PX View 用户手册

修订历史

日期	版本	描述	作者
2024/7/23	V1.00	初版	章鱼哥
2024/11/20	V1.10	完善功能描述	章鱼哥
2024/11/25	V1.20	添加解码数据导出	章鱼哥

目录

目录

第一章	PX View 简介	4
1.1 PX\	/iew 软件介绍	4
1.2 PX\	/iew 软件获取	4
1.3 PX\	/iew 软件安装	4
1.3.1	Windows	4
1.4 PX\	/iew 软件界面	8
1.4.1	设备类型	8
1.4.2	语言切换	9
1.4.3	主题切换	10
第二章	逻辑分析仪	12
2.1 硬1	件选项	12
2.1.1	硬件接口	12
2.1.2	设备与电脑连接	14
第三章	快速使用	16
第四章	功能介绍	19
4.1 运行	行模式	19
4.1.1	Buffer 模式	20
4.1.2	Stream 模式	21
4.2 最	大高度	22
4.3 阈1	值电压	24
4.3.1	阈值电压推荐设置如下:	24
4.4 触	发设置	26
4.4.1	内部触发	26
4.4.2	外部触发	26
4.5 滤	波器	28
4.6 采	样时钟边沿	29
4.7 PW	M 输出	30
4.8 采	羊时间	31

4.9 采样率	32
4.9 通道颜色设置	33
4.10 通道名称设置	34
4.11 移动通道位置	35
4.12 波形测量	36
4.12.1 自动测量	36
4.12.2 光标测量	36
4.13 波形查看与操作	38
4.13.1 鼠标操作	38
4.13.2 滑轨操作	38
4.14 协议解码	39
4.15 原始数据保存与打开	41
4.15.1 保存数据	41
4.15.2 打开数据	42
4.15 解码数据导出	42

第一章 PX View 简介

1.1 PXView 软件介绍

PXView 是一款逻辑分析仪软件, 主要用于数字逻辑信号捕获与测量, 数字协议分析与调试。

1.2 PXView 软件获取

逻辑分析仪 QQ 群: 389908364 FPGA/IC 吹水群: 377248676 雷电扩展坞群: 807604723

1.3 PXView 软件安装

Window: Win10/Win11 64 位, 目前不支持 32 位

Linux: Debian / Ubuntu, 其他版本目前未编译

Mac: 目前未编译, 后续支持

1.3.1 Windows

● 双击下载好的 exe 安装程序,打开安装程序,根据电脑系统选择安装: 目前只支持 Windows10 与 Windows11 系统,不支持 Windows7: PXView_1.x.x_window_Setup.exe

点击下一步

点击接收开源协议, 我接受

● 安装路径:需要安装到非中文路径

默认安装路径:

C:\Program Files (x86)\PXView\

如果·需要更改路径可以自由选择,但是需要安装到非中文路径。

● 等待安装结束:

安装结束可直接运行打开,无需安装任何驱动。

1.4 PXView 软件界面

1.4.1 设备类型

PXView 工具栏最左边的显示的是当前设备的设备类型,一共有 4 种设备类型,分别为 USB2.0、 USB3.0、演示设备和文件。

表示当前设备为 Demo 设备,该设备类型可以演示模拟不同设备模式的功能。

表示当前设备正在使用 USB3.0 接口进行数据传输。

表示当前设备正在使用 USB2.0 接口进行数据传输。 如果设备支持 USB3.0,请尽可能使用 USB3.0 接口连接设备,以获得最佳的设备性能。

表示当前正在读取文件并显示文件数据。

1.4.2 语言切换

在设置里面可以切换中文与英文

1.4.3 主题切换

在设置里面可以进行主题切换,有两种风格,白色与黑色。

第二章 逻辑分析仪

2.1 硬件选项

2.1.1 硬件接口

- Type-C接口: usb3.0
- 32 个逻辑分析仪数字输入接口, 最高 1G 采样
- 14 个·GND 供地接口
- 一路 PWM 输出
- 一路外部触发输入
- 一路触发输出

2.1.2 设备与电脑连接

● 将电脑通过 Type-C 先与逻辑分析仪进行连接

● 连接后,未打开上位机时,设备的 led 状态等为红色,表示设备未就绪,固件未配置

● 打开上位机,上位机与设备进行连接后,下发固件与配置,设备就绪

● 设备连接后,会自动切换到连接的设备上

注意: 如果 usb 标识为蓝色是连接到 USB3.0, 如果为绿色是连接到 USB2.0, 为了发挥最佳性能,推荐连接到 USB3.0,

第三章 快速使用

1. 将逻辑分析仪与待测设备进行连接

特别注意: 待测系统电压不能超过逻辑分析仪的输入耐压值, 否则会造成设备的永久性损坏。

2. 将逻辑分析仪与电脑进行连接

特别注意:

逻辑分析仪与电脑是共地的, 当待测设备为强电系统时, 请使用" USB 隔离器"做好隔离措施, 否则极有可能损坏逻辑分析仪或者电脑!!!

3. 打开上位机 PXView, 连接逻辑分析仪

4. 配置采样率与采样时间

5. 配置基本采集参数

打开右侧工具栏的"选项",设置开启对应的通道,电压阈值,滤波器,外部触发等操作,如果不清楚具体用途,详细请查看第四章功能介绍。

6. 开始采集

点击右侧工具栏"开始",即可采集 1s 时间

采集结束后卡看到波形

7. 添加解码器

点击右侧工具栏"解码",打开解码器,选择对应的解码器,本次演示使用 uart 进行解码

配置解码器通道为通道 0, 波特率为 115200, 显示格式为 ascii

解码数据结果为 PX LOGIC, 结果正确

第四章 功能介绍

4.1 运行模式

逻辑分析仪支持两种运行模式: Buffer 模式和 Stream 模式。在右侧工具栏"选项"里可进行选择:

● Buffer 模式:

该模式下,逻辑分析仪先将采样的数据存储到硬件内存中, 等预设采样深度全部采集完成后再上传给上位机。 由于数据不是边采集边传输, 所以该模式最大采样率不受 USB 速度限制,采样率要远远高于 Stream 模式。 同样 Buffer 模式也有不足之处,采样深度受限于硬件内存容量的大小,不能做到很大。 不过 Buffer 模式支持 RLE 压缩功能, 在被测信号频率不是很高的情况下可以提高 Buffer 模式的采样深度。

● Stream 模式:

该模式下,数据边采集边 USB 通过传输给电脑,由于数据不用存储到硬件内存中,采样深度可以做到很大,理论上电脑内存有多大,就可以采集多大的数据量。但该模式也有缺点,采样速度受到 USB 传输速度的限制,采样率不能做到很高。

4.1.1 Buffer 模式

Buffer 模式支持多种通道配置: 总带宽 8G

- 32 个通道最大采样率 250Mhz
- 16 个通道最大采样率 500Mhz
- 8 个通道最大采样率 1000Mhz

4.1.2 Stream 模式

Stream 模式支持多种通道配置: USB3.0 总带宽 2G, USB2.0 总带宽 200M, 建议连接到 usb3.0, 发挥更好性能

- 32 个通道最大采样率 50Mhz
- 16 个通道最大采样率 100Mhz
- 8个通道最大采样率 200Mhz
- 4 个通道最大采样率 500Mhz
- 2 个通道最大采样率 1000Mhz

如果显示不是这个结果, 请连接到 USB3.0

4.2 最大高度

最大高度有 1X~5X 进行配置,改动该配置会影响逻辑显示界面的信号高度,如果需要显示大一些,可以根据个人爱好进行调整。

1X 高度:

5X 高度:

4.3 阈值电压

阈值电压范围: 0V 到 6V, 0.1V 步进

阈值电压我信号的判决电压, 高于该阈值, 判断为 1, 低于该阈值判断我 0。

阈值电压需要设置合适,否则会影响采样结果

4.3.1 阈值电压推荐设置如下:

5.0V 信号输入: 阈值电压 3.0V 3.3V 信号输入: 阈值电压 2.0V

2.5V 信号输入: 阈值电压 1.5V 1.8V 信号输入: 阈值电压 1.1V 1.0V 信号输入: 阈值电压 0.6V

4.4 触发设置

4.4.1 内部触发

目前内部触发每个通道都支持以下 5 种方式:

- 上升沿触发
- 高电平触发
- 下降沿触发
- 低电平触发
- 边沿触发(上升沿或者下降沿)

最大可进行32通道同时设置与触发方式,也就是多个通道触发同时满足才可触发采集。

通道 0 设置上升沿触发 通道 1 设置下降沿触发 只有在通道 0 与通道 1 同时满足的情况下才可以进行触发。

4.4.2 外部触发

如果为了不占据多余的通道 IO,也可以使用外部专用触发 IO

外部触发与内部触发一样具备 5 种触发功能:

- 上升沿触发
- 高电平触发
- 下降沿触发
- 低电平触发
- 边沿触发(上升沿或者下降沿)

4.5 滤波器

滤波器支持设置一个采样周期滤波方式,后续可开发更多

4.6 采样时钟边沿

时钟沿采样支持以下两种模式:

- 时钟上升沿
- 时钟下降沿

4.7 PWM 输出

PWM 输出支持一个通道,具备以下性能:

PWM 频率: 1HZ~1MHZPWM 占空比: 0%~100%

4.8 采样时间

目前总采样深度为 4Gb, 可采样个采样点, 采样时间受到采样率影响, 采样通道, 采样率影响。

最大采样时间 = 4Gb/通道数/采样率

4.9 采样率

采样率受到不同模式影响

Buffer 模式支持多种通道配置: 总带宽 8G

- 32 个通道最大采样率 250Mhz
- 16 个通道最大采样率 500Mhz
- 8 个通道最大采样率 1000Mhz

Stream 模式支持多种通道配置: USB3.0 总带宽 2G, USB2.0 总带宽 200M, 建议连接到 usb3.0, 发挥更好性能

- 32 个通道最大采样率 50Mhz
- 16 个通道最大采样率 100Mhz
- 8个通道最大采样率 200Mhz
- 4个通道最大采样率 500Mhz
- 2 个通道最大采样率 1000Mhz

4.9 通道颜色设置

每个通道都可以根据个人喜好进行更改颜色,对着通道颜色正方形单击鼠标左键,即可选择自己喜欢的颜色。

举例: 改变通道 0 为黄色

4.10 通道名称设置

点击通道名称, 可对通道名称进行别名更改

4.11 移动通道位置

点击三角标前面的空白区域,可进行移动通道位置。

将通道0移动到通道1的位置,与通道1交换位置,更加灵活。

4.12 波形测量

4.12.1 自动测量

将鼠标移动到波形上方,可自动进行识别检测到波形的宽度,周期,频率,占空比等

4.12.2 光标测量

将鼠标放到波形上方,双击波形,可自动添加光标,添加多个光标可进行测量脉冲个数,时间等相关参数

添加多个光标后,可点击右侧的工具栏的测量,进行相关测量

4.13 波形查看与操作

4.13.1 鼠标操作

将鼠标放到波形的上方, 可使用鼠标滚轮进行放大缩小

4.13.2 滑轨操作

移动窗体下边的滑轨,可进行波形的滑动。

4.14 协议解码

点击右侧工具栏"解码",打开解码器,选择对应的解码器,本次演示使用 uart 进行解码

配置解码器通道为通道 0, 波特率为 115200, 显示格式为 ascii

解码数据结果为 PX LOGIC, 结果正确

4.15 原始数据保存与打开

4.15.1 保存数据

采集数据后, 可将该数据进行保存, 供下次使用记录。

- 保存为 pxlogic 格式
- 导出为 csv 格式

4.15.2 打开数据

点击文件中的打开的工具栏,可打开上述保存的.pxlogic 的格式数据,可进行还原原先的数据。

4.15 解码数据导出

PXView 逻辑分析仪上位机支持解码数据导出

- 在解码窗口添加解码库
- 等待解码完成后
- 在解码窗口点击箭头的保存解码结果,可导出解码数据,数据格式为 csv

- 点击确认后,会自动打开保存目录,选择对应目录即可
- 打开解码的导出的数据 csv

Δ	D	C
	B Timo[ns]	0:UART: RX/
2 1	Time[ns] 1757816	
3 4 3	1844488 1931160	
5 4	2017832	
5	2104504	
7 6	2191176	
7	2277848	
8	2364520	
0 9	11811780	
1 10	11898448	
2 11 3 12	11985120	
	12071792	
4 13	12158464	
5 14	12245136	G
6 15	12331808	
7 16	12418480	С
8 17	21874408	P
9 18	21961080	X
0 19	22047752	[20]
1 20	22134424	L
2 21	22221096	0
3 22	22307768	G
4 23	22394440	
5 24	22481112	
6 25	33081108	
7 26	33167780	
8 27	33254452	
9 28	33341124	
0 29	33427796	
1 30	33514468	
2 31	33601140	
2	33687812	
4 33	43724440	
5 34	43811112	
	43897784	
6 35 7 36	43984456	
8 37 9 38	44071128	
9 38	44157800	
0 39	44244472	
1 40	44331144	
2 41	53977748	
2 41 3 42 4 43 5 44 6 45	54064420	
4 43	54151092	
5 44	54237764	
	54324436	
7 46	54411108	
8 47	54497780	
9 48	54584452	С
0 49	65409796	
1 50	65496468	Χ
2 51	CEE001 40	[00]
decode	er241125-21402	3 (