Ekstremal meseleler nazaryýeti dersi näme?

Bilmeli ýönekeý soraglary:

- 1. Ekstremal meseleler nazaryýeti nämäni öwrenýär? Jogaby: maksimum we minimum tapmak meselelerini we olary çözmek usullaryny işläp taýýarlamagy öwrenýär.
- 2. *Maksat funksiýasy näme?* Jogaby: Minimumy ýa-da maksimumy gözlenýän funksiýa maksat funksiýasy diýilýär.
- 3. Ekstremal meseläniň umumy görnüşi nähili? Jogaby: Umumy ýagdaýda mesele aşakdaky ýaly bolýar: käbir X giňişlikde kesgitlenen, $x \in D$ ($D \subset X$) çäklendirmesi bolan $f: X \to R$ funksiýanyň ekstremumyny (maksimumyny we minimumyny) tapmaly. Bu mesele gysgaça şeýle ýazylýar: $f(x) \to extr; x \in D$. Bir üýtgeýän ululykly funksiýa üçin X = R, birnäçe üýtgeýän ululykly funksiýa üçin bolsa $X = R^n$ bolar. Has umumy ýagdaýda X çyzykly, normalasdyrylan ýa-da topologik giňislik bolup biler.
- 4. Stasionar nokat näme? Jogaby: Ekstremal meselelerde ekstremumyň zerur şertlerini meseläniň çözüwi kanagatlandyrmalydyr. Ekstremumyň zerur şertlerini ýazmak bilen biz nokatlaryň bu şertleri ýerine ýetirýän käbir köplügini tapýarys. Stasionar nokatlar, kritiki nokatlar ýa-da ekstremal nokatlar diýlip atlandyrylýan bu nokatlar köplügi ekstremumlaryň absolýut köplüginden, hat-da ekstremumlaryň lokal köplüginden hem giň bolmagy mümkin.
- 5. Fermanyň teoremasy. Jogaby: Goý, $f: R \to R$ bir üýtgeýän ululykly funksiýa bolsun. Eger \hat{x} nokat f funksiýanyň lokal ekstremum nokady ($\hat{x} \in \text{locextr } f$) we f funksiýa \hat{x} nokatda differensirlenýän bolsa $(f \in D(\hat{x}))$, onda $f'(\hat{x}) = 0$ bolar.
- 6. Minimumyň II tertipli zerur şertleri nähili kesgitlenýär? Jogaby: Goý, f funksiýa \hat{x} nokatda iki gezek differensirlenýän bolsun $(f \in D^2(\hat{x}))$. Eger \hat{x} nokat f funksiýanyň lokal minimum nokady $(\hat{x} \in \text{locmin } f)$ bolsa, onda $f'(\hat{x}) = 0$, $f''(\hat{x}) \ge 0$ bolar.
- 7. Minimumyň II tertipli ýeterlik şertleri nähili kesgitlenýär? Jogaby: Goý, f funksiýa \hat{x} nokatda iki gezek differensirlenýän bolsun $(f \in D^2(\hat{x}))$. Eger $f'(\hat{x}) = 0$, $f''(\hat{x}) > 0$ bolsa, onda \hat{x} nokat f funksiýanyň lokal minimum nokady bolar $(\hat{x} \in \text{locmin } f)$.
- 8. Kwadrat üçagza baradaky esasy teorema nähili kesgitlenýär? Jogaby: $f(x) = ax^2 + bx + c$ ($a \ne 0$) kwadrat üçagza $\hat{x} = -\frac{b}{2a}$ bolanda ekstremal baha eýedir. Eger a > 0 bolsa, onda bu baha iň kiçi bolar, we eger a < 0 bolsa, onda ol iň uly bolar. Eger f_{max} bar bolsa, onda f_{min} bolmaz we tersine.
- 9. Esasy teoremanyň ulanylysyna degişli mysal getirmeli. Jogaby: Şol bir perimetre eýe bolan hemme gönüburçluklaryň içinde iň uly meýdana eýe bolýany kwadratdyr.

- 10. Položitel sanlaryň orta geometrik bahasy baradaky teorema. Jogaby: Položitel sanlaryň islendik mukdarynyň orta geometrik bahasy olaryň orta arifmetiki bahasyndan uly däldir: $\sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \cdots + a_n}{n}$.
- 11. Minimumlaşdyrmanyň göni usullary nämeden ybarat? Jogaby: Eger bir üýtgeýän ululykly funksiýanyň minimumyny tapanlarynda funksiýanyň seredilýän aralygyň nokatlaryndaky bahalaryny peýdalanýan bolsalar we onuň önümleriniň bahalaryny peýdalanmaýan bolsalar, onda şeýle usullara göni usullar diýilýär.
- 12. Minimumlaşdyrmanyň gowşak usullary. Jogaby: Goý, bir üýtgeýän ululykly hakyky skalýar f(x) funksiýanyň [a,b] kesimdäki iň kiçi bahasyny ýa-da anyk aşaky çägini, ýagny \hat{f} ululygy tapmak talap edilsin. Eger funksiýanyň bahalarynyň hasaplanjak hemme x_k (k=1,2,...,N) nokatlary öňünden saýlansa (funksiýanyň bu nokatlardaky bahalary hasaplanmanka), onda \hat{f} ululygyň gözlegi gowşak usul diýlip atlandyrylýar.
- 13. Minimumlaşdyrmanyň yzygiderli usullary. Jogaby: Goý, bir üýtgeýän ululykly hakyky skalýar f(x) funksiýanyň [a,b] kesimdäki iň kiçi bahasyny ýa-da anyk aşaky çägini, ýagny \hat{f} ululygy tapmak talap edilsin. Eger x_k nokatlar yzygiderli saýlansa (indiki nokady saýlamak üçin funksiýanyň öňki nokatlarda hasaplanan bahalaryndan peýdalanýarlar), onda onda \hat{f} ululygyň gözlegi yzygiderli usul diýlip atlandyrylýar.
- 14. Kesimi altyn kesme diýlip nämä aýdylýar? Jogaby: Kesimi *altyn kesme* diýlip ony tutuş kesimiň uzynlygynyň uly böleginiň uzynlygyna bolan gatnaşygynyň uly böleginiň uzynlygynyň kiçi böleginiň uzynlygyna bolan gatnaşygyna deň bolan iki sany deň bolmadyk böleklere bölmek usulyna aýdylýar.
- 15. Çäklendirilmedik tükenikli ölçegli meseläniň goýluşy. Jogaby: Goý, $f: \mathbb{R}^n \to \mathbb{R}$ käbir endiganlyga eýe bolan n hakyky üýtgeýän ululykly funksiýa bolsun. Endiganlyk diýip funksiýanyň kesgitli differensirlenmegine düşüneris. Eger f funksiýa \hat{x} nokatda k gezek differensirlenýän bolsa, onda $f \in D^k(\hat{x})$ diýip ýazarys. Çäklendirilmedik tükenikli ölçegli endigan mesele diýlip $f(x) \to \exp$ extr meselä aýdylýar.
- 16. Çäklendirilmedik tükenikli ölçegli meselede ekstremumyň I tertipli zerur şerti. Jogaby: Eger $\hat{x}=(\hat{x}_1,...,\hat{x}_n)$ nokat n üýtgeýänli $f(x_1,...,x_n)$ funksiýanyň lokal ekstremum nokady $(\hat{x} \in \text{locextr } f)$ we f funksiýa \hat{x} nokatda differensirlenýän bolsa $(f \in D(\hat{x}))$, onda $f'(\hat{x})=0 \Leftrightarrow \frac{\partial f(\hat{x})}{\partial x_1}=\cdots=\frac{\partial f(\hat{x})}{\partial x_n}=0$.
- 17. n üýtgeýänli funksiýalaryň II önümleriniň matrisasy nähili kesgitlenýär? Jogaby: $A = f''(\hat{x}) = \left(\frac{\partial^2 f(\hat{x})}{\partial x_i \partial x_j}\right)_{i,j=1}^n = \left(a_{ij}\right)_{i,j=1}^n$.
- 18.Güberçek köplükleriň birnäçesiniň kesişmesi we birleşmesi nähili bolar? Jogaby: kesişmesi güberçek köplük bolar, birleşmesi güberçek bolman hem biler.

- 19.Bolsanyň meselesi nähili kesgitlenýär? Jogaby: *Bolsanyň meselesi* diýlip üznüksiz differensirlenýän funksiýalaryň $C^1([t_0,t_1])$ (bölekleýin-üznüksiz differensirlenýän funksiýalaryň $KC^1([t_0,t_1])$ giňişligindäki $B(x)=\int_{t_0}^{t_1}L(t,x(t),\dot{x}(t))\,dt+l(x(t_0),x(t_1))\to extr$ çäklendirilmedik ekstremal meselä aýdylýar.
- 20. Wariasion hasaplamanyň ýönekeýje meselesi nähili kesgitlenýär? Jogaby: Wariasion hasaplamanyň ýönekeýje meselesi diýlip $C^1([t_0,t_1])$ (ýa-da $KC^1([t_0,t_1]))$ giňişlikdäki $J(x)=\int_{t_0}^{t_1}L\big(t,x(t),\dot{x}(t)\big)\,dt\to extr,\; x(t_0)=x_0, x(t_1)=x_1$ ekstremal meselä aýdylýar.