SIPMOS® Power Transistor

BUZ 10 L

- N channel
- Enhancement mode
- Logic Level
- Avalanche-rated

Туре	$V_{ extsf{DS}}$	I_{D}	$R_{ extsf{DS (on)}}$	Package 1)	Ordering Code
BUZ 10 L	50 V	23 A	0.07 Ω	TO-220 AB	C67078-S1329-A2

Maximum Ratings

Parameter	Symbol	Values	Unit	
Continuous drain current, $T_{\rm C}$ = 26 °C	I_{D}	23	Α	
Pulsed drain current, T _C = 25 °C	$I_{D\;puls}$	92		
Avalanche current, limited by $T_{ m jmax}$	I_{AR}	23		
Avalanche energy, periodic limited by $T_{\rm j(max)}$	E_{AR}	1.3	mJ	
Avalanche energy, single pulse $I_{\rm D}$ = 23 A, $V_{\rm DD}$ = 25 V, $R_{\rm GS}$ = 25 Ω L = 15.1 μ H, $T_{\rm j}$ = 25 $^{\circ}$ C	E_{AS}	8		
Gate-source voltage	$V_{ m GS}$	± 10	V	
Gate-source peak voltage, aperiodic	$V_{ m gs}$	± 20		
Power dissipation, $T_{\rm C}$ = 25 °C	P _{tot}	75	W	
Operating and storage temperature range	$T_{ m j}$, $T_{ m stg}$	– 55 + 150	,C	
Thermal resistance, chip-case	R_{thJC}	≤ 1.67	K/W	
DIN humidity category, DIN 40 040		E	_	
IEC climatic category, DIN IEC 68-1		55/150/56	_	

¹⁾ See chapter Package Outlines.

Electrical Characteristics

at $T_{\rm j}$ = 25 °C, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static characteristics					
Drain-source breakdown voltage $V_{\rm GS}$ = 0 V, $I_{\rm D}$ = 0.25 mA	$V_{ m (BR)~DSS}$	50	_	_	V
Gate threshold voltage $V_{\rm GS}$ = $V_{\rm DS}$, $I_{\rm D}$ = 1 mA	V _{GS (th)}	1.5	2.0	2.5	
Zero gate voltage drain current $V_{\rm DS}$ = 50 V, $V_{\rm GS}$ = 0 V $T_{\rm j}$ = 25 °C $T_{\rm j}$ = 125 °C	$I_{ m DSS}$	 - -	0.1 10	1.0 100	μΑ
Gate-source leakage current $V_{\rm GS}$ = 20 V, $V_{\rm DS}$ = 0 V	$I_{ m GSS}$	-	10	100	nA
Drain-source on-resistance $V_{\rm GS}$ = 5 V, $I_{\rm D}$ = 11.5 A	$R_{ m DS (on)}$	-	0.06	0.07	Ω
Dynamic characteristics					
Forward transconductance $V_{\rm DS} \geq$ 2 x $I_{\rm D}$ x $R_{\rm DS(on)max}$, $I_{\rm D}$ = 11.5 A	g_{fs}	8	14.5	-	S
Input capacitance $V_{\rm GS}$ = 0 V, $V_{\rm DS}$ = 25 V, f = 1 MHz	C_{iss}	_	800	1100	pF
Output capacitance $V_{\rm GS}$ = 0 V, $V_{\rm DS}$ = 25 V, f = 1 MHz	$C_{ m oss}$	_	300	450	
Reverse transfer capacitance $V_{\rm GS}$ = 0 V, $V_{\rm DS}$ = 25 V, f = 1 MHz	C_{rss}	-	110	170	
Turn-on time t_{on} , $(t_{on} = t_{d (on)} + t_{r})$	t _{d (on)}	_	25	40	ns
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 5 V, $I_{\rm D}$ = 3 A, $R_{\rm GS}$ = 50 Ω	t_{r}	_	75	120	
Turn-off time t_{off} , $(t_{\text{off}} = t_{\text{d (off)}} + t_{\text{f}})$	t _{d (off)}	_	110	160	
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 5 V, $I_{\rm D}$ = 3 A, $R_{\rm GS}$ = 50 Ω	t_{f}	_	75	95	

Electrical Characteristics (cont'd)

at $T_{\rm j}$ = 25 °C, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse diode					
Continuous reverse drain current $T_{\rm C}$ = 25 °C	$I_{\rm S}$	_	_	25	Α
Pulsed reverse drain current $T_{\rm C}$ = 25 °C	I_{SM}	_	_	100	
Diode forward on-voltage $I_{\rm S}$ = 50 A, $V_{\rm GS}$ = 0 V	$V_{ m SD}$	_	1.5	2.0	V
Reverse recovery time $V_{\rm R}$ = 30 V, $I_{\rm F}$ = $I_{\rm S}$, ${\rm d}i_{\rm F}/{\rm d}t$ = 100 A/ μ s	t_{rr}	_	60	_	ns
Reverse recovery charge $V_{\rm R}$ = 30 V, $I_{\rm F}$ = $I_{\rm S}$, ${\rm d}i_{\rm F}/{\rm d}t$ = 100 A/ μ s	Q_{rr}	_	0.1	_	μС

Characteristics at $T_{\rm j}$ = 25 °C, unless otherwise specified.

Total power dissipation

$$P_{\text{tot}} = f(T_{\text{C}})$$

Typ. output characteristics

 $I_{\rm D} = f(V_{\rm DS})$

parameter: t_p = 80 μ s

Safe operating area

 $I_{\rm D} = f(V_{\rm DS})$

parameter: D = 0.01, $T_C = 25$ °C

Typ. transfer characteristics

 $I_{\rm D} = f(V_{\rm GS})$

parameter: t_p = 80 μ s, V_{DS} = 25 V

Typ. drain-source on-resistance

 $R_{\rm DS \, (on)} = f(I_{\rm D})$ parameter: $V_{\rm GS}$

Drain-source on-resistance

 $R_{\rm DS \, (on)} = f(T_{\rm i})$

parameter: I_D = 11.5 A, V_{GS} = 5 V, (spread)

Typ. forward transconductance

 $g_{\mathsf{fs}} = f(I_{\mathsf{D}})$

parameter: t_p = 80 μ s

Gate threshold voltage

 $V_{\rm GS (th)} = f(T_{\rm j})$

parameter: $V_{GS} = V_{DS}$, $I_{D} = 1$ mA, (spread)

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$

Drain current

 $I_{\rm D} = f(T_{\rm C})$

parameter: $V_{GS} \ge 5 \text{ V}$

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_i , $t_p = 80 \mu s$, (spread)

Avalanche energy $E_{AS} = f(T_j)$

parameter: $I_{\rm D}$ = 23 A, $V_{\rm DD}$ = 25 V

 $R_{\rm GS}$ = 25 Ω , L = 15.1 $\mu {\rm H}$

Transient thermal impedance

 $Z_{\text{th JC}} = f(t_{\text{p}})$

parameter: $D = t_p / T$

Typ. gate charge

 $V_{\rm GS}$ = $f(Q_{\rm Gate})$

parameter: $I_{\rm D~puls}$ = 37.5 A

