Chapter 3 - Functions

Let E and F be two sets.

A function (map or mapping) f from E to F is defined as the relation that associates to every element of E one unique element in F denoted f(x). A function from E to F is denoted by a small letter. E is the set of inputs (domain of the function) and F is the set of outputs (range/codomain of the function). We write:

$$f:E\longrightarrow F$$

The element f(x) is the image of x by the function f and we write y = f(x). In the context of real numbers, we say that y is the value of f of x. So, a function f from a set F to a set F is denoted as:

$$f: E \longrightarrow F, \quad x \longrightarrow y = f(x)$$

Remark

Some people define mappings and functions differently. Sometimes, it is defined as the relation between E and F such that an element of E has no image or only one image in F. A mapping is then a relation such that every element of R has one and only one image in F.

3.1.1 Definition - Real Function

We call a real function of the real variable or a numerical function, any mapping from \mathbb{R} or a subset of \mathbb{R} to \mathbb{R} .

Imagine two boxes, each respectively named E and F.

Box E has 5 objects inside, and box F has 6. We can map every object in E to one object in F. A **mapping** (or **function**) assigns each object in E to **exactly one** object in F. Different objects in E can be assigned to the same object in F, but no object in E can be assigned to more than one object in F.

3.1.2 Definition - Domain of definition, image, graph

The domain of definition of a function $f:\mathbb{R}\longrightarrow\mathbb{R}$ is denoted D_f and is defined by:

$$D_f = \{x \in \mathbb{R}, \ f(x) \in \mathbb{R}\}$$

For example, the function $x \longrightarrow f(x) = \frac{1}{x}.$ It's domain of definition is $\mathbb{R}^*.$

The set of images of a numerical function f is denoted $\operatorname{Im}(f)$, and is defined by:

$$\operatorname{Im}(f) = \{f(x), \ x \in D_f\}$$

For example, the function $f(x)=x^2$ defined on $\mathbb R.$ We have $\mathrm{Im}(f)=\mathbb R^+.$

The graph of a mapping $f: E \longrightarrow F$ is the subset G_f of $E \times F$ defined by:

$$G_f = \{(x,f(x)), \ x \in D_f\}$$

3.1.3 Definition - Injection, surjection, bijection

Let f be a mapping $f:D_f\longrightarrow \mathbb{R}$

1. f is injective if:

$$orall x,y\in D_f,\; x
eq y\implies f(x)
eq f(y)$$

or, we can say

$$\forall x, y \in D_f, \ f(x) = f(x) \implies x = y$$

2. f is surjective if

$$orall y \in \mathbb{R}, \; \exists x \in {D}_f, \; y = f(x)$$

3. A mapping $f: E \longrightarrow F$ is **bijective** if it is injective and surjective. In this case, we define its inverse function, denoted by f^{-1} . We have:

$$f^{-1}: F \longrightarrow E, \quad y \longrightarrow x = f^{-1}(y)$$

3.2 The set \mathbb{R}^I

Let I be any interval of \mathbb{R} . Denote \mathbb{R}^I the set of mappings f from I to \mathbb{R} ,

$$\mathbb{R}^{I} = \{f: I \longrightarrow \mathbb{R}, \text{ mapping }\}$$

We define on \mathbb{R}^I two operations; the addition, denoted + and the multiplication denoted imes as follows:

 $orall f,g \in \mathbb{R}^I, \ orall x \in I$

$$(f+g)(x)=f(x)+g(x) \quad ext{and} \quad (f imes g)(x)=f(x)g(x)$$

For the multiplication in $f \in \mathbb{R}^I$, instead of writing f imes g, it will be denoted fg or $f \cdot g$.

Define now a third external operation of $f\in\mathbb{R}^I$ as follows: for all $f\in\mathbb{R}^I$ and for all $\lambda\in\mathbb{R}$,

$$\lambda f: I \longrightarrow \mathbb{R}, \quad x \longrightarrow (\lambda f)(x) = \lambda f(x).$$

Finally, we say that the elements f and $g \in \mathbb{R}^I$ are equal when the images of the f coincide with those of g:

$$f=g\iff f(x)=g(x),\ \ orall x\in I$$

Proposition 3.2.1

let $f,g,h:I\longrightarrow\mathbb{R}$ be three mappings, and $\lambda.\,\mu$ two real numbers. We have

1.
$$(f+g) + h = f + (g+h)$$

2.
$$(f+g) = (g+f)$$

3. Denoting $O:I\longrightarrow \mathbb{R}$, O(x)=0 the identically null mapping. We have:

$$f + O = O + f = f$$

4. Denoting $1:I\longrightarrow \mathbb{R}$, 1(x)=1 the constant mapping equal to 1 on I. We have:

$$1 \cdot f = f \cdot 1 = f$$

5.
$$(\lambda f)g = \lambda(fg)$$

6.
$$(\lambda + \mu)f = (\lambda f) + (\mu f)$$

7.
$$\lambda(f+g) = \lambda f + \lambda g$$

3.2.1 Definition

Let $f,g \in \mathbb{R}^I$

1. Suppose that $\forall x \in I, g(x) \neq 0$. We denote:

$$rac{1}{g}:I\longrightarrow \mathbb{R},\quad x\longrightarrow rac{1}{g}(x)=rac{1}{g(x)}$$

2. Suppose that $orall x \in I, g(x)
eq 0$. We denote:

$$rac{f}{g}:I\longrightarrow \mathbb{R},\quad x\longrightarrow rac{f}{g}(x)=rac{f(x)}{g(x)}$$

3. Denote as well:

$$|f|:I\longrightarrow \mathbb{R},\quad x\longrightarrow |f|(x)=|f(x)|$$

3.3 Order in \mathbb{R}^I

Define on \mathbb{R}^I the relation denoted \leq by:

$$orall f,g \in \mathbb{R}^I, \quad f \leq g \iff orall x \in I, f(x) \leq g(x)$$

This relation \leq defines an order on \mathbb{R}^I . In fact it is:

- 1. reflexive: $orall f \in \mathbb{R}^I, f \leq f$
- 2. anti-symmetric: $\forall f,g \in \mathbb{R}^I, \; (f \leq g \text{ and } g \leq f) \implies f = g$
- 3. transitive: $\forall f, g, h \in \mathbb{R}^I$, $(f \leq g \text{ and } g \leq h) \implies f \leq h$

The order relation \leq satisfies as well the compatibility properties with the addiction and the multiplication

The order relation \leq defined in \mathbb{R}^I is not total, i.e., there exists functions in \mathbb{R}^I that are not comparable.

Example: Suppose that I contains at least two elements a and b such that $a \neq b$. Consider the two functions f and g defined by:

$$f: I \longrightarrow \mathbb{R}, \ f(a) = 1 \ ext{and} \ f(x) = 0, \ \ ext{if} \ \ x
eq a \ g: I \longrightarrow \mathbb{R}, \ g(b) = 1 \ ext{and} \ g(x) = 0, \ \ ext{if} \ \ x
eq b$$

Then we do not have $f \leq g$ since f(a) > g(a) neither $g \leq f$ since g(b) > f(b).

3.4 Monotonic mappings

3.4.1 Definition

Let $f \in \mathbb{R}^I$

1. We say f is increasing if

$$orall x,y \in I, \;\; x \leq y \implies f(x) \leq f(y)$$

2. We say that f is decreasing if

$$\forall x, y \in I, \quad x \leq y \implies f(x) \geq f(y)$$

- 3. We say that f is **monotonic** if it is only increasing or only decreasing.
- 4. When the inequalities in 1. (respectively 2.) are strict, we say that f is strictly increasing (respectively strictly decreasing.)

3.5 Parity, Periodicity

3.5.1 Definition

Given I an interval of $\mathbb R$ such that

$$orall x \in I, \quad -x \in I$$

let $f \in \mathbb{R}^I$

1. We say that f is even if

$$orall x \in I, \ f(-x) = f(x)$$

2. We say that f is odd if

$$orall x \in I, \; f(-x) = -f(x)$$

3.5.2 Definition

$$\forall x \in I, \quad x + T \in I$$

Let $f \in \mathbb{R}^I$. We say that f is periodic of period T if

$$\forall x \in I, \quad f(x+T) = f(x)$$

We say as well that the function f is T-periodic.

3.6 Bounded above, bounded blow and bounded functions

Let $f\in\mathbb{R}^I.$ Define f(I) by the set of images of the function f. f(I) is a subset of $\mathbb{R}.$ We have

$$f(I) = \{f(x), x \in I\}$$

Denote as well f(I) by $\mathrm{Im}(f)$. We define then, the following:

3.6.1 Definition

1. We say that f is **bounded above** if f(I) is bounded above in \mathbb{R} . i.e.,

$$\exists M \in \mathbb{R}, \forall x \in I, \ f(x) \leq M$$

2. We say that f is **bounded below** if f(I) is bounded below in \mathbb{R} . i.e.,

$$\exists m \in \mathbb{R}, \forall x \in I, m < f$$

3. We say that f is **bounded** if it is bounded above and bounded below.