MLCM-24 schedule

mlcm-24.github.io [updated 05/05/24]

	5/20 MONDAY	5/21 TUESDAY	5/22 WEDNESDAY	5/23 THURSDAY
8:45 - 9:00 AM	Marianne Francois T-division, LANL			
	opening remarks			
9:00 - 9:30 AM	plenary Anatole von Lilienfeld	plenary Gabor Csanyi	plenary Alexandre Tkatchenko	plenary Markus Reiher
	University Of Toronto Vector Institute Quantum Machine Learning	University of Cambridge Foundation models for materials chemistry	University of Luxembourg Navigating Chemical Compound Space with Machine Learning	ETH Zurich Lifelong Machine Learning Potentials
9:30 - 10:00 AM	plenary Oleg Prezhdo University of Southern California	plenary Mario Barbatti Aix Marseille University, CNRS, ICR	plenary Roberto Car Princeton University	plenary Olexandr Isayev Carnegie Mellon University
10.00 10.00 11.1	Nonadiabatic Molecular Dynamics with Machine Learning	Dynamics	Deep potential models for equilibrium and near equilibrium processes	AIMNet2: Robust neural network potential for organic, element-organic molecules and chemical reactions
10:00 - 10:20 AM	David Balcells University of Oslo Generative Machine Learning for Transition Metal Chemistry	Reinhard Maurer University of Warwick Machine learning of electronic structure for molecular design	Nong Artrith Debye Institute for Nanomaterials Science ML & XAS for Amorphous Materials	Johannes Margraf University of Bayreuth Materials Discovery with Foundation Models
10:20 - 10:40 AM	Volker Deringer	Karel Berka	Zsuzsanna Koczor-Benda	Motthias Rupp
	University of Oxford Data-driven interatomic potentials for inorganic materials chemistry	Palacky University Olomouc MolMeDB - free database of molecules on membranes	University of Warwick Machine learning-based molecular design for plasmonic nanosystems	Luxembourg İnstitute of Science and Technology (LIST) Thermal transport via machine-learning potentials
10:40 - 11:00 AM	Eva Zurek	Alexander Shapeev	interactive session	Tom Penfold
	University at Buffalo, SUNY Machine Learned Interatomic Potentials for Binary Carbides Trained on the AFLOW Database	Skolkovo Institute of Science and Technology From quantum mechanics to phase diagrams with machine learning	Jason Hattrick-Simpers University of Toronto Tutorial on the use of LLMs in Science	Newcastle Univeristy Deep Neural Networks for X-ray Spectroscopy: Hero or Zero?
11:00 - 11:20 AM	Rohit Goswami University of Iceland / Quansight Labs	Julien Lam CNRS		Aurora Clark
	Throwaway Gaussian Processes for Saddle Searches	Exploiting constrained linear models for machine-learning interaction potentials		University of Utah ML in Chemical Separations - Connecting Reaction Stoichiometry with Solution Structure
11:20 - 11:40 AM	Matthew Carbone	Dmitry Zubarev		Connor Coley
	Brookhaven National Laboratory TBD	IBM Research Foundational Models for Chemical Discovery		MIT Molecular design and the intersection with synthesis
1:00 - 1:30 PM	plenary Richard Hennig	plenary Kieron Burke	plenary Alan Aspuru-Guzik	plenary Rebecca Lindsey
	University of Florida Accelerating Materials Discovery Through Deep Learning and Ultra-Fast Potentials	University of California, Irvine Machine Learning Density Functionals	University of Toronto TBA	University of Michigan, Ann Arbor Explaining Performance of Physics- Informed Machine-Learned Interatomic Models
1:30 - 1:50 PM	Wissam Saidi NETL	Y Z University of Michigan	Pavlo Dral Xiamen University	Noa Marom Carnegie Mellon University
	Materials Modeling and Machine Learning	Unusual Dynamics of Tetrahedral Liquids Caused by the Competition between Dynamic Heterogeneity and Structural Heterogeneity	From fast potentials for dynamics to learning dynamics	Applications of Machine Learning in First Principles Materials Simulations
1:50 - 2:10 PM	Avanish Mishra LANL Learning from 'Small' Data Using Physics-Based Descriptors	Joshua Rackers Genentech Prescient Design Building Physics into Al for Drug Discovery	Aditya Nandy UCLA University of Chicago Leveraging Community Knowledge to Forge a Path Forward for Transition Metal Complex and Metal-Organic Framework Design	Marivi Fernandez-Serra Stony Brook University Learning the exchange and correlation functional in DFT
2:10 - 2:30PM	Fang Liu Emory University	Arthur Mar University of Alberta	Richard Messerly LANL	David Yaron Carnegie Mellon University
	Machine learning aided chemical discovery in the solution phase	Discovery of Inorganic Solids with Desired Structure Motifs Guided by Machine Learning	Nanoreactor active learning: Discovering chemistry with a general reactive machine learning potential	Quantum chemical Hamiltonians as flexible and interpretable model forms for machine learning
2:30 - 2:50 PM	Chenru Duan Microsoft	Sakib Matin LANL	Ankur Chaterjee Nicolaus Copernicus University	Jenna Pope Pacific Northwest National Laboratory
	Diffusion models on sampling rare events in chemistry	Machine Learning Potentials with long- range Coulomb interaction: Atomistic simulations of water		Accelerating Atomic-scale Simulations of Molecules and Materials with Neural Network Potentials
2:50 - 3:10 PM	Rose Cersonsky University of Wisconsin-Madison	Chiho Kim GATech Matmerize, Inc.	Bakhtiyor Rasulev North Dakota State University	Vignesh Kumar Nicolaus Copernicus University
	Data-driven approaches to chemical and materials science:the impact of data selection, representation, and interpretability	Machine Learning-Aided Design of Biodegradable Polymers	Application of Mixture-type Descriptors in Machine Learning Modeling of Materials	The critical role of XC potential in DFT: Our Big data analysis into DFT
3:10 - 3:30 PM	Johannes Hachmann University at Buffalo TBA	Marina Meila University of Washington TBA	Emily Shinkle LANL Thermodynamic Transferability in Coarse-Grained Force Fields using Graph Neural Networks	Puck van Gerwen EPFL EquiReact: Equivariant Neural Networks for Chemical Reactions
3:30 - 3:50 PM	Will Bricker University of New Mexico	Daniel Schwalbe-Koda <i>UCLA</i>	Maria Chan Argonne National Laboratory	Jing Huang Westlake University
	Machine-learned electron densities of nucleic acids	Unifying Views on the Extrapolation Power of Machine Learning Potentials and Materials Thermodynamics	Theory-informed ML for Microscopy, Spectroscopy, and Scattering	DP/MM: a hybrid force field model for zinc-protein dynamics