TP # 19 - Etude du fonctionnement d'une pile, réaction d'oxydoréduction

1

2 Etude d'une pile Fer-Cuivre

FIGURE 1 – Etude d'une pile Fer-Cuivre

Pont salin : papier imbibé d'eau salé (= jonction électrochimique)

Réactifs : $Fe + Cu^{2+}$

Produits : Cu

Equation de réaction : $Cu^{2+} + Fe \rightarrow Cu + Fe^{2+}$

Il y a eu échange d'électrons lors de cette réaction entre Fe et Cu^{2+} par contact direct.

Or dans la pile la même réaction a lieu mais les réactifs n sont pas en contact.

Les électrons circulent via les fils électriques (d'où le courant).

Demi-équations:

- A l'électrode de $Fe: Fe = Fe^{2+} + 2e^{-}$
- A l'électrode de $Cu: Cu^{2+} + 2e^{-} = Cu$

Equation globale : $Fe_{(s)} + Cu_{(aq)}^{2+} \to Cu_{(s)} + Fe_{(aq)}^{2+}$

- Au pôle : une réaction produit des électrons
- Au pôle + : une réaction consomme des électrons

Circulation des ions dans le pont salin

Dans le compartiment de cuivre :

- La lame de cuivre reçoit des électrons
- Les électrons sont consommés par les ions Cu^{2+} et se transforment en atomes Cu
- Disparition d'ions Cu^{2+} . La solution n'est donc plus neutre (elle est négative). => Pour que la solution reste neutre, il faut que des cathions Na^{+} se déplacent vers la solution. D'où le sens de circulation des ions Na^{+} .

Pour le fer:

- La lame donne des électrons
- Des électrons de Fe se transforment en ions Fe^{2+}
- Augmentation du nombre de cathions => Pour que la solution reste neutre, il faut que des anions Cl^- se déplacent vers la solution.

3 Les réactions d'oxydoréduction

Apprendre par coeur les définitions!

$$Ox + ne^- = Red$$

L'ion Cu^{2+} (oxydant) GAGNE $2e^-$ et se transforme en Cu (réducteur). L'oxydant de la pile est l'ion Cu^{2+} .

FIGURE 2 – Les réactions d'oxydoréduction

Le fer (réducteur) PERD $2e^-$ et se trandforme en Fe^{2+} (oxydant). Le réducteur de la pile est l'atome de Fe.

NB: l'oxydant et le réducteur de la réaction font partie des réactifs.

L'ion Cu^{2+} subit une réduction.

L'atome de Fe subit une oxydation.

En chimie : conjugué synonyme d'associé. Ex de couples :

- Fe^{2+} / Fe
- Fe^{3+} / Fe^{2+}
- $-Cu^{2+}/Cu$
- Oxydant / réducteur

Etablir une équation d'oxydoréduction

 MnO_4^- et Fe^{2+}

Couples:

- $-MnO_4^- / Mn^{2+}$ $-Fe^{3+} / Fe^{2+}$

Demi-équations :

 $-8H^{+} + MnO_{4_{(aq)}}^{-} + 5e^{-} = Mn_{(aq)}^{2+} + 4H_{2}O$ (les ions sont en solution aqueuse \rightarrow on peut équilibrer l'équation avec de l'eau et des ions H+, présents naturellement)