Formelsammlung Mathematik

Februar 2018

Dieses Buch ist unter der Lizenz Creative Commons CC0 veröffentlicht.

0	0000	0 1 2 3	0
1	0001		1
2	0010		2
3	0011		3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	B	13
12	1100	C	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$

Polarkoordinaten

$$x = r \cos \varphi$$
$$y = r \sin \varphi$$
$$\varphi \in (-\pi, \pi]$$
$$\det J = r$$

Zylinderkoordinaten

$$x = r_{xy} \cos \varphi$$
$$y = r_{xy} \sin \varphi$$
$$z = z$$
$$\det J = r_{xy}$$

Kugelkoordinaten

$$x = r \sin \theta \cos \varphi$$

$$y = r \sin \theta \sin \varphi$$

$$z = r \cos \theta$$

$$\varphi \in (-\pi, \pi], \ \theta \in [0, \pi]$$

$$\det J = r^2 \sin \theta$$

$$\theta = \beta - \pi/2$$

$$\beta \in [-\pi/2, \pi/2]$$

$$\cos \theta = \sin \beta$$

$$\sin \theta = \cos \beta$$

Inhaltsverzeichnis

	Grundlagen	5		S S	18
1.1		5			18
	1.1.1 Zahlenbereiche	5		3.2.4 Cauchy-Folge	18
	1.1.2 Intervalle	5		3.2.5 Beschränkte Folgen	18
	1.1.3 Summen	5	3.3	Reihen	18
	1.1.4 Produkte	6		3.3.1 Absolute Konvergenz	19
	1.1.5 Binomischer Lehrsatz	6		3.3.2 Konvergenzkriterien	19
	1.1.6 Potenzgesetze	6			19
1.2	Gleichungen	6	3.4		19
	1.2.1 Äquivalenzumformungen	6			19
	1.2.2 Quadratische Gleichungen	7		3.4.2 Grenzwert einer Funktion	19
1.3	Komplexe Zahlen	7		3.4.3 Stetige Funktionen	19
	1.3.1 Rechenoperationen	7	3.5		19
	1.3.2 Betrag	7			19
	1.3.3 Konjugation	7		3.5.2 Ableitungsregeln	20
1.4	Logik	7			20
	1.4.1 Aussagenlogik	7			20
	1.4.2 Prädikatenlogik	9			20
1.5	Mengenlehre	10	3.6	Integralrechnung	20
	1.5.1 Definitionen	10			20
	1.5.2 Boolesche Algebra	10			20
	1.5.3 Teilmengenrelation	10			20
	1.5.4 Natürliche Zahlen	11			20
	1.5.5 ZFC-Axiome	11			21
	1.5.6 Kardinalität	12	3.7	Skalarfelder	21
1.6	Funktionen	12	0	3.7.1 Partielle Ableitungen	21
	1.6.1 Injektionen	12			21
	1.6.2 Surjektionen	12			22
	1.6.3 Bijektionen	12	3.8		22
	1.6.4 Komposition	12	0.0		22
	1.6.5 Einschränkung	13		3.8.2 Richtungsableitung	22
	1.6.6 Bild	13	3.9	Variationsrechnung	22
	1.6.7 Urbild	13	3.3		22
1.7	Formale Systeme	14			22
	1.7.1 Formale Sprachen	14	3 10		23
	1.7.2 Formale Grammatiken	14	5.10		23
	1.7.3 Formale Systeme	14		3.10.1 Fourierremen	25
1.8	Mathematische Strukturen	15	4 L	ineare Algebra	24
•		1.0	4.1		
	Funktionen	16	т.1		24
2.1	Elementare Funktionen	16			24
	2.1.1 Exponentialfunktion	16	4.2		25
	2.1.2 Logarithmusfunktion	16	4.2		25
0.0	2.1.3 Winkelfunktionen	16			25
2.2	Zahlentheoretische Funktionen	17		· · · · · · · · · · · · · · · · · · ·	25
	2.2.1 Eulersche Phi-Funktion	17	4.2	4.2.3 Vektorprodukt	
	2.2.2 Carmichael-Funktion	17	4.3	Matrizen	26
_				·	26
	Analysis	18	4.4	Lineare Gleichungssysteme	27
3.1	Ungleichungen	18	4.5	Multilineare Algebra	27
	3.1.1 Dreiecksungleichung	18			27
0.5	3.1.2 Bernoullische Ungleichung	18	4.6	-	28
3.2	Konvergenz	18			28
	3.2.1 Umgebungen	18		4.6.2 Ebenen	28

4 INHALTSVERZEICHNIS

5 Diff	ferentialgeometrie	29	9.2.1 Polynome	35
5.1 K	urven	29	9.3 Körper	36
5.	1.1 Parameterkurven	29		
5.	1.2 Differenzierbare Parameterkurven	29	10 Wahrscheinlichkeitsrechnung	37
5.2 K	oordinatensysteme	29	10.1 Diskrete Verteilungen	37
5.	2.1 Polarkoordinaten	29	10.1.1 Diskreter Wahrscheinlichkeitsraum	37
5.3 M	lannigfaltigkeiten	29	10.1.2 Axiome von Kolmogorow	37
	3.1 Grundbegriffe	29	10.1.3 Rechenregeln	37
5.	3.2 Vektorfelder	30	10.1.4 Bedingte Wahrscheinlichkeit	37
			10.1.5 Unabhängige Ereignisse	37
6 Fun	ktionentheorie	31	10.1.6 Gleichverteilung	38
6.1 H	olomorphe Funktionen	31	10.1.7 Zufallsvariablen	38
	armonische Funktionen	31		
6.3 W	/egintegrale	31	11 Tabellen	39
			11.1 Kombinatorik	
7 Dyr	namische Systeme	32	11.1.1 Binomialkoeffizienten	39
7.1 G	rundbegriffe	32	11.1.2 Stirling-Zahlen erster Art	40
7.2 Ite	erationen	32	11.1.3 Stirling-Zahlen zweiter Art	40
			11.2 Zahlentheorie	41
	nbinatorik	33	11.2.1 Primzahlen	41
	ombinatorische Funktionen	33		
٠.	1.1 Faktorielle	33	12 Anhang	42
٠.	1.2 Binomialkoeffizienten	33	12.1 Griechisches Alphabet	42
8.2 D	ifferenzenrechnung	33	12.2 Frakturbuchstaben	42
	ndliche Summen	33	12.3 Mathematische Konstanten	42
	ormale Potenzreihen	34	12.4 Physikalische Konstanten	42
_	4.1 Ring der formalen Potenzreihen	34	12.5 Einheiten	43
8.	4.2 Binomische Reihe	34	12.5.1 Vorsätze	43
			12.5.2 SI-System	43
9 Alg		35	12.5.3 Nicht-SI-Einheiten	43
	ruppentheorie	35	12.5.4 Britische Einheiten	43
	1.1 Grundbegriffe	35	12.6 Abkürzungsverzeichnis	44
_	1.2 Gruppenaktionen	35	12.6.1 Alphabetisches Verzeichnis	44
9.2 Ri	inge	35	12.6.2 Thematisches Verzeichnis	44

1 Grundlagen

1.1 Arithmetik

1.1.1 Zahlenbereiche

Natürliche Zahlen ab null:

$$\mathbb{N}_0 := \{0, 1, 2, 3, 4, \ldots\}.$$

Natürliche Zahlen ab eins:

$$\mathbb{N}_1 := \{1, 2, 3, 4, 5, \ldots\}.$$

Natürliche Zahlen:

N, wenn es keine Rolle spielt,

ob
$$\mathbb{N} := \mathbb{N}_0$$
 oder $\mathbb{N} := \mathbb{N}_1$.

Ganze Zahlen:

$$\mathbb{Z} := \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

Rationale Zahlen:

$$\mathbb{Q} := \{ \frac{z}{n} \mid z \in \mathbb{Z}, n \in \mathbb{N}_0 \}.$$

Reelle Zahlen:

$$\mathbb{R} := \overline{\mathbb{Q}}$$
 bezüglich $d(x,y) = |x-y|$.

Positive reelle Zahlen:

$$\mathbb{R}^+ := \{ x \in \mathbb{R} \mid x > 0 \}.$$

Nichtnegative reelle Zahlen:

$$\mathbb{R}_0^+ := \{ x \in \mathbb{R} \mid x \ge 0 \}.$$

Negative reelle Zahlen:

$$\mathbb{R}^- := \{ x \in \mathbb{R} \mid x < 0 \}.$$

Nichtpositive reelle Zahlen:

$$\mathbb{R}_0^- := \{ x \in \mathbb{R} \mid x \le 0 \}. \tag{1.10}$$

Komplexe Zahlen:

$$\mathbb{C} := \{ a + bi \mid a, b \in \mathbb{R} \}.$$

Quaternionen:

$$\mathbb{H} := \{ a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbb{R} \}.$$

Algebraische Zahlen:

$$\mathbb{A} := \{ a \in \mathbb{C} \mid \exists P \in \mathbb{Q}[X] \colon P(a) = 0 \}. \tag{1.13}$$

Irrationale Zahlen:

$$\mathbb{R} \setminus \mathbb{Q} = \{\sqrt{2}, \sqrt{3}, \pi, e, \ldots\}. \tag{1.14}$$

Transzendente Zahlen:

$$\mathbb{R} \setminus \mathbb{A} = \{ \pi, \mathbf{e}, \ldots \}. \tag{1.15}$$

Es gelten die folgenden Teilmengenbeziehungen:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$$
.

Es gilt die folgende Abstufung der Mächtigkeit:

$$|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = |\mathbb{A}| < |\mathbb{R}| = |\mathbb{C}|. \tag{1.17}$$

1.1.2 Intervalle

Abgeschlossene Intervalle:

$$[a,b] := \{ x \in \mathbb{R} \mid a \le x \le b \}. \tag{1.18}$$

Offene Intervalle:

$$(1.2) (a,b) := \{ x \in \mathbb{R} \mid a < x < b \}. (1.19)$$

Halboffene Intervalle:

$$(a, b] := \{ x \in \mathbb{R} \mid a < x \le b \}, \tag{1.20}$$

$$(1.3) [a,b) := \{x \in \mathbb{R} \mid a \le x < b\}. (1.21)$$

Unbeschränkte Intervalle:

$$(1.4) [a, \infty) := \{ x \in \mathbb{R} \mid a \le x \}, (1.22)$$

$$(a, \infty) := \{ x \in \mathbb{R} \mid a < x \}, \tag{1.23}$$

$$(-\infty, b] := \{ x \in \mathbb{R} \mid x \le b \},\tag{1.24}$$

$$(1.5) (-\infty, b) := \{ x \in \mathbb{R} \mid x < b \}. (1.25)$$

(1.6) **1.1.3 Summen**

(1.7) **Definition. Summe.**

Für eine Folge (a_n) :

(1.8)
$$\sum_{k=0}^{m-1} a_k := 0, \quad \text{(leere Summe)}$$
 (1.26)

(1.9)
$$\sum_{k=m}^{n} a_k := a_n + \sum_{k=m}^{n-1} a_k. \qquad (n \ge m)$$
 (1.27)

Für eine Konstante c gilt:

(1.11)
$$\sum_{k=m}^{n} c = (n-m+1) c. \tag{1.28}$$

(1.12) Der Summierungsoperator ist linear:

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k,$$
 (1.29)

$$\sum_{k=m}^{n} ca_k = c \sum_{k=m}^{n} a_k. \tag{1.30}$$

Indexverschiebung ist möglich:

$$\sum_{k=m}^{n} a_k = \sum_{k=m-j}^{n-j} a_{k+j} = \sum_{k=m+j}^{n+j} a_{k-j}.$$
 (1.31)

Aufspaltung ist möglich:

$$\sum_{k=m}^{n} a_k = \sum_{k=m}^{p} a_k + \sum_{k=n+1}^{n} a_k. \tag{1.32}$$

Vertauschung der Reihenfolge bei Doppelsummen:

$$\sum_{i=n}^{m} \sum_{j=a}^{n} a_{ij} = \sum_{i=a}^{n} \sum_{j=a}^{m} a_{ij}.$$
(1.33)

(1.16)

1.1.4 Produkte

Definition. Produkt.

Für eine Folge (a_n) :

$$\prod_{k=m}^{m-1} a_k := 1, \qquad \text{(leeres Produkt)} \tag{1.34}$$

$$\prod_{k=m}^{n} a_k := a_n \prod_{k=m}^{n-1} a_k. \qquad (n \ge m)$$
 (1.35)

Für eine Konstante c gilt:

$$\prod_{k=-\infty}^{n} c = c^{n-m+1}. (1.36)$$

Unter Voraussetzung des Kommutativgesetzes gilt

$$\prod_{k=m}^{n} (a_k b_k) = \left(\prod_{k=m}^{n} a_k\right) \left(\prod_{k=m}^{n} b_k\right),\tag{1.37}$$

$$\prod_{k=1}^{n} a_k^c = \left(\prod_{k=1}^{n} a_k\right)^c. \qquad (c \in \mathbb{N}_0)$$
 (1.38)

Formel (1.38) gilt auch für $a_k \in \mathbb{R}^+$ und $c \in \mathbb{C}$.

Formel (1.37) ist ein Spezialfall von

$$\prod_{i=p}^{m} \prod_{j=q}^{n} a_{ij} = \prod_{j=q}^{n} \prod_{i=p}^{m} a_{ij}.$$
(1.39)

Indexverschiebung ist möglich:

$$\prod_{k=m}^{n} a_k = \prod_{k=m-j}^{n-j} a_{k+j} = \prod_{k=m+j}^{n+j} a_{k-j}.$$
 (1.40)

Aufspaltung ist möglich:

$$\prod_{k=m}^{n} a_k = \left(\prod_{k=m}^{p} a_k\right) \left(\prod_{k=n+1}^{n} a_k\right). \tag{1.41}$$

Für $a_k \in \mathbb{R}^+$ gilt

$$\prod_{k=m}^{n} a_k = \exp\left(\sum_{k=m}^{n} \ln(a_k)\right). \tag{1.42}$$

1.1.5 Binomischer Lehrsatz

Sei R ein unitärer Ring, z. B. $R = \mathbb{R}$ oder $R = \mathbb{C}$. Für $a, b \in R$ mit ab = ba gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \tag{1.43}$$

und

$$(a-b)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k a^{n-k} b^k.$$
 (1.44)

Die ersten Formeln sind:

$$(a+b)^2 = a^2 + 2ab + b^2, (1.45)$$

$$(a-b)^2 = a^2 - 2ab + b^2, (1.46)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3, (1.47)$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3, (1.48)$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4, (1.49)$$

$$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4. (1.50)$$

1.1.6 Potenzgesetze

Definition. Potenz.

Für a aus einem Monoid und $n \in \mathbb{Z}, n \geq 1$:

$$a^0 := 1, (1.51)$$

$$a^n := a^{n-1} \cdot a. \tag{1.52}$$

Für $a \in \mathbb{R}, a > 0$ und $x \in \mathbb{C}$:

$$a^x := \exp(\ln(a)x). \tag{1.53}$$

Für $a \in \mathbb{R}, a > 0$ und $x, y \in \mathbb{C}$ gilt:

$$a^{x+y} = a^x a^y$$
, $a^{x-y} = \frac{a^x}{a^y}$, $a^{-x} = \frac{1}{a^x}$. (1.54)

1.2 Gleichungen

Definition. Bestimmungsgleichung.

Sind f, g auf der Grundmenge G definierte Funktionen, so nennt man

$$f(x) = g(x) \tag{1.55}$$

eine Bestimmungsgleichung, wenn die Lösungemenge

$$L = \{ x \in G \mid f(x) = g(x) \}$$
 (1.56)

gesucht ist.

Bei den $x \in G$ kann es sich auch um Tupel $x = (x_1, x_2)$ oder $x = (x_1, x_2, x_3)$ usw. handeln. Man spricht in diesem Fall von einer Gleichung in mehreren Variablen.

Handelt es sich bei den Funktionswerten von f,g um Tupel, dann spricht man von einem Gleichungssystem.

1.2.1 Aquivalenzumformungen

Äquivalenzumformungen lassen die Lösungsmenge einer Gleichung unverändert. Seien A(x), B(x) zwei Aussageformen bzw. zwei Gleichungen. Aus

$$\forall x \in G [A(x) \iff B(x)] \tag{1.57}$$

folgt

$$\{x \in G \mid A(x)\} = \{x \in G \mid B(x)\}. \tag{1.58}$$

Aus

$$\forall x \in G [A(x) \Longrightarrow B(x)] \tag{1.59}$$

folgt jedoch nur noch

$$\{x \in G \mid A(x)\} \subseteq \{x \in G \mid B(x)\}. \tag{1.60}$$

Seien f,g,h Funktionen mit Definitionsmenge G und Zielmenge $Z=\mathbb{R}$ oder $Z=\mathbb{C}.$

Für alle x gilt:

$$f(x) = g(x) \Longleftrightarrow f(x) + h(x) = g(x) + h(x), \quad (1.61)$$

$$f(x) = g(x) \Longleftrightarrow f(x) - h(x) = g(x) - h(x). \tag{1.62}$$

Besitzt h(x) keine Nullstellen, dann gilt für alle x:

$$f(x) = g(x) \iff f(x)h(x) = g(x)h(x), \tag{1.63}$$

$$f(x) = g(x) \iff \frac{f(x)}{h(x)} = \frac{f(x)}{h(x)}.$$
 (1.64)

Besitzt h(x) aber Nullstellen, dann gilt immerhin noch für alle x:

$$f(x) = g(x) \implies f(x)h(x) = g(x)h(x). \tag{1.65}$$

Sei $f,g\colon G\to Z.$ Sei $\varphi_x\colon Z\to Z'$ eine Injektion für jedes $x\in G.$ Es gilt

$$f(x) = g(x) \iff \varphi_x(f(x)) = \varphi_x(g(x))$$
 (1.66)

für alle $x \in G$.

Bei einer Kette von Äquivalenzumformungen wird links das Äquivalenzzeichen geschrieben, in der Mitte die Gleichung und rechts hinter einem senkrechten Strich die Operation $\varphi_x(w)$, welche als nächstes auf beide Seiten der Gleichung angwendet werden soll.

Beispiel:

$$2x + 4 = 2x^2 - 8x + 2 \qquad | w/2$$

$$\iff x + 2 = x^2 - 4x + 1 \qquad | w - 2$$

$$\iff x = x^2 - 4x - 1 \qquad | w - x$$

$$\iff 0 = x^2 - 7x - 1.$$

Am Anfang befinden sich eventuell Bedingungen für x. Bei Fallunterscheidungen wird eine Verschärfung der Bedingungen vorgenommen, so dass es zur Verkleinerung der Grundmenge kommt. Nach einer Fallunterscheidung ergeben sich unter Umständen neue Injektionen.

1.2.2 Quadratische Gleichungen

Definition. Quadratische Gleichung.

Eine Gleichung der Form $ax^2 + bx + c = 0$ mit $a \neq 0$ heißt quadratische Gleichung.

Wegen $a \neq 0$ lässt sich die Gleichung durch a dividieren und es ensteht die äquivalente Normalform $x^2 + px + q = 0$ mit p := b/a und q := c/a.

Lösung. Seien nun die a,b,c reelle Zahlen. Die Zahl

$$D = p^2 - 4q (1.67)$$

heißt Diskriminante.Für D>0 gibt es zwei reelle Lösungen:

$$x_1 = \frac{-p - \sqrt{D}}{2} = \frac{-b - \sqrt{b^2 - 4ac}}{2a},\tag{1.68}$$

$$x_2 = \frac{-p + \sqrt{D}}{2} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$
 (1.69)

Für D=0 fallen beiden Lösungen zu einer doppelten Lösung zusammen:

$$x_1 = x_2 = -\frac{p}{2} = -\frac{b}{2a}. (1.70)$$

Für D<0 gibt es keine reelle Lösung. Aber es gibt zwei komplexe Lösungen, die zueinander konjugiert sind:

$$x_1 = \frac{-p - i\sqrt{|D|}}{2}, \quad x_2 = \frac{-p + i\sqrt{|D|}}{2}.$$
 (1.71)

In jedem Fall gelten die Formeln von Vieta:

$$p = -(x_1 + x_2), q = x_1 x_2. (1.72)$$

1.3 Komplexe Zahlen

1.3.1 Rechenoperationen

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2},\tag{1.73}$$

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}. (1.74)$$

1.3.2 Betrag

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$|z_1 z_2| = |z_1| |z_2|, (1.75)$$

$$z_2 \neq 0 \implies \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},\tag{1.76}$$

$$z\,\overline{z} = |z|^2. \tag{1.77}$$

1.3.3 Konjugation

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \qquad \overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2, \qquad (1.78)$$

$$\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2, \qquad z_2 \neq 0 \implies \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}, \quad (1.79)$$

$$\overline{\overline{z}} = z, \qquad |\overline{z}| = |z|, \qquad z\,\overline{z} = |z|^2, \tag{1.80}$$

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \quad \operatorname{Im}(z) = \frac{z - \overline{z}}{2i}, \quad (1.81)$$

$$\overline{\cos(z)} = \cos(\overline{z}), \qquad \overline{\sin(z)} = \sin(\overline{z}), \qquad (1.82)$$

$$\overline{\exp(z)} = \exp(\overline{z}). \tag{1.83}$$

1.4 Logik

1.4.1 Aussagenlogik

1.4.1.1 Boolesche Algebra

Distributivgesetze:

$$A \lor (B \land C) \iff (A \lor B) \land (A \lor C),$$
 (1.84)

$$A \wedge (B \vee C) \iff (A \wedge B) \vee (A \wedge C).$$
 (1.85)

1.4.1.2 Zweistellige Funktionen

Es gibt 16 zweistellige boolesche Funktionen.

11 d

Tabelle 1.1: Rechnen mit komplexen Zahlen

Name	Operation	Polarform	kartesische Form
Identität	z	$= r e^{i\varphi}$	=a+bi
Addition	$z_1 + z_2$		$=(a_1+a_2)+(b_1+b_2)i$
Subtraktion	$z_1 - z_2$		$=(a_1-a_2)+(b_1-b_2)i$
Multiplikation	$z_{1}z_{2}$	$= r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$	$= (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i$
Division	$\frac{z_1}{z_2}$	$= \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$	$= \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}i$
Kehrwert	$\frac{1}{z}$	$= \frac{1}{r} e^{-i\varphi}$	$= \frac{\ddot{a}}{a^2 + b^2} - \frac{b}{a^2 + b^2} i$
Realteil	$\operatorname{Re}(z)$	$=\cos\varphi$	=a
Imaginärteil	$\operatorname{Im}(z)$	$=\sin\varphi$	= b
Konjugation	\overline{z}	$= r e^{-\varphi i}$	=a-bi
Betrag	z	=r	$=\sqrt{a^2+b^2}$
Argument	arg(z)	$=\varphi$	$= s(b) \arccos\left(\frac{a}{r}\right)$

$$s(b) := \begin{cases} +1 & \text{if } b \ge 0, \\ -1 & \text{if } b < 0 \end{cases}$$

Tabelle 1.2: Boolesche Algebra

Disjunktion	Konjunktion	
$A \lor A \Leftrightarrow A$	$A \wedge A \Leftrightarrow A$	Idempotenzgesetze
$A \lor 0 \Leftrightarrow A$	$A \wedge 1 \Leftrightarrow A$	Neutralitätsgesetze
$A \lor 1 \Leftrightarrow 1$	$A \wedge 0 = 0$	Extremalgesetze
$A \vee \overline{A} \Leftrightarrow 1$	$A \wedge \overline{A} \Leftrightarrow 0$	Komplementärgesetze
$A \lor B \Leftrightarrow B \lor A$	$A \wedge B \Leftrightarrow B \wedge A$	Kommutativgesetze
$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$	Assoziativgesetze
$\overline{A \vee B} \Leftrightarrow \overline{A} \wedge \overline{B}$	$\overline{A \wedge B} \Leftrightarrow \overline{A} \vee \overline{B}$	De Morgansche Regeln
$A \lor (A \land B) \Leftrightarrow A$	$A \wedge (A \vee B) \Leftrightarrow A$	Absorptionsgesetze

Nr.	dcba	Fkt.	Name	1 4 1 4 Tautalarian	
0	0000	0	Kontradiktion	1.4.1.4 Tautologien	
1	0001	$\overline{A \vee B}$	NOR		
2	0010	$\overline{B} \Rightarrow A$		Modus ponens:	
3	0011	\overline{A}		$(A \Rightarrow B) \land A \implies B.$	(1.89)
4	0100	$\overline{A} \Rightarrow B$		Modus tollens:	,
5	0101	\overline{B}			
6	0110	$A \oplus B$	Kontravalenz	$(A \Rightarrow B) \wedge \overline{B} \implies \overline{A}.$	(1.90)
7	0111	$\overline{A \wedge B}$	NAND	Modus tollendo ponens:	
8	1000	$A \wedge B$	Konjunktion	•	
9	1001	$A \Leftrightarrow B$	Äquivalenz	$(A \vee B) \wedge \overline{A} \implies B.$	(1.91)
10	1010	$\mid B \mid$	Projektion	Modus ponendo tollens:	
11	1011	$A \Rightarrow B$	Implikation	•	
12	1100	$\mid A \mid$	Projektion	$\overline{A \wedge B} \wedge A \implies \overline{B}.$	(1.92)
13	1101	$B \Rightarrow A$	Implikation	Vt	
14	1110	$A \vee B$	Disjunktion	Kontraposition:	
15	1111	1	Tautologie	$A \Rightarrow B \iff \overline{B} \Rightarrow \overline{A}.$	(1.93)

1.4.1.3 Darstellung mit Negation, Konjunktion und Disjunktion

$$(\overline{A} \Rightarrow B \wedge \overline{B}) \implies A. \tag{1.94}$$

Zerlegung einer Äquivalenz:

Beweis durch Widerspruch:

$$A \Rightarrow B \iff \overline{A} \lor B, \tag{1.86} \qquad (A \Leftrightarrow B) \iff (A \Rightarrow B) \land (B \Rightarrow A). \tag{1.95}$$

$$(A \Leftrightarrow B) \iff (\overline{A} \land \overline{B}) \lor (A \land B), \tag{1.87} \text{ Kettenschluss:}$$

$$A \oplus B \iff (\overline{A} \land B) \lor (A \land \overline{B}). \tag{1.88}$$

1.4. LOGIK 9

Ringschluss:

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

$$\Rightarrow (A \Leftrightarrow B) \land (A \Leftrightarrow C) \land (B \Leftrightarrow C).$$
 (1.97)

Ringschluss, allgemein:

$$(A_1 \Rightarrow A_2) \land \dots \land (A_{n-1} \Rightarrow A_n) \land (A_n \Rightarrow A_1)$$

$$\Rightarrow \forall i, j [A_i \Leftrightarrow A_j].$$
 (1.98)

Ersetzungsregel:

Für jede Funktion $P \colon \{0,1\} \to \{0,1\}$ gilt:

$$P(A) \wedge (A \Leftrightarrow B) \implies P(B).$$
 (1.99)

Regel zur Implikation:

$$A \wedge B \Rightarrow C \iff A \Rightarrow (B \Rightarrow C).$$
 (1.100)

Vollständige Fallunterscheidung:

$$(A \Rightarrow C) \land (B \Rightarrow C) \implies (A \oplus B \Rightarrow C), \quad (1.101)$$

$$(A \Rightarrow C) \land (B \Rightarrow C) \iff (A \lor B \Rightarrow C).$$
 (1.102)

Vollständige Fallunterscheidung, allgemein:

$$\forall k[A_k \Rightarrow C] \implies (\bigoplus_{k=1}^n A_k \Rightarrow C), \tag{1.103}$$

$$\forall k[A_k \Rightarrow C] \iff (\exists k[A_k] \Rightarrow C). \tag{1.104}$$

1.4.2 Prädikatenlogik 1.4.2.1 Rechenregeln

Verneinung (De Morgansche Regeln):

$$\overline{\forall x[P(x)]} \iff \exists x[\overline{P(x)}],$$
 (1.105)

$$\exists x [P(x)] \iff \forall x [\overline{P(x)}].$$
 (1.106)

Verallgemeinerte Distributivgesetze:

$$P \lor \forall x[Q(x)] \iff \forall x[P \lor Q(x)],$$
 (1.107)

$$P \wedge \exists x [Q(x)] \iff \exists x [P \wedge Q(x)].$$
 (1.108)

Verallgemeinerte Idempotenzgesetze:

$$\exists x \in M [P] \iff (M \neq \{\}) \land P$$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 0 & \text{wenn } M = \{\}. \end{cases}$$

$$(1.109)$$

$$\forall x \in M [P] \iff (M = \{\}) \vee P$$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 1 & \text{wenn } M = \{\}. \end{cases}$$
(1.110)

Äquivalenzen:

$$\forall x \forall y [P(x,y)] \iff \forall y \forall x [P(x,y)], \tag{1.111}$$

$$\exists x \exists y [P(x,y)] \iff \exists y \exists x [P(x,y)], \tag{1.112}$$

$$\forall x [P(x) \land Q(x)] \iff \forall x [P(x)] \land \forall x [Q(x)], \tag{1.113}$$

$$\exists x [P(x) \lor Q(x)] \iff \exists x [P(x)] \lor \exists x [Q(x)], \qquad (1.114)$$

$$\forall x [P(x) \Rightarrow Q] \iff \exists x [P(x)] \Rightarrow Q, \tag{1.115}$$

$$\forall x[P \Rightarrow Q(x)] \iff P \Rightarrow \forall x[Q(x)],$$
 (1.116)

$$\exists x [P(x) \Rightarrow Q(x)] \iff \forall x [P(x)] \Rightarrow \exists x [Q(x)].$$
 (1.117)

$$\exists x \forall y [P(x,y)] \implies \forall y \exists x [P(x,y)],$$
 (1.118)

$$\forall x [P(x)] \lor \forall x [Q(x)] \implies \forall x [P(x) \lor Q(x)], \tag{1.119}$$

$$\exists x [P(x) \land Q(x)] \implies \exists x [P(x)] \land \exists x [Q(x)], \qquad (1.120)$$

$$\forall x[P(x) \Rightarrow Q(x)] \implies (\forall x[P(x)] \Rightarrow \forall x[Q(x)]), (1.121)$$

$$\forall x [P(x) \Leftrightarrow Q(x)] \implies (\forall x [P(x)] \Leftrightarrow \forall x [Q(x)]). \quad (1.122)$$

1.4.2.2 Endliche Mengen

Sei $M = \{x_1, \dots, x_n\}$. Es gilt:

$$\forall x \in M [P(x)] \iff P(x_1) \land \ldots \land P(x_n), \qquad (1.123)$$

$$\exists x \in M [P(x)] \iff P(x_1) \vee \ldots \vee P(x_n). \quad (1.124)$$

1.4.2.3 Beschränkte Quantifizierung

$$\forall x \in M [P(x)] :\iff \forall x [x \notin M \lor P(x)] \\ \iff \forall x [x \in M \Rightarrow P(x)],$$
 (1.125)

$$\exists x \in M [P(x)] :\iff \exists x [x \in M \land P(x)], \qquad (1.126)$$

$$\forall x \in M \setminus N[P(x)] \iff \forall x[x \notin N \Rightarrow P(x)]. \quad (1.127)$$

1.4.2.4 Quantifizierung über Produktmengen

$$\forall (x,y) \left[P(x,y) \right] \iff \forall x \forall y [P(x,y)], \tag{1.128}$$

$$\exists (x,y) [P(x,y)] \iff \exists x \exists y [P(x,y)]. \tag{1.129}$$

Analog gilt

$$\forall (x, y, z) \iff \forall x \forall y \forall z, \tag{1.130}$$

$$\exists (x, y, z) \iff \exists x \exists y \exists z \tag{1.131}$$

usw.

1.4.2.5 Alternative Darstellung

Sei $P: G \to \{0,1\}$ und $M \subseteq G$. Mit P(M) ist die Bildmenge von P bezüglich M gemeint. Es gilt

$$\forall x \in M [P(x)] \iff P(M) = \{1\}$$

$$\iff M \subseteq \{x \in G \mid P(x)\}$$
(1.132)

und

$$\exists x \in M [P(x)] \iff \{1\} \subseteq P(M) \\ \iff M \cap \{x \in G \mid P(x)\} \neq \{\}.$$
 (1.133)

1.4.2.6 Eindeutigkeit

Quantor für eindeutige Existenz:

 $\exists !x [P(x)]$

$$: \iff \exists x \left[P(x) \land \forall y \left[P(y) \Rightarrow x = y \right] \right] \tag{1.134}$$

$$\iff \exists x \left[P(x) \right] \land \forall x \forall y \left[P(x) \land P(y) \Rightarrow x = y \right].$$

1.5 Mengenlehre

1.5.1 Definitionen

Aufzählende Notation:

$$a \in \{x_1, \dots, x_n\} : \Leftrightarrow a = x_1 \lor \dots \lor a = x_n. \quad (1.135)$$

Beschreibende Notation:

$$a \in \{x \mid P(x)\} :\iff P(a), \tag{1.136}$$

$$\{x \in M \mid P(x)\} := \{x \mid x \in M \land P(x)\},$$
 (1.137)

$$\{f(x) \mid P(x)\} := \{y \mid y = f(x) \land P(x)\}.$$
 (1.138)

Teilmengenrelation:

$$A \subseteq B :\iff \forall x [x \in A \implies x \in B].$$
 (1.139)

Gleichheit:

$$A = B :\iff \forall x [x \in A \iff x \in B]. \tag{1.140}$$

Vereinigungsmenge:

$$A \cup B := \{ x \mid x \in A \lor x \in B \}. \tag{1.141}$$

Schnittmenge:

$$A \cap B := \{x \mid x \in A \land x \in B\}. \tag{1.142}$$

Differenzmenge:

$$A \setminus B := \{ x \mid x \in A \land x \notin B \}. \tag{1.143}$$

Symmetrische Differenz:

$$A \triangle B := \{ x \mid x \in A \oplus x \in B \}. \tag{1.144}$$

Komplementärmenge:

$$A^{c} := G \setminus A.$$
 (G: Grundmenge) (1.145)

Vereinigung über indizierte Mengen:

$$\bigcup_{i \in I} A_i := \{ x \mid \exists i \in I \ [x \in A_i] \}. \tag{1.146}$$

Schnitt über indizierte Mengen:

$$\bigcap_{i \in I} A_i := \{ x \mid \forall i \in I [x \in A_i] \}. \tag{1.147}$$

1.5.2 Boolesche Algebra

Distributivgesetze:

$$M \cup (A \cap B) = (M \cup A) \cap (M \cup B), \tag{1.148}$$

$$M \cap (A \cup B) = (M \cap A) \cup (M \cap B). \tag{1.149}$$

1.5.3 Teilmengenrelation

Zerlegung der Gleichheit:

$$A = B \iff A \subseteq B \land B \subseteq A. \tag{1.150}$$

Umschreibung der Teilmengenrelation:

$$A \subseteq B \iff A \cap B = A$$

$$\iff A \cup B = B$$

$$\iff A \setminus B = \{\}.$$
(1.151)

Kontraposition:

$$A \subseteq B = B^{c} \subseteq A^{c}. \tag{1.152}$$

1.5. MENGENLEHRE 11

Tabelle 1.3: Boolesche Algebra

Vereinigung	Schnitt	
$A \cup A = A$	$A \cap A = A$	Idempotenzgesetze
$A \cup \{\} = A$	$A \cap G = A$	Neutralitätsgesetze
$A \cup \check{G} = G$	$A \cap \{\} = \{\}$	Extremalgesetze
$A \cup \overline{A} = G$	$A \cap \overline{A} = \{\}$	Komplementärgesetze
$A \cup B = B \cup A$	$A \cap B = B \cap A$	Kommutativgesetze
$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	Assoziativgesetze
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgansche Regeln

 $A \cap (A \cup B) = A$

G: Grundmenge

 $A \cup (A \cap B) = A$

1.5.4 Natürliche Zahlen

Von-Neumann-Modell

Mengentheoretisches Modell der natürlichen Zahlen:

$$0 := \{\}, \quad 1 := \{0\}, \quad 2 := \{0, 1\},$$

 $3 := \{0, 1, 2\}, \quad \text{usw.}$ (1.153)

Nachfolgerfunktion:

$$x' := x \cup \{x\}. \tag{1.154}$$

1.5.4.2 Vollständige Induktion

Ist A(n) mit $n \in \mathbb{N}$ eine Aussageform, so gilt:

$$A(n_0) \wedge \forall n \ge n_0 [A(n) \Rightarrow A(n+1)]$$

$$\implies \forall n \ge n_0 [A(n)].$$
(1.155)

Die Aussage $A(n_0)$ ist der *Induktionsanfang*. Die Implikation

$$A(n) \Rightarrow A(n+1) \tag{1.156}$$

heißt Induktionsschritt. Beim Induktionsschritt muss A(n+1) gezeigt werden, wobei A(n) als gültig vorausgesetzt werden darf.

1.5.5 **ZFC-Axiome**

Axiom der Bestimmtheit:

$$\forall A \forall B [A = B \iff \forall x [x \in A \Leftrightarrow x \in B]]. \quad (1.157)$$

Axiom der leeren Menge:

$$\exists M \forall x \, [x \notin M]. \tag{1.158}$$

Axiom der Paarung:

$$\forall x \forall y \exists M \forall a [a \in M \iff x = a \lor y = a]. \tag{1.159}$$

Axiom der Vereinigung:

$$\forall S \exists M \forall x [x \in M \iff \exists A \in S [x \in A]]. \tag{1.160}$$

Axiom der Aussonderung:

$$\forall A \exists M \forall x [x \in M \iff x \in A \land \varphi(x)]. \tag{1.161}$$

Axiom des Unendlichen:

$$\exists M \left[\{ \} \in M \land \forall x \in M \left[x \cup \{x\} \in M \right] \right]. \tag{1.162}$$

Axiom der Potenzmenge:

$$\forall A \exists M \forall T [T \in M \iff T \subseteq A]. \tag{1.163}$$

Axiom der Ersetzung:

$$\forall a \in A \exists^{=1} b \left[\varphi(a, b) \right]$$

$$\implies \exists B \forall b \left[b \in B \iff \exists a \in A \left[\varphi(a, b) \right] \right].$$

$$(1.164)$$

Axiom der Fundierung:

Absorptionsgesetze

$$\forall A [A \neq \{\} \implies \exists x \in A [x \cap A = \{\}]]. \tag{1.165}$$

Auswahlaxiom:

$$\forall x, y \in A [x \neq y \implies x \cap y = \{\}]$$

$$\wedge \forall x \in A [x \neq \{\}]$$

$$\implies \exists M \ \forall x \in A \ \exists^{=1} u \in x [u \in M].$$
(1.166)

1.5.6 Kardinalität

Definition. Gleichmächtigkeit.

Zwei Mengen M,N heißen gleichmächtig, notiert als |M|=|N|, wenn es eine bijektive Abbildung $f\colon M\to N$ gibt.

Eine Menge M heißt weniger mächtig oder gleichmächtig, notiert als $|M| \leq |N|$, wenn es eine injektive Abbildung $f \colon M \to N$ gibt. Äquivalent dazu ist, dass es eine surjektive Abbildung $g \colon N \to M$ gibt.

Eine Menge heißt abzählbar unendlich, wenn sie gleichmächtig zu den natürlichen Zahlen ist.

Gleichmächtigkeit ist eine Äquivalenzrelation.

Definition. Kardinalzahl.

Die Äquivalenzklassen

$$|M| := \{ N \mid |M| = |N| \} \tag{1.167}$$

heißen Kardinalzahlen.

Satz von Cantor-Bernstein.

Aus $|M| \leq |N|$ und $|N| \leq |M|$ folgt |M| = |N|.

1.5.6.1 Potenzmengen

Satz von Cantor. Für jede Menge gilt $|M| < |2^M|$. Ist M endlich, dann gilt $|M| = 2^{|M|}$.

1.6 Funktionen

1.6.1 Injektionen

Definition. Injektion.

Eine Funktion $f: A \to B$ heißt *injektiv*, wenn

$$\forall x_1, x_2 \in A[f(x_1) = f(x_2) \implies x_1 = x_2]$$
 (1.168)

gilt.

Definition. Linksinverse.

Sei $f: A \to B$. Eine Funktion $g: B \to A$ mit

$$g \circ f = \mathrm{id}_A \tag{1.169}$$

heißt Linksinverse von f.

Eine Funktion ist genau dann injektiv, wenn sie eine Linksinverse besitzt. Zu einer Injektion kann es aber mehrere unterschiedliche Linksinverse geben.

1.6.2 Surjektionen

Definition. Surjektion.

Eine Funktion $f \colon A \to B$ heißt surjektiv, wenn f(A) = B ist. Damit ist gemeint, dass jedes Element der Zielmenge wenigstens einmal der Funktionswert von einem Element der Definitionsmenge ist.

Definition. Rechtsinverse.

Sei $f: A \to B$. Eine Funktion $g: B \to A$ mit

$$f \circ g = \mathrm{id}_B \tag{1.170}$$

heißt Rechtsinverse von f.

Eine Funktion ist genau dann surjektiv, wenn sie eine Rechtsinverse besitzt. Zu einer Surjektion kann es aber mehrere unterschiedliche Rechtsinverse geben.

1.6.3 Bijektionen

Definition. Bijektion.

Eine Funktion $f\colon A\to B$ heißt bijektiv, wenn sie injektiv und surjektiv ist.

Eine Funktion $f : A \to B$ ist genau dann bijektiv, wenn es ein q mit

$$g \circ f = \mathrm{id}_A \quad \text{und} \quad f \circ g = \mathrm{id}_B$$
 (1.171)

gibt. Wenn f bijektiv ist, so gibt es g genau einmal und g wird die Umkehrfunktion oder Inverse von f genannt und als f^{-1} notiert.

1.6.4 Komposition

Definition. Komposition.

Für zwei Funktionen $f: A \to B$ und $g: B \to C$ ist die Komposition (g nach f) durch

$$g \circ f \colon A \to C, \quad (g \circ f)(x) := g(f(x))$$
 (1.172)

definiert.

Für die Komposition gilt das Assozativgesetz:

$$(f \circ g) \circ h = f \circ (g \circ h). \tag{1.173}$$

Die Komposition von Injektionen ist eine Injektion.

Die Komposition von Surjektionen ist eine Surjektion.

Die Komposition von Bijektionen ist eine Bijektion.

Sind f, g Bijektionen, so gilt

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}. \tag{1.174}$$

Ist $g \circ f$ injektiv, so ist f injektiv.

Ist $g \circ f$ surjektiv, so ist g surjektiv.

Ist $g \circ f$ bijektiv, so ist f injektiv und g surjektiv.

Definition. Iteration.

Für eine Funktion $\varphi \colon A \to A$ wird

$$\varphi^0 := \mathrm{id}_A, \quad \varphi^{n+1} := \varphi^n \circ \varphi$$
 (1.175)

Iteration von φ genannt.

1.6. FUNKTIONEN 13

1.6.5 Einschränkung

Definition. Einschränkung.

Sei $f: A \to B$ und $M \subseteq A$. Die Funktion g(x) = f(x)mit $g: M \to B$ wird Einschränkung von f genannt und mit $f|_{M}$ notiert.

Sei $f: A \to B$ und $M \subseteq A$. Mit der Inklusionsabbildung i(x) := x mit $i: M \to A$ gilt:

$$f|_{M} = f \circ i. \tag{1.176}$$

Es gilt

$$g \circ (f|_{M}) = (g \circ f)|_{M}.$$
 (1.177)

1.6.6 Bild

Definition. Bild.

Ist $f: A \to B$ und $M \subseteq A$, so wird

$$f(M) := \{ f(x) \mid x \in M \} \tag{1.178}$$

das Bild von M unter f genannt.

Es gilt

$$f(M \cup N) = f(M) \cup f(N), \tag{1.179}$$

$$f(M \cap N) = f(M) \cap f(N), \tag{1.180}$$

$$f\left(\bigcup_{i\in I} M_i\right) = \bigcup_{i\in I} f(M_i),\tag{1.181}$$

$$f\left(\bigcup_{i\in I} M_i\right) = \bigcup_{i\in I} f(M_i), \tag{1.181}$$

$$I \neq \emptyset \implies f\left(\bigcap_{i\in I} M_i\right) = \bigcap_{i\in I} f(M_i), \tag{1.182}$$

$$M \subseteq N \implies f(M) \subseteq f(N),$$
 (1.183)

$$f(\emptyset) = \emptyset, \tag{1.184}$$

$$(g \circ f)(M) = g(f(M)).$$
 (1.185)

1.6.7 Urbild

Definition. Urbild.

Ist $f: A \to B$, so wird

$$f^{-1}(M) := \{ x \in A \mid f(x) \in M \}. \tag{1.186}$$

das Urbild von M unter f genannt.

Es gilt

$$f^{-1}(M \cup N) = f^{-1}(M) \cup f^{-1}(N), \tag{1.187}$$

$$f^{-1}(M \cap N) = f^{-1}(M) \cap f^{-1}(N), \tag{1.188}$$

$$f^{-1}\Big(\bigcup_{i\in I} M_i\Big) = \bigcup_{i\in I} f^{-1}(M_i),$$
 (1.189)

$$f^{-1}\left(\bigcup_{i\in I} M_i\right) = \bigcup_{i\in I} f^{-1}(M_i), \qquad (1.189)$$

$$I \neq \emptyset \implies f^{-1}\left(\bigcap_{i\in I} M_i\right) = \bigcap_{i\in I} f^{-1}(M_i), \qquad (1.190)$$

$$M \subseteq N \implies f^{-1}(M) \subseteq f^{-1}(N),$$
 (1.191)

$$f^{-1}(\emptyset) = \emptyset, \tag{1.192}$$

$$f^{-1}(B) = A, (1.193)$$

$$f^{-1}(M \setminus N) = f^{-1}(M) \setminus f^{-1}(N),$$
 (1.194)

$$f^{-1}(B \setminus M) = B \setminus f^{-1}(M), \tag{1.195}$$

$$(g \circ f)^{-1}(M) = f^{-1}(g^{-1}(M)), \tag{1.196}$$

$$(f|_{M})^{-1}(N) = M \cap f^{-1}(N).$$
 (1.197)

1.7 Formale Systeme

1.7.1 Formale Sprachen

Definition. Formale Sprache.

Eine formale Sprache L ist eine Teilmenge der kleenschen Hülle über einer Menge Σ , kurz $L \subseteq \Sigma^*$. Die Menge Σ wird Alphabet genannt, ihre Elemente heißen Symbole.

Die kleensche Hülle Σ^* besteht aus allen möglichen Konkatenationen von Symbolen aus Σ . Die Konkatenationen von Σ^* heißen Wörter. Die leere Konkatenation ist zulässig und wird mit ε notiert. Die Elemente von L heißen wohlgeformte Wörter oder wohlgeformte Formeln, engl. well formed formulas, kurz wff.

Ein Wort a ist ein Tupel

$$a = (a_1, \dots, a_m). \qquad (a_k \in \Sigma) \tag{1.198}$$

Sind a, b zwei Wörter, dann ist mit ab deren Konkatenation gemeint:

$$ab := (a_1, \dots, a_m, b_1, \dots b_n).$$
 (1.199)

Es gilt $\varepsilon a=a$ und $a\varepsilon=a.$ Bei ε handelt es sich um das leere Tupel.

Definition. Konkatenation von Sprachen.

Konkatenation von L_1 und L_2 :

$$L_1 \circ L_2 := \{ab \mid a \in L_1, b \in L_2\}.$$
 (1.200)

Definition. Potenz einer Sprache.

Potenzen von L:

$$L^0 := \{ \varepsilon \}, \tag{1.201}$$

$$L^n := L^{n-1} \circ L. \tag{1.202}$$

Definition. Kleensche Hülle einer Sprache.

 $Kleensche H\"{u}lle$ von L:

$$L^* := \bigcup_{k \in \mathbb{N}_0} L^k. \tag{1.203}$$

Positive Hülle von L:

$$L^+ := \bigcup_{k \in \mathbb{N}_1} L^k. \tag{1.204}$$

1.7.2 Formale Grammatiken

Definition. Formale Grammatik.

Eine formale Grammatik ist ein Tupel (N, Σ, P, S) , wobei N die Nonterminalsymbolen, Σ die Terminalsymbolen, P die Produktionsregeln sind und S ein Startsymbol ist. Die Mengen N, Σ, P müssen endlich sein. Die Mengen N und Σ müssen disjunkt sein. Bei Σ handelt es sich um ein Alphabet. Das Startsymbol ist ein Element $S \in N$.

Bei P handelt es sich um eine Relation

$$P \subseteq N \times (N \cup \Sigma)^* \tag{1.205}$$

oder allgemeiner

$$P \subseteq (N \cup \Sigma)^* \setminus \Sigma^* \times (N \cup \Sigma)^*. \tag{1.206}$$

Produktionsregeln werden in der Form $n \to w$ notiert und drücken aus, dass in jedem Wort das Nonterminalsymbol n durch das Wort w ersetzt werden darf. Allgemeiner bedeutet $t \to w$, dass ein Teilwort t durch w ersetzt werden darf.

Die Produktionsregeln werden ausgehend vom Startsymbol immer weiter angewendet bis keine Nonterminalsymbole mehr vorhanden sind. Die Menge aller möglichen Produktionen bildet eine formale Sprache $L \subseteq \Sigma^*$.

Für Produktionsregeln der Form (1.205) wurde eine Kurznotation geschaffen, die EBNF:

Symbol	Nonterminalsymbol
"Symbol"	Terminalsymbol
w1, w2	w_1w_2 (Konkatenation)
$n = w1 \mid w2.$	$n \to w_1, \ n \to w_2$
$n = \{w\}.$	$n \to \varepsilon, \ n \to wn$
n = [w].	$n \to w, n \to wn$

1.7.3 Formale Systeme

Definition. Formales System.

Ein formales System ist ein Tupel (Σ, L, A, R) , wobei Σ ein Alphabet, L eine formale Sprache über dem Alphabet, A eine Menge von Axiomen und R eine Menge von Ableitungsrelationen ist. Die Menge der Axiome ist eine beliebige Teilmenge von L. Eine Ableitungsrelation ist eine zwei oder mehrstellige Relation über L, die

$$a_1, \dots, a_n \vdash b \tag{1.207}$$

geschrieben wird. Eine wohlgeformte Formel wird Satz genannt, wenn sie ein Axiom ist oder über eine Kette von Ableitungen aus den Axiomen folgt.

1.8 Mathematische Strukturen

Axiome

E: Abgeschlossenheit.

Die Verknüpfung führt nicht aus der Menge heraus.

A: Assoziativgesetz.

 $\forall a, b, c [(a * b) * c = a * (b * c)].$

N: Existenz des neutralen Elements.

 $\exists e \forall a [e * a = a * e = a].$

 ${\bf l}\colon {\rm Existenz}$ der inversen Elemente.

 $\forall a \exists b [a * b = b * a = e].$

 ${\sf K:}$ Kommutativgesetz.

 $\forall a, b [a * b = b * a].$

I*: Existenz der multiplikativ inversen Elemente. $\forall a \neq 0 \ \exists b \ [a*b=b*a=1].$

DI: Linksdistributivgestz.

 $\forall a, x, y [a * (x + y)] = a * x + a * y].$

Dr: Rechtsdistributivgesetz.

 $\forall a, x, y [(x+y) * a = x * a + y * a].$

D: Distributivgesetze.

Dl und Dr.

T: Nullteilerfreiheit.

 $\forall a, b [a \neq 0 \land b \neq 0 \implies a * b \neq 0]$

bzw. die Kontraposition

 $\forall a, b [a * b = 0 \implies a = 0 \lor b = 0].$

U: Unterscheibarkeit von Null- und Einselement. Die neutralen Elemente bezüglich Addition und Multiplikation sind unterschiedlich.

Strukturen

Strukturen mit einer inneren Verknüpfung:

EAN Halbgruppe
EAN Monoid
Gruppe

EANI Gruppe abelsche Gruppe

Strukturen mit zwei inneren Verknüpfungen:

EANIK, EA, D | Ring

EANIK, EAK, D...... kommutativer Ring unitärer Ring unitärer Ring Integritätsring

EANIK, EANI*K, DTU Körper

Axiome für Relationen

R: Reflexivität.

 $\forall a (aRa).$

S: Symmetrie.

 $\forall a, b (aRb \iff bRa).$

T: Transitivität.

 $\forall a, b, c (aRb \land bRc \implies aRc).$

An: Antisymmetrie.

 $\forall a, b \ (aRb \land bRa \implies a = b).$

L: Linearität.

 $\forall a, b (aRb \lor bRa).$

Ri: Irrreflexivität.

 $\forall a (\neg aRa).$

A: Asymmetrie.

 $\forall a, b (aRb \implies \neg bRa).$

Min: Existenz der Minimalelemente.

 $\forall T \subseteq M, T \neq \emptyset \ \exists x \in T \ \forall y \in T \setminus \{x\} \ (x < y).$

Relationen

RANT.... | Äquivalenzrelation Halbordnung RANTL... | Totalordnung

RIAT strenge Halbordnung strenge Totalordnung

RiATLMin | Wohlordnung

2 Funktionen

2.1 Elementare Funktionen

2.1.1 Exponentialfunktion

Definition. *Exponential funktion*: $\mathbb{C} \to \mathbb{C}$,

$$\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 (2.1)

Eigenschaften. Die Einschränkung von exp auf \mathbb{R} ist injektiv und hat die Bildmenge $\{x \in \mathbb{R} \mid x > 0\}$.

Die Exponentialfunktion ist holomorph auf ganz \mathbb{C} und stimmt mit ihrer eigenen Ableitung überein:

$$\exp'(x) = \exp(x). \tag{2.2}$$

Für $x, y \in \mathbb{C}$ gilt:

$$\exp(x+y) = \exp(x)\exp(y), \tag{2.3}$$

$$\exp(x - y) = \frac{\exp(x)}{\exp(y)},\tag{2.4}$$

$$\exp(-x) = \frac{1}{\exp(x)}. (2.5)$$

Eulersche Formel. Für alle $x \in \mathbb{C}$ gilt:

$$e^{ix} = \cos x + i\sin x. \tag{2.6}$$

2.1.2 Logarithmusfunktion

Definition. Natürlicher Logarithmus.

Für $x \in \mathbb{R}^+$:

$$\ln(x) := \int_{1}^{x} \frac{1}{t} \, \mathrm{d}t. \tag{2.7}$$

Für $z \in \mathbb{C} \setminus \{0\}, z = re^{i\varphi}$:

$$ln(z) := ln(r) + i\varphi.$$
(2.8)

Eigenschaften. Für $z \in \mathbb{C} \setminus \{0\}$ gilt:

$$\ln(z) = \lim_{h \to 0} \frac{z^h - 1}{h}.$$
 (2.9)

Die Logarithmusfunktion ist auf $\mathbb{C}\backslash\mathbb{R}_0^-$ holomorph.

2.1.3 Winkelfunktionen

Definition. Winkelfunktionen.

Sinus: $\mathbb{C} \to \mathbb{C}$,

$$\sin(x) := \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots (2.10)$$

Kosinus: $\mathbb{C} \to \mathbb{C}$.

$$\cos(x) := \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$
 (2.11)

Tangens: $\mathbb{C} \setminus \{k\pi + \pi/2 \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\tan(x) := \frac{\sin(x)}{\cos(x)}.\tag{2.12}$$

Kotangens: $\mathbb{C} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\cot(x) := \frac{\cos(x)}{\sin(x)}.\tag{2.13}$$

Sekans:
$$\mathbb{C} \setminus \{k\pi + \pi/2 \mid k \in \mathbb{Z}\} \to \mathbb{C}$$
,

$$\sec(x) := \frac{1}{\cos(x)}.\tag{2.14}$$

Kosekans: $\mathbb{C} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\csc(x) := \frac{1}{\sin(x)}.\tag{2.15}$$

Darstellung durch die Exponentialfunktion: Für $x \in \mathbb{C}$ gilt:

$$\cos x = \text{Re}(e^{ix}) = \frac{e^{ix} + e^{-ix}}{2},$$
 (2.16)

$$\sin x = \text{Im}(e^{ix}) = \frac{e^{ix} - e^{-ix}}{2i}.$$
 (2.17)

Die Funktionen sin, cos sind holomorph auf ganz $\mathbb{C}.$ Die Ableitungen sind

$$\sin' x = \cos x,\tag{2.18}$$

$$\cos' x = -\sin x. \tag{2.19}$$

2.1.3.1 Symmetrie und Periodizität

Für $x \in \mathbb{C}$ gilt:

$$\sin(-x) = -\sin x$$
, (Punktsymmetrie) (2.20)

$$\cos(-x) = \cos x$$
, (Achsensymmetrie) (2.21)

$$\sin(x + 2\pi) = \sin x,\tag{2.22}$$

$$\cos(x + 2\pi) = \cos x,\tag{2.23}$$

$$\sin(x+\pi) = -\sin x,\tag{2.24}$$

$$\cos(x+\pi) = -\cos x,\tag{2.25}$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x = -\sin\left(x - \frac{\pi}{2}\right),\tag{2.26}$$

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x = -\cos\left(x - \frac{\pi}{2}\right). \tag{2.27}$$

2.1.3.2 Additionstheoreme

Für $x, y \in \mathbb{C}$ gilt:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y, \tag{2.28}$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y, \tag{2.29}$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y, \tag{2.30}$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y. \tag{2.31}$$

2.1.3.3 Trigonometrischer Pythagoras

Für $x \in \mathbb{C}$ gilt:

$$\sin^2 x + \cos^2 x = 1. \tag{2.32}$$

2.1.3.4 Produkte

Für $x, y \in \mathbb{C}$ gilt:

$$2\sin x \sin y = \cos(x - y) - \cos(x + y), \tag{2.33}$$

$$2\cos x \cos y = \cos(x - y) + \cos(x + y), \tag{2.34}$$

$$2\sin x \cos y = \sin(x - y) + \sin(x + y). \tag{2.35}$$

2.1.3.5 Summen und Differenzen

Für $x, y \in \mathbb{C}$ gilt:

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2},$$
 (2.36)

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2},$$
 (2.37)

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2},\tag{2.38}$$

$$\cos x - \cos y = 2\sin\frac{x+y}{2}\sin\frac{y-x}{2}.$$
 (2.39)

2.1.3.6 Winkelvielfache

Für $x \in \mathbb{C}$ gilt:

$$\sin(2x) = 2\sin x \cos x,\tag{2.40}$$

$$\cos(2x) = \cos^2 x - \sin^2 x,\tag{2.41}$$

$$\sin(3x) = 3\sin x - 4\sin^3 x,\tag{2.42}$$

$$\cos(3x) = 4\cos^3 x - 3\cos x. \tag{2.43}$$

Zusätzlich gilt:

$$\cos(2x) = 1 - 2\sin^2 x = 2\cos^2 x - 1. \tag{2.44}$$

Rekursionsformeln für $x, n \in \mathbb{C}$:

$$\cos(nx) = 2\cos x \cos((n-1)x) - \cos((n-2)x), \quad (2.45)$$

$$\sin(nx) = 2\cos x \sin((n-2)x) - \sin((n-2)x). \quad (2.46)$$

2.2 Zahlentheoretische Funktionen

2.2.1 Eulersche Phi-Funktion

Definition. Eulersche Phi-Funktion:

$$\varphi(n) := |\{a \in N \mid 1 \le a \le n \land ggT(a, n) = 1\}|. (2.47)$$

Für zwei teilerfremde Zahlen m, n gilt:

$$\varphi(mn) = \varphi(m)\,\varphi(n). \tag{2.48}$$

Für jede Primzahlpotenz p^k mit $k \in \mathbb{Z}$ und $k \ge 1$ gilt:

$$\varphi(p^k) = p^k - p^{k-1}. (2.49)$$

Besitzt die Zahl n die Primfaktorzerlegung

$$n = \prod_{p|n} p^{k_p}, \tag{2.50}$$

so gilt:

$$\varphi(n) = \prod_{p|n} (p^{k_p} - p^{k_p - 1}) = n \prod_{p|n} \left(1 - \frac{1}{p}\right).$$
(2.51)

2.2.2 Carmichael-Funktion

Definition. Carmichael-Funktion:

$$\lambda(n) := \min\{m \mid \forall a [ggT(a, n) = 1 \\ \implies a^m \equiv 1 \mod n] \}.$$
 (2.52)

3 Analysis

3.1 Ungleichungen

3.1.1 Dreiecksungleichung

In einem metrischen Raum (X,d) gilt für $x,y,z\in X$ die allgemeine Dreiecksungleichung:

$$d(x,z) \le d(x,y) + d(y,z),\tag{3.1}$$

$$|d(x,y) - d(y,z)| \le d(x,z).$$
 (3.2)

Ist X ein normierter Raum, so wird durch $d(x,y) := \|x-y\|$ eine Metrik induziert. Somit gilt

$$||x - z|| \le ||x - y|| + ||y - z||, \tag{3.3}$$

$$|||x - y|| - ||y - z||| < ||x - z||.$$
(3.4)

Wird nun $x := x_1, z := -x_2$ und y := 0 gesetzt, so ergibt sich die Dreiecksungleichung für normierte Räume:

$$||x_1 + x_2|| \le ||x_1|| + ||x_2||, \tag{3.5}$$

$$|||x_1|| - ||x_2||| \le ||x_1 - x_2||. \tag{3.6}$$

Normen sind z. B. ||x|| = |x| für $x \in \mathbb{R}$ und ||z|| = |z| für $z \in \mathbb{C}$. Allgemeiner

$$||v||^2 = \sum_{k=1}^n v_k^2 \tag{3.7}$$

für einen Koordinatenvektor $v \in \mathbb{R}^n$, $v = (v_k)_{k=1}^n$. Ist $\langle v, w \rangle$ ein Skalarprodukt, so wird durch

$$||v|| := \sqrt{\langle v, v \rangle} \tag{3.8}$$

eine Norm induziert.

3.1.2 Bernoullische Ungleichung

Für $x \in \mathbb{R}$, $x \ge -1$ und $n \in \mathbb{Z}$, $n \ge 1$ gilt

$$(1+x)^n \ge 1 + nx. \tag{3.9}$$

Die Ungleichung wird nur für n=1 oder x=0 zu einer Gleichung.

3.2 Konvergenz

3.2.1 Umgebungen

Sei (X, d) ein metrischer Raum und $p \in X$.

Definition. Offene r-Umgebung.

Offene r-Umgebung von p:

$$U_r(p) := \{ q \mid d(p, q) < r \}. \qquad (r > 0)$$
 (3.10)

Standardmetrik:

$$d(p,q) := |p-q|, \quad (X = \mathbb{R}, \ X = \mathbb{C})$$
 (3.11)

$$d(p,q) := ||p-q||$$
. (normierte Räume) (3.12)

3.2.2 Konvergente Folgen

Definition. Konvergente Folge.

Eine Folge $(a_n): \mathbb{N} \to X$ heißt konvergent gegen g, wenn

$$\forall r > 0 \ \exists n_0 \ \forall n > n_0 \colon \ a_n \in U_r(g). \tag{3.13}$$

Man schreibt dann $\lim_{n\to\infty}a_n=g$ und bezeichnet g als Grenzwert. Hierbei gilt

$$a_n \in U_r(g) \iff d(a_n, g) < r.$$
 (3.14)

Sandwichsatz. Seien (a_n) und (b_n) reelle Folgen mit $a_n \to g$ und $b_n \to g$. Gilt $a_n \le c_n \le b_n$ für fast alle n, so konvergiert (c_n) auch gegen g.

3.2.3 Häufungspunkte

Definition. Häufungspunkt.

Eine Punkt h heißt $H\ddot{a}ufungspunkt$ einer Folge (a_n) , wenn

$$\forall r > 0 \ \forall n_0 \ \exists n > n_0 \colon \ a_n \in U_r(h). \tag{3.15}$$

Besitzt eine Folge (a_n) einen Grenzwert g, so ist g auch ein Häufungspunkt von (a_n) .

3.2.4 Cauchy-Folge

Definition. Cauchy-Folge, vollständiger Raum.

Sei (X, d) ein metrischer Raum. Eine Folge (a_n) heißt Cauchy-Folge, wenn

$$\forall r > 0 \ \exists N \in \mathbb{N} \ \forall m, n > N : \ d(a_m, a_n) < r. \tag{3.16}$$

Ein metrischer Raum (X,d) heißt vollständig, wenn jede Cauchy-Folge von Punkten aus X einen Grenzwert g mit $g \in X$ besitzt. Ein vollständiger normierter Raum heißt Banachraum.

3.2.5 Beschränkte Folgen

Definition. Beschränkte Folge.

Eine Teilmenge $M\subseteq\mathbb{R}$ heißt nach oben beschränkt, wenn

$$\exists S_o \, \forall x \in M \, (x \le S_o). \tag{3.17}$$

und nach unten beschränkt, wenn

$$\exists S_u \forall x \in M \ (x \ge S_u). \tag{3.18}$$

Die Zahl S_o heißt obere Schranke und S_u heißt untere Schranke. Eine Folge heißt beschränkt, wenn sowohl eine untere als auch eine obere Schranke existiert.

Definition. Supremum, Infimum.

Supremum:

$$\sup(M) := \min\{S_o \mid \forall x \in M (x \le S_o)\}. \tag{3.19}$$

Infimum:

$$\inf(M) := \max\{S_u \mid \forall x \in M (x \ge S_u)\}. \tag{3.20}$$

Definition. Supremum, Infimum einer Folge.

Bei einer Folge $(a_n) : \mathbb{N} \to \mathbb{R}$ sind die Begriffe (3.17) bis (3.20) bezüglich der Bildmenge von (a_n) definiert.

Jede nach oben beschränkte nichtleere Teilmenge $M\subseteq\mathbb{R}$ besitzt ein Supremum. Jede nach unten beschränkte nichtleere Teilmenge $M\subseteq\mathbb{R}$ besitzt ein Infimum. Jede beschränkte nichtleere Teilmenge $M\subseteq\mathbb{R}$ besitzt ein Infimum und ein Supremum.

3.3 Reihen

Definition. Reihe.

Sei (a_n) eine Folge. Die Folge (s_n) von Partialsummen

$$s_n = \sum_{k=0}^n a_k \tag{3.21}$$

wird Reihe genannt. Der Grenzwert

$$\sum_{k=0}^{\infty} a_k := \lim_{n \to \infty} \sum_{k=0}^{n} a_k \tag{3.22}$$

wird als Summe der Reihe bezeichnet. Jede beliebige Folge (a_n) lässt sich durch

$$b_0 := a_0, \quad b_k := a_k - a_{k-1}$$
 (3.23)

als Reihe

$$a_n = \sum_{k=0}^{n} b_k = a_0 + \sum_{k=1}^{n} (a_k - a_{k-1})$$
 (3.24)

darstellen. Die Summe auf der rechten Seite von (3.24) wird als *Teleskopsumme* bezeichnet.

3.3.1 Absolute Konvergenz

Definition. Absolute Konvergenz.

Sei X ein normierter Raum. Eine Reihe $s_n = \sum_{k=0}^n a_k$ mit $a_k \in X$ heißt absolut konvergent, wenn

$$\sum_{k=0}^{\infty} \|a_k\| < \infty. \tag{3.25}$$

Es gilt: X ist ein Banachraum gdw. jede absolut konvergente Reihe konvergent ist.

Ist X ein Banachraum und $s_n = \sum_{k=0}^n a_k$ eine absolut konvergente Reihe mit $a_k \in X$, so gilt:

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{\infty} a_{\sigma(k)}, \quad \sigma \in \text{Sym}(\mathbb{N}_0).$$
 (3.26)

Eine konvergente Reihe, für die (3.26) gilt, heißt unbedingt konvergent.

3.3.2 Konvergenzkriterien

3.3.2.1 Quotientenkriterium

Gegeben ist eine unendliche Reihe $s_n = \sum_{k=0}^n a_k$, wobei die a_k reelle oder komplexe Zahlen sind und $a_k \neq 0$ ab einem gewissen k ist. Gilt

$$\exists q < 1 \ \exists k_0 \ \forall k > k_0 \colon \left| \frac{a_{k+1}}{a_k} \right| \le q, \tag{3.27}$$

so ist (s_n) absolut konvergent. S. (3.25). Gilt jedoch

$$\exists k_0 \ \forall k > k_0 \colon \left| \frac{a_{k+1}}{a_k} \right| \ge 1, \tag{3.28}$$

so ist (s_n) divergent.

Existiert der Grenzwert

$$g = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|,\tag{3.29}$$

so gilt:

$$g < 1 \implies (s_n)$$
 ist absolut konvergent, (3.30)

$$g > 1 \implies (s_n)$$
 ist divergent, (3.31)

$$g = 1 \implies \text{keine Aussage.}$$
 (3.32)

3.3.3 Cauchy-Produkt

Sei

$$A_m := \sum_{n=0}^m a_n, \quad A := \lim_{m \to \infty} A_m,$$
 (3.33)

$$B_m := \sum_{n=0}^{m} b_n, \quad B := \lim_{m \to \infty} B_m,$$
 (3.34)

$$C_m := \sum_{n=0}^m c_n, \quad C := \lim_{m \to \infty} C_m.$$
 (3.35)

Definition. Cauchy-Produkt.

Das Cauchy-Produkt von zwei Reihen (A_m) und (B_m) ist definiert durch

$$C_m := \sum_{n=0}^{m} c_n \quad \text{mit } c_n := \sum_{k=0}^{n} a_k b_{n-k}.$$
 (3.36)

Das Cauchy-Produkt von zwei reellen oder komplexen absolut konvergenten Reihen ist absolut konvergent und es gilt

$$C = AB. (3.37)$$

Satz von Mertens. Das Cauchy-Produkt von reellen oder komplexen konvergenten Reihen, eine davon absolut konvergent, ist konvergent und es gilt (3.37).

3.4 Reelle Funktionen

Definition. Reelle Funktion.

Eine Funktion $f \colon D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt reelle Funktion.

3.4.1 Monotone Funktionen

Jede streng monotone reelle Funktion ist injektiv.

3.4.2 Grenzwert einer Funktion

Ist $f: I \to \mathbb{R}$ eine reelle Funktion, I eine offenes Intervall und $x_0 \in I$, so gilt:

$$g = \lim_{x \to x_0} f(x)$$

$$\iff g = \lim_{x \uparrow x_0} f(x) \land g = \lim_{x \downarrow x_0} f(x).$$
(3.38)

3.4.3 Stetige Funktionen

Sei $f: I \to \mathbb{R}$ eine reelle Funktion und I ein offenes Intervall. Die Funktion f ist stetig bei $x_0 \in I$ gdw.

$$\lim_{x \to x_0} f(x) = f(x_0). \tag{3.39}$$

Sind f, g stetige Funktion, so ist auch $g \circ f$ stetig.

Zwischenwertsatz. Sei $f: [a,b] \to \mathbb{R}$ eine stetige Funktion und sei a < b. Bei f(a) < f(b) gilt:

$$\forall y \in [f(a), f(b)] \ \exists x \in [a, b] : y = f(x).$$
 (3.40)

Bei f(a) > f(b) gilt:

$$\forall y \in [f(b), f(a)] \ \exists x \in [a, b] : y = f(x).$$
 (3.41)

3.5 Differentialrechnung

3.5.1 Differential quotient

Definition. Differential quotient.

Sei $U \subseteq \mathbb{R}$ ein offenes Intervall und sei $f: U \to \mathbb{R}$. Die Funktion f heißt differenzierbar an der Stelle $x_0 \in U$, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (3.42)

existiert. Dieser Grenzwert heißt Differential quotient oder Ableitung von f an der Stelle x_0 . Notation:

$$f'(x_0), \qquad (Df)(x_0), \qquad \frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big|_{x=x_0}.$$
 (3.43)

3.5.2 Ableitungsregeln

Sind f, g, h an der Stelle x differenzierbare Funktionen, ist $h(x) \neq 0$ und ist a eine reelle Zahl, so gilt

$$(af)'(x) = af'(x), \tag{3.44}$$

$$(f+g)'(x) = f'(x) + g'(x), (3.45)$$

$$(f-g)'(x) = f'(x) - g'(x), (3.46)$$

$$(fg)'(x) = f'(x)g(x) + g'(x)f(x), (3.47)$$

$$\left(\frac{f}{h}\right)'(x) = \frac{f'(x)h(x) - h'(x)f(x)}{h(x)^2}.$$
 (3.48)

3.5.2.1 Kettenregel

Ist g differenzierbar an der Stelle x_0 und f differenzierbar an der Stelle $g(x_0)$, so ist $f \circ g$ differenzierbar an der Stelle x_0 und es gilt

$$(f \circ g)'(x_0) = (f' \circ g)(x_0) g'(x_0). \tag{3.49}$$

3.5.3 Tangente und Normale

Funktionsgleichung der Tangente an den Graphen von f an der Stelle x_0 :

$$T(x) = f(x_0) + f'(x_0)(x - x_0). (3.50)$$

Funktionsgleichung der Normale an den Graphen von f an der Stelle x_0 :

$$N(x) = f(x_0) + \frac{1}{f'(x_0)}(x - x_0).$$
 (3.51)

3.5.4 Taylorreihe

Sei f eine an der Stelle a unendlich oft differenzierbare reelle Funktion.

Definition. Taylorreihe.

Taylorreihe von f an der Stelle a:

$$f[a](x) := (\exp((x-a)D)f)(a)$$

$$= \sum_{k=0}^{\infty} \frac{(D^k f)(a)}{k!} \cdot (x-a)^k$$
(3.52)

$$= f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2} \cdot (x - a)^2 + \dots$$

mit $f^{(k)}(a) = (D^k f)(a)$.

Für Polynomfunktionen und für exp, sin, cos gilt

$$\forall x \in \mathbb{R} \colon f[a](x) = f(x). \tag{3.53}$$

3.5.5 Kurvendiskussion

3.5.5.1 Extrempunkte

Definition. Lokaler Extremwert.

Sei D eine offene Menge und $f: D \to \mathbb{R}$. Ein Wert $f(x_0)$ heißt lokales Maximum, wenn

$$\exists r > 0 \ \forall x \in U_r(x_0) \colon f(x) \le f(x_0).$$
 (3.54)

Ein Wert $f(x_0)$ heißt lokales Minimum, wenn

$$\exists r > 0 \ \forall x \in U_r(x_0) \colon f(x) \ge f(x_0).$$
 (3.55)

Ist $f(x) = f(x_0)$ nur bei $x = x_0$, dann spricht man von einem *strengen* lokalen Minimum bzw. Maximum.

3.6 Integralrechnung

3.6.1 Regelfunktionen

Ist T eine Treppenfunktion mit $T(x) := t_k$ für $x \in (x_k, x_{k+1})$, so gilt:

$$\int_{a}^{b} T(x) dx = \sum_{k=0}^{n-1} (x_{k+1} - x_k) t_k.$$
 (3.56)

Definition. Regelfunktion.

Eine Funktion $f:[a,b]\to\mathbb{R}$ heißt Regelfunktion, wenn es eine Folge von Treppenfunktionen gibt, die gleichmäßig gegen f konvergiert.

Ist (T_n) eine gleichmäßig gegen die Regelfunktion f konvergente Folge von Treppenfunktionen, so gilt:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} T_n(x) dx.$$
 (3.57)

Jede stückweise stetige Funktion ist eine Regelfunktion.

3.6.2 Stetige Funktionen

Sei $f: [a, b] \to \mathbb{R}$ eine stetige, monoton steigende Funktion mit $f(x) \ge 0$ auf dem gesamten Definitionsbereich.

Untersumme:

$$\underline{A}_n = \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \frac{b-a}{n} \tag{3.58}$$

Obersumme:

$$\overline{A}_n = \sum_{k=1}^n f\left(a + k\frac{b-a}{n}\right) \frac{b-a}{n} \tag{3.59}$$

Es gilt:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \underline{A}_{n} = \lim_{n \to \infty} \overline{A}_{n}.$$
 (3.60)

3.6.3 Hauptsatz

Sei I ein Intervall, offen, halboffen, geschlossen oder unendlich. Sei $f\colon I\to\mathbb{R}$ stetig.

Definition. Integralfunktion.

Integral funktion:

$$F(x) := \int_{a}^{x} f(x) \, \mathrm{d}x, \quad F \colon I \to \mathbb{R}. \tag{3.61}$$

Definition. Stammfunktion.

Gilt F' = f, so wird F Stammfunktion von f genannt. **Hauptsatz.** Die Integralfunktion ist differenzierbar und es gilt F' = f. Ist $f: I \to \mathbb{R}$ stetig und F eine Stammfunktion von f, so gilt

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$
 (3.62)

für $a, b \in I$.

3.6.4 Integrationsregeln

3.6.4.1 Linearität

Für integrierbare Funktionen $f,g\colon [a,b]\to \mathbb{R}$ und eine Konstante $c\in \mathbb{R}$ gilt die Additivität:

$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx \quad (3.63)$$

3.7. SKALARFELDER

und die Homogenität:

$$\int_{a}^{b} cf(x) \, \mathrm{d}x = c \int_{a}^{b} f(x) \, \mathrm{d}x. \tag{3.64}$$

3.6.4.2 Substitutionsregel

Für $f \in C(I \to \mathbb{R})$ und $\varphi \in C^1([a, b] \to \mathbb{R})$ mit $\varphi([a, b]) \subseteq I$ gilt

$$\int_{a}^{b} f(\varphi(t)) \varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$
 (3.65)

3.6.4.3 Partielle Integration

Für $f, g \in C^1([a, b] \to \mathbb{R})$ gilt

$$\int_{a}^{b} f(x) g'(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} g(x)f'(x) dx.$$
(3.66)

3.6.5 Integral bei Polstellen

Bei Polstellen im Integrationsintervall ist Vorsicht geboten. Man könnte z.B. auf die Idee kommen, dass einfach

$$\int_{-1}^{1} \frac{1}{x^3} \, \mathrm{d}x = \left[-\frac{1}{2x^2} \right]_{-1}^{1} = 0 \tag{3.67}$$

gerechnet werden kann. Die Funktion $f(x) := x^{-3}$ besitzt jedoch eine Polstelle bei x = 0, ist dort somit nicht definiert und die Lücke ist auch nicht stetig behebbar. Der Hauptsatz (3.62) setzt aber einen stetigen Integranden voraus.

Um solche Situationen angehen zu können, ist eine Erweiterung des Integralbegriffs notwendig.

Definition. Cauchy-Hauptwert.

Cauchy-Hauptwert (kurz CH, engl. PV für principial value) bei einer Definitionslücke x=c:

$$PV \int_{a}^{b} f(x) dx := \lim_{\varepsilon \to 0} \left(\int_{a}^{c-\varepsilon} f(x) dx + \int_{a+\varepsilon}^{b} f(x) dx \right).$$
 (3.68)

Nun gilt:

$$PV \int_{-1}^{1} \frac{1}{x^3} \, \mathrm{d}x = 0. \tag{3.69}$$

Die Flächeninhalte auf beiden Seiten der Polstelle sind von unterschiedlichem Vorzeichen und heben sich gegenseitig auf.

Eine alternative Erweiterung ist die Erweiterung des Integranden auf einen komplexen Definitionsbereich. Da die Funktion $f(z) := z^{-3}$ meromorph ist, lässt sich der Integrationsweg um die Polstelle herumführen und es gilt

$$\int_{-1}^{1} \frac{1}{z^3} \, \mathrm{d}z = 0. \tag{3.70}$$

Zu beachten ist aber, dass z.B.

$$\int_{-1}^{1} \frac{1}{z^2} \, \mathrm{d}z = -2 \tag{3.71}$$

ist, obwohl

$$PV \int_{-1}^{1} \frac{1}{x^2} \, \mathrm{d}x \tag{3.72}$$

21

nicht existiert.

Man beachte auch, dass in der komplexen Ebene der Umlaufsinn um die Polstelle unter Umständen eine Rolle spielt, denn die Wegunabhängigkeit des Integrals für einen holomorphen Integranden ist nur für einfach zusammenhängende Gebiete sichergestellt. Z. B. ist

$$\int_{-1}^{1} \frac{1}{z} \, \mathrm{d}z = -\pi \mathrm{i} \tag{3.73}$$

für den Integrationsweg oberhalb der Polstelle,

$$\int_{-1}^{1} \frac{1}{z} \, \mathrm{d}z = +\pi \mathrm{i} \tag{3.74}$$

für den Integrationsweg unterhalb der Polstelle und

$$PV \int_{-1}^{1} \frac{1}{x} \, \mathrm{d}x = 0. \tag{3.75}$$

3.7 Skalarfelder

Sei $x:=(x_k)_{k=1}^n$ und $a:=(a_k)_{k=1}^n$. Sei $f\colon G\to\mathbb{R}$ wobei $G\subseteq\mathbb{R}^n$ eine offene Menge ist.

3.7.1 Partielle Ableitungen

Definition. Partielle Ableitung.

Die partiellen Ableitungen von f an der Stelle $a \in G$ sind definiert durch

$$\frac{\partial f(x)}{\partial x_k} \bigg|_{x=a} := \frac{\mathrm{d}f(a_1, \dots, t, \dots, a_n)}{\mathrm{d}t} \bigg|_{t=a_k}
= \lim_{h \to 0} \frac{f(a_1, \dots, a_k + h, \dots, a_n) - f(a)}{h}.$$
(3.76)

Kurzschreibweisen:

$$(D_k f)(a), \quad (\partial_k f)(a).$$
 (3.77)

3.7.2 Gradient

Sei $(e_k)_{k=1}^n$ die kanonische Basis des \mathbb{R}^n .

Definition. Gradient.

Gradient an der Stelle a:

$$(\nabla f)(a) := \sum_{k=1}^{n} e_k(D_k f)(a)$$

= $((D_1 f)(a), \dots, (D_n f)(a)).$ (3.78)

Formale Schreibweise:

$$\nabla := \sum_{k=1}^{n} e_k D_k. \tag{3.79}$$

Ist $(\nabla f)(x)$ stetig bei x = a, so ist f bei a differenzierbar.

3.7.2.1 Tangentialraum

Ist $f: G \to \mathbb{R}$ in einer Umgebung von $x_0 \in G$ differenzierbar, so existiert bei x_0 auf eindeutige Art ein Tangentialraum, der durch

$$T(x) = f(x_0) + \langle (\nabla f)(x_0), x - x_0 \rangle$$
 (3.80)

beschrieben wird.

3.7.3 Richtungsableitung

Definition. Richtungsableitung.

Richtungsableitung an der Stelle a in Richtung v:

$$(D_v f)(a) := \frac{\mathrm{d}}{\mathrm{d}t} f(a + tv) \Big|_{t=0}$$

$$= \lim_{h \to 0} \frac{f(a + hv) - f(a)}{h}.$$
(3.81)

Die partiellen Ableitungen sind die Richtungsableitungen bezüglich der Standardbasis (e_k) :

$$(D_{e_k}f)(a) = (D_kf)(a).$$
 (3.82)

Ist f an der Stelle a differenzierbar, so gilt:

$$(D_v f)(a) = \langle v, (\nabla f)(a) \rangle = \sum_{k=1}^n v_k(D_k f)(a). \quad (3.83)$$

Sind f, g an der Stelle a differenzierbar, so gilt dort:

$$D_v(f+g) = D_v f + D_v g, (3.84)$$

$$\forall r \in \mathbb{R} \colon D_v(rf) = rD_v f,\tag{3.85}$$

$$D_v(fg) = gD_v f + fD_v g, (3.86)$$

$$D_{v+w}f = D_v f + D_w f. (3.87)$$

3.8 Vektorfelder

Sei $f: G \to \mathbb{R}^m$ wobei $G \subseteq \mathbb{R}^n$ eine offene Menge ist.

Definition. Jacobi-Matrix.

Jacobi-Matrix an der Stelle a:

$$(J[f](a))_{ij} := (D_j f_i)(a). \tag{3.88}$$

Schreibweisen:

$$J[f](a) = (Df)(a) = (\nabla \otimes f)^{T}(a)$$
(3.89)

und

$$J[f](x) = \frac{\partial f(x)}{\partial x} = \frac{\partial (f_1, \dots, f_m)}{\partial (x_1, \dots, x_n)}.$$
 (3.90)

3.8.1 Tangentialraum

Ist $f: (G \subseteq \mathbb{R}^n) \to \mathbb{R}^m$ bei $x_0 \in G$ differenzierbar, so gibt es dort einen Tangentialraum, der durch

$$T(x) = f(x_0) + (Df)(x_0)(x - x_0)$$
(3.91)

beschrieben wird.

3.8.2 Richtungsableitung

Definition, Richtungsableitung,

Richtungsableitung von f an der Stelle a:

$$(D_v f)(a) := \frac{\mathrm{d}}{\mathrm{d}t} f(a + tv) \Big|_{t=0}. \tag{3.92}$$

Ist $f: (G \subseteq \mathbb{R}^n) \to \mathbb{R}^m$ bei $a \in G$ differenzierbar, so gilt:

$$(D_v f)(a) = (\langle v, \nabla \rangle f)(a) = J[f](a) v, \tag{3.93}$$

kurz $D_v = \langle v, \nabla \rangle$.

3.9 Variationsrechnung

3.9.1 Fundamentallemma

Sei I := [a, b] kompakt und sei $g : I \to \mathbb{R}$ stetig. Wenn

$$\int_{a}^{b} g(x)h(x) \, \mathrm{d}x = 0 \tag{3.94}$$

für jede unendlich oft differenzierbare Funktion $h \colon I \to \mathbb{R}$ mit h(a) = h(b) = 0 gilt, so ist g(x) = 0 für alle x.

3.9.2 Euler-Lagrange-Gleichung

Sei I := [a, b] kompakt. Sei

$$F \colon I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \tag{3.95}$$

zweimal stetig differenzierbar. Gesucht ist eine zweimal stetig differenzierbare Funktion $f: I \to \mathbb{R}$ mit fixen Randwerten f(a) = A und f(b) = B, für die

$$J(f) := \int_{a}^{b} F(x, f(x), f'(x)) dx$$
 (3.96)

einen Extremwert annimmt.

Die Euler-Lagrange-Gleichung

$$\frac{\partial F(x, y, y')}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial F(x, y, y')}{\partial y'} = 0 \tag{3.97}$$

mit y = f(x) und y' = f'(x) ist eine notwendige Bedingung dafür.

Fourier-Analysis 3.10

3.10.1 **Fourierreihen**

3.10.1.1 Fourier-Koeffizienten

Komplexe Fourier-Koeffizienten:

$$c_k[s] = \frac{1}{T} \int_{t_0}^{t_0+T} e^{-ki\omega t} s(t) dt.$$
 (3.98)

Nach Normierung $x := \omega t$, $f(x) := s(x/\omega)$:

$$c_k[f] = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-kix} f(x) dx.$$
 (3.99)

Es gilt (λ : eine Konstante):

$$c_k[f+g] = c_k[f] + c_k[g],$$
 (3.100)

$$c_k[\lambda f] = \lambda c_k[f]. \tag{3.101}$$

Reelle Fourier-Koeffizienten:

$$a_k[s] = \frac{2}{T} \int_{t_0}^{t_0+T} \cos(k\omega t) \, s(t) \, dt,$$
 (3.102)

$$a_k[s] = \frac{2}{T} \int_{t_0}^{t_0+T} \cos(k\omega t) \, s(t) \, dt, \qquad (3.102)$$

$$b_k[s] = \frac{2}{T} \int_{t_0}^{t_0+T} \sin(k\omega t) \, s(t) \, dt. \qquad (3.103)$$

Nach Normierung $x := \omega t$, $f(x) := s(x/\omega)$:

$$a_k[f] = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kx) f(x) dx,$$
 (3.104)

$$b_k[f] = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(kx) f(x) dx.$$
 (3.105)

Lineare Algebra 4

4.1 Grundbegriffe

4.1.1 Norm

Definition. Norm.

Eine Abbildung $v \mapsto ||v||$ von einem Vektorraum Vüber dem Körper K in die nichtnegativen reellen Zahlen heißt Norm, wenn für alle $v, w \in V$ und $a \in K$ die drei

$$||v|| = 0 \implies v = 0, \tag{4.1}$$

$$||av|| = |a| ||v||, \tag{4.2}$$

$$||v + w|| \le ||v|| + ||w|| \tag{4.3}$$

erfüllt sind.

Eigenschaften:

$$||v|| = 0 \iff v = 0,\tag{4.4}$$

$$||-v|| = ||v||, \tag{4.5}$$

$$||v|| \ge 0. \tag{4.6}$$

Dreiecksungleichung nach unten:

$$|||v|| - ||w||| \le ||v - w||. \tag{4.7}$$

4.1.2 Skalarprodukt

Ein Vektorraum über dem Körper \mathbb{R} heißt reeller Vektorraum, einer über dem Körper C heißt komplexer Vektorraum.

4.1.2.1 **Definition**

Sei V ein reeller Vektorraum. Eine Abbildung $f\colon V^2\to\mathbb{R}$ mit $f(x,y) = \langle x,y \rangle$ heißt Skalarprodukt, wenn folgende Axiome erfüllt sind. Für $v, w \in V$ und $\lambda \in \mathbb{R}$ gilt:

$$\langle v, w \rangle = \langle w, v \rangle, \tag{4.8}$$

$$\langle v, \lambda w \rangle = \lambda \langle v, w \rangle, \tag{4.9}$$

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \tag{4.10}$$

$$\langle v, v \rangle \ge 0, \tag{4.11}$$

$$\langle v, v \rangle = 0 \iff v = 0.$$
 (4.12)

Sei V ein komplexer Vektorraum und $f: V^2 \to \mathbb{C}$. Für $v, w \in V$ und $\lambda \in \mathbb{R}$ gilt:

$$\langle v, w \rangle = \overline{\langle w, v \rangle},\tag{4.13}$$

$$\langle \lambda v, w \rangle = \overline{\lambda} \langle v, w \rangle, \tag{4.14}$$

$$\langle v, \lambda w \rangle = \lambda \langle v, w \rangle, \tag{4.15}$$

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \tag{4.16}$$

$$\langle v, v \rangle \ge 0, \tag{4.17}$$

$$\langle v, v \rangle = 0 \iff v = 0. \tag{4.18}$$

4.1.2.2 Eigenschaften

Das reelle Skalarprodukt ist eine symmetrische bilineare Abbildung.

4.1.2.3 Winkel und Längen

Definition. Winkel, orgthogonale Vektoren.

Der Winkel φ zwischen v und w ist definiert durch die Beziehung:

$$\langle v, w \rangle = ||v|| \, ||w|| \cos \varphi. \tag{4.19}$$

Orthogonal:

$$v \perp w :\iff \langle v, w \rangle = 0. \tag{4.20}$$

Ein Skalarprodukt $\langle v, w \rangle$ induziert die Norm

$$||v|| := \sqrt{\langle v, v \rangle}. \tag{4.21}$$

4.1.2.4 Orthonormalbasis

Sei $B = (b_k)_{k=1}^n$ eine Basis eines endlichdimensionalen Vektorraumes über den reellen oder komplexen Zahlen.

Definition. Orthogonalbasis.

Gilt $\langle b_i, b_j \rangle = 0$ für alle i, j mit $i \neq j$, so wird B Orthogonal basis genannt. Ist B nicht unbedingt eine Basis, so spricht man von einem Orthogonalsystem.

Definition. Orthonormalbasis.

Ist B eine Orthogonalbasis und gilt zusätzlich $\langle b_k, b_k \rangle = 1$ für alle k, so wird B Orthonormalbasis (ONB) genannt. Ist B nicht unbedingt eine Basis, so spricht man

von einem Orthonormal system. Sei $v = \sum_k v_k b_k$ und $w = \sum_k w_k b_k$. Mit \sum_k ist immer $\sum_{k=1}^{n}$ gemeint. Ist B eine Orthonormalbasis, so gilt:

$$\langle v, w \rangle = \sum_{k} \overline{v_k} \, w_k. \tag{4.22}$$

Ist B nur eine Orthogonalbasis, so gilt:

$$\langle v, w \rangle = \sum_{k} \langle b_k, b_k \rangle \overline{v_k} \, w_k \tag{4.23}$$

Allgemein gilt

$$\langle v, w \rangle = \sum_{i,j} g_{ij} \overline{v_i} w_j \tag{4.24}$$

mit $g_{ij}=\langle b_i,b_j\rangle$. In reellen Vektorräumen ist die komplexe Konjugation wirkungslos und kann somit entfallen.

Ist B eine Orthogonalbasis und $v = \sum_{k} v_k b_k$, so gilt:

$$v_k = \frac{\langle b_k, v \rangle}{\langle b_k, b_k \rangle}. (4.25)$$

Ist B eine Orthonormalbasis, so gilt speziell:

$$v_k = \langle b_k, v \rangle. \tag{4.26}$$

4.1.2.5 Orthogonale Projektion

Orthogonale Projektion von v auf w:

$$P[w](v) := \frac{\langle v, w \rangle}{\langle w, w \rangle} w. \tag{4.27}$$

4.1.2.6 Gram-Schmidt-Verfahren

Für linear unabhängige Vektoren v_1, \ldots, v_n wird durch

$$w_k := v_k - \sum_{i=1}^{k-1} P[w_i](v_k)$$
(4.28)

ein Orthogonalsystem w_1, \ldots, w_n berechnet.

Speziell für zwei nicht kollineare Vektoren v_1, v_2 gilt

$$w_1 = v_1,$$
 (4.29)

$$w_2 = v_2 - P[w_1](v_2). (4.30)$$

4.1.2.7 Musikalische Isomorphismen

Definition. Musikalische Isomorphismen.

Sei V ein eindlichdimensionaler Vektorraum und V^* sein Dualraum. Die lineare Abbildung

$$\Phi \colon V \to V^*, \quad \Phi(u)(v) := \langle u, v \rangle$$
 (4.31)

ist ein kanonischer Isomorphismus. Man nennt $u^{\flat} := \Phi(u)$ und $\omega^{\sharp} := \Phi^{-1}(\omega)$ die musikalischen Isomorphismen.

4.2 Koordinatenvektoren

4.2.1 Koordinatenraum

Addition von $a, b \in K^n$:

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} := \begin{bmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{bmatrix}. \tag{4.32}$$

Subtraktion:

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} - \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} := \begin{bmatrix} a_1 - b_1 \\ \vdots \\ a_n - b_n \end{bmatrix}. \tag{4.33}$$

Skalarmultiplikation von $\lambda \in K$ mit $a \in K^n$:

$$\lambda \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} := \begin{bmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{bmatrix}. \tag{4.34}$$

Ist K ein Körper, so bildet die Menge

$$K^n = \{(a_1, \dots, a_n) \mid \forall k \colon a_k \in K\}$$
 (4.35)

bezüglich der Addition (4.32) und der Multiplikation (4.34) einen Vektorraum, der *Koordinatenraum* genannt wird. Das Tupel $E_n = (e_1, \ldots, e_n)$ mit

$$e_{1} := (1, 0, 0, 0, \dots, 0),$$

$$e_{2} := (0, 1, 0, 0, \dots, 0),$$

$$e_{3} := (0, 0, 1, 0, \dots, 0),$$

$$\dots$$

$$e_{n} := (0, 0, 0, 0, \dots, 1)$$

$$(4.36)$$

bildet eine geordnete Basis von K^n , die kanonische Basis genannt wird. Es gilt

$$a = (a_1, \dots, a_n) = a_1 e_1 + \dots + a_n e_n.$$
 (4.37)

4.2.2 Kanonisches Skalarprodukt Definition. Kanonisches Skalarprodukt.

Für $a, b \in \mathbb{R}^n$:

$$\langle a, b \rangle := \sum_{k=1}^{n} a_k b_k. \tag{4.38}$$

Für $a, b \in \mathbb{C}^n$:

$$\langle a, b \rangle := \sum_{k=1}^{n} \overline{a_k} \, b_k. \tag{4.39}$$

Die kanonische Basis (4.36) ist eine Orthonormalbasis bezüglich diesem Skalarprodukt, s. 4.1.2.4. Das Skalarprodukt induziert die Norm

$$|a| := \sqrt{\langle a, a \rangle} = \sqrt{\sum_{k=1}^{n} |a_k|^2}, \tag{4.40}$$

die Vektorbetrag genannt wird.

Jedem Koordinatenvektor $a \neq 0$ lässt sich ein Einheitsvektor $\hat{a} := \frac{a}{|a|}$ zuordnen, der in Richtung von a zeigt und die Eigenschaft $|\hat{a}| = 1$ besitzt.

Es gilt

$$a \perp b \iff \langle a, b \rangle = 0,$$
 (4.41)

$$a \uparrow \uparrow b \iff \langle a, b \rangle = |a| |b|,$$
 (4.42)

$$a \uparrow \downarrow b \iff \langle a, b \rangle = -|a||b|.$$
 (4.43)

Allgemein gilt

$$\langle a, b \rangle = |a| |b| \cos \varphi.$$
 $(\varphi = \angle (a, b))$ (4.44)

4.2.3 Vektorprodukt

Für $a, b \in \mathbb{R}^3$:

$$a \times b = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \times \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \begin{vmatrix} e_x & a_x & b_x \\ e_y & a_y & b_y \\ e_z & a_z & b_z \end{vmatrix} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}.$$

$$(4.45)$$

Rechenregeln für $a, b, c \in \mathbb{R}^3$ und $r \in \mathbb{R}$:

$$a \times (b+c) = a \times b + a \times c, \tag{4.46}$$

$$(a+b) \times c = a \times c + b \times c, \tag{4.47}$$

$$(ra) \times b = r(a \times b) = a \times (rb), \tag{4.48}$$

$$a \times b = -b \times a,\tag{4.49}$$

$$a \times a = 0. \tag{4.50}$$

Für den Betrag gilt:

$$|a \times b| = |a| |b| \sin \varphi.$$
 $(\varphi = \angle(a, b))$ (4.51)

Beziehung zur Determinante:

$$\langle a, b \times c \rangle = \det(a, b, c). \tag{4.52}$$

Jacobi-Identität:

$$a \times (b \times c) = b \times (a \times c) - c \times (a \times b). \tag{4.53}$$

Graßmann-Identität:

$$a \times (b \times c) = b\langle a, c \rangle - c\langle a, b \rangle. \tag{4.54}$$

Cauchy-Binet-Identität:

$$\langle a \times b, c \times d \rangle = \langle a, c \rangle \langle b, d \rangle - \langle b, c \rangle \langle a, d \rangle. \tag{4.55}$$

Lagrange-Identität:

$$|a \times b|^2 = |a|^2 |b|^2 - \langle a, b \rangle^2.$$
 (4.56)

4.3 Matrizen

4.3.1 Quadratische Matrizen

4.3.1.1 Matrizenring

Mit $K^{n \times n}$ wird die Menge quadratischen Matrizen

$$(a_{ij}) = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \ddots & \dots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$
 (4.57)

mit Einträgen a_{ij} aus dem Körper K bezeichnet.

Die Menge $K^{n \times n}$ bildet bezüglich Addition und Multiplikation von Matrizen einen Ring (s. 1.8).

Das neutrale Element der Multiplikation ist die Einheitsmatrix

$$E_n = (\delta_{ij}), \quad \delta_{ij} := \begin{cases} 1 & \text{wenn } i = j, \\ 0 & \text{sonst.} \end{cases}$$
 (4.58)

Das sind

$$E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{usw.}$$
 (4.59)

4.3.1.2 Symmetrische Matrizen

Eine quadratiche Matrix $A = (a_{ij})$ heißt symmetrisch, falls gilt $a_{ij} = a_{ji}$ bzw. $A^T = A$.

Jede reelle symmetrische Matrix besitzt ausschließlich reelle Eigenwerte und die algebraischen Vielfachheiten stimmen mit den geometrischen Vielfachheiten überein.

Jede reelle symmetrische Matrix A ist diagonalisierbar, d. h. es gibt eine invertierbare Matrix T und eine Diagonalmatrix D, so dass $A = TDT^{-1}$ gilt. Sei V ein K-Vektorraum und $(b_k)_{k=1}^n$ eine Basis von

Sei V ein K-Vektorraum und $(b_k)_{k=1}^n$ eine Basis von V. Für jede symmetrische Bilinearform $f: V^2 \to K$ ist die Darstellungsmatrix

$$A = (f(b_i, b_i)) \tag{4.60}$$

symmetrisch. Ist $A \in K^{n \times n}$ eine symmetrische Matrix, so ist

$$f(x,y) = x^T A y. (4.61)$$

eine symmetrische Bilinearform für $x,y\in K^n$. Ist $K=\mathbb{R}$ und A positiv definit, so ist (4.61) ein Skalarprodukt auf \mathbb{R}^n

4.3.1.3 Reguläre Matrizen

Eine quadratische Matrix $A \in K^{n \times n}$ heißt regulär oder invertierbar, wenn es eine inverse Matrix A^{-1} gibt, so dass

$$A^{-1}A = E_n \quad (\iff AA^{-1} = E_n)$$
 (4.62)

gilt, wobei mit E_n die Einheitsmatrix gemeint ist. Jede reguläre Matrix besitzt genau eine inverse Matrix. Eine Matrix A ist genau dann regulär, wenn $\det(A) \neq 0$ gilt. Die Menge der regulären Matrizen bildet bezüglich Matrizenmultiplikation eine Gruppe, die allgemeine lineare Gruppe

$$GL(n, K) := \{ A \in K^{n \times n} \mid \det(A) \neq 0 \}.$$
 (4.63)

Ist V ein Vektorraum über dem Körper K, so bilden die Automorphismen bezüglich Verkettung eine Gruppe, die Automorphismengruppe

$$GL(V) = Aut(V). (4.64)$$

Ein *Endomorphismus* ist eine lineare Abbildung, welche eine Selbstabbildung ist. Ein *Automorphismus* ist eine bijektiver Endomorphismus.

Wählt man auf V eine Basis B, so ist die Zuordnung der Darstellungsmatrix

$$M_B^B : \operatorname{Aut}(V) \to \operatorname{GL}(\dim V, K)$$
 (4.65)

eine Gruppenisomorphismus.

Eine quadratische Matrix, die nicht regulär ist, heißt singulär. Endomorphismen, die nicht bijektiv sind, lassen die Dimension ihrer Definitionsmenge schrumpfen:

$$f \in \operatorname{End}(V) \setminus \operatorname{Aut}(V) \iff \dim f(V) < \dim V.$$
 (4.66)

Für Matrizen $A \in K^{n \times n}$ bedeutet das, dass sie nicht den vollen Rang besitzen:

$$\det A = 0 \iff \operatorname{rk}(A) < n = \dim K^n. \tag{4.67}$$

Inversions formel:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \tag{4.68}$$

Definition. Wird in der Matrix A die Zeile i und die Spalte j entfernt, so entsteht eine neue Matrix $[A]_{ij}$, die Streichungsmatrix von A genannt wird.

Laplacescher Entwicklungssatz:

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det([A]_{ij}), \tag{4.69}$$

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det([A]_{ij}). \tag{4.70}$$

4.3.1.4 Determinanten

Für Matrizen $A, B \in K^{n \times n}$ und $r \in K$ gilt:

$$\det(AB) = \det(A)\det(B), \tag{4.71}$$

$$\det(A^T) = \det(A),\tag{4.72}$$

$$\det(rA) = r^n \det(A), \tag{4.73}$$

$$\det(A^{-1}) = \det(A)^{-1}. (4.74)$$

Für eine Diagonalmatrix $D = diag(d_1, ..., d_n)$ gilt:

$$\det(D) = \prod_{k=1}^{n} d_k. \tag{4.75}$$

Eine linke Dreiecksmatrix ist eine Matrix der Form (a_{ij}) mit $a_{ij} = 0$ für i < j. Eine rechte Dreiecksmatrix ist die Transponierte einer linken Dreiecksmatrix.

Für eine linke oder rechte Dreiecksmatrix $A = (a_{ij})$ gilt:

$$\det(A) = \prod_{k=1}^{n} a_{kk}.$$
 (4.76)

4.3.1.5 Eigenwerte

Eigenwertproblem: Für eine gegebene quadratische Matrix A bestimme

$$\{(\lambda, v) \mid Av = \lambda v, v \neq 0\}. \tag{4.77}$$

Das homogene lineare Gleichungssystem

$$Av = \lambda v \iff (A - \lambda E_n)v = 0 \tag{4.78}$$

besitzt Lösungen $v \neq 0$ gdw.

$$p(\lambda) := \det(A - \lambda E_n) = 0. \tag{4.79}$$

Bei $p(\lambda)$ handelt es sich um ein normiertes Polynom vom Grad n, das charakeristisches Polynom genannt wird.

Eigenraum:

$$\operatorname{Eig}(A,\lambda) := \{ v \mid Av = \lambda v \}. \tag{4.80}$$

Die Dimension dim $\operatorname{Eig}(A,\lambda)$ wird geometrische Vielfachheit von λ genannt.

Spektrum:

$$\sigma(A) := \{ \lambda \mid \exists v \neq 0 \colon Av = \lambda v \}. \tag{4.81}$$

4.3.1.6 Nilpotente Matrizen

Definition. Nilpotente Matrix.

Eine quadratische Matrix $A \in K^{n \times n}$ heißt nilpotent, wenn es eine Zahl $k \in \mathbb{N}, k \geq 1$ gibt, so dass gilt:

$$A^k = 0. (4.82)$$

Die erste solche Zahl heißt Nilpotenzgrad der Matrix A. Eine äquivalente Bedingung ist:

$$p_A(\lambda) := \det(\lambda E - A) = \lambda^n. \tag{4.83}$$

Eigenschaften. Sei A eine nilpotente Matrix. Es gilt:

- A besitzt nur den Eigenwert $\lambda = 0$.
- $\blacksquare \det(A) = \operatorname{tr}(A) = 0.$
- \blacksquare E-A ist invertierbar.

4.4 Lineare Gleichungssysteme

Ein lineares Gleichungssystem mit m Gleichungen und n Unbekannten hat die Form:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$\vdots$$

$$(4.84)$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_n.$$

Das System lässt sich durch

$$A := \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \dots & a_{mn} \end{bmatrix}$$
(4.85)

und

$$x := \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad b := \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$(4.86)$$

zusammenfassen.

Äquivalente Matrixform von (4.84):

$$Ax = b. (4.87)$$

Erweiterte Koeffizientenmatrix:

$$(A \mid b) := \begin{bmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_n \end{bmatrix}. \tag{4.88}$$

Lösungskriterium:

$$\exists x [Ax = b] \iff \operatorname{rg}(A) = \operatorname{rg}(A \mid b). \tag{4.89}$$

Eindeutige Lösung (bei n Unbekannten):

$$\exists ! x [Ax = b] \iff \operatorname{rg}(A) = \operatorname{rg}(A \mid b) = n. \tag{4.90}$$

Im Fall m = n gilt:

$$\exists! x [Ax = b] \iff A \in GL(n, K)$$

$$\iff \operatorname{rg}(A) = n \iff \det(A) \neq 0.$$
 (4.91)

4.5 Multilineare Algebra

4.5.1 Äußeres Produkt

Sei V ein Vektorraum und sei $v_k \in V$ für alle k. Sind $a = \sum_{k=1}^n a_k v_k$ und $b = \sum_{k=1}^n b_k v_k$ beliebige Linearkombinationen, so gilt

$$a \wedge b = \sum_{i,j} a_i b_j \, v_i \wedge v_j$$

$$= \sum_{1 \le i < j \le n} (a_i b_j - a_j b_i) \, v_i \wedge v_j$$

$$(4.92)$$

und

$$a \wedge b = a \otimes b - b \otimes a$$

$$= \sum_{i,j} (a_i b_j - a_j b_i) v_i \otimes v_j$$

$$= \sum_{i,j} a_i b_j (v_i \otimes v_j - v_j \otimes v_i).$$
(4.93)

4.5.1.1 Alternator

Für $a_k \in V$ ist $\mathrm{Alt}_p \colon T^p(V) \to T^p(V)$ mit

$$\operatorname{Alt}_{p}(a_{1} \otimes \ldots \otimes a_{p})$$

$$:= \frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \left(a_{\sigma(1)} \otimes \ldots \otimes a_{\sigma(p)} \right). \tag{4.94}$$

Mit $A^p(V)$ wird die Bildmenge des Alternators bezeichnet. Der Raum $\Lambda^p(V)$ wird kanonisch mit $A^p(V)$ identifiziert, indem

$$a_1 \wedge \ldots \wedge a_p = p! \operatorname{Alt}_p(a_1 \otimes \ldots \otimes a_p)$$
 (4.95)

gesetzt wird. Hierdurch wird ein kanonischer Isomorphismus zwischen den Algebren $\Lambda(V)$ und A(V) induziert. Speziell gilt

$$Alt_2(a \otimes b) := \frac{1}{2}(a \otimes b - b \otimes a). \tag{4.96}$$

und

$$a \wedge b = 2\operatorname{Alt}_2(a \otimes b). \tag{4.97}$$

4.5.1.2 Äußere Algebra

Darstellung als Quotientenraum:

$$\Lambda^{2}(V) = T^{2}(V) / \{ v \otimes v \mid v \in V \}. \tag{4.98}$$

Dimension: Ist $\dim(V) = n$, so gilt

$$\dim(\Lambda^k(V)) = \binom{n}{k}.$$
(4.99)

4.6 **Analytische Geometrie**

4.6.1 Geraden

4.6.1.1 **Parameterdarstellung**

Punktrichtungsform:

$$p(t) = p_0 + t\underline{v},\tag{4.100}$$

 p_0 : Stützpunkt, \underline{v} : Richtungsvektor. Die Gerade ist dann die Menge $g = \{p(t) \mid t \in \mathbb{R}\}.$

Der Vektor v repräsentiert außerdem die Geschwindigkeit, mit der diese Parameterdarstellung durchlaufen wird: $p'(t) = \underline{v}$.

Gerade durch zwei Punkte: Sind zwei Punkte p_1, p_2 mit $p_1 \neq p_2$ gegeben, so ist durch die beiden Punkte eine Gerade gegeben. Für diese Gerade ist

$$p(t) = p_1 + t(p_2 - p_1) (4.101)$$

eine Punktrichtungsform. Durch Umformung ergibt sich die Zweipunkteform:

$$p(t) = (1 - t)p_1 + tp_2. (4.102)$$

Bei (4.102) handelt es sich um eine Affinkombination. Gilt $t \in [0,1]$, so ist (4.102) eine Konvexkombination: eine Parameterdarstellung für die Strecke von p_1 nach

4.6.1.2 Parameterfreie Darstellung Hesse-Form:

$$g = \{ p \mid \langle \underline{n}, p - p_0 \rangle = 0 \},$$
 (4.103)

 p_0 : Stützpunkt, n: Normalenvektor.

Die Hesse-Form ist nur in der Ebene möglich. Form (4.103) hat in Koordinaten die Form

$$g = \{(x,y) \mid n_x(x - x_0) + n_y(y - y_0) = 0\}$$

= \{(x,y) \cap n_x x + n_y y = n_x x_0 + n_y y_0\}. (4.104)

Hesse-Normalform: (4.103) mit |n| = 1.

Sei $v \wedge w$ das äußere Produkt.

Plückerform:

$$g = \{ p \mid (p - p_0) \land \underline{v} = 0 \}. \tag{4.105}$$

Die Größe $\underline{m} = p_0 \wedge \underline{v}$ heißt Moment. Beim Tupel $(\underline{v} : \underline{m})$ handelt es sich um Plückerkoordinaten für die Gerade.

In der Ebene gilt speziell:

$$g = \{(x, y) \mid (x - x_0)\Delta y = (y - y_0)\Delta x\}$$
 (4.106)

 $mit \ \underline{v} = (\Delta x, \Delta y).$

Sei $a := \Delta y$ und $b := -\Delta x$ und $c := ax_0 + by_0$. Aus (4.106) ergibt sich:

$$g = \{(x, y) \mid ax + by = c\}. \tag{4.107}$$

Im Raum ergibt sich ein Gleichungssystem:

$$g = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid \begin{vmatrix} (x - x_0)\Delta y = (y - y_0)\Delta x \\ (y - y_0)\Delta z = (z - z_0)\Delta y \\ (x - x_0)\Delta z = (z - z_0)\Delta x \end{vmatrix} \right\}$$
(4.108)

mit $\underline{v} = (\Delta x, \Delta y, \Delta z)$.

4.6.1.3 Abstand Punkt zu Gerade

Sei $p(t) := p_0 + tv$ die Punktrichtungsform einer Geraden und sei q ein weiterer Punkt. Bei $\underline{d}(t) := p(t) - q$ handelt es sich um den Abstandsvektor in Abhängigkeit von t.

Ansatz: Es gibt genau ein t, so dass gilt:

$$\langle \underline{d}, \underline{v} \rangle = 0. \tag{4.109}$$

Lösung:

$$t = \frac{\langle \underline{v}, q - p_0 \rangle}{\langle \underline{v}, \underline{v} \rangle}.$$
 (4.110)

4.6.2 Ebenen

4.6.2.1 **Parameterdarstellung**

Seien u, v zwei nicht kollineare Vektoren.

Punktrichtungsform:

$$p(s,t) = p_0 + s\underline{u} + t\underline{v}. \tag{4.111}$$

4.6.2.2 Parameterfreie Darstellung

Seien $\underline{v}, \underline{w}$ zwei nicht kollineare Vektoren. Durch

$$E = \{ p \mid (p - p_0) \land \underline{v} \land \underline{w} = 0 \}. \tag{4.112}$$

wird eine Ebene beschrieben.

Hesse-Form:

$$E = \{ p \mid \langle \underline{n}, p - p_0 \rangle = 0 \}, \tag{4.113}$$

 p_0 : Stützpunkt, \underline{n} : Normalenvektor. Die Hesse-Form einer Ebene ist nur im dreidimensionalen Raum möglich. Den Normalenvektor bekommt man aus (4.111) mit $n = u \times v$.

$$\langle \underline{n}, p - p_0 \rangle \iff \langle \underline{n}, p \rangle = \langle \underline{n}, p_0 \rangle.$$
 (4.114)

Über den Zusammenhang n = (a, b, c), p = (x, y, z) und $d = \langle \underline{n}, p_0 \rangle$ ergibt sich die

Koordinatenform:

$$E = \{(x, y, z) \mid ax + by + cz = d\}. \tag{4.115}$$

4.6.2.3 Abstand Punkt zu Ebene

Sei $p(s,t) := p_0 + s\underline{u} + t\underline{v}$ die Punktrichtungsform einer Ebene und sei q ein weiterer Punkt. Bei d(s,t) := p - qhandelt es sich um den Abstandsvektor in Abhängigkeit

Ansatz: Es gibt genau ein Tupel (s, t), so dass gilt:

$$\langle \underline{d}, \underline{u} \rangle = 0 \text{ und } \langle \underline{d}, \underline{v} \rangle = 0.$$
 (4.116)

Lösung: Es ergibt sich ein LGS:

$$\begin{bmatrix} \langle \underline{u}, \underline{v} \rangle & \langle \underline{v}, \underline{v} \rangle \\ \langle \underline{v}, \underline{v} \rangle & \langle \underline{u}, \underline{v} \rangle \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} \langle \underline{v}, q - p_0 \rangle \\ \langle \underline{u}, q - p_0 \rangle \end{bmatrix}. \tag{4.117}$$

Bemerkung: Die Systemmatrix g_{ij} ist der metrische Tensor für die Basis $B = (\underline{u}, \underline{v})$. Die Lösung des LGS ist:

$$s = \frac{\langle g_{12}\underline{v} - g_{12}\underline{u}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2},\tag{4.118}$$

$$s = \frac{\langle g_{12}\underline{v} - g_{12}\underline{u}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2},$$

$$t = \frac{\langle g_{12}\underline{u} - g_{12}\underline{v}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2}.$$
(4.118)

5 Differentialgeometrie

5.1 Kurven

5.1.1 Parameterkurven

Definition. Parameterkurve, Weg, einfacher Weg.

Sei X ein topologischer Raum und I ein reelles Intervall, auch offen oder halboffen, auch unbeschränkt. Eine stetige Funktion

$$\gamma \colon I \to X$$
 (5.1)

heißt Parameterdarstellung einer Kurve, kurz Parameterkurve. Die Bildmenge $\gamma(I)$ heißt Kurve.

Eine Parameterdarstellung mit einem kompakten Intervall I = [a, b] heißt Weg.

Für einen Weg mit I = [a, b] heißt f(a) Anfangspunkt und $\gamma(b)$ Endpunkt. Ein Weg mit $\gamma(a) = \gamma(b)$ heißt geschlossen. Ein Weg, dessen Einschränkung auf [a, b) injektiv ist, heißt einfach, auch doppelpunktfrei oder Jordan-Weg.

Beispiele.

Bsp. für einen einfachen geschlossenen Weg:

$$\gamma(t) := \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}, \quad \gamma \colon [0, 2\pi] \to \mathbb{R}^2.$$
(5.2)

Die Kurve ist der Einheitskreis.

Bsp. für einen geschlossenen Weg mit Doppelpunkt:

$$\gamma(t) := \begin{bmatrix} 2\cos t \\ \sin(2t) \end{bmatrix}, \quad f \colon [0, 2\pi] \to \mathbb{R}^2.$$
(5.3)

Die Kurve ist eine Achterschleife.

5.1.2 Differenzierbare Parameterkurven

Definition. Differenzierbare Parameterkurve, Tangentialvektor, glatt, regulär.

Eine Parameterkurve $\gamma \colon (a,b) \to \mathbb{R}^n$ heißt differenzierbar, wenn die Ableitung $\gamma'(t)$ an jeder Stelle t existiert. Die Ableitung $\gamma'(t)$ wird Tangentialvektor an die Kurve an der Stelle t genannt.

Ein C^k -Kurve ist ein Parameterkurve, dessen k-te Ableitung eine stetige Funktion ist. Ein unendlich oft differenzierbare Parameterkurve heißt glatt.

Eine Parameterkurve heißt regulär, wenn:

$$\forall t \colon f'(t) \neq 0. \tag{5.4}$$

Bogenlänge. Die Bogenlänge einer stetig differenzierbaren Parameterkurve $\gamma\colon [a,b]\to\mathbb{R}^n$ lässt sich mit der Formel

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)| \,\mathrm{d}t \tag{5.5}$$

mit

$$|\gamma'(t)| := \sqrt{\gamma_1'(t)^2 + \ldots + \gamma_n'(t)^2}$$
 (5.6)

berechnen.

5.2 Koordinatensysteme

5.2.1 Polarkoordinaten

Polarkoordinaten r, φ sind gegeben durch die Abbildung

$$\begin{bmatrix} x \\ y \end{bmatrix} = f(r, \varphi) := \begin{bmatrix} r \cos \varphi \\ r \sin \varphi \end{bmatrix}$$
 (5.7)

mit r > 0 und $0 \le \varphi < 2\pi$.

Umkehrabbildung für $(x, y) \neq (0, 0)$:

$$\begin{bmatrix} r \\ \varphi \end{bmatrix} = f^{-1}(x, y) = \begin{bmatrix} r \\ s(y) \arccos\left(\frac{x}{r}\right) \end{bmatrix}$$
 (5.8)

 $\min r = \sqrt{x^2 + y^2}$

und s(y) = sgn(y) + 1 - |sgn(y)|.

Jacobi-Determinante:

$$\det J = \det((Df)(r,\varphi)) = r. \tag{5.9}$$

Darstellung des metrischen Tensors in Polarkoordinaten:

$$(g_{ij}) = J^T J = \begin{bmatrix} 1 & 0 \\ 0 & r^2 \end{bmatrix}. \tag{5.10}$$

5.3 Mannigfaltigkeiten

5.3.1 Grundbegriffe

Definition. Reguläre Abbildung.

Seien U, V offene Mengen. Eine Abbildung

$$\varphi \colon (U \subseteq \mathbb{R}^n) \to (V \subseteq \mathbb{R}^m) \tag{5.11}$$

heißt regulär, wenn

$$\forall u \in U \colon \operatorname{rg}((D\varphi)(u)) = \min(m, n) \tag{5.12}$$

gilt. Mit $(D\varphi)(u)$ ist dabei die Jacobi-Matrix an der Stelle u gemeint:

$$((D\varphi)(u))_{ij} := \frac{\partial \varphi_i(u)}{\partial u_j}.$$
 (5.13)

Für $(D\varphi)(u) \colon \mathbb{R}^n \to \mathbb{R}^m$ gilt:

$$n \ge m \implies \forall u : (D\varphi)(u) \text{ ist surjektiv},$$
 (5.14)

$$n < m \implies \forall u : (D\varphi)(u) \text{ ist injektiv.}$$
 (5.15)

Definition. Karte, lokale Karte.

Sei $m, n \in \mathbb{N}, n < m$ und sei $M \subseteq \mathbb{R}^m$. Eine Abbildung φ von einer offenen Menge $U' \subseteq \mathbb{R}^n$ in eine offene Menge $U \subseteq M$ heißt Karte, wenn φ ein Homöomorphismus und $\varphi \colon U' \to \mathbb{R}^m$ eine reguläre Abbildung ist. Ist U eine offene Umgebung von $p \in M$, so heißt φ lokale Karte bezüglich p.

Definition. Untermannigfaltigkeit des \mathbb{R}^m .

Sei $m, n \in \mathbb{N}, n < m$. Eine Menge $M \subseteq \mathbb{R}^m$ heißt n-dimensionale Untermannigfaltigkeit des \mathbb{R}^m , wenn es zu jedem Punkt $p \in M$ eine lokale Karte

$$\varphi \colon (U' \subseteq R^n) \to (U \subseteq M \subseteq \mathbb{R}^m) \tag{5.16}$$

gibt.

Definition. Atlas.

Ein Atlas für eine Mannigfaltigkeit M ist eine Menge von Karten, deren Bildmengen M überdecken.

Definition. Differenzierbare Abbildung.

Sei M eine glatte Mannigfaltigkeit. Eine Abbildung $f\colon M\to\mathbb{R}$ ist (k mal) (stetig) differenzierbar gdw. für jede Karte $\varphi\colon U'\to (U\subseteq M)$ das Kompositum $f\circ\varphi$ (k mal) (stetig) differenzierbar ist. Es genügt der Nachweis für alle Karten aus einem Atlas.

Definition. Glatte Abbildung.

Seien M,N zwei glatte Mannigfaltigkeiten. Eine Abbildung $f\colon M\to N$ heißt glatt gdw. für alle Karten $\varphi\colon U'\to (U\subseteq M)$ und $\psi\colon V'\to (V\subseteq N)$ das Kompositum $\psi^{-1}\circ f\circ \varphi$ eine glatte Abbildung ist. Es genügt bereits der Nachweis für alle Karten aus jeweils einem Atlas für M und N.

5.3.2 Vektorfelder

5.3.2.1 Tangentialräume

 $Tangential b\"{u}ndel:$

$$TM := \bigsqcup_{p \in M} T_p M = \bigcup_{p \in M} \{p\} \times T_p M. \tag{5.17}$$

 $Kotangential b\"{u}ndel:$

$$T^*M := \bigsqcup_{p \in M} T_p^*M, \tag{5.18}$$

wobei T_p^*M eine andere Schreibweise für $(T_pM)^*$ ist. Natürliche Projektion:

$$\pi(p,v) := p, \quad \pi \colon TM \to M. \tag{5.19}$$

Das Tangentialbündel einer glatten Mannigfaltigkeit ist eine glatte Mannigfaltigkeit.

5.3.2.2 Christoffel-Symbole

Sei (M,g) eine pseudo-riemannsche Mannigfaltigkeit. Es gilt:

$$\Gamma_{ab}^{k} = \frac{1}{2}g^{kc}(\partial_{a}g_{bc} + \partial_{b}g_{ac} - \partial_{c}g_{ab}), \tag{5.20}$$

$$\Gamma_{cab} = \frac{1}{2} (\partial_a g_{bc} + \partial_b g_{ac} - \partial_c g_{ab}), \tag{5.21}$$

$$\partial_a g_{bc} = \Gamma_{bac} + \Gamma_{cab}, \tag{5.22}$$

$$\Gamma_{ab}^k = \Gamma_{ba}^k. \tag{5.23}$$

6 Funktionentheorie

6.1 Holomorphe Funktionen

Definition. Holomorphe Funktion.

Sei $U\subseteq\mathbb{C}$ eine offene Menge und $f\colon U\to\mathbb{C}$. Die Funktion f wird holomorph an der Stelle $z_0\in U$ genannt, wenn der Grenzwert

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \tag{6.1}$$

existiert.

Das Argument und Bild von f werden nun in Real- und Imaginärteil zerlegt. Das sind die Zerlegungen z = x + yi und f(z) = u(x,y) + v(x,y)i. Die Funktion f(z) ist genau dann holomorph an der Stelle $z_0 = x_0 + y_0$ i, wenn bei (x_0, y_0) die partiellen Ableitungen stetig sind und die Cauchy-Riemann-Gleichungen

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 bei (x_0, y_0) (6.2)

gelten. Bei

$$\underline{v} := (u, -v) = (v_x, v_y) = v_x e_x + v_y e_y$$
 (6.3)

handelt es sich um ein Vektorfeld auf dem Koordinatenraum. Die Gleichungen (6.2) lassen sich nun als Quellenfreiheit

$$0 = \langle \nabla, \underline{v} \rangle = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \tag{6.4}$$

und Rotationsfreiheit

$$0 = \nabla \wedge \underline{v} = \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) e_x \wedge e_y \tag{6.5}$$

interpretieren.

Für das totale Differential

$$\mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y \tag{6.6}$$

gibt es die Umformulierung

$$\mathrm{d}f = \frac{\partial f}{\partial z} \mathrm{d}z + \frac{\partial f}{\partial \overline{z}} \mathrm{d}\overline{z}. \tag{6.7}$$

Hierbei ist dz = dx + i dy und $d\overline{z} = dx - i dy$. Die Ableitungsoperatoren

$$\frac{\partial f}{\partial z} := \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \tag{6.8}$$

$$\frac{\partial f}{\partial \overline{z}} := \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \tag{6.9}$$

mit $\partial f = \partial u + i \partial v$ heißen Wirtinger-Operatoren. Die Gleichungen (6.2) lassen sich nun zur Gleichung

$$\frac{\partial f}{\partial \overline{z}}(z_0) = 0 \tag{6.10}$$

zusammenfassen. Für holomorphe Funktionen reduziert sich das Differential (6.7) wegen (6.10) auf die Form

$$\mathrm{d}f = \frac{\partial f}{\partial z} \mathrm{d}z. \tag{6.11}$$

6.2 Harmonische Funktionen

Definition. Harmonische Funktion.

Sei $U \subseteq \mathbb{R}^2$ eine offene Menge. Eine Funktion $\Phi: U \to \mathbb{R}$ heißt harmonisch an der Stelle (x_0, y_0) , wenn die Laplace-Gleichung $(\Delta\Phi)(x_0, y_0) = 0$ mit dem Laplace-Operator

$$\Delta\Phi := \frac{\partial^2 \Phi}{\partial x \partial x} + \frac{\partial^2 \Phi}{\partial y \partial y} \tag{6.12}$$

erfüllt ist.

Ist f = u + vi an der Stelle z_0 holomorph, so sind der Realteil u und der Imaginärteil v an der Stelle $(x_0, y_0) = (\text{Re } z_0, \text{Im } z_0)$ harmonisch. Das heißt es gilt

$$(\Delta u)(x_0, y_0) = 0, \quad (\Delta v)(x_0, y_0) = 0.$$
 (6.13)

Ist eine Funktion u auf einem einfach zusammenhängenden Gebiet harmonisch, so lässt sich stets eine harmonische Funktion v finden, so dass f=u+vi holomorph ist. Die Funktion v ist bis auf eine additive reelle Konstante c eindeutig bestimmt. Das heißt, v darf auch durch v+c ersetzt werden.

Die Funktion v wird die harmonisch Konjugierte zu u genannt. An jeder Stelle (x_0, y_0) treffen die Linien

$$\{(x,y) \mid u(x,y) = u(x_0, y_0)\},\tag{6.14}$$

$$\{(x,y) \mid v(x,y) = v(x_0, y_0)\} \tag{6.15}$$

senkrecht aufeinander.

6.3 Wegintegrale

Integral einer komplexwertigen Funktion.

Für $f: [a, b] \to \mathbb{C}$ mit f = u + iv ist

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt, \qquad (6.16)$$

wenn u und v integrierbar sind.

Definition. Kurvenintegral.

Ist $\gamma \colon [a,b] \to \mathbb{C}$ ein differenzierbarer Weg (5.1), so wird

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$
 (6.17)

das Kurvenintegral über f entlang von γ genannt.

Integralsatz von Cauchy. Ist G ein einfach zusammenhängendes Gebiet und $f: G \to \mathbb{C}$ holomorph, so gilt für jeden Weg γ von $\gamma(a)$ nach $\gamma(b)$ die Formel

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a)), \tag{6.18}$$

wobei die Funktion F nicht vom gewählten Weg abhängig ist. Außerdem ist F eine Stammfunktion zu f, das heißt es gilt F'(z) = f(z) für alle $z \in G$.

Sind die Voraussetzungen für den Integralsatz erfüllt, dann motiviert Wegunabhängigkeit die Definition

$$\int_{z_1}^{z_2} f(z) \, \mathrm{d}z := F(z_2) - F(z_1), \tag{6.19}$$

bei der auf Wege gänzlich verzichtet wird.

7 Dynamische Systeme

7.1 Grundbegriffe

Definition. Dynamisches System.

Ein Tupel (T, M, Φ) mit $\Phi \colon T \times M \to M$ heißt dynamisches System, wenn für alle $t_1, t_2 \in T$ und $x \in M$ gilt:

$$\Phi(0, x) = x,\tag{7.1}$$

$$\Phi(t_2, \Phi(t_1, x)) = \Phi(t_1 + t_2, x). \tag{7.2}$$

Die Menge T heißt Zeitraum. Ein System mit $T = \mathbb{N}_0$ oder $T = \mathbb{Z}$ heißt zeitdiskret, eines mit $T = \mathbb{R}_0^+$ oder $T = \mathbb{R}$ heißt zeitkontinuierlich. Ein System mit $T = \mathbb{Z}$ oder $T = \mathbb{R}$ heißt invertierbar.

Die Menge M heißt Zustandsraum, ihre Elemente werden $Zust\ddot{a}nde$ genannt.

Für ein invertierbares System handelt es sich bei Φ um eine Gruppenaktion (s. 9.1.2) der additiven Gruppe (T, +).

Die Menge

$$\Phi(T, x) := \{ \Phi(t, x) \mid t \in T \}$$
(7.3)

heißt Orbit von x. S. a. (9.9).

7.2 Iterationen

Definition. Iteration.

Für eine Selbstabbildung $\varphi \colon M \to M$ lassen sich die Iterationen gemäß

$$\varphi^0 := \mathrm{id}, \quad \varphi^n := \varphi^{n-1} \circ \varphi$$
 (7.4)

formulieren. Mit id ist die identische Abbildung

$$id: M \to M, \quad id(x) := x \tag{7.5}$$

und mit $g \circ f$ die Komposition (1.172) gemeint. Für ein bijektives φ wird zusätzlich

$$\varphi^{-n} := (\varphi^{-1})^n \tag{7.6}$$

definiert.

Die Iterationen bilden ein dynamisches System gemäß

$$\Phi(n,x) := \varphi^n(x), \quad \Phi \colon \mathbb{N}_0 \times M \to M. \tag{7.7}$$

Bei einem bijektiven φ lässt sich das System zum invertierbaren System

$$\Phi(n,x) := \varphi^n(x), \quad \Phi \colon \mathbb{Z} \times M \to M \tag{7.8}$$

erweitern.

Definition. Kompositionsoperator.

Für eine Funktion $\varphi \colon A \to A$ wird der Operator

$$C_{\varphi}(g) := g \circ \varphi, \quad C_{\varphi} \colon B^A \to B^A$$
 (7.9)

Kompositionsoperator genannt.

Wenn B^A ein Funktionenraum ist, dann ist der Kompositionsoperator ein linearer Operator.

8 Kombinatorik

8.1 Kombinatorische Funktionen

8.1.1 Faktorielle

8.1.1.1 Fakultät

Definition. Fakultät.

Für $n \in \mathbb{Z}, n \geq 0$:

$$n! := \prod_{k=1}^{n} k. \tag{8.1}$$

Rekursionsgleichung:

$$(n+1)! = n! (n+1) \tag{8.2}$$

Die Gammafunktion ist eine Verallgemeinerung der Fakultät:

$$n! = \Gamma(n+1).$$

8.1.1.2 Fallende Faktorielle

Definition. Fallende Faktorielle.

Für $a \in \mathbb{C}$ und $k \geq 0$:

$$a^{\underline{k}} := \prod_{j=0}^{k-1} (a-j).$$

Für $a, k \in \mathbb{C}$:

$$a^{\underline{k}} := \lim_{x \to a} \frac{\Gamma(x+1)}{\Gamma(x-k+1)}.$$

Für $n \ge k$ und $k \ge 0$ gilt:

$$n^{\underline{k}} = \frac{n!}{(n-k)!}.$$

8.1.1.3 Steigende Faktorielle

Definition. Steigende Faktorielle.

Für $a \in \mathbb{C}$ und $k \geq 0$:

$$a^{\overline{k}} := \prod_{j=0}^{k-1} (a+j).$$

Für $a, k \in \mathbb{C}$:

$$a^{\overline{k}} := \lim_{x \to a} \frac{\Gamma(x+k)}{\Gamma(x)}.$$

Für $n \ge 1$ und $n + k \ge 1$ gilt:

$$n^{\overline{k}} = \frac{(n+k-1)!}{(n-1)!}.$$

8.1.2 Binomialkoeffizienten

Definition. Binomialkoeffizient.

Für $a \in \mathbb{C}$ und $k \in \mathbb{Z}$:

$$\begin{pmatrix} a \\ k \end{pmatrix} := \begin{cases} \frac{a^k}{k!} & \text{wenn } k > 0, \\ 1 & \text{wenn } k = 0, \\ 0 & \text{wenn } k < 0. \end{cases}$$

Für $a, b \in \mathbb{C}$:

$$\begin{pmatrix} a \\ b \end{pmatrix} := \lim_{x \to a} \lim_{y \to b} \frac{\Gamma(x+1)}{\Gamma(y+1)\Gamma(x-y+1)}.$$

Für $0 \le k \le n$ gilt die Symmetriebeziehung

$$\binom{n}{k} = \binom{n}{n-k} \tag{8.12}$$

und die Rekursionsgleichung

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}. \tag{8.13}$$

Für $a \in \mathbb{C}$ und $k \in \mathbb{Z}$ gilt:

$$\binom{-a}{k} = (-1)^k \binom{a+k-1}{k}.$$
 (8.14)

8.2 Differenzenrechnung

Definition. Differenzoperator.

Vorwärtsdifferenz:

$$(\Delta f)(x) := f(x+1) - f(x), \tag{8.15}$$

$$(\Delta_h f)(x) := f(x+h) - f(x). \tag{8.16}$$

 $(8.4) \qquad \textit{R\"{u}\textit{ck}w\"{a}\textit{rts}\textit{differenz}}:$

(8.3)

(8.5)

$$(\nabla_h f)(x) := f(x) - f(x - h).$$
 (8.17)

Für $n \in \mathbb{N}_0$ und $x \in \mathbb{C}$ gilt:

$$\Delta(x^{\underline{n}}) = nx^{\underline{n-1}}. (8.18)$$

Die Formel gilt auch für $n \in \mathbb{C}$, dann aber

 $x \in \mathbb{C} \setminus \{k \in \mathbb{Z} \mid k < 0\}, \text{ da auf dem Streifen unter}$

(8.6) Umständen Polstellen sind.

Für $n \in \mathbb{Z}, n \geq 0$ gilt:

$$\sum_{x=a}^{b-1} x^{\underline{n}} = \frac{1}{n+1} \left[x^{\underline{n+1}} \right]_{x=a}^{x=b}.$$
 (8.19)

(8.7) Die Formel gilt auch für $a, b \ge 0$ und $n \in \mathbb{C} \setminus \{-1\}$.

Für a > 0 und $x \in \mathbb{C}$ gilt:

$$\Delta(a^x) = (a-1)a^x. \tag{8.20}$$

(8.8) **8.3 Endliche Summen**

Summe der Dreieckszahlen:

(8.9)
$$\sum_{k=1}^{n} k = \frac{n}{2}(n+1), \tag{8.21}$$

$$\sum_{k=1}^{n} k = \frac{1}{2}(n-m+1)(n+m). \tag{8.22}$$

Partialsumme der geometrischen Reihe:

$$\sum_{k=m}^{n-1} q^k = \frac{q^n - q^m}{q - 1}, \qquad (q \neq 1)$$
 (8.23)

$$\sum_{k=1}^{n-1} k^p q^k = \left(q \frac{\mathrm{d}}{\mathrm{d}q} \right)^p \frac{q^n - q^m}{q - 1}. \quad (q \neq 1)$$
 (8.24)

(8.10)

(8.11)

8.4 Formale Potenzreihen

8.4.1 Ring der formalen Potenzreihen

Definition. Formale Potenzreihe.

Ein Ausdruck der Form

$$\sum_{k=0}^{\infty} a_k X^k := (a_k)_{k=0}^{\infty} = (a_0, a_1, a_2, \dots)$$
 (8.25)

heißt formale Potenzreihe. Mit R[[X]] wird die Menge der formalen Potenzreihen in der Variablen X mit Koeffizienten $a_k \in R$ bezeichnet, wobei R ein kommutativer Ring mit Einselement ist.

Die Menge R[[X]] bildet bezüglich der Addition

$$\sum_{k=0}^{\infty} a_k X^k + \sum_{k=0}^{\infty} b_k X^k := \sum_{k=0}^{\infty} (a_k + b_k) X^k$$
 (8.26)

und der Multiplikation

$$\left(\sum_{i=0}^{\infty} a_i X^i\right) \left(\sum_{j=0}^{\infty} b_j X^j\right) := \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) X^k$$
(8.27)

einen kommutativen Ring.

Koeffizientenvergleich. Weil formale Potenzreihen Folgen entsprechen, sind sie genau dann gleich, wenn sie komponentenweise gleich sind:

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{\infty} b_k \iff \forall k \, (a_k = b_k). \tag{8.28}$$

Division. Eine formale Potenzreihe B besitzt höchstens eine Inverse B^{-1} , so dass $BB^{-1}=1$ gilt. Da der Ring kommutativ ist, darf die Division

$$\frac{A}{B} := AB^{-1} = B^{-1}A \tag{8.29}$$

definiert werden, falls B invertierbar ist.

8.4.2 Binomische Reihe

Definition. Binomische Reihe.

Für $a \in \mathbb{C}$:

$$(1+X)^a := \sum_{k=0}^{\infty} {a \choose k} X^k \tag{8.30}$$

Es gilt:

$$(1+X)^{a+b} = (1+X)^a (1+X)^b (8.31)$$

und

$$(1+X)^{ab} = ((1+X)^a)^b. (8.32)$$

9 Algebra

9.1 Gruppentheorie

9.1.1 Grundbegriffe

Definition. Gruppenhomomorphismus.

Sind (G,*) und (H,\bullet) zwei Gruppen, so heißt $\varphi\colon G\to H$ Gruppenhomomorphismus, wenn

$$\forall g_1, g_2 \in G \colon \varphi(g_1 * g_2) = \varphi(g_1) \bullet \varphi(g_2) \tag{9.1}$$

gilt. Ein *Gruppenisomorphismus* ist ein bijektiver Gruppenhomomorphismus, da die Umkehrabbildung auch wieder ein Gruppenhomomorphismus ist.

Definition. Direktes Produkt.

Direktes Produkt:

$$G \times H := \{ (g, h) \mid g \in G, h \in H \},$$
 (9.2)

$$(g_1, h_1) * (g_2, h_2) := (g_1 * g_2, h_1 * h_2).$$
 (9.3)

Satz von Lagrange. Für Gruppen G, H gilt:

$$H \le G \implies |G| = |G/H| \cdot |H|.$$
 (9.4)

9.1.2 Gruppenaktionen

Definition. Gruppenaktion.

Eine Funktion $f \colon G \times X \to X$ heißt Gruppenaktion, wenn

$$\forall g_1, g_2 \in G, x \in X : f(g_1, f(g_2, x)) = f(g_1 g_2, x), \qquad (9.5)$$

$$\forall x \in X \colon f(e, x) = x \tag{9.6}$$

gilt, wobei mit e das neutrale Element von G gemeint ist. Anstelle von f(g,x) wird üblicherweise kurz gx (oder g+x bei einer Gruppe (G,+)) geschrieben.

Anstelle von Linksaktionenkommen auch Rechtsaktionen vor, die sich von Linksaktionen in der Reihenfolge unterscheiden. Eine Rechtsaktion $f\colon X\times G\to X$ genügt den Regeln

$$\forall g_1, g_2 \in G, x \in X \colon f(f(x, g_1), g_2) = f(x, g_1 g_2), \tag{9.7}$$

$$\forall x \in X \colon f(x, e) = x. \tag{9.8}$$

Definition. Orbit, Stabilisator.

Für ein $x \in X$ wird

$$Gx := \{ gx \mid g \in G \} \tag{9.9}$$

Bahn oder Orbit genannt. Die Menge

$$G_x := \{ g \in G \mid gx = x \} \tag{9.10}$$

wird ${\it Fixgruppe}$ oder ${\it Stabilisator}$ genannt. Die Menge

$$X^g := \{ x \in X \mid gx = x \} \tag{9.11}$$

heißt Fixpunktmenge.

Fixgruppen sind immer Untergruppen:

$$\forall x \colon G_x < G. \tag{9.12}$$

Bahnen sind Äquivalenzklassen, die Quotientenmenge

$$X/G := \{Gx \mid x \in X\} \tag{9.13}$$

wird Bahnenraum genannt.

Bahnformel. Ist G eine endliche Gruppe, so gilt:

$$|G| = |Gx| \cdot |G_x|. \tag{9.14}$$

Lemma von Burnside. Für eine endliche Gruppe G gilt:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$
 (9.15)

9.2 Ringe

Ist (R, +, *) ein Ring, so gilt für alle $a, b \in R$:

$$0 * a = a * 0 = 0, (9.16)$$

$$(-a) * b = a * (-b) = -(a * b), (9.17)$$

$$(-a) * (-b) = -(a * b). (9.18)$$

Definition. Ringhomomorphismus.

Sind (R, +, *) und (R', +', *') Ringe, so wird $\varphi \colon R \to R'$ als Ringhomomorphismus bezeichnet, wenn

$$\varphi(a+b) = \varphi(a) +' \varphi(b), \tag{9.19}$$

$$\varphi(a * b) = \varphi(a) *' \varphi(b), \tag{9.20}$$

für alle $a, b \in R$ gilt und $\varphi(1) = 1$ ist.

9.2.1 Polynome

Definition. Polynom, Polynomring, Faltung.

Sei R ein kommutativer unitärer Ring. Mit R[X] bezeichnen wir die Menge der unendlichen Folgen

$$(a_k) = (a_0, a_1, \dots, a_n, 0, 0, 0, \dots)$$
 (9.21)

mit $a_k \in \mathbb{R}$, bei denen ab einem Index alle Folgenglieder null sind.

Für zwei Folgen aus R[X] wird nun die Addition

$$(a_k) + (b_k) := (a_k + b_k) (9.22)$$

und die Multiplikation

$$(a_i) * (b_j) = \left(\sum_{i=0}^{k} a_i b_{k-i}\right)$$
 (9.23)

erklärt. In der Form (9.23) wird die Operation auch Faltung der Folgen (a_i) und (b_j) genannt.

Die Menge R[X] bildet mit der Addition und Multiplikation einen kommutativen unitären Ring, den *Polynom-ring* mit Koeffizienten in R. Ein Element von R[X] wird *Polynom* genannt.

Man definiert nun

$$X := (0, 1, 0, 0, 0, \dots),$$
 (9.24)

womit sich jedes Polynom in der Form

$$(a_k) = \sum_{k=0}^{n} a_k X^k \tag{9.25}$$

schreiben lässt. Die a_k nennt man Koeffizienten des Polynoms.

Die Addition bekommt nun die Form

$$\sum_{k=0}^{m} a_k X^k + \sum_{k=0}^{n} b_k X^k := \sum_{k=0}^{p} (a_k + b_k) X^k.$$
 (9.26)

mit $p = \max(m, n)$. Die Multiplikation lässt sich nun in der Form

$$\bigg(\sum_{i=0}^m a_i X^i\bigg)\bigg(\sum_{j=0}^n b_j X^j\bigg) := \sum_{k=0}^{m+n} \bigg(\sum_{i=0}^k a_i b_{k-i}\bigg) X^k.$$

(9.27)

schreiben. Die Multiplikation von Polynomen ist das gewöhnlichen Ausmultiplizieren der Polynome, wobei $X^iX^j=X^{i+j}$ gilt.

Die X^k können als Vektorraumbasis betrachtet werden und dienen dabei dazu, die a_k auseinanderzuhalten. Zwei Polynome $\sum_{k=0}^m a_k X^k$ und $\sum_{k=0}^n b_k X^k$ sind genau dann gleich, wenn $a_k = b_k$ für alle $k \leq \max(m,n)$ gilt.

Da R[X] wieder ein kommutativer unitärer Ring ist, ist auch R[X][Y] ein Polynomring. Man definiert

$$R[X,Y] := R[X][Y].$$
 (9.28)

Polynome aus R[X,Y] lassen sich in der Form

$$\sum_{j=0}^{n} \left(\sum_{i=0}^{m} a_{ij} X^{i} \right) Y^{j} = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{ij} X^{i} Y^{j}$$
 (9.29)

mit $a_{ij} \in R$ schreiben.

Allgemein ist die Menge

$$R[X_1, \dots, X_q] := X[X_1, \dots, X_{q-1}][X_q]$$
 (9.30)

ein kommutativer unitärer Ring. Die Polynome lassen sich in der Form

$$\sum_{k \in \mathbb{N}_0^q} a_k X^k \quad (a_k \in R) \tag{9.31}$$

mit

$$k = (k_1, \dots, k_q)$$
 und $X^k := \prod_{i=1}^q X_i^{k_i}$

schreiben.

Definition. Grad.

Für ein Polynom $f = \sum_{k=0}^{n} a_k X^k$ mit $a_n \neq 0$ wird n als Grad von f bezeichnet. Man schreibt $n = \deg f$.

Für ein Monom $a_{ij}X^iY^j$ mit $a_{ij}\neq 0$ heißt i+j Totalgrad. Der Grad eines Polynoms

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} X^{i} Y^{j} \tag{9.32}$$

ist der maximale Totalgrad aller Monome mit $a_{ij} \neq 0$. Für Polynome in mehr als zwei Variablen ist die Definition analog.

Regeln.

Für zwei Polynome $f, g \in R[X_1, \dots, X_q]$ gilt:

$$\deg(f+g) \le \max(\deg f, \deg g),\tag{9.33}$$

$$\deg(fg) \le (\deg f)(\deg g). \tag{9.34}$$

Für zwei Polynome f, g mit $\deg f \neq \deg g$ gilt:

$$\deg(f+g) = \max(\deg f, \deg g). \tag{9.35}$$

Ist R ein Integritätsring, so gilt für $f, g \in R[X_1, \dots, X_q]$:

$$\deg(fg) = (\deg f)(\deg g). \tag{9.36}$$

Jeder Körper, z. B. \mathbb{R} oder \mathbb{C} ist ein Integritätsring. Auch die ganzen Zahlen \mathbb{Z} bilden einen Integritätsring. Ein Polynomring ist genau dann ein Integritätsring, wenn die Koeffizienten aus einem Integritätsring entstammen.

Definition. Einsetzungshomomorphismus.

Seien R,R' kommutative unitäre Ringe. Sei R' eine Ringerweiterung von R und sei $r\in R'$. Die Abbildung $\varphi_r\colon R[X]\to R'$ mit

$$\varphi_r(p) = p(r) := \sum_{k=0}^n a_k r^k$$
 (9.37)

für jedes Polynom

$$p = \sum_{k=0}^{n} a_k X^k$$

ist ein Ringhomomorphismus. Man bezeichnet p(r) als Einsetzung von r in p und φ_r als Einsetzungshomomorphismus.

Man kann auch R' = R und r = X setzen, dann gilt p = p(X). Ein Polynom stimmt also mit der Einsetzung seiner eigenen formalen Variablen überein.

Definition. Polynomfunktion.

Für ein festes $p \in R[X]$ wird die Funktion

$$f: R' \to R', \quad f(x) := p(x)$$
 (9.38)

als Polynomfunktion bezeichnet.

In einigen Ringen können unterschiedliche Polynome zur selben Polynomfunktion führen. Handelt es sich bei R jedoch um einen unendlichen Körper, z. B. $R = \mathbb{R}$ oder $R = \mathbb{C}$, dann gibt es zu jeder Polynomfunktion nur ein einziges Polynom.

9.3 Körper

Definition. Körperhomomorphismus.

Sind $(K, +, \bullet)$ und $(K', +', \bullet')$ Körper, so wird $\varphi \colon K \to K'$ als Körperhomomorphismus bezeichnet, wenn

$$\varphi(a+b) = \varphi(a) +' \varphi(b), \tag{9.39}$$

$$\varphi(a \bullet b) = \varphi(a) \bullet' \varphi(b) \tag{9.40}$$

für alle $a, b \in K$ gilt und $\varphi(1) = 1$ ist.

10 Wahrscheinlichkeitsrechnung

10.1 Diskrete Verteilungen

10.1.1 Diskreter Wahrscheinlichkeitsraum

Definition. Ergebnis, Ereignis, Ergebnismenge, Ereignisraum, unmögliches Ereignis, sicheres Ereignis.

Eine abzählbare $Ergebnismenge\ \Omega$ ist eine endliche (oder abzählbar unendliche) Menge, die als Grundmenge verwendet wird. Ein Element von Ω heißt Ergebnis oder Elementarereignis.

Die Potenzmenge 2^{Ω} heißt *Ereignisraum*, die Elemente heißen *Ereignisse*. Man nennt die leere Menge \emptyset das *unmögliche* und Ω das *sichere* Ereignis.

Definition. Diskreter Wahrscheinlichkeitsraum, Wahrscheinlichkeitsmaß.

Ein Paar (Ω, P) heißt diskreter Wahrscheinlichkeitsraum, wenn Ω eine abzählbare Ergebnismenge ist und

$$P(A) := \sum_{\omega \in A} P(\{\omega\}), \quad P \colon 2^{\Omega} \to [0, 1]$$
 (10.1)

die Eigenschaft

$$\sum_{\omega \in \Omega} P(\{\omega\}) = 1 \tag{10.2}$$

besitzt. Die Abbildung P heißt (das von den Einzelwahrscheinlichkeiten induzierte) Wahrscheinlichkeitsmaß. Man spricht auch von einer Verteilung auf Ω .

10.1.2 Axiome von Kolmogorow

Definition. Wahrscheinlichkeitsmaß (Axiome von Kolmogorow).

Gegeben ist ein Messraum (Ω, Σ) . Man nennt P ein Wahrscheinlichkeitsma β , wenn gilt:

- 1. P ist eine Funktion $P: \Sigma \to [0,1]$.
- 2. $P(\Omega) = 1$.
- 3. Ist I eine abzählbare Indexmenge und sind die A_i für $i \in I$ paarweise disjunkte Ereignisse, so gilt

$$P\Big(\bigcup_{i\in I} A_i\Big) = \sum_{i\in I} P(A_i). \tag{10.3}$$

Bei einem diskreten Wahrscheinlichkeitsraum (Ω, P) mit $\Sigma = 2^{\Omega}$ sind die Axiome erfüllt.

10.1.3 Rechenregeln

Aus den Axiomen von Kolmogorow folgen folgende Rechenregeln für ein Wahrscheinlichkeitsmaß P:

$$P(\emptyset) = 0, (10.4)$$

$$P(\Omega) = 1, (10.5)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B). \tag{10.6}$$

Man nennt $A^{\mathsf{c}} := \Omega \setminus A$ das komplementäre Ereignis zu A. Es gilt:

$$A \cup A^{c} = \Omega, \tag{10.7}$$

$$A \cap A^{\mathsf{c}} = \emptyset, \tag{10.8}$$

$$P(A \cup A^{c}) = P(A) + P(A^{c}) = 1.$$
 (10.9)

Mehrstufige Experimente. Ein zweistufiges Zufallsexperiment mit einem ersten Ergebnis aus Ω_1 und einem zweiten aus Ω_2 lässt sich als Zufallsexperiment modellieren, bei dem die Ergebnismenge das kartesische Produkt

 $\Omega = \Omega_1 \times \Omega_2$ ist. Bei einem n-stufigen Experiment gilt

$$\Omega = \Omega_1 \times \ldots \times \Omega_n. \tag{10.10}$$

Erste Pfadregel: Sei $a \in \Omega_1$, $b \in \Omega_2$, $A = \{a\} \times \Omega_2$ und $B = \Omega_1 \times \{b\}$. Es gilt

$$P(\{(a,b)\}) = P(A \cap B) = P(A) P(B|A).$$
 (10.11)

Das Ereignis $\{(a,b)\}$ tritt ein, wenn zuerst der Pfad A eingetreten ist, und dann auch der Pfad B. Die Wahrscheinlichkeit ist das Produkt der Pfadwahrscheinlichkeiten P(A) und P(B|A).

Zweite Pfadregel: Sind $a,b\in\Omega$ zwei unterschiedliche Ergebnisse, dann gilt

$$P(\{a\} \cup \{b\}) = P(\{a\}) + P(\{b\}). \tag{10.12}$$

Wenn die Teilexperimente eines mehrstufigen Experiments stochastisch unabhängig sind, dann gilt nach der ersten Pfadregel die Formel

$$P(\{(a_1, \dots, a_n)\}) = \prod_{k=1}^{n} P(A_k), \tag{10.13}$$

wobei A_k der Pfad zu a_k ist. Für den Fall, dass die einzelnen Experimente alle Laplace-Experimente sind, gilt speziell

$$P(\{(a_1, \dots, a_n)\}) = \frac{1}{|\Omega|} = \prod_{k=1}^n \frac{1}{|\Omega_k|}$$
 (10.14)

mit $\Omega = \Omega_1 \times \ldots \times \Omega_n$ und $(a_1, \ldots, a_n) \in \Omega$.

Führt man immer wieder das selbe Laplace-Experiment aus, gilt mit $t\in\Omega$ und $\Omega=\Omega_1^n$ die Regel

$$P(t) = \frac{1}{|\Omega|} = \frac{1}{|\Omega_1|^n}.$$
 (10.15)

Würfelt man z. B. n-mal hintereinander, dann gibt es 6^n Pfade und für jeden Pfad ergibt sich eine Wahrscheinlichkeit von $(1/6)^n$.

10.1.4 Bedingte Wahrscheinlichkeit Definition. Bedingte Wahrscheinlichkeit.

Für zwei Ereignisse A, B mit P(B) > 0 nennt man

$$P(A|B) := \frac{P(A \cap B)}{P(B)} \tag{10.16}$$

die bedingte Wahrscheinlichkeit von A, vorausgesetzt B. Bei

$$P'(A) := P(A|B), \quad P' : 2^B \to [0,1]$$
 (10.17)

handelt es sich wieder um ein Wahrscheinlichkeitsmaß. Satz von Bayes. Für P(A)>0 und P(B)>0 gilt

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}.$$
 (10.18)

10.1.5 Unabhängige Ereignisse

Definition. Stochastische Unabhängigkeit.

Zwei Ereignisse A, B heißen $stochastisch\ unabhängig,$ wenn

$$P(A \cap B) = P(A) P(B) \tag{10.19}$$

gilt.

10.1.6 Gleichverteilung

Definition. Gleichverteilung (Laplace-Verteilung).

Sei Ω eine endliche Ergebnismenge. Mann nennt P eine Gleichverteilung oder Laplace-Verteilung, wenn

$$P(\{\omega\}) = \frac{1}{|\Omega|} \tag{10.20}$$

für alle Ergebnisse $\omega \in \Omega$ gilt.

Für eine Gleichverteilung gilt

$$P(A) = \frac{|A|}{|\Omega|}. (10.21)$$

10.1.7 Zufallsvariablen

Definition. Zufallsvariable.

Sei (Ω,P) ein diskreter Wahrscheinlichkeitsraum. Jede Funktion

$$X \colon \Omega \to \mathbb{R} \tag{10.22}$$

heißt Zufallsvariable. Die Funktionswerte $x=X(\omega)$ heißen Realisationen der Zufallsvariable.

Eine Zufallsvariable X ordent dem Raum (Ω, P) einen neuen Wahrscheinlichkeitsraum (\mathbb{R}, P_X) zu, wobei

$$P_X : 2^{X(\Omega)} \to [0, 1], \ P_X(A) := P(X^{-1}(A)) \ (10.23)$$

definiert wird. Mit

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}$$
 (10.24)

ist das Urbild von A gemeint. Die folgenden Kurzschreibweisen haben sich eingebürgert:

$$P(X \in A) := P(\{\omega \mid X(\omega) \in A\}), \tag{10.25}$$

$$P(X = x) := P(\{\omega \mid X(\omega) = x\}),$$
 (10.26)

$$P(X \le x) := P(\{\omega \mid (X\omega) \le x\}). \tag{10.27}$$

Definition. Verteilungsfunktion.

Für eine Zufallsvariable X wird

$$F(x) := P(X \le x), \quad F : \mathbb{R} \to [0, 1]$$
 (10.28)

Verteilungsfunktion von X genannt.

Eigenschaften von Verteilungsfunktionen.

Für eine Verteilungsfunktion F gilt:

$$\blacksquare$$
 F ist monoton wachsend, (10.29)

$$\blacksquare$$
 F ist rechtsseitig stetig, (10.30)

$$\blacksquare \lim_{x \to -\infty} F(x) = 0, \tag{10.31}$$

$$\blacksquare \lim_{x \to \infty} F(x) = 1, \tag{10.32}$$

$$P(a < X \le b) = F(b) - F(a).$$
 (10.33)

11 Tabellen

11.1 Kombinatorik

11.1.1 Binomialkoeffizienten

	k = 0	k = 1	k = 2	k = 3	k=4	k=5	k = 6	k = 7	k = 8	k = 9	k = 10
n = 0	1	0	0	0	0	0	0	0	0	0	0
n = 1	1	1	0	0	0	0	0	0	0	0	0
n = 2	1	2	1	0	0	0	0	0	0	0	0
n = 3	1	3	3	1	0	0	0	0	0	0	0
n = 4	1	4	6	4	1	0	0	0	0	0	0
n = 5	1	5	10	10	5	1	0	0	0	0	0
n = 6	1	6	15	20	15	6	1	0	0	0	0
n = 7	1	7	21	35	35	21	7	1	0	0	0
n = 8	1	8	28	56	70	56	28	8	1	0	0
n = 9	1	9	36	84	126	126	84	36	9	1	0
n=10	1	10	45	120	210	252	210	120	45	10	1
n=11	1	11	55	165	330	462	462	330	165	55	11
n = 12	1	12	66	220	495	792	924	792	495	220	66
n = 13	1	13	78	286	715	1287	1716	1716	1287	715	286
n = 14	1	14	91	364	1001	2002	3003	3432	3003	2002	1001
n=15	1	15	105	455	1365	3003	5005	6435	6435	5005	3003
n = 16	1	16	120	560	1820	4368	8008	11440	12870	11440	8008
n = 17	1	17	136	680	2380	6188	12376	19448	24310	24310	19448
n = 18	1	18	153	816	3060	8568	18564	31824	43758	48620	43758
n = 19	1	19	171	969	3876	11628	27132	50388	75582	92378	92378

	k = 0	k=1	k=2	k = 3	k=4	k=5	k=6	k = 7	k = 8	k = 9
n = -15	1	-15	120	-680	3060	-11628	38760	-116280	319770	-817190
n = -14	1	-14	105	-560	2380	-8568	27132	-77520	203490	-497420
n = -13	1	-13	91	-455	1820	-6188	18564	-50388	125970	-293930
n = -12	1	-12	78	-364	1365	-4368	12376	-31824	75582	-167960
n = -11	1	-11	66	-286	1001	-3003	8008	-19448	43758	-92378
n = -10	1	-10	55	-220	715	-2002	5005	-11440	24310	-48620
n = -9	1	- 9	45	-165	495	-1287	3003	-6435	12870	-24310
n = -8	1	-8	36	-120	330	-792	1716	-3432	6435	-11440
n = -7	1	-7	28	-84	210	-462	924	-1716	3003	-5005
n = -6	1	-6	21	-56	126	-252	462	-792	1287	-2002
n = -5	1	-5	15	-35	70	-126	210	-330	495	-715
n = -4	1	-4	10	-20	35	-56	84	-120	165	-220
n = -3	1	-3	6	-10	15	-21	28	-36	45	-55
n = -2	1	-2	3	-4	5	-6	7	-8	9	-10
n = -1	1	-1	1	-1	1	-1	1	-1	1	-1
n = 0	1	0	0	0	0	0	0	0	0	0

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1},$$

$$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! (n-k)!}$$

$$(0 \le k \le n)$$

11.1.2 Stirling-Zahlen erster Art

 $\begin{bmatrix} n \\ k \end{bmatrix}$

	k = 0	k = 1	k=2	k = 3	k=4	k = 5	k=6	k = 7	k = 8	k = 9
n = 0	1	0	0	0	0	0	0	0	0	0
n=1	0	1	0	0	0	0	0	0	0	0
n=2	0	1	1	0	0	0	0	0	0	0
n=3	0	2	3	1	0	0	0	0	0	0
n=4	0	6	11	6	1	0	0	0	0	0
n=5	0	24	50	35	10	1	0	0	0	0
n=6	0	120	274	225	85	15	1	0	0	0
n = 7	0	720	1764	1624	735	175	21	1	0	0
n=8	0	5040	13068	13132	6769	1960	322	28	1	0
n=9	0	40320	109584	118124	67284	22449	4536	546	36	1
n = 10	0	362880	1026576	1172700	723680	269325	63273	9450	870	45
n = 11	0	3628800	10628640	12753576	8409500	3416930	902055	157773	18150	1320

11.1.3 Stirling-Zahlen zweiter Art

 $\begin{Bmatrix} n \\ k \end{Bmatrix}$

	k = 0	k = 1	k=2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9
n = 0	1	0	0	0	0	0	0	0	0	0
n = 1	0	1	0	0	0	0	0	0	0	0
n=2	0	1	1	0	0	0	0	0	0	0
n=3	0	1	3	1	0	0	0	0	0	0
n=4	0	1	7	6	1	0	0	0	0	0
n=5	0	1	15	25	10	1	0	0	0	0
n=6	0	1	31	90	65	15	1	0	0	0
n = 7	0	1	63	301	350	140	21	1	0	0
n = 8	0	1	127	966	1701	1050	266	28	1	0
n=9	0	1	255	3025	7770	6951	2646	462	36	1
n = 10	0	1	511	9330	34105	42525	22827	5880	750	45
n = 11	0	1	1023	28501	145750	246730	179487	63987	11880	1155

11.2. ZAHLENTHEORIE 41

11.2 Zahlentheorie

11.2.1 Primzahlen

0	40	80	120	160	200	240	280	320	360	400	440	480	520	
2	179	419	661	947	1229	1523	1823	2131	2437	2749	3083	3433	3733	1
3	181	421	673	953	1231	1531	1831	2137	2441	2753	3089	3449	3739	2
5	191	431	677	967	1237	1543	1847	2141	2447	2767	3109	3457	3761	3
7	193	433	683	971	1249	1549	1861	2143	2459	2777	3119	3461	3767	4
11	197	439	691	977	1259	1553	1867	2153	2467	2789	3121	3463	3769	5
13	199	443	701	983	1277	1559	1871	2161	2473	2791	3137	3467	3779	6
17	211	449	709	991	1279	1567	1873	2179	2477	2797	3163	3469	3793	7
19	223	457	719	997	1283	1571	1877	2203	2503	2801	3167	3491	3797	8
23	227	461	727	1009	1289	1579	1879	2207	2521	2803	3169	3499	3803	9
29	229	463	733	1013	1291	1583	1889	2213	2531	2819	3181	3511	3821	10
31	233	467	739	1019	1297	1597	1901	2221	2539	2833	3187	3517	3823	11
37	239	479	743	1021	1301	1601	1907	2237	2543	2837	3191	3527	3833	12
41	241	487	751	1031	1303	1607	1913	2239	2549	2843	3203	3529	3847	13
43	251	491	757	1033	1307	1609	1931	2243	2551	2851	3209	3533	3851	14
47	257	499	761	1039	1319	1613	1933	2251	2557	2857	3217	3539	3853	15
53	263	503	769	1049	1321	1619	1949	2267	2579	2861	3221	3541	3863	16
59	269	509	773	1051	1327	1621	1951	2269	2591	2879	3229	3547	3877	17
61	271	521	787	1061	1361	1627	1973	2273	2593	2887	3251	3557	3881	18
67	277	523	797	1063	1367	1637	1979	2281	2609	2897	3253	3559	3889	19
71	281	541	809	1069	1373	1657	1987	2287	2617	2903	3257	3571	3907	20
73	283	547	811	1087	1381	1663	1993	2293	2621	2909	3259	3581	3911	21
79	293	557	821	1091	1399	1667	1997	2297	2633	2917	3271	3583	3917	22
83	307	563	823	1093	1409	1669	1999	2309	2647	2927	3299	3593	3919	23
89	311	569	827	1097	1423	1693	2003	2311	2657	2939	3301	3607	3923	24
97	313	571	829	1103	1427	1697	2011	2333	2659	2953	3307	3613	3929	25
101	317	577	839	1109	1429	1699	2017	2339	2663	2957	3313	3617	3931	26
103	331	587	853	1117	1433	1709	2027	2341	2671	2963	3319	3623	3943	27
107	337	593	857	1123	1439	1721	2029	2347	2677	2969	3323	3631	3947	28
109	347	599	859	1129	1447	1723	2039	2351	2683	2971	3329	3637	3967	29
113	349	601	863	1151	1451	1733	2053	2357	2687	2999	3331	3643	3989	30
127	353	607	877	1153	1453	1741	2063	2371	2689	3001	3343	3659	4001	31
131	359	613	881	1163	1459	1747	2069	2377	2693	3011	3347	3671	4003	32
137	367	617	883	1171	1471	1753	2081	2381	2699	3019	3359	3673	4007	33
139	373	619	887	1181	1481	1759	2083	2383	2707	3023	3361	3677	4013	34
149	379	631	907	1187	1483	1777	2087	2389	2711	3037	3371	3691	4019	35
151	383	641	911	1193	1487	1783	2089	2393	2713	3041	3373	3697	4021	36
157	389	643	919	1201	1489	1787	2099	2399	2719	3049	3389	3701	4027	37
163	397	647	929	1213	1493	1789	2111	2411	2729	3061	3391	3709	4049	38
167	401	653	937	1217	1499	1801	2113	2417	2731	3067	3407	3719	4051	39
173	409	659	941	1223	1511	1811	2129	2423	2741	3079	3413	3727	4057	40

12 Anhang

12.1 Griechisches Alphabet

$\begin{array}{c} A \\ B \\ \Gamma \\ \Delta \end{array}$	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	Alpha Beta Gamma Delta	N Е О П	$ \begin{array}{c} \nu \\ \xi \\ o \\ \pi \end{array} $	Ny Xi Omikron Pi
$\begin{array}{c} E\\ Z\\ H\\ \Theta \end{array}$	$egin{array}{c} arepsilon \ \zeta \ \eta \ heta \end{array}$	Epsilon Zeta Eta Theta	$\begin{array}{c} R \\ \Sigma \\ T \\ Y \end{array}$	$egin{array}{c} arrho \ \sigma \ arrho \ v \end{array}$	Rho Sigma Tau Ypsilon
${\rm I} \\ {\rm K} \\ {\rm \Lambda} \\ {\rm M}$	$egin{array}{c} \iota & & \ \kappa & & \ \lambda & & \ \mu & & \end{array}$	Jota Kappa Lambda My	Φ X Ψ Ω	$\begin{array}{c} \varphi \\ \chi \\ \psi \\ \omega \end{array}$	Phi Chi Psi Omega

12.2 Frakturbuchstaben

A a B b C c D d	A a	O o	O o
	B b	P p	P p
	C c	Q q	Q q
	D d	R r	R r
$\begin{array}{c} E\ e \\ F\ f \\ G\ g \\ H\ h \end{array}$	E e	S s	S s
	F f	T t	T t
	G g	U u	U u
	H	V v	V v
I i	I i	W w X x Y y Z z	Ww
J j	I j		Xr
K k	K t		Yn
L l	L l		33
${f M}{f m}$ ${f N}{f n}$	M m N n		

12.3 Mathematische Konstanten

- 1. Kreiszahl $\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\dots$
- 2. Eulersche Zahl $e = 2{,}71828\ 18284\ 59045\ 23536\ 02874\ 71352\dots$
- 3. Euler-Mascheroni-Konstante $\gamma = 0.57721\ 56649\ 01532\ 86060\ 65120\ 90082\dots$
- 4. Goldener Schnitt, $(1 + \sqrt{5})/2$ $\varphi = 1,61803\ 39887\ 49894\ 84820\ 45868\ 34365\dots$
- 5. 1. Feigenbaum-Konstante $\delta = 4,66920\ 16091\ 02990\ 67185\ 32038\ 20466\dots$
- 6. 2. Feigenbaum-Konstante $\alpha = 2{,}50290~78750~95892~82228~39028~73218\ldots$

12.4 Physikalische Konstanten

- 1. Lichtgeschwindigkeit im Vakuum c=299792 458 m/s
- 2. Elektrische Feldkonstante $\varepsilon_0 = 8,\!854\ 187\ 817\ 620\ 39\times 10^{-12}\ \mathrm{F/m}$
- 3. Magnetische Feldkonstante $\mu_0 = 4\pi \times 10^{-7} \; \mathrm{H/m}$
- 4. Elementar ladung $e = 1,602\ 176\ 6208\ (98) \times 10^{-19}\ {\rm C}$
- 5. Gravitationskonstante $G = 6,674~08~(31) \times 10^{-11}~\text{m}^3/(\text{kg s}^2)$
- 6. Avogadro-Konstante $N_A = 6{,}022~140~857~(74)\times 10^{23}/\mathrm{mol}$
- 7. Boltzmann-Konstante $k_B = 1{,}380~648~52~(79) \times 10^{-23}~\mathrm{J/K}$
- 8. Universelle Gaskonstante R = 8.314 4598 (48) J/(mol K)
- 9. Plancksches Wirkungsquantum $h = 6{,}626~070~040~(81)\times 10^{-34}~\mathrm{Js}$
- 10. Reduziertes planksches Wirkungsquantum $\hbar = 1,054$ 571 800 (13) × 10^{-34} Js
- 11. Masse des Elektrons $m_e = 9{,}109~383~56~(11)\times 10^{-31}\,\mathrm{kg}$
- 12. Masse des Neutrons $m_n = 1{,}674\ 927\ 471\ (21)\times 10^{-27}\ {\rm kg}$
- 13. Masse des Protons $m_p = 1{,}672~621~898~(21)\times 10^{-27}\,\mathrm{kg}$

12.5. EINHEITEN 43

12.5 Einheiten

12.5.1 Vorsätze

Vorsatz	Faktor	Zahlwort
Exa E	10^{18}	Trillion
Peta P	10^{15}	Billiarde
Tera T	10^{12}	Billion
Giga G	10^{9}	Milliarde
Mega M	10^{6}	Million
Kilo k	10^{3}	Tausend
Hekto h	10^{2}	Hundert
Deka da	10^{1}	Zehn
Dezi d	10^{-1}	Zehntel
Zenti c	10^{-2}	Hunderstel
Milli m	10^{-3}	Tausenstel
Mikro μ	10^{-6}	Millionstel
Nano n	10^{-9}	Milliardstel
Pico p	10^{-12}	Billionstel
Femto f	10^{-15}	Billiardstel
Atto a	10^{-18}	Trillionstel

Binärpräfixe					
Vorsa	tz	Faktor			
Yobi	Yi	2^{80}			
Zebi	Zi	2^{70}			
Exbi	Ei	2^{60}			
Pebi	Pi	2^{50}			
Tebi	Ti	2^{40}			
Gibi	Gi	2^{30}			
Mebi	Mi	2^{20}			
Kibi	Ki	2^{10}			

12.5.2 SI-System

Newton (Kraft):

$$N = kg m/s^2. (12.1)$$

Watt (Leistung):

$$W = kg m^2/s^3 = VA.$$
 (12.2)

Joule (Energie):

$$J = kg m^2/s^2 = Nm = Ws = VAs.$$
 (12.3)

Pascal (Druck):

$$Pa = N/m^2 = 10^{-5} bar.$$
 (12.4)

Hertz (Frequenz):

$$Hz = 1/s.$$
 (12.5)

Coulomb (Ladung):

$$C = As. (12.6)$$

Volt (Spannung):

$$V = kg m^2 / (A s^3)$$
 (12.7)

Tesla (magnetische Flussdichte):

$$T = N/(A m) = Vs/m^2.$$
 (12.8)

12.5.3 Nicht-SI-Einheiten

Einheit	Symbol	Umrechnung
Zeit:		
Minute	min	$=60\mathrm{s}$
Stunde	h	= 60 min = 3600 s
Tag	d	$= 24 \mathrm{h} = 86400 \mathrm{s}$
Jahr	a	$= 356,25 \mathrm{d}$
Druck:		
bar	bar	$= 10^5 \mathrm{Pa}$
mmHg	mmHg	= 133,322 Pa
Fläche:		
Ar	a	$= 100 \mathrm{m}^2$
Hektar	ha	$= 100 a = 10000 m^2$
Masse:		
Tonne	t	= 1000 kg
Länge:		
Liter	L	$=10^{-3}\mathrm{m}^3$

12.5.4 Britische Einheiten

Einheit	Abk.	Umrechnung
inch	in.	= 2.54 cm
foot	ft.	$= 12 \mathrm{in.} = 30,48 \mathrm{cm}$
yard	yd.	= 3 ft. = 91,44 cm
chain	ch.	$= 22 \mathrm{yd.} = 20{,}1168 \mathrm{m}$
furlong	fur.	$= 10 \mathrm{ch.} = 201,168 \mathrm{m}$
_		
$_{ m mile}$	$_{ m mi.}$	$= 1760 \mathrm{yd.} = 1609,3440 \mathrm{m}$

KAPITEL 12. ANHANG 44

12.6 Abkürzungsverzeichnis

12.6.1 Alphabetisches Verzeichnis

Abb. Abbildung absolut abs

Automorphismus Aut AWP Anfangswertproblem

Def. Definition Determinante det Differentialgleichung Dgl.

Dimension \dim disjunktive Normalform DNF FFT fast fourier transform

Fkt. Funktion

GDG gewöhnliche Differentialgleichung

gcd greatest common divisor genau dann, wenn gdw.

größter gemeinsamer Teiler ggT

Gleichung Gl. gleichmäßig glm. grad Gradient

hom Homomorphismen Induktionsanfang IA impliziert imp.

Induktionsschritt IS IV Induktions vor aussetzung

kgV kleinstes gemeinsames Vielfaches

KNF konjunktive Normalform lcm least common multiple $lineares \ Gleichungssystem$ LGS

linear lin. Ma. Mathematik mathematisch ma. max Maximum Mannigfaltigkeit Mfkt. Ninimum min NAND not and

not or NBNebenbedingung NRNebenrechnung

ohne Beschränkung der Allgemeinheit o.B.d.A.

ONB Orthonormalbasis ONS Orthonormalsystem

Op. Operator

NOR

PDG partielle Differentialgleichung

pktw. punktweise

quot erat demonstrandum q. e. d.

Seite S. siehe siehe auch s.a. Ungleichung Ungl. VRVektorraum

w.z.b.w. was zu beweisen war

XOR exclusive or

12.6.2 Thematisches Verzeichnis

Allgemeine Abkürzungen

Def. Definition Subs. Substitution Abb. Abbildung Fkt. Funktion Trafo. Transformation Gl. Gleichung Ungl. Ungleichung NRNebenrechnung

imp. impliziert

genau dann, wenn gdw. TΑ Induktionsanfang IS Induktionsschritt IV

Induktionsvoraussetzung

Ma. Mathematik mathematisch ma. Add. Addition Mul. Multiplikation

Lineare Algebra

lin.

LGS lineares Gleichungssystem

VRVektorraum \dim Dimension Homomorphismen hom det Determinante ONS Orthonormalsystem ONB Orthonormalbasis

Analysis

Fkt. Funktion Limes lim pktw. punktweise gleichmäßig glm. \min Minimum Maximum max Mfkt. Mannigfaltigkeit

Differentialgleichungen

Dgl. Differentialgleichung

GDG gewöhnliche Differentialgleichung PDG partielle Differentialgleichung ODG ordinary differential equation PDG partial differential equation AWP Anfangswertproblem

RWP Randwertproblem Finite Elemente Methode FEM

Zahlentheorie

größter gemeinsamer Teiler ggTkgVkleinstes gemeinsames Vielfaches

gcd greatest common divisor lcmleast common multiple

mod modulo

Logik und Schaltalgebra

gdw. genau dann, wenn

imp. impliziert NAND not and not or NOR XOR. exclusive or

konjunktive Normalform **KNF** disjunktive Normalform DNF

Index

Ableitung, 19	Fourierreihe, 23
absolut konvergent, 19	Fundamentallemma, 22
Additionstheoreme, 16	Fundamentanemma, 22
allgemeine lineare Gruppe, 26	geometrische Vielfachheit, 27
Alternator, 27	Gerade, 28
Aussagenlogik, 7	Gleichungssystem, 6
äußere Algebra, 27	Gleichverteilung, 38
Automorphismus	Graßmann-Identität, 25
auf einem Vektorraum, 26	Gradient, 21
	Grenzwert, 18
Axiome von Kolmogorow, 37	Gruppenaktion, 35
Dalan 25	Gruppenhomomorphismus, 35
Bahn, 35	Gruppelmomomorphismus, 00
Bahnenraum, 35	Häufungspunkt, 18
Bahnformel, 35	Hauptsatz der Analysis, 20
Banachraum, 18	holomorph, 31
bedingte Wahrscheinlichkeit, 37	notomorph, or
Bestimmungsgleichung, 6	Identität
Betrag	Cauchy-Binet-Identität, 25
einer komplexen Zahl, 7	Graßmann-Identität, 25
bijektiv, 12	Jacobi-Identität, 25
Bild, 13	Lagrange-Identität, 25
Binomialkoeffizient, 33	injektiv, 12
Tabelle, 39	inverse Matrix, 26
binomische Formeln, 6	Isomorphismus
binomischer Lehrsatz, 6	zwischen Gruppen, 35
boolesche Algebra, 7	Iteration, 12
G 1 II	1001201011, 12
Cauchy Hauptwert, 21	Jacobi-Identität, 25
Cauchy-Binet-Identität, 25	Jacobi-Matrix, 22
Cauchy-Folge, 18	Jacobi Madim, 22
Cauchy-Produkt, 19	kanonischer Isomorphismus
charakteristisches Polynom, 27	Alternator, 27
Christoffel-Symbole, 30	musikalische Isomorphismen, 25
Cosinus, 16	komplementäres Ereignis, 37
	komplexe Zahl, 7
Determinante, 26	Komposition, 12
Differential quotient, 19	Kompositionsoperator, 32
Differential rechnung, 19	Konjugation
differenzierbar, 19	einer komplexen Zahl, 7
direktes Produkt, 35	Konjunktion, 8
Disjunktion, 8	Kontraposition, 8
dynamisches System, 32	Kontravalenz, 8
	konvergente Folge, 18
Ebene, 28	Konvergenzkriterium, 19
Eigenraum, 27	Kosekans, 16
Eigenwert, 26	Kosinus, 16
Einheitsvektor, 25	Kotangens, 16
Einschränkung, 13	Kotangentialbündel, 30
Einsetzungshomomorphimus, 36	Kurve, 29
Endomorphismus	114170, 20
auf einem Vektorraum, 26	Lagrange-Identität, 25
Ereignisraum, 37	Laplace-Verteilung, 38
Ergebnismenge, 37	Lemma von Burnside, 35
erweiterte Koeffizientenmatrix, 27	lineares Gleichungssytem, 27
Euler-Lagrange-Gleichung, 22	inicares dicientingssy tem, 21
0 0 0/	Matrix, 26
Faktorielle, 33	quadratische, 26
Fakultät, 33	Matrizenring, 26
Faltung	musikalische Isomorphismen, 25
von zwei Folgen, 35	masikansene isomorphismen, 20
Fixgruppe, 35	
	natürliche Projektion, 30

46 INDEX

Norm, 24
Orbit unter einem dynamischen System, 32 unter einer Gruppenaktion, 35 Orthogonal, 24 Orthogonalbasis, 24 Orthogonalsystem, 24 Orthonormalbasis, 24 Orthonormalbasis, 24
Parameterdarstellung einer Ebene, 28 einer Geraden, 28 Partialsumme, 18 partielle Ableitung, 21 Polarkoordinaten, 29 Polynom, 35 Primzahlen Tabelle, 41 principial value, 21 Produktionsregel, 14 Punktrichtungsform, 28
quadratische Matrix, 26 Quotientenkriterium, 19
reelle Funktion, 19 Regelfunktion, 20 Reihe, 18 Ring, 35 Matrizenring, 26
Sekans, 16 sicheres Ereignis, 37 Sinus, 16 Skalarfeld auf dem Koordinatenraum, 21 Skalarprodukt, 24 Spektrum, 27 Stabilisator, 35 Startsymbol, 14 Stirling-Zahlen Tabelle, 40 stochastisch unabhängig, 37 Streichungsmatrix, 26 surjektiv, 12 symmetrische Bilinearform, 26 symmetrische Matrix, 26
Tangens, 16 Tangentialbündel, 30 Teleskopsumme, 19 Terminalsymbol, 14 Treppenfunktion, 20
Umgebung, 18 Umkehrfunktion, 12 unbedingt konvergent, 19 unmögliches Ereignis, 37 Urbild, 13
Variationsrechnung, 22 Vektorbetrag, 25 Vektorfeld

auf dem Koordinatenraum, 22

Vektorprodukt, 25
Verteilung
diskrete Wahrscheinlichkeitsverteilung, 37
vollständig, 18

Wahrscheinlichkeitsmaß
Axiome von Kolmogorow, 37
diskretes, 37

Wahrscheinlichkeitsraum
diskreter, 37
Weg, 29
Widerspruch, 8
Winkelfunktion, 16

Zustand, 32
Zustandsraum, 32
Zwischenwertsatz, 19