Serii numerice

Lector Dr. ADINA JURATONI Departamentul de Matematică UNIVERSITATEA POLITEHNICA TIMIŞOARA

0.1 Serii numerice cu termeni oarecare

Definiția 0.1.1 Se spune că seria $\sum_{n=1}^{\infty} a_n$ este absolut convergentă, dacă seria modulelor $\sum_{n=1}^{\infty} |a_n|$ este convergentă.

 $Remarc\breve{\mathbf{a}}.$

- Orice serie absolut convergentă este și convergentă;
- O serie care este convergentă, dar nu este absolut convergentă se numeşte serie semiconvergentă.

Exemplul 1. Să se studieze convergența absolută a seriilor:

i)
$$\sum_{n\geq 1} \frac{(-1)^{n-1}}{n^2}$$
; ii) $\sum_{n\geq 1} \frac{\sin n\alpha}{n\sqrt{n}}$.

Soluție. i) Avem $a_n = \frac{(-1)^{n-1}}{n^2}$, deci $|a_n| = \frac{1}{n^2}$. Cum $|a_n| \le \frac{1}{n^2}$ și deoarece seria cu termenul general $c_n = \frac{1}{n^2}$ converge, rezultă că seria dată este absolut convergentă.

ii) Deoarece $|a_n| = \left|\frac{\sin n\alpha}{n\sqrt{n}}\right| \le \frac{1}{n\sqrt{n}} = c_n$, iar seria $\sum_{n\ge 1} \frac{1}{n\sqrt{n}}$ este convergentă (criteriul Cauchy), rezultă că seria considerată este absolut convergentă. Un tip important de serii numerice îl constituie **seriile alternante**.

Definiția 0.1.2 O serie de numere reale $\sum_{n=1}^{\infty} a_n$ se numește alternantă, dacă și numai dacă $a_n a_{n+1} < 0, n \in \mathbb{N}$.

Din definiție rezultă că o serie alternantă are forma $\sum_{n=1}^{\infty} (-1)^n a_n$, cu $a_n > 0$, oricare ar fi $n \in \mathbb{N}$.

Propoziția 0.1.3 (Criteriul lui Leibniz) Dacă seria alternantă

 $\sum_{n=1}^{\infty} (-1)^{n+1} a_n, \ a_n > 0 \ \text{are şirul } (a_n)_{n \in \mathbb{N}} \ \text{monoton descrescător şi convergent}$ $la \ zero, \ atunci \ seria \ este \ convergentă.$

Exemplul 2. Să se studieze convergența absolută și convergența seriilor:

i)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)}$$
; ii) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n\sqrt{n}}$.

Soluție. i) Studiem convergența absolută a seriei date:

$$\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{2n+1}{n(n+1)} \right| = \sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)}.$$

Fie $a_n = \frac{2n+1}{n(n=1)} = \frac{1}{n} \cdot \frac{2+\frac{1}{n}}{1+\frac{1}{n}}$ și $b_n = \frac{1}{n}$. Cum, $\lim_{n \to \infty} \frac{a_n}{b_n} = 2$, din criteriul de

comparație la limită rezultă că seriile $\sum_{n=1}^{\infty} a_n$ și $\sum_{n=1}^{\infty} b_n$ au aceeași natură. Se

știe că $\sum_{n=1}^{\infty} b_n$ e divergentă (seria armonică), deci $\sum_{n=1}^{\infty} a_n$ este divergentă.

Şirul $a_n = \frac{2n+1}{n(n+1)}$ este monoton descrescător deoarece

$$\frac{a_{n+1}}{a_n} = \frac{2n+3}{(n+1)(n+2)} \cdot \frac{n(n+1)}{2n+1} = \frac{2n^2+3n}{2n^2+5n+2} < 1,$$

deci $a_{n+1} < a_n$, $\forall n \ge 1$. De asemenea, avem $\lim_{n \to \infty} \frac{2n+1}{n(n+1)} = 0$, deci conform criteriului lui Leibniz, seria alternantă $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)}$ este convergentă. Prin urmare această serie este una semiconvergentă.

ii) Seria $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n\sqrt{n}}$ este absolut convergentă, deoarece seria modulului termenului general $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$ este convergentă (seria armonică generaliată cu $\alpha = \frac{3}{2} > 1$). Prin urmare, seria alternantă este și convergentă.

Propoziția 0.1.4 (Criteriul lui Abel) Dacă $(\alpha_n)_{n\in\mathbb{N}}$ este un şir de numere reale monoton descrescător și convergent la zero, iar $\sum_{n\in\mathbb{N}} u_n$ este o serie de numere reale având şirul sumelor parțiale (s_n) mărginit, atunci seria $\sum_{n\in\mathbb{N}} \alpha_n u_n$ este convergentă.

Demonstrație. Şirul (s_n) fiind mărginit, rezultă că există M>0 astfel ca $|s_n| \leq M, \forall n \in \mathbb{N}$. Potrivit criteriului lui Cauchy, este ușor de observat că $\forall n, p \in \mathbb{N}$ avem $|\alpha_{n+1}u_{n+1} + \alpha_{n+2}u_{n+2} + \dots + \alpha_{n+p}u_{n+p}| = |\alpha_{n+1}(s_{n+1} - s_n) + \alpha_{n+2}(s_{n+2} - s_{n+1}) + \dots + \alpha_{n+p}(s_{n+p} - s_{n+p-1})| = |-\alpha_{n+1}s_n + (\alpha_{n+1} - \alpha_{n+2})s_{n+1} + \dots + (\alpha_{n+p-1} - \alpha_{n+p})s_{n+p-1} + \alpha_{n+p}s_{n+p}| \leq |\alpha_{n+1}|s_n| + (\alpha_{n+1} - \alpha_{n+2})|s_{n+1}| + \dots + (\alpha_{n+p-1} - \alpha_{n+p})|s_{n+p-1}| + \alpha_{n+p}|s_{n+p}| \leq M(\alpha_{n+1} + \alpha_{n+1} - \alpha_{n+2} + \alpha_{n+2} - \alpha_{n+3} + \dots + \alpha_{n+p-1} - \alpha_{n+p} + \alpha_{n+p}) \leq 2M\alpha_{n+1}$ Prin ipoteză $\alpha_{n+1} \stackrel{(\mathbb{R},|\cdot|)}{\longrightarrow} 0$, ceea ce înseamnă că oricare ar fi $\varepsilon > 0$, există un representation de service ε prepresentation carion $\varepsilon \in \mathbb{N}$

Prin ipoteză $\alpha_{n+1} \stackrel{(s,\eta)}{\to} 0$, ceea ce înseamnă că oricare ar fi $\varepsilon > 0$, există un rang $n_0(\varepsilon) \in \mathbb{N}$ astfel încât $\alpha_{n+1} < \frac{\varepsilon}{2M}$ pentru orice $n \ge n_0(\varepsilon)$ și orice $p \in \mathbb{N}$. Rezultă că putem scrie

$$|\alpha_{n+1}u_{n+1} + \alpha_{n+2}u_{n+2} + \dots + \alpha_{n+p}u_{n+p}| \le 2M\alpha_{n+1} < 2M\frac{\varepsilon}{2M} = \varepsilon,$$

deci $\sum_{n\in\mathbb{N}}\alpha_nu_n$ satisface criteriul lui Cauchy, deci este convergentă.

Exemplul 3. Să se studieze natura seriilor:

i)
$$\sum_{n=1}^{\infty} \frac{\sin(n\alpha)}{n}, \ \alpha \in (0, 2\pi); \quad \text{ii) } \sum_{n=1}^{\infty} \frac{\cos \frac{n\pi}{6}}{\ln(n+1)}.$$

Soluție. i) Dacă notăm $\alpha_n = \frac{1}{n}$, atunci șirul (α_n) este monoton, descrescător

și convergent la zero. Şirul sumelor parțiale ale seriei $\sum_{n=1}^{\infty}\sin\left(n\alpha\right),$ este

$$s_n = \sin \alpha + \sin 2\alpha + \dots + \sin n\alpha = \frac{\sin \frac{n\alpha}{2} \sin \frac{(n+1)\alpha}{2}}{\sin \frac{\alpha}{2}}$$
 şi verifică inegalitatea

 $|s_n| \leq \frac{1}{\sin \frac{\alpha}{2}}$, oricare ar fi $n \in \mathbb{N}$, deci este mărginit. Conform criteriului lui

Abel seria este convergentă.

ii) Şirul $\alpha_n = \frac{1}{\ln(n+1)}$ este monoton descrescător și convergent la zero.

Seria $\sum \cos \frac{n\pi}{6}$ are şirul sumelor parţiale

$$s_n = \cos\frac{\pi}{6} + \cos\frac{2\pi}{6} + \dots + \cos\frac{n\pi}{6} = \frac{\sin\frac{n\pi}{12}\cos(n+1)\frac{\pi}{12}}{\sin\frac{\pi}{12}},$$

care verifică condiția,
$$|s_n| = \frac{\left|\sin\frac{n\pi}{12}\cos\left(n+1\right)\frac{\pi}{12}\right|}{\left|\sin\frac{\pi}{12}\right|} \le \frac{1}{\sin\frac{\pi}{12}} = \sqrt{6} + \sqrt{2},$$
 deci (s_n) este mărginit și potrivit criteriului lui Abel, seria este convergentă.

Propoziția 0.1.5 (Criteriul lui Dirichlet). Dacă $(\alpha_n)_{n\in\mathbb{N}}$ este un şir de numere reale monoton și mărginit, iar seria $\sum u_n$ este convergentă, atunci seria

$$\sum_{n=1}^{\infty} \alpha_n u_n \text{ este convergent} \check{a}.$$

Demonstrație. Şirul $(\alpha_n)_{n\in\mathbb{N}}$ fiind monoton și mărginit, el este convergent. Dacă, $\alpha=\lim_{n\to\infty}\alpha_n$, atunci șirul $\beta_n=\alpha_n-\alpha$ are limita zero. Dacă (α_n) este un şir descrescător de numere reale pozitive, atunci (β_n) este un şir de numere pozitive monoton descrescător și convergent la zero.

Deoarece $\sum_{n=0}^{\infty} u_n$ este convergentă, rezultă că șirul sumelor sale parțiale este mărginit. Atunci potrivit criteriului lui Abel, seria

$$\sum_{n=1}^{\infty} \beta_n u_n = \sum_{n=1}^{\infty} (\alpha_n - \alpha) u_n = \sum_{n=1}^{\infty} \alpha_n u_n - \sum_{n=1}^{\infty} \alpha u_n, \text{ este convergentă, din care}$$

rezultă că seria $\sum_{n=1}^{\infty} \alpha_n u_n = \sum_{n=1}^{\infty} [(\alpha_n - \alpha) u_n + \alpha u_n]$ este convergentă.

Exemplul 4. Să se studieze convergența seriei $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n\sqrt[n]{n}}$.

Soluție. Conform criteriului lui Leibniz, seria $\sum_{i=1}^{\infty} \frac{(-1)^{n+1}}{n}$ este convergentă

șirul $\alpha_n=\frac{1}{n}$ tinde descrescător la zero. Pe de altă parte șirul $\beta_n=\frac{1}{\sqrt[n]{n}}$ fiind convergent la 1, el este mărginit. El este monoton crescător, deoarece se știe că au loc inegalitățile: $2<\left(1+\frac{1}{n}\right)^n<3,\,\forall n\in\mathbb{N}.$

Cu atât mai mult, pentru $n \geq 3$ are loc $\left(1+\frac{1}{n}\right)^n < n$, de unde $(n+1)^n < n$, de

Aproximarea unei serii convergente

Are loc descompunerea: $S=\sum_{n=1}^{\infty}a_n=S_n+R_n$, unde $S_n=\sum_{k=1}^na_k$ este suma parțială de ordinul n, iar $R_n=\sum_{k=n+1}^{\infty}a_k$ este restul de ordinul n al seriei. Aproximarea sumei prin suma parțială de ordinul n, $S\simeq S_n$ produce eroarea absolută $|S-S_n|=|R_n|$. Evaluarea erorii se realizează prin determinarea unei margini superioare a erorii absolute $|R_n|$ independentă de suma S după cum urmează:

• Dacă seria de numere pozitive $\sum_{n=1}^{\infty} a_n$ este convergentă conform criteriului rădăcinii, $l = \lim_{n \to \infty} \sqrt[n]{a_n} < 1$, atunci eroarea absolută se majorează prin

$$R_n \le \frac{l^{n+1}}{1-l}.$$

• Dacă seria de numere pozitive $\sum_{n=1}^{\infty} a_n$ este convergentă conform criteriului

raportului, $l=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}<1,$ atunci eroarea absolută se majorează prin

$$R_n \le \frac{a_{n+1}}{1-l}.$$

• Dacă seria alternantă $\sum_{n=1}^{\infty} (-1)^{n+1}a_n$ este convergentă conform criteriului lui Leibniz, atunci eroarea absolută se majorează prin

$$R_n \leq a_{n+1}$$
.

Mai mult, eroarea \mathbb{R}_n are semnul primului termen neglijat.