II SENIC - Semana Nacional de Iniciação Científica da SBM UFPA - Universidade Federal do Pará Belém-PA, 18 a 22 de agosto de 2025

Mínimos Quadrados e Compressão de Imagens via SVD

Arthur Rabello Oliveira¹

Em Análise Numérica, uma boa forma de medir o quão sensível um problema é a parturbações, definimos o número de condicionamento absoluto² (e posteriormente o relativo) \hat{k} de um problema $f: X \to Y$ de um espaço vetorial normado X de dados noutro Y de soluções como:

$$\hat{\kappa} = \lim_{\delta \to 0} \sup_{\|\delta x\| \le \delta} \frac{\|f(x + \delta x) - f(x)\|}{\|\delta x\|}$$

Nos problemas de regressão linear e polinomial, investigamos o comportamento das matrizes associadas. Concluimos que, enquanto a regressão linear em geral possui condicionamento convergente, a regressão polinomial é extremamente sensível à perturbações à medida que o grau n aumenta.

Documentamos casos em que o número de condicionamento ultrapassa 10^{16} para $n \geq 8$, evidenciando severa instabilidade. Como aplicação interessante, usamos a decomposição SVD para compressão de imagens digitais, demonstrando uma abordagem de redução de custo que preserva características visuais importantes.

Neste processo, cada imagem é representada como uma matriz de pixels que pode ser decomposta via SVD na forma $A=U\Sigma V^T$, onde os valores singulares (v.s) em Σ são ordenados de forma decrescente por relevância. Usamos regressão linear para encontrar uma quantidade ótima de valores singulares a reter.

Para quantificar a eficiência da compressão, implementamos métricas de erro como MSE (Mean Squared Error) e PSNR (Peak Signal-to-Noise Ratio) e analisamos o comportamento dessas métricas em função do número de v.s utilizados. Concluimos que os primeiros v.s retêm a maior parte da qualidade de imagem, permitindo reconstruções satisfatórias com menos de 20% dos v.s originais.

Figure 1: Um exemplo, com k = quantidade de v.s utilizados

Além da redução significativa no armazenamento, demonstramos que o bom condicionamento da regressão linear permite predizer com confiabilidade o limiar ótimo de compressão para diferentes classes de imagens. Os resultados reforçam a importância do estudo do condicionamento numérico tanto para fins teóricos quanto para aplicações práticas em processamento de dados e imagens.

¹Escola de Matemática Aplicada, Fundação Getúlio Vargas (FGV/EMAp), email: arthur.oliveira.1@fgv.edu.br

²Veja mais em Trefethen & Bau: Numerical Linear Algebra