F wande k. 369 (Augustaligus) Auguste Chemoryshiden 3019-3670 Danie - 61-36 te

ning-

EXAMEN

Exercice 1 of 1968)

 Soit le montage de la figure ci-contre. Le secondaire du transformateur triphasé délivre un système de tensions équilibrées de valeur 248 V.

La charge est une résistance $R_a = 10 \Omega$, $Q = \sqrt{3}$.

- a) Donner les formes de la tension redressée U_d et la tension inverse V_{d1} nux bornes d'une diode \mathbb{D}_1 .
- b) Calculer la valeur moyenne de la tension redressée U_d et déduire du courant redressé I_d.
- c) Calculer le facteur de forme F et déduire le taux d'andulation.
- 2) En remplaçant les diodes du montage précédent par des thyristors, on demande :
 - a) Ecrire le fonctionnement de ce redresseur, en citons les intervalles de conduction de chaque diode.
 - b) On indiquera la forme de la tension redressée U_d et la tension inverse au bornes de Th₁ (pour $\alpha = \pi/3$)
 - c) Calculer la valeur moyenne de la tension redressée et l'expression instantanée du courant redressé.

Exercice 3:(pts)

Un hacheur alimente depuis une source de tension constante E_s une machine à courant continu à aimants permanents de f.e.m. E, de résistance R_a et d'inductance L_a. Les interrupteurs supposés parfaits commutent sur une période de hachage fixe T. Les couples d'interrupteurs (K1 K3) et (K2 K4) sont commandés de façon complémentaire avec un rapport cyclique α.

La commande est simultanée. K_1 et K_4 sont fermés dans $[0, \alpha T]$, K_2 et K_3 sont fermés dans $[\alpha T, T]$.

- 1- Quel est le rôle des diodes montées en antiparallèle avec les thyristors
- 2- Ecrire le fonctionnement de ce hacheur.
- 3- Calculer la valeur moyenne de V et déduire celui de i l'expression du courant i(t) pour chaque phase du fonctionnement du hacheur?
 - Déduire avec explications, dans combien de quadrants le montage est-il réversible?
- 4- Donner les expressions du courant i(i) pour chaque phase du fonctionnement de ce type de hacheur?
- 5- Tracer les formes d'onde de V et i en fonction du temps.

UNIVDOCS.COM

CANNER : Electronique de fontsonce 3: Aut Electronique de fontsonce

501: (19,0 pt) 1) a) Fouchonnement: * 100 · Dy Conduit, Dr. D3 Ybgues * 经他一级。 V2>V1 / V2>V3 /A Do st persont Yorko, Volko Diet D, Begues がくのく後 V3>V2> VA Vo, <0, Vo, <0 D1 et D2 blogues LIA Q, D1 - D2 D3

10
$$V_1 = \frac{1}{27} \int_{0}^{1} V_1 d\theta = \frac{3}{2} V_n \sin \frac{\pi}{3}$$
 $\overline{U}_1 = \frac{1}{18} \overline{S} | V_1 d\theta = \frac{3}{2} V_n \sin \frac{\pi}{3}$
 $\overline{U}_2 = \frac{1}{18} \overline{S} | V_2 | \overline{S} | \overline{$

Etalule in El 1/ The role des abodes stéchtuise Done a montage of reversible les courants dans le sensitiverse en quatre quadrants. (018) of Euchionnement du huchen 4/ Expression de cet ex * Kret Ku feune Sur [o, uT]. EE [0, XT]: Kretky francji (1)(t)=(新二年) 04(音):写 V= E3 Rai + lu sti + E OIX times = i(dt) = (tim- E-E) exp = x7 50 * Kz et K3 ferme sur [xT,T]. E ∈ [ατ, τ] : K2 et K3 fermés ((t) = (tmx+€-€) exp(-(t+x3)-5, κ V=-E = Raintade + E OIT (min = (())=(1-e) (1-e) * V = 4[J" Edt + J(-5) dt] V = (24-1) E (0B) K, Ky, K2,K, K4, K4, K2,K & V= Rai+E [= (2x-1)E, -E(0,5 * Peur! V=(2x-1)€. D's Lxy 1/2 => Ko & reversibilité · Pour To(22-1) Es -E Aldy & sixo frevershill