MA4825 Robotics Assignment

Assignment (Due 11/10/25@2359hrs, Saturday)

Instructions:

- 1. Answer all questions.
- 2. Show all your workings and any diagrams clearly.
- 3. Submit online thru MA4825 ntulearn course channel> Assignment> MA4825 Assignment 2 submission.

Question 1

Figure 1 shows a tool-joint with 2 DOFs with coordinate frame XYZ fixed at point O and frame xyz at point o rotating with the bracket. It consists of a motor mounted on a bracket with a yaw about the Z-axis tilted about the x-axis at an angle $\gamma = 40^{\circ}$. The bracket rotates at a constant rate of $\dot{\beta} = 3$ rad/s while the motor rotates the disk at a constant rate of $\dot{\theta} = 60$ revs/min. Answer the following:

- i. Calculate the absolute angular velocity and absolute angular acceleration of the disk. (5 marks)
- ii. Determine the absolute velocity and acceleration of point A when it is located as shown in Figure 1. (8 marks)
- iii. Subsequently, determine the absolute velocity and acceleration after the disk has rotated 90 degrees from part ii. Give the answer in terms of the fixed frame XYZ. (12 marks)

Figure 1

Question 2

A robot arm with a gripper consisting of 3 rotational links (i.e. links 1, 2 and 3) and 1 translational link (i.e. link 4) is shown in Figure 2. The angular displacement of rotational joint 1 to 3 is θ_1 , θ_2 and θ_3 respectively and the displacement of the translational joint is c Links 1, 2 and 3 are rotating with a constant angular velocity of $\dot{\theta}_1$, $\dot{\theta}_2$ and $\dot{\theta}_3$ while the translational velocity of link 4 is \dot{s}_4 . Note that the configuration shown in Figure 2 is the initial configuration i.e. $\theta_{1-4}=0$ and the joint position of link 4 is at its home position. Note as well that the centroid of each link is located at the mid-point of the respective link. Answer the following:

- i. Define the position vector of tool-point P with respect to O_1 . (5 marks)
- ii. Define the Jacobian matrix [J] of the robot arm. (8 marks)
- iii. Express the steps to find the kinetic and potential energies of the entire system and the Lagrangian. Note that the masses of links 1 to 4 are m_{1-4} respectively and the mass moment of inertia of each link with respect to each centroid are I_{c1-4} respectively. (12 marks)

Figure 2