

Análise e Síntese de Algoritmos

Emparelhamento de Cadeias de Caracteres CLRS Cap. 32

Instituto Superior Técnico 2022/2023

Resumo

Definição do Problema Notação

Algoritmo Elementar

Algoritmo Autómatos Finitos

Algoritmo Knuth-Morris-Pratt

Algoritmo Rabin-Karp

Contexto

Revisão [CLRS, Cap.1-13]

Fundamentos; notação; exemplos

Algoritmos em Grafos [CLRS, Cap.21-26]

Algoritmos elementares

Caminhos mais curtos

Fluxos máximos

Árvores abrangentes

Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]

Algoritmos greedy

Programação dinâmica

Programação Linear [CLRS, Cap.29]

Algoritmos e modelação de problemas com restrições lineares

Tópicos Adicionais [CLRS, Cap.32-35]

Emparelhamento de Cadeias de Caracteres

Complexidade Computacional

Análise e Síntese de Algoritmos - 2022/2023

1/59

String Matching

Definição do Problema

Verificar a ocorrência de um padrão P num texto T:

Texto: array com n caracteres, T[1..n]

Padrão: array com m caracteres, P[1..m]

Caracteres pertencentes a alfabeto finito Σ

Padrão P ocorre com deslocamento s em T se:

$$T[s+1..s+m] = P[1..m]$$
 , $0 \le s \le n-m$

String Matching

TÉCNICO LISBOA

Definição do Problema

Verificar a ocorrência de um padrão P num texto T:

Texto: array com n caracteres, T[1..n]

Padrão: array com m caracteres, P[1..m]

Caracteres pertencentes a alfabeto finito Σ

Padrão P ocorre com deslocamento s em T se:

$$T[s+1..s+m] = P[1..m]$$
 , $0 \le s \le n-m$

Exemplo

T = aabababab

P = ababab

P ocorre em T com deslocamento 1

Análise e Síntese de Algoritmos - 2022/2023

2 /50

Definição do Problema

String Matching

Verificar a ocorrência de um padrão P num texto T:

Texto: array com n caracteres, T[1..n]

Padrão: array com m caracteres, P[1..m]

Caracteres pertencentes a alfabeto finito Σ

Padrão P ocorre com deslocamento s em T se:

$$T[s+1..s+m] = P[1..m]$$
 , $0 \le s \le n-m$

Exemplo

T = aabababab

P = ababab

P ocorre em T com deslocamento 1 e com deslocamento 3

Análise e Síntese de Algoritmos - 2022/2023

2 / 50

String Matching

Notação

Conjunto de todas as cadeias de caracteres (strings) de comprimento finito: Σ^*

String vazia: ϵ

 $\epsilon \in \Sigma^*$

Comprimento da string x: |x|

Concatenação de x e y:

Representação: xy

Comprimento: |x| + |y|

String Matching

Notação

 $w \in \text{prefixo de } x, w \sqsubseteq x, \text{ se } x = wy, \text{ com } y \in \Sigma^*$

 $w \in \text{sufixo de } x, \ w \supseteq x, \text{ se } x = yw, \text{ com } y \in \Sigma^*$

Se $w \supset x$, então $|w| \leq |x|$

Sejam x, y e z strings tais que $x \supset z$ e $y \supset z$. Então,

Se $|x| \leq |y|$, então $x \supset y$

Se $|x| \ge |y|$, então $y \supset x$

Se |x| = |y|, então x = y

Prefixos do padrão pretendido

$$P_0 = \epsilon; P_k = P[1..k]$$

$$T_k = T[1..k]$$

Exemplo

abb é prefixo de abbabaabb

aaba é sufixo de abbabaaba

String Matching

Algoritmo Elementar


```
Naive-String-Matcher(T,P)
n = length[T]
m = length[P]
for s = 0 to n - m do
if \ P[1 \dots m] = T[s + 1 \dots s + m] \ then
print "Padrão encontrado com deslocação", s end if end for
```

Complexidade

$$\Theta((n-m+1)m)$$

Análise e Síntese de Algoritmos - 2022/2023

7/50

Algoritmo Elementar

Autómatos Finitos

Definição

Autómato finito $M(Q,q_0,A,\Sigma,\delta)$: Q é um conjunto finito de estados q_0 é o estado inicial $A\subseteq Q$ é um conjunto de estados de aceitação Σ é o alfabeto de entrada δ é uma função de $Q\times \Sigma$ em Q, designada função de transição de M

Autómato no estado q, com caracter de entrada a, novo estado é dado por $\delta(q,a)$

Utilizar Autómato Finito para aceitar padrão pretendido

Função de Estado Final

 $\phi(w)$: estado de M após ter lido string w

M aceita w se e só se $\phi(w) \in A$

$$\phi(\epsilon) = q_0$$

 $\phi(wa) = \delta(\phi(w), a)$, para $w \in \Sigma^*$, $a \in \Sigma$

Análise e Síntese de Algoritmos - 2022/2023

10/59

Autómatos Finitos

Autómato para Emparelhamento de Strings

Conjunto de estados: $Q = \{0, 1, \dots, m\}$

Função de transição: $\delta(q, a) = \sigma(P_q a)$

Novo estado $\delta(q, a)$ corresponde ao prefixo de P com o maior comprimento que é também sufixo de $P_{a}a$

Autómatos Finitos

Função de Sufixo

Comprimento do maior prefixo de P[1..m] que é sufixo de x

$$\sigma: \Sigma^* \to \{0, 1, \ldots, m\}$$

$$\sigma(x) = \max\{k : P_k \supset x\}$$

Saber em que estado o autómato deve estar dada a string x

 $\sigma(x)=2$

Análise e Síntese de Algoritmos - 2022/2023

11/50

Autómatos Finitos

Finite-Automaton-Matcher (T, δ, m)

```
n = length[T]

q = 0

for i = 1ton do

q = \delta(q, T[i])

if q == m then

print "Padrão encontrado com deslocação", i - m

end if

end for
```


Compute-Transition-Function (P, Σ) m = length[P]

m = length[P] for q = 0 to m do for each $a \in \Sigma$ do $k = \min(m+1, q+2)$ repeat k = k-1 until $P_k \sqsupset P_q a$ $\delta(q, a) = k$ end for end for

Análise e Síntese de Algoritmos - 2022/2023

14/

Autómatos Finitos

return δ

P = ababaca T = abcababacababacaabacab

Autómatos Finitos


```
Compute-Transition-Function(P, \Sigma)
  m = length[P]
  for q = 0 to m do
    for each a \in \Sigma do
       k = \min(m+1, q+2)
       repeat
          k = k - 1
       until P_k \supset P_a a
       \delta(q, a) = k
    end for
  end for
  return \delta
Análise de Complexidade
     Complexidade do cálculo de \delta: O(m^3|\Sigma|)
     Complexidade do algoritmo: O(n + m^3 |\Sigma|)
          É possível obter O(n + m|\Sigma|)
```

Análise e Síntese de Algoritmos - 2022/2023

Autómatos Finitos

Análise e Síntese de Algoritmos - 2022/2023

18/50

Análise e Síntese de Algoritmos - 2022/2023

Autómatos Finitos

Autómatos Finitos

Análise e Síntese de Algoritmos - 2022/2023

Análise e Síntese de Algoritmos - 2022/2023

23/59

Autómatos Finitos

Autómatos Finitos

Análise e Síntese de Algoritmos - 2022/2023

Análise e Síntese de Algoritmos - 2022/2023

26/59

Autómatos Finitos

Autómatos Finitos

Análise e Síntese de Algoritmos - 2022/2023

Autómatos Finitos

Análise e Síntese de Algoritmos - 2022/2023

Análise e Síntese de Algoritmos - 2022/2023

Autómatos Finitos

Autómatos Finitos

Análise e Síntese de Algoritmos - 2022/2023

Análise e Síntese de Algoritmos - 2022/2023

Autómatos Finitos

Autómatos Finitos

Análise e Síntese de Algoritmos - 2022/2023

Análise e Síntese de Algoritmos - 2022/2023

Autómatos Finitos

Algoritmo Knuth-Morris-Pratt

Vantagens

Complexidade: O(n + m)

Evita os deslocamentos consecutivos

do Algoritmo Elementar: O((n-m+1) m)

Evita cálculo da função de transição δ

do Algoritmo de Autómatos Finitos: $O(n+m|\Sigma|)$

Função de Prefixo

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \ldots, m\} \to \{0, 1, \ldots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

i					1					10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$										

Análise e Síntese de Algoritmos - 2022/2023

Algoritmo Knuth-Morris-Pratt

Função de Prefixo

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \ldots, m\} \to \{0, 1, \ldots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

Algoritmo Knuth-Morris-Pratt

Função de Prefixo

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

i				l						10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$	0									

Análise e Síntese de Algoritmos - 2022/2023

Algoritmo Knuth-Morris-Pratt

Função de Prefixo

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$	0	0	1							

Função de Prefixo

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \ldots, m\} \to \{0, 1, \ldots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$	0	0	1	2						

Análise e Síntese de Algoritmos - 2022/2023

Algoritmo Knuth-Morris-Pratt

Algoritmo Knuth-Morris-Pratt

Função de Prefixo

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \ldots, m\} \to \{0, 1, \ldots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

Algoritmo Knuth-Morris-Pratt

Função de Prefixo

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \ldots, m\} \to \{0, 1, \ldots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

i	1	2	3	4	5	6	7	8	9	10	
P[i]	a	b	a	b	a	b	a	b	С	a	
$\pi[i]$	0	0	1	2	3						-

Análise e Síntese de Algoritmos - 2022/2023

Função de Prefixo

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \ldots, m\} \to \{0, 1, \ldots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

	i	1	2	3	4	5	6	7	8	9	10
	P[i]	a	b	a	b	a	b	a	b	С	a
-	$\pi[i]$	0	0	1	2	3	4	5			

TÉCNICO LISBOA

Função de Prefixo

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \ldots, m\} \to \{0, 1, \ldots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

i	1	2	3	4	5	6	7	8	9	10
P[i]	l			l .					l .	a
$\pi[i]$	0	0	1	2	3	4	5	6		

Análise e Síntese de Algoritmos - 2022/2023

42/50

Algoritmo Knuth-Morris-Pratt

Função de Prefixo

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

	l				l			l .		10
P[i]										
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

Função de Prefixo

Algoritmo Knuth-Morris-Pratt

Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \ldots, m\} \to \{0, 1, \ldots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

Codifica conhecimento acerca de similaridades entre partes do padrão

i	1	2	3	4	5	6	7	8	9	10
P[i]										
$\pi[i]$	0	0	1	2	3	4	5	6	0	

Análise e Síntese de Algoritmos - 2022/2023

b c

Algoritmo Knuth-Morris-Pratt

Caso o próximo caracter de T não emparelhe, $\pi[q]$ indica qual o maior prefixo de P que é possível obter como sufixo de P_q sabendo que em T existe neste momento (i.e. em T_i) o sufixo P_q (e que $P[q+1] \neq T[i+1]$)

Análise e Síntese de Algoritmos - 2022/2023

44/59

Algoritmo Knuth-Morris-Pratt

KMP-Matcher(T,P)

```
n = length[T]
m = length[P]
\pi = \mathsf{Compute}\text{-}\mathsf{Prefix}\text{-}\mathsf{Function}(P)
q = 0
for i = 1 to n do
  while q > 0 \land P[q+1] \neq T[i] do
     q = \pi[q]
  end while
  if P[q + 1] == T[i] then
     q = q + 1
   end if
  if q == m then
     print "Padrão encontrado com deslocação", i-m
     q = \pi[q]
   end if
end for
```

Algoritmo Knuth-Morris-Pratt

Funcionamento

```
Se P[k+1] \neq T[i], então P_{k+1} não é sufixo de T_i

Encontrar j tal que P_j seja sufixo de T_i

Observar que:

P_k \sqsupset T_{i-1}

P_{\pi[k]} \sqsupset P_k

maior sufixo de P_k e T_{i-1} que é menor que P_k

P_{\pi[\pi[k]]} \sqsupset P_{\pi[k]}

maior sufixo de P_{\pi[k]}, P_k e T_{i-1} que é menor que P_{\pi[k]}
```

Análise e Síntese de Algoritmos - 2022/2023

45/59

Algoritmo Knuth-Morris-Pratt

Compute-Prefix-Function(P)

```
m = length[P]
\pi[1] = 0
k = 0
for q = 2 to m do
while k > 0 \land P[k+1] \neq P[q] do
k = \pi[k]
end while
if P[k+1] == P[q] then
k = k+1
end if
\pi[q] = k
end for
return \pi
```


Algoritmo Rabin-Karp

Análise de Complexidade

Compute-Prefix-Function: O(m)

k é incrementado de 1 unidade não mais do que uma vez por cada valor de q, com número total de incrementos limitado superiormente por m

Valor de k decrementado devido a atribuição $k=\pi[k]$, mas k>0 e valor acumulado de decremento limitado a um total de m unidades

KMP-Matcher: O(n+m)

Análise semelhante à anterior permite obter resultado

Análise e Síntese de Algoritmos - 2022/2023

48/59

Intuição

Uso de uma rolling hash function

Comparar a função de hash do padrão contra o texto

Se for match, comparar os caracteres individuais

Se for match, padrão encontrado Se não, match espúrio

Avançar no texto e voltar ao início

Análise e Síntese de Algoritmos - 2022/2023

40 /50

Algoritmo Rabin-Karp

Definições

Vamos assumir que $\Sigma = \{0,1,2,...,9\}$, tal que cada caracter é um dígito decimal

No caso geral podemos assumir que cada caracter é um dígito numa notação base d, onde $d = |\Sigma|$

Dado o padrão P[1..m], designamos por p o valor decimal correspondente

Dado o texto T[1..n], designamos por t_s o valor decimal da sub-string de T com dimensão m e deslocamento s, T[s+1..s+m], onde s=0,1,...,n-m

Algoritmo Rabin-Karp

Exemplo

Ao padrão P = 31415 corresponde o valor decimal p = 31415

Seja T = 123141567, então:

 $T[1..5] = 12314 \text{ e } t_0 = 12314$

 $T[2..6] = 23141 e t_1 = 23141$

 $T[3..7] = 31415 \text{ e } t_2 = 31415$

 $T[4..8] = 14156 e t_3 = 14156$

 $T[5..9] = 41567 \text{ e } t_4 = 41567$

Algoritmo Rabin-Karp

Algoritmo Rabin-Karp

Observações

 $t_s = p$ apenas quando T[s + 1..s + m] = P[1..m], logo apenas neste caso s é um deslocamento válido

Se:

Conseguirmos calcular os valor de p em tempo $\Theta(m)$ Conseguirmos calcular cada um dos valores de t_s em tempo $\Theta(n-m+1)$

Então:

Conseguimos determinar todos os deslocamento s válidos em tempo $\Theta(m)+\Theta(n-m+1)=\Theta(n)$, comparando p com cada um dos valores de t_s

Análise e Síntese de Algoritmos - 2022/2023

52/50

Aplicação da Regra de Horner

p = P[m] + 10(P[m-1] + 10(P[m-2] + ... + 10(P[2] + 10P[1])...))

Conseguimos calcular p a partir de P[1..m], em tempo $\Theta(m)$

Conseguimos calcular t_0 a partir de T[1..m], em tempo $\Theta(m)$

Para calcular os restantes valores $t_1, t_2, ..., t_{n-m}$, em tempo $\Theta(n-m)$, basta observar que t_{s+1} pode ser calculado a partir de t_s , em tempo constante:

$$t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s+m+1]$$

Análise e Síntese de Algoritmos - 2022/2023

=0 /=0

Algoritmo Rabin-Karp

Exemplo (cont.)

$$p = P[m] + 10(P[m-1] + 10(P[m-2] + ... + 10(P[2] + 10P[1])...))$$
$$t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s+m+1]$$

Ao padrão P=31415 corresponde o valor decimal p=31415 $p=5+10\times(1+10\times(4+10\times(1+10\times3)))$

Seja T = 123141567, então:

$$T[1..5] = 12314$$
 e $t_0 = 12314 = 4 + 10(1 + 10(3 + 10(2 + 10 \times 1)))$ $T[2..6] = 23141$ e $t_1 = 23141 = 10(t_0 - 10000 \times 1)) + 1$ $T[3..7] = 31415$ e $t_2 = 31415 = 10(t_1 - 10000 \times 2)) + 5$ $T[4..8] = 14156$ e $t_3 = 14156 = 10(t_2 - 10000 \times 3)) + 6$ $T[5..9] = 41567$ e $t_4 = 41567 = 10(t_3 - 10000 \times 1)) + 7$

Algoritmo Rabin-Karp

Utilização do Módulo

p e t_s podem ser demasiado grandes

Se P contém m caracteres, para m grande não é razoável assumir que cada operação aritmética em p (que tem m dígitos) será efectuada em tempo constante

Solução: utilizar o módulo (resto da divisão inteira) por qCalcular p e t_s módulo um determinado valor q q é normalmente escolhido como um número primo tal que 10q cabe numa word, permitindo efectuar todas as operações em aritmética de precisão simples

$$t_{s+1} = (10(t_s - T[s+1] \times 10^{m-1} \mod q) + T[s+m+1]) \mod q$$

Algoritmo Rabin-Karp

Utilização do Módulo

 $t_s = p \mod q$ não implica necessariamente que $t_s = p$ $t_s \neq p \mod q$ implica que $t_s \neq p$

Podemos utilizar o teste $t_s=p \mod q$ como uma heurística rápida para invalidar certos deslocamentos s, quando $t_s \neq p \mod q$

Nos casos em que se verifica $t_s = p \mod q$, temos que verificar explicitamente se P[1..m] = T[s+1..s+m], ou se se trata de um *spurious hit*

Se q for suficientemente grande, podemos assumir que os spurious hits ocorrem com pouca frequência e logo que o custo de nesse caso ter de verificar se P[1..m] = T[s+1..s+m] será baixo

Análise e Síntese de Algoritmos - 2022/2023

56/5

Algoritmo Rabin-Karp

Rabin-Karp-Matcher (T, P, d, q)

```
n = T.length
m = P.length
h = d^{m-1} mod q
p = 0
t_0 = 0
for i = 1 to m do
  p = (dp + P[i]) \mod q
  t_0 = (dt_0 + T[i]) \mod q
end for
for s = 0 to n - m do
  if p == t_s then
     if P[1..m] == T[s + 1..s + m] then
        print "Pattern occurs with shift", s
     end if
  end if
  if s < n - m then
     t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q
  end if
end for
                      Análise e Síntese de Algoritmos - 2022/2023
```

Algoritmo Rabin-Karp

Algoritmo Rabin-Karp

Complexidade

Pré-processamento: $\Theta(m)$

Procura:

 $\Theta((n-m+1)m)$, no pior caso, dado que é necessário verificar todos os deslocamentos válidos

O(n) + O(m(v + n/q)), onde v é o número de deslocamento válidos e se assume que existem O(n/q) spurious hits

O(n), porque no pior caso o teste $p=t_s$ falha n vezes O(m(v+n/q)), porque por cada deslocamento válido ou *spurious hit* temos que efectuar a comparação P[1..m] = T[s+1..s+m], que tem um custo $\Theta(m)$