Защищено: Гапанюк Ю.Е.		Демонстрация: Гапанюк Ю.Е.			
""2023	3 г.	""	2023 г.		
	лабораторной раб юлогии машинно ГУИМЦ	· -	y		
Тема работы: "	Разведочный анал визуализация д		ледование и		
	10 (количество листо <u>Вариант № 2</u>	ов)			
,	асполиите пь.				
C	ИСПОЛНИТЕЛЬ: студент группы ИУ5Ц-84 Распашнов А.А.		2023 г.		

Цель лабораторной работы

Изучить различные методы визуализации данных.

Задание

- Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов здесь.
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из <u>Scikit-learn</u>.
- Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть здесь.

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Средства и способы визуализации данных можно посмотреть здесь.

В качестве опорного примера для выполнения лабораторной работы можно использовать пример.

Дополнительно примеры решения задач, содержащие визуализацию, можно посмотреть в репозитории курса mlcourse.ai - https://github.com/Yorko/mlcourse.ai/wiki/Individual-projects-and-tutorials-(in-Russian))

Ход выполнения работы

Текстовое описание набора данных

В качестве набора данных используется toy dataset <u>iris</u> из библиотеки scikit-learn. Этот dataset содержит ирисы Фишера.

Этот набор данных состоит из одного файла со 150-ю записями. Данный файл содержит следующие колонки:

- sepal length (cm) длина чашелистика в сантиметрах
- sepal width (cm) ширина чашелистика в сантиметрах
- petal length длинна лепестка
- petal width (cm) ширина липестка
- target вид ириса (0 = setosa; 1 = versicolor; 2 = virginica)

Основные характеристики набора данных

Подключим все необходимые библиотеки:

```
In [2]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib
```

```
import matplotlib_inline
import matplotlib.pyplot as plt
from sklearn.datasets import *
```

Преобразуем данные

In [4]:

```
iris = load_iris(as_frame=True)
df = pd.DataFrame(data= np.c_[iris['data'], iris['target']], columns= iris['feature_name
s'] + ['target'])
#df = iris.data
df
```

Out[4]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0.0
1	4.9	3.0	1.4	0.2	0.0
2	4.7	3.2	1.3	0.2	0.0
3	4.6	3.1	1.5	0.2	0.0
4	5.0	3.6	1.4	0.2	0.0
145	6.7	3.0	5.2	2.3	2.0
146	6.3	2.5	5.0	1.9	2.0
147	6.5	3.0	5.2	2.0	2.0
148	6.2	3.4	5.4	2.3	2.0
149	5.9	3.0	5.1	1.8	2.0

150 rows \times 5 columns

In [21]:

```
# Список колонок с типами данных df.dtypes
```

Out[21]:

```
sepal length (cm) float64
sepal width (cm) float64
petal length (cm) float64
petal width (cm) float64
target float64
dtype: object
```

In [22]:

```
# Проверим наличие пустых значений

# Цикл по колонкам датасета

for col in df.columns:

# Количество пустых значений - все значения заполнены

temp_null_count = df[df[col].isnull()].shape[0]

print('{} - {}'.format(col, temp_null_count))
```

```
sepal length (cm) - 0
sepal width (cm) - 0
petal length (cm) - 0
petal width (cm) - 0
target - 0
```

In [23]:

```
# Основные статистические характеристки набора данных df.describe()
```

Out[23]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

Настройка отображения графиков

In [24]:

```
# Enable inline plots
%matplotlib inline

# Задание стиля графиков
sns.set(style="ticks")

# Задание формата графиков для сохранения высокого качества PNG
from IPython.display import set_matplotlib_formats
matplotlib_inline.backend_inline.set_matplotlib_formats("retina")
```

Зададим ширину текста, чтобы он влезал на А4

```
In [25]:
```

```
pd.set_option("display.width", 70)
```

Визуальное исследование датасета

Оценим наиболее распространённый вид ириса

In [26]:

```
count_full = df.groupby("target")["target"].count().sort_values()
count_full.plot(x="Вид ириса", y="Количество", kind="bar", fontsize=10)
plt.xlabel("Вид ириса")
plt.ylabel("Количество")
plt.show()
```


Видно, что все виды ирисов одинаково распространены. Каждого вида — 50 штук.

Диаграммы рассеяния

Диаграмма рассеяния для размеров чашелистика

```
In [27]:
```

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='sepal length (cm)', y='sepal width (cm)', data=df)
```

Out[27]:

<AxesSubplot:xlabel='sepal length (cm)', ylabel='sepal width (cm)'>

Диаграмма рассеяния для размеров лепестка

In [28]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='petal length (cm)', y='petal width (cm)', data=df)
```

Out[28]:

<AxesSubplot:xlabel='petal length (cm)', ylabel='petal width (cm)'>

Гистограммы

Гистограмма распределения длинны чашелистика

```
In [29]:
```

```
fig, ax = plt.subplots(figsize=(10,10))
sns.histplot(df['sepal length (cm)'])
```

Out[29]:

<AxesSubplot:xlabel='sepal length (cm)', ylabel='Count'>

Гистограмма распределения длинны лепестка

In [30]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.histplot(df['petal length (cm)'])
```

Out[30]:

<AxesSubplot:xlabel='petal length (cm)', ylabel='Count'>

Парные диаграммы

In [31]:

```
sns.pairplot(df)
```

Out[31]:

<seaborn.axisgrid.PairGrid at 0x7fb5fc3272e0>

С помощью парных диаграмм были легко получены различные гистограммы и диаграммы.

Ящик с усами

Вероятность получить определённый вид ириса

```
In [32]:
```

```
sns.boxplot(x=df['target'])
```

Out[32]:

```
<AxesSubplot:xlabel='target'>
```


Вероятность найти лепесток определённой ширины

In [33]:

```
sns.boxplot(x=df['petal width (cm)'])
```

Out[33]:

<AxesSubplot:xlabel='petal width (cm)'>

Информация о кореляции признаков

На основе коеффициента кореляции Пирса

In [34]:

df.corr()

Out[34]:

		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	sepal length (cm)	1.000000	-0.117570	0.871754	0.817941	0.782561
	sepal width (cm)	-0.117570	1.000000	-0.428440	-0.366126	-0.426658
	petal length (cm)	0.871754	-0.428440	1.000000	0.962865	0.949035
	petal width (cm)	0.817941	-0.366126	0.962865	1.000000	0.956547
	target	0.782561	-0.426658	0.949035	0.956547	1.000000

На основе корреляционной матрицы можно сделать следующие выводы:

- Целевой признак наиболее сильно коррелирует с шириной лепестка (0.95) и его длинной (0.94). Эти признаки обязательно следует оставить в модели.
- Целевой признак отчасти корелирует с длинной чашелистика (0.78). Этот признак стоит также оставить в модели.
- Целевой признак слабо корелирует с шириной чашелистика (-0.4). Скорее всего этот признак стоит исключить из модели, возможно он только ухудшит качество модели.
- Длинна чашелистика и длинна лепестка корелируют между собой (0.87). Возможно, стоит оставить один из этих признаков.

Визуалезируем кореляцию с помощью тёплой карты

In [35]:

Вывод значений в ячейках

```
sns.heatmap(df.corr(), annot=True, fmt='.3f')
```

Out[35]:

<AxesSubplot:>

In [36]:

```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5)) sns.heatmap(df.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f') sns.heatmap(df.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f') sns.heatmap(df.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f') fig.suptitle('Корреляционные матрицы, построенные различными методами') ax[0].title.set_text('Pearson') ax[1].title.set_text('Kendall') ax[2].title.set_text('Spearman')
```


Необходимо отметить, что тепловая карта не очень хорошо подходит для определения корреляции нецелевых признаков между собой.

In []: