

FIGURE 1

GGACTAATCTGTGGGAGCAGTTATTCCAGTATCACCCAGGGTGCAGCCACACCAGGACTGT
GTTGAAGGGTGTCCCCCTAAATGTAATACCTCCTCATCTTCTTACACAGTG
TCTGAGAACATTACATTAGATAAGTAGTACATGGTGGATAACTCTACTTTAGGAGGA
CTACTCTTCTGACAGTCAGACTGGTCTCTACACTAAGACACCATGAAGGAGTATGTG
CTCCTATTATTCTGGCTTGTGCTCTGCCAACCCCTCTTAGCCCTCACACATCGCACT
GAAGAACATGATGCTGAAGGATATGGAAGACACAGATGATGATGATGATGATGATG
ATGATGATGATGAGGACAACCTCTTTCCAACAAGAGAGCCAAGAACGCCATTTC
TTTGATCTGTTCCAATGTGTCATTGGATGTCAGTGCTATTACAGAGTTGACATTGCTC
AGATTTAGGTTGACCTCAGTCCCACCAACATTCCATTGATACTCGAATGCTGATCTC
AAAACAATAAAATTAAGGAAATCAAAGAAAATGATTTAAAGGACTCACTCACTTATGGT
CTGATCCTGAACAACAACAAGCTAACGAAGATTACCCAAAAGCCTTCTAACACAAAGAA
GTTGCGAAGGCTGTATCTGCCCACAATCAACTAACGTAAAGTAAACCACTTAATCTTCC
CATTAGCAGAACTCAGAATTGATGAAAATAAGTTAAGAAAATACAAAAGGACACATTCAA
GGAATGAATGCTTACACGTTGGAAATGAGTGCAAACCCCTTGTATAATGGGATAGA
GCCAGGGCATTGAAGGGTGACGGTGTCCATATCAGAATTGCGAGAACACTGACCT
CAGTTCTAAAGGCTTACCAACTTATTGGAGCTTCACCTAGATTATAAAATTCA
ACAGTGGAACTTGAGGATTTAAACGATAAAAGAAACTACAAAGGCTGGCCTAGGAAACAA
CAAATCACAGATATCGAAAATGGGAGTCTGCTAACATACCACGTGAGAGAAATACATT
TGGAAAACAATAAACTAAAAAAATCCCTCAGGATTACCAAGAGTTGAAATACTCCAGATA
ATCTTCCCTCATTCTAATTCAATTGCAAGAGTGGAGTAAATGACTCTGTCCAACAGTGCC
AAAGATGAAGAAATCTTATACAGTGAATAAGTTATTCAACAAACCGGTGAAATACTGGG
AAATGCAACCTGCAACATTGTTGTGTTGAGCAGAATGAGTGTTCAGCTGGAACTTT
GGAATGTAATAATTAGTAATTGTAATGTCATTAAATATAAGATTCAAATCCCTACATT
TGGAAACTTGAACTCTATTAAATGGTAGTTATATAACAGCAAATATCTATTCTCA
AGTGGTAAGTCCACTGACTTATTGACAAGAAATTCAACGGAAATTGCGAAACTATT
GATACATAAGGGTTGAGAGAAACAAGCATCTATTGAGCTTCTTGTGACAAATGAT
CTTACATAAAATCTCATGCTGACCATTCTTCTTCATAACAAAAAGTAAGATATTGGTA
TTAACACTTGTATCAAGCACATTAAAAAGAACTGTACTGTAATGGAATGCTTGACT
TAGCAAAATTGCTCTTCATTGCTGTTAGAAAAACAGAATTAAACAAAGACAGTAATGT
GAAGAGTGCATTACACTATTCTATTCTTAGTAACCTGGTAGTACTGTAATATTAAAT
CATCTTAAAGTATGATTGATATAATCTTATTGAAATTACCTTATCATGCTTGTGACT
CTTATGTTAAAACATAATTCTTAAATAAGCCTCAGTAAATGTTCTTACCAACTTGA
TAAATGCTACTCATAGAGCTGGTTGGGCTATAGCATATGCTTTTTTTAATTATT
ACCTGATTAAAATCTGTAAAAACGTGAGTGTGTTCATAAAATCTGTAACCTGCATT
AATGATCCGCTATTATAAGCTTTAATAGCATGAAAATTGTTAGGCTATATAACATTGCCAC
TTCAACTCTAAGGAATATTGAGATATCCCTTGGAAAGACCTGCTTGGAAAGAGCCTGGA
CACTAACATTCTACACCAATTGCTCTCAAATACGTATGGACTGGATAACTCTGAGAAA
CACATCTAGTATAACTGAATAAGCAGAGCATCAAATTAAACAGACAGAAACCGAAAGCTCTA
TATAATGCTCAGAGTTCTTATGTATTGCTTATTGGCATTCAACATATGAAAATCAGAAA
ACAGGGAAAATTTCATTAAAATATTGGTTGAAAT

FIGURE 2

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34392

<subunit 1 of 1, 379 aa, 1 stop

<MW: 43302, pi: 7.30, NX(S/T): 1

MKEYVLLLFLALCSAKPFFSPSHIALKNMMLKDMEDTDDDDDDDDDDDEDNSLFPTREPR
SHFFPFDLFPMCPFGCQCYSRVVHCSDLGLTSVPTNIPFDTRMLDLQNNKIKEIKENDFKGL
TSLYGLILNNNKLTKIHPKAFLTTKLRRLYLSHNQLSEIPLNLPKSLAELRIHENVKKIQ
KDTFKGMNALHVLEMSANPLDNNGIEPGAFEGVTVFHIRIAEAKLTSVPKGLLPPTLLELHLD
YNKISTVELEDFKRYKELQRLGLGNNKITDIENGLANIPRVREIHLENNKLKKIPSGLPEL
KYLQIIIFLHSNSIARGVVNDFCPTVPKMKKSLYSAISLFNNPVKYWEMQPATFRCVLSRMSV
QLGNFGM

Signal sequence.

amino acids 1-15

N-glycosylation site.

amino acids 281-285

N-myristoylation sites.

amino acids 129-135, 210-216, 214-220, 237-243, 270-276, 282-288

Leucine zipper pattern.

amino acids 154-176

TOPPE30 "474541650

FIGURE 3

CGGACGCGTGGCGGACGCGTGGGCCCGSGCACCGCCCCCGGCCCTCCGCCCTCCGACTCGCGCCTCC
CTCCCCTCCGCCGCTCCCGCCCTCCCTCCCTCCCTCCCTCCAGCTGTCCCCTTCGCGTC**ATGCC**GAGCCCTCCC
GGCCCCCGCCGGCCCCGCTGCTGCTCCCTCGGGCTGCTGCTCGCTCCGCCGGCCGCCGGCGCCGGCCAGA
GCCCCCCGTGCTGCCCATCCGTTCTGAGAAGGAGCCGCTGCCGTTCCGGGAGCCGGCAGGCTGCACCTTCGGCGG
GAAGGTCTATGCCTTGACGAGACGTCGGCACCCGACCTAGGGCAGCCATTGGGATGCGCTGCGTGTG
CGCCTGCGAGGCGCTCAGTGGGTCCCGTACCAAGGGCCCTGGCAGGTCAGCTGCAAGAACATCAAACAGA
GTGCCAACCCCCGGCTGTGGCAGCCGAGCTGCCGGACACTGCTGCCAGACCTGCCAGCCCCAGGAGCGCAG
CAGTCGGAGCGGCAGCCAGCGGCCCTGCTTCGAGTATCCGCGGGACCCGGAGCATCGCAGTTAGCGACCG
CGGGGAGCCAGGGCTGAGGAGCGGGCCGTTGACGCCACACGGACTTCGTTGCGCTGACAGGGCGAG
GTCGCAAGGCGGTGGCACGAGCCGAGTCTCGCTGCGCTCTAGCCTCGCTCTATCTCCTACAGCGGCT
GGACCGCCCTACCAGGATCCGTTCTCAGACTCCAATGGCAGTGTCTGTTGAGCACCCCTGCAGCCCCCACCA
AGATGGCCTGGTCTGTGGGTGTGGCGGGCAGTGCCTCGGGTGTCTCGGGCTCTAGGGCAGAACAGCTGCA
TGTGGCACTTGTGACACTCACTCACCCCTCAGGGGAGGTCTGGGGGCTCTCATCCGGCACCGGGCCCTGGCTGC
AGAGACCTCAGTGCCATCCTGACTCTAGAAGGCCCCCACAGCAGGGCTAGGGGATCACCCCTGCTCACTCT
CAGTGCACACAGAGGACTCCTGCAATTGGCTGCTCTCCGAGGGCTGCTGGAACCCAGGAGTGGGACTAAC
CCAGGTTCCCTGAGGCTCCAGATTCTACACCAGGGCAGCTACTGCGAGAACCTCAGGCAATGTCAGCCCA
GGAACCAGGCTTGCTGAGGTGCTGCCAACCTGACAGTCAGGAGATGGACTGGCTGGTGTGGGAGCTGCA
GATGGCCCTGGAGTGGCAGGCAGGGCTGCGCATCAGTGGACACATTGCTGCCAGGAAGAGCTGCGACGT
CCTGCAAAGTGTCTTGCTGGGCTGATGCCCTGATCCCAGTCAGACGGGTGCTGCCGCTCAGCCAGCCTCAC
GCTGCTAGGAAATGGCTCCCTGATCTATCAGGTGCAAGTGGTAGGGACAAGCAGTGAGGTGGTGGCATGACACT
GGAGACCAAGCCTCAGCGGAGGGATCAGCGACTGCTCTGCCACATGGCTGGACTCCAGCCAGGAGGACACAC
GGCGTGGGTATCTGCCCTGGCTGGTGCCAGGGCTCATATGCTGCTGCGAATGAGCTTCTGAACGT
GGGCACCAAGGACTCCCAGACGGAGAGCTCGGGGCACGGCTGCCCTGCCACTGTGGCATAGCGCCCG
CCATGACACGCTGCCGTGCCCTAGCAGGAGCCCTGGTGTACCCCTGTGAAGAGCAAGCAGCAGGGCACGC
CTGGCTTCCCTGGATACCCACTGTCACCTGCACTATGAAGTGCTGCTGGCTGGCTGGCTCAGAACAGG
CACTGTCACTGCCACCTCTGGCTGGCCTCTGGAACGCCAGGGCTCGCGGCTGCTGAAAGGGATTCTATGGCTC
AGAGGCCAGGGTGTGGTGAAGGACCTGGAGCCGAAGTGTGCGGCACCTGGAAAAGGCATGGCTCCCTGAT
GATCACCACCAAGGGTAGCCCCAGAGGGAGCTCCGAGGGCAGGTGACATAGCCAACCAATGTGAGGTGGCGG
ACTGCGCCTGGAGGCGGGGGCCGAGGGGGTGCAGGGCTGGGCTCCGGATACAGCCTCTGCTGCGCCGCC
TGTGGTGCCTGGTCTCCGGCCCTAGCGCCGCCAAACCTGGTGTCTGGGCCGGCCAGACCCAAACACATG
CTTCTCGAGGGGAGCGAGGCCACGGGCTCGCTGGCGCCAAACTACGACCCGCTGCTCACTCTGCA
CTGCCAGAGACGAACGGTGTACCGTGCACCCGGTGTGCCCCACGCCAGCTGCCACACCCGGTGAGGCTCC
CGACCAAGTGTGCCCTGTTGCCCTGAGAAACAAGATGTCAGAGACTTGCAGGGCTGCCAGAGGCCGGACCC
AGGAGAGGGCTGCTATTGTGACGGAGCTGGCGGGAGCGGGTACGGCTGGCACCCGGTTGTGCCCC
CTTGGCTTAATTAAAGTGTGCTGTCACCTGCAAGGGGGCACTGGAGAGGTGACTGTGAGAACGGTGCAGTG
TCCCCGGCTGGCTGTGCCAGCCTGCGTGTCAACCCACCGACTGCTGCAAACAGTGTCCAGTGGGTCGGG
GCCCAACCCAGCTGGGGACCCATGCAGGCTGATGGGCCCGGGCTGCCCTTGCTGGCAGTGGTCCC
AGAGAGTCAGAGCTGGCACCCCTCAGTGCCTTGAGAGATGAGCTGTATCACCTGAGATGTGGGGCAGG
GGTGCCTCACTGTGAGGGATGACTGTCAGTGCCTGCTGGCTGGGAAGGAGAGTCGATGCTGTT
CCGCTGCACGGCCCACGGCGCCCCAGAGACAGAGACTGATCCAGAGCTGGAGAAAGAACGCCAGGCTCTT**A**
GGGAGCAGCCAGAGGGCAAGTGCACCAAGAGGATGGGGCTGAGCTGGGAAGGGGTGGCATCGAGGACCTT
GCATTCTCCTGTGGGAAGCCAGTGCCTTGCTCCTCTGCTCGCTACTCCACCCCACTACCTCTGGAA
CCACAGCTCCACAAGGGGGAGAGGCCAGCTGGGCCAGACCGAGGTACAGCCACTCCAAAGTCTGCCCTGCCACCC
TCGGCCTCTGTCTGGAAAGCCCACCCCTTCTCTGTACATAATGTCAGTGCTGTTGGATTTTAATT
TCTTCACTCAGCACCAAGGGCCCCGACACTCCACTCCTGCTGCCCTGAGCTGAGCAGAGTCATTATTGGAGAG
TTTGTATTAAAAACATTCTTTCAGTCAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 4

><subunit 1 of 1, 954 aa, 1 stop

><MW: 101960, pI: 8.21, NX(S/T): 5

MPSLPAPPAPLLLGLLLGSRPARGAGPEPPVLPIRSEKEPLPVRAAGCTFGGKVYALDE
TWHPDLGQPFGVMRVCVLCAEAPQWGRRTRGPGRVSCKNIKPECPTPACGQPRQLPGHCCQT
CPQERSSSERQPGLSFEYPRDPEHRSYSDRGEPGAERARGDHTDFVALLTGPRSQAVAR
ARVSLLRSSLRFSISYRRLDRPTRIRFSDNSGSVLFEPAAPTQDGLVCGVWRAPRLSLRL
LRAEQLHVALVTLTHPSGEVGPLIRHRALAAETFSAILTLEGPPQQGVGGITLLTLSDTED
SLHFLLLFRGLLEPRSGGLTQVPLRLQILHQQLLRELQANVSAQEPGFAEVLPNLTVQEMD
WLVLGELQMALEWAGRPGRLISGHIAARKSCDVLQSVLCGADALIPVQTGAAGSASLTLLGN
GSЛИYQVQVVGTSSEVVAMTLETKPQRDQRTVLCHMAGLQPGGHTAVGICPGLGARGAHML
LQNELFLNVGKDFPDGELRGHVAALPYCGHSARHDTPVPLAGALVLPPVKSQAAGHAWLS
LDTHCHLHYEVLLAGLGGSEQGTVAHLLGPPGTPGPRRLKGFYGSEAQGVVKDLEPELLR
HLAKGMASLMITTKGSPRGELRGQVHIANQCEVGLRLEAAGAEGVRALGAPDTASAAPPVV
PGLPALAPAKPGGGPGRPRDPNTCFEGQQRPHGARWAPNYDPLCSLCTCQRRTVICDPVVC
PPSCPQVQADQCCPVCPEKQDVRDLPGLPRSRDPGEGCYFDGDRSWRAAGTRWHPVVPPF
GLIKCAVCTCKGGTGEVHCEKVQCPRLACAQPVRVNPTDCCKQCPVGSAGHPQLGDPMQADG
PRGCRFAGQWFPEQSWSHPSVPPFGEMSCITCRCGAGVPHCERDDCSLPLSCSGKESRCCS
RCTAHRRPPETRTDPELEKEAEGS

Signal sequence.

amino acids 1-23

N-glycosylation sites.

amino acids 217-221, 351-355, 365-369, 434-438

Tyrosine kinase phosphorylation sites.

amino acids 145-153, 778-786

N-myristoylation sites.

amino acids 20-26, 47-53, 50-56, 69-75, 73-79, 232-238, 236-242,
390-396, 422-428, 473-479, 477-483, 483-489, 489-495, 573-579,
576-582, 580-586, 635-641, 670-676, 773-779, 807-813, 871-877,
905-911

Amidation site.

amino acids 87-91

Cell attachment sequence.

amino acids 165-168

Leucine zipper pattern.

amino acids 315-337

FIGURE 5

GGCGGAGCAGCCCTAGCCGCCACCGTCGCTCTCGCAGCTCTCGTCGCCACTGCCACCGCCGCCGTCACTGCG
TCCTGGCTCCGGCTCCCGGCCCTCCGGGCCAGTGCAGCCCCGCCGCCAGGGCGCCGGTGCAGCTGC
TGCCCGCGCTGGCCCTGCTGCTGCTGCTCGAGCGGGGCCCGAGGCAGCTCCCTGGCCAACCCGGTGCCCG
CCCGGCCCTTGTCTGCGCCGGCGTGCAGCCCTGCCGAATGGGGGTGTGCACTCGGCCCTG
AGCCGGACCCGCAGCACCCGGCCCCGCCGGAGGCCTGGCTACAGCTGCACCTGCCCGCCGGATCTCCGGCG
CCAAGTGCAGCTTGTGAGATCCTTGCCAGCAACCCCTGTCACCATGGCAACTGCAGCAGCAGCA
GCAGCAGCGATGGCTACCTCTGCATTGCAATGAAGGCTATGAAGGTCCAACGTGAAACAGGCACCTCCAGTC
TCCCAGCCACTGGCTGGACCGAATCCATGGCACCCGACAGCTTCAGCCTGTTCTGCTACTCAGGAGCCTGACA
AAATCCTGCTCGCTCAGGCAACGGTACACTGCTCACCTGGCAGCCAAAACAGGGCAGAAAGTTGAGAAA
TGAAATGGATCAAGTGGAGGTGATCCCAGATATTGCCCTGTGGAATGCCAGTTAACAGCTCTGGGGTG
GCCTGGTATCCTTGAAAGTGCCACAGAACACCTCAGTCAAGATTGGCAAGATGCCACTGCCTCACTGATTG
TCTGGAAGGTCACGGCCACAGGATTCAAACAGTGCTCCCTCATAGATGGACGAAGTGTGACCCCCCTCAGGCTT
CAGGGGACTGGTCTCTGGAGGAGATGCTCGCCTGGGAATAATCACTTATTGGTTTGTGAATGATTCTG
TGACTAAGTCTATTGTGGCTTGCGCTTAACCTCTGGTGTGAAGGTCAAGCACCTGTGTGCCGGGGAGAGTCACG
CAAATGACTGGAGTTCAGGAAAAGGAAAATGCACACAGAACGGTCAAGAGGAACTTTCTGTACCTGTG
AGGAGCAGTACGTGGTACTTCTGTGAAGAACATCGATGCTTGCCAGAGGAAACCTGCCAAAACAACCGAGCT
GTATTGATGCAAATGAAAGCAAGATGGAGCAATTTCACCTGTGTTGCCCTGGTTAACTGGAGAGCTT
GCCAGTCCAAGATTGATTACTGCATCCTAGACCCATGCAGAAATGGAGCAACATGCATTCCAGTCTCAGTGGAT
TCACCTGCCAGTGTCCAGAAGGAACTTCGGATCTGCTTGAAAGAAAAGGTGGACCCCTGCCCTCGTCTCCGT
GCCAGAACACGGCACCTGCTATGTGGACGGGTACACTTACCTGCAACTGCAGCCCAGGCTTCACAGGGCGA
CCTGTGCCAGCTTATTGACTTCTGTGCCCTCAGCCCTGTGCTCATGGCACGTGCCAGCGTGGGACCAGCT
ACAAATGCCCTGTGATCCAGGTACCATGCCCTACTGTGAGGAGGAATAATGAGTGCCTCTCCGCTCCAT
GCCCTGAATGCAGCCACCTGCAGGGACCTGTTAATGGCTATGAGTGTGTCCTGCCAGAATAACAAAGGAACAC
ACTGTGAATTGTACAAGGATCCCTGCGCTAACGTCACTGTCTGAAACGGAGCCACCTGTGACAGCGACGGCCTGA
ATGGCACGTGCATCTGTGACCCGGTTACAGGTGAAGAGTGCACATTGACATAATGAATGTGACAGTAACC
CCTGCCACCATGGTGGAGCTGCCCTGGACAGCCAAATGGTTATAACTGCCACTGCCGATGGTGGGGAG
CAAACGTGAGATCCACCTCCAATGGAAGTCCGGCACATGGCGAGAGCCTACCAACATGCCACGGACTCCC
TCTACATCATCATTGGAGCCCTGCGTGGCCTTCATCCTATGCTGATCATCCTGATCGTGGGGATTGCCGCA
TCAGCCGCATTGAATACCAGGGTCTTCCAGGCCAGCCTATGAGGAGTTACAACGTGCCGACATCGACAGCG
AGTTCAGCAATGCCATTGCATCCATCCGGCATGCCAGGTTGAAAGAAATCCGGCTGCAATGTATGATGTGA
GCCCATGCCCTATGAAGATTACAGTCCGTGACAAACCTGGTCACACTGATTAAGAAACTAAAGATTGTAAT
CTTTTTGGATTATTTCAAAAGATGAGATACTACACTCATTAAATATTTAAGAAAATAAGCTTAA
GAAATTAAAATGCTAGCTCAAGAGTTCACTGAGTAAATTTAAGAACTAATTCTGCAAGCTTTAGTTG
AAAAAAATTTAAAAACAAAATTGTGAAACCTATAGACGATTTAATGTACCTTCAGCTCTAAACTGT
GTGCTCTACTAGTGTGCTTTCACTGTAGACACTATCACGAGACCCAGATTAATTCTGTGGTTGTTACA
GAATAAGTCAATCAAGGAGAAGTTCTGTGTTGACGTTGAGTGCCTGTTCTGAGTAGAGTTAGAAAACCAC
GTAACGTAGCATATGATGTATAATAGAGTATACCGTTACTAAAAAGAAGTCTGAAATGTTGTTG
AGAAAAGTAAATTACTATCCCTAACCGAATGAAATTAGCCTTGCCATTCTGTGCAAGGGTAAGTAAC
TTATTCTGCACTGTTGTTGAACTTGTGAAACATTCTTCAGTTGAGTTGTTGTCATTCTGTAACAGTCG
TCGAACTAGGCCTCAAAACATACGTAACGAAAAGGCCTAGCGAGGCAAATTCTGATTGATTAATCTATATT
TTCTTAAAAAGTCAGGGTTCTATATTGTGAGTAAATTAAATTACATTGAGTTGTTGTTGCTAAGAGGTAG
TAAATGTAAGAGAGTACTGGTCCCTCAGTAGTGAGTATTCTCATAGTGCAAGCTTATTATCTCCAGGATGTT
TTTGTGGCTGTATTGATTGATATGTGCTCTTGCAATTCCAACCATTGAATAATGTGATC
AAGTCA

FIGURE 6

><subunit 1 of 1, 737 aa, 1 stop

><MW: 78475, pI: 5.09, NX(S/T): 11

MQPRRAQAPGAQQLPALLLLLLGGAGPRGSSLANPVPAAPLSAPGPCAAQPCRNGGVCTSR
PEPDHQHPAPAGEPGYSCTCPAGISGANCQLVADPCASNPCHGNCSSSSSSDGYLCICN
EGYEGPNCEQALPSLPATGWTESMAPRQLQPVPATQEPDKILPRSQATVTLPTWQPKTGQKV
VEMKWDQVEVIPDIACGNASSNSSAGGRLVSFEVPQNTSVKIRQDATASLILLWKVTATGFQ
QCSLIDGRSVTPLQASGGLVLLEEMLALGNNHFIGFVNDSVTKSIVALRLTLVVKVSTCVPG
ESHANDLECSGKGKCTTKPSEATFSCTCEEQYVGTFCCEYDACQRKPCQNNASCIDANEKQD
GSNFTCVCLPGYTGEELCQSKIDYCILDPCRNGATCISSLSGFTQCPEGYFGSACEEKVDPC
ASSPCQNNGTCYVDGVHFTNCSPGFTGPTCAQLIDFCALSPCAHGTCSRSGTSYKCLCDPG
YHGLYCEEYNECLSAPCLNAATCRDLVNGYECVCLAELYKGTHTCELYKDPCANVSCLNGATC
DSDGLNGTCICAPGFTGEEDIDINECDSNPCHGGSCLDPNGYNCHCPHWVGANCEIHL
QWKSGHMAESLTNMPRHSLYIIIGALCVAFILMLIILIVGICRISRIEYQGSSRPAYEEFY
CRSIDSEFSNAIASIRHARFGKKSRPAMYDVSPIAYEDYSPDDKPLVTLIKTKDL

Signal sequence.

amino acids 1-28

Transmembrane domain.

amino acids 641-660

N-glycosylation sites.

amino acids 107-111, 204-208, 208-212, 223-227, 286-290, 361-365,
375-379, 442-446, 549-553, 564-568

Glycosaminoglycan attachment site.

amino acids 320-324

Tyrosine kinase phosphorylation sites.

amino acids 490-498, 674-682

N-myristoylation sites.

amino acids 30-36, 56-62, 57-63, 85-91, 106-112, 203-209,
373-379, 449-455, 480-486, 562-568, 565-571

Amidation site.

amino acids 702-706

Aspartic acid and asparagine hydroxylation site.

amino acids 520-532, 596-608

EGF-like domain cysteine pattern signatures.

amino acids 80-92, 121-133, 336-348, 378-390, 416-428, 454-466,
491-503, 529-541, 567-579, 605-617

FIGURE 7

CTCTGGAAGGTACGCCACAGGATTCCAACAGTGCTCCCTCATAGATGGACGAAAGTGTGA
CCCCCCTTCAGGCTTCAGGGGACTGGCCTCCTGGAGGAGATGCTCGCCTGGGAATA
ATCACTTATTGGTTTGTGAATGATTCTGTGACTAAGTCTATTGTGGCTTGCCTTAAC
CTGGTGGTGAAGGTACGCACCTGTGCGCCGGGGAGAGTCACGCAAATGACTGGAGTGTTC
AGGAAAAGGAAAATGCACACGAAGCCGTAGAGGCAACTTTCTGTACCTGTGAGGAGC
AGTACGTGGTACTTCTGTGAAGAATACGATGCTGCCAGAGGAAACCTGCCAAAACAAC
GCGAGCTGTATTGATGCAAATGAAAAGCAAGATGGGAGCAATTACCTGTGTTGCCTCC
TGGTTATACTGGAGAGCTTGCCAACCGAACGTGAGATTGGAGCGAACGACCTACACCGAACT
GAGATAGGGAG

FIGURE 8

CTCTGGAAAGGTACGGCCACAGGATTCCAACAGTGCTCCCTCATAGATGGACGAAAGTGTGA
CCCCCCTTCAGGCTTCAGGGGGACTGGTCCTCCTGGAGGAGATGCTCGCCTGGGAATA
ATCACTTATTGGTTTGTGAATGATTCTGTGACTAAGTCTATTGTGGCTTGCGCTTAAC
CTGGTGGTGAAGGTACGCACCTGTGTGCCGGGGAGAGTCACGCAAATGACTGGAGTGTTC
AGGAAAAGGAAAATGCACCACGAAGCCGTAGAGGCAACTTTCTGTACCTGTGAGGAGC
AGTACGTGGTACTTCTGTGAAGAATACGATGCTGCCAGAGGAAACCTGCCAAAACAAC
GCGAGCTGTATTGATGCAAATGAAAAGCAAGATGGGAGCAATTACCTGTGTTGCCTCC
TGGTTATACTGGAGAGCTTGCCAACCGAACTGAGATTGGAGCGAACGACCTACACCGAACT
GAGATAGGGAG

FIGURE 9

GCTGAGTCTGCTGCTCCTGCTGCTGCTCCAGCCTGTAACCTGTGCCTACACCACGCCAG
GCCCCCCCAGAGCCCTACCAACGCTGGCGCCCCAGAGCCCACACCATGCCGGCACCTAC
GCTCCCTCGACCACACTCAGTAGTCCCAGCACCCAGGGCTGCAAGAGCAGGCACGGCCCT
GATGCGGGACTTCCCGCTCGTGGACGCCACAACGACCTGCCCTGGTCCTAAGGCAGGTTT
ACCAGAAAGGGCTACAGGATGTTAACCTGCGCAATTCTAGCTACGCCAGACCAGCCTGGAC
AGGCTTAGAGATGCCCTCGTGGCGCCAGTTCTGGTCAGCCTATGCCATGCCAGACCCA
GGACCGGGATGCCCTGCCCTCACCCGGAGCAGATTGACCTCATGCCGATGTGCCT
CCTATTCTGAGCTGGAGCTTGACCTCGCTAAAGCTCTGAACGACACTCAGAAATTGGCC
TGCCTCATCGGTAGAGGGTGGCCACTCGCTGGACAATAGCCTCTCCATCTTACGTACCTT
CTACATGCTGGAGTGCCTACCTGACGCTCACCCACACCTGCAACACACCCCTGGCAGAGA
GCTCCGCTAACGGCGTCCACTCCTCTACAACAAACATCAGCGGCTGACTGACTTTGGTAG
AAGGTGGTGGCAGAAATGAACCGCCTGGCATGATGGTAGACTTATCCCATGTCTCAGATGC
TGTGGCACGGCGGCCCTGGAAGTGTACAGGCACCTGTGATCTCTCCACTCGCTGCC
GGGGTGTGTGCAAACAGTGCTCGGAATGTTCTGATGACATCCTGAGCTTCTGAAGAAGAAC
GGTGGCGTCGTGATGGTGTCTTGCCATGGAGTAATAACAGTCAACCCATCAGCCAATGT
GTCCACTGTGGCAGATCACTCGACCACATCAAGGCTGTCATTGGATCCAAGTTCATCGGGA
TTGGTGGAGATTATGATGGGCCGCAAATTCCCTCAGGGCTGGAAGACGTGTCCACATAC
CCGGTCCTGATAGAGGAGTTGCTGAGTCGTGGCTGGAGTGAGGAAGAGCTTCAGGGTGTCC
TCGTGGAAACCTGCTCGGGCTTCAGACAAGTGGAAAAGGTACAGGAAGAAAACAAATGGC
AAAGCCCCCTGGAGGACAAGTTCCGGATGAGCAGCTGAGCAGTTCCCTGCCACTCCGACCTC
TCACGTCTCGTCAGAGACAGAGTCTGACTTCAGGCCAGGAACACTGAGATTCCCATA
CTGGACAGCCAAGTTACCAAGCCAAGTGGTCAGTCTCAGAGTCCTCCCCCAGATGGCCCCAG
TCCTTGCAGTTGTGGCACCTCCAGTCCTTATTCTGTGGCTCTTGATGACCCAGTTAGTCC
TGCCAGATGTCACTGTAGCAAGCCACAGACACCCACAAAGTTCCCTGTTGTGCAGGCACA
AATATTTCTGAAATAATGTTTGGACATAG

FIGURE 10

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA35595.  
<subunit 1 of 1, 433 aa, 1 stop  
<MW: 47787, pI: 6.11, NX(S/T): 5  
MPGTYAPSTTLSSPSTQGLQEQRALMRDFPLVDGHNDLPLVLRQVYQKGLQDVNLRNFSYG  
QTSLDRLRDGLVGAQFW SAYVPCQTQDRDALRLTLEQIDLIRRMCA SYSELELVTSAKALND  
TQKLACLIGVEGGHSLDNSLSILRTFYMLGVRYLTLCNTPWAESSAKGVHSFYNNISGL  
TDFGEKVVAEMNRLGMMVDSLHVSDAVARRALEVSQAPVIFSHSAARGVCNSARNVPDDILQ  
LLKKNGGVMVSLSMGVIQCNP SANVSTVADHFDHIKAVIGSKFIGIGGDYDGAGKFPQGLE  
DVSTYPV LIEELLSRGWSEEELQGVLRGNLLRVFRQVEKVQEENKWQS PLEDKF PDEQLSSS  
CHSDL SRLRQRQSLTSGQELTEIPIHWTAKLPAKWSVSESSPHMAPVLA VVATFPVLILWL
```

N-glycosylation sites.

amino acids 58-62, 123-127, 182-186, 273-277

N-myristoylation sites.

amino acids 72-78, 133-139, 234-240, 264-270, 334-340, 389-395

Renal dipeptidase active site.

amino acids 134-157

FIGURE 11

AAAACCTATAATATTCCGGATTATTACCGTCCCACCATCGGGCGCGGATCCGCGGCCG
CGAATTCTAAACCAACATGCCGGGCACCTACGCTCCCTGACCCACTCAGTAGTCCCAGCA
CCCAGGGCCTGCAAGAGCAGGCACGGGCCCTGATGCGGGACTTCCGCTGTGGACGGCCAC
AACGACCTGCCCTGGTCCTAAGGCAGGTTACCAGAAAGGGCTACAGGATGTTAACCTGCG
CAATTTCAGCTACGGCCAGACCAGCCTGGACAGGCTTAGAGATGGCCTCGTGGCGCCAGT
TCTGGTCAGCCTATGTGCCATGCCAGACCCAGGACCGGGATGCCCTGCGCCTCACCTGGAG
CAGATTGACCTCATGCCGCATGTGCTCCTATTCTGAGCTGGAGCTTGACCTCGGC
TAAAGCTCTGAACGACACTCAGAAATTGGCCTGCCTCATCGGTGTAGAGGGTGGCCACTCGC
TGGACAATAGCCTCTCCATCTTACGTACCTCTACATGCTGGGAGTGCCTACCTGACGCTC
ACCCACACCTGCAACACACCCCTGGCAGAGAGCTCCGCTAAGGGGTCCACTCCTTACAA
CAACATCAGCGGGCTGACTGACTTTGGTGAGAAGGTGGCAGAAATGAACCGCCTGGCA
TGATGGTAGACTTATCCCATGTCTCAGATGCTGTGGCACGGCGGGCCCTGGAAGTGTACAG
GCACCTGTGATCTTCTCCACTCGGCTGCCGGGGTGTGCAACAGTGCTCGGAATGTTCC
TGATGACATCCTGCAGCTCTGAAGAAGAACGGTGGCGTCGTGATGGTGTCTTGTCATGG
GAGTAATACTGCAACCCATCAGCCAATGTGTCCTGTGGCAGATCACTTCGACCACATC
AAGGCTGTATTGGATCCAAGTTCATCGGGATTGGTGGAGATTATGATGGGGCCGGCAAATT
CCCTCAGGGGCTGGAAGACGTGTCCACATACCCGGCCTGATAGAGGAGTTGCTGAGTCGTG
GCTGGAGTGAGGAAGAGCTTCAGGGTGTCTCGTGGAAACCTGCTGCGGGTCTTCAGACAA
GTGGAAAAGGTACAGGAAGAAAACAAATGGCAAAGCCCCTGGAGGACAAGTTCCCGGATGA
GCAGCTGAGCAGTCTGCCACTCCGACCTCTCACGTCTCGTCAGAGACAGAGTCTGACTT
CAGGCCAGGAACTCACTGAGATTCCCATACTGGACAGCCAAGTTACCAGCCAAGTGGTCA
GTCTCAGAGTCCTCCCCCACCCTGACAAAACTCACACATGCCACCGTGCCAGCACCTGA
ACTCCTGGGGGACCGTCAGTCTCCTCTCCCCAAAACCCAAGGACACC

FIGURE 12

```
></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA35872
><subunit 1 of 1, 446 aa, 0 stop
><NX (S/T) : 5
MPGTYAPSTTLSSPSTQGLQEQRALMRDFPLVDGHNDLPLVLRQVYQKGLQDVNLRNFSYG
QTSLDRLRDGLVGAQFWSAYVPCQTQDRDALRLTLEQIDLIRRMCASYSELELVTSAKALND
TQKLACLIGVEGGHSLDNSLSILRTFYMLGVRYLTHTCNTPWAESSAKGVHSFYNNISGL
TDFGEKVVAEMNRLGMMVDSLHVSDAVARRALEVSQAPVIFSHSAARGVCNSARNVPDDILQ
LLKKNGGVMVSLSMGVIQCNPSANVSTVADHFDHIKAVIGSKFIGIGGDYDGAGKFPQGLE
DVSTYPVLIEELLSRGWSEEELQGVLRGNLLRVFRQVEKVQEENKWQSLEDKFPDEQLSSS
CHSDLRSRLRQRQSLTSGQELTEIPIHWTAKLPAKWSVSESSPHPDKTHTCPPCPAPELLGGP
SVFLFPPPKPKDT
```

FIGURE 13

CGCCCAGCGACGTGCGGGCGGCCTGGCCCCGCGCCCTCCCGCGCCCGGCCTGCGTCCCGCGCC
CTGCGCCACCGCCGCCGAGCCGCAGCCCGCCGCCGCGCCCCCGGCAGCGCCGGCCCC**ATG**CCC
GCCGGCCGCCGGGGCCCCGCCAATCCGCGCGGCCGCCGCGCCGTTGCTGCCCTGCT
GCTGCTGCTCTGCGTCCTCGGGGCCGCGAGCCGGATCAGGAGCCCACACAGCTGTGATCA
GTCCCCAGGATCCCACGCTTCTCATCGGCTCCTCCCTGCTGGCCACCTGCTCAGTGCACGGA
GACCCACCAGGAGCCACCGCCGAGGGCCTCTACTGGACCCCTAACGGCGCCGCTGCC
TGAGCTCTCCCGTGTACTCAACGCCCTCACCTGGCTCTGCCCTGCCAACCTCAATGGGT
CCAGGCAGCGGTGGGGACAACCTCGTGTGCCACGCCGTGACGGCAGCATCCTGGCTGGC
TCCTGCCTCTATGTTGGCCTGCCCTAGAGAAACCGTCAACATCAGCTGCTGGTCCAAGAA
CATGAAGGACTTGACCTGCCGCTGGACGCCAGGGGCCACGGGAGACCTCCTCACACCA
ACTACTCCCTCAAGTACAAGCTTAGGTGGTATGCCAGGACAACACATGTGAGGAGTACCA
ACAGTGGGGCCCCACTCCTGCCACATCCCCAAGGACCTGGCTCTTTACGCCCTATGAGAT
CTGGGTGGAGGCCACCAACCGCCTGGCTCTGCCCGCTCCGATGTACTCACGCTGGATATCC
TGGATGTGGTGACCACGGACCCCCCGCCGACGTGACGTGAGCCCGTGGGGCTGGAG
GACCAGCTGAGCGTGCCTGGGTGTCGCCACCCGCCCTCAAGGATTCCCTTTCAAGCAA
ATACCAGATCCGCTACCGAGTGGAGGACAGTGTGGACTGGAAGGTGGACGATGTGAGCA
ACCAGACCTCCTGCCGCTGGCCGGCCTGAAACCCGGCACCGTGTACTCGTCAAGTGC
TGCAACCCCTTGGCATCTATGGCTCCAAGAAAGCCGGATCTGGAGTGAGTGGAGCCACCC
CACAGCCGCCTCCACTCCCCGAGCTGAGCCGGGGCCGGCGGCGGGCGTGCACCGC
GGGGCGGAGAGCCGAGCTGGGGCCGGTGCAGCGAGCTCAAGCAGTCCCTGGCTGGCTC
AAGAAGCACCGTACTGCTCCAACCTCAGCTTCCGCTCTACGACCAGTGGCGAGCCTGGAT
GCAGAAGTCGACAAGACCCGCAACCAGGACGAGGGATCCTGCCCTGGCAGACGGGCA
CGCGAGAGGTCTGCCAGA**TAAG**CTGTAGGGCTCAGGCCACCCCTCCCTGCCACGTGGAGA
CGCAGAGGCCAACCAAACGGGCCACCTCTGTACCCCTACTCAGGGCACCTGAGCCAC
CCTCAGCAGGAGCTGGGTGGCCCTGAGCTCCAACGCCATAACAGCTCTGACTCCACGT
GAGGCCACCTTGGGTGCACCCAGTGGGTGTGTGTGAGGGTTGGTTGAGTTGC
CTAGAACCCCTGCCAGGGCTGGGGTGAGAAGGGAGTCATTACTCCCCATTACCTAGGGCC
CCTCCAAAAGAGTCCTTAAATAAATGAGCTATTAGGTGCTGTGATTGTGAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAA

FIGURE 14

><ss.DNA38113

><subunit 1 of 1, 422 aa, 1 stop

><MW: 46302, pI: 9.42, NX(S/T): 6

MPAGRRGPAAQSQSARRPPPLPLLLLCVLGAPRAGSGAHTAVISPQDPTLLIGSSLLATCSV
HGDPPGATAEGLYWTLNGRRLPPELSRLVNASTLALALANLNGSRQRSGDNLVCHARDGSIL
AGSCLYVGLPPEKPVNISCWSKNMKDLTCRTPGAHGETFLHTNYSLKYLWRWYQDNTCEE
YHTVGPHSCHIPKDLALFTPYEIWVEATNRGSARSDVLTLDILDVVTTDPPPDVHVSRVGG
LEDQLSVRWVSPPALKDFLFQAKYQIRYRVEDSDWKVVDDVSNQTSCRLAGLKPGTVYFVQ
VRCNPFGIYGSKKAGIWSEWSHPTAASTPRSERPGPGGGACEPRGGEPSGPVRRELKQFLG
WLKKHAYCSNLSFRLYDQWRAWMQKSHKTRNQDEGILPSGRRGTARGPAR

© 2000 The McGraw-Hill Companies, Inc.

Signal sequence.

amino acids 1-30

Transmembrane domain.

amino acids 44-61

N-glycosylation sites.

amino acids 92-96, 104-108, 140-144, 168-172, 292-296, 382-386

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 413-417

N-myristoylation sites.

amino acids 30-36, 37-43, 73-79, 121-127, 179-185, 218-224,
300-306, 317-323, 320-326, 347-353, 355-361, 407-413

Amidation site.

amino acids 3-7, 79-83, 411-415

Growth factor and cytokines receptors family signature 2.

amino acids 325-331

FIGURE 15

CCACCGCGTCCGCTGGTGTAGATCGAGCAACCCTCTAAAAGCAGTTAGAGTGGTAAAAAA
AAAAAAAAACACACCAAACGCTCGCAGCCACAAAGGGATGAAATTCTTCTGGACATCCTC
CTGCTTCTCCCGTTACTGATCGTCTGCTCCCTAGAGTCCTCGTGAAGCTTTTATTCTAA
GAGGAGAAAATCAGTCACCGGCAGAACATCGTGTGATTACAGGAGCTGGCATGGAATTGGGA
GACTGACTGCCTATGAATTGCTAAACTAAAAGCAAGCTGGTCTCTGGATATAAATAAG
CATGGACTGGAGGAAACAGCTGCCAAATGCAAGGGACTGGTGCCAAGGTTACACTTGT
GGTAGACTGCAGCAACCGAGAAGATATTTACAGCTCTGCAAAGAAGGTGAAGGCAGAAATTG
GAGATGTTAGTATTTAGTAAATAATGCTGGTGTAGTCTATACATCAGATTGTTGCTACA
CAAGATCCTCAGATTGAAAAGACTTTGAAGTTAATGTACTTGACATTTCTGGACTACAAA
GGCATTCTCCTGCAATGACGAAGAATAACCATGCCATTGTCACTGTGGCTCGGCAG
CTGGACATGTCTCGTCCCCTTACTGGCTTACTGTTCAAGCAAGTTGCTGCTGTTGGA
TTTCATAAAACTTGACAGATGAACACTGGCTGCCTACAAATAACTGGAGTCAAAACACATG
TCTGTGTCTAATTCGTAAACACTGGCTTACCAAAATCCAAGTACAAGTTGGACCCA
CTCTGGAACCTGAGGAAGTGGTAAACAGGCTGATGCATGGATTCTGACTGAGCAGAAGATG
ATTTTATTCCATCTTCTATAGCTTTTAACAACATTGAAAGGATCCTCCTGAGCGTT
CCTGGCAGTTAAAACGAAAATCAGTGTAAAGTTGATGCAGTTATTGGATATAAAATGA
AAGCGCAAGCACCTAGTTCTGAAACACTGATTACCACTGGTGTAGGTTGATGTCATCTA
ATAGTGCAGAATTAAATGTTGAACCTCTGTTCTAATTATCCCCATTCTCAATA
TCATTGGAGGCTTGGCAGTCTCATTACTACCACTTGTCTTAGCCAAAGCTGATT
ACATATGATATAAACAGAGAAATACCTTAGAGGTGACTTAAGGAAAATGAAGAAAAAGAA
CCAAAATGACTTATTAAAATAATTCCAAGATTATTGTGGCTCACCTGAAGGCTTGCAA
ATTGTACCAACCGTTATTAAACATATATTATTATTGATTGACTAAATTGTTG
ATAATTGTGTTCTTTCTGTTCTACATAAAATCAGAAACTCAAGCTCTAAATAAAA
TGAAGGACTATCTAGGGTATTCAACATGAATATCATGAACCTCAATGGTAGGTTTC
ATCCTACCCATTGCCACTCTGTTCTGAGAGATAACCTCACATTCCAATGCCAAACATTCT
GCACAGGGAAGCTAGAGGTGGATACACGTGTGCAAGTATAAAAGCATCACTGGATTAAAG
GAGAATTGAGAGAATGTACCCACAAATGGCAGCAATAATAATGGATCACACTTAAAAAAA
AAA
AAAAAAAAAAAAAAAAAAAAAAA

FIGURE 16

</usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA34436

<subunit 1 of 1, 300 aa, 1 stop

<MW: 32964, pi: 9.52, NX(S/T): 1

MKFLLDILLPLIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLKSK
LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKVKAEGDVSILVNNAGVV
YTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNGHIVTVASAAGHVSVFLLAYC
SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPEEVVNRLMH
GILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence.

amino acids 1-19

Transmembrane domain.

amino acids 170-187

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 30-34, 283-287

N-myristoylation sites.

amino acids 43-49, 72-78, 122-128, 210-216

FIGURE 17

GA C T A G T T C T C T T G G A G T C T G G G A G G A G G A A A G C G G A G C C G G C A G G G A G C G A A C C A G G A C T G
G G G T G A C G G C A G G G C A G G G G G C C T G G C C G G G G A G A A G C G C G G G G C T G G A G C A C C A C C A A
C T G G A G G G T C C G G A G T A G C G A G C G C C C G A A G G A G G C C A T C G G G A G C C G G A G G G G G A C T
G C G A G A G G A C C C C G G C T C C G G C T C C C G G T G C C A G C G C T A G G C A G G C C A C T C C T C G T C C T G C
T G C T C C T G G G C T G G C G G C G G C T G C C C C C A C T G G A C G A C A A C A A G A T C C C A G C C T C T G C
C C G G G G C A C C C C G G C T T C C A G G C A C G C C G G G C C A C C A T G G C A G C C A G G G C T T G C C G G G C G
C G A T G G C C G C G A C G G C C G C G A C G G C G C C C G G G C T C C G G G A G A G A A A G G C G A G G G C G G G A
G G C C G G G A C T G C C G G G A C C T C G A G G G G A C C C C G G G C C G C G A G G A G A G G C G G G A C C C G C G G G G
C C C A C C G G G C T G C C G G G G A G T G C T C G G T G C C T C C G C G A T C C G C C T T C A G C G C C A A G C G C T C
C G A G A G C C G G G T G C C T C C G C G T C T G A C G C A C C C T G C C C T T C G A C C G C G T G C T G G T G A A C G
A G C A G G G A C A T T A C G A C G C C G T C A C C G G C A A G T T C A C C T G C C A G G T G C C T G G G G T C T A C T A C
T T C G C C G T C C A T G C C A C C G T C T A C C G G G C C A G C C T G C A G T T G A T C T G G T G A A G A A T G G C G A
A T C C A T T G C C T C T T C T T C A G T T T T C G G G G G T G G C C C A A G C C A G C C T C G C T C T C G G G G G
G G G C C A T G G T G A G G C T G G A G C C T G A G G A C C A A G T G T G G G T G C A G G T G G G T G T G G G T G A C T A C
A T T G G C A T C T A T G C C A G C A T C A A G A C A G A C A G C A C C T T C T C C G G A T T T C T G G T G A C T C C G A
C T G G C A C A G C T C C C C A G T C T T G C T T **T A G T** G C C C A C T G C A A A G T G A G C T C A T G C T C T C A C T C C
T A G A A G G A G G G T G T G A G G C T G A C A A C C A G G T C A T C C A G G A G G G C T G G C C C C C T G G A A T A T T
G T G A A T G A C T A G G G A G G T G G G G T A G A G C A C T C T C C G T C C T G C T G C T G G C A A G G A A T G G G A A C
A G T G G C T G T C T G C G A T C A G G T C T G G C A G C A T G G G G C A G T G G C T G G A T T T C T G C C C A A G A C C A
G A G G A G T G T G C T G T G C T G G C A A G T G T A A G T C C C C A G T T G C T C T G G T C C A G G A G C C C A C G G T
G G G G T G C T C T C T C C T G G T C C T G C T T C T G G A T C C T C C C C A C C C C C T C C T G C T C C T G G G
G C C G G C C C T T T C T C A G A G A T C A C T C A A T A A A C C T A A G A A C C C T C A T A A A A A A A A A A A A A A
A A A A A A A A A A A A

DRAFT - NOT FOR CITATION

FIGURE 18

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40592

><subunit 1 of 1, 243 aa, 1 stop

><MW: 25298, pI: 6.44, NX(S/T): 0

MRPLLVLLLLGLAAGSPPILDDNKIPSLCPGHPGLPGTPGHGSQGLPGRDGRDGRDGAPGAP
GEKGEGGRPGLPGPRGDPGPRGEAGPAGPTGPAGECSVPPRSAFSAKRSESRVPPPSDAPLP
FDRV LVNEQGHYDAVTGKFTCQVPGVYYFAVHATVYRASLQFDLVKNGESIASFFQFFGGWP
KPASLSGGAMVRLEPEDQWVQVGVDYIGIYASIKT DSTFSGFLVYSDWHSSPVFA

Signal sequence.

amino acids 1-15

N-myristoylation sites.

amino acids 11-17, 68-74, 216-222

Cell attachment sequence.

amino acids 77-80

FIGURE 19

CTCTTTGTCCACCAGCCCAGCCTGACTCCTGGAGATTGTGAATAGCTCCATCCAGCCTGAG
AAACAAGCCGGTGGCTGAGCCAGGCTGTGCACGGAGCACCTGACGGGCCAACAGACCCAT
GCTGCATCCAGAGACCTCCCCTGGCCGGGGCATCTCCTGGCTGTGCTCCTGGCCCTCCTG
GCACCACCTGGCAGAGGTGTGGCCACCCAGCTGCAGGAGCAGGCTCCGATGGCCGGAGCC
CTGAACAGGAAGGAGAGTTCTTGCTCCTCCCTGCACAACCGCCTGCGCAGCTGGTCCA
GCCCCCTGCGGCTGACATGCGGAGGCTGGACTGGAGTGACAGCCTGGCCAACTGGCTCAAG
CCAGGGCAGCCCTCTGTGGAATCCCAACCCGAGCCTGGCATCCGGCCTGTGGCGCACCTG
CAAGTGGGCTGGAACATGCAGCTGCTGCCCGGGCTTGGCGTCCTTGTGAAGTGGTCAG
CCTATGGTTGCAGAGGGCAGCGGTACAGCCACGCGGAGGAGTGCTCGCAACGCCA
CCTGCACCCACTACACGCAGCTCGTGTGGCCACCTCAAGCCAGCTGGCTGTGGCGGCAC
CTGTGCTCTGCAGGCCAGACAGCGATAGAACGCTTGTCTGCGCTACTCCCCGGAGGCAA
CTGGGAGGTCAACGGGAAGACAATCATCCCTATAAGAAGGGTGCCTGGTGTGCTCGCA
CAGCCAGTGTCTCAGGCTGCTCAAAGCCTGGACCATGCAGGGGGCTCTGTGAGGCCCC
AGGAATCCTTGTGCGATGAGCTGCCAGAACCATGGACGTCTCAACATCAGCACCTGCCACTG
CCACTGTCCCCCTGGCTACACGGCAGATACTGCCAAGTGAGGTGCAGCCTGCAGTGTG
ACGGCCGGTTCCGGGAGGAGGAGTGCTCGTGTGACATCGGCTACGGGGAGCCCAG
TGTGCCACCAAGGTGCATTTCCCTCCACACCTGTGACCTGAGGATCGACGGAGACTGCTT
CATGGTGTCTTCAGAGGCAGACACCTATTACAGAGCCAGGATGAAATGTCAGAGGAAGGCG
GGGTGCTGGCCCAGATCAAGAGCCAGAAAGTGCAAGGACATCCTGCCCTATCTGGCCGC
CTGGAGACCACCAACGAGGTGACTGACAGTGACTTCGAGACCAGGAACCTCTGGATGGCT
CACCTACAAGACGCCAAGGACTCCTCCGCTGGCCACAGGGAGCACAGGCCCTCACCA
GTTTGCCCTTGGCAGCCTGACAACCACGGCTGGTGTGGCTGAGTGCTGCCATGGGTTT
GGCAACTGCGTGGAGCTGCAGGCTTCAGCTGCCCTCAACTGGAACGACCAGCGCTGAAAAC
CCGAAACCGTTACATCTGCCAGTTGCCAGGAGCACATCTCCGGTGGGCCAGGGCCT
GAGGCCTGACCACATGGCTCCCTGCCCTGGGAGCAGGCTCTGCTTACCTGTCTGC
CCACCTGTCTGGAACAAGGGCAGGTTAAGACCACATGCCTCATGTCCAAAGAGGTCTCAGA
CCTTGACAAATGCCAGAAGTTGGCAGAGAGAGGCAGGGAGGCCAGTGAGGGCCAGGGAGTG
AGTGTAGAAGAAGCTGGGCCCTCGCCTGCTTGTGATTGGGAAGATGGCTTCAATTAGA
TGGCGAAGGAGAGGACACGCCAGTGGTCAAAAAGGCTGCTCTTCCACCTGGCCCAGAC
CCTGTGGGGCAGCGGAGCTCCCTGTGGCATGAACCCACGGGTATTAAATTATGAATCAG
CTGAAAAAAAAAAAAA

FIGURE 20

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44176

<subunit 1 of 1, 455 aa, 1 stop

<MW: 50478, pi: 8.44, NX(S/T): 2

MLHPETSPGRGHLLAVLLALLGTTWAEVWPPQLQEQQAPMAGALNRKESFLLLHNRRLRSWV
QPPAADMRRLDWSDSLAQLAQARAALCGIPTPSLASGLWRTLQVGWNMQLLPAGLASFVEVV
SLWFAEGQRYSHAAGECARNATCTHYTQLWATSSQLGCGRHLCAGQTAIEAFVCAYSPGG
NWEVNGKTII PYKKGAWSLCTASVSGCFKAWDHAGGLCEVPRNPCRMSQNHGRLNISTCH
CHCPCPGYTGRYCVRCSLQCVHGRFREEECSVCDIGYGGACATKVHFPFHTCDLRIDGDC
FMVSSEADTYYRARMKCQRKGGLAQIKSQKVQDILAFYLGRLETTNEVTDSDFETRNFWIG
LYKTAKDSFRWATGEHQAFTSFAFGQPDNHGLVWLSAAMFGNCVELQASAANWNDQRCK
TRNRYICQFAQEHISRWPGBS

Signal sequence.

amino acids 1-26

Transmembrane domain.

amino acids 110-124

N-glycosylation sites.

amino acids 144-148, 243-247

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 45-49

N-myristoylation sites.

amino acids 22-28, 99-105, 131-137, 201-207, 213-219, 287-293,
288-294, 331-337, 398-404

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 204-215

EGF-like domain cysteine pattern signature.

amino acids 249-261, 280-292

C-type lectin domain signature.

amino acids 417-442

FIGURE 21

CGGACGCCGTGGCTGGCGCTGCAAAGCGTGTCCCAGCCGGTCCCCGAGCGTCCCCCGCCCGA
CGCCCCGCCATGCTCCTGCTGGCTGTGCCTGGGGCTGTCCCTGTGTGTGGGGTCGA
GGAAGAGGCGCAGAGCTGGGCCACTCTCGAGCAGGATGGACTCAGGGTCCCAGGCAAG
TCAGACTGTTGAGAGGCTGAAAACCAAACCTTGTATGACAGAATTCTCAGTGAAGTCTACC
ATCATTTCCCGTTATGCCTTCACTACGGTTCTGCAGAAATGCTGAACAGAGCTCTGAAGA
CCAGGACATTGAGTTCCAGATGCAGATTCCAGCTGCAGCTTCATCACCAACTTCACTATGC
TTATTGGAGACAAGGTGTATCAGGGCAGAAATTACAGAGAGAGAAAAGAAGAGTGGTGATAGG
GTAAAAGAGAAAAGGAATAAAACACAGAAGAAAATGGAGAGAAGGGGACTGAAATATTAG
AGCTTCTGCAGTGATTCCCAGCAAGGACAAGCCGCTTTCTGAGTTATGAGGAGCTTC
TGCAGAGGCGCCTGGCAAGTACGAGCACAGCATCAGCGTGCAGCCAGCAGCTGTCCGGG
AGGCTGAGCGTGGACGTGAATATCCTGGAGAGCGCGGGCATCGCATCCCTGGAGGTGCTGCC
GCTTCACAACACAGCAGGAGAGGGCAGTGGCGCGGGAAAGATGATTCTGGCCTCCCCCAT
CTACTGTCACTAACCAAAATGAAACATTGCCAACATAATTAAACCTACTGTAGTACAA
CAAGCCAGGATTGCCAGAATGGAATTGGAGACTTATCATTAGATATGACGTCAATAG
AGAACAGAGCATTGGGACATCCAGGTTCTAAATGGCTATTGTGCACTACTTGCTCCTA
AAGACCTCCTCCTTACCCAAGAATGTGGTATTGTGCTTGACAGCAGTGCTTATGGTG
GGAACCAAACCCGGCAGACCAAGGATGCCCTTCACAATTCTCCATGACCTCCGACCCCA
GGACCGTTCACTATGGATTTCACCGGATCAAAGTATGGAAGGACCACTTGATAT
CAGTCACTCCAGACAGCATCAGGGATGGGAAAGTGTACATTACCATATGTCACCCACTGGA
GGCACAGACATCAACGGGCCCTGCAGAGGGCCATCAGGCTCTCAACAAGTACGTGGCCA
CAGTGGCATTGGAGACCGAGCGTGTCCCTCATCGTCTTGACGGATGGGAAGGCCACGG
TCGGGGAGACGCACACCTCAAGATCCTCAACAAACACCGAGAGGCCGAGGGCAAGTC
TGCATCTCACCATTGGCATGGCAACGACGTGGACTTCAGGCTGCTGGAGAAACTGTGCGCT
GGAGAACTGTGGCCTCACACGGCGTGCACGAGGAGGACGAGGCTCGCAGCTCATCG
GGTTCTACGATGAAATCAGGACCCGCTCCTCTGACATCCGATCGATTATCCCCCAGC
TCAGTGGTGCAGGCCACCAAGACCCCTGTTCCCCAACTACTTCAACGGCTGGAGATCATCAT
TGCAGGGAAAGCTGGTGGACAGGAAGCTGGATCACCTGCACGTGGAGGTACCGCCAGCAACA
GTAAGAAATTCTCATCCTGAAGACAGATGTGCCTGTGGCCCTCAGAAGGCAGGAAAGAT
GTCACAGGAAGCCCCAGGCCTGGAGGGCAGGGAGAGGGGACACCAACACATCGAGCGTCT
CTGGAGCTACCTCACCAAAAGGAGCTGCTGAGCTCCTGGCTGCAAAGTGAACGATGAACCGG
AGAAGGAGCGGCTCGGGCAGCAGGCCAGGCCCTGGCTGTGAGCTACCGCTTCTACTCCC
TTCACCTCCATGAAGCTGAGGGGCCGGTCCCACGCATGGATGGCCTGGAGGAGGCCACGG
CATGTCGGCTGCCATGGGACCCGAACCGGTGGTCAGAGCGTGCAGGGAGCTGGCACGCAGC
CAGGACCTTGCTCAAGAAGCCAAACTCCGTAAAAAAACAAAAACAAACAAAAAGA
CATGGAGAGATGGTTTCTCTCCACCACTGGGATAACGATGAGAAGATGCCACCT
GCAAGCCAGGAAGACGCCCTCACCAAGACACCATGTCTGCTGGCACCTTGATCTGGACCTC
CCAGCCTCCAGAACTGTGAGAAATAATGTGTTTGTAAAGCTAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAA

FIGURE 22

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44192

<subunit 1 of 1, 694 aa, 1 stop

<MW: 77400, PI: 9.54, NX(S/T): 6

MLLLLGLCLGLSLCVGSQEEAQSWGHSSEQDGLRVPRQVRLLQRLKTKPLMTEFSVKSTIIS
RYAFTTVSCRMLNRASEDQDIEFQMGI PAAAFITNFTMLIGDKVYQGEITEREKSGDRVKE
KRKNKTTEENGEGKTEIFRASAVIPSKDKAAFFLSYEELLQRRLGKYEHSISVRPQQLSGRSL
VDVNILESAGIASLEVLPLHNSRQRGSGRGEDDSGPPPSTVINQNETFANI IFKPTVVQQAR
IAQNGILGDFI IRYDVNREQSIGDIQVLNGYFVHYFAPKDLPLPKNVVFVLDSSASMVGTK
LRQTKDALFTILHDLRPQDRFSIIGFSNRIKVWKDHЛИSVPDSIRDGKVIHHMSPTGGTD
INGALQRAIRLLNKYVAHSGIGDRSVSLIVFLTDGKPTVGETHTLKILNNNTREAARGQVCIF
TIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLIGFYDEIRTPLLSDIRIDYPPSSVV
QATKTLFPNYFNGSEIIIAGKLVDRKLDHLHVEVTASNNSKKFIILKTDVPVRPQKAGKDVTG
SPRPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERLRQRAQALAVSYRFLTPFTS
MKLRGPVPRMDGLEEAHMSAAMGPEPVVQSVRGAGTQPGPLLKKPNSVKKQNKTKRHGR
DGVFPLHHLGIR

Signal sequence.

amino acids 1-14

N-glycosylation sites.

amino acids 97-101, 127-131, 231-235, 421-425, 508-512, 674-678

Glycosaminoglycan attachment sites.

amino acids 213-217, 391-395

N-myristoylation sites.

amino acids 6-12, 10-16, 212-218, 370-376, 632-638, 638-644

FIGURE 23

CGGACGCGTGGGTGCCGACATGGCGAGTGTAGTGCTGCCGAGCGGATCCCAGTGTGCGGC
GGCAGCGGCCGGCGGCCCTCCCGGGCTCCGGCTCTGCTGTTGCTCTTCTCCGCCGG
CACTGATCCCCACAGGTGATGGGCAGAATCTGTTACGAAAGACGTGACAGTGATCGAGGG
GAGGTTGCGACCATCAGTGCCAAGTCAATAAGAGTGACGACTCTGTGATTGACTACTGAA
TCCCAACAGGCAGACCATTATTCAGGGACTTCAGGCCTTGAAGGCAGCAGGTTCACT
TGCTGAATTTCTAGCAGTGAACCAAAGTATCATTGACAAACGTCTCAATTCTGATGAA
GGAAGATACTTTGCCAGCTCTACCGATCCCCACAGGAAAGTTACACCACCATCACAGT
CCTGGTCCCACCGTAATCTGATGATCGATATCCAGAAAGACACTGCGGTGGAAGGTGAGG
AGATTGAAGTCAACTGCACTGCTATGCCAGCAAGCCAGCAGACTATCAGGTGGTCAAA
GGGAACACAGAGCTAAAGGCAAATCGGAGGTGGAAGAGTGGTCAGACATGTACACTGTGAC
CAGTCAGCTGATGCTGAAGGTGACAAGGAGGACATGGGTCCCAGTGATCTGCCAGGTGG
AGCACCCCTGCGGTCACTGGAAACCTGCAGACCCAGCGGTATCTAGAAGTACAGTATAAGCCT
CAAGTGCACATTAGATGACTTATCCTCTACAAGGCTTAACCCGGAAAGGGACGCGCTTGA
GTTAACATGTGAAGCCATCGGAAGCCCCAGCCTGTGATGGTAACCTGGTGAGAGTCGATG
ATGAAATGCCAACACGCCGTACTGTCTGGGCCAACCTGTTCATCAATAACCTAAACAAA
ACAGATAATGGTACATACCGCTGTGAAGCTCAAACATAGTGGGAAAGCTCACTCGGATTA
TATGCTGTATGTATACGATCCCCCACAACATCCCTCCTCCCACAACAACCACCA
CCACCACCACCACCAACCACCATCCTTACCATCATCACAGATTCCGAGCAGGTGAAGAAGGC
TCGATCAGGGCAGTGGATCATGCCGTGATCGGTGGCGTGGCGGTGGTGGTGGTGGTGG
GCTGTGCTTGCTCATCATTCTGGGCGCTATTTGCCAGACATAAAGGTACATACTCACTC
ATGAAGCAAAGGAGCCGATGACGCAGCAGCAGACACAGCTATAATCAATGCAGAAGGA
GGACAGAACAACTCCGAAGAAAAGAAAGAGTACTTCATTAGATCAGCTTTGTGTTCAAT
GAGGTGTCCAACTGGCCTATTTAGATGATAAAGAGACAGTGATATTGG

FIGURE 24

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA39518

<subunit 1 of 1, 440 aa, 1 stop

<MW: 48240, PI: 4.93, NX(S/T): 7

MASVVLPSGSQCAAAAAAAPPGLRLLLLLFSAAALIPTGDGQNLFTKDVTVIEGEVATISC
QVNKSDDSVIQLLNPNRQTIFYFRDFRPLKDSRFQLLNFSSELKVSLTNVSISDEGRYFCQL
YTDPPQESYTTITVLVPPRNLMIDIQKDTAVEGEEIEVNCTAMASKPATTIRWFKGNTTELKG
KSEVEEWSDMYTVTSQMLKVHKEDDGVPVICQVEHPAVTGNLQTQRYLEVQYKPQVHIQMT
YPLQGLTREGDALELTCEAIGKPQPVMVTWVRVDDEMPQHAVLSGPNLFINNLNKTDNGTYR
CEASNIVGKAHSDYMLYVYDPPTTIPPPTTTTTTTILTIITDSRAGEEGSIRAVDH
AVIGGVVAVVFAMLCLLIILGRYFARHKGTYFTHEAKGADDAADADTAIINAEGGQNNSEE
KKEYFI

Signal sequence.

amino acids 1-36

Transmembrane domain.

amino acids 372-393

N-glycosylation sites.

amino acids 65-69, 99-103, 111-115, 163-167, 302-306, 306-310,
430-434

Tyrosine kinase phosphorylation sites.

amino acids 233-240, 319-328

N-myristoylation sites.

amino acids 9-15, 227-233, 307-313, 365-371, 376-382, 402-408,
411-417, 427-433, 428-432

FIGURE 25

GGGGCGGGTGGACGCGGACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCCCTGGGCCCGA
CCCGCCAGGAAAGACTGAGGCCGCGCCTGCCCGCCGGCTCCCTGCGCCGCCGCCCTC
CCGGGACAGAAGATGTGCTCCAGGGCTCCCTGCTGCTGCCGCTGCTCCTGCTACTGCCCT
GGGGCCTGGGTGCAGGGCTGCCATCCGGCTGCCAGTGCAAGCCAGCACAGACAGTCTTCT
GCACTGCCGCCAGGGACCACGGTGCCCCGAGACGTGCCACCCGACACGGTGGGCTGTAC
GTCTTGAGAACGGCATCACCATGCTGACGCAAGCAGCTTGCCGCCCTGCCGGCTGCA
GCTCCTGGACCTGTCACAGAACAGATGCCAGCCTGCCCTGCCCTGCCCTGCTGCTGG
ACCTCAGCCACAACAGCCTCCTGGCCCTGGAGGCCGATCCTGGACACTGCCAACGTGGAG
GCGCTGCCGCTGGCTGGTCTGGGCTGCAGCAGCTGGAGCGAGTGCCACCTGTGATCCGAG
CAACCTCCACGACCTGGATGTGTCGACAACCAGCTGGAGCGAGTGCAGCTGCCAGCTGCC
GCCTCCGGGCTGACGCCCTGCCGCTGGCCGAAACACCCGATTGCCAGCTGCC
GAGGACCTGGCCGGCCTGGCTGCCCTGCAGGAGCTGGATGTGAGAACCTAACGCTGCC
CCTGCCTGGCGACCTCTCGGGCCTCTTCCCCCGCCTGCCGCTGCTGCCAGCTGCCGCAACC
CCTTCAACTGCGTGTGCCCTGAGCTGGTTGGCCCTGGGTGCGCGAGAGCCACGTCACA
CTGGCCAGCCCTGAGGAGACGCCACTTCCCAGCCAAGAACGCTGGCCGGCTGCTCCT
GGAGCTTGAACCGCAGCTTGCTGCCAGCCACCCACACAGCCACAGTGCCACCA
CGAGGCCGTGGTGCAGGAGCCCACAGCCTGTCTAGCTTGCTCCTACCTGGCTTAGC
CCCACAGCGCCGCCACTGAGGCCAGGCCCTCCACTGCCAACCGACTGTAGGGCC
TGTCCCCAGCCCCAGGACTGCCACCGTCCACCTGCCCTCAATGGGGCACATGCCACCTGG
GGACACGGCACCACTGGCGTGCTTGCCCCGAAGGCTTACGGGCTGTACTGTGAGAGC
CAGATGGGGCAGGGACACGCCAGCCCTACACCAGTCACGCCAGGCCACCGTCC
GACCCCTGGCATCGAGCCGTGAGCCCCACCTCCCTGCCGTGGGCTGCAGCGTACCTCC
AGGGGAGCTCGTGAGCTCAGGAGCCTCCGTCTCACCTATGCAACCTATGGCCCTGAT
AAGCGGCTGGTACGCTGCGACTGCCCTGCCCTCGCTGAGTACACGGTACCCAGCTGCG
GCCAACGCCACTTAACCGTCTGTCTAGCCTTGGGCCGGGGCTGCCGGAGGGCG
AGGAGGCCTGCCGGGAGGCCATACACCCCCAGCCGTCCACTCCAACCACGCCAGTCACC
CAGGCCCGAGGGCAACCTGCCCTCATTGCCGCCCTGGCGGGTGCCTGGC
CGCGCTGGCTGCCGGTGGGGCAGCCTACTGTGTGCCGGGGGGCCATGGCAGCAGCGG
CTCAGGACAAAGGGCAGGTGGGGCAGGGCTGGGCCCTGGAACTGGAGGGAGTGAAGGTC
CCCTGGAGCCAGGCCGAAGGCAACAGAGGGCGGTGGAGAGGCCCTGCCAGGGCTGA
GTGTGAGGTGCCACTCATGGCTTCCCAGGGCCTGCCCTCCAGTCACCCCTCACGCAAAGC
CCTACATCAGCCAGAGAGAGACAGGGCAGCTGGGCCGGCTCTCAGCCAGTGAGATGGC
CAGCCCCCTCCGTGCCACACCAACGTAAGTTCTCAGTCCCAACCTGGGATGTGCGAGA
CAGGGCTGTGTGACCACAGCTGGGCCCTGTTCCCTCTGGACCTCGGTCTCCTCATCTGTGAG
ATGCTGTGGCCCAGCTGACGAGCCCTAACGTCCCCAGAACCGAGTGCTATGAGGACAGTGT
CCGCCCTGCCCTCGCAACGTGCAGTCCCTGGCACGGCGGGCCCTGCCATGTGCTGGTAAC
GCATGCCCTGGGCCCTGCTGGCTCTCCACTCCAGGGGACCCCTGGGGCCAGTGAAGGAAG
CTCCCGGAAAGAGCAGAGGGAGAGCGGGTAGGCAGGCTGTGACTCTAGTCTTGGCCCCAGG
AAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGCTTGGAAACATGTTGCTTTAA
AATATATATATTTATAAGAGATCCTTCCCATTATCTGGAAAGATGTTTCAAACTC
AGAGACAAGGACTTGGTTTGTAAAGACAAACGATGATATGAAGGCCTTGTAAAGAAAAA
ATAAAAAAAAAA

FIGURE 26

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44804

<subunit 1 of 1, 598 aa, 1 stop

<MW: 63030, PI: 7.24, NX(S/T): 3

MCSRVPLLPPLLLALGPGVQGCPSCGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFEN
GITMLDASSFAGLPGLQLLDLSQNQIASLRLPRLLLLDLSHNSLLALEPGIILDTANVEALRL
AGLGLQQLDEGLFSRLRNLDLSDNQLERVPPVIRGLRGLTRLRLAGNTRIAQLRPEDLA
GLAALQELDVSNLSQLALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFGPWVRESHVTLASP
EETRCHFPPKNAGRLLLELDYADFGCPATTTATVPTTRPVVREPTALSSSLAPTWLSPTAP
ATEAPSPPSTAPPTVGPVPQPQDCCPPSTCLNGGTCHLGTRHHHLACLCPEGFTGLYCESQMGQ
GTRPSPTPVTPRPPRSLTIGIEPVSPTRVGLQRYLQGSSVQLRSLRLTYRNLSGPDKRLV
TLRLPASLAEYVTQLRPNATYSVCVMPLGPGRVPEGEAACGEAHTPPAVHSNHAPVTQARE
GNLPLLIAPALAAVLLAALAAVGAAVCVRGRAMAAAQDKGQVPGAGPLELEGVKVPLEP
GPKATEGGEALPSGSECEVPLMGFPGPGLQSPLHAKPYI

Signal sequence.

amino acids 1-23

Transmembrane domain.

amino acids 501-522

N-glycosylation sites.

amino acids 198-202, 425-429, 453-457

Tyrosine kinase phosphorylation site.

amino acids 262-270

N-myristoylation sites.

amino acids 23-29, 27-33, 112-118, 273-279, 519-525, 565-571

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

EGF-like domain cysteine pattern signature.

amino acids 355-367

Leucine zipper pattern.

amino acids 122-144, 194-216

FIGURE 27

GGCACTAGGACAACTTCTCCCTCTGCACCACTGCCGTACCCCTACCGCCCCGCCACC
TCCTTGCTACCCACTCTGAAACCACAGCTGTTGCAGGGTCCCCAGCTCATGCCAGCCTC
ATCTCCTTCTTGCTAGCCCCAAAGGGCCTCCAGGCAACATGGGGGCCAGTCAGAGAGC
CGGCACTCTCAGTTGCCCTGGTTGAGTTGGGGCAGCTCTGGGGCCGGCTTGCTTGCC
ATGGCTCTGCTGACCCAAACAAACAGAGCTGCAGAGCCTCAGGAGAGAGGTGAGCCGGCTGCA
GGGGACAGGAGGCCCCCTCCCAGAATGGGAAGGGTATCCCTGGCAGAGTCTCCGGAGCAGA
GTTCCGATGCCCTGGAAGCCTGGAGAATGGGAGAGATCCCGAAAAGGAGAGCAGTGCTC
ACCCAAAAAACAGAAGAACAGCAGCACTCTGCCTGCACCTGGTCCCATTAAACGCCACCTCAA
GGATGACTCCGATGTGACAGAGGTGATGTGGCAACCAGCTCTTAGGCGTGGAGAGGCCTAC
AGGCCAAGGATATGGTGTCCGAATCCAGGATGCTGGAGTTATCTGCTGTAGCCAGGTC
CTGTTCAAGACGTGACTTCACCATGGGTCAAGGTGGTCTCGAGAAAGGCCAAGGAAGGCA
GGAGACTCTATTCCGATGTATAAGAAGTATGCCCTCCCACCCGGACCAGGCTACAACAGCT
GCTATAGCGCAGGTGTCTCCATTACACCAAGGGATATTCTGAGTGTCTAAATTCCCCGG
GCAAGGGCGAAACTTAACCTCTCCACATGGAACCTCCTGGGTTGTGAAACTGTTGATT
GTGTTATAAAAGTGGCTCCAGCTTGGAAAGACCAGGGTGGGTACATACTGGAGACAGCCAA
GAGCTGAGTATATAAGGAGAGGAAATGTGCAGGAACAGAGGCATCTCCTGGGTTGGCTC
CCCGTTCCCTCACTTTCCCTTTCAATTCCCACCCCTAGACTTGTGATTTACGGATATCTTG
CTTCTGTTCCCCATGGAGCTCCG

FIGURE 28

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52722

<subunit 1 of 1, 250 aa, 1 stop

<MW: 27433, pI: 9.85, NX(S/T) : 2

MPASSPFLLAPKGPPGNMGGPVREPALSVALWLSWGAALGAVACAMALLTQQTELQLSRREV
SRLQGTGGPSQNGEKY PWQSLPEQSSDALEAWENGERSRKRRRAVLTQKQKKQHSVLHLVPIN
ATSKDDSDVTVEMWQPALRRGRGLQAQGYGVR I QDAGVYLLYSQVLFQDVFTTMGQVVSREG
OGRQETLFRCIRSMPSHPDRAYNSCYSAGVFHLHQGDILSVI I PRARAKLNLSPHGTFLGFVKL

Signal sequence.

amino acids 1-40

N-glycosylation site.

amino acids 124-128

Tyrosine kinase phosphorylation site.

amino acids 156-164

N-myristoylation site.

amino acids 36-42, 40-46, 179-185, 242-248

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 34-45

FIGURE 29

CACTTCTCCCTCTTCCTTACTTCAAGAAACCGCGCTTCCGCTCTGGTCGCAGAGAC
CTCGGAGACC CGGCCGGGAGACGGAGGTGCTGGGTGGGGGACCTGGCTGCTCGTA
CCGCCCCCCCACCCTCCTCTGCACTGCCGTCTCCGAAGACCTTTCCCCTGCTCTGTT
TCCTTCACCGAGTCTGTGCATGCCCGGACCTGGCCGGAGGAGGCTTGCCGGGGAGA
TGCTCTAGGGCGGGCGGGAGGAGCGGCCGGGACGGAGGGCCGGCAGGAAGATGGC
TCCC GTGGACAGGGACTCTTGCTGGCGTACTGCCTGCTCCTGCCTTGCCCTGGCCTGGT
CCTGAGTCGTGTGCCCATGTCCAGGGGAACAGCAGGAGTGGGAGGGACTGAGGAGCTGC
CGTCGCCCTCCGGACCATGCCAGAGGGCTGAAGAACACATGAAAAATACAGGCCAGTCAG
GACCAGGGCTCCCTGCTTCCGGTCTGCGCTGCTGTGACCCGGTACCTCATGTACCC
GGCGACCGCCGTGCCAGATCAACATCACTATCTGAAAGGGAGAAGGGTACCGCGGAG
ATCGAGGCCTCCAAGGGAAATATGGCAAAACAGGCTCAGCAGGGCCAGGGCCACACTGGA
CCCAAAGGGCAGAAGGGCTCCATGGGGCCCTGGGAGCGGTGCAAGAGCCACTACGCCGC
CTTT CGGTGGCCGGAGAACGCCATGCACAGCAACC ACTACTACAGACGGTATCTCG
ACACGGAGTTCGTGAACCTCTACGACCACCTCACATGTTCACGGCAAGTTCTACTGCTAC
GTGCCCGGCCTCTACTCTTCAGCCTCACAGTGACACCTGGAACCAAGAGGAGACCTACCT
GCACATCATGAAGAACGAGGAGGAGGTGGTATCTGTTCGGCAGGTGGGACCCGAGCA
TCATGCAAAGCCAGAGCCTGATGCTGGAGCTGCGAGAGCAGGACAGGTGTGGTACGCC
TACAAGGGCAGACGTGAGAACGCCATCTCAGCGAGGAGCTGGACACCTACATCACCTCAG
TGGCTACCTGGTCAAGCACGCCACCGAGCCCTAGCTGGCCGGCACCTCCCTCGCC
ACCTTCCACCCCTGCGCTGTGCTGACCCACCGCCTCTCCCCGATCCCTGGACTCCGACTC
CCTGGCTTGGCATTCACTGAGACGCCCTGCACACACAGAAAGCCAAGCGATCGGTGCTCC
CAGATCCCGAGCCTCTGGAGAGAGCTGACGGCAGATGAAATCACCAGGGCGGGCACCGC
GAGAACCCCTGGGACCTTCCCGGCCCTCTGCACACATCCTCAAGTGACCCGCACGGC
GAGACCGGGTGGCGCAGGGCGTCCAGGGTGGCAGCGGGCTCCAGTCTGGAAATA
ATTAGGCAAATTCTAAAGGTCTCAAAAGGAGCAAAGTAAACCGTGGAGGACAAAGAAAAGGG
TTGTTATTTGTCTTCCAGCCAGCCTGCTGGCTCCAAAGAGAGAGGCTTTCTAGTTGAG
ACTCTGCTTAAGAGAAGATCCAAAGTTAAAGCTCTGGGTCAAGGGAGGGCCGGGAGG
AAACTACCTCTGGCTTAATTCTTTAAGCCACGTAGGAACCTTCTGAGGGTAGGTGGACCC
CTGACATCCCTGTGGCCTTGGCCAAGGGCTCTGCTGGTCTTCTGAGTCACAGCTCGAGGT
GATGGGGCTGGGCCAGGGCGTCAGCCTCCAGAGGGACAGCTGAGCCCTGCTTGGC
TCCAGGTTGGTAGAAGCAGCCAGGGCTCCTGACAGTGGCAGGGACCCCTGGTCCCCA
GGCCTGCAGATGTTCTATGAGGGGCAGAGCTCCTGGTACATCCATGTGGCTCTGCTCC
ACCCCTGTGCCACCCAGGCCCTGGGGGTGGTCTCCATGCCTGCCACCCCTGGCATCGGCT
TTCTGTGCCGCCCTCCCACACAAATCAGCCCCAGAAGGCCCGGGCTTGGCTCTGTTTT
TATAAAACACCTCAAGCAGCACTGCAGTCTCCATCTCCTCGTGGCTAACGCATACCGCTT
CCACGTGTGTTGGTGGCAGCAAGGCTGATCCAGACCCCTCTGCCCTACTGCCCT
CATCCAGGCCTCTGACCACTGAGGCTGAGAGGGCTTTCTAGGCTCAGAGCAGGGAGAG
CTGGAAGGGCTAGAAAGCTCCGCTTGTCTGTTCTCAGGCTCTGTGAGCCTCAGTCCTG
AGACCAGAGTCAAGAGGAAGTACACGTCCAATCACCGTGTAGGATTCACTCTCAGGAGC
TGGGTGGCAGGAGAGGAATAGCCCTGTGGCAATTGCAGGACAGCTGGAGCAGGGTTGCG
GTGTCTCCACGGTGCTCGCCCTGCCATGCCACCCAGACTCTGATCTCCAGGAACCC
ATAGCCCTCTCCACCTCACCCATGTTGATGCCAGGGTCACTCTGCTACCCGCTGGGCC
CCCAAACCCCGCTGCCCTCTCCCTCCCCCATCCCCCACCTGGTTTGACTAACCTG
TTCCTCTCTGGGCCCTGGCTGCCGGATCTGGGTCCCTAAGTCCTCTCTTAAAGAACTT
CTGCGGGTCAGACTCTGAAGCCGAGTTGCTGTGGCGTGCCCGAAGCAGAGGCCACACTC
GCTGCTTAAGCTCCCCAGCTTTCCAGAAAACATTAAACTCAGAATTGTGTTTCAA

FIGURE 30

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41234
><subunit 1 of 1, 281 aa, 1 stop
><MW: 31743, pI: 6.83, NX(S/T): 1
MGSRGQGLLLAYCLLLAFASGLVLSRVPHVQGEQQEWEGTEELPSPPDHAERAEEQHEKYRP
SQDQGLPASRCLRCCDPGTSMYPATAVPQINITILKGEKGDRGDRGLQGKYGKTGSAGARGH
TGPKGQKGSMGAPGERCKSHYAAFSVGRKKPMHSNHYYQTVIFDTEFVNLYDHFNMF TGKFY
CYVPGLYFFSLNVHTWNQKETYLHIMKNEEVVILFAQVGDRSIMQSQSLMLELREQDQVWV
RLYKGERENAIFSEELDTYITFSGYLVKHATEP
```

Signal sequence.

amino acids 1-25

N-glycosylation site.

amino acids 93-97

N-myristoylation sites.

amino acids 7-13, 21-27, 67-73, 117-123, 129-135

Amidation site.

amino acids 150-154

Cell attachment sequence.

amino acids 104-107

FIGURE 31

GGCGGAGCATCCGCTGCCGCTCGCCGAGACCCCCCGCGCGGATTGCCGGTCTTCCCAGCG
GCGCAGAGACTGTCTCGCACCTGGATGGCAGCAGGGCGCCGGGTCTCTCGACGCCA
GAGAGAAATCTCATCATCTGTGCAGCCTCTAAAGCAAACTAAGACCAGAGGAGGATTAT
CCTTGACCTTGAAGACCAAAACTAAACTGAAATTAAAATGTTCTTCGGGGAGAACGGAG
CTTGACTTACACTTGGTAATAATTGCTCTGACACTAAGGCTGTCTGCTAGTCAGAATT
GCCTCAAAAGAGTCTAGAAGATGTTGTCATTGACATCCAGTCATCTCTTCTAAGGAAATC
AGAGGCAATGAGCCGTATATACTCAACTCAAGAAGACTGCATTAATTCTGCTGTTAAC
AAAAAACATATCAGGGACAAAGCATGTAACCTGATGATCTCGACACTCGAAAAACAGCTA
GACAACCCAACTGCTACCTATTCTGTCACGAGGAAGCCTGTCATTGAAACCAGCA
AAAGGACTTATGAGTTACAGGATAATTACAGATTTCATCTTGACCAGAAATTGCCAAG
CCAAGAGTTACCCCAGGAAGATTCTCTTACATGGCAATTTCACAAGCAGTCACTCCCC
TAGCCCACATCACACAGATTATTCAAAGCCCACCGATATCTCATGGAGAGACACACTTCT
CAGAAGTTGGATCCTCAGATCACCTGGAGAAACTATTAAAGATGGATGAAGCAAGTGCCA
GCTCCTGCTTATAAGGAAAAGGCCATTCTCAGAGTTACAATTTCTGATCAAGAAA
TAGCTCATCTGCTGCCTGAAAATGTGAGTGCCTCCAGCTACGGTGGCAGTTGCTCTCCA
CATACCACCTCGGCTACTCCAAGGCCACCCTCTACCCACCAATGCTCAGTGACACC
TTCTGGACTTCCAGCCACAGCTGCCACCACAGCTCCACCTGTAACCACGTCACTTCTC
AGCCTCCCACGACCCCTCATTTCTACAGTTTACACGGGCTGCCACTACCTCAAGCAATG
GCTACAACAGCAGTTGACTACCACCTTCAGGCACCTACGGACTCGAAAGGCAGCTTAGA
AACCATACCGTTACAGAAATCTCAAACCTAAACTTGAACACAGGAAATGTGTATAACCTA
CTGCACCTTCTATGTCAAATGTGGAGTCTCCACTATGAATAAAACTGCTCCTGGAAAGGT
AGGGAGGCCAGTCCAGGCAGTTCTCCAGGGCAGTGTCCAGAAAATCAGTACGGCCTTCC
ATTGAAAAATGGCTCTTATCGGGCTCTGCTCTTGGTGTCTCTGGTGTAGAGGCT
TCGTCTCCTGGTAGAAATCCTTCGGAATCACTCCGAGGAAACGTTACTCAAGACTGGAT
TATTGATCAATGGATCTATGTGGACATCTAAAGGATGGAACTCGGTGTCCTTAATTCTT
TAGTAACCAGAAGCCAAATGCAATGAGTTCTGCTGACTGCTAGTCTTAGCAGGAGGTTG
TATTGAAAGACAGGAAATGCCCTCTGCTCTTCTTGGAGACAGAGTCT
GCTCTGTTGCCAGGCTGGAGTGCAGTAGCAGATCTGGCTCTCACCGAACCTCCGTCTC
CTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCTAACGATCTGGATTACAGGCATGTGCCA
CCACACCTGGGTGATTGGTATTTAGTAGAGACGGGTTCACCATGTTGGTCAGGCTG
GTCTCAAACCTGACCTAGTGATCCACCCCTCTGGCTCCAAAGTGCTGGATTACAGG
CATGAGCCACACAGCTGGCCCCCTCTGTTATGTTGGTTTGAGAAGGAATGAAGTG
GGAACCAAATTAGTAATTGGTAATCTGTCTCTAAATATTAGCTAAAACAAAGCTCT
ATGTAAGTAATAAAAGTATAATTGCCATATAAAATTCAAACGGCTTTATGCAAA
GAAACAGGTTAGGACATCTAGGTTCCAATTCAATTACATTCTGGTTCCAGATAAAATCAAC
TGTTATATCAATTCTAATGGATTGCTTTCTTTATATGGATTCTTAAAACATTATT
CCAGATGTAGTTCTTCAATTAAATATTGAATAAAATCTTTGTTACTCAA

FIGURE 32

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45410

><subunit 1 of 1, 431 aa, 1 stop

><MW: 46810, pI: 6.45, NX(S/T): 6

MFFGGEGSLTYTLVIICFLTLRLSASQNCLKSLEDVVIDIQSSLKGIRGNEPVYTSTQED
CINSCCSTKNISGDKACNLMIFDTRKTARQPNCYLFFCPNEEACPLKPAKGLMSYRIITDFP
SLTRNLPSQELPQEDSLLHGQFSQAVTPLAHHTDYSKPTDISWRDTLSQKFGSSDHLEKLF
KMDEASAQLLAYKEKGHSQSSQFSSDQEIAHLLPENVSALPATVAVASPHTTSATPKPATLL
PTNASVTPSGTSQPQLATTAPPVTTVTSQPPPTLISTVFTRAATLQAMATTAVLTTTFQAP
TDSKGSLETIPFTEISNLTLNTGNVYNPTALSMSNVESSTMNKASWEGREASPGSSSQGSV
PENQYGLPFEKWLLIGSLLFGVLFLVIGLVLLGRILSESLRRKRYSRLDYILINGIYVDI

Signal sequence.

amino acids 1-25

Transmembrane domain.

amino acids 384-405

N-glycosylation sites.

amino acids 72-76, 222-226, 251-255, 327-331, 352-356

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 415-419

Tyrosine kinase phosphorylation site.

amino acids 50-57

N-myristoylation sites.

amino acids 4-10, 48-54, 315-321

FIGURE 33

CGGGCACCTGGAAGATGCGCCCATTGGCTGGTGGCCTGCTCAAGGTGGTGGTGGTCTTC
GCCTCCTTGTGTGCCCTGGTATTGGGGTACCTGCTCGCAGAGCTCATTCCAGATGCACCCCT
GTCCAGTGCCTATAGCATCCGCAGCAGCTGGGAGAGGCCTGCTCAAAGCTCCAGTCC
CCAAAAGGCAAAATGTGACCACTGGACTCCCTGCCCATCTGACACCTATGCCTACAGGTTA
CTCAGCGGAGGTGGCAGAACAGCAAGTACGCCAAATCTGCTTGAGGATAACCTACTTATGGG
AGAACAGCTGGAAATGTTGCCAGAGGAATAAACATTGCCATTGTCAAATGTAACTGGGA
ATGTGACAGCAACACGATTTGATATGTATGAAGGCGATAACTCTGGACCGATGACAAG
TTTATTCAAGAGTGCTGCTCCAAATCCCTGCTCTCATGGTACCTATGACGACGGAAGCAC
AAGACTGAATAACGATGCCAAGAACATGCCATAGAACGACTTGGAAAGTAAAGAAATCAGGAACA
TGAAATTCAAGGTCTAGCTGGTATTATTGCAGCAAAAGGCTGGAACTCCCTCGAAATT
CAGAGAGAAAAGATCAACCACTCTGATGCTAAGAACACAGATATTCTGGCTGGCCTGCAGA
GATCCAGATAGAACGGCTGCATACCCAAAGAACGAAGCTGACACTGCAGGGCCTGAGTAAAT
GTGTTCTGTATAAACAAATGCAGCTGGAATCGCTCAAGAACATCTTATTCTAAATCCAACA
GCCCATTTGATGAGTATTGGGTTGTTGAAACCAATGAACATTGCTAGTTGTATCA
AATCTTGGTACGCAGTATTTATACCAAGTATTTATGTAGTGAAGATGTCAATTAGCAGGA
AACTAAAATGAATGGAAATTCTTAAAAAA

FIGURE 34

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA46777
><subunit 1 of 1, 235 aa, 1 stop
><MW: 25982, pI: 9.09, NX(S/T): 2
MRPLAGGLLKVVFVVFASLCAWYSGYLLAELIPDAPLSSAAYSIRSIGERPVLKAPVPKRQK
CDHWTPCPSDTYAYRLLSGGGRSKYAKICFEDNLLMGEQLGNVARGINIAIVNYVTGNVTAT
RCFDMDYEGDNNSGPMTKFIQSAAPKSLLFMVTYDDGSTRLNNDAKNAIEALGSKEIRNMKFRS
SWVFIAAKGLELPSEIQREKINHSDAKNNRYSGWPAEIQIEGCIPKERS
```

Signal sequence.

amino acids 1-20

09614574728340

N-glycosylation sites.

amino acids 120-124, 208-212

Glycosaminoglycan attachment site.

amino acids 80-84

N-myristoylation sites.

amino acids 81-87, 108-114, 119-125