Résolution de problèmes à contraintes temporelles

Arthur Renout

Candidat numéro 12180

Table des matières

- 1 Introduction
 - Ancrage au thème et exemple d'introduction
 - Définition de la cohérence d'un graphe
- 2 Etude d'un cas particulier (STP)
 - Définition
 - Une nouvelle structure de donnée
- 3 Méthode de Bellman-Ford
- 4 Etude des améliorations
 - Présentation des améliorations
 - Génération d'expériences
 - Comparaison des améliorations

Modélisons une situation de prélèvement d'organe :

Liste des événements :

► X0 : le donneur décède à l'hôpital

► X1 : début de l'opération

► X2 : fin de l'opération

- Liste des événements :
 - ► X0 : le donneur décède à l'hôpital
 - ► X1 : début de l'opération
 - ► X2 : fin de l'opération

- Liste des événements :
 - ► X0 : le donneur décède à l'hôpital
 - ► X1 : début de l'opération
 - ► X2 : fin de l'opération

- Liste des événements :
 - ► X0 : le donneur décède à l'hôpital
 - ► X1 : début de l'opération
 - ► X2 : fin de l'opération

Modélisons une situation de prélèvement d'organe :

Liste des événements :

► X0 : le donneur décède à l'hôpital

► X1 : début de l'opération

► X2 : fin de l'opération

- Liste des événements :
 - ► X0 : le donneur décède à l'hôpital
 - ► X1 : début de l'opération
 - ► X2 : fin de l'opération

- ► Peut-on récupérer l'organe?
- Quelles instructions donner aux soignants pour qu'ils se coordonnent?

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

Définition d'un cas particulier (STP)

Une nouvelle structure de donnée

Une nouvelle structure de donnée

Une nouvelle structure de donnée

$$3 \le X2 - X1 \le 7$$
peut s'écrire
$$\begin{cases} X2 - X1 \le 7 \\ X1 - X2 \le -3 \end{cases}$$

Théorème de Shotstak

Théorème (De Shotstak)

Un réseau STP est cohérent si et seulement si il ne contient pas de cycle de poids négatif

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	15	15	∞	∞	∞

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	15	15	45	∞	∞

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	15	15	45	∞	∞

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	15	15	45	∞	90

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	15	15	45	∞	90

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	12	15	45	∞	90

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	12	15	45	∞	90

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	12	15	45	∞	90

sommets	5	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance	à X0	0	12	15	45	80	90

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	12	15	45	80	90

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	12	15	45	75	90

sommets	<i>X</i> 0	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
distance à X0	0	12	15	45	75	90

Améliorations de Bellman-Ford

▶ amélioration 1 :

- ► arrêt de l'algorithme plus tôt
- efficace uniquement dans le cas d'un STP cohérent

► amélioration 2 (de Yen) :

- parcours optimisé du graphe
- ▶ efficace uniquement dans le cas d'un STP cohérent

- ► différents paramètres de génération
 - probabilité d'incohérence
 - nombre de sommets
 - distance caractéristique

différents paramètres de génération

- probabilité d'incohérence
- nombre de sommets
- ▶ distance caractéristique

différents paramètres de génération

- probabilité d'incohérence
- nombre de sommets
- ► distance caractéristique

► différents paramètres de génération

- probabilité d'incohérence
- nombre de sommets
- ▶ distance caractéristique

► différents paramètres de génération

- probabilité d'incohérence
- nombre de sommets
- ► distance caractéristique

différents paramètres de génération

- probabilité d'incohérence
- nombre de sommets
- ▶ distance caractéristique

►
$$Xi \in \{1, 2, 3\}$$

$$ightharpoonup Xj - Xi \in \{-2, -1, 1, 2\}$$

- Le réseau est cohérent si et seulement si son graphe est 3-coloriable.
- ► La colorabilité d'un graphe quelconque n'étant pas décidable en temps polynomiale, la cohérence de ce type de TCSP ne l'est pas non plus.