Advanced Mathematics Exercises

1 25-40

Exercise 1.1. Let f be the scalar function defined by f(x,y) = xy. Sketch the contour lines and the vector field ∇f .

Solution:

$$(\nabla f)(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (y,x)$$

Exercise 1.2. Let

$$f(x,y) = \sin(\pi xy) \cdot e^{-\frac{x}{3}}$$
 and $p = \left(1, \frac{1}{3}\right)$.

- (a) Compute ∇f and $(\nabla f)(p)$. Use the special values of sin and cos.
- (b) Find the directions of maximum increase and decrease at p. You can give approximate values.
- (c) Give the direction of the contour line at p.
- (d) The equation of the tangent plane of the graph of f at (x_0, y_0) is

$$z = f(x_0, y_0) + (\nabla f)(x_0, y_0) \cdot (x - x_0, y - y_0).$$

Determine the equation of the tangent plane of z = f(x, y) at p. Give a normal vector of the plane.

(e) Find the directional derivative of f(x,y) at p along the vector

$$v = \frac{1}{\sqrt{2}}(1,1).$$

Solution:

(a)
$$\frac{\partial f}{\partial x} = e^{-x/3} \left(\pi y \cos(\pi x y) - \frac{1}{3} \sin(\pi x y) \right)$$

$$\frac{\partial f}{\partial y} = e^{-x/3} \pi x \cos(\pi x y)$$

$$\implies (\nabla f)(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$
$$= e^{-x/3} \left(\pi y \cos(\pi x y) - \frac{1}{3} \sin(\pi x y), \ \pi x \cos(\pi x y)\right)$$

With $\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$ and $\cos(\frac{\pi}{3}) = \frac{1}{2}$:

$$(\nabla f)(p) = e^{-1/3} \left(\frac{\pi - \sqrt{3}}{6}, \frac{\pi}{2} \right)$$

- (b) Maximum increase: $(\nabla f)(p)$, maximum decrease: $-(\nabla f)(p)$
- (c) Contour lines are perpendicular to the gradient:

$$(x, y) \cdot (-y, x) = 0 \implies u = e^{-1/3} \left(-\frac{\pi}{2}, \frac{\pi - \sqrt{3}}{6} \right)$$

(d)
$$z = f(x,y) = f(p) + (\nabla f)(p) \cdot (x-1, y - \frac{1}{3})$$
$$= \frac{\sqrt{3}}{2}e^{-1/3} + e^{-1/3}\left(\frac{\pi - \sqrt{3}}{6}, \frac{\pi}{2}\right) \cdot (x-1, y - \frac{1}{3})$$
$$= e^{-1/3}\left(\frac{\sqrt{3}}{2} + \frac{1}{6}\left((\pi - \sqrt{3})x + 3\pi y + \sqrt{3}\right)\right)$$

The surface z = f(x, y) can be written as F(x, y, z) = f(x, y) - z = 0. Therefore,

$$\nabla F = (f_x, f_y, -1)$$

is normal to the surface:

$$n := (\nabla F)(p) = (f_x(p), f_y(p), -1)$$
$$= \left(\frac{\pi - \sqrt{3}}{6}e^{-1/3}, \frac{\pi}{2}e^{-1/3}, -1\right)$$

(e)
$$(\nabla f)(p) \cdot v = e^{-1/3} \left(\frac{\pi - \sqrt{3}}{6}, \frac{\pi}{2} \right) \cdot \frac{1}{\sqrt{2}} (1, 1)$$

$$= \frac{e^{-1/3}}{\sqrt{2}} \left(\frac{\pi - \sqrt{3}}{6} + \frac{\pi}{2} \right)$$

$$= \frac{e^{-1/3}}{\sqrt{2}} \cdot \frac{4\pi - \sqrt{3}}{6}$$

Exercise 1.3. Compute curl and divergence of the vector field

$$F(x, y, z) = (\sin(x)xy, ze^{-x}, yz).$$

3

Solution:

$$\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y}(\sin(x)xy) = x\sin(x)$$

$$\frac{\partial F_x}{\partial z} = \frac{\partial}{\partial z}(\sin(x)xy) = 0$$

$$\frac{\partial F_y}{\partial x} = \frac{\partial}{\partial x}(ze^{-x}) = -ze^{-x}$$

$$\frac{\partial F_y}{\partial z} = \frac{\partial}{\partial z}(ze^{-x}) = e^{-x}$$

$$\frac{\partial F_z}{\partial x} = \frac{\partial}{\partial x}(yz) = 0$$

$$\frac{\partial F_z}{\partial y} = \frac{\partial}{\partial y}(yz) = z$$

$$\operatorname{curl} F = \nabla \times F = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)$$

$$= (z - e^{-x}, \ 0 - 0, \ -ze^{-x} - x\sin(x))$$

$$= (z - e^{-x}, \ 0, \ -ze^{-x} - x\sin(x))$$

$$\operatorname{div} F = \nabla \cdot F = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

$$= \frac{\partial}{\partial x}(\sin(x)xy) + \frac{\partial}{\partial y}(ze^{-x}) + \frac{\partial}{\partial z}(yz)$$

$$= y\sin(x) + xy\cos(x) + 0 + y$$

$$= y\sin(x) + xy\cos(x) + y$$

Exercise 1.4. Let

$$f(x, y, z) = x^2yz^3$$
 and $F(x, y, z) = (xz, -y^2, 2x^2y)$.

Give ∇f , $\nabla^2 f$, $\nabla \cdot F$, and $\nabla \times F$.

Solution:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

$$= \left(2xyz^3, x^2z^3, 3x^2yz^2\right)$$

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

$$= 2yz^3 + 0 + 6x^2yz$$

$$= 2yz^3 + 6x^2yz$$

$$\nabla \cdot F = \frac{\partial}{\partial x}(xz) + \frac{\partial}{\partial y}(-y^2) + \frac{\partial}{\partial z}(2x^2y)$$

$$= z - 2y$$

$$\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y}(xz) = 0$$

$$\frac{\partial F_x}{\partial z} = \frac{\partial}{\partial z}(xz) = x$$

$$\frac{\partial F_y}{\partial x} = \frac{\partial}{\partial x}(-y^2) = 0$$

$$\frac{\partial F_y}{\partial z} = \frac{\partial}{\partial z}(-y^2) = 0$$

$$\frac{\partial F_z}{\partial x} = \frac{\partial}{\partial x}(2x^2y) = 4xy$$

$$\frac{\partial F_z}{\partial y} = \frac{\partial}{\partial y}(2x^2y) = 2x^2$$

$$\nabla \times F = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)$$

$$= \left(2x^2 - 0, x - 4xy, 0 - 0\right)$$

$$= \left(2x^2, x - 4xy, 0\right)$$

Exercise 1.5. Compute differential forms:

(a) Let

$$f(x, y, z) = \frac{x}{yz}$$

be a scalar function. Give the differential form df.

Hint:

$$df = F_1(x, y, z) dx + F_2(x, y, z) dy + F_3(x, y, z) dz.$$

(b) Let

$$\omega = x^2 \sin(y) dx + 2^x \cos(y) dy$$

be a differential form on \mathbb{R}^2 . Give the 2-form $d\omega$.

Hint

$$d\omega = \phi(x, y) dx \wedge dy.$$

(c) Let

$$\omega = x^2 \sin(y) dx + z^2 \cos(y) dy - xy^2 dz$$

be a differential form on \mathbb{R}^3 . Give the 2-form $d\omega$.

Hint:

$$d\omega = F_1(x, y, z) dy \wedge dz + F_2(x, y, z) dz \wedge dx + F_3(x, y, z) dx \wedge dy.$$

Solution:

(a) $df = \frac{1}{yz} dx - \frac{x}{y^2 z} dy - \frac{x}{yz^2} dz$

(b)
$$\phi(x,y) = \frac{\partial}{\partial x} (2^x \cos(y)) - \frac{\partial}{\partial y} (x^2 \sin(y))$$
$$= \ln(2) 2^x \cos(y) - x^2 \cos(y)$$
$$= \cos(y) \left(\ln(2) 2^x - x^2 \right)$$

$$d\omega = \phi(x, y) dx \wedge dy$$
$$= \left(\cos(y) \left(\ln(2)2^{x} - x^{2}\right)\right) dx \wedge dy$$

$$\begin{split} F_1(x,y,z) &= \frac{\partial}{\partial y}(-xy^2) - \frac{\partial}{\partial z}(z^2\cos y) = -2xy - 2z\cos y \\ F_2(x,y,z) &= \frac{\partial}{\partial z}(x^2\sin y) - \frac{\partial}{\partial x}(-xy^2) = 0 + y^2 = y^2 \\ F_3(x,y,z) &= \frac{\partial}{\partial x}(z^2\cos y) - \frac{\partial}{\partial y}(x^2\sin y) = 0 - x^2\cos y = -x^2\cos y \end{split}$$

So:

$$d\omega = (-2xy - 2z\cos y)\,dy \wedge dz + y^2\,dz \wedge dx - (x^2\cos y)\,dx \wedge dy.$$

2 25-41

Exercise 2.1. Let $f(x,y) = \frac{1}{\sqrt{x^2+y^2}}$. Compute ∇f . Then express f and ∇f in terms of the norm ||v||, where v = (x, y).

Solution:

$$(\nabla f)(x,y) = -\frac{1}{2(x^2 + y^2)^{3/2}} \left(2x + y^2, \ x^2 + 2y\right)$$

With $||v|| = \sqrt{x^2 + y^2}$:

$$f(v) = \frac{1}{\|v\|}$$
$$(\nabla f)(v) = -\frac{1}{2\|v\|^3} \left(2x + y^2, \ x^2 + 2y\right)$$

Exercise 2.2. Let $F(x, y, z) = (y^2, xz, 1)$ be a vector field. The following curves are given:

- $C_1: r_1(t) = (t, t, t), \quad t \in [0, 1]$
- $C_2: r_2(t) = (2t, 2t, 2t), \quad t \in [0, \frac{1}{2}]$
- $C_3: r_3(t) = (t, t^2, t^3), t \in [0, 1]$

Sketch the curves. Compute the line integrals

$$\int_{C_1} F \cdot dr, \quad \int_{C_2} F \cdot dr, \quad \int_{C_3} F \cdot dr.$$

Why do the first two line integrals coincide? Is F a conservative vector field?

Solution: TODO

Exercise 2.3. Let C be the hypocycloid (astroid) given by

$$r(t) = (\cos^3(t), \sin^3(t)).$$

Find the length of C. Hint: Compute the length of C in the first quadrant $(t \in [0, \frac{\pi}{2}])$ and multiply the result by 4.

Solution:

$$r'(t) = \left(-3\cos^2(t)\sin(t), \ 3\sin^2(t)\cos(t)\right)$$

$$= 3\sin(t)\cos(t) \left(-\cos(t), \sin(t)\right)$$

$$\implies ||r'(t)|| = 3\sin(t)\cos(t)\sqrt{\cos^2(t) + \sin^2(t)}$$

$$= 3\sin(t)\cos(t)$$

$$l = \int_C ds = 4\int_0^{\frac{\pi}{2}} ||r'(t)|| \ dt$$

$$= 12\int_0^{\frac{\pi}{2}} \sin(t)\cos(t) \ dt$$

Let $u = \sin(t) \implies du = \cos(t) dt$:

$$l = 12 \int_0^1 u \, du$$
$$= 12 \left[\frac{1}{2} u^2 \right]_0^1$$
$$= 12 \left[\frac{1}{2} \sin^2(t) \right]_0^{\frac{\pi}{2}}$$
$$= 6 \sin^2(\pi/2)$$
$$= 6$$

Exercise 2.4. Compute the line integrals of the first and the second kind:

(a) Let C_1 be the semi-circle given by $r_1(t) = (3\cos(t), 3\sin(t)), \quad t \in [0, \pi].$

$$\int_{C_1} x^2 y \, ds$$

(b) Let C_2 be given by the parametrization $r_2(t) = (4t, 3t^2), t \in [0, 1].$

$$\int_{C_2} (x^2 y) \, dx - (x - yx) \, dy$$

Solution: TODO