L2Knng: Fast Exact K-Nearest Neighbor Graph Construction with L2-Norm Pruning

David C. Anastasiu and George Karypis

Department of Computer Science and Engineering University of Minnesota

ACM/2015

Paulo Henrique da Silva
Prof. Dr. Wellington Santos Martins
{paulohsilva, wellington}@inf.ufg.br
Similarity Search

21 November, 2018 Seminários

Sumary

- Introduction
- Related Works
- Data and Methods
- Results
- Conclusions
- Future Works

Context

- K-nearest neighbor search, also known as similarity search, involves finding the top k results (e.g., to 10 most similar) to a given query
- The *k*-NNG is a directed graph where vertices correspond to the objects and edges connect their neighbors

- Problem
 - Given a set D in a r-dimensional space and a query q, find the k
 points in D with the smallest distances dist(q, p)
 - High dimensional sparse datasets
 - Represented by weighted vectors
 - Cosine function to measure vector similarity

- Approaches
 - Exact methods, which return the k most similar objects of a given object
 - Approximate methods, the k neighbors of each object do not necessarily correspond to the k most similar objects

- Motivation
 - Relevance in many real-world applications
 - Information Retrieval
 - Clustering
 - Online advertising
 - Recomender systems

- Objectives
 - Introduce L2KnngApprox to obtain approximate initial solution for k-NNG
 - Introduce L2Knng to solve the exact cosine similarity k-NNG
 - New filtering methods to prune objects
 - Improve baselines

Related Works

- Bayardo et al. [2007] Developed several strategies to prune the search space
- Dong et al. [2011] Iterative improvements of an initial random k-NNG by considering neighbors' neighbors as potencial neighbors
- Park et al. [2014] Approximate approach that focus on object pairs that have high-weight features in common
- Anastasiu and Karapis [2014] Similarity search with new pruning strategies

- Datasets
 - Textual datasets
 - Standard pre-processing tokenization and lemmatization
 - Represented as tf-idf weighted vectors

Dataset	n	m	nnz
RCV1	804414	45669	62e6
RCV1-400k	400000	45669	31e6
RCV1-100k	100000	45669	8e6
WW200	1017531	663419	437e6
WW500	243223	660600	202e6
WW200-250k	250000	663410	108e6

L2Knng: Fast Exact K-Nearest Neighbor Graph Construction with L-2 norm Pruning

- L2KnngApprox
 - Builds an approximate solution to the problem
 - Iteratively enhances the initial k-NNG by looking for new candidates in each neighbor's neighborhood

- L2KnngApprox
 - Sorts the feature vectors in decreasing weight order
 - Define a minimum similarity between query and its k neighbors
 - Builds a set of m (m > k) initial neighbors based on high-weight features of vectors and prefix filtering
 - Compute the exact similarly of m candidates with query object and selects the initial top-k neighbors
 - Improves k-NNG with the similarity of its neighbors' neighbors

- L2Knng
 - Solves the exact cosine similarity k-NNG construction problem
 - Filtering candidates by the suffix filter to pruning not true neighbors
 - Reduce the full vector dot-products

- L2Knng
 - Uses the approximate initial k-NNG
 - Computes the suffix similarity between the candidates and query and accumulate with the prefix similarity
 - Accumulate exact similarity with un-pruned candidates
 - Generate the final k-NNG with the top k neighbors

Results

Pruning effectiveness

cg (candidate generation), ses (suffix estimate score), cv (candidate verification), dps (full dot-product)

Results

Execution time and scan rate for competing algorithms

			WW500			RCV1	
result	method / k	1	25	100	1	25	100
time:	Greedy Filtering	766.3	2135.5	4239.3	2039.9	1846.0	3809.8
	NN-Descent	15586.8	5562.9	3547.1	289.6	377.9	350.0
	L2KnngApprox	90.0	209.9	667.3	550.1	275.1	596.3
	kIdxJoin	29389.8	29412.7	29243.9	45456.7	45585.6	38914.4
	kL2AP	17201.7	19626.5	19588.1	15823.6	21067.7	37705.9
	L2Knng	1923.2	5543.6	8340.0	1614.8	4280.5	6550.6
scan	Greedy Filtering	0.0017	0.0045	0.0086	0.0046	0.0034	0.0049
rate:	NN-Descent	1.2913	0.1071	0.8568	0.6805	0.8402	0.6914
	L2KnngApprox	0.0005	0.0014	0.0045	0.0022	0.0010	0.0018
	kIdxJoin	1.0000	1.0000	1.0000	0.8951	0.8951	0.8951
	kL2AP	0.0407	0.4981	0.5003	0.0003	0.0249	0.0017
	L2Knng	0.0005	0.0011	0.0036	0.0004	0.0012	0.0013

Best results are emphasized in bold

Conclusions

- Introduction of new pruning bounds
- Estrategies to avoid full similarity computation for most object pairs
- Performance increased with the pruning of candidates
- L2Knng achieves improvement against exact baselines
- L2KnngApprox is faster than approximate baselines

Future Works

- Evaluate the efficiency of ℓ^2 -norm with others similarity function (Dice and Tanimoto)
- Scaling up the number of threads and processors to solve the problem

L2Knng: Fast Exact K-Nearest Neighbor Graph Construction with L2-Norm Pruning

David C. Anastasiu and George Karypis

Department of Computer Science and Engineering University of Minnesota

ACM/2015

Paulo Henrique da Silva
Prof. Dr. Wellington Santos Martins
{paulohsilva, wellington}@inf.ufg.br
Similarity Search

21 November, 2018 Seminários

