线性码性质回顾

定义1

一个码长为 n 的 p 元码 C 叫做线性码,是指 C 是向量空间 F_p^n 的向量子空间,即 C 满足如下的性质:对 F_p 中任意元素 α 和 β ,如果 c_1 和 c_2 属于 C,则 $\alpha c_1 + \beta c_2$ 也属于 C。

定理1

设C是参数为[n,k]的p元线性码。

- (1) 若 G 是 C 的一个生成矩阵,而 H 是 F_p 上一个 (n-k) 行 n 列的矩阵,则 H 是 C 的一个校验矩阵当且 仅当 rank(H)=n-k,并且 $HG^T=0_{n-k,k}$
- (2) 若 $G = (I_k, P)$, $H = (= P^T, I_{n-k})$,则 $G \in C$ 的一个生成矩阵上去仅当 $H \in C$ 的一个校验矩阵

定义 2

设 C 是一个 p 元线性码,参数为 n,k,d。从 C 是 F_p^n 的一个 k 维向量子空间。考虑 F_p^n 中的如下子集和:

$$C' = \{ a \in F_v^n | \forall c \in C, (a, c) = 0 \}$$

即 C' 是与 C 中所有码字都正交的那些向量组成的集合。称 C' 为 C 的对偶码。

定理 2

若 C 是参数为 [n,k] 的 p 元线性码。则 C' 也是 p 元线性码,码长和信息位数分别为 n 和 n-k。如果 $C \in C'$,称 C 为自正交码。如果 C = C',称 C 为自对偶码。

RM 码的定义

定义3

设 m 为正整数。一个 m 元布尔函数 $f = f(x_1, ..., x_m)$ 是由 F_2^m 到 F_2 的映射,即 m 个变量 $x_1, ..., x_m$ 均取 值于 F_2 ,并且函数值也属于 F_2 。

由于 F_2^m 中向量的个数为 2^m ,而 f 在每个向量的取值均彼此独立地可取 1 或 0,所以 m 元布尔函数共有 2^{2^m}

定理 3

每个 m 元布尔函数 $g(x_1,...,x_m)$ 均可唯一地表示为 $g(x_1,...,x_m) = c + c_1x_1 + ... + c_mx_m + c_{12}x_1x_2 + c_{13}x_1x_3 + ... + c_{m-1,m}x_{m-1}x_m + c_{123}x_1x_2x_3 + ... + c_{12...m}x_1x_2...x_m$ (其中所有系数和常数都属于 F_2)

定义 4

设 $m \ge 1, n = 2^m, 0 \le r \le m$ 。向量空间 F_2^n 的子集合

$$RM(r, m) = \{c_f = (f(v_0), f(v_1), ..., f(v_{n-1})) \in F_2^n | f \in B_m, deg(f) \le r\}$$

叫做 r 阶的 Reed-Muller 码 (简称 RM 码)。这里 $v_i \in F_2^m$

定理4

设 $m \ge 1$, $f \in B_m$, 当 $r \le m - 1$ 时, $w(c_f)$ 为偶数。

定理5

RM 码 RM(r,m) 是线性码,基本参数为 $[n,k,d] = [2^m, \sum_{t=0}^r {m \choose t}, 2^{m-r}]$ 。

定理 6

当 $0 \le m - 1$ 时,RM(r, m) 的对偶码为 RM(m - r - 1.m)。

RM 码的编译码

- 1. RM 码的生成矩阵
- 2. RM 码的校验矩阵
- 3. RM 码编译码实例

心得体会 & 建议

第一次翻转课堂,同学准备用心,ppt 也很棒,上台讲课的同学很卖力。美中不足的是,内容有些许枯燥,例子不够充分,证明不够明确,给我们后面的同学也是一种提醒。