공침법으로 합성한 γ -Fe₂O₃:Dy³⁺의 몇가지 특성

박동훈, 리광혁

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《정보기술, 나노기술, 생물공학을 비롯한 핵심기초기술과 새 재료기술, 새 에네르기 기술, 우주기술, 핵기술과 같은 중심적이고 견인력이 강한 과학기술분야를 주라격방향으로 정하고 힘을 집중하여야 합니다.》

나노크기의 자성립자는 의학분야에서 약물수송, 온열치료, 자기공명화상얻기, 화학공업분야에서 촉매 및 수감재료개발, 물질분리 등에 널리 리용되고있다.[1, 2, 5] 철의 산화물중에서 γ -Fe₂O₃과 Fe₃O₄은 강자성체이다. 철의 산화물에 기초한 자성재료는 그 제조원가가 눅고 부작용과 공해를 일으키지 않으며 강자성을 가진것으로 하여 리용전망이 크다.[4]

나노크기의 γ -Fe₂O₃은 방온도에서 강자성을 나타내고 독특한 촉매특성을 가지므로 자성에 기초한 물질분리, 자기기록재료, 기체수감부, 방부식칠감에 널리 쓰이고있다.[3]

최근 철의 산화물에 희토류원소를 포함시켜 강자성과 형광성을 동시에 가진 기능성 재료를 합성하여 그것을 종양진단과 치료에서 약물운반체로, 자성조영제 및 형광표식재 료로 리용하기 위한 연구들[3, 4]이 진행되고있다.

우리는 철의 수산화물에 기초한 공침법과 열분해법으로 γ-Fe₂O₃:Dy³⁺를 합성하고 Dy³⁺의 함량이 γ-Fe₂O₃:Dy³⁺의 결정구조 및 크기와 모양에 미치는 영향을 평가하였다.

실험 방법

기구로는 항온건조로(《DHG-9123A》), 마플로(《SXL-1208》), 교반기, 원심분리기, 분말X선회절분석기(《D/max 2550 VB/PC》), 투과전자현미경(《Tecnai-12》)을, 시약으로는 류산철(Ⅱ)(FeSO₄·7H₂O, 분석순), 가성소다(분석순), 질산나트리움(분석순), Dy₂O₃(분석순), 염산(분석순), 에틸알콜(95%, 분석순), 탈이온수를 리용하였다.

γ-Fe₂O₃의 합성 FeSO₄·7H₂O 0.01mmol을 탈이온수 30mL에 교반하면서 용해시킨 다음 NaOH 0.021mol을 첨가하면 연록색의 현탁액이 얻어진다. 온도를 80℃로 보장하고 여기에 NaNO₃ 0.003mol을 첨가한 다음 1h동안 교반하면 검은색의 현탁액이 얻어진다. 교반을 중지하고 방치한 다음 침전물을 원심분리기에 넣고 5 000r/min의 속도로 원심분리한다. 탈이온수와 에틸알콜로 각각 3회 세척한다. 침전물을 60℃에서 4h동안 건조시킨 다음 260℃에서 6h동안 열분해시키면 붉은 밤색의 γ-Fe₂O₃분말이 얻어진다.

Dy³⁺이 혼입된 γ-Fe₂O₃의 합성 일정한 량의 Dy₂O₃에 충분한 량의 염산을 작용시켜 완전히 푼 다음 서서히 가열증발시켜 용매를 휘발시키면 연황색의 무수DyCl₃이 얻어진다.

DyCl₃을 FeSO₄·7H₂O에 물질량의 2.0, 5.3, 11.1, 17.6, 25.0% 되게 각각 첨가한다.(양이 온의 총물질량 0.01mol) γ-Fe₂O₃의 합성방법과 같은 방법으로 얻은 분말을 마플로에 넣고 260℃에서 6h동안 열분해시켜 붉은 밤색의 γ-Fe₂O₃:Dy³⁺분말을 얻는다.

합성된 나노립자의 분석 분말X선회절분석기로 합성된 γ - Fe_2O_3 , γ - Fe_2O_3 : Dy^3 -나노립자의 구조를, 투과전자현미경으로 나노립자의 크기와 모양을 측정하였다.

실험결과 및 고찰

Dv³⁺의 첨가량에 따르는 γ-Fe₂O₃:Dv³⁺의 분말X선회절도형은 그림 1과 같다.

그림 1. Dy³⁺의 첨가량에 따르는 γ-Fe₂O₃:Dy³⁺의 분말X선회절도형 1-5는 Dy³⁺의 첨가량이 각각 2.0, 5.3, 11.1, 17.6, 25.0%인 경우

그림 1에서 보는바와 같이 Dy^{3+} 의 첨가량에 따르는 γ - Fe_2O_3 : Dy^{3+} 의 봉우리위치와 세기는 순수한 γ - Fe_2O_3 의 분말X선회절도형(《JCPDS 39-1346》)과 기본적으로 일치하며 새로운 봉우리들이 나타나지 않는다. 이것은 Dy^{3+} 을 첨가하여도 γ - Fe_2O_3 의 결정상이 변화되지 않으며 또한 새로운 상이 생성되지 않는다는것을 의미한다. 그리고 봉우리의 넓이가 크게 변하지 않는것은 Dy^{3+} 의 첨가량이 증가할 때 립자크기의 변화가 크지 않다는것을 의미한다.

Dv³⁺의 첨가량에 따르는 립자의 분말X선회절도형에 대한 해석결과는 표와 같다.

h k l	Dy ³⁺ 의 첨가량/%							
	2.0		5.3		11.1		17.6	
	D/nm	I/I_0	D/nm	I/I_0	D/nm	I/I_0	D/nm	I/I_0
2 0 6	2.955	35.5	2.957	38.8	2.951	29.6	2.955	41.4
1 1 9	2.521	100	2.521	100	2.520	100	2.518	100
2 3 5	2.090	17.5	2.091	19.4	2.088	22.6	2.087	24.7
2 4 6	1.707	12.3	1.705	12.8	1.704	12.7	1.705	14.9
1 5 2	1.609	26.3	1.608	27.2	1.608	26.1	1.608	32.8
2 5 5	1.477	45.6	1.478	35.0	1.476	39.7	1.475	38.5
5 3 7	1.320	8.8	1.321	5.3	1.320	5.0	1.321	8.0
4 5 3	1.274	10.1	1.273	7.5	1.273	9.5	1.273	9.2
<i>a</i> , <i>b</i> /pm	0.824		0.820		0.818		0.815	
c/pm	2.510		2.508		2.502		2.496	
V/pm^3	1 704		1 686		1 674		1 658	

표. Dv^{3+} 의 첨가량에 따르는 립자의 분말x선회절도형에 대한 해석결과

표에서 보는바와 같이 Dy^{3+} 의 첨가량이 증가함에 따라 살창상수들은 감소한다. 이것은 Dy^{3+} 이 γ - Fe_2O_3 결정살창의 8면체공간을 차지한다는것을 의미한다.

Dy³⁺의 첨가량에 따르는 γ-Fe₂O₃:Dy³⁺시료들에 대한 EDS분석결과로부터 매 시료들에 실제로 들어있는 Dy³⁺의 함량을 결정하였다. 공침반응단계에서 Dy³⁺을 FeSO₄·7H₂O의 물질량의 2.0, 5.3, 11.1, 17.6, 25.0% 되게 각각 첨가하여 얻은 γ-Fe₂O₃:Dy³⁺시료들에서 Dy³⁺의 실제함량은 각각 0.83, 2.24, 4.48, 6.52, 8.59%였다. 즉 γ-Fe₂O₃:Dy³⁺에서 Dy³⁺의 함량은 공침반응단계에서의 첨가량보다 작다는것을 알수 있다. 이것은 공침반응과정에 Dy³⁺의 일부만이 γ-Fe₂O₃에 포함된다는것을 보여준다.

Dy³⁺의 함량에 따르는 *γ*-Fe₂O₃:Dy³⁺의 TEM사진들은 그림 2와 같다.

그림 2. Dy³+의 함량에 따르는 γ-Fe₂O₃:Dy³+의 TEM사진 ㄱ)-ㅂ)는 Dy³+의 함량이 각각 0.83, 2.24, 4.48, 6.52, 8.59, 0%인 경우

그림 2에서 보는바와 같이 Dy^{3+} 의 함량은 립자의 모양에 비교적 큰 영향을 준다는것을 알수 있다.

순수한 γ - Fe_2O_3 에서 립자들의 모양은 립방체모양이다. 그러나 Dy^{3+} 의 함량이 0.83%인 경우 대부분의 립자들은 립방체모양을 가지지만 구형에 가까운 비교적 작은 립자들이 립방체모양의 립자들의 표면과 립자들사이에 분포되여있는것을 볼수 있다. Dy^{3+} 의 함량이 2.24, 4.48, 6.52%로 증가할수록 이러한 현상은 더 심하게 나타난다. 특히 Dy^{3+} 의 함량이 4.48%인 경우 구형에 가까운 립자들이 특별히 많이 나타난다.

순수한 γ -Fe₂O₃에서 립자의 크기는 $60\sim90$ nm이며 Dy^{3+} 의 함량이 0.83, 2.24, 4.48, $8.59\%일 때 립자들의 크기는 <math>40\sim80$ nm이다. 그러나 Dy^{3+} 의 함량이 6.52%일 때 립자의 크기는 증가하며 $80\sim150$ nm이다.

따라서 Dy^{3+} 의 함량이 증가함에 따라 생성된 립자크기는 크게 변화되지 않지만 Dy^{3+} 의 함량이 립자의 모양에 주는 영향은 비교적 크다는것을 알수 있다.

맺 는 말

 γ -Fe₂O₃에 Dy³⁺을 첨가할 때 γ -Fe₂O₃의 결정상은 변하지 않는다. Dy³⁺의 함량이 증가함에 따라 γ -Fe₂O₃의 살창상수들은 감소하며 Dy³⁺은 결정살창의 8면체공간을 차지한다. Dy³⁺의 함량이 립자크기에 미치는 영향은 작지만 립자의 모양에는 비교적 큰 영향을 미친다.

참 고 문 헌

- [1] A. Afkhami; Journal of Hazardous Materials, 181, 3, 398, 2017.
- [2] M. H. Mahmoud; Hyperfine Interaction, 181, 7, 261, 2016.
- [3] 臧永丽; 山东理工大学学报(自然科学版), 29, 2, 57, 2015.
- [4] 蒋荣立; 化学学报, 76, 11, 1322, 2018.
- [5] 徐明祥; 物理化学学报, 25, 7, 619, 2009.

주체109(2020)년 1월 5일 원고접수

Some Characteristics of γ -Fe₂O₃:Dy³⁺ Synthesized by Coprecipitation Method

Pak Tong Hun, Ri Kwang Hyok

When Dy^{3+} is doped in γ -Fe₂O₃, the crystal phase of γ -Fe₂O₃ does not change. The dimensions of the lattice parameters of γ -Fe₂O₃ decrease according as the amount of Dy^{3+} increases and Dy^{3+} occupies the octahedral hole of the crystal lattice. The amount of Dy^{3+} affects the magnitude of generated particles less, but the shape of the particle much.

Keywords: coprecipitation method, FeSO₄·7H₂O, γ-Fe₂O₃:Dy³⁺, crystal phase