Definitions and Theorems from Elliptic Curves

Isaac Martin

Last compiled February 15, 2022

Contents

1	Ferr	mat's Method of Infinite Descent	2
2	Ren	narks on Algebraic Curves	2
	2.1	Preliminaries	3
	2.2	Divisors	4
3	Geometry of Elliptic Curves		
	3.1	Weierstrass Equations	5

1 Fermat's Method of Infinite Descent

Definition 1.1 (Rational Triangle). Let a,b,c be the side lengths of a right triangle Δ .

- 1. Δ is rational if $a, b, c \in \mathbb{Q}$.
- 2. Δ is *primitive* if $a,b,c \in \mathbb{Z}$ and are pairwise coprime.

Lemma 1.2 (Lemma 1.1). Every primitive triangle has side lengths of the form $u^2 + v^2$, 2uv, and $u^2 - v^2$ for some integers u > v > 0.

Definition 1.3. $D \in \mathbb{Q}_{>0}$ is a *congruent number* if there exists a rational triangle Δ with area $(\Delta) = 0$.

N.B. it suffices to to consider D a positive integer which is squarefree, e.g. D = 5.6 are congruent.

Lemma 1.4 (Lemma 1.2). $D \in \mathbb{Q}_{>0}$ is congruent if and only if $Dy^2 = x^3 - x$ for some $x, y \in \mathbb{Q}$ with $y \neq 0$.

Theorem 1.5. There is no solution to

$$w^2 = uv(u+v)(u-v)$$

for $u, v, w \in \mathbb{Z}$ and $w \neq 0$.

Lemma 1.6. Let $u, v \in K[t]$ be coprime polynomials. If $\alpha u + \beta v$ is a square for four distinct choices of $(\alpha : \beta) \in \mathbb{P}^1_K$ then $u, v \in K$.

Corollary 1.7 (1.6 in Lecture). Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. Without loss of generality may assume $K = \overline{K}$. By a change of coordinates we may assume $E : y^2 = x(x-1)(x-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$ Suppose $(x,y) \in E(K(t))$. Write $x = \frac{u}{v}$ for coprime polynomials $u,v \in K[t]$. Then

$$w^2 = uv(u - v)(u - \lambda v)$$

for some $w \in K[t]$. Because K[t] is a UFD, we get that u, v, u - v, and $u - \lambda v$ are all squares in K[t] and then Lemma

2 Remarks on Algebraic Curves

An algebraic curve is a projective variety of dimension 1. All affine curves are algebraic curves, simply take the equation cutting the variety out, homogenize it with a variable Z, and you've got a projective curve. The subset of the curve on which Z=1 recovers the original affine curve.

Throughout these notes, K is a field, \overline{K} is a fixed algebraic closure of K, and $G_{\overline{K}/K}$ is the Galois group $Gal(\overline{K}/K)$.

2.1 Preliminaries

When we say *curve* in these notes, we always mean a projective variety of dimension one, and almost always we deal with curves that are smooth.

Proposition 2.1. Let C be a curve and $P \in C$ be a smooth point. Then $\mathcal{O}_{C,P} = \overline{K}[C]_P$ is a DVR.

Definition 2.2. Let C be a curve and $P \in C$ be a smooth point. Then the *normalized valuation on* $\overline{K}[C]_P$ is given by

$$\operatorname{ord}_P : \overline{K}[C]_P \longrightarrow \{0, 1, 2, 3, ...\} \cup \{\infty\},$$
$$\operatorname{ord}_P(f) = \sup\{d \in \mathbb{Z} \mid f \in \mathfrak{d}_{\mathfrak{P}}\}.$$

Here, \mathfrak{m}_P is the unique maximal ideal of $\overline{K}[C]_P$. We extend this function to $\overline{K}(C) \to \mathbb{Z} \cup \{\infty\}$ by declaring $\operatorname{ord}_P(f/g) = \operatorname{ord}_P(f) - \operatorname{ord}_P(g)$.

An alternative definition, or at least a slightly more explicit version of the same definition, involves fixing a uniformizer π_P of $\overline{K}[C]_P$ (note that the any element $f \in K[C]_P$ for which $\operatorname{ord}_P(f) = 1$ is a valid uniformizer) and declaring $\operatorname{ord}_P(f) = d$ where d is the unique integer such that $f = u \cdot \pi^d$ for some unit $u \in \overline{K}[C]_P^{\times}$. This is necessarily a nonnegative integer when $f \in K[C]_P$.

There are two things to note about this definition. First, though $\overline{K}(C) = \operatorname{Frac}(\overline{K}[C]_P) = \operatorname{Frac}(\overline{K}[C])$ regardless of which $P \in C$ we choose, ord_P does depend on the choice of P, quite clearly. Second, when we extend ord_P to K(C), it is not necessary to additionally add the point $-\infty$ to the codomain. The only point in $K[C]_P$ which evaluates to ∞ under ord_P is 0, which has no inverse in K(C).

Definition 2.3. Let C be a curve and P a smooth point. The *order of* f *at* P is $ord_P(f)$.

- If $\operatorname{ord}_{P}(f) > 0$ then f has a zero at P.
- If $\operatorname{ord}_{P}(f) < 0$ then f has a pole at P.
- If ord $(f) \ge 0$ then f is regular at P or alternatively is defined at P. We can evaluate f(P) in this case.
- If $\operatorname{ord}_P(f) < 0$, i.e. if f has a pole at P, then we write $f(P) = \infty$.

All of this should be reminiscent of complex analysis, and indeed, all this is identical to that terminology in the case that $K = \mathbb{C}$.

Proposition 2.4. Let C be a smooth curve and $f \in \overline{K}(C)$ with $f \neq 0$. Then there are only finitely many points $P \in C$ at which f has a zero or pole. Furthermore, f has no poles if and only if $f \in \overline{K}$.

The author of these notes is stupid and incessantly ignorant about matters regarding Galois, so we say a few things more about the Galois action. The Galois group $G_{\overline{K}/K}$ acts on $\mathbb{A}^n_{\overline{K}}$ by

$$P^{\sigma}=(x_1^{\sigma},...,x_n^{\sigma}),$$

meaning that \mathbb{A}_{K}^{n} can be characterized by

$$\mathbb{A}_K^n = \mathbb{A}^n(K) = \{ P \in \mathbb{A}_{\overline{K}}^n \mid P^{\sigma} = P \text{ for all } \sigma \in G_{\overline{K}/K} \}.$$

When we write \mathbb{A}^n without specifying the base field, it is implied that we mean $\mathbb{A}^n_{\overline{K}}$. Similarly, when we write \mathbb{P}^n we mean $\left(\mathbb{A}^{n+1}_{\overline{K}}\setminus\{0\}\right)/\overline{K}^*$, and we define the *set of K-rational points in* \mathbb{P}^n to be

$$\mathbb{P}^{n}(K) = \{ [x_0, ..., x_n] \in \mathbb{P}^n \mid x_i \in K \text{ for all } 0 \le i \le n \}.$$
 (1)

Definition 2.5. Let $P = [x_0, ..., x_n] \in \mathbb{P}^n(\overline{K})$. The **minimal field of definition for** P is the field

$$K(P) = K(x_0/x_i, ..., x_n/x_i)$$

where x_i is (one of) the nonzero coordinate(s) of P. Note that different valid choices of x_i yield isomorphic fields when we adjoin elements.

The Galois group acts on \mathbb{P}^n in the way one would hope. Given $\sigma \in G_{\overline{K}/K}$,

$$[x_0,...,x_n]^{\sigma} = [x_0^{\sigma},...,x_n^{\sigma}].$$

This action is well defined since

$$[\lambda x_0, ..., \lambda x_n]^{\sigma} = \lambda^{\sigma} [x_0^{\sigma}, ..., x_n^{\sigma}] = [x_0, ..., x_n]^{\sigma}.$$

We have a notion of the rationalization of a curve and a rational curve.

Definition 2.6. A plane curve $\{f(x,y)=0 \mid (x,y) \in K=\overline{K}\} \subseteq \mathbb{A}^2$ (with f irreducible over \overline{K}) is said to be **rational** if it has a rational parameterization, i.e. $\exists \phi, \psi \in K(t)$ such that

- (i) $\mathbb{A}^1 \to \mathbb{A}^2$ defined $t \mapsto (\phi(t), \psi(t))$ is an injection on $\mathbb{A}^1 \setminus \{\text{finite set}\}$
- (ii) $f(\phi(t), \psi(t)) = 0$

2.2 Divisors

The only codimension subschemes of a curve are the points on the curve. This makes the divisor class group of an algebraic curve C particularly nice.

Definition 2.7. The **divisor class group** of a curve C is the free abelian group generated by the points of C. More explicitly, a divisor $D \in \text{Div}(C)$ is a formal sum

$$D = \sum_{P \in C} n_P(P)$$

where only finitely many of the n_P are nonzero. The **degree** of a divisor is defined by

$$\deg(D) = \sum_{P \in C} n_P.$$

The **divisors of degree 0** form a subgroup of Div(C) which we denote by $Div^0(C)$.

The Galois action on divisors is exactly what you'd expect: given $\sigma \in G_{\overline{K}/K}$ we define

$$D^{\sigma} = \sum_{P \in C} n_P(P^{\sigma}).$$

We say that D is defined over K if $D^{\sigma} = D$ for each $\sigma \in G_{\overline{K}/K}$. This does *not* mean that D is defined over K if and only if $P \in K$ for each $n_P \neq 0$ is the formal sum defining D, instead, the Galois action could simply permute the nonzero P's in some way.

Definition 2.8 (Riemann-Roch Space). Let C be a smooth projective curve. The Riemann-Roch space of a $D \in \text{Div}(C)$ is

$$\mathcal{L}(D) = \{ f \in K(C)^* \mid \text{div}(f) + D \ge 0 \} \cup \{ 0 \}$$

i.e. the K-vector space of rational functions on C with "poles no worse than specified by D."

Here, the space K(C) is $\operatorname{Frac}(K[x_1,...,x_n]/(F))$.

3 Geometry of Elliptic Curves

3.1 Weierstrass Equations

An elliptic curve is a genus one curve in \mathbb{P}^2 with a single specified base point on the line at infinity (remember that the line at infinity in \mathbb{P}^2 is the set of points [X:Y:0]). After scaling X and Y appropriately an elliptic curve has an equation of the form

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}.$$
 (2)

Here, O = [0:1:0] is the base point and $a_1, ..., a_6 \in \overline{K}$, and equation (2). We generally write an elliptic curve in non-homogeneous coordinates x = X/Z and y = Y/Z:

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$
 (3)

and remember that we always have a single extra point at infinity given by O = [0:1:0]. If $a_1, ..., a_6 \in K$ then we say that E is **defined over** K.

We can make some simplifications in the cases that $\operatorname{char}(\overline{K}) \neq 2,3$. If $\operatorname{char}(\overline{K}) \neq 2$ then we can complete the square:

$$y \mapsto \frac{1}{2}(y - a_1x - a_3)$$

to get an equation

$$y^2 = 4x^3 + b_2x^2 + 2b_4x + b_6,$$

where

$$b_2 = a_1^2 + 4a_4$$
, $b^4 = 2a_4 + a_1a_3$, $b_6 = a_3^2 + 4a_6$.

The following are useful quantities:

$$b_8 = a_1^2 a_6 + 4 a_2 a_6 - a_1 a_3 a_4 + a_2 a_3^2 - a_4^2,$$

$$c_4 = b_2^2 - 24 b_4,$$

$$c_6 = -b_2^3 + 36 b_2 b_4 - 216 b_6,$$

$$\Delta = -b_2^2 b_8 - 8 b_4^3 - 27 b_6^2 + 9 b_2 b_4 b_6,$$
 the **discriminant** of E
$$j = c_4^3 / \Delta,$$
 the **j-invariant** of E
$$\omega = \frac{dx}{2y + a_1 x + a_3} = \frac{dy}{3x^2 + 2a_2 x + a_4 - a_1 y}$$
 the **invariant differential**.

In the case that char $\overline{K} \neq 2,3$ we can make an additional substitution

$$(x,y) \mapsto \left(\frac{x-3b_2}{36}, \frac{y}{108}\right)$$

to eliminate the x^2 term and obtain the simpler equation

$$E: y^2 = x^3 - 27c_4x - 54c_6$$

for the elliptic curve.

The last three terms in the above table of quantities are of particular interest in classifying elliptic curves up to isomorphism.