

آزمایشگاه ابزار دقیق

گزارش کار آزمایشها

آزمایش ۱۰: سنسور خازنی

آزمایش ۱۱: سنسور ترمیستور

آزمایش ۱۲ : سنسور RTD

آزمایش ۱۳: سنسور کرنشسنج

آزمایش ۱۴: سنسور القایی

آزمایش ۱۵ : سنسور LVDT

آزمایش ۱۷ : کالیبراسیون ژیروسکوپ

آزمایش ۱: سنسورهای صنعتی

آزمایش ۲: ماژول PLC

آزمایش ۳: شبیهساز فرآیند

آزمایش ۴: اینورتر

آزمایش ۵: پنوماتیک

آزمایش ۶: الکتروپنوماتیک

آزمایش ۷: کنترل الکتروپنوماتیک با PLC آزمایش ۱۶: کالیبراسیون شتابسنج

آزمایش ۸: سنسور مقاومت متغیر

آزمایش ۹: سنسور ترموکوپل

نسخه پاییز ۱۳۹۸ ویرایش اول دانشکده مهندسی برق - گروه کنترل

AT-	ن سنسورهای) صنعتی	این قسمت توسط مسئول آزمایشگاه تکمیل میشود.
CA303	اعضای گروه:		تاریخ تحویل:
عومه و	تاریخ انجام آزمایش:	:,	ميزان تأخير:
ğ .	شماره گروه:	كلاس:	نمره:

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

1-1- سنسور مجاورتي سلفي

۱-۱-۱) دست خود را مقابل آن قرار دهید؛ چه اتفاقی میافتد؟ چرا؟

۱-۱-۲) یک قطعه فلز مقابل آن قرار دهید؛ چه اتفاقی میافتد؟ علت را توضیح دهید؟

۱-۱-۳) قطعه فلزی را تا حدی پایین بیاورید که سنسور قطع کند؛ حد فاصله سوئیچ کردن سنسور را اندازه بگیرید.

۱-۱-۱) خروجی سنسور از چه نوعی است؟ (NPN ،PNP)

۱-۲- سنسور مجاورتی خازنی

۱-۲-۱) قطعاتی از جنسهای مختلف مانند پارچه، شیشه، کاغذ و ... را مقابل آن قرار داده و حساسیت آن را بررسی کرده و شرح دهید.

۱-۲-۱) حد فاصله سوئيچ کردن آن را به دست آوريد.

۱-۲-۳) خروجی سنسور از چه نوعی است؟

۱-۳- سنسور مجاورتي مغناطيسي

۱-۳-۱) این سنسور چه اجسامی را حس می کند؟

۱-۳-۱) حد فاصله سوئیچ کردن آن را به اندازه بگیرید.

۱-۳-۳) خروجی این سنسور از چه نوعی است؟

۱-٤- سنسور مجاورتي نوري

۱-۴-۱) این سنسور نسبت به چه اجسامی حساس است؟

۱-۴-۱) حد فاصله سوئيچ كردن أن را به دست أوريد.

۱-۴-۳) خروجی سنسور از چه نوعی است؟

۱-۴-۴) نحوه عملکرد آن را توضیح دهید.

١-٥- سنسور فيبر نوري

است؟ وصل نمایید؛ نحوه عملکرد چگونه است؟ الح-1) بار را به پایه

۱–۵–۲) حال بار را به پایه white وصل کنید؛ خروجی چه تغییری می کند؟

این سنسور به چه اجسامی حساس است؟ $(-\Delta-1)$

۱-۵-۱) حد فاصله سوئيچ کردن سنسور را به دست آوريد.

١-٦- خط کش اهمی

(1-8-1) به ازای چه مقدار جابجایی مولتیمتر (1-8-1) به ازای چه مقدار جابجایی

۱-۶-۲) دقت اندازه گیری نمایشگر چقدر است؟

۱-۶-۳) رنج اندازه گیری چقدر است؟

1-8-4) حال با جابجایی خط کش تعیین کنید خروجیهای ۱ و ۲ و ۳ به ازای چه مقدار جابجایی فعال می شوند.

۱-۶-۵) کنترلر را طوری تنظیم کنید که خروجیهای ۱ و ۲ و ۳ به ترتیب در ۱ و ۵ و ۸ ولت فعال شوند. نحوه تنظیم را توضیح دهید.

AT	PLC (Y)		این قسمت توسط مسئول آزمایشگاه تکمیل میشود.
-CA3	اعضای گروه:		
وعه 03	تاريخ انجام آزمايش	ن:	ریی رین میزان تأخیر:
aç.	شماره گروه:	كلاس:	نمره:
ارش کار	ا آنوایشگاه ارزار دقیق – نی	سخه باین ۱۳۹۸ و برایش اول	ا دانشکده مهندسی برق – گروه کنترا

گزارش کار آزمایشگاه ابزار دقیق – نسخه پاییز ۱۳۹۸ ویرایش اول

٢-١- مفاهيم اوليه

۱-۱-۲) به جای کنتاکت normally open به ترتیب از کنتاکتهای not ،normally close، استفاده کنید و نحوه عملکرد هریک را توضیح دهید.

۲-۱-۲) به ورودیهای ۱ و ۲ سیگنال دهید و حالت خروجی ۱ را بررسی نمایید. نحوه عملکرد برنامه را توضیح دهید.

۲-۱-۳) به جای فلیپ فلاپ RS از فلیپ فلاپ SR استفاده کنید و تفاوت را بررسی نمایید.

(1-1-7) نحوه عملکرد برنامه (1-1-7-7) را توضیح دهید.

۲-۲- موتور سه فاز

۲-۲-۱) شستی استارت را بفشارید و نحوه عملکرد برنامه را توضیح دهید.

۲-۲-۲) کلید استارت را یک لحظه فشار داده و قطع کنید. چه اتفاقی میافتد؟

۲-۲-۳) سوییچ مربوط به استاپ را فشار دهید. نحوه عملکرد را توضیح دهید.

۲-۲-۴) لامپ خروجی ۲ نشان دهنده چه چیزی است؟

-7-7) با فشردن شستی استارت راستگرد و چپگرد به طور جداگانه نحوه عملکرد را توضیح دهید.

۲-۲-۶) نحوه عملکرد برنامه را توضیح دهید و با برنامه قبل مقایسه نمایید.

AT	۳ شبیه ساز فرآین	این قسم	این قسمت توسط مسئول آزمایشگاه تکمیل میشود.
CA303	اعضای گروه:	تاريخ تح	تاريخ تحويل:
عومه ا	تاریخ انجام آزمایش:	ميزان تأ-	ميزان تأخير:
ġ.	شماره گروه:	كلاس: نمره:	نمره:

گزارش کار آزمایشگاه ابزار دقیق – نسخه پاییز ۱۳۹۸ ویرایش اول

3-1- فرآيند كنترل سطح

۳-۱-۱) نحوه عملکرد برنامه را توضیح دهید.

۴ اینورتر	AT-
اعضای گروه:	CA30
تاريخ انجام آزمايش:	وعه 3
شماره گروه:	ું.

این قسمت توسط مسئول آزمایشگاه تکمیل می شود. تاریخ تحویل: میزان تأخیر:

ا المستقدة المستقدة المستقد المستقدة ا

كلاس:

٤-١- اينور تر

4-۱−۴) فیشهای u,v,w روی اینورتر را به u1, v1, w1 روی موتور وصل کنید و v2 را به u2 و u2 را به w2 وصل کنید. حال دکمه RUN را فشار دهید. چه اتفاقی می افتد؟

۲-۱-۴) دو اتصال موتور را با هم جابجا کنید. چه اتفاقی می افتد؟

۴-۱-۳) تنظیمات پارامترهای اینورتر را به حالت تنظیم کارخانه در فرکانس ۵۰ هرتز قرار دهید. نحوه کار را شرح دهید.

۴-۱-۴) با استفاده از انکودر روی موتور و پالسمتر سرعت و دور موتور را در فرکانسهای ۵ هرتز، ۱۵ هرتز و ۲۵ هرتز اندازه گیری نمایید.

۴-۱−۵) با استفاده از تنظیمات گروه ۰۴-۰۰، جریان خروجی، ولتاژ خروجی، ضریب توان، توان خروجی و گشتاور خروجی موتور را در دو فرکانس متفاوت اندازه گیری نمایید.

۱۰۰-۴) تنظیمات گروه 0.0-9 را طوری انجام دهید که مقادیر 0.0 و 0.0-9 برابر مقدار اصلی شان نمایش داده شوند؟ کاربرد آن را توضیح دهید.

۴-۱-۸) در تنظیمات ۱۵-۱۱ شتابگیری و کاهش شتاب را به صورت خطی و اتوماتیک نمایید و تفاوت را بررسی کنید.

۴-۱-۹) تنظیمات ۱۶-۱۰ و ۱۷-۱۰ شتاب گیری و کاهش شتاب را به چه صورتی تغییر میدهد؟ نمودار آن را رسم کنید.

۴-۱-۰۱) با تنظیم ۰۵-۰۲ مود کاری موتور را اول به صورت ۲ سیمه و سپس به صورت ۳ سیمه قرار دهید و نحوه عملکرد هریک راتوضیح دهید. (نحوه سیمبندی در پیوست آمده است.) برای کار در این مد حتماً باید مد ۲-۰۱ روی ۰۱ یا ۰۲ تنظیم گردد. چرا؟

۱-۱-۴) فرمان jog به چه منظوری تعبیه شده است؟

🔕 پنوماتیک	R
اعضای گروه:	T770 4
تاریخ انجام آزمایش:	يجموعا
	•

این قسمت توسط مسئول آزمایشگاه
تكميل مىشود.
تاريخ تحويل:
ميزان تأخير:
نمره:

شماره گروه: کلاس: گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

دانشکده مهندسی برق - گروه کنترل

0-۱- کنترل مستقیم و غیرمستقیم Single-acting cylinder از طریق شیرهای فنردار

۵-۱-۱) کلید Mushroom را وصل کرده و شیر ۳/۲ را فشار دهید. پس از چند ثانیه شیر ۳/۲ را آزاد کنید. نحوه عملکرد مدار را توضیح دهید.

۵-۱-۲) سیلندر در ابتدا چه حالتی دارد؟

-1-0) با تغییر فشار هوا تغییرات سرعت حرکت پیستون را هنگام رفت و برگشت بررسی نمایید.

شده و با فشار دادن شیر 7/7 سیلندر بسته شود؟ (به عبارت دیگر آیا میتوان شیر 7/7 را به صورت 1/7 در مدار استفاده کرد؟)

۵-۱-۵) کلید Mushroom را وصل کرده و شیر ۳/۲ را فشار دهید. پس از چند ثانیه شیر ۳/۲ را آزاد کنید؛ نحوه عملکرد مدار را توضیح دهید.

در ابتدا چه حالتی دارد؟ (8-1-4) سیلندر

-1-1) هنگام بسته شدن سیلندر، هوای بازگشتی از کجا خارج می شود؟

۵-۱-Δ) آیا می توان اتصالات مدار را به گونهای تغییر داد که در ابتدا با فشردن کلید Mushroom سیلندر باز شده و با فشار دادن شیر ۳/۲ سیلندر بسته شود؟

0-۲- کنترل غیرمستقیم Double-acting cylinder با استفاده از شیرهای فنردار

۵-۲-۵) تفاوتهای Double-acting cylinder با Single-acting cylinder در چیست؟

۵-۲-۲) آیا با تغییر دادن اتصالات پنوماتیکی می توان مدار را به گونهای طراحی نمود که در ابتدا با فشردن کلید Mushroom سیلندر باز شده و با فشار دادن شیر ۵/۲ سیلندر بسته شود؟ (به عبارت دیگر آیا می توان شیر ۵/۲ را به صورت NC در مدار استفاده کرد؟)

۵-۳- بررسی عملکر د Non-return throttle valve

۵-۳-۱) پیچ تنظیم هرکدام از Non-return throttle valve را روی مقادیر مختلف تنظیم کنید و تأثیر هرکدام از آنها را بر روی سرعت باز و بسته شدن سیلندرها بررسی نمایید.

Non-return throttle valve جهت آشنایی با عملکرد Non-return throttle valve در هر دو جهت اتصال مستقیم و اتصال معکوس، هر یک از حالتهای زیر را بسته و عملکرد آن را بررسی نمایید. الف) شیر A را حذف کرده و شیر B را معکوس کنید. ب) شیر A و B را معکوس کنید. ج) شیرهای A و B را معکوس کنید.

میافتد؟	، اتفاقى	ببريم، چه	پيستون	لت نهایی	ر از حا	عقبتر	را کمی	۱,۵	کلید	صور تى كە	۵) در	-Δ-Δ

۵-۵-۴) اتصالات مدار را به گونهای تغییر دهید که عملکرد مدار تغییر نکند ولی نیازی به استفاده از گیت AND در مدار نباشد.

RT77	
e f	
مجمو	

(۶) الكتروپنوماتيک

اعضای گروه:

تاریخ انجام آزمایش:

كلاس: شماره گروه:

دانشکده مهندسی برق - گروه کنترل

این قسمت توسط مسئول آزمایشگاه

تكميل مىشود.

تاريخ تحويل:

ميزان تأخير:

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

۶-۱– کنترل سیلندرها با استفاده از Solenoid valve

۶-۱-۱) کلید S1 را فشار دهید و بعد از چند ثانیه آن را رها کنید. نحوه عملکرد مدار را توضیح دهید.

۶-۱-۲) کدامیک از اجزای مدار ارتباط میان اجرای الکتریکی و پنوماتیکی را برقرار می کند؟

-1-7) کلید S1 را به صورت NC به کار برده و نحوه عملکرد مدار را توضیح دهید.

۶-۱-۴) کلید S1 را فشار دهید و بعد از چند ثانیه آن را رها کنید. نحوه عملکرد مدار را توضیح دهید.

۶-۱-۵) کلید S1 را به صورت NC به کار برده و نحوه عملکرد مدار را توضیح دهید.

۶-۱-۶) آیا می توان NC به عبارت دیگر آیا می توان اتصالات ایم کار برد؟ (به عبارت دیگر آیا می توان اتصالات مدار ۲-۱-ب-A را بدون تغییر دادن کلید NO به گونهای تغییر داد که سیلندر در حالت ابتدایی بدون فشار کلید باز شود؟)

۶-۱-۷) ابتدا کلید S1 را فشار دهید و بعد از چند ثانیه آن را رها کنید. اکنون کلید S2 را فشار دهید و بعد از چند ثانیه آن را رها کنید. این عمل را متناوباً تکرار کنید. نحوه عملکرد مدار را توضیح دهید.

۳–۳–۶) با استفاده از دو Limit switch و Relay board ها و Double-acting cylinder یک گیت OR طراحی کنید به نحوی که با فشار حداقل یکی از Limit switch ها سیلندر باز شود و تازمانی که هر دو Limit switch رها نشده، سیلندر باز بماند.
8-۴- چگونگی ساختن مدارات Self-holding ۱-۴-۶ چگونگی ساختن مدارات Self-holding ۱-۴-۶ کلید S1 را برای لحظهای فشرده و سپس آن رها کنید. عملکرد مدار را توضیح دهید.
۲-۴-۶) حال کلید S2 را برای لحظهای فشار داده و سپس آن را رها کنید. عملکرد مدار را توضیح دهید.
۶-۴-۳) حال دو کلید را با هم فشار دهید؛ چه اتفاقی میافتد؟
۴-۴-۶) کلید S1 را برای لحظهای فشرده و سپس آن را رها کنید. عملکرد مدار را توضیح دهید.
۶–۴–۵) حال کلید S2 را برای لحظهای فشرده و سپس آن را رها کنید. عملکرد مدار را توضیح دهید.

می افتد؟	چه اتفاقی	دھىد.	، فشار	ایا هہ	كلىد	حال دو	(8-4-8

 $^{8-4-7}$ اتصالات مدار را به نحوی تغییر دهید که هر دو کلید 81 و 82 را به صورت 81 باشند ولی عملکرد مدار تغییر نکند. (یعنی با دادن پالس کوتاهی به کلید 81 سیلندر بسته شود)

۶-۴-۶) مدار را به گونهای تغییر دهید که با دادن پالس کوتاهی به کلید S1 سیلندر باز شود و وقتی که سیلندر به حالت نهایی خود میرسد به صورت اتوماتیک بسته شود.

$oldsymbol{\mathsf{PLC}}$ کنترل مدارهای الکتروپنوماتیک با $oldsymbol{\mathsf{V}}$

۷-۱-۱) کلید S1 را فشار دهید و بعد از چند ثانیه آن را رها کنید. نحوه عملکرد مدار را توضیح دهید.

اعضای گروه:

تاریخ انجام آزمایش:

كلاس: شماره گروه:

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

تكميل مىشود. تاريخ تحويل: ميزان تأخير:

دانشکده مهندسی برق - گروه کنترل

این قسمت توسط مسئول آزمایشگاه

۷–۱– کنترل سیلندر با استفاده از PLC

۷-۱-۷) نحوه عملکرد برنامه را توضیح دهید.

۷-۱-۳) برنامهای بنویسید که با فشردن یک کلید، دو سیلندر باز شود و با رها کردن آن دو سیلندر بسته شود. اتصالات الکتریکی و پنوماتیکی لازم را رسم کنید.

۷-۲-۷) پالس کوتاهی به کلید S1 وارد نموده و بعد از یک دقیقه پالسی را به کلید S2 وارد کنید. نحوه عملکرد مدار را توضیح دهید.

۲-۲-۷) پالس کوتاهی به کلید S1 وارد نموده و بعد از یک دقیقه پالسی را به کلید S2 وارد کنید. نحوه عملکرد مدار را توضیح دهید.

۷-۲-۷) اگر در هنگام اجرا شدن سیکل، کلید S2 فشرده شود، چه اتفاقی میافتد؟

۷-۲-۷) پالس کوتاهی را به کلید S1 وارد نموده و نحوه عملکرد مدار را توضیح دهید.

۷-۲-۷) اگر کلید S1 به صورت پیوسته فشرده شود، چه اتفاقی میافتد؟

TK	🛦 سنسور مقاو	اومت متغير	این قسمت توسط مسئول آزمایشگاه تکمیل میشود.
(2942	اعضای گروه:		تاریخ تحویل:
جموعه	تاريخ انجام آزمايش:	:,	ميزان تأخير:
g	شماره گروه:	كلاس:	نمره:

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

جدول (۱) جدول نتایج آزمایش مقاومت متغیر

۵۵	۵٠	40	4.	٣۵	٣٠	70	۲٠	۱۵	1+	۵	•	جابجایی [mm]
												ولتاژ [V]

 Λ ۱-۱) با توجه به نمودار میزان خطی بودن خروجی سنسور را مشخص نمایید.

۸-۲) نتیجه پرسش فوق را با توجه به تئوری آزمایش تحلیل نمایید.

۸-۳) با استفاده از ابزار برازش در نرمافزار متلب، چندجملهای مناسب را روی نمودار حاصل برازش و بر روی دادهها رسم کرده و ضرایب چندجملهای را به دست آورید.

۸-۴) حساسیت اندازه گیری این مجموعه را به دست آورید.

ه سنسور ترموکوپل	
اعضای گروه:	K2942
تاریخ انجام آزمایش:	جموعه
شماره گروه: کلاس	g

این قسمت توسط مسئول آزمایشگاه تکمیل می شود. تاریخ تحویل: میزان تأخیر: نمره:

گزارش کار آزمایشگاه ابزار دقیق – نسخه پاییز ۱۳۹۸ ویرایش اول

دانشکده مهندسی برق - گروه کنترل

جدول (۱) جدول نتایج آزمایش ترموکوپل

اختلاف دما [°C]	دمای اتاق [°C]	دمای تانک [°C]	ولتمتر [V]	شماره شیار
				بدون اتصال
				۲٠
				۱۸
				18
				14
				١٢
				1+
				٨
				۶
				۴

۱-۹) میزان خطی بودن خروجی سنسور را مشخص نمایید.

۹-۲) نتیجه پرسش فوق را با توجه به تئوری اَزمایش تحلیل نمایید.

	نمودار ولتاژ بر حسب اختلاف دما و خط برازششده
	. 3.7 75 7
) حساسیت اندازه گیری	ی این مجموعه را به دست آورید.
) اهمیت جنس سیم ت	ترموکوپل را با توجه به دو اثر ذکرشده در متن بیان کنید.
	نمودار دما بر حسب شیارهای گرم کن
	مراح می سیاردی کرا می

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

جدول (۱) جدول نتایج آزمایش سنسور خازنی سطح متغیر

۵٠	۴۵	۴٠	٣۵	٣٠	70	7+	10	1+	۵	•	جابجایی [mm]
											ولتاژ [V]

جدول (٢) جدول نتایج آزمایش سنسور خازنی طول متغیر

4/0	۴	٣/۵	٣	۲/۵	۲	1/0	١	٠/۵	•	جابجایی [mm]
										ولتاژ [V]

نمودار ولتاژ بر حسب جابجایی برای سنسور سطح متغیر

۱-۱۰) میزان خطی بودن خروجی سنسورها را تعیین کنید.

۱۰-۲) کدام یک از سنسورها خطی تر می باشد؟ دلیل آن را با توجه به مقدمه و ساختار سنسورها توجیه نمایید.

نمودارهای حاصل چسبانده و ضرائب چند جملهای را بدست آورید.	۳-۱۰) با استفاده از نرم افزار متلب، چند جملهای مناسب را روی
	۴-۱۰) حساسیت اندازه گیری این دو مجموعه را به دست آورید.

)	سنسور ترمیس	این قسمت توسط مسئول آزمایشگاه تکمیل میشود.
(2942	اعضای گروه:	تاريخ تحويل:
ر الموعة	تاریخ انجام آزمایش:	ميزان تأخير:
, S	شماره گروه:	نمره:

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

جدول (۱) نتایج آزمایش ترمیستور

1	٩٠	٨٠	٧٠	۶٠	۵۰	۴٠	٣٠	دما [°C]
								ولتاژ [V]

خط برازششده	نمودار ولتاژ بر حسب دما و

۱-۱۱) با توجه به نمودار، میزان خطی بودن خروجی سنسور را مشخص نمایید.

۲-۱) حساسیت اندازه گیری این سنسور را به دست آورید.	١
۳-۱) با استفاده نرمافزار متلب، چندجملهای مناسب را روی نمودارهای حاصل چسبانده و ضرایب چندجملهای را به دست آورید.	١
۱-۴) خطی بودن پاسخ چه اهمیتی دارد که پیوسته بر آن تأکید میشود؟	١

	(TT سنسور RTD	R	این قسمت توسط مسئول آزمایشگاه تکمیل میشود.
<u>£2942</u>	اعضای گروه:		تاریخ تحویل:
جموعا	تاریخ انجام آزمایش:		ميزان تأخير:
8	شماره گروه:	كلاس:	نمره:

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

جدول (۱) نتایج آزمایش سنسور RTD

1++	٩.	۸٠	٧٠	9+	۵۰	۴٠	٣٠	دما [°C]
								ولتاژ [V]

نمودار ولتاژ بر حسب دما و خط برازششده

۱-۱۲) با توجه به نمودار، میزان خطی بودن خروجی سنسور را مشخص نمایید.

۲-۱) حساسیت اندازه گیری این سنسور را به دست آورید.	٢
۳-۱) با استفاده نرمافزار متلب، چندجملهای مناسب را روی نمودارهای حاصل چسبانده و ضرایب چندجملهای را به دست آورید	٢
۱-۴) چه عاملی باعث میشود RTD به صورت مدار مذکور به کار گرفته شود؟	۲

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

جدول (۱) جدول نتایج آزمایش سنسور کرنشسنج

٣	٣/۵	۴	4/0	۵	4/0	۴	٣/۵	٣	۲/۵	جابجایی [mm]
										ولتاژ [V]
۲	1/0	١	٠/۵	•	٠/۵	١	1/0	۲	۲/۵	جابجایی [mm]
										ولتاژ [v]

 نمودار ولتاژ بر حسب جابجایی و خط برازششده

۱-۱۳) با توجه به نمودار، میزان خطی بودن خروجی سنسور را تعیین کنید.

			را بیان کنید.	طی تر است؟ دلیل آن	ار در کدام نقاط خع	۲-۱۳) نمود
ا توجیه نمایید.	ىتر است؟ دليل آن ر	ا میزان هیسترزیس بیش	مایید. در کدام نقاط	ود در نمودار ب <i>حث</i> ن	ره هیسترزیس موج	۱۳–۳) در با
ه دست آورید.	یب چندجملهای را ب	اصل برازش کرده و ضرا.	ب را روی نمودار ح	،، چندجملهای مناسہ	تفاده نرمافزار متلب	۴-۱۳) با اس
			ت آورید.	ین مجموعه را به دس	سیت اندازهگیری ای	۵-۱۳) حسا

	۱۴) سنسور القايي	<u>u</u>	این قسمت توسط مسئول آزمایشگاه تکمیل میشود.
<u> </u>	اعضای گروه:		تاريخ تحويل:
جموعا	تاریخ انجام آزمایش:		ميزان تأخير:
8	شماره گروه:	كلاس:	نمره:

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

جدول (۱) جدول نتایج آزمایش سنسور القایی

۵٠	40	۴٠	٣۵	٣٠	۲۵	۲٠	10	1.	۵	•	جابجایی [mm]
											ولتاژ [V]

نمودار ولتاژ بر حسب جابجایی و خط برازششده

۱-۱۴) با توجه به نمودار، میزان خطی بودن خروجی سنسور را مشخص نمایید.

T	(DT سنسور DT	LV	این قسمت توسط مسئول آزمایشگاه تکمیل میشود.
\$2942	اعضای گروه:		تاريخ تحويل:
جموعا	تاریخ انجام آزمایش:		ميزان تأخير:
g	شماره گروه:	كلاس:	نمره:

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

جدول (۱) جدول نتایج آزمایش سنسور LVDT

۵٠	40	4.	٣۵	٣٠	۲۵	۲٠	۱۵	1.	۵	•	جابجایی [mm]
											ولتاژ [V]

نمودار ولتاژ بر حسب جابجایی و خط برازش شده									

۱-۱۵) با توجه به نمودار، میزان خطی بودن خروجی سنسور را مشخص نمایید.

۲-۱۵) نحوه رفتار سنسور را با توجه به تئوری آزمایش و عملکرد سنسور تحلیل نمایید.
۱۵–۳) با توجه به برد اصلی، در قسمت مدار یکسو ساز، سه عدد خازن وجود دارد که ما از خازن 100nf استفاده کردیم. با ذکر دلیل
توضیح دهید که اگر از دو تای دیگر استفاده کنیم، چه تغییری در نتیجه مسئله حاصل خواهد شد؟
۴-۱۵) با استفاده نرمافزار متلب، چندجملهای مناسب را روی نمودار حاصل چسبانده و ضرایب چندجملهای را به دست آورید.
۱۵-۱۵) حساسیت اندازه گیری این سنسور را به دست آورید.

(۱۶ کالیبراسیون شتابسنج	این قسمت توسط مسئول آزمایشگاه تکمیل میشود.
اعضای گروه:	 تاریخ تحویل:
تاریخ انجام آزمایش:	ميزان تأخير:
شماره گروه: کلاس:	نمره:

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

دانشکده مهندسی برق – گروه کنترل

۱۶–۱– دو وضعیتی

g استای بردار جاذبه زمین، مقدار g یا g (مقدار منفی) را نشان می دهد؟ جرا با قرار گیری محور حساس شتاب نج در راستای بردار جاذبه زمین، مقدار g

۱۶–۱–۲) در شرایطی که نتوان سنسور را ۱۸۰ درجه دوران داد و در دو وضعیت پیشنهادشده قرار داد، چه میتوان کرد؟

۱-۱-۳) ریشه میانگین مربعات خطا (RMSE) اندازه گیریهای سنسور را به دست آورید.

۱-۱-۴) ضرایب کالیبراسیون (ضریب مقیاس و بایاس) را برای اندازه گیریهای انجام گرفته به دست آورید.

۱-۱-۵) اندازه گیریهای سنسور را با استفاده از ضرایب به دست آورده کالیبره کرده و RMSE آن را با حالت قبل از کالیبراسیون مقايسه كنيد.

۱۶–۲– برازش دادهها

جدول (۱) مقادیر حقیقی و اندازهگیری شده شتاب سنج

٧٠	۵٠	٣٠	۱۵	۵	•	-۵	-12	-٣•	-ƥ	- Y•	زاویه فراز (θ)
											$\sin(\theta)$
											$E[\tilde{a}_x]$

۱-۲-۱۶ نمودار میانگین اندازه گیریها را نسبت به مقادیر حقیقی رسم کنید.
نمودار ورودی-خروجی سنسور و خط برازششده

۱۶-۲-۲۶ خطی بر نمودار برازش کنید؛ معادله خط و خطای برازش را به دست آورید.

۱۶-۲-۳) با استفاده از خط برازش شده، ضرایب کالیبراسیون را بنویسید.

RMSE (۴-۲-۱۶ قبل و بعد از کالیبراسیون را برای این آزمایش برای هر یک از وضعیتها بهطور جداگانه محاسبه و جدول زیر را کامل کنید، سپس نمودار RMSE قبل و بعد از کالیبراسیون را برحسب زاویه فراز روی یک نمودار رسم کنید.

جدول (۲) ریشه میانگین مربعات خطای آزمایش

میانگین RMSE	٧٠	۵٠	٣٠	۱۵	۵	•	-۵	-12	-٣•	-5.	-7•	زاویه فراز (θ)
												RMSE قبل از
												كاليبراسيون
												RMSE بعد از
												كاليبراسيون

نمودار ریشه میانگین مربعات خطای آزمایش قبل و بعد از کالیبراسیون									

۱۶–۳– شش وضعیتی

۱-۳-۱۶ برای انجام کالیبراسیون به روش حداقل مربعات، حداقل به چند وضعیت نیاز است؟

۱۶–۳–۲) برای وضعیتهای داده شده در دستور کار، ماتریسهای M و Aرا تشکیل داده و بنویسید. سپس شتاب سنج موجود در آزمایشگاه را به روش حداقل مربعات با این وضعیتها کالیبره کرده و ضرایب را گزارش کنید.

RMSE (۳-۳-۱۶ قبل و بعد کالیبراسیون را باهم مقایسه کنید.

گزارش کار آزمایشگاه ابزار دقیق - نسخه پاییز ۱۳۹۸ ویرایش اول

1-1۷ تکمحوره

جدول (۱) جدول نتایج آزمایش

۵٠	4.	٣٠	7.	1+	•	-1+	-۲•	-4+	-4+	-4.	سرعت [rpm]
											$Eig[ilde{arphi}_z^{zu}ig]$

را برحسب سرعت دوران رسم کنید؛ سپس خطی بر دادهها برازش کرده و پارامترهای مدل را $E\left[\tilde{\omega}_{z}^{zu}\right]$ برای این سنسور محاسبه کنید.

نمودار ورودی–خروجی ژیروسکوپ و خط برازششده								

