厦门大学《概率统计(A)》期中试卷

信息 学院 条 2024 年級 计算机类 专业

学年学期:242502 主考教师:概率统计教研组 A 卷(√) B 卷()

一、选择题(在各小题四个备选答案中	填在题后的括号中,	
本大题共6个小题,每小题3分,	总计 18 分)	

- 1. 设 0 < P(A) < 1, 0 < P(B) < 1, 且 P(A|B) + P(A|B) = 1, 则下列结论正确的是()。
 - (A)事件 A, B 互斥 (B)事件 A, B 独立
 - (C)事件 A, B 不独立 (D)事件 A, B 对立
 - 2. 设 0 < P(C) < 1, 且 $P(A + B \mid C) = P(A \mid C) + P(B \mid C)$, 则下列结论正确 的是()。
 - (A) $P(A + B \mid \overline{C}) = P(A \mid \overline{C}) + P(B \mid \overline{C})$
 - (B) P(AC + BC) = P(AC) + P(BC)
 - (C) $P(A + B) = P(A \mid C) + P(B \mid C)$
 - (D) $P(C) = P(A)P(C \mid A) + P(B)P(C \mid A)$
- 3. 已知随机变量 X 的概率分布函数为 $F(x) = \begin{cases} 0, & x < 1 \\ lnx, & 1 \le x < e,$ 求 $E(2X^2 + \frac{1}{2})$ 的值为()。
 - (A) $\frac{1}{2}(e^2 1)$ (B) $e^2 \frac{1}{2}$ (C) $e^2 1$ (D) e 1
- 4. 设随机变量X的分布函数为F(x),则下列函数中可作为某随机变量的分布函 数的是()。
 - $(A)F(x^2)$ (B)F(-x) (C)1 F(x) (D)F(2x 1)

5.	设 X 服从指数分布,则 Y=min{X, 2}的分布函数()。
	(A)连续 (B)至少有两个间断点
	(C)阶梯函数 (D)恰有一个间断点
6.	设 A, B, C 是三个随机事件, 且 $P(A) = P(B) = P(C) = \frac{1}{4}$, $P(AB) = P(BC) = 0$
	$P(AC) = \frac{1}{8}$, 求 A, B, C 中至少有一个发生的概率()。
	(A) 1 (B) 0 (C) $\frac{1}{8}$ (D) $\frac{5}{8}$
<u> </u>	、填空题(本大题共6小题,每小题3分,总计18分)
1.	设平面区域是由坐标为 (-1,0), (1,0), (0,-1), (0,1) 的四个点围成的菱形。
	今在内随机地投放 10个点,则这 10个点中恰好有 2个点落在的内切圆内的
	概率为:。
2.	一实习生使用同一台机器独立地制作3个同种零件,第i个是不合格的概率
	$p_i = \frac{1}{i+1} (i = 1,2,3)$, 以 X 表示 3 个零件中合格品的个数,则
	$P\{X=2\} = \underline{\hspace{1cm}}_{\circ}$
3.	随机变量 X_1,X_2,X_3 相互独立,其中 X_1 服从 $[0,6]$ 上的均匀分布, X_2 服从正态
	分布 $N(0,4)$, X_3 服从参数为 $\lambda=3$ 的泊松分布。令 $Y=X_1-2X_2+3X_3$,则
	$E(Y) = \underline{\hspace{1cm}}, D(Y) = \underline{\hspace{1cm}}_{\circ}$
4.	元件的寿命服从参数为100的指数分布,由5个这种原件串联而组成的系统。
	能正常工作 100 小时以上的概率为。
5.	设随机变量 X 的分布函数如下,则对应的(1)=, (2)=, (3)=。
	$F(x) = \begin{cases} \frac{1}{1+x^2}, & x < \underline{ (1) }, \\ \underline{ (2) }, & x \ge \underline{ (3) }. \end{cases}$

- 6. 设两个随机事件 A,B 相互独立,已知仅有 A 发生的概率为 $\frac{1}{4}$,仅有 B 发生的概率为 $\frac{1}{4}$,则 $P(A) = _______,<math>P(B) = ______$ 。
- 三、设*X*和*Y*是两个相互独立的随机变量,*X*在区间(**0**,**1**)上服从均匀分布,*Y* 的概率密度为(**10** 分)

$$f_Y(y) = \begin{cases} \frac{1}{2}e^{-y/2}, & y > 0, \\ 0, & y \leq 0. \end{cases}$$

- (1) 求X和Y的联合密度;
- (2) 设含有 a 的二次方程为 $a^2 + 2Xa + Y = 0$,试求 a 有实根的概率。
- 四、装有 10 件某产品(其中一等品 5 件, 二等品 3 件, 三等品 2 件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取 2 件产品,结果都是一等品,求丢失的也是一等品的概率。(10 分)
- 五、已知随机变量X的概率密度为 $f(x)=\begin{cases} |x|,&|x|\leq 1,\\ \mathbf{0},&$ 其他, $\forall Y=X^2+1$ 的概率密度 $f_Y(y)$. (10 分)
- 六、设随机变量X、Y 具有概率密度

$$f(x,y) = \begin{cases} x+y, & 0 \le x \le 1, 0 \le y \le 1 \\ 0, & \text{其他.} \end{cases}$$
 , 求Cov(X,Y), ρ_{xy} 。 (10 分)

七、由以往记录的数据分析,某船只在不同情况下运输某种物品,损坏 2%,10%,90%的概率分别为 0.8,0.15 和 0.05.现在从中随机地取三件,发现这三件全是好的,试分析这批物品的损坏率为多少? (10 分)

八、证明题(每小题7分,总计14分)

- 1. 事件在一次试验中发生次数 X 的方差一定不超过 $\frac{1}{4}$ 。
- 2. 证明"确定的原则"(Sure-Thing): 若 $P(A|C) \ge P(B|C)$, $P(A|\overline{C}) \ge P(B|\overline{C})$, 则 $P(A) \ge P(B)$ 。

附表 2 标准正态分布表

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

\boldsymbol{x}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0,08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0,5160	0.5199	0.5239	0,5279	0,5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0,8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0,8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767