

Estructura de Datos

Árbol General

Árbol General

El concepto de árbol implica una estructura donde los datos se organizan de manera jerárquica. Donde cada Nodo se enlaza a sus sucesores denominados Nodos Hijos.

Diferentes usos

Directorio de información

Inteligencia Artificial Búsqueda de estados

Base de datos

Algoritmos de enrutamiento

Compresión de información

Validación de sintaxis para Compiladores

Designed by macrovector - Photoroyalty / Freepik

Elementos en un árbol

- **1. Raíz:** Nodo inicial (No tiene antecesor).
- **2. Rama:** Conjunto de aristas entre dos o más nodos.
- **3. Antecesor:** Nodo X es antecesor de un nodo Y si por alguna de las ramas de X se puede llegar a Y.
- **4. Sucesor:** Nodo X es sucesor de un nodo Y si por alguna de las ramas de Y se puede llegar a X.
- **5. Hijo:** Nodo X es hijo de Y, sí y solo sí el nodo X es apuntado por Y. También se dice que X es descendiente directo de Y.
- **6. Padre:** Nodo X es padre de Y sí y solo sí el nodo X apunta a Y. También se dice que X es antecesor de Y.
- 7. **Hoja/Terminal:** Nodo que no tiene descendientes. Grado 0.
- **8. Nodo interno:** Nodo que tiene al menos un descendiente.

Conceptos generales

- 1. Grado de un nodo: Número de descendientes directos que tiene.
- **2. Nivel:** Número de ramas que hay que recorrer para llegar de la raíz a un nodo (*Si el nodo raíz está en el nivel 0, su próximo nodo secundario está en el nivel 1, su nieto está en el nivel 2, y así sucesivamente*).
- **3. Altura:** Número de aristas en el camino más largo entre X nodo y una hoja.
- 4. Anchura: Es el mayor valor del número de nodos que hay en un nivel.
- **5. Profundidad:** La profundidad de un nodo es el número de aristas desde la raíz del árbol hasta un nodo.

1. Raíz: A

2. Nodos: A, B, C, D, E, F, G, H, I

3. Ramas: $A \rightarrow B$, $A \rightarrow C$, $A \rightarrow D$, $B \rightarrow E$, $B \rightarrow F$, $B \rightarrow G$, $G \rightarrow H$, $G \rightarrow I$

- **4. Grado de Nodos:** A:3, B:3, C:0, D:0, E:0, F:0, G:2, H:0, I:0
- 5. Caminos: $A \rightarrow B \rightarrow E$, $A \rightarrow B \rightarrow F$, $A \rightarrow B \rightarrow G \rightarrow H$, $A \rightarrow B \rightarrow G \rightarrow I$, $A \rightarrow C$, $A \rightarrow D$
- **6. Padres:** A, B, G
- **7. Hijos:** A(B, C, D), B(E, F, G), G(H, I)

1. Descendientes de B: E, F, G

2. Ascendientes de G: B, A

3. Hermanos: (B, C, D), (E, F, G), (H, I)

4. Hojas: E, F, C, D, H, I

5. Altura del árbol: 3

6. Altura del sub-árbol B: 2

7. Anchura: 3

Árbol n-ario estricto

Un árbol n-ario se dice lleno si todos sus sub-árboles excepto las hojas tienen cero o n hijos.

Observación: La palabra **n-ario** hace referencia al número de grados posibles en los nodos.

Grado 2: Bin-arios
Grado 3: Tri-arios

Árbol completo

Un árbol completo es un árbol de profundidad K que tiene todos los nodos posibles hasta el penúltimo nivel (profundidad K-1), y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

Árbol casi-completo

Un árbol se dice **casi-completo** cuando se puede obtener a partir de un árbol completo eliminando hojas consecutivas del último nivel, comenzando por la que está más a la derecha.

Ejercicios

Ejercicio 1

- 1. Raíz:?
- **2.** Nodos: ?
- **3. Ramas:** ?
- 4. Grado de Nodos: ?
- **5. Caminos**: ?
- 6. Padres:?
- **7.** Hijos: ?
- 8. Descendientes de B: ?
- 9. Ascendientes de G: ?
- **10.Hermanos:**?
- **11.**Hojas: ?
- 12. Altura del árbol: ?
- 13.Altura del sub-árbol B: ?
- **14.Anchura**: ?

Ejercicio 1 - Solución

- **1.** Raíz: A
- **2. Nodos:** A, B, C, E, F, G
- **3. Ramas:** $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow E$, $B \rightarrow F$, $C \rightarrow G$
- **4. Grado de Nodos:** A:2, B:2, C:1, E:0, F:0, G:0
- **5.** Caminos: $A \rightarrow B \rightarrow E$, $A \rightarrow B \rightarrow F$, $A \rightarrow C \rightarrow G$
- 6. Padres: A, B, C
- **7. Hijos:** A(B, C), B(E, F), C(G)
- 8. Descendientes de B: E, F
- 9. Ascendientes de G: C, A
- **10.Hermanos:** (B, C), (E, F)
- **11.Hojas:** E, F, G
- 12.Altura del árbol: 2
- 13.Altura del sub-árbol B: 1
- **14.Anchura**: 3

- 1. Raíz: ?
- **2.** Nodos: ?
- **3. Ramas:** ?
- 4. Grado de Nodos: ?
- 5. Caminos: ?
- 6. Padres: ?
- **7.** Hijos: ?
- 8. Descendientes de B: ?
- 9. Ascendientes de G: ?
- **10**.Hermanos: ?
- **11.**Hojas: ?
- 12. Altura del árbol: ?
- 13. Altura del sub-árbol B: ?
- **14.Anchura**: ?

Ejercicio 2 - Solución

- 1. Raíz: A
- **2. Nodos:** A, B, C, D, E, F, G, H, I, J, K, L, M, N
- 3. Ramas: $A \rightarrow B$, $A \rightarrow C$, $A \rightarrow D$, $B \rightarrow E$, $B \rightarrow F$, $B \rightarrow G$, $D \rightarrow H$, $E \rightarrow I$, $G \rightarrow I$, $G \rightarrow K$, $K \rightarrow L$, $K \rightarrow M$, $K \rightarrow N$
- **4. Grado de Nodos:** A:3, B:3, C:0, D:1, E:1, F:0, G:2, H:0, I:0, J:0, K:3, L:0, M:0, N:0
- 5. Caminos: $A \rightarrow B \rightarrow E \rightarrow I$, $A \rightarrow B \rightarrow F$, $A \rightarrow B \rightarrow G \rightarrow J$, $A \rightarrow B \rightarrow G \rightarrow K \rightarrow L$, $A \rightarrow B \rightarrow G \rightarrow K \rightarrow M$, $A \rightarrow B \rightarrow G \rightarrow K \rightarrow N$, $A \rightarrow C$, $A \rightarrow D \rightarrow H$
- **6. Padres:** A, B, D, E, G, K
- **7. Hijos:** A(B, C, D), B(E, F, G), D(H), E(I), G(J, K), K(L, M, N)
- 8. Descendientes de H: No tiene
- 9. Ascendientes de L: K, G, B, A
- **10.Hermanos:** (B, C, D), (E, F, G), (J, K), (L, M, N)
- **11.Hojas:** C, F, H, I, J, L, M, N
- 12. Altura del árbol: 4
- 13. Altura del sub-árbol K: 1
- **14. Anchura: 4**

Recorridos

Recorrido Anchura

Anchura: Se visita desde el nivel 0 hasta N, pero por cada nivel visitado se recorren todos los Nodos, de izquierda a derecha, al completar el recorrido de dicho nivel se pasa al siguiente.

Recorrido: A, B, C, D, E, F, G, H, I

Recorrido Profundidad

Profundidad (Recorrido recursivo/Binario):

- •Pre-orden: Visita al padre, luego al hijo de la izquierda y continua con el hijo de la derecha.
- •In-orden: Visita al hijo de la izquierda, luego al padre y continua con el hijo de la derecha.
- •Post-orden: Visita al hijo de la izquierda, luego al hijo de la derecha y continua con el padre.

Recorrido: A

Recorrido: A, B

Recorrido: A, B, E

Recorrido: A, B, E, F

Recorrido: A, B, E, F, C

Recorrido: A, B, E, F, C, X

Recorrido: E

Recorrido: E, B

Recorrido: EB, F

Recorrido: E, B, F, A

Recorrido: E, B, F, A, C

Recorrido: E, B, F, A, C, X

Recorrido Post-Orden

Recorrido Post-Orden

Recorrido: E

Recorrido: E, F

Recorrido: E, F, B

Recorrido: E, F, B, X

Recorrido: E, F, B, X, C

Recorrido: E, F, B, X, C, A

Ejercicios

Ejercicio 1 - Recorrido

- 1. Pre-Orden:?
- 2. In-Orden:?
- 3. Post-Orden:?
- 4. Anchura:?

Ejercicio 1 - Solución

- **1. Pre-Orden:** A, B, D, E, G, K, H, C, F, I, J, L, M
- **2. In-Orden:** D, B, K, G, E, H, A, C, I, F, L, J, M
- **3. Post-Orden:** D, K, G, H, E, B, I, L, M, J, F, C, A
- **4. Anchura:** A, B, C, D, E, F, G, H, I, J, K, L, M

Ejercicio 2 - Recorrido

- 1. Pre-Orden:?
- 2. In-Orden:?
- 3. Post-Orden:?
- 4. Anchura:?

Ejercicio 2 - Solución

- 1. Pre-Orden: A, B, F, J, N, O, K, G, D, H, L, P, Q, M, I
- 2. In-Orden: N, J, O, F, K, B, G, A, P, L, Q, H, M, D, I
- **3. Post-Orden:** N, O, J, K, F, G, B, P, Q, L, M, H, I, D, A
- **4. Anchura:** A, B, D, F, G, H, I, J, K, L, M, N, O, P, Q

Representación estática

Array:

[00] - [A]

[01] - [B]

[02] - [C]

[03] - [E]

[04] - [F]

[05] - NULL

[06] - [X]

[07] - NULL

.

Observación: Dentro del Array los elementos se almacenan en orden de anchura.

Representación estática

Elemento	Índice	Condición
e = i n = grado máximo del árbol		
Hijo n-esimo de e	(i*n) + 1	Si (i*n) + 1 < max
Padre de e	(i-1) / n	Si i ≠ 0
Hermano siguiente de e	i + 1	Si (i mod n) ≠ 0
N° de orden entre sus hermanos	((i - 1) mod n) + 1	Si i ≠ 0