MLOPs

ML Project life cycle

Scoping

- define Project

Data

- define data & establish baseline

- Label à organize data

Modelling

- sclect b train model

- Perform exr analysis

Deployment

- Deployment in

- Monitor & Maintain system

Speech Recognition

Scoping Stage:

- * Decide to work on speech recognition for voice search
- · Decide on Key metrics: · Accuracy, latency, throughput
- · Estimate resources à timeline

Data stage:

- · Is the data labeled consistently?
- · How much silence before/ofter each clip!
- · How to perform volume normalization?

Modelling stage:

Deployment stage:

challenges in deployment

- o concept drift
- odata drift

Concept drift & Data drift

- conceptual / methology changes
- changes in Input data

Software Engineering Issues

Checklist of questions

- · Realtime or Batch
- · Cloud V/s Edge/Browser
- · Compute resources (cpu/GPU/memory)
- · Latency, throughut (QPS)
- · Logging
- · Security & privacy

Common Deployment cases

- · New product/ capability
- · Automate/assist with manual task
- · Replace previous ML system

Key Ideas:

- o Gradual ramp up with monitoring
- · Rollback

Visual Inspection Enample

In Mobile factory -> Model to find either mobile good or not

Human Model	" ML system	shadow the human d	
XXX	this phase.	output not used for an	y device during

Canary Deployment

- Rollout to small fraction (say 5%) of traffic initially - Monitor system & ramp up traffic gradually
- Bolee Green Deployment

Easy way to enable rollback.

Degree of Automation

Human Only > Shadow > Al Assistance > Partial > full mode wtomation automation

You can choose to stop before getting to full automation,

Monitoring Dashboard

- · It is ox to use multiple metrics initially & gradually remove the ones you find not useful.
- What is Monitoring: It means continuously observing & checking how your machine learning system is working after deployment.

what do we monitor in ML syskms?

- Model Performance metrics: O Accuracy, etc. O Compare with buseline performan,
 - · Data duality: Are values in expected range?
 - · System health: Latency, Availability, Resources
 - · Data/concept Prigt.

For Monitoring Methods · Let we using these 3 metrics - Lower -

· So we do these 2 things i) Set thresholds for alarms 2) Adapt metrics & thresholds over time

Model Maintenence

- · manual octraining
- · Automatic retraining

Metrics to monitor Monitor: software metrics, Input metrics & output metrics

How wickly do they changes?

- · user data generally has slower drift.
- · Enterprise data (B2B app) can shift fast.

Challenges in model development

. Doing well on training set (usually measured by any training en · Doing well on dev/test set

The first that they have the average

- " Doing well on business metries/project goals. to Mark on seller as it is

ML in Production

ML Project code Territoria de la companya de la comp ML Model Code The state of the s And the state of t

why low any test error isn't good enough

- · Performance on disproportionately : en web search engine
- Performance on key slices of the dolosed en. - ml for boan approval - Product recommendations from retailers
- Rare classes

 | skewed data distribution {medical diagnose enample}

Establish a baseline

Speech recognition example

Туре	Acwracy	; ;	Human level Performance		
Clear speech	94%	1	95%	,	1%
Car Noise	89 %	, ,	93 %		4.1
People Noise	87 %	1-:	89.1		2 1/
Low Bandwidth	701.		70%		~0%

Ways to establish baseline

- · Human Level, Performance (HLP)
- · Literature search for state-of-the-art/open source
- · Quick and dirty implementation
- · Performance of older system

Base line helps to indicates what might be possible. In some cases (such as HLP) is also gives a sense of what is irreducible error/Bayes error.

मंत्री भी Reduce ना हीने

. Mi is iterative process

Model + Data + Hyperparameters

Getting started on Modeling

- · Literature search to see what's possible (courses, blog, open-soc projects)
- · Find oper-sic implementations if available.
- · A reasonable algorithm with good data will often outperform a great algorithm with so so good data

Deployment Constraints when picking a model

- 0- Should you take into account deployment constraint when picking a model?
- As Yes, if baseline is already established and goal is to build and deploy.

No (or not necessarily), if purpose is to establish a baseline and determine what is possible and might be worth pursuing

& Sanity-check for code & algorithm

Dick & simple lest

- Try to overfit a small training dataset before training on a large one.

Error analysis & Performance Auditing

Example How to do err analysis

- 1) collect wrong predictions 2) Tag theerross 3) count & analyze
- -> Err. A is 1 terative process
- -> helps to focus on right improvement

Prioritizing what to work on

Don't yost fin the biggest errors, instead, prioritize based on impact (size x frequency) and importance to business goals.

Type	Accoracy	Human level Performance	Cop to HIP	1. of data		
clean speech	94%	95.6	4 %	60%	<u> </u>	0-6 1.
car Noice	89°s.	931/4	44.	4%	>	0.16%
People Noice	87%	89%	2 7.	30 %	→	0 -6 1/1
low Bardwidth	70%	70%	0 %	64.		~ 0%.

Skewed Datasets

- for skwed d. use confusion metric for error analysis or its metrice like Precision, Recall, F1-score

Perfor. Auditing

Even model shows good accuracy/F1-score, bey before deploy it to production we must double check it (audit) to make sure it works. I airly, reliable, and safely.

of data, checking for bias, fairness, rare cases, and aligning with business enpectations.

> Evaluate & audit with the business team.

Data Steration

Data Centric Al Development

- newer approach, focusing on improving data quality, not just model
- Error Analysis
- Data Augmentation
- label cleaning
- Balanced sampling

- Model Centric Al Development
- traditional way
- here we fin dataset & focus on improving the model
- Data is constant (eg. benchmark dataset, like MNIST or CIFAR-10)

Data Intration loop: Instead of doing model iteration (train -) adjust model -> retrain), we do a data iteration loop.

Data -- Model -- Err Analysis -- Improve -- Repeat

Data Augmentation

Good: Create root-realistic examples that

- (1) the algo does poorly on, but
- (11) humans (or other baseline) do well on

Check List: According to speech recog. enample

- a Does it sound realistic?
- □ Is the x→y mapping clear?

 (eg. con humans recognize speech?)
- 1) Is the algo corrently doing poorly onit?

Tips:

- Don't overdo -> unrealistic clata con hust
- · Useful to target weak spots found in ess analysis
- · Large models tolerate distribution shifts better than small models

Can adding data hurt?

- Usually adeling data helps, but rare cases can hurt.
- · when it's safe :
 - · Large models (high capacity)
 - · clear X -> Y mapping (labels not ambiguous)
- · Risky when
 - o small model over jours on oversampled class
 - o Labels ambiguous (eg. digit "1" us letter "1"). Too much augmentation of ambiguous cases can confuse model.

Adding Features (Structured Data)

- · For Stovetvred data, generating new training examples is hard.
- · Instead add new yeatures
- · Example: Restaurant Recommendation system:-
 - Issue: vegetarians recommended meat-only restaurants
 - Fin : Add features like "% vegetarian meals ordered" (user) +
 "restaurants has veg options" (restaurant)
- · Features can be hand-coded or learned automatically.
- · Trend: shift from collaborative filtering content based filtering (similar users) (use item/user features)
- · Helps with cold start Problem (new product/restourant)

Data Steration for Structured Data

· Err A. can be harder if there
is no good baseline (like MLP)
to compare to or competitor
benchmarking

Model (add features)

EN A Train

Enperiment Tracking

- · Crucial when running many experiments.
- · Track: · Algorithm/core versions
 - · Dataset used
 - · Hyperparameters
 - · Results (metrics + ideally save trained model)
- · Tools:
 - obasis: Tent files spreadsheets
 - · Advanced: Weights & Bias, Comet, Miflow, Sage Maker Studio
- · Good tracking helps with:
 - o Replicability (same code/data -> same result)
 - · Efficiency (don't repeat failed experiments)
 - · Analysis (See which settings worked)
- · Internet fetched data changes -> horts replicability.

From Big Data to Good Data

o Try to ensure consistently high-quality data in all phase of ML project lifecycle

Grood Data

- o covers important cases (good coverage of inputs n)
- o Is defined consistently (definition of labels y is unambiguous)
- · Has timely feedback from production data (distribution covers data drift and concept drift)
- · Is sized appropriately

Define Data and establish Baseline

Data Definition Questions

- · What is the Input x?
 - · Lighting? Contrast? Resolution?
 - · What features need to be included?
- · what is the target label y?

& Major types of Data Problems

	Unstructured	Stouctured	
Small Deuta	Manufacturing visual inspection from 100 training enamples	etc. from 50 toaining ename	<pre></pre> <pre>Clean labels hre coffical</pre>
Big Data	Speech recognition from 50 million training enamples	yor 1 million users En	nphasis on the process

- Humans can label data - Data Aug

Harder to obtain more data

& Unstructured V/s Structured data

unstructured data

- · May or may not have huge collection of unlabeled enamples x.
- · Human can label more dota
- · Data Aug. more Ukeley be helpful

Structured data

- · May be more difficult to obtain more data
- · Human labeling may not be possible (with some enceptions)

& Small Data V/s Big Data

Small Data

- · clean labels are critical
- · Can manually look through dataset & fin labels
- · can get all the labelers to talk to each other

Big Data

· Emphasis data process.

I Small Data and label Consistency Why label consistency is important

- Small data
- Noisy labels

- Big data
- Noisy labels

- small data
- Clean (consistent) labels

Big data problems can have small data challenges too - Problem with large dataset but where there's a long tail of rare events in the input will have small data challenges too.

्क्षे, श्रीष्ट्रीहितेष जान्त्रका कार्र प्राप्त

- o web search
- o Sely-driving cars
- · Product Recommendation systems

De Improving labels consistency

- " Have multiple labelers label same example
- · When there is disagreement, have MIE, subject matter expert (SME) and/or labelers discuss definition of y to reach agreement.
- · If labelers believe that x doesn't contain information, consider changing x.
- · Hexate until it is hard to significantly increase agreement.

→ " Um, nearest gas station"

- · Enamples · Standardize labels
 - "Um, nearest gas station"
 - "Umm, nearest gas station"
 - " Nearest gas Station [unintelligible]"
 - · Merge classes ⇒ Scratch

Deep scratch Shallow scratch

3

3

small data v/s big data (unstructured)

Small Data

- · usually small number of labelers
- · can ask labelers to discuss specific labels

Big Data

- · Gret to consistent definition with a small group
- · Then send labelling instructions to labeless
- · Can consistent having multiple labeler label every example and using voting or consensus labels to increase acuracy.

Human Level Performance

Cround tovel Inspector

Why measure HLP?

Estimate Bayes exxox/ixxeducible exx to help with exx A. and prioritization Ga.

Other USCS of HLP

- · In academia, establish and beat a respectable benchmark to support publication.
- · Business or product owner asks for 99% accuracy. MLP helps establish a more reasonable target.
- · "Prove" the ML system is superior to humans doing the jab and thus the business or product owner should adopt it

use with caution

Rising HLP

- . When the ground truth label is enternally defined, MLP gives an estimate for Bayes exx/irreducible exo
- · But often ground truth is just another human lebel.

Scratch (mm)	Ground Truth label	Inspector	
0-7	Brand Const.	is turbering	JA 10"
0.2	× 0	millodai L.	66-7.1.
130,010.5	alterial comes	Tariff of the sky in	/
0 - 2	O O	0	
0-1	O plant	1 A OUT MAN	100%
0.1		X.0	-34 (13 es 2 let)

- · When the label y comes from a human label, MLP «100%.
 may indicate ambiguous tabeling instructions Um. Um.
- * Improving label consistency will raise HLP
- · This makes it harder for ML to beat MLP. But the more consistent labels will raise ML performance, which is ulfinately likely to benefit the actual application performance.

HLP on structured data

Structured data problems are less likely to involve human labelers, thus HLP is frequently used.

Some enceptions:

- e user ID merging: Same person!
- · Based on network traffic, is the computer hacked!
- o Is the transaction fraudulent?
- o spam account? Bot ?
- o Gof From GPS, what is the mode of transportation on foot, bike, car, bus?

Obtaining Data

Hodel + Hyperparameters + Data
30 days
20lays
Training
2 days

· Enception: If you have worked on the problem before and from experience you know you need m enamples.

Mow long should you spend obtaining data?

- · Get into this iteration loop as quickly possible.
- "Instead of asking: How long it would take to obtain menamples!

 Ask: How much data can we obtain in K days!

 "Enception: If you have

Inventory Data

Brainstorm list of data sources (speech recognition)

Source	Amount	cost	Time
owned	loo h	ま 0	0
Crowdsourced-Reading	(000 h	₹10000	14 days
Pay for labels	l voh	F 6 000	7 clays
Purchase data	1000 h	₹ 10 ooo	1 day

other factors: Data quality; privacy, regulators constraints

Labeling Data

- · options: In-house /s outsourced v/s crowdsourced
- · Having MLEs label Derta is expensive. But doing this for just a few days is usually fine
- · who is qualified to label?
 - · speech recognition—any reasonably fluent speaker
 - Factory inspection, medical image d'agnosis SME (subject Matter
- Recommender systems may be impossible to label well
- · Don't increase data by more than lox at a time.

Data Pipeline

POC and Production Phase

POC (proof - of - concept):

- · Groal is to decide if the application is workable & worth deploying.
- · Focus on getting the prototype to work!
- It's or if data pre-processing is manual. But take extensive notes/comments

Production Phase:

- · After project utility is established, use more sophisticated tools to make sure the data pipeline is replicate
- · E.g., TensorFlow, Transform, Apache Beam, Airflow,...

Meta Data, Data-Provenance and Lineage

Task: Predict if someone is looking for a Job

n = user devia, y = looking for a job

Keep track of data provenance and lineage

where it comes from

Sequence
of steps