		_			
Сапит.	-Патапі	бургекий	госипар	странцый	vниверситет
Camar	TICICD	OVDICKHH	тосудар	Ственный	VIIIDCDCHICI

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Лекции для студентов факультета ПМ-ПУ (III курс, 6-ой семестр)

Доцент кафедры моделирования электромеханических и компьютерных систем, кандидат физ.-мат. наук Владимир Олегович Сергеев

Обозначим множество элементов пространства H, таких что $\|x\|_H \le C$ через K. Пусть $\{x_n\}$ - произвольная последовательность элементов множества K.

1. Для всех элементов x_n вычислим значения функционала f_1 :

$$f_1(x) = \langle x, \Psi_1 \rangle = (x, \Psi_1).$$

Числовая последовательность $f_1(x_n)$ ограничена:

$$|f_1(x_n)| = |\langle x, \Psi_1 \rangle| \le ||x_n|| \le C.$$

По теореме Больцано-Вейерштрасса в $\{f_1(x_n)\}$ существует сходящаяся подпоследовательность, обозначим её $< x_{N(1,K)}, \Psi_1>$,

$$\{x_{N(1,K)}\}\subset \{x_n\}, < x_{N(1,K)}, \Psi_1> \to \alpha_1$$
 при $K\to \infty$

2. Рассмотрим последовательность $\{x_{N(1,K)}\}$ и вычислим значения функционала f_2 :

$$f_2(x) = \langle x, \Psi_2 \rangle$$

на элементах этой последовательности. Числовая последовательность $< x_{N(1,K)}, \Psi_2 >$ ограничена, существует её сходящаяся подпоследовательность. Обозначим её $< x_{N(2,K)}, \Psi_2 >$:

$$< x_{N(2,K)}, \Psi_2 > \to \alpha_2$$
 при $K \to \infty$, $\{x_{N(2,K)}\} \subset \{x_{N(1,K)}\} \subset \{x_n\},$ $< x_{N(2,K)}, \Psi_1 > \to \alpha_1$ при $K \to \infty$.

Продолжая этот процесс, получим последовательности $\{x_{N(i,K)}\}, i=1,2,3...,$ такие что

$${x_{N(1,K)}} \supset {x_{N(2,K)}} \supset {x_{N(3,K)}} \supset \dots$$

и для которых

Рассмотрим "диагональные элементы" $x_{N(i,i)}$. Для них при любом фиксированном K значения $< x_{N(i,i)}, \Psi_K >$ стремятся к α_K при $i \to \infty$. Так как

$$\sum_{k=1}^{n} |\langle x_{N(i,i)}, \Psi_K \rangle|^2 \le C^2$$

при любом i, то переходя к пределу при $i\to\infty$ получим $\sum\limits_{k=1}^n\alpha_k^2\leq C^2$. Так как n любое, то $\sum\limits_{k=1}^\infty\alpha_k^2<+\infty$. Следовательно существует элемент

$$\widetilde{x} = \sum_{k=1}^{\infty} \alpha_k \Psi_k \in K$$

Покажем, что последовательность $\{x_{N(m,m)}\}$ слабо сходится к элементу \widetilde{x} . Рассмотрим произвольный элемент y пространства H. Он определяет функционал f:

$$f(x) = (x, y)$$

Как элемент пространства H элемент y может быть представлен в виде

$$y = \sum_{k=1}^{\infty} y_k \Psi_k = \sum_{k=1}^{n} y_k \Psi_k + \sum_{k=n+1}^{\infty} y_k \Psi_k$$

Для заданного ϵ найдём номер $n(\epsilon)$, такой что при $n>n(\epsilon)$

$$\sum_{k=n+1}^{\infty} y_k^2 < \epsilon^2$$

Зафиксируем значение $n, n > n(\epsilon)$.

Значение функционала f на элементе $x_{N(m,m)}-\widetilde{x}$ равно

$$< x_{N(m,m)} - \widetilde{x}, y > = < x_{N(m,m)} - \widetilde{x}, \sum_{k=1}^{n} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > + < x_{N(m,m)} - \widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k >$$

Во втором слагаемом значение

$$|\langle x_{N(m,m)}, \sum_{k=n+1}^{\infty} y_k \Psi_k \rangle| \le C \cdot \epsilon$$

и значение

$$|<\widetilde{x}, \sum_{k=n+1}^{\infty} y_k \Psi_k > | \le C \cdot \epsilon$$

В первом слагаемом значение

$$|\langle x_{N(m,m)} - \widetilde{x}, \sum_{k=1}^{n} y_k \Psi_k \rangle| \le \left(\sum_{k=1}^{n} \left[\langle x_{N(m,m)}, \Psi_k \rangle - \alpha_k\right]^2\right)^{\frac{1}{2}} \cdot ||f||$$

Так как значение n фиксировано, а значения

$$\langle x_{N(m,m)}, \Psi_K \rangle \rightarrow \alpha_K$$

при

$$m \to \infty$$

то для достаточно больших m:

$$\sum_{k=1}^{n} \left[\langle x_{N(m,m)}, \Psi_k \rangle - \alpha_k \right]^2 < \epsilon^2$$

Таким образом

$$|f(x_{N(m,m)} - \widetilde{x})| = |\langle x_{N(m,m)} - \widetilde{x}, f \rangle| = |(x_{N(m,m)} - \widetilde{x}, y)| \le \epsilon [||f|| + 2\epsilon]$$

для любого $f \in H^*$, если $\{x_n\} \in K$ при достаточно больших m, т.е.

$$x_{N(m,m)} \to \widetilde{x}$$

на множестве K, и множество K слабо компактно в сепарабельном гильбертовом пространстве.

В доказательстве существенную роль играет теорема Рисса: $H=H^*$ и далее $(H^*)^*=H$. Банахово пространство X, для которого $(X^*)^*=X$ называется рефлексивным. В случае $X=L_p(T)$ можно показать, что общий вид линейного функционала определяется элементами $y\in L_q(T), \ \frac{1}{p}+\frac{1}{q}=1$:

$$f(x) = \langle x, y \rangle = \int_{T} x(t)y(t)dt$$

(при p=1 пространство $L_{\infty}(T)$ - пространство измеримых и почти везде конечных функций).

Ясно, что

$$(L_p^*(T))^* = L_p(T)$$

и пространство $L_p(T)$ рефлексивно.

Теорема. Верна общая теорема: условие $||x||_X \leq C$ для элементов множества $K \subset X$ является необходимым и достаточным условием слабой компактности множества K в рефлексивных пространствах X.

В частности множество $K \in L_p(T)$ элементов, таких что

$$||x||_{L_p(T)} \le C$$

слабо компактно.