# EE525 - Lab Project 1

Authors: Grant Gallagher, Alexander Goldstein, Yu-Shun Hsiao, Jacobis, Soriano Pelaez

Due: 10/8/2021

Objective:

#### **Table of Contents**

| Part 1. Digital Communications | 1 |
|--------------------------------|---|
| Problem Statement              | 1 |
| 1 - Analytical Solution        |   |
| Computer Simulation            |   |
| Plot                           |   |
| Part 2. COVID-19 Data Analysis |   |
| Problem Statement              | 3 |
| Part 1                         | 4 |
| 1 - Death Rates in September.  | 8 |

## **Part 1. Digital Communications**

#### **Problem Statement**

In a phase-shift keyed (**PSK**) digital communication system, a binary digit (also termed a bit), which is either a "**0**" or a "**1**", is communicated to a receiver by sending either  $s_0 = A\cos(2\pi F_0 t + \pi)$  to represent a "0" or  $s_1 = A\cos(2\pi F_0 t)$  to represent a "1", where A > 0. The receiver that is used to decode the transmission is shown in the figure below. The receiver that is used to decode the transmission is shown in the figure below.



The input to the receiver is the noise corrupted signal or  $x(t) = s_i(t) + w(t)$ , where w(t) represents the channel noise. It can be shown that in the absence of noise, the output of the lowpass filter is

$$\zeta = \begin{cases} -\frac{A}{2} & \text{for } a \text{ "0"} \\ \frac{A}{2} & \text{for } a \text{ "1"} \end{cases}$$

The receiver decides a "1" was transmitted if  $\zeta > 0$  and a "0" if  $\zeta \leq 0$ . To model the channel noise we assume that the actual value of  $\zeta$  observed is

$$\zeta = \begin{cases} -\frac{A}{2} + W & \text{for } a \text{ "0"} \\ \frac{A}{2} + W & \text{for } a \text{ "1"} \end{cases}$$

where W is the Gaussian random variable,  $W \sim N(0, 1)$ .

- 1. Analytically determine the probability of error  $P_e$ , and plot it versus A.
- 2. Use computer simulation to plot  $P_e$  versus A on the same graph as in 1 above.
- 3. How should one choose *A* so that the error probability does not exceed 0.01 (use the analytical result)?

### 1 - Analytical Solution

```
clc;
clear;
clf;
syms A W x
P_0 = 0.5
```

```
P 0 = 0.5000
```

```
P_1 = 0.5;

Guass_Norm_pdf = 1/sqrt(2*pi) * exp((-(x)^2)/2);

Zeta_0_pdf = subs(Guass_Norm_pdf, x, (A/2 + W));

Zeta_1_pdf = subs(Guass_Norm_pdf, x, (A/2 - W));

P_e_given_0 = 1 - int(Zeta_0_pdf,W,-inf,0);

P_e_given_1 = int(Zeta_1_pdf,W,-inf,0);

P_e_analytical = P_e_given_0*P_0 + P_e_given_1*P_1;
```

### **Computer Simulation**

```
% n = 100; % Sample Size
% Astep = 20;
% A = [-5:10/Astep:5];
% errors = zeros(length(A), 1);
% for k = 1:length(A)
%
     dist = normrnd(A(k)/2, 1, [1 n]);
%
     for m = 1:n
%
          if dist(m) <= 0
%
              errors(k) = errors(k) + 1;
%
          end
%
     end
```

```
% end
%
% P_e_simulation_100 = errors/n;
%
% n = 1000000
% A = [-5:10/Astep:5];
% errors = zeros(length(A), 1);
% for k = 1:length(A)
%
      dist = normrnd(A(k)/2, 1, [1 n]);
%
      for m = 1:n
%
          if dist(m) <= 0
%
              errors(k) = errors(k) + 1;
%
          end
%
      end
% end
% P_e_simulation_100k = errors/n;
```

#### **Plot**

```
% figure
% hold on
% fplot(P_e_analytical, 'Color', [0 0 0])
% plot(A,P_e_simulation_100, '.', 'MarkerSize', 12, 'Color', [0.8750 0.2780 0.3840])
% plot(A,P_e_simulation_100k, '^', 'MarkerSize', 5, 'Color', [0 0.4470 0.7410], 'MarkerFaceCologo
% hold off
%
% legend('Analytical', 'Simulation, n=100', 'Simulation, n=100k')
% title("Cumulative Density Function of Flipped-Bit Error versus Magnitude of A")
% xlabel("Signal Magnitude, {\itA} [-]")
% ylabel("Probability of Error, {\itP_e} [-]")
```

## Part 2. COVID-19 Data Analysis

#### **Problem Statement**

In this assignment, you will analyze the data to understand the Coronavirus pandemic, in particular, you will study the factors that might impact the mortality rate of COVID-19. You can find the dataset provided by *Our World in Data* here. It provides daily numbers on confirmed cases and deaths, testings, vaccinations, and other metrics for over 100 countries. For this study, consider the following data:  $new\_deaths\_per\_million$  for the month of September 2021,  $new\_tests\_per\_thousand$  for the same period,  $people\_vaccinated\_per\_hundred$ ,  $aged\_70\_older$ ,  $gdp\_per\_capita$ ,  $cardiovasc\_death\_rate$ ,  $diabetes\_prevalence$ . If a country misses any of the data, remove that country in this study.

- Plot the distribution of death rates for all countries. Compute the average death rates and the variance (Don't use MATLAB built-in functions). What do these numbers tell us? Describe anything else you observe from the data.
- 2. Study all other metrics. Plot their distributions, compute and interpret the average values and variances.
- 3. Compute the correlation coefficients between the death rates and other metrics. What factor(s) affect the mortality rate the most? Plot the scatter diagram to support your argument. Describe anything else you observe from the data.

#### Part 1

```
clc
clear
clf
raw_covid_data = readtable('owid-covid-data.csv');
countries = unique(raw_covid_data.location);
random_variable = {'avg_new_deaths_per_million', 'avg_new_tests_per_thousand', 'avg_people_vac
                     'avg_aged_70_older', 'avg_gdp_per_capita', 'avg_cardiovasc_death_rate', 'avg
                     'var_new_deaths_per_million', 'var_new_tests_per_thousand', 'var_people_vac
                     'var_aged_70_older', 'var_gdp_per_capita', 'var_cardiovasc_death_rate', 'var
random_variable = 1×14 cell
'avg_new_deaths_per_million'
                           'avg_new_tests_per_thousand'
                                                       'avg_people_vaccin '''
x = zeros(length(countries), length(random_variable))
x = 233 \times 14
                                                                    0 . . .
    0
         0
               0
                    0
                         0
                               0
                                    0
                                         0
                                               0
                                                    0
                                                         0
                                                               0
         0
               0
                    0
                         0
                                    0
                                         0
                                                    0
                                                                    0
    0
                               a
                                               a
                                                         a
                                                               a
    0
         0
               0
                    0
                         0
                              0
                                    0
                                         0
                                               0
                                                    0
                                                         0
                                                               0
                                                                    0
    0
         0
               0
                    0
                         0
                              0
                                    0
                                         0
                                               0
                                                    0
                                                         0
                                                               0
                                                                    0
               0
                                                                    0
    0
         0
                    0
                         0
                              0
                                    0
                                         0
                                               0
                                                    0
                                                         0
                                                               0
    0
         0
               0
                    0
                         0
                                    0
                                         0
                                               0
                                                    0
                                                         0
                                                               0
                                                                    0
                              0
                                         0
    0
         0
               0
                    0
                         0
                              0
                                    0
                                                    0
                                                         0
                                                                    0
    0
         0
               0
                    0
                         0
                                    0
                                         0
                                                    0
                                                         0
                                                               0
                                                                    0
         0
               0
                    0
                         0
                                    0
                                         0
                                                    0
                                                         0
                                                               0
                                                                    0
    0
for k = 1:length(countries)
    new_deaths_per_million = raw_covid_data.new_deaths_per_million(string(raw_covid_data.locati
                                                                        raw_covid_data.date >= '1-Se
                                                                        raw_covid_data.date <= '30-9</pre>
                                                                        ~isnan(raw_covid_data.new_de
    new_tests_per_thousand = raw_covid_data.new_tests_per_thousand(string(raw_covid_data.locati
                                                                        raw covid data.date >= '1-Se
                                                                        raw_covid_data.date <= '30-9</pre>
                                                                        ~isnan(raw_covid_data.new_te
    people vaccinated per hundred = raw covid data.people vaccinated per hundred(string(raw cov
                                                                                        ~isnan(raw_cov
    aged_70_older = raw_covid_data.aged_70_older(string(raw_covid_data.location) == countries(
                                                                                        ~isnan(raw_cov
    gdp_per_capita = raw_covid_data.gdp_per_capita(string(raw_covid_data.location) == countries
                                                                                        ~isnan(raw cov
    cardiovasc_death_rate = raw_covid_data.cardiovasc_death_rate(string(raw_covid_data.location
                                                                                        ~isnan(raw_cov
    diabetes_prevalence = raw_covid_data.diabetes_prevalence(string(raw_covid_data.location) ==
```

rv\_vector = {new\_deaths\_per\_million, new\_tests\_per\_thousand, people\_vaccinated\_per\_hundred,

~isnan(raw\_cov

```
gdp_per_capita, cardiovasc_death_rate, diabetes_prevalence};
x(k,:) = [transpose(first_moment(rv_vector)), transpose(second_moment(rv_vector))];
end
t = array2table(x,'RowNames',countries,'VariableNames',random_variable)
```

t = 233×14 table

|                                 | avg_new_deaths_per_million            | avg_new_tests_per_thousand |
|---------------------------------|---------------------------------------|----------------------------|
| 1 Afghanistan                   | 0.0719                                | NaN                        |
| 2 Africa                        | 0.3429                                | NaN                        |
| 3 Albania                       | 2.3204                                | NaN                        |
| 4 Algeria                       | 0.4057                                | NaN                        |
| 5 Andorra                       | 0                                     | NaN                        |
| 6 Angola                        | 0.3144                                | NaN                        |
| 7 Anguilla                      | NaN                                   | NaN                        |
| 8 Antigua and Barbuda           | 11.8170                               | NaN                        |
| 9 Argentina                     | 2.4609                                | 0.6032                     |
| 10 Armenia                      | 5.3345                                | 1.9166                     |
| 11 Aruba                        | NaN                                   | NaN                        |
| 12 Asia                         | 0.6315                                | NaN                        |
| 13 Australia                    | 0.3864                                | 8.3364                     |
| 14 Austria                      | 0.8737                                | 39.0196                    |
| 15 Azerbaijan                   | 2.8986                                | 1.574                      |
| 16 Bahamas                      | 14.8647                               | 1.0742                     |
| 17 Bahrain                      | 0.0191                                | 10.650 <sup>-</sup>        |
| 18 Bangladesh                   | 0.2635                                | 0.1647                     |
| 19 Barbados                     | 2.7807                                | NaN                        |
| 20 Belarus                      | 1.2816                                | 2.2100                     |
| 21 Belgium                      | 0.6363                                | 3.834                      |
| 22 Belize                       | 4.2808                                | Nat                        |
| 23 Benin                        | 0.0830                                | Nat                        |
| 24 Bermuda                      | NaN                                   | Nat                        |
| 25 Bhutan                       | 0                                     | 2.5440                     |
| 26 Bolivia                      | 0.7974                                | 0.437                      |
| 27 Bonaire Sint Eustatius and S | NaN                                   | Nat                        |
| 28 Bosnia and Herzegovina       | 8.2020                                | 1.0066                     |
|                                 | · · · · · · · · · · · · · · · · · · · | l.                         |

|                                 | avg_new_deaths_per_million | avg_new_tests_per_thousand |
|---------------------------------|----------------------------|----------------------------|
| 29 Botswana                     | 1.4878                     | Nat                        |
| 30 Brazil                       | 2.5446                     | NaN                        |
| 31 British Virgin Islands       | NaN                        | NaN                        |
| 32 Brunei                       | 2.4915                     | NaN                        |
| 33 Bulgaria                     | 9.5990                     | NaN                        |
| 34 Burkina Faso                 | 0.0202                     | NaN                        |
| 35 Burundi                      | 0                          | NaN                        |
| 36 Cambodia                     | 0.8181                     | NaN                        |
| 37 Cameroon                     | 0.1335                     | NaN                        |
| 38 Canada                       | 0.8098                     | 2.4236                     |
| 39 Cape Verde                   | 1.5425                     | 1.6684                     |
| 40 Cayman Islands               | NaN                        | NaN                        |
| 41 Central African Republic     | 0                          | NaN                        |
| 42 Chad                         | 0                          | NaN                        |
| 43 Chile                        | 0.9212                     | 2.6300                     |
| 44 China                        | 0                          | NaN                        |
| 45 Colombia                     | 0.8804                     | 0.8909                     |
| 46 Comoros                      | 0                          | NaN                        |
| 47 Congo                        | 0.0589                     | NaN                        |
| 48 Cook Islands                 | NaN                        | NaN                        |
| 49 Costa Rica                   | 5.7079                     | 1.364                      |
| 50 Cote d'Ivoire                | 0.2257                     | 0.1502                     |
| 51 Croatia                      | 2.4990                     | 2.1905                     |
| 52 Cuba                         | 6.2823                     | NaN                        |
| 53 Curacao                      | NaN                        | NaN                        |
| 54 Cyprus                       | 1.5764                     | 61.0986                    |
| 55 Czechia                      | 0.1708                     | 6.7030                     |
| 56 Democratic Republic of Congo | 0.0090                     | NaN                        |
| 57 Denmark                      | 0.4128                     | 7.0968                     |
| 58 Djibouti                     | 0.3326                     | NaN                        |
| 59 Dominica                     | 7.3898                     | NaN                        |
| 60 Dominican Republic           | 0.1156                     | Nat                        |
| 61 Ecuador                      | 0.9653                     | 0.1313                     |
| 62 Egypt                        | 0.1902                     | Nan                        |

|                      | avg_new_deaths_per_million | avg_new_tests_per_thousand |
|----------------------|----------------------------|----------------------------|
| 63 El Salvador       | 1.6160                     | Nal                        |
| 64 Equatorial Guinea | 0.4828                     | 1.500                      |
| 65 Eritrea           | 0.0370                     | Nat                        |
| 66 Estonia           | 1.6350                     | 4.235                      |
| 67 Eswatini          | 3.3836                     | Nat                        |
| 68 Ethiopia          | 0.2564                     | 0.066                      |
| 69 Europe            | 2.2970                     | Nat                        |
| 70 European Union    | 1.2319                     | Nat                        |
| 71 Faeroe Islands    | NaN                        | Nat                        |
| 72 Falkland Islands  | NaN                        | Nat                        |
| 73 Fiji              | 4.7257                     | Nat                        |
| 74 Finland           | 0.3004                     | 2.884                      |
| 75 France            | 1.2571                     | 8.022                      |
| 76 French Polynesia  | NaN                        | Nat                        |
| 77 Gabon             | 0.2926                     | 12.066                     |
| 78 Gambia            | 0.2546                     | Nat                        |
| 79 Georgia           | 12.8818                    | 12.940                     |
| 80 Germany           | 0.5903                     | Nai                        |
| 81 Ghana             | 0.1262                     | Nat                        |
| 82 Gibraltar         | NaN                        | Nat                        |
| 83 Greece            | 3.8763                     | 15.140                     |
| 84 Greenland         | NaN                        | Nat                        |
| 85 Grenada           | 40.9975                    | Nat                        |
| 86 Guatemala         | 2.9918                     | 0.5879                     |
| 87 Guernsey          | NaN                        | Nat                        |
| 88 Guinea            | 0.1036                     | Nat                        |
| 89 Guinea-Bissau     | 0.2645                     | Nat                        |
| 90 Guyana            | 6.9169                     | Nat                        |
| 91 Haiti             | 0.0693                     | Nat                        |
| 92 Honduras          | 3.0707                     | Nat                        |
| 93 Hong Kong         | 0.0044                     | Nat                        |
| 94 Hungary           | 0.4567                     | 1.690                      |
| 95 Iceland           | 0                          | 5.004                      |
| 96 India             | 0.2230                     | 1.129                      |

|                  | avg_new_deaths_per_million | avg_new_tests_per_thousand |
|------------------|----------------------------|----------------------------|
| 97 Indonesia     | 1.0754                     | 0.5718                     |
| 98 International | NaN                        | NaN                        |
| 99 Iran          | 4.9529                     | 1.3034                     |
| 100 Iraq         | 1.1575                     | 0.6794                     |

# 1 - Death Rates in September

```
figure
histogram(t.avg_new_deaths_per_million)
title('Average new death rates per million by country for the month of September')
ylabel('New deaths per million')
xlabel('Countries')
```

