# Tremplin: Séance 3

#### 24 mai 2018

## Énoncés

### Autour des suites

On se propose dans cette section d'étudier plus finement la notion de convergence de suites dans le corps  $\mathbb R$  des nombres réels.

Tout d'abord, donnons une autre définition, plus formelle (celle qui vous sera introduite dans le supérieur), de la convergence de suites.

**Définition 1** (Convergence d'une suite). Soit  $(u_n)$  une suite de nombres réels. On dit que la suite u converge s'il existe un nombre réel  $\ell$  tel que pour toute « marge d'erreur »  $\varepsilon > 0$ , il existe un rang  $n_0 \in \mathbb{N}$  tel que

$$\forall n \geq n_0 \quad |u_n - \ell| \leq \varepsilon$$

ou, autrement dit, tel que tout les termes de la suite à partir du rang  $n_0$  restent à  $\varepsilon$  près du réel  $\ell$ .

Le cas échéant, on dira que  $(u_n)$  converge vers  $\ell$  (quand n tend vers l'infini), et on notera

$$\lim_{n \to \infty} u_n = \ell \quad \text{ou} \quad u_n \xrightarrow[n \to \infty]{} \ell.$$

On omettra souvent la mention que n tend vers l'infini, sans ambigüité. Dans le cas contraire, on dira que u diverge.



Fig. 1 : Un exemple de suite convergente.

Exercice 1. Les suites suivantes convergent-elles?

•  $u_n = \frac{1}{n} + 1$ •  $u_n = \sin\left(\frac{n\pi}{2}\right)$ 

•  $u_n = \frac{1}{n} \sin\left(\frac{1}{n}\right)$ •  $u_n = \begin{cases} 1 & \text{si } \sqrt{n} \in \mathbb{N} \\ 0 & \text{sinon} \end{cases}$ 

**Définition 2** (Divergence vers l'infini). Soit  $(u_n)$  une suite de nombres réels. On dit que u tend  $vers + \infty$  si pour tout  $A \in \mathbb{R}$ , il existe  $n_0 \in \mathbb{N}$  tel

$$\forall n \ge n_0 \quad u_n \ge A$$

ou, autrement dit, pour toute borne A que l'on peut se fixer, tous les termes de la suite après  $n_0$  dépassent A.

Exercice 2. Écrire une définition tendre vers  $-\infty$ .

On remarquera qu'une suite qui tend vers l'infini ne converge pas.

Exercice 3. Les suites suivantes tendent-elles vers  $\pm \infty$ ?

- $u_n = n\frac{\pi}{2}$   $u_n = n\sin\left(n\frac{\pi}{2}\right)$   $u_n = n\left(2 + \sin\left(n\frac{\pi}{2}\right)\right)$

**Définition 3.** Une suite  $(u_n)$  est dite bornée s'il existe un réel B > 0 tel que

$$\forall n \in \mathbb{N} \quad |u_n| \le B$$

Propriété 1. Soient u et v deux suites de nombres réels. On suppose que u est bornée et que v tend vers 0. Alors :

$$u_n v_n \xrightarrow[n \to \infty]{} 0.$$

Exercice 4 (Formes indéterminées). On se propose d'étudier la convergence de suites définies par des fractions dont les numérateurs et dénominateurs divergent.

Tout d'abord,

$$\frac{5n^2 + 4n - 5}{3n^2 + 2n}$$

Ensuite,

$$\frac{5\sqrt{n}+4}{6n+2\sqrt{n}}$$

Exercice 5 (Une approximation de la racine carrée de 2). On considère la suite de nombres réels  $(u_n)$  de premier terme un entier  $u_0 \ge 2$ , vérifiant la relation de récurrence

 $u_{n+1} = \frac{u_n^2 + 2}{2u_n}.$ 

Le but de l'exercice est de montrer que cette suite constitue une approximation de  $\sqrt{2}$ .

- 1. Montrer que  $(u_n)$  est une suite de nombres rationnels. **Indication** On montrera que les termes de la suite s'écrivent  $u_n = p_n/q_n$  où  $(p_n)$  et  $(q_n)$  sont des suites de nombres entiers.
- 2. Montrer que pour tout  $n, u_n \ge \sqrt{2}$ .
- 3. En étudiant le signe de  $u_{n+1} u_n$ , montrer que  $(u_n)$  est décroissante.
- 4. Conclure.

### Suites de nombres complexes

Vous connaissez déjà la notion de suite de nombres réels. On définit ci-après la notion de suite de nombres complexes :

**Définition 4** (Suite complexe). Une *suite de nombres complexes* est une application de l'ensemble  $\mathbb{N}$  des entiers naturels dans l'ensemble  $\mathbb{C}$  des nombres complexes. Étant donné une suite u, on appelle terme les images u(n) des entiers n par u, et on les note plutôt  $u_n$ . La suite u se note alors classiquement  $(u_n)_{n\in\mathbb{N}}$ .

**Exemple 1.** La suite définie par  $u_n = (2+i)^n$  est une suite de nombres complexes. Il en est de même de la suite  $((1/2)^n)$  (en effet, toute suite de nombres réels est aussi une suite de nombres complexes puisque  $\mathbb{R} \subset \mathbb{C}$ ).

Pour analyser le comportement d'une suite de réels, vous avez défini en cours les notions de *convergence* et de *limite*. La définition suivante étend alors le concept à une suite de complexes.

**Définition 5.** Soit  $(z_n)_{n\in\mathbb{N}}$  une suite de nombres complexes. Soit  $\ell\in\mathbb{C}$ . On dit que la suite  $(z_n)$  converge vers  $\ell$  lorsque la suite de nombres réels  $(|z_n-\ell|)_{n\in\mathbb{N}}$  converge vers zéro. On notera comme dans le cas réel

$$\lim_{n \to \infty} z_n = \ell \quad \text{ou} \quad z_n \xrightarrow[n \to \infty]{} \ell.$$

**Exercice 6.** Soit  $(z_n)$  une suite de nombres complexes.

1. Montrer qu'il existe deux suites de nombres réels  $(a_n)_{n\in\mathbb{N}}$  et  $(b_n)_{n\in\mathbb{N}}$  telles que

$$\forall n \in \mathbb{N} \quad z_n = a_n + ib_n.$$

- 2. Montrer que si  $(z_n)$  converge vers une limite  $\ell \in \mathbb{C}$ , alors les suites  $(a_n)$  et  $(b_n)$  également, et exprimer leurs limites.
- 3. Montrer réciproquement que si les suites  $(a_n)$  et  $(b_n)$  convergent vers des réels a et b, alors  $(z_n)$  converge vers une limite qu'on exprimera.

Indication On remarquera l'inégalité suivante (démonstration?) :

$$\forall z \in \mathbb{C} \quad |\Re(z)| \le |z| \text{ et } |\Im(z)| \le |z|$$

Exercice 7. Cet exercice s'intéresse aux conditions de convergence et de périodicité de suites complexes définies par une relation de récurrence simple.

1. Soient  $a \in \mathbb{C}$ . Déterminer une condition suffisante sur a pour que la suite de relation de récurrence

$$\begin{cases}
z_{n+1} = az_n \\
z_0 \in \mathbb{C}
\end{cases}$$

converge.

2. Que peut-il se passer si cette condition n'est pas vérifiée? Distinguer le cas |a|=1.

On dit qu'une suite de complexes  $(z_n)_{n\in\mathbb{N}}$  est périodique s'il existe un entier  $T\in\mathbb{N}$  tel que

$$\forall n \in \mathbb{N} \quad z_{n+T} = z_n.$$

On dira alors que  $(z_n)$  est T-périodique. Ainsi, les suites constantes sont périodiques (de toute période), mais ce ne sont pas les seules.

3. On considère encore une suite définie par une relation de récurrence linéaire  $z_{n+1} = az_n$ . Trouver une condition sur a pour que  $(z_n)$  soit périodique et non nulle.

**Indication** On montrera qu'alors |a|=1, et on remarquera que les nombres complexes de module 1 s'écrivent sous la forme  $a=e^{i\theta}$  où  $\theta \in \mathbb{R}$ .



FIG. 2 : Une spirale logarithmique **convergente**, avec la relation de récurrence  $z_{n+1} = 0.9e^{i\pi/4}z_n$ . Simulation sous Python avec N = 100 points.



(a) Une suite périodique, avec la relation de récurrence  $z_{n+1}=e^{i\pi/18}z_n$ . N=36 points.



(b) Un... truc ? avec la relation de récurrence  $z_{n+1}=e^{1,3i}z_n.\ N=30$  points.

Fig. 3 : Simulations sous Python de suites  $z_{n+1} = a_n^z$  avec |a| = 1.



Fig. 4 : Une spirale logarithmique **divergente**, avec la relation de récurrence  $z_{n+1}=1,1e^{i\pi/6}z_n$ . Simulation sous Python avec N=20 points.