Algorithms Lab BGL Week II

Flows

Maximum Flow

definition

- a flow network is a graph G=(V,E) with source and target vertices $s,t\in V$ with capacity $c:V\times V\to \mathbb{N}$ and flow $f:V\times V\to \mathbb{N}$
- a flow network satisfies

$$\begin{aligned} \forall u,v \in V : f(u,v) &\leq c(u,v) \\ \forall u,v \in V : f(u,v) &= -f(v,u) \\ \forall u \in V - \{s,t\} : \sum_{v \in V} f(u,v) &= 0 \end{aligned}$$

 $\bullet \ \ \mbox{the flow is} \ |f| = \sum_{u \in V} f(u,t) = \sum_{v \in V} f(s,v)$

Maximum Flow

Ford-Fulkerson method

- \bullet The maximum flow problem asks for the maximum achievable flow $|f^{\star}|,$ given G,s,t,c
- one method of solving it is due to Ford-Fulkerson:
 - I. $\forall u, v \in V : f(u, v) \leftarrow 0$
 - **2. while** there is an augmenting path p
 - 3. augment f along p
 - 4. return $|f^{\star}|$

 \Rightarrow runtime: $O(E|f^*|)$

Maximum Flow

Ford-Fulkerson method in action

Maximum Flow

Ford-Fulkerson method in action

Ford-Fulkerson method in action

Maximum Flow

Ford-Fulkerson method in action

Maximum Flow

Ford-Fulkerson method in action

Maximum Flow

Ford-Fulkerson method in action

Maximum Flow

Ford-Fulkerson method in action

Maximum Flow

Ford-Fulkerson method in action

Ford-Fulkerson method in action

Maximum Flow

Ford-Fulkerson method in action

Maximum Flow

Edmonds-Karp algorithm

- There are several algorithms that use the Ford-Fulkerson method
- Algorithms differ in how to choose augmenting paths
- Edmonds-Karps algorithm improves the naive bound from $O(E\,|f^\star|)$ to $O(VE^2)$ by using shortest paths can be really bad...

Maximum Flow

push-relabel algorithms

Define preflow

$$\begin{aligned} \forall u, v \in V : f(u, v) &\leq c(u, v) \\ \forall u, v \in V : f(u, v) &= -f(v, u) \\ \forall u \in V - \{s, t\} : \sum_{v \in V} f(u, v) &\leq 0 \end{aligned}$$

• Define height function

$$h(s) = |V|, h(t) = 0$$

 $h(u) \le h(v) + 1 \text{ if } c(u, v) - f(u, v) \ge 0$

Preflow with height function has no augmenting path
 Flow with height function is a maximum flow

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

push-relabel by example

Maximum Flow

relabel-to-front algorithm

- Push-relabel algorithm has runtime $O(V^2E)$ \Rightarrow Better than Ford-Fulkerson method!
- The order in which we "push" and "relabel" is arbitrary
- We can do better if we choose a good order
- Relabel-to-front achieves runtime $O(V^3)$ \Rightarrow with "dynamic trees" even $O(VE\log(V^2E^{-1}))$

Maximum Flow

overview

method	algorithm	runtime
Ford-Fulkerson	naive	$O(E f^{\star})$
Ford-Fulkerson	Edmonds-Karp	$O(VE^2)$
push-relabel	naive	$O(V^2E)$
push-relabel	relabel-to-front	$O(V^3)$
push-relabel	+ dynamic trees	$O(VE\log\frac{V^2}{E})$

Flows in BGL

configuring the types

Flows in BGL

```
typedef adjacency_list_traits<vecS, vecS, directedS> Traits;

typedef adjacency_list<vecS, vecS, directedS, no_property,
    property<edge_capacity_t, long,
    property<edge_residual_capacity_t, long,
    property<edge_residual_capacity_t, long,
    property<edge_reverse_t, Traits::edge_descriptor> > > > Graph;

typedef property_map<Graph, edge_capacity_t>::type_EdgeCapacityMap;
typedef property_map<Graph, edge_reverse_t>::type_EdgeCapacityMap;
typedef property_map<Graph, edge_reverse_t>::type_ReverseEdgeMap;
typedef graph_traits<Graph>::edge_descriptor_EdgeDescriptor;
```

Flows in BGL

adding edges

Flows in BGL

invoking algorithms

```
EdgeCapacityMap capacity = get(edge_capacity, g);
ReverseEdgeMap rev_edge = get(edge_reverse, g);
ResidualCapacityMap res_capacity = get(edge_residual_capacity, g);

bool edgeDidNotExist;
EdgeDescriptor e, reverseE;
tie(e, edgeDidNotExist) = add_edge(a, b, g);
tie(reverseE, edgeDidNotExist) = add_edge(b, a, g);
capacity[e] = c;
capacity[reverseE] = 0;
rev_edge[e] = reverseE;
rev_edge[reverseE] = e;
```

#include <boost/graph/push_relabel_max_flow(q, source, sink);
#include <boost/graph/edmonds_karp_max_flow(a, source, sink);
#include <boost/graph/edmonds_karp_max_flow(q, source, sink);</pre>

How to read in a graph?

How to read in a graph?

Named Parameters

Named Parameters

would it not be nice?

Named Parameters

would it not be nice?

Named Parameters

would it not be nice?

Named Parameters

would it not be nice?

Named Parameters

would it not be nice?

Named Parameters

BGL syntax

```
int main()
{
  Graph g(n);
  vector<int> p(n), d(n);
 dijkstra shortest paths
          (g, 0, predecessor_map(&p[0]).distance_map(&d[0]));
}
```

Named Parameters

BGL Documentation

```
🦫 dijkstra_shortest_paths
```

// named parameter version template template typename T, typename R> void

const bgg named parameter, T. Not params),

// non-named parameter version

template <typename Graph, typename Distanter,

typename Caraph, typename Distanter,

typename Distanter, typename Distanter,

typename Distanter, typename Distanter,

typename Comparafunction,

typename Comparafunct

// version that does not initialize the property maps (except for the default color map)
template <class Graph, class DijkstraVisitor,
class Predecessorthap, class LatanceNap,
class Set State, class ColorApp,
class Southere, class ColorApp,
noted

Ciass Datestro, vassa vocatary,

wold

(const Grapht g,

typename graph_traits-draph>::vertex_descriptor s,

typename graph_traits-draph>:ivertex_descriptor s,

PredecessorHap predecessor, DistanceNap distance, WeightMap weight,
IndexMap; index_map,

IndexMap; latter_sap.

DijkstraVisitor vis, ColorMap color = default);

Named Parameters

BGL syntax

```
int main()
 Graph g(n);
  vector<int> p(n), d(n);
 dijkstra_shortest_paths
         (g, 0, predecessor_map(&p[0]).distance_map(&d[0]));
                             bgl_named_params
 dijkstra_shortest_paths
          (g, 0, distance_map(&d[0]).predecessor_map(&p[0]));
}
```

Named Parameters

BGL Documentation

Parameters

The graph object on which the algorithm will be applied. The type graph must be a model of <u>Vertex List Graph</u> and <u>Incidence Graph</u>.

Python: The parameter is named graph.

IN: vertex_descriptor s

The source vertex. All distance will be calculated from this vertex, and the shortest paths tree will be rooted at this vertex. **Python:** The parameter is named root_vertex.

Named Parameters IN: weight_map(WeightMap w_map)

The weight or "length" of each edge in the graph. The weights must all be non-negative, and the algorithm will throw a negative. And the algorithm will throw a negative. And the edge exception is one of the edge is negative. The type weightmap must be a model of Readable Property Mag. The edge descriptor type of the graph needs to be usable as the key type for the weight map. The value type for this map must be the same as the value type of the distance map.

Default: get (edge_weight, g)

Python: Must be an edge_double_map for the graph.

Python default: graph.get_edge_double_map("weight")

IN: vertex_index_map(VertexIndexMap i_map)

This maps each vertex to an integer in the range $\{0, num_vertices(g)\}$. This is necessary for efficient updates of the heap data structure [61] when an edge is relaxed. The type vertexIndexIndproxed must be a model of Readable Property Map. The value type of the map must be an integer type. The vertex descriptor type of the graph needs to be usable as the key type of the map.