TCPT Problem No.4 ——

Two Balloons

Main Report

David Zhang
Department of Physics,
Beijing Normal University

January 23, 2016

Content

Brief Review

Theory & Analysis

Experimental Tests

Conclusions

Brief Review

Abstract:

Two rubber balloons are partially inflated with air and connected together by a hose with a valve. It is found that depending on initial balloon volumes, the air can flow in different directions. Investigate this phenomenon.

Keywords: Rubber Balloons Partially inflated

How can the air flow from the smaller balloon to the larger balloon?

If $p_1
eq p_2$, then according to Euler's equation

$$\mu \frac{\partial \vec{u}}{\partial t} + \mu (\vec{u} \cdot \vec{\nabla}) \vec{u} + \vec{\nabla} p = 0$$

the direction of the air flow can be determined

Until $p_1 \approx p_2$, the derivative dp/dr will determine the states

Definitions

Balloon: Isotropic hyperelastic sphere-like membrane

Differential Pressure:

Pressure difference inside and outside the balloon

Radius: Radius of the largest cross-section circle which is perpendicular to the mouth

Ratio: The ratio of stretched to initial radius

Construct Lagrangian

$$\mathcal{L} = P - W = -W(\mathbf{F}) = -W(\mathbf{B}) \quad (1)$$

Where

$$m{F} = rac{\partial m{x}}{\partial m{X}}$$
 , $m{B} = m{F}m{F}^T$ (2)

Calculate energy density

According to Cayley–Hamilton theorem, the energy density of isotropic material can be reformulate as the function of the invariants

$$W(\boldsymbol{B}) = W(I_1, I_2, J) \tag{3}$$

Calculate energy density

Polynomial model:

$$W = \sum_{i,j=0}^{n} C_{pq} (\bar{I}_1 - 3)^i (\bar{I}_2 - 3)^j + \sum_{k=1}^{m} D_k (J - 1)^k$$
 (4)

Simplified to Mooney-Rivlin Model:

$$W = C_1(I_1 - 3) + C_2(I_2 - 3) + p(J - 1)$$
 (5)

Calculate stress

According to

$$\boldsymbol{\sigma} = \frac{2}{J}\boldsymbol{B} \cdot \frac{\partial W}{\partial \boldsymbol{B}} \tag{6}$$

There is

$$\boldsymbol{\sigma} = C_1 \boldsymbol{B} - C_2 \boldsymbol{B}^{-1} + p \boldsymbol{E} \tag{7}$$

Calculate stress

From
$$\mathbf{B} = \begin{bmatrix} \varepsilon^2 & 0 & 0 \\ 0 & \lambda^2 \varepsilon^2 & 0 \\ 0 & 0 & \lambda^{-2} \varepsilon^{-4} \end{bmatrix}$$
 (8)

There is

$$\sigma = C_1(\lambda^2 \varepsilon^2 - \lambda^{-2} \varepsilon^{-4}) + C_2(\lambda^2 \varepsilon^4 - \lambda^{-2} \varepsilon^{-2})$$
 (9)

Calculate p - r relation

From

$$\delta p \cdot \pi r^2 = \sigma \cdot 2\pi r d \tag{10}$$

There is

$$\delta p = 2C_1 \frac{d_0}{r_0} (\lambda^2 \varepsilon^{-1} - \lambda^{-2} \varepsilon^{-7}) (1 + \frac{C_2}{C_1} \varepsilon^2)$$
 (11)

Caution

- The rubber molecular of a new balloon may not fully stretched, thus will lead to instability of material coefficient
- Memory effect may exert influence due to the non-perfect hyperelastic property of the rubber balloon

	A(X1) 🕰	B(Y1)	C(Y1)	D(Y1)	E(X2)	F(Y2) 🕰	G(xEr?	H(yEr?
Long Name	Stretch Ratio	Pressure	Modified Radius	Original Radius	Functional Stretch Ratio	Function Value	Stretch Ratio Error	Pressure Error
Units	1	hPa	mm	mm	1	hPa	1	hPa
F(x)=	Col(C)/83		Col(D)-5		10+0.5*(i-1))/10).71/(Col(E)^7)	3/100	0.1
1	4.03614	12.61	335	340	1	8.6724	0.03	0.1
2	3.91566	12.14	325	330	1.05	10.39408	0.03	0.1
3	3.75904	11.68	312	317	1.1	11.43788	0.03	0.1
4	3.71084	11.36	308	313	1.15	12.04804	0.03	0.1
5	3.6506	11.07	303	308	1.2	12.37808	0.03	0.1
6	3.61446	10.84	300	305	1.25	12.52624	0.03	0.1
7	3.55422	10.68	295	300	1.3	12.55629	0.03	0.1
8	3.51807	10.49	292	297	1.35	12.5102	0.03	0.1
9	3.46988	10.37	288	293	1.4	12.41586	0.03	0.1
10	3.38554	10.27	281	286	1.45	12.29193	0.03	0.1
11	2.91566	9.88	242	247	1.5	12.15103	0.03	0.1
12	3.26506	10.14	271	276	1.55	12.00165	0.03	0.1
13	3.20482	10.09	266	271	1.6	11.84954	0.03	0.1
14	3.16867	10.02	263	268	1.65	11.69853	0.03	0.1
15	3.10843	9.95	258	263	1.7	11.5512	0.03	0.1
16	3.03614	9.91	252	257	1.75	11.40919	0.03	0.1

Table 1

Error Analysis

Error of manometer

$$\varepsilon = \pm 0.1 \, \text{hPa}$$

Error of stretch ratio

$$\varepsilon = \pm 0.03$$

Experimental Result

Experimental Result

- 1. In small deformation interval, the experiments accord with the theory very well
- 2. In large deformation interval, the approximation fails because of the neglect of the high order terms

Conclusions

- 1. The direction of the air flow is determined by the initial volume of the balloons
- 2. The direction is determined by the pressure of the balloons and their changing rates
- 3. If the pressure of the balloons is not equal, then the pressure will determine the direction
- 4. If the pressure of the balloons is equal, then the changing rate will determine the equilibrium states

- [1] Ingo Müller, Peter Strehlow, Rubber and Rubber Balloons Paradigms of Thermodynamics, Springer Berlin Heidelberg, **637**, 2004, ISBN: 978-3-540-20244-8, doi: 10.1007/b93853
- [2] Wikipedia, Cauchy Stress Tensor, https://en.wikipedia.org/wiki/Cauchy_stress_tensor
- [3] Wikipedia, Cayley-Hamilton theorem, https://en.wikipedia.org/wiki/Cayley-Hamilton_theorem

- [4] Prof. Dr.-Ing. Yavuz Başar, Prof. Dr.-Ing. Dieter Weichert, Nonlinear Continuum Mechanics of Solids Fundamental Mathematical and Physical Concepts, 2000, ISBN: 978-3-642-08588-8, doi: 10.1007/978-3-662-04299-1
- [5] Wikipedia, Finite Strain Theory, https://en.wikipedia.org/wiki/Finite_strain_theory
- [6] Wikipedia, Hyperelastic Material, https://en.wikipedia.org/wiki/Hyperelastic_material

- [7] Wikipedia, Invariants of Tensors, https://en.wikipedia.org/wiki/Invariants_of_tensors
- [8] Wikipedia, Lagrangian Multiplier Rules, https://en.wikipedia.org/wiki/Lagrange_multiplier
- [9] Wikipedia, Mooney–Rivlin Solid, https://en.wikipedia.org/wiki/Mooney-Rivlin_solid
- [10] Wikipedia, Navier–Stokes Equations, https://en.wikipedia.org/wiki/Navier-Stokes_equations

- [11] Wikipedia, Euler equations (fluid dynamics), en.wikipedia.org/wiki/Euler_equations_(fluid_dynamics)
- [12] Wikipedia, Strain Energy Density Function, en.wikipedia.org/wiki/Strain_energy_density_function
- [13] Wikipedia, Stress (mechanics), https://en.wikipedia.org/wiki/Stress_(mechanics)
- [14] Wikipedia, Young's Modulus, https://en.wikipedia.org/wiki/Young's_modulus

Thanks