ALGORITMO FCFS

Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	TR	TE
P1	0	9	3	>1	2	3	4	5	6	7	8	9<																9	0
P2	1	5	2		>								1	2	3	4	5<											13	8
P3	2	3	1			>												1	2	3<								15	12
P4	3	7	2				>														1	2	3	4	5	6	7<	21	14
FCFS			R Qeue	1	2	3	4																					14.5	8.5

- Columna de procesos → indica el proceso
- Columna de llegada → indica la llegada del proceso
- Columna CPU → indica ráfagas de CPU
- Columna de Prioridad \rightarrow tachada porque en este algoritmo no se utiliza.
- Cálculo de columnas a utilizar \rightarrow suma de ráfagas de CPU.
 - o En este caso serían 24 (tiempos) ráfagas, por lo tanto 24 columnas
- Indicar con el símbolo ">" la llegada de cada proceso
- Indicar con el símbolo "<" al terminar cada proceso
- El FCFS va ejecutando los procesos a medida que vayan llegando
- En la última fila donde dice R Queue se van encolando el proceso que se va a ejecutar, cuando ya se ejecutó se tacha
- Al ejecutar cada proceso se anotan en cada celda los tiempos de CPU
 - Se llena la fila del P1 con 1 2 3 4 5 6 7 8 9
- Durante la ejecución del P1 se encolan los demás procesos que fueron llegando
- La CPU en el tiempo 9 se encuentra ociosa
- Se necesita saber quien toca ejecutarse, será el siguiente en la cola, en este caso el P2
- El P2 se ejecuta sin tener que esperar
 - Se llena la fila con 1 2 3 4 5<
- Así hasta llenar el P4
- Cálculo de Tiempo de Espera
 - o tiempo que tuvo que esperar para ser ejecutado
 - tiempo de retorno cant CPU
 - ej P2: espero 8 unidades de tiempo (13-5))
- Cálculo de Tiempo de Retorno
 - o tiempo desde que llegó a la cola el Proceso hasta que finaliza.
 - ej P2: 13 tiempos
- Cálculo total de TE \rightarrow suma de TEs / cant Procesos = 34/4 = 8.5
- Cálculo total de TR \rightarrow suma de TRs / cant Procesos = 58/4 = 14.5
 - Es útil que sea MÁS BAJO para aquellos lotes de proceso que necesitamos tener una respuesta rápida del proceso en sí mismo.
 - Por ejemplo los procesos que son CPU Bound \rightarrow necesitamos que tenga un tiempo de retorno bajo para que termine el cálculo lo más rápido posible

ALGORITMO SJF

Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		TR	TE
P1	0	9	3	>1	2	3	4	5	6	7	8	9<																	9	0
P2	1	5	2		>											1	2	3	4	5<									16	11
P3	2	3	1			>							1	2	3<													-	10	7
P4	3	7	2				>														1	2	3	4	5	6	7<		21	14
SJF			Qeue	1	2	3	4																						14	8

- Columna de procesos → indica el proceso
- Columna de llegada → indica la llegada del proceso
- ullet Columna CPU o indica ráfagas de CPU
- ullet Columna de Prioridad o tachada porque en este algoritmo no se utiliza.
- Marcamos con ">" los procesos que van llegando
- P1 se ejecuta sin ser interrumpido
 - En la fila del P1 se coloca >1 2 3 4 5 6 7 8 9
- En el instante 9 el algoritmo se fija cual es el siguiente proceso a ejecutar el cual tendrá *la ráfaga de CPU más corta*
 - o En este caso sería el P3. Este se ejecuta hasta que termina.
- Así hasta terminar
- Cálculo de Tiempo de Retorno
 - o tiempo desde que llegó a la cola el Proceso hasta que finaliza.
 - ej P2: 16
- Cálculo de Tiempo de Espera
 - o tiempo que tuvo que esperar para ser ejecutado
 - o tiempo de retorno cant CPU
 - ej P2: 16-5=11
- Cálculo total de TE \rightarrow suma de TEs / cant Procesos = 32/4 = 8
- Cálculo total de TR \rightarrow suma de TRs / cant Procesos = 56/4 = 14
- En comparación al algoritmo FCFS se tiene una mejoría debido a que los tiempos son menores.

ALGORITMO RR-TV Q=4

				_	_							_				_							_			_			
Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	TR	TE
P1	0	9	3	>1	2	3	4												5	6	7	8					9<	24	15
P2	1	5	2		>			1	2	3	4												5<					19	14
P3	2	3	1			>						1	2	3<														9	6
P4	3	7	2				>								1	2	3	4						5	6	7<		20	13
RR-TV	Q=4		Qeue	1	2	3	4	1	2	4	1																	18	12

- Columna de procesos → indica el proceso
- Columna de llegada → indica la llegada del proceso
- Columna CPU → indica ráfagas de CPU
- ullet Columna de Prioridad o tachada porque en este algoritmo no se utiliza.
- Marcamos con ">" los procesos que van llegando
- Analizar qué está pasando en cada tiempo
 - o En el tiempo O solo se encola en P1
- P1 se ejecuta al menos 4 veces debido a que el quantum = 4, se analiza que pasa en cada tiempo y luego se vuelve a la cola de listos
 - o En la fila del P1 se coloca >1 2 3 4
 - En el tiempo 1 se encolo el P2, en el tiempo 2 se encolo el P3, en el tiempo 3 se encola P4
 - o En el tiempo 4, el P1 sale de ejecución y se vuelve a encolar en el Qeue
 - o Luego empieza a ejecutarse el P2, se pone en la fila del P2 1 2 3 4
 - Se vuelve a encolar el P2
 - o ..
- Así hasta terminar
- Cálculo de Tiempo de Retorno
 - o tiempo desde que llegó a la cola el Proceso hasta que finaliza.
- Cálculo de Tiempo de Espera
 - o tiempo que tuvo que esperar para ser ejecutado
 - o tiempo de retorno cant CPU
 - ej P1: 23-9 = 14 (casillas donde no se ejecutó)
- Cálculo total de TE → suma de TEs / cant Procesos
- Cálculo total de TR → suma de TRs / cant Procesos

ALGORITMO RR-TF Q=4

Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	TR	TE
P1	0	9	3	>1	2	3	4									5	6	7	8					9<				21	12
P2	1	5	2		>			1	2	3	4									5<								16	11
P3	2	3	1			>						1	2	3<														9	6
P4	3	7	2				>								1						2	3	4		5	6	7<	21	14
RR-TF	Q=4		Qeue	1	2	3	4	1	2	4	1	4																16.7	10.7

La diferencia entre TV y TF es que en el TV el Quantum va a ir variando para todos los procesos que es seleccionado para ejecutarse

- Columna de procesos → indica el proceso
- Columna de llegada → indica la llegada del proceso
- Columna CPU → indica ráfagas de CPU
- Columna de Prioridad → tachada porque en este algoritmo no se utiliza.
- Como Q=4, cada 4 tiempos se pone una "marca" para recordar que se tiene que cambiar de proceso
- Marcamos con ">" los procesos que van llegando
- Analizar qué está pasando en cada tiempo
 - o En el tiempo 0 solo se encola en P1
- P1 se ejecuta 4 tiempos (Q = 4), se analiza que pasa en cada tiempo y luego se vuelve a la cola de listos
 - En la fila del P1 se coloca >1 2 3 4
 - En el tiempo 4, el P1 sale de ejecución y se vuelve a encolar en el Qeue. Empieza a ejecutarse el P2, se pone en la fila del P2 1 2 3 4
 - Se vuelve a encolar el P2
 - Se ejecuta el P3 y termina, el Q=1, por lo tanto empieza a ejecutarse el P4 con
 Q=1 (es decir que se ejecuta una sola vez)y se vuelve a encolar

- Se ejecuta el P1 con Q=4, se vuelve a encolar porque no terminó
- Se ejecuta el P2, termina en Q=1 por lo tanto se empieza a ejecutar P4.
- o ...
- Cálculo de Tiempo de Retorno
 - o tiempo desde que llegó a la cola el Proceso hasta que finaliza.
- Cálculo de Tiempo de Espera
 - o tiempo que tuvo que esperar para ser ejecutado
 - o tiempo de retorno cant CPU
 - ej P1: 23-9 = 14 (casillas donde no se ejecutó)
- Cálculo total de TE → suma de TEs / cant Procesos
- Cálculo total de TR \rightarrow suma de TRs / cant Procesos

ALGORITMO PRIORIDADES

Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	TR	TE
P1	0	9	3	>1																2	3	4	5	6	7	8	9<	24	15
P2	1	5	2		>1				2	3	4	5<																8	3
P3	2	3	1			>1	2	3<																				3	0
P4	3	7	2				>						1	2	3	4	5	6	7<									13	6
Prioridad			Qeue1	3																								12	6
			Qeue2	2	2	4																							
-			Oeue3	1	1																								

- Columna de procesos → indica el proceso
- ullet Columna de llegada o indica la llegada del proceso
- Columna CPU → indica ráfagas de CPU
- Columna de Prioridad → en este algoritmo se utiliza
- A menor prioridad, mayor necesidad de que se ejecute el proceso
- Se genera una cola por los distintos números de prioridades que se tiene
 - o En este caso se tiene 3 prioridades, por lo tanto se van a generar tres colas
- Marcamos con ">" los procesos que van llegando
- Analizar qué está pasando en cada tiempo
 - \circ En el tiempo $0 \rightarrow$ llega el P1 con prioridad 3: se encola en el cola 3
 - Siempre se desencola primero de la Q1 luego de la Q2, como no hay nada en ellas se desencola lo de la Q3.
 - \circ En el tiempo 1 \rightarrow como P2 llega con mayor prioridad, se encola en la Q2; P1 deja de ejecutarse, se encola en Q3. Luego se ejecuta P2
 - En el tiempo 2 → como P3 llega con mayor prioridad, se encola en Q1; P2 deja de ejecutarse, se encola en Q2. Luego se ejecuta P3 y como es el de mayor prioridad no va a ser interrumpido.
 - Por otro lado en el tiempo 2, se encola en Q2 el P4
 - \circ En el tiempo 5 \rightarrow ya se terminó de ejecutar el P4, se empieza a ejecutar el P2 el cual se desencola de la Q2. Nadie lo va a interrumpir hasta terminar
 - \circ En el tiempo 9 \rightarrow se comienza a ejecutar el P4 por completo.
 - \circ En el tiempo 16 \rightarrow se termina de ejecutar el P1.
- Cálculo de Tiempo de Retorno
 - o tiempo desde que llegó a la cola el Proceso hasta que finaliza.
- Cálculo de Tiempo de Espera
 - o tiempo que tuvo que esperar para ser ejecutado
 - tiempo que terminó tiempo que empezó + 1
- Cálculo total de TE → suma de TEs / cant Procesos
- Cálculo total de TR → suma de TRs / cant Procesos

ALGORITMO SRTF

Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	TR	TE
P1	0	9	3	>1																2	3	4	5	6	7	8	9<	24	15
P2	1	5	2		>1				2	3	4	5<																8	3
P3	2	3	1			>1	2	3<																				3	0
P4	3	7	2				>						1	2	3	4	5	6	7<									13	6
SRTF			Qeue	1	2	3	4																					12	6

Se selecciona el proceso cuya siguiente rafaga de CPU sea la más corta entre los que están encolados en la cola de listos.

Es la versión apropiativa del SJF.

- Columna de procesos \rightarrow indica el proceso
- Columna de llegada → indica la llegada del proceso
- Columna CPU → indica ráfagas de CPU
- Columna de Prioridad → en este algoritmo se utiliza
- Marcamos con ">" los procesos que van llegando
- Analizar qué está pasando en cada tiempo
 - \circ En el tiempo $0 \rightarrow$ se encola el P1 al llegar. Como no hay otro en la cola de listos, se ejecuta. Ahora P1 tendrá 8 de CPU.
 - En el tiempo 1 → se encola el P2 al llegar. Como en CPU tiene 5 y es menor a 8, deja de ejecutarse el P1 y se lo encola. Se empieza a ejecutar el P2 y ahora en CPU tiene 4
 - En el tiempo 2 → se encola el P3 al llegar. Como en CPU tiene 3 y es menor a 4, deja de ejecutarse el P2 y se lo encola. Se empieza a ejecutar el P3 y ahora en CPU tiene 2
 - En el tiempo 3 → se sigue ejecutando el P3 hasta terminar debido que el siguiente que llega tiene más tiempo en CPU (7). Se encola el P4.
 - \circ En el tiempo 4 \rightarrow se ejecuta el que tiene menos tiempo en CPU, por lo tanto se desencola y ejecuta el P2 hasta terminar.
 - En el tiempo 8 se desencola y ejecuta el P4 hasta terminar.
 - o Por último se desencola y ejecuta el P1.
- Cálculo de Tiempo de Retorno
 - o tiempo desde que llegó a la cola el Proceso hasta que finaliza.
- Cálculo de Tiempo de Espera
 - o tiempo que tuvo que esperar para ser ejecutado
 - o tiempo que terminó tiempo que empezó + 1
- Cálculo total de TE → suma de TEs / cant Procesos
- Cálculo total de TR → suma de TRs / cant Procesos