Estructura de Lewis

Electrón de Valencia: Se encuentran en el nivel principal de energía más alto del átomo.

Cl: [Ne] 3s² 3p⁵, por lo tanto tiene 7 e⁻ de valencia y le falta 1 para parecerse al siguiente gas ideal en la tabla (Argón).

Simbología que indica el total de <mark>e de valencia</mark>, en la tabla se puede ver que el grupo donde se encuentran es igual a la cantidad de estos e.

Ley del Octeto (o Dueto): Todos los elementos buscan tener su última capa u orbital completo con 8 electrones y así lograr la estabilidad ideal como los gases nobles, para esto ceden, reciben o comparten e⁻ mediante los enlaces químicos. En el octeto tienen 8 e⁻ de valencia y en el dueto 2.

- Enlaces Covalentes Apolares entre H y C.
- Enlaces Covalentes Polares entre H y O.

Para moléculas con carga: ej: PO₄-3

Se cuentan los e⁻ de valencia de cada tipo de átomo por su cantidad.

- e^{-} de valencia totales = 5 * 1 + 6 * 4 = 32

Se sigue la ley del octeto y se calcula que cada átomo debe tener 8 excepto H que debe cumplir la del dueto y tener 2.

- n° de e final = 8 * 5 + 2 * 0 = 40

Resta (n° de e⁻ final - e⁻ de valencia totales).

- n° de e de enlace = 40 32 = 8
- n° de e^{-} sin compartir = 32 8 = 24

Calcula el número de enlace dividiendo en 2.

- 8/2=4

Dibuja la posible estructura.

Se determina la carga formal para cada tipo de átomo. Los e⁻ sin compartir se toman en cuenta de la estructura anterior.

Carga Formal = e⁻ valencia - enlaces - e⁻ sin compartir

- P: 5 4 0 = +1
- 0:6-1-6=-1

Define la estructura definitiva y revisa que cumpla la regla de la carga adyacente (dos átomos con la misma carga no pueden hacer un enlace) y que se cumpla que la suma de las cargas parciales sea igual a la carga total del compuesto.

