# Static-42

## Title

A bi-articulated slim arch

## **Description**

Determine the vertical displacement at the point C , horizontal displacement at the point B and the rotation at the points  $A\ \&\ B.$ 



Structural geometry and analysis model

## **MODEL**

#### Analysis Type

2-D static analysis

#### Unit System

m, N

#### Dimension

Radius 1 m

#### Element

Beam element

#### Material

Modulus of elasticity 
$$E = 2.0 \times 10^{11} \text{ Pa}$$
  
Poisson's ratio  $v = 0.3$ 

### Sectional Property

```
Area 1.131 \times 10^{-4} \text{ m}^2
Moment of inertia I_x = 4.637 \times 10^{-9} \text{ m}^4
```

#### **Boundary Condition**

Node 1: Constrain  $D_X$  and  $D_Z$ Node 31: Constrain  $D_Z$ 

### Load Case

A concentrated load, P = 100 N is applied to the node 16 in the -Z direction.

## Results



*Z-displacement* ( $\delta_z$ ) at the point C



*X-displacement* ( $\delta_X$ ) at the point *B* 



*Y-rotation*  $(\theta)$  *at the point A and B* 

## **Comparison of Results**

| Unit: |  |
|-------|--|
|       |  |

| Results                   | point | Theoretical              | MIDAS/Civil              |
|---------------------------|-------|--------------------------|--------------------------|
| Displacement $(\delta_Z)$ | С     | -1.9206×10 <sup>-2</sup> | -1.9218×10 <sup>-2</sup> |
| Displacement $(\delta_X)$ | В     | 5.3912×10 <sup>-2</sup>  | $5.3887 \times 10^{-2}$  |
| Rotation $(\theta)$       | A     | $3.0774 \times 10^{-2}$  | $3.0809 \times 10^{-2}$  |
| Rotation $(\theta)$       | В     | $-3.0774 \times 10^{-2}$ | $-3.0809 \times 10^{-2}$ |

## Reference

P. Dellus, "Résistance des matériaux", Paris, Technique et Vulgarisation, 1958