Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант <u>20</u>

Виконав студент	III-15, Ликова Катерина Олександрівна
·	(шифр, прізвище, ім'я, по батькові)
Перевірив	
1 1	(прізвище, ім'я, по батькові)

Мета: дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Постановка задачі

Нехай $a_i=\frac{i-1}{i+1}+\sin\frac{(i-1)^3}{i+1}$, $i=1,2,\ldots$. Дано натуральне п. Серед a_1,a_2,\ldots,a_n знайти всі додатні числа.

Математична модель

Змінна	Тип	Ім'я	Призначення
n	Цілий	n	Початкові дані
i	Цілий	i	Проміжні дані
a	Дійсний	a	Результат

Для того щоб знайти всі додатні числа, потрібно застосувати такі функції: pow(x,y) для піднесення числа x у степінь y; sin(x) для знаходження синуса певного кута.

Розв'язання

Крок 1. Визначимо основні дії.

Крок 2. Вводимо змінну п.

Крок 3. Перевіряємо, чи n>0.

Крок 4. Присвоїти значення змінній і.

Крок 5. Деталізуємо дію знаходження а.

Крок 6. Перевіряємо, чи а>0.

Псевдокод

крок 1

початок

введення змінної п

перевірка чи п>0

присвоєння значення змінній і

деталізація дії знаходження а

перевірка чи а>0

```
кінець
крок 2
початок
n
перевірка чи п>0
присвоєння значення змінній і
деталізація дії знаходження а
перевірка чи а>0
кінець
крок 3
початок
якщо n>0
  TO
     присвоєння значення змінній і
     деталізація дії знаходження а
     перевірка чи а>0
  інакше
       виведення «помилка»
все якщо
кінець
крок 4
початок
якщо n>0
  T0
     i=1
     деталізація дії знаходження а
     перевірка чи а>0
  інакше
```

виведення «помилка»

```
все якщо
кінець
крок 5
початок
n
якщо n>0
  TO
     i=1
     якщо i<=n
        T0
          повторити
           a=(i-1)/(i+1)+sin(pow((i-1),3)/(i+1))
           i=i+1
           перевірка чи а>0
          поки
           i \le n
        інакше
          все повторити
  інакше
      виведення «помилка»
все якщо
кінець
крок б
початок
n
якщо n>0
  TO
     i=1
     якщо i<=n
```

повторити

$$a=(i-1)/(i+1)+\sin(pow((i-1),3)/(i+1))$$

 $i=i+1$

якщо а>0

T0

виведення "а; "

інакше

все якщо

поки

 $i \le n$

інакше

все повторити

інакше

виведення «помилка»

все якщо

кінець

Блок-схема

Випробування алгоритму

Блок	Дія
	Початок
1	n=3
2	3>0
3	i=1
4	1<=3
	a=0
	i=2
	0<=0
	2<=3
	a=0.66052803
	i=3
	0.66052803>0
	Вивід «0.66052803; »
	3<=3
	a=1.40929743
	i=4
	1.40929743>0
	Вивід «1.40929743; »
	4>3
	Кінець
Блок	Дія
	Початок
1	n=4
2	4>0
3	i=1
4	1<=4
	a=0
I	

	i=2
	0<=0
	2<=4
	a=0.66052803
	i=3
	0.66052803>0
	Вивід «0.66052803; »
	3<=4
	a=1.40929743
	i=4
	1.40929743>0
	Вивід «1.40929743; »
	4<=4
	a=-0.172764488
	i=5
	-0.172764488<=0
	5>4
	Кінець
Блок	Дія
	Початок
1	n=-5
	Вивід «Помилка»
	Кінець

Висновки: Для побудови алгоритму розв'язання заданої задачі я застосувала арифметичні цикли для створення програмної специфікації. Завдяки цьому я вивчила властивості арифметичних циклів та навчилась їх використовувати на практиці.