## Introduction to R Workshop

Session 4 Sean Nguyen



#### Rstudio keyboard shortcuts

- cmd/ctrl + shift + m %>%
- cmd/ctrl + shift + r # new section
- cmd/ctrl + shift + c # comment

#### Session 4: Goals

- Statistical tests
- R markdown
- R notebooks
- GitHub







#### Power analysis

- pwr package
- Determine sample size to detect effect given sample size and degree of confidence
- Need three to calculate the fourth
  - sample size = n
  - effect size = d
  - significance level (P value) = sig.level
  - power 1-P = power

```
(ANOVA)
number of groups = k
effect size = f (0.1, 0.25, 0.4)
pwr.anova.test(k = n = f = sig.level = power = f)
```

### Experimental Design

- Three organisms E. coli, S. aureus, B. subtilus
- Two treatments Antibiotic, None
- Experiment 5 replicates



#### Refresher on tidy data







#### Wide format

| Treatment  | 1_Ecoli | 1_Saureus | 1_Bsubtilis | 2_Ecoli | 2_Saureus | 2_Bsubtilis |
|------------|---------|-----------|-------------|---------|-----------|-------------|
| Antibiotic | 285     | 240       | 312         | 362     | 244       | 415         |
| Antibiotic | 345     | 371       | 461         | 368     | 375       | 315         |
| Antibiotic | 298     | 337       | 352         | 287     | 228       | 370         |
| Antibiotic | 286     | 394       | 494         | 378     | 302       | 314         |
| Antibiotic | 354     | 213       | 311         | 363     | 349       | 303         |
| None       | 146     | 286       | 340         | 228     | 284       | 363         |
| None       | 180     | 300       | 285         | 246     | 262       | 381         |
| None       | 137     | 279       | 271         | 166     | 266       | 325         |
| None       | 179     | 253       | 355         | 226     | 270       | 398         |
| None       | 168     | 272       | 424         | 175     | 258       | 336         |

## Long format (tidy)

| Treatment  | Experiment | Organism | Count |
|------------|------------|----------|-------|
| Antibiotic | 1          | Ecoli    | 285   |
| Antibiotic | 1          | Ecoli    | 345   |
| Antibiotic | 1          | Ecoli    | 298   |
| Antibiotic | 1          | Ecoli    | 286   |
| Antibiotic | 1          | Ecoli    | 354   |
| None       | 1          | Ecoli    | 146   |
| None       | 1          | Ecoli    | 180   |
| None       | 1          | Ecoli    | 137   |
| None       | 1          | Ecoli    | 179   |
| None       | 1          | Ecoli    | 168   |

## Tidy data

|  | Treatment | Experiment | Organism | Count |
|--|-----------|------------|----------|-------|
|--|-----------|------------|----------|-------|

| Antibiotic | 1 | Ecoli | 285 |
|------------|---|-------|-----|
| Antibiotic | 1 | Ecoli | 345 |
| Antibiotic | 1 | Ecoli | 298 |
| Antibiotic | 1 | Ecoli | 286 |
| Antibiotic | 1 | Ecoli | 354 |
| None       | 1 | Ecoli | 146 |
| None       | 1 | Ecoli | 180 |
| None       | 1 | Ecoli | 137 |
| None       | 1 | Ecoli | 179 |
|            |   |       |     |

| Organism | Treatment  | Experiment | Ν | mean  | sd          | se          |  |
|----------|------------|------------|---|-------|-------------|-------------|--|
| Ecoli    | Antibiotic | 1          | 5 | 313.6 | 33.32116445 | 14.90167776 |  |
| Ecoli    | Antibiotic | 2          | 5 | 351.6 | 36.66469692 | 16.39695094 |  |
| Ecoli    | Antibiotic | 3          | 5 | 346.2 | 44.80736547 | 20.03846301 |  |
| Ecoli    | None       | 1          | 5 | 162   | 19.55760722 | 8.746427842 |  |
| Ecoli    | None       | 2          | 5 | 208.2 | 35.42880184 | 15.84424186 |  |
| Ecoli    | None       | 3          | 5 | 177.6 | 40.14722905 | 17.95438665 |  |
|          |            |            |   |       |             |             |  |

#### Statistical tests

- shapiro.test normal distribution
- <u>t.test</u> T test
- aov ANOVA
- <u>TukeyHSD</u> Tukey post hoc test
- wilcox.test Mann Whitney U test
- kruskal.test Kruskal Wallis test

#### Much easier to run on 'tidy data'









### Shapiro Test

- Tests for normal distribution of data
- Need all values in a single column



Formula: shapiro.test(dataframe\$column)

shapiro <- shapiro.test(data3\$Count)</pre>



#### Student's t-Test

- Data normally distributed
- Compare differences between two means



Formula: t.test(y~x, data= dataframe) # where y is numeric and x is a binary factor

Formula: t.test(y1, y2, data= dataframe) # where y1 and y2 are numeric

Formula: t.test(y1, y2, paired = TRUE) # where y1 and y2 are numeric

tt <- t.test(mpg~am, data = mtcars)

#### Analysis of Variance (ANOVA)

- Data normally distributed
- Determine a significant difference between a group of means



**Formula:** aov(numerical~factor\*factor2\*factor3, data = dataframe)

ANOVA <- aov(mean~Organism\*Treatment, data = data4)

### Tukey's HSD

- Post hoc test
- Single step multiple comparison
- Determine means that differ significantly

Formula: TukeyHSD(aov\_output)

ANOVA <- aov(mean~Organism\*Treatment, data = data4)

tukey <- TukeyHSD(ANOVA)



#### Wilcoxon/Mann-Whitney U test

- Non-parametric test
- Mann-Whitney U test
- Wilcoxon Signed Rank test



**Formula:** wilcox.test(y~A) # where y is numeric, A is binary factor

Formula: wilcox.test(y, x) # where x and y are numeric

Formula: wilcox.test(y1, y2) # where y1 and y2 are numeric

#### Kruskal Wallis test

- Non-parametric test
- one way ANOVA by ranks



**Formula:** kruskal.test(y~A) # where y is numeric and A is a factor

### Transforming data

- mutate()
  - creates a new column from existing data

Formula: data1 <- data %>% mutate(new\_column = log2(column))



#### broom

- Makes statistical outputs 'tidy'
  - export stats as a data frame
  - save as .csv









tidy\_stats <- tidy(statisical\_analysis)

## 

#### Markdown

- Lightweight markup language
- Easy formatting
- Easy to read
- Simple syntax





#### **Bold text**

italics

Plain text

#### **Big Header**

#### **Smaller Header**

#### **Smaller**

#### **Even maller**

Easily create lists

- item one
- item two
- item three

It's really easy to make tables

| header | header | header |
|--------|--------|--------|
| value1 | value2 | value3 |

#### Rmarkdown

IATEX markdown knitr

- Markdown
- LaTeX
- R code
- renders to .md, .pdf, .html
- Great for formatting dissertation

```
title: "Untitled"
   output: html_document
    ```{r setup, include=FALSE}
   knitr::opts_chunk$set(echo = TRUE)
10 - ## R Markdown
12 This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word
    documents. For more details on using R Markdown see < http://rmarkdown.rstudio.com >.
   When you click the **Knit** button a document will be generated that includes both content as well as the
    output of any embedded R code chunks within the document. You can embed an R code chunk like this:
    ```{r cars}
                                                                                                        ☆ 🎽 🕨
   summary(cars)
                         dist
                    Min. : 2.00
                    1st Qu.: 26.00
                    Median : 36.00
                    Mean : 42.98
                    3rd Qu.: 56.00
                    Max. :120.00
```

## Git

- Version control
- Great for collaboration
- Graph theory tree model





#### Git commands



- git clone <repository url>
- git pull
- git add -A
- git status
- git commit -m "insert memo here"
- git status
- git push



#### GitHub

- GitHub IS NOT Git
- Place to store your code
- Easy to track changes
- Showcase your work
- Collaboration

```
p1 <- data %>%
                                                                       p1 <- data %>%
  ggplot(aes(x = gdpPercap, y = lifeExp, size = pop, color =
                                                                        ggplot(aes(x = gdpPercap, y = lifeExp, size = pop, color =
                                                                      continent, frame = year))+
continent, frame = year))+
                                                                 + geom_point(aes(text = paste ("country:",country)))+ # add
- geom_point(aes(text = paste ("country:",country)))+
                                                                      country 'text"
                                                                 68 + scale_x_log10()+
- scale_x_log10()
                                                                 + ggtitle("Life Expectancy vs. GDP per Capita") +
                                                                 70 + xlab("GDP per Capita") +
                                                                 71 + ylab("Average Life Expectancy")
                                                                 72 +
                                                                 73 +p1
-p1 + facet_wrap(~year)
                                                                 75 +# Saving plots
                                                                 +ggsave(plot = p1, "gapminder.png", dpi = 600,
                                                                             height = 5, width = 7, units = "in")
                                                                 78
```



## Data Analysis in the Tidyverse

Import



read\_csv() write\_csv() Tidy



gather()
spread()
separate()
unite()

Wrangle



filter()
rename()
select()
mutate()
group\_by()
summarise()

Visualize



ggplot()
geom\_bar()
geom\_point()
geom\_boxplot()
geom\_hist()
geom\_violin()
ggsave()

Stats



t.test()
aov()
TukeyHSD()
tidy()

Communicate



.md .Rmd .pdf .html

# Thank you!