

数字逻辑电路课程设计

课题名称 <u>1、 数字电子钟设计</u> 2、 交通信号灯控制电路

学	院	计算机与电子信息学院
专	业	计算机类
班	级	
学	号	
姓	名	
指导老师		

二〇一八 年 十二 月 二十三日

目录

_	数	字电子钟设计4
	1	设计任务书 4
	2	设计框图及整机概述4
		2.1 设计框图 4
		2.2 整机概述 4
	3	各单元电路的设计方案及原理说明5
		3.1 秒脉冲电路5
		3.2 计数器5
		3.3 显示器7
		3.4 校时电路7
	4	调试过程及结果分析7
	5	设计、安装及调试中的体会7
	6	对本次课程设计的意见及建议8
	7	附录(包括:整机逻辑电路图和元器件清单)8
		7.1 整机逻辑电路图:8
		7.2 元器件清单8
<u> </u>		通信号灯控制电路9
	1	设计任务书9
	2	设计框图及整机概述9
		2.1 设计框图9
		2.2 整机概述 9
	3	各单元电路的设计方案及原理说明10
		3.1 秒脉冲电路10
		3.2 数码管显示电路11
		3.3 定时计数控制电路11
		3.4 译码显示电路12
	4	调试过程及结果分析12
	5	设计、安装及调试中的体会12
	6	对本次课程设计的意见及建议13
	7	附录(包括:整机逻辑电路图和元器件清单)13

7. 1	整机逻辑电路图。	13
7.2	元器件清单	14

一 数字电子钟设计

1 设计任务书

数字电子钟设计

基本设计要求: 仿真实现数字电子钟

- 1. 要求能显示"时""分""秒"
- 2. 时 24 小时, 分 60 分钟, 秒 60
- 3. 能够校时,校分

2 设计框图及整机概述

2.1 设计框图

2.2 整机概述

用六片 74LS161 实现计时功能。时钟为 24 小时制,分钟和秒钟皆为 60 进制。脉冲波用 5Hz 秒脉冲。校时功能通过控制时钟、分钟的使能端 ENP, ENT,当其掷到脉冲波输出端时,计时电路随脉冲波变化而变化,从而达到校时功能。

3 各单元电路的设计方案及原理说明

3.1 秒脉冲电路

这里用频率为 5Hz, 占空比为 50%的脉冲信号连接 INA 的下降沿电路构成秒脉冲电路, 使之能正常计数。秒信号发生电路由集成电路 555 定时器与 RC 组成的多谐振荡器构成。需要的芯片有集成电路 555 定时器,还有电阻和电容。

根据计算公式:输出高电平时间

T1 = (R1 + R2) C1n2

输出低电平时间

T2=R2C1n2

振荡周期

T = (R1 + 2R2) C1n2

得出震荡电路的数据并连接

图 1 555 计时器构成的秒脉冲电路

3.2 计数器

3.2.1 六十进制计数

六十进制计数器应有 60 个有效状态。74LS161 为十六进制四位二进制加法计数器,异步清零,同步置数。若要用 74LS161,一片最多只有 16 种状态,不足够,因此需要两片芯

片。为方便之后连接数码管,一片芯片作为十位的数字,一片芯片作为个位的数字,分为六进制和十进制计数器。计时电路的个位时钟来自秒、分电路产生的 59 分 59 秒两个信号相与的结果; 计秒电路与计分电路在计数到 59 时,十位状态均为 Q3Q2Q1Q0=0101, 个位状态均为 Q3Q2Q1Q0=1001, 将计秒电路中的 1 相与非,计分电路中的 1 相与非,两个结果相或,作为进时信号,从而实现向小时进位。分计数器与秒计数器原理相同。

图 2 秒计时器与分计时器逻辑图

3. 2. 2 二十四进制计数

24 进制计数器应有 24 个有效状态 (0²3)。 个位有两种情况会清零:第一,当十位为 0 或 1 时,个位为 10 时;第二,当十位为 2 时,个位为 4 时。十位则是当十位为 2,同时个位为 4 时清零。当计数器计数到 24 时,十位和个位同时清零。

图 3 二十四进制计数器

3.3 显示器

直接将 74LS161 输出端依次连接到数码管即可进行显示。

3.4 校时电路

采取直接向 74LS161 的使能端置高电平来实现校时功能。

图 5 校时电路

4 调试过程及结果分析

最开始误作成 61 进制的计数器了,后进行了进制调整并优化达成了最后的时钟效果。 时钟信号的频率也经过了多次测试以达成最终效果。

5 设计、安装及调试中的体会

闭门造车不可取,多查资料才是真。在进行电路设计前需要查询相关资料并消化。

6 对本次课程设计的意见及建议

希望老师可以给予更多的指导和帮助,避免设计思路出现问题与仿真失误。

7 附录(包括:整机逻辑电路图和元器件清单)

7.1 整机逻辑电路图:

图 6 整机逻辑电路图

7.2 元器件清单

1.74LS161	6 片
2.4 位数码管	6个
3. 单刀单掷开关	2个
4. 时钟信号源	1个
5. 与非门	6个
6. 非门	5 个
7. 与门	1个
8. 或门	4个

二 交通信号灯控制电路

1 设计任务书

交通信号灯控制电路

基本设计要求: 仿真实现设计一个红绿灯控制器设计具有以下功能

- (1) 东西方向绿灯亮,南北方向红灯亮。
- (2) 东西方向黄灯亮,南北方向红灯亮。
- (3) 东西方向红灯亮,南北方向绿灯亮。
- (4) 东西方向红灯亮,南北方向黄灯亮。

要求有时间显示(顺数、逆数皆可),一个方向的两个数码管分别显示红绿黄灯的时间。 时间自定(按学号:红灯时间(学号)=绿灯时间+黄灯时间(≥5))

2 设计框图及整机概述

2.1 设计框图

2.2 整机概述

为实现对红绿灯的时序控制,使用了两片 74ls190 来实现 72 秒的时序循环。使用其预置位与减法器功能进行倒计时。其输出直接连接至显像管以显示倒计时。使用了六片 JK 触发器来保持与更改红绿灯的状态,其相互联动保证了红绿灯的正常循环操作。

3 各单元电路的设计方案及原理说明

3.1 秒脉冲电路

这里用频率为 1Hz, 占空比为 50%的脉冲信号连接 INA 的下降沿电路构成秒脉冲电路, 使之能正常计数。秒信号发生电路由集成电路 555 定时器与 RC 组成的多谐振荡器构成。需要的芯片有集成电路 555 定时器, 还有电阻和电容。

根据计算公式:输出高电平时间

T1 = (R1 + R2) C1n2

输出低电平时间

T2=R2C1n2

振荡周期

T = (R1 + 2R2) C1n2

得出震荡电路的数据并连接

图 7 秒脉冲电路

3.2 数码管显示电路

利用 74LS190 的输出特性直接连接到数码管进行显示。

图 8 数码管显示电路

3.3 定时计数控制电路

两片 74ls190 来实现 72 秒的时序循环。使用其预置位与减法器功能进行倒计时。

图 9 定时计数控制电路

3.4 译码显示电路

六片 JK 触发器来保持与更改红绿灯的状态,其相互联动保证了红绿灯的正常循环操作。

图 10 译码显示电路

4 调试过程及结果分析

最开始使用的 74LS161 进行的制作,在 8 位我二进制转换成十进制显示时受到很大阻力。在多方查询资料后,选择使用 74LS190 进行减法器计数成功实现了红绿灯时序循环。并在数码管的连接上简化了许多。

5 设计、安装及调试中的体会

通过这次设计与制作,让我知道了设计电路的流程与操作。自己踩了许多不该踩的坑,但在多方查阅资料与闻讯后,大多数问题得到了解决。这次我了解了仿真软件的简要使用方法。这对我今后的在数字电路上的学习有这很大的帮助。

6 对本次课程设计的意见及建议

希望老师可以给予更多的指导和帮助,避免设计思路出现问题与仿真失误。

7 附录(包括:整机逻辑电路图和元器件清单)

7.1 整机逻辑电路图

图 11 整机逻辑电路图

7.2 元器件清单

1. 脉冲信号1 个2. 74LS1902 片3. 74LS766 片4. 红绿灯显示器3 个5. 与门22 个6. 非门13 个7. 或门7 个

勢息朴誠厚然的