Package 'rFDP'

September 9, 2025

5eptember 7, 2025
Type Package
Title Resampling-Based False Discovery Proportion Control
Version 0.1.1
Date 2025-09-03
Maintainer Jesse Hemerik <hemerik@ese.eur.nl></hemerik@ese.eur.nl>
Description Methods for Resampling-based False Discovery Proportion control. A function is provided that provides simultaneous, multi-resolution False Discovery Exceedance (FDX) control as described in Hemerik (2025) <doi:10.48550 arxiv.2509.02376="">.</doi:10.48550>
License GNU General Public License
Imports methods
NeedsCompilation no
Author Jesse Hemerik [aut, cre]
Repository CRAN
Date/Publication 2025-09-09 13:00:02 UTC
Contents
mr.FDX
Index 3
mr.FDX Multi-resolution FDX control based on resampling
Description Provides a threshold that guarantees multi-resolution FDX control, given a matrix of resampled test

statistics

mr.FDX

Usage

```
mr.FDX(teststats,alpha,gamma,sequential=FALSE,ncombs=25)
```

Arguments

teststats A matrix of resampled test statistics. The first row corrresponds to the original

data.

alpha The desired FDX rate gamma The target (maximal) FDP

sequential Set to TRUE if the (slower) sequential method should be used ncombs

The nr. of random combinations that the sequential method checks.

Value

The rejection threshold that guarantees multi-resolution FDX control.

Examples

```
set.seed(123)
       #samle size per group
n=10
m=100 #nr. of hypotheses
       #nr of random permutations
X \leftarrow matrix(rnorm((2*n)*m), 2*n, m) #make data matrix (m columns, i.e., m hypotheses)
y <- c(numeric(n)+1, numeric(n)-1) #group labels
Y <- t(replicate(w, sample(y, size=2*n, replace=FALSE))) #make matrix with permuted group labels
Y[1,] <- y
#Add some signal to the first 50 columns, so that 50 hypotheses are false:
X[1:n,1:50] \leftarrow X[1:n,1:50] + 1.5
#Make matrix with test statistics for permuted versions of the data:
tstats <- matrix(nr=w,nc=m) #Matrix with resampled test statistics
for(j in 1:w){
  for(i in 1:m){
    # Compute t-statistic for j-th permutation for i-th hypothesis:
    avg1 \leftarrow (sum(X[Y[j,]==1,i]))/n; avg2 \leftarrow (sum(X[Y[j,]==-1,i]))/n
   s \leftarrow sqrt((sum((X[Y[j,]==1,i]-avg1)^2) + sum((X[Y[j,]==-1,i]-avg2)^2))/(2*n-2))
    tstats[j,i] \leftarrow abs((avg1-avg2)/(sqrt(2/n) * s))
  }
}
q = mr.FDX(teststats=tstats,alpha=0.1,gamma=0.1,sequential=FALSE)
#Check which hypotheses are rejected (for the maximum threshold that provides FDX control):
which( tstats[1,] > q )
```

Index

mr.FDX, 1