CROSS-LINGUAL CCG INDUCTION

Kilian Evang

University of Düsseldorf

Combinatory Categorial Grammar (CCG)

- elegant handling of coordination
- universal rules
- ✓ widely used in semantic parsing
- ? what about languages without CCGbanks?

Training Strategy

- use parallel training corpus (Tatoeba)
- auto-parse source sentences
- unsupervised word alignment
- project derivations to target sentences
- train target parser

Annotation Projection (1)

Annotation Projection (2)

Annotation Projection (3)

Parser Accuracy (UAS)

Language	ara	ces	dan	eus	nld	por	slv	swe		
Monolingual training on PASCAL (BH13: with gold POS tags)										
Train tokens	5K	436K	25K	81K	79K	159K	54K	62K		
BH13	.651	.507	.585	.450	.544	.629	.464	.669		
BCH15	.437	.324	.377	.352	.438	.516	.236	.529		
$\overline{Cross-lingual}$	$\overline{training}$	on Tate	oeba							
Train tokens	20K	11K	21K	2K	44K	161K	835	24K		
this work	.468	.449	.630	.290	.614	.678	.350	.637		
	2	2					2	2		

Induced Categories (Frequency)

Category	eng	deu	ita	nld
SVO and SOV				
$(S[dcl] \setminus NP) / NP$.0366	.0445	.0256	.0389
$(S[dcl] \setminus NP) \setminus NP$.0000	.0056	.0046	.0061
$(S[b] \setminus NP) / NP$.0284	.0032	.0147	.0044
$(S[b]\NP)\NP$.0000	.0169	.0043	.0151
do- $support$				
$(S[dcl] \setminus NP)/(S[b] \setminus NP)$.0237	.0184	.0150	.0180
infinitives of particle ver	\overline{bs}			
$(S[b] \setminus NP) \setminus PR$.0000	.0000	.0000	.0000
$(S[b] \setminus NP) / PR$.0004	.0000	.0000	.0000
prenominal vs. postnomi	$nal\ adje$	ctives		
N/N	.0309	.0299	.0213	.0316
$N \setminus N$.0013	.0018	.0099	.0018
(N/N)/(N/N)	.0016	.0018	.0003	.0012
$(N \setminus N)/(N \setminus N)$.0001	.0000	.0008	.0000
pro- $drop$				
S[dcl]	.0000	.0000	.0012	.0001
S[dcl]/NP	.0004	.0013	.0115	.0007

Conclusions

- ✓ cross-lingual signal helps, compared to unsupervised induction
- ✓ induced categories reflect linguistic descriptions

References

Bisk, Y., Christodoulopoulos, C., and Hockenmaier, J. (2015). Labeled grammar induction with minimal supervision. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)*, pages 870–876. Association for Computational Linguistics.

Bisk, Y. and Hockenmaier, J. (2013). An HDP model for inducing combinatory categorial grammars. *Transactions of the Association for Computational Linguistics*, 1:75–88. Steedman, M. (2001). *The Syntactic Process*. The MIT Press.

Tatoeba (2019). Tatoeba: Collection of sentences and translations. https://tatoeba.org/. Accessed: 2019-07-16.