Przetwarzanie tekstu 8-9-10-11 Analiza składniowa

Gramatyki bezkontekstowe definicia

Gramatyką bezkontekstową nazywamy czwórkę

 $\langle N, T, P, S \rangle$

gdzie

N - zbiór symboli nieterminalnych

T - zbiór symboli terminalnych

 $P \subset N \times (T \cup N)^*$ - zbiór produkcji

S ∈ N - symbol początkowy gramatyki

Gramatyki bezkontekstowe definicia

symbole terminalne (terminale) to symbole występujące w definiowanym języku (= elementy alfabetu języka)

symbole nieterminalne (nieterminale) to symbole pomocnicze, wprowadzane dla nazwania typów podwyrażeń języka (takich, jak np. instrukcja, lista argumentów, wyrażenie, blok, program; fraza rzeczownikowa, zdanie wzgledne).

produkcje są regułami budowania większych *wyrażeń* z mniejszych. Produkcję $\langle {\it A}, \alpha \rangle$ zapisuje się ${\it A} \to \alpha$

relacja wywodzenia

- produkcje to reguły przepisywania
- pomiędzy ciągami symboli z (N ∪ T)* definiujemy relację bezpośredniego wywodzenia ⇒:

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$
 jeśli $A \rightarrow \gamma \in P$

 zwrotne i przechodnie domknięcie relacji bezpośredniego wywodzenia nazywamy relacją wywodzenia i oznaczamy *

$$\alpha_0 \stackrel{*}{\Rightarrow} \alpha_n \equiv \alpha_0 \Rightarrow \alpha_1 \Rightarrow \ldots \Rightarrow \alpha_n, \quad n \geq 0$$

ciąg bezpośrednich wyprowadzeń takich, że lewa strona kolejnego jest prawą stroną poprzedniego nazywamy wywodem.

$$\alpha_0 \Rightarrow \alpha_1 \Rightarrow \ldots \Rightarrow \alpha_n$$

▶ ciąg symboli $\alpha \in (N \cup T)^*$, który da się wywieść z symbolu początkowego gramatyki, czyli taki że $S \stackrel{*}{\Rightarrow} \alpha$, nazywamy formą zdaniowa.

przykład

gramatyka

$$extbf{G} = \left\langle \left\{ \, extbf{S} \,, \, extbf{A} \,, \, extbf{B}
ight\}, \left\{ \, extbf{a} \,, \, extbf{b} \,
ight\}, \, extbf{P}, \, \, extbf{S}
ight
angle$$

$$P: \begin{array}{cccc} \underline{S} \rightarrow a & B & (1) \\ \underline{S} \rightarrow B & (2) \\ B \rightarrow b & (3) \\ B \rightarrow bb & (4) \end{array}$$

wywód słowa a b b z S

$$\underline{S} \underset{1}{\Rightarrow} a \underline{B} \underset{4}{\Rightarrow} a b b$$

nieterminal który w danym kroku jest rozwijany (zastępowany prawą stroną produkcji) jest podkreślony, a numer użytej produkcji – odnotowany pod strzałka

Gramatyki bezkontekstowe: przykład 2

gramatyka

$$\begin{split} G &= \langle \{\,E,\,O\,\}\,, \{\,\text{num}\,,\,(\,\,,\,\,)\,\,,\,+\,,\,-\,,\,\star\,,\,\,/\,\,\}\,,\,P,\,E\,\rangle \\ P &: \begin{array}{cccc} \underline{E} \to \text{num} & (1) & O \to + & (4) \\ E \to (E) & (2) & O \to - & (5) \\ E \to E\,O\,E & (3) & O \to \star & (6) \\ O \to / & (7) \\ \end{split}$$

▶ wywód słowa (num - num) z E $E \Rightarrow (E) \Rightarrow (EOE) \Rightarrow (EOnum)$ ⇒ (num O num) ⇒ (num - num)

wywód lewo-/prawostronny

wywód lewostronny to taki, w którym w każdym kroku wybieramy zawsze skrajnie lewy nieterminal:

$$\underline{E} \underset{2}{\Rightarrow} (\underline{E}) \underset{3}{\Rightarrow} (\underline{E} \circ E) \underset{1}{\Rightarrow} (\text{num} \underline{\circ} E)$$

$$\underset{5}{\Rightarrow} (\text{num} - \underline{E}) \underset{1}{\Rightarrow} (\text{num} - \text{num})$$

wywód prawostronny to taki, w którym w każdym kroku wybieramy zawsze skrajnie prawy nieterminal:

$$\underline{E} \underset{2}{\Rightarrow} (\underline{E}) \underset{3}{\Rightarrow} (EO\underline{E}) \underset{1}{\Rightarrow} (E\underline{O} \text{ num})
\underset{5}{\Rightarrow} (\underline{E} - \text{num}) \underset{1}{\Rightarrow} (\text{num} - \text{num})$$

formy zdaniowe uzyskiwane w wywodzie lewostronnym z symbolu startowego gramatyki nazywamy lewostronnymi formami zdaniowymi; formy zdaniowe uzyskiwane w wywodzie prawostronnym nazywamy prawostronnymi formami zdaniowymi

język generowany przez gramatykę

 zbiór wszystkich słów zbudowanych z symboli terminalnych, które da się wywieść z symbolu początkowego gramatyki G nazywamy językiem generowanym przez gramatykę G i oznaczamy L(G)

$$\mathit{L}(\mathit{G}) = \left\{ \alpha \mid \mathit{S} \stackrel{*}{\Rightarrow} \alpha \right\}$$

równowaźność gramatyk

▶ gramatyki G₁ i G₂ są równoważne, jeśli generują ten sam język

$$L(G_1)=L(G_2)$$

przykład gramatyk równoważnych

▶ $L(G_1) = L(G_2) = \{ ab, abb, b, bb \}$

striktura składniowa

 gramatyka, oprócz tego, że generuje/definiuje zbiór napisów, wiąże z tymi napisami pewną strukturę, zwaną strukturą składniową; struktura ta to drzewo rozbioru

drzewo rozbioru

- drzewo rozbioru (drzewo rozbioru skłaniowego, drzewo wywodu, drzewo wyprowadzenia) opisuje budowę (strukturę składniową) wyrażenia należącego do języka
 - etykietami wierzchołków są symbole nieterminalne, terminalne, bądź ϵ
 - wszystkie wierzchołki nie będące liśćmi etykietowane są symbolami nieterminalnymi
 - etykietą korzenia jest symbol początkowy gramatyki
 - ▶ jeśli wierzchołek etykietowany symbolem A ma synów etykietowanych kolejno symbolami $X_1, X_2, ..., X_n$, to w gramatyce musi istnieć produkcja $A \rightarrow X_1 X_2 ... X_n$
 - \blacktriangleright wierzchołek etykietowany ϵ musi być liściem i jedynym synem swego ojca

drzewo rozbioru - przykład

► gramatyka *G*₃

$$\begin{array}{c} \underline{E} \rightarrow \text{num} & (1) & O \rightarrow + & (4) \\ E \rightarrow (E) & (2) & O \rightarrow - & (5) \\ E \rightarrow E O E & (3) & O \rightarrow * & (6) \\ O \rightarrow / & (7) \end{array}$$

drzewo rozbioru dla wyrażenia num * (num + num)

niejednoznaczność

- gramatyka bezkontekstowa jest niejednoznaczna, jeśli pewne słowo ma więcej niż jedno drzewo rozbioru
- ... lub co równoważne więcej niż jeden wywód prawostronny (lewostronny)

niejednoznaczność - przykład

▶ gramatyka G₄

$$\begin{array}{cccc} \underline{E} \rightarrow & \text{num} & \underline{E} \rightarrow & E * E \\ \underline{E} \rightarrow & E + E & \underline{E} \rightarrow & E / E \\ \underline{E} \rightarrow & E - E & \underline{E} \rightarrow & (E) \end{array}$$

- ▶ słowo num * num + num
- dwa drzewa

usuwanie niejednoznaczności

- niejednoznaczność gramatyki często można usunąć formułując ją w inny sposób
- ▶ gramatyka jednoznaczna G₅ (równoważna gramatykom G₃ i G₄)

```
\begin{array}{l} \underline{WYRAŻENIE} \rightarrow WYRAŻENIE + SKŁADNIK\\ \underline{WYRAŻENIE} \rightarrow WYRAŻENIE - SKŁADNIK\\ \underline{WYRAŻENIE} \rightarrow SKŁADNIK\\ SKŁADNIK \rightarrow SKŁADNIK * CZYNNIK\\ SKŁADNIK \rightarrow SKŁADNIK / CZYNNIK\\ SKŁADNIK \rightarrow CZYNNIK\\ CZYNNIK \rightarrow num\\ CZYNNIK \rightarrow (WYRAŻENIE) \end{array}
```

usuwanie niejednoznaczności c.d.

▶ jedyne drzewo rozbioru dla num * num + num w gramatyce G₅

usuwanie niejednoznaczności c.d.

- niejednoznaczność nie zawsze da się usunąć
- istnieją języki bezkontekstowe silnie niejednoznaczne, tzn. takie, które da się opisać wyłącznie niejednoznacznymi gramatykami

quasiterminale

- napisy, które z punktu widzenia składniowego traktujemy tak, jak atomowe symbole terminalne, choć w wyrażeniach języka mogą być różnie reprezentowane, nazywamy quasi-terminalami (termin matematyczny) lub jednostkami leksykalnymi (termin informatyczny, ang. token)
- przykłady: liczba (12.54), identyfikator (main), stała napisowa (''Ala ma kota'').
- w gramatykach, które pojawiały się na wcześniejszych stronach, symbol num użyty został w funkcji quasi-terminala

metody podstawowe

podstawowe klasy algorytmów

- algorytmy wstępujące (z dołu do góry, ang. bottom-up) budują drzewo rozbioru w kierunku od liści do korzenia
- algorytmy zstępujące (z góry na dół, ang. top-down) budują drzewo rozbioru w kierunku od korzenia do liści
- algorytmy łączące elementy metody wstępującej i zstępującej

algorytm wstępujący – implementacja ze stosem

- wykorzystujemy stos, na który odkładane są symbole terminalne i nieterminalne
- na początku stos jest pusty
- akcje:

```
przesunięcie przeniesienie symbolu terminalnego z
wejścia na stos
redukcja zastąpienie na szczycie stosu prawej
strony produkcji jej lewą stroną
```

 sukces, gdy pobierzemy wszystkie symbole z wejścia, a na stosie będzie symbol początkowy gramatyki

algorytm wstępujący ze stosem - konflikty

- konflikt stan analizatora, w którym możliwe jest wykonanie więcej niż jednej akcji i trzeba dokonać wyboru
- możliwe konflikty:
 - konflikt przesunięcie-redukcja
 - konflikt redukcja-redukcja

algorytm wstępujący ze stosem – przykład przebiegu

▶ gramatyka (G₄)

$$\underline{E} \rightarrow E + E \mid E - E \mid E \star E \mid E / E \mid - E \mid (E) \mid \text{num}$$

- wejście num * num num
- możliwy przebieg algorytmu

stos	wejście	akcja	konflikt
\$	num * num - num	przesunięcie	
\$num	* num – num	redukcja	p-r
\$ <i>E</i>	* num – num	przesunięcie	
\$ <i>E</i> *	num – num	przesunięcie	
E * num	- num	redukcja	p-r
\$E * E	- num	redukcja	p-r
\$ <i>E</i>	- num	przesunięcie	
\$ <i>E</i> -	num	przesunięcie	
\$E - num		redukcja	
\$ <i>E - E</i>		redukcja	r-r
\$ <i>E</i>		akceptacja	

algorytm wstępujący ze stosem – przykład przebiegu przesunięcie

ten sam przebieg algorytmu (tylko inaczej wydrukowany)

stos	wejście	akcja	konflikt
\$	num * num - num	przesunięcie	
\$ num	* num - num	redukcja	p-r
\$ <i>E</i>	* num - num	przesunięcie	
\$ <i>E</i> *	num - num	przesunięcie	
\$ <i>E</i> * num	- num	redukcja	p-r
\$E * E	- num	przesunięcie	p-r
\$E * E -	num	przesunięcie	
\$ <i>E</i> * <i>E</i> - num		redukcja	
\$E * E - E		redukcja	r-r
\$ <i>E</i> * <i>E</i>		redukcja	
\$ E		akceptacja	

- stos+wejście = prawostronna forma zdaniowa
- wyróżnione pogrubieniem prawostronne formy zdaniowe tworzą wywód prawostronny

prefiks żywotny prawostronnej formy zdaniowej

- ▶ uchwyt prawostronnej formy zdaniowej to podciąg γ formy zdaniowej $\alpha\gamma\beta$, $\beta\in T^*$, taki że istnieje produkcja $A\to \gamma$ i $\alpha A\beta$ jest prawostronną formą zdaniową.
- prefiks żywotny prawostronnej formy zdaniowej to prefiks prawostwonnej formy zdaniowej nie wychodzący poza skrajnie prawy uchwyt (uchwytów może być wiele, chodzi o ten najdalej sięgający w prawo)
- podczas każdego przebiegu algorytmu zstępującego ze stosem zakończonego sukcesem, w każdym momencie zawartość stosu musi być żywotnym prefiksem prawostronnej formy zdaniowej.

algorytm LR(1)

- jest deterministyczną wersją algorytmu wstępującego ze stosem
- "zna" wszystkie możliwe żywotne prefiksy prawostronnych form zdaniowych; tylko one mogą pojawić się na stosie;
- decyzję, jaką akcję wykonać w danym kroku, podejmuje na podstawie stanu stosu i podglądu jednego symbolu wejściowego.
- akcje:

```
przesunięcie j.w.
redukcja j.w.
akceptacja jeśli na stosie symbol początkowy, a wejście
wyczerpane
błąd jeśli nie można wykonać żadnej innej akcji (w
szczególności przesunięcia lub redukcji, w wyniku
której na stosie znalazłby się żywotny prefiks)
```

algorytm LR(1) - przykład przebiegu

▶ gramatyka G₄

$$\underline{E} \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid - E \mid (E) \mid \text{num}$$

wejście num * num - num

przebieg algorytmu

stos	wejście	akcja	konflikt
\$	num * num - num	przesunięcie	
\$num	* num – num	redukcja	(nie ma konfliktu p-r)
\$ <i>E</i>	* num – num	przesunięcie	
\$ <i>E</i> *	num – num	przesunięcie	
E * num	- num	redukcja	(nie ma konfliktu p-r)
\$E * E	- num	przesunięcie	p-r
\$E * E -	num	przesunięcie	_
E * E - num		redukcja	
\$E * E - E		redukcja	(nie ma konfliktu r-r)
\$E * E		redukcja	
\$ <i>E</i>		akceptacja	

w krokach opisanych '(nie ma konfliktu p-r)' przesunięcie doprowadziłoby do pojawienia się na stosie ciągu symboli, który nie jest żywotnym prefiksem, dlatego w algorytmie LR(1) konflikt nie wystąpi

Analiza składniowa algorytm LR(1) c.d.

- podstawowy algorytm LR(1) nie może być stosowany dla gramatyki, która prowadzi do powstawania konfliktów, jest to bowiem algorytm deterministyczny
- w praktyce: algorytm LR(1) rozbudowuje się o zasady rozstrzygania konfliktów

yacc

- yacc to nazwa językia specyfikacji i zarazem generatora analizatorów składniowych wykorzystujących algorytm LR(1) rozszerzony o mechanizmy rozstrzygania konfliktów
- bison jest darmową reimplementacją yacca na licencji GNU
- zastosowanie:
 - budowa modułów programowych analizatora składniowego
 - budowa przetworników tekstu sterowanych składnią

yacc informacie ogólne

- specyfikacja analizatora składniowego tłumaczona jest przez program yacc (bison) na język C i przybiera postać funkcji yyparse()
- aby otrzymać program wykonywalny konieczne jest dostarczenie definicji funkcji:
 - main()
 - yyerror(char*) funkcja wywoływana w przypadku wystapienia błędu składniowego
 - yylex() analizator leksykalny

yacc struktura programu

struktura programu yaccowego jest taka sama jak lexowego

```
sekcja deklaracji i definicji
%%
reguły
%%
podprogramy pomocnicze
```

yacc

struktura programu – sekcja deklaracji i definicji

%{
deklaracje i definicje w języku C
%}
deklaracje Yacc

- reguły są produkcjami gramatyki bezkontekstowej, w których dodatkowo mogą wystąpić akcje
- reguła ma postać:

$$N: s_1 s_2 \ldots s_n;$$

- N symbol nieterminalny
- ▶ s₁ s₂ ... s_n składniki, z których każdy może być:
 - symbolem terminalnym
 - symbolem nieterminalnym
 - akcją
- reguły o takiej samej lewej stronie można grupować przy użyciu operatora |

Yacc: symbole terminalne

- symbolem terminalnym może być:
 - znak (literał znakowy, np. 'a', '=')
 - nazwa jednostki leksykalnej (stała symboliczna)
- nazwy jednostek leksykalnych wprowadza się za pomocą deklaracji:
 - ▶ %token t
 - ▶ %left t
 - ▶ %right t
 - ▶ %nonassoc t
- ► np.

```
%token LICZBA
%nonassoc ASSIGNMENT OPERATOR
```

yacc

symbole nieterminalne

- symboli nieterminalnych nie deklaruje się
- wszystkie symbole występujące po lewej stronie jakiejś reguły są uznawane za symbole nieterminalne
- symbol początkowy gramatyki wskazuje się (opcjonalnie) za pomocą deklaracji

%start S

 domyślnie symbolem startowym jest symbol lewej strony pierwszej produkcji

- akcja jest ujętym w nawiasy klamrowe kodem w języku C, w którym można używać pewnych predefiniowanych zmiennych i funkcji
- akcje zazwyczaj umieszcza się jako ostatni składnik reguły
- umieszczanie akcji jako pierwszego składnika reguły jest niewskazane
- akcja wykonywana jest, gdy poprzedzający ją ciąg symboli zostanie rozpoznany na wejściu
- akcja kończąca regułę wykonywana jest w momencie redukcji tą regułą
- (Początkujący powinni korzystać tylko z akcji na końcu reguły.)

yacc

sekcja podprogramów pomocniczych

jak w lexie

- chcąc pobrać symbol wejściowy, funkcja yyparse() wywołuje funkcję yylex(). Wartością tej funkcji jest liczba całkowita będąca kodem symbolu terminalnego (jednostki leksykalnej).
- wartości zwracane przez funkcję yylex() to symbole terminalne w yaccu

przykład 1 (z funkcją yylex() pisaną ręcznie)

```
p1.y
%%
ciag : ciag ',' cyfra
       cyfra
cyfra : '0'
        111
%%
#include <stdio.h>
int yylex()
{ int c:
 while((c=getchar())==' ' | | c=='\t' | | c=='\n');
  switch(c)
  { case '0': return '0';
    case '1': return '1':
    case ',': return ',';
    case EOF: return 0;
    default : printf("Nieoczekiwany znak.\n"); exit(1); } }
int yyerror(char* s) { printf("%s\n",s); return 1; }
int main() { yyparse(); }
```

przykład 1prim (z funkcją yylex() wygenerowaną przez lexa)

p1prim.y

```
%%
ciag
       : ciag ',' cyfra
       cyfra
cyfra
       : '0'
         111
%%
#include <stdio.h>
int yyerror(char* s)
{ printf("%s\n",s);
 return 1; }
int main()
{ yyparse(); }
```

p1prim.l

```
%%

0    return '0';

1    return '1';

\,    return ',';

[ \t\n];

.    { printf("Nieoczekiwany znak");
        exit(1); }
```

przykład 1bis (z funkcją yylex() wygenerowaną przez lexa)

p1bis.y

```
%token CYFRA
%%
ciag
      : ciag ',' CYFRA
        CYFRA
%%
#include <stdio.h>
int yyerror(char* s)
{ printf("%s\n",s);
 return 1; }
int main()
{ yyparse(); }
```

```
p1bis.l
%{
    #include "plbis.tab.h"
%}
%%
[01] return CYFRA;
       return ',';
١,
[ \t\n];
        { printf("Nieoczekiwany znak");
          exit(1); }
```

```
p1bis.tab.h (generowany przez yacc -d ...)

...
# define CYFRA 257
```

przykład 2 (współpraca z Leksem)

```
p2.l
p2.y
                        %{
%token LTCZBA
                           #include "p2.tab.h"
%token ID
                        %}
%%
                        %%
wyr : wyr '+' wyr
                        [0-9]+ return LICZBA;
                        [a-z]+ return ID;
        wyr '*' wyr
                        n + n
                                 return '+';
        wyr '/' wyr
                                return '-';
        '(' wyr ')'
                        11 4 11
                                 return '*';
        '-' wyr
                        H / H
                                return '/':
        LICZBA
                        "("
                                return '(';
        TD
                        ")"
                                 return ')';
                        [ \t\n];
%%
                                 printf("LEXERR\n"); exit(1);
#include <stdio.h>
int yyerror(char* s)
                        p2.tab.h
{ printf("%s\n",s);
                        . . .
  return 1; }
                        # define LICZBA 257
int main()
                        # define ID 258
{ yyparse(); }
                        . . .
```

przykład 3 (akcje)

```
%{
   #include <stdio.h>
%}
%token LICZBA
%token ID
%%
wyr
     : wyr '+' wyr printf("1 ");
       wyr '-' wyr printf("2 ");
       wyr '*' wyr printf("3 ");
       wyr '/' wyr printf("4 ");
        '(' wyr ')' printf("5 ");
        '-' wyr printf("6 ");
       LICZBA printf("7 ");
                 printf("8 ");
        ID
%%
. . .
```

```
▶ we: - LICZBA * ID + LICZBA
```

▶ wy: 7 8 7 1 3 6

terminalom i regułom można przypisać priorytet

```
%token LTCZBA TD
                                  /* terminale z nieokreślonym priorytetem */
%left '+' '-'
                                  /* terminale z najniższym priorytetem */
%left '*' '/'
%left NEG
                                  /* 'sztuczny' terminal z najwyższym priorytetem */
%%
wyr : wyr '+' wyr
     /-/ wyr %prec NEG /* priorytet reguly - równy priorytetowi NEG */
      '(' wyr ')'
      LICZBA
       ID
%%
. . .
```

zasady rozstrzygania konfliktów

- Konflikt przesunięcie-redukcja:
 - wybierz redukcję jeśli priorytet reguły wyższy od priorytetu aktualnego symbolu wejściowego; priorytet reguły to priorytet ostatniego symbolu terminalnego w ciele reguły, chyba że przypisano regule priorytet bezpośrednio dyrektywą %prec.
 - wybierz redukcję jeśli priorytety są równe, a symbol lewostronnie łączny (zadeklarowany deklaracją %left)
 - 3. wybierz **przesunięcie** w każdym innym przypadku
- Konflikt redukcja-redukcja:
 - wybierz **redukcję** regułą, która jako pierwsza pojawia się w specyfikacji

```
%token LICZBA ID
%left '+' '-'
%left '*' '/'
%left NEG
%%
wyr : wyr '+' wyr {printf("1 ");}
    wyr '-' wyr {printf("2 ");}
    wyr '*' wyr {printf("3 ");}
    wyr '/' wyr {printf("4 ");}
    '-' wyr {printf("5 ");} %prec NEG
    '(' wyr ')' {printf("6 ");}
    LICZBA {printf("7 ");}
                  {printf("8 ");}
     ID
%%
```

```
    We: - ID * ID + ID + ID
    Wy: 8 6 8 3 8 1 8 1 (bez priorytetów: 8 8 8 8 1 1 3 6)
```

przykład 4 – wyjaśnienie

stos	wejście	konfl	pr.reg.	pr.sym.	łączi.	akcja
\$ \$- \$- ID	- ID * ID + ID + ID * ID + ID + ID + ID					przes. przes. red.
\$ - wyr \$ wyr \$ wyr * \$ wyr * ID	* ID + ID + ID * ID + ID + ID ID + ID + ID	p-r	3	2	left	red. przes. przes. red.
\$ wyr * wyr \$ wyr \$ wyr + \$ wyr + ID	+ ID + ID + ID + ID ID + ID + ID	p-r	2	1	left	red. przes. przes. red.
\$ wyr + wyr \$ wyr \$ wyr + \$ wyr + ID \$ wyr + wyr \$ wyr	+ ID + ID ID	p-r	1	1	left	red. przes. przes. red. red. red.

wartości semantyczne

- z każdym symbolem związana jest tzw. wartość semantyczna (można jej nie używać)
- w regule: N : s₁ s₂ ... sₙ ; \$\$ - wartość semantyczna nieterminala N \$1, \$2, ... \$n - wartości semantyczne składników s₁, s₂, ..., sₙ
- wartości semantycznych używa się po to by:
 - móc związać dodatkową informację z symbolami (np. z jednostką leksykalną LICZBA możemy związać informację o jej wartości)
 - móc przekazywać wartości w obrębie struktury składniowej w trakcie analizy
 - móc prowadzić obliczenia w trakcie analizy składniowej

wartości semantyczne c.d.

- terminalom wartości semantyczne przypisuje analizator leksykalny (przypisując wartość specjalnej zmiennej yylval)
- nieterminalom wartości semantyczne przypisuje się w akcjach
- w akcji będącej j-tym składnikiem prawej strony reguły można korzystać z wartości zmiennych \$i, i < j</p>
- zmiennej \$\$ przypisuje się zwykle wartość w akcji kończącej regułę (domyślnie \$\$=\$1)

typ wartości semantycznych

- domyślnie typem wszystkich wartości semantycznych jest int
- typ wartości semantycznych symboli można zmienić przy pomocy makrodefinicji

#define YYSTYPE typ

 jeżeli typy wartości semantycznych różnych symboli mają być różne, używamy deklaracji %union (patrz. man/info bison lub CJN)

przykład 5 – obliczanie wartości wyrażenia arytmetycznego

kalkulator.y

```
. . .
%%
wyr0: wyr printf("=%i\n",$1);
wyr : wyr '+' skl {$$ = $1+$3;}
      skl
               \{\$\$ = \$1;\}
skl : skl '*' czy {$$ = $1*$3;}
                \{\$\$ = \$1;\}
      CZY
czy : '(' wyr ')' {$$ = $2;}
      LICZBA \{\$\$ = \$1;\}
%%
. . .
```

kalkulator.l

```
"+" return '+';
"*" return '*';
"*" return '*';
```

- Algorytm korzysta ze stosu i tablic, definiujących funkcje ACTION i GOTO.
- Na stosie odkładane są na przemian symbole i stany.
- Stan niesie ze sobą informację o przeczytanym dotąd wejściu.
- Funkcja ACTION[s,a] wyznacza, jaką akcję należy wykonać w stanie s, jeśli następnym symbolem na wejściu jest a. Możliwe akcje to:
 - przesuń s
 - redukuj zgodnie z A → α
 - akceptuj
 - błąd
- Funkcja GOTO[s,A] określa stan, do którego należy przejść po redukcji do symbolu A.

akcje – szczegóły

▶ konfiguracja poczatkowa: $\langle s_0, a_1 a_2 \dots a_n \rangle$

Krok:

▶ konfiguracja przed:
$$\langle s_0 X_1 s_1 X_2 s_2 \dots X_m s_m, a_i a_{i+1} \dots a_n \$ \rangle$$

- ACTION[s_m, a_i]=przesuń s konfiguracja po: $< s_0 X_1 s_1 X_2 s_2 \dots X_m s_m a_i s$, $a_{i+1} \dots a_n$ \$ >
- ► ACTION[s_m, a_i]=redukuj zgodnie z $A \to \alpha$ konfiguracja po: $\langle s_0 X_1 s_1 X_2 s_2 \dots X_{m-r} s_{m-r} A s, a_i a_{i+1} \dots a_n \$ >$
 - $ightharpoonup r = długość <math>\alpha$,
 - $s = GOTO[s_{m-r}, A]$
- ACTION[s_m,a_i]=akceptacja konfiguracja po: zatrzymanie pracy z wynikiem SUKCES
- ACTION[s_m,a_i]=błąd konfiguracja po: zatrzymanie pracy z wynikiem PORAŻKA

Algorytm LR tworzenie tablic ACTION i GOTO

- metoda SLR
- metoda kanoniczna
- metoda LALR (bison)
- szczegóły patrz ASU

tworzenie tablic metoda SLR

- Rozważamy gramatyke rozszerzoną o produkcję S' o S
- sytuacja LR(0) produkcja z kropką w pewnym miejscu prawej strony (np. z produkcji A → B c otrzymujemy sytuacje:
 [A → · B c], [A → B · c], [A → B c·].
- ▶ domknięcie zbioru sytuacji I najmniejszy zbiór sytuacji, zawierający I, oraz taki, że jeśli $[A \to \alpha \cdot B\beta]$ należy do I i $B \to \gamma$ jest produkcją, to do I należy również $[B \to \cdot \gamma]$.
- ▶ przejście(I,X) domknięcie zbioru wszystkich sytuacji $[A \to \alpha X \cdot \beta]$ takich, że $[A \to \alpha \cdot X\beta]$ należy do I.
- ▶ kanoniczna rodzina zbiorów sytuacji LR(0) najmniejsza rodzina C zbiorów sytuacji taka, że: 1) domknięcie ({[S' → · S]}) należy do C, 2) jeżeli zbiór sytuacji I należy do C, to dla każdego symbolu X, przejście (I, X) o ile nie jest puste też należy do C.

algorytm tworzenia tablic SLR

- 1. Zbuduj $C = \{I_0, I_1, \dots, I_n\}$, rodzinę zbiorów sytuacji LR(0) dla G'.
- 2. stan *i* odpowiada rodzinie sytuacji *l_i*:
 - jeśli [A → α · aβ] ∈ I_i i przejście(I_i, a) = I_j, a jest terminalem, to ACTION[i,a] przypisz "przesuń j"
 - jeśli [A → α·] ∈ I_i, A ≠ S' to ACTION[i,a] przypisz "redukuj według A → α", dla wszystkich a ∈ FOLLOW(A) (przez FOLLOW(A) oznaczamy zbiór terminali, jakie moga pojawić się w wywodach prawostronnych bezposrednio po nieterminalu A. Sposób wyznaczania FOLLOW(A) – patrz ASU, CJN.)
 - jeśli [S' → S·] ∈ I_i to ACTION[i,\$] przypisz "akceptuj"
- 3. jeśli przejście(I_i , A) = I_j , A jest nieterminalem, to GOTO[i,a] przypisz j
- 4. pozycje tablic, którym nie nadano wartości oznaczamy jako błędne
- 5. stan startowy odpowiada rodzinie sytuacji zawierającej [$S' o \cdot S$].

Algorytm LR algorytm tworzenia tablic SLR

- Jeśli w kroku 2. algorytmu stworzymy sprzeczne akcje, gramatyka nie jest SLR i algorytm nie generuje analizatora.
- Metody kanoniczna i LALR są silniejsze: generują analizatory dla większej klasy gramatyk.
- Konstrukcja tablic LR(1) przebiega bardzo podobnie, zamiast sytuacji LR(0), rozważa się sytuacje LR(1) postaci: [Produkcja z kropką, a], gdzie a jest terminalem, jaki może wystapić zaraz po ciągu opisywanym Produkcją.
- szczegóły: patrz ASU, CJN

gramatyka: (0) $E' \rightarrow E$ (1) $E \rightarrow E + T$

(3) $T \rightarrow T * F$

tworzenie tablic SLR (przykład za AHU)

```
(5) F \rightarrow (E)
(6) F \rightarrow id
rodzina podzbiorów LR(0):
I_0 = \{ E' \rightarrow \cdot E, E \rightarrow \cdot E + T, E \rightarrow \cdot T, T \rightarrow \cdot T * F, T \rightarrow \cdot F, F \rightarrow \cdot (E), F \rightarrow \cdot \text{id} \}
I_1 = \{ E' \rightarrow E \cdot E \rightarrow E \cdot + T \}
I_2 = \{ E \rightarrow T \cdot, T \rightarrow T \cdot *F, \}
h = \{ T \rightarrow F \cdot , \}
I_A = \{ T \rightarrow (\cdot E), E \rightarrow \cdot E + T, E \rightarrow \cdot T, T \rightarrow \cdot T * F, T \rightarrow \cdot F, F \rightarrow \cdot (E), F \rightarrow \cdot \text{id} \}
I_5 = \{ F \rightarrow id \cdot, \}
I_6 = \{E \rightarrow E + \cdot T, T \rightarrow \cdot T * F, T \rightarrow \cdot F, F \rightarrow \cdot (E), F \rightarrow \cdot \text{ id } \}
I_7 = \{ T \rightarrow T * \cdot F, F \rightarrow \cdot (E), F \rightarrow \cdot \text{ id } \}
I_8 = \{ F \rightarrow (E \cdot), E \rightarrow E \cdot + T, \}
I_0 = \{ E \rightarrow E + T \cdot, T \rightarrow T \cdot *F, \}
I_{10} = \{ T \to T * F_{\cdot}, \}
I_{11} = \{ F \rightarrow (E) \cdot, \}
```

(2) $E \rightarrow T$

(4) $T \rightarrow F$

tworzenie tablic SLR - przykład

funkcja przejście: definiuje automat rozpoznający żywotne prefiksy

Algorytm LR tablice ACTION i GOTO

	ACTION				GOTO				
stan	id	+	*	()	\$	Ε	Τ	F
0	s5			s4			1	2	3
1		s6				akc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

si = "przesuń i"

ri = "redukuj i-tą produkcją"

Yacc: gramatyki niejednoznaczne

- metody SLR, kanoniczna, i LALR nie generują analizatorów dla gramatyk niejednoznacznych (gramatyki takie nie są LR(1))
- yacc tak (priorytety, zasady rozwiązywania konfliktów).

Analiza składniowa

literatura

- J. E. Hopcroft, J. D. Ullman, Wprowadzenie do teorii automatów, języków i obliczeń, Wydawnictwo Naukowe PWN, 1994, (rozdziały 4.–6.)
- A. V. Aho, R. Sethi, J. D. Ullman, Kompilatory. Reguly, metody i narzędzia, Wydawnictwo Naukowo-Techniczne, 2002, (rozdział 4.)