Método Runge-Kutta

Spinola, Sofía Villers, Celina

Ecuaciones diferenciales

Las ecuaciones diferenciales se utilizan para relacionar funciones que representan cantidades físicas y sus derivadas que representan razones de cambio. Existen distintos tipos de ecuaciones diferenciales, pero en este caso se trabajó con las **ecuaciones diferenciales ordinarias** (EDO).

EDO

Es la ecuación diferencial que relaciona una función desconocida, de una variable independiente, con sus derivadas.

- → Contienen una función de una sola variable independiente y una o más derivadas (la derivada es respecto a un solo término).
- → Se define como:

$$F(x,y,y',y'',\ldots,y^{(n)})=0$$

Linealidad

→ Lineales

Se hace uso de **fórmulas** para obtener soluciones exactas.

→ No lineales

Se utilizan métodos de aproximación en forma de series o integrales.

Soluciones

→ Generales

Se da cuando las constantes en el resultado **se dejan indicadas** (Ci o Ki).

→ Particulares

Se obtiene al definir las condiciones iniciales, por lo tanto se **obtiene una única función** que satisface la ecuación diferencial. Para una ecuación diferencial lineal de orden *n*, se requieren *n* condiciones iniciales.

Métodos Runge-Kutta (RK)

En análisis numérico, son un conjunto de métodos genéricos iterativos para la aproximación de soluciones de **ecuaciones diferenciales ordinarias** (EDO).

Desarrollado alrededor de 1900 por los matemáticos Carl Runge y Martin

Wilhelm Kutta.

Si se define la ecuación diferencial ordinaria como y'(t) = f(t,y(t)) con la condición de valor inicial de f como $(t_0,y_0) \in \Omega \subset \mathbb{R}^n$. Por lo tanto, el método Runge-Kutta de orden s se define como:

$$y_{n+1} = y_n + h \sum_{i=1}^{s} a_{ij} k_j$$

donde

h= paso por iteración o incremento Δt_n entre los puntos t_n y t_{n+1} $k_i=$ términos de aproximación evaluados en f de manera local y definidos por

$$k_i = f\left(t_n + hc_i, y_n + h\sum_{i=1}^s a_{ij}k_j\right), \qquad i = 1, ..., s$$

con a_{ij} , b_i , c_i coeficientes dependientes de la regla de cuadratura de integración numérica.

 a_{ij} , se conoce como la matriz Runge-Kutta, b_i son los pesos y c_i los nodos, y son usados para la definición del tablero de Butcher, que debe cumplir la condición $\sum_{i=1}^{s} b_i = 1$. Los coeficientes se determinan de acuerdo a la ecuación $\sum_{j=1}^{i-1} a_{ij} = c_i$ para i=2,...,s.

Y se escribe la forma siguiente:

Donde, para el método de **Runge-Kutta de cuarto orden** (RK4), se define de manera directa como:

0				
$\frac{1}{2}$	$\frac{1}{2}$			
$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$		
1	0	0	1	
ē.	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

RK4

Se define el problema inicial como y' = f(t,y), $y(t_0) = y_0$, por lo que el método RK4 es dado por

$$y_{i+1} = y_i + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4)$$

Donde

$$k_1 = f(t_i, y_i)$$

$$k_2 = f(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h)$$

$$k_3 = f(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h)$$

$$k_4 = f(t_i + h, y_i + k_3 h)$$

Otra explicación más completa se hace mediante la **definición de integrales**, donde se quiere integrar la EDO y' = f(t,y) desde t_n a t_{n+1} para obtener su solución:

$$y(t_{n+1}) - y(t_n) = \int_{t_n}^{t_{n+1}} f(t, y(t))dt$$

Se toma $y(t_n)$ cómo conocido para obtener la solución para $y(t_{n+1})$, a partir de la condición inicial. La integral se aproxima mediante la Regla de Simpson, de la forma:

$$\int_{t}^{t_{n+1}} f(t, y(t)) dt \approx \frac{\Delta t}{6} \left(f^n + 4f^{n+\frac{1}{2}} + f^{n+1} \right)$$

pero surge el problema de no conocer $f^{n+\frac{1}{2}}=f\left(t_{n+\frac{1}{2}},y^{n+\frac{1}{2}}\right)$ y $f^{n+1}=f(t_{n+1},y^{n+1})$ por lo que se divide la integral en cuatro términos para la aproximación:

$$\int_{t_n}^{t_{n+1}} f(t, y(t)) dt \approx \frac{\Delta t}{6} \left(f^n + 2\hat{f}^{n+\frac{1}{2}} + 2\bar{f}^{n+\frac{1}{2}} + \bar{f}^{n+1} \right)$$

Donde $2\hat{f}^{n+\frac{1}{2}}$, $2\bar{f}^{n+\frac{1}{2}}$, \bar{f}^{n+1} son aproximaciones de los términos faltantes.

Para obtener $\hat{f}^{n+\frac{1}{2}}$ se utiliza el método de Euler con paso de $\frac{1}{2}\Delta t$:

$$\hat{f}^{n+\frac{1}{2}} = f\left(t_{n+\frac{1}{2}}, y^n + \frac{1}{2}\Delta t f^n\right)$$

Para $\bar{f}^{n+\frac{1}{2}}$ se utiliza un método de Euler hacia atrás:

$$\bar{f}^{n+\frac{1}{2}} = f\left(t_{n+\frac{1}{2}}, y^n + \frac{1}{2}\Delta t \hat{f}^{n+\frac{1}{2}}\right)$$

Para \bar{f}^{n+1} se utiliza un método de Crank-Nicolson:

$$\bar{f}^{n+1} = f\left(t_{n+1}, y^n + \Delta t \hat{f}^{n+\frac{1}{2}}\right)$$

La combinación de estos métodos genera un intervalo de tiempo de t_n a t_{n+1} y por lo tanto el método de Runge-Kutta se deriva en:

$$y_{i+1} = y_i + \frac{\Delta t}{6} \left(f^n + 2\hat{f}^{n+\frac{1}{2}} + 2\bar{f}^{n+\frac{1}{2}} + \bar{f}^{n+1} \right)$$

cuyos elementos fueron definidos anteriormente.

Ejemplos EDO

Para la comprensión del método y el código implementado, se prepararon varios ejemplos para ser desarrollados y comparados con el uso de una calculadora online https://www.mathstools.com/section/main/runge_kutta_calculator#.X5YwxlhKilW.

1.
$$y' = t\sqrt{y(t)}$$

2.
$$y' = t + \sqrt{y(t)}$$

3.
$$y' = t - \sqrt{y(t)}$$

4.
$$y' = y(t) + t^2 + \sin(t)$$

5.
$$y' = y(t) + t^2 - \sin(y(t))$$

con
$$y(0) = 1$$
. $tf = 10$, $n = 100$

con
$$y(0) = 1$$
. $tf = 10$, $n = 100$

con
$$y(0) = 1$$
. $tf = 10$, $n = 100$

con
$$y(0) = 1$$
. $tf = 10$, $n = 100$

con
$$y(0) = 1$$
. $tf = 10$, $n = 100$

Modelo Depredador - Presa (EDO)

Las ecuaciones de **Lotka-Volterra**, generan un modelo de ecuaciones diferenciales que modelan el comportamiento de sistemas biológicos en los que interactúan dos especies, una presa y un depredador.

Si se tienen los supuestos:

- → Si los depredadores no estuvieran presentes, las presas crecerían proporcionalmente a su población, sin control o restricción alguna.
- → El depredador caza a sus presas de manera proporcional al número de encuentros entre ambas especies.
- → Si no hubiera presas, la población de depredadores decrece de manera proporcional a su población.
- → La tasa de nacimiento de depredadores es proporcional al número de presas cazadas.

En este caso, se generan dos variables dependientes del tiempo:

- \rightarrow D(t) = población de depredadores
- \rightarrow P(t) = población de presas

Además de cuatro parámetros constantes:

 $\alpha > 0$ tasa de crecimiento de la presa

 $\beta > 0$ constante para medir el número de encuentros entre las especies

 $\gamma > 0$ tasa de mortandad de depredadores

 $\delta > 0$ constante para medir el beneficio de depredadores al cazar presas

A partir de esta información, se deriva el siguiente sistema de ecuaciones de primer orden:

$$\frac{dP}{dt} = \alpha P - \beta PD, \qquad \frac{dD}{dt} = -\gamma D + \delta PD$$

La solución a este sistema sería una pareja de funciones P(t), D(t) que cumplan este par de ecuaciones.

i Gracias!