مسألة بناء شجرة مسح (ذات امتداد) في بيان غير موجه Spanning tree constructing problem in مسألة بناء شجرة مسح (ذات امتداد)

لنعتبر البيان غير الموجة (V,A)=0 المؤلف من مجموعة العقد V=V و من مجموعة الأقواس غير البيان غير الموجهة m=|A|=m و لنعتبر أن كل قوس غير موجة $e\in A$ مزود بقيمة حقيقية غير سالبة تدعى عير الموجهة $w(e)\geq 0$.

الشجرة في بيان غير موجة بسيط (أي لايوجد أكثر من قوس واحد بين كل عقدتين من البيان D = (V, F) ومتصل (أي $D^* = (V, F)$ ويدون وجود حلقات هي بيان جزئي $D^* = (V, F)$ من البيان الأساسي و مجموعة أقواسة $D^* = (V, F)$ تشكل مجموعة جزئية من مجموعة الأقواس للبيان الأساسي $D^* = (V, F)$.

وكمثال على شجرة مسح ذات امتداد هي شجرة العائلة الورائية وشبكة الاتصالات ... الخ.

1. خوارزمية شرهة لبناء شجرة مسح (ذات امتداد) في بيان غير موجة (constructing a spanning tree in non-directed graph

(greedy algorithm) الخوارزمية الشرهة

مثال 1. أوجد شجرة المسح ذات الامتداد في البيان غير الموجة التالي:

e_8	e_7	$e_{_6}$	$e_{\scriptscriptstyle 5}$	$e_{_4}$	e_3	$e_{_2}$	e_1	$e_{_k}$ الأقواس
(3,4)	(2,5)	(2,4)	(2,3)	(1,5)	(1,4)	(1,3)	(1,2)	k = (i, j)
7	8	2	4	10	1	5	6	$w(e_{k})$

$F = \{e_1\}$ المرحلة الأولى:

 $F = \{e_1, e_2\}$ المرحلة الثانية:

 $F = \{e_1, e_2, e_3\}$ المرحلة الثالثة:

 $F = \{e_1, e_2, e_3, e_4\}$ المرحلة الرابعة:

$F = \{e_1, e_2, e_3, e_4\}$ المرحلة الخامسة:

 $W\left(D^*\right)=w\left(e_1\right)+w\left(e_2\right)+w\left(e_3\right)+w\left(e_4\right)=6+5+1+10=22$ شجرة مسح ذات امتداد بوزن $F=\left\{(1,2),(1,3),(1,4),(1,5)\right\}$

مثال 2. أوجد شجرة المسح ذات الامتداد في البيان غير الموجة التالي:

e_{10}	e_9	e_8	e_7	e_6	$e_{\scriptscriptstyle 5}$	e_4	e_3	e_{2}	e_1	$e_{_k}$ الأقواس
(5,6)	(4,6)	(3,6)	(3,5)	(3,4)	(2,5)	(2,3)	(1,4)	(1,3)	(1,2)	k = (i, j)
6	2	4	6	5	3	5	5	1	6	$w(e_k)$

 $F = \{e_1\}$:المرحلة الأولى

 $F = \{e_1, e_2\}$ المرحلة الثانية:

 $F = \{e_1, e_2, e_3\}$ المرحلة الثالثة:

 $F = \{e_1, e_2, e_3, e_5, e_8\}$ المرحلة الخامسة:

$F = \{e_1, e_2, e_3, e_5, e_8\}$:المرحلة السادسة

•
$$W(D^*) = w(e_1) + w(e_2) + w(e_3) + w(e_5) + w(e_8) = 6 + 1 + 5 + 3 + 4 = 19$$

$$F = \{(1,2), (1,3), (1,4), (2,5), (3,6)\}$$

2. مسألة شجرة مسح (ذات امتداد) بوزن أصغري في بيان غير موجة Minimum-weight)

spanning tree problem in non-directed graph)

.3

(greedy algorithm of Kruskal) الخوارزمية الشرهة لـ كروسكال

مثال 3. أوجد شجرة المسح ذات الامتداد بوزن أصغري في البيان غير الموجة التالي:

10	8	7	6	5	4	2	1	الأوزان
								$w(e_k)$
								مرتبة
								تصاعديا
e_8	e_7	e_6	$e_{\scriptscriptstyle 5}$	$e_{_4}$	e_3	e_{2}	e_1	$e_{_k}$ الأقواس
(1,5)	(2,5)	(3,4)	(1,2)	(1,3)	(2,3)	(2,4)	(1,4)	k = (i, j)

$F = \{e_1\}$ المرحلة الأولى:

 $F = \{e_1, e_2\}$ المرحلة الثانية:

 $F = \{e_1, e_2, e_3\}$ المرحلة الثالثة:

 $F = \{e_1, e_2, e_3, e_7\}$ المرحلة الرابعة:

شجرة مسح ذات امتداد بوزن أصغري

$$W(D^*) = w(e_1) + w(e_2) + w(e_3) + w(e_7) = 1 + 2 + 4 + 8 = 15$$

$$F = \{(1,4), (2,4), (2,3), (2,5)\}$$

مثال 4. أوجد شجرة المسح ذات الامتداد بوزن أصغري في البيان غير الموجة التالي:

6	6	6	5	5	5	4	3	2	1	الأوزان
										$w(e_k)$
										مرتبة
										تصاعديا
e_{10}	e_9	e_8	e_7	e_6	$e_{_{5}}$	$e_{_4}$	e_3	$e_{_2}$	$e_1^{}$	$e_{_k}$ الأقواس
(5,6)	(3,5)	(1,2)	(3,4)	(2,3)	(1,4)	(3,6)	(2,5)	(4,6)	(1,3)	k = (i, j)

 $F = \{e_1, e_2\}$ المرحلة الثانية:

 $F = \{e_1, e_2, e_3, e_4\}$ المرحلة الرابعة:

 $F = \{e_1, e_2, e_3, e_4, e_6\}$ المرحلة السادسة:

شجرة مسح ذات امتداد بوزن أصغري

$$W(D^*) = w(e_1) + w(e_2) + w(e_3) + w(e_4) + w(e_6) = 1 + 2 + 3 + 4 + 5 = 15$$

$$F = \{(1,3), (4,6), (2,5), (3,6), (2,3)\}$$