计算机网络编程

第8章 IPv6数据包的封装与解析 信息工程学院 方徽星 fanghuixing@hotmail.com

大纲

- •设计目的
- ・相关知识
- 例题分析

1. 设计目的

- IPv6协议是针对当前IP协议问题制定的下一代协议标准
- ·根据IPv6包标准格式,通过封装与解析IPv6包
 - · 了解IPv6协议的基本概念
 - ・深入理解下一代网络层协议的工作过程

· IPv4协议的主要缺点

- 标准分类地址利用率低, 地址数量不能满足网络规模不断扩展的需要
- 随着网络结构越来越复杂,路由选择算法的研究越来 越显得困难
- IPv4协议对分组传输可靠性没有提供任何保障措施
- IPv4协议不支持多播传输
- IPv4协议不能保证分组传输的服务质量
- IPv4协议对网络安全问题没有提出对策

- · IPv6协议的基本概念
 - IPv6是由多个层次的一系列相关协议所构成的协议集

1992: IETF成立IPng工作组

1995:Cisco和Nokia 起草IPv6最初方案

1998: IETF正式公布 IPv6协议标准RFC2460

2001:主流操作系统 开始支持IPv6

2003: 我国启动CNGI 中国下一代互联网示范工程 1994: IPng工作组公布 RFC1726,提出18个选择方案

1996: IETF启动建立全球 IPv6实验床6Bone

1999: IETF成立IPv6论坛 开始分配IPv6地址

2003:主要网络设备制造商

开始提供IPv6设备

· IPv6协议的特点

新的协议 头部格式

- ✓ 基本头部长度固定
- ✓ 将一些非根本性与可选的字段移到扩展头部
- ✓ 使路由器在处理协议头部时效率更高

· IPv6协议的特点

巨大的地 址空间

- ✓ 从IPv4的32位增大到128位
- ✓ 从根本上解决IP地址匮乏问题
- ✓ 不再使用带来很多问题的NAT技术

· IPv6协议的特点

有效的分层 路由结构

- ✓ 更好地将路由结构划分出层次,可以覆盖从各级主干网直到内部网的多级结构
- ✓ 64位可作为子网地址空间使用
- ✓ 64位用于映射网卡硬件地址

· IPv6协议的特点

灵活的地址 自动配置

- ✓ 有状态地址自动配置
- ✓ 无状态地址自动配置
- ✓ 无须用户干预,自动获得可用IP地址

· IPv6协议的特点

内置的安全 性服务

- ✓ IPSec协议作为一个IPv6的组成部分 而使用
- ✓ IPSec可用提供主机IP地址认证、数据完整性验证与数据加密等功能

· IPv6协议的特点

更好地支持 QoS

- ✓ IPv6头部的流标记字段定义如何识别 通信流
- ✓ 路由器可对属于一个流的数据包进 行特殊处理

· IPv6协议的特点

良好的可扩 展性

- ✓ IPv6支持在基本头部之后定义扩展头部,方便地实现对新增网络应用的支持和扩展
- ✓ IPv4头部最多只能40B
- ✓ IPv6扩展头部长度只受IPv6包长度的 限制

· IPv6数据包的结构

版本(4位) 优先级(8位)	流标号(20位)			
有效载荷长度(2字节)	下一个头部 跳步限制 (8位) (8位)			
源IP地址(128位)				
目的IP地址 (128位)				
扩展头部与数据部分				

版本: 字段值6

版本(4位)	优先级(8位)	流标号(20位)		
有效载荷长度(2字节)			下一个头部 (8位)	跳步限制 (8位)
源IP地址 (128位)				
目的IP地址 (128位)				
扩展头部与数据部分				

优先级:路由器通过该字段值决定在网络拥塞时如何处理数据包

0~7:在拥塞时允许延时处理(默认值0)

8~15:优先级较高的实时业务需要使用固定速率传输

版本(4位) 优先级(8位)	流标号(20位)			
有效载荷长度(2字节)	下一个头部 跳步限制 (8位) (8位)			
源IP地址(128位)				
目的IP地址 (128位)				
扩展头部与数据部分				

流标号:表示数据包属于源主机与目的主机之间的某个数据流;默认值0

版本(4位)	优先级(8位)	流标号(20位)				
有效载荷长度(16位)			下一个头部 (8位)	跳步限制 (8位)		
	源IP地址 (128位)					
目的IP地址 (128位)						
扩展头部与数据部分						

有效载荷长度:表示数据包中除了基本头部之外的数据长度;最大长度65535字节

版本(4位) 优先级(8位)	流标号(20位)			
有效载荷长度(16位)	下一个头部 跳步限制 (8位) (8位)			
源IP地址(128位)				
目的IP地址 (128位)				
扩展头部与数据部分				

下一个头部:表示基本头部后面的头部

- · 可能是IP自己要使用的一个可选的扩展首部
- · 也可能是被封装的分组的首部,如UDP或TCP
- 每一个扩展头部中也包含该字段

下一个头部的代码

代码	下一个头部	代码	下一个头部
0	逐跳头部	44	分片头部
2	ICMP	50	加密的安全有效载荷
6	ТСР	51	认证
17	UDP	59	空(没有下一个头部)
43	源路由选择	60	目的地址选项

版本(4位)	优先级(8位)	流标号(20位)		
有效载荷长度(16位)			下一个头部(8位)	跳步限制 (8位)
源IP地址(128位)				
目的IP地址 (128位)				
扩展头部与数据部分				

跳步限制:表示数据包可以通过的最大的路由器转发次数;每经过一个路由器,该字段值减1;为0时,路由器丢弃该数据包,并向源主机发送ICMPv6报文

版本(4位) 优	先级(8位)	流标号(20位)			
有效载荷长度(16位)			下一个头部(8位)	跳步限制 (8位)	
源IP地址(128位)					
目的IP地址 (128位)					
扩展头部与数据部分					

源IP地址:发送数据包的源主机IPv6地址

目的IP地址:接收数据包的目的主机IPv6地址

版本(4位)	优先级(8位)	流标号(20位)				
有效载荷长度(16位)			下一个头部 (8位)	跳步限制 (8位)		
	源IP地址 (128位)					
目的IP地址 (128位)						
扩展头部与数据部分						

扩展头部: 用来扩展协议功能的部分; 长度是8B的整数倍; 多个扩展头部形成链状结构

逐跳头部

目的地址选项头部

IPv6扩展头部的 排列顺序

路由头部

除了目的地址选项头部之外,其他扩展头部在IPv6数据包中只能出现一次

分片头部

认证头部

封装安全载荷头部

1							
	版本(4位) 优先级(8位)				流标号(20位)		
	有效载荷长度(16位)			下一个头部(8位)	跳步限制 (8位)		
	源IP地址(1			128位)			
			目的I	P地址	(128位)		
	下一个头	部	头部长	度			
-	下一个头	部	头部长	度			
* *	***			•			
	下一个头	部	头部长	度			

· IPv6地址结构

16进制冒号记法:

FDEC:BA98:7654:3210:ADBF:BBFF:2922:FFFF

• IPv6地址结构

FDEC:0:0:0:0:BBFF:0:FFFF

FDEC::BBFF:0:FFFF

· IPv6地址结构

CIDR地址

FDEC::BBFF:0:FFFF/60

60位前缀

· IPv6地址结构

单播地址:定义了一个接口(计算机或路由器)。发送到单播地址的分组必须交付给这个指定的计算机

三种 目的地址 任播地址:定义了一组共享一个地址的计算机。发送到任播地址的分组必须交付给这个 组的成员之一,也就是最容易到达的那一个

多播地址:也定义了一组计算机。在多播通信中,组中所有成员均会收到一个分组副本

	Block Prefix	CIDR	Block Assignment	Fraction
1	0000 0000	0000::/8	Reserved (IPv4 compatible)	1/256
	0000 0001	0100::/8	Reserved	1/256
	0000 001	0200::/7	Reserved	1/128
	0000 01	0400::/6	Reserved	1/64
	0000 1	0800::/5	Reserved	1/32
	0001	1000::/4	Reserved	1/16
2	001	2000::/3	Global unicast	1/8
3	010	4000::/3	Reserved	1/8
4	011	6000::/3	Reserved	1/8
5	100	8000::/3	Reserved	1/8
6	101	A000::/3	Reserved	1/8
7	110	C000::/3	Reserved	1/8
8	1110	E000::/4	Reserved	1/16
	1111 0	F000::/5	Reserved	1/32
	1111 10	F800::/6	Reserved	1/64
	1111 110	FC00::/7	Unique local unicast	1/128
	1111 1110 0	FE00::/9	Reserved	1/512
	1111 1110 10	FE80::/10	Link local addresses	1/1024
	1111 1110 11	FEC0::/10	Reserved	1/1024
	1111 1111	FF00::/8	Multicast addresses	1/256

- 全球单播地址块(2000::/3)
 - 用于因特网上两个主机之间的单播通信

将一个48位以太网地址映射为一个64位接口标识

3. 例题分析—设计要求

- •设计要求
 - ·根据协议规定的IPv6数据包的标准格式,编写程序构造IPv6包结构(包括IPv6头部与TCP头部)
 - · 然后将封装后的IPv6包内容写入输出文件
 - · 不需要构造任何IPv6扩展头部
 - 数据字段通过字符串赋值来获得
 - · 需要计算TCP头部与数据部分的校验和

3. 例题分析—设计要求

- 具体要求
 - ·要求程序为命令行程序。例如,可执行文件名为 Ipv6Encap.exe,则命令行格式为:

Ipv6Encap output_file

• 要求将部分字段内容显示在控制台上,具体格式:

IP头部与数据字段

版本:xx

有效载荷长度:xx

下一个头部:xx

源IP地址:xx:xx:xx:xx:xx:xx:xx:xx

目的IP地址:xx:xx:xx:xx:xx:xx:xx

数据字段:...

3. 例题分析—设计要求

- 具体要求
 - 有良好的编程规范与注释。编程所使用的操作系统、 语言和编译环境不限,但是在提交的说明文档中需要 加以注明
 - 撰写说明文档,包括程序的开发思路、工作流程、关键问题、解决思路以及进一步的改进等内容

· 定义IPv6头部的数据结构

```
typedef struct IP_HEAD
                                   struct
                                         int64 Prefix;
   union
                                      unsigned char MacAddr[8];
       unsigned int Version;
                                   }SourceAddr;
       unsigned int Priority;
                                   struct
       unsigned int FLowLabel;
                                         int64 Prefix;
   unsigned short PayloadLen;
                                      unsigned char MacAddr[8];
   unsigned char NextHead;
                                   }DestinAddr;
   unsigned char HopLimit; }ip_head;
```

- ·填充IPv6包的各个字段
 - ·在对IPv6包内容封装之前,需要分别填充IPv6头部、 TCP头部与TCP数据

```
//填充3位地址前缀
ip.SourceAddr.Prefix = 0x01;
//填充45位路由前缀
ip.SourceAddr.Prefix <<= 45;</pre>
ip.SourceAddr.Prefix += 0x01;
//填充16位子网号
ip.SourceAddr.Prefix <<= 16;</pre>
ip.SourceAddr.Prefix += 0x01;
ip.SourceAddr.Prefix = hton64(ip.SourceAddr.Prefix) ;
```

- ·填充IPv6包的各个字段
 - · 在对IPv6包内容封装之前,需要分别填充IPv6头部、 TCP头部与TCP数据

```
//MAC地址转成接口标识
ip.SourceAddr.MacAddr[0] = char(0x02);
ip.SourceAddr.MacAddr[1] = char(0x00);
ip.SourceAddr.MacAddr[2] = char(0x80);
ip.SourceAddr.MacAddr[3] = char(0xFF);
ip.SourceAddr.MacAddr[4] = char(0xFE);
ip.SourceAddr.MacAddr[5] = char(0x18);
ip.SourceAddr.MacAddr[6] = char(0x6E);
ip.SourceAddr.MacAddr[7] = char(0xE5);
```


3. 例题分析一程序演示

本章小结

- 设计目的
 - · 了解IPv6协议的基本概念,理解协议工作过程
- ・相关知识
 - IPv4主要缺点
 - IPv6特点、数据包结构、地址结构
- 例题分析
 - · IPv6头部数据结构
 - ・填充字段