

## Programación Estadística con Python

**Sesions 7-8 Mean comparisons** 

Alberto Sanz, Ph.D asanz@edem.es

MASTER EN DATA ANALYTICS PARA LA EMPRESA

## Describing quantitative variables



Figure 4. Daily Bicycle rentals in Washington DC by Capital bikeshare. 2011 - 2012



Alberto Sanz, Ph.D. asanz@edem.es

## Research Question



# Why some days are rent *more* bikes than other days in Washington D.C.?



- $\square$  H0.:  $\mu$  rentals in working days =  $\mu$  rentals in holidays
- $\square$  H1.:  $\mu$  rentals in working days  $\neq \mu$  rentals in holidays



- $\square$  H0.:  $\mu$  rentals in working days =  $\mu$  rentals in holidays
- □ H1.:  $\mu$  rentals in working days  $\neq \mu$  rentals in holidays
  - Numeric Procedure

- Graphic procedure
- ⇒ confidence interval plot



 Describe the two variables involved in the hypothesis

- 2. Perform the numeric test: t.test
- 3. Perform the graphic test: plot of the means
- 4. When posible: combine both numeric and graphic in same plot



### 1. Describe the two variables involved in hypothesis

### Rentals

```
wbr.cnt.describe()
plt.hist(wbr.cnt)
```



## **Working days**

```
mytable = pd.crosstab(index=wbr["wd_cat"],
columns="count")
n=mytable.sum()
mytable2 = (mytable/n)*100
plt.bar(mytable2.index, mytable2['count'])
```





### 2. Perform the numeric test: t.test

```
#Descriptive comparison:
wbr.groupby('wd cat').cnt.mean()
#Statistical comparison:
#Extract the two sub samples and store them in two objects
cnt wd=wbr.loc[wbr.wd cat=='Yes', "cnt"]
cnt nwd=wbr.loc[wbr.wd cat=='No', "cnt"]
#Perform a t test for mean comparison
#import scipy.stats as stats
stats.ttest ind(cnt wd, cnt nwd, equal var = False)
Output:
wd cat
No 4330.168831
Yes 4584.820000
Ttest_indResult(statistic= 1.60137, pvalue = 0.1105)
```

Alberto Sanz, Ph.D. asanz@edem.es



8

## 3. Perform the mean comparison graphic test (I)

3.1. Define parameters & plot

Figure 6. Average rentals by Working Day.





Figure 6. Average rentals by Working Day.





. .

Figure 6. Average rentals by Working Day.





 $\mathbf{X}$  H1.:  $\mu$  rentals in work days  $\neq \mu$  rentals in holidays



CONCLUSION:

As P. Val > 0.05, we do NOT REJECT H0.:

In other words:

Average rentals do not significantly differ in Working days and Non working days.







CONCLUSION: As P. Val > 0.05

Average rentals do not significantly differ in Working days and Non working days.

## Mean comparison (2 gr.) Example #2



12

- $\mathbf{\times}$   $\square$  H0.:  $\mu$  rentals in 2011 =  $\mu$  rentals in 2012
- □ H1.:  $\mu$  rentals in 2011  $\neq \mu$  rentals in 2012

Figure 7. Average rentals by Year.

```
#Plotmeans
                                                               6000
                                                                      Mean: 4504.3
plt.figure(figsize=(5,5))
                                                                      n: 731
ax=sns.pointplot(x="yr",y="cnt",data=wbr,ci=95,join=0)
                                                                      t: 18.6
                                                               5500
                                                                      Pval.: 0.000
ax.set ylabel('')
plt.yticks(np.arange(3000, 7000, step=500))
                                                               5000
plt.ylim(2800,6200)
plt.axhline(y=wbr.cnt.mean(),
                                                               4500
             linewidth=1,
             linestyle= 'dashed',
                                                               4000
             color="green")
props = dict(boxstyle='round', facecolor='white', lw=0.5)
                                                               3500
plt.xticks((0,1), ("2011", "2012"))
plt.xlabel('Year')
plt.title('Figure 7. Average rentals by Year.''\n')
                                                               3000
                                                                          2011
                                                                                           2012
                                                                                   Year
```

plt.text(-0.35,5400,'Mean:4504.3''\n''n:731' '\n' 't:18.6' '\n' 'Pval.: 0.000',bbox=props)

## A Panel of results:



Figure 6. Average rentals by Working Day.



Figure 7. Average rentals by Year.



Alberto Sanz, Ph.D. asanz@edem.es

## A Panel of results:



Figure 6. Average rentals by Working Day.



Figure 7. Average rentals by Year.



## Research Question



# Why some days are rent more bikes than other days in Washington D.C.?

Daily Bicycle rentals in Washinton DC. 2011-2012



- $\square$  H0.:  $\mu$  rentals sunny =  $\mu$  rentals cloudy=  $\mu$  rentals stormy.
- $\square$  H1.:  $\mu$  rentals differ in **at least** 2 of the 3 groups compared.

- $\square$  H0.:  $\mu$  rentals sunny =  $\mu$  rentals cloudy=  $\mu$  rentals stormy.
- $\square$  H1.:  $\mu$  rentals differ in **at least** 2 of the 3 groups compared
  - Numeric Procedure ⇒ One-Way ANOVA

- Describe the two variables involved in the hypothesis
- 2. Perform the numeric test: One-Way ANOVA
- 3. Perform the graphic test: plot of the means
- 4. When posible: combine both numeric and graphic in same plot.

### 1. Describe the two variables involved in hypothesis

### Rentals

Weather condition

#### Daily Bicycle rentals in Washinton DC. 2011-2012



#### Percentage of weather condition in Washington



## 2. Perform the numeric test: One-Way ANOVA

```
##Descriptive comparison
wbr.groupby('ws cat').cnt.mean()
#Statistical comparison
cnt sunny=wbr.loc[wbr.ws cat=='Sunny', "cnt"]
cnt_cloudy=wbr.loc[wbr.ws cat=='Cloudy', "cnt"]
cnt rainy=wbr.loc[wbr.ws cat=='Rainy', "cnt"]
stats.f oneway(cnt sunny, cnt cloudy,cnt rainy )
OUTPUT:
        4876.786177
Sunny
Cloudy 4035.862348
Rainv
          1803.285714
F onewayResult(statistic=40.0660 pvalue=3.10631e-17)
Interpretation.
As P. Value < 0.05: REJECT the HO about equality of the means in all groups.
In other words: at leats two groups differ in average bicycle rentals
```

## 3. Perform the graphic test: plot of the means

```
#Graphic comparison: confidence intervals for the means
plt.figure(figsize=(5,5))
ax = sns.pointplot(x="ws cat", y="cnt", data=wbr, capsize=0.05,
ci=99.9, join=0)
ax.set ylabel('')
plt.yticks(np.arange(1000, 7000, step=500))
plt.ylim(800,6200)
plt.axhline(y=wbr.cnt.mean(),
            linewidth=1,
            linestyle= 'dashed',
            color="green")
props = dict(boxstyle='round', facecolor='white', lw=0.5)
plt.text(1.5, 5000, 'Mean: 4504.3''\n''n: 731' '\n' 'F: 40.06'
'\n' 'Pval.: 0.000', bbox=props)
plt.xlabel('Weather Situation')
plt.title('Figure 8. Average rentals by Weather Situation.''\n')
```

Figure 8. Average rentals by Weather Situation.



### 4. Combine graphic & numeric tests

Figure 8. Average rentals by Weather Situation.



 $\star$  H0.:  $\mu$  rentals sunny =  $\mu$  rentals cloudy=  $\mu$  rentals stormy.  $\star$  H1.:  $\mu$  rentals differ in at least 2 of the 3 groups compared

### **CONCLUSION:**

As P. Value  $< 0.05^*$ , we do REJECT HO.:

In other words:

**Different weather conditions** are significantly associated to **differnt average in rentals.** 

\* Note: In this specific case, as p.value is indeed < 0.01, we reject H0 with a confidence level larger tan 99 percent.

## Mean Comparison Summing UP



- ☐ General Remainder:
  - Allways describe/explore your data (numerically + graphically) prior to perform any statistical analysis.
- □ Main Graphic Procedure:
  - Confidence interval plot
- □ Main Numeric Procedures:
  - 2 Groups: t test
  - □ >2 Groups: One-way ANOVA

## Statistical Programming with Python



Questions?

## Statistical Programming with Python



# Thank you!

Alberto Sanz asanz@edem.es