Матлог, лекции

1 Введение

Логика — довольно старая наука, но наш предмет довольно молодой В какой-то момент логики как дисциплиниы, которая учит просто правильно рассуждать, стало нехватать. Появилась теория множеств. Общего здравого смысла не хватает, нужен строгий математичесий язык. Это рубеж 19-20 веков.

У нас теория множеств не будет фокусом, как это могло бы быть на мат. факультете.

Теория множеств, когда она была впервые сформулирована, была противоречива (как матан, сформулированный Ньютоном). Чтобы уверенно и эффективно заниматься матаном, нужно суметь его формализовать.

<Парадокс Рассела / парадокс брадобрея> Мы приписываем элементу-человеку свойство, которое невыполнимо. Объекта, выходит, не существует. Мы смогли очень быстро определить противоречие в этом определении. Но, может быть, мы не смогли его определить в других наших определениях? (конструкциях вещественной прямой, и т.д и т.д)

Программа Гильберта.

- 1. Формализуем математику! Сформулируем теорию на языке (не на русском или английском), который не будет допускать парадоксов,
- 2. ... и на котором можно будует доказать непротиворечивость.

В 1930 году становится понятно, что сколько-нибудь сильная (= в ней можно построить формальную арифметику) теория не может быть доказана непротиворечивой.

Возможно, сама наша логика неправильная? Эта идея будет нам полезна, и к ней мы ещё вернемся.

Возможно, что это просто свойство мира, и мы хотим невозможного.

Из этих рассуждений выросло большое множество хороших идей, которые оказались полезны в других местах. Матлогика служит широкому кругу нужд.

Мы можем доказывать, что программа работае корректно. Именно доказывать, а не проверять тестами!

Мы можем изучать свойства самих языков. Изоморфизм Карри-Говарда— доказательство это программа, утверждения это тип. Можно изучать языки программирования и можно развернуть изоморфизм: изучать математкиу как язык программирования.

 Φ ункциональные языки: окамль + хаскель. Ознакомление с этими языками преставляет собой способ ознакомиться с предметом немного с другой стороны.

2 Исчисление высказываний

Мы говоирм на двух языках: на предметном языке и метаязыке. Предметный язык – это то, что изучается, а метаязык – это язык, НА котором это изучается.

На уроках английского предметным является сам английский, а метаязыком может быть русский. Метаязык — это язык исследователя, а предметный язык — это язык исследоваемого. Что такое язык вообще? Хороший вопрос.

Высказывание — это одно из двух:

- 1. Большая латниская буква начала алфавита, возможно с индексами и штрихами это пропозициональные переменные.
- 2. Выражение вида $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\neg \alpha)$.

В определении выше альфа и бета это метапеременные— места, куда можно подставить высказывание.

- 1. α, β, γ метапеременные для всех высказываний.
- 2. X, Y, Z метапеременные для пропозициональных переменных.

Метапеременные являются частью языка исследователя.

В формализации мы останавливаемся до места, в котором мы можем быть уверены, что сможем написать программу, которая всё проверяет.

Сокращение записи, приоритет операций: сначала \neg , потом &, потом \lor , потом \rightarrow . Если скобки опущены, мы восстанавливаем их по приоритетам. Выражение без скобок является частью метаязыка, и становится частью предметного, когда мы восстанавливаем их. Скобки последовательных импликаций расставляются по правилу правой ассоциативности — справа налево.

2.1 Теория моделей

У нас есть истинные значения $\{T,F\}$ в классической логике. И есть оценка высказываний $[\![\alpha]\!]$. Например $[\![A\lor\neg A]\!]$ истинно. Всё, что касается истинности высказываний, касается теории моделей.

Определение 1. Оценка — это функция, сопоставляющая высказыванию его истинное (истинностное) значение.

2.2 Теория доказательств

Определение 2. Аксиомы — это список высказываний. Схема аксиомы — высказывание вместе с метопеременными; при любой подстановке высказываний вместо метапеременной получим аксиому.

Определение 3. Доказательство (вывод) — последовательность высказываний $\gamma_1, \gamma_2 \dots$ где γ_i — любая аксиома, либо существуют j, k < i такие что $\gamma_j \equiv (\gamma_k \to \gamma_i)$. (знак \equiv здесь сокращение для "имеет вид"). Это правило "перехода по следствию" или Modus ponens.

Определим следующие 10 схем аксиом для того исчисления высказываний, которое мы рассматриваем.

- 1. $\alpha \to \beta \to \alpha$ добавляет импликацию
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ удаляет импликацию
- 3. $\alpha \wedge \beta \rightarrow \alpha$
- 4. $\alpha \wedge \beta \rightarrow \beta$
- 5. $\alpha \to \beta \to \alpha \land \beta$
- 6. $\alpha \to \alpha \lor \beta$
- 7. $\beta \to \alpha \vee \beta$
- 8. $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to (\neg \alpha)$
- 10. $\neg \neg \alpha \to \alpha$ очень спорная штука.
 - <вывод A o A >

3 Теорема о дедукции

Определение 4. (Метаметаопределение). Будем большими греческими буквами $\Gamma, \Delta, \Sigma \dots$ — списки формул, неупорядоченные.

Определение 5. Вывод из гипотез: $\Gamma \vdash \alpha$ (см. лекцию 1)

Теорема 1. $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \rightarrow \gamma$.

Доказательство. \Leftarrow Пусть $\delta_1, \delta_2 \dots \delta_n \equiv \alpha \to \beta$ выводит $\alpha \to \beta$. Дополним этот вывод двумя новыми высказываниями: $\delta_{n+1} \equiv \alpha$ (дано нам в гипотезе), $\gamma_{n+2} \equiv \beta$ (МР шагов n, n+1) — это и требовалось.

- Напишем программу, которая трансформирует один вывод в другой. Инвариант, который мы будем поддерживать: всё до $\alpha \to \delta_i$ док-во. Доказательство индукцией по n.
 - 1. База: n = 1 без комментариев.
 - 2. Если $\delta_1, \ldots, \gamma_n$ можно перестроить в доказательство $\alpha \to \gamma_n$, то $\gamma_1 \ldots \gamma_{n+1}$ тоже можно перестроить. Разберём случаи:

$$-\delta_i$$
 — гипотеза из Г. Тогда

$$(i-0.1) \, \, \delta_i \, \, ($$
аксиома или гипотеза $)$

$$(i-0.2)$$
 $\delta_i \rightarrow \alpha \rightarrow \delta_i$ (cxema 1)

(i)
$$\alpha \to \delta_i$$
 (MP)

ДОПОЛНИТЬ

4 Теория моделей

Мы можем докаывать модели или оценивать их. "Мы можем доказать, что мост не развалится или можем выйти и попрыгать на нём."

Определение 6. \mathbb{V} — истинностное множество.

F — множество высказываний нашего исчисления высказываний.

P — множество пропозициональных переменных.

$$\llbracket \cdot \rrbracket : F \to \mathbb{V}$$
 — оценка

Определение 7. Для задания оценки необходимо задать оценку пропозициональных переменных.

$$\llbracket \cdot \rrbracket : P \to \mathbb{V} \quad f_P$$

Тогда:

$$\llbracket x \rrbracket = f_p(x)$$

Замечание 1. Обозначение: значения пропозициональных переменных будем определять в верхнем индексе: $[\![\alpha]\!]^{A=T,B=F...}$

Определение 8. α — общезначна (истинна), если $[\![\alpha]\!] = T$ при любой оценке P.

- α невыполнима (ложна), если $[\![\alpha]\!] = F$ при любой оценке P.
- α выполнима, если $\llbracket \alpha \rrbracket = T$ при некоторой f_P .
- α опровержима, если $\llbracket \alpha \rrbracket = F$ при некоторой f_P .

Определение 9. Теория корректна, если доказуемость влечёт общезначимость.

Теория полна, если общезначимость влечёт доказуемость.

Определение 10. $\Gamma \vDash \alpha$, α следует из $\Gamma = \{\gamma_1, \dots, \gamma_n\}$, если $[\![\alpha]\!] = T$ всегда при $[\![\gamma_i]\!] = T$ при любых i.

Теорема 2. Исчисление высказываний корректно

$$\vdash \alpha$$
 влечёт $\models \alpha$

Мы даём доказательство на метаязыке, не пускаясь в отчаянный формализм. Такая строгость нас устраевает.

Доказательство. Индукция по длине доказательства. Не очень сложно.

В матлогике бесмысленно формализовывать русский язык. Она нужна, чтобы дать ответы на сложные вопросы в математике, где здравого смысла недостаточно и нужна формализация.

5 Полнота исчисления высказываний

Теорема 3. Исчисление высказываний полно.

Определение 11.
$$[\beta]\alpha = \begin{cases} \alpha, & [\![\beta]\!] = T \\ \neg \alpha, & [\![\beta]\!] = F \end{cases}$$

Лемма 3.1.
$$_{[\alpha]}\alpha, _{[\beta]}\beta \vdash_{[\alpha\star\beta]}\alpha\star\beta$$
 $_{[\alpha]}\alpha \vdash_{[\neg\alpha]}\neg\alpha$

Лемма 3.2. Если $\Gamma \vdash \alpha$, то $\Gamma, \Delta \vdash \alpha$.

Лемма 3.3. Пусть дана α, X_1, \dots, X_n — её переменные.

$$[X_1]X_1, \ldots, [X_n]X_n \vdash_{[\alpha]} \alpha$$

Доказательство. Индукция по структуре. ДОПОЛНИТЬ

Сократим запись и вместо этой кучи X будем писать X'.

Лемма 3.4. Если $\models \alpha$, то $X' \vdash \alpha$.

Лемма 3.5.

$$\Gamma, Y \vdash \alpha, \quad \Gamma, \neg Y \vdash, \text{ TO } \Gamma \vdash \alpha$$

Теорема 4. Если $\models \alpha$, то $\vdash \alpha$.

6 Интуиционистская логика

Мы не хотим дурацких коснтрукций вроде парадокса брадобрея. Мы не хотим странных, но логически верных утверждений вроде $A \to B \lor B \to A$. Интуиционисткая логика предлагает свою математику, в которой своя интерпретация логических связок. ВНК-интерпретация (Брауер-Гейтинг-Колмогоров).

- $\alpha, \beta, \gamma \dots$ это конструкции.
- $\alpha \wedge \beta$ если мы умеем строить и α , и β .
- $\alpha \lor \beta$, если мы умеем строить α, β и знаем, что именно.
- $\alpha \to \beta$, если мы умеем перестроить α в β .
- 1 не имеет построения
- $\bullet \ \neg \alpha \equiv \alpha \to \bot$

"Теория доказательств". Рассмотрим классическое исчисление высказываний и заменим схему аксиом 10 на следующую

$$\alpha \to \neg \alpha \to \beta$$

В этой формализации мы следуем не сути интуиционисткой логики, а традиции. В интуиционисткой логике формализм это не источник логики.

Примеры моделей.

- 1. Модели КИВ подходят: корректны, но не полны.
- 2. Пусть X топологическое пространство.

7 Общая топология

Раньше были телевизоры с *бесконченым* количеством пикселей (это зависит от химических свойств вещества кинескоп).

Возьмем множество X. Определим на нем топологию как подмножество множества всех подмножеств $\Omega \subseteq \mathcal{P}(X)$. Ω — топология, если это множество открытых множеств и выполнены следующие условия:

- 1. $\varnothing, X \in \Omega$;
- 2. $\bigcup_i \in \Omega$, если все $A_i \in \Omega$;
- 3. $\bigcap_{i=1}^n A_i \in \Omega$, если $A_1, \dots, A_n \in \Omega$.

То есть топологическое пространство — пара $\langle X,\Omega \rangle$ и про Ω верны приведенные выше три утверждения.

Определение 12 (Замкнутое мноежство). Множество B такое, что $X \setminus B \in \Omega$ называется замкнутым.

Определение 13 (Связное топологическое пространство). $\langle X,\Omega\rangle$ связно, если нет $A,B\in\Omega$: $A\cup B=X$ и $A\cap B=\varnothing$

Определение 14 (Подпространство). $\langle X_1,\Omega_1\rangle$ — подпространство $\langle X,\Omega\rangle$, если $X_1\subseteq X$ и $\Omega_1=\{a\cap X_1\mid a\in\Omega\ \}$

Определение 15 (Связное множество). Множество, являющееся связным подпространством.

7.1 Примеры топологических пространств

Возьмем дерево (граф). Множество X — множество вержин. Ω — множество всех вершин, что $B \in \Omega$, если $a \in B$, $x \leqslant a$ влечет $x \in B$. То есть Ω — семейство множеств вершин, которые входят вместе с поддеревом.

Теорема 5. Граф без цикла свяен тогда и только тогда, когда оно своязно как топологическое пространство.

Доказательство будет в дз.

Определение 16 (Решетки). X — частично упорядоченное множество отношением \leq .

Множество верхних граней a, b — множество $\{x \in X \mid a \leq x, b \leq x\}$.

Множество нижних граней $a, b - a \sqcup b$ — множество $\{x \in X \mid a \geqslant x, b \geqslant x\}$.

A, наименьший элемент A — такой $a \in A$, что нет $b \in A$, $b \leqslant a$.

a+b= наименьший элемент множества верхних граний.

a*b= наибольший элемент множества нижних граний.

Решетка — частично упорядоченное множество, где для каждых двух элементов существуют a+b и a*b.

Пример 1. Дерево — не решетка (в общем случае), так как a+b есть, а a*b может не быть.

Теорема 6. Пусть $\langle X, \Omega \rangle$ топологическое пространство, $A, B \in \Omega$. $A \leqslant B$, если $A \subseteq B$. Тогда $\langle \Omega, \leqslant \rangle$ — решетка. $A \cdot B = A \cap B$, $A + B = A \cup B$.

Определение 17. Дистрибутивная решетка — это такая решетка, что $a,b,c\in\Omega,\ a+(b\cdot c)=(a+b)\cdot(a+c).$

Лемма 6.1. Для дистрибутивной решетки так же верно, что $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$.

Определение 18. Псевдодополнение $a \to b =$ наименьшее $\{c \mid a \cdot c \leqslant b\} = b$.

Определение 19. Диамант — такая решетка, что там нет для кого-то псевдодопллнения.

Определение 20. Решетка с псевдодополнением для всех элементов называется импликативной.

Определение 21 (0 и 1). .

- 0 элемент, что $0 \leqslant x$ при всех x.
- 1 элемент, что $x \leqslant 1$ при всех x.

Теорема 7 (В импликативной решетке 1 есть всегда). $X, \leqslant -$ импликативная решетка. Рассмотрим $a \to a = \text{наиб}\{c \mid q \cdot c \leqslant a\} = \text{наиб}X = 1.$

Теорема 8. Рассмотрим $\langle X,\Omega \rangle$ — импликативная решетка с 0. Рассмотрим И.И.В. Определим оценки $\mathbb{V}=X$:

- $\bullet \ \llbracket \alpha \& \beta \rrbracket = \llbracket \alpha \rrbracket \cdot \llbracket \beta \rrbracket.$
- $\bullet \ \ \llbracket \alpha \vee \beta \rrbracket = \llbracket \alpha \rrbracket + \llbracket \beta \rrbracket.$
- $\bullet \ \ \llbracket \alpha \to \beta \rrbracket = \llbracket \alpha \rrbracket \to \llbracket \beta \rrbracket.$
- $\bullet \ \llbracket \neg \alpha \rrbracket = \llbracket \alpha \rrbracket \to 0.$

 α истинно, если $\llbracket \alpha \rrbracket = 1$.

Полученная модель — корректная модель И.И.В.

 $\overline{\mathbf{y}}$ нас будет натуральный вывод, интуиция и все такое.

 $\overline{\Gamma, \varphi \vdash \varphi}$ (аксиома).

Вывод утверждения в доказательстве $\Gamma \vdash \varphi$.

$$\begin{split} &\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}, \quad \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi}, \quad \frac{\Gamma, \varphi}{\Gamma \vdash \psi}, \quad \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \& \psi}, \quad \frac{\Gamma, \vdash \varphi \& \psi}{\Gamma \vdash \varphi}, \quad \frac{\Gamma, \vdash \varphi \& \psi}{\Gamma \vdash \psi}, \\ &\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi}, \quad \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}, \quad \frac{\Gamma, \varphi \vdash \rho}{\Gamma \vdash \varphi}, \quad \frac{\Gamma, \varphi \vdash \varphi}{\Gamma \vdash \varphi}, \quad \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}. \end{split}$$

В теореме выше нужно добавить, что $[\![\bot]\!]=0.$ $\neg\alpha\equiv\alpha\to\bot.$