Extra Questions for MA 105

Aryaman Maithani TA for D1-T5

Semester: Autumn 2019 Latest update: October 15, 2019

Notation:

 $\mathbb{N} = \{1, 2, \ldots\}$ denotes the set of natural numbers.

 $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\}\$ denotes the set of integers.

 \mathbb{Q} denotes the set of rational numbers.

 \mathbb{R} denotes the set of real numbers.

Week 1

1. Let f be any bijection from \mathbb{N} to $\mathbb{Q} \cap [0, 1]$.

Define the sequence (a_n) of real numbers as: $a_n := f(n) \quad \forall n \in \mathbb{N}$.

Prove that (a_n) diverges or find an example of f such that (a_n) converges.

2. Let (a_n) be a sequence of real numbers. We say that (a_n) is *slack-convergent* if there is an $a \in \mathbb{R}$ such that the following condition holds.

For every $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $|a_n - a| \le \epsilon$ for all $n \ge n_0$.

Prove or disprove that a sequence is convergent (in the normal sense) \iff it is slack-convergent.

(Additional) What happens if we change $n \ge n_0$ to $n > n_0$?

3. Let (a_n) be a sequence of real numbers. We say that (a_n) is reciprocal-convergent if there is an $a \in \mathbb{R}$ such that the following condition holds.

For every $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $|a_n - a| < 1/\epsilon$ for all $n \ge n_0$.

Prove or disprove that a sequence is convergent (in the normal sense) \iff it is reciprocal-convergent.

4. Let (a_n) be a sequence of real numbers. We say that (a_n) is natural-convergent if the following condition holds.

For every $k \in \mathbb{N}$, $\lim_{n \to \infty} |a_{n+k} - a_n| = 0$.

Prove or disprove that a sequence is convergent (in the normal sense) \iff it is natural-convergent.

5. Let (a_n) be a sequence of real numbers. We say that (a_n) is weirdly-convergent if there is an $a \in \mathbb{R}$ such that the following condition holds.

For every $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $|a_n - a| < \epsilon$ for infinitely many $n \ge n_0$.

Prove or disprove that a sequence is convergent (in the normal sense) \iff it is weirdly-convergent.

6. Let (a_n) be a sequence of real numbers. We say that (a_n) is reverse-convergent if there is an $a \in \mathbb{R}$ such that the following condition holds.

For every $n_0 \in \mathbb{N}$, there is $\epsilon > 0$ such that $|a_n - a| < \epsilon$ for all $n \ge n_0$.

Prove or disprove that a sequence is convergent (in the normal sense) \iff it is reverse-convergent.

7. Let S be a nonempty subset of \mathbb{R} which is bounded above. Let (a_n) be an increasing sequence in S such that $\lim_{n \to \infty} a_n = L \notin S$.

Prove or disprove that $L = \sup S$.

For the question(s) in which the implication does not hold in both directions, does it hold in any? If yes, which?

Week 2

- 1. Show that $f: \mathbb{N} \to \mathbb{R}$ is continuous for any f.
- 2. Let $f: \mathbb{Q} \to \mathbb{R}$ be a continuous function such that the image (range) of f is a subset of \mathbb{Q} . Let $a, b, r \in \mathbb{Q}$ be such that a < b and f(a) < r < f(b). Show (with the help of an example) that it is not necessary that there exists some $c \in \mathbb{Q} \cap [a, b]$ such that f(c) = r.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$. We say that f is reverse continuous at c if for all $\delta > 0$, there exists $\epsilon > 0$ such that $|x c| < \delta \implies |f(x) f(c)| < \epsilon$.

Is this notion of continuity the same as the normal notion?

If not, then give an example of a function which is reverse continuous at a point but not continuous or vice-versa.

- 4. Let $f: \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$. We say that f is upper continuous at c if for all $\epsilon > 0$, there exists $\delta > 0$ such that $|x c| < \delta \implies f(c) \le f(x) < f(c) + \epsilon$.
 - (a) Prove that a function is continuous at a point if it is upper continuous at that point.
 - (b) Show that the converse may not be true.
 - (c) Give an example of a function that is upper continuous at only one point.
 - (d) Given any $n \in \mathbb{N}$, show that there exists a function that is upper continuous at exactly n points.
 - (e) Show that there exists a function that is upper continuous at infinitely many points.
 - (f) Give an example of a function f that is upper continuous everywhere.
 - (g) Can you give an example of another function g such that g is upper continuous everywhere but f g is not constant?
- 5. Let $A, B \subset \mathbb{R}$ and $f: A \to B$ be a bijection. Show with the help of an example that f is continuous $\Longrightarrow f^{-1}$ is continuous.
- 6. Show that there exists a bijection from (0,1) to [0,1].
- 7. Show that there exists no continuous bijection from (0,1) to [0,1] or from [0,1] to (0,1).
- 8. Let $f: A \to B$ be a continuous surjective function. Show that it is possible for A to be a bounded open interval and B to be a bounded closed interval.

Is it possible for A to be a bounded closed interval and B to be a bounded open interval?

- 9. Let $f : \mathbb{R} \to \mathbb{R}$ be a function with the intermediate value property. Is it necessary that f is continuous somewhere?
- 10. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that given any $c \in \mathbb{R}$, the limit $\lim_{x \to c} f(x)$ exists. Is it necessary that f is continuous *somewhere*?

The last two questions are just for one to think about. I do not expect solutions for those.

Week 3

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Let $c \in \mathbb{R}$. Is it necessary that there exist $a, b \in \mathbb{R}$ such that a < c < b and $f'(c) = \frac{f(b) f(a)}{b a}$?
- 2. Let $k \in \mathbb{N}$. Construct a function $f : \mathbb{R} \to \mathbb{R}$ that is k times differentiable everywhere but not (k+1) times differentiable somewhere.
- 3. Construct a function $f: \mathbb{R} \to \mathbb{R}$ which is differentiable at only one point.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. Suppose there is $\alpha \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, $|f'(x)| \le \alpha < 1$. Let $a_1 \in \mathbb{R}$ and set $a_{n+1} := f(a_n)$ for all $n \in \mathbb{N}$. Show that the sequence (a_n) converges.
- 5. Let $D \subset \mathbb{R}$. A function $f: D \to \mathbb{R}$ is said to be *convex* if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y \in D, \forall \lambda \in [0, 1].$$

Prove that if I is an open interval and $f: I \to \mathbb{R}$ is convex, then f is continuous. Where did you use that I is an open interval?

Give an example to show that if J is not an open interval, then a convex function $f: J \to \mathbb{R}$ need not be continuous.

- 6. Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be a differentiable function. Show by example that $f'(x) = 0 \quad \forall x \in D$ does not imply that f is constant.
- 7. Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be a differentiable function.

We say that f is increasing if $\forall x, y \in D : x \leq y \implies f(x) \leq f(y)$.

Show by example that $f'(x) \ge 0 \quad \forall x \in D$ does not imply that f is increasing.

- 8. Show that the implication in the last two questions would be true if D were an interval.
- 9. Let A and B be open intervals in \mathbb{R} and $f: A \to B$ be a bijection such that f is differentiable. Show that it is not necessary that f^{-1} is differentiable.
- 10. * Construct a function $f_1: \mathbb{R} \to \mathbb{R}$ with the following properties or show that no such function exists:
 - 1. f_1 is differentiable everywhere except one point x_1 .
 - 2. Define $f_2 : \mathbb{R} \setminus \{x_1\} \to \mathbb{R}$ as $f_2(x) :=$ derivative of f_1 at x. This f_2 must be differentiable everywhere in its domain except one point x_2 .
 - 3. Define $f_3: \mathbb{R} \setminus \{x_1, x_2\} \to \mathbb{R}$ as $f_3(x) := \text{derivative of } f_2 \text{ at } x$. This f_3 must be differentiable everywhere in its domain except one point x_3 .

:

n. Define $f_n : \mathbb{R} \setminus \{x_1, \dots, x_{n-1}\} \to \mathbb{R}$ as $f_n(x) :=$ derivative of f_{n-1} at x. This f_n must be differentiable everywhere in its domain except one point x_n .

:

(Note that we do not stop at any n.)

ANY WEEK

- 1. Let $D \subset \mathbb{R}$. We say a function $f: D \to \mathbb{R}$ is uniformly continuous if for all $\epsilon > 0$, there exists $\delta > 0$ such that whenever $x, y \in D$ and $|x y| < \delta$, then $|f(x) f(y)| < \epsilon$.
 - (a) Understand how this definition is different from the definition of (usual) continuity.
 - (b) Give an example of a function which is continuous but not uniformly continuous.
 - (c) Show that any uniformly continuous function is also continuous.
- 2. Let (f_n) be a sequence of real valued functions defined on [a,b] such that each f_n is continuous. Moreover, you are given that for each $x \in [a,b]$, the limit $\lim_{n \to \infty} f_n(x)$ exists.

Define the function $f:[a,b]\to\mathbb{R}$ as follows:

$$f(x) := \lim_{n \to \infty} f_n(x).$$

Show with the help of an example that it is not necessary that f is continuous.

3. Let $f_n: D \to \mathbb{R}$ be a sequence of functions from the set $D \subset \mathbb{R}$ to \mathbb{R} . We say that the sequence (f_n) converges uniformly to the function $f: D \to \mathbb{R}$ if given $\epsilon > 0$, there exists an integer N such that

$$|f_n(x) - f(x)| < \epsilon$$

for all n > N and all $x \in D$.

Prove that if (f_n) is a sequence of continuous functions that converges uniformly to f, then f is continuous. If you have solved the previous question, show that (f_n) didn't uniformly converge to f for that example.

- 4. Let $f:[a,b]\to\mathbb{R}$ be any function. Then, we know that if
 - (a) f is monotonic, or
 - (b) f is bounded and has at most a finite number of discontinuities in [a, b],

then f is (Riemann) integrable.

Is the converse true?

That is, if f is (Riemann) integrable, then is it necessary that one of (a) or (b) should be true? Prove or disprove via counterexample. (Credit: Amit)

5. Show that any function $f: \mathbb{N} \to \mathbb{R}$ is uniformly continuous.

- 6. Let $a \in \mathbb{R}$ and (a_n) be a sequence of real numbers with the following property: Given any subsequence (a_{n_k}) of (a_n) , there exists a subsequence (a_{n_k}) of (a_{n_k}) with the property that $\lim_{l \to \infty} a_{n_{k_l}} = a$. Prove that $\lim_{n \to \infty} a_n = a$.
- 7. Let E be a bounded subset of \mathbb{R} with the following property: There exists $x_0 \in \mathbb{R} \setminus E$ such that there exists a sequence (x_n) in E which converges to x_0 . (For those familiar with the lingo, E is not a closed set.)

Show that there exists:

- (a) A function $g: E \to \mathbb{R}$ which is continuous but not bounded.
- (b) A function $f: E \to \mathbb{R}$ such that f(E) is bounded but does not have a maximum.
- (c) A function $h: E \to \mathbb{R}$ such that h is continuous but not uniformly continuous.
- 8. Let $f:(a,b) \to \mathbb{R}$ be a monotonically increasing function, that is, $a < x < y < b \implies f(x) \le f(y)$. Show that for any $x \in (a,b)$, both $\lim_{t \to x^-} f(t)$ and $\lim_{t \to x^+} f(t)$ exist. Moreover, show that $\lim_{t \to x^-} f(t) \le f(x) \le \lim_{t \to x^+} f(t)$.

Also show that if x < y, then $\lim_{t \to x^+} f(t) \le \lim_{t \to y^-} f(t)$.

(Hint: Try relating $\lim_{t \to x^-} f(t)$ with $\sup_{a < t < x} f(t)$.)

- 9. Let $S = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$. Show that given any $x \in \mathbb{R}$, there exists a sequence (s_n) in S that converges to x.
 - Bonus 1: Generalise the argument by replacing $\sqrt{2}$ by any irrational square root of a natural number.
 - Bonus 2: Generalise the argument by replacing $\sqrt{2}$ by any irrational number.
- 10. Let $f: \mathbb{R} \to \mathbb{R}$ be a periodic function with period p > 0. That is, f(x+p) = f(x) for all $x \in \mathbb{R}$. Moreover, assume that f is Riemann integrable on [x, x+p] for any $x \in \mathbb{R}$. Is it necessary that $\int_{x}^{x+p} f(x)dx$ is independent of x? (Note that f is not necessarily continuous.)
- 11. Let $A \subset \mathbb{R}$ and $f: A \to \mathbb{R}$ be a continuous and periodic function.
 - (a) Show that if $A = \mathbb{R}$, then f is bounded.
 - (b) Show that there exists some A and some f for which the hypothesis holds but f is not bounded.
- 12. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that it is differentiable at 0. Is it necessary that there exist a < 0 < b such that f is continuous at every point in (a, b)?
- 13. Let $f : \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function. Show that the set of discontinuities of f is countable. (A set E is said to be countable if there exists a one-to-one function from E to \mathbb{N} . Examples \emptyset , $\{1, 5, 6\}$, \mathbb{Q})
- 14. Show with the help of an example that there exists a function $f : \mathbb{R} \to \mathbb{R}$ such that f is continuous and bounded but not uniformly continuous.
- 15. Suppose $E \subset \mathbb{R}$. Let $f: E \to \mathbb{R}$ be a uniformly continuous function. Show that if (x_n) is a convergent sequence in E, then the sequence $(f(x_n))$ converges in \mathbb{R} . (Hint: Cauchy) Show with the help of an example that the result need not hold if the function is just "continuous."
- 16. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions such that f(q) = g(q) for all $q \in \mathbb{Q}$. Show that f(x) = g(x) for all $x \in \mathbb{R}$. Is the result true if we drop the continuity hypothesis? Can you think of a more general result? More simply, what sort of sets can we replace \mathbb{Q} with?
- 17. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f' is bounded. Show that f is uniformly continuous.
- 18. Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function. Suppose f has the property that $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$. Is it necessary that there exists $\epsilon > 0$ such that f is constant in the interval $(-\epsilon, \epsilon)$?
- 19. Does there exist $f: \mathbb{R} \to \mathbb{R}$ such that f(x) is rational iff x is irrational?

Multi-variable Calculus

Notation: For $x \in \mathbb{R}^n$ and $\epsilon > 0$, we define $B_{\epsilon}(x) := \{ y \in \mathbb{R}^n : ||y - x|| < \epsilon \}$.

- 1. Are the following subsets of \mathbb{R}^2 closed? Identify ∂D in each case (except the last four).
 - (a) \mathbb{R}^2
 - $(b) \mathbb{Q}^2$
 - (c) $(\mathbb{R} \setminus \mathbb{Q})^2$
 - (d) \mathbb{N}^2

 - (e) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ (f) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$
 - (g) Any finite set of points.
 - (h) $\{(x, 1/x) \in \mathbb{R}^2 : x \in \mathbb{R} \setminus \{0\}\}.$

(i)
$$\left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \in \mathbb{R}^2 : x \in (0, 1] \right\} \cup \{0\} \times [-1, 1].$$

(j) $\left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \times \{0\}.$

- (k) $C_1 \cup C_2$, where C_1 and C_2 are closed subsets of \mathbb{R}^2 .
- (l) $C_1 \cap C_2$, where C_1 and C_2 are closed subsets of \mathbb{R}^2 .
- (m) $\bigcup C_i$, where each C_i is a closed subset of \mathbb{R}^2 . (Not always, give a counterexample)
- (n) $\bigcap_{i \in \mathbb{N}} C_i$, where each C_i is a closed subset of \mathbb{R}^2 . (Yes)
- 2. Let D be a subset of \mathbb{R}^2 . Let's call $x \in \mathbb{R}^2$ a limit point of D if for every $\epsilon > 0$, there exists $y \in B_{\epsilon}(x)$ such that $y \in D$ and $y \neq x$.

Prove that D is closed if and only if it contains all of its limits points.

For each of the examples above (except for the last four), find the set of its limit points.

- 3. Let $n \in \mathbb{N}$. Show that there exists a countable subset E of \mathbb{R}^n such that $\mathbb{R}^n = E \cup \partial E$. (Hint: \mathbb{Q} is countable.)
- 4. Let D be a subset of \mathbb{R}^2 such that every point of D is an interior point. Let $f:D\to\mathbb{R}$ be a differentiable function such that $\nabla f = 0$ on D.

Show that it is not necessary that f is constant on D.

5. Let $D \subset \mathbb{R}^2$ be defined as $D := \{(x,y) \in \mathbb{R}^2 : 0 < x^2 + y^2 < 1\}$. Suppose $f: D \to \mathbb{R}$ is a differentiable function such that $\nabla f = 0$ on D.

Prove that f is constant on D.

(Note that you can't directly use bivariate MVT.)

(Why not?)

6. Let $D \subset \mathbb{R}^2$ be defined as $D = \{(x,y) \in \mathbb{R}^2 : (x,y) \in (\mathbb{Q} \cap [0,1])^2\}$. That is, the set of all points in the rectangle $[0,1] \times [0,1]$ with both coordinates rational.

Show that $\partial D = [0,1] \times [0,1]$.

Show that the function $f: D \to \mathbb{R}$ defined as f(x,y) := 0 for $(x,y) \in D$ is integrable over D.

(This is an example of a function that is integrable over a domain D even though ∂D is not of content 0.)

7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as f(x,y) := |xy|.

Show that f is differentiable at (0,0).

Show that the partial derivative $f_x(0,k)$ does not exist whenever $k \neq 0$. Show the analogous result for f_y . Conclude that the function is differentiable at (0,0) even though the partial derivatives aren't continuous (They don't even exist in a neighbourhood!) at (0,0).

8. Let $f: [-1,1] \times [-1,1] \to \mathbb{R}$ be defined as follows:

$$f(x,y) := \begin{cases} \frac{2xy}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Show that for any fixed $x \in [-1,1]$ the function is Riemann integrable on [-1,1] with respect to y. Compute $I_x = \int_{-1}^1 f(x, y) dy$.

Show that this function I_x is Riemann integrable on [-1,1] with respect to x. Compute $\int_0^1 I_x dx$.

Now, show that for a fixed $y \in [-1, 1]$, the function is Riemann integrable on [-1, 1] with respect to x. Compute $I_y = \int_{-1}^1 f(x, y) dx$.

Show that this function I_y is Riemann integrable on [-1,1] with respect to y. Compute $\int_{-1}^{1} I_y dy$.

In other words, you have shown that the iterated integrals $\int_{-1}^{1} \left(\int_{-1}^{1} f(x,y) dy \right) dx$ and $\int_{-1}^{1} \left(\int_{-1}^{1} f(x,y) dx \right) dy$ both exist.

They should also turn out to be equal.

Now, show that f is not bounded on $R = [-1, 1] \times [-1, 1]$ and hence, conclude that f is not Riemann integrable on R.

Think about what you've just shown.

- 9. Let $n \in \mathbb{N}$. Let D be a subset of \mathbb{R}^n such that |D| = 1. Show that D is convex.
- 10. Let $n \in \mathbb{N}$. Suppose D is a path-connected subset of \mathbb{R}^n . Suppose |D| > 1. Show that D is (uncountably) infinite.
- 11. Let S denote the following subset of \mathbb{R}^2 :

$$\left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) : x \in (0, 1] \right\}.$$

Consider $\bar{S} := S \cup (\{0\} \times [-1,1]) \subset \mathbb{R}^2$. That is, we add the "vertical" closed interval to S. Show that S is not path connected.