Métodos Numéricos 22 de junio de 2020 Segundo Parcial

 □ Completar apellido en las hojas y numerarlas □ Enviar fotos claras y legibles de la resolución del examen □ Justificar todas las respuestas 	Nombre y Apellido Yulita Federico			
		Ej. 2		Nota 80 (Aprobado)

- 1. Sea $A \in \mathbb{R}^{m \times n}$ con $m \geq n$ y sea $A = U \Sigma V^t$ una descomposición SVD de A con $U \in \mathbb{R}^{m \times m}$ y $V \in \mathbb{R}^{n \times n}$ ortogonales y $\Sigma \in \mathbb{R}^{m \times n}$ diagonal conteniendo los valores singulares $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$. Llamemos además u_1, \ldots, u_m a las columnas de U y v_1, \ldots, v_n a las columnas de V. Se desea encontrar un $x \in \mathbb{R}^n$ ($||x||_2 = 1$) que minimiza $||Ax||_2$.
 - (a) Mostrar que un cambio de variables permite reescribir el problema como: "encontrar un $y \in \mathbb{R}^n$ ($||y||_2 = 1$) que minimiza $||\Sigma y||_2$ ". (10 puntos)
 - (b) Probar que un y^* que resuelve el problema del ítem (a) es $y^* = e_n$, el n-ésimo vector de la base canónica, es decir: $\min_{y:||y||_2=1} ||\Sigma y||_2 = ||\Sigma e_n||_2$. (15 puntos)
 - (c) Dar una expresión de $x^* \in \mathbb{R}^n$ (es decir, de una solución del problema inicial) y de $||Ax^*||_2$ en función de los componentes de la descomposición SVD de A. (10 puntos)

2. Sea
$$A = \begin{pmatrix} 1 & c & 0 \\ 0 & 1 & c \\ 0 & c & 1 \end{pmatrix}$$
 con $c \in \mathbb{R}$ y sea $b \in \mathbb{R}^3$.

- (a) Plantear el esquema iterativo de Gauss-Seidel para resolver el sistema Ax = b. (10 puntos)
- (b) Hallar $\rho(T_{GS})$, siendo T_{GS} la matriz de iteración de Gauss-Seidel. (8 puntos)
- (c) ¿Para qué valores de c converge? (12 puntos)
- 3. Sea $b \in \mathbb{R}^m$ y $S = \langle q_1, \dots, q_n \rangle$ el subespacio generado por el conjunto ortonormal de vectores $q_i \in \mathbb{R}^m$, $i = 1, \dots, n, m \ge n$.
 - (a) Plantear y resolver el problema de cuadrados mínimos que encuentra el elemento en S que se encuentra más cercano a b. (13 puntos)
 - (b) Probar usando cuadrados mínimos que si $b \in S^{\perp}$ entonces 0 es el elemento en S más cercano a b. (12 puntos)
 - (c) Determinar si la siguiente afirmación es verdadera o falsa, justificando en cada caso: 'Si se agrega como elemento generador de S al vector $q_{n+1} = \sum_{i=1}^{n} q_i$, entonces existe un b para el cual el problema de cuadrados mínimos planteado en (a) tiene solución única.' (10 puntos)

HOJANº (1) FEDERICO YULITA 351/17 3) (A) Queremos hallar el vector YER más cercaio a b, er decr. que minimiza lly-bilz, llamemoslo yt. Ya que los vectores giER que gereran el espacio 5 forman una base (ya que son ostonormales) entonces podemos expresar a y como une combinación lineal: Y = Z x q , X & R . Tomemos A = (9,192, -, 9.) y x = so y = Ax. Entonces , la solución y cumple que i 11 Ax+-6112 = Min 11 Ax-611, donde y = Ax El problema se transforma en el problema de cadrados mínimos lineales del sistema Axeb. Entonces, usando las ecvaciones normales sabenes que A+Ax+ = A+b. Ya que las columnas de A son ortonormales entonces A es ortogonal, por lo que AtA = I . Entonces , X = Atb. 3 5: 665 e y 65 entonces por Pitagoras sabemos que: 11 y - 6112 = 11 y 112 + 11 6112 > 11 6112 (ya que y 1 5) Entonces, ya que lly-blle > llblle para minimizar esta norma es recesario que y=0, ya que es el único vedor que comple que su norma es rula. Entonces, y =0 @ Sabemos que existe solución única si y sólo si Nu (A) = 309 5: a A le agregamo, la columna fire como es una combinación lineal de les otras columnas entonces estas son linealmente depardientes. y Nu(A) + for. Entonces, la solución no es única. FALSO.