Online deployment of pre-trained machine learning components within geoscientific models through OASIS

Alexis Barge¹ - Julien Le Sommer¹

1: IGE, Université Grenoble-Alpes, France

M2LInES Annual Meeting 2024

4-7 June 2024

NB: <u>Underlined texts are links</u>

Motivation: interface for hybrid physics / AI modeling

Typical use cases of hybrid modeling

Parameterization from hi-fidelity models (LES, km-scale models)

Sane et al. 2023 Frezat et al. 2022

Correction of model error from reanalysis or DA increments

Gregory et al. 2024 Chapman and Berner, 2023

Acceleration of code components with neural emulators

Hogan and Bozzo, 2018 Chantry et al. 2021

Existing solutions

Implement or convert NN in Fortran

<u>neural-fortran</u> <u>Fortran-Keras Bridge</u> <u>FNN</u> <u>inference-engine</u>

Call Python scripts from Fortran with Python bindings

call_py_fort Pyfort

Leverage the existing C/C++ bindings of specific ML libraries

<u>infero</u> <u>Ftorch</u> <u>TF-lib</u> <u>TorchClim</u>

Leverage a more generic interface between Fortran and Python
smartsim PhyDLL

OASIS coupler for hybrid modeling

OASIS3-MCT https://oasis.cerfacs.fr/en/

Coupling library between different codes Interpolate and exchange 2D/3D fields

Widely deployed

Used by 67 climate modeling groups
Used in 5 of the 7 European ESMs used for CMIP6

New functionalities since OASIS3-MCT_5.0

Python and C/C++ API

Can we leverage OASIS for hybrid modeling?

OASIS coupler for hybrid modeling: drawing

OASIS3-MCT https://oasis.cerfacs.fr/en/

Coupling library between different codes Interpolate and exchange 2D/3D fields

Widely deployed

Used by 67 climate modeling groups
Used in 5 of the 7 European ESMs used for CMIP6

New functionalities since OASIS3-MCT_5.0

Python and C/C++ API

Can we leverage OASIS for hybrid modeling?

OASIS coupler for hybrid modeling: reality

EOPHIS: a library for deploying ML models through OASIS

Coupling setup
Interpolation / restart definition
Namelist

Aimed usage

No interpolation / restart Back and forth exchange only Use by non-experts

https://github.com/meom-group/eophis

MIT Licensed Open source

Key features

ML-framework agnostic solution (TF, PyTorch, Jax ...)
ML-models as pluggable scripts with minimal bindings
Easy sharing of ML-models across geoscientific codes

EOPHIS: a library for deploying ML models through OASIS

OASIS usage	Coupling setup Interpolation / restart definition Namelist	Time advancement for exchange synchronicity
Aimed usage	No interpolation / restart Back and forth exchange only Use by non-experts	Time not required

https://github.com/meom-group/eophis

MIT Licensed Open source

Key features

ML-framework agnostic solution (TF, PyTorch, Jax ...)
ML-models as pluggable scripts with minimal bindings
Easy sharing of ML-models across geoscientific codes

Deployment of ML models in idealized NEMO

GZ21 Model

Stochastic subgrid forcing
Infer stochastic elements from 2D velocities

Guillaumin and Zanna, 2021

DINO.GZ21

5 years low-res *Diabatic NeverwOrld2*Implementation of retroactive GZ21
Collaboration with E.Meunier and D.Kamm

Perspectives

High-resolution simulation Scientific evaluation Performance optimization

Deployment of ML models in realistic NEMO configuration

Restratification due to submesoscale eddies

Unresolved vertical transports in ocean near-surface mixed layer Modeled by Mixed Layer Eddies (MLE) parameterizations Use of ML parameterizations currently an active research field

Bodner et al., submitted to JAMES (2024) Zhou et al., submitted to JAMES (2024)

Existing closure framework

Fox-Kemper et al., 2008b

Calvert et al. 2020

Submesoscale vertical buoyancy fluxes

$$\overline{w'b'_{\Psi}} = \underline{\Psi} \times \nabla_{H} \overline{b^{z}} \rightarrow \text{streamfunction-induced transport}$$

$$\underline{\Psi} = f(|\overline{\nabla b^{z}}|, \overline{f}, \overline{H}, \overline{Q^{*}}, \text{div(u)}, rot(u), |\tau|, \overline{\sigma^{z}})$$

eORCA025-MLE.BDZ24

10 years forced global 1/4deg simulation Infer 2D vertical buoyancy fluxes with Bodner et al. model Collaboration with A.Bodner and D.Balwada

Snapshot of outsourced vertical buoyancy flux (W/m2)

Successful external ML model call

Wrap-up

Eophis : a framework agnostic interface for ML models

Future developments:

- parallel execution with data exchanges across multiple processors
- performances analysis on GPUs vs CPUs (for inference)

https://github.com/meom-group/eophis

MIT Licensed, Open source

A Github org for sharing ML-based ocean closures (w/ Eophis)

MORAYS-community: examples deployment and use cases

Ocean model agnostic (NEMO, CROCO) with commonly agreed templates

Toward reproducible hybrid ocean modeling

https://github.com/morays-community

Getting Started

https://morays-doc.readthedocs.io/en/latest/getting_started.html