Condición: Regular - Libre

Carrera: LCC - LA - LM - LF - PM - PF - LMA

Para la aprobación del examen se requiere aprobar por separado la Parte Práctica y la Parte Teórica. Justifique todas sus respuestas.

Parte práctica.

- 1. (10 pts.) Sea $A = (A_{ij})_{1 \le i,j \le n} \in \mathbb{C}^{n \times n}$ una matriz tal que $\det(A) = -2$.
 - $a) \ \ \text{Calcular el determinante de la matriz} \ \ A_t = \begin{bmatrix} A_{11} + A_{12}t & A_{11}t + A_{12} & \cdots & A_{1n} \\ A_{21} + A_{22}t & A_{21}t + A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{n1} + A_{n2}t & A_{n1}t + A_{n2} & \cdots & A_{nn} \end{bmatrix}.$
 - b) Hallar todos los valores de $t \in \mathbb{C}$ tales que A_t sea invertible.
- 2. (15 pts.) Sean $a_1, \ldots, a_n \in \mathbb{R}$, $n \geq 2$, escalares no todos nulos y sean W_1 y W_2 los subespacios de \mathbb{R}^n definidos en la forma:

$$W_1 = \{(x_1, \dots, x_n) \in \mathbb{R}^n : a_1 x_1 + \dots + a_n x_n = 0\}, \qquad W_2 = \langle (a_1, \dots, a_n) \rangle.$$

- a) Mostrar bases de W_1 y de W_2 y determinar sus dimensiones.
- b) Probar que $\mathbb{R}^n = W_1 \oplus W_2$.
- c) Probar que si U es un subespacio de \mathbb{R}^n tal que $(1,0,\ldots,0),(0,0,\ldots,1)\in U$, entonces $W_1\cap U\neq\{0\}$.
- 3. (15 pts.) Sea $T : \mathbb{R}^4 \to \mathbb{R}^4$ un operador lineal tal que (1,0,-1,0) y (0,1,-1,0) son autovectores de T con autovalor -1, (2,0,0,-1) es autovector de T con autovalor 1 y (0,0,1,0) es autovector de T con autovalor 2.
 - a) Determinar el polinomio característico y los autoespacios de T.
 - b) Dar una fórmula explícita para T(x, y, z, t).
 - c) Sea $A \in \mathbb{R}^{4\times 4}$ la matriz de T en la base ordenada canónica. Mostrar una matriz invertible P tal que $P^{-1}AP$ sea diagonal.
- 4. (15 pts.) Sea V un espacio vectorial de dimensión 5 sobre \mathbb{R} y sea $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$ una base de V. Sea $T: V \to \mathcal{P}_3(\mathbb{R})$ la única transformación lineal que satisface

$$T(\alpha_1) = 1 + x$$
, $T(\alpha_2) = 1 + x + x^3$, $T(\alpha_3) = x - x^2$, $T(\alpha_4) = x^3$, $T(\alpha_5) = 1 + x^2$,

donde $\mathcal{P}_3(\mathbb{R})$ es el espacio vectorial de las funciones polinomiales de grado menor o igual a 3.

- a) Calcular la dimensión del núcleo de T.
- b) Decidir si T es un epimorfismo o un monomorfismo.
- c) Probar que existen bases ordenadas de V y de $\mathcal{P}_3(\mathbb{R})$ tales que la matriz de T con respecto a dichas bases tiene exactamente dos columnas nulas.

Parte Teórica.

- 5. (15 pts.) Sean A una matriz $m \times n$ con coeficientes en un cuerpo F. Probar que si m < n, entonces el sistema homogéneo AX = 0 tiene soluciones no triviales.
- 6. (15 pts.) Sea V un espacio vectorial sobre un cuerpo F.
 - a) Dar la definición de subespacio generado por un subconjunto S de V.
 - b) Probar que si V está generado por un conjunto finito de vectores β_1, \ldots, β_m , entonces todo conjunto linealmente independiente de vectores de V es finito y contiene a lo sumo m elementos.
- 7. (15 pts.) Completar el siguiente enunciado y demostrar:

"Sean V y W espacios vectoriales sobre un cuerpo F y sea $T:V\to W$ una transformación lineal. Supongamos que V es de dimensión finita. Entonces

$$\dim \operatorname{Nu}(T) + \dim \operatorname{Im}(T) = \dots$$

Parte práctica	1	2	3	4	Total
Evaluación					

Parte teórica	5	6	7	Total	Total General
Evaluación					