

UNIVERSITE DE MONTPELLIER

FACULTE DES SCIENCES

Session: 1

Date: 14 / 01 / 2022

Durée de l'épreuve : 2 heures Documents autorisés : Aucun

Licence X Master

Mention: L2

Matériels autorisés : Calculatrice

Parcours: Portail Curie

Libellé + Code de l'UE : HAE304X Outils Mathématiques pour l'EEA

Exercice 1 (3 points)

Déterminer les limites suivantes :

1.
$$\lim_{x \to 1} \frac{\sqrt{3+x}-2}{x-1}$$

2.
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 - 7}}{3x + 5}$$

1.
$$\lim_{x \to 1} \frac{\sqrt{3+x}-2}{x-1}$$
 2. $\lim_{x \to -\infty} \frac{\sqrt{x^2-7}}{3x+5}$ 3. $\lim_{x \to 0} \frac{x \ln(1+x)}{\cos x-1}$

Exercice 2 (2 points)

1) Déterminer la dérivée de la fonction suivante ($t_0 > 0$; |a| < 1):

$$f(t) = 1 - \left[\frac{a}{\sqrt{1 - a^2}} \sin\left(\sqrt{1 - a^2} \frac{t}{t_0}\right) + \cos\left(\sqrt{1 - a^2} \frac{t}{t_0}\right) \right] e^{-at/t_0}$$

2) Quelle est la limite de f quand t –

Exercice 3 (3 points)

Soit la fonction $f(x) = \frac{1}{1+e^x}$

1) Déterminer les deux dérivées successives de f(x) et en déduire le développement limité au 2nd ordre au voisinage de 0.

2) Retrouver ce résultat en utilisant les formules des développements limités.

Exercice 4 (2 points)

Déterminer la primitive suivante :

$$\int \frac{x^2}{a^6 + x^6} dx$$

Indication : on posera $u = x^3$

Exercice 5 (2 points)

On définit l'intégrale $I = \iint xy \ dxdy$, sur le domaine $\mathcal{D} = \{x \ge 0, y \ge 0, x + y \le 1\}$

- 1. Représenter le domaine D sur un graphe
- 2. Calculer I

Exercice 6 (2 points)

Calculer l'intégrale :

$$I = \int_0^1 \frac{x^3}{x^2 - 4} \, dx$$

Exercice 7 (2 points)

Soit la matrice suivante : $M = \begin{bmatrix} x & 1 \\ 2 & 3 \end{bmatrix}$

1) Calculer $M^2 = M \times M$

2) Déterminer x pour que $M^2 = \begin{bmatrix} 6 & 1 \\ 2 & 11 \end{bmatrix}$

Exercice 8 (1.5 points)

Soit la matrice suivante : $M = \begin{bmatrix} 2 & -3 \\ -1 & 1 \end{bmatrix}$

Déterminer M^{-1} l'inverse de la matrice M par la méthode de votre choix.

Exercice 9 (2.5 points+1 point bonus)

Résoudre les équations différentielles suivantes :

1)
$$y' + 3y = 4e^{2x}$$

1)
$$y' + 3y = 4e^{2x}$$

2) $y'' + 2y' = x^2 + 1$

Formulaire de développement limités

Les développements limités ci-dessous sont valables quand ${\bf x}$ tend vers ${\bf 0}$ et uniquement dans ce cas.

$$\begin{split} e^x &= 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + o\left(x^n\right) = \sum_{k=0}^n \frac{x^k}{k!} + o\left(x^n\right) \\ \operatorname{chx} &= 1 + \frac{x^2}{2} + \dots + \frac{x^{2n}}{(2n)!} + o\left(x^{2n}\right) = \sum_{k=0}^n \frac{x^{2k}}{(2k)!} + o\left(x^{2n}\right) \\ \operatorname{shx} &= x + \frac{x^3}{6} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o\left(x^{2n+1}\right) \\ &= \sum_{k=0}^n \frac{x^{2k+1}}{(2k+1)!} + o\left(x^{2n+1}\right) \\ \cos x &= 1 - \frac{x^2}{2} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o\left(x^{2n}\right) \\ &= \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} + o\left(x^{2n}\right) \\ \sin x &= x - \frac{x^3}{6} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o\left(x^{2n+1}\right) \\ &= \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o\left(x^{2n+1}\right) \end{split}$$

 $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + \dots + \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n + o(x^n) \quad (\alpha \text{ r\'eel donn\'e})$ $\underset{x\to 0}{=}\sum_{k=0}^{n}\binom{\alpha}{k}x^{k}+o\left(x^{n}\right) \text{ et en particulier } (1+x)^{\alpha}\underset{x\to 0}{=}1+\alpha x+o(x) \text{ et donc } \sqrt{1+x}\underset{x\to 0}{=}1+\frac{1}{2}x+o(x)$

$$\frac{1}{1-x} \underset{x\to 0}{=} 1 + x + x^{2} + \dots + x^{n} + o(x^{n}) \underset{x\to 0}{=} \sum_{k=0}^{n} x^{k} + o(x^{n})$$

$$\frac{1}{1+x} \underset{x\to 0}{=} 1 - x + x^{2} + \dots + (-1)^{n} x^{n} + o(x^{n}) \underset{x\to 0}{=} \sum_{k=0}^{n} (-1)^{k} x^{k} + o(x^{n})$$

$$\ln(1+x) \underset{x\to 0}{=} x - \frac{x^{2}}{2} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + o(x^{n}) \underset{x\to 0}{=} \sum_{k=1}^{n} (-1)^{k-1} \frac{x^{k}}{k} + o(x^{n})$$

$$\ln(1-x) \underset{x\to 0}{=} -x - \frac{x^{2}}{2} + \dots - \frac{x^{n}}{n} + o(x^{n}) \underset{x\to 0}{=} -\sum_{k=1}^{n} \frac{x^{k}}{k} + o(x^{n})$$

$$Arctanx \underset{x\to 0}{=} x - \frac{x^{3}}{3} + \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

$$\underset{x\to 0}{=} \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{2k+1} + o(x^{2n+1})$$