

Petr Vopěnka, A method of constructing a non-standard model in the Bernays-Gödel axiomatic set theory, $Dokl.\ Akad.\ Nauk\ SSSR,\ 1962,\ Volume\ 143,\ Number\ 1,\ 11–12$

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 91.145.23.31

July 28, 2022, 16:22:18

Доклады Академии наук СССР 1962. Том 143, № 1

MATEMATHKA

ПЕТР ВОПЕНКА

ОДИН МЕТОД ПОСТРОЕНИЯ НЕСТАНДАРТНОЙ МОДЕЛИ АКСИОМАТИЧЕСКОЙ ТЕОРИИ МНОЖЕСТВ БЕРНАЙСА ГЕДЕЛЯ

(Представлено академиком П. С. Александровым 12 Х 1961)

Первоначальной системой является аксиоматическая система Σ^* теории множеств (см. (¹)). В этой системе построим ее модель. Порядковые числа этой модели не вполне упорядочены с точки зрения первоначальной теории. Общий метод построения такой модели можно применить к некоторым специальным случаям, например к построению модели, в которой 2^{\aleph_0} натуральных чисел с точки зрения теории, в которой модель построена.

1. В дальнейшем обозначим s — бесконечное множество, I — максимальный идеал на \mathbf{P} (s), если I является множеством подмножеств множества s, для которого имеет место:

я которого имеет место. 1) Если $a \in I$, $b \subseteq s$, $a \subseteq b$, то $b \in I$.

2) Если $a \in I$, $b \in I$, то $a \cap b \in I$.

3) Если $a \mid b \in I$, то или $a \in I$, или $b \in I$.

K (s, I) — класс всех функций, определенных на множестве s. Положим для двух таких функций f(x) и g(x) $f \equiv g \pmod{I}$ тогда и только тогда, когда f(x) = g(x) для всех x из некоторого множества $m \in I$. Отношение $f \equiv g \pmod{I}$, очевидно, рефлексивно, симметрично и транзитивно.

2. Определим множества P_{α} для всякого порядкового числа α методом индукции: $P_0 = 0$, $P_{\alpha} = \mathbf{P}$ ($\bigcup_{\beta < \alpha} P_{\beta}$). Очевидно, $\bigcup_{\alpha \in O_n} P_{\alpha} = V$ (их соединение равно универсальному классу). Для всякого $x \in V$ существует первое $\alpha \in O_n$

такое, что $x \in P_{\alpha}$ (обозначим $\alpha = \tau(x)$). Если $f \in K(s, I)$, то определим $\operatorname{ind}_{f} = \inf_{x \in I} \sup_{x \in \pi} z(f(x))$. Очевидно, из

 $f \equiv g \pmod{I}$ следует $\operatorname{ind}_f = \operatorname{ind}_g$.

Определим класс K' (s, I) следующим образом: $f \in K'$ (s, I) . \equiv . \equiv . $f \in K$ (s, I)& τ (f (x)) \leqslant ind $_f$ для всякого $x \in s$. Для класса K' (s, I) имеет место:

- 1) для всякого $f \in K(s, I)$ существует $g \in K'(s, I)$ такое, что $g \equiv f \pmod{I}$;
- 2) для всякого $f \in K'$ (s, I) класс \overline{f} всех $g \in K'$ (s, I), $g \equiv f \pmod{I}$ является множеством.
- 3. Класс всех множеств \overline{f} (для $f \in K'$ (s, I)) обозначим \overline{V} . Класс \overline{E} содержит точно упорядоченые пары типа $\langle \overline{f}, \overline{g} \rangle$, для которых имеет место: $\overline{f} \in \overline{V} \& \overline{g} \in \overline{V} \& f$ $(x) \in g$ (x) для всех x некоторого $m \in I$. Очевидно, $\langle \overline{f}, \overline{g} \rangle \in \overline{E}$ не зависит от выбора специальных функций из множеств \overline{f} и \overline{g} .

Определим для всякого $\overline{f} \in \overline{V}$ класс $\varphi(\overline{f})$ следующим образом: $\overline{g} \in \varphi(\overline{f}) . \equiv . = . \langle \overline{g}, \overline{f} \rangle \in \overline{E}$.

4. Множества (Π^*), классы (Cls*) и отношение \mathfrak{E}^* модели Γ (s, I) определим следующим образом:

$$M^*(X) := X \in \overline{V};$$

 $\mathsf{Cls}^*(X) := X \subseteq \overline{V}$ и для всякого \overline{f} существует \overline{g} такое, что

$$\varphi(\overline{g}) = X \cap \varphi(\overline{f});$$

 $x \in Y. \equiv \{M^*(x) \& M^*(Y) \& \langle XY \rangle \in \overline{E}\}. \cup \{M^*(x) \& \operatorname{Cls}^*(Y) \& X \in Y\}.$

Множество \bar{f} равно классу ϕ (\bar{f}) (модели Γ (s, I)). Можно доказать, что в этой модели выполнены все аксиомы системы Σ^* .

5. Класс O_n^* модели Γ (s, I) состоит из всех множеств \bar{f} таких, что на некотором $m \in I$ функция f(x) принимает в качестве своих значений только порядковые числа первоначальной теории.

Натуральные числа модели — такие множества \overline{f} , что на некотором $m \in I$ функция f(x) принимает в качестве своих значений только натуральные числа первоначальной теории.

В случае, когда I состоит из всех подмножеств множества s, содержащих одну точку, Γ (s, I) изоморфна первоначальной теории. В остальных случаях получим нестандартную модель теории множеств. Если, например, s — счетное множество, то существуют 2^{\aleph_0} натуральных чисел модели Γ (s, I) с точки зрения первоначальной теории, но в этом случае тоже существуют 2^{\aleph_0} порядковых чисел до первого несчетного с точки зрения первоначальной теории.

В случае, когда s несчетно, а I не является эквивалентным с идеалом на множестве меньшей мощности, то получим неизоморфную модель с Γ (s', I'),

где мощ s' < мощ s.

Карлов университет Прага, ЧСР Поступило 1 IX 1961

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ K. Gödel, Ann. of Math. Studies, № 3 (1940).