संबंध एवं फलन (Relations and Functions)

12081CH01

❖There is no permanent place in the world for ugly mathematics It may be very hard to define mathematical beauty but that is just as true of beauty of any kind, we may not know quite what we mean by a beautiful poem, but that does not prevent us from recognising one when we read it. — G. H. Hardy ❖

1.1 भूमिका (Introduction)

स्मरण कीजिए कि कक्षा XI में, संबंध एवं फलन, प्रांत, सहप्रांत तथा परिसर आदि की अवधारणाओं का, विभिन्न प्रकार के वास्तविक मानीय फलनों और उनके आलेखों सिहत परिचय कराया जा चुका है। गणित में शब्द 'संबंध (Relation)' की सकंल्पना को अंग्रेजी भाषा में इस शब्द के अर्थ से लिया गया है, जिसके अनुसार दो वस्तुएँ परस्पर संबंधित होती है, यदि उनके बीच एक अभिज्ञेय (Recognisable) कड़ी हो। मान लीजिए कि A, किसी स्कूल की कक्षा XII के विद्यार्थियों का समुच्चय हैं। अब समुच्चय A से समुच्चय B तक के संबंधों के कुछ उदाहरण इस प्रकार हैं

- (i) $\{(a, b) \in A \times B : a, b \text{ an } \text{भाई } \text{ह}\},$
- (ii) $\{(a, b) \in A \times B : a, b \text{ को बहन है}\},$
- (iii) $\{(a,b) \in A \times B: a \text{ को आयु } b \text{ को आयु } t \text{ अधिक } t \},$
- (iv) $\{(a, b) \in A \times B:$ पिछली अंतिम परीक्षा में a द्वारा प्राप्त पूर्णांक b द्वारा प्राप्त पूर्णांक से कम है $\}$,
- (v) $\{(a,b) \in A \times B : a \text{ उसी जगह रहता है जहाँ } b \text{ रहता है} \}$. तथापि A से B तक के किसी संबंध R को अमूर्तरूप (Abstracting) से हम गणित में $A \times B$ के एक स्वेच्छ (Arbitrary) उपसम्च्य की तरह परिभाषित करते हैं।

Lejeune Dirichlet (1805-1859)

यदि $(a,b) \in \mathbb{R}$, तो हम कहते हैं कि संबंध \mathbb{R} के अंतर्गत a,b से संबंधित है और हम इसे $a \mathbb{R} b$ लिखते हैं। सामान्यत:, यदि $(a,b) \in \mathbb{R}$, तो हम इस बात की चिंता नहीं करते हैं कि a तथा b के बीच कोई अभिज्ञेय कड़ी है अथवा नहीं है। जैसा कि कक्षा XI में देख चुके हैं, फलन एक विशेष प्रकार के संबंध होता हैं।

इस अध्याय में, हम विभिन्न प्रकार के संबंधों एवं फलनों, फलनों के संयोजन (composition), व्युत्क्रमणीय (Invertible) फलनों और द्विआधारी संक्रियाओं का अध्ययन करेंगे।

1.2 संबंधों के प्रकार (Types of Relations)

इस अनुच्छेद में हम विभिन्न प्रकार के संबंधों का अध्ययन करेंगे। हमें ज्ञात है कि किसी समुच्चय A में संबंध, $A \times A$ का एक उपसमुच्चय होता है। अत: रिक्त समुच्चय $\phi \subset A \times A$ तथा $A \times A$ स्वयं, दो अन्त्य संबंध हैं। स्पष्टीकरण हेतु, $R = \{(a,b): a-b=10\}$ द्वारा प्रदत्त समुच्चय $A = \{1,2,3,4\}$ पर परिभाषित एक संबंध R पर विचार कीजिए। यह एक रिक्त समुच्चय है, क्योंकि ऐसा कोई भी युग्म (pair) नहीं है जो प्रतिबंध a-b=10 को संतुष्ट करता है। इसी प्रकार $R' = \{(a,b): |a-b| \ge 0\}$, संपूर्ण समुच्चय $A \times A$ के तुल्य है, क्योंकि $A \times A$ के सभी युग्म $(a,b), |a-b| \ge 0$ को संतुष्ट करते हैं। यह दोनों अन्त्य के उदाहरण हमें निम्नलिखित परिभाषाओं के लिए प्रेरित करते हैं।

परिभाषा 1 समुच्चय A पर परिभाषित संबंध R एक **रिक्त संबंध** कहलाता है, यदि A का कोई भी अवयव A के किसी भी अवयव से संबंधित नहीं है, अर्थात् $R = \emptyset \subset A \times A$.

परिभाषा 2 समुच्चय A पर परिभाषित संबंध R, एक **सार्वित्रिक (universal) संबंध** कहलाता है, यदि A का प्रत्येक अवयव A के सभी अवयवों से संबंधित है, अर्थात् $R = A \times A$.

रिक्त संबंध तथा सार्वित्रिक संबंध को कभी-कभी तुच्छ (trivial) संबंध भी कहते हैं।

उदाहरण 1 मान लीजिए कि A किसी बालकों के स्कूल के सभी विद्यार्थियों का समुच्चय है। दर्शाइए कि $R = \{(a, b) : a, b$ की बहन है $\}$ द्वारा प्रदत्त संबंध एक रिक्त संबंध है तथा $R' = \{(a, b) : a$ तथा b की ऊँचाईयों का अंतर 3 मीटर से कम है $\}$ द्वारा प्रदत्त संबंध एक सार्वित्रिक संबंध है।

हल प्रश्नानुसार, क्योंकि स्कूल बालकों का है, अतएव स्कूल का कोई भी विद्यार्थी, स्कूल के किसी भी विद्यार्थी की बहन नहीं हो सकता है। अत: $R = \phi$, जिससे प्रदर्शित होता है कि R रिक्त संबंध है। यह भी स्पष्ट है कि किन्हीं भी दो विद्यार्थियों की ऊँचाइयों का अंतर 3 मीटर से कम होना ही चाहिए। इससे प्रकट होता है कि $R' = A \times A$ सार्वित्रिक संबंध है।

टिप्पणी कक्षा XI में विद्यार्थीगण सीख चुके हैं कि किसी संबंध को दो प्रकार से निरूपित किया जा सकता है, नामत: रोस्टर विधि तथा समुच्चय निर्माण विधि। तथापि बहुत से लेखकों द्वारा समुच्चय $\{1,2,3,4\}$ पर परिभाषित संबंध $\mathbf{R} = \{(a,b): b=a+1\}$ को $a\,\mathbf{R}\,b$ द्वारा भी निरूपित किया जाता है, यदि और केवल यदि b=a+1 हो। जब कभी सुविधाजनक होगा, हम भी इस संकेतन (notation) का प्रयोग करेंगे।

यदि $(a,b) \in \mathbb{R}$, तो हम कहते हैं कि a,b से संबंधित है' और इस बात को हम $a \in \mathbb{R}$ द्वारा प्रकट करते हैं।

एक अत्यन्त महत्वपूर्ण संबंध, जिसकी गणित में एक सार्थक (significant) भूमिका है, तुल्यता संबंध (Equivalence Relation) कहलाता है। तुल्यता संबंध का अध्ययन करने के लिए हम पहले तीन प्रकार के संबंधों, नामत: स्वतुल्य (Reflexive), समित (Symmetric) तथा संक्रामक (Transitive) संबंधों पर विचार करते हैं।

परिभाषा 3 समुच्चय A पर परिभाषित संबंध R;

- (i) स्वतुल्य (reflexive) कहलाता है, यदि प्रत्येक $a \in A$ के लिए $(a, a) \in R$,
- (ii) समिमत (symmetric) कहलाता है, यदि समस्त $a_1, a_2 \in A$ के लिए $(a_1, a_2) \in R$ से $(a_2, a_1) \in R$ प्राप्त हो।
- (iii) संक्रामक (**transitive**) कहलाता है, यदि समस्त, $a_1, a_2, a_3 \in A$ के लिए $(a_1, a_2) \in R$ तथा $(a_2, a_3) \in R$ से $(a_1, a_3) \in R$ प्राप्त हो।

परिभाषा 4 A पर परिभाषित संबंध R एक तुल्यता संबंध कहलाता है, यदि R स्वतुल्य, समित तथा संक्रामक है।

उदाहरण 2 मान लीजिए कि T किसी समतल में स्थित समस्त त्रिभुजों का एक समुच्चय है। समुच्चय T में $R = \{(T_1, T_2) : T_1, T_2$ के सर्वागंसम है $\}$ एक संबंध है। सिद्ध कीजिए कि R एक तुल्यता संबंध है।

हल संबंध R स्वतुल्य है, क्योंकि प्रत्येक त्रिभुज स्वयं के सवार्गसम होता है। पुनः $(T_1,T_2)\in R\Rightarrow T_1$, T_2 के सर्वागंसम है $\Rightarrow T_2$, T_1 के सर्वागंसम है $\Rightarrow (T_2,T_1)\in R$. अतः संबंध R समित है। इसके अतिरिक्त (T_1,T_2) , $(T_2,T_3)\in R\Rightarrow T_1$, T_2 के सर्वागंसम है तथा T_2 , T_3 के सर्वागंसम है $\Rightarrow T_1$, T_3 के सर्वागंसम है $\Rightarrow (T_1,T_3)\in R$. अतः संबंध R संक्रामक है। इस प्रकार R एक तुल्यता संबंध है।

हल R स्वतुल्य नहीं है, क्योंकि कोई रेखा L_1 अपने आप पर लंब नहीं हो सकती है, अर्थात् $(L_1,L_1) \notin R$. R सममित है, क्योंकि $(L_1,L_2) \in R$

 \Rightarrow $L_{_{1}}$, $L_{_{2}}$ पर लंब है

 \Rightarrow L_2 , L_1 पर लंब है

 \Rightarrow $(L_2, L_1) \in R$

R संक्रामक नहीं है। निश्चय ही, यदि $L_{_1},L_{_2}$ पर लंब है तथा $L_{_2}$, $L_{_3}$ पर लंब है, तो $L_{_1}$, $L_{_3}$ पर कभी भी लंब नहीं हो सकती है। वास्तव में ऐसी दशा में $L_{_1}$, $L_{_3}$ के समान्तर होगी। अर्थात्, $(L_{_1},L_{_2})\in R$, $(L_{_2},L_{_3})\in R$ परंतु $(L_{_1},L_{_2})\notin R$

उदाहरण 4 सिद्ध कीजिए कि समुच्चय $\{1,2,3\}$ में $R = \{(1,1),(2,2),$ $(3,3),(1,2),(2,3)\}$ द्वारा प्रदत्त संबंध स्वतुल्य है, परंतु न तो समित है और न संक्रामक है।

हल R स्वतुल्य है क्योंकि (1,1),(2,2) और (3,3),R के अवयव हैं। R समित नहीं है, क्योंकि $(1,2) \in R$ किंतु $(2,1) \notin R$. इसी प्रकार R संक्रामक नहीं है, क्योंकि $(1,2) \in R$ तथा $(2,3) \in R$ परंतु $(1,3) \notin R$

उदाहरण 5 सिद्ध कीजिए कि पूर्णांकों के समुच्चय \mathbb{Z} में $\mathbb{R} = \{(a, b) : \text{संख्या } 2, (a - b) को विभाजित करती है} द्वारा प्रदत्त संबंध एक तुल्यता संबंध है।$

हल R स्वतुल्य है, क्योंकि समस्त $a \in \mathbb{Z}$ के लिए 2, (a-a) को विभाजित करता है। अत: $(a,a) \in \mathbb{R}$. पुन:, यदि $(a,b) \in \mathbb{R}$, तो 2, a-b को विभाजित करता है। अतएव b-a को भी 2 विभाजित करता है। अत: $(b,a) \in \mathbb{R}$, जिससे सिद्ध होता है कि R समित है। इसी प्रकार, यदि $(a,b) \in \mathbb{R}$ तथा $(b,c) \in \mathbb{R}$, तो a-b तथा b-c संख्या 2 से भाज्य है। अब, a-c=(a-b)+(b-c) सम (even) है (क्यों?)। अत: (a-c) भी 2 से भाज्य है। इससे सिद्ध होता है कि R संक्रामक है। अत: समुच्चय \mathbb{Z} में R एक तुल्यता संबंध है।

उदाहरण 5 में, नोट कीजिए कि सभी सम पूर्णांक शून्य से संबंधित हैं, क्योंकि $(0,\pm 2)$, $(0,\pm 4)$, ...आदि R में हैं और कोई भी विषम पूर्णांक 0 से संबंधित नहीं है, क्योंकि $(0,\pm 1)$, $(0,\pm 3)$, ...आदि R में नहीं हैं। इसी प्रकार सभी विषम पूर्णांक 1 से संबंधित हैं और कोई भी सम पूर्णांक 1 से संबंधित नहीं है। अतएव, समस्त सम पूर्णांकों का समुच्चय E तथा समस्त विषम पूर्णांकों का समुच्चय E समुच्चय E के उप समुच्चय हैं, जो निम्नलिखित प्रतिबंधों को संतुष्ट करते हैं।

- (i) E के समस्त अवयव एक दूसरे से संबंधित हैं तथा O के समस्त अवयव एक दूसरे से संबंधित हैं।
- (ii) E का कोई भी अवयव O के किसी भी अवयव से संबंधित नहीं है और विलोमत: O का कोई भी अवयव E के किसी भी अवयव से संबंधित नहीं है।
- (iii) E तथा O असंयुक्त है और $Z = E \cup O$ है।

उपसमुच्चय E, शून्य को अंतर्विष्ट (contain) करने वाला तुल्यता-वर्ग (Equivalence Class) कहलाता है और जिसे प्रतीक [0] से निरूपित करते हैं। इसी प्रकार O, I को अंतर्विष्ट करने वाला तुल्यता-वर्ग है, जिसे [1] द्वारा निरूपित करते हैं। नोट कीजिए कि $[0] \neq [1]$, [0] = [2r] और

[1]= [2r+1], $r \in \mathbb{Z}$. वास्तव में, जो कुछ हमने ऊपर देखा है, वह किसी भी समुच्चय X में एक स्वेच्छ तुल्यता संबंध R के लिए सत्य होता है। किसी प्रदत्त स्वेच्छ समुच्चय X में प्रदत्त एक स्वेच्छ (arbitrary) तुल्यता संबंध R, X को परस्पर असंयुक्त उपसमुच्चयों A_i में विभाजित कर देता है, जिन्हें X का विभाजन (Partition) कहते हैं ओर जो निम्नलिखित प्रतिबंधों को संतुष्ट करते हैं:

- (i) समस्त i के लिए A_i के सभी अवयव एक दूसरे से संबंधित होते हैं।
- (ii) A_i का कोई भी अवयव, A_i के किसी भी अवयव से संबंधित नहीं होता है, जहाँ $i \neq j$
- (iii) $\cup A_j = X$ तथा $A_i \cap A_j = \phi, i \neq j$

उपसमुच्चय A_i तुल्यता-वर्ग कहलाते हैं। इस स्थिति का रोचक पक्ष यह है कि हम विपरीत क्रिया भी कर सकते हैं। उदाहरण के लिए Z के उन उपविभाजनों पर विचार कीजिए, जो Z के ऐसे तीन परस्पर असंयुक्त उपसमुच्चयों A_i , A_j तथा A_j द्वारा प्रदत्त हैं, जिनका सिम्मलन (Union) Z है,

Z में एक संबंध $R = \{(a,b): 3, a-b$ को विभाजित करता है} परिभाषित कीजिए। उदाहरण 5 में प्रयुक्त तर्क के अनुसार हम सिद्ध कर सकते हैं कि R एक तुल्यता संबंध हैं। इसके अतिरिक्त A_1 , Z के उन सभी पूर्णांकों के समुच्चय के बराबर है, जो शून्य से संबंधित हैं, A_2 , Z के उन सभी पूर्णांकों के समुच्चय के बराबर है, जो 1 से संबंधित हैं और A_3 , Z के उन सभी पूर्णांकों के समुच्चय बराबर है, जो 2 से संबंधित हैं। अत: $A_1 = [0]$, $A_2 = [1]$ और $A_3 = [2]$. वास्तव में $A_1 = [3r]$, $A_2 = [3r+1]$ और $A_3 = [3r+2]$, जहाँ $r \in Z$.

उदाहरण 6 मान लीजिए कि समुच्चय $A = \{1, 2, 3, 4, 5, 6, 7\}$ में $R = \{(a, b) : a$ तथा b दोनों ही या तो विषम हैं या सम हैं $\}$ द्वारा परिभाषित एक संबंध है। सिद्ध कीजिए कि R एक तुल्यता संबंध है। साथ ही सिद्ध कीजिए कि उपसमुच्चय $\{1, 3, 5, 7\}$ के सभी अवयव एक दूसरे से संबंधित है, और उपसमुच्चय $\{2, 4, 6\}$ के सभी अवयव एक दूसरे से संबंधित है, परंतु उपसमुच्चय $\{1, 3, 5, 7\}$ का कोई भी अवयव उपसमुच्चय $\{2, 4, 6\}$ के किसी भी अवयव से संबंधित नहीं है।

हल्ल A का प्रदत्त कोई अवयव a या तो विषम है या सम है, अतएव $(a,a) \in \mathbb{R}$. इसके अतिरिक्त $(a,b) \in \mathbb{R} \Rightarrow a$ तथा b दोनों ही, या तो विषम हैं या सम हैं $\Rightarrow (b,a) \in \mathbb{R}$. इसी प्रकार $(a,b) \in \mathbb{R}$ तथा $(b,c) \in \mathbb{R} \Rightarrow$ अवयव a,b,c, सभी या तो विषम हैं या सम हैं $\Rightarrow (a,c) \in \mathbb{R}$. अत: \mathbb{R} एक तुल्यता संबंध है। पुन:, $\{1,3,5,7\}$ के सभी अवयव एक दूसरे से संबंधित हैं, क्योंकि इस उपसमुच्चय के सभी अवयव विषम हैं। इसी प्रकार $\{2,4,6,\}$ के सभी अवयव एक दूसरे से संबंधित हैं, क्योंकि हैं, क्योंकि ये सभी सम हैं। साथ ही उपसमुच्चय $\{1,3,5,7\}$ का कोई भी अवयव $\{2,4,6\}$ के किसी भी अवयव से संबंधित नहीं हो सकता है, क्योंकि $\{1,3,5,7\}$ के अवयव विषम हैं, जब कि $\{2,4,6\}$, के अवयव सम हैं।

प्रश्नावली 1.1

- 1. निर्धारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं:
 - (i) समुच्चय $A = \{1, 2, 3, ..., 13, 14\}$ में संबंध R, इस प्रकार परिभाषित है कि $R = \{(x, y): 3x y = 0\}$
 - (ii) प्राकृत संख्याओं के समुच्चय \mathbf{N} में $\mathbf{R} = \{(x,y): y = x + 5 \text{ तथा } x < 4\}$ द्वारा परिभाषित संबंध \mathbf{R} .
 - (iii) समुच्चय $A = \{1, 2, 3, 4, 5, 6\}$ में $R = \{(x, y) : y$ भाज्य है x से $\}$ द्वारा परिभाषित संबंध Rहै।
 - (iv) समस्त पूर्णांकों के समुच्चय \mathbb{Z} में $\mathbb{R} = \{(x, y) : x y \text{ एक पूर्णांक है} \}$ द्वारा परिभाषित संबंध \mathbb{R} .
 - (v) किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R
 - (a) $R = \{(x, y) : x \text{ तथा } y \text{ एक } \text{ ही } \text{ स्थान } \text{ पर } \text{ कार्य } \text{ करते } \text{ है}\}$
 - (b) $R = \{(x, y) : x \ तथा \ y \ एक \ ही मोहल्ले में रहते हैं \}$

 - (d) $R = \{(x, y) : x, y \text{ and } \forall r \in \mathbb{R} \}$
 - (e) $R = \{(x, y) : x, y \Rightarrow \exists f \text{ (In } \vec{\xi}\}$
- 2. सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में $R = \{(a, b) : a \le b^2\}$, द्वारा परिभाषित संबंध R, न तो स्वतुल्य है, न समिमत हैं और न ही संक्रामक है।
- **3.** जाँच कीजिए कि क्या समुच्चय $\{1, 2, 3, 4, 5, 6\}$ में $R = \{(a, b) : b = a + 1\}$ द्वारा परिभाषित संबंध R स्वतुल्य, समिमत या संक्रामक है।
- **4.** सिद्ध कीजिए कि **R** में $R = \{(a, b) : a \leq b\}$, द्वारा परिभाषित संबंध R स्वतुल्य तथा संक्रामक है किंतु समित नहीं है।
- 5. जाँच कीजिए कि क्या \mathbf{R} में $\mathbf{R} = \{(a, b) : a \leq b^3\}$ द्वारा परिभाषित संबंध स्वतुल्य, समित अथवा संक्रामक है?
- **6.** सिद्ध कीजिए कि समुच्चय $\{1, 2, 3\}$ में $R = \{(1, 2), (2, 1)\}$ द्वारा प्रदत्त संबंध R समिमत है किंतु न तो स्वतृल्य है और न संक्रामक है।
- 7. सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में $R = \{(x, y) : x$ तथा y में पेजों की संख्या समान है $\}$ द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है।

- 8. सिद्ध कीजिए कि $A = \{1, 2, 3, 4, 5\}$ में, $R = \{(a, b) : |a b|$ सम है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। प्रमाणित कीजिए कि $\{1, 3, 5\}$ के सभी अवयव एक दूसरे से संबंधित हैं और समुच्चय $\{2, 4\}$ के सभी अवयव एक दूसरे से संबंधित हैं परंतु $\{1, 3, 5\}$ का कोई भी अवयव $\{2, 4\}$ के किसी अवयव से संबंधित नहीं है।
- सिद्ध किजिए कि समुच्चय A = {x ∈ Z : 0 ≤x ≤12}, में दिए गए निम्निलिखित संबंधों R में से प्रत्येक एक तुल्यता संबंध है:

 - (ii) $R = \{(a, b) : a = b\},\$

प्रत्येक दशा में 1 से संबंधित अवयवों को ज्ञात कीजिए।

- 10. ऐसे संबंध का उदाहरण दीजिए, जो
 - (i) सममित हो परंतु न तो स्वतुल्य हो और न संक्रामक हो।
 - (ii) संक्रामक हो परंतु न तो स्वतुल्य हो और न सममित हो।
 - (iii) स्वतुल्य तथा सममित हो किंतु संक्रामक न हो।
 - (iv) स्वतुल्य तथा संक्रामक हो किंतु सममित न हो।
 - (v) समित तथा संक्रामक हो किंतु स्वतुल्य न हो।
- 11. सिद्ध कीजिए कि किसी समतल में स्थित बिंदुओं के समुच्चय में, $R = \{(P,Q) : बिंदु P की मूल बिंदु से दूरी, बिंदु Q की मूल बिंदु से दूरी के समान है} द्वारा प्रदत्त संबंध <math>R$ एक तुल्यता संबंध है। पुन: सिद्ध कीजिए कि बिंदु $P \neq (0,0)$ से संबंधित सभी बिंदुओं का समुच्चय P से होकर जाने वाले एक ऐसे वृत्त को निरूपित करता है, जिसका केंद्र मूलबिंदु पर है।
- 12. सिद्ध कीजिए कि समस्त त्रिभुजों के समुच्चय A में, $R = \{(T_1, T_2): T_1, T_2$ के समरूप है} द्वारा परिभाषित संबंध R एक तुल्यता संबंध है। भुजाओं 3, 4, 5 वाले समकोण त्रिभुज T_1 , भुजाओं 5, 12, 13 वाले समकोण त्रिभुज T_2 तथा भुजाओं 6, 8, 10 वाले समकोण त्रिभुज T_3 पर विचार कीजिए। T_1 , T_2 और T_3 में से कौन से त्रिभुज परस्पर संबंधित हैं?
- 13. सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय A में, $R = \{(P_1, P_2) : P_1$ तथा P_2 की भुजाओं की संख्या समान है}प्रकार से परिभाषित संबंध R एक तुल्यता संबंध है। 3, 4, और 5 लंबाई की भुजाओं वाले समकोण त्रिभुज से संबंधित समुच्चय A के सभी अवयवों का समुच्चय ज्ञात कीजिए।
- 14. मान लीजिए कि XY-तल में स्थित समस्त रेखाओं का समुच्चय L है और L में $R = \{(L_1, L_2) : L_1$ समान्तर है L_2 के $\}$ द्वारा परिभाषित संबंध R है। सिद्ध कीजिए कि R एक तुल्यता संबंध है। रेखा y = 2x + 4 से संबंधित समस्त रेखाओं का समुच्चय ज्ञात कीजिए।

- **15.** मान लीजिए कि समुच्चय $\{1, 2, 3, 4\}$ में, $R = \{(1, 2), (2, 2), (1, 1), (4,4), (1,3), (3,3), (3,2)\}$ द्वारा परिभाषित संबंध R है। निम्नलिखित में से सही उत्तर चुनिए।
 - (A) R स्वतुल्य तथा समित है किंतु संक्रामक नहीं है।
 - (B) R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
 - (C) R सममित तथा संक्रामक है किंतु स्वतुल्य नहीं है।
 - (D) R एक तुल्यता संबंध है।
- **16.** मान लीजिए कि समुच्चय \mathbb{N} में, $R = \{(a, b) : a = b 2, b > 6\}$ द्वारा प्रदत्त संबंध \mathbb{R} है। निम्नलिखित में से सही उत्तर चुनिए:
 - (A) $(2,4) \in R$ (B) $(3,8) \in R$ (C) $(6,8) \in R$ (D) $(8,7) \in R$

1.3 फलनों के प्रकार (Types of Functions)

फलनों की अवधारणा, कुछ विशेष फलन जैसे तत्समक फलन, अचर फलन, बहुपद फलन, परिमेय फलन, मापांक फलन, चिहन फलन आदि का वर्णन उनके आलेखों सहित कक्षा XI में किया जा चुका है।

दो फलनों के योग, अंतर, गुणा तथा भाग का भी अध्ययन किया जा चुका है। क्योंकि फलन की संकल्पना गणित तथा अध्ययन की अन्य शाखाओं (Disciplines) में सर्वाधिक महत्वपूर्ण है, इसलिए हम फलन के बारे में अपना अध्ययन वहाँ से आगे बढ़ाना चाहते हैं, जहाँ इसे पहले समाप्त किया था। इस अनुच्छेद में, हम विभिन्न प्रकार के फलनों का अध्ययन करेंगे।

निम्नलिखित आकृतियों द्वारा दर्शाए गए फलन f_1, f_2, f_3 तथा f_4 पर विचार कीजिए।

आकृति 1.2 में हम देखते हैं कि X_1 के भिन्न (distinct) अवयवों के, फलन f_1 के अंतर्गत, प्रतिबिंब भी भिन्न हैं, किंतु f_2 के अंतर्गत दो भिन्न अवयवों 1 तथा 2 के प्रतिबिंब एक ही हैं नामतः b है। पुनः X_2 में कुछ ऐसे अवयव है जैसे e तथा f जो f_1 के अंतर्गत X_1 के किसी भी अवयव के प्रतिबिंब नहीं हैं, जबिक f_3 के अंतर्गत X_3 के सभी अवयव X_1 के किसी न किसी अवयव के प्रतिबिंब हैं।

उपर्युक्त परिचर्चा से हमें निम्नलिखित परिभाषाएँ प्राप्त होती हैं।

परिभाषा 5 एक फलन $f\colon X\to Y$ एकैकी (one-one) अथवा एकैक (injective) फलन कहलाता है, यदि f के अंतर्गत X के भिन्न अवयवों के प्रतिबिंब भी भिन्न होते हैं, अर्थात् प्रत्येक $x_1,x_2\in X$, के लिए $f(x_1)=f(x_2)$ का तात्पर्य है कि $x_1=x_2$, अन्यथा f एक बहुएक (many-one) फलन कहलाता है।

आकृति 1.2 (i) में फलन f_1 एकैकी फलन है तथा आकृति 1.2 (ii) में f_2 एक बहुएक फलन है।

आकृति 1.2

परिभाषा 6 फलन $f: X \to Y$ आच्छादक (onto) अथवा आच्छादी (surjective) कहलाता है, यदि f के अंतर्गत Y का प्रत्येक अवयव, X के किसी न किसी अवयव का प्रतिबिंब होता है, अर्थात् प्रत्येक $y \in Y$, के लिए, X में एक ऐसे अवयव x का अस्तित्व है कि f(x) = y.

आकृति 1.2 (iii) में, फलन f_3 आच्छादक है तथा आकृति 1.2 (i) में, फलन f_1 आच्छादक नहीं है, क्योंकि X_2 के अवयव e, तथा f, f_1 के अंतर्गत X_1 के किसी भी अवयव के प्रतिबिंब नहीं हैं।

टिप्पणी $f: X \rightarrow Y$ एक आच्छादक फलन है, यदि और केवल यदि f का परिसर (range)= Y. **परिभाषा 7** एक फलन $f: X \rightarrow Y$ एक एकैकी तथा आच्छादक (one-one and onto) अथवा एकैकी आच्छादी (**bijective**) फलन कहलाता है, यदि f एकैकी तथा आच्छादक दोनों ही होता है।

आकृति 1.2 (iv) में, फलन $f_{\scriptscriptstyle 4}$ एक एकैकी तथा आच्छादी फलन है।

उदाहरण 7 मान लीजिए कि कक्षा X के सभी 50 विद्यार्थियों का समुच्चय A है। मान लीजिए $f: A \rightarrow N$, f(x) = विद्यार्थी x का रोल नंबर, द्वारा परिभाषित एक फलन है। सिद्ध कीजिए कि f एकैकी है किंतु आच्छादक नहीं है।

हल कक्षा के दो भिन्न-भिन्न विद्यार्थियों के रोल नंबर समान नहीं हो सकते हैं। अतएव f एकैकी है। व्यापकता की बिना क्षति किए हम मान सकते हैं कि विद्यार्थियों के रोल नंबर 1 से 50 तक हैं। इसका तात्पर्य यह हुआ कि \mathbb{N} का अवयव 51, कक्षा के किसी भी विद्यार्थी का रोल नंबर नहीं है, अतएव f के अंतर्गत 51, A के किसी भी अवयव का प्रतिबिंब नहीं है। अत: f आच्छादक नहीं है। उदाहरण 8 सिद्ध कीजिए कि f(x) = 2x द्वारा प्रदत्त फलन $f: \mathbb{N} \to \mathbb{N}$, एकैकी है किंतु आच्छादक नहीं है।

हल फलन f एकैकी है, क्योंकि $f(x_1) = f(x_2) \Rightarrow 2x_1 = 2x_2 \Rightarrow x_1 = x_2$. पुन:, f आच्छदक नहीं है, क्योंकि $1 \in \mathbb{N}$, के लिए \mathbb{N} में ऐसे किसी x का अस्तित्व नहीं है तािक f(x) = 2x = 1 हो। उदाहरण g सिद्ध कीिजए कि f(x) = 2x द्वारा प्रदत्त फलन $f: \mathbb{R} \to \mathbb{R}$, एकैकी तथा आच्छादक है। हल f एकैकी है, क्योंकि $f(x_1) = f(x_2) \Rightarrow 2x_1 = 2x_2 \Rightarrow x_1 = x_2$. साथ ही, \mathbb{R} में प्रदत्त किसी भी वास्तिवक संख्या y के लिए \mathbb{R} में $\frac{y}{2}$ का अस्तित्व है, जहाँ $f(\frac{y}{2}) = 2 \cdot (\frac{y}{2}) = y$ है। अतः f आच्छादक भी है।

आकृति 1.3

उदाहरण 10 सिद्ध कि जिए कि f(1) = f(2) = 1 तथा x > 2 के लिए f(x) = x - 1 द्वारा प्रदत्त फलन $f: \mathbb{N} \to \mathbb{N}$, आच्छादक तो है किंतु एकैकी नहीं है।

हल f एकैकी नहीं है, क्योंकि f(1) = f(2) = 1, परंतु f आच्छादक है, क्योंकि किसी प्रदत्त $y \in \mathbb{N}, y \neq 1$, के लिए, हम x को y+1 चुन लेते हैं, ताकि f(y+1) = y+1-1 = y साथ ही $1 \in \mathbb{N}$ के लिए f(1) = 1 है।

उदाहरण 11 सिद्ध कीजिए कि $f(x) = x^2$ द्वारा परिभाषित फलन $f: \mathbf{R} \to \mathbf{R}$, न तो एकैकी है और न आच्छादक है।

हल क्योंकि f(-1) = 1 = f(1), इसलिए f एकैकी नहीं है। पुन: सहप्रांत \mathbf{R} का अवयव -2, प्रांत \mathbf{R} के किसी भी अवयव x का प्रतिबिंब नहीं है (क्यों?)। अत: f आच्छादक नहीं है।

उदाहरण 12 सिद्ध कीजिए कि नीचे परिभाषित फलन $f: \mathbb{N} \to \mathbb{N}$, एकैकी तथा आच्छादक दोनों ही है

$$f(x) = \begin{cases} x+1, \, \text{यद} & x \text{ विषम } \vec{\mathsf{R}} \\ x-1, \, \text{यद} & x \text{ सम } \vec{\mathsf{R}} \end{cases}$$

हल मान लीजिए $f(x_1) = f(x_2)$ है। नोट कीजिए कि यदि x_1 विषम है तथा x_2 सम है, तो $x_1 + 1$ $=x_{2}-1$, अर्थात् $x_{2}-x_{1}=2$ जो असम्भव है। इस प्रकार x_{1} के सम तथा x_{2} के विषम होने की भी संभावना नहीं है। इसलिए x_1 तथा x_2 दोनों ही या तो विषम होंगे या सम होंगे। मान लीजिए कि x_1 तथा x_2 दोनों विषम हैं, तो $f(x_1) = f(x_2) \Rightarrow x_1 + 1 = x_2 + 1 \Rightarrow x_1 = x_2$. इसी प्रकार यदि x_1 तथा x_2 दोनों सम हैं, तो भी $f(x_1) = f(x_2) \Rightarrow x_1 - 1 = x_2 - 1 \Rightarrow x_1 = x_2$. अतः f एकैकी है। साथ ही सहप्रांत N की कोई भी विषम संख्या 2r+1, प्रांत N की संख्या 2r+2 का प्रतिबिंब है और सहप्रांत **N** की कोई भी सम संख्या 2r, **N** की संख्या 2r-1 का प्रतिबिंब है। अत: f आच्छादक है।

उदाहरण 13 सिद्ध कीजिए कि आच्छादक फलन $f: \{1,2,3\} \rightarrow \{1,2,3\}$ सदैव एकैकी फलन होता है। हल मान लीजिए कि f एकैकी नहीं है। अतः इसके प्रांत में कम से कम दो अवयव मान लिया कि 1 तथा 2 का अस्तित्व है जिनके सहप्रांत में प्रतिबिंब समान है। साथ ही f के अंतर्गत 3 का प्रतिबिंब केवल एक ही अवयव है। अत:, परिसर में, सहप्रांत {1,2,3} के, अधिकतम दो ही अवयव हो सकते हैं, जिससे प्रकट होता है कि f आच्छादक नहीं है, जो कि एक विरोधोक्ति है। अत: f को एकैकी होना ही चाहिए।

उदाहरण 14 सिद्ध कीजिए कि एक एकैकी फलन $f: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ अनिवार्य रूप से आच्छादक भी है।

हल चूँकि f एकैकी है, इसलिए $\{1,2,3\}$ के तीन अवयव f के अंतर्गत सहप्रांत $\{1,2,3\}$ के तीन अलग-अलग अवयवों से क्रमशः संबंधित होंगे। अतः f आच्छादक भी है।

टिप्पणी उदाहरण 13 तथा 14 में प्राप्त परिणाम किसी भी स्वेच्छ परिमित (finite) समुच्चय X, के लिए सत्य है, अर्थात् एक एकैकी फलन $f: X \to X$ अनिवार्यतः आच्छादक होता है तथा प्रत्येक परिमित समुच्चय X के लिए एक आच्छादक फलन $f: X \rightarrow X$ अनिवार्यत: एकैकी होता है। इसके

12

विपरीत उदाहरण 8 तथा 10 से स्पष्ट होता है कि किसी अपरिमित (Infinite) समुच्चय के लिए यह सही नहीं भी हो सकता है। वास्तव में यह परिमित तथा अपरिमित समुच्चयों के बीच एक अभिलक्षणिक (characteristic) अंतर है।

प्रश्नावली 1.2

- 1. सिद्ध कीजिए कि $f(x)=rac{1}{x}$ द्वारा परिभाषित फलन $f:\mathbf{R}_*
 ightarrow \mathbf{R}_*$ एकैकी तथा आच्छादक है, जहाँ R, सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत R, को N से बदल दिया जाए, जब कि सहप्रांत पूर्ववत \mathbf{R}_{\bullet} ही रहे, तो भी क्या यह परिणाम सत्य होगा?
- 2. निम्नलिखित फलनों की एकैक (Injective) तथा आच्छादी (Surjective) गुणों की जाँच कीजिए:
 - (i) $f(x) = x^2$ द्वारा प्रदत्त $f: \mathbb{N} \to \mathbb{N}$ फलन है।
 - (ii) $f(x) = x^2$ द्वारा प्रदत्त $f: \mathbb{Z} \to \mathbb{Z}$ फलन है।
 - (iii) $f(x) = x^2$ द्वारा प्रदत्त $f: \mathbf{R} \to \mathbf{R}$ फलन है।
 - (iv) $f(x) = x^3$ द्वारा प्रदत्त $f: \mathbf{N} \to \mathbf{N}$ फलन है।
 - (\mathbf{v}) $f(x) = x^3$ द्वारा प्रदत्त $f: \mathbf{Z} \to \mathbf{Z}$ फलन है।
- 3. सिद्ध कीजिए कि f(x) = [x] द्वारा प्रदत्त महत्तम पूर्णांक फलन $f: \mathbf{R} \to \mathbf{R}$, न तो एकैकी है और न आच्छादक है, जहाँ [x], x से कम या उसके बराबर महत्तम पूर्णांक को निरूपित करता है।
- **4.** सिद्ध कीजिए कि f(x) = |x| द्वारा प्रदत्त मापांक फलन $f: \mathbf{R} \to \mathbf{R}$, न तो एकैकी है और न आच्छादक है, जहाँ |x| बराबर x, यदि x धन या शून्य है तथा |x| बराबर -x, यदि xऋण है।
- 5. सिद्ध कीजिए कि $f: \mathbf{R} \to \mathbf{R}$,

$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0, \end{cases}$$

द्वारा प्रदत्त चिहन फलन न तो एकैकी है और न आच्छादक है।

6. मान लीजिए कि $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ तथा $f = \{(1, 4), (2, 5), (3, 6)\}$ A से B तक एक फलन है। सिद्ध कीजिए कि f एकैकी है।

- 7. निम्नलिखित में से प्रत्येक स्थिति में बतलाइए कि क्या दिए हुए फलन एकैकी, आच्छादक अथवा एकैकी आच्छादी (bijective) हैं। अपने उत्तर का औचित्य भी बतलाइए।
 - (i) f(x) = 3 4x द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ है।
 - (ii) $f(x) = 1 + x^2$ द्वारा परिभाषित फलन $f: \mathbf{R} \to \mathbf{R}$ है।
- 8. मान लीजिए कि A तथा B दो समुच्चय हैं। सिद्ध कीजिए कि $f: A \times B \rightarrow B \times A$, इस प्रकार िक f(a, b) = (b, a) एक एकैकी आच्छादी (bijective) फलन है।
- 9. मान लीजिए कि समस्त $n \in \mathbb{N}$ के लिए, $f(n) = \begin{bmatrix} \frac{n+1}{2}, & 2 & 2 \\ \frac{n}{2}, & 2 & 2 \end{bmatrix}$, यदि n सम है

द्वारा परिभाषित एक फलन $f: \mathbb{N} \to \mathbb{N}$ है। बतलाइए कि क्या फलन f एकैकी आच्छादी (bijective) है। अपने उत्तर का औचित्य भी बतलाइए।

- **10.** मान लीजिए कि $A = \mathbf{R} \{3\}$ तथा $B = \mathbf{R} \{1\}$ हैं। $f(x) = \left(\frac{x-2}{x-3}\right)$ द्वारा परिभाषित फलन $f\colon \mathbf{A} o\! \mathbf{B}$ पर विचार कीजिए। क्या f एकैकी तथा आच्छादक है? अपने उत्तर का औचित्य भी बतलाइए।
- 11. मान लीजिए कि $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^4$ द्वारा परिभाषित है। सही उत्तर का चयन कीजिए।
 - $(A)\ f$ एकैकी आच्छादक है $(B)\ f$ बहुएक आच्छादक है
 - (C) f एकैकी है किंतु आच्छादक नहीं है (D) f न तो एकैकी है और न आच्छादक है।
- 12. मान लीजिए कि f(x) = 3x द्वारा परिभाषित फलन $f: \mathbf{R} \to \mathbf{R}$ है। सही उत्तर चुनिए:
 - (A) f एकैकी आच्छादक है
- (B) f बहुएक आच्छादक है
 - (C) f एकैकी है परंतु आच्छादक नहीं है (D) f न तो एकैकी है और न आच्छादक है
- 1.4 फलनों का संयोजन तथा व्युक्तमणीय फलन (Composition of Functions and **Invertible Function**)

परिभाषा 8 मान लीजिए कि $f: A \rightarrow B$ तथा $g: B \rightarrow C$ दो फलन हैं। तब f और g का संयोजन, gof द्वारा निरूपित होता है, तथा फलन $gof: A \rightarrow C, gof(x) = g(f(x)), \forall x \in A$ द्वारा परिभाषित होता है।

उदाहरण 15 मान लीजिए कि $f: \{2,3,4,5\} \rightarrow \{3,4,5,9\}$ और $g: \{3,4,5,9\} \rightarrow \{7,11,15\}$ दो फलन इस प्रकार हैं कि f(2)=3, f(3)=4, f(4)=f(5)=5 और g(3)=g(4)=7 तथा g(5)=g(9)=11, तो gof ज्ञात कीजिए।

हल यहाँ gof(2) = g(f(2)) = g(3) = 7, gof(3) = g(f(3)) = g(4) = 7, gof(4) = g(f(4)) = g(5) = 11 और gof(5) = g(5) = 11.

उदाहरण 16 यदि $f: \mathbf{R} \to \mathbf{R}$ तथा $g: \mathbf{R} \to \mathbf{R}$ फलन क्रमश: $f(x) = \cos x$ तथा $g(x) = 3x^2$ द्वारा परिभाषित है तो gof और fog ज्ञात कीजिए। सिद्ध कीजिए $gof \neq fog$.

हल यहाँ $gof(x) = g(f(x)) = g(\cos x) = 3(\cos x)^2 = 3\cos^2 x$. इसी प्रकार, $fog(x) = f(g(x)) = f(3x^2) = \cos(3x^2)$ हैं। नोट कीजिए कि x = 0 के लिए $3\cos^2 x \neq \cos 3x^2$ है। अतः $gof \neq fog$.

उपर्युक्त परिचर्चा, उदाहरण 22 तथा टिप्पणी निम्नलिखित परिभाषा के लिए प्रेरित करते हैं:

परिभाषा 9 फलन $f: X \to Y$ व्युत्क्रमणीय (Invertible) कहलाता है, यदि एक फलन $g: Y \to X$ का अस्तित्व इस प्रकार है कि $gof = I_X$ तथा $fog = I_Y$ है। फलन g को फलन f का प्रतिलोम (Inverse) कहते हैं और इसे प्रतीक f^{-1} द्वारा प्रकट करते हैं।

अत:, यदि f व्युत्क्रमणीय है, तो f अनिवार्यत: एकैकी तथा आच्छादक होता है और विलोमत:, यदि f एकैकी तथा आच्छादक है, तो f अनिवार्यत: व्युत्क्रमणीय होता है। यह तथ्य, f को एकैकी तथा आच्छादक सिद्ध करके, व्युत्क्रमणीय प्रमाणित करने में महत्वपूर्ण रूप से सहायक होता है, विशेष रूप से जब f का प्रतिलोम वास्तव में ज्ञात नहीं करना हो।

उदाहरण 17 मान लीजिए कि $f: \mathbf{N} \to Y$, f(x) = 4x + 3, द्वारा परिभाषित एक फलन है, जहाँ $Y = \{y \in \mathbf{N}: y = 4x + 3 \text{ किसी } x \in \mathbf{N} \text{ के लिए}\}$ । सिद्ध कीजिए कि f व्युत्क्रमणीय है। प्रतिलोम फलन भी ज्ञात कीजिए।

हल Y के किसी स्वेच्छ अवयव y पर विचार कीजिए। Y, की परिभाषा द्वारा, प्रांत N के किसी अवयव x के लिए y = 4x + 3 है। इससे निष्कर्ष निकलता है कि $x = \frac{(y - 3)}{4}$ है। अब $g(y) = \frac{(y - 3)}{4}$ द्वारा

 $g: Y \to \mathbb{N}$ को परिभाषित कीजिए। इस प्रकार $gof(x) = g(f(x)) = g(4x+3) = \frac{(4x+3-3)}{4} = x$ तथा $fog(y) = f(g(y)) = f\left(\frac{(y-3)}{4}\right) = \frac{4(y-3)}{4} + 3 = y - 3 + 3 = y$ है। इससे स्पष्ट होता है कि $gof = I_N$ तथा $fog = I_Y$, जिसका तात्पर्य यह हुआ कि f व्युत्क्रमणीय है और फलन g फलन f का प्रतिलोम है।

विविध उदाहरण

उदाहरण 18 यदि R_1 तथा R_2 समुच्चय A में तुल्यता संबंध हैं, तो सिद्ध कीजिए कि $R_1\cap R_2$ भी एक तुल्यता संबंध है।

हल क्योंकि R_1 तथा R_2 तुल्यता संबंध है इसिलए $(a,a) \in R_1$, तथा $(a,a) \in R_2$, $\forall \, a \in A$ इसका तात्पर्य है कि $(a,a) \in R_1 \cap R_2$, $\forall \, a$, जिससे सिद्ध होता है कि $R_1 \cap R_2$ स्वतुल्य है। पुन: $(a,b) \in R_1 \cap R_2 \Rightarrow (a,b) \in R_1$ तथा $(a,b) \in R_2 \Rightarrow (b,a) \in R_1$ तथा $(b,a) \in R_2 \Rightarrow (b,a) \in R_1 \cap R_2$, अतः $R_1 \cap R_2$ समित है। इसी प्रकार $(a,b) \in R_1 \cap R_2$ तथा $(b,c) \in R_1 \cap R_2 \Rightarrow (a,c) \in R_1$ तथा $(a,c) \in R_2 \Rightarrow (a,c) \in R_1 \cap R_2$. इससे सिद्ध होता है कि $R_1 \cap R_2$ संक्रामक है। अतः $R_1 \cap R_2$ एक तुल्यता संबंध है।

उदाहरण 19 मान लीजिए कि समुच्चय A में धन पूर्णांकों के क्रिमत युग्मों (ordered pairs)का एक संबंध R, (x, y) R (u, v), यदि और केवल यदि, xv = yu द्वारा परिभाषित है। सिद्ध कीजिए कि R एक तुल्यता संबंध है।

हल स्पष्टतया (x, y) R (x, y), \forall $(x, y) \in$ A, क्योंकि xy = yx है। इससे स्पष्ट होता है कि R स्वतुल्य है। पुन: (x, y) R $(u, v) \Rightarrow xv = yu \Rightarrow uy = vx$ और इसलिए (u, v) R (x, y)है। इससे स्पष्ट होता है कि R समित है। इसी प्रकार (x, y) R (u, v) तथा (u, v) R $(a, b) \Rightarrow xv = yu$

तथा $ub = va \Rightarrow xv - \frac{a}{u} = yu - \frac{a}{u} \Rightarrow xv - \frac{b}{v} = yu - \frac{a}{u} \Rightarrow xb = ya$ और इसलिए (x, y) R (a, b)है। अतएव R संक्रामक है। अतः R एक तुल्यता संबंध है।

उदाहरण 20 मान लीजिए कि $X=\{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\}$ है। मान लीजिए कि X में $R_1=\{(x,y):x-y$ संख्या 3 से भाज्य है} द्वारा प्रदत्त एक संबंध R_1 है तथा $R_2=\{(x,y):\{x,y\}\subset\{1,4,7\}$ या $\{x,y\}\subset\{2,5,8\}$ या $\{(x,y\}\subset\{3,6,9\}$ द्वारा प्रदत्त X में एक अन्य संबंध R_2 है। सिद्ध कीजिए कि $R_1=R_2$ है।

हल नोट कीजिए कि $\{1,4,7\}, \{2,5,8\}$ तथा $\{3,6,9\}$ समुच्चयों में से प्रत्येक का अभिलक्षण (characterstic) यह है कि इनके किसी भी दो अवयवों का अंतर 3 का एक गुणज है। इसलिए $(x,y) \in R_1 \Rightarrow x-y$ संख्या 3 का गुणज है $\Rightarrow \{x,y\} \subset \{1,4,7\}$ या $\{x,y\} \subset \{2,5,8\}$ या $\{x,y\} \subset \{3,6,9\} \Rightarrow (x,y) \in R_2$, अतः $R_1 \subset R_2$. इसी प्रकार $\{x,y\} \in R_2 \Rightarrow \{x,y\} \subset \{1,4,7\}$ या $\{x,y\} \subset \{2,5,8\}$ या $\{x,y\} \subset \{3,6,9\} \Rightarrow x-y$ संख्या 3 से भाज्य है $\Rightarrow \{x,y\} \in R_1$. इससे स्पष्ट होता है कि $R_2 \subset R_1$. अतः $R_1 = R_2$ है।

उदाहरण 21 मान लीजिए कि $f: X \to Y$ एक फलन है। X में $R = \{(a, b): f(a) = f(b)\}$ द्वारा प्रदत्त एक संबंध R परिभाषित कीजिए। जाँचिए कि क्या R एक तुल्यता संबंध है।

हल प्रत्येक $a \in X$ के लिए $(a,a) \in R$, क्योंकि f(a) = f(a), जिससे स्पष्ट होता है कि R स्वतुल्य है। इसी प्रकार, $(a,b) \in R \Rightarrow f(a) = f(b) \Rightarrow f(b) = f(a) \Rightarrow (b,a) \in R$. इसलिए R समित है। पुन: $(a,b) \in R$ तथा $(b,c) \in R \Rightarrow f(a) = f(b)$ तथा $f(b) = f(c) \Rightarrow f(a) = f(c) \Rightarrow (a,c) \in R$, जिसका तात्पर्य है कि R संक्रामक है। अत: R एक तुल्यता संबंध है।

उदाहरण 22 समुच्चय $A = \{1, 2, 3\}$ से स्वयं तक सभी एकैकी फलन की संख्या ज्ञात कीजिए।

हल $\{1,2,3\}$ से स्वयं तक एकैकी फलन केवल तीन प्रतीकों 1,2,3 का क्रमचय है। अतः $\{1,2,3\}$ से स्वयं तक के प्रतिचित्रों (Maps) की कुल संख्या तीन प्रतीकों 1,2,3 के क्रमचयों की कुल संख्या के बराबर होगी, जो कि 3!=6 है।

उदाहरण 23 मान लीजिए कि $A = \{1, 2, 3\}$ है। तब सिद्ध कीजिए कि ऐसे संबंधों की संख्या चार है, जिनमें (1, 2) तथा (2, 3) हैं और जो स्वतुल्य तथा संक्रामक तो हैं किंतु समित नहीं हैं।

हल $\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\},(1,2)$ तथा (2,3) अवयवों वाला वह सबसे छोटा संबंध \mathbf{R}_1 है, जो स्वतुल्य तथा संक्रामक है किंतु समिमत नहीं है। अब यदि \mathbf{R}_1 में युग्म (2,1) बढ़ा दें, तो प्राप्त संबंध \mathbf{R}_2 अब भी स्वतुल्य तथा संक्रामक है परंतु समिमत नहीं है। इसी प्रकार, हम \mathbf{R}_1 में (3,2) बढ़ा कर \mathbf{R}_3 प्राप्त कर सकते हैं, जिनमें अभीष्ट गुणधर्म हैं। तथापि हम \mathbf{R}_1 में किन्हीं दो युग्मों (2,1),(3,2) या एक युग्म (3,1) को नहीं बढ़ा सकते हैं, क्योंकि ऐसा करने पर हम, संक्रामकता बनाए रखने के लिए, शेष युग्म को लेने के लिए बाध्य हो जाएँगे और इस प्रक्रिया द्वारा प्राप्त संबंध समिमत भी हो जाएगा, जो अभीष्ट नहीं है। अत: अभीष्ट संबंधों की कुल संख्या तीन है।

उदाहरण 24 सिद्ध कीजिए कि समुच्चय $\{1,2,3\}$ में (1,2) तथा (2,1) को अन्तर्विष्ट करने वाले तुल्यता संबंधों की संख्या 2 है।

हल (1,2) तथा (2,1) को अंतर्विष्ट करने वाला सबसे छोटा तुल्यता संबंध R_1 , $\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$ है। अब केवल 4 युग्म, नामत: (2,3),(3,2),(1,3) तथा (3,1) शेष बचते हैं। यदि हम इनमें से किसी एक को, जैसे (2,3) को R_1 में अंतर्विष्ट करते हैं, तो समित के लिए हमें (3,2) को भी लेना पड़ेगा, साथ ही संक्रमकता हेतु हम (1,3) तथा (3,1) को लेने के

लिए बाध्य होंगे। अतः \mathbf{R}_1 से बड़ा तुल्यता संबंध केवल सार्वित्रक संबंध है। इससे स्पष्ट होता है कि (1,2) तथा (2,1) को अंतर्विष्ट करने वाले तुल्यता संबंधों की कुल संख्या दो है।

उदाहरण 25 तत्समक फलन $I_N: N \to N$ पर विचार कीजिए, जो $I_N(x) = x, \ \forall \ x \in N$ द्वारा परिभाषित है। सिद्ध कीजिए कि, यद्यपि I_N आच्छादक है किंतु निम्नलिखित प्रकार से परिभाषित फलन $I_N + I_N: N \to N$ आच्छादक नहीं है

$$(I_N + I_N)(x) = I_N(x) + I_N(x) = x + x = 2x$$

हल स्पष्टतया I_N आच्छादक है किंतु I_N+I_N आच्छादक नहीं है। क्योंकि हम सहप्रांत ${\bf N}$ में एक अवयव 3 ले सकते हैं जिसके लिए प्रांत ${\bf N}$ में किसी ऐसे x का अस्तित्व नहीं है कि (I_N+I_N) (x)=2x=3 हो।

उदाहरण $26 f(x) = \sin x$ द्वारा प्रदत्त फलन $f: \left[0, \frac{\pi}{2}\right] \rightarrow \mathbf{R}$ तथा $g(x) = \cos x$ द्वारा प्रदत्त फलन

 $g:\left[0,\frac{\pi}{2}\right]\to\mathbf{R}$ पर विचार कीजिए। सिद्ध कीजिए कि f तथा g एकैकी है, परंतु f+g एकैकी नहीं है।

हल क्योंकि $\left[0,\frac{\pi}{2}\right]$, के दो भिन्न-भिन्न अवयवों x_1 तथा x_2 के लिए $\sin x_1 \neq \sin x_2$ तथा $\cos x_1 \neq \cos x_2$ इसलिए f तथा g दोनों ही आवश्यक रूप से एकैकी हैं। परंतु (f+g) $(0)=\sin 0+\cos 0=1$ तथा $(f+g)\left(\frac{\pi}{2}\right)=\sin\frac{\pi}{2}+\cos\frac{\pi}{2}=1$ है। अतः f+g एकैकी नहीं है।

अध्याय १ पर विविध प्रश्नावली

- **1.** सिद्ध कीजिए कि $f: \mathbf{R} \to \{x \in \mathbf{R} : -1 < x < 1\}$ जहाँ $f(x) = \frac{x}{1 + |x|}, x \in \mathbf{R}$ द्वारा परिभाषित फलन एकैकी तथा आच्छादक है।
- 2. सिद्ध कीजिए कि $f(x) = x^3$ द्वारा प्रदत्त फलन $f: \mathbf{R} \to \mathbf{R}$ एकैक (Injective) है।
- 3. एक अरिक्त समुच्चय X दिया हुआ है। P(X) जो कि X के समस्त उपसमुच्चयों का समुच्चय है, पर विचार कीजिए। निम्निलिखित तरह से P(X) में एक संबंध R परिभाषित कीजिए: P(X) में उपसमुच्चयों A, B के लिए, ARB, यदि और केवल यदि $A \subset B$ है। क्या R, P(X) में एक तुल्यता संबंध है? अपने उत्तर का औचित्य भी लिखिए।
- समुच्चय {1,2,3,...,n} से स्वयं तक के समस्त आच्छादक फलनों की संख्या ज्ञात कीजिए।

- 5. मान लीजिए कि $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$ और $f, g : A \rightarrow B$, क्रमश: $f(x) = x^2 x, x \in A \text{ तथा } g(x) = 2 \left| x \frac{1}{2} \right| -1, x \in A \text{ द्वारा } \text{ परिभाषित } \text{ फलन } \hat{\mathbb{B}} \text{ i. } \text{ क्या } f \text{ तथा } g \text{ समान } \hat{\mathbb{B}} \text{? } \text{ अपने } \text{ उत्तर } \text{ का } \text{ औचित्य } \text{ भी } \text{ बतलाइए} \text{ I. } (\text{संकेत : nìz } \text{ कोजिए } \text{ कि } \text{ cì } \text{ फलन } f : A \rightarrow B \text{ तथा } g : A \rightarrow B \text{ समान } \text{ कहलाते } \hat{\mathbb{B}} \text{ यदि } f(a) = g(a) \ \forall a \in A \text{ हो} \text{ I.}$
- 6. यदि A = {1,2,3} हो तो ऐसे संबंध जिनमें अवयव (1,2) तथा (1,3) हों और जो स्वतुल्य तथा समित हैं किंतु संक्रामक नहीं है, की संख्या है
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- 7. यदि $A = \{1, 2, 3\}$ हो तो अवयव (1, 2) वाले तुल्यता संबंधों की संख्या है।
 - (A) 1
- (B) 2
- (C) 3
- (D) 4

सारांश्र

इस अध्याय में, हमने विविध प्रकार के संबंधों, फलनों तथा द्विआधारी संक्रियाओं का अध्ययन किया है। इस अध्याय की मुख्य विषय-वस्तु निम्नलिखित है:

- ♦ $X + \dot{H}$, $R = \phi \subset X \times X$ द्वारा प्रदत्त संबंध R, **रिक्त संबंध** होता है।
- X में, $R = X \times X$ द्वारा प्रदत्त संबंध R, सार्वित्रिक संबंध है।
- ♦ X में, ऐसा संबंध कि $\forall a \in X$, $(a, a) \in R$, स्वतुल्य संबंध है।
- ◆ X में, इस प्रकार का संबंध R, जो प्रतिबंध $(a,b) \in R$ का तात्पर्य है कि $(b,a) \in R$ को संतुष्ट करता है **सममित संबंध** है।
- ♦ X में, प्रतिबंध R, $(a,b) \in R$ तथा $(b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in X$ को संतुष्ट करने वाला संबंध R **संक्रामक संबंध** है।
- X में, संबंध R, जो स्वतुल्य, समिमत तथा संक्रामक है, तुल्यता संबंध है।
- X में, किसी तुल्यता संबंध R के लिए $a \in X$ के **संगत तुल्यता वर्ग** [a], X का वह उपसमुच्चय है जिसके सभी अवयव a से संबंधित हैं।
- एक फलन $f: X \to Y$ एकैकी (अथवा एकैक) फलन है, यदि $f(x_1) = f(x_2) \Rightarrow x_1 = x_2, \ \forall \ x_1, x_2 \in X$
- एक फलन $f: X \to Y$ आच्छादक (अथवा आच्छादी) फलन है, यदि किसी प्रदत्त $y \in Y, \exists x \in X, \xi$ स प्रकार कि f(x) = y
- lacktriangle एक फलन $f: X \longrightarrow Y$ व्युत्क्रमणीय है, यदि और केवल यदि f एकैकी तथा आच्छादक है।

• किसी प्रदत्त परिमित समुच्चय X के लिए फलन f: X → X एकैकी (तदानुसार आच्छादक) होता है, यदि और केवल यदि f आच्दछादक (तदानुसार एकैकी) है। यह किसी परिमित समुच्चय का अभिलाक्षणिक गुणधर्म (Characterstic Property) है। यह अपरिमित समुच्चय के लिए सत्य नहीं है।

ऐतिहासिक पृष्ठभूमि

फलन की संकल्पना, R. Descartes (सन् 1596-1650 ई.) से प्रारंभ हो कर एक लंबे अंतराल में विकसित हुई है। Descartes ने सन् 1637 ई. में अपनी पांडुलिपि "Geometrie" में शब्द 'फलन' का प्रयोग, ज्यामितीय वक्रों, जैसे अतिपरवलय (Hyperbola), परिवलय (Parabola) तथा दीर्घवृत्त (Ellipse), का अध्ययन करते समय, एक चर राशि x के धन पूर्णांक घात x^n के अर्थ में किया था। James Gregory (सन् 1636-1675 ई.) ने अपनी कृति "Vera Circuliet Hyperbolae Quadratura" (सन् 1667 ई.) में, फलन को एक ऐसी राशि माना था, जो किसी अन्य राशि पर बीजीय अथवा अन्य संक्रियाओं को उत्तरोत्तर प्रयोग करने से प्राप्त होती है। बाद में G. W. Leibnitz (1646-1716 ई.) नें 1673 ई. में लिखित अपनी पांडुलिपि "Methodus tangentium inversa, seu de functionibus" में शब्द 'फलन' को किसी ऐसी राशि के अर्थ में प्रयोग किया, जो किसी वक्र के एक बिंदु से दुसरे बिंदु तक इस प्रकार परिवर्तित होती रहती है, जैसे वक्र पर बिंदु के निर्देशांक, वक्र की प्रवणता, वक्र की स्पर्शी तथा अभिलंब परिवर्तित होते हैं। तथापि अपनी कृति "Historia" (1714 ई.) में Leibnitz ने फलन को एक चर पर आधारित राशि के रूप में प्रयोग किया था। वाक्यांश x का फलन प्रयोग में लाने वाले वे सर्वप्रथम व्यक्ति थे। John Bernoulli (1667-1748 ई.) ने सर्वप्रथम 1718 ई. में संकेतन (Notation) ϕx को वाक्यांश 'x का फलन' को प्रकट करने के लिए किया था। परंतु फलन को निरूपित करने के लिए प्रतीकों, जैसे f, F, ϕ, ψ ... का व्यापक प्रयोग Leonhard Euler (1707-1783 ई.) द्वारा 1734 ई. में अपनी पांडुलिपि "Analysis Infinitorium" के प्रथम खण्ड में किया गया था। बाद में Joeph Louis Lagrange (1736-1813 ई.) ने 1793 ई. में अपनी पांडुलिपि "Theorie des functions analytiques" प्रकाशित की, जिसमें उन्होंने विश्लेषणात्मक (Analytic) फलन के बारे में परिचर्चा की थी तथा संकेतन f(x), F(x), $\phi(x)$ आदि का प्रयोग x के भिन्न-भिन्न फलनों के लिए किया था। तदोपरांत Lejeunne Dirichlet (1805-1859 ई.) ने फलन की परिभाषा दी। जिसका प्रयोग उस समय तक होता रहा जब तक वर्तमान काल में फलन की समुच्चय सैद्धांतिक परिभाषा का प्रचलन नहीं हुआ, जो Georg Cantor (1845-1918 ई) द्वारा विकसित समुच्चय सिद्धांत के बाद हुआ। वर्तमान काल में प्रचलित फलन की समुच्चय सैद्धांतिक परिभाषा Dirichlet द्वारा प्रदत्त फलन की परिभाषा का मात्र अमूर्तीकरण (Abstraction) है।

