TECHNICAL REPORT SECTION
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA \$3360

NPS55-77-37

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AN INTERACTIVE MODEL TO COMPUTE

THE OFFICER MANPOWER PLAN

FOR THE UNITED STATES MARINE CORPS

by

Kneale T. Marshall
August 1977

Approved for public release; distribution unlimited.

Prepared for:
Headquarters Marine Corps
Code MPI20
This gton, DC 20380

FEDDOCS D 208.14/2: NPS-55-77-37

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral Isham Linder Superintendent

Jack R. Borsting Provost

This work was supported by the Manpower Planning Division (MPI20) of the Marine Corps through the Navy Personnel Research and Development Lab, San Diego.

Reproduction of all or part of this report is authorized.

Prepared by:

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)		
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 2. GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER	
NPS55-77-37		
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED	
An Interactive Model to Compute the Officer	Technical Report	
Manpower Plan for the United States Marine Corps	6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)	
Kneale T. Marshall		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Naval Postgraduate School Monterey, CA 93940		
Horricer ey, GA 90940	N68221 77 WR 70052	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
Headquarters Marine Corps, Code MPI20 Washington, DC 20380	August 1977	
washington, be 20000	42	
14. MONITORING AGENCY NAME & ADDRESS(it different from Controlling Office)	15. SECURITY CLASS. (of this report)	
	UNCLASSIFIED	
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution unlimi	ted.	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number,)	
Mannower Personnel		

Forecasting Planning

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report describes a mathematical model and a set of associated interactive APL functions which are used to calculate an officer manpower plan for the United States Marine Corps. This plan is used during the budget preparation cycle and represents the future forecasted and planned force structure by rank. A complete plan can be calculated and printed in less than five minutes. This is a considerable reduction from the times involved in hand calculations. This increase in speed allows the planning officers to try

many alternate plans on certain data eleme	in a short period of time, ents such as loss rates.	and do sensitivity analys

UNCLASSIFIED

TABLE OF CONTENTS

		Page
1.	<u>Introduction</u>	. 1
2.	The Personnel Flow Model	. 3
3.	The Calculation Procedure	. 7
4.	APL Data Input Functions	. 8
5.	APL Calculation and Output Format Functions	. 20
6.	An Example	. 34
	References	. 42

1. Introduction

This report describes a mathematical model and a set of associated interactive APL functions which are used to calculate an officer manpower plan for the United States Marine Corps. This plan is used during the budget preparation cycle and represents the future forecasted and planned force structure by rank.

A complete plan can be calculated and printed in less than five minutes. This is a considerable reduction from the times involved in hand calculations. This increase in speed allows the planning officers to try many alternate plans in a short period of time, and do sensitivity analysis on certain data elements such as loss rates.

A brief summary of the method of calculation is given here. Details are presented in section 3. End strengths (by month) are given for ranks General through Captain, as well as losses and gains to these ranks. From these the monthly numbers of promotions out of ranks Colonel through 1-st Lieutenant are calculated. For ranks Warrant Officer-1 through 2-nd Lieutenant, the numbers of monthly promotions are given, and thus the monthly end-strengths for these ranks are determined. Finally, once promotions into and out of 1-st Lieutenant have been calculated, the monthly end-strengths are calculated for that rank.

Section 2 contains the mathematical formulation of the flow model which is based on ideas presented in chapter 1 of reference [2]. Section 3 gives a detailed description of the order in which the calculations are made. Section 4 describes a set of data input functions written in APL and intended for interactive use in entering data. Section 5 describes a set of calculation and format functions written in APL and intended for calculation and display of the officer manpower plan. Readers unfamiliar with APL should see reference [1]. Finally, section 6 shows a sample use of the functions and displays a plan.

All the functions in this report are in a workspace called OFFICERPLAN in the

 $\mathit{APL}+$ system of Scientific Time Sharing Corporation. They were prepared at the Naval Postgraduate School through constant communication with the staff in MPP at Headquarters, Marine Corps.

2. The Personnel Flow Model

In this section is described the mathematical flow model and how it is used to determine the officer manpower plan. The model is based on simple conservation of flow equations (see chapter 1 of reference [2] for details of flow models). Let the discrete planning time (typically the end of each month) be numbered $t=0,1,2,\ldots$, with t=0 being the starting point. The time interval between times t=0, and t+1 we call period t+1. At each time t=0 we count the number in each rank and call it the stock level at time t=0. People are promoted, join, or leave between the accounting time points, and these are called flows in period t=0. Thus we can write

(1) Stock level = Stock level + Gains - Losses + Promotions In at
$$(t+1)$$
 at t in $(t+1)$ in $(t+1)$ - Promotions Out in $(t+1)$

To express (1) mathematically we use the following notation. Let

 $s_{i}(t)$ = stock level at time t in rank j

 $g_{i}(t) = gains in period t into rank j$

 $\ell_i(t)$ = losses in period t from rank j

 $x_i(t)$ = promotions in period t into rank j

 $y_i(t) = promotions in period t out of rank j$

The index j ranges over 1,2, ..., n, where n is the number of ranks which are numbered in decreasing seniority. Thus rank l is the highest rank and rank n is the lowest. Equation (1) now becomes

(2)
$$s_{j}(t+1) = s_{j}(t) + g_{j}(t+1) - \ell_{j}(t+1) + x_{j}(t+1) - y_{j}(t+1),$$

 $j = 1, 2, ..., n, t \ge 0.$

Let s(t), g(t), $\ell(t)$, x(t) and y(t) represent the n-dimensional vectors for $s_j(t)$, $g_j(t)$, $\ell_j(t)$, $x_j(t)$ and $y_j(t)$ respectively. Then we can write (2) as

(3)
$$s(t+1) = s(t) + g(t+1) - \ell(t+1) + x(t+1) - y(t+1), t \ge 0.$$

Before this general model can be applied to the USMC officer corps, further explanation is required of what we precisely mean by ranks, and for each rank, the definition of gains and losses.

In the computer models described later in this report n has the value ll and the ranks are:

Number (j)	Rank	
1	General	(GEN)
2	Colonel	(COL)
3	Lieutenant Colonel	(LCOL)
4	Major	(MAJ)
5	Captain	(CAPT)
6	First Lieutenant	(ILT)
7	Second Lieutenant	(2LT)
8	Warrant Officer-4	(CWO-4)
9	Warrant Officer-3	(CWO-3)
10	Warrant Officer-2	(CWO-2)
11	Warrant Officer-1	(WO-1)

For each rank, the sources of gains are:

Rank	Sources of Gains
GEN	None
COL-CAPT	Returns from reimbursable billets
1LT-2LT	Accessions into the commissioned officer corps
CWO-4 - CWO-2	None
WO-1	Accessions into the warrant officer corps

For each rank the sources of losses are:

Rank	Sources of Losses
GEN	Natural attrition and retirement
COL-MAJ	Natural attrition, retirement and movement to reimbursable billets
CAPT	Natural attrition, those released from active duty, and movement to reimbursable billets
1LT	Natural attrition and those released from active duty
2LT - WO-1	Natural attrition

Promotions into a given rank are of course related to promotions out of lower ranks. Since time periods are typically of one-month length, promotions of more than 1 rank in a time period are assumed not to occur. An exception occurs in promotions from warrant officer status to limit duty officer (LDO) in the rank of 1LT.

For the ranks GEN through CAPT and for CWO-4 through CWO-2, the promotions into a rank are equal to the promotions out of the next lower rank. Thus

(4)
$$x_{j}(t) = y_{j+1}(t), \quad j = 1, 2, ..., 5, \quad t \ge 1.$$
 $j = 8, 9, 10,$

Note that $y_1(t)$ is zero (no promotions out of the highest rank).

Let $z_j(t)$ be the number in rank j promoted to 1LT as LDO's, for j = 8,9,10, $t \ge 1$. Then

(5)
$$x_6(t) = y_7(t) + z_8(t) + z_9(t) + z_{10}(t), \quad t \ge 1.$$

No promotions are possible into 2LT or WO-1, thus $x_7(t)$ and $x_{11}(t)$ are both zero.

Equation (3) can now be simplified by eliminating x(t+1). Let A be an 11 x 11 matrix of 0's and 1's where

- (i) the diagonal immediately above the main diagonal has all elements equal to 1 except for the one on row 6 which is 0,
- (ii) all other elements of A are O.

Let B be an 11 x 11 matrix of 0's and 1's where

- (i) elements in columns 8, 9, and 10 on row 6 are equal to 1,
- (ii) all other elements are equal to 0.

Let z(t) be an 11-vector with $z_8(t)$, $z_9(t)$ and $z_{10}(t)$ in positions 8, 9, and 10 respectively, and all other elements equal to zero. Then from (4) and (5)

(6)
$$x(t) = Ay(t) + Bz(t), t \ge 1.$$

Substituting this into (3) gives

(7)
$$s(t+1) = s(t) + g(t+1) - \ell(t+1) + (A-I)y(t+1) + Bz(t+1), t > 0.$$

Here I represents an identity matrix. Equation (7) can now be used to determine the officer manpower plan.

3. The Calculation Procedure

For ranks GEN through CAPT (1-5) the end strengths, gains and losses are all given. Denote with a $\overline{}$ the system comprising the first 5 equations in (7). Since the 5 x 5 matrix taken from the upper left of B is a zero matrix, we have

(8)
$$\bar{s}(t+1) = \bar{s}(t) + \bar{g}(t+1) - \bar{\ell}(t+1) + (\bar{A}-\bar{I})\bar{y}(t+1), \quad t > 0.$$

The only unknowns in this equation are the elements of $\bar{y}(t)$ for $t \ge 1$. Thus we solve (8) to obtain

(9)
$$\bar{y}(t+1) = (I-\bar{A})^{-1} [\bar{s}(t) - \bar{s}(t+1) + \bar{g}(t+1) - \bar{l}(t+1)], \quad t > 0.$$

The solution of (9) gives the promotions out of ranks COL through 1LT for each period in the planning horizon.

For ranks 2LT to WO-1, the promotions out are given, together with the gains and losses. Denote with $\hat{}$ the system comprising the last 5 equations in (7). Then given the starting stocks we determine $\hat{s}(1)$ by

(10)
$$\hat{s}(1) = \hat{s}(0) + \hat{g}(1) - \hat{l}(1) + (\hat{A}-I)\hat{y}(1) + \hat{B}\hat{z}(1),$$

then $\hat{s}(2)$, $\hat{s}(3)$ etc. recursively through the planning horizon. The only remaining rank for which calculations have not been made is lLT. For ranks above this, end-strengths are given and promotions calculated. For ranks below lLT, promotions are given and end-strengths calculated. For lLT we have

$$s_6(t+1) = s_6(t) + g_6(t+1) - l_6(t+1) + x_6(t+1) - y_6(t+1), t \ge 0.$$

Starting at t=0, $s_6(0)$ is given, as are $g_6(1)$ and $\ell_6(1)$. Promotions out, $y_6(1)$, are calculated through equation (9), and promotions in, $x_6(1)$, are calculated through (10) and (5). Thus the unknown is the end-strength $s_6(1)$. This and future period end strengths are calculated recursively over the planning horizon after equations (9) and (10) have been solved for all other ranks.

4. APL Data Input Functions

The following page lists eleven matrices and one vector which are used to store input data required in computing the officer manpower plan. The results of the calculations are also stored in these arrays.

There are eight APL input functions used to interactively enter data at a remote terminal. Each one is described on the following pages together with a listing of the function and an illustrative example of its use. Alternative methods of data input are illustrated. The use of the APL operator ρ can save time when repetitive numbers have to be entered. See Gilman and Rose [1] for details of APL operators.

<u>DATA ARRAYS</u>

These arrays are stored as global variables.

APL Name	Dimensions	Description
<i>BS<u>M</u></i>	11 x 12	Matrix of beginning strengths, 11 ranks (GEN - WO-1), 12 periods
ES <u>M</u>	11 x 12	Matrix of end strengths, 11 ranks, 12 periods
$LF\underline{M}$	11 x 12	Matrix of loss factors, 11 ranks, 12 periods
<u>LM</u>	11 x 12	Matrix of losses, 11 ranks, 12 periods
MG <u>M</u>	11 x 12	Matrix of monthly gains, 11 ranks, 12 periods
<u>РОМ</u>	11 x 12	Matrix of promotions "out", 11 ranks 12 periods
LDO <u>M</u>	11 x 12	Matrix of promotions to LDO from warrant officer ranks, 11 ranks, 12 periods
AR <u>M</u>	11 x 12	Matrix of numbers in reimbursable billets, ll ranks, 12 periods
TR <u>M</u>	11 x 12	Matrix of transfers <u>to</u> reimbursable billets, 11 ranks, 12 periods
FR <u>M</u>	11 x 12	Matrix of transfers <u>from</u> reimbursable billets, ll ranks, l2 periods
RLi <u>/</u>	11 x 12	Matrix of numbers released from active duty, ll ranks, 12 periods
TL <u>V</u>	11	Vector of yearly losses from each rank, 11 ranks

Type) SAVE after data entry completion to ensure that new input data is not lost.

BSINPUT (begin strength input)

Syntax: Niladic, interactively asks for input

Global Variables: It requires the error message EM, the rank vector RANKV, and the data matrix BSM.

Files: None

Functions: None

<u>Purpose</u>: This function allows the user to enter the numbers in each of 11 ranks (GEN - WO-1) at the beginning of a planning period and store them as the first column of an 11 x 12 BSM.

Example:

BSINPUT BEGIN STRENGTH? GEN COL LCOLMAJCAPT1LT2LT7-4 **V** − 3 71-2 W-1 : 67 573 1471 2909 4848 4086 3381 199 79 411 504

Function Listing:

ESINPUT (end strength input)

Syntax: Niladic, interactively asks for input

Global Variables: It requires the error message EM, the month matrix MONTH, the rank vector RANKV, and the data matrix ESM.

Files: None

Functions: None

<u>Purpose</u>: This function allows the user to enter the planned end strengths for ranks GEN, COL, LCOL, MAJ, and CAPT for each of the 12 planning months. These are stored in the first 5 rows of the 11 x 12 matrix ESM.

Example:

ESINPUT

```
END STRENGTH?
   GEN
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
 67 67
         67 67
                67
                     67
                        67
                            67
                                67
                                      67
                                         67
  COL
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
□:
      12p574
  LCOL
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
□:
      12p1472
  MAJ
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
      (5p2910),2912,6p2913
 CAPT
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
□:
      1204848
```

```
\begin{array}{c|c} & \forall ESINPUT[\ ]\ \forall \\ & \forall ESINPUT;X \\ \hline [1] & "END STRENGTH?" \Leftrightarrow I+0 \\ \hline [2] & L1:RANK \underline{V}[(6\times I)+15] \Leftrightarrow ,MONT\underline{H}," \\ \hline [3] & \rightarrow (12=\rho X+\ ])\rho L2 \Leftrightarrow E\underline{M} \Leftrightarrow \rightarrow L1 \\ \hline [4] & L2:ES\underline{M}[I+1;]+X \Leftrightarrow \rightarrow (4\geq I+I+1)\rho L1 \\ \hline \end{array}
```

LFINPUT (loss factor input)

Syntax: Niladic, interactively asks for input

Global Variables: It requires the error message EM, the month matrix MONTH, the rank vector RANKV and the data matrix LFM.

Files: None

Functions: None

<u>Purpose</u>: This function allows the user to enter the desired loss factors for each of 11 ranks (starting with GEN and ending with WO-1) for each of the 12 planning months. The 12 month factors must add to 1.0. These factors are used to spread yearly losses from each rank by month. They are stored in the 11×12 matrix <u>LFM</u>.

Example:

```
 \begin{array}{c|c} & \forall LFINPUT[\ ]\ \\ \forall & LFINPUT;I;X \\ \hline [1] & `LOSS & FACTORS?' & \downarrow I+1 \\ \hline [2] & L1:RANK \underline{V}[(6\times I-1)+16] & ,MONT \underline{H}.' \\ \hline [3] & \rightarrow (12=\rho X+\Box)\rho L2 & \underline{EM} & \rightarrow L1 \\ \hline [4] & L2:LF \underline{M}[I;]+X & \rightarrow (11\geq I+I+1)\rho L1 \\ \hline \end{array}
```

MGINPUT (monthly gains input)

Syntax: Niladic, interactively asks for input

<u>Global Variables</u>: It requires the error message EM, the rank vector RANKV, the month matrix MONTH, and the data matrix MGM.

Files: None

Functions: None

Purpose: This function allows the user to enter the expected gains in each of 12 months into the ranks WO-1, 2LT and 1LT respectively. These are stored in rows 11, 7 and 6 of the 11 x 12 matrix MGM.

Example:

```
MGINPUT
MONTHLY GAINS?
W-1

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

1:
0 0 0 0 0 250 0 0 0 0 0 0 0 0

2LT

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

1:
242 152 158 102 0 19 134 173 363 140 288 0

1LT

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

1:
2 1 3 2 6 0 0 2 0 3 0 5
```

POINPUT (promotions-out input)

Syntax: Niladic, interactively asks for input

Global Variables: It requires the error message EM, the rank vector RANKV, the month matrix MONTH, and the two data matrices POM and LDOM.

Files: None

Functions: None

<u>Purpose</u>: This function allows the user to enter the planned promotions in each of 12 months <u>out</u> of ranks 2LT, and the warrant officers. These are stored in rows 7 through 11 of the 11 x 12 matrix POM. The function then asks for the numbers in each 12 months who became limited duty officers (LDO) from each of the 4 warrant ranks. These numbers are stored in rows 8 through 11 of the 11 x 12 matrix LDOM.

Example:

```
POINPUT
PROMOTIONS OUT?
   2LT
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
0 415
        14 194 0 4 115
                            60 750 331
   W-4
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
1200
  W-3
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
\square:
          0
              0
                  0
                      0
                          0
                               0
                                  39
   W-2
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
  0 0
          0
             0
                66
                      0
                          0
                             0
                                0
                                     0
   W - 1
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
\Pi:
      (400).234.700
 TO LDO?
   W-4
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
□:
  0
     0
          0
              0
                 0
                      0
                          0
                             0
                                2
                                     0
   W-3
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
(8p0), 25, (3p0)
```

```
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

(8p0),73,3p0

W-1
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

12p0
```

```
VPOINPUT[]]7
       \nabla POINPUT; I; M; X
[1]
         'PROMOTIONS OUT?' ♦ I+1
        L1:RANKV[(30+I\times6)+16] \diamondsuit .MONTH.!!
[2]
[3]
         \rightarrow (12=\rho X+\Box)\rho L2 \diamondsuit EM \diamondsuit \rightarrow L1
[4]
        L2:POM[I+6;]+X \diamondsuit \rightarrow (5 \geq I+I+1) pL1 \diamondsuit I+1 \diamondsuit ' TO LDO?'
[5]
       L3:RANKV[(36+I\times6)+16] \diamondsuit ,MONTH,'
[6]
         \rightarrow (12=\rho X+\Box)\rho L4 \diamondsuit EM \diamondsuit \rightarrow L3
[7]
       L4:LDOM[I+7;]+X \diamondsuit \rightarrow (4 \ge I+I+1) \rho L3
```

REIMINPUT (reimbursable input)

Syntax: Niladic, interactively asks for input

<u>Global Variables</u>: It requires the error message EM, the rank vector RANKV, the month matrix MONTH, and the data matrices TRM and FRM.

Files: None

Functions: None

<u>Purpose</u>: This function allows the user to enter scores to and from reimbursable billets for each of 12 months for the ranks COL, LCOL, MAJ, and CAPT and store them in rows 2 through 5 of the 11 x 12 matrices TRM and FRM respectively.

Example:

```
REIMINPUT
  COL TO REIMB
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
  1 1,1000
  COL FROM REIMB
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
□:
 1.1100
  LCOL TO REIMB
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
0:
VALUE ERROR
     1200
\Box:
     1200
 CAPT TO REIMB
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
0 0 0
                1
                    0
                         0
                                  0
                            0
                               0
                                      0
                                          0.0
 CAPT FROM REIMB
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
\Pi:
    0 1 0 0
                    0
                        0
                          2 0 0 0
```

```
∇REIMINPUT[□]∇
        \nabla REIMINPUT; M; X; I
          M \leftarrow 4 + 6 + 6 + 30 + RANK\underline{V} \Leftrightarrow I \leftarrow 1

L1:M[I;], TO REIMB \Leftrightarrow MONT\underline{H}, 
[1]
[2]
[3]
           \rightarrow (12=\rho X+\Box)\rho L2 \diamondsuit EM \diamondsuit \rightarrow L1
[4]
          L2:TRM[I+1;]+X
          L3:M[I;], FROM REIMB' \Diamond .MONTH.'
[5]
[6]
           \rightarrow (12=\rho X \leftarrow \Box) \rho L + \Diamond EM \Diamond \rightarrow L3
          L4:FRM[I+1;]+X
[7]
[8]
          \rightarrow (4 \ge I + I + 1) \rho L 1
```

RLDINPUT (released from active duty input)

Syntax: Niladic, interactively asks for input

Global Variables: It requires the error message $\mathbb{Z}_{\underline{M}}$, the rank vector $RANK\underline{V}$, the month matrix $MONT\underline{H}$, and the data matrix $RL\underline{M}$.

Files: None

Functions: None

<u>Purpose</u>: This function allows the user to enter the numbers in each of 12 months who will be released from active duty in the ranks CAPT and 1LT. The data is stored in rows 5 and 6 of the 11 x 12 matrix RLM.

Example:

```
RLDINPUT
RELAD?
 CAPT
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
□:
   16
       14 6
               2
                  9
                        4
                            7
                             9 8
                                       14 12
  1LT
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
□:
55
   55 90 41 35 62 28 48 90 48
```

TLINPUT (total loss input)

Syntax: Niladic, interactively asks for input

<u>Global Variables</u>: It requires the error message EM, the rank vector EM, and the data vector EM.

Files: None

Functions: None

<u>Purpose</u>: This function allows the user to enter the losses from each of the ll ranks for the planning period, and store them in the ll-vector TLV.

Example:

TLINPUT TOTAL YEAR LOSSES? 2LT W-4 W-3₩-2 W-1 GEN COL LCOLMAJ CAPT 1LT0: 95 155 160 593 109 35 6.0 25 4 11

Function Listing:

5. APL Calculation and Output Format Functions

The calculation, interactive changing, and formatting of the officer manpower plan require ten *APL* functions. These are listed on the following pages. Only one is specified by the user, namely *OFPLAN*. This function calls the other nine at appropriate points and they remain invisible to the terminal user.

OFPLAN (officer manpower plan)

<u>Syntax</u>: Niladic, interactively asks for various changes in variables and for the amount of detail to be printed.

Global Variables: The data arrays: $BS\underline{M}$, $ES\underline{M}$, $LF\underline{M}$, $MG\underline{M}$, $PO\underline{M}$, $LDO\underline{M}$, $TR\underline{M}$, $FR\underline{M}$, $RL\underline{M}$, and $TL\underline{V}$.

Files: None

Functions: Requires the utilities AYN (answer yes or no) and DATE, the formatting functions FMTI, ESREP, OF1E, OMPREP and ATREIMB, and the calculation functions CHGFM, CHGIM, PLAN1.

<u>Purpose</u>: This is the main interactive function for obtaining the manpower plan. It is the only one (other than functions to input data) that the user specifies when calculating a plan.

Function Listing: See next page.

```
L5:+(\sim AYN \ 'DISPLAY LOSS FACTORS?') \rho L1 \diamondsuit FMTF LFM
L1:+(\sim AYN \ 'CHANGE LOSS FACTORS?') \rho L2 \diamondsuit LFM + CHGFM LFM
L2:+(\sim AYN \ 'DISPLAY END STRENGTHS?') \rho L3 \diamondsuit FMTI 5 12 + ESM
L3:+(\sim AYN \ 'CHANGE END STRENGTHS?') \rho L7 \diamondsuit ESM + CHGIM ESM
L3:+(\sim AYN \ 'CHANGE FEIMB?') \rho L4 \diamondsuit 'TO REIMB' \diamondsuit TRM + CHGIM TRM \diamondsuit 'FROM REIMB' \diamondsuit FRM + CHGIM FRM
                                                                                                                                                                                                                                                                                                                       TR PLAN MONTHLY END STRENGTHS' \diamondsuit LF \diamondsuit ESREP \diamondsuit 5pLF \diamondsuit +(~AYN '1-E TABLE?')pL6 OFFICER 1-E' \diamondsuit LF \diamondsuit OF1E \diamondsuit 5pLF \diamondsuit +(~AYN 'MP PLAN?')pL6 OFFICER MANPOWER PLAN '\diamondsuit OMPREP \diamondsuit 2pLF \diamondsuit ATREIMB
                                                                                                                                                                                                                                                                                                                          USMC OFFICER PLAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       [11] L6:+(AYN 'CONTINUE?')pL5
                                                                                                                                                                                                                                                                                     L_{\text{H}}:PLAN1 \diamondsuit LF
VOFPLAN[ ] ] V
                                          V OFPLAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                  10]
                                                                                                                     [2]
[3]
[4]
[6]
[7]
                                                                                                                                                                                                                                                                                                                                                                  [8]
                                                                                                                                                                                                                                                                                                                                                                                                          [6]
```

CHGFM

CHGFI

Syntax: Monadic, $R \leftarrow CHGFM M$

Global Variables: It requires the error message $\mathbb{E}\underline{M}$.

Files: None

Functions: None

<u>Purpose</u>: It allows the user to change any elements in a fractional matrix, and checks that the new entries are consistent with row sums equal to 1.0. It is used only inside other functions.

CHGIM

Syntax: Monadic, $R \leftarrow CHGIM M$

Global Variables: It requires the error message, EM.

Files: None

Functions: None

Purpose: It allows the user to change any elements in an integer

matrix. It is used only inside other functions.

PLAN1

Syntax: Niladic

<u>Global Variables</u>: It requires all the data arrays, BSM, ESM, LFM, LM, MGM, POM, LDOM, TRM, FRM, RLM, and TLV.

Files: None

Functions: Requires the integer rounding function ROUND

<u>Purpose</u>: This function performs all the calculations for the manpower plan discussed in section 3.

Function Listing: See next page for both PLAN1 and ROUND.

```
 \begin{array}{l} L\underline{M} + ROUND \ LF\underline{M} \times \& \ 12 \ 11 \ \rho TL\underline{V} \\ BS\underline{M}[IV;1+111] + ES\underline{M}[IV+15;111] \\ PO\underline{M}[1+IV;1+111] + ES\underline{M}[IV;1+L\underline{M}[IV;1] + RL\underline{M}[IV;1] + BS\underline{M}[IV;1] + FR\underline{M}[IV;1] \\ PO\underline{M}[1+IV;1+L] + BFS\underline{M}[IV;1] 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    L1:TM[I;J] \leftarrow TM[I;J \leftarrow 1 \leftarrow VTM[I;J] \rightarrow V[I] \Leftrightarrow \rightarrow (N \geq I \leftarrow I + 1) \rho L1 \Leftrightarrow R \leftarrow TM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                +(12>I+I+1)pL1 \diamondsuit BSM[6+IV;1+111]+ESM[6+IV;111]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   N+pEV+(+/M)-+/TM+10.5+M ◊ I+1
                                                                                                                                                          PLAN1; IV; I; V; PEM; NEM; LM; EV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         L1:ES\underline{M}[6+IV;I]+E+E+M[;I]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            E + BSM[6 + IV;1] \diamondsuit I + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  V R+ROUND M;EV; TM; N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              VROUND[[]]V
VPLAN1[[]]
                                                                                                                                                          >
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   [1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                           [2]
[3]
[4]
[5]
[6]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            [7]
```

FMTF

Syntax: Monadic, $R \leftarrow FMTF M$

Global Variables: It requires the month matrix MONTH and the rank vector RANKV.

Files: None

Functions: None

```
∇FMTF[□]∇
∇ FMTF M
[1] ' RANK',,(12 3 ρ' '),MONT<u>H</u>
[2] (11 6 ρRANK<u>V</u>),'F6.2' □FMT M
```

FMTI

Syntax: Monadic, R ← FMTI M

Global Variables: It requires the month matrix MONTH and the rank vector

RANKV.

Files: None

Functions: None

Purpose: It formats the matrix M into integers with column and row

headers. It is used only within other functions.

```
∇FMTI[□]∇
∇ FMTI M;N
[1] N+(ρM)[1]
[2] ' RANK',,(12 3 ρ' '),MONTH
[3] ((N,6)ρRANKY),'BI6' □FMT M
```

ESREP

Syntax: Niladic

<u>Global Variables</u>: It requires the month matrix MONTH, the rank vector RANKV, and the data arrays BSM and ESM.

Files: None

Functions: None

<u>Purpose</u>: It formats the "End Strength Report" as part of the manpower plan.

```
VESREP[□]V
V ESREP;MYA;X

[1] MYA+(+/BSM+ESM)÷24

[2] 'BEGIN',' GRADE',(,(12 3 p' '),MONTH),' MYA'

[3] ('I6' □FMT 11 1 +BSM),(11 6 pRANKV),'I6' □FMT(ESM),MYA

[4] ' TOTAL',,'I6' □FMT+≠ESM

V
```

OF1E

Syntax: Niladic

Global Variables: It requires the month matrix $MONT\underline{H}$ and the data arrays $BS\underline{M}$, $ES\underline{M}$, $RL\underline{M}$, and $L\underline{M}$.

Files: None

Functions: None

Purpose: It formats the "Officer 1E Table" as part of the manpower

plan.

```
\nabla OF1E[]
         \nabla OF1E; X; Y; M; V
[1]
             V \leftarrow + \not\vdash M \leftarrow \emptyset 6 12 \rho \left( + \not\vdash BS\underline{M} \right), X, Y, \left( \left( Y \leftarrow + \not\vdash L\underline{M} \right) + X \leftarrow + \not\vdash RL\underline{M} \right), \left( + \not\vdash MG\underline{M} \right), + \not\vdash ES\underline{M}
                                                                     LOSSES
                                                                                              11
[2]
              'MONTH BEGIN
[3]
                                                         RELAD
                                                                            OTHER
                                                                                                                     GAINS END!
                                                                                                TOTAL
            (' ',MONTH,' '),(12 2 p' '),'BI8' \square FMT M' TOTAL ',,'I8' \square FMT(M[1;1],(4+1+V),M[12;6])
[4]
[5]
```

OMPREP

Syntax: Niladic

<u>Global Variables</u>: It requires the month matrix \underline{MONTH} , rank vector \underline{RANKV} , the formatting headers $\underline{H}1$, $\underline{H}1G$, $\underline{H}2$, $\underline{H}3$, $\underline{H}4$, $\underline{H}5$, $\underline{H}6$, $\underline{H}7$, $\underline{H}8$, $\underline{H}9$, $\underline{H}10$, $\underline{H}11$, $\underline{H}12$, $\underline{H}13$, and $\underline{H}14$, the line feed \underline{LF} , and all the data arrays.

Files: None

Functions: None

<u>Purpose</u>: It formats the "Officer Manpower Plan," the main output showing the monthly details of a yearly plan for each rank.

Function Listing: See next page.

```
3 4 8 9 ;]+(1 0 1 1 0 1)\[
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (9 6 p(24p^{-1}), 6+30+RANKV), (9 3 p^{-1}), H_3, H_2 | H_3 | H_3 | H_4 | H_
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (5 9 p45+(18p''), 'CWO-4'), H7, 'BI6' [FMT M8+ 5 13 p(26+V), (-13+-13+V), ((+/L), L+LDOM[8;]), 13+V+M[8;] $\lambda LF$
   H9,(12 12 pH8), 'BI6' □FMT M9+ 12 13 p(0 13 +V),((+/L),L+LDOM[8+12;]), 2 13 +V+M[
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (6 9 p54\uparrow(18p¹ ¹), 'WO-1¹), H10, 'BI6¹ \BoxFMT M10 \Diamond LF TW+(M10[1 2 ;]+W8[1 2 ;]+M9[7 8 ;]+M9[1 2 ;]),[1] M10[3;] \Diamond TW+TW,[1] M8[4;]+M10[
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               M6+9 13 p(13+V), R, OL, TL, ((+/G), G+MGM[6; ]), (~26+~13+V), ((+/L), L++LDOM), ~13+V
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 M10+ 6 13 p(26+V), ((+/G), G+MGM[11;]), ([13+[26+V), ((+/L), L+LDOM[11;]), [13+V+M[
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TM+TW, [1] M10[4;]++fM9[3 9 ;] \diamondsuit TW+TW, [1] M8[3;]++fM9[4 10 ;] \diamondsuit TM+TW, [1] M8[
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (9 6 p(24p' '),6+24+RANKV),(9 3 p' '),H2,'BI6' DFMT M5+ 9 13 p(26+V),R,L,TL,
                                                                                                                                                                                                              TO1+TO1,[1] M2[2;]+M3[2;]+M4[2;]+M5[2;]

TO1+TO1,[1] M1[2;]+M2[3;]+M3[3;]+M4[3;]+M5[5;]+M6[4;]+M7[2;]

TO1+TO1,[1] M6[5;]+M7[3;] \diamondsuit TO1+TO1,[1] M6[8;]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TO1+TO1,[1] M2[4;]+M3[4;]+M4[4;]+M5[6;]+M6[6;]+M7[4;]
TO1+TO1,[1] M1[3;]+M2[5;]+M3[5;]+M4[5;]+M5[7;]+M6[7;]
TO1+TO1,[1] M2[6;]+M3[6;]+M4[6;]+M5[8;]
TO1+TO1,[1] M1[4;]+M2[7;]+M4[7;]+M4[7;]+M5[9;]+M6[9;]+M7[5;]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TO1+ 1 13 pM1[1;]+W2[1;]+M3[1;]+M4[1;]+W5[1;]+M6[1;]+M6[1;]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            H12, H11, 'BI6' OFMT TW & LF & H14, H13, 'BI6' OFMT TO+TO1[1 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    M \leftarrow (IN, OUT; (39pIN), (OUT+13p0), (IN+13p1))/M

TL \leftarrow (R \leftarrow (+/R), R \leftarrow RLM[6; ]) + OL \leftarrow 13 + 13 + V \leftarrow M[6; ]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      HS, HG, 'BIG' □FMT TO1 ◊ LF
OMPREP; M; V; PI; TL; R; L; OL; G
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     5;]+W10[6;]++fM9[6 12 ;]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          8+12;] $ LF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               [26]
[27]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    [10]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   [24]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     [25]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               [11]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      [12]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      [16]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          [17]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        [19]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               [20]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          [21]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               [15]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    [18]
                                                                                                          [2]
                                                                                                                                                                                                                                                                                                                                                                                           [9]
                                                                                                                                                                                                                                                                         [ 4]
                                                                                                                                                                                                                                                                                                                                                                                                                                              [7]
```

VOMPREP[[]]V

ATREIMB

Syntax: Niladic

Global Variables: It requires the data arrays ARM, TRM and FRM.

Files: None

Functions: None

<u>Purpose</u>: It formats the movement of officers at, to, and from reimbursable billets as part of the manpower plan.

Function Listing:

6. An Example

The next seven pages give an example of an officer manpower plan. This example does not show every feature of the interactive capability, but should be sufficient to illustrate the use of the model. A complete plan takes less than five minutes of terminal time and less than 1 second CPU time on Scientific Time Sharing's APL+ system. Thus many iterations are possible in the planning cycle.

		SE	• 2	7	7	4	0	۲,	0	1	0.12	0.	1			(F)	9	57	47	2910	84													
	:	AU	7	1	7	+	0	0	-4	7	0.08	7	• 2			\supset	9	57	47	2910	84						574							
	;	70	• 3	• 2	4	-	0	0	0	0	0.10	← 4	0.			\mathcal{D}	9	7	47	2910	8 4						574							
	:	7	0	0	0	7	0	4	-	0.	0.08	0	0.			2	9	57	47	2910	48						5.74							
	•	MA	0	0.	0	0.	0.	0	4	1	90.0	0	0.			A	9	57	47	2910	84						574							
	Ç	AP	0	0.	0	0	0,	0	0,	0	0.07	0	0			d	9	57	47	2910	84						574							
	•	MA	0	0	0	0	4	0.	0	0	0.08	1	0,			A	9	57	47	2910	8 4		S				574							
	!	F.E.	0	0	0	0	0.	0	0	0	0.10	0	0.			W	9	57	47	2910	48		CHANGES				574							
	•	J A	0	0	0	0.	0.	0.	0	0.	0.07	0.	0,		S	JA	9	57	47	2910	8 4		MORE (574							
	>1:	UE.	0	0	0	0	-4	4	0	0	0	4	0,	ON N	? YE	DEC	9	57	47	91	8 4	SS YES	IF N				574				p574			
	TOR	<i>≥</i>	0	0	0	0	0	0	0	0	90.0	۰	-	TORS	RENGT	_	67	575	47		8	TH	RANK				575			575	75,9			NO
DA IV	LOSS	c	0	0	4	0	0	0	0	0	4	0,	0	SS F	Q	00	6.7	574	47	2910	84	D ST	RO FO	BER			575			74 743	574	BE		REIMB?
	PL	≥	\mathcal{G}	0	TCOT	A	CAPT	7	Ţ	- 1	W = 3	1	T.	ANGE	DISPLAY	RANK	GEN	0	TCOT	MAJ	CAPT	NGE	ER Z			CURRENT	574	E_{N}	:	5			 0	CHANGE

MONTHLY END STRENGTHS

MYA	67	574	1472	2910	8484	4103	3358	195	8 0	481	512	
SEP	6.7	574	1472	2910	8 1 8 1	4198	3216	187	4 5	884	516	18521
AUG	67	574	1472	2910	8 1 8 1	4383	3233	197	8 7	489	517	18738
JUL	67	574	1472	2910	8 1 8 1	4571	2958	203	5.0	06h	518	18661
NUL	6.7	574	1472	2910	8 # 8 #	4432	3152	208	53	491	518	18725
MAY	67	574	1472	2910	8 # 8 #	3776	3543	175	119	199	518	18566
APR	67	574	1472	2910	8 11 8 11	3841	3427	181	121	564	518	18523
MAR	67	574	1472	2910	8 4 8 4	3827	3411	185	123	565	518	18500
FEB	6.7	574	1472	2910	8 11 8 11	3992	3399	190	125	999	518	18661
JAN	67	574	1472	2910	8 11 8 11	4095	3401	195	62	398	502	18524
DEC	67	575	1472	2910	8 1 8 1	4018	3495	200	ħ 9	398	502	18549
NOV	6.3	574	1472	2910	8 11 8 11	4212	3354	204	99	399	502	18608
		574										
		COL										
		573										

1-E TABLE? YES

	END	æ	18608	18549	∞	18661	∞	8	8	∞	18661		18521	8 5
	GAINS	244	153	161	104	256	19	134	180	363	143	288	5	2050
_	TOTAL	154	156	220	129	119	180	111	137	204	207	211	222	2050
SES	OTHER	9 5	8 2	116		8 2		7.9	8 2	105	151	135	134	1255
LOSSES	RELAD	5 9	7.1	104	47	3.7	7.1	32	5 2	66	56	76	8 8	795
_	3	851	861	18608	854	8 5 2	866	8	852	856	18725	866	∞	851
	MONTH	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOTAL

MP PLAN? YES

			2	2		74		-	2			±	2			က			2	0			3			0
	SE	9			9	57		7		7		5.7	147		2	7	C		147	291			3	5		291
	AUG	67	+-4	+-4	6.7	574		13		14		574	1472			14			1472	2910			36			2910
	JUL	6.7	က	3	67	574		22	က	2 5		574	1472			25			1472	2910			53			2910
	NUE	6.7	+-4	+-1	6.7	574		∞	~-	6		574	1472		6	6	18		1472	2910			18			2910
	MAX	6.7	←-1	₩	67	574		വ	 1	9		574	1472		8	9	14		1472	2910		8	14			2910
	APR	67	 !	₩	67	574		⇉	- -1	2		574	1472		8	2	13		1472	2910			13			2910
	MAR	. 67	 4	₩	6.7	574		2	┯┥	9		574	1472		6	9	15		1472	2910		∞	15			2910
	EEB	67			67	574		7	 1	80		574	1472		12	∞	20		1472	2910			20			2910
	JAN	67			67	575		ഹ		℩		574	1472		80	†	12		1472	2910			12			2910
	DEC	67			6.7	574		ന		⇉		575	1472		9	⇉	10		1472	2910		∞	10			2910
14	NON	6.7			67	574		ഹ		2		574	1472		6	2	14		1472	2910		10	14	24		2910
NPOWER	OCT	67			6.7	573		7		7		574	1471		16	7	23		1472	2909		13	23	36	← 1	2910
OFFICER MANPOWER	TOTAL	6.7	11	11	6.7	573		9 2	11	106	7	574	1471		155	106	261	+4	1472	2909		160	261	421		2910
OFF		BEGIN	LOSSES	PROM IN	END	BEGIN	TO REIMB	LOSSES	PROM OUT	PROM IN	FROM REIMB	END	BEGIN	TO REIMB	LOSSES	PROM OUT	PROM IN	FROM REIMB	END	BEGIN	10 KELMB	LOSSES	PROM OUT		FROM REIMB	END
	RANK			GEN					COT							TCOT							MAJ			

8 44 11 11 11	4383 76 12 88 88 116 116 4198	3233 3 3 14 3216	17487 207 5 229 229 17285
8 4 1 5 6 6 12	4571 62 10 72 125 4383	2958 4 288 288 3233	17400 201 288 243 243 17487
8 44 5 6 7 13	4432 48 8 8 56 139 331 4571	3152 3 140 331 2958	17455 198 143 629 629
4 4 5 6 6	3776 90 14 104 750 100 4432	3543 4 363 750 3152	17190 198 363 100 902 902
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3841 48 8 56 56 71 71 60	3427 2 178 60 3543	17139 129 180 174 174
8 t t 6 7 8 7 8 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	3827 28 28 32 115 3841	3411 3 134 115 3427	17109 104 134 226 226 17139
8 th 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3992 62 10 72 97 3827	3399 3399 14 3411	17262 172 19 146 146
8 8 8 E 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3401 2 3399	17367 1111 6 129 129
3 t t 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4018 41 71 48 71 194	3495 2 102 194 3401	17385 122 104 304 304
8 th 3 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	4212 90 103 108 4018	3354 3 158 14 3495	17437 213 161 154 154 17385
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3942 555 64 415 4212	3620 3 152 415 3354	17433 149 153 540 540
# ### & 8	4 0 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3381 3 242 3620	17335 149 244 148 148 17433
8 4 10 5 8 9 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4086 690 109 799 799 1119 1906 1906	3381 35 1776 1906 3216	17335 1953 1800 100 3824 3824 317285
BEGIN TO REIMB RELAD OTHER LOSSES TOTAL LOSSES PROM OUT PROM IN	BEGIN RELAD OTHER LOSSES TOTAL LOSSES GAINS PROM OUT PROM IN EROM W.O.	BEGIN LOSSES GAINS PROM OUT	BEGIN TO REIMB LOSSES L GAINS FROM W.O. GENPROM OUT PROM IN FROM REIMB
${\cal C}$ AP T	16.7	2 <i>LT</i>	TOTAL 2LT - G

10 10 87	88 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	æ 8	17 1 16	15 15 36
6 6 8 8	л л 3	3 =	5 12	123
203 6 197	50 50 4 490	1 4 8 9	518	1261 10 10 1251
208	53 34 50 491	1 06 4	518	1270
175 4 39 208	119 22 39 25 53	73	518	1376 6 100 39 39
181 6 175	121 2 2 119 564	564	518	1384 8
185 44 181	123 121 565 565	564	518	1391
190 5 185	125 123 566	565	5 18 5 18	1399 8 1391
195 190	62 33 125 398	66 234 566	502 250 234 518	1157 8 250 300 1399
200 5 5 195	64 2 398 398	3 6 6	502	1164
204 4 200	66 9 9 9 9 9	398	502	1171
203 3 4 204	72 2 4 4 66 399	66 6	502	1178 7 4 4 1171
199 3 7 203	79 72 401	3 3 6 6 8	504	1183 5 7 1178
199 60 50 187	7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	234 734 488	504 250 234 516	1183 97 250 100 350 1236
BEGIN LOSSES PROM IN TO LDO END	BEGIN LOSSES PROM OUT PROM IN TO LDO END BEGIN	LUSSES PROM OUT PROM IN TO LDO END	BEGIN LOSSES GAINS PROM OUT TO LDO END	BEGIN LOSSES GAINS TO LDO PROM OUT PROM IN
CWO-4	CW0-3	CW 0 1 2	W 0 - 1	TOTAL WARRANT OFFICERS

18738 222 5	18521	
18661 211 288	18738	
18725 207 143	18661	
18566 204 363	18725	
18523 137 180	18566	
18500 111 134	185	
18661		
18524	18661	
18549	194 18524	
18608	161 18549	TS CAPT 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18611	153	E BILLE MAJ 9 0 1 1 8
18518 1861	244 15 3 18611 1860	RSABLE M
18518	2050	REIMBURSABLE BILLETS LCOL 21 0 0 1 1 20 8
BEGIN TO REIMB	LUSSES GAINS FROM REIMB END	OFFICERS IN COL 8 0 1 7 7
	TOTAL OFFICERS	OFFI BEGIN TO FROM END CONTINUE? NO.

REFERENCES

- [1] Gilman, L. and Rose, A. J., APL: An Interactive Approach, J. Wiley, New York, 1974.
- [2] Grinold, R. C. and Marshall, K. T., <u>Manpower Planning Models</u>, Elsevier-North Holland, 1977.

U184188

OTOLT

DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01071631 9