UNCLASSIFIED

AD 297 261

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

TECHNICAL REPORT

OPERATION DEEP FREEZE 61

1960 - 1961

MARINE GEOPHYSICAL INVESTIGATIONS

Marine Surveys Division

JUNE 1962

U. S. NAVY HYDROGRAPHIC OFFICE WASHINGTON 25, D. C.

NO OTS

ABSTRACT

Results of marine geophysical research during the U.S. Navy operations in support of DEEP FREEZE 61, 1960-1961, are presented. Observations in areas of the Pacific Antarctic, Antarctic Convergence, and South Atlantic were made from aboard four icebreakers: USS STATEN ISLAND (AGB-5), USS EDISTO (AGB-2), USS GLACIER (AGB-4), and USCGC EASTWIND (WAGB-279). Ships' tracks to, in, and from the Antarctic are given.

U. S. Navy Hydrographic Office personnel recorded 94 oceanographic stations aboard STATEN ISLAND and EDISTO. STATEN ISLAND occupied 31 stations in the eastern Ross Sea (Cape Colbeck area), 43 in the Amundsen-Bellingshausen Seas area, and 5 just south of the Antarctic Convergence. Data from these stations included vertical distribution of observed temperatures, salinities, and dissolved oxygens. Profiles of the observed physical and chemical properties of the water in these areas are presented. EDISTO occupied 15 stations in the western Ross Sea along the Victoria Land Coast in support of an ice prediction program begun on DEEP FREEZE 60. Vertical temperatures and salinities were observed. Densities, dynamic heights, and sound velocities were calculated by electronic computer for all stations.

Water types in the Pacific-Antarctic are discussed. These are identified in the areas of the eastern Ross Sea, Amundsen Sea, and Bellingshausen Sea. A representative station was selected from each area and the physical and chemical properties plotted for comparison.

Dynamic topography charts are presented for the eastern Ross Sea and Amundsen Sea areas. The 200 and 2500 decibar levels were selected as reference levels in the eastern Ross Sea and Amundsen Sea, respectively.

A section just south of the Antarctic Convergence is included with a profile of physical and chemical properties constructed from five oceanographic stations occupied in this area. The vertical structure of the southernmost station in this profile and those in the Amundsen and Ross Seas shows the vast expanse of the Circumpolar Water.

Concentrated bathymetric profiles were recorded in the eastern Ross Sea and three across the South Sandwich Trench with an AN/UQN-1B echo sounder. A discussion and profiles of the data collected across the South Sandwich Trench are included in this report.

The program of geomagnetic measurements aboard STATEN ISLAND was the first extensive shipborne investigation of the earth's magnetic field made in Antarctic waters by the United States. Approximately 11,500 track miles were recorded south of New Zealand. Total intensity data and comparison of magnetic and bathymetric data are presented in several profiles.

Aerial ice reconnaissance and surface ice observations from ships are presented.

A summary and field analysis of 71 bottom sediment samples collected aboard STATEN ISLAND are presented. All samples were transferred to Florida State University for laboratory analysis and publication of resulting data.

FOREWORD

DEEP FREEZE 61 was the seventh consecutive United States expedition in support of Antarctic research. Personnel of the U.S. Navy Hydrographic Office, supported by the National Science Foundation, conducted marine geophysical research from several icebreakers of TASK FORCE 43. Oceanographic studies were made in Ross, Amundsen, and Bellingshausen Seas and in the area of the Antarctic Convergence. Geomagnetic measurements were obtained along USS STATEN ISLAND track and Bathymetric profiles were recorded across the South Sandwich Trench. The analyses and tabulation of data collected are presented in this report.

Rear Admiral, U.S. Navy Hydrographer

CONTENTS

				Page											
l,	INT	ROD	DUCTION												
	В.	Sum	rpose	1 1 5											
		1. 2. 3. 4.	Temperatures	5											
	D.	1. 2. 3.	Profiles and Cross Sections	6 6 7											
	E. F.		ticipating Personnel • • • • • • • • • • • • • • • • • • •												
11.	oc	OCEANOGRAPHY													
	A. B.		iter Types of the Pacific-Antarctic Area	9											
		1. 2.	General	10											
			a. Temperature	17 17 17 18											
		3.	Dynamic Topographies	18											
	c.	Am	undsen Sea Area												
		1.	General	21											

CONTENTS (Cont'd)

																												rage
		2.	Phy	/sic	al P	rope	rtie	es																				
			a. b.		empe alini																							21 27
			с. d.		igma issol																						•	27 27
		3.	Dyn	nan	nic T	opo	graļ	phi	es	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•		27
	D.	Bell	lingsh	hai	sen	Sea	Ar	ea																				
		1. 2.			al . al Pi				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		28
			a. L		empe																							36 36
			b. c.	S	alini igma	- t		•		•	•	•	•	•	•		•	•	•	•	•	•	•	•		•		36
			d.	D	issol	ved	Ox	yg	jen	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	36
			n par a arcti						ile	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	36
		1. 2.	Con	ntir	al.	s Su	rfac	e ˈ	Ter	np	erc	ıtu	re	D	atc	1	•	•	•	•	•	•	•	•	•	•		41 42
		3. 4.			ogra	•																						42 44
	5.47				•																							• • •
Ш.	ВАІ	пүм	\ETR\	Y	ノトリ	HE:	SO	ווט	п:	A	NL) W	'IC	,H	114	(Er	NC	H,	•	•	•	•	•	•	•	•	•	46
IV.	GE	OMA	GNE	ETI	SM																							
		Con	mary npilat cussic	tio	n of	Dat	a	•	•	•	•		•	•	•	•	•				•		•		•			52 52 52
٧.	ICE	REC	ONN	NA	ISSA	NC	Ε.	•	•	•	•						•	•		•	•	•	•		•	•	•	83
	REF	EREN	ICES			•																						111

APPENDIXES

		Page
A. B.	Oceanographic Station Data	113 207
	FIGURES	
1.	Tracks of Icebreakers During DEEP FREEZE 61	2
2.	Oceanographic Station Locations, DEEP FREEZE 61	3
3.	Oceanographic Station Locations and Bottom Topography, Eastern Ross Sea Area	11
4.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Eastern Ross Sea Area (Stations 6, 9, 17, 20, 25, and 28)	12
5.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Eastern Ross Sea Area (Stations 5, 10, 16, 21, 24, and 29)	13
6.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Eastern Ross Sea Area (Stations 4, 11, and 15)	14
7.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Eastern Ross Sea Area (Stations 2 through 7)	15
8.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Eastern Ross Sea Area (Stations 27 through 31)	16
9.	Dynamic Topographies, Eastern Ross Sea (0- and 50-decibar Surfaces)	19
10.	Dynamic Topographies, Eastern Ross Sea (100- and 150-decibar Surfaces)	20

		Page
11.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Amundsen Sea Area (Stations 51 through 55)	22
12.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Amundsen Sea Area (Stations 45 through 49)	23
13.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Amundsen Sea Area (Stations 49 through 51)	24
14.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Amundsen Sea Area (Stations 42 through 45)	25
15.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Amundsen Sea Area (Stations 54, 58 through 60)	26
16.	Dynamic Topographies, Amundsen Sea Area (0- and 250-decibar Surfaces)	29
17.	Dynamic Topographies, Amundsen Sea Area (500- and 1000-decibar Surfaces)	30
18.	Dynamic Topographies, Amundsen Sea Area (1500– and 2000–decibar Surfaces)	31
19.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Bellingshausen Sea Area (Stations 62, 74 through 76)	32
20.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Bellingshausen Sea Area (Stations 67 through 69)	33
21.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Bellingshausen Sea Area (Stations 68, 71 through 73)	34
22.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Bellingshausen Sea Area (Stations 64, 68, and 70)	35

		F	ago
23.	Comparative Temperature-Salinity Plots for Cape Colbeck, Amundsen Sea and Bellingshausen Sea Areas	•	37
24.	Comparative Profiles of Temperature, Salinity, Sigma~t, and Dissolved Oxygen for Cape Colbeck, Amundsen Sea, and Bellingshausen Sea Areas	•	38
25.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Pacific-Antarctic Convergence Zone	•	43
26.	Bathymetric and Dynamic Chart of the South Sandwich Islands Area, South Atlantic Ocean		47
27.	Bathymetry and Ship Sounding Tracks, South Sandwich Islands Area	•	49
28.	Bathymetric Sections, Tracks A-B and C-D	•	50
29.	Bathymetric Sections, Tracks D-E, F-G, and Possible Movement Along Track A-B		51
30.	Magnetic Total Intensity Profiles Along STATEN ISLAND Tracks, Northern Section	•	53
31.	Magnetic Total Intensity Profiles Along STATEN ISLAND Tracks, Southern Section		55
32.	Comparative Magnetic-Bathymetric Profiles Across Pacific-Antarctic Ridge		57
33.	Comparative Total Intensity Chart	•	59
34.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 2 and 3	•	61
35.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 3a and 4		62
36.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 4 and 5	•	63

		Page
37.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 5 and 6	. 64
38.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 7 and 8	. 65
39.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 3 and 13	. 66
40.	Locations of Magnetic Measurement Profiles Along STATEN ISLAND Tracks North of 45°S	. 67
41.	Magnetic Total Intensity Profile, Section A-B	. 68
42.	Magnetic Total Intensity Profile, Section B-C	. 69
43.	Magnetic Total Intensity Profile, Section C-D	. 70
44.	Magnetic Total Intensity Profile, Section D-E	. 71
45.	Magnetic Total Intensity Profile, Section F-G	. 72
46.	Magnetic Total Intensity Profile, Section H-I	. <i>7</i> 3
47.	Magnetic Total Intensity Profile, Section 1–J	. 74
48.	Magnetic Total Intensity Profile, Section J-K	. <i>7</i> 5
49.	Magnetic Total Intensity Profile, Section K-L	. 76
50.	Magnetic Total Intensity Profile, Section L-M	. 77
51.	Magnetic Total Intensity Profile, Section M-N	. 7E
52.	Magnetic Total Intensity Profile, Section N-O	. 79
53.	Magnetic Total Intensity Profile, Section O-P	. 80

		Page
54.	Results of Aerial Ice Reconnaissance, Ross Sea	84
55.	Results of Aerial Ice Reconnaissance, Ross Sea	85
56.	Results of Aerial Ice Reconnaissance, Ross Sea	86
57.	Results of Aerial Ice Reconnaissance, Ross Sea	87
58.	Results of Aerial Ice Reconnaissance, Ross Sea	88
59 .	Results of Aerial Ice Reconnaissance, Ross Sea	89
60.	Results of Aerial Ice Reconnaissance, Ross Sea	90
61.	Results of Aerial Ice Reconnaissance, Ross Sea	91
62.	Results of Aerial Ice Reconnaissance, Ross Sea	92
63.	Results of Aerial Ice Reconnaissance, Ross Sea	93
64.	Results of Aerial Ice Reconnaissance, Ross Sea	94
65.	Results of Aerial Ice Reconnaissance, Ross Sea	95
66.	Results of Aerial Ice Reconnaissance, Ross Sea	96
67.	Results of Aerial Ice Reconnaissance, Ross Sea	97
68.	Results of Aerial Ice Reconnaissance, Ross Sea	98
69.	Results of Surface Ice Reconnaissance, Ross Sea	99
70.	Results of Aerial Ice Reconnaissance, Ross Sea	100
71.	Results of Aerial Ice Reconnaissance, Ross Sea	101
72.	Results of Surface Ice Reconnaissance, Ross Sea	102
72	Parults of Aprial Ion Pagannaissanan Page San	102

		Page
74.	Results of Surface Ice Reconnaissance, Ross Sea	104
75.	Results of Surface Ice Reconnaissance, Ross Sea	105
76.	Results of Aerial Ice Reconnaissance, Ross Sea	106
77.	Results of Surface Ice Reconnaissance, Ross Sea	106
78.	Results of Surface Ice Reconnaissance, Ross Sea	107
79.	Results of Surface Ice Reconnaissance, Amundsen Sea	108
80.	Results of Surface Ice Reconnaissance, Bellingshausen Sea	109
81.	Results of Surface Ice Reconnaissance, Bellingshausen Sea	110
	TABLES	
1.	Summary of Marine Geophysical Observations ~ DEEP FREEZE 61	4
2.	Surface Temperature Observations	42

I. INTRODUCTION

A. Purpose

Operation DEEP FREEZE 61 (1960–1961) was a continuation of United States support of scientific endeavors in the Antarctic; it was the seventh consecutive year of U.S. Navy Hydrographic Office participation in marine geophysical research in this area. The National Science Foundation supported the scientific effort, the results of which are presented in this report.

Research was conducted during ships' transits to and from the Antarctic and in the Ross Sea, Amundsen-Bellingshausen Seas, South Atlantic Ocean, and the region of the Antarctic Convergence.

B. Summary of Operations

Marine geophysical observations were conducted aboard USS STATEN ISLAND (AGB-5), USS EDISTO (AGB-2), and USS GLACIER (AGB-4). Bathythermograph (BT) soundings were made by USCGC EASTWIND (WAGB-279). Oceanographic stations were occupied by HMNZS ENDEAVOUR along Victoria Land Coast in cooperation with EDISTO.

Tracks made by the icebreakers during survey operations are shown in Figure 1, and locations of marine geophysical stations in the Ross Sea and Amundsen-Bellingshausen Seas, in Figure 2. Basic obervations at these stations consisted of vertical temperature measurements and collection of water, bottom, and biological samples. Also, geomagnetic and bathymetric measurements were made. While underway, between stations, and in transit from one area to another, continuous total intensity geomagnetic profiles and precision bathymetric soundings were recorded. In addition, BT lowerings and ice and meteorological observations were made. Table 1 summarizes these observations by ship.

BT lowerings with 900-foot instruments were scheduled on an hourly basis aboard the four icebreakers and on a 4-hour basis on other ships of the Task Force. Prints of the BT slides and the accompanying weather observations are on file at the National Oceanographic Data Center.

Bottom samples were collected with Phleger and Hydroplastic (PVC) corers. All samples obtained were transferred to the Department of Geology, Florida State University, Tallahassee, Florida, for analyses and publication of the resulting data. The pertinent field data of these samples are summarized in Appendix B.

FIGURE 1. TRACKS OF ICEBREAKERS DURING DEEP FREEZE 61

FIGURE 2. OCEANOGRAPHIC STATION LOCATIONS, DEEP FREEZE 61

TABLE 1. SUMMARY OF MARINE GEOPHYSICAL OBSERVATIONS - DEEP FREEZE 61

	STATEN ISLAND	GLACIER	EDISTO	EASTWIND
Oceanographic Stations	79	0	15	0
Oxygen Stations	79	0	0	0
BT's	875	959	600	929
Miles of Soundings	16,840	15,840	12,000	
Miles of Geomagnetic Obs.	22,377	0	0	0
Miles of Continuous Temperature Obs.	9,700	0	0	0
Sea and Swell Obs.	190			
Water Samples for Other Activities	110	0	0	0
Plankton Tows	1 <i>7</i>	0	0	0
Dredge Hauls	5	1	0	0
Temporal Geomagnetic Obs.	82	0	0	0
Miles of Mammal Obs.	14,254	0	0	0
Core Samples	<i>7</i> 1	0	0	0
Miles of Ice Reconnaissance	4,975			540
Surface Water Samples	<i>7</i> 5	0	0	0

Ice observations were made by a team of five observers assigned for aerial ice reconnaissance by the U.S. Navy Hydrographic Office to the Staff of Commander, Naval Support Forces, Antarctica. In addition, ice observations were made aboard all icebreakers by BT teams, aerographers, and quartermasters.

Meteorological and sea and swell observations were made at intervals of 1 to 3 hours by aerographers assigned to each icebreaker. These data were recorded on standard WBAN forms and forwarded to the National Weather Records Center, Asheville, North Carolina. Surface weather observations also were taken during Nansen cast (Appendix A) and BT lowerings.

Continuous underway soundings by echo sounders were made by all ships. Data taken by STATEN ISLAND have been incorporated into H. O. Charts 6637 (3rd Ed., 14 August 1961), 6633 (2nd Ed., 4 August 1961), and 6617 (1st Ed., 14 August 1961). The first chart is for the area in the vicinity of Cape Colbeck, the latter are for Thurston Island (formerly believed to be a peninsula) area and Eights Coast. All three charts are on a 1:500,000 scale.

Continuous air and sea temperature observations with resistance bulb thermometers were recorded on a 4-channel recorder. These data were taken by STATEN ISLAND enroute San Diego to Portland, Australia; and in the area of the Antarctic Convergence, enroute the Amundsen Sea. The records are on file in the U.S. Navy Hydrographic Office.

C. General Observational Techniques

Nansen bottles, with reversing thermometers attached, were used to observe temperatures and to collect water samples for salinity and dissolved oxygen determinations. The bottles were placed at international standard depths, with additional bottles in the upper layers, where maximum temperature changes occurred, and near the bortom.

Data reported were evaluated and coded for processing by an IBM 7070 computer. Machine computations provided temperature, salinity, and dissolved oxygen interpolation at standard depths, and calculations of sigma-t, anomaly of dynamic depth, and sound velocity. Listings of these data are given in Appendix A.

1. Temperatures

Paired reversing thermometers were used to observe temperatures, and unprotected reversing thermometers in conjunction with observed wire angles were used to determine sample depths. Each unprotected thermometer was paired with a protected thermometer. When paired protected thermometers differed by 0.06°C, or more, the reading from the thermometer considered most reliable, based on its previous history record, was used. The mean maximum temperature difference between paired protected thermometers for all stations was 0.04°C. All reported temperatures are considered accurate to within plus or minus 0.02°C, unless marked doubtful.

2. Salinities

Salinities were determined aboard ship by a salinometer. The salinities from the Cape Colbeck area were determined prior to 5 January 1961; those salinities for the remaining stations were analyzed prior to 28 March. Each sample was subjected to two determinations; if the difference equaled or exceeded 0.01‰, a third

KUWAHARA, Susumu, Velocity of sound in sea water and calculation of the velocity for use in sonic sounding, Hydr. Rev., v. 16, no. 2, pp. 123-140, 1939.

determination was made. Salinities are considered correct to within plus or minus 0.01%.

3. Dissolved Oxygen

Dissolved oxygen determinations were by a modified Winkler method. Each sample was subjected to duplicate titrations against sodium thiosulfate. If the difference in amount of sodium thiosulfate used exceeded 0.05 ml/l a third determination was made. Dissolved oxygen determinations are considered to be accurate to within plus or minus 0.03 ml/l. The only exception to this was on four of the Convergence stations; on stations 33 through 36, where oxygen values were within plus or minus 0.05 ml/l. All oxygen analyses were completed within four hours after a sample was taken.

4. Magnetic Total Intensity

A nuclear resonance total intensity magnetometer, with the sensing unit towed 500 feet astern, was used to record total intensity. Data measurements were recorded once every two seconds of time on a strip-chart recorder. Total intensity data records were scaled and converted to values in gamma (1 gamma equals 10^{-5} oersted).

Measurements were made while hove-to at each oceanographic station by lowering the sensing unit to a depth of about 400 feet; data recording and processing were similar to the procedures for underway observations.

D. Methods of Data Presentation

1. Profiles and Cross Sections

Selected north-south and west-east cross sections of observed characteristics are presented for all areas surveyed except the Convergence area, where only one line of stations was taken. These characteristics include temperature, salinity, dissolved oxygen, and computed values of sigma-t.

Profiles of corrected regional magnetic gradient are shown along the ship's track. In addition, profiles of magnetic and bathymetric observations for crossings of the Pacific-Antarctic Ridge are presented.

2. Dynamic Topographies

Charts of dynamic topographies were prepared from temperature and salinity station data for the Cape Colbeck and Amundsen Sea areas. These charts depict

general circulation at various levels for these areas.

3. Temperature-Salinity Plots

Plots of temperature and salinity are given for stations in three areas: Cape Colbeck, Amundsen Sea, and Bellingshausen Sea. Four representative stations were selected to demonstrate vertical structure of physical properties.

E. Participating Personnel

The following scientific personnel from the U.S. Navy Hydrographic Office participated in the marine geophysical investigations during DEEP FREEZE 61:

Richard H. Evans	Oceanographer	USS STATEN ISLAND
J. C. France	Oceanographer	USS STATEN ISLAND USS EDISTO
Larry K. Lepley	Civil Engineer	USS STATEN ISLAND USS GLACIER
Donald D. Roberts	Geophysicist	USS STATEN ISLAND
James Q. Tierney	Oceanographer	USS STATEN ISLAND USS GLACIER
Lloyd W. Wilson	Oceanographer	USS STATEN ISLAND

F. Other DEEP FREEZE Publications

REPORT NO.	SHORT TITLE	SHIP(S)
H.O. 16331	Pre-DEEP FREEZE (1954-1955)	USS ATKA
TR-33	DEEP FREEZE I (1955-1956)	USS GLACIER USS EDISTO
TR-29	DEEP FREEZE II (1956-1957)	USS ATKA USS STATEN ISLAND USCGC NORTHWIND USS GLACIER

REPORT NO.	SHORT TITLE	SHIP(S)
TR <i>-77</i> *	DEEP FREEZE III (1957-1958)	USS ATKA USS GLACIER USS BURTON ISLAND USCGC WESTWIND
TR-78*	DEEP FREEZE IV (1958-1959)	USS GLACIER USCGC NORTHWIND USS EDISTO USS STATEN ISLAND
TR-82	DEEP FREEZE 60 (1959-1960)	USS ATKA USS BURTON ISLAND USCGC EASTWIND USS GLACIER

^{*}Final report in preparation; however, data listings are available.

II. OCEANOGRAPHY

A. Water Types of the Pacific-Antarctic Area

The Pacific-Antarctic waters can be divided into two characteristic layers; Antarctic Upper Water, with low temperatures and salinities, and Antarctic Deep Water, with maximum temperatures and salinities and a gradual decrease of these properties to bottom. The boundary between these two layers is readily recognizable by a transition zone, where a rapid increase in temperature and salinity appears over a short-depth interval. According to Deacon, the Antarctic Upper Water can be described briefly as follows: A layer 100 to 250 meters thick is found all around the Antarctic seas. In winter, the water column is practically homogeneous. Temperature increases northward, from -1.9°C in the southern half of the zone, to between 0 and 1°C at the Convergence. In summer, a surface layer, Antarctic Surface Water, is formed, which has a higher temperature and lower salinity than Winter Water due to summer heating and ice melting.

The deeper layer of the Upper Water has been called Antarctic Winter Water by Mosby because this layer has nearly the same characteristics as the previous winter's Upper Water. Winter Water is significant in that it has a low temperature, a salinity with a lower gradient than exists in the transition layers above and below, and a salinity profile that often has a break in it. Below this layer of Antarctic Upper Water, a narrow transition layer with steep positive temperature and salinity gradients rapidly leads into Antarctic Deep Water.

Just south of the zone of strong negative surface temperature gradient, referred to as the Antarctic Convergence, one finds within the Deep Water three water types: Upper Deep Water, Lower Deep Water, and Bottom Water.

Upper Deep Water has a temperature of 2.0°C, or higher, and a salinity around 34.68‰. This Upper Deep Water is found south of the Convergence, just below the Winter Water. It is replaced 125 to 150 miles south of the Convergence by Lower Deep Water, which is undergoing transition to Antarctic Circumpolar Water.

Values of salinity and temperature necessary for water to be identified as Lower Deep Water are: temperatures greater than 0.5°C and a band of maximum salinity slightly greater than 34.7‰. These values are the same as those generally assigned to Antarctic Circumpolar Water. Therefore, for purposes of discussion, another restriction must be placed on Lower Deep Water, that of depth. In order for water to be classified as Lower Deep Water within the Antarctic Zone (south of the Convergence), its core of maximum salinity must be at a depth of about 2,000 meters.

With this added criterion, it is seen that Lower Deep Water is present but undergoing a transition south of the Convergence; the band of maximum salinity rises sharply from about 2,000 meters to 400 meters. Here then is where Lower Deep Water becomes Antarctic Circumpolar Water, in a zone of transition about 150 miles wide in a north-south direction.

In order to be identified as Bottom Water, the water must have a temperature less than 0.5° C and a salinity less than 34.7%. Therefore, Bottom Water is not found in the Pacific-Antarctic area unless depth to bottom is of the order of 3,000 to 4,000 meters.

Thus, in the first 150 miles of the Pacific-Antarctic area, in a north to south direction, three separate water types may be found in Deep Water: Upper Deep Water, Lower Deep Water, which is undergoing transition, and Bottom Water. Beyond this point in a southerly direction there is no Upper Deep Water, and Lower Deep Water becomes the Antarctic Circumpolar Water which will be the only identifiable Deep Water if depths are not great enough for the existence of Bottom Water.

B. Eastern Ross Sea Area

1. General

Thirty-one oceanographic stations were occupied in the eastern Ross Sea from Edward VII Peninsula (Cape Colbeck) northward to approximately 75°S and east-ward to Probable Island (E.D.). Of these, the twelve northernmost stations were in areas with sonic depths greater than 2,000 meters. The remaining stations were in areas with depths less than 1,000 meters except station 30, which was near the ice shelf in Sulzberger Bay, where the depth was 1,136 meters. Stations occupied within a radius of approximately 50 miles of Cape Colbeck had depths less than 500 meters, as did stations 28 and 29 near Guest Island to the east. Stations 2, 3, and 4, north of, and station 13, northeast of, Kainan Bay, were more than 500 meters deep. The 31 stations were occupied during the period 21 to 29 December 1960. A bottom contour chart is presented in Figure 3 based on bathymetric data collected during DEEP FREEZE 61.

Five cross sections were selected to illustrate vertical distribution of physical and chemical properties in the Eastern Ross Sea. These are presented as Figures 4 through 8. They consist of a west-east section of six deep stations (4,000-meter profile), a section over the continental shelf (1,000-meter profile), a section of three stations to the west of Cape Colbeck (1,000-meter profile), and two selected north-south sections representing the line of stations farthest west, south to Kainan Bay and those to the east into Sulzberger Bay. Bottom profiles are from the ship's echo sounding trace and are drawn with five soundings plotted between stations.

FIGURE 3. OCEANOGRAPHIC STATION LOCATIONS AND BOTTOM TOPOGRAPHY, EASTERN ROSS SEA AREA

FIGURE 4. VERTICAL DISTRIBUTION OF TEMPERATURE, SALINITY, SIGMA-T, AND DISSOLVED OXYGEN, EASTERN ROSS SEA AREA (STATIONS 6, 9, 17, 20, 25, and 28)

FIGURE 8. VERTICAL DISTRIBUTION OF TEMPERATURE, SALINITY, SIGMA-1, AND DISSOLVED OXYGEN, EASTERN ROSS SEA AREA (STATIONS 27 through 31)

2. Physical Properties

a. Temperature

Figure 4 shows the physical structure of the water column just seaward of the Antarctic continental shelf. The temperature section depicts the thin layer of slightly warmer Surface Water, the wider band of Winter Water with minimum temperatures, a narrow transition layer of rapid temperature increase just above the temperature maximum, and the broad expanse of Circumpolar Water that extends almost to the bottom. The transition layer separating Upper from Deep Water is found at quite uniform depths on all deep stations, as are the depths of maximum temperatures.

Bottom configuration of the shelf, illustrated in Figures 5 and 6, suggests north-south orientation of trenches extending seaward from the Antarctic continent in this area. Limited by station depths, only Upper Water was identified, except at station 24, where the transition layer was entered. If stations had been occupied between 10, 16, and 21, Circumpolar Water may have been found to exist in these trenches. In these two profiles, the existence of a small cold water cell centered at 125 meters at station 11 (<-1.50°C) and a larger one about 30 miles farther north extending eastwardly at stations 16 and 21 (<-1.75°C) were noted. This larger cell was located at depths from 150 to 300 meters. From the circulation pattern of the dynamic charts, these cells may be identified as cross sections of water with a flow toward Kainan Bay from seaward.

Temperature minima, as seen in the two north-south cross sections (Figs. 7 and 8), slope toward bottom from the shelf edge to the coast. Over the shelf, the water generally has a negative thermal gradient from the surface to bottom.

b. Salinity

Salinity sections show Circumpolar Water at the stations north of the 1,000-meter depth contour, with maximum salinities around 800 meters (Figs. 7 and 8). Below this depth, only a slight decrease was noted to bottom. At the stations taken over the continental shelf, salinities increased from surface to bottom and reached values slightly higher than 34.50%, on some stations. Surface values at all stations were 34.00%, and higher, with values greater than 34.25%, observed at several stations.

c. Sigma-t

Isopycnals on the west-east profiles generally slope downward to the east, and on the north-south profiles generally slope downward to the north and east; the easternmost section (Fig. 8) shows a weak gradient.

d. Dissolved Oxygen

On the west-east profiles, oxygen minimum values were found at the bottom on the sections over the continental shelf. The oxygen minimum layer within the Circumpolar Water was located between 500 and 600 meters, just above the depth of the salinity maximum and at about the same depth as the temperature maximum. The north-south profiles show an oxygen minimum layer of less than 4.50 ml/l in a broad zone generally between 400 and 1,200 meters, extending from the north to the continental shelf. This pattern of oxygen distribution provides supporting evidence for the circulation derived by dynamic topography.

3. Dynamic Topographies

In order to draw dynamic height charts (Figs. 9 and 10) of the Eastern Ross Sea area and include data for the majority of stations, it was necessary to select a reference level of 200 decibars. This is not a level of no motion, nor is it a level of oxygen minimum, but it does permit an estimation of circulation in the area. Prior to selecting the 200 decibar level as the reference level, other levels (500, 1000, and 1500 decibars) were used as a reference level. In each case, the same general circulation pattern was apparent; that is, a seaward flow to the east of Edward VII Peninsula, a shoreward flow to the west of Edward VII Peninsula, and a west-to-east flow about 150 miles north of the shoreline. Maximum current speeds were found at the surface which decreased in intensity with depth.

On the west side of the area, a large clockwise circulation is apparent, which probably was induced by combined effects of the eastward flowing Circumpolar Water and the prevailing winds. This current pattern reached to station 7, approximately 165 miles seaward, from the edge of the Ross Ice Shelf and Cape Colbeck and decreased in magnitude with increasing depth. At the 150-decibar level, it extended about 100 miles from the Ross Ice Shelf. Current speeds ranged from 0.3 knot at the surface to 0.1 knot at the 150-decibar surface; not only did the speed decrease to 0.1 knot at this level, but a weak counterclockwise component appeared at the northwest corner of the area.

To the west of Guest Island, a seaward flow is found at all levels with speeds also ranging from 0.3 knot at the surface to 0.1 knot near the bottom. Two components of this flow were noted from the 0- to 50-decibar levels; an eastern component forming a weak clockwise circulation and a western component forming a major counterclockwise current around Cape Colbeck. From the 100- to 150-decibar levels, the apparent flow was to the west as a counterclockwise current. The clockwise circulation weakened and disappeared at these levels.

FIGURE 9. DYNAMIC TOPOGRAPHIES, EASTERN ROSS SEA (0- and 50-DECIBAR SURFACES)

FIGURE 10. DYNAMIC TOPOGRAPHIES, EASTERN ROSS SEA (100- and 150-DECIBAR SURFACES)

The major water transport at all levels in the Sulzberger Bay-Cape Colbeck area appears to be to the west along the Edward VII Peninsula. It flows past Cape Colbeck and merges with the southward moving component of the major clockwise circulation.

It is suggested that the water of the Eastern Ross Sea flows southward against the Ross Ice Shelf, where the near-surface water is deflected to the west and the deeper water flows under the shelf, possibly around the southern tip of Roosevelt Island, and emerges well to the west. An examination of the dynamic analysis charts (Figs. 9 and 10) supports such a postulation for the southward-flowing portion of this circulation.

C. Amundsen Sea Area

1. General

The Amundsen Sea lies between Thurston Island (formerly believed to be a peninsula) on the east and Mount Siple 400 miles to the west. The area surveyed was about 250 miles north of the Amundsen Sea coastline between 105° and 120°W. Twenty-four stations were occupied during the period 27 January to 5 February 1961, most of which were taken in 7/10 to 9/10 rotten pack ice.

The vertical distribution of observed physical and chemical properties is shown for the Amundsen Sea area stations in Figures 11 through 15. One west-east cross-section is presented for stations to the north (Fig. 11) and one for stations to the south of 70°S (Fig. 12). Three north-south cross-sections are given (Figs. 13 through 15). Bottom contours in these sections are based on wire soundings taken on station.

2. Physical Properties

a. Temperature

Temperature cross-sections show the thin layer of Antarctic Surface Water with Winter Water immediately beneath, and the rapid transition to Antarctic Circumpolar Water. Bottom Water with temperatures less than 0.4°C was present at several stations.

Maximum temperatures were between 1.50° and 2.00°C, except at the two southernmost stations, 43 and 42, where temperatures were slightly colder than 1.50°C. Surface temperatures varied widely ranging from 0.23° to -1.77°C; a subsurface minimum (Winter Water) was observed in the upper 100 meters at all stations. Between 100 and 200 meters, a rapid temperature increase, (the transition zone into Circumpolar Water), is indicated by the heavy concentration of isotherms. Farther south, this transition zone was found at greater depths. Below the temperature maximum, a gradual decrease to bottom temperatures of around 0.4°C was observed.

b. Salinity

The range of surface salinities in this area was from 32.38 to 34.00‰. In the upper 200 meters, salinities increased rapidly to 34.50, with 34.00 through 34.25‰ appearing in the area of minimum temperatures. Salinities continued to increase with depth to a maximum of about 34.74‰ at approximately 800 meters and decreased to a minimum of 34.68‰ near the bottom.

c. Sigma-t

Surface sigma-t values less than 27.00 were observed at the stations east and north of station 49; to the west and southwest, values were slightly greater. Within the upper 100 meters, values increased rapidly to 27.50 at all stations. The 27.75 isopycnal occurred between 200 and 400 meters, and below this, sigma-t values increased slightly to maximum values of 27.87 near the bottom. Sigma-t values appeared to be very uniform horizontally throughout the area.

d. Dissolved Oxygen

Dissolved oxygen content in the surface water was greater than 7.00 ml/l at all stations, except stations 42, 43, and 44 (Fig. 14). Below the surface, oxygen values decreased rapidly to about 400 meters, where minimum values of about 4.00 ml/l were observed. At stations 50, 51, and 55, oxygen minima were less than 4.00 ml/l. Below this minimum layer, oxygen content increased to the bottom with values approaching 5.00 ml/l.

3. Dynamic Topographies

Considering the oxygen minimum layers as indicative of levels of no motion, a plot of oxygen minimum values shows the levels of no motion to be in the vicinity of 350 to 800 meters in the western portion of the area surveyed, and to slope downward to the south. In the eastern portion, depths of minimum oxygen varied. This is an area of strong counterclockwise circulation, where considerable differences are found in dynamic heights at the same standard depths between any two stations, especially below 500 meters.

Because of the amount of variability between eastern and western sectors of the area, the reference level was selected as the greatest depth reached at most of the stations, which in this case was 2,500 meters. As a check, dynamic height charts were plotted using different reference levels, and they depicted a similar circulation pattern.

The stations (38 through 61) upon which these calculations are based were taken south of the Convergence zone and north of the Divergence zone. They are located in the transition zone between the surface West Wind Drift to the north and East Wind Drift to the south. These stations were taken within a 10-day period, from 27 January to 5 February 1961.

A dominant feature at all surfaces is the strong counterclockwise circulation in the eastern side of the area (Figs. 16 through 18). The 2,000-fathom line passes generally through the western edge of this cell, with greater depths to the north and east. This cell increases in size from the bottom to the 250-decibar surface. From this surface to the zero-decibar surface, it is not as distinct and is displaced slightly to the northwest.

In the western sector of the area, another cell with a counterclockwise circulation is apparent at all levels. This cell increases in magnitude from the surface to the 250-decibar surface. Below this, it decreases to the 500-decibar surface, and increases to a maximum at the 1000- and 1500-decibar surfaces. This counterclockwise circulation then decreases to a small cell at the 2000-decibar surface.

Between these two major cells, a clockwise circulation is evident at all levels. In contrast to the two major counterclockwise cells, this clockwise circulation decreases from the surface to the 1500-decibar surface, where it appears as a very small cell. From this level to the 2000-decibar surface, it increases to its maximum size.

South of these three cells, a southeasterly transport is evident at all levels west of approximately 109°W. This transport then shifts to the northeast and continues to the easternmost sector of the area.

D. Bellingshausen Sea Area

1. General

The Bellingshausen Sea is located between Thurston Island on the west and Palmer Peninsula on the east. The eighteen stations occupied north of Thurston Island and in western Bellingshausen Sea were in relatively shallow water; station 79, located between the Amundsen and Bellingshausen Seas, was the deepest in the area, with a depth of 2,300 meters. Station 68 was taken at the edge of heavy impenetrable shorefast ice. The period of observation was 7 February to 9 March 1961.

Vertical distribution of observed physical and chemical properties in the Bellings-hausen Sea is presented in four cross-sections, Figures 19 through 22. Bottom contours in these sections were constructed from wire soundings at the stations.

FIGURE 16. DYNAMIC TOPOGRAPHIES, AMUNDSEN SEA AREA (0- and 250-DECIBAR SURFACES)

FIGURE 17. DYNAMIC TOPOGRAPHIES, AMUNDSEN SEA AREA (500- and 1000-DECIBAR SURFACES)

FIGURE 18. DYNAMIC TOPOGRAPHIES, AMUNDSEN SEA AREA (1500- and 2000-DECIBAR SURFACES)

2. Physical Properties

a. Temperature

These cross-sections show a subsurface minimum (Winter Water) with temperatures colder than -1.50°C in the upper 100 meters. Below this minimum layer, temperature increased with depth to the bottom, where maximum temperatures were observed. A subsurface layer of slightly warmer water existed above 50 meters at a number of stations north of Eights Coast.

b. Salinity

The most rapid increase in salinity occurred in the upper 75 meters in the area of transition from the thin layer of Surface Water to Winter Water. Salinity increased to a value of 34.00‰. The northwest-southeast cross section (Fig. 21) shows surface salinities progressively decreasing southwardly from 33.90‰ at station 73 to 32.20‰ at station 68. Horizontal distribution of salinities otherwise were generally uniform.

c. Sigma-t

Isopycnals closely paralleled the isohalines in all cross-sections. At stations 71, 72, and 73 (Fig. 21), surface sigma-t values were greater than 27.00 and were less than 27.00 at station 68 and all stations in Figures 19, 20, and 22. Sigma-t values as high as 27.81 were observed near the bottom on the deepest stations.

d. Dissolved Oxygen

Dissolved oxygen content decreased with depth throughout the area. The greatest surface oxygen variation occurred at stations 68 through 73 (Fig. 21), where a value of 9.02 ml/l was observed at station 68 and 6.78 ml/l at station 73. Oxygen values decreased to less than 4.5 ml/l near the bottom at the deepest stations.

E. Comparative Station Profiles

Temperature-salinity plots for stations in the areas surveyed during DEEP FREEZE 61 were prepared and are shown in Figure 23. From these plots, a representative station was selected from each area for illustration and comparison. Profiles of the observed physical and chemical properties, Figure 24, were prepared for each of the representative stations.

FIGURE 23. COMPARATIVE TEMPERATURE-SALINITY PLOTS FOR CAPE COLBECK, AMUNDSEN SEA AND BELLINGSHAUSEN SEA AREAS

FIGURE 24. COMPARATIVE PROFILES OF TEMPERATURE, SALINITY, SIGMA-T, AND DISSOLVED OXYGEN FOR CAPE COLBECK, AMUNDSEN SEA AND BELLINGSHAUSEN SEA AREAS

From these profiles, two distinct water layers in the Antarctic region are apparent: Antarctic Upper Water above 200 meters, and Antarctic Deep Water which extends to the bottom. Within the Antarctic Upper Water, Antarctic Surface Water and Antarctic Winter Water can be distinguished. Separating these two water masses is a transition layer identified by steep positive salinity and density gradients. Below the Antarctic Winter Water, a second transition layer exists, as defined by the temperature profiles, where a steep positive gradient is found. This layer lies between Upper Water and Deep Water.

Station 27 is located in the Cape Colbeck area (75°31'S, 152°08'W). Surface water, with temperatures about -1.55°C and salinities 34.00%, extended to 25 meters. Below this, a transition layer occurred to 75 meters, where a minimum temperature was observed. From 25 to 75 meters, salinities increased rapidly to 34.27‰ and only slightly thereafter to 200 meters. Below 200 meters, a transition from Upper to Deep Water occurred, with a sharp positive temperature gradient to 450 meters. Maximum temperature of 1.45°C was observed about 600 meters. From this level to the bottom, temperatures decreased gradually to less than 0.5°C. The salinity profile shows a weaker positive gradient between 250 and 500 meters, and a maximum salinity of 34.74%, about 800 meters. From 800 meters to the bottom, salinity decreased slightly to a value of 34.70%. The sigma-t profile in the upper 600 meters closely parallels that for salinity, and below this gradually increases to the bottom. Sigma-t values ranged from 27.38 at the surface to 27.86 at about 3,000 meters. Dissolved oxygen content decreased from greater than 8.00 ml/l at the surface to a minimum of 4.00 ml/l at about 600 meters. Below 600 meters, oxygen values increased slightly to 4.67 ml/l ground 3,000 meters near the bottom.

Station 49 was occupied in the Amundsen Sea area (70°08'S, 111°30'W). The temperature profile shows a surface value of -1.75°C, a decrease to about 10 meters, and then a slight increase to -1.65°C at 75 meters. The sharp positive gradient of transition occurred between 75 and 250 meters, the lower limit being nearer the surface than at station 27 in the Cape Colbeck area. Temperature maximum was 1.68°C at 400 meters. Below this, the curve follows the same pattern as observed at station 27 but with temperatures approximately 0.2°C higher to about 2,200 meters. From this level, temperatures approached those observed at station 27 and became identical near the bottom. Salinities decreased from the surface to 10 meters, where 33.62% was observed, and then increased to 34.14% at 50 meters. Between 50 and 100 meters, a positive gradient was still evident but to a lesser degree than above and below these depths. Maximum salinity of 34.73% occurred at about 600 meters, below this level to the bottom, salinity values were nearly identical at the four selected stations. Sigma-t values ranged from 27.08 at the surface to 27.86 near the bottom. Oxygen values were about 7.25 ml/l at surface, increased to 7.30 in the upper 25 meters and decreased to a minimum of 4.15 ml/l about 300 meters. Below this, they paralleled those observed at station 27.

Station 72, located in the Bellingshausen Sea (71°29'S, 094°00'W), had a surface temperature of -1.80°C, decreasing slightly below surface and increasing again to -1.70°C at 75 meters. Another decrease to -1.80°C was observed at 125 meters. Below this a positive gradient, as noted on the other stations, but with a less pronounced slope, occurred to maximum sampling depth of 525 meters. Water temperatures were colder than in the Amundsen Sea area. The salinity profile is similar to those at stations 27 and 49, but with less prominent positive gradients at the transition zones. Surface salinity was 33.76 and 34.69%, at 525 meters. Oxygen values in the upper 100 meters were less than those at corresponding depths in the Amundsen Sea and Cape Colbeck areas but followed the same general pattern. Below this, a lesser gradient was observed to 525 meters, where the profiles for all stations merge. Surface oxygen was 7.02 ml/1.

Station 79 was selected for comparison because of its location at 70°51'S, 101°54'W, between the Amundsen Sea and Bellingshausen Sea stations and because of its intermediate depth. A nearly isothermal layer extended to 100 meters with a surface temperature around -1.80°C. Below this was found the same positive temperature gradient as seen at stations 27 and 49, but this section of the profile plotted between the two stations. Below 500 meters, temperatures were 0.1 to 0.2°C colder than those of corresponding depths on station 27, and about 0.5°C colder than those of station 49 in the Amundsen Sea. Near-bottom temperature at 2,300 meters was 0.45°C. Salinities in the upper 50 meters were lower at this station than at the other three stations. A surface value of 33.29% was recorded. From 50 meters to about 600 meters, salinity values plotted between those for the Amundsen and Bellingshausen Seas; below 600 meters to the bottom salinity values were the same as those for the other representative stations. Oxygen values followed the same pattern in the upper 550 meters and below this were slightly higher than at stations 27 and 49.

In summary, Antarctic Surface Water with temperatures below 0°C was observed in the upper 25 meters, with a slight temperature decrease just below the surface. This water mass was nearly isosaline in the Cape Colbeck area and north of Thurston Island; salinities decreased slightly immediately below the surface in Amundsen and Bellingshausen Seas. The seasonally lower surface salinities are attributed to summer ice melt, which also resulted in low surface densities, in some cases a sigma-t value less than 27.00. Dissolved oxygen values were high, ranging between 7.00 and 9.00 ml/1.

Below the Antarctic Surface Water the transition layer was located between the variable Surface Water and the more homogeneous Winter Water. This is most noticeable in the salinity and oxygen profiles by the steep positive salinity and negative oxygen gradients between 25 and 75 meters. This transition layer overlays Antarctic Winter Water with slight temperature variations in the different areas, while the lower limits of this water mass varied between 75 meters in the Amundsen Sea area to

200 meters in the Cape Colbeck area. Temperatures were about -1.75° C, and salinity values ranged from 34.00 to 34.40‰. Oxygen content appeared quite uniform, ranging from 6.25 to 6.65 ml/l.

Below the Antarctic Winter Water, a second transition layer extended to the Antarctic Deep Water. This was indicated by a steep positive gradient in the temperature profile and a steep negative gradient in the oxygen profile. The depth at which this transition layer was found varied considerably in the different areas. North of Amundsen Sea, about 70°S, this layer was between 100 and 200 meters; whereas, in the Cape Colbeck area, about 75°S, it was observed at greater depths, between 250 and 450 meters. Between these two latitudes, it was located at intermediate depths. The temperature increase for all areas was approximately 2.5°C, from about ~1.50 to 1.00°C; the salinity increase was of the order of 0.5‰, from 34.20 to 34.65‰; and the oxygen decrease was approximately 2 ml/l, from around 6.3 to 4.2 ml/l.

Immediately below this transition layer were found maximum temperature, salinity, and minimum oxygen values. This Antarctic Deep Water is referred to in this report as Antarctic Circumpolar Water, with the area of maximum temperatures and minimum oxygen concentrations identifying its core. As shown by the t-s and vertical distribution plots, maximum temperatures for the different areas vary from 1 to 2°C, generally being about 1.68°C at 400 meters in the Amundsen Sea area, 1.45°C at 600 meters in the Cape Colbeck Area, and about 1.10°C at 500 meters in the Bellingshausen Sea area. Maximum salinities, ranging between 34.70 and 34.75‰, were found somewhat deeper, in the vicinity of 800 meters. Minimum oxygen values were slightly greater than 4.00 ml/l at about the same depth as maximum temperatures. Between 500 meters and bottom, little change in observed physical and chemical properties existed on all the stations occupied. Representative station profiles in Figure 24 show that between 500 and 3,000 meters temperature decrease did not exceed 1.2°C, salinity decrease was less than 0.1‰, and oxygen increase was less than 0.75 ml/l.

Considering Antarctic Bottom Water to have temperature and salinity values less than 0.5°C and 34.7%, respectively, Figure 24 does not indicate Bottom Water in these areas; however, these conditions were observed on some stations around 3,000 meters, and below.

F. Antarctic Convergence

1. General

The Antarctic Convergence is considered as the zone where the cold and more dense surface water to the Antarctic region sinks below the warmer and less dense surface water of the north. This zone is marked usually by a sharp north-south

decrease in the surface water temperature of 1 to 3°C (2 to 6°F). At greater depths, sinking water mixes with adjacent water and eventually spreads to the north as the Antarctic Intermediate Water.

Continuous surface temperature measurements and BT observations were made across the Antarctic Convergence. Five oceanographic stations were occupied along a northwest-southeast line in the vicinity of the Antarctic Convergence. The northern-most station, station 33, was located at 57°19'S, 152°27'W, just south of the Convergence, and the southernmost station, at 59°19'S, 147°33'W. A continuous temperature trace was tabulated, and temperature values in the Convergence Zone are presented in Table 2. Cross sections of temperature, salinity, sigma-t, and oxygen are shown in Figure 25.

2. Continuous Surface Temperature Data

Table 2 presents changes in temperature across the Convergence, as measured by a resistance bulb thermometer. A surface temperature of 7.8°C (46.0°F) was observed 22 January 1961 at 0900Z. At 1930Z, with the ship traveling approximately 14 knots, temperature decreased to 4.4°C (39.9°F). At 2200Z and 57°19'S, 152°27'W, the location of station 33, and south to station 36 (Fig. 25), temperature continued to decrease and then increased slightly between stations 36 and 37 from 1.7 to 2.1°C.

Time **Temperature** (°C) (°F) (GMT) **Position** 0900 7.8 46.0 45.5 56°02'S, 155°47'W 0935 7.5 44.1 0950 6.7 1030 5.8 42.5 42.1 1100 5.6 1930 4.4 39.9 57°19'S, 152°27'W 38.7 2200 3.7

TABLE 2. SURFACE TEMPERATURE OBSERVATIONS

3. Oceanographic Station Section

Temperature decreased rapidly from surface to a depth of 100 to 200 meters along the entire profile. Below this layer, temperature increased on the northern

two-thirds of the profile to above 2.0°C, as a band of Upper Deep Water, which increased in thickness toward the north. Lower Deep Water underlay this portion of the section. On the southern one-third of the section, below the surface layer, temperature increased to just over 1.00°C at 400 meters and then decreased toward bottom.

Salinity generally increased from north to south at the surface and also with depth. A broad band of salinity maxima, with values above 34.70‰, appeared to rise toward the surface from depths of 1,000 to 1,900 meters at the northern station to a depth of approximately 400 meters at the southern stations. Below this band of maximum salinity, salinity values decreased to the bottom, with the bottom values lower to the south.

The sigma-t surfaces sloped upward to the south with the steepest slope on the northern two-thirds of the profile. The 27.75 isopycnal closely followed the observed maximum temperature layer. This isopycnal is located below 900 meters at station 33 and rises to a depth of 200 meters at stations 36 and 37.

Surface oxygen values all were above 7 ml/l but less than 8 ml/l, except for station 35 with an observed value just over 8 ml/l. The amount of oxygen present decreased rapidly to a value of 4.50 ml/l at 300 meters at all stations. A band of oxygen minimum existed to a depth of about 400 to 500 meters, below which values increased with the greatest increase to the north to approximately 2,000 meters.

4. Summary

The zone of convergence is located north of the profile presented. Work by Midttun and Natvig (1957) in this area showed the Convergence to be located at about 56°25'S, along 150° west longitude during late January 1948.

Antarctic Upper Water was observed to extend from the surface to the vicinity of 200 meters, as shown in the temperature profile of Figure 25. A rapid transition into Upper Deep Water, on the northern two-thirds of the profile with temperatures of 2.0°C and above was observed. Below this, Lower Deep Water was found, which shoaled southward as Antarctic Circumpolar Water. The similarity of the vertical structure for station 37 and stations near the continental shelf in both the Amundsen Sea area and those farther south in the Ross Sea should be noted; it is indicative of the vast expanse of the Circumpolar Water. Bottom Water was not observed because of observational depth limitations attributed to bad weather.

The BRATEGG Expedition data (1947–1948) shows that the Upper Deep Water extends approximately 150 miles south of the Convergence. In Figure 25, the

Upper Deep Water was present to about 125 miles south of station 33. At station 33, surface temperature was 3.67°C. Approximately 35 miles northwest (1930Z), the surface temperature was 4.4°C. Since a corresponding increase was noted approximately 120 miles to the northwest (1100Z), it is suggested the Convergence was less than 50 miles north of station 33.

III. BATHYMETRY OF THE SOUTH SANDWICH TRENCH

During DEEP FREEZE 1961 operations, GLACIER obtained three sonic depth profiles across the South Sandwich Trench, in the vicinity of METEOR DEEP. Profiles were recorded with an AN/UQN-1B echo sounder. Noise level resulting from high seas reduced the clarity of the record to such an extent that depths could be scaled only to the nearest 50 fathoms. Navigational errors were small when radar was used. When navigation was by celestial fix or dead reckoning errors of 5 miles or greater were encountered. Velocity corrections were applied to all soundings to bring them to the same datum as the METEOR soundings.

The South Sandwich Islands, emergent parts of the Scotia Ridge, are portions of a Pacific-type island arc system extending from the tip of South America to Antarctica. The South Sandwich Trench lies along the convex side of this arc from South Georgia Island to near the South Orkney Islands. The location of the southern extent of the trench is somewhat doubtful because of the paucity of sounding data in the area. Figure 26 is a general bathymetric chart of the southwestern Atlantic Ocean, showing suggested topographic and geographic relationships between the South Sandwich Trench and the surrounding topographic features.

Data presented in Figure 26 and a survey of literature (Jacobs, et al, 1958 and Guilcher 1958) indicate that the South Sandwich Trench is an arcuate Trench, the outer convex feature of a primary arc. This arc and others similar to it in plan, but varying in complexity of structure, constitute the great continental fracture system – two major orogenic belts which encircle the earth in a scalloped linear pattern. The South Sandwich Islands chain is a good example of an active primary island arc. This arc differs from other arcs in the system in that it is reversed in orientation to the adjacent arcs of the Chilean Cordillera and Palmer Peninsula of Antarctica. An analogous structure of this type is the reversed arc of the Lesser Antilles Islands.

In both the Lesser Antilles and the South Sandwich Islands, great transcurrent faults extend in an east-west direction for a considerable distance from the ends of the island arc to the main orogenic belt. A corresponding gap equal in length to the island arcs is left in the fracture system (Fig. 26). Similar topographic alignment occurs along the transcurrent fault zones of the Lesser Antilles structure, with Cuba and the Greater Antilles forming the northern boundary and the north coast of Venezuela the southern boundary.

The arrows in Figure 26 show the probable direction of movement of the earth's crust along the topographic alignment of the South Sandwich Trench. Earthquakes and active volcanism throughout these zones indicate that movement might still be

FIGURE 26. BATHYMETRIC AND DYNAMIC CHART OF THE SOUTH SANDWICH ISLANDS AREA, SOUTH ATLANTIC OCEAN

taking place. The South Sandwich Trench and the adjacent island volcanoes may be a result of thrust faulting and folding by lateral compressive forces, a surface expression of deep-seated movement within the earth's mantle.

The area of confluence of one of the two east-west shear zones and the island-trench compressional zone are shown in Figure 27 (Inset Fig. 26). In addition to an interpretation of detailed bathymetry, this figure shows the tracks of GLACIER over the trench.

The floor of the South Sandwich Trench is 15 to 30 miles wide and has a mountainous bottom topography. Many trenches have narrow widths and relatively featureless bottoms composed of great thicknesses of sediments derived from nearby volcanic islands. The topographic expression in the South Sandwich Trench suggests the possibility of block-faulting, resulting from lateral thrust. An alternative explanation for the hummocky nature and great width of the floor follows: The floor of the trench in recent geologic time was much deeper than at present, perhaps nearly 5,000 fathoms deep. The floor then had the narrow, V-shaped or rounded profile typical of many other deep trenches. The inner wall of the trench (Fig. 27) was weakened by movement along the east-west shear zone that extends from this wall back through South Georgia Island to Cape Horn. A massive slab of this steep trench wall slid down into the bottom, largely filling it. By this explanation, the non-linear hummocks depicted by the profiles on Figures 28 and 29 would be the result of debris from an extensive landslide which originated on the south wall and perhaps was triggered by an earthquake. Figure 29 shows profile A-B with no vertical exaggeration; the dotted line is the suggested pre-landslide profile.

FIGURE 27. BATHYMETRY AND SHIP SOUNDING TRACKS, SOUTH SANDWICH ISLANDS AREA

FIGURE 28. BATHYMETRIC SECTIONS, TRACKS A-B AND C-D

FIGURE 29. BATHYMETRIC SECTIONS, TRACKS D-E, F-G, AND POSSIBLE MOVEMENT ALONG TRACK A-B

IV. GEOMAGNETISM

A. Summary of Operations

The program of geomagnetic measurements aboard STATEN ISLAND during DEEP FREEZE 61 was the first extensive shipborne investigation of the earth's magnetic field made in Antarctic waters by the United States. Approximately 22,000 miles of continuous total magnetic intensity profiles were recorded for the entire cruise. Of these, approximately 11,500 track miles were recorded south of New Zealand. Ship positions were determined by celestial navigation and dead reckoning. Errors in position were estimated to range from approximately 5 nautical miles to perhaps as much as 50 nautical miles under the most adverse conditions. A brief discussion of significant findings from the Antarctic portion of the cruise is presented in this report. Data from other portions of the cruise are presented in profile or tabular form.

B. Compilation of Data

Total intensity data were scaled and converted to values in gammas (1 gamma = 10^{-5} oersted); no corrections for diurnal variation were made. Profiles of data south of 45°S, corrected for regional gradient, were plotted along the ship's track as shown in Figures 30 and 31. Figure 32 presents comparative profiles of magnetic and bathymetric data measured simultaneously during a crossing of the Pacific – Antarctic Ridge. Total intensity values obtained on the cruise south of 45°S are compared in Figure 33 with total intensity values taken from H. O. Chart 1703S for the year 1955.

Measurements made while the ship was hove to at oceanographic stations, and short profiles recorded while in open channels in the ice are presented in Figures 34 through 39. Continuous measurements made during the transits north of 45°S are depicted as sections along the ship's tracks in Figure 40. Profiles were prepared for each section and are presented in Figures 41 through 53.

C. Discussion of Data

The objective of the geomagnetic program aboard STATEN ISLAND was to investigate the character of the earth's magnetic field in this largely unexplored region. It was anticipated that the magnetic data collected would yield new information concerning the composition and possible structure of upper layers of the earth's crust. As anticipated, examination of the data collected has revealed several quite significant characteristics. In addition, several new problems requiring further investigation have been found.

FIGURE 30. MAGNETIC TOTAL INTENSITY PROFILES ALONG STATEN ISLAND TRACKS, N

ATEN ISLAND TRACKS, NORTHERN SECTION

FIGURE 33. COMPARATIVE TOTAL INTENSITY CHART

FIGURE 34. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 2 AND 3

FIGURE 35. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 30 AND 4

FIGURE 36. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 4 AND 5

FIGURE 37. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 5 AND 6

FIGURE 38. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 7 AND 8

FIGURE 39. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 3 AND 13

FIGURE 40. LOCATIONS OF MAGNETIC MEASUREMENT PROFILES ALONG STATEN ISLAND TRACKS NORTH OF 45°S

FIGURE 41. MAGNETIC TOTAL INTENSITY PROFILE, SECTION A-B

FIGURE 43. MAGNETIC TOTAL INTENSITY PROFILE, SECTION C-D

FIGURE 45. MAGNETIC TOTAL INTENSITY PROFILE, SECTION F-G

FIGURE 47. MAGNETIC TOTAL INTENSITY PROFILE, SECTION 1-J

FIGURE 49. MAGNETIC TOTAL INTENSITY PROFILE, SECTION K-L

FIGURE 51. MAGNETIC TOTAL INTENSITY PROFILE, SECTION M-N

FIGURE 53. MAGNETIC TOTAL INTENSITY PROFILE, SECTION O-P

From an inspection of the general character of the magnetic profiles shown in Figure 30, the wave length of the magnetic anomalies can be seen to decrease markedly over the Pacific - Antarctic Ridge. This is accompanied by an increase in amplitude of the anomalies. The ship tracks crossing the ridge are separated by distances which are, in general, several time the wavelengths of the individual anomalies; thus, the question of whether individual magnetic features carry through from one profile to the next cannot be settled with certainty in every instance. However, it is apparent that some features do carry through from one profile to the next. These include several individual features having distinctive character and certain groups of related features. This carry through provides evidence that elongated magnetic lineations exist in a direction roughly parallel to the ridge. The evidence is strengthened by the magnetic character of the long track that parallels the ridge (1200, 14 March to 1200, 19 March). This track clearly shows longer anomaly wavelengths than appear on tracks at right angles to the ridge. Existence of such magnetic lineations was reported off the west coast of the United States by Mason and Raff (1961). It is believed that this area surveyed along the Pacific - Antarctic Ridge provides the first consistent evidence of magnetic lineations other than those located off the United States west coast. In the Antarctic, however, the lineations appear to trend in an east-northeast direction, parallel to the Pacific - Antarctic Ridge; off the west coast of the United States, the lineations trend in a north-south direction parallel to the postulated extension of the East - Pacific Rise. Various possible explanations to the origin of the lineations off the United States west coast have been advanced. Among these is the possibility that the lineation pattern may be caused by forces related to the earth's rotation. Instead, it now appears that in both of these areas, the lineated patterns may be characteristic of oceanic rises. Thus, the patterns may be an indication of the processes by which the rises were formed.

The track presented in Figure 32 shows very pronounced bathymetric relief. In this respect, this area of lineations in the Antarctic is unlike the similar area off the United States west coast. Off the west coast, the lineations were present but there was no corresponding bathymetric relief. Analyses of possible correlation of the magnetic and bathymetric relief undoubtedly is complicated by complex nonhomogeneous magnetic properties of the underlying rocks. However, close comparison of the magnetic relief with the bathymetric relief indicates a relationship that had not been anticipated. Figure 32 shows magnetic intensity lows over many of the bathymetric highs; at the same time, there are magnetic intensity highs over many of the bathymetric lows. This is the opposite of what normally would be expected if the magnetic anomalies were assumed to be caused by induced magnetic polarization of the rock comprising the bathymetric relief.

The bathymetric feature shown at time 0530 (Fig. 32) is an example of this inverse relationship. To produce the associated magnetic anomaly for this bathymetric feature

would require an intensity of magnetic polarization that is well within reason. However, this magnetization would have to be in a reverse direction from that of the earth's present magnetic field.

Several possible explanations of this inverse relationship between the magnetic and the bathymetric relief may be suggested.

- 1. The rock comprising the bathymetric relief is in actual fact reversely magnetized. This would indicate that there probably has been a reversal of the earth's magnetic field since the time of original solidification of the rock.
- 2. The top of the body causing the magnetic anomalies may be buried at some depth. Consequently, it is possible that the magnetic source has a surface relief related inversely to the bathymetric relief, perhaps owing to tectonic processes related to the formation of the ridge.
- 3. A pattern of correlating intrusions exists. This pattern may be either of granitic intrusions correlating with the bathymetric highs or of ultramafic intrusions correlating with the bathymetric lows.

The dashed line in the lower part of Figure 32 shows calculated estimates of depths to top of magnetic surface, using two-dimensional approximations. Over most of the profile, there is excellent agreement between these calculated depths and the recorded bathymetric depths. This agreement was found to be true also for data gathered over other parts of the ridge. This indicates that the top surface of the magnetic body is probably not buried at any considerable depth.

This phenomenon of inverse relationships between magnetic total intensity profiles and bathymetric relief has been observed at widely separated points. Bromery, Emory, and Balsley (1960) describe such an area off the west coast of the United States; Keller, Meuschke, and Alldredge (1954) mention briefly a similar occurrence found in the Gulf of Alaska.

Further investigations may determine that in at least some instances these inverse relationships are indicative of changes in the direction of the paleomagnetic field. In such cases, the direction of remanent magnetism derived from magnetic data in the ocean areas then can be compared with paleomagnetic data from land areas. The combined data then might make it possible to draw inferences concerning the age of oceanic crustal rocks.

V. ICE RECONNAISSANCE

The Hydrographic Office conducted an aerial ice reconnaissance program in the Ross Sea area during the Antarctic resupply period of Operation DEEP FREEZE 61. The objective of this program was to provide ice data to Commander, U. S. Naval Support Force, Antarctica, in support of ship movements and, at the same time, to acquire a history of ice conditions upon which future ice prediction techniques could be formulated.

Aerial ice reconnaissance was conducted on a non-interference basis and ideal observing conditions seldom were available. A total of thirty-one flights were participated in by Hydrographic Office ice observers, nineteen of which were U.S. Air Force logistics flights between Christchurch, New Zealand, and NAF McMurdo. These flights were at an altitude of about 9,000 feet and on a direct track between check points. Ice observations were limited to certain areas; some details of floe size, relief, and ice age were difficult to estimate owing to high flight altitude.

In addition to the long-range flights, ice reconnaissance was conducted on twelve local flights in the McMurdo Sound area. Surface ice observations were made by ice observers assigned to GLACIER and EASTWIND. Results of ice reconnaissance observations are shown in Figures 54 through 81.

FIGURE 54. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 55. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 56. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 57. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 58. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 59. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 60. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 61. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 62. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 63. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 64. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 65. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 66. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 67. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 68. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 69. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA

FIGURE 70. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA 100

FIGURE 71. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 72. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA 102

FIGURE 73. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 74. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA 104

FIGURE 75. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA

FIGURE 76. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 77. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA

FIGURE 78. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA

FIGURE 79. RESULTS OF SURFACE ICE RECONNAISSANCE, AMUNDSEN SEA

FIGURE 80. RESULTS OF SURFACE ICE RECONNAISSANCE, BELLINGSHAUSEN SEA

FIGURE 81. RESULTS OF SURFACE ICE RECONNAISSANCE, BELLINGSHAUSEN SEA

REFERENCES

- Bromery, R. W., Emery, K. O., and Balsley, J. R., Jr., 1960, Reconnaissance
 Airborne Magnetometer Survey off Southern California, U. S. Geological
 Survey Geophysical Investigations Map GP-211.
- Deacon, G. E. R., 1937, "The Hydrology of the Southern Ocean," <u>Discovery Reports</u>, vol. 15, p. 1–124.
- Guilcher, André, 1958, Coastal and Submarine Morphology translated by B. W. Sparks and R. H. W. Kneese. London: Methuen; New York: Wiley. 274 p.
- Jacobs, J. A., Russell, R. D., and Wilson, J. Tuzo, 1959, Physics and Geology.

 New York: McGraw-Hill. 424 p.
- Keller, Fred, Jr., Meuschke, J. L., and Alldredge, L. R., 1954, "Aeromagnetic Surveys in the Aleutian, Marshall, and Bermuda Islands," <u>Transactions</u>, American Geophysical Union, vol. 35, no. 4, p. 558–572.
- Mason, Ronald G., and Raff, Arthur D., 1961, "Magnetic Survey off the West Coast of North America, 32°N Latitude to 42°N Latitude," Geological Society of America Bulletin, vol. 72, no. 8, p. 1259–1266.
- Midtun, Lars, and Natvig, Johan, 1957, "Pacific Antarctic Waters," Scientific Results of the 'Brategg' Expedition 1947–48, nr. 3. Publ. nr. 20 fra Kommandør Chr. Christensens Hvalfangstmuseum i Sandefjord, Bergen.
- Mosby, Håkon, 1934, "The Waters of the Atlantic Antarctic Ocean," Det Norske Videnskaps-Akademi i Oslo, Scientific Results of the Norwegian Antarctic Expeditions 1927–1928 et seq., no. 11, 131 p.
- Raff, Arthur D., and Mason, Ronald G., 1961, "Magnetic Survey off the West Coast of North America, 40°N Latitude to 52°N Latitude," Geological Society of America Bulletin, vol. 72, no. 8, p. 1267–1270.

APPENDIX A

OCEANOGRAPHIC STATION DATA

SHIP NODC REFERENCE NO.

USS STATEN ISLAND
USS EDISTO
00672
00674

OCEANOGRAPHIC STATION INDEX

NODC Reference No. 00672

Sta. No.	Page	Consec.* Sta.No.	Sta. <u>No</u> .	Page	Consec.* Sta.No.	Sta. <u>No</u> .	Page	Consec.* Sta.No.
2	122	1	28	147	28	54	173	53
3	123	5	29	148	26	55	174	54
4	124	6	30	149	24	56	175	55
5	125	7	31	150	23	<i>57</i>	176	56
6	126	8	32	151	30	58	177	<i>57</i>
7	127	9	33	152	32	59	1 <i>7</i> 8	58
8	128	10	34	153	33	60	179	59
9	129	11	35	154	34	61	180	60
10	130	12	36	155	35	62	181	61
11	131	13	37	156	3 6	63	182	62
12	132	2	38	157	37	64	183	63
13	133	4	39	158	38	65	184	64
14	134	3	· 40	159	39	66	185	65
15	135	14	41	160	40	67	186	66
16	135	15	42	161	41	68	187	67
17	136	16	43	162	42	69	188	68
18	137	1 <i>7</i>	44	163	43	<i>7</i> 0	189	69
19	138	18	45	164	44	71	190	<i>7</i> 0
20	139	19	46	165	45	72	191	<i>7</i> 1
21	140	20	47	166	46	73	192	72
22	141	21	48	167	47	74	193	<i>7</i> 3
23	142	22	49	168	48	<i>7</i> 5	194	74
24	143	25	50	169	49	76	195	<i>7</i> 5
25	144	27	51	170	50	77	196	<i>7</i> 6
26	145	31	5 2	171	51	<i>7</i> 8	197	<i>7</i> 7
27	146	29	53	172	52	79	198	<i>7</i> 8
			NODC	Referer	ce No.006	74		
			(lce	Predict	ion Stations)			
IP 14	199	1	IP19	201	10	IP24	204	14
IP15	199	2	IP20	202	11	IP25	204	8
IP16	200	3	IP21	202	13	IP26	205	7
IP17	200	4	IP22	203	12	IP27	205	6
IP18	201	9	IP23	203	15	IP28	206	5

^{*} Consecutive Station Number. At NODC (National Oceanographic Data Center) oceanographic stations are numbered consecutively in the chronological order in which they were occupied. Consecutive station number and Cruise Reference Number are required by NODC to identify a station.

EXPLANATION OF OCEANOGRAPHIC STATION DATA

A. General

Each of the items appearing on the data pages is explained below. The vertical arrows shown in some of the column headings indicate the location of decimal points. The presence of asterisks to the right of data indicates those data are doubtful; hence, they were not used in the construction of the curve from which interpolated values (standard depth values) were derived. Observed values which were obviously invalid were omitted entirely.

B. Surface Observations

- 1. NODC Reference Number. This number is arbitrarily assigned. It identifies the cruise and provides a means of sorting from the IBM files all cards pertaining to that particular cruise. A cruise reference number for each ship is presented on the flysheet for the tabulated oceanographic data.
- 2. Station Number. Stations are numbered to designate a certain station location. See Figure 2, page 3, and Oceanographic Station Index, page 114.
- 3. <u>Date</u>. Month and day are given in Arabic numerals. The last three figures of the year are indicated. The hour is Greenwich Mean Time and is that hour nearest to the start of the first cast.
- 4. <u>Latitude and Longitude</u>. The position of the station is given in degrees and minutes.
- 5. Sonic Depth. Sonic Depth is the uncorrected sounding for the station, recorded in meters.
- 6. Maximum Sample Depth. The maximum depth from which a water sample was obtained at the station is given to the nearest 100 meters.
- 7. Wind. Wind speed is given in meters per second. Direction from which the wind blows is coded in degrees true to the nearest ten degrees. The last zero is omitted. North is 36 on this scale and calm is 0. See Table 1, Compass Direction Conversion Table for Wind, Sea, and Swell Directions.
- 8. Anemometer Height. The height of the anemometer above the waterline is given in meters.
- 9. Air Pressure. Barometric pressure is coded in millibars, neglecting the 900 or 1000. Thus, 966 millibars is coded as 96 and 1008 millibars is coded as 08.

- 10. Air Temperature. Dry bulb and wet bulb temperatures are entered to the nearest tenth of a degree Celsius (°C). A negative temperature is coded by dropping the minus sign and adding 50; thus -10° is coded as 60.
- 11. Humidity. The percent of humidity is coded directly, 100 percent being coded as 99.
- 12. Weather. Weather is coded as indicated in Table 2, Numerical Weather Codes Present Weather.
- 13. Cloud. Cloud type and amount are coded as indicated in Tables 3, Cloud Type, and 4, Cloud Amount.
- 14. Sea. Sea direction and amount are coded as indicated in Tables 1 and 5, respectively.
- 15. Swell. Swell direction and amount are coded as indicated in Tables 1 and 6, respectively.
 - 16. Visibility. Visibility is coded as indicated in Table 7, Visibility.
- 17. Water. Color is coded as indicated in Table 8, Water Color. Transparency is coded in whole meters from observations taken with a white Secchi disc (30 cm dia.).

C. Subsurface Observations

- 1. Sample Depth. Observed (actual) depth of each sample is given in meters. Interpolated values at standard depths are also given. The standard depths, in meters, are: 0, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 800, 1000, 1200, 1500, 2000, 2500, 3000, and thence every 1000 meters.
 - Temperature. The Celsius (°C) temperature is given in degrees and hundredths.
- 3. Salinity. Salinity is given in parts per thousand (by weight) to two decimal places.
- 4. Sigma-t. To convert to density divide by 1000 and add 1. Thus, a sigma-t value of 22.35 converts to a density of 1.02235.
- 5. <u>Delta-D</u>. The values in the columns are the anomalies of dynamic depths from the surface to each level in dynamic meters. Each entry is the cumulative sum of the anomalies of dynamic depth of the layer above. These values have been computed for the standard depths only, and serve to identify computed points.

- 6. <u>Dissolved Oxygen</u>. These values when given are in milliliters per liter to two decimal places. Values of 10.00 or above rarely occur and are coded as 9.99.
- 7. Sound Velocity. Sound velocity is given in feet per second to one decimal place, corrected for pressure at each depth. See footnote 1 on page 5.

TABLE 1. COMPASS DIRECTION CONVERSION TABLE FOR WIND, SEA, AND SWELL DIRECTIONS

Code		Direction	Code		Direction
00		Calm	19		185° to 194°
01		5° to 14°	20		195° to 204° SSW
02		15° to 24°	NNE 21		205° to 214°
03	*******	25° to 34°	22		215° to 224°
04		35° to 44°	23		225° to 234° SW
05	********	45° to 54°	NE 24	~~~~~	235° to 244°
06		55° to 64°	25		245° to 254° WSW
07		65° to 74°	ENE 26	*********	255° to 264°
08		75° to 84°	27		265° to 274° W
09		85° to 94°	E 28		275° to 284°
10		95° to 104°	29		285° to 294° WNW
11		105° to 114°	ESE 30		295° to 304°
12		115° to 124°	31		305° to 314°
13		125° to 134°	32	**************************************	315° to 324° NW
14		135° to 144°	SE 33		325° to 334°
15		145° to 154°	34		335° to 344° NNW
16		155° to 164°	SSE 35		345° to 354°
1 <i>7</i>		165° to 174°	36		355° to 4° N
18		175° to 184°	S 99		Variable or unknown

IT WEATHER
DES-PRESENT
WEATHER COL
NUMERICAL
TABLE 2.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	p with	(with ports- hour,	snow.	ě		P i	<u> </u>	a de la constanta de la consta	ξĕ
Dustinem or sand- it storm within sight of or at station during past	19 Funnel cloud(s) in sight during hour.	Thunderstorm or without precition) during past but NOT at time	Heavy driffing generally high.	49 Fog. depositing nime sky not discernible.	59 Drizzie and ra moderate or heavy.	Rain or drizzle and snow, moderate or heavy.	79 ice pellets (sleet, U. S. definition).	Slight shower(s) of hail, with or without rain or rain and show mixed, not associated with thunder.	Heavy thunderstorm with hail at time of observation.
West developed dust devil(s) within past hour.	18 Squal(s) within sight during past hour.	28 Fog during past hour but NOT at time o	38 Slight or moderate drifting snow, generally hign.	48 For depositing rime, sky discernible.	Drizzie and rain.	68 Rain or drizzle and snow, slight.	78 Isolated starille snow crystals (with or without fog).	Moderate or heavy howevers of heavy now half with or with ut rain or rain and now mixed.	DB Thunderstorm commons with duststorm resolution at time of been at time of been at time of the common at tim
Dust or sand raised y wind, at time of sservation.	ă.	Showers of hail, or of hail and rain, during past hour, but NOT at time of observation.	Heavy drifting snow.	Fog. sky NOT discernible, has begun or become thicker during	Moderate or thick freezing drizzle.	Moderate or heavy freezing rain.	Granular snow (with	Sight shower(s) of sold of sold or sand hair with our sand and without rain or rain and sonow mixed.	Heavy thunderstorm.
Widespread dust in suspension in the art. b. NOT raised by wind, at 6 time of observation.	Precipitation within Precipitation within Precipitation within Precipitation within Thunder heard, sight, reaching the precipitation at ground; but distanged and reaching the station.	dur. Showers of show, of Showers of hal, or of MOT offerand show, during has and Tam, during then hast hour but NOT appart hour. but NOT appart hour, but NOT affers of observation.	Singht or moderate drifting snow, generally low.	45 46 47 Fog. sky NOT assern: Fog. sky decemble. Fog. sky NOT dissemble no appreciable has begun or become a during passible has begun or behour.	56 Signt freezing drizzle.	66 Slight freezing rain.	76 Ice needles (with or without fog).	86 Moderate or heavy snow shower(s).	Slight or moderate thunderstorm, with hai at time of observation
05 hare	Precipitation within sight, reaching the ground, but distant from station.	Showers of rain E past hour, but time of observa	Sovere dustsform or indstorm, has in-	65. sky NOT discernible no appreciable change during past	Continuous drizzle Continuous drizzle (NOT freezing), thick at time of observation.	65 Continuous rain (NOT freezing), heavy at time of observation.	Continuous fall of snowflakes, heavy at time of observation.	85 Sight snow shower(s).	Sight or mod. thun- destorm without hail. but with rain and/or snow at time of
Visibility reduced by	Precipitation within sight, but NOT reaching the ground.	Freezing drizzle or freezing and (NOT fall, End. past hour, but NOT at time of observation.	Severe duststorm or sandstorm, no appreci- able change during past hour.	60g. sky discernible. no appreciable change during past hour.	intermitten drizzle (NOT freezing), thick at time of observation.	64 Intermittent rain (NOT freezing), heavy at time of observation.	intermittent fall of snowfakes, heavy at time of observation.	Moderate or heavy shower(s) of rain and snow mixed.	94 95 Bight or mod. thun- or rain and snow water without hail, or that at thins of mod. but with rain and/or thun- thunderstorm during snow at it me or time of observation.
Clouds fenerally forming or developing	13 Lightning visible, no hunder heard.	Rain and snow (NOT failing as showers) during past hour. but NOT at time of observation	Severe duststorm o	fog. sky NOT discennible. has become thinner during past hour.	Continuous drizzle (NOT freezing), moder- ate at time of ob.	Continuous rain (NOT freezing), moderate at time of observation.	Continuous fall of snowflakes, moderate at time of observation.	nixed.	Slight snow or rain nd snow mixed or hail time of observation; understorm during ast hour, but not at me of observations.
State of sky on the whole unchanged during past hour.	More or less contin- ous shallow fog at sta- on, NOT deeper than 6	Snow (NOT failing as showers) during past hour, but NOT at time of observation	Signt or moderate duststormorsandstorm has increased during past hour.	6g. sky discernible. has become thinner during past hour	Intermittent drizzle (NOT freezing) moder- ate at time of ob.	62 Intermittent rain (NOT freezing), mod- erate at time of ob.	intermitent fall of snowflates, moderate at time of observation.	Violent rain show-	Moderate or heavy an at time of ob. hunderstorm during ast hour, but NOT a
Clouds generally dis- solving or becoming less developed during past hour.	Patches of shallow fog at station, NOT u deeper than 6 feet on to land.	Rain (NOT treezing Snow (NOT falling as and NOT falling as and NOT falling as such species) during past hour, hour, but NOT at time of ob. of observation	Sight or moderate duststormor sandstorm no appreciable change during past hour	41 Fog in patches.	S1 Continuous drizzle (NOT freezing) slight at time of observation	Continuous rain (NOT freezing), slight at time of observation	Continuous fall of snowfabers, slight at time of observation.	Moderate or heavy rain shower(s).	Sight rain at time of the control of
Cloud development, Clouds generally dis- NOT solvent or Descenning Dossrvable during past less developed during nour	10 Light fog.	Drazie (NOT freeing and NOT failing as show. a ers) during past hour. but NOT at time of ob	Slight or moderate Slight or moderate Usetstormorsandstorm durstrormorsandstorm Dass hour Bass hour during past hour	Fog at distance at time of observation, but anot at station during past hour.	50 Intermittent drazile (NOT freezing) sight at time of observation.	Intermittent rain (NOT freezing), slight is at time of observation of	TO Intermittent fall of snowflakes, sught at time of observation	Signt rain shower(s).	Moderate or heavy shower(s) of hai, with or o without rain or rain as and in show mixed, not a sale of cated with thunder.

TABLE 3. CLOUD TYPE

Code

- O Stratus or Fractostratus
- 1 Cirrus
- 2 Cirrostratus
- 3 Cirrocumulus
- 4 Altocumulus
- 5 Altostratus
- 6 Stratocumulus
- 7 Nimbostratus
- 8 Cumulus or Fractocumulus
- 9 Cumulonimbus

TABLE 4. CLOUD AMOUNT

Code

- 0 No clouds
- 1 Less than 1/10 or 1/10
- 2 2/10 and 3/10
- 3 4/10
- 4 5/10
- 5 6/10
- 6 7/10 and 8/10
- 7 9/10 and 9/10 plus
- 8 10/10
- 9 Sky obscured

TABLE 5. SEA AMOUNT

Mean Max. Height of Sea Waves

Code	in feet (Approx.)	Description
0	0	Calm (glassy)
1	0 - 1/3	Calm (rippled)
2	1/3 - 1 2/3	Smooth (wavelets)
3	0 - 1/3 1/3 - 1 2/3 1 2/3 - 4	Slight
4	4 - 8	Moderate
5	8 - 13	Rough
6	13 - 20	Very rough
7	20 - 30	High
8	30 - 45	Very high
9	over 45	Phenomenal ⁺

⁺ As might be expected in center of hurricane

TABLE 6. SWELL AMOUNT

Code	Approximate Height (feet)	Descrip	otion	Approximate Length (feet)
0		No sw	ell	
1	1 to 6	Low swell	Short or Average	0 to 600
2			Long	Above 600
3			Short	0 to 300
4	6 to 12	Moderate	Average	300 to 600
5			Long	Above 600
6			Short	0 to 300
7	Greater	High	Average	300 to 600
8	than 12		Long	Above 600
9		Confu	sed	

TABLE 7. VISIBILITY

Code		
0	Dense fog 50	yards
1	Thick fog 200	yards
2	Fog 400	yards
3	Moderate fog 1000	
4	Thin fog or mist 1	mile
5	Visibility poor 2	
6	Visibility moderate 5	miles
7	Visibility good 10	miles
8	Visibility very good 30	miles
9	Visibility excellent Over 30	miles

TABLE 8. WATER COLOR

Code (Percent yellow)	Description
00	Deep blue
10	Blue
20	Greenish-blue (or green blue)
30	Bluish-green (or blue green)
40	0,00
50	Light Green
60	Yellowish-green
70	Yellow green
80	Green yellow
90	
99	

				5	SURFACE	OBSERVATION	ONS				
NODC	STATION			DATE			PO	SONIC	MAX.		
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	R LATITUDE LONGITUDE		DEPTH UNCORRECTED	SAMPL! DEPTH		
00672	0002	12	21	1960	04	78 08	's	162	50' W	0640	06

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		סטס	SE	EA .	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
06	15		94	56 7	57 5	73	02	6	1	10	3			8		

12		94	20	1 3	7 2	13		12 0	<u>' </u>	1 10					•
					s	UBSUR	FACE	OBSER	VAT	IONS					
		SAMPLE PTH (M)	τ '	°c ♥	s%	6 O	σţ	*	+	ΣΔρ	0;	m I/I	Ň	4	y
STD OE STD OE STD OF STD OF STD OE STD OE STD OE STD OE STD	00000000000000000000000000000000000000		-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	26 26 26 25 35 45 36 26 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37	89	60			00000000000		▼ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	77333333221145557755773333111	444444444444444444444444444444444444444	719901999777777777777777777777777777777	996677388009944660011477

					SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO	SONIC DEPTH	MAX. SAMPLE		
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	FITUDE	LO	NGITUDE	UNCORRECTED	
00672	0003	12	22	1960	05	77	24 ['] S	162	06' W	0668	06

	w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	מטכ	SI	A	SWEL	.L	VIS.	W	ATER
5	PEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
	15	15		90	55 0	55 6	86	03	1	3	16	3			8		

7 1 17	<u>_</u>			SUBSUR	FACE OBSER	VATIONS		
		SAMPLE DEPTH (M)	T °C ♥	s% 0 ♦	σ ₁ ψ	Σ Δ D	O2m I/I	V, +
ST	ORS		-01 31 -01 31	34 30 34 30	27 62 27 62	0 000	7 58 7 58	4719 2 4719 2
ST	OBS D OBS	0010	-01 32 -01 32 -01 32	34 30 34 30 34 30	27 62 27 62 27 62	0 005	7 56 7 58 7 60	4719 5 4719 6 4720 0
ST	OBS		-01 33 -01 34 -01 34	34 29 34 28 34 28	27 61 27 60 27 60	0 010	7 59 7 56 7 55	4720 0 4720 2 4720 4
ST:	280	0030 0043 0050	-01 34 -01 36 -01 42	34 28 34 30 34 32	27 60 27 62 27 64	0 015	7 50 7 50	4720 9 4720 5
ST		0075	-01 49 -01 49 -01 49	34 34 34 34 34 35	27 65 27 65 27 66	0 035	7 42 7 33	4720 3 4721 0 4721 7
ST	ORS OBS	0100	-01 63 -01 81	34 36 34 38	27 67 27 70	0 046	7 07 6 70	4720 3 4719 3
STI STI	овѕ	0150 0173 0200	-01 82 -01 83 -01 87	34 41 34 44 34 45	27 72 27 74 27 75	0 066	6 64 6 58 6 51	4720 5 4721 8 4722 9
ST	OBS D	0217 0250	-01 88 -01 86	34 46 34 47	27 76 27 17	0 101	6 49	4723 8 4726 1
ST	OBS OBS	0300	-01 85 -01 85 -01 85	34 48 34 49 34 51*	27 78 27 79 27 80*	0 116	6 49	4726 9 4729 3 4732 4*
ST	OBS	0400 0400	-01 85 -01 83 -01 83	34 50 34 51 34 51	27 79 27 80 27 80	0 146	6 39 6 38 6 38	4732 6 4735 6 4735 6
ST	J	0500	-01 87 -01 87	34 52 34 51 34 51	27 80 27 80	0 174	6 35	4740 2 4741 0
	OBS OBS	0533 0578	-01 87	34 51 34 52	27 81		6 31	4745 6
	,							
								}
				}				
							!	

				5	SURFACE	E OBSERVATIONS	•		
NODC REF.	CTATION			DATE		Р	OSITION	SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0004	12	22	1960	11	76° 57′ S	162 21' W	0604	05

	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	QUO	SI	Α.	SWEL	.L	VIS.	W	ATER
SI	PEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
	11	15		87	53 4	53 9	87	02	6	8	16	3			8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% 0 ♦	σt ψ	ΣΔΟ	O₂m 1/i ♥	V,
STD OBS OBS STD OBS	0000 0000 0009 0010 0019 0020 0028 0030 0047 0050 0071 0075 0190 0143 0150 0191 0200 0240 0250 0288 0300 0326		· ·			77777776666666666666666666666666666666	

					SURFACE	E OBSER	VATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LONG	SITUDE	DEPTH UNCORRECTED	SAMPLI DEPTH
00672	0005	12	22	1960	15	76 °	32'5	162	30' W	0460	04

W	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	αψC	SI	A	SWEL	.L		w	ATER
SPEED	DIR.	HGT.	PRESS	DRY	*	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
08	15		83	51	9	52	2	93	73	0	8	16	4			4		

5	15		83	21	9 3	2 4	93		3 (16	4	<u> </u>			4
						s	UBSUR	FACE	DBSEF	RVAT	IONS				_	\exists
		DE	AMPLE PTH (M)	т°	¢	8% ♦	0	σŧ	+	*	ΣΔΟ	021	n I/I	٧ı	+	
	STD	000 000 000 000 000 000 000 000 000 00	000 000 010 010 020 029 030 049 050 075 098 000 147 150 189 189 189 189 189	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	72 72 73 72 55	▼ 333333333333333333333333333333333333	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27 27 27 27 27 27 27 27 27 27 27 27 27 2	99999999999999999999999999999999999999		005 010 015 025 036 047 067	777777777777777777777777777777777777777	40 40 39 39 38 88 88 88 88 88 88 88 88 88 88 88 88	4777744774477 447777777777777777777777	19 19 19 19 19 20 20 18 11 17 18 18 22 23 33	0066443298237945 750846

				5	SURFACE	OBSER	RVATIONS				
NODC	CTATION		!	DATE			PO	SITION		SONIC	MAX.
	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0006	12	22	1960	20	76 °	05'S	162	45' W	2561	25

	WII	ND	ANEMO.	AIR	AIR	TEMP	ERATI	JRE	HUMID-	WEATHER	CLC	ดบอ	Si	:A	SWEL	.L	VIS.	w	ATER
SPE	ED	DIR.	HGT.	PRESS	DRY	٧	WE	r ψ	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
				80	50	6	51	1	89	71	6	8	16	2			7		

			/1 1 0,				
			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s% o ♦	σι ψ	¥ ∆D	O₂m I/I ♥	٧, ♦
STD OBS	0000 0000 0010 0010 0020 0020 0030 0050 0050 0075 0100 0150 0200 0250 0250 0300 0400 0400 0500 0500 0600 0750 0750 0750 0750 07	T°C	SUBSUR	σι		77777766666666666666666666666666666666	

					SURFACE	OBSE	RVATIONS	~			
NODC	STATION		1	DATE			PO	SITION		SONIC	MAX.
REF. NO.	SIRITOR	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0007	12	23	1960	04	75	25′ S	162	08' W	3383	30

w	IND	ANEMO.	AIR	AIR TEMP	AIR TEMPERATURE		HUMID- WEATHER		CFOND		SEA		SWELL		WATER	
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS,
04	36		83	50 3	50 8	89	71	6	8	00	0			7		-

	SUBSURFACE OBSERVATIONS												
	SAMPLE DEPTH (M)	т °с ₩	8% O ♦	σ: ψ	Σ Δ D	O2m 1/I	V,						
STD OBS	DEPTH (M) 0000 0000 0010 0010 0020 0030 0050 0050 0075 0100 0150 0200 0250 0250 0300 0400 0497 0596 0600	-01 31 -01 30 -01 30 -01 37 -01 50 -01 50 -01 59 -01 59 -01 84 -01 77 -01 74 -01 74 -01 75 -01 38 -01 38	·	27 54 27 54 27 54 27 56 27 56 27 56 27 58 27 58 27 62 27 62 27 62 27 62 27 63 27 64 27 63 27 64 27 66 27 73 27 66 27 73 27 81 27 82 27 83 27 83 27 83	 → ∑AD 0 000 0 006 0 011 0 016 0 026 0 039 0 051 0 074 0 098 0 120 0 142 0 183 0 218 0 249 0 310 0 369 0 428 0 513 	7 58 58 17 77 66 64 44 44 44 44 44 44 44 44 44 44 44							
ORS STD ORS STD OBS	1988 2000 2486 2500 2984	00 59 00 48	34 71 34 71 34 71 34 71 34 70	27 86 27 87	0 652 0 787	4 62 4 62 4 68 4 68 4 73	4868 3 4869 0 4896 2 4897 0 4924 8						

SURFACE OBSERVATIONS											
NODC REF. NO.	STATION			DATE			SONIC	MAX.			
	STATION	MO.	DAY	YEAR	HOUR	LAT	LILÑDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	8000	12	23	1960	14	75 *	25′S	160	11' W	3420	30

	WIND		ANEMO.	AIR	AIR 1	AIR TEMPERAT		HUMID-				CLOUD		SEA		.L	VIS.	w	WATER	
SPE	ED DI	IR.	нст.	PRESS	DRY	*	WET	*	ITY	MENTHEN	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.	
0:	3 02	2		88	52	9	53	3	88	02	1	6					8			

			SUBSUR	FACE OBSER	RVATIONS		
	SAMPLE DEPTH (M)	т °c ↓	s% 0 ₩	σι ψ	Σ Δ D	O₂m I/I ♥	v, →
STD ORS	0000 0000 0010 0010 0020 0020 0030 0030	T°C -01 78 -01 78 -01 78 -01 78 -01 76 -01 76 -01 84 -01 87 -01 86 -01 86 -01 86 -01 81 -01 64 -01 19 -00 65 -00 48 00 48 01 45 01 45 01 45 01 45 01 42 01 24 01 24 01 24 01 24 01 08 01 91 00 78 00 91 00 78 00 49 00 45	"	27 49 27 49 27 49 27 49 27 59 27 60 27 60 27 61 27 62 27 62 27 62 27 63 27 65 27 65 27 69 27 73 27 73 27 79 27 82 27 82 27 82 27 82 27 84 27 84 27 84 27 84 27 86		77777766666666666666666666666666666666	4711 0 0 0 4 4 7 1 1 1 0 0 0 4 4 7 1 1 1 2 2 4 7 1 1 2 2 4 7 1 1 2 2 4 7 1 1 2 2 4 7 1 1 2 4 7 1 1 2 4 7 1 2 2 2 3 3 4 4 7 4 4 5 5 6 6 6 6 0 2 4 7 9 9 8 4 7 9 9 8 4 7 9 9 8 4 8 1 6 6 6 0 2 4 7 9 9 8 4 8 1 6 6 6 6 9 4 8 9 9 5 5 4 8 8 6 9 6 7 4 8 9 9 7 5 5 8 4 8 9 9 7 5 5 8 4 8 9 9 7 5 5 8 4 8 9 9 7 5 5 8 4 8 9 9 7 5 5 8 4 8 9 9 7 5 5 8 4 8 9 9 7 5 5 8 4 8 9 9 7 5 5 8 4 8 9 9 7 5 5 8 4 8 9 9 7 5 5 8 6 9 9 7 5 9 8 9 7 7 7 8 9 8 9 7 7 7 8 9 8 9 7 7 9 8 9 7 7 8 9 8 9

					SURFACE	OBSE	RVATIONS				
NODC REF. NO.	STATION			DATE			PO	SITION		SONIC	MAX.
	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0009	12	24	1960	00	75	56'S	160	41' W	3017	08

W	IND	ANEMO.	AIR	AIR '	AIR TEMPERATURE		HUMID- WEATHER		CLOND		SEA		SWELL		VIS.	WATER		
SPEED	DIR.	HGT.	PRESS	DRY	٧	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
12	09		85	51	1	51	6	88	71	6	8	08	3			7		

 0,								
1			SUBSUR	FACE OBSER	RVATIONS		4	7
	SAMPLE DEPTH (M)	τ°c ψ	s% o ♥	σ ₁ ψ	Σ Δ D	Ozm I/I	V _f]
STD OBS STD OBS	0009 0010 0017 0020 0026 0030 0043 0050 0065 0075 0086 0100 0129 0150 0215 0250	-01 12 -01 12 -01 14 -01 13 -01 12 -01 17 -01 36 -01 79 -01 80 -01 79 -01 80 -01 81 -01 82 -01 81 -01 62 -01 62 -01 47 -00 44 00 13 01 00 01 28				7777777666666666666666666655444444		

				5	SURFACE	OBSER	RVATIONS				
NODC										SONIC	MAX.
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	UNCORRECTED	SAMPLE DEPTH
00672	0010	12	24	1960	09	76	28'5	160	29' W	0421	04

V	/IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER		מטכ	SI	EA.	SWEL	L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY	*	WET	*	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
14	09		78	51	7	52	2	88	43		9	10	4			5		

SAMPLE DEPTH (M) T°C S%0 V V V V V V V V V V V V V V V V V V V		
DEPTH (M)	↓ 4719	
OBS 0000 -01 25 34 20 27 53 7 45 7 42 STD 0085 0017 -01 25 34 19 27 53 0 006 7 45 STD 0020 -01 24 34 20 27 53 0 011 7 46		
STD	4720 4721 4721 4721 4720 4720 4719 4718 4716 4717 4718 4719 4720 4721 4723 4725 4726 4728 4729 4729 4733	77022064329983798030449

				9	URFACE	OBSE	RVATIONS				
NODC	STATION			DATE			PC	SITION		SONIC	MAX, SAMPLE
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LO	NGITUDE	UNCORRECTED	
00672	0011	12	24	1960	13	77 °	00's	160	40' W	0448	04

	w	IND	ANEMO.	AIR	AIR TE	EMP	ERATU	RE	HUMID-	WEATHER	cro	QUO	SI	A	SWEL	.L	VIS.	W	ATER
SF	EED	DIR.	HGT.	PRESS	DRY 🕻	,	WET	*	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		CO1	TRANS.
	12	11		77	51	1	51	7	88	47		9	10	4			5		

Ĺ	<u></u>			<u> </u>	10	سلحنب	1				1 1	تلث	21		11	4
		-11 14			vs.	TIONS	RV/	OBSE	FACE	UBSUR	5				-	
	*	Vį	O₂m 1/1 ₩		ΔD	Ψ ΣΔι		*	σι	0	89	°c ♦	т	SAMPLE DEPTH (M)		
	2266886629 5 5 8 8 5 5 2 2 5 5 2 2 4	V ₁ 4720 4721 4721 4721 4721 4721 4722 4719 4719 4719 4719 4719 4719 4719 4719	0.m 3333330066444001188000221188	777777777776666666666666666666666666666	NS		00000000				34 34 34 34 34 34 34 34	23 24 24 20 22 25 25 42 57 57 56 66 68 52 00 03 4	·	SAMPLE DEPTH (M) 0000 0000 0010 0010 0020 0020 0030 0050 0050 0075 0100 0150 0150 0200 0250 0250 0250 0300 0300 0300 0400	STD OBS	

				S	SURFACE	OBSE	RVATIONS				
NODC	STATION		1	DATE			PO	SITION		SONIC	MAX.
REF. NO.	SIATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0012	12	21	1960	13	77 °	31′S	160	34′ W	0448	04

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER	CLC	QUO	SE	A	SWEL	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ্	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
13	15		90	54 5	55 0	89	03	4	6	18	3			8		

 10		1	70				0,				10					
	[-		SUBSUR	FACE	OBSER	VATIO	NS					
		SA DEP	MPLE TH (M)	T	°c ¥		% o ∤	σt	*	ν Σ	ΔD	1) m 1/i	Vį		
STD OF STD	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00 00 00 00 00 00 00 00 00 00 00 01 01 0	TH (M) 000 10 10 20 350 550 75 7000 500 000	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	08 08 08 05 05 14 52 52 71 71 74 81 83 83 82 82 83 84 84	s'	% o		63 63 63 63 64 66 66 66 70 70 71 71 71 73 73 74 74 80 80			777777 77776666666666666666666666666666	99110 556622443344554466	47 47 47 47 47 47 47 47	23 24 22 23 24 23 23 21 21 21 21 21 21 21 21 21 21 21 21 21	5566770077776633553355

				9	SURFACE	OBSER	VATIONS				
NODC REF.	STATION		1	DATE			PO	SITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TUDE	LONG	ITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0013	12	22	1960	01	77 °	52'5	160	38′ W	0717	07

W	IND	ANEMO.	AIR	AIR 1	EMP	ERATU	RE	HUMID-	WEATHER		QUO	SI	.A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	٧	WET	*	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS,
11	15		91	57	2	57	8	76	03	6	7	16	4			8		

	ſ			SUBSU	RFACE OBSER	RVATIONS		
		SAMPLE DEPTH (M)	τ °c ψ	s% o ★	σ ₁ ψ	ΣΔD	O₂m I/I V	v _f 🖖
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OBS	0000 0000 0010 0010 0010 0020 0028 0030 0046 0050 0069 0075 0092 0100 0138 0150 0184 0200 0229 0275 0300 0417 0400 0417 0463 0557 0600 0652	-01 3 -01 3 -01 3 -01 3 -01 2 -01 2 -01 3 -01 3 -01 5 -01 5 -01 6 -01 7 -01 8 -01 8 -01 8 -01 8 -01 8 -01 8 -01 8 -01 8 -01 8 -01 8 -01 8 -01 8 -01 8 -01 8 -01 8	2 34 27 34 27 34 26 34 26 34 26 4 8 8 34 26 4 8 8 34 26 8 34 26 8 34 26 8 34 26 8 34 26 8 34 26 1 34 34 37 1 34 34 37 1 34 37 1 34 37 1 34 4 50 1 34 51 1 34 5	\$\\ 27 \ 59 \ 58 \ 76 \ 75 \ 59 \ 27 \ 58 \ 27 \ 59 \ 59 \ 59 \ 27 \ 27 \ 27 \ 27 \ 27 \ 27 \ 27 \ 2	0 000	▼ 7 27 7 27 7 7 8 8 2 <t< td=""><td>₹ 4718 9 4718 9 4719 7 4719 7 4720 7 4720 6 4720 6 4720 6 4720 6 4720 3 4720 6 4720 3 4720 4 4720 7 4722 4722 9 4722 4723 4722 4723 4723 4723 4723 4723</td></t<>	₹ 4718 9 4718 9 4719 7 4719 7 4720 7 4720 6 4720 6 4720 6 4720 6 4720 3 4720 6 4720 3 4720 4 4720 7 4722 4722 9 4722 4723 4722 4723 4723 4723 4723 4723

				9	SURFACE	OBSE	RVATIONS				
NODC	STATION		SONIC	MAX.							
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH			
00672	0014	12	21	1960	19	77 *	32 ¹ \$	158	34′ W	0247	02

	WIND		ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	OUD	SI	Α	SWEL	L	VIS.	w	ATER
SPE	ED DIE	R.	HGT.	PRESS	DRY	*	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
1	0 09	,]		88	53	9	54	9	80	01	6	5	18	3			8		

2	09		88	53	9 5	4 9	80	0	1 6	, 3	18	3	<u></u>		\perp	В	ı
		٢				S	UBSUR	FACE C	BSER	VATI	ons						
			SAMPLE DEPTH (M)	т '	°c V	s% ∀	0	σι	ł	\	ΣΔΟ	O₂n ₩	n 1/I	٧r	•	,	
	STD OF STD		0000 0010 0010 0020 0030 0050 0075 0100 0150 0200 0240	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	133333355566277886	333333333333333333333333333333333333333	23222223344446677003	27 27 27 27 27 27 27 27 27 27 27 27 27 2	555555555555556666666		005 111 116 127 140	7 8 8 8 8 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6	77799933755131555228889990	47 47 47 47 47 47 47 47 47 47 47	211222221199990222334	7722886677441133669	

				5	SURFACE	OBSEF	RVATIONS				
NODC	STATION		SONIC DEPTH	MAX.							
REF. NO.	STATION	MO.	DAY	DAY YEAR HOUR LATITUDE LONGITUDE			GITUDE	UNCORRECTED			
00672	0015	12	24	1960	20	77	06'5	158	17' W	0201	02

ſ	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	OUD	SI	A	SWEL	L	vis.	W	ATER
[SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET 🖤	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
Ī	16	07		77	00 0	50 6	91	43		9	10				6		

[SUBSUF	RFACE (OBSEF	ŀVΑ	TIONS					
	SAMPLE DEPTH (M)	т	°c ¥	8	% o ♦	σt	*		ΣΔΟ		O₂m I/I ¥	Vf	\	
STD	0000	-01	31	34	11	27	46	0	000	8	23	471		3
OBS	0000	-01	31	34	11	27	46			8	23	471		3
STD	0010	-01	31	34	11	27	46	0	006	8	06	471		9
08 <i>s</i> i	0010	-01	31	34	11	27	46			8	06	471		9
STD	0020	-01	29	34	11	27	46	0	013	8	06	471	•	9
OBS	0020	-01	29	34	11	27	46			8	06	471		9
STD	0030	-01	35	34	11	27	46	0	019	8	26	471		5
OBS	0030	-01	35	34	11	27	46			8	26	471	•	5
STD	0050	-01	33	34	12	27	47	0	031	8	02	472		0
овя	0050	-01	33	34	12	2.7	47			8	02	472	_	0
STD	0075	-01	57	34	22	27	56	0	046	6	96	471		2
овя	0075	-01	57	34	22	27	56	ļ		6	96	471	9	2
STD	0100	-01	58	34	25	27	58	0	059	6	57	472	0	6
OBS	0100	-01	58	34	25	27	58	ĺ		6	57	472	0	6
OBS	0125	-01	64	34	27	27	60			6	31	472	1	3
STD	0150	-01	66	34	28	27	61	0	083	5	80	472	2	5
OBS		-01	66	34	28	27	61	1		5	80	472	2	5
ÖBS		-01	68	34	2 7	27	60					472	3	6

				9	URFACE	OBSER	VATIONS				
NODC REF.	STATION		1	DATE			PO	SITION		SONIC	MAX. SAMPLE
NO.	SIATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LONG	SITUDE		
00672	0016	12	25	1960	03	76	33′S	157	58' W	0320	03

	w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		פטפ	SI	A	SWE	L	VIS.	W	ATER
s	PEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
	10	07		71	51 1	51 6	89	43		9	10	3			5		

					SUBSUF	RFACE	OBSER	N۷	TIONS					
	SAMPLE DEPTH (M)	т	°c ¥	, -	% o ♦	σt	*	1	ΣΔΟ	1	O₂m I/I ∳	٧ı	*	_
STD	0000	-01	21	34	09	27	44	0	000	7	83	471	9	8
088	0000	-01	21	34	09	27	44	l		7	83	471	9	8
STD	0010	-01	22	34	0.8	27	44	0	006	7	90	472	0	2
OBS	0010	-01	22	34	08	27	44			7	90	472	0	2
sto	0020	-01	22	34	10	27	45	0	013	7	81	472	0	9
OBS	0020	-01	22	34	10	27	45	1		7	81	472	0	9
STD	0030	-01	30	34	13	27	48	0	019]7	79	472	0	4
OBS	0030	-01	30	34	13	27	48	ļ		7	79	472	0	4
STD	0050	-01	81	34	31	27	64	0	030	6	73	471	4	3
088	0050	-01	81	34	31	27	64	ļ		6	73	471		3
STD	0075	-01	81	34	33	2.7	66	0	041	6	51	471		9
OBS	0075	-01	81	34	33	27	66	j		6	51	471		9
STD	0100	-01	78	34	33	27	65	0	052	6	56	471		8
OBS	0100	-01	78	34	33	27	65			6	56	471		8
STD	0150	-01	80	34	35	27	67	0	074	6	55	472		6
OBS	0150	-01	80	34	35	27	67			6	55	472	-	6
STD (0200	-01	78	34	35	27	67	0	095	6	53	472		Ģ
088	0200	-01	78	34	35	27	67	ļ		6	53	472		9
STD	0250	-01	77	34	36	27	68	0	115	6	45	472		0
OBS	0275	-01	77	34	36	27	68	l		6	38	472	8	5

			_	\$	SURFACE	E OBSE	RVATIONS				
NODC REF.	STATION		SONIC	MAX.							
NO.	SIMILON	MO.	DAY	YEAR	POSITION HOUR LATITUDE LONGITUD					DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0017	12	25	1960	08	76	08'S	158	08' W	3475	29

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	מטכ	SE	:A	SWEL	L	VIS.	w	ATER
SPE	ED DIR.	HGT.	PRESS	DRY 🆤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
10			69	50 2	50 3	96	44	0	8					6		

0 05	1 07	1 20	4 3	90 3	90	4	4 (<u> </u>	ــــــــــــــــــــــــــــــــــــــ			٥
}					SUBSUR	FACE	OBSER	VA	TIONS				
			0.		<u> </u>			1		т			-
	SAMPLE DEPTH (M)	"	°c ⊎	S	% o ⊌	σt	¥	١,	ΣΔD		O₂m 1/l ₩	Ve	•
	-				·			Η,	<u> </u>	╁┈	·*		-
STD	0000	-01	23	34	12	27	47	0	000	7	86	4719	
OBS		-01	23	34	12	27	47			7	86	4719	
STD	0010	-01	22	34	12	27	47	0	006	7	94	4720	
OBS		-01	22	34	12	27	47			7	94	4720	- 1
STD	0020 0020	-01 -01		34 34	13 13	27 27	48 48	0	012	7	91 91	4721 4721	
OBS STD	0020	-01	27	34	15	27	49	_	018	7	87	4720	
OBS	0030	-01	27	34	15	27	49	10	010	17	87	4720	
STD	0050	-01	85	34	30	27	63	lo	029	6	75	4713	. 1
OBS	0050	-01	85	34	30	27	63	1		6	75	4713	
STD	0075	-01	83	34	32	27	65	0	040	6	59	4715	5
OBS	0075	-01	83	34	32	27	65	ĺ		6	59	4715	5
STD	0100	-01	76	34	32	27	65	0	052	6	47	4718	1
OBS	0100	-01	76	34	32	27	65			6	47	4718	1
STD	0150	-01	82	34	33	27	66	0	074	6	61	4720	2
CT OBS	0150	-01	82	34	33	27	66	_	006	6	61	4720	2
STD	0200 0200	-01 -01	79 79	34 34	33 33	27	65 65	0	096	6	55 55	4723 4723	6
OBS STD	0250	-01	81	34 34	35	27 27	67	0	117	6	55	4726	3
ORS	0250	-01	81	34	35	27	67	١٥	111	6	55	4726	3
STD	0300	-01	73	34	35	27	67	0	138	6	53	4730	6
OBS	0300	-01	73	34	35	27	67	•		6	53	4730	6
STD	0400	-00	67	34	43	27	70	0	178	5	71	4753	5
овя	0400	-00	67	34	43	27	70			5	71	4753	5
OBS	0490	01	17	34	65	27	77			4	42	4787	7
STD	0500	01	21	34	66	27	78	0	215	4	39	4788	9
OBS	0588	01	48	34	72	27	81	_		4	21	4798	4
STD	0600	01	47	34 34	72	27	81	0	248	4	22	4798	9
OBS STD	0784 0800	01	27 25	34 34	75 75	27 27	85 85	0	309	4	29 28	48 07 48 0 7	1 7
овя	0980	01	1	34	72	27	84	U	304	4	27	4815	9
STD	1000	01	07	34	72	27	84	0	367	4	30	4816	8
ั obs	1176	őô	92	34	72	27	85		201	4	48	4825	1
STD	1200	00	91	34	72	27	85	0	425	4	48	4826	3
ond	1470	00	81	34	70	27	84			4	50	4840	8
STD	1500	00	80	34	70	27	84	0	513	4	50	4842	4
089	1962	00	63	34	70	27	85	_		4	52	4867	3
STD	2000	00		34	70	27	85	0	658	4	55	4869	4
OBS	2454	00	- 1	34	70	27	86	_	700	4	76	4894	7
STD	2500	00		34	70	27	86	0	798	4	76	4897	2
OBS	2949	00	47	34	70	27	86			4	74	4923	3
1			ı		į.		ĺ			ĺ	i		ľ
					}								
Í	I		İ		ľ		- (- 1		ľ
											İ		
	ĺ		ľ		1		ĺ				- 1		- 1
[1		1		ſ		ĺ				ĺ		
													- }
{	ſ		[ĺ		[[
}	ļ		1		-		J				J		
l	İ		l				1						

				5	SURFACI	OBSE	RVATIONS	5			
NODC REF.	STATION			DATE			Р	OSITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0018	12	25	1960	16	75	38 ['] S	158	43' W	3484	28

w	IND	ANEMO.	AIR	AIR TEMP	AIR TEMPERATURE		HUMID- WEATUREL		םטכ	SI	EA	SWE	T		w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
11	02		71	50 6	51 0	91	02	0	4					8		

					SURFACE	OBSE	RVATIONS				
NODC REF.	STATION	DATE	DATE			PO	SITION		SONIC	MAX.	
NO.	SIMILON	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0019	12	26	1960	01	75	41 ['] S	156	47' W	3621	30

	W	IND	ANEMO.	AIR	AIR TE	PE	RATUR	₹E	HUMID-	WEATHER		OUD	SI	EA	SWEL	.L	VIS.	w	ATER
SPE	ED	DIR.	HGT.	PRESS	DRY 🖤		WET	٧	ITY	WENTHER	TYPE	AMT.	DIR.	AMT,	DIR.	AMT.		COL.	TRANS.
0	5	07		68	50 3	T	50	7	92	73	0	8					4		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	†°c ♥	s% o ♦	σι ψ	Σ Δ D	Ozm I/I	∨, ψ
STD	0000	-01 66	34 13	27 49	0 000	7 57	4712 9
OBS		-01 66	34 13	27 49		7 57	4712 9
STD	0010	-01 67	34 13	27 49	0 006	7 56	4713 3
OBS	0010 0020	-01 67 -01 67	34 13 34 12	27 49 27 48	0 012	7 56 7 56	4713 3 4713 9
STD ORS		-01 67 -01 67	34 12	27 48	0 012	7 56	4713 9
STD	0020	-01 74	34 14	27 50	0 018	7 57	4713 5
ORS	0030	-01 74	34 14	27 50	0 01.0	7 57	4713 5
STD	0050	-01 78	34 23	27 57	0 029	7 13	4714 4
ORS	0050	-01 78	34 23	27 57		7 13	4714 4
STO	0075	-01 83	34 28	27 62	0 042	6 73	4715 3
OBS		-01 83	34 28	27 62		6 73	4715 3
STD	0100	-01 81	34 28	27 61	0 054	6 72	4717 1
ORS		-01 81	34 31*	27 64*		6 72	4717 3*
STD	0150	-01 79	34 29	27 62	0 077	6 63	4720 5
OBS STD	0150 0200	-01 79 -01 33	34 29 34 33	27 62 27 64	0 100	6 63 6 27	4720 5 4730 9
OPS	0200	-01 33	34 33	27 64	0 100	6 27	4730 9
STD	0250	-00 71	34 40	27 68	0 122	5 82	4743 8
OPS		-00 71	34 40	27 68	0 122	5 82	4743 8
STD	0300	-00 46	34 44	27 70	0 142	5 62	4750 8
OBS		-00 46	34 44	27 70	2	5 62	4750 8
STD	0400	01 15	34 64	27 77	0 180	4 48	4782 0
ORS	0400	01 15	34 64	27 77		4 48	4782 0
OBS	0499	01 45	34 71	27 80		4 28	4792 6
STD	0500	01 45	34 71	27 80	0 214	4 28]	4792 7
OBS	0599	-00 72 *		27 58*			4763 9
STD	0600	01 39	34 71	- 1	0 246	4 33	4797 7
ORS	0799	01 26	34 71	27 82		4 40	4807 6
STO	0800	01 26	34 71		0 310	4 40	4807 7
ORS	0998	01 09	34 71 34 71	27 83 27 83	A 272	4 41 4 41	4817 0 4817 1
STD	1000 1198		34 71 34 71	27 84		4 41 4 58	4817 1
OBS STD	1200		34 71		I	4 58	4826 7
OPS	1498		34 72	27 85		4 61	4842 7
STD	1500		34 72		J	4 61	4842 8
OBS	1977		34 70	27 85		4 62	4868 4
STD	2000		34 70	1		4 63	4869 6
овѕ	2496		34 71*	27 86*		4 74	4897 0
STD	2500	00 50	34 70	27 86	0 802	4 74	4897 2
ORS	2996	00 44	34 70	27 86	J	4 77	4925 7
}			}	ļ			
ì	ľ	·	İ	Ì	İ		ľ
J	}	.]	J	J	J	,	ļ
				Ĺ	I		- 1
,]	j	j		Į.
1	ļ						
1				ł	1	}	
		}	j	ĺ	İ		
1	\$			ł	1	ļ	
			ļ	1	ŀ		j
-			İ	[ł		
1	I	J		1		1	

SURFACE OBSERVATIONS													
NODC	STATION			DATE			PO	SITION			SONIC	MAX.	
REF. NO.	SIATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE		DEPTH UNCORRECTED	SAMPLE DEPTH	
00672	0020	12	26	1960	09	76	01's	156	44'	W	3475	29	

	WIND	ANEMO.	AIR	AIR TEMPERATURE		HUMID-	WEATHER		סטס	SE	·A	SWEL	.L	VIS.	W	ATER
SPEE	D DIR.	HGT.	PRESS	DRY 🆤	WET ♥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	02		69	50 3	50 7	92	71	0	8					7		

2	02		1 70 ,1	20 1 72				ال أحمال حمالات
				SUBSUF	FACE OBSER	RVATIONS		
		SAMPLE DEPTH (M)	τ°c Ψ	8% O ♥	σ ₁ ψ	Σ Δ D	O2m 1/1	٧, ♦
	STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS	0000 0000 0010 0010 0020 0020 0030 0030	-01 48 -01 48 -01 48 -01 45 -01 59 -01 59 -01 88 -01 88 -01 82	34 03 34 03 34 04 34 04 34 08 34 08 34 28 34 28 34 29 34 29	27 40 27 40 27 41 27 41 27 45 27 45 27 62 27 62 27 62 27 62 27 62	0 000 0 007 0 014 0 020 0 031 0 043	8 06 8 06 8 15 8 03 8 03 7 48 6 76 6 58 6 58	4715 3 4715 3 4716 0 4717 0 4717 0 4715 6 4715 6 4713 0 4713 0 4715 5
	STD OBS STD OBS STD OBS STD OBS	0100 0100 0150 0150 0200 0200 0250	-01 79 -01 79 -01 77 -01 77 -01 72 -01 72 -01 66	34 30 34 31 34 31 34 33 34 33 34 33	27 63 27 63 27 64 27 64 27 65 27 65 27 65 27 65	0 055 0 078 0 100 0 122	6 63 6 63 6 57 6 57 6 50 6 50 6 07 6 07	4717 5 4717 5 4720 9 4720 9 4724 7 4724 7 4728 6 4728 6
	STD OBS	0400 0400 0479 0500 0576	-01 13 -01 13 00 41 00 41 01 29 01 35 01 48	34 39 34 55 34 55 34 68 34 69 34 73	27 68 27 68 27 74 27 74 27 79 27 79 27 82	0 143 0 182 0 216	6 11 5 00 5 00 4 43 4 37 4 22	4740 2 4740 2 4770 5 4770 5 4788 9 4791 1 4797 7
	STD ORS STD ORS STD ORS STD ORS STD ORS	0800 0960 1000 1154 1200	01 46 01 29 01 26 01 10 01 06 00 94 00 92	34 73 34 72 34 72 34 72 34 72 34 71 34 71 34 70	27 82 27 82 27 82 27 84 27 84 27 84 27 84 27 84	0 249 0 311 0 371 0 430	4 24 4 35 4 35 4 37 4 49 4 50 4 56	4798 8 4806 3 4807 8 4814 9 4816 7 4824 0 4826 4 4839 4
	STD OBS STD OBS STD OBS	1500 1931 2000 2422 2500	00 79 00 62 00 60 00 51 00 50	34 70 34 70 34 70 34 70	27 84 27 85 27 85 27 86 27 86 27 86	0 519 0 663 0 803	4 56 4 59 4 61 4 72 4 73 4 75	4842 3 4865 3 4869 1 4892 8 4897 2 4921 5
	ļ		1	1				

	SURFACE OBSERVATIONS														
NODC	STATION		-	DATE			PO	SITION		SONIC	MAX.				
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LONG	SITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH				
00672	0021	12	26	1960	17	76	34/5	155	49' W	0457	04				

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	AUC ATUED		OUD	SI	:A	SWEL	L	VIS.	w	ATER
SPEE	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
14	36		74	00 3	50 3	90	02	6	8					8		

			····	SUBSUR	FACE OBSER	VATIONS		
		SAMPLE DEPTH (M)	τ°c ψ	s% o ₩	σt Ψ	ΣΔD	Ozm 1/i	V,
-1	STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS	0000 0000 0010 0010 0020 0020 0029 0030 0048 0050 0075 0097 0100 0146 0150 0195 0200 0243 0250 0292 0300	-01 21 -01 25 -01 25 -01 25 -01 23 -01 34 -01 38 -01 58 -01 56 -01 55 -01 55 -01 67 -01 79 -01 80 -01 80		27 39 27 39 27 40 27 40 27 40 27 50 27 50 27 58 27 58 27 62 27 62	ΣΔD	8 52 8 556 8 558 8 558 8 513 6 6 47 555 6 6 63 6 6 63 6 6 65	

				\$	SURFACE	E OBSE	RVATIONS				
NODC REF.	STATION	1		DATE			PO	SONIC	MAX.		
NO.		MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPL! DEPTH
00672	0022	12	27	1960	02	77 °	01's	155	50′ W	0705	04

	w	IND	ANEMO.	AIR	AIR TEMPERATURE		HUMID-	WEATHER	CLC	םטכ	SE	A	SWEL	.L	VIS.	W	ATER		
s	PEED	DIR.	HGT.	PRESS	DRY	*	WET	*	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
Г	13	02		76	50	3	50	8	91	71	0	8					5		

				5	SURFACI	E OBSER	RVATIONS				
NODC	STATION		1	DATE			PO		SONIC	MAX.	
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLI DEPTH
00672	0023	12	27	1960	07	77 *	00'S	153	47'W	0329	02

	HGT PRE	AIR	AIR 1	TEMP	PERATURE		HUMID-	WEATHER	cro	OUD	SI	Ā	SWE	.L	VIS.	w	ATER	
SPEED	DIR.	HGT.	PRESS	DRY	٧	WE.	г ψ	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	V13,	COL.	TRANS.
14	05		76	51	7	51	8	92	73	0	5					3		

STD 0000 -01 32 34 14 27 49 0 000 7 7 8 10 000 -01 31 34 14 27 49 0 000 7 7 8 10 000 000 -01 31 34 14 27 49 0 000 7 7 10 000 000 000 000 000 000 00			L
SAMPLE DEPTH (M)			Ī
OBS 0000		v _t +	
STD 0010 -01 31 34 14 27 49 0 006 7 STD 0020 -01 29 34 14 27 49 0 012 7 STD 0020 -01 29 34 14 27 49 0 012 7 STD 0030 -01 31 34 14 27 49 0 018 7 STD 0050 -01 36 34 17 27 51 0 030 7 STD 0075 -01 36 34 17 27 51 0 044 6 ORS 0075 -01 35 34 19 27 53 0 044 6 ORS 0100 -01 33 34 19 27 53 0 058 6 STD 0150 -01 34 34 23 27 56 0 085 6 STD 0150	50 4	718 3	
OBS 0010		718 3 719 1	
OBS 0020	-	+719 1 +720 0	
OBS 0030	46 4	720 0	
STD 0050 -01 36 34 17 27 51 0 030 7 STD 0075 -01 36 34 17 27 51 0 044 6 ORS 0075 -01 35 34 19 27 53 0 044 6 STD 0100 -01 33 34 19 27 53 0 058 6 STD 0150 -01 34 34 19 27 53 0 058 6 STD 0150 -01 34 34 23 27 56 0 085 6 STD 0200 -01 34 34 27 27 59 0 111 6		+720 3 +720 3	
STD 0075 -01 35 34 19 27 53 0 044 6 ORS 0075 -01 35 34 19 27 53 0 044 6 STD 0100 -01 33 34 19 27 53 0 058 6 STD 0150 -01 34 34 23 27 56 0 085 6 STD 0200 -01 34 34 23 27 56 6 STD 0200 -01 34 34 27 27 59 0 111 6	14 4	720 8	
STD 0100 -01 33 34 19 27 53 0 058 6 ORS 0100 -01 33 34 19 27 53 0 6 STD 0150 -01 34 34 23 27 56 0 085 6 STD 0200 -01 34 34 23 27 56 6 STD 0200 -01 34 34 27 27 59 0 111 6	83 4	720 8 722 5	
ORS 0100 -01 33 34 19 27 53 6 6 STD 0150 -01 34 34 23 27 56 0 085 6 ORS 0150 -01 34 34 23 27 56 6 STD 0200 -01 34 34 27 27 59 0 111 6		722 5	
ORS 0150 -01 34 34 23 27 56 6 STD 0200 -01 34 34 27 27 59 0 111 6	73 4	724 3	
STD 0200 -01 34 34 27 27 59 0 111 6	_	727 3	
		730 5 730 5	
	22 7		
	ì		
		İ	
		Ì	
		į	
		i	
	ĺ		
		İ	
	İ	}	
		}	
		ĺ	

					SURFACI	E OBSE	RVATIONS				**
NODC REF.	STATION			DATE			PC		SONIC	MAX.	
NO.		MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0024	12 27 1960 22		22	76	30 [′] S	153	53 W	0549	05	

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	ดบอ	SE	Α	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
11	09		73	50 3	50 8	91	71	6	2					5		

<u>1</u>	09		73	_	50	3	0 8	91		1 (2	2					5	L
		ĺ						SUBSUR	FACE	OBSER	RVA	TIONS						
			SAMPLE DEPTH (M)	T	°c ♥		% o ∳	σt	*	,	ΣΔΟ	o:	zm 1/l	Vf	+	,	
	STD OF STD	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	°C	33333333444444444444444444444444444444		27 27 27 27 27 27 27 27 27 27 27 27 27 2	**************************************	00000000000		♥ 888888888776666666666665	666655440003377556665555555522		166616511889992224478006670	00112288552555884473886655	
		٠,					•				ı		I	ı			ļ	

				5	SURFACE	OBSER	RVATIONS				
NODC	CTATION		ı	DATE	, _		PO		SONIC	MAX.	
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LONG	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0025	12	28	1960	10	76	oo's	153	54 W	3246	30

	WIND	DIR. HGT. PRE	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		QUO	SE	A	SWEL	.L	VIS.	w	ATER
SPEE	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	32		77	50 8	51 4	89	02	4	6					8		

				s	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION		1	DATE		SONIC	MAX.				
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0026	12	30	1960	00	75	20's	154	12' W	3695	30

	w	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER		OUD	Si	EA	SWEL	.L.	VIS.	w	ATER
-1	SPEED	DIR.	HGT.	PRESS	DRY	٧	WET	•	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
	05	36		90	51	1	51	7	88	01	6	3					8		

[SUBSUR	FACE OBSER	VATIONS	·	
	SAMPLE DEPTH (M)	т °с ∳	s% o ↓	σ _t ψ	Σ Δ D	O₂m I/I V	V _f ♦
STD ORS STD ORS STD ORS STD ORS STD ORS STD ORS	0000 0000 0010 0010 0020 0020 0030 0030	-01 63 -01 67 -01 67 -01 69 -01 69 -01 74 -01 74 -01 80 -01 76 -01 76 -01 78	34 13 34 13 34 13 34 13 34 13 34 13 34 14 34 14 34 19 34 19 34 28 34 28 34 28	27 49 27 49 27 49 27 49 27 49 27 50 27 50 27 54 27 61 27 61 27 61	0 000 0 006 0 012 0 018 0 029 0 042 0 054	7 15 7 16 7 16 7 15 7 14 14 89 66 66 66 66 66 66 66	4713 4 4713 3 4713 3 4713 6 4713 5 4713 5 4713 5 4713 9 4713 9 4716 4 4717 6
STD ORS STD ORS STD ORS	0150 0150 0150 0200 0200 0250	-01 71 -01 71 -01 42 -01 42 -00 99	34 31 34 31 34 33 34 33 34 33	27 64 27 64 27 64 27 64 27 68	0 078 0 100 0 122	6 52 6 52 6 28 6 28 5 95	4721 8 4721 8 4729 5 4729 5 4739 4
ORS STD OPS STD ORS	0250 0300 0300 0400 0400	-00 99 -00 37 -00 37 01 30 01 30	34 39 34 46 34 46 34 68	27 68 27 71 27 71 27 79 27 79	0 142 0 178	5 95 5 50 5 50 4 31 4 31	4739 4 4752 3 4752 3 4784 4 4784 4
STD OBS STD OBS STD STD	0500 0500 0600 0600 0800	01 46 01 46 01 45 01 45 01 23	34 73 34 73 34 73 34 73 34 73	27 82 27 82 27 82 27 82	0 210 0 241 0 302	4 27 4 27 4 27 4 27 4 38	4792 9 4792 9 4798 7 4798 7 4807 4
ORS STD ORS STD	0800 1000 1000 1200 1200	01 23 01 09 01 09 00 94	34 73 34 73 34 73 34 72 34 72	27 83	0 ² 61	4 38 4 30 4 30 4 49 4 49	4807 4 4817 2 4817 2 4826 8 4826 8
STD ORS STD ORS STD	1500 1500 2000 2000 2500	00 81 00 81 00 64 00 64 00 51	34 72 34 72 34 72 34 72 34 71	27 85 27 85 27 86 27 86 27 86	0 505 0 643 0 779	4 60 4 60 4 73 4 73	4842 7 4842 7 4869 8 4869 8 4897 4
OPS OPS	2500 3000	01 27*	34 71 34 73*	27 86 27 83*			4897 4 4938 3*

				S	SURFACE	OBSE	RVATIONS				
NODC	CTATION			DATE			PC	SITION		SONIC	MAX.
NO.	REF. STATION NO.	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LONG	SITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672		12	28	1960	22	75	31'S	152	08' W	3402	30

Γ	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		מטכ	SI	ΞA	SWEL	.L	VIS.	w	ATER
SPEE	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
08	36		86	50 6	51 1	89	0.2	6	8					8		

		***************************************	SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ∳	s% 0 ♦	σ _t ψ	ΣΔD ♦	Ozm I/I ♥	V _t
STD	0000	-01 51	34 00	27 38	0 000	8 3 8 8 3 8	4714 7 4714 7
OBS STD	0000 0010	-01 51 -01 55	34 00	27 38	0 007	8 34	4714 7
ORS	0010	-01 55	34 00	27 38	00	8 34	4714 7
STD	0020	-01 55	34 00	27 38	0 014	8 33	4715 3
ORS		-01 55	34 00	27 38		8 33	4715 3
STD	0030	-01 65	34 01	27 39	0 021	8 04	4714 3
ORS	0030 0050	-01 65 -01 69	34 01	27 39 27 47	0 034	8 04 7 71	4714 3 4715 3
STD	0050	-01 69	34 10	27 47	10 (1)4	7 71	4715 3
STD	0075	-01 79	34 27	27 61	0 048	6 66	4715 9
ORS	0075	-01 79	34 27	27 61		6 66	4715 9
STD	0100	-01 77	34 28	27 61	0 060	6 58	4717 8
ORS	0100	-01 77	34 28	27 61		6 58	4717 8
STO	0150	-01 72	34 30 34 30	27 63	0 084	6 51	4721 6 4721 6
ORS STD	0150 0200	-01 72 -01 68	34 30	27 63 27 64	0 106	6 43	4725 3
ORS	0200	-01 68	34 32	27 64	0 100	6 43	4725 3
STD	0250	-01 53	34 32	27 64	0 179	6 31	4730 6
ORS	0250	-01 53	34 32	27 64		6 31	4730 6
STD	0300	-01 10	34 37	27 67	0 151	5 99	4740 6
ORS	0300	-01 10	34 37	27 67		5 99	4740 6
STD	0400	00 58	34 56 34 56	27 74 27 74	0 170	4 85	4773 1 4773 1
ORS ORS	0400 0488	01 32	34 69	27 80		4 35	4789 9
STD	0500	01 35	34 69	27 79	0 225	4 33	4791 1
ORS		01 46	34 72	27 81		4 25	4798 0
STD	0600	01 45	34 72	27 8]	0 258	4 25	4798 7
OPS	0782	01 27	34 74	27 84		4 27	4806 9
STD	0800	01 25	34 74	27 84 27 84	0 319	4 28	4807 7 4815 9
ORS STD	0978 1000	01 09	34 73	27 84 27 85	0 377	4 35	4816 9
OPS	1174	00 95	34 72	27 85	0 777	4 46	4825 4
รรก	1200	00 94	34 72	27 95	0 435	4 47	4826 8
ORS	1469	00 81	34 73*	27 86*		4 54	4840 9*
STD	1500	00 80	34 71	27 85	0 522	4 54	4842 5
ORS	1963	00 62	34 70	27 85	0 665	4 60	4867 2 4869 3
STD	2000 2459	00 61	34 70	27 85 27 86	0 665	4 64	4895 0
STD	2500	00 50	34 70	27 86	0 805	4 64	4897 2
ORS	2957	00 45	34 70	27 86		4 68	4923 5
			ĺ			1	
			ļ				
		1					
		([
							ĺ
ļ		1				[
1		İ	l l				İ

				9	SURFACE	OBSER	RVATIONS				
NODC	CTATION		1	DATE			PO	SITION		SONIC	MAX.
NO.	REF. STATION		DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPL DEPTH
00672	0028	12	28	1960	18	75	58 ['] S	151	58' W	0265	02

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER	CTC	OUD	SE	:A	SWEL	L	VIS.	w	ATER
SPE	ED DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
0	5 27	T	83	50 8	51 4	89	71	0	8					4		

SAMPLE DEPTH (M)	4	LL	8	71 0		89	1 4	8 5	50	83	27	,
STD			VATIONS	OBSER	FACE	UBSUR	9					
OBS 0000	m I/I V _f			+	σt				т			
	24 4716 0 24 4716 0 10 4715 3 10 4715 3 13 4715 6 13 4715 6 63 4714 8 4714 8 46 4714 8 4714 8 4715 3 4711 0 4717 0 4717 0 55 4718 7 55 4718 7 55 4721 2 4721 2 4724 4 56 4724 4	8 24 8 10 8 10 8 13 7 63 7 46 7 72 6 6 72 7 76 6 6 55 6 66 6 66 6 66 6 66	vations	OBSER 40 40 41 41 42 42 42 42 42 51 51 63 63 64 65 65 65	FACE 01 27 27 27 27 27 27 27 27 27 27 27 27 27	03 03 04 04 05 05 05 05 15 30 31 32 33 33	33444444444444444444444444444444444444	44 44 52 52 54 63 63 70 70 73 72 72 75 74 74	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	SAMPLE DEPTH (M) 0000 0010 0010 0020 0020 0030 0050 0050 0075 0100 0100 0150 0200 0200	STD ORS STD ORS STD ORS STD ORS STD ORS STD ORS STD ORS STD ORS	6

				\$	BURFACI	E OBSER	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.
NO.	STATION	MO	DAY	YEAR	HOUR	LAT	TTUDE	LONG	SITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0029	12	28	1960	02	76	3 0′s	151	39' W	0274	02

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		מטכ	Si	ĒΑ	SWE	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
12	09		72	00 3	50 1	93	02	0	5	09	3			8		

09		72	00 3	ا ا	0 1	93	0	2 0	<u> </u>	را	09	3			 8	L
					SI	JBSUR	FACE (OBSER	VA	TION	is					Ī
	S DE	AMPLE PTH (M)	т °с ∳		s% ₩	0	σţ	*	1	Σ	7 D	02 ♦	m 1/I	V	þ	
STD OF STD	000 000 000 000 000 000 000 000 000 00	AMPLE PTH (M) 000 000 010 020 020 030 030 075 075 000 050 050 050 050 050 050 05	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01		8%			61 61 60 61 61 61 61 61 64 64 64 65 66 66	00000000	Σ	0 5 5 7 8 1	666666666666666666666666666666666666666	999445599999999999999999999999999999999	47 47 47 47 47 47 47 47 47 47 47 47 47	336633444448899220011	

				\$	SURFACE	OBSE	RVATIONS				
NODC	STATION			DATE			PO	SITION		SONIC	MAX.
	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLI DEPTH
00672	0030	12	27	1960	15	77	00′s	151	48 W	1134	09

	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		םטכ	SE	:A	SWEL	.L	VIS.	w	ATER
SPE	ED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
0	9	09		77	51 8	52 0	94	71	0	8					4		

9_	09		77	51	8 5	2 0	94	1 /	1 0	<u>' </u>	8	<u> </u>			4
						s	UBSUR	FACE C	DBSER	VA	TIONS	*****			
			SAMPLE DEPTH (M)	т °	¢	s% ♦		σŧ	+	¥	ΣΔΟ	0 2	m 1/1	Vţ	*
	STD OF STD	35 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	0000 0010 0010 0019 0020 0029 0030 0075 0075 0145 0150 0145 0150 0145 0150 0150 0160 0175 0191 0191 0191 0191 0191 0191 0191 019	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	180007833377772432333777772432333777777777771	333333333333333333333333333333333333333	1990000111133333558800002223334681	277777777777777777777777777777777777777	55555555555555555555555555555555555555	000000000000	000 006 011 017 028 041 054 080 105 128 151 196 238 279 357	777777777777777777777777777777777777777	95 95 777 777 786 886 883 883 888 888 888 888 888 888 8	477199 4772199 47720000 47720000 47720000 47720000 47720000 477720000 477720000 4777200000 477720000000000	7775554227834993492381616029785

				9	SURFACE	OBSER	RVATIONS				
NODC	GT 4 T 1 O 41		1	DATE			PO	SITION		SONIC DEPTH	MAX. SAMPLE
	STATION	MO.	DAY	YEAR	HOUR	LAT	TTUDE	LON	GITUDE	UNCORRECTED	
00672	0031	12	27	1960	11	77	16'5	152	22' W	0210	02

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WC A TUCO	CLC	QUO	SE	ΕA	SWEL	L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
16	09		78	51 1	51 8	89	71	0	6	0.5	3			7		

 		4	SUBSUR	FACE OBSER	VATIONS	1	
	SAMPLE DEPTH (M)	τ °c ψ	s% o ∲	σ _t ψ	Σ Δ D	O₂m I/I ♥	٧,
STD ORS STD OR	0000 0000 0010 0010 0020 0020 0030 0050 0050 0075 0100 0150 0150 0200	-01 32 -01 32 -01 33 -01 33 -01 42 -01 38 -01 39 -01 39 -01 39 -01 37 -01 37 -01 18 -01 18	34 11 34 12 34 12 34 12 34 13 34 13 34 13 34 13 34 13 34 13 34 20 34 27 34 29	27 46 27 46 27 47 27 47 27 47 27 47 27 48 27 48 27 48 27 48 27 48 27 52 27 52 27 52 27 54	0 000 0 006 0 012 0 019 0 031 0 045 0 059 0 086 0 110	7 73 75 77 77 77 77 77 77 77 77 77 77 77 77	4718 2 4718 7 4718 7 4718 7 4717 8 4717 8 4719 1 4720 1 4720 1 4721 8 4721 8 4723 7 4723 7 4730 0 4733 2

				5	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	SITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0032	12	29	1960	11	75 .	10'S	147	51'W	3658	04

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		OUD	SI	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
05	02		92	52 2	52 8	87	02	0	6					8		

				SUBSUE	FACE OBSE	VATIONS		
		SAMPLE DEPTH (M)	T °c ₩	s% o ♦	σ ₁ ψ	Σ Δ D	Ozm I/I	V1 +
\$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10	ORS ORS ORS ORS ORS ORS ORS ORS ORS	SAMPLE DEPTH (M) 0000 0000 0010 0010 0020 0030 0050 0050 0075 0075 0100 0150 0200 0250 0250 0300 0400 0400	T°C	s% o	27 41 27 41 27 41 27 41 27 42 27 42 27 42 27 42 27 41 27 43 27 43 27 60 27 60	 	8 25 8 30 8 22 22 23 30 50 66 66 66 66 66 66 66 66 66 6	4714 4 4714 4 4715 2 4715 2 4715 8 4715 6 4715 6 4715 6 4717 5 4719 2 4719 2 4719 2 4721 3 4721 3 4726 8 4726 8 4732 9 4732 9 4734 7 4754 7 4785 5

				9	SURFACE	OBSER	RVATIONS				
NODC	STATION		1	DATE			PO	SITION		SONIC	MAX.
	SIATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0033	01	22	1961	22	57 °	19'5	152	27' W	3292	26

w	IND	ANEMO.	AIR	AIR T	EMP	ERATU	RE	HUMID-	WEATHER		מטכ	SI	ĒA.	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	*	WET	٧	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
09	27		23	06	7	05	3	81	02	8	4	25	4			8		

1			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ♥	8% O ₩	o₁ ₩	ΣΔD	O₂m I/I ♥	v ₁
STD	0000	03 67 03 67	33 94 33 94	27 00 27 00	0 000	7 19 7 19	4791 5 4791 5
STD	0010	03 64	33 94 33 94	27 00 27 00	0 011	7 31 7 31	4791 7 4791 7
OBS STD	0019 0020	03 53 03 53	33 94 33 94		0 021	7 36 7 36	4790 7 4790 7
OBS STD OBS	0028 0030 0047	03 49 03 42 02 69	33 94 33 94 33 94	27 02 27 02 27 09	0 032	7 36 7 37 7 48	4790 7 4789 8 4780 5
STD OBS	0050 0071	02 52	33 95 33 99		0 052	7 52 7 75	4778 2 4761 3
STD OBS	0075 0094	00 93	33 99 34 00	27 33	0 074	7 77 7 86	4756 6 4740 2
STD OBS	0100 0141	-00 25 -00 41 -00 55	34 00 34 02 34 02	27 33 27 36 27 36	0 094 0 131	7 86 7 87 7 83	4740 3 4740 3 4738 7
STD OBS STD	0150 0188 0200	-00 55 -00 71 -00 57	34 02 34 04 34 08	27 38 27 41	0 131 0 165	7 18	4738 6 4741 6
OBS STD	0236 0250	00 12 00 67	34 20 34 27		0 197	6 30 5 69	4754 9 4764 3
OBS STD	0284 0300 0381	01 70 01 80 02 21	34 40 34 41 34 47	27 54 27 54 27 55	0 226	4 57 4 42 4 05	4782 2 4784 6 4795 6
OBS STD OBS	0400 0436	02 21	34 48		0 282	4 09 4 14	4796 8 4796 9*
STD OBS	0500 0524	02 21 04 28*		27 73	0 336	4 13	4803 0 4835 3*
STD OBS STD	0600 0698 0800	02 21 02 05* 02 16	34 53 34 62 34 66	27 69*	0 387 0 479	4 11 4 09 4 75	4809 1 4812 8 4820 7
OBS STD	0872 1000	02 13	34 68 34 72	27 73	0 562	4 97 4 73	4824 6 4831 5
OBS STD	1045 1200	02 04 01 91	34 73 34 73		0 639	4 64 5 42	4833 8 4841 1
OBS STD OBS	1308 1500 1746	01 82 01 66 01 47	34 28 * 34 73 34 73	27 43* 27 80 27 82	0 750	5 76 5 67 5 41	4844 2* 4855 3 4867 1
STD OBS	2000	01 27	34 73 34 72	27 83 27 83	0 924	4 79 4 52	4879 2 4888 3
STD OBS	2500 2644	01 65*	34 70 34 68	27 76*	i	4 55 4 57	4922 6*
			!				

_					SURFACE	E OBSEI	RVATIONS				
NODC REF.	STATION		DATE POSITION			SONIC	MAX.				
NO.	SIATION	MO.	DAY	YEAR	#OUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0034	01	23	1961	06	57	53'S	151	10' W	3017	19

W	IND	ANEMO.	AIR	AIR TE	MP	ERATURE	HUMID-	WEATHER	cro	OUD	SI	EA	SWEL	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY ¥	,	WET 🌹	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
10	32		22	05	8	04 4	81	02	0	0	32	3	····		8		

					UBCUB	FACE 4	DREFE	VATIONS				
-	SAMPLE	т °	·c		 % o			ΣΔD		Ozm I/I	Vr	
	DEPTH (M)		<u>¥</u>	3		#t	*	♦ 2 20		Ø₂m 1/1 ₩		y
STD	0000	03	16	33	91	27	02	0 000	7	47	4784	2
OBS	0000	03	16	33	91	27	02		7	47	4784	2
STD	0010	03	16	33	91	27	02	0 010	7	46	4784	8
OBS	0010	03	16	33	91	27	02		_		4784	8
STD	0020	03	00	33	92	27	05	0 021	7	46	4783	2
OBS	0020	03	00 89	33	92	27	05		<u> 7</u>	46	4783	2
STD	0029 0030	02		33 33	95 9 5	27 27	08 08	0 031	7	46 48	4782 4781	3
OBS	0048	01	65	33	96	27	19	0 031	7	71	4765	5
STD	0050	01		33	96	27	21	0 049	7	72	4762	٥
obs	0072	-00		34	óo	27	35		7	78	4734	ĭ
STD	0075	-00	59	34	00	27	35	0 070	7	78	4733	6
eao ea	0097	-00	_	34	02	27	37		7	78	4730	9
STD	0100	-00	_	34	02	27	37	0 088	7	76	4731	1
OBS	0145	-00		34	09	27	43		7	33	4735	3
STD	0150	-00		34	10	27		0 122	7	29	4736	4
OBS	0194 0200	-00 -00		34 34	18 20	27 27	48	0 153	6	72 58	4747 4749	2
овѕ	0243	00		34	31	27	54	0 195	5	65	4762	9
STD	0250	00		34	33	27]	0 182	5	48	4765	9
085	0293	01	57	34	43	27	57		4	68	4780	9
STD	0300	01	59	34	44	27	58	0 209	4	63	4781	7
OBS	0391	01		34	53	27	63		4	23	4791	1
STD	0400	01		34	54	27		0 260	4	26	4792	3
OBS	0476	02	1	34	60	27	66		4	29	4800	4
STD	0500	02		34	61	27	ſ	0 306	4	14	4802	0
OBS STD	0572 0600	02	- 1	34 34	65 66	27 27	70 71	0 350	3	85 94	4806 4808	9
OBS	0668	01	83*	_	65*	27	73+	0 550	4	55	4808	0+
OBS	0762	02		34	71	27	75		4	35	4818	2
STD	0800	02	1	34	71	27		0 432	4	39	4819	7
овs	0954	01	93	34	72	27	77		4	52	4826	7
STD	1000	01	- 1	34	73	27	79	0 508	4	57	4829	1
OBS	1146	01	1	34	74	27	80		4	66	4836	5
STD	1200	01	1	34	74	27	- 1	0 580	4	48	4839	0
STD	1434 1500	01 01	1	34 34	74	27 27	82 82	0 684	4	43 78	4849	9
OBS	1627	01		34	73	27	82	0 004	5	26	4853 4859	0
OBS	1918	01	-	34	73	۲,	02		5	33	4027	١
009	1710		1	J 4	''		1		1	99		ı
			1		- 1				-	l		- {
					į				1			- 1
[[- 1		1		1		[[ſ
1	ì		- }		ł		ł		1	ł		-
}	l		}		j		j]	ļ		
					ļ				1			Į
1			l		1		ł		1	1		
	ļ		Ì		J		J			1		
1					}		ļ		1			
l			-		1		Ì			Ì		
1					ļ		ļ		1	ļ		
1							ļ			1		
							,			1		1

				•	SURFACI	E OBSE	RVATIONS				
NODC	STATION			DATE		SONIC	MAX.				
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	UNCORRECTED	SAMPLE DEPTH
00672	0035	01	23	1961	12	58	22 [′] S	149	51' W	2834	13

	WIND	ANEMC.	AIR	AIR T	EMP	ERATUI	RE	HUMID-	WEATHER		OUD	SI	EA .	SWE	L	VIS.	W	ATER
SPEE	DIR.	HGT.	PRESS	DRY	*	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
07	32		20	05	0	03	1	88	03	6	8	32	3			8		

7	32	20	05 0 0	23 1 86	03 6	8 32	3	8	\perp
				SUBSUR	FACE OBSER	RVATIONS			٦
		SAMPLE DEPTH (M)	T °C	s% o ₩	øt ₩	ΣΔΟ	O₂m I/I ₩	V, +	
	STD	DEPTH (M) 0000 5 0000 5 0000 6 0009 0010 6 0018 0020 0027 0030 0046 0050 0068 0075 0184 0200 0250 0184 0200 0250 0324 0308 0324 0308 0324 0400 0444 0500 0632 0760 0800 0632 0760 0800 0632 0760 0800 0632	02 78 02 78 02 75 02 75 02 75 02 72 02 70 02 48 01 17 00 63 -00 93 -00 83 -00 88 -00 53 -00 13 00 16 00 90 01 43 01 60	8%0		 ▼ Σ Δ D 0 00G 0 010 0 019 0 029 0 045 0 063 0 078 0 107 0 134 0 159 0 183 			•

				\$	SURFACE	OBSERVATIONS			
NODC REF.	STATION		1	DATE		PO	SITION	SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	SAMPLE DEPTH
00672	0036	01	23	1961	19	58° →7′S	148 39 W	2880	22

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-		CFC	QUO	SE	EA	SWEL	.L	VIS.	W	ATER
SPEE	D DIR.	HGT.	PRESS	DRY 🖤			WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
10	32		15	04 4	03 9	92	01	0	4	32	3			5		

1 32	119	07 7 0	72 7 72	1 01 0	17136		
	· · · · · · · · · · · · · · · · · · ·		SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°c ♥	s% o ♦	o₁ ♦	Σ Δ D	O₂m I/I ♥	v, ↓
STD OBS		01 69 01 69	34 20 34 20	27 38 27 38	0 000	7 84 7 84	4764 3 4764 3
OBS STD OBS	0010 0018	01 71 01 70 01 67	34 20 34 20 34 21	27 38 27 38 27 39	0 007	7 64 7 64 7 66	4765 1 4765 0 4765 1
STD OBS STD	0020 0028 0030	01 67 01 68 01 62	34 21 34 22 34 22	27 39 27 39 27 40	0 021	7 67 7 69 7 72	4765 2 4765 9 4765 1
OBS STD		00 98	34 24 34 24	27 46 27 48	0 021	7 89 7 89	4756 7 4751 7
OBS STD	0069 0075	-00 58 -00 73	34 26 34 26	27 56 27 56	0 048	7 89 7 87	4734 5 4732 5
OBS STD OBS	0100	-01 08 -01 19 -01 42	34 28 34 29 34 35	27 59 27 60 27 66	0 061	7 80 7 76 7 51	4728 2 4727 0 4726 0
STD	0150	-01 30 -00 75	34 37 34 46	27 67 27 73	0 084	7 24 6 26	4728 5 4739 8
STD OBS		-00 61 00 00	34 48 34 56	27 74 27 77	0 104	6 09 5 44 5 17	4742 7 4754 7 4760 5
STD OBS STD	0250 0286 0300	00 32 01 06 01 11	34 60 34 68 34 68	27 79 27 81 27 80	0 121	5 17 4 52 4 43	4774 0 4775 6
OBS STD		01 30 01 30	34 70 34 71	27 81 27 81	0 168	4 13 4 15	4783 6 4784 5
OBS STD OBS	0500	01 29 01 27 01 25	34 73 34 73 34 73	27 83 27 83 27 83	0 198	4 21 4 29 4 34	4787 1 4790 1 4791 9
STD OBS	0600 0624	01 20 01 18	34 72 34 72	27 83 27 83	0 228	4 44 4 48	4795 0 4796 1
OBS STD OBS	0800	01 14 01 07 01 00	34 73 34 72 34 71	27 84 27 84 27 83	0 287	4 21 4 34 4 44	4800 9 4804 9 4809 3
STD OBS	1000	00 93	34 71 34 71	27 84 27 84	0 345	4 49 4 51	4814 7 4818 4
STD OBS	_	00 81	34 71 34 70	27 85 27 84	0 403	4 52 4 54	4824 8 4832 2 4840 5
STD OBS STD	1500 1794 2000	00 67 00 56	34 70 34 69 34 70	27 85 27 85	0 488	4 61 4 71 4 76	4840 5 4856 3
OBS			34 71			4 81	

				9	SURFACE	OBSE	RVATIONS				
NODC	STATION		-	DATE		SONIC	MAX.				
REF. NO.	SIATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LONG	SITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0037	01	24	1961	00	59	19'S	147	33' W	2834	13

	WIND	ANEMO,	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER	cro	QUO	SE	Α	SWEL	.L	VIS.		ATER
SPE	ED DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY	WEATHER		AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
14	32		11	05 0	04 4	92	45		9	30	4			1		

<u> </u>			L				<u>`</u>		┸-					
	[SUBSUR	FACE	OBSER	VAT	IONS				
		SAMPLE DEPTH (M)	τ.	°¢ ↓		% o ♥	σι	*	•	ΣΔΟ		O₂m I/I ♥	٧,	,
	STD	0000	02	10	34 34 34	12 12	27 27	28 28	0	000	7	53 53	4769 4769	9
	OBS STD OBS	0008 0010 0017	02 02 02	11 10 07	34 34	13 14 15	27 27 27	29 30 31		800	7 7 7	57 55 51	4770 4770 4770	6 6
	STD	0020 0026	02	06 99	34	15 14	27	31 31		016	7	49 47	4770 4769	9
	STD OBS	0030 0043 0050	01 01 01	92 54 19	34 34 34	14 13 15	27 27 27	31 33 37	_	023 038	777	50 63 76	4769 4764 4759	2 3 7
	OBS	0065 0075	00	35	34	18	27 27	45 50		055	7	91 87	4748 4737	1 3
	OBS STD OBS	0087 0100 0131	-01 -01 -01	07 24 31	34 34 34	22 25 33	27 27 27	54 57 64	0	069	777	80 71 31	4727 47?6 4727	8 0 1
	STD	0150 0176	-01 -00	10	34 34	37 45	27 27	67 71	0	092	6	93 22	4731 4741	777
	STD OBS STD	0200 0221 0250	00	92	34 34 34	57 64 67	27 27 27	76 78 79		112 128	5 4 4	09 45 25	4758 4767 4773	9
	OBS STD	0266 0300	01 01	23 24	34 34	68 69	27 27	79 80		144	4	17 16	4775 4777	4
	STD OBS	0358 0400 0406	01 01 01	22	34 34 34	70 70 70	27 27 2 7	81 81 81	0	176	4 4 4	15 40 42	4781 4783 4783	5 3 5
	OBS STD	0490 0500	01 01	16 15	34 34	70 70	27 27	81 82	0 :	206	4	38 41	4787 4788	7 2
	OBS STD OBS	0575 0600 0662	01 01 01	08 05	34 34 34	69 69	27 27 27	81	0 2	237	4	52 44 33	4796	7 1 3
	OBS STD OBS	0749 0800 0839	00	94	34 34 34	69 69	27 27 27	82 82 82	0 7	299	4	41 45 46	4800 4802 4805	1 9 0
	STD OBS	1000 1022	00	84 82	34 34	69 69	27 27	83 83	0 :	359	4	25 22	4813 4814	3
	STD OBS	1115 1200 1305	00 00 00	72	34 34 34	69 69 68	27 27 27	83 84 83	0 4	419	4 4 4	54 57 61	4823	8 4 4
								1						

				\$	SURFACI	OBSE	RVATIONS				
NODC DATE POSITION											MAX.
NO.	SINTION	MO.	DAY	YEAR	HOUR	LA ⁻	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0038	01	27	1961	04	69	52'5	119	58' W	2875	28

W	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	סטס	SI	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	*	WET	*	ITY	WENTHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS,
06	21		00	51	0	51	6	87	02	6	6					8		

	<u> </u>		SURCUR	FACE OBSER	VATIONS		
	SAMDIE	7.90				2 11	. V.
	DEPTH (M)	Ŭ ¥	₩ **	່ ້ ♦	♦ Ž Ž D	Ø₂m I/I	" +
STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS	0000 0000 0010 0010 0020 0020 0030 0050 0050 0075 0075 0100 0150 0150 015	-01 67 -01 67 -01 73 -01 72 -01 72 -01 74 -01 80 -01 80 -01 77 -01 59 -01 59 -00 29 -00 29 -00 35 01 35 01 44	33 72 33 72 33 72 33 72 33 74 33 74 33 74 34 03 34 15 34 15 34 20 34 20 34 25 34 42 34 42 34 60 34 60 34 67	27 16 27 16 27 16 27 16 27 17 27 17 27 41 27 41 27 51 27 55 27 55 27 58 27 58 27 67 27 72 27 72 27 77	ψ ΣΔΦ 0 000 0 009 0 018 0 026 0 039 0 053 0 066 0 089 0 110 0 128	6 8 8 3 9 9 4 4 4 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4	4711 0 4711 0 4710 6 4710 6 4711 5 4711 5 4713 0 4713 7 4713 7 4713 7 4715 9 4720 5 4720 5 4744 4 4774 9 4772 9 4777 5
OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS OBS OBS	0300 0300 0400 0400 0500 0500 0600	01 14 01 02 01 02 00 87 00 87 00 64	34 67 34 70 34 72 34 73 34 73 34 73 34 73 34 73 34 73 34 73 34 73 34 73 34 73 34 71 34 71	27 80 27 81 27 82 27 82 27 82 27 84 27 84 27 84 27 84 27 85 27 85 27 85	0 145 0 178 0 209 0 241 0 302 0 361 0 420 0 507 0 649	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4777 5 2 4782 8 4788 8 4793 9 4799 0 4808 6 4817 9 4828 0 4843 6 4843 6 4869 8

				5	SURFACE	OBSE	RVATIONS				
NODC DATE POSITION										SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LA1	TITUDE	LONG	SITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0039	01	27	1961	21	70 °	21'5	118	56' W	2750	27

W	IND	ANEMO.	AIR	AIR TEMP	ERATURL	HUMID-	WEATHER	CTC	פטפ	SE	A	SWEL	.L	VIS.	w	ATER
SPEFD	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
09	27		02	50 6	51 1	89	02	0	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ♥	s% o ♦	σι ψ	Σ Δ D	O2m 1/1	v _f ↓
STD OBS STD OBS	0000 0000 0010 0010 0020 0020 0030 0049 0050 0074 0075 0098 0100 0148 0150 0197 0200 0247 0250 0296 0300 0396 0400	-01 55 -01 56 -01 56 -01 61 -01 68 -01 68 -01 67 -01 61 -01 63 -01 32 -01 32 -01 32 -01 32 -01 37 01 52 01 59 01 59 01 59 01 59 01 51 01 61 01 52 01 59 01 59 01 51 01 61 01 59 01 59 01 51 01 01 61 01 59 01 59 01 59 01 01 61 01 01 60 01 59 01 01 60 01 01 60 01 01 60 01 01 60 01 59 01 01 60 00 61 61 00 6	33 86 33 86 33 86 33 87 34 87 37 37 37 37 37 37 37 37 37 3	27 82 27 82 27 82 27 83 27 83 27 83 27 85 27 85 27 85 27 85	0 000 0 008 0 016 0 024 0 037 0 051 0 063 0 086 0 107 0 125 0 143 0 177 0 209 0 240 0 302 0 364 0 425 0 513 0 655 0 793	▼ 000226663 36621132839688331179242524492902145666555554444444444444444444444444444	₹ 4713 3 5 5 7 4 4713 3 5 5 7 4 4713 3 5 5 7 4 4713 3 5 5 7 4 4713 3 5 5 7 4 4714 4 7118 8 8 7 0 4 4714 4 7118 8 4714 4 7714 4

				5	SURFACE	OBSE	RVATIONS				
NODC REF.	CYATION			DATE			PO	SITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLI DEPTH
00672	0040	01	28	1961	09	70	53 ['] S	118	26 W	2688	24

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		OUD	SI	:A	SWE	LL	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
11	25		98	51 2	51 7	90	02	0	8					8		

٠	27	198	121 5 1 2	1 / 90	1 02 1	1 0 1	<u> </u>	
	1			SUBSUR	FACE OBSER	VATIONS		
		SAMPLE DEPTH (M)	T°C ♥	s% o ♦	~ 1 ★	Σ Δ D	O₂m I/I ♥	V _t ♦
	STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS OBS	0000 0000 0010 0010 0020 0020 0030 0050 0050 0050 0050 0150 0150 0200 0250 025	-01 69 -01 69 -01 68 -01 69 -01 69 -01 72 -01 74 -01 71 -01 71 -01 64 -01 25 -01 25 -00 49 -00 14 -00 14 00 56 00 56 01 44 01 46	33 87 33 87 33 87 33 87 33 91 33 91 34 11 34 18 34 24 34 27 34 27 34 36 34 43 34 44 34 54 34 54 34 34 54 34 34 34 34 34 34 34 34 34 34 34 34 34	27 28 27 28 27 28 27 28 27 28 27 31 27 31 27 47* 27 53 27 53 27 58 27 60 27 60 27 66 27 66 27 66 27 69 27 73 27 77 27 77 27 80 27 80 27 83	0 000 0 008 0 016 0 023 0 035 0 048 0 061 0 084 0 105 0 124 0 142	88866888666666666666666666666666666666	4711 3 4711 1 4712 1 4712 7 4712 7 4712 7 4713 7 4714 8 4714 8 4717 1 4717 8 4719 8 4719 8 4719 8 4719 8 4719 8 4719 8 4719 3 4729 3 4744 4 4753 0 4753 0 4767 0 4767 0 4786 6 4791 8
	STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS	0600 0674 0771 0800 0964 1000	01 40	34 75 34 775 34 775 34 774 34 74 34 74 34 74 34 74 34 77 34 77 34 72 34 72 34 71	27 82* 27 84* 27 86* 27 84 27 85 27 85	0 205 0 234 0 292 0 349 0 404 0 487 0 622	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4792 8 4796 6* 4797 2* 4801 2* 4806 4814 6 4816 5 4824 7 4826 9 4840 3 4842 7 4865 8 4892 5

				•	SURFACI	E OBSE	RVATIONS				
NODC	STATION			DATE			PO	SITION		SONIC	MAX.
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LONGITUDE		DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0041	01	28	1961	20	71	23'5	118	00' W	2200	21

W	IND	ANEMO.	AIR	AIR T	EMP	ERATURE	HUMID-	WEATHER	cro	OUD	SI	EA	SWEL		VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	Y	WET ₩	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
09	25		94	00	2	50 2	94	02	0	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	τ °c ψ	s% o ₩	" +	ΣΔD	O₂m I/I ♥	٧, ♦
STD	0000	-01 76	34 07	27 44	0 000	6 87	4711 1
OBS STD	0000	-01 76 -01 79 -01 79	34 07 34 07 34 07	27 44 27 44 27 44	0 006	6 87 6 83 6 83	4711 1 4711 2 4711 2
OBS STD	0010 0020	-01 79	34 08	27 45	0 013	6 78	4711 8
OBS STD	0030	-01 79 -01 77	34 08 34 11	27 45 27 48	0 019	6 78 6 68	4711 8 4712 9
OBS STD	0030 0050		34 11 34 26	27 48 27 60	0 030	6 68 6 38	4712 9 4714 9
OBS STD	0050 0075	-01 80* -01 75	34 26 34 31	27 60* 27 64	0 042	6 38 6 28	4714 2 • 4716 7
OBS STD	0075 0100	-01 75 -01 76	34 31 34 33	27 64 27 65	0 053	6 28 6 25	4716 7 4718 1
OBS STD	0100 0150	-01 76 -01 78	34 33 34 35	27 65 27 67	0 075	6 25 6 23	4718 1 4720 9
OBS STD	0150 0200	-01 78 -01 74	34 35 34 35	27 67 27 67	0 096	6 23 6 23	4720 9 4724 5
OBS STD	0200 0250	-01 74 -01 42	34 35 34 38	27 67 27 68	0 117	6 23 6 0 2	4724 5 4732 6
OBS	0250	-01 42 -01 04	34 38 34 42	27 68 27 70	0 137	6 02 5 75	4732 6 4741 8
OBS	0300	-01 04 01 00	34 42 34 65	27 70 27 79	0 173	5 75 4 48	4741 8 4779 8
овѕ	0400	01 00	34 65 34 72	27 79		4 48	4779 8 4793 0
STD OBS	0500 0500	01 47	34 72	27 81 27 81	0 205		4793 0
STD OBS	0600	01 42	34 74 34 74	27 83 27 83	0 236	4 36 4 36	4798 3
STD	0700 0800	01 33	34 73 34 73	27 83 27 83	0 296	4 30	4802 9 4807 4
OBS STD	0800 1000	01 23 01 04	34 73 34 72	27 83 27 84	0 355	4 30 4 44	4807 4 4816 4
OBS STD	1000 1200	01 04 00 91	34 72 34 73	27 84 27 86	0 413	4 44 4 54	4816 4 4826 4
OBS STD	1200 1500	00 91 00 77	34 73 34 72	27 86 27 86	0 496	4 54 4 75	4826 4 4842 1
OBS STD	1500 2000	00 77 00 52	34 72 34 71	27 86 27 86	0 633	4 75 4 72	4842 1 4868 0
OBS OBS	2000 2100	00 52 00 49	34 71 34 71	27 86 27 87	,	4 72	4868 0 4873 4
	•				.		
						:	ļ
			:	ļ			
1	İ]			İ

			_	\$	SURFACE	E OBSERVATIONS	•		
NODC REF.	STATION			DATE		P	OSITION	SONIC	MAX. SAMPLI
NO.	SIXIION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	
00672	0042	01	29	1961	06	71 30'S	117 10 W	1765	17

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER	CLC	auc	SE	EA	SWE	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🛡	WET ্	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
04	34		90	50 1	50 4	94	45	0	8					6		

 1		1011.	70 71 77			<u> </u>	
ļ			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	7 °C ₩	\$% 0 ₩	°t ♦	ΣΔΟ	O₂m 1/1 ♦	٧, ♦
STD OBS STD	0000 0000 0010	-01 63 -01 63 -01 65	34 00 34 00 34 01	27 38 27 38 27 39	0 000 0 007	6 86 5 86 6 84	4712 8 4712 8 4713 1
OBS STD OBS	0020	-01 65 -01 64 -01 64	34 01 34 04 34 04	27 39 27 42 27 42	0 014	6 84 6 82 6 82	4713 1 4714 0 4714 0
STD OBS STD	0030 0030 0050	-01 64 -01 64 -01 68	34 12 34 12 34 26	27 48 27 48 27 60	0 020 0 031	6 69 6 69 6 46	4715 0 4715 0 4716 1
OBS STD OBS STD	0050 0075 0075 0100	-01 68 -01 66 -01 66 -01 84	34 26 34 33 34 33 34 34	27 60 27 65 27 65 27 66	0 043	6 46 6 38 6 38 6 27	4716 1 4718 2 4718 2 4716 9
OBS STD OBS	0100 0150	-01 84 -01 82 -01 82	34 35 34 35	27 67 27 67	0 075	6 27 6 26 6 26	4720 2 4720 2
STD OBS	0200 0200 0250	-01 75 -01 75 -01 54	34 36 34 36 34 37	27 68 27 68 27 68	0 096 0 117	6 23 6 23 6 07	4724 4 4724 4 4730 7
OBS STD OBS	0250 0300 0300	-01 54 -00 95 -00 95	34 37 34 43 34 43	27 68 27 71 27 71	0 137	6 07 5 68 5 68	4730 7 4743 2 4743 2
OBS STD OBS	0400 0400	00 18 00 79 00 79	34 56 34 65 34 65	27 76 27 80 27 80	0 172	5 01 4 68 4 68	4764 1 4776 7 4776 7
STD OBS STD	0600	01 27 01 27 01 30	34 71 34 71 34 74	27 82 27 82 27 84	0 203 0 233	4 39 4 39 4 37 4 37	4790 0 4790 0 4796 5 4796 5
OBS STD OBS	0600 0800 0800 0900	01 30 01 09 01 09 01 00	34 74 34 74 34 74 34 74	27 84 27 85 27 85 27 86	0 290	4 43 4 43 4 54	4805 3 4805 3 4809 9
STD OBS	1000 1000 1200	00 95 00 95 00 85	34 73 34 73 34 72	27 85 27 85 27 85	0 346 0 402	4 58 4 58 4 59	4815 1 4815 1 4825 5
OBS OBS STD	1200 1400 1500	00 85 00 74 00 69	34 72 34 72 34 72	27 85 27 86 27 86	0 485	4 59 4 73 4 72	4825 5 4835 7 4840 9
OBS	1700	00 60	34 71	27 86		4 69	4851 4
					! !		

				\$	SURFACE	E OBSEF	RVATIONS				
NODC	CTATION			DATE			PO	SITION		SONIC	MAX.
REF. NO.	STATION	MO.	O. DAY YEAR HOUR LATITUDE LO			LON	GITUDE	UNCORRECTED	SAMPLI DEPTH		
00672	0043	01	29	1961	15	70	59 ['] 5	116	56' W	2685	26

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	סטכ	Si	:A	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ∜	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	32		90	00 0	50 4	92	02	0	8	-				8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	7 °C ★	s% o ↓	o₁ ♦	ΣΔD	O₂m I/I ₩	v, +
STD OBS	0000 0000 0010	-01 70 -01 70 -01 75	33 93 33 93 33 93	27 33 27 33 27 33	0 000	6 92 6 92 6 92	4711 4 4711 4 4711 2
STD OBS STD	0010 0020	-01 75 -01 76 -01 76	33 93 33 93 33 93	27 33 27 33 27 33	0 015	6 92 6 93 6 93	4711 2 4711 6 4711 6
OBS STD OBS	0030 0030	-01 74 -01 74	33 92 33 92	27 32 27 32	0 023	6 93 6 93	4712 5 4712 5 4712 5 4714 5
STD OBS STD	0050 0050 0075	-01 75 -01 75 -01 64	34 15 34 15 34 23	27 51 27 51 27 57	0 050	6 42 6 27	4714 5 4718 1
OBS STD OBS	0100 0100	-01 64 -01 67 -01 67	34 23 34 26 34 26	27 57 27 59 27 59	0 063	6 27 6 30 6 30	4718 1 4719 3 4719 3
STD OBS STD	0150 0150 0200	-01 34 -01 34 -01 16	34 34 34 34 34 38	27 65 27 65 27 68	0 086 0 108	6 04 6 04 5 88	4727 8 4727 8 4733 8
OBS STD OBS	0200 0250 0250	-01 16 -00 08 -00 08	34 38 34 50 34 50	27 68 27 73 27 73	0 127	5 88 5 14 5 14	4733 8 4753 9 4753 9
STD OBS OBS	0300 0300 0350	00 44 00 44 01 27	34 56 34 56 34 67	27 75 27 75 27 78	0 146	4 82 4 82 4 3 5	4765 1 4765 1 4780 9
STD OBS	0400 0400	01 49 01 49	34 73 34 73	27 82 27 82	0 179	4 22	4787 4 4787 4 4793 2
STD OBS STD	0600	01 48 01 48 01 38	34 74 34 72* 34 75	27 82 27 81*	0 210	4 24 4 32	4793 1* 4797 8
OBS STD OBS		01 38 01 23 01 23	34 75 34 73 34 73	27 84 27 83 27 83	0 298	4 32 4 35 4 35	4797 8 4807 4 4807 4
STD OBS STD	1000 1000 1200	01 06 01 06 00 96	34 71 34 71 34 72	27 83 27 83 27 84	0 359 0 418	4 49 4 49 4 59	4816 6 4816 6 4827 1
OBS STD OBS	1200 1500 1500	00 96 00 81 00 81	34 72 34 72 34 72	27 84 27 85 27 85	0 504	4 59 4 68 4 68	4827 1 4842 7 4842 7
STD OBS	2000 2000 2500	00 58 00 58 00 43	34 70 34 70 34 70	27 85 27 85 27 86	0 645 0 782	4 84 4 84 4 84	4868 8 4868 8 4896 2
овѕ		00 41	34 70	27 86	1	4 84	4901 8
						:	
	· 	į				:	
į							

					SURFACI	OBSE	RVATIONS				
NODC REF.	STATION	_		DATE			PC	SITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE LONGITUDE				DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0044	01	30	1961	00	70	30 ['] S	116	39' W	3150	30

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER	CLC	OUD	SI	A	SWEL	.L	VIS.	W	ATER
SPEE	D DIR.	HGT.	PRESS	DRY 🖤	WET 🖤	ITY	MEVILEN	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	36	Ţ	91	00 4	50 3	87	02	0	8					8		

لــــــــــــــــــــــــــــــــــــــ								
				SUBSUF	RFACE OBSER	IVATIONS		
		SAMPLE DEPTH (M)	T °C ♥	8%0	" *	Σ ΔD	O₂m I/I V	V1 🖖
	STD	0000	-01 60 -01 60	33 84 33 84	27 25 27 25	0 000	7 11 7 11	4712 6 4712 6
	STD	0010	-01 69	33 84	27 25	0 008	7 11	4711 8
	STD	0010 0020	-01 69 -01 73	33 84 33 85	27 25	0 016	7 11 7 12	4711 8
	овѕ	0020	-01 73	33 85	27 26		7 12	4711 8
	STD OBS	0030 0030	-01 76	34 02 34 02	27 40	0 024	6 58	4712 6 4712 6
	STD	0050	-01 81	34 16	27 52	0 037	6 82	4713 6
	OBS	0050	-01 81	34 16	27 52		6 82	4713 6
	STD	0075 0075	-01 76 -01 76	34 21 34 21	27 56 27 56	0 050	6 59	4716 1 4716 1
	STD	0100	-01 67	34 24	27 58	0 063	6 47	4719 2
	ОВЯ	0100	-01 67	34 24	27 58		6 47	4719 2
	STD OBS	0150 0150	-00 46 -00 46	34 37 34 37	27 64	0 088	5 62	4741 6 4741 6
	STD	0200	00 85	34 56	27 72	0 109	4 65	4765 3
	OBS	0200	00 85	34 56	27 72		4 65	4765 3
	STD	0250 0250	01 28 01 28	34 64	27 76	0 127	4 40	4775 0 4775 0
	STD	0300	01 50	34 68	27 78	0 145	4 26	4781 4
	овя	0300	01 50	34 68	27 78		4 26	4781 4
	STD	0350 0400	01 57 01 59	34 70 34 72	27 79	0 178	4 22	4785 5 4788 8
	овѕ	0400	01 59	34 72	27 80	V 1/0	4 26	4788 8
	STD	0500	01 55	34 73	1	0 210	4 27	4794 2
	STD	0600 0600	01 49 01 49	34 73 34 73	27 82 27 82	0 241	4 30	4799 3 4799 3
	STD	0800	01 32	34 73		0 304	4 42	4808 7
	OBS	0800	01 32	34 73	27 83	• • •	4 42	4808 7
	STD	1000	01 16	34 72 34 72	27 83 27 83	0 365	4 47	4818 2 4818 2
	STD	1200	01 02	34 72		0 425	4 59	4828 0
	овя	1200	01 02	34 72	27 84		4 59	4828 0
	STD	1500 1500	00 88	34 71 34 71	27 84 27 84	0 514	4 68 4 68	4843 7 4843 7
	STD	2000	00 66	34 71		0 659	4 74	4870 1
	CBS	2000	00 66	34 71	27 86	A 707	4 74	4870 1
	STD BS	2500 2500	00 46	34 70	27 86 27 86	0 797	4 87 4 87	4896 6 4896 6
	STD	3000	00 38	34 70		0 930	4 88	4925 0
	овя	3000	00 38	34 70	27 86		4 88	4925 0
	ſ							-
	1							}
								}
								J
	1							[
	1			1				1

					SURFACI	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION	<u>-</u>	SONIC	MAX.
NO.	SIKITON	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLI DEPTH
00672	0045	01	30	1961	09	70°	03'S	116	30' W	3545	30

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	QUO	SI	ĒA.	SWEL	.L	we	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ্	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
06	02		92	50 6	50 8	95	56	0	3					5		

					SUBSUR	FACE	OBSEF	RVA	TIONS			
	SAMPLE DEPTH (M)	7 0	°c ♥	8	% o ¥	σι	*	Γ,	ΣΔD		O2m 1/1	٧, +
STD OBS STD OB		-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	▼ 77766886668777777777777777777777777777				0BSEF 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20			667777776666665544444444444444444444444	9883399557755554466777221662667722333571155564110	

				•	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PC	SONIC	MAX.		
NO.		MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0046	01	30	1961	17	70	05'S	115	31 W	3450	30

L	WIND		ANEMO.	AIR	AIR TEMPERATURE			HUMID- WEATHER	CLOUD		SEA		SWELL			w	WATER		
SI	PEED	DIR.	HGT.	PRESS	DRY	•	WET	*	ITY			AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
Γ	06	05		93	50	6	51	2	87	02	0	8					8		

	SUBSURFACE OBSERVATIONS											
	SAMPLE DEPTH (M)	T °C ₩	s% o ♦	ot ♥	Σ Δ D	O₂m I/I ♥	v, 🛊					
STD OBS STD OBS STD OBS STD OBS	0000 0000 0010 0010 0020 0020 0030	-01 62 -01 62 -01 64 -01 70 -01 70 -01 71 -01 71	33 71 33 71 33 70 33 70 33 81 33 81 34 10 34 10	27 15 27 15 27 14 27 14 27 23 27 23 27 47 27 47	0 000 0 009 0 018 0 026	7 39 7 39 7 35 7 31 7 31 6 86 6 86	4711 7 4711 7 4712 0 4712 0 4712 1 4712 1 4713 8 4713 8					
STD OBS STD OBS STD OBS OBS	0050 0050 0075 0075 0100 0100 0125 0150	-01 81 -01 81 -01 77 -01 77 -01 73 -01 73 -01 51 -00 57	34 14 34 14 34 20 34 20 34 23 34 23 34 27 34 36	27 50 27 50 27 55 27 55 27 57 27 57 27 60 27 64	0 038 0 052 0 065 0 089	6 87 6 78 6 78 6 63 6 63 6 33 5 72	4713 5 4713 5 4715 9 4715 9 4718 2 4718 2 4723 3 4739 9					
OBS STD OBS STD OBS STD OBS	0150 0200 0200 0250 0250 0300 0300	-00 57 00 59 00 59 01 30 01 30 01 54 01 54	34 36 34 51 34 51 34 62 34 62 34 67 34 67	27 64 27 70 27 70 27 74 27 74 27 76 27 76	0 111 0 131 0 149	5 72 89 4 89 4 37 4 22 4 22	4739 9 4761 2 4761 2 4775 2 4775 2 4781 9 4781 9					
STD OBS STD OBS STD OBS	0400 0400 0500 0600 0600 0800	01 66 01 62 01 57 01 57 01 41 01 41	34 70 34 70 34 72 34 74 34 74 34 74	27 78 27 80 27 82 27 82 27 82 27 83	0 312	4 15 4 15 4 21 4 26 4 26 4 32 4 32	4789 8 4789 8 4795 2 4800 5 4800 5 4810 0					
STD OBS STD OBS STD OBS STD	1000 1000 1200 1200 1500 1500 2000	01 24 01 11 01 11 00 93 00 93 00 71	34 73 34 73 34 72 34 72 34 72 34 72 34 71	27 83 27 83 27 83 27 85 27 85 27 85	0 434 0 524 0 669	4 39 4 39 4 51 4 51 4 55 4 55 4 63	4819 4 4819 4 4829 3 4829 3 4844 5 4844 5 4870 8					
OBS STD OBS STD OBS	2000 2500 2500 3000 3000	00 49 00 49 00 39	34 71 34 71 34 71 34 71 34 71	27 87	0 8 0 7 0 938	4 63 4 78 4 78 4 78 4 78 4 78	4870 8 4897 1 4897 1 4925 2 4925 2					

					SURFACI	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LA.	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLI DEPTH
00672	0047	01	31	1961	02	70 °	08'S	114	14' W	3540	34

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER	CLC	QUO	SE	A	SWEL		VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
00	00		94	50 3	50 7	93	02	0	8					8		

ſ			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ♥	8% O V	σ ₁ ψ	Σ Δ D	O₂m I/I ♥	V ₁
STD	0000	-01 76	33 74 33 74	27 18	0 000	7 27 7 27	4709 6
OBS STD	0000 0010	-01 76 -01 79	33 74 33 74	27 18	0 009	7 27	4709 6 4709 7
OBS	0010	-01 79	33 74	27 18		7 27	4709 7
STDOBS	0020 0020	-01 77 -01 77	33 77 33 77	27 20 27 20	0 018	7 27 7 27	4710 8 4710 8
STD	0030	-01 73	33 88	27 29	0 026	7 14	4712 5
OBS	0030	-01 73	33 88	27 29	0.040	7 14	4712 5 4714 4
STD	0050 0050	-01 76 -01 76	34 15 34 15	27 51 27 51	0 040	6 76	4714 4 4714 4
STD	0075	-01 75	34 20	27 55	0 054	6 61	4716 2
OBS	0075	-01 75	34 20	27 55	0.047	6 61	4716 2
STD	0100 0100	-01 78 -01 78	34 22 34 22	27 57 27 57	0 067	6 52 6 52	4717 3 4717 3
OBS	0125	-01 46	34 26	27 59		6 32	4724 1
STD	0150	-00 71	34 34	27 63	0 092	5 83	4737 6
08S 08S	0150 0175	-00 71 -00 08	34 34 34 42	27 63 27 66		5 83 5 32	4737 6 4749 1
STD	0200	00 62	34 52	27 71	0 114	4 78	4761 7
OBS	0200	00 62	34 52	27 71		4 78	4761 7
STD OBS	0250 0250	01 31	34 63 34 63	27 75	0 133	4 29 4 29	4775 4 4775 4
STD	0300	01 45	34 64	27 75	0 151	4 22	4780 5
OBS	0300	01 45	34 64 34 70	27 75	A 107	, ,,	4780 5
STD	0400 0400	01 66	34 70 34 70	27 78 27 78	0 187	4 16 4 16	4789 8 4789 8
STD	0500	01 64	34 71	27 79	0 221	4 22	4795 5
OBS	0500	01 64	34 71	27 79		4 22	4795 5
STD	0600 0600	01 57	34 71 34 71	27 79 27 79	0 255	4 25 4 25	4800 4 4800 4
STD	0800	01 41	34 73	27 82	0 320	4 40	4810 0
OBS	0800	01 41	34 73	27 82	• 200	4 40	4810 0
STD OBS	1000 1000	01 28	34 72 34 72	27 82 27 82	0 383	4 43 4 43	4819 9 4819 9
STD	1200	01 14	34 71	27 82	0 446	4 45	4829 7
STD	1500	00 96	34 70	27 83	0 540	4 50	4844 8
OBS STD	1500 2000	00 96	34 70 34 71	27 83 27 85	0 691	4 50 4 66	4844 8 4871 1
овѕ	2000	00 73	34 71	27 .85	• • • • • • • • • • • • • • • • • • • •	4 66	4871 1
STD	2500	00 50	34 69		0 833	4 77	4897 2
OBS STD	2500 3000	00 50	34 69 34 69	27 85 27 86	0 972	4 77 4 80	4897 2 4925 1
овя	3000	00 39	34 69	27 86	0 / 12	4 80	4925 1
OBS	3400	00 42	34 69	27 85		4 85	4949 1

				5	SURFACE	OBSER	RVATIONS				
NODC	CYATION		SONIC	MAX.							
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0048	01	31	1961	10	70	07'S	112	58' W	3680	35

ſ	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	מטפ	SE	ĒA.	SWEL	.L	VIS.	w	ATER
[PEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
	02	09		94	50 4	50 8	93	02	0	8					8		

ĺ			SUBSUF	RFACE OBSER	IVATIONS		
	SAMPLE DEPTH (M)	t °c ♥	s% o ₩	σ _t ψ	Σ Δ D	O₂m I/t ₩	v₁ ♦
STD	0000	-01 77	33 75	27 18	0 000	7 27	4709 5 4709 5
OBS STD	0000 0010	-01 77 -01 79	33 75 33 75	27 18	0 009	7 27	4709 5 4709 8
OBS	0010	-01 79	33 75	27 18	0 003	7 16	4709 B
STD	0020	-01 79	33 74	27 18	0 018	7 23	4710 3
овѕ	0020	-01 79	1	27 18		7 23	4710 3
STD	0030	-01 77	33 76	27 19	0 027	7 17	4711 3
OBS	0030	-01 77	33 76	27 19		7 17	4711 3
STD	0050	-01 73	34 10	27 47	0 042	6 91 6 91	4714 6
OBS STD	0050 0075	-01 73 -01 56	34 10 34 24	27 47 27 58	0 056	6 91 6 61	4714 6
OBS		-01 56	34 24	27 58	0 0 0 0	6 61	4719 4
STD	0100	-01 17	34 28	27 60	0 069	6 29	4727 2
OBS	0100	-01 17	34 28	27 60		6 29	4727 2
OBS	0125	-00 42	34 37	27 64		5 75	4740 7
STD	0150	00 44	34 47	27 68	0 092	5 15	4755 8
OBS	0150	00 44	34 47	27 68	}	5 15 4 80	4755 8 4765 5
OBS	0175 0200	00 97	34 55 34 59	27 71 27 73	0 112	4 63	4769 6
овы		01 13	34 59	27 73	0 112	4 63	4769 6
STD	0250	01 36	34 62	27 74	0 131	4 37	4776 1
OBS	0250	01 36	34 62	27 74			4776 1
STD	0300	01 42	34 67	27 77	0 149	4 21	4780 1
OBS	0300		34 67			4 21	
STD	0400	01 52	34 71	27 80	0 182	4 21	4787 7
STD	0400 0500	01 51	34 71 34 72	27 81	0 215	4 23	4793 6
OBS		0. 7.	34 72	2, 31	0 213	4 23	,
STD	0600	01 57	34 73	27 81	0 247	4 24	4800 5
OBS		01 57	34 73	27 81		4 24	4800 5
STD	0800	01 44	34 74	27 83	0 310	4 38	4810 5
OBS		01 44	34 74	27 83	0 271	4 43	4810 5 4820 2
STD	1000 1000	01 29	34 74	27 84	0 371	4 43	4820 2
STD	1200	01 14	34 73	27 84	0 431	4 44	4829 8
овы	1200	01 14	34 73	27 84		4 44	4829 8
STD	1500	00 98	34 72	27 84	0 521	4 58	4845 2
OBS	1500	00 98	34 72	27 84		4 58	4845 2
STD	2000	00 83	34 71	27 84	0 671	4 72	4872 6
OBS	2000	00 83	34 74 * 34 71	27 87 *	0 814	4 72	4872 7* 4897 9
STD	2500 2500	00 54	34 71	27 86	0 814	4 73	4897 9
STD	3000	00 42	34 71	27 87	0 948	4 81	4925 6
овя	3000	00 42	34 71	27 87		4 81	4925 6
UBS	3500	00 35	34 68	27 85		4 78	4953 9

				5	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION		1	DATE			PC	SITION	.,	SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LA'	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0049	01	31	1961	21	70	08′S	111	30' W	3470	33

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	OUD	SE	A	SWEL	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
07	09		94	00 8	00 4	92	02	0	8					8		

109	1 74	00 0 0	SUBSUR	FACE OBSER	VATIONS	11	
	SAMPLE DEPTH (M)	τ °c Ψ	s% o ∳	o₁ ♣	ΣΔΟ	O₂m i/I ♥	v, ★
STD OBS STD OB	0000 0000 0010 0010 0020 0030 0050 0050 0050 0150 0150 0150 0250 025	-01 75 -01 79 -01 78 -01 78 -01 78 -01 75 -01 75 -01 75 -01 75 -01 75 -01 75 -01 65 -01 39 -00 42 -00 27 -00 27 -00 78 -01 15 -01 49 -01 61 -01 68 -01 68 -01 63 -01 57 -01 42 -0	33333333333333333333333333333333333333	27 09 27 08 27 08 27 11 27 16 27 16 27 50 27 56 27 56 27 56 27 56 27 75 27 77 27 77 27 77 27 77 27 77 27 77 27 77 27 80 27 82 27 82 27 82 27 82 27 85 27 87 27 87 27 87 27 87 27 87 27 87 27 87 27 87 27 85 27 87	0 000 0 010 0 020 0 029 0 044 0 058 0 071 0 094 0 114 0 133 0 151 0 185 0 219 0 251 0 315 0 377 0 438 0 526 0 671 0 813 0 948	\$\frac{1}{2228800445555511600355522556}\$\$ \$\frac{1}{22233227755533710035522556}\$\$ \$\frac{1}{223344446666666666666666666666666666666	470991115009977741115009977711115009977711117337766999111772347533647694778301144715347669477830114478347834790548100055777669477834783479054882095577766947783478347905488209557766947783479054882095577669477834790548820955776694778347905488209557766947783479054882095577669

		,		5	SURFACI	E OBSE	RVATIONS			<u></u>	
NODC REF.	STATION			DATE			PC	SITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0050	02	01	1961	17	69	43'5	111	26' W	3523	34

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER		סטפ	SI	A	SWEL	-L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ্	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
02	09		93	51 4	51 8	92	02	6	4					8		

25 10, 1		<u> </u>						Ц.					
					SUBSUR	FACE	OBSER	VA	TIONS				
	SAMPLE DEPTH (M)	7	°ç	8	% o	σt		Γ.	ΣΔD	T	O2m 1/l	Vį	
	DEPIN (M)	 	<u> </u>	<u> </u>	<u> </u>		<u> </u>	. 1			<u>*</u>	<u> </u>	<u> </u>
STD	0000	-01	61	33	13	26	68		000	7	52	4709	4
OBS		-01	61	33	13	26	68	١٧	000	1	52	4709	
STD	0010	-01	70	33	12	26	67	^	014	7	56	4708	
овѕ		-01	70	33	12	26	67	~	014	7	56	4708	-
STD	0020	-01	65	33	55	27	02	_	026	7	46	4711	
овя	0020	-01	65	33	55	27	02		020	7	46	4711	
STD	0020	-01	69	33	77	27	20	lo	035	7	03	4712	
овs		-01	75*		77	27	204		4 55	7	03	4711	
STD	0050	-őî	72	34	06	27	43	0	051	6	63	4714	
овя	0050	-01	72	34	06	27	43			6	63	4714	
STD	0075	-01	65	34	18	27	53	0	066	6	34	4717	7
овя		-01	65	34	18	27	53			6	34	4717	7
STD	0100	-01	47	34	25	27	58	0	079	6	15	4722	
овя	0100	-01	47	34	25	27	58		- · •	6	15	4722	
OBS	0125	-00	79	34	31	27	61			5	67	4734	
STD	0150	-00	21	34	40	27	65	0	103	5	22	4745	
овя	0150	-00	21	34	40	27	65			5	22	4745	6
OBS	0175	00	34	34	47	27	68			4	91	4755	7
STD	0200	00	81	34	57	27	73	0	124	4	49	4764	. 7
OBS	0200	00	81	34	57	27	73			4	49	4764	. 7
STD	0250	01	31	34	62	27	74	0	142	4	16	4775	3
OBS	0250	01	31	34	62	27	74			4	16	4775	3
STD	0300	01	47	34	67	27	77	0	160	4	05	4780	9
овѕ	0300	1		34	67		i			4	05		
STD	0400	01	64	34	70	27		0	195	3	97	4789	
OBS	0400	01	64	34	74*	27	81*			3	97	4789	
STD	0500	01	61	34	72	27	80	0	229	4	05	4795	
OBS	0500	01	61	34	72	27	80			4	05	4795	- 1
STD	0600	01	55	34	73	27	- 1	0	261	4	12	4800	
OBS	0600	01	55	34	73	27	81			4	12	4800	- 1
STD	0800	01	40	34	73	27	82	0	324	4	17	4809	- 1
OBS	0800	01	40 23	34	73 73	27	82		201	4	17	48 0 9	
STD	1000	01			}	27		0	386	1	21		- 1
OBS	1000	01	23 11	34 34	73 73	27	83	^		4	21	4819	- 1
STD	1200 1200	01	11	34	73	27 27	84	0	446	4	25 25	4829 4829	1
OBS STD	1500	00	91	34	72	27	I	0	535	4	41	4844	
овя	1500	00	91	34	72	27	85	J	ر ن ر	4	41	4844	
STD	2000	00	71	34	71	27	1	0	680	4	49	4870	
овя	2000	00	71	34	71	27	85	•	J., J	4	49	4870	- 1
STD	2500	00	51	34	71	27		0	819	4	49	4897	,
овз	2500	01	63*		71	27	79*	-	·	4	49	4914	1
STD	3000	00	39	34	71	27	87	0	950	4	61	4925	- 1
овя	3000	00	39	34	71	27	87			4	61	4925	2
овя	3400	00	35	34	70	27	87			4	59	4948	1
Ì]			ļ					1	ľ		
													}
			Ì				}						Į
ļ										1			
1			İ		- (1				1		ļ
1			-		- 1		}				Į		ļ
1		l			}		-			1			}

SURFACE OBSERVATIONS													
NODC	STATION			DATE			PO	SITION		SONIC	MAX. SAMPLE		
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA1	TTUDE	LON	GITUDE	UNCORRECTED			
00672	0051	02	02	1961	01	69	13'S	111	28' W	3690	35		

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		QUO	SI	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤		ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	05		91	50 6	51 7	81	02	6	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ♥	s% 0 ♦	″t ₩	Σ Δ D	Osm I/I	V _f ₩
STD	0000	-01 14	33 13 33 13	26 66	0 000	7 61 7 61	4716 8 4716 8
OBS STD	0000	-01 14 -01 61	33 46	26 66 26 94 26 94	0 013	7 46	4711 4 4711 4
OBS STD	0010	-01 61 -01 66	33 46 33 56	27 03	0 023	7 31 7 31	4711 6 4711 6
OBS STD	0020	-01 66 -01 66	33 56 33 82	27 03	0 033	7 01	4711 8 4713 3 4713 3
OBS STD	0050	-01 66 -01 67	33 82	27 24 27 45	0 047	6 51	4715 5 4715 5
OBS STD	0050	-01 67 -01 25	34 23	27 45 27 56	0 062	6 03	4724 3
OBS STD	0100	-01 25 -00 47	34 23	27 56	0 075	5 50	4724 3 4738 4
OBS OBS	0100 0125	-00 47 00 21	34 34 34 43	27 62		5 50 4 89	4738 4 4750 6
STD	0150 0150	00 95	34 54	27 70	0 097	4 39	4763 7 4763 7
OBS STD	0175 0200	01 24	34 58 34 61	27 71 27 72	0 117	4 20	4769 7 4774 8
OBS STD	0200 0250	01 48	34 61 34 66	27 72 27 75	0 136	4 05 3 95	4774 8 4781 1
OBS STD	0250 0300	01 69	34 66	27 75	0 154	3 95	4781 1 4785 2
OBS STD	0300 0400	01 76	34 68 34 70	27 76	0 190	3 92	4785 2 4791 5
OBS STD	0400 0500	01 78 01 73	34 70 34 73	27 77 27 80	0 224	3 97	4791 5 4796 9
OBS STD	0500 0600	01 73	34 73 34 73	27 80 27 80	0 257	4 01	4796 9 4801 8
OBS STD	0800	01 66	34 73 34 73	27 80 27 82	0 322	4 07	4801 8 4811 2
OBS STD	0800 1000	01 49	34 73	27 82	0 386	4 14	4811 2 4821 0
OBS STD	1200	01 35	34 73 34 73	27 83	0 448	4 17	4821 0 4830 8
STD	1200	01 21	34 73 34 72 34 72	27 84	0 540	4 19	4830 8 4845 9 4845 9
OBS STD	1500 2000	01 03 00 77 00 77	34 72 34 71 34 71	27 84 27 85 27 85	0 689	4 44 4 36 4 36	4871 7 4871 7
OBS STD	2000 2500 2500	00 77 00 55 00 55	34 71 34 71	27 86 27 86	0 831	4 59 4 59	4898 0 4898 0
OBS STD OBS	3000	00 53	34 71 34 71	27 86 27 86	0 968	4 64	4927 3
овя	3500	00 33	34 70	2, 00		4 61	7,2,
		1					

SURFACE OBSERVATIONS													
NODC REF.	STATION		1	DATE			PO	SITION		SONIC	MAX. SAMPLE		
NO.	SIANION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	DEPTH UNCORRECTED			
00672	0052	02	02	1961	09	69	13'5	110	08' W	3731	35		

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	ÇLC	OUD	SI	EA	SWEI	L	VIS.	W	ATER
SPEE	D DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
02	36		91	00 0	50 9	84	03	6	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	\$% 0 ♦	*1 +	Σ Δ D	O₂m I/I ♥	V, +
STD	0000	-00 87	32 94	26 50	0 000	7 78	4720 2
	DB4 0000	-00 87	32 94	26 50	0.5	7 78	4720 2
STD	0010	-01 12	33 00	26 56 26 56	0 015	7 78 7 78	4717 1 4717 1
	OBS 0010	-01 12 -01 43	33 00 33 23	26 56	0 029	7 84	4713 8
STD	0020 085 0020	-01 43 -01 43	33 23	26 75	0 029	7 84	4713 8
	OBS 0020	-01 57	33 92	27 32	0 039	7 40	4715 2
STD	0030	-01 57	33 92	27 32	0 037	7 40	4715 2
STD	0050	-01 72	34 02	27 40	0 054	6 71	4714 4
	OBS 0050	-01 72	34 02	27 40	0 054	6 71	4714 4
STD	0075	-01 28	34 19	27 53	0 069	6 06	4723 6
	OBS 0075	-01 28	34 19	27 53	1	6 06	4723 6
STD	0100	-00 47	34 32	27 60	0 083	5 46	4738 3
	OBS 0100	-00 47	34 32	27 60	1000	5 46	4738 3
	0125	00 31	34 42	27 64		4 90	4752 1
STD	0150	00 96	34 51	27 68	0 106	4 40	4763 7
	OBS 0150	00 96	34 51	27 68	}	4 40	4763 7
	0175	01 18	34 56	27 70		4 25	4768 7
STD	0200	01 42	34 60	27 72	0 126	4 08	4773 9
_	OBS 0200	01 42	34 60	27 72		4 08	4773 9
STD	0250	01 59	34 64	27 74	0 146	3 99	4779 5
	DBS 0250	01 59	34 64	27 74		3 99	4779 5
STD	0300	01 79	34 67	27 75	0 164	4 04	4785 6
	OBS 0300	01 79	34 67	27 75		4 04	4785 6
STD	0400	01 77	34 70	27 77	0 201	4 04	4791 4
STD	0500	01 73	34 72	27 79	0 235	4 04	4796 8
	DBS 0500	01 73	34 72	27 79		4 04	4796 8
STD	0600	01 68	34 72	27 79	0 269	4 09	4802 0
(OBS 0600	01 68	34 72	27 79		4 09	4802 0
STD	0800	01 53	34 74	27 82	0 335	4 13	4811 8
	0800 EBC	01 53	34 74	27 82		4 13	4811 8
STD	1000	01 36	34 73	27 83	0 398	4 30	4821 2
(DBS 1000	01 36	34 73	27 83		4 30	4821 2
STD	1200	01 23	34 73	27 83	0 461	4 27	4831 1
(DBS 1200	01 23	34 73	27 83		4 27	4831 1
STD	1500	01 06	34 73	27 85	0 552	4 32	4846 4
(DBS 1500	01 06	34 73	27 85		4 32	4846 4
STD	2000	00 79	34 71	27 85	0 701	4 50	4872 0
(DBS 2000	00 79	34 71	27 85		4 50	4872 0
STD	2500	00 57	34 71	27 86	0 844	4 54	4898 3
(DBS 2500	00 57	34 71	27 86		4 54	4898 3
STD	3000	00 43	34 71	27 87	0 978	4 71	4925 8
(DBS 3000	00 43	34 71	27 87		4 71	4925 8
	DBS 3500	00 47	34 71	27 87		4 61	4955 9

SURFACE OBSERVATIONS													
NODC REF.	STATION		!	DATE			PO	SITION		SONIC	MAX.		
NO.	SIMILOI	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH		
00672	0053	02	02	1961	16	69 *	13'S	108	42' W	4120	35		

W	IND	ANLMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER		סטפ	SE	A	SWE	L	1116	. M	ATER
:ED	DIR.	HGT.	PRESS	DRY 🛡	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
00	00		91	50 0	51 1	79	01	6	7					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	τ°c ψ	s% o ♦	σι ψ	Σ ΔD	O₂m I/I ♥	V₁ +
STD OBS OBS OBS OBS OBS O	0000 0000 0010 0010 0020 0020 0030 0030	00 23 -00 09 -00 35 -00 35 -01 41 -01 72 -01 72 -01 72 -01 72 -01 59 -01 59 -00 57	33 16 33 16 33 23 33 25 33 25 33 80 33 80 34 00 34 00 34 09 34 14 34 14 34 26	26 63 26 70 26 70 26 73 26 73 27 21 27 21 27 39 27 39 27 46 27 50 27 50 27 56	0 000 0 014 0 027 0 038 0 054 0 070 0 085	7 51 7 51 7 62 7 69 7 69 7 80 7 00 7 00 6 78 6 54 6 54 5 74	4738 1 4738 1 4734 1 4734 1 4730 8 4730 8 4717 2 4717 2 4714 4 4716 2 4716 2 4720 0 4720 0 4738 0
OBS OBS OBS OBS OBS OBS OBS OBS OBS OBS	0150 0150 0175 02200 02250 02250 02250 02250 02250 02250 02250 02500 02500 02500 026000 026000 02600 02600 02600 02600 02600 02600 02600 02600 02600 02600 026000 02600 02600 02600 02600 02600 02600 02600 02600 02600 026000 026000 026000 02600 02600 02600 02600 02600 02600 02600 02600 02600 02600 0260000 026000 026000 026000 026000 026000 026000 026000 026000 0260000 026000 026000 026000 026000 026000 026000 026000 026000 0260000 026000 026000 026000 026000 026000 026000 026000 026000 026000 026000 026000 026000 026000 026000 026000 026000 026000 0260000 026000 026000 026000 026000 026000 026000 026000 026000 02600	01 29 01 57 01 57 01 69 01 69 01 85 01 85 01 83 01 83 01 62 01 52 01 63 01 64	34 43 34 43 34 51 36 61 37 66 38 67 38 68 38 68 38 68 38 68 38 68 38 68 38 77 38	27 67 27 70 27 70 27 71 27 75 27 75 27 75 27 77 27 78 27 78 27 81 27 81 27 82 27 82 27 83 27 83 27 84 27 85 27 85 27 86 27 86 27 86 27 86	0 875	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	476001 476001 4776001 47775 4778005 4778524 477927 4778524 477927 477927 477927 478032 481232323 48467 48738 488723 487

SURFACE OBSERVATIONS													
NODC REF.	STATION			DATE		PC	SITION		SONIC	MAX.			
NO.	SIATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONG	ITUDE	DEPTH UNCORRECTED	SAMPL DEPTH			
00672	0054	02	03	1961	01	69° 13′S	107	16' W	4260	40			

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	DUD	SI	EA.	SWEI	.L		W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
02	27		91	00 3	51 1	75	02	6	5					8		

[SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ♥	2% 0 ♦	" \ \	Σ ΔD	Ozm I/I	V _f 🖖
STD	0000	-01 26	32 38	26 06	0 000	7 79	4711 6
OBS	0000 0010	-01 26 -01 48	32 38 32 60	26 06	0 019	7 79 7 78	4711 6 4709 7
STD OBS	0010	-01 48	32 60	26 25	0 019	7 78	4709 7
STD	0020	-01 52	33 45	26 93	0 033	7 55	4713 4
овя	0020	-01 52	33 45	26 93		7 55	4713 4
STD	0030	-01 61	33 87	27 28	0 043	7 04	4714 4
089	0030	-01 61	33 87	27 28		7 04	4714 4
STD	0050	-01 69	34 05	27 43	0 058	6 65	4715 1
P80	0050	-01 69	34 05	27 43		6 65	4715 1
STD	0075 0075	-01 57 -01 57	34 15 34 15	27 50 27 50	0 073	6 26	4718 9 4718 9
OBS STD	0100	-00 95	34 25	27 56	0 087	5 74	4730 5
овя	0100	-00 95	34 25	27 56	0 00.	5 74	4730 5
OBS	0125	-00 05	34 37	27 62	j	5 18	4746 4
STD	0150	00 68	34 47	27 66	0 111	4 66	4759 4
овя	0175	01 13	34 54	27 69		4 31	4767 9
STD	0200	01 30	34 59	27 72	0 132	4 13	4772 1
овя	0200	01 30	34 59	27 72		4 13	4772 1
STD	0250	01 62	34 64	27 73	0 151	3 98	4780 0
OBS STD	0250 0300	01 62	34 64 34 65	27 73	0 170	3 98	4780 0 4783 6
OBS	0300	01 66	34 65	27 74	0 170	4 00	4783 6
STD	0400	01 77	34 70	27 77	0 207	3 94	4791 4
овя	0400	01 77	34 70	27 77	20.	3 94	4791 4
STD	0500	01 75	34 74	27 80	0 241	4 01	4797 2
овя	0500	01 75	34 74	27 80		4 01	4797 2
STD	0600	01 69	34 74	27 81	0 273	4 02	4802 3
STD	0800	01 55	34 73	27 81	0 338	4 08	4812 1
OBS	0800	01 55	34 73	27 81		4 08	4812 1
STD	1000	01 40	34 74	27 83	0 402	4 21	4821 8
OBS STD	1000 1200	01 40	34 74 34 73	27 83 27 83	0 465	4 21	4821 8 4831 7
овѕ	1200	01 27	34 73	27 83	0 465	4 26	4831 7
STD	1500	01 10	34 72	27 84	0 559	4 31	4847 0
ОВЯ	1500	01 10	34 72	27 84	0 227	4 31	4847 0
STD	2000	00 84	34 71	27 84	0 712	4 46	4872 7
овя	2000	00 84	34 71	27 84		4 46	4872 7
STD	2500	00 64	34 74	27 88	0 853	4 46	4899 5
овя	2500	00 64	34 74	27 88		4 46	4899 5
STD	3000	00 46	34 70	27 86	0 987	4 69	4926 2
OBS	3000 4000	00 46	34 70 34 70	27 86 27 87	1 255	4 69 4 61	4926 2
STD OBS	4000	00 36	34 70	27 87 27 87	1 255	4 61 4 61	4983 6 4983 6
083	4000	ا ال	77 70	21 01		7 61	ס כסלד
Ì							
ļ							
İ							
ı		ŀ		1		ı ,	1

					SURFACE	E OBSE	RVATIONS				
NODC REF.											MAX.
NO.	SIMITOR	MO.	DAY	YEAR	HOUR	LA	TITUĐE	SITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH	
00672	0055	02	03	1961	09	69	15'S	105	44' W	4125	40

V	VIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER		OUD	SE	A	SWEL	i.	vie	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET 🏕	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
00	00		92	51 4	52 2	82	02	6	7					8		

SAMPLE DEPTH (M) T°C
OBS 0000
OBS 0492 O1 88 34 72 27 78 O 248 4 07 4798 STD 0500 O1 82 34 73 27 79 O 283 4 14 4804 O 085 0788 O1 67 34 75 27 82 O 349 A 30 4813 O 085 0788 O1 53 34 75 27 82 O 349 A 30 4813 O 085 0788 O1 53 34 75 27 83 O 413 A 36 4822 O 349 O 36 O O O O O O O O O O O O O O O O O

					SURFACI	E OBSE	RVATIONS				
NODC	CTATION		1	DATE			PO		SONIC	MAX. SAMPLI	
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	IGITUDE	DEPTH UNCORRECTED		
00672	0056	02	03	1961	18	69 46'S 105 40'W				3893	37

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER		OUD	SI	A	SWE	L	VIS.		ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET 🖤	ITY			AMT.	DIR.	AMT,	DIR.	AMT.		COL.	TRANS.
04	18		95	52 2	52 8	87	02	0	8					8		

					SURFACE	OBSE	RVATIONS				
NODC REF.	STATION	DATE POSITION									MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LA*	TITUDE	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH	
00672	0057	02	04	1961	04	70	18'S	105	36' W	3340	32

	w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER	CLC	QUO	SE	A	SWEL		VIS.		ATER
	SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
Ī	03	21		99	50 7	51 2	90	02	0	8					8		

			SUBSUR	FACE OBSER	RVATIONS		
	SAMPLE DEPTH (M)	T °c ₩	s% o ♦	σι ψ	Σ Δ D	Osm I/I	v, 🔸
STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS	0010 0010 0020 0020 0030 0030 0050 0050 0075 0075	-01 72 -01 72 -01 77 -01 77 -01 74 -01 70 -01 70 -01 72 -01 72 -01 56 -01 23 -01 23	33 15 33 15 33 38 33 38 33 46 33 46 33 54 33 54 34 07 34 07 34 16 34 16 34 22 34 22	26 70 26 70 26 88 26 88 26 95 27 01 27 01 27 44 27 44 27 51 27 55 27 55	0 000 0 013 0 024 0 035 0 052 0 067 0 081	7 41 7 7 34 7 7 22 6 89 6 54 6 6 54 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4707 7 4707 7 4708 5 4708 5 4709 9 4709 9 4711 5 4711 5 4714 7 4714 7 4719 1 4719 1 4726 0
OBS STD OBS STD OBS STD OBS STD OBS	0125 0150 0150 0175 0200 0200 0250 0250	-00 48 00 19 00 19 00 87 01 03 01 03 01 42 01 42	34 32 34 43 34 53 34 56 34 56 34 63 34 63	27 60 27 66 27 66 27 70 27 71 27 71 27 74 27 74	0 106 0 127 0 146	5 57 5 08 5 08 4 59 4 43 4 19 4 19	4739 6 4751 8 4751 8 4764 0 4768 0 4768 0 4777 0 4777 0
STD STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS	0500 0500 0600 0600 0800 0800 1000 1000	01 54 01 67 01 67 01 65 01 65 01 59 01 41 01 41 01 26 01 13 01 13 00 93	34 66 34 70 34 69 34 69 34 71 34 71 34 71 34 72 34 72 34 72 34 72 34 72	27 76 27 78 27 78 27 77 27 77 27 79 27 81 27 81 27 84 27 84 27 83 27 83 27 85 27 81*	0 164 0 200 0 235 0 269 0 336 0 399 0 460 0 550	12773355599558844444444444444444444444444444	4781 9 4789 9 4789 9 4795 5 4800 7 4809 9 4819 7 4819 7 4829 6 4829 5 4844 2*
STD OBS STD OBS STD OBS OBS	2000 2000 2500	00 71 00 71 00 47 00 47 00 42 00 42 00 41	34 71 34 71 34 72 34 72 34 68 34 68 34 69	27 85 27 85 27 87 27 87 27 85 27 85 27 85	0 695 0 831 0 966	5588443356 4488336	4870 8 4870 8 4896 9 4896 9 4925 5 4925 5 4937 2

					SURFACE	E OBSEI	RVATIONS				
NODC REF.	STATION DATE POSITION										MAX.
NO.	SIATION	MO.	DA	YEAR	HOUR	LA1	TITUDE	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH	
00672	0058	02	04	1961	15	70 °	18'S	107	00' W	3805	35

	WIND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER		OUD	SI	EA	SWE	-L	VIS.	W	ATER
SPEE	D DIR.	HGT.	PRESS	DRY	*	WET	*	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	18		02	52	9	53	3	80	02	6	8					8		

1			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	8% O \\	σι ψ	Σ Δ D	O≥m i/i ♥	٧, +
STD OBS	0000	-01 35 -01 35	32 73 32 73	26 35 26 35	0 000	7 85 7 85	4711 7 4711 7
STD	0010	-01 54	33 25	26 77	0 015	7 78	4711 6
OBS STD	0010 0020	-01 54 -01 68	33 25 33 70	26 77 27 14	0 026	7 78 7 18	4711 6 4711 9
OBS STD	0020 0030	-01 68 -01 62	33 70 33 94	27 14 27 33	0 034	7 18 7 12	4711 9 4714 5
085	0030	-01 62	33 94	27 33	0 054	7 12	4714 5
STD	0050 0050	-01 68 -01 68	34 09 34 09	27 46 27 46	0 048	6 64	4715 4 4715 4
STD	0075	-01 42	34 19	27 53	0 063	6 34	4721 4
OBS STD	0075 0100	-01 42 -00 72	34 19 34 30	27 53 27 60	0 076	6 34 5 77	4721 4 4734 3
OBS OBS	0100 0125	-00 72 -00 06	34 30 34 41	27 60 27 65		5 77 5 30	4734 3 4746 4
STD	0150	00 65	34 41	27 61	0 101	4 79	4758 7
OBS OBS	0150 0175	00 65	34 41 34 54	27 61 27 70		4 79 4 59	4758 7 4764 4
STD OBS	0200 0200	01 21	34 59 34 59	27 72 27 72	0 123	4 37 4 37	4770 8 4770 8
STD	0250	01 48	34 64	27 74	0 142	4 21	4777 9
OBS STD	0250 0300	01 69	34 64 34 70	27 78	0 159	4 21 4 10	4777 9 4784 2
OBS STD	0300 0400	01 69 01 68	34 70 34 71	27 78 27 79	0 193	4 10 4 17	4784 2 4790 1
OBS STD	0400 0500	01 59*		27 77*		4 12 4 20	4788 6* 4796 0
OBS	0500	01 68	34 71	27 79		4 20	4796 0
STD OBS	0600 0600		34 70 34 70	27 78 27 78	• ,	4 20 4	4801 2 4801 2
STD	0800	01 47	34 74	27 83	0 328	4 33	4810 9
STD	0800 1000	01 34	34 74 34 76	- 1	0 388	4 33 4 38	4810 9 4821 0
OBS STD	1000 1200	01 34 01 21	34 76 34 73	27 85 27 84	0 448	4 38 4 44	4821 0 4830 8
овѕ	1200 1500	01 21	34 73 34 73	27 84		4 44	4830 8
STD OBS	1500	00 99	34 73	27 85		4 52 4 52	4845 4
STD	2000		34 70 34 70	27 84		4 58 4 58	4872 0 4872 0
STD	2500 2500		34 70		0 833	4 75 4 75	4898 0
STD	3000	00 42	34 70	27 86	0 971	4 83	4925 6
OBS OBS	3000 3500	00 42	34 70	27 86		4 83 4 71	4954 5
ļ							
'	•		ı	1	j		ı

				9	SURFACI	E OBSE	RVATION	S			· · · · · · · · · · · · · · · · · · ·
NODC REF.	STATION			DATE			-	OSITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	L	ONGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0059	02	05	1961	01	69	49'5	106	59' W	4080	39

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		OUD	SI	EA.	SWE	LL		w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
03	11		02	51 7	52 1	91	02	0	8					8		

STD OBS STD OBS STD STD STD STD STD STD STD STD STD	0010	-01 -01 -01	°¢ ¥		% o ♥	σt	.		ΣΔD	T	Ozm I/I	V,	
OBS STD OBS STD OBS STD OBS STD OBS STD	0000 0010 0010	-01		1			▼		<u> </u>		<u> </u>	,	<u> </u>
OBS STD OBS STD OBS STD OBS STD	0010	-01	24	32 32	47 47	26 26	13 13		000	7	97 97	4712 4712	3
STD OBS STD OBS STD OBS STD		-01	60 60	33	31 31	26	82 82	0	016	7	46 46	4710 4710	
STD OBS STD OBS STD		-01 -01	69 69	33	48 48	26 26	96 96	0	027	7	29 29	4710	8
STD OBS STD	0030	-01	67	33	80	27	22	0	037	7	04	4710 4713	
OBS STD	0030 0050	-01 -01	67 66	33	80 05	27	22 42	0	052	7	04 82	4713 4715	-
	0050	-01	66	34	05	27	42			6	82	4715	5
OBS	0075 0075	-01 -01	25 25	34 34	18 18	27	52 52	0	068	6	23 23	4724 4724	
STD	0100 0100	-00	60 60	34	29 29	27	58 58	0	081	5	70 70	4736 4736	- 1
OBS	0125	00	36	34	40	27	62			5	00	4752	8
STD OBS	0150 0150	00	83 83	34	49 49	27	67 67	0	105	4	60 60	4761 4761	7
OBS STD	0175 0200	01	27 36	34	55 57	27	69 70	0	126	4	36 26	4770 4772	0
овѕ	0200	01	36	34	57	27	70			4	26	4772	9
STD OBS	0250 0250	01	63 63	34 34	63 63	27	73 73	0	146	4	12 12	4780 4780	1
OBS STD	0297 0300	01	73 73	34 34	66 66	27	74 74		165	4	11 11	4784 4784	5
овѕ	0396	01	80	34	69	27	76	٥	165	4	08	4791	5
STD OBS	0400 0495	01	80 73	34 34	69 71	27	76 78	0	202	4	09 20	4791 4796	8
STD	0500	01	73	34	71	27	78	0	238	4	20	4796	8
OBS STD	0595 0600	01	71 71	34 34	72 72	27	79 79	0	272	4	16 16	4802 4802	2 5
OBS STD	0793 0800	01	56 56	34 34	72 72	27	80 80	0	340	4	30 30	4811 4812	8 2
овѕ	0992	01	43	34	72	27	81			4	36	4821	7
STD OBS	1000 1191	01	43 31	34 34	72 72	27	81	0	406	4	36 35	4822 4831	7
STD	1200 1489	01	30 11	34 34	72 72	27	82 83	0	471	4	36 51	4832 4846	1 5
STD	1500	01	10	34	72	27	84	0	567	4	51	4847	0
OBS STD	1987 2000	00	85 84	34 34	70 70	27	84	0	722	4	54 54	4872 4872	7
OBS	2483 2500	00	63 62	34 34	70 70	27 27	85 85			4	67	4898	2
овз	2986	00	45	34	69	27	85		871	4	67 76	4899 4925	0 2
STD OBS	3000 3886	00	45 33	34 34	69 69	27 27	85	1	013	4	76 84	4926 4976	0
					ļ								

				,	SURFACI	E OBSE	RVATIONS				
NODC REF.	STATION		1	DATE			PO	SITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LONGITUDE		UNCORRECTED	SAMPLE DEPTH
00672	0060	02	05	1961	07	69	33′S	106	58' W	4188	40

*	IND	ANEMO.	AIR	AIR TE	MP	ERATU	RE	HUMID-	WEATHER	CLC	סטכ	Si	A	SWEL	.L	11116	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🌹	'	WET	٧	ITY			AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	cor.	TRANS.
02	05		02	52	5	52	8	91	02	0	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °c ♥	s% o ₩	" 1 ₩	ΣΔD	O₂m 1/I ₩	V, +
STD	0000	-01 55	32 54	26 20	0 000	7 87	4707 7
CBS STD	0000 0010	-01 55 -01 49	32 54 32 96	26 20 26 54	0 017	7 87	4707 7 4711 1
OBS STD	0010 0020	-01 49 -01 60	32 96 33 10	26 54 26 65	0 031	7 96 7 92	4711 1 4710 6
овя	0020	-01 60	33 10	26 65	0 031	7 92	4710 6
STD	0030 0030	-01 43 -01 43	33 75 33 75	27 17 27 17	0 043	6 97	4716 7 4716 7
STD	0050	-01 67	34 05	27 42	0 058	6 19	4715 4
OBS STD	0050 0075	-01 67 -00 95	34 05 34 22	27 42 27 54	0 073	6 19 5 87	4715 4 4728 9
OBS	0075	- 00 95	34 22	27 54	0 075	ו פ כן	4728 9
STD	0100	-00 03	34 33	27 59	0 087	5 49	4745 1
OBS OBS	0100 0125	-00 03 00 45	34 33 34 41	27 59 27 63		5 49	4745 1 4754 2
STD	0150	00 98	34 49	27 66	0 111	4 64	4763 9
08S 08S	0150 0175	00 98	34 49 34 55	27 66 27 68		4 64	4763 9 4772 3
STD	0200	01 59	34 58	27 69	0 132	4 17	4776 3
OBS STD	0200 0250	01 59	34 58 34 64	27 69 27 72	0 153	4 17	4776 3 4782 8
ОВЯ	0250	01 81	34 64	27 72	0 155	4 05	4782 8
STD	0300	01 81 01 75*	34 65	27 73	0 172	4 06	4785 8 4784 8*
STD	0300 0400	01 75 * 01 81	34 62 * 34 66	27 71* 27 74	0 211	4 09	4791 8
OBS	0400	01 81	34 66	27 74	0.240	4 07	4791 8
STD	0500 0500	01 80	34 69 34 69	27 76 27 76	0 249	4 14	4797 7 4797 7
STD	0600	01 78	34 73	27 79	0 284	4 17	4803 5
OBS STD	0600 0800	01 78 01 64	34 73 34 75	27 79 27 82	0 350	4 17 4 31	4803 5 4813 5
OBS	0800	01 64	34 75	27 82		4 31	4813 5
STD OBS	1000	01 50 01 50	34 74 34 74	27 82 27 82	0 414	4 35 4 35	4823 3 4823 3
STD	1200	01 35	34 74	27 83	0 478	4 35	4832 9
OBS STD	1200 1500	01 35 01 15	34 74 34 74	27 83 27 85	0 570	4 35 4 49	4832 9 4847 8
овя	1500		34 74	27 85	0 7/0	4 49	4847 8
STD	2000	00 89 00 89	34 71 34 71	27 84 27 84	0 722	4 58	4873 5 4873 5
OBS STD	2000 2500		34 71	- ' '	0 870	4 58 4 70	4873 5 4899 7
ОВЯ	2500	00 66	34 71	27 86		4 70	4899 7
STD OBS	3000 3000	00 49	34 69 34 69	27 85 27 85	1 013	4 81 4 81	4926 6
STD	4000	00 33	34 70	27 87	1 285	4 89	4983 1
овя	4000	00 33	34 70	27 87		4 89	4983 1
		İ					
ł	Ì	i			ļ		
			1				
•	•	'		,	ļ	,	,

					SURFACE	OBSE	RVATIONS				
NODC	STATION		1	DATE			PO	SITION		SONIC	MAX.
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LONGITUDE		DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0061	02	05	1961	15	69°	26'S	105	43' W	3725	35

W	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	DUD	SE	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	*	WET	*	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
04	11		02	52	1	52	5	90	02	6	8					8		

[SUBSUR	FACE OBSER	RVATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o ♦	σ ₁ ψ	Σ Δ D	O2m I/I	v, +
STD	0000	-01 49	32 40	26 08	0 000	7 87 7 87	4708 1 4708 1
OBS STD	0010	-01 49 -01 58	32 40 33 06	26 08 26 62	0 017	7 85	4710 1
OBS STD	0010 0020	-01 58 -01 50	33 06 33 46	26 62	0 030	7 85	4710 1 4713 7
OBS	0020	-01 50	33 46	26 94 27 32	0.020	7 74 7 25	4713 7 4715 0
STD OBS	0030 0030	-01 58 -01 58	33 92 3 3 92	27 32	0 039	7 25	4715 0
STD OBS	0050 0050	-01 70 -01 70	34 07 34 07	27 44	0 053	6 77	4715 0 4715 0
STD	0075	-01 68	34 11	27 47	0 069	6 65	4717 0
OBS STD	0075 0100	-01 68 -01 13	34 11 34 22	27 47	0 083	6 65	4717 0 4727 6
08S 08S	0100 0125	-01 13 -00 05	34 22 34 36	27 55 27 61		6 06	4727 6 4746 4
STD	0150	01 10	34 57	27 71	0 107	4 50	4766 1
08S 08S	0150 0175	01 10	34 57 34 60	27 71 27 71		4 50	4766 1 4774 2
STD	0200	01 65	34 60	27 70 27 70	0 127	4 16	4777 3
OBS STD	0200 0250	01 65	34 60 34 63	27 71	0 147	4 06	4782 3
OBS STD	0250 0300	01 78	34 63 34 65	27 71 27 73	0 167	4 06	4782 3 4785 8
овѕ	0300	01 81		-	0 205	4 11	4792 3
STD OBS	0400 0400	01 84	34 68	27 75		4 11	4792 3
STD	0500 0500	01 80	1	27 75	0 242	4 16	4797 7 4797 7
STD	0600	01 73	34 72	27 79	0 278	4 13	4802 8 4802 8
OBS STD	0600 0800	01 54	34 72 34 74	27 82	0 344	4 28	4812 0
OBS STD	0800 1000	01 54	34 74 34 73	27 82	0 408	4 28	4812 0 4821 9
OBS	1000	01 41	34 73	27 82		4 39	4821 9
STD OBS	1200 1200	01 27	34 73 34 70*	27 83 27 81	0 472	4 35	4831 7 4831 6*
STD OBS	1500 1500	01 06	34 72 34 72	27 84 27 84	0 565	4 59	4846 4 4846 4
STD	2000	00 80	34 71	27 85	0 716	4 50	4872 1
OBS STD	2000 2500	00 62	34 71 34 71	27 85 27 86	0 860	4 50	4872 1 4899 1
OBS STD	2500 3000	00 62	34 71 34 72	27 86 27 88	0 995	4 75 4 81	4899 1 4926 1
OBS	3000	00 45	34 72	27 88		4 81	4926 1
OBS	3500	00 37	34 68	27 85		4 88	4954 2
]
				ĺ			
)

				\$	SURFACE	E OBSERVATIONS			
NODC REF.	STATION			DATE		PC	SITION	SONIC	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	
00672	0062	02	07	1961	15	71 45/5	095 57'W	0404	04

	WIND	ANEMO.	AIR	AIR T	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	מטפ	SI	A	SWEL	.L	VIS.		ATER
SPEE	D DIR.	HGT.	PRESS	DRY	*	WET	٧	ITY	WENTHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
04	16		17	55	0	55	6	82	02	6	5					8		

OBS 0000				SUBSUR	FACE OBSER	VATIONS		
OBS 0000			T °C ₩				O±m 1/1 ₩	
STD	OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS OBS OBS OBS OBS OBS OBS OBS	DEPTH (M) 0000 0000 0010 0010 0020 0020 0030 0050 0050 0075 0100 0125 0150 0175 0200 0225 0250 0275 0300 0325 0350 0375	-01 61 -01 70 -01 70 -01 71 -01 71 -01 53 -01 53 -01 53 -01 52 -01 52 -01 46 -01 08 -00 06	33 30 33 31 33 31 33 43 33 43 33 43 33 69 33 88 33 88 33 99 33 88 33 99 33 40 69 33 42 22 34 22 34 22 34 22 34 22 34 25 34 27 34 27 34 27 34 46 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 34 57 35 57 36 57 37 38 57 57 57 57 57 57 57 57 57 57 57 57 57 5	26 82 26 83 26 83 26 92 27 13 27 28 27 27 27 37 27 43 27 43 27 54 27 57 27 59 27 62 27 69 27 69 27 69 27 75 27 76	0 000 0 012 0 024 0 035 0 052 0 071 0 088 0 118 0 144	▼ 544002211177766633112776633316685114009222509 11337663333885114009222509 24111777666665555555555555555555555555555	4710 1 4710 1 4709 3 4710 3 4710 3 4714 8 4714 8 4716 8 4716 8 4716 8 4717 0 4721 7 4721 7 4721 7 4721 7 4721 3 4731 3 4733 0 4735 2 4735 2 4740 0 4757 7 4757 7 4757 7 4762 4 4768 8 4772 8

·					BURFACE	OBSE	RVATIONS				
NODC										SONIC	MAX.
NO.	F. STATION							GITUDE	DEPTH UNCORRECTED	SAMPI.E DEPTH	
00672	0063	02	09	1961	05	72	32'S	093	02' W	0386	04

W	IND	ANEMO.	n/R	AIR	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	αυc	SE	A	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY			ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.	
06	09		95	56	8	57	4	81	02		0					8		

_	09	1 90	30 0	,, 4 01	102		<u> </u>		┙
				SUBSUR	FACE OBSER	RVATIONS			7
		SAMPLE DEPTH (M)	T°C ♥	s% o ♦	″t ∀	Σ AD	Ozm I/I	V₁ ♦]
	STD	0010 0010 0020 0020 0030 0050 0050 0075 0100 0125 0150 0150 0125 0225 0225 022	-01 53 -01 40 -01 40 -01 37 -01 47 -01 50 -01 50 -01 44 -01 40 -01 40 -01 39 -01 35 -01 23 -01 14 -00 89 -00 71 -00 69 -00 39 -00 39 -00 39 -00 39 -00 46	33333333333333333333333333333333333333	26 93 26 91 26 98 26 98 27 15 27 42 27 47 27 50 27 52 27 52 27 52 27 64 27 66 27 68 27 74 27 75	0 000 0 011 0 023 0 033 0 048 0 064 0 079 0 108 0 136 0 160	777777777665555555555555555555555555555	4712 0 4714 6 4714 6 4715 9 4715 9 4718 1 4720 8 4720 8 4723 0 4724 7 4726 9 4733 5 4739 1 4744 0 4744 0 4745 1 4751 5 4769 5	

					SURFACE	OBSE	RVATIONS				
NODC REF.										SONIC	MAX.
NO.								GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH	
00672	0064	02	10	1961	02	72	29'5	43' W	0160	01	

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER	CLC	QUO	SE	ΞA	SWEL	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR	AMT	DIR	AMT.		COL.	TRANS.
08	09		95	53 9	56 1	84	02		0					8		

 								⅃
			SUBSUR	FACE OBSER	VATIONS		· · · · · · · · · · · · · · · · · · ·	1
	SAMPLE DEPTH (M)	T °C ♥	s% o ₩	o₁ ♦	Σ Δ Ο	O₂m l/l ₩	V1 +	
STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS	0000 0000 0010 0010 0020 0020 0030 0050 0050 0075 0075 0100 0125 0150	-01 22 -01 00 -01 08 -01 08 -01 26 -01 23* -01 48 -01 43 -01 43 -01 43 -01 23 -01 23	33 31 33 31 33 34 33 34 33 60 33 60 33 81	26 81 26 83 26 83 27 04 27 04 27 22 27 22* 27 39 27 39 27 46 27 46	0 000 0 012 0 024 0 033	9 171111111770055665555 9 9 8 41777666665555	4716 3 4716 3 4720 5 4720 9 4720 9 4719 6 4720 1* 4718 2 4718 8 4719 8 4719 8 4722 6 4725 8 4729 0 4729 0	

				5	SURFACE	OBSER	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC DEPTH	MAX. SAMPLE
NO.	. STATION							GITUDE	UNCORRECTED		
00672	0065	02	10							0424	04

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	מטפ	SE	ĒΑ	SWEL	L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET 🖤	iTY		TYPE	AMT.	DIR.	AMT.	DIR	AMT.		COL.	TRANS.
09	09		94	54 5	55 0	84	02		0					8		

┙									_
				SUBSUR	FACE OBSER	VATIONS			٦
		SAMPLE DEPTH (M)	т °с •	s% o ♦	σ ₁ ψ	Σ Δ D	O2m 1/1	V₁ ♦	
	STD OF STD	DEPTH (M) 0000 0010 0020 0030 0030 0050 0050 0075 0100 0125 0150 0150 0150 0150 0150 015	T°C T°C T°C T°C T°C T°C T°C T°C		26 70 26 70 26 70 26 70 26 74 26 95 27 24 27 40 27 45 27 57 27 57 27 57 27 613 27 63 27 68 27 74 27 79 27 79		00mm 9994 41110005555555555555555555555555555555		

				9	SURFACE	E OBSE	RVATIONS				
NODC REF.	STATION			DATE			РО	SITION		SONIC	MAX.
NO.	STATION	мо	DAY	YEAR	HOUR	LA	TITUDE	LONG	GITUDE	DEPTH UNCORRECTED	SAMPL! DEPTH
00672	0066					72	24'5	092	54' W	0725	07

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		סטס	SE	A	SWEL	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR	AMT.	DIR.	AMT.		COL.	TRANS.
09	09		94	54 9	55 7	76	02	6	1					8		

									_						
						SUBSUR	FACE	OBSER	VA	TIONS					
		SAMPLE DEPTH (M)	т (°c ♥	s°	% O	σt	\	1	ΣΔΟ	0, ₩	m I/I	٧ı	<u>+</u> _	
STD	33 35 35 35 35 35 35 35 35 35 35 35 35 3	0000 0000 0010 0010 0020 0030 0030 0050 0050 0075 0100 0150 0150 0200	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	45 56 61 54 18 84 34 16 46 46	333333333333333333333333333333333333333	13 13 13 13 13 13 13 13 13 13 13 13 13 1	26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	67 67 68 68 72 14 13 13 13 50 50 56 67 72	0	000	977666666655555544444444	1116677884417766622977766443333	4711 4711 4711 4711 4711 4711 4711 4711	331117766224448888556654429977	

				5	SURFACI	OBSER	RVATIONS				
NODC											MAX.
NO.	STATION MO. DAY YEAR HOUR LATITUDE LONGITUDE							GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH	
00672	0067	02	11	1961	19	72	14's	092	45' W	0410	04

w	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	QUO	SI	EA.	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	*	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	09		98	53	9	55	0	72	02	4	3					8		

					SURFACE	E OBSE	RVATIONS				
NODC	STATION		1	DATE			PO	SITION		SONIC	MAX.
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	IGITUDE	UNCORRECTED	
00672	0068	02	11	1961	24	72	17 ['] 5	091	26' W	0335	03

V	VIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER	CLC	QUO	SE	A	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		col	TRANS.
03	11		96	53 3	54 4	73	02		0					8		

111		73 3 7	7 7 7 73	1 021		<u> </u>		<u>_</u>
			SUBSUR	FACE OBSER	VATIONS			
;	SAMPLE DEPTH (M)	T °C ₩	s% o ₩	*· *	ΣΔD	O₂m I/I	٧, +	
STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS OBS STD OBS OBS OBS	0000 0000 0010 0010 0020 0020 0030 0050 0050 0055 0100 0125 0150 0150 0200 0225 0250 0275 0300 0300	T°C -01 53 -01 56 -01 28 -01 00 -01 38 -01 52 -01 57 -01 57 -01 48 -01 35 -01 21 -01 04 -00 96 -00 87 -00 69 -01 03*	33 20 33 22 33 32 22 33 38 38 33 61 33 89 34 04 34 08 34 18 34 27 34 27 34 27 34 31 34 34 38 34 34 38		0 000 0 013 0 026 0 037 0 055 0 073 0 089 0 119 0 146 0 171	9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4710 9 4710 1 4711 1 4716 8 4712 8 4719 3 4719 2 4720 1 4720 1 4723 2 4726 8 4735 2 4735 2 4735 2 4741 0 4747 0 4747 0 4747 0	
		1	l J		l	1		

				9	SURFACE	OBSE	RVATIONS				
NODC	27471011		- 1	SITION		SONIC	MAX.				
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0069	02	12	1961	03	72 *	13'S	092	04' W	0430	04

w	IND	ANEMO.	AIR	AIR 1	TEMP	ERATU	RE	HUMID.	WEATHER		OUD	SE	EA	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	*	WET	*	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
02	09		96	56	2	56	8	89	02	6	1					8		

STD	3 4712 9 3 4712 9 6 4712 0 6 4712 0 6 4721 4 6 4721 4 6 4720 1 6 4720 1 0 4718 2	03 06 06 06 3 16 3 16	00	0 000	- 1	♦	<u> </u>			°c ♥	۲		
OBS 0000	3 4712 9 6 4712 0 6 4712 0 6 4721 4 6 4721 4 6 4720 1 6 4720 1 0 4718 2	03 06 06 06 3 16 3 16			- 1	66	ا مد				+		ļ
STD 0400 00 57 34 60 27 77 0 230 4 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 4719 2 4719 4 4719 4 4719 4 4723 1 0 4725 9 8 4725 9 8 4736 0 4739 6 4739 6 4747 2 4753 7 4757 5 1 4757 5 1 4770 0 4773 2	96 80 80 22 99 97 90 88 88 88 88 88 88 88 88 88 88 88 88 88	36 54 73 90 20 47 71	0 026 0 036 0 054 0 073 0 090 0 120 0 147 0 171 0 193	7775588877788844771133661166888035577	666 677 055 088 277 388 444 447 511 513 566 668 668 670 775 777 777	26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	12 12 12 12 16 16 64 87 00 00 07 07 11 17 19 55 51 39 43 43 45 57 60 60 60 60 60 60 60 60 60 60 60 60 60	333333333333333333333333333333333333333	38 48 48 05 05 18 44 44 51 51 61 43 41 41 39 88 49 49 27 71 32 47 75 75 75	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	0000 0010 0010 0020 0020 0030 0050 0050 0075 0100 0125 0150 0175 0200 0225 0250 0300 0300 0325 0300 0305 0300 0305 0300 0305 0300 0305 0300 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00	OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS

	SURFACE OBSERVATIONS													
NODC REF.	STATION		SONIC DEPTH	MAX. SAMPL										
NO.	SIMILON	MO. DAY YEAR HOUR LATITUDE LONGITUDE						UNCORRECTED						
00672	0070	02	17	1961	01	72	41'5	091	55′ W	0515	05			

	W	IND	ANEMO.	AIR	AIR '	TEMP	ERATU	RE	HUMID-	WEATHER	Cr	סטס	SE	A	SWEL	.L	VIS.		ATER
SPE	ΈD	DIR.	HGT.	PRESS	DRY	*	WET	*	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
0	5	27		90	53	9	54	4	84	02	4	5					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	† °¢ ↓	5% O ♦	°t ∀	ΣΔΟ	O₂m 1/I ₩	V _f
STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS	0000 0000 0010 0010 0020	-01 55 -01 53 -01 53 -01 54 -01 58 -01 58 -01 63 -01 56 -01 56 -01 56 -01 51 -01 20 -01 20 -01 04 -0	*** 48 48 56 66 61 65 64 64 64 67 67 68 68 68 68 68 68 68 68		 ▼ Δ B 0 000 0 011 0 021 0 031 0 051 0 072 0 090 0 120 0 146 0 169 0 190 0 227 0 260 	0.mm // 866888777777777777777777777777777777	

				9	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO		SONIC	MAX.	
NO.	SIATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0071	02	22	1961	01	71	45'S	092	54' W	0410	04

w	IND	ANEMO.	AIR	AIR 1	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	que	SI	A	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	٧	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS
04	02		98	52	7	53	1	88	70	0	5					7		

STD
OBS 0000 -01 77 33 71 27 15 0009 7 35 4708 8 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 6709 7 35 4708 8 7 35 4708 8 7 35 4708 8 7 35 4708 8 7 35 4708 8 7 35 4708 8 7 35 4708 8 7 35 4709 8 7 35 4709 8 7 35 4709 5 7 35 4709 5 7 35 4709 5 7 35 4709 5 7 35 4709 5 7 35 4709 5 7 35 4709 5 7 35 4709 5 7 35 7 35 4709 5 7 35 7 36 4710 1 35 7 36 4710 1 35 7 36 4710 1 35 7 36 4710 1 35 7 35 4708 8 7 37 4713 0 4713

				•	SURFACE	OBSE	RVATIONS				
NODC	STATION		1	DATE			PO		SONIC DEPTH	MAX. SAMPLE	
REF. NO.	SIAHUN	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	UNCORRECTED	
00672	0072	02	28	1961	01	71	29'S	094	00'W	0540	05

	WIF	ND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATUED	CTC	duc	SI	A	SWEL	T.	VIS.	W	ATER
SPE	ED	DIR.		PRESS	DRY	٧	WET	٧	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
08	3	16		99	56	3	56	8	83	02	6	8					8		

					SURFACE	OBSE	RVATIONS				,,,,	
NODC				DATE			PO	SITION		SONIC	MAX.	
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH	
00672	0073	03	02	1961	02	71	12'S	095	32' W	0448	04	

	w	IND	ANEMO.	AIR	AIR T	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	OUD	SI	:A	SWEL	.L	VIS.	W	ATER
	SPEED	DIR.	HGT.	PRESS	DRY	٧	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
Γ	03	31		08	56	9	57	0	92	45		9					1		

		<u> </u>	SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	τ°c ♥	s% o ∜	* +	Σ Δ D	O₂m I/I ♥	٧, +
STD OBS STD OB	0000 0000 0010 0010 0020 0020 0030 0050 0055 0075 0100 0125 0150 0150 0225 0225 0225 0300 0300 0300 0375 0400	-01 81 -01 85 -01 85 -01 85 -01 85 -01 85 -01 86 -01 83 -01 83 -01 83 -01 77 -01 70 -01 70 -01 30		27 31 27 30 27 30 27 30 27 30 27 30 27 31 27 31		8 8 6 6 7 7 7 7 7 7 8 8 6 6 7 7 7 7 7 5 4 4 4 3 7 7 7 6 3 3 5 5 4 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

					SURFACI	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO	SONIC	MAX.		
NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0074	03	02	1961	24	71	45'S	096	49' W	0570	05

	/IND	ANEMO.	AIR	AIR T	MP	ERATURE	HUMID-	WEATHER		OUD	SI	EA	SWE	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY V	,	WET 🛊	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
05	09		80	55	1	55 5	86	02	1	2					8		

7 07		1 22 1 2	00	02 1	. 2		- 0	_
	1,0		SUBSUR	FACE OBSER	VATIONS			1
ļ	SAMPLE DEPTH (M)	T °C ₩	s% o ♥	o₁ ₩	ΣΔΟ	O2m1/I	V1 +	1
STD OBS	0000	-01 53 -01 53	33 35 33 35	26 85 26 85	0 000	8 61 8 61	4711 6 4711 6	
STD OBS	0010	-01 58 -01 58	33 35 33 35	26 85 26 85	0 012	8 69 8 69	4711 4 4711 4	
STD OBS	0020	-01 73 -01 73	33 38 33 38	26 88 26 88	0 (74	8 55 8 55	4709 7 4709 7	1
STD	0030	-01 66	33 63	27 08	; ; 35	7 32	4712 5	ļ
OBS STD	0050	-01 56	33 63 33 90	27 30	0 052	7 32 6 14	4716 5	
OBS Std	0050 0075	-01 56 -01 52	33 90 34 04	27 30 27 41	0 071	6 14	4716 5 4719 2	
OBS STD	0075 0100	-01 52 -01 65	34 04 34 06	27 41 27 43	0 087	6 17	4719 2 4718 7	١
089 089	0100	-01 65 -01 67	34 06 34 09	27 43 27 46		6 43	4718 7 4720 0	ļ
STD	0150	-01 62	34 12	27 48	0 118	6 32	4722 4	
OBS OBS	0150 0175	-01 62 -01 56	34 12 34 14	27 48 27 49		6 32 6 12	4722 4 4724 9	
STD OBS	0200	-01 42 -01 42	34 19 34 19	27 53 27 53	0 147	6 0 2 6 0 2	4728 9 4728 9	
OBS STD	0225 0250	-01 19 -01 18	34 25 34 26	27 57 27 58	0 174	5 90 5 84	4734 2 4735 9	
OBS OBS	0250 0275	-01 18 -00 81	34 26 34 33	27 58 27 62		5 84 5 59	4735 9 4743 5	l
STD	0300 0300	-00 69 -00 69	34 36 34 36	1	0 198	5 55 5 55	4746 9 4746 9	
овя	0350	00 03	34 47	27 70		4 97	4761 4	
STD OBS	0400	00 46	34 57 34 57	27 75	0 238	4 75 4 75	4771 4 4771 4	
OBS STD	0450 0500		34 66 34 68		0 272	4 41 4 27	4783 6 4788 0	
0BS 0BS	0500 0525		34 68 34 69	27 80 27 81		4 27 4 30	4788 0 4789 5	
овѕ	0550	01 15	34 69	27 81		4 13	4791 1	
ļ								
					[
	-							
					ì			
ļ		·			}	ļ		
	İ	ļ						İ
	}			1				ı
		•	•	•	•	'	'	

				9	URFACE	OBSE	RVATIONS				
NODC	SONIC	MAX.									
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	ŁA'	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0075	03	03	1961	03	71	44'5	097°	53′ W	0863	08

W	IND	ANEMO.	AIR	AIR TEM	PERATURE	HUMID.	WEATHER		QUO	SE	Α	SWEL	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS,
04	11		08	59 2	59 2	99	45		9					1		

"	11			77 2	ئىل	7 2	77				<u> </u>	<u> </u>			
		[9	SUBSUR	FACE (OBSER	VAT	IONS				
			SAMPLE DEPTH (M)	τ°c ψ		s	% o	σt	*	•	ΣΔD	ů)2m 1/l	Vf	¥
	STD		0000		68	33	31	26	82	0	000	8	41 41	4709 4709	- 1
	STD		0000	-01	68 71	33	31 30	26 26	82 82 82	0	012	8 8 8	44	4709 4709	1]
	OE STD OE		0010 0020 0020	-01	71 78 78	33 33 33	30 42 42	26 26 26	92 92	0	024	8	09	4709	1
	STD		0030	-01	65 65	33	55 55	27 27	02	0	035	7	84 84	4712 4712	3
	STD		0050	-01	83	33	74 74	27	18	0	055	7	19	4711 4711	5
	STD		0075 0075	-01	72 72	33 33	99 99	27 27	38 38	0	075	6	65 65	4715 4715	8
	STD	}	0100 0100	,	65 65	34 34	05 05	27 27	42 42	0	092	6 6	55 55	4718 4718	
	OE STD	35	0125 0150		71 67	34 34	10 12	27 27	47 48	0	123	6 6	46 38	4719 4721	6
	0 E	- 1	0150 0175	-01	67 62	34 34	12 14	27 27	48 50			6	38 28	4721 4724	
	STD	-	0200 0200	-01	55 55	34	17 17	27	52 52	0	152	6	24	4726 4726	7
	STD		0225 0250 0250	-01	46 18 18	34 34 34	20 24 24	27 27 27	54 56 56	0	179	6 5 5	14 86 86	4729 4735 4735	8
	OE STD	35	0300	-00	46 46	34	38 38	27	65 65	0	204	5	29	4750 4750	6
	OE STD		0350	00	09	34	48 55	27	70 74	0	244	4	96 70	4762 4771	
		35	0400 0500	00	45 90	34 34	55 64	27 27	74 78	0	279	4	70 56	4771 4784	1 2
	Of STD	35	0600	01	90 03	34 34	64 66	27 27	78 79	0	313	4	47	4784 4792	2
	90 90	- 1	0600 0700	01	03	34	66	27	79 78		270	4	47	4792 4799	6
	STD		0800	01	17 17 18	34 34 34	68 68	27 27 27	80 80 81	0	379	4	37	4806 4806 4809	2
	Of	3	0850	01	10	34	לס	21	01			7	39	4007	7
						ĺ									
									Ì						
															ŀ

					SURFACE	E OBSE	RVATIONS				
NODC REF.	STATION		ı	DATE			PO	SITION		SONIC	MAX.
NO.	STATION MO. DAY YEAR HOUR LATITUDE						LONG	SITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH	
00672	0076	03	03	1961	23	71	41 ['] S	098	30' W	0260	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		סטכ	SI	EA	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	15		05	58 8	59 0	85	02	0	8					8		

<u>'</u>	12	1 05	20 0 2	9 0 0 0	02 0	/ 0			<u> </u>
				SUBSUR	FACE OBSER	VATIONS			1
		SAMPLE DEPTH (M)	T °C ₩	8% O ♥	σ _t ψ	Σ Δ D	O₂m I/I	V _t	
	STD	0000 0000 0010 0010 0020 0020 0030 0050 0050 0075 0075 0100 0150 0150 0175 0200 0225 0225	-01 76 -01 80 -01 80 -01 80 -01 81 -01 61 -01 64 -01 64 -01 57 -01 57 -01 54 -01 32 -01 07 -00 58	33 31 33 31 33 34 33 35 50 33 61 33 80 80 8	26 83 26 85 26 85 26 85 26 98 26 98 27 07 27 23 27 23 27 40 27 45 27 45 27 49	0 000 0 012 0 024 0 034 0 053 0 072 0 088 0 119 0 147	8 0 0 4 4 6 6 6 7 7 8 8 8 2 2 3 3 3 3 3 6 2 2 2 1 1 0 3 3 6 2 2 2 1 1 0 3 3 6 2 2 2 1 1 0 3 3 6 2 2 2 1 1 0 3 3 6 2 2 2 1 1 0 3 3 6 2 2 2 1 1 0 3 3 6 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4708 7 4708 7 4708 5 4708 5 4709 1 4710 2 4712 1 4717 7 4717 7 4719 0 4723 3 4725 4 4730 6 4730 6 4736 2 4745 7	
		'	'			. ,	'		ŀ

				5	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION		1	DATE			РО	SITION		SONIC	MAX.
NO.	SIMILON	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPL DEPTH
00672	0077	03	08	1961	20	71	51 ['] S	101	22' W	0237	02

w	IND	ANEMO.	AIR	AIR TEMP	EK TURE	HUMID-	WEATHER		auc	SE		SWEL		VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
04	20		83	60 6	61 1	73	02	1	8					8		

_	20	8	3	60 6	61	1	13	1_0	2 1	Ш	8			<u>. </u>	8	L
						su	BSURF	ACE (OBSER	VA	TIONS				\equiv	ĺ
		SAMP DEPTH		T °C ♦		s% ()	σι	*	Ŋ	ΣΔΟ	O2n	n I/I	V _f	į į	
	STD OB STD STD STD STD STD STD STD OB STD OB STD OB OB	S 00000 S 00100 S 00200 S 00200 S 00200 S 00500 S 00500 S 00500 S 01000 S 01500 S 01500 S 02000 S 02000	(M)	01 7: 01 7: 01 8: 01 8: 01 8: 01 6: 01 6: 01 6: 01 6: 01 6:	333333333333333333333333333333333333333	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	47 47 47 47 47 47 47 47 47 47 47 47 47 4	26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	♥ 9999003344246670035556	0000000	000 011 022 033 050 067 083 114	88 8 8 8 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6	+7	4708 4708 4708 4708 4712 4714 4716 4717 4717 4718 4718 4718 4718 4718 4718	1 1 1 7 7 2 2 8	
		1			ł				l						1	

		·			SURFACE	OBSER	RVATIONS						
NODC	NODC DATE POSITION												
NO.	SIATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH		
00672	0078	03	09	1961	05	71	37 ['] S	102	28' W	0650	06		

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CTC	פטס	St	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY	MEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
07	18		87	62 9	63 4	69	02	4	6					8		

/ 18]	07	02 9 0	13 4 1 07	02 -	7 0	 -	
			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	7°c ♥	s% o ∳	" t ψ	Σ Δ D	O₂m I/I ♥	v₁ ψ
STD OB:	0000	-01 83 -01 83	33 92 33 92	27 32 27 32	0 000	6 81 6 81	4709 3 4709 3
STD	0010	-01 87	33 94	27 34	0 008	6 87	4709 3
OB: STD	0010 0020	-01 87 -01 86	33 94 33 94	27 34 27 34	0 015	6 87 6 87	4709 3 4710 1
OB: STD	0020 0030	-01 86 -01 85	33 94 33 94	27 34 27 34	0 022	6 87 6 86	4710 1 4710 8
0B:	0030	-01 85	33 94	27 34		6 86	4710 8
STD OB:	0050 5 0050	-01 85 -01 85	33 95 33 95	27 35 27 35	0 037	6 83	4712 1 4712 1
STD	0075	-01 83	34 06	27 44	0 054	6 76	4714 4
OB: STD	0100	-01 83 -01 80	34 06 34 13	27 44 27 49	0 070	6 76 6 68	4714 4 4716 6
OB: STD	0100 0150	-01 80 -01 66	34 13 34 19	27 49 27 54	0 098	6 68 6 48	4716 6 4722 1
OB:	0150	-01 66	34 19	27 54	_	6 48	4722 1
STD OB:	0200	-01 34 -01 34	34 26 34 26	27 59 27 59	0 125	6 17 6 17	4730 4 4730 4
STD	0250	-01 04	34 33	27 63	0 149	5 91	4738 4 4738 4
OB: STD	0250	-01 04 -00 58	34 33 34 40	27 63 27 67	0 171	5 54	4748 8
OB:		-00 58 00 03	34 40 34 49	27 67 27 71		5 54 5 40	4748 8 4761 5
STD	0400	00 42	34 53	27 72	0 211	4 92	4770 6
OB: OB:		00 42	34 58	27 74		4 92 4 75	4780 5
STD	0500	01 14	34 63 34 63	27 76 27 76	0 248	4 57 4 57	4787 7 4787 7
08: 08:		01 19	34 68	27 80		4 34	4791 7
STD OB:	0600	01 23	34 70 34 ·70	27 81 27 81	0 282	4 36	4795 3 47 9 5 3
OB:	1		34 71			4 37	
			,				

				\$	SURFAC	E OBSE	RVATIONS				
NODC	STATION		1	DATE			PC	SITION		SONIC	MAX.
REF. NO.	SIATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0079	03	10	1961	05	70	51'S	101	54' W	2388	23

w	IND	ANEMO.	AIR	AIR 1	TEMP	ERATU	RE	HUMID-	WEATHER	CFC	סטכ	SI	EA.	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	*	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	¥13.	COL.	TRANS.
09	23		87	62	2	62	5	79	02	6	8					8		

ſ	-		SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ♥	8% O ∀	" ¹ ∀	Σ Δ D	Oam I/I	V _f ₩
STD	0000	-01 78	33 29	26 81	0 000	7 69	4707 4
OBS	0000	-01 78	33 29	26 81	0 012	7 69 7 66	4707 4 4706 6
STD	0010 0010	-01 86 -01 86	33 28 33 28	26 80 26 80	0 012	7 66	4706 6
STD	0010	-01 83	33 28	26 80	0 025	7 65	4707 7
ОВЅ		-01 83	33 28	26 80		7 65	4707 7
STD	0030	-01 81	33 28	26 80	0 038	7 67	4708 6
OBS	0030	-01 81	33 28	26 80		7 67	4708 6
STD	0050	-01 82	34 02	27 40 27 40	0 057	6 67	4712 9 4712 9
OBS STD	0050 0075	-01 82 -01 78	34 02 34 10	27 40	0 073	6 62	4715 3
08S	0075	-01 78	34 10	27 47	0 0.5	6 62	4715 3
STD	0100	-01 76	34 11	27 48	0 088	6 55	4717 2
овѕ		-01 76	34 11	27 48		6 55	4717 2
STD	0150	-01 46	34 18	27 52	0 118	6 34	4725 2
OBS		-01 46	34 18	27 52	l	6 34	4725 2
STD	0200	-00 72	34 32	27 61	0 144	5 74	4740 4
OBS	0200 0250	-00 72 00 01	34 32 34 44	27 61 27 67	0 166	5 16	4755 1
STD		00 01	34 44	27 67	0 100	5 16	4755 1
STD	0300	00 57	34 52	27 71	0 187	4 75	4766 9
овя	0300	00 57				4 75	
OBS	0350	00 89	34 59	27 74	ļ	4 51	4774 9
STD	0400	01 15	34 64	27 77	0 224	4 35	4782 0
OBS	0400	01 15	34 64	27 77	0 250	4 35	4782 0 4791 6
STD	0500 0500	01 38	34 70 34 70	27 80 27 80	0 258	4 26	4791 6
STD	0600	01 28	34 72	27 82	0 290	4 42	4796 2
овѕ	0600	01 28	34 72	27 82		4 42	4796 2
STD	0800	01 06	34 72	27 84	0 349	4 46	4804 8
овя		01 06	34 72	27 84	. <u></u>	4 46	4804 8
STD	1000	00 91	34 72	27 85	0 407	4 58	4814 5
OBS	1000 1200	00 91	34 77 * 34 72	27 89* 27 85	0 463	4 58	4814 7* 4825 1
STD	1200	00 83	34 72	27 85	0 403	4 63	4825 1
STD	1500	00 73	34 72	27 86	0 546	4 62	4841 5
овѕ	1500	00 73	34 72	27 86	•	4 62	4841 5
STD	2000	00 51	34 72	27 87	0 680	4 74	4867 9
ОВЯ	2000	00 51	34 72	27 87]	4 74	4867 9
OBS	2300	00 45	34 77*	27 92*		4 58	4885 07
		Ì					
1							
-			ŀ				
}							
]							
							j i
			ŀ				
•		•	•	•	•		, ,

				9	SURFACE	OBSE	RVATIONS				
NODC	CTATION			DATE			PO	SITION		SONIC	MAX. SAMPLE
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA1	TITUDE	LON	IGITUDE	UNCORRECTED	
00674	IP14	02	23	1961	17	73 °	30'S	171	2 7′ E	0594	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-		CLC	QUO	51	A	SWEL	.L	VIS.	¥	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	14		86	56 1	57 7	55	02	8	6	14	3	16	2	7		

ſ				,	SUBSUR	FACE	OBSER	VATIONS		
	SAMPLE DEPTH (M)	т	°c ♥	_	% o ∲	σt	+	ΣΔD	O₂m 1/1 ₩	۸,
STD	0000	-01	03	34	32	27	62	0 000		4723 6
OBS	0000	-01	03	34	32	27	62	1		4723 6
OBS	0005	-01	04	34	31	27	62	l <u>-</u>		4723 7
STD	0010	-01	04	34	28	27	59	0 005		4723 9
OBS	0010	-01	04	34	28	27	59			4723 9
OBS	0015	-00	96	34	30	27	60			4725 5
STD	0020	-01	02	34	27	27	58	0 010		4724 8
oasi	0020	-01	02 0	34	27	27	58	ł	,	4724 8
STD	0030	-01	05	34	28	27	59	0 015		4724 9
obs	0030	-01	05	34	28	27	59		1	4724 9
STD	0050	-01	02	34	42	27	70	0 024		4727 2
OBS	0050	-01	02	34	42	27	70			4727 2
STD	0075	-01	47	34	69	27	94	0 031	1	4722 8
овѕ	0075	-01	47	34	69	27	94		į	4722 8
STD	0100	-01	60	34	71	27	96	0 035	1	4722 3
овя	0100	-01	60	34	71	27	96			4722 3
STD	0150	-01	82	34	76	28	00	0 042		4722 0
ОВЯ	0170	-01	89	34	79	28	03			4722 2

					SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PC	SITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00674	1P15	02	23	1961	20	73	29 ['] 5	173	29' E	0320	02

ı	w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	Cro	auc	SI	EA	SWE	.L	VIS.	W	ATER
-	SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
	01	07		86	51 1	53 0	61	01	8	1	11	2	14	2	7		

l					SUBSUF	RFACE	OBSEF	RVATIONS			
	SAMPLE DEPTH (M)		°¢ ♥	_	% o ♦	€t	+	ΣΔD	O:m1/1	٧, ♦	,
STD	0000	-00	85	34	34	27	63	0 000		4726	5
OBS	0000	-00	85	34	34	27	63		l	4726	5
OBS	0005	-00	83	34	36	27	65	1		4727	2
STD	0010	-00	86	34	28	27	58	0 005	}	4726	7
OBS	0010	-00	86	34	28	27	58			4726	7
овѕ	0015	-00	76	34	32	27	61			4728	7
STD	0020	-00	84	34	31	27	61	0 010		4727	7
OBS	0020	-00	84	34	31	27	61			4727	7
STD	0030	-00	86	34	27	27	58	0 015		4727	9
OBS	0030	-00	86	34	27	27	58			4727	9
STD	0050	-00	81	34	29	27	59	0 025		4729	9
085	0050	-00	81	34	29	27	59			4729	9
STD	0075	-00	80	34	29	27	59	0 038		4731	6
OBS	0075	-00	80	34	29	27	59		1	4731	6
STD	0100	-00	50	34	45	27	71	0 049		4738	4
083	0100	-00	50	34	45	27	71			4738	4
STD	0150	-00	18	34	63	27	84	0 066		4747	0
OBS	0170	-00	16	34	65	27	85			4748	6

					SURFACI	OBSE	RVATIONS					
NODC REF.	STATION			DATE			PO	SITION			SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LA1	TITUDE	LON	GITUDE		UNCORRECTED	SAMPLE DEPTH
00674	IP16	02	23	1961	23	73	25 S	175	10	Ε	0476	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		סטס	SI	:A	SWEL		VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY	WENTHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
00	00		87	51 1	53 7	49	02	8	1	00	0	12	2	7		

					SUBSUF	RFACE	OBSER	RVATIONS		
[SAMPLE DEPTH (M)	Τ'	°c V	8	% o ∲	σt	*	ΣΔD	O₂m I/i ₩	V1 +
STD	0000	-00	74	34	38	27	66	0 000		4728 4
OBS	0000	-00	74	34	38	27	66	İ	1	4728 4
OBS	0005	-00	83	34	34	27	63	i	1	4727 1
STD	0010	-00	84	34	35	27	64	0 005	1	4727 3
OBS	0010	-00	84	34	35	27	64	ļ		4727 3
088	0015	-00	82	34	34	27	63	ļ	}	4727 9
STD	0020	-00	89	34	36	27	65	0 009		4727 2
OBS	0020	-00	89	34	36	27	65	j	1	4727 2
STD	0030	-00	87	34	38	27	67	0 013	i	4728 2
085	0030	-00	87	34	38	27	67		1	4728 2
STD	0050	-00	84	34	49	27	75	0 021	[4730 3
овя	0050	-00	84	34	49	27	75	1		4730 3
STD	0075	-00	68	34	60	27	84	0 029	[4734 7
089	0075	-00	68	34	60	27	84	i		4734 7
STD	0100	-00	94	34	62	27	86	0 036		4732 3
OBS	0100	-00	94	34	62	27	86		1	4732 3
STD	0150	J - 01	42	34	67	27	92	0 046	J	4728 0
085	0170	-01	60	34	69	27	94		1	4726 4

	SURFACE OBSERVATIONS										
NODC REF.	STATION			DATE			Po		SONIC	MAX.	
NO.	3121101	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00674	IP17	02	24	1961	03	73	33 ['] S	177	00'E	0555	02

Ì	w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	סטפ	SE	.A	SWEL	.L	VIS.	W	ATER
١	SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ্	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
[05	16		87	54 3	56 8	29	02	6	8	16	2	19	2	7		

į				:	SUBSU	RFACE (DBSEF	RVA	TIONS			
	SAMPLE DEPTH (M)	7	°c ♥	8	% o ♥	€t	+	Į,	ΣΔΟ	O:m I/I	V _t	ł
STD	0000	-00	52	34	42	27	68	0	000		4732	0
089	0000	-00	52	34	42	27	68			[4732	0
OBS	0005	-00	53	34	42	27	68			1	4732	1
STD	0010	-00	55	34	41	27	68	0	004		4732	1
OBS	0010	-00	55	34	41	27	68			İ	4732	1
OBS	0015	-00	53	34	42	27	68			ĺ	4732	7
STD	0020	-00	53	34	42	27	68	0	008	1	4733	0
OBS	0020	-00	53	34	42	27	68	1		[4733	0
STD	0030	-00	54	34	42	27	68	0	013	İ	4733	5
OBS	0030	-00	54	34	42	27	68			J	4733	5
OBS	0049	-00	51	34	42	27	68	1			4735	1
STD	0050	-00	51	34	42	27	68	0	021	1	4735	1
obsi	0074	-00	45	34	42	27	68	1			4737	5
STD	0075	-00	44	34	43	27	69	0	031		4737	7
OBS	0098	-00	28	34	63	27	84	1		1	4742	4
STD	0100	-00	29	34	64	27	85	0	040		4742	4
STD [0150	-00	50	34	64	27	86	0	052	[4742	2
OBS	0167	-00	75	34	64	27	87	1			4739	3

				9	SURFACE	E OBSE	RVATIONS				
NODC				DATE			PO	SITION		SONIC DEPTH	MAX. SAMPLE
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	UNCORRECTED	
00674	IP18	02	26	1961	22	72	32'S	171	20' E	0402	02

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-		CLC	QU	SI	EA .	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
06	23		89	54 8	56 0	70	02	6	8	23	2	20	2	7		

1				5	SUBSUR	FACE (OBSER	VA	TIONS			
	SAMPLE DEPTH (M)	т	°c \		% o	σι	*	1	ΣΔD /	O₂m I/I ₩	۸, ۱	<u> </u>
STD	0000	-01	68	34	14	27	50	0	000		4712	6
OBS	0000	-01	68	34	14	27	50	ļ			4712 4712	6 7
овя	0005	-01	68	34	09	27	46	١.		Į.		
STD	0010	-01	68	34	09	27	46	0	006	ļ	4713	0
OBS.	0010	-01	68	34	09	27	46	l		Ì	4713	0
OBS	0015	-01	67	34	11	27	47]_		ļ	4713	6
STD	0020	-01	67	34	13	27	49	0	012		4713	ò
OBS	0020	-01	67	34	13	27	49			j	4713	9
STD	0030	-01	67	34	17	27	52	0	018		4714	7
OBS	0030	-01	67	34	17	27	52	1		1	4714	7
OBS	0049	-01	59	34	19	27	54				4717	2
STD	0050	-01	59	34	19	27	54	ļo	029	ļ	4717	2
OBS	0074	-01	48	34	23	27	57	١.			4720	6
STD	0075	-01	48	34	23	27	57	0	043]	4720	6
OBS	0098	-01	39	34	27	27	59			!	4723	6
STD	0100	-01	38	34	28	27	60	0	056	j	4723	9
STD	0150	-01	29	34	45	27	74	0	077	1	4729	1
OBS	0167	-01	29	34	54	27	81]		ļ	4730	5

				•	SURFACE	OBSER	RVATIONS				
NODC REF.	STATION		1	DATE			PO	SITION		SONIC DEPTH	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	UNCORRECTED	
00674	IP19	02	26	1961	23	72	23'5	170	55 ['] E	0302	01

	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	OUD	SE	A	SWEL	.L	VIS.	W	ATER
5	PEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
Γ	06	18		88	54 8	56 0	70	02	6	8	23	2	20	2	7		

ł				:	SUBSUR	FACE (DBSER	RVΑ	TIONS			
	SAMPLE DEPTH (M)	T	°c ♥		% o	σι	*		ΣΔΟ	Ozm I/I	٧, ١	<u>, </u>
STD	0000	-01	55	34	15	27	50	0	000		4714	7
OBS OBS	0000 0005	-01 -01	55 56	34	15 17	27	50 52			j	4714	7
STD	0010	-01	55	34	17	27	52	0	006		4715	4
ORS	0010	-01	55	34	17	27	52				4715	4
OBS	0015	-01	53	34	22	27	56			j	4716	2
STD	0020	-01	54 54	34	21	27	55 55	0	011		4716 4716	3
STD	0020 0030	-01 -01	52	34	21 22	27	56	0	017	}	4717	3
овя	0030	. ,1	52	34	22	27	56		•		4717	3
OBS	0049	·)1	46	34	20	27	54				4719	3
STD	0050	-01	46	34	20	27	54	0	028		4719	3
OBS	0074 0075	-01 -01	44 44	34	27 27	27	60 60	0	041	ł	4721 4721	5
STD	0075	-01	39	34	25	27	58		041		4723	5
}		}		}								

				9	SURFACE	OBSER	RVATIONS				
NODC	STATION			DATE			PO	SITION		SONIC	MAX.
REF. NO.	STATION	МО	DAY	YEAR	HOUR	LAT	TTUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLI DEPTH
00674	IP20	02	27	1961	01	72	14'5	170	32'E	0412	02

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CTC	סטס	SE	:A	SWEL	L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
07	18		88	53 8	55 0	68	02	6	8	23	3	00	0	5		

ſ					SUBSUR	FACE	OBSEF	RVATIONS		
	SAMPLE DEPTH (M)	т	°c ♥		% o ∳	σι	\	Σ ΔΟ	O₂m I/I ♦	V _f
STD	0000	-01 -01	72 72	34	04 04	27	42 42	0 000		4711 6 4711 6
OBS	0005	-01	71	34	05	27	43			4712 1
STD OBS	0010 0010	-01 -01	73 73	34	05 05	27	43 43	0 007	}	4712 0 4712 0
OBS	0015	-01	70	34	06	27	43			4712 9
STD OBS	0020 0020	-01 -01	71 71	34	06 06	27	43 43	0 013	Ì	4713 0 4713 0
STD	0030 0030	-01 -01	68 68	34	07 07	27	44 44	0 020		4714 1 4714 1
STD	0050	-01	46	34	10	27	46	0 032		4718 9
OBS STD	0050 0075	-01 -01	46 58	34	10 10	27	46 46	0 048		4718 9 4718 5
ORS	0075	-01	58	34	10	27	46			4718 5
STD	0100 0100	-01 -01	52 52	34	14 14	27	49 49	0 063		4721 1 4721 1
STD	0150	-01 -01	24 06	34	33 45	27	64 73	0 000]	4729 3 4733 8
ORS	0110	1-01	UB	7 4	42	('	1.2	}	1	ט פניד ן

				5	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE	12111		PO	SITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00674	IP21	02	27	1961	04	72	04 5	170	59 ['] E	0329	02

W	/IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER		OUD	SE	. А	SWE	L.	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	W£T ♥	ITY		TYPE		DIR	AMT	DIR.	AMT.		COL.	TRANS.
07	18		87	54 5	55 3	7 8	02	0	8	18	3	19	2	5		

					SUBSUR	FACE	OBSER	RVA	TIONS			
	SAMPLE DEPTH (M)	ī	°c ∳		% o ♥	σι	+	1	ΣΔD	O₂m I/I ♥	V, 1	,
STO	0000	-01	35	34	29	27	61	0	000		4718	- 5
OBS	0000	-01	35	34	29	27	61			1	4718	5
ORS	0005	-01	39	34	31	27	63			1	4718	3
STD	0010	-01	39	34	32	27	64	0	005	ļ	4718	6
ORS	0010	-01	39	34	32	27	64	ì		ì	4718	6
OPS	0015	-01	36	34	33	27	64				4719	4
STD	0020	- 01	37	34	२ २	27	64	n	000		4719	5
OBS	0020	-01	37	34	33	27	64	l		l	4719	5
STD	0030	-01	37	34	23	27	64	0	014	1	4720	ĵ
ORS	0030	-01	37	34	33	27	64				4720	1
STD	0050	- ∩1	35	34	33	27	64	0	023	ļ	4721	6
ORS	0050	-01	35	34	33	27	64	l		ļ	4721	6
STD	0075	- ∩1	29	34	33	27	64	0	034		4724	1
OBS	0075	-01	29	34	23	77	64	ĺ		Ī	4724	1
STO	0100	- 01	30	34	34	27	65	0	046		4725	4
ORS	0100	- 01	30	34	34	27	65			(4725	4
STD	0150	-01	33	34	34	27	65	0	068		4727	9
ORS	0170	-01	35	34	34	27	65				4728	8

NODC	27.47.03			DATE			PO	SITION		SONIC DEPTH	MAX.
REF.	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	UNCORRECTED	
00674	IP22	02	2.7	1961	03	72	04'5	170	32'E	0348	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	OUD	SI	:A	SWEL	L.	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	20		88	54 0	55 1	71	02	0	8	10	2	00	0	7		

	·		SUBSUR	FACE OBSER	RVATIONS		
	SAMPLE DEPTH (M)	†°c ₩	s% o ↓	σι ψ	Σ Δ D	O₂m I/I ₩	٧,
STD ORS ORS STD ORS	0010	-01 50 -01 50 -01 53 -01 51 -01 51	34 18 34 18 34 16 34 16 34 16	27 53 27 53 27 51 27 51 27 51	0 000		4715 7 4715 7 4715 4 4716 0 4716 0
OBS STD OBS	0015 0020 0020	-01 51 -01 48 -01 48	34 16 34 16 34 16	27 51 27 51 27 51	0 012		4716 3 4717 1 4717 1 4717 5
STD ORS STD	0030 0030 0050	-01 49 -01 49 -01 44	34 16 34 16 34 16	27 51 27 51 27 51	0 017		4717 5 4719 5
ORS STD ORS	0050 0075 0075	-01 44 -01 38 -01 38	34 16 34 16 34 16	27 51 27 51 27 51	0 044	:	4719 5 4721 9 4721 9
STD ORS	0100	-01 33 -01 33 -01 25	34 20 34 20 34 25	27 54 27 54 27 57	0 058		4724 4 4724 4 4728 8
STO ORS		-01 22	34 26	27 58	0		4730 5

				•	SURFACI	0856	RVATIONS				
NODC	STATION		1	DATE			PO	SITION		SONIC	MAX.
RF.F. NO.	STATION	MO	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00674	IP23	02	27	1961	19	72	18'5	170	11'E	0474	02

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	מטס	SI	A	SWEL	T.	VIS.	w	ATER
SPEE	D DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
0.2	20		90	54 4	55 7	68	02	6	8	18	3	19	2	7		

[SUBSUR	FACE OBSE	RVATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% 0 ₩	σι ₩	ΣΔD	O₂m I/I ₩	۷, 🔻
STO	0000	-01 68		j)	
000		-01 68	1	1]]]	
ORS	0005	-01 68			ì		
STO	0010	-01 70		1	[[[
005	0010	-01 70	1	([1 1	
ORS	0015	-01 68		ļ	ļ	! !	
STO	0020	-01 66		j	j)]	
OPS	0020	-01 66			J	J J	
STD (0030	-01 67		l	ļ	{	
ORS	0030	-01 67	J	1	1	1)	
STO	0050	-01 66	1	})	}	
OPS	0050	-01 66] }	
STD	0075	-01 61				{	
ORS	0075	-01 61					
STD	0100	-01 57)	, ,	
OPS	0100	-01 57	J	l	ļ)	
STD (0150	-01 49				<u> </u>	
ORS	0170	-01 45	1	[[1	
1		ď	1	1	1	1 1	

					SURFACE	OBSE	RVATIONS				
NODC	STATION		DATE			PO	SITION		SONIC	MAX.	
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00674	1P24	02	27	1961	06	71	55 S	171	30'E	0366	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		OUD	SI	ĒA	SWE	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY ♥	WET ▼	ITY	MENINEH	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
07	1.4		53	53 4	55 0	63	02	4	8							

[SUBSUR	FACE (OBSEF	٧A	TIONS			
	SAMPLE DEPTH (M)	т	°c ¥		% o ∲	σt	*	ļ	ΣΔΟ	O₂m I/I ♥	٧,	b
STD	0000	-01	21	34	31	27	62	0	000		4720	8
OBS	0000	-01	21	34	31	27 27	62 64				4720	8
OBS STD	0005 0010	-01 -01	23 22	34	33 34	27	65	0	005		4721	3
овѕ	0010	-01	22	34	41*	27	703	١.	002		4721	7
OBS	0015	-01	20	34	35	27	65				4722	Ó
STD	0020	-01	23	34	35	27	65	0	009		4721	8
OBS	0020	-01	23	34	35	27	65	1			4721	8
STD	0030	-01	24	34	35	27	65	0	014	l	4722	3
OBS	0030	-01	24	34	35	27	65		_		4722	3
STD	0050	-01	18	34	34	27	64	0	023		4724	4
OBS	0050	-01	18	34	34	27	64				4724	4
STD	0075	-01	08	34	36	27	66	ļO	034	į	4727	5
OBS	0075	-01	08	34	36	27	66	L			4727	5
STD	0100	-01	00	34	39	27	68	0	045	į.	4730	4
OBS	0100	-01	00	34	39	2.7	68			ŀ	4730	4
STD	0150	-01	08	34	56	27	82	0	062	1	4732	8
OBS	0170	-01	2.0	34	67	27	91				4732	6

				•	SURFACE	OBSER	RVATIONS				
NODC	CTATION			DATE			PO	SITION		SONIC	MAX. SAMPLE
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	UNCORRECTED	
00674	1P25	02	24	1961	22	71	36 ['] S	172	10'E	0540	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	DUC	SE	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY ♥	WET ♥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
07	18		88	53 9	55 4	62	02	6	8	18	3	17	2	7		

ĺ					SUBSUR	FACE	OBSER	VA	TIONS			
	SAMPLE DEPTH (M)	т	°c ♥		% o ∲	σţ	*	1	ΣΔΟ	O₂m I/I ₩	۷, ۱	<u> </u>
STD	0000	-00	68	34	36	27	64	0	000		4729	3
OBS	0000	-00	68	34	36	27	64	l			4729	3
OBS	0005	-00	70	34	36	27	64				4729	2
OBS	0009	-00	70	34	45	27	72				4729	9
STD	0010	-00	68	34	45	27	71	0	004		4730	2
OBS	0013	-00	64	34	45	27	71				4731	0
овѕ	0018	-00	68	34	47	27	73	1			4730	8
STD	0020	-00	69	34	47	27	73	0	800		4730	8
085	0027	-00	72	34	47	27	73				4730	7
STD	0030	-00	71	34	47	27	73	0	012		4731	0
089	0045	-00	67	34	49	27	75	İ			4732	6
STD	0050	-00	67	34	51	27	76	0	019	ŀ	4733	0
obs	0068	-00	68	34	55	27	8.0))	4734	1
STD	0075	-00	67	34	55	27	80	0	027		4734	7
OBS	0091	-00	64	34	55	27	79				4736	1
STD	0100	-00	62	34	55	27	79	0	035		4737	0
STD	0150	-00	53	34	55	27	79	0	051		4741	3
OBS	0154	-00	52	34	55	27	79				4741	7

				\$	SURFACE	E OBSERVATIONS	.		
NODC	STATION		DATE POSITION	OSITION	SONIC DEPTH	MAX. SAMPLE			
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	
00674	IP26	02	24	1961	19	71 36'S	173 50'E	2012	02

w	IND	ANEMO.	AIR	AIR TE	M P	ERATUR	₹E	HUMID-	WEATHER		מטכ	Si	EA.	SWE	L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤		WET	*	ITY	WENINER		AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
13	18	23	88	53 8	3	55	4	61	02	6	8	18	4	16	2	7		

				:	SUBSUR	FACE	OBSER	RVA	TIONS			
	SAMPLE DEPTH (M)	т	°c ♥	s	% o ♦	σι	*		ΣΔΟ	O₂m I/I ₩	V _f	ł
STD	0000	-00	79	34	43	27	70	0	000		4727	8
OBS	0000	-00	79	34	43	27	70	Ì		Ì	4727	1
OBS	0005	-00	82	34	43	27	70	i		1	4727	•
OBS	0009	-00	83	34	43	27	70				4727	1
STD	0010	-00	82	34	43	27	70	0	004		4728	1
OBS	0013	-00	80	34	43	27	70	i		F	4728	
OBS	0018	-00	80	34	43	27	70				4728	i
STD	0020	-00	81	34	43	27	70	0	800		4728	•
OBS	0027	-00	84	34	43	27	71	l		ĺ	4728	•
STD	0030	-00	83	34	43	27	70	0	012	Ì	4729	(
OBS	0045	-00	80	34	43	27	70	Į			4730	4
STD	0050	-00	79	34	43	27	70	0	020		4730	8
OBS	0068	-00	78	34	43	27	70	Ì		l	4732	(
STD	0075	-00	78	34	43	27	70	0	030		4732	9
OBS	0091	-00	78	34	43	27	70				4733	4
STD	0100	-00	72	34	44	27	71	0	040	ł	4734	9
STD	0150	00	26	34	61	27	80	0	057		4753	(
obs	0154	00	38	34	63	27	81				4755	1

				9	SURFACE	OBSER	RVATIONS				
NODC	STATION		1	DATE			PO	SITION		SONIC DEPTH	MAX.
REF. NO.	SINIION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	GITUDE	UNCORRECTED	
00674	IP27	02	24	1961	16	71 *	36'S	175	30'E	2204	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CTC	מטפ	SE	A	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR	AMT.		COL.	TRANS.
09	16		88	54 0	56 2	49	02	6	8	16	4	16	2	7		

				:	SUBSUF	RFACE	OBSER	RVA	TIONS			
	SAMPLE DEPTH (M)	T	°¢ ∲	1 -	% o ∲	σι	*	,	ΣΔD	O₂m I/I ₩	٧,	ł
STD	0000	-00	67	34	33	27	62	0	000		4729	
OBS	0000	-00	67	34	33	27	62				4729	-
ORS	0005	-00	67	34	33	27	62	ŀ		1	4729	
OBS	0009	-00	66	34	33	27	62				4730	
STD	0010	-00	65	34	33	27	62	[0	005		4730	
ORS	0014	-00	62	34	34	27	62				4730	•
08.5	0019	-00	62	34	34	27	62				4731	- 1
STD	0020	-00	62	34	34	27	62	0	010		4731	:
OBS	0028	-00	64	34	33	27	62	1		l	4731	4
STD	0030	-00	64	34	33	27	62	0	014	1	4731	:
ORS	0047	-00	63	34	34	27	62	ļ			4732	•
STD	0050	-00	63	34	34	27	62	0	024		4732	4
OBS	0070	-00	64	34	33	27	62	l		l	4733	
STD	0075	-00	64	34	33	27	62	0	036	l	4734	
ORS	0094	-00	62	34	32	27	61	1		i	4735	- 1
STD	0100	-00	58	34	33	27	61	0	048		4736	
STD	0150	00	42	34	53	27	72	0	069	1	4755	•
OBS	0160	00	75	34	60	27	76	1		Į.	4761	- (

				5	SURFACE	OBSE	RVATIONS				
NODC	STATION		ı	DATE			PO	SITION		SONIC	MAX.
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00674	IP28	02	24	1961	12	71	36 ['] \$	177°	20' E	0914	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CTC	מטס	SE	EA .	SWEL		VIS.	W	ATER
SPEED	DIR.	нст.	PRESS	DRY 🖤	W∟T ♥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
14	16		85	52 8	54 7	57	02	6	8	16	3	12	2	7		

4	16			85	52	8	54	7	57		02	6		8	16	3	12	_	2		Ĺ
		ſ						SI	JBSUF	FAC	F OF	SEE	NA.	TION	ıs						
		}	- CA	MPLE _	r -	°c	·-T	s%	,				1		4.D		m I/!	_	V ₁		
		i	DEPT	H (M)	·	¥		\$ 76	U	['	" ♦		1		20	¥°	m 1/1			\	l
	CTD	ſ	200			72	2	,	4.0		7	۷.	_	00	^			4	728	7	ĺ
	STD		000		-00 -00	73 73			40 40	2		68 68	١	00	U				728		
	OE		000		-00	76	- 1	•	40	2		68	l						7 2 8		l
	OF		000		-00	76	1.	-	40	2		68						4	728	7	l
	STD	l	001	10	-00	75			40	2		68	0	00	4				728		ĺ
	OF		001		-00	72			39	2		67							729		l
	OF	35	002		-00 -00	73 73			40 40	2 2		68 68		00	0				729 729		
	STD		002		-00	74	_		40	2		68	U	00	7				730		
	STD	'n	003		-00	74			40	2		68	0	01	3			1	730		Į
	O F	38	004		-00	72	34	4	41	2	7	68						1	731		
	STD		005		-00	71	1.		41	2		68	0	02	1				732		ļ
	08	38	007		-00	68	ι		41	2		68		^ ^	_			,	733 734		
	STD		007		-00 -00	67 64			40 38	2 2		67 66	O	03	2				734 735	-	
	OE STD	,3	010		-00	61	- 1		39	ءَ ا		66	0	04	2				736		
	STD		015		00	06	- 1		49	2		71		06					750		
	OF	35	016		00	27	34	4	53	2		73						4	754	0	
		-								1			1			}		l			l
		-					ĺ														
		-											Ì			1					l
																					ĺ
		1					1			ł			1								ĺ
													1								
		1		i			ļ			[ļ								
		-																			
		١																			
																i					ĺ
		1											1								
																}					ļ
		İ											Ì			i)			
							İ						1								
		1											Ì								Į
		1								}			1							i	i
													l			ļ		ĺ			
							ļ						ľ								
										l			ļ			ļ		l			
							İ						1								
		-											İ								
				:																	
				,]			1)			
		Ì					İ			l			ľ			l		l			
				i																	
		1					1			-			1			}					
					,																

APPENDIX B BOTTOM SEDIMENT SAMPLES SUMMARY AND FIELD ANALYSES

OCEANOGRAPHIC LOS SHEET - M BOTTOM SEDIMENT DATA PRIC.HNO-3187/13 (Rev. 4-58) VESSEL

HYDROGRAPHIC OFFICE

VESSEL USS ST	USS STATEN ISLAND		CHUISE 00672		 	DEE	DEEP FREEZE 61	ZE 61	(Eas	(Eastern Ross Seg - Cape Colback Area)	ck Area)	
Sample		SAMPLE	SAMPLE POSITION	DEPTH	1 46	EIGHT APPROX	LENGTH	ROCK COLOR CHART	OR CHART	FIELD		OBS.
Ö Z	1960	LATITUDE	LONGITUDE	(Fathons)		WPLERTRATION	CORE	1	CORE BOTTOM	DESCRIPTION	REMARKS	Ž.
-	21 Dec	78°08'S	162°50'W	350	#08	5	24"	10YR4/2		Olv. Gray at top. Drk Yell, Brn, at btm. Clay	Top inch to Tex. Rep.	<u> </u>
											Sta. No. SI-2	L
2	21 Dec	77°35'S	162°20'W	370	#08	5.	18"	10YR5/2		Drk. Yell. Brn. streaks with Olv. Grav "under-		
										neath."		<u> </u>
က	21 Dec	77°31'S	169°34'W	245	#08	7"	6 1/2"		57 4/1	Top color Med. Gray w/green. Stiff, almost	Sta. No. SI-12	<u> </u>
										dry at bottom.		<u> </u>
4	21 Dec	77°32'S	158°34'W	135	#08	0	0	-	-	Bryozoa, etc.	Total Samp. in Jar. Sta. No. SI-14	<u> </u>
209												
5	22 Dec	77°52'S	W'8E°091	392	#08	4' 21"	21"	10YR6/2	10YR6/2 10YR4/2	Slight cohesion, mány rock fragments, water	Sto. No. SI-13	L
:										column muddy.		<u> </u>
9	22 Dec	76°57'S	162°21'W	330	#08	.9192		10YR6/2	5GY4/1		Sta. No. SI-4	
7	22 Dec	76°32'S	162°30'W	252	#08	12"	11"	Between 10YR6/2	5GY4/1	Material in cutter quite 5GY4/1 plastic w/rock fraaments.	Sta. No. SI-5	<u> </u>
								10YR4/2				
∞	22Dec	76°05'S	162°45'W 1400	1400	#08	4,	12"	10YR6/2	10YR4/2	Soft	Sta. No. SI-6	
								•				
6	23 Dec	75°25'S	162°08'W 1850	1850	#08	4.	25 1/2"	4' 25 1/2" 10YR5/2	5Y 4/2	Top-Drk. Yell. Brn. Btm. 3 inches 57 4/2	Sta. No. SI-7	<u> </u>
										н.		

	OBS													 	 o •	
ck Area)	200		Sta. No. SI-8	Sta. No. SI-9	Sta. No. SI-10		Sta. No. SI-11		Sta. No. SI-15		Sample in amber alass iar.	Sta. No. SI-16	Sta. No. SI-17	Sta. No. SI-18	Sample in small core tube. Core washed.	Std. 146. 51-17
(Eastern Ross Sea – Cape Colbeck Area)	FIELD	DESCRIPTION	Mud	Uniform color throughout.	Top-Brnish. Gray Mid-Olv Gray (Clay w/pebbles)	Btm-Med. Drk. Gray			5Y 5/2 Firm, Sandy		Pebbles and Silt.		Light Olv. Gray mud throughout,	Mud	Light yellowish brown	
(Eas	R CHART	CORE BOTTOM	10YR4/2 Mud	 5YR4/1	Ť		57 4/1		57 5/2		-		57 6/1	25 1/2" 10YR6/2 10YR4/2 Mud		
ZE 61	ROCK COLOR CHART CODE NUMBERS	ľ	22 1/2" 10YR6/2	5YR4/1	5YR4/1	•	Between 10YR6/2	10YR4/2	57 5/2		!		57 6/1	10YR6/2	1	
DEEP FREEZE 61	LENGTH	CORE	22 1/2"	15"	20 1/4"		16"		7"		2"		14"	25 1/2"	1	
DEI	WEIGHT APPROX	WALERTRATION		3.	2,		23"		10"		,		4:		4'	
	WEIGHT	SAMPLER	#08	#08	 * 08		#08		#08		#08		#08	#08	#08	
	DEPTH	(Fathous)	1870	1650	230		245	:	110		175		1900	1905	 1980	
CRUISE 00672	SAMPLE POSITION	LONGITUDE	160°11'W 1870	160°41'W 1650	M:6Z°091		160°40'W		158°17'W	;	157°58'W		158°08'W 1900	158°43'W 1905	156°47'W 1980	
	SAMPLE	LATITUDE	75°25'S	75°56'S	28.82		77°00'S		2,90°77		76°33'S		2,80.92	75°38'S	75°41'S	
USS STATEN ISLAND	li F	1960	23 Dec	24 Dec	24 Dec		24 Dec		24 Dec		25 Dec		25 Dec	25 Dec	26 Dec	
VESSEL USS ST	Sample	O	2	=	12		13	210	7		15		92	17	18	

VESSEL USS ST	USS STATEN ISLAND		CRU1SE 00672			DE	DEEP FREEZE 61	ZE 61	(Ea	(Eastern Ross Sea - Cape Colbeck Area)	ck Area)	
Sample	i i	SAMPLE	SAMPLE POSITION	DEPTH		WEIGHT APPROX	LENGTH	ROCK COLOR CHART	R CHART	FIELD		OBS.
ó	1960	LATITUDE	LONGITUDE	(Fathous)		WPLERIRATION	CORE	CORE TOP	CORE BOTTOM	DESCRIPTION	REMARKS	F.
61	26 Dec	76°01'S	156°44'W 1900	1900	#08	5'	34 1/2"	5Y 5/2	5Y 5/2	Light Olive Gray	Sta. No. SI-20	
8	26 Dec	76°34'S	155°49'W	250	#08	4"	2"			Rock and gravel.	Sta. No. SI-21	
21	27 Dec	2,10,22	155°50'W	560	#08	3,	24 1/2"	24 V2" 10YR6/2	10YR6/2	Pale Yellowish Brown.	Sta. No. SI-22	
								i				
22	27 Dec	77°00'5	153°47'W	150	#08	30"	14"	10YR6/2	10YR6/2	Pale Yellowish Brown mud.	Sta. No. SI-23	
211												
23	27 Dec	77°16'S	152°22'W	115	#08	12"	5"	10YR6/2	10YR6/2	Pale Yellowish Brown mud with rocks.	Sta. No. 51-31	
į												
24	27 Dec	77°00'S	151°48'W	620	#08	40"	31"	10YR6/2	57 5/2	Pale Yellowish Brown.	Sta. No. 51-30	
25	27 Dec	76°30'S	153°53'W	300	#08	30	17"	10YR6/2	5GY6/1		Sta. No. SI-24	
26	28 Dec	76°30'S	151°39'W	150	#08	4:	18"	5Y 5/2	5Y 5/2	Highly plastic - light Olive Gray mud.	Sta. No. SI-29	
27	28 Dec	76°00'S	153°54'W 1775	1775	80#	•	40"	5YR5/2	5Y 5/2		Sta. No. SI-25	

į

USS STATEN ISLAND	AIEN IS	LAND	00672			DE	DEEP FREEZE 61	EZE 61	<u>(Fa</u>	(Eastern Ross Sea – Cape Colbeck Area)	sck Area)	
Sample	U	SAMPLE	SAMPLE POSITION	DEPTH	WEIGHT	LPPROX.	LENGTH	ROCK COLOR CHART	OR CHART	FIELD		08 8
ON	1960	LATITUDE	LONGITUDE	Fathons)	AMPLER	TRATION	SWPLERIFATION CORE	CORE TOP	CORE BOTTOM	DESCRIPTION	KEMAKKS	T.
88	28 Dec	75°58'S	151°58'W	145	#08	181	612"	57 5/2	10Y 4/2 Muddy	Muddy	Sta. No. SI-28	
				1								
29	28 Dec	75°31'S	152°08'W 1860	1860	#08	5.	45"	10YR6/2	7 2	Pale Yell. Brn. to within 8" of btm 8tm 8" Med	Sta. No. SI-27	
				-						Drk. Gray. (Mud)		
30	30 Dec	75°20'S	154°12'W 2040	840	#08						Sample in core tube 2 1/2" lenath	
											Sta. No. SI-26	ļ
												<u> </u>
212												ļ
												ļ

VESSEL USS S	USS STATEN ISLAND		CRUISE 00672			DEE	DEEP FREEZE 61	ZE 61	(A	(Amundsen Sea Area)		
Sample		SAMPLE	SAMPLE POSITION	DEPTH	WEIGHT	PPROX.	DEPTH WEIGHT APPROX LENGTH	ROCK COLOR CHART CODE NUMBERS	OR CHART	FIELD	REMARKS	OBS.
	1961	LATITUDE	LONGITUDE	(cathoris)	SAMPLER	RATION	CORE	CORE TOP	CORE BOTTOM			
31	27 Jan	89°52'S	119°58'W 1572	1572	#08	5.	38"	10YR6/2	10YR6/2 10YR5/2	Sand	Sta. No. SI-38	
32	27 Jan	70°21'S	118°56'W 1618	1618	#08	2,	42"	10YR5/2	10YR4/2	Top-Sand and Mud Btm-Clay	Sta. No. SI-39	
33	28 Jan	70°53'S	118°26'W 1470	1470	#08	5' '	41"	10YR5/2	N-5	Top-Pale Yell. Brn. sand and mud. Btm-Medium	Top inch to Tex. Rep. Cutter portion	
į			,				, "			٧.	in small tube #33 w/1.	
						·		•				
න් 213	28 Jan	71°23'S	118°00'W 1203	1203	#08	30" 24"		10YR5/2	10YR5/2 10YR3/2	Top-Sand and mud. Btm-Hard and stony.	Top inch to Tex. Rep. Sta. No. SI-41	
35	29 Jan	71°30'S	117°10'W	965	#08	r m		10YR4/2	10YR5/2 Btm-Clay	Btm-Clay	Portion in small tube #35 from cutter.	
											Sta. No. SI-42	
3%	29 Jan	70°59'S	116°56'W 1469	1469	#08	5'	41"	10YR4/2	5Y 4/1	Top-Drk. Yell. Brn. Btm-Olive gray.	Four or five inches fell from core at	
											surface of water. Sta. No. SI-43	
						·						
37	30 Jan	70°30'S	116°39'W 1722	1722	#08	5.	#0 1/2.II	40 1/2" 10YR5/2	57 4/1	Top-Drk. Yell. Brn. Sand and Mud. Btm-Olive gray	Top inch to Tex. Rep. Sta. No. SI-44	
										clay.		
88	30 Jan	70°03'S	116°30°W 1910	1910	#08	30"	21 1/2"	21 1/2" 10YR4/2		5Y 4/1 Top-Drk. Yell. Brn. Clay	Sta. No. SI-45	
												1

Note	USS SI	USS STATEN ISLAND		CRUISE 00672			DEE	DEEP FREEZE 61	ZE 61	(A₁	(Amundsen Sea Area)		
1961 LATITION LOGITION LO	Sample	и •	SAMPLE		нтчэо	WEIGHT	PPROX	LENGTH	ROCK COLO	IR CHART	FIELD	0 A M M	OBS.
30 Jan 70°05'S 115°31'W 1886 80# 5' 42" 10YR4/2 5Y 4/1 Inp-Drk. Yell. Brn. 31 Jan 70°08'S 114°14'W 1935 80# 5' 40" 10YR6/2 5Y 4/1 Brn.—Olive Gray 31 Jan 70°07'S 112°58'W 2013 80# 18" 9" 10YR4/2 10YR4/2 and mud. 31 Jan 70°07'S 111°26'W 1997 80# 5' 32" 10YR4/2 10YR4/2 Dark Yellowish Brown 1 Feb 69°13'S 111°26'W 2018 80# 5' 52" 10YR5/2 10YR5/2 2 Feb 69°13'S 110°08'W 2040 80# 5' 32" 10YR5/2 5YR5/2 Muddy ooze.	ON	1961	LATITUDE		(Fathons)	SAMPLER	RATION	CORE	CORE TOP	CORE BOTTOM	DESCRIPTION	KEMAKKS	Z
40 31 Jan 70°08'S 114°14'W 1935 80# 5' 40" 10YR6/2 5Y 4/1 Top-Pale Yell . Brn. 41 31 Jan 70°07'S 112°58'W 2013 80# 18" 9" 10YR4/2 10YR4/2 and mud. 42 31 Jan 70°07'S 111°26'W 1897 80# 5' 32" 10YR4/2 10YR4/2 Dark Yellowish Brown 43 1 Feb 69°43'S 111°26'W 1927 80# 41/2' 34" 10YR5/2 10YR6/2 44 2 Feb 69°13'S 111°26'W 2040 80# 5' 52" 10YR5/2 10YR5/2 10YR5/2 45 2 Feb 69°13'S 110°08'W 2040 80# 5' 52 1/4" 10YR5/2 5YR5/2 Muddy ooze.	39	30 Jan	70°05'S	115°31'W	1886	#08		42"	10YR4/2	5Y 4/1		Sta. No. S1-46	
31 Jan 70°08'S 114°14'W 1935 80# 5' 40" 10YR6/2 5Y 4/1 Top-Pale Yell. Brn. 31 Jan 70°08'S 112°58'W 2013 80# 18" 9" 10YR4/2 10YR4/2 and mud. 1 Feb 69°43'S 111°26'W 1927 80# 41/2' 34" 10YR5/2 10YR6/2 2 Feb 69°13'S 111°28'W 2018 80# 5' 32" 10YR5/2 10YR5/2 2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 2 Feb 69°13'S 108°42'W 5253 80# 5' 52 ¼4" 10YR5/2 5YR5/2 Muddy ooze.													
31 Jan 70°07'S 112°58'W 2013 80# 18" 9" 10YR4/2 10YR4/2 and mud. 31 Jan 70°08'S 111°30'W 1897 80# 5' 32" 10YR4/2 10YR4/2 Dark Yellowish Brown and 1 Feb 69°43'S 111°26'W 1927 80# 4 1/2' 34" 10YR5/2 10YR6/2 2 Feb 69°13'S 111°28'W 2018 80# 5' 52" 10YR5/2 10YR5/2 10YR5/2 2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 5YR5/2 Muddy ooze.	40	31 Jan	70°08'S	114°14'W	1935	#08			10YR6/2	4/1	Top-Pale Yell. Brn. Btm-Olive Grav	Top inch to Tex. Rep. Sta. No. SI-47	
31 Jan 70°07'S 112°58'W 2013 80# 18" 9" 10YR4/2 10YR4/2 Gard mud. 31 Jan 70°08'S 111°30'W 1897 80# 5' 32" 10YR4/2 10YR4/2 Dark Yellowish Brown 1 Feb 69°43'S 111°26'W 1927 80# 4 1/2' 34" 10YR5/2 10YR6/2 2 Feb 69°13'S 111°28'W 2018 80# 5' 52" 10YR5/2 10YR5/2 2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 Ahuddy ooze.								-		!			
31 Jan 70°08's 111°30'W 1897 80# 5' 32" 10YR4/2 10YR4/2 Dark Yellowish Brown 1 Feb 69°43'S 111°26'W 1927 80# 4 1/2' 34" 10YR5/2 10YR6/2 2 Feb 69°13'S 111°28'W 2018 80# 5' 52" 10YR5/2 10YR5/2 10YR5/2 2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 Muddy ooze.	41	31 Jan	20,02	112°58'W	2013	#08	18"		10YR4/2	10YR4/2	Yellowish Brown sand and and mud.	Sta. No. SI-48	
43 1 Jan 70°08'S 111°30'W 1897 80# 5' 32" 10YR4/2 10YR4/2 Dark Yellowish Brown 43 1 Feb 69°43'S 111°26'W 1927 80# 41/2 34" 10YR5/2 10YR6/2 44 2 Feb 69°13'S 1110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 10YR5/2 45 2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 Muddy ooze. 46 2 Feb 69°13'S 108°42'W 5253 80# 5' 52 1/4" 10YR5/2 5YR5/2 Muddy ooze.													
43 1 Feb 69°43'S 111°26'W 1927 80# 412' 34" 10YR5/2 10YR6/2 44 2 Feb 69°13'S 111°28'W 2040 80# 5' 52" 10YR5/2 10YR5/2 45 2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 46 2 Feb 69°13'S 108°42'W 5253 80# 5' 52 1/4" 10YR5/2 5YR5/2 Muddy ooze.		31 Jan	70°08'S	111°30'W	1897	#08			10YR4/2	10YR4/2	Dark Yellowish Brown	Sta. No. SI-49	
1 Feb 69°43'S 111°26'W 1927 80# 4 V2' 34" 10YR5/2 10YR6/2 2 Feb 69°13'S 111°28'W 2018 80# 5' 52" 10YR5/2 10YR5/2 2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 2 Feb 69°13'S 108°42'W 5253 80# 5' 52 14" 10YR5/2 5YR5/2 Muddy ooze.	214												
2 Feb 69°13'S 111°28'W 2018 80# 5' 52" 10YR5/2 10YR5/2 2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 2 Feb 69°13'S 108°42'W 5253 80# 5' 52 1⁄4" 10YR5/2 5YR5/2 Muddy ooze.	43		69°43'S	111°26'W	1927	•	1.77.1		10YR5/2	10YR6/2		Sta. No. SI-50	
2 Feb 69°13'S 111°28'W 2018 80# 5' 52" 10YR5/2 10YR5/2 2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 2 Feb 69°13'S 108°42'W 5253 80# 5' 52 1/4" 10YR5/2 5YR5/2 Muddy ooze.													<u> </u>
2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 Sta. No. 2 Feb 69°13'S 108°42'W 5253 80# 5' 52 1/4" 10YR5/2 5YR5/2 Muddy ooze. Sta. No.	44	2 Feb	89°13'S	111°28'W	2018	#08			10YR5/2	10YR5/2		Possible double core.	
2 Feb 69°13'S 110°08'W 2040 80# 5' 36" 10YR5/2 10YR5/2 Sta. No. 2 Feb 69°13'S 108°42'W 5253 80# 5' 52 1/4" 10YR5/2 5YR5/2 Muddy ooze. Sta. No.													
2 Feb 69°13'S 108°42'W 5253 80# 5' 52 1/4" 10YR5/2 5YR5/2 Muddy ooze. Sta.	45	2 Feb	86°13'5	110°08'W	2040	#08			10YR5/2	10YR5/2		Sta. No. SI-52	
2 Feb 69°13'S 108°42'W 5253 80# 5' 52 1/4" 10YR5/2 5YR5/2 Muddy ooze. Sta.													
	84	2 Feb	69°13'5	108°42'W	5253	#08		52 1/4"	10YR5/2	5YR5/2	Muddy ooze.	Sta. No. S1-53	

	REMARKS OBS.		Top inch to Tex. USARP Rep.	Sta. No. SI-54	Sta. No. SI-55	Sta. No. 51-56		No. SI-57	No. SI-58		Portion in retainer	Sta. No. SI-59	Sta. No. SI-60	A few inches of	
			Top inch to USARP Rep	Sta.	Sta.	Sta.		Sta.	Sta.		Portion auite	Sta.	Sta.	_	
(Amundsen Sea Area)	FIELD	DESCRIP TION			Mid. 10YR6/2		-	lop-Sand and Mud. Btm-Mud.	Mud.					Top 3" 10YR6/2 then 10YR4/2 blending to	10YR5/2.
₹)	OR CHART	CORE BOTTOM	10YR5/2		10YR5/2	 10YR5/2		10YR6/2	10YR5/2		10YR6/2		10YR5/2	10YR4/2	
EZE 61	ROCK COLOR CHART CODE NUMBERS	CORE TOP	10YR5/2		37 1/2" 10YR5/2	10YR5/2		10YR4/2	10YR5/2		10YR4/2		36 1/2" 10YR6/2	10YR6/2	
DEEP FREEZE 61	LENGTH	CORE	2"			8		23"	45"		44"		38 1/2"	 	
ב	T APPRO	SAMPLERITRATION	18"		-4	 5.		6	 5:		5.		5.	 5	
_	WEIGH	SAMPLE	#08		80#	 8	_	#08 \$	#08 		80#		#08 (80#	
	DEPT	(raino	V 232		V 225	V 212		V 182	V 2081		V 2230		v 2290	 /2037	
2/900	SAMPLE POSITION	LONGITUDE	107°16'W 2329		105°44'W 2256	105°40'W 2129		105°36'W 1826	107°00'W 2081	į	106°59°W 2230		106°58'W 2290	105°43'W 2037	
AND	SAMPLE	LATITUDE	69°13'S		89°15'S	69°46'5		70°18'S	70°18'S		69°49'5		69°33'S	69°26'5	
USS STATEN ISLAND	DATE	1961	3 Feb		3 Feb	3 Feb		4 Feb	4 Feb		5 Feb		5 Feb	5 Feb	
USS 21	Sample	<u>.</u>	47		48	49		22	51		52		53	75	

VESSEL USS ST	USS STATEN ISLAND		CRUISE 00672	 			DEEP FREEZE 61	ZE 61	ਜੂ ਜੂ	(Thurston Peninsula - Bellingshausen Sea Area)	dusen Sea Area)	
Sample	U H	SAMPLE	SAMPLE POSITION	ОЕРТН		APPROX.	LENGTH	ROCK COLOR CHART		FIELD		OBS.
NO.	1961	LA ⁻ 1 TUDE	LONGITUDE	(Fathoms)		PENE-	SAMPLERTRATION CORE	CORE TOP	CORE BOTTOM	DESCRIPTION	REMARKS	Ę.
55	7 Feb	71°45'S	095°57'W	221	#08	21"	14"	5Y 4/2	10YR5/2	Sandy	Sta. No. SI-62	
25	9 Feb	72°32'S	093°02°W	200	#08	18"	10"	57 5/1	57 5/1	Med. Olv. Gray	Sta. No. SI-63	
												<u></u>
57	10 Feb	72°29'S	091°43'W	87	#08	10"	4"	57 6/1	57 6/1		Sta. No. SI-64	
												<u> </u>
28	10 Feb	72°27'S	092°14'W	232	#08	30"	21"	57 6/1	57 6/1		Sta. No. SI-65	
214							· · · · · · · ·					
59	11 Feb	72°24'S	092°54'W	397	#08			57 6/1	57 6/1		Sta. No. SI-66	
						-						
09	11 Feb	72°14'S	092°45'W	224	#08	3.	8	57 5/1			Care washed.	
61	11 Feb	72°16'S	091°26'W	183	#08	24"	17"	57 6/1	N-5		Sta. No. SI-68	<u> </u>
62	12 Feb	72°13'S	092°04'W	235	*08	-4	02	57 6/1	57 5/1		Sta. No. SI-69	
63	17 Feb	72°41'S	W:55°160	282	#08	12"	9	57 6/1	57 6/1	Sand and mud.	Sta. No. SI-70	ļ

Sample No. Sample DATE INCOMED INCOMED INCOMEDIATE INCOMEDIATION (OPE INCOMEDIATE INCO	VESSEL USS S	USS STATEN ISLAND		CRUISE 00672		ļ	DE	EP FRE	DEEP FREEZE 61	T	(Thurston Peninsula – Bellingsh	Bellingshausen Sea Area)	
64 22 Feb 71°45'S 092°54'W 224 80# 31" 5GY \$4'1 5GY \$6'1 6GY \$6'1	Sample		SAMPLE		DEPTH	WEIGHT,	APPROX	LENGTH		R CHART	FIELD		OBS.
64 22 Feb 71°45'S 092°54'W 224 80# 31" 5GY 6/1 5GY 6/1 6GY 6/1	NO.	1961	LATITUDE		Fathoms)	AMPLER	TRATION	CORE	Ĺ	CORE BOTTOM	DESCRIPTION	KEMAKNS	È.
65 28 Feb 71°29'S 094°00'W 295 80# 12" 10YR 5/2 5Y 4/1 66 2 Mar 71°12'S 095°32'W 250 80# 3' 21" 10YR 6/2 10YR 4/2 8hm. 2"-5Y 4/1 67 2 Mar 71°45'S 096°49'W 312 80# 4' 24" 10YR 5/2 5Y 4/1 Sand and mud. Shell on top 68 3 Mar 71°41'S 098°30'W 142 80# 4" 10YR 5/2 N-4 Sand. 70 9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR 5/2 10YR 5/2 Sandy.	2	22 Feb	71°45'S	092°54'W	224	#08		31"		5GY 6/1		Sta. No. SI-71	
66 2 Mar 71°45'S 096°49'W 295 80# 12" 10YR 5/2 5Y 4/1 66 2 Mar 71°45'S 096°49'W 312 80# 4' 24" 10YR 5/2 5Y 4/1 Sand and mud. Shell on top 68 3 Mar 71°44'S 097°53'W 471 80# 4" 10YR 5/2 5Y 4/1 Sand and mud. Shell on top 69 3 Mar 71°41'S 098°30'W 142 80# 4" 10YR 5/2 N-4 Sand. 70 9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR 5/2 N-4 Sand. 71 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR 5/2 10YR 5/2 Sandy.													
66 2 Mar 71°12'S 095°32'W 250 80# 3' 21" 10YR 6/2 10YR 4/2 8tm, 2"-5Y 4/1 67 2 Mar 71°45'S 096°49'W 312 80# 4' 24" 10YR 5/2 5Y 4/1 Sand and mud. Shell on top 68 3 Mar 71°41'S 098°30'W 142 80# 4" 10YR 5/2 N-4 70 9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR 5/2 N-4 Sand. 71 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR 5/2 10YR 5/2 Sandy.	65	28 Feb	71°29'S	094°00'W	295	#08		12"	10YR 5/2	57 4/1		Sta. No. SI-72	
65 2 Mar 71°12'S 095°32'W 256 80# 3' 21" 10YR6/2 10YR4/2 8tm, 2"-5Y 4/1 67 2 Mar 71°45'S 096°49'W 312 80# 4' 24" 10YR5/2 5Y 4/1 Sand and mud. Shell on top. 68 3 Mar 71°41'S 098°30'W 142 80# 4" 10YR5/2 N-4 70 9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR5/2 N-4 Sand. 71 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR5/2 10YR5/2 Sandy.													
67 2 Mar 71°45'S 096°49'W 312 80# 4' 24" 10YR 5/2 5Y 4/1 Sand and mud, Shell on top. 68 3 Mar 71°44'S 097°53'W 471 80# 42" 10YR 5/2 N-4 69 3 Mar 71°41'S 098°30'W 142 80# 4" 10YR 5/2 N-4 Sand. 70 9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR 5/2 10YR 5/2 Sandy. 71 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR 5/2 10YR 5/2 Sandy.	99	2 Mar	71°12'S	095°32'W	250	#08	-	21"	10YR 6/2	10YR 4/2	Bfm.	Sta. No. SI-73	
68 3 Mar 71°44'S 096°49'W 312 80# 4' 24" 10YR 5/2 5Y 4/1 Sand and mud. Shell ontop. 68 3 Mar 71°44'S 097°53'W 471 80# 42" 10YR 5/2 N-4 69 3 Mar 71°41'S 098°30'W 142 80# 4" 10YR 5/2 70 9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR 5/2 N-4 Sand. 71 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR 5/2 10YR 5/2 Sandy.													
69 3 Mar 71°44'S 099°53'W 471 80# 42" 10YR5/2 N-4 69 3 Mar 71°41'S 098°30'W 142 80# 4" 10YR5/2 70 9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR5/2 N-4 Sand. 71 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR5/2 10YR5/2 Sandy.	29	2 Mar	71°45'S	096°49°W	i	#08		24"	10YR 5/2		Sand and mud. Shell on top.	Sta. No. SI-74	
3 Mar 71°44'S 097°53'W 471 80# 42" 10YR5/2 N-4 3 Mar 71°41'S 098°30'W 142 80# 4" 10YR5/2 9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR5/2 N-4 Sand. 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR5/2 10YR5/2 Sandy.	217												
3 Mar 71°41'S 098°30'W 142 80# 4" 10YR 5/2 9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR 5/2 N-4 Sand. 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR 5/2 10YR 5/2 Sandy.	89	3 Mar	71°44'S	W.ES.240		#08	7		10YR 5/2	7		Sta. No. SI-75	
3 Mar 71°41'S 098°30'W 142 80# 4" 10YR5/2 9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR5/2 N-4 Sand. 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR5/2 10YR5/2 Sandy.													
9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR 5/2 N-4 Sand. 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR 5/2 10YR 5/2 Sandy.	69	3 Mar	71°41'S	098°30'W		#08		. 4	10YR 5/2			Sta. No. SI-76	
9 Mar 71°37'S 102°28'W 355 80# 3' 21" 10YR5/2 N-4 Sand. 10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR5/2 10YR5/2 Sandy.													·
10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR 5/2 10YR 5/2 Sandy.	20	9 Mar	71°37'S	102°28'W		#08			10YR 5/2	7 2	Sand.	Sta. No. SI-78	
10 Mar 70°51'S 101°54'W 1306 80# 3' 23" 10YR 5/2 10YR 5/2 Sandy.													
	71	10 Mar	70°51'S	101°54'W		#08			10YR 5/2	10YR 5/2	Sandy.	Sta. No. SI-79	
													_

U. S. Navy Hydrographic Office OPERATION DEEP FREEZE 61, 1960-1961 MARINE GEOPHYSICAL INVESTIGATIONS, June 1962. 217 p., including 81 figs., 2 tables. (TR-105).

waters. Data on the thermal structure, salinity, discussion of the Antarctic Convergence is also bottom sediment, ice distribution, bathymetry Contains results of the Marine Geophysical across the South Sandwich Trench, and geonvestigations in the Antarctic and adjacent density, dissolved oxygen, field analysis of magnetic measurements are presented. A

graphic data for 94 stations and Appendix B, the Appendix A contains a tabulation of oceanofield analysis of 71 bottom sediment samples.

MARINE GEOPHYSICAL INVESTIGATIONS, OPERATION DEEP FREEZE 61, 1960-1961 June 1962. 217 p., including 81 figs., 2 U. S. Navy Hydrographic Office tables. (TR-105)

waters. Data on the thermal structure, salinity, discussion of the Antarctic Convergence is also Contains results of the Marine Geophysical bottom sediment, ice distribution, bathymetry Investigations in the Antarctic and adjacent density, dissolved oxygen, field analysis of across the South Sandwich Trench, and geomagnetic measurements are presented. A included

Title: Operation DEEP FREEZE

HMNZS ENDEAVOUR

9

USCGC EASTWIND

USS GLACIER

USS EDISTO

9.3.5.

51, 1961-1962 Marine

Geophysical Investigations.

TR-105

. :=

graphic data for 94 stations and Appendix B, the Appendix A contains a tabulation of oceanofield analysis of 71 bottom sediment samples.

Antarctic - oceanography - 26.4

Antarctic - bottom sediments Antarctic - ice

Antarctic - geomagnetics Antarctic - bathymetry

USS STATEN ISLAND

USS EDISTO

USS GLACIER

USCGC EASTWIND ∞°.

HMNZS ENDEAVOUR ٥. Title: Operation DEEP FREEZE Geophysical Investigations. 61, 1961-1962 Marine ._:

ii. TR-105

OPERATION DEEP FREEZE 61, 1960-1961 MARINE GEOPHYSICAL INVESTIGATIONS, June 1962. 217 p., including 81 figs., 2 U. S. Navy Hydrographic Office tables. (TR-105).

Antarctic - bottom sediments

Antarctic – oceanography

Antarctic - geomagnetics

Antarctic - ice

- 6. 6. 4. 6.

Antarctic - bathymetry

USS STATEN ISLAND

é. V. 89 9. 0

> waters. Data on the thermal structure, salinity, discussion of the Antorctic Convergence is also Contains results of the Marine Geophysical bottom sediment, ice distribution, bathymetry across the South Sandwich Trench, and geodensity, dissolved oxygen, field analysis of investigations in the Antarctic and adjacent magnetic measurements are presented. A

Title: Operation DEEP FREEZE Geophysical Investigations.

HMNZS ENDEAVOUR

USCGC EASTWIND

USS EDISTO USS GLACIER

61, 1961-1962 Marine

ii . TR-105

graphic data for 94 stations and Appendix B, the Appendix A contains a tabulation of oceanofield analysis of 71 bottom sediment samples.

OPERATION DEEP FREEZE 61, 1960-1961 U. S. Navy Hydrographic Office

Antarctic - bottom sediments

3 5. ₹.

Antarctic - oceanography

Antarctic - geomagnetics

Antarctic - ice

Antarctic - bathymetry

USS STATEN ISLAND

MARINE GEOPHYSICAL INVESTIGATIONS, June 1962. 217 p., including 81 figs., 2

tables. (TR-105).

waters. Data on the thermal structure, salinity, discussion of the Antarctic Convergence is also Contains results of the Marine Geophysical bottom sediment, ice distribution, bathymetry across the South Sandwich Trench, and geodensity, dissolved oxygen, field analysis of Investigations in the Antarctic and adjacent magnetic measurements are presented. A included.

graphic data for 94 stations and Appendix B, the field analysis of 71 bottom sediment samples. Appendix A contains a tabulation of oceano-

Antarctic - bottom sediments Antarctic - oceanography

Antarctic - ice - 26.4

Antarctic - geomagnetics Antarctic - bathymetry

USS STATEN ISLAND ٠. د

USS EDISTO

USCGC EASTWIND USS GLACIER

Title: Operation DEEP FREEZE 61, 1961-1962 Marine HMNZS ENDEAVOUR

TR-105 :=

Geophysical Investigations.