邏輯系統實驗 Final Project

2021/06/27(日)

第1組		
組員姓名	學號	
陳旭祺	E24099059	
張振杰	E24085034	
何啟造	E34085337	

● 實驗流程圖

Specification

Sequence detector with overlap 2 patterns 010111 or 1101

偵測連續 cycle 輸入,當連續 4 個 cycle 拿到的值為 1101 或是連續 6 個 cycle 拿到的值為 010111 時,當下 cycle 就會輸出 1。

C model

自行輸入要驗證的序列 input.dat 與 golden.dat,再執行 test.c。

input.dat				
001011101010111100				
golden.dat				
000000101000000100				
Commmand Line				
<pre>\$cd logic_lab</pre>				
\$gcc -o test test.c				
\$./test				

Verilog Code

1. Input/output port

2. State Machine

Dracont State	Next State		Dracout Output
Present State	In_data=0	In_data=1	Present Output
S0	S7	S1	0
S1	S2	S1	0
S2	S8	S3	0
\$3	S4	S3	0
S4	S5	S3	0
S 5	S6	S9	0
S6	S8	S9	1
S 7	S8	S1	0
S8	S8	S9	0
S9	S10	S1	0
S10	S8	S3	1

3. block diagrams

採用 Moore Machine。

Testbench

匯入要測試的 input.dat 與預期得到的 golden.dat

```
$readmemh("../others/input.dat",mem_i);
$readmemh("../others/golden.dat",golden);
```

2. input 值在 clk 一拉起來之前先給,使 clk 有足夠的 set up time 能讀入由 feedback 回來的 current_state 與 in_data 組合電路所判斷好得出的 next_state。

Simulation Result

```
$C:/.../verilog
$vlib work
$vlog *.v
$vsim -novopt work.testbench
$add wave ...(drag and drop)
$run 100ns

Teminal
```

```
# START!!! Simulation Start .....
# input= 0, out data equal to 0
# input= 0, out data equal to 0
input= 1, out data equal to 0
input= 0, out data equal to 0
 input= 1, out data equal to 0
 input= 1, out data equal to 0
# input= 1, out data equal to 1
# input= 0, out data equal to 0
# input= 1, out data equal to 1
# input= 0, out data equal to 0
# input= 1, out data equal to 0
 input= 0, out data equal to 0
 input= 1, out data equal to 0
 input= 0, out data equal to 0
# input= 1, out data equal to 0
input= 1, out data equal to 0
# input= 1, out data equal to 1
# input= 0, out data equal to 0
# input= 0, out data equal to 0
# Simulation END, SUCCESS!!!
# ** Note: $finish : testbench.v(48)
    Time: 530 ns Iteration: 0 Instance: /testbench
# Break in Module testbench at testbench.v line 48
VSIM 20>
```


如上圖粉色, Input 早在 clk 拉起時即給值, clk 有足夠的 set up time, 使得下一個 cycle 的 current_state 能讀到由 current_state 與 in_data 組合電路所判斷好得出的 next state

如上圖橘色,由於功能是 overlap 2 patterns 010111 or 1101 的 sequence detector,因此如上圖紅色第一次 input_data 序列為 010111 時, state 等 clk 一拉起來進入 S6(06),並輸出 out_data 為 1。而在 overlap 的情況下, input_data 序列為 1101 時, state 等 clk 一拉起來進入 S10(12),並輸出 out_data 為 1。

由上面畫的 state machine 也可以 trace 到 state 之間的變化。以此類推直到測試到序列第 19 個數字, testbench 結束(\$finish)。

● 心得

1. 組員一 陳旭祺

本次 Final Project 為實作上課講的 sequence detector,大部分的程式助教其實都 打好了,我們只是改個參數而已。除了用 state machine 實作之外,我其實一開 始有想用 shift register 去存每個 bit 然後用一個 if else 的組合電路去判斷,如此

做的話就不需要再想 state machine 了。

4-bit Parallel Data Output

2. 組員二 張振杰

對於這次實驗由於不理解題目要求,所以也給不了什麼實質的貢獻或更好地建 議,只能在一旁待機。在看了組員所解釋各個 module 的運作原理後,也才大致 了解這次實驗的內容。

3. 組員三 何啟造

這次的實驗相較於前面幾次來說比較有難度,很多地方也是聽了隊友的講解後 才了解。所以除了幫忙一些很小、簡單的部分以外 ,剩下的時候我都幾乎處於 待機和理解題目的狀態。不過還是可以結合邏設所上的大致了解到需要做的是 什麼,這學期也謝謝隊友和助教的幫忙!