Einfuehrung in die Theoretische Informatik

Kyriakos Schwarz, Roland Hediger

HS 2014

Contents

1	Erste Woche		
		Sprachen	
2		eite Woche DFA, NFA	8

1 Erste Woche

1.1 Sprachen

Alphabet Σ : nichtleere endliche Menge (von Zeichen)

Wort ueber Σ : endliche Folge von Zeichen aus Σ

Leeres Wort: ϵ (epsilon)

Menge aller Woerter ueber Σ : Σ^*

Konkatenation von Woertern x, y ueber Σ :

$$x = x_1 x_2 ... x_n$$
 $,x_i \in \Sigma$
 $y = y_1 y_2 ... y_n$ $,y_i \in \Sigma$

$$x \cdot y = xy = x_1 x_2 \dots x_n y_1 y_2 \dots y_n$$

Java: + ""
$$(\epsilon)$$
 Haskell: ++ "" (ϵ)

Monoid: Sei M eine Menge und

 $\circ: M \times M \to^{total} M$ eine Verknuepfung

Das Paar (M, \circ) heisst ein Monoid, falls gilt:

1)
$$a \circ (b \circ c) = (a \circ b) \circ c$$
 , $\forall a, b, c \in M$

2) Es gibt ein $e \in M$ mit $a \circ e = a = e \circ a$, $\forall a \in M$

Beispiel 1

$$M = \Sigma^*, \circ = \cdot$$

 (Σ^*,\cdot) ist ein Monoid mit ϵ als neutralem Element

Beispiel 2

$$\{\{x=5; y=6; \}z=7; \} \equiv \{x=5; \{y=6; z=7; \}\}$$

Komposition von Anweisungen assoziativ

Neutrales Element: ; (Java) skip, NOP (no operation)

$$(x = 2 * x; x = x + 1;) \not\equiv (x = x + 1; x = 2 * x)$$

Sprache ueber Σ :

Menge von Woerter ueber Σ

Beispiele

$$\begin{cases} \{\} & 0 \text{ Woerter} \\ \{0,1,01,10\} \text{ Sprache uber } \Sigma = \{0,1\} \\ \Sigma^* \\ \{\epsilon\} & 1 \text{ Wort} \\ \{\epsilon,0,00,000,\ldots\} \text{ uber } \Sigma = \{0\} \end{cases}$$

Bem

Sprache kann ∞ viele Woerter enthalten Jedes Wort ist aber endlich

Bem

 $\overline{\epsilon \in \Sigma^*}$

 Σ^* immer ∞ gross

Operationen auf Sprachen

Seien L_1 , L_2 Sprachen

 $L_1 \cup L_2$ Vereinigungsmenge

$$L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$$
 (Kreuzprodukt)

Sei (M, \circ) ein Monoid. Dann def.

$$a^0 = e$$
 , $a \in M$
 $a^n = a \circ a^{n-1}$, $n > 0$

$$L^0 = \{\epsilon\}$$

$$L^n = L \cdot L^{n-1} \qquad , n > 0$$

Kleen' scher Stern

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots$$
$$= \{x_1, x_2, \dots, x_k \mid k \geqslant 0, x_i \in L\}$$

Aufgabe

$$\Sigma = \{a, b, ..., z\}, L_1 = \{good, bad\}, L_2 = \{cat, dog\}$$

$$L_1 \cup L_2 = \{bad, cat, dog, good\}$$

$$L_1 \cdot L_2 = \{goodcat, gooddog, badcat, baddog\}$$

$$L_1^0 = \{\epsilon\}$$

$$L_1^1 = \{good, bad\} = L_1 \cdot L_1^0 = L_1$$

 $L_1^2 = \{goodgood, goodbad, badgood, badbad\}$

 $L_1^3 = \{goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, goodgood, badgoodgood, badgoodbad, badbadgood, badbadbad\}$

$$L_1^* = L_1^0 \cup L_1^1 \cup L_1^2 \cup L_1^3 \cup \dots$$

= $\{x_1, x_2, \dots, x_k \mid k \ge 0, x_i \in L_1\} = \{\epsilon, \dots\}$

 $L_1 \cdot L_2 = \{goodcat, gooddog, badcat, baddog\} \neq L_2 \cdot L_1$

|M| = Anzahl Elemente von M

1.2 Endliche Automaten DFA

deterministic finite automator

Statisch

Dynamisch

 $\underline{\text{Verarbeitung}} \qquad \text{Input: } \xrightarrow{1101}$

- 1. Start in q_1 Startzustand
- 2. Lese (1)101 , $q_1 \to q_2$
- 3. Lese 1 $\boxed{1}$ 01 , $q_2 \to q_2$
- 4. Lese 11①1 , $q_2 \to q_3$
- 5. Lese 110① , $q_3 \to q_2$
- 6. Fertig + akzeptiere, da q_2 akzeptierender Zustand ist und die Eingabe fertig gelesen ist.

Liefert accept oder fertig

Terminiert immer!

<u>Def DFA</u> : Ein DFA ist ein 5-Tupel $(Q, \Sigma, \delta, q_0, F)$ mit:

- 1. Q ist eine endliche nichtleere Menge von Zustaenden
- 2. Σ ist das Eingabealphabet (z.B. 1101)
- 3. $\delta: Q \times \Sigma \to^{total} Q$ Transitionsfunktion
- 4. q_0 Startzustand
- 5. $F \subseteq Q$ Menge der akzeptierende Zustaende

2 Zweite Woche

2.1 DFA, NFA

- 1. $Q = \{q_1, q_2, q_3\}$
- 2. $\Sigma = \{0, 1\}$
- 3. $\delta: Q \times \Sigma \to Q$

$$\delta(q_1,0) = q_1, \, \delta(q_1,1) = q_2, \dots$$

- 4. q_1 Start
- 5. $F = \{q_2\}$

<u>Def Verarbeitung</u> (dynamisch)

Sei $M = (Q, \Sigma, \delta, q_0, F)$ ein DFA

Sei $w=x_1x_2x_3...x_m$ ein Wort ueber Σ mit $x_i\in\Sigma,\ n\geqslant 0$ $[n=0\to w=\epsilon]$

M akzeptiert w, wenn eine Folge von Zustaenden existiert $r_0, r_1, r_2, ..., r_n$, mit:

- 1. $r_0 = q_0$
- 2. $r_i = \delta(r_{i-1}, x_i), i \in \{1...m\}$
- $3. r_n \in F$

Sonst wird w verworfen

accept / reject

M erkennt Sprache L falls

 $L = \{ w \in \Sigma^* \mid M \text{ akzeptiert } w \}$

Eine Sprache heisst regulaer, wenn ein

DFA existiert, der die Sprache erkennt

 $\begin{array}{c} \operatorname{Automat} \to \operatorname{\underline{akzeptiert}} / \operatorname{\underline{verwirft}} \operatorname{\underline{Wort}} \\ & \\ \underline{\operatorname{erkennt}} \operatorname{\underline{Sprache}} \\ & \\ \operatorname{recognise} \end{array}$

$$M_2: \qquad \Sigma = \{0, 1\}$$

akzeptiert kein Wort

erkennt \emptyset

$$M_3: \qquad \Sigma = \{0, 1\}$$

akzeptiert jedes Wort

erkennt Σ^*

Zwei DFA heissen <u>aequivalent</u>, wenn sie dieselbe Sprachen erkennen

NFA: nichtdeterministischer FA

$$N_1: \qquad \Sigma = \{0, 1\}$$

Eingabe: 010110

Verarbeitung:

$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$

 $\underline{\mathrm{Def}}\ \underline{\mathrm{DFA}}$: Ein NFA ist ein 5-Tupel (Q,Σ,δ,q_0,F) mit:

- 1. Q ist eine endliche nichtleere Menge von Zustaenden
- 2. Σ ist das Eingabealphabet (z.B. 1101)
- 3. $\delta: Q \times \Sigma_{\epsilon} \to^{total} P(Q)$ Transitionsfunktion
- 4. $q_0 \in Q$ Startzustand
- 5. $F \subseteq Q$ Menge der akzeptierende Zustaende