Avaluable 2

Introducció a la simulació en Matlab

Exercicis

Recorda. Nom de fitxer: nom_cognom_AV2.m

A un bioreactor (RDTA) de volum 1 litre, es porta a terme les reaccions consecutives següents:

$$A \xrightarrow{k_1 \atop k_2} B \xrightarrow{k_3} C$$

On la primera reacció és reversible amb $k_1=2$ (h^{-1}) i Keq=1. La segona reacció és irreversible amb $k_3=0.2$ (h^{-1}). Inicialment al reactor hi ha una concentració de A de 1 kmol/m³.

- a) (50%) Representa l'evolució de les concentracions de A, B i C durant un període de 30 hores (200 punts) en el subgràfic superior d'una figura i el desequilibri de la primera reacció en el subgràfic inferior de la mateixa figura. Valors inicials de A, B i C: 1, 0, 0, respectivament. Nota: fes servir la ODE15s enlloc de la ODE45.
- b) (30%) A partir del model i les condicions del apartat a) representa l'efecte de variar els següents paràmetres individualment: k₁: valors: 0.02, 0.2, 0.2, 2, 10 i 20 . Keq: 0.002, 0.02, 0.2, 1 i 2. k₃: 0.02, 0.2, 0.5, 1 i 2. Els paràmetres s'han de variar fent servir un 'bucle' 'for' per cada paràmetre. Els resultats s'han de representar en 3 figures (una per cada paràmetre) i a cada figura 4 subgràfics (una per cada variable: A,B,C i la última per el 'desequilibri' de la primera reacció).
- c) (20%) contesta les següents preguntes:
 - i. A la primera simulació, perquè les corbes de A i B canvien primer ràpidament i després semblen evolucionar igual?
 - ii. Al apartat b), al augmentar la k_1 què passa amb la k_2 , amb el temps per a que la relació de desequilibri sigui constant?. I amb la velocitat d'aparició de C?. Com canvien i perquè? .
 - iii. Al apartat b), Què passa amb el deseguilibri al augmentar la Keg?
 - iv. Al apartat b), al augmentar k₃ les velocitats d'aparició de A i B canvien. Perquè?.