Определение энергии альфа-частиц по величине их пробега в воздухе

Шмаков Владимир — ФФКЭ - Б04-105

Цель работы

- Измерить пробег α -частиц двумя способами при помощи сцинтилляционного счетчика и при помощи ионизационной камеры.
- По полученным величинам пробега оценить энергию lpha-частиц

Теоретические сведения

При прохождении в веществе α -частицы теряют свою энергию в результате неупругих столкновений с атомами вещества. Эти потери вызывают ионизацию атомов вещества, поэтому такие потери называются ионизационными потерями.

Нильс Бор вывел формулу, описывающую потери энергии в результате взаимодействия частицы с электронами:

$$\left(\frac{dE}{dx}\right)_{uou} = 4\pi \frac{e^4 z^2}{mv^2} nZ \ln \frac{y_{max}}{y_{min}} \tag{1}$$

Формула (1) выражает потери энергии на единице пути в результате взаимодействия с электронами на любых возможных прицельных расстояниях (лежащих в диапазоне от y_{min} до y_{max}). Прицельное расстояние — расстояние между частицей и свободным электроном.

Средний ионизационный потенциал \bar{I} — минимально возможное значение потерянной энергии частицы. Выражение (1) может быть переписано с использованием величины \bar{I} :

$$\left(\frac{dE}{dx}\right)_{\text{HOH}} = 4\pi \frac{e^4 z^2}{mv^2} nZ \ln \frac{2mv^2}{\bar{I}} \tag{2}$$

Величину dE/dx называют *тормозной способностью вещества*. Зависимость dE/dx от пути, пройденной частицей в веществе, описывается кривой Брэгга(смотрите рисунок 1).

Рисунок 1. **Кривая Брэгга** — зависимость тормозной способности от пройденного частицей пути

Зная зависимость тормозной способности от пути, несложно найти *пробег частицы* — путь при прохождении которого энергия частицы станет равной нулю (смотрите формулу 3).

$$R \propto E^2 \tag{3}$$

Формула описывающая зависимость пробега частицы от начальной энергии. Выведена при предположении что частица взаимодействует только с электронами

При обработке экспериментальных данных часто пользуются эмпирическим соотношением (4), связывающем энергию и пробег частицы:

$$R = 0.32E^{3/2} \tag{4}$$

Связь энергии частицы с её пробегом. R(при $15^{\circ}C$ и нормальном атмосферном давлении).

Методика

Сцинтилляционный счетчик

Описание счетчика представлено на рисунке 2:

Рисунок 2. Принцип работы сцинтилляционного счетчика.

Ионизационная камера

Принцип работы ионизационной камеры представлен на рисунке (3):

Рисунок 3. Принцип работы ионизационной камеры.

Обработка результатов эксперимента

Ионизационный счетчик

Данные полученные в ходе эксперимента представлены на рисунке (4):

Рисунок 4. Экспериментальные данные.

Интерполируем данные функцией вида:

$$f(P) = egin{cases} aP, & P < P_0 \ c, & P \geq P_0 \end{cases}$$

Такая интерполяция поможет отделить линейную часть зависимости от зависимости вида f(P) = C. Результат интерполяции представлен на рисунке (5):

Рисунок 5. Интерполяция экспериментальных данных — нахождение P_0 .

Теперь, посчитаем длину свободного пробега R:

$$R = rac{(15 + 273) \cdot P0 \cdot 4.75}{T \cdot 760} \sim 2.1 \pm 0.1$$
 см

По формуле (4) оценим энергию α -частицы:

$$E \sim \left(rac{R}{0.32}
ight)^{2/3} \sim 3.5 \pm 0.15$$
 Мэ B

Сцинтилляционный счетчик

Экспериментальные данные представлены на рисунке 6:

Рисунок 5. Данные полученные в ходе эксперимента

Можно заметить, что график похож на <<функцию нормального распределения наоборот>>. С такой функцией распределения мы знакомились на электронике — она носит название функции Ферми-Дирака. Эта функция задаёт числа заполнения квантовых состояний в системе тождественных фермионов(одно квантовое состояние не может быть занято более чем одной частицей).

Методом наименьших квадратов приблизим экспериментальные данные функцией распределения Ферми-Дирака. Для нормировки введём параметры A и B:

$$\hat{N}(P) = rac{A}{\exp((P-d)/c) + 1} + B$$

Функция используемая для приближения экспериментальных данных.

Рисунок 6. Приближение экспериментальных данных функцией распределения Ферми-Дирака. Слева изображены экспериментальные

Найдя нормировочные константы и параметры распределения оценим <<среднее значение>> давления, и эффективное значение давления. Аналогично предыдущему пункту вычислим пробег α частиц:

$$R_{cp} = 1.21 \pm 0.06$$
 см $R_{
m 9} = 2.15 \pm 0.08$ см

По формуле (4) пересчитаем полученные значения в энергию:

$$E_{cp}=2.4\pm0.1\,$$
 Мэ $B-E_{
m 9}$ $E_{
m 9}$

Вывод

Используя две установки удалось оценить величину пробега α частиц и их энергию. Для $^{239}{\rm Pu}$ табличное значение энергии α частиц составляет $\sim 5.1 M$ эB. Таким образом, результаты обоих экспериментов не совпали с табличным значением. Расхождение составило около 25%.

Столь большое расхождение может быть связано как с неидеальностью теоретической модели, так и с неправильно введёнными параметрами установок.

Если параметры установки учтены правильно, то эмпирическая константа в формуле (4) должна оказаться равной 0.187 (уменьшиться вдвое).

При обработке экспериментальных данных была замечена <<связь>> между функцией распределения Ферми-Дирака и зависимостью счета от давления(смотрите рисунок 6). Теоретических обоснований такой <<связи>> найдено не было.