Hedgehogs & Shyrmions

Point dépents in 31)

sumund w/sphere

P. Poulin *et al*. Science **275**, 1770-1773 (1997).

an be calculated with an integral:

$$d = \frac{1}{4\pi} \int_{S^2} d\theta d\varphi \, \boldsymbol{n} \cdot (\partial_{\theta} \boldsymbol{n} \times \partial_{\varphi} \boldsymbol{n})$$

Image: Elisabetta Matsumoto

Hon to formalise:

X is a Spare 10 is a point unit disk mahus a sphere

composition rule: $\begin{pmatrix}
\omega_1 \\
0 \\
0
\end{pmatrix}$ $\begin{pmatrix}
\omega_2 \\
0
\end{pmatrix}^2$ $\begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} - \sum_{\omega_1 \cup \omega_2} \omega_2$ eterrise; show this

commutes (up to homotopy)

Inverse: Mect horizontally Tiz (X) classifies print defeats in 31) (12(1717?) =7/2 - hedgehogs! une winhle (mentalility)

Shyrmions

Say we have a 3d dieter in a 2D Myion ~ 122 then n: 122 -> 52

Suppose $\lim_{|x|\to a} n(\tilde{x}) = (0, 6, 1)$

then we can compactify

	π ₁	π ₂	п ₃	π ₄	π ₅	π ₆	π ₇	π ₈	π ₉	π ₁₀	π ₁₁	π ₁₂	π ₁₃	π ₁₄	π ₁₅
s ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ¹	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	z	Z ₂	Z ₂	Z ₁₂	Z ₂	Z ₂	Z ₃	Z ₁₅	Z ₂	Z ₂ ²	Z ₁₂ ×Z ₂	Z ₈₄ ×Z ₂ ²	Z ₂ ²
<i>S</i> ³	0	0	z	Z ₂	Z ₂	Z ₁₂	Z ₂	Z ₂	Z ₃	Z ₁₅	Z ₂	Z ₂ ²	Z ₁₂ ×Z ₂	Z ₈₄ ×Z ₂ ²	Z_2^2
s ⁴	0	0	0	z	Z ₂	Z ₂	Z×Z ₁₂	Z_2^2	Z_2^2	Z ₂₄ ×Z ₃	Z ₁₅	Z ₂	Z ₂ ³	Z ₁₂₀ ×Z ₁₂ ×Z ₂	$Z_{84} \times Z_2^5$
<i>S</i> ⁵	0	0	0	0	Z	Z ₂	Z ₂	Z ₂₄	Z ₂	Z ₂	Z ₂	Z ₃₀	Z ₂	Z ₂ ³	Z ₇₂ ×Z ₂
S ⁶	0	0	0	0	0	z	Z ₂	Z ₂	Z ₂₄	0	z	Z ₂	Z ₆₀	Z ₂₄ ×Z ₂	Z_2^3
s ⁷	0	0	0	0	0	0	Z	Z ₂	Z ₂	Z ₂₄	0	0	Z ₂	Z ₁₂₀	Z ₂ ³
<i>S</i> ⁸	0	0	0	0	0	0	0	Z	Z ₂	Z ₂	Z ₂₄	0	0	Z ₂	Z×Z ₁₂₀

•