Adopted Levels, Gammas

```
History
                                                            Author
                                                                              Citation
                                                                                                Literature Cutoff Date
                                      Full Evaluation
                                                          Jun Chen
                                                                        NDS 140,1 (2017)
                                                                                                     30-Sep-2015
O(\beta^{-}) = -14323.0 \ 28; S(n) = 15635.0 \ 6; S(p) = 8328.17 \ 2; O(\alpha) = -7039.76 \ 3
S(2n)=28930.52 20, S(2p)=14709.51 20 (2012Wa38).
First identification of <sup>40</sup>Cl nuclide by A. J. Dempster (Phys. Rev., 20 (1922), p. 631).
Additional details of data for resonances in different reactions can be found in the following datasets:
^{36}Ar(\alpha,\gamma):resonances: 24 resonances from E\alpha(lab)=5486 to 13330 (excitation energy in ^{40}Ca=11978-19038).
^{39}K(p,\gamma): excitation energies and \gamma-decays for about 160 resonances.
^{39}K(p,p),(p,\alpha):resonances: 267 resonances from E(p)(lab)=1102-6660 (excitation energy in ^{40}Ca=9403-14680).
^{40}Ca(p,p\alpha),(p,2p):resonances: two resonances with excitation energies (in ^{40}Ca) at 11700 and 12300.
Other reactions (giant resonances, properties of compound nucleus, reaction mechanism, etc.):
<sup>12</sup>C(<sup>28</sup>Si,X) or <sup>28</sup>Si(<sup>12</sup>C,X); 2002Ro35, 1995Na09, 1986Ha33, 1983Ra26, 1979Os01, 1979Cl02, 1979Ba49, 1973Ho37; reaction
    mechanisms.
Additional information 1.
<sup>24</sup>Mg(<sup>16</sup>O,X): 1991Fo08, 1985Sa11, 1981Nu02, 1980Sa31, 1980Sa12, 1980Pa08, 1979Le02, 1979Cl02, 1973Ho37.
<sup>27</sup>Al(<sup>16</sup>O,t): 1982Aw01, 1981Aw02: reaction mechanism.
^{39}K(p,p),(p,\alpha):resonances: 1987WaZI, 1990Bu02, 1970De30: see dataset.
<sup>40</sup>Ca(<sup>40</sup>Ca,X): 1997Sc40: giant quadrupole resonance.
^{40}Ca(p,π<sup>-</sup>): 1983Sh31: E=190 MeV. Measured \sigma.
^{40}Ca(p,p\alpha),(p,2p):resonances: 2001Sc25: see dataset.
Photonuclear reactions: {}^{40}Ca(\gamma,n),(\gamma,p),(\gamma,2n),(\gamma,pn), etc: 1974Br15, 1972Br58, 1971Sh23, 1971Is06, 1968Go29, 1966An03,
^{40}Ca(γ,π): 2002Kr02: deduced Δ' resonance. Others: 1988St12, 1982Do12.
<sup>40</sup>Ca(e,X): 1976Zi02.
^{40}Ca(\mu^-, \nu): 2003Po09: photon asymmetry measured in radiative muon capture in ^{40}Ca.
^{40}Ca(\pi^+, K^+): 1991Pi07.
^{40}Ca(K,\pi^-): 1981Be17, 1989Ta16: hypernuclear production.
<sup>40</sup>Ca(p-bar,X): 2002Ha01, 2001Tr23, 2001Tr19: measured anti-protonic x-rays.
<sup>40</sup>Ca(p-bar,p-bar): 1984Ga32.
<sup>40</sup>Ca(p,np): 1984Ah04 (also 1983AhZY): deduced neutron hole states.
<sup>40</sup>Ca(pol p,pol n): 1986Wa28: deduced spin-flip probability.
^{40}Ca(^{20}Ne,^{16}O\alpha): 1986Sh30.
Hyperfine structure, isotope shifts, nuclear radius measurements: 2000Mu17, 2000Ga58, 1995Ku41, 1993Si20, 1992Ve02,
    1992Ma20, 1991As06, 1990Go10, 1984Va08, 1983Lo13, 1982Av02, 1982An15, 1980Be13, 1979Kl01, 1978Br31, 1976Ne08,
Mesic atoms: 1983Ku10, 1981Wo02, 1980Po01, 1979Ba07, 1971Ku08, 1970Ma26, 1970Ku03, 1966Co02.
Mesic atoms, in most studies, deduced isotope shifts, root-mean square radius.
1983Ku10, 1980Po01, 1979Ba07, 1970Ku03: measured pionic x rays.
1981Wo02, 1970Ma26, 1966Co02: measured muonic x rays.
1971Ku08: measured kaonic x rays.
Giant (dipole, quadrupole and octupole) resonances: see inelastic scattering datasets: {}^{40}Ca(e,e'); (\pi^+,\pi^{+\prime}),(\pi^-,\pi^{-\prime}); (p,p'),(pol p,p');
    (d,d'),(pol\ d,d');(^{3}He,^{3}He');(\alpha,\alpha');(HI,HI').
In XREF column, level population indicated by letter Z or z refers to the following level energies in different reactions:
<sup>41</sup>Ti εp decay (80.4 ms): 0, 3353.62, 3737, 3904.
^{43}Cr β3p decay (21.2 ms): 0.
<sup>44</sup>V ε\alpha decay (111 ms): 0.
<sup>14</sup>N(<sup>28</sup>Si,d): 6930, 8098.
<sup>36</sup>Ar(<sup>7</sup>Li,t): 3900, 5265, 5615, 6290, 6525, 7010.
```

³⁶Ar(¹⁶O, ¹²C): 3353, 3900, 5250, 6900, 9900, 12400.

 40 Ca(p,p α),(p,2p):resonances: 11700, 12300.

Inelastic scattering: 0, 3740, 3900, 4490, 5900, 6290, 6400, 6940, 7300. Giant resonances at 7.8, 10.7, 14.0, 17.6 and 26 MeV.

40 Ca Levels

Cross Reference (XREF) Flags

	A B C D E F G H I J K L	⁴⁰ Sc ε deca ⁴ He(³⁶ Ar,α) ³² S(¹² C,α) ³⁶ Ar(α,γ):re ³⁶ Ar(⁶ Li,d) ³⁸ Ar(³ He,n) ³⁹ K(p,γ) ³⁹ K(p,p),(p, ³⁹ K(d,n) ³⁹ K(³ He,d) ⁴⁰ Ca(γ,γ')	α):resonances	O P Q R S T U V W X Y	40 Ca(d,d' 40 Ca(3 He 40 Ca($^{\alpha}$.me 40 Ca($^{\alpha}$.me 40 Ca($^{\alpha}$.me 41 Ca(d,t) 41 Ca(3 He 42 Ca(p,t) (HI,xny)	γ) γ)),(pol p,p')),(pol d,d') , ³ He') 'γ)	Other AA AB AC AD AE AF AG AH AI AJ AK	rs: 43 Cr β^{+} 3p decay (21.2 ms) 44 V $\varepsilon\alpha$ decay (111 ms) 14 N(28 Si,d) 36 Ar(7 Li,t) 36 Ar(16 O, 12 C) 40 Ca(p,p α),(p,2p):resonances 40 Ca(t,t),(pol t,t) 40 Ca(n,n'),(pol n,n') 40 Ca($^{\pi}$, $^{\pi^{+'}}$),($^{\pi}$ -, $^{\pi^{-'}}$) 42 Ca(16 O, 18 O) Inelastic scattering
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@	XR	EF				Comments
0.0 3352.62 ^{&} 9	0+	stable 2.17 ns 8	AB DEFGH JK M			Double β deca set on half-I $T_{1/2}$: experime (2001Be79, >5.9×10 ²¹ ; Evaluated rms Additional info XREF: Others XREF: T(?). J^{π} : $L(\alpha,\alpha')=L$ (e,e').	y (\varepsilon\varepsilon) ife from the front of the from the from the front of the	H, AI)=L(p,t)=0 from 0+; E0 excitation in
3736.69 5	3-	41 ps 4	B D F H JKL	NOPQRS	TUVWXYZ	8 in $(p,p'\gamma)$. Additional information XREF: Others μ =+1.6 3 (20) T=0 (1972Sc1 J π : L (α,α') =L (e,e') . μ : from tiltedand recoil in	ormation: AH,	AI, AK (0.1979Ni04,1976Ja16) $(0.1919\text{L}(p,t)=3 \text{ from } 0^+; \text{E3 excitation in a perfine field IPAC in } (\alpha,\alpha')(1979\text{Ni}04)$ $(0.1919\text{Lin})(\alpha,\alpha')(1976\text{Ja}16)$. Other: 1.56 30
3904.38 & <i>3</i>	2+	35 fs 7	D FGH JKLM	NOPQR	TU XYZ	1987Ma25). T _{1/2} : from (p, Additional info XREF: Others	p'γ). ormatio : AD, A (³ He,n	

 $^{^{40}}$ Ca(t,t),(pol t,t): 0.

⁴⁰Ca(n,n'),(pol n,n'): 0, 3353, 3737, 3904, 4491.

 $^{^{40}}$ Ca(π +, π +'),(π -, π -'): 0, 3353, 3736, 3908, 4492, 6256, 6583, 6700, 11700, 13400, 17500.

 $^{^{42}}$ Ca(16 O, 18 O): 0.

E(level) [†]	Jπ‡	T _{1/2} #@	XREF	Comments
4491.43 4	5-	289 ps 8	B D F H JKL NOPQRSTUVWXY	$T_{1/2}$: weighted average of 40 fs 7 in (p, γ), 29 fs + 10 -6 in (γ , γ'), 36 fs 14 in (n,n' γ), and 33 fs 7 in (p,p' γ). Additional information 5. XREF: Others: AH, AI, AK μ =+2.6 5 (2014StZZ,1974He13) T=0 (1972Sc19) J ^{π} : L(α , α')=L(p,t)=5 from 0 ⁺ ; E5 excitation in (e,e'). $T_{1/2}$: weighted average of 295 ps 5 in (α , $\alpha'\gamma$), 272 ps 8 in (p,p' γ), and 0.38 ns 8 in (HI,xn γ). μ : IPAD method in (p,p' γ) (1974He13). Additional information 6.
5211.56 ^d 17	0+	1.02 ps <i>21</i>	D fgH KL OPQ XY	J^{π} : L(p,t)=L(6 Li,d)=0 from 0 ⁺ . $T_{1/2}$: from (p,p' γ).
5248.79 5	2+	83 fs +11-9	d fgH KLMNOPQ S U XY	XREF: Others: AD
0				J^{π} : L(p,t)=L(6 Li,d)=L(p,p')=2 from 0 ⁺ ; E2 excitation in (e,e'). $T_{1/2}$: weighted average of 0.15 ps 7 in (p, γ) and 94 fs 17 in (p,p' γ) and 79 fs +11-9 in (γ , γ').
5278.80 ^{&} 6	4+	0.21 ps 4	d FgH KL OPQ U Y	XREF: Others: AD, AE J^{π} : L(6 Li,d)=L(6 L(9)=4 from 0 $^{+}$; $\gamma(\theta)$ in (9).
5613.52 <i>3</i>	4-	0.60 mg 11	B d H JKL OPQ sT VW Y	$T_{1/2}$: weighted average of 0.19 ps 4 in $(n,n'\gamma)$, 0.225 ps 35 in $(p,p'\gamma)$, and 0.16 ps $+13-4$ in (p,γ) . XREF: Others: AD
3013.32 3	4	0.69 ps <i>11</i>	B U II JAL OF Q SI VW I	J ^{π} : spin from $\gamma(\theta)$ in (HI,xn γ) and $\gamma\gamma(\theta)$ in (p, γ); parity from L(d,n)=L(3 He,d)=3 from 3/2+ and L(d,t)=L(3 He, α)=2 from 7/2 $T_{1/2}$: from (p,p' γ). Other: 69 fs 55 in (p, γ). Additional information 7.
5629.41 ^d 6	2+	40 fs <i>15</i>	d F H MNOPQ stU XY	XREF: Others: AD XREF: N(5610). J^{π} : L(p,t)=2 from 0 ⁺ ; E2 excitation in (e,e'). $T_{1/2}$: weighted average of 42 fs 15 from (p,p' γ) and 38 fs +20-10 from (γ , γ ').
5902.63 7	1-	15.8 fs 22	D F H JKLMNOPQ U WX	XREF: Others: AK XREF: D(5900)N(5940). J ^π : L(p,t)=L(⁶ Li,d)=1 from 0 ⁺ . T _{1/2} : weighted average of 42 fs <i>14</i> from (p,p'γ) and 15.2 fs +23-18 (y,γ'). 2004To07 in (HI,xnγ) propose this as 1 ⁻ member of K ^π =0 ⁻ band, not observed by 2004To07.
6025.47 5	2-	171 fs 2 <i>1</i>	f H JKL OPQ uVWx	Additional information 8. J ^π : L(³ He,d)=3 and L(d,n)=1+3 from 3/2 ⁺ ; analyzing power in (pol p,p'). T _{1/2} : from (p,p'γ). Additional information 9.
6029.71 ^b 6	3 ⁺	0.40 ps 8	f H OP u xY	J^{π} : 780.8 γ and 2124.4 γ E2(+M1) to 2 ⁺ ; band assignment in (HI,xn γ).
6160	(3-)		N TU	$T_{1/2}$: from $(p,p'\gamma)$. XREF: T(6100).
6285.15 4	3-	0.33 ps 4	D F H JKL NOPQ STU WX	J ^{π} : L(α , α')=(3). XREF: Others: AD, AI, AK J ^{π} : L(α , α')=L(p,t)=L(6 Li,d)=3 from 0 ⁺ . T _{1/2} : weighted average of 0.27 ps 8 in (p, γ) and 0.35 ps 4 in (p,p' γ).
				- *** * **

E(level) [†]	Jπ‡	T _{1/2} #@	XREF	Comments
<u> D(level)</u>		* 1/2	TINGS	2004To07 in (HI,xn γ) propose this as (3 ⁻) member of K^{π} =0 ⁻ band, not observed by 2004To07.
6422.4 10	2+	12 fs +5-3	M Q	Additional information 10. XREF: Others: AK J ^{\pi} : from (pol p,p').
6507.87 <i>13</i>	4+	128 fs <i>21</i>	d F H OPQ U XY	$T_{1/2}$: from (γ, γ') . XREF: Others: AD J^{π} : $L(p,t)=L({}^{6}Li,d)=L(pol\ p,p')=4$ from 0^{+} . $T_{1/2}$: from $(p,p'\gamma)$.
6542.80 ^d 9	4+	121 fs <i>21</i>	d F H OPQ Y	XREF: Others: AD XREF: O(?). J^{π} : L(6 Li,d)=4 from 0 ⁺ ; 913.3 γ stretched E2
6582.47 10	3-	0.173 fs 28	B d F H JKL NOPQ STUVWX	to 2^+ ; band assignment in (HI,xn γ). $T_{1/2}$: from $(p,p'\gamma)$. XREF: Others: AI XREF: O(?)T(6560). J^{π} : $L(\alpha,\alpha')$ = $L(p,t)$ = $L(^6Li,d)$ = $L(pol\ p,p')$ =3.
				$T_{1/2}$: from $(p,p'\gamma)$. 2004To07 in (HI,xn γ) propose this as possible (3 ⁻) member of K^{π} =0 ⁻ band, not observed by 2004To07. Additional information 11.
6750.41 7	2-	96 fs 28	F H JKL OPQ UVWX	XREF: Others: AI J^{π} : from analyzing power in (pol p,p') with L=3; L(3 He,d)=1 and L(d,n)=1+3 from 7/2+. $T_{1/2}$: from (p,p' γ).
6908.70 8	2+	2.41 fs +29-23	d F H MNOPQ X	Additional information 12. XREF: Others: AD J^{π} : L(p,t)=L(6 Li,d)=L(p,p')=2 from 0 ⁺ . $T_{1/2}$: from (γ,γ') . Others: <35 fs from (p,γ) , <10 fs from $(p,p'\gamma)$.
6930.2 ^{&} 3	6+	0.34 ps +9-17	d F 1 0 v Y	XREF: Others: AC, AD, AE, AK J^{π} : $L(^{6}Li,d)=6$; $\gamma(\theta)$ and band assignment in (HI,xn γ).
6931.29 6	3-	1.4 ps 6	d H 1 nOPQ stuvW	$T_{1/2}$: from (HI,xn γ) by DSAM. XREF: Others: AD, AK J $^{\pi}$: L(3 He, α)=2 from 7/2 $^{-}$; 2439.8 γ to 5 $^{-}$, 1301.8 γ , 1682.4 γ and 3026.8 γ to 2 $^{+}$. $T_{1/2}$: from (p, γ). Other: 104 fs 28 from (p,p' γ).
6938.0 <i>18</i>	(1 ⁻ to 5 ⁻)	0.42 fs <i>17</i>	d n P stuv	XREF: Others: AD, AK J^{π} : γ to 3 ⁻ .
6950.48 7	1-	1.01 fs 5	d GH JKLMNOPQ tuvWX	$T_{1/2}$: from $(p,p'\gamma)$. XREF: Others: AD, AK J^{π} : $L(p,t)=L(^{3}He,n)=1$ from 0^{+} . $T_{1/2}$: from (γ,γ') . Other: <10 fs from $(p,p'\gamma)$.
7100	(2+)		N	Additional information 13. XREF: Others: AD
7113.1 10	1-	55 fs 28	Н јК Р х	E(level), J^{π} : from (e,e'). XREF: Others: AD J^{π} : 1899.8 γ and 7112.9 γ to 0 ⁺ , 1485 γ and 3206.8 γ to 2 ⁺ ; L(³ He,d)=1 from 3/2 ⁺ ; L(d,n)=1(+3) from 3/2 ⁺ .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@	XR	EF		Comments
7113.73 5	4-	50 fs 21	H jKL	PQ	UVWx	$T_{1/2}$: from $(p,p'\gamma)$. XREF: Others: AD XREF: $K(7117)U(7120)$.
						J ^π : L(p,p')=5 from 0 ⁺ ; L(d,t)=L(³ He,α)=0+2 from $7/2^-$. T _{1/2} : weighted average of 35 fs 21 in (p,p'γ) and 76 fs 28 in (p,γ).
7239.07 8	$(3^-,4,5^-)$	0.10 ps 5	d H	PQ		J^{π} : 3501.4 γ to 3^{-} and 2746 γ to 5^{-} . $T_{1/2}$: from $(p,p'\gamma)$.
7277.82 8	(2,3)+	49 fs <i>35</i>	d f H	PQ		XREF: Others: AK J^{π} : 3541.0 γ to 3 $^{-}$; $L(p,p')=2$ from 0 $^{+}$ for 7278+7301.
7300.67 11	0+	118 fs <i>35</i>	d f H	PQ	U X	$T_{1/2}$: from $(p,p'\gamma)$. XREF: Others: AK J^{π} : $L(\alpha,\alpha')=L(p,t)=L(^6Li,d)=0$. $T_{1/2}$: from $(p,p'\gamma)$.
7397.2 ^b 10	(5 ⁺)	0.47 ps <i>14</i>		PQ	Y	J ^{π} : γ to 4 ⁺ and band assignment in (HI,xn γ). 2004To07 in (HI,xn γ) proposed this as (5 ⁻) member of K^{π} =0 ⁻ band.
7421.9 <i>15</i>		0.20 ps <i>14</i>		PQ	X	$T_{1/2}$: from (p,p' γ). XREF: X(7433).
7446.23 6	3+,4+	0.14 ps 5	Н	PQ	X	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : $L(p,p')=4$ from 0^+ ; γ to 2^+ .
7466.35 7	2+	8 fs <i>4</i>	FΗ	PQ	TU X	$T_{1/2}$: from $(p,p'\gamma)$. XREF: $T(7500)U(?)$.
						J^{π} : L(p,t)=L(p,p')=2 from 0 ⁺ ; 4113.5 γ and 7465.6 γ to 0 ⁺ .
7481?			Н			$T_{1/2}$: from (p,γ) . Other: <10 fs in $(p,p'\gamma)$.
7532.26 5	2-	0.16 ps 4	H JKL	PQ	W	J ^π : L(³ He,d)=1 from 3/2 ⁺ ; L(³ He,α)=2; L(p,p')=3; not 3 ⁻ from (p,γ). $T_{1/2}$: weighted average of 0.22 ps 7 in (p,γ) and
7561.17 <i>7</i>	4+	0.17 ps <i>4</i>	FН	DOD	U X	0.149 ps 35 in $(p,p'\gamma)$. XREF: U(?).
7301.17 7	4	0.17 ps 4	r n	PŲK	0 A	J ^{π} : L(6 Li,d)=4. Note that L(p,t)=(2) is inconsistent and tentative. $T_{1/2}$: from (p,p' γ). Other: 0.18 ps +10-5 in (p, γ).
7623.11 8	$(2^-,3,4^+)$	0.111 ps 28	Н	PQ	X	Additional information 14. XREF: $X(7625)$. J^{π} : 1993.6 γ and 2374.2 γ to 2^{+} and 2009.5 γ to 4^{-} .
						However, $L(p,t)=0$ for a level at 7625 could indicate there may be a separate level, if this assignment is correct. $T_{1/2}$: from $(p,p'\gamma)$.
7658.23 5	4-	<10 fs	B H jKL	PQ	νWX	$T_{-1/2}$. Holin (p,p y). T=1 J^{π} : log $ft=3.3$ from 4^{-} ; analog of g.s. in 40 K (see 1966Er05, 1966An01).
7676.6 5	(6 ⁺)	0.20 ps 5	Нј	PQ	uv Y	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : 2399.2 γ (E2) to 4 ⁺ . $T_{1/2}$: from $(p,p'\gamma)$.
7694.08 <i>4</i>	3-	<6 fs	н јкі	PQ	uvW	T=1 J^{π} : L(d,n)=1 and L(3 He,d)=3 from 3/2+; 2080.6 γ to 4 ⁻ ; analog of the 29.8, 3 ⁻ level in 40 K, see 1966Er05 in (3 He,d). T _{1/2} : from (p, γ). Other: <10 fs in (p,p' γ).

E(level) [†]	Jπ‡	T _{1/2} #@	XR	EF	Comments
7701.8 <i>4</i> 7769.4 <i>10</i>	0 ⁺ (3,4,5 ⁻)	166 fs <i>35</i>	F H H	Q u X PQ X	J ^π : L(⁶ Li,d)=L(p,t)=0. XREF: X(7757). J ^π : 2155.8γ to 4 ⁻ and 4032.5γ to 3 ⁻ ; J=(3,4,5) from γ feeding in (p,γ) (1990Ki07).
7814.7 6	0+		G	PQ X	$T_{1/2}$: from $(p,p'\gamma)$. E(level): from (p,p') . J^{π} : $L(^{3}He,n)=0$.
7870 7872.18 <i>9</i>	3 ⁻ 2 ⁺	2.44 fs +24-20	F H Mi	n PQ U X	J ^{π} : L(⁶ Li,d)=3. XREF: Others: AK J ^{π} : L(p,t)=L(α , α')=2 from 0 ⁺ . T _{1/2} : from (γ , γ'). Other: <14 fs from (p,p' γ).
7928.42 10	4+	49 fs <i>35</i>	H 1	n PQ s U X	XREF: Others: AK $J^{\pi}: L(\alpha,\alpha')=L(p,p')=4 \text{ from } 0^{+}. \text{ Note that}$ $L(p,t)=(3) \text{ is inconsistent and tentative.}$ $T_{1/2}: \text{ from } (p,p'\gamma).$
7972.5	(≤3) ⁻		d J	s x	J^{π} : $L(d,n)=1$.
7974.4 ^d 8 7976.55 3	(6 ⁺) 2 ⁺	21 fs 2 <i>I</i>	H d	PQ s x	E(level): band assignment in (HI,xn γ). J ^{π} : 4624 γ and 7977 γ to 0 ⁺ and 2699 γ to 4 ⁺ .
8018.8 <i>10</i>	0+		d	PQ X	$T_{1/2}$: from $(p,p'\gamma)$. E(level): from $(p,p'\gamma)$. J^{π} : $L(p,t)=0$ from 0^+ .
8051.8 <i>6</i> 8091.61 <i>17</i>	2+	2.94 fs +20-18	d FGH M	Q PQ U X	E(level): from (p,p'). XREF: F(8050)G(8050). J^{π} : $L(\alpha,\alpha')=L(^{6}Li,d)=L(^{3}He,n)=L(p,p')=2$ from
					0+; E2 excitation in (γ, γ') ; but $L(p,t)=4$ from 0+ for a level at 8085 is inconsistent and it could imply that there may be a separate level if the assignment is correct. T _{1/2} : from (γ, γ') . Other: <28 fs in $(p, p'\gamma)$.
8100.1 ^a 7	8+	12.5 ps <i>17</i>	d	Y	XREF: Others: AC J^{π} : 1168.8 γ ΔJ =2, E2 to 6 ⁺ .
8113.2 5	1-	30 fs +20-9	d F j M	PQ X	$T_{1/2}$: from (HI,xn γ) by recoil-distance method. XREF: F(8150). J^{π} : spin=1 from dipole excitation in (γ, γ') ; $L(p,p')=3$ and $L(^{6}Li,d)=1$ from 0^{+} .
8134.77 10	(3-)	<28 fs	d Hj	PQ	$T_{1/2}$: from (γ, γ') . Other: <14 fs in $(p, p'\gamma)$. J^{π} : 2505.3 γ and 4229.4 γ to 2 ⁺ and 2521.2 γ to 4 ⁻ . Possible 3643.1 γ to 5 ⁻ would disfavor 2 ⁻ and 3 ⁺ . $L(d,n)$ =1+3 from 3/2 ⁺ for 8113 and 8135 doublet.
8187.5 8	(3,4,5 ⁻)	<17 fs	Нј	PQ x	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : 4451.6 γ to 3 ⁻ ; J =(3,4,5) based on γ feeding in (p,γ) (1990Ki07).
8195.9 <i>6</i> 8271 <i>1</i>	(≤3)⁻		J L	Q x PQ U	$T_{1/2}$: from $(p,p'\gamma)$. E(level): from (p,p') . XREF: U(?). E(level): from (p,p') . J^{π} : L(d,n)=1 from 3/2+; 1315 γ and 2364 γ to 1 ⁻ . But L(6 Li,d)=4 from 0 ⁺ is suggested for a 8270 group.
8276 <i>1</i> 8323.16 <i>8</i>	0 ⁺ (1 ⁻ ,2 ⁺)	58 fs 21	FG d H	PQ X PQ	J ^{π} : L(p,t)=L(³ He,n)=L(⁶ Li,d)=0 from 0 ⁺ . J ^{π} : 8322.2 γ to 0 ⁺ , 2038.0 γ and 4586.2 γ to 3 ⁻ . T _{1/2} : weighted average of 83 fs 28 in (p, γ) and 42 fs 21 in (p,p' γ).

E(level) [†]	J^{π} ‡	T _{1/2} #@	XREF	Comments
8338.0 <i>3</i>	$(2^+,3,4)$		d H Q X	J^{π} : 1795.2 γ and 1830.1 γ to 4 ⁺ ; J=(2,3,4) based
8358.9 6	$(0,1,2)^{-}$	104 fs 21	d JL PQ	on γ feeding in (p,γ) (1990Ki07). XREF: J(8371).
00000	(0,1,2)	10.1521	4 52 14	J^{π} : L(d,n)=1 from 3/2 ⁺ ; 1405 γ to 1 ⁻ is unlikely
				to be Mult=Q, $\Delta J=2$ based on RUL.
8364 5	(3 ⁻ to 7 ⁻)		P	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : 3872 γ to 5 ⁻ .
8373.94 15	4+		F H Q U WX	XREF: F(8380).
0424 01 11	2-	.17 f.	H JEI N DOE	J^{π} : L(α,α')=L(p,t)=L(6 Li,d)=4 from 0 ⁺ .
8424.81 <i>11</i>	2-	<17 fs	H JKL N PQ VW	T=1 (1990Ki07) XREF: K(8435).
				J^{π} : $L(^{3}He,\alpha)=2$ from $7/2^{-}$, $L(p,p')=3$ from 0^{+} ,
				$L(d,n)=1+3$ from $3/2^+$; M2 excitation in (e,e');
				analog of the 800, 2^- level in 40 K, see 1966Er05 in (3 He,d).
				$T_{1/2}$: from $(p,p'\gamma)$.
8439.0 5	0^{+}		FgH PQ s X	XREF: F(8420).
0404 02 12	(1= 2= 2=)	24 5- 14	and la DO a salely	J ^π : L(p,t)=L(6 Li,d)=0 from 0 ⁺ . J ^π : 2581.3 γ to 1 ⁻ , 4747.0 γ to 3 ⁻ ; L(3 He, α)=(2)
8484.02 <i>13</i>	$(1^-, 2^-, 3^-)$	24 fs <i>14</i>	gH k PQ s vWX	from $7/2^-$. But $L(p,t)=0$ from 0^+ for a level at
				8483 is inconsistent and it is unlikely the same
				level based on RUL for the 4747.0 γ , unless L(p,t)=0 is questionable.
				$T_{1/2}$: from $(p,p'\gamma)$.
8540 <i>4</i>	1,2+	14 fs <i>14</i>	f P vw	J^{π} : 5188 γ and 8540 γ to 0 ⁺ ; M2 is ruled out by
				RUL for these transitions. $T_{1/2}$: from $(p,p'\gamma)$.
8551.1 7	5-	<17 fs	f JK N PQ v X	$T_{1/2}$. Holf (p,p,y) . T=1
				XREF: N(8500).
				J^{π} : L(p,t)=L(p,p')=5 from 0 ⁺ , L(d,n)=L(³ He,d)=3 from 3/2 ⁺ ; analog of the
				891, 5 ⁻ level in ⁴⁰ K, see 1966Er05 in (³ He,d).
0.570.00.0	2+	266.12.0	1 C W W DO	$T_{1/2}$: from $(p,p'\gamma)$.
8578.80 9	2+	3.6 fs + 13 - 8	dfH MPQ ux	J^{π} : L(p,p')=2 from 0 ⁺ ; E2 excitation in (γ, γ') . $T_{1/2}$: from (γ, γ') . Other: <21 fs from $(p,p'\gamma)$.
8587 2	$(2^+,3)$		d f P u x	J^{π} : 2562 γ to 2 ⁻ , 3904 γ to 2 ⁺ , 3308 γ to 4 ⁺ .
8633 6	1-		PQ	E(level): from 40 Ca(p,p' γ).
8665.3 8	1-		J PQ	XREF: P(8671). E(level): from (p,p').
				J^{π} : L(d,n)=1; 8665 γ to 0 ⁺ .
8678.29 10	4 ⁺	42 fs <i>35</i>	H P X	J^{π} : $L(p,t)=4$. $T_{1/2}$: from (p,γ) .
8701 <i>1</i>	(6-)		Y	J^{π} : suggested in (HI,xn γ); 3088 γ to 4 ⁻ and
0717 0				$4209\gamma \text{ to } 5^{-}$.
8717 <i>8</i> 8748.22 <i>9</i>	2+	5.8 fs +11-8	P fHj M PQ T	XREF: P(8756)T(8700).
07.10.22	-	2.0 15 .11 6	2 3	J^{π} : L(p,p')=2 from 0+; E2 excitation in (γ,γ') .
0761106	2-		au: n v	$T_{1/2}$: from (γ, γ') .
8764.18 <i>6</i>	3-		d Hj P X	XREF: P(8769)X(8752). $J^{\pi}: L(p,t)=3.$
8810 7	2+		d f PQ U	XREF: P(8819).
8850.6 9	6-,7-,8-		J PQ X	J ^{π} : L(α,α')=2 from 0 ⁺ for a 8780 group. XREF: P(8860).
0050.0 7	0 ,7 ,0		л гу х	E(level): from (p,p') .
				J^{π} : L(p,p')=7 from 0 ⁺ . J^{π} =(0) ⁻ is proposed for a

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@	XRI	EF		Comments
8909.0 <i>9</i> 8934.81 <i>7</i>	2+		F Н ј	Q P	X	8860 group in (d,n). E(level): from (p,p'). XREF: P(8922). J^{π} : L(6 Li,d)=2 from 0+; 3722.1 γ , 5581.8 γ and 8933.7 γ to 0+, 2352.2 γ and 5197.8 γ to 3 ⁻ , 2905.0 γ to 3 ⁺ .
8935.8 ^b 9 8938.4 9	(7 ⁺) 0 ⁺		J	PQ	X X	J ^π : band assignment in (HI,xnγ). XREF: P(8949). E(level): from (p,p'). J ^π : L(p,t)=0. But L(d,n)=1 from 3/2 ⁺ is suggested for a level at 8931.
8978 6	5+,6+,7+		Н	Q	V x	XREF: H(?)V(?). E(level): from (p,p'). J^{π} : L(p,p')=6 from 0 ⁺ .
8982.5 5	2+	4.5 fs +39-14	j M	r	UV x	XREF: $U(8970)V(?)$. J^{π} : E2 excitation in (γ, γ') .
8994.50 <i>11</i>	$(1^-,2^+)$		Нј	PQr	x	$T_{1/2}$: from (γ, γ') . XREF: P(9011). J^{π} : 5641.5 γ and 8993.4 γ to 0 ⁺ , 2411.0 γ , 2709.3 γ to 3 ⁻ .
9031.9 3	4-		Н	Q	VWX	J ^{π} : L(d,t)=L(3 He, α)=0 from 7/2 $^-$, L(p,p')=5 from 0 $^+$. 2004To07 in (HI,xn γ) propose (7 $^-$) for this level, but γ 's to 3 $^-$ and 4 $^-$ states are inconsistent with this assignment.
9033? ^c 1	(7 ⁻)				Y	E(level): it is possible that this level is the same as the 9031.9 seen in other reactions and the 4542γ reported by $2004\text{To}07$ in (HI,xn γ) could correspond to 4540.2γ in (p, γ). But the most intense 3418γ from 9031.9 level is not reported by $2004\text{To}07$. J ^{π} : band assignment in (HI,xn γ).
9050.1 10				Q		E(level): from (p,p') .
9080.3 11				Q	W	E(level): from (p,p') .
9091.70 6	3-		H k	Q	W	T=(0) (1990Ki07) J ^π : 1977.9γ to 4 ⁻ and 3812.7γ to 4 ⁺ , 5187.0γ to 2 ⁺ and 3066.1γ to 2 ⁻ , 3188.9γ to 1 ⁻ .
9135.66 <i>5</i>	$2^{-},3^{-}$		f H Jk	Q	Wx	T=0 (1990Ki07) J^{π} : L(d,n)=1 from 3/2+, L(p,p')=3 from 0+.
9162.1 <i>11</i>			f k	Q	x	Additional information 15.
						E(level): from (p,p') .
9185.3 <i>12</i> 9209.77 <i>3</i>	(2,3)-		k H j	Q Q	W	E(level): from (p,p'). T=0 (1990Ki07) J ^{π} : 2096.0 γ to 4 ⁻ , 2259.2 γ and 3307.0 γ to 1 ⁻ ; L(d,n)=1 from 3/2 ⁺ .
9226.69 5	(1-,2,3-)		Нј	q	W	Additional information 16. J ^π : 2276.1 γ to 1 ⁻ and 2941.4 γ to 3 ⁻ . Possible 9225.6 γ to 0 ⁺ would disfacvor 3 ⁻ . Additional information 17.
9227.43 <i>7</i> 9246.0 <i>12</i>	(1,2 ⁺) (7) ⁻		H j F	q Q	w X	J^{π} : 5874.4 γ to 0 ⁺ and 3201.8 γ to 2 ⁻ . XREF: X(9250). E(level): from (p,p'). J^{π} : L(p,p')=7. But L(⁶ Li,d)=6 for a 9240 group.
9274.5 12				Q	X	Additional information 18. XREF: X(9263). E(level): from (p,p').

E(level)	$J^{\pi \ddagger}$	T _{1/2} #@		XRI	EF			Comments
9304 5	0+	·					X	T=1 (1972Sc19)
9305.2 & 8 9362.54 6	(8 ⁺) 3 ⁻		В	F H k		U	Y X	J ^{π} : L(p,t)=0. J ^{π} : band assignment in (HI,xn γ). T=0 (1990Ki07) XREF: U(9340). J ^{π} : log ft =5.4 from 4 $^-$; 937.7 γ to 2 $^-$, 4113.5 γ to 2 $^+$.
9377.7 2	2-,3-,4-			H k	Q		x	$\Gamma_{\alpha}/\Gamma_{\rm p}=0.0119~5~{\rm from}^{40}{\rm Sc}~\varepsilon~{\rm decay}.$ E(level): from $({\rm p},\gamma)$. ${\rm J}^{\pi}$: L(p,p')=3 from 0^+ .
9388.20 19	2+			H k				J^{π} : 2087.4 γ , 4176.3 γ and 9387.0 γ to 0 ⁺ , and 2845.3 γ , 2880.3 γ and 4109.2 γ to 4 ⁺ .
9395.6 3	2-	0.14.1.37		H jk				E(level): from (p,γ) .
9404.85 19	2-	0.14 keV		HIJk				T=1 XREF: J(9408). J ^π : 9403.7 γ to 0 ⁺ , 2822.2 γ , 3119.6 γ and 5667.7 γ to 3 ⁻ , 2291.1 γ to 4 ⁻ ; L(p,p)=1 from 3/2 ⁺ ; $\gamma\gamma(\theta)$ in (p, γ) give J=2. T _{1/2} : from (p,p),(p, α): resonances.
9406.3 6	0+			GH k			X	T=1 XREF: G(9380). E(level): from (p, γ). J ^{π} : L(³ He,n)=L(p,t)=0 from 0 ⁺ .
9412.3 2				H Jk	q			XREF: J(9408). E(level): from (p,γ) .
9418.8 2	3-		В	H Jk	q			E(level). Hold (p, y) . T=1 XREF: $J(9408)$. J^{π} : $\log ft = 5.6$ from 4^- ; 3516.0γ to 1^- .
9429.11 5	(3,4)		В	H Jk			W	T=0 (1990Ki07) XREF: J(9431).
9432.46 18	1-	0.23 keV		HIJk			W	J ^π : log ft =5.5 from 4 ⁻ ; L(³ He,α)=(0) from 7/2 ⁻ . T=1 (1990Ki07) XREF: J(9431). J ^π : L(p,p)=1 from 3/2 ⁺ ; 9431.3 γ to 0 ⁺ .
9453.95 5	3-	0.09 keV	В	HIJk	Q		W	$T_{1/2}$: from (p,p),(p, α):resonances. T=0 XREF: Q(?). J^{π} : log $ft=5.2$ from 4^{-} ; L(d,n)=1 from $3/2^{+}$.
9499.9 <i>15</i>	2+			F H		U		$T_{1/2}$: from (p,p),(p, α):resonances. E(level): from (p, γ). J^{π} : L(6 Li,d)=2 from 0 ⁺ .
9536.24 <i>16</i> 9537.8 <i>5</i>	1-	0.4 keV		H HIJ	Q			E(level): from (p,γ) . XREF: Q(?). E(level): from (p,γ) . Other: 9535.2 14 in (p,p) :resonances. $J^{\pi}, T_{1/2}$: from $(p,p), (p,\alpha)$:resonances. $L(p,p)=L(d,n)=1$
9564 <i>5</i>	(2+)			G			WX	from $3/2^+$. T=(1) XREF: G(9600). J^{π} : L(3 He,n)=2 for a 9600 group.
9603.0 <i>4</i>	3-	0.4 keV	В	НІј		T	WX	J ⁺ : L(⁺ He,n)=2 for a 9600 group. T=1 J ^π : log ft =5.6 from 4 ⁻ ; L(p,p)=1 from 3/2 ⁺ ; $\gamma\gamma(\theta)$ in (p, γ) gives J=3. T _{1/2} : from (2J+1)×Γ=3.4 keV for the 9603+9605 levels in (p,p),(p, α):resonances, and Γ=0.19 keV 5 from (γ , γ') for the 9605 level.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@			XRE	F			Comments
9604.6 <i>4</i>	1-	0.19 keV 5		HIj	M		WX	7	T=1
700 4 .0 4	1	0.19 KC V 3		1111	11		VV.A	•	$T_{1/2}$: from (γ, γ') . Other: 1.3 keV from
									$(p,p),(p,\alpha)$:resonances.
9632.7? 11				Н					$(p,p),(p,\alpha)$. resonances. E(level): from (p,γ) .
9640.89 7	2-			H				ur.	T=1
9040.89 /	Z			н			wX	X.	
									XREF: X(9620).
									J^{π} : spin from $\gamma\gamma(\theta)$ and parity from a
0655 5 0								_	resonance formation fit in (p,γ) .
9655.5 9				Н		q	WX	K.	XREF: W(9647)X(9665).
0.662.2.2								_	E(level): from (p,γ) .
9662.2 2	≤3-			Hij		q	WX	X.	XREF: W(9647)X(9665).
									E(level): from (p,γ) .
									J^{π} : L(p,p)=(d,n)=1 from 3/2 ⁺ for 9662+9669.
9668.71 8	3-			F Hij	K		WX	K	T=1
									XREF: F(9700)K(9700)W(9673)X(9665).
									J^{π} : L(⁶ Li,d)=3 from 0 ⁺ .
9779.47 <i>7</i>	3			H					T=1
									J^{π} : from $\gamma\gamma(\theta)$ in (p,γ) .
9785.3 2	$(1,2^+)$			H					J^{π} : 2484.5 γ , 6432.1 γ and 9784.0 γ to 0 ⁺ .
9802.1 7	≤3-			HI					E(level): from (p,γ) .
									J^{π} : L(p,p)=1 from 3/2 ⁺ .
9807.2? 11				H					
9811.0 2	$(3^-,4^-,5^-)$		В	H					E(level): from (p,γ) .
									J^{π} : log ft =6.1 from 4 ⁻ .
9829.43 <i>16</i>			В	H					E(level): from (p,γ) .
9834.97 19			В	H					
9853.5 ^d 8	(8^+)							Y	XREF: Others: AE
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0)								J^{π} : band assignment in (HI,xn γ).
9854.43 <i>17</i>	≤3-			HI					E(level): from (p,γ) .
, , , , , , , , , , , , , , , , , , , ,	_0								J^{π} : L(p,p)=1 from 3/2 ⁺ .
9859.6 <i>3</i>	4-,5-,6-			Н		Q			J^{π} : L(p,p')=5 from 0 ⁺ .
9865.15 <i>11</i>	1	0.100 keV 24		ef H	M				T=1
,000.10 11	-	0.100 110 / 2.							J^{π} : from $\gamma\gamma(\theta)$ in (p,γ) .
									$T_{1/2}$: from (γ, γ') .
9869.3 <i>4</i>	$1^+, 2^+$	0.90 keV 21		ef H	MN	Q	U		XREF: Q(9877)U(9870).
	- ,-								J^{π} : γ' s to 0 ⁺ and 2 ⁺ ; M1 or E2 excitation in
									(e,e') . L(6 Li,d)=2 for a 9870 group and a
									doublet at 9868 suggested by 1980St17 in
									(e,e') could indicate there is a separate level
									with $J^{\pi}=2^{+}$.
									$T_{1/2}$: from (γ, γ') .
9898.5 <i>3</i>				Н					$1_{1/2}$. Hom (γ, γ) .
9921.3 2	$(3^-,4^-,5^-)$		В	f H					E(level): from (p, γ) .
))21.3 Z	(5, 7,5)		ь	1 11					J^{π} : log ft =6.3 from 4 ⁻ .
9939.7 2				f H					$J : \log Jt - 0.5 \text{ from } + 1$
9954.00 9	4+		В	f H					T=0
775 1.00 7	•		_						J^{π} : spin=4 from $\gamma\gamma(\theta)$ in (p,γ) ; observed α
									decay from this level in 40 Sc ε decay implies
									π =natural.
9977.09 <i>17</i>	(3,4,5)		В	f H					κ -natural. E(level): from (p,γ) .
9911.09 17	(3,4,3)		ь	1 11					J^{π} : log $ft=7.0$ from 4^- .
9993.6 <i>15</i>				Н					J . 105 Ji-1.0 HOIII + .
10040.54 9	$(2^-,3^-)$			н Н ј			v		T=1
10070.04 7	(2,5)			пј			٧		J^{π} : γ' s to 1 ⁻ and 4 ⁻ .
10045.6 <i>5</i>	$(3^- \text{ to } 7^-)$			Нј			v		o., oto i una i .
100 10.00	(2 (0 /)			J			•		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		XRI	EF		Comments
10049.38 7	4-	,	В	н јк	q	VW	T=1
							XREF: K(?). J^{π} : log ft =6.3 from 4 ⁻ ; γ' s to 2 ⁻ and 5 ⁻ ; $L(p,p')$ =5
							from 0^+ , $L(^3\text{He},\alpha)=0$ from $7/2^-$.
10057.9 <i>3</i> 10065 <i>2</i>	$(1^-,2^+)$			f H j f I	q q	VW V	T=0
10080.6 2				f H	4	Uv	E(level): from (p,γ) .
10130.59 <i>19</i>	$(3^-,4^+)$		В	f HI		V	T=0 E(level): from (p,γ) .
10154 8	$(3^-,4^+,5^-)$		В	f			T=0
							E(level): from 40 Sc ε decay. J^{π} : log ft =7.3 from 4^{-} ; observed α decay from this
							level in 40 Sc ε decay implies π =natural.
10193 7	$(3^-,4^+,5^-)$		b				$T=0$ $I^{\pi_{+}} \log f_{+} = 7.5$ from $I^{-} = 0$ observed as decay from this
							J^{π} : log ft =7.5 from 4 ⁻ ; observed α decay from this level in ⁴⁰ Sc ε decay implies π =natural.
10199.1 <i>4</i>	1-			HI			T=0
10205.0 8				Н			E(level): from (p,γ) .
10210.5 2	3-,4-		В	H		W	E(level): from (p,γ) .
10232.7 7				Н			J^{π} : log ft =5.7 from 4 ⁻ ; L(³ He, α)=0 from 7/2 ⁻ .
10262.53 10	3-			HI			T=0+1.
							J^{π} : γ' s to 1 ⁻ , 3 ⁻ , 3 ⁺ ; $L(p,p)=1$ from 3/2 ⁺ for
10267.6 <i>5</i>	1-	0.9 keV		HI			10263+10268; π =natural from (p, α):resonances. T=0
							J^{π} , $T_{1/2}$: from (p,p),(p, α):resonances for a 10265
10274.7 3	3+,4+,5+			Н	Q		group. XREF: Q(10287).
							J^{π} : L(p,p')=4 from 0 ⁺ .
10277.8 2	(1 ⁻)	1.6 keV		HI	Q		T=0 XREF: I(10275)Q(10290).
							E(level): from (p,γ) .
10284.9 <i>3</i>	1-	1.1 keV		Hi	Q		XREF: Q(10290). E(level): from (p, γ) .
10318.8 4	1+	26 eV 7		E H MN	I Q		T=1
							XREF: Q(10328).
							J^{π} : M1 excitation in (e,e'). $T_{1/2}$: from (γ, γ') .
10333.7 5	(3)-	0.11 keV	В	HI	Q		T=0
							XREF: Q(10344). J^{π} : (1,3) ⁻ from (p,p),(p, α):resonances; log ft =7.1
10240.20	4.4						from 4^- .
10340 20	4 ⁺				Q	U	XREF: Q(10344). J^{π} : L(α , α')=4.
10358.5 <i>15</i>				F H			XREF: F(10340).
							J^{π} : L(6 Li,d)=8 for a level at 10340 could indicate there may be a different level.
10361.4 15			В	Н			T=0
10362.8 5	1-	0.60 keV		I			E(level): could be the same level as the 10361.4
10364.8 5	$(1,3)^{-}$			I			level in (p,γ) .
10376.6 5	1-	0.6 keV		HI			Т_0
10383.79 <i>16</i>	$(1^-,2^+)$			HI K			T=0 XREF: K(?).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@			XREF		Comments
10415.06 6	3			Н			T=1 J^{π} : 2853.8 γ to 4 ⁺ , 3301.2 γ to 4 ⁻ , 2948.6 γ to 2 ⁺ ,
10420.4 5	1-	0.5 keV		HI			3664.5 γ to 2 ⁻ . T=0
10430.47 19	(2+)			HI			E(level): from (p,γ) . T=0
10441.3 6				Н			E(level): from (p,γ) . E(level): from (p,γ) .
10443.8 2	2-	4.0 keV		HI			E(level): from (p,γ) . 10443.5 5 in (p,p) , (p,α) :resonances.
10447.0 5	3-	0.44 keV	В	f I			T=0 E(level): \$ from (p,p),(p, α):resonances. J ^{π} : (1,3) ⁻ in (p,p),(p, α):resonances with L(p)=1 from 3/2 ⁺ ; log ft =6.2 from 4 ⁻ .
10469.9 <i>15</i>	(3,5)		В	f H			E(level): from (p,γ) . J^{π} : log $ft=5.7$ from 4^- ; α decay of this level in 40 Sc ε decay implies π =natural.
10474 <i>2</i> 10478.6 <i>15</i>	(8-)			Н		Y	J^{π} : proposed in (HI,xn γ).
10503.0 15	(3,4,5)-		В	Н			E(level): from (p,γ) . J^{π} : log $ft=5.5$ from 4^{-} .
10514.7 <i>15</i>	(3 ⁻ ,4 ⁺ ,5 ⁻)		В	Н			XREF: B(10519). J^{π} : log ft =6.7 from 4 ⁻ ; α decay of this level in 40 Sc ε decay implies π =natural.
10516.5 5	1-	1.2 keV		I			T=0 E(level): could be the same level as the 10514.7 level in (p,γ) .
10517.4 5	1 ⁽⁺⁾	0.30 keV		I			
10529.8 5	(1 ⁺)	0.40 keV		HI			E(level): from $(p,p),(p,\alpha)$:resonances. 10527.8 <i>15</i> from (p,γ) . Additional information 19.
10541.7 5	2+	0.19 keV		HI			T=0 E(level): from (p,p),(p, α):resonances. 10540.0 <i>15</i> from (p, γ).
10552.1 <i>15</i>				H			
10582 5	(3,4,5) 3 ⁻	0.16.1	В				J^{π} : log ft =6.3 from 4 ⁻ .
10596.4 5		0.16 keV	В	FI	Ţ	J	T=0 XREF: F(10590). E(level): from (p,p),(p, α):resonances.
10598.6 5	(1^+)	0.20 keV		I			
10607.6 5	0(+)	0.20 keV		gI			
10618.8 <i>5</i> 10621.6 <i>5</i>	2 ⁻ 0 ⁺	3.5 keV 0.04 keV		I			T=0
10633.8 5	$(1,3)^-$	1.1 keV		g I HI			E(level): from (p,p),(p, α):resonances. 10632.7 2 in (p, γ).
10639.07 7	(3 ⁻ ,4,5 ⁻)			Н			$T=1$ J^{π} : 3707.6 γ and 4056.3 γ to 3 ⁻ , 6147.7 γ to 5 ⁻ .
10646.3 4	NATURAL			gHI			T=0 E(level): from (p, γ) .
10653.12 <i>16</i>				H			
10656.1 5	(1-)	0.60 keV		I			T=0
10657.6 5	2 ⁺	0.35 keV		I			T=0
10666.6 <i>5</i> 10670.3 <i>3</i>	2-	2.0 keV		I H			
10673.58 17	2-			H	N		J^{π} : M2 excitation in (e,e').
10675.6 5	1-	1.6 keV		HI			T=0

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		2	XREF			Comments
10690.9 <i>3</i> 10693.1 <i>5</i> 10699.50 <i>10</i>	1 ⁺ 3	1.1 keV	В	H I H	N			E(level): from (p,p),(p,α):resonances. 10673.69 <i>15</i> in (p,γ). XREF: Others: AK XREF: Others: AK XREF: Others: AK XREF: N(10680). J ^π : 2325.5γ to 4 ⁺ , 5085.6γ to 4 ⁻ , 2607.8γ to 2 ⁺ , 3167.1γ to 2 ⁻ .
10701.1 <i>5</i> 10720.7 <i>3</i>	0 ⁺ (3,5) ⁻	0.60 keV	В	I H				XREF: Others: AK E(level): from (p,γ) . J^{π} : log ft =5.7 from 4^{-} ; α decay of this level in 40 Sc ε decay implies π =natural.
10722.3 <i>5</i> 10737.7 <i>3</i>	1 ⁺ 1 ⁻	1.1 keV]	I F H				T=0+1 XREF: F(10700). J ^π : 10736.2γ to 0 ⁺ , 3043.4 and 4452.3γ to 3 ⁻ ; L(⁶ Li,d)=1 from 0 ⁺ .
10740.3 <i>5</i> 10747.8 <i>4</i>	1 ⁻ (4 ⁺)	2.2 keV		HI				T=0 J^{π} : (1 ⁻ ,2,3,4 ⁺) from 5118.0 γ and 6842.8 γ to 2 ⁺ , 7010.5 γ to 3 ⁻ ; J^{π} =(4 ⁺ ,5 ⁻) from (p,p),(p, α):resonances for a level at 10751.
10749.0 <i>5</i> 10753.74 <i>18</i> 10770.2 <i>3</i>	0 ⁺ (3,4,5) (1 ⁺)	0.31 keV 0.05 keV	В	I H HI				J ^{π} : log ft =6.5 from 4 ^{$-$} . XREF: I(10772.3). E(level): from (p, γ).
10776.2 <i>3</i> 10778.3 <i>5</i> 10780.7 <i>5</i>	(1 ⁻) 2 ⁺ 3 ⁻	0.18 keV 1.0 keV	В	H I HI	N			J^{π} : possible E1 excitation in (e,e') for 10776. T=0 T=0 E(level): from (p,p),(p, α):resonances. 10780.9 3 in (p, γ).
10783.2 <i>5</i> 10787.6 <i>3</i> 10799.9 <i>10</i>	(0-)	0.70 keV	:	I F H H		u u		XREF: F(?).
10802.8 <i>5</i> 10813.6 <i>5</i>	0 ⁽⁺⁾ (3 ⁻ ,4 ⁺ ,5 ⁻)	0.70 keV	В	I f H		u		T=0 T=0 J^{π} : log ft =6.3 from 4 ⁻ ; L(6 Li,d)=5 for 10800 group; α decay of this level in 40 Sc ε decay implies π =natural.
10816.4 <i>5</i> 10816.6 <i>5</i> 10829.9 <i>6</i>	2 ⁻ 3 ⁺	6.0 keV 0.50 keV		I I f H				
10833.2 5 10848.4 4 10849.3 5 10852.2 5 10861.4 5 10869.0 5	3 ⁻ (3,4,5) ⁻ 2 ⁻ 1 ⁻ 2 ⁺ 1 ⁻	0.026 keV 11 keV 2.5 keV 0.045 keV 26 keV		f I f H I I I HI				T=0 J^{π} : log ft =5.8 from 4 $^{-}$. T=0 T=0 E(level): from (p,p),(p, γ):resonances. 10868.8 4 in
10869.7 <i>5</i> 10873.9 <i>5</i> 10895 ^c <i>I</i> 10899.3 <i>5</i>	0 ⁺ 1 ⁻ (9 ⁻) 1 ⁺	0.40 keV 4.0 keV 0.41 keV		I I			Y	(p,γ) . J^{π} : band assignment in (HI,xn γ).
10899.3 3	$(3,4,5^-)$	0.41 KC V	В	f H				E(level): from (p,γ) .

E(level) [†]	Jπ‡	T _{1/2} #@		2	XREF			Comments
								J ^π : log ft =6.8 from 4 ⁻ ; 7172.6 γ to 3 ⁻ ; L(⁶ Li,d)=3 for 10900 group.
10914.8 5	1-	5.0 keV		I				T=0
10915.7 5	3 ⁺	0.70 keV		Ī				
10921.1 4	$(2^+,3,4^-)$			f H				J^{π} : 4895.3 γ to 2 ⁻ and 5641.9 γ to 4 ⁺ .
10932.7 5	1-	2.0 keV		I				T=0
10933.2 5	2-	0.10 keV		I				
10934.3 5				H				
10946.9 5	2+	0.23 keV		I				T=0
10950.8 5	1-	7.0 keV		HI				$T=0$ $E(aval) \cdot from (n, n) (n, a) massaranass 100515 4 in$
	.(1)							E(level): from $(p,p),(p,\alpha)$:resonances. 10951.5 4 in (p,γ) .
10953.6 5	0(+)	0.22 keV		I				T=0
10956.0 <i>4</i>	3-		В	Н				E(level): from (p,γ) . J^{π} : 5676.8 γ to 4^+ , 5342.1 γ to 4^- , 5053.0 γ to 1^- .
10976.2 <i>5</i>	(3,4,5)		В	H	n			J^{π} : log ft =6.0 from 4 ⁻ .
10988.0 <i>4</i>	$(3^-,4^+)$		В	H	n			E(level): from (p,γ) .
								J ^π : log ft =7.2 from 4 ⁻ ; α decay of this level in ⁴⁰ Sc ε decay implies π =natural; 4079.1 γ ,
10988.7 5	2-	9.0 keV		I				5358.2γ to 2^+ .
10988.7 5	(1^+)	0.4 keV		I				
10994.7 <i>4</i>	$(2^+,3,4^+)$	o. i ke v		Н				J^{π} : 5715.5 γ to 4 ⁺ , 5745.3 γ to 2 ⁺ .
10995 3	(1^{-})	6.7 keV		I				0 1 0 1 1 0 1 1 1 0 1 1 1 0 2 1
10998.9 <i>5</i>	$(1,3)^{-}$	0.20 keV		I				T=0
11002.3 5				H	n			
11003.0 ^a 9	(10^{+})			_			Y	J^{π} : band assignment in (HI,xn γ).
11007.2 5	1-	5.0 keV		.I				T 0 . 1
11011.0 4	3-			H	n			T=0+1 J^{π} : 6519.0γ to 5 ⁻ , 11009.4γ to 0 ⁺ .
11024.0 5	$(1^-,3^-)$	0.11 keV		HI				T=0
11036.3 5	$(1^+, 5^-)$	0.11 keV		I				1-0
11037 7	(3,4,5)		В					J^{π} : log ft =6.4 from 4 ⁻ .
11042.0 5	$(1^- \text{ to } 4^+)$			H				J^{π} : 7136.9 γ to 2 ⁺ and 7304.6 γ to 3 ⁻ .
11044.5 5	2+	0.50 keV		I				T=0
11070.6 4	$(3,4^+)$	0.661.17		H_				J^{π} : 5456.1 γ to 4 ⁻ , 5790.7 γ to 4 ⁺ , 5820.7 γ to 2 ⁺ .
11073.5 5	2 ⁺ 1 ⁻	0.66 keV		I				T=0
11078.4 5	1	1.2 keV		f HI				$E(\text{level})$: from(p,p),(p, α):resonances.
11083.6 <i>5</i>	(1^+)	0.35 keV		I				T=0
11089.3 5	$0^{(+)}$	0.10 keV		FI				XREF: F(11100).
11091 3	$(3^-,4^+)$		В	I				T=0
								E(level): from 1970De30 in $(p,p),(p,\alpha)$:resonance.
								11088 12 in 40 Sc ε decay.
								J^{π} : log $ft=7.1$ from 4^- ; $4+(1^-,3^-)$ for a 11901 level from 1970De30 in $(p,p),(p,\alpha)$:resonance.
11107.0 5	1-	3.9 keV		I				A 4 VA V
11112 <i>3</i>	0-	5.2 keV		I				
11117.0 5	2+	0.0463.35	b	H_				VDDE 1/(1100)
11119.0 5	2+	0.046 keV	b	I		U		XREF: U(11100).
11127.1 5	4+	0.11 1.27		H				T=0
11129.1 <i>5</i> 11142 <i>6</i>	$(3,4,5)^{-}$	0.11 keV	В	I				J^{π} : log ft =5.8 from 4 $^{-}$.
11142.0	1(-)	0.20 keV	ם	I				. 10g ji – 5.0 110111 1 .
11145.8 5	1+	0.20 keV		Ī				
				_				

E(level) [†]	Jπ‡	T _{1/2} #@		VDEE		Comments
E(level)				XREF		Comments
11157.2 <i>5</i>	2-	48 keV		I		
11161.5 <i>5</i>	$4^{(+)}$	0.040 keV		I	V	T=0
11162.9 5	2+	3.5 keV		I		
11165.2 <i>4</i>				Н		
11167.4 5	4+	0.083 keV		I		T=0
11187.6 <i>5</i>	3-	1.4 keV		I k		
11202.9 5	$(3)^{-}$		В	I k	v	T=0
						E(level): from $(p,p),(p,\alpha)$:resonances.
						J^{π} : log ft =5.5 from 4^{-} ; α decay of this level in 40 Sc
						ε decay implies π =natural; (1,2 ⁻ ,3) from
						$(p,p),(p,\alpha)$:resonances.
11210	(0^+)			F k		J^{π} : L(⁶ Li,d)=0.
11212.6 5	3-	2.8 keV		I k		
11217 <i>3</i>	3-	25 keV	В	k	v	J^{π} : log $ft=5.2$ from 4 ⁻ .
11217.8 5	4+	1.4 keV		Ιk		
11231.4 5	2-	3.0 keV		I	V	
11236 <i>3</i>	1-	3.9 keV		I	V	
11246.8 5	3-	0.092 keV		I	v	T=0
11255.9 5	1+	0.30 keV		I		
11260.8 5	(0^{-})	6.0 keV		I		
11264.4 5	2+	0.34 keV		I		T=0
11284.3 5	(2^{-})	0.60 keV		I		
11289.8 <i>5</i>	1+	1.0 keV		I		
11300.3 5	1+	0.40 keV		I		
11302.5 5	(1^{-})	1.2 keV		I		
11311 4	$(3^-,4^+,5^-)$		В	F	v	J^{π} : log ft =6.2 from 4^{-} ; α decay of this level in 40 Sc
						ε decay implies π =natural.
11320.0 5	(0-)	1.8 keV		I		
11322.0 5	2+	0.52 keV		I		T=0
11329.3 5	2+			I		
11330.7 5	1-	4.0 keV		f I		T=0
11338.7 5	(1^+)	0.20 keV		I		
11342.6 5	2-	40 keV		I		
11346.4 5	4 ⁽⁺⁾	0.020 keV		I		T=0
11351.5 5	1+	0.80 keV		I		
11362.4 5	1+	1.2 keV		I		m 0
11366.0 5	2 ⁺	0.19 keV		Ī		T=0
11367.0 5	2-	4.4 keV		I		
11368.3 5	4 ⁽⁺⁾	0.021 keV		I		77 7 671 1) 7
11370	(5-)			F		J^{π} : L(⁶ Li,d)=5.
11371.4 5	2 ⁺ 2 ⁺	1.4 keV		Ī		T=0
11382.1 5	_	2.6 keV		I		T=0
11393.0 5	1(-)	0.10 keV		I		TD 0
11404.2 5	1-	3.5 keV		I		T=0
11407.0 5	1+	0.22 keV	_	Ī		T. O
11414.8 5	4 ⁺	0.10 keV	В	I		T=0
11420.3 5	3-	0.30 keV		I		T_{-0}
11432.7 5	1- 2+	0.30 keV		I		T=0 T=0
11436.8 <i>5</i>	2+	0.22 keV		I		T=0 Additional information 20
11447.2 5	1-	5.3 keV		т		Additional information 20. T=0
11447.2 5	1 1 ⁺	0.60 keV		I I		1-0
11451.4 5	3-	0.00 keV 0.060 keV	b	I	U	T=0
11733.43	3	U.UUU KE V	IJ	1	U	XREF: U(11470).
11460.4 5	2+	1.17 keV		I		T=0
11.50.15	-	1.1. RO (_		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		XREF		Comments
11465.1 5	2 ⁽⁺⁾	0.13 keV	I			T=0
11468 <i>3</i>	$(3^-,4^+,5^-)$		B F			T=0
						J ^{π} : log ft =6.2 from 4 $^-$; α decay of this level in ⁴⁰ Sc ε decay implies π =natural.
11468.7 5	2-	0.40 keV	I			se e deedy implies it industrial
11479.8 5	1+	0.30 keV	I			
11486.7 5	0_{+}	0.11 keV	I			
11489.6 5	1+	0.40 keV	I			
11514.6 5	2+	0.62 keV	I			
11515.2 5	1(-)	4.23 keV	I			
11519.0 5	2+	0.70 keV	I			
11537.9 5	2-	8.0 keV	I			
11542.2 <i>5</i> 11543.7 <i>5</i>	2 ⁺ (1 ⁺)	0.62 keV 0.90 keV	I			
11545.7 5	2-	18 keV	I			
11549 6	$(3,5)^{-}$	10 KC V	В			J^{π} : log $ft=5.9$ from 4^{-} ; α decay of this level in
		21.1.37				$^{40}\mathrm{Sc}\ \varepsilon$ decay implies π =natural.
11554.5 5	1 ⁻	31 keV	I			
11559.1 <i>5</i> 11563.5 <i>5</i>	(2 ⁺) (2 ⁻)	0.40 keV 0.40 keV	I			
11503.5 5	2-	1.0 keV	I			
11578.0 5	2 ⁺	0.23 keV	Ī			
11585.6 5	$\frac{2}{2^{-}}$	0.15 keV	Ī			
11597.2 5	(2 ⁺)	0.30 keV	Ī			
11602.3 5	2+	0.30 keV	I			
11603.4 5	2+	0.28 keV	I			
11605.3 5	1-	13 keV	I			
11611.1 5	1-	0.86 keV	I			
11614.0 5	(2^{-})	0.50 keV	I			TT 1 C (2 C) 4-
11616 10	(3,4,5)	0.70 137	В	v		J^{π} : log ft =6.3 from 4 ⁻ .
11628.5 <i>5</i> 11629.1 <i>5</i>	(3 ⁺) 2 ⁺	0.70 keV 0.085 keV	I			
11629.1 5	1-	0.085 keV 0.09 keV	I			
11645.0 5	(2-)	0.60 keV	Ī			
11646.9 5	2+	0.60 keV	Ī			
11650.8 5	2 ⁽⁺⁾	0.18 keV	Ī			
11652.2 5	3-	0.10 110 .	Ī			
11653.5 5	2+	1.59 keV	I			
11661.7 5	1-	1.56 keV	I			
11663 7	$(3^-,4^+,5^-)$		В	v		T=0
						J ^{π} : log f 1=6.2 from 4 $^{-}$; α decay of this level in 40 Sc ε decay implies π =natural.
11672.8 5	(2^{-})	0.20 keV	I			
11677.1 5	2+	0.96 keV	I	U		XREF: U(11690).
11685.8 <mark>&</mark> 9	(10^+)				Y	J^{π} : from band assignment in (HI,xn γ).
11687.5 <i>5</i>	(1^+)	0.50 keV	I			
11689.2 5	(2^{-})	0.60 keV	I			
11690	7-		F			J^{π} : L(⁶ Li,d)=7.
11692.8 5	4 ⁽⁺⁾	0.021 keV	I			
11696.3 5	0(-)	0.60 keV	I			
11703.6 5	0+	4.65 keV	I			
11704.6 5	2-	3.0 keV	I			
11707.8 5	1-	0.30 keV	I			
11708.7 ^b 12	(9+)				Y	J^{π} : from band assignment in (HI,xn γ).

E(level) [†]	$\mathtt{J}^{\pi \ddagger}$	T _{1/2} #@			2	KREF		Comments
11713.6 5	1+	0.20 keV			I			
11715.7 5	2-	1.5 keV			Ι			
11721.2 5	1+	1.5 keV			Ι			
11724.1 5	3 ⁽⁻⁾	0.060 keV			Ι			
11726 5	(3,5)		В				V	XREF: Others: AI T=0
								J ^{π} : log ft =5.7 from 4 ^{$-$} ; $α$ decay of this level in ⁴⁰ Sc $ε$ decay implies $π$ =natural.
11731.0 5	$1^{(-)}$	3.6 keV			I			
11731.1 5	1+	0.40 keV			Ι			
11738.8 5	2+	3.0 keV			Ι			
11742.8 5	4+	1.07 keV			Ι			
11744.6 5	1(-)	0.55 keV			I			
11749.5 5	2 ⁻ 3 ⁻	2.57 keV			I			
11753.4 <i>5</i> 11754.0 <i>5</i>	3 1 ⁺	0.35 keV			I I			
11754.0 5	2-	0.60 keV			I			
11760 10	1 ⁺	0.00 RC V			-	N		J^{π} : M1 excitation in (e,e').
11768.0 5	2-	15 keV			Ι			0 1 111 enemation in (e,e).
11782.6 5	3(-)	0.041 keV			I			
11788.5 5	2+	2.5 keV			Ι			
11792.4 5	1+	0.46 keV			Ι			
11799.2 5	4 ⁽⁺⁾	0.18 keV	В		Ι		v	XREF: Others: AI
11804.1 5	0+	0.26 keV			Ι			
11809.0 5	(1^+)	1.1 keV			Ι			
11810.9 5	2 ⁺	1.8 keV			I			
11811.6 5	3-	0.26 keV			I I			
11820.6 <i>5</i> 11830.8 <i>5</i>	3 ⁻ 2 ⁺	3.5 keV 0.30 keV			I			
11839.2 5	0+	1.05 keV			Ī			
11841 6	$(3^-,4^+,5^-)$	1.00 110 .	В	F	_			T=0
								XREF: F(11800).
								J ^{π} : log ft =5.9 from 4 $^-$; α decay of this level in ⁴⁰ Sc ε decay implies π =natural.
11844.1 5	1+	0.78 keV			Ι			
11855.8 5	2+	0.39 keV			I			
11857.3 5	(1^+)	1.3 keV			I			
11863.3 <i>5</i> 11864.7 <i>5</i>	(3^{-}) (0^{+})	0.41 keV 1.6 keV			I I			
11868.8 5	(4^+)	0.032 keV			Ī			
11870.0 5	3-	0.040 keV			Ī			
11872.2 5	2+	0.87 keV			I			
11878.0 5	1-	0.32 keV			I			
11884.5 <i>5</i>	1+	0.80 keV			Ι			
11888.3 5	4+	0.13 keV			Ι			
11890.9 5	1-	20 keV			I			
11894.0 <i>5</i> 11901.4 <i>5</i>	(2 ⁻) 1 ⁺	1.0 keV 0.70 keV			I			
11901.4 3	3-	0.70 keV 1.0 keV			I I			
11913.9 5	2 ⁺	2.2 keV			I			
11930.0 5	4 ⁽⁺⁾	0.030 keV			Ī			
11933.3 5	i-	16.1 keV			Ī			
11935.0 5	1+	0.9 keV			Ι			
11937.3 5	2-	0.60 keV			Ι			
11940.4 5	1+	0.40 keV			Ι			

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		XRE	F		Comments
11942.8 5	3-	0.48 keV		I			
11945.0 5	1-	0.40 keV		I			
11948.4 5	0+	0.31 keV		I			
11958.7 5	(2^{+})	1.0 keV		Ī		U	XREF: U(11940).
11962.9 5	0+	0.30 keV		Ī			111121 (11) (0)
11969.8 5	1+	0.80 keV		Ī			
11971.0 5	2+	0.26 keV		Ī			
11975.1 5	1-	0.055 keV	E	Ī			
11983.3 5	(2^{-})	1.0 keV	_	Ī			
11987.1 5	3-	0.38 keV	E	Ī			
11988 <i>I</i>	0+	81 eV 10	E G			X	T=2
11700 1	O	01 0 7 10					J^{π} : L(³ He,n)=0; IAR state.
							$\%\alpha=93$ 9 to 36 Ar g.s.; $\%\alpha<3\%$ to first 2 ⁺ in 36 Ar;
	_						%p<5% ro ³⁹ K g.s.
11994.0 5	0-	3.0 keV	E	I			
12000 5	$(3,5)^{-}$		В				T=0
							J ^{π} : log ft =5.4 from 4 $^{-}$; α decay of this level in ⁴⁰ Sc ε decay implies π =natural.
12001.3 5	(2^{+})	1.02 keV	E	I			, ,
12007.4 5	ì+ ´	0.55 keV		I			
12010.4 5	2-	6.0 keV		I			
12012.2 5	4+	0.010 keV		I			
12023.6 <i>5</i>	1+	0.90 keV		I			
12026.9 5	4+	0.22 keV		I			
12033.8 <i>5</i>	3-	0.31 keV		I			
12038 <i>3</i>	$(3,4,5)^{-}$		В	Н	Q		J^{π} : log $ft=5.8$ from 4 ⁻ .
12047.7 5	2+	2.65 keV	f	HI N			
12056.4 5	1-	2.0 keV	f	I			
12058.9 <i>5</i>	2+	1.11 keV		I			
12067.3 5	2+	1.15 keV		I			
12067.8 <i>5</i>	4+	1.11 keV		I			
12068 <i>3</i>	$(3,5)^{-}$		В	Н			T=0
							J^{π} : log ft=5.6 from 4 ⁻ ; α decay of this level in 40 Sc
							ε decay implies π =natural.
12076.8 5	2-	3.07 keV		HI			
12082.0 5	4 ⁽⁺⁾	0.021 keV		I			
12086.1 5	4 ⁽⁺⁾	0.011 keV		I			
12088.8 5	2-	10 keV		I			
12089.7 5	2+	24 keV	f	I			
12093.1 5	4 ⁽⁺⁾	0.060 keV		I			
12095.1 5	2+	9.4 keV	Ef :				
12106.0 5	4(+)	0.090 keV		I			
12110.7 5	2+	2.0 keV	f				
12115.1 5	3-	0.78 keV		I			
12125.9 <i>5</i>	(3^{+})			I			
12132.7 5	(4 ⁺)	0.13 keV		I			
12134.9 5	(4 ⁺)	0.10 keV		I			
12141.2 5	2+	1.24 keV		I			
12152.3 5	4+	0.36 keV		I			
12157.8 5	4(+)	0.12 keV		I			
12159.4 5	4 ⁽⁺⁾	0.083 keV		I			
12177.7 5	1(-)	0.003 ke v		I			
12177.7 5	2+	1.50 keV	F	I			XREF: F(12170).
12184.5 5	2-	2.0 keV	1	I			. I (12170).
12107.5 5	2	2.0 KC V		1			

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		XREF		Comments
12192.7 5	2+	1.24 keV	I			
12196.3 5	1 ⁽⁻⁾	0.95 keV	I			
12201.2 5	3-	2.1 keV	E HI	N		E(level): from $(p,p),(p,\alpha)$:resonances.
12201.2 3	3	2.1 KC V	L III	N		J^{π} : from $(p,p),(p,\alpha)$:resonances and E3 excitation in (e,e') .
12209.3 5	0-	1.0 keV	I			(-,-)
12211.9 5	4+	0.021 keV	Ī			
12217.7 5	1+	1.5 keV	Ī			
12224.3 5	1-	1.46 keV	Ī			
12226.4 5	2+	0.43 keV	Ī			
12237.7 5	1 ⁺	2.0 keV	Ī			
12244.0 5	4 ⁺	0.030 keV	Ī			
12245.2 5	1-	2.0 keV	Ī			
12245.2 5 12256 <i>4</i>	1	5.5 keV	Ī			
12270 4	(2^{+})	5.8 keV	I			
	(2)		I			
12280 4		4.2 keV				
12292 <i>4</i> 12299 <i>4</i>	(2±)	4.0 keV	I			VDEE, Othoras AE
	(2^+)	4.0 keV	I			XREF: Others: AF
12305 4	(1 ⁻) 2 ⁺	6.7 keV	I			
12331 4		7.3 keV	HI			
12334.9 ^d 10	(10^{+})				Y	XREF: Others: AE
						J^{π} : from band assignment in (HI,xn γ).
12340	5-		F			J^{π} : L(⁶ Li,d)=5.
12350 <i>10</i>	2-			N		J^{π} : M2 excitation in (e,e').
12357 <i>4</i>	$(3^-,1^-)$	5.5 keV	I			
12368 <i>4</i>		6.7 keV	I			
12376 <i>4</i>		5.9 keV	I			
12381 4		4.0 keV	I			
12399 <i>4</i>	$(2^+,1^-)$	6.7 keV	I			
12406 <i>4</i>		3.5 keV	I			
12411 <i>4</i>		4.0 keV	I			
12419 <i>4</i>		5.4 keV	HI			
12420	(1^{-})	<0.05 MeV	С			J^{π} : L(³⁶ Ar, α)=1.
12425 <i>4</i>		6.4 keV	I			
12450	(4+)		F		U	J^{π} : L(6 Li,d)=4, but L(α,α')=3 for a 12450 group is inconsistent and could indicate there may be a separate level.
12488	2-			N		J^{π} : M2 excitation in (e,e').
12490 10	1 ⁺			N		J^{π} : M1 excitation in (e,e').
12503	2-			N		J^{π} : M2 excitation in (e,e').
12530	1 ⁻	<0.03 MeV	C F			XREF: F(12520).
12330	•	(0.05 IVIC V				J^{π} : L(36 Ar, α)=1.
12580	1-	<0.03 MeV	С			J^{π} : $L(^{36}Ar,\alpha)=1$.
12591.9 <i>10</i>	(10^{+})	<0.03 Me v	C		Y	XREF: Others: AE
12391.9 10	(10)				1	J^{π} : proposed in (HI,xn γ).
12604			Н			J. proposed iii (H1,xiry).
12622	(2)		п	N		J^{π} : from (e,e').
			E 11	IN		J^{π} : $L(^{6}Li, d) = 7$.
12650	7-	0.05 34 37	FH			
12668	1-	<0.05 MeV	С Н			J^{π} : $L(^{36}Ar,\alpha)=1$.
12688	2-		_ H			VI 1 (61 : 1) 2
12720	3-		F			J^{π} : L(⁶ Li,d)=3.
12750 10	2-			N		J^{π} : M2 excitation in (e,e').
12830 10	1+,(2-)			N		J^{π} : most likely M1 excitation in (e,e').
12875	4.4		Н			17 1 (61 : 1) A
12900	4+		F			J^{π} : L(⁶ Li,d)=4.

E(level) [†]	$\mathtt{J}^{\pi \ddagger}$	T _{1/2} #@		XREI	7			Comments
12923 ^c 2	(11 ⁻)						Y	J^{π} : from band assignment in (HI,xn γ).
12965	2+	<0.04 MeV	С				_	J^{π} : L(³⁶ Ar, α)=2.
12980	_	1010 1 1110 1	ЕН					V . Z(111,0) 2.
12996			Н					
13050 10	1+			N				J^{π} : M1 excitation in (e,e').
13050	4+		F					J^{π} : L(⁶ Li,d)=4.
13086			Н					
13113			H					
13115.1 ^a 10	(12^+)						Y	J^{π} : from band assignment in (HI,xn γ).
13125	2+	<0.04 MeV	C					J^{π} : L(³⁶ Ar, α)=2.
13150 <i>10</i>	2-			N				J^{π} : M2 excitation in (e,e').
13170	3-	<0.02 MeV	С					J^{π} : L(³⁶ Ar, α)=3.
13194			Н					
13195	(10^{-})						Y	J^{π} : proposed in (HI,xn γ).
13200	4+		F					J^{π} : $L(^{6}Li,d)=4$.
13203			Н					
13250			E					
13289			H					
13300	4+		F					J^{π} : L(6Li,d)=4.
13301	2+	<0.04 MeV	С					J^{π} : L(³⁶ Ar, α)=2.
13345	3-	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=3.
13400	0+		f			U		XREF: Others: AI
								J^{π} : $L(\alpha, \alpha')=0$.
13410	3-	<0.04 MeV	C f					J^{π} : L(36 Ar, α)=3.
13445	2-			N	q			XREF: Others: AI
					•			J^{π} : M2 excitation in (e,e').
13470	4+		F		q			XREF: Others: AI
								J^{π} : L(⁶ Li,d)=4.
13480	3-	<0.03 MeV	С					J^{π} : L(³⁶ Ar, α)=3.
13480 10	1+		E	N				XREF: Others: AI
								J^{π} : M1 excitation in (e,e').
13520	3-	<0.04 MeV	С					J^{π} : L(³⁶ Ar, α)=3.
13535.5 ^b 13	(11^{+})						Y	J^{π} : from band assignment in (HI,xn γ).
13570	3-	<0.05 MeV	С				•	J^{π} : $L(^{36}Ar,\alpha)=3$.
$13.6 \times 10^3 \ 4$	3	<0.03 IVIE V	C	N				$J \cdot L(AI, u) - S$.
13610	1+,2+,3+			IN	Q			J^{π} : L(p,p')=2 from 0 ⁺ .
13620	6 ⁺		C		Ų			J^{π} : L(6,p) = 2 from 0. J^{π} : L(6Li,d)=6.
		<0.04 MeV	C					J^{π} : L(36 Ar, α)=3.
13620	3-		C					$J^{\pi}: L(^{3}AI,\alpha)=3.$ $J^{\pi}: L(^{36}AI,\alpha)=3.$
13645 13670 <i>10</i>	3-	<0.04 MeV	С	37				
	2-	.0.02 34 37		N				J^{π} : M2 excitation in (e,e').
13710	3-	<0.03 MeV	C					J^{π} : $L(^{36}Ar,\alpha)=3$.
13720	6+		EF					J^{π} : L(⁶ Li,d)=6.
13760	3-	<0.04 MeV	C					J^{π} : L(³⁶ Ar, α)=3.
13822			Н					- 6
13830	7-		F					J^{π} : L(⁶ Li,d)=7.
13830	$(1^+, 2^+, 3^+)$				Q			J^{π} : L(p,p')=(2) from 0 ⁺ .
13850	3-	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=3.
13890	$(0^+,1^+)$				Q			J^{π} : L(p,p')=(0) from 0 ⁺ .
13900	2+			N				J^{π} : E2 excitation in (e,e').
13910	3-	<0.02 MeV	C					J^{π} : L(³⁶ Ar, α)=3.
13913	4		Н					T. (0)
13921 <i>15</i>	4				QR			T=(0)
								J^{π} : $\sigma(\theta)$ in (p,p') .

E(level) [†]	Jπ‡	T _{1/2} #@	XRE	F	Comments
13952	4+		E		$J^{\pi} \colon L(^{6}Li,d)=4.$
13960	3-	<0.02 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
13993	3	(0.02 IVIC V	Н		5 · E(111,w) 5.
14000	4+		F		J^{π} : L(⁶ Li,d)=4.
14005	3-	<0.02 MeV	С		J^{π} : L(36 Ar, α)=3.
14020	$(2^-,3^-,4^-)$	<0.02 IVIC V	C	Q	J^{π} : L(p,p')=(3) from 0 ⁺ .
14047	3-	<0.02 MeV	С	Q	J^{π} : L(36 Ar, α)=3.
14047 14070 <i>50</i>	(0^+)	<0.02 IVIE V	C	U	J^{π} : $L(\alpha, \alpha') = 0$.
14070 30	(0)		E	U	\mathbf{J} . $\mathbf{L}(u,u)=(0)$.
14100	1+,2+,3+		E	Q	J^{π} : L(p,p')=2 from 0 ⁺ .
14150	3-	<0.03 MeV	С	Q	J^{π} : $L(^{36}Ar,\alpha)=3$.
14177	3-	<0.03 MeV			J. L($^{A1}\alpha)=3$. J ^{π} : L(36 Ar, α)=3.
	3 4 ⁺	<0.03 Me v	C		
14190	$0^+, 1^+$		F	6	J^{π} : L(6 Li,d)=4.
14200	0,1,			S	XREF: Others: AK
1.4010	(2- 2- 4-)			•	J^{π} : L(³ He, ³ He')=0.
14210	$(2^-,3^-,4^-)$			Q	J^{π} : L(p,p')=(3) from 0 ⁺ .
14225	3-	<0.02 MeV	С		$J^{\pi}: L(^{36}Ar,\alpha)=3.$
14232.4 <mark>&</mark> <i>10</i>	(12^{+})			Y	J^{π} : from band assignment in (HI,xn γ).
14262	3-	<0.02 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
14283 <i>15</i>	(6)			Q	T=1
					J^{π} : $\sigma(\theta)$ in (p,p') .
14292	3-	<0.02 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
14312	3-	<0.02 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
14320	$(2^-,3^-,4^-)$	(0.02 IVIC V		Q	J^{π} : L(p,p')=(3) from 0 ⁺ .
14335	3-	<0.02 MeV	С	•	J^{π} : $L(^{36}Ar,\alpha)=3$.
14370	6 ⁺	<0.02 IVIC V	FI		XREF: F(14380).
14370	O		r I		J^{π} : L(⁶ Li,d)=6.
1.4200	2-	40.02 M-M	C		J^{π} : L(26 Ar, α)=3.
14390	3-	<0.03 MeV	C	0	
14410	2-,3-,4-		E	Q	XREF: E(14420).
14419			E		J^{π} : L(p,p')=3 from 0 ⁺ .
	2-	0.02 14 17			J^{π} : L(³⁶ Ar, α)=3.
14435	3-	<0.03 MeV	C		
14460	$(2)^{+}$		I	qr	J^{π} : L(p,p')=2 for 14500 group; L(d,d')=0+2 for
1.4.400	2-	0.043637			14500 group;
14490	3-	<0.04 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
14530	(6^+)		EF I	qr	XREF: E(14509)F(14500).
					J^{π} : L(⁶ Li,d)=6.
14540	3-	<0.03 MeV	С		J^{π} : L(³⁶ Ar, α)=3.
14600	$(1,2^+,3^-,4^+)$		I N	r	J^{π} : from (e,e').
14605	3-	<0.04 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
14640	3-	<0.03 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
14660	$1^+, 2^+, 3^+$		f	Qr	J^{π} : L(p,p')=2 from 0 ⁺ .
14680			f I	r	J^{π} : 1 ⁺ for a 15000 group in (d,d').
14690	3-	<0.03 MeV	C		J^{π} : L(36 Ar, α)=3.
14725	3-	<0.05 MeV	С		J^{π} : L(³⁶ Ar, α)=3.
14750	4+		F		J^{π} : L(⁶ Li,d)=4.
14760	3-	<0.03 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
14780	1+,2+,3+	<0.03 IVIC V		Q	J^{π} : L(p,p')=2 from 0 ⁺ .
14790	3-	<0.03 MeV	С	4	J^{π} : $L(^{36}Ar,\alpha)=3$.
	3-				J. L($^{A1}\alpha)=3$. J ^{π} : L(36 Ar, α)=3.
14835		<0.03 MeV	C		J [*] : $L(^{3}Ar,\alpha)=3$. XREF: $F(14850)$.
14869	(9-)		EF		
					J^{π} : L(⁶ Li,d)=(9).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@			XREF		Comments
14888	3-	<0.04 MeV	С				J^{π} : L(³⁶ Ar, α)=3.
14942	3-	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=3.
15002	3-	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=3.
15080				F	Qr		. – (
15101	3-	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=3.
15140				F	r		
15150	3-	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=3.
15152.4 ^a 12	(13^{+})					Y	J^{π} : from band assignment in (HI,xn γ).
15220	3-	<0.03 MeV	C				$J^{\pi} \colon L(^{36}Ar,\alpha)=3.$
15250				F			
15260	3-	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=3.
15267.1 ^d 14	(12^{+})					Y	J^{π} : from band assignment in (HI,xn γ).
15285	4+	<0.05 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15306 ^c 2	(13^{-})					Y	J^{π} : from band assignment in (HI,xn γ).
15330				F			
15345	4+	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15384	4+	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15435	4+	<0.04 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=4$.
15490	4+	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15525	4+	<0.02 MeV	C				J^{π} : L(36Ar, α)=4.
15550	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15580	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15600	•	10100 1110 1	Ĭ	F			V · 2(· 11,w) · ·
15620	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15670	4+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15700				F			
15707	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15748.1 <i>14</i>	(12^{+})					Y	J^{π} : from band assignment in (HI,xn γ).
15790	4+	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15840	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15875	4+	<0.03 MeV	C				J^{π} : L(36Ar, α)=4.
15900	3-				U		J^{π} : $L(\alpha, \alpha')=3$.
15915	4+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15950	4+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15960	4+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
16000	5-	<0.02 MeV	C				J^{π} : L(36Ar, α)=5.
16000 <i>50</i>	3-	0.63 MeV 10			U		J^{π} : $L(\alpha, \alpha')=3$ from 0^+ .
16020	4+	<0.03 MeV	C				J^{π} : L(36 Ar, α)=4.
16065	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
16110	5-	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=5.
16120	4+	<0.03 MeV	C				J^{π} : L(36Ar, α)=4.
16160	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
16210	4+	<0.03 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=4$.
16255	4+	<0.02 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=4$.
16290	4 ⁺	<0.02 MeV	c				J^{π} : $L(^{36}Ar,\alpha)=4$.
16360	4 ⁺	<0.02 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=4$.
16395	4+	<0.02 MeV	c				J^{π} : $L(^{36}Ar,\alpha)=4$.
16450	4 ⁺	<0.02 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=4$.
16510	4 ⁺	<0.02 MeV	C				J^{π} : L(36 Ar, α)=4.
16529.4 ^{&} 12	(14^{+})	10.02 1110 V				Y	J^{π} : from band assignment in (HI,xn γ).
16545	5-	<0.02 MeV	C			1	J^{π} : from band assignment in (FII,xiry). J^{π} : $L(^{36}Ar,\alpha)=5$.
10545	J	VU.UZ IVIEV	C				$J \cdot L(AI, u) = J.$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		XREF	7		Comments
16579.7 ^b 16	(13^+)					Y	J^{π} : from band assignment in (HI,xn γ).
16585	5-	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=5.
16610	6+	<0.02 MeV	С				J^{π} : L(36Ar, α)=6.
16640	6+	<0.02 MeV	С				J^{π} : L(36Ar, α)=6.
16665	6+	<0.02 MeV	С				J^{π} : L(³⁶ Ar, α)=6.
16700	$(2^-,3^-,4^-)$	0.90 MeV 2			S		J^{π} : L(³ He, ³ He')=(3).
16735	6+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
16810	6+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
16910	6+	<0.05 MeV	С				J^{π} : L(³⁶ Ar, α)=6.
16945	6+	<0.02 MeV	С				J^{π} : L(36Ar, α)=6.
17010	6+	<0.03 MeV	С				J^{π} : L(36Ar, α)=6.
17065	6 ⁺	<0.02 MeV	С				J^{π} : L(³⁶ Ar, α)=6.
17113	6+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17170	6 ⁺	<0.02 MeV	Ċ				J^{π} : L(³⁶ Ar, α)=6.
17210	6 ⁺	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17280	6 ⁺	<0.03 MeV	Č				J^{π} : L(36 Ar, α)=6.
17320	6 ⁺	<0.02 MeV	Č				J^{π} : L(36 Ar, α)=6.
17360	6 ⁺	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17410	6 ⁺	<0.03 MeV	C				J^{π} : L(36 Ar, α)=6.
17450	6 ⁺	<0.03 MeV	C				J^{π} : L(36 Ar, α)=6.
17513	6 ⁺	<0.05 MeV	C				J^{π} : L(36 Ar, α)=6.
17590	6 ⁺	<0.05 MeV	C				J^{π} : L(36 Ar, α)=6.
17669	O	(0.05 IVIC V	E				XREF: Others: AI, AK
1,005			_				XREF: AI(17500).
							E(level): possibly GQR.
17670	6+	<0.05 MeV	C				J^{π} : L(36 Ar, α)=6.
17698.6 <i>14</i>	(14^{+})					Y	J^{π} : from band assignment in (HI,xn γ).
17700	2+				U		J^{π} : $L(\alpha,\alpha')=2$.
17730	6+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17790	6+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17855	6+	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17859			E				
17915	6+	<0.02 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=6$.
17950	6+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
18000 <i>50</i>	2+	2.25 MeV 20			U		J^{π} : L(α,α')=2 from 0 ⁺ .
18010	6+	<0.02 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=6$.
18054.6 <i>14</i>	(14^{+})					Y	J^{π} : proposed in (HI,xn γ).
18077	6+	<0.05 MeV	C				J^{π} : L(36 Ar, α)=6.
18139 18146	6 ⁺	<0.05 MeV	C E				$J^{\pi}: L(^{36}Ar,\alpha)=6.$
18174	6 ⁺	<0.03 MeV	С				J^{π} : L(³⁶ Ar, α)=6.
18200	2+			N	RS		XREF: N(18400).
							J^{π} : L(d,d')=0+2; L(³ He, ³ He')=2(+0).
18215? ^c 2	(15^{-})					Y	J^{π} : from band assignment in (HI,xn γ).
18260 5	1		H				J^{π} : 18256 γ D to $0^{\frac{1}{4}}$.
18260	6+	<0.05 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=6$.
18326	6+	<0.05 MaV	E				J^{π} : L(³⁶ Ar, α)=6.
18328	6 ⁺	<0.05 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=6$. J^{π} : $L(^{36}Ar,\alpha)=6$.
18406 18452	0	<0.03 MeV	C E				J.: $L(^{-\alpha}AI,\alpha)=0$.
18485	6+	<0.02 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=6$.

E(level) [†]	J ^π ‡	T _{1/2} #@			XREF			Comments
18497.2 ^d 17	(14+)	·					Y	J^{π} : from band assignment in (HI,xn γ).
18547	6 ⁺	<0.03 MeV	С				-	J^{π} : L(³⁶ Ar, α)=6.
18605	6 ⁺	<0.04 MeV	Ċ					J^{π} : $L(^{36}Ar,\alpha)=6$.
18659	6 ⁺	<0.02 MeV	Ċ					J^{π} : L(36 Ar, α)=6.
18680 5	1	10.02 1110 1		Н				J^{π} : 18675 γ D to 0 ⁺ .
18705	6 ⁺	<0.02 MeV	С					J^{π} : L(36 Ar, α)=6.
18719.2 <i>17</i>	(14^{+})	10.102 1.12					Y	J^{π} : from band assignment in (HI,xn γ).
18731	,		E					(, , , , , , , , , , , , , , , , , , ,
18765	6+	<0.04 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
18865	6+	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
18930	6+	<0.02 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19020	6+	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19037			E					
19070 5	1			H				J^{π} : 19065 γ D to 0 ⁺ .
19080	6+	<0.05 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19150	6 ⁺	<0.07 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
$19.18 \times 10^3 \ 37$	0_{+}	4.9 MeV 6				U		J^{π} : $L(\alpha, \alpha')=0$.
19195.6 ^a 16	(15^{+})						Y	J^{π} : from band assignment in (HI,xn γ).
19230	6+	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19280	6+	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19385	6 ⁺	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19450 5	1			H				J^{π} : 19445 γ D to 0 ⁺ .
19467	6+	<0.04 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19525	6+	<0.02 MeV	C					J^{π} : $L(^{36}Ar,\alpha)=6$.
19597	6+	<0.02 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19667	6+	<0.04 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19780	6+	<0.06 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19850 5	1			H				J^{π} : 19845 γ D to 0 ⁺ .
20130 5				H				
20430 5	1			H				J^{π} : 19845 γ D to 0 ⁺ .
20578.6 ^{&} 15	(16^{+})						Y	J^{π} : from band assignment in (HI,xn γ).
20650 5	1			H				J^{π} : 20644 γ D to 0 ⁺ .
20940 5	1			H				J^{π} : 20934 γ D to 0 ⁺ .
21000 50						U		J^{π} : $L(\alpha,\alpha')=0+2$.
21490				H				
21690 22060				H H				
	(16+)			п				TT C I I I I I I I I I I I I I I I I I I
22060.4 ^d 20 23360	(16 ⁺)				w		Y	J^{π} : from band assignment in (HI,xn γ).
23300	1				M	U		XREF: Others: AK J^{π} : $L(\alpha, \alpha')=1$; GDR.
$31 \times 10^3 \ 2$	2-,3-,4-				Q			J^{π} : $L(\alpha, \alpha') = 1$; GDR. J^{π} : $L(p, p') = 3$ from 0^+ .
31×10^{-2} 35.3×10^{3} 5	2 ,3 ,4				N Q			$J \cdot L(p,p) = 3 \text{ Hom } 0$.
42.0×10^3								
58.4×10 ³ 11					N			
J0.4X10° 11					N			

[†] From (p,γ) , ⁴⁰ Sc ε decay, (γ,γ') or $(HI,xn\gamma)$ based on γ -ray energies. In other cases, a large number of excitation energies are from (p,p), (p,α) :resonances. When levels are known from transfer particle-reactions, weighted averages of available values are taken. The following reactions have imprecise excitation energies above ≈8 MeV, hence level correspondence between various reactions (as given in XREF column) is considered (by the evaluator) as tentative: resonances in (α,γ) ; (⁶Li,d); (³He,n); (d,d'), (³He,³He'); (α,α') ; (HI,HI') and (d,t).

- [‡] When no arguments are given (above 9600), the assignments are based on $J^{\pi\prime}$'s determined in 39 K(p, γ) or 39 K(p,p),(p, α):resonances. For high-spin structures (J>6), assignments are based on $\gamma(\theta)$ data and expected band associations. In particle-transfer reactions, target (39 K) J^{π} =3/2+ for (d,n) and (3 He,d) reactions; target (41 Ca) J^{π} =7/2- for (3 He, α) and (d,t) reactions. In arguments based on γ decays, RUL (for E2 and M2 transitions) is also used when level lifetimes are known. For some of the high-energy levels populated only in (e,e'), J^{π} assignments are from measurements of $\sigma(\theta)$ and deduced transition strengths in that reaction.
- [#] Lifetimes are available from DSAM in $(p,p'\gamma)$, (p,γ) and $(HI,xn\gamma)$, and measured widths in (γ,γ') . Widths are from (γ,γ') , (p,γ) and (p,p), (p,α) :resonances and for some levels, values are for Γ_p or deduced from (p,p) resonance strengths by assuming $\Gamma_p/\Gamma=1$ if spin values is firmly assigned. Consult individual data sets for corresponding resonance strengths.
- [®] Additional information 21.
- & Band(A): 4p-4h, 0^+ band. Q(transition)=0.74 14 from life-time data; corresponds to $\beta_2 \approx 0.27$.
- ^a Band(B): γ sequence based on 8⁺.
- ^b Band(C): 3⁺ band.
- ^c Band(D): $K^{\pi}=0^-$ band (2004To07) (?). This band is proposed (2004To07) as a partner of 4p-4h band based on the 3353,0⁺ state; the 1⁻, 3⁻ and 5⁻ members of this band are proposed at 5902, 1⁻; 6280, 3⁻ or 6580, 3⁻; and 7399, (5⁻), respectively. However, the 7399 level is assigned (5⁺) in another in-beam γ -ray study. Assignment of (7⁻) by 2004To07 for 9033 level is inconsistent with L(p,p')=5 for a 9029 5 group and γ 's to 3⁻ and 4⁻ states seen in (p, γ). The 7⁻ assignment is only possible if the 9033 level in 2004To07 is different from a 9032 seen in other reactions.
- ^d Band(E): SD band (2001Id01,2003Ch22). Q(transition)=1.30 *15* over the whole band; 1.81 +46-33 for high-spin states; 1.18 *14* for low-spin states (2003Ch22). Q(transition)=1.80 +39-29 (2001Id01). Q(transition) from 2001Id01 corresponds to $β_2$ =0.59 +11-7. Configuration=8p-8h defined by $π3^4ν3^4$, where superscripts are the number of protons and neutrons occupying the N=3 (f_{7/2}) intruder orbital.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f J	Mult.#	$\delta^{\#}$	Comments
3352.62	0+	3352.6		0.0	E0		Decay is mainly by e^+e^- pair emission. Monopole strength: $\rho^2(E0)$ =0.0256 7 (2005Ki02, deduced from $T_{1/2}$). Other: 0.025 8
3736.69	3-	3736.5 3	100	0.0 0	F E3		in (e,e') deduced from measured matrix element. B(E3)(W.u.)=31 +4-3 E _{γ} : weighted average of 3735.6 8 from ⁴⁰ Sc ε decay, 3736.8 3 from ³⁹ K(p, γ), 3737 2 from ⁴⁰ Ca(n,n' γ), 3736.7 3 from ⁴⁰ Ca(p,p' γ), and 3736.1 3 from (HI,xn γ).
3904.38	2+	551.8	<0.10	3352.62 0	F [E2]		Mult.: from $\gamma(\theta)$ in $(p,p'\gamma)$, M3 ruled out by RUL. B(E2)(W.u.)<49 E _{γ} : from (p,γ) .
		3903.9 <i>1</i>	100	0.0 0	E2		I_{γ} : from (p,γ) . Others: <1.5 in $(p,p'\gamma)$. B(E2)(W.u.)=2.2 +6-4
4491.43	5-	754.8 2	100	3736.69 3	- E2		E _γ : weighted average of 3904.5 <i>3</i> from ³⁹ K(p,γ), 3903.8 <i>l</i> from ⁴⁰ Ca(γ,γ'), 3904.2 <i>4</i> from ⁴⁰ Ca(n,n'γ), 3904.4 <i>4</i> from ⁴⁰ Ca(p,p'γ), and 3904.0 <i>3</i> from (HI,xnγ). Mult.: Q from $\gamma(\theta)$ in (p,p'γ) and (HI,xnγ), M2 ruled out by RUL. B(E2)(W.u.)=0.98 <i>3</i> E _γ : weighted average of 755.6 <i>8</i> from ⁴⁰ Sc ε decay, 754.8 <i>3</i> from ³⁹ K(p,γ), 755 2 from ⁴⁰ Ca(n,n'γ), 754.7 2 from ⁴⁰ Ca(p,p'γ), and 754.8 2 from (HI,xnγ). Mult.: from $\gamma\gamma(\theta)$ and γ (pol) in in (p,γ).
5211.56	0+	1307.7 3	100	3904.38 2	F [E2]		$\delta(O/Q) = -0.01 \ 2 \text{ from } (p, \gamma), +0.05 \ 5 \text{ in } (p, p' \gamma).$ B(E2)(W.u.)=17 +4-3 E _{\gamma} : from (p, p' \gamma).
5248.79	2+	1344.4 <i>3</i>	19.4 <i>12</i>	3904.38 2	⁺ M1+E2	+13 +6-3	$B(M1)(W.u.)=8\times10^{-5} +11-6$; $B(E2)(W.u.)=25 +8-6$
		1896.1	6.3 8	3352.62 0	+ (E2)		 E_γ,Mult.,δ: from (p,p'γ). I_γ: weighted average of 18.9 11 from ³⁹K(p,γ), 27 7 from ⁴⁰Ca(n,n'γ), and 25 5 from ⁴⁰Ca(p,p'γ). B(E2)(W.u.)=1.5 +6-4 E_γ: from (p,γ), 1897 2 from (n,n'γ). I_γ: weighted average of 6.4 8 from ³⁹K(p,γ), 7 4 from ⁴⁰Ca(n,n'γ), and 5.2 26 from ⁴⁰Ca(p,p'γ).
		5248.9 3	100.0 15	0.0 0	+ E2		Mult.: from $(p,p'\gamma)$. B(E2)(W.u.)=0.143 +35-24 E _{γ} : weighted average of 5248.9 6 from ³⁹ K(p, γ), 5247.9 6 from ⁴⁰ Ca(p,p' γ), 5249.2 3 from ⁴⁰ Ca(γ , γ'), and 5249 2 from ⁴⁰ Ca(n,n' γ). I _{γ} : from (p,γ) .
5278.80	4+	787.4	3.1 15	4491.43 5	E1]		δ: from (p,p'γ). B(E1)(W.u.)=6×10 ⁻⁵ +7-5 E _γ ,I _γ : from (p,γ).
		1374.0 3	100.0 15	3904.38 2	+ E2		Ey,1y. Holm (p,y). B(E2)(W.u.)=67 +17-12 E _y : unweighted average of 1374.5 4 from 39 K(p,y), 1374.0 2 from 40 Ca(n,n'y), 1373.1 I from 40 Ca(p,p'y), and 1374.30 20 from (HI,xny).

γ (40Ca) (continued)

E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	δ#	Comments
5613.52	4-	1122.7 2	41.4 28	4491.43 5	M1+E2	-0.7 2	I _γ : from (p,γ). Mult.: from γγ(θ) and γ(pol) in (p,γ). $\delta(O/Q) = +0.02$ 4 from (p,p'γ), -0.02 5 from (p,γ). B(M1)(W.u.)=0.0046 +23-16; B(E2)(W.u.)=6 +4-3 E _γ : weighted average of 1126 3 from ⁴⁰ Sc ε decay, 1121.5 6 from ³⁹ K(p,γ), 1122 2 from ⁴⁰ Ca(p,p'γ).
		1877.0 2	100 3	3736.69 3	M1+E2	-0.27 5	I _γ : weighted average of 48 8 from 40 Sc ε decay, 41.8 28 from 39 K(p,γ), and 39 4 from 40 Ca(p,p'γ). Mult.,δ: from γ (pol) in (p,γ). B(M1)(W.u.)=0.0033 +8-6; B(E2)(W.u.)=0.21 +15-9 E _γ : weighted average of 1877.8 7 from 40 Sc ε decay, 1877.0 3 from 39 K(p,γ), 1877 2 from 40 Ca(n,n'γ), and 1876.9 2 from 40 Ca(p,p'γ).
5629.41	2+	2277.0 10	14.0 10	3352.62 0+	[E2]		I _{γ} : from (p, γ). Mult., δ : from γ (pol) in (p, γ). B(E2)(W.u.)=3.3 +23-11 E _{γ} : weighted average of 2275 2 from ⁴⁰ Ca(n,n' γ) and 2277.5 10 from ⁴⁰ Ca(p,p' γ).
		5628.5 2	100.0 10	0.0 0+	E2		I _γ : weighted average of 14.0 10 from 39 K(p,γ), and 14 6 from 40 Ca(p,p'γ). Other: 48 12 from 40 Ca(n,n'γ), B(E2)(W.u.)=0.26 +15-7 E _γ : weighted average of 5628.5 2 from 40 Ca(γ,γ'), 5629 2 from 40 Ca(n,n'γ), and 5628.3 5 from 40 Ca(p,p'γ).
5902.63	1-	5902.0 2	100	0.0 0+	E1		I_{γ} : from (p, γ) . I_{γ} : from (p, γ) and RUL. I_{γ} : from (p, γ) and RUL. I_{γ} : weighted average of 5902.0 2 from 40 Ca (γ, γ') , 5903 2 from 40 Ca $(\eta, \eta' \gamma)$, and 5902.6 15 from 40 Ca $(p, p' \gamma)$. Mult.: D from (p, γ) from $(p, p' \gamma)$ polarity from level-parity change determined from
6025.47	2-	2121.0 6	23 3	3904.38 2+	[E1]		other experimental evidence. B(E1)(W.u.)= $6.1 \times 10^{-5} + 19 - 15$ E _{γ} : from (p,p' γ).
		2289.0 3	100 3	3736.69 3	M1+E2	-2.8 5	I_{γ} : from (p,γ) . B(M1)(W.u.)=0.0010 +7-4; $B(E2)(W.u.)=4.7 +11-9E_{\gamma}: from (p,p'\gamma).I_{\gamma}: from (p,\gamma).Mult.,\delta: D+Q from \gamma\gamma(\theta) in (p,p'\gamma), polarity from no level-parity change$
6029.71	3+	750.9 780.7 <i>4</i>	<1.2 20 <i>4</i>	5278.80 4 ⁺ 5248.79 2 ⁺	E2(+M1)	>2	determined from other experimental evidence. E_{γ}, I_{γ} : from (p, γ) . Other: $I_{\gamma} < 3.4$ in (p, p'_{γ}) . $B(M1)(W.u.) < 0.0037$; $B(E2)(W.u.) > 77$ E_{γ} : from (p, p'_{γ}) .

27

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\sharp}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
6029.71	3 ⁺	2124.4 3	100 4	3904.38	2+	E2(+M1)	>4	I _γ : weighted average of 25 4 from 39 K(p,γ), 18 6 from 40 Ca(n,n'γ), and 15 5 from 40 Ca(p,p'γ). Mult.,δ: Q(+D) from γγ(θ) in (p,p'γ); M2(+E1) is ruled out by RUL. B(M1)(W.u.)<0.00027; B(E2)(W.u.)>3.0 E _γ : from (p,p'γ). I _γ : from (p,γ).
6285.15	3-	2293.0 671.6 1793.4 2	<8 1.3 <i>3</i> 100.0 <i>11</i>	3736.69 5613.52 4491.43	4-	E2		Mult., δ : Q(+D) from $\gamma\gamma(\theta)$ in (p,p' γ); M2(+E1) is ruled out by RUL. E $_{\gamma}$ I $_{\gamma}$: from (p, γ). Other: I γ <23 in (p,p' γ). E $_{\gamma}$ I $_{\gamma}$: from (p, γ) only. B(E2)(W.u.)=8.2 +14-13 E $_{\gamma}$: weighted average of 1793.9 6 from ³⁹ K(p, γ), 1793 2 from ⁴⁰ Ca(n,n' γ), and 1793.3 2
		2380.0 5	27.4 7	3904.38	2+	E1		from 40 Ca(p,p' γ). I_{γ} : from (p, γ). Mult.: Q(+O) from $\gamma\gamma(\theta)$ in (p,p' γ), M2 ruled out by RUL. $\delta(O/Q) = -0.03$ 17 from (p,p' γ), +0.03 2 from (p, γ). B(E1)(W.u.)=2.6×10 ⁻⁵ +5-4 E $_{\gamma}$: from (p,p' γ). I_{γ} : from (p, γ). Others: 80 33 from (n,n' γ), 30 7 from (p,p' γ), and 33 7 from (α , α ' γ). Mult.: D from $\gamma\gamma(\theta)$ in (p,p' γ), polarity from level-parity change determined from other experimental evidence.
		2548.4 6284.6	4.4 <i>6</i> 5.8 <i>7</i>	3736.69 0.0	3 ⁻ 0 ⁺	[E3]		E_{γ},I_{γ} : from (p,γ) . Other: $I_{\gamma}<13$ in $(p,p'\gamma)$. $B(E_3)(W.u.)=4.2 + I_3 - I_0$
6422.4	2+	6420.6 9	100	0.0	0+	[E2]		E_{γ}, I_{γ} : from (p, γ) . B(E2)(W.u.)=0.49 +22-12
6507.87	4+	1229.0 <mark>&</mark> 1259.0	4 <i>3</i> 17 <i>4</i>	5278.80 5248.79		[E2]		E_{γ} : from (γ, γ') . $E_{\gamma}I_{\gamma}$: from $(p, p'\gamma)$. Other: $I\gamma < 3.5$ in (p, γ) . B(E2)(W.u.) = 24 + I3 - 9 E_{γ} : from (p, γ) .
		2603.2 3	100 4	3904.38	2+	E2		I _{γ} : weighted average of 18 4 from 39 K(p, γ) and 15 4 from 40 Ca(p,p' γ). B(E2)(W.u.)=3.7 +11-8 E _{γ} : from (p,p' γ). I _{γ} : from (p, γ). Mult.: O(+Q) from $\gamma\gamma(\theta)$ in (p,p' γ), M2 ruled out by RUL.
6542.80	4+	913.3	32 3	5629.41	2+	E2		$\delta(O/Q) = -0.09$ 9 from $(p,p'\gamma)$. $B(E2)(W.u.) = 1.7 \times 10^2 + 7 - 5$ $E_{\gamma}I_{\gamma}$: from (p,γ) . Other: $I_{\gamma} = 17$ 4 in $(p,p'\gamma)$. Mult.: from $\gamma\gamma(\theta)$ in $(p,p'\gamma)$ and RUL.
		1264.0 1294.0	14 <i>3</i> 24 <i>3</i>	5278.80 5248.79		(E2)		B(E2)(W.u.)>100 consistent with 6543, 4^+ state as a member of SD band. E_{γ} , I_{γ} : from (p, γ). Other: I_{γ} =10 4 in (p,p' γ). B(E2)(W.u.)=22 +10-7

γ (40Ca) (continued)

								
E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
6542.80	4+	2638.1 3	100 3	3904.38	2+	E2(+M3)	-0.07 7	$E_{\gamma}I_{\gamma}$: from (p,γ) . Other: $I_{\gamma}=12$ 4 in $(p,p'\gamma)$. Mult.: (Q) from (HI,xn γ), M2 ruled out by RUL. B(E2)(W.u.)=2.6 +8-6 E_{γ} : from $(p,p'\gamma)$. I_{γ} : from (p,γ) .
6582.47	3-	969.0 2091.0	26 <i>5</i> <1.1	5613.52 4491.43		[E2]		Mult.: Q(+O) from $\gamma\gamma(\theta)$ in $(p,p'\gamma)$, M2 ruled out by RUL. $\delta(O/Q)=-0.07$ 7 from $(p,p'\gamma)$. $E_{\gamma}I_{\gamma}$: from (p,γ) . Other: $I_{\gamma}=7.5$ 30 in $(p,p'\gamma)$. $B(E_2)(W.u.)=0.39$ +36–24
								E_{γ} : from (p,γ) . I_{γ} : from (p,γ) . Other: 7.5 30 from $(p,p'\gamma)$.
		2678.1	24.7 21	3904.38	2+	[E1]		B(E1)(W.u.)= $2.8 \times 10^{-5} + 11 - 7$ E _{γ} : from (p, γ).
		2845.1 <i>3</i>	100.0 20	3736.69	3-	M1+E2	+3.1 +26-11	I _{γ} : weighted average of 24.2 18 from ³⁹ K(p, γ), and 34 8 from ⁴⁰ Ca(p, $p'\gamma$). B(M1)(W.u.)=0.00034 +60-26; B(E2)(W.u.)=1.3 +5-4 E _{γ} : from (p, $p'\gamma$). I _{γ} : from (p, γ).
6750.41	2-	2848.4 & 10	<10	3904.38	2+			Mult., δ : D+Q from $\gamma\gamma(\theta)$ in $(p,p'\gamma)$, M2 ruled out by RUL. E _{γ} : from $(p,p'\gamma)$. Other: 2845.9 from (p,γ) .
0/30.41	2	2040.4 10	<10	3904.36	2			I_{γ} : from (p, γ) . Others: 22 10 in $(n, n'\gamma)$, 18 in $(p, p'\gamma)$.
		3014.0 <i>3</i>	100	3736.69	3-	M1+E2	-0.84 <i>16</i>	B(M1)(W.u.)=0.0047 +36-17; B(E2)(W.u.)=1.1 +10-5 E _{γ} : from (p,p' γ).
6908.70	2+	6907.6 <i>1</i>	100	0.0	0+	[E2]		Mult., δ : from $\gamma\gamma(\theta)$ in $(p,p'\gamma)$ and RUL. B(E2)(W.u.)=2.1 +5-4 E _{γ} : from (γ,γ') .
6930.2	6+	1651.8 4	100	5278.80	4+	E2		B(E2)(W.u.)=17 +17-4
								E_{γ} : weighted average of 1651.9 7 from (HI,xnγ) and 1651.7 4 from (3 He,dγ). Other: 1651 2 from (n,n'γ). Mult.: from $\gamma(\theta)$ and $\gamma(DCO)$ in (HI,xnγ) and RUL.
6931.29	3-	1301.8	7.0 4	5629.41	2+	[E1]		B(E1)(W.u.)=1.1×10 ⁻⁵ +10-4 E _{γ} , I _{γ} : from (p, γ).
		1317.7	2.4 4	5613.52	4-			$E_{\gamma}I_{\gamma}$: from (p,γ) .
		1682.4	7.4 4	5248.79		[E1]		$B(E1)(W.u.)=5.3\times10^{-6} +47-19$
		2439.8	1.7 4	4491.43	5-	[E2]		$E_{\gamma}I_{\gamma}$: from (p,γ) . B(E2)(W.u.)=0.008 + 10-4 $E_{\gamma}I_{\gamma}$: from (p,γ) .
		3026.8	2.4 6	3904.38	2+	[E1]		$B(E1)(W.u.)=3.0\times10^{-7} +37-15$ $E_{\gamma}I_{\gamma}$: from (p,γ) .
		3194.5	100.0 9	3736.69	3-			E_{γ}, I_{γ} : from (p, γ) . Other: $E_{\gamma} = 3190.0 \ 15$ in $(p, p'\gamma)$, 3193 2 in $(n, n'\gamma)$.

29

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
6938.0	$(1^- \text{ to } 5^-)$	3201.0 <i>15</i>	100	3736.69	3-		E_{γ} : from $(p,p'\gamma)$.
6950.48	1-	6949.7 8	100	0.0	0_{+}	[E1]	B(E1)(W.u.)=0.0019 +4-3
							E_{γ} : weighted average of 6949.3 7 from 40 Ca(γ,γ'), 6949 2 from 40 Ca($\eta,\eta'\gamma$), and 6952.2
							15 from 40 Ca(p,p' γ).
7113.1	1-	1485	5	5629.41	2+	[E1]	B(E1)(W.u.)=0.00010 +11-4
							E_{γ},I_{γ} : $(p,p'\gamma)$ only.
		1899.8 <i>7</i>	22	5211.56	0_{+}	[E1]	B(E1)(W.u.)=0.00022 +23-8
							E_{γ},I_{γ} : $(p,p'\gamma)$ only.
		3206.8 <i>6</i>	28	3904.38	2+	[E1]	$B(E1)(W.u.)=5.8\times10^{-5} +60-20$
							E_{γ}, I_{γ} : from $(p, p'\gamma)$. Other: $E_{\gamma} = 3208.5$ in (p, γ) .
		7112.9 <i>10</i>	100	0.0	0_{\pm}	[E1]	$B(E1)(W.u.)=1.9\times10^{-5} +20-7$
5110 50	4-	1000.0		60 05 45	2-	FF-01	E_{γ},I_{γ} : from $(p,p'\gamma)$. Other: $E_{\gamma}=7113.3$ in (p,γ) .
7113.73	4-	1088.2	1.7 5	6025.47	2	[E2]	B(E2)(W.u.)=7 +8-4
		1500.2	10 2 11	5612.50	4-		E_{γ}, I_{γ} : from (p, γ) .
		1500.2	10.3 11	5613.52		FF211	E_{γ}, I_{γ} : from (p, γ) .
		1834.9	2.6 5	5278.80	4'	[E1]	$B(E1)(W.u.)=2.1\times10^{-5} +22-9$
		2623.2 <i>3</i>	40.7 20	4491.43	5-		$E_{\gamma}I_{\gamma}$: from (p,γ) . E_{γ} : from $(p,p'\gamma)$. Other: 2622.2 in (p,γ) .
		2025.2 5	40.7 20	7771.73	5		I_{γ} : from (p, γ) . Other. 2022.2 in (p, γ) .
		3378.5 <i>3</i>	100.0 14	3736.69	3-		E_{γ} : from $(p,p'\gamma)$. Other: 3376.9 in (p,γ) .
		3370.3 3	100.0 17	3730.07	5		I_{γ} : from (p, γ) . Given $SS \neq 0.5$ in (p, γ) .
7239.07	$(3^-,4,5^-)$	1624.5 7	50	5613.52	4-		E_{γ},I_{γ} : from $(p,p'\gamma)$ only.
	, , , ,	2746	100	4491.43			$E_{\gamma}I_{\gamma}$: from $(p,p'\gamma)$ only.
		3501.4 5	100	3736.69			E_{γ}, I_{γ} : from $(p, p'\gamma)$. Other: $E_{\gamma} = 3502.2$ in (p, γ) .
7277.82	$(2,3)^+$	3541.0	100	3736.69	3-	[E1]	B(E1)(W.u.)=0.00027 +67-11
							E_{γ} : from (p,γ) .
7300.67	0_{+}	1671.3	5.3 16	5629.41	2+	[E2]	B(E2)(W.u.)=1.8 + 18-10
			1000 7	 10			$E_{\gamma}I_{\gamma}$: from (p,γ) .
		2050.3 5	100.0 <i>16</i>	5248.79	2 ⁺	[E2]	B(E2)(W.u.)=16+8-4
7207.0	(5+)	1260		(020.71	2+	(E2)	E_{γ} : from $(p,p'\gamma)$. Other: 2051.9 in (p,γ) .
7397.2	(5^+)	1369		6029.71	3	(E2)	E _y : from (HI,xny) only.
		2119.2 6		5278.80	1 +	(D)	Mult.: (Q) from (HI,xn γ), M2 ruled by RUL. E $_{\gamma}$: from (p,p' γ).
		2119.2 U		3210.00	4	(D)	E_{γ} . Holli (p,p γ). Mult.: from (HI,xn γ).
7421.9		3684.9 12	100	3736.69	3-		E_{γ} : from $(p, p'\gamma)$.
7446.23	3+,4+	1816.8	30.0 17	5629.41			E_{γ} . From (p,p,γ) . E_{γ} , I_{γ} : from (p,γ) .
,	· ,.	1831.5 10	48.5 19	5613.52		[E1]	B(E1)(W.u.)=0.00014 + 10-5
							E_{γ} : from $(p,p'\gamma)$. Other: 1832.7 in (p,γ) .
							I_{γ} : from (p,γ) .
		2167.4	56 <i>3</i>	5278.80	4+		E_{γ},I_{γ} : from (p,γ) . Other: $E_{\gamma}=2169.1$ 15 in $(p,p'\gamma)$.

	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
	7446.23	3+,4+	2198.0 <i>10</i>	100 3	5248.79	2+		E_{γ} : from $(p,p'\gamma)$. Other: 2197.4 in (p,γ) .
								I_{γ} : from (p,γ) .
	7466.35	2+	2217.5	24 3	5248.79	2+		E_{γ},I_{γ} : from (p,γ) .
			3561.8	36.0 25	3904.38	2+		$E_{\gamma}I_{\gamma}$: from (p,γ) .
			4113.5	21.0 18	3352.62	0_{+}	[E2]	B(E2)(W.u.)=0.9 +12-4
								$E_{\gamma}I_{\gamma}$: from (p,γ) .
			7465.6	100 4	0.0	0_{+}	[E2]	B(E2)(W.u.)=0.21 +24-8
								$E_{\gamma}I_{\gamma}$: from (p,γ) . Other: $E_{\gamma}=7467.8\ 10$ in $(p,p'\gamma)$.
ı	7481?		7480		0.0	0_{+}		
ı	7532.26	2^{-}	1247.1	23.1 <i>21</i>	6285.15	3-		E_{γ},I_{γ} : from (p,γ) .
ı			1506.8	11.3 10	6025.47	2^{-}		E_{γ}, I_{γ} : from (p, γ) .
ı			1629.6	8.0 24	5902.63			E_{γ}, I_{γ} : from (p, γ) .
ı			1917.6 <i>10</i>	57 <i>3</i>	5613.52	4-	[E2]	B(E2)(W.u.)=4.1 +19-12
								E_{γ} : from $(p,p'\gamma)$. Other: 1918.7 in (p,γ) .
								I_{γ} : from (p,γ) .
ı			3627.7	36 <i>3</i>	3904.38	2+	[E1]	$B(E1)(W.u.)=1.2\times10^{-5}+6-4$
ı								$E_{\gamma}I_{\gamma}$: from (p,γ) .
ı			3795.4 10	100 4	3736.69	3-		$E_{\gamma}I_{\gamma}$: from (p,γ) .
	7561.17	4+	1531.4	44 5	6029.71			E_{γ}, I_{γ} : from (p, γ) .
ı			2312.1 <i>10</i>	100 <i>13</i>	5248.79	2+	[E2]	B(E2)(W.u.)=3.9 + 17-11
ı								E_{γ} : unweighted average of 2313.0 6 from $^{39}K(p,\gamma)$ and 2311.1 3 from $^{40}Ca(p,p'\gamma)$.
ı								I_{γ} : from (p,γ) .
			3824.3	14 3	3736.69	3-	[E1]	$B(E1)(W.u.)=5.4\times10^{-6} +41-23$
ı								E_{γ},I_{γ} : from (p,γ) .
ı	7623.11	$(2^-,3,4^+)$	1993.6	100 <i>3</i>	5629.41	2+		E_{γ},I_{γ} : from (p,γ) .
ı			2009.5 7	90 <i>3</i>	5613.52	4-		E_{γ} : from $(p,p'\gamma)$.
								I_{γ} : from (p,γ) .
l			2374.2	31.5 20	5248.79	2+		E_{γ},I_{γ} : from (p,γ) .
l			3886.2	57.4 20	3736.69	3-		$E_{\gamma}I_{\gamma}$: from (p,γ) .
l	7658.23	4-	1373.1	33 5	6285.15	3-		E_{γ},I_{γ} : from (p,γ) .
			2045.6 7	100 6	5613.52	4-		E_{γ} : weighted average of 2045.8 7 from 40 Sc ε decay and 2045.0 10 from 40 Ca(p,p' γ).
ı								Other: 2045.6 in (p, γ) .
ı								I_{γ} : from 40 Sc ε decay.
l			3167.9 7	52 8	4491.43	5-		E_{γ} : from ⁴⁰ Sc ε decay. Other: 3166.7 in (p,γ) .
l						-		I_{γ} : weighted average of 47 8 from 40 Sc ε decay and 56 8 from 39 K(p, γ).
l			3920.0 10	59 8	3736.69	3-		E _{γ} : from ⁴⁰ Sc ε decay. Other: 3921.3 in (p, γ).
			3720.0 10	37 0	3130.03	J		I_{γ} : weighted average of 51 8 from 40 Sc ε decay and 67 8 from 39 K(p, γ).
l	7676.6	(6^+)	2399.2 5	100	5278.80	4 +	(E2)	$R(p, \gamma)$. B(E2)(W.u.)=4.4 +15-9
1	7070.0	(0)	4377.4 J	100	5210.00	4	(E2)	E_{γ} : from $(p,p'\gamma)$.
								E_{γ} . Holl (p, p, γ) . Mult.: (Q) from $\gamma(\theta)$ in (HI,xn γ), M2 ruled out by RUL.
								with. (Q) from $\gamma(\theta)$ in $(HI,XIIY)$, wiz function by KUL.

E_i (level)	\mathbf{r}^{π}	Б ‡	${\rm I}_{\gamma}^{ \ddagger}$	₽.	J_f^{π} Mult.	# Comments
	\mathbf{J}_i^{π}	E_{γ}^{\dagger}			J	
7694.08	3-	2080.6	10.1 13	5613.52		E_{γ}, I_{γ} : from (p, γ) .
		3957.5 5	100.0 <i>13</i>	3736.69	3	E_{γ} : from $(p,p'\gamma)$. Other: 3957.3 in (p,γ) .
7701.0	0+	2707.2	100	2004.29	a +	I_{γ} : from (p,γ) .
7701.8 7769.4		3797.2 2155.8	100	3904.38		\dot{E}_{γ} : from (p,γ) .
7709.4	$(3,4,5^{-})$	4032.5	52 9 100 9	5613.52 4 3736.69 3		E'_{γ} , I_{γ} : from (p, γ) . E_{γ} , I_{γ} : from (p, γ) .
7814.7	0+	2565	43	5248.79		E_{γ},I_{γ} . Holii (p,γ) . E_{γ},I_{γ} : from $(p,p'\gamma)$.
7014.7	U	3908	100	3904.38		E_{γ},I_{γ} : from $(p,p'\gamma)$.
7872.18	2+	7871.1 <i>I</i>	100	0.0		B(E2)(W.u.)=0.89 +22-15
7072.10	_	7071.1 1	100	0.0	0 [L2]	E_{γ} : from (γ, γ') . Others: 7871.4 in (p, γ) , 7872.9 10 in $(p, p'\gamma)$.
						I_{γ} : 1982Mo05 in (γ, γ') report $\Gamma_0/\Gamma=0.84$ 6 without indicating the observation of other γ
						branches other than the ground transition and no other γ branches were observed in other
						studies. So this value is not considered.
7928.42	4+	2314.8	100 18	5613.52	4 ⁻ [E1]	B(E1)(W.u.)=0.00046 +151-25
						E_{γ},I_{γ} : from (p,γ) . Other: $E_{\gamma}=2313.7$ 17 in $(p,p'\gamma)$.
		3436.8	100 18	4491.43	5 ⁻ [E1]	B(E1)(W.u.)=0.00014 +46-8
						E_{γ},I_{γ} : from (p,γ) .
		4191.5	<14	3736.69	3-	E_{γ},I_{γ} : from (p,γ) . Other: $I_{\gamma}=20$ in $(p,p'\gamma)$.
7974.4	(6^{+})	1432		6542.80		E_{γ} , Mult.: from (HI,xn γ).
		2695		5278.80	()	E_{γ} , Mult.: from (HI, xn γ).
7976.55	2+	2699	20	5278.80		B(E2)(W.u.)>1.2
		4072.1 6	100	3904.38		
		4624	60	3352.62		B(E2)(W.u.)>0.24
	- 1	7977	20	0.0		B(E2)(W.u.)>0.0051
8018.8	0+	2770	100	5248.79		D. (T.) (W.) (2.70) 2.70
8091.61	2+	8090.6 2	100	0.0	0^{+} [E2]	B(E2)(W.u.)=0.72 +9-7
0100.1	0+	1160.0.2	100	6020.2	(+ F2	E_{γ} : from (γ, γ') . Other: 8092.4 20 in $(p, p'\gamma)$.
8100.1	8+	1168.8 <i>3</i>	100	6930.2	6 ⁺ E2	B(E2)(W.u.)=2.6 + 4-3
						E_{γ} : from (HI,xn γ). Mult.: from $\gamma\gamma(\theta)$ and $\gamma(DCO)$ in (HI,xn γ) and RUL.
8113.2	1-	8111.0 <i>6</i>	100	0.0	0+ [E1]	Mult.: from $\gamma\gamma(\theta)$ and $\gamma(DCO)$ in (HI,xn γ) and ROL. B(E1)(W.u.)= $6.0 \times 10^{-5} + 39 - 17$
8113.2	1	0111.0 0	100	0.0	U [EI]	E_{γ} : from (γ, γ') .
8134.77	(3-)	2505.3	82 9	5629.41	2+	E_{γ} : from (γ, γ) . E_{γ} , I_{γ} : from (p, γ) .
0134.77	(3)	2521.2	24 9	5613.52		E_{γ},I_{γ} . Holii (p,γ) . E_{γ},I_{γ} : from (p,γ) .
		3643.1 &				
			<15	4491.43		$E_{\gamma}I_{\gamma}$: from (p,γ) . Other: $I_{\gamma}=100$ in $(p,p'\gamma)$.
		4229.4 10	100 30	3904.38	Ζ'	E_{γ} : from $(p,p'\gamma)$. Other: 4230.1 in (p,γ) .
8187.5	(2 / 5-)	4451.6 8	100	3736.69	2-	I_{γ} : from (p,γ) .
8187.3 8271	$(3,4,5^-)$ $(\leq 3)^-$	1321	100	6950.48		\dot{E}_{γ} : from $(p,p'\gamma)$. Other: 4450.7 in (p,γ) . E_{γ},I_{γ} : from $(p,p'\gamma)$.
04/1	(23)	2368	67	5902.63		E_{γ},I_{γ} : from $(p,p'\gamma)$. E_{γ},I_{γ} : from $(p,p'\gamma)$.
8276	0+	2646	100	5629.41		$L_{\gamma,1\gamma}$. Holli (p,p,γ) .
0270	U	2040	100	3029.71	_	

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π} 1	Mult.#	Comments
8323.16	$(1^-,2^+)$	1572.7	12.5 10	6750.41	2-		
	, , ,	2038.0	2.2 5	6285.15			
		2297.6	26.3 17	6025.47			
		2420.5	1.9 12	5902.63			
		3074.2	4.5 9	5248.79			
		4586.2	100 3	3736.69			
		8322.2	3.4 12	0.0			Unobserved intensity=18 3 in (p,γ) .
8338.0	$(2^+,3,4)$	1795.2	100 10	6542.80			
	()- / /	1830.1	42 10	6507.87			Unobserved intensity=25 13 in (p,γ) .
8358.9	$(0,1,2)^{-}$	1405	100	6950.48			E_{γ} : from $(p,p'\gamma)$.
8364	$(3^- \text{ to } 7^-)$	3872	100	4491.43			-/· (F)F //·
8373.94	4+	4469.3	100	3904.38			
8424.81	2-	2399.3	19 4	6025.47			
		2522.1	24 4	5902.63			
		4687.8	100 6	3736.69			E_{γ} : from (p,γ) . Other: 4688.2 15 in $(p,p'\gamma)$.
8439.0	0^{+}	2809.5	100	5629.41			
8484.02	$(1^-,2^-,3^-)$	2581.3	59 11	5902.63			
	, , ,- ,	4747.0	100 11	3736.69			Additional information 22.
8540	1,2+	5188	67	3352.62 (E_{γ},I_{γ} : from $(p,p'\gamma)$.
	-,-	8540 <i>4</i>	100	0.0			E_{γ},I_{γ} : from $(p,p'\gamma)$.
8551.1	5-	4060.8 15		4491.43			E_{γ},I_{γ} : from $(p,p'\gamma)$.
8578.80	2+	8577.7 2	100	0.0		[E2]	B(E2)(W.u.)=0.54 + 7-6
							E_{γ} : from (γ, γ') .
8587	$(2^+,3)$	2562	25	6025.47	2-		E_{γ}, I_{γ} : from $(p, p'\gamma)$.
	. , ,	3308	25	5278.80 4			E_{γ}, I_{γ} : from $(p, p'\gamma)$.
		4682	17	3904.38 2			E_{γ},I_{γ} : from $(p,p'\gamma)$.
		4850	100	3736.69			E_{γ}, I_{γ} : from $(p, p'\gamma)$.
8665.3	1-	8665	100	0.0			
8678.29	4+	2393.1	20 8	6285.15		[E1]	B(E1)(W.u.)=0.00017 +145-12
		4941.3	100 23	3736.69		[E1]	B(E1)(W.u.)=0.00010 +53-5
							Unobserved intensity=34 25 in (p,γ) .
8701	(6-)	3088		5613.52	4-		, A.W.
	. /	4209		4491.43			
8748.22	2+	8748.4 2	100	0.0		[E2]	B(E2)(W.u.)=0.26 +4-3
							E_{γ} : from (γ, γ') . Other: 8747.2 in (p, γ) .
8764.18	3-	2734.4	47 18	6029.71	3+		1 447
		3134.6	56 21	5629.41			
		3485.2	100 30	5278.80 4			
		4859.5	65 18	3904.38 2			Unobserved intensity ≈ 26 in (p, γ) .
8934.81	2+	1402.5	12.2 11	7532.26			* A.W.
		1657.0	3.5 5	7277.82 (
		1821.0	1.7 4	7113.1			

 γ (⁴⁰Ca) (continued)

B(E2)(W.u.)=0.38 +6-5

 E_{γ} : this γ may correspond to 4540.2 γ from 9031.9 level.

 E_{γ} : from (γ, γ') .

Comments

Mult.#

(Q)

(D)

[E2]

 E_{γ}^{\dagger}

1984.3

2184.3

2352.2

2905.0

2909.2

3032.1

3305.2

3685.8

3722.9

5030.1

5197.8

5581.8

8933.7

8981.4 5

1880.7

2085.7

2244.0

2411.9

2709.3

2968.9

3364.9

3782.6

5089.8

5257.4

5641.5

8993.4

1337.7

2746.6

3418.2

3752.9

4540.2

4542[&]

1397.5

1468.6

1625.3

1813.8

1852.6

1977.9

1538 2004

 E_i (level) 8934.81

8935.8

8982.5

8994.50

9031.9

9033?

9091.70

34

 (7^{+})

2+

4-

 (7^{-})

3-

 $(1^-,2^+)$

 I_{γ}^{\ddagger}

5.68

5.68

1.9 *3*

3.2 11

17.6 19

1.7 5

2.9 5

5.6 24

3.5 8

2.9 13

21.8 21

0.44 11

0.62 15

0.44 14

0.64 16

1.5 *3*

8.7 7

8.2 7

8.3 8

2.4 4

2.1 6

100.0 22

25 8

25 8

100 13

30 13

70 13

3.7 *3*

1.31 16

0.71 5

2.17 24

1.26 17

0.95 16

0.60 8

77 5

100

100 5

 E_f

6950.48 1-

6750.41 2

6582.47 3-

6029.71 3+

 $6025.47 \ 2^{-}$

5902.63 1-

5629.41 2+

5248.79 2+

5211.56 0+

3904.38 2+

3736.69 3-

3352.62 0+

6930.2 6+

7113.1 1

6908.70 2⁺

6750.41 2-

6582.47 3-

6285.15 3-

6025.47 2-

5629.41 2+

5211.56 0⁺

3904.38 2+

3736.69 3-

3352.62 0+

7694.08 3-

6285.15 3-

5613.52 4-

5278.80 4+

4491.43 5-

4491.43 5

7694.08 3-

7113.73 4-

 $7623.11 (2^-,3,4^+)$ 7466.35 2+

7239.07 (3-,4,5-)

 $7277.82 (2,3)^{+}$

 $0.0 0^{+}$

 $0.0 0^{+}$ 7397.2 (5^+)

 $0.0 0^{+}$

γ (⁴⁰Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#
9091.70	3-	2341.2	0.98 24	6750.41 2-	9226.69	$(1^-,2,3^-)$	2941.4	27.8 15	6285.15 3-		
		2509.1	1.79 24	6582.47 3-			3323.9	< 3.0	5902.63 1		
		2806.4	8.8 5	6285.15 3-			3977.7	<14	5248.79 2+		
		3061.9	4.3 7	6029.71 3+			5321.9	< 3.1	3904.38 2+		
		3066.1	5.0 9	6025.47 2			5489.6	39 <i>3</i>	3736.69 3-		
		3188.9	2.6 4	5902.63 1-			9225.6	<97	$0.0 0^{+}$		
		3812.7	14.6 7	5278.80 4+	9227.43	$(1,2^+)$	3201.8	35.0 <i>13</i>	$6025.47 \ 2^{-}$		
		3842.7	7.7 4	5248.79 2 ⁺			3324.7	<1.0	5902.63 1		
		5187.0	16.2 7	3904.38 2 ⁺			3978.4	<4.7	5248.79 2+		
		5354.6	100.0 <i>17</i>	3736.69 3-			5322.7	<1.0	3904.38 2 ⁺		
9135.66	2-,3-	710.8	1.72 15	8424.81 2			5874.4	100 <i>3</i>	3352.62 0+		
		1263.5	0.55 9	7872.18 2 ⁺			9226.3	<33	$0.0 0^{+}$		
		1441.5	8.9 4	7694.08 3-	9305.2	(8^{+})	1628		7676.6 (6+	.)	(Q)
		1603.4	6.3 4	7532.26 2			2375		6930.2 6 ⁺		(Q)
		1857.8	0.43 7	$7277.82 (2,3)^+$	9362.54	3-	937.7	4.4 7	8424.81 2		
		2021.9	3.13 21	7113.73 4			1668.4	100.0 25	7694.08 3		
		2185.1	0.78 14	6950.48 1			1704.3	26.6 20	7658.23 4-		
		2385.2	1.06 15	6750.41 2			1739.4	3.9	7623.11 (2	$(,3,4^{+})$	
		2553.0	3.5 3	6582.47 3			2412.0	3.2	6950.48 1		
		2850.4	23.5 7	6285.15 3			2612.0	3.7	6750.41 2		
		3110.1	0.43 17	6025.47 2			2779.9	6.3 7	6582.47 3		
		3232.9	5.1 4	5902.63 1 ⁻			3077.3	9.5 25	6285.15 3		
		3522.0	0.51 17	5613.52 4 ⁻			3748.8	29.8 22	5613.52 4		
		3886.7	0.8 3	5248.79 2 ⁺			4113.5	10.7 20	5248.79 2+		
		5230.9	13.6 7	3904.38 2 ⁺			5457.8	14.4 20	3904.38 2 ⁺		
9209.77	(2.2)=	5398.6	100.0 15	3736.69 3 ⁻ 8484.02 (1 ⁻ ,2 ⁻ ,3 ⁻)	0200 20	2+	5625.4 1694.0	8.3 <i>15</i> 7	3736.69 3		
9209.77	$(2,3)^{-}$	725.7 785.0	1.53 16		9388.20	2.			7694.08 3 ⁻		
			5.4 3	8424.81 2			2087.4	2.5	7300.67 0+		
		1515.6 2096.0	7.3 <i>3</i> 2.60 <i>20</i>	7694.08 3 ⁻ 7113.73 4 ⁻			2845.3 2880.3	28 9	6542.80 4 ⁺ 6507.87 4 ⁺		
		2090.0	4.5 3	6950.48 1 ⁻			3102.9	3.2	6285.15 3		
		2459.3	3.2 3	6750.41 2			3362.6	6	6025.47 2		
		2627.1	3.6 3	6582.47 3			3758.6	19	5629.41 2 ⁺		
		2924.5	6.5 3	6285.15 3			4109.2	15	5278.80 4+		
		3184.2	2.6 3	6025.47 2			4139.2	8	5248.79 2 ⁺		
		3307.0	17.4 5	5902.63 1			4176.3	28	5211.56 0 ⁺		
		3580.2	3.4 3	5629.41 2 ⁺			5483.4	8	3904.38 2 ⁺		
		5305.0	4.7 5	3904.38 2 ⁺			5651.1	17	3736.69 3 ⁻		
		5472.7	100.0 16	3736.69 3			9387.0	100	$0.0 0^{+}$		
9226.69	$(1^-,2,3^-)$	1694.4	100.5	7532.26 2 ⁻	9404.85	2-	1872.5	43	7532.26 2		
, 220.0)	(- ,=,5)	2276.1	15.9 14	6950.48 1 ⁻	1	_	2127.0	2.2	7277.82 (2,	3) ⁺	
		2476.2	24.1 15	6750.41 2			2291.1	20	7113.73 4	,	
					1						

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.#	$\delta^{\#}$	Comments
9404.85	2-	2454.3	4	6950.48	1-			
,	-	2496.1	8	6908.70				
		2822.2	10	6582.47				
		3119.6	100	6285.15		M1		Mult.: $\delta(Q/D)=0.0$ 3 in (p,γ) , polarity from no level-parity change determined from other experimental evidence.
		3502.1	20	5902.63	1-			
		5500.1	7	3904.38				
		5667.7	49	3736.69		M1+E2	-0.03 2	Mult.: D+Q in (p,γ) , polarity from no level-parity change determined from other experimental evidence.
		9403.7	7	0.0	0^{+}			
9418.8	3-	1724.6	10	7694.08	3-			
		1760.5	7	7658.23				
		1795.6	4		$(2^-,3,4^+)$			
		1886.5	5	7532.26				
		2305.0	62	7113.73				
		2668.3	6	6750.41				
		3133.5	100	6285.15				
		3393.2	5	6025.47				
		3516.0	12	5902.63				
		3805.1	5	5613.52				
		4169.8	4	5248.79				
		5681.7	18	3736.69				
9429.11	$(3,4)^{-}$	1734.9	21 3	7694.08				
, 12,111	(5,1)	1770.8	100 6	7658.23				
		1806.0	3.3 11		$(2^-,3,4^+)$			
		2315.3	3.6 8	7113.73				
		2846.5	26 5	6582.47				
		3143.8	9.4 17	6285.15				
		4937.3	81 6	4491.43				
		5692.0	33 6	3736.69				
9432.46	1-	1900.2	2.5	7532.26				
7732.70	1	2481.9	0.8	6950.48				
		2681.9	1.0	6750.41				
		3406.8	2.3	6025.47				
		5527.7	1.1	3904.38				
		9431.3	100	0.0				
9453.95	3-	1029.1	4.9 6	8424.81				
J T JJ.7J	5	1759.8	73.2 23	7694.08				
		1795.7	23.4 20	7658.23				
		1830.8	5.9 10		$(2^-,3,4^+)$			
		1921.6	3.3 7	7532.26				
		2007.7	2.3 7	7446.23				
		2007.7	4.3 /	1440.23	J , 4			

γ (40Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{ \ddagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\#}$	Comments
9453.95	3-	2340.2	34.7 17	7113.73 4-			
		2703.4	6.9 7	6750.41 2			
		3168.7	100.0 23	6285.15 3			
		3428.3	5.9 10	6025.47 2			
		3824.3	8.3 10	5629.41 2 ⁺			
		3840.2	33.7 20	5613.52 4			
		4174.9	5	5278.80 4+			
		5549.2	16.2 20	3904.38 2 ⁺			
		5716.8	11.2 13	3736.69 3			
9603.0	3-	2489.2	61	7113.73 4			
7003.0	3	3317.7	100	6285.15 3	M1+E2	0.42 6	Mult., δ : D+Q from (p, γ), polarity form no level-parity change determined from other
		3317.7	100	0203.13 3	WIITE	0.42 0	experimental evidence.
		5865.8	24	3736.69 3-	M1+E2	+0.18 3	Mult., δ : D+Q from (p, γ), polarity form no level-parity change determined from other
0604.6	1-	2072.2	6	7522.26 2-			experimental evidence.
9604.6	1-	2072.3	6	7532.26 2-			
		2654.0	1.3	6950.48 1			
		2854.1	2.0	6750.41 2			
		3579.0	5	6025.47 2			
		5699.8	1.0	3904.38 2 ⁺			
		6251.4	1.4	3352.62 0+			
0.6.40.00	_	9603.4	100	$0.0 0^{+}$			
9640.89	2-	2174.5	16.7 6	7466.35 2+			
		2690.3	0.32 6	6950.48 1			
		2732.1	1.06 11	6908.70 2+			
		3355.6	0.99 23	6285.15 3			
		4011.2	9.94 21	5629.41 2 ⁺			
		5736.1	100.0 11	3904.38 2 ⁺			
		5903.7	82.5 11	3736.69 3			
		9639.6	3.2	$0.0 0^{+}$			
9668.71	3-	1974.5	1.5 3	7694.08 3			
		2136.4	4.1 4	7532.26 2			
		2222.4	1.53 25	7446.23 3+,4+			
		2554.9	60.6 <i>16</i>	7113.73 4			
		2759.9	1.5 3	6908.70 2+			
		2918.2	4.6 4	6750.41 2			
		3383.4	100.0 <i>14</i>	6285.15 3-			
		3643.1	6.8 7	6025.47 2			
		5176.9	6.76 23	4491.43 5			
		5763.9	8.1 5	3904.38 2+			
		5931.6	29.7 14	3736.69 3-			
9779.47	3	1031.3	17.1 <i>15</i>	8748.22 2+			
		1101.2	16.6 20	8678.29 4+			

γ (⁴⁰Ca) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{^{\ddag}}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\!\#}$	Comments
9869.3	$1^+, 2^+$	2167.4	1.1	7701.8 0 ⁺			
		2568.5	3.0	7300.67 0 ⁺			
		2960.5	1.2	6908.70 2 ⁺			
		4620.2	1.1	5248.79 2 ⁺			
		4657.3	0.8	5211.56 0 ⁺			
		5964.4	7	3904.38 2 ⁺			
		6516.1	17	3352.62 0+			
0054.00	4+	9868.0	100	$0.0 0^{+}$			
9954.00	4+	1580.0	6.5 5	8373.94 4+			
		3022.6	5.2 5	6931.29 3			
		3371.3	2.1 5	6582.47 3			
		3411.1	18.2 10	6542.80 4+			
		3446.0	7.2 4	6507.87 4 ⁺			
		4340.2	8.2 7	5613.52 4 ⁻	M1 . E2	.0.04.2	Mult S. form (and) in (and)
		4674.9	100 3	5278.80 4 ⁺	M1+E2	+0.04 3	Mult., δ : from γ (pol) in (p, γ).
		5462.2	4.6 7	4491.43 5			
10040 54	(2- 2-)	6216.8	11.2 10	3736.69 3 ⁻			
10040.54	$(2^-,3^-)$	1276.3	10.4 14	8764.18 3-			
		1556.5 1717.3	3.5 6	8484.02 (1-,2-,3-)			
		2417.4	100.0 <i>19</i> 4.4 <i>6</i>	8323.16 (1 ⁻ ,2 ⁺)			
		2508.2	1.8 4	7623.11 (2 ⁻ ,3,4 ⁺) 7532.26 2 ⁻			
		2762.6	16.1 6	7332.20 2 7277.82 (2,3) ⁺			
		2926.7	8.5 6	7113.73 4 ⁻			
		3089.9	12.8 12	6950.48 1 ⁻			
		3457.8	2.7 4	6582.47 3			
		4014.9	3.9 4	6025.47 2			
		4137.7	26.3 12	5902.63 1			
		6303.3	3.9 4	3736.69 3-			
10049.38	4-	1017.5	26.3 12	9031.9 4			
10017.50		1861.6	1.17 12	8187.5 (3,4,5 ⁻)			
		2279.9	5.4 3	7769.4 (3,4,5 ⁻)			
		2810.2	1.7 3	7239.07 (3-,4,5-)			
		2935.5	32.0 9	7113.73 4			
		3466.7	16.7 7	6582.47 3			
		3764.0	2.88 21	6285.15 3			
		4023.7	2.97 23	6025.47 2			
		4435.6	2.17 21	5613.52 4			
		5557.5	37.3 9	4491.43 5			
		6312.2	100.0 <i>21</i>	3736.69 3-			
10262.53	3-	2639.3	3.9 6	$7623.11 (2^-,3,4^+)$			
		2796.1	43.3 25	7466.35 2 ⁺			
		2796.1	43.3 25	7466.35 2+			

γ (⁴⁰Ca) (continued)

	E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ddagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\#}$	Comments
1	10262.53	3-	2816.2	13.1 11	7446.23 3+,4+	_	· —	
	10202.33	3	3148.7	3.9 8	7113.1 1			
			3679.8	11.4 8	6582.47 3			
			4232.6	45 <i>4</i>	6029.71 3+			
			4359.7	7.5 11	5902.63 1			
			4632.8	8.1 11	5629.41 2 ⁺			
			5013.4	10.0 11	5248.79 2+			
			6357.6	100 3	3904.38 2+			
			6525.3	32 <i>3</i>	3736.69 3-			
	10318.8	1+	2616.9	0.86 9	7701.8 0 ⁺			
			3368.2	0.50 9	6950.48 1-			
			4689.1	0.33 9	5629.41 2+			
			5106.8	0.93 7	5211.56 0 ⁺			
			6413.9	4.12 24	3904.38 2+	M1+E2	-0.16 3	Mult., δ : D+Q from (p, γ), polarity from no level-parity change determined from other evidence.
			6965.5	14.4 5	3352.62 0 ⁺			
			10317.4	100.0 9	$0.0 0^{+}$			
	10415.06	3	2720.8	2.3 12	7694.08 3-			
5			2791.8	96 <i>3</i>	7623.11 (2-,3,4	⁺)		
			2853.8	6.5 6	7561.17 4 ⁺			
			2948.6	33.9 12	7466.35 2 ⁺			
			2968.7	100.0 23	7446.23 3+,4+			
			3137.1	5.1 8	$7277.82 (2,3)^{+}$			
			3301.2	9.0 10	7113.73 4-			
			3483.6	23.0 12	6931.29 3			
			3506.2	90.2 23	6908.70 2+			
			3664.5	14.4 6	6750.41 2			
			3832.3	7.7 8	6582.47 3			
			3907.0	5.9 9	6507.87 4 ⁺			
			4129.7 4389.3	2.1 5	6285.15 3			
			4389.3 4785.3	33.9 <i>17</i> 4.7 <i>9</i>	6025.47 2 ⁻ 5629.41 2 ⁺			
			4801.2	4.7 <i>9</i> 39.7 <i>17</i>	5613.52 4			
			5135.9	15.5 12	5278.80 4+			
			5165.9	9.7 10	5248.79 2 ⁺			
			6510.1	20.1 17	3904.38 2 ⁺			
			6677.8	40.8 23	3736.69 3			
	10474	(8-)	1773	.0.0 20	8701 (6 ⁻)			
	10639.07	$(3^-,4,5^-)$	2504.2	3.1 5	8134.77 (3 ⁻)			
		. , , ,	3525.2	9.5 7	7113.73 4			
			3707.6	100 <i>3</i>	6931.29 3-			
			4056.3	3.8 5	6582.47 3-			

40

γ (40Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}^{π}_f	Mult.#
10639.07	$\overline{(3^-,4,5^-)}$	4096.1	6.89 24	6542.80	4+	
	(- , ,- ,	4131.0	9.5 5	6507.87	4+	
		5025.2	32.3 14	5613.52	4-	
		5359.9	10.5 10	5278.80	4+	
		6147.1	8.6 7	4491.43	5-	
		6901.7	53.4 24	3736.69	3-	
10699.50	3	2325.5	2.0 3	8373.94	4+	
		2607.8	1.40 18	8091.61	2+	
		3167.1	2.0 3	7532.26	2-	
		3233.0	1.8 4	7466.35	2+	
		3253.1	1.8 <i>3</i>	7446.23	$3^{+},4^{+}$	
		3790.6	5.1 4	6908.70	2+	
		4156.5	3.9 4	6542.80	4+	
		4414.1	2.7 4	6285.15	3-	
		4669.5	7.4 6	6029.71	3+	
		5069.7	10.7 6	5629.41	2+	
		5085.6	3.9 4	5613.52	4-	
		5420.3	17.9 <i>10</i>	5278.80	4+	
		6794.5	100 <i>3</i>	3904.38	2+	
		6962.2	16 <i>3</i>	3736.69	3-	
10737.7	1-	3043.4	17 3	7694.08	3-	
		3828.8	8 3	6908.70	2+	
		4452.3	14.2 24	6285.15	3-	
		10736.2	100 6	0.0	0+	
10747.8	(4^{+})	5118.0	14.8 11	5629.41	2+	
		6842.8	100.0 12	3904.38	2+	
		7010.5	3.8 7	3736.69	3-	
10770.2	(1^+)	3656.3	7.9 17	7113.1	1-	
		3861.3	14.3 17	6908.70	2+	
		5521.0	100 5	5248.79	2+	
10005	(0-)	10768.6	76 5	0.0	0+	(0)
10895	(9-)	1862	100	9033?	(7-)	(Q)
10910.0	$(3,4,5^{-})$	7172.6	100	3736.69	3-	
10921.1	$(2^+,3,4^-)$	4895.3	20	6025.47	2 ⁻ 4 ⁺	
10056.0	2-	5641.9	100	5278.80		
10956.0	3-	2768.2	11	8187.5	$(3,4,5^{-})$	
		3474.8	23 23	7481? 5902.63	1-	
		5053.0 5342.1	23 18	5902.63	1 4 ⁻	
		5676.8	100	5278.80	4 4 ⁺	
		7218.6	57	3736.69	3-	
		1210.0	31	3730.09	5	

γ (⁴⁰Ca) (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#
10988.0	$(3^-,4^+)$	2010 <mark>&</mark>	12	8978	5+,6+,7+	
	(= , -)	4079.1	12	6908.70	2+	
		4702.6	25	6285.15	3-	
		5358.2	25	5629.41	2+	
		7083.0	100	3904.38	2+	
		7250.6	88	3736.69	3-	
10994.7	$(2^+,3,4^+)$	5715.5		5278.80	4+	
		5745.3		5248.79	2+	
		7257.3		3736.69	3-	
11003.0	(10^{+})	1698		9305.2	(8^{+})	(Q)
		2902		8100.1	8+	(Q)
11011.0	3-	2672.9	27 7	8338.0	$(2^+,3,4)$	
		3334.3	16 <i>4</i>	7676.6	(6^{+})	[E3]
		6519.0	100 7	4491.43	5-	[E2]
		7273.6	29	3736.69	3-	
440400	445	11009.4	14	0.0	0+	[E3]
11042.0	$(1^- \text{ to } 4^+)$	7136.9		3904.38	2+	
11050 6	(2.4+)	7304.6	0	3736.69	3-	
11070.6	$(3,4^+)$	5456.1	8	5613.52	4-	
		5790.7	15	5278.80	4 ⁺	
		5820.7	15	5248.79	2 ⁺ 2 ⁺	
		7164.9	100 15	3904.38	3-	
11078.4	1-	7332.6 11078	15	3736.69 0.0	3 0 ⁺	
11078.4	(10^+)	2381		9305.2	(8 ⁺)	(0)
11005.0	(10)	3585		8100.1	(8) 8 ⁺	(Q)
11708.7	(9 ⁺)	2773		8935.8	(7 ⁺)	(Q) (Q)
		(a)	75.0		1+	(Q)
11988	0_{+}		75 9	10318.8		
12201.2	2-	2119.5 4	100 9	9869.3	1 ⁺ ,2 ⁺ 0 ⁺	FE21
12201.2 12331	3 ⁻ 2 ⁺	12202 12332		0.0 0.0	0+	[E3]
12334.9	(10^{+})	2481		9853.5	(8^+)	(Q)
12334.9	(10)	3030		9305.2	(8 ⁺)	(Q) (Q)
12591.9	(10^+)	3287		9305.2	(8^+)	(Q) (Q)
12391.9	(10)	4491		8100.1	8 ⁺	(Q) (Q)
12604		12602		0.0	0^{+}	(Q)
12668	1-	9314		3352.62	0^{+}	
12000	1	12666		0.0	0+	
12688		12686		0.0	0+	
12875		9521		3352.62	0^{+}	
120.0		12873		0.0	0+	

$\gamma(^{40}\text{Ca})$ (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
12980
12980
12996
13086 13084 0.0 0 ⁺ 13111
13113
13115.1
13115.1 (12 ⁺) 1429 11685.8 (10 ⁺) (Q) 2112 11003.0 (10 ⁺) (Q) 13194 9840 3352.62 0 ⁺ 13195 (10 ⁻) 2300 10895 (9 ⁻) 13203 13201 0.0 0 ⁺ 13287 0.0 0 ⁺ 13822 13819 0.0 0 ⁻ 13913 10559 3352.62 0 ⁺ 13913 10559 3352.62 0 ⁺ 13910 0.0 0 ⁺ 13993 10639 3352.62 0 ⁺ 13990 0.0 0 ⁺ 13993 10639 3352.62 0 ⁺ 13990 0.0 0 ⁺ 13993 10639 3352.62 0 ⁺ 13990 0.0 0 ⁺ 14232.4 (12 ⁺) 2547 11685.8 (10 ⁺) (Q) 2037 13115.1 (12 ⁺) (D) 15152.4 (13 ⁺) 1617 13555.5 (11 ⁺) (Q) 2037 13115.1 (12 ⁺) (D) 15267.1 (12 ⁺) 2932 2334.9 (10 ⁺) (Q) 15306 (13 ⁻) 2383 12293 (11 ⁻) 15748.1 (12 ⁺) 3156 12591.9 (10 ⁺) (Q) 16579.4 (14 ⁺) 2297 14232.4 (12 ⁺) (Q) 3414 13115.1 (12 ⁺) (Q) 16579.6 (14 ⁺) 3822 14232.4 (12 ⁺) (Q) 18054.6 (14 ⁺) 3822 14232.4 (12 ⁺) (Q) 18256 1 8675 0.0 0 ⁺ D Mult.: from y(θ) in (p,y).
13194
13194
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
13195 (10 ⁻) 2300 10895 (9 ⁻) 13203 13201 0.0 0 ⁺ 13287 0.0 0 ⁺ 13282 13819 0.0 0 ⁺ 13913 10559 3352.62 0 ⁺ 13910 0.0 0 ⁺ 13993 10639 3352.62 0 ⁺ 13990 0.0 0 ⁺ 14232.4 (12 ⁺) 2547 11685.8 (10 ⁺) (Q) 15152.4 (13 ⁺) 1617 13535.5 (11 ⁺) (Q) 15267.1 (12 ⁺) 2932 12334.9 (10 ⁺) (Q) 15306 (13 ⁻) 2383 12923 (11 ⁻) 15748.1 (12 ⁺) 2353 12923 (11 ⁻) 15748.1 (12 ⁺) 2357 14232.4 (12 ⁺) (Q) 16529.4 (14 ⁺) 2297 14232.4 (12 ⁺) (Q) 1659.6 (14 ⁺) 3044 13355.5 (11 ⁺) (Q) 1659.6 (14 ⁺) 3466 14232.4 (12 ⁺) (Q) 18054.6 (14 ⁺) 3466 14232.4 (12 ⁺) (Q) 18259 (15 ⁻) 2909.
13203
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17698.6 (14^{+}) 3466 14232.4 (12^{+}) (Q) 18054.6 (14^{+}) 3822 14232.4 (12^{+}) (Q) 18215? (15^{-}) 2909. 15306 (13^{-}) 18260 1 18256 0.0 0+ D Mult.: from $\gamma(\theta)$ in (p,γ) . 18497.2 (14^{+}) 3230 15267.1 (12^{+}) (Q) 18680 1 18675 0.0 0+ D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
18215? (15^{-}) 2909. 15306 (13^{-}) 18260 1 18256 0.0 0+ D Mult.: from $\gamma(\theta)$ in (p,γ) . 18497.2 (14^{+}) 3230 15267.1 (12^{+}) (Q) 18680 1 18675 0.0 0+ D
18260 I 18256 0.0 0^+ D Mult.: from $\gamma(\theta)$ in (p,γ) . 18497.2 (14^+) 3230 15267.1 (12^+) (Q) 18680 I 18675 0.0 0^+ D
18497.2 (14 ⁺) 3230 15267.1 (12 ⁺) (Q) 18680 1 18675 0.0 0 ⁺ D
18680 1 18675 0.0 0 ⁺ D
$18719.2 (14^+) 3452 15267.1 (12^+) (Q)$
19070 1 19065 0.0 0 ⁺ D
19195.6 (15 ⁺) 4043 15152.4 (13 ⁺) (Q)
19450 1 19445 0.0 0 ⁺ D
19850 1 19845 0.0 0 ⁺ D

γ (40Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	E_i (level)	J_i^π	E_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#
20130		20125	$0.0 \ 0^{+}$		21490		21484	$0.0 \ 0^{+}$	
20430	1	20424	$0.0 \ 0^{+}$	D	21690		21684	$0.0 0^{+}$	
20578.6	(16^{+})	4049	16529.4 (14 ⁺)	(Q)	22060		22053	$0.0 0^{+}$	
20650	1	20644	$0.0 0^{+}$	D	22060.4	(16^{+})	3563	18497.2 (14 ⁺)	(Q)
20940	1	20934	$0.0 0^{+}$	D					

[†] Values with uncertainties are averaged values from different γ -ray studies. A large number of values without uncertainties are from 39 K(p, γ), which are from level-energy differences since most γ -ray energies are not available. In 39 K(p, γ), many γ rays are shown with upper limits on intensities, these are not given here. See 39 K(p, γ) for details.

4

[‡] Averaged values from different γ -ray studies if available, but most values are available only from 39 K(p, γ). ‡ From $\gamma(\theta)$ in (HI,xn γ) and (p,p' γ), unless otherwise noted.

[@] Poor fit. Level-energy difference=1669.2.

[&]amp; Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain) 9135.66 9091.70 9033 9031.9 8424.81 <17 fs 7872.18 2.44 fs +24-20 3⁻ (2⁻,3,4⁺) 7694.08 <6 fs 0.111 ps 28 7623.11 $\frac{2^{-}}{2^{+}}$ $\frac{2^{+}}{(2,3)^{+}}$ $\frac{(3^{-},4,5^{-})}{(3^{-},4,5^{-})}$ 7532.26 0.16 ps 4 7466.35 8 fs 4 7277.82 7239.07 49 fs *35* 0.10 ps *5* 7113.73 50 fs 21 6950.48 1.01 fs 5 6750.41 96 fs 28 6582.47 0.173 fs 28 6285.15 0.33 ps 4 0.40 ps 8 6029.71 6025.47 171 fs 21 15.8 fs 22 5902.63 5613.52 0.69 ps 11 5278.80 5248.79 0.21 ps 4 83 fs +11-9 4491.43 289 ps 8 3904.38 35 fs 7 3736.69 41 ps 4 0^{+} 0.0 stable

 $^{40}_{20}{\rm Ca}_{20}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

----- γ Decay (Uncertain)

Level Scheme (continued)

