Лабораторная работа № 2

ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ЛИНЕЙНЫХ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

1. Цель работы

В качестве примера для исследования устойчивости линейных систем можно рассмотреть систему управления углом тангажа летательного аппарата. Углом тангажа называется угол между продольной осью летательного аппарата и горизонтальной плоскостью. Угол тангажа обозначается буквой θ . Управление величиной угла тангажа $y = \theta$ осуществляется путем изменения положения δ рулей хвостового оперения летательного аппарата (рулей высоты). Измерение угла тангажа $y = \theta$ осуществляется с помощью гироскопа, сигнал с выхода которого поступает на устройство сравнения величины угла тангажа $y = \theta$ с желаемым значением $r = \theta^d$. Сигнал величины отклонения угла тангажа от желаемого значения e = r - y (ошибка регулирования) поступает на усилитель с коэффициентом усиления $k_{\scriptscriptstyle 1}$. Сигнал u с выхода усилителя поступает на привода рулей высоты. Математическая модель привода рулей высоты рассматривается в виде апериодического звена первого порядка. Динамическая модель летательного аппарата представлена в виде звена второго порядка. Структурная схема исследуемой системы представлена на рис.2.1.

В данной лабораторной работе требуется исследовать влияние параметров линейной системы (рис.2.1) на ее устойчивость.

Рис.2.1. Структурная схема исследуемой системы

2. Краткое теоретическое введение

Пусть передаточная функция линейной системы имеет следующий вид

$$W(p) = \frac{b_n p^{n-1} + \dots + b_3 p^2 + b_2 p + b_1}{a_{n+1} p^n + a_n p^{n-1} + \dots + a_3 p^2 + a_2 p + a_1}.$$

Алгебраический критерий устойчивости Гурвица (Hurwitz) основан на исследовании свойств матрицы, составленной из коэффициентов характеристического полинома системы:

$$H = \begin{bmatrix} a_n & a_{n-2} & a_{n-4} & \cdots & 0 \\ a_{n+1} & a_{n-1} & a_{n-3} & \cdots & 0 \\ 0 & a_n & a_{n-2} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & a_1 \end{bmatrix}.$$

Критерий Гурвица: Для устойчивости системы необходимо и достаточно, чтобы все главные диагональные миноры матрицы Гурвица были строго больше нуля.

Анализ устойчивости по критерию Михайлова предполагает построение на комплексной плоскости годографа

$$A(j\omega) = a_{n+1}(j\omega)^n + a_n(j\omega)^{n-1} + ... + a_2(j\omega) + a_1$$

при изменении ω от θ до ∞ .

Критерий Михайлова: Для устойчивости системы необходимо и достаточно, чтобы годограф Михайлова начинался при $\omega = 0$ на положительной вещественной полуоси и проходил последовательно n квадрантов против часовой стрелки, устремляясь в n-м квадранте в ∞ .

Пусть W_p $(j\omega)$ есть частотная передаточная функция разомкнутой системы. График функции W_p $(j\omega)$ на комплексной плоскости, полученный при при изменении ω от 0 до ∞ , есть амплитудно-фазовая характеристика (АФХ) разомкнутой системы, которая называется годографом Найквиста.

Критерий Найквиста позволяет судить об устойчивости замкнутой системы по виду AФX разомкнутой системы.

Критерий Найквиста: Если разомкнутая система устойчива или нейтрально устойчива, то замкнутая система будет устойчивой в том случае, когда $A\Phi X$ разомкнутой системы $W_p(j\omega)$ не охватывает точку (-1,j0) при изменении ω от 0 до ∞ .

3. Методические указания

Работа выполняется с помощью пакета программ Matlab/Simulink.

Для экспериментального определения критического значения исследуемого параметра его необходимо изменить в несколько раз по сравнению с исходным значением и проанализировать вид полученных переходных процессов в системе. Если при одном параметре система была устойчива, а при другом - неустойчива, то критическое значение находится внутри выделенного интервала, и найти его можно, например, методом половинного деления.

Наличие незатухающих колебаний постоянной амплитуды на выходе

свидетельствует о положении системы на колебательной границе устойчивости.

4. Порядок выполнения работы

- 4.1. Подготовить модель исследуемой системы, параметры которой приведены в таблице 2.1. Номер варианта соответствует порядковому номеру бригады.
- 4.2. Подавая на вход системы сигнал r(t) в виде единичного ступенчатого воздействия, получить переходные процессы в системе при заданных параметрах. На экран графического монитора выводить графики входа r(t), выхода y(t) и ошибку e(t).

Таблина 2.1.

Номер варианта						
	\mathbf{k}_1	\mathbf{k}_2	T_2	k_3	T_3	d
1	1	1.5	0.4	4	1.2	1.2
2	5	0.8	0.2	3	1	1
3	2	1	0.1	2	0.8	0.8
4	3	2	0.3	2	1.5	1.5
5	1.5	4	0.5	1	0.9	0.9
6	2.5	1.5	0.2	2	1	1
7	4	0.6	0.2	2	0.7	0.7
8	2	1	0.5	1	0.6	0.6

- 4.3. Экспериментально определить критическое значение коэффициента передачи k_I , т.е. такие значения, при которых система находится на границе устойчивости. В данном случае необходимо найти критическое значение коэффициента передачи k_I для апериодической и колебательной границ устойчивости. Сравнить экспериментально найденные критические значения коэффициента передачи k_I с расчетными значениями, полученными с помощью критерия Найквиста. Построить графики переходных процессов при критических значениях коэффициента передачи k_I .
- 4.4.Построить переходный процесс при $k_I = 0.8 \; k_{I\kappa p}$ и при $k_I = 1.2 \; k_{I\kappa p}$. Проанализировать полученные результаты.
- 4.5. Увеличить коэффициент d в два раза по сравнению с исходным значением и определить $k_{I\kappa p}$, которое соответствует колебательной границе устойчивости данной системы. Затем уменьшить d в два раза и найти $k_{I\kappa p}$. Построить зависимость $k_{I\kappa p} = k_{I\kappa p}(d)$.
- 4.6.Найти путем численного моделирования критическое значение $d_{\kappa p}$, которое соответствует колебательной границе устойчивости данной системы.

Сравнить найденное критическое значение $d_{\kappa p}$ с рассчитанным значением. Расчет выполнить с помощью критерия Гурвица.

4.7. Найти путем численного моделирования критические значения $T_{2\kappa p}$, которые соответствуют колебательной границе устойчивости данной системы. Воспользовавшись критерием Михайлова, вычислить $T_{2\kappa p}$. Сравнить полученные результаты расчета и эксперимента. При отсутствии колебательной границы устойчивости для параметра T_2 , необходимо увеличить коэффициент k_1 в данной системе в два раза. Повторить численное моделирование и расчеты.

5. Содержание отчета

- 5.1. Цель работы.
- 5.2.Структурная схема исследуемой системы и численные значения параметров.
- 5.3. Рассчитанные и экспериментально найденные критические значения параметров.
- 5.4.График переходного процесса исследуемой системы при табличных значениях параметров.
- 5.5. График переходных процессов при $k_l = k_{l\kappa p}$, $k_l = 0.8~k_{l\kappa p}$. и $k_l = 1.2~k_{l\kappa p}$.
 - 5.6. График зависимости $k_{I\kappa p}$ (*d*).
- 5.7. Графики переходных процессов для найденных критических значений параметра $d_{\kappa p}$ и параметра $T_{2\kappa p}$.

6. Контрольные вопросы

- 6.1. Как формулируется основное условие устойчивости линейных систем?
 - 6.2. Как по АФХ исследуемой разомкнутой системы найти $k_{1\kappa p}$?
- 6.3. Каким образом коэффициент передачи разомкнутой системы влияет на вид годографа Михайлова?
- 6.4. В каком случае система находится на апериодической границе устойчивости?
- 6.5. В каком случае система находится на колебательной границе устойчивости?
- 6.6. Какой вид имеет переходная характеристика системы, находящейся на колебательной границе устойчивости?
- 6.7. Как формулируются условия для существования границ устойчивости в критериях Гурвица, Михайлова, Найквиста?