Matemática Discreta

Ano Lectivo 2014/2015

Soluções da folha de exercícios nº6 Recorrência e funções geradoras

1.
$$a_n = \frac{3}{2}a_{n-1}$$
, para $n \ge 1$, com $a_0 = 1200$.

2.
$$a_n = a_{n-1} + (n-1) \times 3^n$$
, para $n \ge 1$, com $a_0 = 0$.

3. (a)
$$a_1 = 3 e a_2 = 8$$
.

(b)
$$a_n = 2a_{n-2} + 2a_{n-1}, n \ge 3$$
.

4.
$$c_n = c_{n-1} + c_{n-2}$$
, para $n \ge 3$, com $c_1 = 1$ e $c_2 = 2$.

5. (a)
$$a_n = 5 + 2n(n+1)(2n+1)$$
, para $n \ge 0$.

(b)
$$a_n = 5 + n - 7 \times 2^{n+1} - 5n2^{n-1} + n^2 2^{n-1} + 3^{n+2}$$
, para todo $n \ge 0$.

(c)
$$a_n = \frac{2}{\sqrt{3}}\sin(\frac{n\pi}{3})$$
, para todo $n \ge 0$.

- 6. Relação de recorrência: $S_n=S_{n-1}+2n^2+n$, para todo $n\geq 2$, com $S_1=3$. Fórmula fechada: $S_n=\frac{n(n+1)(4n+5)}{6}$, para todo $n\geq 1$.
- 7. p = -5, q = 6 e r = 8.
- 8. Relação de recorrência: $a_n=2a_{n-1}+1$, para todo $n\geq 2$, com $a_1=0$. Fórmula fechada: $a_n=2^{n-1}-1$, para todo $n\geq 1$.
- 9. (a) Substituição: $a_n = b_n \times n!$. Fórmula fechada: $b_n = n+2$ e $a_n = (n+2) \cdot n!$, para todo $n \ge 0$.
 - (b) Substituição: $a_n = b_n/n$. Fórmula fechada: $b_n = 2 \times 5^n$ e $a_n = 2 \times 5^n/n$, para todo $n \ge 1$.
 - (c) Substituição: $b_n = a_n^2$.

Fórmula fechada:
$$b_n = \begin{cases} 0 & \text{se } n = 4k \\ 1 & \text{se } n = 1 + 4k \\ 3 & \text{se } n = 2 + 4k \\ 2 & \text{se } n = 3 + 4k \end{cases}$$
 e $a_n = \begin{cases} 0 & \text{se } n = 4k \\ 1 & \text{se } n = 1 + 4k \\ \sqrt{3} & \text{se } n = 2 + 4k \\ \sqrt{2} & \text{se } n = 3 + 4k \end{cases}$, para todo $n \ge 0$.

- (d) Substituição: $b_n = \log_2 a_n$. Fórmula fechada: $b_n = \left(\frac{2}{3}\right)^{n-1}$ e $a_n = 2^{\left(\frac{2}{3}\right)^{n-1}}$, para todo $n \ge 1$.
- (e) Substituição: $b_n = \log_2 a_n$. Fórmula fechada: $b_n = 2^{n+2} - 3$ e $a_n = 2^{2^{n+2} - 3}$ para $n \ge 0$.

10.
$$h(k,n)=h(k,n-1)+kh(k-1,n-2),$$
 para todos $k\geq 1$ e $n\geq 2.$

11. (a)
$$f(x) = (1 + x + \dots + x^5)(1 + x + x^2 + x^3)(x^2 + x^3 + \dots + x^8)(1 + x + \dots + x^4)$$
.

(b)
$$f(x) = (1 + x^2 + x^4 + x^6 + x^8)(x + x^3 + x^5 + x^7)(1 + x + x^2 + x^3 + \dots + x^8)^2$$
.

12. (a)
$$f(x) = (1 + x + x^2 + \dots + x^{27})^4$$
, coeficiente de x^{27} .

(b)
$$f(x) = (x + x^2 + \dots + x^{24})^4$$
, coeficiente de x^{27} .

(c)
$$f(x) = (1 + x + x^2 + \dots + x^{13})^4$$
, coeficiente de x^{27} .

- 13. 55.
- 14. Coeficiente de x^r na série de potências da função g definida por $g(x) = (1 + x^3 + x^6 + x^9 + \cdots)(1 + x^2 + x^4 + x^6 + \cdots)^2(1 + x^4 + x^8 + x^{12} + \cdots) = \frac{1}{(1 x^3)(1 x^2)^2(1 x^4)}$

- 15. (a) $a_n = n!$, para todo $n \ge 1$.
 - (b) $a_n = 1 + \binom{n+1}{2}$, para todo $n \ge 0$.
- 16. Determine as funções geradoras das seguintes sucessões:
 - (a) $B(x) = \frac{kx}{(1-kx)^2}$.
 - (b) $C(x) = \frac{kx}{(1-x)(1-kx)^2}$.
 - (c) $A(x) = \frac{-1 + (2 + C_1)x}{1 C_1x C_2x^2}$.
- 17. (a) $a_0 = 16$, $a_1 = 32$, $a_2 = 24$, $a_3 = 8$, $a_4 = 1$, $a_n = 0$, para todo $n \ge 5$.
 - (b) $a_n = -2 + 2^{n+2}$, para todo $n \ge 0$.
- 18. (a)
 - (b) $u_n = 2^{2n+1} 2^n$, para todo $n \ge 0$.
- 19. (a) $f(x) = \frac{x}{(1-x)^2}$.
 - (b)
 - (c) $f(x) = (\alpha + 1) \frac{x}{1-x^2} \frac{x}{(1-x)^4}$.
 - (d) $a_n = \frac{\alpha+1}{2} \frac{\alpha+1}{2}(-1)^n \frac{n(n+1)(2n+1)}{6}$, para todo $n \ge 0$.
- 20. $a_n = n3^n + 1$, para todo $n \ge 0$.
- 21. (a) $a_n 8a_{n-1} + 23a_{n-2} 28a_{n-3} + 12a_{n-4} = 0$.
 - (b) $a_n = A + B3^n + C2^n + Dn2^n$, para todo $n \ge 0$, com A, B, C e D constantes.
- 22. $a_n = 2 \times 3^n$, para todo $n \ge 0$.
- 23. $a_n = \frac{3+\sqrt{3}}{6}(2+\sqrt{3})^n + \frac{3-\sqrt{3}}{6}(2-\sqrt{3})^n$ e $b_n = \frac{\sqrt{3}}{6}(2+\sqrt{3})^n \frac{\sqrt{3}}{6}(2-\sqrt{3})^n$, para todo $n \ge 0$.
- 24. $u_n = \frac{n(n+1)(2n+1)}{6} + 2$, para todo $n \ge 0$.
- 25. $u_n = \frac{1+3^n}{2}$, para todo $n \ge 0$.
- 26. $a_n = -(n+1)^2$, para todo $n \ge 0$.