

Escuela Rafael Díaz Serdán

Ciencias y Tecnología: Química JC Melchor Pinto

Autocontrol

3° de Secundaria

Unidad 3

Moles y masa molar

Nombre del alumno: Aprendizajes: ______ Argumenta acerca de posibles cambios químicos en

- un sistema con base en evidencias experimentales.
- Explica, predice y representa cambios químicos con base en la separación y unión de átomos o iones, y se recombinan para formar nuevas sustancias.

F	ec	hc):
•	~~		••

Puntuación:										
Pregunta	1	2	3	4	5	6	7	8	9	Total
Puntos	10	10	10	10	10	10	10	15	15	100
Obtenidos										

Masa molar

La masa molar M de una sustancia es la masa de un mol de esa sustancia y se expresa en gramos por mol (g/mol).

$$M = \frac{m}{n} \tag{1}$$

donde m es la masa de la sustancia y n es la **canti**dad de sustancia, es decir, el número de moles de la sustancia.

Constante de Abogadro

El número o constante de Avogadro (N_A) es la cantidad de partículas (moléculas, átomos o partículas) que contiene un mol de una sustancia cualquiera.

$$N_A = 6.023 \times 10^{23} \text{mol}^{-1}$$

El número de Avogadro es la cantidad de átomos que contiene 1 mol de átomos cuya masa es igual a la masa atómica del elemento.

Implicaciones de la masa molar

- 1 mol de átomos contiene 6.023×10^{23} átomos
- lacktriangle La masa de un mol de átomos m es igual a la masa atómica m_a expresada en gramos
- 1 mol de moléculas contiene 6.023×10^{23} moléculas
- \blacksquare La masa de un mol de moléculas m es igual a la masa molecular m_m expresada en gramos

Algoritmo de cálculo

Ejercicio 1 10 puntos

Determina la masa molar de los siguientes compuestos químicos haciendo uso de la tabla periódica:

Sustancia	Masa Molar (g/mol)
Cloruro de sodio (NaCl)	35.45
Dióxido de carbono(CO_2)	44
Etanol (C_2H_6O)	46
Octano (C_8H_{18})	104
Sucrosa $(C_{12}H_{22}O_{11})$	342

Ejemplo 1

El peso molecular del carbonato de calcio, CaCO₃, es 100.09 g/mol. ¿Cuántos moles de carbonato de calcio hay en 63.8 g de carbonato de calcio? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los moles de carbonato de calcio dividiendo los gramos de carbonato de calcio entre el peso molecular. Las unidades de gramos se cancelan, lo que significa que la respuesta estará en moles.

$$n = 63.8 \text{ g} \times \frac{1 \text{ mol}}{100.09 \text{ g}} = 0.637 \text{ mol}$$

Ejercicio 3

10 puntos

El peso molecular de la glucosa, $C_6H_{12}O_6$, es 180 g/mol. ¿Cuántos moles de glucosa hay en 19.1 g de glucosa? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los moles de glucosa dividiendo los gramos de glucosa entre el peso molecular. Las unidades de gramos se cancelan, lo que significa que la respuesta estará en moles.

$$n = 19.1 \text{ g} \times \frac{1 \text{ mol}}{180 \text{ g}} = 0.106 \text{ mol}$$

Ejercicio 2

10 puntos

El peso molecular del agua, H₂O, es de 18 g/mol. ¿Cuántos moles de agua hay en 243 g de agua? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los moles de agua dividiendo los gramos de agua entre el peso molecular. Las unidades de gramos se cancelan, lo que significa que la respuesta estará en moles.

$$n = 243 \text{ g} \times \frac{1 \text{ mol}}{18 \text{ g}} = 13.5 \text{ mol}$$

Ejercicio 4

10 puntos

El peso molecular del cloruro de sodio, NaCl, es de 58.44 g/mol. ¿Cuántas moles de cloruro de sodio hay en 13.8 g de cloruro de sodio? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los moles de cloruro de sodio dividiendo los gramos de cloruro de sodio entre el peso molecular. Las unidades de gramos se cancelan, lo que significa que la respuesta estará en moles.

$$n=13.8~\mathrm{g}\times\frac{1~\mathrm{mol}}{58.44~\mathrm{g}}=0.236~\mathrm{mol}$$

Ejemplo 2

El peso molecular de la sacarosa, $C_{12}H_{22}O_{11}$, es 342.3 g/mol. ¿Cuál es la masa en gramos de 0.287 moles de sacarosa? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los gramos de sacarosa multiplicando los moles de sacarosa por el peso molecular. Las unidades de moles se cancelan, lo que significa que la respuesta estará en gramos.

$$m = 0.287 \text{ mol} \times \frac{342.3 \text{ g}}{1 \text{ mol}} = 98.3 \text{ g}$$

Ejercicio 6

10 puntos

El peso molecular del ácido fosfórico, H₃PO₄, es de 98 g/mol. ¿Cuál es la masa en gramos de 0.00948 moles de ácido fosfórico? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los gramos de ácido fosfórico multiplicando los moles de ácido fosfórico por el peso molecular. Las unidades de moles se cancelan, lo que significa que la respuesta estará en gramos.

$$m = 0.00948 \text{ mol} \times \frac{98 \text{ g}}{1 \text{ mol}} = 0.928 \text{ g}$$

Ejercicio 5

10 puntos

El peso molecular del ácido salicílico, $C_7H_6O_3$, es de 138 g/mol. ¿Cuál es la masa en gramos de 0.802 moles de ácido salicílico? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los gramos de ácido salicílico multiplicando los moles de ácido salicílico por el peso molecular. Las unidades de moles se cancelan, lo que significa que la respuesta estará en gramos.

$$m=0.802~\mathrm{mol}\times\frac{138~\mathrm{g}}{1~\mathrm{mol}}=111~\mathrm{g}$$

Ejercicio 7

10 puntos

El peso molecular de la vitamina C, C₆H₈O₆, es 176 g/mol. ¿Cuál es la masa en gramos de 0.000142 moles de vitamina C? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los gramos de vitamina C multiplicando los moles de vitamina C por el peso molecular. Las unidades de moles se cancelan, lo que significa que la respuesta estará en gramos.

$$m = 0.000142 \text{ mol} \times \frac{176 \text{ g}}{1 \text{ mol}} = 0.0250 \text{ g}$$

Ejercicio 8 15 puntos

Completa la tabla haciendo las conversiones necesarias.

Tabla 1: Cantidades de moles o números de partículas contenidas en objetos de uso común

Objeto	Moles	Número de partículas
Anillo de plata	0.065	3.915×10^{22}
Agua en un vaso	13.947	8.4×10^{24}
Cubo de Azúcar	$2.92{ imes}10^{-3}$	1.76×10^{21}
Lata de Aluminio	0.61	3.674×10^{23}

Autocontrol Guía 28

Ejercicio 9 15 puntos

Realiza los cálculos necesarios para completar la información en esta tabla.

Sustancia	$\begin{array}{c} {\rm Masa~Molar} \\ {\rm (g/mol)} \end{array}$	Masa (g)	Moles	Número de partículas
Calcio (Ca)	40.078	20.0 g	0.5	3.011×10^{23}
Glucosa $(C_6H_{12}O_6)$	180	45.0 g	0.25	1.5×10^{22}
Cobre (Cu)	63.54	3.27 g	0.0515	3.1×10^{22}
Ácido sulfúrico (H_2SO_4)	98	294 g	3	1.807×10^{24}
Oxígeno (O_2)	32	128.0 g	4	2.41×10^{24}
Agua (H ₂ O)	18	45 g	2.5	1.506×10^{24}
Etanol (C_2H_5OH)	46	69 g	1.5	9.034×10^{23}