fubianhanshu 07

MKQ

September 24, 2019

Contents

1	解析函数与调和函数															1									
	1.1	定理																							1
	1.2	定理																							1
	1.3	定理																							2

1 解析函数与调和函数

• 定义: 实二次函数 $\mathbf{u}(\mathbf{x},\mathbf{y})$ 在 D 内二阶连续可导 (\mathbf{C}^2) 而且在 D 内满足拉普拉斯方程

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

1.1 定理

设 f(z)=u(x,y)+iv(x,y) 在 D 内解析, 那么它的实部虚部都是 D 内调和函数

1.2 定理

假设 f(z) 是解析函数, 且 f'(z)≠ 0 那么等值曲线族

$$u(x,y) = K_1$$

和

$$v(x,y) = K_2$$

在公共点上永远正交

1.3 定理

给一个实部, 能找到对应的虚部 设 u(x,y) 是单联通区域 D 内的调和函数, 那么

$$v(x,y) = \int_{(x_0,y_0)}^{x,y} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy + C$$

使得 f(z) 在 D 解析,(x,y) 是任意一点, (x_0,y_0) 是一个定点