Class Activity Problems

Probability and Statistics 2022 Indian Institute of Management, Udaipur

21st July, 2022

	ame:
Na	

- There are a total of 114 points in this Question Paper. Answer as much as you can. If your acquired score is greater than equal to 100, it will be counted as 100%.
- The Exam is scheduled for 3 hours. "Time Left" reminders will be posted in 1.5 hrs, 2:30 hrs, 2:45 hrs from the beginning of the Exam time.
- There are three * marked problems that are more involved than the rest. In case you are stuck in one of those, it might be a good idea to consider solving other problems first and then continue with the * marked problems.
- You may take help from the "Exam Assistance Note" containing a few required definitions, lemma and theorem statements.

Let Y be Response variable, X_1, X_2 denote the Explanatory variables, ε be unknown random errors and β_1, \dots, β_3 are unknown parameters of interest. Determine whether the following relationship equation is a linear model. Relationship Equation: $Y = \beta_0 + \beta_1 \sin(X_1) + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$.

1. (a)

Score: Total Score: 5

Ans:

Not Linear Model

Linear Model

Identify if the following matrix is a Orthogonal Projection matrix.

$$M = \frac{1}{9} \begin{bmatrix} 3 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$$

(b)

Score: Total Score: 5

Ans:

Orthogonal Projection

Not Orthogonal Projection

Consider the matrices $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Does the matrix A have a Generalized Inverse? If yes, Construct a generalized inverse of A.

Score: Total Score: 1+4

(c) Ans:

Consider the model $\mathbf{y} = \mathbf{X}\underline{\beta} + \underline{\varepsilon}$, where $\underline{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$, $\mathbf{X} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & -1 \end{bmatrix}$ and ε is a mean zero error vector with various

and $\underline{\varepsilon}$ is a mean zero error vector with variance co-variance matrix $\sigma^2 I_{4\times 4}$. Prove that the parameter β_1 is not estimable

Score: Total Score: 7

A spring balance is used to weigh three objects with unknown weights β_1 , β_2 , β_3 , β_4 . The objective is to estimate the $\widetilde{\beta} = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 & \beta_4 \end{bmatrix}^T$. Assume that each the measurements in the spring balance are subject to (independent) Normally distributed random errors with mean 0 and unknown variance $\sigma^2 > 0$. Consider the data, when each object are weighted twice to get observations

$$\mathbf{Y} = \begin{bmatrix} y_{1,1} & y_{1,2} & y_{1,3} & y_{2,1} & \dots & y_{4,2} & y_{4,3} \end{bmatrix}^T$$

where $y_{i,j}$ denotes the j^{th} replicated measurement corresponding to the experiment when i^{th} object is placed on the spring balance. Note that $\mathbf{Y} \in \mathbb{R}^{12}$.

Represent the estimation problem in terms of the matrix notation $\underline{\mathbf{Y}} = \mathbf{X}\underline{\beta} + \underline{\varepsilon}$ by identifying the response vector $\underline{\mathbf{Y}}$, design matrix \mathbf{X} , regression coefficients $\underline{\beta}$ and the vectors of the random errors $\underline{\varepsilon}$.

the vectors of the random errors $\underline{\varepsilon}$.

Score:
Total Score: 2+ 5+2+1

Ans:

Prove that all the linear parametric functions of the parameters $\stackrel{\textstyle \circ}{\sim}$ are estimable for the associated design matrix.

(b) <u>Score:</u> Total Score: 5

Find the **Orthogonal Projection Matrix** for $\mathscr{C}(X)$, the column space of X. (Justify your steps with the reference to the results/theorem/lemma you are using.)

(c) Score: Total Score: 8

Ans:

(d) Consider a linear parametric function $\theta = \beta_1 + \beta_2 + \beta_3$. Identify a vector $\underline{\lambda}$ such that $\theta = \underline{\lambda}^T \underline{\beta}$.

Score: Total Score: 2

(e)	Find the Best Linear Unbiased Estimator for θ (Show your steps and justify your steps with the reference to the results/theorem/lemma you are using.)
	Score: Total Score: 7

(f)	A practitioner is interested in estimating all the parameters $\beta_1, \beta_2, \beta_3, \beta_4$ simul-
	taneously. write down the definition of $(1-\alpha)100\%$ simultaneous confidence
	intervals for the parameters.

Score: Total Score: 5

Ans:

(g) \star Which type of simultaneous Confidence interval would you prefer for the parameters $\{\beta_1, \beta_2, \beta_3, \beta_4\}$ and why?

Score: Total Score: 5

(h)	Construct	a	set	of	95%	simultaneous	confidence	intervals	for	the	parameters
	$\{\beta_i\}_{i=1}^4$.										

Score: Total Score: 8

Consider the standard linear model $\underline{\mathbf{Y}} = \mathbf{X}\underline{\boldsymbol{\beta}} + \underline{\boldsymbol{\varepsilon}}$ where $\underline{\boldsymbol{\varepsilon}}$ is Normally distributed 3. $(\underline{\boldsymbol{\varepsilon}} \sim N(\underline{\mathbf{0}}, \sigma^2 V))$, where V is a known positive definite matrix. Assume the design matrix \mathbf{X} has full column rank. Also, assume that σ is a known positive constant.

Show that the log likelihood function can be represented as

(a)
$$l_{\mathbf{\underline{Y}}}(\underline{\beta}) = K(V, \sigma^2) - \frac{(\mathbf{\underline{Y}} - \mathbf{X}\underline{\beta})^T V^{-1}(\mathbf{\underline{Y}} - \mathbf{X}\underline{\beta})}{2\sigma^2}$$

where $K(V, \sigma^2)$ is a constant that does not involve $\underline{\beta}$.

Score: Total Score: 5

(b)	Use part(a) to derive $\hat{\underline{\beta}}_{MLE}$, the Maximum Likelihood Estimator for the parameter $\underline{\beta}$.
-----	--

Score:
Total Score:7

Consider a linear model given by

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where $\mathbf{Y} \in \mathbb{R}^n, \underline{\beta} \in \mathbb{R}^p$ and $\underline{\varepsilon}$ is a Normally distributed random vector with mean $\underline{0}$ and variance $\sigma^2 I_{n \times n}$ and \mathbf{X} is an $n \times p$ matrix with rank $r (i.e. The design matrix <math>\mathbf{X}$ does not have full column rank). The parameter σ^2 is an unknown positive number. Assume that $\underline{\varepsilon} \sim N\left(\underline{0}, \sigma^2 I_{n \times n}\right)$. Let $\mathscr{C}(\mathbf{X})$ denotes the column space of \mathbf{X} , the vector space containing all possible linear combination of the column vectors of the matrix \mathbf{X} . It can be shown that $P = \mathbf{X}(\mathbf{X}^T\mathbf{X})^-\mathbf{X}^T$ is the **Orthogonal Projection** matrix for the $\mathscr{C}(\mathbf{X})$, where $(\mathbf{X}^T\mathbf{X})^-$ is any Generalized inverse of $(\mathbf{X}^T\mathbf{X})$.

Show that
$$E(\mathbf{Y}^T(I_{n\times n}-P)\mathbf{Y})=(n-r)\sigma^2$$
.

(a) Score: Total Score: 5
Ans:

Prove that the statistics $\mathbf{Y}^T \mathbf{P} \mathbf{Y}$ and $\mathbf{Y}^T (\mathbf{I}_{n \times n} - \mathbf{P}) \mathbf{Y}$ are independent (Mention if you are using any result).

(b) Score: Total Score:5

Derive the distribution of $\frac{(\mathbf{Y}^T P \mathbf{Y})/r}{(\mathbf{Y}^T (I_{n \times n} - P) \mathbf{Y})/(n-r)}$? (Show your steps)

(c) Score: Total Score: 10

Let
$$\widehat{\beta}_{LSE}$$
 be the **Least Square Estimator** for the parameter $\widehat{\beta}$. Show that $(\mathbf{Y} - \mathbf{X}\widehat{\beta})^T P(\mathbf{Y} - \mathbf{X}\widehat{\beta}) = (\widehat{\beta}_{LSE} - \widehat{\beta})^T \mathbf{X}^T \mathbf{X} (\widehat{\beta}_{LSE} - \widehat{\beta})$.

Score: Total Score: 5

Derive the distribution of $\frac{\|X(\widehat{\beta}_{LSE} - \beta)\|^2}{\sigma^2}$. (You may use the relation in part(d) to get your answer.) $\frac{\text{Score:}}{\text{Total Score: 5}}$

o•