ALGEBRA LINIOWA 2

dr Joanna Jureczko

Politechnika Wrocławska Wydział Elektroniki Katedra Telekomunikacji i Teleinformatyki

Karcie Przedmiotu

Niniejsza prezentacja stanowi jedynie skrypt do wykładu.

wybranych twierdzeń przykłady, wskazówki do zadań itp. Dodatkowe informacje dotyczące programu znajdują się w

Wykład będzie wzbogacony o dodatkowe informacje, tj. dowody

WYKŁAD 2

Kongruencje

Grupa S_n Grupa S_n

Mówimy, że *a* **przystaje** do *b* modulo *m* i piszemy $a \equiv b \pmod{m}$ jesli *m* jest dzielnikiem b - a. Relację przystawania modulo m nazywamy relacją **kongruencji**.

Twierdzenie 2.1. Następujące warunki są równoważne:

2. Istnieje liczba $k \in \mathbb{Z}$ taka, że a = b + km.

1. $a \equiv b \pmod{m}$.

3. Liczby a i b dają tę samą resztę przy dzieleniu przez m.

Twierdzenie 2.2 Dla dowolnych $a, b, c, d \in \mathbb{Z}$

- 1) jeśli $a \equiv b \pmod{n}$, to $-a \equiv -b \pmod{n}$ oraz $ca \equiv cb \pmod{n}$
- 2) jeśli $a \equiv b \pmod{n}$ oraz $c \equiv d \pmod{n}$, to $a + c \equiv b + d \pmod{n}$ oraz $ac \equiv bd \pmod{n}$

dla każdei liczby $c \in \mathbb{Z}$.

modulo n i oznaczamy $(a)_n$.

3) Dla każdej liczby $a \in \mathbb{Z}$ istnieje dokładnie jedna liczba r, że $a \equiv r \pmod{n}$ i $0 \le r < n$. Taką liczbę nazywamy **resztą liczby** $a = r \pmod{n}$

Twierdzenie 2.3. Dla dowolnych $a,b \in \mathbb{Z}$ oraz $n \in \mathbb{N}$ zachodzą wzory

- 1) $((a)_n + (b)_n)_n = (a+b)_n$
- 2) $(-(a)_n)_n = (-a)_n$
- 3) $((a)_n \cdot (b)_n)_n = (a \cdot b)_n$
- 4) $(m \cdot (a)_n)_n = (m \cdot a)_n$

5) $(((a)_n)^m)_n = (a^m)_n$

Klase $\{b: b \equiv a \pmod{m}\} = a + m\mathbb{Z}$ nazywamy klasą reszt

liczby a modulo m.

Zbiór wszystkich klas reszt modulo *m* oznaczamy symbolem $\mathbb{Z}/m\mathbb{Z}$. Ma on *m* elementów, (czyli reszty z dzielenia przez *m*).

GRUPA GRUPA Z_n GRUPA S_n

Dany jest niepusty zbiór A z działaniem dwuargumentowym \circ . Niech $a, b, c \in A$. Działanie \circ nazywamy **łącznym**, gdy

$$(a \circ b) \circ c = a \circ (b \circ c).$$

Działanie o nazywamy przemiennym, gdy

$$a \circ b = b \circ a$$
.

Mówimy, że działanie \circ ma **element neutralny** $e \in A$, gdy

$$a \circ e = e \circ a = a$$
.

Każdy element $a' \in A$ taki, że

$$a' \circ a = a \circ a' = e$$

nazywamy **elementem symetrycznym, (przeciwnym, odwrotnym)** do *a*.

Grupą nazywamy system (G, \circ) , w którym G jest zbiorem niepustym, \circ jest działaniem łącznym oraz w G istnieje element neutralny tego działania i element symetryczny do każdego elementu z G

Grupę (G, \circ) nazywamy **abelową (przemienną)**, gdy dodatkowo działanie \circ jest przemienne.

Moc zbioru G, (tzn. liczbę jego elementów) nazywamy **rzędem** grupy G i oznaczamy |G|.

Przykłady grup

$$(\mathbb{Z},+),\,(\mathbb{Q},+),\,(\mathbb{R},+),\,(\mathbb{C},+)$$

 $(\mathbb{Z}^*,\cdot),\,(\mathbb{Q}^*,\cdot),\,(\mathbb{R}^*,\cdot),\,(\mathbb{C}^*,\cdot)$ gdzie $A^*=A\setminus$

Powyższe grupy są grupami abelowymi.

 $(\mathbb{Z}^*,\cdot), (\mathbb{Q}^*,\cdot), (\mathbb{R}^*,\cdot), (\mathbb{C}^*,\cdot)$ gdzie $A^* = A \setminus \{0\}$.

Niels Henrik Abel (1802 - 1829) norweski matematyk, zajmował się różnymi gałęziami matematyki. Jego prace z algebry koncentrowały się wokół rozwiązywania równań algebraicznych piatego stopnia. Zastosował do tego celu tak zwana teorie grup. Ponadto Abel zajmował się równaniami całkowymi i funkcjami eliptycznymi. W zakresie teorii liczb rozważał natomiast zbieżność szeregów liczbowych i potęgowych. Pozostawił po sobie dotyczące tego problemu tak zwane twierdzenia Abela. W wieku lat 16 udowodnił wzór dwumianowy Newtona dla dowolnego wykładnika rzeczywistego.

Grupy reszt (modulo n).

Niech n będzie liczbą naturalną większą od 0. Zbiór

$$\mathbb{Z}_n = \{0, 1, ..., n-1\}$$

z określonym działaniem

$$a \oplus b = (a+b)_n$$

jest grupą. Oznaczamy ją (\mathbb{Z}_n, \oplus) .

Zbiór

$$U(\mathbb{Z}_n) = \{k \in \mathbb{Z}_n \colon NWD(k,n) = 1\}$$

z działaniem

 $a\odot b=(a\cdot b)_n,$ jest grupą. Oznaczamy ją $(U(\mathbb{Z}_n),\odot).$

Grupy przekształceń

Niech X będzie zbiorem niepustym oraz

$$S(X) = \{f : f : X \to X \ f \text{ jest bijekcją} \}.$$

 $(S(X), \circ)$ jest grupą z działaniem składanie funkcji \circ , którą nazywamy **grupą przekształceń** lub **grupą symetryczną** zbioru X.

Twierdzenie 2.4 (Cayleya). Każda grupa (X, \circ) jest izomorficzna z podrupą grupy symetrycznej $(S(X), \circ)$.

Arthur Cayley (1821-1895) - angielski matematyk i prawnik. Zajmował się geometrią algebraiczną. Prowadził badania nad równaniami różniczkowymi i funkcjami eliptycznymi. Współtwórca teorii wyznaczników. Autor wielu pojęć z algebry liniowej. Autor pierwszej aksjomatycznej definicji grupy oraz twierdzenia Cayleya. Opracował metodę wyznaczania liczby izomerów związków organicznych. Zajmował się także astronomią i

astrofizyką.

Grupa permutacji

Niech M będzie zbiorem skończonym. **Permutacją** zbioru M nazywamy odwozorowanie wzajemnie jednoznaczne g zbioru M na M.

Grupę wszystkich permutacji zbioru M nazywamy **grupą** symetryczną lub **grupą permutacji** zbioru M i oznaczamy symbolem S(M).

Jeżeli |M| = n, to oznaczamy ją również krótko S_n . Oczywiście S_n jest izomorficzne z S(N) dla każdego n-elementowego zbioru N oraz

$$|S_n| = n!$$
.

Grupa S_n na ogół nie jest przemienna.

Permutację, która zachowuje każdy element nazywamy **identycznościową (tożsamościową)** i oznaczamy *e*. Oczywiście mamy

$$e \circ g = g \circ e = g$$
.

Dla każdej permutacji g zbioru M istnieje permutacja g' tego zbioru taka, że

$$g\circ g'=g'\circ g=e$$
.

Nazywamy ją permutacją **odwrotną** do g i oznaczamy g^{-1} .

Zapis permutacji

Przykład Niech $M = \{a, b, c, d, e, f\}$. Wtedy zapisy

$$\begin{pmatrix} a & b & c & d & e & f \\ b & c & a & e & d & f \end{pmatrix},$$

$$\begin{pmatrix} a & c & f & e & d & b \\ b & a & f & d & e & c \end{pmatrix},$$

$$\begin{pmatrix} e & f & a & c & d & b \\ d & f & b & a & e & c \end{pmatrix},$$

przedstawiają tę samą permutację g zbioru M, która przeprowadza element a na b, b na c, itd.

Wynik działania permutacji g na pewnym elemencie $a \in M$ (tzn. obraz wartości funkcji g(a) elementu a przy działaniu g) oznaczamy a^g .

Gdy za M bierzemy zbiór początkowych liczb naturalnych, tzn. $M = \{1, 2, ..., n\}$, to umawiamy się raz na zawsze, że w pierwszym wierszu zapisu dowolnej permutacji piszemy liczby

Innym zapisem permutacji jest zapis w postaci grafów. (ciąg dalszy o grafach na Matematyce Dyskretnej lub Zaawansowanej Kombinatoryce).

w naturalnym porzadku.

Iloczynem (złożeniem, superpozycją) $g \circ h$, (krótko gh), permutacji q i h nazywamy permutacje f zbioru M określona za pomoca warunku

$$a^f = (a^g)^h, \quad a \in M.$$

Iloczyn dwóch permutacji jest permutacją. Jeśli $(g_1g_2...g_k)^{-1} = g_k^{-1}...g_2^{-1}g_1^{-1}$.

Iloczyn permutacji na ogół nie jest przemienny.

Twierdzenie 2.6. Podzbiór niepusty $G \subseteq S_n$ jest grupą, gdy jest

zamknięty ze względu na działanie o, tzn.

 $g_1 \circ g_2 \in G$, $g_1, g_2 \in G$.

Liczbę naturalną m nazywamy **rzędem** elementu g grupy G, ieżeli $q^m = e$ oraz $q^k \neq e$ dla każdego k < m.

Każdą permutację można przedstawić w postaci iloczynu cykli rozłącznych.

Cykl długości r w S_n ma rzad r.

Rząd permutacji g jest równy najmniejszej wspólnej wielokrotności (NWW) długości jego rozłącznych cykli.

Permutację g nazywamy **transpozycją** elementów a, b, jeżeli w jej rozkładzie na cykle występuje cykl ab długości 2, a

W zapisie permutacji możemy opuszczać cykle długości 1.

pozostałe cykle mają długość 1.

Permutację *g* nazywamy **parzystą**, jeśli daje się ona przedstawić w postaci iloczynu parzystej liczby transpozycji. W przeciwnym przypadku permutację nazywamy nieparzystą.

Każda transpozycja jest nieparzysta.

Każdy cykl długości r jest iloczynem r-1 transpozycji (niekoniecznie rozłącznych). Dokładniej

$$(a_1 a_2 ... a_r) = (a_1 a_2) \circ (a_2 a_3) \circ ... \circ (a_{r-1} a_r).$$

Każda permutacja jest iloczynem transpozycji.

Cykl długości n jest permutacją parzystą, gdy n jest liczbą nieparzystą oraz permutacją nieparzystą, gdy n jest liczbą parzystą.

Grupa obrotów

płaszczyźnie lub w przestrzeni).

Rozważmy figury Φ na płaszczyżnie \mathbb{R}^2 lub w przestrzeni \mathbb{R}^3 , które można opisać za pomocą skończonego zbioru punktów $V(\Phi)$ i pewnych odcinków łączących te punkty. (Można taką figurę interpretować jako graf o wierzchołkach zawartych w

Izometrią figury płaskiej nazywamy taką izometrią płaszczyzny, która przeprowadza tę figurę w siebie. Podobnie określamy izometrie figur w przestrzeni. Zbiór wszystkich izometrii figury Φ

izometrie figur w przestrzeni. Zbiór wszystkich izometrii figury Φ oznaczamy przez $D(\phi)$. $D(\Phi)$ jest grupą ze względu na składanie izometrii, którą będziemy nazywać **grupą izometrii** figury Φ .

W grupie $D(\Phi)$ wyróżniamy grupę $D^+(\Phi)$ wszystkich izometrii parzystych, (tzn. przesunięć i obrotów ale nie symetrii osiowych, przy których płaszczyzna zostaje "odwrócona"). $D^+(\Phi)$ będziemy nazywać **grupą obrotów** figury Φ .