Optimal Redistribution: Rising Inequality vs. Rising Living Standards

Axelle Ferriere¹ Philipp Grübener² Dominik Sachs³

¹Sciences Po, CNRS & CEPR

²Washington University in St. Louis

³University of St. Gallen & CEPR

September 2024

- Large increase in **income inequality** in the US from 1950 to 2010
 - Larger top income shares, thicker Pareto tail

Piketty and Saez (2003)

1

- Large increase in **income inequality** in the US from 1950 to 2010
 - $-\,$ Larger top income shares, thicker Pareto tail

Piketty and Saez (2003)

 \Rightarrow More redistribution

- Large increase in **income inequality** in the US from 1950 to 2010
 - Larger top income shares, thicker Pareto tail

Piketty and Saez (2003)

⇒ More redistribution

Workhorse models of optimal income taxation

- Large increase in **income inequality** in the US from 1950 to 2010
 - Larger top income shares, thicker Pareto tail

Piketty and Saez (2003)

⇒ More redistribution

Workhorse models of optimal income taxation

- Large increase in **standard of living**
 - Income per capita tripled, spending share on necessities dropped

- Large increase in **income inequality** in the US from 1950 to 2010
 - Larger top income shares, thicker Pareto tail

Piketty and Saez (2003)

⇒ More redistribution

Workhorse models of optimal income taxation

- Large increase in **standard of living**
 - Income per capita tripled, spending share on necessities dropped
 - Workhorse models feature homothetic preferences: changes in levels are irrelevant

- Large increase in **income inequality** in the US from 1950 to 2010
 - Larger top income shares, thicker Pareto tail

Piketty and Saez (2003)

⇒ More redistribution

Workhorse models of optimal income taxation

- Large increase in **standard of living**
 - Income per capita tripled, spending share on necessities dropped
 - Workhorse models feature homothetic preferences: changes in levels are irrelevant
- \Rightarrow How does the standard of living affect the optimal tax-and-transfer (t&T) system?

- This paper: Optimal taxation with non-homothetic preferences
 - Heterogeneous income elasticities of demand across sectors (Engel's law)

NH CES Comin, Lashkari, and Mestieri (2021), IA Preferences Alder, Boppart, and Müller (2022)

- This paper: Optimal taxation with non-homothetic preferences
 - Heterogeneous income elasticities of demand across sectors (Engel's law)
 NH CES Comin, Lashkari, and Mestieri (2021), IA Preferences Alder, Boppart, and Müller (2022)
 - Changes in levels ("growth") \Rightarrow Rising living standards

- This paper: Optimal taxation with non-homothetic preferences
 - Heterogeneous income elasticities of demand across sectors (Engel's law)
 NH CES Comin, Lashkari, and Mestieri (2021), IA Preferences Alder, Boppart, and Müller (2022)
 - Changes in levels ("growth") ⇒ Rising living standards
- Formalize the effects of growth in a static Mirrlees setup
 - Distribution vs. efficiency concerns

Heathcote and Tsujiyama (2021)

- This paper: Optimal taxation with non-homothetic preferences
 - Heterogeneous income elasticities of demand across sectors (Engel's law)
 NH CES Comin, Lashkari, and Mestieri (2021), IA Preferences Alder, Boppart, and Müller (2022)
 - Changes in levels ("growth") ⇒ Rising living standards
- Formalize the effects of growth in a static Mirrlees setup
 - Distribution vs. efficiency concerns
 Heathcote and Tsujiyama (2021)
- Quantify the relative effects of rising inequality vs. rising living standards in Aiyagari setup
 - Calibrated 1950 t&T sytem with inverse optimum Pareto weights

- This paper: Optimal taxation with non-homothetic preferences
 - Heterogeneous income elasticities of demand across sectors (Engel's law)
 NH CES Comin, Lashkari, and Mestieri (2021), IA Preferences Alder, Boppart, and Müller (2022)
 - Changes in levels ("growth") ⇒ Rising living standards
- Formalize the effects of growth in a static Mirrlees setup
 - Distribution vs. efficiency concerns
 Heathcote and Tsuiivama (2021)
- Quantify the relative effects of rising inequality vs. rising living standards in Aiyagari setup
 - Calibrated 1950 t&T sytem with inverse optimum Pareto weights
 - Optimal 2010 t&T system

- This paper: Optimal taxation with non-homothetic preferences
 - Heterogeneous income elasticities of demand across sectors (Engel's law)
 NH CES Comin, Lashkari, and Mestieri (2021), IA Preferences Alder, Boppart, and Müller (2022)
 - Changes in levels ("growth") ⇒ Rising living standards
- Formalize the effects of growth in a static Mirrlees setup
 - Distribution vs. efficiency concerns
 Heathcote and Tsuiivama (2021)
- Quantify the relative effects of rising inequality vs. rising living standards in Aiyagari setup
 - Calibrated 1950 t&T sytem with inverse optimum Pareto weights
 - Optimal 2010 t&T system: 1 if only rising inequality; and 2 when also accounting for growth

lacktriangle Non-homotheticities \Rightarrow decreasing relative risk aversion (DRRA)

- lacktriangle Non-homotheticities \Rightarrow decreasing relative risk aversion (DRRA)
- Mirrlees formula: two main effects of growth
 - Growth lowers dispersion in marginal utilities ⇒ Lower distribution gains from redistribution
 - Growth lowers income effects ⇒ Ambiguous effects on efficiency costs of redistribution

3

- lacktriangle Non-homotheticities \Rightarrow decreasing relative risk aversion (DRRA)
- Mirrlees formula: two main effects of growth
 - Growth lowers dispersion in marginal utilities ⇒ Lower distribution gains from redistribution
 - Growth lowers income effects ⇒ Ambiguous effects on efficiency costs of redistribution
- Quantitatively large effects of rising living standards
 - Growth calls for less redistribution

- lacktriangle Non-homotheticities \Rightarrow decreasing relative risk aversion (DRRA)
- Mirrlees formula: two main effects of growth
 - Growth lowers dispersion in marginal utilities \Rightarrow Lower distribution gains from redistribution
 - Growth lowers income effects ⇒ Ambiguous effects on efficiency costs of redistribution
- Quantitatively large effects of rising living standards
 - Growth calls for less redistribution
 - Dampens by at least 25% the optimal increase in redistribution due to rising inequality

Literature

■ Optimal taxation

- Stationary economies and business cycle fluctuations in homothetic one sector economies Mirrlees (1971), Diamond (1998), Saez (2001); Ramsey (1927), Werning (2007), Heathcote, Storesletten, and Violante (2017)
- Optimal tax system over time in homothetic economies
 Mankiw, Weinzierl, and Yagan (2009), Diamond and Saez (2011), Scheuer and Werning (2017), Heathcote,
 Storesletten, and Violante (2020), Brinca, Duarte, Holter, and Oliveira (2022)
- Optimal taxation with non-homothetic preferences
 Jaravel and Olivi (2022), Oni (2023)
- Consumption patterns, Engel curves, and non-homothetic preferences

Geary (1950), Herrendorf, Rogerson, and Valentinyi (2013), Boppart (2014), Herrendorf, Rogerson, and Valentinyi (2014), Aguiar and Bils (2015), Comin, Lashkari, and Mestieri (2021), Alder, Boppart, and Müller (2022)

Mirrleesian Optimal Nonlinear Income Taxation

with Non-Homothetic Preferences

Households

- \blacksquare Continuum of heterogeneous households with labor productivity θ
 - Pre-tax labor income $y=\theta n$, where n is labor; distribution $f(\theta)$

5

Households

- lacktriangle Continuum of heterogeneous households with labor productivity heta
 - Pre-tax labor income $y=\theta n$, where n is labor; distribution $f(\theta)$
- lacktriangle Separable utility over consumption and leisure: U(c)-v(n)
 - Isoelastic labor preferences $v(n) = Bn^{1+\varphi}/(1+\varphi)$
 - $c=(c_1,\ldots,c_J)$ denotes a basket of consumption goods

Households

- lacktriangle Continuum of heterogeneous households with labor productivity heta
 - Pre-tax labor income $y=\theta n$, where n is labor; distribution $f(\theta)$
- Separable utility over consumption and leisure: U(c) v(n)
 - Isoelastic labor preferences $v(n) = Bn^{1+\varphi}/(1+\varphi)$
 - $-c = (c_1, \ldots, c_J)$ denotes a basket of consumption goods
- Let u denote the indirect utility function

$$u(e; p, \Lambda) \equiv \max_{\{c_j\}_j} U(c)$$
 s.t. $\sum_j \frac{p_j}{\Lambda} c_j = e$

- e: nominal expenditures
- p: vector of relative prices, kept constant (drop it)
- Λ : level of the economy \Rightarrow aggregate growth

Optimal Taxation Problem

■ Household's static maximization problem:

$$V(\theta; \mathcal{T}(\cdot), \Lambda) \equiv \max_{e,n} u(e; \Lambda) - B \frac{n^{1+\varphi}}{1+\varphi} \text{ s.t. } e = n\theta - \mathcal{T}(n\theta)$$

- $-\mathcal{T}(\cdot)$: fully nonlinear tax-and-transfer schedule
- Let $n(\theta; \mathcal{T}(\cdot), \Lambda)$ denote the labor policy

5

Optimal Taxation Problem

■ Household's static maximization problem:

$$V(\theta; \mathcal{T}(\cdot), \Lambda) \equiv \max_{e,n} u(e; \Lambda) - B \frac{n^{1+\varphi}}{1+\varphi} \text{ s.t. } e = n\theta - \mathcal{T}(n\theta)$$

- $-\mathcal{T}(\cdot)$: fully nonlinear tax-and-transfer schedule
- Let $n(\theta; \mathcal{T}(\cdot), \Lambda)$ denote the labor policy
- Government's maximization problem given Pareto weights $\{w(\theta)\}$:

$$\max_{\mathcal{T}(\cdot;\Lambda)} \int_{\underline{\theta}}^{\overline{\theta}} V(\theta;\mathcal{T}(\cdot;\Lambda),\Lambda) w(\theta) f(\theta) d\theta \quad \text{s.t.} \quad \int_{\underline{\theta}}^{\overline{\theta}} \mathcal{T}(n(\theta;\mathcal{T}(\cdot;\Lambda),\Lambda)\theta;\Lambda) f(\theta) d\theta \geq G$$

Balanced budget where G is exogenous spending

Nonlinear Taxes: General Formula

lacktriangle Optimal marginal rate equates efficiency costs of taxation to distribution gains $\forall heta^*$

Heathcote and Tsujiyama (2021)

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \underbrace{\int_{\theta}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}_{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

- Let $\eta(\theta;\Lambda) \equiv dy(\theta;\Lambda)/d\mathcal{T}(0;\Lambda)$ denote the income effect of type- θ worker
- Let $u_e(\theta;\Lambda)$ denote the marginal utility of expenditure of type- θ worker

Nonlinear Taxes: General Formula

lacktriangle Optimal marginal rate equates efficiency costs of taxation to distribution gains $\forall heta^*$

Heathcote and Tsujiyama (2021)

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \underbrace{\int_{\theta}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}_{\underline{\theta}} \underbrace{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}_{D(\theta^*; \mathcal{T}, \Lambda)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

- Let $\eta(\theta;\Lambda) \equiv dy(\theta;\Lambda)/d\mathcal{T}(0;\Lambda)$ denote the income effect of type- θ worker
- Let $u_e(\theta;\Lambda)$ denote the marginal utility of expenditure of type- θ worker
- Changes in Λ can alter: $\eta(\theta; \Lambda)$, $u_e(\theta; \Lambda)$, $y(\theta; \Lambda)$

lacktriangle Efficiency costs of taxes and transfers depend on elasticities $arphi^{-1}$ and income effects η

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

lacktriangle Efficiency costs of taxes and transfers depend on elasticities $arphi^{-1}$ and income effects η

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...

lacktriangle Efficiency costs of taxes and transfers depend on elasticities $arphi^{-1}$ and income effects η

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}

lacktriangle Efficiency costs of taxes and transfers depend on elasticities $arphi^{-1}$ and income effects η

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}
 - + Increases labor supply of workers with $y>y(\theta^*)$: income effect η

В

lacktriangle Efficiency costs of taxes and transfers depend on elasticities $arphi^{-1}$ and income effects η

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}
 - + Increases labor supply of workers with $y>y(\theta^*)$: income effect η
- **Denominator:** Effects of higher lump-sum transfer. . .

lacktriangle Efficiency costs of taxes and transfers depend on elasticities $arphi^{-1}$ and income effects η

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}
 - + Increases labor supply of workers with $y>y(\theta^*)$: income effect η
- **Denominator:** Effects of higher lump-sum transfer. . .
 - + Decreases labor supply of all workers: income effect η

lacktriangle Efficiency costs of taxes and transfers depend on elasticities $arphi^{-1}$ and income effects η

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{\theta^* f(\theta^*)}{1 + \varphi} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \underbrace{\int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}_{H}}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}
 - + Increases labor supply of workers with $y>y(\theta^*)$: income effect η
- Denominator: Effects of higher lump-sum transfer. . .
 - + Decreases labor supply of all workers: income effect η
- E=0 with no behavioral responses $\varphi^{-1}=\eta=0$

В

Nonlinear Taxes: Distribution Gains $D(\theta^*; \mathcal{T}, \Lambda)$

lacktriangle Distribution gains of taxes and transfers depend on dispersion of marginal utilities u_e

$$D(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}$$

Nonlinear Taxes: Distribution Gains $D(\theta^*; \mathcal{T}, \Lambda)$

lacktriangle Distribution gains of taxes and transfers depend on dispersion of marginal utilities u_e

$$D(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}$$

- **Numerator:** Welfare loss from taxing workers with $y > y(\theta^*)$

Nonlinear Taxes: Distribution Gains $D(\theta^*; \mathcal{T}, \Lambda)$

lacktright Distribution gains of taxes and transfers depend on dispersion of marginal utilities u_e

$$D(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}$$

- Numerator: Welfare loss from taxing workers with y > y(\theta^*)
- Denominator: Welfare gains from increasing lump-sum transfer

Nonlinear Taxes: Distribution Gains $D(\theta^*; \mathcal{T}, \Lambda)$

lacktriangle Distribution gains of taxes and transfers depend on dispersion of marginal utilities u_e

$$D(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}$$

- **Numerator:** Welfare loss from taxing workers with $y > y(\theta^*)$
- Denominator: Welfare gains from increasing lump-sum transfer
- D=0 when no heterogeneity $u_e(\theta;\Lambda)=u_e(\theta';\Lambda)$

Homothetic Benchmark Neutrality Result

■ Assume homothetic CRRA preferences

$$U(c) = \frac{\mathcal{C}(c)^{1-\gamma}}{1-\gamma}, \text{ where } \mathcal{C}(c) = \left(\sum_j \Omega_j^{\frac{1}{\sigma}} c_j^{\frac{\sigma-1}{\sigma}}\right)^{\frac{1-\sigma}{\sigma}}$$

Indirect utility function reads

$$\frac{(e/p^\star)^{1-\gamma}}{1-\gamma} - B\frac{n^{1+\varphi}}{1+\varphi}, \text{ with } p^\star = \frac{1}{\Lambda} \left(\sum_j \Omega_j p_j^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$

Homothetic Benchmark Neutrality Result

Assume homothetic CRRA preferences

$$U(c) = \frac{\mathcal{C}(c)^{1-\gamma}}{1-\gamma}, \text{ where } \mathcal{C}(c) = \left(\sum_{j} \Omega_{j}^{\frac{1}{\sigma}} c_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{1-\sigma}{\sigma}}$$

Indirect utility function reads

$$\frac{\left(e/p^{\star}\right)^{1-\gamma}}{1-\gamma}-B\frac{n^{1+\varphi}}{1+\varphi}, \text{ with } p^{\star}=\frac{1}{\Lambda}\left(\sum_{j}\Omega_{j}p_{j}^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$

- \square **Proposition:** Optimal marginal rates $\forall \theta$ and T/Y ratios are independent of Λ .
 - Expenditures and incomes grow at constant rate $\alpha \ \forall \theta$
 - Distribution gains are unaffected by growth as expenditure ratios remain constant
 - Income effects are unaffected at the optimal tax system

- Consumption patterns across goods require non-homothetic preferences
 - Service shares are rising over time and with income in the cross-section

- Consumption patterns across goods require non-homothetic preferences
 - Service shares are rising over time and with income in the cross-section
 - Nonlinear Engel curves ⇒ non-constant risk aversion
 Stiglitz (1969), Hanoch (1977), Crossley and Low (2011)

- Consumption patterns across goods require non-homothetic preferences
 - Service shares are rising over time and with income in the cross-section
 - Nonlinear Engel curves ⇒ non-constant risk aversion
 Stiglitz (1969), Hanoch (1977), Crossley and Low (2011)
- + Intuition: "Luxuries are easier to postpone"
 Atkeson and Ogaki (1996), Browning and Crossley (2000)

- □ **Proposition:** Consider the two state-of-the-art NH preferences:
 - 1. NH CES under continuum of gross-complement goods Bohr, Mestieri, and Yavuz (2023)
 - 2. IA preferences

Alder, Boppart, and Müller (2022)

- ☐ **Proposition:** Consider the two state-of-the-art NH preferences:
 - 1. NH CES under continuum of gross-complement goods Bohr, Mestieri, and Yavuz (2023)
 - 2. IA preferences Alder, Boppart, and Müller (2022)

They feature DRRA iff labor supply falls with growth.

- **Proposition:** Consider the two state-of-the-art NH preferences:
 - 1. NH CES under continuum of gross-complement goods Bohr. Mestieri, and Yavuz (2023)
 - 2. IA preferences Alder, Boppart, and Müller (2022)

They feature DRRA iff labor supply falls with growth.

■ Evidence for DRRA/increasing IES

Ogaki and Zhang (2001), Blundell, Browning, and Meghir (1994), Attanasio and Browning (1995), ...

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

- 1. **DRRA** ⇒ Dispersion of **marginal utilities** decreases with growth
 - → Redistribution should decrease with growth

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

- 1. **DRRA** ⇒ Dispersion of **marginal utilities** decreases with growth
 - → Redistribution should decrease with growth
- 2. **DRRA** \Rightarrow **Income effect** η decreases with growth

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

- 1. **DRRA** ⇒ Dispersion of **marginal utilities** decreases with growth
 - → Redistribution should decrease with growth
- 2. **DRRA** \Rightarrow **Income effect** η decreases with growth
 - (a) Efficiency cost of taxes increases \rightarrow Redistribution should decrease with growth
 - (b) Efficiency cost of lump-sum transfer decreases → Redistribution should increase with growth

$$\underbrace{1 - \underbrace{\frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \underbrace{\frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}}_{D(\theta^*; \mathcal{T}, \Lambda)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

- 1. **DRRA** ⇒ Dispersion of **marginal utilities** decreases with growth
 - → Redistribution should decrease with growth
- 2. **DRRA** \Rightarrow **Income effect** η decreases with growth
 - (a) Efficiency cost of taxes increases \rightarrow Redistribution should decrease with growth
 - (b) Efficiency cost of lump-sum transfer decreases ightarrow Redistribution should increase with growth
- 3. **DRRA** \Rightarrow Low- θ hours worked decrease more with growth \rightarrow **Inequality** increases
 - → Redistribution should increase with growth

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

- 1. **DRRA** ⇒ Dispersion of **marginal utilities** decreases with growth
 - → Redistribution should decrease with growth
- 2. **DRRA** \Rightarrow **Income effect** η decreases with growth
 - (a) Efficiency cost of taxes increases \rightarrow Redistribution should decrease with growth
 - (b) Efficiency cost of lump-sum transfer decreases ightarrow Redistribution should increase with growth
- 3. **DRRA** \Rightarrow Low- θ hours worked decrease more with growth \rightarrow **Inequality** increases
 - \rightarrow Redistribution should increase with growth

Quantification in a Dynamic Model

with Private Insurance

Quantification in a Dynamic Model

- Dynamic incomplete markets model with private saving
 - To disentangle inequality in expenditure, income, and wealth
 - To discipline DRRA with dynamic savings decisions
- Parametric tax-and-transfer system

Ferriere, Grübener, Navarro, and Vardishvili (2023)

Households: Value Function

■ Household's value function with productivity θ and assets a:

$$V\left(a,\theta\right) = \max_{e,a',n} \left\{ u(e;\Lambda) - B \frac{n^{1+\varphi}}{1+\varphi} + \beta \mathbb{E}_{\theta'} \left[V\left(a',\theta'\right) | \theta \right] \right\}$$

s.t.

$$e + a' \le \theta n + (1+r)a - \mathcal{T}(\theta n), \quad a' \ge 0$$

- Productivity θ follows a stochastic process
- Discount factor β
- Fixed interest rate r (partial equilibrium)

Calibration Overview

■ Calibration to the US economy in 1950 and 2010 with three sectors

Calibration Growth

- Calibration to the US economy in 1950 and 2010 with three sectors
- 1. Aggregate changes
 - Growth in GDP per capita: 3.3,
 - Change in relative prices

Calibration Growth & Government

- Calibration to the US economy in 1950 and 2010 with three sectors
- 1. Aggregate changes
 - Growth in GDP per capita: 3.3,
 - Change in relative prices

2. Government

- Parametric tax function plus lump-sum transfer

Ferriere, Grübener, Navarro, and Vardishvili (2023)

$$\mathcal{T}(y) = \exp\left[\log(\lambda)\left(y^{-2\tau}\right)\right]y - T$$

- + λ captures level of the tax rates, τ captures progressivity
- + T: spending on income security: T/Y = 1.1% in 1950 \rightarrow 3.6% in 2010
- + Exogenous spending G, all remaining spending: $G/Y \approx 14\%$ constant

Calibration Inequality

- Wages follow AR(1) in logs, with appended Pareto tail
 - Persistence ρ fixed at 0.9
 - Shock innovation set to match variance of log income from SCF+ Kuhn, Schularick, and Steins (2020)
 - Time-varying Pareto tail parameter Aoki and Nirei (2017)

1950	Income Share by Quintile						
Model	6%	11%	13%	21%	49%		
Data (SCF+)	6%	11%	15%	21%	48%		
2010	Income Share by Quintile						
Model	4%	9%	11%	19%	56%		
Data (SCF+)	4%	9%	13%	21%	53%		

Calibration Inequality

- Wages follow AR(1) in logs, with appended Pareto tail
 - Persistence ρ fixed at 0.9
 - Shock innovation set to match variance of log income from SCF+ Kuhn, Schularick, and Steins (2020)
 - Time-varying Pareto tail parameter Aoki and Nirei (2017)

1950	Wealth Share by Quintile						
Model	0%	2%	6%	17%	76%		
Data (SCF+)	0%	1%	4%	11%	84%		
2010	Wealth Share by Quintile						
Model	0%	1%	5%	13%	81%		
Data (SCF+)	-1%	1%	3%	10%	87%		

Calibration Preferences

- Non-homothetic CES parameters
 - Income elasticities of demand and elasticity of substitution between goods
 Estimates of Comin, Lashkari, and Mestieri (2021) based on CEX micro data
 - Change in aggregate sector shares between 1950 and 2010
 Computed based on Herrendorf, Rogerson, and Valentinyi (2013) [NIPA]

Calibration Preferences

- Non-homothetic CES parameters
 - Income elasticities of demand and elasticity of substitution between goods
 Estimates of Comin, Lashkari, and Mestieri (2021) based on CEX micro data
 - Change in aggregate sector shares between 1950 and 2010
 Computed based on Herrendorf, Rogerson, and Valentinyi (2013) [NIPA]
- Remaining preference parameters
 - Fix Frisch elasticity $1/\varphi$ to standard value of 0.5
 - Consumption curvature γ to match RRA ≈ 1 in 2010

■ Calibrated non-homothetic preferences imply DRRA

- Calibrated non-homothetic preferences imply DRRA
 - RRA falls from 1.07 in 1950 to 1, small dispersion

- Calibrated non-homothetic preferences imply DRRA
 - RRA falls from 1.07 in 1950 to 1, small dispersion
- Implied labor supply dynamics
 - Falling labor supply over time; cross-sectional patterns Boppart and Krusell (2020), Mantovani (2022)

- Calibrated non-homothetic preferences imply DRRA
 - RRA falls from 1.07 in 1950 to 1, small dispersion
- Implied labor supply dynamics
 - Falling labor supply over time; cross-sectional patterns Boppart and Krusell (2020), Mantovani (2022)
- Model relation between RRA, wealth effects, and MPCs

$$\eta \left(\varphi \frac{e}{\theta n} + \frac{e\mathcal{T}''(\theta n)}{\mathcal{T}'(\theta n)} \right) = \mathsf{MPC} \times \mathsf{RRA}$$

- Calibrated non-homothetic preferences imply DRRA
 - RRA falls from 1.07 in 1950 to 1, small dispersion
- Implied labor supply dynamics
 - Falling labor supply over time; cross-sectional patterns
 Boppart and Krusell (2020), Mantovani (2022)
- Model relation between RRA, wealth effects, and MPCs

$$\eta \left(\varphi \frac{e}{\theta n} + \frac{e\mathcal{T}''\left(\theta n\right)}{\mathcal{T}'\left(\theta n\right)} \right) = \mathsf{MPC} \times \mathsf{RRA}$$

- MPC ≈ 0.18 , wealth effects ≈ 0.02 in 2010 Golosov, Graber, Mogstad, and Novgorodsky (2023)

Literature IES & RA

Labor Supply

MPC and Wealth Effect

Rising Living Standards vs. Rising Inequality

- Use dynamic model to quantify effect of rising living standards relative to rising inequality
- Start from 1950
 - Inverse optimum in 1950
 Bourguignon and Spadaro (2012), Lockwood and Weinzierl (2016), Hendren (2020)
 - First add inequality only
 - Second compare optimal 2010 with inequality and growth

Optimal Marginal Rates

■ Calibration in 1950: $T/Y \approx 1\%$

Optimal Marginal Rates

 \blacksquare Calibration in 1950: $T/Y\approx 1\%~\Rightarrow T/Y=4.6\%$ with higher inequality

Optimal Marginal Rates

- Calibration in 1950: $T/Y \approx 1\% \ \Rightarrow T/Y = 3.3\%$ with higher inequality and growth
 - Growth reduces increase in T/Y by 35%

Optimal Average Rates

■ Growth reduces increase in top-10 minus bottom-10 average rates by 30%

Quantitative Mirrlees Setup

- Calibration following a partial-insurance approach
 - Target consumption dispersion of the quantitative model in 1950 and 2010

Quantitative Mirrlees Setup

- Calibration following a partial-insurance approach
 - Target consumption dispersion of the quantitative model in 1950 and 2010
- Replicate the main quantitative exercise
 - Obtain similar effects of rising living standards relative to rising inequality

Optimal Marginal Rates Mirrlees

■ Calibration in 1950: $T/Y \approx 1\%$

Optimal Marginal Rates Mirrlees

■ Calibration in 1950: $T/Y \approx 1\% \ \Rightarrow T/Y = 6.7\%$ with higher inequality

Optimal Marginal Rates Mirrlees

- \blacksquare Calibration in 1950: $T/Y \approx 1\% \ \Rightarrow T/Y = 4.5\%$ with higher inequality and growth
 - Growth reduces increase in T/Y by 40%

Quantitative Mirrlees Setup

- Calibration following a partial-insurance approach
 - Target consumption dispersion of the quantitative model in 1950 and 2010
- Replicate the main quantitative exercise
- Decompose the different channels using the optimal tax formula
 - Decomposition into effects of marginal utilities, income effects, and the hours distribution

Optimal Marginal Rates Decomposition

- \blacksquare In 1950, calibrated/optimal $T/Y\approx 1\%$
- \blacksquare Optimal T/Y in 2010
 - Accounting for inequality only: T/Y = 6.7%
 - Accounting for growth as well: $T/Y=4.5\%\Rightarrow$ -2.2 p.p.

Optimal Marginal Rates Decomposition

- In 1950, calibrated/optimal $T/Y \approx 1\%$
- \blacksquare Optimal T/Y in 2010
 - Accounting for inequality only: T/Y = 6.7%
 - Accounting for growth as well: $T/Y = 4.5\% \Rightarrow$ -2.2 p.p.
 - + Fall in dispersion in marginal utilities: -2.9 p.p.
 - + Also accounting for lower income effects: -0.1 p.p.
 - + Also accounting for the more compressed distribution of hours: +0.8 p.p.

Optimal Marginal Rates Decomposition

■ 1950: T/Y=1.2% \Rightarrow T/Y=6.7% with inequality, T/Y=4.5% with growth \Rightarrow T/Y=3.8% with marginal utilities only, T/Y=3.7% adding efficiency concerns

Quantitative Mirrlees Setup

- Calibration following a partial-insurance approach
- Replicate the main quantitative exercise
- Decompose the different channels using the optimal tax formula
- Robustness

Conclusion

- Optimal taxation with rising living standards
 - Affect efficiency and distribution concerns
- Dampen optimal increase in redistribution due to rising inequality

Appendix

Literature

Evidence: Risk Aversion and IES

- IES increasing in consumption/wealth, based on estimating consumption Euler equation Blundell, Browning, and Meghir (1994), Attanasio and Browning (1995), Atkeson and Ogaki (1996)
- DRRA supported by consumption data from Indian villages Ogaki and Zhang (2001), Zhang and Ogaki (2004)
- DRRA powerful in matching portfolio choices across the wealth distribution Wachter and Yogo (2010), Straub (2019), Cioffi (2021), Meeuwis (2022)

Data Appendix

SCF+

- Long-run data on income and wealth inequality in the US Compiled by Kuhn, Schularick, and Steins (2020)
 - Based on historical waves of the Survey of Consumer Finances (SCF)
 - Time period 1949-2016
- Income components
 - Wages and salaries
 - Income from professional practice and self-employment
 - Business and farm income
 - Excluded: rental income, interest, dividends, transfers

SCF+ (cont.)

- Net worth/wealth components (assets debt)
 - Assets
 - + Liquid assets: checking, savings, call/money market accounts, certificates of deposit
 - + Housing and other real estate
 - + Bonds, stocks and business equity, mutual funds
 - + Cash value of life insurance
 - + Defined-contribution retirement plans
 - + Cars
 - Debt
 - + Housing debt: debt on owner-occupied homes, home equity loans and lines of credit
 - + Other debt: car loans, education loans, consumer loans

SCF+ (cont.)

- Sample selection
 - Head of household aged 25 to 60
 - Minimum income restriction
 - + \$5,000 for 2010 (in 2016 dollars)
 - + In 1950 such that ratio of minimum income to median is the same (\$2,700)

Government Spending

■ Programs included in transfers

White House Office of Management & Budget

- General retirement and disability insurance (excluding social security)
- Federal employee retirement and disability; Unemployment compensation
- Housing assistance; Food and nutrition assistance; Other income security
- Government spending
 - Supposed to capture all remaining federal spending
 - Purposefully chosen such that G/Y constant
 - + Spending has risen in the data, but largely deficit-financed
- Difference in Average Marginal Tax Rate (AMTR) between top 10% and bottom 90% Mertens and Montiel Olea (2018)
 - **13%, 9%**

Model Appendix

Non-Homothetic Preferences Non-Homothetic CES

Comin, Lashkari, and Mestieri (2021)

- Utility from aggregated consumption: $C(c)^{1-\gamma}/(1-\gamma)$
- Consumption aggregator C(c) implicitly defined by

$$\sum_{j}^{J} \left(\Omega_{j}(\mathcal{C}(c))^{\varepsilon_{j}}\right)^{\frac{1}{\sigma}} c_{j}^{\frac{\sigma-1}{\sigma}} = 1$$

- ε_j governs income elasticity of demand for good j
- $-\sigma$ is elasticity of substitution btw. goods

$$\Rightarrow \partial c_j/\partial e = \sigma + (1-\sigma)\varepsilon_j/\bar{\varepsilon}$$

lacktriangle Focus on gross complements $\sigma < 1$

Non-Homothetic Preferences Non-Homothetic CES

Comin, Lashkari, and Mestieri (2021)

- Conditions for DRRA with two goods: $\varepsilon_1 < \varepsilon_2 = 1$
 - Necessary condition: $\gamma > \varepsilon_1$
 - Sufficient condition: $\gamma + \varepsilon_1 \geq 2$
- Typical calibration with three goods ⇒ quantitatively true

Non-Homothetic Preferences Stone-Geary Preferences

Geary (1950)

■ One-sector Stone-Geary preferences

$$u(c) = \frac{(c - \bar{c})^{1 - \gamma}}{1 - \gamma}$$

- Subsistence consumption level $\bar{c} > 0$
- ⇒ Implies increasing elasticity of intertemporal substitution (DRRA)
- Counterfactual: vanishing non-homotheticities

Alder, Boppart, and Müller (2022)

lacktriangle Preferences defined over expenditures $e = \sum_{j} p_j c_j$

$$u(e; p, \Lambda) = \frac{1}{1 - \gamma} \left(\frac{1}{\mathbf{B}(p^*)} \left(e - \underbrace{\sum_{j} p_j^* \bar{c}_j}_{\mathbf{A}(p^*)} \right) \right)^{1 - \gamma} - \mathbf{D}(p^*), \text{ with } p^* \equiv \frac{p}{\Lambda}$$

$$-$$
 Price function $\mathbf{B}(p^*) = \left(\sum_j \Omega_j \left(p_j^*\right)^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$

Alder, Boppart, and Müller (2022)

lacksquare Preferences defined over expenditures $e = \sum_j p_j c_j$

$$u(e; p, \Lambda) = \frac{1}{1 - \gamma} \left(\frac{1}{\mathbf{B}(p^*)} \left(e - \underbrace{\sum_{j} p_j^* \bar{c}_j}_{\mathbf{A}(p^*)} \right) \right)^{1 - \gamma} - \mathbf{D}(p^*), \text{ with } p^* \equiv \frac{p}{\Lambda}$$

- Price function $\mathbf{B}(p^*) = \left(\sum_j \Omega_j \left(p_j^*
 ight)^{1-\sigma}
 ight)^{rac{1}{1-\sigma}}$
- Generalized Stone-Geary $\mathbf{A}(p^*)$
- Price function $\mathbf{D}(p^*)$ is independent of expenditures e (PIGL)

Alder, Boppart, and Müller (2022)

lacksquare Preferences defined over expenditures $e = \sum_j p_j c_j$

$$u(e; p, \Lambda) = \frac{1}{1 - \gamma} \left(\frac{1}{\mathbf{B}(p^*)} \left(e - \underbrace{\sum_{j} p_j^* \bar{c}_j}_{\mathbf{A}(p^*)} \right) \right)^{1 - \gamma} - \mathbf{D}(p^*), \text{ with } p^* \equiv \frac{p}{\Lambda}$$

- Price function $\mathbf{B}(p^*) = \left(\sum_j \Omega_j \left(p_j^*\right)^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$
- Generalized Stone-Geary $\mathbf{A}(p^*)$
- Price function $\mathbf{D}(p^*)$ is independent of expenditures e (PIGL)
- ⇒ Typically implies DRRA
 - -u exhibits DRRA \Leftrightarrow **A** $(p^*) > 0$

Alder, Boppart, and Müller (2022)

$$\mathbf{D}(p^*) = \frac{\nu}{\eta} \left(\left[\frac{\tilde{D}(p^*)}{B(p^*)} \right]^{\eta} - 1 \right)$$
$$\tilde{D}(p^*) = \left(\sum_{j \in J} \theta_j p_j^{*1-\iota} \right)^{\frac{1}{1-\iota}}$$

Calibration Aggregates

- Prices for all goods p_A, p_G, p_S pinned down by growth and relative price changes
 - Aggregate growth in GDP per capita: 3.3
 NIPA
 - Prices relative to goods
 Computed based on Herrendorf, Rogerson, and Valentinyi (2013) [NIPA]

```
+ Agriculture (food) \rightarrow 1.00, 1.87 + Services \rightarrow 1.00, 3.16
```

- Interest rate fixed at 2%; discount factor to match wealth-to-income ratio of 4 in 2010 Piketty and Zucman (2014) [NIPA]
 - Untargeted wealth-to-income ratio in 1950 of 3 [data: 3.65]

Calibration Preferences

■ Non-homothetic CES parameters

- $\{\varepsilon_j\}$ and σ : estimates of Comin, Lashkari, and Mestieri (2021) with CEX micro data + $\sigma=0.3$; $\varepsilon_A=0.1, \varepsilon_G=1.0, \varepsilon_S=1.8$

Calibration Preferences

■ Non-homothetic CES parameters

- $\{\varepsilon_j\}$ and σ : estimates of Comin, Lashkari, and Mestieri (2021) with CEX micro data + $\sigma=0.3;$ $\varepsilon_A=0.1, \varepsilon_G=1.0, \varepsilon_S=1.8$
- $-\Omega_j$: match aggregate sector shares in 2010 Computed based on Herrendorf, Rogerson, and Valentinyi (2013) [NIPA]
 - + Agriculture (food) 8%, goods 26%, services 67%
 - + Untargeted 1950: agriculture 17% [data 22%], goods 49% [39%], services 34% [39%]

Labor Supply in the Time Series and Cross-Section

■ Fall in average hours across time: 7%

Ruggles et al. (2022); Ramey and Francis (2009), Boppart and Krusell (2020)

- Correlation between hours and hourly wage in the cross-section
 - Roughly flat hours profile in 1950
 - Positive in 2010

Ruggles et al. (2022); Mantovani (2022)

Calibration Income inequality

- Wages follow AR(1) in logs, with appended Pareto tail
 - Time-varying Pareto tail parameter Aoki and Nirei (2017)
 - Time-varying innovation to AR(1) set to match variance of log income from SCF+ Kuhn, Schularick, and Steins (2020)

1950	Income Share by Quintile				
Model	6%	11%	13%	21%	49%
Data (SCF+)	6%	11%	15%	21%	48%
2010	Income Share by Quintile				
Model	4%	8%	12%	19%	56%
Data (SCF+)	4%	9%	13%	21%	53%

Calibration Expenditure Inequality

- Variance of log consumption in 2010: 0.46, top-quintile expenditure share of 45%
- Less expenditure inequality in 1950
- Variance of log consumption in 2010: 0.33, top-quintile expenditure share of 39%

Implied RRA in the Model MPCs and Wealth Effects

- Model MPC: 18% in 2010 Johnson, Parker, and Souleles (2006), Fagereng, Holm, and Natvik (2021), Kaplan and Violante (2022)
- Wealth effects: 0.02 in 2010 Golosov, Graber, Mogstad, and Novgorodsky (2023)

Wealth Effects: Evidence Golosov, Graber, Mogstad, and Novgorodsky (2023)

- How does income respond to unexpected wealth shocks?
 - Golosov et al. merge US tax data with data on lottery winnings
 - Compute earnings change over five years after lottery win
 - Earnings drop by on average 2.3\$ per 100\$ of win
- Replicate in model using mean post-tax win
 - Earnings drop by on average 2.1\$ per 100\$ of win

Calibration: Inequality

- A partial-insurance approach
 - Calibrate f(.) as exponentially modified Gaussian (EMG) to match dispersion in expenditures

Calibration: Inequality

- A partial-insurance approach
 - Calibrate f(.) as exponentially modified Gaussian (EMG) to match dispersion in expenditures
- In 2010, data on income and expenditure inequality
 - Dispersion: $\mathbb{V}[\log y] = 0.78$; $\mathbb{V}[\log e] \approx 0.35$ SCF+ (Kuhn, Schularick, and Steins 2020); Attanasio and Pistaferri (2014), Heathcote, Perri, and Violante (2010)
 - Pareto tail: $\lambda_y=1.65$; $\lambda_e\approx 3.3$ Aoki and Nirei (2017); Toda and Walsh (2015)

Calibration: Inequality

- A partial-insurance approach
 - Calibrate f(.) as exponentially modified Gaussian (EMG) to match dispersion in expenditures
- In 2010, data on income and expenditure inequality
 - Dispersion: $\mathbb{V}[\log y] = 0.78$; $\mathbb{V}[\log e] \approx 0.35$ SCF+ (Kuhn, Schularick, and Steins 2020); Attanasio and Pistaferri (2014), Heathcote, Perri, and Violante (2010)
 - Pareto tail: $\lambda_y=1.65;~\lambda_e\approx 3.3$ Aoki and Nirei (2017); Toda and Walsh (2015)
- In 1950, data on income inequality only
 - Dispersion: $\mathbb{V}[\log y] = 0.57$; \Rightarrow infer $\mathbb{V}[\log e] \approx 0.25$ SCF+ (Kuhn, Schularick, and Steins 2020)
 - Pareto tail: $\lambda_y=2.2\Rightarrow {\rm infer}\ \lambda_e=4.4$ Aoki and Nirei (2017)

Calibration: Expenditure Inequality

1950	Expenditure Share by Quintile				
Dynamic model	8%	13%	17%	23%	39%
Static model	9%	13%	17%	23%	38%
2010	Expenditure Share by Quintile				
Dynamic model	7%	11%	16%	21%	45%
Static model	7%	12%	16%	23%	43%

- Use Mirrlees formula to quantify how growth changes efficiency vs. distribution concerns
 - Static "partial insurance" setup with expenditure distribution as in dynamic model

- Use Mirrlees formula to quantify how growth changes efficiency vs. distribution concerns
 - Static "partial insurance" setup with expenditure distribution as in dynamic model
- Start from 1950 and add only growth
 - Prices fall but skill inequality remains unchanged

- Use Mirrlees formula to quantify how growth changes efficiency vs. distribution concerns
 - Static "partial insurance" setup with expenditure distribution as in dynamic model
- Start from 1950 and add only growth
 - Prices fall but skill inequality remains unchanged
 - Inverse optimum in 1950
 - Bourguignon and Spadaro (2012), Lockwood and Weinzierl (2016), Hendren (2020)
 - + Pareto weights such that calibrated 1950 tax system is optimal

- Use Mirrlees formula to quantify how growth changes efficiency vs. distribution concerns
 - Static "partial insurance" setup with expenditure distribution as in dynamic model
- Start from 1950 and add only growth
 - Prices fall but skill inequality remains unchanged
 - Inverse optimum in 1950
 - Bourguignon and Spadaro (2012), Lockwood and Weinzierl (2016), Hendren (2020)
 - + Pareto weights such that calibrated 1950 tax system is optimal
 - Optimal taxes with growth of 2010
 - + Decomposition into effects of marginal utilities, income effects, and the hours distribution

lacktriangle Optimal 1950 transfers: T/Y=1.2%

■ Optimal 1950 transfers: T/Y = 1.2% \Rightarrow With 2010 growth, T/Y = -0.7%

■ With 2010 growth, T/Y = -0.7%

■ With 2010 growth, T/Y = -0.7% \Rightarrow With 1950 marg. u dispersion, T/Y = 2.4%

■ With 2010 growth, T/Y = -0.7% \Rightarrow With 1950 income effects, T/Y = 2.4%

■ With 2010 growth, T/Y = -0.7% \Rightarrow With 1950 hours worked, T/Y = 1.2% (1950 level)

■ Decomposition into effects of marginal utilities, income effects, and the hours distribution

$$\underbrace{1 - \underbrace{\frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \underbrace{\frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}}_{D(\theta^*; \mathcal{T}, \Lambda)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

■ Starting from optimal taxes with growth

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

- Starting from optimal taxes with growth
 - 1. Optimal taxes with $u_e(\cdot)$ computed using p_{1950}

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

- Starting from optimal taxes with growth
 - 1. Optimal taxes with $u_e(\cdot)$ computed using p_{1950}
 - 2. Adding $\eta(\cdot)$ using p_{1950}

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*;\Lambda);\Lambda)}{1 - \mathcal{T}'(y(\theta^*;\Lambda);\Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta;\Lambda);\Lambda) \eta(\theta;\Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*;\mathcal{T},\Lambda)}}_{E(\theta^*;\mathcal{T},\Lambda)} = \underbrace{1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta;\Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta;\Lambda) w(\theta) dF(\theta)}}_{D(\theta^*;\mathcal{T},\Lambda)}$$

- Starting from optimal taxes with growth
 - 1. Optimal taxes with $u_e(\cdot)$ computed using p_{1950}
 - 2. Adding $\eta(\cdot)$ using p_{1950}
 - 3. Adding $n(\cdot)$ using p_{1950}

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*;\Lambda);\Lambda)}{1 - \mathcal{T}'(y(\theta^*;\Lambda);\Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta;\Lambda);\Lambda) \eta(\theta;\Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*;\mathcal{T},\Lambda)}}_{E(\theta^*;\mathcal{T},\Lambda)} = \underbrace{1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta;\Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta;\Lambda) w(\theta) dF(\theta)}}_{D(\theta^*;\mathcal{T},\Lambda)}$$

- Starting from optimal taxes with growth
 - 1. Optimal taxes with $u_e(\cdot)$ computed using p_{1950}
 - 2. Adding $\eta(\cdot)$ using p_{1950}
 - 3. Adding $n(\cdot)$ using p_{1950}
 - \Rightarrow Back to 1950

Optimal Marginal Rates with Growth Utilitarian

■ Optimal 1950 transfers: T/Y = 25.2%

Optimal Marginal Rates with Growth Utilitarian

■ Optimal 1950 transfers: T/Y = 25.2% \Rightarrow With 2010 growth, T/Y = 24.0%

Weights

- More degrees of freedom in finding inverse optimum weights
- Restriction to functional form motivated by instruments: lump sum and progressivity
- Weights as function of percentiles of the expenditure distribution

$$\omega\left(p_i\right) = \mu + p_i(e_i)^{\nu}$$

 $\mu = 0.05, \ \nu = 116.4$

Weights

Optimal Average Rates Mirrlees

■ Growth reduces increase in top-10 minus bottom-10 average rates by almost 30%

Optimal Marginal Rates Mirrlees Utilitarian

■ Optimum in 1950: T/Y = 25.2%

Optimal Marginal Rates Mirrlees Utilitarian

 \blacksquare Optimum in 1950: $T/Y=25.2\%\ \Rightarrow T/Y=29.2\%$ with higher inequality

Optimal Marginal Rates Mirrlees Utilitarian

- Optimum in 1950: T/Y = 25.2% \Rightarrow T/Y = 27.6% with higher inequality and growth
 - Growth reduces increase in T/Y by 39%

Optimal Average Rates Mirrlees Utilitarian

■ Growth reduces increase in top-10 minus bottom-10 average rates by 9%

Optimal Marginal Rates Mirrlees IA Preferences

■ Calibration in 1950: T/Y = 1.1% $\Rightarrow T/Y = 5.6\%$ with higher inequality

Optimal Marginal Rates Mirrlees IA Preferences

- Calibration in 1950: T/Y = 1.1% $\Rightarrow T/Y = 2.0\%$ with higher inequality and growth
 - Growth reduces increase in T/Y by more than 80%

Optimal Average Rates Mirrlees IA Preferences

■ Growth reduces increase in top-10 minus bottom-10 average rates by almost 50%

IA Parameters

$$1 - \eta = \gamma = 0.9$$

■ A-term

$$-\bar{c}_A = 0.03$$
, $\bar{c}_G = 0.00$, $\bar{c}_S = 0.005$

■ B-term

- $-\sigma = 0.001$
- $\omega_A=0.06$, $\omega_G=0.4$, $\omega_S=1-\omega_A-\omega_G$

■ D-term

- $\nu = 15$
- $\iota = 2$
- $-\theta_A = 0.22, \ \theta_G = 0.62, \ \theta_S = 1 \theta_A \theta_G$

References

- Aguiar, Mark and Mark Bils (2015). "Has consumption inequality mirrored income inequality?" The American Economic Review 105.9, pp. 2725–56.
- Alder, Simon, Timo Boppart, and Andreas Müller (2022). "A theory of structural change that can fit the data". American Economic Journal: Macroeconomics 14.2, pp. 160–206.
- Aoki, Shuhei and Makoto Nirei (2017). "Zipf's Law, Pareto's Law, and the Evolution of Top Incomes in the United States". American Economic Journal: Macroeconomics 9.3, pp. 36–71.
- Atkeson, Andrew and Masao Ogaki (1996). "Wealth-varying intertemporal elasticities of substitution: Evidence from panel and aggregate data". Journal of Monetary Economics 38.3, pp. 507–534.
- Attanasio, Orazio P. and Martin Browning (1995). "Consumption over the Life Cycle and over the Business Cycle". The American Economic Review, pp. 1118–1137.
- Attanasio, Orazio P. and Luigi Pistaferri (2014). "Consumption inequality over the last half century: some evidence using the new PSID consumption measure". The American Economic Review 104.5, pp. 122–126.
- Blundell, Richard, Martin Browning, and Costas Meghir (1994). "Consumer demand and the life-cycle allocation of household expenditures". The Review of Economic Studies 61.1, pp. 57–80.

- Bohr, Clement, Marti Mestieri, and Emre Enes Yavuz (2023). "Aggregation and Closed-Form Results for Nonhomothetic CES Preferences". Working Paper.
- Boppart, Timo (2014). "Structural change and the Kaldor facts in a growth model with relative price effects and non-Gorman preferences". Econometrica 82.6, pp. 2167–2196.
- Boppart, Timo and Per Krusell (2020). "Labor supply in the past, present, and future: a balanced-growth perspective". Journal of Political Economy 128.1, pp. 118–157.
- Bourguignon, François and Amedeo Spadaro (2012). "Tax-benefit revealed social preferences". The Journal of Economic Inequality 10.1, pp. 75–108.
- Brinca, Pedro, João B Duarte, Hans Aasnes Holter, and João Henrique Barata Gouveia de Oliveira (2022). "Technological Change and Earnings Inequality in the US: Implications for Optimal Taxation". Working Paper.
- Browning, Martin and Thomas F. Crossley (2000). "Luxuries are easier to postpone: A proof". <u>Journal of Political Economy</u> 108.5, pp. 1022–1026.
- Cioffi, Riccardo A. (2021). "Heterogeneous Risk Exposure and the Dynamics of Wealth Inequality". Working Paper.

- Comin, Diego, Danial Lashkari, and Martí Mestieri (2021). "Structural change with long-run income and price effects". Econometrica 89.1, pp. 311–374.
- Crossley, Thomas F. and Hamish W. Low (2011). "Is the Elasticity of Intertemporal Substitution Constant?" Journal of the European Economic Association 9.1, pp. 87–105.
- Diamond, Peter A. (1998). "Optimal income taxation: an example with a U-shaped pattern of optimal marginal tax rates". The American Economic Review, pp. 83–95.
- Diamond, Peter A. and Emmanuel Saez (2011). "The case for a progressive tax: From basic research to policy recommendation". Journal of Economic Perspectives 25.4, pp. 165–190.
- Fagereng, Andreas, Martin B. Holm, and Gisle J. Natvik (2021). "MPC heterogeneity and household balance sheets". American Economic Journal: Macroeconomics 13.4, pp. 1–54.
- Ferriere, Axelle, Philipp Grübener, Gaston Navarro, and Oliko Vardishvili (2023). "On the Optimal Design of Transfers and Income Tax Progressivity". Journal of Political Economy Macroeconomics 1.2, pp. 276–333.
- Geary, Roy C. (1950). "A note on A constant-utility index of the cost of living". The Review of Economic Studies 18.1, pp. 65–66.

- Golosov, Mikhail, Michael Graber, Magne Mogstad, and David Novgorodsky (2023). "How Americans respond to idiosyncratic and exogenous changes in household wealth and unearned income". Forthcoming in the Quarterly Journal of Economics.
- Hanoch, Giora (1977). "Risk aversion and consumer preferences". Econometrica, pp. 413-426.
- Heathcote, Jonathan, Fabrizio Perri, and Giovanni L. Violante (2010). "Unequal we stand: An empirical analysis of economic inequality in the United States, 1967–2006". Review of Economic Dynamics 13.1, pp. 15–51.
- Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L. Violante (2017). "Optimal tax progressivity: An analytical framework". The Quarterly Journal of Economics 132.4, pp. 1693–1754.
- (2020). "Presidential Address 2019: How Should Tax Progressivity Respond to Rising Income Inequality?"
 Journal of the European Economic Association 18.6, pp. 2715–2754.
- Heathcote, Jonathan and Hitoshi Tsujiyama (2021). "Optimal income taxation: Mirrlees meets Ramsey". Journal of Political Economy 129.11, pp. 3141–3184.
- Hendren, Nathaniel (2020). "Measuring economic efficiency using inverse-optimum weights". <u>Journal of Public Economics</u> 187, p. 104198.

- Herrendorf, Berthold, Richard Rogerson, and Akos Valentinyi (2013). "Two perspectives on preferences and structural transformation". The American Economic Review 103.7, pp. 2752–2789.
- (2014). "Growth and structural transformation". Handbook of Economic Growth. Vol. 2. Elsevier, pp. 855-941.
- Jaravel, Xavier and Alan Olivi (2022). "Prices, Non-homotheticities, and Optimal Taxation". Working Paper.
- Johnson, David S., Jonathan A. Parker, and Nicholas S. Souleles (2006). "Household expenditure and the income tax rebates of 2001". The American Economic Review 96.5, pp. 1589–1610.
- Kaplan, Greg and Giovanni L. Violante (2022). "The marginal propensity to consume in heterogeneous agent models". Annual Review of Economics 14, pp. 747–775.
- Kuhn, Moritz, Moritz Schularick, and Ulrike I Steins (2020). "Income and wealth inequality in America, 1949–2016". Journal of Political Economy 128.9, pp. 3469–3519.
- Lockwood, Benjamin B. and Matthew Weinzierl (2016). "Positive and normative judgments implicit in US tax policy, and the costs of unequal growth and recessions". <u>Journal of Monetary Economics</u> 77, pp. 30–47.
- Mankiw, N. Gregory, Matthew Weinzierl, and Danny Yagan (2009). "Optimal taxation in theory and practice". Journal of Economic Perspectives 23.4, pp. 147–74.

- Mantovani, Cristiano (2022). "Hours-Biased Technological Change". Working Paper.
- Meeuwis, Maarten (2022). "Wealth fluctuations and risk preferences: Evidence from US investor portfolios". Working Paper.
- Mertens, Karel and José Luis Montiel Olea (2018). "Marginal tax rates and income: New time series evidence". The Quarterly Journal of Economics 133.4, pp. 1803–1884.
- Mirrlees, James A. (1971). "An exploration in the theory of optimum income taxation". The Review of Economic Studies 38.2, pp. 175–208.
- Ogaki, Masao and Qiang Zhang (2001). "Decreasing relative risk aversion and tests of risk sharing". Econometrica 69.2, pp. 515–526.
- Oni, Mehedi Hasan (2023). "Progressive income taxation and consumption baskets of rich and poor". Journal of Economic Dynamics and Control 157, p. 104758.
- Piketty, Thomas and Emmanuel Saez (2003). "Income inequality in the United States, 1913–1998". The Quarterly Journal of Economics 118.1, pp. 1–41.
- Piketty, Thomas and Gabriel Zucman (2014). "Capital is back: Wealth-income ratios in rich countries 1700–2010". The Quarterly Journal of Economics 129.3, pp. 1255–1310.

- Ramey, Valerie A. and Neville Francis (2009). "A century of work and leisure". American Economic Journal: Macroeconomics 1.2, pp. 189–224.
- Ramsey, Frank P. (1927). "A Contribution to the Theory of Taxation". The Economic Journal 37.145, pp. 47-61.
- Ruggles, Steven, Sarah Flood, Ronald Goeken, Megan Schouweiler, and Matthew Sobek (2022). "IPUMS USA: Version 12.0 [dataset]. Minneapolis, MN: IPUMS, 2022". Dataset.
- Saez, Emmanuel (2001). "Using elasticities to derive optimal income tax rates". The Review of Economic Studies 68.1, pp. 205–229.
- Scheuer, Florian and Iván Werning (2017). "The Taxation of Superstars". The Quarterly Journal of Economics 132.1, pp. 211–270.
- Stiglitz, Joseph E. (1969). "Behavior towards risk with many commodities". Econometrica, pp. 660-667.
- Straub, Ludwig (2019). "Consumption, Savings, and the Distribution of Permanent Income". Working Paper.
- Toda, Alexis Akira and Kieran Walsh (2015). "The double power law in consumption and implications for testing Euler equations". Journal of Political Economy 123.5, pp. 1177–1200.

- Wachter, Jessica A. and Motohiro Yogo (2010). "Why do household portfolio shares rise in wealth?" The Review of Financial Studies 23.11, pp. 3929–3965.
- Werning, Ivan (2007). "Optimal fiscal policy with redistribution". The Quarterly Journal of Economics 122.3, pp. 925-967.
- Zhang, Qiang and Masao Ogaki (2004). "Decreasing relative risk aversion, risk sharing, and the permanent income hypothesis". Journal of Business & Economic Statistics 22.4, pp. 421–430.