GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Circuitos Lógicos

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Sexto Semestre	4063	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al alumno el conocimiento habilidad y aptitud en el análisis, diseño construcción y mantenimiento de los circuitos lógicos, así como la capacidad de diagnosticar, detectar y eliminar fallas de circuitos digitales combinatorios y secuénciales con base en componentes integrados a pequeña y mediana escala de integración.

TEMAS Y SUBTEMAS

- 1. Sistemas Numéricos
- 1.1 Binario, ternario, multivaluado
- 1.2 Concepto, características y aplicaciones
- 1.3 Sistemas digitales: combinatorios y secuénciales
- 1.4 Concepto, características y aplicaciones.
- 2. Álgebra de Boole
- 2.1 Axiomas y Teoremas
- 2.2 Formas canónicas conjuntiva y disyuntiva
- 2.3 Aplicaciones a circuitos lógicos combinatorios.
- 3. Modelos funcionales de sistemas digitales combinatorios
- 3.1 Algebraico
- 3.2 Tablero de verdad
- 3.3 n-cubo
- 3.4 Mapa de Veitch-Karnaugh
- 3.5 Programa de cómputo
- 3.6 Modelos estructurales de sistemas digitales combinatorios
- 3.6.1 Diagramas electrónicos
- 3.6.2 Gráficas y lenguajes de simulación para computadora.
- 4. Circuitos lógicos combinatorios
- 4.1 Eléctricos
- 4.2 Electrónicos
- 4.3 Neumáticos
- 4.4 En forma de circuitos discretos e integrados
- 4.5 Características eléctricas y en el tiempo de circuitos lógicos combinatorios electrónicos discretos e

integrados

- 4.5.1 Operación
- 4.5.2 Representación
- 4.5.3 Selección
- 4.5.4 Interconexión
- 4.5.5 Familias (TTL, MOS, ECL)
- 4.6 Análisis de circuitos lógicos combinatorios.
- 5. Minimización de formas booleanas: Método algebraico
- 5.1 Método de Karnaugh
- 5.2 Método de Quine-McCluskey
- 5.3 Programas de cómputo para minimización.
- Diseño de circuitos lógicos combinatorios con base en circuitos integrados de pequeña, mediana
- 6.1 Diseño con base en memorias de semiconductores, PLA, PAL y GAL.
- 7. Diagnóstico, detección y eliminación de transitorios eléctricos indeseados a la salida de los circuitos lógicos TIS, (`hazards') y de fallas.
- 8. Simulación de circuitos lógicos combinatorios con base en computadora
- 8.1 Diseño de circuitos lógicos con sistemas de detección de fallas integrado (`design for testability').
- 9. Modelos funcionales de sistemas digitales secuénciales
- 9.1 Algebraico, tablero de estados, tablero de transiciones, programa de cómputo
- 9.2 Modelos estructurales de sistemas digitales secuénciales: diagramas electrónicos, gráficas y lenguajes de simulación para computadoras.
- 10. Máquinas secuénciales.
- 10.1 Modelos de Moore y de Mealy
- 10.2Máquinas completas e incompletas
- 10.3Compatibilidad, equivalencia, minimización y codificación de estados.
- 11. Análisis y diseño de circuitos lógicos secuénciales asíncronos, síncronos e impulsionales.
- 12. Análisis y diseño de circuitos lógicos secuénciales con base en circuitos integrados de pequeña, mediana
- 12.1Diseño de circuitos lógicos secuénciales con base en memorias de semiconductores PLS.
- 13. Simulación de circuitos lógicos secuénciales con base en computadora
- 13.1Documentación y mantenimiento preventivo y correctivo de circuitos lógicos
- 13.2Normas técnicas mexicanas y extranjeras sobre circuitos lógicos electrónicos.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor tanto en el aula como en el laboratorio, con un constante uso de aparatos y equipo de electrónica y de cómputo en los aspectos teórico y práctico. Fuerte trabajo extraclase de los alumnos con los aparatos y el equipo de electrónica y de cómputo, otorgando solución a problemas sobre los temas del curso. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son los retroproyectores, las videocaseteras y los programas de cómputo educativos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender los aspectos de teoría y de laboratorio. La evaluación comprenderá, al menos, tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá otro 50%, la suma de estos dos porcentajes dará la calificación final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, incluyen la ejecución exitosa y la documentación de la solución de prácticas de laboratorio y proyectos asociados a problemas sobre temas del curso. Además, se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y N° DE EDICIÓN)

Libros Básicos:

Lógica Digital y Diseño de Computadoras. Morris Mano. Ed. Prentice-Hall.

Introduction to Switching Theory and Logical Design. Hill, F. y Peterson, G. Second Edition. Wiley International, 1974, E.U.A.

Digital Logic. Analysis, Application and Design. Garrod, S. y Borns, R. Saunders College Publishing. 1991. E.U.A.

Análisis y Diseño de Circuitos Lógicos Digitales, Nagle H. Troy, Carroll Bill D. Irwin J. David, Nelson Víctor P. México: Prentice-Hall Hispanoamericana, 1997.

Libros de Consulta:

Switching Theory. Vol.2. Sequential Circuits and Machines. Miller, R. Wiley. 1967. E.U.A.

The Essence of Logic Circuits. Unger, S. Prentice-Hall. 1989. E.U.A.

Digital Systems. Testing and Testable Design. Abramovici, M., Brever, M. y Friedman, A.AT&T BELL Laboratories and W.H. Freeman Company. 1990. E.U.A.

Programmable Logic Plds And Fpgas, Seals, R. C. Whapshott G. F. USA: McGraw-Hill, 1997.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica con Maestría en Electrónica, Especialidad en Sistemas Digitales.