Deep Regularization via Bi-Level Optimization

Srijith Nair and Philip Schniter

Supported by NSF grant CCF-1955587

Linear inverse problems

Goal: Recover signal x from noisy measurements y:

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x}_0 + oldsymbol{w}.$$

 Applications: deblurring, superresolution, inpainting, computed tomography, magnetic resonance imaging (MRI), etc.

Challenge: Often, A is not full-column rank

- $lacksquare{L}$ Components of $oldsymbol{x}$ in $\mathrm{null}(oldsymbol{A})$ are not measured!
- lacktriangle Accurate recovery requires leveraging prior information about $oldsymbol{x}$

The variational method

A common approach is to recover the signal by solving an optimization problem:

$$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \left\{ \ell(\boldsymbol{x}; \boldsymbol{y}) + \lambda r(\boldsymbol{x}) \right\}$$

- The data-fidelity term $\ell(\cdot; \boldsymbol{y})$ is typically chosen as the negative log likelihood, e.g., $\ell(\boldsymbol{x}; \boldsymbol{y}) = \frac{1}{2\sigma^2} ||\boldsymbol{y} \boldsymbol{A}\boldsymbol{x}||^2$ for white Gaussian \boldsymbol{w}
- The regularization $r(\cdot)$ is difficult to choose. We want $r(\cdot)$ such that
 - the cost has no local minima (e.g., $r(\cdot)$ is convex)
 - the optimization is not expensive (e.g., $r(\cdot)$ is differentiable or proximable)
 - lacksquare the solution is accurate (i.e., $\widehat{m{x}}pprox m{x}_0$)
- The regularization weight $\lambda > 0$ should be tuned for best performance
- An example optimization algorithm is proximal gradient descent (PGD):

$$\widehat{\boldsymbol{x}}_{\mathsf{new}} = \operatorname{prox}_{\ell \tau / \lambda} \left(\widehat{\boldsymbol{x}} - \tau \nabla r(\widehat{\boldsymbol{x}}) \right), \quad \tau \in \left(0, \frac{1}{\operatorname{Lip}(\nabla r)} \right]$$

Deep regularization

We propose to implement $r_{\theta}(\cdot)$ using a deep neural network and compute the gradient $\nabla r_{\theta}(\widehat{x})$ in PGD using automatic differentiation

Key questions:

- How should $r_{\theta}(\cdot)$ be constructed?
- How should θ be trained?

Prior work

- RED algorithm: [1]
 - Train a deep denoiser $d_{\theta}(x)$ via $\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \mathbb{E}\{\|\boldsymbol{x}_0 \boldsymbol{d}_{\boldsymbol{\theta}}(\boldsymbol{x}_0 + \boldsymbol{n})\|^2\}$
 - Set $r_{\boldsymbol{\theta}}(\boldsymbol{x}) \triangleq \frac{1}{2} \boldsymbol{x}^{\top} (\boldsymbol{x} \boldsymbol{d}_{\boldsymbol{\theta}}(\boldsymbol{x}))$
 - Use the approximation $\nabla r_{m{ heta}}(m{x}) pprox m{x} m{d}_{m{ heta}}(m{x})$ in PGD
 - For the above to be exact, we need that $d_{\theta}(\cdot)$ is Jacobian-symmetric and locally homogeneous, but these properties are not satisfied by most practical denoisers [2]
- Input-convex regularization with adversarial training: [3]
 - Construct $r_{\theta}(\cdot)$ using an input-convex deep net [4]
 - lacksquare Train $r_{m{ heta}}(\cdot)$ as a Wasserstein-based discriminator of real $m{x}$ versus fake $m{x}$
- Use $\nabla r_{\theta}(\cdot)$ in PGD
- Gradient-step approach: [5, 6]
 - Construct a deep regularizer $r_{\boldsymbol{\theta}}(\cdot)$
 - e.g., for some deep net $h_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$, construct $r_{\theta}(\boldsymbol{x}) = \|\boldsymbol{h}_{\theta}(\boldsymbol{x})\|^2$ or $r_{\theta}(\boldsymbol{x}) = \|\boldsymbol{x} \boldsymbol{h}_{\theta}(\boldsymbol{x})\|^2$ or $r_{\theta}(\boldsymbol{x}) = \boldsymbol{x}^{\top}(\boldsymbol{x} \boldsymbol{h}_{\theta}(\boldsymbol{x}))$ or etc.
 - Train $\boldsymbol{d}_{\boldsymbol{\theta}}(\boldsymbol{x}) \triangleq \boldsymbol{x} \nabla r_{\boldsymbol{\theta}}(\boldsymbol{x})$ as a denoiser
 - Use $\nabla r_{\boldsymbol{\theta}}(\cdot)$ in PGD

THE OHIO STATE UNIVERSITY

Proposed regularizer construction

• We propose to construct the deep regularizer $r_{\theta}(\cdot)$ as

$$r_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1+\alpha}{2} \|\boldsymbol{x}\|^2 - s_{\boldsymbol{\theta}}(\boldsymbol{x})$$

with $\alpha \geq 0$ and β -smooth neural network $s_{\theta}: \mathbb{R}^d \to \mathbb{R}$, i.e.,

$$\|\nabla s_{\boldsymbol{\theta}}(\boldsymbol{x}_1) - \nabla s_{\boldsymbol{\theta}}(\boldsymbol{x}_2)\| \le \beta \|\boldsymbol{x}_1 - \boldsymbol{x}_2\| \ \forall \boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^d$$

- If $\beta = 1$, the regularizer $r_{\theta}(\cdot)$ is convex (or strongly convex when $\alpha > 0$)
- The structure of $s_{\theta}(\cdot)$ is arbitrary
- We propose to enforce β -smoothness adversarially, by adding the following Lipschitz penalty while training the regularizer $r_{\theta}(\cdot)$ [7]:

$$\sum_{i} \max \left\{ 0, \max_{\boldsymbol{\delta}} \widehat{\beta}_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}, \boldsymbol{\delta}) - \beta \right\}$$

where $\{oldsymbol{x}_i\}$ are the training samples and

$$\widehat{\beta}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{\delta}) \triangleq \frac{\|\nabla s_{\boldsymbol{\theta}}(\boldsymbol{x}) - \nabla s_{\boldsymbol{\theta}}(\boldsymbol{x} + \boldsymbol{\delta})\|}{\|\boldsymbol{\delta}\|}$$

Proposed training scheme

We propose a bi-level training scheme [8]:

lacksquare $m{\theta}$ and λ are chosen to minimize the loss

$$\mathcal{L}(\boldsymbol{\theta}, \lambda) \triangleq \sum_{i=1}^{n} \left[\|\widehat{\boldsymbol{x}}_i(\boldsymbol{\theta}, \lambda) - \boldsymbol{x}_i\|^2 + \xi \max\left\{0, \max_{\boldsymbol{\delta}_i} \widehat{\beta}_{\boldsymbol{\theta}}(\boldsymbol{x}_i, \boldsymbol{\delta}_i) - \beta\right\} \right]$$

where

$$\widehat{\boldsymbol{x}}_i(\boldsymbol{ heta}, \lambda) = \arg\min_{oldsymbol{x}} \left\{ \underbrace{\ell(oldsymbol{x}; oldsymbol{y}_i) + \lambda oldsymbol{r}_{oldsymbol{ heta}}(oldsymbol{x})}_{ riangleq J_{oldsymbol{ heta}}(oldsymbol{x}, oldsymbol{y}_i)}
ight\}$$

Note:

- The supervised L2 term $\|\widehat{\boldsymbol{x}}_i(\boldsymbol{\theta},\lambda) \boldsymbol{x}_i\|^2$ is one of several options
- In practice, we alternate between updating θ , λ , and $\{\delta_i\}$

Bi-level optimization details

Details of the θ optimization:

- For fixed $\{\boldsymbol{\delta}_i\}$, define $\rho(\boldsymbol{\theta}) \triangleq \sum_{i=1}^n \max \{0, \max_{\boldsymbol{\delta}_i} \widehat{\beta}_{\boldsymbol{\theta}}(\boldsymbol{x}_i, \boldsymbol{\delta}_i) \beta\}$
- Can show that

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{n} \frac{\partial^{2} J_{\boldsymbol{\theta}}(\widehat{\boldsymbol{x}}_{i}; \boldsymbol{y}_{i})}{\partial \boldsymbol{\theta} \partial \boldsymbol{x}^{\top}} \left[\frac{\partial^{2} J_{\boldsymbol{\theta}}(\widehat{\boldsymbol{x}}_{i}; \boldsymbol{y}_{i})}{\partial \boldsymbol{x} \partial \boldsymbol{x}^{\top}} \right]^{-1} (\boldsymbol{x}_{i} - \widehat{\boldsymbol{x}}_{i}) + \xi \frac{\partial \rho(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

- To compute γ_i , use CG (or similar) to solve $\left[\frac{\partial^2 J_{\theta}(\widehat{\boldsymbol{x}}_i; \boldsymbol{y}_i)}{\partial \boldsymbol{x} \partial \boldsymbol{x}^{\top}}\right] \gamma_i = \boldsymbol{x}_i \widehat{\boldsymbol{x}}_i$
- Use auto-differentiation for gradients & Hessians (via JAX or FuncTorch)

Summary of each θ update:

- 11 For each i, use PGD to compute $\hat{\boldsymbol{x}}_i = \arg\min_{\boldsymbol{x}} \left\{ \ell(\boldsymbol{x}; \boldsymbol{y}_i) + \lambda \boldsymbol{r}_{\boldsymbol{\theta}}(\boldsymbol{x}) \right\}$
- For each i, use CG to compute γ_i above
- Take gradient step $m{ heta}_{\sf new} = m{ heta} \mu rac{\partial \mathcal{L}(m{ heta})}{\partial m{ heta}}$ using Adam

2022 Asilomar Conf. Signals, Systems, and Computers Paper ID: 1259

Numerical experiments

Inverse problem:

- lacksquare Compressive sensing: Recover $m{x}$ from $m{y} = m{A}m{x}$
- $\boldsymbol{x} \in \mathbb{R}^d$ is a $d=180^2$ -pixel grayscale image from BSD400
 - 370 training images (augmented to 1480 via rotation & flipping)
 - 30 testing images
- $m{A} \in \mathbb{R}^{rac{d}{2} imes d}$ is a fast, structurally random matrix [9]

Deep regularizer:

- RED-style regularization: $r_{\theta}(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{\top}(\boldsymbol{x} \boldsymbol{h}_{\theta}(\boldsymbol{x}))$
 - Our scheme constrains $\operatorname{Lip}(\nabla s_{\theta})$ where $s_{\theta}(\boldsymbol{x}) \triangleq \frac{1}{2} \|\boldsymbol{x}\|^2 r_{\theta}(\boldsymbol{x})$
- $m{h}_{m{ heta}}: \mathbb{R}^d
 ightarrow \mathbb{R}^d$ is a convolutional deep network
 - 3 layers, 16 channels, SiLU activation, LayerNorm
 - This "simple" network acts as a proof-of-concept
- Recovery used PGD with backtracking line-search to automatically tune τ Note: we increase the stepsize τ on successful iterations

Results:

Key points:

- As $\beta = \operatorname{Lip}(\nabla s)$ increases, the final-PSNR increases and the convergence speed decreases
- lacksquare Setting eta=1 yields a convex regularizer
- The proposed bi-level schemes attain the highest PSNRs

References

- [1] Y. Romano, M. Elad, and P. Milanfar, "The little engine that could: Regularization by denoising (RED)," *SIAM J. Imag. Sci.*, vol. 10, no. 4, pp. 1804–1844, 2017.
- [2] E. T. Reehorst and P. Schniter, "Regularization by denoising: Clarifications and new interpretations," *IEEE Trans. Comput. Imag.*, vol. 5, pp. 52–67, Mar. 2019.
- [3] S. Lunz, O. Öktem, and C.-B. Schönlieb, "Adversarial regularizers in inverse problems," *Proc. Neural Inf. Process. Syst. Conf.*, vol. 31, 2018.

[4] B. Amos, L. Xu, and J. Z. Kolter, "Input convex neural networks," in *Proc. Int. Conf. Mach. Learn.*, pp. 146–155,

- 2017.

 [5] R. Cohen, Y. Blau, D. Freedman, and E. Rivlin, "It has potential: Gradient-driven denoisers for convergent
- b] R. Cohen, Y. Blau, D. Freedman, and E. Rivlin, "It has potential: Gradient-driven denoisers for convergen solutions to inverse problems," in *Proc. Neural Inf. Process. Syst. Conf.*, vol. 34, pp. 18152–18164, 2021.
- [6] S. Hurault, A. Leclaire, and N. Papadakis, "Gradient step denoiser for convergent plug-and-play," in *Proc. Int. Conf. on Learn. Rep.*, 2022.
- networks," in Intl. Conf. Scale Space & Variational Methods in Comp. Vis., pp. 307–319, 2021.

[7] L. Bungert, R. Raab, T. Roith, L. Schwinn, and D. Tenbrinck, "CLIP: Cheap Lipschitz training of neural

- [8] K. G. Samuel and M. F. Tappen, "Learning optimized MAP estimates in continuously-valued MRF models," in *Proc. IEEE Conf. Comp. Vision Pattern Recog.*, pp. 477–484, 2009.
- [9] T. T. Do, L. Gan, N. H. Nguyen, and T. D. Tran, "Fast and efficient compressive sensing using structurally random matrices," *IEEE Trans. Signal Process.*, vol. 60, pp. 139–154, Jan. 2012.