# Boeing X-37: Beyond The Blue

Justin T. Millsap

ARO 3111 – Gas Dynamics & Highspeed Aerodynamics – Section 2

March 12<sup>th</sup> , 2024

# Need for the Boeing X-37

#### What is the need for the Boeing X-37?

- Space Experimentation
  - Conduct Experiments in space over long periods of time.
- Satellite Deployment and repair.
- Military and National Security Applications.
- Expand the United States Space Force's knowledge of the space environment

#### **Current Models:**

- X-37A: Used by NASA and DARPA
- X-37B: Used by United States Space Force

#### **Derived from the Boeing X-40**





# Boeing X-37 Configuration

- 8.9 meters long, 2.9 meters tall, and has a wingspan of 4.5 meters
- 4,990 Kilograms
- Two swept wings
- Tail Fins
- Landing Gear



### "Highspeed" Aerodynamic/Propulsion design attributes

#### Aerodynamic Attributes:

#### Lifting Body Design:

- Allows for longer glide times for re-entry
- Improved stability and Control

#### Swept wings:

- Ideal for high-speed stability and control

#### Tail Fins:

- Provide stability and control in the atmosphere during ascent and re-entry phase

Generates bowshock waves during re-entry

#### Propulsion System:

Aerojet AR2-3 engine:

- 700N of thrust
- Delta-V of 3.1 km/s
- Isp ~ 280s







# Desing and Manufacturing

Company:

NASA 1999 – 2004

Department of Defense (DoD) 2004 - Present

• Initial Development: 1999

• Number Produced: 2

• Unit Cost: \$173 Million



## Impact of the Boeing X-37

| Flight | Launch<br>Site    | Launch<br>Date       | Landing<br>Date      | Launcher        | Duration | Status  |
|--------|-------------------|----------------------|----------------------|-----------------|----------|---------|
| OTV-1  | Cape<br>Canaveral | April 22,<br>2010    | December<br>3, 2010  | Atlas V 501     | 224 Days | SUCCESS |
| OTV-2  |                   | March 5,<br>2011     | June 6,<br>2012      |                 | 468 Days |         |
| OTV-3  |                   | December<br>11, 2012 | October<br>17, 2014  |                 | 674 Days |         |
| OTV-4  |                   | May 20,<br>2015      | May 7,<br>2017       |                 | 717 Days |         |
| OTV-5  | KSC               | September 7, 2017    | October<br>27, 2019  | Falcon 9        | 779 Days |         |
| OTV-6  | Cape<br>Canaveral | May 17,<br>2020      | November<br>12, 2022 | Atlas V 501     | 908 Days |         |
| OTV-7  | KSC               | December<br>29, 2023 | N/A                  | Falcon<br>Heavy | 74 days  | ONGOING |



#### Impact on Future designs:

- Space vehicle reusability
- Rapid Responsive Space
   Observations
- Various materials which can withstand high temperatures
- Propulsion technology