EPFL

MAN

Mise à niveau

Maths 2B Prepa-032(b)

Student: Arnaud FAUCONNET

Professor: Simon BOSSONEY

Printemps - 2019

Chapter 2

Check title of this chapter

- 2.1 First sec
- 2.2 Second sec

2.3 Base et dimension

Dans le cours précédent on a définit les notions de famille génératrice et de famille libre d'un espace vectoriel donné. Une famille libre et génératrice $\{v_1, v_2, ..., v_n\}$ permet tout vecteur de l'espace vectoriel comme combinaison linéaire des vecteurs $\{v_1, v_2, ..., v_n\}$. Un vecteur de $\text{Vect}(v_1, v_2, ..., v_n)$ peut s'écrire que d'une manière comme linéaire des vecteurs $\{v_1, v_2, ..., v_n\}$. Il est dès lors naturel de chercher une famille de vecteurs qui sera simultanément libre et génératrice.

2.3.1 Définition

Soit V un espace vectoriel, on dit que V est de **dimension finie** si et seulement si il possède une famille de vecteurs $\{v_1, v_2, ..., v_n\}$ finie et génératrice.

Pour une telle famille de vecteurs, on peut établir une première comparaison entre famille libre et génératrice.

Lemme de Steinitz Soit V un espace vectoriel et $G = \{g_1, g_2, ..., g_m\}$ une famille génératrice et $L = \{l_1, l_2, ..., l_n\}$ une famille libre. Alors

$$n \leq m$$

On peut maintenant utiliser le lemme de Steinitz pour montrer que tout espace vectoriel de dimension finie possède une famille libre et génératrice (en admettant l'axiome du choix, on peut montrer plus généralement, que tout espace vectoriel de dimension finie ou infinie possède une telle famille).

2.3.2 Corollaire

Soit V un espace vectoriel non-trivial de dimension finie. Alors V possède une famille de vecteur libres et génératrice.

Démonstration Si $V \neq \{0_v\}$, alors V possède au moins un vecteur non-nul de dimension finie, il existe alors une famille génératrice $G = \{g_1, g_2, ..., g_n\}$ avec $m \geq 1$

- La famille $L_1 := \{v_1\}$ est manifestement libre. Si elle est génératrice, le corollaire est démontré. Sinon il doit exister un vecteur non-nul $v_2 \in V$ tel que $v_2 \notin \text{Vect}(v_2)$. En vertu du résultat antérieur, on a alors que $L_2 := \{v_1, v_2\}$ est libre.
- On continue d'ajouter successivement des vecteurs non-générateurs par la famille libre, afin d'obtenir une chaine de famille libre.

$$L_1 \subset L_2 \subset ... \subset L_k \subset ...$$

où L_k est libre et possède k éléments. Cette chaîne ne peut pas être infinie, car par le lemme de Steinitz une famille libre ne peut pas avoir plus de m éléments. Il existe donc une famille L_n maximale dans cette chaine. Celle-ci doit être génératrice, car sinon il existerait un vecteur non-nul $v \in \mathrm{Vect}(v_1, v_2, ..., v_n)$ et $L_m \cup \{v\}$ serait encore libre contre disant le fait que L_n soit maximale.

- Dans le cas de l'espace vecteur trivial $\{0_v\}$, on pose par convention par que $\mathrm{Vect}(0_v)=\{0_v\}$
- L'ensemble vide \emptyset est une famille libre, mais non espace vectoriel car il ne contient pas l'élément neutre.

2.3.3 Définition

Soit V un espace vectoriel. Une famille $B\subset V$ qui est simultanément libre et génératrice est appelée une base **base** de V.

• Pour un vecteur $v \in V$ et une base $B = \{v_1, v_2, ..., v_n\}$, il existe donc un seul n-uplet $(\lambda_1, ..., \lambda_n)$ tels que

$$v = \lambda_1 \cdot v_1 + ... + \lambda_n \cdot v_n$$
 où $\lambda_i \in \mathbb{R} \forall i = 1, ..., n$

Les nombres $\lambda_1,...,\lambda_n$ sont appelé les **composantes** du vecteurs v relativement à la base B

$$[v]_B = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Exemple: On considère les quatre polynômes:

- $p_1(x) = 1 + x$ $p_2(x) = x + x^2$ • $p_3(x) = 1 - x^2$ • $p_1(x) = 1 + x + x^2$
- Par construction la famille polynôme $\{p_1(x), p_2(x), p_3(x), p_4(x)\}$ est génératrice de V. On va chercher une base de l'espace vectoriel de V.
- Clairement, $\{p_1(x)\}$ est libre, mais $\text{Vect}(p_1(x)) \neq V$. De plus, $p_2(x)$ n'est pas linéairement dépendant de $p_1(x)$. Ainsi, la famille $\{p_1(x), p_2(x)\}$ est libre.

- Par contre, $p_3(x) = p_1(x) p_2(x)$. Ainsi, la famille $\{p_1(x), p_2(x), p_3(x)\}$ n'est pas une famille libre.
- On examine s'il y a une relation de dépendance linéaire entre les polynômes $p_1(x), p_2(x)$ et $p_4(x)$. Soit $p_4(x) = \alpha \cdot p_1(x) + \beta \cdot p_2(x)$

$$1 + x + x^2 = \alpha \cdot (1 + x) + \beta \cdot (x + x^2) = \alpha + (\alpha + \beta) \cdot x + \beta \cdot x^2$$

Ainsi,

$$\left\{\begin{array}{ll} \alpha=1 \\ \alpha+\beta=1 \\ \beta=1 \end{array}\right. \implies \text{ce système n'as pas de solutions. Donc, } p_4(x) \notin \text{Vect}(p_1(x),p_2(x))$$

• Par conséquent, la famille $\{p_1(x), p_2(x), p_4(x)\}$ est libre et génératrice tout V. En effet

$$V = \text{Vect}(p_1(x), p_2(x), p_3(x), p_4(x)) = \text{Vect}(p_1(x), p_2(x), p_4(x))$$

- On vient donc de trouver un base pour *V* .
- On peut aussi choisir de suivre le chemin inverse en commencant par la famille génératrice et en supprimant les éléments linéairement dépendant des autres.
- Les vecteurs de dépendance linéaire s'écrivent,

$$<\alpha \cdot p_1(x) + \beta \cdot p_2(x) + \gamma \cdot p_3(x) + \delta \cdot p_4(x) = 0 >$$

$$<(\alpha + \gamma + \delta) + (\alpha + \beta + \delta) \cdot x + (\beta - \gamma + \delta) \cdot x^2 = 0 >$$

On est donc réduit à résoudre le système,

$$\begin{cases} \alpha + \gamma + \delta = 0 \\ \alpha + \beta + \delta = 0 \\ \beta - \gamma + \delta = 0 \end{cases} \sim \begin{pmatrix} \alpha & \beta & \gamma & \delta \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 \end{pmatrix}$$

• Solution:

$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix} = \begin{pmatrix} \lambda \\ -\lambda \\ -\lambda \\ 0 \end{pmatrix} \text{ où } \lambda \in \mathbb{R}, \quad (\alpha = \lambda)$$

La relation de dépendance linéaire devient

$$<\lambda \cdot p_1(x) - \lambda \cdot p_2(x) - \lambda \cdot p_3(x) = 0>$$

• Ainsi, on peut choisir d'éliminer un des trois polynôme $p_1(x), p_2(x)$ ou $p_3(x)$ (ce qui revient à poser que $\alpha=0, \beta-0$ ou $\gamma=0$). Une fois que ce polynôme est éliminé, les trois polynôme restant seront linéairement indépendants. On a donc trouvé trois bases pour V:

$${p_1(x), p_2(x), p_3(x), p_4(x)} \setminus {p_k(x)}, \text{ où } k = 1, 2, 3$$

• Une base permet d'identifier un espace vectoriel de dimension finie avec \mathbb{R}^n (bijective).

- Deux bases différentes donneront des identifications différentes (composantes différentes).
- En particulier, un vecteur v sera représenté par deux n-uplets différents dans deux bases différents (composantes différentes)
- Il ne faut pas confondre le vecteur v avec le n-uplets qui le représente: le vecteur possède une existence en soi, alors que le n-uplets n'est est qu'un représentation qui dépend de la base choisie.
- Par contre, le nombre de *n*-uplets nécessaire pour identifier un vecteur donné est toujours le même. Il ne dépend pas de la base.

2.3.4 Théorème

Soient V un espace vectoriel et $B_1 = \{b_1, ..., b_n\}$ et $B_2 = \{c_1, ..., c_m\}$ deux bases libres pour V. Alors,

$$n = m$$

Démonstration: Puisque B_1 est une base, c'est en particulier une famille libre. Puisque B_2 est une base, c'est en particulier une famille génératrice. Par le lemme de Steinitz, on conclut alors que

$$n \leq m$$

En renversant les rôles de B_1 et B_2 , on montre alors que

$$m \leq n$$

Ainsi,

$$m = n$$

2.3.5 Définition

Soit V un espace vectoriel de dimension finie. La dimension de V est le nombre d'éléments d'une base de V.

Exemples:

- 1. La famille $\{v_1, v_2, v_3, v_4, v_5\}$ est génératrice de V
- 2. La famille $\{v_2, v_3, v_4\}$ est libre
- 3. $< 2v_1 + v_2 v_3 + v_4 + v_5 = 0 >$
- 4. $< 3v_1 3v_2 + v_3 4v_4 + 2v_5 = 0 >$

On cherche a montrer que la famille $\{v_2, v_3, v_4\}$ est une base de V et on veut déterminer sa dimension.

- Comme la famille $\{v_2, v_3, v_4\}$, il suffit de montrer qu'elle est génératrice de V.
- La famille $\{v_1, v_2, v_3, v_4, v_5\}$ est génératrice, ainsi

$$V = \text{Vect}(v_1, v_2, v_3, v_4, v_5)$$

• D'après 3. :

$$v_5 = -2v_1 - v_2 + v_3 - v_4$$

Donc

$$V = \text{Vect}(v_1, v_2, v_3, v_4, v_5) = \text{Vect}(v_1, v_2, v_3, v_4)$$

• D'après 4.:

$$3v_1 - 3v_2 + v_3 - 4v_4 + 2 \cdot (-2v_1 - v_2 + v_3 - v_4) = 0$$
$$-v_1 - 5v_2 + 3v_3 - 6v_4 = 0 \implies v_1 = -5v_1 + 3v_2 - 6v_4$$

Donc

$$V = \text{Vect}(y_1, v_2, v_3, v_4) = \text{Vect}(v_2, v_3, v_4)$$

- Ainsi, la famille $\{v_2, v_3, v_4\}$ est génératrice donc base de V. Elle contient 3 éléments. La dimension de V est de 3.
- On cherche à présent les coordonnées du vecteur v_5 dans la base $B = \{v_2, v_3, v_4\}$

$$v_5 = -2v_1 - v_2 + v_3 - v_4 = -2 \cdot (-5v_1 + 3v_2 - 6v_4) - v_2 + v_3 - v_4 = 9v_2 - 5v_3 + 11v_4$$

• Coordonnées des vecteurs v_2, v_3, v_4 et v_5 dans la base B

$$[v_2]_B = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \quad [v_3]_B = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \quad [v_4]_B = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$[v_4]_B = 9 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 5 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 11 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 9 \\ -5 \\ 11 \end{pmatrix}$$