2. Integration of y = f(x)

Let
$$f(x) = \frac{x^3}{2} - 2x + 5$$
.

(a) Consider the interval [-1,3]. Divide it into four equal parts and label the partition points x_0, x_1, x_2, x_3, x_4 . (Note $x_0 = -1$ and $x_4 = 3$).

What is Δx , the length of each subinterval? For each subinterval, draw a rectangle with base the length of the subinterval and height so that the left endpoint touches the curve.

Write a Riemann sum (a sum of area of rectangles) to estimate the area under the curve and above the x-axis on the interval [-1,3] using 4 rectangles and the left endpoint rule.

- (b) Write a Riemann sum (a sum of area of rectangles) that would estimate the area under the curve and above the x-axis on the interval [-1,3] using 20 rectangles with the left endpoint rule. What is Δx ? Give a formula for x_i for i=0,...,20.
- (c) Write a limit of a Riemann sum that represents the exact area under the curve and above the x-axis on the interval [-1,3].
- (d) Write an integral that measures the exact area under the curve f(x) and above the x-axis from x = -1 to x = 3. Compute it.
- (e) (Challenge) Can you write a Riemann sum that estimates the area under the curve and above the x-axis on the interval [-1,3] using n rectangles and the midpoint rule?