PNV 3321 - MÉTODOS DE OTIMIZAÇÃO APLICADOS A SISTEMAS DE ENGENHARIA

PROBLEMAS DE MODELAGEM - 2024

Questão 3 - Seleção de projetos

Uma empresa está analisando o investimento em seis diferentes projetos para os próximos quatro anos. Os lucros esperados (medidas em termos de valor presente) de cada projeto bem como os respectivos desembolsos ao longo dos 4 anos são apresentados na tabela abaixo; os recursos disponíveis para aplicação nestes projetos, em cada um dos 4 anos, também são apresentados na tabela.

- a) Elabore o modelo matemático correspondente ao problema de decisão acima formulado.
- b) Como ficaria o modelo, caso:
 - b1) os projetos 2 e 4 não pudessem ser conduzidos simultaneamente?
 - b2) os projetos 1 e 6 tivessem que ser conduzidos simultaneamente?
- c) Como ficaria o modelo se recursos disponíveis, mas não investidos num dado ano, pudessem ser transferidos para o ano seguinte?
- d) Como ficaria o modelo se a empresa pudesse investir parcialmente em qualquer projeto, caso em que o lucro esperado e os desembolsos anuais seriam proporcionais à fração de projeto escolhida?

Projeto	Desembolso Anual (R\$ x 10 ⁶)				Lucro Esperado
	Ano 1	Ano 2	Ano 3	Ano 4	R\$ x 10 ⁶
1	10,5	14,4	2,2	2,4	32,40
2	8,3	12,6	9,5	3,1	35,80
3	10,2	14,2	5,6	4,2	17,75
4	7,2	10,5	7,5	5,0	14,80
5	12,3	10,1	8,3	6,3	18,20
6	9,2	7,8	6,9	5,1	12,35
Recursos (R\$ x 10 ⁶)	60,0	70,0	35,0	20,0	

Parte a

Decisão: escolher os projetos a serem executados.

Variável de decisão: $x_i \in \{0,1\}$ variável que assume o valor 1 se o projeto i for escolhido, e 0 em caso contrário.

Restrição: o desembolso total anual deve ser menor ou igual aos recursos disponíveis.

Restrições (matemática):

$$10.5x_1 + 8.3x_2 + 10.2x_3 + 7.2x_4 + 12.3x_5 + 9.2x_6 \le 60$$

$$14.4x_1 + 12.6x_2 + 14.2x_3 + 10.5x_4 + 10.1x_5 + 7.8x_6 \le 70$$

$$2.2x_1 + 9.5x_2 + 5.6x_3 + 7.5x_4 + 8.3x_5 + 6.9x_6 \le 35$$

$$2.4x_1 + 3.1x_2 + 4.2x_3 + 5.0x_4 + 6.3x_5 + 5.1x_6 \le 20$$

$$d_{ij}$$
 – desembolso do projeto i $(1 ... 6)$ no ano j $(1 ... 4)$
 r_j – recursos disponívies no ano j $(1 ... 4)$
 l_i – lucro do projeto i $(1 ... 6)$

$$\max L = \sum_{i=1}^{6} l_i x_i$$

Sujeito a:

$$\sum_{i=1}^{6} d_{ij} x_i \le r_j \qquad \forall j: 1 \dots 4$$

$$x_i \in \{0,1\} \quad \forall i: 1 \dots 6$$

Parte b

$$\max L = \sum_{i=1}^{6} l_i x_i$$

Sujeito a:

$$\sum_{i=1}^{6} d_{ij} x_i \le r_j \qquad \forall j: 1 \dots 4$$

$$x_2 + x_4 \le 1$$

$$x_1 = x_6$$

$$x_i \in \{0,1\} \quad \forall i: 1 \dots 6$$

Parte c

Nova variável de decisão: s_i sobra do orçamento do ano j (1 ... 4)

$$\max L = \sum_{i=1}^{6} l_i x_i$$

$$10.5x_1 + 8.3x_2 + 10.2x_3 + 7.2x_4 + 12.3x_5 + 9.2x_6 + s_1 = 60$$

$$14.4x_1 + 12.6x_2 + 14.2x_3 + 10.5x_4 + 10.1x_5 + 7.8x_6 + s_2 = 70 + s_1$$

$$2.2x_1 + 9.5x_2 + 5.6x_3 + 7.5x_4 + 8.3x_5 + 6.9x_6 + s_3 = 35 + s_2$$

$$2.4x_1 + 3.1x_2 + 4.2x_3 + 5.0x_4 + 6.3x_5 + 5.1x_6 + s_4 = 20 + s_3$$

$$x_i \in \{0,1\} \quad \forall i: 1 \dots 6$$

$$s_j \geq 0 \quad \forall j \colon 1 \dots 4$$

Parte d

$$\max L = \sum_{i=1}^{6} l_i x_i$$

Sujeito a:

$$\sum_{i=1}^{6} d_{ij} x_i \le r_j \qquad \forall j: 1 \dots 4$$

$$0 \le x_i \le 1 \quad \forall i : 1 \dots 6$$