Задача 6

Бросают пару игральных костей. Найдите распределение, математическое ожидание и дисперсию суммы выпавших очков.

Решение.

Положим X — сумма выпавших очков при бросании пары игральных костей. Тогда

$$X_i$$
 2 3 4 5 6 7 8 9 10 11 12
 $Pr X_i$ $1/36$ $2/36$ $3/36$ $4/36$ $5/36$ $6/36$ $5/36$ $4/36$ $3/36$ $2/36$ $1/36$

$$\mathbb{E}(X) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + 5 \cdot \frac{4}{36} + 6 \cdot \frac{5}{36} + 7 \cdot \frac{6}{36} + 8 \cdot \frac{5}{36} + 9 \cdot \frac{4}{36} + 10 \cdot \frac{3}{36} + 11 \cdot \frac{2}{36} + 12 \cdot \frac{1}{36} = 7$$

$$\mathbb{D}(X) = 2^2 \cdot \frac{1}{36} + 3^2 \cdot \frac{2}{36} + 4^2 \cdot \frac{3}{36} + 5^2 \cdot \frac{4}{36} + 6^2 \cdot \frac{5}{36} + 7^2 \cdot \frac{6}{36} + 8^2 \cdot \frac{5}{36} + 9^2 \cdot \frac{4}{36} + 10^2 \cdot \frac{3}{36} + 11^2 \cdot \frac{2}{36} + 12^2 \cdot \frac{1}{36} - 7^2 = \frac{35}{6} + 12^2 \cdot \frac{1}{36} + \frac{1}{36} +$$

Задача 7.

Для оценки числа некоторого редкого вида рыб в озере биологи выловили 5 рыб и пометили их. На следующий день они выловили 2 рыбы. Случайная величина X – число помеченных рыб среди выловленных. При каком количестве N рыб в озере вероятность Pr(X=1) максимальна. Найдите распределение случайной величины X при таком N, $\mathbb{E}(X)$, $\mathbb{D}(X)$.

Решение.

$$\Pr(X=0) = \frac{C_5^0 \cdot C_{N-5}^2}{C_N^2} = \frac{n^2 - 11n + 30}{n^2 - n}$$

$$\Pr(X=1) = \frac{C_5^1 \cdot C_{N-5}^1}{C_N^2} = \frac{5 \cdot (n-5)}{(n^2-n)/2} = \frac{10n-50}{n^2-n}$$

$$\Pr(X=2) = \frac{C_5^2 \cdot C_{N-5}^0}{C_N^2} = \frac{20}{n^2 - n}$$

Теперь рассмотрим функции $f(x) = \frac{10x - 50}{x^2 - x}$ и найдем ее экстремум.

$$f'(x) = \left(\frac{10x - 50}{x^2 - x}\right)' = \frac{-10x^2 + 100x - 50}{(x^2 - x)^2} \implies -x^2 + 10x - 5 = 0 \implies \begin{bmatrix} x = 5 - 2\sqrt{5} \approx 0.52 \\ x = 5 + 2\sqrt{5} \approx 9.47 \end{bmatrix}$$

То есть экстремум достигается при $5 + 2\sqrt{5}$. Однако нужно целое значение рыбов (очевидно либо 9, либо 10. *UPD*: а может и то и другое).

$$\Pr_{N=9}(X=0) = \frac{81-99+30}{81-9} = \frac{1}{6} \quad \Pr_{N=9}(X=1) = \frac{90-50}{81-9} = \frac{5}{9} \quad \Pr_{N=9}(X=2) = \frac{20}{81-9} = \frac{5}{18}$$

$$\Pr_{N=10}(X=0) = \frac{100 - 110 + 30}{100 - 10} = \frac{2}{9} \quad \Pr_{N=10}(X=1) = \frac{100 - 50}{100 - 10} = \frac{5}{9} \quad \Pr_{N=10}(X=2) = \frac{20}{100 - 10} = \frac{2}{9}$$

Оказалось, что оба значения подходят.

$$\mathbb{E}(X) = 0 \cdot \frac{1}{6} + 1 \cdot \frac{5}{9} + 2 \cdot \frac{5}{18} = \frac{10}{9}$$

$$\mathbb{E}(X) = 0 \cdot \frac{2}{9} + 1 \cdot \frac{5}{9} + 2 \cdot \frac{2}{9} = 1$$

$$\mathbb{D}_{X \to 0}(X) = 0^2 \cdot \frac{1}{6} + 1^2 \cdot \frac{5}{9} + 2^2 \cdot \frac{5}{18} - \left(\frac{10}{9}\right)^2 = \frac{35}{81}$$

$$\mathbb{D}_{N=10}(X) = 0^2 \cdot \frac{2}{9} + 1^2 \cdot \frac{5}{9} + 2^2 \cdot \frac{2}{9} - 1 = \frac{4}{9}$$

Короче, Меченая рыбка, я тебя выловил и в благородство играть не буду: найдешь для меня дисперсию и мат. ожидание – и мы в расчете. Заодно посмотрим, как быстро у тебя башка после Косова прояснится. А по твоей теме постараюсь разузнать. Хрен его знает, на кой ляд тебе эта вероятность сдалась, но я в чужие дела не лезу, хочешь найти, значит есть за что...

Задача 8.

Докажите, что $\min_{a\in\mathbb{R}}\mathbb{E}(X-a)^2$ равен $\mathbb{D}(X)$ и достигается только при $a=\mathbb{E}(X).$

Решение.

$$\mathbb{E}(X-a)^2 = \mathbb{E}\big(X^2\big) - 2a \cdot \mathbb{E}(X) + a^2$$

$$\min = \frac{2\mathbb{E}(X)}{2} = \mathbb{E}(X)$$
, так как вершина параболы.

$$\mathbb{D}(X) = \mathbb{E}\left(\left(X - \mathbb{E}(X)\right)^2\right)$$

$$\mathbb{D}(X) = \mathbb{E}\big(X^2\big) - \big(\mathbb{E}(X)\big)^2 = \mathbb{E}\left(\big(X - \mathbb{E}(X)\big)^2\right)$$

Задача 9.

Боб загадал случайным образом число от 0 до 4. Алиса получает свое число так: подкидывает монетку и в случае орла прибавляет к числу Боба 1, а в случае решки вычитает 1 (всё по модулю 5) Найдите распределение каждого из полученных чисел, а также их совместное распределение.

Решение.

Алиса	0	1	2	3	4
	1/5	1/5	¹ / ₅	1/5	¹ / ₅

Боба	0	1	2	3	4
	1/5	¹ / ₅	¹ / ₅	¹ / ₅	1/5

Алиса/Боба	0	1	2	3	4
0		$^{1}/_{10}$			1/10
1	$^{1}/_{10}$		1/10		
2		$^{1}/_{10}$		$^{1}/_{10}$	
3			$^{1}/_{10}$		1/10
4	¹ / ₁₀			¹ / ₁₀	

Запаца 10

- а) Предположим, что дискретная случайная величина X имеет симметричное распределение (т. е. $\Pr(X=x) = \Pr(X=-x)$), а случайная величина Y принимает значения 1 и -1 с вероятностью $\frac{1}{2}$. Докажите, что случайные величины X и $X \cdot Y$ имеют одинаковое распределение.
- b) Случайные величины X,Y,Z,W независимы в совокупности и одинаково распределены: каждая принимает значения 1 и 1 с вероятностью

Решение.

 $^{^{1}\!/}_{2}$. Являются ли независимыми в совокупности случайные величины *XYZ* , *XYW* , *XW* ?