COMP4222 Machine Learning with Structured Data

Recommender Systems 1

Instructor: Yangqiu Song

Slides credits: Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich, Max Welling, Dan Jurafsky

Problem domain

- Recommendation systems (RS) help to match users with items
 - Ease information overload
 - Sales assistance (guidance, advisory, persuasion,...)

RS are software agents that elicit the interests and preferences of individual consumers [...] and make recommendations accordingly.

They have the potential to support and improve the quality of the decisions consumers make while searching for and selecting products online.

(Xiao & Benbasat 2007¹)

When does a RS do its job well?

"Recommend widely unknown items that users might actually like!"

- Items rated > 3 in MovieLens100K dataset
 - 20% of items accumulate 74% of all positive ratings

Recommender systems

- RS seen as a function
- Given:
 - User model (e.g. ratings, preferences, demographics, situational context)
 - Items (with or without description of item characteristics)
- Find:
 - Relevance score. Used for ranking.

- Relation to Information Retrieval:
 - IR is finding material [..] of an unstructured nature [..] that satisfies an information need from within large collections [..].

Recommendations

Recommender systems reduce information overload by estimating relevance

Collaborative Filtering (CF)

- The most prominent approach to generate recommendations
 - used by large, commercial e-commerce sites
 - well-understood, various algorithms and variations exist
 - applicable in many domains (book, movies, DVDs, ..)

Approach

- use the "wisdom of the crowd" to recommend items
- Basic assumption and idea
 - Users give ratings to catalog items (implicitly or explicitly)
 - Customers who had similar tastes in the past, will have similar tastes in the future

Pure CF Approaches

- Input
 - Only a matrix of given user—item ratings

- Output types
 - A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
 - A top-N list of recommended items

User-based nearest-neighbor collaborative filtering (1)

- The basic technique
 - Given an "active user" (Alice) and an item i not yet seen by Alice
 - find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past ${\bf and}$ who have rated item i
 - ullet use, e.g. the average of their ratings to predict, if Alice will like item i
 - do this for all items Alice has not seen and recommend the best-rated
- Basic assumption and idea
 - If users had similar tastes in the past they will have similar tastes in the future
 - User preferences remain stable and consistent over time

User-based nearest-neighbor collaborative filtering (2)

- Example
 - A database of ratings of the current user, Alice, and some other users is given:

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

• Determine whether Alice will like or dislike *Item5*, which Alice has not yet rated or seen

User-based nearest-neighbor collaborative filtering (3)

- Some first questions
 - How do we measure similarity?
 - How many neighbors should we consider?
 - How do we generate a prediction from the neighbors' ratings?

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Measuring user similarity

• A popular similarity measure in user-based CF: Pearson correlation

a, b: users

 $r_{a,p}$: rating of user a for item p

: rating of user a for item p $sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a) (r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$: set of items, rated both by a and b

• Possible similarity values between -1 and 1

	ltem1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	
User2	4	3	4	3	5	
User3	3	3	1	5	4	
User4	1	5	5	2	1	*

sim = 0.03 sim = 0.70 sim = 0.00sim = -0.79

Pearson correlation

Takes differences in rating behavior into account

- Works well in usual domains, compared with alternative measures
 - such as cosine similarity

Making predictions

	ltem1	ltem2	Item3	Item4	ltem5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	
User2	4	3	4	3	5	V
User3	3	3	1	5	4	4
User4	1	5	5	2	1	4

sim = 0.70sim = 0.00

sim = -0.79

A common prediction function:

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} |sim(a,b)|}$$

- Calculate, whether the neighbors' ratings for the unseen item i are higher or lower than their average
- Combine the rating differences use the similarity with a as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Improving the metrics / prediction function

- Not all neighbor ratings might be equally "valuable"
 - Agreement on commonly liked items is not so informative as agreement on controversial items
 - Possible solution: Give more weight to items that have a higher variance

- Neighborhood selection
 - Use similarity threshold or fixed number of neighbors

Memory-based approaches

- User-based CF is said to be "memory-based"
 - the rating matrix is directly used to find neighbors / make predictions
 - does not scale for most real-world scenarios
 - large e-commerce sites have tens of millions of customers and millions of items

Graph-based methods (1)

- "Spreading activation" (Huang et al. 2004)
 - Exploit the supposed "transitivity" of customer tastes and thereby augment the matrix with additional information
 - Assume that we are looking for a recommendation for User1
 - When using a standard CF approach, *User2* will be considered a peer for *User1* because they both bought *Item2* and *Item4*
 - Thus *Item3* will be recommended to *User1* because the nearest neighbor, *User2*, also bought or liked it

Graph-based methods (2)

- "Spreading activation" (Huang et al. 2004)
 - In a standard user-based or item-based CF approach, paths of length 3 will be considered that is, *Item3* is relevant for *User1* because there exists a three-step path (*User1–Item2–User2–Item3*) between them
 - Because the number of such paths of length 3 is small in sparse rating databases, the idea is to also consider longer paths (indirect associations) to compute recommendations
 - Using path length 5, for instance

Length 3: Recommend Item3 to User1 Length 5: Item1 also recommendable

More model-based approaches

- Many techniques have been proposed e.g.,
 - Matrix factorization techniques, statistics
 - singular value decomposition, principal component analysis
 - Association rule mining
 - compare: shopping basket analysis
 - Probabilistic models
 - clustering models, Bayesian networks, probabilistic Latent Semantic Analysis
 - Various other machine learning approaches
- Costs of pre-processing
 - Usually not discussed
 - Incremental updates possible?

Matrix Factorization – A More General Formulation

- Matrix Factorization is one of the most popular methods for collaborative filtering
 - Given rating matrix Y
 - Each row represents an user *u*
 - While each column an item i

Regularization of p and q should be applied

$$\hat{y}_{ui} = f(u, i | \mathbf{p}_u, \mathbf{q}_i) = \mathbf{p}_u^T \mathbf{q}_i = \sum_{k=1}^K p_{uk} q_{ik} \qquad L_{sqr} = \sum_{(u, i) \in \mathcal{Y} \cup \mathcal{Y}^-} w_{ui} (y_{ui} - \hat{y}_{ui})^2$$

2008: Factorization meets the neighborhood: a multifaceted collaborative filtering model, Y. Koren, ACM SIGKDD

Stimulated by work on Netflix competition

- Prize of \$1,000,000 for accuracy improvement of 10% RMSE compared to own Cinematch system
- Very large dataset (~100M ratings, ~480K users , ~18K movies)
- Last ratings/user withheld (set K)

Metrics measure error rate

- Mean Absolute Error (MAE) computes the deviation between predicted ratings and actual ratings
- Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2}$$

Collaborative Filtering Issues

• Pros:

well-understood, works well in some domains, no knowledge engineering required

• Cons:

 requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results

What is the best CF method?

• In which situation and which domain? Inconsistent findings; always the same domains and data sets; differences between methods are often very small (1/100)

How to evaluate the prediction quality?

- MAE / RMSE: What does an MAE of 0.7 actually mean?
- Diversity (novelty and surprising effect of recommendations)
 - Not yet fully understood
- What about multi-dimensional ratings?

More Advanced Model

General Matrix Factorization (GMF)

Multi-layer Perceptron (MLP)

$$\mathbf{z}_1 = \phi_1(\mathbf{p}_u, \mathbf{q}_i) = \begin{bmatrix} \mathbf{p}_u \\ \mathbf{q}_i \end{bmatrix},$$
$$\phi_2(\mathbf{z}_1) = a_2(\mathbf{W}_2^T \mathbf{z}_1 + \mathbf{b}_2),$$
.....

 $\phi_L(\mathbf{z}_{L-1}) = a_L(\mathbf{W}_L^T \mathbf{z}_{L-1} + \mathbf{b}_L),$ $\hat{y}_{ui} = \sigma(\mathbf{h}^T \phi_L(\mathbf{z}_{L-1})),$

More Advanced Model

Deep learning for RS

Neural Collaborative Filtering (NCF)

- Wide and Deep Learning (Google)
 - Combining dense features with categorical features

Wide & Deep Learning

Memorization

Generalization

https://ai.googleblog.com/2016/06/wide-deep-learning-better-together-with.html

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. 2016. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 7–10.

The wide model

Linear model: $y = \mathbf{w}^T \mathbf{x} + b$

 $\mathbf{x} = [x_1, x_2, ..., x_d]$ is a vector of d features

Cross-product transformation (traditional feature engineering):

AND(user_installed_app=netflix, impression_app=pandora)

The deep model

$$a^{(l+1)} = f(W^{(l)}a^{(l)} + b^{(l)})$$

The wide & deep model

$$P(Y = 1|\mathbf{x}) = \sigma(\mathbf{w}_{wide}^{T}[\mathbf{x}, \phi(\mathbf{x})] + \mathbf{w}_{deep}^{T}a^{(l_f)} + b)$$

Recommendation Paradigm

Problem Definition

information network

hybrid collaborative filtering with information networks

The Heterogeneous Information Network View of Recommender System

Relationship Heterogeneity Alleviates Data Sparsity

- Heterogeneous relationships complement each other
- Users and items with limited feedback can be connected to the network by different types of paths
 - Connect new users or items (cold start) in the information network

Yelp: A Heterogeneous Information Network

A Typical Network Schema of Yelp

- R: reviews;
- U: users;
- B: business;
- Cat: category of item;

Meta-paths/graphs Extracted From Yelp

Matrix Formulation: Traditional CF

	i_1	i_2	i ₃	i ₄	i ₅	i ₆	i_7	i ₈
u_1	5	2		3		4		
u_2	4	3			5			
u_3	4		2				2	4
u_4								
u_5	5	1	2		4	3		
u_6	4	3		2	4		3	5

PathCount: Meta-path based similarities

Number of meta-path instances connecting users and items

- Matrix multiplication.
 - $-W_{UB}$: number of instances between type U and type B
 - $-W_{UU}$: number of instances between type U and type U
 - Whether two users are friends
 - $-W_{UU}W_{UB}$

Example

 $W_{UU} W_{UB}$

Metapath based RS

Metapath → Recommending Strategy.

 $\begin{array}{c|c}
\hline
U_1 & FriendOf \\
\hline
U_2 & Check-in \\
\hline
B_2
\end{array}$

Social Recommendation

Content-based recommendation

Compute Similarity based on a Meta-graph

Compute
$$\mathbf{C}_{P_1}: \mathbf{C}_{P_1} = \mathbf{W}_{RB} \cdot \mathbf{W}_{RR}^{\top};$$

Compute $\mathbf{C}_{P_2}: \mathbf{C}_{P_2} = \mathbf{W}_{RA} \cdot \mathbf{W}_{RA}^{\top};$
Compute $\mathbf{C}_{S_r}: \mathbf{C}_{S_r} = \mathbf{C}_{P_1} \odot \mathbf{C}_{P_2};$
Compute $\mathbf{C}_{M_9} = \mathbf{W}_{UR} \cdot \mathbf{C}_{S_r} \cdot \mathbf{W}_{UR}^{\top} \cdot \mathbf{W}_{UB};$