Stably free modules over virtually free groups*

Seamus O'Shea

Abstract

Let F_m be the free group on m generators and let G be a finite nilpotent group of non square-free order; we show that for each $m \geq 2$ the integral group ring $\mathbf{Z}[G \times F_m]$ has infinitely many stably free modules of rank 1.

Keywords: Stably free module, Milnor square. **MSC:** Primary 20C07; Secondary 16D40, 19A13.

1 Introduction

We study stably free modules over the integral group ring $\mathbf{Z}[G \times F_m]$, where G is a finite group and F_m is the free group on m generators. A finitely generated module P over a ring Λ is said to be stably free when there exists a natural number n such that $P \oplus \Lambda^n \cong \Lambda^m$ for some m. Provided that Λ satisfies the invariant basis number property (see [3]), we may uniquely define the rank of P to be m-n. Every integral group ring has the invariant basis number property. We shall prove:

Theorem 1.1. Let G be a finite nilpotent group of non square-free order. Then there are infinitely many non-isomorphic stably free modules of rank 1 over $\mathbf{Z}[G \times F_m]$ when $m \geq 2$.

In contrast Johnson [7] has shown that both $\mathbf{Z}[C_p \times F_m]$ and $\mathbf{Z}[D_{2p} \times F_m]$ admit no non-free stably free modules when p is prime, C_p is the cyclic group of order p and D_{2p} is the dihedral group of order 2p. Johnson [6] has also shown that $k[G \times F_m]$ admits no non-free stably free modules when k is any field and G is any finite group.

In order to produce examples of non-free stably free modules we will use techniques of Milnor [10] for constructing projective modules over fibre product rings. Denote by $\mathcal{SF}_1(\Lambda)$ the set of isomorphism classes of stably free modules of rank 1 over a ring Λ . Our main theorem will be deduced from the following two special cases:

(I): $\mathcal{SF}_1(\mathbf{Z}[C_{p^2} \times F_m])$ is infinite for every prime p and $m \geq 2$;

(II): $\mathcal{SF}_1(\mathbf{Z}[C_p \times C_p \times F_m])$ is infinite for every prime p and $m \geq 2$.

^{*}The final publication is available at www.springerlink.com DOI: 10.1007/s00013-012-0432-

2 Constructing stably free modules

In [10], Milnor introduced techniques for analysing the structure of projective modules over a fibre product ring in terms of its factors. These techniques were further developed by Swan in [12] to investigate the structure of stably free modules over various group rings. Consider a commutative square of ring homomorphisms

$$\mathcal{A} = \begin{cases} A \xrightarrow{\pi_{-}} A_{-} \\ \downarrow_{\pi_{+}} & \downarrow_{\psi_{-}} \\ A_{+} \xrightarrow{\psi_{+}} A_{0} \end{cases}$$
 (1)

such that: (i) A is the fibre product of A_{-} and A_{+} over A_{0} : $A = A_{-} \times_{A_{0}} A_{+}$; (ii) ψ_{+} is surjective. Such a square will be called a *Milnor square*.

Any right module M over A determines a triple $(M_+, M_-; \alpha(M))$ where $M_{\sigma} = M \otimes_{\pi_{\sigma}} A_{\sigma}$ for $\sigma = +, -$ and $\alpha(M) : M \otimes_{\psi_+\pi_+} A_0 \to M \otimes_{\psi_-\pi_-} A_0$ is an A_0 -module isomorphism. Conversely, any triple $(M_+, M_-; \alpha)$ with M_{σ} a (right) A_{σ} module for $\sigma = +, -$ and α an isomorphism $\alpha : M_+ \otimes_{\psi_+} A_0 \to M_- \otimes_{\psi_-} A_0$ determines an A module given explicitly as

$$\langle M_+, M_-, \alpha \rangle = \{ (m_+, m_-) \in M_+ \times M_- \mid \alpha(m_+ \otimes 1) = m_- \otimes 1 \}.$$

The A-action on $\langle M_+, M_-, \alpha \rangle$ is then given by

$$(m_+, m_-) \cdot a = (m_+ \cdot \pi_+(a), m_- \cdot \pi_-(a)).$$

M is said to be locally free if both M_+ and M_- are free; since $A_+ \otimes A_0 \cong A_- \otimes A_0 \cong A_0$ the rank of M_+ and M_- are necessarily the same, and we say that the rank of M is this common rank. A locally free module over A is automatically projective (see [10]); the question of when it is stably free is rather more delicate. Denote the set of isomorphism classes of finitely generated locally free modules of rank n over A by $\mathcal{LF}_n(A)$. The triple $(M_+, M_-; \alpha(M))$ associated to M does not completely determine M; however by ([12], Lemma A4) there exists a bijection

$$\mathcal{LF}_n(A) \leftrightarrow \psi_-(GL_n(A_-))\backslash GL_n(A_0)/\psi_+(GL_n(A_+))$$
 (2)

Abbreviate the space of double cosets on the right to $\overline{GL_n}(A)$. For each pair of integers $n, k \geq 1$ define a stabilization map

$$s_{n,k}: \overline{GL_n}(\mathcal{A}) \to \overline{GL_{n+k}}(\mathcal{A})$$

 $[\alpha] \mapsto [\alpha \oplus I_k]$

Then since the free module A^n determines the triple $(A_+^n, A_-^n; I_n)$, we have that M is stably free if and only if $\alpha = \alpha(M)$ satisfies $s_{n,k}(\alpha) = [I_{n+k}]$ for some k.

The following proposition allows us to construct the original examples of non-trivial stably free modules claimed in (I) and (II) of the introduction.

Proposition 2.1. Let A be a Milnor square as in (1) and suppose that

$$\psi_{-}(A_{-}^{*})\backslash[A_{0}^{*},A_{0}^{*}]/\psi_{+}(A_{+}^{*}) \tag{3}$$

is infinite, where A_{σ}^* denotes the unit subgroup of A_{σ} and $[A_0^*, A_0^*]$ denotes the commutator subgroup of A_0^* . Then $\mathcal{SF}_1(A)$ is infinite.

Proof. Let $\{a_i\}_{i\in I}$ be an infinite set of coset representatives in $\psi_-(A_-^*)\setminus [A_0^*,A_0^*]/\psi_+(A_+^*)$. Each a_i determines an automorphism $(a_i)\in GL_1(A_0)$ and so for each $i\in I$ we may form the locally free A-module $P_i=\langle A_+,A_-;(a_i)\rangle$. Then clearly by (2) $P_i\cong P_j$ if and only if i=j. To see that each P_i is stably free, consider $s_{1,1}([a_i])=\begin{bmatrix} a_i & 0 \\ 0 & 1 \end{bmatrix}$. Each $a_i\in [A_0^*,A_0^*]$ and so by Whitehead's lemma $s_{1,1}([a_i])\in E_2(A_0)$, where $E_2(A_0)$ is the subgroup of $GL_2(A_0)$ generated by the elementary matrices $E(i,j;a)=I_2+a\epsilon(i,j)$ $(a\in A_0)$. Since $\psi_+:A_+\to A_0$ is surjective, we have an inclusion $E_2(A_0)=\psi_+E_2(A_+)\subset \psi_+GL_2(A_+)$ and therefore $s_{1,1}([a_i])=[I_2]\in \overline{GL_2}(\mathcal{A})$ and so $P_i\oplus A\cong A^2$.

3 Stably free cancellation and generalized Euclidean rings

A ring Λ is said to have stably free cancellation (SFC) when every stably free module over Λ is actually free. All principal ideal domains have SFC, as do all local rings. Much of the following discussion is due to Johnson [7].

For any ring Λ , denote by rad(Λ) the Jacobson radical of Λ . Recall that an ideal \mathbf{m} of Λ is said to be *radical* when $\mathbf{m} \subset \text{rad}(\Lambda)$. It is a clear consequence of ([1], p.90, Prop. 2.12) that:

Proposition 3.1. Let **m** be a two sided radical ideal in Λ . Then

$$\Lambda/\mathbf{m}$$
 has $SFC \Longrightarrow \Lambda$ has SFC

Let D be a (possibly non-commutative) division ring. Dicks and Sontag [4] have shown that $D[F_m]$ has SFC. As a consequence of Morita equivalence, a matrix ring $M_n(\Lambda)$ has SFC if and only if Λ has SFC; applying Wedderburn's theorem now shows that $\Lambda[F_m]$ has SFC for any left semi-simple ring Λ . (Note that a product $\Lambda = \Lambda_1 \times \Lambda_2$ has SFC if and only if both Λ_1 and Λ_2 have SFC.) Now suppose that Λ is a left artinian ring. The canonical mapping $\phi: \Lambda \to \Lambda/\text{rad}(\Lambda)$ induces a surjective ring homomorphism $\phi_*: \Lambda[F_m] \to \Lambda/\text{rad}(\Lambda)[F_m]$ in which $\text{ker}(\phi_*) = \text{rad}(\Lambda)[F_m]$. Since Λ is left artinian, $\text{rad}(\Lambda)$ is nilpotent (see Lam [8], Theorem 4.12) and hence $\text{rad}(\Lambda)[F_m]$ is a radical ideal in $\Lambda[F_m]$. Applying 3.1 with $\mathbf{m} = \text{rad}(\Lambda)[F_m]$ now shows:

Corollary 3.2. Let Λ be a left artinian ring. Then $\Lambda[F_m]$ has SFC.

For any ring Λ denote by $E_n(\Lambda)$ the subgroup of $GL_n(\Lambda)$ generated by the elementary matrices $E(i,j;\lambda) = I_n + \lambda \epsilon(i,j) \quad (\lambda \in \Lambda)$. Denote by $D_n(\Lambda)$ the subgroup of $GL_n(\Lambda)$ consisting of all diagonal matrices. Λ is said to be generalized Euclidean when, for all $n \geq 2$ the following statement holds: for all $A \in GL_n(\Lambda)$ there exists $E \in E_n(\Lambda)$ and $D \in D_n(\Lambda)$ such that A = DE; in other words every invertible matrix over Λ is reducible to a diagonal matrix by means of elementary row and column operations. The notion of a generalized Euclidean ring is often useful when dealing with modules over fibre product rings.

A ring homomorphism $\phi: \Lambda_1 \to \Lambda_2$ induces a mapping $\phi: \mathcal{SF}_1(\Lambda_1) \to \mathcal{SF}_1(\Lambda_2)$ given by $\phi(S) = S \otimes_{\phi} \Lambda_2$. The following is proven in [7]:

Proposition 3.3. Let A be a Milnor square. If A_0 has SFC and is generalized Euclidean, then the induced map $\pi_+ \times \pi_- : \mathcal{SF}_1(A) \to \mathcal{SF}_1(A_+) \times \mathcal{SF}_1(A_-)$ is surjective.

A well known theorem of Cohn [2] states that $k[F_m]$ is generalized Euclidean whenever k is a division ring. If Λ is generalized Euclidean, then so is the matrix ring $M_n(\Lambda)$. Since generalized Euclidean rings are closed under products, we have that $\Lambda[F_m]$ is generalized Euclidean whenever Λ is semi-simple.

Proposition 3.4. If Λ is a ring such that Λ/I is generalized Euclidean for some nilpotent ideal I, then Λ is also generalized Euclidean.

Proof. Let $A \in GL_n(\Lambda)$ and consider the matrix $\psi_*(A) \in GL_n(\Lambda/I)$, where $\psi_*: GL_n(\Lambda) \to GL_n(\Lambda/I)$ is induced by the mapping $\psi: \Lambda \to \Lambda/I$. Then by hypothesis we may write $\psi_*(A) = DE$ for some $D \in D_n(\Lambda/I)$ and some $E \in E_n(\Lambda/I)$. Choose $\hat{D} \in D_n(\Lambda)$ and $\hat{E} \in E_n(\Lambda)$ such that $\psi_*(\hat{D}) = D^{-1}$ and $\psi_*(\hat{E}) = E^{-1}$; if $X = A\hat{E}\hat{D}$ then clearly $\psi_*(X) = I_n$.

Since $\psi(X_{nn}) = 1$, we have that X_{nn} is a unit as I is nilpotent. Therefore by means of elementary row and column operations we may reduce X so that $X_{rn} = X_{nr} = 0$ for $r \neq n$. Repeating this operation for each diagonal element of X we can reduce X, and hence A, to a diagonal matrix as required.

As noted above, $\operatorname{rad}(\Lambda)$ is nilpotent whenever Λ is left artinian. Applying 3.4 with $I = \operatorname{rad}(\Lambda)[F_m]$ gives:

Corollary 3.5. Let Λ be a left artinian ring. Then $\Lambda[F_m]$ is generalized Euclidean.

4 Proof of I and II

It is easy to show that, if I and J are ideals of a ring R, then

$$\begin{array}{ccc} R/(I\cap J) & \longrightarrow R/J \\ & & \downarrow \\ R/I & \longrightarrow R/(I+J) \end{array}$$

is a fibre square. For any positive integer d let $c_d(x)$ denote the d^{th} cyclotomic polynomial. From the factorization $(x^{p^2}-1)=c_{p^2}(x)c_p(x)c_1(x)=c_{p^2}(x)(x^p-1)$ we obtain the Milnor square

$$\mathbf{Z}[x]/(x^{p^2}-1) \longrightarrow \mathbf{Z}[x]/(c_{p^2}(x))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{Z}[x]/(x^p-1) \longrightarrow \mathbf{Z}[x]/I$$

where I is the sum of the ideals (x^p-1) and $(c_{p^2}(x))$. However, since $c_{p^2}(x)=(x^{p(p-1)}+x^{p(p-2)}+\ldots+x^p+1)$, we have

$$p = c_{p^2}(x) - (x^{p(p-2)} + 2x^{p(p-3)} + \dots + (p-2)x^p + (p-1))(x^p - 1),$$

and hence $I = (p, x^p - 1)$. Therefore we may rewrite the above square as

$$\mathbf{Z}[x]/(x^{p^2}-1) \longrightarrow \mathbf{Z}[x]/(c_{p^2}(x))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{Z}[x]/(x^p-1) \longrightarrow \mathbf{F}_p[x]/(x^p-1)$$

Writing $A[C_n] = A[x]/(x^n - 1)$ and applying the functor $- \otimes \mathbf{Z}[F_m]$ we obtain another Milnor square:

$$\mathcal{A} = \left\{ \begin{array}{l} \mathbf{Z}[C_{p^2} \times F_m] & \longrightarrow \mathbf{Z}[\zeta_{p^2}][F_m] \\ \downarrow & \downarrow \psi_- \\ \mathbf{Z}[C_p \times F_m] & \xrightarrow{\psi_+} \mathbf{F}_p[C_p \times F_m] \end{array} \right.$$

where ζ_{p^2} is a primitive p^2 -th root of unity. Since $\mathbf{Z}[\zeta_{p^2}]$ is an integral domain, $\mathbf{Z}[\zeta_{p^2}][F_m]$ has only trivial units (see [11], p.591 and p.598); that is

$$\mathbf{Z}[\zeta_{p^2}][F_m]^* = (\mathbf{Z}[\zeta_{p^2}])^* \times F_m$$

Proposition 4.1. $\mathbf{Z}[C_p \times F_m]^* = (\mathbf{Z}[C_p])^* \times F_m$

Proof. Consider the following fibre square, which arises from the factorization $(x^p - 1) = (x - 1)c_p(x)$:

$$\mathbf{Z}[C_p \times F_m]^* \xrightarrow{\pi_-} \mathbf{Z}[\zeta_p][F_m]^*$$

$$\downarrow^{\pi_+} \qquad \qquad \downarrow$$

$$\mathbf{Z}[F_m]^* \longrightarrow \mathbf{F}_p[F_m]^*$$

Let $u \in \mathbf{Z}[C_p \times F_m]^*$. Then $\pi_+(u) \in \mathbf{Z}[F_m]^*$ which has only trivial units; thus

$$u = aw + \sum_{g \in F_m - \{w\}} a_g g$$

where $a(1) = \pm 1$, $w \in F_m$ and $a_g \in \mathbf{Z}[C_p] = \mathbf{Z}[x]/(x^p - 1)$. Each a_g is divisible by (x - 1) since $a_g \in \ker(\pi_+)$. Now consider

$$\pi_{-}(u) = a(\zeta_p)w + \sum_{g \in F_m - \{w\}} a_g(\zeta_p)g.$$

We cannot have $a(\zeta_p) = 0$, or else $(1 + x + \ldots + x^{p-1})|a \Longrightarrow p|a(1)$ which is a contradiction. Therefore, since $\mathbf{Z}[\zeta_p][F_m]$ has only trivial units we must have $a_g(\zeta_p) = 0$ for all $g \in F_m - \{w\}$. Therefore both $(1 + x + \ldots + x^{p-1})$ and (x - 1) divide each a_q and so each $a_q = 0$.

Proposition 4.2. If $m \geq 2$ then

$$X = \psi_{-}(\mathbf{Z}[\zeta_{p^2}][F_m]^*) \setminus [\mathbf{F}_p[C_p \times F_m]^*, \mathbf{F}_p[C_p \times F_m]^*] / \psi_{+}(\mathbf{Z}[C_p \times F_m]^*)$$

is infinite.

Proof. Let x be a generator of C_p and define $y = (1 - x) \in \mathbf{F}_p[C_p]$; then $y^p = 0$. Let s and t be two generators of F_m and define

$$\delta_n = (1 + yt)s^n(1 + yt)^{-1}s^{-n} \in [\mathbf{F}_p[C_p \times F_m]^*, \mathbf{F}_p[C_p \times F_m]^*].$$

We claim that $\{\delta_n \mid n \in \mathbf{N}\}$ is a set of distinct coset representatives in X. Suppose that $[\delta_n] = [\delta_m]$; then there exists $u \in \mathbf{Z}[\zeta_{p^2}][F_m]^*$ and $u' \in \mathbf{Z}[C_p \times F_m]^*$ such that $\delta_n = \psi_-(u)\delta_m\psi_+(u')$. In fact since u and u' are necessarily trivial units

$$\delta_n = \psi_-(a)\psi_+(b)w\delta_m v$$

for some $a \in \mathbf{Z}[\zeta_{p^2}]^*$, $b \in \mathbf{Z}[C_p]^*$ and some $w, v \in F_m$. The units of $\mathbf{F}_p[C_p]$ are of the form c + dy where $c \in \mathbf{F}_p^*$ and $d \in \mathbf{F}_p$, as $\mathbf{F}_p[C_p]$ is a local ring with maximal ideal generated by y. Therefore we have

$$(1+yt)s^{n}(1+yt)^{-1}s^{-n} = (c+dy)w(1+yt)s^{m}(1+yt)^{-1}s^{-m}v.$$

Expanding both sides and comparing coefficients of y^0 we have: d=0, c=1 and $w^{-1}=v$. Comparing coefficients of y^1 gives

$$t - s^n t s^{-n} = w t w^{-1} - w s^m t s^{-m} w^{-1},$$

and so we must have

$$t = wtw^{-1}$$
 and $s^n t s^{-n} = ws^m t s^{-m} w^{-1}$.

The first equation shows that w = 1 (= v) and the second shows that m = n; therefore the δ_i form a set of distinct coset representatives.

Putting (4.2) and (2.1) together proves (\mathbf{I}) of the introduction:

Proposition 4.3. For every prime p and every $m \geq 2$, $\mathcal{SF}_1(\mathbf{Z}[C_{p^2} \times F_m])$ is infinite.

The proof of (\mathbf{II}) is very similar. Let A be a ring and consider the Milnor square

$$A[x]/(x^{p}-1) \xrightarrow{} A[x]/(1+x+\ldots+x^{p-1})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A \xrightarrow{} A/p \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

Setting $A = \mathbf{Z}[y]/(y^p - 1)$ we have

$$\mathbf{Z}[x,y]/(x^{p}-1,y^{p}-1) \longrightarrow \mathbf{Z}[x,y]/(\Sigma_{x},y^{p}-1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{Z}[y]/(y^{p}-1) \longrightarrow \mathbf{F}_{p}[y]/(y^{p}-1)$$

where $\Sigma_x = 1 + x + \dots x^{p-1}$. Making the identifications $\mathbf{Z}[x,y]/(x^p-1,y^p-1) = \mathbf{Z}[C_p \times C_p]$, $\mathbf{Z}[x,y]/(\Sigma_x,y^p-1) = \mathbf{Z}[\zeta_p][C_p]$ and $B[y]/(y^p-1) = B[C_p]$ and tensoring with $\mathbf{Z}[F_m]$ we have

$$\mathcal{B} = \left\{ \begin{array}{c} \mathbf{Z}[C_p \times C_p \times F_m] \longrightarrow \mathbf{Z}[\zeta_p][C_p \times F_m] \\ \downarrow \qquad \qquad \downarrow^{\phi_-} \\ \mathbf{Z}[C_p \times F_m] \xrightarrow{\phi_+} \mathbf{F}_p[C_p \times F_m] \end{array} \right.$$

We first need to show that $\mathbf{Z}[\zeta_p][C_p \times F_m]$ has only trivial units:

Proposition 4.4.
$$\mathbf{Z}[\zeta_p][C_p \times F_m]^* = (\mathbf{Z}[\zeta_p][C_p])^* \times F_m$$
.

Proof. Consider the Milnor square formed by setting $A = \mathbf{Z}[y]/(1+y+\ldots+y^p) = \mathbf{Z}[y]/(\Sigma_y)$ in (4), tensoring with $\mathbf{Z}[F_m]$ and then taking unit groups:

$$\mathbf{Z}[x,y]/(x^{p}-1,\Sigma_{y})[F_{m}]^{*} \longrightarrow \mathbf{Z}[x,y]/(\Sigma_{x},\Sigma_{y})[F_{m}]^{*}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{Z}[y]/(\Sigma_{y})[F_{m}]^{*} \longrightarrow \mathbf{F}_{p}[y]/(\Sigma_{y})[F_{m}]^{*}$$

Since both $\mathbf{Z}[x,y]/(\Sigma_x,\Sigma_y)$ and $\mathbf{Z}[y]/(\Sigma_y)$ are integral domains the corresponding corners have only trivial units. A similar proof to that of (4.1) now applies.

Essentially the same proof as that of (4.2) proves:

Proposition 4.5. If m > 2 then

$$\phi_{-}(\mathbf{Z}[\zeta_p][C_p \times F_m]^*) \setminus [\mathbf{F}_p[C_p \times F_m]^*, \mathbf{F}_p[C_p \times F_m]^*] / \phi_{+}(\mathbf{Z}[C_p \times F_m]^*)$$

is infinite.

Together (4.5) and (2.1) prove (II) of the introduction:

Proposition 4.6. For every prime p and every $m \geq 2$, $\mathcal{SF}_1(\mathbf{Z}[C_p \times C_p \times F_m])$ is infinite.

5 Proof of main theorem

Let G be a finite group and let H be a normal subgroup of G. We may form the Milnor square:

$$\mathbf{Z}[G] \xrightarrow{} \mathbf{Z}[G]/(\Sigma_H)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{Z}[G/H] \xrightarrow{} (\mathbf{Z}/N)[G/H]$$

where $\Sigma_H = \sum_{h \in H} h$ and N = |H|. Tensoring with $\mathbf{Z}[F_m]$ we have:

$$\mathbf{Z}[G \times F_m] \longrightarrow \mathbf{Z}[G \times F_m]/(\Sigma_H)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{Z}[G/H \times F_m] \longrightarrow (\mathbf{Z}/N)[G/H \times F_m]$$

Now by (3.2) and (3.5), $(\mathbf{Z}/N)[G/H \times F_m]$ has SFC and is generalized Euclidean. Hence by (3.3) the induced map

$$\mathcal{SF}_1(\mathbf{Z}[G \times F_m]) \to \mathcal{SF}_1(\mathbf{Z}[G/H \times F_m]) \times \mathcal{SF}_1(\mathbf{Z}[G \times F_m]/(\Sigma_H))$$

is surjective and thus:

Proposition 5.1. Let G be a finite group with normal subgroup $H \triangleleft G$. If $\mathcal{SF}_1(\mathbf{Z}[G/H \times F_m])$ is infinite then so is $\mathcal{SF}_1(\mathbf{Z}[G \times F_m])$.

Let G be a finite group of order p^k where p is prime and $k \geq 2$. Then there exists a normal subgroup $H \triangleleft G$ such that $|H| = p^{k-2}$ (see [5] p.24). Hence either $G/H \cong C_{p^2}$ or $G/H \cong C_p \times C_p$; in either case by (4.3), (4.6) and (5.1) $\mathcal{SF}_1(\mathbf{Z}[G \times F_m])$ is infinite.

Now let G be a finite nilpotent group of non square-free order. Since G is nilpotent, G is the direct product of its Sylow subgroups (see [5], p.24) say $G \cong H_1 \times \ldots \times H_r$. As |G| is non square-free we may choose a prime p such that p^k is the largest power of p dividing |G| and where $k \geq 2$. Therefore at least one of the H_i has order p^k — assume without loss of generality that $|H_1| = p^k$. Then $|G/(H_2 \times \ldots \times H_r)| = p^k$ and so by (5.1) this completes the proof of our main theorem (1.1).

Acknowledgment

The author wishes to thank his supervisor, Professor F. E. A. Johnson both for suggesting the problem and for many invaluable discussions.

References

[1] H. Bass, Algebraic K-Theory, Mathematics lecture note series, Benjamin, 1968.

- [2] P. M. Cohn, On the structure of the GL_2 of a ring, Pub. Math. IHES 30 (1966), 5—53.
- [3] P. M. Cohn, Some remarks on the invariant basis property, Topology 5 (1966), 215—228.
- [4] W. Dicks and E. D. Sontag, Sylvester domains, J. Pure Appl. Algebra 13 (1978), 243—275.
- [5] I. M. Isaacs, Finite group theory, Graduate texts in mathematics 92, Springer-Verlag, 2008.
- [6] F. E. A. Johnson, Stably free modules over rings of Laurent polynomials, Arch. Math. 97 (2011), 307—317.
- [7] F. E. A. Johnson, Syzygies and homotopy theory, Algebra and Applications 17, Springer-Verlag, 2012.
- [8] T. Y. Lam, A first course in noncommutative rings 2nd ed., Graduate texts in mathematics 131, Springer-Verlag, 2001.
- [9] B. A. Magurn, An algebraic introduction to K-theory, Encyclopedia of mathematics and its applications 87, Cambridge Univ. Press, 2002.
- [10] J. W. Milnor, Introduction to algebraic K-theory, Annals of mathematics studies 72, Princeton Univ. Press, 1972.
- [11] D.S. Passman, The algebraic structure of group rings, Wiley-Interscience, 1977.
- [12] R. G. Swan, Projective modules over binary polyhedral groups, J. Reine Angew. Math. 342 (1983), 66—172.

Department of Mathematics, University College London, Gower Street, London, U.K. email: s.o'shea@ucl.ac.uk