

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

Отчет по лабораторной работе №1 по курсу «Анализ алгоритмов»

Тема	Расстояние Левенштейна и Дамерау-Левенштейна						
Студент Пискунов П.							
Групі	та <u>ИУ7-56Б</u>						
Преп	одаватель Волкова Л.Л., Строганов Д.В.						

Оглавление

Bı	веде	ние	3
1	Ана	алитическая часть	4
	1.1	Расстояние Левенштейна	4
	1.2	Расстояние Дамерау - Левенштейна	5
2	Кон	нструкторская часть	7
	2.1	Требования к программному обеспечению	7
	2.2	Алгоритм поиска расстояния Левенштейна	
	2.3	Алгоритмы поиска расстояния Дамерау-Левенштейна	9
3	Tex	нологическая часть	12
	3.1	Выбор средств реализации	12
	3.2	Реализация алгоритмов	12
	3.3	Тестовые данные	17
4	Исс	следовательская часть	18
	4.1	Интерфейс приложения	18
	4.2	Технические характеристики	19
	4.3	Время выполнения реализаций алгоритмов	19
	4.4	Используемая память	21
За	клю	эчение	26
C	писо	к использованных источников	27

Введение

Расстояние Левенштейна, также известное как редакционное расстояние, может быть определено как последовательность операций, необходимых для привращения одной строки в другую с минимальным количеством шагов [1].

В расстоянии Левенштейна используются такие операции как вставка, удаление, замена символов, необходимых для преобразования одной строки в другую.

Расстояние Дамерау - Левенштейна также представляет собой минимальное количество редакционных операций, которое дополнительно включает в себя операцию перестановки двух соседних символов [2].

Расстояния Левенштейна и Дамерау - Левенштейна находят применение в различных областях, таких как:

- компьютерная лингвистика (автозамена в посиковых запросах, текстовые редакторы);
- биоинформатика (анализ последовательностей белков);
- нечеткий поиск записей в базах (борьба с опечатками).

Целью данной лабораторной работы является изучение алгоритмов поиска редакционных расстояний Левенштейна и Дамерау - Левенштейна. Для успешного выполнения лабораторной работы необходимо выполнить следующие задачи:

- 1) изучить методы вычисления расстояний Левенштейна и Дамерау Левенштейна;
- 2) разработать алгоритмы для вычисления указанных расстояний;
- 3) реализовать разработанные алгоритмы в виде программного кода;
- 4) провести анализ затрат реализаций алгоритмов по времени и по памяти;
- 5) подготовить отчет по лабораторной работе.

1 Аналитическая часть

Расстояния Левенштейна и Дамерау - Левенштейна (редакционное расстояние, дистанция редактирования) — метрика, измеряющая по модулю разность между двумя последовательностями символов. Она определяется как минимальное количество односимвольных операций (а именно вставки — I, удаления — D, замены — R), необходимых для превращения одной последовательности символов в другую. Также вводится операция, которая не требует никаких действий — совпадение — М.

В расстоянии Дамерау - Левенштейна, помимо вышеупомянутых операций, также предусматривается возможность перестановки соседних символов, что обозначается как операция X.

Каждой из этих операций можно приписать определенный штраф. Обычно используется сделующий набор штрафов: для операции М (совпадение) штраф равен нулю, а для операций I (вставка), D (удаление), R (замена), X (перестановка) штраф составляет единицу.

Таким образом, задача по вычислению расстояния Дамерау - Левенштейна сводится к нахождению последовательности операций, которая минимизирует общую сумму штрафов. Эту задачу можно решить с помощью использования рекуррентных формул.

1.1 Расстояние Левенштейна

Пусть дано две строки S_1 и S_2 . Тогда расстояние Левенштейна можно найти по рекуррентной формуле (1.1):

$$D(i,j) = \begin{cases} 0, & \text{i} = 0, \text{j} = 0 \\ i, & \text{j} = 0, \text{i} > 0 \\ j, & \text{i} = 0, \text{j} > 0 \end{cases}$$

$$\text{i} = 0, \text{j} > 0$$

$$\text{j} = 0, \text{j} > 0$$

Первые три формулы в системе (1.1) можно рассматривать как базовые и они представляют следующее: первое уравнение описывает ситуацию, когда не требуется никаких действий (символы обеих строк совпадают, так как обе строки пусты). Во втором уравнении рассматривается вставка ј символов в пустую строку S_1 для создания строки-копии S_2 длиной ј. В третьем уравнении описывается удаление всех і символов из строки S_1 для того, чтобы она соответствовала пустой строке S_2 .

Последующие шаги в алгоритме требуют выбора минимального значения из штрафов, которые могут возникнуть в результате следующих операций: вставки символа в S_1 (первое уравнение в группе min), удаление символа из S_1 (второе уравнение в группе min), а также совпадения или замены, в зависимости од того, совпадают ли рассматриваемые символы в данной точке строк (третье уравнение в группе min).

1.2 Расстояние Дамерау - Левенштейна

Для вычисления расстояния Дамерау - Левенштейна между строками S_1 и S_2 используется аналогичная реккурентная формула, как в (1.1). Главное отличие заключается в том, что добавляем четвертую возможную операцию (1.2) в группу min:

$$\begin{bmatrix} D(S_1[1...i-2],S_2[1...j-2])+1, \text{ если i, j}>1, \ a_i=b_{j-1},b_j=a_{i-1}\\ \infty, \text{ иначе} \end{cases} \tag{1.2}$$

Этот сценарий предусматривает перестановку символов, расположенных рядом в строке S_1 , только если длины обеих строк больше одного символа, и символы, которые рассматриваем, крест-накрест в строках S_1 и S_2 , совпадают. В случае, если хотя бы одно из этих условий не выполняется, данное действие не учитывается при определении минимального расстояния.

Итоговая формула для расчета расстояния Дамерау - Левенштейна выглядит следующим образом (1.3):

$$D(i,j) = \begin{cases} 0, & \mathrm{i} = 0, \mathrm{j} = 0, \\ i, & \mathrm{j} = 0, \mathrm{i} > 0, \\ j, & \mathrm{i} = 0, \mathrm{j} > 0, \\ \min(D(i,j-1)+1, & D(i-1,j)+1, \\ D(i-1,j-1)+m(S_1[i],S_2[j]), & \mathrm{eсли} \ \mathrm{i} > 1, \mathrm{j} > 1, \\ D(i-2,j-2)+1), & S_1[i] = S_2[j-1], \\ S_1[i-1] = S_2[j], & \min(D(i,j-1)+1, \\ D(i-1,j)+1, & D(i-1,j-1)+m(S_1[i],S_2[j])) \quad \text{, иначе.} \end{cases}$$

Вывод

В данной секции были изучены алгоритмы вычисления расстояния Левенштейна и его модификации – расстояния Дамерау - Левенштейна, которое включает в себя возможность перестановки соседних символов. Формулы для расчета расстояния Левенштейна и Дамерау - Левенштейна между строками задаются через рекурсивные уравнения, что означает, что соответствующие алгоритмы могут быть реализованы как с использованием рекурсии, так и в итеративной форме.

2 Конструкторская часть

Ранее в этой секции были представлены рекуррентные формулы, которые позволяют вычислять расстояние Левенштейна и Дамерау - Левенштейна. Однако, при разработке алгоритмов для решения этих задач, доступны различные подходы, такие как итеративный алгоритм, алгоритм рекурсии с использованием кэширования и алгоритм рекурсии без кэширования. В данной части рассмотрим каждый из этих подходов более подробно. Также в данной части указываются требования к программному обеспечению (ПО).

2.1 Требования к программному обеспечению

Программе передаются две строки в качестве входных данных, и она должна вычислить и вывести искомое расстояние, используя каждый из реализованных алгоритмов: для Левенштейна — итеративный, для Дамерау - Левенштейна — итеративный, рекурсивный без использования кэша и рекурсивный с использованием кэша. Кроме того, необходимо сообщить затраченное каждым алгоритмом процессорное время и память.

В создаваемом приложении пользователю должны быть доступны функции ввода двух строк и выбора желаемого алгоритма. Пользователь должен иметь возможность оценить размер и работу каждого алгоритма.

2.2 Алгоритм поиска расстояния Левенштейна

Для оптимизации нахождения расстояния Левенштейна можно использовать матрицу в целях хранения соответствующих промежуточных значений. В таком случае алгоритм представляет собой построчное заполнение матрицы.

На рисунке 2.1 приведена схема рассматриваемого алгоритма.

Рисунок 2.1 — Схема итеративного алгоритма поиска расстояния Левенштейна

2.3 Алгоритмы поиска расстояния Дамерау-Левенштейна

Рассматриваются итеративный, рекурсивный без кэширования и рекурсивный с кэшированием алгоритмы поиска расстояния Дамерау - Левенштейна.

На рисунках 2.2-2.4 приведены схемы рассматриваемых алгоритмов.

Рисунок 2.2 – Схема нерекурсивного алгоритма поиска расстояния Дамерау-Левенштейна

Рисунок 2.3 — Схема рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна без кэширования

Рисунок 2.4 — Схема рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна с кэшированием

Вывод

На основе теоретических знаний, полученных в аналитическом разделе, были разработаны схемы алгоритмов, благодаря которым могут быть найдены расстояния Левенштейна и Дамерау - Левенштейна.

3 Технологическая часть

В этом разделе предоставляются реализации выполненных алгоритмов и осуществляется выбор средств реализации.

3.1 Выбор средств реализации

Для выполнения данной лабораторной работы был выбран язык программирования C++. Время измерялось с помощью функции clock() из библиотеки time.h [3].

3.2 Реализация алгоритмов

В листингах 3.1 – 3.4 представлены реализации рассматриваемых алгоритмов.

В Листинге 3.1 показана реализация нерекурсивного алгоритма нахождения расстояния Левенштейна.

```
int normalLevenAlgorithm(const std::wstring &firstWord, const std::wstring
1
       &secondWord, bool key)
2
3
       std::size_t firstLength = firstWord.length();
       std::size_t secondLength = secondWord.length();
4
       int answer = 0;
5
       int change = 0;
6
7
       std::vector<std::vector<int>> matrix(firstLength + 1, std::vector<int>(
      secondLength + 1, 0));
9
       initMatrix(matrix, firstLength + 1, secondLength + 1);
10
11
       for (std::size_t indexI = 1; indexI < firstLength + 1; indexI++)</pre>
12
         for (std::size_t indexJ = 1; indexJ < secondLength + 1; indexJ++)</pre>
13
14
           change = checkEquality(firstWord[indexI - 1], secondWord[indexJ -
15
      1]);
16
           matrix[indexI][indexJ] = std::min(matrix[indexI][indexJ - 1] + 1,
17
           std::min(matrix[indexI - 1][indexJ] + 1,
18
19
           matrix[indexI - 1][indexJ - 1] + change));
```

Листинг 3.1 – Нерекурсивный алгоритм поиска расстояния Левенштейна

В Листинге 3.2 показана реализация нерекурсивного алгоритма нахождения расстояния Дамерау - Левенштейна.

```
int normalLevenAlgorithm(const std::wstring &firstWord, const std::wstring
1
       &secondWord, bool key)
2
3
       std::size_t firstLength = firstWord.length();
       std::size_t secondLength = secondWord.length();
4
       int answer = 0;
5
6
       int change = 0;
7
8
       std::vector<std::vector<int>> matrix(firstLength + 1, std::vector<int>(
      secondLength + 1, 0));
9
10
       initMatrix(matrix, firstLength + 1, secondLength + 1);
11
12
       for (std::size_t indexI = 1; indexI < firstLength + 1; indexI++)</pre>
13
         for (std::size_t indexJ = 1; indexJ < secondLength + 1; indexJ++)
14
15
           change = checkEquality(firstWord[indexI - 1], secondWord[indexJ -
      1]);
16
17
           matrix[indexI][indexJ] = std::min(matrix[indexI][indexJ - 1] + 1,
18
           std::min(matrix[indexI - 1][indexJ] + 1,
19
           matrix[indexI - 1][indexJ - 1] + change));
20
         }
21
22
       if (key)
23
         printMatrix(matrix, firstLength + 1, secondLength + 1);
24
25
       answer = matrix[firstLength][secondLength];
26
27
       return answer;
28
     }
```

Листинг 3.2— Нерекурсивный алгоритм поиска расстояния Дамерау - Левенштейна

В Листинге 3.3 показана реализация рекурсивного алгоритма нахождения расстояния Дамерау - Левенштейна без кэша.

```
int recursiveDamerauLeven(const std::wstring firstWord, const std::wstring
      secondWord,
   std::size_t firstLenght, std::size_t secondLength)
2
3
     int rc = 0;
4
5
6
     if (firstLenght != 0)
7
       if (secondLength != 0)
8
9
10
         int change = checkEquality(firstWord[firstLenght - 1], secondWord[
      secondLength - 1]);
11
12
         rc = std::min(recursiveDamerauLeven(firstWord, secondWord, firstLenght
      , secondLength - 1) + 1,
         std::min(recursiveDamerauLeven(firstWord, secondWord, firstLenght - 1,
13
       secondLength) + 1,
14
         recursiveDamerauLeven(firstWord, secondWord, firstLenght - 1,
      secondLength - 1) + change));
15
16
         if (firstLenght > 1 && secondLength > 1 && firstWord[firstLenght - 1]
      == secondWord[secondLength - 2] &&
17
         firstWord[firstLenght - 2] == secondWord[secondLength - 1])
           rc = std::min(rc, recursiveDamerauLeven(firstWord, secondWord,
18
      firstLenght - 2, secondLength - 2) + 1);
19
20
       else
21
         rc = firstLenght;
22
23
     else
24
       rc = secondLength;
25
     return rc;
     }
26
```

Листинг 3.3 – Рекурсивный алгоритм поиска расстояния Дамерау - Левенштейна без кэша

В Листинге 3.4 показана реализация рекурсивного алгоритма нахождения расстояния Дамерау - Левенштейна с кэшом.

```
int cacheDamerauLeven(std::vector<std::vector<int>> &matrix, const std::
1
      wstring firstWord, const std::wstring secondWord,
     const std::size_t &firstLenght, const std::size_t &secondLength)
2
3
       if (firstLenght != 0)
4
5
6
         if (secondLength != 0)
7
           int change = checkEquality(firstWord[firstLenght - 1], secondWord[
8
      secondLength - 1]);
9
10
           matrix[firstLenght][secondLength] = std::min(cacheDamerauLeven(
      matrix,
11
           firstWord, secondWord, firstLenght, secondLength - 1) + 1,
           std::min(cacheDamerauLeven(matrix, firstWord, secondWord,
12
      firstLenght - 1, secondLength) + 1,
13
           cacheDamerauLeven(matrix, firstWord, secondWord, firstLenght - 1,
      secondLength - 1) + change));
14
15
           if (firstLenght > 1 && secondLength > 1 && firstWord[firstLenght -
      1] == secondWord[secondLength - 2] &&
16
           firstWord[firstLenght - 2] == secondWord[secondLength - 1])
17
             matrix[firstLenght][secondLength] = std::min(matrix[firstLenght][
      secondLength],
18
             cacheDamerauLeven(matrix, firstWord, secondWord, firstLenght - 2,
      secondLength - 2) + 1);
         }
19
20
21
           matrix[firstLenght][secondLength] = firstLenght;
       }
22
23
       else
24
         matrix[firstLenght][secondLength] = secondLength;
25
26
       return matrix[firstLenght][secondLength];
27
     }
28
     }
```

Листинг 3.4 — Рекурсивный алгоритм поиска расстояния Дамерау - Левенштейна с кэшом

3.3 Тестовые данные

В таблице 3.1 приведены входные данные, на которых было протестированно разработанное ΠO .

Таблица 3.1 – Функциональные тесты

Входные данные		Расстояние и алгоритм				
		Левенштейна	Дамерау - Левенштейна			
Строка 1	Строка 2	Итеративный	Итеративный	Рекурсивный		
				Без кеша	С кешом	
a	b	1	1	1	1	
бабушка	бабушка	0	0	0	0	
КОТ	скат	2	2	2	2	
56	two	3	3	3	3	
exam	example	3	3	3	3	
конфета	календула	6	6	6	6	
abcde	edcba	4	4	4	4	
dasha	arisah	5	4	4	4	

Вывод

Были предоставлены листинги кода на выбранном языке программирования и приведена таблица с результатами выполнения программы на заданных тестовых данных.

4 Исследовательская часть

4.1 Интерфейс приложения

На рисунках 4.1-4.2 приведено изображение интерфейса главного экрана приложения.

```
Введите первое слово: qwertyuiop
Введите второе слово: poiuytrewq
Меню

1) Нерекурсивный алгоритм поиска расстояния Левенштейна.
2) Нерекурсивный алгоритм поиска расстояния Дамерау-Левенштейна.
3) Рекурсивный алгоритм поиска расстояния Дамерау-Левенштейна без кэша.
4) Рекурсивный алгоритм поиска расстояния Дамерау-Левенштейна с кэшом.
5) Замерить память и время работы реализации алгоритмов поиска расстояния.
0) Завершить программу.
Выберите действие: 5
```

Рисунок 4.1 – Интерфейс

На экране приложения пользователь может ввести два слова, для которых необходимо вычислить расстояние, а также выбрать метод, который будет использован для этого вычисления. В результате выводится полученное расстояние, память и скорость работы алгоритмов, показывающие, как время выполнения операций (измеряемое в секундах) зависит от количества выполненных операций.

```
Введите первое слово: qwertyulop
Введите второе слово: poluytrewq

Меню

1) Нерекурсивный алгоритм поиска расстояния Левенштейна.
2) Нерекурсивный алгоритм поиска расстояния Дамерау-Левенштейна без кэша.
3) Рекурсивный алгоритм поиска расстояния Дамерау-Левенштейна без кэша.
4) Рекурсивный алгоритм поиска расстояния Дамерау-Левенштейна с кэшом.
5) Замерить память и время работы реализации алгоритмов поиска расстояния.
0) Завершть программу.
Выберите действие: 5

Скорость работы алгоритмов измеряется в секундах, память в байтах.

Нерекурсивный алгоритм поиска расстояния Левенштейна = 0,0000000300 сек.
Размер нерекурсивного алгоритма поиска расстояния Левенштейн = 596 байт.

Нерекурсивный алгоритм поиска расстояния Дамерау-Левенштейн = 600 байт.

Рекурсивный алгоритм поиска расстояния Дамерау-Левенштейна без кэша = 0,0014685720 сек.
Размер рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна без кэша = 1840 байт.

Рекурсивный алгоритм поиска расстояния Дамерау-Левенштейна с кэшом = 0,0000000080 сек.
Размер рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна с кэшом = 2348 байт.
```

Рисунок 4.2 – Экран с результатом

4.2 Технические характеристики

Технические характеристики устройства, на котором выполнялось тестирование:

- операционная система Ubuntu 22.04.3 LTS;
- оперативная память 12 Гб;
- процессор AMD® Athlon silver 3050u with radeon graphics × 2;

4.3 Время выполнения реализаций алгоритмов

На рисунке 4.3 приведено сравнение реализации всех алгоритмов поиска расстояния, у которых строки длиной от 1 до 10.

Рисунок 4.3 – Сравнение времени работы реализаций алгоритмов

4.4 Используемая память

Введены следующие обозначения:

- n длина строки S_1 ;
- m длина строки S_2 ;
- size() функция вычисляющая размер в байтах;
- string строковый тип;
- int целочисленный тип;
- \bullet size t беззнаковый целочисленный тип.

Максимальная глубина стека вызовов при рекурсивной реализации нахождения расстояния Дамерау — Левенштейна равна сумме входящих строк, а на каждый вызов требуется 2 дополнительные переменные, соответственно, максимальный расход памяти равен:

$$(n+m)\cdot(2\cdot size(string) + 3\cdot size(int) + 2\cdot sizeof(size_t)), \tag{4.1}$$

где:

- $2 \cdot size(string)$ хранение двух строк;
- $2 \cdot size(size_t)$ хранение размеров строк;
- $2 \cdot size(int)$ дополнительные переменные;
- \bullet size(int) адрес возврата.

Для рекурсивного алгоритма с кешированием поиска расстояния Дамерау – Левенштейна будет теоретически схож с расчетом в формуле (4.1), но также учитывается матрица, соответственно, максимальный расход памяти равен:

$$(n+m) \cdot (2 \cdot size(string) + 3 \cdot size(int) + 2 \cdot size(size_t)) + \\ + (n+1) \cdot (m+1) \cdot size(int)$$

$$(4.2)$$

Использование памяти при итеративной реализации алгоритма поиска расстояния Левенштейна теоретически равно:

$$(n+1) \cdot (m+1) \cdot size(int) + 2 \cdot size(string) + 2 \cdot size(size_t) + \\ + size(vector < vector < int >>) + (n+1) \cdot size(vector < int >) + 2 \cdot size(int), \\ (4.3)$$

где

- $2 \cdot size(string)$ хранение двух строк;
- $2 \cdot size(size_t)$ хранение размеров матрицы;
- $(n+1) \cdot (m+1) \cdot size(int)$ хранение матрицы;
- $size(vector < vector < int >>) + (n+1) \cdot size(vecotr < int >) -$ указатель на матрицу;
- size(int) дополнительная переменная для хранения результата;
- size(int) адрес возврата.

Использование памяти при итеративной реализации алгоритма поиска расстояния Дамерау – Левенштейна теоретически равно:

$$(n+1) \cdot (m+1) \cdot size(int) + 2 \cdot size(string) + 2 \cdot size(size_t) + \\ + size(vector < vector < int >>) + (n+1) \cdot size(vector < int >) + 3 \cdot size(int), \\ (4.4)$$

где

- 2*size(string) хранение двух строк;
- $2 \cdot size(size_t)$ хранение размеров матрицы;
- $(n+1) \cdot (m+1) \cdot size(int)$ хранение матрицы;
- $size(vector < vector < int >>) + (n+1) \cdot size(vecotr < int >) -$ указатель на матрицу;
- $2 \cdot size(int)$ дополнительные переменные;
- size(int) адрес возврата.

По расходу памяти итеративные алгоритмы проигрывают рекурсивным: максимальный размер используемой памяти в итеративном растет как произведение длин строк, в то время как у рекурсивного алгоритма — как сумма длин строк.

Из данных, видно, что рекурсивные алгоритмы являются более эффективными по памяти, так как используется только память под локальные переменные, передаваемые аргументы и возвращаемое значение, в то время как итеративные алгоритмы затрачивают память линейно пропорционально длинам обрабатываемых строк.

Из рисунка 4.4 видно, что рекурсивная реализация алгоритма поиска расстояния Дамерау - Левенштейна эффективная по памяти, чем итеративная.

Рисунок 4.4 – Сравнение размеров реализаций алгоритмов в байтах

Вывод

В данном разделе было произведено сравнение количества затраченного времени и памяти алгоритмов поиска расстояний Левенштейна и Дамерау-Левенштейна. Наименее затратным по времени оказался итеративный алгоритм нахождения расстояния Левенштейна. Рекурсивная реализация алгоритма поиска расстояния Дамерау - Левенштейна будет более затратным по времени по сравнению с итеративной реализацией алгоритмов поиска расстояния, но менее затратным по памяти.

Заключение

По окончании лабораторной работы, при изучении алгоритмов для вычисления расстояния Левенштейна и Дамерау - Левенштейна, успешно применили и усовершенствовали наши навыки в области динамического программирования и разработки программного обеспечения.

В результате исследования было определено, что время алгоритмов нахождения расстояний Левенштейна и Дамерау - Левенштейна растет в геометрической прогрессии при увеличении длин строк. Лучшие показатели по времени дает нерекурсивная реализация алгоритма нахождения расстояния Левенштейна за счет сохранения необходимых промежуточных вычислений. При этом итеративные реализации с использованием матрицы занимают больше память, чем рекурсивнаые реализации, поэтому в этом случае предпочтение отдается рекурсивным алгоритмам нахождения расстояния.

В ходе выполнения лабораторной работы были выполнены следующие задачи:

- 1) изучены расстояния Левенштейна и Дамерау Левенштейна;
- 2) разработаны и реализованы алгоритмы поиска расстояния Левенштейна и Дамерау Левенштейна;
- 3) создан программный продукт, позволяющий протестировать реализованные алгоритмы;
- 4) проведен сравнительный анализ процессорного времени и затрачиваемой алгоритмами памяти;
- 5) был подготовлен отчет по лабораторной работе.

Список использованных источников

- [1] И. Левенштейн В. Двоичные коды с исправлением выпадений, вставок и замещений символов. М.: Издательство «Наука», Доклады АН СССР, 1965. Т. 163.
- [2] В. Ульянов М. Ресурсно-эффективные компьютерные алгоритмы: учебное пособие. М.: Издательство «Наука», ФИЗМАТЛИ, 2007.
- [3] C library function clock() [Электронный ресурс]. Режим доступа: https://en.cppreference.com/w/c/chrono/clock_t (дата обращения: 30.09.2023).