(NATURAL SCIENCE)

Vol. 61 No. 8 JUCHE104(2015).

적응유전알고리듬을 리용한 화상잡음제거의 한가지 방법

최 목 주

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《우리는 우리 식의 프로그람을 개발하는 방향으로 나가야 합니다.》(《김정일선집》 중보 판 제21권 42폐지)

화상잡음은 화상을 얻고 확대하고 전송하는 과정에 생기게 된다. 화상처리분야에서 중요한 문제는 화상에서 특징을 보존하면서 잡음을 효과적으로 제거하는것이다. 최근에 화상잡음제거에 stack려파기가 리용되고있다. 그러나 선행연구[1]에서 제안한 MMAE표준에 기초한 stack려파기는 화상의 세부정보는 잘 보존하지만 화상의 잡음제거에는 효과적이지 못하다.

론문에서는 화상의 세부보존은 물론 잡음제거에도 효과적인 최량stack려파기를 결정하고 그것을 리용하여 화상잡음을 제거하는 방법을 론의하였다.

1. stack검파기정의

stack려파기는 턱값분해와 순서화성질을 가지고있는 흐름창문들의 모임으로 구성되는 비선형려파기로서 다음의 성질을 가진다.[2]

턱값분해

X를 농담값의 범위가 $0\sim M$ 인 농담화상이라고 하면 다음과 같은 식이 성립한다.

$$X(s) = \sum_{l=1}^{M} x_l(s) \tag{1}$$

여기서

$$x_l(s) = \begin{cases} 1, & X(s) \ge l \\ 0, & X(s) < l \end{cases}$$

은 X(s)(위치 s에서의 농담값)를 l값에 관하여 턱값분해한것이다.

② 순서화

길이 L인 두 벡토르 \vec{X} 와 \vec{Y} 가 있다고 하자. 이때 임의의 $i \in \{1, 2, \cdots, L\}$ 에 대하여 $X(i) \geq Y(i)$ 이면 $\vec{X} \geq \vec{Y}$ 라고 한다. 그리고 어떤 벡토르렬 $\vec{X}_1, \vec{X}_2, \cdots, \vec{X}_M$ 에 대하여 $\vec{X}_1 \geq \vec{X}_2 \geq \cdots \geq \vec{X}_M$ 을 만족시키면 그 벡토르렬은 순서화성질을 만족시킨다고 말한다.

③ 정의론리함수

N 개의 입구변수에 대한 론리함수 f 가 다음과 같이 주어졌다고 하자.

$$f: \{0, 1\}^N \to \{0, 1\}$$

이때 $\vec{X} \geq \vec{Y}$ 를 만족시키는 임의의 두 벡토르 \vec{X} 와 \vec{Y} 에 대하여 $f(\vec{X}) \geq f(\vec{Y})$ 를 만족

시키면 이 론리함수 f를 정의론리함수라고 부른다.

이와 같은 성질들로부터 stack려파기 S_f 를 다음과 같이 정의한다.

$$S_f(\vec{X}) = \sum_{t=1}^{M-1} f(\vec{x}^t)$$
 (2)

여기서 \vec{x}^t 은 \vec{X} 를 t 값에 관하여 턱값분해한 결과이다.

2. 최소평균2제곱오차에 기초한 최량모형결정

만일 n시각에 stack려파기에 대해 목표신호가 S(n)으로 표시되고 려파기창문에서 신호가 $\overrightarrow{R}(n)$ 이라면 최소2제곱오차(MSE)는 정의에 따라 다음의 식으로 표시할수 있다.

$$MSE(S_f) = E[(S(n) - S_f(\vec{R}(n)))^2]$$
 (3)

따라서 MSE에 기초한 최량화문제는 식 (3)의 풀이를 얻는 문제에 귀착된다.

이제 식 (3)에서 동시적오차 $(S(n)-S_f(\overrightarrow{R}(n)))$ 을 e(n)으로 표시하고 2제곱을 취하면 다음의 결과를 얻을수 있다.

$$e^{2}(n) = 2S(n)(S(n) - S_{f}(\vec{R}(n))) - (S^{2}(n) - S_{f}^{2}(\vec{R}(n)))$$
(4)

한편 식 (4)에 턱값분해성질과 stack려파기정의를 적용하면 다음과 같은 식들을 얻을 수 있다.

$$\frac{1}{2}S(n)(S(n)+1) = \sum_{t=1}^{L-1} ts_t(n)$$
 (5)

$$\frac{1}{2}S_f(\vec{R}(n))(S_f(\vec{R}(n)+1)) = \sum_{t=1}^{L-1} tf(\vec{r_t}(n))$$
 (6)

여기서 $s_t(n)$ 과 $\overrightarrow{r_t}(n)$ 은 각각 s(n) 과 $\overrightarrow{R}(n)$ 를 턱값분해했을 때 턱값 t 에서의 2진렬이다.

식 (5)와 (6)을 리용하여 식 (4)의 오른쪽항 $S^2(n) - S^2_f(\vec{R}(n))$ 을 다음과 같이 쓸수 있다.

$$S^{2}(n) - S_{f}^{2}(\vec{R}(n)) = 2\sum_{t=1}^{L-1} t(s_{t}(n) - f(\vec{r_{t}}(n))) - (S(n) - S_{f}(\vec{R}(n)))$$
 (7)

류사하게 S(n)의 턱값분해성질과 $f(\vec{r_t}(n))$ 의 순서화성질을 리용하면 다음의 식을 얻을수 있다.

$$S(n) - S_f(\vec{R}(n)) = \sum_{t=1}^{L-1} t(s_t(n) - f(\vec{r_t}(n)))$$
 (8)

식 (7)과 (8)로부터 식 (4)는 다음과 같이 쓸수 있다.

$$e^{2}(n) = (2S(n) + 1)\sum_{t} (s_{t}(n) - f(\vec{r_{t}}(n))) - 2\sum_{t} t(s_{t}(n) - f(\vec{r_{t}}(n)))$$
(9)

따라서 stack려파기를 리용한 신호추정에서 MSE는 다음과 같이 표시된다.

$$MSE(S_f) = 2\sum_{k=0}^{L-1} \sum_{t=0}^{L-1} \left\{ \sum_{j=1}^{2^N} [(k-t+0.5)P_t(o, b_j|k)(-f(b_j)) + (k-t+0.5)P_t(1, b_j|k)(1-f(b_j))] \right\} P(k)$$
(10)

한편 식(10)을 보다 간단히 표현하면 다음과 같이 쓸수 있다.

$$MSE(S_f) = 2\sum_{j=1}^{2^N} [\alpha_j f(b_j) + \beta_j]$$
 (11)

여기서

$$\alpha_{j} = \sum_{k=0}^{L-1} \sum_{t=0}^{L-1} [(t - k - 0.5)(P_{t}(0, b_{j}|k) + P_{t}(1, b_{j}|k))P(k)],$$
(12)

$$\beta_j = \sum_{k=0}^{L-1} \sum_{t=0}^{L-1} [(k-t+0.5)(P_t(1, b_j|k)P(k))]$$
(13)

이다.

식 (12), (13)에서 $P_t(0, b_i|k)$, $P_t(1, b_i|k)$ 와 P(k)는 각각

$$P[s_t(n) = 0, \vec{r}_t(n) = b_j | s(n = k)], P[s_t(n) = 1, \vec{r}_t(n) = b_j | s(n = k)]$$
 $P[S(n) = k]$

를 의미한다. 식 (11)은 입력신호와 목표신호사이의 MSE를 최소화하는 Stack려파기를 찾는 문제이다. 즉 식(11)을 다음과 같이 명백히 정식화할수 있다.

$$MinimizeMSE(S_f) = 2\sum_{j=1}^{2^N} [\alpha_j f(b_j) + \beta_j]$$
(14)

이때 식 (14)의 제한조건은 다음과 같다.

$$f(b_j) \le f(b'_j), b_j \le b'_j$$

그리고 $f(b_i)$ 는 0 또는 1값을 가지는 두값론리함수이다.

3. 최량화문제풀이를 위한 적응유전알고리듬의 교잡률과 변이률결정

우의 최량화문제는 적응유전알고리듬을 리용하여 풀수 있다. 적응유전알고리듬에서 교잡률과 변이률은 다음의 식에 의해 자체적응조정된다.

$$p_{c} = \begin{cases} \frac{k_{1}(f_{\text{max}} - f_{c})}{f_{\text{max}} - f_{\text{avg}}}, & f \ge f_{\text{avg}} \\ k_{2}, & f < f_{\text{avg}} \end{cases}, \quad p_{m} = \begin{cases} \frac{k_{3}(f_{\text{max}} - f)}{f_{\text{max}} - f_{\text{avg}}}, & f \ge f_{\text{avg}} \\ k_{4}, & f < f_{\text{avg}} \end{cases}$$
(15)

식 (15)에서 f_{\max} 는 개체군에서의 최대적응도값, f_{avg} 는 매 세대 개체군의 평균적응도 값, f_c 는 교잡시키려는 2개 개체가운데서 큰 적응도값, f 는 변이시키려는 개체의 적응도 값이다. 그리고 k_1 , k_2 , k_3 , k_4 는 알고리듬의 성능에 결정적인 영향을 주는 인자들로서 우리는

$$k_1 = 0.8, \ k_2 = 0.3, \ k_3 = 0.001, \ k_4 = 0.007$$

로 설정하였다.

4. 실험 및 결과분석

잡음출현확률이 0.05, 0.10, 0.15인 256×256크기의 임풀스잡음화상에 대하여

단순GA에 의한 방법과 론문에서 제안한 방법에 의한 실험을 진행하였는데 그 결과는 표와 그림과 같다.

표. 각이한 잡음출현확률화상에 대한 MSE분석표

잡음출현확률	MSE	
	단순GA 저	안한 방법
P=0.05	40.147	31.853
P=0.10	93.431	54.762
P=0.15	118.45	94.599

그림. 잡음출현확률이 0.1인 잡음화상(기))과 제안된 방법의 결과화상(L))

맺 는 말

적응유전알고리듬을 리용하여 최량stack려파기를 결정하고 그것을 리용하여 화상의 잡음을 제거하는 한가지 방법을 제기하였으며 실험을 통하여 그 효과성을 검증하였다.

참 고 문 헌

- [1] M. K. Prasad; IEEE Trans. Signal Process, 53, 3, 1025, 2005.
- [2] Jisang Yoo et al.; IEEE Transactions on Image Processing, 8, 8, 1014, 1999.

주체104(2015)년 4월 5일 원고접수

A Method of Suppressing Noise of Image using Adaptive Genetic Algorithm

Choe Ok Ju

This paper proposese a method to optimize stack filter using adaptive genetic algorithm and then to suppress the noise. The efficiency was verified through experiment.

Key words: noise, stack filter, MSE(Mean Square Error)