STAT24410 NOTES

ADEN CHEN

Contents

1.	Probability		
2.	Joint Distribution	ϵ	
3.	Statistical Inference	g	
Ap	Appendix A: Common Distributions		

- Last update: Wednesday 30th October, 2024.
 See here for the most recent version of this document.

1. Probability

- 1.1. **CDF.**
- 1.1.1. Properties of CDF.
 - Nondecreasing.
 - Right continuous.
 - $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$.
- 1.1.2. Inverse of CDF.

$$F^-(x) := \inf\{u : x \le F(u)\}.$$

Proposition 1.1. Let F be the cdf of X. If F is continuous and strictly increasing, then $Y := F(X) \sim \text{Uniform}[0, 1]$.

Proof. For any $y \in [0, 1]$,

$$\mathbb{P}(F(X) \le y) = F(F^{-1}(y)) = y.$$

Proposition 1.2. Let $U \sim \text{Uniform}[0,1]$ and X be the cdf of X. Then $F^{-1}(U) \stackrel{\mathcal{D}}{=} X$.

Proof. For any $x \in [0, 1]$,

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x)) = F(x).$$

Remark 1.3. This is useful for simulation.

1.2. **Transformations.** For Y := h(X), if h is one-to-one and differentiable, then

$$f_Y(y) = f_X(h^{-1}(y)) \cdot \left| \frac{\mathrm{d}h^{-1}(y)}{\mathrm{d}y} \right|.$$

1.3. **Expectation.** For an r.v. X. We define

$$X^{+} = \max\{X, 0\}, \quad X^{-} = \max\{-X, 0\}.$$

Note that $X \equiv X^+ - X^-$.

Since X^+ is nonnegative,

$$\mathbb{E}(X^+) := \int_0^\infty x \, \mathrm{d}F(x)$$

in the Riemann–Stieltjes sense, and similarly X^- .

Definition 1.4. *X* has expected value if at least one of $\mathbb{E}(X^+)$ and $\mathbb{E}(X^-)$ is finite, and when it does

$$\mathbb{E}(X) := \mathbb{E}(X^+) - \mathbb{E}(X^-).$$

Definition 1.5. We say Y stochastically dominates $X, Y \succeq X$, if

$$\mathbb{P}(X > t) \leq \mathbb{P}(Y > t), \quad \forall t.$$

Proposition 1.6.

• Linearity.

$$\int_{\mathbb{R}} |x| f(x) \, \mathrm{d}x < \infty$$

then

$$\mathbb{E}(X) = \int_{\mathbb{D}} x f(x) \, \mathrm{d}x.$$

- If X is stochastically dominated by Y then $\mathbb{E}(X) \leq \mathbb{E}(Y)$.
- If X and Y are independent, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

Definition 1.7. The variance of X is given by

$$Var(X) := \mathbb{E}[(X - \mathbb{E}(X))^2]$$

Proposition 1.8.

- $\operatorname{Var}(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$.
- $Var(cX) = c^2 Var(X)$.
- If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y).

Proposition 1.9. If $X \ge 0$ and there exists an at most countable subset $S = \{x_1, x_2, \dots\}$ of isolated points such that F_X is continuously differentiable on $[0, \infty) \setminus S$, then

$$\mathbb{E}(X) = \sum_{x \in S} x \mathbb{P}(X = x) + \int_0^\infty x F_X'(x) \, dx.$$

1.4. Probability Inequalities.

Theorem 1.10 (Markov's Inequality). *If* $X \ge 0$ *and* c > 0, *then*

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}(X)}{c}.$$

(Equality is attained when $\mathbb{P}(X = 0 \text{ or } X = c) = 1.$)

Proof. Construct

$$Y \coloneqq \begin{cases} c, & x \ge 0 \\ 0, & X < c. \end{cases}$$

Then $Y \leq X$ and

$$\mathbb{E}(Y) = c \cdot \mathbb{P}(X \ge c) \le \mathbb{E}(X).$$

Theorem 1.11 (Chebychev's Inequality). If c > 0, then

$$\mathbb{P}(|X - \mu| \ge c) \le \frac{\mathbb{E}[(X - \mu)^2]}{c^2}$$

for any μ .

Proof. Apply Markov's inequality to $(X - \mu)^2$.

Theorem 1.12 (Chernoff's Inequality). *If* $c \in \mathbb{R}$ *and* t > 0, *then*

$$\mathbb{P}(X \ge c) \le e^{-tc} \, \mathbb{E}(e^{tX})$$

and

$$\mathbb{P}(X \le c) \le e^{tc} \, \mathbb{E}(e^{-tX}).$$

Proof. Apply Markov's inequality to e^{tX} and e^{-tX} .

Theorem 1.13 (Weak Law of Large Numbers). Let $X_1, X_2, ...$ be i.i.d. with finite expectation μ and variance σ^2 . Then as n goes to infinity, $\overline{X}_n \stackrel{p}{\longrightarrow} \mu$. That is

$$\mathbb{P}\left[\left|\overline{X_n}-\mu\right|>\epsilon\right]\longrightarrow 0.$$

Proof. Note that $\mathbb{E}(\overline{X_n}) = \mu$ and $Var(\overline{X_n}) = \sigma^2/n$. Chebyshev's gives

$$\mathbb{P}\left(\left|\overline{X_n} - \mu\right| < \epsilon\right) \le \frac{\sigma^2}{n \cdot \epsilon^2} \longrightarrow 0$$

as $n \to \infty$.

Proposition 1.14 (Large Deviations). Let $X_1, X_2, ...$ be i.i.d. with finite expectation μ and variance σ^2 . Let $c > \mu$. Then

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(\overline{X_n}>c)=-\sup_t[tc-\kappa(t)],$$

where $\kappa(t) = \log \mathbb{E}(e^{tX})$.

We do not yet have the tools to prove that this is the limit, but we will use Chernoff's inequality to obtain a bound:

Proof. From Chernoff's inequality, for any t we have

$$\mathbb{P}(\overline{X_n} \geq c) = \mathbb{P}\left(\sum X_i \geq c \cdot n\right) \leq e^{-tnc} \mathbb{E}\left[e^{t(\sum X_i)}\right] = e^{-tnc + n\kappa(t)},$$

where $\kappa(t) = \log \mathbb{E}(e^{tX})$. Thus we have

$$\frac{1}{n}\log \mathbb{P}(\overline{X_n} \ge c) \le -\sup_{t} [tc - \kappa(t)].$$

Remark 1.15.

- $\mathbb{E}[e^{tX}]$ is the moment generating function.
- $\kappa(t)$ is the cumulant generating function.
- $\sup_{t} [tc \kappa(t)]$ is the **Legendre Transform**.

Definition 1.16. X_n converges in distribution to X, $X_n \xrightarrow{\mathscr{D}} X$, if

$$F_{X_n}(x) \longrightarrow F_X(x), \quad \forall x \in \mathbb{R}.$$

Definition 1.17. The moment generating function of X is

$$M: \mathbb{R} \longrightarrow [0, \infty]$$

 $t \longmapsto \mathbb{E}[e^{tX}].$

Proposition 1.18. *Properties of the moment generating function:*

• $\mathbb{E}[X^m] = M_X^{(n)}(0)$ when Fubini grants

$$\mathbb{E}\left[e^{tX}\right] = \mathbb{E}\left[\sum_{n=0}^{\infty} \frac{(tX)^n}{n!}\right] = \sum_{n=0}^{\infty} \frac{t^n \,\mathbb{E}(X^n)}{n!}.$$

- $\bullet \ M_{cX}(t) = M_X(ct).$
- If X and Y are independent, then

$$M_{X+Y}(t) = M_X(t) + M_Y(t).$$

• If X_1, X_2, \ldots are i.i.d., then

$$M_{\sum X_i} = \prod M_{X_i}$$
.

• $X_n \xrightarrow{\mathscr{D}} X$ if and only if $M_{X_n} \to M_X$ in a neighborhood of 0.

Theorem 1.19 (Central Limit Theorem). *If* X_1, X_2, \ldots *are i.i.d.,* $\mathbb{E}(X_i) = \mu$, and $\text{Var}(X_i) = \sigma^2$, then

$$\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{\mathscr{D}} \mathcal{N}(0, \sigma^2).$$

The following proof works only when we have enough regularity; it is meant to provide a certain intuition (the general proof needs complex analysis):

Proof. We assume $\mu = 0$ and consider the mgf.

$$M_{\sum X_i/\sqrt{n}}(t) = M_{\sum X_i}\left(\frac{t}{\sqrt{n}}\right) = \left[M_{X_i}\left(\frac{t}{\sqrt{n}}\right)\right]^n.$$

We obtain an approximation though Taylor:

$$M_X(\frac{t}{\sqrt{n}}) \approx M_X(0) + \frac{t}{\sqrt{n}} M_X'(0) + \frac{t^2}{n} M_X''(0)$$

Noting that $M_X'(0) = \mathbb{E}[X] = 0$ and $M_X''(0) = \mathbb{E}[X^2] = \sigma^2$, we have

$$M_{\sum X_i/\sqrt{n}}(t) \approx \left[1 + \frac{t^2\sigma^2}{n}\right]^n \longrightarrow e^{t^2\sigma^2}.$$

The last term is precisely the mgf of $N(0, \sigma^2)$.

2. Joint Distribution

6

2.1. Random Vectors and Joint Distributions.

Proposition 2.1.

•

$$F(x) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(x) \, dx.$$

• If F is continuous and differentiable, then X has density

$$f(X) = \frac{\partial^n F(x)}{\partial x_1 \dots \partial x_n}.$$

• If X_1, X_2, \ldots, X_n are independent, then

$$F_X(x) = F_{X_1}(x_1) \dots F_{X_n}(x_n).$$

• If F is differentiable, then

$$f_X(x) = f_{X_1}(x_1) \dots f_{X_n}(x_n),$$

and conversely!

• If $X = (X_1, X_2, ..., X_n)$ has density f_X , then X_I has density

$$f_I(x_I) = \int_{\mathbb{R}^{n-|I|}} f\left(x_I, x_{S_n \setminus I}\right) \, \mathrm{d}x_{S_n \setminus I},$$

where $S_n := \{1, 2, ..., n\}$ are all the indices. Think "integrating out" the other variables.

2.2. Transformations.

Definition 2.2. The **Jacobian** of $g: G \to H \subset \mathbb{R}^n$, where G and H are open, is given by

$$J_g(y) \coloneqq \det \left[\frac{\partial g_i}{\partial y_j} \right].$$

If $X: \Omega \to H \subset \mathbb{R}^n$ and $h: H \to G \subset \mathbb{R}^n$, where H and F are open, are such that h is one-to-one and differentiable and $h^{-1}: G \to H$ is differentiable. Then Y := h(X) has density

$$f_Y(y) = \begin{cases} f_X(h^{-1}(y)) \cdot \big| Jh^{-1}(y) \big|, & y \in G \\ 0, & y \notin G. \end{cases}$$

Definition 2.3. The Gamma function is given by

$$\Gamma(\lambda) := \int_0^\infty e^{-x} x^{\lambda - 1} \, \mathrm{d}x.$$

Proposition 2.4. *Properties:*

- $\Gamma(1) = 1$.
- $\Gamma(1/2) = \sqrt{\pi}$.
- $\Gamma(x+1) = x\Gamma(x)$.
- $\Gamma(n) = (n-1)!$ for any $n \in \mathbb{N}$.

2.3. Conditional distribution. The continuous case:

Definition 2.5. We define the **conditional density** as

$$f_{X|Y}(x|y) \coloneqq \frac{f_{X|Y}(x,y)}{f_Y(y)},$$

2.4. Covariance and Correlation.

Definition 2.6. The **covariance** of random variables *X* and *Y* is

$$Cov(X, Y) = \mathbb{E} ((X - \mu_X) \cdot (Y - \mu_Y)).$$

Their correlation is given by

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}.$$

Proposition 2.7. *Properties:*

- $Var(a + bX) = b^2 Var(X)$.
- Cov(a + bX, c + dY) = bd Cov(X, Y).
- Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y).
- If X and Y are independent, then Cov(X,Y) = 0. But the converse is not true. For example, if $Z \sim N(0,1)$, and S and T are random signs (1 or -1), then Cov(SZ,TZ) = 0.

Theorem 2.8.

• If (X, Y) has density f, then X|Y has density

$$\frac{f(x,y)}{f_Y(y)}.$$

• If (X,Y) has a pmf, then X|Y is discrete with pmf

$$\frac{p(x,y)}{p_Y(y)}$$

Note that E(X|Y = y) is a number, and $\mathbb{E}(X|Y)$ is a random variable.

Proposition 2.9.

(i) If X and Y are independent, then

$$\mathbb{E}(X|Y) = \mathbb{E}(X)$$
 with probability 1.

(ii) Law of total expectation / Tower law:

$$\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X].$$

(iii)

$$\mathbb{E}[g(X)h(Y)|Y] = h(Y)\mathbb{E}(g(X)|Y)$$
 with probability 1.

And

$$\mathbb{E}[X|T(Y)] = \mathbb{E}[\mathbb{E}[X|T(Y)|Y]]$$
 with probability 1.

(iv) Law of total variations

$$Var(Y) = \mathbb{E}[Var(Y|X)] + Var[\mathbb{E}(Y|X)],$$

where

$$Var(Y|X) := \mathbb{E}(Y^2|X) - (\mathbb{E}(Y|X))^2.$$

2.5. **Rejection Sampling.** If for some constant c we have

$$h(x) \ge c \cdot f(x), \quad \forall x,$$

then we can obtain a sample from distribution with density f using samples from distribution with density h using **rejection sampling**:

- (1) Sample Y from g and U from Uniform(0, 1), with Y and U independent.
- (2) Set X := Y if

$$U \le \frac{c \cdot f(Y)}{h(Y)}$$

and return to (1) otherwise.

Remark 2.10.

- Think sampling on the area under f (as a subset of the area under g).
- Rejection sampling can also be used if

$$f(x) = \frac{g(x)}{N},$$

where N is an unknown constant (e.g., an integral with numerical approximations but no closed form solutions). We need only find h such that

$$h(x) \ge cN \cdot g(x)$$
.

Think

$$h(x) \gg g(x)$$
.

3. STATISTICAL INFERENCE

Example 3.1. Modeling lifetime $T: \Omega \to [0, \infty)$.

Definition 3.2.

• The survival function is defined as

$$S: [0, \infty) \longrightarrow [0, 1]$$
$$x \longmapsto \mathbb{P}(T > x) = 1 - F_Y(x).$$

• The failure rate function is defined as

$$h(x) \coloneqq \frac{f(x)}{S(x)}.$$

Remark 3.3.

$$\mathbb{P}(T \leq x + \Delta x | T > x) = \frac{\mathbb{P}[x < T \leq x + \Delta x]}{\mathbb{P}[T > x]} = \frac{F(x + \Delta x) - F(x)}{S(x)} \approx \Delta x \cdot \frac{f(x)}{S(x)} = \Delta x \cdot h(x).$$

Think of an increasing failure rate as "aging."

Given h we can recover f:

$$h(x) = \frac{f(x)}{1 - F(x)} = -\frac{\partial}{\partial x} \log(1 - F(x)).$$

So,

$$\log(1 - F(x)) = -\int_0^x h(t)\mathrm{d}t + C.$$

Since F(0) = 0 we know C = 0. We have

$$s(x) = \exp\left(-\int_0^x h\right)$$

and

$$f(x) = h(x) \exp\left(-\int_0^x h\right).$$

Example 3.4.

• If $h(x) = \lambda$ is a constant function, we have $T \sim \text{Exponential}(\lambda)$:

$$f(x) = \lambda \exp\left(-\int_0^x \lambda dt\right) = \lambda \exp(-\lambda x), \quad \forall x > 0.$$

- If h(x) = α + βx with α, β > 0, then T follows the Gompertz distribution.
 If h(x) = λβx^{β-1}, then T follows the Weibull distribution.
- 3.1. **Estimating parameters.** We next assume $T_1, T_2, \dots \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$ and

Remark 3.5. Metrics to evaluate an estimator:

- Bias: $\mathbb{E}(\hat{\lambda}) \lambda$.
- Variance: $Var[\hat{\lambda}]$.
- Mean Squared Error: $MSE[\hat{\lambda}] = \mathbb{E}[(\hat{\lambda} \lambda)^2] = Bias^2 + Variance.$

Definition 3.6. An estimator $\hat{\theta}_n$ of θ is said to be **consistent** if

$$\hat{\theta}_n \xrightarrow{p} \theta$$
.

That is, if for any $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}(\left|\hat{\theta}_n - \theta\right| > \epsilon) = 0.$$

3.1.1. Asymptotic Estimation.

Definition 3.7 (Method of Moments). Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F$ with n parameters. To estimate the parameters, we equate n (usually the first n) theoretical moments to the *n* corresponding sample moments:

$$\mathbb{E}[X^k] = \frac{1}{n} \sum_{i=1}^{n} X_i^k, \quad 1 \le k \le n.$$

Example 3.8. Consider $T_n \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$.

- Since $\mathbb{E}(\overline{T}_n) = 1/\lambda$, we may use $\hat{\lambda} := 1/\overline{T}_n$ as an estimator for λ .

$$\mathbb{E}\left[\sum T_i^2/n\right] = \frac{2}{\lambda^2},$$

we may also use

$$\hat{\lambda}_2 = \sqrt{\frac{2n}{\sum T_i^2}}$$

as an estimator.

Example 3.9.

- Consider $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}[0, \theta]$. We have $\mathbb{E}[X] = \theta/2$. $\hat{\theta} := 2\hat{X}$
- Consider $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha, \beta)$. We have $\mathbb{E}[X] = \alpha/\beta$ and $\mathbb{E}[X^2] = \alpha/\beta^2 + (\alpha/\beta)^2$. Thus we solve

$$\frac{\hat{\alpha}}{\hat{\beta}} = \overline{X}, \quad \frac{\hat{\alpha}}{\hat{\beta}^2} + \frac{\hat{\alpha}^2}{\hat{\beta}^2} = \frac{\sum X_i^2}{n}.$$

The following theorems help us characterize these estimators.

Theorem 3.10 (Continuous mapping theorem).

- (i) if $X_n \xrightarrow{p} X$ and g is continuous, then $g(X_n) \xrightarrow{p} g(X)$. (ii) If $X_n \xrightarrow{\mathfrak{D}} X$ and g is continuous, then $g(X_n) \xrightarrow{\mathfrak{D}} g(X)$.

Lemma 3.11 (Slutsky). If $X_n \xrightarrow{\mathcal{D}} X$ and $Y_n \xrightarrow{p} c$, where c is a constant, then

$$X_n + Y_n \xrightarrow{\mathcal{D}} X + c$$
, $X_n Y_n \xrightarrow{\mathcal{D}} cX$.

Theorem 3.12 (Delta Method). If X_n is such that

$$\sqrt{n}(X_n - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$$

and g is continuously differentiable, then

$$\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{\mathscr{D}} \mathcal{N}(0, \sigma^2[g'(\theta)]^2).$$

Remark 3.13. Intuition: We can write

$$\sqrt{n}(g(X_n) - g(\theta)) = g'(\tilde{\theta}_n)\sqrt{n}(X_n - \theta), \quad \tilde{\theta}_n \in (x_n, \theta).$$

We know that $g'(\tilde{\theta}_n) \xrightarrow{p} g'(\theta)$ and $\sqrt{n}(X_n - \theta) \xrightarrow{\mathscr{D}} \mathcal{N}(0, \sigma^2)$, so Slutsky's gives the desired result.

We can now characterize estimators obtained from the method of moments:

Proposition 3.14.

- Non-uniqueness: we can obtain multiple estimators.
- Consistency: Law of Large Numbers gives

$$\overline{X} \xrightarrow{p} \mathbb{E}[X],$$

and the continuous mapping theorem then gives consistency (under certain conditions).

- Asymptotic normality: the Delta Method gives normality (under certain conditions).
- 3.1.2. Estimators for Smaller n. We can obtain the exact distribution of \overline{T}_n . Since

$$T \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda) = \text{Gamma}(1, \lambda),$$

we know by the properties of gamma distributions that

$$\sum T_i \sim \text{Gamma}(n, \lambda).$$

Again by properties of gamma distributions, we know that the estimator $\hat{\lambda}_1 := 1/\overline{T}_n$ is biased for small n:

$$\mathbb{E}[\hat{\lambda}_1] = n \cdot \mathbb{E}\left[\frac{1}{\sum T_i}\right] = \frac{n\lambda}{n-1}.$$

The estimator

$$\hat{\lambda}_3 \coloneqq \frac{n-1}{n} \hat{\lambda}_1,$$

then, is unbiased and has smaller variance.

Remark 3.15. This is a rare case. Oftentimes, we have instead a tread off between bias and variance.

- 3.2. **Maximum Likelihood Estimator.** The above may be summed up as the following steps:
 - Estimators
 - Evaluations
 - Distribution for estimators (which allows for the construction of probabilistic statements)

Maximum Likelihood estimator accomplishes all the above in a streamlined fashion.

Definition 3.16. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F_{\theta}$, where $\theta \in \mathbb{R}^k$ is a parameter for the distribution. Let $f(x, \theta)^1$ be the density or pmf of F_{θ} . The **Likelihood** of θ given observations X_1, X_2, \ldots, X_n is

$$L(\theta) = L_n(\theta) := \prod_{i=1}^n f(X_i, \theta).$$

The **maximum likelihood estimator** is the value at which L obtains its maximum:

$$\hat{\theta} = \hat{\theta}_n \coloneqq \arg\max_{\theta} L(\theta).$$

Remark 3.17. It is often easier to work with the log likelihood:

$$\ell(\theta) = \ell_n(\theta) := \log L(\theta)$$
.

Remark 3.18.

- Might be non-unique. Consider $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}(\theta, \theta + 1)$.
- Might not exist. Consider X_1, X_2, \dots, X_n iid with density

$$f(x, \mu, \sigma^2) = \frac{1}{2} \left[\frac{1}{\sqrt{2\pi}} e^{-x^2/2} + \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \right].$$

Think $X \sim \mathcal{N}(0, 1)$ with probability 1/2 and $X \sim \mathcal{N}(\mu, \sigma^2)$ with probability 1/2. The likelihood function is unbounded:

$$\max_{\mu,\sigma^2} L(\mu,\sigma^2) \ge \max_{\sigma} L(X_1,\sigma^2) \ge \frac{1}{2^n} \left[\frac{1}{\sqrt{2\pi}\sigma} \right] \prod_{k=1}^n e^{-X_1^2/2}.$$

3.3. Likelihood Theory.

Definition 3.19 (Score Function).

$$\dot{\ell}_n(\theta) \coloneqq \frac{\partial}{\partial \theta} \ell_n(\theta) = \sum_{i=1}^n \frac{\frac{\partial f}{\partial \theta}(x_i, \theta)}{f(x_i, \theta)} = \sum_{i=1}^n \frac{f'(x_i, \theta)}{f(x_i, \theta)}.$$

Remark 3.20. We find the MLE by setting the score function to 0.

Proposition 3.21. *If* $f(x, \theta)$ *has common support, that is, if* $\{x : f(x, \theta) > 0\}$ *doe s not depend on* θ *, then*

$$\mathbb{E}_{\theta_0} \left[\frac{L_n(\theta)}{L_n(\theta_0)} \right] = 1.$$

¹Some also write $f_{\theta}(x)$ or $f(x|\theta)$.

Equivalently,

$$\mathbb{E}\left[\exp\left(\ell_n(\theta) - \ell_n(\theta_0)\right)\right] = 1.$$

Proposition 3.22. If the density functions are smooth, then

(a)
$$\mathbb{E}_{\theta}\left[\dot{\ell}_n(\theta)\right] = 0.$$

$$(b) - \mathbb{E}_{\theta} \left[\dot{\ell}_n(\theta) \right] = \mathbb{E} \left[\dot{\ell}_n(\theta)^2 \right].$$

Definition 3.23 (Fisher Information).

$$I(\theta) := \mathbb{E}_{\theta}[\dot{\ell}(\theta)^2] = \mathbb{E}_{\theta}[-\ddot{\ell}(\theta)].$$

That is,

$$I(\theta) \coloneqq \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log f(X, \theta)\right)^{2}\right] = -\mathbb{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(X, \theta)\right],$$

where the expectation is taken with respect to $X \sim f(x, \theta)$.

Remark 3.24. Intuitively, the more variation there is in the density functions $f(x, \theta)$ as we vary θ , the more information we can get from data. Fisher information measures the variation in density functions by looking at its derivative.

Theorem 3.25 (Cramér–Rao Inequality). Let $T(X_n)$ be any unbiased estimator for $g(\theta)$. Then

$$\operatorname{Var}[T(X_n)] \ge \frac{[g'(\theta)]^2}{nI(\theta)}.$$

Remark 3.26. The Cramér–Rao lower bound is attained if and only if

$$Corr(\hat{\theta}(X), \dot{\ell}(X)) = 1.$$

By Cauchy-Schwarz inequality, this is equivalent to $\hat{\theta}(X)$ and $\dot{\ell}(X)$ being linearly related random variables. That is,

$$\dot{\ell}(\theta) = \alpha(\theta)\hat{\theta}(X) + \beta(\theta)$$

for functions α and β that do not depend on X.

Proposition 3.27. Under the regularity conditions in the Cramér–Rao inequality, there exists an unbiased estimator $\hat{\theta}(X)$ of θ whose variance attains the Cramér–Rao lower bound if and only if the score can be expressed in the form

$$\dot{\ell}(\theta) = I(\theta) \left\{ \hat{\theta}(X) - \theta \right\},\,$$

or, equivalently, if and only if the function

$$\frac{\dot{\ell}(\theta)}{I(\theta)} + \theta$$

does not depend on θ .

Theorem 3.28 (Fisher). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x|\theta_0)$, with f satisfying certain smoothness conditions. As $n \to \infty$, we have

$$\sqrt{nI(\theta_0)} \cdot (\hat{\theta} - \theta_0) \xrightarrow{\mathscr{D}} \mathcal{N}(0, 1)$$

and

$$\sqrt{nI(\hat{\theta})} \cdot (\hat{\theta} - \theta_0) \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1)$$

Remark 3.29. One may also think

$$\hat{\theta} \approx \mathcal{N}\left(\theta_0, \frac{1}{nI(\theta_0)}\right).$$

Proposition 3.30. Assumptions:

- Common support: $\{x: f(x,\theta) > 0\}$ does not depend on x.
- Smoothness of densities.
- Distinct densities: if $\theta_1 \neq \theta_2$ then $f(x, \theta_1) \neq f(x, \theta_2)$.

Properties of maximal likelihood estimators under the above assumptions:

- consistency,
- asymptotic normality,
- has known and optimal asymptotic variance (efficiency). That is, it attains the Cramér–Rao bound.
- Invariance in the following sense:

Theorem 3.31. If $\hat{\theta}_n$ is an MLE of θ , then $\hat{\tau}_n := g(\hat{\theta}_n)$ is an MLE of $g(\theta)$.

3.4. Jensen Inequality.

Theorem 3.32. If $f : \mathbb{R} \to \mathbb{R}$ is convex and X is a random variable such that $\mathbb{E}|X| < \infty$, then

$$f(\mathbb{E} X) \leq \mathbb{E} f(X)$$
.

Proof. From the convexity of f we know $f(x) \ge f(y) + f'(y)(x - y)$ for any x and y. Setting $y = \mu =: \mathbb{E} X$ gives

$$f(X) \ge f(\mu) + f'(\mu)(X - \mu), \quad \forall x, y.$$

Taking expectation on both sides gives the desired result.

- 3.4.1. Applications of Jensen Inequality.
 - If f is concave, then $f(\mathbb{E} X) \ge \mathbb{E} f(X)$.
 - The convex function $x \mapsto x^2$ and the concave function $x \mapsto \log x$ give two special cases:

$$(\mathbb{E} X)^2 \le \mathbb{E} X^2$$
, $\log \mathbb{E} X \ge \mathbb{E} \log X$.

• If $x_1, x_2, \dots, x_n > 0$ and $p_i \ge 0$ such that $\sum p_i = 1$, then

$$\prod x_i^{p_i} \le \sum p_i x_i.$$

Remark 3.33. When $p_i = 1/n$, this result reduces to the geometric meanarithmetic mean equality.

Proof. Let X be a discrete variable such that $\mathbb{P}(X = x_i) = p_i$. Then

$$\sum p_i \log x_i = \mathbb{E} \log X \leq \log \mathbb{E} X \leq \sum p_i x_i.$$

Taking exp on both sides gives the desired result.

• Hölder's inequality: If $X, Y \ge 0$ are random variables and p, q > 0 are such that 1/p + 1/q = 1, then

$$\mathbb{E}(XY) \leq (\mathbb{E}\,X^p)^{1/p} \cdot (\mathbb{E}\,X^q)^{1/q} \; .$$

Proof. If $\mathbb{E} X^p = \mathbb{E} X^q = 1$, then

$$XY = (X^p)^{1/p} (Y^q)^{1/q} \leq \frac{1}{p} X^p + \frac{1}{q} X^q,$$

where the last inequality follows from the previous result. Taking expectation on both sides then gives $\mathbb{E}[XY] \leq \mathbb{E} X^p \mathbb{E} Y^q$.

For the general case, normalize by setting

$$\tilde{X} \coloneqq \frac{X}{(\mathbb{E} X)^{1/p}}, \quad \tilde{Y} \coloneqq \frac{Y}{(\mathbb{E} Y)^{1/q}}.$$

• Cauchy Inequality: Taking p = q = 2 in Hölder gives

$$\mathbb{E}|XY| \le \sqrt{\mathbb{E}X^2}\sqrt{\mathbb{E}Y^2}.$$

• The consistency of likelihood.

3.5. Multivariate Normal.

Definition 3.34. The random vector $X = (X_1, X_2, ..., X_k)$ is said to follow a **multivariate normal distribution** if for each $a \in \mathbb{R}^k$, $a^{\mathsf{T}}x$ is normal. We write

- $\mu = \mathbb{E} X \in \mathbb{R}^k$.
- $\Sigma = \operatorname{Var}(X) = \mathbb{E}\left[(X \mu)(X \mu)^{\mathsf{T}}\right] \in \mathbb{R}^{2k}$.

Proposition 3.35.

• If Σ is positive definite, then X has density

$$f(X) = \frac{1}{(2\pi)^{k/2} \det(\Sigma)} \exp\left(-\frac{1}{2}(X - \mu)^{\mathsf{T}} \Sigma^{-1} (X - \mu)\right).$$

- If (X_1, X_2) is bivariate normal and $Cov(X_1, X_2) = 0$, then X_1 and X_2 are independent.
- If $U \sim N_k(\mu, \Sigma)$, $a \in \mathbb{R}^p$, and B is a $p \times k$ matrix, then

$$V = a + BU \sim N_p(a + B\mu, B\Sigma B^{\mathsf{T}}).$$

APPENDIX A: COMMON DISTRIBUTIONS

Distribution	Support	PMF	Mean	Variance
Binomial (n, p)	$\{0, 1, 2, \ldots, n\}$	$\binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)
Geometric (p)	$\{1,2,3,\ldots\}$	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Poisson(λ)	$\{0, 1, 2, \dots\}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ

Table 1. Key Properties of Discrete Distributions

Distribution	Support	PDF	Mean	Variance
Uniform (a, b)	[a,b]	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\mathcal{N}(\mu, \sigma^2)$	$(-\infty,\infty)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Exponential(λ)	$[0,\infty)$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Gamma(\alpha, \beta)$	$(0,\infty)$	$\frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$	$\frac{lpha}{eta}$	$\frac{lpha}{eta^2}$
Beta (α, β)	(0, 1)	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Table 2. Key Properties of Continuous Distributions

Proposition 3.36. Properties of Exponential distribution:

(i) The "memoryless" property:

$$\mathbb{P}(T \le x + y | T > x) = \mathbb{P}(T \le y).$$

(ii) Exponential(λ) = Gamma(1, λ).

Proposition 3.37. Properties of Gamma distribution:

(i) If
$$X_i \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha_i, \beta)$$
 for $i = 1, 2, ..., N$, then

$$\sum X_i \sim \text{Gamma}\left(\sum \alpha_i, \beta\right).$$

(ii) If $X \sim \text{Gamma}(\alpha, \beta)$ and $\alpha > 1$, then

$$\mathbb{E}\left[1/X\right] = \frac{\beta}{\alpha - 1}.$$

Proof.

(i) Note that

$$\mathbb{E}\left[e^{tX_i}\right] = \left(1 - \frac{t}{\beta}\right)^{-\alpha_i}, \quad \forall t < \beta.$$

We then have

$$M_{\sum X_i}(t) = \prod M_{X_i}(t) = \left(1 - \frac{t}{\beta}\right)^{-\sum \alpha_i}.$$

(ii) We have

$$\mathbb{E}[1/X] = \int_0^\infty \frac{1}{x} \cdot \frac{\beta^\alpha}{\Gamma(\alpha)} \cdot x^{\alpha - 1} e^{-\beta x} \, \mathrm{d}x,$$

which we can integrate by reducing to the Γ function.