Operations Research (Master's Degree Course)

7.2 Problems on Graphs: Basic Problems

Silvano Martello

DEI "Guglielmo Marconi", Università di Bologna, Italy

This work by is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Based on a work at http://www.editrice-esculapio.com

Shortest Spanning Trees in undirected graphs

- Tree = graph with n vertices which
 - is connected, and does not contain circuits; or, equivalently,
 - is connected, and contains n-1 edges; or, equivalently,
 - $\forall v_i, v_j \exists$ exactly one path from v_i to v_j .
- Given G = (V, E), a subgraph G' = (V, E') $(E' \subseteq E)$ that forms a tree is called a **Spanning Tree (ST)** of G.

• Shortest Spanning Tree (SST) problem: given G=(V,E) weighted and connected, find a ST G'=(V,E') such that $\sum_{e\in E'}w(e)$ is a minimum.

(We assume by simplicity that $w(e) \geq 0 \ \forall \ e \in E$.)

Applications:

- electric circuits (Kirchhoff's laws);
- connect towns through (water, gas, ...) pipelines at minimum cost;
- subproblem to be solved for solving more complex problems.

Shortest Spanning Trees in undirected graphs (cont'd)

• **Theorem** (Prim, 1957) Given G = (V, E), and a partial tree (subgraph forming a tree) (W, E') with $W \subset V, E' \subset E$, let $(\overline{u}, \overline{v})$ be the shortest edge among the edges $(u, v) : u \in W, v \in V \setminus W$. Then among all spanning trees of G that contain E' there exists an optimum one that also contains $(\overline{u}, \overline{v})$.

Proof let SST^* be the shortest ST containing E', and suppose by absurd that it does not contain $(\overline{u},\overline{v})$. SST^* must have a path between \overline{u} ed \overline{v} . Such path must contain an edge (u,v) with $u\in W$ and $v\in V\setminus W$. By removing (u,v) we obtain two separate trees. By adding $(\overline{u},\overline{v})$ we obtain an ST that is shorter than SST^* (contradiction). \square

- ullet It follows that if (W,E') is optimum then $(W\cup\{\overline{v}\},E'\cup\{(\overline{u},\overline{v})\})$ is optimum. lacksquare
- Immediate simple polynomial-time algorithm:

begin

```
W:=\{v_1\},\ E':=\emptyset (comment: empty partial tree, hence optimum); while |W|< n do begin find (\overline{u},\overline{v}) as defined by Prim's Theorem; W:=W\cup\{\overline{v}\},\ E':=E'\cup\{(\overline{u},\overline{v})\} end end.
```

Shortest Spanning Trees in undirected graphs (cont'd)

- Computational effort required by the simple algorithm, as a function of the graph size:
 - -n-1 iterations of the **while** loop;
 - at each iteration, number of operations proportional to |E|, i.e., to n^2 .
 - overall time proportional to n^3 : the algorithm takes $O(n^3)$ time.
- A better implementation (Prim's algorithm):

```
procedure Shortest_Spanning_Tree:
begin
```

```
W:=\{v_1\};\ E':=\emptyset; \\ \textbf{comment}:\ b(v)=\text{vertex}\in W: w(v,b(v))=\min_{r\in W}\{w(v,r)\}; \\ \textbf{for each }v\in V\setminus\{v_1\}\ \textbf{do }b(v):=v_1; \\ \textbf{while }W\neq V\ \textbf{do} \\ \textbf{begin} \\ \text{find }\overline{v}\in V\setminus W: w(\overline{v},b(\overline{v}))=\min_{v\in V\setminus W}\{w(v,b(v))\}; \\ W:=W\cup\{\overline{v}\};\ E':=E'\cup\{(\overline{v},b(\overline{v}))\}; \\ \textbf{for each }v\in V\setminus W\ \textbf{do if }w(v,\overline{v})< w(v,b(v))\ \textbf{then }b(v):=\overline{v} \\ \textbf{end.} \\ \textbf{end.} \\ \textbf{}
```


• n-1 iterations of the **while** loop; at each iteration, number of operations proportional to $|V\setminus W|$, i.e., to n. Overall time proportional to n^2 : the algorithm takes $O(n^2)$ time.

Example:

Data structures for representing graphs and networks

- Also useful for other kinds of data.
- Different data structures if the graph has "many" or "few" edges/arcs.
- **Dense graphs** $(m \approx n^2)$:
 - unweighted: Adjacency matrix $[a_{ij}]$ $(n \times n)$: $a_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \in A \ 0 & \text{otherwise;} \end{cases}$

$$[a_{ij}] = \left[egin{array}{cccc} 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \end{array}
ight]$$

weighted: Weight matrix $[w_{ij}]$ $(n \times n)$: $w_{ij} = \begin{cases} w(v_i, v_j) & \text{if } (v_i, v_j) \in A \in E \end{cases}$, otherwise.

$$\begin{bmatrix} v_1 & 10 & v_2 \\ 0 & 22 & 31 \\ 0 & v_3 \end{bmatrix} = \begin{bmatrix} \infty & 10 & 31 & 22 \\ \infty & \infty & 12 & \infty \\ \infty & \infty & \infty & 9 \\ 6 & \infty & \infty & \infty \end{bmatrix}$$

- $w_{ij} = +\infty/-\infty$ for non-existing edges/arcs in minimization/maximization problems;
- similarly for capacities;
- the matrices are symmetric for undirected graphs
 - \Rightarrow possible use of additional data structures to save half of the space.

Data structures for representing graphs and networks (cont'd)

- Sparse graphs $(m \ll n^2)$:
 - unweighted: forward star: 2 vectors to only store existing arcs:
 - · vector p(n+1) of pointers $(p_1=1, p_{n+1}=m+1)$,
 - · vector u(m): $(u_{p_i}, \ldots, u_{p_{i+1}-1}) = \text{indices of those vertices } v : \exists \text{ arc } (v_i, v).$

$$p' = (1, 4, 5, 6, 7)$$

 $u' = (2, 3, 4, 3, 4, 1)$

- To also easily access entering arcs, backward star:
 - · vector q(n+1) of pointers $(q_1 = 1, q_{n+1} = m+1)$,
 - · vector e(m): $(e_{q_i}, \ldots, e_{q_{i+1}-1}) = \text{indices of those vertices } v : \exists \text{ arc } (v, v_i).$

$$q' = (1, 2, 3, 5, 7)$$

 $e' = (4, | 1, | 1, 2, | 1, 3 |)$

- weighted: forward/backward star "+" vector w(m) (w_k = weight of the arc $\leftrightarrow u_k/e_k$).

$$p' = (1, 4, 5, 6, 7)$$
 $u' = (2, 3, 4, 3, 4, 1)$
 $w' = (10, 31, 22, 12, 9, 6)$

Shortest Path Problems (SPP)

- One of the most important families of problems on graphs.
- Basic problem: Given a weighted directed graph G=(V,A), and a vertex $s\in V$, find, $\forall\ v\in V$, the shortest path from s to v.
- **Property** If the shortest path from v_i to v_k passes through v_j , then it is given by the shortest path from v_i to v_j concatenated with the shortest path from v_j to v_k .

Proof A shorter path from v_i to v_j (or from v_j to v_k) would be used for the shortest path from v_i to v_k . \square

- Arborescence = directed loopless graph in which:
 - one vertex (called root) has no entering arc;
 - · all other vertices have exactly one entering arc:

• Property The shortest paths emanating from s form an arborescence with root in s.

Proof Each vertex but s must have at least an entering arc. If a vertex v had two entering arcs one could eliminate the one belonging to the longest path from s to v. \square

Shortest Path Problems (cont'd)

- A relevant consideration on the costs of arc/edges of graph
- Usually the arc/edge costs are non-negative (e.g., road lengths, traveling costs, ...).
- In some applications we can have arcs/edges with negative cost. For example, the graph can represent economic transaction, in which a transaction can produce a gain or a loss.
- One of the basic algorithms of graph theory (Dijkstra, 1957) assumes that the costs are non-negative:

Basic structure:

- the algorithm starts with the source s (current partial arborescence A),
- and builds a complete arborescence by adding at each iteration a vertex and an arc to A.
- The vertices are added to A by increasing distance from s, i.e.,:
 - * first s;
 - * then the vertex closest to s (shortest arc emanating from s);
 - * then the next closest vertex, and so on.
- The structure of the algorithm is similar to that of the Prim algorithm for the SST;
- we will first describe the algorithm, and then prove its correctness.

Dijkstra's algorithm (Non-negative distance matrix)

```
procedure SHORTEST_PATHS: begin
```

end.

```
S := \{s\}; \, \ell(s) := 0; \, p(s) := \emptyset;
comment: S = \text{set of the vertices already reached by a shortest path (current arborescence);
comment: \ell(v) = \text{length of the shortest } s \text{ to } v \text{ path that only uses vertices } \in S;
comment: p(v) = \text{predecessor of } v \text{ in the path of length } \overline{\ell(v)}:
for each v \in V \setminus \{s\} do
    \ell(v) := w(s, v);
    p(v) := s
enddo:
while S \neq V do
    find \overline{v} \in V \setminus S : \ell(\overline{v}) = \min_{v \in V \setminus S} \{\ell(v)\};
    S := S \cup \{\overline{v}\};
    for each v \in V \setminus S do (comment: update the labels)
        if \ell(\overline{v}) + w(\overline{v}, v) < \ell(v) then
            \ell(v) := \ell(\overline{v}) + w(\overline{v}, v);
                                                                                                    w(\overline{v},v)
            p(v) := \overline{v}
        endif
endwhile
```

Example

The shortest paths are obtained by through the predecessors (backward).

Dijkstra's algorithm (cont'd)

• Theorem If $\ell(\overline{v}) = \min_{v \in V \setminus S} {\{\ell(v)\}}$, then the shortest path from s to \overline{v} has length $\ell(\overline{v})$.

Proof We will show that any path P from s to \overline{v} is at least long $\ell(\overline{v})$. Two possibilities exist:

- (a) if P only passes through vertices of S, the thesis is true by definition of ℓ ;
- (b) otherwise, let h be the first vertex $\not\in S$ on P: P is then given by the concatenation of
- a path from s to h (of length at least $\ell(h) \geq \ell(\overline{v})$), and
- a path from h to \overline{v} (of length ≥ 0). \square

(Note that the last consideration does not hold if the graph has negative cost arcs.)

- The algorithm performs n-1 iterations of the **while** loop. At each iteration the number of operation is proportional to $|V \setminus S|$. The overall time is thus proportional to n^2 : the algorithm takes $O(n^2)$ time.
- If we only need the shortest path from s to a specified vertex t we can halt the execution as soon as t is added to S but the algorithm still takes $O(n^2)$ time. (We are interested in the worst case).
- If we need the shortest path between all pairs of vertices we execute the algorithm n times (with $s=v_1,\,s=v_2,\,...,\,s=v_n$): $O(n^3)$ time.

Shortest Path Problems (cont'd)

- Case where the distance matrix can have negative entries:
- If the graph contains negative length circuits then the problem has no meaning (shortest pats of length $-\infty$, by allowing to pass more than once through the same vertices); else (no negative circuit)

- modified Dijkstra's algorithm: takes $O(n^3)$ time;
- $O(n^3)$ algorithm by Floyd-Warshall (1962): shortest paths among all pairs of vertices;
- both algorithms detect negative length circuits.
- In the course web page: applets for executing the Prim algorithm and the Dijkstra algorithm.

What if we want the longest path?

- SPP algorithms cannot be adapted.
- Solution obtained through branch-and-bound algorithms: O((n-1)!) time in the worst case.
- The problem is \mathcal{NP} -hard.

Critical Path Method (CPM)

- Two main modeling and solution methods to plan and schedule complex projects (same theoretical foundations): PERT and CPM.
- These are among the most widely used graph theory based methodologies.
- Objective: handle the tasks involved in a given project, so as to determine the minimum time needed to complete the project.
- Project = set of activities of various duration, with precedence relationships:
 - CPM = Critical Path Method (deterministic activity times).
 - **PERT** = **P**rogram **E**valuation and **R**eview **T**echnique (probabilistic activity times);
 - independently developed by two different teams:
 - * **CPM:** developed in 1957 by Catalytic Construction Company for scheduling the maintenance of the Du Pont de Nemours plants;
 - * **PERT:** developed in 1958 by Booz, Allen & Hamilton, Inc. for the U.S. Navy Special Projects Office to optimize the U.S. Navy's Polaris nuclear submarine project; thousands of suppliers and subcontracts; results: expected time reduced by two years.
- We will describe the CPM model and algorithm.

- The activities involved in the project are represented through a weighted directed graph.
- Two equivalent approaches:
 - AON = Activities On Nodes;
 - AOA = Activities On Arcs, the one we will adopt;
- arcs $a_h = (v_i, v_j)$ represent activities;
- vertices represent the start and end of activities;
- weight $d(v_i, v_j)$ is the duration of activity (v_i, v_j) ;
- the graph itself represents precedence relationships: to impose $a_i \prec a_j$, either
 - the ending vertex of a_i coincides with the starting vertex of a_j , or
 - \exists a path containing a_i before a_i ;
- dummy activities (of zero duration) can be used to impose precedences;
- the resulting graph must be acyclic.
- Problem:

find the starting time of each activity so that the total duration (makespan) is a minimum.

In the course web page: applet for applying the Critical Path Method.

Example: A \prec D, A \prec E, B \prec D, C \prec E.

Step 1. the graph must have

- a single **starting vertex** (in-degree = 0);
- a single **ending vertex** (out-degree = 0):

Step 2. The vertices are numbered so that $i < j \ \forall \ (v_i, v_j) \in A$ (possible: the graph is acyclic). **procedure Number**:

begin

if necessary, add to G dummy vertices v_0 , v_{n+1} , and the corresponding arcs;

B := A (comment: working copy);

k := 0;

while $k \leq n+1$ do

begin (comment: Γ^- and Γ^+ refer to graph (V, B))

select a non-numbered vertex $v: \Gamma^-(v) = \emptyset$;

assign number k to v;

$$B := B \setminus \{(v, v_i) : v_i \in \Gamma^+(v)\};$$

$$k := k + 1$$

end

end.

Step 3. For each event (vertex) v_k , find:

- $TMIN_k$ earliest time at which the activity can start without violating its precedences;
- (Makespan (length of the longest path from v_0 to v_{n+1}) = $TMIN_{n+1}$.)
- $TMAX_k$ latest time at which the activity must to terminate without delaying the project.

A special algorithm, only valid for acyclic graphs, takes polynomial time $O(n^2)$:

procedure Critical Path:

begin

$$TMIN_0 := 0;$$

for
$$k:=1$$
 to $n+1$ do $TMIN_k:=\max_{i:(v_i,v_k)\in A}\{TMIN_i+d(v_i,v_k)\};$

$$TMAX_{n+1} := TMIN_{n+1};$$

for
$$k:=n$$
 downto 0 do $TMAX_k:=\min_{i:(v_k,v_i)\in A}\{TMAX_i-d(v_k,v_i)\}$

end.

Step 4. For each activity (arc) $a_h = (v_i, v_j)$, compute

- Early Start Time: $EST(a_h) = TMIN_i$;
- Late Start Time: $LST(a_h) = TMAX_j d(v_i, v_j)$;
- Float: $S(a_h) = LST(a_h) EST(a_h)$ (if $LST(a_h) = EST(a_h)$ then a_h is critical);
- ullet Critical path = path from v_0 to v_{n+1} containing only critical activities.

Activity	i	j	$EST(v_i,v_j)$	$LST(v_i,v_j)$	$S(v_i,v_j)$
\overline{A}	1	2	0	0	0
B	3	4	0	2	2
C	5	6	0	2	2
D	4	8	7	7	0
E	6	7	8	10	2

- A and D are critical. Critical path: $\{v_0, v_1, v_2, v_4, v_8, v_9\}$.
- Solution illustrated through a Gantt chart:

