TP 11 - Exemple d'un filtre passe bande Tomas-Tortoni Valentin et Respaud Baptiste

<u>But</u>: Le but de ce TP est de tracer les diagrammes de Bode d'abord à l'ordinateur puis à la main, et de les exploiter.

I - Etude préliminaire : Bande passante du voltmètre

Le voltmètre affiche une tension efficace de 3.5 V pour 5V d'amplitude pour 100 Hz, on a bien le résultat attendu($H_{max} = 5V \ donc \ \frac{H_{max}}{\sqrt{2}} = 3.5V$).

A partir de 30 kHz la tension efficace du voltmètre comme à diminuer si bien que pour 200 kHz il ne mesure plus que 164 mV et dès 400 kHz on a plus rien du tout. Le voltmètre se comporte donc comme un passe bas.

On a donc une bande passante de 100 Hz jusqu'à 90 kHz (en théorie) mais d'après les observations précédentes on s'arrêtera à 40 kHz.

II - Etude du passe-bande

1) Etude théorique

- Posons
$$R_{tot} = R' + R_g + r$$

Ainsi par un montage diviseur de tension $\underline{Vs} = \frac{R'}{R_{tot} + jL\omega + \frac{1}{iC\omega}} \underline{Ve}$

$$\Leftrightarrow \underline{\mathsf{H}} = jR'C\omega/(1 + R_{tot} \times jC\omega - LC\omega^2)$$

Donc
$$\underline{H} = j\frac{x}{Q} * H_0/(1 + j\frac{x}{Q} - x^2)$$
 avec $x = \sqrt{LC}\omega$ et $H_0 = \frac{R'}{R_{tot}}$ et $Q = \frac{1}{R_{tot}}\sqrt{\frac{L}{C}} = 1.5$ et

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 et $f_0 = \frac{1}{2\pi\sqrt{LC}} = 5.0 \text{ kHz}$

- On détermine H et ϕ

Alors
$$H = \frac{H_0}{\sqrt{1 + Q^2 (\frac{f}{f_0} - \frac{f_0}{f})^2}}$$

Et
$$\varphi = - arctan(Q(\frac{f}{f_0} - \frac{f_0}{f}))$$

Résonance pour Q > $\frac{1}{\sqrt{2}}$ (Q = 1.5 donc il y a résonance)

On a H qui est maximum quand son dénominateur est minimal, i.e. quand $x_r = \frac{1}{x_n}$

$$\Leftrightarrow x_r = \pm 1$$
Or xr sera positif donc $f_r = f_0$

Ainsi à cette fréquence $\phi = - arctan(0) = 0$

De ce fait $H_{max} = H_0$, on cherche la bande passante, donc on veut

$$\begin{split} H & \geq \frac{H_{\max}}{\sqrt{2}} \Leftrightarrow \sqrt{1 \, + \, Q^2 (\frac{f}{f_0} - \frac{f_0}{f})^2} \geq \sqrt{2} \Leftrightarrow Q^2 (x \, - \frac{1}{x})^2 \, - \, 1 \geq 0 \Leftrightarrow Q^2 (x \, - \frac{1}{x})^2 \geq 1 \\ & \Leftrightarrow Q x^2 \, \pm \, x \, - \, Q \geq 0 \\ & \text{Posons } \Delta = (1)^2 \, + \, 4Q^2 = 4Q^2 \, + \, 1 = 4Q^2 \, + \, 1 \\ & x_{r1,2} = \frac{\pm 1 + \sqrt{4Q^2 + 1}}{2Q} \Leftrightarrow f_{r1,2} = f_0 * \frac{\pm 1 + \sqrt{4Q^2 + 1}}{2Q} \\ & \text{D'où } \Delta BP \, = \frac{f_0}{Q} \end{split}$$

2) Etude expérimentale

On utilisera une bobine d'inductance L = 10 mH et de résistance interne r = 18 Ω .

On prendra un condensateur de capacité C = 100 nF et comme résistance R = 142 Ohm, pour avoir une fréquence de résonance de 5 kHz et un facteur de qualité de 1.5.

Amplitude d'entrée Ae (en V)	10.5	5.1	5.2	5.1	4.9	4.8	4.7	10.1
Amplitude de sortie As (en mV)	72	88	269	494	1810	3100	2410	1900
Déphasage φ (Entrée par rapport à Sortie) (en deg)	-107	-86	-84	-82	-64	1	52	72
Fréquence f (en kHz)	0.050	0.100	0.500	0.998	3.004	5.000	6.991	10
Gain H (en dB)	0.0045	0.009	0.045	0.092	0.36	0.67	0.47	0.27

10.5	10.5	10.5	10.3	10.5	10.3	10.3
474	157	84	54	52	29	22
86	90	91	90	92	94	108
50	150	250	300	350	400	500
0.045	0.015	0.009	0.007	0.006	0.006	0.004

Tracé des différentes courbes

As en fonction de la fréquence

Gdb en fonction du log de la fréquence

Déphasage en fonction du log de la fréquence

Tracé à la main des différentes courbes

Il y a une erreur lors du TP, on a choisi la phase de 1->2 alors qu'il fallait 2->1, ce qui explique qu'on ai l'inverse de ce qui était demandé (Il suffit d'inverser la direction de l'axe des ordonnée pour retrouver le bon graphique)

3) Exploitation des courbes

On a un filtre passe bande.

Le gain est maximal pour f = 5.0 kHz, on retrouve bien la fréquence de résonance attendue. Le déphasage est nul pour f =5.0 kHz, cela correspond.

Le diagramme de bode asymptotique nous montre que les deux asymptotes en $\pm \, \infty$ se coupent bien en 5.0 kHz.

D'après l'étude théorique, on aura $H_{max}=H_0$ et par lecture graphique on a que $H_{max}=0.65$ Donc $H_0=0.65$

On connaît la formule $\Delta BP = \frac{f_0}{Q} \Leftrightarrow Q = \frac{f_0}{\Delta BP}$ avec $f_0 = 5.000~kHz$

De plus on a $H_{eff} = \frac{H_{max}}{\sqrt{2}} = \frac{0.67}{\sqrt{2}} = 0.47$

Par lecture graphique:

On a
$$f_{c1}=3.5~kHz$$
 et $f_{c2}=7~kHz$ D'où $\Delta BP=3.5~kHz$ Donc $Q=\frac{f_0}{\Delta BP}=\frac{5}{3.5}=1.43$

On donne les équations des asymptotes aux hautes et basses fréquences:

 $\mathsf{HF} : -\ 20log(x)\ -\ 20log(Q)$

 $\mathsf{BF}: 20log(x) - 20log(Q)$

L'intersection est obtenue en x=1, ainsi en x=1 ie f=5 kHz, par lecture graphique,

on aura
$$H_0 = 20log(Q) \Leftrightarrow Q = 10^{H_0/20} = 1.1$$

4) Filtrage

On prend R = 25 nF et C = 58Ω pour rendre le filtre plus sélectif.

On a les valeurs suivantes :

Amplitude d'entrée Ae (en V)	5.1	3.22	5.1
Amplitude de sortie As (en mV)	52	2210	72
Fréquence f (en kHz)	0.100	10	94
Déphasage φ (Entrée par rapport à Sortie) (en deg)	-3.6	1.76	100
Gain H (en dB)	-40	14.00	-20

On observe le signal de sortie pour un signal créneau pour les différentes fréquences :

5) <u>Montage intégrateur dérivateur</u>

Ce montage peut servir d'intégrateur dans un domaine de fréquence allant de de 10 kHz à l'infini (pente de -20 dB par décade)(en théorie) en pratique la tension délivrée par le générateur est capée.

Ce montage peut servir de dérivateur dans un domaine de fréquence allant de 0 à 10 kHz (pente de 20 dB par décade)

III - Exercice : Etude d'un passe-bas

D'après le titre, ce filtre est une passe-bas (d'après le diagramme de bode aussi). On constate qu'il a une pente de -20dB par demi-décade environ aux hautes fréquences. Il s'agit donc d'un passe bas du second ordre.

Par conséquent, sa fonction de transfert est :

$$H = \frac{H_0}{1 + j\frac{x}{0} - x^2}$$

Sans aucun calcul, on voit qu'il y a résonance donc on en conclut que Q > 0.5.

$$GdB = 20log(G) = 20log(H_0) - 20log(\sqrt{(1-x^2)^2 + \frac{x^2}{Q^2}})$$
$$= 20log(H_0) - 10log(1-x^2)^2 + \frac{x^2}{Q^2})$$

Pour x = 0 i.e pour f = 0 on a GdB = $20\log(H_0)$ = 40 dB par lecture graphique. On en déduit donc que H_0 = 100V

GdB est maximal pour x = 1 donc pour $\omega_0 = \omega$ ou encore $f_0 = f$. Par lecture graphique on a donc que $f_0 \simeq 17000$ Hz. On en déduit donc que $\omega_0 = 34000\pi$ rad. $s^{-1} \simeq 107000$ rad. s^{-1}

Enfin, on sait que Q = $\frac{f_0}{\Delta f_c}$ avec Δf_c la différence des fréquences de coupures telles que les fréquences de coupures sont les fréquences pour lesquels Gdb = $GdB_{max} - 3dB$. Ici $GdB_{max} \simeq 52~dB$ donc les fréquences de coupure sont les fréquences pour lesquels GdB = 49dB

On a donc $f_{c1} \simeq 15000~Hz~et~f_{c2} = 19000~Hz~d$ 'où Q = 1.25.