

- Overview: Recap of my Capstone Project
- Data Set and Preprocessing
- 3. EDA Summary
- 4. Feature Engineering
- Feature Selection
- 6. Modeling
- 7. Implication

01. Overview: Recap of my Capstone Project

Here is a recap of my project:

Overview

- To predict whether a user will discontinue their subscription after it expires.
- Users to make a new subscription within 30 days after their current membership expiration date.

Solution

- Machine learning: Classification
- Logistics Regression, SGD Classifier, XGBoost, Decision Tree, Random Forest

Potential Impact

- Better business performance: Retaining existing customers usually comes at a lower cost than acquiring new ones.
- Implication to IT side: Product Enhancement/ Data-Driven Decision Making/CDP

02. Data Set and Preprocessing

The project involves data integration, which is quite complicated. There are also a significant number of outliers and null values present in the data.

1: Dataset & EDA

members

Basic customer data.6Mmsno(unique id), city,

bd(age), gender

train

ID and Churn status970Kmsno, is churn(class

labels).

transactions

User transactions data

1.4Mmsno(unique id),payment_method_id,plan

engagement

User engagement

•18M •msno(unique id), date, num_25, num_50

2: Preparation

2-1: Initial Data Cleaning

Aggregation

2-2: Merger

Necessary to make ID unique and consolidate all columns.

3: Preprocess

3-1: After Pre-Processing

Outlier, null-value(Imputation, Drop)

Data type conversion, One-hot encoding

3-2: Feature Engineering

8 new columns about order value, engagement, lifespan

03. EDA Summary

Through the merging process, the presence of Null values, outliers, and data skewness has become evident. It seems that around 30 instances need to be addressed and corrected.

04. Feature Engineering

Created eight features related to customer Order Value, Engagement, and Lifespan, which are components of Customer Lifetime Value (LTV).

Category	Feature	Description		
Order Value	is_discount	Binary feature indicating whether a discount was applied on the transaction (1 if		
		actual_amount_paid < plan_list_price, otherwise 0).		
	discount_amount	Calculated discount amount for each transaction as the difference between plan_list_price and		
		actual_amount_paid.		
Engagement	Average Play Time per Song	Average time a user spends listening to a song, calculated by dividing total seconds played by total		
		number of songs played (sum of 'num_25', 'num_50', 'num_75', 'num_985', and 'num_100').		
	Full Play Rate	Proportion of songs played over 98.5% of their length ('num_100') to the total number of songs		
		played.		
	Unique Song Play Rate	Proportion of unique songs played ('num_unq') to the total number of songs played.		
	Skip Tendency	Tendency of a user to skip songs before they reach 25% of their length, calculated as the ratio of		
		'num_25' to the total number of songs played.		
	Repeat Tendency	Tendency of a user to repeat songs, calculated as the difference between total number of songs		
		played and the number of unique songs played ('num_unq'), divided by total number of songs		
		played.		
Life Span	Membership Period in Days	Derived feature representing the membership period in days by calculating the difference		
		between 'membership_expire_date' and 'transaction_date'.		

05. Feature Selection

Identified and decided to drop features with low coefficients or considering multicollinearity.

- •Dropped columns with low relevance or
- •Replaced them with other columns through feature engineering."

05. Feature Selection

Including the dummy-encoded features and the additional ones, we ended up with a total of 31 columns.

Data #	columns (total 32 columns): Column	Non-Null Count	Dtype
0	msno	725722 non-null	object
1	is_churn	725722 non-null	int64
2	bd	725722 non-null	int64
3	registration_init_time	725722 non-null	float64
4	payment_plan_days	725722 non-null	int64
5	actual_amount_paid	725722 non-null	float64
6	is_auto_renew	725722 non-null	int64
7	is_cancel	725722 non-null	int64
8	msno_count	725722 non-null	float64
9	city_agg_4.0	725722 non-null	int64
10	city_agg_5.0	725722 non-null	int64
11	city_agg_13.0	725722 non-null	int64
12	city_agg_15.0	725722 non-null	int64
13	city_agg_22.0	725722 non-null	int64
14	city_agg_Other	725722 non-null	int64
15	gender_1	725722 non-null	int64
16	gender_2	725722 non-null	int64
17	registered_via_4.0	725722 non-null	int64
18	registered_via_9.0	725722 non-null	int64
19	registered_via_13.0	725722 non-null	int64
20	<pre>payment_method_id_agg_38.0</pre>	725722 non-null	int64
21	<pre>payment_method_id_agg_39.0</pre>	725722 non-null	int64
22	<pre>payment_method_id_agg_40.0</pre>	725722 non-null	int64
23	<pre>payment_method_id_agg_41.0</pre>	725722 non-null	int64
24	payment_method_id_agg_Other	725722 non-null	int64
25	is_discount	725722 non-null	int64
26	discount_amount	725722 non-null	float64
27	avg_play_time	725722 non-null	float64
28	full_play_rate	725722 non-null	float64
29	skip_tendency	725722 non-null	float64
30	repeat_tendency	725722 non-null	float64
31	membership_period	725722 non-null	int64

06. Modeling

Random Tree Forest

Selected a model that takes into account the characteristics of the dataset.

06. Modeling

Selected and compared scores that are aligned with the objectives of this study.

※F1 scores are for Class1(Churning)

07. Implication

From logistic regression, we didn't obtain particularly valuable information about the determining factors of churn.

07. Implication

From the decision tree analysis, it was revealed that a specific payment method is associated with the churn rate.

