Learning and generalization in over-parameterized neural networks, going beyond kernels

Yuanzhi Li

Stanford University

date: Today

• Practical machine learning (Phase 1):

• Practical machine learning (Phase 1):

• Practical machine learning (Phase 1):

• Single layer perceptrons (linear regressions, kernel methods, linear regression over feature mappings).

• Practical machine learning (Phase 2):

• Practical machine learning (Phase 2):

• Practical machine learning (Phase 2):

• Feature mappings with convex regularizations (e.g. ℓ_1 regularizations for Lasso, nuclear norm regularizations for matrix completion, matrix sensing, PSD regularizations for SOS).

• Practical machine learning (Phase 3):

• Practical machine learning (Phase 3):

• Practical machine learning (Phase 3):

- •
- Multi-layer perceptrons (Deep learning) and non-convex algorithms.

Theoretical machine learning (Phase 1):

 We understand most of the fundamental questions in these methods, both statistically (sample complexity) and computationally.

• Theoretical machine learning (Phase 2):

•

 We understand most of the fundamental questions in convex regularizations, both statistically (sample complexity) and computationally.

Theoretical machine learning (Phase 3):

PAC learning setting:

- PAC learning setting:
 - (a). Linear networks, neural networks with one neuron (e.g. learning a single ReLU/Sigmoid), neural networks over one dimension inputs.

- PAC learning setting:
 - (a). Linear networks, neural networks with one neuron (e.g. learning a single ReLU/Sigmoid), neural networks over one dimension inputs.
 - (b). Training last layers of neural networks: Conjugate kernel.

- PAC learning setting:
 - (a). Linear networks, neural networks with one neuron (e.g. learning a single ReLU/Sigmoid), neural networks over one dimension inputs.
 - (b). Training last layers of neural networks: Conjugate kernel.
 - (c). Learning neural networks with kernels methods.

- PAC learning setting:
 - (a). Linear networks, neural networks with one neuron (e.g. learning a single ReLU/Sigmoid), neural networks over one dimension inputs.
 - (b). Training last layers of neural networks: Conjugate kernel.
 - (c). Learning neural networks with kernels methods.
 - (d). Neural networks can learn functions that are learnable by kernels: The neural tangent kernel (NTK) approach.

Theoretical machine learning (Phase 3'):

 Learning neural networks with strong distributional assumptions of the inputs(usually spherical Gaussian).

- Learning neural networks with strong distributional assumptions of the inputs(usually spherical Gaussian).
- Unrealistic in practice: In fact, the machine learning community interested in real-world applications finds the this setting questionable:

- •
- Learning neural networks with strong distributional assumptions of the inputs(usually spherical Gaussian).
- Unrealistic in practice: In fact, the machine learning community interested in real-world applications finds the this setting questionable:
 - They will punch you in the nose if you try to tell them about algorithms in this framework. – Ryan O'Donnell

- Learning neural networks with strong distributional assumptions of the inputs(usually spherical Gaussian).
- Unrealistic in practice: In fact, the machine learning community interested in real-world applications finds the this setting questionable:
 - They will punch you in the nose if you try to tell them about algorithms in this framework. – Ryan O'Donnell
- This talk focuses on (distribution free) PAC learning.

In this talk

In this talk

 We will cover (d): neural tangent kernel (NTK) and (e): beyond kernel analysis for neural networks.

In this talk

- We will cover (d): neural tangent kernel (NTK) and (e): beyond kernel analysis for neural networks.
- In (distribution free) PAC learning setting.

• Recall that a (mercer) kernel is a function $K(x, y) = \langle \phi(x), \phi(y) \rangle$ over pair of inputs x, y. ϕ is called the feature mapping.

- Recall that a (mercer) kernel is a function $K(x, y) = \langle \phi(x), \phi(y) \rangle$ over pair of inputs x, y. ϕ is called the feature mapping.
- Given a (smooth) function f(W,x) with parameters W and input x, we can taylor expand at fixed parameters W_0 :

- Recall that a (mercer) kernel is a function $K(x, y) = \langle \phi(x), \phi(y) \rangle$ over pair of inputs x, y. ϕ is called the feature mapping.
- Given a (smooth) function f(W, x) with parameters W and input x, we can taylor expand at fixed parameters W_0 :
- $f(W,x) = f(W_0,x) + \langle \nabla_W f(W_0,x), W W_0 \rangle + O(\|W W_0\|_F^2)$

- Recall that a (mercer) kernel is a function $K(x, y) = \langle \phi(x), \phi(y) \rangle$ over pair of inputs x, y. ϕ is called the feature mapping.
- Given a (smooth) function f(W, x) with parameters W and input x, we can taylor expand at fixed parameters W_0 :
- $f(W,x) = f(W_0,x) + \langle \nabla_W f(W_0,x), W W_0 \rangle + O(\|W W_0\|_F^2)$
- Tangent kernel (given by feature mappings): $\nabla_W f(W_0, x)$.

Tangent kernel and neural tangent kernel

- Recall that a (mercer) kernel is a function $K(x, y) = \langle \phi(x), \phi(y) \rangle$ over pair of inputs x, y. ϕ is called the feature mapping.
- Given a (smooth) function f(W,x) with parameters W and input x, we can taylor expand at fixed parameters W_0 :
- $f(W,x) = f(W_0,x) + \langle \nabla_W f(W_0,x), W W_0 \rangle + O(\|W W_0\|_F^2)$
- Tangent kernel (given by feature mappings): $\nabla_W f(W_0, x)$.
- Neural tangent kernel (NTK) $K(x,y) = \langle \nabla_W f(W_0,x), \nabla_W f(W_0,y) \rangle$ where f is the neural network, W_0 is usually the (random) initialization.

Theorem (ALS'18, arXiv:1811.03962)

• Given a (convolution/fully connected/(BN)) L-layer ReLU neural network f(W,x) with m-neurons per layer, given N distinct training examples, when the following Oops! conditions are satisfied:

- Given a (convolution/fully connected/(BN)) L-layer ReLU neural network f(W,x) with m-neurons per layer, given N distinct training examples, when the following Oops! conditions are satisfied:
 - Over-parameterization: $m \ge poly(N, L)$.

- Given a (convolution/fully connected/(BN)) L-layer ReLU neural network f(W,x) with m-neurons per layer, given N distinct training examples, when the following Oops! conditions are satisfied:
 - Over-parameterization: $m \ge poly(N, L)$.
 - Proper initialization (Typically $N(0, \frac{2}{m})$ for each parameter in each hidden neuron).

- Given a (convolution/fully connected/(BN)) L-layer ReLU neural network f(W,x) with m-neurons per layer, given N distinct training examples, when the following Oops! conditions are satisfied:
 - Over-parameterization: $m \ge poly(N, L)$.
 - Proper initialization (Typically $N(0, \frac{2}{m})$ for each parameter in each hidden neuron).
 - Small learning rate: $\eta \ll \frac{1}{\sqrt{m}}$.

- Given a (convolution/fully connected/(BN)) L-layer ReLU neural network f(W,x) with m-neurons per layer, given N distinct training examples, when the following Oops! conditions are satisfied:
 - Over-parameterization: $m \ge poly(N, L)$.
 - Proper initialization (Typically $N(0, \frac{2}{m})$ for each parameter in each hidden neuron).
 - Small learning rate: $\eta \ll \frac{1}{\sqrt{m}}$.
- Then SGD can find a point W^* efficiently with small (o(1)) training loss (cross entropy, ℓ_2 etc) such that:

$$f(W^*,x) = f(W_0,x) + \langle \nabla_W f(W_0,x), W^* - W_0 \rangle + o(1)$$

- Given a (convolution/fully connected/(BN)) L-layer ReLU neural network f(W,x) with m-neurons per layer, given N distinct training examples, when the following Oops! conditions are satisfied:
 - Over-parameterization: $m \ge poly(N, L)$.
 - Proper initialization (Typically $N(0, \frac{2}{m})$ for each parameter in each hidden neuron).
 - Small learning rate: $\eta \ll \frac{1}{\sqrt{m}}$.
- Then SGD can find a point W^* efficiently with small (o(1)) training loss (cross entropy, ℓ_2 etc) such that: $f(W^*, x) = f(W_0, x) + \sqrt{\nabla_0 x} f(W_0, x) + W^* + W_0 + o(1)$
- $f(W^*,x) = f(W_0,x) + \langle \nabla_W f(W_0,x), W^* W_0 \rangle + o(1)$
- SGD learns (efficiently) the NTK solution.

- Given a (convolution/fully connected/(BN)) L-layer ReLU neural network f(W,x) with m-neurons per layer, given N distinct training examples, when the following Oops! conditions are satisfied:
 - Over-parameterization: $m \ge poly(N, L)$.
 - Proper initialization (Typically $N(0, \frac{2}{m})$ for each parameter in each hidden neuron).
 - Small learning rate: $\eta \ll \frac{1}{\sqrt{m}}$.
- Then SGD can find a point W^* efficiently with small (o(1)) training loss (cross entropy, ℓ_2 etc) such that: $f(W^*, x) = f(W_0, x) + \langle \nabla_W f(W_0, x), W^* - W_0 \rangle + o(1)$
- SGD learns (efficiently) the NTK solution.
- $\nabla_W f(W_0, x)$: the feature mapping, $W^* W_0$: linear regression.

- Given a (convolution/fully connected/(BN)) L-layer ReLU neural network f(W,x) with m-neurons per layer, given N distinct training examples, when the following Oops! conditions are satisfied:
 - Over-parameterization: $m \ge poly(N, L)$.
 - Proper initialization (Typically $N(0, \frac{2}{m})$ for each parameter in each hidden neuron).
 - Small learning rate: $\eta \ll \frac{1}{\sqrt{m}}$.
- Then SGD can find a point W^* efficiently with small (o(1)) training loss (cross entropy, ℓ_2 etc) such that: $f(W^*, x) = f(W_0, x) + \langle \nabla_W f(W_0, x), W^* - W_0 \rangle + o(1)$
- SGD learns (efficiently) the NTK solution.
- $\nabla_W f(W_0, x)$: the feature mapping, $W^* W_0$: linear regression.
- If Oops, then training neural network $f \approx$ linear regression over feature mappings $\phi(x) = \nabla_W f(W_0, x)$.

• The theorem is quite simple, but there are two difficulties in the proof:

- The theorem is quite simple, but there are two difficulties in the proof:
- ReLU activation:

$$f(W,x) = f(W_0,x) + \langle \nabla_W f(W_0,x), W - W_0 \rangle + O(\|W - W_0\|_F^2)$$
 for smooth function $f(W,x)$, but ReLU network is not smooth.

- The theorem is quite simple, but there are two difficulties in the proof:
- ReLU activation:

$$f(W,x) = f(W_0,x) + \langle \nabla_W f(W_0,x), W - W_0 \rangle + O(\|W - W_0\|_F^2)$$
 for smooth function $f(W,x)$, but ReLU network is not smooth.

• $m \ge \text{poly}(N, L)$: Even for smooth activation, $O(\|W - W_0\|_F^2) \to \text{smoothness} \times \|W - W_0\|_F^2$.

- The theorem is quite simple, but there are two difficulties in the proof:
- ReLU activation:

$$f(W,x) = f(W_0,x) + \langle \nabla_W f(W_0,x), W - W_0 \rangle + O(\|W - W_0\|_F^2)$$
 for smooth function $f(W,x)$, but ReLU network is not smooth.

- $m \ge \text{poly}(N, L)$: Even for smooth activation, $O(\|W W_0\|_F^2) \to \text{smoothness} \times \|W W_0\|_F^2$.
- L-layer network is typically 2^L instead of poly(L) smooth: Need to use non-worst case bounds.

• Two layer network: $\sum_{i=1}^{m} a_i \text{ReLU}(\langle w_i, x \rangle)$.

- Two layer network: $\sum_{i=1}^{m} a_i \text{ReLU}(\langle w_i, x \rangle)$.
- Proper initialization: $a_i \sim N(0,1)$, $w_i^{(0)} \sim N\left(0,\frac{2}{m}\right)$. Output at init is O(1) due to cancellation.

- Two layer network: $\sum_{i=1}^{m} a_i \text{ReLU}(\langle w_i, x \rangle)$.
- Proper initialization: $a_i \sim N(0,1)$, $w_i^{(0)} \sim N\left(0,\frac{2}{m}\right)$. Output at init is O(1) due to cancellation.

- Two layer network: $\sum_{i=1}^{m} a_i \text{ReLU}(\langle w_i, x \rangle)$.
- Proper initialization: $a_i \sim N(0,1)$, $w_i^{(0)} \sim N\left(0,\frac{2}{m}\right)$. Output at init is O(1) due to cancellation.
- $\bullet \ \nabla_{w_i} f(W^{(0)},x) = 1_{\langle w_i^{(0)},x\rangle \geq 0} x.$
- Simple observation: There exists $W^* = (w_1^*, \dots, w_m^*)$ with each $\|w_i^* w_i^{(0)}\|_2 \le \frac{1}{m}$ so W^* has small training loss.

- Two layer network: $\sum_{i=1}^{m} a_i \text{ReLU}(\langle w_i, x \rangle)$.
- Proper initialization: $a_i \sim N(0,1)$, $w_i^{(0)} \sim N\left(0,\frac{2}{m}\right)$. Output at init is O(1) due to cancellation.
- $\bullet \ \nabla_{w_i} f(W^{(0)},x) = 1_{\langle w_i^{(0)},x\rangle \geq 0} x.$
- Simple observation: There exists $W^* = (w_1^*, \dots, w_m^*)$ with each $\|w_i^* w_i^{(0)}\|_2 \le \frac{1}{m}$ so W^* has small training loss.
- $\langle w_i^* w_i^{(0)}, x \rangle \approx \frac{1}{m}, \langle w_i^{(0)}, x \rangle \approx \frac{1}{\sqrt{m}}.$

- Two layer network: $\sum_{i=1}^{m} a_i \text{ReLU}(\langle w_i, x \rangle)$.
- Proper initialization: $a_i \sim N(0,1)$, $w_i^{(0)} \sim N\left(0,\frac{2}{m}\right)$. Output at init is O(1) due to cancellation.
- $\bullet \ \nabla_{w_i} f(W^{(0)}, x) = 1_{\langle w_i^{(0)}, x \rangle \geq 0} x.$
- Simple observation: There exists $W^* = (w_1^*, \dots, w_m^*)$ with each $\|w_i^* w_i^{(0)}\|_2 \le \frac{1}{m}$ so W^* has small training loss.
- $\langle w_i^* w_i^{(0)}, x \rangle \approx \frac{1}{m}, \langle w_i^{(0)}, x \rangle \approx \frac{1}{\sqrt{m}}.$
- $1_{\langle w_i^*, x \rangle \geq 0} \approx 1_{\langle w_i^{(0)}, x \rangle \geq 0}$: The activation pattern does not change too much, network stays close to its NTK.

- Two layer network: $\sum_{i=1}^{m} a_i \text{ReLU}(\langle w_i, x \rangle)$.
- Proper initialization: $a_i \sim N(0,1)$, $w_i^{(0)} \sim N\left(0,\frac{2}{m}\right)$. Output at init is O(1) due to cancellation.
- $\nabla_{w_i} f(W^{(0)}, x) = 1_{(w_i^{(0)}, x) \geq 0} x.$
- Simple observation: There exists $W^* = (w_1^*, \dots, w_m^*)$ with each $\|w_i^* w_i^{(0)}\|_2 \le \frac{1}{m}$ so W^* has small training loss.
- $\langle w_i^* w_i^{(0)}, x \rangle \approx \frac{1}{m}, \langle w_i^{(0)}, x \rangle \approx \frac{1}{\sqrt{m}}.$
- $1_{\langle w_i^*, x \rangle \geq 0} \approx 1_{\langle w_i^{(0)}, x \rangle \geq 0}$: The activation pattern does not change too much, network stays close to its NTK.
- The (explicit) two layer proof is originated in [LL'18], arXiv:1808.01204: Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data.

• When the following Oops! conditions hold:

- When the following Oops! conditions hold:
- Over-parameterization: $m \ge \text{poly}(N, L)$.

- When the following Oops! conditions hold:
- Over-parameterization: $m \ge \text{poly}(N, L)$.
- Proper initialization: (typically $N(0, \frac{2}{m})$ per parameter in each hidden neuron).

- When the following Oops! conditions hold:
- Over-parameterization: $m \ge \text{poly}(N, L)$.
- Proper initialization: (typically $N(0, \frac{2}{m})$ per parameter in each hidden neuron).
- Small learning rate: $\eta \ll \frac{1}{\sqrt{m}}$.

- When the following Oops! conditions hold:
- Over-parameterization: $m \ge \text{poly}(N, L)$.
- Proper initialization: (typically $N(0, \frac{2}{m})$ per parameter in each hidden neuron).
- Small learning rate: $\eta \ll \frac{1}{\sqrt{m}}$.
- Then a neural network trained by SGD is equivalent to learning via its NTK → Convex optimization.

- When the following Oops! conditions hold:
- Over-parameterization: $m \ge \text{poly}(N, L)$.
- Proper initialization: (typically $N(0, \frac{2}{m})$ per parameter in each hidden neuron).
- Small learning rate: $\eta \ll \frac{1}{\sqrt{m}}$.
- Then a neural network trained by SGD is equivalent to learning via its NTK → Convex optimization.

- When the following Oops! conditions hold:
- Over-parameterization: $m \ge \text{poly}(N, L)$.
- Proper initialization: (typically $N(0, \frac{2}{m})$ per parameter in each hidden neuron).
- Small learning rate: $\eta \ll \frac{1}{\sqrt{m}}$.
- Then a neural network trained by SGD is equivalent to learning via its NTK → Convex optimization.

Everyone is happy, except...

• If neural network is really NTK, then why do we use neural networks instead of kernel methods?—John N. Tsitsiklis

- If neural network is really NTK, then why do we use neural networks instead of kernel methods?—John N. Tsitsiklis
- Neural networks do better in practice: On CIFAR-10, best neural network can achieve ≥ 99% accuracy, but kernel methods can only achieve 85% (using random triangle features). Or 77% (using infinite-width NTK), 65% (using 128-channels finite-width NTK).

- If neural network is really NTK, then why do we use neural networks instead of kernel methods?—John N. Tsitsiklis
- Neural networks do better in practice: On CIFAR-10, best neural network can achieve ≥ 99% accuracy, but kernel methods can only achieve 85% (using random triangle features). Or 77% (using infinite-width NTK), 65% (using 128-channels finite-width NTK).
- Can we prove that neural networks do better than NTKs in theory?

• We prove [AL'19]: Oops!

- We prove [AL'19]: Oops!
- With proper initialization.

- We prove [AL'19]: Oops!
- With proper initialization.
- Either change over-parameterization → semi-over-parametrization.

- We prove [AL'19]: Oops!
- With proper initialization.
- Either change over-parameterization → semi-over-parametrization.
- (Or change small learning rate → large learning rate with noise).

- We prove [AL'19]: Oops!
- With proper initialization.
- Either change over-parameterization → semi-over-parametrization.
- (Or change small learning rate → large learning rate with noise).
- Then three layer ResNet can (distribution free) PAC learn a concept class more efficient then any kernel methods.

This work: Beyond kernel analysis of neural networks

- We prove [AL'19]: Oops!
- With proper initialization.
- Either change over-parameterization → semi-over-parametrization.
- (Or change small learning rate → large learning rate with noise).
- Then three layer ResNet can (distribution free) PAC learn a concept class more efficient then any kernel methods.
- We prove both upper and lower bounds.

This work: Beyond kernel analysis of neural networks

- We prove [AL'19]: Oops!
- With proper initialization.
- Either change over-parameterization → semi-over-parametrization.
- (Or change small learning rate → large learning rate with noise).
- Then three layer ResNet can (distribution free) PAC learn a concept class more efficient then any kernel methods.
- We prove both upper and lower bounds.
- Efficiency: Sample complexity/running time or memory.

The (learner) network

• Three layer ResNet with ReLU activations:

The (learner) network

• Three layer ResNet with ReLU activations:

The (learner) network

• Three layer ResNet with ReLU activations:

• R(x) = AReLU(VReLU(Wx)) + AReLU(Wx).

• Three layer ResNet with (infinite order) smooth activations:

- Three layer ResNet with (infinite order) smooth activations:
- $H(x) = F(x) + \alpha G(F(x)), \ \alpha = o(1).$

- Three layer ResNet with (infinite order) smooth activations:
- $H(x) = F(x) + \alpha G(F(x)), \ \alpha = o(1).$
- F: base signal (simple and large), G(F): composite signal (small but hard).

- Three layer ResNet with (infinite order) smooth activations:
- $H(x) = F(x) + \alpha G(F(x)), \ \alpha = o(1).$
- F: base signal (simple and large), G(F): composite signal (small but hard).

```
F G
1+2=3
3 x 4 = 12
16/4 = 3 (((1 + 3 + 2) x 4 - 4 x 2)/4
= 3
(ab)c = a(bc) ((a + b) + c) = a + (b + c) (a/b)/c
```

- Three layer ResNet with (infinite order) smooth activations:
- $H(x) = F(x) + \alpha G(F(x)), \ \alpha = o(1).$
- F: base signal (simple and large), G(F): composite signal (small but hard).

```
F G
1+2=3 3 4 4 12 16/4 = 3 (((1+3+2) x 4 - 4 x 2)/4 = 3
(ab)c = a(bc) ((a+b) + c = a + (b + c) (a/b)/c
```

• $F = (f_1, \dots, f_k), f_j(x) = \sum_i \phi_{f,i,j}(\langle w_{i,j}, x \rangle), \|w_{i,j}\|_2 = 1,$ $G = (g_1, \dots, g_k), g_j(x') = \sum_i \phi_{g,i,j}(\langle v_{i,j}, x' \rangle), \|v_{i,j}\|_2 = 1.$

- Three layer ResNet with (infinite order) smooth activations:
- $H(x) = F(x) + \alpha G(F(x)), \ \alpha = o(1).$
- F: base signal (simple and large), G(F): composite signal (small but hard).

```
F G

1 + 2 = 3

3 x 4 = 12

16/4 = 3

(ab)c = a(bc)

(a + b) + c

= a + (b + c)

a/(bc) = (a/b)/c
```

- $F = (f_1, \dots, f_k), f_j(x) = \sum_i \phi_{f,i,j}(\langle w_{i,j}, x \rangle), \|w_{i,j}\|_2 = 1,$ $G = (g_1, \dots, g_k), g_j(x') = \sum_i \phi_{g,i,j}(\langle v_{i,j}, x' \rangle), \|v_{i,j}\|_2 = 1.$
- Complexity measure of the functions: For $\phi(\langle w, x \rangle)$ where $\|x\|_2 = \|w\|_2 = 1$, and $\phi(z) = \sum_{i \geq 0} a_i z^i$.

- Three layer ResNet with (infinite order) smooth activations:
- $H(x) = F(x) + \alpha G(F(x)), \ \alpha = o(1).$
- F: base signal (simple and large), G(F): composite signal (small but hard).

```
F G
1+2=3
3 x 4 = 12
16/4 = 3
(ab)c = a(bc)
(a + b) + c = a + (b + c)
a/(bc) = (a/b)/c
```

- $F = (f_1, \dots, f_k), f_j(x) = \sum_i \phi_{f,i,j}(\langle w_{i,j}, x \rangle), \|w_{i,j}\|_2 = 1,$ $G = (g_1, \dots, g_k), g_j(x') = \sum_i \phi_{g,i,j}(\langle v_{i,j}, x' \rangle), \|v_{i,j}\|_2 = 1.$
- Complexity measure of the functions: For $\phi(\langle w, x \rangle)$ where $\|x\|_2 = \|w\|_2 = 1$, and $\phi(z) = \sum_{i \geq 0} a_i z^i$.
- $\mathcal{C}(\phi) = \sum_{i \geq 0} |a_i| \times i$, $\mathcal{C}(F) = \sum_{i,j} \mathcal{C}(\phi_{f,i,j})$, $\mathcal{C}(G) = \sum_{i,j} \mathcal{C}(\phi_{g,i,j})$.

- Three layer ResNet with (infinite order) smooth activations:
- $H(x) = F(x) + \alpha G(F(x)), \ \alpha = o(1).$
- F: base signal (simple and large), G(F): composite signal (small but hard).

```
F G
1+2=3 (((1+3+2) x 4-4 x 2)/4
16/4=3 (ab)c = a(bc) (a+b)+c = a+(b+c) a/(bc) = (a/b)/c
```

- $F = (f_1, \dots, f_k), f_j(x) = \sum_i \phi_{f,i,j}(\langle w_{i,j}, x \rangle), \|w_{i,j}\|_2 = 1,$ $G = (g_1, \dots, g_k), g_j(x') = \sum_i \phi_{g,i,j}(\langle v_{i,j}, x' \rangle), \|v_{i,j}\|_2 = 1.$
- Complexity measure of the functions: For $\phi(\langle w, x \rangle)$ where $\|x\|_2 = \|w\|_2 = 1$, and $\phi(z) = \sum_{i \geq 0} a_i z^i$.
- $\mathcal{C}(\phi) = \sum_{i \geq 0} |a_i| \times i$, $\mathcal{C}(F) = \sum_{i,j} \mathcal{C}(\phi_{f,i,j})$, $\mathcal{C}(G) = \sum_{i,j} \mathcal{C}(\phi_{g,i,j})$.
- The (sample/time) complexity of learning ϕ using kernel methods.

• R(x) = AReLU(VReLU(Wx)) + AReLU(Wx), loss ℓ_2 .

- R(x) = AReLU(VReLU(Wx)) + AReLU(Wx), loss ℓ_2 .
- Either change over-parameterization \rightarrow semi-over-parametrization: $V \rightarrow V'A$ (low rank, similar to bottleneck structure in ResNet), then the training algorithm is standard SGD (small learning rate, without any regularization).

- R(x) = AReLU(VReLU(Wx)) + AReLU(Wx), loss ℓ_2 .
- Either change over-parameterization \rightarrow semi-over-parametrization: $V \rightarrow V'A$ (low rank, similar to bottleneck structure in ResNet), then the training algorithm is standard SGD (small learning rate, without any regularization).
- Or change small learning rate → large learning rate with noise.

- R(x) = AReLU(VReLU(Wx)) + AReLU(Wx), loss ℓ_2 .
- Either change over-parameterization \rightarrow semi-over-parametrization: $V \rightarrow V'A$ (low rank, similar to bottleneck structure in ResNet), then the training algorithm is standard SGD (small learning rate, without any regularization).
- Or change small learning rate → large learning rate with noise.
 - $v_i = (1 \eta \lambda_v) v_i \eta(\nabla_{v_i} \mathsf{Loss} + \xi_{v_i}),$ $w_i = (1 - \eta \lambda_w) w_i - \eta(\nabla_{w_i} \mathsf{Loss} + \xi_{w_i}).$

- R(x) = AReLU(VReLU(Wx)) + AReLU(Wx), loss ℓ_2 .
- Either change over-parameterization \rightarrow semi-over-parametrization: $V \rightarrow V'A$ (low rank, similar to bottleneck structure in ResNet), then the training algorithm is standard SGD (small learning rate, without any regularization).
- Or change small learning rate → large learning rate with noise.
 - $v_i = (1 \eta \lambda_v) v_i \eta(\nabla_{v_i} \mathsf{Loss} + \xi_{v_i}),$ $w_i = (1 - \eta \lambda_w) w_i - \eta(\nabla_{w_i} \mathsf{Loss} + \xi_{w_i}).$
 - $\xi_{v_i} \sim N(0, \mathbb{E}_x[\mathsf{ReLU}(Wx)\mathsf{ReLU}(Wx)^{\mathsf{T}}]), \ \xi_{w_i} \sim N(0, \mathbb{E}_x[xx^{\mathsf{T}}]).$

- R(x) = AReLU(VReLU(Wx)) + AReLU(Wx), loss ℓ_2 .
- Either change over-parameterization \rightarrow semi-over-parametrization: $V \rightarrow V'A$ (low rank, similar to bottleneck structure in ResNet), then the training algorithm is standard SGD (small learning rate, without any regularization).
- Or change small learning rate → large learning rate with noise.
 - $v_i = (1 \eta \lambda_v) v_i \eta(\nabla_{v_i} Loss + \xi_{v_i}),$ $w_i = (1 - \eta \lambda_w) w_i - \eta(\nabla_{w_i} Loss + \xi_{w_i}).$
 - $\xi_{v_i} \sim N(0, \mathbb{E}_x[\text{ReLU}(Wx)\text{ReLU}(Wx)^{\top}]), \ \xi_{w_i} \sim N(0, \mathbb{E}_x[xx^{\top}]).$
 - Gaussian approximation of the SGD-type of noise.

- R(x) = AReLU(VReLU(Wx)) + AReLU(Wx), loss ℓ_2 .
- Either change over-parameterization \rightarrow semi-over-parametrization: $V \rightarrow V'A$ (low rank, similar to bottleneck structure in ResNet), then the training algorithm is standard SGD (small learning rate, without any regularization).
- Or change small learning rate → large learning rate with noise.
 - $v_i = (1 \eta \lambda_v) v_i \eta(\nabla_{v_i} Loss + \xi_{v_i}),$ $w_i = (1 - \eta \lambda_w) w_i - \eta(\nabla_{w_i} Loss + \xi_{w_i}).$
 - $\xi_{v_i} \sim N(0, \mathbb{E}_x[\text{ReLU}(Wx)\text{ReLU}(Wx)^{\top}]), \ \xi_{w_i} \sim N(0, \mathbb{E}_x[xx^{\top}]).$
 - Gaussian approximation of the SGD-type of noise.
 - Intuitively, eventually ReLU(Wx) aligns with A through the signal AReLU(Wx), so $\mathbb{E}_x[ReLU(Wx)ReLU(Wx)^{\top}]) \approx AA^{\top}$.

Theorem (AL'19, arXiv:1905.10337)

Theorem (AL'19, arXiv:1905.10337)

Over any distribution of x on the unit ball, three layer ResNet R learns $H(x) = F(x) + \alpha G(F(x))$ up to generalization error $O(\alpha^2)$ (meaning $H(x) - R(x) \approx \alpha^2$) under following conditions:

• Number of neurons: $poly(C(F), C(G), 1/\alpha)$.

Theorem (AL'19, arXiv:1905.10337)

- Number of neurons: $poly(\mathcal{C}(F),\mathcal{C}(G),1/\alpha)$.
- Sample complexity: $O(C(F)^2 + C(G)^2)/\alpha^4$.

Theorem (AL'19, arXiv:1905.10337)

- Number of neurons: $poly(C(F), C(G), 1/\alpha)$.
 - Sample complexity: $O(C(F)^2 + C(G)^2)/\alpha^4$.
 - Running time: $poly(C(F), C(G), 1/\alpha)$.

Theorem (AL'19, arXiv:1905.10337)

- Number of neurons: $poly(C(F), C(G), 1/\alpha)$.
 - Sample complexity: $O(C(F)^2 + C(G)^2)/\alpha^4$.
 - Running time: $poly(C(F), C(G), 1/\alpha)$.

Theorem (AL'19, arXiv:1905.10337)

Over any distribution of x on the unit ball, three layer ResNet R learns $H(x) = F(x) + \alpha G(F(x))$ up to generalization error $O(\alpha^2)$ (meaning $H(x) - R(x) \approx \alpha^2$) under following conditions:

- Number of neurons: $poly(C(F), C(G), 1/\alpha)$.
- Sample complexity: $O(C(F)^2 + C(G)^2)/\alpha^4$.
- Running time: $poly(C(F), C(G), 1/\alpha)$.

Theorem (AL'19)

Over some distributions of x on the unit ball and for some class of G, F, any kernel methods that learns the concept function $H(x) = F(x) + \alpha G(F(x))$ up to generalization error $o(\alpha)$ must use

Theorem (AL'19, arXiv:1905.10337)

Over any distribution of x on the unit ball, three layer ResNet R learns $H(x) = F(x) + \alpha G(F(x))$ up to generalization error $O(\alpha^2)$ (meaning $H(x) - R(x) \approx \alpha^2$) under following conditions:

- Number of neurons: $poly(C(F), C(G), 1/\alpha)$.
- Sample complexity: $O(C(F)^2 + C(G)^2)/\alpha^4$.
- Running time: $poly(C(F), C(G), 1/\alpha)$.

Theorem (AL'19)

Over some distributions of x on the unit ball and for some class of G, F, any kernel methods that learns the concept function $H(x) = F(x) + \alpha G(F(x))$ up to generalization error $o(\alpha)$ must use

• Sample complexity: $\Omega(\mathcal{C}(G(F))^2)$.

Theorem (AL'19, arXiv:1905.10337)

Over any distribution of x on the unit ball, three layer ResNet R learns $H(x) = F(x) + \alpha G(F(x))$ up to generalization error $O(\alpha^2)$ (meaning $H(x) - R(x) \approx \alpha^2$) under following conditions:

- Number of neurons: $poly(C(F), C(G), 1/\alpha)$.
- Sample complexity: $O(C(F)^2 + C(G)^2)/\alpha^4$.
- Running time: $poly(C(F), C(G), 1/\alpha)$.

Theorem (AL'19)

Over some distributions of x on the unit ball and for some class of G, F, any kernel methods that learns the concept function $H(x) = F(x) + \alpha G(F(x))$ up to generalization error $o(\alpha)$ must use

- Sample complexity: $\Omega(\mathcal{C}(G(F))^2)$.
- Kernel methods: $K(x,y) = \langle \Phi(x), \Phi(y) \rangle$, predict $\langle \Phi(x), \sum_i w_i \Phi(x_i) \rangle$ for some weights $\{w_i\}$ over training examples $\{x_i, y_i\}$.

• In some case, the complexity of $\mathcal{C}(G(F))$ can be *much larger* than $\mathcal{C}(G), \mathcal{C}(F)$:

- In some case, the complexity of $\mathcal{C}(G(F))$ can be *much larger* than $\mathcal{C}(G), \mathcal{C}(F)$:
- $F(x) = \sqrt{d}(\langle w, x \rangle)$, $||w||_2 = 1, x$ is a random unit vector in dimension $d: C(F) = \sqrt{d}$.

- In some case, the complexity of C(G(F)) can be *much larger* than C(G), C(F):
- $F(x) = \sqrt{d}(\langle w, x \rangle)$, $||w||_2 = 1, x$ is a random unit vector in dimension $d: C(F) = \sqrt{d}$.
- $G(z) = z^{10}$, C(G) = O(1).

- In some case, the complexity of C(G(F)) can be *much larger* than C(G), C(F):
- $F(x) = \sqrt{d}(\langle w, x \rangle)$, $||w||_2 = 1, x$ is a random unit vector in dimension $d: C(F) = \sqrt{d}$.
- $G(z) = z^{10}$, C(G) = O(1).
- $G(F(x)) = (\sqrt{d})^{10}(\langle w, x \rangle)^{10}$, so $C(G(F)) = d^5$.

- In some case, the complexity of C(G(F)) can be *much larger* than C(G), C(F):
- $F(x) = \sqrt{d}(\langle w, x \rangle)$, $||w||_2 = 1, x$ is a random unit vector in dimension $d: C(F) = \sqrt{d}$.
- $G(z) = z^{10}$, C(G) = O(1).
- $G(F(x)) = (\sqrt{d})^{10}(\langle w, x \rangle)^{10}$, so $C(G(F)) = d^5$.
- ResNet learns $\sqrt{d}(\langle w, x \rangle) + \alpha \left(\sqrt{d}(\langle w, x \rangle) \right)^{10}$ up to accuracy $O(\alpha^2)$ with $O(d/\text{poly}(\alpha))$ samples, for any $\alpha = o(1)$.

- In some case, the complexity of C(G(F)) can be *much larger* than C(G), C(F):
- $F(x) = \sqrt{d}(\langle w, x \rangle)$, $||w||_2 = 1, x$ is a random unit vector in dimension $d: C(F) = \sqrt{d}$.
- $G(z) = z^{10}$, C(G) = O(1).
- $G(F(x)) = (\sqrt{d})^{10}((w,x))^{10}$, so $C(G(F)) = d^5$.
- ResNet learns $\sqrt{d}(\langle w, x \rangle) + \alpha \left(\sqrt{d}(\langle w, x \rangle) \right)^{10}$ up to accuracy $O(\alpha^2)$ with $O(d/\text{poly}(\alpha))$ samples, for any $\alpha = o(1)$.
- Kernel methods must use d^{10} samples to learn up to accuracy $o(\alpha)$

- In some case, the complexity of C(G(F)) can be *much larger* than C(G), C(F):
- $F(x) = \sqrt{d}(\langle w, x \rangle)$, $||w||_2 = 1, x$ is a random unit vector in dimension $d: C(F) = \sqrt{d}$.
- $G(z) = z^{10}$, C(G) = O(1).
- $G(F(x)) = (\sqrt{d})^{10}(\langle w, x \rangle)^{10}$, so $C(G(F)) = d^5$.
- ResNet learns $\sqrt{d}(\langle w, x \rangle) + \alpha \left(\sqrt{d}(\langle w, x \rangle) \right)^{10}$ up to accuracy $O(\alpha^2)$ with $O(d/\text{poly}(\alpha))$ samples, for any $\alpha = o(1)$.
- ullet Kernel methods must use d^{10} samples to learn up to accuracy o(lpha)
- So we provably have the following pictures:

Neural network vs Kernels

- In some case, the complexity of C(G(F)) can be *much larger* than C(G), C(F):
- $F(x) = \sqrt{d}(\langle w, x \rangle)$, $||w||_2 = 1, x$ is a random unit vector in dimension $d: C(F) = \sqrt{d}$.
- $G(z) = z^{10}$, C(G) = O(1).
- $G(F(x)) = (\sqrt{d})^{10}((w,x))^{10}$, so $C(G(F)) = d^5$.
- ResNet learns $\sqrt{d}(\langle w, x \rangle) + \alpha \left(\sqrt{d}(\langle w, x \rangle) \right)^{10}$ up to accuracy $O(\alpha^2)$ with $O(d/\text{poly}(\alpha))$ samples, for any $\alpha = o(1)$.
- ullet Kernel methods must use d^{10} samples to learn up to accuracy o(lpha)
- So we provably have the following pictures:

Theorem (AL'19)

Theorem (AL'19)

Over some distributions of x on the unit ball and for some class of G, F, linear regression over any feature mappings (with any regularization) that learns the concept function $H(x) = F(x) + \alpha G(F(x))$ up to generalization error $o(\alpha)$ must use

• Number of features: $\Omega(\mathcal{C}(G(F))^2)$.

Theorem (AL'19)

- Number of features: $\Omega(\mathcal{C}(G(F))^2)$.
- Running times is slow: $\Omega\left(\mathcal{C}(G(F))^2\right)$ v.s. $\operatorname{poly}(\mathcal{C}(F),\mathcal{C}(G),1/\alpha)$ for Neural networks.

Theorem (AL'19)

- Number of features: $\Omega(\mathcal{C}(G(F))^2)$.
- Running times is slow: $\Omega\left(\mathcal{C}(G(F))^2\right)$ v.s. $\operatorname{poly}(\mathcal{C}(F),\mathcal{C}(G),1/\alpha)$ for Neural networks.
- Upper bound extension to convolution nets such as $H(x) = \sum_{j} F(x^{(j)}) + \alpha G(\sum_{j} v_{j} F(x^{(j)}))$ is also easy.

Theorem (AL'19)

- Number of features: $\Omega(\mathcal{C}(G(F))^2)$.
- Running times is slow: $\Omega\left(\mathcal{C}(G(F))^2\right)$ v.s. $\operatorname{poly}(\mathcal{C}(F),\mathcal{C}(G),1/\alpha)$ for Neural networks.
- Upper bound extension to convolution nets such as $H(x) = \sum_{j} F(x^{(j)}) + \alpha G(\sum_{j} v_{j} F(x^{(j)}))$ is also easy.
- Upper bound can also be extended: $O(\alpha^2) \rightarrow \approx 0$ with distributional assumptions.

• ResNet is performing implicit hierarchical learning.

- ResNet is performing implicit hierarchical learning.
- ResNet first learns F(x) using (the first layer) NTK, then it feeds F(x) to the second layer to learn G using (the second layer) NTK. So the complexities are C(F), C(G).

- ResNet is performing implicit hierarchical learning.
- ResNet first learns F(x) using (the first layer) NTK, then it feeds F(x) to the second layer to learn G using (the second layer) NTK. So the complexities are C(F), C(G).

- ResNet is performing implicit hierarchical learning.
- ResNet first learns F(x) using (the first layer) NTK, then it feeds F(x) to the second layer to learn G using (the second layer) NTK. So the complexities are C(F), C(G).

• Kernel methods learn G(F) from scratch, as if there is NO F(x), which is inefficient.

- ResNet is performing implicit hierarchical learning.
- ResNet first learns F(x) using (the first layer) NTK, then it feeds F(x) to the second layer to learn G using (the second layer) NTK. So the complexities are C(F), C(G).

- Kernel methods learn G(F) from scratch, as if there is NO F(x), which is inefficient.
- Note (implicit hierarchical learning):

- ResNet is performing implicit hierarchical learning.
- ResNet first learns F(x) using (the first layer) NTK, then it feeds F(x) to the second layer to learn G using (the second layer) NTK. So the complexities are C(F), C(G).

- Kernel methods learn G(F) from scratch, as if there is NO F(x), which is inefficient.
- Note (implicit hierarchical learning):
 - The two layers of ResNet are trained simultaneously.

- ResNet is performing implicit hierarchical learning.
- ResNet first learns F(x) using (the first layer) NTK, then it feeds F(x) to the second layer to learn G using (the second layer) NTK. So the complexities are C(F), C(G).

- Kernel methods learn G(F) from scratch, as if there is NO F(x), which is inefficient.
- Note (implicit hierarchical learning):
 - The two layers of ResNet are trained simultaneously.
 - There's no change of learning rate during the course of training.

- ResNet is performing implicit hierarchical learning.
- ResNet first learns F(x) using (the first layer) NTK, then it feeds F(x) to the second layer to learn G using (the second layer) NTK. So the complexities are C(F), C(G).

- Kernel methods learn G(F) from scratch, as if there is NO F(x), which is inefficient.
- Note (implicit hierarchical learning):
 - The two layers of ResNet are trained simultaneously.
 - There's no change of learning rate during the course of training.
 - No regularization on the first hidden layer (F) (first variant).

- ResNet is performing implicit hierarchical learning.
- ResNet first learns F(x) using (the first layer) NTK, then it feeds F(x) to the second layer to learn G using (the second layer) NTK. So the complexities are C(F), C(G).

- Kernel methods learn G(F) from scratch, as if there is NO F(x), which is inefficient.
- Note (implicit hierarchical learning):
 - The two layers of ResNet are trained simultaneously.
 - There's no change of learning rate during the course of training.
 - No regularization on the first hidden layer (F) (first variant).
 - ResNet needs to distribute the learning of F, G automatically between two layers and avoid over-fitting.

• Implicit hierarchical learning: ResNet first learns F(x) using NTK up to accuracy α from $F(x) + \alpha G(F(x))$

- Implicit hierarchical learning: ResNet first learns F(x) using NTK up to accuracy α from $F(x) + \alpha G(F(x))$
- Then it feeds $F(x) \pm \alpha$ to the second layer to learn G using NTK up to accuracy α .

- Implicit hierarchical learning: ResNet first learns F(x) using NTK up to accuracy α from $F(x) + \alpha G(F(x))$
- Then it feeds $F(x) \pm \alpha$ to the second layer to learn G using NTK up to accuracy α .
- So the total accuracy is α^2 .

- Implicit hierarchical learning: ResNet first learns F(x) using NTK up to accuracy α from $F(x) + \alpha G(F(x))$
- Then it feeds $F(x) \pm \alpha$ to the second layer to learn G using NTK up to accuracy α .
- So the total accuracy is α^2 .

- Implicit hierarchical learning: ResNet first learns F(x) using NTK up to accuracy α from $F(x) + \alpha G(F(x))$
- Then it feeds $F(x) \pm \alpha$ to the second layer to learn G using NTK up to accuracy α .
- So the total accuracy is α^2 .

• The total accuracy is α since F is only learnt (in the first layer) up to accuracy α .

- Implicit hierarchical learning: ResNet first learns F(x) using NTK up to accuracy α from $F(x) + \alpha G(F(x))$
- Then it feeds $F(x) \pm \alpha$ to the second layer to learn G using NTK up to accuracy α .
- So the total accuracy is α^2 .

- The total accuracy is α since F is only learnt (in the first layer) up to accuracy α .
- The second layer needs to help the first layer to "correct" the error in F.

- Implicit hierarchical learning: ResNet first learns F(x) using NTK up to accuracy α from $F(x) + \alpha G(F(x))$
- Then it feeds $F(x) \pm \alpha$ to the second layer to learn G using NTK up to accuracy α .
- So the total accuracy is α^2 .

- The total accuracy is α since F is only learnt (in the first layer) up to accuracy α .
- The second layer needs to help the first layer to "correct" the error in F.
- It is important that both layers are trained together.

Key message

 Both layers are still (individual) NTK, but after learning, the first layer feeds better inputs to the second layer NTK.

Key message

- Both layers are still (individual) NTK, but after learning, the first layer feeds better inputs to the second layer NTK.
- Implicit hierarchical learning.

• $x \in \{-1,1\}^{30}$, $y \in \mathbb{R}^8$, $\alpha = 0.3$. $H(x) = \beta F(x) + \alpha G(F(x))$, $\beta = 1$.

- $x \in \{-1,1\}^{30}$, $y \in \mathbb{R}^8$, $\alpha = 0.3$. $H(x) = \beta F(x) + \alpha G(F(x))$, $\beta = 1$.
- $F(x) = (x_1x_2, \dots, x_{15}x_{16}),$ $G(y) = (y_1y_2y_3y_4, \dots, y_1y_2y_3y_4, y_5y_6y_7y_8, \dots, y_5y_6y_7y_8).$

- $x \in \{-1,1\}^{30}$, $y \in \mathbb{R}^8$, $\alpha = 0.3$. $H(x) = \beta F(x) + \alpha G(F(x))$, $\beta = 1$.
- $F(x) = (x_1x_2, \dots, x_{15}x_{16}),$ $G(y) = (y_1y_2y_3y_4, \dots, y_1y_2y_3y_4, y_5y_6y_7y_8, \dots, y_5y_6y_7y_8).$

(a) N=1000 and vary m

- $x \in \{-1,1\}^{30}$, $y \in \mathbb{R}^8$, $\alpha = 0.3$. $H(x) = \beta F(x) + \alpha G(F(x))$, $\beta = 1$.
- $F(x) = (x_1x_2, \dots, x_{15}x_{16}),$ $G(y) = (y_1y_2y_3y_4, \dots, y_1y_2y_3y_4, y_5y_6y_7y_8, \dots, y_5y_6y_7y_8).$

(a) N = 1000 and vary m

(b) sensitivity test on $\alpha = 0.3$

• ReLU(
$$\langle w, x \rangle$$
) = $1_{\langle w, x \rangle \geq 0} \langle w, x \rangle$.

- $ReLU(\langle w, x \rangle) = 1_{\langle w, x \rangle \geq 0} \langle w, x \rangle$.
- $1_{(w,x)\geq 0}x$: feature mapping, w: weights.

- ReLU($\langle w, x \rangle$) = $1_{\langle w, x \rangle \geq 0} \langle w, x \rangle$.
- $1_{(w,x)\geq 0}x$: feature mapping, w: weights.
- We change every ReLU to $\tilde{1}_{(w_1,x)\geq 0}(w_2,x)$ ($\tilde{1}$ is a smooth approximation of indicator).

- ReLU($\langle w, x \rangle$) = $1_{\langle w, x \rangle \geq 0} \langle w, x \rangle$.
- $1_{(w,x)\geq 0}x$: feature mapping, w: weights.
- We change every ReLU to $\tilde{1}_{(w_1,x)\geq 0}(w_2,x)$ ($\tilde{1}$ is a smooth approximation of indicator).
- During the training, w_1 stays at random initialization, only w_2 is trained: Every layer is a NTK.

- $ReLU(\langle w, x \rangle) = 1_{\langle w, x \rangle \geq 0} \langle w, x \rangle$.
- $1_{(w,x)\geq 0}x$: feature mapping, w: weights.
- We change every ReLU to $\tilde{1}_{(w_1,x)\geq 0}(w_2,x)$ ($\tilde{1}$ is a smooth approximation of indicator).
- During the training, w_1 stays at random initialization, only w_2 is trained: Every layer is a NTK.
- It does not learn a better feature mapping, rather just feeding better inputs to the feature mapping.

- ReLU($\langle w, x \rangle$) = $1_{\langle w, x \rangle \geq 0} \langle w, x \rangle$.
- $1_{(w,x)\geq 0}x$: feature mapping, w: weights.
- We change every ReLU to $\tilde{1}_{(w_1,x)\geq 0}(w_2,x)$ ($\tilde{1}$ is a smooth approximation of indicator).
- During the training, w_1 stays at random initialization, only w_2 is trained: Every layer is a NTK.
- It does not learn a better feature mapping, rather just feeding better inputs to the feature mapping.
- ResNet-32 8x wide: CIFAR-10: 94.55% (original) v.s. 93.85%,
 CIFAR-100: 77.04% (original) v.s. 75.27%.

Summary

• This talk we show:

- This talk we show:
- Neural network is NTK under the following Oops! conditions:

- This talk we show:
- Neural network is NTK under the following Oops! conditions:
 - Over-parameterization.

- This talk we show:
- Neural network is NTK under the following Oops! conditions:
 - Over-parameterization.
 - Proper initialization.

- This talk we show:
- Neural network is NTK under the following Oops! conditions:
 - Over-parameterization.
 - Proper initialization.
 - Small learning rate.

- This talk we show:
- Neural network is NTK under the following Oops! conditions:
 - Over-parameterization.
 - Proper initialization.
 - Small learning rate.
- Neural network goes beyond NTK when some conditions are broke.

- This talk we show:
- Neural network is NTK under the following Oops! conditions:
 - Over-parameterization.
 - Proper initialization.
 - Small learning rate.
- Neural network goes beyond NTK when some conditions are broke.
- More work: Small learning rate → Scheduled learning rate (Large learning rate + small learning rate): [LMW' 19]

- This talk we show:
- Neural network is NTK under the following Oops! conditions:
 - Over-parameterization.
 - Proper initialization.
 - Small learning rate.
- Neural network goes beyond NTK when some conditions are broke.
- More work: Small learning rate → Scheduled learning rate (Large learning rate + small learning rate): [LMW' 19]
- Towards explaining the regularization effect of initial large learning rate in training neural networks, arXiv 1907.04595

- This talk we show:
- Neural network is NTK under the following Oops! conditions:
 - Over-parameterization.
 - Proper initialization.
 - Small learning rate.
- Neural network goes beyond NTK when some conditions are broke.
- More work: Small learning rate → Scheduled learning rate (Large learning rate + small learning rate): [LMW' 19]
- Towards explaining the regularization effect of initial large learning rate in training neural networks, arXiv 1907.04595
- Changing the initialization: Learning ReLU network with over-parameterized ReLU network [LMZ' 19] (to appear).

• This talk we show:

- This talk we show:
- Neural network is provably better than any kernel methods or linear regression over feature mappings in some learning tasks.

- This talk we show:
- Neural network is provably better than any kernel methods or linear regression over feature mappings in some learning tasks.
 - Efficient, (the upper bound) distribution free regime.

- This talk we show:
- Neural network is provably better than any kernel methods or linear regression over feature mappings in some learning tasks.
 - Efficient, (the upper bound) distribution free regime.

- This talk we show:
- Neural network is provably better than any kernel methods or linear regression over feature mappings in some learning tasks.
 - Efficient, (the upper bound) distribution free regime.

• Is neural network better than any convex learning algorithm? (even under some distributions?): powerful algorithms such as SOS etc.

- This talk we show:
- Neural network is provably better than any kernel methods or linear regression over feature mappings in some learning tasks.
 - Efficient, (the upper bound) distribution free regime.

• Is neural network better than any convex learning algorithm? (even under some distributions?): powerful algorithms such as SOS etc.

The fundamental question

Question

• Is non-convex optimization (training neural networks) provably better than convex optimization in efficiently computable regime? Or the reason that any non-convex optimization algorithm being efficiently computable is because there is an underlying convex optimization task associated to it?

The fundamental question

Question

- Is non-convex optimization (training neural networks) provably better than convex optimization in efficiently computable regime? Or the reason that any non-convex optimization algorithm being efficiently computable is because there is an underlying convex optimization task associated to it?
- Complexity: P/poly v.s. NP.

The fundamental question

Question

- Is non-convex optimization (training neural networks) provably better than convex optimization in efficiently computable regime? Or the reason that any non-convex optimization algorithm being efficiently computable is because there is an underlying convex optimization task associated to it?
- Complexity: P/poly v.s. NP.
- Theoretical machine learning: Convex-P/poly v.s. Non-convex-P/poly.

Definition (Convex circuit)

• A (k-output) circuit C with two inputs $W \in \mathbb{R}^m, x \in \mathbb{R}^d$ is a convex circuit over loss $L : \mathbb{R}^{2k} \to \mathbb{R}$ and a set $S \in \mathbb{R}^{d+k}$ if given any $(x, y) \in S$:

- A (k-output) circuit C with two inputs $W \in \mathbb{R}^m, x \in \mathbb{R}^d$ is a convex circuit over loss $L : \mathbb{R}^{2k} \to \mathbb{R}$ and a set $S \in \mathbb{R}^{d+k}$ if given any $(x, y) \in S$:
 - L(C(W,x),y) is (strictly) convex/(one point) convex in W.

- A (k-output) circuit C with two inputs $W \in \mathbb{R}^m, x \in \mathbb{R}^d$ is a convex circuit over loss $L : \mathbb{R}^{2k} \to \mathbb{R}$ and a set $S \in \mathbb{R}^{d+k}$ if given any $(x, y) \in S$:
- L(C(W,x),y) is (strictly) convex/(one point) convex in W.
- Learning: $W^* = \operatorname{argmin} \sum_i L(C(W, x_i), y_i)$ over samples $\{x_i, y_i\}_{i \in [N]}$.

- A (k-output) circuit C with two inputs $W \in \mathbb{R}^m, x \in \mathbb{R}^d$ is a convex circuit over loss $L : \mathbb{R}^{2k} \to \mathbb{R}$ and a set $S \in \mathbb{R}^{d+k}$ if given any $(x, y) \in S$:
 - L(C(W,x),y) is (strictly) convex/(one point) convex in W.
 - Learning: $W^* = \operatorname{argmin} \sum_i L(C(W, x_i), y_i)$ over samples $\{x_i, y_i\}_{i \in [N]}$.
 - Given x, making prediction using $C(W^*, x)$.

- A (k-output) circuit C with two inputs $W \in \mathbb{R}^m, x \in \mathbb{R}^d$ is a convex circuit over loss $L : \mathbb{R}^{2k} \to \mathbb{R}$ and a set $S \in \mathbb{R}^{d+k}$ if given any $(x, y) \in S$:
 - L(C(W,x),y) is (strictly) convex/(one point) convex in W.
 - Learning: $W^* = \operatorname{argmin} \sum_i L(C(W, x_i), y_i)$ over samples $\{x_i, y_i\}_{i \in [N]}$.
 - Given x, making prediction using $C(W^*, x)$.

Definition (Convex circuit)

- A (k-output) circuit C with two inputs $W \in \mathbb{R}^m, x \in \mathbb{R}^d$ is a convex circuit over loss $L : \mathbb{R}^{2k} \to \mathbb{R}$ and a set $S \in \mathbb{R}^{d+k}$ if given any $(x, y) \in S$:
- L(C(W,x),y) is (strictly) convex/(one point) convex in W.
- Learning: $W^* = \operatorname{argmin} \sum_i L(C(W, x_i), y_i)$ over samples $\{x_i, y_i\}_{i \in [N]}$.
- Given x, making prediction using $C(W^*, x)$.

Definition (Convex circuit)

- A (k-output) circuit C with two inputs $W \in \mathbb{R}^m, x \in \mathbb{R}^d$ is a convex circuit over loss $L : \mathbb{R}^{2k} \to \mathbb{R}$ and a set $S \in \mathbb{R}^{d+k}$ if given any $(x, y) \in S$:
- L(C(W,x),y) is (strictly) convex/(one point) convex in W.
- Learning: $W^* = \operatorname{argmin} \sum_i L(C(W, x_i), y_i)$ over samples $\{x_i, y_i\}_{i \in [N]}$.
- Given x, making prediction using $C(W^*, x)$.

Definition (Poly size non-convex circuit)

• *C* is a poly-size (arithmetic) circuit.

Definition (Convex circuit)

- A (k-output) circuit C with two inputs $W \in \mathbb{R}^m, x \in \mathbb{R}^d$ is a convex circuit over loss $L : \mathbb{R}^{2k} \to \mathbb{R}$ and a set $S \in \mathbb{R}^{d+k}$ if given any $(x, y) \in S$:
- L(C(W,x),y) is (strictly) convex/(one point) convex in W.
- Learning: $W^* = \operatorname{argmin} \sum_i L(C(W, x_i), y_i)$ over samples $\{x_i, y_i\}_{i \in [N]}$.
- Given x, making prediction using $C(W^*, x)$.

- C is a poly-size (arithmetic) circuit.
- L(C(W,x),y) doesn't have to be convex.

Definition (Convex circuit)

- A (k-output) circuit C with two inputs $W \in \mathbb{R}^m, x \in \mathbb{R}^d$ is a convex circuit over loss $L : \mathbb{R}^{2k} \to \mathbb{R}$ and a set $S \in \mathbb{R}^{d+k}$ if given any $(x, y) \in S$:
- L(C(W,x),y) is (strictly) convex/(one point) convex in W.
- Learning: $W^* = \operatorname{argmin} \sum_i L(C(W, x_i), y_i)$ over samples $\{x_i, y_i\}_{i \in [N]}$.
- Given x, making prediction using $C(W^*, x)$.

- C is a poly-size (arithmetic) circuit.
- L(C(W,x),y) doesn't have to be convex.
- Learning: $W = W \eta \sum_i \nabla_W L(C(W, x_i), y_i)$, in polynomially many iterations.

Definition (Convex circuit)

- A (k-output) circuit C with two inputs $W \in \mathbb{R}^m, x \in \mathbb{R}^d$ is a convex circuit over loss $L: \mathbb{R}^{2k} \to \mathbb{R}$ and a set $S \in \mathbb{R}^{d+k}$ if given any $(x, y) \in S$:
- L(C(W,x),y) is (strictly) convex/(one point) convex in W.
- Learning: $W^* = \operatorname{argmin} \sum_i L(C(W, x_i), y_i)$ over samples $\{x_i, y_i\}_{i \in [N]}$.
- Given x, making prediction using $C(W^*, x)$.

- C is a poly-size (arithmetic) circuit.
- L(C(W,x),y) doesn't have to be convex.
- Learning: $W = W \eta \sum_i \nabla_W L(C(W, x_i), y_i)$, in polynomially many iterations.
- Question: is non-convex-P/poly better than convex-P/poly?

• When L is ℓ_2 and the support of y is the full space: easy to prove that C(W,x) must be linear in W if L(C(W,x),y) is convex.

- When L is ℓ_2 and the support of y is the full space: easy to prove that C(W,x) must be linear in W if L(C(W,x),y) is convex.
- Linear regression over feature mappings

 we get a provable separation in this work.

- When L is ℓ_2 and the support of y is the full space: easy to prove that C(W,x) must be linear in W if L(C(W,x),y) is convex.
- Linear regression over feature mappings

 we get a provable separation in this work.
- On the other hand, we also see a lot of cases where the opposite is true, especially for one-point convexity:

- When L is ℓ_2 and the support of y is the full space: easy to prove that C(W,x) must be linear in W if L(C(W,x),y) is convex.
- Linear regression over feature mappings

 we get a provable separation in this work.
- On the other hand, we also see a lot of cases where the opposite is true, especially for one-point convexity:
- Matrix sensing/Matrix completion, can be solved by UV^{\top} (non-convex) or nuclear norm regularization on M (convex). Actually $\|U\|_F^2 + \|V\|_F^2$ is very similar to $\|UV^{\top}\|_*$ as well.

- When L is ℓ_2 and the support of y is the full space: easy to prove that C(W,x) must be linear in W if L(C(W,x),y) is convex.
- Linear regression over feature mappings

 we get a provable separation in this work.
- On the other hand, we also see a lot of cases where the opposite is true, especially for one-point convexity:
- Matrix sensing/Matrix completion, can be solved by UV^{\top} (non-convex) or nuclear norm regularization on M (convex). Actually $\|U\|_F^2 + \|V\|_F^2$ is very similar to $\|UV^{\top}\|_*$ as well.
- One point convexity (convex w.r.t. W^*) for many non-convex learning algorithms: Learning one hidden layer network, Dictionary learning, Quadratic programming, Blind deconvolution, this work.

- When L is ℓ_2 and the support of y is the full space: easy to prove that C(W,x) must be linear in W if L(C(W,x),y) is convex.
- Linear regression over feature mappings

 we get a provable separation in this work.
- On the other hand, we also see a lot of cases where the opposite is true, especially for one-point convexity:
- Matrix sensing/Matrix completion, can be solved by UV^{\top} (non-convex) or nuclear norm regularization on M (convex). Actually $\|U\|_F^2 + \|V\|_F^2$ is very similar to $\|UV^{\top}\|_*$ as well.
- One point convexity (convex w.r.t. W^*) for many non-convex learning algorithms: Learning one hidden layer network, Dictionary learning, Quadratic programming, Blind deconvolution, this work.

- When L is ℓ_2 and the support of y is the full space: easy to prove that C(W,x) must be linear in W if L(C(W,x),y) is convex.
- Linear regression over feature mappings

 we get a provable separation in this work.
- On the other hand, we also see a lot of cases where the opposite is true, especially for one-point convexity:
- Matrix sensing/Matrix completion, can be solved by UV^{\top} (non-convex) or nuclear norm regularization on M (convex). Actually $\|U\|_F^2 + \|V\|_F^2$ is very similar to $\|UV^{\top}\|_*$ as well.
- One point convexity (convex w.r.t. W*) for many non-convex learning algorithms: Learning one hidden layer network, Dictionary learning, Quadratic programming, Blind deconvolution, this work.

Question (Fundamental question)

Is non-convex optimization (training neural networks) provably better than convex/one point convex optimization in efficiently computable regime?