# ВЛИЯНИЕ ТЕМПЕРАТУРЫ И ОСАДКОВ НА ГОДИЧНЫЙ ЛИНЕЙНЫЙ ПРИРОСТ СОСНЫ ОБЫКНОВЕННОЙ НА БЕРЕГАХ КАНДАЛАКШСКОГО ЗАЛИВА

А.Е. Кухта, вед. науч. сотр. Института глобального климата Росгидромета и РАН, канд. биол. наука

anna\_koukhta@mail.ru

## ми<del>нимивечание</del> в на простава по простава

окружающую среду, определяемую в том числе климатическими условиями. В частности, в литера-туре отмечалась тесная зависимость роста побегов, корней, фотосинтеза и продукции от температуры и количества до-ступной влаги [4; 12; 13; 16; 17; 23]. Вместе с тем связь характеристик роста древесных растений и результатов метеорологических исследований в настоящее время изучены недо-

#### статочно.

Целью данной работы являлся поиск и анализ зависимостей прироста подроста со-сны обыкновенной температуры и перемен в текущем и предыдущем повороте, а также определение климатических факторов, наиболее важных для формирования прироста сосны берегов Кандалакшского залива Белого моря (Мурманская область). Мурманская область находится в Атлантико-Арктической климатической

области умеренного пояса, ее климат морской, смещающийся в пределах широты. под воздействием теплого Мурманского явления. Это зона избыточного увлажнения [7, 24].

Побережье и острова Кандалакшского залива покидают Кольско-Печорскую подпровинцию Евроазиатской таежной области, в Североевропейской флористической провинции, на стыке трех флористических районов: Имандровского, Варзугского и То-позерского [Раменская, 1983, цит. по 24]. Преобладающим типом растительности ос-тров и прибрежного залива являются северо-таежные леса [7, 24]. Исследования прохождения на территории острова Великий Кандалакшского заповедника (окрестности

кордона Городецкий) в сентябре-тябре 2000 г. и мыса Киндо комплексного заказника «Полярный круг» (окрестнос-ти Беломорской биологической станции МГУ) в сентябре 2007 г. (рис. 1). Объектом измерений служил подрост сосны обыкно-венной Pinus sylvestris L . Измерения проводились по методике, частично представленной в [9, 10].



Рис. 1. Карта-схема местности исследований (территория Кандалакшского государственного природного заповедника и комплексного заказника «Полярный круг» ) (http://www.wsbs-msu.ru/maps/okrest1.gif)

Показателемотклика приростов сосны на климатические факторы в нашем исследовании является степень изменчивости хода рос-та. Этот показатель характеризовался рядом индексов прироста, которые получили уда-ление возрастного тренда. Эта процедура включает в себя изменение значения прироста каждого года на скользящую среднюю по 5 годам.

Поиск зависимостей рядов индексов прироста и метеорологических методов осуществлялся с помощью корреляционного анализа. Внешние корреляционные связи лучше всего способствуют изменению этой степени, в которой межгодовые колебания рядов индексов прироста объясняются межгодовыми переменными метеорологическими методами, т.е. про- переход уровня климатической обусловленности межгодовых колебаний прироста.

Климатические факторы характеропределяются значения метеорологических аномалий среднемесячных температур и ме-сячных сумм градиентов, т.е. отклонениями от среднего значения базового периода [2, 3]. Для учета климатической изменчивости хода роста были наблюдались метеорологические аномалии марта, апреля, мая, июня, июля, августа, сентября, обычных и текущих годов. Вовлечение в анализ метеорологических показателей предшествующего года необходимо, поскольку для при-

При росте текущего года важны размер и качество почки, заложенной в предыдущем году, а также количество хвои прошлых лет, осущест-вляющая донорские функции во взгляде на рассматриваемое побегу [21, 23]. С биоценотической точки зрения в районе исследований,

изобилующие скаль-ными выходами, лощинами, котловинами, характерным многообразием местообита-ний. Наличие низина в избыточном увлажнении создает благоприятные условия для заболачивания (влажные места обитания). В то же время возвышенные части рельефа нередко испытывают дефицит влаги (сухие места битания), тонкий слой рыхлых отло-жений, покрывающий коренные скальные породы, не может задерживать стока колебаний в низины [7].

Измерения принято в новых, су-хих и влажных биотопах изучаемых территорий. Всего было объединено 175 кв. Ниже приведены описания характерных для бе-регов биотопов Кандалакшского залива.

Сухие биотопы. Наиболее типичным представителем данного вида местообитаний является сосняк скальный. Он распространен на почти лишенных почвенного покрова выходах горных пород. Сходным типом леса пок-рыты верхние части хорошо дренированных всхолмлений и гряд ледникового происхожде-

**62** лесной вестник 1/2009

ния, а также древние наносные морские терра-сы. Напочвенный покров здесь учитывает преимущественно ягельные лишайники, в связи с чем такие боры называют бельми

Свежие биотопы. Ровные возвышенностиПлато и верхние части склонов представлены в основном сосняки-брусничниками, средние и нижние части склонов – сосняки-черничники. Под пологом леса расположены кустарнички – брусника, черника, вороника. Почва спрятана под сплошным покровом зеленых мхов-мезофитов, родственных в основном роду плевроциум, гилокомиум и дикранум.

Влажные биотопы. В самом уязвимом положении края склонов, в межрядовых понижениях, по окраинам болот и озер, т.е. в местах с избыточным увлажнением преобладают мхи-гигрофиты, преимущественно сфагновые. В условиях избыточного, но еще не застойного увлажнения сфагновые мхи имеют влажные понижения в микрорельефе, а на кочках проявляются зеленые мхи и кустарнички – багульник, голубика, черника, меньше – брусника и вороника. По мере приближения к заболоченным участкам сфагновые мхи все выше под-нимаются по бокам кочек и наконец заселяют их руководство. Таким образом выводится количество ягодных кустарничков и в покрове типичные болотные виды – морошка, клюква, сабельник, вахта, разнообраз-ные осоки [7].

К влажным биотопам мы переносим и скальные места обитания, образованные мел-кими глубинами рельефа, в пост-тоянно аккумулируется атмосферная влага, не имеющая стока из-за непроницаемости подстилающей поверхности. В таких микс-родоемах разработана болотная растительность – сфагнум, мир болотный и прочее. полученные ценозы, хотя и расположенные на выходе скальных пород в предложении места обитания, по сути, конечно, следует классифицировать как влажные.

Для решения поставленных задач прежде всего необходимо было выяснить, наконец сходны древостои о. Великого и Мыса Киндо по характеру изменчивости хода роста. Для этого был проведен корреляционный анализ осредненных рядов ин-дексов прироста для двух изучаемых территорий-

тории. Полученный коэффициент корреляции R оказался равным 0,496, т.е. была обнаружена значимая положительная корреляция по уровням неопределённости 0,90 [1]. Данный результат графически отражен на рис. 2. Из представленных материалов следу-

ет, что ряды индексов прироста древостоев о. Великого и Мыса Киндо очень сходны друг с другом. Очевидно, что 50 % заключения ходов роста сосняков двух берегов Кандалакшского залива проходит почти

полным Рождеством климатических и ценотитические условия их произрастания. определяются же объясняются, вероятно, возникновение ло-кальных факторов, обусловленных структурой рельефа местности (например, микроклима-тические и почвенные характеристики, усло-вия корневой конкуренции, параметров инсо-ляции и поверхностного стока и т.д.). Таким образом, можно интерпретировать-

строить подроста сосны двух берегов Кандалакшского залива как структурные элементы сложного биогеоценоза. Для решения поставленных в нашем исследовании задач мы концентрируем усилия на поиске общих закономерностей данных территорий, учитывая, что именно они характеризуют приверженность древосто-ев изучаемой территории с климатической системой. Такой подход позволит отделить маскирующий принцип «шум», причиной которого являются разнообразные локальные воздействия и проявления.

иские отклики.



Рис. 2. Осредненные ряды индексов приростов древостоев о. Великий и Мыса Киндо

ЛЕСНОЙ ВЕСТНИК 1/2009 63

Таблица1

Коэффициенты соотносят между рядами индексов линейного прироста и аномалиями метеорологических показателей влажных биотопов на мысе Киндо.

|               | Темпера      | атура    | Осадки |        |  |
|---------------|--------------|----------|--------|--------|--|
| Месяц         | год в год го | од год-1 |        |        |  |
| март          | 0,474 -      | 0,154    | 0,071  | 0,122  |  |
| апрель        | 0,093 –      | 0,160    | 0,162  | 0,070  |  |
| Май           | 0,011        | 0,078    | 0,135  | -0,432 |  |
| июнь          | 0,323 -      | 0,346    | -0,686 | -0,314 |  |
| июль          | 0,034 -      | -0,103   | -0,415 | 0,027  |  |
| август        | 0,014        | 0,348    | -0,313 | -0,077 |  |
| сентябрь –0,1 | 14 октябрь   | 0,046    | 0,317  | 0,092  |  |
| -0,118        |              | 0,029    | -0,061 | -0,013 |  |

Примечание: здесь и далее «год-1» означает состояние соответствия года.

Влажные биотопы. Результаты корреляционного анализа рядов индексов прирос-тов и метеорологических показателей представлены в табл. 1.

Как видно из табл. 1, значимая поло-жительная динамика отмечена для темпера-туры марта текущего года (R = 0,474). Значи-мои отрицательные результаты обнаружения для июня и июля текущего года: R = -0,686 и R = -0,415 соответственно. Осадка мая прошлого года также повлияла на отрицательную корреляцию с рядом индексов прироста (R = -0,432). Полученные результаты согласуются с данными литературы [8, 14, 23]. Положительная корреляция

рядов индексов прироста и аномалий температурного графика текущего года держится тем, что в начале вегетационно-го сезона дерево необходимо достаточное количество тепла для запуска процессов роста и развития вегетативных органов. Отмечены отрицательные зависимости-ти рядов индексов прироста от рядов анома-лий перемен в современном году (фенофазы роста междоузлий и

формирования почек возоб-новлений). Данное явление легко объяснимо: рост побегов обеспечивается таким негативным образом, как избыток влажности окружающей среды обитания. Отрицательная зависимость снаружи-на и для фенофазы роста междоузлий предыдущего года. Известно, что размер линейного

прироста у сосны в большой степени опре-деляется состояние растительности в течение года, а состояние текущего года может лишь задержаться или ускорить рост [21, 23]. Следовательно, фактор, негативно воздействующий на рост междоузлей, сдерживает развитие побегов в следующем году. Таким негативным признаком влажных мест обитания, судя по результатам корреляционного анализа, яв-ляется избыток влаги.

Свежие биотопы. Результаты корреляционного анализа рядов индексов прироста для свежих биотопов представлено в табл. 2.

Судя по результатам, представленным в табл. 2, свежие биотопы о. Великого харак-теризуются событиями положительной корреляции рядов индексов прироста и аномалий температуры текущего года (R = 0,333). Для данных местообитаний характерна от-рицательная зависимость рядов индексов от последствий августа (R = -0,325). На территории мыса Киндо в новых биотопах отмечена отрицательная корреляция

с аномалиями колебаний июня и июля текущего года (R = -0,390 и R = -0,414 соответс-твенно).

Причина зрительного несходства в срабатываниях приростов двух исследуемых территорий, температур вегетационного сезона, вероятностей, характерных локальных температурных режимов (что характерно для районов со скальными выходами и многообразием мес-тообитаний). Для выражения отрицательная

Взаимосвязь между рядами индексов прироста и аномалий июня–августа обна-ружена в период окончания линейного роста междоузлия и формирования почки возоб-новления. Следует отметить, что аномалии перехода к вегетационному сезону, по-видимому, не способствуют коле-банию хода роста сосны. Данный результат свидетельствует о достаточном увлажнении свежих биотопов региона. Сухие биотопы. Для определения возмож-ных взаимосвязей параметров роста и погод-ных факторов

влияния биотопов на соответствующие территории также был проведен корреляционный анализ. Его результаты представлены в табл. 3.

**64** ЛЕСНОЙ ВЕСТНИК 1/2009

Та б л и ц а 2 Коэффициенты соотносятся между рядами индексов линейного прироста и аномалиями метеорологических показателей свежих биотопов на мысе Киндо и на о. Великий

|          | о. Великий  |        |           | мыс Киндо |             |        |           |        |
|----------|-------------|--------|-----------|-----------|-------------|--------|-----------|--------|
| Месяц    | Температура |        | Осадка    |           | Температура |        | Осадки    |        |
|          | год в год   | год-1  | год в год | год-1 –   | год в год   | год-1  | год в год | год-1  |
| март     | -0,224      | 0,286  | -0,194    | 0,060 -   | -0,401      | 0,191  | -0,313    | 0,213  |
| апрель   | 0,333       | -0,201 | 0,069     | 0,156     | 0,042       | 0,145  | -0,092    | -0,002 |
| май      | 0,067       | 0,063  | 0,145     | 0,068     | -0,147      | -0,320 | 0,120     | -0,164 |
| июнь     | 0,305       | 0,104  | 0,118     | -0,291    | 0,206       | 0,027  | -0,390    | -0,215 |
| июль     | -0,024      | 0,272  | -0,155    | -0,005    | 0,049       | -0,116 | -0,414    | -0,013 |
| август   | -0,109      | 0,011  | -0,325    | 0,091     | -0,055      | -0,126 | -0,105    | -0,134 |
| сентябрь | -0,305      | 0,183  | -0,166    | 0,001     | -0,137      | -0,267 | 0,241     | -0,019 |
| октябрь  | 0,263       | -0,096 | 0,072     | 0,209     | 0,431       | 0,398  | 0,013     | -0,145 |

Та б л и ц а 3 Коэффициенты соотносят между рядами индексов линейного прироста и аномалиями метеорологических показателей биотопов на мысе Киндо и на о. Великий

|          | о. Великий  |        |           | мыс Киндо |             |        |           |        |
|----------|-------------|--------|-----------|-----------|-------------|--------|-----------|--------|
| Месяц    | Температура |        | Осадка    |           | Температура |        | Осадки    |        |
|          | год в год   | год-1  | год в год | год-1     | год в год   | год-1  | год в год | год-1  |
| март     | -0,068      | 0,135  | -0,491    | 0,276     | -0,555      | 0,193  | -0,162    | -0,047 |
| апрель   | 0,122       | 0,154  | 0,081     | 0,279     | 0,177       | 0,287  | 0,065     | 0,367  |
| май      | 0,304       | -0,058 | -0,390    | 0,417     | -0,115      | -0,144 | -0,005    | -0,063 |
| июнь     | -0,114      | 0,105  | -0,350    | 0,291     | -0,008      | 0,090  | 0,243     | -0,142 |
| июль     | -0,485      | 0,127  | 0,184     | -0,008    | -0,067      | -0,010 | -0,207    | -0,342 |
| август   | -0,184      | -0,341 | -0,158    | -0,262    | -0,031      | -0,141 | -0,177    | -0,019 |
| сентябрь | -0,069      | 0,077  | -0,042    | 0,247     | -0,179      | -0,030 | 0,056     | -0,094 |
| октябрь  | 0,106       | 0,216  | 0,063     | 0,289     | 0,295       | -0,125 | 0,187     | 0,000  |

Ряд индексов прироста подтверждает биото-пов на о. Великие находят отрицательную корреляцию со среднемесячными темпе-ратурами июля текущего года (R = -0,485) и августа прошлого года (R = -0,341). Наблюдается отрицательная корреляция с аномалиями трендов марта (R = -0,491), мая (R = -0,390) и июня (R = -0,350) текущего года. При этом

отмечена положительная связь с осадками мая запаса года (R = 0,417).

Для древостоев мыса Киндо найде-ны следующие правила. Существу-ет значимая отрицательная зависимость динамики роста и температуры текущего года (R = -0,555). Осадка текущего года, судя по значениям коэффициентов корреляции, не дает существенного значения в определении характера формирования ежегодного прироста. Значимая положительная корреляция, выявленная на апрельский год (R = 0,367).

Специфические условия биотопов заключаются в том, что повышение температуры влечет за собой увеличение дефицита влаги. Обнаружена отрицательная зависимость аномалий температуры и индексов прироста фенофазы роста междоуз-лий (текущего года) и формирования почки восстановления (текущего и продолжительного года соответственно). Наличие отрицательных

зависимостей индексов прироста и аномалий показателей июня, июля и августа текущего года остается неясным. В условиях дефицита влаги, пополняемой практически только атмосферными осадками, ожидается, что будут получены высокие значения и будут получены корреляции коэффи-циентов. Однако следует иметь в виду, что условия приготовления биотопов здесь исключительно специфичны, что при исследованиях мы прогнозируем максимально парадоксальные эффекты. Вероятность, при выпадении изменений происходит смыв питательных веществ по

ЛЕСНОЙ ВЕСТНИК 1/2009

наклонной практичной поверхности. Следствием этого и является угнетение роста междоузлий, что отражается в полученных результатах.

Количество влаги, доступной растительности берегов Кандалакшского залива, определяемое атмосферными осадками. Таким образом, дефицит дефицита является стрессом для древостоев в любой из фенофаз вегетативного сезона. Успешное прохождение де-ревом фенофазы позеленения и роста годичных побегов в различной степени влияет на качество закладывания возобновившихся почек.

ления, что, в свою очередь, определит рост междоузлий в следующем вегетационном сезоне. Этим, очевидным и объясняются поло-

основные корреляции рядов индексов прироста и аномалий динамики апреля и мая преддыдущего года. Проведенные на

территории о. Ве-ликий Кандалакшского заповедника и на мысе Киндо (комплексный заказник «Полярный круг» )

исследование не имеет сходного значения для всех древостоев сработал приростов подроста со-сны температуры. Судя по полученным результатам, определяющими по характеру зависимости прироста от температуры являются различные локальные (в т.ч. микроклиматические) факторы. Зависимость устойчивости линейного прироста

от колебаний метеорологических элементов в последних биотопах берегов Канда-лакшского залива, спектром характеристики различных по знакам и средним параметрам. Здесь велика роль «шума», определяющего локальные причины и маскирующего исследуемые нами связи. Очевидно, что почвенная влага не является в новых местах обитания лимитирующим приростом.

Более выражена связь между волн-ниями прироста и колебаниями метеороло-гических элементов в соединениях и во влажных биотопах. Во всех рассматриваемых местах-обитаниях зависимость носит временный характер – значимая отрицательная реакция на водный стресс (вызываемый повышенными температурами) для условий биотопов и значимая отрицательная реакция на избыточное атмосферное увлажнение – для влаж-

ных. Условия существования подроста сосны, как в сфагновых болотах, так и на скальных обнажениях берегов залива являются критическими – во-первых, изза переизбытка влаги, во-вторых – из-за ее нехватки. Именно в биотопах с крайними условиями – на границах возможности свечения сосны – мы можем выделить на фоне «шума» наиболее важные для роста древостоев факторы и определить степень их появления. Таким образом, обеспечением древних условий и влажных мест обитания берегов Кандалакшского залива являются атмосферные осадки (их недостаточно и избыток соответственно).

Автор приносит благодарность вед. н. с. ИГКЭ, д.ф.-м.н. Э.Я. Раньковой, а также доценту МГУЛ к.б.н. Д.Е. Румянцеву за предоставленные данные, консультации и плодотворные материалы для обсуждения.

### Библиографический список

- 1. Большев, Л.Н. Таблицы математической статистики / Л.Н. Большев, Н.В. Смирнов. – М.: Наука. – 1983. – 415 с.
- 2. Будыко, М.И. Изменения климата / М.И. Будыко.
  - Л.: Гидрометеоиздат, 1974.
- 3. Груза, Г.В. Колебания и изменение климата на тер-ритории России / Г.В. Груза, Э.Я. Ранькова // Изв. РАН. Физика атмосферы и океана. Т.39. 2003. № 2. С. 166–185.
- 4. Елагин, И.Н. Времена года в лесах России / И.Н. Елагин. Новосибирск: Наука, 1994. 271 с. 5. Елагин, И.Н. Сезонное развитие сосняков евро-пейской части СССР и Сибири / И.Н. Елагин // Фе-нология, 1969. Вып. 1(3). С. 7–9.
- 6. Елагин, И.Н. Сезонное развитие сосновых лесов / И.Н. Елагин. Новосибирск: Наука, 1976. – 227 с.
- 7. Заповедники СССР. Заповедники часов-ти РСФСР. М.: Мысль, 1988. 287 с.
- 8. Куперман, Ф.М. Морфофизиология растений / Ф.М. Куперман. М.: Высшая школа, 1977. 288 с.
- 9. Кухта, А.Е. Линейный прирост деревьев как инди-катор состояния окружающей среды / А.Е. Кухта // Сибирский экологический журнал, 2003. № 6. С. 767–771.
- Кухта, А.Е. Метод линейного прироста ювенильных древесных растений и его роль в развитии крупномасштабных изменений состояния природной среды и климата / А.Е. Кухта, С.М. Семенов // Проблемы экологического Диптихма и моделирования экосистем. СПб.: Гидрометеоиз-дат, 2002. Т. XVIII. С. 167–192.
- 11. Кухта, А.Е. Воздействие атмосферного загрязнения на растительность на территории Европы / А.Е. Кухта, Б.А. Кухта, А.А. Рудкова и др. // Обзор загрязнений природной среды РФ за 1999 г. Фе-

**66** ЛЕСНОЙ ВЕСТНИК 1/2009

## ПРОДУКЦИОННЫЙ ПРОЦЕСС И СТРУКТУРА ДЕРЕВЬЕВ, ДРЕВЕСИНЫ И ДРЕВОСТОЕВ

- Деральная служба России по гидрометеорологии и мониторингу окружающей среды. М., 2000. С. 42–45.
- 12. Минин, А.А. Корреляционные связи некоторых фенологических тенденций / А.А. Минин, С.М. Гор-бунов. Известия РГО, 1995. Т. 127. Вып. 1. С. 82–86.
- Минин, А.А. Климат на продукцию лесных сообществ / А.А. Минин, В.Н. Козин, В.Д. Со-бакинских. – М.: Известия РАН, сер. Геогр., 1993. – № 1. – С. 96–100.
- Полевой, В.В. Физиология растений / В.В. Поле-вой. М.: Высшая школа, 1989. – 464 с.
- Семенов, С.М. Тропосферный озон и рост роста в Европе / С.М. Семенов, И.М. Кунина, Б.А. Кухта. – М.: Метеорология и гидрология, 1999. – 208 с.
- Синнот, Э. Морфогенез растений / Э. Синнот. М.: Изд-во иностранной литературы, 1963. – 603 с.
- 17. Цельникер, Ю.Л. Географические аспекты фото-синтеза в лесных лесах России / Ю.Л. Цельни-кер, И.С. Малкина, Н.А. Завельская // Проблемы экологического Диптихма и моделирования экосистем. СПб.: Гидрометеоиздат, 2002. Т.
  - XVIII. C. 81-109.

- Андерссон Б. Дефолиация хвойных деревьев.
   Оценки 1984–1987 гг. // Национальный совет Швеции по охране окружающей среды. Лаборатория качества окружающей среды. Уппсала, 1988. 28 стр.
- Влияние изменения климата, адаптация и смягчение последствий изменения климата. Научно-технический анализ.
   Вклад Рабочей группы II во Второй оценочный доклад Межправительственной группы экспертов по изменению климата. (редакторы Уотсон и др.). Cambridge University Press, 1995. 1996. 879 стр.
- 20. Изменение климата. Научная основа. Вклад Рабочей группы I в Третий оценочный доклад Межправительственной группы экспертов по изменению климата.

  (Ноughton J T и др., редакторы). Cambridge University Press, Неправильный год для SAR WG2, 2001. 2001.881 стр.
- 21. Гавриков В.Л., Карлин И.В. Динамическая модель терминального роста дерева // Can. J. F or. res., т. 23, 1993., с. 326–329.
- Холтен, Дж.И. и Кэри, П.Д. Реакция на изменение климата на естественные наземные экосистемы в Норвегии.
   Норский институт природы. 1992.59 стр.
- 23. Козловски Т.Т., Палларди С.Г. Контроль роста древесных растений. Academic Press. 1997. 644 стр.
- 24. http://oopt.info/index.php?page=1
- 25. http://www.wsbs-msu.ru/maps/okrest1.gif