Homework Set7- PHYS728Radio Astronomy

Matthew Cooper

April 2nd, 2019

Abstract

This is the report on my methodology for determining $\triangle Bx$, $\triangle By$, and $\triangle Bz$ from two datasets which were given. The results of this are that $\triangle Bx = -.155$ m, $\triangle By = -.044$ m, and $\triangle Bz = -1.565$ m, respectively. The theory subtracted data is plotted below.

Problem 7.1: The figure below displays the phase at 5 GHz as a function of hour angle (from -60° to 60°) for two different sources, one at 12.5° declination and one at 33.2° declination. The phases were measured with a baseline error (\triangle Bx, \triangle By, \triangle Bz), but no source position error. Using any means you wish, determine the baseline error from the data (i.e. determine the values of \triangle Bx, \triangle By, and \triangle Bz, in m) and plot the corrected data as a function of hour angle (scale your plot from 0-360°). Describe the method you used to find the baseline error. Note: when you plot your corrected data, the phases should be flat, but not necessarily zero. You may require the IDL MOD function to keep your phase correction between 0 and 360. Hint: Look at the dependence of Eq. 3 of lecture 9 on hour angle.

Solution: For this problem, I started by finding $\triangle Bx$. This was accomplished by first taking the data for the 12.5° declination source, and setting $\triangle Bz$ to the value at hour angle of zero. This is, of course, not the true $\triangle Bz$, but is being used as an initial guess. I then took the even part of the data, and searched through an array of possible $\triangle Bx$ on [-10, 10] and found the value which returned the smalled sum of squares. It should probably be noted that the density of this range array did play a significant role in finding the smallest $\triangle Bx$. Since we're only using the even part, $\triangle By$ does not have to be determined yet. It was set to zero for simplicity.

Figure 1: Pictured above is the even part of the data as compared to the even part of the theoretical values produced when a value of \triangle Bx= -.155 and \triangle Bz= .659 is used.

The second step was to take the odd part of the data at 12.5° declination and determine $\triangle By$ using the same method as for $\triangle Bx$.

Figure 2: Pictured above is the odd part of the data as compared to the odd part of the theoretical values produced when a value of $\triangle By = -.045$ is used. $\triangle Bz$ does not affect the odd part of the data.

Then, for the 12.5° declination data, we have the match that has been plotted below.

Figure 3: Pictured above is the 12.5° declination data as compared to the theory when a value of $\triangle Bx = -.155$, $\triangle By = -.045$, $\triangle Bz = .659$ is used.

Now, of course, we must determine $\triangle Bz$, which was significantly more challenging than I had anticipated, and I found multiple minimums which can satisfy this, which I will explain. If we take the current values and plot them against

the 33.2° declination data, we of course do not get a match. Since $\triangle Bz$ is related to the phase offset, there are periodic values which satisfy either the 12.5° declination or 33.2° declination individually. The goal is to find one which matches both of them to within a reasonable error.

This process began by assuming that the $\triangle Bx$ and $\triangle By$ determined by the above process are correct for both declinations. Then, I created an array of possible $\triangle Bz$ values ranging from [-2,2]. I set this limit because there were several other possible values for $\triangle Bz$ in the [-10,10] range, so I assumed that $\triangle Bz$ had to be less than two. A third, lower declination value would remove this ambiguity. If we plot the least squares values for both declinations for this range of $\triangle Bz$ values, we get the plot shown below.

Figure 4: Pictured above is the least squares comparison between the 12.5° and 33.2° declination data when values of $\Delta Bx = -.155$ and $\Delta By = -.045$ are used. As can be seen, the minimum least squares values match up as specific values of ΔBz .

The best match found within this range was at $\triangle Bz = -1.565$, which is plotted below in a zoomed window of Figure 4.

Figure 5: Pictured above is a zoomed in window of Figure 4, about the location where the most likely $\triangle Bz$ is located. Others values were close, but this one showed the best match between the two data sets.

From this analysis, it was determined that $\triangle Bz = -1.565$. It should be noted that a small error in $\triangle Bx$ could significantly alter this result, but I couldn't get my shuffling program to work correctly in order to search around $\triangle Bx$ values when a $\triangle Bz$ had been selected.

Figure 6: Pictured above is the data with the theory removed, but this data has not been subjected to a modulo function, as the data in the first plot was.