

Common forecasting methods and the mindset behind forecasting

Demand Forecasting for Executives and Professionals

Stephan Kolassa Bahman Rostami-Tabar Enno Siemsen

Stephan Kolassa, Data Science Expert, SAP Switzerland Bahman Rostami-Tabar, Professor, Cardiff University Enno Siemsen, Professor, University of Wisconsin-Madison

Free online version: https://dfep.netlify.app/

Agenda

- The importance of forecasting in planning and decision-making → Enno
- The forecasting workflow → Bahman
- A simple example → Enno
- Know your data → Bahman
- Data quality → Stephan
- Forecasting methods → Stephan
- Building forecasting models → Stephan
- Forecast quality evaluation → Stephan
- The perfect forecaster → Stephan
- Forecasting organization & organizational barriers →
 Enno
- When forecasting fails → Bahman

Demand Forecasting for Executives and Professionals

Stephan Kolassa Bahman Rostami-Tabar Enno Siemsen

Agenda

- The importance of forecasting in planning and decision-making
- The forecasting workflow
- A simple example
- Know your data
- Data quality
- Forecasting methods
- Building forecasting models
- Forecast quality evaluation
- The perfect forecaster
- Forecasting organization & organizational barriers
- When forecasting fails

Demand Forecasting for Executives and Professionals

Stephan Kolassa Bahman Rostami-Tabar Enno Siemsen

The importance of forecasting in planning and decision-making

- Any plan, any decision relies on forecasts
 - "The future will be like the past" is a forecast
 - "Replenish what is used" relies on a forecast
- Only question: explicit or implicit forecasting
- This does not mean all forecasts must be complex!
- Good demand forecasts can lead to
 - Higher service levels
 - Lower safety stock requirements
 - Less friction in operations

The forecasting workflow

- Be clear about what decision the forecast will support
- This will drive requirements (granularity of forecasts in multiple dimensions, point vs. quantile forecasts, ...)
- Forecasting itself is an iterative process
 - "Bad" forecasts are opportunities for learning and improvement
 - Involve domain experts to understand your data
- The communication of forecasts is very important
- Judgmental adjustment should be done with care

A simple example

- Consider a simple (simulated) time series
- Forecast using Exponential Smoothing (a classical time series forecasting method)
- This gives us a point forecast...
- ... and prediction intervals...
- ... or even a predictive density
- Prediction intervals or predictive densities can be used to set safety stocks

Know your data

- Plot some time series use different visualizations
- Is some seasonality obvious? Trend?
- Any peaks/troughs that can be causally explained?
- Does domain knowledge suggest any drivers?
- If there are few obvious patterns, the series is likely hard to forecast

Time series components

- Classical time series forecasting methods consider components like:
 - Trend
 - Seasonality (-ies)
 - Autoregression
 - Moving Average components
 - Remainder
- More and more important: causal predictors or drivers

Data quality

- Data quality and availability is key
 - The focal time series
 - Any causal drivers
- Better data (and better understood data) is usually more important than fancy modelling
- Use domain knowledge to understand
 - What data is likely important
 - How to look for data issues
 - How to get better data
- What to do with data problems:
 - Impute missing data
 - Correct or impute problematic data
 - Mark problematic data by predictors

Forecasting methods

- Interpretable, fast, cheap:
 - Simple methods (mean, naïve) often work surprisingly well
 - "Classical" time series methods: Exponential Smoothing and ARIMA – cannot model causal factors
 - Linear regression: still simple, models causals
- Less interpretable, slower, more expensive:
 - Tree-based methods, Random Forests
 - Boosting
 - Neural Networks and Deep Learning
- Plus: human judgment!

Model complexity

Building forecasting models

Simple methods

- Historical mean
- Historical quantiles
- Last observation

Time series methods

- Exponential smoothing
- ARIMA

Causal methods

- Regression
- Boosting
- Neural Networks/DL

Combinations

- Weighted
- Unweighted

- Often surprisingly effective and hard to beat
- Simple to build
- Should always serve as a benchmark
- Use established tools (e.g., forecast, fable or smooth packages in R)
- Do not try to select models on your own
- Do not use ACF/PACF plots to select ARIMA orders
- Do not follow random internet advice on model selection
- Include predictors in order of importance, data quality and forecastability
- ... as guided by domain knowledge
- Balance effort in data collection against accuracy improvement
- Beware of overfitting
- Combinations of forecasts often outperform single selected forecasts
- Combinations of "very different" methods often work well
- Unweighted combinations are often better than weighted ones (the "Forecast Combination Puzzle")

Forecast quality evaluation

- There is a bewildering array of accuracy measures
 - Squared, absolute, percentage for point forecasts
 - Pinball losses for quantile forecasts
 - Interval scores for interval forecasts
 - Proper scoring rules for density forecasts
- These may be actively misleading especially for
 - Intermittent/low volume series
 - Highly variable series
 - → Take care when deciding what you use

- External benchmarks worse than meaningless benchmark *processes*, not *accuracy*
- Better forecast accuracy does not necessarily yield better outcomes!

The perfect forecaster

The Forecaster Venn Diagram

Forecasting organization and organizational barriers

- Forecasting is always embedded in an organizational and process context (e.g., S&OP)
- Beware of individual biases...
 - Anchoring and recency
 - Representativeness
 - Seeing patterns in randomness
 - Over-precision and hindsight bias
- ... and problematic *incentives*
 - "Sandbagging" by sales
 - Overforecasting by operations
 - Minimizing MAPEs biases forecasts downward

When forecasting fails

When forecasting fails

He who sees the past as surprise-free is bound to have a future full of surprises. (Amos Tversky)

When forecasting fails

- There is no alternative to forecasting...
- What we can forecast
- Relying only on point forecasts
- We can't always achieve the accuracy we want
- Forecasts ≠ targets ≠ decisions ≠ plans
- No tracking of forecast quality (or inappropriate error measures)
- Data availability and quality
- Too much judgmental intervention

Thank you for your attention!

- Stephan Kolassa
 Data Science Expert, SAP Switzerland

 <u>Stephan.Kolassa@sap.com</u>
- Bahman Rostami-Tabar
 Reader, Cardiff University
 Rostami-TabarB@cardiff.ac.uk
- Enno Siemsen
 Professor, University of Wisconsin-Madison esiemsen@wisc.edu
- Buy the book: https://www.routledge.com/Demand-Forecasting-for-Executives-and-Professionals/Kolassa-Rostami-Tabar-Siemsen/p/book/9781032507729
- Or read for free at https://dfep.netlify.app/

Use discount code SMA39 for 20% off at Routledge until November 30, 2023

Demand Forecasting for Executives and Professionals

Stephan Kolassa Bahman Rostami-Tabar Enno Siemsen

