SIMULATING AND MEASURING OTOACOUSTIC **EMISSIONS**

Cecilia Casarini

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Master of Science Acoustics and Music Technology (MSc) University of Edinburgh

23rd August, 2016

OUTLINE

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Outline

Physiology of the ear

Outer Ear Middle Ear

Otoacousti Emissions

Cochlear Model

Sillidiations

Measurement

ivicasurcine

- 1 Physiology of the ear
 - Outer Ear
 - Middle Ear
 - Inner Ear
- 2 Otoacoustic Emissions
- 3 Cochlear Model
- 4 Simulations
- Measurements
- 6 Conclusions

Physiology of the ear - OUTER EAR

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Cecilia Casariii

 Pinna (or Auricula): receives sounds from any direction, responsible of sound localization

Outer Ear

Outer Ear Middle Ear Inner Ear

Otoacoustic Emissions

Cochlear Model

Measurement

Conclusion

• Ear canal: 2.5 cm long.

Resonant frequencies

$$f(n)=(2n-1)\frac{c_s}{4I}$$

 Eardrum (or tympanic membrane): vibrates when pressure wave enters the ear canal

Physiology of the ear - MIDDLE EAR

SIMULATING MEASURING OTOACOUSTIC **EMISSIONS**

Cecilia Casarini

Middle Far

and fluid to avoid reflection:

Pressure Amplification

Resonant frequencies

$$\frac{A_{eardrum}}{A_{stapes}} = \frac{P_{eardrum}}{P_{stapes}} = 18.75$$

 Lever action of middle ear bones, increasing amplitude and decreasing velocity, gain = 4.4

Total gain =
$$4.4 * 18.75 = 82.5$$

Physiology of the ear: INNER EAR

Reissner's membrane

Apical Region

SIMULATING AND MEASURING OTOACOUSTIC

Cecilia Casarini

Inner Far

vascularis Spiral limbus ligament prominence Scala tympani Modiolus Spiral lamina Two main functions:

- Tonotopy
- Active feedback: compressive, non linear

Basal Region

OTOACOUSTIC EMISSIONS

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Physiology of the

Outer Ear Middle Ear

Otoacoustic Emissions

Cochlear Model

Measurements

THICUDAT CITICITES

Stimulus-based classification:

- SOAEs (spontaneous)
- SFOAEs (stimuls-frequency)
- TEOAEs (transient-evoked)
- DPOAEs (distortion-product)

Generation-based classification:

- Linear reflection
- Nonlinear distortion

Mechanism-Based Taxonomy for OAEs

COCHLEAR MODEL

SIMULATING MEASURING OTOACOUSTIC **EMISSIONS**

Cecilia Casarini

Cochlear Model

Three examples of cochlear models:

- Neely and Kim (1986): Cochlear Model in the Frequency domain
- Elliott (2007): State-space formulation in time domain
- Moleti (2009): 1DOF state-space model that also simulates otoacoustic emissions

Main assumptions:

- The cochlea is uncurled and modelled as 1D rectangular box (macromechanics)
- The cochlea is divided in N partitions of independent oscillators (micromechanics)

COCHLEAR MODEL

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Outline

Physiology of the ear

Outer Ear Middle Ear Inner Ear

Otoacoustic Emissions

Cochlear Model

Measurements

Conclusions

1) 1D transmission line equation for the differential pressure p

$$\frac{\partial^2 p_d(x,\omega)}{\partial^2 x} = \frac{2\rho}{H} \ddot{\xi}(x,t)$$

Using finite-difference approximation:

$$FP(t) = \ddot{\Xi}(t), F$$
 is invertible $\Longrightarrow P(t) = F^{-1}\ddot{\Xi}(t)$

2) Micromechanical elements

$$\ddot{\xi}(x,t) + \gamma_{bm}(x,\xi,\dot{\xi})\dot{\xi}(x,t) + \omega_{bm}^2(x,\xi,\dot{\xi})\xi(x,t) = \frac{p_d(x,0,t)}{\sigma_{bm}}$$

State-space formulation:

$$Z(t) = A_E Z(t) + B_E(P(t) + S(t))$$
$$\dot{\Xi}(t) = C_E Z(t) \Longrightarrow P(t) = F^{-1} \ddot{\Xi}(t) = F^{-1} C_E \dot{Z}(t)$$

COCHLEAR MODEL

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

CCCIIIG CGSGIII

Physiology of the

Outer Ear Middle Ear

Otoacousti

Otoacousti Emissions

Cochlear Model

Massuramanta

ivicasurements

iiiiuia cioiis

Overall state-space equation

$$M\dot{Z}(t) = A_E Z(t) + B_E S(t),$$

where M is the mass matrix of the system:

$$M = I - B_E F^{-1} C_E$$

The mass matrix can be changed in:

Nonlinearity

$$M = I - B_E G(Z)F^{-1}C_E$$
, where:

$$G(Z) = B^{-1}C + I$$

The parameter α determines the nonlinearity of the system:

$$lpha(extbf{x}, extbf{t}) = lpha_0 \left[1 - anh \left(rac{1}{\sqrt{\lambda \pi}} \int_0^L e^{-(extbf{x} - extbf{x}')^2/\lambda} rac{\xi^2(extbf{x}', extbf{t})}{\xi^2_{sat}} d extbf{x}'
ight)
ight]$$

Simulations - TONOTOPY

BM displacement, f0 = 250, N = 2000

BM Length (mm)

BM Length (mm)

25 30

35

SIMULATING AND MEASURING OTOACOUSTIC

Cecilia Casarini

× 10⁻⁶

Amplitude (m)

BM displacement

Resonant Place

10

- The basilar membrane has a peak in the cochlear place corresponding to each input frequency
- Video Animation of BM motion

Simulations - NONLINEAR vs LINEAR

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Outline

Physiology of the

Outer Ear Middle Ear

Otoacousti

LIIIISSIOIIS

Simulations

Massuramant

Conclusion

Saturation of the nonlinear active mechanism vs linear case:

Simulations - TEOAEs

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Outline

Physiology of the

Outer Ear Middle Ear

Otoacousti

Emissions

Simulations

Mascuromont

Simulations - DPOAEs

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Outline

Physiology of the ear

Outer Ear Middle Ear Inner Ear

Otoacousti Emissions

Cochlear M

Simulations

Measurement

Measurements

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Outline

Physiology of the

Middle Ear Inner Ear

Otoacousti Emissions

Cochlear Model

Measurements

Measurements - TEOAEs

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Outline

Physiology of the

Outer Ear Middle Ea

Otoacousti

_ ...

Cocilical Model

Measurements

onclusions

Measurements - DPOAEs

SIMULATING AND MEASURING OTOACOUSTIC

Cecilia Casarini

1E-10

1E-12

1E-18

Measurements

5000 7500 10000 12500 15000 17500 20000 22500 25000 27500

Frequency (Hz)

Measurements - DPOAEs (Model vs Experimental measurements)

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Outline

Physiology of the

Outer Ear Middle Ear

Otoacousti

Cochlear Model

Simulations

Measurements

Measurements - DPOEAEs (emissions not detected)

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

O......

Physiology of th

Outer Ear Middle Ear

Otoacousti

Cochlear Model

C. I...

Measurements

Conclusions

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

Cecilia Casarin

Physiology of the

Outer Ear Middle Ear Inner Ear

Otoacoustic Emissions

Cochlear Model

Simulations

Measurement

Conclusions

Physical Model of the Cochlea:

- Strong Linear and Nonlinear Models
- Can simulate TEOAEs and DPOAEs

However:

- We need a faster model
- We should simulate also SOAEs
- Work on Latency

Measurements:

Successfully measured DPOAEs

However:

- We need a stronger analysis method for TEOAEs and SOAEs
- Do more experiments in order to have reliable results and in the future substitute audiograms with OAEs screening tests.

THANK YOU!

SIMULATING AND MEASURING OTOACOUSTIC EMISSIONS

Cecilia Casarini

S 11'

Physiology of the

Outer Ear Middle Ear Inner Ear

Otoacousti

Cochlear Model

Measurements

