sol=bisect(f, a, b, 0.0001)	[A,x]=gauss(A,b)	$F(u, v) = (vu^3, u^2 + v^2)$	x0=[1 2 3] si y0=[4 6 3]	Fct care trece prin punctele date:
bisect afla x a.i $f(x)=0$, a<=x<=b:	A este matricea coef, iar b este vector	$F=@(x)[x(2)-x(1)^3;x(1)^2+x(2)^2-1];$	c=newtondd(x0,y0,3)	x=[0;1;2] si $y=[3;1;5]$
function xc=bisect(f,a,b,tol)	coloana cu val ecuatiilor	x=broyden2(F,[1;1],10)	function c=newtondd(x,y,n)	coeff=splinecoeff(x,y)
fa=f(a);	function [A,x]=gauss(A,b)	function x=broyden2(F,x0,k)	for j=1:n	splineplot(x,y,10) (si grafic idk dc k=10)
fb=f(b);	n=length(A);	n=length(x0);	v(j,1)=y(j);	function coeff=splinecoeff(x,y)
if sign(fa)*sign(fb) >= 0	for j=1:n-1	B=eye(n,n);	end	n=length(x);
error('f(a)f(b)<0 not satisfied!')	if $abs(A(j,j)) == 0$	for i=1:k	for i=2:n	A=zeros(n,n);
end	error('zero pivot encountered!');		for j=1:n+1-i	r=zeros(n,1);
while (b-a)/2>tol	end	x=x0-B*F(x0);	v(j,i)=(v(j+1,i-1)-v(j,i-1))/(x(j+i-1)-i-1)	- for i=1:n-1
c=(a+b)/2;	for i=j+1:n	delta=x-x0;	x(j));	dx(i)=x(i+1)-x(i);
fc=f(c);	mult=A(i,j)/A(j,j);	Delta=F(x)-F(x0);	end	dy(i)=y(i+1)-y(i);
if fc == 0	for k=j:n	B=B+(delta-	end	end
break;	A(i,k)=A(i,k)-mult*A(j,k);	B*Delta)*delta'*B/(delta'*B*Delta);	for i=1:n	for i=2:n-1
end	end	x0=x;	c(i)=v(1,i);	A(i,i-1:i+1)=[dx(i-1) 2*(dx(i-1)+dx(i))
if sign(fc)*sign(fa)<0	b(i)=b(i)-mult*b(j);	end	end	dx(i)];
b=c;	end	la fel ca jacobi	end	r(i)=3*(dy(i)/dx(i) - dy(i-1)/dx(i-1));
fb=fc;	end	function x=gauss_seidel(A,b,x0,k)		end
else	for i=n:-1:1	D=diag(diag(A));	dupa ce faci c=newtondd, continua	A(1,1) = 1;
a=c;	for j=i+1:n	L=tril(A)-D;	coloana urmatoare	A(n,n) = 1;
fa=fc;	-		coloana urmatoare	coeff=zeros(n,3);
end	b(i)=b(i)-A(i,j)*x(j);	U=triu(A)-D;	v 0.0 01.4 (say so interval ai tu)	* * **
	end	x=x0;	x-0:0.01:4 (sau ce interval ai tu)	coeff(:,2)=A\r;
end	x(i)=b(i)/A(i,i);	for i=1:k	<u>y=nested(2, c, x, x0)</u>	for i=1:n-1
xc=(a+b)/2;	end	x=inv(L+D)*(b-U*x);	plot(x0, y0,'o', x, y)	coeff(i,3)=(coeff(i+1,2)-
		end	function y=nested(d,c,x,b)	coeff(i,2))/(3*dx(i));
sol=secant(f, x0, x1,k)	x=jacobi(A,b,x0,k)		if nargin<4	coeff(i,1)=dy(i)/dx(i)-
x0 si x1 sunt de fapt intervalul [a b]	A matrice, b vector coloana	ca jacobi, omega se da in enunt	b=zeros(d,1);	dx(i)*(2*coeff(i,2)+coeff(i+1,2))/3;
calculeaza x a.i f(x)=0, k da precizia	x0=[0;0;0]	function x=sor(A,b,x0,omega,k)	end	end
function xc=secant(f,x0,x1,k)	function x=jacobi(A,b,x0,k)	[L,U,D]=lu(A);	y=c(d+1);	coeff=coeff(1:n-1,1:3);
for i = 2:k	D=diag(diag(A));	for i=1:k	for i=d:-1:1	
if $f(x1) - f(x0) == 0$, break, end	L=tril(A)-D;	x = inv(omega * L + D) * ((1 -	y = y.*(x-b(i))+c(i);	function splineplot(x,y,k)
xc = x1 - (f(x1)*(x1-x0))/(f(x1) -	U=triu(A)-D;	omega) * D * x0 - omega * U * x0) +	end	n=length(x);
f(x0));	x=x0;	omega * inv(D + omega * L) * b;		coeff=splinecoeff(x,y);
x0 = x1;	for j=1:k	x0 = x;	aproximarea lui sinus cu lagrange	x1=[];
x1 = xc;	x = inv(D)*(b-(L+U)*x);	end	<u>x=0:0.01:2*pi;</u>	y1=[];
end	end	end	y=sin(x);	for i=1:n-1
	end		y1=sin1(x);	xs=linspace(x(i),x(i+1),k+1);
sol=mfp(f, a, b, k)		Ca jacobi	plot(x,y1,x,y)	dx=xs-x(i);
mfp calculeaza x a.i f(x)=0, k este	FACTORIZARE LU	function x=conjgrad(A,b,x0,k)	function y=sin1(x)	ys=coeff(i,3)*dx;
precizia	A=[2 1 5; 4 4 -4; 1 3 1];	d0 = b - Ax0;	b=pi*(0:3)/6;	ys=(ys+coeff(i,2)).*dx;
function xc=mfp(f,a,b,k)	[L,U,P]=lu(A)	r0 = d0;	yb=sin(b);	ys=(ys+coeff(i,1)).*dx+y(i);
fa=f(a);	Matrice simetrica<=>A==A'	for i=1:k	c=newtondd(b,yb,4);	x1=[x1;xs(1:k)'];
fb=f(b);	Matrice pozitiv definita<=>eig(A)>0	if r0 == 0, stop, end	s=1;	y1=[y1;ys(1:k)'];
if $sign(fa)*sign(fb) >= 0$	este vector de 1	a = (r0.' * r0) / (d0.' * A * d0);	x1=mod(x,2*pi);	end
error('f(a)f(b)<0 not satisfied!')	este vector de 1	x = x0 + a * d0;	if x1>pi	x1=[x1;x(end)];
end	R=cholesky(A)	r = r0 - a * A * d0;	x1 = 2*pi-x1;	y1=[y1;y(end)];
for i = 1:k	Sau R=chol(A) (chol e predefinit)	B = (r.' * r) / (r0.' * r0);	S = -1;	plot(x,y,'o',x1,y1)
			end	piot(x,y, o ,x1,y1)
if $f(a) - f(b) == 0$, break, end	function R=cholesky(A)	d0 = r + B * d0;		similar, avem curbe bezier(ca mai sus)
xc = (b*f(a)-a*f(b))/(f(a) - f(b));	n=length(A);	r0 = r;	if x1 > pi/2	
if $f(xc) == 0$, break, end	for k=1:n	end	x1 = pi-x1;	avem pct p1,p3,pn, dar p1 si pn sunt
if f(a) * f(b) < 0	if A(k, k) < 0		end	"puncte", restul sunt pct de control
b = xc;	error('pivot<0');	<u>ca broyden1</u>	y = s*nested(3,c,x1,b);	function coeff=beziercoeff(x,y)
else	end	function x=broyden1(F,x0,k)		bx=3*(x(2)-x(1));
a = xc;	R(k,k)=sqrt(A(k,k));	n=length(x0);	sinus aprox prin cebisev, ca mai sus	by=3*(y(2)-y(1));
end	u=(A(k, (k+1):n)/R(k,k))';	A=eye(n, n);	function y=sin2(x)	cx=3*(x(3)-x(2))-bx;
end	R(k, (k+1):n)=u;	for i=1:k	n=10;	cy=3*(y(3)-y(2))-by;
	A((k+1):n, (k+1):n) = A((k+1):n,	x = x0 - inv(A) * F(x0);	b=pi/4+(pi/4)*cos((1:2:2*n-	dx=x(4)-x(1)-bx-cx;
sol=newton(f, df, x0, k)	(k+1):n) - u*u';	s = x - x0;	1)*pi/(2*n));	dy=y(4)-y(1)-by-cy;
calculeaza x a.i f(x)=0, k da precizia	end	d = F(x) - F(x0);	yb=sin(b);	coeff=zeros(2,4);
x0 spune in jurul carui pct cauta		A = A + ((d - A * s) * s.') / (s.' * s);	c=newtondd(b,yb,n);	coeff(1,:)=[x(1),bx,cx,dx];
<u>radacina</u>	ai la lab5 exemplu	x0 = x;	s=1;	coeff(2,:)=[y(1),by,cy,dy];
function xc=newton(f,df,x0,k)	function x = gauss_newton(r,Dr,x0,n)	end	x1=mod(x,2*pi);	
x(1)=x0;	x= x0;	end	if x1>pi	function bezierplot(x,y)
for i=1:k	for k = 1:n		x1 = 2*pi-x1;	hold on;
x(i+1)=x(i)-f(x(i))/df(x(i));	A = Dr(x);	fct predefinite: fsolve(F,[a b])	s = -1; end	t=0:0.02:1;
end	v = (A'*A) (-1*A'*r(x));	ca broyden1/2	if x1 > pi/2	plot([x(1) x(2)],[y(1)
xc=x(k+1);	x = x + v;		x1 = pi-x1;	y(2)],'r:',x(2),y(2),'rs');
	end		end	plot([x(3) x(4)],[y(3)
sol=fpi(f, x0, k)			y = s*nested(n-1,c,x1,b);	y(4)],'r:',x(3),y(3),'rs');
fpi face f(f(f(f(x0))) de k ori				plot(x(1),y(1),'bo',x(4),y(4),'bo');
function xc=fpi(f, x0, k)			cebisev	coeff=beziercoeff(x,y);
for i = 1:k			function $x = cebisev(a, b, k)$	xp=coeff(1,1)+t.*(coeff(1,2)+t.*(coeff(1
xc = f(x0);			for i = 1:k	,3)+t*coeff(1,4)));
x0 = xc;			x(i)=(b+a)/2+(b-a)/2*cos((2*i-	yp=coeff(2,1)+t.*(coeff(2,2)+t.*(coeff(
end			1)*pi/(2*k));	2,3)+t*coeff(2,4)));
Ciru			1) pi/(2 k)); end	plot(xp,yp)
fct predefinite:			end	hold off;
fsolve(f, [a b])			Cita	now on,

returneaza x a.i. $f(x)=0$, a <x<b< td=""><td></td><td></td><td></td><td></td></x<b<>				

```
Cele mai mici patrate
x0=[-1;0;1;2];
y0=[1;0;0;-2];
c=polyfit(x0,y0,2)
x=-1:0.01:2;
y=polyval(c,x);
plot(x0,y0,'o',x,y)
factorizare QR
x=(2+(0:10)/5)';
y=1+x+x.^2+x.^3+x.^4+x.^5+x.^6+x.^7;
A=[x.^0 x x.^2 x.^3 x.^4 x.^5 x.^6 x.^7];
[Q,R]=qr(A);
b=Q'*y;
c=R(1:8,1:8)\b(1:8)
Găsiți cea mai bună dreaptă care
aproximează următorul set de puncte,
și calculați REMP-ul:
x0=[-3;-1;0;1;3];
y0=[3;2;1;-1;-4];
c = polyfit(x0,y0,1)
y0_interp = polyval(c,x0)
error = (y0 - y0_interp)
REMP =
norm(error)/sqrt(length(error))
x=[-3:0.01:3];
y=polyval(c,x);
plot(x0,y0,'o',x,y)
gauss-newton
% Ecuatia cercului:
% (x-a)^2 + (y-b)^2 = R^2
r=@(x) [norm(x-[0;1])-1;norm(x-[1;1])-
1;norm(x-[0;-1])-1];
Dr=@(x)[(x-[0;1])/norm(x-[0;1]),(x-[0;1])
[1;1])/norm(x-[1;1]),(x-[0;-1])/norm(x-
[0;-1])]';
x = gauss_newton(r,Dr,[0;0],20)
function x = gauss_newton(r,Dr,x0,n)
x=x0;
for k=1:n
A=Dr(x);
v=-(A'*A)\setminus (A'*r(x));
x=x+v
end
se apeleaza ca gauss-newton
Im este levenberg-marquardt
function x = Im(r,Dr,Iambda,x0,n)
x=x0;
for k=1:n
A=Dr(x);
(A'*A+lambda*diag(diag(A'*A)))\setminus (A'*r(
x));
x=x+v;
end
se apeleaza ca gr(A)
function [Q,R] = gram_schmidt(A)
[m,n]=size(A);
Q=zeros(m, n);
for j=1:n
  y=A(:,j);
  for i=1:j-1
    R(i,j)=Q(:,i)'*A(:,j);
 ر.,, -حرر.,۱٫۰*A(:,j
y=y-R(i,j)*Q(:,i);
end
  R(j,j)=norm(y);
  Q(:j(=y/R(j,j);
End
Qr scris de mana daca cere(qr exista
predefinit)
function [Q,R]=qr1(A)
[^{\sim},n]=size(A);
for j = 1:n
y = A(:,j);
for i = 1:j-1
R(i,j) = Q(:,i)'*A(:,j);
y = y - R(i,j)*Q(:,i);
end
R(j,j) = norm(y);
Q(:,j) = y/R(j,j);
end
```