Implement "Feed Forward"

Sample terminal input:

Your file weight file transfer input data

ff.py weights.txt T3 5 2 3 1 4

ff.py weight_3_2_2.txt T4 0.2 -1.4 3.2

- Transfer(activation) function has some options (may be added later):
 - o "T1" is a linear function: g(x) = x
 - o "T2" is a ramp function: $g(x) = \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{cases}$
 - o "T3" is a logistic function: $g(x) = \frac{1}{1 + e^{-x}}$
 - "T4" is a sigmoid function: $g(x) = -1 + \frac{2}{1 + e^{-x}}$
- weights.txt
 - o line 1: weights between inputs and first layer of cells
 - o line 2: weights between first layer of cells and 2nd layer of cells
 - o ...
 - o line n-1: weights between penultimate layer of cells and final layer of cells
 - o line n: weights between final layer of cells and the output

weights.txt for Example 4 (Example Set 1 worksheet or refer to the back page):

5 8 2 0 1 2 2 2 3 7 5 4 4 3 2

0 1 7 5 4 3

0.5 - 1

Sample terminal output:

0.4998323249347668 - 0.9999938558253978

Example 4)

w _{1,6}	w _{2,6}	w _{3,6}	W _{4,6}	w _{5,6}	<i>w</i> _{1,7}	<i>w</i> _{2,7}	<i>w</i> _{3,7}	W _{4,7}	w _{5,7}	W _{1,8}	w _{2,8}	w _{3,8}	W _{4,8}	w _{5,8}
5	8	2	0	1	2	2	2	3	7	5	4	4	3	2
W _{6,9}	W _{7,9}	W _{8,9}	<i>w</i> _{6,10}	w _{7,10}	W _{8,10}	Weighte								
0	1	7	5	4	3	Weights								

χ_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	Output			
<i>λ</i> 1					a_1	a_2		
5	2	3	1	4				