Problem Set 5

Due 29nd September 2021

(BONUS pt for free)

Abstract

Only the questions with a star (*) are compulsory for submission; It is however *strongly* advised to attempt all question.

1 Sequences

7

7

Question 1. (*) Show that $S_n = \sum_{k=1}^n \frac{1}{k}$ is such that $S_{2^n} \geq \frac{n}{2}$. Is $\sum_{n=1}^{\infty} \frac{1}{n}$ convergent?

Question 2. (Sum of Arithmetic Sequence) a^*) Rewrite $S = \sum_{k=0}^n k$ with k running from n to 0 (instead of from 0 to n).

 b^*) Using both expressions for S, express 2S as a product of two terms, and deduce an expression for S. c^*) Let (x_n) be an arithmetic sequence: $x_0 = b$, $x_{n+1} = a + x_n$ (we have shown before that the explicit formula

for x_n is $x_n = b + a * n$. Find the sum of the first n terms: $\sum_{k=0}^{n} x_k d^*$) When is the series $\sum_{n=0}^{\infty} x_n$ convergent/divergent?

Question 3. (Sum of Geometric Sequence) a^*) Multiply $S = \sum_{k=0}^n \alpha^k$ by $(1-\alpha)$ and simplify the expression b^*) Deduce an expression for S.

 c^*) Let (x_n) be a geometric sequence: $x_0 = b$, $x_{n+1} = a * x_n$ (we have shown before that the explicit formula for x_n is $x_n = b * a^n$).

Find the sum of the first n terms: $\sum_{k=0}^{n} x_k$ d^*) When is the series $\sum_{n=0}^{\infty} x_n$ convergent/divergent? (BONUS) e^*) When convergent (if ever), what values does the series $\sum_{n=0}^{\infty} x_n$ converge to?

Question 4. Are these convergent series?

•
$$\sum_{n=1}^{+\infty} \frac{(-17)^n}{4^{2n+1}(n+1)}$$

$$\bullet \ \sum_{n=1}^{+\infty} \frac{3^{2n+1}}{n^n}$$

$$\bullet \ \sum_{n=1}^{+\infty} \frac{n!}{n^n}$$

$$\bullet \ \sum_{n=1}^{+\infty} \frac{n^n}{(2n-1)!}$$

•
$$\sum_{n=1}^{+\infty} \left(\frac{5n-3n^3}{0.5n^3+2} \right)^n$$

$$\bullet \ \sum_{n=1}^{+\infty} \frac{(-12)^n}{n}$$

•
$$\sum_{n=1}^{+\infty} \frac{(-2)^{n+1}n}{9^n}$$

$$\bullet \ \sum_{n=1}^{+\infty} \frac{1}{n^3}$$

Fact:
$$\lim_{n \to +\infty} n^{\frac{1}{n}} = 1$$

Question 5. Calculate the derivative of the following functions: $f(x) = \frac{5x^3 - 2x + 1}{2x - 7} g(x) = ax^2 + bx + c$

Question 6. Find the anti-derivative of x^n .