Hiukkassuotimet

Lasse Rintakumpu

25. huhtikuuta 2021

Hiukkassuotimet

Hiukkassuotimet (particle filters, tunnetaan myös nimellä sekventiaaliset Monte Carlo -menetelmät, sequential Monte Carlo, SMC) ovat joukko 90-luvulta eteenpäin kehitettyjä menetelmiä, joiden avulla voidaan approksimoida epälineaarista Bayes-rekursiota / suodinongelmaa.

Menetelmissä käytetään otoksia (kutsutaan myös partikkeleiksi) esittämään jonkin stokastisen prosessin posteriorijakaumaa, kun vain osa havainnoista tunnetaan ja/tai havaintoihin liittyy kohinaa. Menetelmille on lukuisia sovellutuksia fysiikasta robotiikkaan.

Motivaatio: Suodinongelma

Hiukkassuotimen tavoitteena on estimoida "piilossa olevien" tilojen posteriorijakauma havaintojen perusteella. Lisäksi tiedetään miten havaitut muuttujat kytkeytyvät "piilossa oleviin" muuttujiin sekä osaamme sanoa jotain tilamuuttujien todennäköisyyksistä. Signaalinkäsittelyssä tätä kutsutaan suodinongelmaksi.

Eli tilanne on

Motivaatio: Suodinongelma

$$X_1 \to X_2 \to X_3 \to \dots$$
 piilossa olevat tilat $\downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow$ $Y_1 \to Y_2 \to Y_3 \to \dots$ havainnot.

Hiukkassuotimella estimoidaan sekventiaalisesti tilojen X_k arvot minä hyvänsä ajan hetkellä k, kun ainoastaan prosessi Y_1, \ldots, Y_k tunnetaan. Estimaatit saadaan posteriorijakaumasta $p(x_k|y_1,y_2,\ldots,y_k)$, jolle siis muodostetaan Bayesilaisittain approksimaatio havaintojen pohjalta.

Malli

Merkitään piilossa olevan prosessin tilaa ajanhetkellä $k\ x_k$ ja havaittua prosessia y_k . Aika-avaruus on diskreetti. Hiukkassuodinta varten määritellään prosesseille mallit

$$x_{k+1} \sim p(x_{k+1}|x_k)$$
$$y_k \sim p(y_k|x_k),$$

joiden pohjalta halutaan laskea posteriorijakauma $p(x_k|y_{1:k})$. Nämä vastaavat aiemmin määriteltyä ehtoa "tiedetään miten havaitut muuttujat kytkeytyvät"piilossa oleviin" muuttujiin (y_k) sekä osaamme sanoa jotain tilamuuttujien todennäköisyyksistä (x_{k+1}) ".

Esimerkissä haluamme tietää lentokoneen sijannin kaksiulotteisessa maailmassa, kun tiedämme

- ▶ lentokorkeuden.
- etäisyyden maanpinnasta
- ja käytössämme on maastokartta (mutta emme tiedä missä olemme).

Kuvat lainattu animaatiosta **Particle Filter Explained without Equations**, https://www.youtube.com/watch?v=aUkBa1zMKv4.

Kuva 1: Alustus.

Kuva 2: Mittaus ja painojen päivitys.

Kuva 3: Uudellenotanta ja ajan päivitys.

Kuva 4: Mittaus ja painojen päivitys.

Kuva 5: Uudelleenotanta ja ajan päivitys.

Kuva 6: Ja niin edelleen . . .

Bayesilainen suodin

Bayesilainen ratkaisu posteriorijakaumalle saadaan seuraavalla rekursiolla (käydään läpi jokaiselle ajanhetkelle $k=1,\ldots,t$). Lasketaan ensin

$$p(x_k|y_{1:k}) = \frac{p(y_k|x_k)p(x_k|y_{1:k-1})}{p(y_k|y_{1:k-1})},$$

joka saadaan suoraan Bayesin kaavasta P(A|B) = P(B|A)P(A)/P(B). Tämä vastaa lentokone-esimerkissä mittaustulosten päivittämistä.

Bayesilainen suodin

Normalisointivakio lasketaan integraalina

$$p(y_k|y_{1:k-1}) = \int_{\mathbb{R}^{n_x}} p(y_k|x_k) p(x_k|y_{1:k-1}) dx_k,$$

joka saadaan kokonaistodennäköisyyskaavasta $P(A) = \mathbb{E}[P(A|X)] = \int_{-\infty}^{\infty} P(A|X=x) f_X(x) \, dx$. Merkintä R^{n_X} vastaa tässä piilossa olevien muuttujien dimensiota n.

Bayesilainen suodin

Lopuksi lasketaan päivitysaskel ajalle, joka saadaan edelleen kokonaistodennäköisyydellä

$$p(x_{k+1}|y_{1:k}) = \int_{\mathbb{R}^{n_x}} p(x_{k+1}|x_k) p(x_k|y_{1:k}) dx_k.$$

Rekursion avulla voidaan siis laskea $p(x_k|y_{1:k})$ käymällä rekursio läpi k kertaa.

Ennen algoritmin suorittamista valitaan ehdotusjakauma $q(x_{k+1}|x_{1:k},y_{k+1})$, uudelleenotantamenetelmä sekä partikkelien määrä N. Ehdotusjakauman valintaa ei käsitellä tässä, mutta valinta voidaan tehdä optimaalisesti. Yksinkertaisin valinta on $q(x_{k+1}|x_{1:k},y_{k+1})=p(x_{k+1}|x_{1:k})$.

Alla käytetään notaatiota x_k^i , joka tarkoittaa, että tila x_k käy ajanhetkellä k gridin pisteessä x^i . Notaatiota tarvitaan, koska hiukkassuotimessa läpikäytävä gridi muuttuu ajan funktiona.

Alustus: Generoidaan $x_1^i \sim p_{x_0}$ missä $i=1,\ldots,N$ ja jokainen partikkeli saa saman painon $w_{1|0}^i=1/N$.

Jokaiselle ajanhetkelle $k=1,2,\ldots,t$ toistetaan seuraava laskenta.

Vaihe 1: Päivitetään havainnot. Jokaiselle partikkelille i = 1, 2, ..., N lasketaan painot

$$w_{k|k}^{i} = \frac{1}{c_k} w_{k|k-1}^{i} p(y_k|x_k^{i}),$$

missä normalisointipaino on

$$c_k = \sum_{i=1}^N w_{k|k-1}^i p(y_k|x_k^i).$$

Vaihe 2: Estimoidaan p. Lasketaan tiheydelle approksimaatio

$$\hat{p}(x_{1:k}|y_{1:k}) = \sum_{i=1}^{N} w_{k|k}^{i} \delta(x_{1:k} - x_{1:k}^{i}),$$

missä $\delta(x)$ on Diracin deltafunktio.

Vaihe 3: Valinnainen uudelleenotanta. Otetaan uudet N otosta palauttaen joukosta $\{x_{1:k}^i\}_{i=1}^N$, missä otoksen i todennäköisyys on $w_{k|k}^i$.

Uudelleenotantaa tarvitaan, koska ilman sitä painot alkavat keskittyä muutaman ajanhetken jälkeen tietyille partikkeleille. Uudelleenotantaa ei kuitenkaan kannata aloittaa liian aikaisin, koska se lisää satunnaisotannan epävarmuutta.

Vaihe 4: Aikapäivitys, jos k < t. Luodaan ennusteet partikkeleille ehdotusjakaumasta

$$x_{k+1}^i \sim q(x_{k+1}|x_k^i, y_{k+1})$$

ja päivitetään myös partikkelien painot tärkeytysotannalla sen mukaan kuinka todennäköisiä partikkelien ennusteet ovat

$$w_{k+1|k}^{i} = w_{k|k}^{i} \frac{p(x_{k+1}^{i}|x_{k}^{i})}{q(x_{k+1}^{i}|x_{k}^{i}, y_{k+1})}.$$

Palataan takaisin **vaiheeseen 1**. Jatketaan kunnes k = t. Kun $N \to \infty$ algoritmille pätee $\hat{p}(x_{1:k}|y_{1:k}) \xrightarrow{a.s.} p(x_{1:k}|y_{1:k})$.

Marginaalijakauma

Edellä kuvattu algoritmi tuottaa approksimaation koko prosessin posteriorijakaumalle $p(x_{1:k}|y_{1:k})$. Jos halutaan tietää ainoastaan posteriorijakauman $p(x_k|y_{1:k})$ estimaatti, voidaan käyttää ainoastaan viimeisestä tilasta x_k^i laskettua estimaattia

$$\hat{p}(x_k|y_{1:k}) = \sum_{i=1}^{N} w_{k|k}^{i} \delta(x_k - x_k^{i}).$$

Marginaalijakauma

Toinen vaihtoehto on käyttää laskennassa tärkeytyspainoa

$$w_{k+1|k}^{i} = \frac{\sum_{j=1}^{N} w_{k|k}^{j} p(x_{k+1}^{i} | x_{k}^{j})}{q(x_{k+1}^{i} | x_{k}^{i}, y_{k+1})}$$

yllä esitetyn sijaan. Tällöin jokaisessa aikapäivitysaskeleessa lasketaan painot kaikkien mahdollisten tila-aika-avaruuspolkujen yli. Samoin kuin uudelleenotanta tämä pienentää painojen varianssia.

Menetelmä kuitenkin lisää algoritmin aikakompleksisuutta $\mathcal{O}(N) \to \mathcal{O}(N^2)$, joten isoilla arvoilla N pitää käyttää jotakin toista versiota algoritmista. Esimerkiksi $\mathcal{O}(N\log(N))$ versio tästä marginaalihiukkassuotimesta on olemassa.

Kirjallisuutta

- ▶ Dahlin & Schön (2019): Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models. https://arxiv.org/pdf/1511.01707.pdf.
- Gordon, Salmond & Smith (1993): Novel approach to nonlinear/non-Gaussian Bayesian state estimation. http://www.irisa.fr/aspi/legland/ref/gordon93a.pdf.
- Gustafsson (2010): Particle Filter Theory and Practice with Positioning Applications. https://ieeexplore.ieee.org/document/5546308.
- Särkkä (2013): Bayesian Filtering and Smoothing.
 Cambridge University Press.
 - $https://users.aalto.fi/\sim ssarkka/pub/cup_book_online_20131\\111.pdf.$
- Wikipedia: Particle filter. https://en.wikipedia.org/wiki/Particle_filter.