聚集法

设操作当个元素的代价为1

第i次操作	total
1	0 + 1 + 1 = 2
2	2 + 1 + 2 = 5
3	5 + 1 + 0 = 6
4	10 + 1 + 4 = 15
5	15 + 1 + 0 = 16
6	16 + 1 + 0 = 17
7	17 + 1 + 0 = 18
8	18 + 1 + 8 = 27
9	27 + 1 = 28
10	28 + 1 = 29
n	$\sum_{i=1}^{\lfloor \log_2(n+1) \rfloor} (2^i) + n$

因此, 可以得到total = O(n), 即T(n) = O(n), 即总的操作代价为O(n).

那么单次操作 $T(1) = \frac{T(n)}{n} = O(1)$

可以得到,单次操作的平均是O(1)

会计法

设操作当个元素的代价为1

设摊还代价是 $\hat{c_i} = 3(1+1+1)$

其中1是当前操作的代价.

第 i 次操作, 给第 i 个元素存款, 给第 $i-2^{\lfloor \log_2(i) \rfloor}$ 个元素存款 1

当 $i=2^k(k\in \mathbb{Z})$, 操作代价是 i, 前面的数都已经存过 1 个代价了, 那么就将前面的存款取出来, 给第 i 次操作.

经验证, 存款的总和非负, 因此这个分析是正确的

因此,单次操作的平均代价是O(1)

势能法

设操作当个元素的代价为1

令势能函数 $\Phi(n)=2\times n-2^{\lfloor\log_2 n\rfloor+1}$, 当 n = 0 时, $\Phi(0)=0$

 $\diamondsuit D_n=n, D_0=0, \Phi(n)-\Phi(0)=2\big(n-2^{\lfloor\log_2 n\rfloor}\big)\geq 0,$ 也就是: 总的摊还代价 - 总的真实代价 >= 0

因此,可以确保这个势能函数是正确的(摊还代价是实际代价的上界)

那么第 i 次操作的摊还代价是: $\hat{c_i} = \Phi(i) - \Phi(i-1) = 2 - 2*\left(2^{\lfloor \log_2 i \rfloor} - 2^{\lfloor \log_2 (i-1) \rfloor}\right) = O(1)$ 因此, 单次操作的平均代价是O(1)