CS1675 - Assignment 8

Zachary M. Mattis

 $March\ 28,\ 2019$

I. Problem 1 - Bayesian Belief Networks

Figure 1: BBN

a. Blind Solution

(1)
$$P(B=T, E=T)$$

$$\begin{split} P(B = T, E = T) &= \sum_{a \in T, F} \sum_{c \in T, F} \sum_{d \in T, F, X} \sum_{f \in T, F} P(A = a, B = T, C = c, D = d, E = T, F = f) \\ &= \sum_{a \in T, F} \sum_{c \in T, F} \sum_{d \in T, F, X} \sum_{f \in T, F} P(F = f | D = d) P(D = d | A = a, B = T, C = c) * \\ P(E = T | C = c) P(A = a) P(B = T) P(C = c) \end{split}$$

Computational Cost:

Num. Additions	(/ (/	23
Num. Products	$[(3)(2^3)][(6-1)]$	120

(2) Full Joint Distribution

$$\begin{split} P &= \sum_{a \in T, F} \sum_{b \in T, F} \sum_{c \in T, F} \sum_{d \in T, F, X} \sum_{e \in T, F} \sum_{f \in T, F} P(A = a, B = b, C = c, D = d, E = e, F = f) \\ &= \sum_{a \in T, F} \sum_{b \in T, F} \sum_{c \in T, F} \sum_{d \in T, F, X} \sum_{e \in T, F} \sum_{f \in T, F} P(F = f | D = d) P(D = d | A = a, B = b, C = c) * \\ &P(E = e | C = c) P(A = a) P(B = b) P(C = c) \end{split}$$

Computational Cost:

Num. Additions	\	95
Num. Products	$[(3)(2^5)][(6-1)]$	480

b. Efficient Solution

(1)
$$P(B=T, E=T)$$

$$P(B = T, E = T) = P(B = T) \sum_{a \in T, F} P(A = a) \sum_{c \in T, F} P(E = T | C = c) P(C = c) *$$

$$\sum_{d \in T, F, X} P(D = d | A = a, B = T, C = c) \sum_{f \in T, F} P(F = f | D = d)$$

Computational Cost:

Num.	Additions	9
Num.	Products	16

Given the reduction in computation complexity and cost for the efficient solution, this approach is much more desirable than the blind solution.

II. Problem 2 - Pneumonia Diagnosis

a. ML Estimation

	\mathbf{T}	\mathbf{F}
Fever	0.9	0.1
Paleness	0.7	0.3
Cough	0.9	0.1
HighWBCcount	0.8	0.2

Table 1: $P(Parameters \mid Pneumonia = T)$

	\mathbf{T}	\mathbf{F}
Fever	0.6	0.4
Paleness	0.5	0.5
Cough	0.1	0.9
HighWBCcount	0.5	0.5

Table 2: $P(Parameters \mid Pneumonia = F)$

b. Fever, !Paleness, Cough, !HighWBCcount

P(Pneumonia = T|Fever = T, Paleness = F, Cough = T, HighWBCcount = F) = 0.2351

c. Fever, ?Paleness, Cough, ?HighWBCcount

$$P(Pneumonia = T|Fever = T, Cough = T) = 0.0539$$

d. Current Symptoms

 ${\tt main7_2inference.m}$