Chapter 6: EMBEDDED HARDWARE FUNDAMENTALS

Manuel Jiménez

EMBEDDED SYSTEMS:

Theory and Applications Using the MSP430

UPRM - Fall 2008

Chapter Outline

- Practical MCU Considerations
 - ESD Handling Precautions
 - Understanding MCU Data Sheets
- MCU and System Power Sources
 - Selecting a Power source
- Clock Oscillators
 - Choosing a Clock Source
- Power-on Reset
 - Reset Hardware
 - Initialization Software
- Memory Map: Programs & Data
 - Partitioning Programs and Data
 - Reserved Locations
- Interfacing Considerations
 - Bus Loading Considerations
 - Electrical Compatibility Issues
 - Noise and Signal Integrity Issues

- Basic Interface: The MSP430F2012 Case
 - Power Supply Requirements
 - Base Clock Module
 - Limits in Low-power Modes
 - System Reset and Initialization
 - Brownout Reset (BOR)
 - Software Initialization
 - Electrical Considerations
- Planning the Hardware Design
 - Defining the System Requirements
 - Selecting the MCU
 - Partitioning the Hardware and Defining the Parts
- A Practical Exercise
- Summary

Practical MCU Considerations

- What to do once you got a shiny, brand-new MCU chip?
 - Handling Precautions
 - ESD = ElectroStatic Discharge
 - Understanding Data Sheets
 - Main Parameters
 - Basic Interface
 - Minimum Interconnections
 - Interfacing Considerations
 - Adding Peripherals
 - Loads and Signals

Electrostatic Discharge (ESD)

- Electrostatic Discharge (ESD)
 - Energy transfer between two objects at different electrostatic potential
 - Can occur by direct contact or via an ionized ambient discharge
- ES charges are generated by the separation or friction of two non-conducting surfaces
 - Caused by "Triboelectric Effect"
- Common ESD-generating Activities:
 - Walking on untreated vinyl floor: 250 12 KVolts
 - Rubbing plastic bag on workbench: 1.2 20 KVolts
 - Removing plexiglass plastic cover: 3.0 30 KVolts
- Lightning is a Natural Manifestation of ESD
 - About 1 GVolt "static" discharge

Factors Affecting ESD Events

- Material Type
 - Insulators accumulate large amounts of static charge
- Contact Area
 - The larger the area, the larger the generated ES potential
- Speed of removal or brush
 - The faster the removal or brush event, the higher the accumulation
- Humidity
 - ES potential increases in dry environments

Working environment with potential ESD hazards Courtesy of Philips Semiconductors

ESD and **Electronics**

- Electronic Components and ICs are Very Sensitive to Electrostatic Discharges (ESD)
- Voltages required to damage common electronic devices:
 - MOSFET 100 to 200 volts
 - JFET 140 to 10,000 volts
 - CMOS 250 to 2,000 volts
 - Schottky diodes & TTL 300 to 2,500 volts
 - Bipolar transistors 380 to 10,000 volts
 - SCR 680 to 1000 volts

- Catastrophic Failure
 - May cause a metal melt, junction breakdown, or oxide failure
 - Permanently damages the circuitry, causing the device to fail
 - Failures are usually identified before the device is shipped
 - Represent approximately 10% of ESD failures
- Latent Failure
 - Device is partially degraded after ESD event
 - Remains operable, but with compromised performance
 - Devices with latent defects may experience intermittent or premature failure
 - Detecting cause of failure may be difficult or hazardous
 - Latent failures increase warranty and replacement costs

ESD Handling Precautions

- Persons should be earthed via wrist strap-resistor or heel grounding
- Equipment cases should be grounded
- Relative humidity should be between 40% and 50%.
- Use ionizer to neutralize objects with static charges
- Keep static materials away from the workbench
 - No plastic envelopes
 - No plastic trays, etc.
- Keep stored components in antistatic containers
- Mount ESD sensitive devices last
- Handle completed PCBs with same care as components

Working environment with proper ESD protection Courtesy of Philips Semiconductors

Understanding Data Sheets

- Most Important Data
 - Summary Device Description
 - General device information: function and features
 - Absolute Maximum Ratings
 - Values that cause irreversible damage to the part
 - Recommended Operating Conditions
 - Practical use ranges
 - Electrical or DC Characteristics
 - Static DC parameters in ICs: Currents and voltages
 - Timing or AC Characteristics
 - Dynamic values: Timing, delays, capacitances
- Other Data
 - Noise Characteristics
 - Operating Characteristics
 - Parameter Measurement

- Family & Part Number
 - Similar devices
- Device Features
 - Highlights
- Device Description
 - Summarized
- Package
 - Pin-out and variations
- Functional Diagram
 - Internal configuration
- Pin Functions

Courtesy of Texas Instruments, Inc.

- Stress levels that, if exceeded, may cause permanent device damage
- Exposure for extended periods may affect device reliability
 - Voltage Levels
 - **Terminal Current**
 - Temperature

8.1. Absolute Maximum Ratin	gs*
-----------------------------	-----

Ambiant Temperature Under Bias :
C = commercial
I = industria1
Storage Temperature
Voltage on VCC to VSS
Voltage on Any Pin to VSS0.5 V to V _{CC} + 0.5 V
Power Dissipation 1 W
* This value is based on the maximum allowable die temperature and
the thermal resistance of the package

Courtesy of Temic Semiconductors

absolute	maximum	ratings

Voltage applied at V _{CC} to V _{SS}	-0.3 V to 4.1 V
Voltage applied to any pin (see Note 2)0.3 \	/ to V _{CC} +0.3 V
Diode current at any device terminal	±2 mA
Storage temperature, T _{sta} (unprogrammed device, see Note 3)	55°C to 150°C
Storage temperature, T _{stg} (programmed device, see Note 3)	

NOTES: 1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device

- All voltages referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse.
- 3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

Courtesy of Texas Instruments, Inc

22.0 ELECTRICAL CHARACTERISTICS	
Absolute Maximum Ratings (f)	
Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to VSS (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1)	1.0W
Maximum current out of VSS pin	300 mA
Maximum current into V00 pin	250 mA
Input clamp current, lik (VI < 0 or VI > V00)	±20 mA
Output clamp current, lox (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined)	200 mA
Maximum current sourced by PORTC and PORTD (Note 3) (combined)	200 mA
Tills calculated as follows: $- \Sigma 10H\} + \Sigma \{(V00-V0H) \times 10H\} + \Sigma (V01 \times 10L)$	

ELECTRICAL CHARACTERISTICS

Courtesy of Microchip Corporation

Recommended Operating Conditions

- Conditions that should be provided by the application circuit for correct device functionality
- These values are used as test conditions for the limits in:
 - Electrical characteristics
 - Timing requirements
 - Switching characteristics
 - Operating conditions

		MIN	NOM	MAX	UNITS
Supply voltage during program execution, V _{CC}		1.8		3.6	٧
Supply voltage during program/erase flash memory, V _{CC}		2.2		3.6	٧
Supply voltage, V _{SS}			0		٧
0 11 / 1 · · · · · · · · · · · · · · · ·	I Version	-40		85	°C
Operating free-air temperature range, T _A	T Version	-40		105	°C
	V _{CC} = 1.8 V, Duty Cycle = 50% ±10%	dc		6	
Processor frequency f _{SYSTEM} (Maximum MCLK frequency)	V _{CC} = 2.7 V, Duty Cycle = 50% ±10%	dc		12	MHz
	V _{CC} ≥ 3.3 V,	dc		16	

NOTES: 1. The MSP430 CPU is clocked directly with MCLK.

Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.

Duty Cycle = 50% ±10%

Courtesy of Texas Instruments, Inc.

Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet.

- Electrical-characteristic limits of the device when tested under the conditions in the recommended operating conditions table
 - Measured over recommended free-air temperature range table
 - Also known as the "DC Characteristics"
- Typical Parameters
 - Supply Current under different conditions (I_{DD})
 - Output Voltage Levels (V_{OI}, V_{OH})
 - Input Threshold Levels (V_{II}, V_{IH})
 - Pin currents (I_{OL}, I_{OH}, I_{IL}, I_{IH}, I_Z)

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

active mode supply current (into V_{CC}) excluding external current (see Notes 1 and 2)

CPUOFF = 0, SCG0 = 0, SCG1 = 0,

		(00/		`		,		
PA	RAMETER	TEST CONDITIONS	TΔ		VCC	MIN	TYP	MAX
	Active mode (AM)	f _{DCO} = f _{MCLK} = f _{SMCLK} = 1MHz, f _{ACLK} = 32,768Hz, Program executes in flash, BCSCTL1 = CALBC1 1MHZ,			2.2 V		220	270
JAM, 1MHz	current (1MHz)	DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0			3 V		300	370
	Active mode (AM)	f _{DCO} = f _{MCLK} = f _{SMCLK} = 1MHz, f _{ACLK} = 32,768Hz, Program executes in RAM,		leaka	ge current	PARAMET	ER	
IAM, 1MHz	current (1MHz)	BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ.						

Courtesy of Texas Instruments, Inc.

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
I I I I I I I I I I I I I I I I I I I	Port P1: P1.x, $0 \le x \le 7$ (see Notes 1, 2)	V _{CC} = 2.2 V/3 V,			±50	-4
I _{lkg(Px.x)} High-impedance leakage current	Port P2: P2.x, $0 \le x \le 5$ (see Notes 1, 2)	V _{CC} = 2.2 V/3 V,			±50	пA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

electrical characteristics over recommended ranges of supply voltage an temperature (unless otherwise noted) (continued)

Schmitt-trigger inputs – Ports P1 and P2; (P1.0 to P1.7, P2.0 to P2.5)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX
	Problem and a local throughout and an	V _{CC} = 2.2 V	1.1		1.5
V _{IT+}	Positive-going input threshold voltage	V _{CC} = 3 V	1.5		1.9
		V _{CC} = 2.2 V	0.4		0.9
V _{IT} -	Negative-going input threshold voltage	V _{CC} = 3 V	0.9		1.3
ν.	Input units as hurtereric (V V -)	V _{CC} = 2.2 V	0.3		1.1
V _{hys}	Input voltage hysteresis (V _{IT+} - V _{IT-})	Voc # 3 V	0.5		- 1

standard inputs - RST/NMI, JTAG: TCK, TMS, TDI/TCLK

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX
VIL	Low-level input voltage	V	Vss		Vss+0.6
VIH	High-level input voltage	V _{CC} = 2.2 V / 3 V	0.8×Vcc		Vcc

outputs - Ports P1 and P2; (P1.0 to P1.7, P2.0 to P2.5)

UNIT

	PARAMETER	TEST	CONDITIONS		MIN	TYP MAX	UNIT
		I(OHmax) = -1.5 mA	V22V	See Note 1	V _{CC} -0.25	Vcc	
J.,	High-level output voltage Port 1 and Port 2 (C11x1)	I _(OHmax) = -6 mA	V _{CC} = 2.2 V	See Note 2	V _{CC} -0.6	Vcc	v
νон	Port 1 (F11x1A)	I _(OHmax) = -1.5 mA	V 21/	See Note 1	V _{CC} -0.25	Vcc	l °
		I _(OHmax) = -6 mA	V _{CC} = 3 V	See Note 2	V _{CC} -0.6	Vcc	
		I _(OHmax) = -1 mA	.,	See Note 3	V _{CC} -0.25	Vcc	
	High-level output voltage	I _(OHmax) = -3.4 mA	V _{CC} = 2.2 V	See Note 3	V _{CC} -0.6	Vcc	v
VOH	Port 2 (F11x1A)	I _(OHmax) = -1 mA	V2V	See Note 3	V _{CC} -0.25	Vcc	ľ
		I(OHmax) = -3.4 mA	V _{CC} = 3 V	See Note 3	V _{CC} -0.6	Vcc	
		I(OLmax) = 1.5 mA	V22V	See Note 1	Vss	Vss+0.25	
\	Low-level output voltage Port 1 and Port 2 (C11x1.	I(OLmax) = 6 mA	V _{CC} = 2.2 V	See Note 2	Vss	V _{SS} +0.6	l v
VOL	F11x1A)	I _(OLmax) = 1.5 mA	V3V	See Note 1	VSS	V _{SS} +0.25	ľ
		I(OLmax) = 6 mA	V _{CC} = 3 V	See Note 2	Vss	V _{SS} +0.6	

NOTES: 1. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified.

The leakage of the digital port pins is measured individually. The port pin must be selected for input and there must be no optional pullup or pulldown resistor.

Electrical Characteristics (3/4)

- Tabular Form for Important Parameters (intel 80C32 by Temic)
 - Input thresholds
 - \bullet (V_{IL} , V_{IH})
 - Output Thresholds
 - \bullet (V_{OL} , V_{OH})
 - Current Sinking
 - $\bullet \quad (I_{IL}, I_{IH}, I_{Z}=I_{PD})$
 - Current Sourcing (as test conditions)
 - (I_{OL}, I_{OH})
 - Supply Current
 - \bullet (I_{CC}, I_{DD})

Table 3: DC Parameters

Courtesy of Temic Semiconductors

TA = 0°C to 70°C; VSS = 0 V; VCC = 5 V \pm 10 %; F = 0 to 44 MHz TA = -40°C + 85°C; VSS = 0 V; VCC = 5 V \pm 10 %; F = 0 to 36 MHz

Symbol	Parameter	Min	Max	Unit	Test Conditions
VIL	Input Low Voltage	- 0.5	0.2 Vcc - 0.1	V	
VIH	Input High Voltage (Except XTAL and RST)	0.2 Vcc + 1.4	Vcc + 0.5	V	
VIH1	Input High Voltage (for XTAL and RST)	0.7 Vcc	Vcc + 0.5	V	
VOL	Output Low Voltage (Port 1, 2 and 3)		0.3 0.45 1.0	V V V	IOL = 100 µA IOL = 1.6 mA (note 2) IOL = 3.5 mA
VOL1	Output Low Voltage (Port 0, ALE, PSEN)		0.3 0.45 1.0	V V V	IOL = 200 µA IOL = 3.2 mA (note 2) IOL = 7.0 mA
VOH	Output High Voltage Port 1, 2, 3	Vcc - 0.3		V	IOH = - 10 μA
		Vcc - 0.7		V	ΙΟΗ = – 30 μΑ
		Vcc - 1.5		V	IOH = - 60 μA VCC = 5 V ± 10 %
VOH1	Output High Voltage (Port 0, ALE, PSEN)	Vcc - 0.3		V	IOH = - 200 μA
		Vcc - 0.7		V	IOH = -3.2 mA
		Vcc - 1.5		V	IOH = - 7.0 mA VCC = 5 V ± 10 %
IIL	Logical 0 Input Current (Ports 1, 2 and 3)		- 50	μΑ	Vin = 0.45 V
ILI	Input leakage Current		± 10	μΑ	0.45 < Vin < Vcc
ITL	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		- 650	μА	Vin = 2.0 V
IPD	Power Down Current		50	μΑ	Vcc = 2.0 V to 5.5 V (note 1
RRST	RST Pulldown Resistor	50	200	KOhm	
CIO	Capacitance of I/O Buffer		10	pF	fc = 1 MHz, Ta = 25°C
ICC	Power Supply Current $Freq = 1 \text{ MHz} Icc \text{ op} \\ Icc \text{ idle} \\ Freq = 6 \text{ MHz} Icc \text{ op} \\ Icc \text{ idle} \\ Freq \geq 12 \text{ MHz} Icc \text{ op} = 1.25 \text{ Freq (MHz)} + 5 \text{ mA} \\ Icc \text{ idle} = 0.36 \text{ Freq (MHz)} + 2.7 \text{ mA} \\ Icc \text{ idle} = 0.36 \text{ idle} + 2.7 \text{ mA} \\ Icc \text{ idle} = 0.36 \text{ idle} + 2.7 \text{ mA} \\ Icc \text{ idle} = 0.36 \text{ idle} + 2.7 \text{ mA} \\ Icc \text{ idle} = 0.36 \text{ idle} + 2.7 \text{ mA} \\ Icc \text{ idle} = 0.36 \text{ idle} + 2.7 \text{ mA} \\ Icc \text{ idle} = 0.36 \text{ idle} + 2.7 \text{ mA} \\ Icc \text{ idle} = 0.36 \text{ idle} + 2.7 \text{ mA} \\ Icc \text{ idle} = 0.36 \text{ idle} + 2.7 \text{ mA} \\ Icc \text{ idle} = 0.36 \text{ idle} + 2.7 \text{ idle} + $		1.8 1 10 4	mA mA mA mA	Vcc = 5.5 V

Electrical Characteristics (4/4)

- Parametric Plots: Allow estimating non-tabulated parameter values
 - $I_O = f(V_O), f_{CLK} = f(V_{DD})$

Courtesy of Microchip Corporation

Understanding Timing Diagrams

Single Line Transitions

Signal edge triggered bus transition

Bus Transitions

Valid →T_{TBD} Begin of Valid Bus Signal

Edge AND level triggered bus transition

End of Valid Bus Signal

Double edge triggered bus transition

- Format changes among manufacturers
 - Examples show an 80c32 and i8086

		16 3	MHz	20 3	MHz	25 N	ИHz	30 1	ИHz	36 1	MHz	40 N	ИHz	42 1	MHz	44 N	ИHz
Symbol	Parameter	min	max														
TRLRH	RD pulse Width	340		270		210		180		120		100		90		80	
TWLWH	WR pulse Width	340		270		210		180		120		100		90		80	
TLLAX	Address Hold After ALE	85		85		70		55		35		30		25		25	
TRLDV	RD to Valid Data in		240		210		175		135		110		90		80		70
TRHDX	Data hold after RD	0		0		0		0		0		0		0		0	
TRHDZ	Data float after RD		90		90		80		70		50		45		40		35
TLLDV	ALE to Valid Data In		435		370		290		235		170		150		140		130
TAVDV	Address to Valid Data IN		480		400		320		260		190		180		175		170
TLLWL	ALE to WR or RD	150	250	135	170	120	130	90	115	70	100	60	95	55	90	50	85

AC Characteristics

Courtesy of Temic Semiconductors

Table 8: External Program Memory Characteristics (values in ns)

			16 MHz		20 MHz		25 MHz		30 MHz		36 MHz		40 MHz		42 MHz		ИHz
Symbol	Parameter	min	max	min	max												
TLHLL	ALE Pulse Width	110		90		70		60		50		40		35		30	
TAVLL	Address valid to ALE	40		30		20		15		10		9		8		7	
TLLAX	Address Hold After ALE	35		35		35		35		35		30		25		17	
TLLIV	ALE to valid instr in		185		170		130		100		80		70		65		65
TLLPL	ALE to PSEN	45		40		30		25		20		15		13		12	
TPLPH	PSEN pulse Width	165		130		100		80		75		65		60		54	
TPLIV	PSEN to valid instr in		125		110		85		65		50		45		40		35
TPXIX	Input instr Hold After PSEN	0		0		0		0		0		0		0		0	
TPXIZ	Input instr Float After PSEN		50		45		35		30		25		20		15		10
TPXAV	PSEN to Address Valid	55		50		40		35		30		25		20		15	
TAVIV	Address to Valid instr in		230		210		170		130		90		80		75		70
TPLAZ	PSEN low to Address Float		10		10		8		6		5		5		5		5

8.6. AC Parameters

 $TA = 0 \text{ to } + 70^{\circ}C \text{ ; } Vss = 0 \text{ V ; } Vcc = 5 \text{ V} \pm 10 \text{ % ; } F = 0 \text{ to } 44 \text{ MHz}$ $TA = 0 \text{ to } + 70^{\circ}C \text{ ; } Vss = 0 \text{ V ; } 2.7 \text{ V < } Vcc < 5.5 \text{ V ; } F = 0 \text{ to } 16 \text{ MHz}$ $TA = -40^{\circ} \text{ to } + 85^{\circ}C \text{ ; } Vss = 0 \text{ V ; } 2.7 \text{ V < } Vcc < 5.5 \text{ V ; } F = 0 \text{ to } 16 \text{ MHz}$ $TA = -55^{\circ} + 125^{\circ}C \text{ ; } Vss = 0 \text{ V ; } Vcc = 5 \text{ V} \pm 10 \text{ % ; } F = 0 \text{ to } 36 \text{ MHz}$ (Load Capacitance for PORT 0, ALE and PSEN = 100 pF ; Load Capacitance for all other outputs = 80 pF)

Courtesy of Temic Semiconductors

Courtesy of Temic Semiconductors

IC Packages

- Through-hole Mount
 - Low pin density
 - Easy hand prototyping
 - SIP
 - DIP
- Surface Mount
 - Medium to high density
 - Require adapter for hand prototyping
 - DIP
 - Quad
 - Array
- Contactless Mount
 - Not clear yet
 - Need to find out

minn	N. WYYYYYYYYY	TOTAL STREET	The state of the s	i disente de la constitución de	
SIP: Single Inline Package	DIP : Dual Inline Package	SOJ: Small Outline J- leaded	PGA : Pin Grid Array	SOP: Small Outline Package	TSOP : Thin Small Outline Package
QFP : Quad Flat Package	PLCC: Plastic Leaded Chip Carrier	LCC: Leadless Chip Carrier	BGA : Ball Grid Array	LGA: Land Grid Array	TCP: Tape Carrier Package

Courtesy of NEC Electronics

Single In-line Package (SIP)

Description

 Leads extending directly from one longer edge of the package are vertically mounted on the printed circuit board. The consequent reduction in mounting area allows many devices to be packed into a small area (highdensity mounting).

Package Variations

- LBS
- DBS

Package Attributes

Pin Count and Lead Pattern

Dual In-line Package (DIP)

Description

- The most basic, first generation IC package
- Leads are thru-hole, with a typical spacing of 0.100", and extend on the long sides of the package body
- Body width varies: 0.300", 0.400", 0.600" and 0.900".

Package Variations

 Shrink DIP (SDIP): have higher pin counts (i.e., 48 or 64 lead) with a lead pitch of 0.70" and a body size of either 0.600" or 0.750".

Package Attributes

Pin Count and Body Width (W)

Small Outline J-leaded (SOJ)

Description

- Originated as a surface-mount DIP equivalent with lead pitch reduced to 50 mil.
- Pins protrude on two sides of the plastic package body and curl under it in a shape similar to the letter "J".
- This package is sometimes referred to as a Jleaded package
- Early versions were very common in SIMM memory modules

Package Variations

N/A

Package Attributes

Pin Count and Body Width (W)

Pin Grid Array (PGA)

Description

 Second generation package. Thru-hole leads placed in the underside of the packag in a grid pattern. Pins are located on a 0.1" grid in various patterns. The grids is called out by the pins in the x direction and the pins in the y direction. Commonly used in PC CPUs.

Package Variations

 Interstitial package (IPGA): carries additional pins on a 0.5" offset pattern in between the pins of a regular PGA pattern. It almost doubles the available pins on the same package size as a standard PGA.

Package Attributes

Pin Count, Grid Size (x by y), and Grid Pattern

Small Outline Package (SOP)

Description

- First surface-mount package to replace 8-16 DIP packages
- Alternate names: "Gull Wing" pins shape or SOIC
- Commonly used parts with up to 64 pins
- Mostly used in memory ICs

Package Variations

- SOP -- Pitch = 1.27mm
- SSOP -- Pitch = 0.4, 0.5 or 0.65mm

Package Attributes

 Pin Count, Pitch (P), Body Width (B), Body Thickness (F), and Tip-to-Tip Width (T)

Thin SOP (TSOP)

Courtesy of Adapters.com

Description

- A variation of SOP with thinner body and larger pin count
- TSOP I has the pins on the WIDE edge
- The TSOP II has leads on NARROW side

Package Variations

- TSOP I -- Pitch 0.5 or 0.55mm
- TSOP II -- Pitch: 0.65, 0.8 or 1.25mm
- TSSOP -- Pitch: 0.4, 0.5 or 0.65mm

Package Attributes

 Pin Count, Pitch (P), Body Width (B), Body Thickness (F), Tip to Tip Width (T)

Quad Flat Pack (QFP)

Description

- A high-density, surface-mount, evolved SOP with leads protruding on all four sides of the package.
- Mostly built with plastic body (PQFP)

Package Variations

- Ceramic Quad Flat Pack (CQFP)
- Metal Quad Flat Pack (MQFP)
- Thin QFP (TQFP) -- 2mm body thickness
- Very (small) QFP (VQFP): Same as TQFP.

Package Attributes

 Pin Count, Pitch (P), Body Width (B), Body Thickness (F), Tip-to-Tip Width (T), and Foot Length (L)

Plastic Leaded Chip Carrier (PLCC)

Courtesy of Adapters.com

Description

Third generation packaging and the first true surface-mount package. An evolved and more popular version of the SOJ with leads on all four sides. Pitch and body sizes are fairly standard. Also called QFJ.

Package Variations

- Leadless Chip Carrier (LCC): Ceramic body with no physical leads. Pads on the bottom of the IC around the edges.
- J-Leaded Chip Carrier (JLCC): Ceramic body material with leads similar to PLCC package.

Package Attributes

Pin Count

Leadless Chip Carrier (LCC)

Description

 This is similar to the PLCC package, however the leads located at four edges of the back of the package. LCC packages can be made in thinner and high-density models.

Package Variations

- Quad Flat Non-Leaded (QFN)
- Very-thin QFN (VQFN)

Package Attributes

Pin Count, Lead Pitch (P), and Body Size (B),

Ball Grid Array (BGA)

Courtesy of Adapters.com

Description

 A high-density, surface-mount package similar to PGA. In BGA pin connections are solder balls in a grid pattern, on the bottom side.

Package Variations

- MicroBGA and XBGA: Same as BGA, with finer grids. Pitch sizes: 0.65, 0.75 and 0.8mm.
- Interstitial BGA: (IBGA) A package with denser pin count, in an offset pattern inbetween the balls of a regular BGA pattern.
- Flip-chip BGA (FCBGA): Die directly attached to substrate using solder bumps.

Package Attributes

 Pin Count, Lead Pitch (P), Grid Size (x by y), Body Size (B), Ball Size (N), and Grid Pattern

Land Grid Array (LGA)

Description

- This is a package with electrodes aligned in an array on its back.
- It is suited for high-speed operation since its parasitic inductance is low. Further, in contrast to BGA, LGA does not have solder balls, so the mounting height can be reduced..

Package Variations

Fine-pitch Land Grid Array (FLGA)

Package Attributes

 Pin Count, Lead Pitch (P), Grid Size (x by y), Body Size (B), and Grid Pattern

Tape Carrier Package (TCP)

Description

 In the TCP package, silicon chips are packaged onto flexible tape-shaped films. TCP packages are thin, compact, with high pin count, and can be bent. TCP packages are mainly used for LCD drivers.

Package Variations

- Chip On Film (COF)
- Ink Jet Printer Driver (IJTCP)

Package Attributes

 Pin Count, Lead Pitch (P), Grid Size (x by y), and Grid Pattern, Package Thickness,

Typical Package Profiles

Through Hole Packages

Summary

- Handling Precautions for Electronic Circuits
 - Electrostatic Discharge
- Understanding Data Sheets
 - Hardware and software components
 - Scope and consideration for diverse target applications
- Basic Interface for uP-based Systems
 - Power requirements
 - Clock sources
 - Hardware reset
 - Software initialization
 - Interfacing Considerations
- Basic Interface for the MSP430

