勉強会 ロボットの作り方(回路編)

ロボット設計・制御研究室 羽根田 友希 2012年8月9日(木)

※8/9に行った勉強会では使用しなかった資料です. ほぼ同様の内容を扱った改訂版です.

目次

- 4 回路の重要性
 - □ 回路の設計
- ▲ デジタル回路
 - CMOSとTTL
 - **♪ プルアップ, プルダウン**
 - **・ オープンコレクタ**
- 4 インピーダンス
 - ▶ 入力/出力インピーダンス
 - GND
- 4 データシート
- 4 まとめ

回路の重要性

回路の重要性

4 ロボットの3要素

ペ ソフトとメカの間で橋渡し役

メカを完全に支配できる能力が必要!

回路の重要性

DCモータを動かすために→Hブリッジ回路, モータードライバIC等位相計数(ロータリーエンコーダ用)

- **4 加速度センサを読むために**
 - →A/D変換入力,オペアンプ,シリアル通信機能等

▲ 高輝度パワーLEDを点灯させるために→定電流回路,スイッチング回路等

▲ それぞれのデバイスを動作させる回路群が必要

モータ http://www.f-palette.org/sample/2423/

加速度センサ http://akizukidenshi.com/catalog/g/gl-01425/

LED http://akizukidenshi.com/catalog/g/gI-03778/

回路の設計

ペ …の前にロボットの大まかな設計から

どんなロボット? (特徴,製作目的)

どんなアルゴリズム?

どんな回路?

どんなセンサ アクチュエータ?

№ 作りたいロボットに合わせて、各要素を当てはめていく

※それぞれの要素について リサーチする必要性がある

回路の設計

- < パターン1
 - **動かしたいアクチュエータ,センサに合わせる**
 - 🎍 (前述の通り)
- 4 パターン2
 - **。 パターン1+使いたいアルゴリズムに合わせる**
 - **∞ モータを使ってトルク制御をする→電流検出回路を搭載する**
- 4 パターン3
 - ∞ デバッグ用途に取り付ける
 - **☞ テストピン,ディップスイッチ,インジケータLED等**
- **~ その他,電源回路,保護回路(安全上の理由)等が組み合わさる**

デジタル回路

*デジ*タルとアナログ

Ϥ デジタル

- 離散的な情報
- ○ノイズに強い
- ○コンピュータもデジタル信号を扱う
 - **→親和性が高い,比較的データの扱いが楽**
- ×サンプリングによるデータの欠損
 - →量子化誤差の発生

ペ アナログ

- 連続的な情報
- ○情報量が多い
- ×ノイズに弱い
- ×コンピュータで扱うにはA/D変換,D/A変換が必要
 - →比較的データの扱いが難しい

(学部2年後期 ディジタル信号処理で既出)

電流や電圧、時間などの物理量が離散 的な状態であること

- ・連続的な信号を扱う回路はアナログ回路
- 離散信号を扱う回路はデジタル回路

デジタル回路

△ デジタル回路には 2 つの電位レベル が存在

- △ コンピュータ内部で「1」と「0」として処理
- **△ 両者の具体的な電圧はコンピュータに依存**

aDC LAB.

10

"H"電圧と"L"電圧

√ どのぐらいの電圧があればいいの?

Ausgang:出力で保証される電圧範囲

空白の電圧域は→未定義 誤作動の原因

※デバイスによって多少の違い有り.<u>データシートをよく確認すること.</u>

CMOSとTTL

- TTL (Transistor-transistor logic)
 - 主にトランジスタで構成された構造を持つ回路
 - トランジスタが電流駆動のため、消費電流大
 - 比較的低スイッチング速度
 - 電源入力可能電圧範囲が狭い(5V)
- CMOS (Complementary Metal Oxide Semiconductor)
 - 主にFETで構成された構造を持つ回路
 - · FETが電圧駆動のため、消費電流小
 - 比較的高スイッチング速度
 - 。電源入力可能電圧範囲が広い(3V~15V)

▲ CMOSとTTLの両者に電圧レベルの差が存在

(ロジック電圧レベル)

CMOSとTTL

▲ <u>ロジックIC</u>の場合

- ▶ TTLレベル 74LS,74AS,74F,····
- CMOSレベル 74HC,74AC,74LVX…
 - **ら ※CMOSで,TTLレベル入力できるタイプも有り** (HCT,ACT)

[▲] その他ICの場合

- データシートにHレベルとLレベルの電圧が記載
- 最近はCMOSレベルが殆ど

同じ種類: そのまま直結できる場合が多い(電源電圧による)

違う種類:TTL出力+CMOS入力で<u>動作しない可能性も</u>

CMOSの弱点

- [▲] CMOS (FET) の構造上寄生素子が存在
- △ <u>電源電圧以上の電圧</u>の入力で「ラッチアップ」が発生
 - **▲ 意図しない動作で大電<u>流の</u>発生,定格外の熱が発生**

IC破損

電源電圧を超える電圧を入力しない 電源が入っていないICに信号を入力しない

※寄生素子:物理的な構造による,設計者が意図しない回路成分

寄生ダイオード, 寄生サイリスタ等

CMOSの弱点

《 半端な電圧の入力で排他動 作するFETが同時に動作

電源とGNDがショートする可能性も(貫通電流)

(Hブリッジ回路と同様の現象)

http://www.miyazaki-gijutsu.com/series4/densi0523.html

中途半端な電圧を入力しない 未使用端子はプルアップorプルダウン

プルアップ, プルダウン

【電圧レベルをはっきり区別させる プルアップ、プルダウン処理

△未使用端子の静電気、電磁誘 導の影響を排除

△オープン(開放)状態の防止

- **。 コネクタが外れている時**
- **・ オープンコレクタ出力の時**

回路タイプ スイッチ状態	プルアップ	プルダウン
OFF	Н	L
ON	L	Н

RDC LAB.

プルアップ抵抗値

CMOSレベルであれば通常数KΩ~数百KΩ

- 電流から決定する
 電源電圧 / プルアップ抵抗値 = 出力電流値
 ex. 5(V) / 1m(A) = 5K(Ω)*
- △ 立ち上がり時間から決定する
 - **。通信速度に関係する場合の決定方法**
 - 内部コンデンサ(浮遊容量)とのCR回路
 立ち上がり時間 / 浮遊容量 = プルアップ抵抗値
 ex. 1u(sec) / 200p(F) = 5k(Ω)*

PUSHSW 777 GND

※通常はE12系列の数値にするため,一番近い4.7kオームを選択する.

オープンコレクタ

<オープンコレクタ</p>

∘ トランジスタのコレクタ端子がICの出力

△出力電圧がIC内部に依存しない

- **・プルアップ抵抗で決定できる**
 - →電圧レベル変換が可能

《欠点

- 。電流消費大
- 。インピーダンス高
- ※オープンコレクタでも、耐圧制限があるものも存在する. その場合電圧レベル変換ができないので注意.

(データシートに記載) 例:74HC07等

RDC LAB.

内部	出力	
トランジスタ		
OFF	開放 (ハイイン ピーダンス)	
ON	L	

複数電源での通信

- CMOSレベル、TTLレベルとは別に、電源電圧 の違いも
- ▼イコンと電子部品間の電源電圧の違い→場合によっては電子部品の破損も!
- △ 回避方法(レベル変換回路)
 - 分圧抵抗で降圧、トランジスタで昇圧
 - ▶ レベル変換ICを挟む(双方向レベル)

45V出力 → 3.3V入力レベルシフタ

。 分圧回路

43.3V出力 → 5V入力レベルシフタ(反転型)

4 3.3V出力 → 5V入力レベルシフタ(非反転型)

3.3V出力	5V入力
0	0
1	1

△ 入力トレラント機能

<u> トレラント:耐性のある</u>

· データシートの「入力電圧」の欄を参照

- ▲ <u>ロジックレベル変換IC</u>
 - 各社、多種取り扱いあり
- ▲ 秋月電子取り扱い「FXMA108」 (Fairchild Semiconductor)
 - 1.65V~5.5Vで8bitの双方向レベル変 換可能
- ▲ 共立電子取り扱い「B35415」 (Texas Instruments)
 - · 1bit双方向レベル変換可能

インピーダンス

インピーダンス

- 《簡単に説明すると「交流回路における抵抗成分」
- **4回路が回路図通りに動くなら気にしなくても良い概念**
 - **・ 実際には等価回路のように, 余計な成分も働く**

- **交流成分流れやすい**
- <u> インダクタ</u>
 - **交流成分流しにくい**
- △いずれも周波数で変化
 - **→交流成分による変化**

インピーダンス成分

コンデンサ http://akizukidenshi.com/catalog/g/gP-05202/ **ヨロロ し冊日**. インダクタ http://akizukidenshi.com/catalog/g/gP-04080/**27**

入力/出力インピーダンス

- △ 入力インピーダンス
 - · 素子に流れる<u>電流の流れやすさ</u>
 - **♂ 大きい→電流が流れにくい→電流を余り必要としない**
 - *ᇰ* 小さい→電流が流れやすい→<u>電流を多く必要とする</u>
 - 入力インピーダンスは大きいほうが好ましい
 - →信号への負担減少
- △ 出力インピーダンス
 - 素子自体の電流を流す能力
 - **♂大きい→電流を流しにくい→<u>電流を流す能力が低い</u>**
 - **☞ 小さい→電流を流しやすい→電流を流す能力が高い**
 - **。 出力インピーダンスは小さいほうが好ましい**
 - →信号が歪みにくくなる

回路のGND

- ▲ グランド (GND) とは?
 - 基準電位点となる電圧のこと(OV)
 - 回路内で使われた電気は全てGNDに流れ込む
- **▲ 2つの独立した回路の5Vは同じ電圧ではない!△**
 - □路Aの5V ≠ 回路Bの5V
 - →基準電位点が違うから

回路において基準電位点は重要なポイント

回路のGND

- ▲ GNDは太く,短く!
 - インピーダンス、インダクタンス等の抵抗成分の影響を小さくするため
 - **・ 配線が長いと,配線そのものが抵抗に…**
- △ 通常の配線はインピーダンスゼロが理想
 - **→実際にはインピーダンス、インダクタンス、浮遊容** 量等が存在
 - ex. インダクタンスによって逆起電力の発生+ノイズ発射 等
- [◄] ベタGND、1点アースが好ましい

バイパスコンデンサ

ペインピーダンスの減少と、電圧の安定化に「バイパス

コンデンサ」が有効

• 電源電圧の変動で消費電流が変化

・電源の内部抵抗,長い配線の引き回し等

→電圧降下の発生

不安定な状態,ノイズの発生

- △ 瞬間的な電圧変動に対策するには?
 - **。配線の抵抗値を減らす(太くする,短くする)**
 - 電源に並列にコンデンサを挿入→「バイパスコンデンサ」

配線の太さと抵抗

- **▲ 電気的には太ければ太いほど良い**
 - 抵抗減,熱による損失減
- △ 逆に太いと配線が大変, 重量増になる
 - □ 銅の比重 8.92
 - アルミの比重 2.7
- △ 基板上の配線パターン幅
 - 基本的には1mm/1Aと考える(10倍の電流で溶断)
 - **銅箔を厚くする,並列にジャンパを引く**

- データシートは「説明書」であり「バイブル」 である
- [★] どのような部品であるかが全て説明
 - 。 電気的定格
 - · 用途
 - · 使用例 · 応用例
 - 電気的特性
 - ♪ 真理値表
 - ピン配置
 - 。 寸法 等

どんな部品にもデータシートが存在

。 設計の際に必要

PHILIPS

- ゲータシートを読むためにはどのように部品を 使うかを把握する
 - トランジスタ回路設計方法
 - · Hブリッジ回路設計方法
 - センサ回路設計方法 等
- ◇ 部品の使い方を知り、データシートから数値を 当てはめる

データシートを読みこなすには まず<u>設計方法</u>を学ぶことから!

- 4 チェックするべきこと
 - どのような条件で効率良く動作させられるか
- 4 絶対最大定格
 - **⋄ この値を絶対超えてはいけない**
 - →素子の<u>物理的破壊</u>に繋がる可能性も
- 4 推奨動作条件
 - <u>。破損することなく動作させ続ける</u>為に必要な条件
- 4 電気的特性
 - どのような特性で動作する様に作られているか

まとめ

4 回路はコンピュータの演算を実世界に影響させるための橋渡し役

↓ デジタル回路で重要な「H」と「L」の概念とそれに伴う実際の電圧マッチング

4 インピーダンスの概念を意識

ベデータシートを必ず守って回路を構築

まとめ

◇ 意外と各授業でも扱ったことのある内容

- 。 ロボット電子回路
- センサエ学
- 。 電気電子回路論
- ディジタル信号処理
- 。 駆動系電子回路
- **。 ロボットシステム学**

もっと学んだことを活用しよう!

せっかく時間を使って勉強したんだから…

参考文献

- √ 初めてのメカトロニクス実践設計、米田完・中嶋秀郎・ 並木明夫、講談社
- 図解でわかるはじめての電子回路、大熊康弘、技術評論 社

