

TEKNOFEST 2020 ROKET YARIŞMASI TTurks Roket Takımı Atışa Hazırlık Raporu (AHR)

UYARI:

Bu format dışında herhangi bir format kullanılmamalıdır.
Üretilen bilgilerin orijinal hali ile yansılara konulması (ekran görüntüsü alınmaması), çözünürlük ve okunurluğunun iyi olması ve profesyonel bir sunum hazırlanmasına özen gösterilmesi gerekmektedir. El çizimi yapılmamalıdır.

Takım Yapısı (1/2)

Takım Yapısı (2/2)

KTR'den Değişimler

Kritik Tasarım Raporunda belirtilen tasarımlarda değişiklik yapılmamıştır.

Roket Alt Sistemleri

Üretilecek Parça	Üretim Oranı	Üretilememesnin Sebebi	%100 Üretilecek Tarih
Burun konisi	%50	Yanlış üretim, süre kısıtlığı	06/08/2020
Faydalı yük	%100	-	-
1 Ayrılma Sistemi	%100	-	-
2.Ayrılma Sistemi	%100	-	-
Ana paraşüt Kutusu ayrılma Sistemi	%100	-	-
Sürüklenme paraşütü	%100	-	-
Faydalı yük paraşütü	%100	-	-
Ana Paraşüt	%80	Yanlış üretim, süre kısıtlığı	04/08/2020
Kanat ve Kanat Yatağı	%100	-	-
Aviyonik Sistem	%100	-	-

OpenRocket / Roket Tasarımı Genel Görünüm

OpenRocket / Roket Tasarımı Genel Görünüm

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

Burun ve Faydalı Yük Mekanik Görünüm

Üretilmiş Burun Konisi

Üretilmiş Faydalı Yük

Burun – Detay

Burun Konisi:

Burun konisinin üretiminde malzeme olarak alüminyum 6061-T6 serisi kullanılmıştır. Burun konisi üretilirken, burun kısmının uzunluğu 28 cm, kalınlığı 6 mm; entegre bölgesinin uzunluğu 10 cm, kalınlığı 2.5 mm olacak şekilde CNC torna tezgahında üretilmiştir. Burun konisinin hatalı üretiminden dolayı burun konisinin yeniden üretimi gerçekleşecektir.

Burun konimizin yanlış üretiminden dolayı tektardan üretilecek lakin pandemi sürecinden dolayı üretici yoğunluğu ve aynı zamanda süre kısıtlığından 06/08/2020 tarihinde burun konisinin tedariği gerçekleşecektir. Testlerimizi 3D yazıcıdan ürettiğimiz burun konimizle aynı ölçülere sahip parçayla gerçekleştirdik.

Burun konisi gövdeye sıkı geçme yöntemi ile montajlanacaktır. Sıkı geçme toleransı doğruluğunu barutun ateşlenmesiyle birlikte ilerleyen burun konisinin zorlamadan ve lineer şekilde yukarıya doğru hareket ettiği gözlemlenmiştir.

Burun Konisi

Malzeme : Alüminyum 6061-T6

İşlevi: Roket üzerinde aerodinamik hava direncini azaltarak maksimum irtifa sağlamak.

Uzunluk	280 mm	Shoulder Uzunluk	100 mm
Çap	150 mm	Shoulder Çap	143 mm
Et kalınlığı	6 mm	Shoulder Et Kalınlığı	2,5 mm

Faydalı Yük ve Faydalı Yük Bölümü – Detay

Roketimizde kullanacağımız faydalı yük bilgisayarında GPS modülü, haberleşme modülü, BME280 sensörü, ultraviyole sensörü ve buzzer bulunmaktadır. Haberleşme modülünün anteni ve GPS anteni sinyal iletimi için faydalı yüke tamamen montajlı sabit bir şekilde olacak şekilde faydalı yükün dışına entegre edilecektir.

Faydalı yük için ayrı bir faydalı yük bölmesi bulunmamaktadır. Faydalı yük üst gövdede yanma odasının üst tarafında bulunmaktadır ve burundan atılacaktır.

Kurtarma Sistemi Mekanik Görünüm

Ayrılma Sistemi – Detay

1. Ayrılma Sistemi

Aviyonik sistem iskeletinin üst kısım parçası olan bir bulkhead üzerine sabitlenmiş barutlu ateşleme sistemi, tepe noktasına ulaştığında uçuş bilgisayarları barutu elektrikli ateşleyici ile patlatarak oluşan basınç sayesinde sırası ile üzerindeki faydalı yük paraşütü, faydalı yük ve sürüklenme paraşütünü iterek burun konisini açacak ve malzemeleri dışarı atacaktır. Birinci ayrılma sistemimizde bulunan ve kurşun döküm yapılarak üretilmiş çapı 13.6 cm olan ek kütlemiz mevcuttur. Orta kısmında bulunan yanma odası 3D yazıcıdan PLA filament le üterilmiştir. Ek kütlenin üstünde bulunan mapalar ise M10 olup dökme demirdir.

2. Ayrılma Sistemi

Aviyonik sistem iskeletinin alt kısım parçası olan bir bulkhead üzerine sabitlenmiş barutlu ateşleme sistemi, roket düşüş esnasın da 600 metre irtifada uçuş bilgisayarları barutu elektrikli ateşleyici ile patlatarak oluşan basınç sayesinde gövde ayrılması gerçekleşecektir. Yapmımz alüminyum bir levhadan çapı 14.3 cm olacak şekilde üstünde bulunan yanma odası 3D yazıcıdan PLA filament ile üretilmiştir.

Video Linki: https://www.youtube.com/watch?v=sHRB3g3POVk https://www.youtube.com/watch?v=uK58WJ-NT64

Ana Paraşüt Kutusu Ayrılma

Ana paraşüt kutusu, sürüklenme paraşütünün açılması ile oluşan G kuvveti nedeniyle alt gövdenin orta gövdeden ayrılıp ana paraşütü serbest bırakması durumunu engellemek için tasarlanmıştır. Yanda kesiti verilen kutu iki parçadan oluşmaktadır, iki gövde sıkı geçme saplama ve yataklar vasıtası ile birbirlerine tutturulur. Yataklar alt gövdenin tabanında bulunan yanma odasına bağlıdır, yanma odasındaki barut ateşlendiğinde oluşan basınç üst gövdeyi alt gövdeden ayıracaktır, ana paraşütün ipi üst gövdeye bağlı olup üst gövde fırlatıldığında ana paraşütü çekip çıkartacaktır. Kutu Pla plastikten 3d yazıcı ile üretilmiştir

Paraşütler – Detay

$$A = \frac{\pi D^2}{4} \rightarrow A_F = 1,4314 \ m^2$$

Faydalı yük paraşütümüz Ripstop Nylon ile üretilmiştir Paraşüt rengimiz mor ve tonları şeklinde üret,lmesi karalaştırılmıştır. Paraşütümüzün kapalı halinin çapı 110 mm uzunluğu 110mm dir. SÜRÜKLENME PARAŞÜTÜ YÜZEY ALANI D = 60 cm

$$A = \frac{\pi D^2}{4} \rightarrow A_S = 0,2947$$

Sürüklenme paraşütümüz Ripstop Nylon ile üretilmiştir Paraşüt rengimiz mor kırmızı ve tonları şeklinde üretilmesi karalaştırılmıştır.Paraşütümüzün kapalı halinin çapı 140 mm uzunluğu 100mm dir.

ANA PARAŞÜT YÜZEY ALANI

$$D = 260 \text{ cm}$$

$$A = \frac{\pi D^2}{4} \to A_a = 5,2873 \ m^2$$

Ana paraşütümüz Ripstop Nylon ile üretilmiştir Paraşüt rengimiz mor kırmızı ve tonları şeklinde üretilmesi karalaştırılmıştır.Paraşütümüzün kapalı halinin çapı 130 mm uzunluğu 330 mm dir.

NOT!!! Ana paraştümüzün yanlış üretilmesinden dolayı tekrar üretilecektir.

Üretilecek Malzeme	Üretim Durumu	Üretilecek Tarih
Sürüklenme paraşütü	Üretildi	-
Faydalı yük paraşütü	Üretildi	
Ana paraşüt	-	6 Ağustos 2020

Aviyonik Sistem 3 Boyutlu Görünümü (CAD)

Ana Bilgisayar

Yedek Bilgisayar

Aviyonik Bölme

Üretilmiş Aviyonik Sistem Görüntüsü

Üretilmiş Devre Görüntüsü

Ana Bilgisayar

Yedek Bilgisayar

Parçalar-Detay

31 Temmuz 2020 Cuma

Aviyonik Sistem – Detay

Roketimizin aviyonik sistemi içerisinde ana uçuş bilgisayarı, yedek uçuş bilgisayarı ve iki adet powerbank bulunmaktadır. Her iki bilgisayara bir powerbank bağlanacaktır. Ana bilgisayar ve yedek bilgisayar tamamen birbirinden ayrı bağımsız çalışacak şekilde tasarlanmıştır. Aviyonik sistemde kullanılan baskı devreler yeterli miktarda yedekli üretilmiştir. Herhangi bir olumsuzluk durumunda yedek pcbler kullanılacaktır. Roket tepe noktasına ulaştığında ana bilgisayarda bulunan 10DDOF IMU sensöründen gelen verilere göre elektronik ateşleyiciler ateşlenecek, yedek bilgisayarda bulunan BME280 sensöründen okunan verilere göre roket, görevlerin gerçekleşeceği irtifaya geldiği anda yüksek sıcaklık sensöründeki ölçüm değişikliğine bakacak, ölçümde değişim yoksa ana bilgisayar işlemi yerine getirmemiş demektir yani patlama olmadığına karar verecktir ve yedek bilgisayar bu işlemi gerçekleştirecektir. Bütün bu senaryo 0,4 saniye içerisinde gerçekleşerek oldukça hızlı bir ayrılma olacaktır. Aviyonik sistemimizi roketin içine montajını yapabilmek için ve atış alanında çıkarılıp rahat bir şekilde işlem yapılabilmesi için 3D yazıcıdan Aviyonik yatağı üretilmiştir. Aviyonik yatağı roketimizin içerisinde uçuş sırasında rezonansa, titreşime ve yerinden oynamasına imkan vermeyecek toleransla sıkı geçme şeklinde montajlanmıştır. Montajlama işlemimizde herhangi bir sorunla karşılaşılmamıştır. Aviyonik sistemi %100 üretilmiş olup test videolarında gösterilmiştir ve sorunsuz çalışmaktadır. Pcb üretimi normalin üstünde fiyatlarda yapıldığı için ve özgünlük puanı için kendi ürettiğimiz pcbleri kullanmaktayız. Bu sebeple 3D CAD görünümünden sadece görsel olarak farklıdır, tasarım olarak hiçbir fark yoktur.

Kanatçıklar Mekanik Görünüm

Kanat ve Kanat Yatağı 3 Boyutlu Görünümü (CAD)

Üretilmiş Kanat ve Kanat Yatağı Görüntüsü

Kanatçıklar – Detay

• Kanatçıkların yataklanmasını tasarlarken dayanıklı ve aerodinamk olarak verimli bir tasarım ortaya çıkarmaya özen gösterdik. Kanatçıkları parçaya sökülebilir bağlantı olan mercimek başlı M4 cıvata-somun bağlantısı ile birleştiriyoruz daha sonra montajı tamamlanan parça ve kanatçıkları gövdeye sıkı geçme şeklinde birleştiriyoruz. Ayrıca parçanın gövdeden olası bir ayrılma durumunda sıkı geçmenin yanın da gövde üzerinden alt ve üst parçalarına M4 civata ile sabitlenmesi yapılmıştır. Bütün kanatçıklar için bu parçadan bir adet kullanıyoruz. Gövde üzerindeki akışları kesintiye uğratmaması için altta sistemin solidworks ortamında montajı yapılı görselde olduğu gibi parça gövdenin iç kısmında kalacak şekilde montajı yapılıyor. Parçanın malzemesini düşük ağırlığının yanında yüksek dayanım sağlaması için karbon fiber plaka kullanımı planlanmaktadır.

GENEL MONTAJ STRATEJISI

- Roket gövdesi bir adet entegre bölgesi olacak şekilde tasarlanmıştır. Entegre bölgesi sıkı geçme yöntemiyle monte edilmiştir. Entegre bölge uzunluğu şartnameye bağlı olarak (çapın en az 1.5 katı) seçilmiştir. Entegre bölgesi için tolerans payı ve üretim zorlukları bulunmaktadır. Burun konisinin gövdeye montajında sıkı geçme kullanılmıştır. Üretim için gerekli olan tolerans belirlendikten sonra burunun konisinin bağlantı aralık ölçüsü belirlenmiştir.
- Roket üst ve alt olmak üzere iki gövdeden oluşmaktadır. Üst gövde de bulunan ek yük ve alt gövde üzerinde bulunan bulkhead sekiz adet m4 cıvata ve epoksi
 yapıştırıcı ile yerine sabitlenmiş halde yarışma alanına getirilecektir, yanma odaları yine aynı şekilde bulkheadler üzerine epoksi yapıştırıcı ile yapıştırılmış halde
 yarışma alanına getirileceklerdir.
- Kara barut ve fünye üst gövdede bulunan yanma odasına yerleştirilir. Barutun üstüne ise ateşleme anında çıkacak olan alevden paraşüt ipleri ve diğer malzemeler zarar görmemesi için sodaya batırılıp kurutulan peçete küçük parçalara ayrılarak sıkı bir şekilde yerleştirilir ve daha sonra kağıt bant ile yanma odası kapatılır. Böylelikle çıkacak olan alevden paraşüt ipi ve paraşüt etkilenmez fakat çıkacak olan ısıyı engelleyemediğimizden ve paraşüte zarar gelmesini engellemek adına paraşüt cam elyaf kumaşa sarılır ve daha sonra sürüklenme paraşütünün ipi üst gövdedeki bulkhead üzerinde bulunan mapaya bağlanır ve paraşüt üst gövdenin içine yerleştirilir. Bu adımdan sonra sırasıyla sürüklenme paraşütünün üstüne faydalı yük ve onunda üstüne faydalı yük paraşütü yerleştirilecektir. Daha sonra burun konisi üst gövdeye sıkı geçme olacak şekilde yerleştirilecektir. 3. bulkhead üzerndeki yanma odasınada aynı adımlar izlenerek barut yerleştirilir.
- Üst gövde içinde bulunan 2. bulhead üzerine aviyonik kutusu serbestçe yerleştirilecektir, aviyonik sistem iskeleti ile bulkhead sabitlenecektir, 1. ve 2. bulkheadler arasında kalan aviyonik sistem iskeletinin hareket edecek boşluğu olmayacaktır. 2. bulkheadin motor yönündeki yüzü üzerine ana paraşüt kutusu dört adet m4 cıvata ile vidalanarak kutunun hareketi kısıtlanacaktır, kutu içinde bulunan kapak vasıtası ile yanma odasına barut yerleştirilecektir. Ana paraşüt mapası kutu içerisinden geçip bulkhead'e vidalanacaktır, ana paraşüt ipi bu mapaya bağlanacaktır sonra ana paraşüt katlanıp kutunun içine yerleştirilecek, kutunun üst kısmı sıkı geçme olarak alt kısma monte edilip kutu kapatılacaktır. Aviyonik kutusundan çıkan ateşleme kabloları, 1.ve 2. bulkheadlerin üzerindeki delikten geçirilip yanma odalarına girecektir daha sonra kabloların geçtiği bu deliklerdeki boşluklar epoksi yapıştırıcı ile doldurulacak ve bu sayede barut gazı basıncı kaybedilmeyecektir.

1. MONTAJ AŞAMASI(Aviyonik ve 1. Ayrılma Sistemin Montajı)

2. MONTAJ AŞAMASI(Sürüklenme Paraşütü Montaj)

3. Montaj Aşaması(Faydalı Yük Montaj)

4. Montaj Aşaması(Faydalı Yük Paraşüt Montaj)

5. Montaj Aşaması(Burun Konisi Montaj)

6. MONTAJ AŞAMASI(Ana Paraşüt Montaj)

7. MONTAJ AŞAMASI(2.Ayrılma Sistemi Montaj)

8. MONTAJ AŞAMASI(Ana Paraşüt Kutusu Montaj)

9. MONTAJ AŞAMASI(Kanat ve Kanat Yatağı Montaj)

Roket Motoru Montaji

Motor Montaj Aşaması (Motor Montaj Uygulama Adımları)

Motor Montaj Uygulama Adımları

- 1) Bütünleme işleminde tüm demirbaş ve tüketim malzemelerinin eksiksiz olarak hazır olduğu kontrol edilir.
- 2) Motor bulkheadi ön ve arka yüzeyi hizasında body üzerine 8 adet M4 cıvata-somun ile yataklanarak, bulkheadin ileri ve geri hareketleri engellenir.
- 3) Motor Bulkheadi üzerine önceden kaynaklanmış 3/8-16 lık vida merkez noktada olduğu kontrol edilir.
- 4) Merkezcil halkalar (center ringler), motor bloğu üzerinde sıkı geçme olacak şekilde montajlanır ve hareket etmemesi için epoksi ile doğru konumda yapıştırılır.
- 5) Motor, motor bloğu boyunca içeri döndürülerek ilerlemesi sağlanır.
- 6) Motor üzerindeki forward closure, motor bulkheadi üzerindeki kaynaklanmış 3/8-16 lık vida boyunca döndürülerek ilerlemesi sağlanır ve adımların tam olarak tamamlandığı kontrol edilir.
- 7) Motor bloğu çıkış kısmına kelepçe takılır ve roket motorunun geri çıkmaması sağlanana kadar sıkılır ve motor bloğu geri çekilerek çıkıp çıkmadığı kontrol edilir.

Video Linki: https://www.youtube.com/watch?v =cfXgKQmlKyY

2.Adım

3.Adım

4.Adım

5.Adım

6.Adım

7.Adım

Atış Hazırlık Videosu

- ☐ Video Linki-1 (Test No:10): Gövde İçi Parçalar Montajı Videosunu İzlemek İçin Tıklayın
- ☐ Video Linki-2 (Test No:9): <u>Kanatçık Montajı Videosunu İzlemek İçin Tıklayın</u>

Yapısal/Mekanik Mukavemet Testleri

Test NO	TEST	TEST YÖNTEMİ	TEST DÜZENEĞİ	SONUÇ	VIDEO LINKI
1	Gövde Çekme Testi	Gövde üst kısımdan tavana sabitlenecek ve gövdenin alt kısmına 70 kg'lık kütle asılacaktır.	Ağırlık, İp	Başarılı	https://www.youtube.com/watch?v=IOL9ibatdq0
2	Gövde Basma Testi	Gövdenin üstüne 70 kg'lık kütle yerleştirilecektir.	Ağırlık	Başarılı	https://www.youtube.com/watch?v=f7sHjqqoDFU
3	Gövde Basınç ve Sıcaklık testi	Gövdenin içinde kullanılacak olan barutun 1.5 katı miktarda barut ateşlenerek test gerçekleştirilecek.	Yanma odası, Barut	Başarılı	https://www.youtube.com/watch?v=nStdWncgZIY
4	Kanat Dayanım Testi	Root chord kısımdan sabitlenecek tip chord kısma ise hesaplanan kuvvete denk olarak 20 kg'lık kütle asılacaktır.	Ağırlık	Başarılı	https://www.youtube.com/watch?v=TXAdLcTW4nY
5	Motor Bloğu Dayanım Testi	Bulkhead kenarlardan sabitlenecektir daha sonra motor civatası kadar bir delik açılıp kanca yerleştirilip somunla sıkılacaktır. En az 20 kg olan bir kütle kancaya asılıp test edilecektir.	Kanca, Ağırlık	Başarılı	https://www.youtube.com/watch?v=dE_YmmhNkIY
6	Burun Konisi Entegre Sıkı Geçme Testi	Burun konisi gövdeye yerleştirilip gövdeyle birlikte baş aşağı çevrilerek koninin çıkıp çıkmayacağı gözlemlenecektir.	-	Başarılı	https://www.youtube.com/watch?v=W5GpifxeVD0
7	Gövde Entegrasyon Sıkı Geçme Testi	Alt gövde ve üst gövde entegre edilip baş aşağı çevrilerek gövdelerin birbirinden ayrılmadığı gözlemlenecektir.	-	Başarılı	https://www.youtube.com/watch?v=AWxfJFjOMWg
8	Motor Bloğu Bulkhead Çekme Testi	Bulkhead kenarlardan sabitlenecektir daha sonra motor civatası kadar bir delik açılıp kanca yerleştirilip somunla sıkılacaktır. En az 20 kg olan bir kütle kancaya asılıp test edilecektir.	-	Başarılı	https://www.youtube.com/watch?v=K-5wdu2ypLw
9	Kanatçık Montaj Testi	Kanatlar kanat yatağına yerleştirilip roket içerisinde uygunluğu kontrol edilecek.	Gövde, Kanat Yatagı	Başarılı	https://www.youtube.com/watch?v=uRJr-qDFmhE
10	Gövde İçi Parçaların Montaj Testi	Gövde iç elemanlarının hepsi (bulkheadler, motor bloğu, merkezleme yüzekleri vb.) gövdenin içine montajı yapılarak uygunluğu kontrol edilecek	Gövde, Parçalar	Başarılı	https://www.youtube.com/watch?v=Se-4UT7Uf5g
11	Gövde Rijitlik Testi	Gövde üzerine belli bir kütle konularak rijitliği gözlemlenecektir.			https://www.youtube.com/watch?v=xtQc7piwOGI
12	Mapa Çekme Testi	Mapa şok kordonu sıkmına sabitlenerek kuvvetli bir şekilde çekilecektir.	İp, Mapa, Bulkhead	Başarılı	https://www.youtube.com/watch?v=XycmSVUmo5E
13	Şok Kordonu Dayanım Testi	Şok kordonu iki tarafdan kuvvetlice çekilecek kopmadığı gözlemlenecektir	İp	Başarılı	https://www.youtube.com/watch?v=MglfYM3hM8o
14	Barut Yerleştirme İşlemi	Gövde içinde bulunacak yanma odalarına barut yerleştirme işlemleri.	Yanma Odası, Barut	Başarılı	https://www.youtube.com/watch?v=sHRB3g3POVk & https://www.youtube.com/watch?v=uK58WJ-NT64

Kurtarma Sistemi Testleri

Test NO	TEST	TEST YÖNTEMİ	TEST DÜZENEĞİ	SONUÇ	VIDEO LINKI
1	Burun Konisi Ayrılma Testi	Üst Gövdede bulunan yanma odasına barut yerleştirilip,burun konisinin ayrılması için barut ateşlenecektir.	Yanma odası, Barut, Burun Konisi	Başarılı	https://www.youtube.com/watch?v =nStdWncgZIY
2	Faydalı Yük Paraşüt Açılma Testi	Belli yükseklikten bir yüke bağlı faydalı yük paraşütünün açıldığı gözlemlenecektir.	Kütle, Paraşüt	Başarılı	https://www.youtube.com/watch?v =XOIOHtMINMg
3	Sürüklenme Paraşütü Açılma Testi	Belli yükseklikten bir yüke bağlı sürüklenme paraşütünün açıldığı gözlemlenecektir	Kütle, Paraşüt	Başarılı	https://www.youtube.com/watch?v =sQA6TQJIH6I
4	Ana Paraşüt Açılma Testi	İvmesi artan bir araca bağlı ana paraşütün açıldığı gözlemlenecektir.	Araç, Paraşüt	Başarılı	https://www.youtube.com/watch?v =sz5v5DY1NX8
5	Alt Gövde Ayrılma Testi	Alt gövdede bulunan yanma odasına barut yerleştirilip, iki gövdenin birbirinden ayrılması için barut ateşlenecektir.	Yanma odası, Barut, Gövde	Başarılı	https://www.youtube.com/watch?v =xsTaPtuS8lc
6	Ana Paraşüt Kutusu Açılma Testi	Kutunun kendi içerisinde bulunan yanma odasına barut yerleştirilip, açılması için barut ateşlenecektir.	Yanma odası, Barut, Kutu	Başarılı	https://www.youtube.com/watch?v =rMSD8rTym30

Aviyonik Sistem Yazılım Ve Donanım Testleri

Test NO	TEST	TEST YÖNTEMİ	TEST DÜZENEĞİ	SONUÇ	VIDEO LINKI
1	ANA BİLGİSAYAR (PCB) TESTİ	Ana bilgisayar çalıştırılıp görevleri yerine getirmesi kontrol edilecek.	Pcb, Fünye, Sensörler	Başarılı	https://www.youtube.com/watch ?v=APqFPkA5AoY
2	YEDEK BİLGİSAYAR (PCB) TESTİ	Yedek bilgisayar çalıştırılıp görevleri yerine getirmesi kontrol edilecek.	Pcb, Fünye, Sensörler	Başarılı	https://www.youtube.com/watch ?v=WYpXYVmSqEQ
3	PCB BAKIR YOLU KISA DEVRE TESTİ	Pcb bakır yolları multimetre ile test edilecek.	Multimetre	Başarılı	https://www.youtube.com/watch ?v=Pso8bWlq-Uc
4	10DOFIMU – YÜKSEKLİK- EKSEN KALİBRE TESTİ	Breadboard üzerinde sensör çalıştırılacak.	Breadboard, Arduino Serial Monitor	Başarılı	https://www.youtube.com/watch ?v=fJpMHSRKFSA & https://www.youtube.com/watch ?v=kjuvq5ObTxg
5	BME280 –Yükseklik-Basınç Kalibre Testi	Breadboard üzerinde sensör çalıştırılacak.	Breadboard, Arduino Serial Monitor	Başarılı	https://www.youtube.com/watch ?v=ePYtlexZebs

Aviyonik Sistem Yazılım ve Donanım Testleri

Test NO	TEST	TEST YÖNTEMİ	TEST DÜZENEĞİ	SONUÇ	VIDEO LINKI
6	GPS-KONUM TUTARLILIK TESTİ	Açık havada sensör çalıştırılacak.	Breadboard, Arduino Serial Monitor	Başarılı	https://www.youtube.com/watch ?v=n7Vg5GAGQYo
7	GPS-ÖLÇÜM GECİKME VE KALİBRASYON TESTİ	Sensöre güç verilip, ne kadar süre sonra veri girişi olduğuna bakılacak.	Breadboard, Arduino Serial Monitor	Başarılı	https://www.youtube.com/watch ?v=dOJUCV-0E-A
8	ALGORİTMA-AKIŞ DİYAGRAMI TESTİ (FLOWCHART) ANA BİLGİSAYAR	Program üzerinde uçuş diyagramı kurulacak.	Flowchart programı	Başarılı	https://www.youtube.com/watch ?v=se98bEh10KM
9	ALGORİTMA-AKIŞ DİYAGRAMI TESTİ (FLOWCHART) YEDEK BİLGİSAYAR	Program üzerinde uçuş diyagramı kurulacak.	Flowchart programı	Başarılı	https://www.youtube.com/watch ?v=Jnoc4rRy898
10	ANA BİLGİSAYAR- KOD-SİMÜLASYON TESTİ (PROTEUS)	Program üzerinde test edilecek.	Proteus	Başarılı	https://www.youtube.com/watch ?v=4kgRrOBS4Ec
11	YEDEK BİLGİSAYAR- KOD-SİMÜLASYON TESTİ (PROTEUS)	Program üzerinde test edilecek.	Proteus	Başarılı	https://www.youtube.com/watch ?v=Izhj22R7w1Y

Telekomünikasyon Testleri

Test NO	TEST	TEST YÖNTEMİ	TEST DÜZENEĞİ	SONUÇ	VIDEO LINKI
1	ANA BİLGİSAYAR HABERLEŞME TESTİ	Verici modülden gelen paketi alıcı modül ile okuyup verilerin doğruluğunu kontrol etmek.	Modül, Arduino ve Arduino Serial Monitor	Başarılı	https://www.youtube.com/watch?v= ebzh-mOMzcE
2	HABERLEŞME MODÜLLERİ MESAFE TESTİ	Uzun mesafeden Modüllerin haberleşmesi sağlanacaktır.	-Modül, Arduino ve Arduino Serial Monitor	Başarılı	https://www.youtube.com/watch?v= YbreiiSP-wo
3	ARTAN MESAFE İLE AKIM ÇEKME TESTİ	Uzak mesafede paket gönderirken sensörün çektiği akım ölçülecek.	Multimetre	Başarılı	https://www.youtube.com/watch?v= b0r2YBoY0Vk
4	TELEMETRİ VERİ HIZI TESTİ	Veri paketinin yeterli hızda olup olmaması gözlemlenecek.	Arduino Serial Monitor	Başarılı	https://www.youtube.com/watch?v= 5DM8k0BsUAs
5	FİBERGLASS GÖVDENİN ELEKTROMANYETİK DALGA İLETKENLİĞİ	Fiberglass gövde içerisine verici modül yerleştirilip veri iletimi yapıp yapmadığı kontrol eilecek.	Arduino Serial Monitor, Fiberglass Gövde	Başarılı	https://www.youtube.com/watch?v= usdNudZCcMs

Yarışma Alanı Planlaması (1/3)

İş Planı

Sıra	Yapılacak Görev/Görevler	Görev Sorumlusu/Sorumluları
1	Rokete motor takılarak araca güvenli bir şekilde konumlandırması	F. Taha BAYRAK, Mehmet GÜNKESEN
2	Roketin araç yardımı ile atış sahasına götürülmesi ve yarışma altimetresi takılması	Kübra Nur GÖKBULUT, F. Taha BAYRAK
3	Roketin rampaya yerleştirilmesi ve atışa hazır hale getirilmesi	Kübra Nur GÖKBULUT, F. Taha BAYRAK, Mehmet GÜNKESEN
4	Motor kontrolünün yapılması	Mehmet GÜNKESEN, Ahmet Erbil YILMAZ
5	Aviyonik sistem kontrolünün yapılması	Kübra Nur GÖKBULUT
6	Ateşleme telleri bağlantılarının yapılması	Yetkili
7	Yer istasyonu kurularak haberleşme kontrolünün yapılması	Ömer Faruk GÜRBÜZ
8	Roketin ateşlenerek rampadan 32,09 m/s hızla ayrılması	Yetkili
9	Rokette 3074,6 m de ilk ayrılma görevi başlayarak 21,05 m/s hızla inişe geçmesi	-
10	Roketin ana paraşütünün 550,75 metrede açılarak 7.03 m/s hızla düşüşe devametmesi	-
11	Roketin yere inişi tamamlandıktan sonra yer istasyonundan konum alınması	Buğrahan TEZGEL, Ömer Faruk GÜRBÜZ
12	Alınan konum verileri ile roket kurtarma işlemlerine başlanması	Ahmet Erbil YILMAZ, Buğrahan TEZGEL, Ömer Faruk GÜRBÜZ
13	Araç yardımı ile roketin bulunması ve jüriye teslim edilmesi	F. Taha BAYRAK, Buğrahan TEZGEL, Ömer Faruk GÜRBÜZ

Eylem Planı

Sıralama	Senaryo	Yapılacaklar	Görev Sorumlusu/Sorumluları	
1	Yangın Durumu	Telaş yapmadan bölgeden uzaklaşıp yangını çevredeki kişilere ve yetkililere duyurulması	Ahmet Erbil YILMAZ, Buğrahan TEZGEL	
2	Parlama/Patlama Durumu	Hızlı bir şekilde çevredeki kişilere ve yetkililere bilgi verilmesi	F. Taha BAYRAK	
3	Bilinç Kaybı-Sağlık Problemi Durumu	Uygun ilk yardım yapılarak çevrede ki en yakın sağlık birimine ve yetkililere haber verilmesi	Kübra Nur GÖKBULUT	
4	Doğal Afet Durumu (Rüzgar-Yağmur)	Zarar görebilecek materyallerin acil korunması ve tahliyesinin yapılması	Ömer Faruk GÜRBÜZ	

Yarışma Alanı Planlaması (2/3)

					Risk	Etki	Çarpım
No	Risk Tanımı	Olumsuz Etkisi	Nedeni	Çözümü	Derecesi	Derecesi	Derecesi
1	Yer İstasyonundan Sinyal Alınamaması	Roketin kurtarma aşamasında bulunamaması	Fiberglass gövdenin sinyal geçirgenliğinin düşük olması	Gövde, verici antenin boyutunda kesilip verici anten yer istasyonuna uygun konumlandırılmıştır ve alıcı antenin kazancı arttırılmıştır	3	4	12
2	Paraşütün Şok Etkisine Maruz Kalması	Paraşüt iplerinin kopması, paraşütün yırtılması	Pyro ile ayrılmanın gecikmesi	Şok kordonuyla kuvvetin sönümlenmesi	3	4	12
3	Ana Sistemin BurunKonisini Açamaması	Faydalı yük, paraşütler gibi iç sistemlerin atılamaması	Burun konisinin sıkışması ve barutun gereken itki kuvvetini sağlayamaması	Hareketli parçaların kuvveti eşit dağıtacak şekilde konumlandırılması ve sızdırmazlığın sağlanması	3	5	15
4	Faydalı Yükten Sinyal Alınamaması	Faydalı yükün kurtarma aşamasında bulunamaması	Faydalı yükten verinin alınmaması veya kesilmesi	Faydalı yükten alınan son konum verisine göre arama kurtarma çemberinin daraltılması	4	3	12
5	Entegrasyon BölgelerininÇap Uyuşmazlığı	Burun ve gövde entegrelerinin iç içe geçmemesi	Üretim yöntemi kaynaklı hataların bulunması	Gerekli yüzey inceltme işlemi yapılması	1	4	4
6	Ağırlık ve Basınç Merkezlerinin Değişmesi	Stabilite değişimi	Gövdenin her noktasından sabitleme Yapılamaması	İç sistemlerin uzunlukölçer yardımıyla montajı	3	5	15
7	Motorun Montaj Esnasında Ateşlenmesi	Ciddi yaralanmalı kazalara yol açabilir	RF sinyalleri, alevlimalzemeler	Motor takılıyken hiçbir alev gerektiren işlem yapılmaması	3	5	15
8	Aviyonik Bölmesinin HasarGörmesi	Ana uçuş bilgisayarınınçalışmaması	Gerekli sabitlemelerin yapılmaması	Aviyonik bölmesinin hareket edemeyecek şekilde montajı	2	5	10
9	Kanat Yatakları Kırılması veya Deformesi	Uçuş stabilitesini ve yönünü negatif olarak etkilemesi	Taşıma esnasında oluşan hatalar	Güvenli kutularla taşınması ve yedek kanat yatakları	3	4	12
10	Aviyonik Sistem Kodlarının Çalışmaması	Ana kurtarma sistemininçalışmaması	Kodlamada yapılabilecekhatalar	Gerekli simülasyon ve testlerle doğruluk kontrolü	2	4	8
11	Ana paraşütün serbest bırakılamaması	Roketin yere hızladüşmesi	Hava sürtünmesi ve kurtarma kutusuna uyguladığı basınç	Gerekli barut miktarı hesabı yapılarak kutunun zarar görmeden açılmasını sağlamak	3	4	12
12	Cıvata-Somun Bağlantılarının Ayrılması	Bulkheadlerin sabitkalmaması	Uçuş esnasında gerçekleşen titreşimler	Gerekliliğe göre flanşlı somun kullanılması	2	3	6
13	Gövde RijitliğininKaybolması	Sürtünmenin artması ve negatif aerodinamik etki	Yüzey pürüzlülüğünün artması	Epoxy, vernik ve teflon bant ile rijitlikarttırma	3	4	12
14	Ray Butonlarının Aynı Eksende Olmaması	Roketin rampaya yerleştirilememesi	Gövde entegrasyon bölgesinin dönme serbestliği	Gövde entegrasyon bölgesinin minimuma indirilmesi	1	2	2
15	Kanatların Yanal Kuvvetlere Mukavemetsizliği	Roketin yörüngesinde sapma gerçekleşmesi	Kanatların kırılması, eğilmesi, kopması	Kanat yatakları ve kanatın gövdeye maksimum temas noktasından sabitlenmesi	2	4	8
16	Roket Motorunun Motor Önü Bulkheade Sabitlenmemesi	Motorun motor bloğunda hareketlikalması	Motorun bağlantı civatası ve kelepçe ile mesnetlenmemesi	Motorun önü bulkheade 3/8 inç cıvata montajı ve kelepçe bağlantısı	4	4	16
17	Motorun Motor Bloğuna Girmemesi	Motorun takılıpsabitlenememesi	Motor bloğunun üretiminden kaynaklanan tolerans hataları	Motor bloğunun iç yüzeyinden zımpara ile et kalınlığı alınması	3	5	15
18	Yere Düşme Çapının Belirlenenden Büyük Olması	Roketin havada sürüklenmesinin artışı	Yüksek rüzgar hızı	Yer istasyonunda güçlendirilmiş anteniyle konum tespitinin yapılması	4	2	8

Yarışma Alanı Planlaması (3/3)

No	Risk Tanımı	Olumsuz Etkisi	Nedeni	Çözümü	Risk Derecesi	Etki Derecesi	Çarpım Değeri
19	Kurtarma sisteminin rampada çalışması	Kurtarma sisteminin roketin dışına atılması	Sistemimizin yüksekliğe ve eğime duyarlı olması	Kodlamada sistemin 100m'den itibaren devreye	1	5	5
20	PCB ve kablolanmadan dolayı güç aktarılmaması	Sistemin aktifolmaması	PCB kartlarını statikelektriklenmeden, darbeden etkilenmesi ve kabloların esnemesi	PCB'lerin yalıtımı ve kabloların 15cm'de bir gruplandırılması	2	4	8
21	Burun konisinin hatalı üretilmesi	Tasarım için gerekli olan burun konisinin yanlış üretilerek roketin tüm uçuşunu sekteye uğratması	Üretim için teknik çizimi gönderilen burun konisinin üretici firma tarafından hatalı/kusurlu üretilmesi	Gerekli testlerin uygulanabilmesi için kısa vadede üretilmiş prototip 3D burun konisi kullanılacaktır. Uçuş için kullanılacak gerçek burun konisi ise tekrar üretime verilmiş olup bayramdan sonra temin edilecektir.	1	5	5
22	Beklenilen irtifaya ulaşılamaması	Burun konisine açılma komutunun verilememesi	Simülasyondaki maksimum irtifa verisinin uçuş verisiyle uyuşmaması	Algoritma apogee noktasını anlık tespit edecek şekilde kodlanarak yükseklik eğim verisi ile koşullandırılmıştır	1	3	3
23	Sistemdeki sensörlerin doğru veri vermemesi	Kurtarma sisteminin devreye girmemesi	Sensörlerin arızalanması veya hatalı ölçüm yapması	Ana sistemin çalışıp çalışmadığını kontrol eden yedek sistemin devreye girmesi	4	5	20
24	Kurtarma kutusunun bulkheadden ayrılması	Ana paraşütün açılmaması	Sürüklenme paraşütünün şok kordunun ayırıcı etki yapması	Kurtarma kutusunun bulkheade montajlanması	1	2	2
25	PCB kartlarının bozulması veya kırılması	Tüm aviyonik sistemlerinin sekteye uğraması	Kendi üretimimiz olan PCB kartıyollarının fazla akıma maruz kalarak deforme olması	PCB'lerin fazla akımlara dayanıklı tasarlanması, maksimum verimlilik sağlayacak şekilde üretilmesi ve yedeklerinin hazırlanması	0	5	0
26	Atış öncesi aviyonik ve kurtarma kutularının kırılması	Tüm aviyonik ve kurtarma sistemlerinin sekteye uğraması	Olası bir kaza sonucu kutuların işlevini yitirmesi	Aviyonik ve kilit kutularının 3D yazıcı ile yedeklerinin üretilmesi	0	5	0
27	Roketin ulaşım sırasında hasar görmesi	Düzeltilemeyecek hatalara yol açması	Roketin düzgün kargolanamaması	Roket için özel kutu üretilip, içerisinde sarsıntıya uğramasını engellemek	3	5	15

Risk ve Etki dereceleri 0-5 arası değerlendirilmiş olup Çarpım Derecesi aşağıda belirtilen Risk Aralıklarını ifade etmektedir.

Risk Aralıkları: 0-5:Çok Düşük 5-10:Düşük 10-15:Orta 15-20:Yüksek 20-25:Çok Yüksek