Group 3 Lab3

Group members:

Lee Yew Chuan Michael, U2021372J

Lau Chen Yi Wynne, U2020016B

Chua Wen Rong Jonathan, U2021875L

Li Ziyang, U1821317D

Customer(customerID, Email, Username, fullName, Phone#, Address, Password)

Keys: customerID, Email, Username

Primary Key: customerID

FDs:

customerID → Email, Username, fullName, Phone#, Address, Password Email → customerID, Username, fullName, Phone#, Address, Password Username → customerID, Email, fullName, Phone#, Address, Password

Assumption:

- Every customer can only register with one Phone number and one address on the platform.
- We assume that different customer accounts may have the same phone number.
- We assume that different customer accounts may have the same address.

The relation is in 3NF.

Justification:

Product_Type(typeID, parentTypeID, typeDescription)

Keys: typeID

Primary Key: typeID

FDs:

typeID → parentTypeID, typeDescription

The relation is in 3NF.

Justification:

Since all the non trivial FDs of the schema contains a key on the left-hand side. The relation is in BCNF. Since it is in BCNF, the relation is also in 3NF.

Product(<u>productID</u>, typeID, shopID, Colour, productName, Description, productPrice, Size)

Keys: productID

Primary Key: productID

FDs:

productID → typeID, shopID, Colour, productName, Description, productPrice, Size

Assumption:

Every product can only be sold by one shop, but a shop can sell multiple products.

This relation is in 3NF.

Justification:

Since all the non trivial FDs of the schema contains a key on the left-hand side. The relation is in BCNF. Since it is in BCNF, the relation is also in 3NF.

Order_Item(Sequence#, orderID, shipmentID, productID, unitPrice, orderItemStatus, Qty)

Keys: (Sequence#, orderID)

Primary Key: (Sequence#, orderID)

FDs:

(Sequence#, orderID) → shipmentID, productID, unitPrice, orderItemStatus, Qty

Assumption:

- We assume the same product type can have different unit prices in different orders, as the customer may have gotten a discount or incentive in a particular order.
- Sequence# is only unique within an order, but not unique across different orders.

The relation is in 3NF.

Justification:

Order(<u>orderID</u>, paymentStatus, orderDate, orderStatus, customerID)

Keys: orderID

Primary Key: orderID

FDs:

 $orderID \rightarrow paymentStatus$, orderDate, orderStatus, customerID

The relation is in 3NF.

Justification:

Since all the non trivial FDs of the schema contains a key on the left-hand side. The relation is in BCNF. Since it is in BCNF, the relation is also in 3NF.

Invoice(Invoice#, orderID, invoiceStatus, invoiceDate)

Keys: Invoice#, orderID Primary Key:Invoice#

FDs:

Invoice# → invoiceStatus, invoiceDate, orderID orderID → invoiceStatus, invoiceDate, Invoice#

The relation is in 3NF.

Justification:

Since all the non trivial FDs of the schema contains a key on the left-hand side. The relation is in BCNF. Since it is in BCNF, the relation is also in 3NF.

CreditCard(Card#, customerID, expiryDate)

Keys:Card#

Primary Key:Card#

FDs:

Card# → customerID, expiryDate

Assumption:

Assume each Customer can register multiple Credit Cards. But, each Credit Card can only be used by one Customer. (ie. A credit card cannot be shared among multiple customers)

The relation is in 3NF.

Justification:

Shipment(<u>shipmentID</u>, Tracking#, shipmentDate)

Keys: shipmentID, Tracking# Primary Key: shipmentID

FDs:

shipmentID → Tracking#, shipmentDate Tracking# → shipmentID, shipmentDate

Assumption:

We assume that Tracking# is unique.

The relation is in 3NF.

Justification:

Since all the non trivial FDs of the schema contains a key on the left-hand side. The relation is in BCNF. Since it is in BCNF, the relation is also in 3NF.

Photo(photoID, productID)

Keys: photoID

Primary Key: photoID

FDs:

photoID → productID

The relation is in 3NF.

Justification:

Since all the non trivial FDs of the schema contains a key on the left-hand side. The relation is in BCNF. Since it is in BCNF, the relation is also in 3NF.

Shops(shopID, shopName)

Keys: shopID

Primary Key: shopID

FDs:

 $shopID \rightarrow shopName$

The relation is in 3NF.

Justification:

Can_Sell(shopID, typeID)

Keys: (shopID, typeID)

Primary Key: (shopID, typeID)

FDs:

 $(shopID, typeID) \rightarrow (shopID, typeID)$

The relation is in 3NF.

Justification:

Since there are no non trivial FDs in the schema. The relation is in BCNF. Since it is in BCNF, the relation is also in 3NF.

ER approach taken for subclass

Payment(paymentID, paymentDate, amount)

Keys: paymentID

Primary Key: paymentID

FDs:

paymentID → paymentDate, amount

The relation is in 3NF.

Justification:

Since all the non trivial FDs of the schema contains a key on the left-hand side. The relation is in BCNF. Since it is in BCNF, the relation is also in 3NF.

Full_Payment(paymentID, Invoice#)

Keys: paymentID, Invoice# Primary Key: paymentID

FDs:

 $\begin{array}{ll} paymentID \rightarrow & Invoice\# \\ Invoice\# \rightarrow & paymentID \end{array}$

The relation is in 3NF.

Justification:

Partial_Payment(paymentID, Invoice#)

Keys: paymentID, Invoice# Primary Key: paymentID

FDs:

 $\begin{array}{l} \text{paymentID} \rightarrow \text{Invoice\#} \\ \text{Invoice\#} \rightarrow \text{paymentID} \end{array}$

The relation is in 3NF.

Justification: