5.1 Смяна на координатнота система в равнината.

Нека K = 0 е ℓ_1^2 и $K' = 0' \ell_1^2$ ℓ_2^2 са две афинии координатни системи в равнината и ℓ_1^2 е произволен вектор с координати спряно ℓ_1^2 и ℓ_2^2 (1) връзката меннуу координатите на ℓ_1^2 спряно ℓ_2^2 и ℓ_2^2 са неколинеорни ℓ_2^2 = ℓ_1^2 е ℓ_1^2 е ℓ_2^2 е ℓ_2^2 векторите ℓ_1^2 и ℓ_2^2 са неколинеорни ℓ_2^2 = ℓ_1^2 е ℓ_1^2 е ℓ_2^2 е ℓ_2^2 векторите ℓ_1^2 и ℓ_2^2 са неколинеорни ℓ_2^2 = ℓ_1^2 е ℓ_1^2 е ℓ_2^2 е ℓ_2^2 е ℓ_1^2 и е ℓ_2^2 са неколинеорни ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_2^2 е ℓ_1^2 е ℓ_2^2 е ℓ_2^2

Но \vec{c} се изразлява по единствен ногин трез \vec{e}_1 и \vec{e}_2 .

Следователно

(3) $\begin{cases} C_1 = \lambda_{11} \, C_1' + \lambda_{12} \, C_2' \\ C_2 = \lambda_{21} \, C_1' + \lambda_{22} \, C_2' \end{cases}$ или $\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \lambda_{11} \, \lambda_{12} \\ \lambda_{21} \end{pmatrix} \begin{pmatrix} c_2 \\ c_2 \end{pmatrix}$, $\vec{c} = A\vec{c}' \end{pmatrix}$ Ако знаем координатите на \vec{c} спрямо \vec{K} трез (3) монем да намерим координатите му спрямо \vec{K} .

Матрицата $A = \begin{pmatrix} \lambda_{11} \, \lambda_{12} \\ \lambda_{21} \end{pmatrix}$ се нарита матрица на прехода от \vec{K} към \vec{K}' от \vec{K} към \vec{K}' , а Δ - детерминанта на прехода от \vec{K} към \vec{K}' от $\Delta \neq 0$ => системата (3) моне да се реши еднознатно спрямо \vec{G}' и \vec{G}' .

Встицност $\begin{pmatrix} c_1' \\ c_2' \end{pmatrix} = \vec{A}^{-1} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$, където \vec{A}' е аратната натрица на \vec{A} \vec{K} $\vec{K$

Нека M е произволна тотка и има съответно кодранати (x,y) и $M_k(x,y)$ $M_k(x,y)$