Hall Ticket No.:							SRIT R19
						·	

SRINIVASA RAMANUJAN INSTITUTE OF TECHNOLOGY

(AUTONOMOUS)

II B. Tech II Sem – Semester End Examinations – Regular – Mar 2021

DISCRETE MATHEMATICS [R204GA05401]

(Common to CSE, CSD & CSM)

Time: 3 hours Max. Marks: 70

PART-A

(Compulsory Question)

1		Answer the following: $(10 \times 02 = 20 \text{ Marks})$	
1	a)	Construct the truth table for $(P \land Q) \lor (Q \land R) \lor (P \land \neg R)$.	
	b)	What is composition of function?	
	c)	What is composition of function: What is congruence relation. Give an example.	
	d)	Suppose that Florida state university has a residence hall that has 5 single rooms, 5 doubl	a roome
	u)	and 3 rooms for 3 students each. In how many ways can 24 students be assigned to the 1	
	e)	What do you mean by graph isomorphism, show it by example?	o rooms.
		What do you mean of graph isomorphism, show it of chample.	
		(Answer all five units, 5 X $10 = 50$ Marks)	
		UNIT-1	
2	a)	Explain the well - formed formulas.	[5M]
	b)	Explain Disjunctive Normal Form.	[5M]
		OR	
3	a)	Show that S V R is tautologically implied by $(PVQ) \land (P \rightarrow R) \land (Q \rightarrow S)$.	[5M]
	b)	Demonstrate that R is a valid inference from the premises $P \rightarrow Q$, $Q \rightarrow R$ and P.	[5M]
		UNIT-2	
4	a)	Let $X = \{2, 3, 6, 12, 24, 36\}$ and the relation \leq be such that $x \leq y$ if x divides y. Draw the	[5M]
		Hasse diagram of (X, \leq) .	
	b)	Let $X = \{1,2,3,4,5,6,7\}$ and $R = \{(x, y) x - y \text{ is divisible by 3}\}$. Show that R is an	[5M]
		equivalence relation. Draw the graph of R.	
		OR	
5	a)	Explain the recursive function. Give an example.	[5M]
	b)	Explain lattice and write its properties.	[5M]
		UNIT-3	
6	a)	Explain about homomorphism.	[5M]
	b)	Define a semigroup and monoid. Give an example of a monoid which is not a group.	[5M]
		Justify the answer.	
7	Esse	OR plain the Fermat's theorem and Euler's theorem with an example.	[10]
	⊥ F X 1	nam the permat's theorem and puter's theorem with an example.	[10M]

	UNIT-4					
8	a) How many different outcomes are possible by tossing 10 similar coins?					
	b) Find a generating function for a_r = the number of ways of distributing r similar balls into n numbered boxes where each box is nonempty.		[5M]			
		OR	'			
9	9 Explain pigeonhole principle and its applications.					
		UNIT-5				
10	Define K- regular graph. Give examples of 2- regular, 3- regular, 4- regular graphs.					
		OR				
11	Differentiate between Eulerian graph & Hamiltonian graph with example. And also give an example of a graph which Eulerian but not Hamiltonian.					
