Análisis II – Análisis matemático II – Matemática 3.

Segundo Cuatrimestre de 2025

Práctica 6 - Ecuaciones de 2do. orden y sistemas de 1er. orden.

Ejercicio 1 Encontrar un sistema fundamental de soluciones reales de las siguientes ecuaciones:

i)
$$y'' - 8y' + 16y = 0$$

ii)
$$y'' - 2y' + 10y = 0$$

iii)
$$y'' - y' - 2y = 0$$

En cada uno de los casos anteriores encontrar una solución exacta de la ecuación no homogénea correspondiente con término independiente $x, e^x, 1 y e^{-x}$.

Ejercicio 2 Sean (a_1,b_1) y (a_2,b_2) dos puntos del plano tales que $\frac{a_1-a_2}{\pi}$ no es un número entero.

- 1. Probar que existe exactamente una solución de la ecuación diferencial y'' + y = 0 cuya gráfica pasa por esos puntos.
- 2. ¿Se cumple en algún caso la parte (a) si $a_1 a_2$ es un múltiplo entero de π ?
- 3. Generalizar el resultado de (a) para la ecuación $y'' + k^2y = 0$. Discutir también el caso k=0.

Ejercicio 3 Hallar todas las soluciones de y'' - y' - 2y = 0 y de $y'' - y' - 2y = e^{-x}$ que verifiquen:

$$\begin{array}{llll} \text{i)} & y(0)=0, & y'(0)=1 & & \text{ii)} & y(0)=1, & y'(0)=0 \\ \text{iii)} & y(0)=0, & y'(0)=0 & & \text{iv)} & \lim_{x\to+\infty}y(x)=0 \\ \text{v)} & y(0)=1 & & \text{vi)} & y'(0)=1 \end{array}$$

ii)
$$y(0) = 1$$
, $y'(0) = 0$

iii)
$$y(0) = 0$$
, $y'(0) = 0$

iv)
$$\lim_{x \to +\infty} y(x) = 0$$

$$\mathbf{v}) \quad y(0) = 1$$

vi)
$$y'(0) = 1$$

Ejercicio 4 En el interior de la Tierra, la fuerza de gravedad es proporcional a la distancia al centro. Si se perfora un orificio que atraviese la Tierra pasando por el centro, y se deja caer una piedra en el orificio, ¿con qué velocidad llegará al centro?.

Ejercicio 5 La ecuación $x^2y'' + pxy' + qy = 0$ (p, q constantes) se denomina ecuación de Euler.

- 1. Demuestre que el cambio de variables $x = e^t$ transforma la ecuación en una con coeficientes constantes.
- 2. Aplique (a) para resolver en $\mathbb{R}_{>0}$ las ecuaciones:

i)
$$x^2y'' + 2xy' - 6y = 0$$

ii) $x^2y'' - xy' + y = 2x$

ii)
$$x^2y'' - xy' + y = 2x$$

1

Ejercicio 6 Hallar la solución general de las siguientes ecuaciones, empleando la solución dada:

$$\begin{array}{lll} \text{i)} & xy''+2y'+xy=0, & I=\mathbf{R}_{>0}, & y_1(x)=\frac{\operatorname{sen} x}{x}. \\ \text{ii)} & xy''-y'-4x^3y=0, & I=\mathbf{R}_{>0}, & y_1(x)=\exp(x), \\ \text{iii)} & xy''-y'-4x^3y=0, & I=\mathbf{R}_{<0}, & y_1(x)=\exp(x), \\ \text{iv)} & (1-x^2)y''-2xy'+2y=0, & I=(-\infty,-1),(-1,1),(1,\infty), & y_1(x)=x. \end{array}$$

i)
$$xy'' + 2y' + xy = 0$$
, $I = \mathbf{R}_{>0}$, $y_1(x) = \frac{\operatorname{sen} x}{x}$.
ii) $xy'' - y' - 4x^3y = 0$, $I = \mathbf{R}_{>0}$, $y_1(x) = \exp(x^2)$.

iii)
$$xy'' - y' - 4x^3y = 0$$
, $I = \mathbf{R}_{<0}$, $y_1(x) = \exp(x^2)$

iv)
$$(1-x^2)y''-2xy'+2y=0$$
, $I=(-\infty,-1),(-1,1),(1,\infty)$, $y_1(x)=x$.

El último Ãtem es un caso especial de la ecuación $(1-x^2)y'' - 2xy' + p(p+1)y = 0$ (ecuación de Legendre), correspondiente al caso p=1, en los intevalos en que la ecuación es normal.

Ejercicio 7 Sabiendo que $y_1(x) = e^{x^2}$ es solución de la ecuación homogénea asociada, hallar todas las soluciones de $xy'' - y' - 4x^3y = x^3$.

Ejercicio 8 Probar que las funciones

$$\phi_1(t) = \begin{cases} t^2 & t \le 0 \\ 0 & t \ge 0 \end{cases} \qquad \text{y} \quad \phi_2(t) = \begin{cases} 0 & t \le 0 \\ t^2 & t \ge 0 \end{cases}$$

son linealmente independientes en **R** pero que $W(\phi_1, \phi_2)(0) = 0$. ¿Existe algún sistema lineal normal de orden 2 definido en algún intervalo $(-\epsilon, \epsilon)$ que admita a $\{\phi_1, \phi_2\}$ como base de soluciones?

Ejercicio 9 Hallar la solución general de los siguientes sistemas

(a)
$$\begin{cases} x'_1 = -x_2 \\ x'_2 = 2x_1 + 3x_2 \end{cases}$$
 (b)
$$\begin{cases} x'_1 = -8x_1 - 5x_2 \\ x'_2 = 10x_1 + 7x_2 \end{cases}$$
 (c)
$$\begin{cases} x'_1 = -4x_1 + 3x_2 \\ x'_2 = -2x_1 + x_2 \end{cases}$$
 (d)
$$\begin{cases} x'_1 = -x_1 + 3x_2 - 3x_3 \\ x'_2 = -2x_1 + x_2 \\ x'_3 = -2x_1 + 3x_2 - 2x_3 \end{cases}$$

En cada caso, hallar el conjunto de datos iniciales tales que la solución correspondiente tienda a 0 cuando t tienda a $+\infty$. Adem con t tendiendo a $-\infty$.

Ejercicio 10 Dos tanques, conectados mediante tubos, contienen cada uno 24 litros de una solución salina. Al tanque I entra agua pura a razón de 6 litros por minuto y del tanque II sale, al exterior, el agua que contiene a razón de 6 litros por minuto. Además el líquido se bombea del tanque I al tanque II a una velocidad de 8 litros por minuto y del tanque II al tanque I a una velocidad de 2 litros por minuto. Se supone que los tanques se agitan de igual forma constantemente de manera tal que la mezcla sea homogénea. Si en un principio hay x_0 kg de sal en el tanque I e y_0 Kg de sal en el tanque II, determinar la cantidad de sal en cada tanque a tiempo t > 0. Cuál es el límite, cuando $t \to +\infty$, de las respectivas concentraciones de sal en cada tanque.?

Ejercicio 11 Hallar la solución general de los siguientes sistemas

(a)
$$\begin{cases} x'_1 = x_1 - x_2 \\ x'_2 = x_1 + x_2 \end{cases}$$
 (b)
$$\begin{cases} x'_1 = 2x_1 - x_2 \\ x'_2 = 4x_1 + 2x_2 \end{cases}$$
 (c)
$$\begin{cases} x'_1 = 2x_1 + x_2 \\ x'_2 = 2x_2 \end{cases}$$
 (d)
$$\begin{cases} x'_1 = -5x_1 + 9x_2 \\ x'_2 = -4x_1 + 7x_2 \end{cases}$$

Ejercicio 12 Hallar la solución general de los siguientes sistema

(a)
$$\begin{cases} x_1' = -x_2 + 2 \\ x_2' = 2x_1 + 3x_2 + t \end{cases}$$
 (b)
$$\begin{cases} x_1' = 2x_1 - x_2 + e^{2t} \\ x_2' = 4x_1 + 2x_2 + 4 \end{cases}$$