AVR Microcontrolador + LCD 16x2

Prof. Marcos Chaves

DISPLAY DE CRISTAL LÍQUIDO ALFANUMÉRICO

- Interface comum em sistemas microprocessador
- Apresenta uma série de configurações de linhas e colunas
 - 16x1, 16x2, 20x2, 20x4, 8x2

Histórico do LCD

- 1888: Friedrich Reinitzer descobre a natureza do líquido cristalino de colesterol extraído de cenoura
- Vários outros pesquisadores trabalham com cristais líquidos em diversos experimentos
- 1962: Richard Williams, da RCA, descobriu algumas características electroópticas interessantes de cristais líquidos, criando faixas em uma fina camada de material através da aplicação de uma tensão
- 1964: George Heilmeier e equipe, da RCA, construíram o primeiro display de cristal líquido operacional
- RCA, em crise financeira, não explora comercialmente a invenção
- Década de 1970: cristais líquidos começam a ser usados em relógios de pulso
- 4º trimestre de 2007: venda de televisores LCD superou a de CRT em nível mundial

Como é construído?

- Um painel de LCD simples é composto de:
 - espelho na parte de trás (A)
 - vidro e filme polarizado (B)
 - eletrodo comum (C)
 - cristal líquido (D)
 - Vidro (E), com um eletrodo transparente no formato desejado
 - filme polarizado (F), com polarização ortogonal à (B)

Como é construído?

- Aplicação de tensão no eletrodo (E) permite ou impede a passagem de luz
- Cristais líquidos não emitem luz
- LCD reflexivo: mais baratos, possui espelho no fundo e apenas reflete a luz externa
 - Funcionam melhor em ambiente bem iluminado
- LCD back lit: possue iluminação colocada acima, ao lado ou no fundo
 - Funcionam melhor em ambientes pouco iluminados

- Utiliza uma interface paralela de 8bits para leitura e escrita no LCD
 - Controlador HD44780 (Hitachi)
 - Pode ser configurado para utilizar apenas 4bits (economia de pinos de I/O)
- Possui controle de contraste do display de cristal líquido
- Alguns módulos podem apresentar um led de retroiluminação (backlight)

Tab. B1: Pinagem de um LCD 16×2.

Pino	Função	Descrição
1	Alimentação	VSS (GND)
2	Alimentação	VCC
3	VEE	Tensão para ajuste do contraste do LCD
4	RS	Register Select: 1 = dado, 0 = instrução
5	R/W	Read/Write: 1 = leitura, 0 = escrita
6	E	Enable: 1 = habilita, 0 = desabilita
7	DB0	
8	DB1	
9	DB2	
10	DB3	Barramento de
11	DB4	dados
12	DB5	34355
13	DB6	
14	DB7	
15	LED+ (A)	Anodo do LED de iluminação de fundo
16	LED - (K)	Catodo do LED de iluminação de fundo

- Interface pode ler/escrever comandos ou dados
- Comandos
 - Configuração do modo de operação
 - Manipulação do Cursos
 - Deslocamento da posição
 - Limpeza do Display

RS=0

Tab. B3: Resumo dos códigos de instruções.

OMANGO Descrição	Modo	Código Hexa		
Controle do display	Liga (sem cursor)	0x0C		
	Desliga	0x0A/0x08		
Limpa display com retorno do cursor		0x01		
	Liga	0x0E		
	Desliga	0x0C		
O and and a second as	Desloca p/ a esquerda	0x10		
Controle do cursor	Desloca p/ a direita	0x14		
	Retorno	0x02		
	Cursor piscante	0x0D		
	Cursor com alternância	0x0F		
Sentido de deslocamento do cursor	Para a esquerda	0x04		
na entrada de um caractere	Para a direita	0x06		
Deslocamento da mensagem na	Para a esquerda	0x07		
entrada de um caractere	Para a direita	0x05		
Deslocamento da mensagem	Para a esquerda	0x18		
sem a entrada de caractere	Para a direita	0x1C		
Endereço da primeira posição	Primeira linha	0x80		
do cursor	Segunda linha	0xC0		

RS=0 comando

Posição do cursor

Fig. 5.21 – Endereços para escrita num LCD 16 \times 2.

RS=1 caractere

- Description							_				_		_			_
Lower Bits 4 Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)	þ		0	a	Р	`	P	Б	Qζ		0	À	Ð	à	ä
xxxx0001	(2)	4	!	1	A	Q	а	9	А	þ	i	<u>+</u>	Á	Ñ	á	ñ
xxxx0010	(3)	66	"	2	В	R	b	r	Ж	Γ	ф.	2	Â	Ò	â	ò
xxxx0011	(4)	77	#	3	C	S	Ç.	s	3	π	£	3	Ã	Ó	ã	ó
xxxx0100	(5)	#	\$	4	D	T	d	t.	И	Σ	×	Fŧ.	Ä	ô	ä	ô
xxxx0101	(6)	Ŧ	%	5	Ε	U	e	u	Й	σ	¥	μ	Å	õ	å	õ
xxxx0110	(7)	#	8,	6	F	Ų	f	V	Л	Ą	L	9	Æ	Ö	æ	Ö
xxxx0111	(8)	Ų	,	7	G	W	9	W	П	τ	8		Ç	X	ç	÷
xxxx1000	(1)	ተ	(8	Н	Х	h	X	У	#	£	ω	È	₽	è	φ
xxxx1001	(2)	ψ)	9	Ι	Υ	i	y	Ц	Θ	B	1	É	Ù	é	ù
xxxx1010	(3)	÷	*	:	J	Z	j	Z	Ч	Ω	₫	<u>o</u>	Ê	Ú	ê	ú
xxxx1011	(4)	÷	+	ş	K	Γ	k	{	Ш	δ	«	>>	Ë	Û	ë	û
xxxx1100	(5)	<u> </u>	,	<	L	N	1	I	Щ	00	Ю	¥	Ì	Ü	ì	ü
xxxx1101	(6)	2		==	М]	m	>	Ъ	#	Я	Ķ	Í	Ý	í	ý
xxx1110	(7)			>	Ν	^	n	~	Ы	ε	2	4	Î	þ	î	ŀ
xxxx1111	(8)	Ŧ	/	?	0		O	۵	3	Π	£	خ	Ϊ	8	ï	ÿ

Lower Bits 4 Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)			0	Ð	P	•	P					9	ξ	Οť	p
xxxx0001	(2)		!	1	А	Q	a	9				7	Ŧ	4	ä	q
xxxx0010	(3)		11	2	В	R	b	r			Г	1	IJ	×	β	Θ
xxxx0011	(4)		#	3	C	S	C	s			J	ゥ	Ŧ	ŧ	ε	60
xxxx0100	(5)		\$	4	D	T	d	t.			V.	I	ŀ	Þ	μ	Ω
xxxx0101	(6)		%	5	E	U	e	u				7	t	l	Ġ	ü
xxxx0110	(7)		8.	6	F	V	f	V			7	Ħ	_	3	ρ	Σ
xxxx0111	(8)		,	7	G	W	g	W			7	丰	7	Ŧ	ġ	π
xxxx1000	(1)		(8	H	X	h	×			4	2	ネ	ŋ	Ī	X
xxxx1001	(2))	9	Ι	Υ	i	y			÷	Ό	J	ιb	-1	Ч
xxxx1010	(3)		*		J	Z	j	Z			I	\Box	ń	V	j	Ŧ
xxxx1011	(4)		+	÷	K		k	{			7	Ħ	E		×	Б
xxxx1100	(5)		,	<	L	¥	1				77	Ð	フ	7	¢	m
xxxx1101	(6)			=	М]	M	>			ュ	Z	ኅ	ン	Ł	÷
xxxx1110	(7)			>	N	^	n	÷			3	t	#	·	ñ	
xxxx1111	(8)		/	?	0		O	÷			ij	y	7		ö	

Caracter do usuário (Ram LCD)

Endereço da CGRAM	Mapa de bits	Dado
0x48		0ь00100
0x49		0b00100
0x4A		0b01010
0x4B		0b01010
0x4C		0b10001
0×4E		0b11111
0x4F		0ь00000

Sequência de inicialização em 4 bits

Como Utilizar a biblioteca para LCD em assembly

```
    ; incluir biblioteca
    .include "lib328Pv02.inc"
    ; inicializacao LCD em 4 bits
        rcall lcd_init
    ; Chama rotina limpar o LCD e posicionar na linha 0, coluna 0
        rcall lcd_clear
```

Como Utilizar a biblioteca para LCD em assembly

```
;;;;;; posiciona cursor
    Idi lcd_col,3 ;define coluna3
    rcall lcd_lin0_col;define linha 0
```


Fig. 5.21 – Endereços para escrita num LCD 16 \times 2.

```
;;;;;;;;;;; escreve mensagem letra por letra
   Idi lcd caracter,'I' ;; carrega letra entre aspas
   rcall lcd write caracter.; chama rotina para imprimir caracter
   Idi lcd caracter, 'F'
   rcall lcd write caracter
   Idi lcd caracter, 'S'
   rcall lcd write caracter
   Idi Icd caracter, 'P'
   rcall lcd_write_caracter
;;;;;;;; imprimir numero
    ldi r16,10; carregue o numero em um registrador
    mov lcd number, r16 ;;; move para o registro da biblioteca LCD
   rcall lcd write number ;; chama rotina para imprimir numero
```