The following is a complete listing of all claims in the application, with an indication of the status of each:

Listing of claims:

1-20. (Cancelled)

21. (Previously presented) A compound of the general formula

OH
$$(CR_{2}R_{3})_{m} X - (CR_{4}R_{5})_{n} N$$

$$R_{1}$$

where

m is an integer from 0 to 5;

n is an integer from 0 to 5;

R is C_1 to C_7 alkyl, cycloalkyl, phenyl, hydroxy, alkyl hydroxy, substituted phenyl, or CH_2X^1 , where $X^1 = H$, Cl, Br, I or F;

 R_1 is H, or C_1 to C_7 alkyl, phenyl, or substituted phenyl;

 R_2 , R_3 , R_4 and R_5 are H or C_1 to C_7 alkyl, and R_1 , R_2 , R_3 , R_4 and R_5 may be the same or different; and

X is CH_2 or a saturated or unsaturated C_2 carbon chain.

22. (Previously presented) A compound of formula

23. (Previously presented) A compound of formula

24. (Previously presented) A compound of formula

OH
$$C = C - CH_2 - CH_2 - CH_3$$

$$CH_3$$

25. (Previously presented) A compound of formula

OH
$$CH = C = C - CH_2 - CH_2 - CH_2 - CH_5$$

26. (Previously presented) A compound of formula

OH
$$CH = C = C - CH_2 - CH_2 - CH_N - C_4H_9$$

27. (Currently amended) A method of treatment of a condition or disorders related to cannabinoid-regulated systems in a patient in need thereof, wherein if said compound is an agonist of a CB1 receptor then said condition is selected from the group consisting of acute pain; chronic pain; loss of appetite, and nausea and vomiting; and wherein if said compound is a silent antagonist of a CB1 receptor then said condition is obesity;

comprising the step of administering to said patient a quantity of a compound of formula

OH
$$(CR_2R_3)_{m} X (CR_4R_5)_{\overline{n}} N$$

$$R_1$$

where

m is an integer from 0 to 5;

n is an integer from 0 to 5;

R is C_1 to C_7 alkyl, cycloalkyl, phenyl, hydroxy, alkyl hydroxy, substituted phenyl, or CH_2X^1 , where $X^1 = H$, Cl, Br, I or F;

R₁ is H, C₁ to C₇ alkyl, phenyl, or substituted phenyl;

 R_2 , R_3 , R_4 and R_5 are H or C_1 to C_7 alkyl, and R_1 , R_2 , R_3 , R_4 and R_5 may be the same or different; and

X is CH_2 or a saturated or unsaturated C_2 carbon chain, wherein said compound is administered in a quantity sufficient to ameliorate symptoms of said condition or disorder.

28. (Currently amended) A method for treating pain in a patient comprising administering to said patient an effective dose of an agonist of a CB1 cannabinoid receptor wherein said agonist includes a sulfonamide moiety, and said agonist has the chemical formula

OH
$$(CR_{2}R_{3})_{m} X - (CR_{4}R_{5})_{n} N$$

$$R_{1}$$

where

m is an integer from 0 to 5;

n is an integer from 0 to 5;

R is C_1 to C_7 alkyl, cycloalkyl, phenyl, hydroxy, alkyl hydroxy, substituted phenyl, or CH_2X^1 , where $X^1 = H$, Cl, Br, I or F;

 R_1 is H, C_1 to C_7 alkyl, phenyl, or substituted phenyl;

 R_2 , R_3 , R_4 and R_5 are H or C_1 to C_7 alkyl, and R_1 , R_2 , R_3 , R_4 and R_5 may be the same or different; and

X is CH_2 or a saturated or unsaturated C_2 carbon chain, with the proviso that if R is CH_3 then X must be CH_2 or a saturated C_2 carbon chain.

29. (Previously presented) The method of claim 28 wherein said agonist is selected from the group consisting of

and

30. (Currently amended) A method for treating nausea in a patient comprising administering to said patient an effective dose of an agonist of <u>a</u> CB1 cannabinoid receptor wherein said agonist includes a sulfonamide moiety, and wherein said agonist has the chemical formula

$$\begin{array}{c} OH \\ \hline \\ O \end{array} \\ \begin{array}{c} CR_2R_3)_{m} \\ \hline \\ R_1 \end{array} \\ \begin{array}{c} CR_4R_5)_{\overline{n}} \\ \hline \\ R_1 \end{array}$$

where

m is an integer from 0 to 5;

n is an integer from 0 to 5;

R is C_1 to C_7 alkyl, cycloalkyl, phenyl, hydroxy, alkyl hydroxy, substituted phenyl, or CH_2X^1 , where $X^1 = H$, Cl, Br, I or F;

 R_1 is H, C_1 to C_7 alkyl, phenyl, or substituted phenyl;

 R_2 , R_3 , R_4 and R_5 are H or C_1 to C_7 alkyl, and R_1 , R_2 , R_3 , R_4 and R_5 may be the same or different; and

X is CH_2 or a saturated or unsaturated C_2 carbon chain, with the proviso that if R is CH_3 then X must be CH_2 or a saturated C_2 carbon chain.

31. (Previously presented) The method of claim 13, wherein said agonist is selected from the group consisting of

and
$$\begin{array}{c} OH \\ CH_2 \\$$

32. (Currently amended) A method for treating obesity in a patient comprising administering to said patient an effective dose of a silent antagonist of <u>a</u> CB1 cannabinoid receptor wherein said agonist silent antagonist includes a sulfonamide moiety, and wherein said agonist silent antagonist has the chemical formula

$$\begin{array}{c} OH \\ \hline \\ O \end{array}$$