James K. Pringle 550.621 Probability Dr. Jim Fill Assignment 2 February 28, 2014

Assignment 2

All the exercises on the transition probabilities handout

1. Let $(\Omega_1, \mathcal{A}_1)$ and $(\Omega_2, \mathcal{A}_2)$ be two measurable spaces and let $\pi_i : \Omega_1 \times \Omega_2 \to \Omega_i$ be the *i*th projection, i = 1, 2. Set

 $\mathcal{C} := \pi_1^{-1}(\mathcal{A}_1) \cup \pi_2^{-1}(\mathcal{A}_2)$, the class of measurable cylinders,

 $\mathcal{R} := \{A_1 \times A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\}, \text{ the class of measurable rectangles,}$

$$\mathcal{U} := \left\{ \sum_{j \in J} R_j : J \text{ finite, } R_j \in \mathcal{R} \text{ for each } j \right\}.$$

(a) Show \mathcal{C} is closed under complementation.

Proof. Given an element C of C, we have $C = A_1 \times \Omega_2$ or $C = \Omega_1 \times A_2$ for some $A_1 \in \mathcal{A}_1$ or $A_2 \in \mathcal{A}_2$. (As an aside, note since $\Omega_1 \in \mathcal{A}_1$ and $\Omega_2 \in \mathcal{A}_2$ by definition of σ -field, then $C \in \mathcal{R}$. Hence $C \subset \mathcal{R}$. The complement of C is $C^c = A_1^c \times \Omega_2$ or $C^c = \Omega_1 \times A_2^c$. Since σ -fields are closed under complementation, $A_1^c \in \mathcal{A}_1$ and $A_2^c \in \mathcal{A}_2$. Therefore $C^c \in C$.

(b) Show \mathcal{R} is a π -system.

Proof. Let $A_1 \times A_2 \in \mathcal{R}$ and $B_1 \times B_2 \in \mathcal{R}$ where A_i and B_i are elements of \mathcal{A}_i for i = 1, 2. Taking the intersection of both sets, we have

$$(A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (A_2 \cap B_2)$$

Since A_i and B_i are elements of \mathcal{A}_i for i = 1, 2 it follows that $A_i \cap B_i \in \mathcal{A}_i$ for i = 1, 2 by closure under countable intersections of σ -fields. Thus $(A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (A_2 \cap B_2) \in \mathcal{R}$. Hence \mathcal{R} is a π -system.

(c) Show \mathcal{U} is the field generated by \mathcal{C} (and by \mathcal{R}).

Proof. First, we show that \mathcal{U} is a field.

Closure under binary intersection: Suppose $U_1 \in \mathcal{U}$ and $U_2 \in \mathcal{U}$. Then $U_1 = \sum_{j=1}^{J} R_j$ and let $U_2 = \sum_{k=1}^{K} S_k$ where $R_j \in \mathcal{R}$ and $S_k \in \mathcal{R}$ for each j and k and J and K are finite.

$$U_1 \cap U_2 = \sum_{j=1}^J R_j \bigcap \sum_{k=1}^K S_k$$
$$= \cup_{j=1}^J R_j \bigcap \cup_{k=1}^K S_k$$
$$= \cup_{j=1}^J \left(R_j \bigcap \cup_{k=1}^K S_k \right)$$
$$= \cup_{j=1}^J \left(\cup_{k=1}^K R_j \cap S_k \right)$$

For each j and k, since \mathcal{R} is a π -system, $R_j \cap S_k = T_{jk}$ is a rectangle. Furthermore, suppose $(i, j) \neq (i', j')$. Then

$$T_{jk} \cap T_{j'k'} = R_j \cap S_k \bigcap R_{j'} \cap S_{k'} = R_j \cap R_{j'} \bigcap S_k \cap S_{k'} = \emptyset$$

because $\{R_i\}$ are disjoint and $\{S_k\}$ are disjoint. Therefore,

$$U_1 \cap U_2 = \bigcup_{j=1}^J \left(\bigcup_{k=1}^K R_j \cap S_k \right) = \sum_{\substack{j \in \{1, \dots, J\} \\ k \in \{1, \dots, K\}}} T_{jk} \in \mathcal{U}$$

Thus \mathcal{U} is closed under binary intersection.

Next we show closure under intersection of finite terms. The base case is already proven above (K=2). Suppose for some integer K>2

$$\cap_{k=1}^K U_k \in \mathcal{U}$$

where $U_k \in \mathcal{U}$ for each k. Then suppose U_1, \dots, U_{K+1} are members of \mathcal{U} . Calculating,

$$\bigcap_{k=1}^{K+1} U_k = \left(\bigcap_{k=1}^K U_k\right) \cap U_{K+1}$$

is the intersection of two elements of \mathcal{U} by inductive hypothesis. Then by the base case their intersection is in \mathcal{U} . Hence

$$\bigcap_{k=1}^{K+1} U_k \in \mathcal{U}$$

By induction, the intersection of any k elements of \mathcal{U} is a member of \mathcal{U} for all positive integers k.

Closure under complementation: First a little lemma. Let $R = A_1 \times A_2$ be a rectangle in \mathcal{R} . Then

$$R^{c} = (A_{1}^{c} \times A_{2}) \cup (A_{1} \times A_{2}^{c}) \cup (A_{1}^{c} \times A_{2}^{c})$$

is a finite union of disjoint rectangles in \mathcal{R} . Hence $R^c \in \mathcal{U}$.

Suppose $U = \sum_{j=1}^{J} R_j \in \mathcal{U}$ where J is finite and $R_j \in \mathcal{R}$ for each j. Then

$$U^{c} = \left(\sum_{j=1}^{J} R_{j}\right)^{c}$$
$$= \left(\bigcup_{j=1}^{J} R_{j}\right)^{c}$$
$$= \bigcap_{j=1}^{J} R_{j}^{c}$$

Since $R_j^c \in \mathcal{U}$ by the little lemma and intersection of a finite number of members of \mathcal{U} lies in \mathcal{U} (as proved above with induction), it follows that

$$U^c = \cap_{j=1}^J R_j^c \in \mathcal{U}$$

Since closure of binary intersection is equivalent to closure of binary union under closure of complementation (Chung 17), it is demonstrated that \mathcal{U} is a field.

 \mathcal{U} is the field generated by \mathcal{R} and \mathcal{C} : It was shown in (a) that $\mathcal{C} \subset \mathcal{R}$. Since $\langle \mathcal{R} \rangle$ contains \mathcal{R} (the angle brackets denote "field generated by"), it follows that

$$C \subset \mathcal{R} \subset \langle \mathcal{R} \rangle \tag{1}$$

Consider $\langle \mathcal{C} \rangle$. Let $R \in \mathcal{R}$. Then $R = A_1 \times A_2$ for $A_1 \in \mathcal{A}_1$ and $A_2 \in \mathcal{A}_2$. Then since $A_1 \times \Omega_2 \in \mathcal{C}$ and $\Omega_1 \times A_2 \in \mathcal{C}$ and since $\langle \mathcal{C} \rangle$ is closed under binary intersection,

$$R = A_1 \times A_2 = (A_1 \times \Omega_2) \cap (\Omega_1 \times A_2) \in \langle \mathcal{C} \rangle$$

Therefore $\mathcal{R} \subset \langle \mathcal{C} \rangle$. By definition of "field generated by," the field generated by a set is a subset of all other fields that contain that set. Thus

$$\mathcal{R} \subset \langle \mathcal{R} \rangle \subset \langle \mathcal{C} \rangle$$
 and $\mathcal{C} \subset \langle \mathcal{C} \rangle \subset \langle \mathcal{R} \rangle$ by (1)

Therefore $\langle \mathcal{C} \rangle = \langle \mathcal{R} \rangle$.

Let $R \in \mathcal{R}$, it is the case that R is the sum of one rectangle (itself). Thus $R \in \mathcal{U}$, and $\mathcal{R} \subset \mathcal{U}$. Since \mathcal{U} is a field containing \mathcal{R} , by the same reasoning above,

$$\mathcal{R} \subset \langle \mathcal{R} \rangle \subset \mathcal{U} \tag{2}$$

Let $U = \sum_{j=1}^{J} R_j \in \mathcal{U}$ where J is finite and $R_j \in \mathcal{R}$ for each j. Then $U = \bigcup_{j=1}^{J} R_j$. Since closure of binary union implies closure of finite union (see Chung 17), then $\langle \mathcal{R} \rangle$ is closed under finite union. Hence

$$U = \sum_{j=1}^{J} R_j = \bigcup_{j=1}^{J} R_j \in \langle \mathcal{R} \rangle$$

Therefore $\mathcal{U} \subset \langle \mathcal{R} \rangle$. Combining that with (2), there is set equality, i.e.

$$\mathcal{U} = \langle \mathcal{R} \rangle$$

Thus

$$\mathcal{U} = \langle \mathcal{R} \rangle = \langle \mathcal{C} \rangle$$

since $\langle \mathcal{R} \rangle = \langle \mathcal{C} \rangle$ as shown above.

2. Let Ω_1 and Ω_2 be two spaces; set $\Omega = \Omega_1 \times \Omega_2$. Let $X : \Omega \to \Psi$ (respectively, $A \subset \Omega$). The section of X (resp., of A) at $\omega_1 \in \Omega_1$ is defined to be the function $X_{\omega_1} : \Omega_2 \to \Psi$ (resp., the set $A_{\omega_1} \subset \Omega_2$) given by $X_{\omega_1}(\omega_2) = X(\omega_1, \omega_2)$ (resp., by $A_{\omega_1} = \{\omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in A\}$).

Show that $(I_A)_{\omega_1} = I_{A_{\omega_1}}$ for $A \subset \Omega$ and $(X^{-1}(B))_{\omega_1} = X_{\omega_1}^{-1}(B)$ for $B \subset \Psi$.

Proof. Let $A \subset \Omega$. Suppose $\omega_2 \in A_{\omega_1}$. Thus $(\omega_1, \omega_2) \in A$. Therefore, $I_{A_{\omega_1}}(\omega_2) = 1$ and $(I_A)_{\omega_1}(\omega_2) = I_A(\omega_1, \omega_2) = 1$. Both functions agree for $\omega_2 \in A_{\omega_1}$. Now suppose $\omega_2 \notin A_{\omega_1}$. Then $(\omega_1, \omega_2) \notin A$. Thus $I_{A_{\omega_1}}(\omega_2) = 0$ and $(I_A)_{\omega_1}(\omega_2) = I_A(\omega_1, \omega_2) = 0$. And we conclude $(I_A)_{\omega_1} = I_{A_{\omega_1}}$ for $A \subset \Omega$.

For the second part, note for all $B \subset \Psi$

$$(X^{-1}(B))_{\omega_1} = \{\omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in X^{-1}(B)\}$$

$$= \{\omega_2 \in \Omega_2 : X(\omega_1, \omega_2) \in B\}$$

$$= \{\omega_2 \in \Omega_2 : X_{\omega_1}(\omega_2) \in B\}$$

$$= (X_{\omega_1})^{-1}(B)$$

$$= X_{\omega_1}^{-1}(B)$$

as desired.

3. Notations are the same as Problem 2. Let $i_{\omega_1}:\Omega_2\to\Omega$ be the injection mapping defined by

$$i_{\omega_1}(\omega_2) = (\omega_1, \omega_2).$$

Show that

$$A_{\omega_1} = i_{\omega_1}^{-1}(A), \qquad X_{\omega_1} = X \circ i_{\omega_1}.$$

Proof. For the first part, notice

$$A_{\omega_1} = \{ \omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in A \}$$

$$= \{ \omega_2 \in \Omega_2 : i_{\omega_1}(\omega_2) \in A \}$$

$$= (i_{\omega_1})^{-1}(A)$$

$$= i_{\omega_1}^{-1}(A)$$

as desired. Also, for all $\omega_2 \in \Omega_2$ it is the case that

$$X_{\omega_1}(\omega_2) = X(\omega_1, \omega_2) = X(i_{\omega_1}(\omega_2)) = X \circ i_{\omega_1}(\omega_2).$$

Hence $X_{\omega_1} = X \circ i_{\omega_1}$ as desired.

4. Let Ψ be an uncountable set, and let \mathcal{B} be the σ -field in Ψ generated by the singletons. (\mathcal{B} consists of the countable and co-countable subsets of Ψ .) Take $(\Omega_1, \mathcal{A}_1) = (\Psi, \mathcal{B}) = (\Omega_2, \mathcal{A}_2)$. Consider the diagonal $\Delta := \{(\psi, \psi) : \psi \in \Psi\}$ of $\mathcal{A} = \mathcal{B} \otimes \mathcal{B}$. Show that every section of Δ is in \mathcal{B} , but $\Delta \notin \mathcal{A}$.

Proof. For all $\psi_1 \in \Psi = \Omega_1$, the section

$$\Delta_{\psi_1} = \{ \psi \in \Psi = \Omega_2 : (\psi_1, \psi) \in \Delta \} = \{ \psi_1 \}$$

is an element of \mathcal{B} , since \mathcal{B} contains the singletons. Similarly, for all $\psi_2 \in \Psi = \Omega_2$, the section

$$\Delta_{\psi_2} = \{ \psi \in \Psi = \Omega_1 : (\psi, \psi_2) \in \Delta \} = \{ \psi_2 \}$$

is an element of \mathcal{B} . Thus every section of Δ is in \mathcal{B} .

Show $\Delta \notin \mathcal{A}$: Let

$$S_1 = \{ \{ \psi \} \times \Psi : \psi \in \Psi \}$$

$$S_2 = \{ \Psi \times \{ \psi \} : \psi \in \Psi \}$$

$$S = S_1 \cup S_2$$

Let \mathcal{C} be the class of cylinders of \mathcal{A} as defined in problem 1. From the class notes, $\sigma(\mathcal{C}) = \mathcal{A}$. We show that $\sigma(\mathcal{C}) = \sigma(\mathcal{S})$.

Let $S \in \mathcal{S}$. Then $S = \{\psi\} \times \Psi$ or $S = \Psi \times \{\psi\}$ for some $\psi \in \Psi$. Since \mathcal{B} is generated by the singletons, $\{\psi\} \in \mathcal{B}$. Therefore both $\{\psi\} \times \Psi$ and $\Psi \times \{\psi\}$ are cylinders (members of \mathcal{C}). Furthermore, both $\{\psi\} \times \Psi$ and $\Psi \times \{\psi\}$ are members of $\sigma(\mathcal{C})$ since $\mathcal{C} \subset \sigma(\mathcal{C})$. Since S was arbitrary in S,

$$\mathcal{S} \subset \mathcal{C} \subset \sigma(\mathcal{C})$$

Because $\sigma(S)$ is a subset of any σ -field that contains S, it follows that

$$\sigma(\mathcal{S}) \subset \sigma(\mathcal{C}).$$

Define $\mathcal{G}_1 = \{B : B \times \Psi \in \sigma(\mathcal{S})\}$. We show \mathcal{G}_1 is a σ -field. Since $\sigma(\mathcal{S})$ is a σ -field, $\Psi \times \Psi \in \sigma(\mathcal{S})$. Therefore, $\Psi \in \mathcal{G}_1$. Let $B \in \mathcal{G}_1$. Then $B \times \Psi \in \sigma(\mathcal{S})$. Since $\sigma(\mathcal{S})$ is a σ -field,

$$(B \times \Psi)^c = (B^c \times \Psi) \cup (B \times \Psi^c) \cup (B^c \times \Psi^c)$$
$$= (B^c \times \Psi) \cup (B \times \emptyset) \cup (B^c \times \emptyset)$$
$$= (B^c \times \Psi) \cup \emptyset \cup \emptyset$$
$$= B^c \times \Psi$$

is a member of $\sigma(S)$. Hence $B^c \in \mathcal{G}_1$. Let B_1, B_2, \cdots be a sequence of sets in \mathcal{G}_1 . Then $(B_1 \times \Psi), (B_2 \times \Psi), \cdots$ is a sequence of sets in $\sigma(S)$. Thus

$$\left(\bigcup_{i=1}^{\infty} (B_i \times \Psi)\right) = \left(\bigcup_{i=1}^{\infty} B_i\right) \times \Psi \in \sigma(\mathcal{S})$$

Hence $\bigcup_{i=1}^{\infty} B_i \in \mathcal{G}_1$. Therefore \mathcal{G}_1 is a σ -field. Note for all $\psi \in \Psi$ it is the case that $\{\psi\} \times \Psi \in \sigma(\mathcal{S})$ because $\{\psi\} \times \Psi \in S_1$ and $S_1 \subset \mathcal{S} \subset \sigma(\mathcal{S})$. It follows that \mathcal{G}_1 contains all the singletons. Since \mathcal{B} is a subset of all σ -fields that contain the singletons, we have $\mathcal{B} \subset \mathcal{G}_1$.

Similarly, define $\mathcal{G}_2 = \{B : \Psi \times B \in \sigma(\mathcal{S})\}$. By similar reasoning to what comes above for \mathcal{G}_1 (substitute $B \times \Psi$ by $\Psi \times B$ and S_1 by S_2), it follows that $\mathcal{B} \subset \mathcal{G}_2$.

Let $C \in \mathcal{C}$. Case 1: For some $B \in \mathcal{B}$, we have $C = (B \times \Psi) \in \sigma(\mathcal{S})$ because $B \in \mathcal{B} \subset \mathcal{G}_1$. Case 2: For some $B \in \mathcal{B}$, we have $C = (\Psi \times B) \in \sigma(\mathcal{S})$ because $B \in \mathcal{B} \subset \mathcal{G}_2$. In both cases $C \in \sigma(\mathcal{S})$. Since C was arbitrary, $C \subset \sigma(\mathcal{S})$. Note $\sigma(C)$ is a subset of all σ -fields that contain C. Hence

$$\sigma(\mathcal{C}) \subset \sigma(\mathcal{S})$$

Since set inclusion is proved in both directions, it follows that $\sigma(\mathcal{C}) = \sigma(\mathcal{S})$.

Note $\mathcal{A} = \sigma(\mathcal{C}) = \sigma(\mathcal{S})$. Suppose, by way of contradiction, $\Delta \in \mathcal{A}$. Problem 2.9 in Billingsley states

Theorem. If $B \in \sigma(\mathscr{A})$, then there exists a countable subclass \mathscr{A}_B of \mathscr{A} such that $B \in \sigma(\mathscr{A}_B)$.

(A proof is given at the end of this assignment).

Since $\mathcal{A} = \sigma(\mathcal{S})$, we have $\Delta \in \sigma(\mathcal{S})$. By problem 2.9, there exists some countable sublass \mathcal{S}_{Δ} of \mathcal{S} such that $\Delta \in \sigma(\mathcal{S}_{\Delta})$. We conclude

$$\mathcal{S}_{\Delta} = \{\{\psi_i\} \times \Psi : i \in I_1\} \cup \{\Psi \times \{\psi_i\} : i \in I_2\},\$$

Where I_1 and I_2 are at most countable indexing sets and could possibly be empty. Let $T = \{\psi_i : \psi_i \in \Psi \text{ and } i \in I_1 \cup I_2\}$ so that T is the set of all elements of Ψ that form a singleton cylinder in \mathcal{S}_{Δ} .

Let \mathcal{P}_1 be the class containing T^c and the singletons $\{\psi_i\}$ where $i \in I_1 \cup I_2$. Hence \mathcal{P}_1 is a countable partition of Ψ . Let $\mathcal{P}_2 = [P_1 \times P_2 : P_1, P_2 \in \mathcal{P}_1]$. Hence \mathcal{P}_2 is a countable partition of $\Psi \times \Psi$. Let \mathscr{U} (script "U") be the class of countable unions of sets (or blocks) in the partition \mathcal{P}_2 , and let \mathscr{U} include the empty set. An example, for demonstration, of an element in \mathscr{U} is the set $(\{\psi_1\} \times \{\psi_1\}) \cup (\{\psi_2\} \times T^c)$. We claim (i) \mathscr{U} is a σ -field and (ii) $\sigma(\mathcal{S}_{\Delta}) \subset \mathscr{U}$.

- (i) By definition, W includes the empty set. Since P₂ is countable and since the union of the blocks of P₂ is Ψ × Ψ, it follows that Ψ × Ψ is contained in W. A set of W is the countable union of blocks of the partition, and that set's complement is the countable union of all the other blocks. Thus W is closed under complementation. Finally, W is closed under countable union by definition. Hence W has the three properties of a σ-field.
- (ii) The elements of \mathcal{S}_{Δ} are contained in \mathscr{U} since $\{\psi_i\} \in \mathcal{P}_1$ where $i \in I_1 \cup I_2$, and

$$\{\psi_i\} \times \Psi = \bigcup_{P \in \mathcal{P}_1} (\{\psi_i\} \times P) = \{\psi_i\} \times \Psi \in \mathscr{U} \quad \text{and similarly}$$

$$\Psi \times \{\psi_i\} = \bigcup_{P \in \mathcal{P}_1} (P \times \{\psi_i\}) = \Psi \times \{\psi_i\} \in \mathscr{U}.$$

By (i), \mathscr{U} is a σ -field containing \mathcal{S}_{Δ} . Thus $\sigma(\mathcal{S}_{\Delta}) \subset \mathscr{U}$ and $\Delta \in \mathscr{U}$.

Now we seek the contradiction. Set

$$D = \Delta \setminus \left(\bigcup_{\psi \in T} (\psi, \psi) \right) = \bigcup_{\psi \in T^c} (\psi, \psi) \subset T^c \times T^c.$$

Note $\bigcup_{\psi \in T} (\psi, \psi) = \bigcup_{\psi \in T} (\{\psi\} \times \{\psi\}) \in \mathscr{U}$ since it is a countable union of elements in \mathcal{P}_2 . Since $\Delta \in \mathscr{U}$, we have $D \in \mathscr{U}$ by the closure properties of \mathscr{U} . Since T^c is uncountable, there exist ψ_1 and ψ_2 in T^c with $\psi_1 \neq \psi_2$. It follows that (ψ_1, ψ_2) is an element of $T^c \times T^c$ but it is not an element of D. Thus D is a strict subset of $T^c \times T^c$. Since $D \in \mathscr{U}$, we have D is equal to U, some countable union of sets in \mathcal{P}_2 . One of the sets in the countable union U must be $T^c \times T^c$ (if not, then D is not a subset of U). In that case, however, D is a strict subset of $T^c \times T^c \subset U$. Thus $D \neq U$. This is our contradiction. Therefore $\Delta \notin \mathcal{A}$ as desired.

5. A transition probability is defined as follows:

A mapping $T: \Omega_1 \times \mathcal{A}_2 \to [0,1]$ is called a transition probability from $(\Omega_1, \mathcal{A}_1)$ to $(\Omega_2, \mathcal{A}_2)$ (briefly, from Ω_1 to Ω_2) if

- (1) $T(\omega_1; \cdot)$ is a probability measure on $(\Omega_2, \mathcal{A}_2)$ for each $\omega_1 \in \Omega_1$, and
- (2) $T(\cdot; A_2)$ is A_1 -measurable for each $A_2 \in A_2$.

Show that given (1), then (2) holds if $T(\cdot; A_2)$ is \mathcal{A}_1 -measurable for all A_2 in some π -system generating \mathcal{A}_2 .

Proof. Let (1) be true. Let $T(\cdot; A_2)$ be \mathcal{A}_1 -measurable for all A_2 in some π -system \mathscr{P} generating \mathcal{A}_2 . Define

$$\mathscr{G} = \{A_2 \in \mathcal{A}_2 : T(\cdot; A_2) \text{ is } \mathcal{A}_1\text{-measurable } \}$$

We now show that \mathscr{G} is a λ -system.

Contains Ω_2 : By (1), we have $T(\omega_1; \Omega_2) = 1$ for all $\omega_1 \in \Omega_1$. Thus $T(\cdot; \Omega_2)$ is a constant function. Hence it is \mathcal{A}_1 -measurable, and $\Omega_2 \in \mathcal{G}$.

Closure under proper difference: Now suppose B_1 and B_2 are elements of \mathscr{G} with $B_1 \subset B_2$. Since B_1 and B_2 are elements of \mathcal{A}_2 , their difference $B_2 \setminus B_1$ is an element of \mathcal{A}_2 because \mathcal{A}_2 is a σ -field. By (1), it follows $T(\omega_1; B_2 \setminus B_1) = T(\omega_1; B_2) - T(\omega_1; B_1)$ for all $\omega_1 \in \Omega_1$. Since, $T(\cdot; B_1)$ and $T(\cdot; B_2)$ are \mathcal{A}_1 -measurable, then, by the corollary to Theorem 3.1.5 in Chung (the closure theorem), their difference, $T(\cdot; B_2 \setminus B_1)$, is \mathcal{A}_1 -measurable and is therefore a member of \mathscr{G} .

Closure under increasing union: Finally, let B_1, B_2, \cdots be a sequence of sets in \mathscr{G} with $B_n \subset B_{n+1}$ for all $n \geq 1$. Since \mathcal{A}_2 is a σ -field, it contains the countable union of the B_n . By (1) and the properties of a probability measure (i.e. monotone sequential continuity from below), for all $\omega_1 \in \Omega_1$ it is true that

$$\lim_{n \to \infty} T(\omega_1; B_n) = T(\omega_1; \cup_n B_n)$$

and the limit exists because it is the limit of a bounded monotone increasing. By Theorem 13.4 in Billingsley, since the limit of \mathcal{A}_1 -measurable $T(\cdot; B_n)$ exists everywhere (on Ω_1), then that limit, $T(\cdot; \cup_n B_n)$, is \mathcal{A}_1 -measurable. Thus it is in \mathscr{G} . We can conclude that \mathscr{G} is a λ -system.

By hypothesis, $\mathscr{P} \subset \mathscr{G}$, whence by the π - λ theorem we have $\mathcal{A}_2 = \sigma(\mathscr{P}) \subset \mathscr{G}$. By the definition of \mathscr{G} , it is clear $\mathscr{G} \subset \mathcal{A}_2$. Therefore $\mathscr{G} = \mathcal{A}_2$, which demonstrates (2).

6. Let $(\Omega_1, \mathcal{A}_1)$, $(\Omega_2, \mathcal{A}_2)$ be measurable spaces, $\Omega = \Omega_1 \times \Omega_2$, $\mathcal{A} = \mathcal{A}_1 \otimes \mathcal{A}_2$. Let M be a probability on $(\Omega_1, \mathcal{A}_1)$, and let $(T_{\omega_1})_{\omega_1 \in \Omega_1}$ be a transition probability from Ω_1 to Ω_2 . Let $\mathcal{G} = \{A \in \mathcal{A} : \omega_1 \mapsto T_{\omega_1}(A_{\omega_1}) \text{ is } \mathcal{A}_1\text{-measurable}\}$. Show that

$$T_{\omega_1}((A_1 \times A_2)_{\omega_1}) = I_{A_1}(\omega_1)T_{\omega_1}(A_2).$$
 (3)

Also show \mathscr{G} contains the π -system \mathcal{R} .

Proof. Calculating,

$$T_{\omega_1}((A_1 \times A_2)_{\omega_1}) = T(\omega_1; (A_1 \times A_2)_{\omega_1}) = \begin{cases} T(\omega_1; \emptyset) = 0 & \text{if } \omega_1 \notin A_1 \\ T(\omega_1; A_2) = T_{\omega_1}(A_2) & \text{if } \omega_1 \in A_1 \end{cases}.$$

Since,

$$I_{A_1}(\omega_1)T_{\omega_1}(A_2) = \begin{cases} 0 & \text{if } \omega_1 \notin A_1 \\ T_{\omega_1}(A_2) & \text{if } \omega_1 \in A_1 \end{cases},$$

we have (3), as desired.

To show \mathscr{G} contains \mathcal{R} , let $R = A_1 \times A_2 \in \mathcal{R}$ with $A_1 \in \mathcal{A}_1$ and $A_2 \in \mathcal{A}_2$. Our task is to show that the function on Ω_1 that sends $\omega_1 \mapsto T_{\omega_1}(R_{\omega_1})$ is an \mathcal{A}_1 -measurable function. By (3), we have

$$T_{\omega_1}(R_{\omega_1}) = T_{\omega_1}((A_1 \times A_2)_{\omega_1}) = I_{A_1}(\omega_1)T_{\omega_1}(A_2).$$

Since T_{ω_1} is a transition probability, condition (2) holds that $T(\cdot; A_2)$ is \mathcal{A}_1 -measurable for each $A_2 \in \mathcal{A}_2$. In particular, for the A_2 in $R = A_1 \times A_2$, we have $T_{\omega_1}(A_2) = T(\cdot; A_2)$ is \mathcal{A}_1 -measurable. Also since $A_1 \in \mathcal{A}_1$, the indicator I_{A_1} is \mathcal{A}_1 -measurable. Note the product of \mathcal{A}_1 -measurable functions is measurable by the corollary to Theorem 3.1.5 in Chung (the closure theorem). Hence $T_{\omega_1}(R_{\omega_1})$ is \mathcal{A}_1 -measurable and $R \in \mathcal{G}$. Therefore, $\mathcal{R} \subset \mathcal{G}$.

7. Notations are the same as Problem 6. Show that \mathcal{G} is a λ -system.

Proof. Contains Ω : Since for all $\omega_1 \in \Omega_1$, we have $T_{\omega_1}(\Omega_{\omega_1}) = T_{\omega_1}(\Omega_2) = 1$, then $\omega_1 \mapsto T_{\omega_1}(\Omega_{\omega_1})$ is a constant function. Thus it is \mathcal{A}_1 -measurable, and $\Omega \in \mathscr{G}$.

Closure under complementation: Let $A \in \mathcal{G}$. Thus $\omega_1 \mapsto T_{\omega_1}(A_{\omega_1})$ is \mathcal{A}_1 -measurable. Then, since sectioning commutes with set operations,

$$\omega_1 \mapsto T_{\omega_1}((A^c)_{\omega_1}) = T_{\omega_1}((A_{\omega_1})^c) = 1 - T_{\omega_1}(A_{\omega_1})$$

is A_1 -measurable by the closure theorem.

Closure under countable union of disjoint sets: Let B_1, B_2, \cdots be mutually disjoint elements of \mathscr{G} . Then for all $\omega_1 \in \Omega_1$ and for all integers $I \geq 1$ we have

$$T_{\omega_1} \left(\left(\bigcup_{i=1}^I B_i \right)_{\omega_1} \right) = T_{\omega_1} \left(\bigcup_{i=1}^I (B_i)_{\omega_1} \right) \quad \text{since sectioning commutes}$$
$$= \sum_{i=1}^I T_{\omega_1} \left((B_i)_{\omega_1} \right)$$

since $T(\omega_1; \cdot) = T_{\omega_1}(\cdot)$ is a probability measure on $(\Omega_2, \mathcal{A}_2)$ and the B_i are disjoint. For all ω_1 ,

$$\lim_{I \to \infty} T_{\omega_1} \left(\left(\bigcup_{i=1}^I B_i \right)_{\omega_1} \right) = \lim_{I \to \infty} \sum_{i=1}^I T_{\omega_1} \left((B_i)_{\omega_1} \right) \tag{4}$$

The series converges since it is the limit of a bounded (by 1), monotone increasing sequence of partial sums.

Calculating, for all ω_1

$$T_{\omega_1} \left(\left(\lim_{I \to \infty} \bigcup_{i=1}^{I} B_i \right)_{\omega_1} \right) = T_{\omega_1} \left(\lim_{I \to \infty} \left(\bigcup_{i=1}^{I} B_i \right)_{\omega_1} \right) \quad \text{since sectioning commutes}$$

$$= \lim_{I \to \infty} T_{\omega_1} \left(\left(\bigcup_{i=1}^{I} B_i \right)_{\omega_1} \right)$$
(5)

by monotone sequential continuity from below.

Therefore by (4) and (5) and Theorem 13.4 (ii) in Billingsley, we have

$$\omega_1 \mapsto T_{\omega_1} \left(\left(\lim_{I \to \infty} \bigcup_{i=1}^I B_i \right)_{\omega_1} \right)$$

is measurable. Hence, $\lim_{I\to\infty} \bigcup_{i=1}^I B_i \in \mathscr{G}$. We conclude \mathscr{G} is a λ -system.

8. Notations are the same as Problem 6. Let M be a probability on $(\Omega_1, \mathcal{A}_1)$. The set function MT, defined on \mathcal{A} is

$$MT(A) := \int_{\Omega_1} T_{\omega_1}(A_{\omega_1}) M(d\omega_1).$$

Furthermore, for any nonnegative A-random variable X on Ω , the map TX on Ω_1 is defined as

$$\omega_1 \mapsto \int_{\Omega_2} X_{\omega_1}(\omega_2) T_{\omega_1}(d\omega_2)$$

Let \mathcal{G} denote the collection of \mathcal{A} -measurable nonnegative random variables X such that $\omega_1 \mapsto \int_{\Omega_2} X_{\omega_1}(\omega_2) T_{\omega_1}(\mathrm{d}\omega_2)$ is A_1 -measurable and $\langle MT, X \rangle = \langle M, TX \rangle$. Show that $I_A \in \mathcal{G}$ for every $A \in \mathcal{A}$.

Proof. Let $A \in \mathcal{A}$. By problem 2 of this homework, we have $(I_A)_{\omega_1} = I_{A_{\omega_1}}$. Thus

$$\omega_1 \mapsto \int_{\Omega_2} (I_A)_{\omega_1}(\omega_2) T_{\omega_1}(d\omega_2) = \int_{\Omega_2} I_{A_{\omega_1}}(\omega_2) T_{\omega_1}(d\omega_2)$$
 (6)

$$= \int_{A_{\omega_1}} T_{\omega_1}(d\omega_2) \tag{7}$$

$$=T_{\omega_1}(A_{\omega_1})$$
 since T_{ω_1} is a probability measure (8)

is A_1 -measurable by the reasoning that follows after problem 7 in the course slides (that $\mathscr{G} = A$).

For the second part, calculating gives

$$\langle MT, I_A \rangle = \int_{\Omega} I_A(\omega) MT(d\omega)$$

$$= \int_A MT(d\omega)$$

$$= MT(A) \quad \text{since } MT \text{ is a probability measure}$$

$$= \int_{\Omega_1} T_{\omega_1}(A_{\omega_1}) M(d\omega_1) \quad \text{by the definition of } MT$$

$$= \int_{\Omega_1} \left(\int_{\Omega_2} I_{A\omega_1}(\omega_2) T_{\omega_1}(d\omega_2) \right) M(d\omega_1) \quad \text{by } (6) = (8)$$

$$= \int_{\Omega_1} (TI_A)(\omega_1) M(d\omega_1) \quad \text{by the definition of } TI_A, \text{ see bottom pg. 51}$$

$$= \langle M, TI_A \rangle$$

Thus $I_A \in \mathcal{G}$.

Acknowledgements

I helped Claire, Leslie, David, and Vivek with Billingsley 2.9. I worked with David and Vivek on the assignment.

Billingsley 2.9

Show that, if $B \in \sigma(\mathscr{A})$, then there exists a countable subclass \mathscr{A}_B of \mathscr{A} such that $B \in \sigma(\mathscr{A}_B)$.

Proof. If \mathscr{A} is at most countable, then take $\mathscr{A}_B = \mathscr{A}$. So suppose \mathscr{A} is uncountable. Define

$$\mathcal{Z} = \{\zeta : \zeta \subset \mathscr{A} \text{ and } \zeta \text{ is at most countable}\}$$

Here "at most countable" means empty, finite, or countable. Note \mathcal{Z} is nonempty. Let

$$\mathcal{F} = \bigcup_{\zeta \in \mathcal{Z}} \sigma(\zeta)$$

Then \mathcal{F} is union of all σ -fields generated by an element of \mathcal{Z} . The goal is to show that $\mathcal{F} = \sigma(\mathscr{A})$.

Given $\zeta \in \mathcal{Z}$, it follows that $\Omega \in \sigma(\zeta)$ by properties of σ -field. Therefore $\Omega \in \mathcal{F}$ because $\sigma(\zeta) \subset \mathcal{F}$.

Let $A \in \mathcal{F}$. Then exists a $\zeta_0 \in \mathcal{Z}$ such that $A \in \sigma(\zeta_0)$. By properties of σ -field, $A^c \in \sigma(\zeta_0)$. Thus

$$A^c \in \sigma(\zeta_0) \subset \mathcal{F}$$

Suppose A_1, A_2, \cdots is a sequence of elements in \mathcal{F} . Then there exist ζ_1, ζ_2, \cdots in \mathcal{Z} such that $A_i \in \sigma(\zeta_i)$ for all i. Since the countable union of countable sets is itself countable, it follows that $\bigcup_{j=1}^{\infty} \zeta_j \in \mathcal{Z}$. For all i,

$$\zeta_i \subset \bigcup_{j=1}^{\infty} \zeta_j \subset \sigma\left(\bigcup_{j=1}^{\infty} \zeta_j\right) \subset \mathcal{F}$$

Therefore, since $\sigma(\zeta_i)$ is a subset of all σ -fields that contain ζ_i , it follows that

$$\sigma(\zeta_i) \subset \sigma\left(\bigcup_{j=1}^{\infty} \zeta_j\right)$$

for all i. Hence,

$$A_i \in \sigma(\zeta_i) \subset \sigma\left(\bigcup_{j=1}^{\infty} \zeta_j\right)$$

for all i. By properties of σ -field,

$$\bigcup_{i=1}^{\infty} A_i \in \sigma\left(\bigcup_{j=1}^{\infty} \zeta_j\right) \subset \mathcal{F}$$

Thus \mathcal{F} is closed under countable union, and it has been demonstrated that \mathcal{F} is a σ -field.

Suppose $A \in \mathscr{A}$. Then $\{A\} \in \mathscr{Z}$ and it follows that $A \in \sigma(\{A\}) \subset \mathscr{F}$. Thus \mathscr{F} is a σ -field that contains \mathscr{A} . Hence $\sigma(\mathscr{A}) \subset \mathscr{F}$. Suppose $F \in \mathscr{F}$. Then there exists $\zeta \in \mathscr{Z}$ such that $F \in \sigma(\zeta)$. Since $\zeta \subset \mathscr{A} \subset \sigma(\mathscr{A})$, it follows that $\sigma(\zeta) \subset \sigma(\mathscr{A})$. Therefore, $F \in \sigma(\zeta) \subset \sigma(\mathscr{A})$ and $\mathscr{F} \subset \sigma(\mathscr{A})$. Since the set inclusion has been shown in both directions,

$$\mathcal{F} = \sigma(\mathscr{A})$$

As shown in the paragraph above, given any $B \in \mathcal{F} = \sigma(\mathscr{A})$, there exists $\zeta \in \mathcal{Z}$, some subset of \mathscr{A} , such that $B \in \sigma(\zeta)$. Define $\mathscr{A}_B := \zeta$, and it is clear that \mathscr{A}_B is a countable subclass of \mathscr{A} .