Demystifying DSGE Models

3. Case Study – The Canonical Smets-Wouters DSGE

Outline

- I. Under the Hood Nuts and Bolts of a DSGE Model
- II. Adding Bells and Whistles The NK DSGE in all its Glory
- III. Case Study The Canonical Smets-Wouters DSGE
- IV. Bringing DSGE Models to the Data Beyond Calibration and Simulation
- V. Extensions to the NK DSGE: The Financial and Housing Sectors
- VI. Smörgåsbord –Unemployment, Climate and ZLB VII. Internationality The SOE and Other Delights

- Smets-Wouters model is "workhorse" DSGE model used as basis for almost all central bank DSGEs
- Smets and Wouters both from Belgian (!) CB;
 Smets' father is its Governor ...
- Original version published two decades ago in 2003, but superseded in 2007 by version estimated using Bayesian techniques
- This model is so important in terms both of historical development of DSGEs and their practical implementation outside purely academic framework – that it merits being studied in detail
- eg, NY Fed model = SW2007 + BGG (financial side)

- Recall: General NK model introduced into basic RBC more realistic specifications:
 - imperfect competition ⇒ Last week
 - frictions in prices and in wages ⇒ Last week
 - habit formation in consumption ⇒ Last week
 - non-Ricardian agents ⇒ Last week
 - adjustment costs in investment ⇒ Last week
 - capacity (non-)utilisation costs ⇒ Last week
 - government sector (monetary and fiscal) ⇒ Last week no!
 - financial sector ⇒ Week 6
 - housing sector ⇒ Week 6
 - unemployment ⇒ Week 7
 - environment ⇒ Week 7
 - foreign trade ⇒ Week 8

- **SW2007** model uses most of the characteristics mentioned last week:
 - consumption with *habit* persistence
 - monopolistic competition
 - sticky prices and wages using Calvo fairy
 - investment adjustment costs + variable capital utilisation
- Major new feature of model: use of seven structural shocks to match behaviour of US economy
- Shocks are to: productivity (a), labour supply (I), investment-specific technology (i), risk (b), (wage) cost-push (w), fiscal policy (g) and monetary policy (r)

Households maximize [NEW] non-separable
utility function with two arguments (goods and
labour effort) over infinite life horizon

$$E_t \sum_{s=0}^{\infty} \beta^s \left[\frac{1}{1 - \sigma_c} \left(C_{t+s}(j) - \lambda (C_{t+s-1}) \right)^{1 - \sigma_c} \right] \exp \left(\frac{\sigma_c - 1}{1 + \sigma_l} L_{t+s}(j)^{1 + \sigma_l} \right)$$

- Habits are in form of time-varying external habits
- [NEW] SW form of utility function:
- King-Plosser-Rebelo (KPR) preferences

General form of KPR Preferences:

$$u(C, L) = \frac{1}{1 - \sigma_c} C^{1 - \sigma_c} v(L)$$

 σ_c is risk aversion parameter = inverse of intertemporal rate of substitution

- where v(L) is increasing and concave if $0 < \sigma_c < 1$ or decreasing and convex if $\sigma_c > 1$
- In *limit case* of $\sigma_c = 1$, resulting preferences specification is *additively separable* and given by $u(C,L) = lnC_t + v(L)$
- For SW, v(L) is given by $\exp\left(\frac{\sigma_c 1}{1 + \sigma_l}L_{t+s}(j)^{1+\sigma_l}\right)$
- Labour L is aggregated by a lazy union sticky
 nominal wages à la Calvo which is percentage change in hours arising from a given percentage change in wages

- Households save through purchases of government nominal bonds (B_{t+1}), from which they earn an interest rate of R_t
- Return on these bonds is subject to a *risk shock* \in_{t}^{b}
- Households own all capital stock and [NEW] rent capital services to firms, deciding how much capital stock to accumulate given capital

adjustment costs

$$K_t(j) = (1 - \delta)K_{t-1}(j) + \left(\epsilon_t^i\right) \left[1 - S\left(\frac{I_t(j)}{I_{t-1}(j)}\right)\right]I_t(j)$$

NB: SW use Dynare timing convention, so no "Predetermined_ Variables K"

$$S(x_t) = \frac{\varphi}{2} (x_t - \gamma)^2$$

Quadratic form as seen last week

 As rental price of capital (R^k) changes, utilisation of capital stock can be adjusted at increasing cost

$$K_t^s(j) = Z_t(j)K_{t-1}(j)$$
 \leftarrow Ks = capital **services**; Z = ut. cost fn

- Firms produce differentiated goods, decide on labour and capital inputs, and set (sticky) prices, again according to Calvo model
- Calvo Rule here [NEW]: those prices/wage rates that are not re-optimised are partially indexed to past inflation rates:

$$P_t(i) = (\pi_{t-1})^{\iota_p} (\pi_*)^{1-\iota_p} P_{t-1}(i)$$

- π_* denotes steady-state gross inflation rate
- A positive value of ι_p introduces **structural inertia** into inflation process
- Similarly for wages (ι_w)

Some Detail: Intermediate Goods Sector

 Intermediate Good Producer i is assumed by SW to use standard Cobb-Douglas technology (with variable input costs) but subject also to a fixed cost

$$Y_t(i) = \underbrace{\epsilon_t^a} K_t^s(i)^{\alpha} \left[\gamma^t L_t(i) \right]^{1-\alpha} - \left[\gamma^t \Phi \right]$$

Odd that "fixed" cost varies with time!!

- where
 - K_t^s(i) is capital services used in production
 - L_t(i) is a composite labour (services) input
 - [NEW] Φ is a fixed cost
 - [NEW] γ^{t} represents a (labour-augmenting) deterministic **growth** rate of output

• (ϵ_t^a) is **total factor productivity** and follows process

$$\ln \epsilon_t^a = (1 - \rho_z) \underbrace{\ln \epsilon^a}_{t-1} + \rho_z \ln \epsilon_{t-1}^a + \eta_t^a, \eta_t^a \sim \mathcal{N}(0, \sigma_a)$$
Steady-state value, usually assumed = 0

Firm's profit is given by

$$P_t(i)Y_t(i) - W_tL_t(i) - R_t^k K_t^s(i)$$

- where
 - W_t is aggregate nominal wage rate
 - R_t^k is rental rate on capital services
- Cost minimisation yields following first-order conditions:

$$(\partial L_t(i)) : \Theta_t(i) \gamma^{(1-\alpha)t} (1-\alpha) \epsilon_t^a K_t^s(i)^\alpha L_t(i)^{-\alpha} = W_t$$

$$(\partial K_t^s(i)) : \Theta_t(i) \gamma^{(1-\alpha)t} \alpha \epsilon_t^a K_t^s(i)^{\alpha-1} L_t(i)^{1-\alpha} = R_t^k$$

- where Θ_t(i) is Lagrange multiplier (shadow value) associated with production function (and equals marginal cost MC_t)
- Combining these FOCs and noting that capitallabour ratio is equal across firms implies (as usual)

$$K_t^s = \frac{\alpha}{1 - \alpha} \frac{W_t}{R_t^k} L_t$$

Marginal cost MC_t is same for all firms and equals

$$MC_t = \alpha^{-\alpha} (1 - \alpha)^{-(1-\alpha)} W_t^{1-\alpha} R_t^{k\alpha} \gamma^{-(1-\alpha)t} (\epsilon_t^a)^{-1}$$

- Prices of intermediate goods are determined by Calvo fairy/devil/lottery [P ≠ MC recall !!]
- As in previous Calvo models, in each period, each firm i faces a constant **probability** $1-\xi_p$ of being able to **re-optimise** its price $P_t(i)$
- Probability that firm receives Calvo-fairy signal to re-optimise its price assumed *independent* of time that it last reset its price ["Markov Process"]

 [NEW] Calvo Rule in SW: if Calvo fairy does not allow a firm to optimise its price in a given period, it then adjusts its price by a weighted combination of lagged and steady-state inflation rates as:

$$P_t(i) = (\pi_{t-1})^{\ell_p} (\pi_*)^{1-\ell_p} P_{t-1}(i)$$

- where
 - $-0 \le l_p \le 1$ is the (price) *indexation* parameter
 - $-\pi_{t-1}$ denotes gross inflation in period t-1
 - $-\pi_*$ denotes steady-state gross inflation rate
- A positive value of ι_p introduces **structural inertia** into inflation process

- Under Calvo pricing with this type of partial indexation,
- optimal price $\widetilde{P}_t(i)$ set by firm that is allowed by Calvo fairy (with a probability $1-\xi_p$) to re-optimise
- results from solving following optimisation problem:

$$\max_{\widetilde{P}_{t}(i)} E_{t} \sum_{s=0}^{\infty} \xi_{p}^{s} \frac{\beta^{s} \Xi_{t+s} P_{t}}{\Xi_{t} P_{t+s}} \left[\widetilde{P}_{t}(i) (\Pi_{l=1}^{s} \pi_{t+l-1}^{\iota_{p}} \pi_{*}^{1-\iota_{p}}) - M C_{t+s} \right] Y_{t+s}(i)$$

Nominal discount factor

- This looks formidable!
- But if we compare it to what we used in stickyprice model studied last week, we find clear similarities:

$$\max_{P_{j,t}^{*}} E_{t} \sum_{i=0}^{\infty} (\beta \theta)^{i} \left(P_{j,t}^{*} Y_{j,t+i} - T C_{j,t+i} \right)$$

$$\max_{\widetilde{P}_{t}(i)} E_{t} \sum_{s=0}^{\infty} \xi_{p}^{s} \frac{\beta^{s} \Xi_{t+s} P_{t}}{\Xi_{t} P_{t+s}} \left[\widetilde{P}_{t}(i) \left(\prod_{l=1}^{s} \pi_{t+l-1}^{t_{t}} \pi_{*}^{1-\iota_{p}} \right) - M C_{t+s} \right] Y_{t+s}(i)$$

• Since TC = MC*Y, only really **new element** is **indexation factor** multiplying $P_t^{\sim} : \prod_{l=1}^s \pi_{t+l-1}^{\iota_t} \pi_*^{1-\iota_p}$

- Product operator !!
- What is this *indexation factor* $\prod_{l=1}^{s} \pi_{t+l-1}^{\iota_t} \pi_*^{1-\iota_p}$
- Since π is a *gross* inflation rate, it has each period a value close to 1
- Thus, product $\prod_{l=1}^{s} \pi_{t+l-1}^{\iota_t}$ (which multiplies together inflation rates for all periods since previous price revision) also has a value near 1
- This is then scaled by factor $\pi_*^{1-\iota_p}$ which reflects weighted combination indexation
- Finally, as noted previously, curious expression $\beta^s \equiv_{t+s} P_t$ is just the (nominal) discount factor Ξ_t is Lagrange Multiplier for consumption, so this is just β multiplied by (1) ratio of Lagrange multipliers [\approx 1] x (2) ratio of prices at t and (t+s) [\approx 1]

It is also clear from formulation of optimisation problem

$$\max_{\widetilde{P}_{t}(i)} E_{t} \sum_{s=0}^{\infty} \xi_{p}^{s} \frac{\beta^{s} \Xi_{t+s} P_{t}}{\Xi_{t} P_{t+s}} \left[\widetilde{P}_{t}(i) \left(\prod_{l=1}^{s} \pi_{t+l-1}^{\iota_{t}} \pi_{*}^{1-\iota_{p}} \right) - MC_{t+s} \right] Y_{t+s}(i)$$

- that price set by firm i, at time t, is a function of expected future marginal costs
- Price will be a mark-up over these discountweighted marginal costs

Given FOC for this optimisation problem,
 aggregate price index which results is

$$P_{t} = (1 - \xi_{p}) \widetilde{P}_{t}(i) G'^{-1} \left[\frac{\widetilde{P}_{t}(i)\tau_{t}}{P_{t}} \right] + \xi_{p} \pi_{t-1}^{l_{p}} \pi_{*}^{1-l_{p}} P_{t-1} G'^{-1} \left[\frac{\pi_{t-1}^{l_{p}} \pi_{*}^{1-l_{p}} P_{t-1} \tau_{t}}{P_{t}} \right]$$

 Compare this to what we used in first sticky-price model studied last week:

$$P_{t} = \left[\theta P_{t-1}^{1-\psi} + (1-\theta)P_{t}^{*1-\psi}\right]^{\frac{1}{1-\psi}}$$

 Function G (of which G' is used in definition above) is defined in Appendix

- Prices therefore determined (partially) by past inflation rate
- Marginal costs are a function of wages and rental rate of capital

$$MC_t = \alpha^{-\alpha} (1 - \alpha)^{-(1-\alpha)} W_t^{1-\alpha} R_t^{k\alpha} \gamma^{-(1-\alpha)t} (\epsilon_t^{\alpha})^{-1}$$

Same mechanism used by SW for wages

- Here endth such detail!
- Finally, a technical point:
- In both goods and labour markets SW replace standard Dixit-Stiglitz aggregator
- with a Kimball (1995) aggregator
- allows for time-varying demand elasticity, which depends on relative price
- Introduction of Kimball aggregator allows SW to estimate a more reasonable degree of price and wage stickiness

Figure 1: Demand Curves -- Implications of Kimball vs. Dixit-Stiglitz Aggregators.

- For those who wish to see technical details of original non-linear SW2007 model, I have attached an Appendix which does so
- Here, we shall look instead at SW's published loglinearised equations

SW2007 Log-Linearised Model

- SW detrended their variables with deterministic trend γ and replaced nominal variables by their real per-capita counterparts this is very familiar! [Some authors have later used a time-varying trend to do this for SW2007]
- Non-linear system was then linearised around stationary steady state of detrended variables, in usual log-linearisation process which we have seen previously
- This was done primarily because system is highly non-linear and multi-dimensional (34 parameters plus 7 s.d. to be estimated simultaneously)

- Log-linearised model (equations taken directly from SW2007 in AER): start with Supply Side
- Aggregate production function is (eq.5)

$$y_t = \phi_p \left(\alpha k_t^s\right) + (1 - \alpha)(\ell_t) + \epsilon_t^a$$

- where
 - y_t is (log-linearised) GDP

 ϕ_p is (1 +) share of fixed costs in production, reflecting presence of *fixed costs* in production function

- $-\ell_t$ is labour input
- $-\epsilon_t^a$ is total factor productivity [shock *process*]
- [NEW] k^s is capital services, determined by capital stock installed in previous period $k_t^s = k_{t-1} + \widehat{(z_t)}$
- and a *capacity utilisation* variable *z* (*eq.6*)

• Costs of adjusting capital stock in use \Rightarrow rate of capacity utilisation linked to rental rate of capital (eq.7) $z_t = z_1 r_t^k$

Rental rate of capital is a function of capital-labour ratio and real wage (eq. 11)

Remember, these are logs: log(ratio) = difference

$$r_t^k = -\left(k_t - \ell_t\right) + w_t$$

 Total factor productivity evolves over time according to an AR(1) process

$$\epsilon_t^{\mathsf{a}} = \rho_{\mathsf{a}} \epsilon_{t-1}^{\mathsf{a}} + \eta_t^{\mathsf{a}}$$

This is a process; ρ_a is likely close to 1; actual "shock" comes through η^a

- Now Demand Side
- Expenditure formulation of aggregate resource constraint is familiar (eq. 1)

$$y_t = c_y c_t + i_y i_t + c_y z_t + \epsilon_t^g$$

- where
 - $-y_t$ is GDP
 - c_t is consumption
 - i_t is investment
 - $-z_t$ is exogenous spending [= government + net exports]
 - $-\epsilon_t^g$ is spending shock *process*
 - c_y, i_y and z_y are constant *parameters*, representing (as usual) *steady-state shares* of each variable in y

Consumption is determined by usual Euler Equation

$$c_t = c_1 c_{t-1} + (1 - c_1) E_t c_{t+1} + c_2 (\ell_t - E_t \ell_{t+1}) - c_3 (r_t - E_t \pi_{t+1} + c_t)$$

- (*eq.2*) where
 - c₁, c₂, c₃ are constant *coefficients*
 - r_t is interest rate on a one-period risk-less bond
 - $-\epsilon_{
 m t}^{\,
 m b}$ evolves according to **AR(1)** process $\,\epsilon_t^b=
 ho_b\epsilon_{t-1}^b+\eta_t^b$
- Note that this Euler Equation has a *backward-looking* element, deriving from "habit formation" $[C_t \lambda C_{t-1}]$ replaces C_t in utility function, recall

- Term $c_2 (\ell_t E_t \ell_{t+1})$ involving **labour** input allows for some **substitution** between consumption and labour input
- Coefficients c₁, c₂, c₃ are themselves functions of deeper structural parameters
- SW describe ϵ^b term as a "risk premium" shock determining willingness of households to hold oneperiod bond $c_3 \left(r_t E_t \pi_{t+1} + \epsilon_t^b \right)$
- It can also be seen as a type of *preference shock* that influences short-term consumption-saving decision (this is more *usual interpretation*)

• *Investment* is determined by (eq.3)

$$i_t = i_1 (i_{t-1}) + (1 - i_1) E_t i_{t+1} + i_2 (q_t) + (\epsilon_t^i)$$

where shadow price of capital stock is (eq.4)

$$q_t = q_1 E_t q_{t+1} + \left(1 - q_1
ight) r_{t+1}^k - \left(r_t - E_t \pi_{t+1} + e_t
ight)$$
 Same as in eq. 2

nominal value of installed capital is given by (eq.8)

$$k_t = k_1 k_{t-1} + (1-k_1) i_t + k_2 \epsilon_t^i$$
 Same as in eq. 3

Investment depends on *lagged* investment because ∃ *adjustment cost* function that limits amount of new investment that can come "on line" immediately

 Main driving force behind investment is shadow price of capital stock (Tobin's Q) q_t (eq.4 above):

$$q_t = q_1 E_t q_{t+1} + (1 - q_1) (r_{t+1}^k) - (r_t - E_t \pi_{t+1} + \epsilon_t^b)$$

- q_t depends positively on expected future marginal productivities of capital (r^k) and negatively on future real interest rate (and "risk premia")
- Note: investment **shock** ϵ_t^i appears in **both** i_t and k_t equations \rightarrow positive shock to investment also increases capital stock
- SW find that, empirically, investment adjustment cost shocks are the most important in entire model; by contrast (and curiously), capacity utilisation costs are estimated to be not very important

• Recall: Y = C + I + [G + (X – M)] or here:

$$y_t = c_y c_t + i_y i_t + z_y z_t + \epsilon_t^g$$

- Exogenous spending z_t has two components:
 - Government spending G
 - an element related to productivity because "net exports (X M) may be affected by domestic productivity developments"
- \rightarrow exogenous spending shock ϵ_t^g changes over time according to [NEW] a cross-equation process:

$$\epsilon_t^{\mathrm{g}} = \rho \epsilon_{t-1}^{\mathrm{g}} + [\eta_t^{\mathrm{g}} + \rho_{\mathrm{ga}} \eta_t^{\mathrm{a}}]$$
Productivity!

 Mark-up of price over marginal cost is determined in log-linearised model by difference between marginal product of labour and real wage (eq.9)

$$\mu_t^p = mpl_t - w_t = \alpha(k_t^s - l_t) + \epsilon_t^a - w_t$$

- where marginal product of labour is itself a (positive) function of capital-labour ratio and total factor productivity (TFP)
- price inflation determined by "New Keynesian Phillips Curve" (eq.10)

$$\pi_t = \pi_1 \pi_{t-1} + \pi_2 E_t \pi_{t+1} - \pi_3 [\mu_t^p] + (\epsilon_t^p)$$

- Lagged inflation appears in NKPC as a result of Calvo pricing structure
- If degree of indexation to past inflation is zero $(\iota_p=0)$, eq. 10 reverts to purely forward-looking Phillips curve (coefficient $\pi_1=0$) seen last week $\pi_t=\pi_1\pi_{t-1}+\pi_2E_t\pi_{t+1}-\pi_3\mu_t^p+\epsilon_t^p$
- Speed of adjustment to desired mark-up (coefficient π_3) depends on
 - degree of price stickiness (ξ_p)
 - curvature of Kimball goods market aggregator ($\varepsilon_{\rm p}$)
 - steady-state price *mark-up* (ϕ_p 1)

- In $\pi_t = \pi_1 \pi_{t-1} + \pi_2 E_t \pi_{t+1} \pi_3 \mu_t^p + \epsilon_t^p$
- ϵ_t^p is *price mark-up* shock, which evolves as [NEW] ARMA(1,1)\(\).

$$\epsilon_t^p = \rho^p \epsilon_{t-1}^p + \eta_t^p - \mu_p \eta_{t-1}^p$$

- MA component has no memory, recall
 - → One-period-memory MA term captures high-frequency fluctuations in inflation
- Price mark-up shock ϵ_t^p is included because SW find it is empirically very important in order to capture price dynamics

- SW model treats wages similarly to prices:
- Sticky wages gradually adjust → real wages move only gradually over time
- to equate real wages with marginal rate of substitution between working and consuming
- Short-term gap between these is "wage mark-up" defined as (eq.12)

$$\mu_t^w = w_t - mrs_t$$

$$= w_t - \left(\sigma\ell_t - \frac{1}{1 - \lambda/\gamma} \left(c_t - \frac{\lambda}{\gamma}c_{t-1}\right)\right)$$

Wages are then given by (eq.13)

$$w_{t} = w_{1}w_{t-1} + (1 - w_{1})(E_{t}w_{t+1} + E_{t}\pi_{t+1})$$
$$- w_{2}\pi_{t} + w_{3}\pi_{t-1} - w_{4}\mu_{t}^{w} + \epsilon_{t}^{w}$$

- Parameter $w_4 \rightarrow speed \ of \ adjustment$ to desired wage mark-up depends on degree of wage stickiness (ξ_w) and demand elasticity for labour
- which itself is a function of **steady-state labour market mark-up** (ϕ_w 1) and **curvature** of **Kimball** labour market aggregator (ε_w do not **confuse** this with shock process ε_t^w !)
- Dynare model therefore contains a complicated equation defining w₄

• The (again, ARMA) wage mark-up shock has form

$$\epsilon_t^w = \rho^w \epsilon_{t-1}^w + \left[\eta_t^w - \mu_w \eta_{t-1}^w \right]$$

- (As for prices) wage mark-up shock affects both current and lagged inflation and attempts also to capture temporary wage shocks with MA
- SW again find that wage mark-up shock is *empirically very important* to capture wage dynamics
- Overall SW confirm, empirically, NK thesis by finding that both price and wage stickiness are very important, with prices affecting short-run inflation and wages longer-run inflation

- Final element of model is rule for monetary policy
- Central bank sets short-term interest rates
 according to modified Taylor Rule, which in loglinearised form becomes (eq.14)

$$r_{t} = \rho r_{t-1} + (1 - \rho) \left(r_{\pi} \pi_{t} + r_{y} \left(y_{t} - y_{t}^{p} \right) \right) + r_{\Delta y} \left[\left(y_{t} - y_{t}^{p} \right) - \left(y_{t-1} - y_{t-1}^{p} \right) \right] + \epsilon_{t}^{r}$$

- where y^p is potential output ("flex-price" output)
- a monetary policy shock is included (of simple AR(1) form)

$$\epsilon_t^r = \rho^r \epsilon_{t-1}^r + \eta_t^r$$

- Interest rate depends on last period's interest rate while gradually adjusting towards a target interest rate $(r_{\pi}\pi_{t} + r_{v}(y_{t} y_{t}^{p}))$ that depends on
 - inflation π_t
 - output gap $(y_t y_t^p)$ between actual and potential output (in SW, $y^p \equiv flex-price$ level of output)
- Interest rate also depends on growth rate of this output gap

$$[(y_t - y_t^p) - (y_{t-1} - y_{t-1}^p)]$$

• (recall these are logs \rightarrow *dlog* = %chg = growth rate)

- **Potential output** y_t^p as used in Taylor Rule \equiv output obtained **if** prices and wages were **fully flexible**
- → [NEW] model effectively needs to be expanded to add a shadow flexible-price economy
- → in **Dynare** implementation ∃ *repetitive* section defining variables in *flex-price* economy
- A different definition of Taylor Rule or of output gap would *avoid* need for this section
- In fact, original SW2003 Euro area model did not include "shadow" flexible-price economy
- SW2007 added it to help explain price dynamics

Dynare Model

- Implementation in **Dynare** was originally written by SW themselves, so we make use of it here
- Unfortunately, their code used a notation which differs considerably from that set out in their SW2007 AER paper, so I have re-written their code for our use in Dynare
- There are 14 equations in **Dynare** log-linearised model for sticky wage-price economy
- Look at just 4 of them

Consumption

Eq.2 expressed consumption as

$$c_{t} = c_{1}c_{t-1} + (1 - c_{1}) E_{t}c_{t+1} + c_{2} (\ell_{t} - E_{t}\ell_{t+1}) - c_{3} \left(r_{t} - E_{t}\pi_{t+1} + \epsilon_{t}^{b}\right)$$

In Dynare, we have

```
#c1 = (lambda/gamma)/(1+lambda/gamma);

#c2 = ((sigma_c-1)*WL_C/(sigma_c*(1+lambda/gamma)));

#c3 = (1-lambda/gamma)/(sigma_c*(1+lambda/gamma));

c = c1 * c(-1) + (1 - c1) * c(+1) + c2 * (l - l(+1)) - c3 * (r - pinf(+1)) + eps_b;
```

$$c_1 = \frac{\lambda/\gamma}{1 + \lambda/\gamma} \qquad c_2 = \frac{(\sigma_c - 1)(W_*^h L_*/C_*)}{\sigma_c (1 + \lambda/\gamma)} \qquad c_3 = \frac{1 - \lambda/\gamma}{(1 + \lambda/\gamma)\sigma_c}$$

$$c_1 = \frac{\lambda / \gamma}{1 + \lambda / \gamma}$$

$$c_2 = \underbrace{\sigma_c - 1) (W_*^h L_* / C_*)}_{\sigma_c (1 + \lambda / \gamma)}$$

$$c_3 = \frac{1 - \lambda (\gamma)}{(1 + \lambda / \gamma)\sigma_c}$$

- In c₁, c₂ and c₃, deep parameters are
 - lambda ≡ degree of (external) habit persistence
 - sigma_c ≡ risk aversion parameter
 - gamma = gross growth rate [assuming cointegration of y,c,i]
- "WL_C" is a complicated combination of deep parameters and steady-state terms

Next, New Keynesian Phillips Curve (eq. 10)

$$\pi_t = \pi_1 \pi_{t-1} + \pi_2 E_t \pi_{t+1} - \pi_3 \mu_t^p + \epsilon_t^p$$

becomes

$$\pi_{1} = \frac{\iota_{p}}{1 + \beta \gamma^{1 - \sigma_{c}} \iota_{p}} \qquad \qquad \pi_{2} = \frac{\beta \gamma^{1 - \sigma_{c}}}{1 + \beta \gamma^{1 - \sigma_{c}} \iota_{p}} \qquad \qquad \pi_{3} = \frac{1}{1 + \beta \gamma^{1 - \sigma_{c}} \iota_{p}} \frac{(1 - \beta \gamma^{1 - \sigma_{c}} \xi_{p})(1 - \xi_{p})}{\xi_{p}((\phi_{p} - 1)\varepsilon_{p} + 1)}$$

Repeating:

$$\pi_{1} = \frac{l_{p}}{1 + \beta \gamma^{1 - \sigma_{c}} l_{p}} \qquad \pi_{2} = \frac{\beta \gamma^{1 - \sigma_{c}}}{1 + \beta \gamma^{1 - \sigma_{c}} l_{p}} \qquad \pi_{3} = \frac{1}{1 + \beta \gamma^{1 - \sigma_{c}} l_{p}} \frac{(1 - \beta \gamma^{1 - \sigma_{c}} \xi_{p})(1 - \xi_{p})}{\xi_{p}((\phi_{p} - 1)\varepsilon_{p} + 1)}$$

- Many new parameters here:
 - **beta_bar** $\equiv \beta \gamma^{-\sigma_c}$ [ie, beta*gamma^(-sigma_c)] is growth-adjusted discount factor, beta being **discount factor**
 - iota_p = coefficient of indexation to past prices
 - xi_p = Calvo parameter for prices
 - curv_p = curvature of Kimball aggregator for prices (instead of ε_p to avoid confusion with shock ε^p)
- Hence **beta_bar*gamma** = $\beta \gamma^{1-\sigma_c}$

Wage Phillips Curve (eq.13)

$$w_{t} = w_{1}w_{t-1} + (1 - w_{1})(E_{t}w_{t+1} + E_{t}\pi_{t+1})$$
$$- w_{2}\pi_{t} + w_{3}\pi_{t-1} - w_{4}\mu_{t}^{w} + \epsilon_{t}^{w}$$

• translates similarly into **Dynare** code below (once eq.12 – next slide - is substituted in for μ_t^w)

$$w_1 = \frac{1}{1 + \beta \gamma^{1 - \sigma_c}} \qquad w_2 = \frac{1 + \beta \gamma^{1 - \sigma_c} l_w}{1 + \beta \gamma^{1 - \sigma_c}} \qquad w_3 = \frac{l_w}{1 + \beta \gamma^{1 - \sigma_c}}$$

$$w_4 = \frac{1}{1 + \beta \gamma^{1 - \sigma_c}} \frac{(1 - \beta \gamma^{1 - \sigma_c} \xi_w)(1 - \xi_w)}{\xi_w (\phi_w - 1)\varepsilon_w + 1)}$$

- New parameters here are
 - iota_w = coefficient of indexation to past wages
 - xi_w = Calvo parameter for wages
 - curv_w = curvature of Kimball aggregator for wages
 - phi_w = gross steady-state wage mark-up
- Wage mark-up (eq. 12) is

$$\mu_t^w = w_t - mrs_t = w_t - \left(\sigma_l l_t + \frac{1}{1 - \lambda/\gamma} (c_t - \lambda/\gamma c_{t-1})\right)$$

Finally Taylor Rule (eq.14)

$$r_{t} = \rho r_{t-1} + (1 - \rho) \left(r_{\pi} \pi_{t} + r_{y} \left(y_{t} - y_{t}^{\rho} \right) \right) + r_{\Delta y} \left[\left(y_{t} - y_{t}^{\rho} \right) - \left(y_{t-1} - y_{t-1}^{\rho} \right) \right] + \epsilon_{t}^{r}$$

- In Dynare implementation of this Taylor Rule, potential output variable y_t^p is defined as yf, flexprice (or "natural") value of output
- introduce entire flex-price economy into model
- → 11 additional equations, in each case setting parameters which define "stickiness" of prices (and wages) to their "zero stickiness" values

For example, Wage equation in flex-price economy becomes

```
wf = sigma_l*labf +(1/(1-lambda/gamma))*cf -
(lambda/gamma)/(1-lambda/gamma)*cf(-1);
```

- which is just *last bit* of Wage equation in *sticky-price*, *sticky-wage* economy because
 - $-iota_w=0$
 - $-xi_w = 1$

in *flex-price* economy

Steady State

- One last step necessary before we can test out model: inserting information on model's steady state
- These are derived as usual, for example

$$R_* = \overline{\beta}^{-1} \pi_*$$

$$k_* = \frac{\alpha}{1 - \alpha} \frac{w_*}{r_*^k} L_*$$

$$i_* = (1 - (1 - \delta)/\gamma) \bar{k}_*$$

$$\frac{c_*}{y_*} + \frac{i_*}{y_*} + g_* = 1$$

- These steady-state conditions are inserted into Dynare model as restrictions on parameters
- For example, steady-state rental rate r_*^k is defined in **Dynare** code as $r_*^k = \overline{\beta}^{-1} (1 \delta)$ = $\beta^{-1} \gamma^{\sigma_c} - (1 - \delta)$
- #Rk = (beta^(-1)) * (gamma^sigma_c) (1-delta);
- where # sign informs Dynare that this is not a parameter to be estimated directly, but one calculated from various other "deep" parameters
- # → model_local_variable
- **Rk** is then used in value of capital *equation 4*, and also in definitions of other parameters (eg, steady state real wage and labour-to-capital ratio)

- Once this is done, it is possible to simulate
 - Slides below show impact of each shock on model's endogenous variables
 - Using original SW2007 parameters
- As SW note, apart from *TFP shock* (ϵ^a), risk premium (ϵ^b) and investment-specific (ϵ^i) shocks are most powerful [observe scale of impact]
- Recall that SW describe ϵ^b term as a shock determining willingness of households to hold oneperiod bond
- But also seen as a type of preference shock that influences short-term consumption-saving decision

Responses to all shocks – Y, C, Inv

40

40

40

Responses to TFP shock – Y, C, Inv

Responses to Fiscal shock – Y, C, Inv

Responses to MonPol shock – Y, C, Inv

Responses to Risk Premium shock – Y, C, Inv

Responses to Investment shock – Y, C, Inv

Responses to all shocks – Capital and Labour

J:\MyCourseDSGEs2024\Tests\SW_orig_plot6.m

Responses to all shocks – Interest and Wage Rates

J:\MyCourseDSGEs2024\Tests\SW_orig_plot5.m

 Labus and Labus (2019) construct a decomposition of SW MonPol shock effects on inflation:

 Note how lower wage costs and shrinking demand due to decreasing investments additionally push down inflation rate beyond that caused by R

Final point

- Presently \(\frac{1}{2}\) growing interest in DSGE models that have more parameters, endogenous variables, exogenous shocks, and observables than SW2007 model
- and substantial additional complexities from
 - non-Gaussian distributions ("fat tails")
 - incorporation of time-varying volatility
- These higher-dimensional DSGE models are more realistic and potentially provide better statistical fit to observed data

- Unfortunately, Dynare is not currently capable of handling these more complex models
- Fortunately, staff at Philadelphia Fed have designed a user-friendly MATLAB software programme to reliably estimate high-dimensional DSGE models
- This is available freely to download, and is documented in:
- Chib, Shin and Tan (2020), "High-Dimensional DSGE Models: Pointers on Prior, Estimation, Comparison, and Prediction", Federal Reserve Bank of Philadelphia Working Paper 20-35 (September 2020)

- For those interested in model which Chib *et al* use to illustrate working of their software, it is:
- Leeper, Traum and Walker (2017), "Clearing Up the Fiscal Multiplier Morass", American Economic Review, Vol. 107, No. 8, (2017), pp. 2409-2454
- To make this model more realistic, Chib et al introduce "fat-tailed" shocks and time-varying volatility
- Resulting model is high-dimensional, consisting of
 - 51 parameters
 - 21 endogenous variables
 - 8 exogenous shocks
 - 8 observables
 - 1494 (!) non-Gaussian and nonlinear latent variables
- A simplified version of LTW model is available in *Macroeconomic Model Data Base* (version 3.1)

Appendix

- Slides below provide a more detailed exposition of the SW2007 model
- Do not be confused however by one notational difference with the main slides:
- Here, the **shock processes** are denoted by ε_t^x
- And the *Kimball curvature parameters* are denoted by $\epsilon_{w,p}$
- i.e., just the *reverse* of the notation in the main slides

Household Sector

• **As usual**, Household j chooses consumption $C_t(j)$, hours worked $L_t(j)$, bonds $B_t(j)$, investment $I_t(j)$ and capital utilisation $Z_t(j)$, so as to maximise an objective function, which SW define as

$$E_t \sum_{s=0}^{\infty} \beta^s \left[\frac{1}{1 - \sigma_c} \left(C_{t+s}(j) - \lambda C_{t+s-1} \right)^{1 - \sigma_c} \right] \exp \left(\frac{\sigma_c - 1}{1 + \sigma_l} L_{t+s}(j)^{1 + \sigma_l} \right)$$

- Note that there is **external habit formation**, captured by the parameter λ
- σ_c is *coefficient of relative risk aversion* of households or inverse of the intertemporal elasticity of substitution
- σ_I represents inverse of the *elasticity of work effort* with respect to real wage

NB: No "leisure" shocks here!

- This particular form of non-separable utility function is chosen because standard, timeseparable preferences cannot be made consistent with observation that a positive monetary policy shock should typically lead to a persistent decline in real interest rate and a hump-shaped rise in consumption
- It is a particular case of what are known as "King-Plosser-Rebelo Preferences" which are used in many DSGE models because they are compatible with balanced growth along the optimal steady state path

- Footnote:
- Characteristic of most industrialised countries: output per capita, consumption per capita, investment per capita and other variables exhibit growth over long periods of time
- These are known as the "Kaldor facts"
- Such long-run growth occurs at rates that are roughly constant over time within economies but differ across economies
- This pattern suggests steady state growth, which means that levels of certain key variables grow at a constant rate
- In that case, we say there is a balanced growth path

General form of KPR Preferences:

$$u(C, L) = \frac{1}{1 - \sigma_c} C^{1 - \sigma_c} v(L)$$

- where v(L) is increasing and concave if $0 < \sigma_c < 1$ or decreasing and convex if $\sigma_c > 1$
- In *limit* case of σ_c = 1, resulting preferences specification is *additively separable* and given by $u(C,L) = lnC_t + v(L)$
- For SW, v(L) is given by $\exp\left(\frac{\sigma_c-1}{1+\sigma_l}L_{t+s}(j)^{1+\sigma_l}\right)$
- SW also include habit persistence in first part

 Reason why KPR Preferences work with a balanced growth path is that in a competitive equilibrium, marginal rate of substitution between consumption and leisure must equal (inverse of) marginal product of labour

• With KPR
$$u(c, I) = \frac{c^{1-\sigma}}{1-\sigma}v(I), \quad \sigma \neq 1, \sigma > 0$$
• hence
$$= \log c + v(I) \quad \text{for } \sigma = 1$$

hence

•
$$\frac{\partial \mathbf{u}/\partial \mathbf{l}}{\partial \mathbf{u}/\partial \mathbf{c}} = \frac{\frac{c^{1-\sigma}}{1-\sigma}v'(I)}{c^{-\sigma}v(I)} = \frac{cv'(I)}{(1-\sigma)v(I)} = MPL$$

 Along balanced growth path, MPL and c grow at same rate, so I (labour) can be constant

- Each period, household makes sequence of decisions
- First, consumption decision, capital accumulation decision, and decision on how many units of capital services to supply
- Second, purchases securities whose payoffs are contingent upon whether household can re-optimise its wage decision
- *Third*, sets wage rate at which it is prepared to work after finding out whether it can re-optimise or not
- Finally, receives lump-sum transfer from monetary authority

- Uncertainty faced by household over whether it can re-optimise its wage is *idiosyncratic*
- households work different amounts and earn different wage rates
- households are heterogeneous with respect to labour

Household's budget constraint is

$$C_{t+s}(j) + I_{t+s}(j) + \frac{B_{t+s}(j)}{\varepsilon_t^b R_{t+s} P_{t+s}} - T_{t+s}$$

$$\leq \frac{B_{t+s-1}(j)}{P_{t+s}} + \frac{W_{t+s}^h(j) L_{t+s}(j)}{P_{t+s}} + \frac{R_{t+s}^k Z_{t+s}(j) K_{t+s-1}(j)}{P_{t+s}} - a(Z_{t+s}(j)) K_{t+s-1}(j) + \frac{Div_{t+s}}{P_{t+s}}$$

- One-period bond $B_{t+s}(j)$ is expressed on a discount basis, where R_{t+s} is interest rate
- T_{t+s} are lump sum taxes or subsidies
- Div_{t+s} are (per-capita) dividends distributed by intermediate goods producers and labour unions
- P_{t+s} is overall price level
- Penultimate term represents cost associated with variations in degree of *capital utilisation*

- Households augment their financial assets through increasing their government nominal bond holdings (B_{t+1}) , from which they earn an interest rate of R_t
- Return on these bonds is subject to a risk **shock** ϵ_t^b which may be considered as an exogenous **premium** in return to bonds, reflecting
 - inefficiencies in financial sector (leading to some premium on deposit rate versus risk-free rate set by central bank), or
 - a risk premium that households require to hold one period bond
- and $ln\varepsilon_t^b = \rho_b \ln \varepsilon_{t-1}^b + \eta_t^b, \eta_t^b \sim N(0, \sigma_b)$

 Investment is assumed by SW to augment household's physical capital stock according to

$$K_t(j) = (1 - \delta)_{t-1}(j) + \varepsilon_t^i \left[1 - S\left(\frac{I_t(j)}{I_{t-1}(j)}\right) \right] I_t(j)$$

- δ is depreciation rate
- S(.) is *adjustment cost* function $S(x_t) = \frac{\varphi}{2} (x_t \gamma)^2$
- ϵ_t^i is a stochastic *shock* to price of investment (relative to consumption goods) and follows an exogenous process

$$ln\varepsilon_t^i = \rho_i \ln \varepsilon_{t-1}^i + \eta_t^i, \eta_t^i \sim N(0, \sigma_i)$$

- Households choose utilisation rate of capital
- Amount of effective capital that households can rent to firms is

$$K_t^s(j) = Z_t(j)K_{t-1}(j)$$

Income from renting capital services is

$$R_t^k Z_t(j) K_{t-1}(j)$$

Cost of changing capital utilisation is given by

$$Z_t = \kappa + R_t^k (1 - \psi)/\psi$$

- where ψ is normalized to be between zero and one
- κ is a constant

- When ψ =1, it is extremely costly to change utilisation of capital and as a result capital utilisation remains constant
- In contrast, when ψ =0, marginal cost of changing capital utilisation is constant \rightarrow in equilibrium rental rate on capital is constant

FOCs for Household are

$$(\partial C_t) \qquad \Xi_t = \exp\left(\frac{\sigma_c - 1}{1 + \sigma_l} L_t(j)^{1 + \sigma_l}\right) (C_t - \lambda C_{t-1})^{-\sigma_c}$$

$$(\partial L_t) \qquad \left[\frac{1}{1 - \sigma_c} (C_t - hC_{t-1})^{1 - \sigma_c}\right] \exp\left(\frac{\sigma_c - 1}{1 + \sigma_l} L_t^{1 + \sigma_l}\right) (\sigma_c - 1) L_t^{\sigma_l} = -\Xi_t \frac{W_t^h}{P_t}$$

$$(\partial B_t) \qquad \Xi_t = \beta \varepsilon_t^b R_t E_t \left[\frac{\Xi_{t+1}}{\pi_{t+1}}\right]$$

$$\text{Multiplier}$$

$$(\partial I_t) \qquad \Xi_t \qquad = \Xi_t^k \varepsilon_t^i \left(1 - S(\frac{I_t}{I_{t-1}}) - S'(\frac{I_t}{I_{t-1}}) \frac{I_t}{I_{t-1}}\right)$$

$$+\beta E_t \left[\Xi_{t+1}^k \varepsilon_{t+1}^i S'(\frac{I_{t+1}}{I_t}) (\frac{I_{t+1}}{I_t})^2\right]$$

$$(\partial \bar{K}_t) \qquad \Xi_t^k \qquad = \beta E_t \left[\Xi_{t+1} \left(\frac{R_{t+1}^k}{P_{t+1}} Z_{t+1} - a(Z_{t+1})\right) + \Xi_{t+1}^k (1 - \delta)\right]$$

$$(\partial u_t) \qquad \frac{R_t^k}{P_t} \qquad = a'(Z_t) \qquad \text{Tobin's } Q_t = \Xi_t^k/\Xi_t$$

$$\Xi_{t} = \Xi_{t}^{k} \varepsilon_{t}^{i} \left(1 - S\left(\frac{I_{t}}{I_{t-1}}\right) - S'\left(\frac{I_{t}}{I_{t-1}}\right) \frac{I_{t}}{I_{t-1}} \right) + \beta E_{t} \left[\Xi_{t+1}^{k} \varepsilon_{t+1}^{i} S'\left(\frac{I_{t+1}}{I_{t}}\right) \left(\frac{I_{t+1}}{I_{t}}\right)^{2} \right]$$

- FOC for I is law of motion for shadow value of capital
- If adjustment cost were absent (S=0), FOC would simply say that $\Xi_t = \Xi_t^k \rightarrow \text{marginal utility of consumption } (\Xi_t)$ [shadow **cost** of taking resources away from consumption] = shadow **benefit** of putting these resources into investment (Ξ_t^k) : Tobin's Q is one

$$\Xi_t^k = \beta E_t \left[\Xi_{t+1} \left(\frac{R_{t+1}^k}{P_{t+1}} Z_{t+1} - a(Z_{t+1}) \right) + \Xi_{t+1}^k (1 - \delta) \right]$$

- FOC for K says that if you buy a unit of capital today you have to pay its price in real terms (LHS: Ξ^{k}_{t})
- but tomorrow (RHS)
- you will get proceeds from renting capital (first part)
- and you can sell back any capital that has not depreciated (second part)

Intermediate Goods Sector

 Intermediate Good Producer i is assumed by SW to use standard Cobb-Douglas technology (plus a fixed cost)

$$Y_t(i) = \epsilon_t^a K_t^s(i)^\alpha \left[\gamma^t L_t(i) \right]^{1-\alpha} - \gamma^t \Phi$$

- where
 - K_t^s(i) is capital services used in production
 - $-L_t(i)$ is a composite labour input
 - $-\Phi$ is a fixed cost
 - $-\gamma^t$ represents a labour-augmenting deterministic growth rate in the economy

• ϵ_t^a is **total factor productivity** and follows process

$$\ln \epsilon_t^a = (1 - \rho_z) \ln \epsilon^a + \rho_z \ln \epsilon_{t-1}^a + \eta_t^a, \eta_t^a \sim \mathcal{N}(0, \sigma_a)$$

Firm's profit is given by

$$P_t(i)Y_t(i) - W_tL_t(i) - R_t^k K_t^s(i)$$

- where
 - W_t is aggregate nominal wage rate
 - R_t^k is rental rate on capital
- Cost minimization yields following first-order conditions:

$$(\partial L_t(i)) : \Theta_t(i) \gamma^{(1-\alpha)t} (1-\alpha) \epsilon_t^a K_t^s(i)^\alpha L_t(i)^{-\alpha} = W_t$$

$$(\partial K_t^s(i)) : \Theta_t(i) \gamma^{(1-\alpha)t} \alpha \epsilon_t^a K_t^s(i)^{\alpha-1} L_t(i)^{1-\alpha} = R_t^k$$

- where $\Theta_t(i)$ is Lagrange multiplier associated with production function (and equals marginal cost MC_t)
- Combining these FOCs and noting that capitallabour ratio is equal across firms implies (as usual)

$$K_t^s = \frac{\alpha}{1 - \alpha} \frac{W_t}{R_t^k} L_t$$

Marginal cost MC_t is same for all firms and equal to

$$MC_t = \alpha^{-\alpha} (1 - \alpha)^{-(1-\alpha)} W_t^{1-\alpha} R_t^{k\alpha} \gamma^{-(1-\alpha)t} (\epsilon_t^a)^{-1}$$

- Prices of *intermediate goods* are determined by Calvo fairy
- As in previous Calvo models, in each period, each firm i faces a constant probability $1-\xi_p$ of being able to re-optimise its price $P_t(i)$
- Probability that any firm receives a signal to reoptimise its price is assumed to be *independent* of time that it last reset its price

 Unlike in simpler earlier models, SW assume that if Calvo fairy does not allow a firm to optimise its price in a given period, it then adjusts its price by a weighted combination of lagged and steady-state inflation rates as:

$$P_t(i) = (\pi_{t-1})^{\iota_p} (\pi_*)^{1-\iota_p} P_{t-1}(i)$$

- where
 - $-0 \le \iota_p \le 1$
 - $-\pi_{t-1}$ denotes gross inflation in period t-1
 - $-\pi_*$ denotes steady-state gross inflation rate
- A positive value of ι_p introduces *structural inertia* into inflation process

• Under Calvo pricing with this type of *partial indexation*, optimal price $\widetilde{P}_t(i)$ set by firm that is allowed by Calvo fairy (with a probability $1-\xi_p$) to re-optimise results from solving following optimisation problem:

$$\max_{\widetilde{P}_{t}(i)} E_{t} \sum_{s=0}^{\infty} \xi_{p}^{s} \frac{\beta^{s} \Xi_{t+s} P_{t}}{\Xi_{t} P_{t+s}} \Big[\widetilde{P}_{t}(i) (\Pi_{l=1}^{s} \pi_{t+l-1}^{\iota_{p}} \pi_{*}^{1-\iota_{p}}) - M C_{t+s} \Big] Y_{t+s}(i)$$

Nominal discount factor

$$s.t. Y_{t+s}(i) = Y_{t+s}G'^{-1}\left(\frac{P_t(i)X_{t,s}}{P_{t+s}}\tau_{t+s}\right)$$

- This looks formidable!
- But if we compare it to what we used in very first sticky-price model studied back at beginning of term, we find clear similarities:

$$\max_{P_{j,t}^*} E_t \sum_{i=0}^{\infty} (\beta \theta)^i (P_{j,t}^* Y_{j,t+i} - TC_{j,t+i})$$

$$\max_{\widetilde{P}_{t}(i)} E_{t} \sum_{s=0}^{\infty} \xi_{p}^{s} \frac{\beta^{s} \Xi_{t+s} P_{t}}{\Xi_{t} P_{t+s}} \left[\widetilde{P}_{t}(i) (\Pi_{l=1}^{s} \pi_{t+l-1}^{\iota_{p}} \pi_{*}^{1-\iota_{p}}) - M C_{t+s} \right] Y_{t+s}(i)$$

• Since TC = MC*Y, only really *new element* is *indexation factor* multiplying P_t^{\sim} : $(\Pi_{l=1}^s \pi_{t+l-1}^{\iota_p} \pi_*^{1-\iota_p})$

- What is this indexation factor $(\Pi_{l=1}^s \pi_{t+l-1}^{\iota_p} \pi_*^{1-\iota_p})$
- Since π is a **gross** inflation rate, it has each period a value close to 1
- Thus, product $\Pi_{l=1}^s \pi_{t+l-1}^{\iota_p}$ (which multiplies together inflation rates for all periods since previous price revision) also has a value near 1
- This is then scaled by factor $\pi_*^{1-\iota_p}$ which reflects weighted combination indexation
- Finally, as noted previously, curious expression $\beta^s \Xi_{t+s} P_t$ is just the (nominal) discount factor $\Xi_t P_{t+s}$

It is also clear from formulation of the optimisation problem

$$\max_{\widetilde{P}_{t}(i)} E_{t} \sum_{s=0}^{\infty} \xi_{p}^{s} \frac{\beta^{s} \Xi_{t+s} P_{t}}{\Xi_{t} P_{t+s}} \left[\widetilde{P}_{t}(i) (\Pi_{l=1}^{s} \pi_{t+l-1}^{\iota_{p}} \pi_{*}^{1-\iota_{p}}) - MC_{t+s} \right] Y_{t+s}(i)$$

- that price set by firm i, at time t, is a function of expected future marginal costs
- Price will be a mark-up over these weighted marginal costs
 - **fixed** over time if prices are perfectly flexible $(\iota_p = 0)$, or
 - *varying* with sticky prices $(\iota_p \neq 0)$

• Given FOC for this optimisation problem, aggregate price index which results is

$$P_{t} = (1 - \xi_{p})P_{t}(i)G'^{-1} \left[\frac{P_{t}(i)\tau_{t}}{P_{t}} \right] + \xi_{p}\pi_{t-1}^{\iota_{p}}\pi_{*}^{1-\iota_{p}}P_{t-1}G'^{-1} \left[\frac{\pi_{t-1}^{\iota_{p}}\pi_{*}^{1-\iota_{p}}P_{t-1}\tau_{t}}{P_{t}} \right]$$

 Compare this to what we used in very first stickyprice model studied back at beginning of term:

$$P_{t} = \left[\theta P_{t-1}^{1-\psi} + (1-\theta)P_{t}^{*1-\psi}\right]^{\frac{1}{1-\psi}}$$

 Function G (of which G' is used in definition above) is defined in Appendix

Final Good Sector

- As usual, final good Y_t is a composite made of a continuum of intermediate goods Y_t(i)
- *Final Good Producers* buy intermediate goods and package them into Y_t using not the Dixit-Stiglitz aggregator but instead the *Kimball Aggregator*
- In contrast to Dixit-Stiglitz world of a constant elasticity and a constant desired mark-up of price over marginal cost, in Kimball's world desired mark-up is decreasing in a firm's relative price
- Final Good Producers sell final good to consumers, investors and government in a perfectly competitive market

Final Good Producers maximize profits

$$\max_{Y_t, Y_t(i)} P_t Y_t - \int_0^1 P_t(i) Y_t(i) di$$

subject to Kimball Aggregator

$$\left[\int_0^1 G\left(\frac{Y_t(i)}{Y_t}; \, \varepsilon_t^p\right) di \right] = 1 \quad (\mu_{f,t})$$

- where P_t and P_t(i) are price of final and intermediate goods respectively
- G is a strictly concave and increasing function (ie, decreasing slope G') characterised by G(1) = 1
- ϵ_t^p is an exogenous process that reflects **shocks** to aggregator function that result in changes in elasticity of demand and thus in mark-up

• ε_{t}^{p} follows an ARMA(1,1) process defined by

$$\varepsilon_t^p = \rho_p \varepsilon_t^p + \eta_t^p - \mu_p \eta_{t-1}^p$$

 Combining first-order conditions with respect to Y_t(i) and Y_t results in

$$Y_t(i) = Y_t G^{\prime - 1} \left[\frac{P_t(i)}{P_t} \int_0^1 G^{\prime} \left(\frac{Y_t(i)}{Y_t} \right) \frac{Y_t(i)}{Y_t} di \right]$$

- Assumptions on G (specifically, G' decreasing) imply that demand for input Y_t(i) is decreasing in its relative price
- while elasticity of demand is a positive function of relative price (or a negative function of relative output)

For completeness, note that G is defined as

$$G_Y\left(\frac{Y_t(f)}{Y_t}\right) = \frac{\phi_t^p}{1 - (\phi_t^p - 1)\epsilon_p} \left[\left(\frac{\phi_t^p + (1 - \phi_t^p)\epsilon_p}{\phi_t^p}\right) \frac{Y_t(f)}{Y_t} + \frac{(\phi_t^p - 1)\epsilon_p}{\phi_t^p} \right]^{\frac{1 - (\phi_t^p - 1)\epsilon_p}{\phi_t^p - (\phi_t^p - 1)\epsilon_p}} + \left[1 - \frac{\phi_t^p}{1 - (\phi_t^p - 1)\epsilon_p} \right]$$

- Φ_t^p ≥ 1 is gross mark-up of the intermediate firms
- ϵ_p is degree of *curvature* of firm's demand (do not confuse this with ϵ_t^p , the price shock !!)

- When *curvature parameter* $\epsilon_p = 0$, demand curve exhibits *constant elasticity* as with standard Dixit-Stiglitz aggregator
- When ϵ_p is positive, firm instead faces a *quasi-kinked* demand curve, implying that a drop in its relative price only stimulates a *small increase* in demand
- On other hand, a rise in its relative price generates a large fall in demand
- Relative to standard Dixit-Stiglitz aggregator, this introduces more strategic complementarity in price setting which causes intermediate firms to adjust prices less to a given change in marginal cost (hence "stickier")

 Let us now return to solution of the FOCs, given previously by

$$Y_t(i) = Y_t G^{\prime - 1} \left[\frac{P_t(i)}{P_t} \int_0^1 G^{\prime} \left(\frac{Y_t(i)}{Y_t} \right) \frac{Y_t(i)}{Y_t} di \right]$$

- Recall that $G'^{-1}\left[\frac{P_t(i)\tau_t}{P_t}\right]$ was used in defining P_t Definition of τ_t is $\tau_t = \int_0^1 G'\left(\frac{Y_t(i)}{Y_t}\right) \frac{Y_t(i)}{Y_t} di$
- So in fact we have simply that
- $Y_t(i)/Y_t = G'^{-1} \left[\frac{P_t(i)\tau_t}{P_t} \right]$
- which is why we earlier stated that demand for input Y₊(i) is *decreasing* in its relative price

- When all intermediate firms produce the same amount, we have $\frac{Y_t(i)}{Y_t} = 1$
- But $G_{\gamma}(1) = 1$, implying **constant returns to scale** in this case

Labour Sector

- SW assume that Households supply their homogenous labour to an *intermediate labour* union which differentiates labour services, sets wages subject to a Calvo scheme and offers those labour services to intermediate *labour packers*
- Labour used by intermediate goods producers L_t is a composite made of those differentiated labour services L_t(i)
- As with intermediate goods, *Kimball aggregator* is used, with a *curvature parameter* of ϵ_w

- Labour packers buy differentiated labour services, package L_t, and offer it to intermediate goods producers
- Labour packers maximize profits

$$\max_{L_t, L_t(i)} W_t L_t - \int_0^1 W_t(i) L_t(i) di$$

$$s.t. \left[\int_0^1 H\left(\frac{L_t(i)}{L_t}; \varepsilon_t^w\right) di \right] = 1 \quad (\mu_{l,t})$$

- where W_t and W_t(i) are prices of composite and intermediate labour services respectively
- Like G previously, function H is a strictly concave and increasing function characterised by H(1) = 1

- ε_t^w is an exogenous process that reflects **shocks** to aggregator function that result in changes in elasticity of demand and therefore in mark-up [do not confuse this with ε_w the curvature !!]
- Similarly to ε_t^p , it is assumed that ε_t^w follows an ARMA(1,1) process

$$\varepsilon_t^w = \rho_w \varepsilon_{t-1}^w + \eta_t^w - \mu_w \eta_{t-1}^w$$

Combining FOCs results (as for Y_t(i) previously) in

$$L_t(i) = L_t H'^{-1} \left[\frac{W_t(i)}{W_t} \int_0^1 H'\left(\frac{L_t(i)}{L_t}\right) \frac{L_t(i)}{L_t} di \right]$$

- Labour unions are an intermediary between households and labour packers
- Under Calvo pricing with partial indexation, optimal wage set by union that is allowed to reoptimise its wage results from an optimisation problem similar to that for pricing

$$\max_{\widetilde{W}_{t}(i)} E_{t} \sum_{s=0}^{\infty} \xi_{w}^{s} \frac{\beta^{s} \Xi_{t+s} P_{t}}{\Xi_{t} P_{t+s}} \left[\widetilde{W}_{t}(i) (\Pi_{l=1}^{s} \gamma \pi_{t+l-1}^{\iota_{w}} \pi_{*}^{1-\iota_{w}} - W_{t+s}^{h} \right] L_{t+s}(i)$$

$$s.t. L_{t+s}(i) = L_{t+s}H'^{-1}\left(\frac{W_t(i)X_{t,s}^w}{W_{t+s}}\tau_{t+s}^w\right)$$

 Again, similarly to case for pricing, aggregate wage index is in this case given by

$$W_{t} = (1 - \xi_{w})\widetilde{W}_{t}H'^{-1} \left[\frac{\widetilde{W}_{t}\tau_{t}^{w}}{W_{t}} \right] + \xi_{w}\gamma\pi_{t-1}^{\iota_{w}}\pi_{*}^{1-\iota_{w}}W_{t-1}H'^{-1} \left[\frac{\gamma\pi_{t-1}^{\iota_{w}}\pi_{*}^{1-\iota_{w}}W_{t-1}\tau_{t}^{w}}{W_{t}} \right]$$

 Mark-up of aggregate wage over wage received by households is distributed to households in form of dividends (as already indicated in budget constraint)

Government Sector

 SW (both of whom work for central banks) assume that central bank follows a nominal interest rate rule by adjusting its instrument in response to deviations of inflation and output from their respective target levels

$$\frac{R_t}{R^*} = \left(\frac{R_{t-1}}{R^*}\right)^{\rho} \left[\left(\frac{\pi_t}{\pi_*}\right)^{r_{\pi}} \left(\frac{Y_t}{Y_t^*}\right)^{r_y} \right]^{1-\rho} \left(\frac{Y_t/Y_{t-1}}{Y_t^*/Y_{t-1}^*}\right)^{r_{\Delta y}} \epsilon_t^r$$

- where
 - R* is steady state nominal rate (gross rate)
 - Y_t* is "natural output"
 - $-\rho$ determines degree of interest rate smoothing
- Exogenous monetary policy **shock** ϵ_t^r is determined as

$$\ln \varepsilon_t^r = \rho_r \ln \varepsilon_{t-1}^r + \eta_t^r, \eta_t^r \sim N(0, \sigma_r)$$

- A new element is included in this version of Taylor Rule: "natural output level"
- SW define it as "the output in the flexible price and wage economy without mark-up shock in prices and wages", ie NOT subject to sticky wages and prices
- In model eventually estimated below, there will be an entire section devoted to a "natural" or "flexprice" version of the economy, ONLY so as to be able to make use of the central bank reaction function defined by SW version of Taylor Rule – no need for this otherwise

Government budget constraint is of form

$$P_t G_t + B_{t-1} = T_t + \frac{B_t}{R_t}$$

- where T_t are nominal lump-sum taxes (or subsidies) that also appear in household's budget constraint
- SW assume that Government purchases G_t are exogenous
- They express government spending relative to steady state output path ("trend output") as

$$\varepsilon_t^g = G_t / (Y \gamma^t)$$

• Path of ε_t^g is assumed to be given by

$$\ln \varepsilon_t^g = (1 - \rho_g) ln \varepsilon^g + \rho_g ln \varepsilon_{t-1}^g + \rho_{ga} ln \varepsilon_t^a - \rho_{ga} ln \varepsilon_{t-1}^a + \eta_t^g, \eta_t^g \sim N(0, \sigma_g)$$

- This allows for a reaction of government spending to productivity process γ^t
- Government purchases have no effect on marginal utility of private consumption, nor do they serve as an input into goods production

Market Equilibrium

- Finally, Market equilibrium
- Final goods market is in equilibrium if production equals demand by households for consumption and investment and by government

$$C_t + I_t + G_t + a(Z_t)K_{t-1} = Y_t$$

- Capital rental market is in equilibrium when demand for capital by intermediate goods producers equals supply by households
- Labour market is in equilibrium if firms' demand for labour equals labour supply at wage level set by households
- In capital market, equilibrium means that government debt is held by domestic investors at market interest rate, R_t