

- (19) BUNDESREPUBLIK **DEUTSCHLAND**
- Patentschrift [®] DE 35 46 594 C 2
- (51) Int. Cl.5: C 08 F 212/06

.C 08 F 2/06 C 09 D 175/04 C 09 D 163/00 C 09 D 101/18

DEUTSCHES PATENTAMT Aktenzeichen:

P 35 46 594.8-44

Anmeldetag: Offenlegungstag:

23. 12. 85 10. 12. 87

Veröffentlichungstag

der Patenterteilung: 17, 12, 92

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Synthopol Chemie Dr.rer.pol. Koch GmbH & Co KG, 2150 Buxtehude, DE

(2) Teil aus: P 35 45 891.7

② Erfinder:

Dalibor, Horst, Dipl.-Chem. Dr., 2000 Norderstedt, DE

56 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DE-OS 30 05 945 DE-OS 14 94 421 US 26 81 897

(S) Verfahren zur Herstellung von hydroxylgruppenhaltigen Copolymerisaten und ihre Verwendung

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung von hydroxylgruppenhaltigen Copolymerisaten durch Polymerisation in inerten Lösungsmitteln oder deren Gemischen, die bevorzugt einen Siedebereich von 120°C bis 180°C aufweisen, durch Erhitzen in Anwesenheit von Polymerisationsinitiatoren gemäß den Ansprüchen 1 bis 6 sowie ihre Verwendung gemäß den Ansprüchen 7 und 8.

Aufgabe der Erfindung ist es, solche Copolymerisatlösungen zur Verfügung zu stellen, die mit Polyisocyanaten und/oder mit Polyisocyanat abspaltenden Verbindungen ausgehärtet werden. Die Copolymerisate sollen mit in der Lackindustrie üblichen Nitrocellulosen und/oder Epoxidverbindungen verträglich sein und ebenfalls mit Polyisocyanaten ausgehärtet werden.

Bindemittelgemische, die die erfindungsgemäße Copolymerisatlösung und bevorzugt zusätzlich in der Lackindustrie übliche Nitrocellulosen und/oder Epoxidharze enthalten, liefern Überzugsmittel, die mit Polyisocyanaten ausgehärtet werden und die folgende überraschende Eigenschaften aufweisen:

- 1. Die Überzugsmittel zeichnen sich durch ein ausgezeichnetes Haftvermögen in Form von Grundierungen auf Stahl, Aluminium und Zink aus und sie weisen auch ein verbessertes Haftvermögen gegenüber dem aufzubringenden Decklack auf.
- 2. Die Überzugsmittel der vorstehend genannten Art sind füllstarke Grundier- und Spritzfüller, die frei von Chromaten sein können, die nach dem Aufbringen schnelle Trocknung und Schleifbarkeit besitzen.
- 3. Die Überzugsmittel der vorstehend genannten Art liefern nach dem Auftragen eine Korrosionsschutzgrundierung, die gute Korrosionsschutzeigenschaften aufweist und bei der das Haftungsvermögen zum metallischen Untergrund durch Wassereinwirkung nicht beeinträchtigt wird.

In der US 26 81 897 sind Überzugsmittel auf der Basis eines Gemisches aus einem wärmehärtbaren alkylierten Aminoplastharz und einem thermoplastischen Copolymeren eines Hydroxyalkylesters einer α,β -ungesättigten Carbonsäure und einer Verbindung mit einer $CH_2=C<$ -gruppe und/oder einem Alkylester einer α,β -ungesättigten Carbonsäure. In den Beispielen 1, 3 und 4 werden 48 bis 50prozentige Copolymerisatlösungen aufgebaut aus β -Hydroxyethylmethacrylat, Styrol, Butylmethacrylat durch Erhitzen unter Rückfluß in Amylacetat und 2,2-Bis(di-tert.-butyl(peroxybutan hergestellt. Überzüge gemäß dieser Patentschrift hergestellt, besitzen jedoch keinen genügenden Glanz.

In der DE-OS 14 94 421 ist ein Bindemittel für wärmehärtbare Überzüge aus thermoplastischen, Hydroxylgruppen enthaltenden Copolymerisaten und veretherten Aminoplasten in organischen Lösungsmitteln, dadurch gekennzeichnet, daß sie als Filmbildner die folgenden Komponenten enthalten:

- a) 70—95 Gew.-Tl. eines thermoplastischen Mischpolymeren aus
 - 40-70 Gew.-Tl. Styrol,

15

35

- 50-20 Gew.-TI. eines Esters der Acryl- bzw. Methacrylsäure mit einem aliphatischen, 6-12 C-Atome enthaltenden Alkohol,
- 10-30 Gew.-Tl. Acryl-bzw. Methacrylsäure-β-hydroxyethylester sowie
- 0,1-5 Gew.-Tl. einer ungesättigten Carbonsäure und
 - b) 5-30 Gew.-Tl. eines Kondensationsproduktes aus Formaldehyd, Dicyandiamid, einem Harnstoff oder einem Aminotriazin, das mit einem aliphatischen Alkohol verethert ist, beschrieben.
- In der DE-OS 30 05 945 ist ein Verfahren zur Herstellung gelfreier, Hydroxylgruppen enthaltender und einen Gehalt von 0,25-2,0 Gew.-% Carboxylgruppen aufweisender Polyacrylate aus Veresterungsprodukten von Carboxylgruppen enthaltenden Copolymerisaten auf der Basis copolymerisierter Einheiten der (Meth-)Acrylsäure, Vinylaromaten und (Meth-)Acrylsäureestern mit Glycid in Gegenwart eines basischen Katalysators bei erhöhten Temperaturen, dadurch gekennzeichnet, daß man 1 Carboxyäquivalent eines Copolymerisats aus copolymerisierten statistisch verteilten Einheiten von
 - 3-20 Gew.-% (Meth-)Acrylsäure
 - 50-90 Gew.-% Styrol und/oder Methylmethacrylat
- 5-30 Gew.-% Acrylsäurealkylester mit 1-8 Kohlenstoffatomen in der Alkoholkomponente, Methacrylsäurealkylester mit 2-8 C-Atomen in der Alkoholkomponente oder Mischungen der vorgenannten (Meth-)Acrylsäureester

mit einem mittleren Molgewicht von etwa 3000-60 000 (gelchromatographisch bestimmt) und einer molekularen Uneinheitlichkeit U von 0,5-2,0, gelöst in einem organischen Lösungsmittel, mit zwischen 0,01 und 0,1 Gew.-% eines tertiären aliphatischen, cycloaliphatischen oder heterocyclischen Amins versetzt und zu dieser Mischung bei einer Temperatur zwischen 100° und 200°C 0,5 bis 1,3 Mol Glycid kontinuierlich oder diskontinuierlich in einem Zeitraum von 0,2-10 Stunden zudosiert und 4-15 Stunden bei den angegebenen Temperaturen nachrührt, angegeben.

Das Bindemittelgemisch soll lagerstabil trotz des Vorhandenseins von Carboxylgruppen im Copolymerisatbarz und Epoxidgruppen im Epoxidharz sein. Das bedeutet, daß bei der Lagerung des Bindemittelgemisches nur ein vernachlässigbarer Viskositätsanstieg erfolgt.

Bekanntlich haben Auto- und Autoreparatur-Reaktionslacke auf der Basis von Acrylharzen und Polyisocyanaten, wie diese z. B. in den DE-PS 28 58 096, 28 58 097 und 28 58 105 beschrieben sind, sehr vorteilhafte

Eigenschaften bezüglich der guten Glanzhaltung und in den Beständigkeiten gegenüber Superbenzin, Reinigungsmitteln und Oberflächenhärte des Decklacksystems.

Verbesserungsbedürftig sind jedoch die Grundiermittel, die bei der Autoreparaturlackierung auf den Stahlblechuntergrund aufgebracht werden. Die bisherigen Grundierungen basieren auf schnell trocknenden Polyestern, jedoch haben die damit hergestellten Überzüge ungenügende Korrosionseigenschaften. Außerdem ist das Haftungsvermögen zwischen Polyestergrundierungen und den Reaktionslacküberzügen verbesserungsbedürftig.

Durch die Erfindung werden Copolymerisatlösungen zur Verfügung gestellt, die durch Polyisocyanate ausgehärtet werden und die es gestatten, Grundierungen, Grundier- und Spritzfüller zu formulieren, die in mehreren Richtungen vorteilhafte überraschende Effekte liefern.

Die Komponente B die als Copolymerisat vorliegt, wird in an sich bekannter Weise durch Polymerisation in Anwesenheit von Polymerisationsinitiatoren (einzeln oder im Gemisch) der Vinylverbindungen in organischen inerten Lösungsmitt in hergestellt.

Bei einer bevorzugten Ausführungsform zum Herstellen der Copolymerisate werden inerte organische Lösungsmittel mit einem Siedebereich von etwa 120 bis etwa 180°C unter inertem Schutzgas zum Sieden erhitzt und unter allmählicher Zugabe des Monomerengemisches der Vinylverbindungen im Verlaufe von 2 bis 8 Stunden, bevorzugt 4 bis 6 Stunden, in Anwesenheit mindestens eines Polymerisationsinitiators, bevorzugt zweier Polymerisationsinitiatoren copolymerisiert, wobei Reaktionswasser aus dem siedenden Reaktionsansatz durch azeotrope Destillation unter Rückführung des wasserfreien Destillates laufend entfernt wird. Nach beendeter Zugabe der Vinylmonomeren wird noch so lange nachpolymerisiert, bis diese einpolymerisiert vorliegen, wozu etwa 2 bis etwa 8 Stunden, bevorzugt 3,5 bis 5 Stunden, erforderlich sind.

In einer besonderen Ausführungsform nach Anspruch 1 sind solche Copolymerisate enthalten, die durch gemeinsame Polymerisation von

- a) 49,00-51,00 Gew.-% Styrol,
- b) 16,00-18,00 Gew.-% Methylmethacrylat,
- c) 1,00-2,00 Gew.-% Acrylsäure,
- d) 14,00 16,00 Gew.-% Hydroxyethylacrylat und
- e) 15,00-18,00 Gew.-% Ethylhexylacrylat

erhalten worden sind.

In einer anderen bevorzugten Ausführungsform nach Anspruch 1 sind solche Copolymerisate enthalten, die durch gemeinsame Polymerisation von

- a) 29,00 31,00 Gew.-% Styrol,
- c) 1,00-2,00 Gew.-% Acrylsäure,
- d) 28,00-30,00 Gew.-% Hydroxyethylmethacrylat und
- e) 15,00 18,00 Gew.-% Butylacrylat

erhalten worden sind.

Als Polymerisationsinitiatoren sind beispielsweise einzeln oder im Gemisch brauchbar: Diacylperoxide, Ketonperoxide, Alkylhydroperoxide, Alkylperester, z. B. Benzoylperoxid, Hydroxyheptylperoxid, 1-Hydroxycyclohexylperoxid, t-Butylperbenzoat, tert.-Butylperoxidoctoat, di-tert.-Butylperoxid sowie alle Peroxide, deren Halbwertszeiten in einem Temperaturbereich von 50° bis 150°C liegen.

Zur bevorzugten Ausfühlungsform gehören folgende Peroxidkombinationen:

Dibenzoylperoxid-C .molliydroperoxid;

Dibenzoyl-di-tert.-Butylperoxid;

tert.-Butylperoctoat-Cumolhydroperoxid;

tert.-Butylperoctoat-di-tert.-Butylperoxid;

tert.-Butylperbenzoat-Cumolhydroperoxid und

tert.-Butylperbenzoat-di-tert.-Butylperoxid.

Die Monomeren d sind Alkylester der Methacrylsäure mit 1 bis 8 Kohlenstoffatomen im Alkylrest, z. B. Methyl-, Ethyl-, Propyl-, Isopropyl-, n-Butyl-, Isobutyl-, sek.-Butyl-, tert-Butyl-, Amyl-, Hexyl-, Heptyl- und Octylmethacrylat.

Die Monomeren c sind Hydroxyalkylester der Acrylsäure und/oder Methacrylsäure mit 2 bis 8 Kohlenstoffatomen im Alkylrest, z. B. 2-Hydroxyethyl-, 2-Hydroxypropyl-, Butandiolmono-, Hydroxybutyl-, Hydroxyamyl-, Hydroxyhexyl-, Hydroxyhexyl-, Hydroxyhexyl-, und Hydroxyoctylacrylat und/oder methacrylat.

Die Monomeren e sind z. B. n-Butyl, Isobutyl-, sek.-Butyl-, tert.-Butyl- und/oder 2-Ethylhexyl-acrylat.

Als Epoxidharze können im Prinzip die dem Fachmann bekannten Epoxidharze verwendet werden. Besonders bevorzugt sind Epoxidharze auf Basis Bisphenol-A, wie

65

25

30

35

45

$$\begin{array}{c}
CH_{1} & CH - CH_{2} \\
CH_{2} & CH - CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{3} & OH \\
CH_{3} & CH - CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{3} & O \\
CH_{4} & CH
\end{array}$$

worin n einen Wert von null bis zehn bedeutet, oder F und Epichlorhydrin. Weitere Beispiele von Epoxidharzen sind Epoxinovolakharze der Diglycidylether des hydrierten Bisphenol-A oder cycloaliphatische Polyepoxidverbindungen, wie sie z. B. in H. Jahn "Epoxidharze", VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1969, oder in H. Batzer und F. Lohse in "Ullmanns Enzyklopädie der technischen Chemie", Band 10, S. 563 ff., 4. Auflage, Verlag Chemie, Weinheim 1975, beschrieben sind.

15

Bevorzugt werden als Komponente C Epoxidharze auf der Grundlage von Umsetzungsprodukten von Epichlorhydrin mit Bisphenol A mit Epoxidaquivalenten von etwa 400 bis etwa 1000, wobei der bevorzugteste Bereich zwischen etwa 500 bis etwa 600 liegt.

Die Herstellung des Bindemittelgemisches erfolgt, indem Lösungen der Komponente B und Lösungen der Komponente C in inerten organischen Lösungsmitteln, gegebenenfalls unter Erwärmen auf 80° bis 150°C, vermischt werden.

Bei Herstellung des Bindemittelgemisches können auch Zusätze von niedrigviskosen Epoxidharzen zweckmäßig sein. Hierfür eignen sich besonders die Diglycidylether aliphatischer Diole, z. B. des Butandiol-1,4; Hexandiol-1,6 oder des Neopentylglykols.

Da beim Vermischen, besonders in der Wärme Umsetzungen der Komponente B mit der Komponente C möglich sind, kann es von Vorteil sein, wenn man dem Gemisch von Epoxidharz und Carboxylgruppen aufweisenden Copolymerisat einen Katalysator in wirksamen Mengen zusetzt, der die Modifizierungsreaktion beschleunigt. Besonders bevorzugt sind als Katalysatoren Alkaliverbindungen, wie Natrium-, Lithium-, Rubidium- und Cäsiumverbindungen — einzeln oder im Gemisch —, beispielsweise die Carbonate, Bicarbonate, Formiate und die Hydroxide, quaternäre Ammonium- oder Phosphoniumverbindungen, wie z. B. Tetramethylammoniumchlorid oder -jodid, Benzyltrimethylammoniumchlorid, Tetrabutylphosphoniumchlorid oder -acetat.

Im allgemeinen ist es ausreichend, von etwa 0,005 Gew.-% bis etwa 0,5 Gew.-% der vorstehend genannten Modifizierungskatalysatoren zuzufügen, wobei sich die Gew.-% auf das Gewicht des anwesenden Copolymerisates und der Epoxidverbindung(en) bezieht. Es sind alle Modifizierungskatalysatoren der vorstehend genannten Art brauchbar, die zumindest bei der Zugabe und/oder beim Halten auf Modifizierungstemperaturen in Lösung gehen, wobei die Modifizierungskatalysatoren jedoch frei von solchen Bestandteilen sein sollen, die bei der Weiterverarbeitung und Aushärtung sich ungünstig auswirken können.

Für die Härtung der Bindemittelmischung werden Polyisocyanate verwendet. Beispiele hierfür sind: 3,5,5-Tridi(2-Isocyanatethyl)bicyclo-(2,2,1)hept-5-en-2,3-dicarboxylat, methyl-1-cyanat-3-isocyanatmethylcyclohexan, 2,4-Toluylendiisocyanat, 2,6-Toluylendiisocyanat, 4,4'-Diphenylmethandiisocyanat, Dianisidindiisocyanat, Toluidindiisocyanat, Hexamethylendiisocyanat, Dicyclohexyl-4,4'-methandiisocyanat, Cyclohexan-1,4-diisocyanat, 4,4'-Diisocyanatdiphenylether, 2,4,6-Toluentriisocyanat, Triphenylmethan-1,5-Naphthylendiisocyanat, 4.4',4"-triisocyanat, Ethylentriisocyanat, Propylendiisocyanat, Tetramethylendiisocyanat, Hexamethylendiisocyanat, 1,3-dimethylbenzoldiisocyanat, 1,4-Dimethylcyclohexandiisocyanat, 1-Methylcyclohexan-2,4-diisocyanat, 4,4'-Methylen-bis(cyclohexyldiisocyanat), Phenylendiisocyanat, Naphthylendiisocyanat, 3-Isocyanatomethyl-3,5,5-Trimethylcyclohexylisocyanat, Lysindiisocyanat, Triphenylmethantriisocyanat, Trimethylbenzol-2,4,6-triisocyanat, 1-Methylbenzol-2,4,6-triisocyanat und Diphenyl-2,4,4'-triisocyanat; Di- oder Triisocyanate hergestellt durch Umsetzung von einem Polyisocyanat mit einem niedrigmolekularen Diol oder Triol (beispielsweise Ethylenglykol, Propylenglykol, 1,3-Butylenglykol, Neopentylglykol, 2,2,4-Trimethyl-1,3-pentadiol, Hexandiol, Trimethylolpropan oder Trimethylolethan); Cyanuraten, die durch Umsetzung der genannten Diisocyanate unter Ringbildung erhalten wurden.

Besonders wertvolle Polyisocyanate sind Biuretgruppen enthaltende Triisocyanate, welche durch Umsetzung aus 3 Molen Diisocyanat und einem Mol Wasser erhalten werden, z. B. das Biuret vom Hexamethylendiisocyanat oder 4,4'-Methylen-bis(cyclohexylisocyanat) oder 3-Isocyanatmethyl-3,5,5-trimethylcyclohexylisocyanat. Geeignet sind auch Polyisocyanate, die durch heterocyclischen Ringschluß aus 3 Molen Diisocyanat, z. B. Hexamethylendiisocyanat erhalten werden.

Anstelle der Polyisocyanate können auch Polyisocyanate abspaltende Verbindungen Verwendung finden, ferner Isocyanatgruppen enthaltende Umsetzungsprodukte mehrwertiger Alkohole, z. B. Ethylenglykol, Propylenglykol, Hexandiol, Trimethylolpropan oder Trimethylolethan, mit Polyisocyanaten, beispielsweise das Umsetzungsprodukt von 1 Mol Trimethylolpropan mit 3 Mol Toluylen-diisocyanat, ferner trimerisierte oder polymerisierte Isocyanate, wie sie etwa in der DE-PS 9 51 168 beschrieben werden.

Falls gewünscht, kann die Aushärtung der Bindemittelmischung mit den Polyisocyanaten als Härtern durch die Zugabe von Aushärtungskatalysatoren beschleunigt werden. Hierfür sind als Aushärtungskatalysatoren Stan-

noacylate oder Stannoalkoxide geeignet, die mit Hydroxyl-, Halogen-, Keto- oder anderen Gruppen substituiert sein können, die die Aushärtungsreaktion nicht nachteilig beeinflussen. Unter den Stannoacylaten, die als Aushärterkatalysatorkomponente Verwendung finden können, werden die zweiwertigen Zinnsalze von Monound Dicarbonsäuren mit 1 bis 54 Kohlenstoffatomen genannt; diese Carbonsäuren können gesättigte Säuren, wie Essigsäure, 2-Ethylhexansäure, Ethylphthalsäure und ungesättigt sein, wie Ölsäure, Linolsäure, Oleostearinsäure, Ricinolsäure. Zur Verdeutlichung seien als geeignete Stannoacylate Stannoacetat, Stannopropionat, Stannooxalat, Stannobutyrat, Stannotartrat, Stannovalerat, Stannootanoat, Stannostearat, Stannooleat, Dibutylzinndilaurat genannt. Unter den Stannoalkoxiden, die als Aushärtungskatalysatoren Verwendung finden können, sind die zweiwertigen Zinnsalze von gesättigten oder ungesättigten, geradkettigen oder verzweigtkettigen Alkoholen mit 1 bis 18 Kohlenstoffatomen zu nennen. Beispiele hierfür von geeigneten Stannoalkoxiden sind Stannomethoxid, Stannoisoproproxid, Stannobutoxid, Stanno-t-butoxid, Stanno-2-ethyl-hexoxid, Stannotridecanoxid, Stannohenoxid sowie o-, m- und p-Stannocresoxide.

Die Überzugsmittel, die das Bindemittelgemisch der Erfindung und die Polyisocyanate als Härter enthalten, werden durch gründliches Vermischen der verschiedenen benötigten Komponenten in den erforderlichen Mengen nach den für reaktive Komponenten enthaltende Zubereitungen bekannten Regeln hergestellt und verwendet

Die Gesamtmenge an Isocyanatgruppen in den Überzugsmitteln muß ausreichend sein, damit die Isocyanatgruppen mit den reaktiven Wasserstoffatomen, die bei Beginn der Aushärtung vorliegen oder im Verlaufe der Aushärtungsreaktion gebildet werden, reagieren können.

Es werden 0,5 bis 1,10 Äquivalente, vorzugsweise 0,8 bis 1,05 Äquivalente, Isocyanat pro reaktives Wasserstoffatom verwendet.

Die Konzentration an Stannosalz in dem Überzugsmittel kann zwischen 0,1 bis 10 Gew.-%, vorzugsweise 0,5 bis 2 Gew.-% bezogen auf das Gewicht des Bindemittelgemisches und der Polyisocyanate, betragen.

Bei der Herstellung der Copolymerisate B werden inerte organische Lösungsmittel, einzeln oder im Gemisch, verwendet, die es gestatten, den gewünschten Siedebereich von etwa 120 bis etwa 180°C einzustellen und geeignet sind, das Copolymerisat B in Lösung zu halten und auch bei der Herstellung der Bindemittelmischung durch Zugabe der Epoxidverbindungen als Komponente C trübungsfreie Lösungen ergeben. Beispiele hierfür sind aromatische Lösungsmittel sowie Ester mit Siedepunkten von 120° bis 180°C.

Bei der Herstellung der Reaktionslacküberzugsmittel durch Vermischen des Bindemittelgemisches mit Polyisocyanaten sowie den üblichen Bestandteilen, wie diese für die Herstellung von Grundierungen, Grundier- und Spritzfüllern üblich sind, werden ebenfalls in der Lackindustrie übliche inerte organische Lösungsmittel mitverwendet, deren Siedepunkte wesentlich niedriger liegen können, um eine schnelle Trocknung durch Abdunsten der Lösungsmittel im aushärtenden Reaktionslacküberzugsmittel zu erzielen.

Zu den üblichen Bestandteilen für die Herstellung von Grundierungen, Grundier- und Spritzfüllern gehören auch in der Lackindustrie übliche Nitrocelluloselösungen in inerten organischen Lösungsmitteln. Der Anteil der Nitrocellulose kann bis 10 Gew.-% (als Festkörper) in der Bindemittelmischung betragen.

Beispiel 1:

Herstellung des Copolymerisats 1

40

45

50

60

940 g eines aromatischen Lösungsmittelgemisches mit den Siedepunkten von 140—160°C (Shellsol A) werden mit

450 g Ethylenglykolazetat in einem Reaktionsgefäß, das mit Rührer, Thermometer, Rückflußkühler mit Wasserabscheider und Inertgasleitung ausgerüstet ist, auf 160°C erhitzt. Es wird ein Gemisch, bestehend aus:

610 g Methylmethacrylat,

997 g Hydroxyethylmethacrylat,

990 g Styrol,

43 g Acrylsäure,

674 g n-Butylacrylat,

70 g di-tert.-Butylperoxid und

70 g Dibenzoylperoxid, 75% ig in Wasser dispergiert bzw. gelöst, gleichmäßig in 7 Stunden hinzugefügt. Während des Zulaufs der Monomerenmischung fällt die Destillationstemperatur auf 150°C ab. Danach wird noch 5 Stunden nachpolymerisiert und ein Feststoffgehalt von 70 Gew.-% im Lösungsmittelgemisch erreicht. Zur Viskositätsmessung wird die Copolymerisatlösung auf 60 Gew.-% mit einem handelsüblichen aromatischen Lösungsmittel Shellsol A (beschrieben in der Firmendruckschrift Shellsol A der Esso AG) und Ethylglykolacetat im Volumenverhältnis 2:1 verdünnt. Die Viskosität beträgt 1500—1800 cP bei 20°C. Die Säurezahl des Copolymerisates als Festharz hat den Wert 11—13 und die Hydroxylzahl des Festharzes beträgt 120.

Referenzbeispiel 1:

Herstellung der Bindemittelmischung 1

2500 g des Copolymerisats 1 werden bei 90°C mit

2320 g eines Epoxidharzes auf der Basis eines Umsetzungsproduktes aus Epichlorhydrin und Bisphenol A, welches ein Epoxidäquivalent von 450-530 besitzt und 70%ig in Xylol gelöst ist, bei 90°C 1-2 Stunden gehalten. Es werden folgende Kennzahlen für die Bindemittelmischung-Lösung erhalten:

72 gew.-%ig Feststoff, Säurezahl des Bindemittelmischungs-Festharzes 7, Hydroxylzahl des Bindemittelmi-

schungs-Festharzes 200-230.

Viskosität der Bindemittelmischung 1 beträgt 13 000-15 000 cP bei 20°C.

Referenzbeispiel 2:

5

10

Herstellung der Bindemittelmischung 2

1750 g des Copolymerisats 1, 72-gew.-%ig in Shellsol A und Ethylglykolacetat im Volumenverhältnis 2:1 gelöst.

750 g Ethylglykolacetat,

140 g Xylol,

230 g Butylacetat 98/100%,

100 g Calciumnaphthenat (4 Gew.-% Calciumgehalt).

100 g Silikonöllösung L 050, 1% ig in Xylol gelöst und

480 g Epoxidharz auf der Basis Epichlorhydrin und Bisphenol A 33%ig in Ethylglykolacetat/Xylol, im Volumenverhältnis 2:1 gelöst, mit einem Epoxidaquivalent von 2400-4000, bezogen auf 100%iges Epoxidharz, werden gemischt.

Anwendungsbeispiel 1:

20

25

a. Herstellung eines Stammlackes

Die vorstehend im Referenzbeispiel 2 erhaltene Bindemittelgemisch-2-Lösung wurde mit

750 g Talkum,

940 g Titandioxid A HR (Anatas),

2170 g Aluminiumsilikat ASP 400,

940 g Zinkphosphat,

140 g Eisenoxid gelb und

280 g Zinkoxid im Disolver versetzt. Danach wird dieses Mahlgut über eine Perlmühle gegeben, bis eine Kornfeinheit von kleiner als 25 µm erreicht ist. Dann werden

480 g Bentone Paste (enthält 10 Gew.-% Bentone 34 und 4 Gew.-% Bykumen 40 gew.-%ig als Netzmittel und 750 g Nitrocelluloselösung, 20 gew.-%ig in Butylacetat aus E 400 Nitrocellulosewolle im Mischer zugegeben.

b. Herstellung der Härterlösung

35

3650 g Triisocyanat, welches aus 3 Molen Hexamethylendiisocyanat und einem Mol Wasser hergestellt worden ist und einen NCO-Gehalt von 21 Gew.-%, bezogen auf den 100%igen Härter hat, wird in 1800 g Xylol, 2600 g Ethylglykolazetat und 1950 g Butylacetat gelöst.

c. Herstellung der Reaktionsüberzugsmittelmischung

4 Volumenteile Stammlack gemäß Absatz a werden mit 1 Volumenteil Härterlösung gemischt und mit einem Lösungsmittelgemisch, bestehend aus 2800 g Xylol, 4000 g Ethylglykolazetat und 3200 g Butylacetat auf Spritzviskosität von 20 bis 25 Sekunden, gemessen im DIN-Becher mit der Auslauföffnung 4 mm bei 20°C eingestellt.

45

40

d. Verarbeitung der Reaktionsüberzugsmittelmischung

Die erhaltene Reaktionsüberzugsmittelmischung wird in eine Spritzapparatur gefüllt. Mit zwei bis drei Spritzgängen werden 50 µm Trockenfilmschichtdicken als Grundierung auf dekapiertem Stahlblech erzielt. Die Trokkenzeit bei 23°C beträgt ca. 2 Stunden. Forcierte Trocknung bei 60° – 80°C ist innerhalb von 20 bzw. 15 Minuten möglich. Die Schleifbarkeit des erhaltenen Überzuges ist – falls erforderlich – nach den Trockenzeiten gegeben. Überlackiert werden kann diese Grundierung mit Alkydharzdecklacken oder mit Zweikomponenten-Decklacken auf der Basis von Hydroxylgruppen enthaltenden Polymerisaten und Polyisocyanaten, insbesondere aliphatischen Polyisocyanaten. Es können handelsübliche Decklacke aus dem Autoreparaturbereich, z. B. Zweikomponentenacryldecklacke gemäß DE-PS 28 51 613, Beispiel 2 und DE-PS 28 51 614, Beispiel 2 zur Anwendung kommen.

Nach Lagerung von 7 Tagen bei Raumtemperatur werden die mit der vorstehend genannten Grundierung beschichteten Bleche folgenden Prüfungen unterzogen:

1. Salzsprühnebelprüfung gemäß DIN 50 021 (480 Stunden Test),

2. Beanspruchung im Schwitzwasserklimatest DIN 50 017 von 240 Stunden (c auf der Fläche und am Schnitt; d auf der Fläche und am Schnitt).

Anschließend wurde die Bewertung nach folgenden Kriterien vorgenommen:

65

- a. Blasengrad gemäß DIN 53 209 auf der Fläche und am Schnitt.
- b. Haftung gemäß DIN 53 151 auf der Fläche und am Schnitt.

Zu 1. Beurteilung nach dem 480 Std. Salzsprühtest:	
a. auf der Fläche m0/g0; am Schnitt m3/g5, b. auf der Fläche Gt0; am Schnitt Unterwanderung 3 mm,	
Zu 2. Beurteilung nach 240 Stunden Schwitzwassertest:	
c. auf der Fläche m0/g01 am Schnitt m0/g0, d. auf der Fläche Gt1; am Schnitt 3 mm Unterwanderung.	
Vergleichbare handelsübliche, gute 2 Komponenten-Grundierfüller zeigten im Salzsprühtest schlechtere oder gar keine Haftung wie auch verstärkte Blasenbildung. In noch stärkerem Unfang zeigten sich die Unterschiede im Schwitzwassertest. Bei allen Produkten handelte es sich wie bei dem erfindungsgemäßen Produkt um chromatfreie Materialien.	1
Beispiel 7:	1
Herstellung des Copolymerisats 7	
In einem Reaktionskolben, der mit Rührer, Thermometer, Rückflußkühler mit Wasserabscheider und Inertgasleitung versehen ist, werden 450 g Butylacetat und 4170 g Xylol eingefüllt und bis zum Rückfluß bei 133°-137°C erhitzt.	2
Im Verlauf von 4 Stunden läßt man eine Lösung, bestehend aus 2440 g Styrol,	
87 g Acrylsäure,	2
710 g Hydroxyethylacrylat, 835 g Methylmethacrylat,	
720 g 2-Ethylhexylacrylat und 70 g di-tertButylperoxid	
gleichmäßig in das siedende Lösungsmittelgemisch einfließen. Nach beendetem Zulauf wird noch 4 weitere Stunden durch Erhitzen unter Rückfluß gehalten, damit die Polymerisation vollständig erfolgt.	3(
Der Festkörper dieser Copolymerisatlösung beträgt 51 Gew%. Das Copolymerisat hat eine Säurezahl von 13-15 und eine Hydroxyzahl von 80-85. Die Viskosität der Copolymerisatlösung beträgt im DIN-Becher mit 4 mm Auslauföffnung bei 20°C gemessen 250-280 Sekunden.	3!
Referenzbeispiel 3:	
Herstellung der Bindemittelmischung 3	
In 2100 g der vorstehend erhaltenen Copolymerisatlösung 7 werden 350 g eines handelsüblichen Epoxidhar- tes auf der Basis Epichlorhydrin und Bisphenol A mit der Bezeichnung Epikote 1001 (in der Firmenschrift Epikote 1001 der Shell AG beschrieben) gegeben, danach werden 450 g Xylol, 350 g Butylacetat und 200 g Methylglykolacetat zugegeben und so lange durchgerührt, bis eine homogene Lösung vorliegt.	40
Anwendungsbeispiel 2	45
a. Herstellung eines Stammlackes für Autoreparaturfüller	
Die im Beispiel 3 erhaltene Bindemittelmischung 3 wird mit 000 g Titandioxid RN 59, 300 g ASP 600	50
150 g Eisenoxidgelb, 000 g Zinkphosphat ZP 10	
800 g Talkum AT extra,	55
300 g Zinkoxid NT, 100 g Bentone 38 Paste, 10 gew%ig in 86 Gew% Xylol und 4 Gew% Bykumen (Netzmittel), 100 g Siliconöl LO 50, 1% Xylol und	
800 g Nitrocellulosewolle E 400, 20% Butylacetat n üblicher Weise gemischt und homogenisiert.	60
b. Härterlösung	
Als Härterlösung dient ein handelsübliches Polyisocyanat mit der Bezeichnung Desmodur N (beschrieben im irmenprospekt Desmodur N der Bayer AG als Umsetzungsprodukt aus 3 Molen Hexamethylendiisocyanat and einem Mol Wasser).	65

c. Herstellung der Reaktionsüberzugsmittelmischung (Autoreparaturfüller).

420 g Desmodur N (75 Gew.-% Polyisocyanat und 25 Gew.-% Lösungsmittel) wird mit dem vorstehend gemäß a erhaltenen Stammlack vermischt.

Zum Einstellen der Spritzviskosität dient ein Lösungmittelgemisch aus

2500 g Ethylglykolacetat,

2000 g Shelisol A

4000 g Xylol und

1500 g Butylacetat.

10

d. Verarbeitung der Reaktionsüberzugsmittelmischung (Autoreparaturfüller).

Es wird gemäß den Angaben im Anwendungsbeispiel 1, Abschnitt d gearbeitet. Die Prüfung des aufgebrachten Autoreparaturfüller-Überzugs hatte vergleichbare Eigenschaften ergeben, wie diese am Ende des Anwendungsbeispiels 1 angegeben sind.

In einer weiteren bevorzugten Ausführungsform nach Anspruch 1 sind solche Copolymerisate enthalten, die durch gemeinsame Polymerisation von

- a) 48,00-52,00 Gew.-% Styrol,
- c) 31,00-34,00 Gew.-% Hydroxyethylmethacrylat,
- e) 14,00-21,00 Gew.-% Butylacrylat

erhalten worden sind. Die bevorzugteste Ausführungsform aus dieser Gruppe von bevorzugten Copolymerisaten wird durch die Herstellung des folgenden Copolymerisates 8 verdeutlicht.

25

20

Herstellung des Copolymerisates 8

In einem Reaktionskolben, der mit Rührer, Thermometer, Rückflußkühler mit Wasserabscheider und Inertgasleitung versehen ist, werden 1200 g aromatisches Lösungsmittelgemisch mit einem Siedepunkt von 162° – 177°C auf 165° – 173°C bei steigender Rückflußtemperatur erhitzt.

Im Verlaufe von 7 Stunden läßt man eine Lösung, bestehend aus

1200 g Styrol

672 g n-Butylacrylat,

1328 g Hydroxyethylmethacrylat,

90 g Dibenzoylperoxid 75%ig (in Wasser dispergiert) und

90 g di-tert.-Butylperoxid

gleichmäßig in das siedende Lösungsmittelgemisch einfließen. Nach beendetem Zulauf wird noch weitere 4 Stunden durch Erhitzen unter Rückfluß gehalten, damit die Polymerisation vollständig erfolgt. Dann wurden 600 g Butylacetat hinzugefügt und gut durchgerührt.

Der Festkörper dieser Copolymerisatlösung beträgt 70 Gew.-%. Das Copolymerisat hat eine Säurezahl von 4-5 und eine Hydroxylzahl von etwa 140. Die Viskosität der Copolymerisatlösung beträgt im DIN-Becher mit 4 mm Auslauföffnung bei 25°C gemessen 18 000 cP.

Dieses Copolymerisat 8 kann, wie in der Tabelle VI für die Copolymerisate 2, 3, 4, 5, 6 und 7 angegeben, zusammen mit Epoxidharzen als Bindemittelmischung zu einem Stammlack als Grundierfüller verarbeitet werden. Die damit hergestellten Überzüge entsprechen der eingangs genannten Aufgabe der Erfindung.

Tabelle V

Viskositätsanstieg nach Herstellung der Bindemittelmischung 1 gemäß Beispiel 1 in Abhängigkeit der Zeit bei 50°C in Abwesenheit von Katalysatoren (Viskositätsmessung bei 20°C).

	Tage	Viskosität (cP)
•	1	13 960
55	3 ·	15 240
	10	15 240
	20	14 600

- Die vorstehenden Viskositätsmessungen zeigen sehr deutlich, daß bei der Lagerung bei 50°C nach 20 Tagen nur ein geringer Viskositätsanstieg erfolgt ist. Dies bedeutet, daß das Bindemittelgemisch trotz des Vorhandenseins von Carboxylgruppen im Copolymerisatharz und Epoxidgruppen im Epoxidharz bei der Lagerung bei Außentemperaturen lagerstabil ist und nur ein vernachlässigbarer Viskositätsanstieg erfolgt.
 - Alle Angaben in der vorstehenden Tabelle VI bedeuten Gew.-%.
- Die Anwendungsbeispiele 3 bis 8 verdeutlichen die Herstellung von Stammlacken als Grundierfüller. Der jeweilige Stammlack wird mit Härterlösung auf der Basis von Polyisocyanat (vgl. Anwendungsbeispiel 1, Abschnitt b) vermischt und mit einem inerten organischen Lösungsmittelgemisch auf die für die angewendete Auftragetechnik erforderliche Verarbeitungsviskosität eingestellt (vgl. Anwendungsbeispiel 1, Abschnitt c) und

als Grundierfüller auf die Metallfläche aufgetragen.

Spezielle Prüfungen an den gemäß den Anwendungsbeispielen 3 bis 8 hergestellten Grundierfüllern bzw. den Grundierfüller-Überzügen haben ergeben, daß die am Anfang der Patentbeschreibung angegebene Aufgabe der Erfindung durch die Anwendungsbeispiele eine praktische, leicht ausführbare Verwirklichung gefunden hat.

Beispiele 2 bis 6

Herstellung der Copolymerisate 2 bis 6

Die Copolymerisate 2 bis 6 werden in der gleichen Weise, wie vorstehend bei der Herstellung des Copolymerisates 1 beschrieben, hergestellt. Die in der folgenden Tabelle 1 angegebenen Zahlenangaben beziehen sich auf Gewichtsprozente. Abweichend von dem bei der Herstellung des Copolymerisates 1 verwendeten Lösungsmittelgemisch wird bei der Herstellung der Copolymerisate 2 bis 6 gemäß den Angaben in der Tabelle II gearbeitet.

Tabelle I

Monomere	Copoly- merisat 2	Copoly- merisat 3	Copoly- merisat 4	Copoly- merisat 5	Copoly- merisat 6	
	· · - · · - · · - · ·			•		- 2
Styrol	68,3	48,7	48	58,2	30	
Hydroxyethylmethacrylat	30,4	30	30,2	30	30	
Acrylsäure	1,3	1,3	1,3	1,3	1,3	
Methylmethacrylat		20			18,4	
n-Butylacrylat			20,5	10,5	20,3	2
Feststoffgehalt in Gew%	70	70,2	70,3	71,1	70	
Viskosität bei 20°C der 60 gew%igen Lösung in Solvesso 100/Butoxyl	3240 cP	3920 cP	1240 cP	2280 cP	1430 cP	

Tabelle II

Copolymerisat Nr.	Zulaufzeit der Monomeren	Lösungsmittelgemisch im Gewichtsverhältnis	Nachpoly- merisati- onszeit ¹)	Rückfluß- temperatur	Polymerisations- initiatoren in Gew%***)	35
2	7	Shellsol ³) A: Butoxyl ²) = 2:1	3	160°C	DTBP*): 2,1 DBP**): 2,1	_
3	7	desgl.	3	160°C	DTBP: 2,1 DBP: 2,1	40
4	7	desgl.	3	160°C	DTBP: 2,1 DBP: 2,1	
5	7	desgl.	3	160°C	DTBP: 2,1 DBP: 2.1	46
6	7	desgl.	5	155°/153°C	DTBP: 2,1 DBP: 2.1	45

^{*)} DTBP = Di.-tert-Butylperoxyd

Ausführung der Referenzbeispiele 4-8

In den Referenzbeispielen 4-8 (Herstellung der Bindemittelmischungen 4-8) wird gemäß den Verfahrensangaben im Referenzbeispiel 1 gearbeitet. In der folgenden Tabelle III sind die abweichenden experimentellen Daten angegeben. Die Prozentangaben beziehen sich auf den Festkörper in Gew.-% des eingesetzten Copolymerisats und auf den Festkörper in Gew.-% des Epoxidharzes. Die Säurezahlen und die Hydroxylzahlen beziehen sich auf den Feststoffgehalt der Bindemittelmischungen.

65

50

55

15

^{***)} DBP = Dibenzoylperoxyd mit 25 Gew.-% befeuchtet ***) bezogen auf das Gewicht der eingesetzten Monomeren

¹⁾ in Stunden

²⁾ Butoxyl besteht aus Essigsäure(-3-methoxy-n-butylester)

³⁾ Shellsol A aromatisches Lösungsmittelgemisch mit den Siedepunkten von 140-160°C

Tabelle III (Referenzbeispiele 4-8)

Herstellung der Bindemittelmischungen 4 bis 8

5	Beispiel 4	Beispiel 5	Beispiel 6	Beispiel 7	Beispiel 8
Copolymerisat in Gew	% Nr. 2	Nr. 3	Nr. 4	Nr. 5	Nr. 6
	50	50	50	50	50
Depoxidharz in Gew%	50	50	50	50	50
Treibstoffgehalt in Gew	% 71	71	71.6	72.8	70
Viskositāt bei 20°C	26 400 cP	27 500 cP	16 600 cP	21 600 cP	13 600 cP
Hydroxylzahl	230	230	230	230	142
Säurezahl	7	7	8	6	12
5		•	-	-	

Tabelle IV

Viskositätsanstieg nach Herstellung der Bindemittelmischung in Abwesenheit und Anwesenheit eines Katalysators (Bindemittelmischung 1 gemäß Referenzbeispiel 1)

Temperatur 25°C

25		24 Stunden	48 Stunden	72 Stunden
30	ohne Katalysator 0,5 Gew% Kaliumhydroxid 0,5 Gew% Tetramethylammoniumchlorid 0,5 Gew% Tetrabutylphosphoniumbromid	14 400 cP 14 400 cP 14 400 cP 14 400 cP	14 560 cP 14 880 cP 14 880 cP 14 880 cP	14 560 cP 15 760 cP 15 200 cP 15 200 cP

Temperatur 80°C

35		15 Minuten	30 Minuten	45 Minuten	60 Minuten
40	ohne Katalysator	14 400 cP	14 560 cP	14 720 cP	14 880 cP
	0,5 Gew% Kaliumhydroxid	14 880 cP	15 200 cP	15 680 cP	16 000 cP
	0,5 Gew% Tetramethylammoniumchlorid	14 560 cP	14 880 cP	15 360 cP	15 680 cP
	0,5 Gew% Tetrabutylphosphoniumbromid	14 560 cP	15 040 cP	15 520 cP	15 760 cP

Temperatur 100°C

		15 Minuten	30 Minuten	45 Minuten	60 Minuten
50	ohne Katalysator	14 880 cP	14 880 cP	15 520 cP	15 680 cP
	0,5 Gew% Kaliumhydroxid	15 200 cP	15 680 cP	16 000 cP	16 560 cP
	0,5 Gew% Tetramethylammoniumchlorid	14 880 cP	15 200 cP	15 680 cP	16 000 cP
	0,5 Gew% Tetrabutylphosphoniumbromid	14 880 cP	15 200 cP	15 840 cP	16 160 cP

Die vorstehenden Untersuchungen zeigen, daß das Bindemittelgemisch auch bei erhöhten Temperaturen in der Abwesenheit oder in Anwesenheit von Katalysatoren recht lagerungsstabil ist. Dies bedeutet, daß bei der üblichen Lagerung des Bindemittelgemisches bei Außentemperaturen nur ein vernachlässigbarer Viskositätsanstieg erfolgt.

45

Tabelle VI
Herstellung eines Stammlackes als Grundierfüller

<u>· </u>	Anw Beisp.*) 3 Cop.**) 3	Anw Beisp. 4 Cop. 2	Anw Beisp. 5 Cop. 3	Anw Beisp. 6 Cop. 4	Anw Beisp. 7 Cop. 6	Anw Beisp. 8 Cop. 2	
Acrylharz	18,5	18,5	18,5	18,5	18,5	18,5	-
Titandioxid A 59 (Anatas)	10,0	10,0	10,0	10,0	10,0	10,0	
Aluminiumsilikat ASP 600	19,0	19,0	19,0	19,0	23,0	23,0	
Eisenoxid gelb			•				
	1,5	1,5	1,5	1,5	1,5	1,5	
Zinkphosphat Talkum AT extra	10,0	10,0	10,0	10,0 ZP 10	10,0	10,0	
	8,0	8,0	· 8,0	8,0	8,0	8,0	
Zinkoxid S-NT	3,0	3,0	3,0	3,0	3,0	3,0	
Ethylglycolacetal	8,0	8,0	8,0	Methylglycol acetat 8,0	- 7,0	7,0	
Butylacetat	5,0	5,0	5,0	5,0	3,5	3,5	
Sil. LD50/1%ig	1,0	1,0	1,0	1,0	1,0	1,0	
Xylol	3,5	3,5	3,5	3,5	4,5	4,5	
Butylacetat	4,5	4,5	4,5	4,5	1,0	1,0	
•	,		.,-	DBTL 1%ig	-,-	-1-	
Bentone 38 + Bykumen	8,0	8,0	8,0	8,0	1,0	1,0	
Nitrocellulose E 400 20gew%ig	•	•	-, -		8,0	8,0	
in Butylacetat gelöst					-,-	-,-	
Epikote 1001 als Festkörper in %	25,0	25,0	15,0	15,0	50,0	50,0	
Festkörper der Bindemittelmischung	70,7	71,4	69,7	70,0	72,0-	71,3	
	4-		,-	, -,-	73,0	, .,c	
Viskosität cP	30 700	40 000	12 000	13 600	13 000	26 400	
					15 000	20 .00	
Säurezahl	10	10	12	12	6-8	7,1	
Hydroxylzahl	175	173	142	142	210—	230,0	
- yy - 					230	200,0	
*) Anwendungsbeispiel **) Copolymerisat	D	· · · · · · · · · · · · · · · · · · ·			. 200		
1. Verfahren zur Herstellung von	hydroxylgru		gen Copoly		h Polymeris		
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei	hydroxylgru emischen, di it von Polym	ppenhalti e bevorzu erisations	gen Copoly gt einen Sie initiatoren,	edebereich von	h Polymeris 120°C bis 18	30°C aufwei-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Go sen, durch Erhitzen in Anwesenhei a) 70,00-21,00 Gew% Styro b) 2,00-0 Gew% Acryl-, Me	hydroxylgru emischen, di it von Polym ol und/oder V ethacryl- und	ppenhalti e bevorzu erisations Vinyltoluo I/oder Itac	gen Copoly gt einen Sie initiatoren, l, consäure,	edebereich von dadurch geken	h Polymeris 120°C bis 18 nzeichnet, c	80°C aufwei- Iaß	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Go sen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styro	hydroxylgru emischen, di it von Polym ol und/oder V ethacryl- und s oder mehr	ppenhaltige bevorzugerisations erisations Vinyltoluo I/oder Itac erer Hydr	gen Copoly gt einen Sie initiatoren, l, consäure,	edebereich von dadurch geken	h Polymeris 120°C bis 18 nzeichnet, c	80°C aufwei- Iaß	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrob) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines	hydroxylgru emischen, di it von Polym ol und/oder V ethacryl- und s oder mehr tomen im Al	ppenhaltige bevorzugerisations Vinyltoluo Vioder Itac erer Hydr kylrest	gen Copoly gt einen Sid initiatoren, l, consäure, oxyalkylesi	edebereich von dadurch geken ter der Acrylsät	h Polymeris 120°C bis 18 nzeichnet, c	80°C aufwei- laß r Methacryl-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrc b) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0 – 20,00 Gew% eines ode im Alkylrest und	hydroxylgru emischen, di it von Polym ol und/oder V ethacryl- und s oder mehr tomen im Al	ppenhalting bevorzugerisations: Vinyltoluous loder Itac erer Hydrakyltoluous loder Itac erer Hydrakylrest, Alkylester	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkyless	edebereich von dadurch geken der der Acrylsät acrylsäure mit 1	h Polymeris 120°C bis 18 nzeichnet, c	80°C aufwei- laß r Methacryl-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrc b) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry	hydroxylgru emischen, di it von Polym ol und/oder v ethacryl- und s oder mehr tomen im Al er mehrerer	ppenhalting bevorzugerisations: Vinyltoluous loder Itac erer Hydrikylrest, Alkylrest, Alkylester	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylese der Metha exylacrylat	edebereich von dadurch geken der der Acrylsät erylsäure mit 1	h Polymeris. 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen	80°C aufwei- laß r Methacryl- istoffatomen	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrc b) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), o	hydroxylgru emischen, di it von Polym ol und/oder v ethacryl- und s oder mehr tomen im Al er mehrerer vlat und/ode e), d) und e	ppenhalting bevorzugerisations: Vinyltoluous loder Itac erer Hydrikylrest, Alkylester Alkylester 2-Ethylho	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkyless der Metha exylacrylat, en Menge	edebereich von dadurch geken der der Acrylsät acrylsäure mit 1 , n eingesetzt w	h Polymeris. 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen	80°C aufwei- laß Methacryl- stoffatomen	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrob) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffad) 0 – 20,00 Gew% eines ode im Alkylrest unde) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusi	hydroxylgru emischen, di it von Polym ol und/oder v ethacryl- und s oder mehr tomen im Al er mehrerer /lat und/ode c), d) und e ätzliche Bed	ppenhalting bevorzugerisations: Vinyltoluoid/oder Itacerer Hydrikylrest, Alkylester 2-Ethylhingung gil	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkyless der Metha exylacrylat, en Menge t, daß die k	edebereich von dadurch geken der der Acrylsän erylsäure mit 1 , n eingesetzt wa Komponenten ir	h Polymeris. 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß is solchen Me	80°C aufwei- laß Methacryl- stoffatomen ihre Summe	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrc b) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zussetzt werden, daß die Copolymeris	hydroxylgru emischen, di it von Polym ol und/oder v ethacryl- und s oder mehr tomen im Al er mehrerer vlat und/ode c), d) und e ätzliche Bed ate Hydroxy	ppenhalting bevorzugerisations: Vinyltoluo der Itacerer Hydrikylrest, Alkylester 2-Ethylhingung gilvizahlen von	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylese der Metha exylacrylat, en Menge t, daß die k on 40 bis 18	edebereich von dadurch geken der der Acrylsät acrylsäure mit 1 , n eingesetzt wa Komponenten ir	h Polymeris. 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß is solchen Me	80°C aufwei- laß Methacryl- stoffatomen ihre Summe	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrc b) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffad) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusisetzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglerr	hydroxylgru emischen, di it von Polym ol und/oder v ethacryl- und s oder mehr tomen im Al er mehrerer vlat und/ode c), d) und e ätzliche Bed ate Hydroxy n copolymer	ppenhalting bevorzugerisations: Vinyltoluo der Itac erer Hydrikylrest, Alkylester 2-Ethylhe) in solchingung gilylzahlen versisiert werden	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest der Metha exylacrylat en Menge t, daß die k on 40 bis 18 len.	edebereich von dadurch geken der der Acrylsät acrylsäure mit 1 , n eingesetzt wa Komponenten ir	h Polymeris. 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß is solchen Me	80°C aufwei- laß Methacryl- stoffatomen ihre Summe	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrob) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffad) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusisetzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglerr 2. Verfahren nach Anspruch 1, dadie	hydroxylgruemischen, diet von Polymol und/oder Verhacryl- und soder mehretomen im Aler mehrerer vlat und/ode c), d) und e ätzliche Bedate Hydroxyn copolymer urch gekenn	ppenhalting bevorzugerisations: Vinyltoluo der Itacer Hydrikylrest, Alkylester 2-Ethylhe) in solchingung gilylzahlen voisiert werdzeichnet, o	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest der Metha exylacrylat en Menge t, daß die k on 40 bis 18 den.	edebereich von dadurch geken der der Acrylsät acrylsäure mit 1 , n eingesetzt wa Komponenten ir	h Polymeris. 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß is solchen Me	80°C aufwei- laß Methacryl- stoffatomen ihre Summe	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00-21,00 Gew% Styrc b) 2,00-0 Gew% Acryl-, Mec) 10,00-39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0-20,00 Gew% eines ode im Alkylrest und e) 0-38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zussetzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglert 2. Verfahren nach Anspruch 1, dada a) 51,00-30,00 Gew% Styro	hydroxylgruemischen, die von Polymol und/oder Verhacryl- und soder mehrtomen im Aler mehrerer vlat und/ode e), d) und e ätzliche Bedate Hydroxyn copolymer urch gekenn I und/oder V	ppenhalting bevorzugerisations Vinyltoluo Voder Itac erer Hydrikylrest, Alkylester 2-Ethylhe) in solch ingung gil vizahlen von isiert werd zeichnet, of Vinyltoluol	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest der Metha exylacrylat, en Menge t, daß die k on 40 bis 18 den.	edebereich von dadurch geken der der Acrylsät derylsäure mit 1 , n eingesetzt we Componenten ir 0 aufweisen, du	h Polymeris. 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß is solchen Me	80°C aufwei- laß Methacryl- stoffatomen ihre Summe	-
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrob) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffad) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zussetzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglert 2. Verfahren nach Anspruch 1, dada a) 51,00 – 30,00 Gew% Styrob) 1,00 – 2,00 Gew% Acryl-, l	hydroxylgruemischen, diet von Polymol und/oder Verhacryl- und oder mehrerer det und/ode e), d) und e atzliche Bed ate Hydroxyn copolymer urch gekenn l und/oder Verhacryl- und/oder Und/oder Verhacryl- und/oder Und/	ppenhalting bevorzugerisations Vinyltoluo Vioder Itace erer Hydrokylrest. Alkylester 2-Ethylhe) in solch ingung gil vizahlen vor zeichnet, of Vinyltoluolund/oder Italian vor de Vinyltoluolund	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest der Metha exylacrylate en Menget t, daß die k on 40 bis 18 den. daß	edebereich von dadurch geken der Acrylsäuser mit 1 , n eingesetzt was domponenten ir 0 aufweisen, du	h Polymeris: 120°C bis 18 nzeichnet, o ire und/oder bis 8 Kohlen erden, daß i solchen Me rch Erhitzen	80°C aufwei- laß T Methacryl- istoffatomen The Summe The Summe	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrob) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffad) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zussetzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglert 2. Verfahren nach Anspruch 1, dada a) 51,00 – 30,00 Gew% Styro	hydroxylgruemischen, diet von Polymol und/oder Verhacryl- und oder mehrerer det und/ode e), d) und e atzliche Bed ate Hydroxyn copolymer urch gekenn l und/oder Verhacryl- und/oder Und/oder Verhacryl- und/oder Und/	ppenhalting bevorzugerisations Vinyltoluo Vioder Itace erer Hydrokylrest. Alkylester 2-Ethylhe) in solch ingung gil vizahlen vor zeichnet, of Vinyltoluolund/oder Italian vor de Vinyltoluolund	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest der Metha exylacrylate en Menget t, daß die k on 40 bis 18 den. daß	edebereich von dadurch geken der Acrylsäuser mit 1 , n eingesetzt was domponenten ir 0 aufweisen, du	h Polymeris: 120°C bis 18 nzeichnet, o ire und/oder bis 8 Kohlen erden, daß i solchen Me rch Erhitzen	80°C aufwei- laß T Methacryl- istoffatomen The Summe The Summe	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrob) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffad) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusisetzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglert 2. Verfahren nach Anspruch 1, dada a) 51,00 – 30,00 Gew% Styrob) 1,00 – 2,00 Gew% Acryl-, lc) 14,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffat	hydroxylgruemischen, die tvon Polymol und/oder Verhacryl- und oder mehrerer de	ppenhalting bevorzugerisations Vinyltoluoli/oder Itacerer Hydrekylrest, Alkylester r 2-Ethylhe) in solch ingung gil vizahlen vo isiert werd zeichnet, o Vinyltoluol ind/oder literer Hydrokylrest,	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest der Metha exylacrylate en Menget t, daß die k on 40 bis 18 den. daß , taconsäure oxyalkylest	edebereich von dadurch geken der Acrylsäuser mit 1 de eingesetzt was demponenten ir 0 aufweisen, du der der Acrylsäuser der der Acrylsäuser	h Polymeris: 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß a solchen Merch Erhitzen	80°C aufwei- laß T Methacryl- istoffatomen Three Summe lengen einge- auf 120° bis Methacryl-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00-21,00 Gew% Styrc b) 2,00-0 Gew% Acryl-, Mec) 10,00-39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0-20,00 Gew% eines ode im Alkylrest und e) 0-38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusistetzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglert 2. Verfahren nach Anspruch 1, dada a) 51,00-30,00 Gew% Styro b) 1,00-2,00 Gew% Acryl-, lc) 14,00-39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffat d) 10,00-20,00 Gew% eines	hydroxylgruemischen, die tvon Polymol und/oder Verhacryl- und oder mehrerer de	ppenhalting bevorzugerisations Vinyltoluoli/oder Itacerer Hydrekylrest, Alkylester r 2-Ethylhe) in solch ingung gil vizahlen vo isiert werd zeichnet, o Vinyltoluol ind/oder literer Hydrokylrest,	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest der Metha exylacrylate en Menget t, daß die k on 40 bis 18 den. daß , taconsäure oxyalkylest	edebereich von dadurch geken der Acrylsäuser mit 1 de eingesetzt was demponenten ir 0 aufweisen, du der der Acrylsäuser der der Acrylsäuser	h Polymeris: 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß a solchen Merch Erhitzen	80°C aufwei- laß T Methacryl- istoffatomen Three Summe lengen einge- auf 120° bis Methacryl-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrc b) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusi setzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglerr 2. Verfahren nach Anspruch 1, dad a) 51,00 – 30,00 Gew% Styro b) 1,00 – 2,00 Gew% Styro b) 1,00 – 2,00 Gew% eines säure mit 2 bis 8 Kohlenstoffat d) 10,00 – 20,00 Gew% eines men im Alkylrest und	hydroxylgruemischen, diet von Polymol und/oder Verhacryl- und oder mehrerer vlat und/ode et at Hydroxyn i copolymer urch gekenn I und/oder Verhacryl- uoder mehreren im Alloder mehreren i	ppenhalting bevorzugerisations Vinyltoluoli/oder Itacerer Hydrakylrest, Alkylester r 2-Ethylho) in solch ingung gil vizahlen voc zeichnet, c vinyltoluol und/oder Itacerer Hydro kylrest, rer Alkyles	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest r der Metha exylacrylat, en Mengel t, daß die k on 40 bis 18 den. daß taconsäure oxyalkylest ster der Me	edebereich von dadurch geken der Acrylsäure mit 1 n eingesetzt waren eingesetzt waren du der Acrylsäure mit 1 er der Acrylsäure mit 1 er der Acrylsäure mit 1	h Polymeris: 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß a solchen Merch Erhitzen	80°C aufwei- laß T Methacryl- istoffatomen Three Summe lengen einge- auf 120° bis Methacryl-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00-21,00 Gew% Styrc b) 2,00-0 Gew% Acryl-, Mec) 10,00-39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0-20,00 Gew% eines ode im Alkylrest und e) 0-38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusistetzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglert 2. Verfahren nach Anspruch 1, dada a) 51,00-30,00 Gew% Styro b) 1,00-2,00 Gew% Acryl-, lc) 14,00-39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffat d) 10,00-20,00 Gew% eines	hydroxylgruemischen, diet von Polymol und/oder Verhacryl- und oder mehrerer vlat und/ode et at Hydroxyn i copolymer urch gekenn I und/oder Verhacryl- uoder mehreren im Alloder mehreren i	ppenhalting bevorzugerisations Vinyltoluoli/oder Itacerer Hydrakylrest, Alkylester r 2-Ethylho) in solch ingung gil vizahlen voc zeichnet, c vinyltoluol und/oder Itacerer Hydro kylrest, rer Alkyles	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest r der Metha exylacrylat, en Mengel t, daß die k on 40 bis 18 den. daß taconsäure oxyalkylest ster der Me	edebereich von dadurch geken der Acrylsäure mit 1 n eingesetzt waren eingesetzt waren du der Acrylsäure mit 1 er der Acrylsäure mit 1 er der Acrylsäure mit 1	h Polymeris: 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß a solchen Merch Erhitzen	80°C aufwei- laß T Methacryl- istoffatomen Three Summe lengen einge- auf 120° bis Methacryl-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrc b) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusi setzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglerr 2. Verfahren nach Anspruch 1, dad a) 51,00 – 30,00 Gew% Styro b) 1,00 – 2,00 Gew% Styro b) 1,00 – 2,00 Gew% eines säure mit 2 bis 8 Kohlenstoffat d) 10,00 – 20,00 Gew% eines men im Alkylrest und	hydroxylgruemischen, die tvon Polymol und/oder Verhacryl- und oder mehrerer viat und/ode ed, d) und ed atz Hydroxyn copolymer urch gekenn I und/oder Verhacryl- uoder mehreren im Alloder mehrereren acrylat und/oder decomen im Alloder mehrerererererererererererererererererer	ppenhalting bevorzugerisations Vinyltoluoli/oder Itacer Hydrokylrest, Alkylester r 2-Ethylho) in solch ingung gil vizahlen vo zeichnet, o zeichnet, o vinyltoluol ind/oder literer Hydrokylrest, rer Alkyles oder 2-Eth	gen Copolygt einen Sieinitiatoren, l, consäure, oxyalkylest der Metha exylacrylate, daß die kon 40 bis 18 den. daß a, taconsäure oxyalkylest ster der Methalylhexylcryl	edebereich von dadurch geken der Acrylsäure mit 1 n eingesetzt was demponenten ir 0 aufweisen, du er der Acrylsäure mit 1 ethacrylsäure mit 1 at,	h Polymeris: 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß a solchen Merch Erhitzen are und/oder it 1 bis 8 Koh	80°C aufwei- laß T Methacryl- istoffatomen The Summe lengen einge- auf 120° bis Methacryl- thenstoffato-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrc b) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusi setzt werden, daß die Copolymeris 180°C in Abwesenheit von Regier 2. Verfahren nach Anspruch 1, dad a) 51,00 – 30,00 Gew% Styro b) 1,00 – 2,00 Gew% Styro b) 1,00 – 2,00 Gew% eines säure mit 2 bis 8 Kohlenstoffar d) 10,00 – 20,00 Gew% eines men im Alkylrest und e) 13,00 – 20,00 Gew% Butylest und e) 13,00 – 20,00 Gew% Butylest und e) 13,00 – 20,00 Gew% Butylest und even der deren geweichte der der der deren geweichte der der der der der der der der der de	hydroxylgruemischen, die tvon Polymol und/oder Verhacryl- und oder mehrerer viat und/ode ed, d) und ed atz Hydroxyn copolymer urch gekenn I und/oder Verhacryl- uoder mehreren im Alloder mehrereren acrylat und/oder decomen im Alloder mehrerererererererererererererererererer	ppenhalting bevorzugerisations Vinyltoluoli/oder Itacer Hydrokylrest, Alkylester r 2-Ethylho) in solch ingung gil vizahlen vo zeichnet, o zeichnet, o vinyltoluol ind/oder literer Hydrokylrest, rer Alkyles oder 2-Eth	gen Copolygt einen Sieinitiatoren, l, consäure, oxyalkylest der Metha exylacrylate, daß die kon 40 bis 18 den. daß a, taconsäure oxyalkylest ster der Methalylhexylcryl	edebereich von dadurch geken der Acrylsäure mit 1 n eingesetzt was demponenten ir 0 aufweisen, du er der Acrylsäure mit 1 ethacrylsäure mit 1 at,	h Polymeris: 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß a solchen Merch Erhitzen are und/oder it 1 bis 8 Koh	80°C aufwei- laß T Methacryl- istoffatomen The Summe lengen einge- auf 120° bis Methacryl- thenstoffato-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrc b) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusi setzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglerr 2. Verfahren nach Anspruch 1, dad a) 51,00 – 30,00 Gew% Styro b) 1,00 – 2,00 Gew% Styro b) 1,00 – 2,00 Gew% eines säure mit 2 bis 8 Kohlenstoffar d) 10,00 – 20,00 Gew% eines men im Alkylrest und e) 13,00 – 20,00 Gew% Butylwobei die Komponenten a), b), c), d	hydroxylgruemischen, die tvon Polymol und/oder Verhacryl- und soder mehrerer vlat und/ode e), d) und e ätzliche Bed ate Hydroxyn copolymer urch gekenn l und/oder Verhacryl- uoder mehreren mehreren mehreren und e) und e) so at at the hydroxyn oder mehreren	ppenhalting bevorzugerisations: Vinyltoluois/oder Itacerer Hydrakylrest, Alkylester 2-Ethylho) in solchingung gilylzahlen vorzeichnet, of Vinyltoluois und/oder Iterer Hydrokylrest, rer Alkylestoder 2-Ethylpusgewählt	gen Copolygt einen Sieinitiatoren, I, consäure, oxyalkylest der Metha exylacrylat, en Mengelt, daß die kon 40 bis 18 den. daß die koxyalkylest ster der Meylhexylcryl vorliegen,	edebereich von dadurch geken der Acrylsäure mit 1 n eingesetzt was demponenten ir 0 aufweisen, du er der Acrylsäure mit 1 ethacrylsäure mit 1 at,	h Polymeris: 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß a solchen Merch Erhitzen are und/oder it 1 bis 8 Koh	80°C aufwei- laß T Methacryl- istoffatomen The Summe lengen einge- auf 120° bis Methacryl- thenstoffato-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gosen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrob) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffad) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusisetzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglerr 2. Verfahren nach Anspruch 1, dadaa) 51,00 – 30,00 Gew% Styrob) 1,00 – 2,00 Gew% Styrob) 1,00 – 2,00 Gew% eines säure mit 2 bis 8 Kohlenstoffatd) 10,00 – 20,00 Gew% eines men im Alkylrest und e) 13,00 – 20,00 Gew% Butylwobei die Komponenten a), b), c), deingesetzt werden. 3. Verfahren nach Anspruch 1, dadu	hydroxylgruemischen, die tvon Polymol und/oder Verhacryl- und soder mehrerer vlat und/ode ec), d) und eätzliche Bed ate Hydroxyn copolymer urch gekenn l und/oder Verhacryl- uoder mehreren im Alloder mehreren acrylat und/olymol und e) so aurch gekennzten gelagt und/oder mehreten gekennzten gekennz	ppenhalting bevorzugerisations: Vinyltoluoil/oder Itacerer Hydrakylrest, Alkylester 2-Ethylho) in solch ingung gil vizahlen vorzeichnet, over Hydrokylrest, rer Alkylestoder 2-Ethylpusgewählt zeichnet, des gewählt zeichnet, des z	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest r der Metha exylacrylat, en Mengel t, daß die k on 40 bis 18 dien. daß taconsäure oxyalkylest ster der Me	edebereich von dadurch geken der Acrylsäure mit 1 n eingesetzt was demponenten ir 0 aufweisen, du er der Acrylsäure mit 1 ethacrylsäure mit 1 at,	h Polymeris: 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß a solchen Merch Erhitzen are und/oder it 1 bis 8 Koh	80°C aufwei- laß T Methacryl- istoffatomen The Summe lengen einge- auf 120° bis Methacryl- thenstoffato-	
1. Verfahren zur Herstellung von ten Lösungsmitteln oder deren Gesen, durch Erhitzen in Anwesenhei a) 70,00 – 21,00 Gew% Styrc b) 2,00 – 0 Gew% Acryl-, Mec) 10,00 – 39,00 Gew% eines säure mit 2 bis 8 Kohlenstoffa d) 0 – 20,00 Gew% eines ode im Alkylrest und e) 0 – 38,00 Gew% Butylacry wobei die Komponenten a), b), 100 Gew% ergibt, wobei die zusi setzt werden, daß die Copolymeris 180°C in Abwesenheit von Reglerr 2. Verfahren nach Anspruch 1, dad a) 51,00 – 30,00 Gew% Styro b) 1,00 – 2,00 Gew% Styro b) 1,00 – 2,00 Gew% eines säure mit 2 bis 8 Kohlenstoffat d) 10,00 – 20,00 Gew% eines men im Alkylrest und e) 13,00 – 20,00 Gew% Butylwobei die Komponenten a), b), c), deingesetzt werden.	hydroxylgruemischen, die tvon Polymol und/oder Verhacryl- und soder mehrerer vlat und/ode ec), d) und eätzliche Bedate Hydroxyn copolymer urch gekenn I und/oder Verhacryl- uoder mehresomen im Alloder werde ecylat und/oder Verhacrylat	ppenhalting bevorzugerisations: Vinyltoluoil/oder Itacerer Hydrakylrest, Alkylester 2-Ethylho) in solch ingung gil vizahlen vorzeichnet, over Hydrokylrest, rer Alkylestoder 2-Ethylpusgewählt zeichnet, des gewählt zeichnet, des z	gen Copoly gt einen Sie initiatoren, l, consäure, oxyalkylest r der Metha exylacrylat, en Mengel t, daß die k on 40 bis 18 dien. daß taconsäure oxyalkylest ster der Me	edebereich von dadurch geken der Acrylsäure mit 1 n eingesetzt was demponenten ir 0 aufweisen, du er der Acrylsäure mit 1 ethacrylsäure mit 1 at,	h Polymeris: 120°C bis 18 nzeichnet, c ure und/oder bis 8 Kohlen erden, daß a solchen Merch Erhitzen are und/oder it 1 bis 8 Koh	80°C aufwei- laß T Methacryl- istoffatomen The Summe lengen einge- auf 120° bis Methacryl- thenstoffato-	

- d) 18,00-16,00 Gew.-% Methylmethacrylat,
- e) 18,00-15,00 Gew.-% Ethylhexylacrylat,

wobei die Komponenten a), b), c), d) und e) so ausgewählt vorliegen, daß sich diese zu 100 Gew.-% ergänzen, eingesetzt werden.

- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
 - a) 29,00-31,00 Gew.-% Styrol,

5

ſO

15

20

25

40

45

50

55

60

65

- b) 1,00-2,00 Gew.-% Acrylsäure,
- c) 30,00-28,00 Gew.-% Hydroxyethylmethacrylat,
- d) 20,00-18,00 Gew.-% Methylmethacrylat,
- e) 21,00 18,00 Gew.-% Butylacrylat,

wobei die Komponenten a), b), c), d) und e) so ausgewählt vorliegen, daß sich diese zu 100 Gew.-% ergänzen, eingesetzt werden.

- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
 - a) 28,00-61,00 Gew.-% Styrol und/oder Vinyltoluol,
 - b) 1,00-2,00 Gew.-% Acryl-, Methacryl- und/oder Itaconsäure,
 - c) 32,00—14,00 Gew.-% eines oder mehrerer Hydroxyalkylester der Acrylsäure und/oder Methacrylsäure mit 2 bis 8 Kohlenstoffatomen im Alkylrest,
 - e) 24,00 38,00 Gew.-% Butylacrylat und/oder 2-Ethylhexylacrylat,

wobei die Komponenten a), b), c), d) und e) so ausgewählt vorliegen, daß sich diese zu 100 Gew.-% ergänzen, eingesetzt werden.

- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Lösungsmittelgemisch auf 130° bis 180°C unter Rückfluß erhitzt wird und in dieses erhitzte Gemisch das Monomerengemisch sowie der (die) Polymerisationsinitiator(en) getrennt oder bevorzugt gemeinsam, langsam und über einen Zeitraum von 2 bis 8 Stunden, bevorzugt 4 bis 6 Stunden, gleichmäßig in das Reaktionsgefäß gegeben wird (werden), wobei unter Rückfluß die Polymerisationstemperatur von 130°C, bevorzugt 150°C, nicht unterschritten wird, und nach der Monomer- und Peroxidzugabe noch weitere 2 bis 8 Stunden unter Rückflußtemperatur polymerisiert wird bis die Monomeren einpolymerisiert vorliegen, wobei Wasser aus dem Reaktionsansatz durch azeotrope Destillation unter Rückführung des wasserfreien Destillates laufend entfernt wird.
- 7. Verwendung der nach den Ansprüchen 1 bis 6 erhaltenen Copolymerisatlösung zusammen mit Polyisocyanaten als Härter, inerten organischen Lösungsmitteln und gegebenenfalls weiteren, in Reaktionslacken, Grundierungen, Grundier- und Spritzfüllern üblichen Zusätzen, wobei sie als Bindemittel 10,00-90,00 Gew.-% Copolymerisate (als Festkörper berechnet) und 90,00-10,00 Gew.-% Epoxidharze enthält, wobei die Mengen der Copolymerisate und der Epoxidharze so ausgewählt vorliegen, daß diese sich zu 100 Gew.-% ergänzen.
 - 8. Verwendung der Copolymerisatlösung nach Anspruch 7, wobei im Bindemittel bis zu 10 Gew.-% in der Lackindustrie übliche Nitrocellulose enthalten ist.