# Arquitetura de Redes Equipamento de redes

**Prof.: Caio Malheiros** 

caio.duarte@sp.senai.br

### **Objetivos da Aula**

- Entender a função dos principais equipamentos de rede.
- Diferenciar as funções do roteador, switch, access point, gateway
  e firewall etc.
- Compreender o papel de cada dispositivo na organização e segurança da rede.

### Introdução aos Equipamentos de Rede

#### • Definição:

• Equipamentos de rede são dispositivos que permitem a comunicação entre computadores e controlam o fluxo de dados.

#### • Importância:

• Essenciais para o funcionamento de redes locais (LAN) e redes de grande escala.

#### Placa de rede

- Chamada de network interface card, constitui a interface entre o computador e o cabo da rede.
- A função da placa de rede é preparar, enviar e controlar os dados de uma rede.
- Geralmente possui dois leds, o verde que corresponde a alimentação da placa e o laranja indica uma atividade na rede (envio e recebimento de dados)





- Cabo de Par Trançado (Twisted Pair)
- Tipos: CAT5e, CAT6, CAT6a, CAT7, CAT8
- Velocidade:
  - CAT5e: até 1 Gbps
  - CAT6: até 10 Gbps (em curtas distâncias)
  - CAT7 e CAT8: até 40 Gbps (curtas distâncias)
- Aplicações: Redes LAN em residências e empresas
- Vantagens: Boa relação custo-benefício, fácil instalação
- Limitações: Sensível a interferências em grandes distâncias (CAT5e e CAT6)

Cabo de Par Trançado (Twisted Pair)





- Cabo Coaxial
- Tipos: RG6, RG59
- Velocidade: Em média até 10 Mbps
- Aplicações: Conexões de TV a cabo, redes antigas de Ethernet e sistemas de segurança (CFTV)
- Vantagens: Boa imunidade a interferências
- Limitações: Velocidade limitada para redes modernas, mais grosso e rígido que o par trançado

Cabo Coaxial





- Cabo de Fibra Óptica
- Tipos:
  - Monomodo: Longas distâncias (até 100 km), usado em redes de backbone
  - Multimodo: Curta e média distância (até 2 km), ideal para redes locais e data centers
- Velocidade: 10 Gbps a 100 Gbps e superiores
- Aplicações: Data centers, redes de alta velocidade, backbone de internet
- Vantagens: Alta velocidade, longa distância sem perda de sinal, imune a interferências
- Limitações: Custo elevado, instalação complexa

Cabo de Fibra Óptica





 Os conectores de rede variam de acordo com o tipo de conexão (cabeada ou sem fio), a velocidade e o tipo de cabo ou frequência de transmissão que utilizam. Aqui estão os conectores de rede mais comuns:

- RJ-45 (Registered Jack 45):
- O conector mais comum em redes Ethernet, utilizado em cabos de par trançado, como os cabos CAT5e, CAT6, CAT6a e CAT7.
- Suporta velocidades de 1 Gbps a 10 Gbps, dependendo do cabo.



- RJ-11:
- Embora não seja um conector de rede no sentido moderno, ele foi utilizado em redes antigas e ainda é usado para conexões telefônicas e DSL.
- Suporta velocidades muito mais baixas e tem apenas quatro pinos, em comparação aos oito pinos do RJ-45.





- BNC (Bayonet Neill-Concelman):
- Conector antigo, utilizado principalmente em redes coaxiais (como Ethernet 10BASE2). Hoje é raro em redes locais, mas ainda pode ser encontrado em alguns sistemas de segurança (CFTV).







- Conectores de Fibra Óptica (LC, SC, ST e MTP/MPO):
- LC (Lucent Connector): Pequeno, com encaixe de pressão, muito utilizado em redes de alta velocidade e em data centers.
- SC (Subscriber Connector): Usado em redes de fibra óptica, com encaixe de pressão e fácil instalação.
- ST (Straight Tip): Popular em redes mais antigas de fibra óptica e em ambientes industriais.
- MTP/MPO: Conectores multifibra, muito utilizados em ambientes de data centers e para conexões de altíssima velocidade (40 Gbps, 100 Gbps).



### Hub





#### Hub

- De todos os equipamentos abordados aqui, o hub é o mais simples. Basicamente, o que ele faz é interconectar os computadores de uma LAN baseada em cabos.
- Quando o hub recebe dados de um computador (ou seja, de um nó), simplesmente retransmite as informações para todos os outros equipamentos que fazem parte da rede.
- Nesse momento, nenhum outro computador consegue transmitir dados. Esse procedimento só passa a ser possível quando o hub tiver transmitido os dados anteriores.

### Roteador





#### Roteador

- O aparelho interliga redes diferentes. Computadores equipados com mais de uma placa de rede também podem funcionar como roteadores. Para isso, precisam utilizar um sistema operacional configurado para fazê-los exercer essa função.
- Eles costumam agir de forma mais inteligente do que os outros dispositivos, estabelece a comunicação entre duas máquinas e são capazes de interligar várias redes.

• Roteadores possuem a capacidade de escolher a melhor rota que a informação deve seguir até seu destino. Com isso, a velocidade de transferência é maior e a perda de dados durante a transmissão diminui consideravelmente. Roteadores são essenciais para o funcionamento da internet.

### **Switch**





#### **Switch**

• Desenvolvido para solucionar os problemas trazidos pelo hub, o switch é um equipamento que apresenta a mesma função de seu antecessor, porém com uma diferença.

• Ele compartilha informação apenas com o destinatário final, o que evita exposição de dados a outros computadores e diminui o tráfego. Contudo, redes com switch ainda podem sofrer roubo de informação. Por isso, é sempre necessário contar com sistemas adicionais de proteção.

### **Access Point (Ponto de Acesso)**





### **Access Point (Ponto de Acesso)**

 O access point geralmente é utilizado mais em ambientes corporativos devido a necessidade de múltiplas conexões simultâneas e a necessidade de um gerenciamento dessas conexões;

 Aposto que você já foi em algum estabelecimento comercial que para acessar a internet utilizando o WIFI do estabelecimento, você só precisou fazer o check-in no Facebook, muito provavelmente você se conectou através de um access point com esse recurso.

### **Access Point (Ponto de Acesso)**

 Se você ja se hospedou em algum hotel onde você se conectava na internet com uma senha gerada no seu check-in e podia se locomover por todos os ambientes do hotel e sempre estava conectado, certamente você estava conectado a um ou vários access point,

• Essa é uma outra função muito utilizada, conseguimos interligar vários equipamentos e fornecer um único acesso, como acontece com as antenas de celular.

### Repetidor

 O repetidor capta o sinal Wi-Fi de um roteador e o retransmite para ampliar a área de cobertura. Ele é usado principalmente para melhorar o sinal em áreas onde a conexão original não chega bem.

• É uma solução mais simples e rápida para resolver problemas de cobertura em áreas pequena



### Repetidor vs Access Point

- Repetidor (ou Extensor de Sinal)
- O repetidor capta o sinal Wi-Fi de um roteador e o retransmite para ampliar a área de cobertura. Ele é usado principalmente para melhorar o sinal em áreas onde a conexão original não chega bem.
- A desvantagem é que o repetidor reduz a velocidade da rede à medida que retransmite o sinal, pois utiliza o mesmo canal tanto para receber quanto para enviar dados.
- É uma solução mais simples e rápida para resolver problemas de cobertura em áreas pequenas.

- Access Point (Ponto de Acesso)
- O Access Point é um dispositivo que conecta-se diretamente à rede cabeada (via cabo Ethernet) e cria uma nova rede Wi-Fi para os usuários se conectarem.
- Ele é geralmente utilizado para ampliar a cobertura de Wi-Fi em locais maiores, como empresas, escolas e residências maiores, sem perda significativa de velocidade.
- Um AP pode ser configurado para se integrar ao mesmo SSID do roteador principal, criando uma cobertura mais estável e contínua.

### **Gateway**

#### • Função:

 Atua como um "portal" que conecta redes com diferentes protocolos ou formatos de dados.

#### Características:

- Converte dados entre protocolos para garantir a comunicação.
- Exemplo: Conectar uma rede de VoIP a uma rede IP tradicional.

### **Gateway**



#### **Firewall**

#### • Função:

• Controla e filtra o tráfego de dados entre redes, oferecendo segurança.

#### Características:

- Define regras para permitir ou bloquear o tráfego.
- Pode ser físico (hardware) ou virtual (software).

### **Firewall**



## Dúvidas? Ótimo dia para todos!