MUNDELL - FLEMING MODEL OF INCOME DETERMINATION

Siddhartha Chattopadhyay IIT Kharagpur

Spring 2020

Mundell-Fleming Model

- Describes the Income Determination and Effectiveness of Monetary and Fiscal Policy for a Small Open Economy using a Simple Keynesian Model
- Important Assumptions: Small Open Economy
 - price of foreign goods in foreign currency (P^*) and world interest rate r_W are exogenous
 - import demand of domestic country is a function of her own income

Mundell-Fleming Model

Other Assumptions:

- ullet price of domestic goods in domestic currency (P) is exogenous
- expected inflation is zero \Rightarrow nominal interest rate (i) = real interest rate (r)
- expected depreciation of domestic currency is zero
- Dornbusch model of Exchange Rate Overshooting: Dynamic version of the Mundell-Fleming model
 - analyzed the Income Determination for a small open economy under Rational Expectation with Endogenous Expected Inflation Rate and Expected Depreciation of Domestic Currency

Goods Market Equilibrium IS Curve

ullet Consumption: depends positively on real income y with mpc=eta

$$c = \beta y$$
, $0 < \beta < 1$

Investment: depends negatively on real interest rate r

$$I = -\gamma r$$
, $0 < \gamma < 1$

• Government Expenditure: exogenous

Goods Market Equilibrium IS Curve

- **Export:** depends positively on real exchange rate $p = \frac{sP^*}{P}$,
 - s: nominal exchange rate defined as amount of domestic currency that can fetch one unit of foreign currency

$$X = \eta_1 p$$
, $0 < \eta_1 < 1$

• **Import:** depends positively on real income *y* and negatively on real exchange rate *p*

$$M=-\widetilde{\eta}_2 p+\widetilde{\eta}_3 y$$
,

 Assumption: Net export depends positively on real exchange rate and negatively on real income, and Marshall-Lerner condition holds

$$NX = X - pM = \eta_1 p - \eta_2 y$$
, $0 < \eta_2 < 1$

Equation of IS for Open Economy:

$$y = \beta y - \gamma r + g + \eta_1 p - \eta_2 y \tag{1}$$

Slope of Open Economy IS:

$$\left(\frac{\partial r}{\partial y}\right)_{IS,Open} = -\left(\frac{1-\beta+\eta_2}{\gamma}\right) < 0,$$

• Slope of Closed Economy IS: No Export and Import $\Rightarrow \eta_1 = \eta_2 = 0$

$$\left(\frac{\partial r}{\partial y}\right)_{IS,Closed} = -\left(\frac{1-\beta}{\gamma}\right) < 0$$

Goods Market Equilibrium IS Curve

• Comparison of the Slope of Open and Closed Economy IS:

$$rac{\left(rac{\partial r}{\partial y}
ight)_{\mathit{IS},\mathit{Open}}}{\left(rac{\partial r}{\partial y}
ight)_{\mathit{IS},\mathit{Closed}}} = rac{1-eta+\eta_2}{1-eta} = 1 + rac{\eta_2}{1-eta} > 1$$

Open Economy IS is steeper than Closed Economy IS

• Comparison of the Slope of Open and Closed Economy IS: write equation (1) as

$$0 = -(1 + \eta_2 - \beta) y - \gamma r + g + \eta_1 p \tag{2}$$

- Unit increase in real income (y) reduces the RHS of equation (2) by $(1+\eta_2-\beta)$ for open economy and $(1-\beta)$ unit for closed economy with $(1+\eta_2-\beta)>(1-\beta)$.
 - higher reduction of RHS is due to the extra leakage through import induced by a rise in real income
- Investment has to increase more for the open economy than that of the closed economy to keep the goods market in equilibrium ⇒ Real interest rate has to fall more for the open economy than that of the closed economy to keep the goods market in equilibrium.

Goods Market Equilibrium

IS Curve

- *IS*₁: Closed Economy IS
- IS₃ Open economy IS

Money Market Equilibrium LM Curve

LM curve for both Open and Closed Economy:

$$M - P = l_1 y - l_2 r, \ l_1 > 0, l_2 > 0$$
 (3)

Slope of LM:

$$\left(\frac{\partial r}{\partial y}\right)_{LM} = \frac{l_1}{l_2} > 0$$

Balance of Payment BP Curve

• Balance of Payment (BOP) Identity: Current Account (CA) plus Capital Inflow (KI) equals to change in Net Foreign Asset of Central Bank (ΔNFA_{CB})

$$CA + KI = \Delta NFA_{CB}$$

• Current Account: Trade Balance/Net Export (NX) plus Interest Income from Net Foreign Assets (r_wB) evaluated at world interest rate r_w

$$CA = \eta_1 p - \eta_2 y + r_w B$$

- ullet Current Account depends positively on p and r_w and negatively on y
- Capital Inflow (KI): depends positively on the domestic and foreign interest rate differential $(r r_w)$

$$KI = \theta \left(r - r_{w} \right)$$
 , $\theta > 0$

Balance of Payment (BOP) Equilibrium: Current Account (CA)
plus Capital Inflow (KI) equals to change in Net Foreign Asset of
Central Bank (ΔNFA_{CB})

$$BP = CA + KI = 0$$

= $\eta_1 p - \eta_2 y + r_w B + \theta (r - r_w) = 0$ (4)

• BOP equilibrium \Rightarrow BP = 0 \Rightarrow Δ NFA_{CB} = 0 \Rightarrow Net Foreign Asset of Central Bank unchanged

Balance of Payment BP Curve

• Slope of BP = 0 curve

$$\left(\frac{\partial r}{\partial y}\right)_{BP=0} = \frac{\eta_2}{\theta} > 0$$

Balance of Payment

BP=0 Curve for Imperfect Capital Mobility

•
$$\theta > 0 \Rightarrow \left(\frac{\partial r}{\partial y}\right)_{BP=0} > 0$$

Spring 2020

Balance of Payment

BP=0 Curve for Perfect Capital Mobility

•
$$\theta \to \infty \Rightarrow \left(\frac{\partial r}{\partial y}\right)_{BP=0} = 0$$

Balance of Payment

BP=0 Curve for No Capital Mobility

•
$$\theta \to 0 \Rightarrow \left(\frac{\partial r}{\partial y}\right)_{BP=0} \to \infty$$

Interest Rate Parity

 Interest rate Parity Condition: Assets have Identical Return Internationally

$$r - r_w = s' - s \tag{5}$$

- r: domestic interest rate, r_w : foreign interest rate
- s': future nominal exchange rate, s: spot nominal exchange rate

- Initial Equilibrium E_1 : intersection among IS_1 , LM_1 and BP=0
 - money supply M_1 , domestic interest rate $\overline{r}_1 = r_w$, real income \overline{y}_1 and BOP in equilibrium
- **Temporary Equilibrium** E_2 : intersection between IS_1 and LM_2 with BOP in deficit
 - money supply $M_2 > M_1$, domestic interest rate $\bar{r}_2 < \bar{r}_1 = r_w$, real income $\overline{y}_2 > \overline{y}_1 \Rightarrow$ capital outflow and reduction in net export due to import rise \Rightarrow BOP deficit (from equation (4))
 - people would like to buy dollar denominated assets ⇒ domestic currency/exchange rate depreciates (from the interest rate parity condition given in equation (5)) \Rightarrow net export rises
 - shifts IS curve from IS₁ to IS₂
- Final Equilibrium E_3 : intersection among IS_2 , LM_2 and $BP = 0 \Rightarrow$ with $\overline{y}_3 > \overline{y}_2 > \overline{y}_1 \Rightarrow$ completely effective monetary policy

- Initial Equilibrium E_1 : intersection among IS_1 , LM and BP = 0
 - government spending g_1 , domestic interest rate $\overline{r}_1=r_w$, real income \overline{y}_1 and BOP in equilibrium
- **Temporary Equilibrium** E_2 : intersection between IS_2 and LM with BOP in surplus
 - government spending $g_2 > g_1$, domestic interest rate $\overline{r}_2 > \overline{r}_1 = r_w$, real income $\overline{y}_2 > \overline{y}_1 \Rightarrow$ import rises and net export falls
 - capital inflow rises due to interest rate rise and it dominates the reduction in net export due to income rise

 BOP surplus (from equation (4))
 - people would like to buy rupee denominated assets \Rightarrow domestic currency/exchange rate appreciates (from interest rate parity condition given in equation (5)) \Rightarrow net export falls \Rightarrow IS curve shifts back to its original position (from IS_2 to IS_1)
- Final equilibrium $E_1 \Rightarrow$ completely ineffective fiscal policy

- Initial Equilibrium E_1 : intersection among IS, LM_1 and BP = 0
 - money supply M_1 , domestic interest rate $\overline{r}_1=r_w$, real income \overline{y}_1 and BOP in equilibrium
- **Temporary Equilibrium** E_2 : intersection between IS and LM_2 with BOP in deficit
 - money supply $M_2 > M_1$, domestic interest rate $\bar{r}_2 < \bar{r}_1 = r_w$, real income $\bar{y}_2 > \bar{y}_1 \Rightarrow$ capital outflow and reduction in net export due to income rise \Rightarrow BOP deficit (from equation (4))
 - people would like to buy dollar denominated assets

 puts pressure on domestic currency/exchange rate to depreciate (from interest rate parity condition given in equation (5))
 - central bank buy domestic currency and sell foreign currency to maintain fixed exchange rate $\Rightarrow \Delta NFA_{CB}$ falls \Rightarrow money supply falls from M_2 to $M_1 \Rightarrow$ shifts LM back from LM_2 to LM_1
- Final equilibrium $E_1 \Rightarrow$ completely ineffective monetary policy

- Initial Equilibrium E_1 : intersection among IS_1 , LM_1 and BP = 0
 - government spending g_1 , domestic interest rate $\overline{r}_1 = r_w$, real income \overline{y}_1 and BOP in equilibrium

- **Temporary Equilibrium** E_2 : intersection between IS_2 and LM_1 with BOP in surplus
 - government spending $g_2>g_1$, domestic interest rate $\overline{r}_2>\overline{r}_1=r_w$, real income $\overline{y}_2>\overline{y}_1$
 - capital inflow due to interest rate rise dominates the reduction in net export due to income rise ⇒ BOP surplus (from equation (4))
 - people would like to buy more rupee denominated asset ⇒ puts pressure on domestic currency/exchange rate to appreciate (from interest rate parity condition given in equation (5))
 - central bank sells domestic currency and buy foreign currency to maintain fixed exchange rate $\Rightarrow \Delta NFA_{CB}$ rises \Rightarrow money supply rises from M_1 to M_2 \Rightarrow shifts LM curve from LM_1 to LM_2
- Final Equilibrium E_3 : intersection among IS_2 , LM_2 and $BP=0 \Rightarrow$ with $\overline{y}_3 > \overline{y}_2 > \overline{y}_1 \Rightarrow$ completely effective fiscal policy

No Capital Mobility

- Interest Rate Parity condition given in equation (5) does not hold
- $\theta = 0 \Rightarrow BP = 0$ curve is vertical
- Closed capital market \Rightarrow purchase/sell of foreign capital not allowed but purchase/sell foreign currency allowed \Rightarrow B=0 but $\Delta NFA_{CB} \neq 0$
- From equation (4), BOP equalibrium ⇒

$$BP = \eta_1 p - \eta_2 y = 0$$

- Initial Equilibrium E_1 : intersection among IS_1 , LM_1 and $BP_1 = 0$
 - money supply M_1 , domestic interest rate \overline{r}_1 , real income \overline{y}_1 and BOP in equilibrium
- **Temporary Equilibrium** E_2 : intersection between IS_1 and LM_2 with BOP in deficit
 - money supply $M_2 > M_1$, domestic interest rate $\overline{r}_2 < \overline{r}_1$, real income $\overline{y}_2 > \overline{y}_1 \Rightarrow$ import rises, net export falls and BOP deficit (from equation (4))
 - everybody would like to hold foreign currency ⇒ domestic currency/exchange rate depreciates ⇒ net export rises
 - IS curve shifts from IS_1 to IS_2 and $BP_1=0$ shifts to $BP_2=0$ (as exchange rate is a shifter of both IS and BP=0 curve)
- Final Equilibrium E_3 : intersection among IS_2 , LM_2 and $BP_2 = 0$ with $\overline{y}_3 > \overline{y}_2 > \overline{y}_1 \Rightarrow$ effective monetary policy

- Initial Equilibrium E_1 : intersection among IS_1 , LM and $BP_1=0$
 - government spending g_1 , domestic interest rate \overline{r}_1 , real income \overline{y}_1 and BOP in equilibrium
- **Temporary Equilibrium** E_2 : intersection between IS_2 and LM with BOP in deficit
 - government spending $g_2 > g_1$, domestic interest rate $\overline{r}_2 > \overline{r}_1$, real income $\overline{y}_2 > \overline{y}_1 \Rightarrow$ import rises net export falls and BOP deficit (from equation (4))
 - everybody would like to hold foreign currency ⇒ domestic currency/exchange rate depreciate and net export rises
 - IS curve shifts from IS_2 to IS_3 and $BP_1=0$ curve shifts to $BP_2=0$ as exchange rate is a shifter of both IS and BP=0 curve
- Final equilibrium E_3 with $\overline{r}_3 > \overline{r}_2 > \overline{r}_1$ and $\overline{y}_3 > \overline{y}_2 > \overline{y}_1 \Rightarrow$ effective fiscal policy

- Initial Equilibrium E_1 : intersection among IS, LM_1 and $BP_1 = 0$
 - money supply M_1 , domestic interest rate \overline{r}_1 , real income \overline{y}_1 and BOP in equilibrium
- **Temporary Equilibrium** E_2 : intersection between IS and LM_2 with BOP in deficit
 - money supply $M_2 > M_1$, domestic interest rate $\overline{r}_2 < \overline{r}_1$, real income $\overline{y}_2 > \overline{y}_1 \Rightarrow$ import rises, net export falls and BOP deficit (from equation (4))
 - \bullet everybody would like to hold foreign currency \Rightarrow puts pressure on domestic currency/exchange rate to depreciate
 - central bank buy domestic currency and sell foreign currency to maintain fixed exchange rate $\Rightarrow \Delta NFA_{CB}$ falls \Rightarrow money supply falls from M_2 to $M_1 \Rightarrow$ shifts LM back from LM_2 to LM_1
- Final equilibrium $E_1 \Rightarrow$ completely ineffective monetary policy

- Initial Equilibrium E_1 : intersection among IS_1 , LM_1 and $BP_1=0$
 - government spending g_1 , domestic interest rate \overline{r}_1 , real income \overline{y}_1 and BOP in equilibrium
- **Temporary Equilibrium** E_2 : intersection between IS_2 and LM_1 with BOP in deficit
 - government spending $g_2 > g_1$, domestic interest rate $\overline{r}_2 > \overline{r}_1$, real income $\overline{y}_2 > \overline{y}_1 \Rightarrow$ import rises net export falls and BOP deficit (from equation (4))
 - everybody would like to hold foreign currency ⇒ puts pressure on domestic currency/exchange rate to depreciate
 - central bank buy domestic currency and sell foreign currency to maintain fixed exchange rate $\Rightarrow \Delta NFA_{CB}$ falls \Rightarrow money supply falls from M_2 to $M_1 \Rightarrow$ shifts LM back from LM_2 to LM_1
- Final equilibrium $E_1 \Rightarrow$ completely ineffective fiscal policy