High Dynamic Range Imaging EPL 656

Digital Cameras

- High quality cameras today: DSLR (digital single lens reflex)
- Light enters though the lens and passes through a hole called aperture
- Mechanical shutter opens to let the light in
- Light is recorded on the image sensor
- Sensor value proportional to
 - How long the shutter stayed open (exposure time)
 - How open was the aperture (aperture value)

Exposure

We can achieve similar results using aperture control

Hubble Telescope

Exposure time: 96 hours!

Camera Sensor Capabilities

- JPEG images: 24 bits per pixel
 - 8 bit per color channel (red-green-blue)
 - Pixel values: 0-255 for each color
- Camera sensor: 48 bits per pixel
 - Stored as RAW images
 - Actual range 0-10000 ~ per channel
 - Photographers work on these images
- Real World:
 - 0-1000000000
 - High dynamic Range (HDR)
 - How do we capture this?

Low Dynamic Range

High Dynamic range

Merging LDR Images

- Main idea:
 - No exposure/aperture setting can capture full dynamic range
 - Capture multiple images at different settings and merge them
- Keep aperture constant
 - Aperture affects depth of field
 - Hard to merge images if focus point is different
 - Change only exposure time
- Need to be able to compare pixel values taken at different exposures
 - The following is true for DSLR cameras:
 - Pixel value = (incoming light) * (camera function) * (exposure time)
 - For RAW images the camera function is a constant and can be ignored
 - This relation allows us to compare pixel values taken at different exposures

HDR Creation

- Simple method: Select the best exposure for each pixel
 - For each pixel location x,y get pixel values from all LDR images
 - Select the one closest to the middle of the allowed range
 - For 8-bit(0-255) images: 127
 - Divide by exposure time (this increases the dynamic range!)
- Works but its prone to noise

HDR Creation

- Debevec Method:
 - For each pixel x,y:
 - Loop over all LDR images and get pixel x,y
 - Weight pixels using a weighting function
 - Same idea as before
 - Saturated pixels get smaller weights
 - Multiply by weight and divide by exposure value
 - Weighted pixel =
 pixel*weight/exposure
 - Average all pixels together
- Handles noise better because of the averaging

