```
In [1]: import pandas as pd
import numpy as np
from sklearn import linear_model
```

```
In [2]: df = pd.read_csv("homepricem.csv")
df
```

Out[2]:

	Unnamed: 0	area	bedrooms	age	price
0	NaN	2600	3.0	20	550000
1	NaN	3000	4.0	15	565000
2	NaN	3200	NaN	18	610000
3	NaN	3600	3.0	30	595000
4	NaN	4000	5.0	8	760000
5	NaN	4100	6.0	8	810000

```
In [4]: import math

d = math.floor(df.bedrooms.median())
d
```

Out[4]: 4

In [12]: df.bedrooms.fillna(d, inplace = True)
df

Out[12]:

	Unnamed: 0	area	bedrooms	age	price
0	NaN	2600	3.0	20	550000
1	NaN	3000	4.0	15	565000
2	NaN	3200	4.0	18	610000
3	NaN	3600	3.0	30	595000
4	NaN	4000	5.0	8	760000
5	NaN	4100	6.0	8	810000

```
In [9]: df
reg = linear_model.LinearRegression()
```

```
In [13]: reg.fit(df[['area','bedrooms','age']],df.price)
```

Out[13]: LinearRegression()

```
In [15]: reg.coef_
Out[15]: array([ 112.06244194, 23388.88007794, -3231.71790863])
In [16]: reg.intercept
Out[16]: 221323.00186540408
In [17]: reg.predict([[3000,3,40]])
Out[17]: array([498408.25158031])
In [18]: reg.predict([[2500,4,5]])
Out[18]: array([578876.03748933])
In [19]: | df = pd.read_csv("hiring.csv")
In [28]: df
Out[28]:
              Unnamed: 0
                          experience test_score(out of 10) interview_score(out of 10) salary($)
           0
                                   0
                                                                                    50000
                                                     8.0
                                                                              9
                     NaN
                                                                               6
                                                                                    45000
                     NaN
                                   0
                                                     8.0
           2
                     NaN
                                 five
                                                     6.0
                                                                              7
                                                                                    60000
           3
                                                    10.0
                                                                              10
                                                                                    65000
                     NaN
                                 two
                     NaN
                               seven
                                                     9.0
                                                                              6
                                                                                    70000
           5
                                                     7.0
                                                                              10
                                                                                    62000
                     NaN
                                three
                     NaN
                                 ten
                                                    NaN
                                                                              7
                                                                                    72000
           7
                     NaN
                                                     7.0
                                                                              8
                                                                                    80000
                              eleven
          df.experience = df.experience.fillna("zero")
In [26]:
          df
Out[26]:
              Unnamed: 0
                          experience test_score(out of 10) interview_score(out of 10) salary($)
           0
                                   0
                                                                              9
                                                                                    50000
                     NaN
                                                     8.0
                                   0
                                                     8.0
                                                                               6
                                                                                    45000
           1
                     NaN
                                                                              7
                                                                                    60000
           2
                     NaN
                                 five
                                                     6.0
           3
                     NaN
                                                    10.0
                                                                              10
                                                                                    65000
                                 two
                     NaN
                                                     9.0
                                                                              6
                                                                                    70000
                               seven
           5
                                                     7.0
                                                                              10
                                                                                    62000
                     NaN
                                three
                                                                              7
                                                                                    72000
           6
                     NaN
                                 ten
                                                    NaN
                                                     7.0
                                                                              8
                                                                                    80000
           7
                     NaN
                              eleven
```

```
In [27]: df.experience = df.experience.apply(w2n.word_to_num)
df
```

----> 1 df.experience = df.experience.apply(w2n.word_to_num)
2 df

NameError: name 'w2n' is not defined

```
In [57]: d = pd.read_csv("hiring.csv")
d
```

Out[57]:

	Unnamed: 0	experience	test_score	interview_score	salary
0	NaN	0	8.0	9	50000
1	NaN	0	8.0	6	45000
2	NaN	5	6.0	7	60000
3	NaN	2	10.0	10	65000
4	NaN	7	9.0	6	70000
5	NaN	3	7.0	10	62000
6	NaN	10	NaN	7	72000
7	NaN	11	7.0	8	80000

```
In [51]: import math
p = math.floor(d.test_score.mean())
p
```

Out[51]: 7

```
In [58]: d.test_score.fillna(p, inplace = True)
d
```

Out[58]:

	Unnamed: 0	experience	test_score	interview_score	salary
0	NaN	0	8.0	9	50000
1	NaN	0	8.0	6	45000
2	NaN	5	6.0	7	60000
3	NaN	2	10.0	10	65000
4	NaN	7	9.0	6	70000
5	NaN	3	7.0	10	62000
6	NaN	10	7.0	7	72000
7	NaN	11	7.0	8	80000

```
In [59]: reg = linear_model.LinearRegression()
In [60]: reg.fit(d[['experience','test_score','interview_score']],d.salary)
Out[60]: LinearRegression()
In [61]: reg.coef_
```

```
In [61]: reg.coef_
```

```
Out[61]: array([2922.26901502, 2221.30909959, 2147.48256637])
```

```
In [62]: reg.intercept_
```

Out[62]: 14992.65144669314

```
In [63]: reg.predict([[2,9,6]])
```

Out[63]: array([53713.86677124])

```
In [64]: reg.predict([[12,10,10]])
```

Out[64]: array([93747.79628651])

```
In [ ]:
```