Comments on Problem 44.

Ex 44: Prove that $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and that representatives for the cosets are given by $\{\pm 1, \pm 2, \pm 5, \pm 10\}$.

First note that by by Exercise 42, a unit u of \mathbb{Z}_2 is a square if, and only if $u \equiv 1 \pmod 8$. Moreover, by lemmas we developed for the solution to problem 37, we know that every coset in $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$ can be represented by an element in \mathbb{Z}_2 whose first non-zero digit is either in the 'units' place or in the '2's place. That is, the representative has canonical expansion beginning either as 10_{\wedge} or as 1_{\wedge} . We will again use the symbol \sim , for example, $a \sim b$, to mean that a and b are in the same coset in $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$. To tackle finding a complete set of representatives, we consider first the case that the representative u is a unit in \mathbb{Z}_2 .

Lemma 1. Suppose $u \in \mathbb{Z}_2$ is a unit and $u = \dots u_3 u_2 u_1 1_{\wedge}$, then $u \sim u_2 u_1 1_{\wedge}$ in $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$.

Proof. Suppose u is as given. We will show that $u=(u_2u_11_{\wedge})(\dots a_4a_3001_{\wedge})$ where the digits a_i are to be determined. Establishing this shows that $u\sim u_2u_11_{\wedge}$ since $\dots a_4a_3001_{\wedge}$ is a square in \mathbb{Q}_2 and completes the proof.

The proof is by induction; specifically we show that we can solve for a_{i+1} when $a_i, a_{i-1}, \ldots, a_3$ are known. We begin by illustrating the first few steps, from which the general pattern is clear. Consider the multiplication problem:

Clearly, we should take $a_3=u_3$. Substituting this back into the multiplication problem, we solve for a_4 as the solution to the linear equation $a_4+a_3u_1=u_4$. With a_3 and a_4 known, we solve for a_5 as the solution to $a_5+a_4u_1+a_3u_2+a_4a_3u_1=u_5$. Note that the product $a_4a_3u_1$ only equals 1 if both a_4 and a_3u_1 are one. In this case, we need to 'carry' the 1. The general case is now clear. With a_j for $j=3,\ldots,i$ known, set a_{i+1} to be the solution to $a_{i+1}+a_iu_1+a_{i-1}u_2+I(a_i+a_{i-1}u_1+a_{i-2}u_2)=u_{i+1}$, where I denotes the indicator function for the sum. That is, I takes on the value 1 exactly when you need to carry a 1.

Lemma 2. Suppose $x = \dots x_3 x_2 10_{\wedge} \in \mathbb{Z}_2$ is 2u for $u \in \mathbb{Z}_2^*$, then $x \sim x_3 x_2 10_{\wedge}$ in $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$.

Proof. Multiply x by 2^{-1} and apply the last lemma.

Combining Lemmas 1 and 2, a complete set of representatives is found among the set

$$\{u_2u_11_{\wedge}, u_3u_210_{\wedge} \mid u_i = 0, 1\},\tag{1}$$

which is a set with eight elements.

Proof of Exercise 44. Note that by Exercise 42, we know that the squares in \mathbb{Q}_2 are **exactly** those numbers congruent to $1 \pmod 8$, so no two elements in the set in (1) are equivalent in $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$. (If you don't see this immediately $a \sim b$ only if the three right-most non-zero digits in the canonical expansions of a and b agree, and that the units place also agrees. This is what it 'means' to agree up to a square of the form $\dots 001_{\wedge}$.)

Working out the values of the elements in (1), the units are 1, 3, 5, 7, and the non-units are 2, 6, 10, 14. See if you can match these up with Katok's suggestions for generators of $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$. If you follow this proof, you should be able to do this. If you can't,

Finally, since the square of every class in $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$ is the identity element, by the Fundamental Theorem of Finite Abelian groups $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$ is isomorphic to three copies of $\mathbb{Z}/2\mathbb{Z}$.