

10/562962
15/47

IAP20 Rec'd PCT/PTO 30 DEC 2005

GKN Driveline International GmbH
Hauptstraße 130
53797 Lohmar

02. November 2004
Ne/bec (20040545)
Q04059WO00

Gegenbahngelenk mit Bahnwendepunkt

Patentansprüche

1. Gleichlaufgelenk (11) in Form eines Gegenbahngelenks mit den Merkmalen
- ein Gelenkaußenteil (12), welches eine erste Längsachse (A_{12}) und axial zueinander entgegengesetzt eine Anschlußseite und eine Öffnungsseite hat, und das erste äußere Kugelbahnen (18) und zweite äußere Kugelbahnen (20) aufweist
 - ein Gelenkinnenteil (15), welches eine zweite Längsachse (A_{22}) und Anschlußmittel für eine zur Öffnungsseite des Gelenkaußenteils (12) weisende Welle (22) hat und das erste innere Kugelbahnen (19) und zweite innere Kugelbahnen (21) aufweist,
 - die ersten äußeren Kugelbahnen (18) und die ersten inneren Kugelbahnen (19) bilden erste Bahnpaare miteinander,
 - die zweiten äußeren Kugelbahnen (20) und die zweiten inneren Kugelbahnen (21) bilden zweite Bahnpaare miteinander, die Bahnpaare nehmen jeweils eine drehmomentübertragende Kugel (17₁, 17₂) auf,
 - ein Kugelkäfig (16) sitzt zwischen Gelenkaußenteil (12) und Gelenkinnenteil (15) und weist umfangsverteilte Käfigfenster (24₁, 24₂) auf, die jeweils zumindest eine der Kugeln (17₁, 17₂) aufnehmen,
 - der Öffnungswinkel (δ_1) der ersten Bahnpaare öffnet sich bei gestrecktem Gelenk in der Gelenkmittelebene (E) von der Öffnungsseite zur Anschlußseite des Gelenkaußenteils (12),
 - der Öffnungswinkel (δ_2) der zweiten Bahnpaare öffnet sich bei gestrecktem Gelenk in der Gelenkmittelebene (E) von der Anschlußseite zur Öffnungsseite

BEST AVAILABLE COPY

des Gelenkaußenteils (12),

dadurch gekennzeichnet,

daß die Bahnmittellinien (L_{18}, L_{19}) der ersten Bahnpaare jeweils einen Wendepunkt (T_{1-2}) haben und der Mittelpunktwinkel (β) an den Wendepunkt (T_{1-2}) bezogen auf die Gelenkmittelebene (E) jeweils größer als 4° ist.

2. Gleichlaufgelenk nach Anspruch 1,

dadurch gekennzeichnet,

daß der Mittelpunktwinkel (β) an den Wendepunkt (T_{1-2}) bezogen auf die Gelenkmittelebene (E) jeweils größer als 5° ist.

3. Gelenk nach Anspruch 1,

dadurch gekennzeichnet,

daß der Mittelpunktwinkel (β) an den Wendepunkt (T_{1-2}) bezogen auf die Gelenkmittelebene (E) jeweils kleiner als 12° ist.

4. Gleichlaufgelenk nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet,

daß eine Tangente an die Bahnmittellinien (L_{18}, L_{19}) der ersten Bahnpaare im Wendepunkt (T_{1-2}) mit der jeweiligen Längsachse (A_{12}, A_{22}) bzw. eine Senkrechte auf dieser Tangente mit der Gelenkmittelebene (E) einen Wendepunktwinkel (α) bildet, der mit

$$\alpha \geq \beta + \arcsin \left[\frac{O_2}{R_2} \cdot \sin(\beta - 90^\circ) \right]$$

definiert ist, wobei O_2 der axiale Abstand des Schnittpunkts einer Senkrechten auf der Tangente mit der jeweiligen Längsachse (A_{12}, A_{22}) und (R_2) der Abstand dieses Schnittpunktes vom Wendepunkt ($T_{1,2}$) ist.

5. Gleichlaufgelenk nach Anspruch 4,

dadurch gekennzeichnet,

daß der Wendepunktwinkel (α) mit

$$\alpha \geq \beta + \arcsin \left[\frac{O_2 + a \cdot \tan(\beta)}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

definiert ist, wenn die jeweilige Bahnmittellinie (L_{18}, L_{19}) von der Gelenkmittelebene (E) bis zum Wendepunkt ($T_{1,2}$) einen Radius (R_2) aufweist, dessen Mittelpunkt (M_2) von der Gelenkmittelebene (E) den axialen Abstand (O_2) und von der jeweiligen Längsachse (A_{12}, A_{22}) den radialen Abstand (a) in Richtung zum Wendepunkt ($T_{1,2}$) hat.

6. Gleichlaufgelenk nach Anspruch 4,

dadurch gekennzeichnet,

daß der Wendepunktwinkel (α) mit

$$\alpha \geq \beta + \arcsin \left[\frac{O_2 - b \cdot \tan(\beta)}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

- definiert ist, wenn die jeweilige Bahnmittellinie (L_{18} , L_{19}) in der Gelenkmittelebene (E) bis zum Wendepunkt ($T_{1,2}$) einen Radius (R_2) aufweist, dessen Mittelpunkt (M_2) von der Gelenkmittelebene (E) den axialen Abstand (O_2) und von der jeweiligen Längsachse (A_{12} , A_{22}) den radialen Abstand (b) in Richtung vom Wendepunkt ($T_{1,2}$) weg hat.
7. Gleichlaufgelenk nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß die Bahnmittellinien (L_{18} , L_{19}) jeweils aus einem Radius (R_2) und vom Wendepunkt ($T_{1,2}$) ab aus einem Gegenradius (R_1) zusammengesetzt sind.
8. Gleichlaufgelenk nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß die Bahnmittellinien (L_{18} , L_{19}) aus einem Radius (R_2) und vom Wendepunkt ($T_{1,2}$) aus einem Gegenradius (R_1) sowie einem sich auf der Gegenseite an den Radius (R_2) anschließenden kleineren Radius (R_3) mit gleichem Krümmungssinn zusammensetzt.
9. Gleichlaufgelenk nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß die Bahnmittellinien (L_{18} , L_{19}) sich aus einem Radius (R_2) einer sich im Wendepunkt ($T_{1,2}$) (!) anschließenden Geraden und einem sich auf der Gegenseite an den Radius (R_2) anschließenden kleineren Radius (R_3) mit gleichem Krümmungssinn zusammensetzen (Figur 16).

10. Gleichlaufgelenk nach einem der Ansprüche 1 bis 9,

dadurch gekennzeichnet,

daß die Bahnmittellinien (L_{20}, L_{21}) der zweiten Kugelbahnen sich aus einem Radius (R_5) und einer zur Öffnungsseite sich anschließenden achsparallelen Geraden zusammensetzen (Figur 9).

11. Gleichlaufgelenk nach einem der Ansprüche 1 bis 9,

dadurch gekennzeichnet,

daß die Bahnmittellinien (L_{20}, L_{21}) der zweiten Kugelbahnen sich aus einem Radius (R_5) und einem sich zur Öffnungsseite anschließenden Gegenradius (R_4) zusammensetzen. (Figur 10)

12. Gleichlaufgelenk nach einem der Ansprüche 1 bis 9,

dadurch gekennzeichnet,

daß die Bahnmittellinien (L_{20}, L_{21}) der zweiten Kugelbahnen aus einem Radius (R_5) gebildet werden. (Figur 12).

13. Gleichlaufgelenk nach einem der Ansprüche 1 bis 12,

dadurch gekennzeichnet,

daß das Gelenk ein 6-Kugel-Gelenk ist.

14. Gleichlaufgelenk nach einem der Ansprüche 1 bis 12,

dadurch gekennzeichnet,

daß Gelenk ein 8-Kugel-Gelenk ist.

15. Gleichlaufgelenk nach einem der Ansprüche 1 bis 12,

dadurch gekennzeichnet,

daß Käfigfenster (24₁) für die ersten Kugeln (17₁) in Umfangsrichtung kürzer sind als Käfigfenster (24₂) für die zweiten Kugeln (17₂).

16. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,

dadurch gekennzeichnet,

daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und des Krümmungsradius R₁ folgendes gilt

$$1,5 < \text{PCDB} / R_1 < 1,9.$$

17. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,

dadurch gekennzeichnet,

daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und des Krümmungsradius R₂ folgendes gilt

$$1,8 < \text{PCDB} / R_2 < 2,2.$$

18. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,

dadurch gekennzeichnet,

daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und des Krümmungsradius R₃ folgendes gilt

$2,3 < PCDB / R_3 < 2,7$.

19. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,

dadurch gekennzeichnet,

daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und des Krümmungsradius R_4 folgendes gilt

$2,1 < PCDB / R_4 < 2,5$.

20. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,

dadurch gekennzeichnet,

daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und des Krümmungsradius R_5 folgendes gilt

$1,8 < PCDB / R_5 < 2,2$.

21. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,

dadurch gekennzeichnet,

daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und des axialen Mittelpunktversatzes O_2 des Krümmungsradius R_2 folgendes gilt

$12 < PCDB / O_2 < 16$.

22. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,

dadurch gekennzeichnet,

daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und des axialen Mittelpunktversatzes O_5 des Krümmungsradius R_5 folgendes gilt

$$12 < \text{PCDB} / O_5 < 16.$$

23. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,

dadurch gekennzeichnet,

daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und des Außendurchmessers OD des Gelenkaußenteils (12) folgendes gilt

$$0,6 < \text{PCDB} / \text{OD} < 0,8.$$

24. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,

dadurch gekennzeichnet,

daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und der axialen Länge L des Gelenkinnenteils (15) folgendes gilt

$$2,1 < \text{PCDB} / L < 2,5.$$

25. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,

dadurch gekennzeichnet,

daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und des Kugeldurchmessers DB folgendes gilt

$$3,4 < \text{PCDB} / \text{DB} < 4,0.$$

26. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,
dadurch gekennzeichnet,
daß für das Verhältnis des Teilkreisdurchmessers der Kugeln PCDB und des
Teilkreisradius PCDS der Einstektköpfung des Gelenkkinnenteils (15) folgendes
gilt
- $$2,1 < \text{PCDB} / \text{PCDS} < 2,5.$$
27. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,
dadurch gekennzeichnet,
daß für das Verhältnis des Rollkreisdurchmessers PCDB und des Außen-
durchmessers DCA des Kugelkäfigs (16) folgendes gilt
- $$0,75 < \text{PCDB} / \text{DCA} < 1,05.$$
28. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,
dadurch gekennzeichnet,
daß für das Verhältnis des Rollkreisdurchmessers PCDB und des Innendurch-
messers DCI des Kugelkäfigs (16) folgendes gilt
- $$0,85 < \text{PCDB} / \text{DCI} < 1,15.$$
29. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,
dadurch gekennzeichnet,
daß für das Verhältnis des Rollkreisdurchmessers PCDB und der umfänglichen
Stegbreite W des Kugelkäfigs (16) folgendes gilt

$7,5 < PCDB / W < 11,5$.

30. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,
dadurch gekennzeichnet,
daß für das Verhältnis des Rollkreisdurchmessers PCDB und der Umfangslänge L1 der ersten Käfigfenster (23) folgendes gilt
- $2,8 < PCDB / L1 < 3,4$.
31. Gleichlaufgelenk nach einem der Ansprüche 1 bis 13 und Anspruch 14,
dadurch gekennzeichnet,
daß für das Verhältnis des Rollkreisdurchmessers PCDB und der Umfangslänge L2 der zweiten Käfigfenster (24) folgendes gilt
- $2,6 < PCDB / L2 < 3,2$.
32. Gelenkwelle umfassend zwei Gleichlaufgelenke und eine Zwischenwelle,
dadurch gekennzeichnet,
daß zumindest eines der Gleichlaufgelenke (11, 31) gemäß einem der Ansprüche 1 bis 31 ausgebildet ist.
33. Gelenkwelle nach Anspruch 32,
dadurch gekennzeichnet,
daß die Zwischenwelle (35) eine Axialverschiebeeinheit (28) umfaßt.

34. Kraftfahrzeug mit zumindest zwei Gelenkwellen, die jeweils zwei Gleichlaufge- lenke und eine Zwischenwelle umfassen und die jeweils als Seitenwellen ein Differentialgetriebe mit einer Radnabeneinheit verbinden,

dadurch gekennzeichnet,

daß jeweils zumindest eines der Gelenke (11, 31) jeder Gelenkwelle nach ei- nem der Ansprüche 1 bis 31 ausgebildet ist und sein Wellenzapfen in das Dif- ferenzialgetriebe (32) eingesteckt ist.

35. Kraftfahrzeug mit zumindest zwei Gelenkwellen, die jeweils zwei Gleichlaufge- lenke und eine Zwischenwelle umfassen und die jeweils als Seitenwellen ein Differentialgetriebe mit einer Radnabeneinheit verbinden,

dadurch gekennzeichnet,

daß jeweils zumindest eines der Gelenke (11, 31) jeder Gelenkwelle nach ei- nem der Ansprüche 1 bis 31 ausgebildet ist und sein Gelenkzapfen in die Rad- nabeneinheit (33) eingesteckt ist.

GKN Driveline International GmbH
Hauptstraße 130
53797 Lohmar

02. November 2004
Ne/bec (20040545)
Q04059WO00

Gegenbahngelenk mit Bahnwendepunkt

Beschreibung

Die Erfindung betrifft ein Gegenbahngelenk als Festgelenk mit den Merkmalen
ein Gelenkaußenteil, welches eine erste Längsachse und axial zueinander entge-
5 gengesetzt eine Anschlußseite und eine Öffnungsseite hat, und das erste äußere
Kugelbahnen und zweite äußere Kugelbahnen aufweist
ein Gelenkinnenteil, welches eine zweite Längsachse und Anschlußmittel für eine zur
Öffnungsseite des Gelenkaußenteils weisende Welle hat und das erste innere Ku-
gelbahnen und zweite innere Kugelbahnen aufweist,
10 die ersten äußeren Kugelbahnen und die ersten inneren Kugelbahnen bilden erste
Bahnpaare miteinander,
die zweiten äußeren Kugelbahnen und die zweiten inneren Kugelbahnen bilden zwei-
te Bahnpaare miteinander, die Bahnpaare nehmen jeweils eine drehmomentübertra-
gende Kugel auf,
15 ein Kugelkäfig sitzt zwischen Gelenkaußenteil und Gelenkinnenteil und weist um-
fangsverteilte Käfigfenster auf, die jeweils zumindest eine der Kugeln aufnehmen,
der Öffnungswinkel der ersten Bahnpaare öffnet sich bei gestrecktem Gelenk in der
Gelenkmittelebene von der Öffnungsseite zur Anschlußseite des Gelenkaußenteils,
der Öffnungswinkel der zweiten Bahnpaare öffnet sich bei gestrecktem Gelenk in der
20 Gelenkmittelebene von der Anschlußseite zur Öffnungsseite des Gelenkaußenteils.

Gegenbahngelenke der vorstehend genannten Art sind grundsätzlich aus der
DE 102 20 711 A1 bekannt, wobei Gelenke mit 6 Kugeln und mit 8 Kugeln gezeigt
sind. Hierbei entspricht der Typ der Kugelbahnen dem an sich aus Rzeppa-Gelenken
25 (RF-Gelenken) sowie aus Undercut Free-Gelenken (UF-Gelenken) bekannten Typ.
Das heißt, die Mittellinien der Kugelbahnen bestehen aus einheitlichen Radien (RF-

Gelenk) bzw. setzen sich aus Radien und anschließenden achsparallelen Geraden (UF-Gelenk) zusammen. Bei den beschriebenen Gegenbahngelenken wechselt sich hierbei die axiale Öffnungsrichtung der Bahnpaare über dem Umfang ab, was zum Typ des Gegenbahngelenks führt. Gegenbahngelenke dieser Art haben den Nachteil, daß der Beugewinkel auf etwa 45° beschränkt ist, weil bei Überschreiten dieses Beugewinkels eine erste Kugel in der Gelenkbeugeebene aus den ersten Bahnpaaren austritt.

Aus der DE 103 37 612 A1 sind Gegenbahngelenke bekannt, bei denen die Bahnmittellinien der ersten Bahnpaare, die einen Öffnungswinkel haben, dessen Öffnungsrichtung bei gestrecktem Gelenk zum Gelenkboden hin weist, so gestaltet sind, daß der Öffnungswinkel bei Beugung des Gelenks ab einem bestimmten Beugewinkel eine Umkehr seiner Öffnungsrichtung erfährt. Dies wird insbesondere dadurch verwirklicht, daß die Mittellinien der Kugelbahnen der ersten Bahnpaare S-förmig sind und somit jeweils einen Wendepunkt aufweisen.

Aus der DE 100 60 220 A1 sind unter anderem Gegenbahngelenke bekannt, bei denen die Mittellinien der ersten äußeren Kugelbahnen nahe der Gelenkköpfung einen Wendepunkt aufweisen, so daß die Mittellinien der ersten äußeren Kugelbahnen S-förmig sind. Entsprechendes gilt aufgrund der Symmetrievereinigung für die Mittellinien der ersten inneren Kugelbahnen des Gelenkkinnenteils. Der Beugewinkel dieser Gegenbahngelenke kann auf diese Weise erhöht werden.

Für Gelenke der beiden zuletzt genannten Arten gilt, daß das grundlegende Prinzip von Gegenbahngelenken, nämlich abwechselnd entgegengesetzt gerichtete Bahnöffnungswinkel und damit abwechselnd entgegengesetzte Axialkräfte von den Kugeln auf den Kugelkäfig nur solange gilt, bis eine Kugel den Wendepunkt vom nach innen gekrümmten Bahnbereich zum nach außen weggekrümmten Bahnbereich erreicht. Ist der Beugewinkel erreicht, bei dem die Kugel diesen zweiten Bahnbereich der jeweiligen S-förmigen Bahnen einnimmt, sind die Bahnöffnungswinkel nicht mehr sämtlich über dem Umfang abwechselnd gerichtet und die Axialkräfte von den Kugeln auf den Kugelkäfig nicht mehr axial ausgeglichen. Das Gegenbahnprinzip ist somit nicht mehr gegeben und der Kugelkäfig muß sich axial am Gelenkaußenteil

und/oder der Kugelnabe abstützen. Dies kann zu einer reduzierten Lebensdauer aufgrund der erhöhten inneren Reibung zwischen Kugelkäfig und Gelenkaußenteil bzw. Gelenkinnenteil führen.

- 5 Hiervon ausgehend ist es die Aufgabe der vorliegenden Erfindung, ausgehend vom eingangs genannten Stand der Technik, ein Festgelenk nach Art eines Gegenbahngelenks zu entwickeln, das vergrößerte maximale Beugewinkel darstellen kann und dabei eine erhöhte Lebensdauer aufweist.
- 10 Die Lösung hierfür besteht in einem Gelenk mit den Merkmalen
ein Gelenkaußenteil, welches eine erste Längsachse und axial zueinander entgegengesetzt eine Anschlußseite und eine Öffnungsseite hat und das erste äußere Kugelbahnen und zweite äußere Kugelbahnen aufweist
ein Gelenkinnenteil, welches eine zweite Längsachse und Anschlußmittel für eine zur Öffnungsseite des Gelenkaußenteils weisende Welle hat und das erste innere Kugelbahnen und zweite innere Kugelbahnen aufweist,
die ersten äußeren Kugelbahnen und die ersten inneren Kugelbahnen bilden erste Bahnpaare miteinander,
die zweiten äußeren Kugelbahnen und die zweiten inneren Kugelbahnen bilden zweite Bahnpaare miteinander, die Bahnpaare nehmen jeweils eine drehmomentübertragende Kugel auf,
- 15 ein Kugelkäfig sitzt zwischen Gelenkaußenteil und Gelenkinnenteil und weist umfangsverteilte Käfigfenster auf, die jeweils zumindest eine der Kugeln aufnehmen,
der Öffnungswinkel der ersten Bahnpaare öffnet sich bei gestrecktem Gelenk in der Gelenkmittelebene von der Öffnungsseite zur Anschlußseite des Gelenkaußenteils,
- 20 der Öffnungswinkel der zweiten Bahnpaare öffnet sich bei gestrecktem Gelenk in der Gelenkmittelebene von der Anschlußseite zur Öffnungsseite des Gelenkaußenteils, dadurch gekennzeichnet, daß die Mittellinien der ersten Bahnpaare jeweils einen Wendepunkt haben und der Mittelpunktwinkel β an den Wendepunkt bezogen auf
- 25 die Gelenkmittelebene jeweils größer ist als 4° . Hiermit ist sichergestellt, daß das Gelenk im Lebensdauerbetrieb als Gegenbahngelenk arbeitet. Als Lebensdauerbetrieb gilt ein solcher innerhalb des Lebensdauerwinkels, bei welchem die Auslegungslife des Gelenks unter wechselnder Last schadensfrei erreicht wird.

Dies bedeutet, daß im sogenannten Lebensdauerbereich das Prinzip des Gegenbahngelenks nicht verlassen wird, so daß die Lebensdauer erhöht wird. Der Lebensdauerbereich ist hierbei über den Lebensdauerwinkel β_L definiert. Bei einem Betrieb innerhalb dieses Beugungswinkels erreicht das Gelenk definitionsgemäß die Auslebensdauer. Gleichzeitig ist jedoch die weitere Gelenkbeugung möglich, so daß größere Beugewinkel darstellbar sind. Erfindungsgemäß ist nun der Übergang zum zweiten Bereich so definiert, daß er außerhalb des Bahnbereichs liegt, der von den Kugeln im Lebensdauerbereich in den Kugelbahnen überstrichen wird. Für die Lage des genannten Wendepunkts werden nachstehend bevorzugte Ausführungsbeispiele angegeben. Es ist hierbei darauf abzuheben, wie der Begriff Wendepunkt verwendet wird: zum einen im mathematisch zutreffenden Sinn eines Übergangs von einer Krümmung in eine Gegenkrümmung und zum anderen in mathematisch nicht exaktem Sinn für den Übergang von einer Krümmung in eine an die Krümmung tangential anschließende Gerade. Beides wird unter dem hier verwendeten Begriff „Wendepunkt“ verstanden. Es wäre auch die Verwendung des Begriffs „Tangentenpunkt“ möglich.

Nach einer ersten bevorzugten Ausführungsform ist vorgesehen, daß der Mittelpunktwinkel β an den Wendepunkt $P_{1,2}$ bezogen auf die Gelenkmittelebene E jeweils größer als 5° ist. Nach einer ergänzenden bevorzugten Ausführungsform ist vorgesehen, daß der Mittelpunktwinkel β an den Wendepunkt $P_{1,2}$ bezogen auf die Gelenkmittelebene E jeweils kleiner als 12° ist.

Weiterhin ist insbesondere vorgesehen, daß eine Tangente $T_{1,2}$ an die Bahnmittellinie der ersten Bahnpaare im Wendepunkt $P_{1,2}$ mit der jeweiligen Längsachse bzw. eine Senkrechte auf dieser Tangente $T_{1,2}$ mit der Gelenkmittelebene E einen Wendepunktwinkel α bildet, der mit

$$\alpha \geq \beta - \arcsin \left[\frac{O_2}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

definiert ist, wobei O_2 der axiale Abstand des Schnittpunkts einer Senkrechten auf der Tangente $T_{1,2}$ mit der Längsmittelachse A und R_2 der Abstand dieses

Schnittpunktes vom Wendepunkt $P_{1,2}$ darstellt.

Nach einer weiteren ersten speziellen Ausführung ist vorgesehen, daß der Wendepunktwinkel α mit

5

$$\alpha \geq \beta + \arcsin \left[\frac{O_2 + a \cdot \tan(\beta)}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

definiert ist, wenn die jeweiligen Bahnmittellinien in der Gelenkmittelebene E und bis zum Wendepunkt $P_{1,2}$ einen Radius R_2 aufweist, dessen Mittelpunkt M_2 von der Gelenkmittelebene E den axialen Abstand O_2 und von der jeweiligen Längsachse den radialen Abstand a in Richtung zum Wendepunkt $P_{1,2}$ hat.

10

Eine hierzu alternative spezielle Ausführung besteht darin, daß der Wendepunktwinkel α mit

15

$$\alpha \geq \beta + \arcsin \left[\frac{O_2 - b \cdot \tan(\beta)}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

definiert ist, wenn die jeweiligen Bahnmittellinie in der Gelenkmittelebene E und bis zum Wendepunkt $P_{1,2}$ einen Radius R_2 aufweist, dessen Mittelpunkt M_2 von der Gelenkmittelebene E den axialen Abstand O_2 und von der jeweiligen Längsachse A den radialen Abstand b in Richtung vom Wendepunkt $P_{1,2}$ weg hat.

20

Ein erfindungsgemäßes Gegenbahngelenk mit 8 Kugeln für einen Beugewinkel von $47 - 52^\circ$ ist dann optimiert, wenn folgende Verhältnisse zwischen einzelnen Bemessungsgrößen eingehalten werden:

25

$$1,5 < PCDB / R1 < 1,9$$

$$1,8 < PCDB / R2 < 2,2$$

$$2,3 < PCDB / R3 < 2,7$$

$$2,1 < PCDB / R4 < 2,5$$

1,8 < PCDB / R5 < 2,2
12 < PCDB / O2 < 16
12 < PCDB / O5 < 16
0,6 < PCDB / OD < 0,8
5 2,1 < PCDB / L < 2,5
3,4 < PCDB / DB < 4,0
2,1 < PCDB / DS < 2,5
0,75 < PCDB / DCA < 1,05
0,85 < PCDB / DCI < 1,15
10 7,5 < PCDB / W < 11,5
2,8 < PCDB / L1 < 3,4
2,6 < PCDB / L2 < 3,2

In diesen Verhältnissen haben die benannten Größen die folgende Bedeutung:

15

PCDB: Teilkreisdurchmesser Kugeln

R1 : Außenteil Kugelbahnradius 1 (erste Kugelbahnen)

R2 : Außenteil Kugelbahnradius 2 (erste Kugelbahnen)

R3 : Außenteil Kugelbahnradius 3 (erste Kugelbahnen)

20 R4 : Außenteil Kugelbahnradius 4 (zweite Kugelbahnen)

R5 : Außenteil Kugelbahnradius 5 (zweite Kugelbahnen)

O2 : Außenteil Kugelbahnoffset für Bahn mit Öffnungswinkel zur Anschlußseite

O5 : Außenteil Kugelbahnoffset für Bahn mit Öffnungswinkel zur Öffnungsseite

OD : Außendurchmesser Außenteil

25 L : Länge Innenteil

DB : Kugeldurchmesser

PCDS: Teilkreisdurchmesser Wellenverzahnung

DCA: Käfig Außendurchmesser

DCI : Käfig Innendurchmesser

30 W : Käfig Stegbreite

L1 : Käfig Fensterlänge 1

L2 : Käfig Fensterlänge 2

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden nachstehend beschrieben.

Figur 1 zeigt ein erfindungsgemäßes Gegenbahngelenk mit 6 Kugeln in einer ersten Ausführung

- 5 a) in Gesamtdarstellung im Längsschnitt
- b) mit seinem Gelenkaußenteil als Einzelheit im Längsschnitt;

Figur 2 zeigt ein Gegenbahngelenk mit 6 Kugeln nach Figur 1

- 10 a) im Längsschnitt mit Vermaßungen
- b) im Längsschnitt weiteren Vermaßungen
- c) den Kugelkäfig in Abwicklung als Einzelheit;

Figur 3 zeigt ein Gegenbahngelenk mit 8 Kugeln ähnlich den Figuren 1 und 2

- 15 a) mit Vermaßungen im Längsschnitt
- b) in abgewinkelte Position mit weiteren Vermaßungen
- c) den Kugelkäfig in Abwicklung als Einzelheit;

Figur 4 zeigt ein erfindungsgemäßes Gelenk mit 6 Kugeln in einer zweiten Ausführung.

- 20 a) in Gesamtdarstellung im Längsschnitt
- b) das Gelenkaußenteil als Einzelheit im Längsschnitt
- c) das Gelenkinnenteil als Einzelheit im Längsschnitt;

25 Figur 5 zeigt das Gelenkaußenteil eines erfindungsgemäßen Gelenks nach Figur 4 mit weiteren Vermaßungen im Längsschnitt;

Figur 6 zeigt das erfindungsgemäße Gelenk nach den Figuren 4 und 5 mit weiteren Vermaßungen

- 30 a) im Längsschnitt durch das Gelenkaußenteil
- b) im Querschnitt durch eine Kugelbahn
- c) eine Bewertungstabelle;

Figur 7 zeigt das Gelenkaußenteil eines erfindungsgemäßen Gelenks in einer weiteren Ausführungsform im Längsschnitt mit Vermaßungen;

5 Figur 8 zeigt das Gelenkaußenteil eines erfindungsgemäßen Gelenks in einer weiteren Ausführungsform im Längsschnitt mit Vermaßungen;

Figur 9 zeigt ein erfindungsgemäßes 6-Kugel-Gegenbahngelenk mit Definition der
10 Gegenbahnen

- a) in axialer Ansicht
- b) im Längsschnitt;

Figur 10 zeigt ein erfindungsgemäßes 6-Kugel-Gegenbahngelenk mit Definition der
15 Gegenbahnen

- a) in axialer Ansicht
- b) im Längsschnitt;

Figur 11 zeigt ein erfindungsgemäßes 6-Kugel-Gegenbahngelenk mit Definition der
20 Gegenbahnen

- a) in axialer Ansicht
- b) im Längsschnitt;

Figur 12 zeigt ein erfindungsgemäßes 6-Kugel-Gegenbahngelenk mit Definition der
25 Bahnen

- a) in axialer Ansicht
- b) im Längsschnitt durch das Gelenk (RF-Bahn);

Figur 13 zeigt ein erfindungsgemäßes 8-Kugel-Gegenbahngelenk mit Definition der
30 Gegenbahnen

- a) in axialer Ansicht
- b) in einem ersten Längsschnitt
- c) in einem zweiten Längsschnitt;

Figur 14 zeigt ein erfindungsgemäßes 8-Kugel-Gegenbahngelenk

- a) in axialer Ansicht
- b) in einem ersten Längsschnitt
- c) in einem zweiten Längsschnitt;

5

Figur 15 zeigt ein erfindungsgemäßes 8-Kugel-Gegenbahngelenk

- a) in axialer Ansicht
- b) in einem ersten Längsschnitt
- c) in einem zweiten Längsschnitt;

10

Figur 16 zeigt ein erfindungsgemäßes 8-Kugel-Gegenbahngelenk

- a) in axialer Ansicht
- b) in einem ersten Längsschnitt
- c) in einem zweiten Längsschnitt;

15

Figur 17 zeigt ein erfindungsgemäßes 6-Kugel-Gegenbahngelenk mit Definition der Bahnen und in weiteren Einzelheiten

- a) das Gelenkaußenteil im Längsschnitt
- b) eine Außenbahn im Längsschnitt
- c) das Gelenkinnenteil im Längsschnitt
- d) eine Innenbahn im Längsschnitt
- e) eine Bewertungstabelle.

20

Figur 18 zeigt ein erfindungsgemäßes 8-Kugel-Gegenbahngelenk ähnlich Figur 13

25 mit Definition einzelner Kenngrößen

- a) in axialer Ansicht
- b) in einem ersten Längsschnitt
- c) in einem zweiten Längsschnitt
- d) im Querschnitt durch den Kugelkäfig;

30

Figur 19 zeigt ein erfindungsgemäßes 8-Kugel-Gegenbahngelenk ähnlich Figur 13

mit Definition der Bahnen

- a) in axialer Ansicht

- b) im Längsschnitt durch das Gelenkaußenteil
- c) im Längsschnitt durch den Kugelkäfig;

Figur 20 zeigt eine erfindungsgemäße Einbausituation einer erfindungsgemäßen Ge-
lenkwelle in einem Fahrzeug im Teillängsschnitt.

Die beiden Darstellungen der Figur 1 werden nachstehend gemeinsam beschrieben.
Ein erfindungsgemäßes Gleichlaufgelenk 11 umfaßt ein Gelenkaußenteil 12 mit einer
Öffnung 25 mit einem geschlossenen Boden 13 und einem einstückig angeschlosse-
nen Zapfen 14. Das Gelenk umfaßt weiterhin ein Gelenkinnenteil 15, einen Kugelkä-
fig 16 sowie drehmomentübertragende Kugeln 17. Erste äußere Kugelbahnen 18 und
erste innere Kugelbahnen 19 nehmen Kugeln 17₁ auf und bilden erste Bahnpaare
miteinander. Zweite äußere Kugelbahnen 20 und zweite innere Kugelbahnen 21 bil-
den zweite Bahnpaare miteinander, die zweite Kugeln 17₂ aufnehmen. Die beiden
Arten von Bahnpaaren sind über dem Umfang abwechselnd ausgebildet. Tangenten
an die Kugeln in den Berührungs punkten mit den ersten Bahnpaaren, die einge-
zeichnet sind, bilden miteinander einen Öffnungswinkel δ₁, der sich in Richtung zum
Boden 13 öffnet. Tangenten an die zweiten Kugeln 17₂ in den Berührungs punkten
mit den zweiten Bahnpaaren bilden miteinander einen Öffnungswinkel δ₂, der sich
zur Öffnung 21 des Gelenkaußenteils öffnet. Unter Drehmoment erzeugen diese Öff-
nungswinkel bei gestrecktem Gelenk Axialkräfte auf die Kugeln und damit auf den
Kugelkäfig 16, die mit F₁ und F₂ bezeichnet sind. Eine Gelenkmittelebene E, die die
Mittelpunkte der Kugeln aufnimmt, schneidet die Längsachse des Gelenks, die durch
die Längsachsen A₁₂ des Gelenkaußenteils und A₂₂ des Gelenkinnenteils definiert ist,
in einem Gelenkmittelpunkt M. Jeweils auf die Mittellinien L₁₈ der Kugelbahnen 18 im
Gelenkaußenteil 12 bezogen, haben die Bahnen 18 in der Mittelebene einen Radius
R₂, deren Mittelpunkt um einen axialen Offset O₂ auf der Achse A gegenüber dem
Gelenkmittelpunkt M versetzt ist, während die Bahnen 20 einen gleich großen Radius
R₅ haben, deren Mittelpunkt um ein Offset O₅ in entgegengesetzter Richtung gegen-
über dem Gelenkmittelpunkt M versetzt ist.

In Figur 2 sind gleiche Einzelheiten wie in Figur 1 mit gleichen Bezugsziffern verse-
hen. In das Gelenkinnenteil 15 ist in Darstellung a eine Welle 22 eingesteckt. Außer

der Längsachse A_{12} des Gelenkaußenteils ist die Längsachse A_{22} der Welle 22 bezeichnet, die in gleicher Weise der Längsachse des Gelenkinnenteils 15 entspricht. In Bezug auf die Längsachse A_{22} sind nach beiden Seiten Lebensdauerwinkel 2β angetragen, die den maximalen Beugewinkel bezeichnen, unter dem das Gelenk schadensfrei im Lebensdauerversuch gefahren werden kann. Als Lebensdauerversuch ist hierbei ein Lastkollektiv zu verstehen, das dem praktischen Einsatz eines Gelenks während der Auslegungslife entspricht. Bei Beugung der Welle 22 gegenüber dem Gelenkaußenteil 12 in dem Winkel 2β zu beiden Seiten machen die Kugeln 17₁ in den erfindungsgemäßen Kugelbahnen 18, 19 Bewegungen längs der Bahnmittellinie, die durch die Winkel β zu beiden Seiten von der Gelenkmittelebene E aus definiert sind, wobei die Schenkel der Winkel von der Gelenkmittelebene E und Strahlen durch die Kugelmittelpunkte gebildet werden. In Darstellung c) ist der Kugelkäfig 16 in Abwicklung mit je drei umfangsverteilten Käfigfenstern 23, 24 erkennbar. Jeweils in ersten Bahnpaaren gehaltene Kugeln 17₁ üben eine Axialkraft F_1 auf den Kugelkäfig aus; jeweils in zweiten Bahnpaaren gehaltene Kugeln 17₂ üben eine Axialkraft F_2 auf den Kugelkäfig aus. Aufgrund der abwechselnden Verteilung von ersten und zweiten Bahnpaaren befindet sich der Kugelkäfig auch bei Drehmomentübertragung über das Gelenk in axialem Gleichgewicht.

In Figur 3 ist in Darstellung a) in Bezug auf die Längsachse A_{22} der Welle 22 zusätzlich zu dem Lebensdauerwinkel 2β beidseitig der maximale Beugewinkel β_{max} ange tragen. In Übereinstimmung hierzu sind in Bezug auf die Kugelmittenposition im Ver hältnis zum Gelenkaußenteil wiederum die halben Lebensdauerwinkel β wie auch die halben maximalen Beugewinkel $\beta_{max/2}$ zu beiden Seiten von der Mittelebene E aus angetragen. Die Kugelpositionen im Gelenkaußenteil bei maximalem Beugewinkel β_{max} sind jeweils mit gestrichelten Linien dargestellt.

In Darstellung b) ist der maximale Beugewinkel am Gelenk in einem Sinne eingetragen, in dem die Kugeln 17₁ in den erfindungsgemäßen Bahnpaaren 18, 19 zur Öffnung 21 des Gelenkaußenteils 12 hin wandern. Aufgrund des S-förmigen Verlaufs der erfindungsgemäßen Kugelbahnen 18, 19 hat sich hierbei der Öffnungswinkel δ_1 zwischen den Tangenten an die Kugeln 17₁ in den ersten Bahnpaaren im Richtungs sinn umgekehrt und öffnet sich hier ebenfalls zur Öffnungsseite 21 des Gelenkau

Benteils 12 hin, während die zweiten Bahnpaare, die mit Bahnen 20, 21 nach Art eines Rzeppa-Gelenks ausgeführt sind, einen Öffnungswinkel δ_2 bilden, der sich zwar dem Betrag nach verändert hat, jedoch wie in der gestreckten Gelenkposition nach Figur 2 weiterhin in Richtung zur Öffnungsseite 21 des Gelenkaußenteils geöffnet sind. Entsprechend den Öffnungswinkeln δ_1 , δ_2 , ergeben sich die Richtungen der Kräfte F_1 , F_2 auf die Kugeln in der Schnittebene, wie in Darstellung d) erkennbar ist, sind sämtliche Kugelkräfte in ihrer Wirkung übereinstimmend bezüglich ihrer Richtung, wenn auch nicht dem Betrage nach, so daß vom Gelenkaußenteil aus eine Gegenkraft F_G zu der Summe der Kugelkräfte auf den Käfig ausgeübt werden muß. Erfindungsgemäß wird eine solche Gegenkraft F_G nur bei Überschreiten des Lebensdauerwinkels 2β auftreten, während innerhalb des Lebensdauerwinkels 2β der Käfig im axialen Gleichgewicht bleibt.

In Figur 4 ist ein möglicher Bahnverlauf der Bahnmittellinien L_{18} , L_{19} des Gelenkaußenteils und des Gelenkinnenteils für die erfindungsgemäßen Kugelbahnen 18, 19 gemäß einem ersten Ausführungsbeispiel näher dargestellt. Die erfindungsgemäßen S-förmig verlaufenden Kugelbahnen, in ihrem Verlauf repräsentiert durch Bahnmittellinien L_{18} , L_{19} , verlaufen jeweils S-förmig, wobei die Position des Wendepunktes $T_{1,2}$ eingezeichnet ist, die, ausgehend von einem Radius R_2 (Gelenkaußenteil) bzw. $R_{2'}$ (Gelenkinnenteil), der um einen Offsetpunkt O_2 bzw. $O_{2'}$ geschlagen ist, unter einem Winkel von α zu einer Radialebene, d.h. einer parallelen Ebene zur Gelenkmittelebene E liegt. Über den Wendepunkt $T_{1,2}$ hinaus setzt sich die Bahnmittellinie in einem Radius R_1 (Gelenkaußenteil) bzw. $R_{1'}$ (Gelenkinnenteil) fort, dessen Mittelpunktlage hier nicht näher bemäßt ist, jedoch durch den Schenkel des Winkels α sowie den Radius R_1 bzw. $R_{1'}$ selber definiert ist. Gemäß der Erfindung liegt der Wendepunkt $T_{1,2}$ ebenso wie der Wendepunkt $T_{1,2'}$ außerhalb des Winkelsectors der Winkel β_{L2} zu jeder Seite von der Gelenkmittelebene E aus betrachtet. Da die Richtungsumkehr des Winkels δ_1 bei Überschreiten des Wendepunktes $T_{1,2}$ in den ersten Bahnpaaren erfolgt, wird durch die Bedingung, die hier bezeichnet ist, sichergestellt, daß im Lebensdauerbereich (Beugung von A_{22} zu $A_{12} <= 2\beta$ nach beiden Seiten) keine Axialkräfte am Käfig auftreten, sondern der Käfig axialkraftfrei im Gelenkaußenteil gehalten ist.

Während der Lebensdauerwinkel 2β jeweils ein Mittelpunktwinkel bezogen auf den Gelenkmittelpunkt M ist, und zwar ausgehend von der Längsachse A₁₂ bzw. der Mittelebene E und auf diese Weise eine Kugelposition auf der Bahnmittellinie L₁₈, L₁₉ beschreibt, ist der Mittelpunkt des Winkels α an die Tangente an die Bahnmittellinie im Wendepunkt T₁₋₂ jeweils mit einem Offset O₂, O_{2'} zum Gelenkmittelpunkt M befestigt.

In Figur 5 ist die Beziehung zwischen Lebensdauerwinkel β bezogen auf den Weg der Kugel längs der Bahnmittellinie L₁₈ im Gelenkaußenteil 12 im Verhältnis zum Wendepunktwinkel α dargestellt. Es gilt die Bedingung

$$\alpha \geq \beta \cdot \frac{O_2}{R_2} + \arcsin \left[\frac{O_2}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

In Figur 6 ist für ein Gelenkaußenteil 12 nach Figur 5 der Einfluß des Wendepunktwinkels α auf den Bahnumschlingungswinkel ε im Gelenkaußenteil dargestellt. Hierbei ist der Bahnumschlingungswinkel ε jeweils als Winkel zwischen einer Radialebene R und einem Strahl durch den Kugelmittelpunkt bzw. die Bahnmittellinie L₁₈ an eine Bahnkante definiert. Wenn der Bahnumschlingungswinkel ε klein wird, entstehen ungünstige Kantenbelastungen in den Bahnen 18, die zu Schäden führen können. Hiermit wird die Drehmomentkapazität begrenzt. Bis zu einem Wendepunktwinkel α von 16° ist der Bahnumschlingungswinkel ε noch zufriedenstellend groß.

In Figur 7 ist das Verhältnis zwischen Lebensdauerwinkel bezogen auf den Kugelweg in der Bahn (β) und Wendepunktwinkel α für ein zweites mögliches Ausführungsbeispiel eines erfindungsgemäßen Gelenkaußenteils dargestellt. Im Bereich um die Gelenkmittelebene E hat die Mittellinie L₁₈ der Kugelbahn 18 hierbei einen geringeren Radius R₂ mit einem Mittelpunkt M₂, der gegenüber dem Gelenkmittelpunkt M um einen axialen Offset O₂ und um einen radialen Offset a versetzt ist. Über diesen Winkel ist die Tangente an den Wendepunkt T₁₋₂ definiert. Vom Wendepunkt aus setzt sich die Bahnmittellinie mit einem Radius R₁ um einen Mittelpunkt M₁ fort, der

durch die Größe von R_1 und die Größe des Winkels α bestimmt ist. Zwischen dem um den Gelenkmittelpunkt M angetragenen Lebensdauerwinkel β und dem Wendepunktwinkel α ergibt sich die Beziehung

5

$$\alpha \geq \beta + \arcsin \left[\frac{O_2 + a \cdot \tan(\beta)}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

15

20

30

In Figur 8 ist das Verhältnis zwischen Lebensdauerwinkel bezogen auf den Kugelweg in der Bahn (β) und Wendepunktwinkel α für ein drittes mögliches Ausführungsbeispiel eines erfindungsgemäßen Gelenkaußenteils dargestellt. Im Bereich um die Gelenkmittelebene E hat die Mittellinie L_{18} der Kugelbahn 18 hierbei einen geringeren Radius R_2 mit einem Mittelpunkt M_2 , der gegenüber dem Gelenkmittelpunkt M um einen axialen Offset O_2 und um einen radialen Offset b versetzt ist. Über diesen Winkel ist die Tangente an den Wendepunkt T_{1-2} definiert. Vom Wendepunkt aus setzt sich die Bahnmittellinie mit einem Radius R_1 um einen Mittelpunkt M_1 fort, der durch die Größe von R_1 und die Größe des Winkels α bestimmt ist. Zwischen dem um den Gelenkmittelpunkt M angetragenen Lebensdauerwinkel β und dem Wendepunktwinkel α ergibt sich die Beziehung

$$\alpha \geq \beta + \arcsin \left[\frac{O_2 - b \cdot \tan(\beta)}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

35

In Figur 9 ist ein erfindungsgemäßes 6-Kugel-Gelenk dargestellt, bei dem sich der Verlauf der Mittellinien L_{18} der äußeren Kugelbahnen 18 aus drei Radien R_1 , R_2 , R_3 zusammensetzt, die sich die Radien R_1 , R_2 über einen Wendepunkt aneinander anschließen, während der Verlauf der Mittellinien L_{20} der zweiten äußeren Kugelbahnen 20 durch einen Radius R_5 mit anschließender achsparalleler Gerade definiert.

40

In Figur 10 ist ein erfindungsgemäßes 6-Kugel-Gelenk gezeigt, bei dem sich der Verlauf der Mittellinien L_{18} der ersten äußeren Kugelbahnen 18 durch drei Radien R_1 , R_2 , R_3 definiert, wobei sich die Radien R_1 , R_2 über einen Wendepunkt aneinander anschließen, während die Mittellinien L_{20} der zweiten äußeren Kugelbahnen 20 über zwei Radien R_4 , R_5 definiert ist, die sich über einen Wendepunkt aneinander an-

schließen.

In Figur 11 ist ein erfindungsgemäßes 6-Kugel-Gelenk dargestellt, bei dem sich der Verlauf der Mittellinien L_{18} der äußeren Kugelbahnen 18 aus drei Radien R_1, R_2, R_3 zusammensetzt, wobei sich die Radien R_1, R_2 über einen Wendepunkt aneinander anschließen, während der Verlauf der Mittellinien L_{20} der zweiten äußeren Kugelbahnen 20 durch einen einheitlichen Radius R_5 definiert. Die zweiten Bahnen sind damit nach Art von Bahnen von RF-Gelenken gestaltet.

In Figur 12 ist ein erfindungsgemäßes 6-Kugel-Gelenk dargestellt, bei dem sich der Verlauf der Mittellinien L_{18} der äußeren Kugelbahnen 18 aus zwei Radien R_2, R_3 und einer an den Radius R_2 in Richtung zur Öffnung tangential anschließenden Geraden zusammensetzt, während der Verlauf der Mittellinien L_{20} der zweiten äußeren Kugelbahnen 20 durch einen einheitlichen Radius R_5 definiert ist.

In Figur 13 ist ein erfindungsgemäßes 8-Kugel-Gelenk gezeigt, bei dem sich der Verlauf der Mittellinien L_{18} der äußeren Kugelbahnen 18 aus drei Radien R_1, R_2, R_3 zusammensetzt, wobei sich die Radien R_1, R_2 über einen Wendepunkt aneinander anschließen, während der Verlauf der Mittellinien L_{20} der zweiten äußeren Kugelbahnen 20 durch einen Radius R_5 mit anschließender achsparalleler Gerade definiert ist.

Figur 14 ist ein erfindungsgemäßes 8-Kugel-Gelenk gezeigt, bei dem sich der Verlauf der Mittellinien L_{18} der ersten äußeren Kugelbahnen 18 durch drei Radien R_1, R_2, R_3 definiert, wobei sich die Radien R_1, R_2 über einen Wendepunkt aneinander anschließen, während die Mittellinien L_{20} der zweiten äußeren Kugelbahnen 20 über zwei Radien R_4, R_5 definiert ist, die sich über einen Wendepunkt aneinander anschließen.

Figur 15 ist ein erfindungsgemäßes 8-Kugel-Gelenk dargestellt, bei dem sich der Verlauf der Mittellinien L_{18} der äußeren Kugelbahnen 18 aus drei Radien R_1, R_2, R_3 zusammensetzt, wobei sich die Radien R_1, R_2 über einen Wendepunkt aneinander anschließen, während der Verlauf der Mittellinien L_{20} der zweiten äußeren Kugelbahnen 20 durch einen einheitlichen Radius R_5 definiert. Die zweiten Bahnen sind damit nach Art der Bahnen von RF-Gelenken gestaltet.

In Figur 16 ist ein erfindungsgemäßes 8-Kugel-Gelenk dargestellt, bei dem sich der Verlauf der Mittellinie der äußeren Kugelbahnen 18 aus zwei Radien R_2 , R_3 und einer an den Radius R_2 in Richtung zur Öffnung tangential anschließenden Geraden zusammensetzt, während der Verlauf der Mittellinien L_{20} der zweiten äußeren Kugelbahnen 20 durch einen einheitlichen Radius R_5 definiert ist.

In Figur 17 ist die Bahnform der ersten äußeren Kugelbahnen und der ersten inneren Kugelbahnen für ein 6-Kugel-Gegenbahngelenk gemäß Figur 1 im einzelnen gezeigt, wobei die Mittellinie L_{18} der ersten äußeren Kugelbahn 18 sich aus zwei Radien R_1 , R_2 zusammensetzt, wie bereits zuvor beschrieben, und die der Mittellinie L_{19} der inneren Kugelbahn 19 aus zwei bezüglich des Gelenkmittelpunkts M dazu symmetrischen Radien R_{11} , R_{12} . Zusätzlich ist das Verhältnis zwischen Wendepunktwinkel α und Bahnumschlingungswinkel ε für die Bahn 18 im Gelenkaußenteil und für den Bahnumschlingungswinkel ε' für die Bahn 19 im Gelenkinnenteil tabellarisch dargestellt. Hieraus ergibt sich, daß $\alpha >= 10^\circ$ und $\varepsilon = 18^\circ$ sein muß, um zufriedenstellende Umschlingungswinkel ε , ε' zu garantieren.

In Figur 18 ist ein erfindungsgemäßes 8-Kugel-Gelenk gezeigt, das mit dem in Figur 13 gezeigten übereinstimmt, wobei der Kugelkäfig 16 als Einzelheit im Querschnitt zusätzlich gezeigt ist. Hierbei ist erkennbar, daß die Kugelfenster 23 für die ersten Kugeln 17₁ eine geringere Umfangslänge L_1 haben, als die Kugelfenster 24 für die zweiten Kugeln 17₂, die eine größere Umfangslänge L_2 haben. Der äußere Käfigdurchmesser ist mit DCA bezeichnet, der innere Käfigdurchmesser mit DCI, jeweils bezogen auf Mittelebene E, in der der Kugelkäfig geschnitten ist. Die Umfangsbreite der Käfigstege ist außen mit W bezeichnet. Der Teilkreisradius der Kugeln im Gelenk hat die Bezeichnung PCDB, während die Einstektköpfung für die Welle im Gelenkinnenteil einen Durchmesser von PCDS hat. Dies ist für den Fall, daß die Verbindung zwischen Gelenkinnenteil 15 und Welle (22) über eine Wellenverzahnung hergestellt wird, der mittlere Verzahnungsdurchmesser der Wellenverzahnung im Gelenkinnenteil.

In Figur 19 ist für ein Gelenk mit acht Kugeln der Aufbau der Bahnmittellinien am Gelenkaußenteil und am Gelenkinnenteil gesondert aufgebaut. Die ersten äußeren Bahnen 18 sind aus den drei bereits erwähnten Radien R_1 , R_2 , R_3 zusammengesetzt, während die Bahnmittellinie der ersten inneren Kugelbahn aus drei gleich großen symmetrisch dazu positionierten Radien R_{11} , R_{21} , R_{31} zusammengesetzt sind. Für die zweiten äußeren Kugelbahnen gilt die Zusammensetzung aus den Radien R_4 und R_5 , während die entsprechenden zweiten inneren Kugelbahnen 21 bezogen auf den Gelenkmittelpunkt M dazu symmetrisch angeordnete Radien R_{41} , R_{51} aufweisen. Der größte Außendurchmesser des Gelenkaußenteils ist mit OD bezeichnet, die axiale Länge des Gelenkinnenteils mit L.

In Figur 20 ist eine Gelenkwelle in einer Einbausituation als Seitenwelle in einem Kraftfahrzeug dargestellt. Es ist eine erfindungsgemäße Gelenkwelle dargestellt, die ein erfindungsgemäßes Gleichlaufgelenk 11 als Monoblockgelenk aufweist, weiterhin eine Zwischenwelle 35 und ein zweites Gleichlaufgelenk 31, das ebenfalls ein erfindungsgemäßes Gelenk sein kann, insbesondere baugleich mit dem Gelenk 11. Die Zwischenwelle 35 umfaßt eine Axialverschiebeeinheit 28, die als wesentliche Bestandteile eine Hülse 29, einen Zapfen 30 sowie zwischen beiden wirksame nicht im einzelnen bezeichnete drehmomentübertragende Kugeln umfaßt und die einen Längengausgleich der Gelenkwelle zwischen den Gleichlaufgelenken 11, 31 zuläßt. Der Wellenzapfen des erfindungsgemäßen Gelenks 11 ist in ein Differentialgetriebe 32 eingesteckt und in diesem festgelegt, während der Wellenzapfen des zweiten Festgelenks 31 in eine Radhabenanordnung 33 mit einer Radlagerung 34 eingesteckt ist.

GKN Driveline International GmbH
Hauptstraße 130
53797 Lohmar

02. November 2004
Ne/bec (20040545)
Q04059WO00

Gegenbahngelenk mit Bahnwendepunkt

Bezugszeichenliste

- 11 Gleichlaufgelenk
- 12 Gelenkaußenteil
- 13 Boden
- 14 Zapfen
- 15 Gelenkinnenteil
- 16 Kugelkäfig
- 17 Kugel
- 18 erste Außenbahn
- 19 erste Innenbahn
- 20 zweite Außenbahn
- 21 zweite Innenbahn
- 22 Welle
- 23 Käfigfenster
- 24 Käfigfenster
- 25 Gelenkkönnung

- β_{\max} Maximaler Gelenfbeugewinkel
- β Lebensdauerwinkel
- δ Öffnungswinkel
- α Wendepunktwinkel
- T_{1-2} Wendepunkt

- L Mittellinie
- A Längsachse
- R Radius
- E Mittelebene
- M Gelenkmittelpunkt
- O Axialoffset
- A Radialoffset
- b Radialoffset

GKN Driveline International GmbH
Hauptstraße 130
53797 Lohmar

02. November 2004
Ne/bec (20040545)
Q04059WO00

Gegenbahngelenk mit Bahnwendepunkt

Zusammenfassung

Gleichlaufgelenk 11 in Form eines Gegenbahngelenks mit den Merkmalen
ein Gelenkaußenteil 12, welches eine erste Längsachse A₁₂ und axial zueinander
entgegengesetzt eine Anschlußseite und eine Öffnungsseite hat, und das erste äu-
ßere Kugelbahnen 18 und zweite äußere Kugelbahnen 20 aufweist
5 ein Gelenkinnenteil 15, welches eine zweite Längsachse A₂₂ und Anschlußmittel für
eine zur Öffnungsseite des Gelenkaußenteils 12 weisende Welle 22 hat und das er-
ste innere Kugelbahnen 19 und zweite innere Kugelbahnen 21 aufweist,
die ersten äußeren Kugelbahnen 18 und die ersten inneren Kugelbahnen 19 bilden
10 erste Bahnpaare miteinander,
die zweiten äußeren Kugelbahnen 20 und die zweiten inneren Kugelbahnen 21 bil-
den zweite Bahnpaare miteinander, die Bahnpaare nehmen jeweils eine drehmo-
mentübertragende Kugel 17₁, 17₂ auf,
ein Kugelkäfig 16 sitzt zwischen Gelenkaußenteil 12 und Gelenkinnenteil 15 und
15 weist umfangsverteilte Käfigfenster 24₁, 24₂ auf, die jeweils zumindest eine der Ku-
geln 17₁, 17₂ aufnehmen,
der Öffnungswinkel δ₁ der ersten Bahnpaare öffnet sich bei gestrecktem Gelenk in
20 der Gelenkmittelebene E von der Öffnungsseite zur Anschlußseite des
Gelenkaußenteils 12,
der Öffnungswinkel δ₂ der zweiten Bahnpaare öffnet sich bei gestrecktem Gelenk in
25 der Gelenkmittelebene E von der Anschlußseite zur Öffnungsseite des
Gelenkaußenteils 12,
wobei
die Bahnmittellinien L₁₈, L₁₉ der ersten Bahnpaare jeweils einen Wendepunkt T₁₋₂
haben und der Mittelpunktwinkel β an den Wendepunkt T₁₋₂ bezogen auf die Ge-
lenkmittelebene E jeweils größer als 4° ist.

Figur 1

1 / 20

P08 617

FIG. 1

2 / 20

P08 618

FIG. 2

3 / 20

P08 619

FIG.3

4 / 20

P08 620

FIG. 4

5 / 20

$$\alpha \geq \beta + \arcsin \left[\frac{O_2}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

P08 621

FIG. 5

6 / 20

$$\alpha \leq 17^\circ$$

α	10°	11°	12°	13°	14°	15°	16°	17°	18°
ϵ	++	++	++	++	++	+	+	-	--

P08 622

FIG. 6

7 / 20

$$\alpha \geq \beta + \arcsin \left[\frac{O_2 + a \cdot \tan(\beta)}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

P08 623

FIG. 7

8 / 20

$$\alpha \geq \beta + \arcsin \left[\frac{O_2 - b \cdot \tan(\beta)}{R_2} \cdot \sin(\beta + 90^\circ) \right]$$

P08 624

FIG. 8

9 / 20

P08 625

FIG. 9

10 / 20

P08 626

FIG. 10

11 / 20

P08 627

FIG. 11

12 / 20

a)

b)

P08 632

FIG. 12

13 / 20

P08 628

FIG. 13

14 / 20

P08 629

FIG. 14

15 / 20

P08 630

FIG. 15

16 / 20

BEST AVAILABLE COPY

P08 631

FIG. 16

17 / 20

BEST AVAILABLE COPY

α	10°	11°	12°	13°	14°	15°	16°	17°	18°
ε	+	+	+	+	+				-
ε'	+	+	+	+	+	+	+	-	-
ε'	-	-	+	+	+	+	+	+	+

P08 635

FIG. 17

18 / 20

BEST AVAILABLE COPY

P08 633

FIG. 18

19 / 20

BEST AVAILABLE COPY

P08 634

FIG. 19

20 / 20

± 14.20

BEST AVAILABLE COPY

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.