Principe d'inertie

I-Effet d'une force sur un mouvement :

Une force qui s'exerce sur un corps peut modifier son mouvement, sa trajectoire ou sa vitesse.

Exemples:

- -La force exercée par le pied sur un ballon a pour effet la mise en mouvement du ballon.
- -Le ballon rebond sur le mur : la force exercée par le mur sur le ballon dévie la trajectoire et sa vitesse du ballon.

II-Centre d'inertie d'un corps solide :

1-système isolé et système pseudo-isolé :

1-1-Système isolé:

Un système est mécaniquement isolé s'il n'est soumis à aucune force.

1-2- Système pseudo-isolé :

Un système est pseudo-isolé si les effets des forces extérieures auxquelles il est soumis se compensent. C'est-à-dire la somme vectorielle des forces extérieures est nulle : $\sum \vec{F}_{ext} = \vec{0}$

Exemple:

-L'autoporteur sur la table à coussin d'air horizontale (lorsque la soufflerie fonctionne) est un système isolé car il est soumis à deux forces \vec{R} et \vec{P} qui se compensent. $\vec{R} + \vec{P} = \vec{0}$

2-Centre d'inertie :

2-1-Activité expérimentale :

On utilise un autoporteur équipé de deux éclateurs le premier A fixé sur son axe de symétrie et le deuxième B est fixé en un point de sa partie inférieure.

• Expérience n°1:

On lance un autoporteur (S) sans rotation sur une table à coussin d'air horizontal et on obtient l'enregistrement 1.

• Expérience n°2 :

On lance un autoporteur (S) avec rotation sur une table à coussin d'air horizontal et on obtient l'enregistrement 2.

• Observations:

- -Le point A à une trajectoire rectiligne dans les deux expériences.
- -Le point B à une trajectoire rectiligne dans l'expérience n°1 et une trajectoire curviligne dans l'expérience n°2.

• Conclusion:

Le point A appartient à l'axe de symétrie de l'autoporteur (S) contient aussi le point G le centre de gravité de (S).

Le point A présente la projection orthogonale du point G ainsi le mouvement du point G est celui du point A.

2-2-Résumé:

Chaque solide a un point spécial et unique appelé centre d'inertie noté G. Lorsque ce corps est pseudo-isolé mécaniquement pour un référentiel terrestre, son point G est en mouvement rectiligne uniforme.

4-Enoncé de la loi d'inertie :

Dans un référentiel Galiléen, Le centre d'inertie G d'un système isolé (ou pseudo-isolé) est :

- **Soit** immobile : $\vec{V} = \vec{0}$
- ❖ Soit en mouvement rectiligne uniforme : $\vec{V} = \overrightarrow{cte}$

Remarques:

-Le principe d'inertie ne s'applique que dans un référentiel Galiléen (comme le référentiel de Copernic).

Le référentiel terrestre peut être considéré comme galiléens (pour les mouvements de courtes durée).

-Lorsqu'un système est mécaniquement isolé (ou pseudo-isolé) c'est le centre d'inertie qui est le seul point sur lequel s'applique le principe d'inertie, donc le mouvement globale d'un corps est celui de son centre d'inertie.

III-le centre d'inertie d'un système :

1-Relation barycentrique:

Deux corps (S_1) et (S_2) de masses m_1 et m_2 et de centres d'inertie G_1 et G_2 liés entre eux, constituent un slide (S) de masse $m=m_1+m_2$. Ce solide (S) a un cente d'inertie G se trouvant sur le segment $[G_1G_2]$, tel que :

$$m_1 \cdot \overrightarrow{GG_1} + m_2 \overrightarrow{GG_2} = \overrightarrow{0}$$

Soit O un point quelconque de l'espace choisi comme origine, on écrit :

$$m_{1} \cdot \left(\overrightarrow{GO} + \overrightarrow{OG_{1}}\right) + m_{2} \cdot \left(\overrightarrow{GO} + \overrightarrow{OG_{2}}\right) = \overrightarrow{0}$$

$$m_{1} \cdot \overrightarrow{OG_{1}} + m_{2} \cdot \overrightarrow{OG_{2}} + (m_{1} + m_{2}) \cdot \overrightarrow{GO} = \overrightarrow{0}$$

$$m_{1} \cdot \overrightarrow{OG_{1}} + m_{2} \cdot \overrightarrow{OG_{2}} = -(m_{1} + m_{2}) \cdot \overrightarrow{GO}$$

$$m_{1} \cdot \overrightarrow{OG_{1}} + m_{2} \cdot \overrightarrow{OG_{2}} = (m_{1} + m_{2}) \cdot \overrightarrow{OG}$$

$$\overrightarrow{OG} = \frac{m_{1} \cdot \overrightarrow{OG_{1}} + m_{2} \cdot \overrightarrow{OG_{2}}}{m_{1} + m_{2}}$$

2-Généralisation:

Pour un solide constitué d'un ensemble de solides ; la relation barycentrique écrit :

$$\overrightarrow{OG} = \frac{\sum m_i. \overrightarrow{OG_i}}{\sum m_i}$$

G: centre d'inertie du solide et m sa masse.

 G_i : centre d'inertie du solide S_i et m_i sa masse.

Application:

On considère un système de deux corps (S_1) et (S_2) de masse respectivement m_1 et m_2 tel que $m_1 = 2m_2$.

Les deux corps sont liés par une liaison rigide de masse négligeable voir schéma.

La distance entre G_1 centre d'inertie de (S_1) et G_2 centre d'inertie de (S_2) est $G_1G_2 = 90$ cm

-Déterminer le centre d'inertie G du système $S = \{S_1 + S_2\}$.

Solution:

On applique la relation du barycentrique pour déterminer le centre d'inertie *G* du système *S* :

$$\overrightarrow{OG} = \frac{\sum m_i. \overrightarrow{OG_i}}{\sum m_i}$$

$$\overrightarrow{OG} = \frac{m_1. \overrightarrow{OG_1} + m_2. \overrightarrow{OG_2}}{m_1 + m_2}$$
(1)

On considère la point O est confondu avec le point G_1 la relation (1) s'écrit :

$$\overrightarrow{G_1G} = \frac{m_1 \cdot \overrightarrow{G_1G_1} + m_2 \cdot \overrightarrow{G_1G_2}}{m_1 + m_2}$$

$$\overrightarrow{G_1G} = \frac{m_2 \cdot \overrightarrow{G_1G_2}}{m_1 + m_2}$$

$$G_1G = \frac{m_2 \cdot G_1G_2}{m_1 + m_2} = \frac{2m_1 \cdot G_1G_2}{m_1 + 2m_1} = \frac{2G_1G_2}{3}$$

$$G_1G = \frac{2 \times 60}{3} = 40 \text{ cm}$$

