

# TEMA 10: ENSEMBLES, ONE-Universidad Pública de Navarra VS-ONE Y ONE-VS-ALL

Mikel Galar Idoate mikel.galar@unavarra.es Ciencia de datos con técnicas inteligentes Experto Universitario en Ciencia de Datos y Big Data

# Índice

- 1. Introducción
  - Definición
  - Motivación
  - Diversidad
  - Tipos de ensembles
- Ensembles basados en variación de datos
  - Bagging
  - Random Subspace Method
  - Random Forest
  - Boosting: Adaboost
    - Decision Stumps
- 3. Ensembles basados en descomposición
  - One-vs-One
  - One-vs-All

## Índice

- 1. Introducción
  - Definición
  - Motivación
  - Diversidad
  - Tipos de ensembles
- 2. Ensembles basados en variación de datos
  - Bagging
  - Random Subspace Method
  - Random Forest
  - Boosting: Adaboost
    - Decision Stumps
- 3. Ensembles basados en descomposición
  - One-vs-One
  - One-vs-All

- Conjuntos de clasificadores
  - Ensembles
    - Combinaciones de pequeñas variantes del mismo clasificador
  - Sistemas con múltiples clasificadores
    - Cualquier combinación de clasificadores
    - Incluyen combinaciones de diferentes modelos
      - P. e. Red neuronal + Naïve Bayes + Logistic Regression

- Motivación
  - Limitación de modelos individuales
  - Consultas a varios expertos
  - Evitar mínimos locales
  - Problemas complejos para modelos individuales
    - Particionamiento de datos
    - Subproblemas menos complejos
  - Muchos / pocos datos
  - □ Fusión de datos de diferentes fuentes

- Diversidad
  - □ Factor clave
  - Objetivo
    - Cometer fallos diferentes
    - Su combinación lleve a obtener más aciertos
    - Clasificadores complementarios
  - Diferentes formas de alcanzarla
    - Conjuntos de datos diferentes
    - Modelos diferentes
    - Particionamiento de datos
    - Hibridaciones

#### Clasificadores base

 Cada uno de los clasificadores que forma parte del ensemble

#### Clasificadores débiles

- Pequeños cambios en los datos producen grandes cambios en el modelo
  - Árboles de decisión
    - Decision Stumps
  - Redes neuronales
  - Regresión logística (sin regularización)
  - Naïve Bayes

#### □ Tipos de ensembles

- Diferentes formas de
  - Generar clasificadores
  - Combinar clasificadores

#### Selección de clasificadores

- Generación: Clasificadores especializados en zonas
- Combinación: selección de los más adecuados

#### 2. Fusión de clasificadores

- Generación: Clasificadores expertos en todas las zonas
- Combinación: Fusión de todos ellos para obtener un clasificador fuerte
  - Bagging, Boosting (AdaBoost) ...

- □ ¿Cuándo mejora un ensemble a un único clasificador?
  - Los clasificadores base son capaces de corregirse mutuamente
    - Si las salidas de todos son iguales (no hay diversidad)
      - No hay mejora
    - Si cada clasificador comete errores diferentes (diversidad)
      - Con una buena combinación puede haber mejora
- Metodología habitual
  - Diferentes conjuntos de entrenamiento
  - Re-muestreo + clasificadores débiles
- También...
  - Diferentes parámetros, características, etc.

## Índice

- 1. Introducción
  - Definición
  - Motivación
  - Diversidad
  - Tipos de ensembles
- Ensembles basados en variación de datos
  - Bagging
  - Random Subspace Method
  - Boosting: Adaboost
    - Decision Stumps
- 3. Ensembles basados en descomposición
  - One-vs-One
  - One-vs-All

#### Ensembles basados en variación de datos

- □ Algoritmo genérico
  - Entrenar T clasificadores base débiles
    - Cada uno utiliza un conjunto de datos diferente
    - Al ser clasificadores base débiles
      - Cambios en los datos → cambios en los clasificadores
  - Combinarlos para obtener la salida final
- □ Diferencias en los modelos:
  - Forma de construir los conjuntos de datos
    - En paralelo (conjuntos de datos independientes)
      - Bagging / Random Subspace Method
    - En serie (cada conjunto depende del anterior)
      - Boosting

## Índice

- 1. Introducción
  - Definición
  - Motivación
  - Diversidad
  - Tipos de ensembles
- 2. Ensembles basados en variación de datos
  - Bagging
  - Random Subspace Method
  - Random Forest
  - Boosting: Adaboost
    - Decision Stumps
- 3. Ensembles basados en descomposición
  - One-vs-One
  - One-vs-All

- Bagging = Boostrap AGGreatING
  - Reduce la varianza → efecto de hacer medias
  - Poco riesgo de sobre-aprendizaje
  - Muy simple
  - Regresión y clasificación
- □ Boostrap de m

  Be ejemplos (bolsa)
  - Subconjunto de datos obtenido con re-muestro aleatorio con reemplazamiento
  - $\square$  Normalmente,  $m_{Train} = m_B$ 
    - $= \approx 63.2\%$  de las instancias en cada bolsa

#### Algoritmo

- Repetir T veces (número de clasificadores)
  - Obtener bolsa (boostrap) del conjunto de entrenamiento
    - ¡¡Mecanismo aleatorio!!
  - Entrenar un clasificador débil con el nuevo conjunto
- Combinación de las salidas
  - Voto simple
    - Cada clasificador da un voto (0/1) a la clase que predice
  - Voto ponderado
    - Si el clasificador devuelve una probabilidad para cada clase
    - Cada clasificador vota con cierta probabilidad a cada calse
  - La clase con mayor número de votos es la predicha
- Diversidad
  - Se alcanza por el mecanismo re-muestro de ejemplos

#### Bagging en clasificación

#### Algorithm 1 Bagging

**Input:** S: Training set; T: Number of iterations;

n: Bootstrap size; I: Weak learner

**Output:** Bagged classifier: 
$$H(x) = sign\left(\sum_{t=1}^{T} h_t(x)\right)$$
 where  $h_t \in$ 

- [-1,1] are the induced classifiers
- 1: for t=1 to T do
- 2:  $S_t \leftarrow \text{RandomSampleReplacement}(n,S)$
- 3:  $h_t \leftarrow I(S_t)$
- 4: end for

#### □ Ejemplo regresión

Problema inicial: datos train



#### □ Ejemplo regresión

■ Iteración 1: Bootstrap



#### □ Ejemplo regresión

■ Iteración 2: Bootstrap



#### □ Ejemplo regresión

■ Iteración 3: Bootstrap



#### □ Ejemplo regresión

■ Iteración 4: Bootstrap



#### □ Ejemplo regresión

■ Iteración 5: Bootstrap



#### □ Ejemplo regresión

Combinación



- Ejemplo clasificación
  - □ Problema inicial: conjunto de train



- □ Ejemplo clasificación
  - Iteración 1: Bootstrap



#### □ Ejemplo clasificación

■ Iteración 2: Bootstrap



- □ Ejemplo clasificación
  - Iteración 3: Bootstrap



#### □ Ejemplo clasificación

■ Iteración 4: Bootstrap



- □ Ejemplo clasificación
  - Iteración 5: Bootstrap



- □ Ejemplo clasificación
  - Combinación



### Bagging en Python

Paquete

#### from sklearn.ensemble import BaggingClassifier

Método de consutrcción del clasificador

BaggingClassifier(base\_estimator=Clasificador, n\_estimators=numeroClasificadores, random state=semilla)

- Parámetros
  - Clasificador: clasificador con el que conformar el ensemble
  - numeroClasificadores: número de clasificadores base
  - Semilla: número entero utilizado para evitar la aleatoriedad
- Entrenamiento y clasificación
  - Funciones fit y predict, respectivamente
- Más información en:
  - http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html

## Índice

- 1. Introducción
  - Definición
  - Motivación
  - Diversidad
  - Tipos de ensembles
- 2. Ensembles basados en variación de datos
  - Bagging
  - Random Subspace Method
  - Random Forest
  - Boosting: Adaboost
    - Decision Stumps
- 3. Ensembles basados en descomposición
  - One-vs-One
  - One-vs-All

### Random Subspace Method

- Similar a Bagging
  - En vez de re-muestrear ejemplos
  - Re-muestreamos atributos
  - Adecuando cuando el ratio atributos/ejemplos es alto
  - Cada clasificador se entrena con un conjunto diferente de atributos
- □ Algoritmo
  - Repetir T veces (número de clasificadores)
    - Seleccionar aleatoriamente p características (p < P)
    - Crear el conjunto de entrenamiento con todos los ejemplos utilizando solo las p características (puede combinarse con bagging)
    - Entrenar un clasificador débil con el nuevo conjunto

### Random Subspace Method en Python

Paquete

#### from sklearn.ensemble import BaggingClassifier

Método de consutrcción del clasificador

BaggingClassifier(base\_estimator=Clasificador, n\_estimators=numeroClasificadores, max\_features=porcentajeVariables, random\_state=semilla)

- Parámetros
  - **Clasificador:** clasificador con el que conformar el ensemble
  - numeroClasificadores: número de clasificadores base
  - porcentaje Variables: porcentaje de variables a seleccionar
  - semilla: número entero utilizado para evitar la aleatoriedad
- □ Entrenamiento y clasificación
  - Funciones fit y predict, respectivamente
- Más información en:
  - http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html

## Índice

- 1. Introducción
  - Definición
  - Motivación
  - Diversidad
  - Tipos de ensembles
- 2. Ensembles basados en variación de datos
  - Bagging
  - Random Subspace Method
  - Random Forest
  - Boosting: Adaboost
    - Decision Stumps
- 3. Ensembles basados en descomposición
  - One-vs-One
  - One-vs-All

### Random forest

- Un random forest es un ensemble en el que los clasificadores base son árboles de decisión
- Aprendizaje de random forest
  - Seleccionar el número de árboles
  - Para aprender cada árbol
    - Seleccionar N ejemplos con reemplazamiento del conjunto de entrenamiento (bootstrap), siendo N el número de ejemplos
      - A los ejemplos no seleccionados se les llama out-of-bag (OOB)
    - Aprender el árbol de decisión con esa muestra de ejemplos
      - lacktriangle En cada nodo se eligen aleatoriamente m atributos ( $m \ll M$ )
        - M es el número de atributos del problema
        - = m = 1
        - $= m = \sqrt{M}$
      - lacksquare Se aplica la heurística para determinar el mejor de esos m atributos
    - No se poda el árbol de decisión generado

### Random forest

- □ Clasificación de nuevos ejemplos
  - Clasificar el ejemplo con todos los árboles
  - Cada árbol "vota" a la clase que predice
    - Voto en base a la probabilidad de la predicción
  - Elegir la clase con más votos
    - La clase con mayor probabilidad media
- Estimación del error de random forest
  - Para cada ejemplo de entrenamiento
    - Clasificar el ejemplo con los clasificadores base que no hayan sido construidos con ese ejemplo

#### Random forest

- □ El error de random forest depende
  - La diversidad entre cualquier par de árboles
    - Reducir la diversidad aumenta el error del random forest
  - La calidad de los árboles base
    - Aumentar su calidad reduce el error del random forest
- Reducir m aumenta la diversidad y reduce la calidad
  - lacktriangle Aumentar m, reduce la diversidad y aumenta la calidad

#### Random forest

- Ventajas
  - **■** Buen rendimiento
  - Relativamente robusto frente a ruido y outliers
  - Es rápido (comparado con bagging y boosting)
  - Es simple y fácilmente paralelizable
- Desventajas
  - □ Pierde la interpretabilidad de los árboles de decisión

## Random Forest en Python

Paquete

#### from sklearn.ensemble import RandomForestClassifier

Método de consutrcción del clasificador

RandomForestClassifier(n\_estimators=numeroClasificadores, criterion=tipolmpureza, max\_features=numeroVariables, random state= semilla)

- Parámetros
  - **numeroClasificadores:** número de clasificadores base
  - **tipolmpureza:** 'gini' o 'entropy'. Es decir, CART o C4.5
  - numero Variables: número de variables a examinar en cada nodo
    - 'auto': examina sqrt(numeroTotalVariables)
      - Es igual que utilizar 'sqrt'
    - 'log2': examina log2(numeroTotalVariables)
    - 'None': examina todas las variables
    - Número entero: número concreto de variables a examinar
  - semilla: número entero utilizado para evitar la aleatoriedad
- Entrenamiento y clasificación
  - Funciones fit y predict, respectivamente
- Más información en:
  - http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier

# Índice

- 1. Introducción
  - Definición
  - Motivación
  - Diversidad
  - Tipos de ensembles
- 2. Ensembles basados en variación de datos
  - Bagging
  - Random Subspace Method
  - Random Forest
  - Boosting: Adaboost
    - Decision Stumps
- 3. Ensembles basados en descomposición
  - One-vs-One
  - One-vs-All

- Uno de los 10 mejores algoritmos de Data Mining
- Objetivo
  - □ Transformar un clasificar débil (ligeramente mejor que uno aleatorio) en un clasificador fuerte
- □ Idea
  - Se consideran todos los datos
  - Se da más peso a las instancias difíciles
    - Instancias que han sido mal clasificadas por el clasificador anterior
- Ventajas
  - Reduce el bias (y la varianza)
  - Aumenta el margen de separación entre clases
  - Fuerte base teórica
- Problema: ruido, instancias con ruido reciben más peso

- Algoritmo general
  - Asignar el mismo peso a todos los ejemplos
  - Repetir T veces (número de clasificadores)
    - Aprender un clasificador débil con los pesos actuales
    - Modificar los pesos
      - Aumentar el peso de los ejemplos mal clasificados
      - Decrecer el peso de los ejemplos correctamente clasificados
    - Asignar un peso al clasificador actual en base a su precisión
- Importante
  - El clasificador debe poder manejar pesos
  - Sino hay que utilizar re-muestreo con probabilidades

```
Algorithm 3 AdaBoost
                                                                             La clase viene dada por +1 o
Input: Training set S = \{\mathbf{x}_i, y_i\}, i = 1, \dots, \overline{N}; \text{ and } y_i \in \mathbb{C}
                                                                             -1 en vez del {0, 1} como en
    \{-1, +1\}; T: Number of iterations; I: Weak learner
Output: Boosted classifier: H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right) where
                                                                             LR
    h_t, \alpha_t are the induced classifiers (with h_t(x) \in \{-1, 1\}) and
    their assigned weights, respectively
 1: D_1(i) \leftarrow 1/N for i = 1, ..., N Asignamos pesos de manera uniforme
 2: for t=1 to T do
 3: h_t \leftarrow I(S, D_t) Entrenamos el clasificador con pesos
 4: \varepsilon_t \leftarrow \sum_{i=1}^{\infty} D_t(i) — Calculamos el error como la suma de los pesos de
 5: if \varepsilon_t > 0.5 then los ejemplos mal clasificados
6: T \leftarrow t-1 Condición de parada si el clasificador es peor
     return
                                                 que uno aleatorio
     Peso para el clasificador D_{t+1}(i) = D_t(i) \cdot e^{(-\alpha_t h_t(\mathbf{x}_i)y_i)} for i = 1, \dots, N Actualización de pesos
       Normalize D_{t+1} to be a proper distribution
11:
12: end for
```

#### Peso para cada clasificador

- lacktriangle El error del clasificador,  $\mathcal{E}_t$ , es la suma de los pesos de los ejemplos mal clasificados
- lacksquare El peso,  $lpha_t$ , está relacionado con el error

$$\varepsilon_t \leftarrow \sum_{i, y_i \neq h_t(\mathbf{x}_i)} D_t(i)$$

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$



- □ Ejemplo de clasificación
  - □ El tamaño de los ejemplos refleja su peso
  - Utilizamos Decision Stumps como clasificador base
    - Los veremos más adelante
  - Problema inicial



#### □ Ejemplo de clasificación

□ Iteración 1 y 2

#### □ Ejemplo de clasificación



#### Ejemplo de clasificación

□ Fin tras iteración 3 → Combinación



Combinación en base a los pesos obtenidos

Hemos convertido clasificadores débiles muy simples en un clasificador fuerte capaz de solucionar el problema

## Boosting en Python

Paquete

#### from sklearn.ensemble import AdaBoostClassifier

Método de consutrcción del clasificador

AdaBoostClassifier(base\_estimator= Clasificador, n\_estimators= numeroClasificadores, random\_state=semilla)

- Parámetros
  - Clasificador: clasificador con el que conformar el ensemble
  - numeroClasificadores: número de clasificadores base
  - Semilla: número entero utilizado para evitar la aleatoriedad
- Entrenamiento y clasificación
  - Funciones fit y predict, respectivamente
- Más información en:
  - http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html #sklearn.ensemble.AdaBoostClassifier

# Índice

- 1. Introducción
  - Definición
  - Motivación
  - Diversidad
  - Tipos de ensembles
- 2. Ensembles basados en variación de datos
  - Bagging
  - Random Subspace Method
  - Random Forest
  - Boosting: Adaboost
    - Decision Stumps
- 3. Ensembles basados en descomposición
  - One-vs-One
  - One-vs-All

- Árbol de decisión de un solo nivel
  - Utiliza solo un atributo para clasificar
  - Solo tiene dos ramas



#### ■ Modelo

$$h_{\theta,j,c}(x) = \begin{cases} c, & si \quad x_j > \theta \\ -c, & en \ otro \ caso \end{cases}$$

- Parámetro j
  - Atributo a utilizar
- lacksquare Parámetro  $oldsymbol{ heta}$ 
  - Umbral sobre el atributo
- □ Parámetro c
  - Clase con la que se clasifica si se supera el umbral

#### Aprendizaje

- **Ejemplos con costes** 
  - Cada ejemplo  $(x^{(i)}, y^{(i)})$  tiene un peso  $w^{(i)} \ge 0$ 
    - Coste de su mala clasificación
- Objetivo
  - Minimizar el error de clasificación ponderado

$$J(\theta, j, c) = \frac{1}{m} \sum_{i=1}^{m} w_i I(h_{\theta, j, c}(x^{(i)}) \neq y^{(i)})$$

donde  $I(\cdot)$  es la función indicatriz, que toma valor 1 si se cumple la condición, 0 en otro caso

- Aprendizaje
  - Para cada atributo j
    - **E**ncontrar el punto de corte heta con menor error

$$J(\theta, j, c) = \frac{1}{m} \sum_{i=1}^{m} w_i I(h_{\theta, j, c}(x^{(i)}) \neq y^{(i)})$$

■ Elegir el atributo cuya clasificación obtiene el menor error



# Índice

- 1. Introducción
  - Definición
  - Motivación
  - Diversidad
  - Tipos de ensembles
- 2. Ensembles basados en variación de datos
  - Bagging
  - Random Subspace Method
  - Random Forest
  - Boosting: Adaboost
    - Decision Stumps
- 3. Ensembles basados en descomposición
  - One-vs-One
  - One-vs-All

#### Ensembles basados en descomposición

#### Objetivo

Afrontar problemas multi-clase con clasificadores binarios

#### Funcionamiento

- Descomponer un problema multi-clase
  - En problemas binarios (más sencillos de resolver)
- Aprender un clasificador para cada subproblema
- Para clasificar una nueva instancia
  - Agregar las salidas de los clasificadores base

#### Ensembles basados en descomposición

#### □ Ejemplo de problema multi-clase



#### Divide el problema multi-clase en tantos problemas como pares de clases







#### Representación de las salidas

- Matriz de votos
- $r_{ij} \in [0,1]$  confianza a favor de la clase i frente a la j

$$r_{ji} = 1 - r_{ij}$$

$$R = \begin{pmatrix} - & r_{12} & \cdots & r_{1m} \\ r_{21} & - & \cdots & r_{2m} \\ \vdots & & & \vdots \\ r_{m1} & r_{m2} & \cdots & - \end{pmatrix}$$

#### Agregaciones más comunes

- Voto
  - Cada clasificador vota por la clase predicha

Class = arg 
$$\max_{i = 1,...,m} \sum_{1 \le j \ne i \le m} s_{ij}$$
,

- donde  $S_{ij}$  es 1 si  $r_{ij} > r_{ji}$  y 0 en otro caso
- Voto ponderado
  - Cada clasificador vota con cierta confianza a cada clase

Class = arg 
$$\max_{i = 1, ..., m} \sum_{1 \le j \ne i \le m} r_{ij}$$

En ambos casos, la clase con mayor confianza es la que se predice

# OVO en Python

Paquete

from sklearn.multiclass import OneVsOneClassifier

Método de consutrcción del clasificador

OneVsOneClassifier(Clasificador)

- Parámetros
  - Clasificador: clasificador con el que conformar el ensemble
- Entrenamiento y clasificación
  - Funciones fit y predict, respectivamente
- Más información en:
  - <u>http://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsOneClassifier.html</u>

# One-vs-All (OVA)

#### Divide el problema multi-clase en tantos problemas como clases



(a) '7' vs. '1' and '8' (b) '1' vs. '7' and '8'





(c) '8' vs. '1' and '7'

# One-vs-All (OVA)



## One-vs-All (OVA)

- Representación de las salidas
  - Vector de votos
  - $r_i \in [0,1]$  confianza a favor de la clase i

$$R = (r_1, r_2, ..., r_i, ..., r_m)$$

- Agregación
  - Máximo
    - Clase de salida = clase con mayor confianza

## **OVA** en Python

Paquete

from sklearn.multiclass import OneVsRestClassifier

Método de consutrcción del clasificador

OneVsRestClassifier(Clasificador)

- Parámetros
  - Clasificador: clasificador con el que conformar el ensemble
- Entrenamiento y clasificación
  - Funciones fit y predict, respectivamente
- Más información en:
  - http://scikitlearn.org/stable/modules/generated/sklearn.multiclass.OneVsRe stClassifier.html#sklearn.multiclass.OneVsRestClassifier

#### OVO vs. OVA

- Ventajas OVO
  - □ Problemas más sencillos
  - Problemas más pequeños
  - □ Computacionalmente más rápido
  - □ Generalmente, más preciso
- Desventajas OVO
  - Región no clasificable (Voto)
  - Clasificadores no competentes

#### OVO vs. OVA

- Ventajas OVA
  - Utiliza todos los ejemplos
    - No hay clasificadores no competentes
  - Agregaciones más simples
- Desventajas OVA
  - Problemas no balanceados
  - Problemas más complejos
  - Computacionalmente más costoso