gllvm 2.0: Fast fitting of advanced ordination methods and joint species distribution models

Pekka Korhonen

Brief intro to gllvm

What?

- R package for joint species distribution modeling, employing generalized linear latent variable models (GLLVM)
- Emphasis on model-based ordination and co-occurence
- Fast estimation based on approximate marginal likelihood

When?

- Initial version accompanied Niku et al. (2017)
- First article dedicated on the software in Niku et al. (2019)
- Lots of functionalities added since then

Installing the gllvm package

The CRAN version of the package can be installed using:

```
1 install.packages("gllvm")
```

For the more up to date, developmental version, instead use:

```
1 devtools::install_github("JenniNiku/gllvm")
```

Abundance/community data

Example datasets included in gllvm:

```
1 data("beetle")
    head(beetle$Y, c(5,8))
     agonfuli agonmuel amaraene amarapri amarauli amarbifo amarcomm amareury
gs21
                    51
                              25
gs22
                    59
eg11
eg12
                                        0
eg13
                    29
    data("kelpforest")
    head(kelpforest$Y, c(5,15))
                                            AU BA BAEL BCAL
                                                                 BF BLD
  AB
    AL AMZO
               ANSP AR ARUD
                                 AS ATM
                                                                            BN
      0
           0 0.0125
                          0 0.1125
                                      0 0.0125
                                                           0.0000
                                                                      0 0.0125
```

```
0.0000
            0.0000
                     0.0000
                                      0 0.0125
                                               0.0000
0.0000
            0 0.0750
                    0.0000
                                      0.0000
                                               0.0000
                     0.0000
                                      0 0.0125
0.0000
            0 0.0125
                                               0.0000
0.0000
            0.0000
                     0.0000
                                      0.0000
                                               0.0000
```

"Standard" GLLVM¹

Let y_{ij} denote the record for response (species, OTUs, etc.) $j=1,\ldots,m$, recorded at sample $i=1,\ldots,n$, e.g., study sites. Additionally, we may have records for environmental variables $\boldsymbol{x}_i=(x_{i1},\ldots,x_{ik})^{\top}$ for each sample.

In a GLLVM, the mean $\mathbb{E}[y_{ij}]=\mu_{ij}$ is regressed against $m{x}_i$ and a set of d latent variables $m{u}_i=(u_{i1},\ldots,u_{id})^ op$ via:

$$g(\mu_{ij}) = \eta_{ij} = lpha_i + eta_{0j} + oldsymbol{x}_i^ op oldsymbol{eta}_j + oldsymbol{u}_i^ op oldsymbol{\gamma}_j,$$

for each pair i, j.

$$g(\mu_{ij}) = \eta_{ij} = lpha_i + eta_{0j} + oldsymbol{x}_i^ op oldsymbol{eta}_j + oldsymbol{u}_i^ op oldsymbol{\gamma}_j$$

- $g(\cdot)$ is a link function, e.g., logit, probit
- α_i is a row/sample effect (fixed or random)
- β_{0j} , β_j are species-specific regression coefficients
- $oldsymbol{\cdot} oldsymbol{u}_i \sim \mathcal{N}_d(oldsymbol{0}, oldsymbol{\mathcal{I}})$ i.i.d.
- $oldsymbol{\gamma}_j = (\gamma_{j1}, \dots, \gamma_{jd})^ op$ are LV loadings

Furthermore, in a fouth-corner GLLVM:

$$oldsymbol{eta}_j = oldsymbol{eta}_e + oldsymbol{B}_{et} oldsymbol{t}_j + oldsymbol{b}_j$$

Ordination and interspecies correlations

- With the choice d=2, GLLVMs can be used for unconstrained (or residual) ordination of observations/samples, by plotting the predicted LV scores $\boldsymbol{u}_i=(u_{i1},u_{i2})^{\top}$. Additionally, biplots displaying also the effects of species can be constructed easily.
- Co-occurance patterns between species can be inspected via the residual correlation matrix $\mathbf{\Sigma} = \mathbf{\Lambda} \mathbf{\Lambda}^{\top}$, where $\mathbf{\Lambda} = [\boldsymbol{\gamma}_1 \dots \boldsymbol{\gamma}_m]^{\top}$ holds the species' loadings.

```
1 m0 = gllvm(beetle$Y, num.lv=2, family="negative.binomial")
2 ordiplot(m0, symbols = TRUE, s.colors=beetle$X$Area, pch=19, jitter=TRUE)
```

Ordination (type='residual')

1 cr = getResidualCor(m0); library(corrplot)
2 corrplot(cr, diag=FALSE, type="lower", tl.cex=0.4, order="AOE", tl.srt=45)

gllvm 2.0: original featureset (left) vs. newer additions (right)

Model type	Linear, i.i.d. LVs; Fourth-corner GLLVM	Correlated LVs; Quadratic LVs; Informed LVs; (Phylogenetic) REs; Reduced-rank regression
Response type	Presence-absence; (Overdispersed) counts; Ordinal; (Non-negative) continuous	Zero-inflated counts; Positive continuous; Percent cover (with 0% and 100% records)
Community-level row effects	Single fixed/random	Multiple fixed/random; Correlated/structured effects
Ordination analysis	Unconstrained; Residual	Constrained; Concurrent
Species association	Residual correlation	Environmental correlation
Inference	Analysis of deviance; CIs for parameters	Fixed-effects covariances; Prediction intervals; Missing data (MAR)
Visualization	Ordination (bi-)plots; Estimated fixed effects	Uncertainty in ordination; Predicted random effects; Variance partitioning plot
Model fitting methods	Laplace approximation; Variational approximations	Extended VA; Parallel computation

Examples

SBC LTER kelp forest data ¹

- ullet Comprises of percent cover records of m=130 species of macroalgae and sessile invertebrates
- Collected between 2000–2020 along 44 permanent transects across 11 observational sites
 - Some of the sites were located on islands, others on coast
- Around 88% of the covers were recorded as zeros
- Seabed rockiness and giant kelp frond density were also considered as environmental covariates

Structured row effects and LVs

To accommodate the hierarchical study design in the SBC LTER dataset, the row.eff argument now accepts formulas, e.g.:

```
1 gllvm(y=Y, X=X, family="orderedBeta", row.eff=~(1|SITE/TRANSECT) + YEAR,
2 studyDesign=Z[,c("SITE","TRANSECT","YEAR")])
```

which would fit a model with a fixed effect corresponding to sampling year, and a random effect for each transect nested within the observation sites. Similarly, for LVs, e.g.:

with other options including corExp, corMatern, and corCS.

The functions varPartitioning and plotVP are useful for models with (nested) row effects, LVs, and covariate effects:

Variance Partitioning

Phylogenetic random effect model

If the data include functional traits for the species, a fourthcorner GLLVM

$$oldsymbol{eta}_j = oldsymbol{eta}_e + oldsymbol{B}_{et} oldsymbol{t}_j + oldsymbol{b}_j$$

can be fitted with

In the standard case, b_j are independent for $j=1,\ldots,m$. This can be relaxed if phylogenetic information is available.

Assuming a phylogenetic covariance matrix C, in a phylogenetic GLLVM¹, for covariate $l=1,\ldots,k$, we have

$$(b_{1l},\dots,b_{ml})^ op \sim \mathcal{N}_m\left(oldsymbol{0},\sigma_l^2[oldsymbol{C}
ho_l+(1-
ho_l)oldsymbol{\mathcal{I}}]
ight),$$

where $ho_l \in [0,1]$ is the *phylogenetic signal parameter*, which can also be shared between the covariates in $m{X}$, i.e., $ho_l =
ho$ for each $l=1,\ldots,k$.

As such a model can be very demanding computationally, w.r.t. m, in gllvm we have adopted the nearest neighbour Gaussian process appoximation of Datta et al. (2016).

Model fitting and visualization

Phylogenetic random effect model can then be fitted with:

Signal parameter common to all covariates can be specified instead with the argument colMat.rho.struct="single"

Results, together with the phylogenetic tree (constructed with the ape package), can be visualized with:

```
1 phyloplot(ftPhylo, tree)
```

phyloplot

Scottish ground beetle dataset¹

- ullet Counts from m=68 species of beetles, on n=87 sites
- ullet Notably, the data include k=17 primary covariates
 - Among them, e.g.; organic content, soil pH, moisture, canopy height, stem density, biomass, elevation, etc.
 - In a typical GLM, $\eta_{ij}=eta_{0j}+m{x}_i^{ op}m{eta}_j$, this would mean 1224 regression parameters
- Risks of overfitting can be alleviated via reduced-rank regression, or *constrained ordination*

Constrained ordination / RRR

Let \boldsymbol{B} denote a $k \times d$ matrix of canonical coefficients. Then, we impose the following structure for the coefficients $\boldsymbol{\beta}_i$:

$$oldsymbol{eta}_j = oldsymbol{B}oldsymbol{\gamma}_j \implies \eta_{ij} = eta_{0j} + oldsymbol{x}_i^ op oldsymbol{B}oldsymbol{\gamma}_j.$$

Alternatively, the resulting model can be seen as a GLLVM with latent variables in the from of

$$oldsymbol{u}_i = oldsymbol{B}^ op oldsymbol{x}_i.$$

Note, that $oldsymbol{B}$ can be formulated as either fixed or random.

```
1 ftConstOrd = gllvm(y=beetle, X=X, family="negative.binomial", num.RR=2)
2 # 'randomB' argument could be used here to specify B as random
3 par(mfrow=c(1,2))
4 ordiplot(ftConstOrd, symbols=TRUE)
5 plot(summary(ftConstOrd), cex.axis=.75, main="Summary plot")
```


Concurrent ordination¹

When $\boldsymbol{u}_i = \boldsymbol{B}^{\top} \boldsymbol{x}_i$, the LVs are governed solely by the covariates observed—often unrealistic in practice. An unique advantage of the GLLVM framework is the capacity to incorporate "residual" LVs:

$$oldsymbol{\eta}_{ij} = eta_{0j} + oldsymbol{x}_i^ op oldsymbol{B} oldsymbol{\gamma}_j + oldsymbol{\epsilon}_i^ op oldsymbol{\gamma}_j,$$

where $m{\epsilon}_i \sim \mathcal{N}(\mathbf{0}, m{\Sigma})$ and $m{\Sigma} = \mathrm{diag}(m{\sigma}^2)$.

This specification allows for simultaneous unconstrained and constrained ordination, hence, *concurrent* ordination.

- 1 ftConcOrd = gllvm(y=beetle, X=X, family="ZINB", num.lv.c=2, n.init=5)
- 2 ordiplot(ftConcOrd, symbols=TRUE, biplot=TRUE)

Ordination (type='conditional')

Future outlook

- Polya-Gamma augmentation for logistic models¹
- Faster estimation for spatially (and spatio-temporally) correlated LVs utilizing e.g., NNGPs, SPDEs, etc.
- More processes for trait evolution in the phylogenetic model
- Mixed response types, distributions for compositional data
- Further parallelization, e.g., GPU-based computing
- Regularization, stochastic/mini-batch gradient descent

Thank you!

References

- Datta, Abhirup, Sudipto Banerjee, Andrew O. Finley, and Alan E. Gelfand. 2016. "Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets." *Journal of the American Statistical Association* 111 (514): 800–812. https://doi.org/10.1080/01621459.2015.1044091.
- Niku, J., F. K. C. Hui, S. Taskinen, and D. I. Warton. 2019. "Gllvm Fast Analysis of Multivariate Abundance Data with Generalized Linear Latent Variable Models in ." *Methods in Ecology and Evolution* 10 (12): 2173–82.
- Niku, J., D. I. Warton, F. K. C. Hui, and S. Taskinen. 2017. "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology." *Journal of Agricultural, Biological, and Environmental Statistics* 22: 498–522. https://doi.org/10.1007/s13253-017-0304-7.
- Polson, Nicholas G., James G. Scott, and Jesse Windle. 2013. "Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables." *Journal of the American Statistical Association* 108 (504): 1339–49. https://doi.org/10.1080/01621459.2013.829001.
- Reed, Daniel C., and Robert J. Miller. 2023. "SBC LTER: Reef: Kelp Forest Community Dynamics: Cover of Sessile Organisms, Uniform Point Contact. LTER Network

- Member Node." https://doi.org/10.6073/pasta/0af1a5b0d9dde5b4e5915c0012ccf99c.
- Ribera, Ignacio, Sylvain Doledec, Iain S. Downie, and Garth N. Foster. 2001. "Effect of Land Disturbance and Stress on Species Traits of Ground Beetle Assemblages." *Ecology* 82: 1112–29. https://doi.org/10.1890/0012-9658(2001)082[1112:EOLDAS]2.0.CO;2.
- Skrondal, A., and S. Rabe-Hesketh. 2004. *Generalized Latent Variable Modeling:*Multilevel, Longitudinal and Structural Equation Models. Boca Raton: Chapman & Hall.
- van der Veen, Bert, Francis K C Hui, Knut A Hovstad, and Robert B O'Hara. 2023. "Concurrent ordination: Simultaneous unconstrained and constrained latent variable modelling." *Methods in Ecology and Evolution* 14 (2): 683–95.
- van der Veen, Bert, and Robert Brian O'Hara. 2024. "Fast Fitting of Phylogenetic Mixed Effects Models." *arXiv*. https://arxiv.org/abs/2408.05333.