Lógica e Sistemas Digitais

Adição e subtração no domínio dos números naturais e relativos com representação limitada de operandos e resultados

Indicadores de erro e indicadores relacionais

João Pedro Patriarca (<u>jpatri@cc.isel.ipl.pt</u>)

Slides inspirados nos slides do prof. Mário Véstias

Erro na representação de resultados na adição e subtração

- Por norma, num sistema computacional, o número de bits para codificar operandos é igual ao número de bits para codificar resultados
- Qualquer resultado tem uma interpretação incorreta sempre que não seja possível codificar o valor do resultado com o número de bits definido
- A afirmação anterior é válida quer no domínio dos naturais quer no domínio dos relativos como também quer na operação adição quer na operação subtração
- Exemplos de resultados não representáveis no domínio № com codificação a 4 bits (0..15)

$$10 + 9 = 19$$

$$4 + 12 = 16$$

$$0 - 1 = -1$$

$$10 + 9 = 19$$
 $4 + 12 = 16$ $0 - 1 = -1$ $11 - 15 = -4$

• Exemplo de resultados não representáveis no domínio $\mathbb Z$ com codificação a 4 bits (-8..+7)

$$7 + 7 = 14$$

$$-5 + (-4) = -9$$

$$7 + 7 = 14$$
 $-5 + (-4) = -9$ $-3 - 7 = -10$ $6 - (-2) = 8$

$$6 - (-2) = 8$$

Flag de erro na adição no domínio N

• Exemplo em binário com operandos e resultados a 4 bits

• A interpretação errada do resultado na adição de números naturais acontece sempre que a operação produz arrasto (*carry*)

Flag de erro na subtração no domínio N

• Exemplo em binário com operandos e resultados a 4 bits

- A interpretação errada do resultado na subtração de números naturais acontece sempre que a operação adição não produz arrasto (carry)
- O arrasto na subtração (borrow) é o inverso do arrasto na adição (carry)

Flag de erro na adição no domínio Z

• Exemplo em binário com operandos e resultados a 4 bits

7 + (-5) = +2	-8 + 6 = -2	5 + 2 = +7	-4 + (-3) = -7		
$ \begin{array}{c cccc} & 0 & 111 & (+7) \\ & + & 1011 & (-5) \\ \hline & 1 & 0 & 010 & (+2) \end{array} $	$ \begin{array}{c cccc} & 1000 & (-8) \\ & + & 0110 & (+6) \\ \hline & 0 & 1110 & (-2) \end{array} $	0101 (+5) + 0010 (+2) 0 0111 (+7)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
4 + 6 = +10	-1 + (-8) = -9				
4 + 6 = +10 0100	-1 + (-8) = -9 1111				

- Impossível exceder o domínio na adição de operandos com sinais diferentes (_____ retângulos verdes)
- Operandos com o mesmo sinal (retângulos vermelhos), existe erro se o resultado tiver um sinal diferente do sinal dos operandos

Flag de erro na subtração no domínio Z

Exemplo em binário com operandos e resultados a 4 bits

- Mesmas regras que na adição
- O sinal observado no complemento do valor a subtrair corresponde ao sinal do complemento restringido que é relevante para o complemento do valor -8 (5º. exemplo)

Overflow (exceder o domínio nos números relativos)

• Definição de *Overflow*:

Há *Overflow* quando a soma de dois números positivos produz um número negativo ou quando a soma de dois números negativos produz um número positivo

Expressão algébrica

$$Ov = \overline{A_n}.\overline{B_n}.S_n + A_n.B_n.\overline{S_n}$$

• Expressão baseada nos arrastos C_n e C_{n+1}

$$Ov = C_n \oplus C_{n+1}$$

$$C_n \quad \dots \quad C_1$$

$$A_n \quad \dots \quad A_1 \quad A_0$$

$$+ \quad B_n \quad \dots \quad B_1 \quad B_0$$

$$C_{n+1} \quad S_n \quad \dots \quad S_1 \quad S_0$$

• Expressão baseada nos arrastos \mathcal{C}_n e \mathcal{C}_{n+1} mas sem acesso a \mathcal{C}_n

$$S_n = A_n \oplus B_n \oplus C_n \iff C_n = A_n \oplus B_n \oplus S_n \implies Ov = A_n \oplus B_n \oplus S_n \oplus C_{n+1}$$

Indicadores relacionais

Considerações gerais

- A comparação entre dois números é realizada <u>apenas e somente</u> por análise do resultado da subtração
- Siglas típicas para os dois domínios (considerando a subtração A-B)
 - A (*Above*): A é maior que B nos ℕ
 - AE (Above or Equal): A é maior ou igual que B nos №
 - B (*Below*): A é menor que B nos ℕ
 - BE (Below or Equal): A é menor ou igual a B nos №
 - G (*Greater*): A é maior que B nos ℤ
 - GE (*Greater or Equal*): A é maior ou igual a B nos \mathbb{Z}
 - L (*Less*): A é menor que B nos \mathbb{Z}
 - LE (*Less or Equal*): A é menor ou igual que B nos ℤ
 - Z (Zero) ou E (Equal): A é igual a B quer nos N, quer nos Z
- Um resultado negativo indica que o operando A é inferior a B
- Um resultado positivo indica que o operando A é superior ou igual a B

Flags relacionais

- A relação de igualdade entre dois operandos é obtida por análise de todos os bits do resultado; o OR negado de todos os bits do resultado implementa a flag Zero ou flag Equal, independentemente do domínio ($Equal = \overline{S_n + \dots + S_1 + S_0}$)
- A relação entre dois operandos, para o domínio $\frac{+ \overline{B_n} \dots \overline{B_1}}{C_{n+1} S_n \dots S_1} \overline{S_0}$ \mathbb{N} , é obtida por análise da *flag borrow*
- O valor direto de *borrow* implementa a relação *Below*, nos ℕ
- A relação entre dois operandos, para o domínio \mathbb{Z} , é obtida por análise do sinal do resultado (S_n) e pela *flag overflow*
- O XOR entre o sinal do resultado e a flag overflow implementa a relação Less, nos \mathbb{Z} (Less = $S_n \oplus Ov$)

Exemplos

Completar considerando a operação $R = A - B - C_{in}$ (a dimensão da codificação dos números é indicado em cada tabela)

Ex1 – 4 b	its	R	А	В	Cin/Bin	Cout/Bout	OV	BL	GE
Base 2		0001		1000					
Dece 10	N				0		-	0	-
Base 10	Z					-		-	

Ex3 – 3 bits		R	А	В	Cin/Bin	Cout/Bout	OV	BL	GE
Base 2									
	Ø						-	1	-
Base 10	\mathbb{Z}	-4				-		-	0

Solução Ex1

Ex1 – 4 bits		R	А	В	Cin/Bin	Cout/Bout	OV	BL	GE
Base 2		0001	1001	1000					
D 10	N	1	9	8	0	0	-	0	-
Base 10	Z	1	-7	-8		-	0	-	1

- Sendo R=1, o resultado poderá ser 1 (sem erro) ou -15 (com erro)
- Nos naturais, para R=-15, A=-7 o que torna impossível esta hipótese (o valor -7 não é representável nos naturais)
- Nos naturais, para R=1, A=9, logo BL=0 e Bout=0
- Nos complementos, A=-7, B=-8, logo R=1 e, portanto, OV=0 e GE=1

Solução Ex2

Ex2 – 6 bits		R	А	В	Cin/Bin	Cout/Bout	OV	BL	GE
Base 2		101001	011111	110101					
D = = 10	N	41	31	53	1	1	-	1	-
Base 10	\mathbb{Z}	-23	+31	-11		-	1	-	1

- Nos complementos B=-11
- Nos complementos R=-23 (com OV=0) ou R=+41 (com OV=1)
- Nos complementos, para R=-23, implica A=-33 tornando impossível esta hipótese porque com 6 bits o menor valor representável é -32
- Nos complementos, para R=+41, A=+31. Satisfazendo as condições, OV=1 e GE=1
- Nos naturais, R=41, A=31, B=53, logo o resultado excede o domínio e, por isso, Bout=1; como A<B, BL=1

Solução Ex3

Ex3 – 3 bits		R	А	В	Cin/Bin	Cout/Bout	OV	BL	GE
Base 2		100	000	011					
D 10	N	4	0	3	1	1	-	1	-
Base 10	\mathbb{Z}	-4	0	+3		-	0	-	0

- Nos relativos, R=-4 (com OV=0) ou R=+4 (com OV=1)
- Para GE=0, A<B nos complementos, logo o resultado tem de ser negativo, ou seja, R=-4. Esta condição inviabiliza A>0 e B<0
- Para BL=1, A<B nos naturais inviabilizando que nos complementos A<0 e
 B>=0 e também que A<0 e B<0, logo apenas será possível com A>=0 e B>=0
- Para satisfazer R=-4, B>A nos naturais e nos relativos, os únicos valores de A e de B que satisfazem as condições são 0 e 3, respetivamente, com Bin=1

Exercícios

Completar considerando a operação $R = A - B - C_{in}$ (a dimensão da codificação dos números é indicado em cada tabela)

Ex1 – 4 b	its	R	Α	В	Cin/Bin	Cout/Bout	OV	BL	GE
Base 2		0000							
Dana 10	N		0				-	1	-
Base 10	Z					-		-	1

Ex2 – 6 b	oits	R	А	В	Cin/Bin	Cout/Bout	OV	BL	GE
Base 2				110101					
D 10	N				1		-		-
Base 10	\mathbb{Z}	-22				-		-	

Ex3 – 3 bits R		R	А	В	Cin/Bin	Cout/Bout	OV	BL	GE
Base 2									
Dans 10	N	7		0			-	0	-
Base 10	\mathbb{Z}					-		-	1

