Homework Nr.1

Philipp Stassen

September 25, 2018

Remark. In this solution proposals a ring is always meant to be a commutative ring with 1.

7.1

Exercise 26

Let K be a field and $\nu: K^{\times} \to \mathbb{Z}$ be a discrete valuation on K. Let $R = \{x \in K^{\times} | v(x) \geq 0\}.$

a) <u>Claim:</u> R is a subring of K which contains the identity.

Proof. It suffices to show that R is closed under addition, multiplikation and additive inverses as well as that it contains 0 and 1. Properties as commutativity of + and \cdot , associativity or distributivity are all valid as $R \subset K$ and K is a field.

1. R is closed under addition: Let $x,y \in R$. Case 1: $x+y \neq 0$. Then $\nu(x) \geq 0$ and $\nu(y) \geq 0$. Hence, $\nu(x+y) \geq \min\{\nu(x),\nu(y)\} \geq 0$. Therefore, $x+y \in R$.

Case 2: x + y = 0. This is trivial as $0 \in R$.

- 2. R is closed unter multiplikation: Let $x,y\in R$ then $\nu(x)\geq 0$ and $\nu(y)\geq 0$. We have that $\nu(xy)=\nu(x)+\nu(y)\geq 0$. Therefore, $xy\in R$.
- 3. R contains 0.
- 4. R contains 1: $\nu(a) = \nu(a1) = \nu(a) + \nu(1)$. Therefore, $\nu(1) = 0$ and $1 \in R$.
- 5. R is closed under building additive inverses: Observe that we have for any $x \in R$

$$0 = x \cdot 0 = x \cdot (1 + (-1)) = x \cdot 1 + x \cdot (-1) \tag{1}$$

$$\iff -x = (-1) \cdot x \tag{2}$$

and by in particular $1 = -(-1) = (-1) \cdot (-1)$. Furthermore, it is

$$0 = \nu(1) = \nu((-1) \cdot (-1)) = 2\nu(-1) \tag{3}$$

Therefore, $\nu(-1) = 0$. Now we can conclude that for any $x \in K$ holds $\nu(-x) = \nu(x \cdot (-1)) = \nu(x) + \nu(-1) = \nu(x)$. Hence, if $x \in R$ then also $-x \in R$.

b) <u>Claim:</u> For every nonzero element $x \in K$ either x or x^{-1} is in R.

Proof. Let $x \in K^{\times}$, as K is a field every nonzero element is a unit. As ν is a discrete valuation we have

$$0 = \nu(1) = \nu(x \cdot x^{-1}) = \nu(x) + \nu(x^{-1}) \tag{4}$$

Hence, $\nu(x) = -\nu(x^{-1})$ and $\nu(x) \ge 0$ or $\nu(x^{-1}) \ge 0$. This implies that either $x \in R$ or $x^{-1} \in R$.

c) $x \in R$ is a unit iff $\nu(x) = 0$.

Proof. " \Longrightarrow " Let $x \in R$ be a unit. Then there is $b \in R$ such that xb = 1. We have that $\nu(x) \ge 0$ and $\nu(b) \ge 0$ as $x, b \in R$.

Furthermore,

$$0 = \nu(1) = \nu(xb) = \nu(x) + \nu(b). \tag{5}$$

This implies that $\nu(x) = \nu(b) = 0$.

"\equiv Let $\nu(x) = 0$. We have that

$$0 = \nu(1) = \nu(x \cdot x^{-1}) = \nu(x) + \nu(x^{-1}) = \nu(x^{-1}). \tag{6}$$

Hence, $\nu(x^{-1}) \geq 0$ and $x^{-1} \in R$. This makes x a unit of R.

Chapter 7.4

Exercise 37

Let R be a local ring. Let \mathfrak{m} be the maximal ideal of R. Claim: Every element of $R - \mathfrak{m} = \{r \in R | r \notin \mathfrak{m}\}$ is a unit.

Proof. Assume $r \in R$ is a nonunit and $r \notin \mathfrak{m}$. Then the ideal that is generated from \mathfrak{m} and r - lets call it M - is strict larger than \mathfrak{m} (as it contains r) but also $M \subsetneq R$ as $1 \notin M$. This contradicts the maximality of \mathfrak{m} .

Let $M = \{r \in R | r \text{ is not a unit}\}$ be the ideal of nonunit forms. <u>Claim:</u> M is the unique maximal ideal in R.

Proof. Assume there is an ideal $\mathfrak{m} \supseteq M$ then there exists $r \in \mathfrak{m}$ such that $r \notin M$. Hence, r is a unit and $1 \in \mathfrak{m}$. Therefore, $\mathfrak{m} = R$ and \mathfrak{m} is not a proper ideal. This implies that M is a maximal ideal.

M is also unique, as any proper ideal $I \subsetneq R$ is also contained in M. If there was an Ideal $I \not\subseteq M$ then by the same argument as before we already have I = R.

Exercise 40

Lemma. Let $\mathfrak{p} \subseteq R$ be a prime ideal then $\mathfrak{N}(R) \subseteq \mathfrak{p}$.

Proof. Let $r \in \mathfrak{N}(R)$ and $n \in \mathbb{N}$ such that $0 = r^n = r^{n-1}r$, we want to show that $r \in \mathfrak{p}$. As $r^n = 0 \in \mathfrak{p}$ we have that either $r \in \mathfrak{p}$ or $r^{n-1} \in \mathfrak{p}$. Wlog $r^{n-1} \in \mathfrak{p}$ (otherwise we are done). Now we can induct on $n \in \mathbb{N}$ eventually showing that $r \in \mathfrak{p}$.

<u>Claim:</u> Let R be a commutative Ring and let $\mathfrak{N}(R)$ be the nilradical of R. The following are equivalent:

- 1. R has exactly one prime ideal
- 2. every element of R is either nilpotent or a unit.
- 3. $R/\mathfrak{N}(R)$ is a field

Proof. "(i) \Longrightarrow (ii)" Let $\mathfrak{p} \subseteq R$ be the only prime ideal.

We know that $\mathfrak{N}(R) = \bigcap_{\mathfrak{q} \text{ prime}} \mathfrak{q}^1$. Hence, $\mathfrak{N}(R) = \mathfrak{p}$. Furthermore, every proper ideal is contained in a maximal ideal². Hence, we have $\mathfrak{p} \subseteq \mathfrak{m}$. As every maximal ideal in a commutative ring is prime³ we must have $\mathfrak{p} = \mathfrak{m}$. Now we can conclude that either $r \in \mathfrak{N}(R)$, i.e. r is nilpotent, or $r \in R - \mathfrak{N}(R)$, i.e. r is a unit, (by exercise 37).

"(ii) \Longrightarrow (iii)" Let every element of R be either nilpotent or a unit. $\mathfrak{N}(R)$ is an ideal. It is also maximal as every proper superset of $\mathfrak{N}(R)$ contains a unit. Hence, $R/\mathfrak{N}(R)$ is a field⁴.

"(iii) \Longrightarrow (i)" Let $R/\mathfrak{N}(R)$ be a field. Then $\mathfrak{N}(R)$ is a maximal ideal⁵. Let \mathfrak{p} be a prime ideal then $\mathfrak{N}(R) \subseteq \mathfrak{p}$ and as $\mathfrak{N}(R)$ is maximal we have $\mathfrak{p} = \mathfrak{N}(R)$. Therefore $\mathfrak{N}(R)$ is the only prime ideal of R.

¹DF §15.2 Proposition 12

²DF §7.4 Proposition 11

³DF §7.4 Corollary 14

⁴DF §7.4 Proposition 12

⁵DF §7.4 Proposition 12

Chapter 15.1

Exercise 2

a) Let R denote the Ring of continuous, real-valued functions on [0,1]. <u>Claim:</u> R is not noetherian.

Proof. We define the sequence of ideals

$$I_n := \{ f \in R | f(x) = 0, \, \forall x \le \frac{1}{n} : \}$$
 (7)

Claim(1): Every I_n is an ideal.

We need to show that

- 1. I_n is nonempty and $\forall x, y \in I : x y \in I$ proof. Take $f, g \in I_n$ then $\forall x \leq \frac{1}{n} : (f - g)(x) = 0$. Hence, $f - g \in I_n$.
- 2. $\forall x \in I, \forall r \in R : r \cdot x \in I$ proof. Take $f \in I_n$ and $r \in R$. Then $(f \cdot r)(x) = f(x)r(x)$. As f(x) = 0 for all $x \leq \frac{1}{n}$ we also have that f(x)r(x) = 0 for all $x \leq \frac{1}{n}$. Hence, $(f \cdot r) \in I_n$.

Furthermore, for all $m, n \in \mathbb{N}$ with m < n we have that $I_m \subsetneq I_n$. Hence, $I_0 \subsetneq I_1 \subsetneq ... \subsetneq$ is an infinite ascendig chain of ideals that is not eventually constant.

b) Let X be any infinite set and let $R = \{f : X \to \mathbb{Z}/2\mathbb{Z}\}$ denote the Ring of all functions from X to $\mathbb{Z}/2\mathbb{Z}$. Claim: R is not noetherian.

Proof. As X is infinite we have an injection $\iota : \mathbb{N} \hookrightarrow X$. Now we can define the ideals

$$I_n := \{ f \in R | f(\iota(m)) = 0, \forall m \ge n : \}$$

$$(8)$$

Claim(1): Every I_n is an ideal.

We need to show that

- 1. I_n is nonempty and $\forall x, y \in I : x y \in I$ proof. Take $f, g \in I_n$ then $\forall m \geq n : (f - g)(\iota(m)) = 0$. Hence, $f - g \in I_n$.
- 2. $\forall x \in I, \forall r \in R : r \cdot x \in I$ proof. Take $f \in I_n$ and $r \in R$. Then $(f \cdot r)(\iota(m)) = f(\iota(m))r(\iota(m))$. As $f(\iota(m)) = 0$ for all $m \ge n$ we also have that $f(\iota(m))r(\iota(m)) = 0$ for all $m \ge n$. Hence, $(f \cdot r) \in I_n$.

we have that each I_n is an ideal and that $A_0 \subsetneq ... \subsetneq ...$ is an ascending chain of ideals that is not eventually constant.

Exercise 3

Claim: Let K be a field. K(x) is not a finitely generated k-algebra.

Proof. Let $g_1, ..., g_n \in K(x)$ with $g_i = \frac{P_i}{Q_i}$ and $P_i, Q_i \in K[X]$ be a finite set of generators. Define $d := \prod_{i \leq n} Q_i$. Then we have for each g_i that $g_i \in K[X, d^{-1}]$

$$g_i = \frac{P_i \cdot \prod_{j \neq i} Q_i}{d^{-1}} \tag{9}$$

with $P_i \cdot \prod_{j \neq i} Q_i \in K[X]$. Hence, $K[g_1, ..., g_n] \subset K[X, d^{-1}]$. Notice, that K[X] contains infinitely many irreducible polynoms. This can be easily concluded from the fact that K[X] contains infinitely many primes⁶ Hence, we can take an irreducible polynomial $R \in K[X]$ such that $R \nmid d$.

Claim(1): $\frac{1}{R} \notin K[X,d]$. Note that - by taking the greatest common divisor - each $p \in K[X,d^{-1}]$ is of the form

$$p = P + p_n d^{-n} + \dots + p_0 = PQd^{-n}$$
(10)

with $PQ \in K[X]$. Assume we had

$$\frac{1}{R} = \frac{PQ}{d^n}. (11)$$

Hence, $1 = PQ\frac{R}{d^n}$. However, since R is irreducible and $R \nmid d$ this is not possible.

Exercise 4

<u>Claim:</u> If R is noetherian then so is R[[X]]. Similar to the "degree" of a polynomial one can define the "degree" of a power series:

$$\deg: R[[X]] \to \mathbb{N} \tag{12}$$

$$\deg\left(\sum_{i=0}^{\infty} r_i X^i\right) := \begin{cases} \min\{i \in \mathbb{N} | r_i \neq 0\}, & \text{if } f \neq 0\\ 0, & \text{else} \end{cases}$$
 (13)

Definition. For any power series we define lead $(a_k + a_{k+1}X + ...) := a_k$ to be the minimal nonzero coefficient. Furthermore for any ideal $I \subseteq R[[X]]$ let

$$L := \{ \operatorname{lead}(P) | P \in I \} \tag{14}$$

$$L_d := \{ \operatorname{lead}(P) | P \in I \land \deg(P) = d \} \cup \{ 0 \} \quad \forall d \ge 1$$
 (15)

 $^{^6}$ similar to euclids proof for the conjecture that there are infinitely many primes in $\mathbb Z$

Claim(1): For every $d \ge 1$ L_d is an ideal, i.e. $\forall a, b \in L_d$, $\forall r \in R : ar - b \in L_d$.

proof. Let $a, b \in L_d$ and $r \in R$. Wlog $ar - b \neq 0$, otherwise there is nothing to show. Take $P, Q \in I$ such that lead(P) = a resp. lead(Q) = b. Then we have lead(P - Q) = ar - b.

Claim(2): L is an ideal.

proof. Let $a,b \in L$ and $r \in R$. Again we may assume that wlog $ar - b \neq 0$. As $a,b \in L$ we can take $P,Q \in I$ such that lead(P) = a respectively lead(Q) = b. Furthermore, we define $d := \deg(P)$ and $e := \deg(Q)$. Therefore, it follows that lead $(rPx^e - Qx^d) = ar - b$ $\gcd(2)$

proof of <u>claim</u>. As R is noetherian we have that L and all the L_d are finitely generated; let $\{a_1, ..., a_n\}$ and $\{a_{d,1}, ..., a_{d,n_d}\}$ be generators for L and L_d . Choose $P_i, Q_{d,i} \in I$ such that lead $(P_i) = a_i$, respectively $\deg(Q_{d,i}) = d$ and lead $(Q_{d,i}) = a_{d,i}$. We define $e_i := \deg(P_i)$, $N := \max_{i=1}^n e_i$ and finally

$$I' := \langle \{P_i, | 1 \le i \le n\} \cup \{Q_{d,i} | 0 \le d \le N, 1 \le i \le n_d\} \rangle_{R[[X]]}.$$
 (16)

Clearly I' is finitely generated and $I' \subseteq I$. It remains to show that I' = I.

 $Claim(3): I \subseteq I'.$

proof. Assume there was $V \in I$ such that $V \notin I'$. Let $\deg(V) = d$ and $\operatorname{lead}(V) = a$.

Case 1: $d \leq N$. Let $a = \sum_{i=1}^{n_d} r_i a_{d,i}$. Furthermore, let

$$Q_d = \sum_{i=1}^{n_d} r_1 Q_{d,i},\tag{17}$$

then clearly $Q_d \in I'$, $\deg(Q_d) = d$ and $\operatorname{lead}(Q_d) = \sum_{i=1}^{n_d} r_i a_{d,i} = a$. Hence, we can define $V_{d+1} := V - Q_d$ and thus have $\deg(V_{d+1}) \geq d+1$ as well as $V_{d+1} \in I$. We iterate the procedure for $d \leq N$ and get

$$V_{N+1} = V - \sum_{i=d}^{N} Q_i \tag{18}$$

with $V_{N+1} \in I$ and $\deg(V_{N+1}) \geq N+1$. As we have that $\sum_{i=d}^{N} Q_i \in I'$ it follows that $V \in I'$ iff $V_{N+1} \in I'$. In conclusion, we reduced the problem to Case 2 as we may assume without loss of generality that $\deg(P) > N$.

Case 2: d > N. Let $a_d = \sum_{i=1}^n r_{i,d} a_i$. Then we can define

$$P'_{d} = \sum_{i=1}^{n} r_{i,d} P_{i} X^{d-e_{i}}$$
(19)

and hence get $P'_d \in I'$, $\deg(P'_d) = d$ and $\operatorname{lead}(P'_d) = a$. We can proceed as before to get an infinite series

$$\sum_{j=d}^{\infty} P_j' = \sum_{j=d}^{\infty} \sum_{i=1}^{n} r_{i,d} P_i X^{j-e_i}$$
(20)

$$= \sum_{i=1}^{n} P_i \sum_{j=d}^{\infty} r_{i,d} X^{j-e_i}$$
 (21)

$$=\sum_{i=1}^{n} P_i h_i \qquad \text{with} \tag{22}$$

$$h_i := \sum_{j=d}^{\infty} r_{i,d} X^{j-e_i}. \tag{23}$$

Now as $h_i \in R$ we have that $\sum_{i=1}^n P_i h_i \in I'$. Finally, we can conclude that $V \in I'$ by the fact that the series of coefficients of V and $\sum_{j=d}^{\infty} P'_j$ is by construction the same and hence $V = \sum_{j=d}^{\infty} P'_j$.

Exercise 5

Let M be a noetherian R-module and $\varphi:M\to M$ an R-module endomorphism of M.

Lemma. Let M,N be R-modules and $\varphi:M\to N$ a R-module-morphism. Then $\ker(\varphi)$ is a submodule of M.

Proof. We need to verify that $\ker(\varphi)$ is nonempty and $\forall x, y \in \ker(\varphi), \forall r \in R : x + ry \in \ker(\varphi)$. Clearly $\ker(\varphi) \neq \emptyset$ as $0 \in \ker(\varphi)$. Now let $x, y \in \ker(\varphi)$ and $r \in R$. We have that $\varphi(x) = \varphi(y) = 0$. Hence, $\varphi(x + ry) = \varphi(x) + r\varphi(y) = 0 + r0 = 0$. Therefore $x + ry \in \ker(\varphi)$.

<u>Claim:</u> There is an $n \in \mathbb{N}$ such that $\ker(\varphi^n) \cap \operatorname{im}(\varphi^n) = 0$.

Proof. As $\varphi(0)=0$ and we have that $\ker(\varphi)\subset\ker(\varphi^2)\subset...$ is an increasing chain of submodules. As M is noetherian it is eventually constant and there exists $N\in\mathbb{N}$ such that $\ker(\varphi^N)=\ker(\varphi^m)$ for all $m\geq N$.

In particular $\ker(\varphi^N) = \ker(\varphi \circ \varphi^N)$. Hence, $\ker(\varphi \upharpoonright_{\operatorname{im}(\varphi^N)}) = 0$ and $\varphi \upharpoonright_{\operatorname{im}(\varphi^N)}$ is injective. Hence, if $x \in \operatorname{im}(\varphi^{N+1})$ and $\varphi(x) = 0$ then x = 0. This implies that $\operatorname{im}(\varphi^{N+1}) \cap \ker(\varphi^{N+1}) = 0$.

Claim: If φ is surjective then φ is an isomorphism.

Proof. If $\varphi: M \to M$ is surjective then so is φ^n for any $n \in \mathbb{N}$. As before we have $N \in \mathbb{N}$ such that $\varphi \upharpoonright_{\operatorname{im}(\varphi^N)}$ is injective. Considering that φ^N is surjective we can conclude that $\operatorname{im}(\varphi^N) = M$ and therefore $\varphi \upharpoonright_{\operatorname{im}(\varphi^N)} = \varphi$ is both, surjective and injective, and thus an isomorphism.

Exercise 6

Consider the R-modules M, M', M'' and the following exact sequence; I will refer to it as $\mathcal S$ from now on.

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

<u>Claim:</u> M is a noetherian R-module iff M' and M'' are noetherian R-modules.

Proof. " \Longrightarrow " Let M be a noetherian R-module.

Let $M_1' \subseteq M_2' \subseteq ...$ be an increasing sequence of submodules of M'. Then $f(M_1') \subseteq f(M_2') \subseteq ...$ is an increasing sequence of submodules of M. As M is noetherian there exists $N \in \mathbb{N}$ such that $f(M_N') = f(M_m')$ for all $m \ge n$. As f is injective we also have $M_N' = M_m'$ for all $m \ge N$. Hence, the (arbitrary) sequence of R-submodules in M' is eventually constant and thus M' noetherian.

Let $M_1'' \subseteq M_2'' \subseteq ...$ be an increasing sequence of R-submodules of M''. It follows that $g^{-1}(M_1'') \subseteq g^{-1}(M_2'') \subseteq ...$ is an increasing sequence R-submodules of M. As M is noetherian the latter one is eventually constant, lets say from index N onwards. As g is surjective we have that $g(g^{-1}(M_i'') = M_i''$. Hence, we can conclude that $M_1'' \subseteq M_2'' \subseteq ...$ is constant from N onwards as well.

 $qed(\Rightarrow)$

" \Leftarrow " Let M' and M'' be noetherian R-modules.

Let $M_1 \subseteq M_2 \subseteq ...$ be an increasing sequence of submodules of M. This implies that $f^{-1}(M_1) \subseteq ...$ is an increasing sequence in M' and $g(M_1) \subseteq$ is an increasing sequence in M''. The latter ones are eventually constant as M' and M'' are noetherian; let us assume from index N' resp. N'' onwards. We define $N := \max(N', N'')$. If we prove that $M_n \subseteq M_N$ for any $n \in \mathbb{N}$ we can conclude that $M_1 \subseteq ...$ is eventually constant and thus M noetherian (as the sequence was arbitrary).

Figure 1:

Let $x \in M_n$. As $g \upharpoonright_{M_N} \to g(M_n)$ there exists $y \in M_N$ such that g(y) = g(x) (see also fig. 1). It follows that $x - y \in \ker(g) \cap M_n$. As $\mathcal S$ is exact we have that $x - y \in \operatorname{im}(f) \cap M_n$ and thus may consider $f^{-1}(x - y) \in M'_n = M'_N$. As f is injective we have that $f(f^{-1}(x - y)) = x - y \in M_N$. But this means that $x = y + (x - y) \in M_N$ and as $x \in M_n$ was arbitrary we can conclude $M_n \subset M_N$.

Exercise 11

Let R be a commutative ring in which all prime ideals are finitely generated.

a) <u>Claim:</u> If the collection of ideals that are not finitely generated is nonempty, then it contains a maximal element I. Then R/I is a noetherian ring.

Proof. Let $L := \{J \subset R | J \text{ is an not f.g. ideal}\}$. We want to use the *Lemma of Zorn* to deduce that L possesses a maximal element. Clearly L is partially ordered by \subset . We need to find an upper bound in L for every chain in L. Let $J_1 \subset J_2 \subset ...$ be a chain in L. Clearly $\bigcup_{i>0} J_i$ is an upper bound; it remains to show that $\bigcup_{i>0} J_i \in L$.

Claim(1): $\bigcup_{i>0} J_i$ is an ideal. proof. Take $x,y\in\bigcup_{i>0} J_i$ then there is an $n\in\mathbb{N}$ such that $x,y\in J_n$. Hence, $x-y\in J_n\subset\bigcup_{i>0} J_1$.

Furthermore, let $x \in \bigcup_{i>0} J_i$ and $r \in R$. Again there exists $n \in \mathbb{N}$ such that $x \in J_n$. Hence, $r \cdot x \in J_n \subset \bigcup_{i>0} J_i$.

Claim(2): $\bigcup_{i>0} J_i$ is not finitely generated, i.e. $\bigcup_{i>0} J_i \in L$. proof. Assume $\bigcup_{i>0} J_i$ was finitely generated by the generators $g_1,..,g_m$. Take $n \in \mathbb{N}$ such that $g_1,...,g_m \in J_n$. But this implies that $J_n \subseteq \bigcup_{i>0} J_i \subseteq J_n$ and J_n would be finitely generated. Hence, $J_n \notin L$. 4 qed(2)

By Zorn's Lemma we can conclude that L possesses a maximal element; let us call it I.

As I is an ideal and R a ring we have a canonical Ringhomorphism $\phi: R \to R/I$ that provides a Ring structure on R/I. Now let $J \subseteq R/I$ be a non-trivial ideal. Then $\phi^{-1}(J) \supset I$. As I is maximal in L we have that $\phi^{-1}(J)$ is either finitely generated or equal to I. However, $\phi^{-1}(J)$ is not possible as then J=(0) would be trivial. Hence, $\phi^{-1}(J)$ must be f.g. and therefore also J is. As every ideal of R/I is finitely generated we have that R/I is noetherian.

b) Claim: There are f.g. ideals J_1 and J_2 such that $J_{1/2} \supseteq I$ and $J_1 J_2 \subseteq I$.

Proof. We know that I is not a prime ideal as any prime ideal in R is finitely generated. Hence, we can find $x, y \in R$ such that $x, y \notin I$ but $xy \in I$. Let $\mathfrak{J}_x := (\phi(x))_{R/I}$ denote the R/I-ideal generated by $\phi(x)$. We define $J_1 := \phi^{-1}(\mathfrak{J}_x)$ and $J_2 := \phi^{-1}(\mathfrak{J}_y)$. As $x, y \notin I$ we have that $J_1, J_2 \supseteq I$.

Claim(1): $\mathfrak{J}_x\mathfrak{J}_y=(\phi(xy))_{R/I}$

proof.

$$\mathfrak{J}_x \mathfrak{J}_y = \{ \sum_{i \le n} a_i b_i | a_i \in \mathfrak{J}_x \land b_i \in \mathfrak{J}_y \}$$
 (24)

$$= \{ \sum_{i \le n} (r_i \phi(x)) (s_i \phi(y) | r_i, s_i \in R/I \}$$
 (25)

$$= \{\phi(x)\phi(y)\sum_{i \le n} r_i s_i | r_i, s_i \in R/I\}$$
(26)

$$= \{\phi(xy)r|r \in R/I\} \tag{27}$$

$$= (\phi(xy))_{R/I} \tag{28}$$

ged(1)

Claim(2): Let $\phi: R_1 \to R_2$ be a ringhomorphism and I_1, I_2 ideals of R_2 .

Then $\phi^{-1}(I_1I_2) \supseteq \phi^{-1}(I_2)\phi^{-1}(I_1)$. proof. Let $x \in \phi^{-1}(I_1)\phi^{-1}(I_2)$ such that x = ab with $a \in \phi^{-1}(I_1)$ and $b \in \phi^{-1}(I_1)$ $\phi^{-1}(I_2)$. Hence, $\phi(x) = \phi(ab) = \phi(a)\phi(b) \in I_1I_2$. Therefore, $x \in \phi^{-1}(I_1I_2)$.

qed(2)

As we have $xy \in I$ we can now conclude

$$I = \phi^{-1}((0)_{R/I}) \supseteq \phi^{-1}((\phi(xy))_{R/I}) = \phi^{-1}(\mathfrak{J}_x \mathfrak{J}_y)$$
(29)

$$\supseteq \phi^{-1}(\mathfrak{J}_x)\phi^{-1}(\mathfrak{J}_y) \tag{30}$$

$$=J_1J_2\tag{31}$$

Clearly $J_1J_2=\{\sum_{i\leq n}a_ib_i|a_i\in J_1\wedge b_i\in J_2\}$ is finitely generated as J_1 and J_2

c)

Remark. Let R be a ring and I an ideal. Then I can be naturally viewed as a R-module by simply interpreting the ring multiplication as module product. Indeed, as ideals are abelian groups in + and closed under multiplication they satisfy the R module axioms.

Recall that for ideals I, J of some ring R with $J \supset I$ we have that J/I is an ideal of R/I by the third isomorphism theorem for rings⁷. Hence, J/I always forms an abelian group with the induced binary operation $+_{R/I}$.

<u>Claim:</u> I/J_1J_2 is a finitely generated R/I-submodule of J_1/J_1J_2 .

Proof. It suffices to prove that J_1/J_1J_2 is a f.g. R/I module. Indeed, as R/Iis noetherian we can deduce by a previous exercise⁸ that $I/J_1J_2 \subset J_1/J_1J_2$ is f.g..

We define an action on J_1/J_1J_2

$$\star : R/I \times J_1/J_1J_2 \to J_1/J_1J_2$$
 (32)

$$[r]_I \star [j]_{J_1 J_2} := [r \cdot j]_{J_1 J_2} \tag{33}$$

⁷DF § 7.3 Theorem 8 (2)

⁸DF §15.1 Exercise 8

where " \cdot " denotes the ring-multiplication in R.

Claim(1): \star is well defined. proof. We have for $i \in I$ and $l \in J_1J_2$

$$[r+i]_I \star [j+l]_{J_1J_2} = [(r+i) \cdot (j+l)]_{J_1J_2}$$
(34)

$$= [r \cdot j + r \cdot l + i \cdot j + i \cdot l]_{J_1 J_2} \tag{35}$$

$$= [r \cdot j]_{J_1 J_2}. \tag{36}$$

The last equality follows from the fact that $r \cdot l, i \cdot j, i \cdot l \in J_1 J_2$ qed(1)

 $\begin{array}{ll} {\it Claim}(2){:} & J_1/J_1J_2 \text{ is a } R/I\text{-module} \\ {\it proof.} \end{array}$

- 1. As J_1 and J_1J_2 are ideals in R we have that $(J_1/J_1J_2,+_{R/I})$ is abelian.
- 2. for $[r]_I, [s]_I \in R/I$ and $j \in J_1/J_1J_2$ we have

$$([r]_I + [s]_I) \star [j]_{J_1 J_2} = [r + s]_I \star [j]_{J_1 J_2} \tag{37}$$

$$= [(r+s) \cdot j]_{J_1 J_2} \tag{38}$$

$$= [r \cdot j]_{J_1 J_2} + [s \cdot j]_{J_1 J_2} \tag{39}$$

$$= [r]_I \star [j]_{J_1 J_2} + [s]_I \star [j]_{J_1 J_2} \tag{40}$$

3. for $[r]_I, [s]_I \in R/I$ and $j \in J_1/J_1J_2$ we have

$$([r]_{I} \cdot_{R/I} [s]_{I}) \star [j]_{J_{1}J_{2}} = [r \cdot s]_{I} \star [j]_{J_{1}J_{2}}$$

$$(41)$$

$$= [(r \cdot s) \cdot j]_{J_1 J_2} \tag{42}$$

$$= [r \cdot (s \cdot j)]_{J_1 J_2} \tag{43}$$

$$= [r]_I \star [s \cdot j]_{J_1 J_2} \tag{44}$$

$$= [r]_I \star ([s]_I \star [j]_{J_1 J_2}) \tag{45}$$

4. for $[r]_I \in R/I$ and $j, l \in J_1/J_1J_2$ we have

$$[r]_I \star ([j]_{J_1 J_2} + [l]_{J_1 J_2}) = [r]_I \star [j+l]_{J_1 J_2} \tag{46}$$

$$= [(r) \cdot (j+l)]_{J_1 J_2} \tag{47}$$

$$= [r \cdot j]_{J_1 J_2} + [r \cdot l]_{J_1 J_2} \tag{48}$$

$$= [r]_I \star [j]_{J_1 J_2} + [r]_I \star [l]_{J_1 J_2} \tag{49}$$

5. for $[j]_{J_1J_2} \in J_1/J_1J_2$

$$[1]_I \star [j]_{J_1 J_2} = [1 \cdot j]_{J_1 J_2} = [j]_{J_1 J_2}. \tag{50}$$

qed(2)

Claim(3): J_1/J_1J_2 is finitely generated as R/I module.

proof. Let $\{g_1,..g_n\}$ be a set of generators for J_1 and $[j]_{J_1J_2} \in J_1/J_1J_2$ be arbitrary. It follows that

$$[j]_{J_1J_2} = \left[\sum_{i=1}^n r_i \cdot g_i\right]_{J_1J_2} \tag{51}$$

$$= \sum_{i=1}^{n} [r_i \cdot g_i]_{J_1 J_2} \tag{52}$$

$$= \sum_{i=1}^{n} [r_i]_I \star [g_i]_{J_1 J_2}. \tag{53}$$

Hence, $\{[g_1]_{J_1J_2},...,[g_n]_{J_1J_2}\}$ is a generating set for J_1/J_1J_2 . Therefore, J_1/J_1J_2 is finitely generated. qed(3)

By the preliminary remarks we can conclude the claim

d) Claim: (c) implies that I is finitely generated over R.

Remark. Recall that any R/I-module M with action $\cdot: R/I \times M \to M$ can be transformed into a R-module in a canoncal way; use the projection $\phi: R \twoheadrightarrow R/I$ to define the action

$$\cdot_R: R \times M \to M \tag{54}$$

$$r \cdot_R m := \phi(r) \cdot m \tag{55}$$

Clearly if M is f.g. as R/I module it is also f.g. as R module. In fact the same elements that generate M as R/I-module will also do it as R-module.

Lemma 0.1. Let M be a R-module and $N \subset M$ be an R-submodule of M. If N and M/N are finitely generated then so is M.

Proof. Observe that we have the exact sequence in fig. 2.

$$0 \longrightarrow N \stackrel{\iota}{\longrightarrow} M \stackrel{\phi}{\longrightarrow} M/N \longrightarrow 0$$

Figure 2: Exact sequence

Let $\{g_1,...,g_n\}$ be the generators for N and $\{[h_1]_N,...,[h_m]_N\}$ for M/N. We can use the projection map $\phi: M \twoheadrightarrow M/N$ to get a set $\{\tilde{h}_1,...,\tilde{h}_m\} \subset M$ such that $\phi(\tilde{h}_1) = [h_1]_N$.

Now take $x \in M$ arbitrary, then $\phi(x) = [x]_N = \sum_{i \leq m} r_i [h_i]_N$. Define $x' := \sum_{i \leq m} r_i \tilde{h}_i \in M$, then clearly $x - x' \in \ker(\phi) = \operatorname{im}(\iota)$. Hence, we can write $x - x' = \sum_{j \leq n} r_i \iota(g_i)$. All together we have $x = x' + x - x' = \sum_{i \leq m} r_i \tilde{h}_i + \sum_{j \leq n} r_i \iota(g_i)$ and as x was arbitrary we can conclude that M is generated by $\{\tilde{h}_1, ..., \tilde{h}_m, \iota(g_1), ..., \iota(g_n)\}$.

We can now prove that I is finitely generated over R.