

Pflanzen als Indikatoren für Stadtklima und Lufthygiene

Sen Sun 孙森

Angewandte Stadtökologie (Sose 2013)

Dozent: Prof. Dr. Alexander Siegmund

Geographisches Institut, Universität Heidelberg

❖ Inhalt

- 1. Einführung & Begrifflichkeiten
- 2. Flechten und Moose
- 3. Anwendungsbeispiele
 - Flechtenkartierung
 - Schwermetallakkumulation
 - Phänologische Untersuchung
- 4. Richtlinie
- 5. Vorteile und Nachteile der Bioindikation
- 6. Zusammenfassung

Einführung - Bioindikation

1. Einführung und Begriffe

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

❖ Begrifflichkeiten

1. Einführung und Begriffe

- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- Bioindikation: qualitativ
- Biomonitoring: quantitativ, zeitliche Wiederholung

❖ Begrifflichkeiten

1. Einführung und Begriffe

- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- Reaktive Indikatoren: Schadstoffe verändern die Lebensfunktionen der Indikatoren
- Akkumulative Indikatoren: Schadstoffe werden von den Indikatoren angereichert, ohne die zu beschädigen

Ob ein Indikator reaktiv oder akkumulativ ist, kommt auch auf die Nutzung von Seiten des Menschen an.

Begrifflichkeiten

1. Einführung und Begriffe

- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- Passive Ansätze: Indikatoren sind vorhandene
 Pflanzen im Untersuchungsgebiet
- Aktive Ansätze: Indikatoren werden bestimmten Umweltbedingungen exponiert.

Passive Ansätze erlauben retrospektive Analysen für eine längere Zeitperiode.

Bei aktiven Ansätzen werden nur die Umweltverhältnisse in der Expositionszeit widergespiegelt.

Flechten – Was sind sie?

1. Einführung und Begriffe

2. Flechten und Moose

- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- Symbiose aus einer Pilz- und einer Algenart
- Größe: Pilze viel größer als Algen
- Arbeitsaufteilung:

Pilz: Schutz vor starker Sonnenstrahlung, Wasseraufnahme

Alge: Nährstoffproduktion

Bildquelle: http://upload.wikimedia.org/wikipedia/commons/e/ed/File-Meyers_b6_s0351a.jpg

❖ Flechten – geringe Wachstumsrate

1. Einführung und Begriffe

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

Bildquelle:Wirth, V. (2002). *Indikator Flechte: Naturschutz aus der Flechten-Perspektive.*

❖ Flechten – Unterteilung nach Substrat

- 1. Einführung und Begriffe
- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- epiphytische (borkenbewohnende) Flechten
- epilithische (mauer- bzw. felsbewohnende) Flechten
- epigäische (erdbewohnende) Flechten

Als passive Bioindikatoren werden fast nur epiphytische Flechten verwendet.

- einfacher zu finden
- weniger Einfluss aus dem Substrat

Bildquelle:Wirth, V. (2002). Indikator Flechte: Naturschutz aus der Flechten-Perspektive.

❖ Flechten – Unterteilung nach Wuchsform

1. Einführung und Begriffe

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

Krustenflechten

Blattflechten

Strauchflechten

Bildquelle: Wirth, V., & Düll, R. (Eds.). (2000). Farbatlas Flechten und Moose. Stuttgart: Ulmer.

Moose

- 1. Einführung und Begriffe
- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- Wasser- und Nährstoffaufnahme durch die Oberfläche
- höhere Anforderungen an Feuchtigkeit als Flechten
- 3 Moosarten kommen oft in der Stadt vor:

Ceratodon purpureus

Brachythecium rutabulum

Bildquelle: Wirth, V., & Düll, R. (Eds.). (2000). Farbatlas Flechten und Moose. Stuttgart: Ulmer.

❖ Flechtenkartierung nach VDI Richtlinie 3799, Blatt 1 (1987)

Die Vielzahl epiphytischer Flechten hängt mit Luftbelastungen zusammen.

1. Einführung und Begriffe

Ablauf:

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

- Vorbereitung des Messnetz
- Auswahl der Trägerbäume
- Flechtenaufnahme
- Auswertung

6 Bäume	Meß- fläche	
Libera	ans mode	/anas

Bildquelle: Kirschbaum, U., & Wirth, V. (1997). Flechten erkennen, Luftgüte bestimmen: 6 Tabellen (2., verb. Aufl. ed.). Stuttgart (Hohenheim): Ulmer.

❖ Flechtenkartierung nach VDI Richtlinie 3799, Blatt 1

- 1. Einführung und Begriffe
- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- Ergebnis: Luftgütewert
- Negative Korrelation mit Luftbelastung

Flechtenart	Frequenz der Flechte an Baum Nr.					mittlere	
	1	2	3	4	5	6	Frequent der Art
(Lecanora conizaeoides	9	8	8	10	9	10	9,0)
Lepraria incana	3		4	4	2	1	2,3
Buellia punctata	1	3	4	_	2	-	1,7
Physcia tenella	<u> </u>	2	<u> </u>	1	1	1	0,8
		<u> </u>	I	uftgüte	wert (LGW):	4,8

Bildquelle: Kirschbaum, U., & Wirth, V. (1997). Flechten erkennen, Luftgüte bestimmen: 6 Tabellen (2., verb. Aufl. ed.). Stuttgart (Hohenheim): Ulmer.

❖ Flechtenkartierung nach VDI Richtlinie 3799, Blatt 1

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

Bildquelle: Kirschbaum, U., & Wirth, V. (1997). Flechten erkennen, Luftgüte bestimmen: 6 Tabellen (2., verb. Aufl. ed.). Stuttgart (Hohenheim): Ulmer.

❖ Flechtenkartierung nach VDI Richtlinie 3799, Blatt 1

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

Bildquelle: http://www.umwel twirkungen.de/ima ges/lgw-hd-2002.jpg.

Veränderungen der Luftschadstoffe

1. Einführung und Begriffe

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

Quelle: Umweltbundesamt, Nationale Trendtabellen für die deutsche Berichterstattung atmosphärischer Emissionen seit 1990 (Stand: 15. April 2012) http://www.umweltbundesamt.de/emissionen/publikationen.htm

❖ Flechtenkartierung nach VDI Richtlinie 3957, Blatt 13 (2005)

- 1. Einführung und Begriffe
- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- Grund für die Überarbeitung: immer steigender Einfluss eutrophierender Schadstoffe (Stickstoffverbindungen)
- Nitrophytische Flechten werden getrennt aufgenommen und bewertet.

❖ Moose und Schwermetallakkumulation

- 1. Einführung und Begriffe
- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- Hohe Ionenaustauschkapazität
- Seit 1990 wird in Europa alle 5 Jahre ein Moosmonitoring durchgeführt
- Deutschland: 1990, 1995, 2000, 2005

Moose und Schwermetallakkumulation

1. Einführung und Begriffe

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

Quelle: Schröder, W., Pesch, R., Matter, Y., Göritz, A., Genßler, L., & Dieffenbach-Fries, H. (2009). Trend der Schwermetall-Bioakkumulation 1990 bis 2005: Qualitätssicherung bei Probenahme, Analytik, geostatistischer Auswertung. *Umweltwissenschaften und Schadstoff-Forschung, 21*(6), 549-574.

Einzelne Metalle: http://gis.uba.de/website/web/moos/karten/kartendienst.htm

Moose und Schwermetallakkumulation

1. Einführung und Begriffe

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

Ergebnisse:

- Rückgang im Allgemeinen
- Zunahme einzelner Metalle
- Hotspots: Ruhrgebiet, Rhein-Main-Gebiet, neue Bundesländer

Bildquelle: http://gis.uba.de/website/web/moos/karten/gesamt%C3%BCberblick/Flaechetrend Cr.jpg

❖ Bioindikation für Stadtklima

- 1. Einführung und Begriffe
- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- Stadtklima: wärmer
- Begünstigung für wärmeliebende Pflanzenarten
- Verfrühung der Blüten- und Blattentfaltungszeit
- Phänologie: jährlich wiederkehrende Termine in der Natur

❖ Phänologische Untersuchung – Beispiel Berlin und Brandenburg

1. Einführung und Begriffe

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

Forsythie Blüte (März)

Sommer-linde
Blattentfaltung (April)

Rosskastanie

Knospenaufbruch (März) Blattentfaltung (April) Blüte (Mai)

Apfel Blüte (April)

Hänge-Birke
Blattentfaltung (April)
Blüte (April)

Gemeiner Flieder Blüte (Mai)

Löwenzahn Blüte (April)

GötterbaumBlattentfaltung(Mai)

Bildquelle: Wikipedia & www.duden.de

❖ Phänologische Untersuchung – Beispiel Berlin und Brandenburg

1. Einführung und Begriffe

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

Ergebnisse:

 Differenz im Durchschnitt:
 3 Tage (Berlin gegenüber Brandenburg)

Größte Differenz:
 Knospenausbruch der
 Rosskastanie (7,1 Tage)

Geringe Differenzen:

 Blühbeginn des Apfels,
 Blattentfaltung der
 Hängebirke

Abb. Knospenausbruchszeit der Rosskastanie

Bildquelle:Henniges, Y., & Chmielewski, F.-M. (2007). Stadt-Umland-Gradienten phänologischer Phasen im Raum Berlin 2006. Berlin: Bibliothek der Berlin-Brandenburgischen Akademie der Wissenschaften.

❖ Richtlinien für Bioindikation

- 1. Einführung und Begriffe
- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- VDI Richtlinie 3957 (seit 2005)
- Ziel: räumliche und zeitliche Vergleichbarkeit

Tabelle Aktuelle Richtlinie (inkomplett)

Nummer	Titel	Ausgabedatum
Blatt 5	- Das Fichten-Expositionsverfahren	2001-12
Blatt 13	 - Kartierung der Diversität epiphytischer Flechten als Indikator für Luftgüte 	2005-12
Blatt 12	- Kartierung der Diversität epiphytischer Moose als Indikator für die Luftqualität	2006-07
Blatt 3	- Verfahren der standardisierten Exposition von Grünkohl	2008-12
Blatt 17	- Aktives Monitoring der Schwermetallbelastung mit Torfmoosen (Sphagnum-bag-technique)	2009-07
Blatt 19	- Nachweis von regionalen Stickstoffdepositionen mit den Laubmoosen Scleropodium purum und Pleurozium schreberi	2009-12

Quelle: http://www.vdi.de/technik/richtlinien

Luftmessstationen

1. Einführung und Begriffe

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

❖ Vor- und Nachteile der Bioindikation

1. Einführung und Begriffe

2. Flechten und Moose

3. Anwendungsbeispiele

4. Richtlinien

5. Vor- und Nachteile

6. Zusammenfassung

Vorteile:

- Flächendeckende Analyse
- Weiteres Schadstoffspektrum
- Emission-Transmission-Immission-Wirkung

• •

Nachteile:

- Geringere Genauigkeit
- Spezielles Know-how erforderlich

• • •

Abb. Luftmessnetz in Baden-Württemberg

Bildquelle: http://mnz.lubw.baden-wuerttemberg.de/messwerte/langzeit/images/mp akt index.jpg

Zusammenfassung

- 1. Einführung und Begriffe
- 2. Flechten und Moose
- 3. Anwendungsbeispiele
- 4. Richtlinien
- 5. Vor- und Nachteile
- 6. Zusammenfassung

- Bioindikatoren können auf bestimmte Umweltveränderungen reagieren oder die Schadstoffe anreichern.
- Am häufigsten werden Flechten und Moose als Indikatoren eingesetzt, aber auch höhere Pflanzen finden ihre Anwendung.
- Eine Kombination von Bioindikation und anderen Messmethoden kann zu einem besseren Verständnis der Ursachenkette Emission-Transmission-Immission-Wirkung beitragen.

Empfehlenswerte Literatur

Arndt, U., Nobel, W., & Schweizer, B. (1987). *Bioindikatoren : Möglichkeiten, Grenzen u. neue Erkenntnisse ; 102 Tab.* Stuttgart: Ulmer.

Zierdt, M. (1997). *Umweltmonitoring mit natürlichen Indikatoren : Pflanzen, Boden, Wasser, Luft ; mit 25 Tab.* Berlin ; Heidelberg [u.a.]: Springer.

Wirth, V., & Düll, R. (Eds.). (2000). Farbatlas Flechten und Moose. Stuttgart: Ulmer.

