Quiz: Week_10

Question 1:

Suppose you apply the map-reduce method to train a neural network on ten machines. In each iteration, what will each of the machines do?
Ocompute either forward propagation or back propagation on 1/5 of the data.
Ocompute forward propagation and back propagation on 1/10 of the data to compute the derivative with respect to that 1/10 of the data.
Correcto
Ocompute only forward propagation on 1/10 of the data. (The centralized machine then performs back propagation on all the data).
Ocompute back propagation on 1/10 of the data (after the centralized machine has computed forward propagation on all of the data).
Question 2:
Suppose you are facing a supervised learning problem and have a very large dataset (m = 100,000,000). How can you tell if using all of the data is likely to perform much better than using a small subset of the data (say m = 1,000)?
○ There is no need to verify this; using a larger dataset always gives much better performance.
\bigcirc Plot $J_{ ext{train}}(heta)$ as a function of the number of iterations of the optimization algorithm (such as gradient descent).
O Plot a learning curve ($J_{\text{train}}(\theta)$ and $J_{\text{CV}}(\theta)$, plotted as a function of m) for some range of values of m (say up to m = 1,000) and verify that the algorithm has bias when m is small.
O Plot a learning curve for a range of values of m and verify that the algorithm has high variance when m is small.
Correcto
Question 3:
Which of the following statements about stochastic gradient descent are true? Check all that apply.
When the training set size m is very large, stochastic gradient descent can be much faster than gradient descent. Correcto
The cost function $J_{\text{train}}(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ should go down with every iteration of batch gradient descent (assuming a well-tuned learning rate α) but not necessarily with stochastic gradient descent.
Correcto
Stochastic gradient descent is applicable only to linear regression but not to other models (such as logistic regression or neural networks).
Deseleccionado es lo correcto
Before beginning the main loop of stochastic gradient descent, it is a good idea to "shuffle" your training data into a random order.
Correcto

Question 4

Suppose you use mini-batch gradient descent on a training set of size m, and you use a mini-batch size of b. The algorithm becomes the same as batch gradient descent if:
○ b = 1
O b = m / 2
o b = m
Correcto
O None of the above
Question 5
Which of the following statements about stochastic gradient descent are true? Check all that apply.
\square Picking a learning rate α that is very small has no disadvantage and can only speed up learning.
Deseleccionado es lo correcto
$ \ \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
Correcto
\Box If we want stochastic gradient descent to converge to a (local) minimum rather than wander of "oscillate" around it, we should slowly increase α over time.
Deseleccionado es lo correcto
If we plot $cost(\theta,(x^{(i)},y^{(i)}))$ (averaged over the last 1000 examples) and stochastic gradient descent does not seem to be reducing the cost, one possible problem may be that the learning rate α is poorly tuned.
Correcto

Question 6:

Some of the advantages of using an online learning algorithm are:
lacksquare It can adapt to changing user tastes (i.e., if $p(y x; heta)$ changes over time).
Correcto
\Box There is no need to pick a learning rate $lpha.$
Deseleccionado es lo correcto
It allows us to learn from a continuous stream of data, since we use each example once then no longer need to process it again.
Correcto
It does not require that good features be chosen for the learning task.
Deseleccionado es lo correcto