Введение в дискретную оптимизацию. Осень 2010.

Матроиды

Напомним некоторые понятия из линейной алгебры. Рассмотрим линейное пространство размерности n над некоторым полем (например, над \mathbb{R}). Векторы из этого пространства будем обозначать v^{\downarrow} . Символ \downarrow обозначает, что рассматривается вектор-столбец.

Семейство векторов $v_1^{\downarrow}, \ldots, v_k^{\downarrow}$ называется линейно независимым (ЛН), если равенство

$$a_1v_1^{\downarrow} + a_2v_2^{\downarrow} + \ldots + a_kv_k^{\downarrow} = 0$$

может быть выполнено только если $a_1 = a_2 = \ldots = a_k = 0$.

Легко устанавливаются следующие свойства линейной независимости:

- 1. Любое подсемейство ЛН семейства векторов также является ЛН семейством.
- 2. Пусть A ЛН семейство, а I_1 и I_2 максимальные по включению ЛН подмножества A. Тогда $|I_1| = |I_2|$. Если в качестве A взять все линейное пространство, то это свойство превращается в свойство равномощности всех базисов линейного пространства.
- 3. Пусть I_1 и I_2 являются ЛН семействами и $|I_1| > |I_2|$. Тогда найдется вектор v^{\downarrow} , лежащий в $I_1 \setminus I_2$, такой что $I_2 \cup \{v^{\downarrow}\}$ является ЛН семейством векторов. Если в качестве I_1 взять все линейное пространство, то из этого свойства вытекает теорема о том, что любое ЛН семейство векторов можно дополнить до базиса линейного пространства.

Из перечисленных основных свойств ЛН семейств в курсе линейной алгебры выводится множество полезных утверждений. Возникает вопрос: какой математический объект получится, если в качестве первоначальных свойств (аксиом) этого объекта взять вышеназванные свойства 1)–3), а не аксиомы линейного пространства. Насколько в таком случае этот объект будет похож на линейное пространство? Из таких соображений возникла идея введения понятия матроида.

Определение. Пусть E — конечное непустое множество, и J — семейство подмножеств множества E. Если для всякого множества из J каждое его подмножество также принадлежит J, то пара (E,J) называется наследственной системой подмножества. Элементы из J мы будем называть независимыми множествами. Подмножества E, не лежащие в J, назовем зависимыми.

Наследственная система подмножеств (E,J) называется mampoudom, если для всякого множества $A\subseteq E$ любые два его независимых и максимальных по включению подмножества являются равномощными.

Как видно, определение матроида базируется на свойстве 2) линейной зависимости. Оказывается, можно дать эквивалентное определение матроида, основывающееся на свойстве 3):

Определение. Матроидом называется наследственная система подмножеств (E, J) такая, что

$$\forall I_1, I_2 \in J : |I_1| > |I_2| \Rightarrow \exists e \in I_1 \setminus I_2 : I_2 \cup \{e\} \in J.$$

Эквивалентность двух определений матроида докажем в конце главы, а пока что будем пользоваться первым определением. Приведем простые примеры матроидов.

Пример.

1. Пусть A — матрица размера $(n \times m)$ над \mathbb{R} . Запись вида $A = (A_1^{\downarrow}, A_2^{\downarrow}, \dots, A_m^{\downarrow})$ показывает, что A состоит из столбцов $A_1^{\downarrow}, \dots, A_m^{\downarrow}$.

Положим $E = \{A_1^\downarrow, \ldots, A_m^\downarrow\}$, то есть E — множество всех столбцов матрицы A. Пусть J содержит те и только те семейства векторов $\{A_{i_1}^\downarrow, \ldots, A_{i_s}^\downarrow\}$ из E, которые являются линейно независимыми. Очевидно, что (E,J) — матроид. Такие матроиды называют матричными.

2. Пусть E — конечное непустое множество. Зафиксируем целое неотрицательное число $0 \leqslant k \leqslant |E|$ и положим $J = \{A \subseteq E : |A| \leqslant k\}$. Тогда (E,J) — матроид. Матроиды такого типа называются k—однородными. При k=0 однородный матроид называется тривиальным, при k=|E| — дискретным.

Определение. Пусть $M_1=(E_1,J_1)$ и $M_2=(E_2,J_2)$ — матроиды. Биекция $\phi:2^{E_1}\to 2^{E_2}$ называется изоморфизмом матроидов M_1 и M_2 , если

$$X \in J_1 \Leftrightarrow \phi(X) \in J_2$$

то есть ϕ отображает независимые множества в независимые.

Всего существует 4 неизоморфных матроида (E,J) на множестве из двух элементов E=a,b:

- 1. $J = \{\emptyset\};$
- 2. $J = \{\emptyset, \{a\}, \{b\}\};$
- 3. $J = \{\emptyset, \{a\}, \{b\}, \{a, b\}\};$
- 4. $J = \{\emptyset, \{a\}\}.$

Матроид, изоморфный какому-нибудь матричному матроиду, тоже называется *матричным*. Все четыре приведенных выше матроида в такой терминологии являются матричными. На множестве из трех элементов всего 8 неизоморфных матроидов, и все они также являются матричными. В качестве упражнения читателю предлагается привести пример матроида, не являющегося матричным (такие, естественно, существуют).

Матроиды были введены в 1930х годах X. Уитни[2] в качестве обобщения понятия линейной зависимости. До 1970-х годов никто не подозревал, что понятие матроида может быть успешно использовано теорией алгоритмов (см., например, [1]), а именно в связи с так называемыми *«жадными» алгоритмами*. Из этих исследований возникло даже понятие *гридоида*.¹

Поясним принцип работы «жадного» алгоритма. Пусть (E,J) — наследственная система множеств, и каждому элементу $e \in E$ присвоен некоторый неотрицательный вес w(e). Определим вес произвольного множества $A \subseteq E$ как сумму весов всех его элементов, то есть

$$w(A) = \sum_{a \in A} w(a).$$

Требуется найти множество $B\subseteq E$ такое, что $w(B)=\max_{A\in J}w(A)$. Эту задачу и призван решать «жадный» алгоритм. Суть его в следующем. Начнем с пустого множества, то есть положим $B=\emptyset$. На каждом шаге производится попытка расширить результирующее множество B, добавляя к нему элемент e_{\max} с максимально возможным весом такой, что новое множество $B'=B\cup\{e\}$ оставалось независимым. Чуть более формально это можно описать в виде программы на смеси языка Паскаль и математических символов:

begin
$$B:=\emptyset$$
 while $E\neq\emptyset$ do
$$e:=\mathop{\rm argmax}_{e'\in E}w(e')$$
 if $(B\cup\{e\})\in J$ then $B:=B\cup\{e\}$
$$E:=E\setminus\{e\}$$
 end

end

¹ greedy algorithm \Rightarrow greedoid

Ясно, что такой алгоритм будет находить требуемое множество не всегда. Пусть, например,

$$E = \{a, b, c\}, \quad J = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\}, \quad w(a) = 3, w(b) = w(c) = 2.$$

Очевидно, (E,J) — наследственная система множеств. При этом «жадный» алгоритм на первом же шаге выберет элемент a, и, поскольку единственное независимое множество, содержащее a, есть $\{a\}$, то алгоритм даст на выходе множество $B=\{a\}$. В то же время истинное множество, удовлетворяющее требованиям задачи, такое: $\{b,c\}=B'$. Ясно, что w(B')=w(b)+w(c)=4>3=w(a)=w(B). Тут же возникает вопрос: какие условия нужно наложить на наследственную систему множеств (E,J), чтобы жадный алгоритм давал верный ответ? Докажем теорему, отвечающую на этот вопрос и обосновывающую эквивалентность двух определений матроида, данных в начале этой главы.

Теорема. Пусть M = (E, J) -наследственная система множеств. Тогда следующие утверждения эквивалентны:

- 1. M матроид.
- 2. При любом выборе весов на E «жадный» алгоритм дает оптимальное решение.
- 3. Если множества I_1, I_2 независимы, $u |I_1| = |I_2| 1 = k$, то найдется элемент $e \in I_2 \setminus I_1$ такой, что множество $I_1 \cup \{e\}$ также независимо.

Доказательство. $1 \Rightarrow 2$ Будем вести доказательство от противного. Пусть найдется набор весов w, обладающий свойством: «жадный» алгоритм выдает на этом наборе независимое множество $A = \{e_1, \ldots, e_i\}$, и существует другое независимое множество $B = \{e'_1, \ldots, e'_j\}$ такое, что w(B) > w(A).

Будем считать, что элементы множеств A и B упорядочены повесу, то есть $w(e_1) \geqslant w(e_2) \geqslant \ldots \geqslant w(e_i)$ и $w(e_1') \geqslant w(e_2') \geqslant \ldots \geqslant w(e_j')$. Можно считать, что множество B является максимальным по включению независимым подмножеством множества E. По построению, A также максимальное по включению подмножество E. Так как M — матроид, то |A| = |B|, то есть i = j. Докажем, что при всех $m = \overline{1,i}$ выполнены неравенства $w(e_m) \geqslant w(e_m')$. Это приведет нас в противоречие с тем, что w(A) < w(B). Будем вести индукцию по m.

При m=1 «жадный» алгоритм выбрал элемент e_1 с максимальным весом, такой, что $\{e_1\} \in J$. Поскольку $\{e_1'\} \in J$, то должно выполняться неравенство $w(e_1) \geqslant w(e_1')$.

Пусть $w(e_s) \geqslant w(e_s')$ для $s = \overline{1, m-1}$, и пусть $w(e_m) < w(e_m')$. Рассмотрим множество

$$C = \{ e \in E \mid w(e) \geqslant w(e'_m) \}.$$

Множество $\{e_1,\ldots,e_{m-1}\}$ является максимальным по включению независимым подмножеством в C, так как если $\{e_1,\ldots,e_{m-1},e\}\in J$, и $w(e)\geqslant w(e'_m)>w(e_m)$, то «жадный» алгоритм должен был бы выбрать e вместо e_m в качестве следующего элемента для добавления в A. Но $\{e'_1,\ldots,e'_m\}$ — другое независимое подмножество в C большей мощности. Это противоречит определению матроида. Значит $w(e_m)\geqslant w(e'_m)$.

Итак, доказано, что $w(e_m) \geqslant w(e'_m)$, $m = \overline{1,i}$. Тогда $w(A) = \sum e_m \geqslant \sum e'_m = w(B)$. Это противоречит выбору множества B, следовательно предположение существования такого множества ошибочно, то есть «жадный» алгоритм на матроиде работает корректно.

 $2) \Rightarrow 3$ Эту импликацию также докажем от противного. Пусть найдется целое неотрицательное k и независимые множества I_1 , I_2 такие, что $|I_1| = |I_2| - 1 = k$, и для всех e из $I_2 \setminus I_1$ множество $I_1 \cup \{e\}$ не является независимым. Рассмотрим следующий набор весов:

$$w(e) = \begin{cases} k+2, & e \in I_1, \\ k+1, & e \in I_2 \setminus I_1, \\ 0, & e \notin I_1 \cup I_2. \end{cases}$$

Тогда множество I_1 не оптимально, так как $w(I_2)\geqslant (k+1)^2>k(k+2)=w(I_1)$. «Жадный» алгоритм начнет с выбора всех элементов множества I_1 , поскольку эти элементы имеют максимальные веса. После этого алгоритм не сможет улучшить общий вес результирующего множества, ибо для всех остальных элементов e либо $I_1\cup\{e\}\notin J$ (если $e\in I_2$), либо w(e)=0. Следовательно жадный алгоритм дает на рассмотренном наборе весов неоптимальное решение.

 $3)\Rightarrow 1$ Эту часть доказательства теоремы также проведем от противного. Пусть $I_1,\ I_2$ — максимальные по включению независимые подмножества некоторого множества $A\subseteq E$ и $|I_1|<|I_2|$. Отбрасывая $|I_2|-|I_1|-1$ элементов из $|I_2|$, получаем независимое множество $I_3\subset I_2$ такое, что $|I_3|=|I_1|+1$. По условию, найдется элемент e из $I_3\setminus I_1$ такой, что $I_1\cup \{e\}\in J$. Получаем противоречие с тем, что I_1 — максимальное по включению. Теорема доказана.

Следствие. Задачу нахождения линейно независимого подмножества строк в матрице, содержащего максимальное количество ненулевых элементов, можно успешно решать «жадным» алгоритмом.

Список литературы

- [1] J. Edmonds. Matroid and the greedy algorithm—Math. Programming 1, 127–113, 1971
- [2] H. Whitney. On the abstract properties of linear independence—Amer. J. Math. 57, 509–533, 1935