Introducción a

JavaScript

Capítulo 1. Introducción

1.1. ¿Qué es JavaScript?

JavaScript es un lenguaje de programación que se utiliza principalmente para crear páginas web dinámicas.

Una página web dinámica es aquella que incorpora efectos como texto que aparece y desaparece, animaciones, acciones que se activan al pulsar botones y ventanas con mensajes de aviso al usuario.

Técnicamente, JavaScript es un lenguaje de programación interpretado, por lo que no es necesario compilar los programas para ejecutarlos. En otras palabras, los programas escritos con JavaScript se pueden probar directamente en cualquier navegador sin necesidad de procesos intermedios. A pesar de su nombre, JavaScript no guarda ninguna relación directa con el lenguaje de programación Java. Legalmente, JavaScript es una marca registrada de la empresa Sun Microsystems, como se puede ver en http://www.sun.com/suntrademarks/.

1.2. Cómo incluir JavaScript en documentos XHTML

La integración de JavaScript y XHTML es muy flexible, ya que existen al menos tres formas para incluir código JavaScript en las páginas web.

1.2.1. Incluir JavaScript en el mismo documento XHTML

El código JavaScript se encierra entre etiquetas <script> y se incluye en cualquier parte del documento. Aunque es correcto incluir cualquier bloque de código en cualquier zona de la página, se recomienda definir el código JavaScript dentro de la cabecera del documento (dentro de la etiqueta <head>):

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Ejemplo de código JavaScript en el propio documento</title>
<script type="text/javascript">
alert("Un mensaje de prueba");
</script>
</head>
<body>
Un párrafo de texto.
</body>
</html>
```

Para que la página XHTML resultante sea válida, es necesario añadir el atributo type a la etiqueta <script>. Los valores que se incluyen en el atributo type están estandarizados y para el caso de JavaScript, el valor correcto es text/javascript. Este método se emplea cuando se define un bloque pequeño de código o cuando se quieren incluir instrucciones específicas en un determinado documento HTML que completen las instrucciones y funciones que se incluyen por defecto en todos los documentos del sitio web.

El principal inconveniente es que si se quiere hacer una modificación en el bloque de código, es necesario modificar todas las páginas que incluyen ese mismo bloque de código JavaScript.

1.2.2. Definir JavaScript en un archivo externo

Las instrucciones JavaScript se pueden incluir en un archivo externo de tipo JavaScript que los documentos XHTML enlazan mediante la etiqueta <script>. Se pueden crear todos los archivos JavaScript que sean necesarios y cada documento XHTML puede enlazar tantos archivos JavaScript como necesite.

Ejemplo:

Documento XHTML

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Ejemplo de código JavaScript en el propio documento</title>
<script type="text/javascript" src="/js/codigo.js"></script>
</head>
<body>
Un párrafo de texto.
</body>
</html>
```

Además del atributo type, este método requiere definir el atributo src, que es el que indica la URL correspondiente al archivo JavaScript que se quiere enlazar. Cada etiqueta <script> solamente puede enlazar un único archivo, pero en una misma página se pueden incluir tantas etiquetas <script> como sean necesarias.

Los archivos de tipo JavaScript son documentos normales de texto con la extensión .js, que se pueden crear con cualquier editor de texto como Notepad, Wordpad, EmEditor, UltraEdit, Vi, etc.

La principal ventaja de enlazar un archivo JavaScript externo es que se simplifica el código XHTML de la página, que se puede reutilizar el mismo código JavaScript en todas las páginas del sitio web y que cualquier modificación realizada en el archivo JavaScript se ve reflejada inmediatamente en todas las páginas XHTML que lo enlazan.

1.2.3. Incluir JavaScript en los elementos XHTML

Este último método es el menos utilizado, ya que consiste en incluir trozos de JavaScript dentro del código XHTML de la página:

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Ejemplo de código JavaScript en el propio documento</title>
</head>
<body>
onclick="alert('Un mensaje de prueba')">Un párrafo de texto.
</body>
</html>
```

El mayor inconveniente de este método es que *ensucia* innecesariamente el código XHTML de la página y complica el mantenimiento del código JavaScript. En general, este método sólo se utiliza para definir algunos eventos y en algunos otros casos especiales, como se verá más adelante.

1.3. Etiqueta noscript

Algunos navegadores no disponen de soporte completo de JavaScript, otros navegadores permiten bloquearlo parcialmente e incluso algunos usuarios bloquean completamente el uso de JavaScript porque creen que así navegan de forma más segura.

En estos casos, es habitual que si la página web requiere JavaScript para su correcto funcionamiento, se incluya un mensaje de aviso al usuario indicándole que debería activar JavaScript para disfrutar completamente de la página.

El lenguaje HTML define la etiqueta <noscript> para mostrar un mensaje al usuario cuando su navegador no puede ejecutar JavaScript. El siguiente código muestra un ejemplo del uso de la etiqueta <noscript>:

```
<head> ... </head>
<body>
<noscript>
Rienvenido a Mi Sitio
La página que estás viendo requiere para su funcionamiento el uso de JavaScript.
Si lo has deshabilitado intencionadamente, por favor vuelve a activarlo.
</noscript>
</body>
```

La etiqueta <noscript> se debe incluir en el interior de la etiqueta <body> (normalmente se incluye al principio de <body>). El mensaje que muestra <noscript> puede incluir cualquier elemento o etiqueta XHTML.

1.4. Glosario básico

Script: cada uno de los programas, aplicaciones o trozos de código creados con el lenguaje de programación JavaScript. Unas pocas líneas de código forman un script y un archivo de miles de líneas de JavaScript también se considera un script. A veces se traduce al español directamente como "guión", aunque script es una palabra más adecuada y comúnmente aceptada.

Sentencia: cada una de las instrucciones que forman un script.

Palabras reservadas: son las palabras (en inglés) que se utilizan para construir las sentencias de JavaScript y que por tanto no pueden ser utilizadas libremente. Las palabras actualmente reservadas por JavaScript son: break, case, catch, continue, default, delete, do, else, finally, for, function, if, in, instanceof, new, return, switch, this, throw, try, typeof, var, void, while, with.

1.5. Sintaxis

La sintaxis de un lenguaje de programación se define como el conjunto de reglas que deben seguirse al escribir el código fuente de los programas para considerarse como correctos para ese lenguaje de programación.

La sintaxis de JavaScript es muy similar a la de otros lenguajes de programación como Java y C.

Las normas básicas que definen la sintaxis de JavaScript son las siguientes:

- No se tienen en cuenta los espacios en blanco y las nuevas líneas: cómo sucede con XHTML, el intérprete de JavaScript ignora cualquier espacio en blanco sobrante, por lo que el código se puede ordenar de forma adecuada para entenderlo mejor (tabulando las líneas, añadiendo espacios, creando nuevas líneas, etc.)
- Se distinguen las mayúsculas y minúsculas: al igual que sucede con la sintaxis de las etiquetas y elementos XHTML. Sin embargo, si en una página XHTML se utilizan indistintamente mayúsculas y minúsculas, la página se visualiza correctamente, siendo el único problema la no validación de la página. En cambio, si en JavaScript se intercambian mayúsculas y minúsculas el script no funciona.
- No se define el tipo de las variables: al crear una variable, no es necesario indicar el tipo de dato que almacenará. De esta forma, una misma variable puede almacenar diferentes tipos de datos durante la ejecución del script.
- No es necesario terminar cada sentencia con el carácter de punto y coma (;): en la mayoría de lenguajes de programación, es obligatorio terminar cada sentencia con el carácter; Aunque JavaScript no obliga a hacerlo, es conveniente seguir la tradición de terminar cada sentencia con el carácter del punto y coma (;).
- Se pueden incluir comentarios: los comentarios se utilizan para añadir información en el código fuente del programa. Aunque el contenido de los comentarios no se visualiza por pantalla, si que se envía al navegador del usuario junto con el resto del script, por lo que es necesario extremar las precauciones sobre la información incluida en los comentarios. JavaScript define dos tipos de comentarios: los de una sola línea y los que ocupan varias líneas.

Ejemplo de comentario de una sola línea:

```
// a continuación se muestra un mensaje
alert("mensaje de prueba");
```

Los comentarios de una sola línea se definen añadiendo dos barras oblicuas (//) al principio de la línea.

Ejemplo de comentario de varias líneas:

```
/* Los comentarios de varias líneas son muy útiles
cuando se necesita incluir bastante información
en los comentarios */
alert("mensaje de prueba");
```

Los comentarios multilínea se definen encerrando el texto del comentario entre los símbolos /* y */.

Capítulo 2. El primer script

A continuación, se muestra un primer script sencillo pero completo:

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>El primer script</title>
<script type="text/javascript">
alert("Hola Mundo!");
</script>
</head>
<body>
Esta página contiene el primer script
</body>
</html>
```

En este ejemplo, el script se incluye como un bloque de código dentro de una página XHTML. Por tanto, en primer lugar se debe crear una página XHTML correcta que incluya la declaración del DOCTYPE, el atributo xmlns, las secciones <head> y <body>, la etiqueta <title>, etc. Aunque el código del script se puede incluir en cualquier parte de la página, se recomienda incluirlo en la cabecera del documento, es decir, dentro de la etiqueta <head>. A continuación, el código JavaScript se debe incluir entre las etiquetas <script>...</script>.

Además, para que la página sea válida, es necesario definir el atributo type de la etiqueta <script>. Técnicamente, el atributo type se corresponde con "el tipo MIME", que es un estándar para identificar los diferentes tipos de contenidos. El "tipo MIME" correcto para JavaScript es text/javascript.

Una vez definida la zona en la que se incluirá el script, se escriben todas las sentencias que forman la aplicación. Este primer ejemplo es tan sencillo que solamente incluye una sentencia: alert("Hola Mundo!");.

La instrucción alert() es una de las utilidades que incluye JavaScript y permite mostrar un mensaje en la pantalla del usuario. Si se visualiza la página web de este primer script en cualquier navegador, automáticamente se mostrará una ventana con el mensaje "Hola Mundo!".

Ejercicio 1

Modificar el primer script para que:

- 1. Todo el código JavaScript se encuentre en un archivo externo llamado codigo.js y el script siga funcionando de la misma manera.
- 2. Después del primer mensaje, se debe mostrar otro mensaje que diga "Soy el primer script"
- 3. Añadir algunos comentarios que expliquen el funcionamiento del código
- 4. Añadir en la página XHTML un mensaje de aviso para los navegadores que no tengan activado el soporte de JavaScript

Capítulo 3. Programación básica

Antes de comenzar a desarrollar programas y utilidades con JavaScript, es necesario conocer los elementos básicos con los que se construyen las aplicaciones. Si ya sabes programar en algún lenguaje de programación, este capítulo te servirá para conocer la sintaxis específica de JavaScript.

Si nunca has programado, este capítulo explica en detalle y comenzando desde cero los conocimientos básicos necesarios para poder entender posteriormente la programación avanzada, que es la que se utiliza para crear las aplicaciones reales.

3.1. Variables

Las variables en los lenguajes de programación siguen una lógica similar a las variables utilizadas en otros ámbitos como las matemáticas. Una variable es un elemento que se emplea para almacenar y hacer referencia a otro valor. Gracias a las variables es posible crear "programas genéricos", es decir, programas que funcionan siempre igual independientemente de los valores concretos utilizados.

De la misma forma que si en Matemáticas no existieran las variables no se podrían definir las ecuaciones y fórmulas, en programación no se podrían hacer programas realmente útiles sin las variables.

Si no existieran variables, un programa que suma dos números podría escribirse como:

```
resultado = 3 + 1
```

El *programa* anterior es tan poco útil que sólo sirve para el caso en el que el primer número de la suma sea el 3 y el segundo número sea el 1. En cualquier otro caso, el *programa* obtiene un resultado incorrecto.

Sin embargo, el programa se puede rehacer de la siguiente manera utilizando variables para almacenar y referirse a cada número:

```
numero_1 = 3
numero_2 = 1
resultado = numero_1 + numero_2
```

Los elementos numero_1 y numero_2 son **variables** que almacenan los valores que utiliza el programa. El resultado se calcula siempre en función del valor almacenado por las variables, por lo que este programa funciona correctamente para cualquier par de números indicado. Si se modifica el valor de las variables numero_1 y numero_2, el programa sigue funcionando correctamente.

Las variables en JavaScript se crean mediante la palabra reservada var. De esta forma, el ejemplo anterior se puede realizar en JavaScript de la siguiente manera:

```
var numero_1 = 3;
var numero_2 = 1;
var resultado = numero 1 + numero 2;
```

La palabra reservada var solamente se debe indicar al definir por primera vez la variable, lo que se denomina **declarar** una variable. Cuando se utilizan las variables

en el resto de instrucciones del script, solamente es necesario indicar su nombre. En otras palabras, en el ejemplo anterior sería un error indicar lo siguiente:

```
var numero_1 = 3;
var numero_2 = 1;
var resultado = var numero_1 + var numero_2;
```

Si cuando se declara una variable se le asigna también un valor, se dice que la variable ha sido **inicializada**. En JavaScript no es obligatorio inicializar las variables, ya que se pueden declarar por una parte y asignarles un valor posteriormente. Por tanto, el ejemplo anterior se puede rehacer de la siguiente manera:

```
var numero_1;
var numero_2;
numero_1 = 3;
numero_2 = 1;
var resultado = numero_1 + numero_2;
```

Una de las características más sorprendentes de JavaSript para los programadores habituados a otros lenguajes de programación es que tampoco es necesario declarar las variables. En otras palabras, se pueden utilizar variables que no se han definido anteriormente mediante la palabra reservada var. El ejemplo anterior también es correcto en JavaScript de la siguiente forma:

```
var numero_1 = 3;
var numero_2 = 1;
resultado = numero 1 + numero 2;
```

La variable resultado no está declarada, por lo que JavaScript crea una variable global (más adelante se verán las diferencias entre variables locales y globales) y le asigna el valor correspondiente. De la misma forma, también sería correcto el siguiente código:

```
numero_1 = 3;
numero_2 = 1;
resultado = numero_1 + numero_2;
```

En cualquier caso, se recomienda declarar todas las variables que se vayan a utilizar. El nombre de una variable también se conoce como **identificador** y debe cumplir las siguientes normas:

- Sólo puede estar formado por letras, números y los símbolos \$ (dólar) y _ (guión bajo).
- El primer carácter no puede ser un número.

Por tanto, las siguientes variables tienen nombres correctos:

```
var $numero1;
var _$letra;
var $$$otroNumero;
var $ a $4;
```

Sin embargo, las siguientes variables tienen identificadores incorrectos:

```
var 1numero; // Empieza por un número
var numero;1 123; // Contiene un carácter ";"
```

3.2. Tipos de variables

Aunque todas las variables de JavaScript se crean de la misma forma (mediante la palabra reservada var), la forma en la que se les asigna un valor depende del tipo de valor que se quiere almacenar (números, textos, etc.)

3.2.1. Numéricas

Se utilizan para almacenar valores numéricos enteros (llamados *integer* en inglés) o decimales (llamados *float* en inglés). En este caso, el valor se asigna indicando directamente el número entero o decimal. Los números decimales utilizan el carácter . (punto) en vez de , (coma) para separar la parte entera y la parte decimal:

```
var iva = 16; // variable tipo entero
var total = 234.65; // variable tipo decimal
```

3.2.2. Cadenas de texto

Se utilizan para almacenar caracteres, palabras y/o frases de texto. Para asignar el valor a la variable, se encierra el valor entre comillas dobles o simples, para delimitar su comienzo y su final:

```
var mensaje = "Bienvenido a nuestro sitio web";
var nombreProducto = 'Producto ABC';
var letraSeleccionada = 'c';
```

En ocasiones, el texto que se almacena en las variables no es tan sencillo. Si por ejemplo el propio texto contiene comillas simples o dobles, la estrategia que se sigue es la de encerrar el texto con las comillas (simples o dobles) que no utilice el texto:

```
/* El contenido de texto1 tiene comillas simples, por lo que
se encierra con comillas dobles */
var texto1 = "Una frase con 'comillas simples' dentro";

/* El contenido de texto2 tiene comillas dobles, por lo que
se encierra con comillas simples */
var texto2 = 'Una frase con "comillas dobles" dentro';
```

No obstante, a veces las cadenas de texto contienen tanto comillas simples como dobles. Además, existen otros caracteres que son difíciles de incluir en una variable de texto (tabulador, ENTER, etc.) Para resolver estos problemas, JavaScript define un mecanismo para incluir de forma sencilla caracteres especiales y problemáticos dentro de una cadena de texto.

El mecanismo consiste en sustituir el carácter problemático por una combinación simple de caracteres. A continuación se muestra la tabla de conversión que se debe utilizar:

Si se quiere incluir	Se debe incluir
Una nueva línea	\n
Un tabulador	\t
Una comilla simple	\'
Una comilla doble	\"
Una barra inclinada	\\

De esta forma, el ejemplo anterior que contenía comillas simples y dobles dentro del texto se puede rehacer de la siguiente forma:

```
var texto1 = 'Una frase con \'comillas simples\' dentro';
var texto2 = "Una frase con \"comillas dobles\" dentro";
```

Este mecanismo de JavaScript se denomina "mecanismo de escape" de los caracteres problemáticos, y es habitual referirse a que los caracteres han sido "escapados".

Ejercicio 2

Modificar el primer script del capítulo anterior para que:

- 1. El mensaje que se muestra al usuario se almacene en una variable llamada mensaje y el funcionamiento del script sea el mismo.
- 2. El mensaje mostrado sea:

Hola Mundo! Qué fácil es incluir 'comillas simples' y "comillas dobles"

3.2.3. Arrays

En ocasiones, a los arrays se les llama vectores, matrices e incluso *arreglos*. No obstante, el término array es el más utilizado y es una palabra comúnmente aceptada en el entorno de la programación.

Un array es una colección de variables, que pueden ser todas del mismo tipo o cada una de un tipo diferente. Su utilidad se comprende mejor con un ejemplo sencillo: si una aplicación necesita manejar los días de la semana, se podrían crear siete variables de tipo texto:

```
var dia1 = "Lunes";
var dia2 = "Martes";
...
var dia7 = "Domingo";
```

Aunque el código anterior no es incorrecto, sí que es poco eficiente y complica en exceso la programación. Si en vez de los días de la semana se tuviera que guardar el nombre de los meses del año, el nombre de todos los países del mundo o las mediciones diarias de temperatura de los últimos 100 años, se tendrían que crear decenas o cientos de variables.

En este tipo de casos, se pueden agrupar todas las variables relacionadas en una colección de variables o array. El ejemplo anterior se puede rehacer de la siguiente forma:

```
var dias = ["Lunes", "Martes", "Miércoles", "Jueves", "Viernes", "Sábado",
"Domingo"];
```

Ahora, una única variable llamada dias almacena todos los valores relacionados entre sí, en este caso los días de la semana. Para definir un array, se utilizan los caracteres [y] para delimitar su comienzo y su final y se utiliza el carácter , (coma) para separar sus elementos:

```
var nombre array = [valor1, valor2, ..., valorN];
```

Una vez definido un array, es muy sencillo acceder a cada uno de sus elementos. Cada elemento se accede indicando su posición dentro del array. La única complicación, que es responsable de muchos errores cuando se empieza a programar, es que las posiciones de los elementos empiezan a contarse en el 0 y no en el 1:

```
var diaSeleccionado = dias[0]; // diaSeleccionado = "Lunes"
var otroDia = dias[5]; // otroDia = "Sábado"
```

En el ejemplo anterior, la primera instrucción quiere obtener el primer elemento del array. Para ello, se indica el nombre del array y entre corchetes la posición del elemento dentro del array.

Como se ha comentado, las posiciones se empiezan a contar en el 0, por lo que el primer elemento ocupa la posición 0 y se accede a él mediante dias[0].

El valor dias[5] hace referencia al elemento que ocupa la sexta posición dentro del array dias. Como las posiciones empiezan a contarse en 0, la posición 5 hace referencia al sexto elemento, en este caso, el valor Sábado.

Ejercicio 3

Crear un array llamado meses y que almacene el nombre de los doce meses del año. Mostrar por pantalla los doce nombres utilizando la función alert().

3.2.4. Booleanos

Las variables de tipo boolean o booleano también se conocen con el nombre de variables de tipo lógico. Aunque para entender realmente su utilidad se debe estudiar la programación avanzada con JavaScript del siguiente capítulo, su funcionamiento básico es muy sencillo.

Una variable de tipo *boolean* almacena un tipo especial de valor que solamente puede tomar dos valores: true (verdadero) o false (falso). No se puede utilizar para almacenar números y tampoco permite guardar cadenas de texto.

Los únicos valores que pueden almacenar estas variables son true y false, por lo que no pueden utilizarse los valores verdadero y falso. A continuación se muestra un par de variables de tipo *booleano*:

```
var clienteRegistrado = false;
var ivaIncluido = true;
```

3.3. Operadores

Las variables por sí solas son de poca utilidad. Hasta ahora, sólo se ha visto cómo crear variables de diferentes tipos y cómo mostrar su valor mediante la función alert(). Para hacer programas realmente útiles, son necesarias otro tipo de herramientas.

Los operadores permiten manipular el valor de las variables, realizar operaciones matemáticas con sus valores y comparar diferentes variables. De esta forma, los

operadores permiten a los programas realizar cálculos complejos y tomar decisiones lógicas en función de comparaciones y otros tipos de condiciones.

3.3.1. Asignación

El operador de asignación es el más utilizado y el más sencillo. Este operador se utiliza para guardar un valor específico en una variable. El símbolo utilizado es = (no confundir con el operador == que se verá más adelante):

```
var numero1 = 3;
```

A la izquierda del operador, siempre debe indicarse el nombre de una variable. A la derecha del operador, se pueden indicar variables, valores, condiciones lógicas, etc:

```
var numero1 = 3;
var numero2 = 4;

/* Error, la asignación siempre se realiza a una variable,
por lo que en la izquierda no se puede indicar un número */
5 = numero1;

// Ahora, la variable numero1 vale 5
numero1 = 5;

// Ahora, la variable numero1 vale 4
numero1 = numero2;
```

3.3.2. Incremento y decremento

Estos dos operadores solamente son válidos para las variables numéricas y se utilizan para incrementar o decrementar en una unidad el valor de una variable.

Ejemplo:

```
var numero = 5;
++numero;
alert(numero); // numero = 6
```

El operador de incremento se indica mediante el prefijo ++ en el nombre de la variable. El resultado es que el valor de esa variable se incrementa en una unidad. Por tanto, el anterior ejemplo es equivalente a:

```
var numero = 5;
numero = numero + 1;
alert(numero); // numero = 6
```

De forma equivalente, el operador decremento (indicado como un prefijo -- en el nombre de la variable) se utiliza para decrementar el valor de la variable:

```
var numero = 5;
--numero;
alert(numero); // numero = 4
```

El anterior ejemplo es equivalente a:

```
var numero = 5;
numero = numero - 1;
alert(numero); // numero = 4
```

Los operadores de incremento y decremento no solamente se pueden indicar como prefijo del nombre de la variable, sino que también es posible utilizarlos como sufijo. En este caso, su comportamiento es similar pero muy diferente. En el siguiente ejemplo:

```
var numero = 5;
numero++;
alert(numero); // numero = 6
```

El resultado de ejecutar el script anterior es el mismo que cuando se utiliza el operador ++numero, por lo que puede parecer que es equivalente indicar el operador ++ delante o detrás del identificador de la variable. Sin embargo, el siguiente ejemplo muestra sus diferencias:

```
var numero1 = 5;
var numero2 = 2;
numero3 = numero1++ + numero2;
// numero3 = 7, numero1 = 6
var numero1 = 5;
var numero2 = 2;
numero3 = ++numero1 + numero2;
// numero3 = 8, numero1 = 6
```

Si el operador ++ se indica como prefijo del identificador de la variable, su valor se incrementa **antes** de realizar cualquier otra operación. Si el operador ++ se indica como sufijo del identificador de la variable, su valor se incrementa **después** de ejecutar la sentencia en la que aparece.

Por tanto, en la instrucción numero3 = numero1++ + numero2;, el valor de numero1 se incrementa después de realizar la operación (primero se suma y numero3 vale 7, después se incrementa el valor de numero1 y vale 6). Sin embargo, en la instrucción numero3 = ++numero1 + numero2;, en primer lugar se incrementa el valor de numero1 y después se realiza la suma (primero se incrementa numero1 y vale 6, después se realiza la suma y numero3 vale 8).

3.3.3. Lógicos

Los operadores lógicos son imprescindibles para realizar aplicaciones complejas, ya que se utilizan para tomar decisiones sobre las instrucciones que debería ejecutar el programa en función de ciertas condiciones.

El resultado de cualquier operación que utilice operadores lógicos siempre es un valor lógico o *booleano*.

3.3.3.1. **Negación**

Uno de los operadores lógicos más utilizados es el de la negación. Se utiliza para obtener el valor contrario al valor de la variable:

```
var visible = true;
alert(!visible); // Muestra "false" y no "true"
```

La negación lógica se obtiene prefijando el símbolo ! al identificador de la variable. El funcionamiento de este operador se resume en la siguiente tabla:

variable	!variable
true	False
false	True

Si la variable original es de tipo *booleano*, es muy sencillo obtener su negación. Sin embargo, ¿qué sucede cuando la variable es un número o una cadena de texto? Para obtener la negación en este tipo de variables, se realiza en primer lugar su conversión a un valor *booleano*:

- Si la variable contiene un número, se transforma en false si vale 0 y en true para cualquier otro número (positivo o negativo, decimal o entero).
- Si la variable contiene una cadena de texto, se transforma en false si la cadena es vacía ("") y en true en cualquier otro caso.

```
var cantidad = 0;
vacio = !cantidad; // vacio = true
cantidad = 2;
vacio = !cantidad; // vacio = false
var mensaje = "";
mensajeVacio = !mensaje; // mensajeVacio = true
mensaje = "Bienvenido";
mensajeVacio = !mensaje; // mensajeVacio = false
```

3.3.3.2. AND

La operación lógica AND obtiene su resultado combinando dos valores booleanos. El operador se indica mediante el símbolo && y su resultado solamente es true si los dos operandos son true:

variable1	variable2	variable1 && variable2
true	true	true
true	false	false
false	true	false
false	false	false

```
var valor1 = true;
var valor2 = false;
resultado = valor1 && valor2; // resultado = false
valor1 = true;
valor2 = true;
resultado = valor1 && valor2; // resultado = true
```

3.3.3.3. OR

La operación lógica OR también combina dos valores booleanos. El operador se indica mediante el símbolo || y su resultado es true si alguno de los dos operandos es true:

variable1	variable2	variable1 variable2
true	true	true
true	false	true
false	true	true
False	false	false

```
var valor1 = true;
var valor2 = false;
resultado = valor1 || valor2; // resultado = true
valor1 = false;
valor2 = false;
resultado = valor1 || valor2; // resultado = false
```

3.3.4. Matemáticos

JavaScript permite realizar manipulaciones matemáticas sobre el valor de las variables numéricas. Los operadores definidos son: suma (+), resta (-), multiplicación (*) y división (/).

Ejemplo:

```
var numero1 = 10;
var numero2 = 5;
resultado = numero1 / numero2; // resultado = 2
resultado = 3 + numero1; // resultado = 13
resultado = numero2 - 4; // resultado = 1
resultado = numero1 * numero 2; // resultado = 50
```

Además de los cuatro operadores básicos, JavaScript define otro operador matemático que no es sencillo de entender cuando se estudia por primera vez, pero que es muy útil en algunas ocasiones.

Se trata del operador "módulo", que calcula el resto de la división entera de dos números. Si se divide por ejemplo 10 y 5, la división es exacta y da un resultado de 2. El resto de esa división es 0, por lo que módulo de 10 y 5 es igual a 0.

Sin embargo, si se divide 9 y 5, la división no es exacta, el resultado es 1 y el resto 4, por lo que módulo de 9 y 5 es igual a 4.

El operador módulo en JavaScript se indica mediante el símbolo %, que no debe confundirse con el cálculo del porcentaje:

```
var numero1 = 10;
var numero2 = 5;
resultado = numero1 % numero2; // resultado = 0
numero1 = 9;
numero2 = 5;
resultado = numero1 % numero2; // resultado = 4
```

Los operadores matemáticos también se pueden combinar con el operador de asignación para abreviar su notación:

```
var numero1 = 5;
numero1 += 3; // numero1 = numero1 + 3 = 8
numero1 -= 1; // numero1 = numero1 - 1 = 4
numero1 *= 2; // numero1 = numero1 * 2 = 10
numero1 /= 5; // numero1 = numero1 / 5 = 1
numero1 %= 4; // numero1 = numero1 % 4 = 1
```

3.3.5. Relacionales

Los operadores relacionales definidos por JavaScript son idénticos a los que definen las matemáticas: mayor que (>), menor que (<), mayor o igual (>=), menor o igual (<=), igual que (==) y distinto de (!=).

Los operadores que relacionan variables son imprescindibles para realizar cualquier aplicación compleja, como se verá en el siguiente capítulo de programación avanzada. El resultado de todos estos operadores siempre es un valor booleano:

```
var numero1 = 3;
var numero2 = 5;
resultado = numero1 > numero2; // resultado = false
resultado = numero1 < numero2; // resultado = true
numero1 = 5;
numero2 = 5;
resultado = numero1 >= numero2; // resultado = true
resultado = numero1 <= numero2; // resultado = true
resultado = numero1 == numero2; // resultado = true
resultado = numero1 != numero2; // resultado = false
```

Se debe tener especial cuidado con el operador de igualdad (==), ya que es el origen de la mayoría de errores de programación, incluso para los usuarios que ya tienen cierta experiencia desarrollando scripts. El operador == se utiliza para comparar el valor de dos variables, por lo que es muy diferente del operador =, que se utiliza para asignar un valor a una variable:

```
// El operador "=" asigna valores
var numero1 = 5;
resultado = numero1 = 3; // numero1 = 3 y resultado = 3
// El operador "==" compara variables
var numero1 = 5;
resultado = numero1 == 3; // numero1 = 5 y resultado = false
```

Los operadores relacionales también se pueden utilizar con variables de tipo cadena de texto:

```
var texto1 = "hola";
var texto2 = "hola";
var texto3 = "adios";

resultado = texto1 == texto3; // resultado = false
resultado = texto1 != texto2; // resultado = false
resultado = texto3 >= texto2; // resultado = false
```

Cuando se utilizan cadenas de texto, los operadores "mayor que" (>) y "menor que" (<) siguen un razonamiento no intuitivo: se compara letra a letra comenzando desde la izquierda hasta que se encuentre una diferencia entre las dos cadenas de texto. Para determinar si una letra es mayor o menor que otra, las mayúsculas se consideran menores que las minúsculas y las primeras letras del alfabeto son menores que las últimas (a es menor que b, b es menor que c, A es menor que a, etc.)

Ejercicio 4

A partir del siguiente array que se proporciona: var valores = [true, 5, false, "hola", "adios", 2];

- Determinar cuál de los dos elementos de texto es mayor
- Utilizando exclusivamente los dos valores booleanos del array, determinar los operadores necesarios para obtener un resultado true y otro resultado false
- Determinar el resultado de las cinco operaciones matemáticas realizadas con los dos elementos numéricos

3.4. Estructuras de control de flujo

Los programas que se pueden realizar utilizando solamente variables y operadores son una simple sucesión lineal de instrucciones básicas.

Sin embargo, no se pueden realizar programas que muestren un mensaje si el valor de una variable es igual a un valor determinado y no muestren el mensaje en el resto de casos. Tampoco se puede repetir de forma eficiente una misma instrucción, como por ejemplo sumar un determinado valor a todos los elementos de un array.

Para realizar este tipo de programas son necesarias las **estructuras de control de flujo**, que son instrucciones del tipo "si se cumple esta condición, hazlo; si no se cumple, haz esto otro". También existen instrucciones del tipo "repite esto mientras se cumpla esta condición".

Si se utilizan estructuras de control de flujo, los programas dejan de ser una sucesión lineal de instrucciones para convertirse en programas *inteligentes* que pueden tomar decisiones en función del valor de las variables.

3.4.1. Estructura if

La estructura más utilizada en JavaScript y en la mayoría de lenguajes de programación es la estructura if. Se emplea para tomar decisiones en función de una condición. Su definición formal es:

```
if(condicion) {
...
}
```

Si la condición se cumple (es decir, si su valor es true) se ejecutan todas las instrucciones que se encuentran dentro de {...}. Si la condición no se cumple (es decir, si su valor es false) no se ejecuta ninguna instrucción contenida en {...} y el programa continúa ejecutando el resto de instrucciones del script.

Ejemplo:

```
var mostrarMensaje = true;
if(mostrarMensaje) {
alert("Hola Mundo");
}
```

En el ejemplo anterior, el mensaje sí que se muestra al usuario ya que la variable mostrarMensaje tiene un valor de true y por tanto, el programa entra dentro del bloque de instrucciones del if.

El ejemplo se podría reescribir también como:

```
var mostrarMensaje = true;
if(mostrarMensaje == true) {
```

```
alert("Hola Mundo");
}
```

En este caso, la condición es una comparación entre el valor de la variable mostrarMensaje y el valor true. Como los dos valores coinciden, la igualdad se cumple y por tanto la condición es cierta, su valor es true y se ejecutan las instrucciones contenidas en ese bloque del if.

La comparación del ejemplo anterior suele ser el origen de muchos errores de programación, al confundir los operadores == y =. Las comparaciones siempre se realizan con el operador ==, ya que el operador = solamente asigna valores:

```
var mostrarMensaje = true;

// Se comparan los dos valores
if(mostrarMensaje == false) {
...
}

// Error - Se asigna el valor "false" a la variable
if(mostrarMensaje = false) {
...
}
```

La condición que controla el if() puede combinar los diferentes operadores lógicos y relacionales mostrados anteriormente:

```
var mostrado = false;
if(!mostrado) {
alert("Es la primera vez que se muestra el mensaje");
}
```

Los operadores AND y OR permiten encadenar varias condiciones simples para construir condiciones complejas:

```
var mostrado = false;
var usuarioPermiteMensajes = true;
if(!mostrado && usuarioPermiteMensajes) {
  alert("Es la primera vez que se muestra el mensaje");
}
```

La condición anterior está formada por una operación AND sobre dos variables. A su vez, a la primera variable se le aplica el operador de negación antes de realizar la operación AND. De esta forma, como el valor de mostrado es false, el valor !mostrado sería true. Como la variable usuarioPermiteMensajes vale true, el resultado de !mostrado && usuarioPermiteMensajes sería igual a true && true, por lo que el resultado final de la condición del if() sería true y por tanto, se ejecutan las instrucciones que se encuentran dentro del bloque del if().

Ejercicio 5

Completar las condiciones de los if del siguiente script para que los mensajes de los alert() se muestren siempre de forma correcta:

```
var numero1 = 5;
var numero2 = 8;
if(...) {
alert("numero1 no es mayor que numero2");
```

```
if(...) {
alert("numero2 es positivo");
}

if(...) {
alert("numero1 es negativo o distinto de cero");
}

if(...) {
alert("Incrementar en 1 unidad el valor de numero1 no lo hace mayor o igual que numero2");
}
```

3.4.2. Estructura if...else

En ocasiones, las decisiones que se deben realizar no son del tipo "si se cumple la condición, hazlo; si no se cumple, no hagas nada". Normalmente las condiciones suelen ser del tipo "si se cumple esta condición, hazlo; si no se cumple, haz esto otro".

Para este segundo tipo de decisiones, existe una variante de la estructura if llamada if...else. Su definición formal es la siguiente:

```
if(condicion) {
    ...
}
else {
    ...
}
```

Si la condición se cumple (es decir, si su valor es true) se ejecutan todas las instrucciones que se encuentran dentro del if(). Si la condición no se cumple (es decir, si su valor es false) se ejecutan todas las instrucciones contenidas en else { }. Ejemplo:

```
var edad = 18;
if(edad >= 18) {
  alert("Eres mayor de edad");
}
else {
  alert("Todavía eres menor de edad");
}
```

Si el valor de la variable edad es mayor o igual que el valor numérico 18, la condición del if() se cumple y por tanto, se ejecutan sus instrucciones y se muestra el mensaje "Eres mayor de edad". Sin embargo, cuando el valor de la variable edad no es igual o mayor que 18, la condición del if() no se cumple, por lo que automáticamente se ejecutan todas las instrucciones del bloque else { }. En este caso, se mostraría el mensaje "Todavía eres menor de edad".

El siguiente ejemplo compara variables de tipo cadena de texto:

```
var nombre = "";
if(nombre == "") {
  alert("Aún no nos has dicho tu nombre");
}
else {
  alert("Hemos guardado tu nombre");
```

La condición del if() anterior se construye mediante el operador ==, que es el que se emplea para comparar dos valores (no confundir con el operador = que se utiliza para asignar valores). En el ejemplo anterior, si la cadena de texto almacenada en la variable nombre es vacía (es decir, es igual a "") se muestra el mensaje definido en el if(). En otro caso, se muestra el mensaje definido en el bloque else { }.

La estructura if...else se puede encadenar para realizar varias comprobaciones seguidas:

```
if(edad < 12) {
  alert("Todavía eres muy pequeño");
}
else if(edad < 19) {
  alert("Eres un adolescente");
}
else if(edad < 35) {
  alert("Aun sigues siendo joven");
}
else {
  alert("Piensa en cuidarte un poco más");
}</pre>
```

No es obligatorio que la combinación de estructuras if...else acabe con la instrucción else, ya que puede terminar con una instrucción de tipo else if().

Ejercicio 6

El cálculo de la letra del Documento Nacional de Identidad (DNI) es un proceso matemático sencillo que se basa en obtener el resto de la división entera del número de DNI y el número 23. A partir del resto de la división, se obtiene la letra seleccionándola dentro de un array de letras.

```
El array de letras es:
var letras = ['T', 'R', 'W', 'A', 'G', 'M', 'Y', 'F', 'P', 'D', 'X', 'B', 'N', 'J', 'Z', 'S', 'Q', 'V', 'H', 'L', 'C', 'K', 'E', 'T'];
```

Por tanto si el resto de la división es 0, la letra del DNI es la T y si el resto es 3 la letra es la A. Con estos datos, elaborar un pequeño script que:

- Almacene en una variable el número de DNI indicado por el usuario y en otra variable la letra del DNI que se ha indicado. (Pista: si se quiere pedir directamente al usuario que indique su número y su letra, se puede utilizar la función prompt())
- En primer lugar (y en una sola instrucción) se debe comprobar si el número es menor que 0 o mayor que 99999999. Si ese es el caso, se muestra un mensaje al usuario indicando que el número proporcionado no es válido y el programa no muestra más mensajes.
- Si el número es válido, se calcula la letra que le corresponde según el método explicado anteriormente.
- Una vez calculada la letra, se debe comparar con la letra indicada por el usuario. Si no coinciden, se muestra un mensaje al usuario diciéndole que la letra que ha indicado no es correcta. En otro caso, se muestra un mensaje indicando que el número y la letra de DNI son correctos.

3.4.3. Estructura for

Las estructuras if y if...else no son muy eficientes cuando se desea ejecutar de forma repetitiva una instrucción. Por ejemplo, si se quiere mostrar un mensaje cinco veces, se podría pensar en utilizar el siguiente if:

```
var veces = 0;
if(veces < 4) {
alert("Mensaje");
veces++;
}</pre>
```

Se comprueba si la variable veces es menor que 4. Si se cumple, se entra dentro del if(), se muestra el mensaje y se incrementa el valor de la variable veces. Así se debería seguir ejecutando hasta mostrar el mensaje las cinco veces deseadas.

Sin embargo, el funcionamiento real del script anterior es muy diferente al deseado, ya que solamente se muestra una vez el mensaje por pantalla. La razón es que la ejecución de la estructura if() no se repite y la comprobación de la condición sólo se realiza una vez, independientemente de que dentro del if() se modifique el valor de la variable utilizada en la condición.

La estructura for permite realizar este tipo de repeticiones (también llamadas bucles) de una forma muy sencilla. No obstante, su definición formal no es tan sencilla como la de if():

```
for(inicializacion; condicion; actualizacion) { \dots }
```

La idea del funcionamiento de un bucle for es la siguiente: "mientras la condición indicada se siga cumpliendo, repite la ejecución de las instrucciones definidas dentro del for. Además, después de cada repetición, actualiza el valor de las variables que se utilizan en la condición".

- La "inicialización" es la zona en la que se establece los valores iniciales de las variables que controlan la repetición.
- La "condición" es el único elemento que decide si continua o se detiene la repetición.
- La "actualización" es el nuevo valor que se asigna después de cada repetición a las variables que controlan la repetición.

```
var mensaje = "Hola, estoy dentro de un bucle";
for(var i = 0; i < 5; i++) {
    alert(mensaje);
}</pre>
```

La parte de la inicialización del bucle consiste en:

```
var i = 0;
```

Por tanto, en primer lugar se crea la variable i y se le asigna el valor de 0. Esta zona de inicialización solamente se tiene en consideración justo antes de comenzar a ejecutar el bucle.

Las siguientes repeticiones no tienen en cuenta esta parte de inicialización.

La zona de condición del bucle es:

```
i < 5
```

Los bucles se siguen ejecutando mientras se cumplan las condiciones y se dejan de ejecutar justo después de comprobar que la condición no se cumple. En este caso, mientras la variable i valga menos de 5 el bucle se ejecuta indefinidamente.

Como la variable i se ha inicializado a un valor de 0 y la condición para salir del bucle es que i sea menor que 5, si no se modifica el valor de i de alguna forma, el bucle se repetiría indefinidamente.

Por ese motivo, es imprescindible indicar la zona de actualización, en la que se modifica el valor de las variables que controlan el bucle:

```
i++
```

En este caso, el valor de la variable i se incrementa en una unidad después de cada repetición. La zona de actualización se ejecuta después de la ejecución de las instrucciones que incluye el for.

Así, durante la ejecución de la quinta repetición el valor de i será 4. Después de la quinta ejecución, se actualiza el valor de i, que ahora valdrá 5. Como la condición es que i sea menor que 5, la condición ya no se cumple y las instrucciones del for no se ejecutan una sexta vez.

Normalmente, la variable que controla los bucles for se llama i, ya que recuerda a la palabra índice y su nombre tan corto ahorra mucho tiempo y espacio.

El ejemplo anterior que mostraba los días de la semana contenidos en un array se puede rehacer de forma más sencilla utilizando la estructura for:

```
var dias = ["Lunes", "Martes", "Miércoles", "Jueves", "Viernes", "Sábado",
"Domingo"];
for(var i=0; i<7; i++) {
  alert(dias[i]);
  }</pre>
```

Ejercicio 7

El factorial de un número entero n es una operación matemática que consiste en multiplicar todos los factores n x (n-1) x (n-2) x ... x 1. Así, el factorial de 5 (escrito como 5!) es igual a: $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

Utilizando la estructura for, crear un script que calcule el factorial de un número entero.

3.4.4. Estructura for...in

Una estructura de control derivada de for es la estructura for...in. Su definición exacta implica el uso de objetos, que es un elemento de programación avanzada que no se va a estudiar. Por tanto, solamente se va a presentar la estructura for...in adaptada a su uso en arrays. Su definición formal adaptada a los arrays es:

```
for(indice in array) {
...
```

Si se quieren recorrer todos los elementos que forman un array, la estructura for...in es la forma más eficiente de hacerlo, como se muestra en el siguiente ejemplo:

```
var dias = ["Lunes", "Martes", "Miércoles", "Jueves", "Viernes", "Sábado", Domingo"];
for(i in dias) {
  alert(dias[i]);
}
```

La variable que se indica como indice es la que se puede utilizar dentro del bucle for...in para acceder a los elementos del array. De esta forma, en la primera repetición del bucle la variable i vale 0 y en la última vale 6.

Esta estructura de control es la más adecuada para recorrer arrays (y objetos), ya que evita tener que indicar la inicialización y las condiciones del bucle for simple y funciona correctamente cualquiera que sea la longitud del array. De hecho, sigue funcionando igual aunque varíe el número de elementos del array.

3.5. Funciones y propiedades básicas de JavaScript

JavaScript incorpora una serie de herramientas y utilidades (llamadas funciones y propiedades, como se verá más adelante) para el manejo de las variables. De esta forma, muchas de las operaciones básicas con las variables, se pueden realizar directamente con las utilidades que ofrece JavaScript.

3.5.1. Funciones útiles para cadenas de texto

A continuación se muestran algunas de las funciones más útiles para el manejo de cadenas de texto:

length, calcula la longitud de una cadena de texto (el número de caracteres que la forman)

```
var mensaje = "Hola Mundo";
var numeroLetras = mensaje.length; // numeroLetras = 10
```

+, se emplea para concatenar varias cadenas de texto

```
var mensaje1 = "Hola";
var mensaje2 = " Mundo";
var mensaje = mensaje1 + mensaje2; // mensaje = "Hola Mundo"
```

Además del operador +, también se puede utilizar la función concat()

```
var mensaje1 = "Hola";
var mensaje2 = mensaje1.concat(" Mundo"); // mensaje2 = "Hola Mundo"
```

Las cadenas de texto también se pueden unir con variables numéricas:

```
var variable1 = "Hola ";
var variable2 = 3;
var mensaje = variable1 + variable2; // mensaje = "Hola 3"
```

Cuando se unen varias cadenas de texto es habitual olvidar añadir un espacio de separación entre las palabras:

```
var mensaje1 = "Hola";
var mensaje2 = "Mundo";
var mensaje = mensaje1 + mensaje2; // mensaje = "HolaMundo"
```

Los espacios en blanco se pueden añadir al final o al principio de las cadenas y también se pueden indicar forma explícita:

```
var mensaje1 = "Hola";
var mensaje2 = "Mundo";
var mensaje = mensaje1 + " " + mensaje2; // mensaje = "Hola Mundo"
```

toUpperCase(), transforma todos los caracteres de la cadena a sus correspondientes caracteres en mayúsculas:

```
var mensaje1 = "Hola";
var mensaje2 = mensaje1.toUpperCase(); // mensaje2 = "HOLA"
```

toLowerCase(), transforma todos los caracteres de la cadena a sus correspondientes caracteres en minúsculas:

```
var mensaje1 = "HolA";
var mensaje2 = mensaje1.toLowerCase(); // mensaje2 = "hola"
```

charAt(posicion), obtiene el carácter que se encuentra en la posición indicada:

```
var mensaje = "Hola";
var letra = mensaje.charAt(0); // letra = H
letra = mensaje.charAt(2); // letra = 1
```

indexOf(caracter), calcula la posición en la que se encuentra el carácter indicado dentro de la cadena de texto. Si el carácter se incluye varias veces dentro de la cadena de texto, se devuelve su primera posición empezando a buscar desde la izquierda. Si la cadena no contiene el carácter, la función devuelve el valor -1:

```
var mensaje = "Hola";
var posicion = mensaje.indexOf('a'); // posicion = 3
posicion = mensaje.indexOf('b'); // posicion = -1
```

Su función análoga es lastIndexOf():

lastIndexOf(caracter), calcula la última posición en la que se encuentra el carácter indicado dentro de la cadena de texto. Si la cadena no contiene el carácter, la función devuelve el valor -1:

```
var mensaje = "Hola";
var posicion = mensaje.lastIndexOf('a'); // posicion = 3
posicion = mensaje.lastIndexOf('b'); // posicion = -1
```

La función lastIndexOf() comienza su búsqueda desde el final de la cadena hacia el principio, aunque la posición devuelta es la correcta empezando a contar desde el principio de la palabra.

substring(inicio, final), extrae una porción de una cadena de texto. El segundo parámetro es opcional. Si sólo se indica el parámetro inicio, la función devuelve la parte de la cadena original correspondiente desde esa posición hasta el final:

```
var mensaje = "Hola Mundo";
var porcion = mensaje.substring(2); // porcion = "la Mundo"
porcion = mensaje.substring(5); // porcion = "Mundo"
```

```
porcion = mensaje.substring(7); // porcion = "ndo"
```

Si se indica un inicio negativo, se devuelve la misma cadena original:

```
var mensaje = "Hola Mundo";
var porcion = mensaje.substring(-2); // porcion = "Hola Mundo"
```

Cuando se indica el inicio y el final, se devuelve la parte de la cadena original comprendida entre la posición inicial y la inmediatamente anterior a la posición final (es decir, la posición inicio está incluida y la posición final no):

```
var mensaje = "Hola Mundo";
var porcion = mensaje.substring(1, 8); // porcion = "ola Mun"
porcion = mensaje.substring(3, 4); // porcion = "a"
```

Si se indica un final más pequeño que el inicio, JavaScript los considera de forma inversa, ya que automáticamente asigna el valor más pequeño al inicio y el más grande al final:

```
var mensaje = "Hola Mundo";
var porcion = mensaje.substring(5, 0); // porcion = "Hola "
porcion = mensaje.substring(0, 5); // porcion = "Hola "
```

split(separador), convierte una cadena de texto en un array de cadenas de texto. La función parte la cadena de texto determinando sus trozos a partir del carácter separador indicado:

```
var mensaje = "Hola Mundo, soy una cadena de texto!";
var palabras = mensaje.split(" ");
// palabras = ["Hola", "Mundo,", "soy", "una", "cadena", "de", "texto!"];
```

Con esta función se pueden extraer fácilmente las letras que forman una palabra:

```
var palabra = "Hola";
var letras = palabra.split(""); // letras = ["H", "o", "l", "a"]
```

3.5.2. Funciones útiles para arrays

A continuación se muestran algunas de las funciones más útiles para el manejo de arrays:

length, calcula el número de elementos de un array

```
var vocales = ["a", "e", "i", "o", "u"];
var numeroVocales = vocales.length; // numeroVocales = 5
```

concat(), se emplea para concatenar los elementos de varios arrays

```
var array1 = [1, 2, 3];
array2 = array1.concat(4, 5, 6); // array2 = [1, 2, 3, 4, 5, 6]
array3 = array1.concat([4, 5, 6]); // array3 = [1, 2, 3, 4, 5, 6]
```

join(separador), es la función contraria a split(). Une todos los elementos de un array para formar una cadena de texto. Para unir los elementos se utiliza el carácter separador indicado

```
var array = ["hola", "mundo"];
var mensaje = array.join(""); // mensaje = "holamundo"
```

```
mensaje = array.join(" "); // mensaje = "hola mundo"
```

pop(), elimina el último elemento del array y lo devuelve. El array original se modifica y su longitud disminuye en 1 elemento.

```
var array = [1, 2, 3];
var ultimo = array.pop();
// ahora array = [1, 2], ultimo = 3
```

push(), añade un elemento al final del array. El array original se modifica y aumenta su longitud en 1 elemento. (También es posible añadir más de un elemento a la vez)

```
var array = [1, 2, 3];
array.push(4);
// ahora array = [1, 2, 3, 4]
```

shift(), elimina el primer elemento del array y lo devuelve. El array original se ve modificado y su longitud disminuida en 1 elemento.

```
var array = [1, 2, 3];
var primero = array.shift();
// ahora array = [2, 3], primero = 1
```

unshift(), añade un elemento al principio del array. El array original se modifica y aumenta su longitud en 1 elemento. (También es posible añadir más de un elemento a la vez)

```
var array = [1, 2, 3];
array.unshift(0);
// ahora array = [0, 1, 2, 3]
```

reverse(), modifica un array colocando sus elementos en el orden inverso a su posición original:

```
var array = [1, 2, 3];
array.reverse();
// ahora array = [3, 2, 1]
```

3.5.3. Funciones útiles para números

A continuación se muestran algunas de las funciones y propiedades más útiles para el manejo de números.

NaN, (del inglés, "Not a Number") JavaScript emplea el valor NaN para indicar un valor numérico no definido (por ejemplo, la división 0/0).

```
var numero1 = 0;
var numero2 = 0;
alert(numero1/numero2); // se muestra el valor NaN
```

isNaN(), permite proteger a la aplicación de posibles valores numéricos no definidos

```
var numero1 = 0;
var numero2 = 0;
if(isNaN(numero1/numero2)) {
  alert("La división no está definida para los números indicados");
}
else {
  alert("La división es igual a => " + numero1/numero2);
}
```

Infinity, hace referencia a un valor numérico infinito y positivo (también existe el valor –Infinity para los infinitos negativos)

```
var numero1 = 10;
var numero2 = 0;
alert(numero1/numero2); // se muestra el valor Infinity
```

toFixed(digitos), devuelve el número original con tantos decimales como los indicados por el parámetro digitos y realiza los redondeos necesarios. Se trata de una función muy útil por ejemplo para mostrar precios.

```
var numero1 = 4564.34567;
numero1.toFixed(2); // 4564.35
numero1.toFixed(6); // 4564.345670
numero1.toFixed(); // 4564
```

Capítulo 4. Programación avanzada

Las estructuras de control, los operadores y todas las utilidades propias de JavaScript que se han visto en los capítulos anteriores, permiten crear scripts sencillos y de mediana complejidad.

Sin embargo, para las aplicaciones más complejas son necesarios otros elementos como las funciones y otras estructuras de control más avanzadas, que se describen en este capítulo.

4.1. Funciones

Cuando se desarrolla una aplicación compleja, es muy habitual utilizar una y otra vez las mismas instrucciones. Un script para una tienda de comercio electrónico por ejemplo, tiene que calcular el precio total de los productos varias veces, para añadir los impuestos y los gastos de envío.

Cuando una serie de instrucciones se repiten una y otra vez, se complica demasiado el código fuente de la aplicación, ya que:

- El código de la aplicación es mucho más largo porque muchas instrucciones están repetidas.
- Si se quiere modificar alguna de las instrucciones repetidas, se deben hacer tantas modificaciones como veces se haya escrito esa instrucción, lo que se convierte en un trabajo muy pesado y muy propenso a cometer errores.

Las funciones son la solución a todos estos problemas, tanto en JavaScript como en el resto de lenguajes de programación. Una función es un conjunto de instrucciones que se agrupan para realizar una tarea concreta y que se pueden reutilizar fácilmente.

En el siguiente ejemplo, las instrucciones que suman los dos números y muestran un mensaje con el resultado se repiten una y otra vez:

```
var resultado;
var numero1 = 3;
var numero2 = 5;
// Se suman los números y se muestra el resultado
resultado = numero1 + numero2;
alert("El resultado es " + resultado);
numero1 = 10:
numero2 = 7;
// Se suman los números y se muestra el resultado
resultado = numero1 + numero2;
alert("El resultado es " + resultado);
numero1 = 5;
numero2 = 8;
// Se suman los números y se muestra el resultado
resultado = numero1 + numero2;
alert("El resultado es " + resultado);
```

. . .

Aunque es un ejemplo muy sencillo, parece evidente que repetir las mismas instrucciones a lo largo de todo el código no es algo recomendable. La solución que proponen las funciones consiste en extraer las instrucciones que se repiten y sustituirlas por una instrucción del tipo "en este punto, se ejecutan las instrucciones que se han extraído":

```
var resultado;
var numero1 = 3;
var numero2 = 5;

/* En este punto, se llama a la función que suma
2 números y muestra el resultado */
numero1 = 10;
numero2 = 7;

/* En este punto, se llama a la función que suma
2 números y muestra el resultado */
numero1 = 5;
numero2 = 8;

/* En este punto, se llama a la función que suma
2 números y muestra el resultado */
...
```

Para que la solución del ejemplo anterior sea válida, las instrucciones comunes se tienen que agrupar en una función a la que se le puedan indicar los números que debe sumar antes de mostrar el mensaje.

Por lo tanto, en primer lugar se debe crear la función básica con las instrucciones comunes. Las funciones en JavaScript se definen mediante la palabra reservada function, seguida del nombre de la función. Su definición formal es la siguiente:

```
function nombre_funcion() {
   ...
}
```

El nombre de la función se utiliza para *llamar* a esa función cuando sea necesario. El concepto es el mismo que con las variables, a las que se les asigna un nombre único para poder utilizarlas dentro del código. Después del nombre de la función, se incluyen dos paréntesis cuyo significado se detalla más adelante. Por último, los símbolos { y } se utilizan para encerrar todas las instrucciones que pertenecen a la función (de forma similar a como se encierran las instrucciones en las estructuras if o for).

Volviendo al ejemplo anterior, se crea una función llamada suma_y_muestra de la siguiente forma:

```
function suma_y_muestra() {
    resultado = numero1 + numero2;
    alert("El resultado es " + resultado);
}
```

Aunque la función anterior está correctamente creada, no funciona como debería ya que le faltan los "argumentos", que se explican en la siguiente sección. Una vez creada la función, desde cualquier punto del código se puede *llamar* a la función para que se ejecuten sus instrucciones (además de "*llamar a la función*", también se suele utilizar la expresión "invocar a la función").

La llamada a la función se realiza simplemente indicando su nombre, incluyendo los paréntesis del final y el carácter ; para terminar la instrucción:

```
function suma_y_muestra() {
        resultado = numero1 + numero2;
        alert("El resultado es " + resultado);
}

var resultado;

var numero1 = 3;
var numero2 = 5;
        suma_y_muestra();

numero1 = 10;
numero2 = 7;
        suma_y_muestra();

numero1 = 5;
numero2 = 8;
        suma_y_muestra();
```

El código del ejemplo anterior es mucho más eficiente que el primer código que se mostró, ya que no existen instrucciones repetidas. Las instrucciones que suman y muestran mensajes se han agrupado bajo una función, lo que permite ejecutarlas en cualquier punto del programa simplemente indicando el nombre de la función.

Lo único que le falta al ejemplo anterior para funcionar correctamente es poder indicar a la función los números que debe sumar. Cuando se necesitan pasar datos a una función, se utilizan los "argumentos", como se explica en la siguiente sección.

4.1.1. Argumentos y valores de retorno

Las funciones más sencillas no necesitan ninguna información para producir sus resultados. Sin embargo, la mayoría de funciones de las aplicaciones reales deben acceder al valor de algunas variables para producir sus resultados.

Las variables que necesitan las funciones se llaman *argumentos*. Antes de que pueda utilizarlos, la función debe indicar cuántos argumentos necesita y cuál es el nombre de cada argumento.

Además, al invocar la función, se deben incluir los valores que se le van a pasar a la función. Los argumentos se indican dentro de los paréntesis que van detrás del nombre de la función y se separan con una coma (,).

Siguiendo el ejemplo anterior, la función debe indicar que necesita dos argumentos, correspondientes a los dos números que tiene que sumar:

```
function suma_y_muestra(primerNumero, segundoNumero) { ... }
```

A continuación, para utilizar el valor de los argumentos dentro de la función, se debe emplear el mismo nombre con el que se definieron los argumentos:

```
function suma_y_muestra(primerNumero, segundoNumero) { ... }
    var resultado = primerNumero + segundoNumero;
    alert("El resultado es " + resultado);
}
```

Dentro de la función, el valor de la variable primerNumero será igual al primer valor que se le pase a la función y el valor de la variable segundoNumero será igual al segundo valor que se le pasa. Para pasar valores a la función, se incluyen dentro de los paréntesis utilizados al llamar a la función:

En el código anterior, se debe tener en cuenta que:

- Aunque casi siempre se utilizan variables para pasar los datos a la función, se podría haber utilizado directamente el valor de esas variables: suma_y_muestra(3, 5);
- El número de argumentos que se pasa a una función debería ser el mismo que el número de argumentos que ha indicado la función. No obstante, JavaScript no muestra ningún error si se pasan más o menos argumentos de los necesarios.
- El orden de los argumentos es fundamental, ya que el primer dato que se indica en la llamada, será el primer valor que espera la función; el segundo valor indicado en la llamada, es el segundo valor que espera la función y así sucesivamente.
- Se puede utilizar un número ilimitado de argumentos, aunque si su número es muy grande, se complica en exceso la llamada a la función.
- No es obligatorio que coincida el nombre de los argumentos que utiliza la función y el nombre de los argumentos que se le pasan. En el ejemplo anterior, los argumentos que se pasan son numero1 y numero2 y los argumentos que utiliza la función son primerNumero y segundoNumero.

A continuación se muestra otro ejemplo de una función que calcula el precio total de un producto a partir de su precio básico:

```
// Definición de la función
function calculaPrecioTotal(precio) {
    var impuestos = 1.16;
    var gastosEnvio = 10;
    var precioTotal = ( precio * impuestos ) + gastosEnvio;
}
// Llamada a la función
calculaPrecioTotal(23.34);
```

La función anterior toma como argumento una variable llamada precio y le suma los impuestos y los gastos de envío para obtener el precio total. Al llamar a la función, se pasa directamente el valor del precio básico mediante el número 23.34.

No obstante, el código anterior no es demasiado útil, ya que lo ideal sería que la función pudiera devolver el resultado obtenido para guardarlo en otra variable y poder seguir trabajando con este precio total:

```
function calculaPrecioTotal(precio) {
    var impuestos = 1.16;
    var gastosEnvio = 10;
    var precioTotal = ( precio * impuestos ) + gastosEnvio;
}

// El valor devuelto por la función, se guarda en una variable
var precioTotal = calculaPrecioTotal(23.34);

// Seguir trabajando con la variable "precioTotal"
```

Afortunadamente, las funciones no solamente pueden recibir variables y datos, sino que también pueden devolver los valores que han calculado. Para devolver valores dentro de una función, se utiliza la palabra reservada return. Aunque las funciones pueden devolver valores de cualquier tipo, solamente pueden devolver un valor cada vez que se ejecutan.

```
function calculaPrecioTotal(precio) {
    var impuestos = 1.16;
    var gastosEnvio = 10;
    var precioTotal = ( precio * impuestos ) + gastosEnvio;
    return precioTotal;
}

var precioTotal = calculaPrecioTotal(23.34);

// Seguir trabajando con la variable "precioTotal"
```

Para que la función devuelva un valor, solamente es necesario escribir la palabra reservada return junto con el nombre de la variable que se quiere devolver. En el ejemplo anterior, la ejecución de la función llega a la instrucción return precioTotal; y en ese momento, devuelve el valor que contenga la variable precioTotal.

Como la función devuelve un valor, en el punto en el que se realiza la llamada, debe indicarse el nombre de una variable en el que se guarda el valor devuelto:

```
var precioTotal = calculaPrecioTotal(23.34);
```

Si no se indica el nombre de ninguna variable, JavaScript no muestra ningún error y el valor devuelto por la función simplemente se pierde y por tanto, no se utilizará en el resto del programa. En este caso, tampoco es obligatorio que el nombre de la variable devuelta por la función coincida con el nombre de la variable en la que se va a almacenar ese valor.

Si la función llega a una instrucción de tipo return, se devuelve el valor indicado y finaliza la ejecución de la función. Por tanto, todas las instrucciones que se incluyen después de un return se ignoran y por ese motivo la instrucción return suele ser la última de la mayoría de funciones.

Para que el ejemplo anterior sea más completo, se puede añadir otro argumento a la función que indique el porcentaje de impuestos que se debe añadir al precio del producto. Evidentemente, el nuevo argumento se debe añadir tanto a la definición de la función como a su llamada:

```
function calculaPrecioTotal(precio, porcentajeImpuestos) {
    var gastosEnvio = 10;
    var precioConImpuestos = (1 + porcentajeImpuestos/100) * precio;
    var precioTotal = precioConImpuestos + gastosEnvio;
    return precioTotal;
}

var precioTotal = calculaPrecioTotal(23.34, 16);

var otroPrecioTotal = calculaPrecioTotal(15.20, 4);
```

Para terminar de completar el ejercicio anterior, se puede rendondear a dos decimales el precio total devuelto por la función:

```
function calculaPrecioTotal(precio, porcentajeImpuestos) {
    var gastosEnvio = 10;
    var precioConImpuestos = (1 + porcentajeImpuestos/100) * precio;
    var precioTotal = precioConImpuestos + gastosEnvio;
    return precioTotal.toFixed(2);
}

var precioTotal = calculaPrecioTotal(23.34, 16);
```

Ejercicio 8

Escribir el código de una función a la que se pasa como parámetro un número entero y devuelve como resultado una cadena de texto que indica si el número es par o impar. Mostrar por pantalla el resultado devuelto por la función.

Ejercicio 9

Definir una función que muestre información sobre una cadena de texto que se le pasa como argumento. A partir de la cadena que se le pasa, la función determina si esa cadena está formada sólo por mayúsculas, sólo por minúsculas o por una mezcla de ambas.

Ejercicio 10

Definir una función que determine si la cadena de texto que se le pasa como parámetro es un palíndromo, es decir, si se lee de la misma forma desde la izquierda y desde la derecha. Ejemplo de palíndromo complejo: "La ruta nos aporto otro paso natural".

4.2. Ámbito de las variables

El ámbito de una variable (llamado "scope" en inglés) es la zona del programa en la que se define la variable. JavaScript define dos ámbitos para las variables: global y local.

El siguiente ejemplo ilustra el comportamiento de los ámbitos:

```
function creaMensaje() {
    var mensaje = "Mensaje de prueba";
```

```
}
creaMensaje();
alert(mensaje);
```

El ejemplo anterior define en primer lugar una función llamada creaMensaje que crea una variable llamada mensaje. A continuación, se ejecuta la función mediante la llamada creaMensaje(); y seguidamente, se muestra mediante la función alert() el valor de una variable llamada mensaje.

Sin embargo, al ejecutar el código anterior no se muestra ningún mensaje por pantalla. La razón es que la variable mensaje se ha definido dentro de la función creaMensaje() y por tanto, es una **variable local** que solamente está definida dentro de la función.

Cualquier instrucción que se encuentre dentro de la función puede hacer uso de esa variable, pero todas las instrucciones que se encuentren en otras funciones o fuera de cualquier función no tendrán definida la variable mensaje. De esta forma, para mostrar el mensaje en el código anterior, la función alert() debe llamarse desde dentro de la función creaMensaje():

```
function creaMensaje() {
    var mensaje = "Mensaje de prueba";
    alert(mensaje);
}
creaMensaje();
```

Además de variables locales, también existe el concepto de **variable global**, que está definida en cualquier punto del programa (incluso dentro de cualquier función).

```
var mensaje = "Mensaje de prueba";
function muestraMensaje() {
          alert(mensaje);
```

El código anterior es el ejemplo inverso al mostrado anteriormente. Dentro de la función muestraMensaje() se quiere hacer uso de una variable llamada mensaje y que no ha sido definida dentro de la propia función. Sin embargo, si se ejecuta el código anterior, sí que se muestra el mensaje definido por la variable mensaje.

El motivo es que en el código JavaScript anterior, la variable mensaje se ha definido fuera de cualquier función. Este tipo de variables automáticamente se transforman en variables globales y están disponibles en cualquier punto del programa (incluso dentro de cualquier función).

De esta forma, aunque en el interior de la función no se ha definido ninguna variable llamada mensaje, la variable global creada anteriormente permite que la instrucción alert() dentro de la función muestre el mensaje correctamente.

Si una variable se declara fuera de cualquier función, automáticamente se transforma en variable global independientemente de si se define utilizando la palabra reservada var o no. Sin embargo, las variables definidas dentro de una función pueden ser globales o locales. Si en el interior de una función, las variables se declaran mediante var se consideran locales y las variables que no se han declarado mediante var, se transforman automáticamente en variables globales.

Por lo tanto, se puede rehacer el código del primer ejemplo para que muestre el mensaje correctamente. Para ello, simplemente se debe definir la variable dentro de la función sin la palabra reservada var, para que se transforme en una variable global:

```
function creaMensaje() {
          mensaje = "Mensaje de prueba";
}
creaMensaje();
alert(mensaje);
```

¿Qué sucede si una función define una variable local con el mismo nombre que una variable global que ya existe? En este caso, las variables locales prevalecen sobre las globales, pero sólo dentro de la función:

```
var mensaje = "gana la de fuera";
function muestraMensaje() {
     var mensaje = "gana la de dentro";
     alert(mensaje);
}
alert(mensaje);
muestraMensaje();
alert(mensaje);
```

El código anterior muestra por pantalla los siguientes mensajes:

```
gana la de fuera
gana la de dentro
gana la de fuera
```

Dentro de la función, la variable local llamada mensaje tiene más prioridad que la variable global del mismo nombre, pero solamente dentro de la función.

¿Qué sucede si dentro de una función se define una variable global con el mismo nombre que otra variable global que ya existe? En este otro caso, la variable global definida dentro de la función simplemente modifica el valor de la variable global definida anteriormente:

```
var mensaje = "gana la de fuera";
function muestraMensaje() {
         mensaje = "gana la de dentro";
         alert(mensaje);
}
alert(mensaje);
muestraMensaje();
alert(mensaje);
```

En este caso, los mensajes mostrados son:

```
gana la de fuera
gana la de dentro
gana la de dentro
```

La recomendación general es definir como variables locales todas las variables que sean de uso exclusivo para realizar las tareas encargadas a cada función. Las variables globales se utilizan para compartir variables entre funciones de forma sencilla.

4.3. Sentencias break y continue

La estructura de control for es muy sencilla de utilizar, pero tiene el inconveniente de que el número de repeticiones que se realizan sólo se pueden controlar mediante las variables definidas en la zona de actualización del bucle.

Las sentencias break y continue permiten manipular el comportamiento normal de los bucles for para detener el bucle o para saltarse algunas repeticiones. Concretamente, la sentencia break permite terminar de forma abrupta un bucle y la sentencia continue permite saltarse algunas repeticiones del bucle.

El siguiente ejemplo muestra el uso de la sentencia break:

```
var cadena = "En un lugar de la Mancha de cuyo nombre no quiero acordarme...";
var letras = cadena.split("");
var resultado = "";

for(i in letras) {
      if(letras[i] == 'a') {
            break;
        }
        else {
            resultado += letras[i];
        }
}

alert(resultado);
// muestra "En un lug"
```

Si el programa llega a una instrucción de tipo break;, sale inmediatamente del bucle y continúa ejecutando el resto de instrucciones que se encuentran fuera del bucle for. En el ejemplo anterior, se recorren todas las letras de una cadena de texto y cuando se encuentra con la primera letra "a", se detiene la ejecución del bucle for.

La utilidad de break es terminar la ejecución del bucle cuando una variable toma un determinado valor o cuando se cumple alguna condición.

En ocasiones, lo que se desea es saltarse alguna repetición del bucle cuando se dan algunas condiciones. Siguiendo con el ejemplo anterior, ahora se desea que el texto de salida elimine todas las letras "a" de la cadena de texto original:

```
var cadena = "En un lugar de la Mancha de cuyo nombre no quiero acordarme...";
var letras = cadena.split("");
var resultado = "";

for(i in letras) {
    if(letras[i] == 'a') {
      continue;
    }
    else {
      resultado += letras[i];
    }
}
```

```
}
alert(resultado);
// muestra "En un lugr de 1 Mnch de cuyo nombre no quiero cordrme..."
```

En este caso, cuando se encuentra una letra "a" no se termina el bucle, sino que no se ejecutan las instrucciones de esa repetición y se pasa directamente a la siguiente repetición del bucle for.

La utilidad de continue es que permite utilizar el bucle for para filtrar los resultados en función de algunas condiciones o cuando el valor de alguna variable coincide con un valor determinado.

4.4. Otras estructuras de control

Las estructuras de control de flujo que se han visto (if, else, for) y las sentencias que modifican su comportamiento (break, continue) no son suficientes para realizar algunas tareas complejas y otro tipo de repeticiones. Por ese motivo, JavaScript proporciona otras estructuras de control de flujo diferentes y en algunos casos más eficientes.

4.4.1. Estructura while

La estructura while permite crear bucles que se ejecutan ninguna o más veces, dependiendo de la condición indicada. Su definición formal es:

```
while(condicion) {
    ...
}
```

El funcionamiento del bucle while se resume en: "mientras se cumpla la condición indicada, repite indefinidamente las instrucciones incluidas dentro del bucle".

Si la condición no se cumple ni siquiera la primera vez, el bucle no se ejecuta. Si la condición se cumple, se ejecutan las instrucciones una vez y se vuelve a comprobar la condición. Si se sigue cumpliendo la condición, se vuelve a ejecutar el bucle y así se continúa hasta que la condición no se cumpla.

Evidentemente, las variables que controlan la condición deben modificarse dentro del propio bucle, ya que de otra forma, la condición se cumpliría siempre y el bucle while se repetiría indefinidamente.

El siguiente ejemplo utiliza el bucle while para sumar todos los números menores o iguales que otro número:

El programa debe sumar todos los números menores o igual que otro dado. Por ejemplo si el número es 5, se debe calcular: 1 + 2 + 3 + 4 + 5 = 15

Este tipo de condiciones ("suma números mientras sean menores o iguales que otro número dado") se resuelven muy fácilmente con los bucles tipo while, aunque también se podían resolver con bucles de tipo for.

En el ejemplo anterior, mientras se cumpla la condición, es decir, mientras que la variable i sea menor o igual que la variable numero, se ejecutan las instrucciones del bucle.

Dentro del bucle se suma el valor de la variable i al resultado total (variable resultado) y se actualiza el valor de la variable i, que es la que controla la condición del bucle. Si no se actualiza el valor de la variable i, la ejecución del bucle continua infinitamente o hasta que el navegador permita al usuario detener el script.

4.4.2. Estructura do...while

El bucle de tipo do...while es muy similar al bucle while, salvo que en este caso **siempre** se ejecutan las instrucciones del bucle al menos la primera vez. Su definición formal es:

```
do {
...
} while(condicion);
```

De esta forma, como la condición se comprueba después de cada repetición, la primera vez siempre se ejecutan las instrucciones del bucle. Es importante no olvidar que después del while() se debe añadir el carácter; (al contrario de lo que sucede con el bucle while simple).

Utilizando este bucle se puede calcular fácilmente el factorial de un número:

```
var resultado = 1;
var numero = 5;
do {
    resultado *= numero; // resultado = resultado * numero
    numero--;
} while(numero > 0);
alert(resultado);
```

En el código anterior, el resultado se multiplica en cada repetición por el valor de la variable numero. Además, en cada repetición se decrementa el valor de esta variable numero. La condición del bucle do...while es que el valor de numero sea mayor que 0, ya que el factorial de un número multiplica todos los números menores o iguales que él mismo, pero hasta el número 1 (el factorial de 5 por ejemplo es 5 x 4 x 3 x 2 x 1 = 120). Como en cada repetición se decrementa el valor de la variable numero y la condición es que numero sea mayor que cero, en la repetición en la que numero valga 0, la condición ya no se cumple y el programa se sale del bucle do...while.

4.4.3. Estructura switch

La estructura if...else se puede utilizar para realizar comprobaciones múltiples y tomar decisiones complejas. Sin embargo, si todas las condiciones dependen siempre de la misma variable, el código JavaScript resultante es demasiado redundante:

```
if(numero == 5) {
...
}
else if(numero == 8) {
...
}
else if(numero == 20) {
...
}
else {
...
}
```

En estos casos, la estructura switch es la más eficiente, ya que está especialmente diseñada para manejar de forma sencilla múltiples condiciones sobre la misma variable. Su definición formal puede parecer compleja, aunque su uso es muy sencillo:

El anterior ejemplo realizado con if...else se puede rehacer mediante switch:

La estructura switch se define mediante la palabra reservada switch seguida, entre paréntesis, del nombre de la variable que se va a utilizar en las comparaciones. Como es habitual, las instrucciones que forman parte del switch se encierran entre las llaves { y }.

Dentro del switch se definen todas las comparaciones que se quieren realizar sobre el valor de la variable. Cada comparación se indica mediante la palabra reservada case seguida del valor con el que se realiza la comparación. Si el valor de la variable utilizada por switch coincide con el valor indicado por case, se ejecutan las instrucciones definidas dentro de ese case.

Normalmente, después de las instrucciones de cada case se incluye la sentencia break para terminar la ejecución del switch, aunque no es obligatorio. Las comparaciones se realizan por orden, desde el primer case hasta el último, por lo que es muy importante el orden en el que se definen los case.

¿Qué sucede si ningún valor de la variable del switch coincide con los valores definidos en los case? En este caso, se utiliza el valor default para indicar las instrucciones que se ejecutan en el caso en el que ningún case se cumpla para la variable indicada.

Aunque default es opcional, las estructuras switch suelen incluirlo para definir al menos un valor por defecto para alguna variable o para mostrar algún mensaje por pantalla.

Capítulo 5. Eventos

Hasta ahora, todas las aplicaciones y scripts que se han creado tienen algo en común: se ejecutan desde la primera instrucción hasta la última de forma secuencial. Gracias a las estructuras de control de flujo (if, for, while) es posible modificar ligeramente este comportamiento y repetir algunos trozos del script y saltarse otros trozos en función de algunas condiciones.

Este tipo de aplicaciones son poco útiles, ya que no interactúan con los usuarios y no pueden responder a los diferentes *eventos* que se producen durante la ejecución de una aplicación.

Afortunadamente, las aplicaciones web creadas con el lenguaje JavaScript pueden utilizar el modelo de *programación basada en eventos*.

En este tipo de programación, los scripts se dedican a esperar a que el usuario *"haga algo"* (que pulse una tecla, que mueva el ratón, que cierre la ventana del navegador). A continuación, el script responde a la acción del usuario normalmente procesando esa información y generando un resultado.

Los eventos hacen posible que los usuarios transmitan información a los programas. JavaScript define numerosos eventos que permiten una interacción completa entre el usuario y las páginas/aplicaciones web. La pulsación de una tecla constituye un evento, así como pinchar o mover el ratón, seleccionar un elemento de un formulario, redimensionar la ventana del navegador, etc.

JavaScript permite asignar una función a cada uno de los eventos. De esta forma, cuando se produce cualquier evento, JavaScript ejecuta su función asociada. Este tipo de funciones se denominan "event handlers" en inglés y suelen traducirse por "manejadores de eventos".

5.1. Modelos de eventos

Crear páginas y aplicaciones web siempre ha sido mucho más complejo de lo que debería serlo debido a las incompatibilidades entre navegadores. A pesar de que existen decenas de estándares para las tecnologías empleadas, los navegadores no los soportan completamente o incluso los ignoran.

Las principales incompatibilidades se producen en el lenguaje XHTML, en el soporte de hojas de estilos CSS y sobre todo, en la implementación de JavaScript. De todas ellas, la incompatibilidad más importante se da precisamente en el modelo de eventos del navegador. Así, existen hasta tres modelos diferentes para manejar los eventos dependiendo del navegador en el que se ejecute la aplicación.

5.1.1. Modelo básico de eventos

Este modelo simple de eventos se introdujo para la versión 4 del estándar HTML y se considera parte del nivel más básico de DOM. Aunque sus características son limitadas, es el único modelo que es compatible en todos los navegadores y por tanto, el único que permite crear aplicaciones que funcionan de la misma manera en todos los navegadores.

5.2.1. Tipos de eventos

En este modelo, cada elemento o etiqueta XHTML define su propia lista de posibles eventos que se le pueden asignar. Un mismo tipo de evento (por ejemplo, pinchar el botón izquierdo del ratón) puede estar definido para varios elementos XHTML diferentes y un mismo elemento XHTML puede tener asociados varios eventos diferentes.

El nombre de cada evento se construye mediante el prefijo on, seguido del nombre en inglés de la acción asociada al evento. Así, el evento de pinchar un elemento con el ratón se denomina onclick y el evento asociado a la acción de mover el ratón se denomina onmousemove.

La siguiente tabla resume los eventos más importantes definidos por JavaScript:

Evento	Descripción	Elementos para los que está definido
Onblur	Deseleccionar el elemento	<pre><button>, <input/>, <label>, <select>, <textarea>, <body></pre></td></tr><tr><td>onchange</td><td>Deseleccionar un elemento que se ha
Modificado</td><td><pre><input>, <select>, <textarea></pre></td></tr><tr><td>Onclick</td><td>Pinchar y soltar el ratón</td><td>Todos los elementos</td></tr><tr><td>Ondblclick</td><td>Pinchar dos veces seguidas con el ratón</td><td>Todos los elementos</td></tr><tr><td>Onfocus</td><td>Seleccionar un elemento</td><td><pre><button>, <input>, <label>, <select>, <textarea>, <body></pre></td></tr><tr><td>Onkeydown</td><td>Pulsar una tecla (sin soltar)</td><td>Elementos de formulario y <body></td></tr><tr><td>Onkeypress</td><td>Pulsar una tecla</td><td>Elementos de formulario y <body></td></tr><tr><td>Onkeyup</td><td>Soltar una tecla pulsada</td><td>Elementos de formulario y <body></td></tr><tr><td>Onload</td><td>La página se ha cargado completamente</td><td><body></td></tr><tr><td>Onmousedown</td><td>Pulsar (sin soltar) un botón del ratón</td><td>Todos los elementos</td></tr><tr><td>Onmousemove</td><td>Mover el ratón</td><td>Todos los elementos</td></tr><tr><td>onmouseout</td><td>El ratón "sale" del elemento (pasa por encima de otro elemento)</td><td>Todos los elementos</td></tr><tr><td>onmouseover</td><td>El ratón "entra" en el elemento (pasa por encima del elemento)</td><td>Todos los elementos</td></tr><tr><td>onmouseup</td><td>Soltar el botón que estaba pulsado en el ratón</td><td>Todos los elementos</td></tr><tr><td>Onreset</td><td>Inicializar el formulario (borrar todos sus datos)</td><td><form></td></tr><tr><td>onresize</td><td>Se ha modificado el tamaño de la ventana del navegador</td><td><body></td></tr><tr><td>Onselect</td><td>Seleccionar un texto</td><td><pre><input>, <textarea></pre></td></tr><tr><td>Onsubmit</td><td>Enviar el formulario</td><td><form></td></tr><tr><td>onunload</td><td>Se abandona la página (por ejemplo al cerrar el navegador)</td><td><body></td></tr></tbody></table></textarea></select></label></button></pre>

Los eventos más utilizados en las aplicaciones web tradicionales son onload para esperar a que se cargue la página por completo, los eventos onclick, onmouseover, onmouseout para controlar el ratón y onsubmit para controlar el envío de los formularios.

Algunos eventos de la tabla anterior (onclick, onkeydown, onkeypress, onreset, onsubmit) permiten evitar la "acción por defecto" de ese evento. Más adelante se muestra en detalle este comportamiento, que puede resultar muy útil en algunas técnicas de programación.

Las acciones típicas que realiza un usuario en una página web pueden dar lugar a una sucesión de eventos. Al pulsar por ejemplo sobre un botón de tipo <input type="submit"> se desencadenan los eventos onmousedown, onclick, onmouseup y onsubmit de forma consecutiva.

5.2.2. Manejadores de eventos

Un evento de JavaScript por sí mismo carece de utilidad. Para que los eventos resulten útiles, se deben asociar funciones o código JavaScript a cada evento. De esta forma, cuando se produce un evento se ejecuta el código indicado, por lo que la aplicación puede *responder* ante cualquier evento que se produzca durante su ejecución.

Las funciones o código JavaScript que se definen para cada evento se denominan "manejador de eventos" y como JavaScript es un lenguaje muy flexible, existen varias formas diferentes de indicar los manejadores:

- Manejadores cómo atributos de los elementos XHTML.
- Manejadores cómo funciones JavaScript externas.
- Manejadores "semánticos".

5.2.2.1. Manejadores de eventos como atributos XHTML

Se trata del método más sencillo y a la vez *menos profesional* de indicar el código JavaScript que se debe ejecutar cuando se produzca un evento. En este caso, el código se incluye en un atributo del propio elemento XHTML. En el siguiente ejemplo, se quiere mostrar un mensaje cuando el usuario pinche con el ratón sobre un botón:

```
<input type="button" value="Pinchame y verás" onclick="alert('Gracias por pinchar');"
/>
```

En este método, se definen atributos XHTML con el mismo nombre que los eventos que se quieren manejar. El ejemplo anterior sólo quiere controlar el evento de pinchar con el ratón, cuyo nombre es onclick. Así, el elemento XHTML para el que se quiere definir este evento, debe incluir un atributo llamado onclick.

El contenido del atributo es una cadena de texto que contiene todas las instrucciones JavaScript que se ejecutan cuando se produce el evento. En este caso, el código JavaScript es muy sencillo (alert('Gracias por pinchar');), ya que solamente se trata de mostrar un mensaje.

En este otro ejemplo, cuando el usuario pincha sobre el elemento <div> se muestra un mensaje y cuando el usuario pasa el ratón por encima del elemento, se muestra otro mensaje:

<div onclick="alert('Has pinchado con el ratón');" onmouseover="alert('Acabas de pasar el ratón por encima');">

Puedes pinchar sobre este elemento o simplemente pasar el ratón por encima </div>

Este otro ejemplo incluye una de las instrucciones más utilizadas en las aplicaciones JavaScript más antiquas:

```
<br/><body onload="alert('La página se ha cargado completamente');"> ...</body>
```

El mensaje anterior se muestra después de que la página se haya cargado completamente, es decir, después de que se haya descargado su código HTML, sus imágenes y cualquier otro objeto incluido en la página.

El evento onload es uno de los más utilizados ya que, como se vio en el capítulo de DOM, las funciones que permiten acceder y manipular los nodos del árbol DOM solamente están disponibles cuando la página se ha cargado completamente.

5.2.2.2. Manejadores de eventos y variable this

JavaScript define una variable especial llamada this que se crea automáticamente y que se emplea en algunas técnicas avanzadas de programación. En los eventos, se puede utilizar la variable this para referirse al elemento XHTML que ha provocado el evento. Esta variable es muy útil para ejemplos como el siguiente:

Cuando el usuario pasa el ratón por encima del <div>, el color del borde se muestra de color negro. Cuando el ratón sale del <div>, se vuelve a mostrar el borde con el color gris claro original.

Elemento <div> original:

```
<div id="contenidos" style="width:150px; height:60px; border:thin solid silver">
Sección de contenidos...
</div>
```

Si no se utiliza la variable this, el código necesario para modificar el color de los bordes, sería el

siguiente:

```
<div id="contenidos" style="width:150px; height:60px; border:thin solid silver"
onmouseover="document.getElementById('contenidos').style.borderColor='black';"
onmouseout="document.getElementById('contenidos').style.borderColor='silver';">
Sección de contenidos...
</div>
```

El código anterior es demasiado largo y demasiado propenso a cometer errores. Dentro del

código de un evento, JavaScript crea automáticamente la variable this, que hace referencia al

elemento XHTML que ha provocado el evento. Así, el ejemplo anterior se puede reescribir de la

siguiente manera:

```
<div id="contenidos" style="width:150px; height:60px; border:thin solid silver"
onmouseover="this.style.borderColor='black';"
onmouseout="this.style.borderColor='silver';">
Sección de contenidos...
</div>
```

El código anterior es mucho más compacto, más fácil de leer y de escribir y sigue funcionando correctamente aunque se modifique el valor del atributo id del <div>.

5.2.2.3. Manejadores de eventos como funciones externas

La definición de los manejadores de eventos en los atributos XHTML es el método más sencillo pero menos aconsejable de tratar con los eventos en JavaScript. El principal inconveniente es que se complica en exceso en cuanto se añaden algunas pocas instrucciones, por lo que solamente es recomendable para los casos más sencillos.

Si se realizan aplicaciones complejas, como por ejemplo la validación de un formulario, es aconsejable agrupar todo el código JavaScript en una función externa y llamar a esta función desde el elemento XHTML.

Siguiendo con el ejemplo anterior que muestra un mensaje al pinchar sobre un botón:

```
<input type="button" value="Pinchame y verás" onclick="alert('Gracias por pinchar');"
/>
```

Utilizando funciones externas se puede transformar en:

```
function muestraMensaje() {
alert('Gracias por pinchar');
}
<input type="button" value="Pinchame y verás" onclick="muestraMensaje()" />
```

Esta técnica consiste en extraer todas las instrucciones de JavaScript y agruparlas en una función externa. Una vez definida la función, en el atributo del elemento XHTML se incluye el nombre de la función, para indicar que es la función que se ejecuta cuando se produce el evento.

La llamada a la función se realiza de la forma habitual, indicando su nombre seguido de los paréntesis y de forma opcional, incluyendo todos los argumentos y parámetros que se necesiten.

El principal inconveniente de este método es que en las funciones externas no se puede seguir utilizando la variable this y por tanto, es necesario pasar esta variable como parámetro a la función:

```
function resalta(elemento) {

switch(elemento.style.borderColor) {
    case 'silver':
    case 'silver silver silver':
    case '#c0c0c0':
    elemento.style.borderColor = 'black';
    break;
    case 'black':
    case 'black black black black':
    case '#000000':
    elemento.style.borderColor = 'silver';
    break;
    }
}

<div style="width:150px; height:60px; border:thin solid silver"
onmouseover="resalta(this)" onmouseout="resalta(this)">
```

```
Sección de contenidos... </div>
```

En el ejemplo anterior, la función externa es llamada con el parámetro this, que dentro de la función se denomina elemento. La complejidad del ejemplo se produce sobre todo por la forma en la que los distintos navegadores almacenan el valor de la propiedad borderColor.

Mientras que Firefox almacena (en caso de que los cuatro bordes coincidan en color) el valor black, Internet Explorer lo almacena como black black black black y Opera almacena su representación hexadecimal #000000.

5.2.2.4. Manejadores de eventos semánticos

Los métodos que se han visto para añadir manejadores de eventos (como atributos XHTML y como funciones externas) tienen un grave inconveniente: "ensucian" el código XHTML de la página.

Como es conocido, una de las buenas prácticas básicas en el diseño de páginas y aplicaciones web es la separación de los contenidos (XHTML) y su aspecto o presentación (CSS). Siempre que sea posible, también se recomienda separar los contenidos (XHTML) y su comportamiento o programación (JavaScript).

Mezclar el código JavaScript con los elementos XHTML solamente contribuye a complicar el código fuente de la página, a dificultar la modificación y mantenimiento de la página y a reducir la semántica del documento final producido.

Afortunadamente, existe un método alternativo para definir los manejadores de eventos de JavaScript. Esta técnica es una evolución del método de las funciones externas, ya que se basa en utilizar las propiedades DOM de los elementos XHTML para asignar todas las funciones externas que actúan de manejadores de eventos. Así, el siguiente ejemplo:

```
<input id="pinchable" type="button" value="Pinchame y verás" onclick="alert('Gracias
por pinchar');" />
```

Se puede transformar en:

```
// Función externa
function muestraMensaje() {
  alert('Gracias por pinchar');
}

// Asignar la función externa al elemento

document.getElementById("pinchable").onclick = muestraMensaje;

// Elemento XHTML
<input id="pinchable" type="button" value="Pinchame y verás" />
```

La técnica de los manejadores semánticos consiste en:

- 1. Asignar un identificador único al elemento XHTML mediante el atributo id.
- 2. Crear una función de JavaScript encargada de manejar el evento.
- 3. Asignar la función externa al evento correspondiente en el elemento deseado.

El último paso es la clave de esta técnica. En primer lugar, se obtiene el elemento al que se desea asociar la función externa:

```
document.getElementById("pinchable");
```

A continuación, se utiliza una propiedad del elemento con el mismo nombre que el evento que se quiere manejar. En este caso, la propiedad es onclick:

```
document.getElementById("pinchable").onclick = ...
```

Por último, se asigna la función externa mediante su nombre sin paréntesis. Lo más importante (y la causa más común de errores) es indicar solamente el nombre de la función, es decir, prescindir de los paréntesis al asignar la función:

```
document.getElementById("pinchable").onclick = muestraMensaje;
```

Si se añaden los paréntesis después del nombre de la función, en realidad se está ejecutando la función y guardando el valor devuelto por la función en la propiedad onclick de elemento.

```
// Asignar una función externa a un evento de un elemento
document.getElementById("pinchable").onclick = muestraMensaje;
// Ejecutar una función y guardar su resultado en una propiedad de un elemento
document.getElementById("pinchable").onclick = muestraMensaje();
```

La gran ventaja de este método es que el código XHTML resultante es muy "limpio", ya que no se mezcla con el código JavaScript. Además, dentro de las funciones externas asignadas sí que se puede utilizar la variable this para referirse al elemento que provoca el evento.

El único inconveniente de este método es que la página se debe cargar completamente antes de que se puedan utilizar las funciones DOM que asignan los manejadores a los elementos XHTML.

Una de las formas más sencillas de asegurar que cierto código se va a ejecutar después de que la página se carque por completo es utilizar el evento onload:

```
window.onload = function() {
document.getElementById("pinchable").onclick = muestraMensaje;
}
```

La técnica anterior utiliza el concepto de *funciones anónimas*, que no se va a estudiar, pero que permite crear un código compacto y muy sencillo. Para asegurarse que un código JavaScript va a ejecutarse después de que la página se haya cargado completamente, sólo es necesario incluir esas instrucciones entre los símbolos { y }:

```
window.onload = function() {
   ...
}
```

En el siguiente ejemplo, se añaden eventos a los elementos de tipo input=text de un formulario complejo:

```
function resalta() {

// Código JavaScript
}

window.onload = function() {

var formulario = document.getElementById("formulario");

var camposInput = formulario.getElementsByTagName("input");

for(var i=0; i<camposInput.length; i++) {

if(camposInput[i].type == "text") {

camposInput[i].onclick = resalta;
}
}
}</pre>
```