

INTRODUCCIÓN A LA COMPUTACIÓN GRÁFICA Instituto de Computación Curso 2012

Práctico Nº 0

Introducción:

El objetivo de este práctico es que el estudiante repase conceptos vistos en otros cursos sobre cálculo vectorial.

Ejercicio 1:

Implemente una clase en C++ (o su equivalente en C) que cumpla con las siguientes características:

- Modele un vector en 3 dimensiones en coordenadas cartesianas.
- Debe implementar las siguientes operaciones:
 - 1. Suma de vectores.
 - 2. Resta de vectores.
 - 3. Multiplicación de un vector por un escalar.
 - 4. Multiplicación de vectores (cross product).
 - 5. Producto interno (dot product).
 - 6. Ángulo entre dos vectores.
 - 7. División de un vector por un escalar.
 - 8. Negar el vector (equivalente a multiplicar el vector por -1).
 - 9. Módulo y módulo al cuadrado de un vector.
 - 10. Normalizar un vector.
 - 11. Vector simétrico según otro vector.

Notas:

- Puede ser interesante pre-calcular algunos valores (ej.: módulo).
- Dado un vector \vec{v} y un vector \vec{N} normalizado, se calcula el simétrico de \vec{v} según \vec{N} como $simetrico(\vec{v}, \vec{N}) = 2 \vec{N} (\vec{N} \cdot \vec{v}) \vec{v}$

Ejercicio 2:

Utilizando el resultado del ejercicio 1, implemente una simulación de lanzamiento de proyectil en 3D con las siguientes características:

- El usuario debe poder ingresar 3 valores correspondientes a la proyección de la velocidad inicial sobre los ejes cartesianos y un valor Δt que indica el intervalo de tiempo.
- La posición inicial del proyectil es el origen.
- La aplicación debe calcular todas las posiciones del proyectil cada Δt segundos hasta que el proyectil tenga altura cero.

Notas:

• El objetivo del ejercicio está centrado en la utilización de vectores para resolver un problema específico, no se requiere presentar el resultado utilizando gráficos 3D.

Versión: 1.0