

Курсовая работа на тему: Проверка гипотезы о равенстве дисперсий логарифмической доходности индекса фондового рынка и входящих в его состав акций

ВЫПОЛНИЛА: СТУДЕНТКА ГРУППЫ ПМ19-1 БАШМАКОВА А.А. НАУЧНЫЙ РУКОВОДИТЕЛЬ: ДОЦЕНТ, К.Э.Н. ГРИНЕВА Н. В.

### Цель работы

Проверка гипотезы о равенстве дисперсий логарифмической доходности фондового рынка и входящих в его состав акций на реальных данных с использованием критерия Фишера как относительно простого, но находящего широкое распространение в дисперсионном анализе.

Исследуемые данные: котировки акций компаний, входящих в индекс ММВБ потребительского сектора (МОЕХСN)

# Критерий Фишера

Пусть имеются две независимые выборки из нормальных распределений:

$$X_1,\ldots,X_m \sim N(\mu_x,\sigma_x^2),$$

$$Y_1, \ldots, Y_n \sim N(\mu_y, \sigma_y^2).$$

Будем считать, что параметры  $\mu_x$ ,  $\sigma_x^2$ ,  $\mu_y$ ,  $\sigma_y^2$  известны. В качестве основной гипотезы примем  $H_0$ :  $\sigma_x^2 = \sigma_y^2$ , а в качестве дополнительной одну из трёх гипотез:

- 1)  $H_1: \sigma_x^2 > \sigma_y^2$ ;
- 2)  $H_1: \sigma_x^2 < \sigma_y^2$ ;
- 3)  $H_1: \sigma_x^2 \neq \sigma_y^2$ .

Теорема о построении критериев для проверки гипотезы с известным уравнением значимости  $\alpha$ :

Если верна Но, то

$$\frac{s_x^2}{s_y^2} \sim F(m-1, n-1),$$

где  $s_x^2 = \sum_{i=1}^m (X_i - \bar{X})^2$ ,  $s_y^2 = \sum_{i=1}^n (Y_i - \bar{Y})^2$ , а F(m-1,n-1) – распределение Фишера с m-1 и n-1 степенями свободы.

# Данные

# КОМПАНИИ ИНДЕКСА МОЕХСИ

| Тикер  | Название компании          |
|--------|----------------------------|
| AGRO   | ПАО «РУСАГРО»              |
| PJPa   | X5 Retail Group            |
| AQUA   | ПАО «Русская аквакультура» |
| DSKY   | ПАО «Детский мир»          |
| MGNT   | ПАО «Магнит»               |
| LNTAg  | ПАО "ЛЕНТА"                |
| MDMGDR | МГП «Мать и Дитя»          |
| MVID   | ПАО «М.Видео»              |
| BELU   | ПАО «Белуга Групп»         |
| APTK   | ПАО «Аптечная сеть 36,6»   |
| SVAV   | ПАО «Содлерс»              |
| ORUP   | OR GROUP                   |

## Предварительный анализ:

КОЛИЧЕСТВО ТОРГОВЫХ ДНЕЙ

|    | Α  | В      | C    | D    | Е    | F    | G    | Н    |
|----|----|--------|------|------|------|------|------|------|
| 1  |    | Ticker | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| 2  | 0  | AGRO   | 229  | 252  | 252  | 254  | 252  | 250  |
| 3  | 1  | PJPq   | 0    | 0    | 0    | 234  | 252  | 250  |
| 4  | 2  | AQUA   | 151  | 231  | 228  | 223  | 251  | 250  |
| 5  | 3  | DSKY   | 0    | 0    | 224  | 254  | 252  | 250  |
| 6  | 4  | MGNT   | 250  | 252  | 252  | 254  | 252  | 250  |
| 7  | 5  | LNTAq  | 250  | 252  | 252  | 254  | 252  | 250  |
| 8  | 6  | MDMGDR | 0    | 0    | 0    | 0    | 0    | 38   |
| 9  | 7  | MVID   | 250  | 252  | 252  | 254  | 252  | 250  |
| 10 | 8  | BELU   | 0    | 0    | 104  | 222  | 252  | 250  |
| 11 | 9  | APTK   | 250  | 252  | 252  | 254  | 252  | 250  |
| 12 | 10 | SVAV   | 250  | 252  | 252  | 254  | 252  | 250  |
| 13 | 11 | ORUP   | 0    | 0    | 50   | 252  | 252  | 250  |



## Предварительный анализ:

МАКСИМАЛЬНЫЕ ДНЕВНЫЕ ОТНОСИТЕЛЬНЫЕ СКАЧКИ ЦЕН

| 4 | Α | В      | С      | D      | Е      | F      | G      | Н      |
|---|---|--------|--------|--------|--------|--------|--------|--------|
| 1 |   | Ticker | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
| 2 | 0 | AGRO   | -0,112 | -0,051 | -0,047 | -0,055 | -0,032 | -0,066 |
| 3 | 1 | MGNT   | -0,095 | -0,073 | -0,112 | -0,102 | -0,035 | -0,136 |
| 4 | 2 | LNTAq  | -0,075 | -0,055 | -0,043 | -0,077 | -0,035 | -0,134 |
| 5 | 3 | MVID   | -0,118 | -0,077 | -0,057 | -0,055 | -0,069 | -0,064 |
| 6 | 4 | APTK   | -0,193 | -0,104 | -0,088 | -0,065 | -0,071 | -0,109 |
| 7 | 5 | SVAV   | -0,064 | -0,059 | -0,056 | -0,064 | -0,047 | -0,074 |

| 4 | Α | В      | C     | D     | E     | F     | G     | Н     |
|---|---|--------|-------|-------|-------|-------|-------|-------|
| 1 |   | Ticker | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| 2 | 0 | AGRO   | 0,209 | 0,055 | 0,051 | 0,058 | 0,043 | 0,104 |
| 3 | 1 | MGNT   | 0,082 | 0,078 | 0,059 | 0,079 | 0,047 | 0,07  |
| 4 | 2 | LNTAq  | 0,1   | 0,042 | 0,051 | 0,081 | 0,043 | 0,088 |
| 5 | 3 | MVID   | 0,095 | 0,077 | 0,111 | 0,054 | 0,065 | 0,122 |
| 6 | 4 | APTK   | 0,556 | 0,189 | 0,129 | 0,124 | 0,455 | 0,162 |
| 7 | 5 | SVAV   | 0,167 | 0,124 | 0,077 | 0,049 | 0,04  | 0,092 |

## Предварительный анализ:

МАКСИМАЛЬНЫЕ ДНЕВНЫЕ ОТНОСИТЕЛЬНЫЕ СКАЧКИ ЦЕН



## Выводы по предварительному анализу данных

01

Отметим, что у котировок PJPq данные с 2018 года, MDMGDR с 2020, у DSKY и BELU с 2017, у ORUP с конца 2017, а у AQUA с середины 2015, поэтому их анализировать дальше не будем. .

02

03

Оставшиеся 6 компании имеют более 229 торговых дней в каждом из рассматриваемых годов, что обеспечивает достаточное количество информации для дальнейшего анализа и обработки.

Максимальный скачок цен вверх у компании APTK ("Аптеки 36,6") равный 0,555 0,136 > 0,5

Минимальный скачок цен вверх аналогично у компании АРТК ("Аптеки 36,6") равный -0,19
•-0,193 > -0,5

Приходим к выводу, что компания APTK yt пригодны для дельнейшей проверки распределения их логарифмических доходностей на нормальность.

#### Гистограмма Р-значений модельных данных 1, вычисленных с помощью критерия Колмогорова



#### Гистограмма Р-значений модельных данных 2, вычисленных с помощью критерия Колмогорова



### Модельные данные

- Проверим равномерность распределения Р-значений на отрезке [0,1]
- Возьмем заведомо нормально распределенные случайные величины и произведем на них проверку.
- Из гистограммы видно, что Р-значения распределены равномерно. Это подтверждается значением критерия Колмогорова. Следовательно, можно перейти к проверке по критерию Фишера на модельных данных.
  - Проверим Критерий Фишера на модельных данных. Критерий Фишера равен 1.2487322294814869, значит, можно сделать вывод, что гипотеза принимается.

# Реальные панные

|   | Тикер  | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|---|--------|------|------|------|------|------|------|
| 0 | AGRO   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 1 | MGNT   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 2 | LNTAq  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 3 | MVID   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 4 | APTK   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 5 | SVAV   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 6 | MOEXCN | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |





# Значение дисперсии для реальных данных

|   | Тикер  | 2015     | 2016     | 2017     | 2018     | 2019     | 2020     |
|---|--------|----------|----------|----------|----------|----------|----------|
| 0 | AGRO   | 0.055917 | 0.055917 | 0.055917 | 0.055917 | 0.055917 | 0.055917 |
| 1 | MGNT   | 0.234778 | 0.234778 | 0.234778 | 0.234778 | 0.234778 | 0.234778 |
| 2 | LNTAq  | 0.136766 | 0.136766 | 0.136766 | 0.136766 | 0.136766 | 0.136766 |
| 3 | MVID   | 0.111443 | 0.111443 | 0.111443 | 0.111443 | 0.111443 | 0.111443 |
| 4 | SVAV   | 0.078697 | 0.078697 | 0.078697 | 0.078697 | 0.078697 | 0.078697 |
| 5 | MOEXCN | 0.008455 | 0.008455 | 0.008455 | 0.008455 | 0.008455 | 0.008455 |

## Проверка критерия Фишера

|   | Α     | В         | C         |   |
|---|-------|-----------|-----------|---|
| 1 | AGRO  | 43.738689 | 39867883  |   |
| 2 | MGNT  | 771.06519 | 5439747   |   |
| 3 | LNTAq | 261.65664 | 68132922  |   |
| 4 | MVID  | 173.73253 | 262154708 | 3 |
| 5 | SVAV  | 86.634445 | 8183792   |   |

### Модельные данные

- При анализе модельных данных, распределенных по нормальному закону, гипотеза равенстве дисперсий по критерию Фишера была полностью принята.
- Для реальных данных гипотеза была отвергнута.
- Выбранная гипотеза не верна для реальных данных, а значит дисперсии логарифмической доходности индекса фондового рынка и входящих в его состав акций не равны
- Критерий Фишера крайне чувствителен к отклонению от нормального распределения и достигает максимальной эффективности для выборок одинакового объёма, что крайне редко можно наблюдать в современных реалиях, а не на моделях.