Banco de Dados

Introdução a Banco de Dados

Quem é esse professor?

- Rangel Xavier
- 26 anos
- Juazeiro do Norte
- Sistemas de Informação
- Frontend e Design
- Teacher FJN and FVS
- Up Marketing Digital

O que é um <u>Banco de</u> <u>Dados??</u>

Alguns termos típicos

- Dados fatos que podem ser armazenados ex:nomes, telefones, endereços
- Banco de dados coleção de dados relacionados logicamente, ex: agenda de telefones
- Sistema de Gerência de Bases de Dados (SGBD) coleção de programas que permite a criação e gerência de bases de dados ou Sistemas de Banco de dados

Propriedades do termo Banco de Dados

- O termo Banco de Dados é muito genérico, vamos há algumas propriedades:
- 1. Representa algum aspecto do mundo real
- 2. É uma coleção logicamente coerente de dados com algum significado coerente
- 3. É projetado, construído e populado com dados para uma finalidade específica

www.amazon.com

Contém dados de mais de 20 milhões de livros, CDs, vídeos, DVDs, jogos, eletrônicos, etc... Cerca de 15 milhões de usuários acessam o amazon.com todos os dias e utilizam o banco de dados para realizarem compras

Banco de Dados + Software de SGBD - Sistema de Banco de Dados

Ambiente de Sistema de Banco de Dados

Um banco de dados pode ser criado e mantido manualmente, ou pode ser computadorizado!

Motivação

- Sistema de Banco de Dados X Sistemas de Arquivos
- Antes de SGBDs as aplicações utilizavam sistemas de arquivos do Sistema Operacional.

Banco de dados UNIVERSIDADE para manter informações referentes a alunos, disciplinas e notas em um ambiente universitário

ALUNO

Nome	Numero_aluno	Tipo_aluno	Curso
Silva	17	1	cc
Braga	8	2	CC

DISCIPLINA

Nome_ disciplina	Numero_ disciplina	Creditos	Departamento
Introd. à ciência da computação	CC1310	4	cc
Estruturas de dados	CC3320	4	CC
Matemática discreta	MAT2410	3	MAT
Banco de dados	CC3380	3	cc

ldentificacao_ turma	Numero_ disciplina	Semestre	Ano	Professor
85	MAT2410	Segundo	07	Kleber
92	CC1310	Segundo	07	Anderson
102	CC3320	Primeiro	08	Carlos
112	MAT2410	Segundo	08	Chang
119	CC1310	Segundo	08	Anderson
135	CC3380	Segundo	08	Santos

HISTORICO_ESCOLAR

Numero_aluno	Identificacao_turma	Nota
17	112	В
17	119	С
8	85	А
8	92	А
8	102	В
8	135	Α

PRE_REQUISITO

Numero_pre_requisito
CC3320
MAT2410
CC1310

Manipulação do banco de dados

- Recuperar uma lista de todas as disciplinas e notas de 'Silva'
- Listar os pré-requisitos do curso de 'Banco de Dados'
- Alterar o tipo de aluno de 'Silva' para segundo ano
- Criar uma outra turma para a disciplina 'Banco de Dados'

Sistema de Banco de Dados versus Sistema de Arquivos

Características da abordagem de banco de dados

- Abordagem de banco de dados versus a abordagem de sistemas de arquivos:
- Isolamento entre programas e dados, e abstração de dados (Estrutura de Arquivos é armazenada no catalogo do SGBD)
- Suporte de múltiplas visões de dados
- Compartilhamento de dados e processamento de transações multiusuário (Vários Usuários Acessam)

Atores em Cena

- Administradores de banco de dados autoriza o acesso ao banco de dados, coordena e monitora o seu uso e adquire recursos de software e hardware conforme a necessidade.
- Projetistas de banco de dados identificar os dados a serem armazenados e escolher estruturas apropriadas para representar e armazenar esses dados.
- Usuários Finais pessoas que irão ter acesso ao banco de dados para consultas, atualizações e geração de relatórios.

Atores em Cena

Analistas de Sistemas e Programadores — Analistas de Sistemas i<u>dentificam</u> necessidades dos usuários finais. Os familiarizados com todo o conjunto de capacidades fornecidos pelos SGBDs.

- Controlando a Redundância Centralizar as informações para evitar que os mesmo dados sejam inseridos em vários lugares. Utilizar chaves primárias e chaves estrangeiras...
- Restringindo o acesso não autorizado Permitir que apenas usuários autorizados tenham acesso as informações, e garantir que os mesmo só acessarão o que foi definido para os mesmos...

- Oferecendo backup e recuperação Um SGBD precisa oferecer recursos para recuperar-se de falhas de hardware ou software.
- Oferecendo múltiplas interfaces do usuário Dependendo do usuário que utiliza um banco de dados, o SGBD deve oferecer uma variedade de interfaces de usuário.
- Representando relacionamentos complexos entre dados Um SGBD deve ser capaz de representar uma série de relacionamentos complexos entre dados (1-1; N-M; 1-M...)

Impondo restrições de integridade – por exemplo o campo TIPO_ALUNO da tabela ALUNO deve ser um inteiro de um digito e que o valor de NOME precisa ser um alfa numérico de até 30 caracteres. Outros exemplo: chaves.

- Implicações adicionais do uso da abordagem de banco de dados:
- Potencial para garantir padrões definir e impor o uso de padrões entre os usuários do banco
- Flexibilidade poder alterar a estrutura do banco de dados a medida que as necessidades mudam
- Disponibilidade de informações atualizadas torna um banco de dados disponível a todos os usuários

Desvantagens dos SGBD

- Aumento de Custos Exigem hardware e software sofisticados, e pessoal altamente treinado
- Complexidade de Gerenciamento
- Manutenção do Banco de Dados Atualizado

SGBD: Funcionamento

S.A: Funcionamento

Quando usar Sistema de Arquivos?

- Quando não houver muitas mudanças;
- Apenas um usuário

Vamos entender uma coisa...

- Dados
- Campos
- Registros
- Arquivos

Campos

- É a unidade básica formadora de um registro. Constitui a célula da informação. É a menor porção de um arquivo que pode ser referenciada por um programa.
- Cada campo possui NOME, TIPO (Texto, Numero, Data) e TAMANHO (30, 1, 20).

Registro

 Um registro é constituído por conjunto de Consiste na unidade de armazenamento e

Arquivo

Um arquivo é uma coleção de REGISTROS do mesmo tipo, ou seja, referentes a um mesmo assunto e com o mesmo formato padrão.

Projeto de Banco de Dados

Requisitos de Dados

Projeto Conceitual

Projeto Lógico

Projeto Físico

Conceitual

 O projeto conceitual inicia a partir das especificações e abstrações do mundo real e resulta no esquema conceitual de banco de dados

Registra QUE dados podem aparecer no banco, mas não registra COMO estes dados estão armazenados no SGBD

Conceitual

A técnica mais difundida de modelagem conceitual é a abordagem entidaderelacionamento (ER). Nesta técnica, um modelo conceitual é usualmente representado através de um diagrama, chamado diagrama entidaderelacionamento (DER)

Lógico

 O projeto lógico consiste no mapeamento do mais utilizados pertencem a três classes: relacional, redes e hierárquico, sendo amplamente utilizado o modelo relacional

Físico

 O projeto físico inicia-se a partir do esquema lógico e resulta no esquema físico.
 Um esquema físico é uma descrição da implementação do bando de dados e é direcionado para um SGBD específico.

"Exercício"

- Descreva um modelo conceitual para armazenar os dados de livros.
- Descreva um modelo conceitual para armazenar clientes em um hotel.
- Descreva um modelo conceitual para guardar automóveis.

Modelo de Dados

Os SGBD's utilizam diferentes formas de representação, ou modelos de dados, para descrever as estrutura das informações contidas em seus banco de dados.

- Hierárquico
- Redes
- Relacional
- Orientado a Objeto

Hierárquico

- Criada em 1960;
- Projetos complexos como o do foguete Apollo;
- Estrutura lógica é representada por uma estrutura de arvore. "De cima para baixo"
- Difícil de implementar e gerenciar e não dispunha de independência estrutural.

Hierárquico

Modelos de Dados

Neste modelo os dados são estruturados em hierarquia ou arvores. Os "nós" das hierarquias contêm ocorrências de registros, onde cada registro é uma coleção de campos, contendo apenas uma informação

Hierárquico

Rede

Modelos de Dados

Eliminou o Modelo Hierárquico, permitiu que um mesmo registro estivesse envolvido em várias associações.

Rede

Relacional

- A estrutura fundamental do modelo Relacional é a relação (tabelas).
- Não tem caminho pre-definidos para fazer acesso aos dados como os modelos passado;

Relacional

Nome	Rua	Cidade	Numero da Conta	Saldo
Rangel	Rua Dona Maricô	Barbalha	1234-5	100,00
Gertrudes	Rua Antero Mota	Acopiara	4579-9	3400,00
Nalberto	Rua Pinto Moura	Milagres	7685-2	3999,00
Fernanda	Rua da Cruz	Banabuiu	1123-4	3459,00

Orientada a Objeto

- O dados e relacionamentos são contidos em uma única estrutura chamada de objeto.
- O objeto inclui informações sobre o relacionamento entre os fatos em seu interior, e também relacionamento com outros objetos.

Orientada a Objeto

- O modelo de dados OO baseia-se nos seguintes componentes:
 - Objeto: É uma abstração de uma entidade real;
 - Atributos: Descrevem as propriedades ou características de um objeto.
 - Classes: Objetos que tem características similares são agrupados em classes.

Orientada a Objeto

- Os modelos de dados orientados a objetos normalmente são representados por um diagrama de classe em UML.
- UML: Unified Modeling Language. É uma linguagem (baseada em 00) que descreve um conjunto de diagramas que podem ser utilizadas para modelar graficamente um sistema.

Modelagem de Dados

Modelagem

Abordagem Entidade-Relacionamento

- É um padrão para a modelagem conceitual.
- Criada em 76 por Peter Chen que junto com alguns conceitos apresenta uma notação gráfica para diagramas.

Carateristicas

- Ser um modelo simples, com poucos conceitos;
- Representação gráfica de fácil compreensão.
- Um esquema conceitual de dados também é chamado de esquema ER, diagrama ER ou modelo ER.

Abordagem Relacional

- É a utilização de conceitos de entidade e relacionamento para criar as estruturas que irão compor o Banco de Dados.
- Maior erro nesta fase é admitir que já sabe tudo para ser feito.

Abordagem Relacional

Para minimizar problemas, deve-se criar uma estrutura gráfica que permite identificar as entidades de um sistema e como estas se relacionam.

Objetivo da Modelagem

 Desenvolver um modelo que contem entidades e relacionamentos, e seja capaz de representas os requerimentos das informações do negócio, evitando redundâncias, inconsistências e economia de espaço.

Objetos Conceituais

- A ER é a técnica mais utilizada para modelagem;
- O modelo de dados é representado através de um modelo entidade-relacionamento (MER), que graficamente é chamado de Diagrama entidade-relacionamento (DER).

Entidades e Relacionamentos

- O que são Entidades e Relacionamentos?
- Estes são o conceito principal/inicial para criar um diagrama;

Entidade

- São objetos que existem no mundo real com uma identificação distinta e com um significado próprio.
- São descritas como objeto da realidade na qual se deseja manter informações no bancos de dados.
- Representado por um substantivo na descrição do negócio.

Entidade

Carros

Pessoas

Empresa

Cidade

Aluno

Notação - Entidade

Em um diagrama ER uma en Tidade é representada através de uma **retângulo** contendo o nome da entidade.

MÉDICO

ALUNO

Relacionamento

- É o fato ou acontecimento que liga dois objetos existentes do mundo real.
- O fato que seja a junção de duas ou mais tabelas;

Notação - Relacionamento

- A notação do relacionamento no diagrama é representado por um losango.
- Um relacionamento é caracterizado por um verbo.

Notação - Relacionamento

Grau de Relacionamento

- O grau de relacionamento também é chamado de cardinalidade.
- A cardinalidade é um conceito importante para ajudar a definir o relacionamento, ela define o número de ocorrências em um relacionamento.

Relacionamentos

- Os relacionamentos podem ser:
 - 1-1 (Um para um)
 - 1-N (Um para muitos)
 - N-N (Muitos para muitos)
- A isso damos o nome de cardinalidade.
- No MER os relacionamentos são identificados com um verbo

Exemplo de 1:1

Uma pessoa possui um automóvel Um automóvel pertence a uma pessoa.

Exemplo de 1:N

Uma pessoa possui vários automóveis Vários automóveis é pertencem a uma pessoa.

Exemplo de N:N

Um aluno possui vários professores. Um professor possui vários alunos.

Obtendo a cardinalidade

Um aluno possui vários professores.

Um professor possui vários alunos.

Relacionamento Unário

 Relacionamento unário (grau 1) – uma entidade se relaciona com ela mesma

Relacionamento Binário

Relacionamento binário (grau 2) – é um relacionamento que liga dois tipos diferentes de entidades. É o mais comum dos tipos de relacionamentos.

Relacionamento Ternário

 Relacionamento ternário (grau 3) – é um relacionamento em que três entidades estão interligadas por um mesmo relacionamento.

Outros Relacionamentos

 Outros graus de relacionamentos também podem ser usados (quaternário, grau 5, etc...)

Exercício

Em equipe, criem em 5 exemplos de cada relacionamento (1:1, 1:N, N:N).

Exercício

 Uma livraria mantém o cadastro de livros disponíveis preço, ano, número de páginas e quantidade em estoque.

Além da cardinalidade máxima, uma outra informação que pode ser representada por um modelo ER é o número mínimo de ocorrências de entidade que são associadas a uma entidade através de um relacionamento.

Para fins de projeto de BD, consideram-se apenas duas cardinalidades mínimas: a cardinalidade mínima 0 e a cardinalidade mínima 1

Recebe também a denominação de "associação obrigatória", já que ela indica que o relacionamento deve obrigatoriamente associar uma ocorrência de entidade a cada ocorrência da entidade em questão

Já a cardinalidade mínima O também recebe a denominação de "associação opcional"

 Não existe correspondente na outra entidade

Já a cardinalidade mínima O também recebe a denominação de "associação opcional"

 Não existe correspondente na outra entidade

No exemplo acima, vamos imaginar que duas entidades, uma de homens e outra de mulheres, alguns homens são casados com mulheres da outra entidade e outros não. Da mesma forma, algumas mulheres são casadas, outras não.

Para ajudar-nos a definir a cardinalidade mínima das entidades, uma pergunta deve ser feita.

 Um homem pode ser casado no mínimo com quantas mulheres da outra entidade? E no máximo? (legalmente!)

 Quando usamos a cardinalidade mínima e máxima, deve ser escrita da seguinte forma:

(mínima, máxima)

Outro exemplo: Uma empresa possui funcionários e seus dependentes; nem todo funcionário possui dependentes, mas todos os dependentes têm algum funcionário associado. Vamos colocar a cardinalidade analisando primeiro a entidade Funcionário.

Agora, analisando a entidade Dependente:

Um dependente tem no mínimo 1 funcionário associado.

4) Um dependente tem no máximo 1 funcionário associado.

Atributos

Atributos

- São informações que qualificam uma entidade e descrevem uma característica.
- Quando transpostos para o modelo físico são chamados de campos.
- 4 tipos de atributos (compostos, simples, multivalorados e especiais)

Atributos Compostos

 Podem ser divididos em subpartes menores que representam outros atributos básicos com significados diferentes.

Exemplo: Atributo **Endereço**, que pode ser dividido em numero, logradouro, cidade, estado, CEP e etc.

Atributos Simples

- O tipo de atributo mais comum;
- Não podem ser subdivididos;
- Característica de uma Entidade;
- Possui um único valor;

Atributos Multivalorado

A maioria dos atributos possui apenas um valor. Em alguns casos, um atributo pode ter um conjunto de valores para a mesma entidade.

 Exemplo: Atributo Telefone. Uma pessoa poderá ter mais de um número de telefone

Atributos Especiais

- São chamados também de Determinante;
- Identifica de forma única uma entidade, ou seja, não pode haver dados repetidos.
- Por sua vez, os atributos especiais são divididos em 4.

Atributos

Atributos Especiais

- Chave Primária
- Chave candidata
- Chave estrangeira
- Chave composta

Chave Primária

- É o atributo cujo valor identifica outras.
- Atributo ou combinação de atributos que forma única uma linha da tabela.

Chave Estrangeira

• É quando um atributo de uma entidade é a chave primária de outra entidade com a qual ela se relaciona.

Chave Candidata

- É a base para a definição/construção de uma chave primária. A chave primária é extraída a partir do conjunto de chaves candidatas de uma tabela;
- A chave candidata é apenas conceitual, ou seja, ela não é implementada.
- Os atributos com essa características poderiam ser primária já que possuem por natureza a identificação única.

Chave Composta

A chave primária composta é aquela que é criada em dois campos e desta forma passa a utilizar a junção dos dados dos dois campos indicados para formar um valor único e assim aplicar o bloqueio de duplicidade.

Chave Composta

- Exemplo: A entidade CIDADE com os atributos cidade, estado e população.
- Chave primária: cidade
- Suponhamos que ao inserirmos valores nesta tabela exista nomes de cidades iguais.
- Precisa junta dois campos para seres diferenciados.

Notação - Atributo

Prática

 A pessoa tem um carro sedan e é proprietário de um apartamento na Lapa.

Entidade Fraca e Entidade Forte

- É possível que nem sempre uma entidade não tenha atributos suficientes para formar uma chave primária.
- Essas entidades são chamas de Entidades
 Fracas

 Um conjunto de entidades que possui uma chave primária é chamado de Entidade
 Forte

- Embora as Entidades Fracas não tem chave primária, é necessário uma forma de distinção entre todas as outras entidades.
- O discriminador de um conjunto de entidade fraca é um conjunto de atributos que permite a distinção seja feita.

Notação: Entidade Fraca

As entidades fracas são representadas por um retângulo duplicado.

Especialização e Generalização

Generalização

• É um processo de abstração em que vários tipos de entidades são agrupados em uma única entidade genérica, que mantém as propriedades comuns.

 A entidade genérica é denominada superclasse

Especialização

É o processo inverso da Generalização, ou seja, novas entidades especializadas são criadas, com atributos que acrescentam detalhes à entidade genérica existente.

 As entidades especializadas são as subclasses Este conceito está associado a ideia de herança de propriedades. Ou seja, as subclasses possuem, além de seus próprios atributos, os atributos também da sua superclasse.

Notação

Entidade Associativa (Agregação)

 O uso desta abstração é necessário quando um relacionamento deve ser representado como uma entidade no modelo conceitual. Isto ocorre quando é necessário estabelecer um relacionamento entre uma entidade e um relacionamento.

Entidade Associativa (Agregação)

- Para atender a esta situação foi criado o conceito de Entidade Associativa ou Agregação.
- Que nada mais é do que, quando um relacionamento passa a ser tratado como entidade.

- Médico
- Consulta
- Paciente
- Prescrição
- Medicamento