Unidades Inerciales 3 cm

STIM318 400°/s 10g SEQ: N25581832864009 PNO: 84972-440000-321 REV: sensonor DC IN +5V

FUNCTIONAL BLOCK DIAGRAM

- ITAR free
- Low gyro bias instability (0.3°/h)
- Low gyro noise (0.15°/√h)
- · Low accelerometer bias instability (0.003ma)
- Low accelerometer noise (0.015 m/s/ Solid state high reliability √h)
- ±10g acceleration input range
- · User programmable bias trim offset

- · Customer configurable output format, sampling rate and filter settings
- Compensated digital output, RS422
- · Continuous self-diagnostics
- · Insensitive to magnetic fields
- Weight: <0,13 lbs (<57g)
- Volume: <2,2 cu. in. (35cm3)

GPS - STYSOR EVT VEZ SENSON. INTERNOS

Leading Inertial Measurement Unit Price to Performance Gyro Bias Stability of 1.08 °/h Accelerometer Bias Stability of 14.8 µg User configurable No Export License Required Miniature Package 1.1 x 1.1 x 0.424 inches, Light Weight at 20 grams

Triaxial, digital gyroscope

±125°/sec, ±500°/sec, ±2000°/sec range models

2°/hr in-run bias stability (ADIS16475-1)

0.15°/√hr angle random walk (ADIS16475-1 and ADIS16475-2)

±0.1° axis to axis misalignment error

Triaxial, digital accelerometer, ±8 g

3.6 µg in-run bias stability

Triaxial, delta angle and delta velocity outputs

Factory calibrated sensitivity, bias, and axial alignment

Calibration temperature range: -40°C to +85°C

	CIRUS	CIRUS-EX
Bias Stability (1σ)	0.0003 °/hr.	0.0003 °/hr.
Angle Random	0.000190 °/√hr.	0.000125 °/√hr.
Walk (EOL)	(< 0.000150 available)	(< 0.000100 available)
Angle White	0.000025 arc-sec./√Hz	0.000025 arc-sec./√Hz
Noise	(0.000006 typical)	(0.000006 typical)
Angular Rate Range	> 30 °/sec.	> 22 °/sec.
SF Stability	±2 ppm	±2 ppm
SF Linearity (maximum)	35 ppm (3 typical) 35 ppm (3 typical)	
Alignment Stability	< 3.5 arc-sec. (long term)	< 3.5 arc-sec. (long term)
	< 20 arc-sec. (life)	< 20 arc-sec. (life)

$$\int \alpha x = \pi \times \rightarrow \int \pi_{X} = p_{X}$$

$$\int \alpha x + \nu_{N} = p_{X} \sqrt{p}$$

Acelerómetro

Acelerómetro

Electromecánico Piezoeléctrico Desplazamiento / reequilibrio de masa traslacional / pendular

Frecuencia del elemento resonante

Térmicos

(EMS

Modelo de Medida Acelerómetro

$$\tilde{\mathbf{f}}^b = \mathbf{f}^b + \mathbf{b}_a + S_1 \mathbf{f}^b + S_2 \mathbf{f}^{b^2} + N_a \mathbf{f}^b + \delta_{\mathbf{g}} + \epsilon_a$$

Calibración Acelerómetro

$$\tilde{\mathbf{f}}^{b} = \mathbf{f}^{b} + \mathbf{b}_{a} + S_{1}\mathbf{f}^{b} + S_{2}\mathbf{f}^{b^{2}} + N_{a}\mathbf{f}^{b} + \delta_{g} + \epsilon_{a}$$

$$f_{up} = b_{a} + (1 + S_{a})g \qquad y \qquad f_{down} = b_{a} - (1 + S_{a})g$$

Giróscopio

Giróscopio

Modelo de Medida Giros

$$\tilde{\omega}_{ib}^b = \omega_{ib}^b + \mathbf{b}_g + S_g \omega_{ib}^b + N_g \omega_{ib}^b + \varepsilon_g$$

Calibración Giro

$$\omega_x = 0$$
; $\omega_y = \omega_e \cos \phi_{lat}$; $\omega_z = \omega_e \sin \phi_{lat}$

$$\omega_{up} = b_{go} + (1 + S_g)\omega_e \sin \phi_{lat}$$
 y $\omega_{udown} = b_{go} - (1 + S_g)\omega_e \sin \phi_{lat}$

IMU

	Calidad	Costo	Estabilidad del sesgo del gyro	Tiempo de navegación sin GPS	Aplicaciones
	Consumo	< \$10	-	-	Smartphones
_	Industrial	\$100-\$1.000	<10°/hora	<1 minuto	UAV/UGV
	Táctico	\$5.000-\$50.000	< 1°/hora	<10 minutos	Municiones
	Navegación	\$100.000	< 0,1°/hora	Varias horas	Militar
	Calidad	Sesgo Acele- rómetro (mg)	$\begin{array}{ll} \textbf{Random} & \\ \textbf{Walk} & \textbf{de} \\ \textbf{velocidad} & \\ \textbf{(m/s/}\sqrt{\text{hr}}) & \\ \end{array}$	Sesgo Giro (grado/hr)	Random Walk de ángulo (grado/ \sqrt{hr})
	Consumo	10	1	100	2
	Industrial	1	0.1	10	0.2
	Táctico	0.1	0.03	1	0.05
	Navegación	0.01	0.01	0.01	0.01

IMU

		\checkmark		ϕ		
	Calidad	18	108	6os	10min	1hr
	Consumo	6cm	6.5m	400m	200km	39.000km
	Industrial	6mm	0.7m	40m	20km	3.900km
-	Táctico 🤇	1mm	8cm	5m	2km	400km
1	Navegación	<1mm	1mm	50cm	100m	10km

Integración directa IMU+GPS

1 GPS (NAW) PD PA

Integración realimentación directa INS+GPS

Marcos de Referencia/Ejes de Referencia

Teorema de Coriolis

$$\mathbf{v}_{i} = \mathbf{v}_{e} + \mathbf{w}_{ie} \times \mathbf{r}$$

Navegación en áreas locales (ERN/ERT)

$$\dot{\mathbf{v}}_{e/e} = \dot{\mathbf{v}}_{e/i} - \boldsymbol{\omega}_{ie} \times \mathbf{v}_{e}$$

$$\dot{\boldsymbol{v}}_{e/\text{i}} = \boldsymbol{f} - [\boldsymbol{\omega}_{\text{i}e} \times \boldsymbol{v}_e] + [\boldsymbol{g} - \boldsymbol{\omega}_{\text{i}e} \times [\boldsymbol{\omega}_{\text{i}e} \times \boldsymbol{r}]]$$

Propagación de la matriz de Transformación

in EnciAct: body NAUEG. Matriz de Cosenos Directores

$$\mathbf{C}_{b}^{n} = \begin{bmatrix} \gamma_{c} & -\gamma_{s} & 0 \\ \gamma_{s} & \gamma_{c} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_{c} & 0 & \beta_{s} \\ 0 & 1 & 0 \\ -\beta_{s} & 0 & \beta_{c} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \theta_{c} & -\theta_{s} \\ 0 & \theta_{s} & \theta_{c} \end{bmatrix}$$

$$= \begin{bmatrix} \beta_{c} \psi_{c} & -\theta_{c} \gamma_{s} + \theta_{s} \beta_{s} \gamma_{c} & \theta_{s} \gamma_{s} + \theta_{c} \beta_{s} \gamma_{c} \\ \beta_{c} \gamma_{s} & \theta_{c} \gamma_{c} + \theta_{s} \beta_{s} \gamma_{s} & -\theta_{s} \gamma_{c} + \theta_{c} \beta_{s} \gamma_{s} \\ -\beta_{s} & \theta_{s} \beta_{c} & \theta_{c} \beta_{c} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \theta_{c} & -\theta_{s} \\ 0 & \theta_{s} & \theta_{c} \end{bmatrix}$$

$$= \begin{bmatrix} \beta_{c} \psi_{c} & -\theta_{c} \gamma_{s} + \theta_{s} \beta_{s} \gamma_{c} & \theta_{s} \gamma_{s} + \theta_{c} \beta_{s} \gamma_{c} \\ \beta_{c} \gamma_{s} & \theta_{c} \gamma_{c} + \theta_{s} \beta_{s} \gamma_{s} & -\theta_{s} \gamma_{c} + \theta_{c} \beta_{s} \gamma_{s} \\ -\beta_{s} & \theta_{s} \beta_{c} & \theta_{c} \beta_{c} \end{bmatrix}$$

Matriz de Cosenos Directores

$$\mathbf{f}_n = \mathbf{C}_b^n(i+1)\mathbf{f}_b$$