

# Continuité des fonctions de plusieurs variables

| Cours   |                                                                                          | 2 |
|---------|------------------------------------------------------------------------------------------|---|
| 1       | De quoi parle-t-on?                                                                      | 2 |
|         | 1.1 Des fonctions entre espaces vectoriels normés                                        | 2 |
|         | 1.2 Des fonctions entre espaces vectoriels normés automatiquement continues              | 2 |
|         | 1.3 Des fonctions de plusieurs variables                                                 | 2 |
| 2       | Techniques d'étude de la continuité des fonctions de deux variables                      | 3 |
|         | 2.1 Montrer la continuité « par opérations », sauf éventuellement en un point            | 3 |
|         | 2.2 Montrer la non continuité en un point particulier                                    | 3 |
|         | 2.3 Montrer la continuité en un point particulier, prolonger une fonction par continuité | 3 |
| 3       | Continuité sous le signe $\int$                                                          |   |
| 4       | Suites et séries de fonctions                                                            |   |
|         |                                                                                          |   |
| Exercic | ves ·                                                                                    | 6 |
| Exe     | ercices du CCINP                                                                         | 6 |
| Exe     | ercices                                                                                  | 6 |
| Pet     | its problèmes d'entrainement                                                             |   |



Dans tout le chapitre, et sauf mention contraire, E, F, G désignent des espaces vectoriels réels de dimension finie.

# 1 De quoi parle-t-on?

# 1.1 Des fonctions entre espaces vectoriels normés

On peut s'intéresser à des fonctions :

$$f: A \subset E \rightarrow F$$
  
 $x \mapsto f(x)$ 

et se poser la question de la continuité de f.

**Exemple.**  $f: M \mapsto \frac{1}{\operatorname{tr}(M^{\top}M)}$  est une fonction  $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ , définie sur  $\mathcal{M}_n(\mathbb{R}) \setminus \{0\}$ .

**Exemple.**  $u: f \mapsto \int_0^1 \cos(f(t)) dt$  est une fonction  $C^0([0,1], \mathbb{R}) \to \mathbb{R}$ .

**Définition.** Soit  $f: E \to F$  définie sur A.

• Soit  $a \in \overline{A}$  et  $b \in F$ . On dit que  $f(x) \xrightarrow[x \to a]{} b$  lorsque :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in A \ \|x - a\|_E \leqslant \eta \implies \|f(x) - b\|_F \leqslant \varepsilon$$

• Soit  $a \in A$ . On dit que f est **continue en** a lorsque :

$$f(x) \xrightarrow[x \to a]{} f(a)$$

- f est continue sur A lorsqu'elle est continue en tout point de A.
- Soit  $a \in \overline{A} \setminus A$  un point adhérent de A où f n'est pas définie. On dit que f se prolonge par continuité en a si f admet une limite b en a. La fonction prolongée est :

$$f: x \mapsto \begin{cases} f(x) & \text{si } x \in A \\ b & \text{si } x = a \end{cases}$$

Elle est continue en a.

Remarque. La continuité peut être établie « par opérations algébriques » sur des fonctions que l'on sait continues.

### 1.2 Des fonctions entre espaces vectoriels normés automatiquement continues

#### Proposition.

- Si  $f \in \mathcal{L}(E, F)$  et E de dimension finie, alors f est continue.
- En particulier, si  $\mathcal{B} = (e_1, \dots, e_n)$  est une base de E, les applications :  $\pi_i : x \mapsto x_i$ , où  $(x_1, \dots, x_n)$  est le n-uplet des coordonnées de x dans  $\mathcal{B}$ , sont continues.
- ullet Si f est multilinéaire sur un produit d'espaces normés de dimension finie, alors f est continue.
- Si f est polynomiale sur un espace normé de dimension finie, alors f est continue.

### 1.3 Des fonctions de plusieurs variables

Remarque. Fréquemment, on étudie des fonctions :

$$f: \mathbb{R}^n \to \mathbb{R}^p$$

$$(x_1, \dots, x_n) \mapsto (f_1(x_1, \dots, x_n), \dots, f_p(x_1, \dots, x_n))$$

La continuité de f est équivalente à la continuité de  $f_1, \ldots, f_p$ . On peut donc se contenter d'étudier les fonctions numériques de plusieurs variables.



Remarque. La compréhension de la continuité pour les fonctions de deux variables est indispensable pour l'étude des fonctions de n variables.

**Proposition.** Les applications :

sont continues.

**Exemple.** Étudier la continuité de :

$$(x,y) \mapsto \operatorname{Arctan}\left(\frac{x}{y}\right) \ln(x^2 + y^2)$$

sur  $\mathbb{R} \times \mathbb{R}^*$ .

# 2 Techniques d'étude de la continuité des fonctions de deux variables

# 2.1 Montrer la continuité « par opérations », sauf éventuellement en un point

**Exemple.** Montrer que la fonction :

$$f: (x,y) \mapsto \begin{cases} \frac{\left(\sin(x^2 + y^2)\right)^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

est continue sur  $\mathbb{R}^2 \setminus \{(0,0)\}.$ 

# 2.2 Montrer la non continuité en un point particulier

**Exemple.** Étudier la continuité en (0,0) de la fonction :

$$f: (x,y) \mapsto \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

**Exemple.** Étudier la continuité en (0,0) de la fonction :

$$g: (x,y) \mapsto \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

**Exemple.** Étudier la continuité en (0,0) de la fonction :

$$h: (x,y) \mapsto \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

# 2.3 Montrer la continuité en un point particulier, prolonger une fonction par continuité

**Exemple.** Étudier la continuité en (0,0) de la fonction :

$$f: (x,y) \mapsto \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$



**Exemple.** Prolonger par continuité en (0,0) la fonction :

$$g: (x,y) \mapsto xy \ln(x^2 + y^2)$$

**Exemple.** Montrer que la fonction :

$$h: (x,y) \mapsto \begin{cases} \frac{\left(\sin(x^2 + y^2)\right)^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

est continue en (0,0).

**Exemple.** Montrer que la fonction :

$$k: (x,y) \mapsto \frac{x^5}{\operatorname{Arctan}(x^4 + y^4)}$$

se prolonge en une fonction continue sur  $\mathbb{R}^2$ .

# 3 Continuité sous le signe \int

#### Théorème.

Soit  $h:X\times I\to \mathbb{K},$  où  $X\subset E$  est une partie d'un espace normé de dimension finie.

S1:

- Pour tout  $t \in I$ ,  $x \mapsto h(x,t)$  est **continue** sur X;
- Pour tout  $x \in X$ ,  $t \mapsto h(x,t)$  est continue par morceaux sur I;
- h satisfait l'hypothèse de domination : il existe  $\varphi$  telle que :

$$|h(x,t)| \leqslant \varphi(t) \quad \forall (x,t) \in X \times I$$

où  $\varphi(t)$  est intégrable sur I, indépendante de x.

Alors:

• 
$$f: x \mapsto \int_I h(x,t) dt$$
 est définie et continue sur  $X$ .

Remarque. Il s'agit d'une simple adaptation du théorème connu pour la variable réelle au cas d'une variable dans un espace vectoriel normé de dimension finie.

Adaptation pour domination locale. Soit  $h: X \times I \to \mathbb{K}$ , où  $X \subset E$  est une partie d'un espace normé de dimension finie. Soit  $a \in X$ . Si:

- Pour tout  $t \in I$ ,  $x \mapsto h(x,t)$  est **continue** sur X;
- Pour tout  $x \in X$ ,  $t \mapsto h(x,t)$  est continue par morceaux sur I;
- h satisfait l'**hypothèse de domination locale** : il existe V voisinage relatif de a dans X, et  $\varphi$  telle que :

$$|h(x,t)| \leqslant \varphi(t) \quad \forall (x,t) \in V \times I$$

où  $\varphi(t)$  est intégrable sur I, indépendante de x.

Alors:

o  $f: x \mapsto \int_I h(x,t) \, \mathrm{d}t$  est définie sur V et continue en a.



# 4 Suites et séries de fonctions

### Rappel des théorèmes.

Les fonctions considérées sont  $A \subset E \to F$  où E et F sont des espaces normés de dimension finie.

- Si  $(f_n)_n$  converge uniformément vers f sur A ou sur tout compact de A (resp. au voisinage de a) et si les  $f_n$  sont continues sur A (resp. en a), alors f est continue sur A (resp. en a).
- Si  $\sum f_n$  converge uniformément sur A ou sur tout compact de A (resp. au voisinage de a) et si les  $f_n$  sont continues sur A (resp. en a), alors  $S = \sum_{n=0}^{+\infty} f_n$  est continue sur A (resp. en a).

**Exemple.** Montrer que :

$$(x,y) \mapsto \sum_{n=0}^{+\infty} (-1)^n \frac{(x+iy)^n}{(2n)!}$$

est continue sur  $\mathbb{R}^2$ .

# 71.1



On pose :  $\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}} \text{ et } f(0,0) = 0.$ 

1. Démontrer que f est continue sur  $\mathbb{R}^2$ .

# 71.2



Soit  $\alpha \in \mathbb{R}$ .

On considère l'application définie sur  $\mathbb{R}^2$  par

$$f(x,y) = \begin{cases} \frac{y^4}{x^2 + y^2 - xy} & \text{si } (x,y) \neq (0,0) \\ \alpha & \text{si } (x,y) = (0,0). \end{cases}$$

- 1. Prouver que :  $\forall (x, y) \in \mathbb{R}^2, \ x^2 + y^2 xy \geqslant \frac{1}{2}(x^2 + y^2).$
- 2. (a) Justifier que le domaine de définition de f est bien  $\mathbb{R}^2$ .
  - (b) Déterminer  $\alpha$  pour que f soit continue sur  $\mathbb{R}^2$ .

### 71.3



- 1. Soit f une fonction de  $\mathbb{R}^2$  dans  $\mathbb{R}$ .
  - (a) Donner, en utilisant des quantificateurs, la définition de la continuité de f en (0,0).
- 2. On considère l'application définie sur  $\mathbb{R}^2$  par

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

(a) Montrer que f est continue sur  $\mathbb{R}^2$ .

### Exercices

# 71.4

Peut-on prolonger par continuité en (0,0) les fonctions définies par :

(a) 
$$\frac{xy}{x^2 + y^2}$$

(b) 
$$\frac{xy^2}{x^2 + y^2}$$

(c) 
$$\frac{\sin(x) \, \sin(y)}{xy}$$

(d) 
$$\frac{\sin(x) - \sin(y)}{\sin(x) - \sin(y)}$$

# 71.5

Peut-on prolonger par continuité en (0,0) les fonctions définies par :

(a) 
$$\frac{xy}{x^2 + xy + y^2}$$

(b) 
$$\frac{x^2y}{x^2 - xy + y^2}$$

(c) 
$$\frac{x^3y^4}{x^4+y^6}$$

(d) 
$$\frac{xy^4}{x^4 + y^6}$$

(e) 
$$\frac{e^{xy} - 1}{e^x - 1}$$

# 71.6

Soit a, b > 0. Étudier la limite, pour  $(x, y) \to (1, 1)$ , de :

$$\frac{x^a y^b - 1}{xy - 1}$$

71. Continuité des fonctions de plusieurs variables

Étudier la continuité sur  $\mathbb{R}^2$  de :

$$f: (x,y) \mapsto \begin{cases} y^2 & \text{si } y \leqslant |x| \\ x^4 & \text{si } y > |x| \end{cases}$$

71.8

On donne :  $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}.$ 

On définit, pour tout  $(x,t) \in \mathbb{R} \times \mathbb{R}_+^*$ :

$$\Gamma(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/4t}$$

et, pour  $f: \mathbb{R} \to \mathbb{R}$  continue et bornée, on définit, pour x,t réels :

$$Kf(x,t) = \begin{cases} \int_{-\infty}^{+\infty} f(y)\Gamma(x-y,t) \, \mathrm{d}y & \text{si } t > 0\\ f(x) & \text{si } t = 0 \end{cases}$$

(a) Justifier l'existence de Kf, et démontrer :

$$\forall (x,t) \in \mathbb{R} \times \mathbb{R}_+^*,$$

$$Kf(x,t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} f(x + v\sqrt{4t}) e^{-v^2} dv$$

(b) Montrer que Kf est continue sur  $\mathbb{R} \times \mathbb{R}_+$ .