

Improving the DIY SCARA robot arm

Bioscara v2

Aim

- Enable DIY Arm for Lab Integration
- ROSify the SCARA Arm
- Easy Manipulation through Movelt

Automation Pipeline

Architecture (old)

MKS Servo42C

- NO support/ Poor Doc.
- Buggy Firmware
- No sensorless homing
- Stall detection but no feedback to controller!
- Serial control advertised but not realisable since position request cancles movement
- Potentially Step Signals (3 wires)
 - + Parallel UART request to read state? (2 wires)

MKS Printer Board

- Marlin 3D printer firmware
- Slightly modyfied for 4th axis but still "thinks" its a 3D printer
- G-Code via Serial from Raspberry Pi
- Emulates postion feedback

Raspberry Pi

- Handles Inverse Kinematics
- Communication
- Python Scripts

Old Schematic

4x Joint each:

- 2x Power
- 4x Signal

1x Servo

- 2x Power
- 1x Signal

6x Endstop

- 2x Power
- 1x Signal

========

45 cables

Architecture (new)

Ustepper S32

- Freely programmable Stepper driver
- + Lots of freedom
- More work
- Many different ways for stall detection but tricky to use.
- Sensorless Homing Possible!

Raspberry Pi

- Custom Communication Protocol
- Robot Kinematics are handled by ROS2 Movelt

Change of Focus	Old	New
Custom	Robot KinematicsTrajectory Generation	 Joint – Controller Interfacing
Pre-made	 Joint – Controller Interfacing 	 Robot Control and everything above

- +2088 dkk Ustepper S32
- -470 dkk MKS Servo 42C
- -207dkk Printer Board
- -108 dkk logic converter

======

+1303 dkk (4500 dkk -> 5800 dkk)

Sensorless Homing

Stall detection via encoder error

- Adjustable Speed, direction and sensitivity
- Reduced Range on J1 and J4
- Repeatability? Accuracy?

Videos

New Schematic

Sensorless Homing removes need for endstops
BUT limits freedom: no continous joints.

4x Joint each:

- 2x Power
- 2x Signal

1x Servo

- 2x Power
- 1x Signal

=========

19 cables

58% decrease

- Power Distribution via Terminal Blocks
- Signal cables from Raspberry Pi with Y-splitter

10

Code Dependencies and Documentation

Joint Communication Protocol

30/05/2025 Danmarks Tekniske Universitet Bioscara v2

12

Buy Cheap, buy twice

• YES it is possible to source the cheapest components from AliExpress BUT:

Another Example:

- MKS Servo42C firmware issues
- Power button welded close

13

TODO

- Mechanical:
 - J3 lower arm to newest version
 - J3 tension pulley slip:
 - Fix with set screw or similar
 - Increase friction by roughing surface
 - Gripper redesign with sufficient clearance
- Test Accuracy and Precision of sensorless homing
- Test Robustness of Communication Protocol
- Homing Script (through ROS or as plain script)
- For motion with Movelt:
 - Create ROS2 Control Hardware Interface
 - Create URDF description file
 - Adapt simple example