Trabajo Práctico Nº 1

Ejercicio 1.

El archivo "eurosec.dta" es una base de datos que contiene los porcentajes de empleo de los distintos sectores económicos para un grupo de países europeos. Los sectores son: S1 (Agricultura), S2 (Minería), S3 (Industria), S4 (Energía), S5 (Construcción), S6 (Servicios Industriales), S7 (Finanzas), S8 (Servicios), S9 (Transporte y Telecomunicaciones).

(a) Obtener la media, varianza y el coeficiente de variación asociados a cada una de las variables.

Stats	s1	s2	s3	s4	s5	s6	s7	s8	s9
Variance	19.13077 241.6958 .8126474	.9409846	49.10874	.1415385	2.707954	20.93294	7.8768		1.936185

(b) *Obtener la matriz de varianzas y covarianzas.*

(c) Obtener las medidas globales de variabilidad.

Varianza total= 371,98362.

Varianza media= 41,331513.

Varianza generalizada= 151,86262.

Varianza efectiva= 1,7473642.

(d) Obtener la matriz de correlaciones.

!	s1	s2	s3	s4	s5	s6	s7	s8	s9
s1	1.0000								
s2	0.0358	1.0000							
s3	-0.6711	0.4452	1.0000						
s4	-0.4001	0.4055	0.3853	1.0000					
s5	-0.5383	-0.0256	0.4945	0.0599	1.0000				
s6	-0.7370	-0.3966	0.2038	0.2019	0.3560	1.0000			
s7	-0.2198	-0.4427	-0.1558	0.1099	0.0163	0.3656	1.0000		
s8	-0.7468	-0.2810	0.1542	0.1324	0.1582	0.5722	0.1076	1.0000	
s9	-0.5649	0.1566	0.3507	0.3752	0.3877	0.1876	-0.2459	0.5679	1.0000

(e) Regresar el porcentaje de empleo en el sector Minería, respecto de las variables restantes. Obtener la varianza de los residuos y el coeficiente de determinación. ¿Es posible obtener las estimaciones a partir de la matriz de varianzas y covarianzas?

Varianza de los residuos= 0,01730513. Coeficiente de determinación= 0,98160955.

Sí, es posible obtener las estimaciones a partir de la matriz de varianzas y covarianzas y la matriz de precisión.

(f) Obtener el coeficiente de correlación parcial entre los porcentajes de empleo en el sector agrícola respecto del sector minero. ¿Cómo efectuaría el cómputo a partir de la matriz de varianzas y covarianzas?

El coeficiente de correlación parcial entre los porcentajes de empleo en el sector agrícola respecto del sector minero es -0,97480157.

(g) Obtener los autovalores asociados a la matriz de correlaciones. ¿Existe alguna relación entre el número de variables y los mismos?

```
e1 e2 e3 e4 e5 e6 e7 e8 e9 r1 3.4871512 2.1301732 1.0989576 .99448297 .54321777 .38342764 .22575405 .13678988 .00004563
```

Sí, existe una relación entre el número de variables y los autovalores, siendo la suma de estos últimos igual al número de variables.

(h) Obtener el coeficiente de dependencia efectiva.

Coeficiente de dependencia efectiva= 0,80178941.

(i) Comentar, brevemente, la información que brinda la matriz de precisión.

La matriz de precisión brinda información sobre la relación multivariada entre cada una de las variables y el resto. Contiene información sobre:

- por filas y por fuera de la diagonal principal, los coeficientes de regresión múltiple de la variable correspondiente a esa fila, explicada por todas las demás;
- en la diagonal, las inversas de las varianzas residuales de la regresión de cada variable con el resto;
- estandarizando los elementos de esta matriz, los elementos fuera de la diagonal principal son los coeficientes de correlación parcial entre estas variables.

Juan Menduiña

Por lo tanto, S^{-1} contiene toda la información sobre las regresiones de cada variable sobre las restantes.

Ejercicio 2.

En el archivo "individual_t410.dta", se encontrará el corte por personas de la Encuesta Permanente de Hogares correspondiente al cuarto trimestre del año 2010. Se propone la construcción de una base para analizar la estructura de la muestra ocupada mayor de 15 años de edad, por aglomerado y por rama de actividad, de acuerdo con la clasificación CAES-Mercosur, considerando las grandes ramas: Agricultura, Ganadería, Caza y Pesca; Minería; Industria; Energía; Construcción; Comercio; Correo y Telecomunicaciones; Ss. Financieros; Otros Ss.; y Administración Pública.

(a) Analizar la variabilidad de la proporción de ocupados por grandes ramas de actividad.

```
media
Agricultur~a .05130951
    Minería .02980964
   Industria .34399797
    Energía .01516862
Construcción .31695826
   Comercio .61320805
Correo Tel~s .03139245
SS. Financ~s .04629727
  Otros Ss. 1.3059524
Administra~a .37090579
                    var
Agricultur~a .00222073
    Minería .00701461
  Industria .11365215
    Energía .00013202
Construcción .01454471
Comercio .11632129
Correo_Tel~s .00062979
SS. Financ~s .00216025
  Otros Ss. .49536335
Administra~a .0216334
                     CV
Agricultur~a .91843911
    Minería 2.8096042
   Industria .98001552
    Energía .75747711
Construcción .3804963
   Comercio
              .5561882
Correo Tel~s .79941574
SS. Financ~s 1.0039137
  Otros Ss. .53893275
Administra~a .39655079
```

(b) Analizar la estructura de correlaciones entre las proporciones de ocupados de las ramas de actividad consideradas.

Varianza total= 0,77367232. Varianza media= 0,07736723. Varianza generalizada= 5,414e-25. Varianza efectiva= 0,00374413.

(c) Regresar la proporción de ocupados de la rama servicios, respecto de las proporciones observadas en las ramas restantes. Obtener la varianza de los residuos y el coeficiente de determinación. ¿De qué otra forma se hubiera podido obtener estas estimaciones?

Varianza de los residuos= 0,01650179. Coeficiente de determinación= 0,96668751.

Estas estimaciones se podrían haber obtenido mediante la matriz de varianzas y covarianzas y la matriz de precisión.

(d) Obtener el coeficiente de correlación parcial entre los porcentajes de ocupados en el sector comercial respecto del sector Otros Ss.

El coeficiente de correlación parcial entre los porcentajes de ocupados en el sector Comercio respecto del sector Otros Ss. es 0,53293597.

(e) Obtener los autovalores asociados a la matriz de correlaciones.

```
e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 r1 5.1644303 1.5298711 .97845644 .87863852 .54266892 .41764761 .26798865 .12086755 .07397417 .0254568
```

(f) Proponer una métrica que resuma la dependencia entre las proporciones de ocupados entre los distintos sectores.

Coeficiente de dependencia efectiva= 0,64312145.

Ejercicio 3.

El archivo "records.dta" contiene información sobre récords obtenidos por atletas de diferentes nacionalidades en varias especialidades. La siguiente tabla muestra la descripción del contenido de cada variable:

m_100	100 metros
m_200	200 metros
m_400	400 metros
m_800	800 metros
m_1000	1000 metros
m_1500	1500 metros
km_5	5 kilómetros
km_10	10 kilómetros
maratón	42 kilómetros

(a) Realizar un análisis descriptivo de los datos. Señalar si, en el caso de querer efectuar un análisis de componentes principales, se recomendaría la estandarización de las variables.

Variable	:	Obs	Mean	Std.	dev.	Min	Mā	ЭХ
m_100	 	55	10.47109	.3514	1292	9.93	12.	L8
m_200) [55	20.94036	.6446	5476	19.72	23	. 2
m_400) [55 55 55 55	20.94036 46.43873 1.793273	1.457	018	19.72 43.86	23	94
m_800) [55	1.793273	.0636	848	1.7 3.51	۷.۱	12
m_1500)	55	3.698182	.1559	0094	3.51	4.2	24
km 5	; ; ;	55	 13.84582	.8011	.605	13.01	16	.7
$km \overline{10}$) [55	28.98964	1.80	785	27.38	35.3	38
maraton	ı	55	136.624	9.227	033	128.22	164	. 7
Stats 1	m_100 m_	.200 m_4	400 m_80)0 m_150)0 km_	5 km_10	marato:	n -
	47109 20.94					2 28.98964		
Variance .12 CV .03	35025 .4155 35618 .0307					3.268322 3.0623619		
								-
	m_100	m_200	\mathtt{m}_400	m_800	m_1500	km_5	km_10	maraton
m 100	1.0000							
	0.9226	1.0000						
m 400	0.8411 0.7560 0.7002	0.8507	1.0000					
m_800	0.7560	0.8066	0.8702	1.0000				
m_1500	0.7002	0.7750	0.8353	0.9180	1.0000			
km_5	0.6195	0.6954	0.7786					
km_10		0.6964				0.9746		
maraton	0.5199	0.5962	0.7050	0.8065	0.8655	0.9322	0.9432	1.0000
	m_100	m_200	m_400	m_800	m_1500	km_5	km_10	maraton
m 100	.123502							
	.209022	.41557						
m 400		.799056	2.1229					
m 800	.01692	.033115	.080743	.004056				
m $\overline{1}$ 500	.01692 .038367	.077888	.189742		.024308			
 km 5	.17441	.359139	.90888	.044062	.115929	.641858		
km_{10}		.811639	2.07364		.263438	1.41166	3.26832	
maraton	1.68601	3.54621	9.47786	.473903	1.24516	6.89105	15.7328	85.1381

Maestría en Econometría UTDT - Análisis Estadístico Multivariado | 7

Juan Menduiña

Variable	Partial corr.	Semipartial corr.	Partial corr.^2	Semipartial corr.^2	Significance value
m_200	0.7288	0.3730	0.5312	0.1391	0.0000
m 400	0.3330	0.1238	0.1109	0.0153	0.0194
m 800	0.0658	0.0231	0.0043	0.0005	0.6534
m $\overline{1}$ 500	-0.1327	-0.0469	0.0176	0.0022	0.3633
_ km 5	-0.1080	-0.0381	0.0117	0.0014	0.4601
$km \overline{10}$	0.1578	0.0560	0.0249	0.0031	0.2787
maraton	-0.1489	-0.0528	0.0222	0.0028	0.3071

En el caso de querer realizar un análisis de componentes principales, se recomendaría la estandarización de las variables, ya que, de lo contrario, se estarían considerando varianzas de unidades de medida diferentes.

(b) Realizar un análisis de componentes principales.

Basado en matriz de correlaciones:

Principal components/correlation	Number of obs	=	55
	Number of comp.	=	8
	Trace	=	8
Rotation: (unrotated = principal)	Rho	=	1.0000

Component	 -	Eigenvalue	Difference	Proportion	Cumulative
Comp1	į	6.62209	5.74442	0.8278	0.8278
Comp2 Comp3		.877673 .159284	.718389 .035228	0.1097 0.0199	0.9375 0.9574
Comp4		.124056	.044177	0.0155	0.9729
Comp5 Comp6		.0798788	.0119138 .021524	0.0100 0.0085	0.9829 0.9914
Comp7		.046441	.021324	0.0058	0.9972
Comp8		.0226137	•	0.0028	1.0000

Principal components (eigenvectors)

Variable	Comp1	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8	Unexplained
m_100 m_200	0.3176 0.3370	0.5669	0.3322	0.1277	0.2626	-0.5937 0.6559	0.1367 -0.1133	0.1051	0
m_400	0.3557	0.2482	-0.5605	0.6523	-0.2182	0.1568	-0.0028	0.0004	0
m_800	0.3687	0.0124	-0.5324	-0.4800	0.5401	-0.0147	-0.2382	-0.0375	
m_1500	0.3728	-0.1398	-0.1534	-0.4046	-0.4876	-0.1575	0.6105	0.1380	
km_5	0.3644	-0.3120	0.1900	0.0296	-0.2541	-0.1417	-0.5900	0.5478	0
km_10	0.3668	-0.3069	0.1812	0.0804	-0.1332	-0.2192	-0.1784	-0.7965	
maraton	0.3419	-0.4389	0.2635	0.2993	0.4980	0.3156	0.3989	0.1573	

Basado en matriz de varianzas y covarianzas:

Principal components/covariance

Number of obs = 55

Number of comp. = 8

Trace = 91.73866

Rotation: (unrotated = principal)

Rho = 1.0000

Comp1 89.9139 88.5012 0.9801 0.9801 Comp2 1.4127 1.15277 0.0154 0.9955 Comp3 .25993 .150462 0.0028 0.9983 Comp4 .109468 .0821851 0.0012 0.9995 Comp5 .0272831 .0145485 0.0003 0.9998 Comp6 .0127347 .0104898 0.0001 1.0000 Comp7 .00324483 .00178918 0.0000 1.0000	Component	E	igenvalue	Difference	e Proportion	n Cumulative
Comp8 .000445635 . 0.0000 1.0000 1.0000	Comp2 Comp3 Comp4 Comp5 Comp6 Comp7	,	1.4127 .25993 .109468 .0272831 .0127347	1.1527 .15046 .082185 .014548 .010489	7 0.0154 2 0.0028 1 0.0012 5 0.0003 8 0.0003	0.9955 0.9983 0.9995 0.9998 1.0000 1.0000

Principal components (eigenvectors)

Variable	Comp1	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8	Unexplained
m_100	0.0199	0.2107	-0.0295	0.3588	-0.1902	0.8869	0.0523	-0.0139	0
m_200	0.0416	0.3589	-0.0193	0.8335	0.0479	-0.4101	-0.0623	-0.0038	0
m_400	0.1106	0.8278	-0.3773	-0.3964	0.0123	-0.0476	-0.0204	-0.0095	0
m_800 m 1500	0.0055	0.0232	0.0053	0.0096 0.0162	0.0110	-0.0072 -0.0672	0.2610 0.9592	0.9649	0
km 5	0.0793	0.1300	0.3365	-0.0102	0.9092	0.1839	-0.0527	-0.0000	0
km 10	0.1811	0.2990	0.8488	-0.1340	-0.3642	-0.0680	-0.0456	0.0044	0
maraton	0.9728	-0.1808	-0.1419	0.0283	-0.0066	0.0035	0.0010	-0.0009	0

- **(c)** Efectuar la selección de los componentes principales de acuerdo con los siguientes modos:
- (i) Búsqueda del "codo".

Mediante este modo, se seleccionarían los dos primeros componentes principales.

(ii) Graficando el porcentaje de varianza explicada por cada componente.

Mediante este modo, se seleccionarían los dos primeros componentes principales.

(d) Graficar las componentes en pares, en función de lo determinado en el inciso anterior. Interpretar.

