POKHARA UNIVERSITY

Level: Bachelor Semester: Fall Year : 2019
Programme: BE Full Marks: 100
Course: Real Time System Pass Marks: 45
Time : 3hrs.

Candidates are required to give their answers in their own words as far

7

8

7

8

8

7

as practicable.

The figures in the margin indicate full marks.

Attempt all the questions.

- 1. a) Differentiate between a Real time System and a Real time Operating System with examples. What features must a programming language possess to be classified it as a Real time Programming language?
 - b) What are the common Misconceptions regarding Real time Systems? Explain the Real Time System design issues with suitable example.
- 2. a) Explain the recommendations on specification approach for Real Time System.
 - b) What do you mean by Real Time Kernel? Explain the Pseudo Kernel with examples.
- 3. a) How do Rate Monotonic Analysis and Earliest Deadline First scheduling policies schedule tasks?

 Draw a time line to find out if the following two tasks with the

given specifications

Task	Release Time r _i	Execution Time e _i	Periodicity pi
T ₁	0	2	4
T ₂	1	3	6

can be feasibly scheduled according to

- i. Rate Monotonic Analysis (RMA)
- ii. Earliest Deadline First (EDF)
- b) Compare and contrast Data Buffering and Time Relative Buffering with suitable diagram.

4.	a)	Why is proper memory management crucial in Real time Systems?	8
		What are various ways of performing efficient Real time memory management?	
	b)		7
5.	a)	What do you mean by Variable Selection? A computer system has 59 megabytes of program memory that is loaded at 65%, 30 megabytes of RAM area that is loaded at 18%, and 17 megabytes of stack area that is loaded at 55%. Calculate the total memory utilization.	8
	b)	Do you think Real time Systems should be fault tolerant as well? Justify. In what ways fault tolerance provided by N-Version Programming is different from fault tolerance provided by Built-in-test software (BITS) technique? Explain with an example.	2
6.	a)	Compare and contrast System Unification & System Verification.	7
	b)	In a real-time system why is it often desirable to lock the important process's memory down? How can memory locking be done using POSIX APIs?	8
7.	W	rite short notes on: (Any two)	2×5
	a)	Interrupt driven and Preemptive-Priority System	
	b)	Binary Angular Measure	
	c)	Thread Creation Mechanism	