Exercice 7. Soit $T: \mathbb{R}^2 \to \mathbb{R}^2$ une application linéaire telle que $[T]_{BB} = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$, où B dénote la base canonique de \mathbb{R}^2 . Soit C = ((1,1),(-1,1)) une autre base de \mathbb{R}^2 .

- 1) Calculer $[T]_{CC}$ sans calculer les matrices de passage $[id]_{BC}$ et $[id]_{CB}$.
- 2) Calculer $[T]_{CC}$ à l'aide des matrices de passage $[id]_{BC}$ et $[id]_{CB}$.
- 3) Comparer.

Exercice 8. Soit $S: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R}), S(A) = 2A - 3A^T$. Soient

$$B=(\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}1&1\\0&0\end{pmatrix},\begin{pmatrix}1&1\\1&0\end{pmatrix},\begin{pmatrix}1&1\\1&1\end{pmatrix})$$

et

$$C = (\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix})$$

deux bases de $M_{2\times 2}(\mathbb{R})$. Calculer $[S]_{BB}$, $P=[\mathrm{id}]_{BC}$, et $[S]_{CC}$. Vérifier la formule de changement de base.

Exercice 9. Soient $B = (1, 1+x, 1+x+x^2)$ et $C = (2+x, -x+x^2, x^2)$ deux bases de $\mathbb{P}_2(\mathbb{R})$. Soit $T : \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ une application linéaire telle que $[T]_{BB} = \begin{pmatrix} 2 & -1 & 3 \\ 0 & 2 & -2 \\ -1 & 4 & 1 \end{pmatrix}$.

- 1) Soit $[v]_B = (3, -1, 2)^T$. Quel est le polynôme v?
- 2) Que vaut $[T(v)]_B$? Quel est le polynôme T(v)?
- 3) Calculer [id]_{BC}.
- 4) En déduire [id]_{CB}. Que vaut $[v]_C$?
- 5) Utiliser les matrices précédentes pour trouver $[T]_{CC}$. Calculer $[T(v)]_{C}$ de deux manières différentes.

Exercice 10. Soit $A \in M_{2\times 2}(\mathbb{R})$ une matrice fixée. On considère l'application $\alpha: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ définie par $\alpha(M) = A \cdot M$.

- 1) Montrer que α est linéaire.
- 2) Soit $B = (E_{11}, E_{12}, E_{21}, E_{22})$ la base canonique de $M_{2\times 2}(\mathbb{R})$. Déterminer $[\alpha]_{BB}$.
- 3) Soit $C = (E_{21}, E_{22}, E_{11}, E_{12})$. Déterminer $[id]_{CB}$ et $[id]_{BC}$.
- 4) Déterminer $[\alpha]_{CC}$ à l'aide de la formule de changement de base.
- 5) Déterminer directement $[\alpha]_{CC}$.

Exercice 11. Soit $\alpha: \mathbb{P}_3(\mathbb{R}) \to \mathbb{P}_3(\mathbb{R})$ l'application linéaire définie par

$$\alpha(p(t)) = p'(t) + 12 \int_0^1 p(x)dx.$$

Soit $B = (1, t, t^2, t^3)$ la base canonique de $\mathbb{P}_3(\mathbb{R})$.

- a) Déterminer la matrice $[\alpha]_{BB}$. b) Montrer que $C=(1,1+t,2+3t+t^2,(1+t)^3)$ est une base de $\mathbb{P}_3(\mathbb{R})$. c) Déterminer la matrice $[\alpha]_{CC}$ et expliciter la formule de changement de base.