# Distortion transmission function for transmitting Markov processes under communication constraints

# Aditya Mahajan McGill University

Joint work with Jhelum Chakravorty

Information Theory and Application Workshop 2 Feb, 2016

# What is an analogue of rate-distortion function (or distortion-rate function) in networks?

- Sequential transmission of data
- Zero- (or finite-) delay reconstruction





- Sequential transmission of data
- Zero- (or finite-) delay reconstruction



- Sequential transmission of data
- Zero- (or finite-) delay reconstruction



- Sequential transmission of data
  - Zero- (or finite-) delay reconstruction



#### Many applications require:

- Sequential transmission of data
  - Zero- (or finite-) delay reconstruction

#### Salient features

- Sensing is cheap
- Transmission is expensive
  - Size of data-packet is not critical



#### Many applications require:

- Sequential transmission of data
  - Zero- (or finite-) delay reconstruction

#### Salient features

- Sensing is cheap
- Transmission is expensive
  - Size of data-packet is not critical

Analyze a stylized model and evaluate fundamental trade-offs













#### **Communication Strategies**

- ▶ Transmission strategy  $f = \{f_t\}_{t=0}^{\infty}$ .
- Estimation strategy  $g = \{g_t\}_{t=0}^{\infty}$ .

$$Y_t = \begin{cases} X_t, & \text{if } U_t = 1 \\ \varepsilon, & \text{if } U_t = 0 \end{cases}$$
 Distortion 
$$d(X_t - \hat{X}_t)$$
 Markov Process 
$$X_t = f_t(X_{1:t}, U_{1:t-1})$$
 
$$\hat{X}_t = g_t(Y_{1:t})$$

1. Discounted setup, 
$$\beta \in (0, 1)$$

$$D_{\beta}(f,g) = (1-\beta) \mathbb{E}_{0}^{(f,g)} \left[ \sum_{t=0}^{\infty} \beta^{t} d(X_{t} - \hat{X}_{t}) \right]; \qquad N_{\beta}(f,g) = (1-\beta) \mathbb{E}_{0}^{(f,g)} \left[ \sum_{t=0}^{\infty} \beta^{t} U_{t} \right]$$

2. Average cost setup, 
$$\beta = 1$$

$$D_1(f,g) = \limsup_{T \to \infty} \frac{1}{T} \operatorname{\mathbb{E}}_0^{(f,g)} \left[ \sum_{t=0}^{T-1} d(X_t - \hat{X}_t) \right]; \qquad N_1(f,g) = \limsup_{T \to \infty} \frac{1}{T} \operatorname{\mathbb{E}}_0^{(f,g)} \left[ \sum_{t=0}^{T-1} U_t \right]$$

Distortion transmission function-(Mahajan and Chakravorty)

Constrained communication

For 
$$\alpha \in (0,1)$$
,  $D_{\beta}^*(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \right\}$ 

#### Constrained communication

For 
$$\alpha \in (0,1)$$
,  $D_{\beta}^*(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \right\}$ 



#### Constrained communication

For 
$$\alpha \in (0,1)$$
,  $D_{\beta}^*(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \right\}$ 



 $D_{\beta}^{*}$  is cts, dec, and convex

#### Constrained communication

For 
$$\alpha \in (0,1)$$
,  $D_{\beta}^*(\alpha) \coloneqq \inf_{(f,g)} \{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \}$ 

#### Costly communication (Lagrange relaxation)

For 
$$\lambda \in \mathbb{R}_{>0}$$
,  $C^*_{\beta}(\lambda) = C_{\beta}(f^*, g^*; \lambda) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) + \lambda N_{\beta}(f,g) \right\}$ 



 $D_{\beta}^{*}$  is cts, dec, and convex

#### Constrained communication

For 
$$\alpha \in (0,1)$$
,  $D_{\beta}^*(\alpha) \coloneqq \inf_{(f,g)} \{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \}$ 

#### Costly communication (Lagrange relaxation)

For 
$$\lambda \in \mathbb{R}_{>0}$$
,  $C^*_{\beta}(\lambda) = C_{\beta}(\mathbf{f}^*, \mathbf{g}^*; \lambda) \coloneqq \inf_{(\mathbf{f}, \mathbf{g})} \left\{ D_{\beta}(\mathbf{f}, \mathbf{g}) + \lambda N_{\beta}(\mathbf{f}, \mathbf{g}) \right\}$ 



#### Constrained communication

For 
$$\alpha \in (0,1)$$
,  $D_{\beta}^*(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \right\}$ 

#### Costly communication (Lagrange relaxation)

For 
$$\lambda \in \mathbb{R}_{>0}$$
,  $C^*_{\beta}(\lambda) = C_{\beta}(\mathbf{f}^*, \mathbf{g}^*; \lambda) \coloneqq \inf_{(\mathbf{f}, \mathbf{g})} \left\{ D_{\beta}(\mathbf{f}, \mathbf{g}) + \lambda N_{\beta}(\mathbf{f}, \mathbf{g}) \right\}$ 







#### Comparison to Information Theory

- ▶ Costly communication is analogous to communication under power constraint.
- ▶ Distortion-transmission is analogous to distortion-rate function.
- ▶ The source reconstruction must be done in real-time (or with zero delay).



#### Comparison to Information Theory

- ▶ Costly communication is analogous to communication under power constraint.
- ▶ Distortion-transmission is analogous to distortion-rate function.
- ▶ The source reconstruction must be done in real-time (or with zero delay).

#### Comparison to real-time communication

- ► Special case of the real-time communication model [Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis 2006, Teneketzis-Mahajan 2009 . . . ].
- ► Existing results in the literature establish structure of optimal coding strategies and a dynamic program to identify optimal strategies.
- ▶ The resultant dynamic programs correspond to decentralized control problem and are hard to solve.



#### Comparison to Information Theory

- ▶ Costly communication is analogous to communication under power constraint.
- ▶ Distortion-transmission is analogous to distortion-rate function.
- ▶ The source reconstruction must be done in real-time (or with zero delay).

#### Comparison to real-time communication

- ► Special case of the real-time communication model [Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis 2006, Teneketzis-Mahajan 2009 . . .].
- Existing results in the literature establish structure of optimal coding strategies and a dynamic program to identify optimal strategies.
- ▶ The resultant dynamic programs correspond to decentralized control problem and are hard to solve.

#### Other related work

► Event-based control . . . ► Censoring censors . . . ► Sensor sleep scheduling



#### Previous work on remote-state estimation

- [Marshak 1954] Static (one-shot) problem with arbitrary source distribution
- ▶ [Kushner 1964] Off-line choice of measurement times
- [Astrom Bernhardsson 2002] Lebesque sampling (or event-based sampling)
- ▶ [lmer-Başar 2010]
  - i.i.d. Gaussian source with fixed number of transmissions
- [Rabi, Moustakides, Baras 2012]
   Gauss-Markov source with fixed number of transmissions
- [Lipsa-Martins 2011, Molin-Hirche 2009]
   Gauss-Markov source with communication cost
- [Nayyar-Başar-Teneketzis-Veeravalli 2013]
   Discrete-Markov source with communication cost (and energy harvesting)

5

#### Previous work on remote-state estimation

- [Marshak 1954] Static (one-shot) problem with arbitrary source distribution
- ▶ [Kushner 1964] Off-line choice of measurement times
- [Astrom Bernhardsson 2002] Lebesque sampling (or event-based sampling)
- ▶ [lmer-Başar 2010]
  - i.i.d. Gaussian source with fixed number of transmissions
- Rabi, Moustakides, Baras 2012]
  - Gauss-Markov source with fixed number of transmissions
- ▶ [Lipsa-Martins 2011, Molin-Hirche 2009]
  - Gauss-Markov source with communication cost
- [Nayyar-Başar-Teneketzis-Veeravalli 2013]
  - Discrete-Markov source with communication cost (and energy harvesting)

We build on these results to identify the distortion-transmission function.



$$X_{t+1} = X_t + W_t$$
,  $W_t \sim \mathcal{N}(0, 1)$ 

Distortion transmission function-(Mahajan and Chakravorty)



$$X_{t+1} = X_t + W_t, W_t \sim \mathcal{N}(0, 1)$$











# Periodic transmission strategy **Error process**

 $N \approx 1/3$ 

D = 0.67















$$N \approx 1/3$$

D = 2.00













**Error process** 



D = 0.24  $N \approx 1/3$ 

**Error process** 



Distortion transmission function-(Mahajan and Chakravorty)

#### Distortion-transmission function







 $D_{\beta}^{*}$  is cts, dec, and convex







How to compute  $D_{\beta}^*(\alpha)$ 





How to compute 
$$D_{\beta}^{*}(\alpha)$$

$$\text{ Find } \mathbf{k}^*(\alpha) \text{ such that } M_\beta^{(k^*)}(0) = \frac{1}{\alpha} \text{, where } M_\beta^{(k)}(e) = 1 + \beta \int_{-k}^k \phi(w - \alpha e) M^{(k)}(w) dw$$

▶ Compute 
$$L_{\beta}^{(k*)}(0)$$
 where  $L_{\beta}^{(k)}(e) = d(e) + \beta \int_{-k}^{k} \phi(w - ae) L^{(k)}(w) dw$ 

▶ Then 
$$D^*_{\beta}(\alpha) = \frac{L^{k^*}_{\beta}(0)}{M^{k^*}_{\beta}(0)}$$





Optimal transmission strategy Transmit when  $|X_t - \alpha \hat{X}_t| > k^*(\alpha)$ Optimal estimation strategy  $\hat{X}_t = \begin{cases} Y_t, & \text{if } Y_t \neq \epsilon \\ \alpha \hat{X}_{t-1}, & \text{if } Y_t = \epsilon \end{cases}$ 

How to compute 
$$D_{\beta}^*(\alpha)$$

$$\text{Find } \mathbf{k}^*(\alpha) \text{ such that } M_\beta^{(k^*)}(0) = \frac{1}{\alpha} \text{, where } M_\beta^{(k)}(e) = 1 + \beta \int_{-k}^k \phi(w - ae) M^{(k)}(w) dw$$

$$\textbf{ Compute } L_{\beta}^{(k*)}(\textbf{0}) \textbf{ where } L_{\beta}^{(k)}(e) = d(e) + \beta \int_{-k}^{k} \phi(w - ae) L^{(k)}(w) dw$$

Then 
$$D^*_{\beta}(\alpha) = \frac{L^{k^*}_{\beta}(0)}{M^{k^*}_{\beta}(0)}$$





Optimal transmission strategy Transmit when  $|X_t - \alpha \hat{X}_t| > k^*(\alpha)$  Optimal estimation strategy

$$\hat{X}_t = \begin{cases} Y_t, & \text{if } Y_t \neq \epsilon \\ \alpha \hat{X}_{t-1}, & \text{if } Y_t = \epsilon \end{cases}$$

#### Salient features

- ▶ The transmitter does not try to send information through timing information.
- ► The estimation strategy is the same to the one for intermittent observations and does not depend on the choice of the threshold

)dw







How to compute  $D_{\beta}^{*}(\alpha)$ 



$$D_{\beta}^{*} = \begin{pmatrix} (N_{\beta}^{(k+1)}, D_{\beta}^{(k+1)}) \\ (N_{\beta}^{(k)}, D_{\beta}^{(k)}) \\ \alpha \\ \lambda_{c} \\ D_{\beta}^{*} \text{ is PWL, dec, and convex} \end{pmatrix}$$

How to compute 
$$D^*_{\beta}(\alpha)$$

$$\blacktriangleright \text{Compute } L_{\beta}^{(k)} = \left[ [I - \beta P^{(k)}]^{-1} d^{(k)} \right].$$

$$M_{\beta}^{(k)} = [[I - \beta P^{(k)}]^{-1} \mathbf{1}^{(k)}].$$

$$D_{\beta}^{(k)} = \frac{L^{(k)}(0)}{M_{\alpha}^{(k)}(0)}$$
 and  $N_{\beta}^{(k)} = \frac{1}{M_{\alpha}^{(k)}(0)} - (1 - \beta)$ 







How to compute  $D^*_{\beta}(\alpha)$ 

► Compute 
$$L_{\beta}^{(k)} = [[I - \beta P^{(k)}]^{-1} d^{(k)}].$$

$$M^{(k)} = [[I - \beta P^{(k)}]^{-1} 1^{(k)}].$$

▶ Then

Optimal transmission strategy Find 
$$k^*$$
 such that  $\alpha \in (N_{\beta}^{(k+1}, N_{\beta}^{(k)}].$ 

Compute  $\theta^*$  such that  $\theta^* N_{\beta}^{(k)} + (1 - \theta^*) N_{\beta}^{(k+1)} = \alpha$ 

$$\begin{split} & \text{If} \, |X_t - \alpha \hat{X}_t| > k^*(\alpha) \text{, transmit.} \\ & \text{If} \, |X_t - \alpha \hat{X}_t| = k^*(\alpha) \text{, transmit w.p. } \theta^*. \end{split}$$

If  $|X_t - \alpha X_t| = k^*(\alpha)$ , transmit w.p.  $\theta$ Else, do not transmit.

Optimal estimation strategy

$$M_{\beta}^{(k)} = \begin{bmatrix} [I - \beta P^{(k)}]^{-1} \mathbf{1}^{(k)} \end{bmatrix}. \quad \hat{X}_t = \begin{cases} Y_t, & \text{if } Y_t \neq \epsilon \\ \alpha \hat{X}_{t-1}, & \text{if } Y_t = \epsilon \end{cases}$$

$$D_{\beta}^{(k)} = \frac{L^{(k)}(0)}{M_{\alpha}^{(k)}(0)}$$
 and  $N_{\beta}^{(k)} = \frac{1}{M_{\alpha}^{(k)}(0)} - (1 - \beta)$ 

Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function

Based on solving Fredholm integral equations for continuous processes

Based on simple matrix calculations for discrete processes



# Identify strategies that achieve the optimal trade-off Simple and intuitive threshold based strategies are optimal.

#### Provide computable expressions for distortion-transmission function

Based on solving Fredholm integral equations for continuous processes

Based on simple matrix calculations for discrete processes

#### Beautiful example of stochastics and optimization

Decentralized stochastic control and POMDPs

Stochastic orders and majorization

Markov chain analysis, stopping times, and renewal theory

Constrained MDPs and Lagrangian relaxations



# So how do we start? Decentralized stochastic control

#### The common information approach

Original system

$$f_t$$
  $X_t, Y_{1:t-1}$   $U_t$ 

$$g_{t-1}$$
  $Y_{1:t-1}$   $\hat{X}_t$ 

Nayyar, Mahajan and Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

#### The common information approach



Nayyar, Mahajan and Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

#### The common information approach

Coordinated system Original system  $f_t$   $X_t, Y_{1:t-1}$   $U_t$ Ficticious coordinator  $g_{t-1}$   $Y_{1:t-1}$   $\hat{X}_t$ 

- ▶ The coordinated system is equivalent to the original system.
- The coordinated system is centralized. Belief state  $\mathbb{P}(X_t \mid Y_{1:t-1})$ .

 $f_t(x, y_{1:t-1}) = h_t^1(y_{1:t-1})(x).$ 

Nayyar, Mahajan and Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

Information states

Pre-transmission belief :  $\Pi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t-1})$ .

Post-transmission belief :  $\Xi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t})$ .





Information states

Pre-transmission belief :  $\Pi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t-1})$ . Post-transmission belief :  $\Xi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t})$ .



Structural results

There is no loss of optimality in using

$$U_t = f_t(X_t, \Pi_t) \quad \text{and} \quad \hat{X}_t = g_t(\Xi_t).$$



Information states

Pre-transmission belief :  $\Pi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t-1})$ . Post-transmission belief :  $\Xi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t})$ .



Structural results

There is no loss of optimality in using 
$$U_t = f_t(X_t, \Pi_t) \quad \text{and} \quad \hat{X}_t = g_t(\Xi_t).$$

Dynamic Program 
$$W_{T+1}(\pi) = 0$$

$$T+1(\pi) = 0$$

and for 
$$t = T, \dots, 0$$

$$V_{t}(\xi) = \min_{\hat{\mathbf{x}} \in \mathcal{X}} \mathbb{E}[\mathbf{d}(\mathbf{X}_{t} - \hat{\mathbf{x}}) + W_{t+1}(\Pi_{t+1}) \mid \Xi_{t} = \xi],$$

$$W_{t}(\pi) = \min_{\hat{\mathbf{x}} \in \mathcal{X}} \mathbb{E}[\lambda_{t}(\mathbf{X}_{t}) + V_{t}(\Xi_{t}) \mid \Pi_{t} = \pi, \alpha_{t} = \alpha_{t}]$$

$$W_{\mathbf{t}}(\pi) = \min_{\phi: \mathcal{X} \to \{0,1\}} \mathbb{E}[\lambda \phi(X_{\mathbf{t}}) + V_{\mathbf{t}}(\Xi_{\mathbf{t}}) \mid \Pi_{\mathbf{t}} = \pi, \phi_{\mathbf{t}} = \phi].$$



Structural results There is no loss of optimality in using

$$U_{\mathbf{t}} = f_{\mathbf{t}}(X_{\mathbf{t}}, \Pi_{\mathbf{t}}) \quad \text{and} \quad \hat{X}_{\mathbf{t}} = g_{\mathbf{t}}(\Xi_{\mathbf{t}}).$$

Dynamic Program  $W_{T+1}(\pi) = 0$ 

$$(n) = 0$$

$$V_{t}(\xi) = \min_{\hat{x} \in \mathcal{X}} \mathbb{E}[d(X_{t} - \hat{x}) + W_{t+1}(\Pi_{t+1}) \mid \Xi_{t} = \xi],$$

and for  $t = T, \dots, 0$ 

$$W_{\mathbf{t}}(\pi) = \min_{\phi: \mathfrak{X} \to \{0,1\}} \mathbb{E}[\lambda \phi(X_{\mathbf{t}}) + V_{\mathbf{t}}(\Xi_{\mathbf{t}}) \mid \Pi_{\mathbf{t}} = \pi, \phi_{\mathbf{t}} = \phi].$$

# Can we use the DP to say something

more about the optimal strategy?

#### Simplifying modeling assumptions

Markov process  $X_{t+1} = aX_t + W_t$ 

▶ Discrete state process:  $X_t$ ,  $\alpha$ ,  $W_t \in \mathbb{Z}$ 

lacksquare Continuous state process:  $X_{\mathsf{t}}$ ,  $\mathfrak{a}$ ,  $W_{\mathsf{t}} \in \mathbb{R}$ 

Noise Distribution Unimodal and symmetric  $\varphi(\cdot)$ 

Distortion function Even and increasing



#### Simplifying modeling assumptions

Markov process  $X_{t+1} = \alpha X_t + W_t$ 

Discrete state process:  $X_t$ ,  $\alpha$ ,  $W_t \in \mathbb{Z}$ 

lacksquare Continuous state process:  $X_{\mathsf{t}}$ ,  $\mathfrak{a}$ ,  $W_{\mathsf{t}} \in \mathbb{R}$ 

Noise Distribution Unimodal and symmetric  $\phi(\cdot)$ 

Distortion function Even and increasing

#### Proof outline

Step 1 Show that threshold-based strategies are optimal

Step 2 Find performance of arbitrary threshold based strategies

Step 3 Use results from constrained optimization



#### Step 1 Threshold-based strategies are optimal

[Lipsa Martins 2011, Nayyar et. al. 2013]

Error process 
$$E_t = X_t - \alpha Z_{t-1}$$



#### Step 1 Threshold-based strategies are optimal

[Lipsa Martins 2011, Nayyar et. al. 2013]

Oblivious estimation 
$$Z_t = \begin{cases} X_t & \text{if } U_t = 1 \text{ (or } Y_t \neq \epsilon) \\ \alpha Z_{t-1} & \text{if } U_t = 0 \text{ (or } Y_t = \epsilon) \end{cases}$$

Error process 
$$E_t = X_t - \alpha Z_{t-1}$$

$$\text{Optimal estimator} \qquad \qquad \hat{X}_t = g_t^*(Z_t) = Z_t$$



# For infinite-horizon setup time-homogeneous threshold-based strategies are optimal.

How do we find the optimal threshold-based strategy?

Consider a threshold-based strategy

$$f^{(k)}(e) = \begin{cases} 1 & \text{if } |e| \geqslant k \\ 0 & \text{otherwise} \end{cases}$$



Consider a threshold-based strategy

$$f^{(k)}(e) = \begin{cases} 1 & \text{if } |e| \geqslant k \\ 0 & \text{otherwise} \end{cases}$$



Let  $\tau^{(k)}$  denote the stopping time of first transmission (starting at  $E_0=0$ ).



Consider a threshold-based strategy

$$f^{(k)}(e) = \begin{cases} 1 & \text{if } |e| \geqslant k \\ 0 & \text{otherwise} \end{cases}$$



Define

Let  $\tau^{(k)}$  denote the stopping time of first transmission (starting at  $E_0=0$ ).



$$L_{\beta}^{(k)}(e) = (1 - \beta) \mathbb{E}\left[\sum_{t=0}^{\tau^{(k)}-1} \beta^t d(E_t) \middle| E_0 = e\right].$$

$$M_{\beta}^{(k)}(e) = (1-\beta) \mathbb{E}\left[\sum_{i=0}^{\tau^{(k)}-1} \beta^{t} \middle| E_{0} = e\right].$$



Consider a threshold-based strategy

$$f^{(k)}(e) = \begin{cases} 1 & \text{if } |e| \geqslant k \\ 0 & \text{otherwise} \end{cases}$$

Define

Let  $\tau^{(k)}$  denote the stopping time of first transmission (starting at  $E_0 = 0$ ).

$$L_{\beta}^{(k)}(e) = (1 - \beta) \mathbb{E} \left[ \sum_{t=0}^{\tau^{(k)} - 1} \beta^t d(E_t) \middle| E_0 = e \right].$$

$$\mathsf{M}_{\beta}^{(k)}(e) = (1-\beta)\,\mathbb{E}\left[\sum_{t=0}^{\tau^{(k)}-1}\beta^{t}\Big|\mathsf{E}_{0}=e\right].$$

 $\{E_t\}_{t=0}^{\infty}$  is a regenerative process. By renewal theory, Proposition

$$D_{\beta}^{(k)} \coloneqq D_{\beta}(f^{(k)},g^*) = \frac{L_{\beta}^{(k)}(0)}{M_{\beta}^{(k)}(0)} \quad \text{and} \quad N_{\beta}^{(k)} \coloneqq N_{\beta}(f^{(k)},g^*) = \frac{1}{M_{\beta}^{(k)}(0)} - (1-\beta).$$





$$M_{\beta}^{(k)}(e) = (1 - \beta) \mathbb{E} \left[ \sum_{i=0}^{\tau^{(k)} - 1} \beta^{t} \middle| E_{0} = e \right].$$

$$\begin{split} & \text{Proposition} & \quad \{E_t\}_{t=0}^{\infty} \text{ is a regenerative process. By renewal theory,} \\ & D_{\beta}^{(k)} \coloneqq D_{\beta}(f^{(k)},g^*) = \frac{L_{\beta}^{(k)}(0)}{M_{\beta}^{(k)}(0)} \quad \text{and} \quad N_{\beta}^{(k)} \coloneqq N_{\beta}(f^{(k)},g^*) = \frac{1}{M_{\beta}^{(k)}(0)} - (1-\beta). \end{split}$$



# Step 2 Computing $L_{\beta}^{(k)}$ and $M_{\beta}^{(k)}$

Discrete state setup

$$L_{\beta}^{(k)}(e) = d(e) + \beta \sum_{n=-k}^{k} p_{n-e} L_{\beta}^{(k)}(n)$$

$$M_{\beta}^{(k)}(e)=1+\beta\sum_{n=-k}^{k}p_{n-e}M_{\beta}^{(k)}(n)$$



# Step 2 Computing $L_{\beta}^{(k)}$ and $M_{\beta}^{(k)}$

Discrete state setup

 $L_{\beta}^{(k)}(e) = d(e) + \beta \sum_{n=-k}^{k} p_{n-e} L_{\beta}^{(k)}(n)$ 

$$M_{\beta}^{(k)}(e) = 1 + \beta \sum_{n=-k}^{k} p_{n-e} M_{\beta}^{(k)}(n)$$

**Proposition** 

 $L_{\beta}^{(k)} = [[I - \beta P^{(k)}]^{-1} d^{(k)}].$   $P^{(k)}$  is substochastic.

 $M_{\beta}^{(k)} = [[I - \beta P^{(k)}]^{-1} \mathbf{1}^{(k)}].$ 



# Step 2 Computing $L_{\beta}^{(k)}$ and $M_{\beta}^{(k)}$

Discrete state setup

Continuous state setup

**Proposition** 

Distortion transmission function-(Mahajan and Chakravorty)

$$\begin{split} L_{\beta}^{(k)}(e) &= d(e) + \beta \sum_{n=-k}^{k} p_{n-e} L_{\beta}^{(k)}(n) \\ M_{\beta}^{(k)}(e) &= 1 + \beta \sum_{n=-k}^{k} p_{n-e} M_{\beta}^{(k)}(n) \end{split}$$

 $L_{\beta}^{(k)} = [[I - \beta P^{(k)}]^{-1} d^{(k)}].$   $P^{(k)}$  is substochastic.

 $L_{\beta}^{(k)}(e) = d(e) + \beta \int_{-k}^{k} \phi(n-e) L_{\beta}^{(k)}(n) dn$ 

 $M_{\beta}^{(k)}(e) = 1 + \beta \int_{-\infty}^{k} \phi(n - e) M_{\beta}^{(k)}(n) dn$ 

Solutions exist and are unique and easy to compute.

Fredholm Integral Equations of the 2nd kind.

 $M_{\alpha}^{(k)} = [[I - \beta P^{(k)}]^{-1} \mathbf{1}^{(k)}].$ 

# Step 2 Computing $L_{\beta}^{(k)}$ and $M_{\beta}^{(k)}$

 $D_{\beta}^{(k)}$  and  $N_{\beta}^{(k)}$  can be computed using these expressions.

on 
$$L_{\beta}^{(k)} = \big[ [I - \beta P^{(k)}]^{-1} d^{(k)} \big]. \qquad P^{(k)} \text{ is substochastic.}$$

$$\mathcal{M}_{\beta}^{(k)} = \left[ \left[ \mathbf{I} - \boldsymbol{\beta} \mathbf{P}^{(k)} \right]^{-1} \mathbf{1}^{(k)} \right].$$

$$M_{\beta}^{(k)}(e) = 1 + \beta \int_{-k}^{k} \phi(n - e) M_{\beta}^{(k)}(n) dn$$

Fredholm Integral Equations of the 2nd kind.
Solutions exist and are unique and easy to compute.

 $L_{\beta}^{(k)}(e) = d(e) + \beta \int_{-L}^{k} \varphi(n - e) L_{\beta}^{(k)}(n) dn$ 



# Step 3 Solution to constrained optimization problem

### Sufficient condition for optimality

A strategy  $(f^{\circ}, g^{\circ})$  is optimal for the constrained problem if

(C1) 
$$N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$$

(C2) There exists  $\lambda^\circ\geqslant 0$  such that  $(f^\circ,g^\circ)$  is optimal for the Lagrange relaxation with parameter  $\lambda^\circ.$ 

We find the choice of thresholds such that these conditions are satisfied.



# Step 3 Solution to constrained optimization problem

### Sufficient condition for optimality

A strategy  $(f^{\circ}, g^{\circ})$  is optimal for the constrained problem if

(C1) 
$$N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$$

(C2) There exists  $\lambda^\circ\geqslant 0$  such that  $(f^\circ,g^\circ)$  is optimal for the Lagrange relaxation with parameter  $\lambda^\circ.$ 

We find the choice of thresholds such that these conditions are satisfied.





# **Example** Gauss-Markov with $\sigma^2 = 1$





# Example Symmetric birth-death Markov chain (p = 0.3)





## **Summary**

### The system model



1. Discounted setup,  $\beta \in (0,1)$ 

$$D_{\beta}(f,g) = (1-\beta) \mathbb{E}_{0}^{(f,g)} \left[ \sum_{t=0}^{\infty} \beta^{t} d(X_{t} - \hat{X}_{t}) \right]; \qquad N_{\beta}(f,g) = (1-\beta) \mathbb{E}_{0}^{(f,g)} \left[ \sum_{t=0}^{\infty} \beta^{t} U_{t} \right]$$

2. Average cost setup,  $\beta = 1$ 

$$D_1(f,g) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}_0^{(f,g)} \left[ \sum_{t=0}^{T-1} d(X_t - \hat{X}_t) \right]; \qquad N_1(f,g) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}_0^{(f,g)} \left[ \sum_{t=0}^{T-1} U_t \right]$$

Distortion transmission function-(Mahajan and Chakravorty)



# Summary

Disc

 $D_{\boldsymbol{\beta}}$ 

2. Ave

Distortio

 $D_1$ 

### The system model

### Distortion transmission function for continuous AR sources



Optimal transmission strategy Transmit when  $|X_t - \alpha \hat{X}_t| > k^*(\alpha)$ Optimal estimation strategy  $\hat{X}_{t} = \begin{cases} Y_{t}, & \text{if } Y_{t} \neq \varepsilon \\ a\hat{X}_{t-1}, & \text{if } Y_{t} = \varepsilon \end{cases}$ 

How to compute 
$$D_{\beta}^{*}(\alpha)$$

- $\qquad \qquad \text{Find } \mathbf{k}^*(\alpha) \text{ such that } M_\beta^{(\mathbf{k}^*)}(0) = \frac{1}{\alpha}, \text{ where } M_\beta^{(\mathbf{k})}(e) = 1 + \beta \int_{-\infty}^{\mathbf{k}} \phi(w \alpha e) M^{(\mathbf{k})}(w) dw$
- $\textbf{ Compute } L_{\beta}^{(k*)}(0) \text{ where } L_{\beta}^{(k)}(e) = d(e) + \beta \int_{-\epsilon}^{k} \phi(w \alpha e) L^{(k)}(w) dw$
- Then  $D_{\beta}^*(\alpha) = \frac{L_{\beta}^{k^*}(0)}{M_{\alpha}^{k^*}(0)}$

Distortion transmission function-(Mahaian and Chakravorty)





# **Summary**





Analyze fundamental limits of estimation under communication constraints





#### Results are derived under idealized assumptions

No rate constraint

Noiseless transmission

### Possible generalizations to more realistic models

- Noisy source observations
- Packet drops

- Rate constraints (effect of quantization)
- Network delays





#### Results are derived under idealized assumptions

No rate constraint

Noiseless transmission

#### Possible generalizations to more realistic models

- Noisy source observations
- Packet drops

- Rate constraints (effect of quantization)
- Network delays

Current work: Interactive communication





#### Results are derived under idealized assumptions

No rate constraint

Noiseless transmission

#### Possible generalizations to more realistic models

- Noisy source observations
- Packet drops

- Rate constraints (effect of quantization)
- Network delays

Current work: Interactive communication

Full version available at arXiv:1505.04829.

