Análisis Funcional I – 2024 Práctico 3

Bases ortonormales. Fourier

- (1) Hacer los siguientes ejercicios de capítulo 3 del libro Linear Functional Analysis de Rynne y Youngson:
 - ejercicios 3.21, 3.22, 3.23 y 3.24 (página 81),
 - ejercicio 3.26 (página 82),
 - ejercicio 3.27 (página 85) Repasar el Teorema de Stone-Weiestrass (Teorema 1.40 del libro.)
 - ejercicio 3.28¹ (página 85)
- (2) Sea $\chi_{[0,1]}$ la función característica del intervalo [0,1]. Probar que

$$\{\chi_{[0,1]}(x-n) e^{2\pi i m x}\}_{n,m\in\mathbb{Z}}$$

es base ortonormal de $L^2(\mathbb{R})$ (llamada base de Gabor). Deducir que $L^2(\mathbb{R})$ es separable.

(3) Sea $f \in C^k(\mathbb{S}^1)$. Probar que

$$\frac{1}{\sqrt{2\pi}}\langle f^{(k)}, e^{inx} \rangle = (in)^k \left(\frac{1}{\sqrt{2\pi}} \langle f, e^{inx} \rangle \right)$$

donde $\langle g, h \rangle := \int_{-\pi}^{\pi} g(x) \overline{h(x)} \ dx$.

(4) Probar que si $f \in L^1([-\pi, \pi])$ entonces existen sus coeficientes de Fourier

$$a_n(f) := \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

y se cumple que $(a_n(f))_n \in c_0$.

- (5) (a) Calcular los coeficientes de Fourier de $f(t) = -\chi_{[-\pi,0]}(t) + \chi_{[0,\pi]}(t)$.
 - (b) Calcular $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$.
 - (c) Deducir usando (b) $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- (6) Sean f y g funciones pertenecientes al $L^2((-\pi,\pi])$. Extenderlas a funciones sobre \mathbb{R} de manera tal que resulten periódicas de período 2π . Mostrar que la convolución

$$(f * g)(x) = \int_{-\pi}^{\pi} f(y)g(x - y) dy$$

está en $L^1((-\pi,\pi))$ y se satisface

$$\langle f * g, e^{inx} \rangle = \langle f, e^{inx} \rangle \langle g, e^{inx} \rangle.$$

 $^{^{1}\}mathrm{En}$ (d) falta un factor $\frac{1}{2^{n}n!}$ en la def. de $e_{n}.$

- (7) Sea f una función par en $L^2([-\pi,\pi])$. Probar que $a_n(f)=a_{-n}(f)$ para todo $n\in\mathbb{Z}$.
- (8) Sea $f \in \mathcal{C}(\mathbb{R})$, periódica de período 2π . Dado $\varepsilon > 0$, probar que existe un polinomio trigonométrico $\varphi(x) = a_0 + \sum_{n=0}^{N} (a_n \cos(nx) + b_n \sin(nx))$, tal que $|f(x) \varphi(x)| < \varepsilon \ \forall x$.
- (9) Sea \mathcal{P} pre-Hilbert con BON, probar que \mathcal{P} separable si y sólo si existe $\{\varphi_i\}$ base numerable.
- (10) Si \mathcal{H} es un espacio de Hilbert de dimensión infinita entonces toda base algebraica es no numerable.
- (11) En $L^2(\mathbb{T})$ definimos los subespacios \mathcal{H}_1 y \mathcal{H}_2 como

$$\mathcal{H}_1 = \overline{\{f \in C(\mathbb{T}) : f \text{ es una función par}\}},$$

$$\mathcal{H}_2 = \overline{\{f \in C(\mathbb{T}) : f \text{ es una función impar}\}}$$

- (a) Probar que $\mathcal{H}_1^{\perp} = \mathcal{H}_2$
- (b) Probar que $\{\sqrt{2}\cos(nx)\}_{n\in\mathbb{N}}\cup\{1\}$ es base ortonormal de \mathcal{H}_1 y $\{\sqrt{2}\sin(nx)\}_{n\in\mathbb{N}}$ es base ortonormal de \mathcal{H}_2 .
- (c) Toda función f en $L^2[0,\pi]$ se la puede escribir como

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(nx)$$
 y $f(x) = \sum_{k=1}^{\infty} b_k \sin(nx)$,

en el sentido de $L^2[0,\pi]$, donde

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx)$$
 y $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx)$.

Definición: Un álgebra de Banach \mathcal{A} , es espacio de Banach con un producto xy (de $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$) tal que para todo x,y,z en \mathcal{A} y α en el cuerpo \mathbb{K} vale

- (a) (xy)z = x(yz).
- (b) $x(y+z) = xy + xz \ y \ (x+y)z = xz + yz$.
- (c) $(\alpha x)y = \alpha(xy) = x(\alpha y)$.
- (d) $||xy|| \le ||x|| ||y||$.

Observación: el inciso (4) implica la continuidad del producto. (Probarlo).

Una álgebra sobre \mathbb{C} se dice *-álgebra si cuenta con una involución * : $\mathcal{A} \to \mathcal{A}$ tal que para todo x, y en \mathcal{A} y α en \mathbb{C} vale

- (a) $(x+y)^* = x^* + y^*$.
- (b) $(\alpha x)^* = \overline{\alpha} x^*$.
- (c) $(xy)^* = y^*x^*$.
- (d) $(x^*)^* = x$.

Una *-álgebra de Banach A es una *-álgebra que es álgebra de Banach.

Definición: $A: A_1 \to A_2$ es morfismo de álgebras de Banach si para todo $x, y \in A_1 y \alpha \in \mathbb{K}$, se tiene

- (a) $A(\alpha x + y) = \alpha A(x) + A(y)$
- (b) A(xy) = A(x)A(y)
- (c) $||A(x)|| \le C||x||$.

Además si A_1 y A_2 son *-algebras de Banach el morfismo de álgebras de Banach A será un morfismo de *-algebras de Banach si $A(x^*) = A(x)^*$ para toda $x \in A_1$.

Observación: Si \mathcal{A}_1 y \mathcal{A}_2 tienen identidad para el producto entonces $A(e_{\mathcal{A}_1}) = e_{\mathcal{A}_2}$ y si existieran los inversos $A(x^{-1}) = A(x)^{-1}$. (Probarlo)

- (12) (a) Probar que ℓ^{∞} es un *-álgebra de Banach con la suma usual, el producto $x.y = \{x_i y_i\}_{i=1}^{\infty}$ y $\{x_i\}^* = \{\overline{x_i}\}.$
 - (b) Probar que $(\ell^{\infty}, .)$ tiene identidad.
 - (c) Probar que $L^1(\mathbb{T})$ es un *-álgebra de Banach con la suma usual de funciones, el producto dada por la convolución y $f^*(x) = \overline{f(-x)}$. Además $||f^*||_{L^1} = ||f||_{L^1}$.
 - (d) Probar que $\widehat{}: L^1(\mathbb{T}) \to \ell^{\infty}$ es morfismo de *-álgebras de Banach.
 - (e) Probar que $(L^1(\mathbb{T}), *)$ no tiene identidad.
- (13) (a) Probar que que si $f \in C^k(\mathbb{T})$ entonces $\widehat{f^k}(n) = i^k n^k \widehat{f}(n)$.
 - (b) $\widehat{L_h f}(n) = \widehat{f}(n)e^{-inh}$.
 - (c) $\widehat{e^{ik\cdot f}}(n) = \widehat{f}(n-k)$.

EJERCICIOS ADICIONALES

(14) Sea w(x) una función positiva de soporte compacto. Probar que $\langle f, g \rangle_w := \int_{\mathbb{R}} f(x)g(x)w(x)dx$ define un produto interno en

$$L^2(w):=\{f:\mathbb{R}\to\mathbb{R}:\int_{\mathbb{R}}|f(x)|^2w(x)<\infty\}.$$

Decimos que $\{P_n\}_{n=0}^{\infty}$ es una sucesión de polinomios ortogonales respecto de w si:

- $P_n(x)$ es un polinomio de grado n con coeficientes reales.
- $\langle P_n, P_m \rangle_w = h_n \delta_{n,m} \text{ con } h_n \neq 0 \text{ para todo } n.$

Probar que existe una sucesión de polinomios ortogonales respecto de w, determinada salvo constante, y que el espacio generado por ellos es denso en $L^2(w)$. Es decir, $\{P_n\}$ es una BON de $L^2(w)$.