Combinatorial Decision Making & Optimization

2024/2025

Second cycle degree/two year
Master's in Artificial Intelligence
Dept of Computer Science and
Engineering (DISI)
University of Bologna

Organization

- Module I
 - Zeynep KIZILTAN
 - E-mail: <u>zeynep.kiziltan@unibo.it</u>
- Module II
 - Roberto Amadini
 - E-mail: roberto.amadini@unibo.it
- Appointment on Teams, upon request by e-mail.

Timetable

- Available at the course website.
- Tuesday 13:00 16:00 (Aula 0.6)
 Thursday 14:30 17:30 (Aula 0.6)
 - Arrive on time!
 - Not all hours will be used!
- Module I: February 18 April 3
- Module II: April 8 June 12

Prerequisites

- Problem solving in artificial intelligence.
 - Covered by Module I of 91248 Fundamentals of Artificial Intelligence and Knowledge Representation.
- Basic notions of algorithms and programming, preferably in Python.
 - Covered by B5727 Introduction to Languages for Artificial Intelligence (Modulo 1)
- Logic for computer science.
 - Covered by B5727 Introduction to Languages for Artificial Intelligence (Modulo 2)
- Basic algebra and analysis.

Learning outcome

 Popular methods in operations research and artificial intelligence for modeling and solving complex combinatorial optimization problems such as constraint programming, integer linear programming, SAT and SMT.

Artificial Intelligence

- Statistical / Sub-symbolic
 - ML, DL
 - Data-driven
 - Uses probabilistic learning and forecasting
 - Impressive and convincing
 - Lacks general intelligence
 - Recognizes patterns but doesn't understand context
 - No correctness guarantee
 - not fact-based
 - no access to knowledge base

Artificial Intelligence

- Statistical / Sub-symbolic
 Classical / Symbolic
 - ML, DL
 - Data-driven
 - Uses probabilistic learning and forecasting
 - Impressive and convincing
 - Lacks general intelligence
 - Recognizes patterns but doesn't understand context
 - No correctness guarantee
 - not fact-based
 - no access to knowledge base

- - Represents knowledge using (human readable) symbols and manipulates them using pre-defined rules
 - Uses logic-based inference and search
 - Deterministic methods that provide guaranteed correct results

Need for Symbolic Al

- From a cognitive perspective
 - Deeper real world reasoning (causality), abstraction, common sense reasoning
- From a technological perspective
 - Robustness, verifiability, explainability
- From a social perspective
 - Fairness, ethics

Advances of Symbolic Al

- Semantic systems (e.g. knowledge graphs when querying the web)
- Games (e.g. chess, poker)
- Automated theorem proving
- Solving mathematical problems (e.g. Pythagorean triples problem)
- Robotics & planning
- Verification (e.g. hardware and software)
- Argumentation (e.g. modelling human reasoning)
- Combinatorial optimization

Combinatorial Optimization

- Decision making within many combinations of possibilities subject to complex restrictions (constraints).
 - Any solution (that meets all constraints).
 - Optimal solution (best solution according to an objective).
- Can appear under different names, e.g.
 - combinatorial decision making and optimization,
 - constraint satisfaction/optimization.
- Frequently appear in daily lives, business, industry and science.

Hospitalization during the Pandemic

- Assign infected people to hospitals according to:
 - severity of illness,
 - patient age,
 - patient location,
 - hospital capacity,
 - hospital equipment, etc.
- An approach like neural networks is not suitable:
 - no historical data for training,
 - data cleaning and consolidation is time consuming,
 - a variety of architectures would need to be tested with lengthy training sessions.

Data Analytics

Source: Gartner © June 2016 The Financial Brand

Data Analytics

- Al is not just for machine learning, but also for decision support. E.g.,
 - London bike hiring scheme developed by Serco and Decision Brain <u>using IBM decision</u> <u>optimization tools</u>.
 - ML to forecast and predict the movements of bikes, customer demand, customer behavior, maintenance time of bikes, ...
 - Optimization to decide how to move bikes to the stations in the best possible way and how many bikes to leave in each station for best QoS.

Combinatorial Decision Making

Properties

- Computationally difficult (NP-hard in general).
- Can only be solved by intelligent search.
- Experimental in nature.
- Finding good/optimal solutions can save time, \$ and reduce environmental impact.

Many solution techniques

- Heuristic search (local search, metaheuristics, etc) → FAIKR
- Complete search methods
 - Constraint Programming (CP) → Mod. I
 - Boolean SATisfiability (SAT) → Mod. I
 - Satisfiability Modulo Theories (SMT) → Mod. II
 - Linear Programming (LP) and Integer LP (ILP) → Mod. II

Lectures

- Theoretical foundations.
- Practical exercises using personal laptops.
- Invited lectures by experts in the field.

References

- Course material and resources: <u>course Virtuale page</u>.
- A list of reading: <u>course website</u>.

Tools for exercises

- Module I
 - MiniZinc
 - A modeling language with interfaces to several CP (and other) solvers (https://www.minizinc.org/).
 - Z3
 - A SAT/SMT solver (https://github.com/Z3Prover/z3/)
 - Via input in SMT-LIB2 syntax or APIs for Python, C, C++, Java.
 - Download & start getting familiar with them.
- Module II
 - Z3, CVC5, Python and Gurobi.

Assessment

- One single project for the entire course.
 - Modelling and solving a combinatorial optimization problem in CP, SAT/SMT and ILP.
 - Project work instructions are on Virtuale (start reading it!).
 - Actual problem will be announced during the second module.
 - First learn the theoretical foundations, the tools (MiniZinc, Z3, etc) and practice with small exercises.
 - Unique discussion, with submission and on-line discussion in July'25, Sep'25, Dec'25, Feb'26.
- Oral exam on the entire course topics during the project discussion.
- A single mark between 18 and 30L.

Course engagement

- Lectures are important for the oral exam but...
- Lectures are very important to apply the optimization technology and use the tools successfully.
 - Essential for the project, past students confirm that!
- Lectures will be recorded.
- Follow the material on the Virtuale page.
 - Use the forum for discussions and exchange of knowledge.
- Ask questions, don't be shy ©
- Answer questions, don't be humble ©

Important rules

- Follow your unibo e-mail regularly for announcements (even after the end of the course for project discussions).
- DO NOT send us e-mail unless strictly necessary.
 - Read well the provided information.
 - Check the announcements archieve in the Virtuale page.
 - Use the discussion forum in Virtuale to ask everybody.
- Raise your hand for questions.
 - We will pause regularly for raised hands.

Final Words

- In the meantime...
 - I am responsible for internationalization in master's in AI.
 - As you are notified to be accepted for a study mobility programme 2025/2026 (Erasmus+ study, Overseas, etc), contact me with info on your exchange.
 - I will organize a meeting in April to give information on preparing a Learning Agreement (LA).