CSE3241: Operating System and System Programming

Class-13

Sangeeta Biswas, Ph.D.

Assistant Professor
Dept. of Computer Science and Engineering (CSE)
Faculty of Engineering
University of Rajshahi (RU)
Rajshahi-6205, Bangladesh

E-mail: sangeeta.cse@ru.ac.bd / sangeeta.cse.ru@gmail.com

November 20, 2017

What is Deadlock?

■ Deadlock is the situation when a process cannot come back to ready state from its waiting stack

CSE, RU 2/8

Resource Allocation Graph

Notations:

- ▶ *P*: a set of processes in memory.
- ▶ R: a set of resources (e.g., regular file, pipe, device files).
- ▶ P: directed edge indicates that P_i has requested for R_i .

CSE, RU 3/8

Resource Allocation Graph with Deadlock

A cycle must need to be exist in a deadlock graph:

$$P_1 - - > R_1 - - > P_2 - - > R_3 - - > P_3 - - > P_2 - - > P_1$$

 $P_2 --> R_3 --> P_3 --> R_2 --> P_2$

Resource Allocation Graph without Deadlock

■ A cycle does not ensure deadlock situation:

$$P_1 - - > R_1 - - > P_3 - - > R_2 - - > P_1$$

Methods of Handling Deadlock

- Deadlock can be handled by one of three ways:
 - Prevent or Avoid: Take precautions.
 - ▶ Detect and Recover: Let system to enter deadlocked state and then take action.

▶ **Pretend**: Pretend deadlock will never happen.

CSE, RU 6/8

State of System

- A cycle does not ensure deadlock situation:
 - Safe State: OS can allocate resources to each process in some order and still avoid a deadlock.
 - Unsafe State: Opposite of safe state. Not All unsafe states are deadlocks.

CSE, RU 7/8

References

CSE, RU 8/8