Sequences and Series

EE24BTECH11060-Sruthi Bijili

JEE ADVANCED/IIT-JEE

- 5) Sum of the n terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is equal to (1988-2 Marks)
 - a) $2^{n} n 1$
 - b) $1 2^{-2}$
 - c) $n + 2^{-2} 1$
 - d) $2^n + 1$
- (1990- 2 Marks) 6) The number $\log_2 7$ is
 - a) an integer
 - b) a rational number
 - c) an irrational number
 - d) a prime number
- 7) If $\ln(a+c)$, $\ln(a+c)$, $\ln(2b+c)$ are in A·P, then (1994)
 - a) a,b,c are in A·P
 - b) $a^2.b^2.c^2$ are in A·P
 - c) a,b,c are in G·P
 - d) a,b,c are in H·P
- 8) Let $a_1, a_2, a_3, \dots a_{10}$ be in A-P, and $h_1, h_2, h_3, \dots h_{10}$ be in H·P.If $a_1=h_1=2$ and $a_{10}=h_{10}=3$, then a_7h_7 (1999 - 2 Marks) is
 - a) 2
 - b) 3
 - c) 5
 - d) 6
- 9) The harmonic mean of the roots of the equation $(5 + \sqrt{2})x^2 - (4 + \sqrt{5})x + 8 + 2\sqrt{5} = 0$ is (1999 - 2 Marks)
 - a) 2
 - b) 4
 - c) 6
 - d) 6
- 10) Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is $\frac{3}{4}$ (2000S)
 - a) $a = \frac{4}{7}, r = \frac{3}{7}$
 - b) $a = 2, r = \frac{3}{8}$ c) $a = \frac{3}{2}, r = \frac{1}{2}$

 - d) $a = \tilde{3}, r = \frac{1}{4}$
- 11) Let α , β be the roots of $x^2 x + p = 0$ and

 γ,δ be the roots of $x^2 - 4x + q = 0.$ If α , β , γ , δ are in G-P, then the integral values of p and q respectively are (2001S)

1

- a) -2, -32
- b) -2, 3
- c) -6, 3
- d) 6, -32
- 12) Let the positive numbers a,b,c,d be in A·P.Then abc, abd, acd, bcd are (2001S)
 - a) NOT in A·P, $G \cdot P$, H·P
 - b) in A·P
 - c) in G·P
 - d) in H·P
- 13) If the sum of the first 2n terms of the A·P $2, 5, 8, \dots$ is equal to the sum of the first n terms of the A·P, 57, 59, 61...then n equals (2001S)
 - a) 10
 - b) 12
 - c) 11
 - d) 13
- 14) Suppose a,b,c are in A·P and a^2,b^2,c^2 are in G·P,if a < b < c and $a+b+c=\frac{3}{2}$, then the value of a is (2002S)
- 15) An infinite G-P has first term 'x' and sum '5', then x belongs to (2004S)
 - a) x < -10
 - b) 10 < x < 0
 - c) 0 < x < 10
 - d) x>0
- 16) In the quadratic equation $ax^2 + bx + c = 0, \Delta = b^2 b^2$ 4ac and $\alpha + \beta, \alpha^2 + \beta^2, \alpha^3 + \beta^3$, are in G·P where α , β are the root of $ax^2 + bx + c = 0$, then (2005S)
 - a) $\Delta \neq 0$
 - b) $b\Delta \neq 0$
 - c) $c\Delta \neq 0$

- d) $\Delta = 0$
- 17) In the sum of first n terms of an A·P is cn^2 , then the sum of squares of these n terms is (2009)
 - a) $\frac{n(4n^2-1)c^2}{6}$
 - h) $\frac{n(4n^2+1)c^2}{(4n^2+1)^2}$
 - c) $\frac{n(4n^2-1)c^2}{3}$
 - d) $\frac{n(4n^2+1)c^2}{6}$
- 18) Let a_1, a_2, a_3 ... be in harmonic progression with a_1 =5 and a_{20} =25. The least positive integer n for which a_n <0 is (2012)
 - a) 22
 - b) 23
 - c) 24
 - d) 25
- 19) Let $b_i > 1$ for i=1,2,... 101. Suppose $\log_e b_1, \log_e b_2,... \log_e b_{101}$ are in A·P with the common difference $\log_e 2$. Suppose $a_1,a_2,...a_{101}$ are in A·P. Such that $a_1 = b_1$ and $a_{51} = b_{51}$. If $t=b_1+b_2+...+b_{51}$ $s=a_1+a_2+...a_{53}$, then (JEE ADV.2016)
 - a) s>t and $a_{101}>b_{101}$
 - b) s>t and $a_{101}< b_{101}$
 - c) s < t and $a_{101} > b_{101}$
 - d) s < t and $a_{101} < b_{101}$