

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

Campus São Paulo

Aluno: Igor Domingos da Silva Mozetic		Prontuário: SP3027422	Nota
Curso: 213 - Informática - Matutino	Ano/Semestre: 2020 / 4º Bimestre.	Data: 09.02.2021	
Avaliação: 2ª Lista de Exercícios - QUI	Professores: Gouveia	Código Disciplina: QUI	

INSTRUÇÕES:

A resposta deve ser acompanhada da linha de raciocínio utilizada na resolução da questão.

Termoquímica – Cálculo da variação de entalpia pela energia de ligação

1. Os valores de energia de ligação entre alguns átomos são fornecidos no quadro abaixo.

Ligaçã	Energia	de	Ligação
0	kJ/mol		
C – H	413		
O = O	494		
C = 0	804		
O – H	463		

Considerando a reação representada por $CH_{4(g)} + 2O_{2(g)} \square CO_{2(g)} + 2H_2O_{(v)}$, o valor aproximado de ΔH ,em kJ, é de:

a) -820

b) -360

c) +106

d) +360

e) +820

Resposta:

Dado	S
------	---

Energia kJ/mol	de	Ligação
413		
494		
804		
463		
	kJ/mol 413 494 804	kJ/mol 413 494 804

$$CH_{4(g)} + 2O_{2(g)} \square CO_{2(g)} + 2H_2O_{(v)}$$

Dada a equação acima e o requerimento do valor aproximado do ΔH , necessitamos realizar a implementação dos valores de ligação de enerdia de ligação no lugar das substâncias na reação. Com isso, teremos:

$$C - H \rightarrow 4$$
. (413kJ) + $O = O \rightarrow 2$. (494kJ) $\rightarrow C = O \rightarrow 2$. (-804kJ) $\rightarrow O - H \rightarrow 4$. (-463kJ)

Ao somarmos os valores, obteremos:

$$(1652kJ + 988kJ) + ((-1608kJ) + (-1852kJ) \rightarrow 2640kJ + (-3460kJ) \rightarrow \Delta H - 820kJ$$

Alternativa correta é a Letra A.

2. (Unifesp) Com base nos dados da tabela:

Ligação	Energia de ligação (kJ/mol)
0 – H	460
H – H	436
0 = 0	490

Pode- se estimar que o $\Box H$ da reação representada em quilojoules por mol de H_2O $_{(g)}$, é igual a:

por: 2 $H_2O_{(g)}$ \square 2 H_2 + O_2 (g), (g)

a) + 239

b) + 478

c) + 1101

d) - 239

e) – 478

Resposta:

Dados:

Ligação	Energia de ligação (kJ/mol)
O – H	460
H-H	436
0 = 0	490

$$2 H_2O_{(g)} \rightarrow 2H_{2(g)} + O_{2(g)}$$

Dada a equação acima e o requerimento do valor aproximado do ΔH , necessitamos realizar a implementação dos valores de ligação de enerdia de ligação no lugar das substâncias na reação. Com isso, teremos:

$$O-H \rightarrow 4$$
. (-460) \rightarrow $H-H \rightarrow 2$. (436) \rightarrow $O=O \rightarrow 1$. (490) \rightarrow

Ao somarmos os valores, obteremos:

$$-1840 + 872 + 490 \rightarrow -1840 + 1362 \rightarrow \Delta H = -478kJ/mol$$

Alternativa correta é a Letra E.

- a) d < 0.154 nm e E > 348 kJ/mol.
- b) d < 0.154 nm e E < 348 kJ/mol.
- c) d = 0.154 nm e E = 348 kJ/mol.
- d) d > 0.154 nm e E < 348 kJ/mol.
- e) d > 0.154 nm e E > 348 kJ/mol.

Resposta: Como para uma ligação dupla existem dois pares de carbono ligados, eles estão mais próximo do que um par de elétron ligado por causa da energia, com isso, a concentração eletrônica é maior na dupla do que na simples, sendo necessário uma energia maior apra romper os mesmo. **Alternativa correta é a Letra A.**