SEQUENCE GENERATORS, SHIFT REGISTERS AND SHIFT REGISTER COUNTERS

Sequence generator:

Sequence Generator

8-bit

MOD-8

■ Design a sequence generator circuit to generate the sequence 10111100 using Asynchronous counter. Use negative edge triggered T flip flop for the design.

✓ ↑

■ Design a sequence generator circuit to generate the sequence 0001011 using synchronous

counter. Use D flip flop for the design.

Present	Next-state	D2 D, D0	Y
600	001	001	(C)
001	010	010	0
010	011	01)	<u>ව</u>
011	100	001	ſ
100	IDI	10)	
ر ۵)	110		
110	000	000	
1 1 1	000	000	×

MOD 7 0-1-2 ... 6

Generale the sequence: 1010111100 using 74193 Ic & external gales

Tof

Registers

- Register is a group of flip flops (D, or SR,or JK)
- Each flip flop can store one-bit data. n-bit register can hold n-bit data.
- There are two ways to shift the data into the register and two ways to shift the data out of the register.
- Accordingly: 4 categories of shift register are
 - Serial in Serial out (SISO)
 - Serial In parallel out (SIPO)
 - Parallel in Serial out (PISO)
 - Parallel in parallel out (PIPO)

SISO and SIPO Register

- Simple 4-bit shift register is shown below (Reset is nothing but clear input)
- Register is cleared using reset/clear input.

■ It can be used as Serial-in serial out (at QD) and Serial-in parallel out shift register.

4-bit shift register (Serial-in)

SISO and SIPO Register using JK ffs

SISO and SIPO register with shift left

Register with parallel load (PISO or PIPO)

Register with parallel load (PIPO)

4-bit bidirectional shift register using D/SR/JK ffs

■ If shift left/right =0, shift right else shift left...

■ Solve it by yourself...

Shift (eft shift right

4-bit universal shift register

		CH AB BLBD
Mode Control	Register	Da Da
S1 S0	Operation	DA DB DCDO
0 0	No change	OF OB OCOD
0 1	Shift right	TORRESC >
1 0	Shift left	BB OCOD C
1 1	Parallel load	PAPB PLPP

4-bit universal shift register

Shift register counters:

- Ring counter
- Johnson counter /Twisted-ring counter

Ring counter

Set one stage, clear three stages

M-bit Ring counter

MDD-N

——

Clock Cycle	Q ₁	Q ₂	\mathbf{Q}_3	Q ₄		
1	1	0	0	0		
2	9	¥ 1	70	× 0 ×		
3	0	0	1	0	Bit-pattern repeats for every	1 clock cycles
4	0	0	70	1		
5	1	0	×0	0	/	
6	0	1	30	0		

Johnson counter / Twisted-ring counter

4fs = 8 States = MOD 8 counter

Johnson counter /Twisted-ring counter using JK ffs

Design a sequence generator to generate the sequence "00100" using: MOD 5

5-48

a. Ring counter and external gates
b. Johnson counter and external gates = 30101

3 W => MOD 6 -, 10101 - 6-6145 MOD 6

For you to try!