Properties of Continuous Functions

- 1. The constant function f(x) = c is continuous everywhere.
- 2. The identify function f(x) = x is continuous everywhere.

If f and g are continuous at x = a, then

 $[f(x)]^n$, where n is a real number, is continuous at x = a whenever it is defined at that number

 $f \pm g$ is continuous at x = a

fg is continuous at x = a

f/g is continuous at x=a provided that $g(a)\neq 0$

Polynomial and Rational Functions

- 1. A polynomial function is continuous for all x.
- 2. A rational function (a function of the form $\frac{p}{q}$, where p and q are polynomials) is continuous for all x for which $q(x) \neq 0$.

Definition.

A **removable discontinuity** at x = a is one that disappears when the function becomes continuous after defining $f(a) = \lim_{x \to a} f(x)$.

A **jump discontinuity** is one that occurs whenever $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ both exist, but $\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$.

A **vertical discontinuity** occurs whenever f(x) has a vertical asymptote.

Theorem 4: Intermediate Value Theorem

Suppose f is continuous on the interval [a, b] and L is a number strictly between f(a) and f(b). Then there exists at least one number c in (a, b) satisfying f(c) = L.

Note: It is important that the function be continuous on the interval [a, b]:

Theorem 5: Existence of Zeros of a Continuous Function

If f is a continuous function on a closed interval [a, b], and if f(a) and f(b) have opposite signs, then there is at least one solution of the equation f(x) = 0 in the interval (a, b).