Math 104 Real Analysis

Instructor: Peng Zhou

KELVIN LEE

Contents

1	The	Real Number Systems	3
	1	Natural Numbers N	3
	2	Rational Numbers Q	3
	3	Real Numbers $\mathbb R$	5
	4	Reading (Rudin's)	5
2	Bas	ic Topology	7

LECTURE 1

THE REAL NUMBER SYSTEMS

1 Natural Numbers \mathbb{N}

Definition 1 (Peano Axioms (Peano Postulates)). The properties of the set of natural numbers, denoted \mathbb{N} , are as follows:

- (i) 1 belongs to \mathbb{N} .
- (ii) If *n* belongs to \mathbb{N} , then its successor n+1 belongs to \mathbb{N} .
- (iii) 1 is not the successor of any element in \mathbb{N} .
- (iv) If $n, m \in \mathbb{N}$ have the same successor, then n = m.
- (v) A subset of \mathbb{N} which contains 1, and which contains n+1 whenever it contains n, must equal to \mathbb{N} .

Remark. The last axiom is the basis of mathematical induction. Let $P_1, P_2, P_3, ...$ be a list of propositions that may or may not be true. The principle of mathematical induction asserts all the statements $P_1, P_2, ...$ are true provided

- P_1 is true. (Basis for induction)
- $P_n \Longrightarrow P_{n+1}$. (Induction step)

2 Rational Numbers Q

Definition 2 (Rational Numbers). The set of **rational numbers**, denoted \mathbb{Q} , is defined by

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid n, m \in \mathbb{Z}, n \neq 0 \right\},\,$$

which supports addition, multiplication, subtraction, and division.

Remark. \mathbb{Q} is a very nice algebraic system. However, there is no rational solution to equations like $x^2 = 2$.

Definition 3 (Algebraic Number). A number is called an **algebraic number** if it satisfies a polynomial equation

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$

where c_0, \ldots, c_n are integers, $c_n \neq 0$ and $n \geq 1$.

Remark. Rational numbers are always algebraic numbers.

Theorem 4 (Rational Zeros Theorem). Suppose $c_0, c_1, ..., c_n$ are integers and r is a rational number satisfying the polynomial equations

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$

where $n \ge 1$, c_n , $c_0 \ne 0$. Let $r = \frac{c}{d}$ where gcd(c,d) = 1. Then $c \mid c_0$ and $d \mid c_n$. In simpler terms, the only rational candidates for solutions to the equation have the form $\frac{c}{d}$ where c is a factor of c_0 and d is a factor of c_n .

Proof. Plug in $r = \frac{c}{d}$ to the equation, we get

$$c_n \left(\frac{c}{d}\right)^n + c_{n-1} \left(\frac{c}{d}\right)^{n-1} + \dots + c_1 \left(\frac{c}{d}\right) + c_0 = 0.$$

Then we multiply by d^n on both sides and get

$$c_n c^n + c_{n-1} c^{n-1} d + \dots + c_1 c d^{n-1} + c_0 d^n = 0.$$

Solving for c_0d^n , we obtain

$$c_0 d^n = -c \left(c_n c^n + c_{n-1}^{n-2} + \dots + c_2 c d^{n-2} + c_1 d^{n-1} \right).$$

Then it follows that $c \mid c_0 d^n$. Since gcd(c,d) = 1, c can only divide c_0 . Now let's instead solve for $c_n c^n$, then we have

$$c_n c^n = -d \left(c_{n-1} c^{n-1} + c_{n-2} c^{n-2} d + \dots + c_1 c d^{n-2} + c_0 d^{n-1} \right).$$

Thus $d \mid c_n c^n$, which implies $d \mid c_n$ because gcd(c,d) = 1.

Corollary 5. Consider

$$x^{n} + c_{n-1}x^{n-1} + \dots + c_{1}x + c_{0} = 0,$$

where $c_0, c_1, ..., c_{n-1}$ are integers and $c_0 \neq 0$. Any rational solution of this equation must be an integer that divides c_0 .

Proof. Since the Rational Zeros Theorem states that d must divide c_n , which is 1 in this case, r is an integer and it divides c_0 .

Example 6. $\sqrt{2}$ is not a rational number.

Proof. Using Corollary 5, if $r = \sqrt{2}$ is rational, then $\sqrt{2}$ must be an integer, which is a contradiction.

3 Real Numbers \mathbb{R}

4 Reading (Rudin's)

4.1 Ordered Sets

Definition 7 (Order). Let S be a set. An **order** on S is a relation, denoted by <, with the following two properties:

• If $x \in S$ and $y \in S$, then one and only one of the statements

$$s < y$$
, $x = y$, $y < x$

is true.

• If $x, y, z \in S$, if x < y and y < z, then x < z.

Definition 8 (Ordered Set). An **ordered set** is a set S in which an order is defined.

For example, Q is an ordered set if r < s is defined to mean that s - r is a positive rational number.

4.2 Fields

Definition 9 (Field). A **field** is a set F with two operations: *addition* and *multiplication*, which satisfy the following **field axioms**:

(A) Axioms for addition

- (A1) If $x, y \in F$, then $x + y \in F$.
- (A2) (Commutativity) $\forall x, y \in F, x + y = y + x$.
- (A3) (Associativity) $\forall x, y, z \in F$, (x + y) + z = x + (y + z).
- (A4) (Identity) $\forall x \in F$, 0 + x = x.
- (A5) (Inverse) $\forall x \in F$, there exists a corresponding $-x \in F$ such that

$$x + (-x) = 0.$$

(M) Axioms for multiplication

- (M1) If $x, y \in F$, then $xy \in F$.
- (M2) (Commutativity) $\forall x, y \in F, xy = yx$.
- (M3) (Associativity) $\forall x, y, z \in F$, (xy)z = x(yz).
- (M4) (Identity) $\forall x \in F$, 1x = x.
- (M5) (Inverse) $\forall x \in F$, there exists a corresponding $\frac{1}{r} \in F$ such that

$$x\left(\frac{1}{x}\right) = 1.$$

(D) The distributive law

$$\forall x, y, z \in F, x(y+z) = xy + xz.$$

Definition 10 (Ordered Field). An **ordered field** is a field F which is also an *ordered set*, such that

- (i) if y < z and $x, y, z \in F$, x + y < x + z,
- (i) if x, y > 0 and $x, y \in F$, xy > 0.

LECTURE 2	
1	
	BASIC TOPOLOGY

Definition 11.

Theorem 12.