Data Management Guide

WMP Phase II

Introductions

This document has been designed specifically for our watershed management project Phase II, this comprehensive guide aims to establish standardized naming conventions and folder structures. With the project encompassing a vast array of datasets and users, the guide serves as a crucial tool for maintaining consistency, preventing duplications, and streamlining data retrievals. Accompanied by a suite of ArcGIS-based Python scripts, this guide offers step-by-step instructions for effective dataset management, ensuring seamless integration and accessibility across the project.

Folder Structure

Within your user directory there should be the base folder WMP_Phase_II inside the base folder you can start with client/community name. for each of the client/community or let's say study area there should be the minimum directories and files as shown in the table Folder Structures. Note:- you may have some additional directory/file depending upon your study for example ArcHydro files, please maintain it properly and describe it in ReadMe.txt file.

Client/Community Directory

Community_ Type

Community: no spaces in name, capitalize each word, separate by underscore

Type: either City or County

Example:

PalmBeach County

SN	Name	Description
1	ArcGIS_Projects	To store all the ArcGIS project files, no any conventions for
		the files inside this directory but you have to write short
		descriptions about files/folder in Folder_Details.xls.
2	Cascade	To store inputs, models and outputs for modelling, no any conventions for the files inside this directory but you have to write short descriptions about files/folder in Folder Details.xls.
3	Documents	To store all the documents/tables used for reference or prepared for reporting, no any conventions for the files inside this directory but you have to write short descriptions about files/folder in Folder_Details.xls.

4	client/community name.gdb	To store all the vector files used for preparing maps, you
		should strictly follow the naming conventions for the files
		as described in the table Vector naming conventions.
5	client/community name	To store all the mosaics of raster files (rasters covering
		whole study area) used for preparing maps, you should
		strictly follow the naming conventions for the files as
		described in the table Raster naming conventions.
6	HUC12s	To store all the Huc-wise of raster files (rasters clipped
		with HUC12s boundaries) used for preparing maps, you
		should strictly follow the naming conventions for the sub-
		directories and files as described in the table Raster
		naming conventions. Please note that inside this directory
		there will be multiple subdirectories representing each
		individual HUC12s, please refer to naming HUC12s
		directories.
7	Maps	To store all the png/jpeg files (generated maps), no any
		conventions for the files inside this directory but you have
		to write short descriptions about files/folders in
		Folder_Details.xls.
8	Temp	To store any intermediate files if you have, no any
		conventions for the files inside this directory as well as no
		mandatory descriptions but you can prepare ReadMe files
		if you think it's relevant.
9	ReadMe.txt	To describe folders.
10	Folder_Details.xls	For details descriptions about the files inside the folders.

Table 1: Folder Structures

Figure 1: Folder Structures

HUC12s directory

Create a child folder for each 12-digit HUC sub watershed intersecting the region of interest within the subfolder HUC12s. Note: a HUC12 that intersects multiple communities should appear more than once - i.e., place a copy in each community/client folder

Unique ID_ Name of Subwatershed

Unique ID: 12-digit hydrologic unit code (HUC), separate by underscore

Name of Subwatershed: no spaces, capitalize each word

Example:

030902050102 NinemileCanal

Figure 2: HUC12s folder structure

Naming Conventions

Vector files

All the vector files used to generate maps should strictly follow the naming conventions as described in the following table. You don't need to clip vector files based on HUC12 boundaries unless they differ in properties based on HUC12 boundaries. These files must be inside the Client(study area).gdb file.

SN	Name	Description
1	HUC12s_Boundary	This dataset represents the HUC12s boundaries for the
		watershed.
2	municipalities	Municipalities Boundary
3	water_wells	Water wells
4	surface_water	Surface water stations
5	ground_water	Ground water stations
6	NOAA_tidal	NOAA tidal Stations
7	infrastructures	Infrastructures
8	drainage_networks	Flow line/ Drainage networks
9	land_use	Land use/ SFWMD_LandUse
10	land_cover	Land cover/ NLCD_LandCover
11	fema_flood	FEMA flooding zone
12	composite_score_1d100y	Composite score under 1d100y. The Composite Score
		layer must contain a column "CompScore" to represent
		the composite score values.
13	composite_score_1d100y_5ft	Composite score under 1d100y and 5 feet sea level rise.
		The Composite Score layer must contain a column
		"CompScore" to represent the composite score values.
14	critical_facilities	Critical facilities (priority of land use) /Tiers, must contain a column "Tier_no"

15 drill_down_poly The grid layer for drill-down maps.
--

Please note that you may have additional layers based on your study; please maintain them properly and describe them in Folder_Details.xls.

Raster files

The raster files must be in GeoTIFF(.tif) format. The mosaics should be stored in a folder named Client/Community, and the files for individual sub-watersheds must be stored in the HUC12s folder organized by HUC12. The naming conventions for all mosaics and HUC12s rasters must be the same as mentioned in the following table.

SN	Name	Description
		Digital elevation model (1-meter cell size) with vertical units converted
		to feet obtained from https://apps.nationalmap.gov/lidar-explorer .
		Gaps filled by mosaicking available 3-meter DEM data from Phase 1 -
		\\engsynws01.eng.fau.edu\Project_mastercopy\Datasets\LiDAR_DEM\
1	dem_ft	DEM_3m_merged\MERGED
		Resampled digital elevation model for calculations (10-meter cell size)
2	dem_resample	with vertical units in feet created by resampling "dem_ft" raster dataset
		Binary land classification of 0 = impervious surfaces, and 1 = pervious
		surfaces obtained from Phase 1 data -
		\\engsynws01.eng.fau.edu\Project mastercopy\Datasets\Impervious\I
3	impervious	mperviousBinary\Binary Impervious OK.dat
		Probability of inundation (flood risk) Z-score surface created using a
		maximum headwater heights output from CASCADE2001 simulation
		and the "dem_ft" raster dataset clipped to any subbasins using the
		expression [headwater height] minus [DEM] divided by 0.46
		scenario: 1d100yr_1ft
		scenario: 1d100yr_kt
		scenario: 1d100yr_kt_1ft
4	inundation_ <scenario></scenario>	
5	nlcd	
		Estimated precipitation for a 3-day 25-year design storm obtained from
		\\engsynws01.eng.fau.edu\Project mastercopy\Datasets\FL NOAA14
		Precipitation
		Scenario: 100y1d, 25y3d, 10y1d, 5y1d
6	rain_ <scenario>_in</scenario>	
		Soil storage capacity in inches created by the expression "d2wte_ft"
		times "whc_ratio" times "impervious" times "water" times 12 inches
7	ssc_inch	(for conversion)
8	unsaturated	

		Binary classification of 0 = water, and 1 = land obtained from Phase 1	
		data: -	
		\\engsynws01.eng.fau.edu\Project mastercopy\Datasets\FL Waterbod	
9	water	ies\Water Raster\Binary Water.tif	
		Water holding capacity ratio surface obtained from Phase 1 data -	
		\\engsynws01.eng.fau.edu\\Project_mastercopy\\Datasets\\FL_Soil\\aws0	
10	whc_ratio	_150_whc1.tif	
		Water table elevation with vertical units in feet generated using a	
		multiple linear regression (specify equation used) or ordinary kriging /	
11	wte_ft	EBK.	
		Local minimum water table with vertical units in feet created using the	
		Empirical Bayesian Kriging (EBK) function to run an interpolation with	
		the observed surface water stations DBHYDRO data and pseudo-station	
12	minwte_ft	point elevations	
		Depth in feet to the local minimum water table (surface water only)	
13	d2minwte_ft	created by the expression "dem_resample" minus "minwte_ft"	
		Depth in feet of the unsaturated zone (vadose zone) soil layer created	
		by the expression "dem_resample" minus "wte_ft" and using the	
14	d2wte_ft	conditional function, Con, to reassign negative values to zero	
15	soilStorage	Soil storage	
	wte_slr_ <sea level<="" td=""><td>Water table elevation plus sea level rise increase (1 ft, 2 ft,, etc.)</td></sea>	Water table elevation plus sea level rise increase (1 ft, 2 ft,, etc.)	
16	rise>_ft		

Using Python Notebook in ArcGIS pro

A Python notebook has been developed to automate some tasks, which can be used within the ArcGIS pro-environment. The notebook has been divided into five parts; you can use all or any specific parts based on your needs.

Importing notebook

Download the data_management.ipython into your user directory, then open it like other layers from catalog. You can use any existing ArcGIS project or start with the fresh one.

After locating the ipython file, double click on file it will open a new window with python programs. Don't panic, it might take few time to open. After it opens you might be able to see python scripts

directly or the interface as shown below. Just click on the name it will be expanded and you will be able to see the script.

To run the scripts you need to select the cell, that you want to execute then click on run. If you select any particular cell, it should look as follows. Please note that in every script, there is a variable 'current_directory', which holds the path of your working directory. You should adjust the path based on your user directory and study area before executing the scripts.

SN	Name	Description
1	Create parent folders	It will automatically create the parent folders in your
		current directory, as shown in figure1. Please note that it
		will only create folders and will not process any datasets.
2	Create child folders	It will automatically create the child folders in HUC12s
		directory, as shown in figure2. Please note that it will only
		create folders and will not process any datasets.
3	Create HUC12s Rasters	It will clip the raster files based on the HUC12 boundaries
		and store in the respective folders. Please note that it
		assumes you have already maintained the mosaic rasters
		with proper naming conventions in the respective
		directory. i.e., client/community directory.
4	Create mosaic Rasters	It will mosaic the raster files for your study area and store
		in the respective folders. Please note that it assumes you
		have already maintained the HUC12s rasters with proper
		naming conventions in the respective directory. i.e.,
		HUC12s.
5	Generate Folder_details.xls	It will generate a Folder_Details.xls file in your current
		directory based on the files and folders available in your
		current directory.

