tags: Methods1

NOTE:

field: Epidemiology Definition of Causation

field: Factor/variable X causes result Y if some cases of Y would not have occurred if X had been absent.

NOTE:

field: Sample variance

field: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$

NOTE:

field: Population(s) of interest

field: The group to which you would like your answer to apply

NOTE:

field: Variable of Interest

field: A measurement that can be made on each individual/member of the population

NOTE:

field: Facts about Normal Distributions

field:

- If Z has a Normal(0,1) distribution then $X = \sigma Z + \mu$ has a Normal(μ, σ^2) distribution
- If X has a Normal(μ , σ^2) distribution, then $Z = \frac{X \mu}{\sigma}$ has a Normal(0,1) distribution.
- If X has a Normal (μ_x, σ_x^2) distribution, and Y has a Normal (μ_y, σ_y^2) distribution, and X and Y are independent of each other, then $X+Y \sim \text{Normal}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

NOTE:

field: Sample mean

field: $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$

NOTE:

field: Sampling distribution for population $Y \sim \text{Normal}(\mu, \sigma)$

field: $N(\mu, \sigma^2/n)$

NOTE:

field: Variance (Expected value)

field: $V(Y) = E[(X - E(X))^2] = E(X^2) - E[(X)]^2$

NOTE:

field: Covariance

field: Cov(X,Y) = E[(X - E(X))(Y - E(Y))]

NOTE:

field: If X and Y are independent (covariance)

field: The covariance is 0

NOTE:

field: If Cov(X, Y) = 0, (independence)

field: Cannot say that X and Y are independent

NOTE:

field: Cov(X, X) =

field: Var(X)

NOTE:

field: $X \sim N(\mu, \sigma^2)$

- $E(\bar{X}) =$
- $V(\bar{X}) =$

field:

- $E(\bar{X}) = \mu$
- $V(\bar{X}) = \sigma^2/n$

NOTE:

field: Central Limit Theorem (in words)

field: If the population distribution of a variable X has population mean μ and finite population variance σ^2 , then the sampling distribution of the sample mean becomes closer and closer to a Normal distribution as the sample size n increases: $\bar{X} \sim N(\mu, \sigma^2/n)$

field: Central Limit Theorem (theoretical)

field: Let $X_1, X_2, ... X_n$ be an iid sample from some poupation distribution F with mean μ and variance $\sigma^2 < \infty$. Then as the sample size $n \to \infty$, we have

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \to N(0, 1)$$

NOTE:

field: $X \sim (\mu, \sigma^2)$

- $E(\bar{X}) =$
- $V(\bar{X}) =$

field:

- $E(\bar{X}) = \mu$
- $V(\bar{X}) = \sigma^2/n$

NOTE:

field: Reject H_0 when H_0 True

field: Type I error (false positive)

NOTE:

field: Type I error (false positive)

field: Reject H_0 when H_0 True

NOTE:

field: Fail to Reject H_0 when H_0 false

field: Type II error

NOTE:

field: Type II error

field: Fail to Reject H_0 when H_0 false

NOTE:

field: Significance level

field: α the probability of a Type I error

NOTE:

field: Power (at θ_1)

field: Probability of rejecting the null hypothesis when θ_1 is the truth

NOTE:

field: Test for data setting: $X_1, X_2, \dots X_n$ iid with sample mean \bar{X} , and known population variance σ^2 , Null hypothesis $mu = \mu_0$

- Test name
- Test Statistic
- Test Reference Distribution
- Critical Value
 - Lower
 - Upper

- Two sided
- Confidence interval
- pvalue
 - upper:
 - lower:
 - two-sided
- Consistent/Finite Sample Exact/ Asymptotically Exact

field: z-test

- Test statistic: $Z(\mu_0) = \frac{\bar{X} \mu_0}{\sqrt{\sigma^2/n}}$
- Reference Distribution: Under $H_0, Z(\mu_0) \sim N(0, 1)$
 - Lower: Reject when $Z(\mu_0) < z_{\alpha} = \text{qnorm}(\alpha)$
 - Upper: Reject when $Z(\mu_0) > z_{1-\alpha} = \text{qnorm}(1-\alpha)$
 - Two sided: Reject when $|Z(\mu_0)| > z_{1-\alpha/2} = \text{qnorm}(1 \alpha/2)$
- Confidence interval: $\bar{X} \pm z_{1-\alpha/2} \sqrt{\frac{\sigma^2}{n}}$
- pvalue:
 - upper: 1 $\Phi(z) = 1$ pnorm(z)
 - lower: $\Phi(z) = \text{pnorm}(z)$
 - two-sided: $2(1 \Phi(|z|)) = 2*(1 pnorm(abs(z)))$
- Consistent: Yes /Finite Sample Exact: Yes if $X_i \sim N/$ Asymptotically Exact: Yes

NOTE:

field: Exactness (finite/asymptotic)

field: Under any setting for which the null hypothesis is true, is the actual rejection probability equal to the desired level α ?

- Finite Sample Exact: for sample size n is $P(RejectH_0) = \alpha$ when H_0 is true?
- Asymptotic Exactness: As $n \to \infty$ does $P(RejectH_0) \to \alpha$ when H_0 is true?

NOTE:

field: When is a test exact?

field:

- A test is FSE if the reference distribution is the true distribution of the test statistic T when H_0 is true
- A test is AE if the reference distribution is the asymptotic distribution of the test statistic when H_0 is true.
- (Distribution of p-values should be Unif(0.1))

NOTE:

field: Consistency

field: When H_0 is false (the alternative hypothesis is true), does the rejection probability (probability reject the null) tend to 1 as $n \to \infty$?

NOTE:

field: Interpretation of Confidence intervals

field: $(1 - \alpha)100\%$ of the time, intervals constructed in this manner will include μ

NOTE:

field: Test for data setting: $X_1, X_2, \dots X_n$ iid with sample mean \bar{X} , and unknown population variance, Null hypothesis $mu = \mu_0$

- Test name
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
 - upper:
 - lower:
 - two-sided
- Confidence interval
- pvalue
 - upper:
 - lower:
 - two-sided
- Consistent/Finite Sample Exact/ Asymptotically Exact

field:

- Test name: t-test
- Test Statistic: $t(\mu_0) = \frac{\bar{X} \mu_0}{\sqrt{s^2/n}}$
- Test Reference Distribution: t_{n-1}
- Critical Value/ Rejection region
 - upper: Reject if $t(\mu_0) > t_{(n-1),1-\alpha} = \operatorname{qt}(1 \alpha, \text{n-1})$
 - lower: Reject if $t(\mu_0) < t_{n-1,\alpha}$
 - two sided: Reject if $|t(\mu_0)| > t_{n-1,1-\alpha/2}$
- Confidence interval: $\bar{X} \pm t_{n-1,1-\alpha/2} \sqrt{\frac{s^2}{n}}$

- pvalue, with $t(\mu_0) = t$, and pt representing the cdf of a t distribution
 - upper: 1 pt(t, n 1)
 - lower: pt(t,n-1)
 - two-sided: 2*(1 pt(abs(t)),n-1)
- Consistent Yes/Finite Sample Exact Yes if normal/ Asymptotically Exact Yes

field: Test for data setting Y_1, \ldots, Y_n iid Bernoulli(p) (option 1), parameter of interest p

- Test name
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
 - upper:
 - lower:
 - two-sided
- Confidence interval
- pvalue
- Consistent/Finite Sample Exact/ Asymptotically Exact

field: Test for data setting Y_1, \ldots, Y_n iid Bernoulli(p), parameter of interest p

- Test name: Exact Binomial Test (uses the distribution of the sum of Bern(p) RVs)
- Test Statistic: $X = \sum_{i=1}^{n} Y_i = n\bar{Y}$

- Test Reference Distribution: Under H_0 Binomial (n, p_0)
- Critical Value/ Rejection region: Sometimes use randomized test
 - upper: Reject H_0 for $X \geq c$ for c such that $P(X \geq c) \leq \alpha$
 - lower: Reject H_0 for $X \leq c$ for c such that $P(X \leq c) \leq \alpha$
 - two-sided: Reject H_0 for $p_0(X) \leq c$ for c such that $P_{H_0}(p_0(X) \leq c) \leq \alpha$, where $p_0(X)$ is P(X = x) under H_0
- Confidence interval: Values that are not rejected
- pvalue: Sum of the probabilities that are less than or equal to the observed value (under the null hypothesis)
- Consistent/Finite Sample Exact/ Asymptotically Exact

field: Test for data setting Y_1, \ldots, Y_n , parameter of interest: p iid Bernoulli(p) (option 2)

- Test name
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
 - upper:
 - lower:
 - two-sided
- Confidence interval
- pvalue
- Consistent/Finite Sample Exact/ Asymptotically Exact

field: Test for data setting Y_1, \ldots, Y_n , parameter of interest: p iid Bernoulli(p) (option 2)

- Test name: Binomial z-test (Use when $np_0 > 5$ and $n(1 p_0) > 5$)
- Test Statistic: $X = \sum_{i=1}^{n} = n\bar{Y}, \ \hat{p} = X/n, \ z(p_0) = \frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}} \ (\text{score})$
- Test Reference Distribution: Under H_0 , Approximately $X \sim N(np_0, np_0(1-p_0))$ and $z(p_0) \sim N(0, 1)$
- Critical Value/ Rejection region
 - upper: $z(p_0) > z_{1-\alpha}$
 - lower: $z(p_0) < z_{\alpha}$
 - two-sided: $|z(p_0)| > z_{1-\alpha/2}$
- Confidence interval: Uses wald interval (derived from t-test) (with $z_w(p_0) = \frac{\hat{p}-p_0}{\sqrt{\hat{p}(1-\hat{p})/n}}$) $\hat{p} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- pvalue
 - upper: 1 $\Phi(z(p_0)) = 1$ pnorm $(z(p_0))$
 - lower: $\Phi(z(p_0)) = \text{pnorm}(z)$
 - two-sided: 2(1 $\Phi(|z(p_0)|)$) = 2*(1 pnorm(abs(z)))
- Consistent: Yes/Finite Sample Exact: No/ Asymptotically Exact: Yes

NOTE:

field: Continuity correction for Binomial z-test

field: With $X \sim Binom(n, p)$, instead of $P(X \leq x)$, use $P(W \leq x + 1/2)$ where $W \sim N(np, np(1-p))$

NOTE:

field: Data Setting: X_1, \ldots, X_n , iid parameter of interest: M - median $H_0: M = M_0$ (option 1)

- Test name:
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
 - upper:
 - lower:
 - two-sided
- Confidence interval
- pvalue
 - upper:
 - lower:
 - two-sided
- Consistent/Finite Sample Exact/ Asymptotically Exact

field:

- Test name: Sign Test
- Test Statistic: $Y_i = I(X_i < M_0)$, $\hat{p}_{M_0} = \frac{\sum Y_i}{n}$ (proportion of observations less than or equal to hypothesized median)
- \bullet Test Reference Distribution: Normal distribution: with $p_0=.5$
- Critical Value/Rejection region: $z = \frac{\hat{p}_{M_0} p_0}{\sqrt{p_0(1-p_0)/n}}$
 - upper: $z > z_{1-\alpha}$
 - lower: $z < z_{\alpha}$
 - two-sided: $|z| > z_{1-\alpha/2}$

• Confidence interval: cant use the binomial proportion CI Set of values of M_0 that wouldn't be rejected at level α

$$\left(\frac{n-z_{1-\alpha/2\sqrt{n}}}{2}\right)^{th}$$
 Smallest Observation, $\left(\frac{n-z_{1-\alpha/2\sqrt{n}}}{2}\right)^{th}$ Smallest Observation

- pvalue (binomial test on proportion)
 - upper: 1 $\Phi(z(p_0)) = 1$ pnorm $(z(p_0))$
 - lower: $\Phi(z(p_0)) = \text{pnorm}(z)$
 - two-sided: $2(1 \Phi(|z(p_0)|)) = 2*(1 \text{pnorm}(abs(z)))$
- If there are ties: remove all observations equal to M_0 , then test prop of observations $< M_0$ given not equal to M_0 is .5
- Consistent: yes/Finite Sample Exact: No / Asymptotically Exact: yes

NOTE:

field: Data Setting: X_1, \ldots, X_n , iid parameter of interest: M - median $H_0: M = M_0$ (option 2)

- Test name:
- Procedure:
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
 - upper:
 - lower:
 - two-sided
- Confidence interval
- pvalue
- Consistent/Finite Sample Exact/ Asymptotically Exact

field: Data Setting: X_1, \ldots, X_n , iid parameter of interest: M - median $H_0: M = M_0$ (option 1)

- Test name: Wilcoxon signed-rank test (require symmetry assumption) equivalently a test of the mean Tests the pseudo-median
- Procedure: testing c_0 is the center (median)
 - Calculate distance of each observation from c_0
 - Rank observations by the distance (abs value) from c_0
- Test Statistic: S sum of the ranks that correspond to observations larger than c_0 , $Z = \frac{S \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}} \sim N(0,1)$
- Test Reference Distribution:
 - Exact p-value assume each rank has the same chance of being assigned to observations above or below c_0 all possible ways to assign the ranks
 - Normal approximation to the null distribution $S \sim N(\frac{n(n+1)}{4}, \frac{n(n+1)(2n+1)}{24})$
- Critical Value/ Rejection region
 - upper:
 - lower:
 - two-sided
- Confidence interval
- pvalue Same as for Normal
- Consistent Yes under symmetry assumption /Finite Sample Exact No/ Asymptotically Exact Yes (under symmetry assumption)

NOTE:

field: Pseudomedian

field: Median of the distribution of sample means from samples of size 2

field: Data Setting: X_1, \ldots, X_n , iid $N(\mu, \sigma^2)$ parameter of interest: $\sigma^2 = Var(X)$, sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, $H_0: \sigma^2 = \sigma_0^2$

- Test name:
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval
- pvalue
- Consistent/Finite Sample Exact/ Asymptotically Exact

field: Data Setting: X_1, \ldots, X_n , iid $N(\mu, \sigma^2)$ parameter of interest: $\sigma^2 = Var(X)$, sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, $H_0: \sigma^2 = \sigma_0^2$

- Test name: χ^2 for Population Variance
- Test Statistic $X(\sigma_0) = \frac{(n-1)s^2}{\sigma_0^2}$
- Test Reference Distribution: Under $H_0: X(\sigma_0) = \frac{(n-1)s^2}{\sigma_0^2} \sim \chi_{n-1}^2$
- Critical Value/ Rejection region

$$-\sigma^{2} > \sigma_{0}^{2}$$
 Reject H_{0} for $X(\sigma_{0}^{2}) > \chi_{n-1}^{2}(1-\alpha)$

$$-\sigma^2 < \sigma_0^2$$
 Reject H_0 for $X(\sigma_0^2) < \chi_{n-1}^2(\alpha)$

$$-\sigma^2 \neq \sigma_0^2$$
 Reject H_0 for $X(\sigma_0^2) > \chi_{n-1}^2(1-\alpha/2)$ or $X(\sigma_0) < \chi_{n-1}^2(\alpha/2)$

• Confidence interval

$$\left(\frac{(n-1)s^2}{\chi_{n-1}^2(1-\alpha/2)}, \frac{(n-1)s^2}{\chi_{n-1}^2(\alpha/2)}\right)$$

• pvalue

$$\begin{split} &-\sigma^2 > \sigma_0^2 \colon p = 1 - pchisq(X(\sigma_0)^2, n-1) \\ &-\sigma^2 < \sigma_0^2 \colon p = pchisq(X(\sigma_0^2), n-1) \\ &-\sigma^2 \neq \sigma_0^2 \colon p = 2\min(1 - pchisq(X(\sigma_0^2), n-1), pchisq(X(\sigma_0^2)), n-1) \end{split}$$

• Consistent/Finite Sample Exact/ Asymptotically Exact

NOTE:

field: Data Setting: X_1, \ldots, X_n , iid parameter of interest: $\sigma^2 = Var(X)$, sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, $H_0: \sigma^2 = \sigma_0^2$

- Test name:
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval
- pvalue
- Consistent/Finite Sample Exact/ Asymptotically Exact

field: Data Setting: X_1, \ldots, X_n , iid parameter of interest: $\sigma^2 = Var(X)$, sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, $H_0: \sigma^2 = \sigma_0^2$

- Test name: Asymptotic t-test for population variance
- Test Statistic: $Y = (X_i \bar{X})^2 t(\sigma_0^2) = \frac{Y \frac{\bar{n} 1}{n} \sigma_0^2}{\sqrt{s_y^2/n}} \to N(0, 1)$
- Test Reference Distribution $\frac{\frac{n-1}{n}s^2 \frac{n-1}{n}\sigma^2}{\sqrt{Var(\frac{n-1}{n}s^2)}} = \frac{\bar{Y} \frac{n-1}{n}\sigma^2}{\sqrt{Var(\bar{Y})}} \to N(0,1)$, so we can use t-test
- Critical Value/ Rejection region
 - upper: Reject if $t(\sigma_0^2) > t_{(n-1),1-\alpha} = \operatorname{qt}(1 \alpha, n-1)$
 - lower: Reject if $t(\sigma_0^2) < t_{n-1,\alpha}$

- two sided: Reject if $|t(\sigma_0^2)| > t_{n-1,1-\alpha/2}$
- Confidence interval: $\bar{X} \pm t_{n-1,1-\alpha/2} \sqrt{\frac{s^2}{n}}$
- pvalue, with $t(\mu_0) = t$, and pt representing the cdf of a t distribution
 - upper: 1 pt(t, n-1)
 - lower: pt(t,n-1)
 - two-sided: 2*(1 pt(abs(t)), n-1)

field: Test for data setting $X_1, \ldots X_n$ iid from population distribution F. Test $H_0: F = F_0$

- Test name:
- Process
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region

field: Test for data setting $X_1, \ldots X_n$ iid from population distribution F. Test $H_0: F = F_0$

- Test name: Kolmogorov-Smirnov Test
- Process
- Test Statistic: $D(F_0) = \sup_x |\hat{F}(x) F_0(x)|$, where $\hat{F}(x) = \frac{1}{n} \sum_{i=1}^n 1(X_i \le x)$ is the empirical cdf and $F_0(x)$ is the null hypothesis cdf (maximum values of difference between emperical and null)
- Test Reference Distribution: Kolmogorov distribution
- Critical Value/ Rejection region: Reject for large values of $\sqrt{n}D(F_0)$
- Note the one sided version does not have an easy interpretation

field: Data setting: X_1, \ldots, X_n iid from discrete distribution. Test fit of distribution

- Test name:
- Process
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region

field: Data setting: X_1, \ldots, X_n iid from discrete distribution. Test fit of distribution

- Test name: χ^2 goodness of fit test, test for discrete distributions
- Process: Test the underlying population distribution is $P(X = x) = p_0(x)$, where $\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} 1(X_i = x)$
 - Let $j=1,\ldots,k$ the different categories that X_i can take
 - Let O_j be the observed number of observations that belong to category j
 - Let $E_j = np_0(j)$ be the expected number of observations that would belong to category j if the null hypothesis were true
- Test Statistic: $X(p_0) = \sum_x \frac{n(\hat{p}(x) p_0(x))^2}{p_0(x)} = \sum_{j=1}^k \frac{(O_j E_j)^2}{E_j}$
- Test Reference Distribution: Under $H_0, X(p_0) \to \chi^2_{k-1}$
- Critical Value/ Rejection region: Reject for large values of $X(p_0)$ Reject H_0 for $X(p_0) > \chi^2_{k-1}(1-\alpha)$
- Note: Null hypothesis doesn't completely specify the distribution, just the family of distributions with perhaps unknown parameters
 - Estimate the parameters

- Use null distribution with estimated parameter values for E_j
- Compute χ^2 test statistic
- Compare to χ^2_{k-d-1} distribution where k = number of categories, d = number of estimated parameters

field: Data setting $X_1, \ldots, X_n, Y_1, \ldots, Y_m$ iid with known σ_x, σ_y . Estimate d

- Test name:
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval
- p-value

field: Data setting $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ iid with known σ_x, σ_y . Estimate d,

- \bullet Test name: 2 sample z test
- Test Statistic: $z(d_0) = \frac{(\bar{X} \bar{Y}) d_0}{\sqrt{\frac{\sigma_x^2}{m} \frac{\sigma_y^2}{n}}}$
- Test Reference Distribution: Under H_0 , $z(d_0) \sim N(0,1)$
- Critical Value/ Rejection region
 - Lower: $d \leq d_0$ Reject when $z(d_0) < z_{\alpha} = \text{qnorm}(\alpha)$
 - Upper: $d \ge d_0$ Reject when $z(d_0) > z_{1-\alpha} = \text{qnorm}(1-\alpha)$
 - Two sided: $d \neq d_0$ Reject when $|z(d_0)| > z_{1-\alpha/2} = \text{qnorm}(1 \alpha/2)$
- Confidence interval:

$$(\bar{X} - \bar{Y}) \pm z(1 - \frac{\alpha}{2})\sqrt{\frac{\sigma_x^2}{m} + \frac{\sigma_y^2}{n}}$$

field: Data setting $X_1, \ldots, X_n, Y_1, \ldots, Y_m$ iid with unknown but equal σ_x, σ_y Estimate d

- Test name:
- Estimate of $\sigma_x^2 = \sigma_y^2$
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval
- When not equal

field: Data setting $X_1, \ldots, X_n, Y_1, \ldots, Y_m$ iid with unknown σ_x, σ_y . Estimate d

- Test name: Equal variance 2-sample t-test
- Note: Estimate of $\sigma_x^2 = \sigma_y^2 = s_p^2 = \frac{\sum_{i=1}^m (X_i \bar{X})^2 + \sum_{i=1}^n (Y_i \bar{Y})}{(m-1) + (n-1)} = \frac{(m-1)s_x^2 + (n-1)s_y^2}{(m+n-2)}$ (weighted average of the two sample variances)
- Test Statistic: $t(d_0) = \frac{(\bar{X} \bar{Y}) d_0}{\sqrt{s_p^2(\frac{1}{m} + \frac{1}{n})}}$
- Test Reference Distribution: For Normal populations, under H_0 : $t(d_0) \sim t_{m+n-2}$
- Critical Value/ Rejection region
 - $-d > d_0$ Reject H_0 for $t_e(d_0) > t_{m+n-2}(1-\alpha)$
 - $-d < d_0$ Reject H_0 for $t_e(d_0) < t_{m+n-2}(\alpha)$
 - $-d \neq d_0 \text{ Reject } H_0 \text{ for } |t_e(d_0)| > t_{m+n-2}(1-\alpha/2)$
- Confidence interval $(\bar{X} \bar{Y}) \pm t_{m+n-2} (1 \frac{\alpha}{2}) \sqrt{s_p^2 (\frac{1}{m} + \frac{1}{n})}$
- When not equal:

- Expected value of Estimated variance is larger than it should be when the smaller sample comes from the population with smaller variance - the test statistic will be closer to zero than it should be, and rejection rates will be smaller - Less power - more conservative
- Expected value of Estimated variance is smaller than it should be when smaller sample comes from the population with the larger variance - test statistic will have a larger absolute value than it should an rejection rates will be larger - more power - anti conservative

field: Data setting $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ iid with unknown not equal equal σ_x, σ_y Estimate d

- Test name:
- Estimate of $Var(\bar{X} \bar{Y})$
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval
- Compare to equal variance

field: Data setting $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ iid with unknown not equal equal σ_x, σ_y Estimate d

- Test name: Unequal variance 2 sample t-test
- Estimate of $Var(\bar{X} \bar{Y}) = \frac{s_x^2}{m} + \frac{s_y^2}{n}$
- Test Statistic: $t_U(d_0) = \frac{(\bar{X} \bar{Y}) d_0}{\sqrt{\frac{s_x^2}{m} + \frac{s_y^2}{n}}}$

• Test Reference Distribution: If the two distributions are Normal, there is not an exact distribution for the test statistic - Use Welch-Satterthwaite approximation: Estimate degrees of freedom

$$v = \frac{\left(\frac{s_x^2}{m} + \frac{s_y^2}{n}\right)^2}{\frac{s_x^4}{m^2(m-1)} + \frac{s_y^4}{n^2(n-1)}}$$

 $\min(m-1, n-1) \le v \le m+n-2 \text{ Under } H_0 t_u(d_0) \text{ approx } \sim t_v$

- Critical Value/ Rejection region: same as t-test
- Confidence interval: $(\bar{X} \bar{Y}) \pm t_v (1 \frac{\alpha}{2}) \sqrt{\frac{s_x^2}{m} + \frac{s_Y^2}{n}}$
- Compare to equal variance:
 - For unequal sample sizes with unequal population variances, equal variance t-test does not have correct calibration
 - When samples sizes are equal both test statistics are the same, but degrees of freedom differ
 - When equal variance assumption is true, equal variance has slightly better power, and very slightly better calibration (more exact)

NOTE:

field: Data setting X_1, \ldots, X_n iid F_x, Y_1, \ldots, Y_n iid F_y, X_i not independent $Y_i, (X_1, Y_1), \ldots, (X_n, Y_n)$ iid F_{XY} $Cov(X_i, Y_i) = \sigma_{XY}$, $Cov(X_i, Y_j) = 0$ Estimate $d = \mu_x - \mu_y, \sigma_x^2, \sigma_y^2, \sigma_{XY}$ known

- Test name:
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval

field: Data setting X_1, \ldots, X_n iid F_x, Y_1, \ldots, Y_n iid F_y, X_i not independent $Y_i, (X_1, Y_1), \ldots, (X_n, Y_n)$ iid F_{XY} $Cov(X_i, Y_i) = \sigma_{XY}$, $Cov(X_i, Y_j) = 0$. Estimate $d = \mu_x - \mu_y, \sigma_x^2, \sigma_y^2, \sigma_{XY}$ known

• Test name: Paired z-test

• Test Statistic:
$$z(d_0) = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_Y^2}{n} - 2\frac{\sigma_{XY}}{n}}} = \frac{\bar{D} - d_0}{\sqrt{\frac{\sigma_D^2}{n}}}$$

- Test Reference Distribution: Under H_0 , $z(d_0)$ aprox $\sim N(0,1)$
- Critical Value/ Rejection region: Same as normal
- Confidence interval :

$$(\bar{X} - \bar{Y}) \pm z(1 - \frac{\alpha}{2})\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_Y^2}{n} - 2\frac{\sigma_{XY}}{n}} = \bar{D} \pm z(1 - \alpha/2)\sqrt{\frac{\sigma_D^2}{n}}$$

NOTE:

field: Data setting X_1, \ldots, X_n iid F_x, Y_1, \ldots, Y_n iid F_y, X_i not independent $Y_i, (X_1, Y_1), \ldots, (X_n, Y_n)$ iid F_{XY} $Cov(X_i, Y_i) = \sigma_{XY}$, $Cov(X_i, Y_j) = 0$ Estimate $d = \mu_x - \mu_y, \sigma_x^2, \sigma_y^2, \sigma_{XY}$ unknown

- Test name:
- Estimate of σ_{XY}
- Estimate of $Var(\bar{X} \bar{Y})$
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval

field: Data setting X_1, \ldots, X_n iid F_x, Y_1, \ldots, Y_n iid F_y, X_i not independent $Y_i, (X_1, Y_1), \ldots, (X_n, Y_n)$ iid F_{XY} $Cov(X_i, Y_i) = \sigma_{XY}$, $Cov(X_i, Y_j) = 0$ Estimate $d = \mu_x - \mu_y, \sigma_x^2, \sigma_y^2, \sigma_{XY}$ unknown

• Test name: Paired Data t-test

- Estimate of $\sigma_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$
- Estimate of $Var(\bar{X} \bar{Y}) = \frac{s_d^2}{n} = \frac{s_x^2}{n} + \frac{s_Y^2}{n} 2\frac{s_{XY}}{n}$
- Test Statistic: $t(d_0) = \frac{(\bar{X} \bar{Y}) d_0}{\sqrt{\frac{s_x^2}{n} + \frac{s_Y^2}{n} 2\frac{s_{XY}}{n}}} = \frac{\bar{D} d_0}{\sqrt{\frac{s_D^2}{n}}}$
- Test Reference Distribution: If differences are Normal (note X,Y Normal does not imply Differences are normal unless X,Y are jointly multivariate-normal) Under H_0 , $t(d_0) \sim t_{n-1}$ (exact distribution)
- Critical Value/ Rejection region Same as t
- Confidence interval

$$(\bar{X} - \bar{Y}) = t_{n-1}(1 - \frac{\alpha}{2})\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{n} - 2\frac{s_{XY}}{n}} = \bar{D} \pm t_{n-1}(1 - \frac{\alpha}{2})\sqrt{\frac{s_d^2}{n}}$$

• Equivalent to a one sample - t-test on the differences

NOTE:

field: Data setting X_1, \ldots, X_m iid Bernoulli $(p_x), Y_1, \ldots, Y_n$ iid Bernoulli $(p_y), Test H_0: p_x - p_y = 0$

- Test name:
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval

field: Data setting X_1, \ldots, X_m iid Bernoulli $(p_x), Y_1, \ldots, Y_n$ iid Bernoulli $(p_y), Test H_0: p_x - p_y = 0$

• Test name: Binomial proportions two-sample z-test

• Test Statistic:

$$z = \frac{\hat{p}_x - \hat{p}_y}{\sqrt{\hat{p}_c(1 - \hat{p}_c(\frac{1}{m} + \frac{1}{n}))}}$$

Where $\hat{p_c} = \frac{m\hat{p_x} + n\hat{p_y}}{m+n} = \frac{b+d}{N}$

• Test Reference Distribution: Under $H_0: z$ approx $\sim N(0,1)$

• Critical Value/ Rejection region: Same as regular 2-sample

• Confidence interval:

$$\hat{p}_x - \hat{p}_y \pm z_{1-\alpha/2} \sqrt{\left(\frac{\hat{p}_x(1-\hat{p}_x)}{m} + \frac{\hat{p}_y(1-\hat{p}_y)}{n}\right)}$$

NOTE:

field: Multinomial sampling

field: Collection of random samples, recording what group they are in: Can estimate P(X = x | G = g), where G is the group

NOTE:

field: Two-Sample Binomial sampling

field: Sample m units from group 1 and n units from group 2

NOTE:

field: P(X = x | G = g) with binomial sampling

field: Cannot estimate

field: P(X = x | G = g) with multinomial sampling

field: Can estimate

NOTE:

field: E(g(T)) =

field: $E(g(T)) \neq g(E(T))$

NOTE:

field: Reason for performing transformations on data

field: Some tests are FSE only when population distribution is Normal (otherwise the methods are asymptotically exact), requiring a large n. Transformations that improve approximation of normality make Normal-based methods perform more exactly

NOTE:

field: Data setting X_1, \ldots, X_m iid Bernoulli $(p_x), Y_1, \ldots, Y_n$ iid Bernoulli $(p_y), Test H_0: p_x - p_y = 0$ (Association/independent/relationship)

- Test name:
- Test Statistic
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval

field: Data setting X_1, \ldots, X_m iid Bernoulli $(p_x), Y_1, \ldots, Y_n$ iid Bernoulli $(p_y), Test H_0: p_x - p_y = 0$ (Association/independent/relationship)

- Test name: Pearson's Chi-squared Test
- Test Statistic: $X = \sum_{i,j \in \{1,2\}} \frac{(O_{ij} E_{ij})^2}{E_{ij}}$ Where $O_{ij} = n_{ij}$ and $E_{ij} = \frac{R_i C_j}{N}$
- Test Reference Distribution: Under $H_0 X \sim \chi_1^2$
- Critical Value/ Rejection region: Reject for $X > \chi_1^2(1-\alpha)$
- Note: Equal to to sided z-test for binomial proportions: $X=z^2$

NOTE:

field: Data setting X_1, \ldots, X_m iid Bernoulli $(p_x), Y_1, \ldots, Y_n$ iid Bernoulli $(p_y), Y_1, \ldots, Y_n$ iid

- Test name:
- Test Statistic:
- pvalue
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval

field: Data setting X_1, \ldots, X_m iid Bernoulli $(p_x), Y_1, \ldots, Y_n$ iid Bernoulli $(p_y), Y_1, \ldots, Y_n$ iid

- Test name: Fisher's Exact Test (of homogeneity of proportions)
- Test Statistic: Probability of observed table conditioning on margins: Compute all tables with the same margin totals: $\frac{\binom{C_2}{O_{12}}\binom{C_1}{O_{11}}}{\binom{N}{R_1}}$

- pvalue: Sum of probability of all tables more extreme than observed table More Extreme:
 - $-p_x > p_y$ More extreme = larger O_{12}
 - $-p_x < p_y$ More extreme = smaller O_{12}
 - $-p_x \neq p_y$ More extreme = less likely table

field: Data setting X_1, \ldots, X_m iid Bernoulli $(p_x), Y_1, \ldots, Y_n$ iid Bernoulli $(p_y), Y_1, \ldots, Y_n$ iid

- Test name:
- Test Statistic:
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval

field: Data setting X_1, \ldots, X_m iid Bernoulli $(p_x), Y_1, \ldots, Y_n$ iid Bernoulli $(p_y), Y_1, \ldots, Y_n$ iid

- Test name: Log Odds test $H_0: \omega = 1$
- Test Statistic: $\hat{\omega} = \frac{ad}{bc}$, $z = \frac{\log(o\hat{mega})}{\sqrt{frac1a + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}}$
- Test Reference Distribution $\log(\hat{\omega})$ approx $\sim N(\log(\omega), \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}),$ z approx $\sim N(0, 1)$
- Critical Value/ Rejection region
- $\bullet \ \ \text{Confidence interval} \ (\textit{omegae}^{-z(1-\frac{\alpha}{2})\sqrt{frac1a+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}}, \textit{omegae}^{z(1-\frac{\alpha}{2})\sqrt{frac1a+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}})$
- : $\omega > 1, p_1 > p_2, \, \omega = 1, p_1 = p_2, \, \text{small } p_1, p_2, \, \omega = p_1/p_2 = \text{relative risk}$

NOTE:

field: Data setting X_1, \ldots, X_n iid Bernoulli $(p_x), Y_1, \ldots, Y_n$ iid Bernoulli $(p_y), X, Y$ not independent (paired) test proportions equal in groups (equally likely/probability)

- Test name:
- Test Statistic:
- Test Reference Distribution
- Critical Value/ Rejection region
- Confidence interval

field: Data setting X_1, \ldots, X_n iid Bernoulli $(p_x), Y_1, \ldots, Y_n$ iid Bernoulli $(p_y), X, Y$ not independent (paired), test proportions equal in groups (equally likely/probability)

- Note, requires a table that keeps track of the pairs
- Test name: McNemar's Test
- Test Statistic: $z = \frac{b-c}{\sqrt{b+c}}$
- Test Reference Distribution: $z \sim N(0,1), z^2 \sim \chi_1^2$
- Critical Value/ Rejection region
- Confidence interval
- Note equivalent to performing a paired t-test on the differences:

$$t = \frac{b - c}{\sqrt{\frac{n}{n-1}(b + c - \frac{(b-c)^2}{40})}}$$

compare to t_{n-1}

NOTE:

field: Data setting: *n* observations, record Group 1 and Group 2, where each group takes on ¿ 2 values, Test if there is an association between the groups

- Test name:
- Test Statistic:
- Test Reference Distribution

field: Data setting: n observations, record Group 1 (r values) and Group 2(c) values, Test if there is an association between the groups

- Test name: Pearsons χ^2
- Test Statistic: $X = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} E_{ij})^2}{E_{ij}}$, where $E_{ij} = \frac{n_i n_j}{N}$
- Test Reference Distribution: Under H_0 , X approx $\sim \chi^2_{(r-1)(c-1)}$
- Note not FSE, but performance is good if $E_{ij} > 5$

NOTE:

field: Data setting X_1, \ldots, X_n iid F_x, Y_1, \ldots, Y_n iid F_y . Test $m_x = m_y$ (medians)

- Test name:
- Process
- pvalue
- Test Statistic:
- Test Reference Distribution

field: Data setting X_1, \ldots, X_n iid F_x, Y_1, \ldots, Y_n iid F_y . Test $m_x = m_y$ (medians)

- Test name: Wilcoxon Rank-Sum (Mann-Whitney U-test)
- Note this is only a test of medians only if just additive effect G1 is just a shift from G2 (shame and scale must be same) (but then just the same as a test of mean, 10th percentile, min, $F_x = F_y$ etc.)
- If No additive assumption test of $H_0: P(X > Y) = .5$
- Process:
 - Combine samples
 - Rank the observations in combined sample from smalles to largest (1 to n+m)
 - Add ranks of the smaller group
- pvalue: Calculate using permutations: Count number of permutations that lead to a R value more extreme than observed out of total permutations $\binom{n+m}{m}$
- Test Statistic: R sum of the ranks, or $z = \frac{R \frac{m(m+n+1)}{2}}{\sqrt{\frac{mn(m+n+1)}{12}}}$
- Test Reference Distribution: If there was no difference between two populations, then each rank has equal chance of being assigned to group 1 (belongs to X: $p = \frac{m}{n+m}$) Normal approximation: $R \dot{\sim} N(\frac{m(m+n+1)}{2}, \frac{mn(m+n+1)}{12}), z \dot{\sim} N(0,1)$
- Notes: If ranks, assign ranks, and then average ranks of tied values
- Continuity correction to normal distribution: add .5 to R if lower probability, subtract .5 from R if upper probability (ie 1 pnorm())
- Not consistent test unless under additive assumption. IS consistent test of $H_0: P(X > Y) = .5$

NOTE:

field: Data setting X_1, \ldots, X_n iid F_x, Y_1, \ldots, Y_n iid F_y . Test $m_x = m_y$ (medians)

- Test name:
- Process
- Test statistic:

field: Data setting X_1, \ldots, X_n iid F_x, Y_1, \ldots, Y_n iid F_y . Test $m_x = m_y$ (medians)

- Test name: Mood's Test for Equality of Population Medians
- Process:
 - Find combined sample median \hat{m}
 - Calculate \hat{p}_x = proportion of Xs greater than \hat{m} , \hat{p}_y , proportion of Ys greater than \hat{m}
 - Conduct two sample binomial z-test(Pearsons chi-squared test)
 or Fisher's exact test
 - Test statistic:

$$z = \frac{\hat{p}_x - \hat{p}_y}{\sqrt{\hat{p}_c(1 - \hat{p}_c(\frac{1}{m} + \frac{1}{n}))}}$$

Where
$$\hat{p_c} = \frac{m\hat{p_x} + n\hat{p_y}}{m+n} = \frac{b+d}{N}$$

NOTE:

field: Data setting X_1, \ldots, X_n iid F_x, Y_1, \ldots, Y_n iid F_y . Test some statistic W

- Test name:
- Process

field: Data setting X_1, \ldots, X_n iid F_x, Y_1, \ldots, Y_n iid F_y . Test some statistic W

- Test name: Permutation test
- Process: Permute group labels across observations and recalculate statistic for each permutation to create permutation distribution calculate p-values using the permutation distribution
- Performance: Many settings (like medians equal), will not reject correctly (even in large samples) if the medians are equal, but the distributions differ
- Permutation hypothesis is that the observations from the two pouplations are exchangable (ie same population distributions, not just equal medians)

NOTE:

field: Data setting: Estimate value of nuisance parameter

field:

- Test name: Bootstrap
- Process: Since the empirical distribution function converges to the true distribution function, we can use samples from the empirical distribution to approximate how samples from the true distribution would behave.
- Confidence interval: $100(\alpha/2)$ largest resampled statistic $100(1-(\alpha/2))$ largest resampled statistic

NOTE:

field: Data setting: Data setting X_1, \ldots, X_m iid N, Y_1, \ldots, Y_n iid N. $H_0: \sigma_x^2 = \sigma_y^2$ or $H_0\sigma_x^2/\sigma_y^2 = r$

field: Data setting: Data setting X_1, \ldots, X_m iid F_x, Y_1, \ldots, Y_n iid F_y . $H_0: \sigma_x^2 = \sigma_y^2$ or $H_0\sigma_x^2/\sigma_y^2 = r$

• Test name: F

• Recall
$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^m (X_i - \bar{X})^2$$

- Note that $\frac{(m-1)s_x^2}{\sigma_x^2} \sim \chi_{m-1}^2, \frac{(n-1)s_y^2}{\sigma_y^2} \sim \chi_{n-1}^2$,
- Test Statistic: $F(r) = \frac{s_x^2/\sigma_x^2}{s_y^2/\sigma_y^2} = \frac{s_x^2}{s_y^2} \frac{1}{r}$
- Test Reference Distribution: Under $H_0: F(r) \sim F_{m-1,n-1}$
- Critical Value/ Rejection region

$$-\sigma_x^2/\sigma_y^2 > r$$
 Reject for $F(r) > F_{m-1,n-1}(1-\alpha)$

$$-\sigma_x^2/\sigma_y^2 > r$$
 Reject for $F(r) > F_{m-1,n-1}(\alpha)$

$$-\sigma_x^2/\sigma_y^2 \neq r$$
 Reject for $F(r) > F_{m-1,n-1}(1-\alpha/2)$ or $F(r) < F_{m-1,n-1}(\alpha/2)$

• Performance: Not Well if underlying population is not normal: Not FSE or AE (but is consistent) - don't use if population is not normal

NOTE:

field: Data setting: Data setting X_1, \ldots, X_m iid F_x, Y_1, \ldots, Y_n iid F_y . $H_0: \sigma_x^2 = \sigma_y^2$

- Test name:
- Process:
- Interpretation
- Assumptions

field: Data setting: Data setting X_1, \ldots, X_m iid F_x, Y_1, \ldots, Y_n iid F_y . $H_0: \sigma_x^2 = \sigma_y^2$

- Test name: Levene's Test
- Process:
 - Construct new variables:

*
$$U_i = |X_i - med(X)| \text{ or } (X_i - med(X))^2 \text{ or } |X_i - \bar{X}| \text{ or } (X_i - \bar{X})^2$$

- * $V_i = |Y_i med(Y)| \text{ or } (Y_i med(Y))^2 \text{ or } |Y_i \bar{Y}| \text{ or } (Y_i \bar{Y})^2$
- Perform two-sample t test on U_i and V_i (use Welch)
- Interpretation: If last option used, can be a test in difference in population variances
- Assumptions:
 - Independence
 - Large sample sizes, so t-test assumptions are met
- Note: dont use as a test to determine which t-test version to use

NOTE:

field: Data setting: Data setting X_1, \ldots, X_m iid F_x, Y_1, \ldots, Y_n iid F_y . Test $H_0: F_x = F_y$

- Test name
- Test statistic

field: Data setting: Data setting X_1, \ldots, X_m iid F_x, Y_1, \ldots, Y_n iid F_y . Test $H_0: F_x = F_y$

- Test name: Two-sample Kolmogorov-Smirnov Test
- Test statistic: $D = \sup_x |\hat{F}_x(x) \hat{F}_y(y)|$ ie the largest distance between the empirical CDF for X and Y
- Reject for large values of $\sqrt{\frac{mn}{m+n}}$
- Only for continuous distributions, for discrete distributions, use Pearsons χ^2

field: Multiple 2x2 tables under k different conditions $p_{xj} = P(X = 1 \text{ in Table } j), p_{yj} = P(Y = 1 \text{ in Table } j) H_0: p_{xj} = p_{yj} \text{ for all } j$

field:

- Test name: Mantel-Haenszel Test
- Test statistic: $\omega_j = \frac{p_{xj}(1-p_{xj})}{p_{uj}(1-p_{uj})}, H_0 : \omega_j = 1 \text{ for all } j$

$$E(n_{X1j}) = \mu_{X1j} = \frac{n_{X \cdot j} n_{\cdot 1j}}{n_{\cdot j}}, V(n_{X1j}) = \sigma_{X1j}^2 = \frac{n_{X \cdot j} n_{Y \cdot j} n_{\cdot 1j} n_{\cdot 0j}}{n_{\cdot \cdot j}^2 (n_{\cdot \cdot j} - 1)}$$

$$C = \frac{\left[\sum_j (n_{X1j} - \mu_{X1j})\right]^2}{\sum_i \sigma_{X1i}^2}$$

- Under H_0 $C \sim \chi^2(1)$
- \bullet Assumes the odds-ratios are the same in all k tables

NOTE:

field: Sample 1: $X_{1,1}, \ldots, X_{1n_1}$ from population 1 with mean μ_1 , Sample 2: $X_{2,1}, \ldots, X_{2n_2}$ from population 2 with mean μ_2, \ldots Sample M: $X_{M,1}, \ldots, X_{Mn_M}$ from population M with mean μ_M

- Independence within and between groups
- Populations (approximately) normal
- Equal variances

field:

- Test name: ANOVA
- Estimate of common variance $s_p = \frac{(n_1-1)s_1^2 + \cdots + (n_M-1)s_M^2}{(n_1-1)+\cdots + (n_M-1)}$
- Could use two-sample-t test on two population means

- Could test are population means 1 through M equal to each other?
- Compare the variability between groups to the variability withing groups
- Sum of squares within groups:

$$SSW = (n - M)s_p^2 = \sum_{i=1}^{n_1} (X_{1i} - \bar{X}_1)^2 + \dots + \sum_{i=1}^{n_M} (X_{Mi} - \bar{X}_M)^2$$

degrees of freedom: n - M

• Sum of squares total

$$SST = \sum_{i=1}^{n_1} (X_{1,i} - \bar{X})^2 + \dots + \sum_{i=1}^{n_M} (X_{M,i} - \bar{X})^2$$

degrees of freedom: n-1

- Sum of squares between groups: $SSB = SST SSW = \sum_{j=1}^{M} n_j (\bar{X}_j \bar{X})^2$ df: (n-1) (n-M) = M-1
- Test statistic:

$$F = \frac{MSB}{MSW} = \frac{SSB/(M-1)}{SSW/(n-M)}$$

• Reference distribution: Under $H_0, F \sim F_{M-1,n-M}$

tags: Methods2

NOTE:

field: Vectors **x** and **y** orthogonal

field: Vectors \mathbf{x} and \mathbf{y} orthogonal (perpendicular) if $(x, y) = \mathbf{x}^t \mathbf{y} = 0$

NOTE:

field: A matrix **A** is orthogonal if:

field: A matrix **A** is orthogonal if $\mathbf{A}^t \mathbf{A} = \mathbf{A} \mathbf{A}^t = \mathbf{I}_n$

NOTE:

field: A set of n vectors are linearly dependent

field: A set of n vectors are linearly dependent if there exist constants $c_1, \ldots c_n$ not all 0 such that $\sum_{j=1}^n c_j \mathbf{x} (j) = 0$

NOTE:

field: Inverse of a square matrix $\mathbf{A}_{n\times n}$

NOTE:

field: Inverse of A, A^{-1} where A is 2×2

field: $\mathbf{A}^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

NOTE:

field: A square matrix is invertible if:

NOTE: A square matrix is invertible if the columns (rows) are linearly independent. (If the columns are not independent, the matrix is called singular)

NOTE:

field: Square of matrix **A**

field: AA^t

field: Norm of a vector $|\mathbf{x}|$

field:
$$|\mathbf{x}| = \sqrt{\sum_{j=1}^p x_j^2}$$

NOTE:

field: Determinant of a 2×2 matrix

field:
$$\left| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right| = ad - bc$$

NOTE:

field: Trace of a square matrix

field: Sum of the diagonal elements

NOTE:

field: Rank of a matrix

field: Number of linearly independent columns

NOTE:

field: Eigenvalue and eigenvector

field: λ is an eigen value and $\mathbf{u}_{n\times 2}$ is the eigen vector of $\mathbf{A}_{n\times n}$ if $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$

- \bullet A real symmetric matrix has n eigen values and n eigen vectors, and each are orthogonal to each other
- Roots of $det(\mathbf{A} \lambda \mathbf{I})$ determine the eigenvalues of A

field: Matrix properties

- $(AB)^t =$
- $\bullet \ (A+B)^t =$
- For invertible matrices $(AB)^{-1} =$
- For invertible matrices $(\mathbf{A}^{-1})^t =$

field: Matrix properties

- $\bullet \ (AB)^t = B^t A^t$
- $\bullet \ (A+B)^t = A^t + B^t$
- For invertible matrices $(AB)^{-1} = B^{-1}A^{-1}$
- For invertible matrices $(\mathbf{A}^{-1})^t = (\mathbf{A}^t)^{-1}$

NOTE:

NOTE:

field:

$$E(Y_i|X_{i1},\ldots,X_{ip}) =$$

field: Since the error terms ϵ_i are independent and normally distributed with mean 0,

$$E(Y_i|X_{i1},...,X_{ip}) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_p X_{ip}$$

field: Matrix form of linear Model and data

field:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1p} \\ 1 & X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

NOTE:

field: Assumptions of a linear model

field:

• Linearity: $E(\epsilon_i) = 0$ or $E(\epsilon) = \mathbf{0}$ or $E(\mathbf{Y}) = \mathbf{X}\beta$

• Constant variance $V(Y_i) = \sigma^2 = Var(\epsilon_i)$ or $V(\epsilon) = \sigma^2 \mathbf{I}_n$

• Normality Y_i follows normal distribution, equivalently, ϵ_i follows normal distribution

• Independence Y_i are independent equivalently under normality $Cov(\epsilon_i, \epsilon_j) = 0$

NOTE:

field: Interpretation of intercept of linear model

field: Mean response when all explanatory variables are 0

NOTE:

field: Interpretation of slopes of linear model

field: Change in mean response for 1 unit change in the value of the explanatory, keeping all other variables constant. When p=2

$$E(Y|X_1+1,X_2) - E(Y|X_1,X_2) = \beta_1$$

NOTE:

field: Reason for g-1 indicator variables for a variable with g values

field: The model matrix $X_{n\times(p+1)}$ needs to be full column rank - $\mathbf{X}^t\mathbf{X}$ needs to be non-singular If there is no intercept, we can include all groups, but interpretation will be different

NOTE:

field: Interpretation of slope coefficient for indicator variable β

field: Difference in expected value of Y between group value a and b where a is the associated value for β_i and b is the base category

NOTE:

field:

- $E(\mathbf{AU} + \mathbf{b}) =$
- $V(\mathbf{AU} + \mathbf{B}) =$

field:

- $E(\mathbf{AU} + \mathbf{b}) = \mathbf{A}E(\mathbf{U}) + \mathbf{b}$
- $\bullet \ V(\mathbf{A}\mathbf{U} + \mathbf{B}) = \mathbf{A}V(\mathbf{U} + \mathbf{A}^t)$

field: Least squares estimate of β (process to find)

field: Minimize the squared error loss $(L(\beta))$ with respect to β

$$L(\beta) = \sum_{i=1}^{n} Y_i - (\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip})^2 = (\mathbf{Y} - \mathbf{X}\beta)^t (\mathbf{Y} - \mathbf{X}\beta)$$

NOTE:

field:

$$\frac{\partial}{\partial \beta}L(\beta) =$$

field:

$$\frac{\partial}{\partial \beta} L(\beta) = \frac{\partial}{\partial \beta} (\mathbf{Y} - \mathbf{X}\beta)^t (\mathbf{Y} - \mathbf{X}\beta)$$

$$= \frac{\partial}{\partial \beta} \mathbf{Y}^t \mathbf{Y} - \beta^t \mathbf{X}^t \mathbf{Y} - \mathbf{Y}^t \mathbf{X}\beta - \beta^t \mathbf{X}^t \mathbf{X}\beta$$

$$= 0 - \mathbf{X}^t \mathbf{Y} - \mathbf{X}^t \mathbf{Y} + 2\mathbf{X}^t \mathbf{X}\beta$$

$$\mathbf{X}^t \mathbf{X}\beta = \mathbf{X}^t \mathbf{Y}$$

NOTE:

field: Least squares estimate of $\hat{\beta}$

field:

$$\hat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y}$$

(if $\mathbf{X}^t\mathbf{X}$ is invertible)

field: Residual

field:
$$e_i = Y_i - \hat{Y}_i$$
, $\mathbf{e}_{n \times 1} = \mathbf{Y} - \hat{\mathbf{Y}}$

NOTE:

field: Vector of fitted values

field:
$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{Y}$$

NOTE:

field: Projection matrix

field: Hat matrix

$$\mathbf{H}_{\mathbf{n}\times\mathbf{n}} = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t$$

NOTE:

field: Properties of projection matrix

field:

- H and I H are symmetric matrices
- $\mathbf{H}\mathbf{X} = X$ item $(\mathbf{I} \mathbf{X})\mathbf{X} = \mathbf{0}$
- $\bullet \ \mathbf{H}^2 = \mathbf{H}$
- $\bullet \ (\mathbf{I} \mathbf{H})\mathbf{H} = 0$
- $\mathbf{X}^t \mathbf{e} = 0$

NOTE:

field: Unbiased estimate of σ^2

field:
$$\hat{\sigma}^2 = \frac{1}{n - (p+1)} \sum_{i=1}^n e_i^2 = \frac{1}{n - (p+1)} \mathbf{e}^t \mathbf{e}$$

NOTE:

field: $e^t e =$

field: $e^t e = Y^t Y - Y^t H Y$

NOTE:

field: $E(\hat{\beta}) =$

field: $E(\hat{\beta}) = E((\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y}) = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t E(\mathbf{Y}) = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{X} \beta = \beta$ So $\hat{\beta}$ is an unbiased estimate

NOTE:

field: Gauss - Markov Theorem

field: If $E(\mathbf{Y}) = \mathbf{X}\beta$ and $V(\mathbf{Y}) = \sigma^2 \mathbf{I}$, then the least squares estimate $\hat{\beta}$ has the least variance among all linear unbiased estimators of β . (BLUE)

NOTE:

field: $V(\hat{\beta}) =$

field: $V(\hat{\beta}) = \sigma^2(\mathbf{X}^t\mathbf{X})^{-1}$

NOTE:

field: $E(\hat{\sigma}^2) =$

field: $E(\hat{\sigma}^2) = \sigma^2$

field: If $\mathbf{X}_{p\times 1}$ has a multivariate normal distribution $N(\mu_{p\times 1}, \Sigma_{p\times p})$, then $\mathbf{AX} + b \sim$

field: If $\mathbf{X}_{p\times 1}$ has a multivariate normal distribution $N(\mu_{p\times 1}, \Sigma_{p\times p})$, then $\mathbf{A}\mathbf{X} + \mathbf{b} \sim N(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\Sigma\mathbf{A}^t)$

NOTE:

field: Multivariate normal properties for $\mathbf{X}_{p\times 1} \sim N(\mu_{p\times 1}, \Sigma_{p\times p})$

field:

- $Cov(X_j, X_k) = 0$ if and only if X_j, X_k are independent (two way due to multivariate normal)
- All subsets of elements of X have a multivarite normal distribution
- All linear combinations of the components of X are normally distributed
- $\mathbf{a}^t \mathbf{X} \sim N(\mathbf{a}^t, \mathbf{a}^t \Sigma \mathbf{a})$ for a vector a

NOTE:

field: Linear Hypothesis testing single parameter $H_0: \mathbf{c}^t \beta = d$

field: For a vector $\mathbf{c}_{(p+1)\times 1}$, we have that

- $E(\mathbf{c}^t \hat{\beta}) = \mathbf{c}^t \beta$, $V(\mathbf{c}^t \hat{\beta}) = \sigma^2 \mathbf{c}^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{c}$
- Thus

$$\frac{\mathbf{c}^t \hat{\beta} - \mathbf{c}^t \beta}{\sigma \sqrt{\mathbf{c}^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{c}}} \sim N(0, 1)$$

and under H_0

$$T = \frac{\mathbf{c}^t \hat{\beta} - d}{\sqrt{\hat{\sigma}^2 \mathbf{c}^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{c}}} \sim t_{n - (p+1)}$$

- Example: testing $H_0: \beta_1 = \beta_2, \mathbf{c} = (0, 1, -1)^t, d = 0$
- Reject $H_a: c^t \beta \neq d: |T| > t_{n-(p+1)}(1-\alpha/2), c^t \beta > d, T > t_{n-(p+1)}(\alpha), c^t \beta < d: T < t(1-\alpha)$

NOTE:

field: Confidence interval for a single parameter

field:

$$\hat{\beta}_j \pm t_{n-(p-1)} (1 - \alpha/2) \sqrt{\hat{\sigma}^2((\mathbf{X}^t \mathbf{X})^{-1})_{j+1,j+1}}$$
$$\mathbf{c}^t \beta \pm t_{n-(p-1)} (1 - \alpha/2) \sqrt{\hat{\sigma}^2 \mathbf{c}^t((\mathbf{X}^t \mathbf{X})^{-1}) \mathbf{c}}$$

eg if we were testing $\beta_1 - \beta_2, c = (0, 1, -1)$

NOTE:

field: F statistic in matrix form

field:

• **K** is $p \times k$, **m** is $k \times 1$

• Testing $H_0: \mathbf{K}^t \beta = \mathbf{m}$

• $F = \frac{\left((\mathbf{K}\hat{\beta} - \mathbf{m})^t (\mathbf{K} (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{K}^{-1}) (\mathbf{K}\hat{\beta} - \mathbf{m}) \right)}{k\hat{\sigma}^2} \sim F_{k,n-p}$

•
$$\operatorname{Eg} K = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, m = 0$$

• Tests $\beta_1 = 0$

• Note the \mathbf{K}^t matrix is the coefficients of the system of linear equations for the the null hypothesis, and m is what they are equal to

NOTE:

field: Overall regression F-test

field: Tests if any predictors are related to the response

• Full model: $\mathbf{Y} = \mathbf{X}\beta + \epsilon$

ullet Reduced model a nested model with q estimated parameters

• eg: Reduced model: $\mathbf{Y} = \beta_0 + \epsilon$, q = 1

 $\bullet \ H_0: \beta_1 = \ldots = \beta_p = 0$

• $F = \frac{(RSS_{\omega} - RSS_{\Omega})/(p-q)}{RSS_{\Omega}/(n-p)}$

NOTE:

field: Analysis of Variance Table and calculated F stat

	Type	df	Sum of Squares	Mean SS
	- JP -	41	Sam of Squares	1112611 88
eld:	Regression	p	SS(Reg)	SS(Reg)/p
	Residual	n-p+1	SS(Res)	$\hat{\sigma}^2 = SS(Res)/n - p - 1$
	Total	n-1	SS(Total) = SS(Reg) + SS(Res)	$\frac{1}{n-1}\sum_{i=1}^{n}(y_i-\bar{y})^2$

fie

and $F = \frac{Mean(SSREG)}{Mean(SSRES)}$

NOTE:

field: Distribution of $\hat{\beta}$

field: $\hat{\beta} \sim N(\beta, \sigma^2(\mathbf{X}^t\mathbf{X})^{-1})$

NOTE:

field: RSS (in terms of Ω and ω)

field:

$$RSS_{\Omega} = \sum_{i=1}^{n} e_i^2$$

$$RSS_{\omega} = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

NOTE:

field: R^2

field: $R^2 = \frac{SS(Reg)}{SS(Tot)} = 1 - \frac{SS(Res)}{SS(Tot)}$

NOTE:

field: Adjusted R^2

field: $\frac{MS(Reg)}{MS(Total)} = 1 - \frac{SS(Reg)/(n-p-1)}{SS(Tot)/(n-1)}$

NOTE:

field: Properties of the estimate of σ^2

field:

- $\bullet \hat{\sigma}^2 = \frac{|\mathbf{e}|^2}{n (p+1)}$
- Under normality: $\frac{(n-(p+1))\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-(p+1)}$
- $\hat{\sigma}^2$ is independent from $\hat{\beta}$

NOTE:

field: Prediction Interval

field: Predicting a future response $\mathbf{x}_0^t \hat{\beta} \pm t_{n-p} (\alpha/2) \hat{\sigma^2} \sqrt{1 + x_0^t (X^t X)^{-1} x_0}$ A 95% prediction interval for a response with (list values) is between and

NOTE:

field: Confidence interval

field: Confidence in mean response $\mathbf{x}_0^t \hat{\beta} \pm t_{n-p}(\alpha/2) \hat{\sigma^2} \sqrt{x_0^t (X^t X)^{-1} x_0}$ With 95% confidence, the expected mean response

NOTE:

field: Residual Plot

field:

- Plot residuals against fitted values (so there is only 1 plot vs against explanatory variables)
- Verifies linearity and constant variance

NOTE:

field: Leverege

field:

- An observation has high leverage if the explanatory variable values of the observation are different from general pattern
- $h_i = H_{ii} = (X(X^tX)^{-1}X^t)_{ii}$
- High leverage $h_i > \frac{2(p+1)}{n}$

NOTE:

field: Standardized Residual

field: $r_i = \frac{e_i}{\hat{\sigma}\sqrt{1-h_i}}$ Large if $|r_i| > 2$ - indicates outlier

NOTE:

field: Influential - if fitted model depends highly on the value

field: Measure using cook's distance

$$D_i = \frac{(\hat{Y} - \hat{Y}_{(i)})^t (\hat{Y} - \hat{Y}_{(i)})}{(p+1)\hat{\sigma}^2} = \frac{1}{p+1} r_i^2 \frac{h_i}{(1-h_i)}$$

Where Y_i is the vector of fitted values when the model is fitted to the data without the i the observation Moderate if > 1 Large if > 6

NOTE:

field: Multicollinearity

field:

• X^tX is close to singular

• Some columns are highly correlated

• there is a relationship between predictors

• leads to large standard errors

- Not a violation of assumptions, but leads to issues in interpretations
- Calculate using Condition number if $\[\vdots \]$ 30 than large , or Variance inflation factors $VIF_j = \frac{1}{1-R_j^2}$ where R_j^2 is R^2 from regression of the jth explanatory variable on all the other explanatory variables
- Not a problem for prediction
- Fix using selection of explanatory variables, generalized inverse, ridge regression

field: Ridge Regression

field: $\hat{\beta} = (X^t X + \lambda I)^{-1} X^t Y$, where λ is chosen. Note these are biased estimators

NOTE:

field: Fix non-constant spread/variance

field:

- Transform response (box-cox)
- Use more complicated model (glm)

NOTE:

field: Fix non-linearity

field:

- Transform response
- Transform predictor
- allow for curvature: predictor squared, splines, gam
- use a non linear model

NOTE:

field: Fix Non-normality

field:

- Transform response
- more complicated models : glm

NOTE:

field: Missing data completely at random (MCAR)

field:

• Throwing out cases with missing data does not bias inferences

NOTE:

field: Missing at random (MAR)

field: Probability of missingness depends only on available information, like the explanatory variables and the response variables present in the regression - impute missing data

NOTE:

field: Model Selection methods

field:

- Sequential Methods: Backward/Forward (eliminate untill all values have p-value below critical value) Elimination
- Penalized Regression: Ridge and Lasso

NOTE:

field: AIC

field: Estimate the distance of a candidate model from the true model (small good)

$$n\log(RSS/n) + 2(p+1)$$

field: BIC

field: Estimate the best parsimonious model, using a prior distribution on the parameters (small good)

$$n \log(RSS/n) + \log(n)(p+1)$$

NOTE:

field: Adjusted R^2

field:

$$1 - \frac{n-1}{n-p}(1 - R^2)$$

(large is good)

NOTE:

field: Mallow's Cp

field:

$$RSS/\hat{\sigma^2} + 2p - n$$

(small good)

NOTE:

field: Box-Cox Transformation

field: Transform so model is $g(Y) = X\beta + \epsilon$ where $g(y) = \frac{y^{\lambda} - 1}{\lambda} i f \lambda \neq 0, 0$ otherwise