Homework assignment #4 of Error-Correcting Codes

Due date Dec. 26, 2019

Consider a (63,55) Reed-Solomon code over $GF(2^6)$ with generator polynomial $g(X) = (X + \alpha)(X + \alpha^2)(X + \alpha^3)(X + \alpha^4)(X + \alpha^5)(X + \alpha^6)(X + \alpha^7)(X + \alpha^8)$, where the primitive element α of the finite field $GF(2^6)$ satisfies $1 + \alpha + \alpha^6 = 0$.

- 1. Let $r(X) = \alpha^{36} + \alpha^4 X + \alpha^{33} X^2 + \alpha^{21} X^3 + \alpha^{56} X^4 + \alpha^{52} X^5 + \alpha^{47} X^6 + \alpha^{13} X^7 + \alpha^{39} X^8 + X^9 + \alpha^5 X^{10} + \alpha^{11} X^{23} + \alpha^{37} X^{60}$ be the received sequence. Use Berlekamp-Massey decoding algorithm to recover the transmitted codeword.
 - (a) Show r, Δ_r , T(X), B(X), $\Lambda(X)$, L for each iteration r.
 - (b) Find the error locations and error values.
 - (c) Find the decoded codeword.
- 2. Let $r(X) = \alpha^{36} + \alpha^4 X + \alpha^{33} X^2 + \alpha^{21} X^3 + \alpha^{56} X^4 + \alpha^{52} X^5 + \alpha^{47} X^6 + \alpha^{13} X^7 + \alpha^{39} X^8 + X^9 + \alpha^5 X^{10} + \alpha^{11} X^{23} + \alpha^{37} X^{60}$ be the received sequence. Use Euclidean algorithm to recover the transmitted codeword.
 - (a) Show $s^{(r)}(X)$, $t^{(r)}(X)$, $Q^{(r)}(X)$, $A^{(r)}(X)$, for each iteration r.
 - (b) Find the error locations and error values.
 - (c) Find the decoded codeword.