Alzheimer's Dementia Classification from Magnetic Resonance Imaging (MRI)

Cristian David Ríos Urrego Felipe Orlando López Pabón

cdavid.rios@udea.edu.co forlando.lopez@udea.edu.co

University of Antioquia

Outline

- Dataset
- Convolutional Neural Networks
 - Architectures
 - Results
- TensorFlow Hub
 - Models
 - Results
- Transfer Learning
 - Experiments
 - Results
- Summary results
- Conclusions

Dataset

The data consists of magnetic resonance images of Alzheimer's patients in differents stages of dementia. It has four classes of images both in training as well as a testing set. Each image has 208x176 size.¹

Non demented

Train: 2560 Test: 640

Very Mild Demented

Train: 1792 Test: 448

Mild Demented

Train: 717 Test: 179

Moderate

Train: 52

Test: 12

Convolutional Neural Networks

Model 1		
Layer Type Output shap		
Conv (4)	205x173x32	
Max Pool (2)	102x86x32	
Conv (4)	99x83x64	
Max Pool (2)	49x41x64	
Dense	128, 64	

Model 2		
Layer Type	Output shape	
Conv (4)	205x173x32	
Max Pool (2)	102x86x32	
Conv (4)	99x83x64	
Max Pool (2)	49x41x64	
Conv (5)	45x37x128	
Max Pool (2)	22x18x128	
Dense	128, 64	

Model 3		
Layer Type	Output shape	
Conv (4)	205x173x32	
Max Pool (2)	102x86x32	
Conv (4)	99x83x64	
Max Pool (2)	49x41x64	
Conv (5)	45x37x128	
Max Pool (2)	22x18x128	
Dense	128, 64, 32	

Model 4					
Layer Type	Output shape	Layer Type	Output shape	Layer Type	Output shape
Conv (2)	207x176x16	Max Pool (2)	50x42x32	Conv (4)	19x15x128
Max Pool (2)	103x87x16	Conv (4)	47x39x64	Max Pool (2)	9x7x128
Conv (4)	100x84x32	Max Pool (2)	23x19x64	Dense	128, 64, 32

Convolutional Neural Networks

	Results	
	Accuracy	Balanced Acc.
Model 1	57.22	44.80
Model 2	64.96	50.79
Model 3	60.30	45.37
Model 4	65.90	54.08

TensorFlow Hub

It is used a model from TensorFlow Hub². The selected model provides feature vector of dimension 1280 from input images of size 96x96x3. This model was trained with ImageNet (ILSVRC-2012-CLS).

Using classic SVM

Parameters		
Kernel	Rbf	
С	1.0	
Gamma	0.001	

Using model in TF

Model		
Layer Type	Output shape	
Keras	1280	
Dense	512	
Dense	256	
Dense	128	
Dense	64	

TensorFlow Hub

Results		
	Accuracy	Balanced Acc.
Classic SVM	65.19%	52.47%
Model without re-training	66.38%	60.11%
Model with re-training	59.75%	65.15%

Transfer learning

The base model was Alexnet's first two layers. In addition, we performed transfer learning with and without layer freezing.

- Experiment 1: Train from scratch.
- Experiment 2: Transfer learning without layer freezing.
- Experiment 3: Transfer learning with layer freezing (1st layer).
- Experiment 4: Transfer learning with layer freezing (1st layer + 2nd layer).

Architecture		
Layer Type	Output shape	
Conv (11)	22x22x96	
Max Pool (2)	11x11x96	
Conv (5)	7x7x256	
Max Pool (2)	3x3x256	
Dense	128	
Dense	64	

Transfer learning

Results		
	Accuracy	Balanced Acc.
Experiment 1	37.02	34.85
Experiment 2	61.25	57.15
Experiment 3	59.59	59.46
Experiment 4	57.30	43.44

epoch_loss

Summary

Results CNNs		
Accuracy E		Balanced Acc.
Model 1	57.22	44.80
Model 2	64.96	50.79
Model 3	60.30	45.37
Model 4	65.90	54.08

Results Transfer Learning		
	Accuracy	Balanced Acc.
Ехр. 1	37.02	34.85
Exp. 2	61.25	57.15
Ехр. 3	59.59	59.46
Exp. 4	57.30	43.44

Results TensorFlow Hub		
	Accuracy	Balanced Acc.
Classic SVM	65.19%	52.47%
Model without re-training	66.38%	60.11%
Model with re-training	59.75%	65.15%

Conclusions

- The proposed methods using CNNs are useful to classify the different stages of severity of dementia in Alzheimer's disease based on MRI images, which would be very useful for support in the diagnosis and therapy of the disease.
- Different techniques such as dropout and L2 regularization are very useful when the models are implemented with real data, because these techniques allow a better generalization of the phenomenon and helps to avoid the overfitting of the network.
- Transfer learning uses feature maps of robust models and allows for adjustment in training. This is very useful for classifying small databases that do not have enough data to train deep learning models.

Alzheimer's Dementia Classification from Magnetic Resonance Imaging (MRI)

Cristian David Ríos Urrego Felipe Orlando López Pabón

cdavid.rios@udea.edu.co forlando.lopez@udea.edu.co

University of Antioquia

