

Estudante:

PROPOSTA | Atividade de Aplicação

Responda as questões apresentadas a seguir, buscando elementos conceituais no Módulo de Aprendizagem para desenvolver sua resposta.

- 1) Construa AFNDs (Autômatos Finitos Não Determinísticos) que reconheçam as linguagens abaixo sobre Σ = {0, 1}:
 - a) L1 = {w | $w \in \Sigma^*$ e w começa por 1 e termina por 0}
 - b) L2 = $\{w00 \mid w \in \Sigma^*\}$
 - c) L3 = $\{x01y \mid x,y \in \Sigma^*\}$
- 2) Construa um AFND que aceita o conjunto de todas as palavras sobre o alfabeto {0,1,...,9} tal que o dígito final já tenha aparecido antes na palavra.
- 3) Construa um AFNɛ (Autômato Finito Não Determinístico com Movimento Vazio) que reconheça números decimais no seguinte formato:
 - a) Um sinal opcional de + ou -.
 - b) Uma sequência de dígitos.
 - c) Um ponto decimal.
 - d) Uma sequência de dígitos.
 - e) A sequência de dígitos b e d podem ser vazias, mas não ao mesmo tempo.
- 4) Converta o seguinte AFND para um AFD:

 $A=(\{p,q,r,s\},\{0,1\},\delta, p, \{s\})$

δ	0	1
р	{p,q}	{p}
q	{r}	{r}
r	{s}	Ø
S	{s}	{s}

5) Considere o seguinte AFNE (autômato finito não-determinístico com movimento vazio):

 $A=(\{p,q,r\},\{a,b,c\},\delta, p, \{r\})$

δ	ε	а	b	С
р	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
r	{q}	{r}	Ø	{p}

- a) Compute o Fecho- ϵ para cada estado no autômato.
- b) A seguir, converta para o AFD correspondente.

- 1) Construa AFNDs (Autômatos Finitos Não Determinísticos) que reconheçam as linguagens abaixo sobre $\Sigma = \{0, 1\}$:
 - a) L1 = $\{w \mid w \in \Sigma^* \text{ e w começa por 1 e termina por 0}\}$
 - b) L2 = $\{w00 \mid w \in \Sigma^*\}$
 - c) L3 = $\{x01y \mid x,y \in \Sigma^*\}$

a)

2) Construa um AFND que aceita o conjunto de todas as palavras sobre o alfabeto {0,1,...,9} tal que o dígito final já tenha aparecido antes na palavra.

- 3) Construa um AFNɛ (Autômato Finito Não Determinístico com Movimento Vazio) que reconheça números decimais no seguinte formato:
 - a) Um sinal opcional de + ou -.
 - b) Uma sequência de dígitos.
 - c) Um ponto decimal.
 - d) Uma sequência de dígitos.
 - e) A sequência de dígitos b e d podem ser vazias, mas não ao mesmo tempo.

4) Converta o seguinte AFND para um AFD: Δ=({n a r s} {0 1} δ n {s})

{s}

A=({p,q,r,s},{U,1},o, p, {s})				
δ	0	1		
p	{p,q}	{p}		
q	{r}	{r}		
r	{s}	Ø		

{s}

S

- a) Compute o Fecho-ε para cada estado no autômato.
- b) A seguir, converta para o AFD correspondente.

a) $\epsilon(p) = \{ p \}$ $\epsilon(q) = \{ p, q \}$ $\epsilon(r) = \{ p, q, r \}$

