

UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE UFR d'I.E.A.

Année Universitaire 2004-2005

Master ASE 1^{ère} année

EXAMEN UE MAS2EGE001: Modélisation, Identification des Processus

Durée 2 Heures 1ère session

DATE	ENSEIGNANT
Mercredi 11 Mai 2005 de 14H à 16H	Pierre BONNET

Documents et calculatrice autorisés

Exercice I:

On désire estimer la valeur des paramètres d'un système par analyse de sa *réponse impulsionnelle* par la méthode des moindres carrés simples puis récursifs.

On suppose que la fonction de transfert du système est :

$$\frac{Y(p)}{U(p)} = \frac{1}{p+a}$$

Le relevé de la réponse impulsionnelle a donné les mesures suivantes:

t	1	2	3	4	5
y(t)	0,70	0,43	0,32	0,19	0,15

- 1) Donner la forme théorique x(t) de la réponse impulsionnelle de ce système. Est-elle linéaire par rapport au paramètre a? Proposer une méthode de linéarisation.
 - 2) Déterminer la valeur optimale de \hat{a} par la méthode des moindres carrés simples.
- 3) En déduire la valeur estimée $\hat{y}(t)$ calculée aux points d'échantillonnage. Reporter sur un même graphe les valeurs de y(t) et $\hat{y}(t)$. Calculer la valeur du critère quadratique $J(\hat{a})$. Conclure sur la qualité de l'estimation de y.
- 4) On reprend la détermination de \hat{a} par la méthode des moindres carrés récursifs. Définir la dimension des matrices P et K intervenant dans le processus itératif.

On fixe $P_0=100I$ et $\theta_0=0$ (notations du cours).

Donner le détail de la première boucle d'itération. Quelle est la valeur de \hat{a}_1 et de \hat{y}_1 , comparer avec la valeur de la méthode directe.

Donner les valeurs suivantes de \hat{a} et \hat{y} . La convergence vers la valeur finale est-elle rapide? Tracer sur le graphe précédent $\hat{y}(t)$ obtenu par la méthode récursive. Conclure sur son intérêt dans le cas présent.

Exercice II:

On désire déterminer les paramètres du modèle d'un signal sinusoïdal avec niveau continu.

Le modèle utilisé est de la forme:

$$x(t) = a\cos\omega t + b\sin\omega t + c$$

La pulsation ω est supposée être connue.

Les mesures y(t) sont faites aux instants d'échantillonnages iT_e avec $i \in [0, N-1]$.

1) On définit X vecteur modèle $X = [x(0), x(T_e), ..., x((N-1)T_e)]^T$ et Y vecteur des mesures.

Déterminer la matrice H telle que $X=H\theta$ avec vecteur des paramètres $\theta = [a,b,c]^T$ Préciser les dimensions de cette matrice H.

- 2) Donner l'expression détaillée permettant d'obtenir la meilleure estimation des paramètres $\hat{\theta}$ à partir des mesures Y (ne pas développer les calculs ni faire l'inversion!).
- 3) Dans le cas où $T_e=\frac{2\pi}{N}$ (les N échantillons représentent exactement une période du signal), faire les calculs et donner l'expression finale de \hat{a} , \hat{b} et \hat{c} .

La présence d'un niveau continu a-t-elle modifié les résultats du calcul de \hat{a} et \hat{b} par rapport à celui du modèle sans niveau continu ? Comment \hat{c} est-il obtenu ?

On rappelle que :
$$\sum_{i=0}^{N-1} \cos^2\left(i\frac{2\pi}{N}\right) = \frac{N}{2}$$
$$\sum_{i=0}^{N-1} \sin^2\left(i\frac{2\pi}{N}\right) = \frac{N}{2}$$
$$\sum_{i=0}^{N-1} \cos\left(i\frac{2\pi}{N}\right) \sin\left(i\frac{2\pi}{N}\right) = 0$$

Corrigé de l'examen du 11 Mai 2005

Exercice 1:

1) réponse impulsionnelle théorique : $x(t)=e^{-at}$.

Non-linéaire par rapport au paramètre a: $x(t,\lambda_1a_1+\lambda_2a_2) \neq \lambda_1x(t,a_1)+\lambda_2x(t,a_2)$

linéarisation par logarithme : $x_1(t) = \ln[x(t)] = -at$

2) Mise en place

t	$x_1(t) = -at$	y(t)	$y_1(t) = \ln[y(t)]$
1	<i>- a</i>	0.70	-0.357
2	-2 <i>a</i>	0.43	-0.844
3	-3 <i>a</i>	0.32	-1.139
4	-4 <i>a</i>	0.19	-1.661
5	-5 <i>a</i>	0.15	-1.897

On pose:
$$H = \begin{bmatrix} -1 & -2 & -3 & -4 & -5 \end{bmatrix}^T$$
 $Y_1 = \begin{bmatrix} -0.36 & -0.84 & -1.14 & -1.66 & -1.90 \end{bmatrix}$ $\theta = a$

$$\hat{\theta} = (H^t H)^{-1} H^T Y_1$$
 valeur obtenue par calcul: $\hat{a} = 0.393$

3) valeurs de $\hat{y}(t)$ aux points d'échantillonnage :

t	y(t)	$\hat{y}(t)$
1	0.70	0.68
2	0.43	0.46
3	0.32	0.31
4	0.19	0.21
5	0.15	0.14

Valeur du critère : attention, le critère est calculé sur les valeurs ayant servi à établir la méthode des moindres carrés $J = \sum_{1}^{5} (y_1(t) - \hat{y}_1(t))^2 = (Y_1 - \hat{Y}_1)^T (Y_1 - \hat{Y}_1) \quad J(\hat{a}) = 0.019$. La valeur est différente de celle obtenue sur les valeurs de y(t) et $\hat{y}(t)$ J = 0.0018 - valeur non valide dans le cadre de l'approche utilisée.

4) Approche récursive: $h = [-t]^T$ de dimension 1x1 ainsi que $P_n = (H_n^T H_n)^{-1}$ est de dimension 1x1. Le problème est purement scalaire. On choisit $\hat{\theta}_0 = 0$ et $P_0 = 100$

$$K_{n+1} = -P_n t_{n+1} / (1 + t_{n+1}^2 P_n) \qquad P_{n+1} = (1 + K_{n+1} t_{n+1}) P_n \qquad \hat{\theta}_{n+1} = \hat{\theta}_n + K_{n+1} (y_{1\,n+1} + t_{n+1}) \hat{\theta}_n)$$

Le calcul est fait sur un tableau Excel.

Les résultats sont :

t	hn	yn	y1n=log(yn)	Kn	Pn	thetan	y1est	ynest
0	*	*	*	0	100	0	0	*
1	-1	0,7	-0,357	-0,99	0,99	0,356	-0,35	0,70
2	-2	0,43	-0,844	-0,40	0,20	0,408	-0,82	0,44
3	-3	0,32	-1,139	-0,21	0,07	0,390	-1,17	0,31
4	-4	0,19	-1,661	-0,13	0,03	0,403	-1,61	0,20
5	-5	0,15	-1,897	-0,09	0,02	0,392	-1,96	0,14

On remarque que le premier calcul de $\hat{\theta}$ conduit à une estimation de y_1 qui est très proche de la valeur mesurée. Les itérations suivantes corrigent la valeur de $\hat{\theta}$ qui converge vers une valeur quasi identique à celle du calcul direct. Le tracé graphique de l'estimation est très voisin du précédent.

Exercice 2:

1)

t	$x(t) = a\cos\omega t + b\sin\omega t + c$
0	$a\cos(0) + b\sin(0) + c$
T_e	$a\cos(\omega T_e) + b\sin(\omega T_e) + c$
$2T_e$	$a\cos(2\omega T_e) + b\sin(2\omega T_e) + c$
••••	
$(N-1)T_e$	$a\cos((N-1)\omega T_e) + b\sin((N-1)\omega T_e) + c$

La matrice *H* est dono

$$H = \begin{bmatrix} \cos(0) & \sin(0) & 1\\ \cos(\omega T_e) & \sin(\omega T_e) & 1\\ \vdots\\ \cos((N-1)\omega T_e & \sin((N-1)\omega T_e & 1) \end{bmatrix}$$

$$X=H\theta$$
 avec

$$\theta = [abc]^T$$

2) Il suffit de déterminer $\hat{\theta}$ par : $\hat{\theta} = (H^T H)^{-1} H^T Y$

$$\cdot H^T H = \begin{bmatrix} \sum \cos^2(\omega i T_e) & \sum \cos(\omega i T_e) \sin(\omega i T_e) \\ \sum \sin(\omega i T_e) \cos(\omega i T_e) & \sum \sin^2(\omega i T_e) \\ \sum \cos(\omega i T_e) & \sum \sin(\omega i T_e) \end{bmatrix} \qquad H^T Y = \begin{bmatrix} \sum y_i \cos(\omega i T_e) \\ \sum y_i \sin(\omega i T_e) \\ \sum y_i & \sum y_i \end{bmatrix}$$

La résolution formelle est très lourde dans le cas général (à faire sur Mapple, Mathematica ou numériquement sur Matlab)

3) Dans les conditions définies, les sommations se simplifient, ce qui donne:

$$H^T H = \begin{bmatrix} N/2 & 0 & 0 \\ 0 & N/2 & 0 \\ 0 & 0 & N \end{bmatrix}$$

En posant
$$H^T Y = \begin{bmatrix} sum cosval \\ sum sin val \\ sum val \end{bmatrix}$$
, on obtient $: \hat{\theta} = \frac{1}{N} \begin{bmatrix} 2sum cosval \\ 2sum sin val \\ sum val \end{bmatrix}$

L'introduction d'un niveau continu dans le modèle ne change pas la détermination de \hat{a} et \hat{b} (conséquence de l'orthogonalité de la base des fonctions choisies, démontrée dans le cadre de l'étude de la décomposition de Fourier). L'estimation du décalage du modèle \hat{c} est simplement obtenu en calculant la moyenne des mesures.