Problema 17

Elías López Rivera ¹

 1 Universidad Nacional Autónoma de México ${\it Facultad \ de \ ciencias}$

26 de enero de 2025

1. Enunciado

Sea r>0 un número real fijo, y sea la sucesión $(a_n)_{n\in\mathbb{N}}$ definida como:

$$a_1 := 1 + r \qquad a_{n+1} := \frac{1}{2} \left(a_n + \frac{r}{a_n} \right) \quad \forall \, n \in \mathbb{N}$$

Demuestre que esta sucesión está acotada por \sqrt{r} , es decreciente y $\lim_{n\to\infty} a_n = \sqrt{r}$.

2. Solución

Procederemos a probar que: $a_n > \sqrt{r} \ \forall n \in \mathbb{N}$, primero tomemos $x \in \mathbb{R}$ tal que x > 0, es claro que:

$$(x-1)^2 > 0 \implies x^2 - 2x + 1 > 0$$

$$x^2 + 1 > 2x \implies x + \frac{1}{x} > 2$$

Por tanto para todo $x \in \mathbb{R}$ con x > 0 se cumple:

$$x + \frac{1}{x} > 2$$

Tomemos $a_{n+1} \in (a_n)_{n \in \mathbb{N}}$, es claro que $a_{n+1} = \frac{1}{2}(a_n + \frac{r}{a_n})$, manipulando algebraicamente:

$$a_{n+1} = \frac{\sqrt{r}}{2} \left(\frac{a_n}{\sqrt{r}} + \frac{\sqrt{r}}{a_n} \right)$$

Sea $x := \frac{a_n}{\sqrt{r}}$, es claro que x > 0, $\forall n \in \mathbb{N}$

Por tanto
$$a_n \ge \sqrt{r} \ \forall n \in \mathbb{N}$$

Ahora probaremos que $(a_n)_{n\in\mathbb{N}}$, es una sucesión monótona decreciente:

$$a_n - a_{n+1} = a_n - \frac{1}{2}(a_n + \frac{r}{a_n})$$

$$a_n - a_{n+1} = \frac{1}{2}(a_n - \frac{r}{a_n})$$
 Acotando:
$$a_n - a_{n+1} = \frac{1}{2}(a_n - \frac{r}{a_n}) > \frac{1}{2}(\sqrt{r} - \sqrt{r}) = 0$$

$$a_n > a_{n+1}$$

Se ha demostrado que $(a_n)_{n\in\mathbb{N}}$, es monótona y acotada, de donde se concluye que es convergente, finalmente nos disponemos a calcular el límite, utilizando los teoremas de álgebra de límites:

Sea
$$\lim_{n \to \infty} a_n = l$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1}$$

$$l = \frac{1}{2}(l + \frac{r}{l})$$

$$l = \sqrt{r}$$

3. Comentario adicional

El método anterior puede usarse para aproximar raíces cuadradas de números positivos, de manera eficiente, es importante estimar que tan rápido la sucesión $(x_n)_{n\in\mathbb{N}}$ converge a \sqrt{r} , en la siguiente desigualdad se tiene un modo de calcular el grado de presición deseado en la aproximación de la raíz.

$$0 \le a_n - \sqrt{r} \le a_n - \frac{r}{a_n} = \frac{a_n^2 - a}{a_n}$$