SCMA104 Systems of Ordinary Differential Equations and Applications in Medical Science

Pairote Satiracoo

2024-08-21

Contents

1	หลักการและความสำคัญของแคลคูลัสและระบบสมการเชิงอนุพันธ์สามัญ	1
2	ลิมิต (Limits) 2.1 ความต่อเนื่อง (Continuity)	17 42
3	อนุพันธ์ (Derivatives) 3.1 อนุพันธ์ (Derivatives) 3.2 การคำนวณหาอนุพันธ์ 3.3 สูตรสำหรับหาอนุพันธ์ 3.4 อนุพันธ์อันดับสูง (High Order Derivatives)	55 55 64 69

	3.5	การตีความอนุพันธ์ (Interpretation of Derivatives)	71
	3.6	กฎลูกโซ่ (The Chain Rule)	81
	3.7	อนุพันธ์ของฟังก์ชันอินเวอร์ส (Derivatives of Inverse Functions)	91
	3.8	Differentials, Implicit Differentiation and Related Rates	97
	3.9	อนุพันธ์ของฟังก์ชันตรีโกณมิติและอินเวอร์สของฟังก์ชันตรีโกณมิติ	126
	3.10	อนุพันธ์ของฟังก์ชันเอกซ์โพเนนเชียลและฟังก์ชันลอการิทึม	142
4	การปร	ะยุกต์ของอนุพันธ์ (Applications of Differentiation)	153
	4.1		
		Applications of derivatives related to students discipline	154
	4.2	Applications of derivatives related to students discipline	154 161
	4.2 4.3		
		Sketching the graph of a function from the derivative	161
	4.3	Sketching the graph of a function from the derivative	161 184

3.10 อนุพันธ์ของฟังก์ชันเอกซ์โพเนนเชียลและฟังก์ชันลอการิทึม

ในบทที่ 1 เราอธิบายการขยายพันธ์แบคทีเรีย N(t) ในรูปของเวลา t ในรูปของแบบจำลองทาง คณิตศาสตร์ โดยมีสมการดังต่อไปนี้

$$\frac{N(t+h)-N(t)}{h} = b \cdot N(t) - m \cdot N(t) \tag{3.42}$$

(3.43)

ในทางคณิตศาสตร์เราเรียกสมการดังกล่าวว่า สมการเชิงอนุพันธ์สามัญ (ordinary differential equation) และมีเนื้อหาในรายวิชานี้ที่จะเรียนในบทถัดๆ ไป ทั้งนี้ฟังก์ชัน N(t) ที่ปรากฏในสมการเป็นฟังก์ชันไม่ ทราบค่า (unknown function) และเราสามารถหาคำตอบของสมการเชิงอนุพันธ์ที่มีเงื่อนไขเริ่มต้นโดยวิธี การหาปริพันธ์ (Integration) ได้คำตอบของสมการดังนี้

$$N(t) = N_0 e^{(b-m)t} (3.44)$$

ดังนั้นในบทนี้ เราจะกล่าวถึงอนุพันธ์ของฟังก์ชันเอกซ์โพเนนเชียลและฟังก์ชันลอการิทึม เราสามารถใช้ นิยาม หรือสูตรต่อไปนี้ในการหาอนุพันธ์

ทฤษฎี 3.7.

1.
$$\frac{d}{dx}e^{x} = e^{x}$$
2.
$$\frac{d}{dx}a^{x} = a^{x} \ln a \quad (a > 0, a \neq 1)$$
3.
$$\frac{d}{dx} \ln x = \frac{1}{x}$$
4.
$$\frac{d}{dx} \log_{a} x = \frac{1}{x \ln a} \quad (a > 0, a \neq 1)$$

ตัวอย่าง 3.38. จงหาอนุพันธ์ของ $f(x) = e^{x^2+1}$ วิธีทำ

เราสามารถใช้กฎลูกโซ่ในการหาอนุพันธ์ของ $f(x)=e^{x^2+1}$ ได้ดังต่อไปนี้ โดยการกำหนดให้ $u=x^2+1$, แล้ว $f(x)=e^u$ และจะได้ว่า

เนื่องจาก $\frac{d}{du}e^u=e^u$ และ $\frac{d}{dx}u=\frac{d}{dx}(x^2+1)=2x.$ ดังนั้น

เมื่อแทนตัวแปร $u=x^2+1$ ลงในสมการข้างต้น เราจะได้ว่า

$$\frac{d}{dx}f(x) = e^{x^2 + 1} \cdot 2x$$

ดังนั้น อนุพันธ์ของ $f(x)=e^{x^2+1}$ คือ

$$\frac{d}{dx}f(x) = 2xe^{x^2+1}$$

ตัวอย่าง 3.39. จงแสดงว่า $N(t)=rac{K}{1+(K-1)e^{-rt}}$ เป็นคำตอบของสมการเชิงอนุพันธ์

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

โดยที่ r และ K เป็นค่าคงตัวที่เป็นบวก สมการเชิงอนุพันธ์นี้มีชื่อเรียกว่า the logistic growth equation วิธีทำ

1. หาอนุพันธ์ของฟังก์ชัน $\,N(t)$:

กำหนดให้
$$N(t) = rac{K}{1 + (K-1)e^{-rt}}$$
.

เราสามารถใช้กฎลูกโซ่ในการหาอนุพันธ์ได้ผลลัพธ์ดังต่อไปนี้

$$\frac{dN}{dt} =$$

2. จัดรูปสมการให้อยู่ในรูปอย่างง่าย

$$\frac{dN}{dt} = 1$$

3. แทน N(t) ลงใน the logistic equation:

เนื่องจาก

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

โดยการแทน $N(t)=rac{K}{1+(K-1)e^{-rt}}$ ลงไปในสมการข้างต้น เราจะได้ว่า

$$rN\left(1 - \frac{N}{K}\right) = \frac{rK(K - 1)e^{-rt}}{(1 + (K - 1)e^{-rt})^2}$$

4. ผลสรุปที่ได้จากการหาอนุพันธ์ และการแทนค่าฟังก์ชัน

เราจะเห็นว่าทั้ง 2 ข้างของสมการข้างต้นเท่ากัน แสดงว่า ฟังก์ชัน $N(t)=rac{K}{1+(K-1)e^{-rt}}$ เป็นคำตอบของสมการ the logistic growth equation

หมายเหตุ จากตัวอย่างข้างต้นเราสมมติให้ N(0)=1 ในกรณีที่กำหนดให้ $N(0)=N_0$ แล้วคำตอบ ของสมการ the logistic growth equation จะอยู่ในรูป

$$N(t) = \frac{N_0 \cdot K}{1 + (K-1)e^{-rt}}$$

รูปต่อไปนี้แสดงกราฟของคำตอบของแบบจำลองการเติบโตแบบ logistic เมื่อกำหนดให้ $N_0=25,\,K=4$ และ r=2 กราฟจะมีลักษณะเป็นรูปตัว S (ซิกมอยด์, sigmoidal) ซึ่งสะท้อนการเติบโตที่จำกัด เนื่องจากความจุที่รองรับได้ (carrying capacity) หรือค่า K ในตอนแรก ประชากรจะเติบโตแบบเอ็กซ์โพ เนนเชียล แต่เมื่อเข้าใกล้ K อัตราการเติบโตจะซ้าลงและกราฟจะแบนลง ซึ่งแตกต่างจากแบบจำลองการ เติบโตแบบเอ็กซ์โพเนนเชียลธรรมดา โดยประชากรจะเติบโตโดยไม่มีขอบเขต โดยเป็นไปตามกราฟที่เพิ่ม ขึ้นอย่างต่อเนื่อง ในโมเดลโลจิสติกส์ การเติบโตถูกจำกัดและจะคงตัวเมื่อจำนวนประชากรใกล้ถึงขีดจำกัด ความจุ

ตัวอย่าง 3.40. จงหาอนุพันธ์ของฟังก์ชัน:

$$y = \frac{e^x \cdot x^2}{\sqrt{x^2 + 1}}$$

โดยใช้การลอการิทึมทั้งสองฝั่งก่อนทำการหาอนุพันธ์

วิธีทำ

ลอการิทึมทั้งสองข้าง:

$$\ln y = \ln \left(\frac{e^x \cdot x^2}{\sqrt{x^2 + 1}} \right)$$

ใช้สมบัติลอการิทึม

ย่อ:

2. หาอนุพันธ์ทั้งสองข้าง:

ย่อ:

3. จัดรูปหา $\frac{dy}{dx}$:

4. แทนค่า $y = \frac{e^x \cdot x^2}{\sqrt{x^2 + 1}}$:

$$\frac{dy}{dx} = \frac{e^x \cdot x^2}{\sqrt{x^2 + 1}} \left(1 + \frac{2}{x} - \frac{x}{x^2 + 1} \right)$$

ดังนั้น อนุพันธ์ของ $y=rac{e^x\cdot x^2}{\sqrt{x^2+1}}$ คือ:

$$\frac{dy}{dx} = \frac{e^x \cdot x^2}{\sqrt{x^2 + 1}} \left(1 + \frac{2}{x} - \frac{x}{x^2 + 1} \right)$$