Agenda

PROBLEM DOMAIN: NUMBER THEORY

- APPLICATION DOMAIN: CRYPTOGRAPHY
- BASICS OF CRYPTOGRAPHY
 - SECRECY OR CONFIDENTIALITY
 - SHARED KEY AND PUBLIC KEY SYSTEMS

Cryptography - Secrecy

- Communication from Alice to Bob:
 - A sends a message M to B on a public channel
 - i.e. any one can read from the channel
- (Desired) Property of said communication:
 - Secrecy or Confidentiality:
 - No one other than A and B can "get" the message.

Cryptography: Protocol for Secrecy

Straw Man Protocol:

- 1. A applies a function f on message M i.e. computes M' = f(M)
- 2. A sends M' to B on a public channel
- 3. B receives M' and inverts i.e. B applies f-1 on M' to get M

Requirements:

- f⁻¹ cannot be computed by any one other than A or B.
 - Solution: Keep f and f⁻¹ secret
 - Pragmatics:
 - Obscurity is not security
 - Complexity weakens security
 - Every pair of communicators A and B will have to invent their own functions
 - i.e. O(N*N) functions for a group of N communicators
 - i.e. this is not suitable for mass usage.

Cryptography - Secrecy and Encryption

Tin Man Protocol:

- A applies a function E on message M and a key K_A i.e.
 computes M' = E(M,K)
- A sends M' to B
- B receives M' and inverts it by applying a function E^{-1} on M' and a key K_B to get M i.e. $M = E^{-1}(M', K_B)$

Requirements:

- K_B must not be known to any one other than A or B.
- Without K_B , E^{-1} (M', K_B) cannot be computed.

Note:

• E is referred to as an *encryption* function and E⁻¹ is referred to a *decryption* function. End of Note.

Shared Key Encryption

Tin man Protocol:

- A sends M' = E(M,K_A) to B
- B receives M' and computes $M = E^{-1}(M', K_B)$

Requirements:

- K_B must not be known to any one other than A or B.
- Solution 1 : Shared Key encryption:
 - A and B share a secret (K_A, K_B)
 - K_A and K_B can be computed easily from each other; simplest case: $K_A == K_B$

Pragmatics:

- Every pair of communicators A and B will require a pair of keys (K_A, K_B)
 - i.e. O(N*N) keys are required for a group of N communicators

Public Key Encryption

Tin Man Protocol:

- A sends $M' = E(M, K_A)$ to B
- B receives M' and computes M = E^{-1} (M', K_B)

Requirements:

- $^{\square}$ K_B must not be known to any one other than A or B.
 - Solution 2 : Public Key encryption:
 - K_B is private to B: denote it K_{Bv},
 - K_A is public (but associated with B): denote it K_{Bu}
 - K_{Bv} cannot be computed easily from K_{Bu}

Pragmatics:

- Every receiver B will require a pair of keys (K_{Bv}, K_{Bu})
- All public keys can be published (say, in a directory)
 - i.e. N key pairs are required for a group of N communicators

Public Key Encryption

Iron Man Protocol:

- A sends $M' = E(M, K_{Bu})$ to B
- B receives M' and computes $M = E^{-1}(M', K_{Bv})$

Requirements:

- E and E⁻¹ are computable in polynomial time with keys K_{Bu} and K_{Bv} respectively but
 - they are not computable in polynomial time without.
- Public Key encryption:
 - **Pragmatics:** K_{Bv} should not be computable in polynomial time from K_{Bv} .