EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

05102589

PUBLICATION DATE

23-04-93

APPLICATION DATE

11-10-91

APPLICATION NUMBER

03264092

APPLICANT: MITSUI PETROCHEM IND LTD;

INVENTOR: TERASHI YUICHIRO;

INT.CL.

H01S 3/134

TITLE

METHOD AND DEVICE FOR

STABILIZING OUTPUT OF LASER

ABSTRACT :

PURPOSE: To detect the deterioration of an optical element and to contrive a highaccuracy control of the output of the element by a method wherein the half-width of the peak value of the waveform of a narrow-band spectrum obtainable by making a spectral analysis of a laser beam to be outputted is monitored.

CONSTITUTION: An output detecting means (an output order detecting means) 34 for detecting the output value of a laser beam sampled by a beam splitter 24, an analyzing means 36 for making a spectral analysis of the sampled laser beam and a half-width detecting means 33 for detecting the half-width of the peak value of the waveform of an obtained narrow-band spectrum are provided in a wavelength and output monitor 30. A laser beam constituting interference fringes, which are diffracted by a monitoring etalon and are formed in a concentric circle form, is emitted on a one-dimensional photodetector array and the intensity distribution of the interference fringes is detected. The peak value of the waveform of the central interference fringes is detected by the means 33 and the half-width is detected from the value. In the case where a set half-width is compared with the detected half-width and the detected half-width exceeds the set half-width, a warning sign or the like is sent by a warning means 44. Or a laser oscillation is stopped.

COPYRIGHT: (C)1993,JPO&Japio

THIS PAGE BLANK (USPTO)

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-102589

(43)公開日 平成5年(1993)4月23日

(51) Int.CI.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H01S 3/134

8934-4M

審査請求 未請求 請求項の数6(全 6 頁)

(21)出願番号

特爾平3-264092

(22)出願日

平成3年(1991)10月11日

(71)出願人 000005887

三井石油化学工業株式会社

東京都千代田区像が関三丁目2番5号

(72)発明者 柴田 真吾

千葉県袖ケ浦市長浦宇拓二号580番32三井。

石油化学工業株式会社内

(72)発明者 大股 健

千葉県袖ケ浦市長浦字拓二号580番32三井

石油化学工業株式会社内

(72) 発明者 上原 義人

千菜県袖ケ浦市長浦字拓二号580番32三井

石油化学工業株式会社内

(74)代理人 弁理士 遠山 勉 (外2名)

最終頁に続く

(54) 【発明の名称】 レーザ装置の出力安定化方法及び装置

(57) 【要約】

【目的】 狭帯域レーザ装置の高精度制御を図る。

【構成】 狭帯域化素子を有し、この狭帯域化素子によ りレーザ光を狭帯域化して出力するレーザ装置におい て、出力されるレーザ光をスペクトル解析して得られる 狭帯域スペクトルの波形ピーク値の半値幅が目標の幅以 上にならないようにモニタすることを付加したレーザ装 置の出力安定化方法。

1

【特許請求の範囲】

【請求項1】 狭帯域化素子を有し、この狭帯域化素子によりレーザ光を狭帯域化して出力するレーザ装置において、出力されるレーザ光をスペクトル解析して得られた狭帯域スペクトルの波形ピーク値の半値幅をモニタすることを付加したレーザ装置の出力安定化方法。

【請求項2】 請求項1において、レーザ光の出力値を 検出し、この出力値が予め設定した目標出力値となるよ う、レーザ装置をフィードバック制御するレーザ装置の 出力安定化方法。

【請求項3】 請求項2において、フィードバック制御の制御対象が、励起用電源の出力、出力ミラーの傾角、反射ミラーの傾角、狭帯域化素子の傾角の内の少なくとも1つであるレーザ装置の出力安定化方法。

【請求項4】 狭帯域化素子を有し、この狭帯域化素子によりレーザ光を狭帯域化して出力するレーザ装督において、出力されるレーザ光をスペクトル解析する解析手段と、得られた狭帯域スペクトルの波形ピーク値の半値幅を検出する半値幅検出手段と、半値幅検出手段で得た半値幅を設定半値幅と比較し設定半値幅を越えたときに 20 警告を発する警告手段とを有することを特徴とするレーザ装置の出力安定化装置。

【請求項 5】 レーザの出力検出手段と、目標出力値を設定する目標値設定手段と、目標値設定手段で設定された目標出力値と出力検出手段で得た出力値との差分から制御操作信号を生成する調節手段と、調節手段からの操作信号を受けて制御対象を操作する操作手段とを有し、出力検出手段で検出した出力値が最大となるようレーザ装置をフィードバック制御することを特徴とする請求項1記載のレーザ装置の出力安定化装置。

【請求項6】 請求項5において、フィードバック制御の制御対象が、励起用電源の出力、出力ミラーの傾角、反射ミラーの傾角、狭帯域素子の傾角の内の少なくとも1つであるレーザ装置の出力安定化装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はレーザ装置の出力安定化 方法、及び装置に関する。

[0002]

【従来の技術】レーザ装置にあっては、その出力安定化 40 のため、フィードバック制御がしばしば行われる。

【0003】この場合、何を制御量として選択するかが正確な制御をする上で重要である。出力安定化にはレーザ発振器を構成するミラーのレーザ光軸に対する垂直精度が大きく影響する。この垂直精度を確保するため、従来は、レーザ光の出力を検出し、その出力が最大となるように出力を直接制御量として目標出力値を設定し、その設定値に出力が特定するようにミラーの傾きを制御するという方法をとっている。

【0004】ところで、リソグラフィー用光源としてエ 50 有効である。このようなフィードバック制御の前提とし

キシマレーザが使用される際には、露光装置(ステッパー)を構成する光学素子に色収差補正機能をもたせることができないために、狭帯域化光の帯域幅が十分に小さい事が必要である。

[0005]

【発明が解決しようとする課題】しかし、前記方法では、必ずしも精度の高い制御が行われず、光学素子の劣化などが生じた場合に、帯域幅が広くなりリソグラフィー用の光源としては適さなくなる。

10 【0006】本発明は、光学素子の劣化を事前に検知するために、従来よりも高精度な出力制御を図ることを課題とする。

[0007]

【課題を解決するための手段】前記課題を解決するため、本発明は以下の構成とした。すなわち、本発明の方法は、狭帯域化案子を有し、この狭帯域化案子によりレーザ光を狭帯域化して出力するレーザ装置において、出力されるレーザ光をスペクトル解析して得られた狭帯域スペクトルの波形ピーク値の半値幅をモニタすることを付加したレーザ装置の出力安定化方法である。

【0008】ここで、あわせて、レーザ光の出力値を検出し、この出力値が予め設定した目標値となるよう、レーザ装置をフィードパック制御することが好適である。本発明の装置は、狭帯域化素子を有し、この狭帯域化素子によりレーザ光を狭帯域化して出力するレーザ装置において、出力されるレーザ光をスペクトル解析する解析手段と、得られた狭帯域スペクトルの波形ピーク値の半値幅を検出する半値幅検出手段と、半値幅検出手段で得た半値幅を設定半値幅と比較し設定半値幅を越えたときに警告を発する警告手段とを有する。

【0009】本発明では、レーザの出力値を検出する出力検出手段と、目標出力値を設定する目標値設定手段と、目標値設定手段で設定された目標出力値と出力検出手段で得た出力値との差分から制御操作信号を生成する調節手段と、調節手段からの操作信号を受けて制御対象を操作する操作手段とを有し、出力検出手段で検出した出力値が最大となるようレーザ装置をフィードバック制御するレーザ装置に組み合わせることが最適である。

【0010】本発明でフィードバック制御する場合、制 の 御対象は、例えば、励起用電源の出力、出力ミラーの傾 角、反射ミラーの傾角、狭帯域素子の傾角の内の少なく とも1つである。とりわけ、出力ミラー、反射ミラーの 傾き制御による出力安定化に好適である。

(00111

【作用】本発明の構成により、半値幅モニタを付加することで、ミラーと狭帯城化素子の光軸が真に合っているかどうかの判断が可能となる。

【0012】本発明は、狭帯域化されたレーザ光の出力値を目標値となるようにフィードバック制御する場合に有効である。このトラカフィードバック制御の前場と1

--572--

30

0.16

て、レーザ装置の構成素子がレーザ光の通過する光軸上 に正確に配置されているかどうかが重要な要素となる。 もし正確に配置されていなければ、いくらフィードパッ ク制御を高精度に行っても、レーザ装置が本来有する能 力をすべて引き出せないからである。

[0013] すなわち、このように出力値をフィードパ ック制御する場合、出力値のみをモニタしてそれが最大 となるようにしたとしても、それだけでは片手落ちで、 出力されるレーザ光の波形ピーク値の半値幅が規定の幅 より大きくなっていたのでは、本来得られるべき最大出 10 力が得られていないこととなるので、出力のフィードバ ック制御と同時に半値幅をモニタしようという趣旨であ

【0014】従って、フィードパック制御中にスペクト ルの半値幅をモニタし、それが本来の半値幅より広くな った場合は、フィードパック制御の精度に拘らず、装置 自体に狂いがあるということが判別でき、装置の修復を 迅速に行える。

【0015】なお、本発明における半値幅のモニタは前 記のようなフィードバック制御と必ずしも組み合わせな 20 から操作信号を生成する。 くともよいことはもちろんである。

[0016]

【実施例】以下、本発明の一実施例を図面に基づいて説 明する。図1において、レーザ発振器は、図示しないレ 一ザ媒質や励起ランプを内装したレーザチャンパ10の 前方に出カミラー12を配置し、後方に狭帯域素子とし て、粗調用エタロン14、微調用エタロン16を配置 し、さらに反射ミラー18を配置してある構造である。 また、レーザチャンパ10に前記励起ランプの電源20 が接続されている。

【0017】そして、出力ミラー12、反射ミラー1 8、粗調用エタロン14、微調用エタロン16にそれぞ れ傾き制御用のアクチュエータ22が設けられている。 また、レーザ共振器の前面にピームスプリッタ24が配 置され、出カレーザ光の一部を分割している。この分割 されたレーザ光が光ファイパ26により制御系に導入さ れるようになっている。

[0018] すなわち、光ファイバ26の導入先に波長 ・出力モニタ30が接続され、この波長・出力モニタ3 0にマイクロコンピュータを備えた中央処理装置32が 40 接続され、この中央処理装置32により前記各アクチュ エータ22や電源20が制御されるようになっている。

【0019】そして、前記波長・出力モニタ30内に、 ビームスプリッタ24で採取したレーザ光の出力値を検 出する出力検出手段34と、採取したレーザ光をスペク トル解析する解析手段36と、得られた狭帯域スペクト ルの波形ピーク値の半値幅を検出する半値幅検出手段3 3とが設けられている。

【0020】前記出力検出手段31はPINダイオード からなり、受光したレーザ光を光電変換して電圧値に変 50 【0028】しかし、このようなフィードバック制御が

換する。前記解析手段36は、主に採取したレーザ光を 集光する集光レンズと、モニタエタロンと、一次元フォ トディテクタアレイ37とからなる。図3はモニタエタ , ロンで分光されて同芯円状の干渉縞を構成するレーザ光 を一次元フォトディテクタアレイに服射した状態を示す 正面図である。一次元フォトディテクタアレイでは、図 4のように、干渉縞の強度分布が検出される。ここで は、中央の干渉縞の波形ピーク値を半値幅検出手段33 で検出し、その値から半値幅を検出する。

【0021】また、前配中央処理装置32により、フィ ードパック制御のための目標値設定手段38が実現され る。この目標値設定手段38は、キーボードなどの入力 手段からの入力で目標出力値を設定する。なお、ここで は、中央処理装置により出力の最大値を検出し、その最 大値を目標出力値とする。

【0022】また、前記中央処理装置32により、目標 値設定手段38、脚節手段40、操作手段42が実現さ れる。調節手段40は、目標値設定手段38で設定され た目標出力値と出力検出手段34で得た出力値との差分

【0023】前記操作手段42は、調節手段40からの 操作信号を受けて制御対象を操作する手段であり、これ により前記アクチュエータ22等が駆動される。次に本 実施例による制御方法を図2のフローチャート図を参照 して説明する。

【0024】狭帯域化されたレーザ光は、ピームスプリ ッタ24で分割される。分割されたレーザ光はさらに2 つに分割され、一方は解析手段36でスペクトル解析さ れ(ステップ100)、この結果、図4のような狭帯域 30 スペクトルが得られるので、半値幅検出手段33で、ス ベクトルの波形から波形ピーク値の半値幅を検出する (ステップ101)。

【0025】分割されたレーザ光の他の一方は、出力検 出手段34で出力値を検出する(ステップ102)。 そ して、この検出出力値と目標設定手段38で設定された 目標出力値(ここでは最大出力値)とが比較され、両者 に差があれば調節手段40により差分をなくす方向に信 号が生成し、操作手段42によりアクチュエータ22が 駆動され、あるいは電源出力が調整される(ステップ1

【0026】操作手段42では、制御対象である励起用 電源20の出力、出力ミラー12の傾角、反射ミラー1 8の傾角、狭帯域素子の傾角の内の少なくとも1つを調 節する。以上により、フィードパック制御がなされ、レ ーザ光出力が最大となるよう維持される。

【0027】このフィードバック制御によりレーザ出力 が最大となることが期待され、また、レーザ装置の操作 者も最大出力のレーザ光が出ているものと確信している のが通常である。

5

円滑に行われていても、他の外乱などにより、出力レーザ光のスペクトル波形半値幅が、本来の幅より大きくなってしまう場合がある。すると、最適なレーザ光を得ることはできず、レーザ光を利用した応用対象、例えば、半導体リソグラフィに悪影響を及ぼす。

【0029】そこで、同時に、設定半値幅と検出半値幅とが比較され(ステップ104)、検出半値幅が設定半値幅を越えた場合は、警告手段10により操作者に警告サイン、ブザー、メッセージなどを送る(ステップ105)。あるいは、警告の代わりにレーザ発振を停止する 10ようにしてもよい。

【0030】なお、前記解析手段36により、レーザ光の干渉縞のスペクトルが得られるが、最大の干渉縞の直径を測定することで、レーザ光の発振波長を得ることができる。そこで、上記の出力のフィードバック制御及び半値幅モニタに加えて、干渉縞の直径値検出に基づく波長のフィードバック制御を行ってもよい。

[0031]

【発明の効果】本発明によれば、狭帯域化されたレーザ 光のスペクトル波形の半値幅をモニタすることで、半値 20 幅が設定値を越えた状態でレーザ装置を作動させること を防ぎ、安定度の高い狭帯域レーザ出力を得ることがで きる。

【0032】特に、レーザ光の出力値を検出して目標値に制御するフィードバック制御する場合に、フィードバック制御により修復できない装置異常をすみやかに検知することができる。

【図面の簡単な説明】

【図1】 本発明の一実施例を示すプロック図

【図2】 実施例のフローチャートを示す図

【図3】 モニタエタロンで分光されて同芯円状の干渉 縞を構成するレーザ光を一次元フォトディテクタアレイ に照射した状態を示す正面図

【図4】 一次元フォトディテクタアレイに照射された 干渉縞の強度分布

【符号の説明】

- 10 レーザチャンパ
- 0 12 出力ミラー
 - 14 粗調用エタロン
 - 16 微調用エタロン
 - 18 反射ミラー
 - 20 電源
 - 22 アクチュエータ
 - 24 ピームスプリッタ
 - 26 光ファイバ
 - 30 波長出力モニタ
 - 32 中央処理装置32
 - 33 半値幅検出手段
 - 34 出力検出手段
 - 36 解析手段
 - 37 一次元フォトディテクタアレイ
 - 38 目標值設定手段
 - 40 調節手段
 - 42 操作手段
 - 44 警告手段

[図3]

[図4]

-574-

【手統補正書】

【提出日】平成3年10月14日

【手統補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項5

【補正方法】変更

【補正内容】

【請求項5】

レーザの出力検出手段と、目標出力

値を設定する目標値設定手段と、目標値設定手段で設定

された目標出力値と出力検出手段で得た出力値との差分 から制御操作信号を生成する調節手段と、調節手段から の操作信号を受けて制御対象を操作する操作手段とを有 し、

出力検出手段で検出した出力値が最大となるようレーザ 装置をフィードバック制御することを特徴とする請求項 4 記載のレーザ装置の出力安定化装置。

フロントページの続き

(72)発明者 寺田 賁

千葉県袖ケ浦市長浦字拓二号580番32三井 石油化学工業株式会社内

(72)発明者 大枝 靖雄

千葉県袖ケ浦市長浦宇拓二号580番32三井

石油化学工業株式会社内

(72)発明者 鈴木 健司

千葉県袖ケ浦市長浦字拓二号580番32三井 石油化学工業株式会社内

(72)発明者 寺師 雄一郎

千葉県袖ケ浦市長浦字拓二号580番32三井

石油化学工業株式会社内