Нейросетевые методы поиска и сегментации объектов в данных современных космических обзоров

Научные руководители: Герасимов С.В., к.ф.-м.н. Мещеряков А.В. Студент: Немешаева Алиса, 4 курс бакалавриата ВМК МГУ

Введение: eRosita

- Рентгеновский телескоп eROSITA снимет всё небо и составит восемь карт неба в мягком рентгеновском излучении.
- Ожидается, что рентгеновский телескоп eROSITA обнаружит 100 000 скоплений галактик.
- Основная научная цель состоит в том, чтобы измерить темную энергию через структуру и историю развития Вселенной, отслеживаемую скоплениями галактик.

Введение: скопления галактик

• Скопления - это самые большие гравитационно связанные структуры во Вселенной. Скопления галактик играют важную роль в задачах определения параметров Вселенной. Скопления галактик излучают энергию в разных диапазонах, и существует множество классических методов для поиска скоплений в различных данных.

 Скопления являются базовыми "кирпичиками", из которых строится Вселенная. Изучая их параметры, можно исследовать структуру локальной Вселенной.

DSS (Optical)

Введение: Planck

Для начала будут использоваться данные микроволнового телескопа Planck в 6 каналах.

Данные этого телескопа покрывают всё небо.

Введение

Эффект Сюняева-Зельдовича — изменение интенсивности радиоизлучения реликтового фона на горячих электронах межзвёздного и межгалактического газа.

Введение

Создание каталогов данных в других диапазонах может помочь уточнить данные каталогов для других диапазонов.

Исследователям важно знать не только координаты скоплений, но и их параметры – красное смещение и массу.

Кроме того, важно иметь возможность составлять либо максимально точные, либо максимально полные каталоги скоплений. Возникает задача ранжирования детектированных объектов.

Поэтому кроме детекции появляется и задача классификации детектированных объектов.

Актуальность: преимущества глубокого обучения

- Стандартные алгоритмы сегментации усредняют информацию по нескольким каналам, в то время как с помощью нейросети можно охватить данные полностью.
- Каждый из классических методов имеет свои достоинства и недостатки, и для каждого диапазона излучения существуют свои алгоритмы, в то время как нейросеть может стать универсальным средством для сегментации данных нескольких каналов одновременно.
- Нейронные сети позволяют извлекать признаки прямо из данных.

Постановка задачи

• Исследование и разработка нейросетевых методов сегментации, детекции и классификации скоплений галактик в многоволновых данных обзоров неба, а также построение каталогов скоплений.

Структура работы

- Обзор данных и обзор методов
- Построение решения
 - Предварительная обработка данных
 - Обучение модели
 - Создание каталога скоплений
- Результаты

Обзор данных и обзор методов

Существующие каталоги

- Рентгеновские:
 - eRosita
 - MCXC
- Микроволновые:
 - PSZ2
 - ACT
- Оптические:
 - RedMaPPer

Обзор: "Детекция эффекта Сюняева-Зельдовича"

https://www.aanda.org/articles/aa/pdf/2020/02/aa36919-19.pdf

Автор этой статьи использует для сегментации данных архитектуру U-net. Основной целью описываемой работы являлось создание алгоритма для детекции источников через эффект Сюняева-Зельдовича по данным телескопа Planck. Кроме самих обзоров неба, полученных телескопом, использовались еще три каталога скоплений для создания целевых данных:

- PSZ2 → planck_z, planck_no_z
- MCXC → mcxcwp
- RedMaPPer → rm30, rm50

В открытом доступе не существует каталогов, полученных автором этой статьи, поэтому полезно повторить эксперимент, чтобы получить самостоятельно эти каталоги, а также сравнить результаты с новым микроволновым каталогом АСТ, которого на момент написания этой статьи ещё не было.

Обзор: U-net

U-net является стандартной архитектурой для сегментации данных. Она подходит для проверки идеи использования методов глубокого обучения для сегментации скоплений. Её симметричная структура позволяет абстрагировать данные изображения, подаваемого на вход, в то время как skipconnection слои помогают увеличивать точность сегментации.

Обзор данных и методов: вывод

- Применение нейросетевых моделей для сегментации данных Planck является актуальной задачей, однако кроме работ плана "доказательство концепции" пока исследований нет.
- Следует изучить эту область, проверить различные реализации нейросетевых моделей и алгоритмов детекции, чтобы получить сравнение с классическими алгоритмами.

Построение решения

- 1) Предобработка.
- 2) Генерация данных для обучения.
- 3) Обучение модели.
- 4) Применение модели, детекция.
- 5) Создание каталога скоплений, его анализ.

Предобработка данных

Предобработка данных

• Данные Planck в разных каналах сильно отличаются по диапазонам значений. Чтобы улучшить результаты обучения, их нужно нормализовать, но так, чтобы можно было выделить значения, сильно отличающиеся от остальных.

Fig. 2. Illustration of the data pre-processing. *Left*: pixel distribution of the map at 353 GHz. A Gaussian is fitted in orange up to the statistical mode of the distribution. The mean and standard deviation of the fitted Gaussian are used to normalise the data. *Right*: pixel distribution after normalisation of the six *Planck* HFI frequency maps.

HEALPix

- HEALPix алгоритм иерархического разбиения сферы.
- Позволяет спроектировать на сферу данные и выбрать для них подходящее разрешение.
- Данные Planck хранятся в качестве изображения сферы, проиндексированного согласно HEALPix.
- HEALPix не искажает площадь объекта, но может искажать форму.

Проекция данных

- Данные Planck хранятся в разбиении HEALPix, в нем же происходили обучение модели и детекция объектов.
- Разбиение с параметром n_{side}=2 позволяет получить 48 больших областей неба. Некоторые из них были использованы для тестирования полученной модели и для валидации, все остальные были использованы для обучения модели.

Генерация патчей для обучения

Случайным образом в соответствующих областях разбиения выбирались центры патчей и их ориентации для создания тренировочных и тестовых выборок. Каждый патч представлял из себя изображение размера 64 х 64 с шестью каналами различных данных.

После этого 100000 патчей были использованы для обучения нейросети.

Создание каталога

Сканирование неба

- Чтобы полностью просканировать область неба, нужно разбить её на патчи размером 64х64, так же, как для обучения.
- Есть смысл сканировать некоторые данные повторно, так, чтобы разные части сканируемой области попадали в разные части патча.
- После сканирования полученные маски нужно объединить в общую predicion маску для всей сканируемой области неба.
- Таким образом появляется новый параметр детекции "шаг".

Step = 32 = size / 2

При уменьшении шага окна сканирования (step) мы наблюдаем увеличение полноты (recall) и уменьшение количества ложных объектов (fp) в ~1.132 paза.

Создание каталога

- После получения маски сегментации для выбранной области неба выбирается порог детекции thr.
- На маске обнуляются пиксели, значение которых < thr.
- На маске "пятна" отделяются друг от друга.
- У каждого "пятна" находим барицентр.
- Координаты преобразовываем в Ra, Dec.

Сопоставление результатов с существующими каталогами

• Чтобы оценить, насколько хорошо получилось детектировать объекты, нужно сравнить свои результаты с существующими каталогами скоплений, рассматривая разные параметры детекции и обучения.

False positives

Fig. 3. Results on the test area containing 40 Planck_z, 18 Planck_no-z, and 50 MCXCwP galaxy clusters. *Left*: Galaxy clusters recovered with different detection thresholds p_{max} . *Right*: number of sources recovered with the U-net that do not belong to the *Planck* or the MCXC catalogue as a function of the threshold p_{max} .

Структура каталога

- Созданы каталоги с параметрами:
 - Area площадь сегментированной области скопления
 - min_rad, max_rad, mean_rad минимальный, максимальный, средний радиусы области
 - min_pred, max_pred минимальное, максимальное значение маски в области
 - Status факт сопоставления скопления с объектом из каталога

catalog	status	tDEC	tRA	max_pred	min_pred	mean_rad	max_rad	min_rad	area	DEC	RA
NaN	fp	NaN	NaN	0.933698	0.901549	1.320277	2.119449	0.701176	4.0	5.094132	259.732221
planck_no_z	tp	26.482998	283.519410	0.957279	0.901048	1.317352	2.110640	0.700159	4.0	26.460609	283.542185
planck_z	tp	30.932247	280.278406	0.988940	0.900285	1.673052	2.503611	0.700308	7.0	30.912179	280.308927
planck_z	tp	30.431996	276.336046	0.985809	0.906883	1.576871	2.616653	0.292191	7.0	30.419430	276.363142
planck_z	tp	32.998643	266.067814	0.968407	0.903614	1.422385	2.275328	0.447466	5.0	32.971296	266.093042

Результаты

Сравнение с каталогом eRosita

- По данным eRosita также составляются каталоги, с которыми можно сравнивать полученные результаты.
- Эти каталоги созданы без использования нейросетевых методов.
- Ancat и psz2 созданы по одним и тем же данным, но в ancat найдено 640 других объектов в каталоге eRosita. Полученный каталог является наиболее полным каталогом кадидатов в скопления по данным Planck.
- Psz2 каталог самых надежных объектов данных Planck.
- Brcat более полный каталог на данных Planck созданный стандартным методом.
- Redmp каталог RedMaPPer.

Каталог с planck_z

Matrix of UNIQUE eRosita matches

	ancat	brcat	psz2	redmp
ancat	1704	1064	574	676
brcat	1064	1715	531	641
psz2	574	533	593	227
redmp	680	643	228	4461

Каталог с planck_z и act

Matrix of UNIQUE eRosita matches

	ancat	brcat	psz2	redmp
ancat	2355	1022	590	993
brcat	1020	1715	531	641
psz2	589	533	593	227
redmp	994	643	228	4461

Текущие результаты

Созданы алгоритмы предобработки данных Planck.

- Обучена модель для сегментации данных Planck.
- Созданы алгоритмы детекции масок сегментации, производимых моделью.
- Созданы каталоги по моделям, обученным на каталогах planck_z и plank_z+act.

Дальнейшие планы

- Классификация.
- Статья о полученных каталогах.
- Перейти на детекцию скоплений в других диапазонах излучения.

Дальнейшие планы

- Готовы алгоритмы для предобработки оптических данных DESI LIS.
- Однако их разрешение выше, чем разрешение данных Planck, поэтому нужно придумать, как соединить эти каналы.

Дальнейшие планы

Один из вариантов: добавлять разные данные на разные блоки кодировщика U-net.

Спасибо за внимание