Plastics and Composites Engineering

Constanza Alvarez Lopez – A00829469

1 What are polymers?

A polymer is a material composed of macromolecules consisting in a chain of repeating subunits.

Polymers are found in everyday life as: synthetic plastics -> polystyrene, natural **biopolymers ->** DNA, and **proteins**.

Classification of polymers

A Chemical structure

- Homopolymer
- Copolymer

- Alternating
- Graft
- Random

Chemical stability

Depends on:

Can be aided though:

- Additives, stabilizers
- Averting high temperatures
- Avoiding frequent heating cycles

B Polymeric structure

- Linear
- **Branched**
- Crosslinked

C Arrangement of monomers

- **Block copolymers**
- Graft copolymers

D Crystallinity

Crystalline

Amorphous

Tacticity

- Isotactic
- Syndotactic
- **Atactic**

F Molecular forces

Elastomers

Fibers

Space orientation

Polymeric chains are usually conformed in a zig-zag. Trans bonds make straight chains,

cis bonds cause the chain to bend.

G Thermal behavior

 Thermoplastics can be melted and reformed

 Thermosets cannot be reformed

Glass transition temperature

Tg -> the temperature at which a material becomes softer

- branch size
- crosslinks =

Mn

H Methods of synthesis

- Addition
 - Free radical
 - Ionic
- Condensation
- Catalysts

Random polymerization

- No. avg. molecular weight (Mn): number of molecules
- Weight avg. molecular weight (Mw): weight of molecules
- Polydispersity index (PDI): Mw/Mn

Rheology

The study of the properties of matter which determine how it will deform/flow when subjected to an external force(s). It looks for a quantitative relation, modulus, between the force applied and the resulting deformation/flow.

Rheology

Internal variables that affect viscosity

- Molecular weight
- MW ↑ Viscosity
- Molecular weight distribution (PDI)
- Velocity of viscosity decrease

External variables that affect viscosity

- Time
 - Viscosity Rheopectic Time
 - Newtonian: linear
 - Thixotropic
- Time
- Viscosity

- Molecular architecture
- Viscosity Branches ==
- Molecular shape
- Entanglement = Viscosity
- Molecular concentration
 - Concentration = Viscosity

- Pressure Viscosity
- Temperature
- Temperature Viscosity

Solids

Stress (s) = F/A, a force to cause deformation Strain (d) = (L1-L0)/L0, amount of deformation or elongation Elastic modulus (E) = slope

Elastic 🗸 Velocity 📒 🕇 Temperature 💳 modulus

Liquids

Shear stress $(\tau_{yx}) = F/A$ Flow (Q) = A/vViscosity (η) = slope

Q is translated to shear rate (γ'), how fast the velocity changes due to F $\eta = \tau_{vx} / \dot{\gamma}$

Brookfield viscometer

Measures viscosity n

Rheometry

Newtonian behavior

Creep and recovery compliance (J)

Zero shear viscosity: Newtonian viscosity (constant)

Critical point: intersection of Newtonian and non-

Constant stress -> strain/stress Measures the deformation and recovery of the polymer

Capillary rheometry

- Rabinowitch correction for
- Bagley correction for shear stress

Parallel-plate rheometry **\Omega**

J is the compliance Jr(0) compliance when stress ceases Jr compliance at any time after Jr(0) Je⁰ steady state recovery compliance Jg instantaneous or glassy compliance

Relaxation modulus (G)

Constant strain -> stress/strain Measures the response in time of the polymer against the plate

Complex modulus (G*)

Constant strain -> stress/strain Measures the response in angular velocity (Oscillatory rheometry)

 $|G^*(\omega)| = |G'(\omega)| + |G''(\omega)|$ Tan $\delta = G''(\omega)/G'(\omega)$

Complex viscosity $\eta^* = |G^*(\omega)|^{(1/2)}/\omega$

Time-Temperature superposition

- Obtain information at different temperatures G', G", and get tan δ
- Shift data to superpose curves and get shift factors aT and, in the given case, bT
- 3. Obtain the curve aT vs log(1/t-1/t0) and from slope obtain activation energy over the gas cst
- With the Arrhenius equation obtain the aT and bT for the objective time
 - Plot the master curve at the objective time

Viscoelastic Models

Linear

Maxwell elements

dashpot -> viscosity spring -> elasticity

Obtain λ and G Calculate H(λ)

Non-Linear

Describes the flow of incompressible fluids

Mass equation

$$-(\bar{\nabla} \bullet \rho \bar{v}) = \frac{\partial \rho}{\partial t}$$

Momentum equation

$$\begin{split} \rho \left(\frac{\partial \vec{V}}{\partial t} + \left(\vec{V} \cdot \nabla \right) \vec{V} \right) \\ &= -\nabla p - \nabla \cdot \tau + \rho \vec{g} \end{split}$$

where
$$\bar{\nabla} \equiv \frac{\partial \hat{\imath}}{\partial x} + \frac{\partial \hat{\jmath}}{\partial y} + \frac{\partial \hat{k}}{\partial z}$$

Constitutive equations

- Wagner model -> get n1 and n2 and then estimate normal stresses N1 and N2, Je, Jr, elongational viscosity η_e
- PTT model

- Cauchy

- Rubber-like liquid model
 - Memory function
 - Damping function

- Finger Strain

5

Polymer processing

A Extrusion

Some types of extrusion:

- Fiber-spinning (right)
- Blown film (below)

Important parameters:

- Screw rotating frequency
- Screw design
- Barrel temperature
- **Cooling conditions**
- Die dimensions
- Polymer characteristics

Defects:

- Excessive shrinkage
- Surging
- Sharkskin / orange peel
- **Pimples**
- Lumpy surface
- **Bubbles**

B Injection Molding

Blown Molding

Important parameters

- Clamping force
- Shot size
- Injection pressure
- Screw design
- Mold design
- Polymer characteristics

Defects

- Flash
- Sink marks
- **Jetting**
- Warpage
- Burn marks
- Weld lines

6 Final product performance!!!

