Session #1: Linear Models

Guy F. Sutton

Centre for Biological Control Rhodes University, South Africa Email: g.sutton@ru.ac.za

Linear Models

- Aims of linear regression
 - 1. Is there a relationship/correlation between Y and X?
 - 2. Is there a difference in Y due to the values of X?
 - 3. Can I use X to predict Y?

Linear regression basics

Is female femur length correlated with body size?

Response variable

- What is our response/dependent variable?
 - The measure we are interested in predicting or explaining
 - Body mass (bodyMass)
 - Usually denoted by y or Y

Predictor variable

- What is our covariate/fixed effect/predictor variable?
 - The variable used to explain the variation/differences observed in the response variable
 - Femur length (femurLength)
 - Usually denoted by x, X, or Xn

Model fitting

Linear model formula

In R, we can fit a simple linear model using:

```
m1 \leftarrow glm(y \sim x, data = data)
```

- Where:
 - m1 is a object name where we store our model
 - glm is a built-in function to run a linear model
 - data is the name of the dataset containing our data
 - y is the column name in data containing our response variable
 - x is the column name in data containing our predictor variable

Insert data object name

The data is stored in an object called df

```
1 head (df, 10)
# A tibble: 10 \times 2
  femurLength bodyMass
       <dbl> <dbl>
       14.0 144.
      21.4 162.
    25.4 177.
      8.27 122.
      22.1 162.
6
      22.5 168.
       17.1
               147.
       17.3 153.
      17.2
               153.
10
       15.5
               146.
  m1 < - glm(
   y ~ x,
   data = df
 4 )
```

Insert response variable name

The response variable is stored in a column called bodyMass

```
1 head (df, 10)
\# A tibble: 10 \times 2
  femurLength bodyMass
       <dbl> <dbl>
       14.0 144.
      21.4 162.
   25.4 177.
      8.27 122.
   22.1 162.
      22.5 168.
      17.1 147.
      17.3 153.
      17.2 153.
10
      15.5
               146.
 1 m1 <- glm(
   bodyMass ~ x,
   data = df
 4 )
```

Insert predictor variable name

The predictor variable is stored in a column called femurLength

```
1 head (df, 10)
# A tibble: 10 \times 2
  femurLength bodyMass
       <dbl>
               <dbl>
       14.0 144.
       21.4 162.
      25.4 177.
      8.27 122.
      22.1 162.
       22.5 168.
6
       17.1
           147.
      17.3 153.
       17.2 153.
10
       15.5 146.
   m1 < - qlm(
   bodyMass ~ femurLength,
    data = df
 4
```

Research question

Simple linear regression modelling body mass as a linear function of femur length

- Research Q: Is there a correlation between femurLength and bodyMass?
 - I.e. What is the relationship between femurLength and bodyMass?
 - I.e. Do larger individuals weigh more?

```
1 m1 <- glm(
2 bodyMass ~ femurLength,
3 data = df
4 )</pre>
```

Model equation

Simple linear regression modelling body mass as a linear function of femur length

```
1 m1 <- glm(
2 bodyMass ~ femurLength,
3 data = df
4 )</pre>
```

bodyMass = $\beta_0 + \beta_1$ (femurLe

Global intercept

bodyMass =
$$\beta_0 + \beta_1$$
 (femurLe

- Intercept
 - The expected value of Y (bodyMass) when X = 0 (femurLength = 0)

Beta coefficient

bodyMass =
$$\beta_0 + \beta_1$$
 (femurLe

- Beta coefficient / slope coefficient
 - The expected change in Y (bodyMass) for every unitchange in X (femurLength)
 - E.g. For every 1mm increase in femurLength, by how much does bodyMass change, on average?

Error term

bodyMass =
$$\beta_0 + \beta_1$$
 (femurLe

- Error term
 - The difference between the actual Y-values (measured bodyMass values) and the expected value of Y based on the model we have fit
 - This effectively tells us how much of the observed variation in bodyMass is NOT due to the linear effect of femurLength

Model summary - intercept

```
m1 <- glm(bodyMass ~ femurLength, data = df)</pre>
  2 summary (m1)
Call:
glm(formula = bodyMass ~ femurLength, data = df)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 100.7075 2.0605 48.88 <2e-16 ***
femurLength 2.9739 0.1038 28.66 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 26.88972)
    Null deviance: 24717.8 on 99 degrees of freedom
Residual deviance: 2635.2 on 98 degrees of freedom
AIC: 616.94
Number of Fisher Scoring iterations: 2
• \beta = 100.70
```

- When femurLength = 0 mm, the expected bodyMass = 100.70mg
 - Open Does this make sense?

Model summary - slope

```
1 m1 <- glm(bodyMass ~ femurLength, data = df)</pre>
  2 summary (m1)
Call:
glm(formula = bodyMass ~ femurLength, data = df)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 100.7075 2.0605 48.88 <2e-16 ***
femurLength 2.9739 0.1038 28.66 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 26.88972)
    Null deviance: 24717.8 on 99 degrees of freedom
Residual deviance: 2635.2 on 98 degrees of freedom
AIC: 616.94
Number of Fisher Scoring iterations: 2
• \beta = 2.97
```

- - The expected change in bodyMass for every 1-unit change in femurLength
 - E.g. For every 1mm increase in femurLength, bodyMass increases by 2.97mg, on average

Model diagnostics

Model diagnostics

For our model and any inferences to be valid, we need to check that it meets a few assumptions:

- 1. Linearity: Linear relationship between Y (bodyMass) and X (femurLength)
- 2. Independence: Data points are independent (no connection or unaccounted for clustering of data)
- 3. Normality: Responses are normally distributed for each level in X
- 4. Equal variance: The variation in responses are equal for each level in X

1. Linearity

Looks like there is a linear relationship between bodyLength and femurLength.

1. Linearity

- Need to confirm that our model was specified correctly to capture this relationship
 - Usearesidual vs fitted plot
 - Residuals should cluster around y = 0, no pattern evident

- Independence is almost impossible to diagnose with a plot or statistical test.
 - Independence is a property of the experimental design
 - Observations are not grouped or clustered, not more similar to each other in a systematic way

- Let's consider a study where we observe 40 male wasps and count how many females they mate with over a 10 minute period?
 - Do larger males attract more mates?

• If we correlate male body size with no. of mates, there is a clear positive relationship, right?

• If we consider that 10 males were sampled from each of 4 field sites, and account for this non-independence in our model, the relationship between male body size and number of mates is negative.

3. Normality

- Need to confirm that our responses are normally distributed for each level of
 - Use a Quantile-quantile (QQ) plot
 - Residuals should cluster around slope = 1 curve, no pattern evident

3. Normality

- Kolmogoroz-Smirnoff (KS) test is a formal test of whether residuals are significantly different from expectation under normal distribution
 - P > 0.05 = Model residuals are approximately normal
 - P < 0.05 = Model residuals are significantly different from normal

4. Equal variance

- The variation in responses are equal for each level in X
 - Spread of Y values on the y-axis should be similar for all values/groups of
 - Bold lines should fall along the dotted y = [0.25, 0.50, 0.75] lines

Model inference

Model inference

- We have confirmed that our statistical model was a good fit to the data, and we have even confirmed that femurLength was positively correlated with bodyMass.
 - But, how do we know if this result is statistically significant and calculate p-values, and all the things reviewers (and supervisors want!)?
 - Hint: We need to fit another model

Null hypothesis significance testing (NHST)

- Most model inference in ecology is based on Null hypothesis significance testing (NHST)
 - The effect of a factor/covariate/predictor (e.g. X >
 femurLength) is evaluated against the hypothesis that
 there is no effect or relationship between the variable and
 Y (e.g. bodyMass)
 - To assess this, we need:
 - 1. A Global model, and
 - 2. A null model

What is a global model?

- Global model represents the alternative hypothesis (H₁)
 - The alternative hypothesis is that there is evidence for a statistically significant effect/relationship of our predictor variable(s) (femurLength) on our response variable (bodyMass)

What is a null model?

- Null model represents the null hypothesis (H₀).
 - The null hypothesis is that there is no evidence for a statistically significant effect/relationship of our predictor variable(s) (femurLength) on our response variable (bodyMass)

Null vs global model

1. Global model (H_1): There is a relationship between femurLength and bodyMass.

```
1 mod_global <- glm(
2   data = df,
3   family = gaussian(link = "identity"),
4   bodyMass ~ 1 + femurLength
5 )</pre>
```

2. Null model (H₀): There is no statistical evidence for a relationship between femurLength and bodyMass.

```
1 mod_null <- glm(
2   data = df,
3   family = gaussian(link = "identity"),
4   bodyMass ~ 1
5 )</pre>
```

Null vs global model

Hypothesis testing

- Finally, we have to actually perform a hypothesis test
 - Was the global model (H₁) or the null model (H₀) better supported by the data?
- To do this, we use the Likelihood Ratio Test (LRT)
 - In R, we perform the LRT using the following code:
 - lmtest::lrtest(mod_null, mod_global)
 - Asks which model likely fits the data better (goodness-offit test)

Likelihood Ratio Test (LRT)

2 3 -305.47 1 223.86 < 2.2e-16 ***

• This test gives us our test statistic (X2), degrees of freedom (df), and our sacred p-value.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Reporting LRT

```
1 # Perform LRT
2 lmtest::lrtest(
3   mod_null,
4   mod_global
5 )

Likelihood ratio test

Model 1: bodyMass ~ 1

Model 2: bodyMass ~ 1 + femurLength
   #Df LogLik Df Chisq Pr(>Chisq)
1   2 -417.40
2   3 -305.47  1 223.86  < 2.2e-16 ***</pre>
```

- There is a statistically significant relationship between femurLength and bodyMass (X2 = 223.86, df = 1, P < 0.001).
 - We know that one of the models was better than the other because the P < 0.05

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

■ We then can tell that model 2 (mod_global) is the better model because it has a higher likelihood (logLik = -305.47) than model 1 (mod_null) (logLik = -417.40)

Plotting model predictions (marginal effects)

Marginal effects

Easiest way to present results is typically a marginal effects plot.

- Marginal effects show the relationship between our predictor(s) and response variable, holding all other predictors in the model constant or at a specified value
 - In this example, we only have 1 predictor, so the marginal effects plot simply shows the relationship between femurLength and bodyMass

Extracting marginal means

```
# Extract expected relationship between X and Y
 2 preds <- ggeffects::ggeffect(</pre>
     model = mod global,
    terms = c("femurLength [0:35 by = 0.5]"),
    type = "fixed",
    interval = "confidence"
   # Convert predictions into a data.frame
    as.data.frame() %>%
10
    # Rename columns for easier plotting
11
    dplyr::mutate(
12
    femurLength = x
13
```

Plot marginal effect plot

Plot

Code

Reporting your results

There was a statistically significant relationship between femurLength and bodyMass (X2 = 223.86, df = 1, P < 0.001). The beta-coefficient for this relationship was 2.97, indicating that for every 1mm increase in femurLength, bodyMass increases by 2.97mg, on average. (Insert your plot).