

# Machine Learning CS7052 Lecture 3

Dr. Elaheh Homayounvala

week 3





## Outline of today's lecture

- Review last two weeks
  - What is Machine Learning (ML)?
  - Types of Learning
  - Understanding Data and Data analysis Process
  - A First Application, Iris species
- Student Rep
- Groups for coursework
- Supervised learning, K-Nearest Neighbours (k-NN)
  - KNN Classification
  - KNN Regression
  - Overfitting and underfitting



## Review last two weeks



### What is ML?





## Traditional Programming vs. Machine Learning

#### **Traditional Programming**



#### Machine Learning





## Types of Learning

- Supervised learning
  - Classification
  - Regression
- Unsupervised learning
  - Clustering
- Semi-supervised learning
- Reinforcement learning



## Supervised vs Unsupervised Learning

- Supervised learning
  - Classification, Target data/result/label is categorical
  - Regression, Target data is numerical
- Unsupervised learning
  - Clustering, Target data is not available/descriptive



## Data Analysis Process

Source: Nelli's book page 8



Figure 1-1. The data analysis process



## A First Application, Classifying Iris Species

- Muller & Guido's book
- Chapter 1, pp. 13-23



## A First Application, Iris species

#### Build a machine learning model

- that can learn from the measurements of these irises whose species is known
- so that we can predict the species for a new iris







## k-Nearest Neighbours



## k-Nearest Neighbours

- k-NN is arguably the simplest machine learning algorithm
- Building the model consists only of storing the training dataset
- To make a prediction for a new data point, the algorithm finds the closest data points in the training dataset—its "nearest neighbours."
- k-Nearest Neighbours algorithm is abbreviated as k-NN.

Muller and Guido's book, Chapter 2, page 37-46



## K-NN Classification

- Simplest version, K=1
- K-NN considers exactly one nearest neighbour
- Which is the closest training data point to the point we want to make a prediction for.

 Reference: Muller & Guido's book page 37



Figure 2-4. Predictions made by the one-nearest-neighbor model on the forge dataset

$$K = 3$$

• Three Nearest Neighbours



Figure 2-5. Predictions made by the three-nearest-neighbors model on the forge dataset



## K-nearest Neighbours Algorithm, Classification

Find k closest objects to the predicted object x in the training set.

2 Associate x the most frequent class among its k neighbours.





### Comments

- k = 1: nearest neighbour algorithm<sup>1</sup>
- Base assumption of the method<sup>2</sup>:
  - similar objects yield similar outputs

<sup>&</sup>lt;sup>1</sup>what will happen for k = N?

<sup>&</sup>lt;sup>2</sup>what is simpler - to train k-NN model or to apply it?



## Sample Dataset

 How can we draw decision boundaries?





- Decision boundaries or Decision regions
- When k = 1





- Decision boundaries or Decision regions
- When k = 3





- Decision boundaries or Decision regions
- When k = 5





- Decision boundaries or Decision regions
- When k = 10





- Decision boundaries or Decision regions
- When k = 100





## k-Neighbours Regression



## k-Nearest Neighbours Algorithm

#### Classification:

- Find *k* closest objects to the predicted object *x* in the training set.
- Associate X the most frequent class among its K neighbours.

#### Regression:

- Find *k* closest objects to the predicted object *x* in the training set.
- Associate *X* average output of its *k* neighbours.





## K-NN Regression

 Can we predict numerical values using k-NN Algorithm?





### Parameters

- There are two parameters in k-NN:
  - The number of neighbours
  - How do you measure distance between data points?
    - Euclidian distance
    - Other?



Optimisation in ML?





Optimisation in ML?



CS7052 Machine Learning Dr. Elaheh Homayounvala



## Strengths and weaknesses of k-NN

- Easy to understand and interpret
- Building the model is fast, easy to implement
- Does not need training, may be applied in online scenarios
- Prediction can be slow when training data is very large
  - Number of features (hundreds or more)
  - Number of samples
- Accuracy deteriorates with the increase of feature space dimensionality



## Overfitting and Underfitting



## Overfitting and Underfitting

- What is overfitting?
- What is underfitting?



### Generalisation

#### In supervised learning

- we want to build a model on the training data and then
- Be able to make accurate **predictions** on **new**, **unseen data** that has the same characteristics as the training set that we used.

- If a model is able to make accurate predictions on unseen data
- we say it is able to generalise from the training set to the test set.



## Accuracy of a model

 We want to build a model that is able to generalise as accurately as possible.

- We build a model that is accurate on training data set and then
- We hope that it is accurate on test set

- Accurate on
  - Train data
  - Test data



### Build a model that is accurate on train data

• Target data: Bought a boat

• Feature: Age, ...., Owns a dog

Table 2-1. Example data about customers

| Age | Number of cars owned | Owns house | Number of children | Marital status | Owns a dog | Bought a boat |
|-----|----------------------|------------|--------------------|----------------|------------|---------------|
| 66  | 1                    | yes        | 2                  | widowed        | no         | yes           |
| 52  | 2                    | yes        | 3                  | married        | no         | yes           |
| 22  | 0                    | no         | 0                  | married        | yes        | no            |
| 25  | 1                    | no         | 1                  | single         | no         | no            |
| 44  | 0                    | no         | 2                  | divorced       | yes        | no            |
| 39  | 1                    | yes        | 2                  | married        | yes        | no            |
| 26  | 1                    | no         | 2                  | single         | no         | no            |
| 40  | 3                    | yes        | 1                  | married        | yes        | no            |
| 53  | 2                    | yes        | 2                  | divorced       | no         | yes           |
| 64  | 2                    | yes        | 3                  | divorced       | no         | no            |
| 58  | 2                    | yes        | 2                  | married        | yes        | yes           |
| 33  | 1                    | no         | 1                  | single         | no         | no            |



### Build a model for me that is accurate on train data

 Everybody who owns a house buys a boat".

 But what about accuracy on test data?

Table 2-1. Example data about customers

| Age | Number of cars owned | Owns house | Number of children | Marital status | Owns a dog | Bought a boat |
|-----|----------------------|------------|--------------------|----------------|------------|---------------|
| 66  | 1                    | yes        | 2                  | widowed        | no         | yes           |
| 52  | 2                    | yes        | 3                  | married        | no         | yes           |
| 22  | 0                    | no         | 0                  | married        | yes        | no            |
| 25  | 1                    | no         | 1                  | single         | no         | no            |
| 44  | 0                    | no         | 2                  | divorced       | yes        | no            |
| 39  | 1                    | yes        | 2                  | married        | yes        | no            |
| 26  | 1                    | no         | 2                  | single         | no         | no            |
| 40  | 3                    | yes        | 1                  | married        | yes        | no            |
| 53  | 2                    | yes        | 2                  | divorced       | no         | yes           |
| 64  | 2                    | yes        | 3                  | divorced       | no         | no            |
| 58  | 2                    | yes        | 2                  | married        | yes        | yes           |
| 33  | 1                    | no         | 1                  | single         | no         | no            |



### Build a model for me that is accurate on train data

- Everybody who owns a house buys a boat".
- Anyone over 52? 100%
   accurate on train data

Table 2-1. Example data about customers

| Age | Number of<br>cars owned | Owns house | Number of children | Marital status | Owns a dog | Bought a boat |
|-----|-------------------------|------------|--------------------|----------------|------------|---------------|
| 66  | 1                       | yes        | 2                  | widowed        | no         | yes           |
| 52  | 2                       | yes        | 3                  | married        | no         | yes           |
| 22  | 0                       | no         | 0                  | married        | yes        | no            |
| 25  | 1                       | no         | 1                  | single         | no         | no            |
| 44  | 0                       | no         | 2                  | divorced       | yes        | no            |
| 39  | 1                       | yes        | 2                  | married        | yes        | no            |
| 26  | 1                       | no         | 2                  | single         | no         | no            |
| 40  | 3                       | yes        | 1                  | married        | yes        | no            |
| 53  | 2                       | yes        | 2                  | divorced       | no         | yes           |
| 64  | 2                       | yes        | 3                  | divorced       | no         | no            |
| 58  | 2                       | yes        | 2                  | married        | yes        | yes           |
| 33  | 1                       | no         | 1                  | single         | no         | no            |



### Build a model for me that is accurate on train data

- Everybody who owns a house buys a boat".
- Anyone over 52? 100% accurate on train data
- "If the customer is older than 45 and has less than 3 children or is not divorced, then they want to buy a boat."
- But what about accuracy on test data?

Table 2-1. Example data about customers

| Age | Number of<br>cars owned | Owns house | Number of children | Marital status | Owns a dog | Bought a boat |
|-----|-------------------------|------------|--------------------|----------------|------------|---------------|
| 66  | 1                       | yes        | 2                  | widowed        | no         | yes           |
| 52  | 2                       | yes        | 3                  | married        | no         | yes           |
| 22  | 0                       | no         | 0                  | married        | yes        | no            |
| 25  | 1                       | no         | 1                  | single         | no         | no            |
| 44  | 0                       | no         | 2                  | divorced       | yes        | no            |
| 39  | 1                       | yes        | 2                  | married        | yes        | no            |
| 26  | 1                       | no         | 2                  | single         | no         | no            |
| 40  | 3                       | yes        | 1                  | married        | yes        | no            |
| 53  | 2                       | yes        | 2                  | divorced       | no         | yes           |
| 64  | 2                       | yes        | 3                  | divorced       | no         | no            |
| 58  | 2                       | yes        | 2                  | married        | yes        | yes           |
| 33  | 1                       | no         | 1                  | single         | no         | no            |



## Overfitting and Underfitting

- Choosing too simple a model is called underfitting.
  - It is not even good on train data

- Overfitting occurs when you fit a model too closely to the particularities of the training set
  - High accuracy on train data but not on test data



## Model Complexity vs. Accuracy

- Underfitting
- Overfitting

The sweet spot

 Reference: Muller & Guido's book page 31



Figure 2-1. Trade-off of model complexity against training and test accuracy



## The sweet spot

• There is a sweet spot in between that will yield the best generalization performance.

• This is the model we want to find.



## K-NN Regression

- Can you identify which model is overfitting and which one is underfitting?
- Where is the sweet spot here?





## Last weeks workshops

- Workshop 1:
  - Numpy
  - Pandas
  - Exploring Titanic dataset with Pandas
- Workshop 2
  - Iris species
  - More on pandas, reading and writing data, csv files, UK inflation data 1989-2022
  - Pandas in depth, data manipulation (string manipulation)

### Iris dataset

• source: Muller and Guido's book, page 20



Figure 1-3. Pair plot of the Iris dataset, colored by class label CS7052 Machine Learning Dr. Elaheh Homayounvala



## Textbook chapters covered so far

- Nelli's book, Chapters 1, 2, 3, 4, 5 and 6
- Muller and Guido's book Chapter 1 and 2 (partly)



## Summary

- Supervised learning, K-Nearest Neighbours (k-NN)
  - KNN Classification
  - KNN Regression
  - Overfitting and underfitting



## Workshop today, workshop 3

- KNN, Chapter 2 Muller and Guido's book
- Complete workshop 2, task 2 (chapter 5 and 6 of Nelli's book)