II] Cas de pondération d'une série statistique

1 <u>Série statistique</u>

Ta	ille	es o	les	él	èv	es (de	2 nd	^e 4	en	cn	า :								
	,		,		,		,		,		,		,	 ,	 ,	 ,	 ,	 ,	 ,	
	,		,		,		,		,		,		,	 ,	 ,	 ,	 ,	 ,	 ,	
	,		,		,		,		,		,									
Eft	ec	tif t	tot	al																

2 Regroupement par classe

Regrouper cette série de tailles par classes de longueur 5 cm et calculer les fréquences arrondies au centième :

Tailles	150 ≤ t < 155	155 ≤ t < 160	160 ≤ t < 165	165 ≤ t < 170	170 ≤ t < 175	175 ≤t < 180
Effectifs						
Fréquences						

HISTOGRAMME DES EFFECTIFS DES TAILLES

150 155 160 165 170 175 180		133	100	103	170	1,3	100	103
	150	155	160	165	170	175	180	185
								Taill
	ļ -							

3 <u>Moyenne pondérée</u>

Tailles	150 ≤ t <	155 ≤ t <	160 ≤ t <	165 ≤ t <	170 ≤ t <	175 /+ ~ 190
Tailles	155	160	165	170	175	175 ≤t < 180
Classes						
centrées						
Xi						
Effectifs n _i						

Il s'agit d'un calcul de moyenne pondérée car des effectifs différents n_i sont associés à chaque valeur x_i .

<u>Définition</u> :
Calculer la moyenne pondérée de la taille de la classe :
Remarque : Calculer la moyenne exacte :
Conclusion:

III] Variance et écart-type

Le patron d'une concession automobile veut récompenser le meilleur de ses trois vendeurs en lui offrant une prime. Pour cela, il étudie le nombre de voitures vendues lors de chacun des neufs premiers mois de l'année :

mois	Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Sept.
Valeurs X _i	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉
Aurélie	5	4	5	11	7	11	4	3	4
Jules	3	11	7	4	4	5	5	9	6
Céline	4	ε	11	5	11	7	3	5	5

1) Calculer les moyennes, médianes, quartiles, écarts interquartiles de chacune des séries.

	$\bar{\chi}$	Me	Q_1	Q ₃	E _Q
Aurélie					
Jules					
Céline					

2)Le patron décide de récompenser le plus régulier. Pour cela remplir le tableau suivant pour

Aurélie:

X _i					Somme
Écart à la moyenne $\overline{X} - X_i$					
Carré des écarts à la moyenne $(\overline{x} - x_i)^2$					

3)Calculer la moyenne des $(\bar{x}-x_i)^2$:.....

- 1. On nomme cette valeur <u>la variance et on la note V</u>, le carré des écarts à la moyenne.
- 4) Calculer la variance des ventes de voiture de Jules et Céline

Jules	:								
X	i								Somme
Écart à moyen	ne								
Carré de écarts à moyen (M -)	a la ne								
V _{Jules} =	=								
Celine	:		T		I			I	
X	i								Somme
Écart à moyen	ne								
Carré de écarts à moyen	àla ne								
<u>Rema</u>	=rque : La rs de la se re ?								
C'est Calculer	ce qu'on l						 Σ <u>.</u>		
•	$\sigma_{\text{Jules}} = \dots$								
•	$\sigma_{\text{C\'eline}} = \dots$	•••••	•••••	•••••	•••••	•••••			
Quelle	e vendeur	à été le	e plus ré	égulier d	lans ces	ventes	?		