DIPARTIMENTO DI MATEMATICA E INFORMATICA

Ι

Sia S un semigruppo numerico e sia $n \in S$ con $n \geq 4$. Se $\operatorname{Ap}(S, n) = \{0 = \omega_0 < \omega_1 < \dots < \omega_{n-1}\}$, allora $S' = \langle n, \omega_1 + n, \dots, \omega_{n-2} + n \rangle$ è un semigruppo numerico con m(S') = n e e(S') = n - 1.

П

Sia S un semigruppo numerico e sia $x \in G(S)$. Provare che esiste un semigruppo numerico irriducibile S_x con $S \subseteq S_x$ e $F(S_x) = x$.

III

Siano S_1, \ldots, S_n semigruppi numerici contenenti un semigruppo numerico S. Verificare che sono equivalenti:

- i) $S = S_1 \cap \cdots \cap S_n$.
- ii) Se $g \in PF(S)$, allora esiste un $i \in \{1, ..., n\}$ tale che $g \notin S_i$.

IV

- i) Siano S un semigruppo numerico con F(S) > 2m(S) e $f = \max\{x \notin S \mid F(S) x \notin S, \ x \neq \frac{F(S)}{2}\}$. Provare che $S \cup \{f\}$ è un semigruppo numerico con $F(S \cup \{f\}) = F(S)$ e $m(S \cup \{f\}) = m(S)$.
- ii) Verificare che esiste un insieme B, tale che $B \subseteq \{x \in \mathbb{N} \mid x > \frac{F(S)}{2}\}$, per cui $S \cup B$ è un semigruppo numerico irriducibile con $F(S \cup B) = F(S)$.

V

Sia S un semigruppo numerico e sia $\{f_1, \ldots, f_r\} = \{f \in PF(S) \mid f > \frac{F(S)}{2}\}$. Provare che esistono semigruppi numerici irriducibili S_1, \ldots, S_r tali che $F(S_i) = f_i$ per ogni $i \in \{1, \ldots, r\}$ e $S = S_1 \cap \cdots \cap S_r$. [Aiuto: Usa gli esercizi II e III]

VI

Provare che un semigruppo numerico S può essere espresso come intersezione di semigruppi numerici simmetrici se e solo se, per ogni intero pari $x \in G(S)$, esiste un intero positivo dispari y tale che $x + y \notin \langle S, y \rangle$. Mostrare che $\langle 4, 5, 6, 7 \rangle$ non può essere espresso come intersezione di semigruppi numerici simmetrici. [Aiuto: Usa l'Esercizio II]

VII

Sia S un semigruppo numerico con $PF(S) = \{g_1, \dots, g_t\}$. Provare che:

- i) Se $x \in \mathbb{Z}$, allora $x \notin S$ se e solo se $g_i x \in S$ per qualche $i \in \{1, \dots, t\}$.
- ii) Se tutti i g_i sono dispari, allora S può essere espresso come una intersezione di semigruppi numerici simmetrici. [Aiuto: Usa l'Esercizio II]

Mostrare che $S = \langle 5, 21, 24, 28, 32 \rangle$ è intersezione di semigruppi numerici simmetrici e che $16 \in PF(S)$.