Template for a nice LATEX document

NAME1, NAME2

October 20, 2024

Institute for Computational Physics, University of Stuttgart

Contents

1 Math

The package amsmath is available for typesetting math. Execute texdoc amsmath in your terminal for additional information.

Here is an equation typeset using commands from amsmath.

$$\alpha = \begin{pmatrix} D_1 t & -a_{12}t_2 & \dots & -a_{1n}t_n \\ -a_{21}t_1 & D_2 t & \dots & -a_{2n}t_n \\ \dots & \dots & \dots & \dots \\ -a_{n1}t_1 & -a_{n2}t_2 & \dots & D_n t \end{pmatrix}$$

$$\beta = \pi \tag{2}$$

Furthermore don't use equarray and use align instead! (If you don't know what equarray is, nevermind)

1.1 Units

Typesetting units by hand is extremely annoying because you have to take care of spacing and font style, for example

100 \; \mathrm{m} \text{ or } 100 \; \mathrm{ $frac{m}{s}$ }

to produce

$$100 \text{ m} \text{ or } 100 \frac{\text{m}}{\text{s}}$$

That's why we use the package siunitx See:

 $SI{100}{\mathbf or } SI{100}{\mathbf or } SI{100}{\mathbf or }$

to produce $100 \,\mathrm{m}$ or $100 \,\frac{\mathrm{m}}{\mathrm{s}}$

2 Code

You can include code using 1stlisting

```
class HarmonicPotential():
    def __init__(self, k):
        self.k = k

def calc_energy(self, x):
    return 0.5*self.k*x**2

def calc_force(self, x):
    return -self.k*x
```