UNIVERSIDAD CATÓLICA DEL MAULE FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICA, FÍSICA Y ESTADÍSTICA

Geometría IMA-113 Listado de ejercicios

1. Grafique el lugar geométrico definido por cada una de las siguientes ecuaciones: (indique vértices, focos, centros asintotas según corresponda)

a)
$$y^2 + 4y - 6x + 22 = 0$$

b)
$$(y-1)^2 = 2x + 4$$

c)
$$3x^2 - 5y^2 + 6x + 10y = 32$$

d)
$$x^2 - 4x - 4y = 0$$

e)
$$x^2 + y^2 - 12x - 12y + 36 = 0$$

$$f) x^2 - 4x + y^2 - 16y + 4 = 0$$

$$y(x^2+3y^2+6x+6)=0$$

h)
$$25x^2 + 16y^2 + 100x - 96y - 156 = 0$$

$$i) x^2 + y^2 + 4x - 3y + 9 = 0$$

$$(j) y^2 - 4y - 8x + 28 = 0$$

$$k) 9x^2 - 4y^2 - 54x + 8y + 113 = 0$$

$$l) 4x^2 - 3y^2 + 8x + 16 = 0$$

$$m) 4x^2 + 9y^2 - 8x = 32$$

- 2. Califique como Verdadera o falsa cada una de las proposiciones. Justifique formalmente su respuesta.
 - a. La ecuación $x^2 + y^2 + ax + by = c$ representa una circunferencia para todos los números reales diferentes de cero a,b,c.
 - b. La distancia entre los focos de la gráfica de $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ es $2\sqrt{a^2-b^2}$
 - c. La ecuación $x^2+y^2-2kx+4=0$ describe una circunferencia si y sólo si $k\in(-\infty,-2)\cup(2,+\infty)$
 - d. El vértice de una parábola es el foco de la otra parábola y viceversa, si la ecuación de una de ellas es $y^2 2y 4x + 1 = 0$, entonces la ecuación de la otra parábola es $y^2 + 2y + 2x 4 = 0$
 - e. La cónica de ecuación $y = x^2 + 2x 1$, tiene su foco en (1,0).
 - f. Sea la parábola P, cuya ecuación es $P: 2y^2-3y+5x+2=0$, su foco tiene por coordenadas $F_a\left(-\frac{107}{40},\frac{3}{4}\right)$
- 3. Determine la ecuación de la circunferencia que tiene como centro el vértice de la parábola que tiene por ecuación $x + 3y^2 y = 0$, y contiene al foco de la misma.

Resp.
$$\left(x - \frac{1}{12}\right)^2 + \left(y - \frac{1}{6}\right)^2 = \frac{1}{144}$$
.

4. Una circunferencia tiene por ecuación $x^2 + (y-2)^2 = 1$. La recta de ecuación y = kx donde $k \in \mathbb{R}$, es tangente a la circunferencia. Halle todos los valores posibles de k.

Resp.
$$k = \pm \sqrt{3}$$

5. Determine la ecuación del conjunto de puntos P(x, y) tales que la suma de la distancia de P a los puntos (-4, 0) y (4, 0) es 14.

Resp.
$$\frac{x^2}{49} + \frac{y^2}{33} = 1$$

6. Determine la ecuación del lugar geométrico de los puntos P(x, y) tales que la distancia al punto (1, -3) es dos veces la distancia a la recta definida por la ecuación x - 4 = 0.

Resp.
$$\frac{(x-5)^2}{4} - \frac{(y+3)^2}{12} = 1$$

7. Un avión sigue una trayectoria tal que su distancia a una estación de radar situada en el punto (2,0) es igual a un tercio de su distancia a una carretera que sigue el trayecto de la recta definida por x = -2. Determine la ecuación de la trayectoria que sigue el avión.

Resp.
$$\frac{\left(x-\frac{5}{2}\right)^2}{\frac{9}{4}} + \frac{y^2}{2} = 1$$

8. Determine la ecuación del lugar geométrico compuesto de puntos P(x, y) que cumplen con la condición de que su distancia al eje y es el doble que su distancia al punto (2, -3).

Resp.
$$3x^2 + 4y^2 - 16x + 24y + 52 = 0$$

9. Un punto se mueve de tal manera que su distancia al punto (2,-2) es siempre igual a un tercio de su distancia al punto (4,1). Determine la ecuación del lugar geométrico,

Resp.
$$8x^2 + 8y^2 - 28x + 38y + 55 = 0$$

10. Determine la ecuación general del lugar geométrico definido por el conjunto de puntos (x,y) ubicados en el plano tales que la distancia al punto (-1, -2) es el doble de la distancia a la recta definida por la ecuación x - 3 = 0.

Resp.
$$3x^2 - y^2 - 26x - 4y + 31 = 0$$

11. Determine la ecuación del lugar geométrico de un punto que se mueve de tal manera que la distancia a la recta x + 3 = 0 es siempre dos unidades mayor que su distancia al punto (1,1).

Resp.
$$y^2 - 2y - 4x + 1 = 0$$

12. Sea $P: \left\{ \begin{array}{l} x^2+4y^2-25=0 \\ 2x^2-2y^2-5=0 \end{array} \right.$ Encuentre el conjunto solución S.

Resp.
$$S = \{ (\sqrt{7}, \frac{3}{2}\sqrt{2}), (\sqrt{7}, -\frac{3}{2}\sqrt{2}), (-\sqrt{7}, \frac{3}{2}\sqrt{2}), (-\sqrt{7}, -\frac{3}{2}\sqrt{2}) \}$$

13. Hallar los valores de b para los cuales el sistema: $\left\{\begin{array}{ll} x^2+y^2=4\\ y=x+b \end{array}\right.$ tiene solución única.

Resp.
$$b = \pm 2\sqrt{2}$$

14. Sea el sistema $\left\{\begin{array}{l} y^2-8y-a_1x+3a_1+16=0\\ y^2-8y-a_2x-2a_2+16=0 \end{array}\right., a_1,a_2\in\mathbb{R}^+.$ Encuentre los valores de a_1,a_2 para que el sistema tenga solución en $\mathbb{R}^2.$

Resp.
$$a_1 > a_2 > 0$$

15. Encontrar el conjunto solución de los siguientes sistemas

1.
$$\begin{cases} y = x^2 \\ y = 2x + 3 \end{cases}$$
2.
$$\begin{cases} x^2 + y^2 = 25 \\ x^2 - 6y = 9 \end{cases}$$

3.
$$\begin{cases} yx^2 = 20 \\ y = 9 - x^2 \end{cases}$$

2.
$$\begin{cases} x^2 + y^2 = 25 \\ x^2 - 6y = 9 \end{cases}$$

4.
$$\begin{cases} x^2 + y^2 = 12 \\ x^2 - y^2 = 4 \end{cases}$$

Resp. 1.
$$S_1 = \{(3,9), (-1,1)\}$$

2.
$$S_2 = \{(\sqrt{21}, 2), (-\sqrt{21}, 2)\}$$

3.
$$S_3 = \{(2,5), (-2,5), (\sqrt{5},4), (-\sqrt{5},4)\}$$

$$S_4 = \{(2\sqrt{2},2), (2\sqrt{2},-2), (-2\sqrt{2},2), (2\sqrt{2},-2)\}$$

- 16. Hallar la ecuación de la recta que contiene al punto (-1,6) y es tangente al lugar geométrico que tiene por ecuación $x^2 + y^2 - 2x - 6y - 3 = 0$. **Resp.** 2x - 3y + 20 = 0
- 17. Hallar la ecuación de la recta que tiene pendiente $-\frac{3}{2}$ y es tangente al lugar geométrico que tiene por ecuación $4x^2 + 4y^2 + 8x + 4y 47 = 0$. Resp. $y = -\frac{1}{2}x + \frac{9}{2}$ o $y = -\frac{1}{2}x \frac{17}{2}$
- 18. Hallar la ecuación de la recta que es paralela a la recta que tiene por ecuación x + 4y + 31 = 0 y es tangente al lugar geométrico que tiene por ecuación $x^2 + y^2 + 6x - 8 = 0$.

Resp.
$$y = -\frac{1}{4}x + \frac{7}{2}$$
 o $y = -\frac{1}{4}x - 5$

19. Determine la ecuación de la recta l que contiene al centro de la elipse de ecuación $4x^2 + 9y^2 + 8x -$ 36y + 4 = 0 y contiene al foco de la parabola de ecuación $x^2 - 6x - 4y + 5 = 0$.

Resp.
$$x + 2y - 3 = 0$$

20. Determine la ecuación de la parábola que es cóncava hacia arriba y contiene tres de los vértices de la elipse cuya ecuación es $9x^2 + 4y^2 = 36$.

Resp.
$$x^2 = -\frac{4}{3}(y-3)$$

21. Determine el valor de la distancia minima entre la circunferencia C y la recta \mathcal{L} , si sus ecuaciones son respectivamente $C: x^2 + y^2 + 2x - 4y - 4 = 0$ y $\mathcal{L}: x - 2y - 6 = 0$.

Resp.
$$d = \frac{11}{\sqrt{5}} - 1$$

22. Dadas una circunferencia \mathcal{C} y una elipse \mathcal{E} que son concentricas de las cualas se conoce la ecuación de la elipse $\mathcal{E}: 9x^2 + 16y^2 + 18x - 64y - 62 = 0$ y que \mathcal{C} es tangente al eje, determine la ecuación de \mathcal{C} .

Resp.
$$(x+1)^2 + (y-2)^2 = 22$$

23. Demostrar que la ecuación de la recta tangente a la circunferencia $x^2 + y^2 = r^2$, en el punto (x_1, y_1) perteneciente a la circunferencia es: $x_1x + y_1y = r^2$.