

Department of Mathematics and Natural Sciences MAT120: Integral Calculus and Differential Equations

	Assignment-2	
Name:		

Section:

ID:

Use this page as the cover page of your assignment.

Total $20 \times 5 = 100$.

(1) Discuss the nature of following improper integrals:

[2]

a.
$$\int_0^\infty \frac{x}{x^4 + 1} \, dx,$$

a.
$$\int_0^\infty \frac{x}{x^4 + 1} dx$$
,
b. $\int_{-\infty}^\infty \frac{1}{e^x + e^{-x}} dx$,
c. $\int_0^2 \frac{1}{1 - x^2} dx$
d. $\int_{-3}^1 \frac{x dx}{\sqrt{9 - x^2}}$

c.
$$\int_0^2 \frac{1}{1-x^2} dx$$

d.
$$\int_{-3}^{1} \frac{x \, dx}{\sqrt{9-x^2}}$$

(2) Evaluate the following integrals (write your answer in simplified form);

a.
$$\int_0^1 (1 - \frac{1}{x})^{\frac{1}{3}} dx$$

a.
$$\int_0^1 (1 - \frac{1}{x})^{\frac{1}{3}} dx$$
,
b. $\int_0^4 y^3 \sqrt{64 - y^3} dy$,

c.
$$\int_0^{\pi/2} \sin^5 x \, dx$$
,

d.
$$\int_0^{\pi} \sin^7 x \cos^4 x \, dx$$

e.
$$\int_0^\infty \frac{1}{1+x^4} \, dx$$
,

e.
$$\int_0^\infty \frac{1}{1+x^4} dx$$
,
f. $\int_0^3 \frac{x^2}{\sqrt{3-x}} dx$,

g.
$$\int_0^{\pi/6} \sin^6 6x \cos^4 3x dx$$
,
h. $\int_0^1 (\frac{x}{\ln x})^{\frac{1}{3}} dx$,
i. $\int_0^1 \frac{dx}{\sqrt{x \ln(\frac{1}{x})}}$

h.
$$\int_0^1 (\frac{x}{\ln x})^{\frac{1}{3}} dx$$

i.
$$\int_0^1 \frac{dx}{\sqrt{x \ln(\frac{1}{x})}}$$

j.
$$\int_0^a y^7 \sqrt{a^5 - y^5} \, dy$$

(3) Find the exact arc length of the curve over the interval

a.
$$x = \frac{1}{3}(y^2 + 3)^{\frac{3}{2}}$$
, $(0 \le y \le 1)$ b. $x = e^t(\cos t + \sin t)$, $y = e^t(\cos t - \sin t)$, $(1 \le t \le 4)$

(4) Find area of surface generated by revolving the given curve about x-axis (a & b) & y-axis (c & d).

a.
$$y = \sqrt{4 - x^2}$$
, $-1 \le x \le 1$. b. $x = y^{\frac{1}{3}}$, $1 \le y \le 8$. c. $x = \sqrt{9 - y^2}$, $-2 \le y \le 2$.

d.
$$x = 2\sqrt{1-y}, -1 \le y \le 0$$