CSC-591: Foundations of Data Science T/Th. 12:50-2:05pm. EBI-1005.

Ranga Raju Vatsavai

Chancellors Faculty Excellence Associate Professor in Geospatial Analytics Department of Computer Science, North Carolina State University (NCSU) Associate Director, Center for Geospatial Analytics, NCSU &

Joint Faculty, Oak Ridge National Laboratory (ORNL)

W3: 9/1-3/15

UNIVERSITY

Administrative

- Books and Lecture Notes
- Introductory Statistics
 - https://www.openintro.org/stat/
- Linear and Matrix Algebra
 - http://www.math.uwaterloo.ca/~hwolkowi/ matrixcookbook.pdf
 - http://www.mathworks.com/moler/eigs.pdf

9/8/15

© Raju Vatsavai

Today • Basic Linear Algebra and Calculus 9/8/15 **Raju Vatsavai **CSC-591.4**

Linear Algebra • Linear algebra is the study of linear maps on finite-dimensional vector spaces. 9/8/15 © Raju Vatsavai CSC-591.10

Complex Numbers

Definition complex numbers

- A *complex number* is an ordered pair (a, b), where $a, b \in \mathbb{R}$, but we will write this as a + bi.
- The set of all complex numbers is denoted by C:

$$\mathbf{C} = \{a + bi : a, b \in \mathbf{R}\}.$$

• Addition and multiplication on C are defined by

$$(a+bi) + (c+di) = (a+c) + (b+d)i,$$

 $(a+bi)(c+di) = (ac-bd) + (ad+bc)i;$

here $a, b, c, d \in \mathbf{R}$.

9/8/15

© Raju Vatsavai

CSC-591. 11

NC STATE UNIVERSITY

Example

- (2+3i)(4+5i)
- -7 + 22i

9/8/15

© Raju Vatsavai

Properties of Complex Arithmetic

commutativity

$$\alpha + \beta = \beta + \alpha$$
 and $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in \mathbb{C}$;

associativity

$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 and $(\alpha \beta)\lambda = \alpha(\beta \lambda)$ for all $\alpha, \beta, \lambda \in \mathbb{C}$;

identities

$$\lambda + 0 = \lambda$$
 and $\lambda 1 = \lambda$ for all $\lambda \in \mathbb{C}$;

additive inverse

for every $\alpha \in \mathbb{C}$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha + \beta = 0$;

multiplicative inverse

for every $\alpha \in \mathbb{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha\beta = 1$;

distributive property

$$\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$$
 for all $\lambda, \alpha, \beta \in \mathbb{C}$.

9/8/15

© Raju Vatsavai

CSC-591. 13

UNIVERSITY

Vector

- [1.2, 2.5]
 - Is a 2-vector over R, written as R²
 - General notation, R^d
- A vector can be thought as a function
- Fd: {0,1,2,...,d-1} -> F
- Sparse vector
 - If most elements are 0's

Elements of R² can be thought of as points or vectors

9/8/15

© Raju Vatsavai

What kind of data

- Document as bag of words
 - − f : WORDS -> R
- Collections of attributes
 - Physical characteristics of persons
 - Demographic records of customers
- Probability distribution, e.g., {1:1/6, 2:1/6, ..., 6:1/6}
- Images
 - $-\{r, g, b\}$

9/8/15

© Raju Vatsavai

CSC-591. 15

UNIVERSITY

Vector Operations

- Complex numbers, translation is achieved by adding a complex number. f(z) = z + (1+2i)
- Vector addition: add element-wise [u₁,u₂] + [v₁,v₂] = [u₁+v₁, u₂+v₂]
- Scalar-vector multiplication (is a scaling operation): αv

9/8/15

Convex Combinations

- For given $0 \le \alpha \le 1$, and $0 \le \beta \le 1$, and $\alpha + \beta = 1$; an expression of form: $\alpha u + \beta v$ is called convex combination of u and v
- Application (average of two images)
- Lets say u and v are two images, and α =0.5 and β =0.5, the α u + β v is average of two images

9/8/15

© Raju Vatsavai

CSC-591. 17

UNIVERSITY

Vector Operations

- Dot product of two D-vectors is sum of the product of corresponding entries
 - $u.v = \Sigma_{k \in D} u[k]v[k]$
- What do you think the output is?
- Examples
 - Total cost of a product
 - Measuring similarity

9/8/15

© Raju Vatsavai

Vector Space

A *vector space* is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:

commutativity

u + v = v + u for all $u, v \in V$;

associativity

(u+v)+w=u+(v+w) and (ab)v=a(bv) for all $u,v,w\in V$ and all $a,b\in \mathbf{F}$;

additive identity

there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$;

additive inverse

for every $v \in V$, there exists $w \in V$ such that v + w = 0;

multiplicative identity

1v = v for all $v \in V$;

distributive properties

a(u + v) = au + av and (a + b)v = av + bv for all $a, b \in \mathbb{F}$ and all $u, v \in V$.

9/8/15

© Raju Vatsavai

CSC-591. 19

NC STATE

Vector Space F^S

- If S is a set, then \mathbf{F}^S denotes the set of functions from S to \mathbf{F} .
- For $f, g \in \mathbf{F}^S$, the sum $f + g \in \mathbf{F}^S$ is the function defined by

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in S$.

• For $\lambda \in \mathbf{F}$ and $f \in \mathbf{F}^S$, the **product** $\lambda f \in \mathbf{F}^S$ is the function defined by

$$(\lambda f)(x) = \lambda f(x)$$

for all $x \in S$.

- F^S is a vector space
- In general, a vector space is an abstract entity whose elements might be lists, functions, or weird objects.

9/8/15

© Raju Vatsavai

Subspace

- A subset U of V is called a subspace of V if U is also a vector space (using the same addition and scalar multiplication as on V).
- A subset U of V is a subspace of V if and only if U satisfies the following three conditions:
 - Additive identity: 0 ε U
 - Closed under addition: u, w ε U => u + w ε U
 - Closed under scalar multiplication
 a ε F, u ε U => au ε U

9/8/15

© Raju Vatsavai

CSC-591. 21

UNIVERSITY

Important properties of subspaces

Sum of subspaces is the smallest containing subspace Suppose U_1, \ldots, U_m are subspaces of V. Then $U_1 + \cdots + U_m$ is the smallest subspace of V containing U_1, \ldots, U_m .

Direct Sum of Subspaces

Suppose U_1, \ldots, U_m are subspaces of V.

- The sum $U_1 + \cdots + U_m$ is called a **direct sum** if each element of $U_1 + \cdots + U_m$ can be written in only one way as a sum $u_1 + \cdots + u_m$, where each u_j is in U_j .
- If $U_1 + \cdots + U_m$ is a direct sum, then $U_1 \oplus \cdots \oplus U_m$ denotes $U_1 + \cdots + U_m$, with the \oplus notation serving as an indication that this is a direct sum.

9/8/15

© Raju Vatsavai

Linear combination of vectors

- An expression: $\alpha_1 v_1 + ... + \alpha_n v_n$ is a linear combination of vectors $v_1 ... v_n$ and scalars $\alpha_1 ... \alpha_n$ are coefficients of the linear combinations
- Examples
 - Given a set of raw materials, different products can be made with different combinations of materials, then total resource utilization is linear combination of materials for each product ($u = \alpha_1 v_1 + ... + \alpha_n v_n$)
 - In F³ (17,4,2) is a linear combination of (2,1,-3), (1,-2,4) because
 - (17, -4, 2) = 6(2,1,-3) + 5(1,-2,4)

9/8/15

© Raju Vatsavai

CSC-591. 23

NC STATI

Span

The set of all linear combinations of a list of vectors v_1, \ldots, v_m in V is called the **span** of v_1, \ldots, v_m , denoted span (v_1, \ldots, v_m) . In other words,

$$span(v_1, ..., v_m) = \{a_1v_1 + \cdots + a_mv_m : a_1, ..., a_m \in \mathbf{F}\}.$$

The span of the empty list () is defined to be $\{0\}$.

- Previous example shows that in F3
 - $-(17, -4, 2) \epsilon \text{ span}((2,1,-3), (1,-2,4))$
- Spans
 - If span (v₁, ...v_m) equals V, we say that v₁, ..., v_m spans V

9/8/15

© Raju Vatsavai

Linearly independent

- A list v_1, \ldots, v_m of vectors in V is called *linearly independent* if the only choice of $a_1, \ldots, a_m \in \mathbb{F}$ that makes $a_1v_1 + \cdots + a_mv_m$ equal 0 is $a_1 = \cdots = a_m = 0$.
- The empty list () is also declared to be linearly independent.

9/8/15

© Raju Vatsavai

CSC-591. 25

NC STATE UNIVERSITY

Bases

- A basis of V is a list of vectors in V that is linearly independent and spans V.
- Examples
 - The list (1,0, ...,0),(0,1,...,0), ..., (0,...,0,1) is a basis of F^n , called the standard basis of F^n
 - The list (1,2),(3,5) is a basis of F^2

9/8/15

© Raju Vatsavai

Criteria for basis

- A list v₁, ..., v_n of vectors in V is a basis of V if and only if for every v ε V can be written uniquely in the form v = a₁v₁ + ... + a_nv_n, where a₁, ..., a_n ε F.
- Every spanning list in a vector space can be reduced to basis of the vector space
- Every finite-dimensional vector space has a basis

9/8/15

© Raju Vatsavai

CSC-591. 27

NC STATE UNIVERSITY

Matrix Algebra

- Addition
- Multiplication
- Inverse

9/8/15

© Raju Vatsavai

Acknowledgements • Vipin Kumar (Minnesota) • Jiawei Han (UIUC) • Hanspeter Pfister (Harvard) • Larry Wasserman (CMU)