PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

C07C 51/41, C08K 5/098		(11) International Publication Number: WO 99/1030
CO7C 3D41, COOK 3/076	A1	(43) International Publication Date: 4 March 1999 (04.03.99
 21) International Application Number: PCT/US9 22) International Filing Date: 24 August 1998 (2 30) Priority Data: 08/918,488 26 August 1997 (26.08.97) 71) Applicant: OMG AMERICAS, INC. [US/US]; 811 Drive, Westlake, OH 44145 (US). 72) Inventors: KHATTAR, Rajesh; 330 Manchester Coumond Heights, OH 44143 (US). LABOVITZ, Be Paul; 2172 Rexwood Road, Cleveland Heights, OI (US). BAKER, Paulette; 17340 Haskins Road, Falls, OH 44023 (US). 74) Agents: JOSEPHIC, David, J. et al.; Wood, Herron & L.L.P., 2700 Carew Tower, Cincinnati, OH 45202 	U Sharo rt, Rich enjamin H 4411 Chagri	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, G GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, K LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MN MX; NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, T TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO pate (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian pate (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European pate (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, I LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, C CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt amendments.
METAL STABILIZERS CONTAINING SAM WITH (57) Abstract Shelf stable liquid overbased calcium carboxylates are in the presence of a promoter mixture with a phenol and an Mixed metal stabilizer compositions are prepared by blen	TE, AN prepare alcoholing the	OF LIQUID OVERBASED CALCIUM CARBOXYLATES, MIXE D STABILIZING HALOGEN-CONTAINING POLYMERS THER! d by reacting a calcium base with a monocarboxylic acid, and carbonating under controlled temperature conditions, to produce shelf stable liquid estable liquid calcium carboxylate with a metal carboxylate of zingle and are used for stabilizing halogen-containing polymers to provide
	. •	
	. •	

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	•							
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			

PROCESS FOR IMPROVING SHELF STABILITY OF LIQUID OVERBASED CALCIUM CARBOXYLATES, MIXED METAL STABILIZERS CONTAINING SAME, AND STABILIZING HALOGEN-CONTAINING POLYMERS THEREWITH

5 FIELD OF THE INVENTION

The present invention relates to a process for producing shelf stable liquid overbased calcium carboxylates and mixed metal stabilizers containing the overbased calcium carboxylate and a metal carboxylate of zinc, cadmium or tin. The shelf stable mixed metal stabilizer compositions are used as stabilizers for halogen-containing polymers such as polyvinyl chloride (PVC).

BACKGROUND OF THE INVENTION

The preparation of overbased calcium or barium salts of carboxylic acids, alkyl phenols, and sulfonic acids are disclosed in the following U. S. Patents: 2,616,904; 2,760,970; 2,767,164; 2,798,852; 2,802,816; 3,027,325; 3,031,284; 3,342,733; 3,533,975; 3,773,664; and 3,779,922. The use of these overbased metal salts in the halogencontaining organic polymer is described in the following U.S. Patents:

10

10

15

20

4,159,973; 4,252,698; and 3,194,823. The use of overbased barium salt in stabilizer formulations has increased during recent years. This is due, in the main, to the fact that overbased barium salts possess performance advantages over the neutral barium salts. The performance-advantages—associated with overbased barium salts are low plate-out, excellent color hold, good long-term heat stability performance, good compatibility with the stabilizer components, etc. Unfortunately, most of the overbased barium salts are dark in color and, while these dark colored overbased barium salts are effective stabilizers for halogen-containing organic polymer, their dark color results in the discoloration of the end product. This feature essentially prohibits the use of dark colored overbased barium salts in applications where a light colored polymer product is desired.

According to the teachings of U. S. Patent No. 4,665,117, light colored alkali or alkaline earth metal salts are prepared where alkyl phenol is used as a promoter. However, alkyl phenol is also a major cause for the development of color in the final product. This problem is overcome by the use of propylene oxide which displaces the hydrogen of the phenolic hydroxyl group and thereby restricts the formation of colored species. However, there are disadvantages associated with this approach, principally due to the toxic nature of propylene oxide. Propylene oxide is classified as a possible carcinogen and laboratory animal inhalation studies have shown evidence of a link to cancer. Propylene oxide is also listed as a severe eye irritant, and prolonged exposure to propylene oxide vapors may result in

10

15

20

flammable and explosive in nature under certain conditions. Propylene oxide boils at 94° F and flashes at -20° F. As a result, extreme precautions are required to handle propylene oxide at the plant site. Special storage equipment is required for propylene oxide and other safety features are necessary. U. S. Patent No. 4,665,117 describes the use of propylene oxide at 150° C. At this temperature, propylene oxide will be in the gaseous phase. Under these operating conditions, more than stoichiometric amounts of propylene oxide are required to carry the reaction to completion because propylene oxide will escape from the reaction mixture and this requires additional handling of the excess propylene oxide.

With the movement in the plastics industry to remove heavy metals, liquid calcium-zinc stabilizers are desirous, but not practical, as replacements for barium-cadmium or barium-zinc. Low metal concentrations, poor compatibility, haziness in clear products and plate out during processing in PVC have severely limited the universal acceptance of calcium based liquid stabilizer compositions. Problems are encountered in the stability of these compositions upon standing or storage. Storage stability is due to the incompatibility among the metal salts employed in the composition and is exhibited by increased turbidity, viscosity, or insoluble solids over time. As a result, the liquid calcium compositions are no longer homogeneous or readily pourable and must be specially treated in order to be used. U. S. Patent No. 5,322,872 is directed to stabilized compositions

15

20

of mixed metal carboxylates having improved storage stability. According to this patent, a complexing agent is added to the mixed metal carboxylate in order to improve shelf stability. Complexing agents disclosed in this patent include phosphines, phosphites, aromatic cyanides, aromatic hydroxy compounds, oximes and other compounds.

Notwithstanding the state of the art as exemplified by the above patents, there is a need for further improvements in making shelf stable compositions of calcium carboxylates and in methods for their use in stabilizing halogen-containing polymers.

10 SUMMARY OF THE INVENTION

The present invention relates to a process for making a shelf stable liquid overbased calcium carboxylate and a mixed metal stabilizer composition of (a) an overbased calcium carboxylate/carbonate and (b) a metal carboxylate. The metal carboxylate is preferably selected from the group of zinc, cadmium and tin fatty acid salts. The process involves preparing a reaction mixture containing a basic calcium carboxylate/carbonate under controlled temperature conditions with a mixture of alcohol and phenolic promoters to make a stable liquid. The stable liquid is then added to the metal carboxylate to provide the shelf stable mixed metal stabilizer composition.

The overbased calcium carboxylate/carbonate is made by reacting a basic calcium compound, a carboxylic acid, a phenol/alcohol promoter mixture and carbon dioxide to produce a stable liquid. The

10

15

20

temperature conditions of the reaction mixture must be controlled up to a temperature of about 80° C, preferably in the range of about 15° C to about 80° C, to produce a stable liquid. Above about 80° C, the reaction stalls and the desired stable liquid product is not obtained. Thereafter, the stable liquid is added to a metal soap stabilizer selected from the group of zinc, cadmium and tin carboxylates to provide a shelf stable mixed metal stabilizer composition.

The liquid overbased calcium carboxylate/carbonate may be first treated with an organic phosphite to react with any phenolic color-producing component to improve its color as disclosed in United States Application Serial No. 08/744,642, filed November 6, 1996, and this application in its entirety is incorporated herein by reference. As disclosed in that patent application, organic phosphites suitable for use include various diorganic phosphites and triorganic phosphites to react with color species which may be produced by or in conjunction with the phenol.

A number of benefits are obtained by the inventive process over the prior art methods. Improvements in shelf stability of liquid overbased calcium carboxylates are achieved. Also, shelf stable mixed metal stabilizer systems of an overbased calcium carboxylate/carbonate and metal soap stabilizers are obtained. For example, enhanced shelf stability for the liquid overbased calcium carboxylates and mixed metal stabilizer compositions of this invention have been demonstrated over presently commercially available products. Whereas, in contrast, presently available

10

15

20

liquid overbased calcium carboxylates exhibit an early development of turbidity, the liquid compositions of this invention remain stable over extended periods of time. Therefore, they allow easy handling, storage and filtration. When the mixed metal stabilizer systems containing the liquid calcium carboxylates are employed in vinyl halide polymers, they exhibit better compatibilities with improvements in thermal stability, clarity and plate out.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

A. Shelf Stable Liquid Overbased Calcium Carboxylate

Highly overbased calcium carboxylate is prepared by reacting calcium hydroxide with oleic acid in the presence of a mixture of alcohols and alkyl phenol followed by bubbling carbon dioxide through the reaction mixture. The product contains about 13-14% calcium. This product, when combined with other stabilizer additives, for example zinc carboxylate, phosphite, anti-oxidant, β-diketones, etc., produced a shelf stable mixed calcium/zinc stabilizer composition. Up until this invention, making a shelf stable calcium/zinc stabilizer composition was a problem due to the limited solubility of the available 14% calcium carboxylate. For example, PlastiStab 2118, produced by Lubrizol, is a hazy stabilizer composition and the haze eventually settles out thereby disturbing the homogeneity of the stabilizer. However, with the products and mixed metal stabilizers of this invention, shelf stabilities are achieved.

10

15

20

More generally, the process of the present invention for improving the stability of basic calcium carboxylates and mixed metal stabilizers comprises the steps of (A) preparing, in the absence of free oxygen, a mixture comprising a calcium metal base, at least one monocarboxylic acid, and a phenolic/alcohol promoter mixture to facilitate the incorporation of the calcium into the overbased carboxylate, and the ratio of equivalents of the calcium base to the combination of the other components being greater than 1:1, (B) treating said mixture with an acidic gas in the absence of free oxygen until the titratable basicity (phenolphthalein indicator) of the mixture has been substantially reduced, and (C) treating the reaction mixture containing the basic calcium organic salt with an organic phosphite which reacts with the color-producing component present in the final mixture. It is preferred that the entire process involving steps (A), (B) and (C) be conducted in the absence of free oxygen since the presence of oxygen or oxidizing agents results in more highly colored product. Generally, the process is conducted in an atmosphere of nitrogen.

The most critical features of the method include the use of a phenol or alkyl phenol and alcohol as the carbonation aid or promoter. Furthermore, the temperatures of the reaction must be controlled up to about 80° C, preferably in the ranges of about 15° C to about 80° C. It has been unexpectedly found that stable liquid overbased calcium carboxylates can be produced by this method. Moreover, these liquids are compatible

10

15

20

in the mixed metal stabilizer system with a metal carboxylate (a metal carboxylate soap), such as zinc octoate. It is also preferred to include step (C) wherein the basic calcium organic salt, which is produced as an intermediate or reaction product at the conclusion of step-(B), is treated with an organic phosphite capable of inhibiting and/or destroying the color-producing component or product which may be generated by the phenol or phenolic reaction product in the above-described reaction. If the color-producing component is not inhibited and/or destroyed in accordance with the method of the above identified '642 application, the product obtained by the process is darker in color and, on standing, continues to darken in color. When the process of that application is followed, the initial product is light in color and does not appreciably darken on standing. Acceptable color by ASTM D1500 standard is up to about 3, preferably about 1 to 2.

B. <u>Overbased Calcium Carboxylates</u>

Throughout this specification and claims, the term "basic" or "overbased" as applied to the calcium organic salts is used to refer to calcium compositions wherein the ratio of total metal contained therein to the organic moieties is greater than the stoichiometric ratio of the neutral metal salt. That is, the number of calcium equivalents is greater than the number of equivalents of the organic moiety. In some instances, the degree to which excess calcium is found in the basic metal salt is described in terms of a "metal ratio". Metal ratio as used herein indicates the ratio of total calcium in the oil-soluble composition to the number of equivalents of

10

15

20

the organic moiety. The basic metal salts often have been referred to in the art as "overbased" or superbased" to indicate the presence of an excess of the basic component.

The calcium metal base is utilized in the process and may be derived from any of the alkaline earth metals. The calcium metal bases include the metal oxides and hydroxides, and in some instances, the sulfides, hydrosulfides, etc. In addition to the calcium metal base, the reaction mixture contains at least one monocarboxylic acid. monocarboxylic acids may be aliphatic or aromatic monocarboxylic acids or mixtures thereof. Among the aliphatic monocarboxylic acids which can be utilized in the present invention are the aliphatic monocarboxylic acids containing an average of at least about 6 carbon atoms and more generally an average of from about 6 to about 30 carbon atoms. The mixture useful in step (A) contains at least one phenol, preferably an alkyl phenol, and an aliphatic alcohol which serve as promoters in the overall process. The alkyl phenols preferably include dodecylphenol and nonylphenol. The alcohols which are useful as promoters include any one of the various available substituted or unsubstituted aliphatic or cycloaliphatic alcohols containing from 1 to about 20 or more carbon atoms. The amounts of the phenol and alcohol included in the mixture as promoters are not critical. The promoters are included in the mixture to contribute to the utilization of the acidic gas during treatment of the mixture with the acidic gas. Generally, at least about 0.1 equivalent and preferably from about 0.05 to about 1.5 equivalents of the phenol and the alcohol per equivalent of a monocarboxylic is employed. Water, which may optionally also be present in the mixture, may be present as water added as such to the mixture, or the water may be present as "wet alcohol", "wet" phenol, hydrates of the alkali or alkaline earth metal salts, or other type of chemically combined water with the metal salts.

-10-

In addition to the components described above, the reaction mixtures used to prepare the basic metal salts ordinarily will contain a diluent. Generally, any hydrocarbon diluent can be employed, and the choice of diluent is dependent in part on the intended use of the mixture. Most generally, the hydrocarbon diluent will be a non-volatile diluent such as the various natural and synthetic oils of lubricating viscosity.

The amount of calcium metal base utilized in the preparation of basic carboxylates preferably provides a highly overbased product, for example, 13-14% calcium, or over a range of about 5-14%. Larger amounts can be utilized to form more basic compounds, and the amount of metal base included may be any amount up to that amount which is no longer effective to increase the proportion of metal in the product. When preparing the mixture, the amount of phenol and alcohol included in the mixture is not critical except that the ratio of equivalents of monocarboxylic acid to other components should be at least about 1.1:1; that is, the monocarboxylic acid is present in excess. The ratio of equivalents of the metal base of the combination of the other components in mixture should

5

10

15

10

15

20

be greater than 1:1 in order to provide a basic product. More generally, the ratio of equivalents will be at least 3:1.

The step of the process (B) involves treating the mixtures described above with an acidic gas in the absence of free oxygen until the titratable basicity is determined using a phenolphthalein. Generally, the titratable basicity is reduced to a base number below about 10. The first two steps of the process of the present invention require low temperature operating conditions and preferably the exclusion of free oxygen. The ingredients in step (A) are mixed, heated to a low temperature of about 15° C to about 80° C, and then treated with the acidic gas. carbonation, and the mixture may be heated to a temperature of about 120-125° C which is sufficient to drive off water and alcohol contained in the mixture. The treatment of the mixture with the acidic gas preferably is conducted at low temperatures, and the range of temperatures used for this step may be any temperature above ambient temperature up to about 150° C, and more preferably from a temperature of about 15° C to about 80° C. By the term "acidic gas" as used in this specification and in the claims is meant a gas which upon reaction with water will produce an acid. Thus, such gases as sulfur dioxide, sulfur trioxide, carbon dioxide, carbon disulfide, hydrogen sulfide, etc., are exemplary of the acidic gases which are useful in the process of this invention. Of these acids, sulfur dioxide and carbon dioxide are preferred, and the most preferred is carbon dioxide.

10

15

20

C. Metal Carboxylates or Soaps

The metal carboxylates or soaps are well known primary stabilizers and are preferably selected from the group of zinc, cadmium and tin carboxylates. Metal salts of carboxylic acids having at least six carbon atoms have been widely used as stabilizers for polyvinyl chloride and other halogen-containing polymers. These chemical stabilizers protect halogenated vinyl polymers from rapid decomposition due to exposure to heat and act as hydrochloric acid acceptors. Examples of mono-carboxylic acids used to form these metal soaps include saturated and unsaturated acids, namely, dodecanoic acid, oleic acid, stearic acid, linoleic acid, tall oil acid, or mixtures of one or more of these acids. These carboxylic acids contain from about six to about twenty-two carbon atoms, or more, and an extensive discussion is found in Kirk-Othmer "Encyclopedia of Chemical Technology", 3rd Edition, 1978, John Wiley & Sons, New York, pages 814-871, which is incorporated herein in its entirety by reference.

D. Organic Phosphites

The third step in the process of the present invention involves (C) treating the reaction mixture with at least one organic phosphite which is capable of reducing, inhibiting, and/or eliminating the color-producing component of phenol or phenolic reaction during the above-described process in steps (A) and (B).

Preferably, the composition or reaction product obtained in step (B) is post-treated with at least one organic phosphite. Without

limitation, the organic phosphites may be generally characterized by the formula

in which R₁, R₂ and R₃ are hydrogen, alkyl, alkenyl, aryl, alkaryl, aralkyl and cycloalkyl radicals or groups, and substituted derivatives thereof. Thus, triphosphites and diphosphites are suitable including trialkyl or dialkyl phosphites, for example, having from about 1 to 18 carbon atoms. Specific 10 examples of organic phosphites, including the preferred liquid organic 15

phosphites, are tributyl phosphite, triisooctyl phosphite and triisodecyl phosphite, diisooctyl phosphite, dibutyl phosphite and tetrakis isodecyl 4,4isopropylidene diphosphite, diphenyl isodecyl phosphite, phenyl neopentylene glycol phosphite, diphenyl phosphite, triphenyl phosphite, phenyl diisodecyl phosphite and poly(dipropyleneglycol phenyl phosphite. Other organic phosphites may be used in view of this description and exemplification. The amounts of the organic phosphites suitable for use in the treatment are sufficient to inhibit or destroy the color-producing body. More specifically, a molar ratio of phenol to organic phosphite should be between about 0.5-2:1 in order to substantially completely inhibit or destroy the color-producing body.

E. Halogen-Containing Polymer

A halogen-containing polymer, such as a vinyl halide resin, most commonly stabilized with the basic metal salts of this invention is

10

15

20

polyvinyl chloride. It is to be understood, however, that this invention is not limited to a particular vinyl halide resin such as polyvinyl chloride or its copolymers. Other halogen-containing resins which are employed and which illustrate the principles of this invention include chlorinated polyethylene, chlorosulfonated polyethylene, chlorinated polyvinyl chloride, and other vinyl halide resin types. Vinyl halide resin, as understood herein, and as appreciated in the art, is a common term and is adopted to define those resins or polymers usually derived by polymerization or copolymerization of vinyl monomers including vinyl chloride with or without other comonomers such as ethylene, propylene, vinyl acetate, vinyl ethers, vinylidene chloride, methacrylate, acrylates, styrene, etc. A simple case is the conversion of vinyl chloride H2C=CHCl to polyvinyl chloride (CH₂CHCl-), wherein the halogen is bonded to the carbon atoms of the carbon chain of the polymer. Other examples of such vinyl halide resins would include vinylidene chloride polymers, vinyl chloride-vinyl ester copolymers, vinyl chloride-vinyl ether copolymers, vinyl chloride-vinylidene copolymers, vinyl chloride-propylene copolymers, chlorinated polyethylene. and the like. Of course, the vinyl halide commonly used in the industry is the chloride, although others such as bromide and fluoride may be used. Examples of the latter polymers include polyvinyl bromide, polyvinyl fluoride, and copolymers thereof.

Mixed metallic carboxylates of liquid overbased calcium carboxylate/carbonate and zinc carboxylate blends with other stabilizers

such as beta-diketones, phosphite and phenolic antioxidants have been employed in the following examples to illustrate the practice of this invention. The following examples illustrate the preparation of the basic calcium carboxylate/carbonate_salts in accordance with the method of the present invention, but these examples are not considered to be limiting the scope of this invention. Unless otherwise indicated in the following examples and elsewhere in the specification and claims, all parts and percentages are by weight, and all temperatures are in degrees centigrade.

PREPARATION OF STABLE LIQUID OVERBASED CALCIUM CARBOXYLATE

10

15

20

5

Example 1

Charge mineral oil (290 gm), oleic acid (186 gm), butanol (64 gm), methanol (64 gm), amyl alcohol (64 gm), dodecyl phenol (70 gm), water (19 gm) and calcium hydroxide (243 gm). Start mixing and make sure that all calcium hydroxide is mixed and does not clump up or stick to the bottom of the reactor. Start carbon dioxide sparge, set the flow meter at 3 SCFH. Set the temperature to 40° C, watch the reaction closely, take sample every 0.5 hour and centrifuge. After the carbonation is complete, heat the reation to 120-125° C over a period of 1 hour. Remove all the distillates from the reaction. Once all the water has been removed, filter the product. The resulting filtered product is a pale brown viscous product containing 13-14% calcium.

10

15

20

Example 2

Charge mineral oil (290 gm), oleic acid (186 gm), butanol (64 gm), methanol (64 gm), amyl alcohol (64 gm), nonyl phenol (60 gm), water (19 gm) and calcium hydroxide (243 gm). Start mixing and make sure that all calcium hydroxide is mixed and does not clump up or stick to the bottom of the reactor. Start carbon dioxide sparge, set the flow meter at 3 SCFH. Set the temperature to 40° C, watch the reaction closely, take sample every 0.5 hour and centrifuge. After the carbonation is complete, heat the reaction to 120-125° C over a period of 1 hour. Remove all the distillates from the reaction. Once all the water has been removed, filter the product. The resulting filtered product is a pale brown viscous product containing 13-14% calcium.

SHELF STABILITY TESTS

Shelf Stability of the Liquid Overbased Calcium Carboxylate/Carbonate of Example 1 (referred to as New Calcium)

Shelf stability of the liquid overbased calcium carboxylate/carbonate of Example 1 (referred to hereinafter as New Calcium) was measured using a turbidity meter over a two-week period in order to study its shelf stability properties. The Old Calcium referred to hereinafter is a commercially available overbased calcium carboxylate containing 14% Ca (Lubrizol's product, Plastistab 2118).

10

15

The following Table I summarizes the results:

Table I

	1 Day	2 Days	7 Days	9 Days	16 Days
Stabilizer containing_ New Calcium	5.5	_5.2_	5.1	4.9	4.4
Stabilizer containing Old Calcium	>200	>200	>200	> 200	> 200

Turbidity readings were measured in JTU. The turbidity observation between 1-30 indicates that the product is free from haze, and the observation above 200 JTU indicates that the product is hazy in nature. If the turbidity observation stays constant over a period of time, this means that the product possesses good shelf stability. This means that the product does not pick up any haze or undergo change in physical appearance over a period of time.

The data of Table I shows that the New Calcium possessed good shelf stability over a 2-week period, whereas the commercially available Old Calcium is hazy in nature.

<u>Shelf Stability of Mixed Metal Stabilizer of Overbased Calcium Carboxylate/Carbonate and Zinc Carboxylate (Calcium/Zinc Stabilizer)</u>

Shelf stability of mixed metal calcium/zinc stabilizers

containing New Calcium (Example 1) and Old Calcium was also monitored over a period of two weeks as shown in Table II. The stabilizer formulation contained 5% Ca, 1.2% Zn (zinc octoate), 3.5% P (diphenyl isodecyl phosphite), 5% carboxylic acid (oleic acid),3% anti-oxidant, 3% β-diketone (dibenzoyl methane) and diluent.

10

Table II

	1 Day	4 Days	8 Days	14 Days	17 Days	21 Days
Stabilizer containing New Calcium	24.5	27.5	28.0	28.0	28.0	26.5
 -Stabilizer-containing Old Calcium	> 200 -	> 200	->-200	->-200	->200	> 200

The data illustrates that the incorporation of New Calcium, versus Old Calcium, makes the mixed metal stabilizer shelf stable.

The above shelf stability tests were repeated except New Calcium is a sample of the overbased calcium carboxylate (Example 2) containing 13-14% calcium. Shelf stability of a calcium/zinc stabilizer containing New and Old Calcium was monitored over a period of two weeks and the results are shown in Table III. Stabilizer formulation contained 5% Ca, 1.2% Zn (zinc octoate), 3.4% P (diphenyl decyl phosphite) 6% carboxylic acid (3% oleic acid /3% benzoic acid), 3% nonyl phenol as an anti-oxidant, 2% β -diketone (octyl benzoyl methane) and diluent.

Table III

	1 Day	2 Days	5 Days	7 Days	12 Days	14 Days
Stabilizer containing New Calcium	26	31	30	28	26	21
Stabilizer containing Old Calcium	> 200	>200	> 200	>200	> 200	> 200

Again, the data illustrates that the New Calcium produces a shelf stable mixed metal stabilizer versus the Old Calcium.

Shelf Stability of Mixed Metal Overbased Calcium/Cadmium Carboxylate Stabilizers (Calcium/Cadmium Stabilizer)

Shelf stability of a calcium/cadmium stabilizer containing New Calcium (Example 1) and Old Calcium was also monitored over a period of two weeks as shown in Table IV. Stabilizer formation contained 5% Ca, 1.5% Cd (cadmium octoate), 3% P (diphenyl decyl phosphite), 5% carboxylic acid (oleic acid), 2% anti-oxidant (bisphenol-A), 3% β-diketone (dibenzoyl methane) and diluent.

Table IV

7 Days O Days 1 Day 3 Days 4 Days 14 Days 10 Stabilizer containing 17 29 23 19 16 16 New Calcium > 200 > 200 Stabilizer containing > 200 > 200 > 200 > 200 Old Calcium

The data illustrates that the incorporation of New Calcium, versus Old

Calcium, makes the stabilizer shelf stable.

<u>Shelf Stability of Mixed Metal Overbased Calcium/Tin Carboxylate Stabilizers (Calcium/Tin Stabilizer)</u>

Shelf stability of a calcium/tin stabilizer containing New Calcium (Example 1) and Old Calcium was also monitored over a period of two weeks as shown in Table V. Stabilizer formulation contained 5% Ca, 1.5% Sn (tin maleate), 3% P (diphenyl decyl phosphite), 5% carboxylic acid (oleic acid), 2% anti-oxidant (bisphenol-A), 3% β-diketone (dibenzoyl methane) and diluent.

Table V

	O Days	1 Day	3 Days	4 Days	7 Days	14 Days
Stabilizer containing New Calcium	34	61	69	76	70	70
Stabilizer_containing Old Calcium	> 200	> 200	> 200	> 200-	> 200	->-200-

The data illustrates that the incorporation of New Calcium, versus Old Calcium, makes the stabilizer shelf stable.

Performance Comparisons: Thermal Degradation of PVC

The New Calcium (Example 1) and Old Calcium were

10 incorporated into mixed metal stabilizer compositions for the purpose of
observing their relative rate of thermal degradation. The stabilizer
compositions are as follows:

		Α	В
	New Calcium	5.5% Ca	
15	Old Calcium (Plastistab 2118)		5.5% Ca
	Zinc carboxylate	1.2% Zn	1.2% Zn
	Organic Phosphite	3.0% P	3.0% P
	Carboxylic Acid	4.0%	4.0%
	Anti-oxidant	3.0%	3.0%
20	Beta Diketone	3.0%	3.0%
	Diluent	as needed	as needed

The performances of these stabilizers A and B were observed in a PVC formulation containing 100 parts of PVC resin, 30 parts phthalate plasticizer, 3 parts of epoxidized soybean oil and 2 parts of either stabilizer A or B.

Stabilized PVC compounds were then milled at 350-360° F for 5 minutes at 25 mil thickness. The thermal stability was carried out at

375° F over 56 minutes. Yellowness [+b chromaticity of CIELAB color space (Commission Internationale de l'Eclairage) developed in 1976] was measured with a Minolta colorimeter. The values of the rate of thermal degradation are shown in the following Table VI.

The PVC formulation containing the stabilizer with the New Calcium (A) develops color at a slower rate than the PVC formulation using the stabilizer with the Old Calcium (B).

Table VI

	Time (minutes)	New Calcium A	Old Calcium B
10	7	10.51	10.3
	14	11.28	11.35
	21	12.57	12.51
	28	16.29	16.1
	35	19.5	27.6
15	42	38.26	52.83
	49	44.77	61.28
	56	63.97	69.38

Performance Comparisons: Clarity

The New Calcium (Example 1) and Old Calcium were incorporated into mixed metal stabilizer compositions for the purpose of observing their influence on the clarity of the PVC application. The stabilizer compositions are as follows:

20

25

		A	В	С
	New Calcium	5.0%		
`	Old Calcium (Plastistab 2118)	*****	5.0%	
	Non-Carbonated Calcium Carboxylate			5.0%
5	Zinc carboxylate	1.2% Zn	1.2% Zn	1.2% Zn
	Organic Phosphite	3.4% P	3.4%_P	_3.4%_P
	Carboxylic Acid	5.0%	5.0%	5.0%
	Anti-oxidant	3.0%	3.0%	3.0%
	Beta Diketone	2.0%	2.0%	2.0%
10	Diluent	as needed	as needed	as needed

The relative degree of clarity of the 0.25 inch pressed PVC formulations containing either stabilizer A, B or C was observed after 5 minutes of exposure to 350° F and 15,000 pounds pressure. The PVC formulation comprised of 100 parts PVC resin, 30 parts phthalate plasticizer, 3 parts of epoxidized soybean oil and 2 parts of either stabilizer A, B or C.

The pressed PVC samples were placed vertically near printed material to determine the crispness of the print when looking through the press. Stabilizer A and B gave comparable crispness. However, both stabilizer A and B gave better clarity or crispness than stabilizer C.

Performance Comparisons: Plate Out

The New Calcium (Example 1) and Old Calcium along with a non-carbonated calcium carboxylate were incorporated into mixed metal stabilizer compositions for the purpose of observing their influence on the resistance to plate out of the stabilizer during processing of the vinyl formulation. The stabilizer compositions have been identified above as A,

B and C with A containing the New Calcium, B containing the Old Calcium and C containing the non-carbonated calcium carboxylate.

PVC formulation containing the stabilizer and allowing the pigment to migrate from the formulation to the metal rolls of a two roll mill at 340° F.

A white clean up compound is then placed onto the rolls and the degree of plate out is determined by the amount of red picked up by the clean up compound. The colorimeter assigns a numerical value on the CIEIab scale for the degree of redness or plate out (+a).

10	Red pigmented formulation:	Clean Up Compound
	100 PVC resin	100 PVC resin
	40 phthalate plasticizer	40 phthalate plasticizer
	8 epoxidized soybean oil	8 epoxidized soybean oil
	0.2 stearic acid	0.2 stearic acid
15	2 red 2B pigment	4 Titanium dioxide
	1.5 stabilizer variable	3 lead phosphite

The red formulation is milled for 4 minutes undisturbed after which the clean up compound is introduced and milled for three minutes undisturbed.

20 Colorimeter readings, +a value indicating increasing degree of red:

A - 3.34 B - 3.64 C + 21.0

There is essentially no difference between the New and Old

Calcium as far as plate out resistance. However, there is a significant

difference between A and C where the New Calcium provides superior plate out resistance.

The above description provides a disclosure of particular embodiments of the invention and is not intended for the purpose of limiting the same thereto. As such, the invention is not limited to only the above described embodiments, rather, it is recognized that one skilled in the art would understand alternative embodiments in view of the above description that fall within the scope of the invention.

WHAT IS CLAIMED IS:

-25-

CLAIMS:

1. A process for making a shelf stable liquid of an overbased calcium carboxylate comprising

preparing an overbased calcium carboxylate/carbonate by reacting a calcium base with a monocarboxylic acid and carbonating in the presence of a promoter mixture of a phenol and an alcohol,

conducting the reaction under a controlled temperature up to about 80° C to produce a shelf stable liquid.

- 2. The process of claim 1 which comprises the further step of treating the overbased calcium carboxylate/carbonate with an organic phosphite in an amount to improve its color.
- 3. The process of claim 2 wherein said organic phosphite is a trialkyl phosphite.
- 4. The process of claim 3 wherein said phosphite has an alkyl group having from 1 to 18 carbon atoms.
- 5. The process of claim 3 wherein said phosphite is selected from the group consisting of tributyl phosphite, triisooctyl phosphite and triisodecyl phosphite.
- 6. The process of claim 2 wherein said phosphite is selected from the group of a diphenyl isodecyl phosphite, phenyl neopentylene glycol phosphite, diphenyl phosphite, triphenyl phosphite, phenyl diisodecyl phosphite and poly(dipropyleneglycol) phenyl phosphite.
- 7. The process of claim 1 wherein said calcium base is reacted in an amount to provide about 14% calcium in the overbased carboxylate.

- 8. The process of claim 1 wherein said phenol is an alkyl phenol.
- 9. The process of claim 1 wherein said phenol is selected from the group consisting of dodecylphenol and nonylphenol.
- 10. The process of claim 1 which comprises the further step of adding a metal carboxylate is selected from the group consisting of zinc, cadmium and tin carboxylate to make a shelf stable mixed metal stabilizer composition.
- 11. The shelf stable liquid overbased calcium carboxylate/carbonate prepared in accordance with the process of claim 1.
- 12. The shelf stable liquid overbased calcium carboxylate/carbonate prepared in accordance with the process of claim 2.
- 13. The shelf stable liquid overbased calcium carboxylate/carbonate prepared in accordance with the process of claim 7.
- 14. The shelf stable liquid overbased calcium carboxylate/carbonate prepared in accordance with the process of claim 8.

- 15. The shelf stable liquid overbased calcium carboxylate/carbonate prepared in accordance with the process of claim 9.
- 16. The shelf stable liquid overbased calcium carboxylate/carbonate prepared in accordance with the process of claim 10.
 - 17. A halogen-containing polymer composition comprising a halogen-containing polymer and a heat stabilizing amount of the composition of claim 11.
 - 18. A halogen-containing polymer composition comprising a halogen-containing polymer and a heat stabilizing amount of the composition of claim 12.
 - 19. A halogen-containing polymer composition comprising a halogen-containing polymer and a heat stabilizing amount of the composition of claim 13.
 - 20. A halogen-containing polymer composition comprising a halogen-containing polymer and a heat stabilizing amount of the composition of claim 14.

- 21. A halogen-containing polymer composition comprising a halogen-containing polymer and a heat stabilizing amount of the composition of claim 15.
- 22. A halogen-containing polymer composition comprising a halogen-containing polymer and a heat stabilizing amount of the composition of claim 16.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US 98/17488

		Į.	101,0000,00
A. CLASSIF IPC 6	FICATION OF SUBJECT MATTER C07C51/41 C08K5/098		
According to	International Patent Classification (IPC) or to both national classifica	ition and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 6	cumentation searched (classification system followed by classification CO7C CO8K	on symbols)	
Documentat	tion searched other than minimum documentation to the extent that s	uch documents are inc	uded in the fields searched
Electronic d	lata base consulted during the international search (name of data ba	se and, where practica	i, search terms used)
C DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	 	lovant paggagge	Relevant to claim No.
Category	Citation of document, with indication, where appropriate, of the rel	evani passages	nelevant to dam No.
X	WO 97 17400 A (OMG AMERICAS INC. 15 May 1997 see page 4, line 9 - page 5, line		1-6, 8-12, 14-22
	see page 6. line 5 - page 7, line see page 9. line 10 - page 11, l see page 14, line 1 - line 19 see page 17 - page 22; examples see page 23 - page 28; claims	e 2 ine 2	
			·
Fu	urther documents are listed in the continuation of box C.	χ Patent fam	ily members are listed in annex.
"A" docur	categories of cited documents ment defining the general state of the art which is not sidered to be of particular relevance	or priority date	oublished after the international filing date and not in conflict with the application but tand the principle or theory underlying the
fiting "L" docum whice	er document but published on or after the international g date ment which may throw doubts on priority claim(s) or ch is cited to establish the publication date of another	"X" document of par cannot be cons involve an inve "Y" document of par	ticular relevance; the claimed invention idered novel or cannot be considered to intive step when the document is taken alone rticular relevance; the claimed invention
"O" docu othe "P" docu	tion or other special reason (as specified) Iment referring to an oral disclosure, use, exhibition or er means Iment published prior to the international filling date but or than the priority date claimed	document is co ments, such co in the art.	sidered to involve an inventive step when the ombined with one or more other such docu- ombination being obvious to a person skilled ber of the same patent family
ļ	he actual completion of the international search	·	of the international search report
	25 January 1999	03/02	
Name an	nd mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized office	Der .
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Kinzi	nger, J

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Integrational Application No

Information on		ation on natest temily memory	patent family members			integrational Application No	
	111101111	ation on patent lamily men	ibers		PCT/US	98/17488	<u>.</u>
Patent document cited in search repor	t	Publication date	P	atent family member(s)	,	Publication date	-
WO 9717400	Α	15-05-1997	AU EP	76740 08598	96 A 312 A	29-05-1997 26-08-1998	
		·					
					•		

Form PCT/ISA/210 (patent family annex) (July 1992)

				• • •
			•	•
				• ;
			.	-
	•	•		
	•			
•				
				•

•