§2. Предел числовой последовательности.

Сходящиеся и расходящиеся последовательности

Определение 2.1. Число а называется пределом числовой последовательности $\{x_n\}$, если для любого $\varepsilon > 0$ можно найти номер $N(\varepsilon)$ такой, что при $n > N(\varepsilon)$ выполняется неравенство $|x_n - a| < \varepsilon$.

Обозначение: $\lim_{n\to\infty} x_n = a$.

Последовательности, имеющие предел, называются сходящимися, не имею-щие предела — расходящимися. Если $\lim_{n\to\infty} x_n = a$, то говорят, что последовательность $\{x_n\}$ сходится или стремится к а при n, стремящемся в бесконечность $\{x_n\}$ а при $n\to\infty$).

Замечание 2.1. Неравенство $|x_n - a| < \varepsilon$ равносильно утверждению $x_n \in U_{\varepsilon}(a)$. В символической форме определение 2.1 можно записать следующим образом:

$$\lim_{n\to\infty} x_n = a \iff \forall \varepsilon > 0 \ \exists \ N(\varepsilon) \in \mathbb{N}: \ n > N(\varepsilon) \Longrightarrow x_n \in \mathbb{U}_{\varepsilon}(a).$$

- Замечание 2.2. Геометрически определение 2.1 трактуется так: если число а предел данной последовательности, то в любой $U_{\epsilon}(a)$ находятся все её члены, начиная с некоторого номера, зависящего от ϵ .
- Замечание 2.3. Если все члены последовательности $\{x_n\}$ равны одному и тому же числу a, то, очевидно, $\lim_{n\to\infty} x_n = a$, так как в этом случае неравенство $|x_n a| < \varepsilon$ из определения 2.1 выполняется для \forall $n \in \mathbb{N}$ и $\forall \varepsilon > 0$.

Пример 2.1. Показать, что $\lim_{n\to\infty}q^n=0$ для $|\mathbf{q}|<1$.

- ▶ Зададим $\forall \varepsilon > 0$. Найдём номер $N(\varepsilon)$ такой, что при $n > N(\varepsilon)$ выполняется неравенство $|q^n 0| < \varepsilon$ или $|q|^n < \varepsilon$. Разрешив последнее неравенство относительно n, получим: $n \lg |q| < \lg \varepsilon$ или $n > \lg \varepsilon / \lg |q|$, откуда $N(\varepsilon) = [\lg \varepsilon / \lg |q|]$ целая часть числа $\lg \varepsilon / \lg |q|$. \blacktriangleleft
- **Пример 2.2**. Показать, что последовательность $\{x_n\}$: $x_n = (-1)^n$ расходится.
- ▶ $\{x_n\} = -1, 1, -1, 1, \dots$ Очевидно, любая ε окрестность точек 1 и -1 содержит бесконечное число членов последовательности $\{x_n\}$, однако, при $0 < \varepsilon < 1$ она содержит не все члены, начиная с некоторого номера. Если какой-то член последовательности принадлежит $U_{\varepsilon}(1)$, то последующий член принадлежит уже $U_{\varepsilon}(-1)$ и т. д. Для любых других точек числовой прямой

можно указать ε — окрестности, не содержащие членов этой последовательности. Таким образом приходим к выводу, что она не имеет предела. \blacktriangleleft