N-WL: A New Hierarchy of Expressivity for Graph Neural Networks

Qing Wang, Dillon Chen, Asiri Wijesinghe, Shouheng Li, and Muhammad Farhan

Graph Research Lab, School of Computing, Australian National University

Introduction

Is k-WL hierarchy a good yardstick for measuring expressivity of GNNs?

Neighbourhood WL Hierarchy

Neighbourhood WL (\mathcal{N} -WL) hierarchy colours nodes via t-order induced subgraphs within d-hop neighbourhoods:

d-hop neighbourhoods

t-order induced subgraphs

A Simple Experiment

A graph isomorphism test on 312 pairs of simple graphs of 8 vertices:

- None-or-all:None by 1-WL but all by 3-WL
- Progressive: Varving with d and t by $\mathscr{N} ext{-WL}$

Main Results

• Increasing the order of induced subgraphs, the expressive power increases:

Theorem (Weak Hierarchy)

 $\mathcal{N}^-(t,d)$ -WL $\subsetneq \mathcal{N}^-(t+1,d)$ -WL

• Increasing the hops of neighbourhoods, the expressive power may decrease:

Theorem

(Strong Hierarchy)

 $\mathcal{N}(t,d)\text{-WL} \subsetneq \mathcal{N}(t+1,d)\text{-WL}$ $\mathcal{N}(t,d)\text{-WL} \subsetneq \mathcal{N}(t,d+1)\text{-WL}$

• Induced connected subgraphs remain the same expressive power:

Theorem (Equivalence)

 $\mathcal{N}^c(t,d)$ -WL $\equiv \mathcal{N}(t,d)$ -WL

Subgraph counts

Subgraph counts

k-WL vs \mathcal{N} -WL

	k-WL	δ - k -LWL	(k,s)-LWL	$(k,c)(\leq)$ -SETWL	$\mathcal{N}(t,d)$ -WL	$\mathscr{N}^c(t,d) ext{-}\mathrm{WL}$
#Coloured objects	n^k	n^k	$\mathrm{subset}(n^k, s)$	$\mathrm{subset}(\Sigma_{q=1}^k \binom{n}{q}, c)$	n	n
#Neighbour objects	$n \times k$	$a \times k$	$a \times k$	$n \times q$	$\binom{a^d}{t}$	$subset(\sum_{q=1}^{t} {a^d \choose q}, 1)$
Δ Coloured objects	k-tuples	k-tuples	k-tuples	$\leq k$ -sets	nodes	nodes
Δ Neighbour objects	k-tuples	k-tuples	k-tuples	$\leq k$ -sets	t-sets	$\leq t$ -sets
Sparsity -awareness	X	√		✓	X	✓

Theorem

 $1-WL \equiv \mathscr{N}(1,1)-WL \equiv \mathscr{N}^c(1,1)-WL$

Graph Neighbourhood Neural Network

• Graph Neighbourhood Neural Network (G3N) instantiates the ideas of $\mathscr{N}\text{-WL}$ algorithms for graph learning.

$$h_u^{(l+1)} = \text{Combine} \Big(h_u^{(l)}, \text{Agg}_{(i,j) \in I_t \times J_d}^N \Big(\text{Agg}_{S \in \mathcal{S}_u^{(l)}(i,j)}^T \Big(\text{Pool}(S) \Big) \Big) \Big)$$

Graph classification

Model	ZINC	ZINC
Model	(no edge features)	(edge features)
GCN	0.4590.006	0.3210.009
PPGN	0.4070.028	_
GIN	0.3870.015	0.1630.004
PNA	0.3200.032	0.1880.004
DGN	0.2190.010	0.1680.003
DEEP LRP*	0.2230.008	_
GSN^*	0.1400.006	0.1150.012
CIN*	0.1150.003	0.0790.006
$\overline{\text{G3N-}(2,3)}$	0.1650.018	0.1280.015

	MolHIV	MolHIV
Model	(test)	(validation)
GCN	0.76060.0097	0.82040.0141
GIN	0.75580.0140	0.82320.0090
GraphSNN	0.78510.0170	0.83590.0096
PNA	0.79050.0132	_
DGN	0.79700.0097	_
DEEP LRP*	0.76870.0180	0.81310.0088
GSN*	0.77990.0100	0.86580.0084
CIN*	0.80940.0057	_
G3N-(2,3)	0.79000.0134	0.83590.0061

Runtime analysis

