

BMS: CAN 总线通讯规范

1. 通讯规范

数据链路层应遵循的原则

总线通讯速率为: 250Kbps

数据链路层的规定主要参考 CAN2. 0B 和 J1939 的相关规定。

使用 CAN 扩展帧的 29 位标识符并进行了重新定义,以下为 29 标识符的分配表:

IDENTIFIER 11BITS							S R	I D						IDEN	TIFII	ER EX	KTEN	SION	J 1	8BIT	`S									
						R	Е																							
					S	I																								
PR	PRIORITY			R DP	DP	PDU F	PDU FORMAT(PF)			R	D	P	F			PDU	SPEC	CIFIC	(PS)				SC	URC	EAL	DDRE	ESS(S	A)		
				R	Е																									
3	2	1	1	1	8	7	6	5	4	3			2	1	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1
28	27	26	25	24	23	22	21	20	19	18			17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

其中,优先级为3位,可以有8个优先级;R一般固定为0;DP现固定为0;8位的PF为报文的代码;8位的PS为目标 地址或组扩展; 8位的 SA 为发送此报文的源地址;

- >接入网络的每一个节点都有名称和地址,名称用于识别节点的功能和进行地址仲裁,地址用于节点的数据通信
- >每个节点都至少有一种功能,可能会有多个节点具有相同的功能,也可能一个节点具有多个功能

www.tccharger.com

CAN 网络地址分配表:

CAN 总线结点地址从 J1939 标准中定义的获得:

结点名称	地址 SOURCE ADDRESS(SA)
电机控制器	239(0xEF)
电池管理系统 (BMS)	244(0xF4)
充电机控制系统 (CCS)	229(0xE5)
广播地址(BCA)	80(0x50)

报文格式:

报文 1: (ID: 0x1806E5F4)

OUT	IN]	D	周期(ms)			
BMS	CCS	P	R	DP	PF	1000		
DIVIS	CCS	6	0	0	6			
			数据					
位置		数据名						
BYTE1	最	高允许充电端电压高字	节					
BYTE2	最	高允许充电端电压低字	节	0.1 1/01 個少里: 0 內: 1/851 — 3201, 內亞电压力 320.11				
BYTE3	į	最高允许充电电流高字节	节					
BYTE4	1	最高允许充电电流低字节	节					
BYTE5		控制		0: 充电机开启充电。1: 电池保护, 充电器关闭输出。				
BYTE6		保留						
BYTE7		保留						
BYTE8		保留						

报文 2: (ID: 0x18FF50E5)

OUT	IN		周期(ms)						
CCS	BCA	P	R	DP	PF	1000			
ccs	BCA	6	0	0	0xFF				
			数据						
位置		数据名							
BYTE1		输出电压高字节		│ - 0.1V/bit 偏移量: 0 例: Vout =3201, 对应电压为 320.1v					
BYTE2		输出电压低字节		0.1 V/Oit pin少里: 0 pi: Vout = 3201,对应电压为 320.1V					
BYTE3		输出电流高字节		0.1A/bit 偏移量: 0 例: Iout =582, 对应电流为 58.2A。最高 BIT					
BYTE4		输出电流低字节		表示符号,0为充电,1为放电。					
BYTE5		状态标志 STATUS							
BYTE6		保留							
BYTE7		保留							
BYTE8		保留							

文件号 0010 版本: 0A

STATUS	标识	描述
Bit0	硬件故障	0: 正常。1: 硬件故障
Bit1	充电机温度	0: 正常。1: 充电机温度过高保护
Bit2	输入电压	0: 输入电压正常。1: 输入电压错误, 充电机停止工作
Bit3	启动状态	0: 充电器检测到电池电压进入启动状态。1: 处于关闭状态。(用于防止电池反接)
Bit4	通信状态	0: 通信正常。1: 通信接收超时
Bit5		
Bit6		
Bit7		

工作方式

- 1. **BMS** 固定间隔时间 1S 发送控制信息((报文 1) 到充电机,充电机接收到信息以后根据报文数据的电压电流设置来工作。如果 5 秒接收不到报文,则进入通信错误状态,关闭输出。
- 2. 充电机每隔 1S 发送广播信息(报文 2),显示仪表可以根据信息显示充电机状态。

www.tccharger.com