Neural Network (Basic Ideas)

Machine Learning Steps

1. What is the model (function hypothesis set)?

2. What is the "best" function?

3. How to pick the "best" function?

Framework

x:

 \hat{y} : "2" (label)

Step 1: What is the function we are looking for?

classification

$$y = f(x) \qquad f: R^N \to R^M$$

- x: input object to be classified
- y: class
- Assume both x and y can be represented as fixed-size vector
 - x is a vector with N dimensions, and y is a vector with M dimensions

Step 1: What is the function we are looking for?

Handwriting Digit Classification

 $f: \mathbb{R}^N \to \mathbb{R}^M$

x: image

Each pixel corresponds to an element in the vector

y: class

10 dimensions for digit recognition

Single Neuron

$$f: \mathbb{R}^N \to \mathbb{R}$$

Single Neuron

$$f: \mathbb{R}^N \to \mathbb{R}$$

Single Neuron $f: \mathbb{R}^N \to \mathbb{R}$

 Single neuron can only do binary classification, cannot handle multi-class classification

A Layer of Neuron $f: \mathbb{R}^N \to \mathbb{R}^M$

Handwriting digit classification

• Classes: "1", "2",, "9", "0"

If y_2 is the max, then the image is "2".

Limitation of Single Layer

Input		Output
x_1	x_2	Output
0	0	No
0	1	Yes
1	0	Yes
1	1	No

Limitation of Single Layer

• No, we can't

Limitation of Single Layer

Input		Output
x_1	x_2	Output
0	0	No
0	1	Yes
1	0	Yes
1	1	No

Different connection leads to different network structures

Network parameter θ : all the weights and biases in the "neurons"

Notation

Notation

 \boldsymbol{z}_{i}^{l} : input of the activation function for neuron i at layer l

 \boldsymbol{z}^{l} : input of the activation function all the neurons in layer I

$$z_i^l = w_{i1}^l a_1^{l-1} + w_{i2}^l a_2^{l-1} \dots + b_i^l$$

$$z_i^l = \sum_{j=1}^{N_{l-1}} w_{ij}^l a_j^{l-1} + b_i^l$$

Layer *l* −1

 N_{l-1} nodes

Layer *l*

 N_l nodes

Fully Connect Feedforward Network

Fully Connect Feedforward Network

Fully Connect Feedforward NN

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given network structure, define a function set

Neural Network as Model

 $f: \mathbb{R}^N \to \mathbb{R}^M$

- > Fully connected feedforward network
- > Deep Neural Network: many hidden layers

Matrix Operation

Relations between Layer Outputs

Relations between Layer Outputs

 N_i nodes

 N_{l-1} nodes

$$a_{i}^{l} = \sigma(z_{i}^{l})$$

$$\begin{bmatrix} a_{1}^{l} \\ a_{2}^{l} \\ \vdots \\ a_{i}^{l} \\ \vdots \end{bmatrix} = \begin{bmatrix} \sigma(z_{1}^{l}) \\ \sigma(z_{2}^{l}) \\ \vdots \\ \sigma(z_{i}^{l}) \\ \vdots \end{bmatrix}$$

$$a^{l} = \sigma(z^{l})$$

Relations between Layer Outputs

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Output Layer

Feature extractor replacing feature engineering

Example Application

Input

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

Step 2: Goodness of a function Loss for an Example

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} C^n$$

Find *a function in function set* that
minimizes total loss L

Find <u>the network</u>

parameters θ^* that minimize total loss L

Step 3: Pick the Best Function Gradient Descent

Gradient Descent

Gradient Descent

This is the "learning" of machines in deep learning

Even GPT using this approach.

People image

Actually

Back Propagation

Gradient Descent

Network parameters $\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$

$$\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \cdots$$

Starting Parameters
$$\theta = \{w_1, w_2, \cdots, b_1, b_2, \cdots\}$$

$$\nabla L(\theta) \qquad \qquad \theta^1 \longrightarrow \theta^2 \longrightarrow \cdots$$

$$\nabla L(\theta) \qquad \qquad Compute \nabla L(\theta^0) \qquad \theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$= \begin{bmatrix} \partial L(\theta)/\partial w_1 \\ \partial L(\theta)/\partial w_2 \\ \vdots \\ \partial L(\theta)/\partial b_1 \\ \partial L(\theta)/\partial b_2 \\ \vdots \end{bmatrix}$$
Compute $\nabla L(\theta^1) \qquad \theta^2 = \theta^1 - \eta \nabla L(\theta^1)$

$$= \begin{bmatrix} \partial L(\theta)/\partial b_1 \\ \partial L(\theta)/\partial b_2 \\ \vdots \\ \partial L(\theta)/\partial b_2 \\ \vdots \end{bmatrix}$$
Millions of parameters

To compute the gradients efficiently, we use backpropagation.

Compute
$$\nabla L(\theta^0)$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

Compute
$$\nabla L(\theta^1)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

Chain Rule

Case 1

$$y = g(x)$$
 $z = h(y)$

$$\Delta x \to \Delta y \to \Delta z$$

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

$$\Delta S = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

Backpropagation

$$L(\theta) = \sum_{n=1}^{N} l^{n}(\theta) \qquad \qquad \frac{\partial L(\theta)}{\partial w} = \sum_{n=1}^{N} \frac{\partial l^{n}(\theta)}{\partial w}$$

Backpropagation

$$\frac{\partial l}{\partial w} = ? \quad \frac{\partial z}{\partial w} \frac{\partial l}{\partial z}$$
(Chain rule)

ortivara passi

Compute $\partial z/\partial w$ for all parameters

Backward pass:

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

$$\frac{\partial z}{\partial w_1} = ? x_1$$

$$\frac{\partial z}{\partial w_2} = ? x_2$$

The value of the input connected by the weight

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

Compute $\partial l/\partial z$ for all activation function inputs z

Done!

Compute $\partial l/\partial z$ for all activation function inputs z

Case 2. Not Output Layer

Compute $\partial l/\partial z$ for all activation function inputs z

Case 2. Not Output Layer

Compute $\partial l/\partial z$ for all activation function inputs z Compute $\partial l/\partial z$ from the output layer

Compute $\partial l/\partial z$ for all activation function inputs z Compute $\partial l/\partial z$ from the output layer

Backpropagation – Summary

Forward Pass

Backward Pass

for all w