2.2 Set operations

CSI30

Outline

Operations on sets:

Union

Intersection

Difference

Complement

Let **A**, **B** be any two sets.

The union of two sets **A** and **B** is the set that contains those elements that are either in **A** or in **B**, or in both.

denotation: A U B

A
$$\cup$$
 B = { $x \mid x \in A \lor x \in B$ }

Shaded (hatched) areas represent the union of sets **A** and **B**.

Example 1:

Let $A=\{1,2,3\}$ and $B=\{2,3,4,5\}$, then $A \cup B = \{1,2,3,4,5\}$

Let **A**, **B** be any two sets.

The intersection of two sets **A** and **B** is the set that contains those elements that are in both **A** and **B**.

denotation: A ∩ B

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

Shaded (hatched) areas represent the intersection of sets **A** and **B**.

Example 2:

Let $A = \{1,2,3\}$ and $B = \{2,3,4,5\}$, then $A \cap B = \{2,3\}$

Let **A**, **B** be any two sets.

Two sets are disjoint if their intersection is an empty set, i.e. $\mathbf{A} \cap \mathbf{B} = \emptyset$.

Example:

Let $A=\{1,2,3,4,a,n,f\}$ and $B=\{5,6,7,b\}$, then $A \cap B = \emptyset$, therefore A and B are disjoint.

The difference of **A** and **B** is the set containing those elements that are in **A**, but not in **B**.

denotation: A - B

$$A - B = \{ x \mid x \in A \land x \notin B \}$$

A – B is shaded

Example:

Let $A=\{1,2,3,4,a,n,f\}$ and $B=\{1,2,3,a,b\}$, then $A-B=\{4,n,f\}$

Let's assume that the universe set *U* has been specified. And let **A** be any set. Then, the compliment of the set **A** is the set of all elements of the universe set *U* that are not the elements of set A.

$$\overline{\mathbf{A}} = \{ x \mid x \notin A \}$$

Example 5:

Let *U* be the set of all integers, and let $A = \{0,1,2,3,4,...\}$, then $A = \{...,-4,-3,-2,-1\}$