Теоретические ("малые") домашние задания

Теория типов, ИТМО, МЗЗЗ4-МЗЗЗ9, осень 2019 года

Домашнее задание №1: «знакомство с лямбда-исчислением»

- 1. Расставьте скобки:
 - (a) $\lambda x.x \ x \ \lambda x.x \ x$
 - (b) $(\lambda x.x \ x) \ \lambda x.x \ x$
 - (c) $\lambda x.(x \ x) \ \lambda x.x \ x$
 - (d) $\lambda f.\lambda x.fffx$
- 2. Проведите бета-редукции и приведите выражения к нормальной форме:
 - (a) $(\lambda a.\lambda b.a)$ $(\lambda a.\lambda b.a)$ $(\lambda a.\lambda b.b)$
 - (b) $(\lambda a.\lambda b.a)$ b
 - (c) $(\lambda f.\lambda x.f (f x)) (\lambda f.\lambda x.f (f x))$
- 3. Выразите следующие функции в лямбда-исчислении:
 - (a) Or, Xor;
 - (b) тернарная операция в Си (?:);
 - (c) isZero (T, если аргумент равен 0, иначе F);
 - (d) isEven (T, если аргумент чётный);
 - (е) умножение на 2;
 - (f) умножение;
 - (g) возведение в степень;
 - (h) упорядоченная пара. К паре должны прилагаться три лямбда-выражения (M, P_l, P_r) : выражение M по двум значениям строит упорядоченную пару, а выражения P_l и P_r возвращают первый и второй элемент упорядоченной пары соответственно.

Убедитесь, что для ваших выражений выполнено

$$P_l (M \ A \ B) \rightarrow_{\beta} \cdots \rightarrow_{\beta} A$$

И

$$P_r (M \ A \ B) \rightarrow_{\beta} \cdots \rightarrow_{\beta} B$$

- (і) вычитание 1;
- (j) вычитание;
- (k) сравнение («меньше»);
- (1) деление.
- 4. Какие функции вычисляют следующие выражения (при условии, что в качестве значений параметров m и n подставлены чёрчевские нумералы)? Ответ обоснуйте.
 - (a) $\lambda m.\lambda n.n m$;
 - (b) $\lambda m.\lambda n.\lambda x.n \ (m \ x)$.
- 5. Ненормализуемым назовём лямбда-выражение, не имеющее нормальной формы, то есть выражение, для которого нет конечной последовательности бета-редукций, приводящей к нормальной форме. Сильно нормализуемым назовём лямбда-выражение, для которого не существует бесконечной последовательности бета-редукций (любая последовательность бета-редукций неизбежно заканчивается нормальной формой, если её продолжать достаточно долго). Слабо нормализуемым назовём лямбда-выражение, которое имеет нормальную форму, но существует бесконечная последовательность бета-редукций, которая не приводит его в нормальную форму. Приведите примеры сильно нормализуемого, слабо нормализуемого и ненормализуемого лямбда-выражения.