Thuật toán ADAMs

Xét bài toán Cauchy:

$$y' = f(x, y) \quad (1)$$

Với
$$x \in [x_0, x_n]$$
, $y(x_0) = y_0$, $h = \frac{x_n - x_0}{n - 1}$

Lấy tích phân phương trình (1) trên đoạn $[x_i, x_{i+1}]$ ta có:

$$y(x_{i+1}) = y(x_i) + \int_{x_i}^{x_{i+1}} f(x, y) dx$$
 (2)

1. AB 4 bước (Adam ngoại suy):

1.1. Xây dựng công thức

Sử dụng đa thức nội suy Newton lùi

$$x = x_{n-1} + th$$

$$P_n(t) = f_{n-1} + \nabla_{f_{n-1}} t + \frac{\nabla_{f_{n-1}}^2}{2!} t(t+1) + \dots + \frac{\nabla_{f_{n-1}}^{s-1}}{(s-1)!} t(t+1) \dots (t+s-2)$$

$$\int_{x_{n-1}}^{x_n} P(x)dx = h \int_0^1 P_n(t)dt$$

$$\int_{x_{n-1}}^{x_n} P(x) dx = h \left[f_{n-1} \int_0^1 dt + \nabla_{f_{n-1}} \int_0^1 t dt + \frac{\nabla_{f_{n-1}}^2}{2!} \int_0^1 t(t+1) dt + \dots + \frac{\nabla_{f_{n-1}}^{s-1}}{(s-1)!} \int_0^1 t(t+1) \dots (t+s-2) dt \right]$$

Xét công thức AB 4 bước, ta dùng tại sai phân bậc 3

Ta có:

$$y_n = y_{n-1} + h \left[f_{n-1} + \frac{1}{2} \nabla_{f_{n-1}} + \frac{5}{12} \nabla_{f_{n-1}}^2 + \frac{3}{8} \nabla_{f_{n-1}}^3 \right] + o(h^5)$$
 (3)

Trong đó:

Thong do.
$$\begin{cases} \nabla_{f_{n-1}} = f_{n-1} - f_{n-2} \\ \nabla_{f_{n-1}}^2 = f_{n-1} - 2f_{n-2} + f_{n-3} \\ \nabla_{f_{n-1}}^3 = f_{n-1} - 3f_{n-2} + 3f_{n-3} - f_{n-4} \end{cases}$$
They we Công thức (3) và lấy vấp ví ta

Thay vào Công thức (3) và lấy xấp xỉ ta có:

$$y_n = y_{n-1} + h \left[\frac{55}{24} f_{n-1} - \frac{59}{24} f_{n-2} + \frac{37}{24} f_{n-3} - \frac{9}{24} f_{n-4} \right]$$
 (4)

1.2. Thuật toán

- Input: x_0, x_n, y_0, b ước h, hàm f(x, y)
- Output: Giá trị xấp xỉ của y_i tại điểm x_i Trên khoảng $[x_0, x_n]$

Bước 1:
$$n = 1 + \frac{x_n - x_0}{h}$$

Bước 2: Tính các giá trị y_1, y_2, y_3 bằng công thức RK-4

for i=1, 2, 3:

$$k_{1} = hf(x_{i-1}, y_{i-1})$$

$$k_{2} = hf(x_{i-1} + \frac{h}{2}, y_{i-1} + \frac{k_{1}}{2})$$

$$k_{3} = hf(x_{i-1} + \frac{h}{2}, y_{i-1} + \frac{k_{2}}{2})$$

$$k_{4} = hf(x_{i-1} + h, y_{i-1} + k_{3})$$

$$y_{i} = y_{i-1} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

Bước 5: Tính các giá trị từ y_4 đến y_n bằng công thức AB-4

for i=4, 5..., n:

$$y_{i} = y_{i-1} + h \left[\frac{55}{24} f(x_{i-1}, y_{i-1}) - \frac{59}{24} f(x_{i-2}, y_{i-2}) + \frac{37}{24} f(x_{i-3}, y_{i-3}) - \frac{9}{24} f(x_{i-4}, y_{i-4}) \right]$$

Bước 6: Kết thúc. In ra các giá trị.

2. AM 4 bước (Adam nội suy):

2.1. Xây dựng công thức

Sử dụng đa thức nội suy Newton lùi

$$x = x_n + th$$

$$\begin{split} P_n(t) &= f_n + \nabla_{f_n} t + \frac{\nabla_{f_n}^2}{2!} t(t+1) + \dots + \frac{\nabla_{f_n}^s}{s!} t(t+1) \dots (t+s-1) \\ \int_{x_{n-1}}^{x_n} P(x) dx &= h \int_{-1}^0 P_n(t) dt \\ \int_{x_{n-1}}^{x_n} P(x) dx &= h \left[f_n \int_{-1}^0 dt + \nabla_{f_n} \int_{-1}^0 t dt + \frac{\nabla_{f_n}^2}{2!} \int_{-1}^0 t(t+1) dt + \dots + \frac{\nabla_{f_n}^s}{s!} \int_{-1}^0 t(t+1) \dots (t+s-1) dt \right] \end{split}$$

Xét công thức AM 4 bước, ta dừng tại sai phân bậc 3.

Ta có:

$$y_n = y_{n-1} + h \left[f_n - \frac{1}{2} \nabla_{f_n} - \frac{1}{12} \nabla_{f_n}^2 - \frac{1}{24} \nabla_{f_n}^3 \right] + o(h^5)$$
 (5)

Trong đó:

$$\begin{cases} \nabla_{f_n} = f_n - f_{n-1} \\ \nabla_{f_n}^2 = f_n - 2f_{n-1} + f_{n-2} \\ \nabla_{f_n}^3 = f_n - 3f_{n-1} + 3f_{n-2} - f_{n-3} \end{cases}$$

Thay vào công thức (5) và lấy xấp xỉ ta có:

$$y_n = y_{n-1} + h \left[\frac{9}{24} f_n + \frac{19}{24} f_{n-1} - \frac{5}{24} f_{n-2} + \frac{1}{24} f_{n-3} \right]$$
 (6)

2.2. Thuật toán

- Input: x_0, x_n, y_0, b ước h, hàm f(x, y)
- Output: Giá trị xấp xỉ của y_i tại điểm x_i Trên khoảng $[x_0, x_n]$

Bước 1:
$$n = 1 + \frac{x_n - x_0}{h}$$

Bước 2: Tính các giá trị y_1 , ... y_n bằng công thức RK-4 để tính giá trị $f(x_i, y_i)$ thay vào công thức (6)

for i=1, 2, ...n:

$$k_{1} = hf(x_{i-1}, y_{i-1})$$

$$k_{2} = hf(x_{i-1} + \frac{h}{2}, y_{i-1} + \frac{k_{1}}{2})$$

$$k_{3} = hf(x_{i-1} + \frac{h}{2}, y_{i-1} + \frac{k_{2}}{2})$$

$$k_{4} = hf(x_{i-1} + h, y_{i-1} + k_{3})$$

$$y_{i} = y_{i-1} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

Bước 5: Tính các giá trị từ y_4 đến y_n bằng công thức AM-4

for i=4, 5..., n:

$$y_{i} = y_{i-1} + h \left[\frac{9}{24} f(x_{i}, y_{i}) + \frac{19}{24} f(x_{i-1}, y_{i-1}) - \frac{5}{24} f(x_{i-2}, y_{i-2}) + \frac{1}{24} f(x_{i-3}, y_{i-3}) \right]$$

Bước 6: Kết thúc. In ra các giá trị.

3. AB-AM 4 bước

- Input: x_0, x_n, y_0, b ước h, hàm f(x, y)
- Output: Giá trị xấp xỉ của y_i tại điểm x_i Trên khoảng $[x_0, x_n]$

Bước 1:
$$n = 1 + \frac{x_n - x_0}{h}$$

Bước 2: Tính các giá trị y_1 , y_2 , y_3 bằng công thức RK-4

for i=1, 2, 3:

$$k_{1} = hf(x_{i-1}, y_{i-1})$$

$$k_{2} = hf(x_{i-1} + \frac{h}{2}, y_{i-1} + \frac{k_{1}}{2})$$

$$k_{3} = hf(x_{i-1} + \frac{h}{2}, y_{i-1} + \frac{k_{2}}{2})$$

$$k_{4} = hf(x_{i-1} + h, y_{i-1} + k_{3})$$

$$y_{i} = y_{i-1} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

Bước 5: Tính các giá trị từ y_4 đến y_n bằng công thức AB-AM 4 for i=4, 5..., n:

$$py_i = y_{i-1} + h\left[\frac{55}{24}f(x_{i-1},y_{i-1}) - \frac{59}{24}f(x_{i-2},y_{i-2}) + \frac{37}{24}f(x_{i-3},y_{i-3}) - \frac{9}{24}f(x_{i-4},y_{i-4})\right]$$

(Giá trị y_i dự báo)

$$y_{i} = y_{i-1} + h \left[\frac{9}{24} f(x_{i}, py_{i}) + \frac{19}{24} f(x_{i-1}, y_{i-1}) - \frac{5}{24} f(x_{i-2}, y_{i-2}) + \frac{1}{24} f(x_{i-3}, y_{i-3}) \right]$$

(Giá trị y_i hiệu chỉnh)

Bước 6: Kết thúc. In ra các giá trị.