Algebra

 $Hoyan\ Mok^1$

2020年7月31日

 $^{^{1}}$ E-mail: victoriesmo@hotmail.com

目录

目录	i
第一部分 线性代数	1
第一章 群.环.域	2
§1 代数运算	. 2
§2 群	. 3
§3 环	. 7
§4 域	. 9
第二章 线性空间	11
§5 线性空间	. 11
§6 对偶空间	. 16
§7 双线性型与二次型	. 17
第三章 线性算子	18
§8 线性映射	. 18
第四章 内积空间 第四章 内积空间	19
第五章 张量	20
附录 A 复数与多项式	21
§1 复数	. 21
§2 多项式	. 21
参考文献	22

ii	目录
符号列表	23
索引	24

第一部分

线性代数

第一章 群.环.域

§1 代数运算

Definition 1.1 (二元运算). 集合的 Cartesian 平方到自身的映射 *: $X^2 \to X$ 称为其上的一个二元运算. 通常我们记 *(a,b) := a * b. 当 X 上定义了二元运算 * E, 称 * 定义了 E 上的一种代数结构 (E,*),也称代数系统.

当指代是明确的时候, 我们将混用集合及其代数结构.

作为习惯, 如果 \cdot , $+ \in X^{X^2}$, 我们记 $ab := a \cdot b$ 并称其为 a 和 b 的积, 称 a + b 为 a 和 b 的**和**. 这些只是约定.

若 a*b=b*a 则称 * 或 (X,*) 是交换的, 而若 (a*b)*c=a*(b*c) 则称 * 或 (X,*) 为结合的.

若 $\exists e \in X$ 满足 $\forall x \in A(e * x = x * e = x)$, 则称其为 * 的一个**单位元** (identity), 这时可把 (X,*) 记作 (X,*,e). 可以证明一个代数结构最多只有一个单位元. 乘法单位元通常记为 1, 而加法单位元 (也叫零元) 记为 0.

Definition 1.2 (半群和幺半群). 若 * 是结合的, 称 (X,*) 是**半群** (semigroup); 若 * 还有一个单位元, 则称 (X,*,e) 是**幺半群** (monoid).

倘若幺半群 (M,*,e) 是有限的 (即其元素有限), 称 $\operatorname{card} M$ 为有限幺半群的阶.

作为重要的例子,**置换幺半群** 定义为 $(X^X, \circ, \mathrm{id}_X)$,有幺半群结构的 X^X 通常记作 M(X). 半群中,括号的位置是不重要的 (可用数学归纳法证明). 通常我们记 $x_1x_2\cdots x_n$ 为:

$$\prod_{i=1}^{1} x_i = x_1, \ \prod_{i=1}^{n+1} x_i = \left(\prod_{i=1}^{n} x_i\right) x_n; \tag{1-1}$$

同理 $x_1 + x_2 + \cdots + x_n$ 为:

$$\sum_{i=1}^{1} x_i = x_1, \ \sum_{i=1}^{n+1} x_i = \left(\sum_{i=1}^{n} x_i\right) + x_n.$$
 (1-2)

在半群不交换的场合,指出递推式右端的顺序是重要的.这种记法称为左正规.

若 $x := x_1 = x_2 = \cdots = x_n$, 记 $\sum_{i=1}^n x_i = nx$, $\prod_{i=1}^n x_i = x^n$, 分别表示 x 的 n 倍和 x 的 n 次幂. 它们满足:

$$nx + mx = (n+m)x, \ n(mx) = nmx, \qquad n, m \in \mathbb{N}_+;$$
 (1-3)

$$x^n x^m = x^{n+m}, (x^m)^n = x^{nm}, \quad n, m \in \mathbb{N}_+.$$
 (1-4)

在幺半群中, 还可以令 $x^0 = 1$, 0x = 0.

若半群 S 有子集 S', 使得 (S',*) 是半群, 那么称其为半群 (S,*) 的**子半群**. 同理有幺半群M 的**子幺半**群M'.

若半群 (S, *, e) 的元素 a 满足 $\exists a' \in S(aa' = a'a = e)$, 那么称 a 为**可逆的** (invertible), a' 称为其**逆元** (inverse element) **或逆** (inverse). 通常加法逆元记为 -a, 乘法逆元记为 a^{-1} , 且为可逆元素引入 na, a^n 的概念, 其中 $n \in \mathbb{Z}$. 当 n 为负数时, na = -(-na), $a^n = (a^{-n})^{-1}$.

因为群未必是 Abelian, 我们可以也用弱化的**左可逆** $\exists y \text{ s.t. } y * x = 1 \text{ 或$ **右可逆** $的概念.}$

§**2** 群

可逆幺半群 G 称为群, 即:

Definition 2.1 (群). 设有集合 G. 若:

- G1) 定义了二元运算 $:: G^2 \to G; (x, y) \mapsto xy.$
- G2) 结合性: $\forall x, y, z \in G$, (xy)z = x(yz).
- G3) 单位元: $\exists e \in G \forall x \in G, xe = ex = x.$
- G4) 可逆性: $\forall x \in G \exists x^{-1} \in G, xx^{-1} = x^{-1}x = e.$

则称 (G,\cdot) 为群.

交换群又叫做 Abelian 群.

作为重要的例子, 设 X 是一个集合, $S(X) = \{f \in X^X \mid f$ 是双射 $\}$. 我们断言, $(S(X), \circ, \mathrm{id}_X)$ 是一个群, 称为**变换群**或**置换群**, 其中 \circ 是函数的复合, id_X 是恒等变换. 当它的阶数 $\mathrm{card}\, X = n$ 是有限的时候, 记 $S_n := S(X)$.

群也有子群的概念. 设 (G,\cdot,e) 是一个群. 当一个集合 $G' \subset G$ 满足:

- SG1) $e \in G'$;
- SG2) $\forall x, y \in G', xy \in G';$
- SG3) $x \in G' \to x^{-1} \in G'$,

则称 (G',\cdot,e) 是一个 G 的子群. 倘若还有 $G' \neq G$ 则称其为一个真子群¹.

 $^{^{1}}$ [1] 等文献把**平凡群** $\{e\}$ 也排在真子群的定义外.

Theorem 2.1. 非空的 G' 是群 $(G,\cdot,1)$ 的子群 $\leftrightarrow \forall x,y \in G'(xy^{-1} \in G')$.

Proof. 根据子群的定义, → 是显然的, 下给出 \leftarrow 的证明:

- SG1) $\forall x \in G'(xx^{-1} = 1 \in G);$
- SG2) $\forall x, y \in G', x1^{-1}1y^{-1^{-1}} = xy \in G';$
- SG3) $\forall x \in G', 1x^{-1} = x^{-1} \in G'.$

这里将不加证明地给出:

Lemma 1. # G 的子群族 $\mathcal{H} = \{H \mid H \not\in G \text{ 的子群}\}$ 的交 $\cap \mathcal{H}$ 也是 G 的子群.

设 G 有子集 S , 我们说群 $(G,\cdot,1)$ 是由 S 生成的, 意思是说 G 没有包含 S 的真子群. 记为 $G=\langle S \rangle$.

Theorem 2.2.
$$\langle S \rangle = \left\{ \prod_{i=0}^{n-1} s_i \middle| \forall i \in n (s_i \in S \vee s_i^{-1} \in S) \right\}.$$

Proof. 根据群的定义, 形如 $\prod_{i=0}^{n-1} s_i$ 的将构成一个群. 如果存在一个不能写成这种形式的元素, 那么它们将构成一个真子群, 这和 $\langle S \rangle$ 的定义相违背.

我们把半群的公式 (1-4) 推广到整数次幂, 证明在此忽略了.

Theorem 2.3. $\forall g \in G, \ \forall n, m \in \mathbb{Z},$

$$g^m g^n = g^{m+n}, \quad (g^m)^n = g^{mn}.$$
 (2-1)

Definition 2.2 (循环群). 设 $(G,\cdot,1)$ 是一个乘法群, $\exists g_0 \in G$, 使得 $\forall g \in G$, $\exists n \in \mathbb{Z}$, $a^n = g$, 那么我们称它是一个循环群, g_0 是一个生成元 (generator), 并记作 $G = \langle g_0 \rangle$.

对于群 G 中任意元素 g, 我们称 $\operatorname{card}\langle g\rangle$ 为元 g 的**阶数**, 或称 g 为 n **阶元**. 而且它将满足:

Theorem 2.4. 任意群 G 中若有 $g \in \mathbb{Z}$ 阶元 g, 则 $\langle g \rangle = \{e, g, \dots, g^{q-1}\}$, 且:

$$g^n = e \leftrightarrow n = kq, \qquad n \in \mathbb{Z}.$$
 (2-2)

证明利用带余除法和定理 2.3, 证明是显然的. 从该定理, 我们可以论断: 循环群都是 Abelian 群.

Definition 2.3 (同构). 两个群 (G,*), (G',\circ) 如若满足: $\exists f: G \to G'$ s.t.

i)
$$\forall a, b \in G$$
, $f(a * b) = f(a) \circ f(b)$;

§2 群 5

ii) f 是双射,

则称 f 是一个同构映射或同构 (isomorphism), 并认为两个群是互相同构的 (isomorphic), 记为 $G \simeq G'$.

同构关系的自反性, 传递性和对称性是平凡的.

Theorem 2.5. 设群 $(G, *, 1), (G', \circ, 1')$ 被 f 见证同构, 那么 f(1) = 1'.

Proof.
$$\forall g' \in G'$$
, 记 $g := f^{-1}(g')$, 那么 $f(g) \circ f(1) = f(g*1) = g' = f(1*g) = f(1) \circ f(g)$. 从 而 $f(1) = 1'$.

Theorem 2.6. 设群 $(G, *, 1), (G', \circ, 1')$ 被 f 见证同构, 那么 $\forall g \in G, f(g^{-1}) = f(g)^{-1}$.

Proof.
$$f(g) \circ f(g^{-1}) = f(g * g^{-1}) = f(1) = 1' = f(g^{-1} * g) = f(g^{-1}) \circ f(g).$$

Theorem 2.7.

$$\operatorname{card}\langle g_0 \rangle = \operatorname{card}\langle g_0' \rangle \to \langle g_0 \rangle \simeq \langle g_0' \rangle$$
.

Proof. 倘若 $\operatorname{card}\langle g_0 \rangle = \infty$, 那么 $\not \exists n \in \mathbb{Z} - \{0\}$, s.t. $g_0^n = e$; 这意味着, 存在这样的双射 $f: \mathbb{Z} \to \langle g_0 \rangle$, 满足 $f(n) = g_0^n$, 见证了 $(\mathbb{Z}, +, 0) \simeq (\langle g_0 \rangle, *, e)$.

如果阶数是有限的, 只需令
$$f: g^k \to g'^k$$
, 其中 $k = 0, 1, \dots, \operatorname{card}\langle g_0 \rangle$.

Theorem 2.8 (*Cayley* 定理). 设 (G, *, e) 任意 n 阶有限群. $\exists H \subset S_0$ s.t. (H, \circ, id_X) 是 S_n 的子群且 $G \simeq H$.

Proof. 取 $H:=\{L_g\mid g\in G\}$, 其中 $L_g\colon G\to G; g'\mapsto gg'$ 可以证明是双射. 那么 $L\colon G\to H; g\mapsto L_g$ 见证了 $H\simeq G$.

若 φ : $G \to G$ 见证了 $G \simeq G$ (如 id_G), 那么称 φ 是群 G 的一个 **自同构** (automorphism). 所有自同构组成的集合 $\mathrm{Aut}(G)$ 和其上的函数复合。构成了 S(G) 的一个子群, 称为 G 的**自同构**.

自同构群有一特殊的子群 $Inn(G) := \{I_a : g \mapsto aga^{-1} \mid a \in G\}$, 称为**内自同构群** (inner isomorphism), 其元素称为**共轭映射** (conjugation).

Definition 2.4 (共轭). 设 G 是一个群, $a,b \in G$. 如果 $\exists I_g \in \text{Inn}(G)$, 使得 $I_g(a) = b$, 那么我们称 a 和 b 互为共轭 (conjugate).

我们毫不费力地就能证明共轭关系是等价关系, 而且当 G 是 Abelian 群的时候, 其任意元素的共轭都是其自身.

Definition 2.5 (共轭类). 设 G 是一个群. 由共轭规定的等价类称为**共轭类** (Conjugacy class), 记为 Cl(g), g 为其代表元. 称 $card\{Cl(g) \mid g \in G\}$ 为 G 的**类数** (class number). 如果有一个函数 f 满足 $g' \in Cl(g) \to f(g) = g(g')$, 那么称 f 是一个 **类函数** (class function).

Definition 2.6 (正规子群). 设 G 是一个群, N 是其子群. 倘若 $\forall I \in \text{Inn}(G), I(N) = N$, 即 其在共轭映射下不变, 则称其为 G 的一个正规子群 (normal subgroup), 记为 $N \triangleleft G$.

可以看出 Abelian 群的所有子群都是正规子群. 以下是正规子群的另一种定义方法:

Theorem 2.9.

$$N \triangleleft G \leftrightarrow \forall g, h \in G (gh \in N \leftrightarrow hg \in N).$$

Proof. 只需注意到 $I_g(gh) = g^{-1}ghg = hg$.

Definition 2.7 (同态). 设有群 (G, *, e) 和 (G', \circ, e') , 映射 $f: G \to G'$ 若满足

$$\forall a, b \in G, \quad f(a * b) = f(a) \circ f(b),$$

则称其为群 (G,*) 到群 (G',\circ) 的一个同态 (homomorphism), 也叫态射 (morphism). 类似映射, 可定义单态射 (monomorphism), 满态射 (epimorphism).

集合 $\ker f := f^{-1}(\{e'\})$ 叫做同态 f 的核 (kernel). 群到自身的同态映射称为**自同态** (endomorphism).

同态 f 的核是 G 的正规子群, 即 $\ker f \triangleleft G$, 而 G 在同态下的像是 G' 的子群.

Theorem 2.10. 如果同态的核是平凡群 (即, $\ker f = \{e\}$), 那么这个同态是单的.

Proof. 如果 $\exists g_1, g_2 \in G$, s.t. $f(g_1) = f(g_2)$, 那么

$$f(g_1 * g_2^{-1}) = f(g_1) \circ f(g_2^{-1}) = f(g_1) \circ f(g_2)^{-1} \circ f(g_2) \circ f(g_2^{-1}) = e' \circ f(e) = e'$$

从而 $g_1 * g_2^{-1} \in \ker f$, 同理 $g_2^{-1} * g_1 \in \ker f$, 即 $g_1^{-1} = g_2^{-1}$ 或 $g_1 = g_2$, 即: f 是单的.

作为例子, 映射

$$f: G \to \operatorname{Inn}(G); g \mapsto I_g$$

满足同构的条件 i), 因 $f(a) \circ f(b) = I_{ab} = f(ab)$; 但它不一定是双射, 因而是一个同态.

Definition 2.8 (陪集). 设 (G, *, e) 是一个群, S 是其子群, $g \in G$, 那么我们称 $g * S := \{g * s \mid s \in S\}$ 为 S 在 G 内的**左陪集** (left coset); 同理 $S * g := \{s * g \mid s \in S\}$ 为 S 在 G 内的**右陪集** (right coset). 这里我们称 g 是一个代表元. 如果 g * S = S * g, 则称其为**陪集**.

§3 环

Theorem 2.11.

$$N \triangleleft G \ \leftrightarrow \ \forall g \in G, \ g*N = N*g.$$

Definition 2.9 (商群). 如果 $N \triangleleft G$, 那么我们记 $G/N := \{g * N \mid g \in G\}$, 称为 G 对 N 的**商** 群. 这个群的乘法定义为子群元素的积的集合:

$$(g * N) \cdot (g' * N) := \{s * t \mid s \in g * N, t \in g; *N\} = (g * g') * N$$

,单位元是 e*N=N 自身.

§**3** 环

Definition 3.1 (环). 集合 R 非空, 其上定义了加法 + 和乘法 ·, 且满足:

- R1) (R, +, 0) 是阿贝尔群;
- R2) (R,·) 是半群;
- R3) 乘法对加法有分配律:

$$(a+b)c = ac + bc,$$
 $c(a+b) = ca + cb$

对 $\forall a, b, c \in R$ 成立.

那么, 我们称 $(R, +, \cdot)$ 是一个**环** $(\text{ring})^2$. 而且唤 (R, +) 作其加法群, 称 (R, \cdot) 为其乘法半群. 倘若 (R, \cdot) 还有单位元 1, 那么我们称 $(R, +, \cdot)$ 为有单位元的环.

若环 R 非空的子集 L 满足

$$\forall x, y \in L(x - y \in L \land xy \in L)$$
,

则称 $L \in R$ 的一个子环.

若环的乘法半群是交换的,则称这个环是一个交换环.

作为例子, $(\mathbb{Z}, +, \cdot)$ 是我们熟悉的**整数环**, $n\mathbb{Z} := \{nk \mid k \in \mathbb{Z}\}$ 是它的一个子环 $(n \in \mathbb{Z})$. 交换环 R 上的所有 n 阶方阵之集合 $M_n(R)$ 也是环.

Definition 3.2 (同态). 设 R 和 R' 是两个环, 有一个映射 f 对加法群和乘法半群都是同态 (保持运算), 即:

$$f(x)f(y) = f(xy), \quad f(x) + f(y) = f(x+y),$$

那么, 我们称其为 R 到 R' 的一个**同态**或**态射**, 集合 $\ker f := \{a \in R \mid f(a) = 0\}$ 称为同态的 **核**. 同态 f 的核是 R 的子环. 类似地我们也有**单同态**, 满**同态**和**同构**的概念. 两个环同构记为 $R \cong R'$.

 $^{^{2}}$ 如果 (R, \cdot) 不结合, 通常称**非结合环**.

设 $(R, +, \cdot)$ 是环, X 是一个集合, 在 R^X 上定义加法和乘法:

$$f + g: x \mapsto f(x) + g(x); \qquad fg: x \mapsto f(x)g(x),$$

就得到了**函数环** $(R^X, +, \cdot)$, 其零元是 $0_X : x \mapsto 0$. 如果 R 有单位元 1, 那么 R^X 也有单位元 $1_X : x \mapsto 1, \forall x \in X$.

作为例子,考虑到将 $[k]_n \in \mathbb{Z}/\equiv \operatorname{mod} n$ 映射到 $n^{\mathbb{Z}} \ni \operatorname{mod} n := \{(m,k) \in \mathbb{Z} \times m \mid n \equiv k \operatorname{mod} n\}$ 的同构,模 n 的剩余类环 $(\mathbb{Z}_n, +, \cdot)$ 即可看作函数环 $n^{\mathbb{Z}}$ 的一个交换子环,其中 $\mathbb{Z}_n := \{[k]_n \mid k \in n\}$. 同构关系让我们也能用剩余类的代表元组成的集合 n 代替剩余类本身进行运算,这种情况下,n 称为模 n 的剩余类的导出集,我们能用加法表和乘法表给出它的代数结构.

Definition 3.3 (整环). 环 R 中, $a \in R$, 如果 $\exists b \in R - \{0\}$ s.t. ab = 0, 则称 a 为环 R 的一个零因子; 类似则可定义右零因子³. 左零因子和右零因子统称零因子. 零元 0 则称为平凡零因子.

若非平凡的交换环 R 带单位元 $1 \neq 0$, 且没有非平凡零因子, 则称 R 是一个**整环** (entire ring 或 integral domain).

也有将无非平凡左零因子的带单位的非平凡环称为 domain 的.

Theorem 3.1 (消去律). 设 R 是带单位元 $1 \neq 0$ 的交换环. 环 R 是整环 $\leftrightarrow \forall x, y, c \in R$, $cx = cy \land c \neq 0 \rightarrow x = y$.

Proof. 如果 R 满足消去律, 那么 ab = 0 = 0b = a0 将给出 $a = 0 \lor b = 0$ 的论断; 如果 R 是整环, 那么 cx = cy 即 c(x - y) = 0 将得出 $c = 0 \lor x = y$; 倘若 $c \neq 0$, 那么这就是消去律.

有单位元的环 R 中元素 x 的可逆性往往指关于乘法的可逆性.

Theorem 3.2. 设 R 是带单位元 1 的环, $U(R) := \{x \in R \mid x \text{ 可逆}\}$ 是一个乘法群.

Proof. 单位元 1 当然可逆. 由定义可逆元素的逆也是可逆的. 如果 $x,y \in R$ 可逆, 那么

$$(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = xx^{-1} = 1 = y^{-1}x^{-1}xy = (xy)^{-1}(xy),$$

即 *xy* 可逆.

如果 $U(R) = R - \{0\}$, 那么我们称 R 是一个除环 (division ring), 也称斜域或反对称域 (skew field). 除环没有零因子.

³[1] 中把 0 排除在外了.

§4 域

交換除环 F 称为域 (field). 群 $P^* = U(P)$ 称为域的乘法群. 如果 $y \neq 0$, 那么我们通常记 $x/y = \frac{x}{y} := xy^{-1}$.

我们可类似环, 定义同构和自同构. 同态的意义不大, 因为如果 F 到 F' 的同态 f 的核 $\ker f \neq \{0\}$, 那么 $\ker f = F$. 如果 F' 是域 F 的子环, 而且也是一个域, 则称其为 F 的一个子域, 反之称 F 为 F' 的一个**扩**域.

类似群的生成, 包含 $F \cup \{a\}$ 的最小 F 的扩域, 记为 F(a). 如有理数域 \mathbb{Q} 的扩域 $\mathbb{Q}(\sqrt{2})$.

Theorem 4.1. 有限剩余类环 \mathbb{Z}_p 是域, 当且仅当 p 是素数.

Proof. 记 \mathbb{Z}_p 的元素为 [0], [1], ..., [p-1]. 由素数的定义, $\forall [k] \in \mathbb{Z}_p^* := \mathbb{Z}_p - \{[0]\}$,

$$[k], [2k], \cdots, [(p-1)k]$$

都不为 [0], 而且两两不等. 进而, $\exists i \in \mathbb{N}_+$ s.t. $i . 又 <math>\mathbb{Z}_p$ 是交换环, 可知这个 $[i] = [k]^{-1}$, 即 \mathbb{Z}_p 的乘法组成一个群.

出于 \mathbb{Z}_p 的这个性质, 我们也记其为 \mathbb{F}_p 或 $\mathrm{GF}(p)$. 值得一提的是, p^n 元有限域 $\mathrm{GF}(p^n)$ 也是存在的.

Corollary 1 (*Fermat* 小定理). 设 p 是素数, $a \in \mathbb{N}$ 且 $a \nmid p$.

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof. 当 $[k] \in \mathbb{Z}_p^*$ 时, $I_{[k]} \colon \mathbb{Z}_p^* \to \mathbb{Z}_p^*$; $[n] \mapsto [kn]$ 如定理 4.1 是 $S(\mathbb{Z}_p^*)$ 的元素. 从而:

$$\left(\prod_{k=1}^{p-1} [k]\right) [a]^{p-1} = \prod_{k=1}^{p-1} [k].$$

因为域都是整环, 满足消去律 3.1, 从而 $[a]^{p-1} = [1]$.

Definition 4.1 (素域). 若域 P 不含任何非平凡真子域,则称其为**素域** (prime field).

Lemma 2. \mathbb{Q} 和 \mathbb{Z}_p 是素域.

Proof. 让集合 $\{0,1\}$ 对加法, 减法, 乘法和除法封闭, 我们将得到 \mathbb{Q} 或 \mathbb{Z}_p 的导出集 p, 取决于 1 在加法群中的阶数.

Theorem 4.2. 任意非平凡域 F 必含且只含一个素子域 P, 而且它将同构于 \mathbb{Q} 或 \mathbb{Z}_p , 其中 p 是素数.

Proof. 若有两个素子域,它们的交必然也是 F 的子域,根据素域的定义,这个交不可能是真子域,从而这两个素域相等. 这就保证了,如果存在这么一个素子域 P,它一定是唯一的. 接下来我们研究它的存在性.

定义 \mathbb{Z} 到 F 的同态 f(n)=ne, 其中 e 是 F 的单位元. 其核为 $\ker f=m\mathbb{Z}$, 其中 $m\in\mathbb{N}$. 如果 m=0, 那么 $ne\neq o$, 其中 o 是 F 的零元, 只要 $n\neq 0$. 考虑 f 在 \mathbb{Q} 上的扩张, 可以证明 $P:=f(\mathbb{Q})=\{ne\mid n\in\mathbb{Z}\}$ 即构成了与 \mathbb{Q} 同构的素子域.

如果 $m \neq 0$, 那么 m = p 是素数. 如果 m 不是素数, 假设它有两个 (m 和 1 以外的) 因数 a,b,abe = o 意味着 ae = o 或 be = o (定理 3.1), 将与 $\ker f = m\mathbb{Z}$ 矛盾. 考虑 f 在 p (作为 \mathbb{Z}_p 的导出集) 上的限制, $P := \{o,e,2e,\cdots,(p-1)e\}$ 即构成了与 \mathbb{Z}_p 同构的素子域.

在刚才的证明中, 我们已经遭遇了:

Definition 4.2 (特征). 设域 F 的单位元和零元分别是 e, o. 若存在 $p \in \mathbb{N}$ 使得 pe = o, 则称 p 为域的**特征** (characteristic), 记为 $\operatorname{char}(F) = p$; 特别地, 定义 $\operatorname{char}(F) = 0$, 如果不存在这样 的 p.

第二章 线性空间

§5 线性空间

Definition 5.1 (线性空间). 设 \mathbb{F} 是一个域, $(V, +, \mathbf{0})$ 是一个 Abelian 群. 如果定义标量乘积运算: $\mathbb{F} \times V \to V$; $(\lambda, \boldsymbol{x}) \mapsto \lambda \boldsymbol{x}$ 且满足:

- 1) $1x = x, \forall x \in V$ (酉性);
- 2) $(\alpha\beta)\boldsymbol{x} = \alpha(\beta\boldsymbol{x}), \forall \alpha, \beta \in \mathbb{F}, \forall \boldsymbol{x} \in V;$
- 3) $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}, \forall \alpha, \beta \in \mathbb{F}, \forall \mathbf{x} \in V;$
- 4) $\lambda(\boldsymbol{x} + \boldsymbol{y}) = \lambda \boldsymbol{x} + \lambda \boldsymbol{y}$,

那么, 我们称 $V \in \mathbb{F}$ 上的一个**线性空间**, 或称**向量空间**, 其元素称为**向量**, 相对而言 \mathbb{F} 的元素则被称为**纯量乘积**.

通常我们称 $(x_i)_{i \in I}$ 为向量组, I 是指标集.

Definition 5.2 (线性组合). 设 $V \in \mathbb{F}$ 上的线性空间. 倘若 $\forall i \in n, \lambda_i \in \mathbb{F}, x_i \in V, n$ 是正整数, 那么

$$\sum_{i \in \mathcal{I}} \lambda_i oldsymbol{x}_i$$

称为向量组 $(x_i)_{i \in n}$ 的一个系数为 $(\lambda_i)_{i \in n}$ 的线性组合, $i \in n$.

可数向量甚至不可数个向量之和的研究,将在泛函分析中得到更加细致的讨论.

Definition 5.3 (线性包络). 设 V 是 \mathbb{F} 上的线性空间, $(\boldsymbol{x}_i)_{i \in n}$ 是其中的一个向量组, n 是正整数. 其**线性包络** (linear span) 定义为

$$\langle oldsymbol{x}_i
angle_{i \in n} = \left\{ \sum_{i \in n} \lambda_i oldsymbol{x}_i \middle| (\lambda_i)_{i \in n} \in \mathbb{F}^n
ight\} \,.$$

或者, 设 $M \subset V$, 那么其线性包络定义为

$$\langle M \rangle = \left\{ \sum_{i \in n} \lambda_i \boldsymbol{x}_i \middle| n \in \mathbb{N}, \, \forall i \in n (\lambda_i \in \mathbb{F} \, \wedge \, \boldsymbol{x}_i \in M) \right\} \, .$$

12 第二章 线性空间

Definition 5.4 (子空间). 设 V' 是 \mathbb{F} 上的线性空间 V 的加法子群, 且对标量乘积封闭, i.e. $\forall x \in V', \forall \lambda \in \mathbb{F}, \lambda x \in V',$ 那么, 我们称 V' 是 V 的一个 (线性) **子空间**.

显然 $\langle M \rangle$ 对 $\forall M \in 2^V$ 都是 V 的子空间 (而且是包含 M 的最小的那个), 从而我们也说这种情况下 $\langle M \rangle$ 是 M 张出 (span) 或生成的线性空间.

Definition 5.5 (线性相关). 设 $V \in \mathbb{F}$ 上的线性空间, 其中有线性组 $(\boldsymbol{x}_i)_{i \in n}$. 若 $\exists (\alpha_i)_{i \in n} \in \mathbb{F}^n$ s.t. $\exists i \in n (\alpha_i \neq 0)$ 且

$$\sum_{i \in n} \alpha_i \boldsymbol{x}_i = \boldsymbol{0} \,,$$

那么称向量组 $(x_i)_{i \in n}$ 是线性相关的. 反之则称它们线性无关或线性独立.

Theorem 5.1. 向量组 $(x_i)_{i \in n}$ 是线性相关的, 当且仅当 $\exists i \in n \ s.t.$

$$\exists (\beta_j)_{j \in n-\{i\}} \in 2^{\mathbb{F}} \quad s.t. \quad \boldsymbol{x}_i = \sum_{j \in n-\{i\}} \beta_j \boldsymbol{x}_j.$$

Proof. 证明此定理只需取 i 使得见证线性相关的线性组合中 x_i 的系数不为 0 即可.

Definition 5.6 (维数). 设 $V \in \mathbb{F}$ 上的线性空间. 若 $\exists n \in \mathbb{N}$, 满足

$$n = \max\{r \mid \exists (x_i)_{i \in r} \text{ s.t. } 它们是线性独立的)\},$$

那么称 $n \in V$ 的**维数**, 记为 $\dim V = n$, $V \in n$ **维线性空间**. 倘若不存在这样的 n, 则 $V \in \mathcal{T}$ **穷维线性空间**.

特别地, $\dim\{\mathbf{0}\} = 0$.

Definition 5.7 (基底). 设 $V \in \mathbb{F}$ 上的 n 线性空间, $(\hat{e}_i)_{i \in n}$ 倘若线性无关, 则称其为 V 的一组基底. 特别地, 如果 $\dim V = 0$, 空集 \varnothing 是它的一组基底.

因为基底的顺序并不重要, 有时我们也有基底向量的集合 $\{\hat{e}_i\}_{i\in n}$ 表示它.

Theorem 5.2 (唯一分解). 设 $V \in \mathbb{F}$ 上的 n 线性空间, $(\hat{e}_i)_{i \in n}$ 是其一组基底. 那么 $\forall v \in V$, $\exists ! (v_i)_{i \in n}$ (称为 v 在基底 $(\hat{e}_i)_{i \in n}$ 下的坐标), s.t.

$$\boldsymbol{v} = \sum_{i \in n} v_i \hat{\boldsymbol{e}}_i.$$

Proof. 唯一性只需要假定有两组分解, 相减并利用基底的线性独立性即可证明. 下面只证存在性: 根据维数的定义, $(\boldsymbol{v}, \hat{\boldsymbol{e}}_0, \cdots, \hat{\boldsymbol{e}}_{n-1})$ 线性相关, 从而 $\exists \alpha \in \mathbb{F} \exists (\alpha_i)_{i \in n} \in \mathbb{F}^n \text{ s.t. } (\alpha, \alpha_0, \cdots, \alpha_{n-1})$ 不全为 0 且

$$\alpha \mathbf{v} + \sum_{i \in n} \alpha_i \hat{\mathbf{e}}_i = \mathbf{0} \,,$$

§5 线性空间 13

考虑到基底的线性独立性, $\alpha \neq 0$, 由域的可逆性, 我们得出了一组线性组合系数 $(-\alpha_i/\alpha)_{i \in n}$.

根据这个定理, 我们断言线性空间 V 的基底 $(\hat{e}_i)_{i \in n}$ 张出 V 本身, i.e. $V = \langle \hat{e}_i \rangle_{i \in n}$ 若 \boldsymbol{v} 在基底 $\hat{e} = (\hat{e}_i)_{i \in n}$ 下的坐标为 $(v_i)_{i \in n}$, 记之为 $\boldsymbol{v}|_{\hat{e}}$.

Corollary 2. 设 V' 是 V 的子空间. 如果 $V' \subseteq V$, 那么 $\dim V' < \dim V$.

Corollary 3. 如果线性无关的向量组 $(e_i)_{i \in n}$ 满足 $\forall j \in n, e_j \in \langle f_i \rangle_{i \in m}$, 那么 $n \leq m$.

Theorem 5.3 (*Steintz* 替换). 设 $V \in \mathbb{F}$ 上的 n 线性空间, $(\hat{e}_i)_{i \in n}$ 是其一组基底. 任意线性 无关组 $(\hat{f}_i)_{i \in s}$, 都可从基底中取出 $(\hat{e}_{i_k})_{i_k \in n, k \in t}$ 使得

$$(\hat{\pmb{f}}_0,\cdots,\hat{\pmb{f}}_{s-1},\hat{\pmb{e}}_{i_0},\cdots,\hat{\pmb{e}}_{i_{t-1}})$$

是V的一组基底.

Proof. 取 i_0 使得 $\hat{e}_{i_0} \notin \langle \hat{f}_i \rangle_{i \in s}$;接着取 i_{k+1} 使得 $\hat{e}_{i_{k+1}} \notin \langle \hat{f}_0, \cdots, \hat{f}_{s-1}, \hat{e}_{i_k} \rangle$,直到不能进行下去,剩下的基底全部都可由前面的向量组线性表出,令此时 k = t-1. 从而: V 中任何向量都可由基底 $(\hat{e}_i)_{i \in n}$ 表出,从而也就可以由 $(\hat{f}_0, \cdots, \hat{f}_{s-1}, \hat{e}_{i_0}, \cdots, \hat{e}_{i_{t-1}})$ 表出,从而 $s+t \geq n$. 另一方面,不难通过归纳得知, $(\hat{f}_0, \cdots, \hat{f}_{s-1}, \hat{e}_{i_0}, \cdots, \hat{e}_{i_{t-1}})$ 是线性无关的,由维数的定义,我们断言 $t+s \leq n$. 即 t+s=n,我们已然得到 V 的一组基底了.

设 \mathbb{F} 上的 n 维线性空间有两组基底 $\hat{e} = (\hat{e}_i)_{i \in n}$, $\hat{f} = (\hat{f}_i)_{i \in n}$, 考虑定理 5.2, 我们写出:

$$\hat{\boldsymbol{f}}_i = \sum_{j \in n} a_{ji} \hat{\boldsymbol{e}}_j , \qquad \forall i \in n .$$
 (5-1)

这里的 a_{ii} 决定了矩阵

$$\mathbf{A} = (a_{ij})_{i,j \in n} = \begin{pmatrix} a_{00} & a_{01} & \cdots & a_{0,n-1} \\ a_{10} & a_{11} & \cdots & a_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1,0} & a_{n-1,1} & \cdots & a_{n-1,n-1} \end{pmatrix} . \tag{5-2}$$

矩阵 (5-2) 被称为 \hat{e} 到 \hat{f} 的一个**转换矩阵**. 值得注意的是下标的位置 (这与有限维向量空间的线性映射的矩阵差了一个转置, 见 §8). 让我们引入矩阵和与积的概念¹, 用 \hat{f} 把 \hat{e} 表出, 就可以得到转换矩阵的逆 A^{-1} . 这两个矩阵之间的关系是 $AA^{-1} = A^{-1}A = I$.

г

¹本笔记不想再重复了,请参见任意一本初等线性代数教材,或[1].

设 $v \in V$,

$$oldsymbol{v} = \sum_{i \in n} v_i \hat{oldsymbol{e}}_i = \sum_{i \in n} v_i' \hat{oldsymbol{f}}_i = \sum_{i \in n} v_i' \sum_{j \in n} a_{ji} \hat{oldsymbol{e}}_j$$

那么,

$$\left. oldsymbol{v}
ight|_{\hat{e}} = \left(\sum_{j \in n} a_{ij} v_j'
ight)_{i \in n}$$

或 $v|_{\hat{e}} = A v|_{\hat{f}}$. 同理 $v|_{\hat{f}} = A^{-1} v|_{\hat{e}}$.

Definition 5.8 (同构). 如果 \mathbb{F} 上的线性空间 V, W 之间存在 $f: V \to W$ s.t.

- 1) f 是双射;
- 2) $\forall \alpha, \beta \in \mathbb{F}$, $\forall \boldsymbol{u}, \boldsymbol{v} \in V$, $f(\alpha \boldsymbol{v} + \beta \boldsymbol{u}) = \alpha f(\boldsymbol{v}) + \beta f(\boldsymbol{u})$, 那么, 两个线性空间被认为是**同构**的.

我们指出同构关系具有等价关系的性质, 并且将基底映射到基底, 并保持维数, 这里不再一一验证了. 类似地, 我们建立线性空间**同态**的概念, 即保持线性结构的映射, 双同态即是同构. 线性空间 V 到 U 的同态集记作 $\mathcal{L}(V,U)$.

Theorem 5.4. 所有 \mathbb{F} 上的 n 维线性空间都同构于 (坐标空间) \mathbb{F}^n .

Proof. 任取 \mathbb{F} 上的 n 维线性空间 V 中的向量 \mathbf{v} 和一组基底 \hat{e} , 向量 \mathbf{v} 到它的坐标 $\mathbf{v}|_{\hat{e}} \in \mathbb{F}^n$ 都是一个同构.

线性空间的交依然是线性空间, 但是它们的并却不一定.

Definition 5.9 (子空间的和). 设 U, W 都是 V 的子空间, 定义²

$$U + W := \langle U \cup W \rangle = \{ \boldsymbol{u} + \boldsymbol{w} \mid \boldsymbol{u} \in U, \, \boldsymbol{w} \in U \}$$

为 U 和 W 的**和**. 若 $U \cap W = \emptyset$, 那么记 $U \oplus W := U + W$, 称为**直和**.

Theorem 5.5 (Grassmann 恒等式).

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$$

Proof. 设 dim $(U \cap W) = m$, 有基底 $\hat{e} = (\hat{e}_i)_{i \in m}$, dim U = k, dim $W = \ell$. 由定理, dim U 可取基底 $(\hat{e}_0, \dots \hat{e}_{m-1}; \hat{f}_0, \dots, \hat{f}_{k-m-1})$, dim V 可取基底 $(\hat{e}_0, \dots \hat{e}_{m-1}; \hat{g}_0, \dots, \hat{g}_{\ell-m-1})$, 那么

$$U+W=\langle \hat{\boldsymbol{e}}_0,\cdots \hat{\boldsymbol{e}}_{m-1};\; \hat{\boldsymbol{f}}_0,\cdots,\hat{\boldsymbol{f}}_{k-m-1};\; \hat{\boldsymbol{g}}_0,\cdots,\hat{\boldsymbol{g}}_{\ell-m-1}\rangle.$$

²这里不用 + 表示集合的并.

§5 线性空间 15

接下来我们证明向量组

$$\hat{e}_0, \cdots \hat{e}_{m-1}; \; \hat{f}_0, \cdots, \hat{f}_{k-m-1}; \; \hat{g}_0, \cdots, \hat{g}_{\ell-m-1}$$

线性独立. 若存在非平凡的线性组合:

$$\sum_{s \in m} arepsilon_s \hat{m{e}}_s + \sum_{i \in k-m} arphi_i \hat{m{f}}_i + \sum_{j \in \ell-m} \gamma_j \hat{m{g}}_j = m{0} \,,$$

但是前两项是 U 中的元素, 第三项是 W 中的元素, 这将说明它们都属于 $U \cap W$, 这意味着第三项可用 \hat{e} 表出, 这是一个矛盾.

Corollary 4. 若 $U = \sum_{i \in m} U_i$ 是直和, 当且仅当:

$$\dim U = \sum_{i \in m} \dim U_i.$$

Proof. 利用 Grassmann 恒等式 5.5 和数学归纳法易证.

Theorem 5.6. 域 \mathbb{F} 上的 n 维线性空间 V 的任意 m 维线性子空间 U, 都能找到 V 的线性子空间 W 使得 $V = U \oplus W$ (称 V 和 W 是互补的子空间).

Proof. 证明用 Steintz 替换 5.3 即可.

记 $\operatorname{codim} U = \dim V - \dim U$.

当 $L \in V$ 的一个子空间时, 我们记线性空间作为加法群的陪集 $x + L := \{x + y \mid y \in L\}$, 并记其代表元为. 考虑到线性空间作为加法群是 Abelian 群, 其所有子群 (子空间蕴含了加法子群) 都是正规子群, 从而:

Definition 5.10 (商空间). 域 \mathbb{F} 上的线性空间 V 有子空间 L, 记线性空间作为加法群的商群 V/L, 并在 $\mathbb{F} \times V/L$ 上定义标量乘法:

$$\alpha(\boldsymbol{x} + L) := \alpha \boldsymbol{x} + L$$
.

那么称 V/L 是一个**商空间**. 不难验证商空间是一个线性空间.

我们记商空间上的同余等价类:

$$x \equiv x' \mod L \leftrightarrow x - x' \in L$$
.

Theorem 5.7. 设 V 的子空间 U 和 W 互余, 那么

$$f: W \to V/U; \ \boldsymbol{w} \mapsto \boldsymbol{w} + U$$

见证了 W 和 V/U 的同构.

第二章 线性空间

Proof. 映射 f 对线性结构的保持是平凡的.

设 $v + U \in V/U$. 因为 $V \oplus U + W$, $\exists u \in U$, $\exists w \in W$ s.t. v = u + w. 从而

$$v + U = (u + w) + U = (x + U) + (w + U) = U + (w + U) = w + U = f(w)$$

所以 f 是满的. 满射 f 的单性由

$$\ker f = \{ w \in W \mid f(w) = U \} = \{ w \in W \mid w \in U \} = W \cap U = \{ \mathbf{0} \}$$

保证.

§6 对偶空间

Definition 6.1 (线性型). 设 V 是一个域 \mathbb{F} 上的线性空间. 同态 $f: V \to \mathbb{F}$ 被称为 V 上的一个线性型 (linear form). 在不同的情景, 它也可能被称作**线性泛函** (linear functional), **线性函数**等.

作为 n 维有限维空间的例子, 设有线性型 ℓ , 它作用于 $x \in V$ 时, 设基底为 \hat{e} , 那么:

$$\ell \colon oldsymbol{x} \mapsto oldsymbol{\ell}|_{\hat{e}} \ oldsymbol{x}|_{\hat{e}} \ ,$$

其中 $\ell|_{\hat{e}}$ 是 $1 \times n$ 的行向量. 坐标变换到 \hat{f} 时, 设转换矩阵是 P, 那么:

$$|m{\ell}|_{\hat{e}} |m{x}|_{\hat{e}} = |m{\ell}|_{\hat{e}} |m{P}| |m{x}|_{\hat{f}} = |m{\ell}|_{\hat{f}} |m{x}|_{\hat{f}} ,$$

即:

$$\ell|_{\hat{f}} = P \, \ell|_{\hat{e}} \ . \tag{6-1}$$

定义线性型的线性组合 $\alpha f + \beta g$ 为:

$$(\alpha f + \beta g)(\mathbf{x}) := \alpha f(\mathbf{x}) + \beta g(\mathbf{x}), \quad \forall \mathbf{x} \in V \forall \alpha, \beta \in \mathbb{F}.$$

如此我们注意到 V 上所有的线性型构成了一个线性空间, 其中零元是 $0_V: x \mapsto 0$.

Definition 6.2 (对偶空间). 线性空间 V 上所有的线性型构成线性空间 V^* , 称为 V 的**对偶空间** (dual space), 线性组合和零元已定义如前. 通常对偶空间的元素可称为**余向量**, 或**共变向量** (与此同时, V 的元素对应地称为**反变向量**).

为区别两种向量, 有用 x^i 表示反变向量而用 ℓ_i 表示共变矢量, 并引入 Einstein 求和约定的, 见之后第五章.

§7 双线性型与二次型 17

我们继续以 n 维线性空间为例子. 设 V 中有基底 $\hat{e} = (\hat{e}_i)_{i \in n}$, 取 V^* 的基底 $\hat{e}^* := (\hat{e}_i^*)_{i \in n}$, 使得 $\hat{e}_i^*(\hat{e}_i) = \delta_{ij}$, 其中 δ_{ij} 是 Kronecker 符号, 当且仅当 i = j 时取值为 1, 否则为 0.

不难证明它们是线性独立的, 而且能线性表示所有余向量. 这组基底称为**对偶基底**. 而且 作为推论:

Theorem 6.1. 设 V 是有限维线性空间, 那么

$$\dim V^* = \dim V.$$

考虑到 $V^{**} := (V^*)^*$ 和 V 的维数也当相同, 它们之间应该存在同构关系. 这个同构有一个自然的构造:

Theorem 6.2. 设 $V \neq n$ 维线性空间, 映射 $\varepsilon: V \to V^{**}$ 定义如下:

$$x \mapsto \varepsilon_x$$
; $\varepsilon_x \colon V^* \to \mathbb{F}$; $f \mapsto f(x)$.

映射 ε 是一个同构.

Proof. 事实 $\varepsilon \in \mathcal{L}(V, V^{**})$ 的验证是枯燥的. 这里我们只证明它是个双射: 选取 V 的基底 $\hat{e} = (\hat{e}_i)_{i \in n}$,就能立马得出结论 $\hat{\varepsilon} = (\varepsilon_{\hat{e}_i})_{i \in n}$ 是 V^{**} 的基底. \Box 这个同构被称为自然同构.

§7 双线性型与二次型

第三章 线性算子

§8 线性映射

第四章 内积空间

第五章 张量

附录 A 复数与多项式

§**1** 复数

§2 多项式

参考文献

- [1] A.I. Kostrikin. *Introduction to Algebra*. Universitext Springer-Verlag. Springer-Verlag, 1982. ISBN: 9783540907114. URL: https://www.springer.com/gp/book/9780387907116.
- [2] 柯斯特利金 (俄罗斯). 代数学引论 (第 2 卷). 线性代数. 3rd ed. 俄罗斯教材选译. Unknown, 1991. ISBN: 9787040214918. URL: http://gen.lib.rus.ec/book/index.php?md5=aed6abf2e5b956fd92baf7bd6298dec6.

符号列表

这里列出了笔记中出现的重要符号.

$\operatorname{Aut}(G)$, 5	$R\cong R', 7$
$char(F), \frac{10}{6}$ $Cl(g), \frac{6}{6}$	$\langle S \rangle$, 4 $S * g$, 6
$\mathbb{F}_p, rac{9}{\langle g_0 angle}, rac{4}{\langle g_0 angle}$	$S_n, \frac{3}{3}$ $S(X), \frac{3}{3}$
g * S, 6 G/N, 7 $G \simeq G', 5$	U(R), 8
$\operatorname{Inn}(G), \frac{5}{5}$	$V^*, \frac{16}{(X, *), 2}$
$[k]_n$, 8 ker f , 6	(X, *, e), 2 x + L, 15
$\mathcal{L}(V,U)$, 14 $N \triangleleft G$, 6	$\mathbb{Z}_n, rac{8}{2}$

索引

n 阶元, 4	分配律, 7
A1 1: TPV 0	剩余类环,8
Abelian 群, 3	半群, 2
Cayley 定理, 5	单位元, <mark>2</mark>
	单同态, 7
domain, 8	单态射, 6
Fermat 小定理, 9	反变向量, 16
	反对称域,8
Grassmann 恒等式, 14	变换群,3
Steintz 替换, 13	可逆的, 3
Stellitz H.K. 15	右可逆, 3
二元运算, <mark>2</mark>	右陪集,6
互补, 15	右零因子,8
交换环, 7	同态, 6, 7, 14
交换的, ²	同构, 5, 7, 14
代数系统, 2	同构映射, 5
代数结构, <mark>2</mark>	向量, <u>11</u>
余向量, <mark>16</mark>	向量空间, <mark>11</mark>
共变向量, 16	向量组, <mark>11</mark>
共轭, 5	和, <mark>2</mark> , 14
共轭映射,5	商空间, <u>15</u>
共轭类, 6	商群, 7
内自同构群,5	坐标, <u>12</u>
函数环,8	型, <mark>9</mark>
E-1. 1 , ∪	, •

索引 25

基底, 12	生成元, 4
子半群, 3	直和, 14
子域, 9	真子群,3
子幺半群, 3	积, <mark>2</mark>
子环, <mark>7</mark>	类函数, 6
子空间, <mark>12</mark>	类数, <mark>6</mark>
子群, 3	素域, 9
对偶基底, 17	纯量乘积, 11
对偶空间, <mark>16</mark>	线性函数, 16
左可逆, <mark>3</mark>	线性包络, <u>11</u>
左正规, 3	线性型, 16
左陪集, 6	线性无关, 12
平凡群, 3	线性泛函, <mark>16</mark>
平凡零因子,8	线性独立, 12
幺半群, ²	线性相关, 12
张出, <mark>12</mark>	线性空间, <u>11</u>
循环群, 4	线性组合, <u>11</u>
-t- 61. a =	结合的, 2
态射, <mark>6, 7</mark>	维数, <mark>12</mark>
扩域, 9	置换幺半群,2
整数环, 7	置换群,3
整环, 8	群, <mark>3</mark>
斜域, 8	<i>4</i> 1 1 4 0
无穷维线性空间, 12	自同态, 6
有限幺半群, 2	自同构, 5
核, 6, 7	自同构群,5
模 n 的剩余类的导出集, 8	自然同构, 17
模 n 的剩余类环, 8	转换矩阵, 13
正规子群,6	逆, <mark>3</mark>
满同态, 7	逆元, 3
满态射, 6	西性, <u>11</u>
特征, 10	阶, 2
环, 7	阶数, 4
生成, 12	除环, 8
/4X1, 14	ran がい, O

26 索引

陪集, 6零因子, 8零元, 2非结合环, 7