Теорема

Для существования предела функции, необходимо и достаточно выполнения критерия Коши:

$$\exists \lim_{v \to a} f(x) \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall u, v \ 0 < |u - a| < \delta, \ 0 < |v - a| < \delta \Rightarrow |f(u) - f(v)| < \varepsilon$$

Доказательство

1) Необходимость

Пусть $\lim_{x\to a} f(x) = b$. Тогда существует такое число $\delta \geq 0$, что для любого $x\in D(f)$ из неравенства

$$0 < |x-a| < \delta$$
 вытекает неравенство $|f(x)-b| < \varepsilon$. Пусть для $u,v \in D(f)$ выполняются неравенства

$$0 < |u-a| < \delta$$
, $0 < |v-a| < \delta$. Тогда $|f(u)-f(v)| \le |f(u)-b| + |f(v)-b| < 2\varepsilon$

2) Достаточность

Пусть выполнен критерий Коши. Рассмотрим последовательность x_n , для которой $x_n \in D(f), \ x_n \neq a, \ x_n \to a$.

Выберем произвольно $\varepsilon > 0$ и рассмотрим $\delta = \delta(\varepsilon)$ — число, фигурирующее в условии Коши.

Воспользуемся определением предела последовательности x_n и обозначим через n_δ номер, начиная с которого выполняется неравенство $|x_n-a|<\delta$ Пусть $n,m\geq n_\delta$ Тогда $0<|x_n-a|<\delta$, $0<|x_n-a|<\delta$ и, по условию Коши $|f(x_n)-f(x_m)|<\epsilon$. Это означает, что последовательность $f(x_n)$ фундаментальна, и, в силу критерия Коши для последовательностей, сходится.

Докажем теперь, что предел f(x) не зависит от выбора подходящей последовательности.

Пусть u_n и v_n — две подходящие последовательности. Образуем из них новую последовательность. Она тоже будет сходиться к a.