BASILE PILLET

Table des matières

1.	Plan	1
1.1.	. Épaississements	1
•		2
1.2.	. Correspondance de Buchdahl	2
1.3.	. Épaississements	2
1.4.	. Applications	2
2.	Idées	2
3.	Références	3

1. Plan

1.0.1. Contexte. On se fixe une variété complexe Z fibrée sur \mathbb{P}^1 .

On fait 2 hypothèses :

- Il y a des sections particulières (verticales) Une par chaque point.
- Si L est l'image d'une section de $f: Z \to \mathbb{P}^1$ (droite), alors $N_{L/Z}$ est une somme de $\mathcal{O}(1)$. En particulier $H^1(L, N_{L/Z}) = 0$ et donc dans toutes les directions cette section se déforme.

Les droites de Z peuvent se déformer dans Z.

En particulier Z est une variété rationnellement connexe.

1.0.2. EG.

- Espace des twisteurs d'une surface K3 (ou var HK),
- Espace total de $\mathcal{O}(1) \oplus \mathcal{O}(1)$,
- 1.1. Épaississements. Point de vu GA : définir un objet géométrique c'est définir les fonctions dessus. On veut définir ce que sont les voisinages infinitésimaux d'une droite dans Z

Date: Mai 2017.

La droite L est représentée par son faisceau de fonctions \mathcal{O}_L qui est lié aux fonctions $\operatorname{sur} Z$ par la suite exacte

$$0 \to \mathcal{I}_L \to \mathcal{O}_Z \to i_* \mathcal{O}_L \to 0$$

où $i:L\hookrightarrow Z$ et \mathcal{I}_L l'idéal des fonctions sur Z qui s'annulent sur L.

C'est-à-dire : Une fonction sur L provient d'une fonction sur Z modulo les fonctions qui s'annulent sur L. (où tout est à comprendre au sens "local")

1.1.1. Épaississement. Il suffit de définir $\mathcal{O}_L^{(n)}$ le faisceau des fonctions

$$0 \to \mathcal{I}_L^{n+1} \to \mathcal{O}_Z \to i_* \mathcal{O}_L^{(n)} \to 0$$

sur Z modulo celles qui s'annulent à l'ordre n+1 sur L.

La variété épaissie $L^{(n)}$ est alors l'espace topologique L mais possédant beaucoup plus de fonctions : $\mathcal{O}_L^{(n)}$. Une fonction sur $L^{(n)}$ est un jet d'ordre n de fonctions sur L.

Lien avec les vecteurs tangents; exemples

- 1.2. Correspondance de Buchdahl. On s'intéresse aux voisinages infinitésimaux d'une droite dans Z.
- 1.2.1. Espace des sections et correspondance twistorielle. Soit C l'espace des sections de Z (espace de Douady, espace des cycles de Barlett).

$$(T_C)_s \simeq H^0(L_s, N_{L_s/Z})$$

Mais comme le H^1 s'annule

((à finir))

- 1.2.2. EG. Grassmanienne des 2 -plans privée d'un point et d'un \mathbb{P}^1 .
- 1.2.3. Fibré L-triviaux.
- 1.2.4. Fibré à connexion associé.
- 1.2.5. EQV catégorie.
- 1.3. Épaississements.
- 1.3.1. Théorème.
- 1.4. Applications.

2. Idées

• Épaississements; correspondance de Buchdahl; courbure

?

3. Références

• Buchdahl