17-08-2012 Note Title Machine Representation ARM Instruction -> (D) ARITHMETIC / LOGICAL 2 LOAD/STORE
3 BRANCH

O ARITH/LOGICAL CPSR [Short Cut -1] Short Cect Extensions: if (j = 0)CMP 7, #0 BNE . exit ADD Ra, Rb, Rc ADD FQ

Do the addition iff the Companison before it detected an equality ADDEQ is a conditional instruction ADDEQ Ra, Rb, Rc NE -> Not equal HI - Unsigned LE → <= higher

Pl → positive lo → unsignal G7 - Greater than 47 - less than lower. MI - Negative

I where does the emp instruction store its result. Ans: CISR Current Program Status Register NZCF CMP (is actually doing a sur) $\begin{array}{c}
N \to Negative \\
Z \to Zero \\
c \to Carry out
\end{array}$ $\rightarrow (Z=1)$ EQ → (Z c = 0) NE → ((N==0) 22 (Z=e0)) GT _F → Overflow _ GE -> (N = =0) -> (N==1) . **L** 7 - ((N == 1) | (2 == 1)) LE___ CMP R1, R9 Y=5-3 CMP RIS R2 GT 5>3 r: 3-5 5 -3 2

Short Cent -2

can set the cist.

fou con add a S suffer to any instruction to make it set the CISR accordingly

$$C: tm f = a + b;$$

$$y (tm f = = 0)$$

$$z = i + j;$$

ADD R_{tmp} , R_a , R_b R_{tmp} , R_a , R_b ADDEQ R_2 , R_i , R_j

9 inst. sequence

2 inst. sequence ADDS 2 imp, Ra, Rz

ADDEQ Re, Ri, Ri

E.g. ADD R1, R2, #10
20 bits 12

We have 12 bits for representing the immediate. But, an immediate con be vory large (rifto 32 Bits) We need to somehow compromise.

Aom: Encode as mony numbers as fossible rusing the 12 liks that we have.

Aem Solution

& Bit part - pay load

Number = fayload ROR $(2 \times offset)$ CH = F = E

ADD R_3 R_2

Ox (FE) 00 00 00

> 00 00 00 FE

Cr E0 00 00 0F 2 F/E

02 00 FE 00 00

8 F E

Read this in the book (Vary Fricky)

Cond F Obrode Rest is same I, S bits do not make sense for LDR/STR Soprode Rd Rom, Romer Shift LDR Ry, [R, R2, ist R2] STR RG, [R2, R10, 252#4]

Rd Rsyn

Pre-indexed ++i; Post-indexed

i++:

LDR R, [R4, #4]!

CDR R1, [R4], #4

 $R_1 \leftarrow mem[R_4+4]$

 $R, \leftarrow mem[Ry]$

Ry - Ry + y

Ry - Ry + Y

Saving an increment and a shift in case of array accesses.

Branch.

PC -> OblPC+8+ Ixy

Nort Class Adders