

PLANO DE ENSINO

I. Identificação				
Unidade Acadêmica: Regional Jataí				
Curso: Bacharelado em Ciência da Computação				
Disciplina: Linguagens Formais e Autômatos				
Carga horária semestral: 64	Teórica: 64 Prática: 00			
Semestre/ano: 2018.2	Turma/turno: A			
Professor (a): Esdras Lins Bispo Junior				

II. Ementa

Conjuntos, funções e teoria das provas (direta, contradição, contraexemplo e indução). Hierarquia de Noam Chomsky. Autômatos Finitos (determinístico, não-determinístico e com transições vazias). Autômatos de Pilha (determinístico, não-determinístico e com transições vazias). Máquinas de Turing. Tese de Church-Turing. Linguagens, gramáticas e reconhecedores. Linguagens regulares. Linguagens livres de contexto. Linguagens sensíveis ao contexto. Linguagens recursivamente enumeráveis. Problemas indecidíveis e os limites da computação convencional.

III. Objetivos

III (a) - Objetivo geral

Oferecer o embasamento conceitual e teórico das linguagens formais e autômatos aplicando os conhecimentos no desenvolvimento de sistemas e analisando criticamente os desafios envolvidos.

III (b) - Objetivos específicos

- Definir as linguagens formais e autômatos, motivação e aplicações.
- Analisar os principais modelos de computação, apresentando as suas potencialidades e limitações;
- Discutir o estado da arte em linguagens formais e autômatos, perspectivas de evolução e desafios a serem vencidos.

IV. Conteúdo Programático e Cronograma

IV (a) – Conteúdo Programático

- 1. REVISÃO DE FUNDAMENTOS
- a. O que é Teoria da Computação?

- b. Noções e Terminologias Matemáticas
- c. Definições, Teoremas e Provas
- d. Tipos de Prova
- 2. AUTÔMATOS FINITOS DETERMINÍSTICOS (AFD)
- a. Definição formal de AFD
- b. Exemplos de AFD
- c. Definição formal de computação
- d. Projeto de AFDs
- e. Operações regulares
- 3. AUTÔMATOS FINITOS NÃO-DETERMINÍSTICOS (AFN)
- a. Definição formal de AFN
- b. Equivalência entre AFN e AFD
- c. Fecho sob as operações regulares
- 4. EXPRESSÕES REGULARES
- a. Definição formal
- b. Exemplos de ERs
- c. Fecho sob as operações regulares
- d. Equivalência entre ERs e AFNs
- 5. LINGUAGENS NÃO-REGULARES
- a. Definição do Lema do Bombeamento
- b. Aplicação do Lema do Bombeamento
- 6. GRAMÁTICAS LIVRE-DO-CONTEXTO (GLC)
- a. Definição formal de GLC
- b. Exemplos de GLC
- c. Projeto de GLC
- d. Ambiguidade
- e. Forma norma de Chomsky
- 7. AUTÔMATOS COM PILHA (AP)
- a. Definição formal de AP
- b. Exemplos de AP
- c. Equivalência entre AP e GLC
- 8. LINGUAGEM NÃO-LIVRES-DO-CONTEXTO
- a. Definição do lema do bombeamento
- b. Aplicação do lema do bombeamento
- 9. TOPICOS AVANÇADOS
- a. Máquina de Turing

- b. Linguagens decidíveis
- c. Limites da computação convencional

IV (b) – Cronograma

Mês	Dia	#	Conteúdo
sto	9	1	Apresentação da disciplina e Introdução à disciplina.
	10	2	Revisão de Fundamentos.
	16	3	Revisão de Fundamentos.
	17	4	Autômatos Finitos Deteminísticos.
	22	5	Apresentação de Exercício-Bônus (Reposição).
Agosto	23	6	Mini-Teste 1.
	24	-	Não haverá aula - Participação em evento.
	29	7	Resolução e entrega do Mini-Teste 1 (Reposição).
	30	8	Autômatos Finitos Determinísticos.
	31	9	Autômatos Finitos Determinísticos.
	5	10	Apresentação de Exercício-Bônus (Reposição).
	6	11	Autômatos Finitos Determinísticos.
	7	-	Não haverá aula - Feriado.
Setembro	13	12	Autômato Finito Não-Determinismo.
em	14	13	Mini-Teste 2.
Set	20	14	Resolução e entrega do Mini-Teste 2.
	21	15	Autômato Finito Não-Determinismo.
	27	16	Expressões Regulares.
	28	17	Expressões Regulares.
	4	18	Linguagens não-regulares.
	5	19	Mini-Teste 3.
9	11	20	Resolução e entrega do Mini-Teste 3.
Outubro	12	-	Não haverá aula - Feriado.
Out	18	-	Gramática Livre-do-Contexto
	19	22	Gramática Livre-do-Contexto
	25	-	Não haverá aula - Participação em evento.
	26		Não haverá aula - Participação em evento.
ıbrc	1	-	Não haverá aula - Participação em evento.
Novembro	8	23	Não haverá aula - Participação em evento. Autômato com Pilha
lov	9	24	Linguagens não-livres-do-contexto.
_	7	24	Linguagens nau-nivies-uu-contexto.

Coordenação de Graduação

	15	-	Não haverá aula - Feriado.
	16	-	Não haverá aula - Feriado.
	22	25	Mini-Teste 4.
	23	26	Resolução e entrega do Mini-Teste 4.
	29	27	Revisão
	30	28	Prova (Parte 1).
Dezembro	6	29	Resolução e entrega da Prova (Parte 1).
	7	30	Prova (Parte 2).
	13	31	Resolução e entrega da Prova (Parte 2).
	14	32	Fechamento de médias e finalização da disciplina.

Obs.: Cada entrada do cronograma corresponde a 2 horas-aula.

V. Metodologia

- Metodologia de Instrução pelos Colegas (CROUCH e MAZUR, 2001);
- Utilização de quadro negro (ou branco) e DataShow;
- Atendimento individual ou em grupos;
- Aplicação de listas de exercícios;
- Aplicação de atividades utilizando Ambiente Virtual de Aprendizagem (AVA);
- Tempo de Aula: 50 minutos*

*Obs.: Para complementar os 10 minutos, esta disciplina fará uso e ferramentas online (e.g AVA) para atividades supervisionadas (ver Seção VI), em consonância com o Art. 2º da Resolução CNE/CES nº 3 de 02 de julho de 2007, com o Art 2º da Resolução CEPEC nº 1308 de 05 de setembro de 2014, e com o Art. 16º do Regulamento Geral dos Cursos de Graduação (RGCG), anexo à Resolução CEPEC 1557 de 01 de dezembro de 2017.

VI. Atividades Supervisionadas

As atividades supervisionadas serão realizadas utilizando o AVA. Problematizações sobre os tópicos da disciplina e orientações de resoluções de exercícios serão as principais atividades propostas.

VII. Processos, Critérios de avaliação e Cronograma de Avaliações

VII (a) – Processos e Critérios de Avaliação

Serão ministrados 04 (quatro) mini-testes que serão analisados da seguinte forma:

- Primeiro mini-teste (MT₁) equivale a 20% da pontuação total;
- Segundo mini-teste (MT₂) equivale a 20% da pontuação total;
- Terceiro mini-teste (MT₃) equivale a 20% da pontuação total;

- Quarto mini-teste (MT₄) equivale a 20% da pontuação total.

Será ministrada 01 (uma) prova final (PF) que será analisada da seguinte forma:

- Prova equivale a 20% da pontuação total.

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$.

A PF1 é composta por dois mini-testes de caráter substitutivo:

- o SMT₁ (referente ao MT₁), e
- o SMT₂ (referente ao MT₂).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

- o SMT₃ (referente ao MT₃), e
- o SMT₄ (referente ao MT₄).

Durante a disciplina, alguns Exercícios-Bônus (EB) serão propostos para os alunos. Serão ministrados exercícios em todas as aulas, parte integrante da metodologia Instrução pelos Colegas (IpC).

O cálculo da média final será dada da seguinte forma:

$$MF = MIN(10, PONT)$$

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

$$PONT = \left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0.2 + EB + IpC$$

VII (b) - Cronograma de Avaliações

03/08 - Mini-Teste 1

14/09 - Mini-Teste 2

05/10 - Mini-Teste 3

22/11 – Mini-Teste 4

30/11 - Prova (Parte 1)

07/12 - Prova (Parte 2)

Os demais exercícios (EB e IpC) serão ministrados durante o semestre em todas as demais aulas, desempenhando um papel de avaliação contínua e formativa.

VII (c) – Local de divulgação dos resultados das avaliações

Os resultados das avaliações serão divulgados através do SIGAA e/ou ferramentas online.

VIII. Referências Bibliográficas

VIII (a) – Referências básicas

HOPCROFT, John E., ULLMAN, Jeffery D., MOTWANI, Rajeev. Introdução à teoria de autômatos, linguagens e computação, 2. ed., Rio de Janeiro: Campus, 2003.

RAMOS, Marcos Vinícius M.; NETO, João José e VEGA, Italo Santiago. Linguagens formais: teoria, modelagem e implementação, 1. ed., São Paulo: Bookman, 2009. LINZ, Peter. An introduction to formal language and automata, 4th. ed., Sudbury: Jones and Bartlett Publishers, 2006.

VIII (b) – Referências complementares

VIEIRA, Newton José. Introdução aos fundamentos da computação: linguagens e máquinas, 1. ed., São Paulo: Thomson Pioneira, 2006.

SIPSER, Michael. *Introdução à teoria da computação*, 2. ed., São Paulo: Thomson Pioneira, 2007.

MENEZES, Paulo Blauth. *Linguagens formais e autômatos,* 3. ed., São Paulo: Bookman, 2008.

RICH, Elaine A., Automata, computability and complexity: theory and applications, 1st. ed., Prentice Hall, 2007.

MOZGOVOY, Maxim. Algorithms, languages, automata & compilers: a practical approach, 1st. ed., Johns and Bartlett Publishers, 2009.

WEBBER, Adan. Formal language: a practical introduction, 1st. ed., Franklin, Beedle & Associates, 2008.

Data Jataí, 15 de agosto de 2018.

Esdras Lins Bispo Junior Professor Adjunto – Ciência da Computação

Coordenação de Graduação