3.5. Anillos de polinomios. Ideales maximales en $\mathbb{K}[x]$

Dado el anillo $(R, +, \cdot)$ un **polinomio sobre** R es una sucesión infinita de elementos de R, indexados con enteros no negativos, con la propiedad de que existe un entero $n \ge 0$ tal que $a_i = 0$ para

todo
$$i > n$$
, $(a_0, a_1, a_2, ..., a_n, 0_R, 0_R, ...)$ $= a_0 + a_1 x + a_2 x^2 + ... + a_n x^n = \sum_{i=0}^{n} a_i x^i$

- Si $f = \sum_{k=0}^{n} a_k x^k$ los elementos $a_0, a_1, ..., a_n \in R$ reciben el nombre de **coeficientes** de f. Se llama **polinomio nulo** o **cero** al polinomio cuyos coeficientes son todos iguales a $0_R \in R$.
- Si f es un polinomio no nulo, se llama **grado de** f al mayor entero no negativo $n \in \mathbb{N} \cup \{0\}$ para el cual $a_n \neq 0_R$ y se escribe gr(f) = n. El **grado del polinomio nulo** se dice que es $-\infty$. Si $gr(f) \leq 0$ se dice que f es un **polinomio constante**.
- Si $gr(f) = n \ge 0$, al coeficiente a_n se le llama **coeficiente principal** y se escribe $cp(f) = a_n$. En un anillo con identidad $1_R \in R$, un polinomio no nulo $f \in R[x] - \{0_{R[x]}\}$ se dice que es un **polinomio mónico** si su coeficiente principal es $cp(f) = 1_R$
- Anillo de polinomios: El conjunto de todos los polinomios con coeficientes en $(R, +, \cdot)$ se nota por R[x]. En R[x] se definen las operaciones de suma y producto del siguiente modo:

$$\forall \quad f = \sum_{k=0}^{r} a_k x^k, \quad g = \sum_{k=0}^{s} b_k x^k \in R[x], \quad f + g = \sum_{k=0}^{max\{r,s\}} (a_k + b_k) x^k, \quad f \cdot g = \sum_{k=0}^{r+s} \left(\sum_{i+j=k} a_i b_j \right) x^k.$$

Si $(R, +, \cdot)$ es anillo conmutativo con identidad entonces $(R[x], +, \cdot)$ es anillo conmutativo con identidad $1_{R[x]} = (1_R, 0_R, ...) \in R[x]$. Su cero es el polinomio nulo: $0_{R[x]} = (0_R, 0_R, ...) \in R[x]$. $(R[x], +, \cdot)$ contiene un subanillo isomorfo a $(R, +, \cdot)$.

• Función polinomial: Sea $(R, +, \cdot)$ un anillo. Para cada polinomio $f = \sum_{k=0}^{n} a_k x^k \in R[x]$ se llama

función polinomial f a la aplicación $f: R \to R$, definida para $r \in R$ por $f(r) = \sum_{k=0}^{n} a_k r^k \in R$. Se dice que $\alpha \in R$ es una **raíz** de $f \in R[x]$ si verifica que $f(\alpha) = 0_R \in R$

Polinomios irreducibles sobre un dominio de integridad

Sea $(D, +, \cdot)$ un dominio de integridad. Un polinomio $f \in D[x]$, con $gr(f) \ge 0$, se dice que es **irreducible en** D[x] si f no es unidad y siempre que se exprese como $f = g \cdot h$ con $g, h \in D[x]$ se verifica que uno de los polinomios g, h es unidad de D[x].

Polinomios irreducibles sobre un cuerpo

Si $(\mathbb{K}, +, \cdot)$ es un cuerpo, un polinomio $f \in \mathbb{K}[x]$, con gr(f) = n > 0, es **irreducible en** $\mathbb{K}[x]$ si no puede ser expresado como producto de polinomios de grado estrictamente menor que gr(f) = n.

Ideales en $\mathbb{K}[x]$

- 1. Sea $(\mathbb{K}, +, \cdot)$ un cuerpo \Rightarrow todo ideal en $(\mathbb{K}[x], +, \cdot)$ es un ideal principal.
- 2. Sea $(\mathbb{K}, +, \cdot)$ un cuerpo y $f \in \mathbb{K}[x]$. El ideal (f) es maximal en $\mathbb{K}[x] \Leftrightarrow f$ es irreducible en $\mathbb{K}[x]$.

Resultados sobre raíces

Sea $(\mathbb{K}, +, \cdot)$ un cuerpo y $f \in \mathbb{K}[x]$ con gr(f) = n > 0.

- 1. **Teorema del resto**: Si $\alpha \in \mathbb{K}$ entonces $f(\alpha)$ es el resto obtenido al dividir f entre $x \alpha$
- 2. Teorema del factor: $\alpha \in \mathbb{K}$ es raíz de f si y sólo si $(x \alpha)$ divide a f en $\mathbb{K}[x]$.
- 3. f puede tener a lo sumo n raíces en \mathbb{K}

Resultados sobre polinomios irreducibles en $\mathbb{C}[x]$ y en $\mathbb{R}[x]$

- 1. Un polinomio $f \in \mathbb{C}[x]$ es irreducible en $\mathbb{C}[x] \Leftrightarrow \operatorname{gr}(f) = 1$
- 2. Un polinomio $f \in \mathbb{R}[x]$ es irreducible en $\mathbb{R}[x] \Leftrightarrow \operatorname{gr}(f) = 1$ o bien es $f = a_0 + a_1 x + a_2 x^2$, tal que $a_1^2 4a_2 a_0 < 0$

Lema de Gauss

Sean $f \in \mathbb{Z}[x]$ y $\alpha, \beta \in \mathbb{Q}[x]$ tales que $f = \alpha \cdot \beta$ con $gr(\alpha) < gr(f)$ y $gr(\beta) < gr(f)$, entonces existen polinomios $a, b \in \mathbb{Z}[x]$ verificando que $f = a \cdot b$ con $gr(a) = gr(\alpha) < gr(f)$ y $gr(b) = gr(\beta) < gr(f)$.

Criterio de raíces racionales

Si $\frac{r}{s} \in \mathbb{Q}$, con mcd(r, s) = 1, es una raíz racional de $f = a_0 + a_1 x + ... + a_n x^n \in \mathbb{Z}[x]$, polinomio de grado $n \ge 1$ y con $a_0 \ne 0 \Rightarrow r | a_0$ y $s | a_n$.

Criterio de Eisenstein

Sea $f = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x]$ con $\operatorname{mcd}(a_0, \dots, a_n) = 1$ y tal que existe un número primo $p \in \mathbb{Z}$ verificando que $p|a_i$ para todo $i \in \{0, 1, ..., n-1\}$, $p \not|a_n$ y $p^2 \not|a_0$ entonces f es irreducible en $\mathbb{Q}[x]$.

Criterio de reducción módulo primo

Sea $f = a_0 + ... + a_n x^n \in \mathbb{Z}[x]$ con $\operatorname{gr}(f) = n \geq 2$. Si existe p primo tal que $[f]_p = [a_0]_p + ... + [a_n]_p \ x^n \in \mathbb{Z}_p[x]$ tiene grado n y es irreducible en $\mathbb{Z}_p[x]$ entonces f es irreducible en $\mathbb{Q}[x]$.

3.5.31 Problemas

- 1. Encontrar todas las unidades de los siguientes anillos: a) $(\mathbb{Z}[x], +, \cdot)$ b) $(\mathbb{R}[x], +, \cdot)$ c) $(\mathbb{Z}_{11}[x], +_{11}, \cdot_{11})$
- 2. Estudiar si en el anillo $(\mathbb{Z}_4[x], +_4, \cdot_4)$, el polinomio f = 2x + 1 es una unidad.
- 3. ¿Es válido el algoritmo de la división en $(\mathbb{Z}[x], +, \cdot)$?
- 4. Calcular $d = \operatorname{mcd}(f, g)$ y polinomios λ y μ tales que $d = \lambda f + \mu g$ en los siguientes casos:
 - a) En $(\mathbb{Q}[x], +, \cdot)$: $f = x^4 x^3 + x 1$, $g = x^3 + x 2$
 - b) En $(\mathbb{Z}_2[x], +_2, \cdot_2)$: $f_1 = x^4 + 1, q_1 = x^2 + 1; f_2 = x^5 + 1, q_2 = x^2 + 1; f_3 = x^9 + 1, q_3 = x^6 + 1$
 - c) En $(\mathbb{Z}_3[x], +_3, \cdot_3)$: $f_1 = x^3 + x^2 + x + 1$, $g_1 = x^2 + 2$; $f_2 = x^5 + x^2 + 2x$, $g_2 = x^4 + x$
 - d) En $(\mathbb{Z}_5[x], +_5, \cdot_5)$: $f_1 = x^4 + 2x^3 + x^2 + 4x + 2$, $g_1 = x^2 + 3x + 1$; $f_2 = x^5 + x^4 + 2x^3 + x^2 + 4x + 2$, $g_2 = x^2 + 2x + 3$
 - e) En $(\mathbb{Z}_7[x], +7, \cdot7)$: $f = x^4 + 2x^3 + 2x^2 + 2x + 1$ y $g = x^3 x^2 + x 1$
- 5. Estudiar si la siguiente igualdad es verdadera o falsa en $\mathbb{Z}_{15}[x]$

$$(x+1)(x+14) = (x+4)(x+11)$$

- 6. En $(\mathbb{Z}[x], +, \cdot)$ sea $I = \{p \in \mathbb{Z}[x] : p(0) = 0\}$. Demostrar que I no es un ideal maximal.
- 7. Encontrar el resto que resulta al dividir $f = x^{100} + x^{90} + x^{80} + x^{50} + 1$ entre g = x 1 en $\mathbb{Z}_2[x]$
- 8. Encontrar las raíces
 - a) $x^2 5x + 6 \in \mathbb{Z}[x]$, b) $x^2 5x + 6 \in \mathbb{Z}_{12}[x]$, c) $3x^3 4x^2 x + 4 \in \mathbb{Z}_5[x]$,
 - $d) \ \ x^3 + x + 1 \in \mathbb{Z}_2[x], \qquad e) \quad x^2 x + 2 \in \mathbb{Z}_3[i][x], \quad f) \quad x^4 16 \in \mathbb{Q}[x], \quad g) \quad x^4 16 \in \mathbb{C}[x]$
- 9. Determinar si son irreducibles en $\mathbb{Q}[x]$
 - a) $x^5 + 9x^4 + 12x^2 + 6$, b) $x^4 + x + 1$, c) $x^4 + 3x^2 + 3$,
 - $d) \ \ x^5 + 5x^2 + 1, \qquad e) \quad x^2 + 3x 1, \qquad f) \quad \tfrac{5}{2}x^5 + \tfrac{9}{2}x^4 + 15x^3 + \tfrac{3}{7}x^2 + 6x + \tfrac{3}{14}x^3 + \tfrac{3}{14}x^2 + \frac{3}{14}x^2 + \frac{3}{14}x$
- 10. Expresar el polinomio como producto de polinomios irreducibles en el anillo indicado en cada caso:
 - a) $x^2 + 1 \in \mathbb{Z}_5[x]$, b) $x^3 + 5x^2 + 5 \in \mathbb{Z}_{11}[x]$, c) $x^2 + x + 1 \in \mathbb{Z}_2[x]$, $\mathbb{Z}_3[x]$, $\mathbb{Z}_5[x]$, $\mathbb{Z}_7[x]$
 - d) $x^4 + x^3 + 1$, $x^3 + x^2 + x + 1 \in \mathbb{Z}_2[x]$, e) $x^3 + 6$, $3x^2 + x + 4 \in \mathbb{Z}_7[x]$
- 11. Encontrar en cada caso, si fuera posible, un polinomio irreducible $p \in \mathbb{K}[x]$ con el grado indicado
 - a) $p \in \mathbb{Q}[x]$ con gr(p) = 3
 - b) $p \in \mathbb{R}[x]$ con gr(p) = 4
 - c) $p \in \mathbb{Z}_3[x]$ con gr(p) = 2