Diagnostic test evaluation with perfect reference test

Paolo Eusebi

16/09/2021

Four phases in architecture of diagnostic research

- Phase I Do test results in patients with the target disorder differ from those in normal people?
- Phase II Are patients with certain test results more likely to have the target disorder than patients with other test results?
- Phase III Does the test result distinguish patients with and without the target disorder among patients in whom it is clinically reasonable to suspect that the disease is present?
- Phase IV Do patients who undergo this diagnostic test fare better (in their ultimate health outcomes) than similar patients who are not tested?

	D-
T+ TP	FP
T- FN	TN

	D+	D-
T+	TP	FP
T-	FN	TN

- Sensitivity = TP/D+
- Specificity = TN/D-
- PPV = TP/T +
- NPV = TN/T-

- Sensitivity and specificity do not depend on the disease prevalence.
- PPV and NPV depend on the sensitivity, specificity, and the disease prevalence.

$$PPV = \frac{Se \cdot p}{Se \cdot p + (1 - Sp) \cdot (1 - p)}$$

$$NPV = \frac{Sp \cdot (1 - p)}{(1 - Se) \cdot p + Sp \cdot (1 - p)}$$

Frequencies

	D+	D-
T+	y[1]	y[3]
T-	y[2]	y[4]

Probabilities

	D+	D-
T+	prob[1]	prob[3]
T-	prob[2]	prob[4]

Prevalence = prob[1]+prob[2]

Bayesian model

11

```
"model {
# likelihood
  y[1:4] ~ dmulti(prob[1:4], n)
  prob[1] <- p * Se
  prob[2] <- p * (1 - Se)
  prob[3] \leftarrow (1 - p) * (1 - Sp)
  prob[4] \leftarrow (1 - p) * Sp
# priors
  p ~ dbeta(1, 1)
  Se \sim dbeta(1.1)
  Sp \sim dbeta(1,1)
```

Bayesian model

Let's code!