Le Color

REZOLVARE EXERCITI EX. 6/(B)  $\xi = f(t, \xi), f(t, \xi) = \begin{cases} x \cdot \sin \frac{t}{2}, x \neq 0, t \in \mathbb{R} \end{cases}$ f: RXR -> R  $\frac{\partial f}{\partial x} = \sin \frac{1}{x} + \frac{1}{x} \cos \frac{1}{x} \left( -\frac{1}{x} - \frac{1}{x} \cos \frac{1}{x} \right)$ => 2£ ocutinuo pe R xR & Dre the Cauchy - Picard = + (to, to) = R × R \* problema Cauchy e = 0  $\partial f(t, 0)$ ,  $t \in \mathbb{R}$ lim P(t, x) - f(t,0) = lim x · mu = -0 = lim x (1)  $\Rightarrow$   $\forall$   $\forall \subseteq \mathcal{V}((t_0, 0))$  ( reclucitate a lui  $(t_0, 0)$ ),  $\frac{\partial f}{\partial t}$  un e continuo (mu Euseannia ca me are solutie unica! Ha se poate aplica the landy Picard) Fie problema Cauchy  $\begin{cases} \varkappa - f(t, \varkappa) \\ \varkappa(t_0) = 0 \end{cases}$ Ols. ca solutia stationara & (+) = 0 + + ER e solutie Separarea variabilelore se face pt x + 0 & conclètia Cauche e data in x =0, me pot for separate  $\Rightarrow$  The people Cauchy  $\frac{1}{2} \approx = \beta(t, \pm)$  are a door solution  $\pm (t_0) = 0$  $\chi(t) = 0$ 

Ex4 (a) (x) -2x -t +4x =0 \* = - ((-x')2+2x'+ +2)=B(+, x')  $\begin{cases} t = u \\ y = v = x \end{cases}$   $2 = \beta(u, v) = -v^2 + 2v + u^2$ olx = y => dx = yder Di du + Dit do = volu => 2 du + (-2 + 1) do = volce => (-2++) dv = (v-4) dee =) 1-v dv = 2v - 10 du = 2v - 10 = 0 du = v - 1 > ec. omogena a = 1, b = 0, x = -2, B = 1, d = aB - xb = 1  $\begin{cases} S = v - v_0 \\ \text{unde} \end{cases} \begin{cases} v_0 - 1 = 0 \implies v_0 = 1 \end{cases}$  $\frac{d2}{d3} = \frac{3}{2+2-2s-2} = \frac{0}{2} = \frac{3}{2} = \frac{0}{2} = \frac{3}{2} = \frac{1}{2} = \frac{1}{$ Notain p(s) = 2(s) = 2(s) = p(s) - s ds p-2 = ps+p=1 = dp=(1-p)=)  $\frac{2}{2} \frac{dp}{ds} = \frac{1}{5} \cdot \frac{-p^2 + 2p + 1}{p - 2} = \frac{p - 2}{2p - p^2 + 1} \cdot \frac{dp}{dp} = \frac{1}{5} \cdot \frac{ds}{ds}$ Solution stationare.  $\frac{-p^2+2p+1}{p-2}=0 \Rightarrow P_{1,2}=1\pm \sqrt{2}$  Sol. Stationare  $= 2(3) = (1 \pm \sqrt{2})$  u(v) = 2(3(v)) + 2  $u(v) = (1 \pm \sqrt{2})$   $u(v) = (1 \pm \sqrt{2})$   $u(v) = (1 \pm \sqrt{2})$   $u(v) = (1 \pm \sqrt{2})$ solution paraenet rica  $x = \frac{1}{4}(-v^2 + 2v + t^2)$ 



ECUATII SE ORSIN SUPERIOR Ecuatie dif. de ordin  $n: \mathcal{F}(\ell, x, x', \dots, x'') = 0$ (1) F(t, x(k), x(u)) = 0 - me deprieche de x, x(1), t(k-1) Se face reclucerea orchimiler prin relinibarea de nouvillerté x (16) = y  $z^{(k)}(t) = y(t)$  $\times^{(K+1)}(t) = y(t)$ × (n) (t) - y (n-k) (t) => F(t, 3, 3, -- y((1x)) =0 (2) F(26, 26), 26(a)) Se face price reduceroa ordiniles x'= y ¿ (4) = y (x(t)) \* (x) (x) = y'(x(t)) \* (t) = y'(x(t)) y =) (x2)= y'y =) F(x, y, -- y(21-1)) = 0 (s-q redus ordinal cu 1) 3 F(t, \* , -- , \* (m)) = 0 le face sclerubarea de variabila: = = y /  $\left|\frac{\chi'(x)}{\chi(x)} - \chi(x)\right| = \chi(x) = \chi(x) \chi(x)$ x'= yx = x(2) = yx + yx' /: x  $\Rightarrow \chi(2) = \chi + g \chi \Rightarrow \chi(2) = \chi + \chi^2$ =) F, (t, y, y") ..., y cu-1) = 0

| (4) F                        | (x, tx   | , £2    | ¥ (2) | )   | - ,    | en   | 1<br>XÉ | (N              | )) " | = 0      | 90   | ec. | le  | ll e | 2)  |      | ix l  |     |
|------------------------------|----------|---------|-------|-----|--------|------|---------|-----------------|------|----------|------|-----|-----|------|-----|------|-------|-----|
| de face                      | Schou    | barca   | ale   | va  | real   | 3.   | 1       | t               | 152  | e        | 1c   | -)  | 1)  | 12   | 1   | 1    | +1    |     |
| 0 - X -                      | y (s)    | = * (t  | (1))  |     | 1      | = (  | 83,     | g (             | 9    | <u> </u> | 0    | 38  |     | 21   | 108 | B    |       |     |
| y ->                         | ×(t)     | = 3 (8  | (+))  | = ( | yce    | lu s | 4)      |                 | 17   |          |      |     |     |      |     | 1    | 2     |     |
| * \ =                        | 3 (16t   | )) s'(: | t)    | 1   | 3 320  |      | 2       |                 |      |          |      |     |     | 3    |     | 1    |       |     |
| t >0                         | s =      | lu t    |       |     | 36     | 23   | 33      |                 | 101  |          |      | 1.3 |     | 5 1  | 000 |      | 43(1) |     |
| 10-1                         | \(t) =   | 1       |       | 73  | 2.     |      | 18)     |                 |      | (8)      | 3    | 3   |     |      |     |      |       |     |
| 1 1 1                        | : /> =   |         |       |     |        | ) 4  | 516     | <del>(</del> +) | =    | 1        | *    |     |     |      |     |      |       |     |
|                              | (s(t)    |         |       |     | 0      |      | ,       |                 | -    |          | 4    | - 1 | , \ | 1    |     |      | 4     | 8   |
|                              | t) = y   |         |       |     |        | (0)  |         |                 | 3/1  |          | 2    | 0   | 2   | -5   | 153 |      |       |     |
|                              | = (2 (3  |         |       | 22  | ala    | +)   | 4       | 100             | 1    | + 2      | , Y  | 3/+ | 1)  | /_   | 1   | 14   | 2     | 1.  |
|                              | (t) = y  |         |       |     | (1)(1) | 1)   | E       |                 | E    | 0        | 35   | 7(0 | //  | 1    | = 1 | 10   | 1     | - ( |
|                              |          |         |       |     | 2 11   |      | ×       | СМ              | ) )  |          |      |     |     |      |     | - 70 |       |     |
| $\mathcal{F}(\frac{2}{\xi})$ |          |         |       |     |        |      |         |                 |      |          |      |     |     |      |     |      | - 1   |     |
| se foce                      | schirul  | area    | 1     | t   | 3      |      | (ec     | - 0             | uu   | oge      | le ä | ()  |     |      |     |      |       |     |
|                              | * (1)    | = y(t,  | , ]   |     |        |      |         |                 |      |          |      |     |     |      |     |      |       |     |
| 1.                           |          |         | -     |     |        |      |         |                 |      |          |      |     |     |      |     |      |       |     |
| x = y                        |          |         |       |     |        |      |         |                 |      |          |      |     |     |      |     | *    |       |     |
| zu = y                       |          |         |       |     |        |      |         |                 |      |          |      |     |     |      |     |      |       |     |
| 2e" = 2-                     | y + ty   | 11/- 4  | +     |     |        |      |         |                 |      |          |      |     |     |      |     |      |       |     |
| e) trein                     |          |         |       |     |        |      |         |                 |      |          |      |     |     |      |     | ,    |       |     |
| =) Ec. E                     | Tuler it | u y     | , b:  |     |        |      |         |                 |      |          |      |     |     |      |     |      |       |     |
| 7,                           | (y) t    | 3       | - >   | t z | ( CNI) | ) ,  | -0      |                 |      |          |      |     |     |      |     |      |       |     |
|                              |          |         |       |     |        |      |         |                 |      |          |      |     |     |      |     |      |       |     |
|                              |          |         |       |     |        |      |         |                 |      |          |      |     |     |      |     |      |       |     |
|                              |          |         |       |     |        |      |         |                 |      |          |      |     |     |      |     |      |       |     |
|                              |          |         |       |     |        |      |         |                 |      |          |      |     |     |      |     |      |       |     |

| TEH      | A       | J    | ce  | se  | O       | let | er  | nu  | ľU  | e    | 156 | ole | eti | 9    | 9   | ee    | 10  | rce | lã  |     | pe       | et. | ter | (          |     | 6   | 0   |   |
|----------|---------|------|-----|-----|---------|-----|-----|-----|-----|------|-----|-----|-----|------|-----|-------|-----|-----|-----|-----|----------|-----|-----|------------|-----|-----|-----|---|
| (1)      | 21      | 2    | (1) | 2   | +       | 30  | 12  | Ci  | 3)) |      | _   |     |     | 13.5 |     | i à o |     | 133 |     |     | 193      |     |     | - 3        | 133 |     | I & |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     | e    | - 6 | se    | Re  | de  | ICE | 9   |          |     |     |            |     |     |     |   |
| Tuck     | ecode e | 1    | ×   | O   | =       | y   | =   | ) 3 | £ ( | 3)   | -   | 3   | )   |      |     | 2)    | 19  |     |     |     | 1        | 23  | 1   | +          | 30  | 41  | -   | 0 |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     | 73    | 100 | 5   |     |     | 7        | 0   | ×   | -          | -   | 10  |     |   |
| 2        | tz.     | E    | 1   | - d | 20      | X   | (۱  | 2   | _   | ×    | ¥'  | =   | = < | >    |     |       |     |     | J.  |     |          |     |     |            |     | 1   |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     | -(    | 1   | 10  |     | 14  | 0        | 0.  |     |            | -   | 39  |     |   |
| Male     | cotie   |      | 2   | uy  | Da.     | rea | W   |     | 80  |      | 14  |     | X   |      |     | 7     | a   | U e | 2   | 10  | elu      | Tie | 2   | X          | =   | 0   | ,   |   |
|          |         |      |     | 9   | )<br>(2 | 2)  |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          | _   | ~ 1 |            |     | 7   |     |   |
|          |         |      | t   | 2   |         | -   | - t | - 1 | 1 2 | 2    | )   | 2   |     | æ    | )   | _     | - C |     |     |     | -1       | 2   | X'  | \ <u>-</u> | y   |     |     |   |
|          |         |      |     |     | 1       | >   |     | (3  | N   | A    | /   |     |     | 7    | (3  |       | 1   |     |     | 100 | <u> </u> |     |     | 7          | 1 3 | /   | 1   |   |
| 3) t     | 2 x x   | - 11 | +   | (:  | ¥       | 3-  | tx  | = 1 | )   | 2    | _   | 0   |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
| <i>b</i> | 130,501 | 3    |     | 0   | .0      | 0   | 1   |     | 1   |      | -   | 3   |     |      | N c |       |     |     |     | ( - | 4)       |     |     |            |     |     | ×   |   |
| oud      | licatie | 1    | d   | a   | F       | el  | C   | a   | 10  | re ( | 2   | )   |     |      |     |       |     | *   |     | 1   | 3        |     |     | 1          |     | × 3 | >   |   |
| ) - (    | (美)     | 2    | + 1 | (×  | 1       | 2   |     | 2   | 1   | ×    | u   |     | 2   | ×    | ×   | 1     | k   |     |     |     | 100      |     |     |            |     |     |     |   |
|          | 1 3 4   |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     | 1   |     | 16  | У        |     |     |            | 3-) |     | 35  |   |
| Fide     | catie   | 2    |     | X   |         |     |     |     |     | Ł    |     | e   | 1   |      |     |       |     | 5   |     |     |          |     |     | ) L        | ×   |     | 8   |   |
|          | catie   |      | - 2 | -   | -       | y   | -   | =)  |     | CC   | ,   | Ci  | M   | er   |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     | 3   |     |     |          |     |     | 21/10      | 15  |     |     | 3 |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      | X   | 1     |     | 750 |     |     |          |     |     | 0,75       | N.  |     |     |   |
|          |         |      | 1   | 533 |         |     |     |     |     | )    |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     | 1     |     |     |     |     |          | 1 3 |     | 1          |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     | 1          |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     | -1         |     |     |     |   |
|          |         |      |     | -   |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     | X   |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            | j.  |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     | 28         |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       | 4   |     |     |     |          |     |     |            |     |     |     | 3 |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
|          |         |      |     |     |         |     |     |     | 0   |      |     |     |     | à ·  | 4   |       |     |     | 1   |     |          |     |     |            |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
|          |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |
| -        |         |      |     |     |         |     |     |     |     |      |     |     |     |      |     |       |     |     |     |     |          |     |     |            |     |     |     |   |