Measuring Angles

Today I Can

1. Find and compare the measures of angles.

Angles

Angles are formed by 2 rays with the same endpoint. The rays are the **sides** and the endpoint is the **vertex**.

You can name an angle by

- its vertex, ∠A
- ullet a point on each ray and the vertex, $\angle BAC$ or $\angle CAB$
- a number, ∠1

The **sides** of the angle are \overrightarrow{AB} and \overrightarrow{AC} . The **vertex** is A.

The **interior** of an angle is the region containing all of the points between the rays.

The **exterior** of an angle is all of the points outside the interior.

Example 1. Use the diagram below to answer each.

- (a) What are two other names for $\angle 1$?
- (b) What are two other names for $\angle KML$?

Angles with the same measure are **congruent**. We denote congruent angles based on the number of marking arcs drawn.

$$m\angle A = m\angle B$$

$$\angle A \cong \angle B$$

Example 2. Use the figure to fill in the missing value.

- (a) $\angle LMK \cong$
- (b) $\angle IGN \cong$
- (c) $\angle RMP \cong$

Angle Addition Postulate

If B is in the interior of $\angle AOC$ then $m \angle AOB + m \angle BOC = m \angle AOC$.

Example 3. Find the measure of each angle.

- (a) $m \angle LKN = 145^{\circ}$
- (b) \overrightarrow{KM}

(c)

