Week 9

Random walk in trap environment

LECTURER: SIVA ATHREYA SCRIBE: SANCHAYAN BHOWAL, RAMKRISHNA SAMANTA

9.1 Continuous time random walk

In this model the random walker wasits an exponential amount of time to perform a jump like a discrete time random walk. Consider $\{V_i : i \geq 1\}$ to be a collection of independent Exponential(λ) random variables. Let $\lambda = 1$. Define T_k to be the sum of the first k V_i 's. Also, define N_t to be the number of T_k less than t. Hence,

- $\mathbf{P}(V_i \le t) = 1 e^{-t}$
- $T_k = \sum_{i=1}^k V_i$
- $N_t = \sum_{k=1}^{\infty} \mathbb{1}(T_k \le t)$
- $\{N_t = k\} = \{T_k \le T_{k+1}\}$

Theorem 9.1.1. 1. $N_t \sim Poisson(t)$

- 2. $N_t N_s$ is independent of N_r where $r \leq s \leq t$.
- 3. For $0 \le t_0 \le t_1 \le \ldots \le t_n$

$$\{N_{t_{i+1}} - N_{t_i} : i = 0, \dots, n-1\}$$
 are independent

So,
$$N_{t_{i+1}} - N_{t_i} \sim Poisson(t_{i+1} - t_i)$$

Definition 9.1.1. Let $U_n : n \ge 0$ be a random walk on (Γ, μ) . Define, a continuous time random walk on (Γ, μ) with rate 1 to be:

$$Y_t = U_{N_t} \forall t \ge 0$$

Remark. The random variable Y_t is a random step function which is right continuous with left limits.

9.2 Random walk in trap environment

Continuous Time set-up

Consider the graph \mathbb{Z}^d with natural weights. Let $\{X_t\}_{t\geq 0}$ be a continuous time random walk on \mathbb{Z}^d starting at 0, with rate κ . Now, let us set up the traps, i.e., for each $y\in\mathbb{Z}^d$ let $N_y\sim \operatorname{Poisson}(\rho)$. This N_y denote the number of traps at y. Each $\operatorname{trap}(Y^{j,y})$ perform a continuous time random walk $\{Y_t^{j,y}\}_{t\geq 0}$ with rate ν ; where $1\leq j\leq N_y$. The random walk gets killed if it meets a trap. There are two ways of killing viz,

Hard The walk gets killed upon intersection with any $Y^{j,y}$.

Soft At each site x at time $t \geq 0$, define

$$\xi(t,x) := \sum_{y \in \mathbb{Z}^d, 1 \le j \le N_y} \#\{Y^{j,y} \text{ at } x\}.$$

Now X_t gets killed at rate $\gamma \xi(t, x)$ where $\gamma \in \mathbb{R}$.

Remark. Hard killing in fact corresponds to $\gamma = \infty$ case of soft killing.

The probability of survival is given by

$$Z_{\gamma,t} = \mathbf{E}^X [\exp(-\gamma \int_0^t \xi(s, X(s)) ds)]$$

Discrete Time set-up

Let $\{X_t\}_{t\geq 0}$ be a random walk on \mathbb{Z}^d with natural weights starting at 0. For each $y\in\mathbb{Z}^d$ let $N_y\sim \operatorname{Poisson}(\rho)$ denotes the number of traps at y. Each $\operatorname{trap}(Y^{j,y})$ perform a lazy random $\operatorname{walk}(\{Y_t^{j,y}\}_{t\geq 0})$ on \mathbb{Z}^d ; where $1\leq j\leq N_y$. The trap kills the random walk with probability q if it meets the random walk; $q\in(0,1)$. Let $\xi(n,x)$ denote the number of traps at location x, i.e.

$$\xi(n,x) = \sum_{y \in \mathbb{Z}^d, 1 \le j \le N_y} \delta_x(Y_n^{j,y}).$$

Assume X_k has survived till $k \leq n$. Given X_n the probability that X_n will survive at time n is $(1-q)^{\xi(n,X_n)}$. Hence,

$$\sigma^{X}(n,\xi) = \mathbf{P}(X \text{ has survived till time } n \text{ given } \{Y_{m}^{j,y}\}_{1 \le j \le m, y \in \mathbb{Z}^{d}} \text{ where } m \le n)$$

$$= (1-q)^{\sum_{i=1}^{n} \xi(i,X_{i})}.$$
(9.1)

9.3 Pascal's Theorem

The average survival probability of a given trajectory X is given by $\sigma^X(n) = \mathbf{E}^{\xi}[(1-q)^{\sum_{i=1}^n \xi(i,X_i)}].$

Theorem 9.3.1 (Pascal). The survival probability is maximized by the trajectory $\underline{0}$ where $\underline{0}_k = 0$ for every $k \in \mathbb{N} \cup 0$, i.e,

$$\sigma^X(n) \le \sigma^{\underline{0}}(n).$$

Lemma 9.3.1. $\sigma^X(n) = \exp(-\lambda \sum_{y \in \mathbb{Z}^d} W_X(n,y))$ where $W_X(n,y) = 1 - \mathbf{E}^y [1 - (1-q)^{\sum_{i=1}^n \delta(Y_i^y)}]$. The Y_i^y is a random variable with distribution same as i.i.d. $Y_i^{j,y}$.

Proof. Let $X: \mathbb{N} \cup 0 \to \mathbb{Z}^d$ with $X_0 = 0$ be the trajectory. Now,

$$\begin{split} \sigma^{X}(n) &= \mathbf{E}^{\xi}[(1-q)^{\sum_{i=1}^{n}\xi(i,X_{i})}] \\ &= \mathbf{E}^{\xi}[(1-q)^{\sum_{i=1}^{n}\sum_{y\in\mathbb{Z}^{d}}\sum_{1\leq j\leq N_{y}}\delta_{X_{i}}(Y_{n}^{j,y})}] \\ &= \prod_{y\in\mathbb{Z}^{d}}\mathbf{E}^{\xi}[\prod_{1\leq j\leq N_{y}}(1-q)^{\sum_{i=1}^{n}\delta_{X_{i}}(Y_{n}^{j,y})}] \\ &= \prod_{y\in\mathbb{Z}^{d}}\mathbf{E}^{y}\mathbf{E}^{N_{y}}[\prod_{1\leq j\leq N_{y}}(1-q)^{\sum_{i=1}^{n}\delta_{X_{i}}(Y_{n}^{j,y})}] \\ &= \prod_{y\in\mathbb{Z}^{d}}\sum_{k=0}^{\infty}\frac{e^{-\lambda}\lambda^{k}}{k!}\mathbf{E}^{y}[\prod_{1\leq j\leq k}(1-q)^{\sum_{i=1}^{n}\delta_{X_{i}}(Y_{n}^{j,y})}] \\ &= \prod_{y\in\mathbb{Z}^{d}}\sum_{k=0}^{\infty}\frac{e^{-\lambda}\lambda^{k}}{k!}(\prod_{1\leq j\leq k}(1-q)^{\sum_{i=1}^{n}\delta_{X_{i}}(Y_{n}^{j,y})})^{k} \\ &= \prod_{y\in\mathbb{Z}^{d}}e^{-\lambda(1-\mathbf{E}^{y}((1-q)^{\sum_{i=1}^{n}\delta_{X_{i}}(Y_{n}^{j,y})}))} \\ &= e^{-\lambda\sum_{y\in\mathbb{Z}^{d}}W_{x}(n,y)}. \end{split}$$

Lemma 9.3.2. $W_X(n,y) = 1 - \mathbf{E}^y[1 - (1-q)^{\sum_{i=1}^n \delta(Y_i^y)}] = \mathbf{P}_y^X(\tau \le n)$, where $\tau = \min\{i \ge 0 | X_i = Y_i, Z_i = 1\}$.

Lemma 9.3.3. $\sum_{y \in \mathbb{Z}^d} \mathbf{P}_y^X(\tau \le n) \ge \sum_{y \in \mathbb{Z}^d} \mathbf{P}_y^0(\tau \le n)$.

Proof. Let

$$q = \mathbf{P}(Z_n = 1)$$

$$= \mathbf{P}_{X_n} (\bigcup_{y \in \mathbb{Z}^d} \{Z_n = 1, Y_n = y\})$$

$$= \sum_{y \in \mathbb{Z}^d} \mathbf{P}_{X_n} (Z_n = 1, Y_n = y)$$

$$= \sum_{y \in \mathbb{Z}^d} \mathbf{P}_{X_n} (Z_n = 1, Y_n = X_n)$$

$$= \sum_{y \in \mathbb{Z}^d} \left[\mathbf{P}^X (\tau = n) + \sum_{k=0}^{n-1} \mathbf{P}^X_y (\tau = k) p_{n-k}^y (X_n - X_k) q \right]$$

Lemma 9.3.4. For a lazy symmetric random walk on \mathbb{Z}^d .

$$p_n^Y(0) \ge p_n^Y(y), \forall y \in \mathbb{Z}^d$$

 $p_n^Y(0) \ge p_{n+1}^Y(0).$

Therefore using the above lemma, we get:

$$q \le \sum_{y \in \mathbb{Z}^d} \left[\mathbf{P}^X(\tau = n) + \sum_{k=0}^{n-1} \mathbf{P}_y^X(\tau = k) p_{n-k}^y(0) q \right].$$

Also, replacing $X = \underline{0}$ in $\sum_{y \in \mathbb{Z}^d} \left[\mathbf{P}^X(\tau = n) + \sum_{k=0}^{n-1} \mathbf{P}^X_y(\tau = k) p_{n-k}^y(X_n - X_k) q \right]$, we get:

$$q = \sum_{y \in \mathbb{Z}^d} \left[\mathbf{P}^0(\tau = n) + \sum_{k=0}^{n-1} \mathbf{P}^0_y(\tau = k) p_{n-k}^y(0) q \right]$$

Let

$$\begin{split} S_n^X &= \sum_{y \in \mathbb{Z}^d} \mathbf{P}_y^X(\tau \le n) \\ S_n^0 &= \sum_{y \in \mathbb{Z}^d} \mathbf{P}_y^0(\tau \le n) \\ S_n^X - S_{n-1}^X &= \sum_{y \in \mathbb{Z}^d} \mathbf{P}_y^X(\tau = n) \end{split}$$

We define $S_{-1}^X = S_{-1}^0 = 0$. We have

$$\begin{split} q &= \sum_{y \in \mathbb{Z}^d} \left[\mathbf{P}^X(\tau = n) + \sum_{k=0}^{n-1} \mathbf{P}^X_y(\tau = k) p_{n-k}^y(X_n - X_k) q \right] \\ &\implies (S_n^X - S_n^0) \ge (1 - q p_i^Y(0)) (S_{n-1}^X - S_{n-1}^0) + q \sum_{k=0}^{n-2} (S_k^X - S_k^0) (p_{n-k-1}^Y(0) - p_{n-k}^Y(0)) \end{split}$$

Now using induction, we get $S_n^X \ge S_n^0$.