本節では、次節にて行う部分波展開について、数学的な準備を行う。最初に、以下で扱う演算子のクラスである Strum-Liouvillle 演算子についての性質を調べる。まず、Legendre 多項式と Legendre 陪多項式の性質を調べて、直交性を知る。次に、Bessel 微分方程式の解である Bessel 関数の表式を求めて、球 Bessel 関数と球 Neumann 関数、球 Hankel 関数を定義する。続いて、Legendre 多項式を用いて波動関数を展開して、展開係数 B_{ml} が満たすべき微分方程式を導く。最後に、展開係数 B_{ml} が球 Bessel 関数と球 Neumann 関数の線型結合で書けることを確かめて、線型結合の係数が波動関数を特徴づけるものだと知る。

0.0.1 Strum-Liouvillle 演算子の Hermite 性

a < b として、 $x \in [a,b]$ で定義された関数空間 V を考える。 $\rho(x)$ を非負の実数関数として、 $f,g \in V$ に対して、

$$\langle f, g \rangle := \int_a^b f^*(x)g(x)\rho(x) dx$$
 (0.0.1)

なる内積を入れる. 関数空間 V 上の演算子として \mathcal{L} を,

$$\mathcal{L} := \frac{1}{\rho(x)} \left[\frac{\mathrm{d}}{\mathrm{d}x} \left\{ p(x) \frac{\mathrm{d}}{\mathrm{d}x} \right\} + q(x) \right]$$
 (0.0.2)

とする. 式 (0.0.2) なる形をした演算子を Strum-Liouvillle 演算子という. 境界条件を、 $\forall f \in V$ について、

$$\begin{cases} f(a) = f(b) \\ p(a)f'(a) = p(b)f'(b) \end{cases}$$

$$(0.0.3)$$

とすると,

$$\langle f, \mathcal{L}g \rangle = \langle \mathcal{L}f, g \rangle \tag{0.0.4}$$

が成立する. 式 (0.0.4) なる関係が成り立つ演算子 \mathcal{L} を Hermite 演算子という.

Proof. 内積の定義より,

$$\langle f, \mathcal{L}g \rangle = \int_{a}^{b} f^{*}(x) \frac{1}{\rho(x)} \left[\frac{\mathrm{d}}{\mathrm{d}x} \left\{ p(x) \frac{\mathrm{d}}{\mathrm{d}x} g(x) \right\} + q(x)g(x) \right] \rho(x) \, \mathrm{d}x \tag{0.0.5}$$

$$= \int_{a}^{b} f^{*}(x) \left[\frac{\mathrm{d}}{\mathrm{d}x} \left\{ p(x) \frac{\mathrm{d}}{\mathrm{d}x} g(x) \right\} + q(x)g(x) \right] \mathrm{d}x \tag{0.0.6}$$

$$= [f^*(x)g'(x)]_a^b - \int_a^b f'^*(x)p(x)g'(x) dx + \int_a^b f^*(x)q(x)g(x) dx$$
 (0.0.7)

$$= [f^*(x)p(x)g'(x)]_a^b - [f'^*(x)p(x)g(x)]_a^b + \int_a^b g(x)\frac{1}{\rho(x)} \left[\frac{\mathrm{d}}{\mathrm{d}x} \left(p(x)\frac{\mathrm{d}}{\mathrm{d}x} f^*(x) \right) + q(x)f^*(x) \right] \rho(x) \, \mathrm{d}x \quad (0.0.8)$$

$$= [f^*(x)p(x)g'(x)]_a^b - [f'^*(x)p(x)g(x)]_a^b + \langle g, \mathcal{L}f \rangle^*$$
(0.0.9)

$$= [f^*(x)p(x)g'(x)]_a^b - [g(x)p(x)f'^*(x)]_a^b + \langle \mathcal{L}f, g \rangle$$
(0.0.10)

となる.第1項と第2項について,第1項に f(a)=f(b) を,第2項に p(x) が実数値関数であり p(a)f'(a)=p(b)f'(b) であることを用いると

$$[f^*(x)p(x)g'(x)]_a^b - [f'^*(x)p(x)g(x)]_a^b = \{p(b)g'(b) - p(a)f(a)\}f^*(a) - \{g(b) - g(a)\}p(a)f'(a)$$

$$(0.0.11)$$

を得る.今度は,第 1 項に p(x) が実数値関数であり p(a)g'(a)=p(b)g'(b) であることを,第 2 項に g(a)=g(b) を用いれば,

$$\langle f, \mathcal{L}g \rangle = \langle \mathcal{L}f, g \rangle$$
 (0.0.12)

を得る.

0.0.2 Legendre 多項式

式 (0.0.2) において, a = -b = 1 とする. また,

$$\rho(x) \coloneqq 1 \tag{0.0.13}$$

$$p(x) \coloneqq 1 - x^2 \tag{0.0.14}$$

$$q(x) := -\frac{m^2}{1 - x^2}, \ m \in \{0, 1, \dots\}$$
 (0.0.15)

とすると,

$$\mathcal{L}_m = \frac{d}{dx} \left\{ (1 - x^2) \frac{d}{dx} \right\} - \frac{m^2}{1 - x^2}$$
 (0.0.16)

となる. 関数の内積は,

$$\langle f, g \rangle = \int_{-1}^{1} f^*(x)g(x) dx$$
 (0.0.17)

と定義しておく. また, 境界条件は,

$$p(\pm 1)f^*(\pm 1)g'(\pm 1) = 0 \tag{0.0.18}$$

とする.これより,演算子 $\mathcal L$ が Hermite 演算子であると確かめられる.たとえば,g'(x)=p(x) となるように g(x) を定めれば,f(1)=f(-1)=0 となる.また,f(x)=1 となるように f(x) を定めれば,p(1)g'(1)=p(-1)g'(1)=0 となるので,前節で示した境界条件を満足する.さて,Legendre 多項式 $P_n(x)$ は n を非負整数として,

$$\mathcal{L}_0 P_n(x) = -n(n+1)P_n(x) \tag{0.0.19}$$

$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left\{ (1 - x^2) \frac{\mathrm{d}}{\mathrm{d}x} P_n(x) \right\} = -n(n+1) P_n(x) \tag{0.0.20}$$

なる $P_n(x)$ のうち、x=0 周りで級数展開したもので、

$$P_n(x) = \sum_{j=0}^{\infty} u_j x^j$$
 (0.0.21)

と書いたとき,

$$u_n = \frac{(2n)!}{2^n (n!)^2} \tag{0.0.22}$$

$$u_{n+1} = 0 (0.0.23)$$

なるものである. 式 (0.0.21) を式 (0.0.20) に代入すると,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left\{ (1 - x^2) \frac{\mathrm{d}}{\mathrm{d}x} \sum_{j=0}^{\infty} u_j x^j \right\} = -n(n+1) \sum_{j=0}^{\infty} u_j x^j \tag{0.0.24}$$

$$\Leftrightarrow \sum_{j=0}^{\infty} j u_j \frac{\mathrm{d}}{\mathrm{d}x} (x^{j-1} - x^{j+1}) = -n(n+1) \sum_{j=0}^{\infty} u_j x^j$$
 (0.0.25)

$$\Leftrightarrow \sum_{j=0}^{\infty} j(j-1)u_j x^{j-2} - \sum_{j=0}^{\infty} j(j+1)u_j x^j = -n(n+1) \sum_{j=0}^{\infty} u_j x^j$$
 (0.0.26)

$$\Leftrightarrow \sum_{j=0}^{\infty} j(j-1)u_j x^{j-2} = \sum_{j=0}^{\infty} u_j [j(j+1) - n(n+1)] x^j$$
 (0.0.27)

$$\Leftrightarrow \sum_{j=2}^{\infty} j(j-1)u_j x^{j-2} = \sum_{j=0}^{\infty} u_j [j(j+1) - n(n+1)] x^j$$
 (0.0.28)

$$\Leftrightarrow \sum_{j=0}^{\infty} (j+1)(j+2)u_{j+2}x^j = \sum_{j=0}^{\infty} u_j[j(j+1) - n(n+1)]x^j$$
 (0.0.29)

となるから,

$$(j+1)(j+2)u_{j+2} = [j(j+1) - n(n+1)]u_j$$
(0.0.30)

なる漸化式が成立する. 式 (0.0.30) において j=n を代入すると, $u_{n+2}=0$ となる. また, j=n+1 を代入すると式 (0.0.23) より $u_{n+1}=0$ である. よって,

$$0 = u_{n+1} = u_{n+2} = u_{n+3} = u_{n+4} = \cdots {(0.0.31)}$$

となる. また,式 (0.0.30) に j = n - 2 を代入すると,

$$u_{n-2} = -\frac{n(n-1)}{2(2n-1)}u_n \tag{0.0.32}$$

となる. よって,式 (0.0.22) と式 (0.0.32) を用いて式 (0.0.21) を表すと,

$$P_n(x) = \frac{(2n)!}{2^n (n!)^2} \left[x^n - \frac{n(n-1)}{2(2n-1)} x^{n-2} + \frac{n(n-1)(n-2)(n-3)}{2 \cdot 4 \cdot (2n-1)(2n-3)} x^{n-4} + \cdots \right]$$
(0.0.33)

$$= \sum_{s=0}^{\lfloor n/2 \rfloor} (-1)^s \frac{(2n-2s)!}{2^n s! (n-s)! (n-2s)!} x^{n-2s}$$
(0.0.34)

となる. なお, Legendre 多項式は,

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n = \sum_{s=0}^n \frac{\mathrm{d}^n}{\mathrm{d}x^n} (-1)^s \binom{n}{k} x^{2n-2k}$$
(0.0.35)

$$= \sum_{s=0}^{\lfloor n/2 \rfloor} (-1)^s \frac{n!}{s!(n-s)!} \frac{(2n-2s)!}{(n-2k)!}$$
 (0.0.36)

なる関係を用いると,

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n \tag{0.0.37}$$

となる.

0.0.3 Legendre 陪多項式

Legendre 陪多項式 $P_n^m(x)$ は $m \le n$ として,

$$P_n^m(x) := \left(1 - x^2\right)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} P_n(x) \tag{0.0.38}$$

と定義されて、式 (0.0.37) を用いれば、

$$P_n^m(x) = (1 - x^2)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} P_n(x)$$
 (0.0.39)

$$= (1 - x^{2})^{m/2} \frac{\mathrm{d}^{m}}{\mathrm{d}x^{m}} \frac{1}{2^{n} n!} \frac{\mathrm{d}^{n}}{\mathrm{d}x^{n}} (x^{2} - 1)^{n}$$

$$= (1 - x^{2})^{m/2} \frac{\mathrm{d}^{m}}{\mathrm{d}x^{m}} \frac{1}{2^{n} n!} \frac{\mathrm{d}^{n}}{\mathrm{d}x^{n}} (x^{2} - 1)^{n}$$

$$= (0.0.40)$$

$$= \frac{1}{2^n n!} (1 - x^2)^{m/2} \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^n$$
 (0.0.41)

となる. また, P_n^m は Legendre の陪微分方程式,

$$\mathcal{L}_m P_n^m(x) + n(n+1) P_n^m(x) = 0$$

を満たす. Legendre 陪多項式の直交性は \mathcal{L}_m が Hermite 演算子であり、その固有関数である $P_n^m(x)$ が直交することより従う. 自分自身との内積、つまり、 $\langle P_n^m(x), P_n^m(x) \rangle$ の値を計算する. 式 (0.0.41) を用いて、式 (0.0.17) で示した内積の定義に従って計算する. n+m 回部分積分を行うと、

$$\langle P_n^m(x), P_n^m(x) \rangle = \int_{-1}^1 \frac{1}{2^{2n} (n!)^2} (1 - x^2)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^m \right\} \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^m \right\} \mathrm{d}x \tag{0.0.43}$$

$$= \frac{1}{2^{2n}(n!)^2} \int_{-1}^{1} (1-x^2)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2-1)^m \right\} \frac{\mathrm{d}}{\mathrm{d}x} \left\{ \frac{\mathrm{d}^{n+m-1}}{\mathrm{d}x^{n+m-1}} (x^2-1)^m \right\} \mathrm{d}x$$
 (0.0.44)

$$= \frac{1}{2^{2n}(n!)^2} \left[\left(1 - x^2 \right)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} \left(x^2 - 1 \right)^m \right\} \left\{ \frac{\mathrm{d}^{n+m-1}}{\mathrm{d}x^{n+m-1}} \left(x^2 - 1 \right)^m \right\} \right]_{-1}^{1}$$
 (0.0.45)

$$-\frac{1}{2^{2n}(n!)^2} \int_{-1}^{1} \left\{ \frac{\mathrm{d}}{\mathrm{d}x} (1-x^2)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2-1)^n \right\} \right\} \left\{ \frac{\mathrm{d}^{n+m+1}}{\mathrm{d}x^{n+m+1}} (x^2-1)^m \right\} \mathrm{d}x \tag{0.0.46}$$

$$= -\frac{1}{2^{2n}(n!)^2} \int_{-1}^1 \left\{ \frac{\mathrm{d}}{\mathrm{d}x} (1 - x^2)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^n \right\} \right\} \left\{ \frac{\mathrm{d}^{n+m+1}}{\mathrm{d}x^{n+m+1}} (x^2 - 1)^m \right\} \mathrm{d}x$$
 (0.0.47)

$$=\cdots \tag{0.0.48}$$

$$= \frac{(-1)^{n+m}}{2^{2n}(n!)^2} \int_{-1}^{1} (x^2 - 1)^n \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (1 - x^2)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^n \right\} \right\} \mathrm{d}x$$
 (0.0.49)

$$= \frac{(-1)^{n+m}}{2^{2n}(n!)^2} \int_{-1}^{1} (x^2 - 1)^n \left[\sum_{k=0}^{n+m} {n+m \choose k} \left\{ \frac{\mathrm{d}^{n+m-k}}{\mathrm{d}x^{n+m-k}} (1 - x^2)^m \right\} \left\{ \frac{\mathrm{d}^{n+m+k}}{\mathrm{d}x^{n+m+k}} (x^2 - 1)^n \right\} \right] \mathrm{d}x$$

$$(0.0.50)$$

となる. 最終行で Leibniz の公式を用いた. 式 (0.0.50) の和の中の n+m-k 階微分と n+m-k 階微分を考える. $\left(1-x^2\right)^m$ と $(x^2-1)^n$ の最高次数は,それぞれ 2m と 2n であるから, $2m \ge n+m-k$ かつ $2n \ge n+m+k$ なる k でのみ和の中は 0 でなくなる. つまり, $n-m \le k$ かつ $n-m \ge k$ なる k は k=n-m のみである. よって,式 (0.0.50) は,

$$\langle P_n^m(x), P_n^m(x) \rangle = \frac{(-1)^{n+m}}{2^{2n}(n!)^2} \int_{-1}^1 \left(x^2 - 1 \right)^n \left[\sum_{k=0}^{n+m} \binom{n+m}{k} \left\{ \frac{\mathrm{d}^{n+m-k}}{\mathrm{d}x^{n+m-k}} \left(1 - x^2 \right)^m \right\} \left\{ \frac{\mathrm{d}^{n+m+k}}{\mathrm{d}x^{n+m+k}} \left(x^2 - 1 \right)^n \right\} \right] \mathrm{d}x$$

$$(0.0.51)$$

$$= \frac{(-1)^{n+m}}{2^{2n}(n!)^2} \int_{-1}^{1} (x^2 - 1)^n \left[\binom{n+m}{n-m} \left\{ \frac{\mathrm{d}^{2m}}{\mathrm{d}x^{2m}} (1 - x^2)^m \right\} \left\{ \frac{\mathrm{d}^{2n}}{\mathrm{d}x^{2n}} (x^2 - 1)^n \right\} \right] \mathrm{d}x$$
 (0.0.52)

$$= \frac{(-1)^{n+m}}{2^{2n}(n!)^2} (-1)^m (2m)! (2n)! \frac{(n+m)!}{(n-m)!(2m)!} \int_{-1}^1 (x^2 - 1)^n dx$$
 (0.0.53)

積分は、 $x = \cos \theta$ と置換すると、

$$\int_{-1}^{1} (x^2 - 1)^n dx = (-1)n \int_{-1}^{1} \sin^{2n+1} \theta d\theta$$
 (0.0.54)

となる. I_{2n+1} を,

$$I_{2n+1} := \int_0^{\pi} \sin^{2n+1} \theta \, \mathrm{d}\theta \tag{0.0.55}$$

と定義すると、

$$I_{2n+1} = \int_0^{\pi} \sin^{2n}\theta \, \frac{\mathrm{d}}{\mathrm{d}\theta} (-\cos\theta) \, \mathrm{d}\theta$$

$$= \left[\sin^{2n}\theta \cdot (-\cos\theta) \right]_0^{\pi} + 2n \int_0^{\pi} \sin^{2n-1}\theta \cos^2\theta \, \mathrm{d}\theta$$

$$= 2nI_{2n-1} - 2nI_{2n+1}$$
(0.0.58)

となるので,

$$I_{2n+1} = \frac{2n}{2n+1} I_{2n-1} \tag{0.0.59}$$

$$=\frac{2n}{2n+1}\frac{2n-2}{2n-1}I_{2n-3} \tag{0.0.60}$$

$$=\cdots \qquad (0.0.61)$$

$$= \frac{(2n)!!}{(2n+1)!!} I_1 \tag{0.0.62}$$

$$=2\frac{(2n)!!}{(2n+1)!!}\tag{0.0.63}$$

$$= 2 \cdot 2^n n! \cdot \frac{2^n n!}{(2n+1)!} \tag{0.0.64}$$

となる. 2 重階乗について、

$$(2n)!! = 2^n n! (0.0.65)$$

$$(2n+1)!! = \frac{(2n+1)!}{(2n)!!} = \frac{(2n+1)!}{2^n n!}$$
(0.0.66)

なる関係が成り立つことを用いると,

$$\langle P_n^m(x), P_n^m(x) \rangle = \frac{(-1)^{n+m}}{2^{2n}(n!)^2} (-1)^m (2m)! (2n)! \frac{(n+m)!}{(n-m)!(2m)!} (-1)^n 2 \frac{(2n)!!}{(2n+1)!!}$$
(0.0.67)

$$= \frac{(-1)^{n+m}}{2^{2n}(n!)^2} (-1)^m (2m)! (2n)! \frac{(n+m)!}{(n-m)!(2m)!} (-1)^n 2 \cdot 2^n n! \cdot \frac{2^n n!}{(2n+1)!}$$
(0.0.68)

$$=\frac{2}{2n+1}\frac{(n+m)!}{(n-m)!}\tag{0.0.69}$$

となる. Legendre 多項式の直交性とまとめて書くと,

$$\langle P_{n'}^m(x), P_n^m(x) \rangle = \delta_n^{n'} \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!}$$
 (0.0.70)

となる.

0.0.4 Bessel 関数

Legendre 陪多項式を考えていたときとは別の Strum-Liouvillle 演算子を考える. 式 (0.0.2) において, $a \to 0$, $b \to a$ とする. また,

5

$$\rho(z) \coloneqq x \tag{0.0.71}$$

$$p(z) \coloneqq x \tag{0.0.72}$$

$$q(z) := -\frac{\nu^2}{z}, \ \nu \ge 0 \tag{0.0.73}$$

とする. すなわち,

$$\mathcal{L}_{\nu} = \frac{1}{z} \left[\frac{\mathrm{d}}{\mathrm{d}z} \left\{ z \frac{\mathrm{d}}{\mathrm{d}z} \right\} - \frac{\nu^2}{z} \right] \tag{0.0.74}$$

$$\langle f, g \rangle = \int_0^a f^*(z)g(z)x \,\mathrm{d}z \tag{0.0.75}$$

である. さて,

$$\mathcal{L}_{\nu}J_{\nu}(z) = -J_{\nu}(z)$$

$$\Leftrightarrow \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} + \frac{1}{z}\frac{\mathrm{d}}{\mathrm{d}z} + 1 - \frac{\nu^2}{z^2}\right) = 0 \tag{0.0.77}$$

$$\Leftrightarrow \frac{\mathrm{d}^2}{\mathrm{d}z^2} J_{\nu}(z) + \frac{1}{z} \frac{\mathrm{d}}{\mathrm{d}z} J_{\nu}(z) - \frac{\nu^2}{z^2} J_{\nu}(z) = J_{\nu}(z)$$
 (0.0.78)

なる $J_{\nu}(z)$ を考える. 1 階微分の項と微分をしない項は z=0 で発散するが,それぞれ z と z^2 をかければ発散しないので確定特異点である.このとき,z=0 の周りで $J_{\nu}(z)$ を指数 α の Frobenius 展開をすると,

$$J_{\nu}(z) = z^{\alpha} \sum_{n} u_n z^n \tag{0.0.79}$$

となる. ただし、計算の簡単のために n<0 なる任意の n に対して $u_n=0$ と定めた. また、 $u_0\neq 0$ とする. 式 (0.0.79) を式 (0.0.78) に代入することを考える. $J_{\nu}(z)$ の 1 階微分と 2 階微分が、

$$\frac{\mathrm{d}}{\mathrm{d}z}J_{\nu}(z) = \sum_{n} (n+\alpha)u_n z^{n+\alpha-1} \tag{0.0.80}$$

$$\frac{\mathrm{d}^2}{\mathrm{d}z^2} J_{\nu}(z) = \sum_{n} (n+\alpha)(n+\alpha-1)u_n z^{n+\alpha-2}$$
(0.0.81)

と書けることを用いると,

$$\sum_{n} \left[(n+\alpha)(n+\alpha-1) + (n+\alpha) - \nu^2 \right] u_n z^{n+\alpha-2} = -\sum_{n} u_n z^{n+\alpha}$$
 (0.0.82)

$$\Leftrightarrow \sum_{n}^{n} \left[(n+\alpha)(n+\alpha-1) + (n+\alpha) - \nu^{2} \right] u_{n} z^{n+\alpha-2} = -\sum_{n}^{n} u_{n-2} z^{n+\alpha-2}$$
 (0.0.83)

となる. 係数を比較すると,

$$[(n+\alpha)^2 - \nu^2]u_n = -u_{n-2}$$
(0.0.84)

となる. 式 (0.0.84) に n=1 を代入すると $u_{-1}=0$ より,

$$0 = u_1 = u_3 = \cdots \tag{0.0.85}$$

を得る. また、n=0を代入すると $u_0 \neq 0$ より、

$$(0+\alpha)^2 - \nu^2 = 0 \tag{0.0.86}$$

$$\Rightarrow \alpha = \pm \mu \tag{0.0.87}$$

となる. $\alpha = \nu$ を採用して式 (0.0.84) を用いると,

$$u_{n+2} = -\frac{1}{(n+\nu+2)^2 - \nu^2} u_n \tag{0.0.88}$$

を得る. $\nu \in \mathbb{Z}$ のときは,

$$J_{\nu}(z) = u_0 z^{\nu} \left(1 - \frac{1}{2(2\nu + 2)} z^2 + \frac{1}{2 \cdot 4(2\nu + 2)(2\nu + 4)} z^4 + \dots + (-1)^n \frac{(2\nu)!!}{(2n)!!(2\nu + 2n)!!} z^{2n} + \dots \right)$$
(0.0.89)

$$= u_0 z^{\nu} \sum_{n=0}^{\infty} (-1)^n \frac{2^{\nu} \nu!}{2^n n! (\nu + n)! 2^{\nu + n}} z^{2n}$$

$$(0.0.90)$$

$$= u_0 \nu! 2^{\nu} \sum_{r=0}^{\infty} \frac{1}{n!(\nu+n)!} \left(\frac{z}{2}\right)^{\nu+2n} \tag{0.0.91}$$

となる. $\nu \notin \mathbb{Z}$ のときも,表せるようにガンマ関数をもちいて一般化する. **式** (0.0.78) の形より,明らかに定数倍が許容されるから,

$$u_0 = \frac{1}{2^{\nu} \Gamma(\nu + 1)}$$

(0.0.92)

となるように u_0 を定めておくと,

$$J_{\nu}(z) = \sum_{n} \frac{(-1)^n}{n!\Gamma(\nu+k+1)} \left(\frac{z}{2}\right)^{\nu+2n} \tag{0.0.93}$$

を得る. $J_{\nu}(z)$ を Bessel 関数という. また, $\alpha = -\nu$ を採用したときは,

$$J_{-\nu}(z) = \sum_{n} \frac{(-1)^n}{n!\Gamma(-\nu+k+1)} \left(\frac{z}{2}\right)^{-\nu+2n}$$
(0.0.94)

となり、これは $\nu \notin \mathbb{Z}$ のときに $J_{\nu}(z)$ と独立な解となることが示せる. $J_{-\nu}(z)$ を Neumann 関数という. 得られた Bessel 関数と Neumann 関数を用いて、

$$j_n(z) := \sqrt{\frac{\pi}{2z}} J_{n+\frac{1}{2}}(z)$$
 (0.0.95)

$$y_n(z) := (-1)^{n+1} \sqrt{\frac{\pi}{2z}} J_{-n-\frac{1}{2}}(z)$$
(0.0.96)

(0.0.97)

を定義する. $j_n(z)$ と $y_n(z)$ はそれぞれ、球 Bessel 関数、球 Neumann 関数という. さらに、球 Bessel 関数と球 Neumann 関数を用いて、

$$h_n^{(1)}(z) := j_n(z) + iy_n(z) \tag{0.0.98}$$

$$h_n^{(2)}(z) := j_n(z) - iy_n(z) \tag{0.0.99}$$

を定義する. $h_n^{(1)}$ と $h_n^{(2)}$ はそれぞれ, 第 1 種 Hankel 関数, 第 2 種 Hankel 関数という.

0.0.5 Helmholtz 方程式

Helmholtz 方程式,

$$(\nabla^2 + \kappa^2)u(\mathbf{r}) = 0 \tag{0.0.100}$$

を考える. $u(\mathbf{r})$ を正規直交基底である $e^{\mathrm{i}m\phi}$ で展開すると,

$$A_m(r,\theta) := \int_0^{2\pi} u(\mathbf{r}) e^{-im\phi} d\phi \qquad (0.0.101)$$

$$u(\mathbf{r}) = \sum_{m} A_m(r, \theta) e^{im\phi}$$
(0.0.102)

(0.0.103)

となる. また、極座標ラプラシアンは、

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$
 (0.0.104)

である. 式 (0.0.100) に式 (0.0.104) を用いて,式 (0.0.102) を代入すると,

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \sum_m A_m(r, \theta) e^{im\phi} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \sum_m A_m(r, \theta) e^{im\phi} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \sum_m A_m(r, \theta) e^{im\phi} + \kappa^2 \sum_m A_m(r, \theta) e^{im\phi} = 0$$
(0.0.105)

$$\Leftrightarrow \sum_{m} e^{im\phi} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} A_m(r,\theta) \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} A_m(r,\theta) \right) - \frac{m^2}{r^2 \sin^2 \theta} A_m(r,\theta) + \kappa^2 A_m(r,\theta) \right] = 0$$

$$(0.0.106)$$

となる. 式 (0.0.106) に左から $\int_0^{2\pi} \mathrm{d}\phi \, \mathrm{e}^{-\mathrm{i} m \phi}$ をかける, すなわち, $\mathrm{e}^{\mathrm{i} m \phi}$ に射影すると,

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}A_m(r,\theta)\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial}{\partial \theta}A_m(r,\theta)\right) - \frac{m^2}{r^2\sin^2\theta}A_m(r,\theta) + \kappa^2A_m(r,\theta) = 0$$
 (0.0.107)

を得る. Legendre 陪多項式を定義するときに用いた \mathcal{L}_m において, $x = \cos \theta$ とすると,

$$\mathcal{L}_m = \frac{\mathrm{d}}{\mathrm{d}x} \left\{ (1 - \cos^2 \theta) \frac{\mathrm{d}}{\mathrm{d}x} \right\} - \frac{m^2}{1 - \cos^2 \theta}$$
 (0.0.108)

$$= \frac{\mathrm{d}}{\mathrm{d}x} \left\{ \sin^2 \theta \frac{\mathrm{d}}{\mathrm{d}x} \right\} - \frac{m^2}{\sin^2 \theta} \tag{0.0.109}$$

$$= \frac{\mathrm{d}\theta}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left\{ \sin^2 \theta \frac{\mathrm{d}\theta}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \right\} - \frac{m^2}{\sin^2 \theta}$$
 (0.0.110)

$$= -\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}x} \left\{ \sin^2 \theta \left(-\frac{1}{\sin \theta} \right) \right\} - \frac{m^2}{\sin^2 \theta} \tag{0.0.111}$$

$$= \frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}x} \left\{ \sin \theta \frac{\mathrm{d}}{\mathrm{d}\theta} \right\} - \frac{m^2}{\sin^2 \theta} \tag{0.0.112}$$

であるから、式 (0.0.107) は、

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}A_m(r,\theta)\right) + \frac{1}{r^2}\mathcal{L}_{|m|}A_m(r,\theta) + \kappa^2 A_m(r,\theta) = 0 \tag{0.0.113}$$

を得る.

続いて、 $A_m(r,\theta)$ を直交基底である Legendre 陪多項式を用いて、

$$A_m(r,\theta) = \sum_{n=|m|}^{\infty} B_{nm}(r) P_n^{|m|}(\cos \theta)$$
 (0.0.114)

と展開する. 式 (0.0.113) の両辺に $P_n^{|m|}(\cos\theta)$ との内積をとる. 式 (0.0.70) より,

$$\langle P_n^m(\cos\theta), P_n^m(\cos\theta) \rangle = \delta_n^{n'} \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!}$$
 (0.0.115)

であることと、式 (0.0.42) より、

$$\mathcal{L}_m P_n^m(x) + n(n+1) P_n^m(x) = 0 (0.0.116)$$

であることを用いれば、

$$\left\langle P_n^m(\cos\theta), \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} A_m(r,\theta) \right) + \frac{1}{r^2} \mathcal{L}_{|m|} A_m(r,\theta) + \kappa^2 A_m(r,\theta) \right\rangle = 0 \tag{0.0.117}$$

$$\Leftrightarrow \frac{1}{r^2} \left\langle P_n^m(\cos\theta), \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} A_m(r,\theta) \right) \right\rangle + \frac{1}{r^2} \left\langle P_n^m(\cos\theta), \mathcal{L}_{|m|} A_m(r,\theta) \right\rangle + \left\langle P_n^m(\cos\theta), \kappa^2 A_m(r,\theta) \right\rangle = 0 \quad (0.0.118)$$

$$\Leftrightarrow \frac{1}{r^2} \left\{ \frac{\mathrm{d}}{\mathrm{d}r} P_n^2 \left\{ \frac{\mathrm{d}}{\mathrm{d}r} B_{nm}(r) \right\} \right\} \left\langle P_n^m(\cos\theta), P_n^m(\cos\theta) \right\rangle + \frac{1}{r^2} B_{nm}(r) \left\langle P_n^m(\cos\theta), \mathcal{L}_{|m|} P_n^m(\cos\theta) \right\rangle$$

$$+\kappa^2 B_{nm}(r) \langle P_n^m(\cos\theta), P_n^m(\cos\theta) \rangle = 0 \tag{0.0.119}$$

$$\Leftrightarrow \left(\frac{1}{r^2} \left\{ \frac{\mathrm{d}}{\mathrm{d}r} r^2 \left\{ \frac{\mathrm{d}}{\mathrm{d}r} B_{nm}(r) \right\} \right\} - \frac{1}{r^2} n(n+1) B_{nm}(r) + \kappa^2 B_{nm}(r) \right) \langle P_n^m(\cos \theta), P_n^m(\cos \theta) \rangle = 0 \tag{0.0.120}$$

$$\Rightarrow \frac{1}{r^2} \left\{ \frac{\mathrm{d}}{\mathrm{d}r} r^2 \left\{ \frac{\mathrm{d}}{\mathrm{d}r} B_{nm}(r) \right\} \right\} - \frac{1}{r^2} n(n+1) B_{nm}(r) + \kappa^2 B_{nm}(r) = 0$$

(0.0.121)

を得る.

式 (0.0.121) において, $r = \frac{\rho}{\kappa}$ と変数変換して,

$$C_{nm}(\rho) := \sqrt{\rho} B_{nm}(r) \tag{0.0.122}$$

と定義して代入すれば,

$$\left\{ \frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + 1 - \frac{1}{\rho} \left(n + \frac{1}{2} \right)^2 \right\} C_{nm}(\rho) = 0$$
 (0.0.123)

を得る. 式 (0.0.123) と式 (0.0.77) である,

$$\mathcal{L}_{\nu}J_{\nu}(z) = -J_{\nu}(z) \tag{0.0.124}$$

$$\Leftrightarrow \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} + \frac{1}{z}\frac{\mathrm{d}}{\mathrm{d}z} + 1 - \frac{\nu^2}{z^2}\right) = 0 \tag{0.0.125}$$

を比べると、式 (0.0.125) において、

$$z \to x \tag{0.0.126}$$

$$\nu = n + \frac{1}{2} \tag{0.0.127}$$

としたものであると分かる. つまり, $C_{nm}(\rho)$ は球 Bessel 関数 $j_n(\rho)$ と球 Neumann 関数 $y_n(\rho)$ の線型結合で書かれることが分かるので, 係数をそれぞれ a_{nm} , b_{nm} として,

$$C_{nm}(\rho) = a_{nm}j_n(\rho) + b_{nm}y_n(\rho) \tag{0.0.128}$$

と書く.

さて、今 Helmholtz 方程式の展開を行っているのであった。今までに定義した展開を全てまとめると、

$$u(\mathbf{r}) = \sum_{m=-\infty}^{\infty} A_m(r,\theta) e^{im\phi}$$
(0.0.129)

$$A_m(r,\theta) = \sum_{n=|m|}^{\infty} B_{nm}(r) P_n^{|m|}(\cos \theta)$$
 (0.0.130)

$$\rho = \kappa r \tag{0.0.131}$$

$$B_{nm}(r) = \frac{1}{\sqrt{\rho}} C_{nm}(\rho) \tag{0.0.132}$$

$$C_{nm}(\rho) = a_{nm}j_n(\rho) + b_{nm}y_n(\rho) \tag{0.0.133}$$

となる. 下から上に全て代入して整理すると,

$$u(\mathbf{r}) = \frac{1}{\sqrt{\kappa r}} \sum_{m=-\infty}^{\infty} \sum_{n=|m|}^{\infty} \left[a_{nm} j_n(\kappa r) + b_{nm} y_n(\kappa r) \right] P_n^{|m|}(\cos \theta) e^{\mathrm{i}m\phi}$$
(0.0.134)

となる.

