Constraint Satisfaction Problems (CSPs)

CS 221 Section - 11/03/16

Agenda

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

Definition: Factor Graph

Variables:

$$X = (X_1, ..., X_n)$$
, where $X_i \in Domain_i$
Factors:

$$f_1,...,f_m$$
, with each $f_j(X) \ge 0$

Definition: Constraint Satisfaction Problem (CSP)

A CSP is a factor graph where all factors are constraints:

for all
$$j = 1, ..., m$$
.

The constraint is satisfied iff $f_i(x) = 1$.

Definition: Consistent Assignments

An assignment x if Weight(x) = 1 (i.e., all constraints are satisfied.)

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event e only allowed at time slot e if (e, t) in A

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event e only allowed at time slot e if (e, t) in A

Formulation 1a:

• Variables for each event $e, X_e \in \{1,...,T\}$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_{\circ}) \in A]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$

Formulation 1b:

• Variables for each event e, $X_1,...,X_E$

Formulation 1b:

• Variables for each event e, $X_1,...,X_E$

$$Domain_i = \{t : (i, t) \in A\}$$

Formulation 1b:

• Variables for each event e, $X_1,...,X_E$

$$Domain_i = \{t : (i, t) \in A\}$$

• Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$

Formulation 2a:

• Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e$ for exactly one t]

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e$ for exactly one t]
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e \text{ for exactly one } t]$
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$

Formulation 2a:

• Variables for each time slot $t: Y_1,...,Y_T$

Formulation 2a:

• Variables for each time slot $t: Y_1, ..., Y_T$

$$Domain_i = \{e : (e,i) \in A\} \cup \{\emptyset\}$$

Formulation 2a:

• Variables for each time slot $t: Y_1, ..., Y_T$

$$Domain_i = \{e : (e, i) \in A\} \cup \{\emptyset\}$$

• Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e$ for exactly one t]

- Problem Modeling
- N-ary Constraints
- Elimination Example

- From event scheduling:
 - Constraints (each event is scheduled exactly once): for each event e, enforce

 $[Y_t = e \text{ for exactly one } t]$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_{i} = A_{i-1} + 1[Y_{i} = e]]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0	0			

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0	0	1		

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	2

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$

Final Output: $1[A_T = 1]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	2

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$

Final Output: $1[A_T = 1]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	2

Still have factors with three variables...

Key idea: Combine A_{i-1} and A_i into one variable B_i

Key idea: Combine A_{i-1} and A_i into one variable B_i

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_{I}[0] = 0]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_{j}[0] = 0]$

Processing: $[B_i[\bar{1}] = \min(B_i[0] + 1[Y_i = e], 2)]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_{j}[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Final Output: $1[B_T[1] = 1]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_{j}[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Final Output: $1[B_{T}[1] = 1]$

Consistency: $[B_{i-1}[1] = B_i[0]]$

- Problem Modeling
- N-ary Constraints
- Elimination Example

• Variables X_i : Location of object at position i

- Variables X_i : Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much

- Variables X_i: Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

- Variables X_i : Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

```
def t(x, y):
if x == y: return 2
if abs(x — y) == 1: return 1
return 0
```


- Variables X_i : Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

```
def t(x, y):
if x == y: return 2
if abs(x — y) == 1: return 1
return 0
```

def o1(x): return t(x, 0) def o2(x): return t(x, 2) def o3(x): return t(x, 2)

Variable Elimination

Definition: Elimination

- To **eliminate** a variable X_i , consider all factors f_1 , ..., f_k , that depend on X_i
- Remove X_i and f_1, \ldots, f_k

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

• Eliminate X_I

- Eliminate $\boldsymbol{X}_{\boldsymbol{I}}$
- Factors that depend on X_{j} :
 - o_1, t_1

- Eliminate X_I
- Factors that depend on X_j :
 - o_1, t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

- Eliminate X_I
- Factors that depend on X_i :
 - o_1, t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

- Eliminate X_I
- Factors that depend on X_i :
 - o_1, t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

x_2	x_{I}	$o_I(x_I)$	$t_{I}(x_{I}, x_{2})$	$o_I(x_I) \ t_I(x_I, x_2)$	$g_{I}(x_{2})$
0	0				
0	1				
0	2				
1	0				
1	1				
1	2				
2	0				
2	1				
2	2				

- Eliminate X_I
- Factors that depend on X_i :
 - o_1, t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

x_2	x_{I}	$o_I(x_I)$	$t_{I}(x_{I}, x_{2})$	$o_{I}(x_{I}) t_{I}(x_{I}, x_{2})$	$g_{I}(x_{2})$
0	0	2			
0	1	1			
0	2	0			
1	0	2			
1	1	1			
1	2	0			
2	0	2			
2	1	1			
2	2	0			

- Eliminate X_I
- Factors that depend on X_i :
 - o_1, t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

x_2	x_{I}	$o_I(x_I)$	$t_1(x_1, x_2)$	$o_{I}(x_{1}) t_{I}(x_{1}, x_{2})$	$g_I(x_2)$
0	0	2	2		
0	1	1	1		
0	2	0	0		
1	0	2	1		
1	1	1	2		
1	2	0	1		
2	0	2	0		
2	1	1	1		
2	2	0	2		

- Eliminate X_I
- Factors that depend on X_i :
 - o_1, t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

x_2	x_{I}	$o_I(x_I)$	$t_{I}(x_{I}, x_{2})$	$o_{I}(x_{I}) t_{I}(x_{I}, x_{2})$	$g_{I}(x_{2})$
0	0	2	2	4	
0	1	1	1	1	
0	2	0	0	0	
1	0	2	1	2	
1	1	1	2	2	
1	2	0	1	0	
2	0	2	0	0	
2	1	1	1	1	
2	2	0	2	0	

- Eliminate X_I
- Factors that depend on X_i :
 - o_1, t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

x_2	x_I	$o_I(x_I)$	$t_{I}(x_{I}, x_{2})$	$o_{I}(x_{I}) t_{I}(x_{I}, x_{2})$	$g_{I}(x_{2})$
0	0	2	2	4	4: $\{x_I:0\}$
0	1	1	1	1	
0	2	0	0	0	
1	0	2	1	2	2: { <i>x</i> ₁ : 1}
1	1	1	2	2	
1	2	0	1	0	
2	0	2	0	0	1: { <i>x</i> ₁ : 1}
2	1	1	1	1	
2	2	0	2	0	

• Eliminate X_2

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

x_3	x_2	$g_{I}(x_{2})$	$o_2(x_2)$	$t_2(x_2, x_3)$	$g_1(x_2) o_2(x_2) t_2(x_2, x_3)$	$g_2(x_3)$
0	0					
0	1					
0	2					
1	0					
1	1					
1	2					
2	0					
2	1					
2	2					

g_1	$-(X_2)-[t_2]$	X_3
	$\begin{bmatrix} o_2 \end{bmatrix}$	$\begin{bmatrix} o_3 \end{bmatrix}$

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$

x_3	x_2	$g_I(x_2)$	$o_2(x_2)$	$t_2(x_2, x_3)$	$g_1(x_2) o_2(x_2) t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: $\{x_{I}:0\}$				
0	1	2: {x _I : 1}				
0	2	1: {x ₁ : 1}				
1	0	4: $\{x_I:0\}$				
1	1	2: $\{x_I: 1\}$				
1	2	1: $\{x_I: I\}$				
2	0	4: $\{x_1:0\}$				
2	1	2: {x ₁ : 1}				
2	2	1: {x _I : 1}				

g_1	$-(X_2)-[t_2]$	X_3
	o_2	$\begin{bmatrix} o_3 \end{bmatrix}$

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

					<u> </u>	
x_3	x_2	$g_{I}(x_{2})$	$o_2(x_2)$	$t_2(x_2, x_3)$	$g_1(x_2) o_2(x_2) t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: $\{x_I:0\}$	0			
0	1	2: {x ₁ : 1}	1			
0	2	1: {x ₁ : 1}	2			
1	0	4: $\{x_I:0\}$	0			
1	1	2: { <i>x</i> ₁ : <i>1</i> }	1			
1	2	1: {x ₁ : 1}	2			
2	0	4: $\{x_I:0\}$	0			
2	1	2: {x ₁ : 1}	1			
2	2	1: {x ₁ : 1}	2			

g_1	$-(X_2)-[t_2]$	X_3
	o_2	$\begin{bmatrix} o_3 \end{bmatrix}$

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

		<i>x</i> ₂ ⊂ (0,1,2)				
x_3	x_2	$g_I(x_2)$	$o_2(x_2)$	$t_2(x_2, x_3)$	$g_{I}(x_{2}) o_{2}(x_{2}) t_{2}(x_{2}, x_{3})$	$g_2(x_3)$
0	0	4: { <i>x</i> _I :0}	0	2		
0	1	2: { <i>x</i> ₁ : <i>1</i> }	1	1		
0	2	1: {x _I : 1}	2	0		
1	0	4: { <i>x</i> ₁ :0}	0	1		
1	1	2: { <i>x</i> ₁ : 1}	1	2		
1	2	1: {x _I : I}	2	1		
2	0	4: $\{x_I:0\}$	0	0		
2	1	2: {x ₁ : 1}	1	1		
2	2	1: {x _I : 1}	2	2		

g_1	$-(X_2)-\underbrace{t_2}$	X_3
	o_2	o_3

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

		~ (n)	0 (24)	4 (20 20)	a (22) a (22) 4 (22 - 52)	~ (n)
x_3	x_2	$g_{1}(x_{2})$	$o_2(x_2)$	$ \iota_2(x_2, x_3) $	$g_1(x_2) o_2(x_2) t_2(x_2, x_3)$	$g_2(x_3)$
	0	4 (0)	0	2	0	
0	0	4: $\{x_I:0\}$	0	2	0	
0	1	2: $\{x_1: 1\}$	1	1	2	
0	2	1: $\{x_I: I\}$	2	0	2	
1	0	4: $\{x_I:0\}$	0	1	4	
1	1	2: $\{x_1: 1\}$	1	2	4	
1	2	1: $\{x_I: I\}$	2	1	2	
2	0	4: $\{x_I:0\}$	0	0	0	
2	1	2: { <i>x</i> ₁ : 1}	1	1	2	
2	2	1: $\{x_I: I\}$	2	2	4	

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

x_3	x_2	$g_{I}(x_{2})$	$o_2(x_2)$	$t_2(x_2, x_3)$	$g_1(x_2) o_2(x_2) t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: $\{x_{I}:0\}$	0	2	0	2: $\{x_1: 1, x_2: 2\}$
0	1	2: { <i>x</i> ₁ : 1}	1	1	2	
0	2	1: { <i>x</i> ₁ : 1}	2	0	2	
1	0	4: $\{x_{I}:0\}$	0	1	4	4: $\{x_1: 1, x_2: 1\}$
1	1	2: { <i>x</i> ₁ : 1}	1	2	4	
1	2	1: {x ₁ : 1}	2	1	2	
2	0	4: $\{x_1:0\}$	0	0	0	4: $\{x_1: 1, x_2: 2\}$
2	1	2: { <i>x</i> ₁ : 1}	1	1	2	
2	2	1: {x ₁ : 1}	2	2	4	

• We are left with:

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

• We are left with:

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) o_3(x_3)$	Optimal Weight
0				
1				
2				

• We are left with:

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) o_3(x_3)$	Optimal Weight
0	2: $\{x_1: 1, x_2: 2\}$	0		
1	4: $\{x_1: 1, x_2: 1\}$	1		
2	4: $\{x_1: 1, x_2: 2\}$	2		

• We are left with:

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) o_3(x_3)$	Optimal Weight
0	2: $\{x_1: 1, x_2: 2\}$	0	2	
1	4: $\{x_1: 1, x_2: 1\}$	1	4	
2	4: $\{x_1: 1, x_2: 2\}$	2	8	

• We are left with:

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) o_3(x_3)$	Optimal Weight
0	2: $\{x_1: 1, x_2: 2\}$	0	2	8: $\{x_1: 1, x_2: 2, x_3: 2\}$
1	4: $\{x_1: 1, x_2: 1\}$	1	4	
2	4: $\{x_1: 1, x_2: 2\}$	2	8	

- Backtracking
- Beam Search
- Gibbs Sampling
- Conditioning
- Elimination

Backtracking search

- Backtracking
- Beam Search
- Gibbs Sampling
- Conditioning
- Elimination

Greedy search

Beam search

Beam size K=4

- Backtracking
- Beam Search
- Iterated Conditional Modes
- Gibbs Sampling
- Conditioning
- Elimination

Gibbs sampling

Sometimes, need to go downhill to go uphill...

Sample an assignment with probability proportional to its weight.

Use Randomness

- Backtracking
- Beam Search
- ICM
- Gibbs Sampling
- Conditioning
- Elimination

Conditioning: general

Graphically: remove edges from X_i to dependent factors

Definition: conditioning

- ullet To **condition** on a variable $X_i=v$, consider all factors f_1,\ldots,f_k that depend on X_i .
- Remove X_i and f_1, \ldots, f_k .
- Add $g_j(x) = f_j(x \cup \{X_i : v\})$ for j = 1, ..., k.

Using conditional independence

For each value v = R, G, B:

Condition on $X_1 = v$.

Find the maximum weight assignment (easy).

maximum weight is 6

- Backtracking
- Beam Search
- ICM
- Gibbs Sampling
- Conditioning
- Elimination