프로젝트 기반 빅데이터 서비스 솔루션 개발 전문 과정

교과목명: 머신러닝알고리즘 이해 및 활용

평가일: 03.10성명: 이재우

• 점수:

Q1. iris data를 불러와서 아래 사항을 수행하세요.(15점)

- 결정트리 모델을 시각화하고 주요한 인사이트를 기술하세요.(tree.plot_tree or tree.export_graphviz 이용)
- Feature importance를 추출하고 시각화하세요.

In [6]:

```
1 from sklearn.tree import DecisionTreeClassifier
   from sklearn.datasets import load_iris
   from sklearn.model_selection import train_test_split
 5
   import graphviz
   from sklearn import tree
 6
 7
8 | iris = load_iris()
9 dt_clf = DecisionTreeClassifier()
10 X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size = 0.2,random_s
   dt_clf.fit(X_train,y_train)
11
12
   dot_data = tree.export_graphviz(dt_clf,
13
                                  out_file = None,
14
15
                                  feature_names = iris.feature_names,
                                  class_names = iris.target_names,
16
17
                                   filled = True,
18
                                  special_characters = True)
19
   graphviz.Source(dot_data)
```

Out[6]:

Q2~Q3. 'dataset/creditcard.csv'를 불러와서 신용카드 사기 검출 분류문제를 아래와 같이 수행하세요(10점)

- 로지스틱 리그레션을 적용한 모델 학습 및 사용자 함수를 이용하여 평가
 - 인자로 입력받은 DataFrame을 복사한 뒤 Time 칼럼만 삭제하고 복사된 df 반환하는 사용자 함수 생성
 - 사전 데이터 가공 후 학습과 테스트 데이터 세트를 반환하는 함수(테스트 사이즈 0.3)
 - 오차행렬, 정확도, 정밀도, 재현율, f1, AUC 평가 함수
- 인자로 사이킷런의 Estimator 객체와 학습/테스트 데이터 세트를 입력 받아서 학습/예측/평가 수행
 - 사용자 함수를 사용하여 LightGBM으로 모델을 학습한 뒤 별도의 테스트 데이터 세트에서 예측 평가를 수행. 단, n_estimators=1000, num_leaves=64 적용
 - ※ 레이블 값이 극도로 불균형한 분포를 가지고 있는 경우 boost_from_average=False로 파라미터 설정 (default=True). default 설정은 재현율, AUC 성능을 매우 크게 저하시킴
 - 넘파이의 np.log1p()를 이용하여 Amount를 로그 변환하는하는 사용자 함수 생성
 - Amount를 로그 변환 후 로지스틱 회귀 및 LightGBM 수행.

In [112]:

```
1 # Q2
 2 import pandas as pd
 3 import numpy as np
 4 from sklearn.linear_model import LogisticRegression
   from sklearn.model_selection import train_test_split
   from sklearn.metrics import accuracy_score, precision_score,recall_score, confusion_matrix,f1
 7
   Ir = LogisticRegression(solver='liblinear')
9
   card_df = pd.read_csv('./dataset/creditcard.csv')
10
   def make_new_df(df=None):
11
12
       df_{copy} = df.copy()
        df_copy.drop('Time',axis=1,inplace = True)
13
        return df_copy
14
15
   def get_dataset(df=None):
16
       df = make_new_df(df)
17
18
       X = df.iloc[:.:-1]
       y = df.iloc[:,-1]
19
20
       X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state=2)
21
       Ir.fit(X_train,y_train)
       Ir_preds = Ir.predict(X_test)
22
23
        Ir_preds_proba = Ir.predict_proba(X_test)[:,1]
24
        return y_test, lr_preds, lr_preds_proba
25
26
   def get_clf_evals(y_test,pred=None,pred_proba=None):
27
        confusion = confusion_matrix(y_test,pred)
28
        accuracy = accuracy_score(y_test,pred)
29
        precision = precision_score(y_test,pred)
30
        recall = recall_score(y_test,pred)
31
        f1 = f1_score(y_test,pred)
32
        roc_auc = roc_auc_score(y_test,pred_proba)
33
        print('오차행렬: ₩n',confusion)
34
        print('정확도: ',accuracy)
35
       print('정밀도: ',precision)
36
       print('재현율: ',recall)
37
        print('f1 score: ',f1)
38
39
        print('roc_auc: ',roc_auc)
40
41
   y_test, |r_preds, |r_preds_proba = get_dataset(card_df)
   get_clf_evals(y_test, lr_preds, lr_preds_proba)
```

오차행렬:

[[85297 12] [46 88]]

정확도: 0.9993211848834895

정밀도: 0.88

재현율: 0.6567164179104478 f1 score: 0.7521367521367521 roc_auc: 0.9860297149799421

In [18]:

```
1
2
   from lightgbm import LGBMClassifier
3
4
   lgbm_clf = LGBMClassifier(n_estimators=1000,num_leaves=64,n_jobs=-1,boost_from_average=False)
5
6
   def get_lgbm_dataset(df=None):
7
       df = make_new_df(df)
       X = df.iloc[:,:-1]
8
9
       y = df.iloc[:,-1]
       X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3,random_state=2)
10
       lgbm_clf.fit(X_train,y_train)
11
       lgbm_preds = lgbm_clf.predict(X_test)
12
       lgbm_preds_proba = lgbm_clf.predict_proba(X_test)[:,1]
13
       return y_test, lgbm_preds, lgbm_preds_proba
14
15
   y_test,lgbm_preds,lgbm_preds_proba=get_lgbm_dataset(card_df)
16
   get_clf_evals(y_test,lgbm_preds,lgbm_preds_proba)
```

오차행렬:

[[85301 8] [23 111]]

정확도: 0.9996371850239341 정밀도: 0.9327731092436975 재현율: 0.8283582089552238 f1 score: 0.8774703557312253 roc_auc: 0.9785129668214042

In [19]:

```
1
    def make_new_df(df=None):
 2
        df\_copy = df.copy()
 3
        amount_n = np.log1p(df_copy['Amount'])
 4
        df_copy.insert(0, 'Amount_Scaled', amount_n)
 5
 6
        df_copy.drop(['Time', 'Amount'],axis=1,inplace = True)
 7
        return df_copy
 8
 9
   def get_dataset(df=None):
10
        df = make_new_df(df)
        X = df.iloc[:,:-1]
11
12
        y = df.iloc[:,-1]
13
        X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3,random_state=2)
14
        Ir.fit(X_train,y_train)
        Ir_preds = Ir.predict(X_test)
15
16
        Ir_preds_proba = Ir.predict_proba(X_test)[:,1]
17
        return y_test, lr_preds, lr_preds_proba
18
19
    def get_lgbm_dataset(df=None):
20
        df = make_new_df(df)
21
        X = df.iloc[:,:-1]
22
        y = df.iloc[:,-1]
23
        X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3,random_state=2)
24
        lgbm_clf.fit(X_train,y_train)
25
        lgbm_preds = lgbm_clf.predict(X_test)
26
        lgbm_preds_proba = lgbm_clf.predict_proba(X_test)[:,1]
27
        return y_test, lgbm_preds, lgbm_preds_proba
28
29
   print('로지스틱 회귀')
30
   y_test, |r_preds, |r_preds_proba = get_dataset(card_df)
31
   get_clf_evals(y_test, lr_preds, lr_preds_proba)
32
33
   print('LGBM')
34
35
   y_test,lgbm_preds,lgbm_preds_proba=get_lgbm_dataset(card_df)
   get_clf_evals(y_test,lgbm_preds,lgbm_preds_proba)
```

```
로지스틱 회귀
오차행렬:
 [[85296
           131
-
    43
          91]]
정확도: 0.9993445923013002
정밀도: 0.875
재현율: 0.6791044776119403
f1 score: 0.7647058823529411
roc_auc: 0.9846557807499795
LGBM
오차행렬:
[[85302
           7]
    24
        110]]
정확도: 0.9996371850239341
정밀도: 0.9401709401709402
재현율: 0.8208955223880597
f1 score: 0.8764940239043824
roc_auc: 0.9772458435996412
```

Q4. Q2 신용카드 사기 검출 분류문제에서 아래를 참고하여 이상치 데이터를 제거하고 모델 학습/예측/평가를 수행하세요(5점)

- 히트맵을 이용해 레이블과의 상관성을 시각화
- 레이블과 상관성이 높은 피처를 위주로 이상치 검출하는 사용자 함수 생성
- 사용자 함수를 이용하여 이상치 검출
- 이상치 제거 사용자 함수를 이용하여 이상치 제거 후 로지스틱 회귀 및 LightGBM 수행 및 평가

In [128]:

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize = (20,20))
corr = card_df.corr()
sns.heatmap(corr)
```

Out[128]:

<AxesSubplot:>

In [21]:

```
1
   # 이상치 검색
2
   def get_outlier(df=None,column=None,weight=1.5):
       fraud = df[df['Class']==1][column]
3
       quantile_25 = np.percentile(fraud.values,25)
4
5
       quantile_75 = np.percentile(fraud.values,75)
6
7
       iqr = quantile_75 - quantile_25
       iqr_weight = weight*iqr
8
9
       low_val = quantile_25-iqr_weight
       high_val = quantile_75 + igr_weight
10
11
12
       outlier_index = fraud[(fraud<low_val)|(fraud>high_val)].index
13
       return outlier_index
```

In [22]:

```
1 # 이상치 검출
2 outliers = get_outlier(df=card_df,column='V14',weight=1.5)
3 outliers
```

Out [22]:

Int64Index([8296, 8615, 9035, 9252], dtype='int64')

In [23]:

```
def make_new_df(df=None):
1
2
       df\_copy = df.copy()
3
       amount_n = np.log1p(df_copy['Amount'])
       df_copy.insert(0, 'Amount_Scaled', amount_n)
4
5
       df_copy.drop(['Time', 'Amount'],axis=1,inplace = True)
6
7
       outliers = get_outlier(df=card_df,column='V14',weight=1.5)
8
9
       df_copy.drop(outliers,axis = 0,inplace=True)
10
       return df_copy
11
   print('로지스틱 회귀')
12
   y_test, |r_preds, |r_preds_proba = get_dataset(card_df)
13
   get_clf_evals(y_test, lr_preds, lr_preds_proba)
15
16
   print('LGBM')
17
   v_test,lgbm_preds,lgbm_preds_proba=get_lgbm_dataset(card_df)
   get_clf_evals(y_test,lgbm_preds,lgbm_preds_proba)
```

```
로지스틱 회귀
오차행렬:
[[85278
          11]
    48
        10411
정확도: 0.9993094650109432
정밀도: 0.9043478260869565
재현율: 0.6842105263157895
f1 score: 0.7790262172284644
roc_auc: 0.975626137386755
LGBM
오차행렬:
[[85284
           5]
    29
        12311
정확도: 0.9996020645825775
정밀도: 0.9609375
재현율: 0.8092105263157895
f1 score: 0.8785714285714287
roc_auc: 0.9859118316608978
```

Q5. SMOTE 오버 샘플링 적용 후 LightGBM 모델을 이용하여 학습, 예측, 평가를 수행하세요.(10점)

In [24]:

```
from imblearn.over_sampling import SMOTE
1
2
3
   smote = SMOTE(random_state=0)
4
   def get_lgbm_dataset(df=None):
5
       df = make new df(df)
       X = df.iloc[:,:-1]
6
7
       y = df.iloc[:,-1]
       X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3,random_state=2)
8
9
10
       X_train_over,y_train_over = smote.fit_resample(X_train,y_train)
11
12
        lgbm_clf.fit(X_train_over,y_train_over)
13
       lgbm_preds = lgbm_clf.predict(X_test)
        lgbm_preds_proba = lgbm_clf.predict_proba(X_test)[:,1]
14
15
       return y_test, lgbm_preds, lgbm_preds_proba
16
   print('LGBM')
17
18
   y_test, lgbm_preds, lgbm_preds_proba=get_lgbm_dataset(card_df)
19
   get_clf_evals(y_test,lgbm_preds,lgbm_preds_proba)
```

LGBM

오차행렬:

[[85277 12] [24 128]]

정확도: 0.9995786566168468 정밀도: 0.9142857142857143 재현율: 0.8421052631578947 f1 score: 0.8767123287671234 roc_auc: 0.9808704583981028

Q6. 사이킷런에서 제공해주는 load_boston 데이터셋을 가져와서 아래 사항을 수행하세요.(10점)

- 데이터셋의 타겟 이름을 'PRICE'로 지정한 후 데이터프레임을 생성 pickle 파일로 저장 후 다시 불어오세요.
- 히트맵을 이용하여 타겟과 상관관계가 높은 독립 변수를 선택하세요.
- 종속변수를 로그 변환하세요
- 위의 사항을 반영하여 선회회귀 모델을 생성 후 평가하고 회귀계수를 출력하세요.

In [113]:

```
from sklearn.datasets import load_boston

boston = load_boston()
boston_df = pd.DataFrame(boston.data, columns = boston.feature_names)
boston_df['PRICE'] = boston.target
boston_df.to_pickle('./boston.pkl')
```

In [114]:

```
boston_df = pd.read_pickle('./boston.pkl')
boston_df.head()
```

Out[114]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS	
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90		
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	•	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	2	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	į	

In [115]:

```
plt.figure(figsize = (10,10))
corr = boston_df.corr()
sns.heatmap(corr,annot=True)
```

Out[115]:

<AxesSubplot:>

In [116]:

```
1 X = boston_df[['CRIM','INDUS','NOX','RM','AGE','TAX','PTRATIO','LSTAT']]
2 y = np.log1p(boston_df['PRICE'])
```

In [118]:

```
1 from sklearn.linear_model import LinearRegression
   from sklearn.metrics import mean_squared_error, r2_score
3
4 | Ir = LinearRegression()
   X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2,random_state=2)
5
6 | Ir.fit(X_train,y_train)
7 | Ir_preds = Ir.predict(X_test)
   print('회귀계수')
9
   print(Ir.coef_)
10
11 | mse = mean_squared_error(y_test, |r_preds)
12 rmse = np.sgrt(mse)
13 r_square = r2_score(y_test, lr_preds)
   print('rmse ',round(rmse,4),'R2 ',round(r_square,4))
```

회귀계수

```
[-7.00685456e-03 2.27470162e-03 -2.91714643e-01 1.04907054e-01 1.37300185e-03 -1.10727644e-04 -3.43033315e-02 -3.03346615e-02] rmse 0.1801 R2 0.8007
```

Q7. house_df.pkl 데이터셋을 불러와서 아래사항을 수행하세요.(15점)

- alphas = [0, 0.1, 1, 10, 100] 를 적용하여 Ridge 회귀 모델링 및 교차 검증 수행 후 5 폴드 평균 RMSE 출력
- lasso_alphas = [0.07,0.1,0.5,1,3] 를 적용, Lasso 회귀 모델링 및 교차 검증 수행 후 5 폴드 평균 RMSE 출력 (def get_linear_reg_eval(model_name,params=None,X_data_n=None, y_target_n=None, verbose=True 사용자 함수 이용)
- elastic_alphas = [0.07,0.1,0.5,1,3] 를 적용, ElasticNet 회귀 모델링 및 교차검증 후 5 폴드 평균 RMSE를 출력(사용자 함수 이용)

In [92]:

```
1 df = pd.read_pickle('./dataset/house_df.pkl')
2 df.head()
```

Out [92]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	ţ
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
4													•

In [93]:

```
from sklearn.linear_model import Ridge, Lasso, ElasticNet
   from sklearn.model_selection import cross_val_score
3
4
   alphas = [0, 0.1, 1, 10, 100]
   X = df.drop('PRICE',axis = 1)
5
   y = df['PRICE']
6
7
   for alpha in alphas:
       ridge = Ridge(alpha = alpha)
8
9
       neg_mse_scores = cross_val_score(ridge, X, y, scoring="neg_mean_squared_error", cv=5)
10
       rmse = np.sqrt(-1*neg_mse_scores)
11
       avg_rmse = np.mean(rmse)
       print('alpha: ',alpha, '평균 rmse:',avg_rmse)
12
```

```
alpha: 0 평균 rmse: 5.82865894621579
alpha: 0.1 평균 rmse: 5.7884866270323965
alpha: 1 평균 rmse: 5.652570965613533
alpha: 10 평균 rmse: 5.51816628086896
alpha: 100 평균 rmse: 5.329589628472134
```

In [94]:

```
1
   def get_linear_reg_eval(model_name,params=None, X_n=None, y_n=None, verbose = True, return_d
2
       coeff_df = pd.DataFrame()
3
       if verbose:
4
           print('#####', model_name, '######')
5
       for param in params:
            if model_name == 'Ridge':
6
7
               model = Ridge(alpha = param)
           elif model_name == 'Lasso':
8
               model = Lasso(alpha = param)
9
           elif model_name == 'ElasticNet':
10
               model = ElasticNet(alpha = param)
11
12
13
           neg_mse_scores = cross_val_score(model, X_n, y_n, scoring="neg_mean_squared_error", cv=
           avg_rmse = np.mean(np.sgrt(-1 * neg_mse_scores))
14
15
           print('param: ',param,'평균 rmse: ',avg_rmse)
16
17
   lasso_alphas = [0.07, 0.1, 0.5, 1, 3]
18
   get_linear_reg_eval('Lasso',params=lasso_alphas, X_n=X, y_n=y, verbose = True, return_coeff=Tr
   elastic_alphas = [0.07, 0.1, 0.5, 1, 3]
   get_linear_reg_eval('ElasticNet',params=elastic_alphas, X_n=X, y_n=y, verbose = True, return_d
```

Lasso

```
param: 0.07 평균 rmse: 5.612284267526676
param: 0.1 평균 rmse: 5.615116035266936
param: 0.5 평균 rmse: 5.6691234095948975
param: 1 평균 rmse: 5.776020813823376
param: 3 평균 rmse: 6.1887632108009045
##### ElasticNet #####
param: 0.07 평균 rmse: 5.5032089893304565
param: 0.1 평균 rmse: 5.4783894085720934
param: 0.5 평균 rmse: 5.412658488690828
param: 1 평균 rmse: 5.521582384760585
param: 3 평균 rmse: 5.9536085481152945
```

Q8. load boston 데이터셋을 불러와서 다음사항을 수행하세요.

• SVM 알고리즘을 활용한 주택가격 예측모델 생성 및 평가(MSE, RMSE, R2)

• 개발된 예측모델을 활용하여 아래 test_data가 주어졌은때의 주택가격 예측 test_data = [3.7, 0, 18.4, 1, 0.87, 5.95, 91, 2.5052, 26, 666, 20.2, 351.34, 15.27]

In [47]:

```
from sklearn.svm import SVR
   boston = load_boston()
2
3 X = boston.data
   y = boston.target
4
5
6 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=10)
   svr = SVR(kernel = 'linear', C=1.0, epsilon=0.1)
7
   svr.fit(X_train,y_train)
   y_pred = svr.predict(X_test)
9
   mse = mean_squared_error(y_test,y_pred)
11 rmse = np.sqrt(mse)
12 r_square = r2_score(y_test,y_pred)
13 print('mse', mse, 'rmse', rmse, 'R2', r_square)
```

mse 37.21046018112136 rmse 6.100037719647426 R2 0.6441939584708862

In [54]:

Out [54]:

array([18.70144348])

Q9. mtcars 데이터셋(mtcars.csv)의 qsec 컬럼을 최소최대 척도(Min-Max Scale)로 변환한 후 0.5보다 큰 값을 가지는 레코드 수를 구하시오

In [56]:

```
1  df = pd.read_csv('./dataset/mtcars.csv')
2  df.head()
```

Out [56]:

	Unnamed: 0	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

In [66]:

```
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

df['qsec'] = scaler.fit_transform(df[['qsec']])
len(df.loc[df['qsec']>0.5,['qsec']])
```

Out[66]:

9

Q10. purdata.csv는 백화점 고객의 1년 간 구매 데이터이다. 아래사항을 수행하세요.

- 남성고객을 분류하는 모델을 생성(분류알고리즘 : dt,rf,lr)
- 모델 성능을 roc auc로 평가

In [121]:

```
1 df = pd.read_csv('./dataset/purdata.csv')
2 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3500 entries, 0 to 3499
Data columns (total 11 columns):
             Non-Null Count Dtype
#
    Column
0
    cust_id 3500 non-null
                            int64
 1
    총구매액
                 3500 non-null
                                object
2
    최대구매액
                 3500 non-null
                                int64
    환불금액
3
                 1205 non-null
                                float64
    주구매상품
                 3500 non-null
4
                                object
5
    주구매지점
                 3500 non-null
                                object
6
    내점일수
                 3500 non-null
                                int64
7
    내점당구매건수 3500 non-null
                                   float64
8
    주말방문비율
                  3500 non-null
                                  float64
    구매주기
                 3500 non-null
9
                                int64
 10 gender
             3500 non-null
                            int64
dtypes: float64(3), int64(5), object(3)
memory usage: 300.9+ KB
```

In [122]:

1 df['환불금액'].fillna(0,inplace=True) 2 df

Out[122]:

	cust_id	총구매액	최대구매 액	환불금액	주 구 매 상 품	주 구 매 지 점	내 점 일 수	내점당구 매건수	주말방문 비율	구 매 주 기	gender
0	0	68282840	11264000	6860000.0	기 타	강 남 점	19	3.894737	0.527027	17	0
1	1	*	2136000	300000.0	스 포 츠	잠 실 점	2	1.500000	0.000000	1	0
2	2	3197000	1639000	0.0	남 성 캐 주 얼	관 악 점	2	2.000000	0.000000	1	1
3	3	*	4935000	0.0	기 타	광 주 점	18	2.444444	0.318182	16	1
4	4	29050000	24000000	0.0	보 석	본 점	2	1.500000	0.000000	85	0
3495	3495	3175200	3042900	0.0	골 프	본 점	1	2.000000	1.000000	0	1
3496	3496	29628600	7200000	6049600.0	시 티 웨 어	부 산 본 점	8	1.625000	0.461538	40	1
3497	3497	75000	75000	0.0	주 방 용 품	창 원 점	1	1.000000	0.000000	0	0
3498	3498	1875000	1000000	0.0	화 장 품	본 점	2	1.000000	0.000000	39	0
3499	3499	263101550	34632000	5973000.0	기 타	본 점	38	2.421053	0.467391	8	0

3500 rows × 11 columns

In [123]:

```
1 nullindex =list(df.loc[df['총구매액']=='*'].index)
2 df.drop(nullindex,axis = 0,inplace = True)
3 df['총구매액'] = df['총구매액'].astype(float)
4 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3498 entries, 0 to 3499
Data columns (total 11 columns):
#
    Column
            Non-Null Count Dtype
0
    cust_id 3498 non-null
                          int64
    총구매액
                3498 non-null
 1
                              float64
2
    최대구매액
                3498 non-null
                              int64
    환불금액
                3498 non-null
3
                            float64
    주구매상품
4
                 3498 non-null object
5
    주구매지점
                 3498 non-null object
    내점일수
                3498 non-null int64
6
7
    내점당구매건수 3498 non-null
                                float64
                  3498 non-null
8
    주말방문비율
                                float64
9
    구매주기
                3498 non-null
                             int64
10 gender
            3498 non-null int64
dtypes: float64(4), int64(5), object(2)
memory usage: 327.9+ KB
```

In [124]:

```
1 from sklearn.preprocessing import LabelEncoder
2 le = LabelEncoder()
3 df['주구매상품'] = le.fit_transform(df['주구매상품'])
4 df['주구매지점'] = le.fit_transform(df['주구매지점'])
5 df.drop('cust_id',axis = 1,inplace=True)
6 df
```

Out[124]:

	총구매액	최대구매 액	환불금액	주구 매상 품	주구 매지 점	내점 일수	내점당구 매건수	주말방문 비율	구 매 주 기	gender
0	68282840.0	11264000	6860000.0	5	0	19	3.894737	0.527027	17	0
2	3197000.0	1639000	0.0	6	1	2	2.000000	0.000000	1	1
4	29050000.0	24000000	0.0	15	8	2	1.500000	0.000000	85	0
5	11379000.0	9552000	462000.0	11	18	3	1.666667	0.200000	42	0
6	10056000.0	7612000	4582000.0	22	0	5	2.400000	0.333333	42	0
3495	3175200.0	3042900	0.0	3	8	1	2.000000	1.000000	0	1
3496	29628600.0	7200000	6049600.0	22	9	8	1.625000	0.461538	40	1
3497	75000.0	75000	0.0	32	21	1	1.000000	0.000000	0	0
3498	1875000.0	1000000	0.0	41	8	2	1.000000	0.000000	39	0
3499	263101550.0	34632000	5973000.0	5	8	38	2.421053	0.467391	8	0

3498 rows × 10 columns

In [125]:

```
1 from sklearn.model_selection import train_test_split
 2 from sklearn.tree import DecisionTreeClassifier
 3 from sklearn.linear_model import LogisticRegression
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.metrics import accuracy_score, roc_auc_score
 6
   dt = DecisionTreeClassifier()
 7
   rf = RandomForestClassifier()
8
9
   Ir = LogisticRegression()
10
   X = df.drop('gender',axis = 1)
11
   y = df['gender']
12
13
14 | X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2,random_state = 3)
15
16
   dt.fit(X_train,y_train)
17
   dt_pred_proba = dt.predict_proba(X_test)[:,1]
   roc = roc_auc_score(y_test,dt_pred_proba)
   print(round(roc,4))
19
20
21
   rf .fit(X_train,y_train)
   rf_pred_proba = rf.predict_proba(X_test)[:,1]
23
   roc = roc_auc_score(y_test,rf_pred_proba)
24
   print(round(roc,4))
25
26 | Ir.fit(X_train,y_train)
27 | Ir_pred_proba = Ir.predict_proba(X_test)[:,1]
28
   roc = roc_auc_score(y_test, lr_pred_proba)
   print(round(roc,4))
```

0.5352

0.6288

0.6486