Wild McEliece

Christiane Peters
Technische Universiteit Eindhoven

joint work with Daniel J. Bernstein and Tanja Lange

Intercity Number Theory Seminar Eindhoven

September 17, 2010

The end?

Quantum computers will break the most popular public-key cryptosystems:

- RSA,
- DSA,
- ECDSA,
- ECC,
- HECC
- . . .

can be attacked in polynomial time using Shor's algorithm.

No! There's hope.

Post-quantum cryptography deals with public-key cryptosystems

- without (known) vulnerabilities to attacks by quantum computers and
- which run on conventional computers.

Examples are code-based cryptography, hash-based cryptography, lattice-based cryptography, and multivariate-quadratic-equations cryptography.

Overview:

Bernstein, Buchmann, and Dahmen, eds., Post-Quantum Cryptography. Springer, 2009.

- 1. Background on linear codes
- 2. The McEliece cryptosystem
- 3. Wild McEliece
- Decoding Wild Goppa codes
- Attacks
- 6. Parameters

Linear codes

A linear code C of length n and dimension k is a k-dimensional subspace of \mathbf{F}_q^n .

A generator matrix for C is a $k \times n$ matrix G such that $C = \left\{\mathbf{m}\,G : \mathbf{m} \in \mathbf{F}_q^k\right\}$.

Example: The matrix

$$G = \left(\begin{array}{ccccccccc} 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \end{array}\right).$$

generates a code over \mathbf{F}_2 of length n=8 and dimension k=4. Example of a codeword: $\mathbf{c}=(0110)G=(11111011)$.

Hamming distance

- The Hamming distance between two words in \mathbf{F}_q^n is the number of coordinates where they differ.
- The Hamming weight of a word is the number of non-zero coordinates.
- The minimum distance of a linear code C is the smallest Hamming weight of a non-zero codeword in C.

code with minimum distance 3

code with minimum distance 4

Decoding problem

Classical decoding problem: find the closest codeword $\mathbf{c} \in C$ to a given $\mathbf{y} \in \mathbf{F}_q^n$, assuming that there is a unique closest codeword.

There are lots of code families with fast decoding algorithms

 E.g., Goppa codes/alternant codes, Reed-Solomon codes, Gabidulin codes, Reed-Muller codes, algebraic-geometric codes, BCH codes etc.

However, given a binary linear code with no obvious structure.

Berlekamp, McEliece, van Tilborg (1978) showed that the general decoding problem for linear codes is NP-complete.

• Best known attack: about $2^{(0.5+o(1))n/\log_2(n)}$ binary operations required for a code of length n and dimension $\approx 0.5n$.

- 1. Background on linear codes
- 2. The McEliece cryptosystem
- 3. Wild McEliece
- Decoding Wild Goppa codes
- 5. Attacks
- 6. Parameters

Encryption

- Given public system parameters n, k, w.
- The public key is a random-looking $k \times n$ matrix \hat{G} with entries in \mathbf{F}_q .
- \bullet Encrypt a message $m \in \mathbf{F}_q^k$ as

$$m\hat{G} + e$$

where $e \in \mathbf{F}_q^n$ is a random error vector of weight w.

- Need to correct w errors to find m.
- Decoding is not easy without knowing the structure of the code generated by \hat{G} .

Secret key

The public key \hat{G} has a hidden Goppa-code structure allowing fast decoding:

$$\hat{G} = SGP$$

where

- G is the generator matrix of a Goppa code Γ of length n and dimension k and error-correcting capability w;
- S is a random $k \times k$ invertible matrix; and
- P is a random $n \times n$ permutation matrix.

The triple (G, S, P) forms the secret key.

Note: Detecting this structure, i.e., finding G given \hat{G} , seems even more difficult than attacking a random \hat{G} .

Decryption

The legitimate receiver knows S, G and P with $\hat{G}=SGP$ and a decoding algorithm for Γ .

How to decrypt $y = m\hat{G} + e$.

- 1. Compute $yP^{-1} = mSG + eP^{-1}$.
- 2. Apply the decoding algorithm of Γ to find mSG which is a codeword in Γ from which one obtains m.

Goppa codes

- Fix a prime power q; a positive integer m, a positive integer $n \leq q^m$; an integer $t < \frac{n}{m}$;
- distinct elements a_1, \ldots, a_n in \mathbf{F}_{q^m} ;
- and a polynomial g(x) in $\mathbf{F}_{q^m}[x]$ of degree t such that $g(a_i) \neq 0$ for all i.

The Goppa code $\Gamma_q(a_1,\ldots,a_n,g)$ consists of all words $c=(c_1,\ldots,c_n)$ in \mathbf{F}_q^n with

$$\sum_{i=1}^{n} \frac{c_i}{x - a_i} \equiv 0 \pmod{g(x)}$$

- $\Gamma_q(a_1,\ldots,a_n,g)$ has length n and dimension $k\geq n-mt$.
- The minimum distance is at least $\deg g + 1 = t + 1$ (in the binary case 2t + 1).

Reducing the key size (1)

 Binary Goppa code parameters achieving 128-bit security against the best known attack (Bernstein, Lange, P., PQCrypto 2008) produce a 1537536-bit key.

- Smaller-key variants use other codes such as Reed-Solomon codes, generalized Reed-Solomon codes, quasi-dyadic codes or geometric Goppa codes.
- Unfortunately, many proposals turned out to be breakable.

Reducing the key size (2)

- Goppa codes are the most confidence-inspiring choice.
- Using Goppa codes over larger fields decreases the key size at the same security level against information-set decoding (P., PQCrypto 2010).
- A Goppa code over ${\bf F}_{31}$ leads to a 725741-bit key for 128-bit security.
- Drawback: can correct only $\lfloor (t+1)/2 \rfloor$ errors if q>2 (vs. t in the binary case).
- Today Wild Goppa codes.

- 1. Background on linear codes
- 2. The McEliece cryptosystem
- 3. Wild McEliece
- Decoding Wild Goppa codes
- 5. Attacks
- 6. Parameters

Proposal

Use the McEliece cryptosystem with Goppa codes of the form

$$\Gamma_q(a_1,\ldots,a_n,g^{q-1})$$

where g is an irreducible monic polynomial in $\mathbf{F}_{q^m}[x]$ of degree t.

- Note the exponent q-1 in g^{q-1} .
- We refer to these codes as wild Goppa codes.

Minimum distance of wild Goppa codes

Theorem (Sugiyama-Kasahara-Hirasawa-Namekawa, 1976)

$$\Gamma_q(a_1,\ldots,a_n,g^{q-1}) = \Gamma_q(a_1,\ldots,a_n,g^q)$$

for a monic squarefree polynomial g(x) in $\mathbf{F}_{q^m}[x]$ of degree t.

• The case q=2 of this theorem is due to Goppa, using a different proof that can be found in many textbooks.

Proof

- 1. $\Gamma_q(a_1, ..., a_n, g^{q-1}) \supseteq \Gamma_q(a_1, ..., a_n, g^q)$:
 - If

$$\sum_{i} \frac{c_i}{x - a_i} = 0 \text{ in } \mathbf{F}_{q^m}[x]/g^q$$

then certainly

$$\sum_{i} \frac{c_i}{x - a_i} = 0 \text{ in } \mathbf{F}_{q^m}[x]/g^{q-1}.$$

Proof (cont.)

- 2. $\Gamma_q(a_1, ..., a_n, g^{q-1}) \subseteq \Gamma_q(a_1, ..., a_n, g^q)$:
 - Consider any $(c_1,c_2,\ldots,c_n)\in \mathbf{F}_q^n$ such that $\sum_i c_i/(x-a_i)=0$ in $\mathbf{F}_{q^m}[x]/g^{q-1}$.
 - Find an extension k of \mathbf{F}_{q^m} so that g splits into linear factors in k[x].
 - Then

$$\sum_{i} \frac{c_i}{x - a_i} = 0 \text{ in } k[x]/g^{q-1},$$

SO

$$\sum_{i} \frac{c_i}{x - a_i} = 0 \text{ in } k[x]/(x - r)^{q-1}$$

for each factor x - r of g.

Proof (cont.)

The elementary series expansion

$$\frac{1}{x-a_i} = -\frac{1}{a_i-r} - \frac{x-r}{(a_i-r)^2} - \frac{(x-r)^2}{(a_i-r)^3} - \cdots$$

then implies

$$\sum_{i} \frac{c_{i}}{a_{i} - r} + (x - r) \sum_{i} \frac{c_{i}}{(a_{i} - r)^{2}} + (x - r)^{2} \sum_{i} \frac{c_{i}}{(a_{i} - r)^{3}} + \dots = 0$$

in
$$k[x]/(x-r)^{q-1}$$
.

• I.e.,
$$\sum_{i} c_i/(a_i - r) = 0$$
,
 $\sum_{i} c_i/(a_i - r)^2 = 0$,
 \cdots ,
 $\sum_{i} c_i/(a_i - r)^{q-1} = 0$.

Proof (cont.)

- Take the qth power of the equation $\sum_i c_i/(a_i-r)=0$, to obtain $\sum_i c_i/(a_i-r)^q=0$.
- Work backwards to see that $\sum_i c_i/(x-a_i)=0$ in $k[x]/(x-r)^q$.
- By hypothesis g is the product of its distinct linear factors x-r.
- Therefore g^q is the product of the coprime polynomials $(x-r)^q$, and $\sum_i c_i/(x-a_i)=0$ in $k[x]/g^q$.
- I.e., $\sum_i \frac{c_i}{x-a_i} = 0 \text{ in } \mathbf{F}_{q^m}[x]/g^q.$
- And thus $(c_1,\ldots,c_n)\in\Gamma_q(a_1,\ldots,a_n,g^q)$.

Error-correcting capability

- Since $\Gamma_q(\dots,g^{q-1})=\Gamma_q(\dots,g^q)$ the minimum distance of $\Gamma_q(\dots,g^{q-1})$ equals the one of $\Gamma_q(\dots,g^q)$ and is thus $\geq \deg g^q+1=qt+1$.
- We present an alternant decoder that allows efficient correction of $\lfloor qt/2 \rfloor$ errors for $\Gamma_q(\ldots,g^{q-1})$.
- Note that the number of efficiently decodable errors increases by a factor of q/(q-1) while the dimension n-m(q-1)t of $\Gamma_q(\ldots,g^{q-1})$ stays the same.

Sidestep: Number fields

- Consider the ring of integers \mathcal{O}_L of a number field L and Q_1, Q_2, \ldots , the distinct maximal ideals of \mathcal{O}_L .
- A prime p ramifies in a number field L if the unique factorization $p\mathcal{O}_L = Q_1^{e_1}Q_2^{e_2}\cdots$ has an exponent e_i larger than 1.

• Each Q_i with $e_i > 1$ is ramified over p; this ramification is wild if e_i is divisible by p.

The "wild" terminology

- If \mathcal{O}_L/p is $\mathbf{F}_p[x]/f$ for f a monic polynomial in $\mathbf{F}_p[x]$. Then Q_1,Q_2,\ldots correspond to the irreducible factors of f, and e_1,e_2,\ldots to the exponents in the factorization of f.
- The ramification corresponding to an irreducible factor ϕ of f is wild if and only if the exponent is divisible by p.
- We also refer to φ^p as being wild, and refer to the corresponding Goppa codes as wild Goppa codes.
- The traditional concept of wild ramification is defined by the characteristic of the base field.
- We take the freedom to generalize the definition of wildness to use the size of ${\bf F}_q$ rather than just the characteristic of ${\bf F}_q$.

- 1. Background on linear codes
- 2. The McEliece cryptosystem
- 3. Wild McEliece
- 4. Decoding Wild Goppa codes
- 5. Attacks
- 6. Parameters

Polynomial description of Goppa codes

Recall that

$$\Gamma = \Gamma_q(a_1, \dots, a_n, g^q)$$

$$\subseteq \Gamma_{q^m}(a_1, \dots, a_n, g^q)$$

$$= \left\{ \left(\frac{f(a_1)}{h'(a_1)}, \dots, \frac{f(a_n)}{h'(a_n)} \right) : f \in g^q \mathbf{F}_{q^m}[x], \deg f < n \right\}$$

where $h = (x - a_1) \cdots (x - a_n)$.

• View target codeword $c=(c_1,\ldots,c_n)\in\Gamma$ as a sequence

$$\left(\frac{f(a_1)}{h'(a_1)}, \dots, \frac{f(a_n)}{h'(a_n)}\right)$$

of function values, where f is a multiple of g^q of degree below n.

Classical decoding

Given y, a word of distance $\lfloor qt/2 \rfloor$ from our target codeword. Reconstruct c from $y=(y_1,\ldots,y_n)$ as follows:

Interpolate

$$\frac{y_1h'(a_1)}{g(a_1)^q}, \frac{y_2h'(a_2)}{g(a_2)^q}, \dots, \frac{y_nh'(a_n)}{g(a_n)^q}$$

into a degree-n polynomial $\varphi \in \mathbf{F}_{q^m}[x]$.

- Compute the continued fraction of φ/h to degree $\lfloor qt/2 \rfloor$.
- Compute $f = (\varphi v_0 h/v_1)g^q$.
- Compute $c = (f(a_1)/h'(a_1), \dots, f(a_n)/h'(a_n)).$

This algorithm uses $n^{1+o(1)}$ operations in \mathbf{F}_{q^m} using standard FFT-based subroutines.

 A Python script can be found on my website: http://www.win.tue.nl/~cpeters/wild.html

Decoders

- Can use any Reed-Solomon decoder to reconstruct f/g^q from the values $f(a_1)/g(a_1)^q,\ldots,f(a_n)/g(a_n)^q$ with $\lfloor qt/2 \rfloor$ errors.
- This is an illustration of the following sequence of standard transformations:

Reed–Solomon decoder \Rightarrow generalized Reed–Solomon decoder \Rightarrow alternant decoder \Rightarrow Goppa decoder.

- The resulting decoder corrects $\lfloor (\deg g)/2 \rfloor$ errors for general Goppa codes $\Gamma_q(a_1,\ldots,a_n,g)$.
- In particular, $\lfloor q(\deg g)/2 \rfloor$ errors for $\Gamma_q(a_1,\ldots,a_n,g^q)$; and so $\lfloor q(\deg g)/2 \rfloor$ errors for $\Gamma_q(a_1,\ldots,a_n,g^{q-1})$.

List decoding

- Using the Guruswami–Sudan list-decoding algorithm we can efficiently correct $n-\sqrt{n(n-qt)}>\lfloor qt/2\rfloor$ errors in the function values $f(a_1)/g(a_1)^q,\ldots,f(a_n)/g(a_n)^q$.
- Not as fast as a classical decoder but still takes polynomial time.
- Consequently we can handle $n-\sqrt{n(n-qt)}$ errors in the wild Goppa code $\Gamma_q(a_1,\ldots,a_n,g^{q-1})$.

Note:

- This algorithm can produce several possible codewords c. No problem for CCA2-secure variants of the McEliece system (Kobara, Imai, PKC 2001).
- We do not claim that this algorithm is the fastest possible decoder. Bernstein (2008) obtains for q=2 the same error-correcting capability using a more complicated Patterson-like algorithm.

- 1. Background on linear codes
- 2. The McEliece cryptosystem
- 3. Wild McEliece
- Decoding Wild Goppa codes
- 5. Attacks
- 6. Parameters

Attacks on Wild McEliece

• The wild McEliece cryptosystem includes, as a special case, the original McEliece cryptosystem.

 A complete break of the wild McEliece cryptosystem would therefore imply a complete break of the original McEliece cryptosystem.

Polynomial-searching attacks

- There are approximately q^{mt}/t monic irreducible polynomials g of degree t in $\mathbf{F}_{q^m}[x]$, and therefore approximately q^{mt}/t choices of g^{q-1} .
- An attacker can try to guess the Goppa polynomial g^{q-1} and then apply Sendrier's "support-splitting algorithm" to compute a permutation-equivalent code using the set $\{a_1, \ldots, a_n\}$.
- The support-splitting algorithm takes $\{a_1,\ldots,a_n\}$ as an input along with g.

Defenses

The first defense is well known and appears to be strong:

• Keep q^{mt}/t extremely large, so that guessing g^{q-1} has negligible chance of success. Our recommended parameters have q^{mt}/t dropping as q grows.

The second defense is unusual (strength is unclear):

- It is traditional, although not universal, to take $n=2^m$ and q=2, so that the only possible set $\{a_1,\ldots,a_n\}$ is \mathbf{F}_{2^m} .
- Keep n noticeably lower than q^m , so that there are many possible subsets $\{a_1, \ldots, a_n\}$ of \mathbf{F}_{q^m} .
- Can the support-splitting idea be generalized to handle many sets $\{a_1, \ldots, a_n\}$ simultaneously?

Information-set decoding

- The top threat against the original McEliece cryptosystem is information-set decoding.
- The same attack also appears to be the top threat against the wild McEliece cryptosystem for ${\bf F}_3$, ${\bf F}_4$, etc.
- Use complexity analysis of state-of-the-art information-set decoding for linear codes over \mathbf{F}_q from [P. 2010] to find parameters (q,n,k,t) for Wild McEliece.

- 1. Background on linear codes
- 2. The McEliece cryptosystem
- 3. Wild McEliece
- Decoding Wild Goppa codes
- 5. Attacks
- 6. Parameters

Key sizes for various q at a 128-bit security level

McEliece with $\Gamma_q(a_1,\ldots,a_n,g^{q-1})$ and $\lfloor (q-1)t/2 \rfloor$, $\lfloor qt/2 \rfloor + 1$, or $\lfloor qt/2 \rfloor + 2$ added errors.

Thank you for your attention!