Absorption Spectra Calculations of Organic

Molecules with QE+Environ

Fernanda Bononi

Quantum-Multiscale School on Quantum Espresso

Denton, TX

Oct. 11-13/2021

From ground-state to excited state

Solution for the many-electron system is even more complex than the solution of the static Schrödinger equation

Similar to the static case, instead of considering the electronic wavefunction of 3N+1 variables we can consider the electronic charge density, a function of only 4 variables (coordinates and time)

Trying to follow the same steps of the static case is not possible in the time-dependent domain, because here the total energy changes with time

From ground-state to excited state

Runge-Gross Theorem

For a system with interacting electrons at an initial state (t = 0), the external potential $\nu(r,t)$ acting on it is determined only by the time evolution of the one-electron density, $\rho(r,t)$ for t > 0.

** We need to know the initial state

Observables: functionals of the time-dependent charge density

$$i\hbar \frac{\partial}{\partial t} \phi_i(r,t) = \left[-\frac{\hbar}{2} \nabla^2 + v_{KS}(r,t) \right] \phi_i(r,t)$$

$$v_{KS}(r,t) = v_H(r,t) + v_{xc}(r,t) + v_{ext}(r,t) \qquad m(r,t) = \sum_{i}^{N} |\phi_i(r,t)|^2$$

** In the time-dependent case, the xc potential depends on density at all past times - it is more difficult to find an expression for it

Linear Response TDDFT

External potential (perturbation) is weak:

$$V_{ext}(r,t) = V_{ext}^{o}(r) + V_{ext}'(r,t)$$

Density can be expanded in Taylor series with respect to the perturbation

$$n(\mathbf{r},t) = n^{o}(\mathbf{r}) + n'(\mathbf{r},t) + n''(\mathbf{r},t) + \dots$$

As we are talking about linear response TDDFT, we can express the first-order change in density due to an external perturbation v'_{ext} in the frequency domain as:

$$n'(r,\omega) = \int \chi(r,r',\omega) v'_{ext}(r',\omega) dr$$
Susceptibility

TDDFPT - Perturbation Theory + TDDFT

How to Compute Susceptibility?

-A variety of methods are available to compute susceptibility:

Ex: Casida-Davidson, Liouville-Lanczos

** For a more in depth lecture on some of those methods, check out the latest lecture on TDDFPT by lurii Timrov at:

http://indico.ictp.it/event/9616/session/47/contribution/80/material/video/

generalized susceptibility represented by a matrix element of the resolvent of the Liouvillian super-operator. This matrix element is then evaluated using a Lanczos recursion technique.

PRL 96, 113001 (2006)

PHYSICAL REVIEW LETTERS

week ending 24 MARCH 2006

Efficient Approach to Time-Dependent Density-Functional Perturbation Theory for Optical Spectroscopy

Brent Walker, ^{1,2} A. Marco Saitta, ³ Ralph Gebauer, ^{1,2} and Stefano Baroni ^{4,2}

¹ICTP—The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34014 Trieste, Italy

²DEMOCRITOS National Simulation Center, CNR-INFM, Trieste, Italy

³Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie, Paris, France

⁴SISSA—Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, I-34014 Trieste, Italy

(Received 17 August 2005; published 20 March 2006)

Using a superoperator formulation of linearized time-dependent density-functional theory, the dynamical polarizability of a system of interacting electrons is represented by a matrix continued fraction whose coefficients can be obtained from the nonsymmetric block-Lanczos method. The resulting algorithm, which is particularly convenient when large basis sets are used, allows for the calculation of the *full spectrum* of a system with a computational workload only a few times larger than needed for *static* polarizabilities within time-independent density-functional perturbation theory. The method is demonstrated with calculation of the spectrum of benzene, and prospects for its application to the large-scale calculation of optical spectra are discussed.

The TurboTDDFT code

- The dynamical polarizability of an interacting-electron system is represented as an off-diagonal matrix element of the resolvent of the Liouvillian super operator
- One-electron operators and density matrices are treated using a representation borrowed from time-independent DFPT avoid calculation of unoccupied Kohn-Sham orbitals
- The resolvent of the Liouvillian is evaluated by an algorithm based on the non symmetric Lanczos method
- Allows for the bulk of the work to be done at once for all frequencies the full spectrum is obtained at once!
- Extrapolation of Lanczos coefficients allows for reduction of number of Lanczos steps needed to obtain well converged spectra less expensive!
- Particularly suitable for larger molecular systems

Hands-on Tutorial

Absorption spectra calculations of organic molecules in vacuum, solution and ice surfaces

- Using the turbo_lanczos.x program allows for calculation of absorption spectra using
 TDDFpT without computing empty states
- Overall absorption spectrum in a wide frequency range can be calculated once via an inexpensive post-processing step
- Extrapolation of Lanczos coefficients allows to speed up convergence

^{**} The electronic transitions from occupied to empty states cannot be analyzed by this method - for this purpose, use **turbo_davidson.x**

Hands-on Tutorial

Absorption spectra calculations of organic molecules in vacuum, solution and ice surfaces

- 1. Absorption spectra calculation for benzene in vacuum
- 2. Absorption spectra convergence based on number of Lanczos steps
- 3. Absorption spectra calculation for benzene using Environ
- 4. Setting up calculations of absorption spectra for molecules on surfaces (ice)

Absorption Spectra Calculations

\$pw.x < input.scf.in > scf.out

Self-Consistent Field ground-state calculation

** Relax calculation can be performed before scf

\$ turbo_lanczos.x < input-tddfpt.in > tddfpt.out

Lanczos recursions

\$ turbo_spectrum.x < input-pp.in > spectrum.out

Post-processing to obtain the dynamical polarizability from the tridiagonal matrix

Produces file:

- spectrum.plot_chi.dat - this is where we find the values for oscillator strength

1. Absorption spectra calculations for benzene in vacuum

turbo_lanczos.x input

\$ turbo_lanczos.x -np 4 < C6H6.tddfpt.in > tddfpt.out

```
&lr_input
   prefix = 'C6H6',
                                           Same prefix as the scf calculation
   outdir = './tmp'
    restart_step = 100;
                                                 Writes restart files every restart_step iterations
    restart = .false. --- If .true., program will attempt to restart calculation if stopped
&lr_control
    itermax = 500,
                                        Number of lanczos iterations
    ipol = 1
                             Determines which element of the dynamical polarizability will be computed:
                             1: along x
                             2: along y
                             3: along z
                             4: 3 Lanczos chains are sequentially performed and the full polarizability
                             tensor and absorption coefficient are computed.
```

Input Files

turbo_spectrum.x input

```
$ turbo_spectrum.x -np 4 < C6H6.tddfpt_pp.in > spectrum.out
&lr_input
  prefix = 'C6H6',
   outdir = './tmp',
   itermax0 = 500, ← Number of calculated Lanczos coefficients
   itermax = 20000, ——— Number up to which coefficients will be extrapolated
  extrapolation = "osc", ← Type of extrapolation (bi-constant)
   epsil = 0.004, ← Value of Lorentzian broadening in Ry
   start = 0.0d0,
                           Minimum and maximum value of frequencies for a plot in Ry
   end = 1.0d0, -
   increment = 0.0001d0, ← Frequency step in Ry
   ipol = 1 ← Polarization direction (same as previous step)
```


Output

What we see:

Tridiagonal matrix:

- tddfpt.out: output from lanczos recursion steps
- C6H6.plot_chi.dat: generated by post-processing step

Extrapolation


```
Lanczos iteration:
                            Pol:1
                      155
lr_apply_liouvillian: not applying interaction
alpha(00000155) = 0 000000
beta (00000155)= 13.018605
gamma(00000155)= 13.018605
          1 0.00000000000000E+00
                                    0.00000000000000E+00
z1=
Lanczos iteration:
                      156
                            Pol:1
lr_apply_liouvillian: applying interaction: normal
alnha(00000156) = 0.000000
beta (00000156)= 13.518488
gaiiiiia(סטסטטטס)= בססטטטטט)
          1 -0.686747200347404E-01 0.000000000000000E+00
z1=
Lanczos iteration:
                      157
                            Pol:1
lr_apply_liouvillian: not applying interaction
alpha(00000157) = 0.000000
beta (00000157)= 13.006148
gamma(טטטעד) = 13.טטס148
z1=
          1 0.000000000000000E+00
                                    0.000000000000000E+00
Lanczos iteration:
                      158
                            Pol:1
lr_apply_liouvillian: applying interaction: normal
alpha(00000158) = 0 000000
beta (00000158)= 13.593802
gamma(00000158)= 13.593802
          1 0.657059429397266E-01 0.000000000000000E+00
z1=
```

Lanczos coefficients oscillate around half of the kinetic energy cutoff after a certain number of iterations - can be extrapolated

Extrapolation

$$\hat{\tau}_{N} = \begin{pmatrix} 0 & \gamma_{2} & 0 & \cdots & 0 \\ \beta_{2} & 0 & \gamma_{3} & 0 & 0 \\ 0 & \beta_{3} & 0 & \cdots & 0 \\ \vdots & 0 & \cdots & \ddots & \gamma_{N} \\ 0 & \cdots & 0 & \beta_{N} & 0 \end{pmatrix}$$

$$\hat{\tau}_{N'} = \begin{pmatrix} 0 & \gamma_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ \beta_{2} & 0 & \gamma_{3} & 0 & 0 & 0 & 0 & 0 \\ 0 & \beta_{3} & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & \cdots & \cdots & \gamma_{N} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \beta_{N} & 0 & \langle \gamma \rangle & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \langle \beta \rangle & 0 & \langle \gamma \rangle & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \langle \beta \rangle & 0 & \langle \gamma \rangle \end{pmatrix}$$

$$\langle \beta \rangle = \frac{\beta_1 + \beta_2 + \dots + \beta_N}{N}$$
 $\langle \gamma \rangle = \frac{\gamma_1 + \gamma_2 + \dots + \gamma_N}{N}$

Where:

N = itermax0

N' = intermix

Your first calculation

Convergence of spectrum calculations

Cell Size

Convergence of spectrum calculations

Number of Lanczos Iterations

Convergence of spectrum calculations

Broadening

2. Absorption spectra convergence - Lanczos steps

- This exercise will help you determine the necessary number of lanczos steps to achieve convergence of the absorption spectra of benzene the calculation you just performed
- •The necessary output files have been generated for you (TDDFPT/benzene/conv_test)
- •You will modify your post-processing file (C6H6.tddfpt_pp.in) to generate new C6H6.plot_chi.dat files where increasing number of lanczos steps are used to compute the spectra (ex: 500, 1000, 1500, 2000, ...)
- This calculation was performed using 4000 lanczos steps

```
&lr_input
   prefix = 'C6H6',
   outdir = './tmp',
   itermax0 = 500,
   itermax = 20000,
   extrapolation = "osc",
   epsil = 0.004,
   start = 0.0d0,
   end = 1.0d0,
   increment = 0.0001d0,
   ipol = 1
/
```

- Plot your results together. Your output is in Ry. Feel free to plot as is, or convert your files to eV.
- How many steps are necessary for your calculation to converge?

2. Absorption spectra convergence - Lanczos steps

3. Absorption spectra calculations with Environ

```
pw.x -environ < C6H6.scf.in > scf.out
turbo_lanczos.x -environ < C6H6.tddfpt.in > tddfpt.out
turbo_spectrum.x -environ < C6H6.tddfpt_pp.in > spectrum.out
```

```
Lanczos iteration:
                          Pol:1
lr_apply_liouvillian: not applying interaction
alpha(0000003)= 0.000000
beta (00000003)= 16.024818
gamma(00000003)= 16.024818
71=
         1 0.00000000000000E+00 0.00000000000000E+00
71=
         2 0.00000000000000E+00 0.00000000000000E+00
         3 0.00000000000000E+00 0.0000000000000E+00
71=
Lanczos iteration: 4 Pol:1
Calculate Environ contribution to response potential
lr_apply_liouvillian: applying interaction: normal
alpha(0000004)= 0.000000
beta (00000004)= 11.488343
gamma(00000004)= 11.488343
71=
         1 -0.105183652530397E+01
                                 0.00000000000000E+00
z1=
        2 -0.265114830561020E-06
                                 0.00000000000000E+00
z1=
        3 0.262544039294396E-08 0.000000000000000E+00
```


3. Absorption spectra calculations with Environ

3. Absorption spectra calculations with Environ

Different molecules (functional groups) will show different environment interference

Importance of Environment Effects

Single Frame Optimized in gas phase

Random frames obtained from FPMD trajectory

Ensemble Averaging

Absorption spectra obtained as an **average** of multiple frames of a trajectory and not from a single (structure-optimized) configuration

Optimized structure (single calculation) versus averaged calculation obtained from ab initio trajectory in solution

4. Absorption Spectra for Molecules on Surfaces

Important Parameters

- Size of the simulation box
- Spread region (Δ)
- Thickness of the ice and vacuum region
- Static (so) and optical (sopt) permittivities

Setting up the correct parameters

Important Parameters

- Size of the simulation box
- Spread region (Δ)
- Thickness of the ice and vacuum region
- Static (so) and optical (sopt) permittivities

Environ input file

```
&ENVIRON
                   verbose = 0 — If = 3 - generates *.cube files (really cool!!)
                   environ_thr = 1.d-2
                   env_dielectric_regions = 1
                &BOUNDARY
                stype = 1
                &ELECTROSTATIC
                   pbc_correction = 'parabolic'
                   pbc_dim = 2
                                             Dimensionality:
                   tol = 1.d-11
                                             0 = sphere-like
Static (107) and
                   mix = 0.6
                                             1 = cylinder-like
optical (1.716)
                   solver = 'iterative'
                                             2 = planar
permittivity
                   auxiliary = 'full'
values inside
dielectric region
                DIELECTRIC_REGIONS (angstrom)
               107 1.716 0. 0. 3.2 3.8 0.5 2 3
                                                              Axis of the dielectric region (1,2,3 = x,y,z)
                                            Spread
   Positions (x, y, z) of
                         Half of the width of the
   center of region
                         dielectric region
```

28

Phenol "Challenge"

- If you want to practice more of this, you can go to phenol/phenol_challenge and try to create your own input files for turbo_lanczos.x and turbo_spectrum.x based on the data presented on calculation convergence try to set up a good enough number of iterations, a correct box size, etc.
- •You may also want to play around with parameters on your post-processing file such as as start, end and increment. Remember that for experimental purposes, the range of interest in the absorption spectrum of phenol is between ~240-300 nm. ** Units in QE are Ry **

