Control Unit

Microarchitecture Level

Functional Units:

- Input Unit
- Memory Unit
- Arithmetic and Logic Unit (ALU)
- Output Unit
- Control Unit

Operational Details

Execution of an Instruction

Memory

Fetching of an Instruction, ADDM

Memory

Single Bus Organization of the Data Path inside Processor

Control Unit

- With Fewer exceptions, an instruction can be executed by peforming one or more of the following operations
- Transfer a word of data from one processor register to another or to the ALU: Register transfer
- Peform an arithmetic or a logic operation and store the result in a processor register: Arithmetic & logical operation
- Fetch the contents of a given memory location and load them into a processor register: Fetching a word from memory
- Store a word of data from a processor register into a given memory location. : Storing a word into memory

Memory Bus **Execution of a Complete Instruction** Address Data Lines Lines MAR_{in} Internal **Processor**

R2,

ALU

Xor

in

- Register transfer
- Arithmetic or logic operation
- Fetching a word from memory
- Storing word a in memory

Memory Bus **Execution of a Complete Instruction** Address Data Lines Lines MAR, Internal Processor Control Bus PC MAR MDR_{in} MDR_{inE} PC **MDR** \mathbf{Z}_{in} IR_{in} $\overline{\mathsf{MDR}}_{\mathit{outE}}$ MDR_{out} 3. MDR_{out}, IR_{in} Constant 4 Offset_{out} 1. R3_{out}, MAR_{in}, Read Select R1, MUX

R1

 \mathbb{R}_{i}

Carry

ALU

Add Sub

Xor

sequence for execution of Add R1, (R3):

- 1. PC_{out}, MAR_{in}, Read, Select 4, Add,
- $2.Z_{out}$, PC_{in} , Y_{in} , MDR_{inE} , WMFC

- 2 R1_{out}, Y_{in}, WMFC
- 3. MDR_{out}, Select Y, Add, Z_{in}
- 4. Z_{out}, R1_{in}, End.

MUL R1,R2

Memory

Bus
Address Data
Lines Lines

MAR.

Memory

Execution of a Complete Instruction

MAR.

Control sequence for execution of JMP Loop_Begin:

- 1. PC_{out} , MAR_{in} , Read, Select 4, Add, Z_{in}
- $\mathbf{2.Z}_{out}$, \mathbf{PC}_{in} , \mathbf{Y}_{in} , \mathbf{MDR}_{inE} , \mathbf{WMFC}
- 3. MDR_{out}, IR_{in}
- 1. Offset_fleld_of_IR $_{out}$, Select Y, Add, Z_{in}
- $2.Z_{out}$, PC_{in} , End

Three Bus Organization of the Data Path inside Processor

Control Unit

- Processor must have some means of generating the control signals needed in the proper sequence
- Two categories of approaches used to generate the control signals in proper sequence:
 - Hardwired control
 - Microprogrammed control

Hardwired Control

Control sequence for execution of ADD R1, [R2]:

```
T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}

T2 Z_{out}, PC_{in}, Y_{in}, MDR_{inE}, WMFC

T3 MDR_{out}, IR_{in}

T4 R2_{out}, MAR_{in}, Read

T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC

T6 MDR_{out}, Select Y, Add, Z_{in}

T7 Z_{out}, R1_{in}, End
```

- Counter can be used to keep track of the control steps
- Each state or count, of this counter corresponds to one control step

Hardwired Control Unit Organization

- Control signals are obtained using:
 - Contents of control step counter
 - Contents of the instruction register
 - Contents of condition flags
 - External input signals like MFC and interrupt requests

 The decoder/encoder block is a combinational circuit that generates the required control outputs, depending on the state of all its inputs

Hardwired Control Unit Organization

- Step decoder:
 - Provides a separate signal line for each step or time slot in the control sequence
- Instruction decoder:
 - Its output consists of separate lines for each machine instruction

• For any instruction in IR, one of the output lines INS1 to INSm is selected (i.e. set to 1) and all other lines are set to 0

Hardwired Control Unit Organization

Encoder:

- Input signals to encoder block are combined to generate individual control signals Y_{in} , Z_{in} , PC_{out} , Add, End and so on

Design of Encoder

- Control sequence for ADD R1, [R2]
- T1 PC_{out} , MAR_{in}, Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out} , IR_{in}
- T4 $R2_{out}$, MAR_{in} , Read
- T5 $R1_{out}$, Y_{in} , MDR_{inE} , WMFC
- T6 MDR_{out}, Select Y, Add, Z_{in}
- T7 Z_{out} , $R1_{in}$, End

Example: Logic for Generating control signal, Z_{in}

 $Z_{in} = T1 + T6 . ADD + T4.JMP + ...$

- Control sequence for JMP next
- T1 PC_{out} , MAR_{in}, Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out} , IR_{in}
- T4 Offset_filed_of_IR_{out}, Add, Select Y, Z_{in}
- T5 Z_{out} , PC_{in} , End

Design of Encoder

Example: Generating control signal, End

End = T7.ADD + T5.JMP +
$$(T5.N + T4.N).JN + ...$$

- Control sequence for JN next
- T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out} , IR_{in}

T4 Offset_filed_of_IR_{out}, Add, Select Y, Z_{in},

If N=0 then End

Generation of Control Signals

• Example: T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}

```
PC_{out} = T1 + ...
MAR_{in} = T1 + T4.ADD + ...
Select Y = T1 + ...
Add = T1 + T6.ADD + T4.(JMP + JN + ...) + ...
Z_{in} = T1 + T6.ADD + T4.JMP + ...
```


Generation of Control Signals

Example: ADD R1, [R2]
 T6 MDR_{out}, Select Y, Add, Z_{in}

```
MDR_{out} = T3 + T6.ADD + ...

Select Y = T6.ADD + T4. (JMP + JN + ...) + ...

Add = T1 + T6.ADD + T4. (JMP + JN + ...) + ...

Z_{in} = T1 + T6.ADD + T4. (JMP + ...)
```


Advantages and Disadvantages

- The hardwired control unit operate in high speed
- Useful when the instructions in the set are limited and simple
- It has less flexibility
- It is used in RISC processors

Microprogrammed Control Unit

Microprogrammed Control Unit

- Control signals are generated by a program
- The control signals are stored as control word (CW) in a control memory (control store)
- Control sequence for execution of ADD R1, [R2]:

```
T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}

T2 Z_{out}, PC_{in}, Y_{in}, MDR_{inE}, WMFC

T3 MDR_{out}, IR_{in}

T4 R2_{out}, MAR_{in}, Read

T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC

T6 MDR_{out}, Select Y, Add, Z_{in}

T7 Z_{out}, R1_{in}, End
```

Control Word and Control Memory

 Control word is a word whose individual bits represents the various control signals

```
    T1 PC<sub>out</sub>, MAR<sub>in</sub>, Read, Select 4, Add, Z<sub>in</sub>
    T2 Z<sub>out</sub>, PC<sub>in</sub>, Y<sub>in</sub>, MDR<sub>inE</sub>, WMFC
    T3 MDR<sub>out</sub>, IR<sub>in</sub>
```

PC _{in}	PC _{out}	MAR _{in}	Read	\mathbf{MDR}_{out}	$IR_{in} Y_{in}$	Select 4	Select	Y	Add	\mathbf{Z}_{in}	\mathbf{Z}_{out}	$R1_{in}$	R1 _{out}	R2 _{out}	WMFC	End '''
0	1	1	1	0 (0	1	0	1	1	0	0	0	0	0	0	
1	0	0	0	0 () 1	0	0	0	0	1	0	0	0	1	0	• • •
0	0	0	0	1 1	L O	0	0	0	0	0	0	0	0	0	0	

- Each control word is called as microinstruction
- All the sequence of control words corresponding to a machine instruction is called microroutine
- All the microinstructions are stored in control memory in a specific location

Basic Organization of a microprogrammed control unit

Organization control unit to allow conditional branching in the microprogram

- a) a common microprogram is used to fetch the instruction and is stored in a specific location and execution of each instruction start from that memory location.
- b) After fetching of common microprogram, the starting address generator unit calculate the appropriate starting address of the microprogram for the instruction which is currently present in IR.

μPC is always incremented everytime a new microinstruction is fetched from the microprogram memory, except in the following situations:

- (a) When an End instruction is encountered
- (b)When a new instruction is loaded into the IR
- (c)When a branch microinstruction is encountered, and the branch condition is satisfied, the PC is loaded with the branch address.

Microprogrammed Control Unit Organization

- m = number of control signals
- k =branch address bits
- Length of a microinstruction p = 1 + m + k

Microprogrammed Control Unit Organization

- T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out}, IR_{in}
- T4 R2_{out} , MAR_{in} , Read
- T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC
- T6 MDR_{out}, Select Y, Add, Z_{in}
- T7 Z_{out} , $R1_{in}$, End

								S	elect \$	Selec	t							Branch
_	М	PC _{in}	PC _{out}	MAR _{in}	Read	MDR _{out}	IR_{in}	\mathbf{Y}_{in}	4	Y	Add	\mathbf{Z}_{in}	\mathbf{Z}_{out}	R1 _{in}	R1 _{out} R	2_{out} WMF	C End	Address
0000	1	0	1	1	1 (0	0	1	0	1	1 0	0	0	0	0	0	0001 •	• •
0001	1	1	0	0	0 (0	1	0	0	0	0 1	0	0	0	1	0	0002 *	• •
0002	0	0	0	0	0 1	1	0	0	0	0	0 0	0	0	0	0	0	XXXX •	• •

L1	1	0	0	1	1	0	0 0	0	0	0	0	0	0	0	1	0	0	L1+1•••
L1+1	1	0	0	0	0	0	0 1	0	0	0	0	0	0	1	0	1	0	L1+2 • • •
L1+2	1	0	0	0	0	1	0 0	0	1	1	1	0	0	0	0	0	0	L1+3•••
L1+3	1	0	0	0	0	0	0 0	0	0	0	0	1	1	0	0	0	1	0000 • • •

- T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out} , IR_{in}
- T4 $R2_{out}$, MAR_{in} , Read
- T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC
- T6 MDR_{out}, Select Y, Add, Z_{in}
- T7 Z_{out} , $R1_{in}$, End

	М	PC _{in}	PC _{out}	MAR _{in}	Read	MDR	out IR	in		t Se			Z _{in}	Z out	R1	n R1 _{ou}	R2 _{out}	WMFC		anch dress
00	1	0	1	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	0001	
000 1	1	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0002	
000	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	XXXX	
											•									

- T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out}, IR_{in}
- T4 $R2_{out}$, MAR_{in} , Read
- T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC
- T6 MDR_{out}, Select Y, Add, Z_{in}
- T7 Z_{out} , $R1_{in}$, End

	М	PC _{in}	PC _{out}	MAR _{in}	Read	MDR _{out}	IR	S Y _{in}	eled 4	ct Se			Z _{in}	Z _{out}	R1	in R1 _{out}	R2 _{out}	WMFC	End	Branch Address
000	1	0	1	1	1	0	0 () 1		0	1	1	0	0	0	0	0	0	0'0'0	1
000 1	1	1	0	0	0	0	0 1	L 0		0	0	0	1	0	0	0	1	0	000	2
000 2	0	0	0	0	0	1	1 (0		0	0	0	0	0	0	0	0	0	XXX	*
L1	1	0	0	1	1	0	0 (0		0	0	0	0	0	0	1	0	0	L14	1
L1+ 1	1	0	0	0	0	0	0 1	<u> </u>		0	0	0	0	0	1	0	1	0	L14	2
L1+ 2	1	0	0	0	0	1	0 (0		1	1	1	0	0	0	0	0	0	L14	3
L1+ 3	1	0	0	0	0	0	0 (0		0	0	0	1	1	0	0	0	1	000	0

- T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out} , IR_{in}
- T4 $R2_{out}$, MAR_{in} , Read
- T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC
- T6 MDR_{out}, Select Y, Add, Z_{in}
- T7 Z_{out} , $R1_{in}$, End

									Se	lect	Selec	t								Branch
	M	PC _{in}	PC _{out}	MAR	Read	MDR _{out}	IR	in Y	in	4	Y	Add	Z _{in}	Z _{out}	$R1_i$	R1 _{out}	R2 _{out}	WMFC	End	Address
000 0 000	1	0	1	1	1	0	0	0	1		0 1	1	0	0	0	0	0	0	0'0'0	1
1	1	1	0	0	0	0	0	1	0		0 0	0	1	0	0	0	1	0	000	2
000 2	0	0	0	0	0	1	1	0	0		0 0	0	0	0	0	0	0	0	XXX	?
											,									
											Ì									
L1	1	0	0	1	1	0	0	0	0		0 0	0	0	0	0	1	0	0	L14	1
L1+ 1	1	0	0	0	0	0	0	1	0		0 0	0	0	0	1	0	1	0	L14	2
L1+	1	Λ	Λ	0	0	1	Λ	n	Λ		1 1	1	Ω	0	Λ	0	Λ	0	100	Q

0000

- T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out}, IR_{in}
- T4 $R2_{out}$, MAR_{in} , Read
- T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC
- T6 MDR_{out}, Select Y, Add, Z_{in}
- T7 Z_{out} , $R1_{in}$, End

									elec	t Sel									Branch
000	M P	C _{in}	PC _{out}	MAR _{in}	Read	MDR _{out}	IR_{ii}	Y _{in}	4	`	Y	Add	Z _{in}	\mathbf{Z}_{out}	R1	in R1 _{out}	R2 _{out}	WMFC	End Address
000 0	1 0		1	1	1	0 () (1		0	1	1	0	0	0	0	0	0	0001
000	1 1		0	0	0	0 () 1	0		0	0	0	1	0	0	0	1	0	0002
000 2	0 0		0	0	0	1 1	0	0		0	0	0	0	0	0	0	0	0	XXXX

L1	1 0	0	1	1	0	0 0	0	0	0	0	0	0	0	1	0	0	L1+1
L1+ 1	1 0	0	0	0	0	0 1	0	0	0	0	0	0	1	0	1	0	L142
L1+ 2	1 0	0	0	0	1	0 0	0	1	1	1	0	0	0	0	0	0	L143
TT+	1 0	0	0	0	0	0 0	0	0	0	0	1	1	0	0	0	1	0000

- T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out} , IR_{in}
- T4 $R2_{out}$, MAR_{in} , Read
- T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC
- T6 MDR_{out}, Select Y, Add, Z_{in}
- T7 Z_{out} , $R1_{in}$, End

000	М	PC _{in}	PC _{out}	MAR _{in}	Read	MDR _{out}	IR _{in}		elec 4	t Sel			Z _{in}	Z _{out}	R1	R1 _{out}	R2 _{out}	WMFC	End	Branch Address
000	1	0	1	1	1	0 (0	1		0	1	1	0	0	0	0	0	0	000	1
000	1	1	0	0	0	0 (1	0		0	0	0	1	0	0	0	1	0	0002	2
000	0	0	0	0	0	1 1	. 0	0		0	0	0	0	0	0	0	0	0	XXXX	
											•									
1		•	_	-	_	0 0					_	_			_	_			Left and	

- T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out}, IR_{in}
- T4 $R2_{out}$, MAR_{in} , Read
- T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC
- T6 MDR_{out}, Select Y, Add, Z_{in}
- T7 Z_{out} , $R1_{in}$, End

	М	PC _{in}	PC _{out}	MAR _{in}	Read	MDR _{ou}	, IR		ct Se			Z _{in}	Z out	R1	R1 _{out}	R2 _{out}	WMFC	Branch Address
000 0	1	0	1	1	1	0	0	0 1	0	1	1	0	0	0	0	0	0	0001
000 1	1	1	0	0	0	0	0	1 0	0	0	0	1	0	0	0	1	0	0002
000 2	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	XXXX
										•								

Advantages and Disadvantages

- The Microprogrammed control unit is more compact and flexible
- Useful when the instructions in the set are complex and varying in length
- It is slow
- It is used in CISC processors

(a) Direct encoding

