Técnicas de Machine Learning para identificación de clientes con alta Probabilidad de rodamiento

Materia: Estadística Multivariada Avanzada

Juan Sevastian Moreno Zapata CC: 1020417894 Julián Castelblanco Benitez CC: 1152189889

Pregunta de Investigación

Desarrollar un método de machine learning el cuál permita identificar los clientes con alta probabilidad de pasar a un estado de mora de 1 a 30 y de 31 a 60 días

Objetivos Generales

- Generar modelos de Machine Learning que identifique los clientes con alta probabilidad de tener mora de 1 a 30 días y de 31 a 60 días, en próximo mes.
- Generar clusters de acuerdo a las características de los clientes.

Objetivos Especificos

- Encontrar las variables que expliquen el comportamiento de los buckets de mora.
- Realizar el ejercicio de clasificación de mora con modelos supervisados tales como: Regresión Logística, Random
- Forest, Vecinos cercanos (Knn) y Maquinas de Soporte Vectorial (SVM).
- Identificar el mejor modelo para cada uno de los buckets.
- Agrupar la cartera de acuerdo sus patrones.

METODOLOGÍA

A las variables categóricas se les aplica la técnica de Dummies para que la información sea númerica se elabora para cada uno de ellos la matriz de confusión, con esta se construye las métricas de exactitud (AUC), precisión, exhaustividad (Recall) y F1_Score

ANÁLISIS DESCRIPTIVO

PREPARACIÓN DE LA INFORMACIÓN

MODELOS MACHINE
LEARNING

EVALUACIÓN DE RESULTADOS

Este se realiza para conocer el comportamiento de las variables y su tipología Se prueban 4 técnicas de Machine Learning, las cuales son: Regresión Logística, Radoom Forest, Maquinas de soporte vectorial y Vecinos cercanos (Knn).

Análisis de los datos

Variables Identificadas

La base de datos contiene un total de 10000 registros y 26 variables, de éstas se identifican las dependientes, con el fin de observar la correlación que tienen estas frente a las características independientes.

Variable	Descripción
Cliente	Id del cliente
Mora30	El cliente ha tenido mora de 30 días o menos en el último mes
Mora60	El cliente ha tenido mora de 60 días o menos en el último mes
Segmento	Segmento Pymes
SECTOR	Sector empresa
REGCONS	Región
FDESEM	Fecha de Desembolso
Ingresos	Ingresos fijos del cliente
PersonasCargo	Personas a cargo del Cliente
Gastos	Gastos del Cliente
TIEMPACTIVAÑO	Años desde el primer uso de la tarjeta
OCUPACIÓN	Ocupación del cliente
TIPCONTRATO	Tipo de contrato del cliente
Edad	Edad del cliente
Estado_Civil	Estado civil del cliente
Género	Género del cliente
Ingresos_Totales	Ingresos totales del cliente
Nivel_Academico	Nivel académico del cliente
Tipo_Vivienda	Tipo de Vivienda del cliente
Calificación Superfinanciera	Calificación superintendencia del cliente
CalificaciónSistema Financiero	Calificación sistema financiero del cliente
MoraMaxima 12 meses	Máxima mora alcanzada por el cliente en los últimos 12 meses
%Deuda Actual Sistema Financiero	Porcentaje de endeudamiento del cliente
Experiencia Financiera	El cliente cuenta con experiencia negativa en financiera
Antigüedad en el Sistema Financiero	Antigüedad del cliente en el sistema financiero
Numero de creditos vigentes	Número de créditos vigentes del cliente

	Mora30	Mora60	Anno	Mes	Semana	Dia	Ingresos	PersonasCargo	Gastos	TIEMPACTIVAÑO
Mora30		0.643336	-0.0171796	0.00340681	0.00540747	0.0232166	0.0148954	0.0719758	-0.0778868	-0.0110697
Mora60	0.643336	0.043330	-0.0171790	0.00340081	0.00540747	0.00982152	0.00225554	0.0351758	-0.0515307	-0.00712502
Anno	-0.0171796	-0.0185757	-0.0165757	-0.258581	-0.24629	0.0392373	-0.0359898	0.00475866	0.0809146	0.00374908
Mes	0.00340681	0.00104796	-0.258581	1	0.985203	-0.0430668	-0.0132238	-0.00576446	-0.00989501	0.00374308
Semana	0.00540747	0.0014696	-0.24629	0.985203	0.905205	0.0222528	-0.0132236	-0.00792203	-0.00942231	0.00278429
Dia	0.0232166	0.00982152	0.0392373	-0.0430668	0.0222528	0.0222320	0.00615209	-0.00241044	0.00318171	0.00336302
Ingresos	0.0232100	0.00225554	-0.0359898	-0.0132238	-0.0128936	0.00615209	1	-0.0110185	-0.0453265	-0.000932063
PersonasCargo	0.0719758	0.0351758	0.00475866	-0.00576446	-0.00792203	-0.00241044	-0.0110185	-0.0110103	0.00646825	0.00198582
Gastos	-0.0778868	-0.0515307	0.0809146	-0.00989501	-0.00942231	0.00318171	-0.0453265	0.00646825	0.00040025	0.0219748
TIEMPACTIVAÑO	-0.0110697	-0.00712502	0.00374908	0.00278429	0.00338902	0.00485212	-0.000932063	0.00198582	0.0219748	0.0219740
Edad	-0.0241946	-0.033926	-0.0122579	-0.00389742	-0.00321316	0.00456766	-0.00696419	0.137905	-0.0589462	0.00497776
Ingresos_Totales	-0.0813888	-0.0524806	0.0859837	-0.0169848	-0.0168638	0.00323767	-0.0516203	0.00596809	0.844378	0.0215865
%Deuda Actual	-0.0013000	-0.0324000	0.0039037	-0.0105040	-0.0100030	0.00323707	-0.0310203	0.00330003	0.044370	0.0213003
Sistema Financiero	-0.0166684	-0.016925	0.767104	0.0242166	0.0304586	0.0205628	-0.0455289	-0.000457803	0.0453047	0.010432
MoraMaxima 12 meses	0.760725	0.793338	-0.00815728	0.00511128	0.0055251	0.010838	0.0129971	0.0574225	-0.0784532	-0.0129215
Experiencia Financiera	-0.0694265	-0.055724	0.00575655	0.00285268	0.0051452	0.00739209	-0.00616692	0.0256318	0.0630311	-0.0144596
Antigüedad en el Sistema Financiero	-0.0511922	-0.0285635	-0.00396698	0.00358643	0.005013	0.00397313	0.0136917	0.00975058	0.0157182	0.0286416
Numero de creditos vigentes	-0.0221348	-0.0269404	0.00279441	-0.0045104	-0.00286471	0.0112903	0.0381472	0.0156966	-0.00375935	-0.00618483

Resultados Correlación

En esta imagen se identifican 3 variables con correlación alta frente a las variables dependientes, las cuales son: mora máxima 12 meses, deuda actual sistema financiero e ingresos totales..

Variables Númericas

Con este análisis se identifica que los clientes en promedio tienen **ingresos por 4.86** y sus gastos promedios son de **0.389**, adicional, la edad promedio es de **33.7 años** y su mora promedio es de **26 días**.

	Ingresos	PersonasCargo	Gastos	TIEMPACTIVAÑO	Edad	Ingresos_Totales	%Deuda Actual Sistema Financiero	MoraMaxima 12 meses	Experiencia Financiera	Antigüedad en el Sistema Financiero	Numero de creditos vigentes
count	10000.000000	10000.000000	10000.000000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000
mean	4.860682	0.376900	0.389033	3.861667e+02	33.695300	0.791168	0.712277	26.012900	0.346000	12.331800	0.12350
std	79.031945	0.762171	0.084293	1.925316e+04	10.302362	0.159550	0.260601	40.107022	0.475717	21.914615	0.39732
min	0.000000	0.000000	0.003214	0.000000e+00	18.000000	0.600000	0.000000	0.000000	0.000000	0.000000	0.00000
25%	0.920187	0.000000	0.308000	1.000000e+00	27.000000	0.636000	0.563667	0.000000	0.000000	0.000000	0.00000
50%	1.168404	0.000000	0.374726	1.000000e+00	30.000000	0.762145	0.799220	17.000000	0.000000	4.000000	0.00000
75%	1.284000	0.000000	0.449750	3.000000e+00	38.000000	0.900000	0.920972	30.000000	1.000000	14.000000	0.00000
max	4527.398000	6.000000	0.900000	1.050000e+06	69.000000	1.232000	1.000000	364.000000	1.000000	339.000000	5.00000

Variables Categóricas

Para identificar si las variables categóricas son importantes para el modelo se utiliza la metodología Tukey.

Variable	Prueba Tukey		Conclusión
Tipo de contrato	> TukeyHSD(al, "TIPCONTRATO", ordered = TRUE) Tukey multiple comparisons of means 95% family-wise confidence level factor levels have been ordered Fit: aov(formula = 'Moramaxima 12 meses' ~ TIPCONTRATO STIPCONTRATO LIBRE NOMERAMIENTO O REMOCIÓN-NOMBRAMIENTO PROVISIONAL OTROS-NOMERAMIENTO PROVISIONAL TÉRMINO INDEFINIDO-NOMBRAMIENTO PROVISIONAL OBRA, LABOR O MISIÓN-NOMBRAMIENTO PROVISIONAL CARRERA ADMINISTRATIVA-NOMBRAMIENTO PROVISIONAL OTROS-LIBRE NOMBRAMIENTO O REMOCIÓN TÉRMINO INDEFINIDO-LIBRE NOMBRAMIENTO O REMOCIÓN OBRA, LABOR O MISIÓN-LIBRE NOMBRAMIENTO O REMOCIÓN CARRERA ADMINISTRATIVA-LIBRE NOMBRAMIENTO O REMOCIÓN TÉRMINO FIJO-OTROS TÉRMINO FIJO-OTROS TÉRMINO FIJO-OTROS CARRERA ADMINISTRATIVA-TERMINO INDEFINIDO OBRA, LABOR O MISIÓN-TÉRMINO INDEFINIDO OBRA, LABOR O MISIÓN-TÉRMINO INDEFINIDO OBRA, LABOR O MISIÓN-TÉRMINO INDEFINIDO CARRERA ADMINISTRATIVA-TERMINO INDEFINIDO OBRA, LABOR O MISIÓN-TÉRMINO INDEFINIDO CARRERA ADMINISTRATIVA-TERMINO INDEFINIDO CARRERA ADMINISTRATIVA-TERMINO INDEFINIDO CARRERA ADMINISTRATIVA-TERMINO FIJO	diff lwr upr p adj 4.3000000 -72.319765 80.919765 0.9999983 7.9615385 -57.413666 73.336743 0.9998311 12.4379052 -52.349904 77.225715 0.9977048 12.9224299 -51.954016 77.798876 0.9971808 14.1566524 -50.876195 79.189500 0.9953944 34.5000000 -42.119765 111.119765 0.8389324 3.6615385 -38.266387 45.589464 0.9999761 8.1379052 -32.868116 49.143927 0.9972377 8.6224299 -32.523491 49.768350 0.9962645 9.8566524 -31.535433 51.248738 0.9924971 30.2000000 -27.719098 88.119098 0.7218610 4.4763668 -4.733561 13.686295 0.7836768 4.9608914 -4.853168 14.774950 0.7504655 6.1951139 -4.604597 16.994824 0.6215740 26.5384615 -15.389464 68.466387 0.5026497 0.4845247 -3.97177 4.940826 0.9999130 1.7187471 -4.619756 8.057250 0.9850594 22.0620948 -18.943927 63.068116 0.6909005 1.2342225 -5.953935 8.422379 0.9987767 21.5775701 -19.568350 62.723491 0.7163497 20.3433476 -21.048738 61.735433 0.7745908	Ninguno de los niveles se diferencia respecto a la variable respuesta Mora máxima en 12 meses. Lo que confirmamos con un 95% de confianza con el método Tukey y una significancia del 0.05 que estadísticamente los niveles son iguales respecto a la variable de interés.

Ocupación TukeyHSD(a1, "OCUPACIÓN", ordered = TRUE) Tukey multiple comparisons of means 95% family-wise confidence level factor levels have been ordered Fit: aov(formula = 'MoraMaxima 12 meses' ~ OCUPACIÓN, data = BDMOR) SOCUPACIÓN diff lwr upr p adj JUBILADOS/PENSIONADO-PROFESIONAL INDEPENDIENTE 22.711538 -50.417161 95.84024 0.7468346 EMPLEADO-PROFESIONAL INDEPENDIENTE 28.228987 -44.563718 101.02169 0.6345429 EMPLEADO-JUBILADOS/PENSIONADO 5.517449 -1.751259 12.78616 0.1765596	Ninguno de los niveles se diferencia respecto a la variable respuesta Mora máxima en 12 meses. Lo que confirmamos con un 95% de confianza con el método Tukey y una significancia del 0.05 que estadísticamente los niveles son iguales respecto a la variable de interés.
---	--

> TukeyHSD(a1, "Segmento", ordered = TRUE) Ninguno de los niveles se Segmento Tukey multiple comparisons of means 95% family-wise confidence level diferencia respecto a la factor levels have been ordered variable respuesta Mora Fit: aov(formula = `MoraMaxima 12 meses` ~ Segmento, data = BDMOR) máxima en 12 meses. Lo \$Segmento que confirmamos con un diff lwr p adj 95% de confianza con el MDO-VIP 0.3730555 -6.775988 7.522099 0.9999077 STD-VIP 0.7925816 -6.792237 8.377401 0.9985576 método Tukey y una PY-VIP 2.8170064 -11.893453 17.527466 0.9851082 MPY-VIP 4.3588293 -9.967907 18.685565 0.9213357 significancia del 0.05 que STD-MDO 0.4195261 -3.298660 4.137712 0.9980516 estadísticamente los PY-MDO 2.4439509 -10.697322 15.585224 0.9866584 MPY-MDO 3.9857738 -8.724489 16.696037 0.9128918 niveles son iguales PY-STD 2.0244248 -11.358912 15.407762 0.9939224 MPY-STD 3.5662477 -9.394132 16.526628 0.9443414 respecto a la variable de MPY-PY 1.5418229 -16.536883 19.620529 0.9993519 interés. > TukeyHSD(a1, "Nivel_Academico", ordered = TRUE) Los niveles se diferencian Nivel Tukey multiple comparisons of means respecto a la variable Académico 95% family-wise confidence level factor levels have been ordered respuesta Mora máxima en 12 meses. Con un 95% Fit: aov(formula = `MoraMaxima 12 meses` ~ Nivel_Academico, data = BDMOR) de confianza y una \$Nivel_Academico significancia del 0.05 los diff UNIVERSITARIO-ESPECIALIZACIÓN 5.30525127 -9.2972209 19.907723 0.8593554 niveles no son iguales TECNÓLOGO-ESPECIALIZACIÓN 6.95008470 -7.6063373 21.506507 0.6894916 respecto a la variable de BACHILLER-ESPECIALIZACIÓN 13.18574790 -1.3244996 27.695995 0.0953861 OTROS-ESPECIALIZACIÓN 13.28027211 -2.6057093 29.166254 0.1511046 interés, principalmente en TECNÓLOGO-UNIVERSITARIO 1.64483343 -2.5332087 5.822876 0.8198614 los niveles Tecnólogo-7,88049663 3,8662849 11,894708 0,0000009 BACHILLER-UNIVERSITARIO 7.97502084 0.3637778 15.586264 0.0346103 OTROS-UNIVERSITARIO Universitario-Bachiller-BACHILLER-TECNÓLOGO 6.23566320 2.3923412 10.078985 0.0000950 OTROS-TECNÓLOGO 6.33018741 -1.1923287 13.852704 0.1461705 Otro. OTROS-BACHILLER 0.09452421 -7.3382484 7.527297 0.9999997

Target mora 30 y 60 días

Podemos observar que la variables de interés presentan aproximadamente un balanceo adecuado:: 76.4%, 23.6% para mora 30 88.7% y 11.3% para mora 60.

mora60 Boolean

Distinct count	2
Unique (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	78.2 KIB

Uso de la metodologíay herramientas de aprendizaje estadístico

Cluster

El objetivo del proyecto es proveer elementos teóricos y conceptuales que permitan a las empresas entender, y enfrentar el problema de segmentar a sus clientes con un modelo compacto que permita representar fenómenos del mundo real, sin focalizar el cliente respecto a la variable mora 30 o mora 60.

Número de Cluster óptimo

Para encontrar el número de clúster óptimo, realizamos el pico significativo de Hubert, con los siguientes criterios:

Distancia: Manhattan.

Manhattan:
$$d(x,y) = sum_{j=1}^d |xj - yj|$$

Método: Ward, el método minimiza el número total de clusters respecto a la varianza

Hierarchical Clustering

Es una alternativa a los métodos de partitioning clustering que no requiere que se pre-especifique el número de clusters. Los métodos que engloba el hierarchical clustering se subdividen en dos tipos dependiendo de la estrategia seguida para crear los grupos

Validación

Los dos índices mayormente utilizados son silhouette Width y Dunn pero también veremos las medidas de estabilidad.

Índice Silhouette

Cuantifica la calidad de la asignación que se ha realizado de una observación comparando su semejanza a las demás observaciones del mismo clúster frente a las de los otros clústeres.

Gráfico de clúster

Para desarrollar el proyecto se utilizó la herramienta **Python 3.7**, adicional, para elaborar el tratamiento de los datos y realizar los modelos de machine learning, es necesario llamar las siguientes librerías:

- import pandas as pd.
- import numpy as np.
- import matplotlib.pyplot as plt.
- from sklearn.model_selection import train_test_split.
- from scipy import stats
- Paquete SKLEARN

Classification Models

- Logistic
- RandomForest
- Support Vector Machine
- K-NN

Logistic

Es un tipo de análisis de regresión que predice el resultado de una variable categórica en función de las variables independientes o predictoras.

Mora 30

	Regresión Logística			
	Altas Dimensiones	Bajas Dimensiones		
Exactitud	99.6%	99.6%		
Precisión	100.0%	100.0%		
Recall	98.2%	98.1%		
F1	99.1%	99.0%		

Mora 60

	Regresión Logística				
	Altas Dimensiones Bajas Dimension				
Exactitud	98.9%	99%			
Precision	99.7%	100%			
Recall	90.8%	90.7%			
F1	95.0%	95.1%			

Conclusión

Representa a los puntos de muestra en el espacio, separando las clases a 2 espacios lo más amplios posibles mediante un hiperplano de separación definido

Mora 30

	SVM				
	Altas Dimensiones	Bajas Dimensiones			
Exactitud	99.6%	99.6%			
Precisión	100%	100%			
Recall	98.3%	98.3%			
F1	99.1%	99.1%			

Mora 60

	SVM			
	Altas Dimensiones	Bajas Dimensiones		
Exactitud	98.9%	98.9%		
Precision	100.0%	100%		
Recall	90.8%	90.8%		
F1	95.1%	95.1%		

Conclusión

Estima el valor de la función de densidad de probabilidad de que un elemento \overline{x} pertenezca a la clase Cj a partir de la información proporcionada por el conjunto de prototipos.

Mora 30

	Vecinos más Cercanos Knn				
	Altas Dimensiones	Bajas Dimensiones			
Exactitud	81%	99.8%			
Precisión	91.5%	100%			
Recall	21.4%	91.5%			
F1	34.6%	99.6%			

Mora 60

	Vecinos más Cercanos Knn				
	Altas Dimensiones Bajas Dimension				
Exactitud	90.8%	99.9%			
Precision	100%	100%			
Recall	17.3%	99.1%			
F1	2 9.5%	99.6%			

Conclusión

BEas

RF

Es una modificación sustancial de bagging que construye una larga colección de árboles no correlacionados y luego los promedia.

Mora 30

	Random Forest	
	Altas Dimensiones	Bajas Dimensiones
Exactitud	100%	100%
Precisión	100%	100%
Recall	100%	100%
F1	100%	100%

Mora 60

	Random Forest	
	Altas Dimensiones	Bajas Dimensiones
Exactitud	99.9%	99.9%
Precision	100%	100%
Recall	99.7%	99.7%
F1	99.9%	99.9%

Conclusión

Implicaciones Éticas

- Protección de la data y la privacidad de esta.
 - Lineamiento ético de la construcción de algoritmos,
- garantiza el principio de transparencia en el desarrollo del proyecto.
 - Certificar que los procedimientos efectuados por la
- maquina sean correctos o estén dentro el límite de tolerancia definido por el proceso

Aspectos legales y comerciales

- Aspectos Comerciales: Ayudará a identificar a los clientes de acuerdo con sus rangos de mora, permitiendo a la entidad financiera ajustar su estrategia de acuerdo al comportamiento de los clientes asignados.
- Aspectos legales: se debe tener políticas de tratamiento de información confidencial, privacidad de la información y no exponer datos sensibles de clientes.

Conclusiones

La segmentación de clientes exige un alto uso de herramientas estadísticas y de machine learning para poder disminuir altamente el riesgo de fuga de capital.

Las variables que permitían describir el comportamiento de mora de los clientes fueron:

Mora30: mora máxima 12 meses, antig[uedad en el sistema financiero y Estado Civil: Divorciado.

Mora60: Mora máxima 12 meses, porcentaje deuda actual en el sistema financiero, estado civil: Otro y Nivel académido: Bachiller

Reducir el número de variables, con métodos estadísticos adecuados, logra mejorar altamente los resultados de los modelos.

Conclusiones

- Realizar un buen análisis descriptivo ayuda altamente a entender la naturaleza de los datos y evitar sobre carga o tiempo de análisis y de procesamiento.
- Transformar las variables categóricas a dummies, se obtendrá ganancias de información para la implantación de los modelos de Machine Learning.
- En síntesis, el modelo con mayor capacidad de generalización para la mora de 30 y 60 días es Random Forest, dado a los resultados obtenidos en las métricas evaluadas y es altamente eficiente en ambas moras.
- En síntesis, el modelo con mayor capacidad de generalización para la mora de 30 y 60 días es Random Forest, dado a los resultados obtenidos en las métricas evaluadas.