Praca zaliczeniowa PBiMASI, II część – maj 2013 – TEMAT 1.

Truck Editorium (W. 1 Editario 1, 11	2010 121VI	
Imię i nazwisko:	Nr. Gr	Index:
Zadanie 1. Niech zmienna losowa X_i , $i = 1,2,3,$ serii niezależnych doświadczeń, gdzie $X_i = 1$	z prawdopodobieństwem p,	
prawdopodobieństwem 1-p. Niech $X = \sum_{i=1}^{n} X_i$. Nale	eży:	
a) (1,5 p) wyznaczyć estymator parametru p Metoda		
Wynik rozwiązania		
b) (2p) wyznaczyć estymator parametru p Metodą N	Vajwiększej Wiarygodności (1	MNW)
Wynik rozwiązania		
c) (1,5) zapisać postać estymacji punktowej parame założenia dotyczące modelu populacji	etru p, podać objaśnienia skła	adowych estymacji
POSTAĆ ESTYMACJI PUNKTOWEJ:		
INTERPRETACJA SKŁADOWYCH:		
ZAŁOŻENIA MODELU:		

Zadanie 2. Pan Prezes X, firmy "Płatki Inc" chce zweryfikować swoje przypuszczenie , że średnia
waga opakowania płatków m jest zgodna z napisem na opakowaniu równym 16 dkg. Opakowania
płatków sa napełniane automatycznie na taśmie produkcyjnej. Dodatkowo Pan Prezes X chce mieć
pewność, że waga opakowania przewyższa zakładaną normę równą 16 dkg. Menadżer od spraw
kontrolingu doradził Prezesowi zbadanie próby 25 opakowań. Z jego poprzednich doświadczeń
wynika, że waga opakowania płatków posiada rozkład normalny z odchyleniem równym 0,4 dkg. Na
poziomie istotności $\alpha = 0.05$ ustal:

`	/1 \ 1 1	. 1	1 . 1 .		1	1		/1 (
a 1	(ln) 12k1 1	iest obszar	' odrziicenia hii	potezy zerowej	nrzy wykorz	vetanılı eredi	n161 7	nrohy
α,	(IP) Juni J	CSt OUSZUI	Our Luccina in	potezy zerowej	pizy wykoiz	y Stufffu Si Cui	moj Z	proby.

Wynik: obszar odrzucenia

b) (1p) jaka jest decyzja weryfikacyjna jeśli na podstawie próby losowej n=25 opakowań płatków otrzymano średnią równą 16,3 dkg . Jak jest wartość *p-value* dla testu weryfikacyjnego?

Wynik: decyzja i obszar odrzucenia

c) (2p) jaka jest moc testu, kiedy m=16,23 dkg. Zapisz formułę mocy testu a następnie oblicz jej wartość.

Wynik: wartość mocy testu

d) (1p) Przedstaw graficznie wartości błędów I. i II. rodzaju.