Exercise 2 - Theory

Abdelaziz, Ibrahim Somkiadcharoen, Robroo Berg, Oliver

December 13, 2017

1 Theory

1.1 Homography Definition

In case of P^2 (2D Projection plane) we have homogeneous coordinates as $\begin{bmatrix} x_1, x_2, x_3 \end{bmatrix}$ and the H transformation matrix is of size 3×3 as $\begin{bmatrix} h_1 1 & h12 & h13 \\ h_2 1 & h22 & h23 \\ h_3 1 & h32 & h33 \end{bmatrix}$ where 8 of them are independent ratios(DOF) and another one is the gain.

Using the same logic as above, you can get a point from P^n (n-dimensional Projection Space) as $[x_1, x_2, ...x_n + 1]$ and the H transformation matrix is of size $(n+1) \times (n+1)$. Thus, $(n+1)^2 - 1$ DOF. Motivated From [1][2]

1.2 Line preservation

Given that a point x = [x1, x2, x3] is a point in 2D Projection plane which is also on a line l, and all the points are on l which gives $l^T x_i = 0$. We can derive

$$l^{T}x_{i} = 0 = l^{T}H^{-1}Hx_{i} (1)$$

From (1) we get that the points $x' = Hx_i$ that is transformed lie on the line $l' = l^T H^{-1}$ In other words, we can perceived from the equation that points are transformed by x' and line is transformed by l' Highly Motivated by [3] [4]

References

- [1] Homogeneous matrix has eight independent ratios of matrix elements? [Online]. Available: https://stackoverflow.com/questions/9534453/homogeneous-matrix-has-eight-independent-ratios-of-matrix-elements
- [2] Dynamic pn to pn alignment. [Online]. Available: https://www.cs.tau.ac.il/~wolf/papers/dyn-alignment.pdf
- [3] Projective geometry. [Online]. Available: http://www.umiacs.umd.edu/~ramani/cmsc828d/ ProjectiveGeometry.pdf
- [4] Projective geometry, camera models and calibration. [Online]. Available: http://www.cse.iitd.ernet.in/~suban/vision/geometry.pdf