Partiel 1

Durée: trois heures

Documents et calculatrices non autorisées

NOM:

Prénom:

Exercice 1 (4 points)

Soit $a \in \mathbb{R}$.

1. Déterminer $\lim_{n \to +\infty} \left(\frac{n}{n+1}\right)^a$ et $\lim_{n \to +\infty} \left(\frac{n}{n+1}\right)^n$

2. Déterminer, en utilisant obligatoirement la règle de D'Alembert, la nature de $\sum \frac{(n-1)!}{n^{a+n}}$

suite du cadre page suivante]

3. Déterminer la nature de $\int_0^{+\infty} \frac{dt}{t^a}$

Exercice 2 (5 points)

Soient
$$A = \begin{pmatrix} 3 & -2 & -1 \\ 2 & -1 & -2 \\ -2 & 2 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$.

A et B sont-elles diagonalisables dans $\mathcal{M}_3(\mathbb{R})$?

(Vous devez justifier rigoureusement votre réponse en déterminant OBLIGATOIREMENT avec précision les sous-espaces propres).

Si oui, exhiber une base de vecteurs propres i.e. déterminer D et P.

[suite du cadre page suivante]

		· ·
	₹	
		ĺ
		ļ
)
		[suite du cadre page suivante]

Exercice 3 (4,5 points)

Soient
$$\alpha \in \mathbb{R}^*$$
 et $A = \begin{pmatrix} 2 & 0 & \alpha \\ 0 & 1 & 0 \\ \alpha & 0 & 2 \end{pmatrix}$.

Discuter de la diagonalisabilité de A dans $\mathcal{M}_3(\mathbb{R})$ suivant les valeurs de α .

N.B. : la diagonalisation dans les cas favorables n'est pas demandée.

	7	
		[suite du cadre page suivante]

		•		
Exercice 4 (4 poir	nts)			
	,			

L'exercice suivant est à résoudre exclusivement de la manière indiquée. On souhaite résoudre le système d'équations différentielles suivant : $\begin{cases} x'(t) = x(t) + 8y(t) \\ y'(t) = x(t) + 3y(t) \end{cases} .$

On note $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$.

1. Déterminer $A \in \mathscr{M}_2(\mathbb{R})$ telle que X'(t) = AX(t).

2. Diagonaliser A en explicitant D et P.

[suite du cadre page suivante]

0 1	
3. F	En déduire $x(t)$ et $y(t)$ en fonction de t .
	[suite du cadre page suivante]

Exercice 5 (3 points)

Soit
$$S: \left\{ \begin{array}{ccc} \mathscr{L}(\mathbb{R}_1[X]) & \longrightarrow & \mathbb{R}_1[X] \\ f & \longmapsto & f(1) + f(X) \end{array} \right.$$

Déterminer la matrice de S relativement aux bases canoniques de $\mathscr{L}(\mathbb{R}_1[X])$ et $\mathbb{R}_1[X]$.