Лабораторная работа № 1. Звуки и сигналы.

3530901/80201, Шелаев Н. Р.

 $30\,$ мая $2021\,$ г.

Оглавление

1	Периодические сигналы	4
2	Получение звука	6
3	Спектр сигнала	9
4	Фильтрация	11
5	Упражнения	13
	5.1 Задание 2	13
	5.2 Задание 3	18
	5.3 Задание 4	20
6	Вывод	22

Список иллюстраций

1.1	Косинусоида
1.2	Синусоида
1.3	Сумма двух сигналов
2.1	Небольшой сегмент сигнала (3 периода)
2.2	Нормализованный сигнал
2.3	Сегмент сигнала из WAV файла
3.1	Полученный спектр сигнала
3.2	Так уже лучше
4.1	Спектр сигнала с применением фильтра нижних частот 11
4.2	Отфильтрованный сигнал
4.3	Оригинальный сигнал
5.1	Сложный сигнал
5.2	Взяли небольшой сегмент сигнала
5.3	Спектр сигнала
5.4	Так лучше видны пики спектра
5.5	Основная частота сигнала
5.6	Применение фильтра НЧ
5.7	Применение ФВЧ
5.8	Применение ФПЗ
5.9	Полученный сложный сигнал
5.10	Спектр сигнала с кратной частотой
5.11	Спектр с некратной частотой
5.12	Ускорение сигнала в 2 раза

Листинги

1.1	Построение сигнала Cos и Sin и их суммы	4
2.1	Получение сигнала	6
2.2	Получение сигнала	7
3.1	Спектр сигнала	9
3.2	Улучшаем масштаб	9
4.1	Функция для фильтра нижних частот	11
5.1	Получение сложного сигнала	13
5.2	Сегмент сигнала	13
5.3	Получение спектра сигнала	14
5.4	Улучшаем масштаб спектра	15
5.5	Находим основную частоту сигнала (основной пик спектра)	15
5.6	Функция фильтра НЧ	16
5.7	Получение сложного сигнала через сумму других сигналов	18
5.8	Спектр этого сигнала	19
5.9	Добавление некратной частоты	20
5.10	Функция для ускорения / замедления сигнала	20

Периодические сигналы

Строим периодические сигналы.

```
from thinkdsp import CosSignal, SinSignal
cos_sig = CosSignal(freq=440, amp=1.0, offset=0)
sin_sig = SinSignal(freq=880, amp=0.5, offset=0)
mix = sin_sig + cos_sig
```

Листинг 1.1: Построение сигнала Cos и Sin и их суммы

Рис. 1.1: Косинусоида

Рис. 1.2: Синусоида

Рис. 1.3: Сумма двух сигналов

Получение звука

Знакомимся с некоторыми функциями предоставленного нам класса wave для получения сигналов и их первичной обработки.

```
wave = mix.make_wave(duration = 0.5, start = 0,
framerate = 11025)
period = mix.period
segment = wave.segment(start=0, duration=period * 3)
segment.plot()
wave.normalize()
wave.apodize()
wave.plot()
```

Листинг 2.1: Получение сигнала

Результаты для суммы Cos и Sin:

Рис. 2.1: Небольшой сегмент сигнала (3 периода)

Рис. 2.2: Нормализованный сигнал

Также мы можем сигнал из WAV файлов.

```
from thinkdsp import read_wave
wave = read_wave('92002__jcveliz__violin-origional.
wav')
wave.make_audio()
segment = wave.segment(start = 1.2, duration = 0.6)
segment.plot()
```

Листинг 2.2: Получение сигнала

0.4 0.2 0.0 -0.2 -0.4 12 13 14 15 16 17 18

Рис. 2.3: Сегмент сигнала из WAV файла

Спектр сигнала

Строим спектр сигнал.

```
spectrum = segment.make_spectrum()
spectrum.plot()
```

Листинг 3.1: Спектр сигнала

Рис. 3.1: Полученный спектр сигнала

Частотные составляющие выше $10~\mathrm{k}\Gamma$ ц достаточно малы, поэтому мы можем лучше рассмотреть нижние частоты.

```
spectrum.plot(high = 10000)
```

Листинг 3.2: Улучшаем масштаб

Рис. 3.2: Так уже лучше

Фильтрация

Исследуем работу различных фильтров.

```
spectrum.low_pass(3000)
spectrum.plot(high = 10000)
filtered = spectrum.make_wave()
filtered.normalize()
filtered.apodize()
filtered.plot()
segment.normalize()
segment.apodize()
segment.plot()
```

Листинг 4.1: Функция для фильтра нижних частот

Рис. 4.1: Спектр сигнала с применением фильтра нижних частот

Рис. 4.2: Отфильтрованный сигнал

Рис. 4.3: Оригинальный сигнал

При их прослушивании отфильтрованная версия сигнала звучит более однотонно и с приглушенным качеством. Этот сигнал слышится как оригинальный, как если бы его воспроизводили по телефону или через стену.

Упражнения

5.1 Задание 2

Применяем различные фильтры для сложного сигнала.

```
wave = read_wave('170255__dublie__trumpet.wav')
wave.normalize()
wave.plot()
```

Листинг 5.1: Получение сложного сигнала

Рис. 5.1: Сложный сигнал

```
segment = wave.segment(start = 2.2, duration = 0.4)
segment.plot()
```

Листинг 5.2: Сегмент сигнала

Рис. 5.2: Взяли небольшой сегмент сигнала

segment = wave.segment(start = 2.2, duration = 0.4)
segment.plot()

Листинг 5.3: Получение спектра сигнала

Рис. 5.3: Спектр сигнала

```
spectrum = segment.make_spectrum()
spectrum.plot(high = 1000)
```

Листинг 5.4: Улучшаем масштаб спектра

Рис. 5.4: Так лучше видны пики спектра

```
spectrum = segment.make_spectrum()
spectrum.plot(high = 100)
```

Листинг 5.5: Находим основную частоту сигнала (основной пик спектра)

Рис. 5.5: Основная частота сигнала

Доминирующий пик находится на частоте 867,5 Гц. Основной пик составляет примерно 85,0 Гц с гармониками 170, 255, 340, 425, 510, ... Гц. Высота тона сигнала, которую мы воспринимаем, обычно является фундаментальной, даже если она не является доминантной.

```
from ipywidgets import interact, fixed
          def filter_wave_low(wave, low, factor):
                   segment = wave.segment(2.2, 0.4)
               spectrum = segment.make_spectrum()
                   spectrum.plot(high = 2500, color = '0.7')
                   spectrum.low_pass(low, factor)
                   spectrum.plot(high = 2500, color = '#045a8d')
                   decorate(xlabel = 'Frequency (Hz)')
                   audio = spectrum.make_wave().make_audio()
10
                   display(audio)
12
          interact(filter_wave_low, wave = fixed(wave), low =
13
     (0, 2500, 250), factor = (0, 1, 0.05));
14
```

Листинг 5.6: Функция фильтра НЧ

Рис. 5.6: Применение фильтра НЧ

Функции для фильтра верхних частот (ФВЧ) и полосо-заграждающего фильтра (ФПЗ) очень похожи на функцию для ФНЧ и поэтому здесь не приводятся.

Рис. 5.7: Применение ФВЧ

Рис. 5.8: Применение ФПЗ

5.2 Задание 3

Создаём сложный сигнал и исследуем его.

```
import math
signal = (SinSignal(freq = 600, amp = 0.4, offset =
math.pi / 2) + CosSignal(freq = 200, amp = 0.6, offset =
math.pi / 3) + SinSignal(freq = 800, amp = 0.8, offset =
math.pi / 4) + CosSignal(freq = 400, amp = 1.0, offset =
math.pi / 5))
signal.plot()
```

Листинг 5.7: Получение сложного сигнала через сумму других сигналов

Рис. 5.9: Полученный сложный сигнал

```
wave = signal.make_wave(duration = 2.5)
wave.apodize()
spectrum = wave.make_spectrum()
spectrum.plot(high = 1000)
```

Листинг 5.8: Спектр этого сигнала

Рис. 5.10: Спектр сигнала с кратной частотой

Здесь использовались сигналы с частотой, кратной основным (что видно

на спектре). Теперь добавим частотные компоненты, не кратные основным.

```
signal += SinSignal(freq = 500, amp = 0.7)
wave = signal.make_wave(duration = 2.5)
wave.apodize()
spectrum = wave.make_spectrum()
spectrum.plot(high = 1000)
```

Листинг 5.9: Добавление некратной частоты

Рис. 5.11: Спектр с некратной частотой

Звук исходного сигнала изменился.

5.3 Задание 4

Функция scretch для ускорения и замедления сигнала.

Листинг 5.10: Функция для ускорения / замедления сигнала

Рис. 5.12: Ускорение сигнала в 2 раза

Вывод

В данной работе мы познакомились с функциями для первичной обработки сигналов. Построили сложный сигнал с некратной частотой и нашли его спектр. Также провели исследование действия различных фильтров на сигнал.