Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Проект на Github

Содержание

1	Алг	гебра многочленов	2
	1.1	Операции над многочленами	2
	1 2	Операции на п новыми многочленами	2

1 Алгебра многочленов

Определение 1.1. Многочленом называется функция $f: \mathbb{R} \to \mathbb{R}, f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$

Определение 1.2. $\mathbb{F}[x]$ — множество всех многочленов над \mathbb{F} (с коэффициентами в \mathbb{F})

1.1 Операции над многочленами

- 1. + сложение
- $2. \cdot -$ умножение
- 3. $\cdot \lambda$ домножение на константу

Замечание. Многочлены над \mathbb{R} образуют коммутативное кольцо

Определение 1.3. Алгебра над полем \mathbb{F} называется называется множество A, с определенными на нем операциями $+,\cdot,\cdot,\lambda$, которое удовлетворяет следующим условиям:

- 1. $(A, +, \cdot \lambda)$ линейное пространство над \mathbb{F}
- 2. $(A, +, \cdot)$ кольцо (необязательно коммутативное)
- 3. $\lambda(xy) = x(\lambda y) = (\lambda x)y, \lambda \in \mathbb{F}, x, y \in A$

Пример.

- 1. $\mathbb{R}[x]$
- 2. $M_n(\mathbb{F})$
- 3. $\mathbb{Z}_p[x]$

Замечание. Возникает проблема: в $\mathbb{Z}_p[x]$ сущесвтует многочлен $x^p - x \equiv 0 \forall x \in \mathbb{Z}_p$. Но тогда у нас будет конечный базис в $\mathbb{Z}_p[x]$, чего не хотелось бы. Определим многочлен по-другому:

Определение 1.4. Многочленом над кольцом R называется бесконечная пооследовательность $a_0, a_1 \ldots$, в которой лишь конечное число коэффициентов отличны от 0. Такие пооследовательности называются финитными.

1.2 Операции над новыми многочленами

Пусть
$$A = (a_i), B = (b_i)$$

- 1. $A + B = C \Leftrightarrow c_i = a_i + b_i$
- 2. $A \cdot B = C \Leftrightarrow c_k = \sum_{i=0}^k a_i b_{k-i}$
- 3. $A \cdot \lambda = C \Leftrightarrow c_k = \lambda \cdot a_i$