Языки, семантика и исчисления

22 июля 2022 г.

Языки 1

Эпистемические языки

Ag – конечное множество агентов, Var – счетное множество пропозициональных переменных, $i \in Ag$, $G \subseteq Ag$, $p \in Var$

1.2 Сокращения

- $\varphi \to \psi := \neg(\varphi \land \neg \psi)$
- $\bot := p \land \neg p$

- ullet $\top := \neg \bot$
- $\varphi \lor \psi := \neg(\neg \varphi \land \neg \psi)$ $\hat{K}_i \varphi := \neg K_i \neg \varphi$
 - $\langle !\varphi \rangle \psi := \neg [!\varphi] \neg \psi$

2 Семантика

2.1 Модель Крипке

$$M = (W, (\sim_i)_{i \in Ag}, V)$$

2.2 Ограничения на \sim_i

2.3 Семантика операторов

Базовая логика:

• $M, x \models p \text{ e.t.e.}$

• $M, x \models \neg \varphi$ e.t.e.

• $M, x \models \varphi \land \psi$ e.t.e.

Статические операторы:

• $M, x \models K_i \varphi$ e.r.e.

• $M, x \models D_G \varphi$ e.t.e.

• $M, x \models C_G \varphi$ e.r.e.

• $M, x \models C_G^{\psi} \varphi$ e.t.e.

Динамический оператор (публичное обновление)

• $M,x\models [!\varphi]\psi$ e.t.e. $M,x\models \varphi\Rightarrow M^{!\varphi},x\models \psi$

Пусть $M = (W, (\sim_i)_{i \in Ag}, V)$ – модель Крипке, определим обновленную модель

$$M^{!\varphi} = (W^{!\varphi}, (\sim_i^{!\varphi})_{i \in Aq}, V^{!\varphi})$$

где

 $\bullet \ W^{!\varphi}:=\{w\in W\mid M,w\models\varphi\}$

• $\sim_i^{!\varphi} := \sim_i \cap (W^{!\varphi} \times W^{!\varphi})$

• $V^{!\varphi}(p) := V(p) \cap W^{!\varphi}$

3 Исчисления

3.1 K_m

Аксиомные схемы:

• Тавтологии КЛВ

$$(K)$$
 $K_i(\varphi \to \psi) \to (K_i\varphi \to K_i\psi)$

$$\frac{\varphi \qquad \varphi \to \psi}{\psi} \qquad \qquad \frac{\varphi}{K_i \varphi}$$

- 3.2 K'_m
- 3.3 KT_m
- 3.4 KB_m
- 3.5 $K4_m$
- 3.6 $K5_m$
- 3.7 $S4_m$
- 3.8 $S5_m$
- 3.9 $S5_mC$
 - Все тавтологии КЛВ
 - \bullet Аксиомы S5 для каждого оператора K_i
 - (K_C) $C_G(\varphi \to \psi) \to (C_G\varphi \to C_G\psi)$
 - (fix) $C_G\varphi \to E_G(\varphi \land C_G\varphi)$
 - (ind) $C_G(\varphi \to E_G \varphi) \to (\varphi \to C_G \varphi)$

Правила вывода:

$$\frac{\varphi \quad \varphi \to \psi}{\psi} \text{ MP} \qquad \frac{\varphi}{K_i \varphi} \qquad \frac{\varphi}{C_G \varphi}$$

3.10 $S5_mC'$

Аксиомные схемы:

- 1. Все тавтологии КЛВ
- 2. Аксиомные схемы S5 для оператора K_i
- 3. (fix) $C_G\varphi \to E_G(\varphi \land C_G\varphi)$

Правила вывода:

$$\frac{\varphi \quad \varphi \to \psi}{\psi} \text{ MP} \qquad \frac{\varphi}{K_i \varphi} \qquad \frac{\varphi \to E_G(\psi \land \varphi)}{\varphi \to C_G \psi} ind_R$$

- 3.11 $S5_mD$
- 3.12 $S5_mRC$
- **3.13** $PAL (= S5_m[])$
 - Аксиомные схемы $S5_m$
 - $[!\varphi]p \leftrightarrow (\varphi \rightarrow p)$
 - $[!\varphi]\neg\psi\leftrightarrow(\varphi\rightarrow\neg[!\varphi]\psi)$
 - $[!\varphi](\psi \wedge \chi) \leftrightarrow ([!\varphi]\psi \wedge [!\varphi]\chi)$
 - $[!\varphi]K_i\psi \leftrightarrow (\varphi \to K_i[!\varphi]\psi)$

Правила вывода:

$$\frac{\varphi \to \psi}{[!\chi]\varphi \to [!\chi]\psi} \text{ RE!} \qquad \frac{\varphi \quad \varphi \to \psi}{\psi} \qquad \frac{\varphi}{K_i \varphi}$$

3.14 *PAL'*

В исчислении PAL заменяем правило RE! на следующую аксиомную схему

(comp) $[!\varphi][!\psi]\chi \leftrightarrow [!(\varphi \land [!\varphi]\psi)]\chi$

3.15
$$PAL-C (= S5_m[]C)$$

$$S5_mC + PAL +$$

3.16
$$PAL-D (= S5_m[]D)$$

3.17
$$PAL-RC (= S5_m[]RC)$$