PENGARUH TEMPERATUR UDARA DAN KEBISINGAN TERHADAP KENYAMANAN DALAM MENONTON BIOSKOP

(Pada Mahasiswa Program Studi Psikologi Universitas Mulawarman Angkatan 2016-2018)

KARYA ILMIAH

Sebagai syarat mata kuliah Konstruksi Alat Ukur Untuk memenuhi salah satu persyaratan mata kuliah Dalam menyelesaikan program sarjana Strata satu Psikologi

Oleh:

Audry Aulya

PROGRAM STUDI PSIKOLOGI FAKULTAS ILMU SOSIAL DAN ILMU POLITIK UNIVERSITAS MULAWARMAN SAMARINDA 2018

KATA PENGANTAR

Puji syukur atas kehadirat Allah SWT penulis ucapkan karena atas berkat rahmat-Nya penulis dapat menyelesaikan penyusunan Karya Ilmiah yang berjudul "Pengaruh Tenperatur Udara dan Kebisingan Terhadap Kenyamanan dalam Menonton Bioskop".

Oleh karena itu pada kesempatan ini penulis menyampaikan ucapan terima kasih kepada keluarga tercinta, kedua orang tua saya, Ibu dan Ayah, Kakak dan Adik, kepada dosen pembimbing M. Ali Adriansyah, S.Psi., M.A. Saya ucapkan terima kasih atas doa, dukungan, dan bimbingan yang selalu diberikan kepada saya sehingga saya dapat menyelesaikan Karya Ilmiah ini sebaik-baiknya.

Penulis menyadari bahwa masih banyak terdapat kekurangan dalam karya ilmiah ini, oleh karena itu penulis mengharapkan masukan dan saran yang membangun dari semua pihak guna menyempurnakan penelitian ini. Akhirnya kepada Allah SWT penulis berserah diri, semoga karya ilmiah ini dapat bermanfaat bagi semua pihak, Aamiin.

Samarinda, 3 November 2018

Penulis

DAFTAR ISI

HALAMAN	IUDUL	i
	ANTAR	
DAFTAR TA	BEL	iv
DAFTAR GA	MBAR	vii
DAFTAR LA	MPIRAN	viii
INTISARI		X
ABSTRACT.		xi
BAB I : P	ENDAHULUAN	
A	Latar Belakang	1
F	Rumusan Masalah	7
(. Tujuan Penelitian	7
Ι	O. Manfaat Penelitian	8
E	. Keaslian Penelitian	9
BAB II : K	ERANGKA TEORI DAN KONSEP	
A	Kenyamanan Dalam Menonton Bioskop	11
	1. Pengertian Kenyamanan	11
	2. Faktor-Faktor Yang Mempengaruhi Kenyamanan	13
	3. Aspek-Aspek Kenyamanan	15
В	. Temperatur Udara	16
	1. Pengertian Temperatur Udara	16
	2. Faktor-Faktor Yang Mempengaruhi Temperatur Udara	17
	3. Aspek-Aspek Temperatur Udara	18
	. Kebisingan	19
	1. Pengertian Kebisingan	19
	2. Faktor-Faktor Yang Mempengaruhi Kebisingan	21
	3. Aspek-Aspek Kebisingan	22
Ι	O. Kerangka Berpikir	24
F	. Hipotesis	26
	TODE PENELITIAN	
	. Jenis Penelitian	
	. Identifikasi Variabel	
(. Definisi Konsepsional	
	1. Kenyamanan Dalam Menonton Bioskop	
	2. Temperatur Udara	
	3. Kebisingan	
Ι	D. Definisi Operasional	30
	1. Kenyamanan Dalam Menonton Bioskop	
	2. Temperatur Udara	
	3. Kebisingan	
F	. Populasi, Sampel dan Teknik Sampling	
	1. Populasi	
	2. Sampel	
F	Metode Pengumpulan Data	33

	1. Skala Kenyamanan Dalam Menonton Bioskop	34
	2. Skala Temperatur Udara	34
	3. Skala Kebisingan	35
G.	Validitas dan Reliabilitas	
	1. Validitas	35
	2. Reliabilitas	36
H.	Hasil Uji Validitas dan Reliabilitas Instrumen Penelitian	37
I.	Teknik Analisa Data	
BAB IV : HAS	IL PENELITIAN DAN PEMBAHASAN	
A.	Hasil Penelitian Penelitian	42
	1. Karakteristik Subjek Penelitian	42
	2. Hasil Uji Deskriptif	
	3. Hasil Uji Asumsi: Normalitas	
	4. Hasil Uji Asumsi: Linieritas	
	5. Hasil Uji Asumsi: Multikolinieritas	
	6. Hasil Uji Asumsi: Homoskedastisitas	
	7. Hasil Uji Asumsi: Autokorelasi	
	8. Hasil Uji Hipotesis: Analisis Regresi Model Bertahap	
	9. Hasil Uji Hipotesis: Analisis Regresi Model Penuh	
	10. Hasil Uji Hipotesis Tambahan	
B.	Pembahasan	
	1. Pengaruh Temperatur Udara terhadap Kenyamanan Dala	am
	Menonton Bioskop Pada Mahasiswa Program Studi	
	Psikologi Universitas Mulawarman Angkatan	
	2016-2018	68
	2. Pengaruh Kebisingan terhadap Kenyamanan Dalam	
	Menonton Bioskop Pada Mahasiswa Program Studi	
	Psikologi Universitas Mulawarman Angkatan	
	2016-2018	71
	3. Pengaruh Temperatur Udara dan Kebisingan terhadap	
	Kenyamanan Dalam Menonton Bioskop Pada Mahasisw	'a
	Program Studi Psikologi Universitas Mulawarman	
	Angkatan 2016-2018	72
	4. Pengaruh Aspek-aspek Variabel Bebas terhadap Aspek-	
	aspek Variabel Terikat	73
	5. Hubungan Aspek-aspek Variabel Bebas terhadap Aspek	
	Kenyamanan Fisik (Y _A)	
	6. Hubungan Aspek-aspek Variabel Bebas terhadap Aspek	
	Kenyamanan Psikospiritual (Y _B)	76
	7. Hubungan Aspek-aspek Variabel Bebas terhadap Aspek	
	Kenyamanan Sosial Kultural (Y _C)	
	8. Hubungan Aspek-aspek Variabel Bebas terhadap Aspek	
	Kenyamanan Sosial Kultural (Y _D)	
BAB V: PENU	TUP	
A.	Kesimpulan	80
D	Coron	01

DAFTAR PUSTAKA	.83	3
DAITAK FUSTAKA	 ٠٥.	,

DAFTAR TABEL

Tabel 1. Skala Pengukuran Likert	33
Tabel 2. Blue Print Kenyamanan	34
Tabel 3. Blue Print Temperatur Udara	34
Tabel 4. Blue Print Kebisingan	35
Tabel 5. Tingkat Keandalan Cronbach's Alpha	36
Tabel 6. Rangkuman Analisis Kesahihan Butir Skala Kenyamanan (N=140)	37
Tabel 7. Sebaran Aitem Skala Kenyamanan	37
Tabel 8. Rangkuman Analisis Kesahihan Butir Skala Temperatur Ud	lara
(N=140	38
Tabel 9. Sebaran Aitem Skala Temperatur Udara	38
Tabel 10. Rangkuman Analisis Kesahihan Butir Skala Kebisingan (N=140)	.39
Tabel 11. Sebaran Aitem Skala Kebisingan	39
Tabel 12. Rangkuman Keandalan Variabel (N=140)	40
Tabel 13. Distribusi Subjek Menurut Usia	42
Tabel 14. Distribusi Subjek Menurut Jenis Kelamin	42
Tabel 15. Distribusi Subjek Menurut Angkatan	
Tabel 16. Mean Empirik dan Mean Hipotetik	45
Tabel 17. Kategorisasi Skor Skala Kenyamanan	
Tabel 18. Kategorisasi Skor Skala Temperatur Udara	47
Tabel 19. Kategorisasi Skor Skala Kebisingan	
Tabel 20. Hasil Uji Normalitas	
Tabel 21. Hasil Uji Linieritas	51
Tabel 22. Hasil Uji Multikolinieritas	52
Tabel 23. Hasil Uji Homoskedastisitas	53
Tabel 24. Hasil Uji Autokorelasi	53
Tabel 25. Rangkuman Hasil Analisis Regresi Model Bertahap	54
Tabel 26. Rangkuman Hasil Analisis Regresi Model Penuh	55
Tabel 27. Rangkuman Hasil Analisis Regresi Multivariat Model Penul	1
Aspek-aspek Variabel Bebas Terhadap Aspek-aspek Variabel Terikat	59
Tabel 28. Rangkuman Hasil Analisis Regresi Parsial Terhadap As	pek
Kenyamanan Fisik (Y _A)	. 60
Tabel 29. Rangkuman Hasil Analisis Model Stepwise Terhadap As	pek
Kenyamanan Fisik (Y _A)	
Tabel 30. Rangkuman Hasil Analisis Model Akhir	61
Tabel 31. Rangkuman Hasil Analisis Regresi Parsial Terhadap As	pek
Kenyamanan Psikospiritual (Y _B)	
Tabel 32. Rangkuman Hasil Analisis Model Stepwise Terhadap As	pek
Kenyamanan Psikospiritual (Y _B)	63
Tabel 33. Rangkuman Hasil Analisis Model Akhir	63
Tabel 34. Rangkuman Hasil Analisis Regresi Parsial Terhadap As	pek
Kenyamanan Lingkungan (Y _C)	64
Tabel 35. Rangkuman Hasil Analisis Model Stepwise Terhadap As	pek
Kenyamanan Lingkungan (Y _C)	65
Tabel 36 Rangkuman Hasil Analisis Model Akhir	66

Tabel	37.	Rangkuman	Hasil	Analisis	Regresi	Parsial	Terhadap	Aspek
Kenya	mana	ın Sosial Kultı	ıral (Yı	D)				66
-		Rangkuman						
Kenyamanan Sosial Kultural (Y _D)					67			
Tabel 3	39. R	angkuman Ha	sil Ana	lisis Mod	el Akhir			68

DAFTAR GAMBAR

Gambar 1. Kerangka Konsep Penelitian	26
Gambar 2. Q-Q Plot Kenyamanan Dalam Menonton Bioskop	
Gambar 3. Q-Q Plot Temperatur Udara	49
Gambar 4. Q-Q Plot Kebisingan	50

DAFTAR LAMPIRAN

INTISARI

Munculnya kenyamanan dalam menonton bioskop disebabkan oleh adanya kestabilan dalam temperatur udara serta tidak adanya suara-suara yang mengganggu selama proses menonton. Penelitian ini dilakukan dalam rangka mengetahui pengaruh temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop. Penelitian ini menggunakan metode penelitian kuantitatif berjenis statistic deskriptif dan inferensial. Subjek penelitian ini adalah mahasiswa Program Studi Psikologi Universitas Mulawarman Samarinda angkatan 2016 – 2018 dengan jumlah sampel sebanyak 140 orang mahasiswa. Alat ukur penelitian menggunakan skala tipe *likert* yaitu skala kenyamanan dalam menonton bioskop, skala temperatur udara dan skala kebisingan. Data dalam penelitian ini dianalisis dengan teknik *Structural Equation Model* (SEM) dengan metode *Maximum Likelhold*menggunakan aplikasi komputer *AMOS 24.0 for Windows*.

Hasil penelitian menunjukkan bahwa : (1) ada pengaruh positif dan signifikan temperatur udara terhadap kenyamanan dalam menonton bioskop mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018 dengan koefisien (β) = 0.519, serta nilai t hitung > t tabel (5.123 > 2.000) dan nilai p = 0.000 (p < 0.05); (2) tidak ada pengaruh signifikan kebisingan terhadap regulasi diri penari tradisional mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018 dengan koefisien (β) = -0.012, serta nilai t hitung > t tabel (-0.125 > 2.000) dan nilai p = 0.900 (p < 0.05). Kontribusi pengaruh (R^2) temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop adalah sebesar 0.235.

Kata kunci: temperatur udara, kebisingan, bising, kenyamanan, menonton bioskop.

ABSTRACT

The emergence of comfort while watching in the cinema caused by the stability of the air temperature and the absence of a disturbing sound during the process of watching this study aimed to assess the effect of air temperature and noise on comfort to watching in the cinema. This study uses quantitative research methods descriptive and inferential statistic type. The subjects were students of Psychological major periode 2016-2018 in Mulawarman University with a total sample of 140 students. The measuring instrument using likert scale of the comfort in watching in the cinema, air temperature scale, and noise scale. The data in this research is analyzed by Structural Equation Model (SEM) technique with Maximum Likehold using AMOS 24.0 for Windows Computer Application.

The result showed that: (1) there is a significant and positive influence on air temperature against comfort to watching in the cinema of students of Psychological major periode 2016-2018 with coefficients (β) = 0.519, as well as the score t calculate > t table (5.123 > 2.000) and the value of p = 0.000 (p < 0.05); (2) there is no influence and significant noise against comfort to watching in the cinema of students of Psychological major periode 2016-2018 with coefficients (β) = -0.012, as well as the score t calculate > t table (-0.125 > 2.000) and the value of p = 0.900 (p < 0.05). The influence of contributions (R^2) air temperature and noise against comfort to watching in the cinema is of 0.235.

Keywords: air temperature, noise, comfort, watching in the cinema

BAB I

PENDAHULUAN

A. Latar Belakang

Menonton merupakan salah satu kegiatan yang paling digemari oleh semua kalangan masyarakat, baik orang tua, remaja, mau pun anak-anak. Kegiatan ini biasanya dilakukan untuk mengisi waktu di kala senggang. Pada masa sekarang yang segala sesuatunya serba mudah, menonton bisa dilakukan kapan saja dan di mana saja. Misalnya, menonton via *smartphone* pada saat berada di tempat umum, menonton televisi di rumah, atau pun pergi menonton film layar lebar di bioskop. Dalam hal ini, Departemen Pendidikan dan Kebudayaan menyebutkan bahwa menonton merupakan suatu kegiatan menggunakan mata untuk memandang (memperhatikan). Adapun hal-hal pokok yang harus diperhatikan dalam menonton, antara lain minat, perhatian, dan pemahaman (Priyanto, Setyawan, & Azis, 2017).

Terdapat berbagai *genre* atau aliran dari film yang dapat dinikmati sesuai dengan preferensi masing-masing individu. Misalnya, seperti komedi, *action*, horor, *romance*, dan masih banyak jenis-jenis aliran lainnya. Terlepas dari pemilihan *genre* yang disukai, hal yang patut diperhatikan pada saat menikmati suatu film ialah kenyamanan. Apabila tingkat kenyamanan selama proses menonton berlangsung rendah, maka tentu saja hal tersebut akan membuat seorang individu tidak bisa menikmati kegiatan menontonnya dengan baik dan tenang. Pesatnya perkembangan perfilman global dan nasional telah diimbangi

dengan pertumbuhan dan persaingan di sector bioskop. Saat ini telah banyak hadir bioskop di Indonesia, baik berskala global maupun nasional, hal lain yang mendukung adalah perkembangan informasi, internet, selebriti, novel terkenal, kemajuan teknologi film, teknologi *sound system*, majalah resensi film dan lainlain (Vitry, 2013).

Menurut Suwarto (2016) karya audio visual yang biasa disebut film telah hadir dalam masyarakat Indonesia sejak awal abad ke-19. Film diputar di ruang pemutaran berlayar lebar yang lazim disebut bioskop. Jika pada awal keberadannya, bioskop film merupakan bangunan semi permanen maka saat ini bioskop mengacu pada ruang pemutaran film yang dilengkapi dengan peralatan pemutar kaset digital dan penyorot gambar di bangunan permanen. Bioskopbioskop tersebut memutar film secara teratur pada jadwal tertentu. Orang yang hendak menonton film atau biasa disebut penonton perlu mengikuti jadwal tersebut dan membayar sejumlah uang. Semua bioskop di Indonesia dimiliki oleh swasta maka logika pengelolaannya bersifat komersial.

Menurut (Nugroho & Hidayat, 2017) kenyamanan dan perasaan nyaman adalah penilaian komprehensif seseorang terhadap lingkungannya. Kenyamanan adalah suatu kontinum perasaan dari paling nyaman sampai dengan paling tidak nyaman yang dinilai berdasarkan persepsi masing-masing individu pada suatu hal yang di mana nyaman pada individu tertentu mungkin berbeda dengan individu lainnya.

Menurut Ashrae (dalam Parsons, 2014) kenyamanan sering diartikan sebagai kondisi pikiran yang mengekspresikan kepuasan terhadap lingkungan. Kenyamanan merupakan sesuatu yang diusahakan oleh seseorang ketika mereka merasakan ketidaknyamanan. Hal ini mempengaruhi perilaku. Saat berada dalam kondisi nyaman, maka akan terdapat sedikit keinginan untuk perubahan meskipun harus diingat bahwa manusia tidak pasif, dan sering mencari rangsangan, kegembiraan, dan kesenangan.

Kenyamanan merupakan bagian dari sasaran karya arsitektur. Kenyamanan terdiri dari kenyamanan psikis dan kenyamanan fisik. Kenyamanan psikis terkait dengan kenyamanan kejiwaan yang terukur secara subyektif. Sedangkan kenyamanan fisik dapat secara obyektif (kuantitatif) yang meliputi kenyamanan spasial, visual, audial dan termal. Kenyamanan termal merupakan salah satu unsur kenyamanan yang sangat penting karena menyangkut kondisi ruangan yang nyaman (Nasrullah, Rahim, Baharuddin, Mulyadi, Jamala, & Kusno, 2015).

Berdasarkan wawancara yang telah dilakukan kepada empat orang mahasiswa yang berinisial YF, MI, DS, dan AH yang di mana dua di antaranya berjenis kelamin laki-laki dapat disimpulkan beberapa hasil. Masing-masing dari keempat mahasiswa tersebut menyatakan bahwa mereka pernah mengalami hal yang membuat mereka kurang nyaman pada saat menonton di bioskop. Ketidaknyamanan yang dirasakan pun berasal dari berbagai sumber yang berbedabeda.

Berdasarkan pernyataan subjek YF dan MI, mereka menyebutkan bahwa perasaan tidak nyaman atau ketidaknyamanan yang mereka rasakan biasanya berasal dari temperatur udara di dalam bioskop yang terlalu dingin. Posisi tempat duduk yang mendapatkan paparan angin dari *air conditioner* secara langsung dapat membuat mereka merasa kedinginan bahkan hingga menggigil.

Hal di atas sesuai dengan yang dikemukakan oleh Rahim, Asniawaty, Martosenjoyo, Amin, & Hiromi (2016) bahwa kenyamanan dalam menonton bioskop dipengaruhi oleh faktor temperatur karena pada dasarnya temperature sangat mempengaruhi tingkat kenyamanan seseorang. Temperatur udara di permukaan bumi bervariasi karena sinar matahari menyebar tidak merata di permukaan bumi. Temperatur udara adalah suatu ukuran dingin atau panasnya keadaan atau sesuatu lainnya. Satuan ukur dari temperatur yang banyak digunakan di Indonesia adalah °C (derajat Celcius) (Mustamin, Rahim, Baharuddin, Mulyadi, Jamala, Asniawaty, & Kusno, 2017).

Penelitian tentang hubungan antara suhu atau temperatur dengan kenyamanan telah dilakukan oleh Sarlinda, Sudarti, & Subiki (2017).Hasil penelitian menunjukkan bahwa sesuai dengan standar yang ditetapkan oleh SNI, maka hanya pada pukul 06.00 WIB sampai dengan pukul 07.00 WIB termasuk hangat nyaman dengan suhu sebesar 26°C. Hasil ini menunjukkan bahwa semakin tinggi temperatur pada suatu tempat, maka akan menurunkan tingkat kenyamanan pada seseorang,dan semakin rendah temperatur udara pada suatu tempat juga akan menurunkan tingkat kenyamanan. Artinya, dalam meningkatkan kenyamanan seseorang, maka dibutuhkan temperatur udara yang tepat.

Menurut Tri (2008) temperatur udara akan melibatkan tiga aspek. Yang pertama, derajat, yaitu satuan dari keadaan panas udara yang disebabkan oleh panas matahari.Kedua, curah hujan, merupakan ketinggian air yang jatuh pada tempat yang datar dengan asumsi tidak menguap, tidak meresap, dan tidak mengalir, serta yang ketiga adalah insolasi.Insolasi atau intensitas radiasi matahari adalah jumlah energi yang diterima oleh suatu permukaan per satuan luas dan per satuan waktu.

Hal ini berbeda dengan ketidaknyamanan yang dirasakan oleh subjek DS dan AH. Mereka menyatakan bahwa ketidaknyamanan yang sering terjadi pada saat menonton di bioskop ialah suara-suara yang mengganggu serta cahaya yang berasal dari layar telepon genggam yang terlalu terang. Suara-suara yang mengganggu yang dimaksud di sini yaitu antara lain suara penonton lain yang saling mengobrol, nada dering telepon genggam dengan volume yang tinggi, serta suara tangisan anak kecil atau bayi yang sedang rewel.

Berdasarkan dari hasil wawancara di atas, maka dapat dilihat bahwa ada hal lain yang dapat mempengaruhi kenyamanan menonton selain temperatur udara yaitu kebisingan. Kebisingan adalah bunyi yang tidak diinginkan karena tidak sesuai dengan konteks ruang dan waktu sehingga dapat menimbulkan gangguan terhadap kenyamanan dan kesehatan manusia. Bunyi yang menimbulkan kebisingan disebabkan oleh sumber suara yang bergetar. Getaran sumber suara ini mengganggu keseimbangan molekul-molekul udara menurut pola rambat longitudinal.Rambatan gelombang di udara ini dikenal sebagai suara atau bunyi (Sasongko dalam Fithri & Annisa, 2015).

Menurut Andriani (2016) kebisingan merupakan salah satu faktor yang dapat mempengaruhi terjadinya kelelahan kerja.Bising adalah bunyi yang tidak disukai, suara yang mengganggu.Berkurangnya pendengaran akibat bising berlangsung secara perlahan-lahan dalam jangka waktu yang lama.Menurut Iskandar (2012)kebisingan merupakan yang tidak diinginkan oleh seseorang.Suara bising tidak hanya suara yang keluar dari sumbernya dengan tekanan tinggi atau frekuensi yang tinggi.Adapun suara yang memberikan tekanan tinggi pada pendengaran, misalnya suara melengking di dekat telinga. Tetapi suara yang tidak diinginkan dapat berupa suara orang berbicara yang mengganggu bagi yang mendengarnya.Oleh karena itu, kebisingan lebih merupakan pemaknaan psikologis.

Terdapat lima dampak dari kebisingan yang memungkinkan untuk mempengaruhi kenyamanan. Pertama, gangguan fisiologis, yaitu gangguan yang mula-mula timbul akibat bising, dengan kata lain fungsi pendengaran secara fisiologis dapat terganggu. Kedua, gangguan psikologis yaitu di mana kebisingan dapat mempengaruhi stabilitas mental dan reaksi psikologis, seperti rasa khawatir, jengkel, takut, dan sebagainya.. Ketiga, gangguan patologis organis, di mana gangguan kebisingan yang paling menonjol adalah pengaruhnya terhadap alat pendengaran atau telinga, yang dapat menimbulkan ketulian yang bersifat sementara hingga permanen. Keempat, komunikasi yaitu kebisingan mengganggu dalam menangkap dan mengerti apa yang dibicarakan oleh orang lain, apakah itu berupa percakapan langsung, pecakapan telepon atau melalui alat komunikasi lain. (Jennie, 2008).

Berdasarkan pembahasan di atas, maka kita dapat memahami antara kenyamanan pada saat menonton di bioskop dengan temperatur udara dan kebisingan. Proposal ini akan membahas mengenai kenyamanan dalam menonton bioskop yang ditinjau dari temperatur udara dan kebisingan.

B. Rumusan Masalah

Pada penelitian ini peneliti telah merumuskan beberapa rumusan masalah, yaitu antara lain:

- Bagaimanakah temperatur udara dapat mempengaruhi kenyamanan pada saat menonton di bioskop?
- 2. Bagaimanakah kebisingan dapat mempengaruhi kenyamanan pada saat menonton di bioskop?
- 3. Apakah temperatur udara dan kebisingan memegang peran yang besar dalam mempengaruhi kenyamanan pada saat menonton di bioskop?
- 4. Apakah di antara temperatur udara dan kebisingan terdapat salah satu faktor yang lebih mempengaruhi kenyamanan pada saat menonton di bioskop?

C. Tujuan Penelitian

Penelitian ini memiliki beberapa tujuan, yang meliputi:

 Untuk mengetahui bagaimana temperatur udara dapat mempengaruhi kenyamanan dalam menonton bioskop pada mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018.

- Untuk mengetahui bagaimana kebisingan dapat mempengaruhi kenyamanan dalam menonton bioskop pada mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018.
- 3. Untuk mengetahui bagaimana temperatur udara dan kebisingan dapat mempengaruhi kenyamanan dalam menonton bioskop pada mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018.

D. Manfaat Penelitian

1. Manfaat teoritis

- a. Penelitian ini diharapkan dapat menjadi sumber referensi dalam kajian ilmu pengetahuan psikologi dalam bidang psikologi lingkungan, khususnya kajian mengenai pengaruh temperatur udara, kebisingan, dan kenyamanan dalam menonton bioskop.
- b. Penelitian ini diharapkan dapat memberikan manfaat dan pengetahuan mengenai pengaruh temperatur udara dan kebisingan, terhadap kenyamanan dalam menonton bioskop.
- c. Penelitian ini diharapkan dapat memberikan informasi tentang pengaruh temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop.

2. Manfaat Praktis

a. Penelitian ini diharapkan dapat memberikan manfaat bagi mahasiswa khususnya pada program studi psikologi mengenai pengaruh temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop.

b. Penelitian ini diharapkan dapat menjadi masukan dan kajian informasi untuk mahasiswa khususnya pada program studi psikologi tentang pengaruh temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop.

E. Keaslian Penelitian

Sepengetahuan penulis, penelitian tentang pengaruh temperatur udara dan kebisingan terhadap kenyamanan pada saat menonton di bioskop belum ada sebelumnya.Penelitian ini adalah penelitian kuantitatif. Penelitian yang terkait dengan penelitian ini, yaitu:

1. Arlik Sarinda, Sudarti, Subiki (Universitas Jember), 2017, analisis perubahan suhu ruangan terhadap kenyamanan termal di gedung 3 FKIP Universitas Jember, penelitian dilakukan dengan menggunakan statistik deskriptif. Hasil penelitian tersebut menyatakan bahwa terdapat hubungan antara temperatur udara dan kenyamanan. Pada pukul 06.00 WIB sampai dengan pukul 07.00 WIB dengan temperatur udara 26°C merupakan kondisi paling nyaman. Sedangkan mulai pukul 08.00 WIB suhu ruang mulai naik dan membuat tidak nyaman. Artinya, kenaikan suhu tersebut, menyebabkan mahasiswa tidak nyaman dengan kondisi termal yang ada di ruang kuliah, sehingga dapat mengurangi konsentrasi dalam menerima pelajaran.

Berdasarkan uraian di atas, meskipun telah ada penelitian yang berkaitan dengan "temperatur udara dan kenyamanan", namun belum ada penelitian yang memiliki judul yang sama. Penelitian yang telah dilakukan di atas pun menggunakan metode penelitian yang berbeda.

BAB II

KERANGKA TEORI DAN KONSEP

A. Kenyamanan Dalam Menonton Bioskop

1. Pengertian Kenyamanan Dalam Menonton di Bioskop

Menurut Rahmadani (dalam Aienna, Adyatma, & Arisanty, 2016) manusia umumnya menginginkan kondisi yang nyaman dalam melaksanakan aktifitas, seperti temperatur ruang yang terlalu panas atau dingin akan mengakibatkan perubahan fungsional pada organ yang bersesuaian pada tubuh manusia. Kenyamanan dan perasaan nyaman adalah penilaian komprehensif seseorang terhadap lingkungannya. Kenyamanan adalah suatu kontinum perasaan dari paling nyaman sampai dengan paling tidak nyaman yang dinilai berdasarkan persepsi masing-masing individu pada suatu hal yang di mana nyaman pada individu tertentu mungkin berbeda dengan individu lainnya (Nugroho & Hidayat, 2017).

Menurut Ashrae (dalam Parsons, 2014) kenyamanan sering diartikan sebagai kondisi pikiran yang mengekspresikan kepuasan terhadap lingkungan. Kenyamanan merupakan sesuatu yang diusahakan oleh seseorang ketika mereka merasakan ketidaknyamanan. Hal ini mempengaruhi perilaku. Saat berada dalam kondisi nyaman, maka akan terdapat sedikit keinginan untuk perubahan meskipun harus diingat bahwa manusia tidak pasif, dan sering mencari rangsangan, kegembiraan, dan kesenangan.

Kenyamanan merupakan bagian dari sasaran karya arsitektur.Kenyamanan terdiri dari kenyamanan psikis dan kenyamanan fisik.Kenyamanan psikis terkait dengan kenyamanan kejiwaan yang terukur secara subyektif.Sedangkan kenyamanan fisik dapat secara obyektif (kuantitatif) yang meliputi kenyamanan spasial, visual, audial dan termal.Kenyamanan termal merupakan salah satu unsur kenyamanan yang sangat penting karena menyangkut kondisi ruangan yang nyaman (Nasrullah, Rahim, Baharuddin, Mulyadi, Jamala, & Kusno, 2015).

Menurut Priyanto, Setyawan, & Azis (2017), menonton merupakan salah satu kegiatan dengan menggunakan mata untuk memandang (memperhatikan) sesuatu. Sebagai salah satu aspek perhatian, menonton berusaha menggali informasi baik dari televisi maupun yang lainnya. Menonton yaitu sama dengan melihat (pertunjukan, gambar hidup). Menurut buku Quantum Learning, melihat merupakan salah stau cara anak untuk belajar, yaitu melalui media visual (Iswahyuni, 2015).

Berdasarkan beberapa pengertian kenyamanan dan menonton di atas, maka dapat disimpulkan bahwa kenyamanan dalam menonton di bioskop adalah kondisi di mana seseorang memperoleh kepuasan akan lingkungan sekitarnya ketika melakukan kegiatan memperhatikan sesuau untuk menggali informasi tanpa merasakan adanya gangguan dari manapun yang dapat membuat diri seseorang tersebut merasa jenuh, gelisah, dan tidak puas.

2. Faktor-faktor yang Mempengaruhi Kenyamanan Dalam Menonton di Bioskop

Menurut Aienna, Adyatma, & Arisanty (2016) faktor-faktor yang mempengaruhi kenyamanan dapat dibagi menjadi dua, yaitu sebagai berikut:

a. Variabel Personal

Rate Metabolisme yang diwujudkan dalam variabel aktivitas tingkat metabolisme merupakan panas yang dihasilkan di dalam tubuh sepanjang beraktivitas. Semakin banyak melakukan aktivitas fisik, semakin banyak panas yang dibuat. Selain itu, kenyamanan sangat dipengaruhi oleh efek insulasi pakaian yang dikenakan.

b. Variabel Iklim Ruang

Suhu manusia naik ketika suhu ruang dinaikkan hingga sekitar 21°, namun suhu ruang tidak menyebabkan suhu kulit naik, tapi menyebabkan kulit berkeringat. Selain itu, kecepatan angin merupakan faktor penting dalam kenyamanan termal, temperatur radiasi lebih memberikan pengaruh yang lebih besar dibandingkan temperatur udara (Susanti dalam Aienna, Adyatma, & Arisanty, 2016).PMV (*Predicted Mean Votei*) yang mengindikasikan sensasi dingin (*cold*) dan hangat (*warmth*) yang dirasakan oleh manusia, serta PDD (*Predicted Percentage of Dissatisfied*) yaitu banyaknya orang (dalam persentase) yang tidak puas terhadap lingkungan.

Parsons (2014) juga menyampaikan mengenai faktor-faktor yang mempengaruhi kenyamanan yang terbagi menjadi dua, yaitu:

a. Faktor Usia

Secara umum, orang-orang dengan usia lanjut lebih menyukai suhu udara yang lebih tinggi dibandingkan dengan orang-orang yang lebih muda. Hal ini dikarenakan orang-orang dengan usia lanjut memiliki tingkat metabolisme yang lebih rendah.

b. Faktor Jenis Kelamin

Secara keseluruhan, terdapat beberapa perbedaan gender pada kondisi netral dan hangat dan wanita cenderung lebih merasakan dingin daripada laki-laki pada kondisi dingin.Hal ini disebabkan oleh wanita yang memiliki tangan yang lebih dingin.Pada beberapa kasus, ditemukan hasil bahwa wanita jauh lebih tidak puas daripada laki-laki terhadap kondisi panas maupun dingin, di mana mereka juga lebih cerdas dan cepat dalam memberikan reaksi terhadap sesuatu yang terjadi.

Berdasarkan beberapa faktor dari para tokoh ahli di atas, maka dapat disimpulkan bahwa faktor-faktor yang dapat mempengaruhi kenyamanan meliputi variabel personal, variabel iklim ruang, faktor usia, dan faktor jenis kelamin.

3. Aspek – aspek Kenyamanan Dalam Menonton Bioskop

Menurut Kolcaba (dalam Nugroho & Hidayat, 2017) aspek kenyamanan terdiri dari :

a. Kenyamanan Fisik

Kenyamanan fisik berkenaan dengan sensasi tubuh yang dirasakan oleh individu itu sendiri, meliputi penurunan kemampuan tubuh dalam merespon suatu penyakit atau prosedur invasif. Beberapa alternative untuk memenuhi kebutuhan fisik adalah memberikan obat, merubah posisi, *backrub*, kompres hangat atau dingin, sentuhan terapeutik.

b. Kenyamanan Psikospiritual

Kenyamanan Psikospiritual berkenan dengan kesadaran internal diri, yang meliputi konsep diri, harga diri, makna kehidupan, seksualitas hingga hubungan yang sangat dekat dan lebih tinggi.

c. Kenyamanan Lingkungan

Kenyamanan lingkungan berkenan dengan lingkungan, kondisi dan pengaruh dari luar kepada manusia seperti temperatur, warna, suhu, pencahayaan, dan suara. Kebutuhan ini juga berhubungan dengan menjaga kerapian dan kebersihan lingkungan.

d. Kenyamanan Sosial Kultural

Kenyamanan sosial kultural berkenan dengan hubungan interpersonal, keluarga, dan sosial atau masyarakat (keuangan, perawatan kesehatan individu, kegiatan religius, serta tradisi keluarga).

Berdasarkan beberapa aspek yang telah disebutkan di atas, maka dapat disimpulkan bahwas aspek-aspek dari kenyamanan terbagi menjadiempat aspek, yaitu antara lain kenyamanan fisik, kenyamanan psikospiritual, kenyamanan lingkungan, dan kenyamanan sosial kultural.

B. Temperatur Udara

1. Pengertian Temperatur Udara

Menurut Rahim, Asniawaty, Martosenjoyo, Amin, & Hiromi (2016) temperatur udara adalah keadaan panas udara yang disebabkan oleh panas matahari.Panas permukaan bumi oleh penyinaran matahari mempengaruhi panas udara.Temperatur udara di permukaan bumi bervariasi karena sinar matahari menyebar tidak merata di permukaan bumi.

Temperatur udara adalah suatu ukuran dingin atau panasnya keadaan atau sesuatu lainnya.Satuan ukur dari temperatur yang banyak digunakan di Indonesia adalah °C (derajat Celcius) (Mustamin, Rahim, Baharuddin, Mulyadi, Jamala, Asniawaty, & Kusno, 2017).

Berdasarkan beberapa pengertian temperatur udara di atas, maka dapat disimpulkan bahwa temperatur udara adalah keadaan panas atau dinginnya udara atau sesuatu lainnya di permukaan bumi yang disebabkan oleh panas matahari yang bervariasi.Sinar matahari yang menyebar secara tidak merata menyebabkanadanya perbedaan temperatur di setiap wilayah.

2. Faktor-faktor yang Mempengaruhi Temperatur Udara

Faktor-faktor yang mempengaruhi temperatur udara menurut Rahim, Asniawaty, Martosenjoyo, Amin, & Hiromi (2016) dibagi menjadi empat, yaitu antara lain:

a. Lamanya Penyinaran Matahari

Semakin lama matahari memancarkan sinarnya di suatu daerah, makin banyak panas yang diterima. Keadaan atmosfer yang cerah sepanjang hari akan lebih panas daripada jika hari itu berawan sejak pagi.

b. Kemiringan Sinar Matahari

Suatu tempat yang posisi matahari berada tegak lurus di atasnya, maka radiasi matahari yang diberikan akan lebih besar dan suhu di tempat tersebut akan tinggi, dibandingkan dengan tempat yang posisi mataharinya lebih miring.

c. Keadaan Awan

Adanya awan di atmosfer akan menyebabkan berkurangnya radiasi matahari yang diterima di permukaan bumi. Karena radiasi yang mengenai awan, oleh uap air yang ada di dalam awan akan dipencarkan, dipantulkan, dan diserap.

d. Keadaan Permukaan Bumi

Perbedaan sifat darat dan laut akan mempengaruhi penyerapan dan pemantulan radiasi matahari. Permukaan darat akan lebih cepat menerima dan melepaskan panas energi radiasi matahari yang diterima di permukaan bumi dan akibatnya menyebabkan perbedaan suhu udara di atasnya.

Berdasarkan beberapa faktor yang telah disebutkan di atas, maka dapat disimpulkan bahwa faktor-faktor yang mempengaruhi temperatur udara adalah lamanya penyinaran matahari, kemiringan sinar matahari, keadaan awan, dan keadaan permukaan bumi.

3. Aspek – aspek Temperatur Udara

Menurut Tri (2008), temperatur udara akan melibatkan tiga aspek meliputi panas, dingin, dan netral yang dapat diuraikan sebagai berikut:

a. Panas

Panas adalah temperatur udara di sekitar tubuh manusia lebih tinggi dari suhu nyaman yang diperlukan, aliran darah pada permukaan tubuh atau anggota badan akan meningkat dan ini akan meningkatkan suhu kulit. Peningkatan suhu ini bertujuan untuk melepaskan lebih banyak panas secara radiasi dari dalam tubuh ke udara di sekitarnya. Proses pengeluaran keirngat akan terjadi pada suhu udara yang lebih tinggi lagi, sebagai tindak lanjut dari usaha pelepasan panas tubuh melalui proses penguapan.

b. Dingin

Dingin adalah situasi di mana suhu udara lebih rendah dari yang diperlukan tubuh, peredaran darah ke permukaan tubuh atau anggota badan dikurangi. Hal ini merupakan usaha tubuh untuk mengurangi pelepasan panas ke udara di sekitarnya. Pada situasi ini pada umumnya tangan atau kaki menjadi dingin dan pucat, otot-otot akan berkontraksi dan tubuh akan menggigil pada suhu udara lebih rendah lagi.

c. Netral

Netral adalah di mana manusia masih dapat mengantisipasi dirinya terhadap perubahan suhu udara di sekitarnya. Dalam kondisi yang tidak ekstrim ini terdapat daerah temperatur di mana manusia tidak memerlukan usaha apapun, seperti halnya menggigil atau mengeluarkan keringat, dalam rangka mempetahankan suhu tubuhnya agar tetap berkisar pada 37°C.

Berdasarkan beberapa aspek yang telah disebutkan di atas, maka dapat disimpulkan bahwas aspek-aspek dari temperatur udara terbagi menjadi tiga aspek, yang meliputi panas, dingin, serta netral.

C. Kebisingan

1. Pengertian Kebisingan

Kebisingan adalah bunyi yang tidak diinginkan karena tidak sesuai dengan konteks ruang dan waktu sehingga dapat menimbulkan gangguan terhadap kenyamanan dan kesehatan manusia. Bunyi yang menimbulkan kebisingan disebabkan oleh sumber suara yang bergetar. Getaran sumber suara ini mengganggu keseimbangan molekul-molekul udara menurut pola rambat longitudinal. Rambatan gelombang di udara ini dikenal sebagai suara atau bunyi (Sasongko dalam Fithri & Annisa, 2015).

Kebisingan merupakan suara yang tidak diinginkan yang bersumer dari alat produksi dan atau alat yang pada tingkat tertentu akan menimbulkan gangguan pendengaran. Kebisingan (noise) dapat juga diartikan sebagai sebuah

bentuk getaran yang dapat berpindah melalui medium padat, cair dan gas (Harris dalam Fithri & Annisa, 2015).

Menurut Andriani (2016) kebisingan merupakan salah satu faktor yang dapat mempengaruhi terjadinya kelelahan kerja. Bising adalah bunyi yang tidak disukai, suara yang mengganggu. Berkurangnya pendengaran akibat bising berlangsung secara perlahan-lahan dalam jangka waktu yang lama. Menurut Kristiyanto, Kurniawan, & Wahyuni (2014) kebisingan adalah semua suara yang tidak dikehendaki yang bersumber dari alat-alat proses produksi dan/atau alat-alat kerja yang pada tingkat tertentu dapat menimbulkan gangguan pendengaran.

Menurut Iskandar (2012) kebisingan merupakan yang tidak diinginkan oleh seseorang. Suara bising tidak hanya suara yang keluar dari sumbernya dengan tekanan tinggi atau frekuensi yang tinggi. Adapun suara yang memberikan tekanan tinggi pada pendengaran, misalnya suara melengking di dekat telinga. Tetapi suara yang tidak diinginkan dapat berupa suara orang berbicara yang mengganggu bagi yang mendengarnya. Oleh karena itu, kebisingan lebih merupakan pemaknaan psikologis.

Berdasarkan beberapa pengertian kebisingan di atas, maka dapat disimpulkan bahwa kebisingan adalah suara dengan frekuensi rendah maupun tinggi yang berasal dari berbagai macam sumber namun keberadaannya tidak diduga dan diharapkan sehingga dianggap mengganggu kenyamanan oleh seseorang yang mendengarnya.

2. Faktor-faktor yang Mempengaruhi Kebisingan

Faktor-faktor yang mempengaruhi kebisingan menurut Iskandar (2012) dibagi menjadi dua yaitu:

a. Faktor Fisik

Faktor fisik dalam hal kebisingan ialah gelombang suara yang diterima oleh indra pendengaran kita dan memberikan tekanan pada gendang telinga orang yang mendengarnya. Manusia secara normal dapat mendengar frekuensi suara antara 20-20.000 Hz (Hertz).

b. Faktor Psikis

Pada umumnya, remaja mendengarkan lagu kesenangannya dengan volume yang tinggi. Dalam peristiwa tersebut, remaja tidak merasa suara musiknya bising. Namun demikian, apabila kita sedang mengerjakan tugas yang membutuhkan konsentrasi tinggi, dan ada yang sedang berbicara di dekat kita, maka suara orang tersebut akan memecahkan konsentrasi. Terganggunya konsentrasi dalam bekerja tadi, maka kondisi tersebut dimaknakan sebagai kebisingan. Dengan demikian, kebisingan tidak selalu terkait dengan tekanan suara tinggi, tetapi lebih menekankan pada proses pemaknaan.

Berdasarkan penjelasan yang telah disebutkan di atas, maka dapat disimpulkan bahwa terdapat sebanyak dua buah faktor yang dapat mempengaruhi kebisingan. Ada pun kedua aspek tersebutyaitu faktor fisik dan faktor psikis.

3. Aspek – aspek Kebisingan

Menurut Jennie (2008) kebisingan dapat dibedakan menjadi empat, yaitu sebagai berikut:

a. Gangguan Fisiologis

Gangguan fisiologis adalah gangguan yang mula-mula timbul akibat bising, dengan kata lain fungsi pendengaran secara fisiologis dapat terganggu. Pada berbagai penyelidikan ditemukan bahwa pemaparan bunyi terutama yang mendadak menimbulkan reaksi fisiologis seperti: denyut nadi, tekanan darah, metabolism, gangguan pola tidur, penyempitan pembuluh darah, dan ambang pendengaran. Bila terus menerus terpapar, maka akan terjadi adaptasi sehingga perubahan itu tidak tampak lagi.

b. Gangguan Psikologis

Gangguan fisiologis lama-kelamaan bisa menimbulkan gangguan psikologis. Kebisingan dapat mempengaruhi stabilitas mental dan reaksi psikologis, seperti rasa khawatir, jengkel, takut, dan sebagainya. Suara yang tidak dikehendaki memang tidak menimbulkan mental illness akan tetapi dapat memperberat *problem* mental dan perilaku yang sudah ada. Apabila kenyaringan kebisingan meningkat, maka dampak terhadap psikologis juga akan meningkat. Kebisingan dikatakan mengganggu, apabila pemaparannya menyebabkan orang tersebut berusaha untuk mengurangi, menolak suara tersebut atau meninggalkan tempat yang bisa menimbulkan suara yang tidak dikehendaki.

c. Gangguan Patologis Organis

Gangguan kebisingan yang paling menonjol adalah pengaruhnya terhadap alat pendengaran atau telinga, yang dapat menimbulkan ketulian yang bersifat sementara hingga permanen. Kelainan yang timbul pada telinga akibat bising terjadi tahap demi tahap, petama stadium adaptasi yaitu suatu daya proteksi alamiah dan keadaan yang dapat pulih kembali. Kedua stadium temporary threshold shiff yaitu kehilangan pendengaran "reversible" sesudah 48 jam terhindar dari bising itu, batas waktu yang diperlukan untuk pulih kembali sesudah terpapar bising adalah 16 jam. Ketiga stadium persistem threshold lose, dalam stadium ini ambang pendengaran meninggi lebih lama sekurang-kurangnya 48 jam setelah meninggalkan lingkungan bising, pendengaran masih terganggu. Dan keempat stadium permanent threshold shiff, yaitu meningginya ambang pendengaran menetap sifatnya, gangguan ini banyak ditemukan dan tidak dapat disembuhkan.

d. Komunikasi

Kebisingan dapat mengganggu pembicaraan. Paling penting di sini bahwa kebisingan mengganggu dalam menangkap dan mengerti apa yang dibicarakan oleh orang lain, apakah itu berupa percakapan langsung, pecakapan telepon atau melalui alat komunikasi lain.

Berdasarkan beberapa aspek yang telah disebutkan di atas, maka dapat disimpulkan bahwa aspek-aspek dari kebisingan menurut Jennie (2008) di antaranya adalah gangguan fisiologis, gangguan psikologis, gangguan patologis organis, dan komunikasi.

D. Kerangka Berpikir

Tingkat kenyamanan seseorang selama menonton di bioskop tentunya memiliki pengaruh besar terhadap proses menikmati tontonan yang sedang disaksikan. Oleh sebab itu, setiap orang tentunya ingin membuat lingkungan di sekelilingnya menjadi lingkungan yang paling nyaman agar dirinya dapat mencapai kenikmatan yang diinginkan tersebut.

Menurut Ashrae (dalam Parsons, 2014) kenyamanan sering diartikan sebagai kondisi pikiran yang mengekspresikan kepuasan terhadap lingkungan. Menurut Priyanto, Setyawan, & Azis (2017), menonton merupakan salah satu kegiatan dengan menggunakan mata untuk memandang (memperhatikan) sesuatu. Sebagai salah satu aspek perhatian, menonton berusaha menggali informasi baik dari televisi maupun yang lainnya.

Oleh sebab itu, dapat disimpulkan bahwa kenyamanan menonton di bioskop ialah kondisi di mana seseorang memperoleh kepuasan akan lingkungan sekitarnya ketika melakukan kegiatan memperhatikan sesuau untuk menggali informasi tanpa merasakan adanya gangguan dari manapun yang dapat membuat diri seseorang tersebut merasa jenuh, gelisah, dan tidak puas.

Aspek-aspek dari kenyamanan menonton di bioskop yang merupakan aspek dari kenyamanan menurut Ashrae (dalam Aienna, Adyatma, & Arisanty, 2016) sendiri yaitu fisik, fisiologis, dan psikologis. Kenyamanan menonton di bioskop dapat dipengaruhi oleh beberapa faktor salah satunya adalah temperatur udara. Temperatur udara merupakan keadaan panas atau dinginnya udara atau sesuatu lainnya di permukaan bumi yang disebabkan oleh panas matahari yang menyebar secara tidak merata sehingga terdapat perbedaan temperatur di setiap wilayah. Adapun aspek dari temperatur udara yang diungkapkan oleh (Tri, 2008), meliputi panas, dingin, dan netral.

Selain temperatur udara, hal yang juga mempengaruhi kenyamanan menonton ialah kebisingan. Menurut Iskandar (2012) kebisingan merupakan yang tidak diinginkan oleh seseorang. Suara bising tidak hanya suara yang keluar dari sumbernya dengan tekanan tinggi atau frekuensi yang tinggi. Adapun suara yang memberikan tekanan tinggi pada pendengaran, misalnya suara melengking di dekat telinga. Tetapi suara yang tidak diinginkan dapat berupa suara orang berbicara yang mengganggu bagi yang mendengarnya. Oleh karena itu, kebisingan lebih merupakan pemaknaan psikologis. Adapun aspek-aspek dari kebisingan (Jennie, 2008) terbagi menjadi empat yaitu di antaranya adalah gangguan fisiologis, gangguan psikologis, gangguan patologis organis, dan komunikasi.

Berdasarkan rangkaian di atas, maka dapat disimpulkan kerangka berpikir pada penelitian ini adalah sebagai berikut:

Gambar 1. Kerangka Konsep Penelitian

E. Hipotesis

Hipotesis awal dari penelitian ini adalah:

- H₁: Ada pengaruh antara temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop.
 - H₀: Tidak ada pengaruh antara temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop.

- - H_0 : Tidak ada pengaruh antara temperatur udara terhadap kenyamanan dalam menonton bioskop.
- 3. H_1 : Ada pengaruh antara kebisingan terhadap kenyamanan dalam menonton bioskop.
 - H_0 : Tidak ada pengaruh antara kebisingan terhadap kenyamanan dalam menonton bioskop.

BAB III

METODE PENELITIAN

A. Jenis Penelitian

Penelitian ini dilakukan dengan menggunakan metode kuantitatif, yaitu metode dengan cara pandang deduktif, di mana ia menjelaskan sesuatu dari sesuatu yang umum ke khusus. Data utama yang dihasilkan dalam penelitian kuantitatif berbentuk skor/angka dan dianalisis melalui metode Statistika. Statistika akan melibatkan berbagai pengolahan data yang berbentuk angka atau skor, dapat dilihat gambaran frekuensi ataupun persentase dari suatu variabel (Periantalo, 2016).

Rancangan yang digunakan dalam penelitian ini adalah statistik deksriptif dan inferensial. Statistik deksriptif disebut juga sebagai statistik deduktif yaitu statisktik yang berkenaan dengan metode atau cara mendeskripsikan, menggambarkan, menjabarkan, atau menguraikan data sehingga mudah dipahami dengan membuat tabel, distribusi frekuensi dan diagram atau grafik. Sementara itu, statistik inferensial disebut juga sebagai statistik induktif yaitu statistik yang berkenaan dengan cara penarikan simpulan berdasarkan data yang diperoleh dari sampel untuk menggambarkan karakteristik atau ciri dari suatu populasi.

Rancangan penelitian statistik deskriptif digunakan untuk memberikan gambaran kondisi sebaran data temperature udara dan kebisingan terhadap kenyamanan menonton bioskop pada mahasiswa Program Studi Psikologi Universitas Mulawarman. Sedangkan statistik inferensial digunakan untuk

29

mengetahui ada tidaknya pengaruh temperature udara dan kebisingan terhadap

kenyamanan menonton bioskop pada mahasiswa Program Studi Psikologi

Universitas Mulawarman.

B. Identifikasi Variabel

Penelitian ini meliputi variabel bebas dan variabel terikat, yakni:

1. Variabel bebas

: a. Temperatur Udara

b. Kebisingan

2. Variabel terikat

: Kenyamanan Dalam Menonton Bioskop

C. Definisi Konsepsional

1. Kenyamanan Dalam Menonton Bioskop

Kenyamanan dalam menonton adalah kondisi di mana seseorang

memperoleh kepuasan akan lingkungan sekitarnya ketika melakukan kegiatan

memperhatikan sesuatu untuk menggali informasi tanpa merasakan adanya

gangguan dari manapun yang dapat membuat diri seseorang tersebut merasa

jenuh, gelisah, dan tidak puas.

2. Temperatur Udara

Temperatur udara adalah keadaan panas atau dinginnya udara atau sesuatu

lainnya di permukaan bumi yang disebabkan oleh panas matahari yang

bervariasi.Sinar matahari yang menyebar secara tidak merata menyebabkan

adanya perbedaan temperatur di setiap wilayah.

3. Kebisingan

Kebisingan adalah suara dengan frekuensi rendah maupun tinggi yang berasal dari berbagai macam sumber namun keberadaannya tidak diduga dan diharapkan sehingga dianggap mengganggu kenyamanan oleh seseorang yang mendengarnya.

D. Definisi Operasional

1. Kenyamanan Dalam Menonton Bioskop

Kenyamanan adalah suatu kontinum perasaan dari paling nyaman sampai dengan paling tidak nyaman yang dinilai berdasarkan persepsi masing-masing mahasiswa pada suatu hal, di mana nyaman pada mahasiswa tertentu mungkin berbeda dengan mahasiswa lainnya (Nugroho & Hidayat, 2017).Menurut Priyanto, Setyawan, & Azis (2017), menonton merupakan salah satu kegiatan dengan menggunakan mata untuk memandang (memperhatikan) sesuatu.Sebagai salah satu aspek perhatian, menonton berusaha menggali informasi baik dari televisi maupun yang lainnya.Aspek-aspek kenyamanan menurut Kolcaba (dalam Nugroho & Hidayat, 2017) yaitu kenyamanan fisik, kenyamanan psikospiritual, kenyamanan lingkungan, dan kenyamanan sosial kultural.

2. Temperatur Udara

Temperatur udara adalah keadaan panas udara yang disebabkan oleh panas matahari.Panas permukaan bumi oleh penyinaran matahari mempengaruhi panas udara.Temperatur udara di permukaan bumi bervariasi karena sinar matahari menyebar tidak merata di permukaan bumi (Rahim, Asniawaty, Martosenjoyo,

Amin, & Hiromi, 2016). Menurut Tri (2008), aspek-aspek temperatur udara meliputi panas, dingin, dan netral.

3. Kebisingan

Kebisingan merupakan yang tidak diinginkan oleh seseorang.Suara bising tidak hanya suara yang keluar dari sumbernya dengan tekanan tinggi atau frekuensi yang tinggi.Adapun suara yang memberikan tekanan tinggi pada pendengaran, misalnya suara melengking di dekat telinga.Tetapi suara yang tidak diinginkan dapat berupa suara orang berbicara yang mengganggu bagi yang mendengarnya.Oleh karena itu, kebisingan lebih merupakan pemaknaan psikologis (Iskandar, 2012).Aspek kebisingan menurut Jennie (2008) adalah gangguan fisiologis, gangguan psikologis, gangguan patologis organis, dan komunikasi.

E. Populasi, Sampel, dan Teknik Sampling

1. Populasi

Menurut Periantalo (2016) populasi adalah subjek yang dikenakan generalisasi dari hasil penelitian tersebut.Populasi dapat berbentuk daerah, perkembangan, karakteristik pribadi.Menurut Sugiyono (2013) populasi adalah wilayah generalisasi yang terdiri atas objek atau subjek yang mempunyai kualitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulannya.Populasi dalam penelitian ini adalah mahasiswa Universitas Mulawarman angkatan 2016 – 2018 yang berjumlah sebanyak 140 mahasiswa.

2. Sampel

Menurut Arikunto (2013) sampel adalah sebagian atau wakil populasi yang diteliti.Menurut Periantalo (2016) sampel adalah bagian dari populasi yang dijadikan subjek dalam pengambilan data penelitian. Karakteristik dari sampel adalah sama atau setara dengan populasi tersebut. Pengambilan sampel yang tepat bisa mengarahkan pada generalisasi yang kuat terhadap hasil penelitian sehingga peneliti dengan tegas menyatakan kriteria dari subjek tersebut. Sampel dalam penelitian ini adalah mahasiswa Program Studi Psikologi Universitas Mulawarman angkatan 2016 – 2018yang anggotanya berjumlah 140 orang.Menurut Sugiyono (2013) pengertian *purposive sampling* adalah teknik penentuan sampel dengan berdasarkan kriteria-kriteria atau pertimbangan tertentu. Selain itu sampel yang dipakai dalam penelitian menggunakan rancangan sampel nonprobabilitas yang artinya teknik pengambilan sampel yang tidak memberi peluang atau kesempatan yang sama bagi setiap unsur (anggota) populasi untuk dipilih menjadi anggota sampel (Sugiyono, 2013). Karakteristik sampel pada penelitian ini yaitu:

- a. Laki-laki dan perempuan.
- b. Mahasiswa program studi psikologi Universitas Mulawarman.
- c. Angkatan 2016 2018
- d. Berusia antara 17-20 dan >21 tahun.

F. Metode Pengumpulan Data

Metode pengumpulan data yang digunakan dalam penelitian ini ialah alat pengukuran atau instrumen. Terdapat sebanyak tiga instrumen yang digunakan yaitu skala temperatur udara, kebisingan, dan kenyamanan menonton. Pengumpulan data pada penelitian ini menggunakan teknik uji coba atau *try out* kepada mahasiswa Program Studi Psikologi Universitas Mulawarmanangkatan 2016 – 2018 sebanyak 140 mahasiswa.

Penelitian ini menggunakan skala tipe likert. Sebagian besar penelitian sosial dan perilaku menggunakan metode ini. Skala likert berlaku untuk konstrak linear (Periantalo, 2016).Skala yang disusun menggunakan bentuk likert memiliki lima alternatif jawaban. Skala tersebut dikelompokan dalam pernyataan *favorable* dan *unfavorable* dengan lima alternatif jawaban. Skala pengukuran tersebut diuraikan sebagai berikut:

Tabel 1. Skala Pengukuran Likert

Jawaban	Skor Favorable	Skor <i>Unfavorable</i>
Sangat setuju/sangat sesuai/sangat meningkat	5	1
Setuju/sesuai/meningkat	4	2
Netral	3	3
Tidak setuju/tidak sesuai/menurun	2	4
Sangat tidak setuju/sangat tidak sesuai/sangat	1	5
menurun	1	

Favorable adalah pernyataan yang berisi hal yang positif dan mendukung mengenai aspek penelitian, sedangkan unfavorable adalah pernyataan sikap yang berisi hal negatif dan bersifat tidak mendukung mengenai aspek penelitian.

Adapun instrument dalam penelitian ini akan diuraikan sebagai berikut:

1. Skala Kenyamanan Dalam Menonton Bioskop

Alat ukur ini disusun berdasarkan empat aspek yang dikemukakan menurut Kolcaba (dalam Nugroho & Hidayat, 2017). Di mana kenyamanan terdiri dari aspek-aspek antara lain kenyamanan fisik, kenyamanan psikospiritual, kenyamanan lingkungan, dan kenyamanan sosial kultural. Adapun sebaran aitem kenyamanan dapat dilihat pada tabel 2 di bawah ini:

Tabel 2. Blue Print Kenyamanan

No	Agnal, agnal, Vangamanan	Ai	Iumlah	
No	Aspek-aspek Kenyamanan	Favorable	Unfavorable	- Jumlah
1.	Kenyamanan Fisik	1,2,17,18	3,4,19,20	8
2.	Kenyamanan Psikospiritual	5,6,21,22	7,8,23,24	8
3.	Kenyamanan Lingkungan	9,10,25,26	11,12,27,28	8
4.	Kenyamanan Sosial Kultural	13,14,29,30	15,16,31,32	8
	Total	16	16	32

Sumber data: Lampiran hal 88-89

2. Skala Temperatur Udara

Alat ukur ini disusun berdasarkan tiga aspek yang dikemukakan oleh Tri (2008), di mana temperatur udara terdiri dari beberapa aspek yang meliputi panas, dingin, dan netral. Ada pun sebaran aitem temperatur udara dapat dilihat pada tabel tiga di bawah ini:

Tabel 3. Blue Print Temperatur Udara

No	Aspek-aspek Temperatur	ur Aitem			
110	Udara	Favorable	Unfavorable	– Jumlah	
1.	Panas	1,2,13,14	3,4,15,16	8	
2.	Dingin	5,6,17,18	7,8,19,20	8	
3.	Netral	9,10,21,22	11,12,23,24	8	
	Total	12	12	24	

Sumber data: Lampiran hal 90-91

3. Skala Kebisingan

Alat ukur ini disusun berdasarkan tiga aspek yang dikemukakan menurut Jennie (2008). Aspek-aspek tersebut terdiri dari gangguan fisiologis, gangguan patologis organis, dan komunikasi.

Tabel 4. Blue Print Kebisingan

No	A analy agnaly Wanyamanan	A i	item	Tumlah
No	Aspek-aspek Kenyamanan	Favorable	Unfavorable	- Jumlah
1.	Gangguan Fisiologis	1,2,3	4,5,6	6
2.	Gangguan Psikologis	7,8,9	10,11,12	6
3.	Gangguan Patologis Organis	13,14,15	16,17,18	6
4.	Komunikasi	19,20,21	22,23,24	6
	Total	12	12	24

Sumber data: Lampiran hal 92-93

G. Validitas dan Reliabilitas

1. Validitas

Menurut Periantalo (2016) validitas diartikan sejauh mana alat ukur mampu mengungkap apa yang hendak ia ungkap, apakah item-item di dalam alat ukur mencerminkan hal yang semestinya ia ungkap, tidak mengungkap hal di luar tujuan ukurnya.

Apabila alat ukur dikonfirmasi dengan data statistik menunjukkan apa yang harus ia tunjukkan. Ia berkorelasi positif dengan apa yang seharusnya berkorelasi positif, berkorelasi negatif dengan apa yang seharusnya berkorlasi positif serta tidak berkorelasi dengan apa yang seharusnya tidak berkorelasi. Validitas adalah syarat utama dan wajib semua alat ukur. Apabila alat ukur memiliki validitas yang bagus, maka benar pula apa yang diungkap sehingg kekuatan kebenaran penelitian tersebut kuat.

2. Reliabilitas

Reliabilitas diartikan sebagai konsisten atau keakuratan hasil ukur. Seberapa konsisten skor yang dihasilkan tersebut sama apabila diukur pada kurun waktu yang berbeda. Reliabilitas bersifat kuantitatif maupun kualitatif.Reliabilitas memiliki skor yang bergerak dari 0 sampai dengan 1. Skor 0 menunjukkan 0% konsistensi hasil ukur,sementara skor 1 menunjukkan 100% konsistensi hasil ukur (Periantalo, 2016).

Reliabilitas alat ukur penelitian ini akan diuji menggunakan teknik uji reliabilitas yang dikembangkan oleh Cronbach yang disebut dengan teknik *Alpha Cronbach's*. Ada dua alasan peneliti menggunakan uji *Alpha Cronbach's*, pertama karena tehnik ini merupakan tehnik pengujian keandalan kuesioner yang paling sering digunakan, kedua dengan melakukan uji *Alpha Cronbach's* maka akan terdeteksi indikator-indikator yang tidak konsisten. Menurut Azwar (2016) hasil pengukuran dapat dikatakan reliabel jika memiliki nilai alpha Cronbach minimal sebesar 0.700.

Tabel 5. Tingkat Keandalan Cronbach's Alpha

Nilai Cronbach'sAlpha	Tingkat Keandalan
0.000-0.200	Kurang Andal
>0.200-0.400	Agak Andal
>0.400-0.600	Cukup Andal
>0.600-0.800	Andal
>0.800-1.000	Sangat Andal

H. Hasil Uji Validitas dan Reliabilitas Instrumen Penelitian

1. Uji Validitas

Uji validitas skala dalam penelitian ini adalah denganmenggunakan regresi $product\ moment\ dari\ Pearson,\ dalam\ hal\ ini\ skala\ tersebut\ dinyatakan sahih apabila r hitung <math>\geq 0.300\ (Azwar,\ 2016)$. Adapun penjelasan dari masing-masing skala akan diuraikan sebagai berikut :

a. Skala Kenyamanan

Nama konstrak : Kenyamanan Nama aspek A : Kenyamanan Fisik

Nama aspek B : Kenyamanan Psikospiritual Nama aspek C : Kenyamanan Lingkungan Nama aspek D : Kenyamanan Sosial Kultural

Tabel 6. Rangkuman Analisis Kesahihan Butir Skala Kenyamanan (N=140)

Aspek	Jumlah Butir Awal	Jumlah Butir Gugur	Jumlah Butir Sahih	R Terendah- Tertinggi	Sig Terendah- Tertinggi
Kenyamanan fisik	8	0	8	0.511-0.757	0.000-0.000
Kenyamanan psikospiritual	8	2	6	0.250-0.562	0.003-0.000
Kenyamanan lingkungan	8	1	7	0.118-0.672	0.164-0.000
Kenyamanan sosial kultural	8	0	8	0.346-0.602	0.000-0.000

Sumber data: Lampiran hal. 128-131

Tabel 7. Sebaran Aitem Skala Kenyamanan

Agnala	Favora	Favorabel		Unfavorabel		Jumlah	
Aspek	Valid	Gugur	Valid	Gugur	Valid	Gugur	
Kenyamanan fisik	1,2,17,18	-	3,4,19,20	-	8	0	
Kenyamanan psikospiritual	21,22	5,6	7,8,23,24	0	6	2	
Kenyamanan lingkungan	9,10,25	26	11,12,27,28	0	7	1	
Kenyamanan sosial kultural	13,14,29,30	-	15,16,31,32	0	8	0	

Sumber data: Lampiran hal. 128-131

Skala kenyamanan terdiri dari 32 butir pernyataan yang terbagi dalam 4 aspek. Berdasarkan hasil uji validitas yang telah dirangkum dalam tabel 10 diketahui bahwa terdapat 3 butir pernyataan yang gugur. Sehingga jumlah keseluruhan yaitu 29 butir pernyataan yang sahih atau valid pada taraf signifikan 0.05 dan menghasilkan nilai r hitung ≥ 0.300 dengan N=140.

b. Skala Temperatur Udara

Nama Konstrak : Temperatur Udara

Nama aspek A : Panas Nama aspek B : Dingin Nama aspek C : Netral

Tabel 8. Rangkuman Analisis Kesahihan Butir Skala Temperatur Udara (N=140)

Aspek	Jumlah Butir Awal	Jumlah Butir Gugur	Jumlah Butir Sahih	R Terendah- Tertinggi	Sig Terendah- Tertinggi
Panas	8	1	7	0.077-0.849	0.368-0.000
Dingin	8	1	7	0.083-0.666	0.327-0.000
Netral	8	1	7	0.003-0.793	0.968-0.000

Sumber data: Lampiran hal.132-134

Tabel 9. Sebaran Aitem Skala Temperatur Udara

Agnole	Favorabel		Unfavorabel		Jumlah	
Aspek	Valid	Gugur	Valid	Gugur	Valid	Gugur
Panas	1,2,13,14	-	3,4,16	15	7	1
Dingin	5,6,17,18	-	8,19,20	7	7	1
Netral	9,10,21,22	-	11,12,24	23	7	1

Sumber data: Lampiran hal. 132-134

Skala temperatur udara terdiri dari 24 butir pernyataan yang terbagi dalam 3 aspek. Berdasarkan hasil uji validitas yang telah dirangkum dalam tabel 10 diketahui bahwa terdapat 3 butir pernyataan yang gugur. Sehingga jumlah keseluruhan yaitu 21 butir pernyataan yang sahih atau valid pada taraf signifikan 0.05 dan menghasilkan nilai r hitung ≥ 0.300 dengan N=140.

c. Kebisingan

Nama aspek A : Gangguan Fisiologis Nama aspek B : Gangguan Pskologis

Nama aspek C : Gangguan Patologis Organis

Nama aspek D : Komunikasi

Tabel 10. Rangkuman Analisis Kesahihan Butir Skala Kebisingan (N=140)

	Jumlah	Jumlah	Jumlah	R	Sig
Aspek	Butir	Butir	Butir	Terendah-	Terendah-
	Awal	Gugur	Sahih	Tertinggi	Tertinggi
Gangguan	8	0	8	0.485-0.712	0.000-0.000
fisiologis					
Gangguan	8	2	6	0.411-0.795	0.000 - 0.000
psikologis					
Gangguan	8	1	7	0.201-0.818	0.017-0.000
patologis organis					
Komunikasi	8	0	8	0.443-0.658	0.000- 0.000

Sumber data: Lampiran hal. 135-138

Tabel 11. Sebaran Aitem Skala Kebisingan

Agnoly	Favorabel		Unfavorabel		Jumlah	
Aspek	Valid	Gugur	Valid	Gugur	Valid	Gugur
Gangguan fisiologis	1,2,3	-	4,5,6	-	6	0
Gangguan psikologis	7,8,9	-	10,11,12	0	6	0
Gangguan patologis organis	13,14	15	16,17,18	0	5	1
Komunikasi	19,20,21	-	22,23,24	0	6	0

Sumber data: Lampiran hal.135-138

Skala kebisingan terdiri dari 24 butir pernyataan yang terbagi dalam 4 aspek. Berdasarkan hasil uji validitas yang telah dirangkum dalam tabel 10 diketahui bahwa terdapat 1 butir pernyataan yang gugur. Sehingga jumlah keseluruhan yaitu 23 butir pernyataan yang sahih atau valid pada taraf signifikan 0.05 dan menghasilkan nilai r hitung ≥ 0.300 dengan N=140.

2. Uji Reliabilitas

Kaidah yang digunakan dalam uji reliabilitas adalah alat ukur dinyatakan reliable apabila nilai alpha > 0.700. Adapun penjelasan hasil uji reliabilitas pada masing-masing skala diuraikan sebagai berikut:

Tabel 12. Rangkuman Keandalan Variabel (N=140)

Variabel	Alpha
Kenyamanan	0.797
Temperatur Udara	0.823
Kebisingan	0.842

Sumber data: Lampiran hal.140-144

Berdasarkan tabel 15, diketahui bahwa variabel kenyamanan, temperatur udara, dan kebisingan menghasilkan nilai alpha > 0.700, dengan nilai alpha untuk variabel kenyamanan = 0.797, variabel temperatur udara= 0.823, dan variabel kebisingan = 0.842. Hal ini menunjukkan bahwa seluruh variabel dalam penelitian ini dinyatakan andal atau *reliable*.

I. Teknik Analisa Data

Analisis data yang dilakukan untuk pengolahan data penelitian adalah dengan menggunakan statistik deskriptif yaitu statistik yang digunakan untuk menganalisis data dengan cara mendeskripsikan atau menggambarkan data yang telah terkumpul (Sugiyono, 2013) Variabel yang akan dianalisis regresi kedua variabel bebas (temperatur udara dan kebisingan) dengan variabel terikat (kenyamanan) digunakan analisis regresi model bertahap dan analisis model penuh. Menurut Widarjono (2015) regresi bertahap atau regresi berganda yaitu dimana satu variabel dependen dipengaruhi hanya satu variabel independen sedangkan analisis model penuh yaitu digunakan untuk mengevaluasi pengaruh semua variabel independen terhadap variabel dependen. Sebelum dilakukan

analisis data, terlebih dahulu dilakukan uji asumsi yang meliputi uji normalitas, uji linearitas, uji multikolinieritas, uji heteroskedastisitas. Keseluruhan teknik analisa data menggunakan SPSS versi 21.0.

BAB 4
HASIL PENELITIAN DAN PEMBAHASAN

A. Hasil Penelitian

1. Karakteristik Subjek Penelitian

Subjek dalam penelitian ini adalah mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016 – 2018 dengan jumlah 140 mahasiswa. Adapun distribusi subjek penelitian disajikan dalam tabel di bawah ini:

Tabel 13. Distribusi Subjek Menurut Usia

Aspek	Usia	Frekuensi	Persentase
Usia	17 - 20 21 - 32	120 20	86 14
	Total	140	100

Berdasarkan tabel 13, dapat diketahui bahwa subjek dalam penelitian pada mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016 – 2018 dengan usia 17-20 tahun yaitu sebanyak 120 anggota (86 persen) dan anggota dengan usia 21-32 berjumlah 20 anggota (14 persen). Sehingga dapat disimpulkan bahwa subjek penelitian mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016 – 2018 didominasi oleh anggota dengan usia 17-20 yaitu sebesar 86 persen.

Tabel 14. Distribusi Subjek Menurut Jenis Kelamin

Aspek	Usia	Frekuensi	Persentase
Jenis Kelamin	Laki-laki	52	37
	Perempuan	88	63
	Total	62	100

Berdasarkan tabel 14, dapat diketahui bahwa mayoritas subjek dalam penelitian ini berjenis kelamin perempuan yaitu sebanyak 88 orang dengan persentase sebesar 62.9 persen.

Tabel 15. Distribusi Subjek Menurut Angkatan

Aspek	Usia	Frekuensi	Persentase
	2016	72	51
Angkatan	2017	32	23
	2018	36	26
	Total	140	100

Berdasarkan tabel 15, dapat diketahui bahwa subjek dalam penelitian ini pada mahasiswa program studi psikologi Universitas Mulawarman yaitu anggota dari angkatan 2016 sebanyak 72 anggota (51 persen), angkatan 2017 sebanyak 32 anggota (23 persen), dan angkatan 2018 sebanyak 36 anggota (26 persen). Sehingga dapat disimpulkan bahwa subjek dalam penelitian ini didominasi oleh anggota dari angkatan 2016 yaitu sebanyak 72 anggota dengan persentase sebesar 51 persen.

2. Hasil Uji Deskriptif

Uji deskriptif berfungsi untuk mendeskripsikan atau memberi gambaran terhadap objek yang diteliti melalui data sampel atau populasi sebagaimana adanya tanpa melakukan analisis dan membuat kesimpulan yang berlaku untuk umum (Sugiyono, 2013).Deskripsi data digunakan untuk menggambarkan kondisi sebaran data pada mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016 – 2018 yang menjadi subjek dalam penelitian.Deskripsi data pokok yang disajikan adalah perbandingan rerata empirik dan rerata hipotetik penelitian dan distribusi skor perolehan berdasarkan kategori tertentu.Rerata empirik diperoleh dari respon sampel di lapangan, sedangkan rerata hipotetik diperoleh

44

dari rerata yang kemungkinan diperoleh subjek atas jawaban skala yang diberikan

(Azwar, 2014).Rerata empirik dan standar deviasi empirik diperoleh dari hasil

perhitungan melalui program SPSS, untuk rerata hipotetik menggunakan rumus:

$$\mu = \frac{1}{2} (i \max + i \min) \Sigma k$$

Ket:

μ: Rerata hipotetik

i max : Skor maksimal aitem

i min: Skor minimal aitem

Σk: Jumlah aitem valid

Selanjutnya untuk standar deviasi hipotetik menggunakan rumus:

$$\sigma = \frac{1}{6} (X \max - X \min)$$

Ket:

σ : SD hipotetik

X max : Skor maksimal subjek

X min: Skor minimal subjek

Kaidah yang digunakan dalam uji deskriptif ini adalah jika rerata empirik

lebih besar daripada rerata hipotetik, hal ini berarti status subjek terkait masing-

masing variabel cenderung tinggi. Sebaliknya, jika rerata empirik lebih kecil

daripada rerata hipotetik, hal ini berarti status subjek terkait masing-masing

variabel cenderung rendah.Perbandingan rerata empirik terhadap hipotetik

menggambarkan kondisi general para responden atau subjek penelitian dalam

variabel tersebut.Sementara itu, perbandingan SD empirik terhadap SD hipotetik

menunjukkan tinggi-rendahnya variasi skor para responden atau subjek

penelitian. Jika SD empirik lebih rendah dibanding SD hipotetik pada masing-masing variabel, hal itu berarti skor subjek terkait variabel memiliki variasi yang rendah atau dapat dikatakan skor para subjek cenderung seragam atau tidak jauh berbeda. Sedangkan, jika SD empirik lebih tinggi dibanding SD hipotetik, hal itu berarti skor subjek terkait masing-masing variabel memiliki variasi yang tinggi, artinya pada masing-masing variabel dalam penelitian ada subjek yang memiliki skor tinggi dan ada juga yang rendah.

Rerata empirik dan rerata hipotetik diperoleh dari respon sampel penelitian melalui tiga skala penelitian yaitu skala kenyamanan dalam menonton bioskop, skala temperatur udara, dan skala kebisingan. Rerata empirik danrerata hipotetik pada penelitian ini dapat dilihat pada tabel sebagai berikut :

Tabel 16. Mean Empirik dan Mean Hipotetik

Variabel	Rerata Empirik	SD Empirik	Rerata Hipotetik	SD Hipotetik	Status
Kenyamanan dalam menonton bioskop	102.19	10.079	87	19.3	Tinggi
Temperatur Udara	63.38	9.429	63	14	Tinggi
Kebisingan	76.46	10.319	69	15.3	Tinggi

Sumber data: Lampiran hal. 146

Berdasarkan tabel 16, diketahui bahwa gambaran status pada subjek penelitian secara umum mahasiswa program studi psikologi angkatan 2016 – 2018 Universitas Mulawarman adalah cenderung tinggi baik terkait dengan kenyamanan dalam menonton bioskop, temperatur udara, dan kebisingan. Adapun status kenyamanan dalam menonton bioskop subjek yang cenderung tinggi dilihat dari nilai rerata empirik yaitu 102.19 lebih besar daripada rerata hipotetik dengan

nilai sebesar 87, dan status temperatur udara yang cenderung tinggi dilihat dari nilai rerata empirik yaitu 63.38 lebih besar daripada rerata hipotetik dengan nilai sebesar 63. Sementara itu, status kebisingan yang cenderung tinggi dilihat dari nilai rerata empirik yaitu 76.46 lebih besar daripada rerata hipotetik dengan nilai sebesar 69.

Gambaran skor pada subjek terkait kenyamanan dalam menonton bioskop, temperatur udara, dan kebisingan memiliki variasi yang rendah atau dapat dikatakan skor para subjek cenderung seragam atau tidak jauh berbeda. Ada pun variasi skor subjek yang rendah terkait kenyamanan dalam menonton bioskop dilihat dari nilai SD empirik yaitu 10.079 lebih rendah dibanding SD hipotetik dengan nilai sebesar 19.3. kemudian variasi skor subjek yang rendah terkair temperatur udara dilihat dari nilai SD empirik yaitu 9.429 lebih rendah dibanding SD hipotetik dengan nilai sebesar 14. Selanjutnya, variasi skor subjek yang rendah terkait kebisingan dilihat dari nilai SD empirik yaitu 10.319 lebih rendah dibanding SD hipotetik dengan nilai sebesar 15.3. Berikut ini akan diuraikan sebaran frekuensi data untuk masing-masing skala dalam penelitian.

Tabel 17. Kategorisasi Skor Skala Kenyamanan Dalam Menonton Bioskop

Interval Kecenderungan	Skor	Kategori	F	(%)
$X \ge M + 1.5 SD$	≥ 116	Sangat Tinggi	19	13.6
M+0.5 SD < X < M+1.5 SD	97 - 116	Tinggi	80	57.1
M-0.5 SD < X < M+0.5 SD	77 - 96	Sedang	41	29.3
M-1.5 SD < X < M-0.5 SD	58 - 76	Rendah	0	0
$X \leq M - 1.5 SD$	≤ 58	Sangat Rendah	0	0

Sumber data: Lampiran hal. 148

Berdasarkan tabel 17, diketahui bahwa sebagian besar subjek yaitu sebanyak 80 orang dengan persentase 57.1 persen merasakan kenyamanan dalam menonton bioskop yang tinggi, kemudian sebanyak 41 orang dengan persentase

29.3 merasakan kenyamanan dalam menonton bioskop yang sedang, dan 19 orang dengan persentase 13.6 merasakan kenyamanan dalam menonton bioskop yang sangat tinggi.

Tabel 18. Kategorisasi Skor Skala Temperatur Udara

Interval Kecenderungan	Skor	Kategori	F	(%)
$X \ge M + 1.5 SD$	≥ 84	Sangat Tinggi	14	10.0
M+0.5 SD < X < M+1.5 SD	70 - 84	Tinggi	2	1.4
M-0.5 SD < X < M+0.5 SD	56 - 69	Sedang	114	81.4
M-1.5 SD < X < M-0.5 SD	42 - 55	Rendah	10	7.1
$X \leq M - 1.5 SD$	\leq 42	Sangat Rendah	0	0

Sumber data: Lampiran hal. 148

Berdasarkan tabel 18, diketahui bahwa sebagian besar subjek yaitu sebanyak 114 orang dengan persentase sebesar 81.4 merasakan pengaruh temperatur udara yang sedang, sebanyak 14 orang dengan persentase 10.0 merasakan pengaruh temperatur udara yang sangat tinggi, kemudian 10 orang dengan persentase 7.1 merasakan pengaruh temperatur udara yang rendah dan 2 orang dengan persentase 1.4 merasakan pengaruh temperatur udara yang tinggi.

Tabel 19. Kategorisasi Skor Skala Kebisingan

Interval Kecenderungan	Skor	Kategori	F	(%)
$X \ge M + 1.5 SD$	≥ 92	Sangat Tinggi	16	11.4
M+0.5 SD < X < M+1.5 SD	77 - 92	Tinggi	51	36.4
M-0.5 SD < X < M+0.5 SD	61 - 76	Sedang	68	48.6
M-1.5 SD < X < M-0.5 SD	46 - 60	Rendah	5	3.6
X≤M − 1.5 SD	≤ 46	Sangat Rendah	0	0

Sumber data: Lampiran hal. 148

Berdasarkan tabel 19, diketahui bahwa sebagian besar subjek yaitu sebanyak 68 orang dengan persentase sebesar 48.6 merasakan pengaruh kebisingan yang sedang, sebanyak 51 orang dengan persentase 36.4 merasakan pengaruhkebisinganyang tinggi, kemudian 16 orang dengan persentase 11.4

merasakan pengaruh kebisingan yang sangat tinggi dan 5 orang dengan persentase 3.6 merasakan pengaruh kebisinganyang rendah.

3. Hasil Uji Asumsi : Normalitas

Uji normalitas yaitu untuk memperlihatkan bahwa data sampel berasal dari populasi yang berdistribusi normal (Gunawan, 2013).Residu yang ada seharusnya berdistribusi normal.Adapun uji normalitas yang digunakan dalam penelitian ini menggunakan Kolmogorov-Smirnov dengan taraf signifikansi *alpha*sebesar 5% atau 0.05.Kaidah yang digunakan adalah jika nilai Sig atau p > 0.05 maka data berdistribusi normal, sebaliknya jika p < 0.05 maka data berdistribusi tidak normal (Gunawan, 2013). Berikut hasil uji normalitas masing-masing skala disajikan dalam tabel di bawah ini:

Tabel 20. Hasil Uji Normalitas

1 abci 20. 11a	Tabel 20. Hash Off Normanias				
	Kolmogorov-				
Variabel	Smirnov	Keterangan			
	P				
Kenyamanan dalam menonton bioskop	0.000	Tidak Normal			
Temperatur Udara	0.000	Tidak Normal			
Kebisingan	0.200	Normal			

Sumber data: Lampiran hal. 150-152

Berdasarkan tabel 20, diketahui bahwa kaidah yang digunakan nilai p > 0.05, dengan nilai p pada variabel kenyamanan dalam menonton bioskop sebesar 0.000 dinyatakan tidak normal, nilai p pada variabel temperatur udara sebesar 0.000 dan nilai p pada variabel kebisingan sebesar 0.200. Hal ini menunjukkan bahwa dari ketiga variabel memiliki data yang terdistribusi atau dapat dikatakan asumsi normalitas tidak dapat terpenuhi.Berikut ini adalah gambar normal *Q-Q Plot* masing-masing variabel hasil keluaran SPSS versi 21.0 *for windows*.

Gambar 2.Q-Q Plot Kenyamanan Dalam Menonton Bioskop

Berdasarkan gambar 2, terlihat bahwa sebaran data variabel kenyamanan dalam menonton bioskoptidak berada di sekitar garis uji yang mengarah ke kanan atas. Hal ini menunjukkan bahwa data tersebut dapat dikatakan tidak berdistribusi normal.

Gambar 3. Q-Q Plot Temperatur Udara

Berdasarkan gambar 2, terlihat bahwa sebaran data variabel temperature udaratidak berada di sekitar garis uji yang mengarah ke kanan atas. Hal ini menunjukkan bahwa data tersebut dapat dikatakan tidak berdistribusi normal.

Gambar 4. Q-Q Plot Kebisingan

Berdasarkan gambar 2, terlihat bahwa sebaran data variabel kebisingan berada di sekitar garis uji yang mengarah ke kanan atas. Hal ini menunjukkan bahwa data tersebut dapat dikatakan berdistribusi normal.

4. Hasil Uji Asumsi : Linieritas

Uji asumsi linearitas dilakukan untuk mencari persamaan garis regresi variabel bebas x terhadap variabel terikat y (Gunawan, 2013). Adapun kaidah yang digunakan dalam uji linearitas adalah apabila nilai *deviant from linearity* p > 0.05 dan nilai F hitung < F tabel pada taraf signifikansi 5% atau 0.05, maka hubungan dinyatakan linear (Gunawan, 2013). Berikut hasil uji linearitas antara masingmasing variabel bebas dengan variabel terikat disajikan dalam tabel di bawah ini:

Tabel 21. Hasil Uji Linearitas

Variabel	F Hitung	F Tabel	P	Keterangan
Kenyamanan				
dalam				
menonton	3.673	1.540	0.000	Tidak Linear
bioskop-	3.073	1.540	0.000	Tidak Linear
Temperatur				
Udara				
Kenyamanan				
dalam				
menonton	3.717	1.490	0.000	Tidak Linear
bioskop-				
Kebisingan				

Sumber data: Lampiran hal. 154

Berdasarkan tabel 21, diketahui bahwa hasil uji asumsi linearitas antara variabel temperatur udara dengan kenyamanan dalam menonton bioskop menghasilkan nilai *deviant from linearity* p sebesar 0.000 (p < 0.05) dan nilai F hitung sebesar 3.673 lebih besar daripada nilai F tabel sebesar 1.540. Hal ini menunjukkan bahwa hubungan antara variabel temperatur udara dengan kenyamanan dalam menonton bioskop adalah tidak linear. Kemudian hasil uji asumsi lineritas antara variabel kebisingan dengan kenyamanan menghasilkan nilai *deviant from linearity* p sebesar 0.000 (p < 0.05) dan nilai F hitung sebesar 3.717 lebih besar daripada nilai F tabel sebesar 1.490. Hal ini menunjukkan bahwa hubunan antara variabel kebisingan dengan kenyamanan dalam menonton bioskop adalah tidak linear.

5. Hasil Uji Asumsi : Multikoliniearitas

Uji Multikolinieritas digunakan untuk mengetahui ada tidaknya korelasi yang signifikan antara variabel bebas, multikolinieritas terjadi apabila dua atau lebih variabel bebas saling berkolerasi kuat satu sama lain (Gunawan, 2013). Uji multikolinearitas dapat dilakukan menggunakan uji regresi dengan kaidah jika

mendekati 1, maka dikatakan tidak terdapat masalah multikolinearitas dalam model regresi (Gunawan, 2013). Jika koefisien tolerance < 1 dan koefisien nilai VIF < 10, maka sebaran data tersebut dinyatakan unmultikol. Jika koefisien tolerance > 1 dan koefisien nilai VIF > 10, maka sebaran data tersebut dinyatakan unmultikol dinyatakan multikol (Gunawan, 2013). Berikut hasil uji multikolinearitas antara masingmasing variabel bebas dengan variabel terikat disajikan dalam tabel di bawah ini:

Tabel 22. Hasil Uji Multikoliniearitas

Variabel	Tolerance	VIF	Keterangan
Kenyamanan- Temperatur Udara	0.615	1.626	Tidak Multikolinieritas
Kenyamanan- Kebisingan	0.615	1.626	Tidak Multikolinieritas

Sumber data: Lampiran hal. 156

Berdasarkan tabel 22, diketahui bahwa hasil uji multikolinearitas antar variabel bebas (temperatur udara dan kebisingan) terhadap variabel terikat (kenyamanan) menghasilkan nilai yang sama yaitu VIF sebesar 1.626 sesuai dengan kaidah VIF < 10 dan memiliki *tolerance* sebesar 0.615 sesuai dengan kaidah *tolerance* < 1. Hal ini menunjukkan bahwa dalam regresi antara temperatur udara dan kebisingan dengan kenyamanan dalam menonton bioskop tidak terjadi multikoliniearitas antar variabel bebas.

6. Hasil Uji Asumsi : Homoskesdastisitas

Uji homoskedastisitas bertujuan untuk menguji apakah dalam model regresi terjadi ketidaksamaan varian dari residual satu pengamatan ke pengamatan yang lain. Jika varian atau residual satu pengamatan lainnya tetap, maka disebut homoskedastisitas. Namun jika varian atau residual satu pengamatan ke

pengamatan lainnya berbeda, maka disebut heteroskedastisitas. Model regresi yang baik adalah tidak terjadi heteroskedastisitas.

Tabel 23. Hasil Uji Homoskedastisitas

			• • • • • • • • • • • • • • • • • • • •	
Variabel	T Hitung	T Tabel	P	Keterangan
Temperatur	5.405	12.706	0.000	Heteroskedastik
Udara Kebisingan	-0.413	12.706	0.681	Homoskedastik
11001011118m11	01.10	12.700	0.001	1101110511000050111

Sumber data: Lampiran hal. 158

Berdasarkan tabel 23 di atas maka dapat disimpulkan bahwa terdapat gejala heteroskedastisitas model regresi dalam penelitian ini, yaitu pada variabel temperatur udara, sedangkan untuk variabel kebisingan terdapat gejala homoskedastik karena nilai signifikansi yang diperoleh dan pengujian dengan metode *Gljser* diperoleh nilai $\alpha > 0.05$ terhadap *absolute* residual (*Abs_Res*) secara parsial dan nilai t hitung < t tabel, sehingga variabel independen layak digunakan untuk memprediksi variabel dependen yang ada.

7. Hasil Uji Asumsi : Autokorelasi

Tabel 24. Hasil Uji Autokorelasi

Durbin-Watson	dL	dU	Keterangan
2.060	1.695	1.752	Tidak Terdapat Autokorelasi

Uji autokorelasi dilakukan untuk mengetahui ada tidaknya gejala autokorelasi antara variabel-variabel independen yang berasal dari data *time series*. Uji autokorelasi dapat dilakukan dengan Uji Durbin-Watson. Nilai yang terdapat tabel Durbin Watson yaitu $\alpha = 5\%$; n = 140; k-2 adalah dL = 1.695 dan dU = 1.752. Hasil pengolahan data menunjukan nilai Durbin Watson sebesar 2.060 dan nilai tersebut berada di antara dU dan (4-dU),yakni dU< d <4-dU

(1.752 <2.060 < 2.248). Maka dapat disimpulkan bahwa dalam model korelasi linear tersebut tidak terdapat autokorelasi atau tidak terjadi korelasi di antara kesalahan penggangu.

8. Hasil Uji Hipotesis: Analisis Regresi Model Bertahap

Pengujian hipotesis dilakukan untuk menguji hipotesis yang diajukan. Terdapat tiga hipotesis yang diajukan dalam penelitian ini terkait variabel hardiness dan efikasi diri terhadap regulasi diri penari tradisional. Teknik analisis yang digunakan adalah analisis regresi linear berganda. Adapun kaidah yang digunakan untuk uji hipotesis ke-1 dan ke-2, yang disajikan dalam analisis regresi model bertahap adalah jika nilai t hitung> t tabel pada taraf signifikansi 0.05 dan nilai p < 0.05 maka H_1 diterima H_0 ditolak. Sebaliknya, jika nilai t hitung < t tabel pada taraf signifikansi 0.05 dan nilai p > 0.05 maka H_1 ditolak H_0 diterima (Widarjono, 2015). Sementara itu, untuk melihat regresi yang dihasilkan berpengaruh positif atau negatif adalah melalui koefisien beta (β). Apabila koefisien beta (β) memiliki tanda minus (-) atau beta < 0 berarti pengaruh yang dihasilkan adalah negatif, sebaliknya apabila koefisien beta tidak memiliki tanda plus (+) atau beta > 0, maka arah pengaruh yang dihasilkan adalah positif (Widarjono, 2015). Berikut rangkuman hasil analisis regresi berganda model bertahap disajikan dalam tabel di bawah ini:

Tabel 25. Rangkuman Hasil Analisis Regresi Model Bertahap

Variabel	В	T Hitung	T Tabel	P
Temperatur Udara(X ₁) Kenyamanan (Y)	0.519	5.123	2.000	0.000
Kebisingan (X ₂) Kenyamanandalam menonton bioskop(Y)	-0.012	-0.125	2.000	0.900

Sumber data: Lampiran hal. 160

Kesimpulan dari tabel diatas adalah:

1. Uji Hipotesis Ke-1

Hipotesis pertama dalam penelitian ini H₁ berbunyi "ada pengaruh temperatur udaraterhadap kenyamanan dalam menonton bioskop". Sebaliknya H₀ berbunyi "tidak ada pengaruh temperatur udara terhadap kenyamanan dalam menonton bioskop". Berdasarkan hasil uji regresi, diketahui bahwatemperatur udara berpengaruh positif terhadap kenyamanandalam menonton bioskop mahasiswa program studi psikologi Universitas Mulawarman dengan koefisien beta sebesar 0.519, serta nilai t hitung sebesar 5.123 lebih besar daripada t tabel sebesar 2.000 dan nilai p sebesar 0.000 jauh lebih kecil dari 0.05. Hal ini menunjukkan bahwa H₁ diterima dan H₀ ditolak.

2. Uji Hipotesis Ke-2

Hipotesis kedua dalam penelitian ini H₁ berbunyi "ada pengaruh kebisingan terhadap kenyamanan dalam menonton bioskop". Sebaliknya H₀ berbunyi "tidak ada pengaruh kebisingan terhadap kenyamanan dalam menonton bioskop". Berdasarkan hasil uji regresi, diketahui bahwa kebisingan tidak berpengaruhterhadap kenyamanandalam menonton bioskop mahasiswa program studi psikologi Universitas Mulawarman dengan koefisien beta sebesar -0.012, serta nilai t hitung sebesar -0.125lebih kecil daripada t tabel sebesar 2.000 dan nilai p sebesar 0.900 jauh lebih besar dari 0.05. Hal ini menunjukkan bahwa H₁ ditolak dan H₀ diterima.

9. Hasil Uji Hipotesis: Analisis Regresi Model Penuh

Pengujian hipotesis yang disajikan dalam bentuk analisis regresi model penuh bertujuan untuk menguji hipotesis ke-3 dalam penelitian. Hipotesis tersebut H₁ berbunyi "ada pengaruh temperatur udaradan kebisingan terhadap kenyamanan dalam menonton bioskop". Sebaliknya H₀ berbunyi "tidak ada pengaruh temperatur udaradan kebisingan terhadap kenyamanan dalam menonton bioskop". Kaidah yang digunakan adalah jika nilai f hitung > f tabel pada taraf signifikansi 0.05, dan nilai p < 0.05, maka H₁ diterima dan H₀ ditolak. Sebaliknya, jika nilai f hitung < f tabel dan nilai p > 0.05, maka H₁ ditolak dan H₀ diterima (Widarjono, 2015). Sementara itu, untuk melihat seberapa baik garis regresi sesuai dengan data aktualnya atau untuk mengukur persentase total variabel dependen oleh variabel independen didalam garis regresi caranya dengan melihat nilai koefisien determinasi atau R² (Widarjono, 2015). Berikut rangkuman hasil analisis model penuh disajikan dalam tabel di bawah ini:

Tabel 26. Rangkuman Hasil Analisis Regresi Model Penuh

Variabel	\mathbb{R}^2	F Hitung	F Tabel	P
Temperatur Udara(X ₁) Kebisingan (X ₂) Kenyamanandalam menonton bioskop(Y)	0.235	21.074	3.060	0.000

Sumber data: Lampiran hal. 160

Berdasarkan tabel 26, diketahui bahwa temperatur udara dan kebisingan berpengaruh sangat signifikan terhadap terhadap kenyamanandalam menonton bioskop mahasiswa program studi psikologi Universitas Mulawarman, dibuktikan dengan nilai f hitung sebesar 21.074 lebih besar daripada f tabel sebesar 3.060 dan nilai p sebesar 0.000 jauh lebih kecil dari 0.05. Hal ini menunjukkan bahwa H₁

diterima dan H₀ ditolak.Adapun kontribusi pengaruh R²temperatur udaradan kebisingan terhadap kenyamanan dalam menonton bioskop adalah sebesar 0.235, hal ini menunjukkan bahwa 23.5 persen dari variasi kenyamanandalam menonton bioskopdapat dijelaskan oleh temperatur udara dan kebisingan. Sedangkan sisanya 76.5 persen dijelaskan oleh variabel lain atau sebab-sebab lain yang tidak diteliti dalam penelitian ini.

10. Hasil Uji Hipotesis Tambahan

Uji hipotesis tambahan dalam penelitian ini bertujuan untuk mengetahui secara lebih rinci dan mendalam mengenai keterikatan baik pengaruh ataupun hubungan antara aspek-aspek variabel bebas dengan aspek-aspek variabel terikat dengan menggunakan analisis regresi multivariat, regresi parsial, model *stepwise* dan model akhir. Analisis multivariat merupakan metode statistik yang dikembangkan untuk mengetahui apakah rata-rata kelompok berbeda secara signifikan atau tidak, selanjutnya untuk mengetahui variabel bebas apa saja yang mempengaruhi perbedaan antar kelompok tersebut (Widarjono, 2015). Sementara itu, uji analisis regresi model akhir bertujuan untuk mengetahui hasil akhir signifikansi tertinggi pengaruh aspek-aspek variabel bebas dengan masing-masing aspek variabel terikat.Kaidah yang digunakan pada analisis multivariat dan model akhir adalah jika nilai f hitung > f tabel pada taraf signifikansi 0.05, dan nilai p < 0.05, maka memiliki hubungan sangat signifikan. Sebaliknya, jika nilai f hitung < f tabel dan nilai p > 0.05, maka tidak memiliki hubungan yang signifikan (Gunawan, 2013).

Selanjutnya uji analisis regresi parsial bertujuan untuk mengukur regresi antara dua variabel dengan mengeluarkan pengaruh dari satu atau beberapa variabel lain (Santoso, 2012).Sementara itu, uji analisis regresi model *stepwise* bertujuan untuk mendapatkan variabel diskriminan yang terbaik sehingga mampu melakukan diskriminasi antar kelompok yaitu dengan variabel dimasukkan satu per satu ke dalam variabel dan kemungkinan variabel bebas dibuang dari model, syarat pada metode *stepwise* ini yaitu tidak ada masalah multikolinieritas (Widarjono, 2015). Adapun kaidah yang digunakan untuk uji analisis regresiparsial dan model *stepwise* adalah jika nilai t hitung > t tabel pada taraf signifikansi 0.05, dan nilai p < 0.05, maka memiliki hubungan positif dan signifikan. Jika memenuhi kedua kaidah, namun terdapat tanda negatif (-) di depan angka, maka memiliki hubungan negatif dan signifikan. Sementara itu, jika nilai t hitung < t tabel dan nilai p > 0.05, maka tidak memiliki hubungan yang signifikan. Adapun masing-masing hasil uji hipotesis tambahan tersebut diuraikan sebagai berikut:

Tabel 27. Rangkuman Hasil Analisis Regresi Multivariat Model Penuh Aspek-aspek Variabel Bebas terhadap Aspek-aspek Variabel Terikat

Aspek-aspek variabel bebas terhadap Aspek-aspek variabel Terikat					
Aspek	\mathbb{R}^2	F Hitung	F Tabel	P	
Panas (X_{1A}) , Dingin					
(X_{1B}) , Netral (X_{1C}) ,					
Gangguan Fisiologis					
(X_{2A}) , Gangguan					
Psikologis, (X_{2B}) ,					
Gangguan Patologis	0.269	6.947	3.06	0.000	
Organis (X_{2C}) ,					
Komunikasi (X _{2D})					
(terhadap					
Kenyamanan Fisik					
(Y_A)					
terhadap Kenyamanan	0.182	4.186	3.06	0.000	
Psikospiritual (Y _B)	0.162	4.100	3.00	0.000	
terhadap Kenyamanan					
Lingkungan (Y _C)	0.365	10.850	3.06	0.000	
terhadap Kenyamanan					
Sosial Kultural (Y _D)	0.136	2.973	3.06	0.000	

Berdasarkan tabel 27, diketahui bahwa aspek-aspek pada variabel X yaitu panas (X_{1A}), dingin (X_{1B}), netral (X_{1C}), gangguan fisiologis (X_{2A}), gangguan psikologis, (X_{2B}), gangguan patologis organis (X_{2C}), komunikasi (X_{2D}) memiliki pengaruh yang sangat signifikan terhadap aspel-aspek dalam variabel Y yaitu kenyamanan fisik (Y_{A}), dibuktikan dengan nilai $R^2 = 0.269$ (26.9 persen), F hitung = 6.947 > 3.06 (f hitung > f tabel) dan nilai p = 0.000 (p < 0.05). Kemudian ketujuh aspek dalam variabel X tersebut juga memiliki pengaruh sangat signifikan terhadap kenyamanan psikospiritual (Y_{B}),dibuktikan dengan nilai $R^2 = 0.182$ (18.2 persen), F hitung = 4.186 > 3.06 (f hitung > f tabel) dan nilai p = 0.000 (p < 0.05). Setelah itu ketujuh aspek dalam variabel X tersebut juga memiliki pengaruh sangat signifikan terhadap kenyamanan lingkungan (Y_{C}), dibuktikan dengan nilai $R^2 = 0.365$ (36.5 persen), F hitung = 10.850 > 3.06 (f hitung > f tabel) dan nilai p

= 0.000 (p < 0.05). Selanjutnya, ketujuh aspek dalam variabel X tersebut tidak memiliki pengaruh yang signifikan terhadap kenyamanan sosial kultural (Y_D), dibuktikan dengan nilai R^2 = 0.136 (13.6 persen), F hitung = 2.973 < 3.06 (f hitung < f tabel) dan nilai p = 0.000 (p < 0.05). Selanjutnya hasil analisis regresi parsial dengan kenyamanan fisik (Y_A) disajikan pada tabel di bawah ini:

Tabel 28. Rangkuman Hasil Analisis Regresi Parsial terhadap Aspek Kenyamanan Fisik (Y_A)

Aspek	В	T Hitung	T Tabel	P
Komunikasi (X _{2D})	0.005	0.056	1.977	0.956
Netral (X_{1C})	0.498	5.575	1.977	0.000
Dingin (X_{1B})	0.128	1.329	1.977	0.186
Gangguan Fisiologis (X _{2A})	0.013	0.132	1.977	0.895
Gangguan Psikologis (X _{2B})	0.106	1.160	1.977	0.248
Gangguan Patologis Organis (X _{2C})	-0.067	-0.602	1.977	0.548
Panas (X_{1A})	-0.039	-0.323	1.977	0.747

Sumber data: Lampiran hal. 161

Berdasarkan tabel 28, diketahui bahwa aspek Netral (X_{1C}) dengan kenyamanan fisik(Y_A) menghasilkan nilai koefisien beta (β) = 0.498, t hitung 5.575 > t tabel 1.977 dan nilai p = 0.000 (p < 0.05). Hal ini menunjukkan ada aspek variabel X yaitu (X_{1C}) yang memiliki hubungan positif dan signifikan dengan kenyamanan fisik(Y_A). Sementara itu aspek panas (X_{1A}), dingin (X_{1B}), gangguan fisiologis (X_{2A}), gangguan psikologis (X_{2B}), gangguan patologis organis (X_{2C}), dan komunikasi (X_{2D}) tidak memiliki hubungan yang signifikan dengan kenyamanan fisik(Y_A). Lebih lanjut pada hasil analisis model *stepwise* terhadap aspek kenyamanan fisiologis (Y_A) disajikan pada tabel di bawah ini:

Tabel 29. Rangkuman Hasil Analisis Regresi Model *Stepwise* terhadap Aspek Kenyamanan Fisik(Y_A)

Kenyamanan Fisik (1A)						
Aspek	В	T Hitung	T Tabel	P		
Dikeluarkan X _{1C}	0.463	6.639	1.977	0.000		
Dikeluarkan X _{1A}	0.029	0.343	1.977	0.732		
Dikeluarkan X _{1B}	0.111	1.508	1.977	0.134		
Dikeluarkan X _{2A}	0.037	0.491	1.977	0.042		
Dikeluarkan X _{2B}	0.124	1.643	1.977	0.139		
Dikeluarkan X _{2C}	-0.007	-0.086	1.977	-0.007		
Dikeluarkan X _{2D}	0.082	1.086	1.977	0.092		

Sumber data: Lampiran hal. 163

Berdasarkan tabel 29, diketahui bahwa aspek yang tidak memiliki pengaruh signifikan terhadap aspek 6 aspek yang tidak memiliki pengaruh signifikan terhadap aspek kenyamanan fisik(Y_A) yaitu panas (X_{1A}), dingin (X_{1B}), gangguan fisiologis (X_{2A}), gangguan psikologis (X_{2B}), gangguan patologis organis (X_{2C}), dan komunikasi (X_{2D}). Sementara itu aspek yang memiliki pengaruh positif dan signifikan terhadap kenyamanan fisiologis (Y_A) yaitu aspek netral (X_{1C}) dengan kenyamanan fisik(Y_A) menghasilkan nilai koefisien beta (Y_A) = 0.463, t hitung 6.639> t tabel 1.977 dan nilai p = 0.000 (p < 0.05). Signifikansi dari aspek netral (X_{1C}) tersebut disajikan dalam analisis regresi model akhir pada tabel di bawah ini:

Tabel 30. Rangkuman Hasil Analisis Model Akhir

Sumber Variasi	F Hitung	F Tabel	\mathbb{R}^2	P
Regresi 1X (X _{1C})	44.074	3.91	0.237	0.000

Sumber data: Lampiran hal. 164

Berdasarkan tabel 30, diketahui bahwa aspek netral (X_{1C}) memiliki pengaruh yang sangat signifikan terhadap aspek kenyamanan fisik (Y_A) mahasiswa program studi psikologi Universitas Mulawarman, dibuktikan dengan nilai R^2 =

0.237~(23.7~persen), F hitung = 44.074 > 3.91~(F~hitung > F~tabel), p = 0.000 < 0.05~(p < 0.05). Selanjutya hasil regresi parsial dengan aspek kenyamanan psikospiritual(Y_B) disajikan pada tabel dibawah ini:

Tabel 31. Rangkuman Hasil Analisis Regresi Parsial terhadap Aspek Kenyamanan Psikospiritual (Y_B)

Aspek	В	T Hitung	T Tabel	P
Komunikasi (X _{2D})	0.148	1.422	1.977	0.956
Netral (X_{1C})	0.373	3.946	1.977	0.000
Dingin (X_{1B})	0.128	1.252	1.977	0.213
Gangguan Fisiologis (X _{2A})	0.266	2.486	1.977	0.014
Gangguan Psikologis (X _{2B})	-0.182	-1.882	1.977	0.062
Gangguan Patologis Organis (X _{2C})	-0.200	-1.702	1.977	0.091
Panas (X _{1A})	-0.114	-0.903	1.977	0.157

Sumber data: Lampiran hal. 165

Berdasarkan tabel 31, diketahui bahwa aspek netral (X_{1C}) dengan kenyamanan psikospiritual(Y_B) menghasilkan nilai koefisien beta (β) = 0.373, t hitung 3.946 > 1.977 dan nilai p = 0.000 (p < 0.05), sedangkan aspek gangguan fisiologis (X_{2A}) dengan kenyamanan psikospiritual(Y_B) menghasilkan nilai koefisien beta (β) = 0.266, t hitung 2.486 > 1.977 dan nilai p = 0.014 (p < 0.05). Hal ini menunjukkan ada dua aspek variabel X yaitu netral (X_{1C}) dan gangguan fisiologis (X_{2A}) yang memiliki hubungan positif dan signifikan dengan kenyamanan psikospiritual(Y_B). Sementara itu panas (X_{1A}), dingin (X_{1B}), gangguan psikologis (X_{2B}), gangguan patologis organis (X_{2C}), dan komunikasi (X_{2D}) tidak memiliki hubungan yang signifikan dengan kenyamanan psikospiritual(Y_B). Lebih lanjut pada hasil analisis model *stepwise* terhadap aspek kenyamanan psikospiritual(Y_B) disajikan pada tabel di bawah ini:

Tabel 32. Rangkuman Hasil Analisis Regresi Model *Stepwise* terhadap Aspek Kenyamanan Psikospiritual(Y_B)

Aspek	В	T Hitung	T Tabel	P
Dikeluarkan X _{1C}	0.275	3.359	1.977	0.001
Dikeluarkan X _{2A}	0.170	2.083	1.977	0.039
Dikeluarkan X _{1A}	-0.114	-1.098	1.977	0.274
Dikeluarkan X _{1B}	0.060	0.668	1.977	0.505
Dikeluarkan X _{2B}	-0.103	-1.235	1.977	0.219
Dikeluarkan X _{2C}	-0.198	-1.885	1.977	0.062
Dikeluarkan X _{2D}	0.034	0.390	1.977	0.697

Sumber data: Lampiran hal. 165

Berdasarkan tabel 32 diketahui bahwa ada 5 aspek yang tidak memiliki pengaruh signifikan terhadap aspek kenyamanan psikospiritual (Y_B) yaitu panas (X_{1A}) , dingin (X_{1B}) , gangguan psikologis (X_{2B}) , gangguan patologis organis (X_{2C}) , dan komunikasi (X_{2D}) . Sementara itu aspek yang memiliki pengaruh positif dan signifikan terhadap kenyamanan psikospiritual (Y_B) yaitu aspek netral (X_{1C}) dengan beta $(\beta) = 0.275$, t hitung 3.359 > t tabel 1.977 dan nilai p = 0.000 (p < 0.05) dan aspek gangguan fisiologis (X_{2A}) dengan beta $(\beta) = 0.170$, t hitung 2.083 > t tabel 1.977 dan nilai p = 0.000 (p < 0.05). Signifikansi dari aspek netral (X_{1C}) dan aspek gangguan fisiologis (X_{2A}) tersebut disajikan dalam analisis regresi model akhir pada tabel di bawah ini:

Tabel 33. Rangkuman Hasil Analisis Model Akhir

Sumber Variasi	F Hitung	F Tabel	\mathbb{R}^2	P
Regresi 2X (X _{1C} dan X _{2A})	9.691	3.91	0.111	0.000

Sumber data: Lampiran hal. 166

Berdasarkan tabel 33, diketahui bahwa aspek netral (X_{1C}) dan aspek gangguan fisiologis (X_{2A}) memiliki pengaruh yang sangat signifikan terhadap aspek kenyamanan psikospiritual (Y_B) mahasiswa program studi psikologi Universitas Mulawarman, dibuktikan dengan nilai $R^2 = 0.111$ (11.1 persen), F

hitung = 9.691 > 3.91 (F hitung > F tabel), p = 0.000 < 0.05 (p < 0.05). Selanjutya hasil regresi parsial dengan aspek kenyamanan lingkungan(Y_C) disajikan pada tabel dibawah ini :

Tabel 34. Rangkuman Hasil Analisis Regresi Parsial terhadap Aspek Kenyamanan Lingkungan (Y_C)

Aspek	В	T Hitung	T Tabel	P
Komunikasi (X _{2D})	0.241	2.628	1.977	0.010
Netral (X_{1C})	0.435	5.225	1.977	0.000
Dingin (X_{1B})	0.236	2.629	1.977	0.010
Gangguan Fisiologis (X _{2A})	-0.220	-2.338	1.977	0.021
Gangguan Psikologis (X _{2B})	-0.225	-2.643	1.977	0.009
Gangguan Patologis Organis (X _{2C})	0.236	2.279	1.977	0.024
Panas (X _{1A})	-0.024	-0.214	1.977	0.831

Sumber data: Lampiran hal. 167

Berdasarkan tabel 34, diketahui bahwa aspek netral (X_{1C}) dengan kenyamanan lingkungan (Y_C) menghasilkan nilai koefisien beta $(\beta)=0.435$, t hitung 5.225>t tabel 1.977 dan nilai p=0.000 (p<0.05), aspek komunikasi (X_{2D}) dengan kenyamanan lingkungan (Y_C) menghasilkan nilai koefisien beta $(\beta)=0.241$, t hitung 2.628>t tabel 1.977 dan nilai p=0.010 (p<0.05), aspek dingin (X_{1B}) dengan kenyamanan lingkungan (Y_C) menghasilkan nilai koefisien beta $(\beta)=0.236$, t hitung 2.629>t tabel 1.977 dan nilai p=0.010 (p<0.05), aspek gangguan patologis organis (X_{2C}) dengan kenyamanan lingkungan (Y_C) menghasilkan nilai koefisien beta $(\beta)=0.236$, t hitung 2.279>t tabel 1.977 dan nilai p=0.024 (p<0.05).Hal ini menunjukkan ada empat aspek variabel X yaitunetral (X_{1C}) , komunikasi (X_{2D}) , aspek dingin (X_{1B}) , dan aspek (X_{2C}) yang memiliki hubungan positif dan signifikan dengan kenyamanan lingkungan (Y_C) . Sementara itu aspek panas (X_{1A}) ,gangguan fisiologis (X_{2A}) , dan gangguan psikologis (X_{2B}) tidak memiliki hubungan yang signifikan dengan kenyamanan

lingkungan(Y_C). Lebih lanjut pada hasil analisis model *stepwise* terhadap aspek kenyamanan lingkungan(Y_C) disajikan pada tabel di bawah ini:

Tabel 35. Rangkuman Hasil Analisis Regresi Model *Stepwise* terhadap Aspek Kenyamanan Lingkungan (Y_C)

Kenyamanan Emgkungan (10)					
Aspek	В	T Hitung	T Tabel	P	
Dikeluarkan X _{1C}	0.450	6.198	1.977	0.000	
Dikeluarkan X _{1B}	0.260	3.582	1.977	0.000	
Dikeluarkan X _{1A}	0.064	0.631	1.977	0.529	
Dikeluarkan X _{2A}	-0.079	-0.944	1.977	0.347	
Dikeluarkan X _{2B}	-0.115	-1.519	1.977	0.131	
Dikeluarkan X _{2C}	0.150	1.811	1.977	0.072	
Dikeluarkan X _{2D}	0.124	1.559	1.977	0.121	

Sumber data: Lampiran hal. 167

Berdasarkan tabel 35 diketahui bahwa ada 5 aspek yang tidak memiliki pengaruh signifikan terhadap aspek kenyamanan lingkungan(Y_C) yaitu panas (X_{1A}), gangguan fisiologis (X_{2A}), gangguan psikologis (X_{2B}), dan gangguan patologis organis (X_{2C}), dan komunikasi (X_{2D}). Sementara itu aspek yang memiliki positif pengaruh dan signifikan terhadap kenyamanan lingkungan(Y_C)yaitu aspek netral (X_{1C}) dengan beta (β) = 0.450, t hitung 6.198> t tabel 1.977 dan nilai p = 0.000 (p < 0.05), aspek dingin (X_{1B}) dengan beta (β) = 0.236, t hitung 2.629 > t tabel 1.977 dan nilai p = 0.010 (p < 0.05). Signifikansi dari aspek netral (X_{1C}) dan aspek dingin (X_{1B}) tersebut disajikan dalam analisis regresi model akhir pada tabel di bawah ini:

Tabel 36. Rangkuman Hasil Analisis Model Akhir

Sumber Variasi	F Hitung	F Tabel	\mathbb{R}^2	P
Regresi 2X (X _{1C} danX _{1B})	26.390	3.91	0.268	0.000

Sumber data: Lampiran hal. 168

Berdasarkan tabel 36, diketahui bahwa aspek netral (X_{1C}) dan aspek dingin (X_{1B}) memiliki pengaruh yang sangat signifikan terhadap aspek kenyamanan lingkungan (Y_C) mahasiswa program studi psikologi Universitas Mulawarman, dibuktikan dengan nilai $R^2 = 0.268$ (26.8 persen), F hitung = 26.390> 3.91 (F hitung > F tabel), p = 0.000 < 0.05 (p < 0.05). Selanjutya hasil regresi parsial dengan aspek kenyamanan sosial kultural (Y_D) disajikan pada tabel dibawah ini :

Tabel 37. Rangkuman Hasil Analisis Regresi Parsial terhadap Aspek Kenyamanan Sosial Kultural (Y_D)

Aspek	В	T Hitung	T Tabel	P
Komunikasi (X _{2D})	0.199	1.863	1.977	0.065
Netral (X_{1C})	0.323	3.328	1.977	0.001
Dingin (X_{1B})	0.247	2.359	1.977	0.020
Gangguan Fisiologis (X _{2A})	-0.044	-0.405	1.977	0.686
Gangguan Psikologis (X _{2B})	-0.083	-0.841	1.977	0.402
Gangguan Patologis Organis (X _{2C})	0.041	0.340	1.977	0.734
Panas (X_{1A})	-0.247	-1.904	1.977	0.059

Sumber data: Lampiran hal. 169

Berdasarkan tabel 37, diketahui bahwa aspek netral (X_{1C}) dengan kenyamanan sosial kultural (Y_D) menghasilkan nilai koefisien beta $(\beta) = 0.323$, t hitung 3.328 > 1.977 dan nilai p = 0.001 (p < 0.05), sedangkan aspek dingin (X_{1B}) dengan kenyamanan sosial kultural (Y_D) menghasilkan nilai koefisien beta $(\beta) = 0.247$, t hitung 2.359 > 1.977 dan nilai p = 0.020 (p < 0.05). Hal ini menunjukkan ada dua aspek variabel X yaitu netral (X_{1C}) dan dingin (X_{1B}) yang memiliki hubungan positif dan signifikan dengan kenyamanan sosial kultural (Y_D) . Sementara itu panas (X_{1A}) , gangguan fisiologis (X_{2A}) , gangguan psikologis (X_{2B}) , gangguan patologis organis (X_{2C}) , dan komunikasi (X_{2D}) tidak memiliki hubungan yang signifikan dengan kenyamanan psikospiritual (Y_D) . Lebih lanjut pada hasil

analisis model *stepwise* terhadap aspek kenyamanan sosial kultural(Y_D) disajikan pada tabel di bawah ini:

Tabel 38. Rangkuman Hasil Analisis Regresi Model *Stepwise* terhadap Aspek Kenyamanan Sosial Kultural(Y_D)

Aspek	В	T Hitung	T Tabel	P
Dikeluarkan X _{1C}	0.205	2.458	1.977	0.015
Dikeluarkan X _{2D}	0.175	2.093	1.977	0.038
Dikeluarkan X _{1A}	-0.096	-0.987	1.977	0.325
Dikeluarkan X _{1B}	0.124	1.424	1.977	0.157
Dikeluarkan X _{2A}	-0.025	-0.287	1.977	0.775
Dikeluarkan X _{2B}	-0.075	-0.751	1.977	0.454
Dikeluarkan X _{2C}	-0.025	-0.271	1.977	0.787

Sumber data: Lampiran hal. 169

Berdasarkan tabel 38 diketahui bahwa ada 5 aspek yang tidak memiliki pengaruh signifikan terhadap aspek kenyamanan sosial kultural (Y_D) yaitu panas (X_{1A}) , dingin (X_{2B}) , gangguan fisiologis (X_{2A}) , gangguan psikologis (X_{2B}) , dan gangguan patologis organis (X_{2C}) . Sementara itu aspek yang memiliki pengaruh positif dan signifikan terhadap kenyamanan sosial kultural (Y_D) yaitu aspek netral (X_{1C}) dengan beta $(\beta) = 0.205$, t hitung 2.458> t tabel 1.977 dan nilai p = 0.015 (p < 0.05) dan aspek komunikasi (X_{2D}) denganbeta $(\beta) = 0.175$, t hitung 2.093> 1.977 dan nilai p = 0.038 (p < 0.05). Signifikansi dari aspek netral (X_{1C}) dan aspek komunikasi (X_{2D}) tersebut disajikan dalam analisis regresi model akhir pada tabel di bawah ini:

Tabel 39. Rangkuman Hasil Analisis Model Akhir

Sumber Variasi	F Hitung	F Tabel	\mathbb{R}^2	P
Regresi 2X (X _{1C} dan X _{2D})	6.662	3.91	0.075	0.002

Sumber data: Lampiran hal. 170

Berdasarkan tabel 39 diketahui bahwa aspek netral (X_{1C}) dan aspek komunikasi (X_{2D}) memiliki pengaruh yang sangat signifikan terhadap aspek kenyamanan sosial kultural (Y_D) mahasiswa program studi psikologi Universitas Mulawarman, dibuktikan dengan nilai $R^2 = 0.075$ (07.5 persen), F hitung = 6.662 > 3.91 (F hitung > F tabel), p = 0.002 < 0.05 (p < 0.05).

B. Pembahasan

Penelitian ini betujuan untuk mengetahui pengaruh temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop pada mahasiswa program studi psikologi Universitas Mulawarman. Demi mengetahi pengaruh tersebut peneliti menentukan 140 mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018, untuk dijadikan sampel dalam penelitian ini yang menggunakan perhitungan statistic dengan hasil penelitian sebagai berikut:

Pengaruh Temperatur Udara terhadap Kenyamanan Dalam Menonton Bioskop Pada Mahasiswa Program Studi Psikologi Universitas Mulawarman Angkatan 2016 – 2018.

Hasil penelitian ini menunjukkan bahwa temperatur udara berpengaruh positif atau searah terhadap kenyamanan dalam menonton bioskop pada mahasiswa program studi psikologi universitas mulawarman angkatan 2016-2018. Hal ini menunjukkan bahwa hipotesis petama dalam penelitian H₁ diterima. H₁yaitu ada pengaruh antara temperatur udara terhadap kenyamanan dalam menonton bioskop, dikatakan bahwa variabel tersebut berpengaruh. Kemudian hasil yang didapat yaitu memiliki arah pengaruh positif atau pengaruh temperatur

udara searah dengan kenyamanan dalam menonton bioskop. Hasil ini menunjukkan bahwa semakin tinggi tingkat temperatur udara yang dimiliki oleh mahasiswa maka kenyamanan dalam menonton bioskop akan tinggi pula pada setiap mahasiswa program studi psikologi tersebut. Jadi ketika temperatur udara di sekitar mahasiswa tinggi maka tingkat kenyamanan yang dirasakan ketika menonton bioskop akan baik pula.

Hasil di atas selaras bahwa faktor utama yang mempengaruhi kenyamanan dalam menonton bioskop pada mahasiswa adalah temperatur udara. Menurut Nummenmaa (2013) menyatakan bahwa persepsi emosi seperti marah, takut, bahagia, sedih, dan semacamnya dapat dipetakan menjadi warna-warna terkait dengan aktivitas tubuh saat itu., termasuk di dalamnya adalah yang dipengaruhi oleh faktor temperatur tubuh pada bagian tertentu. Satu hal yang sangat jelas yaitu keadaan lingkungan yang tidak nyaman sangat mempengaruhi perilaku manusia. Manusia akan beradaptasi melalui perilakunya disesuaikan kondisi lingkungan saat itu. Susanti dan Aulia (2013) menyatakan bahwa arah bangunan yang menghadap atau membelakangi sinar matahari berpengaruh terhadap kenyamanan dalam menonton bioskop, selain itu letak maupun jumlah ventilasi yang tekait dengan petukaran udara juga berpengaruh terhadap kenyamanan dalam menonton bioskop. Seiring kemajuan teknologi, dalam mengusahakan lingkungan menjadi lebih nyaman secara termal, salah satu caranya adalah dengan memasang mesin penyejuk yang biasa dikenal dengan air conditioner (Satwiko, 2009).

Berdasarkan hasil wawancara dengan salah satu mahasiswa berinisial YF mengatakan bahwa subjek seringkali pergi menonton ke bioskop ketika ada film yang subjek pikir menarik. Namun subjek beberapa kali mengalami hal yang membuatnya merasa tidak nyaman dan ketidaknyamanan tersebut biasanya berasal dari temperatur udara di dalam bioskop yang terlalu dingin. Posisi tempat duduk yang mendapatkan paparan angin dari *air conditioner* secara langsung dapat membuat mereka merasa kedinginan bahkan hingga menggigil.

Terkait hasil wawancara, menurut Sarinda, Sudarti, dan Subiki (2017) manusia selalu berupaya untuk mencari kondisi nyaman terhadap lingkungan. Dewasa ini hampir semua orang menghabiskan 90% waktu mereka di dalam gedung atau ruang. Oleh karena itu, pengaturan suhu menjadi sangat penting untuk kenyamanan dan kesehatan yang optimal. Hasil ini menunjukkan bahwa semakin tinggi temperatur pada suatu tempat, maka akan menurunkan tingkat kenyamanan pada seseorang, dan semakin rendah temperatur udara pada suatu tempat juga akan menurunkan tingkat kenyamanan. Artinya, dalam meningkatkan kenyamanan seseorang, maka dibutuhkan temperatur udara yang tepat.

Pengaruh Kebisingan terhadap Kenyamanan Dalam Menonton Bioskop Pada Mahasiswa Program Studi Psikologi Universitas Mulawarman Angkatan 2016 – 2018.

Hasil penelitian ini menunjukkan bahwa kebisingan tidak berpengaruh atau tidak searah terhadap kenyamanan dalam menonton bioskop pada mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018. Hal ini menunjukkan bahwa hipotesis kedua dalam penelitian ini H₁ ditolak. H₁yaitu tidak

ada pengaruh antara kebisingan terhadap kenyamanan dalam menonton bioskop, dikatakan bahwa variabel tersebut tidak berpengaruh. Kemudian hasil yang didapat yaitu memiliki arah pengaruh negatif atau pengaruh kebisingan tidak searah dengan kenyamanan dalam menonton bioskop.

Bedasarkan hasil di atas bahwa faktor lain yang dapat mempengaruhi kenyamanan dalam menonton bioskop pada mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018 adalah insulasi pakaian. Menurut Fanger (dalam Sugini, 2008) dalam mencari kenyamanan termal seseorang dipengaruhi oleh jenis dan bahan pakaian yang digunakan. Salah satu cara manusia untuk beradaptasi dengan keadaan termal di lingkungan sekitarnya adalah dengan cara berpakaian misalnya, mengenakan pakaian tipis di musim panas dan pakaian tebal di musim dingin. Pakaian juga dapat mengurangi pelepasan panas tubuh. Penghuni ruang dapat beradaptasi terhadap kondisi termal dengan menyesuaikan jenis pakaian dengan kondisi iklim yang ada (Henry dan Nyuk, 2010).

Pengaruh Temperatur Udara dan Kebisingan terhadap Kenyamanan Dalam Menonton Bioskop Pada Mahasiswa Program Studi Psikologi Universitas Mulawarman Angkatan 2016 – 2018.

Hasil penelitian bahwa temperatur udara dan kebisingan berpengaruh terhadap kenyamanan dalam menonton bioskop pada mahasiswa program studi psikologi Universitas Mulawarman. Hal ini menunjukkan bahwa H₁ diterima. Hasil yang didapat menunjukkan bahwa berpengaruh signifikan antara temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop. Adapun

kontribusi pengaruh R²temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop menunjukkan bahwa 23.5 persen dari variasi kenyamanandalam menonton bioskop dapat dijelaskan oleh temperatur udara dan kebisingan. Sedangkan sisanya 76.5 persen dijelaskan oleh variabel lain atau sebab-sebab lain yang tidak diteliti dalam penelitian ini. Jadi, terdapat pengaruh antara temperatur udara dan kebisingan terhadap kenyamanan dalam menonton bioskop. Sehingga semakin netral temperatur udara dan semakin rendah kebisingan maka keyamanan dalam menonton bioskop pun akan semakin meningkat serta terlihat signifikan antara variabel bebas terhadap variabel terikat.

Temperatur udara dan kebisingan berpengaruh terhadap kenyamanan dalam menonton bioskop. Hal ini dijelaskan oleh hasil yang didapat peneliti pada setiap aspek temperatur udara dan kebisingan ini berpengaruh terhadap kenyamanan dalam menonton bioskop. Terdapat empat aspek dalam kenyamanan dalam menonton bioskop yang meliputi kenyamanan fisik, kenyamanan psikospiritual, kenyamanan lingkungan, dan kenyamanan sosial kultural (Kolcaba dalam Nugroho & Hidayat, 2017). Kenyamanan fisik berkenaan dengan sensasi tubuh yang dirasakan oleh individu itu sendiri. Penjelasan ini berkaitan dengan aspek dingin dan netral dalam temperatur udara, serta aspek gangguan patologis organis dalam kebisingan. Pada aspek kedua dalam kenyamanan dalam menonton bioskop adalah kenyamanan psikospiritual, yaitu kesadaran internal diri, yang meliputi konsep diri, harga diri, makna kehidupan, seksualitas hingga hubungan yang sangat dekat dan lebih tinggi. Kenyamanan psikospiritual ini juga didapatkan hasil dalam penelitian yaitu berpengaruh pada aspek gangguan

psikologis dalam kebisingan. Pada aspek yang ketiga dalam kenyamanan dalam menonton bioskop adalah kenyamanan lingkungan yang berkenan dengan lingkungan, kondisi dan pengaruh dari luar kepada manusia seperti temperatur, warna, suhu, pencahayaan, dan suara. Kenyamanan lingkungan ini juga didapatkan hasil dalam penelitian ini yaitu berpengaruh pada aspek panas dan netral dalam temperatur udara, serta aspek komunikasi dalam kebisingan. Pada aspek keempat dalam kenyamanan dalam menonton bioskop adalah kenyamanan sosial kultural. Kenyamanan sosial kultural berkenan dengan hubungan interpersonal, keluarga, dan sosial atau masyarakat (keuangan, perawatan kesehatan individu, kegiatan religius, serta tradisi keluarga). Kenyamanan sosial kultural ini juga didapatkan hasil dalam penelitian ini yaitu berpengaruh pada aspek gangguan patologis organis dalam kebisingan.

4. Pengaruh Aspek-aspek Variabel Bebas terhadap Aspek-aspek Variabel Terikat

Hasil analisis multivariate menunjukkan bahwa pada aspek variabel X yaitu panas, dingin, netral, gangguan fisiologis, gangguan psikologis, gangguan patologis organis, dan komunikasi memiliki pengaruh terhadap aspek-aspek dalam variabel Y yaitu kenyamanan fisik dengan nilai F hitung sebesar 6.947 dan nilai p sebesar 0.000, aspek kenyamanan psikospiritual dengan nilai F hitung sebesar 4.186 dan nilai p sebesar 0.000, aspek kenyamanan lingkungan dengan nilai F hitung sebesar 10.850 dan nilai p sebesar 0.000, dan aspek kenyamanan sosial cultural dengan nilai F hitung sebesar 2.973 dan nilai p sebesar 0.000. adapun kontribusi pengaruh R²aspek panas, dingin, netral, gangguan fisiologis, gangguan

psikologis, gangguan patologis organis, dan komunikasi terhadap aspek kenyamanan fisik sebesar 0.269 (29.6 persen), aspek kenyamanan psikospiritual R²sebesar 0.182 (18.2 persen), aspek kenyamanan lingkungan R²sebesar 0.365 (36.5 persen), dan aspek kenyamanan sosial kultural R²sebesar 0.136 (13.6 persen). Hal ini dapat dijelaskan bahwa setiap aspek pada variabel temperatur udara dan kebisingan memiliki pengaruh dengan aspek pada variabel kenyamanan dalam menonton bioskop.

Pada aspek kenyamanan fisik dalam variabel kenyamanan dalam menonton bioskop ini diartikan sebagai kenyamanan berkenaan dengan sensasi tubuh yang dirasakan oleh individu itu sendiri. Kolcaba(dalam Nugroho & Hidayat, 2017) menjelaskan bahwa untuk dapat mencapai kenyamanan fisik, tubuh merespon suatu stimulus. Terdapat tiga aspek kenyamanan dalam menontonbioskop lainnya yang di mana, apabila dampak yang ditimbulkan adalah kenyamanan fisik maka akan berpengaruh terhadap kondisi kenyamanan psikospiritual, lingkungan, dan sosial kultural (Nurachmah, Kristianto, dan Gayatri, 2011). Sehingga dari ketujuh aspek variabel temperatur udara dan kebisingan memiliki pengaruh terhadap empat aspek pada variabel kenyamanan dalam menonton bioskop. Mahasiswa yang pergi menonton di bioskop sangat memerlukan tingkat temperatur udara dan kebisingan yang sesuai sehingga mahasiswa tersebut dapat merasakan kenyamanan yang baik selama berada di dalam bioskop. Pada kedua variabel bebas yaitu temperatur udara dan kebisingan ini berpengaruh pada kenyamanan dalam menonton bioskop.

5. Hubungan Aspek-aspek Variabel Bebas terhadap Aspek Kenyamanan Fisik (Y_A)

Hasil analisis regresi parsial menunjukkan bahwa aspek netral dengan kenyamanan fisik menghasilkan nilai koefisien beta sebesar 0.498 dengan t hitung 5.575 dan nilai p sebesar 0.000. Hal ini menunjukkan ada 1 aspek variabel X yaitu netral yang memiliki hubungan positif dengan kenyamanan fisik. Hasil yang sama dengan analisis regresi model *stepwise* yaitu aspek netral dengan nilai beta sebesar 0.463 dengan t hitung 6.639 dan p sebesar 0.000. hal ini juga dianlisis dengan model akhir mnghasilkan F hitung sebesar44.074 dan p sebesar 0.000lebih kecil dari 0.05 dengan kontribusi pengaruh R² netral terhadap kenyamanan fisik sebesar 0.237. Sementara aspek panas, dingin, gangguan fisiologis, gangguan psikologis, gangguan patologis organis, dan komunikasi tidak memiliki hubungan yang signifikan dengan kenyamanan fisik (Y_A).

Hal ini dapat dijelaskan bahwa aspek netral pada variabel temperatur udara berpengaruh terhadap kenyamanan fisik pada variabel kenyamanan dalam menonton bioskop. Aspek netral di mana manusia masih dapat mengantisipasi dirinya terhadap perubahan suhu udara di sekitarnya (Tri, 2008). Aspek tersebut berkaitan dengan kenyamanan fisik ketika berada di dalam bioskop dibutuhkan temperatur udara yang netral atau sesuai sehingga tidak memerlukan usaha apapun dalam rangka mempertahankan suhu tubuhnya.

6. Hubungan Aspek-aspek Variabel Bebas terhadap Aspek Kenyamanan Psikospiritual (Y_B)

Hasil analisis regresi parsial menunjukkan bahwa aspek netral dengan kenyamanan psikospiritual menghasilkan nilai koefisien beta sebesar 0.373 dengan t hitung 3.946 dan nilai p sebesar 0.000, sedangkan aspek gangguan fisiologis menghasilkan nilai koefisien beta sebesar 0.266 dengan t hitung 2.486 dan nilai p sebesar 0.014. Hal ini menunjukkan ada 2 aspek variabel X yaitu netral dan gangguan fisiologis yang memiliki hubungan positif dengan kenyamanan psikospiritual. Hasil yang sama dengan analisis regresi model *stepwise* yaitu aspek netral dengan nilai beta sebesar 0.275 dengan t hitung 3.359 dan p sebesar 0.000, sedangkana spek gangguan fisiologis nilai koefisien beta sebesar 0.170 dengan t hitung 2.083 dan p sebesar 0.000. Hal ini juga dianlisis dengan model akhir mnghasilkan F hitung sebesar 9.691 dan p sebesar 0.000 lebih kecil dari 0.05 dengan kontribusi pengaruh R² netral dan gangguan fisiologis terhadap kenyamanan psikospiritual sebesar 0.111. Sementara aspek panas, dingin, gangguan psikologis, gangguan patologis organis, dan komunikasi tidak memiliki hubungan yang signifikan dengan kenyamanan psikospiritual (Y_B).

Hal ini dapat dijelaskan bahwa aspek netral pada variabel temperatur udara dan aspek gangguan fisiologis berpengaruh terhadap kenyamanan psikospiritual pada variabel kenyamanan dalam menonton bioskop. Aspek netral di mana manusia masih dapat mengantisipasi dirinya terhadap perubahan suhu udara di sekitarnya (Tri, 2008). Aspek gangguan fisiologis di mana mula-mula timbul akibat bising, dengan kata lain fungsi pendengaran secara fisiologis dapat

terganggu (Jennie, 2008). Aspek tersebut berkaitan dengan kenyamanan psikospiritual ketika mahasiswa berada di dalam bioskop ia mampu untuk mencapai temperatur udara yang netral atau sesuai dan mampu mengatasi gangguan fisiologis yang ada sehingga mahasiswa akan dapat merasakan kenyamanan yang diinginkan dalam menonton bioskop.

7. Hubungan Aspek-aspek Variabel Bebas terhadap Aspek Kenyamanan Lingkungan (Y_C)

Hasil analisis regresi parsial menunjukkan bahwa aspek komunikasi dengan kenyamanan lingkungan menghasilkan nilai koefisien beta sebesar 0.241 dengan t hitung 2.628 dan nilai p sebesar 0.010, aspek netral dengan kenyamanan lingkungan menghasilkan nilai koefisien beta sebesar 0.435 dengan t hitung 5.225 dan nilai p sebesar 0.000, aspek dingin dengan kenyamanan lingkungan menghasilkan nilai koefisien beta sebesar 0.236 dengan t hitung 2.629 dan nilai p sebesar 0.010, sedangkan aspek gangguan patologis organis menghasilkan nilai koefisien beta sebesar 0.236 dengan t hitung 2.279 dan nilai p sebesar 0.024. Hal ini menunjukkan ada 4 aspek variabel X yaitu komunikasi, netral, dingin, dan gangguan patologis organis yang memiliki hubungan positif dengan kenyamanan lingkungan. Namun, hasil yang tidak serupa dengan regresi model stepwise yaitu di mana aspek netral dengan nilai beta sebesar 0.450 dengan t hitug 6.198 dan p sebesar 0.000, sedangkan aspek dingin dengan nilai beta sebesar 0.260 dengan t hitung 3.582 dan p sebesar 0.000. Hal ini juga dianalisis dengan modek akhir menghasilkan F hitung sebesar 28.390 dan p sebesar 0.000 lebih kecil dari 0.05 dengan kontribusi pengaruh R²netral dan dingin terhadap

kenyamanan lingkungan sebesar 0.268. Sementara aspek panas, gangguan fisiologis, gangguan psikologis, gangguan patologis organis, dan komunikasi tidak memiliki hubungan yang signifikan dengan kenyamanan lingkungan (Y_{C}).

Hal ini dapat dijelaskan bahwa aspek netral dan dingin pada variabel temperatur udara berpengaruh terhadap kenyamanan lingkungan pada variabel kenyamanan dalam menonton bioskop. Dingin adalah situasi di mana suhu udara lebih rendah dari yang diperlukan tubuh, peredaran darah ke permukaan tubuh atau anggota badan dikurangi, sedangkan netral adalah di mana manusia masih dapat mengantisipasi dirinya terhadap perubahan suhu udara di sekitarnya (Tri, 2008). Kedua aspek tersebut berkaitan dengan kenyamanan lingkungan ketika mahasiswa berada di lingkungan dengan suhu netral atau cenderung rendah maka mahasiswa tersebut akan dapat merasakan kenyamanan yang diinginkan ketika berada di lingkungan bioskop.

8. Hubungan Aspek-aspek Variabel Bebas terhadap Aspek Kenyamanan Sosial Kultural (Y_D)

Hasil analisis regresi parsial menunjukkan bahwa aspek dingin dengan kenyamanan sosial kultural menghasilkan nilai koefisien beta sebesar 0.247 dengan t hitung 2.359 dan nilai p sebesar 0.020, sedangkan aspek netral dengan kenyamanan sosial kultural menghasilkan nilai koefisien beta sebesar 0.323 dengan t hitung 3.328 dan nilai p sebesar 0.001. Hal ini menunjukkan ada 2 aspek variabel X yaitu dingin dan netral yang memiliki hubungan positif dengan kenyamanan sosial kultural. Namun, hasil yang tidak serupa dengan regresi model stepwise yaitu di manaaspek netral dengan nilai beta sebesar 0.205 dengan t hitug

2.458 dan p sebesar 0.015, sedangkan aspek komunikasi dengan nilai beta sebesar 0.175 dengan t hitung 2.093 dan p sebesar 0.038. Hal ini juga dianalisis dengan model akhir menghasilkan F hitung sebesar 6.662 dan p sebesar 0.002 lebih kecil dari 0.05 dengan kontribusi pengaruh R²netral terhadap kenyamanan sosial kultural sebesar 0.075. Sementara aspek panas, dingin, gangguan fisiologis, gangguan psikologis, dan gangguan patologis organis tidak memiliki hubungan yang signifikan dengan kenyamanan sosial kultural (Y_D).

Hal ini dapat dijelaskan bahwa aspek netral pada variabel temperatur udara dan aspek komunikasi pada variabel kebisingan berpengaruh terhadap kenyamanan sosial kultural pada variabel kenyamanan dalam menonton bioskop. Aspek netral di mana manusia masih dapat mengantisipasi dirinya terhadap perubahan suhu udara di sekitarnya (Tri, 2008). Aspek komunikasi di mana kebisingan dapat mengganggu pembicaraan. Paling penting di sini bahwa kebisingan mengganggu dalam menangkap dan mengerti apa yang dibicarakan oleh orang lain (Jennie, 2008). Aspek tersebut berkaitan dengan kenyamanan sosial kultural ketika berada di dalam bioskop dibutuhkan temperatur udara yang netral atau sesuai dan ketika mahasiswa mampu berkomunikasi dengan baik maka mahasiswa tersebut akan dapat mencapai kenyamanan yang diinginkannya selama menonton di bioskop.

BAB V

PENUTUP

A. Kesimpulan

Berdasarkan hasil penelitian dan pembahasan, maka dapat ditarik beberapa kesimpulan sebagai berikut:

- 1. Ada pengaruh positif temperatur udara terhadap kenyamanan dalam menonton bioskop pada mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018. Hal ini dapat dikatakan bahwa pengaruh temperatur udara searah terhadap kenyamanan dalam menonton bioskop, di mana semakin netral tingkat temperatur udara di lingkungan, maka semakin tinggi pula kenyamanan yang dirasakan oleh mahasiswa tersebut.
- 2. Tidak ada pengaruh kebisingan terhadap kenyamanan dalam menonton bioskop pada mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018. Hal ini dapat dikatakan bahwa pengaruh kebisingan tidak searah terhadap kenyamanan dalam menonton bioskop. Oleh sebab itu, terdapat kemungkinan akan adanya faktor lain yang dapat mempengaruhi kenyamanan tersebut seperti insulasi pakaian.

B. Saran

Berdasarkan penelitian yang telah dilakukan, ada beberapa saran yang dapat peneliti berikan terkait dengan proses dan hasil yang diperoleh dari penelitian ini. Adapun saran tersebut sebagai berikut:

- 1. Untuk mahasiswa program studi psikologi Universitas Mulawarman angkatan 2016-2018 untuk dapat menyesuaikan pakaian yang digunakan agar dapat mendukung terciptanya temperatur udara yang nyaman bagi tubuh. Ketika telah menemukan temperatur yang sesuai, maka mahasiswa dapat menikmati akvitias menonton di bioskop dengan nyaman tanpa ada rasa yang mengganggu.
- 2. Untuk pihak yang berwenang di setiap bioskop untuk selalu memperhatikan seluruh komponen pendukung seperti pelayanan dan tentunya fasilitias dan memastikannya dalam keadaan yang terbaik. Sebab hal-hal tersebut berhubungan secara langsung dengan para konsumen seperti para mahasiswa. Misalnya, penggunaan *air conditioner* atau pendingin ruangan dengan mengatur suhu sesuai kebutuhan dengan mempertimbangkan berbaai aspek seperti ukuran ruangan hingga jumlah orang yang berada di dalamnya agar para konsumen dapat merasakan kenyamanan ketika menonton di bioskop. Selain itu, hal yang perlu diperhatikan juga ialah tingkat kebisingan yang kemungkinan dapat timbul dari berbagai sumber. Salah satunya adalah volume dari *sound system* yang diatur dengan baik sehingga tidak menimbulkan ketidaknyamanan.

3. Untuk peneliti selanjutnya disarankan untuk mengukur temperatur udara, kebisingan, dan kenyamanan dalam menonton bioskop dengan menggunakan variabel dan aspek yang berbeda agar dapat menemukan adanya variasi. Selain itu, disarankan untuk memperluas atau memperbanyak sumber teori maupun subjek dalam penelitian selanjutnya, sehingga akan mendukung dalam berbagai bidang.

DAFTAR PUSTAKA

- Aienna, Adyatma, S., & Arisanty, D. 2016. Kenyamanan Termal Ruang Kelas di Sekolah Tingkat SMA Banjarmasin Timur. *Jurnal Pendidikan Geografi*. 3 (3): 1 12.
- Andriani, K. W. 2016. Hubungan Umur, Kebisingan dan Temperatur Udara Dengan Kelelahan Subjektif Individu Di PT X Jakarta. *The Indonesian Journal of Occupational Safety and Health*. 5 (2): 112 120.
- Arikunto, S. 2013. *Prosedur Penelitian Suatu Pendekatan Praktik*. Jakarta: PT. Rineka Cipta.
- Azwar, S. 2014. Metode Penelitian. Yogyakarta: Pustaka Pelajar Offset.
- Fithri, P. & Annisa, I., Q. 2015. Analisis Intensitas Kebisingan Lingkungan Kerja pada Area Utilities Unit PLTD dan Boiler di PT. Pertamina RU II Dumai. *Jurnal Sains, Teknologi dan Industri*. 12 (2): 278 – 285.
- Ghozali, I. 2016. *Model Persamaan Struktural: Konsep dan Aplikasi dengan Program Amos 24 Edisi 7*. Semarang: Badan Penerbit Universitas Diponegoro.
- Gunawan, A.M. (2013). *Statistik Penelitian Pendidikan*. Yogyakarta: Parama Publishing
- Iskandar, Z. 2012. *PSIKOLOGI LINGKUNGAN: Teori dan Konsep*. Bandung: PT Refika Aditama.
- Iswahyuni, E. 2015. Pengaruh Kebiasaan Menonton Sinetron Terhadap Perkembangan Perilaku Anak Usia Sekolah di SDN Pao-Pao Kecamatan Somba Opu Kabupaten Gowa. *Skripsi*. Fakultas Kedokteran & Ilmu Kesehatan, Universitas Islam Negeri Alauddin Makassar.
- Jennie, B. 2008. Hubungan Antara Intensitas Kebisingan Di Lingkungan Kerja Dengan Peningkatan Tekanan Darah. *Tesis Kesehatan Lingkungan Industri*. Universitas Diponegoro Semarang.

- Kristiyanto, F., Kurniawan, B., & Wahyuni, I. 2014. Hubungan Intensitas Kebisingan Dengan Gangguan Psikologis Pekerja Departemen Laundry Bagian Washing PT. X Semarang. *Jurnal Kesehatan Masyarakat*. 2 (1): 75 79.
- Mustamin, T., Rahim, R., Baharuddin, Mulyadi, R., Jamala, N., & Kusno.2017.

 Analisis Fluktuasi Temperatur Udara dalam Ruang pada Ruang Seminar

 Laboratorium Sains dan Bangunan Kampus Gowa. Prosiding Temu Ilmiah

 IPLBI.
- Nasrullah, Rahim, R., Baharuddin, Mulyadi, R., Jamala, N., & Kusno, A. 2015.

 Temperatur dan Kelembaban Relatif Udara *Outdoor*. Prosiding Temu Ilmiah IPLBI.
- Nugroho, W. A., & Hidayat, R. 2017. Pengaruh Kenyamanan dan Kepercayaan Produk Terhadap Loyalitas Pelanggan. E-Proceeding of Applied Science.
- Nummenmaa. 2013. Psikologi Lingkungan. Jakarta: Unnes Press,.
- Nurachmah, E., Kristianto, H., & Gayatri, D. 2011. Aspek Kenyamanan Pasien Luka Kronik Ditinjau Dari *Transforming Growth Factor* β1 Dan Kadar Kortisol. *Jurnal Makara Kesehatan*. 15 (2): 73 80.
- Parsons, K. 2014. Human Thermal Environment. New York: CRC Press.
- Periantalo, J. 2016. *Penelitian Kuantitatif Untuk Psikologi*. Yogyakarta: Pustaka Pelajar.
- Priyanto, Setyawan, A. D., & Azis, A. 2017. Hubungan Antara Kebiasaan Menonton Televisi Terhadap Nilai Hasil Belajar Pendidikan Agama. *Jurnal Epicheirisi*. 1 (1): 13 – 18.
- Rahim, R., Asniawaty, Martosenjoyo, T., Amin, S., & Hiromi, R. 2016.
 Karakteristik Data Temperatur Udara dan Kenyamanan Termal di Makassar. Prosiding Temu Ilmiah IPLBI.

- Santoso, S. (2012). *Panduan Lengkap SPSS Versi* 2. Jakarta: PT Elex Media Komputindo
- Sarinda, A., Sudarti, & Subiki. 2017. Analisis Perubahan Suhu Ruangan Terhadap Kenyamanan Termal Di Gedung 3 FKIP Universitas Jember. *Jurnal Pembelajaran Fisika*. 6 (3): 305 311.
- Satwiko. 2009. *Pengertian Kenyamanan Dalam Suatu Bangunan*. Yogyakarta: Wignjoseobroto.
- Sitorus, T. B., Napitupulu, F. H., & Ambarita, H. 2014. Korelasi Temperatur Udara dan Intensitas Radiasi Matahari Terhadap Performansi Mesin Pendingin Siklus Adsorpsi Tenaga Matahari. *Jurnal Ilmiah Teknik Mesin Cylinder*. 1 (1): 8 17.
- Solimun. 2006. Memahami Metode Kuantitatif mutakhie: Structural Equation Modelling dan partial Least Square. Malang: Program Studi Statistika Fakultas MIPA Universitas Brawijaya.
- Sugini. 2014. Kenyamanan Termal Ruang. Yogyakarta: Graha Ilmu.
- Sugiyono. 2013. Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta.
- Susanti, L., & Aulia, N. Evaluasi Kenyamanan Termal Ruang Sekolah SMA Negeri di Kota Padang. *Jurnal Optimasi Sistem Industri*. 12 (1): 310 316.
- Suwarto, D. H. 2016. Analisis Segmentasi Penonton Bioskop Yogyakarta. *Jurnal Informasi Kajian Ilmu Komunikasi*. 46 (2): 215 222.
- Szokolay, S. 2007. *Thermal Comfort. PLEA Note 3*. Brisbane: PLEA International University of Queensland.
- Tri, K., H. 2008. Penelitian Kenyamanan Termis Di Jakarta Sebagai Acuan Suhu Nyaman Manusia Indonesia. *Jurnal Teknik Arsitektur*. 29 (1): 23 24.

- Vitry, D. D. R. 2013. Analisis Customer Experience Dan Lifestyle Model Terhadap Keputusan Menonton Film. *Jurnal Ilmu Manajemen & Bisnis*. 4 (1): 1 11.
- Wirawan.(2015). Manajemen Sumber Daya Manusia Indonesia: Teori, Psikologi,
 Hukum Ketenagakerjaan, Aplikasi dan Penelitian: Aplikasi dalam
 Organisasi Bisnis, Pemerintahan dan Pendidikan. Jakarta: PT Raja
 Grafindo Persada.
- Widarjono, A. (2015) *Analisis Multivariat Terapan*. Yogyakarta: UPP STIM YKPN

Lampiran 1

Blue Print Instrumen Penelitian

SKALA A. KENYAMANAN DALAM MENONTON BIOSKOP

No.	Indikator	Favorable	Unfavorable
1. 2.	Kenyamanan fisik: Sensasi tubuh yang dirasakan oleh individu itu sendiri, meliputi penurunan kemampuan tubuh dalam merespon suatu penyakit atau prosedur invasif	Mata saya terasa nyaman ketika menatap layar di bioskop Saya dapat berkonsentrasi dengan baik pada saat menonton di bioskop Saya menyukai aroma makanan di dalam bioskop Saya merasa nyaman dengan keadaan di dalam bioskop yang gelap	 Paparan cahaya dari layar bioskop membuat mata saya terasa sakit Mata saya menjadi kering akibat menatap layar bioskop Saya merasa kurang nyaman ketika mencium aroma parfum di dalam bioskop Saya merasa terganggu dengan adanya bau makanan di dalam bioskop
2.	psikospiritual: kesadaran internal diri, yang meliputi konsep diri, harga diri, makna kehidupan, seksualitas hingga hubungan yang sangat dekat dan	membuat saya dapat lebih menjiwai film 3. Saya merasa terhibur setelah menonton di bioskop 4. Saya merasa baik-baik saja ketika seseorang lewat di depan saya untuk pergi ke tempat duduknya	sampah makanan milik saya di dalam bioskop setelah menonton 2. Saya merasa tersinggung ketika seseorang menendang kursi saya dari arah belakang baik disengaja maupun tidak
3.	Kenyamanan Lingkungan: Kondisi dan pengaruh dari luar kepada manusia seperti temperatur, warna, suhu,pencahayaan, dan suara.	2. Saya merasa nyaman duduk di posisi manapun ketika menonton di	

	 3. Saya merasa nyaman ketika duduk di kursi yang berada di deretan atas 4. Kondisi bioskop yang 4. bersih membuat saya merasa senang dan nyaman 	ketika harus duduk berdekatan dengan orang asing di dalam bioskop
Sosial Kultural: hubungan interpersonal, keluarga, dan sosial atau masyarakat (keuangan, perawatan kesehatan individu, kegiatan religius, serta tradisi keluarga).	1. Orang tua saya mengizinkan saya ketika ingin pergi menonton ke bioskop 2. Saya merasa lebih nyaman ketika pergi menonton ke bioskop bersama teman 3. Saya merasa pelayanan yang diterima sesuai dengan uang yang saya keluarkan untuk menonton di bioskop 4. Saya dapat menikmati film meskipun terdapat adegan yang berlawanan dengan norma yang berlaku di sekitar saya	menonton di bioskop meskipun keuangan saya sedang kurang baik . Saya merasa risih ketika menonton adegan yang bertentangan dengan budaya yang saya anut . Saya lebih suka pergi menonton ke bioskop seorang diri

SKALA B. TEMPERATUR UDARA

No.	Indikator		Favorable		Unfavorable
1.	Panas:	1.	Saya merasa kepanasan	1.	Tidak ada hubungan
	Temperatur udara		ketika berada di dalam		antara menonton film
	di sekitar tubuh		bioskop		dengan suhu studio
	manusia lebih	2.	Ketika berada di dalam		yang panas
	tinggi dari suhu		bioskop, badan saya	2.	Jarak duduk yang
	nyaman yang		mengeluarkan keringat		berdekatan dengan
	diperlukan, aliran	3.	Saya merasa gerah pada		orang lain tidak
	darah pada		saat menonton di bioskop		membuat saya gerah
	permukaan tubuh	4.	Studio bioskop yang	3.	Saya baik-baik saja
	atau anggota badan		sempit dan tertutup		dengan suhu studio
	akan meningkat		membuat suhu di dalam	١.	bioskop yang panas
	dan ini akan		terasa panas	4.	Suhu di dalam bioskop
	meningkatkan suhu				tidak membuat saya
	kulit.		0.1 11 1.1		berkeringat
2.	Dingin:	1.	Suhu di dalam bioskop	1.	Saya menggunakan
	Suhu udara lebih		terasa dingin bagi saya		jaket agar tetap hangat
	rendah dari yang	2.	Suhu yang dingin di		di dalam bioskop
	diperlukan tubuh,		dalam bioskop membuat	2.	Telapak tangan saya
	peredaran darah ke		tubuh saya menggigil		tetap hangat meskipun
	permukaan tubuh	3.	Ketika berada di dalam		suhu udara di dalam
	atau anggota badan		bioskop, kulit saya	2	bioskop dingin
	dikurangi.	4	J	3.	Saya tidak merasa
		4.	Udara dingin di dalam		kedinginan ketika berada di dalam
			bioskop membuat saya		
			ingin buang air kecil	4.	bioskop Hidung saya tidak
				4.	Hidung saya tidak tersumbat walaupun
					suhu di dalam bioskop
					dingin
3.	Netral :	1.	Suhu di dalam dan di	1	Suhu di dalam bioskop
	Di mana manusia	Ī.,	luar bioskop terasa sama	Ĭ.	terlalu dingin bagi saya
	masih dapat		•	2.	Suhu di dalam bioskop
	1	2.	Saya tidak merasa	ſ	membuat saya merasa
	dirinya terhadap		kepanasan ataupun		kurang nyaman
	perubahan suhu		kedinginan ketika		Suhu di dalam bioskop
	udara di sekitarnya.		berada di dalam bioskop		terlalu panas bagi saya
		3.	Suhu di dalam bioskop	4.	Saya merasa
			terasa nyaman bagi saya		mengantuk ketika
		4.	Saya tidak terganggu		berada di dalam
			dengan suhu di dalam		bioskop
			bioskop		

SKALA C. KEBISINGAN

No.	Indikator		Favorable		Unfavorable		
2.	Gangguan fisiologis: Gangguan yang mula-mula timbul akibat bising, dengan kata lain fungsi pendengaran secara fisiologis dapat terganggu. Gangguan psikologis: Kebisingan dapat mempengaruhi stabilitas mental dan reaksi psikologis, seperti rasa khawatir, jengkel, takut, dan	6.7.5.6.	Suara dari film yang munculnya mendadak, membuat saya terkejut Volume yang keras membuat jantung saya berdegup Bunyi musik dari film membuat kepala saya sakit Saya kesal ketika mendengar suara tangisan bayi di dalam bioskop Bunyi handphone di dalam bioskop membuat saya merasa terganggu Sound effect dari film horror menambah rasa	6.7.6.	Saya merasa baik-baik saja meskipun volume di dalam bioskop keras Suara iklan di bioskop tidak membuat saya tersentak Volume suara yang tinggi tidak mempengaruhi saya Saya biasa saja ketika ada orang yang mengobrol di dekat saya Saya tidak peduli jika ada yang menelpon saat film sedang berlangsung Saya tidak terganggu		
3.	bersifat sementara hingga permanen.		Telinga saya berdengung ketika mendengar suara dengan volume yang tinggi Volume yang nyaring membuat telinga saya sakit Saya tidak dapat mendengar ucapan teman saya yang duduk berjauhan di dalam bioskop	6.	bioskop, saya harus mendekati teman saya untuk dapat mendengar ucapannya		
4.	Kebisingan dapat mengganggu pembicaraan.	 6. 	Volume film yang nyaring membuat saya sulit untuk mendengar ucapan teman saya Saya tidak bisa menerima telepon ketika berada di dalam bioskop		Saya dapat mendengar ucapan teman saya meskipun ada suara tangisan bayi Saya akan segera membalas <i>chat</i> dari teman saya meskipun		

kebisingan mengganggu dalam menangkap dan mengerti apa yang dibicarakan oleh orang lain	7.	Suara or mengobrol konsentrasi mengirim pe	saya		7.	film berlangsung Tawa kenc penonton la mempengarul saat sedang m	ain tidak ni saya
---	----	---	------	--	----	--	----------------------

Lampiran 2

Instrumen Penelitian

IDENTITAS DIRI

(identitas ini hanya untuk data, bukan untuk disebarluaskan)

Nama :

Usia :

Jenis Kelamin : Laki-laki / Perempuan

Angkatan :

Petunjuk:

Pada bagian ini, tercantum sejumlah pernyataan berkaitan dengan keadaan-keadaan yang sering anda rasakan. Anda diminta untuk menjawab sesuai dengan keadaan diri anda yang sebenarnya. Untuk itu, setiap pernyataan perlu dipahami kemudian nyatakan pilihan anda dengan member tanda ($\sqrt{}$) pilihan jawaban yang sesuai dengan keadaan anda tersebut.

- SS (SANGAT SETUJU)
- S (SETUJU)
- N (NETRAL)
- TS (TIDAK SETUJU)
- STS SANGAT TIDAK SETUJU)

Apapun pilihan jawaban anda, tidak ada jawaban yang paling benar atau paling salah. Usahakan memberikan jawaban yang sesuai dengan keadaan anda dan mohon dengan seksama jangan ada pernyataan yang terlewatkan.

SKALA A

No.	Pernyataan		Pilihan						
		SS	S	N	TS	STS			
1.	Mata saya terasa nyaman ketika menatap								
	layar di bioskop								
2.	Saya dapat berkonsentrasi dengan baik pada								
	saat menonton di bioskop								
3.	Paparan cahaya dari layar bioskop membuat								
	mata saya terasa sakit								
4.	Mata saya menjadi kering akibat menatap								
	layar bioskop								
5.	Saya merasa senang ketika dapat menonton								
	film yang saya inginkan di bioskop								
6.	Menonton di bioskop membuat saya dapat								
	lebih menjiwai film								
7.	Saya meninggalkan sampah makanan milik								
	saya di dalam bioskop setelah menonton								
8.	Saya merasa tersinggung ketika seseorang								
	menendang kursi saya dari arah belakang								
	baik disengaja maupun tidak								
9.	Saya merasa baik-baik saja ketika duduk								
	dengan posisi kursi yang berdekatan dengan								
10	orang asing di dalam bioskop								
10.	Saya merasa nyaman duduk di posisi								
11	manapun ketika menonton di bioskop								
11.	Cahaya dari layar ponsel membuat								
	konsentrasi saya buyar ketika menonton di bioskop								
12.	•								
12.	Badan saya terasa pegal setelah duduk selama berjam-jam di dalam bioskop								
13.	Orangtua saya mengizinkan saya ketika ingin								
13.	pergi menonton ke bioskop								
14.	Saya merasa lebih nyaman ketika pergi								
1 1.	menonton ke bioskop bersama teman								
15.	Saya akan tetap menonton di bioskop								
	meskipun keuangan saya sedang kurang baik								
16.	Saya merasa risih ketika menonton adegan								
	yang bertentangan dengan budaya yang saya								
	anut								
17.	Saya menyukai aroma makanan di dalam								

	1: 1	1		
10	bioskop			
18.	Saya merasa nyaman dengan keadaan di			
	dalam bioskop yang gelap			
19.	Saya merasa kurang nyaman ketika mencium			
	aroma parfum di dalam bioskop			
20.	Saya merasa terganggu dengan adanya bau			
	makanan di dalam bioskop			
21.	Saya merasa terhibur setelah menonton di			
	bioskop			
22.	Saya merasa baik-baik saja ketika seseorang			
	lewat di depan saya untuk pergi ke tempat			
	duduknya			
23.	Saya merasa malu untuk membawa sampah			
	makanan keluar setelah menonton di bioskop			
24.	Saya pergi menonton ke bioskop hanya			
	karena gengsi dengan teman-teman			
25.	Saya merasa nyaman ketika duduk di kursi			
	yang berada di deretan atas			
26.	Kondisi bioskop yang bersih membuat saya			
	merasa senang dan nyaman			
27.	Leher saya terasa lelah ketika mendapatkan			
	tempat duduk di deretan bawah di dalam			
	bioskop			
28.	Saya merasa risih ketika harus duduk			
	berdekatan dengan orang asing di dalam			
	bioskop			
29.	Saya merasa pelayanan yang diterima sesuai			
	dengan uang yang saya keluarkan untuk			
	menonton di bioskop			
30.	Saya dapat menikmati film meskipun			
	terdapat adegan yang berlawanan dengan			
	norma yang berlaku di sekitar saya			
31.	Saya lebih suka pergi menonton ke bioskop			
	seorang diri			
32.	Saya harus berbohong kepada orangtua			
	ketika ingin pergi menonton ke bioskop			

Skala B

No.	Pernyataan	Pilihan							
		SS	S	N	TS	STS			
1.	Saya merasa kepanasan ketika								
	berada di dalam bioskop								
2.	Ketika berada di dalam bioskop,								
	badan saya mengeluarkan keringat								
3.	Tidak ada hubungan antara								
	menonton film dengan suhu studio								
	yang panas								
4.	Jarak duduk yang berdekatan								
	dengan orang lain tidak membuat								
_	saya gerah								
5.	Suhu di dalam bioskop terasa								
-	dingin bagi saya								
6.	Suhu yang dingin di dalam bioskop membuat tubuh saya								
	menggigil								
7.	Saya menggunakan jaket agar								
/.	tetap hangat di dalam bioskop								
8.	Telapak tangan saya tetap hangat								
0.	meskipun suhu udara di dalam								
	bioskop dingin								
9.	Suhu di dalam dan di luar bioskop								
	terasa sama saja bagi saya								
10.	Saya tidak merasa kepanasan								
	ataupun kedinginan ketika berada								
	di dalam bioskop								
11.	Suhu di dalam bioskop terlalu								
	dingin bagi saya								
12.	Suhu di dalam bioskop membuat								
	saya merasa kurang nyaman								
13.	Saya merasa gerah pada saat								
	menonton di bioskop								
14.	Studio bioskop yang sempit dan								
	tertutup membuat suhu di dalam								
1.7	terasa panas								
15.	Saya baik-baik saja dengan suhu								
1 -	studio bioskop yang panas								
16.	Suhu di dalam bioskop tidak								

	membuat saya berkeringat			
17.	Ketika berada di dalam bioskop,			
	kulit saya menjadi kering			
18.	Udara dingin di dalam bioskop			
	membuat saya ingin buang air			
	kecil			
19.	Saya tidak merasa kedinginan			
	ketika berada di dalam bioskop			
20.	Hidung saya tidak tersumbat			
	walaupun suhu di dalam bioskop			
	dingin			
21.	Suhu di dalam bioskop terasa			
	nyaman bagi saya			
22.	Saya tidak terganggu dengan suhu			
	di dalam bioskop			
23.	Suhu di dalam bioskop terlalu			
	panas bagi saya			
24.	Saya merasa mengantuk ketika			
	berada di dalam bioskop			

Skala C

No.	Pernyataan			Pilihan	<u> </u>	
		SS	S	N	TS	STS
1.	Suara dari film yang munculnya					
	mendadak, membuat saya terkejut					
2.	Volume yang keras membuat					
	jantung saya berdegup					
3.	Bunyi musik dari film membuat					
	kepala saya sakit					
4.	Saya merasa baik-baik saja					
	meskipun volume di dalam bioskop					
	keras					
5.	Suara iklan di bioskop tidak					
	membuat saya tersentak					
6.	Volume suara yang tinggi tidak					
	mempengaruhi saya					
7.	Saya kesal ketika mendengar suara					
	tangisan bayi di dalam bioskop					
8.	Bunyi <i>handphone</i> di dalam bioskop					
	membuat saya merasa terganggu					
9.	Sound effect dari film horror					
	menambah rasa takut dalam diri					
	saya					
10.	Saya biasa saja ketika ada orang					
	yang mengobrol di dekat saya					
11.	Saya tidak peduli jika ada yang					
	menelpon saat film sedang					
	berlangsung					
12.	Saya tidak terganggu dengan adanya					
	suara tawa yang kencang saat					
	menonton film					
13.	Telinga saya berdengung ketika					
	mendengar suara dengan volume					
	yang tinggi					
14.	Volume yang nyaring membuat					
	telinga saya sakit					
15.	Saya tidak dapat mendengar ucapan					
	teman saya yang duduk berjauhan di					
	dalam bioskop					
16.	Ketika berada di dalam bioskop,					
	saya harus mendekati teman saya					
	untuk dapat mendengar ucapannya					

17.	Suara nyaring di dalam bioskop			
	tidak membuat pendengaran saya			
	hilang untuk beberapa saat			
18.	Saya terbiasa mendengar volume			
	tinggi seperti di dalam bioskop			
19.	Volume film yang nyaring membuat			
	saya sulit untuk mendengar ucapan			
	teman saya			
20.	Saya tidak bisa menerima telepon			
	ketika berada di dalam bioskop			
21.	Suara orang yang mengobrol			
	mengganggu konsentrasi saya untuk			
	mengirim pesan			
22.	Saya dapat mendengar ucapan teman			
	saya meskipun ada suara tangisan			
	bayi			
23.	Saya akan segera membalas <i>chat</i>			
	dari teman saya meskipun film			
	sedang berlangsung			
24	Tawa kencang dari penonton lain			
	tidak mempengaruhi saya saat			
	sedang menelepon			

Lampiran 3

Input Data Excel

Kenyamanan dalam Menonton Bioskop

ubje	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Tota	Tota ⁻	Tota	Tota T	fotal /
1	3	3	4	4	4	4	3	2	3	2	2	4	4	4	3	4	3	4	3	4	4	4	4	4	4	4	2	3	4	4	3	4	28	29	24	30	111
2	3	4	3	3	5	4	5	1	2	2	3	4	4	4	4	3	2	3	3	3	4	3	4	4	5	4	2	3	4	3	3	4	24	30	25	29	108
3	3	4	3	4	5	3	3	1	4	3	2	4	4	3	3	3	3	4	3	3	4	3	4	4	4	4	2	3	4	3	3	4	27	27	26	27	107
4	5	5	4	3	5	5	1	1	4	2	1	3	5	4	4	2	5	5	4	5	4	3	4	5	5	5	2	4	3	2	3	5	36	28	26	28	118
5	4	4	2	4	5	4	2	4	4	2	2	2	4	3	4	3	5	4	3	4	5	3	3	4	5	5	1	3	2	3	4	4	30	30	24	27	111
6	4	4	3	3	4	4	4	2	3	2	2	2	4	4	4	2	3	4	3	3	4	3	4	4	4	4	2	3	2	3	4	4	27	29	22	27	105
7	4	3	3	3	3	4	5	2	3	2	2	2	5	3	4	4	2	5	3	2	2	3	5	5	3	5	2	4	3	5	4	5	25	29	23	33	110
8	3	4	3	3	5	5	4	1	3	2	2	3	5	4	4	4	3	4	3	4	5	3	4	5	4	5	1	3	4	4	5	5	27	32	23	35	117
9	4	5	4	4	5	5	4	3	3	2	2	2	5	5	2	3	5	5	3	3	5	5	4	4	5	5	1	3	4	3	4	5	33	35	23	31	122
10	4	5	3	2	5	4	4	1	4	2	2	2	4	4	5	2	3	4	3	2	4	2	4	5	4	5	2	4	3	2	2	4	26	29	25	26	106
11	4	4	4	4	4	4	4	1	4	2	4	4	4	5	4	5	3	4	2	3	4	2	5	5	4	5	2	4	4	4	4	4	28	29	29	34	120
12	3	4	3	4	5	4	5	1	3	3	2	4	5	3	4	3	3	5	3	3	5	4	4	5	4	5	1	3	4	4	1	4	28	33	25	28	114
13	3	4	4	4	4	4	3	2	2	2	2	4	4	4	3	4	4	3	4	4	4	2	4	4	4	4	2	2	3	4	5	4	30	27	22	31	110
14	3	4	4	4	4	4	4	4	3	3	3	4	3	4	4	3	3	4	3	3	4	4	4	4	5	5	1	4	3	3	4	4	28	32	28	28	116
15	3	2	2	2	4	4	4	3	4	2	2	4	4	4	4	4	2	3	2	1	4	2	4	4	4	5	1	4	4	4	4	5	17	29	26	33	105
16	4	4	4	3	5	4	2	1	4	2	2	2	4	4	4	3	2	3	3	2	4	3	3	4	2	4	2	4	4	2	4	4	25	26	22	29	102
17	4	4	4	4	5	5	3	3	4	4	2	3	4	4	4	3	4	5	3	3	4	2	4	4	4	5	2	4	5	3	4	4	31	30	28	31	120
18	4	4	3	4	4	3	5	2	3	2	2	3	3	3	3	3	3	3	4	4	4	4	5	5	4	5	1	3	4	3	2	5	29	32	23	26	110
19	3	2	3	3	5	3	5	4	4	2	2	2	4	4	5	3	3	4	3	3	4	4	5	5	4	5	1	3	3	3	2	5	24	35	23	29	111
20	3	4	4	3	5	2	5	2	3	2	3	3	3	4	4	3	2	4	3	3	4	3	1	4	4	4	2	3	3	3	3	3	26	26	24	26	102
21	3	3	3	3	4	4	4	3	3	2	3	3	4	4	4	3	3	3	3	3	4	3	4	4	4	4	1	3	3	4	4	4	24	30	23	30	107
22	4	4	4	4	5	4	5	1	4	2	1	2	4	4	4	3	2	5	2	2	5	3	5	5	2	5	1	3	3	3	1	5	27	33	20	27	107
23	3	4	4	4	4	5	5	3	4	4	2	4	4	3	4	4	3	4	3	4	4	4	4	4	3	4	4	4	5	4	2	4	29	33	29	30	121
24	3	3	3	3	2	1	5	5	4	3	3	2	3	3	5	3	3	3	3	3	3	5	5	5	3	5	3	3	4	5	3	5	24	31	26	31	112

25	4	4	4	3	5	5	4	2	3	1	1	3	4	4	4	3	4	4	3	4	4	3	5	4	3	4	2	3	4	4	4	5	30	32	20	32 114
26	4	3	4	4	5	3	5	4	3	2	2	4	4	5	4	4	3	4	3	4	4	3	4	4	3	5	2	3	3	4	4	4	29	32	24	32 117
27	5	4	3	3	5	4	2	3	4	2	1	3	3	4	3	3	3	5	3	2	5	2	4	4	3	5	1	3	2	5	3	4	28	29	22	27 106
28	3	3	2	2	4	4	4	3	4	2	3	2	5	4	3	4	2	5	3	3	4	4	4	4	4	5	1	4	3	4	5	4	23	31	25	32 111
29	4	4	3	3	5	5	5	1	4	3	1	2	5	5	4	2	4	4	1	3	5	3	5	5	5	5	1	3	5	5	3	3	26	34	24	32 116
30	3	3	4	3	5	3	5	5	5	4	3	2	5	4	5	5	3	3	3	3	3	5	3	5	3	5	2	3	4	4	1	5	25	34	27	33 119
31	4	4	3	2	4	4	5	2	4	2	1	3	4	4	5	3	5	4	1	3	4	4	4	4	3	5	2	4	4	4	3	4	26	31	24	31 112
32	4	2	3	3	5	3	5	1	3	2	2	3	5	4	5	4	2	4	3	2	4	3	5	5	3	5	1	3	4	4	4	5	23	31	22	35 111
33	4	4	3	4	5	4	4	2	4	2	3	2	4	3	5	3	4	4	3	4	5	4	4	4	4	5	1	3	4	3	3	4	30	32	24	29 115
34	4	4	4	3	5	2	5	2	3	3	2	2	3	4	4	2	3	4	2	3	4	4	5	5	3	5	2	3	4	4	5	5	27	32	23	31 113
35	3	4	2	2	3	3	5	3	2	2	2	2	3	3	5	3	3	3	2	3	3	3	4	4	4	5	2	2	4	3	3	5	22	28	21	29 100
36	4	4	4	4	4	3	4	4	4	3	4	3	4	4	4	3	4	4	4	4	3	3	4	4	3	4	2	4	4	3	4	4	32	29	27	30 118
37	4	4	4	4	4	3	4	2	3	2	2	3	4	5	5	1	5	4	2	5	4	3	3	5	2	4	1	3	4	3	4	5	32	28	20	31 111
38	3	3	3	3	5	4	3	1	4	3	3	3	4	5	4	3	3	4	3	3	3	5	4	5	4	5	1	3	3	3	4	5	25	30	26	31 112
39	4	4	2	2	5	4	2	2	5	2	4	2	4	2	4	2	2	5	4	2	4	4	4	4	5	5	1	4	4	2	1	4	25	29	28	23 105
40	5	5	5	5	5	5	5	5	5	5	1	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	1	5	5	5	5	5	40	40	32	40 152
41	4	4	2	2	4	3	2	3	3	2	3	2	3	4	4	3	2	3	3	2	4	3	3	4	2	4	2	3	3	3	4	4	22	26	21	28 97
42	4	3	4	3	5	4	5	4	3	2	3	3	3	4	4	4	3	3	4	4	4	3	4	5	3	5	2	3	3	5	5	4	28	34	24	32 118
43	4	4	3	4	5	5	5	1	4	2	1	5	5	5	5	3	1	5	1	1	5	4	5	5	5	5	1	4	4	3	5	5	23	35	27	35 120
44	4	3	2	4	5	3	3	1	4	2	1	2	5	4	5	3	2	4	3	2	4	2	3	4	5	5	1	3	3	3	5	5	24	25	23	33 105
45	2	3	2	3	3	3	4	3	3	3	2	2	4	3	4	3	3	3	3	3	3	4	3	4	3	3	2	3	3	3	4	4	22	27	21	28 98
46	4	4	4	4	5	4	4	3	4	2	3	3	4	5	3	4	2	4	2	2	3	4	4	4	4	4	3	4	4	4	4	4	26	31	27	32 116
47	3	4	4	4	4	3	5	1	3	2	3	2	3	3	5	4	4	3	3	3	3	3	5	5	3	5	1	3	3	3	2	5	28	29	22	28 107
48	3	2	2	1	3	4	4	3	2	4	3	2	3	4	5	2	3	3	2	2	3	4	4	4	3	4	3	2	4	2	3	5	18	29	23	28 98
49	4	3	4	4	4	3	3	3	4	4	4	2	4	4	3	4	4	4	4	4	4	4	4	4	4	4	2	4	4	3	4	5	31	29	28	31 119
		-	-	-	-		_	-	-	-	-		-	-	-	-	-		-			-	-	-	-	-		-	-							

50	3	4	2	2	5	4	5	1	2	2	1	1	4	5	5	1	5	3	3	3	4	2	3	3	4	5	1	2	3	2	5	4	25	27	18	29 99
51	4	4		2	5	3	1	3	4	2	1	2	3	4	5	4	4	4	2	4	4	5	4	4	4	4	1	4		4	4	4			25	
	-	4	2	4	5	5	3		2	2	4	2		5	5		-	4	2	3	-	4	2		-	-	1		5	-		-	27	29		30 111
52	4	3	4	-				2	2	2	1	5	3			4	5	4	2	3	3	-	2	3	3	5	1	2		4	5	3	31	29	23	34 117
53	3	4	3	3	5	4	5	3	3	3	3	2	4	3	4	3	3	4	4	3	4	4	5	5	4	5	1	4	5	4	1	3	27	35	25	27 114
54	3	2	2	4	4	4	4	4	4	2	2	2	4	4	4	4	3	4	3	3	4	4	4	4	2	4	2	4	3	3	4	4	24	32	22	30 108
55	3	3	3	2	4	4	4	2	3	2	2	2	4	4	4	3	4	4	4	4	3	2	4	4	3	4	2	3	4	3	4	4	27	27	21	30 105
56	3	3	4	5	4	3	4	2	4	2	2	3	4	5	4	2	5	3	2	5	4	1	5	4	5	5	1	5	4	2	5	4	30	27	27	30 114
57	4	4	3	4	5	5	5	1	5	3	2	4	5	4	4	4	5	5	3	4	5	5	5	5	5	5	1	5	5	5	1	5	32	36	30	33 131
58	5	5	4	4	5	4	2	2	1	4	2	4	5	4	3	2	4	2	3	3	4	3	3	5	4	5	2	1	3	3	4	5	30	28	23	29 110
59	4	4	4	2	5	4	3	1	3	2	2	4	4	4	3	3	4	4	3	4	4	4	3	4	2	5	1	4	4	4	3	5	29	28	23	30 110
60	4	4	4	4	4	2	5	4	4	2	2	4	4	4	3	2	4	3	2	2	4	4	4	4	3	5	2	4	4	2	4	4	27	31	26	27 111
61	4	4	4	4	5	4	4	3	4	4	3	4	5	4	4	3	5	4	3	4	4	1	4	4	3	4	2	5	4	4	4	4	32	29	29	32 122
62	4	4	4	4	4	4	4	2	4	4	2	4	4	4	4	4	2	4	2	2	4	2	4	4	4	4	2	4	4	4	2	4	26	28	28	30 112
63	3	4	3	2	5	4	4	2	3	2	2	4	4	5	4	2	5	4	3	3	5	2	4	4	3	4	2	3	4	3	4	4	27	30	23	30 110
64	3	3	3	3	4	4	5	4	4	1	1	3	2	5	3	3	5	2	2	3	3	4	5	5	3	5	1	4	3	3	4	3	24	34	22	26 106
65	3	2	4	4	4	3	4	1	3	1	2	1	5	3	1	5	1	5	2	2	3	4	5	4	1	5	1	3	4	5	3	5	23	28	17	31 99
66	3	2	4	4	5	3	5	3	2	5	1	3	5	5	4	5	3	3	2	2	4	3	4	4	3	5	2	1	4	5	5	4	23	31	22	37 113
67	4	4	4	4	5	5	4	2	4	3	3	4	4	4	3	3	1	4	3	1	4	4	3	4	3	4	2	4	4	3	2	4	25	31	27	27 110
68	3	4	3	3	5	4	4	1	3	2	3	3	5	4	5	4	3	4	3	3	5	3	4	5	4	5	1	3	4	4	4	5	26	31	24	35 116
69	4	4	4	4	4	4	2	3	4	1	3	3	4	3	3	3	3	3	3	3	4	3	3	4	4	4	3	2	4	4	4	4	28	27	24	29 108
70	4	4	3	4	5	4	4	2	3	4	4	4	4	4	4	2	4	4	3	4	4	4	4	4	5	4	2	3	4	2	4	4	30	31	29	28 118
71	5	5	3	3	5	4	3	1	2	2	3	3	4	4	4	3	2	4	3	2	5	3	4	4	4	4	1	3	4	4	4	4	27	29	22	31 109
72	3	5	5	5	5	5	5	1	5	5	5	4	5	5	5	1	5	5	5	5	5	3	1	4	5	5	2	5	5	5	4	5	38	29	36	35 138
73	3	3	2	2	4	4	3	2	3	3	3	3	4	4	4	3	4	4	3	3	4	3	4	4	3	4	3	3	3	2	4	4	24	28	25	28 105
74	3	3	3	3	5	2	2	5	4	5	1	5	5	5	5	4	5	2	5	5	5	5	5	5	5	5	1	4	3	3	5	5	29	34	30	35 128
						_		_	-	_	_					-											_									

75	3	4	3	3	5	4	3	2	4	3	2	3	4	4	3	4	4	4	3	4	4	2	4	5	5	4	2	4	4	4	3	4	28	29	27	30 114
76	3	5	4	3	5	5	5	2	4	3	2	4	3	5	5	3	2	4	2	2	5	4	5	5	4	5	2	4	4	4	5	4	25	36	28	33 122
77	3	3	3	3	5	4	5	3	4	3	4	3	4	3	5	3	3	4	3	3	4	4	5	5	4	5	2	5	4	3	5	5	25	35	30	32 122
78	4	4	4	4	5	3	4	2	2	2	2	4	4	3	4	5	3	4	1	3	5	4	4	4	4	5	1	2	3	4	3	4	27	31	22	30 110
79	4	3	4	3	5	5	3	1	2	2	4	4	3	4	5	3	4	4	3	4	5	4	4	4	5	5	1	1	5	3	5	5	29	31	24	33 117
80	4	4	3	3	5	5	3	3	4	2	4	4	5	4	1	3	4	4	3	4	5	4	4	5	4	5	1	4	4	3	3	4	29	34	28	27 118
81	4	4	4	4	4	4	4	1	4	4	2	4	3	4	4	3	4	4	3	4	4	4	4	4	4	5	2	4	3	3	4	4	31	29	29	28 117
82	4	4	3	3	4	2	3	3	4	1	3	4	4	5	3	3	3	3	3	2	4	4	3	3	2	5	1	4	3	4	5	4	25	26	24	31 106
83	3	3	3	3	4	3	4	3	3	4	3	4	4	3	4	3	4	3	3	4	4	4	3	4	3	5	3	3	5	5	3	4	26	29	28	31 114
84	5	5	5	3	5	5	1	2	5	2	3	2	5	4	3	5	5	5	3	5	3	1	2	5	5	5	1	5	4	5	4	5	36	24	28	35 123
85	4	4	4	4	4	4	3	4	3	2	3	3	4	4	4	3	3	4	1	3	5	5	4	4	3	5	2	3	4	3	3	5	27	33	24	30 114
86	3	4	4	2	4	3	4	4	4	2	2	3	4	4	4	3	2	3	2	3	4	3	4	4	4	4	2	3	3	3	4	4	23	30	24	29 106
87	5	4	3	3	5	5	3	3	4	3	2	2	5	4	3	4	4	4	3	3	5	4	3	4	3	3	2	3	3	4	4	4	29	32	22	31 114
88	3	4	3	3	5	4	2	4	4	4	3	3	4	4	4	3	4	5	4	4	4	4	4	4	3	4	3	4	4	4	3	5	30	31	28	31 120
89	4	4	4	1	5	3	5	1	4	4	2	3	4	4	3	3	3	4	2	3	5	3	4	5	3	5	1	4	4	3	3	5	25	31	26	29 111
90	4	4	4	4	5	5	2	1	3	2	2	4	4	4	2	4	4	4	4	4	4	4	2	4	4	4	2	4	4	4	4	4	32	27	25	30 114
91	3	2	2	2	3	3	5	2	2	2	2	3	3	3	5	3	1	4	2	2	4	4	5	3	5	4	2	1	3	3	4	4	18	29	21	28 96
92	2	4	4	3	5	4	5	1	4	2	3	4	5	5	2	4	4	4	3	4	5	4	4	4	3	5	2	4	4	4	3	4	28	32	27	31 118
93	5	5	4	4	5	3	5	2	5	1	1	5	5	5	5	3	5	5	3	4	5	2	4	5	5	5	5	5	5	5	5	5	35	31	32	38 136
94	3	4	2	4	4	3	5	4	4	4	1	4	4	4	5	3	3	3	3	4	4	4	5	4	4	5	3	4	4	4	3	4	26	33	29	31 119
95	3	4	2	2	4	4	4	3	4	4	2	4	3	4	4	3	4	3	2	3	4	3	4	4	4	4	2	3	4	3	4	4	23	30	27	29 109
96	3	4	4	2	5	4	5	2	4	2	2	4	5	4	4	3	3	4	3	2	4	4	4	5	4	5	1	3	4	3	4	5	25	33	25	32 115
97	4	3	4	4	3	3	4	1	5	3	1	4	5	5	5	3	2	4	1	4	5	5	5	5	5	5	1	5	5	5	5	5	26	31	29	38 124
98	4	4	2	3	5	4	4	2	3	2	2	2	5	5	5	3	3	3	2	4	4	2	4	4	5	5	2	3	4	4	3	5	25	29	24	34 112
99	4	3	4	4	4	4	2	2	4	4	2	2	4	3	4	2	2	4	4	2	4	4	2	2	3	4	2	2	3	4	2	2	27	24	23	24 98

100	5	4	5	5	5	5	5	2	5	1	5	5	5	2	5	5	5	5	3	5	3	3	5	5	5	5	1	5	4	4	1	5	37	33	32	31 133
101	4	3	4	4	4	4	4	3	3	1	1	3	5	5	4	3	4	3	3	3	4	4	5	5	3	5	3	4	2	4	3	5	28	33	23	31 115
102	4	3	4	3	4	4	3	1	4	2	2	3	4	4	4	3	4	4	3	3	4	4	3	4	2	4	2	2	4	3	5	5	28	27	21	32 108
103	4	4	4	4	5	5	2	1	2	1	2	4	4	4	4	3	3	3	3	3	4	2	4	4	3	5	1	3	3	2	4	5	28	27	21	29 105
104	4	4	2	4	5	5	5	2	4	2	4	2	5	4	5	1	4	5	4	4	5	4	5	5	5	5	1	4	4	2	4	4	31	36	27	29 123
105	4	2	4	4	4	4	4	2	2	4	2	2	4	4	5	1	4	4	2	4	5	4	4	4	4	4	4	2	4	2	4	4	28	31	24	28 111
106	4	4	4	4	5	4	4	2	3	3	2	3	4	5	4	3	4	5	4	4	4	4	4	4	5	5	1	3	4	4	4	5	33	31	25	33 122
107	5	5	4	4	5	5	5	2	3	2	4	3	4	4	4	4	2	5	2	1	5	3	4	5	5	5	1	3	4	4	2	5	28	34	26	31 119
108	4	4	4	3	5	4	5	3	4	4	4	4	4	5	4	2	3	3	3	3	5	4	4	4	4	5	2	4	4	2	4	5	27	34	31	30 122
109	4	5	5	4	5	5	1	1	4	2	1	2	5	5	4	2	3	5	2	2	4	4	4	5	4	5	1	4	4	3	5	5	30	29	23	33 115
110	4	4	4	3	4	4	4	2	2	3	3	4	4	4	4	3	4	4	4	3	4	4	4	4	4	4	2	3	4	4	4	4	30	30	25	31 116
111	4	3	3	2	5	3	3	1	2	1	1	3	4	5	4	5	1	5	3	1	3	2	5	5	3	5	1	4	4	5	3	5	22	27	20	35 104
112	4	3	4	2	4	4	3	1	2	1	1	2	4	5	5	3	1	4	3	1	4	1	3	4	4	5	3	1	4	4	5	4	22	24	19	34 99
113	4	3	4	4	4	3	4	2	3	2	2	3	4	3	4	2	3	4	2	3	4	4	4	4	4	4	2	3	4	3	4	4	27	29	23	28 107
114	4	5	3	4	5	5	2	1	3	3	2	2	5	5	4	3	5	5	4	5	5	1	3	5	4	5	1	3	5	4	3	5	35	27	23	34 119
115	3	4	4	3	5	4	4	1	4	2	1	2	5	5	3	4	3	5	2	4	5	3	5	4	5	5	1	4	4	4	1	5	28	31	24	31 114
116	4	5	4	2	5	5	5	2	5	2	1	4	5	5	5	4	1	4	2	1	4	2	5	5	5	5	2	4	4	4	4	5	23	33	28	36 120
117	4	4	4	4	4	3	2	2	4	4	2	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	2	4	4	4	4	4	32	26	28	32 118
118	4	4	4	4	4	3	5	3	4	4	4	4	4	4	5	3	3	3	4	3	4	3	3	5	3	5	3	4	3	3	3	5	29	30	31	30 120
119	3	4	3	2	5	5	5	1	3	1	1	3	5	5	1	1	1	5	3	1	5	3	4	5	5	5	1	3	5	1	1	5	22	33	22	24 101
120	2	5	2	2	5	5	5	1	3	3	1	2	2	5	3	1	4	3	3	3	5	4	5	5	3	5	1	3	3	3	4	3	24	35	21	24 104
121	3	4	3	2	5	4	4	1	3	3	2	3	4	3	2	3	4	4	3	4	4	2	5	4	2	5	1	3	3	4	3	4	27	29	22	26 104
122	3	4	2	3	5	3	4	1	3	3	1	4	5	4	4	3	3	5	3	3	4	3	4	5	4	5	1	3	3	3	2	4	26	29	24	28 107
123	3	5	3	4	5	5	5	1	5	1	2	1	5	5	5	3	1	2	2	2	5	5	5	5	5	5	1	5	4	3	5	5	22	36	25	35 118
124	4	4	3	1	5	4	4	1	3	2	3	3	4	5	2	3	5	4	3	3	5	3	4	4	4	5	1	2	4	3	5	5	27	30	23	31 111

125	4	4	4	3	5	4	5	4	4	5	4	5	4	5	5	4	4	5	4	4	5	5	5	5	5	5	3	4	4	4	4	5	32	38	35	35 140
126	4	4	4	4	4	3	4	2	4	4	2	4	4	5	2	4	2	4	4	4	4	4	4	4	4	4	1	4	4	4	4	4	30	29	27	31 117
127	4	5	4	4	5	3	4	4	4	5	4	4	5	5	5	3	3	5	4	4	4	4	4	5	4	5	3	4	4	4	4	5	33	33	33	35 134
128	5	5	4	5	5	3	5	5	4	5	3	4	4	5	4	3	4	5	5	5	4	4	4	4	5	4	4	3	5	4	5	4	38	34	32	34 138
129	5	4	4	4	3	5	4	3	4	4	4	5	5	4	5	4	3	5	4	5	4	4	5	4	3	5	4	4	4	5	5	5	34	32	33	37 136
130	5	4	5	4	3	5	4	4	3	5	4	5	5	5	3	4	5	4	4	5	4	4	5	4	4	4	3	5	4	5	5	4	36	33	33	35 137
131	5	5	4	3	4	3	4	5	5	5	3	4	4	5	5	4	4	3	4	5	4	5	5	3	5	5	4	5	5	3	3	3	33	33	36	32 134
132	5	4	4	3	5	5	5	4	4	3	4	5	3	4	4	5	4	3	4	5	4	3	5	4	5	4	3	4	4	5	4	5	32	35	32	34 133
133	4	4	4	5	5	3	4	5	4	4	5	4	4	5	3	4	4	4	4	5	5	4	4	5	3	5	4	5	4	3	4	5	34	35	34	32 135
134	4	5	4	3	5	4	4	3	5	5	5	4	4	5	4	5	4	4	3	4	5	4	4	4	3	4	4	5	4	4	4	5	31	33	35	35 134
135	4	3	4	5	5	4	4	3	4	4	4	5	4	3	5	4	4	4	4	4	5	4	4	5	4	5	4	5	4	4	4	5	32	34	35	33 134
136	5	4	4	3	4	5	3	4	4	3	4	4	5	4	4	4	4	5	4	4	4	5	4	5	4	5	4	4	4	5	4	4	33	34	32	34 133
137	5	4	4	3	4	3	4	4	4	5	4	5	5	4	3	4	4	5	4	4	4	5	3	4	4	5	4	5	5	3	3	5	33	31	36	32 132
138	4	3	4	5	4	4	3	4	4	3	4	3	4	5	4	4	4	3	4	4	4	5	3	4	4	5	4	3	5	4	4	4	31	31	30	34 126
139	4	5	4	3	5	4	4	3	4	5	4	4	5	4	4	4	4	5	4	4	5	4	4	5	3	5	4	4	5	4	4	4	33	34	33	34 134
140	5	4	4	3	4	5	5	4	3	4	2	4	4	4	5	4	4	5	3	4	4	4	4	4	4	4	4	4	5	4	4	3	32	34	29	33 128

Temperatur Udara

	P																											
ubje	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Tota	Tota	Tota	Tota
1	2	2	4	2	3	2	4	3	3	4	4	3	2	2	4	2	2	3	2	2	4	4	4	2	20	21	28	69
2	2	2	4	3	3	2	4	2	2	3	4	4	2	2	4	2	4	1	4	2	4	4	4	4	21	22	29	72
3	2	2	3	2	4	3	3	4	2	3	2	4	2	2	4	2	3	4	4	3	4	4	4	2	19	28	25	72
4	2	3	5	4	4	3	4	4	2	3	4	4	3	2	3	3	4	4	4	1	4	4	4	4	25	28	29	82
5	2	2	2	2	4	2	4	4	3	2	3	3	2	2	4	2	4	4	4	4	3	4	4	4	18	30	26	74
6	3	2	3	3	3	3	2	3	3	4	3	3	2	3	4	2	3	4	4	2	4	4	4	4	22	24	29	75
7	2	2	5	5	3	2	3	4	2	3	4	4	2	3	3	2	4	3	2	2	3	3	4	2	24	23	25	72
8	1	2	3	3	4	3	4	4	2	3	3	4	2	3	4	2	2	3	4	2	4	4	5	3	20	26	28	74
9	1	3	1	3	5	4	2	3	3	5	2	3	3	3	5	2	4	5	3	1	5	5	5	3	21	27	31	79
10	1	2	2	2	4	4	2	4	2	2	2	2	2	2	4	2	5	4	4	2	3	3	4	2	17	29	20	66
11	2	2	4	2	4	2	4	3	2	2	4	4	2	2	3	2	2	3	2	2	4	4	4	3	19	22	27	68
12	1	2	5	3	3	2	3	2	4	4	3	4	2	2	5	2	3	2	2	3	4	4	4	4	22	20	31	73
13	2	2	5	4	4	3	2	2	3	3	4	4	2	2	4	3	3	4	3	3	3	3	3	3	24	24	26	74
14	2	2	3	4	3	2	2	2	2	3	3	4	2	3	4	2	2	4	3	4	4	4	4	2	22	22	26	70
15	2	2	2	4	4	2	2	4	2	2	3	4	2	2	4	2	4	4	4	2	4	4	4	2	20	26	25	71
16	2	3	3	2	4	4	2	4	2	2	4	4	2	2	4	2	4	4	4	2	2	2	4	2	20	28	22	70
17	2	2	4	2	4	2	4	4	2	2	3	5	2	2	2	2	2	2	2	2	4	4	2	3	18	22	25	65
18	3	3	4	3	4	3	3	5	2	2	2	4	2	3	3	3	3	5	4	4	3	3	5	4	24	31	25	80
19	2	4	3	3	5	5	2	3	3	3	2	4	2	3	4	3	4	4	3	3	4	3	3	3	24	29	25	78
20	2	2	3	3	4	3	2	4	2	2	3	3	3	2	3	3	4	3	4	3	3	3	4	1	21	27	21	69
21	2	2	4	4	4	2	2	3	2	2	3	3	2	2	3	2	4	4	3	2	3	3	4	3	21	24	23	68
22	2	2	4	4	3	4	3	3	2	2	3	3	2	2	5	3	4	4	3	2	4	3	4	4	24	26	25	75
23	2	2	3	4	4	2	4	3	2	2	2	4	2	2	3	2	5	2	2	2	3	3	4	4	20	24	24	68
24	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	24	24	24	72

25	2	2	1	2	4	2	2	3	2	2	3	4	2	2	4	2	3	4	4	2	3	3	4	4	17	24	25	66
26	2	2	4	2	4	2	4	3	2	2	4	4	2	2	4	2	3	2	3	2	3	4	4	3	20	23	26	69
27	1	1	5	3	5	3	3	3	2	3	3	4	1	1	5	1	5	5	3	4	4	4	5	3	18	31	28	77
28	2	2	3	3	4	4	2	2	3	3	2	3	2	3	3	2	4	5	1	1	4	3	5	2	20	23	25	68
29	3	3	2	1	3	3	2	4	4	3	5	4	2	2	5	1	1	4	3	2	4	4	3	2	19	22	29	70
30	3	3	3	2	5	5	2	4	2	3	1	1	3	3	3	2	3	5	5	2	2	4	3	1	22	31	17	70
31	2	3	3	2	5	5	3	2	2	4	1	2	2	3	4	2	4	5	5	2	3	3	4	3	21	31	22	74
32	2	2	2	2	4	3	2	4	2	3	3	4	1	2	5	2	3	2	3	2	4	4	4	2	18	23	26	67
33	2	2	2	3	4	2	4	4	4	2	3	4	2	3	4	2	4	2	2	2	4	4	4	3	20	24	28	72
34	2	2	3	4	4	2	4	4	2	4	4	4	2	2	4	2	2	2	4	2	4	4	4	5	21	24	31	76
35	2	4	4	3	4	4	2	2	2	2	2	3	2	2	4	3	4	4	4	4	3	3	4	2	24	28	21	73
36	2	2	2	4	3	2	4	3	3	3	3	4	2	2	4	2	2	2	3	2	4	4	4	3	20	21	28	69
37	2	2	3	3	4	2	4	2	2	3	4	4	2	2	4	2	4	4	2	2	4	4	4	2	20	24	27	71
38	1	1	5	3	5	4	1	3	3	3	2	3	2	2	3	2	3	4	4	3	3	3	4	3	19	27	24	70
39	2	2	4	4	4	2	4	4	2	4	4	4	2	2	4	2	4	4	2	2	4	4	4	2	22	26	28	76
40	1	1	1	1	5	2	1	5	1	1	1	5	1	1	5	1	1	3	1	1	5	5	5	5	12	19	28	59
41	3	3	2	2	4	4	4	4	2	3	2	3	3	3	4	3	4	4	3	2	4	4	4	2	23	29	24	76
42	1	1	2	3	5	4	2	3	3	3	2	3	2	3	5	3	1	3	3	2	5	5	4	3	20	23	28	71
43	1	1	4	3	5	2	5	5	4	3	4	5	1	1	5	1	3	2	3	5	4	5	5	2	17	30	32	79
44	1	1	3	4	4	4	2	4	2	3	2	3	2	2	4	2	4	3	3	4	3	3	4	2	19	28	22	69
45	3	3	3	3	4	4	2	4	2	2	2	3	2	2	3	2	3	3	4	3	3	4	3	4	21	27	23	71
46	2	2	2	2	3	2	3	2	3	3	2	3	2	2	3	2	2	3	2	2	4	4	4	4	17	19	27	63
47	2	2	2	3	4	3	2	3	2	3	3	3	2	2	4	2	3	4	3	3	4	4	4	4	19	25	27	71
48	3	3	3	4	3	4	2	3	2	3	3	2	3	3	3	3	3	4	3	2	3	4	3	2	25	24	22	71
49	2	3	2	2	4	3	3	2	2	3	3	4	3	4	4	3	4	4	3	2	4	4	4	2	23	25	26	74

50	2	3	3	3	3	3	4	1	4	3	3	3	3	3	3	3	4	4	3	3	3	3	3	3	23	25	25	73
51	2	2	4	2	4	4	2	2	2	3	4	4	2	2	3	2	4	5	3	2	4	3	4	3	19	26	27	72
52	2	2	1	2	5	5	1	3	4	3	2	3	2	2	4	2	3	2	3	2	4	4	4	4	17	24	28	69
53	3	2	3	3	3	3	4	3	3	4	4	4	2	3	4	3	3	2	3	3	4	3	4	3	23	24	29	76
54	2	2	3	4	4	2	3	2	2	3	4	4	2	2	4	2	3	4	2	3	4	3	4	2	21	23	26	70
55	2	2	4	4	4	2	4	3	3	2	4	4	2	4	4	4	2	4	3	4	3	2	4	4	26	26	26	78
56	1	1	2	3	5	4	3	5	1	1	1	2	1	1	5	1	2	5	1	1	1	2	5	4	15	26	17	58
57	1	1	4	4	5	5	1	5	4	1	1	3	1	1	4	1	1	5	5	1	3	2	5	3	17	28	22	67
58	2	2	2	2	3	2	3	3	2	3	4	4	2	2	4	4	2	2	4	4	3	3	4	3	20	23	26	69
59	1	2	2	4	4	3	2	3	3	2	4	4	2	2	4	4	3	4	3	3	4	4	4	4	21	25	29	75
60	2	2	4	2	4	2	4	2	2	2	4	4	2	2	4	2	2	2	4	2	4	4	4	4	20	22	28	70
61	2	2	3	3	4	3	3	3	2	3	3	3	3	2	4	4	2	4	4	2	4	3	4	4	23	25	26	74
62	2	2	2	2	4	2	4	2	2	4	4	4	2	2	2	2	2	4	4	4	4	4	2	2	16	26	26	68
63	2	2	4	4	4	5	2	4	2	2	1	2	2	2	4	2	4	5	4	3	2	2	5	2	22	31	18	71
64	2	2	2	3	4	3	2	4	2	2	3	3	2	2	5	2	4	3	4	2	3	3	4	3	20	26	23	69
65	1	1	5	3	4	3	4	4	2	2	3	4	1	1	5	3	4	4	5	2	3	4	5	1	20	30	24	74
66	2	2	1	3	4	3	2	2	4	4	3	3	2	5	4	3	3	4	3	3	4	4	3	2	22	24	27	73
67	2	2	4	2	4	2	3	2	2	2	4	3	2	2	4	2	4	4	3	2	4	4	4	2	20	24	25	69
68	2	2	3	3	4	3	4	3	2	3	3	4	2	3	4	2	2	3	4	4	4	3	4	3	21	27	26	74
69	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	24	23	25	72
70	2	2	2	2	4	4	3	4	2	2	2	3	2	2	4	2	4	4	4	4	4	3	4	4	18	31	24	73
71	2	2	3	3	4	2	1	3	2	2	3	3	2	2	3	1	3	3	3	2	3	4	4	4	18	21	25	64
72	2	1	4	5	5	1	5	1	1	1	3	5	1	1	5	2	4	4	2	2	5	5	5	1	21	24	26	71
73	2	2	3	3	4	2	3	3	3	3	3	4	2	2	4	3	2	3	2	2	4	4	4	4	21	21	29	71
74	1	1	1	1	5	5	1	3	1	1	3	3	1	1	5	1	3	5	3	1	3	3	5	3	12	26	22	60

75	1	2	2	2	5	4	1	3	2	2	2	4	2	3	4	2	3	4	4	2	3	3	4	3	18	26	23	67
76	2	2	2	4	4	2	4	4	2	4	4	4	2	2	4	2	4	2	1	2	4	4	4	5	20	23	31	74
77	1	1	4	2	4	3	1	3	1	2	3	3	2	2	3	2	2	3	5	2	3	3	4	3	17	23	22	62
78	2	2	2	2	4	3	2	2	2	3	4	4	2	2	4	2	2	3	2	2	4	4	4	3	18	20	28	66
79	1	1	2	2	5	4	2	4	4	2	1	1	1	1	5	1	4	5	5	2	3	3	4	2	14	31	20	65
80	2	3	4	2	4	2	3	4	3	3	4	4	2	2	5	2	3	2	3	4	4	4	4	4	22	25	30	77
81	2	2	4	4	4	4	2	4	2	2	2	4	2	2	4	2	4	4	4	2	4	4	4	4	22	28	26	76
82	2	3	4	2	5	5	1	4	1	2	1	2	2	2	4	2	4	4	4	5	2	1	5	3	21	32	17	70
83	2	2	2	2	3	2	3	2	5	5	4	4	2	3	3	1	5	5	1	1	4	3	3	1	17	22	29	68
84	1	1	1	1	4	1	5	4	1	2	4	4	2	4	3	2	2	4	4	1	4	5	5	5	15	25	30	70
85	2	2	1	2	3	2	3	3	2	4	4	4	2	2	2	2	4	4	2	2	4	4	4	3	15	23	29	67
86	2	2	3	2	4	2	3	4	4	3	3	4	2	2	4	2	3	2	3	2	4	4	4	3	19	23	29	71
87	2	2	3	3	2	2	3	3	4	4	4	3	2	2	3	2	3	4	4	1	4	3	4	4	19	22	30	71
88	1	2	3	2	3	3	4	3	2	4	3	4	2	2	3	2	2	3	3	2	4	4	4	3	17	23	28	68
89	3	2	4	2	4	2	4	2	2	4	4	4	2	2	3	2	1	3	2	2	5	4	4	2	20	20	29	69
90	2	2	4	2	4	2	4	2	2	4	4	4	2	3	5	2	2	3	2	2	4	3	4	3	22	21	28	71
91	1	2	4	2	5	4	2	4	3	2	2	3	2	2	3	2	2	4	4	2	3	3	4	4	18	27	24	69
92	2	2	4	2	4	3	4	3	2	3	3	4	2	2	5	3	4	3	3	2	4	3	4	3	22	26	26	74
93	1	1	2	1	3	3	2	3	2	5	3	3	2	2	1	1	2	2	2	3	5	5	3	3	11	20	29	60
94	1	2	4	2	5	3	2	4	2	2	2	4	2	2	4	2	4	3	4	3	3	4	4	2	19	28	23	70
95	2	2	4	2	4	3	2	4	2	2	2	3	1	2	4	2	3	3	4	2	3	3	4	4	19	25	23	67
96	2	2	2	2	4	3	3	2	2	4	3	4	2	2	4	2	4	4	3	2	4	4	4	3	18	25	28	71
97	1	1	5	5	4	5	2	4	1	1	3	3	2	2	3	2	4	5	4	4	3	3	4	2	21	32	20	73
98	1	2	3	4	5	4	3	2	4	1	2	3	2	2	4	2	3	5	3	2	4	4	4	2	20	27	24	71
99	4	4	2	2	5	4	1	2	4	4	3	3	2	4	4	2	2	4	2	2	3	3	3	2	24	22	25	71

100	1	1	1	5	3	3	5	1	5	5	5	5	1	1	5	1	3	2	1	1	5	5	4	5	16	19	39	74
101	1	1	5	2	3	3	2	3	2	3	4	3	2	2	5	2	3	3	3	3	3	3	5	3	20	23	26	69
102	2	2	4	4	4	2	4	3	2	4	3	4	2	4	5	4	4	4	3	4	3	3	3	2	27	28	24	79
103	2	1	1	3	4	4	4	2	2	2	2	3	2	2	5	1	3	4	4	3	3	3	4	4	17	28	23	68
104	2	1	4	3	5	4	2	4	2	2	1	3	1	1	5	1	2	5	5	2	4	4	5	2	18	29	23	70
105	2	2	2	4	4	2	4	3	4	4	4	4	2	2	2	2	2	2	2	4	4	4	2	3	18	23	29	70
106	2	2	5	4	4	2	4	2	4	4	3	4	2	2	4	2	3	4	3	2	4	4	4	2	23	24	29	76
107	2	2	3	3	4	2	3	2	4	4	4	4	2	2	4	2	4	4	3	2	5	4	5	4	20	24	34	78
108	2	3	2	3	5	4	2	2	2	3	4	5	2	2	3	2	2	4	2	3	5	4	5	2	19	24	30	73
109	1	1	3	1	5	5	1	4	1	1	1	2	2	1	3	1	4	5	5	1	3	3	5	5	13	30	21	64
110	2	2	3	4	4	2	3	4	4	4	4	4	2	2	4	2	2	4	2	2	4	3	4	4	21	23	31	75
111	2	2	4	3	4	3	3	2	2	2	2	4	2	2	5	2	4	3	4	2	4	4	4	3	22	25	25	72
112	2	2	4	2	5	3	4	4	4	3	4	4	2	2	4	2	4	5	3	3	4	4	5	2	20	31	30	81
113	2	2	4	2	4	2	3	3	2	4	3	4	2	2	4	2	2	3	3	2	4	4	4	3	20	22	28	70
114	1	1	3	3	4	3	2	2	3	3	3	3	2	2	5	5	4	5	3	3	4	4	5	5	22	26	30	78
115	1	1	4	2	4	1	3	3	4	4	3	4	1	2	4	2	4	3	3	2	4	4	4	3	17	23	30	70
116	2	2	4	4	4	4	1	4	1	2	1	2	2	2	4	2	2	5	4	3	2	2	5	1	22	27	16	65
117	2	2	4	2	4	2	4	2	4	4	4	4	2	2	4	2	2	2	2	2	4	4	4	4	20	20	32	72
118	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	24	24	25	73
119	1	1	3	3	4	3	1	4	2	2	3	3	2	2	5	2	5	3	2	2	3	3	5	5	19	24	26	69
120	2	2	4	3	5	3	2	4	2	2	2	2	2	2	3	2	3	3	4	3	2	2	4	3	20	27	19	66
121	3	2	4	3	3	4	3	3	3	3	3	3	3	4	4	3	3	4	3	2	3	3	3	3	26	25	24	75
122	3	2	4	3	3	3	5	3	3	3	4	4	4	3	4	3	3	2	3	3	5	5	2	3	26	25	29	80
123	1	1	5	1	4	4	2	3	1	1	4	4	1	1	5	1	1	5	4	5	4	4	5	4	16	28	27	71
124	2	4	2	2	4	4	1	4	2	4	2	3	3	2	4	2	5	5	4	2	4	4	5	2	21	29	26	76

125	4	4	5	4	4	4	4	4	4	5	5	4	4	4	5	4	4	5	4	4	5	5	5	5	34	33	38	105
126	2	2	2	2	5	4	2	4	2	2	2	4	2	2	4	2	2	4	4	2	4	4	4	4	18	27	26	71
127	4	5	4	3	4	5	3	4	4	3	4	5	2	2	2	2	4	5	4	3	5	4	4	5	24	32	34	90
128	5	5	4	4	4	5	4	3	5	5	5	4	4	5	4	3	4	5	4	5	4	4	4	5	34	34	36	104
129	4	4	4	4	5	5	3	2	5	4	5	4	4	4	4	4	4	4	4	5	4	3	4	4	32	32	33	97
130	5	5	5	3	4	5	5	4	4	4	4	5	5	5	4	5	4	4	3	4	4	3	4	5	37	33	33	103
131	4	3	5	4	4	2	4	3	5	5	4	5	4	5	3	4	4	5	5	4	4	5	3	5	32	31	36	99
132	3	4	4	5	5	4	5	3	4	5	4	5	4	3	4	5	4	3	4	4	5	4	4	4	32	32	35	99
133	4	5	4	5	4	5	4	4	4	3	5	5	5	5	4	5	3	5	4	5	3	5	3	5	37	34	33	104
134	4	5	3	4	5	4	4	4	5	4	5	4	5	4	5	4	4	3	3	4	5	4	4	5	34	31	36	101
135	4	4	3	4	4	5	4	4	3	4	4	5	5	4	3	4	4	5	5	4	5	4	4	3	31	35	32	98
136	4	5	4	4	5	4	3	4	5	4	4	5	4	5	4	3	5	4	4	5	5	5	4	4	33	34	36	103
137	4	5	4	3	5	4	5	4	4	4	3	4	5	4	4	3	4	4	3	4	5	5	5	4	32	33	34	99
138	4	4	4	5	5	4	3	4	5	4	3	4	4	4	4	5	4	3	4	3	5	4	5	4	34	30	34	98
139	5	4	4	3	4	5	3	5	5	3	4	5	4	4	4	4	4	5	4	3	5	4	4	4	32	33	34	99
140	4	5	3	4	4	4	5	3	5	4	4	4	5	4	4	4	4	4	3	4	5	4	4	3	33	31	33	97

Kebisingan

ubje	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Tota	Tota ⁻	Tota ⁻	Γota ⁻	Гota
1	5	4	2	2	3	2	4	4	4	4	2	4	2	2	3	2	2	2	4	4	2	4	4	4	18	22	13	22	75
2	4	2	2	2	3	3	3	3	4	4	3	3	2	2	3	2	2	3	3	3	3	3	3	3	16	20	14	18	68
3	4	3	2	3	2	2	5	5	3	4	5	5	3	3	3	3	2	2	3	5	2	4	5	2	16	27	16	21	80
4	2	2	1	1	2	2	5	5	5	4	5	3	2	2	3	3	2	1	2	4	5	3	2	2	10	27	13	18	68
5	5	5	2	2	4	4	5	5	5	5	5	2	2	2	3	2	2	2	4	4	2	3	3	4	22	27	13	20	82
6	3	4	4	4	4	4	4	4	4	4	4	4	3	4	4	2	3	4	4	4	4	4	4	4	23	24	20	24	91
7	4	3	2	2	3	5	3	4	3	3	4	4	4	3	4	1	3	4	3	3	2	2	4	3	19	21	19	17	76
8	5	4	2	2	3	3	2	3	5	3	4	2	2	2	4	2	2	2	4	4	3	3	4	3	19	19	14	21	73
9	5	5	1	1	1	1	1	4	5	1	1	1	1	1	4	2	1	2	4	4	4	3	4	3	14	13	11	22	60
10	5	5	2	3	4	3	5	5	3	4	4	4	4	4	4	3	3	3	4	3	2	2	4	4	22	25	21	19	87
11	3	2	2	2	2	2	3	4	4	4	4	4	4	2	3	2	2	4	4	4	4	2	3	4	13	23	17	21	74
12	5	4	3	3	3	3	4	5	5	4	4	2	4	3	4	2	3	3	5	4	3	4	3	3	21	24	19	22	86
13	4	4	3	4	4	3	4	4	4	4	4	4	3	3	4	2	3	2	4	4	3	3	4	3	22	24	17	21	84
14	4	4	2	2	3	2	4	4	4	3	3	3	3	2	3	2	2	4	4	4	3	3	4	3	17	21	16	21	75
15	4	4	2	2	2	4	4	4	3	4	5	5	4	3	4	4	4	2	4	4	4	4	4	4	18	25	21	24	88
16	4	4	2	4	3	4	4	4	5	4	4	2	3	4	2	2	2	4	4	4	4	2	2	4	21	23	17	20	81
17	4	3	2	2	3	2	3	4	4	3	3	2	2	2	4	2	2	2	3	4	2	2	3	2	16	19	14	16	65
18	5	5	4	4	3	5	4	4	5	4	4	3	5	5	4	2	2	4	4	4	3	2	4	3	26	24	22	20	92
19	4	4	3	3	3	3	4	4	3	3	3	3	3	3	4	2	3	3	3	3	3	3	3	3	20	20	18	18	76
20	3	3	3	2	2	3	4	3	2	3	3	3	2	3	4	2	3	3	4	4	3	2	2	3	16	18	17	18	69
21	3	2	2	3	3	3	3	3	4	3	3	4	2	2	3	3	2	3	3	4	3	3	4	2	16	20	15	19	70
22	5	4	2	3	2	4	4	5	5	5	5	2	3	2	4	2	2	2	4	5	3	2	5	3	20	26	15	22	83
23	4	3	2	2	3	3	2	5	4	4	5	3	3	3	4	2	2	2	4	5	2	4	4	5	17	23	16	24	80
24	3	3	3	3	3	3	3	4	4	4	5	1	2	4	5	1	1	1	3	5	1	3	4	3	18	21	14	19	72

25	4	4	2	2	3	3	5	5	5	4	5	2	2	3	4	2	2	4	4	4	5	3	5	3	18	26	17	24	85
26	4	2	2	2	3	3	5	5	5	4	4	3	2	3	4	2	2	4	4	4	3	4	4	4	16	26	17	23	82
27	5	4	1	3	2	3	5	5	5	3	4	3	3	3	5	2	3	2	4	5	3	4	3	3	18	25	18	22	83
28	3	3	3	3	2	3	5	4	4	2	3	4	3	3	3	3	2	3	3	3	3	4	3	3	17	22	17	19	75
29	4	4	3	2	2	3	5	5	5	5	5	5	5	5	4	2	5	2	4	5	3	3	5	5	18	30	23	25	96
30	5	4	3	2	2	3	1	3	2	3	3	3	3	3	4	2	2	4	5	5	3	2	3	1	19	15	18	19	71
31	5	4	2	2	2	3	3	3	5	3	4	2	3	3	4	1	3	2	4	5	3	3	4	3	18	20	16	22	76
32	3	2	2	2	2	2	4	5	4	5	5	5	3	2	5	2	2	2	4	5	3	3	5	4	13	28	16	24	81
33	5	5	3	3	3	4	4	4	4	4	4	4	3	3	3	2	2	4	4	4	4	4	4	4	23	24	17	24	88
34	4	3	2	2	4	4	4	4	4	2	2	2	2	2	4	2	2	4	4	2	1	2	2	2	19	18	16	13	66
35	5	5	3	4	3	4	3	4	5	3	3	3	4	4	4	2	3	4	4	4	3	3	4	3	24	21	21	21	87
36	4	3	2	2	3	3	2	2	5	2	3	3	4	4	3	3	4	4	3	4	2	3	2	3	17	17	22	17	73
37	4	2	2	2	3	4	3	3	4	4	5	3	2	3	4	2	3	3	4	4	2	3	3	3	17	22	17	19	75
38	3	3	2	3	3	4	3	3	3	3	4	3	2	3	3	3	2	4	3	3	3	3	3	3	18	19	17	18	72
39	4	4	2	2	2	2	5	5	4	4	4	4	2	4	4	2	2	2	4	4	4	2	2	4	16	26	16	20	78
40	5	5	1	1	5	5	5	5	5	1	1	1	1	1	5	1	1	1	5	5	1	1	1	1	22	18	10	14	64
41	4	4	4	4	3	4	3	4	4	3	3	3	4	4	4	2	3	3	4	3	3	3	3	3	23	20	20	19	82
42	5	3	2	3	3	2	4	3	4	5	4	3	3	3	3	3	3	2	4	3	2	4	3	3	18	23	17	19	77
43	4	2	2	2	3	4	5	3	5	5	5	3	2	3	5	1	2	4	5	4	5	5	3	3	17	26	17	25	85
44	4	4	4	2	2	2	4	4	4	2	2	2	4	4	4	2	2	2	4	4	4	2	2	2	18	18	18	18	72
45	4	3	3	3	3	3	3	3	3	2	2	3	3	3	4	2	2	3	4	4	3	3	2	2	19	16	17	18	70
46	3	2	2	3	4	3	2	3	3	3	3	2	2	3	4	4	4	3	4	4	3	3	3	4	17	16	20	21	74
47	4	3	2	3	3	3	4	5	3	5	5	3	2	2	3	4	3	3	2	3	2	3	4	3	18	25	17	17	77
48	4	4	3	3	3	4	2	4	4	3	3	4	3	3	4	3	2	4	4	3	3	2	3	4	21	20	19	19	79
49	4	4	2	2	2	2	4	4	5	3	4	2	4	2	4	2	2	2	3	2	2	3	2	2	16	22	16	14	68

50	5	5	5	4	4	4	4	4	5	3	4	1	4	5	5	1	3	3	5	3	4	3	3	2	27	21	21	20	89
51	5	5	2	3	3	4	5	4	5	4	4	4	3	3	2	2	2	4	4	3	2	4	4	4	22	26	16	21	85
52	5	5	4	2	2	2	5	5	5	4	3	3	2	2	3	2	2	2	4	3	3	3	3	3	20	25	13	19	77
53	4	3	2	2	4	4	3	4	4	4	4	5	3	4	5	2	3	3	4	5	4	4	3	5	19	24	20	25	88
54	4	3	3	3	4	5	3	4	4	2	2	2	4	4	3	2	2	4	4	4	2	3	3	2	22	17	19	18	76
55	4	5	2	4	4	4	4	4	4	4	4	4	4	4	3	3	3	3	3	4	4	4	2	4	23	24	20	21	88
56	3	2	2	5	2	4	2	4	5	5	5	2	5	5	4	2	4	5	5	2	4	4	4	4	18	23	25	23	89
57	4	3	2	1	2	1	5	4	5	5	5	2	1	1	4	1	1	1	4	5	1	3	3	1	13	26	9	17	65
58	4	3	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	2	3	4	2	17	18	18	18	71
59	4	4	3	2	3	4	5	5	3	3	4	3	4	3	4	2	3	2	4	4	3	4	4	2	20	23	18	21	82
60	4	3	2	2	3	3	3	4	4	4	4	4	2	4	4	2	2	4	4	4	4	4	4	4	17	23	18	24	82
61	4	4	2	4	3	4	4	4	3	4	4	3	1	3	4	2	4	3	4	4	4	4	4	4	21	22	17	24	84
62	4	4	2	2	2	4	2	4	4	2	4	5	2	4	4	2	2	2	4	4	4	4	4	4	18	21	16	24	79
63	4	5	3	3	3	4	4	5	4	4	4	3	3	4	4	2	3	3	4	3	4	4	3	3	22	24	19	21	86
64	5	4	3	5	4	5	2	4	4	3	3	3	4	4	4	2	3	4	3	4	2	4	2	3	26	19	21	18	84
65	3	2	2	2	3	2	4	5	3	5	5	2	1	1	3	3	1	2	4	5	2	3	2	2	14	24	11	18	67
66	5	4	3	2	4	3	5	4	4	4	5	4	4	4	5	2	3	2	4	5	2	3	2	3	21	26	20	19	86
67	2	3	2	2	2	2	2	4	3	4	4	2	2	2	4	2	2	3	4	4	2	2	4	2	13	19	15	18	65
68	4	3	2	2	3	3	2	4	5	3	3	3	3	2	4	2	2	2	4	4	2	3	4	3	17	20	15	20	72
69	5	3	3	2	3	2	4	3	3	3	3	3	3	3	4	3	3	2	3	3	3	3	3	3	18	10	19	19	72
70	4	4	2	2	4	2	3	4	4	4	4	3	2	2	4	2	2	4	4	4	4	4	4	4	18	22	16	24	00
											-								-							26	16	24	00
71	4	4	2	2	2	3	5	4	5	4	4	4	3	2	3	2	3	3	4	4	4	3	4	2	17	20	16	21	70
72	4	4	1	2	2	2	4	4	4	4	4	2	4	2	4	2	2	2	4	4	4	5	5	4	15	22	16	26	79
73	4	4	4	3	3	3	4	4	4	4	4	3	4	3	3	3	3	3	3	4	3	4	4	4	21	23	19	22	85
74	5	5	3	3	1	5	5	2	5	1	1	5	1	1	5	1	1	1	5	5	1	5	1	5	22	19	10	22	73

75	4	4	3	4	3	3	4	4	4	4	4	4	3	3	4	2	3	4	4	4	4	4	5	3	21	24	19	24	88
76	5	5	2	2	4	2	4	4	5	2	2	2	2	4	4	1	2	2	4	2	2	4	2	2	20	19	15	16	70
77	4	3	2	2	2	2	3	3	4	3	3	2	2	2	3	3	2	3	4	4	3	3	3	3	15	18	15	20	68
78	4	2	2	2	2	4	4	4	5	4	4	3	2	2	3	4	2	2	3	4	2	2	2	2	16	24	15	15	70
79	5	2	2	2	1	4	3	4	5	2	4	3	2	2	5	1	1	1	5	4	3	2	3	3	16	21	12	20	69
80	4	4	2	2	2	2	5	2	3	5	5	5	2	2	3	3	4	2	3	2	2	4	2	4	16	25	16	17	74
81	4	4	2	2	4	2	4	4	4	4	4	2	3	2	3	2	3	3	3	4	2	4	2	4	18	22	16	19	75
82	4	3	2	3	3	4	4	3	4	3	4	4	3	4	3	2	3	4	4	3	3	4	4	4	19	22	19	22	82
83	2	2	2	2	3	1	3	3	3	2	3	3	3	2	4	1	1	4	4	3	2	2	3	3	12	17	15	17	61
84	3	3	2	2	1	1	5	5	4	5	3	2	3	3	3	3	2	2	3	3	2	2	4	3	12	24	16	17	69
85	3	3	1	3	2	3	3	3	2	2	2	2	2	2	5	3	2	2	4	3	3	2	2	2	15	14	16	16	61
86	4	4	3	2	2	3	4	3	4	4	4	2	4	3	4	2	3	4	4	3	4	4	3	3	18	21	20	21	80
87	4	4	2	3	4	3	2	3	5	4	4	2	2	2	4	2	3	2	4	4	4	2	3	3	20	20	15	20	75
88	4	3	3	3	3	4	3	3	5	2	2	2	3	3	4	2	2	3	3	4	2	3	3	2	20	17	17	17	71
89	3	3	2	2	4	3	3	5	5	4	5	4	2	2	4	2	2	2	4	3	5	2	4	4	17	26	14	22	79
90	4	3	2	2	2	4	5	5	4	5	5	4	2	2	4	2	2	2	4	4	5	4	4	4	17	28	14	25	84
91	4	4	3	4	4	3	2	2	5	4	3	3	4	4	2	3	2	4	4	2	3	3	2	3	22	19	19	17	77
92	5	4	2	2	3	3	4	4	5	3	3	2	2	2	3	2	2	4	4	4	2	2	3	4	19	21	15	19	74
93	5	5	3	1	2	4	3	3	5	5	5	2	5	5	5	1	2	5	5	1	5	3	1	5	20	23	23	20	86
94	4	3	2	2	3	2	4	4	3	4	3	2	2	3	4	2	2	2	4	4	3	3	4	2	16	20	15	20	71
95	3	4	2	2	3	2	1	4	3	4	3	2	3	2	4	2	2	2	4	4	2	3	4	4	16	17	15	21	69
96	4	3	2	2	2	2	5	5	4	2	4	2	3	3	4	2	2	1	3	4	3	3	2	3	15	22	15	18	70
97	4	4	2	1	2	2	5	5	5	1	5	1	2	1	5	1	2	2	5	5	3	5	5	5	15	22	13	28	78
98	5	4	2	4	3	4	4	4	5	3	4	3	4	4	4	1	4	4	4	4	4	4	4	4	22	23	21	24	90
99	3	3	3	2	3	3	3	4	3	2	2	3	4	3	5	3	4	4	3	1	3	3	2	2	17	17	23	14	71

	-	-	-	-		-			-		-			-		-		-		-	•				-				
100	5	2	1	1	5	1	5	4	5	4	4	2	2	3	4	2	3	3	4	4	4	3	2	4	15	24	17	21	77
101	3	3	3	3	4	3	4	5	4	5	5	3	3	4	3	2	1	2	4	4	4	4	3	2	19	26	15	21	81
102	4	3	2	4	4	3	4	4	4	4	4	3	3	4	4	2	4	4	4	4	2	3	3	4	20	23	21	20	84
103	4	4	4	2	4	4	3	3	4	4	5	5	2	3	4	2	5	5	3	5	5	3	3	5	22	24	21	24	91
104	5	5	2	2	5	4	3	4	5	5	5	4	4	2	4	1	1	4	5	4	2	4	3	4	23	26	16	22	87
105	4	4	2	2	4	4	4	4	4	4	4	4	4	4	4	2	2	2	4	4	4	4	4	3	20	24	18	23	85
106	4	4	3	2	2	3	4	4	5	4	5	5	3	3	4	2	3	2	4	4	4	4	4	4	18	27	17	24	86
107	4	3	4	3	4	4	5	5	5	4	4	2	2	4	4	3	1	2	3	4	4	4	4	4	22	25	16	23	86
108	5	4	2	3	2	2	2	3	4	3	3	2	4	4	4	3	4	2	3	3	3	2	3	2	18	17	21	16	72
109	5	5	1	2	4	4	5	5	5	5	5	3	2	3	5	1	1	1	5	5	3	3	3	4	21	28	13	23	85
110	4	2	2	3	4	3	4	4	4	2	2	2	3	2	3	2	4	2	4	4	2	4	3	2	18	18	16	19	71
111	3	3	2	3	3	4	5	5	5	3	5	3	2	3	4	4	2	4	4	5	4	5	4	5	18	26	19	27	90
112	4	4	2	2	2	3	4	5	5	2	4	4	2	4	2	2	1	3	3	3	5	4	3	2	17	24	14	20	75
113	4	2	2	3	2	3	3	3	4	4	4	2	3	3	3	3	2	3	3	3	3	4	2	3	16	20	17	18	71
114	5	5	3	4	4	3	5	5	5	5	5	5	4	4	4	2	2	1	5	3	5	3	3	5	24	30	17	24	95
115	4	3	3	3	2	2	5	5	4	5	5	5	3	3	2	2	3	2	4	4	2	4	5	2	17	29	15	21	82
116	5	4	2	4	2	4	4	5	5	4	5	4	5	5	5	2	4	5	5	4	3	4	5	4	21	27	26	25	99
117	4	2	2	2	4	2	4	4	4	4	4	4	2	2	4	2	2	2	4	4	2	4	4	4	16	24	14	22	76
118	3	3	2	3	4	3	2	3	1	2	2	2	3	3	3	3	3	3	3	4	3	3	3	3	18	12	18	19	67
119	5	4	1	1	3	4	5	5	5	1	5	3	3	2	4	1	1	1	4	5	5	5	5	3	18	24	12	27	81
120	5	4	3	3	4	4	3	4	4	4	5	5	4	5	3	2	2	4	4	4	4	3	3	4	23	25	20	22	90
121	4	3	3	3	4	3	2	5	4	4	4	3	3	3	4	2	2	3	3	4	3	4	4	3	20	22	17	21	80
122	4	3	3	1	2	3	5	5	3	4	5	3	3	3	3	3	3	3	4	2	3	5	4	3	16	25	18	21	80
123	2	2	3	4	3	4	2	2	2	2	2	2	2	2	3	3	2	3	3	2	2	3	2	3	18	12	15	15	60
124	4	4	3	4	3	3	4	4	4	3	4	3	3	4	4	2	3	4	4	4	3	3	3	3	21	22	20	20	83

125	5	4	4	4	4	5	5	5	5	4	4	5	4	5	5	4	4	5	5	5	4	5	4	5	26	28	27	28	109
126	4	2	2	2	2	2	4	4	5	2	2	2	2	2	4	2	2	4	4	4	2	2	2	2	14	19	16	16	65
127	4	5	3	4	5	3	5	4	4	3	4	4	4	4	5	4	3	4	4	5	5	4	5	3	24	24	24	26	98
128	4	3	5	4	4	5	4	4	3	5	4	3	5	5	4	4	5	4	5	4	3	4	5	4	25	23	27	25	100
129	4	3	5	4	5	3	5	5	5	4	5	3	4	5	4	4	5	3	4	5	4	4	4	5	24	27	25	26	102
130	4	5	3	4	5	5	3	4	5	4	5	5	5	5	4	4	4	5	3	4	3	4	4	5	26	26	27	23	102
131	4	4	4	5	4	4	4	5	3	4	3	5	4	5	4	5	4	4	4	3	4	5	5	3	25	24	26	24	99
132	5	5	3	4	5	4	5	4	4	3	4	5	5	4	4	3	4	5	4	5	4	4	5	3	26	25	25	25	101
133	5	4	4	4	5	3	4	5	3	5	4	4	4	4	5	5	4	3	4	5	4	4	3	5	25	25	25	25	100
134	4	3	5	4	5	4	4	3	5	4	5	4	4	5	3	4	4	5	4	5	4	3	4	5	25	25	25	25	100
135	4	5	3	4	5	3	5	5	3	4	5	4	4	5	4	4	5	4	4	5	4	5	3	4	24	26	26	25	101
136	4	3	4	4	5	3	5	4	5	3	4	5	3	4	5	4	3	4	5	4	3	5	5	3	23	26	23	25	97
137	4	5	3	4	5	4	3	5	5	5	4	3	4	5	4	5	4	4	4	5	4	5	4	4	25	25	26	26	102
138	5	4	3	4	4	3	5	5	4	3	4	4	4	3	4	4	4	4	5	4	4	4	3	3	23	25	23	23	94
139	4	3	5	4	4	4	5	4	4	4	5	3	5	4	4	4	5	3	4	5	4	4	5	3	24	25	25	25	99
140	4	5	3	4	5	3	4	3	5	5	4	3	4	5	4	4	3	5	4	5	4	4	3	5	24	24	25	25	98

Total Aspek Tiap Variabel

Subjek	Kenyamar	nan Dalam	Menonto	n Bioskop	Tem	peratur U	dara		Kebis	ingan	
Subjek	TOTAL A	TOTAL B	TOTAL C	TOTAL D	TOTAL A	TOTAL B	TOTAL C	TOTAL A	TOTAL B	TOTAL C	TOTAL D
1	28	29	24	30	20	21	28	18	22	13	22
2	24	30	25	29	21	22	29	16	20	14	18
3	27	27	26	27	19	28	25	16	27	16	21
4	36	28	26	28	25	28	29	10	27	13	18
5	30	30	24	27	18	30	26	22	27	13	20
6	27	29	22	27	22	24	29	23	24	20	24
7	25	29	23	33	24	23	25	19	21	19	17
8	27	32	23	35	20	26	28	19	19	14	21
9	33	35	23	31	21	27	31	14	13	11	22
10	26	29	25	26	17	29	20	22	25	21	19
11	28	29	29	34	19	22	27	13	23	17	21
12	28	33	25	28	22	20	31	21	24	19	22
13	30	27	22	31	24	24	26	22	24	17	21
14	28	32	28	28	22	22	26	17	21	16	21
15	17	29	26	33	20	26	25	18	25	21	24
16	25	26	22	29	20	28	22	21	23	17	20
17	31	30	28	31	18	22	25	16	19	14	16
18	29	32	23	26	24	31	25	26	24	22	20
19	24	35	23	29	24	29	25	20	20	18	18
20	26	26	24	26	21	27	21	16	18	17	18
21	24	30	23	30	21	24	23	16	20	15	19
22	27	33	20	27	24	26	25	20	26	15	22
23	29	33	29	30	20	24	24	17	23	16	24
24	24	31	26	31	24	24	24	18	21	14	19
25	30	32	20	32	17	24	25	18	26	17	24
26	29	32	24	32	20	23	26	16	26	17	23
27	28	29	22	27	18	31	28	18	25	18	22
28	23	31	25	32	20	23	25	17	22	17	19

29	26	34	24	32	19	22	29	18	30	23	25
30	25	34	27	33	22	31	17	19	15	18	19
31	26	31	24	31	21	31	22	18	20	16	22
32	23	31	22	35	18	23	26	13	28	16	24
33	30	32	24	29	20	24	28	23	24	17	24
34	27	32	23	31	21	24	31	19	18	16	13
35	22	28	21	29	24	28	21	24	21	21	21
36	32	29	27	30	20	21	28	17	17	22	17
37	32	28	20	31	20	24	27	17	22	17	19
38	25	30	26	31	19	27	24	18	19	17	18
39	25	29	28	23	22	26	28	16	26	16	20
40	40	40	32	40	12	19	28	22	18	10	14
41	22	26	21	28	23	29	24	23	20	20	19
42	28	34	24	32	20	23	28	18	23	17	19
43	23	35	27	35	17	30	32	17	26	17	25
44	24	25	23	33	19	28	22	18	18	18	18
45	22	27	21	28	21	27	23	19	16	17	18
46	26	31	27	32	17	19	27	17	16	20	21
47	28	29	22	28	19	25	27	18	25	17	17
48	18	29	23	28	25	24	22	21	20	19	19
49	31	29	28	31	23	25	26	16	22	16	14
50	25	27	18	29	23	25	25	27	21	21	20
51	27	29	25	30	19	26	27	22	26	16	21
52	31	29	23	34	17	24	28	20	25	13	19
53	27	35	25	27	23	24	29	19	24	20	25
54	24	32	22	30	21	23	26	22	17	19	18
55	27	27	21	30	26	26	26	23	24	20	21
56	30	27	27	30	15	26	17	18	23	25	23
57	32	36	30	33	17	28	22	13	26	9	17

58 30 28 23 29 20 23 26 59 29 28 23 30 21 25 29 60 27 31 26 27 20 22 28 61 32 29 29 32 23 25 26 62 26 28 28 30 16 26 26 63 27 30 23 30 22 31 18 64 24 34 22 26 20 26 23 65 23 28 17 31 20 30 24 66 23 31 22 37 22 24 27 67 25 31 27 27 20 24 25 68 26 31 24 35 21 27 26 69 28 27	17 20 17 21 18	18 23 23	18 18	18 21
60 27 31 26 27 20 22 28 61 32 29 29 32 23 25 26 62 26 28 28 30 16 26 26 63 27 30 23 30 22 31 18 64 24 34 22 26 20 26 23 65 23 28 17 31 20 30 24 66 23 31 22 37 22 24 27 67 25 31 27 27 20 24 25 68 26 31 24 35 21 27 26 69 28 27 24 29 24 23 25 70 30 31 29 28 18 31 24 71 27 29	17 21	23		
61 32 29 29 32 23 25 26 62 26 28 28 30 16 26 26 63 27 30 23 30 22 31 18 64 24 34 22 26 20 26 23 65 23 28 17 31 20 30 24 66 23 31 22 37 22 24 27 67 25 31 27 27 20 24 25 68 26 31 24 35 21 27 26 69 28 27 24 29 24 23 25 70 30 31 29 28 18 31 24 71 27 29 22 31 18 21 25 72 38 29	21			
62 26 28 28 30 16 26 26 63 27 30 23 30 22 31 18 64 24 34 22 26 20 26 23 65 23 28 17 31 20 30 24 66 23 31 22 37 22 24 27 67 25 31 27 27 20 24 25 68 26 31 24 35 21 27 26 69 28 27 24 29 24 23 25 70 30 31 29 28 18 31 24 71 27 29 22 31 18 21 25 72 38 29 36 35 21 24 26 73 24 28			18	24
63 27 30 23 30 22 31 18 64 24 34 22 26 20 26 23 65 23 28 17 31 20 30 24 66 23 31 22 37 22 24 27 67 25 31 27 27 20 24 25 68 26 31 24 35 21 27 26 69 28 27 24 29 24 23 25 70 30 31 29 28 18 31 24 71 27 29 22 31 18 21 25 72 38 29 36 35 21 24 26 73 24 28 25 28 21 21 29 74 29 34	18	22	17	24
64 24 34 22 26 20 26 23 65 23 28 17 31 20 30 24 66 23 31 22 37 22 24 27 67 25 31 27 27 20 24 25 68 26 31 24 35 21 27 26 69 28 27 24 29 24 23 25 70 30 31 29 28 18 31 24 71 27 29 22 31 18 21 25 72 38 29 36 35 21 24 26 73 24 28 25 28 21 21 29 74 29 34 30 35 12 26 22 75 28 29		21	16	24
65 23 28 17 31 20 30 24 66 23 31 22 37 22 24 27 67 25 31 27 27 20 24 25 68 26 31 24 35 21 27 26 69 28 27 24 29 24 23 25 70 30 31 29 28 18 31 24 71 27 29 22 31 18 21 25 72 38 29 36 35 21 24 26 73 24 28 25 28 21 21 29 74 29 34 30 35 12 26 22 75 28 29 27 30 18 26 23 76 25 36	22	24	19	21
66 23 31 22 37 22 24 27 67 25 31 27 27 20 24 25 68 26 31 24 35 21 27 26 69 28 27 24 29 24 23 25 70 30 31 29 28 18 31 24 71 27 29 22 31 18 21 25 72 38 29 36 35 21 24 26 73 24 28 25 28 21 21 29 74 29 34 30 35 12 26 22 75 28 29 27 30 18 26 23 76 25 36 28 33 20 23 31 77 25 35	26	19	21	18
67 25 31 27 27 20 24 25 68 26 31 24 35 21 27 26 69 28 27 24 29 24 23 25 70 30 31 29 28 18 31 24 71 27 29 22 31 18 21 25 72 38 29 36 35 21 24 26 73 24 28 25 28 21 21 29 74 29 34 30 35 12 26 22 75 28 29 27 30 18 26 23 76 25 36 28 33 20 23 31 77 25 35 30 32 17 23 22 78 27 31	14	24	11	18
68 26 31 24 35 21 27 26 69 28 27 24 29 24 23 25 70 30 31 29 28 18 31 24 71 27 29 22 31 18 21 25 72 38 29 36 35 21 24 26 73 24 28 25 28 21 21 29 74 29 34 30 35 12 26 22 75 28 29 27 30 18 26 23 76 25 36 28 33 20 23 31 77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31	21	26	20	19
69 28 27 24 29 24 23 25 70 30 31 29 28 18 31 24 71 27 29 22 31 18 21 25 72 38 29 36 35 21 24 26 73 24 28 25 28 21 21 29 74 29 34 30 35 12 26 22 75 28 29 27 30 18 26 23 76 25 36 28 33 20 23 31 77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31 24 33 14 31 20 80 29 34	13	19	15	18
70 30 31 29 28 18 31 24 71 27 29 22 31 18 21 25 72 38 29 36 35 21 24 26 73 24 28 25 28 21 21 29 74 29 34 30 35 12 26 22 75 28 29 27 30 18 26 23 76 25 36 28 33 20 23 31 77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31 24 33 14 31 20 80 29 34 28 27 22 25 30 81 31 29	17	20	15	20
71 27 29 22 31 18 21 25 72 38 29 36 35 21 24 26 73 24 28 25 28 21 21 29 74 29 34 30 35 12 26 22 75 28 29 27 30 18 26 23 76 25 36 28 33 20 23 31 77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31 24 33 14 31 20 80 29 34 28 27 22 25 30 81 31 29 29 28 22 28 26 82 25 26	18	19	18	18
72 38 29 36 35 21 24 26 73 24 28 25 28 21 21 29 74 29 34 30 35 12 26 22 75 28 29 27 30 18 26 23 76 25 36 28 33 20 23 31 77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31 24 33 14 31 20 80 29 34 28 27 22 25 30 81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	18	22	16	24
73 24 28 25 28 21 21 29 74 29 34 30 35 12 26 22 75 28 29 27 30 18 26 23 76 25 36 28 33 20 23 31 77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31 24 33 14 31 20 80 29 34 28 27 22 25 30 81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	17	26	16	21
74 29 34 30 35 12 26 22 75 28 29 27 30 18 26 23 76 25 36 28 33 20 23 31 77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31 24 33 14 31 20 80 29 34 28 27 22 25 30 81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	15	22	16	26
75 28 29 27 30 18 26 23 76 25 36 28 33 20 23 31 77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31 24 33 14 31 20 80 29 34 28 27 22 25 30 81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	21	23	19	22
76 25 36 28 33 20 23 31 77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31 24 33 14 31 20 80 29 34 28 27 22 25 30 81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	22	19	10	22
77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31 24 33 14 31 20 80 29 34 28 27 22 25 30 81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	21	24	19	24
77 25 35 30 32 17 23 22 78 27 31 22 30 18 20 28 79 29 31 24 33 14 31 20 80 29 34 28 27 22 25 30 81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	20	19	15	16
79 29 31 24 33 14 31 20 80 29 34 28 27 22 25 30 81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	15	18	15	20
80 29 34 28 27 22 25 30 81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	16	24	15	15
81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	16	21	12	20
81 31 29 29 28 22 28 26 82 25 26 24 31 21 32 17	16	25	16	17
82 25 26 24 31 21 32 17	18	22	16	19
	19	22	19	22
83 26 29 28 31 17 22 29	12	17	15	17
84 36 24 28 35 15 25 30	12	24	16	17
85 27 33 24 30 15 23 29	15	14	16	16
86 23 30 24 29 19 23 29	18	21	20	21

87	29	32	22	31	19	22	30	20	20	15	20
88	30	31	28	31	17	23	28	20	17	17	17
89											
	25	31	26	29	20	20	29	17	26	14	22
90	32	27	25	30	22	21	28	17	28	14	25
91	18	29	21	28	18	27	24	22	19	19	17
92	28	32	27	31	22	26	26	19	21	15	19
93	35	31	32	38	11	20	29	20	23	23	20
94	26	33	29	31	19	28	23	16	20	15	20
95	23	30	27	29	19	25	23	16	17	15	21
96	25	33	25	32	18	25	28	15	22	15	18
97	26	31	29	38	21	32	20	15	22	13	28
98	25	29	24	34	20	27	24	22	23	21	24
99	27	24	23	24	24	22	25	17	17	23	14
100	37	33	32	31	16	19	39	15	24	17	21
101	28	33	23	31	20	23	26	19	26	15	21
102	28	27	21	32	27	28	24	20	23	21	20
103	28	27	21	29	17	28	23	22	24	21	24
104	31	36	27	29	18	29	23	23	26	16	22
105	28	31	24	28	18	23	29	20	24	18	23
106	33	31	25	33	23	24	29	18	27	17	24
107	28	34	26	31	20	24	34	22	25	16	23
108	27	34	31	30	19	24	30	18	17	21	16
109	30	29	23	33	13	30	21	21	28	13	23
110	30	30	25	31	21	23	31	18	18	16	19
111	22	27	20	35	22	25	25	18	26	19	27
112	22	24	19	34	20	31	30	17	24	14	20
113	27	29	23	28	20	22	28	16	20	17	18
114	35	27	23	34	22	26	30	24	30	17	24
115	28	31	24	31	17	23	30	17	29	15	21

116	23	33	28	36	22	27	16	21	27	26	25
117	32	26	28	32	20	20	32	16	24	14	22
118	29	30	31	30	24	24	25	18	12	18	19
119	22	33	22	24	19	24	26	18	24	12	27
120	24	35	21	24	20	27	19	23	25	20	22
121	27	29	22	26	26	25	24	20	22	17	21
122	26	29	24	28	26	25	29	16	25	18	21
123	22	36	25	35	16	28	27	18	12	15	15
124	27	30	23	31	21	29	26	21	22	20	20
125	32	38	35	35	34	33	38	26	28	27	28
126	30	29	27	31	18	27	26	14	19	16	16
127	33	33	33	35	24	32	34	24	24	24	26
128	38	34	32	34	34	34	36	25	23	27	25
129	34	32	33	37	32	32	33	24	27	25	26
130	36	33	33	35	37	33	33	26	26	27	23
131	33	33	36	32	32	31	36	25	24	26	24
132	32	35	32	34	32	32	35	26	25	25	25
133	34	35	34	32	37	34	33	25	25	25	25
134	31	33	35	35	34	31	36	25	25	25	25
135	32	34	35	33	31	35	32	24	26	26	25
136	33	34	32	34	33	34	36	23	26	23	25
137	33	31	36	32	32	33	34	25	25	26	26
138	31	31	30	34	34	30	34	23	25	23	23
139	33	34	33	34	32	33	34	24	25	25	25
140	32	34	29	33	33	31	33	24	24	25	25

Lampiran 4

Hasil Uji Validitas

Kenyamanan dalam Menonton Bioskop

Kenyamanan Fisik

	Accordant to the second of the											
				Corre	lations							
		ITEM01	ITEM02	ITEM03	ITEM04	ITEM17	ITEM18	ITEM19	ITEM20	TotalA		
ITEM01	Pearson Correlation	1	.356**	.422**	.265**	.182*	.324**	.179*	.189*	.573**		
	Sig. (2-tailed)		.000	.000	.002	.031	.000	.034	.025	.000		
	N	140	140	140	140	140	140	140	140	140		
ITEM02	Pearson Correlation	.356**	1	.269**	.114	.237**	.228**	.153	.184*	.511**		
	Sig. (2-tailed)	.000		.001	.180	.005	.007	.071	.029	.000		
	N	140	140	140	140	140	140	140	140	140		
ITEM03	Pearson Correlation	.422**	.269**	1	.483**	.169*	.197	.134	.267**	.599**		
	Sig. (2-tailed)	.000	.001		.000	.046	.019	.113	.001	.000		
	N	140	140	140	140	140	140	140	140	140		
ITEM04	Pearson Correlation	.265**	.114	.483**	1	.178	.124	.185	.344**	.574**		
	Sig. (2-tailed)	.002	.180	.000		.035	.145	.029	.000	.000		
	N	140	140	140	140	140	140	140	140	140		
ITEM17	Pearson Correlation	.182	.237**	.169	.178	1	.018	.313**	.726**	.668**		
	Sig. (2-tailed)	.031	.005	.046	.035		.832	.000	.000	.000		
	N	140	140	140	140	140	140	140	140	140		
ITEM18	Pearson Correlation	.324**	.228**	.197	.124	.018	1	.142	.076	.406**		
	Sig. (2-tailed)	.000	.007	.019	.145	.832		.093	.370	.000		
	N	140	140	140	140	140	140	140	140	140		
ITEM19	Pearson Correlation	.179*	.153	.134	.185	.313**	.142	1	.484**	.566**		
	Sig. (2-tailed)	.034	.071	.113	.029	.000	.093		.000	.000		
	N	140	140	140	140	140	140	140	140	140		
ITEM20	Pearson Correlation	.189	.184	.267**	.344**	.726**	.076	.484**	1	.757**		
	Sig. (2-tailed)	.025	.029	.001	.000	.000	.370	.000		.000		
	N	140	140	140	140	140	140	140	140	140		
TotalA	Pearson Correlation	.573**	.511**	.599**	.574**	.668**	.406**	.566**	.757**	1		
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	.000			
	N	140	140	140	140	140	140	140	140	140		

Kenyamanan Psikospiritual

				Corre	lations					
		ITEM05	ITEM06	ITEM07	ITEM08	ITEM21	ITEM22	ITEM23	ITEM24	TotalB
ITEM05	Pearson Correlation	1	.314**	069	254**	.455**	160	083	.254**	.250**
	Sig. (2-tailed)		.000	.418	.002	.000	.059	.330	.002	.003
	N	140	140	140	140	140	140	140	140	140
ITEM06	Pearson Correlation	.314**	1	100	264**	.293**	092	.013	.094	.263**
	Sig. (2-tailed)	.000		.238	.002	.000	.282	.881	.271	.002
	N	140	140	140	140	140	140	140	140	140
ITEM07	Pearson Correlation	069	100	1	.091	.037	.120	.409**	.226**	.562**
	Sig. (2-tailed)	.418	.238		.284	.667	.156	.000	.007	.000
	N	140	140	140	140	140	140	140	140	140
ITEM08	Pearson Correlation	254**	264**	.091	1	146	.369**	.068	091	.398**
	Sig. (2-tailed)	.002	.002	.284		.086	.000	.427	.286	.000
	N	140	140	140	140	140	140	140	140	140
ITEM21	Pearson Correlation	.455**	.293**	.037	146	1	.118	.009	.089	.410**
	Sig. (2-tailed)	.000	.000	.667	.086		.166	.918	.295	.000
	N	140	140	140	140	140	140	140	140	140
ITEM22	Pearson Correlation	160	092	.120	.369**	.118	1	.135	.011	.527**
	Sig. (2-tailed)	.059	.282	.156	.000	.166		.112	.901	.000
	N	140	140	140	140	140	140	140	140	140
ITEM23	Pearson Correlation	083	.013	.409**	.068	.009	.135	1	.380**	.560**
	Sig. (2-tailed)	.330	.881	.000	.427	.918	.112		.000	.000
	N	140	140	140	140	140	140	140	140	140
ITEM24	Pearson Correlation	.254**	.094	.226**	091	.089	.011	.380**	1	.452**
	Sig. (2-tailed)	.002	.271	.007	.286	.295	.901	.000		.000
	N	140	140	140	140	140	140	140	140	140
TotalB	Pearson Correlation	.250**	.263**	.562**	.398**	.410**	.527**	.560**	.452**	1
	Sig. (2-tailed)	.003	.002	.000	.000	.000	.000	.000	.000	
	N	140	140	140	140	140	140	140	140	140

Kenyamanan Lingkungan

	Correlations										
		ITEM09	ITEM10	ITEM11	ITEM12	ITEM25	ITEM26	ITEM27	ITEM28	TotalC	
ITEM09	Pearson Correlation	1	.208	.195	.127	.154	.122	.127	.715**	.595**	
	Sig. (2-tailed)		.014	.021	.134	.069	.152	.136	.000	.000	
	N	140	140	140	140	140	140	140	140	140	
ITEM10	Pearson Correlation	.208	1	.319**	.367**	.069	113	.457**	.223**	.660**	
	Sig. (2-tailed)	.014		.000	.000	.416	.183	.000	.008	.000	
	N	140	140	140	140	140	140	140	140	140	
ITEM11	Pearson Correlation	.195	.319**	1	.213	.032	079	.328**	.267**	.583**	
	Sig. (2-tailed)	.021	.000		.012	.710	.351	.000	.001	.000	
	N	140	140	140	140	140	140	140	140	140	
ITEM12	Pearson Correlation	.127	.367**	.213	1	.208*	.035	.309**	.309**	.629**	
	Sig. (2-tailed)	.134	.000	.012		.013	.678	.000	.000	.000	
	N	140	140	140	140	140	140	140	140	140	
ITEM25	Pearson Correlation	.154	.069	.032	.208*	1	.176*	093	.124	.364**	
	Sig. (2-tailed)	.069	.416	.710	.013		.038	.273	.144	.000	
	N	140	140	140	140	140	140	140	140	140	
ITEM26	Pearson Correlation	.122	113	079	.035	.176	1	245**	.133	.118	
	Sig. (2-tailed)	.152	.183	.351	.678	.038		.004	.117	.164	
	N	140	140	140	140	140	140	140	140	140	
ITEM27	Pearson Correlation	.127	.457**	.328**	.309**	093	245**	1	.162	.544**	
	Sig. (2-tailed)	.136	.000	.000	.000	.273	.004		.056	.000	
	N	140	140	140	140	140	140	140	140	140	
ITEM28	Pearson Correlation	.715**	.223**	.267**	.309**	.124	.133	.162	1	.672**	
	Sig. (2-tailed)	.000	.008	.001	.000	.144	.117	.056		.000	
	N	140	140	140	140	140	140	140	140	140	
TotalC	Pearson Correlation	.595**	.660**	.583**	.629**	.364**	.118	.544**	.672**	1	
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.164	.000	.000		
	N	140	140	140	140	140	140	140	140	140	

Kenyamanan Sosial Kultural

Correlations

		ITEM13	ITEM14	ITEM15	ITEM16	ITEM29	ITEM30	ITEM31	ITEM32	TotalD
ITEM13	Pearson Correlation	1	.159	061	.146	.242**	.192*	042	.328**	.456**
	Sig. (2-tailed)		.060	.475	.085	.004	.023	.625	.000	.000
	N	140	140	140	140	140	140	140	140	140
ITEM14	Pearson Correlation	.159	1	016	046	.159	.050	.407**	.092	.466**
	Sig. (2-tailed)	.060		.852	.586	.060	.555	.000	.279	.000
	N	140	140	140	140	140	140	140	140	140
ITEM15	Pearson Correlation	061	016	1	068	.047	.020	.136	.107	.346**
	Sig. (2-tailed)	.475	.852		.422	.578	.814	.109	.210	.000
	N	140	140	140	140	140	140	140	140	140
ITEM16	Pearson Correlation	.146	046	068	1	.084	.575**	017	.134	.511**
	Sig. (2-tailed)	.085	.586	.422		.326	.000	.843	.115	.000
	N	140	140	140	140	140	140	140	140	140
ITEM29	Pearson Correlation	.242**	.159	.047	.084	1	.207	039	.088	.428**
	Sig. (2-tailed)	.004	.060	.578	.326		.014	.651	.302	.000
	N	140	140	140	140	140	140	140	140	140
ITEM30	Pearson Correlation	.192	.050	.020	.575**	.207	1	.072	.032	.602**
	Sig. (2-tailed)	.023	.555	.814	.000	.014		.398	.705	.000
	N	140	140	140	140	140	140	140	140	140
ITEM31	Pearson Correlation	042	.407**	.136	017	039	.072	1	.025	.489**
	Sig. (2-tailed)	.625	.000	.109	.843	.651	.398		.773	.000
	N	140	140	140	140	140	140	140	140	140
ITEM32	Pearson Correlation	.328**	.092	.107	.134	.088	.032	.025	1	.412**
	Sig. (2-tailed)	.000	.279	.210	.115	.302	.705	.773		.000
	N	140	140	140	140	140	140	140	140	140
TotalD	Pearson Correlation	.456**	.466**	.346**	.511**	.428**	.602**	.489**	.412**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	.000	
	N	140	140	140	140	140	140	140	140	140

Temperatur Udara

Panas

Correlations

		ITEM01	ITEM02	ITEM03	ITEM04	ITEM13	ITEM14	ITEM15	ITEM16	TotalA
ITEM01	Pearson Correlation	1	.829**	.190*	.280**	.765**	.699**	138	.568**	.816**
	Sig. (2-tailed)		.000	.025	.001	.000	.000	.105	.000	.000
	N	140	140	140	140	140	140	140	140	140
ITEM02	Pearson Correlation	.829**	1	.133	.241**	.793**	.679**	129	.581**	.804**
	Sig. (2-tailed)	.000		.116	.004	.000	.000	.128	.000	.000
	N	140	140	140	140	140	140	140	140	140
ITEM03	Pearson Correlation	.190*	.133	1	.296**	.165	.078	.016	.242**	.439**
	Sig. (2-tailed)	.025	.116		.000	.052	.363	.850	.004	.000
	N	140	140	140	140	140	140	140	140	140
ITEM04	Pearson Correlation	.280**	.241**	.296**	1	.324**	.269**	.050	.420**	.566**
	Sig. (2-tailed)	.001	.004	.000		.000	.001	.561	.000	.000
	N	140	140	140	140	140	140	140	140	140
ITEM13	Pearson Correlation	.765**	.793**	.165	.324**	1	.766**	152	.720**	.849**
	Sig. (2-tailed)	.000	.000	.052	.000		.000	.073	.000	.000
	N	140	140	140	140	140	140	140	140	140
ITEM14	Pearson Correlation	.699**	.679**	.078	.269**	.766**	1	109	.664**	.781**
	Sig. (2-tailed)	.000	.000	.363	.001	.000		.201	.000	.000
	N	140	140	140	140	140	140	140	140	140
ITEM15	Pearson Correlation	138	129	.016	.050	152	109	1	.015	.077
	Sig. (2-tailed)	.105	.128	.850	.561	.073	.201		.864	.368
	N	140	140	140	140	140	140	140	140	140
ITEM16	Pearson Correlation	.568**	.581**	.242**	.420**	.720**	.664**	.015	1	.813**
	Sig. (2-tailed)	.000	.000	.004	.000	.000	.000	.864		.000
	N	140	140	140	140	140	140	140	140	140
TotalA	Pearson Correlation	.816**	.804**	.439**	.566**	.849**	.781**	.077	.813**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.368	.000	
	N	140	140	140	140	140	140	140	140	140

Dingin

Correlations

		ITEM05	ITEM06	ITEM07	ITEM08	ITEM17	ITEM18	ITEM19	ITEM20	TotalB
ITEM05	Pearson Correlation	1	.396**	208	.249**	.075	.294**	.219**	.088	.466**
	Sig. (2-tailed)		.000	.014	.003	.380	.000	.009	.300	.000
	N	140	140	140	140	140	140	140	140	140
ITEM06	Pearson Correlation	.396**	1	353**	.248**	.200*	.506**	.423**	.220**	.666**
	Sig. (2-tailed)	.000		.000	.003	.018	.000	.000	.009	.000
	N	140	140	140	140	140	140	140	140	140
ITEM07	Pearson Correlation	208	353**	1	132	.069	257**	181	.195	.083
	Sig. (2-tailed)	.014	.000		.119	.419	.002	.033	.021	.327
	N	140	140	140	140	140	140	140	140	140
ITEM08	Pearson Correlation	.249**	.248**	132	1	.039	.085	.310**	.090	.453**
	Sig. (2-tailed)	.003	.003	.119		.651	.319	.000	.289	.000
	N	140	140	140	140	140	140	140	140	140
ITEM17	Pearson Correlation	.075	.200*	.069	.039	1	.246**	.118	.140	.497**
	Sig. (2-tailed)	.380	.018	.419	.651		.003	.165	.100	.000
	N	140	140	140	140	140	140	140	140	140
ITEM18	Pearson Correlation	.294**	.506**	257**	.085	.246**	1	.328**	.073	.574**
	Sig. (2-tailed)	.000	.000	.002	.319	.003		.000	.391	.000
	N	140	140	140	140	140	140	140	140	140
ITEM19	Pearson Correlation	.219**	.423**	181*	.310**	.118	.328**	1	.255**	.625**
	Sig. (2-tailed)	.009	.000	.033	.000	.165	.000		.002	.000
	N	140	140	140	140	140	140	140	140	140
ITEM20	Pearson Correlation	.088	.220**	.195	.090	.140	.073	.255**	1	.552**
	Sig. (2-tailed)	.300	.009	.021	.289	.100	.391	.002		.000
	N	140	140	140	140	140	140	140	140	140
TotalB	Pearson Correlation	.466**	.666**	.083	.453**	.497**	.574**	.625**	.552**	1
	Sig. (2-tailed)	.000	.000	.327	.000	.000	.000	.000	.000	
	N	140	140	140	140	140	140	140	140	140

Netral

				Corre	lations					
		ITEM09	ITEM10	ITEM11	ITEM12	ITEM21	ITEM22	ITEM23	ITEM24	TotalC
ITEM09	Pearson Correlation	1	.556**	.388**	.283**	.398**	.249**	207 [*]	.234**	.663**
	Sig. (2-tailed)		.000	.000	.001	.000	.003	.014	.005	.000
	N	140	140	140	140	140	140	140	140	140
ITEM10	Pearson Correlation	.556**	1	.479**	.294**	.496**	.343**	251**	.104	.675**
	Sig. (2-tailed)	.000		.000	.000	.000	.000	.003	.221	.000
	N	140	140	140	140	140	140	140	140	140
ITEM11	Pearson Correlation	.388**	.479**	1	.623**	.442**	.337**	212	.214	.717**
	Sig. (2-tailed)	.000	.000		.000	.000	.000	.012	.011	.000
	N	140	140	140	140	140	140	140	140	140
ITEM12	Pearson Correlation	.283**	.294**	.623**	1	.610**	.483**	051	.226**	.713**
	Sig. (2-tailed)	.001	.000	.000		.000	.000	.552	.007	.000
	N	140	140	140	140	140	140	140	140	140
ITEM21	Pearson Correlation	.398**	.496**	.442**	.610**	1	.719**	.038	.201*	.793**
	Sig. (2-tailed)	.000	.000	.000	.000		.000	.655	.017	.000
	N	140	140	140	140	140	140	140	140	140
ITEM22	Pearson Correlation	.249**	.343**	.337**	.483**	.719**	1	055	.156	.645**
	Sig. (2-tailed)	.003	.000	.000	.000	.000		.519	.066	.000
	N	140	140	140	140	140	140	140	140	140
ITEM23	Pearson Correlation	207*	251**	212*	051	.038	055	1	.086	.003
	Sig. (2-tailed)	.014	.003	.012	.552	.655	.519		.312	.968
	N	140	140	140	140	140	140	140	140	140
ITEM24	Pearson Correlation	.234**	.104	.214*	.226**	.201*	.156	.086	1	.495**
	Sig. (2-tailed)	.005	.221	.011	.007	.017	.066	.312		.000
	N	140	140	140	140	140	140	140	140	140
TotalC	Pearson Correlation	.663**	.675**	.717**	.713**	.793**	.645**	.003	.495**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.968	.000	
	N	140	140	140	140	140	140	140	140	140

Kebisingan

Gangguan Fisiologis

Correlations

		ITEM01	ITEM02	ITEM03	ITEM04	ITEM05	ITEM06	TotalA
ITEM01	Pearson Correlation	1	.563**	.067	.038	.126	.220**	.485**
	Sig. (2-tailed)		.000	.432	.654	.137	.009	.000
	N	140	140	140	140	140	140	140
ITEM02	Pearson Correlation	.563**	1	.187*	.197*	.206	.249**	.617**
	Sig. (2-tailed)	.000		.027	.020	.015	.003	.000
	N	140	140	140	140	140	140	140
ITEM03	Pearson Correlation	.067	.187*	1	.529**	.325**	.314**	.643**
	Sig. (2-tailed)	.432	.027		.000	.000	.000	.000
	N	140	140	140	140	140	140	140
ITEM04	Pearson Correlation	.038	.197	.529**	1	.420**	.435**	.712**
	Sig. (2-tailed)	.654	.020	.000		.000	.000	.000
	N	140	140	140	140	140	140	140
ITEM05	Pearson Correlation	.126	.206	.325**	.420**	1	.299**	.652**
	Sig. (2-tailed)	.137	.015	.000	.000		.000	.000
	N	140	140	140	140	140	140	140
ITEM06	Pearson Correlation	.220**	.249**	.314**	.435**	.299**	1	.673**
	Sig. (2-tailed)	.009	.003	.000	.000	.000		.000
	N	140	140	140	140	140	140	140
TotalA	Pearson Correlation	.485**	.617**	.643**	.712**	.652**	.673**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	
	N	140	140	140	140	140	140	140

Gangguan Psikologis

Correlations

		ITEM07	ITEM08	ITEM09	ITEM10	ITEM11	ITEM12	TotalB
ITEM07	Pearson Correlation	1	.474**	.225**	.202*	.330**	.229**	.667**
	Sig. (2-tailed)		.000	.007	.017	.000	.007	.000
	N	140	140	140	140	140	140	140
ITEM08	Pearson Correlation	.474**	1	.203	.249**	.379**	.096	.613**
	Sig. (2-tailed)	.000		.016	.003	.000	.258	.000
	N	140	140	140	140	140	140	140
ITEM09	Pearson Correlation	.225**	.203	1	.069	.217**	057	.411**
	Sig. (2-tailed)	.007	.016		.416	.010	.502	.000
	N	140	140	140	140	140	140	140
ITEM10	Pearson Correlation	.202	.249**	.069	1	.667**	.258**	.678**
	Sig. (2-tailed)	.017	.003	.416		.000	.002	.000
	N	140	140	140	140	140	140	140
ITEM11	Pearson Correlation	.330**	.379**	.217**	.667**	1	.319**	.795**
	Sig. (2-tailed)	.000	.000	.010	.000		.000	.000
	N	140	140	140	140	140	140	140
ITEM12	Pearson Correlation	.229**	.096	057	.258**	.319**	1	.532**
	Sig. (2-tailed)	.007	.258	.502	.002	.000		.000
	N	140	140	140	140	140	140	140
TotalB	Pearson Correlation	.667**	.613**	.411**	.678**	.795**	.532**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	
	N	140	140	140	140	140	140	140

Gangguan Patologis Organis

Correlations

		ITEM13	ITEM14	ITEM15	ITEM16	ITEM17	ITEM18	TotalC
ITEM13	Pearson Correlation	1	.677**	.078	.268**	.535**	.429**	.786**
	Sig. (2-tailed)	·	.000	.360	.001	.000	.000	.000
	N	140	140	140	140	140	140	140
ITEM14	Pearson Correlation	.677**	1 1	.113	.318**	.518**	.477**	.818**
	Sig. (2-tailed)	.000	· '	.184	.000	.000	.000	.000
	N	140	140	140	140	140	140	140
ITEM15	Pearson Correlation	.078	.113	1 1	160	.085	074	.201*
HEMIS				'				
	Sig. (2-tailed)	.360	.184		.060	.318	.387	.017
	N	140	140	140	140	140	140	140
ITEM16	Pearson Correlation	.268**	.318 ^	160	1	.503 ^	.275 ^^	.573 ^^
	Sig. (2-tailed)	.001	.000	.060		.000	.001	.000
	N	140	140	140	140	140	140	140
ITEM17	Pearson Correlation	.535**	.518**	.085	.503**	1	.400**	.789**
	Sig. (2-tailed)	.000	.000	.318	.000		.000	.000
	N	140	140	140	140	140	140	140
ITEM18	Pearson Correlation	.429**	.477**	074	.275**	.400**	1	.680**
	Sig. (2-tailed)	.000	.000	.387	.001	.000		.000
	N	140	140	140	140	140	140	140
TotalC	Pearson Correlation	.786**	.818**	.201*	.573**	.789**	.680**	1
	Sig. (2-tailed)	.000	.000	.017	.000	.000	.000	
	N	140	140	140	140	140	140	140

Komunikasi

	Correlations							
		ITEM19	ITEM20	ITEM21	ITEM22	ITEM23	ITEM24	TotalD
ITEM19	Pearson Correlation	1	.193	.161	.146	.123	.212*	.443**
	Sig. (2-tailed)		.022	.057	.085	.146	.012	.000
	N	140	140	140	140	140	140	140
ITEM20	Pearson Correlation	.193	1	.068	.154	.310**	.181*	.523**
	Sig. (2-tailed)	.022		.423	.070	.000	.032	.000
	N	140	140	140	140	140	140	140
ITEM21	Pearson Correlation	.161	.068	1	.282**	.224**	.322**	.608**
	Sig. (2-tailed)	.057	.423		.001	.008	.000	.000
	N	140	140	140	140	140	140	140
ITEM22	Pearson Correlation	.146	.154	.282**	1	.357**	.368**	.658**
	Sig. (2-tailed)	.085	.070	.001		.000	.000	.000
	N	140	140	140	140	140	140	140
ITEM23	Pearson Correlation	.123	.310**	.224**	.357**	1	.200*	.646**
	Sig. (2-tailed)	.146	.000	.008	.000		.018	.000
	N	140	140	140	140	140	140	140
ITEM24	Pearson Correlation	.212*	.181*	.322**	.368**	.200*	1	.658**
	Sig. (2-tailed)	.012	.032	.000	.000	.018		.000
	N	140	140	140	140	140	140	140
TotalD	Pearson Correlation	.443**	.523**	.608**	.658**	.646**	.658**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	
	N	140	140	140	140	140	140	140

Hasil Uji Reliabilitas

Variabel Kenyamanan dalam Menonton Bioskop

Kenyamanan Fisik

Reliability Statistics

Cronbach's Alpha	N of Items
.727	8

Kenyamanan Psikospiritual

Reliability Statistics

Cronbach's	
Alpha	N of Items
.453	6

Kenyamanan Lingkungan

Reliability Statistics

Cronbach's	NI of House
Alpha	N of Items
.677	7

Kenyamanan Sosial Kultural

Cronbach's	
Alpha	N of Items
.469	8

Total All

Case Processing Summary

		Ν	%
Cases	Valid	140	100.0
	Excluded ^a	0	.0
	Total	140	100.0

a. Listwise deletion based on all variables in the procedure.

Cronbach's Alpha	N of Items
.797	29

Variabel Temperatur Udara

Panas

Reliability Statistics

Cronbach's Alpha	N of Items
.848	7

Dingin

Reliability Statistics

Cronbach's Alpha	N of Items
.661	7

Netral

Reliability Statistics

Cronbach's	
Alpha	N of Items
.792	7

Total All

Case Processing Summary

		N	%
Cases	Valid	140	100.0
	Excluded ^a	0	.0
	Total	140	100.0

a. Listwise deletion based on all variables in the procedure.

Cronbach's	N. of House
Alpha	N of Items
.823	21

Variabel Kebisingan

Gangguan Fisiologis

Reliability Statistics

Cronbach's	
Alpha	N of Items
.701	6

Gangguan Psikologis

Reliability Statistics

Cronbach's	
Alpha	N of Items
.676	6

Gangguan Patologis Organis

Reliability Statistics

Cronbach's	
Alpha	N of Items
.798	5

Komunikasi

Cronbach's Alpha	N of Items
.632	6

Total All

Case Processing Summary

		N	%
Cases	Valid	140	100.0
	Excluded ^a	0	.0
	Total	140	100.0

a. Listwise deletion based on all variables in the procedure.

Cronbach's	N of Home
Alpha	N of Items
.842	23

Hasil Uji Deskriptif

Descriptive Statistics

	Ν	Minimum	Maximum	Mean	Std. Deviation
Kenyamanan	140	85	137	102.19	10.079
TemperaturUdara	140	45	93	63.38	9.429
Kebisingan	140	56	104	76.46	10.319
Valid N (listwise)	140				

Hasil Kategorisasi Skor

Kenyamanan dalam Menonton Bioskop

Kategorisasi1

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Sedang	41	29.3	29.3	29.3
	Tinggi	80	57.1	57.1	86.4
	Sangat Tinggi	19	13.6	13.6	100.0
	Total	140	100.0	100.0	

Temperatur Udara

Kategorisasi2

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Rendah	10	7.1	7.1	7.1
	Sedang	114	81.4	81.4	88.6
	Tinggi	2	1.4	1.4	90.0
	Sangat Tinggi	14	10.0	10.0	100.0
	Total	140	100.0	100.0	

Kebisingan

Kategorisasi3

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Rendah	5	3.6	3.6	3.6
	Sedang	68	48.6	48.6	52.1
	Tinggi	51	36.4	36.4	88.6
	Sangat Tinggi	16	11.4	11.4	100.0
	Total	140	100.0	100.0	

Hasil Uji Asumsi: Normalitas

Uji Normalitas Kenyamanan dalam Menonton Bioskop

Tests of Normality								
	Kolmogorov-Smirnov ^a Shapiro-Wilk							
	Statistic	df	Sig.	Statistic	df	Sig.		
Kenyamanan	.118	140	.000	.943	140	.000		
a. Lilliefors §	a. Lilliefors Significance Correction							

Uji Normalitas Temperatur Udara

Tests of Normality

	Kolm	ogorov-Smiı	rnov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Temperatur∪dara	.245 140 .000			.763	140	.000	

a. Lilliefors Significance Correction

Uji Normalitas Kebisingan

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Kebisingan	.060	140	.200	.979	140	.026

- *. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

Hasil Uji Asumsi: Linearitas

Kenyamanan dalam Menonton Bioskop (Y) – Temperatur Udara (X_1)

ANOVA Table

			Sum of Squares	df	Mean Square	F	Sig.
Kenyamanan * TemperaturUdara	Between Groups	(Combined)	8802.866	31	283.963	5.767	.000
		Linearity	3376.299	1	3376.299	68.563	.000
		Deviation from Linearity	5426.567	30	180.886	3.673	.000
	Within Groups		5318.306	108	49.244		
	Total		14121.171	139			

Kenyamanan dalam Menonton Bioskop (Y) – Kebisingan (X₂)

ANOVA Table

			Sum of Squares	df	Mean Square	F	Sig.
Kenyamanan * Kebisingan	Between Groups	(Combined)	8724.730	39	223.711	4.146	.000
		Linearity	1101.619	1	1101.619	20.414	.000
		Deviation from Linearity	7623.111	38	200.608	3.717	.000
	Within Groups		5396.442	100	53.964		
	Total		14121.171	139			

Hasil Uji Asumsi: Multikolinearitas

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Mo	del	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	70.336	5.970		11.782	.000		
	TemperaturUdara	.549	.102	.513	5.405	.000	.615	1.626
	Kebisingan	038	.093	039	413	.681	.615	1.626

a. Dependent Variable: Kenyamanan

Hasil Uji Asumsi: Homoskedatisitas

Coefficients^a

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity	Statistics
	В	Std. Error	Beta			Tolerance	VIF
(Constant)	9.516	4.013		2.372	.019		
TemperaturUdara	088	.068	140	-1.293	.198	.615	1.626
Kebisingan	.033	.062	.057	.529	.598	.615	1.626

a. Dependent Variable: absres1

Hasil Uji Hipotesis

Analisis Regresi Model Penuh

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.485ª	.235	.224	9.180

a. Predictors: (Constant), Kebisingan, TemperaturUdara

ANOVA^a

	Model	Sum of Squares	df	Mean Square	F	Sig.
I	1 Regression	3552.135	2	1776.068	21.074	.000b
I	Residual	11546.115	137	84.278		
I	Total	15098.250	139			

a. Dependent Variable: Kenyamanan

b. Predictors: (Constant), Kebisingan, TemperaturUdara

Analisis Regresi Model Bertahap

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	77.745	6.593		11.793	.000
	Temperatur∪dara	.519	.101	.493	5.123	.000
	Kebisingan	012	.096	012	125	.900

a. Dependent Variable: Kenyamanan

Analisis Regresi Multivariat Aspek-aspek Variabel Bebas terhadap

Kenyamanan Fisik (Ya)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.519 ^a	.269	.230	3.594

a. Predictors: (Constant), X2D, X1C, X1B, X2A, X2B, X2C, X1A

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	628.196	7	89.742	6.947	.000 ^b
	Residual	1705.090	132	12.917		
	Total	2333.286	139			

a. Dependent Variable: YA

b. Predictors: (Constant), X2D, X1C, X1B, X2A, X2B, X2C, X1A

Analisis Regresi Multivariat Aspek-aspek Variabel Bebas terhadap

Kenyamanan Psikospiritual (Yb)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.426ª	.182	.138	2.750

a. Predictors: (Constant), X2D, X1C, X1B, X2A, X2B, X2C, X1A

ANOVA^a

٨	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	221.574	7	31.653	4.186	.000 ^b
l	Residual	998.219	132	7.562		
L	Total	1219.793	139			

a. Dependent Variable: YB

b. Predictors: (Constant), X2D, X1C, X1B, X2A, X2B, X2C, X1A

Analisis Regresi Multivariat Aspek-aspek Variabel Bebas terhadap

Kenyamanan Lingkungan (Yc)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.604ª	.365	.332	3.306

a. Predictors: (Constant), X2D, X1C, X1B, X2A, X2B, X2C, X1A

ANOVA^a

	Model		Sum of Squares	df	Mean Square	F	Sig.
ſ	1	Regression	829.895	7	118.556	10.850	.000b
l		Residual	1442.355	132	10.927		
l		Total	2272.250	139			

a. Dependent Variable: YC

b. Predictors: (Constant), X2D, X1C, X1B, X2A, X2B, X2C, X1A

Analisis Regresi Multivariat Aspek-aspek Variabel Bebas terhadap

Kenyamanan Sosial Kultural (Yd)

Model Summary

			Adjusted R	Std. Error of
Model	R	R Square	Square	the Estimate
1	.369ª	.136	.090	2.922

a. Predictors: (Constant), X2D, X1C, X1B, X2A, X2B, X2C, X1A

ANOVA^a

	Model	Sum of Squares	df	Mean Square	F	Sig.
Γ	1 Regression	177.741	7	25.392	2.973	.006 ^b
l	Residual	1127.195	132	8.539		
l	Total	1304.936	139			

a. Dependent Variable: YD

b. Predictors: (Constant), X2D, X1C, X1B, X2A, X2B, X2C, X1A

Analisis Korelasi Parsial terhadap Aspek Kenyamanan Fisik (Ya)

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1 (Cor	nstant)	10.514	3.233		3.252	.001
X1A		032	.099	039	323	.747
X1B		.140	.105	.128	1.329	.186
X1 C		.469	.084	.498	5.575	.000
X2A		.016	.119	.013	.132	.895
X2B		.120	.103	.106	1.160	.248
X2C		071	.118	067	602	.548
X2D		.007	.126	.005	.056	.956

a. Dependent Variable: YA

Analisis Regresi Model Stepwise terhadap Kenyamanan Fisik (Ya)

Coefficients^a

			Unstandardize	d Coefficients	Standardized Coefficients		
ı	Model		В	Std. Error	Beta	t	Sig.
	1	(Constant)	15.475	1.900		8.144	.000
		X1C	.463	.070	.492	6.639	.000

a. Dependent Variable: YA

Excluded Variables^a

					Partial	Collinearity Statistics
Model		Beta In	t	Sig.	Correlation	Tolerance
1	X1A	.029 ^b	.343	.732	.029	.782
	X1B	.111 ^b	1.508	.134	.128	.999
	X2A	.037 ^b	.491	.624	.042	.957
	X2B	.124 ^b	1.643	.103	.139	.948
	X2C	007 ^b	086	.931	007	.909
	X2D	.082 ^b	1.086	.279	.092	.952

a. Dependent Variable: YA

b. Predictors in the Model: (Constant), X1C

Analisis Model Akhir

ANOVA^a

	Model		Sum of Squares	df	Mean Square	F	Sig.
ſ	1	Regression	564.807	1	564.807	44.074	.000b
I		Residual	1768.479	138	12.815		
l		Total	2333.286	139			

a. Dependent Variable: YAb. Predictors: (Constant), X1 C

Analisis Korelasi Parsial terhadap Aspek Kenyamanan Psikospiritual (Yb)

Coefficients^a

	Unstandardized Coefficients		Standardized Coefficients		
Model	В	Std. Error	Beta	t	Sig.
1 (Constant)	21.603	2.474		8.733	.000
X1A	069	.076	114	903	.368
X1B	.101	.080	.128	1.252	.213
X1 C	.254	.064	.373	3.946	.000
X2A	.227	.091	.266	2.486	.014
X2B	149	.079	182	-1.882	.062
X2C	154	.090	200	-1.702	.091
X2D	.137	.096	.148	1.422	.157

a. Dependent Variable: YB

Analisis Regresi Model Stepwise terhadap Kenyamanan Psikospiritual

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	25.017	1.500		16.675	.000
	X1C	.211	.055	.310	3.832	.000
2	(Constant)	22.887	1.801		12.709	.000
	X1C	.187	.056	.275	3.359	.001
	X2A	.145	.070	.170	2.083	.039

a. Dependent Variable: YB

Excluded Variables^a

					Partial	Collinearity Statistics
Model		Beta In	t	Sig.	Correlation	Tolerance
1	X1A	.006 ^b	.061	.951	.005	.782
	X1B	.123 ^b	1.529	.129	.130	.999
	X2A	.170 ^b	2.083	.039	.175	.957
	X2B	067 ^b	807	.421	069	.948
	X2C	017 ^b	198	.844	017	.909
	X2D	.088 ^b	1.056	.293	.090	.952
2	X1A	114°	-1.098	.274	094	.595
	X1B	.060°	.668	.505	.057	.794
	X2B	103°	-1.235	.219	105	.915
	X2C	198°	-1.885	.062	160	.568
	X2D	.034°	.390	.697	.033	.844

- a. Dependent Variable: YB
- b. Predictors in the Model: (Constant), X1C
- c. Predictors in the Model: (Constant), X1C, X2A

Analisis Model Akhir

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	117.333	1	117.333	14.687	.000 ^b
	Residual	1102.460	138	7.989		
	Total	1219.793	139			
2	Regression	151.179	2	75.590	9.691	.000°
	Residual	1068.614	137	7.800		
	Total	1219.793	139			

a. Dependent Variable: YB b. Predictors: (Constant), X1 C c. Predictors: (Constant), X1 C, X2A

Analisis Korelasi Parsial terhadap Aspek Kenyamanan Lingkungan (Yc)

Coefficients^a

	Unstandardize	Unstandardized Coefficients			
Model	В	Std. Error	Beta	t	Sig.
1 (Constan	t) 8.473	2.974		2.850	.005
X1A	020	.091	024	214	.831
X1B	.254	.097	.236	2.629	.010
X1C	.404	.077	.435	5.225	.000
X2A	256	.110	220	-2.338	.021
X2B	251	.095	225	-2.643	.009
X2C	.247	.109	.236	2.279	.024
X2D	.304	.116	.241	2.628	.010

a. Dependent Variable: YC

Analisis Regresi Model Stepwise terhadap Kenyamanan Lingkungan

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	14.290	1.914		7.467	.000
	X1C	.426	.070	.459	6.066	.000
2	(Constant)	7.233	2.693		2.686	.008
	X1C	.418	.068	.450	6.198	.000
	X1B	.280	.078	.260	3.582	.000

a. Dependent Variable: YC

Excluded Variables^a

					Partial	Collinearity Statistics	
Model		Beta In	t	Sig.	Correlation	Tolerance	
1	X1A	.214 ^b	2.549	.012	.213	.782	
	X1B	.260 ^b	3.582	.000	.293	.999	
	X2A	.058 ^b	.746	.457	.064	.957	
	X2B	054 ^b	695	.488	059	.948	
	X2C	.238 ^b	3.085	.002	.255	.909	
	X2D	.205 ^b	2.710	.008	.226	.952	
2	X1A	.064°	.631	.529	.054	.515	
	X2A	079°	944	.347	081	.761	
	X2B	115°	-1.519	.131	129	.907	
	X2C	.150°	1.811	.072	.153	.753	
	X2D	.124°	1.559	.121	.133	.823	

- a. Dependent Variable: YC
- b. Predictors in the Model: (Constant), X1C
- c. Predictors in the Model: (Constant), X1C, X1B

Analisis Model Akhir

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	478.294	1	478.294	36.793	.000b
	Residual	1793.956	138	13.000		
	Total	2272.250	139			
2	Regression	631.932	2	315.966	26.390	.000°
	Residual	1640.318	137	11.973		
	Total	2272.250	139			

a. Dependent Variable: YCb. Predictors: (Constant), X1Cc. Predictors: (Constant), X1C, X1B

Analisis Korelasi Parsial terhadap Aspek Kenyamanan Sosisal Kultural (Yd)

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	20.583	2.629		7.830	.000
	X1A	154	.081	247	-1.904	.059
	X1B	.202	.085	.247	2.359	.020
	X1C	.228	.068	.323	3.328	.001
	X2A	039	.097	044	405	.686
	X2B	071	.084	083	841	.402
	X2C	.033	.096	.041	.340	.734
	X2D	.191	.102	.199	1.863	.065

a. Dependent Variable: YD

Analisis Regresi Model Stepwise terhadap Kenyamanan Sosial Kultural

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	26.262	1.583		16.591	.000
	X1C	.172	.058	.244	2.954	.004
2	(Constant)	23.490	2.049		11.463	.000
	X1C	.145	.059	.205	2.458	.015
	X2D	.168	.080	.175	2.093	.038

a. Dependent Variable: YD

Excluded Variables^a

					Partial	Collinearity Statistics
Model		Beta In	t	Sig.	Correlation	Tolerance
1	X1A	025 ^b	272	.786	023	.782
	X1B	.170 ^b	2.089	.039	.176	.999
	X2A	.036 ^b	.426	.671	.036	.957
	X2B	.042 ^b	.500	.618	.043	.948
	X2C	.039 ^b	.452	.652	.039	.909
	X2D	.175 ^b	2.093	.038	.176	.952
2	X1A	096°	987	.325	084	.704
	X1B	.124°	1.424	.157	.121	.864
	X2A	025°	287	.775	025	.849
	X2B	075°	751	.454	064	.668
	X2C	025°	271	.787	023	.803

a. Dependent Variable: YD

b. Predictors in the Model: (Constant), X1C

c. Predictors in the Model: (Constant), X1C, X2D

Analisis Model Akhir

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	77.628	1	77.628	8.729	.004 ^b
	Residual	1227.308	138	8.894		
	Total	1304.936	139			
2	Regression	115.659	2	57.829	6.662	.002°
	Residual	1189.277	137	8.681		
	Total	1304.936	139			

a. Dependent Variable: YD b. Predictors: (Constant), X1C

- ...

c. Predictors: (Constant), X1C, X2D