15. Genetic algorithms Generative Music Al

Overview

- 1. Intuition
- 2. Formalisation
- 3. Music generation with genetic algorithms
- 4. Strengths and limitations

What are genetic algorithms (GA)?

Genetic algorithms are optimization techniques inspired by the process of natural selection

 Species exhibit variation in traits (color, size, shape, etc.)

- Species exhibit variation in traits (color, size, shape, etc.)
- Limited resources (food, shelter) lead to a struggle for survival

- Species exhibit variation in traits (color, size, shape, etc.)
- Limited resources (food, shelter) lead to a struggle for survival
- Individuals with advantageous traits survive and reproduce

- Species exhibit variation in traits (color, size, shape, etc.)
- Limited resources (food, shelter) lead to a struggle for survival
- Individuals with advantageous traits survive and reproduce
- Traits of the individuals who survive and reproduce are passed on to the next generation

- Species exhibit variation in traits (color, size, shape, etc.)
- Limited resources (food, shelter) lead to a struggle for survival
- Individuals with advantageous traits survive and reproduce
- Traits of the individuals who survive and reproduce are passed on to the next generation
- Over many generations, these processes can result in adaptations and the evolution of species

Survival of the fittest bro!

Solutions evolve over generations to optimize a specific objective

Individual animals

Solutions evolve over generations to optimize a specific objective

Individual animals

Reproduction

Solutions evolve over generations to optimize a specific objective

Individual animals

Reproduction

Solutions evolve over generations to optimize a specific objective

Survival of the fittest

GA applications

- Aerospace design
- Routing problems
- Inventory management
- Parameter optimization for ML
- Financial portfolio optimization
- DNA sequence alignment
- Anomaly detection in signal processing
- Art / music generation
- ...

 Population: A set of candidate solutions (individuals)

- Population: A set of candidate solutions (individuals)
- Chromosomes: Encoded version of the candidate solution

- Population: A set of candidate solutions (individuals)
- Chromosomes: Encoded version of the candidate solution

# of legs	height	width	color
5	80	90	red

- Population: A set of candidate solutions (individuals)
- Chromosomes: Encoded version of the candidate solution
- Fitness function: Measures how effective a solution is

Formalising GA: Genetic operators

- Selection
- Crossover (recombination)
- Mutation

Selection

 Choose fittest individuals for producing offspring

Selection

- Choose fittest individuals for producing offspring
- Likelihood of an individual being selected is usually proportional to its fitness

Selection

- Choose fittest individuals for producing offspring
- Likelihood of an individual being selected is usually proportional to its fitness
- Roulette wheel selection, tournament selection, and rank selection

 Combine the genetic information of two parents to produce new offspring

- Combine the genetic information of two parents to produce new offspring
- Parts of the chromosomes are exchanged between two parents

- Combine the genetic information of two parents to produce new offspring
- Parts of the chromosomes are exchanged between two parents
- One-point crossover, two-point crossover, ...

One-point crossover

Parent 1

# of legs	height	width	color
5	80	90	red

Parent 2

# of legs	height	width	color
3	57	60	brown

One-point crossover

One-point crossover

Two-point crossover

Two-point crossover

- Combine the genetic information of two parents to produce new offspring
- Parts of the chromosomes are exchanged between two parents
- One-point crossover, two-point crossover, ...
- Creates genetic diversity and can lead to new solutions

Introduce variation into the offspring's genetic makeup

- Introduce variation into the offspring's genetic makeup
- Random changes are made to parts of the genetic code of the offspring

- Introduce variation into the offspring's genetic makeup
- Random changes are made to parts of the genetic code of the offspring
- Prevents the algorithm from becoming too homogeneous and helps exploring solution space

- Introduce variation into the offspring's genetic makeup
- Random changes are made to parts of the genetic code of the offspring
- Prevents the algorithm from becoming too homogeneous and helps exploring solution space
- Mutation rate is low to prevent random search

Create initial population

iteration / generation

What are GAs good for?

Problems where traditional optimization techniques fail

What are GAs good for?

- Problems where traditional optimization techniques fail
- Large, complex, multimodal search spaces

What are GAs good for?

- Problems where traditional optimization techniques fail
- Large, complex, multimodal search spaces
- Diversity and adaptation

GA for music generation

 Encode music elements as chromosomes

GA for music generation

- 1. Encode music elements as chromosomes
- 2. Craft the fitness function

GA for music generation

- 1. Encode music elements as chromosomes
- 2. Craft the fitness function
- 3. Run the algorithm

Use cases for music generation

- Melodic development
- Chord progressions
- Rhythmic patterns
- Entire compositions
- Sound synthesis
- ...

Encoding music as chromosomes

- Melody
- 1 note per gene
- Pitch + duration

C4-0.5 D4-1.0 C4-1.0 E4-2.0 C4-4.0

Encoding music as chromosomes

- Chords
- 1 chord per gene

		Cm	Dm	D	Gm	С
--	--	----	----	---	----	---

Encoding music as chromosomes

- Sound synthesis
- 1 synth parameter per gene

cut-off frequency	reverb	freq osc 1	freq osc 2	delay
0.34	0.46	0.22	0.56	0.22

Evaluates the aesthetic value of a composition

- Evaluates the aesthetic value of a composition
- Infer from music theory

- Evaluates the aesthetic value of a composition
- Infer from music theory
- Learn from data

- Evaluates the aesthetic value of a composition
- Infer from music theory
- Learn from data
- Subjective what is a good melody?

Fitness function for melody

- Linear combination of multiple criteria:
 - Scale conformity
 - Melodic contour
 - Rhythmic variation
 - Dissonance resolution

$$F = w_1 \times SC + w_2 \times MC + w_3 \times RV + w_4 \times DR$$

Interactive GA

crafting a fitness function

you being the fitness function

Interactive GA

Pros and cons of GA

- Flexible
- Explore unconventional ideas
- Good results

Pros and cons of GA

- Flexible
- Explore unconventional ideas
- Good results

- Crafting fitness function is complex
- Subjectivity

GA are optimization techniques inspired by natural selection

- GA are optimization techniques inspired by natural selection
- Solutions evolve over generations to optimize a fitness function

- GA are optimization techniques inspired by natural selection
- Solutions evolve over generations to optimize a fitness function
- Selection, crossover, recombination are applied at each iteration

- GA are optimization techniques inspired by natural selection
- Solutions evolve over generations to optimize a fitness function
- Selection, crossover, recombination are applied at each iteration
- GA for music generation:
 - Encode music elements as chromosomes
 - Craft music fitness function

- GA are optimization techniques inspired by natural selection
- Solutions evolve over generations to optimize a fitness function
- Selection, crossover, recombination are applied at each iteration
- GA for music generation:
 - Encode music elements as chromosomes
 - Craft music fitness function
- Music fitness function is complex to develop

- GA are optimization techniques inspired by natural selection
- Solutions evolve over generations to optimize a fitness function
- Selection, crossover, recombination are applied at each iteration
- GA for music generation:
 - Encode music elements as chromosomes
 - Craft music fitness function
- Music fitness function is complex to develop
- Unconventional musical ideas

What's up next?

Chord accompaniment generation for a melody with genetic algorithms