	Equivalencias en Lógica			Reglas de Inferencia							
E0	$ eg \mathbf{T} \equiv \mathbf{F} \;,\;\; eg \mathbf{F} \equiv \mathbf{T}$ Equivalencia Base		<u> </u>		$\alpha \to \beta$						
E1	$\neg \neg \alpha \equiv \alpha$	Ley de la doble negación] I1	,		Modus Ponens					
E2	$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$ $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$	Leyes de De Morgan			$\begin{array}{c} \therefore \beta \\ \hline \alpha \to \beta \end{array}$						
E3	$\alpha \lor \beta \equiv \beta \lor \alpha$ $\alpha \land \beta \equiv \beta \land \alpha$	Leyes conmutativas	I2		$\frac{\beta \to \gamma}{\therefore \alpha \to \gamma}$			Ley del silogismo o Silogismo Hipotético			
E4	$\alpha \lor (\beta \lor \gamma) \equiv (\alpha \lor \beta) \lor \gamma$ $\alpha \land (\beta \land \gamma) \equiv (\alpha \land \beta) \land \gamma$	Leyes asociativas	I3		$\begin{array}{c} \alpha \to \beta \\ \hline \gamma \beta \end{array}$		Modi	Modus Tollens			
E5	$\begin{array}{l} \alpha\vee(\beta\wedge\gamma)\equiv(\alpha\vee\beta)\wedge(\alpha\vee\gamma)\\ \alpha\wedge(\beta\vee\gamma)\equiv(\alpha\wedge\beta)\vee(\alpha\wedge\gamma) \end{array}$ Leyes distributivas			∴ ¬α α							
E6	$\alpha \vee \alpha \equiv \alpha$ $\alpha \wedge \alpha \equiv \alpha$	Leyes de idempotencia	I4		$\frac{\beta}{\alpha \wedge \alpha}$	$\overline{\beta}$	Adici	Adición conjuntiva			
E7	$\alpha \vee \mathbf{F} \equiv \alpha$ $\alpha \wedge \mathbf{T} \equiv \alpha$	Leyes de identidad o de neutros	I5		$\begin{array}{c} \alpha \vee \beta \\ \underline{\neg \alpha} \\ \vdots \beta \end{array}$	-	Silog	Silogismo disjuntivo			
E8	$\alpha \vee \neg \alpha \equiv \mathbf{T}$ $\alpha \wedge \neg \alpha \equiv \mathbf{F}$	Leyes de inversas o de negación	I6		$\neg \alpha \rightarrow$	F	Regla de contradicción				
E9	$lpha \lor \mathbf{T} \equiv \mathbf{T}$ $lpha \land \mathbf{F} \equiv \mathbf{F}$	Leyes de dominación	I7		$\begin{array}{c} \therefore \alpha \\ \hline \alpha \wedge \beta \\ \vdots \alpha \end{array}$		Simp	Simplificación conjuntiva			
E10	$\alpha \lor (\alpha \land \beta) \equiv \alpha$ $\alpha \land (\alpha \lor \beta) \equiv \alpha$	Leyes de absorción] I8		$\begin{array}{c} \alpha \\ \underline{\alpha} \\ \vdots \\ \alpha \vee \beta \end{array}$		Adici	Adición disjuntiva			
	Equivalencias Sobre Condicional y Bicondicional				$\alpha \wedge \beta$	1					
E11	$\alpha \to \beta \equiv \neg \alpha \lor \beta$	Equivalencia implicación] I9		$\underline{\alpha \to (\beta \to \gamma)}$		Prueba condicional				
E12 E13	$\alpha \to \beta \equiv \neg \beta \to \neg \alpha$ $\alpha \leftrightarrow \beta \equiv (\alpha \to \beta) \land (\beta \to \alpha)$	Contrapositiva			$\frac{\therefore \gamma}{\alpha \to \gamma}$,					
Equivalencias en Lógica de Predicados			 I10				Pruel	ba por caso	os		
E14 $ \neg (\forall x, F(x)) \equiv \exists x, \neg F(x)$			1		$\frac{\beta \to \gamma}{\therefore (\alpha \lor \beta) \to \gamma}$ Prueba por casos						
E15	$\neg(\exists x, F(x)) \equiv \exists x, \ \neg(x)$ $\neg(\exists x, F(x)) \equiv \forall x, \neg F(x)$				$\alpha \to \beta$	}					
E16	$(Qx, F(x)) \lor G \equiv Qx, (F(x) \lor G)$ $(Qx, F(x)) \land G \equiv Qx, (F(x) \land G)$		I11		$\frac{\gamma \to \delta}{\alpha \vee \gamma}$	_	Dilen	Dilema constructivo			
D17	$(\forall x, F(x)) \land G = \forall x, (F(x) \land G)$ $(\forall x, F(x)) \land (\forall x, G(x)) \equiv \forall x, (F(x) \land G(x))$				$\frac{\therefore \beta \vee \beta}{\alpha \to \beta}$						
E17	$(\exists x, F(x)) \lor (\exists x, G(x)) \equiv \exists x, (F(x) \lor G(x))$				$\alpha \to \beta$ $\gamma \to \delta$	•					
E18	$(Q_1 x, F(x)) \wedge (Q_2 x, G(x)) \equiv Q_1 x Q_2 z, (F(x) \wedge G(z))$ $(Q_1 x, F(x)) \vee (Q_2 x, G(x)) \equiv Q_1 x Q_2 z, (F(x) \vee G(z))$			I12 $ \frac{\neg \beta \lor \neg \delta}{\because \neg \alpha \lor \neg \gamma} $ Dilema destructivo							
I17	$\forall x \in D_i P(x) \rightarrow Q(x)$ Modus Ponens Universal				$\alpha \vee \beta$						
	$\underline{P(a)}$ para una a particular $\therefore Q(a)$				$\frac{\neg \alpha \lor \gamma}{\therefore \beta \lor \gamma}$		Len	Lema 1			
I18	$\forall x \in D, P(x) \rightarrow Q(x)$ $\neg Q(a)$ para una a particular	Modus Tollens Universal			$\alpha \to \beta \lor \gamma$						
	$\therefore \neg P(a)$				$\beta \to \gamma$ Lema 3						
C1	Leyes en Teoría de Conjuntos			+	$\therefore \alpha \to \gamma$						
S1	$(A^c)^c = A$ Ley del doble complemento $(A \cup B)^c = A^c \cap B^c$		I13		$\frac{\forall x, F(x)}{\therefore F(a)}$		Insta	Instanciación universal			
S2	$(A \cap B)^c = A^c \cup B^c$ $A \cup B = B \cup A$	Leyes de De Morgan	I14	:	$\exists x, F(x)$		Insta	Instanciación existencial (a nueva)			
S3	$A \cap B = B \cap A$ $A \cup (B \cup C) = (A \cup B) \cup C$	Leyes conmutativas	I15		F(a) $F(a)$		Cuen	Cuantificación existencial			
S4 S5	$A \cap (B \cap C) = (A \cap B) \cap C$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Leyes asociativas	I16		$\therefore \exists x, F(x)$ $F(a)$						
S6	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup A = A$	Leyes distributivas Leyes de idempotencia	110	$\therefore \forall x, F(x)$				Generalización (a arbitraria)			
S7	$A \cap A = A$ $A \cup \emptyset = A$	Leyes de identidad		q	$\neg p$	$p \lor q$	$\frac{1}{p \vee q}$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$	
S8	$A \cap \mathcal{U} = A$ $A \cup A^c = \mathcal{U}$ $A \cap A^c = \emptyset$	Leyes de complemento	\mathbf{F}	F	+ -	F	F	F	T	\mathbf{T}	
S9	$A \cap A^c = \emptyset$ $A \cup \mathscr{U} = \mathscr{U}$	Leyes de dominación	F	Т	T	\mathbf{T}	Т	F	T	F	
	$A \cap \emptyset = \emptyset$ $A \cup (A \cap B) = A$		\mathbf{T}	F	F	${f T}$	\mathbf{T}	F	F	F	
S10	$A \cap (A \cup C) = A$	Leyes de absorción	\mathbf{T}	Т	F	\mathbf{T}	F	Т	\mathbf{T}	\mathbf{T}	
S11	$A - B = A \cap B^c$	Ley de la dif. de conj.									