Shor's algorithm

Ryuhei Mori

Tokyo Institute of Technology

17, Nov., 2020

Integer factoring and primality test

• PrimalityTest:

Input: $N \in \mathbb{N}$

Output: YES if N is a prime number, NO if N is a composite

number.

• IntegerFactoring:

Input: $N \in \mathbb{N}$

Output: $a \in \mathbb{N}$ satisfying $a \neq 1$, N and a divides N.

Does there exist an algorithm with time complexity $O((\log N)^c)$?

It is known that PRIMALITYTEST ∈ P [Agrawal, Kayal, Saxena, 2004]. It is believed that INTEGERFACTORING ∉ BPP. It is known that INTEGERFACTORING ∈ BQP. [Shor 1994]

Nontrivial square root of 1

$$x^2 = 1 \mod N$$

$$x^2 = 1 \mod N$$

$$\iff (x-1)(x+1) = 0 \mod N$$

If N is a prime number, $x = \pm 1$ are only solution.

If there exists a nontrivial square root of 1, then *N* must be composite number.

If we find a nontrivial square root x of 1, we can also find a nontrivial factor of N by $gcd(x \pm 1, N)$.

Fermat little theorem

Theorem (Fermat little theorem)

If p is a prime number, any integer a that is not a multiple of p,

$$a^{p-1} = 1 \mod p.$$

Proof.

The map

$$x \longmapsto ax \mod p$$

is a bijection on $\{1, \dots, p-1\}$. Hence,

$$\prod_{x=1}^{p-1} x = \prod_{x=1}^{p-1} (ax) \mod p$$

$$\iff 1 = a^{p-1} \mod p.$$

Fermat test

```
function FERMAT(N)

loop k times

a \leftarrow a random integer in [2, N-2]

if a^{N-1} \neq 1 \mod N then

return NO

end if

end loop

return YES

end function
```

Carmichel numbers ($561 = 3 \cdot 11 \cdot 17$, $1105 = 5 \cdot 13 \cdot 17$, ...) passes the Fermat test for all a coprime with N.

Finding the nontirivial square root of 1

We assume that $a^{N-1} = 1 \mod N$ for some integer $a \in [2, N-2]$,

Let u and d be an integer and an odd integer, respectively, satisfying $N-1=2^ud$.

a ^d	a ^{2d}	a^{2^2d}	 $a^{2^{k-1}d}$	a^{2^kd}	 a ^{2ud}
*	*	*	 $z \neq 1$	1	 1

z is a square root of 1 modulo N.

Miller-Rabin primality test

```
function MILLER-RABIN(N)
   Let u and d be an integer and an odd integer, respectively,
satisfying N = 2^u d + 1
   loop k times
       a \leftarrow a random integer in [2, N-2]
       x \leftarrow a^d
       if x = 1 or x = N - 1 then continue
       end if
       loop u-1 times
          x \leftarrow x^2
          if x = N - 1 then break
          end if
       end loop
       if x \neq N-1 then return NO
       end if
   end loop
   return YES
end function
```

Why Miller–Rabin algorithm doesn't solve INTEGERFACTORING

In fact, the Miller–Rabin test outputs NO with probability $1-1/4^k$ for composite N.

The Miller–Rabin algorithm seems to find a nontrivial square root of 1, which means that we can also find a nontrivial factor of N, right ?

NO!

a ^d	a ^{2d}	a^{2^2d}	 $a^{2^u d}$
*	*	*	 $\neq 1$

Shor's algorithm

```
function SHOR(N: An odd integer)
   if N = a^b for some a \ge 1 and b \ge 2 then
        return a
    end if
    loop
        a \leftarrow a random integer in [2, N-2].
        b \leftarrow \gcd(a, N).
        if b \neq 1 then return b
        end if
        r \leftarrow \text{ORDERFINDING}(a, N).
        if r is odd then continue
        end if
       if a^{r/2} \neq N-1 then
           return gcd(a^{r/2} + 1, N)
        end if
    end loop
end function
```

Eigenvalues of the unitary operator

Let r be the order of a modulo n, which is a smallest positive integer satisfying

$$a^r = 1 \mod N$$
.

For a that is coprime with N, define the unitary operator U_a by

$$U_a |x\rangle = egin{cases} |ax \mod N
angle & ext{if } x < N \ |x
angle & ext{Otherwise}. \end{cases}$$

Here, $U_a^r = I$. This means that all eigenvalues of U_a are in the form $e^{2\pi i \frac{s}{r}}$ for $s \in \{0, 1, 2, ..., r-1\}$.

By quantum phase estimation for U_a , an approximation of $\frac{s}{r}$ can be computed efficiently.

From $0.b_nb_{n-1}\cdots b_1\approx \frac{s}{r}$, we can extract the denominator r if s is comprime with r.

Eigenvectors of the unitary operator

For
$$s \in \{0, 1, ..., r - 1\}$$
,

$$|\psi_s\rangle := \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} \mathrm{e}^{-2\pi i \frac{sj}{r}} |a^j \mod N\rangle.$$

$$\begin{aligned} U_{a} | \psi_{s} \rangle &= \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} \mathrm{e}^{-2\pi i \frac{sj}{r}} | a^{j+1} \mod N \rangle \\ &= \mathrm{e}^{2\pi i \frac{s}{r}} \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} \mathrm{e}^{-2\pi i \frac{sj}{r}} | a^{j} \mod N \rangle \\ &= \mathrm{e}^{2\pi i \frac{s}{r}} | \psi_{s} \rangle \,. \end{aligned}$$

The uniform sperposition of the eigenvectors

For $s \in \{0, 1, ..., r - 1\}$,

$$|\psi_s\rangle := \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \mathrm{e}^{-2\pi i \frac{sj}{r}} |a^j \mod N\rangle.$$

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |\psi_s\rangle = \frac{1}{r} \sum_{s=0}^{r-1} \sum_{j=0}^{r-1} e^{-2\pi i \frac{sj}{r}} |a^j \mod N\rangle$$
$$= \sum_{j=0}^{r-1} \left(\frac{1}{r} \sum_{s=0}^{r-1} e^{-2\pi i \frac{sj}{r}} \right) |a^j \mod N\rangle$$
$$= |\mathbf{1}\rangle$$

Quantum phase estimation

For uniformly chosen $s \in \{0, 1, ..., r-1\}$, we obtain an approximation of s/r.

Continued fraction

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \cdots}}}}$$

Theorem

Suppose s/r is a rational number satisfying

$$\left|\frac{s}{r}-\theta\right|\leq \frac{1}{2r^2}.$$

Then, s/r is a convergent of the continued fraction for θ .

The probability that we can calculate r from s/r

For uniformly chosen $s \in \{0, 1, ..., r - 1\}$, we obtain an approximation of s/r.

From the denominators d_1 and d_2 of the irreducible fractions of s_1/r and s_2/r , we can calculate r by $lcm(d_1, d_2)$.

$$\begin{split} \Pr(\mathsf{lcm}(d_1, d_2) \neq r) &= \Pr_{s_1, s_2 \in \{0, \dots, r-1\}} (\mathsf{gcd}(s_1, s_2, r) \neq 1) \\ &= \Pr_{s_1, s_2 \in \{1, \dots, r\}} (\mathsf{gcd}(s_1, s_2, r) \neq 1) \\ &\leq \Pr_{s_1, s_2 \in \{1, \dots, r\}} (\mathsf{gcd}(s_1, s_2) \neq 1) \\ &\leq \sum_{p: \; \mathsf{prime}} \Pr_{s_1, s_2 \in \{1, \dots, r\}} (p \mid s_1, p \mid s_2) \\ &\leq \sum_{p: \; \mathsf{prime}} \frac{1}{p^2} \leq 0.4523 \end{split}$$

Assignments

1 Show all eigenvectors and corresponding eigenvalues of U_a .