Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Закон Кюри-Вейсса [3.4.2]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Теоретическое введение	1
2	Экспериментальная установка	1
3	Ход работы	2
4	Обработка результатов	3
5	Вывод	5
6	Литература	6

Цель работы : изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются : катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

1 Теоретическое введение

Коэффициент самоиндукции катушки L пропорционален магнитной проницаемости μ заполняющей его среды (почему?): $L \propto \mu$. Тогда разность самоиндукций катушки с образцом L и без него L_0 будет пропорциональна восприимчивости образца χ :

$$L - L_0 \propto \mu - 1 = \chi$$

При изменении индуктивности образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC}$$

где C - ёмкость контура автогенератора. Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}$$

Отсюда находим

$$L - L_0 \propto \tau^2 - \tau_0^2$$

и, следовательно,

$$\chi \propto \tau^2 - \tau_0^2$$

Из формул 2 и 3 следует, что закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\tau^2 - \tau_0^2} \propto T - \Theta_p$$

Измерения проводятся в интервале температур от 14°C до 40°C. С целью экономии времени следует начинать измерения с низких температур.

2 Экспериментальная установка

В работе изучается температурная зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в диапазоне комнатных температур.

Рис. 2. Схема экспериментальной установки

Рис. 1: Схемы экспериментальных установок

Схема установки для проверки закона Кюри-Вейсса показана на рис. 2 Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора (генератора колебаний с самовозбуждением).

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика ($\sim 50~\rm k\Gamma n$), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером около 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. Температура образца регулируется с помощью термостата 5.

3 Ход работы

Зная температурный коэффициент термопары (указан на установке), оценим допустимую ЭДС термопары, если допустимая разность температур образца и рабочей жидкости $\Delta T = 0,5$ °C. Получили допустимую

ЭДС термопары 0,02 мВ.

Исследуем зависимость периода колебаний LC - генератора от температуры образца, отмечая период колебаний τ по частотомеру, а температуру T — по показаниям дисплея и цифровому вольтметру (ΔU с учётом знака). Термопара подключена так, что при знаке "+"на табло вольтметра температура образца выше температуры рабочей жидкости. Измерения будем проводить в диапазоне от $14^{\circ}\mathrm{C}$ до $40^{\circ}\mathrm{C}$.

Запишем период колебаний τ_0 без образца, указанный на установке. $\tau_0=8,252$ мксек.

4 Обработка результатов

Рассчитаем температуру T образца с учётом показаний термопары. Таблица полученных результатов

$T, \circ C$	Т, мксек	ΔV , мВ	ΔT	T	$T^2 - T_0^2$	$\frac{1}{T^2-T_0^2}$
16	9,961605	0,01	0,24	16,24	31,138070	0,032115
18	9,741592	-0,01	-0,24	17,76	26,803110	0,037309
20	9,456648	-0,02	-0,48	19,52	21,332687	0,046876
22	9,082511	-0,02	-0,48	21,52	14,396502	0,069461
24	8,744112	-0,01	-0,24	23,76	8,363990	0,119560
26	8,605521	-0,01	-0,24	25,76	5,959487	0,167799
28	8,533765	-0,02	-0,36	27,64	4,729641	0,211432
30	8,486562	-0,02	-0,36	29,64	3,926230	0,254697
32	8,461724	-0,01	-0,24	31,76	3,505269	0,285284
34	8,447512	-0,01	-0,24	33,76	3,264954	0,306282
36	8,418071	-0,04	-0,96	35,04	2,768415	0,361217
38	8,407322	-0,01	-0,24	37,76	2,587559	0,386464
40	8,403764	-0,11	-2,64	37,36	2,527745	0,395609

Построим график зависимости $1/(\tau^2-\tau_0^2)=f(T)$. Экстраполируя полученную прямую к оси абсцисс , определим парамагнитную точку Кюри Θ_p для гадолиния.

$$y = 0.01826x - 0.2964 \Rightarrow [y(x) = 0] \ x = 16.24 \ ^{\circ}C$$

В свою очередь табличное значение парамагнитной – 18,85, ферромагнитной – 20,2. Данные были получены из лабораторного практикума, а так же на сайте amtc.ru .

Рис. 2: квадратичная аппроксимация зависимости $1/(\tau^2-\tau_0^2)$ от температуры

Рис. 3: линейная аппроксимация зависимости $1/\left(\tau^2-\tau_0^2\right)$ от температуры

По участку, отклоняющемуся от линейной зависимости, оценим положение ферромагнитной точки Кюри (как среднее арифметическое между двух соответствующих точек) $\Theta_{\rm K} \approx \frac{19.52+21.52}{2} = 20,52~{}^{\circ}C.$

Погрешность ферромагнитной точки можно для оценки связать по-

Рис. 4: зависимость $1/\left(au^{2}- au_{0}^{2}\right)$ от температуры

грешность отдельного измерения:

$$\sigma_T = \sigma_{\text{прибора}} + \sigma_{\text{термопары}} \approx 0, 2~^{\circ}C$$

$$\sigma_{\Theta_{\kappa}} = 2 \cdot \sigma_T = 0,4 \, ^{\circ}C$$

Погрешность парамагнитной точки оценим через МНК для линейного участка :

$$\sigma_{\Theta_p} = \Theta_p \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2} = 1,35^{\circ}C$$
 (1)

5 Вывод

В ходе работы был экспериментально подтвержден закон Кюри-Вейсса для металла гадолиния. Была найдена температура Кюри:

Парамагнитная: $\Theta_{p}($ эксп $) = 16,24 \pm 1,35 \, ^{\circ}C$

Парамагнитная: $\Theta_{\rm p}({
m Teop})=18,85\ ^{\circ}C$

Ферромагнитная: $\Theta_{\rm K}({
m эксп}) = 20, 52 \pm 0, 4~^{\circ}C$

Ферромагнитная: $\Theta_{\rm K}({
m Teop})=20,2~^{\circ}C$

Для ферромагнитной полученное значение лежит от теоретического в доверительном диапазоне, в случае же с парамагнитной полученная величина попадает в порядок, однако лежит в пределах 2σ .

Так же в ходе работы была определена погрешность полученных результатов. Погрешность составила $\varepsilon_{\Theta_{\rm p}} \approx 8,3\%$; $\varepsilon_{\Theta_{\rm K}} \approx 1,9\%$.

Основной вклад в погрешность внесла неточность данных, полученных при температурах, близких к температуре Кюри. Неточность связана с проблемами, возникшими при использовании оборудования для проведения эксперимента.

6 Литература

- 1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна М.: МФТИ, 2007. 280 с.
- 2. http://www.amtc.ru/production/metall/Gadoliniy