Monte Carlo Sampling Methods Homework 5

Zihan (Steven) Zhang

December 14, 2022

1 Exercise 64

In this question, we first define the XY model of statistical physics. Consider a set of 2-dimensional vectors, $\vec{\sigma}_i \in \mathbb{R}^2$ indexed by the 1-dimensional periodic lattice \mathbb{Z}_L and with $||\vec{\sigma}_i||_2 = 1$. Thus, the density:

$$\pi(\vec{\sigma}) = \frac{e^{\beta} \sum_{i \leftrightarrow j} \vec{\sigma}_i \vec{\sigma}_j}{\mathcal{Z}}.$$
 (1)

In terms of the angles $\theta_i \in [-\pi, \pi)$ of the vectors $\vec{\sigma}_i$, we could rewrite the density as:

$$\pi(\theta) = \frac{e^{\beta} \sum_{i \leftrightarrow j} \cos(\theta_i - \theta_j)}{\mathcal{Z}}.$$
 (2)

Thus, implementing the simple recursion formula:

$$X_h^{(k+1)} = X_h^{(k)} + hb\left(X_h^{(k)}\right) + \sqrt{h}\sigma\left(X_h^{(k)}\right)\xi^{(k+1)}.$$
 (3)

Here each $\xi^{(k)}$ is a vector of independent random variables with $\mathbf{P}[(\xi^{(k)})_i = 1] = \mathbf{P}[(\xi^{(k)})_i = -1] = 1/2$ or a vector of independent standard Gaussian random variables that has a limiting generator:

$$\mathcal{L}f(x) = \nabla f(x)b(x) + \frac{1}{2}\operatorname{trace}\left(\sigma(x)\sigma^{\mathrm{T}}(x)D^{2}f(x)\right). \tag{4}$$

We could have the discrete Markov chain as:

$$X_h^{(k+1)} = X_h^{(k)} - h(S) \left(X_h^{(k)} \right) \nabla^{\mathsf{T}} H \left(X_h^{(k)} \right) + h \operatorname{div}(S) \left(X_h^{(k)} \right) + \sqrt{2hS \left(X_h^{(k)} \right)} \xi^{(k)}. \tag{5}$$

for S the identity matrix and $\mathbf{E}[\xi^{(k)}] = 0$ and $\mathbf{cov}[\xi^{(k)}] = I$ (and finite higher moments). It could be simplified as:

$$X^{(k+1)} = X^{(k)} + h\nabla^T \log \pi (X^k) + \sqrt{2h}\xi^{(k+1)}.$$
 (6)

We should write a routine to sample the XY model using Equation (3) and a Metropolized version. The total number of time steps is scaled like 1/h. Also, we should make the comparison in terms of the integrated autocorrelated time of the variable:

$$\frac{M_1(\sigma)}{||M(\sigma)||_2}. (7)$$

which is the cosine of the angle of the magnetization vector:

$$M(\sigma) = \sum_{i=0}^{L-1} \vec{\sigma}_i \in \mathbb{R}^2.$$
 (8)

Firstly we fix L=10 and $\beta=0.1$ and change different h (equispaced variation from $10^{-2.5}$ to 10^{-1}) to calculate IAT for (un)metropolized schemes. Figure 1 shows the results with the inversely proportional reference line: when h increases, the IAT for both the Metropolized version and the standard overdamped Langevin schemes will decrease. Also, we fix $h=10^{-1}$ and slightly change L. Figure 2 shows the result for $h=10^{-1}$ and $\beta=0.1$. The simulation process is quite stochastic, and the relation between L and IAT is unclear. If the perturbation is small, it is confident to say that IAT is decreasing when L increases.

Figure 1: Exercise 64: Relationship between h and IAT.

Figure 2: Exercise 64: Relationship between L and IAT.

2 Exercise 65

In this question, we could write a routine to sample the XY model using Hybrid Monte Carlo model. Specifically, we would independently sample variable $\tilde{Y}(k)$ from the density proportional to $e^{-K(\tilde{x})}$. Set $Y^{(k+1)} = y_h^{(n)} \left(\hat{X}^{(k)}, \tilde{Y}^{(k)}\right)$ where $y_h^{(\ell)}$ solves the Velocity Verlet scheme discretization with initial conditions x and n is chosen by the user. Also, with the probability:

$$p_{acc}\left(X^{(k)}, Y^{(k+1)}\right) = \min\left\{1, \frac{\pi_H\left(Y^{(k+1)}\right)}{\pi_H\left(\hat{X}^{(k)}, \tilde{Y}^{(k)}\right)}\right\}. \tag{9}$$

we set $X^{(k+1)} = Y^{(k+1)}$. Otherwise we set $X^{(k+1)} = X^{(k)}$. Here we choose $K(y) = \frac{||y||_2^2}{2}$, $\hat{J} = I$, n = 5, L = 10, and $\beta = 0.1$. Similarly to Section 1, Figure 3 describes the relationship of h and IAT. The IAT for (un)metropolized schemes would decrease when h increases.

Figure 3: Exercise 65: Relationship bewteen h and IAT.

3 Exercise 66

In this question, we could sample the XY model following:

$$\tilde{X}_h^{(\ell+1)} = \tilde{X}_h'' + \frac{h}{2} \hat{J}^{\mathrm{T}} \nabla^{\mathrm{T}} \log \pi \left(\hat{X}_h^{(\ell+1)} \right). \tag{10}$$

where ξ is the sequence of independent \tilde{d} dimensional Gaussian random vectors with mean zero and identity covariance (and finite higher moments). Let $Y^{(k+1)}$ be the result of a single step of Equation (10) starting from the initial point $X^{(k)} = (\hat{X}^{(k)}, \tilde{X}^{(k)})$. With probability:

$$p_{\text{acc}}\left(X^{(k)}, Y^{(k+1)}\right) = \min\left\{1, \frac{\pi_H\left(Y^{(k+1)}\right) r\left(\hat{Y}^{(k+1)}, -\tilde{Y}^{(k+1)}, \hat{X}^{(k)}, -\tilde{X}^{(k)}\right)}{\pi_H\left(X^{(k)}\right) r\left(X^{(k)}, Y^{(k+1)}\right)}\right\}$$
(11)

set $X^{(k+1)}=Y^{(k+1)}$. Otherwise set $X^{(k+1)}=\left(\hat{X}^{(k)},-\tilde{X}^{(k)}\right)$. The parameter setting (K,J,n,h,L,β) is similar to Section 2. Figure 4 describes the relationship between h and IAT. Figure 5 describes the relationship between γ and IAT. By comparing the results of IAT values to Section 1 and 2, we conclude the Exercise 66 scheme (using Equation (10) with $\hat{J}=\hat{I}$) is the preferred one for sampling the XY model.

Figure 4: Exercise 66: Relationship between h and IAT.

Figure 5: Exercise 66: Relationship between γ and IAT.