МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики, информатики и механики Кафедра вычислительной математики и прикладных информационных технологий

ЛАБОРАТОРНАЯ РАБОТА №1 ЧИСЛЕННОЕ РЕШЕНИЕ СТАЦИОНАРНОГО УРАВНЕНИЯ ШРЁДИНГЕРА: РАСЧЁТ ОСНОВНОГО КВАНТОВОГО СОСТОЯНИЯ ЧАСТИЦЫ В ОДНОМЕРНОЙ ПОТЕНЦИАЛЬНОЙ ЯМЕ С БЕСКОНЕЧНЫМИ СТЕНКАМИ С ИСПОЛЬЗОВАНИЕМ РАЗЛОЖЕНИЯ ИСКОМОЙ ВОЛНОВОЙ ФУНКЦИИ ПО БАЗИСУ

Направление: 01.04.02 – Прикладная математика и информатика

Выполнил: студент 11 группы 2 курса магистратуры

Крутько А.С.

Преподаватель: доктор физ.-мат. наук, профессор Тимошенко Ю.К.

Воронеж 2024

Содержание

1	Цели и задачи работы	3
	1.1 Цель работы	3
	1.2 Задачи работы:	3
2	Одномерное стационарное уравнение Шрёдингера. Математический формализм. Общие свойства решений	4
3	Прямой вариационный метод. Алгоритм	6
4	Программная реализация алгоритма	7
5	Результаты численных экспериментов	8
	5.1 Иллюстрация работы программы	8
	5.2 Значения искомых параметров	
6	Заключение	9

1 Цели и задачи работы

1.1 Цель работы.

Целями лабораторной работы являются практическое освоение информации, полученной при изучении курса «Компьютерное моделирование в математической физике» по теме «Численное решение стационарного уравнения Шрёдингера», а также развитие алгоритмического мышления и приобретение опыта использования знаний и навыков по математике, численным методам и программированию для решения прикладных задач физикотехнического характера.

1.2 Задачи работы:

Проблема: электрон находится в одномерной потенциальной яме с бесконечными стенками U(x):

$$v(x) = \begin{cases} J_2(x), & x \in (-L, L), \\ \infty, & x \notin (-L, L), \end{cases}$$

Где $U(x) = v(x) * V_0$, $V_0 = 25$ эВ, L = 3 Å, $J_n(x)$ – функция Бесселя, n = 2.

- 1. Рассчитать энергию и волновую функцию основного квантового состояния путем разложения искомой волновой функции по базису. Использовать в качестве базисного набора волновые функции частицы в одномерной прямоугольной яме с бесконечными стенками.
- 2. Вычислить для этих состояний квантовомеханические средние $\langle p(x) \rangle$ и $\langle p(x^2) \rangle$.

2 Одномерное стационарное уравнение Шрёдингера. Математический формализм. Общие свойства решений

Одномерное стационарное уравнение Шрёдингера [1]:

$$\hat{H}\psi(x) = E\psi(x),\tag{1}$$

где \hat{H} — оператор Гамильтона, E — собственные значения энергии, $\psi(x)$ — волновая функция.

С математической точки зрения оно представляет собой задачу определения собственных значений E и собственных функций ψ оператора Гамильтона \hat{H} . Для частицы с массой m, находящейся в потенциальном поле U(x), оператор Гамильтона имеет вид

$$\hat{H} = \hat{T} + U(x),\tag{2}$$

где оператор кинетической энергии

$$\hat{T} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2},\tag{3}$$

а \hbar — постоянная Планка. Собственное значение оператора Гамильтона имеет смысл энергии соответствующей изолированной квантовой системы. Собственные функции называются волновыми функциями. Волновая функция однозначна и непрерывна во всём пространстве. Непрерывность волновой функции и её первой производной сохраняется и при обращении U(x) в ∞ некоторой области пространства. В такую область частица вообще не может проникнуть, то есть в этой области, а также на её границе $\psi(x)=0$.

Оценим нижнюю границу энергетического спектра. Пусть минимальное значение потенциальной функции равно U_{\min} . Очевидно, что $\langle T \rangle \geq 0$ и $\langle U \rangle \geq U_{\min}$. Потому из уравнения (1) следует, что:

$$E = \langle H \rangle = \int_{-\infty}^{+\infty} \psi^{*}(x) \hat{H} \psi(x) dx = \langle T \rangle + \langle U \rangle > U_{\min}. \tag{4}$$

то есть, энергии всех состояний $> U_{min}$.

Особый практический интерес представляет случай, когда

$$\lim_{x \to \infty} U(x) = 0. \tag{5}$$

Потенциал такого типа называется также потенциальной ямой. Для данной U(x) свойства решений уравнения Шрёдингера зависят от знака собственного значения E. Если E < 0. Частица с отрицательной энергией совершает финитное движение. Оператор Гамильтона имеет дискретный спектр, то есть собственные значения и соответствующие собственные функции можно снабдить номерами. При E < 0 уравнение (1) приобретает вид[1]:

$$\hat{H}\psi_k(x) = E_k \psi_k(x). \tag{6}$$

Квантовое состояние, обладающее наименьшей энергией, называется основным. Остальные состояния называют возбужденными состояниями. В силу линейности стационарного уравнения Шрёдингера, волновые функции математически определены с точностью до постоянного множителя. Однако, из физических соображений, волновые функции должны быть нормированы следующим образом:

$$\int_{-\infty}^{+\infty} |\psi_k(x)|^2, dx = 1.$$
 (7)

В дальнейшем будет рассматриваться только дискретный спектр. При этом необходимо пользоваться осцилляционной теоремой.

Осцилляционная теорема. Упорядочим собственные значения оператора Гамильтона в порядке возрастания, нумеруя энергию основного состояния индексом "0": E_0 , E_1 , E_2 , ..., E_k ,.... Тогда волновая функция $\psi_k(x)$ будет иметь k узлов (то есть, пересечений с осью абсцисс). Исключения: области, в которых потенциальная функция бесконечна.

3 Прямой вариационный метод. Алгоритм

Прямой вариационный метод также называемый методом Ритца [3] представляет собой численный способ решения уравнения Шрёдингера, который базируется на разложении искомой волновой функции по набору базисных функций. Этот метод применим для нахождения приближённых значений собственных энергий и соответствующих волновых функций.

Для приближённого решения задачи волновая функция $\psi(x)$ в уравнении (1) представляется в виде разложения [4] по конечному набору ортонормированных базисных функций $\{\phi(x)\}$:

$$\psi(x) \approx \sum_{k=1}^{M} c_k \phi_k(x), \tag{8}$$

где M — число базисных функций, c_k — коэффициенты разложения, которые необходимо найти.

Коэффициенты c_k вычисляются из матрицы Гамильтона, где элементы матрицы определяются как:

$$H_{nk} = \int_{-\infty}^{+\infty} \phi_m(x) \hat{H} \phi_k(x) dx, \tag{9}$$

Раскладывая оператор Гамильтона (2) получаем:

$$H_{mk} = T_{mk} + U_{mk},\tag{10}$$

где T_{mk} — кинетическая энергия, а U_{mk} — потенциальная энергия:

$$T_{mk} = -\frac{1}{2} \int_{-\infty}^{+\infty} \phi_m(x) \frac{d^2}{dx^2} \phi_k(x) dx,$$
 (11)

$$U_{mk} = \int_{-\infty}^{+\infty} \phi_m(x)U(x)\phi_k(x)dx,$$
(12)

В качестве базиса выбираются собственные функции прямоугольного потенциала, которые имеют вид:

$$\phi_k(x) = \begin{cases} \frac{1}{\sqrt{L}} sin(\frac{k\pi x}{2L}), & \text{если } k \text{ четное,} \\ \frac{1}{\sqrt{L}} cos(\frac{k\pi x}{2L}), & \text{если } k \text{ нечетное,} \end{cases}$$
 (13)

Эти функции автоматически удовлетворяют граничным условиям $\phi_k(-L) = \phi_k(L) = 0$. В результате поиск собственных значений E и соответствующих им функций $\psi(k)$ сводится к вычислению собственных значений и собственных векторов матрицы Гамильтона:

$$H\vec{c} = E\vec{c}.\tag{14}$$

4 Программная реализация алгоритма

В Приложение представлена программа на языке Python 3.12[2], реализованная в среде разработки PyCharm Community Edition 2024.3.1, численного решения одномерного стационарного уравнения Шрёдингера для электрона в одномерной потенциальной яме. Программа реализует алгоритм теории возмущений, позволяющий находить собственные значения и соответствующие им волновые функции. Потенциальная функция (невозмущенная система) и параметры для нее соответствуют постановке задачи из первой главы. Энергия и длина ямы были переведены в атомные единицы Хартри (строки X–X).

В строках X-X определена потенциальная функция.

В строках \mathbf{X} – \mathbf{X} реализована функция вычисляющая базисную волновую функцию k-го состояния.

В строках \mathbf{X} — \mathbf{X} реализована функция, вычисляющая матричный элемент по формулам (10, 11, 12), функция реализованная в строках \mathbf{X} — \mathbf{X} является вспомогательной и вычисляет вторую производную для заданной функции.

В строках \mathbf{X} - \mathbf{X} реализовано построение матрицы Гамильтона.

В строках X-X реализована функция вычисляющая собственные значения и собственные вектора заданной матрицы.

В строках \mathbf{X} — \mathbf{X} реализована функция вычисляющая волновую функцию по формуле (8)

В строках **X**–**X** реализованы функции вычисляющие квантовомеханические средние $\langle p(x) \rangle$ и $\langle p(x^2) \rangle$.

В строках X-X реализована функция выводящая графики волновых функций.

В строках X-X задаются размерность сетки и матрицы Гамильтона.

В строках X-X вычисляются энергии и волновые функции и производится запись результата вычислений в файл.

5 Результаты численных экспериментов

Ниже продемонстрированы результаты работы программного кода написанного на Python.

5.1 Иллюстрация работы программы

Потенциал из постановки задачи представлен на Рис. ??

5.2 Значения искомых параметров

Ниже результаты численных экспериментов, полученных в результате работы программы выведены в таблицу:

Квантовомеханические средние $\langle p(x) \rangle$ и $\langle p(x^2) \rangle$ для основного, первого и второго возбужденного состояний:

Состояние	Энергия, а.е.	$\langle p(x) \rangle$	$\langle p(x^2) \rangle$
Основное	0.026451	0.000000e + 00	3.072237e - 01
1-е возбужденное	0.498856	0.000000e + 00	1.006510e + 00
2-е возбужденное	0.828367	0.000000e + 00	2.410640e + 00

6 Заключение

Таким образом, было получено численное решение для задачи о частице в одномерной квантовой яме с бесконечными стенками при помощи метода пристрелки. Были получены значения энергий и волновые функции основного и второго возбужденного состояний. Полученные волновые функции соответствуют осцилляционной теореме. Кроме того, для каждого состояния были вычисленные квантовомеханические средние $\langle p(x) \rangle$, $\langle p(x^2) \rangle$.

Приложение

```
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.special import eval_laguerre
5 def draw_potential_graph():
      n = 500
      c_{energy} = 27.212
      c_{length} = 0.5292
      v0 = 25.0 / c_energy
9
      1 = 3.0 / c_length
10
      a, b = -1, 1
11
      x = np.linspace(a - 0.01, b + 0.01, n)
12
      def u_func():
14
           u_val = np.zeros(n)
          for i in range(n):
16
17
               if np.abs(x[i]) <= 1:</pre>
                   u_val[i] = v0 * eval_laguerre(5, np.abs(x[i]))
19
                   u_val[i] = 1
20
21
          return u_val
      y = u_func()
24
      plt.plot(x, y, 'g-', linewidth=6.0, label="U(x)")
      plt.title(f"Potential function graph")
      plt.xlabel("X")
28
      plt.ylabel("Y")
29
      plt.grid(True)
      plt.legend()
31
32
      plt.savefig('Potential_func_graph.jpg')
33
      plt.show()
35
37 class Solver:
      # Params
      def __init__(self):
39
          self.U_min = -0.149124
40
          self.c_energy = 27.212
41
          self.c_length = 0.5292
          self.V0 = 25.0 / self.c_energy
43
          self.L = 3.0 / self.c_length
          self.A, self.B = -self.L, self.L
          self.n = 650
          self.h = (self.B - self.A) / (self.n - 1)
47
          self.c, self.W = self.h ** 2 / 12.0, 3.0
48
          self.Psi, self.Fi, self.X = np.zeros(self.n), np.zeros(self.n), np.
     linspace(self.A, self.B, self.n)
          self.r = (self.n - 1) // 2 - 80
50
          self.limit_value = 4.0
           self.d1, self.d2 = 1.e-09, 1.e-09
53
          self.tol = 1e-6
54
           self.E_min, self.E_max, self.step = self.U_min + 0.01, 2.0, 0.01
57
```

```
def u_func(self, x):
           # Check if x is a scalar
60
           if np.isscalar(x):
61
               # x - scalar
62
                return self.V0 * eval_laguerre(5, abs(x)) if abs(x) <= self.L</pre>
63
      else self.W
           u_val = np.zeros(self.n)
64
           for i in range(self.n):
                if np.abs(x[i]) <= self.L:</pre>
                    u_val[i] = self.V0 * eval_laguerre(5, np.abs(x[i]))
67
                else:
68
                    u_val[i] = self.L
           return u_val
70
71
       def q(self, e, x):
72
           return 2.0 * (e - self.u_func(x))
74
75
       @staticmethod
76
       def derivative_func(y, h, m):
77
           return (y[m - 2] - y[m + 2] + 8.0 * (y[m + 1] - y[m - 1])) / (12.0 *
78
       h)
       def normalize_wave_function(self, y):
81
           norm = np.sqrt(np.trapz(y ** 2, self.X))
82
83
           return y / norm
85
       @staticmethod
86
       def mean_momentum(psi, x):
           h_bar = 1.0
           d_psi_dx = np.gradient(psi, x)
89
           integrand = psi.conj() * d_psi_dx
90
           mean_px = -1j * h_bar * np.trapz(integrand, x)
91
           return mean_px.real
93
94
       @staticmethod
       def mean_square_momentum(psi, x):
96
           h_bar = 1.0
97
           d2_psi_dx2 = np.gradient(np.gradient(psi, x), x)
98
           integrand = psi.conj() * d2_psi_dx2
           mean_px2 = -h_bar**2 * np.trapz(integrand, x)
100
           return mean_px2.real
       def f_fun(self, e, n):
           f = np.array([self.c * self.q(e, self.X[i]) for i in np.arange(n)])
104
           self.Psi[0] = 0.0
           self.Fi[n - 1] = 0.0
           self.Psi[1] = self.d1
           self.Fi[n - 2] = self.d2
108
109
           for i in np.arange(1, n - 1, 1):
               p1 = 2.0 * (1.0 - 5.0 * f[i]) * self.Psi[i]
               p2 = (1.0 + f[i - 1]) * self.Psi[i - 1]
               self.Psi[i + 1] = (p1 - p2) / (1.0 + f[i + 1])
113
114
           for i in np.arange(n - 2, 0, -1):
```

```
f1 = 2.0 * (1.0 - 5.0 * f[i]) * self.Fi[i]
               f2 = (1.0 + f[i + 1]) * self.Fi[i + 1]
117
               self.Fi[i - 1] = (f1 - f2) / (1.0 + f[i - 1])
118
119
           p1 = np.abs(self.Psi).max()
           p2 = np.abs(self.Psi).min()
           big = p1 if p1 > p2 else p2
123
           self.Psi[:] = self.Psi[:] / big
           coefficient = self.Psi[self.r] / self.Fi[self.r]
           self.Fi[:] = coefficient * self.Fi[:]
128
           return Solver.derivative_func(self.Psi, self.h, self.r) - Solver.
      derivative_func(self.Fi, self.h, self.r)
130
       def energy_scan(self, e_min, e_max, step):
           energies = []
           values = []
           e = e_min
           while e <= e_max:</pre>
               f_value = self.f_fun(e, self.n)
136
               energies.append(e)
               values.append(f_value)
               e += step
           return energies, values
140
141
       def find_exact_energies(self, e_min, e_max, step, tol):
142
           energies, values = self.energy_scan(e_min, e_max, step)
           exact_energies = []
144
           for i in range(1, len(values)):
               log1 = values[i] * values[i - 1] < 0.0
               log2 = np.abs(values[i] - values[i - 1]) < self.limit_value</pre>
               if log1 and log2:
148
                    e1, e2 = energies[i - 1], energies[i]
149
                    exact_energy = self.bisection_method(e1, e2, tol)
                    self.f_fun(exact_energy, self.n)
                    exact_energies.append(exact_energy)
           return exact_energies
153
       def bisection_method(self, e1, e2, tol):
           while abs(e2 - e1) > tol:
156
               e_mid = (e1 + e2) / 2.0
157
               f1, f2, f_mid = self.f_fun(e1, self.n), self.f_fun(e2, self.n),
158
      self.f_fun(e_mid, self.n)
               if f1 * f_mid < 0.0:</pre>
159
                    e2 = e_mid
               else:
                    e1 = e_mid
               if f2 * f_mid < 0.0:</pre>
163
                    e1 = e_mid
               else:
                   e2 = e_mid
           return (e1 + e2) / 2.0
167
       def plot_wave_functions(self, energies):
           for i, E in enumerate(energies):
               self.f_fun(E, self.n)
171
               psi_norm = self.normalize_wave_function(self.Psi.copy())
172
               fi_norm = self.normalize_wave_function(self.Fi.copy())
173
```

```
mean_px = Solver.mean_momentum(fi_norm, self.X)
174
               mean_px2 = Solver.mean_square_momentum(fi_norm, self.X)
               file = open("result.txt", "w")
               file.close()
177
               file1 = open("result.txt", "a")
178
               print(f"Condition {i}: E = {E:.6f}, <p_x> = {mean_px:.6e}, <p_x
      ^2 = \{mean_px2:.6e\}")
               print(f"Condition {i}: E = {E:.6f}, <p_x> = {mean_px:.6e}, <p_x
180
      ^2> = {mean_px2:.6e}", file = file1)
               plt.scatter(self.X[self.r], psi_norm[self.r], color='red', s=50,
182
       zorder=5) # Point at Psi
               plt.scatter(self.X[self.r], fi_norm[self.r], color='blue', s=50,
       zorder=5) # Point at Fi
               plt.plot(self.X, [self.u_func(x) for x in self.X], 'g-',
184
      linewidth=6.0, label="U(x)")
               plt.plot(self.X, psi_norm, label=f"Normalized condition Psi {i}"
185
               plt.plot(self.X, fi_norm, '--', label=f"Normalized condition Phi
186
       {i}")
               plt.title(f"Condition {i} (Normalized) for E = {E:.4f}")
               plt.xlabel("X")
188
               plt.ylabel("Normalized wave functions")
189
               plt.grid(True)
               plt.legend()
191
               plt.savefig(f"Condition_{i}_(normalized).jpg", dpi=300)
               plt.show()
193
194
               prob_density_psi = psi_norm**2
196
               prob_density_fi = fi_norm**2
197
               plt.plot(self.X, [self.u_func(x) for x in self.X], 'g-',
      linewidth=6.0, label="U(x)")
               plt.plot(self.X, prob_density_psi, label=f"Probability density
      Psi condition {i+1}")
               plt.plot(self.X, prob_density_fi, '--', label=f"Probability
200
      Density Phi condition {i+1}")
               plt.title(f"Condition {i} - Probability density where E = {E:.4f}
201
      }")
               plt.xlabel("X")
               plt.ylabel("Probability density")
203
               plt.grid(True)
204
               plt.legend()
205
               plt.savefig(f"Condition_{i}_(Probability_density).jpg", dpi=300)
               plt.show()
207
208
209
       def solve(self):
           e_min, e_max, step = self.U_min + 0.01, 3.0, 0.01
211
           exact_energies = self.find_exact_energies(e_min, e_max, step, self.
212
      tol)
213
           if len(exact_energies) == 0:
214
               print("Error: energies were not found.")
215
           else:
               print("Energies:")
               for i, E in enumerate(exact_energies):
218
                   print(f"Condition {i}: Energy = {E:.6f}")
219
```

self.plot_wave_functions(exact_energies)
Листинг 1: Код файла solver.py

Список литературы

- [1] Тимошенко Ю.К. Численное решение стационарного уравнения Шрёдингера. Воронеж, 2019. 35 с.
- [2] Доля П.Г. Введение в научный Python Харьков: XHУ, 2016. 265 с.
- [3] Давыдов А.С. Квантовая механика СПб: БХВ-Петербург, 2011. 704 с.
- [4] Тимошенко Ю.К. Лекционный материал 2019.