

Applications in Process Industry

- Enhance safety, optimize process, protect environment
 - □ Detect leaks before they lead to environmental problems.
 - Monitor the status of manually operated valves.
 - Monitor safety relief valves to detect venting to avoid accidents.
- Health, Safety, and the Environment (HSE) regulations.

Process Control

- Feedback control loop controls a physical process.
 - □ Example: control temperature by manipulating heat supply.
- Centralized vs. peer-to-peer control.

Why Wireless

- Cost reduction: wiring is economically infeasible
- Easier installation: inaccessible locations
- Easier maintenance
 - □ Wired networks cannot handle severe heat or exposure of chemicals
 - □ A wireless infrastructure can remain in place for many years.

Challenges in Wireless

- Strict timing requirement
- High security concerns
- Reliable communication despite wireless deficiencies
- > Plant environments are inherently unreliable
 - Interference, obstacles, power failures, lightening, storms...

- Existing standards fail in industrial environments
 - ZigBee: static channel
 - □ Bluetooth: quasi-static star network
- WirelessHART
 - For process measurement and control applications
 - □ First open and interoperable wireless standard to address the critical needs of real-world industrial applications

History

- > HART (Highway Addressable Remote Transducer Protocol)
 - Most widely used field communication protocol
 - 30 million devices worldwide
- WirelessHART released in Sep 2007 (as a part of HART 7)
 - Adds wireless capabilities to the HART protocol while maintaining compatibility with existing devices, commands and tools.

Wireless for Process Automation

World-wide adoption of wireless in process industries

1.5+ billion hours operating experience

100,000s of smart wireless field devices

10,000s of wireless field networks

Courtesy: Emerson Process Management

Killer App of Sensor Networks!

WirelessHART Use Cases

- Improved control of plant steam supply by detecting "cool spots" in cross plant steam lines
- Reducing risk of overfilling tanks by adding redundant level measurements (in oil and petroleum refineries)
- Monitor and control safety valves
- Monitor and control pressure and temperature of process fluids and gases

What is special?

- Reliable: 99.9%
- Secure
- > Self-organizing, self-healing
- Interoperable
- Supports both star and mesh topologies
- Built-in time synchronization

Network Architecture

Network Manager

- Centralized brain
- Manages the network and its devices
 - Routing, scheduling
 - □ User/administrator interacts with the Network Manager
 - ☐ Generates network management packets to devices
- Redundant Network Managers supported (only one active)

Field Devices

- Sensor/actuator/both
- Connected to the process or plant equipment
- Combines wireless communication with traditional HART field device capabilities
- May be line or battery-powered

WirelessHART Adapter

Enables communication with a non-native device through a WirelessHART Network..

Gateway

- One gateway can support up to 80 devices
- > A Gateway provides
 - One or more Access Points providing the physical connection into the WirelessHART network
 - One or more Host Interfaces connecting the Gateway to backbone networks (e.g., the plant automation network)
 - □ A connection to the Network Manager
 - Buffering and local storage for publishing data, event notification, and common commands
 - □ Time synchronization sourcing

Other Devices

- Handheld devices
 - Portable applications used to configure, maintain or control plant assets.
 - ☐ Typically belong to networks of different standards
- Plant Automation Network
 - Connects client applications to the gateway
- > Security Manager
 - Industry standard AES-128 ciphers/keys

WirelessHART PHY

- > Adopts IEEE 802.15.4
 - □ Same 16 mutually orthogonal channels
 - Operates in the 2.4GHz ISM band
 - Data rate of up to 250 Kbps
- Radio transceivers
 - Omni-directional
 - Half-duplex
 - □ 100 meters LOS @ 0 dB
 - □ Time to switch between channels: 0.192 ms
 - □ Radio turn-on time: 4 ms

How to achieve reliability?

- > Time diversity
- Channel diversity
 - Channel hopping
 - Channel blacklisting
- Route diversity
 - □ Graph routing
- Power Diversity

TDMA Data Link Layer

- > 10 ms time slot
 - □ Transmission starts at a specified time after the beginning of a slot
 - Source & destination set channel
 - Allows receiver to begin listening
 - Enough time for transmission + ACK
- Superframe: a series of time slots defining the communication schedule of a set of devices

Time Synchronization

- Gateway is the root source of time
- When a device receives a packet
 - $\Delta t = time of arrival expected arrival time$
 - sends Δt to the sender via ACK
- Sender adjusts time

- > A time slot may be shared or dedicated
- Dedicated slot: only one sender sends to a receiver
- > Shared slot: multiple senders attempt to send to a receiver

Shared Time Slots

- Devices contest for access using a contention-based scheme.
 - Behave similar to Slotted Aloha
 - □ Use collision-avoidance (backoff).
- Using shared links may be desirable when
 - Throughput requirements of devices are low
 - Traffic is irregular or comes in bursts
- May reduce latency since devices do not need to wait for dedicated slot
 - True only when chances of collisions are low

Channel Hopping

- Enhances reliability
 - Avoid interferers
 - Reduce multi-path fading effects
- Blacklisting restricts hopping to some channels
- Each device has a channel map (logical to physical)
- ActiveChannel = (ChannelOffset + ASN) % #Channel

Routing

- WirelessHART supports both Graph and Source routing
- Graph routing: provides redundant paths
- Routing graphs
 - Uplink graph: upstream communication
 - □ Downlink graph: Downstream communication
 - Broadcast graph

Scheduling

- > Slots and channel assignment
 - □ Each receiver uses a separate channel for reception
 - A transmission is followed by a retransmission on the same link on a dedicated slot, then again on another link on a shared slot
- Each network contains exactly one overall schedule that is created and managed by the Network Manager.
- > The schedule is organized into superframes

Superframe

Superframe

Frame 0 TS3 TS1 TS0 TS1 TS2 TS4 TS0 TS2 TS3 TS4 TS0 TS1 5 slots Frame 1 TS2 TS0 TS2 TS1 TS2 TS2 TS0 TS1 TS1 TS0 TS0 TS1 3 slots

Superframe

- > All devices must support multiple superframes
- > At least one superframe is always enabled while additional superframes can be enabled or disabled
- Slot sizes and the superframe length are fixed and form a network cycle with a fixed repetition rate

Data Link Protocol Data Unit (DLPDU) System

- Five DLPDU types:
 - □ Data
 - Keep-Alive (periodic)
 - Advertise (periodic)
 - Disconnect
 - □ ACK
- Devices receiving a packet with an unknown packet type must not acknowledge the packet and shall immediately discard it.

Network Initialization

- WirelessHART Network automatically starts up and self-organize.
- Before a network can form, a Network Manager and a Gateway must exist.
- ➤ The Network Manager activates the first superframe. This establishes the system epoch ASN 0.
- Once the Network Access Point starts to advertise, devices can begin to join the network.
- As devices join, the network forms.

Network Maintenance

- Advertise and Keep-Alive DLPDUs assist in building and maintaining the device's neighbor list
- A Keep-Alive must be transmitted to the neighbor if Last Time Communicated > Keep Alive Interval.
- Keep-Alive transmissions are repeated until a new DLPDU is received from the neighbor
- Keep-Alive no more often than once per 30 seconds (if temperature varies 2° C per minute or less).

Network Maintenance

- > Path failures are reported to the Network Manager when devices lose connectivity to neighbors.
- After the Path Fail Interval lapses, a Path-Down Alarm is generated (by both the sender and the receiver).
- As each device's Health Report Timer lapses, the devices generate health reports, which include indications of any problems the device is having with a neighbor.
- Default period of each devices health report is 15 minutes.

Network Maintenance

- Devices continue trying to reestablish communication until the links between them are deleted by the Network Manager.
- It is common for broken paths to be restored after a temporary environmental effect passes.
- ➤ If the disruption persists, additional Path-Down Alarms will be generated when the Path Fail Interval lapses again.

Best Practices

- Each field device should have at least three neighbors
 - □ The 3rd neighbor will act as a backup if one of the two primary paths is obstructed or unavailable.
- > Devices (antenna) mounted >0.5m from any vertical surface.
- Devices mounted >1.5m off the ground.
- > 25% of the network devices should have a direct connection to the gateway in large networks.