

School Name:	UDAAN
Test Name:	Weekly Assessment Class XI Week 5
Total Questions:	45
Marks:	45
Duration:	90 minutes

Instructions for Assessment:

- The test is of 11/2 hours (90 minutes) duration.
- The test consists of **45 questions**.
- There are three parts in the question paper A, B, C consisting of Physics, Chemistry and Mathematics having 15 questions in each part of equal weightage.
- There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response.
- No candidate is allowed to use any textual material, printed or written, pager, mobile, any electronic device, etc

Section: Physics			
Questions: 15	Marks: 15		

1.	If $\overrightarrow{A}_1 \& \overrightarrow{A}_2$ are two non – collinear unit vectors and if $ \overrightarrow{A}_1 + \overrightarrow{A}_2 = \sqrt{3}$, then the value of $(\overrightarrow{A}_1 - \overrightarrow{A}_2).(2\overrightarrow{A}_1 + \overrightarrow{A}_2)$ is a. 1 b. 1/2 c. 3/2 d. 2	1.0
2.	The magnitudes of x and y component of \vec{A} are 7 and 6. The magnitudes of x and y component of $\vec{A} + \vec{B}$ are 11 and 2 respectively then the magnitude of \vec{B} is a. 5 b. 6 c. 8 d. 9	1.0
3.	A particle moves in the x – y plane with velocity $v_x = 8t - 2$ and $v_y = 2$. If it passes through the point x = 14 and y = 4 at t = 2 s then the equation of the path is a. $X = y^3 - y^2 + 2$ b. $X = y^2 - y + 2$ c. $X = y^3 - 3y + 2$ d. $X = y^3 - 2y^2 + 2$	1.0
4.	A man is moving with velocity u in north east direction. The wind appears to blow from the north to the moving man. When the man doubles his velocity, the wind appears to move in the direction $\cot^{-1}(2)$ east of north. The actual velocity of the wind is a. $\frac{v}{\sqrt{2}}$ towards east b. $\frac{v}{\sqrt{2}}$ towards west c. $\sqrt{2}$ v towards west d. $\sqrt{2}$ v towards east	1.0
5.	The speed of boat is 5 km/h in still water. It crosses a (flowing) river of width 1 km along the shortest possible path in 15 minutes. The velocity of river is a. 4 km/h b. 3 km/h	1.0

	c. 1 km/h	
6.	 d. 6.94 km/h A boat, going down stream, crosses a drifting raft at a point P. After two hours, the boat, it turned back and after some time, passed the same raft again at a distance 12 km from the point P. Assuming that the speed of the river, remains constant, the value of boat's speed, is a. 4 km/h b. 3 km/h c. Zero d. 1 km/h 	1.0
7.	Two boats, a and b, move with constant velocities 5 m/s and 10 m/s along two mutually perpendicular straight tracks toward the intersection point of the two tracks O. At the moment t = 0, the boats were located at distances, 150 m and 200 m from O. The shortest distance, between the boats, would be (nearly) a. 65m b. 60m c. 62m d. 50m	1.0
8.	A police Van moving on a highway with a speed of 36 km/h fires a bullet at a thief's car speeding away in the same direction with a speed of 216 km/h. If the muzzle speed of the bullet is 150 m/s, with what speed does the bullet hits the thief car? a. 80 m/s b. 100 m/s c. 120 m/s d. 160 m/s	1.0
9.	A car and a truck, start moving (from rest) along the same straight track, at the same instant of time, from the same point. The car moves with a constant velocity of 50 m/s and the truck moves with a constant acceleration of 4 m/s ² . The separation, between the two, will have it greatest value (=s ₀ metre, say), at a time t ₀ , after the start, where t ₀ and s ₀ equal, respectively. a. 12.5 s and 625 m b. 25 s and 312.5 m c. 12.5 s and 312.5 m d. 25 s and 625 m	1.0
10.	A car driver, travelling at 90 km/h sees the light turn red at the intersection. If her reaction time is 0.6s, and the car can decelerate at 5 m/s ² . The stopping distance for the car would be a. 59.5 m b. 62.5 m c. 68.5 m	1.0

	d. 77.5 m				
	Ram is going eastward with a velocity of 4 km/h. The wind appears to blow directly from the				
	north. He doubled his speed and the wind appears to come from north east. The actual velocity of				
	the wind is				
11.	a. $4\sqrt{2km}/h^{-1}$ towards north east	1.0			
	b. $4\sqrt{2km}/h^{-1}$ towards north west				
	c. $4\sqrt{2km}/h^{-1}$ towards south west				
	d. $4\sqrt{2km}/h^{-1}$ towards south east				
	A jet air plane travelling at a speed of 500 km/h ejects its products of combustion (gases) which				
	appear at a speed of 1500 km/h, relative to the jet plane. What is the velocity of latter with respect				
	to the ground?				
12.	a. 1000 km/h along the direction of emission of gases	1.0			
	b. 2000 km/h along the direction of emission of gases				
	c. 1000 km/h opposite to the direction of emission of gases				
	d. 2000 km/h opposite to the direction of emission of gases				
	What are the speeds of two objects if (i) when they move uniformly towards each other, they get 4				
	m closer in each second, and (ii) when they move uniformly in the same direction, with their				
	original speeds, they get 4m closer to each other after 10s?				
13.	a. 4.4 m/s and 3.6 m/s	1.0			
	b. 3.3 m/s and 2.7 m/s				
	c. 4.4 m/s and 2.2 m/s				
	d. 2.2 m/s and 1.8 m/s				
	The motor of an electric train can give it an acceleration of 1m/s ² and its brakes can give it a				
	negative acceleration of 3 m/s ² . The shortest time in which the train, can make a trip between the				
	two stations, 1215 m apart is				
14.	a. 113.6 s	1.0			
	b. 56.9 s				
	c. 60 s				
	d. 55 s				
	A river is flowing from west to east at a speed of 5m/min. A man on the south bank of the river,				
15.	capable of swimming at 10 m/min in still water, wants to swim across the river in the shortest	1.0			
	time. He should swim in a direction?				
	a. 30^0 west of north				

- **c.** due north
- **d.** 60^0 east of north

Section: Chemistry				
Questions: 15	Marks: 15			

	The maximum probability of finding an electron in the d_{xy} orbital is				
16.	a. Along the x-axis	1.0			
10.	b. Along the y-axis	110			
	c. At an angle of 45° from the x and y axes				
	d. At an angle of 90° from the x and y axes				
	The mathematical expression for the uncertainty principle is				
	a. $\Delta x \Delta p \ge \frac{h}{4\pi}$				
17.	b. $\Delta E \Delta t \ge \frac{h}{4\pi}$	1.0			
	b. $\Delta E \Delta t \ge \frac{h}{4\pi}$ c. $\Delta x \Delta p \ge \frac{h}{p}$ d. $\Delta E \Delta t \ge \frac{h}{p}$				
	d. $\Delta E \Delta t \ge \frac{h}{p}$				
	If uncertainty in the position of an electron is zero, the uncertainty in its momentum would be				
	a. Zero				
18.	$\mathbf{b.} < \frac{h}{2\lambda}$	1.0			
	$\mathbf{b.} < \frac{h}{2\lambda}$ $\mathbf{c.} > \frac{h}{2\lambda}$				
	d. Infinite				
	Which of the following is related to Uncertainty principle?				
	a. Probability				
10	•	4.0			
19.	b. An orbital	1.0			
	c. Wave function				
	d. Energy Level				
	The uncertainty in the position of a moving bullet of mass $10 \ gm$ is $10^{-5} m$. Calculate the uncertainty in its velocity				
	a. $5.2 \times 10^{-28} m/s$				
20.	b. $3.0 \times 10^{-28} m/s$	1.0			
	c. $5.2 \times 10^{-22} m/s$				
	d. $3.0 \times 10^{-22} m/s$				
21.	Assertion (A): The position of an electron can be determined exactly with the help of an electronic microscope.	ron 1.0			

	 Reason (R): The product of uncertainty in the measurement of its momentum and the uncertainty in the measurement of the position cannot be less than a finite limit. a. Both A and R are true and R is the correct explanation of A b. Both A and R are true but R is not the correct explanation of A c. A is true but R is false d. A is false but R is true 	
22.	The uncertainties in the velocity of two particles A and B are 0.05 and 0.02 ms ⁻¹ respectively. The mass of B is five times the mass of A. The ratio of uncertainties in their positions is a. 0.5 b. 0.25 c. 4 d. 1	1.0
23.	When the electron of a hydrogen atom jumps from the n = 4 to the n = 1 state, the number of spectral lines emitted is a. 12 b. 6 c. 3 d. 4	1.0
24.	The energy of a radiation of wavelength 8000 Å is E_1 and energy of a radiation of wavelength 16000 Å is E_2 . What is the relation between these two a. $E_1 = 6E_2$ b. $E_1 = 2E_2$ c. $E_1 = 4E_2$ d. $E_1 = 1/2E_2$	1.0
25.	For a one-electron system, the wave number of any spectral line is directly proportional to a. $n_2^2 - n_2^2$ b. $\frac{1}{n_1^2} - \frac{1}{n_2^2}$ c. $n^2 Z^2$ d. $n_2 - n_1$	1.0
26.	Excited hydrogen atom emits light in the ultraviolet region at $2.47 \times 10^{15} Hz$. With this frequency, the energy of a single photon is: $(h = 6.63 \times 10^{-34} J \ s)$ a. $8.041 \times 10^{-40} J$ b. $2.680 \times 10^{-19} J$ c. $1.640 \times 10^{-18} J$	1.0

	d.	6.111 × 10	^{-17}J					
	The work function of some metals is listed below.							
		Metal	Li	W	Pt	Mg		
	fur	Work nction/eV	2.4	4.75	6.3	3.7		
27.	these a a. b. c.		rill show the	photoelectric	effect when	light of 30	00 nm wave length falls on	1.0
28.	quantu a. b. c.	m number, w Three Four		es in Paschen so		drogen at	om is 2.34×10 ¹⁴ Hz. The	1.0
29.	a. b. c.	The element	s do not hav ifferent mas nost electron	s are at differe	nber of neu	trons		1.0
30.				e spectral line e	_	_	en atom in the Lyman series?	1.0

Section: Mathematics				
Questions: 15	Marks: 15			

31.	If $k_1 = \tan 27\theta - \tan \theta$ and $k_2 = \frac{\sin \theta}{\cos 3\theta} + \frac{\sin 3\theta}{\cos 9\theta} + \frac{\sin 9\theta}{\cos 27\theta}$, then			
	(a) $k_1 = 2k_2$ (b) $k_1 = k_2 + 4$ (c) $k_1 = k_2$ (d) none of these			
32.	If $\frac{\cos x}{a} = \frac{\cos(x+\theta)}{b} = \frac{\cos(x+2\theta)}{c} = \frac{\cos(x+3\theta)}{d}$, then $\frac{a+c}{b+d}$ is equal to			
	(a) a/d (b) c/d (c) b/c (d) d/a			
33.	If $\sin\left(x + \frac{4\pi}{9}\right) = a$; $\frac{\pi}{9} < x < \frac{\pi}{3}$, then $\cos\left(x + \frac{7\pi}{9}\right)$ equals (a) $\frac{\sqrt{(1-a^2)} - a\sqrt{3}}{2}$ (b) $\frac{1-a^2 + a\sqrt{3}}{2}$ (c) $\frac{a\sqrt{3} - \sqrt{(1-a^2)}}{2}$ (d) $\frac{-\sqrt{(1-a^2)} - a\sqrt{3}}{2}$	1.0		
34.	If $a = \sin \frac{\pi}{18} \sin \frac{5\pi}{18} \sin \frac{7\pi}{18}$, and x is the solution of the equation $y = 2[x] + 2$ and $y = 3[x - 2]$, where $[x]$ denotes the integral part of x , then a is equal to (a) $[x]$ (b) $\frac{1}{[x]}$ (c) $2[x]$ (d) $[x]^2$	1.0		
35.	Let n be a fixed positive integer such that $\sin \frac{\pi}{2n} + \cos \frac{\pi}{2n} = \frac{\sqrt{n}}{2}$, then (a) $n = 4$ (b) $n = 5$ (c) $n = 6$ (d) none of these	1.0		

	-	
36.	In a quadrilateral if $\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) + \sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right) = 2,$ then $\Sigma\cos\frac{A}{2}\cos\frac{B}{2}$ is equal to (a) 0 (b) 6 (c) 3 (d) 2	1.0
37.	If $x \sin a + y \sin 2a + z \sin 3a = \sin 4a$ $x \sin b + y \sin 2b + z \sin 3b = \sin 4b$, $x \sin c + y \sin 2c + z \sin 3c = \sin 4c$. Then the roots of the equation $t^3 - \left(\frac{z}{2}\right)t^2 - \left(\frac{y+2}{4}\right)t + \left(\frac{z-x}{8}\right) = 0, a, b, c \neq n\pi, \text{ are}$ (a) $\sin a$, $\sin b$, $\sin c$ (b) $\cos a$, $\cos b$, $\cos c$ (c) $\sin 2a$, $\sin 2b$, $\sin 2c$ (d) $\cos 2a$, $\cos 2b$, $\cos 2c$	1.0
38.	If $a \sec \alpha - c \tan \alpha = d$ and $b \sec \alpha + d \tan \alpha = c$ then (a) $a^2 + c^2 = b^2 + d^2$ (b) $a^2 + d^2 = b^2 + c^2$ (c) $a^2 + b^2 = c^2 + d^2$ (d) $ab = cd$	1.0
39.	tan $7\frac{1}{2}^{\circ}$ is equal to (a) $\frac{2\sqrt{2} - (1 + \sqrt{3})}{\sqrt{3} - 1}$ (b) $\frac{1 + \sqrt{3}}{1 - \sqrt{3}}$ (c) $\frac{1}{\sqrt{3}} + \sqrt{3}$ (d) $2\sqrt{2} + \sqrt{3}$	1.0
40.	$ \left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right) $ is equal to (a) 1/2 (b) $\cos\pi/8$ (c) 1/8 (d) $\frac{1 + \sqrt{2}}{2\sqrt{2}}$	1.0
41.	If $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 3$, then $\cos \theta_1 + \cos \theta_2 + \cos \theta_3$ is equal to (a) 3 (b) 2 (c) 1 (d) 0	1.0
42.	The value of $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$ is equal to (a) 1	1.0

43.	If $\pi < \alpha < \frac{3\pi}{2}$, then the expression $\sqrt{(4\sin^4\alpha + \sin^2 2\alpha)} + 4\cos^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$ is equal to (a) $2 + 4\sin\alpha$ (b) $2 - 4\sin\alpha$ (c) 2 (d) none of these	1.0
44.	The value of $\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15}$ $\cos \frac{5\pi}{15} \cos \frac{6\pi}{15} \cos \frac{7\pi}{15}$ is equal to (a) $1/2^6$ (b) $1/2^7$ (c) $1/2^8$ (d) none of these	1.0
45.	The value of the expression $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{10\pi}{7} - \sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14} \text{ is equal to}$ (a) 0 (b) $-\frac{1}{4}$ (c) $\frac{1}{4}$ (d) $-\frac{1}{8}$	1.0

Key

Question	Correct	Question	Correct	Question	Correct
Number	Option	Number	Option	Number	Option
1.	В	16.	С	31.	A
2.	A	17.	A	32.	C
3.	В	18.	D	33.	D
4.	A	19.	A	34.	В
5.	В	20.	A	35.	C
6.	A	21.	D	36.	C
7.	A	22.	A	37.	В
8.	В	23.	В	38.	C
9.	С	24.	В	39.	A
10.	D	25.	В	40.	С
11.	D	26.	С	41.	D
12.	A	27.	D	42.	D
13.	D	28.	В	43.	С
14.	В	29.	С	44.	В
15.	С	30.	С	45.	В

Explanation

Question	Explanation
Number	
1.	$\therefore A_1^2 + A_2^2 + 2A_1 A_2 \cos \theta = (\sqrt{3})^2$ $2 + 2\cos \theta = 3 \Rightarrow \cos \theta = \frac{1}{2}\theta = 60^{\circ}$ $(\vec{A}_1 + \vec{A}_2) \cdot (2\vec{A}_1 - \vec{A}_2)$ $= 2A_1^2 - A_2^2 - A_1 A_2 \cos \theta = 2 - 1 - \frac{1}{2} = \frac{1}{2}$
2.	$ \therefore \vec{A} = 7\vec{\iota} + 6\vec{j} \vec{A} + \vec{B} = 11\vec{\iota} + 9\vec{j} $ $ \therefore \vec{B} = (\vec{A} + \vec{B}) - \vec{A} $ $ = 4\vec{\iota} + 3\vec{j} $ $ \Rightarrow (\vec{B}) = 5 $
3.	$V_{x} = 8t - 2$ $d_{x} = (8t - 2)dt$ $x = 4t^{2} - 2t + c$ $At t = 2, x = 4 \text{ so } 14 = 4 \times 2^{2} - 2 x \times 2 + 2$ $X = 4t^{2} - 2t + 2$ $Also v_{y} = \frac{dy}{dt} = 2 \Rightarrow y = 2t + c$ $Att = 2, y = 4 & c^{1} = 0$ $\therefore Y = 2t \Rightarrow t = \frac{y}{2}$ So that $x = \frac{4y^{2}}{4} - \frac{2y}{2} + 2 = y^{2} - y + 2$
4.	$\vec{v}_m = \frac{v}{\sqrt{2}}\hat{i} + \frac{v}{\sqrt{2}}J$ $Let \vec{v}_m = a\hat{i} + bJ$

	$\begin{array}{cccc} \rightarrow & \rightarrow & \rightarrow \\ 12 & -12 & -12 \end{array}$
	$v_{wm} = v_m - v_w$
	$\left[\left(a - \frac{v}{\sqrt{2}}\right)\hat{i} + \left(b - \frac{v}{\sqrt{2}}\right)J\right]$
	$tan = \frac{b - \sqrt{2}v}{a - v / \sqrt{2}}$ Wind cot ⁻¹ (2) vm
	$a = \frac{v}{\sqrt{2}}$
	$\vec{v}_w = \frac{v}{\sqrt{2}}\hat{i} + bJ$ $tan = \frac{b - \sqrt{2}v}{v / \sqrt{2 - \sqrt{2}v}}$
	$tan = \frac{b - \sqrt{2}v}{v / \sqrt{2 - \sqrt{2}v}}$
	$\vec{v}_w = \frac{v}{\sqrt{2}} \hat{i}$
	$V_{BR} = \frac{1 km / h}{15 minutes} = \frac{1 km}{\frac{15}{60} h} = 4 km / h$
	$V^2B = \sqrt{V_R^2 + V_B R^2}$
5.	$V^{2}B = \sqrt{V_{R}^{2} + V_{B}R^{2}}$ $\therefore (5)2 = V_{R}^{2} + (4)2$ $V_{R}^{2} = 25 - 16$
	$V_R^2 = 25 - 16$
	$V_R^2 = 9$
	$V_R = 3km/h$
	In 2 hours, the distances travelled by the boat and raft, are 2
	(u + v) and 2 u km. When the boat returns, its (relative) velocity becomes (v-u) km/h. Let the boat again meet the raft, t hours after turning back, then
	We have $= \left\lceil 2(u+v) - 2u \right\rceil - \left[ut\right] = (v-u) t$
6.	or 2u + 2v = 2u + ut + vt - ut
0.	2v = vt
	$\therefore t = 2 hours$
	2u + ut = 12
	2u + 2u = 12 $u = 4 km/h$
7.	Let the shortest distance between the boats be l, at a time t, after the start. We have

Distance 1 is minimum when $\frac{dl}{dt} = 0$

$$now \frac{dl}{dt} = \frac{d}{dt} \left[(150 - 5t)^2 + (200 - 12t)^2 \right]^{1/2}$$

$$= \frac{1}{2} \left[\frac{(150-5t)(-5)+2(200-12t)(-12)}{\sqrt{(150-5t)^2+(200-12t)^2}} \right]$$

∴ For minimum 1, we have

$$-5550 + 313t = 0$$

$$\therefore t = \frac{5550}{313} s = 17.13s$$

:. Shortest distance =
$$l_{min}$$
 (in metres) $\sqrt{(150-5\times17.13)^2 + (200-12\times17.13)^2}$
= $\sqrt{(150-85.65)^2 + (200-205\times56)^2}$ = $\sqrt{(64.35)^2 + (5.56)^2}$ $\sqrt{4140+30.96}$ $\sqrt{4170.91}$

$$\therefore l_{min} = 65m (approx)$$

8.
$$V_{p} = 10 m/s, V_{b} = 150 m/s$$

$$V_{thief} = 60 m/s$$

$$\therefore |\vec{v}_{b^{i}}| = |\vec{v}_{b^{-}}| + |\vec{v}_{p}| = 150 + 10 = 160 m/s |$$

$$\vec{v}_{bt}| = |\vec{v}_{b}| - |\vec{v}_{t}| = 100 m/s$$

	At any time t, after the start distance moved by the car $s_1 = 50t$
	and distance moved by the truck = $s_2 = \frac{1}{2}4t^2$
	Hence the separation, between the two, at time t, is
	$s = s_1 - s_2$
	$= 50 t - \frac{1}{2} (4t^2) = 50 t - 2 t^2$
	$s = s_1 - s_2$
9.	$s = s_1 - s_2$ $= 50t - 2t^2$
	The separation, s, is maximum when $\frac{ds}{dt} = 0$
	$\therefore \frac{ds}{dt} = 50 - 4t = 0$
	$t \Rightarrow t_0 = 12.5s$
	$t \Rightarrow t_0 = 12.5s$ $\therefore and s_0 = \left[50 \times 12.5 - 2 \times (12.5)^2\right] m$
	= [625 - 312.5]m = 312.5m
	Initial speed = $90 \text{ km/h} = 25 \text{m/s}$
	Distance travelled by the car during her reaction time = $25 \times 0.6 = 15 \text{m}$
	After travelling 15m, car decelerates and $v_f = 0$
10.	$\therefore 0^2 - 25^2 = 2(-5)s$
	$s = \frac{625}{10}m = 62.5m$
	Total stopping distance = $15 \text{ m} + 62.5 \text{ m} = 77.5 \text{ m}$
11.	The vector representation of velocity of Ram is given by

	$4km/h_{\overline{VR}}$
	\vec{v}_{A1} is apparent velocity of wind in first case is
	Then $\vec{v}_{A1} = \vec{v}_w - \vec{v}_R (1)$
	\vec{v}_w is velocity of wind in the first case is
	$Then \vec{v}_w \cos \theta = \vec{v}_{A1} (1a)$
	$ And v_w \sin \theta = v_1 (1b)$
	In the second case, velocity of ram is $\overrightarrow{2v}_r = \overrightarrow{v}_{r2}, \overrightarrow{v}_{A2}$, the apparent velocity of the wind, in this case is given
	$Now v_{A2} = v_w v_{r2} (2)$
	figure
	Then $8 - \vec{v}_w - \vec{v}_{R2} (2a)$
	$v_{w}\cos\theta = v_{2} (2b)$
	$ For v_{A2} towards sw, v_1 = v_2 (2c)$
	$From(2c)8 - v_{w} \sin\theta = v_{w} \cos\theta$
	using equation (1a) & (1b) in (2c) we get: $-$
	$4 = v_{w} \cos \theta (3a)$
	From equation (1b)
	$\tan \theta = 1$
	$ heta=45^{\circ}$
	using equation $(3a)$ or $(3b)$
	$4 = v \sin 45^{\circ}$
	$\Rightarrow v_w = 4\sqrt{2}$
	hence the velocity of wind is $4\sqrt{2}$ km/h towards south east.
	$V_{GJ} = Relative \ velocity \ of \ gases \ with \ respect \ to \ jet \ plane$
	$V_{GJ} = V_G - V_J$
	$(+1500) = V_G - (-500)$
12.	$1500 = V_G + 500$
	$V_G = (1500 - 500) km/h$
	$= 1000 \ km/h$
	1000 km/h along the direction of emission of gases
13.	V_A = velocity of the first object

	$V_{\rm B} = velocity \ of \ second \ object$
	when moving towards each other, we have
	$V_A + V_B = 4 m/s$ (1)
	On moving uniformly in the same direction, their relive velocity $\binom{4}{10}$ m/s
	$V_{-A} - V_B = 4/10$ (2)
	$2 V_A = 4.4 \text{ or } V_A = 2.2 \text{ m/s}$
	Put V_A in eq. (1)
	$2.2 + V_B = 4$
	$V_B = (4 - 2.2) m/s$
	$\therefore V_B = 1.8 \ m/s$
	$\left[\frac{(s_1t_1)}{1m/s^2}\frac{(s_1t_2)}{3m/s^2}\right]$ Let V be the velocity of train after accelerating for a time t_1
	$\therefore V = at_1 = 1 \times t_1 = t_1 (1)$
	And $s_1 = \frac{1}{2}at_1^2 = \frac{1}{2} \times 1 \times t_1^2$ (2)
14	Also $V = 3t_2(for next path)(3)$
14.	$S_2 = vt_2 - \frac{1}{2} \times 3 \times t_1^2 = t_1 t_2 - \frac{3}{2} t_2^2 \dots (4)$
	From equation (1) and (3) $t_1 = 3t_2 \text{ or } t_2 = t_1 / 3$
	$\therefore S_1 + S_2 = 1215 = \frac{(t_1^2)}{2} + \frac{(t_1^2)}{3} - \frac{3}{2} \frac{(t_1^2)}{9} - \frac{2}{3} t_1^2$
	$\therefore t_1 = 42.69s$
	Total time = $t_1 + t_2 = (42.69 + \frac{42.69}{3}) = 56.92s$
15.	To cross the river in shortest time, man has to swim perpendicular to the river flow.
16.	d_{xy} lies in x and y axis at an angle 45^0 each.
	According to Heisenberg's uncertainty principle, if we calculate both velocity and position of an
17.	electron simultaneously then $\Delta x.\Delta P \ge \frac{h}{4\pi}$.
18.	infinite, put the values in formula

	$\Delta x. \Delta P \ge \frac{h}{4\pi}$ if $\Delta x = 0$ $\Delta P \ge \frac{h}{4\pi. \Delta x}$ $\Delta P \ge \frac{h}{0}$ $= \infty$ Any no. divided by zero is infinite.
19.	It gives concept of probability
20.	Uncertainty of moving bullet velocity $\Delta v = \frac{h}{4\pi \times m \times \Delta v} = \frac{6.625 \times 10^{-34}}{4 \times 3.14 \times .01 \times 10^{-5}}$ $= 5.2 \times 10^{-28} \text{ m/sec}$
21.	Position of electron is uncertain, hence cannot be determine exactly by any instrument. Hence assertion is wrong but reason is true according to Heisenberg's Uncertainty principle
22.	From Heisenberg's uncertainty principle $\Delta x_A.\Delta p_A = \Delta x_B.\Delta p_B$ or $\Delta x_A.m_A.\Delta v_A = \Delta x_B.m_B.\Delta v_B$ Where Δx represents uncertainty in position, Δp in momentum and Δv in velocity. On calculation, we get $\Delta x_A:\Delta x_B=1:2$
23.	When electron jumps from higher level to lower level, no of spectral lines produced are given by $= \frac{n(n+1)}{2}$ As n=4, there will be 6 lines. $4 \rightarrow 3, \ 3 \rightarrow 2, \ 2 \rightarrow 1, \ 4 \rightarrow 2, \ 4 \rightarrow 1, \ 3 \rightarrow 1.$
24.	$E\alpha \frac{1}{\lambda}; E_1 = \frac{1}{8000}; E_2 = \frac{1}{16000}$ $\frac{E_1}{E_2} = \frac{16000}{8000} = 2$ $\Rightarrow E_1 = 2E_2$

25.	$\overline{v} = \frac{1}{\lambda} = \frac{v}{c} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ here \overline{v} is wave no.
	Energy of photon with frequency <i>v</i> is given by the relation
	$E = h \upsilon$
26.	$= 6.63 \times 10^{-34} J \ s \times 2.47 \times 10^{15} s^{-1}$
	$= 16.37 \times 10^{-19} J = 1.64 \times 10^{-18} J$
	The metal will show photoelectric effect if the energy of the light falling on it is greater than the work function of the metal.
	Energy of 300 nm light = $E = hv = hc / \lambda$
27.	$= \frac{6.626 \times 10^{-34} \ js^{-1} \times 3 \times 10^8 \ ms^{-1}}{300 \times 10^{-9} \ m} = 6.626 \times 10^{-19} \ J$
	$1.6 \times 10^{-19} J = 1 eV \text{ Therefore } 6.626 \times 10^{-19} J = 4.14 eV$
	The work function of Li and Mg is less than the energy of light falling on it, so they will show photoelectric effect.
	To evaluate wavelength of various H-lines Ritz introduced the following expression,
	$\overline{v} = \frac{1}{\lambda} = \frac{v}{c} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
	$\frac{v}{cR} = \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$
28.	For Paschen series $n_1 = 3$ $n_2 = ?$
	On substituting the values: $\left(\frac{2.34 \times 10^{14}}{3 \times 10^8}\right) \times 109,67758.1m^{-1}$
	$= \left[\frac{1}{3^2} - \frac{1}{n_2^2} \right]$
	Hence $n_2 = 4$
29.	Due to difference in energy levels, the spectrum is different.
30.	For Lyman series, $n_1 = 1$ in Rydberg formula

	$\upsilon = \frac{1}{\lambda} = R \left[1 - \frac{1}{n_2^2} \right]$ $E = h\upsilon = \frac{hc}{\lambda} = hcR \left[1 - \frac{1}{n_2^2} \right]$
	For the line with the lowest energy $n_2 = 2$
31.	We have, $k_1 = \tan 27\theta - \tan \theta \text{Objective Questions Type}$ $[\text{Only one correct answer}]$ $= (\tan 27\theta - \tan 9\theta) + (\tan 9\theta - \tan 3\theta)$ $+ (\tan 3\theta - \tan \theta)$ $+ (\tan 3\theta - \tan \theta)$ Now, $\tan 3\theta - \tan \theta = \frac{\sin 2\theta}{\cos 3\theta \cos \theta} = \frac{2\sin \theta}{\cos 3\theta}$ Similarly, $\tan 9\theta - \tan 3\theta = \frac{2\sin 3\theta}{\cos 9\theta}$ and $\tan 27\theta - \tan 9\theta = \frac{2\sin 9\theta}{\cos 27\theta}$ $\therefore \qquad k_1 = 2 \left[\frac{\sin 9\theta}{\cos 27\theta} + \frac{\sin 3\theta}{\cos 9\theta} + \frac{\sin \theta}{\cos 3\theta} \right] = 2k_2$
32.	$\frac{a+c}{b+d} = \frac{\cos x + \cos (x+2\theta)}{\cos (x+\theta) + \cos (x+3\theta)}$ $= \frac{2\cos (x+\theta)\cos \theta}{2\cos (x+2\theta)\cos \theta} = \frac{b}{c}$
33.	Given that $\sin (x + 80^\circ) = a$ $\therefore \cos (x + 140^\circ) = \cos \{(x + 80^\circ) + 60^\circ\}$ $= \cos (x + 80^\circ) \cos 60^\circ - \sin (x + 80^\circ) \sin 60^\circ$ $= -\sqrt{(1 - a^2)} \cdot \frac{1}{2} - \frac{a\sqrt{3}}{2} = \frac{-\sqrt{(1 - a^2)} - \sqrt{3}a}{2}$ $(\because 20^\circ < x < 60^\circ, \cos (x + 80^\circ) \text{ is } - \text{ve})$
34.	$a = \sin \frac{\pi}{18} \sin \frac{5\pi}{18} \sin \frac{7\pi}{18}$ $= \sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}$ $= \frac{1}{2} [2 \sin 70^{\circ} \sin 10^{\circ}] \sin 50^{\circ}$ $= \frac{1}{2} [\cos 60^{\circ} - \cos 80^{\circ}] \sin 50^{\circ}$

35.	$\sin \frac{\pi}{2n} + \cos \frac{\pi}{2n} = \sqrt{2} \sin \left(\frac{\pi}{4} + \frac{\pi}{2n} \right)$ $\Rightarrow \frac{\sqrt{n}}{2} = \sqrt{2} \sin \left(\frac{\pi}{4} + \frac{\pi}{2n} \right)$ So for $n > 1$, $\frac{\sqrt{n}}{2\sqrt{2}} = \sin \left(\frac{\pi}{4} + \frac{\pi}{2n} \right) > \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ or $n > 4$ Since, $\sin \left(\frac{\pi}{4} + \frac{\pi}{2n} \right) < 1$ for all $n > 2$, we get $\frac{\sqrt{n}}{2\sqrt{2}} < 1 \text{ or } n < 8$ So that $4 < n < 8$. By actual verification we find that only $n = 6$ satisfies the given relation.
36.	Given $2\left(\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) + \sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)\right)$ $= 2 \times 2$ $\sin A + \sin B + \sin C + \sin D = 4$ $\Rightarrow \sin A = \sin B = \sin C = \sin D = 1$ $\Rightarrow \angle A = \angle B = \angle C = \angle D = 90^{\circ}$ Now, $\Sigma \cos \frac{A}{2} \cos \frac{B}{2} = \Sigma \cos 45^{\circ} \cdot \cos 45^{\circ}$ $= 6 \times \left(\frac{1}{\sqrt{2}}\right)^{2} = 3$
37.	Equation first can be written as $x \sin a + y \times 2 \sin a \cos a + z \times \sin a(3 - 4 \sin^2 a)$ $= 2 \times 2 \sin a \cos a \cos 2a$ $\Rightarrow x + 2y \cos a + z (3 + 4 \cos^2 a - 4)$ $= 4 \cos a(2\cos^2 a - 1) \text{ as } \sin a \neq 0$ $\Rightarrow 8 \cos^3 a - 4z \cos^2 a - (2y + 4) \cos a + (z - x) = 0$ $\Rightarrow \cos^3 a - \left(\frac{z}{2}\right) \cos^2 a - \left(\frac{y + 2}{4}\right) \cos a + \left(\frac{z - x}{8}\right) = 0$ Which shows that $\cos a$ is root of the equation $t^3 - \left(\frac{z}{2}\right)t^2 - \left(\frac{y + 2}{4}\right)t + \left(\frac{z - x}{8}\right) = 0$ Similarly, from second and third equation we can verify $\cos b$ and $\cos c$ are the roots of the given equation.
38.	

	T .
39.	
40.	$(1 + \cos \pi/8)(1 + \cos 3\pi/8)(1 + \cos 5\pi/8)(1 + \cos 7\pi/8)$ $= 2\cos^{2} \pi/16 \cdot 2\cos^{2} 3\pi/16 \cdot 2\cos^{2} 5\pi/16 \cdot 2\cos^{2} 7\pi/16$ $= 16(\cos \pi/16\cos 3\pi/16\cos 5\pi/16\cos 7\pi/16)^{2}$ $= (2\cos 7\pi/16\cos \pi/16)^{2}(2\cos 5\pi/16\cos 3\pi/16)^{2}$ $= (\cos \pi/2 + \cos 3\pi/8)^{2}(\cos \pi/2 + \cos \pi/8)^{2}$ $= \cos^{2} 3\pi/8\cos^{2} \pi/8$ $= \frac{1}{4}(\cos \pi/2 + \cos \pi/4)^{2}$ $= \frac{1}{8}$
41.	
42.	$\cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$ $= \operatorname{Re}\left\{e^{\frac{2\pi i}{7}} + e^{\frac{4\pi i}{7}} + e^{\frac{6\pi i}{7}}\right\}$ $= \frac{e^{\frac{2\pi i}{7}} + e^{\frac{4\pi i}{7}} + e^{\frac{6\pi i}{7}} + e^{\frac{-2\pi i}{7}} + e^{\frac{-4\pi i}{7}} + e^{\frac{-6\pi i}{7}}}{2}$ $= \frac{-1 + \left(1 + e^{\frac{2\pi i}{7}} + e^{\frac{4\pi i}{7}} + e^{\frac{6\pi i}{7}} + e^{\frac{-2\pi i}{7}} + e^{\frac{-4\pi i}{7}} + e^{\frac{-6\pi i}{7}}\right)}{2}$ $= \frac{-1 + (\text{sum of seven roots of unity})}{2}$ $= \frac{-1 + 0}{2} = -\frac{1}{2}$

43.	$\alpha \in (\pi, 3\pi/2)$ $\therefore \sin \alpha < 0 \& \cos \alpha < 0, \tan \alpha > 0$ $\sqrt{4 \sin^4 \alpha + \sin^2 2\alpha} + 4 \cos^2 \left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$ $= \sqrt{4 \sin^2 \alpha (\sin^2 \alpha + \cos^2 \alpha)} + 4 \cos^2 \left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$ $= -2 \sin \alpha + 2 \left(1 + \cos \left(\frac{\pi}{2} - \alpha\right)\right)$ $= -2 \sin \alpha + 2 + 2 \sin \alpha = 2$
44.	$\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos \frac{6\pi}{15} \cos \frac{7\pi}{15}$ $= \cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \left(\pi - \frac{8\pi}{15}\right) \cos \frac{3\pi}{15} \cos \frac{5\pi}{15} \cos \frac{6\pi}{15}$ $= -\left(\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15}\right) \cos \frac{\pi}{15} \cos \frac{\pi}{15} \cos \frac{\pi}{15}$ $= -\left(\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15}\right) \cos \frac{\pi}{5} \cos \frac{\pi}{3} \cos \frac{2\pi}{5}$ $= -\left(\frac{\sqrt{5}+1}{4}\right) \left(\frac{1}{2}\right) \left(\frac{\sqrt{5}-1}{4}\right) \left(\cos \left(\frac{\pi}{15}\right) \cos \left(\frac{2\pi}{15}\right)\right)$ $= -\frac{1}{8} \cdot \frac{\sin \left(2^4 \cdot \frac{\pi}{15}\right)}{2^4 \cdot \sin \left(\frac{\pi}{15}\right)}$ $= -\frac{1}{2^7} \cdot \frac{\sin \left(\pi + \frac{\pi}{15}\right)}{\sin \left(\frac{\pi}{15}\right)}$ $= \frac{1}{2^7}$
45.	$\sin\left(\frac{\pi}{14}\right)\sin\left(\frac{3\pi}{14}\right)\sin\left(\frac{5\pi}{14}\right)$ $=\cos\left(\frac{\pi}{2} - \frac{\pi}{14}\right)\cos\left(\frac{\pi}{2} - \frac{3\pi}{14}\right)\cos\left(\frac{\pi}{2} - \frac{5\pi}{14}\right)$ $=\cos\left(\frac{3\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{\pi}{7}\right)$ $=\cos\left(\pi - \frac{4\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{\pi}{7}\right)$ $=-\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{4\pi}{7}\right)$ $=\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{4\pi}{7}\right)$ $\therefore \cos\left(\frac{\pi}{7}\right)\cos\frac{2\pi}{7}\cos\left(\frac{10\pi}{7}\right) - \sin\left(\frac{\pi}{14}\right)\sin\left(\frac{5\pi}{14}\right)$

$$= \cos\left(\frac{\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \cos\left(2\pi - \frac{10\pi}{7}\right)$$

$$+ \cos\left(\frac{\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right)$$

$$= 2\cos\left(\frac{\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right)$$

$$= \frac{2\sin\left(\frac{\pi}{7}\right) \cos\left(\frac{\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right) }{\sin\left(\frac{\pi}{7}\right) }$$

$$= \frac{2\sin\left(\frac{2\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right) }{2\sin\left(\frac{\pi}{7}\right) }$$

$$= \frac{2\sin\left(\frac{4\pi}{7}\right) \cos\left(\frac{4\pi}{7}\right) }{2 \times 2\sin\left(\frac{\pi}{7}\right) }$$

$$= \frac{\sin\left(\frac{8\pi}{7}\right)}{4\sin\left(\frac{\pi}{7}\right)} = \frac{\sin\left(\pi + \frac{\pi}{7}\right)}{4\sin\left(\frac{\pi}{7}\right) }$$

$$= -\frac{\sin\left(\frac{\pi}{7}\right)}{4\sin\left(\frac{\pi}{7}\right)} = -\frac{1}{4}$$