COUNTY COLLEGE OF MORRIS Course Information Outline

Cou	rse Title Calculus III	PREFIX&NUMBER	MAT 230
	ture Hours <u>60</u> Laboratory Hours <u>0</u> Credi		e Fee None
Dep	artment Chairperson Approval J. Monaghan	Thorada	Date <u>05-25</u> -20/
Divi	sion Dean Approval P. Enright		_ Date <u> </u>
1.	Catalog Course Description A continuation of Analytic Geometry and Calculus dimensions, functions of several variables, partial dintroduction to vector analysis.		
2.	Prerequisite(s) MAT 132 (grade of "C" or better).		
3.	Co-requisite(s) None		
4.	Textbooks Stewart, Multivariable Calculus – Concepts and Co.	ntexts, 4 th ed. (Brooks Cole	e, 2005).
5.	Supplementary Books and/or Materials None		
6.	Specialized equipment, supplies, facilities, for restricted by accreditation and/or equipment li determine differential funding category.) None		

7. Course Content (List of Topics)

- Introduction; XYZ coördinates, spheres
- Vectors; scalar (dot) and vector (cross) products
- Lines and planes in three dimensions
- Functions and surfaces, quadric surfaces
- Cylindrical and spherical coördinates
- Vector functions, space curves
- Derivatives and integrals of vector functions
- Arc length, curvature, torsion (p. 716), rectifying plane
- Motion in space, parametric surfaces
- Functions of several variables, limits, continuity
- Partial derivatives, tangent planes, linear approximations

- Chain Rule, directional derivatives, the gradient
- Maxima and minima, Lagrange multipliers
- Double integrals and applications
- Surface areas
- Triple integrals in Cartesian, cylindrical and spherical coördinates
- Vector fields
- Line integrals, the Fundamental Theorem
- Green's Theorem
- The curl, the divergence and the Laplace operator
- Surface integrals
- Stokes's Theorem, the Divergence Theorem

8. Statement of Course LEARNING OUTCOMES

- Recognize and manipulate vectors in two and three dimension
- Calculate the equations of lines and planes in three dimension
- Recognize, classify, and illustrate functions and surfaces in three dimension
- Distinguish and relate rectangular, cylindrical, and spherical coordinates
- Calculate limits, derivatives, and integrals of functions of several variables
- Apply partial differentiation to locate critical points
- Apply multiple integration to calculate areas and volumes
- Define vector fields and calculate line and surface integrals
- State and interpret Green's, Stokes's, and the divergence theorems

9. Statement of Relation to Curriculum(s)

MAT 230 is sometimes required in the mathematics program and is prerequisite to PHY 232 (Engineering Physics III).

COUNTY COLLEGE OF MORRIS COURSE INFORMATION OUTLINE

Cou	ırse <u>Calculus III</u>				Cat. No.	MAT	230
		Clinical		,			
Cla		Laboratory Hours Recitation	0	Credit Hours	4 Cou	rse Fee	None
Fac	ulty Course Coordinat	or <u>None</u>		a			
Dep	partment Chairperson	Approval <u>J. R. M</u>	onacha	n offhon	aglac Approva	ıl Date	8-18-97
Div	rision Dean Approval_	M. C. Ayres		lyn	Approva	ıl Date	8/31/97
1.	Prerequisite (Last Co	urse or Courses)	MAT 1	32			
2.	Co-requisite None	<u> </u>					
3.	Textbooks: Anton, C	Calculus with Analy	tic Geo	metry, 5th ed. (V	Viley), ISBN	J 0-47 1-5	9495-4
4.	Supplementary Book	s: College bookst	ore ma	y have student so	olutions man	ual and o	ther aids.
5.	Supplementary Mater	rials: None					
6.	Specialized equipmer accreditation and/or ecategory.): None						
7.	Statement Course Obcourses in other scien				advanced ma	thematic	s courses and for
8.	Statement of Relation and is prerequisite to				s required in	the math	ematics program
9.	Catalog Course Descr "A continuation of A dimensions, functions introduction to vector evening sessions.	nalytic Geometry a s of several variable	nd Cale	culus II, which in al derivatives, m	cludes analy ultiple integ	tic geom rals, vect	etry in three ors, and an

10. Course Outline

<u>Syllabus</u>

]	Period	Text sections	Topics
-	1	14.1	Intro.; 3-dimensional space; spheres, cylinders
	2	14.2	Vectors in 2- and 3-dimensional space
	3	14.3-4	Dot and cross products, direction cosines and angles
	4- 5	14.5-6	Straight lines and planes
		14.7-8	Quadric surfaces; cylindrical, spherical coordinates
	8		Quiz no. 1
	9-10	15.1-2	Vector-valued functions, position vectors
	11	15.3	Change of parameter, arc length
	12-14	15.4-6	Unit tangent, normal, and binormal vectors*; curvature
			and torsion; motion on a path**
	15		Quiz no. 2
	16	16.1	Functions of several variables, surfaces
		16.2	Limits, continuity
		16.3-4	Partial derivatives, Laplace's equation, Chain Rule
	20	16.5	Tangent planes, total differentials
	21	16.6-7	Directional derivatives, gradients
		16.8	Functions of n variables
		16.9-10	Maxima and minima; Lagrange multipliers
	25		Review
	26		Quiz no. 3
		17.1-3	Double integrals in rectangular and polar coordinates
		17.4-5	Surface area, triple integrals, volumes
		17.6	Centroids, Theorems of Pappas
	34	17.7	Triple integrals in cylindrical, spherical coordinates
	35		Review
	36		Quiz no. 4
	37	18.1	Vector fields
		18.2-3	Line integrals, independence of path, conservative fields
		18.4-6	Green's Theorem, surface integrals, flux
		18.7-8	Divergence Theorem, Stokes's Theorem, circulation
-	45		Review or quiz no. 5

^{*}B = T x N, torsion = magnitude of dB/ds. **Students should read sect. 15.7 (Kepler's Laws), of historical interest

COUNTY COLLEGE OF MORRIS

ROUTE 10 & CENTER GROVE RD. = RANDOLPH TOWNSHIP = P.O. DOVER, N.J. 07801 = (201) 361-5000

MAT230 - CALCULUS III 4 hrs/wk - 4 cr.

10/3/85

<u>Catalog description</u>: A continuation of Analytic Geometry and Calculus II, which includes analytic geometry in three dimensions, partial derivatives, multiple integrals, vectors, and an introduction to vector analysis.

Pre-requisite: MAT132.

Text: Thomas and Finney, <u>Calculus</u> and <u>Analytic</u> <u>Geometry</u>, 6th ed. (Addison-Wesley).

Supplementary materials: None.

Role of course: Required in the Mathematics program (2150) and the Engineering Science program (2180). Elective in the following programs: Business Administration (2110), Humanities/Social Science (1130), Humanities/Art (1140), Mathematics/Physical Science (2151), Humanities/Music (1190), and these Honors programs: the Humanities/Social Science option (1131) and the Mathematics/Science option (2153). Corequisite to PHY132. Prerequisite for PHY231.

Syllabus

Period Text sections	Topics
1- 3 13.1-3	Intro.; vectors in the plane; parametric equations
4 13.4-5	Space coordinates, vectors and distance in space
5 13.6–7	Scalar and vector products, direction cosines and angles
6- 7 13.8-9	Lines and planes, triple products
8 13.10–11	Cylinders, quadric surfaces
9	Quiz no. 1
10 14.1	Derivatives of vector functions
11-13 14.2-4	Tangential vectors, v, a, arc length, curvature, etc.
14 14.5	Derivatives of vector products; tang. and normal comps.
15 14.6	Unit vectors in polar coordinates
16	Quiz no. 2
17-18 15.1-2	Functions of several variables, limits, continuity
19-20 15.3-4	Partial derivatives, chain rule
21 - 15.5	Nonindependent variables
22 15.6	Gradients, directional derivatives, tangent plane
23-24 15.7-8	Higher partial derivatives, linear approx., increments
25-26 15.9-10	Maxima, minima, saddle pts., Lagrange multipliers
27-28 15.11-12	Exact differentials, method of least squares
29	Quiz no. 3
30 16.1–2	Intro. to multiple integrals; double integrals
31-32 16.3-5	Area and other applications; polar coordinates
33-34 16.6-8	Triple integrals, applications; other coord. systems
35 16 . 9	Surface area
36–37	Review; quiz no. 4
38-40 17.1-3	Vector fields, surface integrals, line integrals, work
41 17.4	2-dim. fields, flux across a plane curve
42-44 17.5-7	Green's theorem, divergence theorem, Stokes's theorem
45	Review or quiz no. 5