Lab 8 solutions

Problem 1

Am red-black free that 11 not AVL


```
package primes;
public class IsPrime {
    //Precondition: n is a positive integer
    public static boolean isPrime(int n) {
        if(n == 2) return true;
        if(n== 1 \mid \mid n \% 2 == 0) return false;
        //check the odd numbers <= sqrt(n)</pre>
        for(int i = 3; i * i <= n; i = i+2) {
            if(n % i == 0) return false;
        return true;
    }
    public static void main(String[] args) {
        for(int i = 1; i \le 500; ++i) {
            if(isPrime(i)) System.out.println(i + " is prime");
            else System.out.println(i + " is composite");
        }
    }
}
```

Lab 8, Prob 4, Solution

Problem 4.

(A) Express the asymptotic running time of your algorithm IsPrime(n) in terms of the input size rather than input value.

Solution. The running time in terms of input value is given by $T(n) = n^{\frac{1}{2}}$. Since the number b of bits in a positive integer n is $\Theta(\log n)$, it follows that n is $\Theta(2^b)$ and so running time in terms of b is given by

$$T(b) = \Theta(\left(2^{b}\right)^{\frac{1}{2}}) = \Theta(2^{\frac{b}{2}}).$$

(B) Suppose T(b) is the running time of your algorithm in terms of input size. Show that b^2 is o(T(b)). (It can be shown that b^k is o(T(b)) for any positive integer k. Consequently, this algorithm is said to run in *superpolynomial* time.)

Solution. Using L'Hopital twice we have:

$$\lim_{n \to \infty} \frac{b^2}{2^{\frac{b}{2}}} = \lim_{n \to \infty} \frac{2b}{\frac{1}{2} \cdot 2^{\frac{b}{2}} \cdot \ln 2}$$
$$= \lim_{n \to \infty} \frac{2}{\frac{1}{4} \cdot 2^{\frac{b}{2}} \cdot \ln^2 2}$$
$$= 0.$$

(C) Do you think there could be an algorithm for determining whether an integer is prime that runs in polynomial time (relative to the input size)?

Solution. Answer is Yes – this was discussed in Lesson 15 slides.