Documentação do Projeto	Versão do Modelo: 1.3	
	Emissão: 13/08/2020	Página: 1/11
Projeto:		
Projeto de Monitoramento e Análise de Dados Cole		ıltiparâmetros
de Pacientes em Unidade Tratame	nto intensivo(UTI)>	

Projeto da Disciplina Engenharia de Software

Eduardo Henrique de Carvalho Moura Jean Pablo Marques Mendes Leonardo Silva de Melo Maria da Conceição Vieira Ferreira <Projeto de Monitoramento e Análise de Dados Coletados de Monitores Multiparâmetros de Pacientes em Unidade Tratamento Intensivo(UTI)>

Documentação do Projeto	Versão do Modelo: 1.3	
	Emissão: 13/08/2020	Página: 2/11
Projeto: Projeto de Monitoramento e Análise de Dados Cole de Pacientes em Unidade Tratamento		ıltiparâmetros

Histórico de Revisões do Documento

Revisão	Descrição	Modificado por	Status	Data
1.0	Definição e inserção dos Requisitos Funcionais e não Funcionais	Eduardo Jean Leonardo Conceicao	concluído	13/07/2020
1.1	Modelagem da arquitetura	Eduardo Jean Leonardo Conceicao	concluído	20/07/2020
1.2	Construção de Diagramas UML	Eduardo Jean Leonardo Conceicao	concluído	07/08/2020
1.3	Criação das Regra EPL	Eduardo Jean Leonardo Conceicao	concluído	13/08/2020

Documentação do Projeto	Versão do Modelo: 1.3	
	Emissão: 13/08/2020	Página: 3/11
Projeto: Projeto de Monitoramento e Análise de Dados Cole de Pacientes em Unidade Tratament		ıltiparâmetros

1 Descrição do Projeto

1.1 Escopo

Propomos desenvolvimento de um sistema de monitoramento e análise de coleta de dados de monitores multiparâmetros de pacientes em UTIs, o aplicativo será capaz de capturar os dados de monitores que mostram os sinais vitais do paciente(e. g., pressão arterial, frequência cardíaca, frequência respiratória), sendo capaz de transmiti-los ao sistema móvel, os dados passam por uma análise. Primeiramente, os dados são lidos do Dataset, interpretados e selecionados os sensores de maior interesse dentre os diversos sensores que apresentam no Dataset, sendo depois transmitidos às telas dos dispositivos. Depois que os dados são lidos e interpretados, dispara-se algum alerta se atender a uma certa regra previamente definida, conforme mostrado na figura 1, essa regra é definida pelo monitor da aplicação. Para montar a regra que dispara os alertas mostrando que o paciente esta entrando em um quadro de deterioração, usamos o trabalho [1], nele mostra o padrão EWS(Escore de Alerta Precoce), e para montar a comunicação e troca de mensagens nos dispositivos, usamos o trabalho [2], nele mostra a arquitetura CDDL.

1.2 Requisitos

REQUISITOS FUNCIONAIS	REQUISITOS NÃO FUNCIONAIS
RF01 - O sistema deverá ter funcionalidade de autenticação para controle de acesso	RNF01 - O sistema terá suporte para plataforma Android
RF02 - O sistema deverá ter um dashboard para o usuário selecionar o paciente que será monitorado	RNF02 - O aplicativo deverá ter interface intuitiva e fácil acesso as funcionalidades principais
RF03 - O sistema deve oferecer função de ler arquivo do dataset, limpar ruídos editar	RNF03 - O sistema deve ser confiável, baixa taxa de falhas e não exigir muito processamento nem memória
RF04 - O sistema deverá gerar relatórios de leituras	
RF05 - O sistema deve enviar notificações e alertas para o dispositivo móvel para acompanhamento do paciente	

Documentação do Projeto Versão do Modelo: 1.3	
Emissão: 13/08/2020	Página: 4/
Projeto:	
<projeto análise="" coletados="" dados="" de="" e="" ii<="" monitoramento="" monitores="" p=""> de Pagintos em Unidado Tratamento Intensiva (UTI)</projeto>	lultiparâmetro
de Pacientes em Unidade Tratam	

1.3 Tecnologias

Para a captação dos dados poderão ser utilizados sensores wi-fi através de rede local sem fios (WLAN) baseados no padrão IEEE 802.11 e/ou tecnologia bluetooth. O processamento poderá ser realizado em servidor externo ou no próprio dispositivo móvel dependendo da função executada. Para o desenvolvimento da aplicação utilizaremos linguagem nativa do Android(JAVA), também utilizaremos IDE Android Studio para desenvolver o projeto, assim como frameworks e middlewares para facilitar e agilizar seu desenvolvimento.

1.4 Fontes de dados

Primeiramente, os dados são extraídos do Conjunto de dados(*MIMIC*), onde pode ser obtido no link (https://www.physionet.org/content/mimicdb/1.0.0/), lido e interpretado, o banco armazena dados de mais de 200 pacientes, a aplicação selecionará os dados mais relevantes para gerar o alerta de acordo com certo parâmetros pré-definidos em http://www.repositorio.jesuita.org.br/handle/UNISINOS/6228.

Na tabela 1, apresentamos como estão dispostos os dados dos sinais vitais do paciente 55, mostramos as 10 primeiras linhas do dataset, a primeira linha trata-se do cabeçalho, data e novo do arquivo, o nome do arquivo faz referência a identificação do paciente (055). Na primeira coluna temos o nome do sinal vital, por exemplo: SP02 faz referência sinal vital "Saturação de oxigênio no sangue", e na segunda coluna temos o valor correspondente ao sinal lido. No projeto usamos 4 dos 8 sinais vitais do paciente encontrado no dataset, são eles: RESP (respiração), Sp02 (Saturação de Oxigênio no Sangue), HR (Frequência Cardíaca), e PULSE (Pulso).

Tabela 1: formato do dataset

1.5 Definição Tipo de Arquitetura

Documentação do Projeto	Versão do Modelo: 1.3	
	Emissão: 13/08/2020	Página: 5/11
Projeto: Projeto de Monitoramento e Análise de Dados Cole de Pacientes em Unidade Tratamento		ıltiparâmetros

Nosso sistema utiliza o CDDL(Camada de Distribuição de Dados de Contexto) para transmitir as mensagens para outros dispositivos móveis. O CDDL é um middleware publicador/subscritor que fornece às aplicações clientes a capacidade de atuar como produtoras e consumidoras de dados de contexto[1], ele adiciona metadados de qualidade de contexto às informações publicada.

Na figura 1 apresentamos a arquitetura do aplicativo, onde:

- Na coleta, realizamos a leitura dos dados no dataset, depois identificamos os dados mais relevantes, por exemplo: temperatura, batimentos cardíacos
- Depois, realizamos o processamento dos dados, onde faremos o monitoramento dos dados lido, caso identificamos piora no quadro do paciente, iremos disparar um alarme nos dispositivos, esse alarme é construído no módulo de Regra EPL, onde no CDDL possui um componente chamado de Subscriber/Pubscriber, nesse componente construímos a regra que é muito próxima da linguagem SQL.
- Por fim, realizaremos a notificação nos dispositivos, utilizamos o CDDL, onde é responsável pela transmissão dos dados para os dispositivos móveis.

Figura 1: Arquitetura da aplicação

Documentação do Projeto	Versão do Modelo: 1.3	
2004	Emissão: 13/08/2020	Página: 6/11
Projeto: Projeto de Monitoramento e Análise de Dados Cole de Pacientes em Unidade Tratamer		ıltiparâmetros

1.5 Regra EPL-ESPER

A montagem das regra seguiu o padrão Escore de Alerta Precoce (EWS) definido no Reino Unido, essa regra é construída para monitor todas os sinais vitais que são capturados, é através dela que é gerado os alertas caso algumas delas for atendida, para cada sinal vital monitorado do paciente possui uma regra que realiza o monitoramento, na figura 1.1 apresentamos a regra em código JAVA.

10-15	5 16-20	21-29	> 20
			≥30
≥ 93			
51-100	0 101-110	111- 129	≥ 130
60-101	1 ≥ 102		
6	60-10	60-101 ≥ 102	

Tabela 2: Regra EPL baseada padrão EWS[2]

Figura 1.1: Regra EPL

Documentação do Projeto	Versão do Modelo: 1.3	
Dodamonia guo do 110 joto	Emissão: 13/08/2020	Página: 7
Projeto:		
<projeto análise="" cole<="" dados="" de="" e="" monitoramento="" p=""></projeto>	tados de Monitores Mu	ıltiparâmetr
de Pacientes em Unidade Tratamei	nto Intensivo(UTI)>	

2 Diagrama de Componentes

No diagrama de componentes mostro na figura 2, apresentamos os componentes do projeto, a ligação entre eles, mostramos uma entidade "Paciente.java" onde vai guardar informaões simples a respeito do paciente monitorado e também mostramos onde as informações são capturada, o componente Dataset.csv", que se trata de um conjunto de arquivos, cada arquivo vai armazenar sinais vitais dos pacientes, tanto o "Coletor/Subscriber/Pubscriber/Monitor" fazem parte do mesmo módulo, ou seja, do mesmo arquivo .java.

Figura 2: diagrama de componente

Docum	Documentação do Projeto	Versão do Modelo: 1.3	
2004	muşuo uo i rojoto	Emissão: 13/08/2020	Página: 8/1
Projeto:			
<projeto de="" monit<="" td=""><th>ramento e Análise de Dados Co</th><td>etados de Monitores Μι</td><td>ultiparâmetros</td></projeto>	ramento e Análise de Dados Co	etados de Monitores Μι	ultiparâmetros
C	e Pacientes em Unidade Tratam	ento Intensivo(UTI)>	

3 Modelo Estático - Diagramas de Classe

Na figura 3, mostramos o diagrama de classes, representa uma visão geral do projeto, seus métodos internos, seus atributos e suas ligações entre as classes, as classes Coletor/Subscriber/Publisher/Monitor no momento que subscreve e publica mensagens e monitora os sinais vitais, onde irá realizar o monitoramento das mensagens publicadas.

Figura 3: diagrama de classe

	Documentação do Projeto	Versão do Modelo: 1.3	
	Zoodiiioiiiagao ao 1 Tojoto	Emissão: 13/08/2020	Página:
-	Projeto:		
	Projeto de Monitoramento e Análise de Dados Cole	tados de Monitores Mu	ltiparâme
	de Pacientes em Unidade Tratamer	nto Intensivo(UTI)>	

4 Modelo Dinâmico - Diagramas de Sequência

A figura 4, apresentamos o diagrama de sequência que representa a principal funcionalidade do sistema, ao total são duas funcionalidades principais do projeto, a segunda principal funcionalidade será mostrada na figura 5. Portanto, na figura 4 representa o monitoramento dos sinais vitais do paciente, o momento em que o profissional dá início a aplicação na etapa 1, as informações são lidas na etapa 2, onde vai chegar no dispositivo os sinais vitais do paciente, por exemplo: frequência cardíaca, respiração, e publica essa mensagem com o sinal vital na etapa 3, retornando para etapa 2, em forma de loop.

Figura 4: diagrama de sequência coletor

Já na figura 5, apresentamos a segunda e principal funcionalidade do sistema, nesse diagrama de sequência, mostramos como acontece o disparo do alerta, o profissional da saúde inicia o aplicativo selecionando o paciente que tem interesse em acessar os relatórios que mostram os sinais vitais, isso ocorre na etapa 1, os dados são lidos na etapa 2, posteriormente são publicados com a etapa 3, logo em seguida ocorre o monitoramento dos sinais com a etapa 4, para não realizar o disparo indiscriminadamente, de forma exagerada o mesmo alerta, ocorre o controle desse alerta com a etapa 5, é checado a quantidade de alertas e a hora, caso ainda não foi gerado o alerta, a aplicação tem liberdade de gerá-lo, retornando para o monitor, onde segue a sequência de retornos.

Figura 5: diagrama de sequência coletor-monitor

5 Protótipos de Tela e Funcionamento do Sistema

Na figura 6, mostramos as telas do aplicativo do monitoramento(esquerda para direita), a primeira tela inicia o aplicativo clicando no botão publicar, os sinais são recebidos na tela dois, o alerta é disparado na tela 3 e na tela 4 mostra o histórico de alertas já disparado.

Figura 6: tela do aplicativo

Documentação do Projeto	Versão do Modelo: 1.3	
	Emissão: 13/08/2020	Página: 11/11
Projeto: Projeto de Monitoramento e Análise de Dados Coletados de Monitores Multiparâmetros de Pacientes em Unidade Tratamento Intensivo(UTI)>		

6 Referência

- [1] Muniz, Luiz Carlos Melo. Avaliação e Monitoramento de QoC em Sistemas Cientes de Contexto/ Luiz Carlos Melo Muniz. – São Luís (MA), 2017.
- [2] Dias, Fábio Oliveira. Um modelo proativo de antecipação de ações de times de resposta rápida baseado em análise preditiva/Fábio de Oliveira Dias 2017.