WORKSHEET # VIII

1. Evaluate the following integrals

a)
$$\int \frac{\sec^2 x}{(\sec x + \tan x)^{9/2}} dx$$
 b) $\int_0^4 |x^3 - 5x^2 + 6x| dx$ c) $\int_0^{\pi} |\sin x + \cos x| dx$

2. Find the value of x what maximizes the value of integral and maximum value of integral which is the following

$$\int_{x}^{x+3} t(5-t) dt$$

3. Find the area of the region bounded by

$$x = y^2 + 1$$
, $x = 5$, $y = -3$, and $y = 3$.

4. Find the area of the region bounded by

$$y = \frac{1}{x+2}$$
, $y = (x+2)^2$, $x = \frac{-3}{2}$, and $x = 1$.

- 5. Find the area of the region R enclosed by the curves $y = \frac{x^2}{2} + 4$; and $y = |x^2 4|$
- 6. Find the area of the region R between the graphs of $x = 8 y^2$ and $x = y^2 8$.
- 7. Find the area of the finite plane region bounded by the curve $y = x^3$ and the tangent line to that curve at the point (1,1).
- 8. The region under the graph $\frac{1}{x^2}$ on [0,4] is equal to be divided into two parts of equal area by a- horizontal and b-vertical line. Where should the line be drawn?
- 9. Find the area of the region between graphs of $y = x^3$ and $y = 3x^2 2x$ from 0 to 2.