Vorlesung Fortgeschrittene Softwaretechnik

Wintersemester 2024/25

Prof. Dr. Stephan Diehl

Informatik

Universität Trier

Large Language Models

Theorie

timoelliott.com "And that is the original processor!"

Bildquelle: https://i0.wp.com/timoelliott.com/blog/wp-content/uploads/2023/10/and-that-is-the-original-processor-1.png?w=1024&ssl=1

Plan für die nächsten Wochen

Themenblöcke bisher: Testen, CI, Patterns, VR/AR+SE

	Datum	Thema/Inhalt	Übung		Dozent	Block
DO	12.12.2024	Empirische SE + Software Evolution			SD	Ouantitativo
DI	17.12.2024	MSR, Empfehlungsdienste	Praxis BOA	Ausgabe LIT	SD	Quantitative Studien
DO	19.12.2024	???				Studien
	FREI					
DI	07.01.2025	RG MSR/BOA	Übung BOA		SD	
DO	09.01.2025	Research Design + Quantitative Analyse			SD	
DI	14.01.2025	Qualitative Analyse	Praxis: QA 1	Ausgabe LIT	SD	
DO	16.01.2025	Praxis: QA 2 (gemeinsames Kodieren)			SD	Qualitative
DI	21.01.2025	RG QA+SE	Übung QA		SD	Studien
DO	23.01.2025	Info zu Portfolio			SD	
DI	28.01.2025	LLM + SE	Übung LLMSE	Ausgabe LIT	SD	LLM+SE
DO	30.01.2025	LLM + SE			SD	
DI	04.02.2025	RG: LLM+SE	Übung LLMSE		SD	
DO	06.02.2025				SD	
DI	11.02.2025	Abgabe Expose			SD	
DO	13.02.2025				SD	

Transformers erklärt in 9 Minuten !!!

- Transformers, explained: Understand the model behind GPT, BERT, and T5
- https://www.youtube.com/watch?v=SZorAJ4I-sA

Grundlegende Mathematische Operationen

- Embedding in mehrdimensionalen Raum
- Skalar-Produkt (dot product, entspricht cos(), wenn Vektoren normiert)
- Matrixmultiplikation vs. Netzwerk
- Softmax

LLM berechnet bedingte Wahrscheinlichkeit: p(next token | previous tokens)

Quelle: https://www.youtube.com/watch?v=KJtZARuO3JY ab Minute 2:00

Word **Embeddings**

Klassisches Beispiel

Quelle: https://www.youtube.com/watch?v=wjZofJX0v4M

Quelle: https://api.semanticscholar.org/CorpusID:7478738

Word Embeddings

Gelernte Einbettung aus realistischen Trainingsdaten

Quelle: https://www.youtube.com/watch?v=wjZofJX0v4M

Word Embeddings

Gelernte
Einbettung
aus realistischen
Trainingsdaten

Quelle: https://www.youtube.com/watch?v=wjZofJX0v4M

Word **Embeddings**

Gelernte **Einbettung** aus realistischen **Trainingsdaten**

Quelle: https://www.youtube.com/watch?v=wjZofJX0v4M ab Minute 15:30

Word Embeddings

In GPT: Vektoren im Embedding Space repräsentieren nicht nur Worte (oder Token), sondern kodieren auch die Position des Wortes in der Eingabe und können Informationen über den Kontext erfassen.

Quelle: https://www.youtube.com/watch?v=KJtZARuO3JY ab Minute 18:45

Skalarprodukt

Wortähnlichkeit

Bildquelle: https://odsc.com/blog/getting-started-with-vector-based-search/

Skalarprodukt

Wortähnlichkeit

Skalar-Produkt (dot product) zweier Vektoren entspricht dem Kosinus des eingeschlossenen Winkels, wenn die Vektoren normiert sind.

Bildquelle: https://odsc.com/blog/getting-started-with-vector-based-search/

Ein Neuron berechnet die gewichtete Summe seiner eingehenden Verbindungen und leitet den nicht-linear gefilterten Wert weiter:

$$h_2' = w_{1,2} * x_1 + w_{2,2} * x_2 + w_{3,2} * x_3$$

$$h_2' = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} * \begin{bmatrix} w_{1,2} \\ w_{2,2} \\ w_{3,2} \end{bmatrix}$$
 Skalar-Produkt

$$h_2 = \frac{1}{1 - e^{h_2'}}$$

Matrixmultiplikation berechnet jeden Eintrag des Ergebnisses durch das Skalarprodukt einer Zeile der ersten Matrix mit einer Spalte der zweiten Matrix.

QueIIe: https://datascience.stackexchange.com/questions/75855/what-types-of-matrix-multiplication-are-used-in-machine-learning-when-are-they

Feedforward pass

In the feed-forward pass the input features will be multiplied by the weights at each layer to produce the outputs

At the hidden layer these will then go through the activation function, if we assume sigmoid then

$$[\,h_1\quad h_2\quad h_3\quad h_4\,]=rac{1}{1+e^{\left[\,-h_1'\quad -h_2'\quad -h_3'\quad -h_4'
ight]}}$$

Finally we go through the next set of weights to the output neurons

$$egin{bmatrix} \left[egin{array}{cccc} h_1 & h_2 & h_3 & h_4 \,
ight] * \left[egin{array}{cccc} v_{1,1} & v_{1,2} \ v_{2,1} & v_{2,2} \ v_{3,1} & v_{3,2} \ v_{4,1} & v_{4,2} \, \end{array}
ight] = \left[egin{array}{cccc} y_1' & y_2' \,
ight] \end{split}$$

$$\left[egin{array}{cc} y_1 & y_2 \end{array}
ight] = rac{1}{1+e^{\left[egin{array}{cc} -y_1' & -y_2' \end{array}
ight]}}$$

Sigmoid

$$s(x_{i)}) = \frac{1}{1 - e^{-x_i}}$$

Sigmax

$$s(x_i) = \frac{e^{x_i}}{1\sum_{j=1}^n e^{x_j}}$$

Summe der Einträge ist 1

Quelle:

https://towardsdatascience.com/sig moid-and-softmax-functions-in-5minutes-f516c80ea1f9

Self-Attention

Abbildung vom Embedding Space in den kleineren Query/Key Space

Quelle: https://www.youtube.com/watch?v=KJtZARuO3JY ab Minute 29:15

Self-Attention

Matrizenmultiplikation berechnet den Einfluss von jedem Token der Eingabe auf jedes andere.

Quelle: https://www.youtube.com/watch?v=KJtZARuO3JY ab Minute 29:15

Quelle:

Fine-tunes the pretrained Pretraining und Fine-Tuning LLM to create a classification model STAGE 1 STAGE 2 STAGE 3 Dataset with class labels 1) Data 7) Load 2) Attention 3) LLM 5) Training 6) Model preparation pretrained architecture mechanism evaluation (8) Fine-tuning dool & sampling weights Classifier 4) Pretraining Building an LLM Foundation model Personal assistant Implements the data sampling and 9) Fine-tuning Pretrains the LLM on unlabeled understand the basic mechanism data to obtain a foundation Instruction dataset model for further fine-tuning Fine-tunes the pretrained

Quelle:

https://www.manning.com/books/build-a-large-language-model-from-scratch

LLM to create a personal

assistant or chat model

3Blue1Brown

Aber was ist ein GPT? Visuelle Einführung in Transformers | Deep Learning, Kapitel 5

https://www.youtube.com/watch?v=wjZofJX0v4M

Attention in transformers, visually explained | DL6

https://www.youtube.com/watch?v=eMlx5fFNoYc

How might LLMs store facts | DL7

https://www.youtube.com/watch?v=9-Jl0dxWQs8

Large Language Models explained briefly

https://www.youtube.com/watch?v=LPZh9BOjkQs

Kurzfassung:

- Visualizing transformers and attention | Talk for TNG Big Tech Day '24
- https://www.youtube.com/ watch?v=KJtZARuO3JY

Weitere gute Lernvideos

Understanding ChatGPT and LLMs from Scratch - Part 1

https://www.youtube.com/watch?v=Wt3Oicmy9VA

Transformers erklärt in 9 Minuten !!! Transformers, explained: Understand the model behind GPT, BERT, and T5 https://www.youtube.com/watch?v=SZorAJ4I-sA

Stanford: Introduction to Transformers

https://www.youtube.com/watch?v=XfpMkf4rD6E

Attention basically

```
class Node:
 def __init__(self):
   # the vector stored at this node
   self.data = np.random.randn(20)
   # weights governing how this node interacts with other nodes
   self.wkey = np.random.randn(20, 20)
   self.wquery = np.random.randn(20, 20)
   self.wvalue = np.random.randn(20, 20)
 def key(self):
   # what do I have?
   return self.wkey @ self.data
 def query(self):
   # what am I looking for?
   return self.wquery @ self.data
 def value(self):
   # what do I publicly reveal/broadcast to others?
   return self.wvalue @ self.data
```


$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

```
class Graph:
 def __init__(self):
   # make 10 nodes
    self.nodes = [Node() for _ in range(10)]
                                                         Steven Feng
   # make 40 edges
    randi = lambda: np.random.randint(len(self.nodes))
    self.edges = [[randi(), randi()] for _ in range(40)]
 def run(self):
   updates = []
   for i,n in enumerate(self.nodes):
     # what is this node looking for?
     q = n.query()
     # find all edges that are input to this node
      inputs = [self.nodes[ifrom] for (ifrom, ito) in self.edges if ito == i]
     if len(inputs) == 0:
        continue # ignore
     # gather their keys, i.e. what they hold
      keys = [m.key() for m in inputs]
     # calculate the compatibilities
      scores = [k.dot(q) for k in keys]
     # softmax them so they sum to 1
      scores = np.exp(scores)
     scores = scores / np.sum(scores)
     # gather the appropriate values with a weighted sum
      values = [m.value() for m in inputs]
     update = sum([s * v for s, v in zip(scores, values)])
     updates.append(update)
   for n,u in zip(self.nodes, updates):
                                                      Stanford
     n.data = n.data + u # residual connection
```

Einige Kennzahlen von LLMs

Parameter Count of LLMs

GPT4 is 8 x 220B params = 1.7 Trillion params

Quelle:

https://explodingtopics.com/blog/g pt-parameters

Parameters in Selected AI Models

Some of these figures are estimates. Newer models are many times larger than their predecessors.

Parameter = Gewichte der Verbindungen zwischen den Neuronen

→ Gewichte in den Matrizen

Kontextfenster (Context Length)

The number of tokens an AI can process is referred to as the context length or window. ChatGPT-4, for example, has a context window of 32,000 tokens. That's about 24,000 words in English.

- •GPT-1 (2018) had a context length of **512** tokens.
- •GPT-2 (2019) supported 1,024.
- •GPT-3 (2020) supported 2,048.
- •GPT-3.5 (2022) supported 4,096
- •GPT-4 (2023) first supported 8,192. Then 16,384.

Then 32,768. Now, it supports up to **128,000** tokens.

Quelle: https://mattrickard.com/the-context-length-observation

That's about **96**,000 words in English. About 192 text pages (single-spaced, 500 words per page)

Kontextfenster (Context Length)

- Gemini 1.5 Pro bietet ein Kontextfenster von 2 Millionen Tokens
 - Quelle: https://ai.google.dev/gemini-api/docs/long-context?hl=de
 - = 1,5 Millionen Worte = **300.000 Textseiten**

- DeepSeek V3
 - 32,000 tokens
- DeepSeek R1
 - 128,000 tokens (192 Textseiten)