

Al5090: Stochastic Processes

Quiz 3

DATE: 25 MARCH 2025

Question	1	2	Total
Marks Scored			

Instructions:

- Fill in your name and roll number on each of the pages.
- · You may use any result covered in class directly without proving it.
- · Unless explicitly stated in the question, DO NOT use any result from the homework without proof.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Assume that all random variables appearing in the problems below are defined w.r.t. \mathscr{F} .

1. Suppose that a fair die is rolled sequentially and independently over time.

Let X_n , $n \in \mathbb{N}$, denote the outcome of the die at time n.

Set $T_1 = 1$, and for each $k \in \{2, \dots, 6\}$, let

$$T_k \coloneqq \inf \left\{ n > T_{k-1} : X_n \in \{1, \dots, 6\} \setminus \{X_{T_1}, \dots, X_{T_{k-1}}\} \right\}$$

denote the first time instant of observing the kth distinct face of the die. Furthermore, let

$$S_1 = T_1 = 1,$$
 $S_k := T_k - T_{k-1}, \quad k \in \{2, \dots, 6\}.$

(a) (1 Mark)

Write down the PMF of S_k for any $k \in \{2, ..., 6\}$.

(b) (1 Mark)

Using the PMF of part (a), compute $\mathbb{E}[S_k]$ for any $k \in \{2, \dots, 6\}$.

(c) (1 Mark)

Compute the expected time required to observe all six faces of the die.

Hint: Use the result of part (b).

Name: Roll Number:

Department:
Program: BTech / MTech TA / MTech RA / PhD (Tick one)

2. (2 Marks)

Consider a filtration $\{\mathscr{F}_k\}_{k\in\mathbb{N}}$ in which $\mathscr{F}_k\subseteq\mathscr{F}_{k+1}\subset\mathscr{F}$ for all $k\in\mathbb{N}$. Let N be a stopping time w.r.t the filtration $\{\mathscr{F}_k\}_{k\in\mathbb{N}}$. Let

$$\mathscr{F}_N \coloneqq \bigg\{ A \in \mathscr{F} : A \cap \{N = k\} \in \mathscr{F}_k \ \forall k \in \mathbb{N} \bigg\}.$$

Show that \mathscr{F}_N is a σ -algebra of subsets of Ω .