Análisis de la posición y distancia recorrida de los huracanes

$Alfredo\ Hern\'andez$

Contents

Mapa de las trayectorias	2
Análisis de la distancia	9
Midiendo las distancias	3
Huracanes con recorrido más largo	3
Scatterplot of distance vs duration	
Análisis de posición inicial y final	6
North Atlantic	6
East Pacific	ç

Mapa de las trayectorias

```
map_region_hurrs(storms.natl, coords.natl.map, coords.natl, steps = c(20, 10), xtra.lims = c(3,2)) + th
## Joining by: storm.id
   60^{\circ}N
   50°N
                                                                     colour
Latitude
   40°N
                                                                         high
                                                                         low
   30°N
   20°N
   10°N
                                       40°W
                             60°W
                                                  20°W
       100°W
                  80^{\circ}W
                                Longitude
map_region_hurrs(storms.epac, coords.epac.map, coords.epac, steps = c(10, 10), xtra.lims = c(3,2)) + th
## Joining by: storm.id
   35°N
```


Análisis de la distancia

Midiendo las distancias

Lo hacemos usando la fórmula de Haversine:

```
haversine_distance <- function(lat1, lat2, lon1, lon2) {</pre>
    earth.radius = 6371000
    lat1 = lat1 * (pi/180)
    lat2 = lat2 * (pi/180)
    lon1 = lon1 * (pi/180)
    lon2 = lon2 * (pi/180)
    delta.lat = lat2 - lat1
    delta.lon = lon2 - lon1
    a \leftarrow \sin(\text{delta.lat/2}) * \sin(\text{delta.lat/2}) + \cos(\text{lat1}) * \cos(\text{lat2}) * \sin(\text{delta.lon/2}) * \sin(\text{delta.lon/2})
    c <- 2 * atan2(sqrt(a), sqrt(1-a))</pre>
    return(earth.radius * c)
storms.tracks <- storms.all %>%
    group by(storm.id) %>%
    mutate(distance = haversine_distance(lat, lag(lat), long, lag(long))) %>%
    mutate(distance = ifelse(is.na(distance), 0, distance)) %>%
    summarise(first.lat = first(lat), last.lat = last(lat),
                          first.long = first(long), last.long = last(long),
                          distance = sum(distance))
```

Huracanes con recorrido más largo

Estos resultados habría que compararlos con los de http://www.aoml.noaa.gov/hrd/tcfaq/E7.html

```
storms.joint %>%
    group_by(basin) %>%
    summarise(dist.mean = mean(distance))
## # A tibble: 2 x 2
##
    basin dist.mean
##
     <chr>
               <dbl>
## 1 EPAC
           2540171.
## 2 NATL
           3511879.
get_longest_paths("NATL")
##
     storm.id storm.name storm.year distance
## 1 AL032000
                ALBERTO
                               2000 13519322
## 2 AL061966
                   FAITH
                               1966 13439349
## 3 AL122011
                   KATIA
                               2011 12481694
## 4 AL092004
                   IVAN
                               2004 12374371
## 5 AL131998
                   MITCH
                               1998 11942367
## 6 AL071995
                   FELIX
                               1995 11672628
```

get_longest_paths("EPAC")

```
storm.id storm.name storm.year distance
## 1 EP101994
                   JOHN
                              1994 13406365
## 2 EP091997 GUILLERMO
                              1997 12336583
## 3 EP071999
                              1999 10487965
                   DORA
## 4 CP012006
                   IOKE
                              2006 10061157
## 5 EP072014 GENEVIEVE
                              2014 9854077
## 6 CP021997
                  OLIWA
                              1997 8516060
```

Scatterplot of distance vs duration

Todas las tormentas

Developing systems

Sobretodo en los developing systems (eliminando tormentas pequeñas), parece bastante claro que la velocidad de avance del huracán es superior para los años calientes.

Análisis de posición inicial y final

En los gráficos (no he puesto el continente de fondo) tenemos básicamente un scatterplot de la posición inicial y final (separado por años calientes y fríos), además he hecho que la transparencia de los puntos así como el tamaño dependan de la distancia recorrida por los huracanes.

North Atlantic

Todas las tormentas (NATL)

```
plot_positions("NATL", "first") + scale_x_continuous( limits = c(-115,10), expand = c(0,0) ) + scale_y_
```


plot_positions("NATL", "last") + scale_x_continuous(limits = c(-115,10), expand = c(0,0)) + scale_y_c

Warning: Removed 1 rows containing missing values (geom_point).

Developing systems (NATL)

plot_positions("NATL", "first", 33) + scale_x_continuous(limits = c(-115,10), expand = c(0,0)) + scal

plot_positions("NATL", "last", 33) + scale_x_continuous(limits = c(-115,10), expand = c(0,0)) + scale

Warning: Removed 1 rows containing missing values (geom_point).

East Pacific

Todas las tormentas (EPAC)

```
plot_positions("EPAC", "first") + scale_x_continuous( limits = c(-160,-80), expand = c(0,0) ) + scale_y
```

Warning: Removed 11 rows containing missing values (geom_point).

plot_positions("EPAC", "last") + scale_x_continuous(limits = c(-160,-80), expand = c(0,0)) + scale_y_

Warning: Removed 61 rows containing missing values (geom_point).

Developing systems (EPAC)

plot_positions("EPAC", "first", 33) + scale_x_continuous(limits = c(-160,-80), expand = c(0,0)) + sca

Warning: Removed 7 rows containing missing values (geom_point).

plot_positions("EPAC", "last", 33) + scale_x_continuous(limits = c(-160,-80), expand = c(0,0)) + scal

Warning: Removed 52 rows containing missing values (geom_point).

