

SEQUENCE LISTING

<110>	Reed, John	
<120>	Regulation of BCL-2 Gene Expression	
<130>	10412-011	
<140> <141>		
<150> <151>	•	
<160>	29	
<170>	PatentIn version 3.0	
<210><211><212><213>	1 20 DNA Homo sapiens	
<400> cagcgt	1 gege cateetteee	20
<210><211><212><213>	2 35 DNA Homo sapiens	
<400>	2 ctct gggaaggatg gcgcacgctg ggaga	35
<210><211><212>	3 20 DNA Homo sapiens	
<400> gatgca	3 ccta cccagcctcc	20
<210><211><211><212><213>	4 33 DNA Homo sapiens	
<400>	4 tacq qaqqctqqqt aqqtqcatct qqt	33

<210>	5			
<211>	20			
<212>	DNA			
<213>	Homo sapiens			
<400>	5			
		20		
acaaag	gcat cctgcagttg	20		
<210>	6			
<211>	36			
<212>	DNA			
<213>	Homo sapiens			
<400>	6			
	actg caggatgcct ttgtggaact gtacgg	36		
<210>	7			
<211>	20			
<212>	DNA			
<213>	Homo sapiens			
<400>	7			
gggaag	gatg gcgcacgctg	20		
<210>	8			
<211>	17			
<212>	DNA			
<213>	Homo sapiens			
<400>	8			
cgcgtg	cgac cctcttg	17		
<210>	9			
<211>	17			
<212>	DNA			
<213>	Homo sapiens			
<400>	9			
taccgcg	gtgc gaccctc	17		
<210>	10			
<211>	17			
<212>	DNA			
<213>	Homo sapiens			
<400>	10			
	egcg tgegaee	17		
<210>	11			
<211>	17			
<212>	DNA			
<213>	Homo sapiens			
<400>	11			
ccttcctacc gcgtgcg 17				
<210>	12			

<211> 17

<213>	Homo sapiens
<400>	12
gaccct	tect accgcgt
<210>	13
<211>	17
	DNA
	Homo sapiens
<400>	13
ggagac	cctt cctaccg
<210>	14
	15
<211>	
<212>	
<213>	Homo sapiens
<400>	14
gcggcg	gcag cgcgg
<210>	15
<211>	15
<212>	Homo sapiens
<213>	HOMO Saptens
<400>	15
cggcgg	ggcg acgga
-2105	16
<210><211>	16
	DNA
<213>	Homo sapiens
<400>	16
cgggag	cgcg gcgggc
<210>	17
<211>	18
<212>	
	Homo sapiens
_	£
<400>	17
tctccc	agcg tgcgccat
<210>	18
<211>	18
	DNA
	Homo sapiens
<400>	18
tgcact	cacg ctcggcct
<210>	19
<211>	
<212>	DNA
	Homo ganions

<400> 19 60 gegeegeee eteegegeeg eetgeeegee egeegeege geteeegeee geegetetee gtggccccgc cgcgctgccg ccgccgccgc tgccagcgaa ggtgccgggg ctccgggccc 120 tecetgeegg eggeegteag egeteggage gaactgegeg aegggaggte egggaggega 180 ccgtagtcgc gccgccgcgc aggaccagga ggaggagaaa gggtgcgcag cccggaggcg 240 gggtgcgccg gtggggtgca gcggaagagg gggtccaggg gggagaactt cgtagcagtc 300 360 atccttttta ggaaaagagg gaaaaaataa aaccttcccc caccacctcc ttctccccac ccctcgccgc accacaca gcgcgggctt ctagcgctcg gcaccggcgg gccaggcgcg 420 tectgeette atttatecag eagetttteg gaaaatgeat ttgetgtteg gagtttaate 480 agaagacgat teetgeetee gteecegget cetteategt eccateteee etgtetetet 540 cctggggagg cgtgaagcgg tcccgtggat agagattcat gcctgtgtcc gcgcgtgtgt 600 gcgcgcgtat aaattgccga gaaggggaaa acatcacagg acttctgcga ataccggact 660 gaaaattgta attcatctgc cgccgccgct gccaaaaaaa aactcgagct cttgagatct 720 ccggttggga ttcctgcgga ttgacatttc tgtgaagcag aagtctggga atcgatctgg 780 aaatcctcct aatttttact ccctctcccc ccgactcctg attcattggg aagtttcaaa 840 tcagctataa ctggagagtg ctgaagattg atgggatcgt tgccttatgc atttgttttg 900 gttttacaaa aaggaaactt gacagaggat catgctgtac ttaaaaaaata caagtaagtc 960 tcgcacagga aattggttta atgtaacttt caatggaaac ctttgagatt ttttacttaa 1020 agtgcattcg agtaaattta atttccaggc agcttaatac attgttttta gccgtgttac 1080 ttgtagtgtg tatgccctgc tttcactcag tgtgtacagg gaaacgcacc tgatttttta 1140 cttattagtt tgttttttct ttaacctttc agcatcacag aggaagtaga ctgatattaa 1200 caatacttac taataataac gtgcctcatg aaataaagat ccgaaaggaa ttggaataaa 1260 aatttcctgc gtctcatgcc aagagggaaa caccagaatc aagtgttccg cgtgattgaa 1320 gacaccccct cgtccaagaa tgcaaagcac atccaataaa atagctggat tataactcct 1380 cttctttctc tgggggccgt ggggtgggag ctggggcgag aggtgccgtt ggcccccgtt 1440 gcttttcctc tgggaaggat ggcgcacgct gggagaacgg ggtacgacaa ccgggagata 1500 gtgatgaagt acatccatta taagctgtcg cagaggggct acgagtggga tgcgggagat 1560 gtgggcgccg cgccccggg ggccgcccc gcaccgggca tcttctcctc ccagcccggg 1620 cacacgcccc atccagccgc atcccgcgac ccggtcgcca ggacctcgcc gctgcagacc 1680 eeggetgeee eeggegeege egeggggeet gegeteagee eggtgeeace tgtggteeae 1740 etggeeetee gecaageegg egaegaette teeegeeget aeegeggega ettegeegag 1800

atgtccagcc agctgcacct gacgcccttc accgcgcggg gacgctttgc cacggtggtg 1860 gaggagetet teagggaegg ggtgaactgg gggaggattg tggeettett tgagtteggt 1920 1980 ggggtcatgt gtgtggagag cgtcaaccgg gagatgtcgc ccctggtgga caacatcgcc ctgtggatga ctgagtacct gaaccggcac ctgcacacct ggatccagga taacggaggc 2040 tgggatgcct ttgtggaact gtacggcccc agcatgcggc ctctgtttga tttctcctgg 2100 2160 ctgtctctga agactctgct cagtttggcc ctggtgggag cttgcatcac cctgggtgcc tatctgagcc acaagtgaag tcaacatgcc tgccccaaac aaatatgcaa aaggttcact 2220 aaagcagtag aaataatatg cattgtcagt gatgtaccat gaaacaaagc tgcaggctgt 2280 ttaagaaaaa ataacacaca tataaacatc acacacacag acagacacac acacacaca 2340 caattaacag tottcaggca aaacgtcgaa tcagctattt actgccaaag ggaaatatca 2400 tttatttttt acattattaa gaaaaaagat ttatttattt aagacagtcc catcaaaact 2460 ccgtctttgg aaatccgacc actaattgcc aaacaccgct tcgtgtggct ccacctggat 2520 gttctgtgcc tgtaaacata gattcgcttt ccatgttgtt ggccggatca ccatctgaag 2580 agcagacgga tggaaaaagg acctgatcat tggggaagct ggctttctgg ctgctggagg 2640 ctggggagaa ggtgttcatt cacttgcatt tctttgccct gggggcgtga tattaacaga 2700 gggagggttc ccgtgggggg aagtccatgc ctccctggcc tgaagaagag actctttgca 2760 tatgactcac atgatgcata cctggtggga ggaaaagagt tgggaacttc agatggacct 2820 agtacccact gagatttcca cgccgaagga cagcgatggg aaaaatgccc ttaaatcata 2880 ggaaagtatt tttttaagct accaattgtg ccgagaaaag cattttagca atttatacaa 2940 tatcatccag taccttaaac cctgattgtg tatattcata tattttggat acgcacccc 3000 caactcccaa tactggctct gtctgagtaa gaaacagaat cctctggaac ttgaggaagt 3060 gaacatttcg gtgacttccg atcaggaagg ctagagttac ccagagcatc aggccgccac 3120 aagtgeetge ttttaggaga eegaagteeg eagaaeetae etgtgteeea gettggagge 3180 ctggtcctgg aactgagccg ggccctcact ggcctcctcc agggatgatc aacagggtag 3240 tgtggtctcc gaatgtctgg aagctgatgg atggagctca gaattccact gtcaagaaag 3300 agcagtagag gggtgtggct gggcctgtca ccctggggcc ctccaggtag gcccgttttc 3360 acgtggagca taggagccac gacccttctt aagacatgta tcactgtaga gggaaggaac 3420 agaggccctg ggccttccta tcagaaggac atggtgaagg ctgggaacgt gaggagaggc 3480 aatggccacg gcccattttg gctgtagcac atggcacgtt ggctgtgtgg ccttggccac 3540 ctgtgagttt aaagcaaggc tttaaatgac tttggagagg gtcacaaatc ctaaaagaag 3600 cattgaagtg aggtgtcatg gattaattga cccctgtcta tggaattaca tgtaaaacat 3660

tatcttgtca ctgtagtttg gttttatttg aaaacctgac aaaaaaaaag ttccaggtgt 3720 3780 ggaatatggg ggttatctgt acatcctggg gcattaaaaa aaaatcaatg gtggggaact 3840 ataaagaagt aacaaaagaa gtgacatctt cagcaaataa actaggaaat ttttttttt 3900 tccagtttag aatcagcctt gaaacattga tggaataact ctgtggcatt attgcattat ataccattta totgtattaa otttggaatg tactotgtto aatgtttaat gotgtggttg 3960 atatttcgaa agctgcttta aaaaaataca tgcatctcag cgtttttttg tttttaattg 4020 4080 tatttagtta tggcctatac actatttgtg agcaaaggtg atcgttttct gtttgagatt tttatctctt gattcttcaa aagcattctg agaaggtgag ataagccctg agtctcagct 4140 4200 acctaagaaa aacctggatg tcactggcca ctgaggagct ttgtttcaac caagtcatgt gcatttccac gtcaacagaa ttgtttattg tgacagttat atctgttgtc cctttgacct 4260 tgtttcttga aggtttcctc gtccctgggc aattccgcat ttaattcatg gtattcagga 4320 ttacatgcat gtttggttaa acccatgaga ttcattcagt taaaaatcca gatggcgaat 4380 gaccagcaga ttcaaatcta tggtggtttg acctttagag agttgcttta cgtggcctgt 4440 ttcaacacag acccaccag agecetectg ceetecttee gegggggett teteatgget 4500 gtccttcagg gtcttcctga aatgcagtgg tcgttacgct ccaccaagaa agcaggaaac 4560 ctgtggtatg aagccagacc tccccggcgg gcctcaggga acagaatgat cagacctttg 4620 aatgatteta attittaage aaaatattat titatgaaag gittacatig teaaagigat 4680 gaatatggaa tatccaatcc tgtgctgcta tcctgccaaa atcattttaa tggagtcagt 4740 ttgcagtatg ctccacgtgg taagatcctc caagctgctt tagaagtaac aatgaagaac 4800 gtggacgttt ttaatataaa gcctgttttg tcttttgttg ttgttcaaac gggattcaca 4860 gagtatttga aaaatgtata tatattaaga ggtcacgggg gctaattgct agctggctgc 4920 cttttgctgt ggggttttgt tacctggttt taataacagt aaatgtgccc agcctcttgg 4980 ccccagaact gtacagtatt gtggctgcac ttgctctaag agtagttgat gttgcatttt 5040 ccttattgtt aaaaacatgt tagaagcaat gaatgtatat aaaagc 5086

atggcgcacg ctgggagaac ggggtacgac aaccgggaga tagtgatgaa gtacatccat 60 tataagctgt cgcagagggg ctacgagtgg gatgcgggag atgtgggcgc cgcgccccg 120

<210> 20

<211> 717

<212> DNA

<213> Homo sapiens

<400> 20

ggggccgccc ccgcaccggg catcttctcc tcccagcccg ggcacacgcc ccatccagcc 180 gcatcccgcg acccggtcgc caggacctcg ccgctgcaga ccccggctgc ccccggcgcc 240 gccgcggggc ctgcgctcag cccggtgcca cctgtggtcc acctggccct ccgccaagcc 300 ggcgacgact tctcccgccg ctaccgcggc gacttcgccg agatgtccag ccagctgcac 360 ctgacgcct tcaccgcgg gggacgcttt gccacggtgg tggaggact cttcagggac 420 ggggtgaact gggggaggat tgtggccttc tttgagttcg gtggggtcat gtgtgtggag 480 agcgtcaacc gggagatgtc gccctggtg gacaacatcg ccctgtggat gactgagtac 540 ctgaaccggc acctgcacac ctggatccag gataacggag gctgggatgc ctttgtggaa 600 ctgtacggcc ccagcatgcg gcctctgttt gatttctcct ggctgtctct gaagactctg 660 ctcagtttgg ccctggtgg agcttgcatc accctgggtg cctatctgag ccacaag 717

<400> 21

Met Ala His Ala Gly Arg Thr Gly Tyr Asp Asn Arg Glu Ile Val Met

1 10 15

Lys Tyr Ile His Tyr Lys Leu Ser Gln Arg Gly Tyr Glu Trp Asp Ala 20 25 30

Gly Asp Val Gly Ala Ala Pro Pro Gly Ala Ala Pro Ala Pro Gly Ile 35 40 45

Phe Ser Ser Gln Pro Gly His Thr Pro His Pro Ala Ala Ser Arg Asp 50 55 60

Pro Val Ala Arg Thr Ser Pro Leu Gln Thr Pro Ala Ala Pro Gly Ala 65 70 75 80

Ala Ala Gly Pro Ala Leu Ser Pro Val Pro Pro Val Val His Leu Ala 85 90 95

Leu Arg Gln Ala Gly Asp Asp Phe Ser Arg Arg Tyr Arg Gly Asp Phe
100 105 110

Ala Glu Met Ser Ser Gln Leu His Leu Thr Pro Phe Thr Ala Arg Gly 115 120 125

Arg Phe Ala Thr Val Val Glu Glu Leu Phe Arg Asp Gly Val Asn Trp 130 135 140

Gly Arg Ile Val Ala Phe Phe Glu Phe Gly Gly Val Met Cys Val Glu 145 150 155 160

Ser Val Asn Arg Glu Met Ser Pro Leu Val Asp Asn Ile Ala Leu Trp 165 170 175

<210> 21

<211> 239

<212> PRT

<213> Homo sapiens

Met Thr Glu Tyr Leu Asn Arg His Leu His Thr Trp Ile Gln Asp Asn 180 185 190

Gly Gly Trp Asp Ala Phe Val Glu Leu Tyr Gly Pro Ser Met Arg Pro 195 200 205

Leu Phe Asp Phe Ser Trp Leu Ser Leu Lys Thr Leu Leu Ser Leu Ala 210 215 220

Leu Val Gly Ala Cys Ile Thr Leu Gly Ala Tyr Leu Ser His Lys 225 230 235

<210> 22

<211> 615

<212> DNA

<213> Homo sapiens

<400> 22

atggcgcacg ctgggagaac ggggtacgac aaccgggaga tagtgatgaa gtacatccat 60 tataagctgt cgcagagggg ctacgatgg gatgcgggag atgtgggcgc cgcgcccccg 120 ggggccgccc ccgcaccggg catcttctcc tcccagcccg ggcacacgcc ccatccagcc 180 gcatcccgc acccggtcgc caggacctcg ccgctgcaga ccccggctgc ccccggcgcc 240 gccgcggggc ctgcgctcag cccggtgcca cctgtggtcc acctggccct ccgccaagcc 300 ggcgacgact tctcccgccg ctaccgcggc gacttcgccg agatgtccag ccagctgcac 360 ctgacgccct tcaccgcgcg gggacgcttt gccacggtgg tggaggagct cttcagggac 420 ggggtgaact gggggaggat tgtggccttc tttgagttcg gtggggtcat gtgtgggag 480 agcgtcaacc gggagatgtc gccctggtg gacaacatcg ccctgtggat gactgagtac 540 ctgaaccggc acctgcacac ctggatccag gataacggag gctgggtagg tgcatctggt 600 gatgtgagtc tgggc

<210> 23

<211> 205

<212> PRT

<213> Homo sapiens

<400> 23

Met Ala His Ala Gly Arg Thr Gly Tyr Asp Asn Arg Glu Ile Val Met 1 5 10 15

Lys Tyr Ile His Tyr Lys Leu Ser Gln Arg Gly Tyr Glu Trp Asp Ala 20 25 30

Gly Asp Val Gly Ala Ala Pro Pro Gly Ala Ala Pro Ala Pro Gly Ile

Phe Ser Ser Gln Pro Gly His Thr Pro His Pro Ala Ala Ser Arg Asp 50 55 60

Pro Val Ala Arg Thr Ser Pro Leu Gln Thr Pro Ala Ala Pro Gly Ala

75								
Ala Ala Gly Pro Ala Leu Ser Pro Val Pro Pro Val Val His Leu . 85 90 95	Ala							
Leu Arg Gln Ala Gly Asp Asp Phe Ser Arg Arg Tyr Arg Gly Asp	Phe .							
Ala Glu Met Ser Ser Gln Leu His Leu Thr Pro Phe Thr Ala Arg	Gly							
Arg Phe Ala Thr Val Val Glu Glu Leu Phe Arg Asp Gly Val Asn 130 135 140	Trp							
Gly Arg Ile Val Ala Phe Phe Glu Phe Gly Gly Val Met Cys Val	Glu 160							
Ser Val Asn Arg Glu Met Ser Pro Leu Val Asp Asn Ile Ala Leu 165 170 175	Trp							
Met Thr Glu Tyr Leu Asn Arg His Leu His Thr Trp Ile Gln Asp 180 185 190	Asn							
Gly Gly Trp Val Gly Ala Ser Gly Asp Val Ser Leu Gly 195 200 205								
<210> 24 <211> 18 <212> DNA								
<213> Homo sapiens								
<400> 24 teteccageg tgegecat	18							
<210> 25								
<211> 18 <212> DNA								
<213> Homo sapiens								
<400> 25								
tgcactcacg ctcggcct	18							
<210> 26								
<211> 20								
<212> DNA <213> Homo sapiens								
<400> 26	20							
gegeggeggg egggeggea	20							
<210> 27								
<211> 20								
<212> DNA <213> Homo sapiens								
•								
<pre><400> 27 gggcggaggc cggccggcgg 20</pre>								
	_ •							
<210> 28								
<211> 20 <212> DNA								
1								

<213>	Homo sapiens	
<400> agcggc	28 eggeg geggeagege	20
<210>	29	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400>	29	
gggccg	ggaa gggcgcccgc	20