The time-dependent potential of the MW....

NICOLAS GARAVITO-CAMARGO ET AL..¹

¹Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA.

(Received February, 2019; Revised -; Accepted -)

Submitted to ApJ

ABSTRACT

TBD

Keywords: Large Magellanic Cloud – Milky Way Halo

1. INTRODUCTION

2. COMPUTATIONAL METHODS

- 2.1. Explanation of BFE
- 2.2. Time evolving potential interpolating coefficients.
- 2.3. The combined potential of the MW and the LMC: using two expansions

How to include the LMC in the potential. Which particles from the LMC we need to use in order to compute the expansion on the LMC.

- 2.4. The Python library to compute orbits:
- 2.5. How to choose the right number of terms in the BFE

How many terms should we need in the expansion.

3. RESULTS

- 3.1. The shapes of the Milky Way DM halo density & potential in the presence of the Large Magellanic Cloud
 - Contours of the DM density/potential.
 - Use the inertia tensor to try to fit ellipsoids to the DM halo shape.
- 3.2. Can we disentangle contributions from the Local and Global Wake and the disk motion?
- 3.3. Test case: orbits of GCs and Satellite Galaxies

4. DISCUSSION:

Corresponding author: Nicolás Garavito-Camargo jngaravitoc@email.arizona.edu

• choose the right scale radius for the DM halos, the expansion is sensitive about this.

ACKNOWLEDGEMENTS

This work has been supported from the HST grant AR 15004, NASA ATP grant 17-ATP17-0006, and the Vatican Observatory Stoeger-McCarthy fellowship. All the simulations where run on *El-Gato* super computer which was supported by the National Science Foundation under Grant No. 1228509.

Software: Astropy (??), pygadgetreader ?, matplotlib ?, numpy ?, scipy ?, ipython ?, scikit-learn (??), jupyter ?, healpy ?, reproject https://github.com/astrofrog/reproject, pyh5 http://depsy.org/package/python/h5py. ADS, Arxiv.