, 011, 0100, 01010, 01011}

$$d = 2, 2, 3, 3, 3, 4, 5, 5$$
 $\overline{d} = 2.8$ $\eta = 98.36 \%$

Huffmanova metoda - zhodnocení

Podrobnější úvahou je možné zjistit, že ani Huffmanova konstrukce není jednoznačná.

Pokud má více znaků stejnou pravděpodobnost, je řešení ovlivněno tím, kam se zařadí součty pravděpodobností (redukované znaky).

- jiné zařazení nemá vliv na efektivitu výsledného kódu
- ovlivní pouze pozici jedniček a nul v kódovém slově

Příklad: (typický zkouškový)

Navrhněte kód pro zdrojovou abecedu, která obsahuje 7 symbolů a pravděpodobnosti výskytu prvních šesti symbolů jsou dány takto:

0,4 0,2 0,05 0,1 0,15 0,04 ??.

Použijte metodu Shannon–Fanovu i metodu Huffmanovu. Určete průměrnou délku kódového slova a efektivnost pro navržený kód. Sestrojte binární strom navrženého kódu.