Proof of Cauchy's theorem

Theorem 1 (Cauchy's theorem). If p is prime and p|n, where n is the order of a group G, then G has an element of order p.

Proof. Let S be the set of ordered p-tuples (a_1, a_2, \ldots, a_p) with the property that each $a_i \in G$ and $a_1a_2\cdots a_p=e$, the identity element of G. The set S has n^{p-1} elements, since we can choose the first p-1 of the a_i arbitrarily and then set $a_p=(a_1a_2\cdots a_{p-1})^{-1}$. We think of the elements of the symmetric group $S_{n^{p-1}}$ as permuting the p-tuples in S. Let $f\in S_{n^{p-1}}$ be the element of $S_{n^{p-1}}$ sending any (a_1,a_2,\ldots,a_p) to $(a_p,a_1,a_2,\ldots,a_{p-1})$. This is an element of $S_{n^{p-1}}$ because if $(a_1a_2\cdots a_{p-1})a_p=e$, then $a_p(a_1a_2\cdots a_{p-1})=e$ as well. Note that f^p is the identity permutation, so f has order p in $S_{n^{p-1}}$, and when f is written in cycle notation, every element of S is in either a 1-cycle or a p-cycle. If there are k p-cycles and m 1-cycles, then $n^{p-1}=kp+m$. But p|n, so p|m as well. In any 1-cycle, f sends an element (a_1,a_2,\ldots,a_p) of S to itself via the map sending it to $(a_p,a_1,a_2,\ldots,a_{p-1})$, so we have $a_p=a_1=a_2=\ldots=a_{p-1}$ and there is an element (g,g,\ldots,g) of S with $g\in G$ and $g^p=e$. Taking g to be the identity element $e\in G$ gives one such element of S, but this cannot be the only one, since there are m of them and $p|m\geq 1$. Thus, there is another element $x\in G$ with $x\neq e$ and $x^p=e$.