Practice Problems - 03

Practice problems are supposed to help you digest the content of the lecture. It is important that you manage to <u>solve</u> them <u>on your own</u>. Before you write your solutions, you may of course ask questions, and discuss things. In order to prepare for the exam, already now, try to explicitly write down your solutions – <u>clearly and easy to read</u>. Apply <u>definitions</u> properly, and give <u>explanations</u> for what you are doing. That will help you to understand them later when you prepare for the final exam.

I. Linear Algebra

Consider a parallelogram with total area equal to 40, built by vectors v_1 and v_2 . Considering that the magnitude of v_1 is equal to 10, and the angle between the two is equal to $\pi/6$:

- 1) Calculate the length of v_2
- 2) Calculate the dot product between the two vectors. Is the answer unique?
- 3) Calculate the cross-product between the two vectors ... well, its magnitude.
- 4) Show graphically the sum and the difference of the two vectors. Any alternative results?

II. Robot Motion – Homogeneous Coordinates

- 1) Consider a mobile robot that moves in the 2D space. It starts at (0,0). It will move along the y-axis for 6 units (like meters). Then it will rotate about the origin of the coordinate system by 45 degrees. Then it will move by a vector $(3\sqrt{2}, -3\sqrt{2})^T$. The robot is an extended physical object not just a point. So, calculate the final transformation matrix as a combination of the three individual transformations, and show the robot path in a graph.
- 2) Consider a mobile robot that moves in the 2D space. It starts at (0,0). It will move along the y-axis for (-6) units (like meters). Then it will rotate about the origin of the coordinate system by 45 degrees. Then it will move by a vector $(-3\sqrt{2}, -3\sqrt{2})^T$. Calculate the final transformation matrix as a combination of the three individual transformations, and show the robot path in a graph.
- 3) Consider a mobile robot that moves in the 2D space. It starts at (0,0). It will move along the y-axis for 8 units (like meters). Then it will rotate about the origin of the coordinate system by 45 degrees. Then it will move by a vector $(4\sqrt{2}, -4\sqrt{2})^T$. Calculate the final transformation matrix as a combination of the three individual transformations, and show the robot path in a graph.