Only You

A Field Experiment of Text Message to Prevent Crowding-out Effect in Japan Marrow Donor Program

Hiroki Kato¹ Fumio Ohtake^{1, 2} Saiko Kurosawa³ Kazuhiro Yoshiuchi⁴ Takahiro Fukuda⁵

¹Graduate School of Economics, Osaka University
²Center for Infectious Disease Education and Research (CiDER), Osaka University
³Department of Oncology, Ina Central Hospital
⁴Graduate School of Medicine, Tokyo University
⁵Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital

August 25, 2022

同種幹細胞移植について

- 比較的再発率の低い、血液病(e.g. 白血病)に対する治療法
 - 抗がん剤もしくは放射線治療によって健康な細胞と病巣を破壊し、他者の 健康な細胞を移植する
- 白血球の型(HLA)が一致していることが条件
 - ランダムにピックアップした二人の HLA の一致確率は 1%未満
 - 兄弟姉妹の二人の HLA の一致確率は 30%(親子の一致確率はかなり小さい)
- 日本では、親族に最適なドナーがいない場合、日本骨髄バンク(JMDP) を通して非親族の造血幹細胞ドナーを探す

JMDPの問題点

- 移植のコーディネート期間が長く、患者の死亡率が高い (Hirakawa et al, 2018)
 - 50%の登録患者は 146 日以内に移植を受けられるが、死亡した登録患者の 58%は 200 日以内に死亡していた
 - 登録患者の約 40%が移植を受けられず、死亡した
- 患者の生存率を向上するためには、移植のコーディネート期間を短くする必要がある。そのための政策は2つある。
 - ドナープールの規模を拡大する。2000 年から 2015 年にかけて骨髄バンク の登録者は 2 倍になっているが、HLA の一致確率は 5%程度しか増えていない (Takanashi, 2016)。この政策の限界便益は小さい
 - **ドナープールの質を高める**。73%のコーディネーションは確認検査前にドナー側の理由で中断している (Hirakawa et al., 2018)。ここに改善の余地がある。

公共財としての同種幹細胞移植

- JMDP を介した移植は1人の患者に対して複数のドナーが同時にコーディネーションを進める
- 患者を助けることに効用を得る人は、他者の移植でも効用を得られる。 したがって、経済学で言われるクラウディング・アウト効果(もしくは、 ただ乗り行動)が生じうる
 - ドナー候補者が複数いると期待している人は、他者が移植してくれることを期待して、自身が移植することを断る。
 - 結果として、医者が選択できるドナー候補者が少なくなり、移植を阻害してしまう。

本研究の概要

- ドナー候補者に選定されたことを伝える適合通知に、クラウディング・アウト効果を阻害するようなテキストメッセージを加えて、その効果をフィールド実験にて検証する。
 - 関連研究:Shang and Croson (2009, EJ)
- 主な発見
 - 1. クラウディング・アウト効果を解消するメッセージは返信率を高めている
 - 2. 特に、このメッセージは移植成績の良い若年男性に対して有効であり、移植を希望して返信する確率を高め、移植確率にも正の影響を与えている。

1. Field Experiment

介入対象とタイミング

- 対象:骨髄バンクドナー確定後に「適合通知」を受け取るドナー候補者 (N = 11,154)
- ドナー候補者確定後、骨髄バンクは対象者に幹細胞提供を依頼する「適 合通知」およびそれを郵送した旨を伝える SNS メーセージを送付
- 行動科学の知見に基づいたメッセージを適合通知に加える介入を実施

通常の適合通知の内容

この度、あなたと骨髄バンクの登録患者さんの HLA 型(白血球の型)が一致し、ドナー候補者のおひとりに選ばれました。今後、ご提供に向け詳しい検査や面談を希望されるかをお伺いしたく連絡させていただきました。同封の資料をよくお読みいただき、コーディネートが可能かどうか検討の上、この案内が届いてから7日以内に返信用紙ほかをご返送ください。返送後、コーディネートを進めさせていただく場合は、担当者よりご相談のお電話を差し上げますのでよろしくお願い申し上げます。

介入①:確率メッセージ

「1 人の登録患者さんと HLA 型が一致するドナー登録者は**数百〜数万人に 1 人**です。ドナー候補者が複数みつかる場合もありますが、多くはないこともご理解頂ければ幸いです。」

• 他のドナー候補者が多くいるという過大推定によるクラウディング・アウト効果を解消することを目的としたもの

介入②:移植患者情報

「骨髄バンクを介して移植ができる患者さんは現在約 6 割にとどまっています。骨髄等を提供するドナーが早く見つかれば、その比率を高めることができます。」

• クラウディング・アウト効果の解消と併せて、利他的なモチベーション を刺激することを目的としたもの

実験群

2つの介入を組み合わせて、4つの実験群を作成した。実験群の割り当ては骨髄バンク側の業務の無理のない範囲でクラスターランダム化した。

• A 群:通常の適合通知

• B群:通常の適合通知+確率メッセージ

• C 群:通常の適合通知+移植患者情報

• D 群:通常の適合通知+確率メッセージ+移植患者情報

割り当てスケジュール

週・月の固定効果を取り除くために、実験群は月・週でバランスするように 週単位で割り当てた

	月/年								
週	9/21	10/21	11/21	12/21	1/22	2/22			
1	В	С	С	D	В	Α			
2	D	В	Α	Α	C	В			
3	Α	D	В	C	D	C			
4	С	Α	D	В	Α	D			

データ

- データは 2022 年 6 月末時点のコーディネーション進行状況と複数の個人 属性で構成されている
 - 観測単位はコーディネーション(ドナー候補者)
- 分析対象は国内在住でコーディネーションが完全に終了している人
 - 海外に在住する人に適合通知を送付した事例が1件あった
 - 現在もコーディネーションが進行している事例が約 100 件あった

フィールド実験概要

	Α	В	С	D	p-value
A. 介入					
通常の適合通知	X	X	X	X	
確率メッセージ		X		X	
移植患者情報			X	X	
B. サンプルサイズ					
サンプルサイズ	2535	3053	2726	2735	
C. 共変量					
年齢	38.38	38.12	37.45	37.98	0.00
過去のコーディネーション回数	1.61	1.59	1.62	1.56	0.13
男性	0.62	0.63	0.63	0.61	0.23
東京・大阪・神奈川・愛知	0.28	0.29	0.29	0.28	0.57

推定方法

一部の共変量、および割り当ての週と月が実験群間でバランスしていないことを考慮して、単純な二群比較ではなく、線形確率モデルで推定する。

$$Y_{imw} = \beta_1 \cdot \mathsf{B}_{mw} + \beta_2 \cdot \mathsf{C}_{mw} + \beta_3 \cdot \mathsf{D}_{mw} + X_i' \gamma + \lambda_m + \theta_w + u_{imw}$$

- X_i は性別、年齢、東京・大阪・神奈川・愛知ダミー (TOKA)、コーディネーション回数
- λ_m と θ_w は週・月の固定効果
- $\beta_1 = \beta_2$ 、 $\beta_1 = \beta_3$ 、 $\beta_2 = \beta_3$ の帰無仮説に対する F 検定を実施