Arithmetic mean

Suppose we have a data of size $n: x_1, x_2, \ldots, x_n$. Then the arithmetic mean, \overline{x}_n , of the data is

$$\overline{x}_n = \sum_{i=1}^n x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n).$$

To give an examle, consider a data of size three, say $x_1 = 1, x_2 = -3, x_3 = 8$. Then its arithmetic mean is $\overline{x}_3 = \frac{1}{3}(1 + (-3) + 8) = 2$.

The arithmetic mean of the data x_1, x_2, \ldots, x_n can be regarded as the center of gravity of the data, because we have an equality

$$\sum_{i=1}^{n} (x_i - \overline{x}_n) = 0$$

which is shown as $\sum_{i=1}^{n} (x_i - \overline{x}_n) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{x}_n = n \times \overline{x}_n - n \times \overline{x}_n = 0$.

Exercise 01 Solve a linear equation $\sum_{i=1}^{n} (x_i - c) = 0$ for c, and verify that its solution is the arithmetic mean \overline{x}_n .

Answer: Since $0 = \sum_{i=1}^{n} (x_i - c) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} c = n \times \overline{x}_n - n \times c = n(\overline{x}_n - c)$, we get the solution $c = \overline{x}_n$.

Exercise 02 Calculate the arithmetic mean of the following data, and express it in the form of an irreducible fraction or an integer.

- (1) -3, 2, 5, 8.
- (2) -9, -5, 0, 1, 8.
- (3) 1, 3, 6, 8, 11, 14, 21

Answer:

(1)
$$\overline{x}_4 = ((-3) + 2 + 5 + 8)/4 = 12/4 = 3.$$

(2)
$$\overline{x}_5 = ((-9) + (-5) + 0 + 1 + 8)/5 = (-5)/5 = -1.$$

(3)
$$\overline{x}_6 = (1+3+6+8+11+14+21)/7 = 64/7.$$