

PETEE apoio acadêmico

Conteúdos

ELT084 - Dispositivos e Circuitos Eletrônicos Básicos Diodos

Diodos

Modelos

Página anterior

Funcionamento

Página inicial

Diodo Ideal

Diodo Real

Diodo Ideal

Página inicial

Polarização reversa

O diodo funciona com uma chave aberta e não permite a passagem de corrente

Polarização Direta

O diodo funciona como uma chave fechada e permite a passagem de corrente sem dissipar potência **Funcionamento**

Região de avalanche

Nessa região o diodo volta a conduzir, mesmo sendo aplicada uma tensão reversa no mesmo.

Diodo Real

Polarização reversa

O diodo funciona de forma análoga a uma chave aberta permitindo a passagem de uma pequena corrente na ordem de aproximadamente -ls. Página inicial

Polarização

Direta

O diodo funciona seguindo a relação abaixo onde v é a tensão aplicada em seus terminais, Vt é a tensão térmica e Is é a corrente de saturação.

$$i = I_S(e^{v/V_T} - 1)$$

Modelo de pequenos sinais

Modelos

Modelo ideal

Modelo exponencial

Página inicial

Modelo por queda de tensão constante

Para pequenas oscilações de tensão a corrente no diodo pode ser descrita como:

$$i_D(t) = I_D + \frac{I_D}{V_T} v_d$$

Onde Vd é a variação de tensão, Id é o valor constante de corrente e Vt é a tensão térmica. Além disso o segundo termo pode ser modelado como uma resistência de valor:

$$r_d = \frac{V_T}{I_D}$$

Modelos

Diodo Ideal

Página inicial

Polarização reversa

Polarização Direta

O diodo funciona com uma chave aberta e não permite a passagem de corrente

O diodo funciona como uma chave fechada e permite a passagem de corrente sem dissipar potência Modelos

Modelo por queda de tensão constante

Página inicial

Neste modelo o diodo não conduz até ter 0,7V em seus terminais. A partir disso ele funciona como uma chave fechando que consome 0,7V.

Modelos

Modelo Exponencial

Página inicial

Esse modelo se utiliza da expressão abaixo para descrever todo funcionamento do diodo.

$$I_D = I_S e^{V_D/V_T}$$

Página inicial

Retificador

Circuitos limitadores de tensão

Diodo zener

Diodo Zener

Página inicial

O diodo zener é normalmente usado polarizando-o reversamente de forma a gerar níveis de tensão constantes. Isso ocorre pois sua região de avalanche apresenta um nível de tensão relativamente controlado. Esse nível é chamado de tensão zener.

Próxima página

Diodo Zener

Página inicial

Esse diodo é normalmente modelado por uma fonte e uma resistência. A expressão correspondente ao modelo é dada por:

$$V_Z = V_{Z0} + r_z I_Z$$

Página anterior

Retificador

Página inicial

Circuitos retificadores

Filtro capacitivo

Retificador

Página inicial

Retificador de meia onda

Retificador de onda completa com tap central

Ponte retificadora

Retificador

Retificador de Meia Onda

Página inicial

$$v_O = 0,$$
 $v_S < V_D$
$$v_O = v_S - V_D,$$
 $v_S \ge V_D$

 $PIV = V_s$

Retificador

Retificador de Onda

Página inicial

Completa com Tap Central

 $PIV = 2V_s - V_D$

Retificador

Ponte Retificadora

Página inicial

$$PIV = V_s - 2V_D + V_D = V_s - V_D$$

Filtro Capacitivo

Página inicial

Próxima página

Filtro Capacitivo

Página inicial

Corrente média no diodo:

$$i_{\text{Dav}} = I_L \left(1 + \pi \sqrt{2V_p/V_r} \right)$$

Corrente máxima no diodo:

$$i_{D\text{max}} = I_L \left(1 + 2\pi \sqrt{2V_p/V_r} \right)$$

Tensão de ripple:

$$V_r = \frac{I_L}{fC}$$

Página anterior

Circuitos Limitadores

Página inicial

de Tensão

Próxima página

Circuitos Limitadores

Página inicial

de Tensão

Página anterior