

専門科目「ロボット力学」

第5講 位置ベクトルと座標系

宇都宮大学大学院工学研究科機械知能工学専攻 吉田 勝俊

※レポート用紙・教材のダウンロード

→ http://edu.katzlab.jp/lec/robo/

学習目標

- 「機械力学1章」の復習
 - ▶ ベクトルとその成分
 - ▶ 基底の回転
- 3次元の回転行列
 - ▶ 回転軸まわりの回転
 - ▶ オイラー角
 - ▶ オイラーパラメータ

ベクトルとその成分

- 平面上の幾何ベクトル x / (図形) を考える.
- その寸法の測り方を考える.

x の直交成分:

$$\widetilde{\boldsymbol{x}} = (1, 2)^T$$

同じxの斜交成分:

$$\widetilde{x}' = (1.43, 1.15)^T$$

同じ図形x \nearrow でも,測り方で寸法は変わる!

代数化

■ 直角な2辺を単位ベクトル *e*₁, *e*₂ で表す(長さ1)

ベクトル 展開
$$x = x_1 e_1 + x_2 e_2$$
 展開 x_1 x_2 $\equiv \tilde{x}$ (5.1)

■ 斜めの2辺を単位ベクトル **b**₁, **b**₂ で表す(長さ1)

ベクトル 展開
$$x = x_1' \boldsymbol{b}_1 + x_2' \boldsymbol{b}_2 \stackrel{\mathbb{R}}{\Longrightarrow} \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} \equiv \widetilde{\boldsymbol{x}}'$$
 (5.2)

一般化

算法 2.1 (p.2)

成分測定用のベクトルの組 $\mathcal{E}=\langle m{e}_1,m{e}_2,m{e}_3
angle$ を,基底という.ベクトル $m{x}$ を基底 \mathcal{E} で展開する:

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3 \quad \stackrel{\mathbb{R}}{\Longrightarrow} \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \equiv \widetilde{\mathbf{x}} \quad (5.3)$$

展開係数 \tilde{x} を,xの成分という.

【表記】 ${\mathcal E}$ で測った ${m x}$ の成分を, $\widetilde{x}_{{\mathcal E}}$ と書く.

n次元でも同様に考える.

実習2.1 p3

- 1. 基底 $\mathcal{E} = \langle \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k} \rangle$ で測った , ベクトル $\boldsymbol{v} = 1\boldsymbol{i} + 3\boldsymbol{j} + 2\boldsymbol{k}$ の成分 $\widetilde{\boldsymbol{v}}_{\mathcal{E}}$ を求めよ .
- 2. 基底 $\mathcal{E} = \langle \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k} \rangle$ で測った, ベクトル $\boldsymbol{w} = 3\boldsymbol{j} + 2\boldsymbol{k}$ の成分 $\widetilde{\boldsymbol{w}}_{\mathcal{E}}$ を求めよ.
- 3. 基底 $\mathcal{B}=\langle \pmb{i}+\pmb{j},\pmb{i}-\pmb{j},\pmb{k}\rangle$ で測った , ベクトル $\pmb{w}=3\pmb{j}+2\pmb{k}$ の成分 $\widetilde{\pmb{w}}_{\mathcal{B}}$ を求めよ .

解答例

1.
$$\mathbf{v} = 1\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$$
 $\stackrel{\mathbb{R}\mathbb{H}}{\Longrightarrow} \widetilde{\mathbf{v}}_{\langle \mathbf{i}, \mathbf{j}, \mathbf{k} \rangle} = \begin{bmatrix} 1\\3\\2 \end{bmatrix}$

2.
$$\boldsymbol{w} = 3\boldsymbol{j} + 2\boldsymbol{k} = 0\boldsymbol{i} + 3\boldsymbol{j} + 2\boldsymbol{k}$$
 $\overset{\mathbb{R}}{\underset{\mathbb{R}}{\Longrightarrow}} \widetilde{\boldsymbol{w}}_{\langle \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k} \rangle} = \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}$

基底の回転

- 平面上に正規直交基底 $\mathcal{E} = \langle i, j \rangle$ をとる.
- これを角度 θ だけ回したものを次式で表す.

$$R_{\theta}(\mathcal{E}) := \langle R_{\theta}(\mathbf{i}), R_{\theta}(\mathbf{j}) \rangle$$
 (5.4)

作図より、

$$\begin{cases} R_{\theta}(\mathbf{i}) = \cos \theta \mathbf{i} + \sin \theta \mathbf{j} \\ R_{\theta}(\mathbf{j}) = -\sin \theta \mathbf{i} + \cos \theta \mathbf{j} \end{cases}$$
 (5.5)

| 例題 2.2 (p.3) ── | ノートに作図せよ.

2次元の回転行列 $[R_{ heta}]$ (1/2)

$$oldsymbol{x} oldsymbol{\overline{x}}_{\mathcal{E}} = egin{bmatrix} x_{oldsymbol{ heta}} oldsymbol{y} & = R_{ heta}(oldsymbol{x}) \ oldsymbol{\widetilde{x}}_{\mathcal{E}} & oldsymbol{\overline{\gamma}}_{[R_{oldsymbol{ heta}}]} oldsymbol{\overline{\gamma}}_{[R_{oldsymbol{ heta}}]} & = \widetilde{oldsymbol{y}}_{\mathcal{E}} \ oldsymbol{\overline{\gamma}}_{[y_2]} & = \widetilde{oldsymbol{y}}_{\mathcal{E}} \ oldsymbol{\overline{\gamma}}_{[y_2]} & = \widetilde{oldsymbol{y}}_{\mathcal{E}} \ oldsymbol{\overline{\gamma}}_{[y_2]} \ oldsymbol{\overline{\gamma}}_{[y_2]} & = \widetilde{oldsymbol{y}}_{\mathcal{E}} \ oldsymbol{\overline{\gamma}}_{[y_2]} \ oldsymbol{\overline{\gamma}}_{[y_$$

■ 行列の成分を求める. $\begin{vmatrix} y_1 \\ y_2 \end{vmatrix} = \begin{vmatrix} ? & ? \\ ? & ? \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$ $y = y_1 i + y_2 j$ = $R_{\theta}(x) = R_{\theta}(x_1 i + x_2 j)$

$$=x_1R(\boldsymbol{i})+x_2R(\boldsymbol{j})$$
 \not 前のスライド $=x_1(\cos\theta\boldsymbol{i}+\sin\theta\boldsymbol{j})+x_2(-\sin\theta\boldsymbol{i}+\cos\theta\boldsymbol{j})$

 $=(x_1\cos\theta-x_2\sin\theta)\mathbf{i}+(x_1\sin\theta+x_2\cos\theta)\mathbf{j}$

2次元の回転行列 $[R_{ heta}]$ (2/2)

$$\underbrace{\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}}_{\widetilde{\boldsymbol{y}}_{\mathcal{E}}} = \begin{bmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix} = \underbrace{\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}}_{[R_{\theta}]} \underbrace{\begin{bmatrix} x_1 \\ x_1 \end{bmatrix}}_{\widetilde{\boldsymbol{x}}_{\mathcal{E}}}$$

- ullet すなわち, $\widetilde{oldsymbol{y}}_{\mathcal{E}} = [R_{ heta}]\widetilde{oldsymbol{x}}_{\mathcal{E}}$ が成立する.
- 行列 $[R_{\theta}]$ を (2 次元の) 回転行列という.

$$oldsymbol{x}_{R(\mathcal{E})} = egin{bmatrix} oldsymbol{x} \ oldsymbol{\widetilde{x}}_{R_{oldsymbol{ heta}}(\mathcal{E})} = egin{bmatrix} x' \ oldsymbol{\widetilde{x}} \ oldsymbol{\widetilde{y}} \ oldsymbol{\widetilde{x}} \ oldsymbol{\widetilde{x}}$$

■ 行列の成分を求める .
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\boldsymbol{x} = x'R(\boldsymbol{i}) + y'R(\boldsymbol{j}) \qquad \qquad \not \omega \quad \text{前のスライド}$$

$$= x'(\cos\theta \boldsymbol{i} + \sin\theta \boldsymbol{j}) + y'(-\sin\theta \boldsymbol{i} + \cos\theta \boldsymbol{j})$$

$$= (x'\cos\theta - y'\sin\theta)\boldsymbol{i} + (x'\sin\theta + y'\cos\theta)\boldsymbol{j}$$

$$= x\boldsymbol{i} + y\boldsymbol{j}$$

基底の回転による座標の変化 (2/2)

$$\underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{\widetilde{\boldsymbol{x}}\mathcal{E}} = \begin{bmatrix} x'\cos\theta - y'\sin\theta \\ x'\sin\theta + y'\cos\theta \end{bmatrix} = \underbrace{\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}}_{\boxed{\mathbf{p}}\mathbf{p}} \underbrace{\begin{bmatrix} x' \\ y' \end{bmatrix}}_{\mathbf{q}}$$

算法 2.2 (p.4)

「回した基底で測った成分」

「元の基底で測った成分」を逆回転させたもの

次の実習で実感⇒⇒

実習2.3, p3

正規直交基底 $\mathcal{E} = \langle \boldsymbol{i}, \boldsymbol{j} \rangle$ と , これを 30° だけ回した基底 $R_{30^\circ}(\mathcal{E}) = \langle R_{30^\circ}(\boldsymbol{i}), R_{30^\circ}(\boldsymbol{j}) \rangle$ をとる . あるベクトル \boldsymbol{x} について , $\widetilde{\boldsymbol{x}}_{R_{30^\circ}(\mathcal{E})} = (57, 12)^T$ であるとき , $\widetilde{\boldsymbol{x}}_{\mathcal{E}}$ を求めよ .

3次元の回転行列

- 3次元のベクトル*x* をとる.
- 3次元の基底 $\mathcal{E} = \langle i, j, k \rangle$ もとる.
- 3次元の回転変換 R で基底を回す.

$$R(\mathcal{E}) \equiv \langle R(\mathbf{i}), R(\mathbf{j}), R(\mathbf{k}) \rangle$$

■ 2次元と同じ算法が成立.でも, $[R] = \begin{bmatrix} ????\\ ????\\ ??? \end{bmatrix}$

$$\widetilde{m{x}}_{\mathcal{E}} = [R_{ heta}] \, \widetilde{m{x}}_{R_{ heta}(\mathcal{E})} \,$$
 または $\widetilde{m{x}}_{R_{ heta}(\mathcal{E})} = [R_{ heta}]^{-1} \, \widetilde{m{x}}_{\mathcal{E}}$ (5.9)

3次元の回転変換

(1/2)

■ 回転軸 a まわりに角度 f 回す変換:

$$y = R(x) := (a \cdot x)a$$

$$+ \cos \theta \{x - (a \cdot x)a\}$$

$$+ \sin \theta (a \times x) \qquad (5.11)$$

- 導出方法
 - 円盤上の幾何:

$$\mathbf{y}' = \cos \frac{\theta}{\mathbf{x}} \mathbf{x}' + \sin \frac{\theta}{\mathbf{v}}$$

3次元の回転変換

(2/2)

- 導出方法(続き)
 - ベクトル x':

$$x' = x - (a \cdot x)a$$

▶ ベクトル v:

$$v = a \times x$$
 (クロス積)

$$|oldsymbol{v}|=$$
 平行四辺形の面積 $=|x'|$

りえに $oldsymbol{y} = (oldsymbol{a} \cdot oldsymbol{x}) oldsymbol{a} + oldsymbol{y}'$

$$= (\boldsymbol{a} \cdot \boldsymbol{x})\boldsymbol{a} + \cos \boldsymbol{\theta} \, \boldsymbol{x}' + \sin \boldsymbol{\theta} \, \boldsymbol{v}$$

$$= (\mathbf{a} \cdot \mathbf{x})\mathbf{a} + \cos\theta\{\mathbf{x} - (\mathbf{a} \cdot \mathbf{x})\mathbf{a}\} + \sin\theta(\mathbf{a} \times \mathbf{x})$$

回転変換Rの行列表示[R] (1/3)

 $lacksymbol{\blacksquare}$ 回転変換 $oldsymbol{y} = R(oldsymbol{x})$ は線形変換:

$$\iff egin{cases} R(oldsymbol{u}+oldsymbol{v}) & R(oldsymbol{u}) + R(oldsymbol{v}) \ R(aoldsymbol{u}) = aR(oldsymbol{u}) & a$$
はスカラ

- $lacksymbol{f R}$ 線形変換は必ず行列でも表せる: $R(oldsymbol{R}(oldsymbol{x})=A\,oldsymbol{x}$
- 成分の求め方:
 - ト A の 1 列目: $\begin{bmatrix} A_{11} \\ A_{21} \\ A_{31} \end{bmatrix} = A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \mathbf{R} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right)$
 - ト A の 2 列目: $\begin{bmatrix} A_{12} \\ A_{22} \\ A_{32} \end{bmatrix} = A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = R \left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right)$
 - ト A の 3 列目: $\begin{bmatrix} A_{13} \\ A_{23} \\ A_{33} \end{bmatrix} = A \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = R \left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right)$

回転変換Rの行列表示[R] (2/3)

- 回転変換: y = R(x) = Ax= $(a \cdot x)a + \cos \theta \{x - (a \cdot x)a\} + \sin \theta (a \times x)$
- A O 1列目: $\begin{bmatrix} A_{11} \\ A_{21} \\ A_{31} \end{bmatrix} = A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = R \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) \iff$ 代入 $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 - $\qquad \qquad \bullet \quad \left(\boldsymbol{a} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) \boldsymbol{a} = (a_1) \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_1^2 \\ a_1 a_2 \\ a_1 a_3 \end{bmatrix}$
 - ▶ $\boldsymbol{a} \times \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{pmatrix} \begin{vmatrix} a_2 & 0 \\ a_3 & 0 \end{vmatrix}, \begin{vmatrix} a_3 & 0 \\ a_1 & 1 \end{vmatrix}, \begin{vmatrix} a_1 & 1 \\ a_2 & 0 \end{vmatrix} \end{pmatrix}^T = \begin{bmatrix} 0 \\ a_3 \\ -a_2 \end{bmatrix}$ 機械力学 (3.11)

$$\therefore \begin{bmatrix} A_{11} \\ A_{21} \\ A_{31} \end{bmatrix} = \begin{bmatrix} a_1^2 \\ a_1 a_2 \\ a_1 a_3 \end{bmatrix} + \cos \theta \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} a_1^2 \\ a_1 a_2 \\ a_1 a_3 \end{bmatrix} \right\} + \sin \theta \begin{bmatrix} 0 \\ a_3 \\ -a_2 \end{bmatrix} \\
= \begin{bmatrix} a_1^2 + \cos \theta (1 - a_1^2) \\ a_1 a_2 + \cos \theta (1 - a_1 a_2) + a_3 \sin \theta \\ a_1 a_3 + \cos \theta (1 - a_1 a_3) - a_2 \sin \theta \end{bmatrix}$$

■ 追加の例題: 同様にしてAの2列目,3列目を求めよ.

回転変換Rの行列表示[R] (3/3)

■ 回転行列 $[R] = [R(a_1, a_2, a_3, \theta)]$ の成分:

$$\left[R \right] = \left[\begin{smallmatrix} a_1^2 + (1 - a_1^2) C_\theta & a_1 a_2 (1 - C_\theta) - a_3 S_\theta & a_1 a_3 (1 - C_\theta) + a_2 S_\theta \\ a_1 a_2 (1 - C_\theta) + a_3 S_\theta & a_2^2 + (1 - a_2^2) C_\theta & a_2 a_3 (1 - C_\theta) - a_1 S_\theta \\ a_1 a_3 (1 - C_\theta) - a_2 S_\theta & a_2 a_3 (1 - C_\theta) + a_1 S_\theta & a_3^2 + (1 - a_3^2) C_\theta \end{smallmatrix} \right]$$

ただし,
$$S_{\theta} \equiv \sin \theta$$
, $C_{\theta} \equiv \cos \theta$. (5.13)

- 各軸まわりの回転:
 - ト x軸まわり ${m a} = \left[egin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix} \right] \Longrightarrow \left[R_x(\theta) \right] = \left[egin{smallmatrix} 1 & 0 & 0 \\ 0 & C_{\theta} & -S_{\theta} \\ 0 & S_{\theta} & C_{\theta} \end{smallmatrix} \right]$
 - ト y軸まわり $\boldsymbol{a} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} R_y(\theta) \end{bmatrix} = \begin{bmatrix} C_{\theta} & 0 & S_{\theta} \\ 0 & 1 & 0 \\ -S_{\theta} & 0 & C_{\theta} \end{bmatrix}$
 - ト z軸まわり $\boldsymbol{a} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} R_x(\theta) \end{bmatrix} = \begin{bmatrix} C_{\theta} & -S_{\theta} & 0 \\ S_{\theta} & C_{\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (5.14)

回転行列のパラメータ表示

- 回転行列は3×3 = 9成分.3次元回転の自由度は3 < 9</p>
- 3パラメータ (オイラー角): ジンバルロックが発生(泣)
 - トロール・ピッチ・ヨー角: (ϕ, θ, ψ) $\Longrightarrow [R] = [R_x(\phi)][R_y(\theta)][R_z(\psi)]$
- 4パラメータ: ジンバルロックは起きない(笑)
 - lacktriangle 回転軸と回転角: $(a_1,a_2,a_3,rac{ heta}{ heta})$ \Longrightarrow [R]= 前のスライド
 - ト オイラーパラメータ: $(q_0, q_1, q_2, q_3) \equiv \begin{bmatrix} \cos(\theta/2) \\ a_1 \sin(\theta/2) \\ a_2 \sin(\theta/2) \\ a_3 \sin(\theta/2) \end{bmatrix}^T$ (5.15)

$$\Longrightarrow [R] = \begin{bmatrix} 1 - 2q_2^2 - 2q_3^2 & 2q_1q_2 - 2q_0q_3 & 2q_0q_2 + 2q_1q_3 \\ 2q_1q_2 + 2q_0q_3 & 1 - 2q_1^2 - 2q_3^2 & -2q_0q_1 + 2q_2q_3 \\ -2q_0q_2 + 2q_1q_3 & 2q_0q_1 + 2q_2q_3 & 1 - 2q_1^2 - 2q_2^2 \end{bmatrix}$$

(5.16)

専門科目「ロボット力学」

第6講 多体系の運動学

宇都宮大学大学院工学研究科機械知能工学専攻 吉田 勝俊

※レポート用紙・教材のダウンロード

→ http://edu.katzlab.jp/lec/robo/

学習目標

- 座標系と空間座標
 - ▶ 位置ベクトル
 - ▶ 空間座標
- 部品図と組立図
 - ▶ 部品図 局所座標系
 - ▶ 組立図 基準座標系
- 部品図から組立図への座標変換
 - ▶ アフィン変換
 - ▶ コンピュータ演習

座標系と空間座標

点 X の空間座標 $\tilde{X}_{(\mathbf{0},\mathcal{E})}$

- 1. 測定基準点 O と基底 \mathcal{E} の組 (O,\mathcal{E}) を座標系という.
- 2. $O \sim X$ に矢印 x を引く. x を位置ベクトルという.
- 3. x の成分 $\widetilde{x}_{\mathcal{E}}$ を (O,\mathcal{E}) で測ったX の空間座標という.

【表記】
$$\widetilde{\mathsf{X}}_{(\mathsf{O},\mathcal{E})} \equiv \widetilde{m{x}}_{\mathcal{E}} = \left[egin{smallmatrix}x\\y\\z\end{smallmatrix}
ight]$$

部品図と組立図

《局所座標》部品図で部品を座標データ化する.

《基準座標》組立図に配置する. 平行移動+回転

《座標変換》組立図上の座標は?

部品図《局所座標系》

分野に応じて,車両/機体/ロボット座標系という言い方もする

- 各部品の形状を,座標データ化する。
 - 1. 部品ごとに専用の部品図を用意する.
 - 2. その部品図に , 直交座標系 $\mathcal{R}_i = \langle \mathsf{O}_1, \mathcal{E}_i \rangle$ を設置する .
 - 3. 部品の適当な代表点の組 $\{\mathsf{P}_1,\cdots,\mathsf{P}_k\}$ を, \mathcal{R}_i による座標データの組 $\mathcal{X}_i:=\{m{\xi}_1^i,\cdots,m{\xi}_k^i\}$ として記録する.

組立図《基準座標系》

- 部品を組立図に配置する .
- 1. 組立図に直交座標系 $\mathcal{R}_0 = (\mathsf{O}, \mathcal{E})$ を貼る.
 - 2. 部品図 $\mathcal{R}_i = (O_i, \mathcal{E}_i)$ の位置を ,
 - 組立図 \mathcal{R}_0 上の位置ベクトル $oldsymbol{r}_i = \overrightarrow{\mathsf{OO}_i}$ で表す.
 - 3. 部品図 $\mathcal{R}_i = (O_i, \mathcal{E}_i)$ の姿勢を , 回転変換 R_i で表す . R_i は, $\mathcal E$ を回して $\mathcal E_i = R_i(\mathcal E)$ を作る回転変換.
 - 4. 組立図 \mathcal{R}_0 に対する部品図 \mathcal{R}_i の配置を \mathcal{R}_i の配置を \mathcal{R}_i で表す .

算法 2.3 (p.8)

組立座標系に対する部品座標系の配置を $(m{r},R)$ とする.このとき, \mathbf{n} 品座標 $m{\xi}$ が指す点は,組立座標:

$$x = R\xi + r \tag{1}$$

の位置にくる.このような,回してから平行移動する 変換を,アフィン変換(affine trasformation)という.

作図による証明 $(x = R\xi + r)$

- 1. 部品図上のベクトル *ξ*
- 2. まず部品図を回す $\xi \mapsto R\xi$
- 3. 次に平行移動する $R\xi \mapsto R\xi + r \equiv x$

コンピュータ演習

メディア基盤センター「教育用端末室」にて,

■ 実習 2.4 を実行せよ.

専門科目「ロボット力学」

第7講 ロボット運動学

宇都宮大学大学院工学研究科機械知能工学専攻 吉田 勝俊

※レポート用紙・教材のダウンロード

→ http://edu.katzlab.jp/lec/robo/

学習目標

- アフィン変換の行列表示
 - ▶ 同次変換行列
- ロボット・マニピュレータ
 - ▶ 4自由度マニピュレータ
 - ▶ コンピュータ演習

アフィン変換の行列表示(2次元)

■ アフィン変換の復習(回して平行移動)

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \underbrace{\begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}}_{\text{回転行列}} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} + \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$$
 (7.1a)

ダミー成分1を追加する.同次変換という.

$$\begin{bmatrix} x_1 \\ x_2 \\ \mathbf{1} \end{bmatrix} = \underbrace{\begin{bmatrix} R_{11} & R_{12} & r_1 \\ R_{21} & R_{22} & r_2 \\ 0 & 0 & 1 \end{bmatrix}}_{II} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \mathbf{1} \end{bmatrix}$$
 (7.2a)

回転&平行移動を,1つの行列Hで表せる!

演習タイム — 実習2.5(前半)

例題 2.5 前半 (p.9)

行列とベクトルの積を実行し,式(7.1a)と式(7.2a)の成分の一致を確かめよ.

同次変換行列 H の例(2次元)

 $C_{\theta} := \cos \theta, S_{\theta} := \sin \theta$

作用	表記	成分
平行移動	Trans $([r_i])$ または Trans (r_1, r_2)	$\begin{bmatrix} 1 & 0 & r_1 \\ 0 & 1 & r_2 \\ 0 & 0 & 1 \end{bmatrix}$
回転	Rot(heta)	$\begin{bmatrix} C_{\theta} & -S_{\theta} & 0 \\ S_{\theta} & C_{\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix}$
拡大縮小	$Scal(\alpha,\beta)$	$\begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

アフィン変換の行列表示(3次元)

■ アフィン変換(回して平行移動)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix} + \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix}$$
(7.1b)

■ 同次変換(ダミー成分1を追加する)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \mathbf{1} \end{bmatrix} = \underbrace{\begin{bmatrix} R_{11} & R_{12} & R_{13} & r_1 \\ R_{21} & R_{22} & R_{23} & r_2 \\ R_{31} & R_{32} & R_{33} & r_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{\mathbf{T}} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \mathbf{1} \end{bmatrix}$$
(7.2b)

ロボットマニピュレータ

4自由度マニピュレータ

 $lacksymbol{\blacksquare}$ 関節角 $heta_1, heta_2, heta_3, heta_4$ から,各部の基準座標を求める!

運動学の概要 (図5, p11)

運動学の数式表現 1/4

1. 手先の部品図(座標系 \mathcal{E}_1).代表3点.

2. 「手先 \mathcal{X}_1 」を手首の部品図 (\mathcal{E}_2)上で回転 .

$$\mathcal{X}_{2} = R_{2}\mathcal{X}_{1} := \{R_{2}\boldsymbol{\xi}_{1}^{1}, R_{2}\boldsymbol{\xi}_{2}^{1}, R_{2}\boldsymbol{\xi}_{3}^{1}\},\$$

$$R_{2} := \text{Rot}(z, \theta_{4}) \quad (7.4)$$

運動学の数式表現 2/4

3. 「手首から先 \mathcal{X}_2 」を肘の部品図(\mathcal{E}_3)上で平行移動.

 $\mathcal{X}_3 = \{T_3\mathcal{X}_2, \mathbb{O}\}$ 肘 O_3 を追加

$$= \{ T_3 R_2 \boldsymbol{\xi}_1^1, \ T_3 R_2 \boldsymbol{\xi}_2^1, \ T_3 R_2 \boldsymbol{\xi}_3^1, \ \bigcirc \}$$
$$T_3 := \operatorname{Trans}(0, 0, l_3) \ \ (7.5)$$

4. 「肘から先 \mathcal{X}_3 」を上腕の部品図(\mathcal{E}_4)上で回転.

$$\mathcal{X}_4 = R_4 \mathcal{X}_3 = \{ R_4 T_3 R_2 \boldsymbol{\xi}_1^1, \\ R_4 T_3 R_2 \boldsymbol{\xi}_2^1, R_4 T_3 R_2 \boldsymbol{\xi}_3^1, \, \mathbb{O} \},$$

 $R_4 := \text{Rot}(x, -\theta_3)$ (7.6)

運動学の数式表現 3/4

5~8. 同様に, 式(7.7)~(7.10) を得る.

運動学の数式表現 4/4

■ 各部の基準座標(組立図上の位置)

$$\begin{cases} \boldsymbol{\xi}_{1}^{0} = R_{8}(\theta_{1}) \, T_{7} \, R_{6}(\theta_{2}) \, T_{5} \, R_{4}(\theta_{3}) \, T_{3} \, R_{2}(\theta_{4}) \, \boldsymbol{\xi}_{1}^{1} & \text{手首} \\ \boldsymbol{\xi}_{2}^{0} = R_{8}(\theta_{1}) \, T_{7} \, R_{6}(\theta_{2}) \, T_{5} \, R_{4}(\theta_{3}) \, T_{3} \, R_{2}(\theta_{4}) \, \boldsymbol{\xi}_{2}^{1} & \text{手先 1} \\ \boldsymbol{\xi}_{3}^{0} = R_{8}(\theta_{1}) \, T_{7} \, R_{6}(\theta_{2}) \, T_{5} \, R_{4}(\theta_{3}) \, T_{3} \, R_{2}(\theta_{4}) \, \boldsymbol{\xi}_{3}^{1} & \text{手先 2} \\ \boldsymbol{\xi}_{4}^{0} = R_{8}(\theta_{1}) \, T_{7} \, R_{6}(\theta_{2}) \, T_{5} \, \mathbb{O} & \text{If} \\ \boldsymbol{\xi}_{5}^{0} = R_{8}(\theta_{1}) \, T_{7} \, \mathbb{O} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{6}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{7}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{7}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{7}^{0} = \mathbb{O} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} \\ \boldsymbol{\xi}_{7}^{0} = \mathbb{O} & \text{If} & \text{If$$

コンピュータ演習

メディア基盤センター「教育用端末室」にて,

- 実習 2.6 を実行せよ.
- 実習 2.7 を実行せよ.