Random Processes

- 1. Consider a random process X(t) defined by $X(t) = U \cos t + V \sin t$, where U and V are independent random variables each of which assumes the values -2 and 1 with probabilities 1/3 and 2/3 respectively. Show that X(t) is wide sense stationary
- 2. Given that the autocorrelation function for a stationary ergodic process with no periodic components is $R(z) = 25 + \frac{4}{1+6z^2}$. Find the mean and variance of the process $\{X(t)\}$.
- 3. Show that the process $X(t) = A \cos \lambda t + B \sin \lambda t$ (where A and B are random variables) is wide sense stationary, if (1) E (A) = E (B) = 0 (2) $E(A^2) = E(B^2)$ and E(AB) = 0
- 4. Consider the random process $X(t) = \cos(\omega_0 t + \theta)$ where θ uniformly distributed in the interval $-\pi$ to π . Check whether X (t) is stationary or not.
- 5. Consider a random process X (t) = B cos (50t + ϕ) where B and ϕ are independent random variables. B is a random variable with mean 0 and variance 1. ϕ is uniformly distributed in the interval [- π , π]. Find mean and autocorrelation of the process.
- 6. Find the mean of the stationary process $\{X(t)\}$ whose auto correlation function is $R(z) = \frac{25z^2 + 36}{6.55z^2 + 4}.$
- 7. Show that the random process X (t) = Acos (θ t + θ) is wide sense stationary if A and θ are constant and is uniformly distributed random variable in (0, 2π).
- 8. The process {X(t)} whose probability distribution under certain condition is given

by
$$P\{X(t) = n\} = \begin{cases} \frac{(at)^{n-1}}{(1+at)^{n+1}} & n = 1,2,.... \\ = \frac{at}{1+at}n = 0 \end{cases}$$
 show that it is not stationary.

- 9. Two random process X (t) and Y (t) are defined by $X(t) = A \cos \theta t + B \sin \theta t$ and $Y(t) = B \cos \theta t A \sin \theta t$. Show that X (t) and Y (t) are jointly wide-sense stationary if A and B are uncorrelated random variables with zero means and the same variables and θ is constant.
- 10. Given a random variable Y with characteristic function $\phi(\theta) = \mathbb{E}[e^{iwy}]$ and a random process defined by $X(t) = \cos(\lambda t + y)$, show that $\{X(t)\}$ is stationary in the wide sense if $\phi(1) = \phi(2) = 0$.
- 11. For the process $\{X(t):t\geq 0\}$, X(t) is given by $X(t)=a\cos wt + b\sin wt$. Here a and b are two independent normal variables with E(a)=E(b)=0 and $Var(a)=Var(b)=\sigma^2$ and $Var(a)=Var(b)=\sigma^2$
- 12. Let X (t) = $\cos \left(\begin{array}{c} t + y \end{array} \right)$ for $t \ge 0$ where $\begin{array}{c} \\ \\ \\ \end{array}$ is a constant. Show that $\{X \ (t)\}$ is stationary in the wide sense if and only if $\phi(1) = 0 = \phi(2)$ where ϕ is the characteristic function of the random variable Y.

- 13. Prove that the random process X (t) and Y (t) defined by $X(t) = A\cos\omega_0 t + B\sin\omega_0 t$, $Y(t) = B\cos\omega_0 t A\sin\omega_0 t$ are jointly wide-sense stationary if A and B are uncorrelated zero mean random variables with the same variance.
- 14. If $\{X(t)\}\$ is a WSS process with autocorrelation function $Rxx(\tau)$ and Y(t) = (t + a) X(t-a), show that $Ryy(\tau) = 2Rxx(\tau) Rxx(\tau + 2a) Rxx(\tau 2a)$.
- 15. Consider two random processes X (t) = 3 cos (\emptyset t + \square) and Y (t) = 2 cos (\emptyset t + \square - π /2) where \square is a random variable uniformly distributed in (0, 2π). Prove that $\sqrt{Rxx(0)Ryy(0)} \ge |Rxy(\tau)|$.
- 16. If $X(t) = \sin(\omega t + y)$, where Y is uniformly distributed in $(0,2\pi)$, prove that $\{X(t)\}$ is a wide-sense stationary process.
- 17. Calculate the autocorrelation function of the process $X(t) = A \sin(\omega_0 t + \phi)$, where A and ω_0 are constants and $\phi \sim U(0, 2\pi)$.
- 18. Consider the random process $V(t) = \cos(\omega t + \theta)$, where θ is a RV with probability

density
$$P(\theta) = \begin{cases} \frac{1}{2\pi} & -\pi \le \theta \le \pi \\ 0 & \text{elsewhere} \end{cases}$$

Show that the first and second moments of V (t) are independent of time. If θ = constant, will the ensemble mean of V (t) be time-independent?

- 19. A stochastic process is described by $x(t) = A \sin t + B \cos t$, where A and B are independent RVs with zero means and equal standard deviations. Show that the process is stationary of the second order.
- 20. Consider a random process $Z(t) = X_1 \cos \omega_0 t X_2 \sin \omega_0 t$, Where X_1 and X_2 are independent Gaussian RVs with zero mean and variance σ^2 . Find $E\{z\}$ and $E\{z^2\}$.
- 21. If U (t) = X cos t + Y sin t and V (t) = Y cos t + X sin t , where X and Y are independent RVs such that E(X) = 0 = E(Y), $E(X^2) = E(Y^2) = 1$, show that $\{U(t)\}$ and $\{V(t)\}$ are individually stationary in the wide sense , but they are not jointly wide-sense stationary.
- 22. If $X(t) = 5\cos(10t + \theta)$ and $Y(t) = 20\sin(10t + \theta)$, where θ is a RV uniformly distributed in $(0, 2\pi)$, prove that the processes $\{X(t)\}$ and $\{Y(t)\}$ are jointly wide-sense stationary.
- 23. If $X(t) = A \sin(\omega t + \theta)$, where A and ω are constants and θ is RV uniformly distributed (-[-]). find the autocorrelation of $\{Y(t)\}$, where $Y(t) = X^2(t)$
- 24. A stationary process has an autocorrelation function given by $R(\tau) = \frac{144\tau^2 + 36}{625\tau^2 + 4}$. Find the mean value, mean-square value and variance of the process. f the autocorrelation of a process $\{X(t)\}$ is R_{xx} and if Y(t) = X(t + a) X(a) where a is a constant, express R_{YY} in terms of R_{xx} .