

# Block ciphers

What is a block cipher?

# Block ciphers: crypto work horse



#### Canonical examples:

- 1. 3DES: n = 64 bits, k = 168 bits
- 2. AES: n=128 bits, k=128, 192, 256 bits

# Block Ciphers Built by Iteration



R(k,m) is called a round function

for 3DES (n=48), for AES-128 (n=10)

### Performance:

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

|        | <u>Cipher</u> | Block/key size | Speed (MB/sec) |
|--------|---------------|----------------|----------------|
| stream | RC4           |                | 126            |
|        | Salsa20/12    |                | 643            |
|        | Sosemanuk     |                | 727            |
|        | 3DES          | 64/168         | 13             |
| block  | 3053          | 04/100         | 15             |
|        | AFS-128       | 128/128        | 109            |

# Abstractly: PRPs and PRFs

Pseudo Random Function (PRF) defined over (K,X,Y):

$$F: K \times X \rightarrow Y$$

such that exists "efficient" algorithm to evaluate F(k,x)

Pseudo Random Permutation (PRP) defined over (K,X):

E: 
$$K \times X \rightarrow X$$

#### such that:

- 1. Exists "efficient" deterministic algorithm to evaluate E(k,x)
- 2. The function  $E(k, \cdot)$  is one-to-one
- 3. Exists "efficient" inversion algorithm D(k,y)

# Running example

Example PRPs: 3DES, AES, ...

AES: 
$$K \times X \to X$$
 where  $K = X = \{0,1\}^{128}$ 

3DES: 
$$K \times X \rightarrow X$$
 where  $X = \{0,1\}^{64}$ ,  $K = \{0,1\}^{168}$ 

- Functionally, any PRP is also a PRF.
  - A PRP is a PRF where X=Y and is efficiently invertible.

#### Secure PRFs

• Let F:  $K \times X \rightarrow Y$  be a PRF

Funs[X,Y]: the set of all functions from X to Y
$$S_F = \{ F(k,\cdot) \text{ s.t. } k \in K \} \subseteq Funs[X,Y]$$

Intuition: a PRF is secure if
 a random function in Funs[X,Y] is indistinguishable from
 a random function in S<sub>F</sub>

Funs[X,Y]



Size |Y| |X|

#### Secure PRFs

• Let  $F: K \times X \rightarrow Y$  be a PRF

Funs[X,Y]: the set of all functions from X to Y
$$S_F = \{ F(k,\cdot) \text{ s.t. } k \in K \} \subseteq Funs[X,Y]$$

 $x \in X$ 



# Secure PRPs (secure block cipher)

• Let E:  $K \times X \rightarrow Y$  be a PRP

Perms[X]: the set of all one-to-one functions from X to Y
$$S_F = \{ E(k, \cdot) \text{ s.t. } k \in K \} \subseteq Perms[X,Y]$$

Intuition: a PRP is secure if

 a random function in Perms[X] is indistinguishable from a random function in S<sub>F</sub>
 π ← Perms[X]



Let  $F: K \times X \rightarrow \{0,1\}^{128}$  be a secure PRF.

Is the following G a secure PRF?

$$G(k, x) = \begin{cases} 0^{128} & \text{if } x=0 \\ F(k,x) & \text{otherwise} \end{cases}$$

- No, it is easy to distinguish G from a random function
  - Yes, an attack on G would also break F
  - It depends on F

# An easy application: PRF ⇒ PRG

Let  $F: K \times \{0,1\}^n \rightarrow \{0,1\}^n$  be a secure PRF.

Then the following  $G: K \rightarrow \{0,1\}^{nt}$  is a secure PRG:

$$G(k) = F(k,0) \parallel F(k,1) \parallel \cdots \parallel F(k,t)$$

Key property: parallelizable

Security from PRF property:  $F(k, \cdot)$  indist. from random function  $f(\cdot)$ 

**End of Segment**