

Equity Swaps and Equity Investing

Don M. Chance / 2003

Simon Sangmin Oh

Chance, Don M. "Equity swaps and equity investing." The Journal of Alternative Investments 7.1 (2004): 75-97.

Overview

- Swap: Financial transaction in which one party agrees to make a series of payments to another at regularly scheduled dates
- Equity Swap: At least one side of the payments is determined by a stock or stock index
 - Some equity swaps may come very close but are not identical to the return on stock or index
- Three main types

Equity Return	\leftrightarrow	Fixed Rate	
	_		
Equity Return	\leftrightarrow	Floating Rate	
Equity Return	\leftrightarrow	Equity Return	

Type 1: Equity Return ←→ Fixed Rate

On December 15 of a given year, Dynamic Money Management enters into a swap to pay a <u>fixed rate of 5%</u> with payment <u>terms of 90/360</u> and receive the <u>return on the S&P 500</u> with payments to occur on March 15, June 15, September 15, and December 15 for one year. Payments will be calculated on a <u>notional principal of \$20 million</u>. The counterparty is the swaps dealer Total Swaps, Inc. The S&P 500 is at 1105.15 on the day the swap is initiated.

- Fixed rate of 5%
 - Calculated so that the PV of equity payments is the same as the PV of fixe payments
- **90/360**
 - Adjustment factor for calculating the interest rate (5% in this case)
 - \circ In the example above, for each payment, pay the interest of $5\% \cdot \frac{90}{360} = 1.25\%$ as fixed rate
- Return on S&P 500 & Notional Principal of \$20 Million
 - On each settlement date, the return on the S&P 500 is calculated and applied to the \$20 million notional principal to determine the payment to be received

Type 2: Equity Return ← Floating Rate

On December 15 of a given year, Dynamic Money Management enters into a swap to pay a <u>floating rate of 90-day LIBOR</u> with <u>payment terms of 90/360</u> and receive the <u>return on the S&P 500</u> with payments to occur on March 15, June 15, September 15, and December 15 for one year. Payments will be calculated on a <u>notional principal of \$20 million</u>. The counterparty is the swaps dealer Total Swaps, Inc. The S&P 500 is at 1105.15 and 90-day LIBOR is 4.75% on the day the swap is initiated.

- Floating rate of 90-day LIBOR
 - LIBOR (London Interbank Offer Rate): most common interest rate used in dollar-based derivative transactions
- **90/360**
 - Adjustment factor for calculating the interest rate once the LIBOR gets known
- Return on S&P 500 & Notional Principal of \$20 Million
 - On each settlement date, the return on the S&P 500 is calculated and applied to the \$20 million notional principal to determine the payment to be received

Type 3: Equity Return ←→ Equity Return

On December 15 of a given year Dynamic Money Management enters into a swap to pay the <u>return on the NASDAQ</u> Composite index and receive the <u>return on the S&P 500</u> with payments to occur on March 15, June 15, September 15, and December 15 for one year. Payments will be calculated on a <u>notional principal of \$20 million</u>. The counterparty is the swaps dealer Total Swaps, Inc. The S&P 500 is at 1105.15 and NASDAQ is at 1705.51.

Return on the NASDAQ and S&P 500

- The party that is paying the NASDAQ return may end up receiving the NASDAQ return
- This is the case when NASDAQ earned negative return (See below)

Date	S&P	Periodic	S&P 500	NASDAQ	Periodic	NASDAQ	Net Cash
	500	Return on	Cash Flow	Index	Return on	Cash Flow	Flow
	Index	S&P 500			NASDAQ		
December 15	1105.15			1705.51			
March 15	1129.48	2.2015%	\$440,300	1750.78	2.6543%	-\$530,860	-\$90,560
June 15	1084.30	-4.0001%	-800,020	1689.25	-3.5144%	+702,880	-97,140
September 15	1055.29	-2.6755%	-535,100	1609.67	-4.7110%	+942,200	407,100
December 15	1099.52	4.1913%	838,260	1678.51	4.2767%	-855,340	-17,080

Applications

Diversifying a Concentrated Portfolio

- Useful in a situation where selling the stocks is not a feasible option
- Enter into equity swap to pay return on stocks and receive return on stock index

Achieving International Diversification

- Direct investment in international stocks may result in additional costs
 - Withheld dividends (the dividends can be recovered, but the interests may not)

Executing Asset Allocation Decisions

Flexible changes in allocation enabled by equity swaps

Hedging Equity Position

- Corporate executives often have significant investment in stocks of their employers
 - Often used to maintain voting rights and reduce stock exposure at the same time

Advantages and Disadvantages

ADVANTAGES

- Very customizable (nature of OTC)
 - Suited to address specific time horizons, portfolio compositions, or other terms and conditions that are not matched by exchange-listed instruments
- Hide signals sent to investors of the intention and position of a particular investor
- Low transaction costs
 - No custodial cost that would be associated with the holding of stock and no withholding taxes on positions related to foreign stock indices

DISADVANTAGES

- Substantial cash flows
 - When large cash outflows are not offset by gains on stock positions, the gains on the stock may have to be liquidated to fund cash flows
- Re-establishment of contract necessary
 - No termination date
- Bid-ask spread
 - The more customized the swap, the more costly in terms of bid-ask spread that the dealer would impose
- Credit Risk
 - Use of the equity swap assumes the risk of the dealer defaulting

Pricing & Valuation - Example

Equity Return ←→ **Fixed Rate**

- Consider a swap initiated at time 0 and has a set of n+1 payments that occur at time t, t+1, ..., t+n
- Let S(j) be the price of the stock at time j and let R be the fixed rate specified in the swap
- Let B(j,k) be the price of a zero coupon bond at time j that pays \$1 at its maturity time $k,k \ge j$.
- Let V(j; 0, t + n) be the value of the swap at time j given that the swap was initiated at time 0 and has a final payment scheduled at time t + n
- \blacksquare The cash flows on this swap to the party paying a fixed rate R and receiving equity return are:

time
$$t$$
: $\frac{S(t)}{S(0)} - (1+R)$
time $t+1$: $\frac{S(t+1)}{S(t)} - (1+R)$
 \vdots
time $t+n$: $\frac{S(t+n)}{S(t+n-1)} - (1+R)$

Pricing & Valuation - Example

Replicating Cash Flows

- The first cash flow, S(t)/S(0) (1 + R) can be replicated by
 - \circ At time j, invest the amount S(j)/S(0) in the stock + Borrow (1+R)B(j,t)
 - \circ At time t, the invested amount becomes S(t)/S(0) and the borrowed amount becomes (1+R)
- The second cash flow, S(t+1)/S(t) can also be replicated similarly:
 - \circ At time j, invest the amount B(j,t) in a risk-free bond + Borrow (1+R)B(j,t+1)
 - o At time t+1, the invested amount becomes S(t)/S(0) since at time t, it was at \$1
- Using these two replicating mechanisms, we can substitute the original cash flows and arrive at:

$$V(j; 0, t + n) = \frac{S(j)}{S(0)} - B(j, t + n) - R \sum_{i=0}^{n} B(j, t + 1)$$

■ To get R, we can plug in j = 0 to arrive at:

$$R = \frac{1 - B(0, t + n)}{\sum_{i=0}^{n} B(0, t + 1)}$$

