Complex System Simulation

Emerging patterns of opinion formation in social structures

Group 3

Jonas schafer Chayenne Olumuyiwa Mingjie Li Pablo Alves

2 february 2024

Methodology. 1

Social Impact Theory

Individuals change as a result of the presence and actions of other individuals, in accord to a multiplicative function of these three factors:

- Strength
- Immediacy
- Number of sources

Bibb Latané - Alchetron, The Free Social Encyclopedia

B. Latané - The psychology of social impact. American Psychologist (1984)

Methodology. 2

Studying Crowds

Humans can be observed at different length and timescales. At mesoscale humans are not described individually but at a statistical level.

- Cellular Automata
- Networks

Physics of Human Crowds | Annual Review of Condensed Matter Physics

Cellular Automata model

Social Impact

$$I_i = -s_i \beta - \sigma_i h - \sum_{j=1, j \neq i}^{N} \frac{s_j \sigma_i \sigma_j}{g(d_{ij})}$$

- N: Individuals
- σ_i : Opposite opinions (±1)
- **s**_i: Influence strength (>0)
- **d**_{ii}: Distance
- **B**: Self-support parameter
- h: External influence
- **g(x)**: Increasing function of social distance

The Dynamical Rule

$$\sigma_i(t+1) = \begin{cases} \sigma_i(t) & \text{with probability } \frac{\exp(-I_i/T)}{\exp(-I_i/T) + \exp(I_i/T)} \\ -\sigma_i(t) & \text{with probability } \frac{\exp(I_i/T)}{\exp(-I_i/T) + \exp(I_i/T)} \end{cases}$$

- I_i: Social impact
- **T**: Social temperature (degree of randomness & average volatility)
- Deterministic limit: $\sigma_i(t+1) = -\text{sign}(I_i\sigma_i)$

Influence: s, ≫ s,

HH Quadratic grid

(o) 2D disc of radius R \gg 1

Cluster Radius I = 0

$$a \approx \frac{1}{16} \left[2\pi R - \sqrt{\pi} \pm \beta - h \pm \sqrt{(2\pi R - \sqrt{\pi} \pm \beta - h)^2 - 32s_L} \right]$$

If cluster exist:

Limit for Stable State

$$(2\pi R - \sqrt{\pi} \pm \beta - h)^2 - 32s_L \geqslant 0$$

s_{Lmin} Against Majority Influence

$$s_{L\min} = \frac{1}{\beta}(2\pi R - \sqrt{\pi} - h)$$

Cluster or **Unification?**

$$I_{i} = -s_{i}\beta - \sigma_{i}h - \sum_{j=1, j \neq i}^{N} \frac{s_{j}\sigma_{i}\sigma_{j}}{g(d_{ij})} \quad (1)$$

$$\overline{s} = 1$$
 $g(r) = r$

-: stable solution

+: unstable solution

Research questions (2)

- Can we replicate the findings of the CA paper?
- Which conditions lead to either SO and clustering or unification?
- What is the relationship between the critical temperature and the leader influence?
- How do our CA and network implementation compare to each other?

Photo by GDJ

Implementation details

Cellular Automata

- Our own implementation
- Class
- Functions in module
- Cluster size
- Analytical functions of paper

Networks

- Networkx
- Custom class
- Grid/Barabasi-Albert
- Nodes have edges with attribute distance
 - Manhattan
- Social impact formula

Results. 1

Phase Diagram for Circular Social Space

$$\sigma_i(t+1) = -\operatorname{sign}(I_i \sigma_i)$$

$$a \approx \frac{1}{16} \left[2\pi R - \sqrt{\pi} \pm \beta - h \pm \sqrt{(2\pi R - \sqrt{\pi} \pm \beta - h)^2 - 32s_L} \right]$$

Cluster radius a vs. leader's strength s,

Deterministic limit (T = 0)

Solid lines: attractors -

Dashed lines: unstable repellers +

I : Evolves towards complete or no unification (a=20, a=0)

II: The stable cluster attractor bifurcates the space into regions

■: Leads to unification (a=20)

Results. 2,3

Overcoming leader

Begin with leader's opinion
Overcoming leader: end with <50%
area proportion of the disc
Large simulations on each T
Count the times it exists

Log-Log plot: SOC dashed lines: Power-law

Distribution of connected nodes with fixed T_c

Total number after N timesteps

Suddenly grow

Low temperature mean-field approximation

low T: the cluster is only slightly diluted Asymmetry

0 at the border: sensitive to fluctuations Inner: deeper confirmed, resistant against noise suddenly increase gradually going down

$$I_i(d) = -\frac{s_L}{d} - 8aE\left(\frac{d}{a}, \frac{\pi}{2}\right) + 4RE\left(\frac{d}{R}, \frac{\pi}{2}\right) + 2\sqrt{\pi} - \beta,$$

$$I_o(d) = \frac{s_L}{d} + 8aE\left(\frac{d}{a}, \arcsin\frac{a}{d}\right) - 4RE\left(\frac{d}{R}, \frac{\pi}{2}\right) + 2\sqrt{\pi} - \beta$$

Network / CA equivalency

- Similar behaviour
- Network slightly slower

Opinion grid at t = 0 (T = 0, $s_l = 150$, $\hat{s} = 1$, $\beta = 1$, $p_{occ} = 1$, $p_1 = 0$)

Results. 6

Next step: Barabasi-Albert Network

- More realistic
- Scale free, preferential attachment
- Same social impact formula
- Factor C₁
 - Ratio degree leader node : mean node degree
- Longest path length

Leader strength

Effect of leader connectivity on average longest path length of graph

Network findings

- Similar patterns of spreading
- Leader influence
- Supercritical regime
 - Isolated nodes

Main findings

CAs can model opinion change

Findings replicated Leader influence and temperature contribute to clustering and SO Critical temperature threshold SOC

CAs and networks can be bridged

Networks allow a more complete representation

Similarities and differences

Thank You

Group 3Jonas schafer

Jonas schafer Chayenne Olumuyiwa Mingjie Li Pablo Alves

2 february 2024