PROBLEMAS DE APLICACIÓN.

métodos de bisección, Newton-Raphson e iteración de punto fijo.

1. Para el flujo turbulento en una cañería lisa, el factor de fricción c viene dado por la solución de la ecuación algebraica:

$$f(c) = \sqrt{\frac{1}{c}} + 0.4 - 1.74 \operatorname{Log}_{10}(\mathbf{N}_{Re}\sqrt{c}) = 0$$
,

donde N_{Re} es el número de Reynolds. Utilice un método de punto fijo para hallar el valor de c para los siguientes valores del número de Reynolds: $N_{Re} := 10^4$, 10^5 , 10^6 . Un punto de partida para el coeficientede fricción puede ser la fórmula de Blasius:

$$c = 0.316 \mathbf{N}_{\text{Re}}^{-0.25}$$

2. Se desea calcular la cantidad de CO_2 supercrítico a la presión de $10^4\ kPa$ y una temperatura de 340K. En estas condiciones una ecuación de estado, apropiada para caracterizar las propiedades p-v-T del fluido, es la ecuación de estado de Peng-Robinson dada por:

$$P = \frac{RT}{v - b} - \frac{a}{v(v + b) + b(v - b)},$$

en donde $a = 350 \ m^6 k Pa/k mol^2$ y $b = 0.07 \ m^3/k mol$.

Proponga una fórmula de punto fijo y resuelva para el volumen molar del sistema.

Nota: En la ecuación anterior $P = 10^4$, T = 340 y la constante de gases ideales es $R = 8{,}314$

3. R. DeSantis ha deducido la siguiente ecuación para el factor de compresibilidad Z

$$Z = \frac{1 + y + y^2 - y^3}{(1 - y)^3}$$
 con $y = \frac{b}{4v}$,

donde b es la constante de Van Der Waals y v es el volumen molar. Si b=0.08 L/mol y Z=0.8 proponga una iteración de punto fijo y encuentre el volumen molar del sistema.

4. Una partícula en caída libre alcanza una velocidad terminal v, en $m/s\,$, dada por la siguiente ecuación algebraica:

$$1,15v^2 + 1,4v^{1,5} = 1962$$

Resuelva esta ecuación numéricamente usando alguno de los métodos considerados en clase.

5. La velocidad de caída de un paracaidista está dada por

$$v = \frac{gm}{c} \left(1 - e^{\frac{-ct}{m}} \right)$$

donde $g = 9.8 \ m/s^2$. Para el paracaidista el coeficiente de rozamiento es $c = 14 \ kg/s$. Calcule la masa si para t = 7 segundos la velocidad correspondiente es $v = 35 \ m/s$.

6. Para el flujo turbuento en una cañería con diámetro D y espesor r, el factor de fricción viene dado por la solución de la ecuación de Coebrook:

$$\sqrt{\frac{1}{c}} = 1.14 - 0.85 \operatorname{Log}_{10} \left(\frac{r}{D} + \frac{9.35}{N_{Re}} \sqrt{c} \right) ,$$

1

donde N_{Re} es el número de Reynolds.

- * Encuentre el valor de c mediante el método de Newton para $\mathbf{N}_{\mathrm{Re}}=10^4$ y $\frac{r}{D}=0{,}001$
- * (Opcional ejercicio de programación en Matlab) Haga un macro en Matlab que calcule el valor de c para distintas combinaciones de las cantidades \mathbf{N}_{Re} y $\frac{r}{D}$.

Ejecute este programa para todas las combinaciones que siguen a continuación:

Valores de \mathbf{N}_{Re} : 10^n $n=3,\ 4,\ 5,\ 6,\ 7,\ 8\ y=9$. Valores de $\frac{r}{D}=k\ 0,0005$ $k=10,\ 14,\ 18\ 22,\ 26,\ 30\ y=34$. Luego haga un gráfico que represente la función $c=c\left(\mathbf{N}_{\mathrm{Re}},\frac{r}{D}\right)$

Bibliografía

Héctor Jorquera González y Claudio Gelmi Weston; 2016, Métodos numéricos aplicados a la ingeniería, Ediciones Universidad católica de Chile; edición original. Ejercicios números 1, 2, 3, 4 y 6.

Steven C. Chapra y Raymond P. Canale; 2001, Métodos numéricos para ingenieros, McGraw Hill; tercera edición. Ejercicio número 5.