Examen¹ la Algebră Linară, seria 10, 11.02.2024

Nume și prenume:	
Grupa:	

Subjectul 1.

- a) Daţi exemplu, dacă există, de matrice $F \in \mathcal{M}_3(\mathbb{R})$ care are forma eşalon redusă I_3 . (2p)
- b) Decideți dacă următoarea afirmație este adevărată sau falsă (i.e. demonstrați-o sau dați un contraexemplu):

 Dacă o matrice are numai intrări întregi, atunci și forma ei eșalon redusă are numai intrări întregi. (3p)
- c) Fie matricele $M,N\in\mathcal{M}_{3,5}(\mathbb{R}),\ M=\begin{pmatrix} 1 & 2 & -1 & 3 & 4\\ 2 & 1 & -2 & -1 & -2\\ 1 & 0 & 0 & 1 & 2 \end{pmatrix},\ N=\begin{pmatrix} -1 & 2 & 4 & -1 & 0\\ 5 & 1 & 2 & 0 & 3\\ 7 & -3 & -6 & 2 & 3 \end{pmatrix}.$ Decideţi dacă M şi N au aceeaşi formă eşalon redusă.
- d) Fie $P \in \mathcal{M}_{3,5}(\mathbb{R})$. Ştiind că forma eşalon redusă a lui P este $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ şi că primele două coloane ale lui

$$P \operatorname{sunt} \begin{pmatrix} -1 \\ 5 \\ 3 \end{pmatrix} \operatorname{respectiv} \begin{pmatrix} 2 \\ -1 \\ 7 \end{pmatrix}, \operatorname{determinați matricea} P.$$
 (3p)

Subjectul 2.

- a) Decideți dacă mulțimea $W = \left\{ \begin{pmatrix} a+b & a & a \\ 0 & b-c & b \\ 0 & 0 & c \end{pmatrix} \mid a,b,c \in \mathbb{R} \right\}$ este un subspațiu vectorial al \mathbb{R} -spațiului vectorial $\mathcal{M}_3(\mathbb{R})$. Dacă da, calculați $\dim_{\mathbb{R}} W$.
- b) Fie $W_1 = \langle (0,1,3), (1,1,1) \rangle, W_2 = \langle (-1,2,4), (3,5,0) \rangle \leq_{\mathbb{R}} \mathbb{R}^3$. Determinați o bază a lui $W_1 \cap W_2$. (3p)
- c) Fie $A \in \mathcal{M}_n(\mathbb{C})$ o matrice având rang(A) = 1. Demonstrați că există matricele $B \in \mathcal{M}_{n \times 1}(\mathbb{C})$ și $C \in \mathcal{M}_{1 \times n}(\mathbb{C})$ astfel încât A = BC.
- d) Fie $A \in \mathcal{M}_n(\mathbb{C})$ o matrice având rang(A) = 1. Demonstrați că $\det(A + I_n) = 1 + \operatorname{Tr}(A)$. (3p)

Subjectul 3.

- a) Fie $M \in \mathcal{M}_3(\mathbb{C})$ cu polinomul caracteristic $P(t) = -t^3 + 3t^2 2t$. Decideți dacă M este diagonalizablă și dacă $M + I_3$ este inversabilă. Justificați răspunsul. (2p)
- b) Decideți dacă următoarea afirmație este adevărată sau falsă (i.e. demonstrați-o sau dați un contraexemplu): $Dacă\ A, B \in \mathcal{M}_n(\mathbb{C}), \ \lambda \ valoare \ proprie \ a \ lui \ A \ și \ \mu \ valoare \ proprie \ a \ lui \ B, \ atunci \ \lambda + \mu \ este \ valoare \ proprie \ a \ lui \ A + B.$ (3p)
- c) Fie $A \in \mathcal{M}_n(K)$ cu exact două valori proprii distincte $\lambda, \mu \in K$. Presupunem că dim $V_{\lambda} = n 1$. Demonstrați că A este diagonalizabilă. (3p)
- d) Fie $T: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C}), T(A) = {}^tA$. Demonstrați că T este o aplicație \mathbb{C} -liniară diagonalizabilă. (3p)

Subiectul 4. Fie \mathbb{R} -spaţiul vectorial $\mathcal{P}_n = \{ f \in \mathbb{R}[X] \mid \deg P \leq n \}$ (al polinoamelor reale de grad cel mult n).

- a) Pentru orice $n \geq 2$, dați exemplu de o bază a lui \mathcal{P}_n care conține $1 + X^2$. Justificați răspunsul. (2p)
- b) Demonstrați că $H: \mathcal{P}_n \times \mathcal{P}_n \to \mathbb{R}, \ H(f,g) = \int_0^1 f(x)g(x)dx$ este un produs scalar. Pentru n=2, scrieți matricea lui H în raport cu baza $\{1,X,X^2\}$ a lui \mathcal{P}_2 .
- c) Pentru n=2, determinați o bază ortonormală a lui \mathcal{P}_2 în raport cu H. (3p)
- d) Demonstrați că dacă $(V, \langle \ \rangle)$ este un spațiu euclidian finit dimensional, $W \leq_{\mathbb{R}} V, v \in V$ și u proiecția ortogonală a lui v pe W, atunci $\inf_{w \in W} \|v w\| = \|v u\|$. (3p)

¹Scrieți subiectele pe foi separate. Toate răspunsurile trebuie justificate. Nota lucrării este media notelor celor 4 subiecte. Nu există punct din oficiu. Timp de lucru: 3 ore. Succes!