

SmartSens[™] SC1035 Datasheet

V1.2

2014.06.04

应用

- 汽车
- 安防监控
- 工业相机
- 门铃电话
- 玩具
- 平板电脑
- MP4 播放器
- MDI 婴儿监护器

特性

- 支持单电源供电
- 高光敏度
- 自动曝光控制
- 16x 模拟增益, 4x 数字增益
- 水平/垂直窗口化
- 自动白平衡控制
- 光圏/伽马校正
- I2C 接口寄存器编程
- 输出接口
 - 12-bit DVP
- 低功耗

封装信息

SC1035CP48彩色 48pin PLCC 封装

关键指标(典型值)

- 4µm×4µm 4T FSI 像素架构
- 最大图像传输速率:
 - 1280H×960V@45fps
 - $1200H \times 900V@50fps$
 - 1280H×720V@60fps
- 动态范围: 70dB
- 光学格式: 1/2.8"
- 输出接口: 12-bit 并行接口
- 输出格式: 12-bit RAW RGB
- 0° CRA
- 工作温度范围: -20°C~+70°C
- 最佳工作温度范围: 0°C~+50°C
- 配置传感器的从机 I2C 接口
- 电源电压:
 - AVDD=PIXVDD=SVDD=3.3V, DOVDD=1.8V~3.3V, DVDD=1.5V(支持内部 1.5V regulator 供电)
- 图像面积: 5248µm×3904µm
- 封装类型: PLCC-48
- 封装尺寸: 11.43mm×11.43mm

目录

1	信号	描述	1					
2	系统级描述							
	2.1	概述						
	2.2	结构	4					
	2.3	PLL 控制	5					
	2.4	串行寄存器接口(I ² C)	7					
	2.5	电源起电和电源关闭顺序	9					
	2.5.	1 电源起电时使用内置 DVDD 电源供电	9					
	2.5.	2 电源起电时使用外接 DVDD 电源供电	10					
	2.6	复位	11					
	2.7	关电和掉电模式						
	2.8	睡眠模式	12					
3	图像	传感器核心功能	13					
	3.1	镜像和倒置	13					
	3.2	测试模式	13					
	3.3	AEC/AGC 算法						
	3.3.	1 概述	14					
	3.3.	2 基于均值的算法	15					
	3.3.	3 - 亮度均值(YAVG)	15					
	3.4	黑电平校正	16					
	3.5	数字增益	17					
	3.6	行噪声消除(RNC)	18					
4	图像	传感器数字功能	19					
	4.1	ISP 顶层寄存器	19					
	4.2	数据同步	19					

	4.3	镜头校正	20
	4.4	自动白平衡	22
	4.5	VAR	22
	4.6	亮度均值计算	23
5	图像	传感器寄存器列表	25
	5.1	SC	25
	5.2	SB CONTROL	27
	5.3	BLC SYNC	27
	5.4	CHANNEL GAIN	28
	5.5	AEC	30
	5.6	AEC PK	35
	5.7	ANA REG	37
	5.8	SENSOR CTRL	38
	5.9	TIMING CTRL	44
	5.10	BLC	49
	5.11	RNC	54
	5.12	ISP PRE	56
	5.13	LENC	57
	5.14	AWB	58
	5.15	DPC ONED	59
	5.16	WINDOW	59
	5.17	VAR	60
	5.18	YAVG	61
	5.19	DATA PRE	62
	5.20	DVP PRE	62
	5.21	DVP	63
6	图像	传感器数据输出格式和时序	66

7	电特	性参数	67
8	封装	= 5	70
	8.1	封装尺寸	70
9	光学	学参数	71
	9.1	传感器阵列中心	71

图片索引

图 1-1	引脚图	3
图 2-1	SC1035 框图	4
图 2-2	典型应用	5
图 2-3	PLL 控制示意图	6
图 2-4	I ² C 接口时序	8
图 2-5	内置 DVDD 供电时起电顺序	10
图 2-6	外接 DVDD 供电时起电顺序	11
图 3-1	镜像和倒置实例	13
图 3-2	测试模式	14
图 6-1	DVP 时序	66
图 8-1	PLCC44 封装示意图(单位: mm)	70

表格索引

表 1-1	信号描述	1
表 2-1	PLL 控制寄存器	6
表 2-2	I ² C 控制寄存器	7
表 2-3	I ² C 接口时序详细参数	8
表 2-4	软复位控制寄存器	11
表 2-5	睡眠模式控制寄存器	12
表 3-1	镜像和倒置模式控制寄存器	13
表 3-2	测试模式控制寄存器	14
表 3-3	AEC 控制寄存器	15
表 3-4	YAVG 控制寄存器	
表 3-5	BLC 控制寄存器	17
表 3-6	数字增益控制寄存器	
表 3-7	RNC 控制寄存器	18
表 4-1	ISP 顶层寄存器	19
表 4-2	SYNC 控制寄存器	19
表 4-3	LENC 控制寄存器	20
表 4-4	AWB 控制寄存器	22
表 4-5	VAR 控制寄存器	23
表 4-6	YAVG 控制寄存器	23
表 5-1	SC 控制寄存器	25
表 5-2	SB 控制寄存器	27
表 5-3	BLC SYNC 控制寄存器	27
表 5-4	CHANNEL GAIN 控制寄存器	28
表 5-5	AEC 控制寄存器	30
表 5-6	AEC PK 控制寄存器	35
表 5-7	ANA REG 控制寄存器	37

表	5-8	SENSOR CTRL 控制寄存器	38
表	5-9	TIMING_CTRL 控制寄存器	44
表	5-10	BLC 控制寄存器	49
表	5-11	RNC 控制寄存器	54
表	5-12	ISP PRE 控制寄存器	56
表	5-13	LENC 控制寄存器	57
表	5-14	AWB 控制寄存器	58
表	5-15	DPC ONED 控制寄存器	59
表	5-16	WINDOW 控制寄存器	59
表	5-17	VAR 控制寄存器	60
表	5-18	YAVG 控制寄存器	
表	5-19	DATA IRE 控制寄存器	
表	5-20	DVP PRE 控制寄存器	63
表	5-21	DVP 控制寄存器	64
表	7-1	最大额定值	67
表	7-2	直流电气特性	67
表	7-3	交流特性(TA=25°C,AVDD=3.3V,DOVDD=3.3V)	68
表	9-1	传感器阵列中心	71

1 信号描述

表 1-1 列出了 SC1035 图像传感器的信号描述及对应引脚编号。

表 1-1 信号描述

编 号	信号名	引脚类型	描述
1	SVDD	电源	3.3V 像素阵列供电电源
2	DGND	地线	数字地
3	DVDD	电源	1.5V 数字电源
4	DVDD	电源	1.5V 数字电源
5	DGND	地线	数字地
6	DGND	地线	数字地
7	DOVDD	电源	1.8V/3.3V IO 电源
8	DOVDD	电源	1.8V/3.3V IO 电源
9	SCL	输入	I2C 接口输入时钟线
10	DGND	地线	数字地
11	OSC	输入	系统时钟输入
12	PIXCLK	I/O	像素始终输入
13	NC	N/A	未连接
14	SDA	I/O	I2C 接口数据线(open drain)
15	FSYNC	I/O	帧同步信号
16	LREF	I/O	行同步信号
17	D11	输出	像素并行数据输出 Bit[11]
18	D10	输出	像素并行数据输出 Bit[10]
19	D9	输出	像素并行数据输出 Bit[9]
20	D8	输出	像素并行数据输出 Bit[8]

4	编号 信号名	引服	脚类型 描述
21	D7	输出	像素并行数据输出 Bit[7]
22	D6	输出	像素并行数据输出 Bit[6]
23	D5	输出	像素并行数据输出 Bit[5]
24	D4	输出	像素并行数据输出 Bit[4]
25	D3	输出	像素并行数据输出 Bit[3]
26	D2	输出	像素并行数据输出 Bit[2]
27	D1	输出	像素并行数据输出 Bit[1]
28	D0	输出	像素并行数据输出 Bit[0]
29	PWDN	输入	电源掉电信号输入(内置下拉电
	I WDN	刊ノて	阻, 高位有效)
30	RESET_B	输入	复位信号输入(内置上拉电阻,低
	KESE1_B	机八	位有效)
31	DGND	地线	数字地
32	DGND	地线	数字地
33	NC	N/A	未连接
34	DVDD	电源	1.5V 数字电源
35	NC	N/A	未连接
36	NC	N/A	未连接
37	NC	N/A	未连接
38	AGND	地线	模拟地
39	AGND	地线	模拟地
40	PIXVDD	电源	3.3V 像素电源
41	PIXVDD	电源	3.3V 像素电源
42	AGND	地线	模拟地
43	AGND	地线	模拟地
44	AVDD	电源	3.3V 模拟电源

	编 号	信号名	引脚类型	描述
45		AVDD	电源	3.3V 模拟电源
46		AVDD	电源	3.3V 模拟电源
47		AGND	地线	模拟地
48		AGND	地线	模拟地

Top View

图 1-1 引脚图

2 系统级描述

2.1 概述

SC1035 是监控相机领域最为先进的模拟 CMOS 图像传感器。支持 1280H×960V @ 45fps, 1200H×900V @ 50fps 和 1280H×720V @ 60fps 的图像格式。它输出经过最基本 ISP 处理后的 raw 格式图像。有效像素尺寸为 1280H960V。支持复杂的片上操作——例如窗口化,水平或垂直镜像化等。通过一个简单的双线串口可以对其进行配置。

可以使 SC1035 工作在默认模式下,或者配置其帧尺寸、曝光时间、增益及其他相应参数。默认情况下以每秒 45 帧的速率输出 1280H×960V 尺寸的图像。

2.2 结构

SC1035 可以以一个固定的帧速率产生像素数据流,并用 LREF 和 FSYNC 作为参考信号。图 2-1 展示了 SC1035 图像传感器的功能模块。而图 2-2 展示了一个典型的应用示例。

图 2-1 SC1035 框图

图 2-2 典型应用示意图

注 1: 为了获得更好的图像质量,DOVDD、SVDD、AVDD、PIXVDD 必须使用 3.3V 电源独立供电。

2.3 PLL控制

SC1035 PLL 允许的输入时钟频率范围为 6~27MHz, 其中 VCO 频率最大支持 500MHz。PLL 示意图以及控制寄存器分别在和中展示。

图 2-3 PLL 控制示意图

表 2-1 PLL 控制寄存器

地址	寄存器名	默认值	读/写	描述
			1	Bit[7]: BYPASS PLL
			\bigcirc	Bit[6:4]: RESERVED
				Bit[3:1]: PreDiv[2:0]
			\	000~1x
02010		021-20	DW	001~1.5x
0x3010		8'h20	RW	010~2x
				011~3x
				111~7x
				Bit[0]: PLLDIV[5:0]
				Bit[7:3]: PLLDIV[4:0]
				Multiplier=64-PLLDIV[5:0]
				Bit[2:0]: SYSEL[1:0]
0x3011		8'h86	RW	00~1x
				01~4x
				10~5x
				11~6x

系统时钟频率 F_{sysclk} 通过式 2-1 计算:

$$F_{\text{sysclk}} = F_{\text{xclk}} \times \frac{64 - M}{N \times (S+1)}$$
 (2-1)

2.4 串行寄存器接口 (I²C)

SC1035 控制寄存器通过标准的双线 I^2C 总线进行读写。其设备地址为 0x30。

消息类型:16-bit 地址、8-bit 数据和7-bit 设备地址

	Wiley(Triangle of the William of William)																
S	Slave Ad	ldres	s	R/W	A	Sub	Add	ress[15:8]	A	Sı	ıb A	ddress[7:0]	A	data	A/Ã	P
	I ² C 读排	操作													*		
S	Slave	0	A		Sub		A	Sub		A	Sr	Slave	1	A	data	Ã	P
5	Address	0	71	Addr	ess[1	5:8]	11	Address[7:	:0]	71	51	address	1	11	data	71	1
I ² C 写操作																	
S	Slave Ad	ldres	S	0	Α	Sub	Add	ress[15:8]	Α	Sı	ıb A	ddress[7:0	1	Α	data	A/Ã	Р

从机到主机 S: 起始条件	A : 答复
主机到从机 P: 终止条件	Ã: 拒绝答复

表 2-2 I²C 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x3008	I ² C SLAVE ID	8'h60	RW	Bit[7:1]: I ² C slave id

I²C 时序

图 2-4 I²C 接口时序

表 2-3 I²C 接口时序详细参数

符号	参数	最小值	典型值	最大值	単位
f_{I2C}	时钟频率	-> '	_	400	kHz
t_{low}	时钟低电平时间	1.3		_	μs
t_{high}	时钟高电平时间	0.6	_	_	μs
$t_{\rm cl2dov}$	SCL 拉低至输出数据有效间时间间隔	0.1	_	0.9	μs
t _{busft}	下一个起始状态前总线空闲时间	1.3	_		μs
t_{scht0}	起始条件保持时间	0.6	_	_	μs
t_{scst}	起始条件建立时间	0.6	_	_	μs
t _{diht}	输入数据保持时间	0	_	_	μs
t _{dist}	输入数据建立时间	0.1	_		μs
t_{scst1}	终止条件建立时间	0.6	_		μs
t_f/t_r	下降上升时间比	_	_	0.3	μs
t _{doht}	输出数据保持时间	0.05	_	_	μs

注 1: 这是在 400kHz 模式下的 I^2C 时序。

2: 判断上升沿起始或下降沿终止的电平阈值为 10%; 判断上升沿终止或下降沿起始的阈值为 90%。

SC1035	Datasheet
SC1035	Datasneet

2.5 电源起电和电源关闭顺序

基于不同的电源配置(1.8V 或 3.3V 的 I/O 电压,使用内置或外界 DVDD 电源),系统起电顺序有一定的差异。如果 I/O 端口使用 1.8V 电源供电,我们推荐使用内置 DVDD 电源供电。如果 I/O 端口使用 3.3V 电源供电,由于内置 DVDD 电源上存在一个较高的压降,可能会带来芯片过热的问题。因此在 3.3V 电源系统中,建议使用外接 DVDD 电源供电。另外由于在这种情况下会产生较高的掉电电流,有必要在芯片不适用 3.3V I/O 电源和外接 DVDD 供电时,关闭所有的电源,包括外接 DVDD 电源。

2.5.1 电源起电时使用内置DVDD电源供电

使用内置 DVDD 电源供电,同时在起电时间访问 I^2C 总线时,以下条件必须满足:

- 1. 如果 DOVDD 和 AVDD 同时打开,必须保证 DOVDD 在 AVDD 之前保持稳定;
- 2. PWDN 信号异步触发(不需要时钟)并且高位有效;
- 3. 起电期间必须拉高 PWDN 信号:
- 4. PWDN 信号拉低时必须保证起电时间已经保持稳定(AVDD 至 PWDN 时间间隔不小于 5ms);
- 5. RESET_B 信号异步触发并且地位有效;
- 6. 起电期间 DOVDD 拉高后不需要考虑 RESET B 信号是否稳定:
- 7. 主时钟 OSC 在主机访问传感器的 I^2 C 总线前必须提供至少 1ms 的时间间隔:
- 8. 主机能在整个起电期间访问 I²C 总线 (共享总线)。在 PWDN 拉低之后给出复位信号(复位信号在 PWDN 拉低 20ms 后或者 RESET_B 拉高 20ms 后给出), 主机可以访问传感器的 I²C 总线以初始化传感器。

DOVDD 首先拉高,然后是 AVDD,并且间隔小于 5ms

图 2-5 内置 DVDD 供电时起电顺序

注 1: T0≥0ms: DOVDD 稳定至 AVDD 稳定间时延。

2: T2≥5ms: AVDD 稳定至传感器起电稳定间时延。

2.5.2 电源起电时使用外接DVDD电源供电

使用外接 DVDD 电源供电,同时在起电时间访问 I^2C 总线时,以下条件必须满足:

- 1. 如果 DOVDD 和 AVDD 同时打开,必须保证 DOVDD 在 AVDD 之前保持稳定;
- 2. 如果 AVDD 和 DVDD 同时打开,必须保证 AVDD 在 DVDD 之前保持稳定;
- 3. PWDN 信号异步触发(不需要时钟)并且高位有效;
- 4. PWDN 信号拉低时必须保证起电时间已经保持稳定(AVDD 至 PWDN 时间间隔不小于 5ms);
- 5. 在不使用相机时必须关闭所有电源(断电模式不推荐);
- 6. RESET B 信号异步触发并且地位有效;
- 7. 起电期间 DOVDD 拉高后不需要考虑 RESET_B 信号是否稳定;
- 8. 主时钟 OSC 在主机访问传感器的 I^2C 总线前必须提供至少 1ms 的时间间隔;
- 9. 主机能在整个起电期间访问 I^2C 总线(共享总线)。在 PWDN 拉低之后给出复

SC1035	Datasheet

位信号(复位信号在 PWDN 拉低 20ms 后或者 RESET_B 拉高 20ms 后给出), 主机可以访问传感器的 I^2C 总线以初始化传感器。

DOVDD 首先拉高, 然后是 AVDD, 并且间隔小于 5ms

图 2-6 外接 DVDD 供电时起电顺序

注 1: T0≥0ms: DOVDD 稳定至 AVDD 稳定间时延。

2: T1≥0ms: AVDD 稳定至 DVDD 稳定间时延。

2: T2≥5ms: DVDD 稳定至传感器起电稳定间时延。

2.6 复位

SC1035 传感器包含一个 $RESET_B$ 引脚,将其接地(DGND)可以强制完成硬复位操作。硬复位时,SC1035 将清空所有寄存器设置并将其重置为默认值。同时也可以通过 I^2C 接口来将寄存器 0x3003 的 Bit[0]设置为高位来提供软复位功能。

表 2-4 软复位控制寄存器

地址	寄存器名	默认值	读/写	描述
0x3003	Rst_pon	'b0	W	Bit[0]: rst soft

SC1035	Datasheet

2.7 关电和掉电模式

传感器电源关电时,所有外接电源都要关闭,同时 RESET_B、PWDN 和 OSC 引脚都要拉低。而电源断电模式下,PWDN 引脚必须拉高。

2.8 睡眠模式

修改相应的寄存器可以使传感器进入睡眠模式。在睡眠模式下, I^2C 时钟依旧保持工作。此时仍然可以访问传感器的寄存器。

表 2-5 睡眠模式控制寄存器

功能	寄存器名	描述
睡眠模式	0x3000	Bit[0]: manual stream enable
唑 叫(关入)	0x3000	Sleep=~Bit[0] or PWDN

3 图像传感器核心功能

3.1 镜像和倒置

SC1035 提供镜像模式和倒置模式。前者会水平颠倒传感器的数据读出顺序;而后者会垂直颠倒传感器的读出顺序。如图 3-1 所示。

图 3-1 镜像和倒置实例

表 3-1 镜像和倒置模式控制寄存器

功能		寄存器名		描述
				Bit[0]: mirror ctrl
镜像模式		0x321d		0~mirror off
				1~mirror on
				Bit[6]: flip ctrl
倒置模式		0x321c		0~filp off
				1~flip on

3.2 测试模式

为方便测试, SC1035 提供两种测试模式: 递增模式和色彩条模式, 如图 3-2 所示。

图 3-2 测试模式

表 3-2 测试模式控制寄存器

功能	寄存器名	描述
		Bit[1]: incremental pattern enable
递增模式	0x3781	0~ normal image
		1~ incremental pattern
		Bit[7]: color bar test pattern
色彩条模式	0x503d	0~ disable
	7	1~ enable

3.3 AEC/AGC算法

3.3.1 概述

图像传感器的自动曝光控制(AEC)和自动增益控制(AGC)功能可以计算出合适的曝光时间和增益,从而将图像的亮度调整到一定的范围之内。除了自动控制之外,也能手动设置曝光时间和增益。相关的寄存器列表如表 3-3 所示。

表 3-3 AEC 控制寄存器

功能	寄存器名	描述	
		Bit[0]: AEC manual	
AEC 使能	0x3e03	0~ auto enable	
		1~ manual enable	
AEC(曝光时间)	(0, 2, 01, 0, 2, 02)	0x3e01=AEC[15:8]	
AEC(喙兀叭问)	{0x3e01,0x3e02}	0x3e02=AEC[7:0]	
AEC(增益)	{0x3e08[0],0x3e09}	Gain	
		Bit[1]: AGC manual	
增益使能	0x3e03	0~ auto enable	
		1~ manual enable	

3.3.2 基于均值的算法

基于均值的AEC 算法使用寄存器WPT(0x350f)和BPT(0x3510)来控制图像的亮度。这里,寄存器WPT(0x350f)的值表示高限阈值,而寄存器BPT(0x3510)的值表示低限阈值。当目标图像的亮度均值 YAVG(0x568a)在寄存器 WPT(0x350f)和 BPT(0x3510)的范围之内,AEC 模块会保持当前曝光度。当YAVG(0x568a)的值大于WPT(0x350f)时,AEC 模块会降低曝光度。而当 YAVG(0x568a)的值小于BPT(0x3510)时,AEC 模块将会增加曝光度。

相应地,寄存器WPT(0x350f)的值应该大于BPT(0x3510)的值。两者之间的差距可以控制图像的稳定性。

提供两种窗口化模式:自动窗口化和子窗口化模式。在自动窗口化(默认)模式下,YAVG模块的输出窗口由输入图像尺寸(hsize 和 vsize)来决定。在子窗口化模式(将寄存器 0x5708[0]设为 1)下,输出窗口尺寸由寄存器 AVG_X_START、AVG_X_WIDTH、AVG_Y_START和 AVG_Y_HEIGHT决定。

表 3-4 YAVG 控制寄存器

功能	寄存器名	描述
		Bit[0]: win_man_en
YAVG 窗口化使能	0x5708	0~ auto enable
		1~ manual enable
AVC V CTART	(0-5700[2.0] 0-5701)	0x5700[3:0]=avg_x_start[11:8]
AVG_X_START	{0x5700[3:0],0x5701}	0x5701=avg_x_start[7:0]
AVC V WIDTH	(0-5704[2.0] 0-5705)	0x5704[3:0]=avg_x_width[11:8]
AVG_X_WIDTH	{0x5704[3:0],0x5705}	0x5705=avg_x_width[7:0]
ANC V CTART	(0-5702[2,0] 0-5702)	0x5702[3:0]=avg_y_start[11:8]
AVG_Y_START	{0x5702[3:0],0x5703}	0x5703=avg_y_start[7:0]
AVC V HEICHT	(0-570/12-01 0-5707)	0x5706[3:0]=avg_y_width[11:8]
AVG_Y_HEIGHT	{0x5706[3:0],0x5707}	0x5707=avg_y_width[7:0]

3.4 黑电平校正

像素阵列包含 8 条黑行。这些黑行可以为补偿消除算法提供数据。数字图像处理首先要减去黑电平数据。BLC 算法可以从黑行数据中估算黑电平的补偿值。而彩色像素的值会减去各自色彩通道的黑电平补偿值。如果在一些特定的像素点,这样的减法得到了负值,那么将结果置 0。默认情况下,改变增益值后会重新进行 BLC 操作。

有两种计算模式:手动BLC和自动BLC。在手动模式下,补偿值由寄存器指定;在自动模式下,补偿值通过黑行计算得到。

表 3-5 BLC 控制寄存器

功能	寄存器名	描述
		Bit[0]: blc_enable
BLC 使能	0x3900	0~ bypass blc
		1~ BLC enable
		Bit[6]: blc_auto_en
自动 BLC 使能	0x3902	0~ manual mode
		1~ auto mode
		0x3928[0]:
		0~ use 8 channel offset mode
BLC 通道选择	{0x3928[0],0x3905[6]}	1~ use 4 channel offset mode
DLC通过延行	(0x3)20[0],0x3)03[0])	0x3905[6]: one channel enable
		0~ use 8 or 4 channel offset
	A	1~ use one channel mode
BLC 目标值	{0x3907[4:0],0x3908}	BLC target
BLC_manual00 (B ₀)	{0x3909[4:0],0x390a}	BLC offset for B ₀ channel
BLC_manual01 (GB ₀)	{0x390b[4:0],0x390c}	BLC offset for GB ₀ channel
BLC_manual02 (B ₁)	{0x390d[4:0],0x390e}	BLC offset for B ₁ channel
BLC_manual03 (GB ₁)	{0x390f[4:0],0x3910}	BLC offset for GB ₁ channel
BLC_manual10 (GR ₀)	{0x3920[4:0],0x3921}	BLC offset for GR ₀ channel
BLC_manual11 (R ₀)	{0x3922[4:0],0x3923}	BLC offset for R ₀ channel
BLC_manual12 (GR ₁)	{0x3924[4:0],0x3925}	BLC offset for GR ₁ channel
BLC_manual13 (R ₁)	{0x3926[4:0],0x3927}	BLC offset for R ₁ channel

3.5 数字增益

减去黑电平后,所有的像素值都将乘上一个数字增益值。默认情况下,传感器在应用数字增益之前会将模拟增益调整到最大。

表 3-6 数字增益控制寄存器

功能	寄存器名	描述
数字增益	{0x3e08[0],0x3e09[7]}	2'b01,2'b10: 2x dig gain 2'b11: 4x dig gain

3.6 行噪声消除 (RNC)

像素阵列包含 64 条黑色参考列,这些列可以为行噪声消除算法提供数据。RNC 算法可以从黑色参考列数据中估算出行噪声。对于同一行来说,行噪声是相同的;而不同行之间的行噪声互不相同。考虑到色彩滤镜的存在,必须使用两条通道来消除行噪声。如果消除算法(减法)在特定像素得到一个负值,那么将结果置 0。

表 3-7 RNC 控制寄存器

功能	寄存器名	描述
		Bit[0]: rnc_enable
RNC 使能	0x3400	0~ bypass blc
		1~ RNC enable
		Bit[1]: rnc_auto_en
自动 RNC 使能	0x3400	0~ manual mode
		1~ auto mode
		Bit[5]: one channel enable
RNC 通道选择	0x3400	0~ use 4 channel mode
		1~ use 1 channel mode
RNC_manual00 (B)	{0x3405[4:0],0x3404}	RNC noise for B channel
RNC_manual01 (GB)	{0x3407[4:0],0x3406}	RNC noise for GB channel
RNC_manual10 (GR)	{0x3409[4:0],0x3408}	RNC noise for GR channel
RNC_manual11 (R)	{0x340b[4:0],0x340a}	RNC noise for R channel

4 图像传感器数字功能

4.1 ISP顶层寄存器

ISP 顶层模块的目的: 生成必要的控制信号。

表 4-1 ISP 顶层寄存器

功能	寄存器名	描述
		Bit[7]: LENC correnction enable
		0~ disable
		1∼ enable
ICD CTDI	0x5000	Bit[4]: var_en
ISP_CTRL		Bit[3]: awb_gain_en
		Bit[0]: auto white balance enable
		0~ disable
		1∼ enable

4.2 数据同步

数据同步(SYNC)模块将两条数据通路合并成一条数据通路。

表 4-2 SYNC 控制寄存器

地址	等存器名	默认值	读/写	描述
0x3780	BLC_SYNC00	8'h10	RW	Bit[5:0]: ASP delay cycles

地址	寄存器名	默认值	读/写	描述
				Bit[7]: incremental pattern enable
0x3781 BLC_SYNC01 8'h10		RW	Bit[4]: r_raw1_swap_en	
	8'h10		Bit[3]: r_raw0_swap_en	
	8 1110		Bit[2]: rbule reverse	
			Bit[1]: adc_g channel first enable	
				Bit[0]: adclk_inv

4.3 镜头校正

镜头校正(LENC)模块的目的是补偿相机镜头带来的光线失真。根据每个像素点相对于镜头(中心)的距离,LENC模块计算出该点的增益值。再根据镜头特性曲线以及每个像素的增益来校正图像数据,以此来补偿光线的失真。

表 4-3 LENC 控制寄存器

地址	寄存器名	默认值	读/写	描述
				Bit[7]: LENC correction enable
0x5000	ISP_CTRL00	8'h99	RW	0~ disable
				1~ enable

地址	寄存器名	默认值	读/写	描述
	'			Bit[6]: no_delay
				1~ sel data_i do lenc
				0~ data_3d do lenc
				Bit[5]: debug mode
0. 7000	LENG CEDI 00	011 00	DW	Bit[4]: lenc_bias_en
0x5800	LENC_CTRL00	8'h90	RW	1~ sub bias before do lenc
				0~ use data_i do lenc
				Bit[1]: sel deltagain
				Bit[0]: sel_ra, if lenc enable select
				test mode
0x5801	LENC_RADIUS	8'h20	RW	Bit[7:0]: lenc_radius
0x5802	LENC_XOFFSET	8'h20	RW	Bit[7:0]: the horizontal start size
0x5803	LENC_YOFFSET	8'h10	RW	Bit[7:0]: the vertical start size
0x5804	LENC_RGAIN	8'h80	RW	Bit[7:0]: red color coefficient
0x5805	LENC_GGAIN	8'h80	RW	Bit[7:0]: green color coefficient
0x5806	LENC_BGAIN	8'h80	RW	Bit[7:0]: blue color coefficient
		Y		Bit[7]: xy_offset_man_en
				Bit[5]: hskip_man_en
0x5807	LENC_CTRL07	8'h00	RW	Bit[4]: vskip_man_en
				Bit[3:2]: r_hskip
				Bit[1:0]: r_vskip
				Bit[7:2]: RESERVED
0x5808	LENC_XCNT	8'h2	RW	Bit[1:0]: xcnt[9:8]
				horizontal center
0x5809	LENC_XCNT	8'h8a	RW	Bit[7:0]: xcnt[7:0]

地址	寄存器名	默认值	读/写	描述
				Bit[7:2]: RESERVED
0x580a	LENC_YCNT	8'h1	RW	Bit[1:0]: ycnt[9:8]
				vertical center
0x580b	LENC_YCNT	8'hf0	RW	Bit[7:0]: ycnt[7:0]

4.4 自动白平衡

自动白平衡(AWB)的目的是移除图像上不真实的色彩点,以使人眼识别的白色物体在图像或视频画面中同样显示为白色。亦即,AWB模块将保证白色像素点在不同的色温条件下保持不变。支持手动白平衡和自动白平衡。自动白平衡时,将会对图像应用简单自动白平衡和高级自动白平衡。高级自动白平衡会将光源的色温考虑进去,即白色光的相对暖度和冷度。

表 4-4 AWB 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x5000	ISP_CTRL00	8'h99	RW	Bit[3]: awb_gain_en Bit[0]: auto white balance enable 0~ disable 1~ enable
0x5180	AWB_CTRL00	8'h04	RW	Bit[7:0]: stable_range
0x5181	AWB_CTRL01	8'h8	RW	Bit[7:6]: stable_range
8x5182	AWB_CTRL02	8'h0	RW	Bit[0]: gain_man_en

4.5 VAR

VAR 的目的是完成水平和垂直降采样。

表 4-5 VAR 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x5000	ISP_CTRL00	8'h99	RW	Bit[4]: var_en
				Bit[7]: b_avg_en
				Bit[6]: gb_avg_en
			RW	Bit[5]: gr_avg_en
0x5900	VAR_CTRL00	8'h01		Bit[4]: r_avg_en
				Bit[3]: debug_en
				Bit[2]: single_channel bypass
				Bit[1:0]: addopt
0x5901 VAR_CTRL01	WAD CTDI 01	8'h0	DW	Bit[3:2]: hskip
	VAR_CTREUI		RW	Bit[1:0]: vskip

4.6 亮度均值计算

亮度均值计算(YAVG)模块的目的是利用制定窗口的数据来计算图像数据的亮度均值。

表 4-6 YAVG 控制寄存器

地址	寄存器名	默认值	读/写	描述
				Bit[7:4]: RESERVED
0x5680	AVC VSTADT	011 00	RW	Bit[3:0]: r_avg x start[11:8]
0x3080	0x5680 AVG_XSTART 8'h	8 1100	8'h00 RW	horizontal start position for
				average window
				Bit[7:0]: r_avg x start[11:8]
0x5681	5681 AVG_XSTART 8'h00	8'h00	RW	horizontal start position for
			average window	

地址	寄存器名	默认值	读/写	描述	
	0x5682 AVG_YSTART		RW	Bit[7:4]: RESERVED	
0x5682		8'h00		Bit[3:0]: r_avg y start[11:8]	
0x3002	AVO_ISTAKI	0 1100	IX VV	vertical start position for	
				average window	
				Bit[7:0]: r_avg y start[11:8]	
0x5683	AVG_YSTART	8'h00	RW	vertical start position for	
				average window	
				Bit[7:4]: RESERVED	
0x5684	AVG_WIN_WIDTH	8'h10	RW	Bit[3:0]: r_win_width[11:8]	
				the width for average window	
0x5685	AVG_WIN_WIDTH	8'ha0	RW	Bit[7:0]: r_win_width[7:0]	
	AVO_WIN_WIDTH	o nao		the width for average window	
				Bit[7:4]: RESERVED	
0x5686	AVG_WIN_HEIGHT	8'h0c	8'h0c	8'h0c RW	Bit[3:0]: r_win_height[11:8]
				the height for average window	
0x5687	AVG_WIN_HEIGHT	8'h67	RW	Bit[7:0]: r_win_height[7:0]	
	AVO_WIN_IIEIOIII	GH1 8 no/ R	IX VV	the height for average window	
0x5688	AVG_CTRL08	8'h2	2 RW	Bit[1]: avg_opt	
UAJUOO	AVO_CINLO	0 112		Bit[0]: win_man	
0x568a	averge	_	RO		

5 图像传感器寄存器列表

5.1 SC

表 5-1 SC 控制寄存器

地址	寄存器名	默认值	读/写	描述
02000	SC_REG00	8'h01	RW	Bit[0]: manual stream enable
0x3000				$Sleep = Bit[0] p_pwdn_i GPIO[0]$
		8'h00	RW	Bit[7]: rst avg
				Bit[6]: isp
				Bit[4]: rst blc
0x3001	SC_REG01			Bit[3]: rst sync
				Bit[2]: rst sensor_ctrl
				Bit[1]: rst timing_ctrl
				Bit[0]: rst aec_pk
	SC_REG02	8'h00	RW	Bit[4]: rst channel gain
0x3002				Bit[3]: rst dvp_pre
083002				Bit[1]: rst data_pre
				Bit[0]: rst dvp
				Bit[7]: sclk_sel_pad
	SC_REG04	8'h02	RW	1~ p_clk_i
0x3004				0~ pll_sclk_i
				Bit[6]: r_sclk_div2_en
				Bit[4:0]: sclk2x_div

地址	寄存器名	默认值	读/写	描述
		8'h22		Bit[7:4]: ppump_div
			RW	0/1∼ ÷1
02005				2~ ÷2
0x3005	SC_REG05			3~ ÷ 3
				Bit[3:0]: npump_div
				Bit[7]: c_vsync_o
				Bit[6]: c_pclk_o
0x3006	DIR_CTRL0	8'hff	RW	Bit[5]: c_href_o
				Bit[4]: c_fsin_o
			1	Bit[3:0]: c_y_o[11:8]
0x3007	DIR_CTRL1	8'hff	RW	Bit[7:0]: c_y_o[7:0]
0x3008	I2C_ID	8'h60	RW	I ² C slave ID
	GPIO_CTRL	8'h00	RW	Bit[7:4]: gpio_dir[3:0]
0x3009				0~ input
0x3009				1~ output
				Bit[3:0]: gpio_out[3:0]
0x300a	SC_CTRL0A	8'h01	RW	Bit[0]: sys_rst_enable
0.2010	PLL_CTRL1	9'b20	DW	Bit[7:6]: pll1_cp
0x3010		8'h20	RW	Bit[5:0]: pll1_multiplier
				Bit[7]: pll1_bypass
0v2011	PLL_CTRL0	8'h86	RW	Bit[6:4]: pll1_prediv
0x3011				Bi[3]: pll1_cp2[2]
				Bit[2:0]: pll1_sdiv
0x3080	GPIO_IN		RO	input of GPIO[3:0]

SC1035	Datasheet

5.2 SB CONTROL

表 5-2 SB 控制寄存器

地址	寄存器名	默认值	读/写	描述
				Bit[7:4]: RESERVED
0x2140	SB_SCCB_CTRL	8'h00	RW	Bit[3]: r_sda_dly_en
				Bit[2:0]: r_sda_dly
				Bit[7:5]: RESERVED
	SB_SCCB_OPT		RW	Bit[4]: en_ss_addr_inc
				Bit[3]: r_sda_byp_sync
0x2141		8'h12		0~ two clock stage sync for sda_i
				1~ no sync for sda_i
UX2141				Bit[2]: r_scl_byp_sync
				0~ two clock stage sync for scl_i
				1~ no sync for scl_i
				Bit[1]: r_msk_glitch
				Bit[0]: r_msk_stop
0x2042	SB_SCCB_FILTER	8'h00	RW	Bit[7:4]: r_sda_num
			17. 44	Bit[3:0]: r_scl_num

5.3 BLC SYNC

表 5-3 BLC SYNC 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x3780	BLC_SYNC00	8'h01	RW	Bit[5:0]: ASP delay cycles

地址	寄存器名	默认值	读/写	描述
0x3781	BLC_SYNC01	8'h10	RW	Bit[7]: incremental pattern enable
				Bit[4]: r_raw1_swap_en
				Bit[3]: r_raw0_swap_en
				Bit[2]: rbule reverse
				Bit[1]: adc_g channel first enable
				Bit[0]: adclk_inv

5.4 CHANNEL GAIN

表 5-4 CHANNEL GAIN 控制寄存器

地址		默认值	读/写	描述
TIDAIL				
	CHANNEL_GAIN00	8'h06	RW	Bit[5]: r_fpn_line_gain_en
				Bit[4]: r_row_same_gain_en
0x3100				Bit[3]: r_blue_sel
0.000				Bit[2]: r_link_blank_gain_en
				Bit[1]: r_black_line_gain_en
				Bit[0]: r_channel_gain_en
	CHANNEL_GAIN01	8'h00	RW	Bit[7]: r_black_line_f_sel_o
				Bit[5]: r_fpn_line_f_en
				Bit[4]: r_fpn_rnc_en
0x3101				Bit[3]: r_fpn_awb_en
				Bit[2]: r_fpn_dpc_oned_en
				Bit[1]: r_fpn_lenc_en
				Bit[0]: r_fpn_blc_en
0x3102	R_B0_GAIN_H	8'h10	RW	r_b0_gain[12:8]
0x3103	R_B0_GAIN_L	8'h00	RW	r_b0_gain[7:0]

地址	寄存器名	默认值	读/写	描述
0x3104	R_GB0_GAIN_H	8'h10	RW	r_gb0_gain[12:8]
0x3105	R_GB0_GAIN_L	8'h00	RW	r_gb0_gain[7:0]
0x3106	R_B1_GAIN_H	8'h10	RW	r_b1_gain[12:8]
0x3107	R_B1_GAIN_L	8'h00	RW	r_b1_gain[7:0]
0x3108	R_GB1_GAIN_H	8'h10	RW	r_gb1_gain[12:8]
0x3109	R_GB1_GAIN_L	8'h00	RW	r_gb1_gain[7;0]
0x310a	R_RG0_GAIN_H	8'h10	RW	r_rg0_gain[12:8]
0x310b	R_RG0_GAIN_L	8'h00	RW	r_rg0_gain[7:0]
0x310c	R_R0_GAIN_H	8'h10	RW	r_r0_gain[12:8]
0x310d	R_R0_GAIN_L	8'h00	RW	r_r0_gain[7:0]
0x310e	R_RG1_GAIN_H	8'h10	RW	r_rg1_gain[12:8]
0x310f	R_RG1_GAIN_L	8'h00	RW	r_rg1_gain[7:0]
0x3110	R_R1_GAIN_H	8'h10	RW	r_r1_gain[12:8]
0x3111	R_R1_GAIN_L	8'h00	RW	r_r1_gain[7:0]
0x3112	R_FPN_ROW_START_H	8'h00	RW	high byte of r_fpn_row_start
0x3113	R_FPN_ROW_START_L	8'h08	RW	low byte of r_fpn_row_start
0x3114	R_FPN_ROW_END_H	8'h00	RW	high byte of r_fpn_row_end
0x3115	R_FPN_ROW_END_L	8'h0c	RW	low byte of r_fpn_row_end
0x3116	R_FPN_COL_COUNT_H	8'h00	RW	high byte of r_fpn_col_count
0x3117	R_FPN_COL_COUNT_L	8'h64	RW	low byte of r_fpn_col_count

SC1035	Datasheet
	<u> </u>

5.5 AEC

表 5-5 AEC 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x3500	AEC_CTRL00	8'h78	RW	Bit[7]: debug mode Bit[6]: less one line enable Bit[5]: band function enable Bit[4]: less 1 band enable Bit[3]: start selection Bit[2]: night mode Bit[1]: new balance function Bit[0]: freeze
0x3501	AEC_MIN_EXPOSURE	8'h01	RW	Bit[7:0]: minimum exposure minimum exposure output limit
0x3502	AEC_MAX_EXPO_H (60Hz)	8'h3d	RW	Bit[7:0]: maximum exposure[15:8] 60Hz maximum exposure output limit
0x3503	AEC_MAX_EXPO_L (60Hz)	8'h80	RW	Bit[7:0]: maximum exposure[7:0] 60Hz maximum exposure output limit
0x3504	DEBUG MODE	8'h00	RW	

地址	寄存器名	默认值	读/写	描述
				AEC system control 2
				Bit[7]: debug mode
				Bit[6]: frame insert
				0~ in night mode insert frame
				disable
				1~ in night mode insert frame
0x3505	AEC_CTRL05	8'h30	RW	enable
				Bit[5]: step auto enable
				0~ step manual mode
				1~ step auto mode
				Bit[4:0]: step auto ratlo
				in step auto mode ratle setting to
				adjust speed
	AEC_CTRL06			AEC system control 3
				Bit[7:5]: debug mode
0x3506		8'h10	RW	Bit[4:0]: step manual setting 1
				step manual increase mode fast
				step
				AEC system step register
	0x3507 AEC_CTRL07			Bit[7:4]: step manual setting 2
0x3507		8'h18	RW	step manual slow step
				Bit[3:0]: step manual setting 3
				step manual fast step
				50Hz band width
0x3508	AEC_B50_STEP	8'h01	RW	Bit[7:2]: debug mode
				Bit[1:0]: b50 step[9:8]

地址	寄存器名	默认值	读/写	描述
0x3509	AEC_B50_STEP	8'h01	RW	50Hz band width
UX3309	AEC_B30_STEF	0 1101	IX VV	Bit[7:0]: b50 step[7:0]
				60Hz band width
0x350a	AEC_B60_STEP	8'h01	RW	Bit[7:2]: debug mode
				Bit[1:0]: b60 step[9:8]
0x350b	AEC_B60_STEP	8'h01	RW	60Hz band width
0x3300	AEC_DOU_STEF	0 1101	IX VV	Bit[7:0]: b60 step[7:0]
				Bit[7:4]: E1 max
0x350c	AEC CTDLOC	0'ha4	DW	decimal line high limit zone
0x3300	AEC_CTRL0C	8'he4	RW	Bit[3:0]: E1 min
				decimal line low limit zone
	AEC_CTRL0D	8'h08	RW	60Hz max bands in one frame
0x350d				Bit[7:6]: debug mode
				Bit[5:0]: b60 max
	AEC_CTRL0E	8'h06	RW	50Hz max bands in one frame
0x350e				Bit[7:6]: debug mode
				Bit[5:0]: b50 max
02506	AEC CTRLOE	0,1,70	DW	stable range hig limit
0x350f	AEC_CTRL0F	8'h78	RW	Bit[7:0]: WPT
02510	AEC CTPL 10	0,1,00	DW	stable range low limit
0x3510	AEC_CTRL10	8'h68	RW	Bit[7:0]: BPT
				stable manual mode fast zone high
0x3511	AEC_CTRL11	8'hd0	RW	limit
				Bit[7:0]: VPT high

地址	寄存器名	默认值	读/写	描述
				Bit[7]: debug mode
0x3513	AEC_CTRL13	8'h40	RW	Bit[6]: pre_gain enable
				Bit[5:0]: pre_gain_value
				50Hz maximum exposure output
0x3514	AEC_MAX_EXPO_H	8'h0e	DIV	limit
UX3314	(50Hz)	o nue	RW	Bit[7:4]: debug mode
				Bit[3:0]: maximum exposure[11:8]
	AEC MAY EYDO I		RW	50Hz maximum exposure output
0x3515	AEC_MAX_EXPO_L (50Hz)	8'h40		limit
	(30112)			Bit[7:0]: maximum exposure[7:0]
	AEC_CTRL17		RW	gain base when in night mode
		8'h01		Bit[7:2]: debug mode
				Bit[1:0]: gain night threshold
0x3517				00~ 00
				01~ 10
				10~ 30
				11~ 70
				gain output top limit
0v3518	AEC_GAIN_CEILING	8'h03	RW	Bit[7:3]: debug mode
0x3318	AEC_GAIN_CEILING	0 1103	IX VV	Bit[2:0]: aec gain ceiling[9:8]
				real gain format
				gain output top limit
0x3519	AEC_GAIN_CEILING	8'he0	RW	Bit[7:0]: aec gain ceiling[7:0]
				real gain format

reserved default value for this	地址	寄存器名	默认值	读/写	描述
Bit[7:0]: difference minimal					reserved default value for this
0x351b AEC_CTRL1B 8'h78 RW stable range high limit(go out) Bit[7:0]: WPT2	0x351a	AEC_DIFF_MIN	8'h04	RW	register
0x351b AEC_CTRL1B 8'h78 RW Bit[7:0]: WPT2 exposure values added when strobe exposure values added when strobe 0x351c LED_ADD_ROW 8'h06 RW is on Bit[7:0]: AEC LED add row[7:0] exposure values added when strobe 0x351d LED_ADD_ROW 8'h18 RW is on Bit[7:0]: AEC LED add row[7:0] stable range low limit(go out) Bit[7:0]: BPT2 stable manual mode fast zone low 0x351f AEC_CTRL1F 8'h40 RW limit Bit[7:0]: VPT low Bit[7:0]: VPT low Bit[7:0]: debug mode 0x3520 AEC_CTRL20 8'h20 RW Bit[2]: strbe option Bit[7]: debug mode Bit[7]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[7:5]: debug mode Bit[7:5]: debug mode Bit[7:5]: debug mode					Bit[7:0]: difference minimal
Bit[7:0]: WPT2	0x351h	AFC CTRL1B	8'h78	RW	stable range high limit(go out)
0x351c LED_ADD_ROW 8'h06 RW is on Bit[7:0]: AEC LED add row[15:8] 0x351d LED_ADD_ROW 8'h18 RW is on Bit[7:0]: AEC LED add row[7:0] 0x351e AEC_CTRL1E 8'h68 RW stable range low limit(go out) Bit[7:0]: BPT2 0x351f AEC_CTRL1F 8'h40 RW limit Bit[7:0]: VPT low 0x3520 AEC_CTRL20 8'h20 RW Bit[2]: strbe option Bit[1:0]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter		The_ctrent	0 1170	IX VI	Bit[7:0]: WPT2
Bit[7:0]: AEC LED add row[15:8]					exposure values added when strobe
exposure values added when strobe 0x351d LED_ADD_ROW 8'h18 RW is on Bit[7:0]: AEC LED add row[7:0] stable range low limit(go out) Bit[7:0]: BPT2 stable manual mode fast zone low 1 limit Bit[7:0]: VPT low Bit[7:0]: VPT low Bit[7:3]: debug mode 0x3520 AEC_CTRL20 8'h20 RW Bit[1:0]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter	0x351c	LED_ADD_ROW	8'h06	RW	is on
0x351d LED_ADD_ROW 8'h18 RW is on 0x351e AEC_CTRL1E 8'h68 RW stable range low limit(go out) 0x351f AEC_CTRL1F 8'h60 RW limit 0x3520 AEC_CTRL20 8'h20 RW Bit[7:3]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode Bit[7:5]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter					Bit[7:0]: AEC LED add row[15:8]
Bit[7:0]: AEC LED add row[7:0]					exposure values added when strobe
0x351eAEC_CTRL1E8'h68RWstable range low limit(go out) Bit[7:0]: BPT20x351fAEC_CTRL1F8'h40RWlimit Bit[7:0]: VPT low0x3520AEC_CTRL208'h20RWBit[7:3]: debug mode0x3521AEC_CTRL218'h78RWBit[6:4]: strbe option Bit[3:0]: debug mode0x3522AEC_CTRL258'h00RWBit[4:2]: freeze counter	0x351d	LED_ADD_ROW	8'h18	RW	is on
0x351e AEC_CTRL1E 8'h68 RW Bit[7:0]: BPT2 stable manual mode fast zone low 0x351f AEC_CTRL1F 8'h40 RW limit Bit[7:0]: VPT low Bit[7:3]: debug mode 0x3520 AEC_CTRL20 8'h20 RW Bit[2]: strbe option Bit[7]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter					Bit[7:0]: AEC LED add row[7:0]
Sit[7:0]: BPT2 stable manual mode fast zone low 0x351f AEC_CTRL1F 8'h40 RW limit Bit[7:0]: VPT low Bit[7:3]: debug mode 0x3520 AEC_CTRL20 8'h20 RW Bit[2]: strbe option Bit[1:0]: debug mode Bit[7]: debug mode Bit[7:5]: debug mode Bit[7:5]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode Bit[7:5]: debug mode Bit[7:5]: debug mode	0x351e	AEC_CTRL1E	8'h68	RW	stable range low limit(go out)
0x351f AEC_CTRL1F 8'h40 RW limit Bit[7:0]: VPT low Bit[7:3]: debug mode 0x3520 AEC_CTRL20 8'h20 RW Bit[2]: strbe option Bit[1:0]: debug mode Bit[7]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode Bit[7:5]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter					Bit[7:0]: BPT2
Bit[7:0]: VPT low Bit[7:3]: debug mode 0x3520 AEC_CTRL20 8'h20 RW Bit[2]: strbe option Bit[1:0]: debug mode Bit[7]: debug mode Bit[6:4]: strbe option Bit[3:0]: debug mode Bit[7:5]: debug mode Bit[7:5]: debug mode Bit[7:5]: debug mode					stable manual mode fast zone low
0x3520 AEC_CTRL20 8'h20 RW Bit[7:3]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[1:0]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode Bit[7:5]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter	0x351f	AEC_CTRL1F	8'h40	RW	limit
0x3520 AEC_CTRL20 8'h20 RW Bit[2]: strbe option Bit[1:0]: debug mode Bit[7]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode Bit[7:5]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter					Bit[7:0]: VPT low
Bit[1:0]: debug mode Bit[7]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode Bit[7:5]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter		AEC_CTRL20	8'h20		Bit[7:3]: debug mode
Bit[7]: debug mode 0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode Bit[7:5]: debug mode 8'h00 RW Bit[4:2]: freeze counter	0x3520			RW	Bit[2]: strbe option
0x3521 AEC_CTRL21 8'h78 RW Bit[6:4]: strbe option Bit[3:0]: debug mode Bit[7:5]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter					Bit[1:0]: debug mode
Bit[3:0]: debug mode Bit[7:5]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter	0x3521	AEC_CTRL21			Bit[7]: debug mode
Bit[7:5]: debug mode 0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter			8'h78	RW	Bit[6:4]: strbe option
0x3522 AEC_CTRL25 8'h00 RW Bit[4:2]: freeze counter					Bit[3:0]: debug mode
					Bit[7:5]: debug mode
	0x3522	AEC_CTRL25	8'h00	RW	Bit[4:2]: freeze counter
Bit[1:0]: debug mode					Bit[1:0]: debug mode

SC1035	Datasheet

5.6 AEC PK

表 5-6 AEC PK 控制寄存器

地址	寄存器名	默认值	读/写	描述
				exposure output
0x3e00	AEC_PK_EXPOSURE	8'h00	RW	Bit[7:4]: debug mode
				Bit[3:0]: exposure[19:16]
0x3e01	AEC_PK_EXPOSURE	8'h02	RW	exposure output
0.001	AEC_I K_EAI OSUKE	0 1102	IX VV	Bit[7:0]: exposure[15:8]
				exposure output
0x3e02	AEC_PK_EXPOSURE	8'h00	RW	Bit[7:0]: exposure[7:0]
0.00.00.2	ALC_I K_LAI OSUKL	8 1100	KW	lower four bits are a fraction of a
				line, do not use
				AEC manual mode control
				Bit[7:2]: debug mode
				Bit[1]: AGC manual
0x3e03	AEC_PK_MANUAL	8'h00	RW	0~ auto enable
UXSCUS	AEC_FK_MANUAL	8 1100		1~ manual enable
				Bit[0]: AEC manual
				0~ auto enable
				1~ manual enable
				SNR gain
0x3e08	AEC_PK_SNR_GAIN	8'h00	RW	Bit[7:2]: debug mode
				Bit[1:0]: snr gain[9:8]

地址	寄存器名	默认值	读/写	描述
				SNR gain
0x3e09	AEC_PK_SNR_GAIN	8'h10	RW	Bit[7:0]: snr gain[7:0]
UXJEUJ	AEC_FK_SINK_GAIN	6 1110	IX VV	Bit[3:0] fine gain
				Bit[6:4] sa1 gain
				real gain
0x3e0a	AEC_PK_REAL_GAIN	8'h00	RW	Bit[7:2]: debug mode
				Bit[1:0]: real gain[9:8]
0x3e0b	AEC_PK_REAL_GAIN	8'h00	RW	real gain
0.000	ALC_I K_KLAL_OAIIV	0 1100		Bit[7:0]: real gain[7:0]
0x3e0c	AEC_PK_VTS	8'h00	RW	AEC VTS output
	ALC_I K_V IS			Bit[7:0]: VTS[15:8]
0x3e0d	AEC_PK_VTS	8'h00	RW	AEC VTS output
OXSCOU	ALC_I K_VIS			Bit[7:0]: VTS[7:0]
				Bit[7]: r_cexp_sel
		Y		1~ aec_expo
				0~ aec_expo[15:4]
0x3e0e	AEC_PK_CTRL0E	8'h54	RW	Bit[6]: r_dcg_auto_en
UXJEUC	UXSEUE AEC_PK_CIRLUE	0 1134	IXVV	Bit[5]: r_sa1_gain_overflowen
				Bit[4]: r_fine_gain_dcg_sel
				Bit[3:0]:
				r_fine_gain_dcg_compensate

地址	寄存器名	默认值	读/写	描述
0x3e0f	AEC_PK_CTRL0F	8'h10	RW	Bit[4]: r_dig_gain_sel1 1~ agc_adj[9:0] 0~ else Bit[3]: r_dig_gain_sel2 1~ agc_adj[8:7] 0~ {1'b0, agc_adj[8]} Bit[2]: r_blc_dig_gain_man_en Bit[1:0]: the value manual dig gain

5.7 ANA REG

表 5-7 ANA REG 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x3600	ADC	8'h54	RW	ADC[7:0]
0x3601	ADC	8'h03	RW	ADC[15:8]
0x3602	ADC	8'h2f	RW	ADC[23:16]
0x3603	ADC	8'h00	RW	ADC[32:24]
0x3610	ANALOG	8'h2c	RW	ANALOG[7:0]
0x3611	ANALOG	8'h66	RW	ANALOG[15:8]
0x3612	ANALOG	8'h80	RW	ANALOG[23:16]
0x3613	ANALOG	8'h88	RW	ANALOG[31:24]
0x3614	ANALOG	8'h08	RW	ANALOG[39:32]
0x3615	A_TEST	8'h00	RW	
0x3616	ANALOG6	8'h00	RW	
0x3617	ANALOG7	8'h00	RW	
0x3618	ANALOG8	8'h00	RW	

地址	寄存器名	默认值	读/写	描述
0x3620	ARRAY	8'h88	RW	ARRAY[7:0]
0x3621	ARRAY	8'h03	RW	ARRAY[15:8]
0x3622	ARRAY	8'h00	RW	ARRAY[23:16]
0x3630	PWC	8'h80	RW	PWC[7:0]
0x3631	PWC	8'h88	RW	PWC[15:8]
0x3632	PWC	8'h40	RW	PWC[23:16]
0x3633	PWC	8'h64	RW	PWC[31:24]
0x3634	PWC	8'h91	RW	PWC[39:32]
0x3635	PWC	8'h80	RW	PWC[47:40]
0x3640	PAD_CTRL	8'h00	RW	

5.8 SENSOR CTRL

表 5-8 SENSOR CTRL 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x3300	SENSOR_REG00	8'h56	RW	Bit[7:4]: y_rst gap
0A3300	0X3300 SENSOR_REGOO 8 H30 RW	IXVV	Bit[3:0]: y_hblk gap	
0x3301	SENSOR_REG01	8'h5d RW	Bit[7:4]: y_tx gap	
0x3301	01 SENSOR_REG01 8'h5d R	IX VV	Bit[3:0]: y_sig gap	
0x3302	SENSOR_RSTGOLOW	8'h50	RW	rst go low point
0x3303	SENSOR_HLDWIDTH	8'h9a	RW	hblk/hsig width
0x3304	SENSOR_TXWIDTH	8'h9a	RW	tx width_sa
02205	CENCOD DECOS	0'h 2	RW	Bit[7:4]: y_xlckb width
0x3305	SENSOR_REG05	8'hc3	IX VV	Bit[2:0]: y_rs gap
0x3306	SENSOR_REG06	8'h31	RW	chip debug

Company Confidential

地址	寄存器名	默认值	读/写	描述
				Bit[7]: r_vario
0x3307				Bit[6]: r_pvario4
	SENSOR_REG07	8'h03	RW	Bit[5]: r_pvario2
	SENSOR_REGUT	6 1103	IX VV	Bit[4]: pre-pre-charge enable for
				long exposure
				Bit[3:0]: long pre-pre-charge
				Bit[7]: rst_all_hi
				Bit[6]: sample rs_all_hi
				Bit[5]: sample rs_all_low
				Bit[4]: tx high enable
				Bit[3]: ptxlow
0x3308	SENSOR_REG08	8'h00	RW	Bit[2]: stxlow
				Bit[1:0]: hld2s, hld switch
			7	00∼ hblk, hsig
				01∼ hblk, hblk
				10∼ hsig, hsig
				11∼ hsig, hblk

地址	寄存器名	默认值	读/写	描述
				Bit[7]: r_rblue_pol
				Bit[6]: pre-pre-charge enable for
				short exposure
				Bit[5]: auto rstyz go low enable
				1∼ rstyz go low when finish
				readout of one data line
0x3309	SENSOR_REG09	8'h28	RW	0∼ rstyz go low control by
0.000	SENSOR_REGO/	0 1120	ICVV	0x3712,0x3713
				Bit[4]: RESERVED
				Bit[3]: adclk gate enable when
				rstyz is low
				Bit[2]: RESERVED
				Bit[1]: hsig always low
				Bit[0]: hblk always low
				Bit[7]: tx always high
				Bit[6]: y_addr_o change delay
				one cycle
				Bit[5]: dkblc
0x330a	SENSOR_REG0A	8'h00	RW	Bit[4]: rst keep low when
				sample Bit[3]: bitsw_pol
				Bit[2]: cbar
				Bit[1]: ptest
				Bit[0]: rst keep low after sample
				Bit[7:4]: prsdip
0x330b	SENSOR_REG0B	8'h11	RW	Bit[3]: noxlckb
				Bit[2:0]: srsdip

地址	寄存器名	默认值	读/写	描述
				Bit[7]: short_first_man_en
				Bit[6]: short_first_man
				Bit[5]: salen will go low
				between 2 samples
0x330c	SENSOR_REG0C	8'h07	RW	Bit[4]: old fexp enable
UXSSUC	SENSOR_REGUC	0 1107	IX VV	Bit[3]: btsw will go low between
				2 samples
				Bit[2]: sa1_off_en
				Bit[1]: holdbs1_en
				Bit[0]: holdbs0_en
		8'h00	RW	Bit[7]: array rblue fix
				Bit[6]: prs all high
				Bit[5]: prs all low
0x330d	SENSOR_REG0D			Bit[4]: rstgolow when pchg
0X330 u	SENSUR_REGUD			Bit[3]: sa1en all high
				Bit[2]: sa1en all low
				Bit[1]: eq all high
				Bit[0]: eq1 all low
0x330e	SENSOR_REG0E	8'h00	RW	RESERVED
0x330f	SENSOR_REG0F	8'h40	RW	RESERVED
0v3310	SENSOR_REG10	8'h23	RW	Bit[4]: r_tx_same_width
	SENSOR_REGIO	0 1123	IXVV	Bit[3:0]: short ppchg lines
0x3312	SENSOR_RSTYZ_GOLOW	8'h00	RW	rstyz_golow[15:8]
0x3313	SENSOD DSTV7 COLOW	8'h20	RW	Bit[7:0]: rstyz_golow[7:0]
UX3313	SENSOR_RSTYZ_GOLOW			Bit[0]: holdb_pol
0x3314	SENSOR_EQ_GOLOW	8'h08	RW	Eq go low

地址	寄存器名	默认值	读/写	描述
				Bit[7]: btsw high sel
				$1 \sim tc_cs = r_bl_hi$
				0∼ xlckb when sample
				Bit[6]: btsw fix enable
				Bit[5]: ck_ap delay one cycle go
				high
				Bit[4]: ck_ap delay one cycle go
0x3315	SENSOR_REG15	8'h04	RW	low
				Bit[3]: hld_pol
				Bit[2]: short pchg TX signal will
		Ś		go high when non-hdr mode
				Bit[1]: short sample TX signal
				will go high when non-hdr mode
				Bit[0]: short hold signal will go
				high when non-hdr mode
				Bit[2]: aec frame reverse
				Bit[1]: shadow canceling 1 line
0x3316	SENSOR_STROBE_CTRL	8'h03	RW	strobe mode
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Bit[0]: shadow cancel auto
				mode enable
0-2217	CENCOD CEDODE WIDTH	021-01	DW	Bit[7]: r_neg_vblankp1_sel
UX331/	SENSOR_STROBE_WIDTH	8'h01	RW	Bit[3:0]: r_stb_w
02210	GENGOD GED GE MAN	021-00	DW	Bit[7:0]: shadow cancel manual
0x3318	SENSOR_STB_ST_MAN	8'h00	RW	strobe start line, high byte
02210	GENGOD GED GE MAN	021-00	DW	Bit[7:0]: shadow cancel manual
0x3319	SENSUK_SIB_ST_MAN	8'h00	RW	strobe start line, low byte
0x3319	SENSOR_STB_ST_MAN	8'h00	RW	

寄存器名	默认值	读/写	描述
STR END MAN	Q'h01	DW/	Bit[7:0]: shadow cancel manual
SID_END_MAIN	6 1101	IX VV	strobe end line, high byte
SENSOD STD END MAN	0'h01	$\mathbf{R}\mathbf{W}$	Bit[7:0]: shadow cancel manual
SID_END_WAN	0 1101	IX VV	strobe end line, low byte
CTRL1C	8'h00	RW	
			Bit[7:0]: bitsw_gohi[7:0]
			Bit[1]: holdb enable when
BITSW_HI	8'h00	RW	hsig
		Bit[0]: holdb enable when	
			hblk
TXWIDTH	8'h7a	RW	tx width_pchg
SENSOR_CTRL31	8'h48	RW	Bit[7:5]: r_blc_border_row_num
			Bit[4:0]: r_blc_read_num
			Bit[7]: r_yadd_adj_en
			Bit[6]: r_yadd_vflip_en
CTRL32	8'hb8	RW	Bit[5]: r_yadd_fpn_vflip_en
			Bit[4]: r_yadd_blc_vflip_en
			Bit[3:0]: r_fpn_real_num
STR OK START	8,400	PΩ	high byte of good start line of
SIB_OK_SIAKI	6 1100	KO	shadow cancelling strobe
STR OK START	8,400	PΩ	low byte of good start line of
SOK_SIB_OK_SIAKI 8°NUU I	KO	shadow cancelling strobe	
STR OK END	8°h00	PO	high byte of good end line of
SID_OK_END	0 1100		shadow cancelling strobe
STD OV END	Q'1500	P.O	low byte of good end line of
DID_OK_END	6 HUU	KU	shadow cancelling strobe
	BITSW_HI TXWIDTH CTRL31	STB_END_MAN 8'h00 CTRL1C 8'h00 BITSW_HI 8'h00 TXWIDTH 8'h7a CTRL31 8'h48 CTRL32 8'hb8 STB_OK_START 8'h00 STB_OK_START 8'h00 STB_OK_END 8'h00	STB_END_MAN 8'h01 RW CTRL1C 8'h00 RW BITSW_HI 8'h00 RW CTRL31 8'h48 RW CTRL32 8'hb8 RW STB_OK_START 8'h00 RO STB_OK_END 8'h00 RO

地址	寄存器名	默认值	读/写	描述
0x3344	SENSOR_STB_EXP_WIDTH	8'h00	RO	high byte of shadow cancelling strobe width for each line
0x3345	SENSOR_STB_EXP_WIDTH	8'h00	RO	low byte of shadow cancelling strobe width for each line
0x3348	SENSOR_CTRL48	8'h00	RO	chip debug
0x3349	SENSOR_CTRL49	8'h00	RO	chip debug
0x334a	SENSOR_CTRL4A	8'h00	RO	chip debug
0x334b	SENSOR_CTRL4B	8'h00	RO	chip debug
0x334c	SENSOR_CTRL4C	8'h00	RO	chip debug
0x334d	SENSOR_CTRL4D	8'h00	RO	chip debug
0x334e	SENSOR_CTRL4E	8'h00	RO	chip debug
0x334f	SENSOR_CTRL4F	8'h00	RO	chip debug

5.9 TIMING CTRL

表 5-9 TIMING_CTRL 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x3200	TIMING_X_START_ADDR	8'h00	RW	high byte of horizontal start address of ARRAY for readout
0x3201	TIMING_X_START_ADDR	8'h00	RW	low byte of horizontal start address of ARRAY for readout
0x3202	TIMING_Y_START_ADDR	8'h00	RW	high byte of vertical start address of ARRAY for readout
0x3203	TIMING_Y_START_ADDR	8'h00	RW	low byte of vertical start address of ARRAY for readout

地址	寄存器名	默认值	读/写	描述
0x3204	TIMING_X_END_ADDR	8'h05	RW	high byte of horizontal end address of ARRAY for readout
0x3205	TIMING_X_END_ADDR	8'h67	RW	low byte of horizontal end address of ARRAY for readout
0x3206	TIMING_Y_END_ADDR	8'h03	RW	high byte of vertical end address of ARRAY for readout
0x3207	TIMING_Y_END_ADDR	8'hcf	RW	low byte of vertical end address of ARRAY for readout
0x3208	TIMING_X_OUTPUT_SIZE	8'h05	RW	high byte of DVP horizontal output size(pixel)
0x3209	TIMING_X_OUTPUT_SIZE	8'h00	RW	low byte of DVP horizontal output size(pixel)
0x320a	TIMING_Y_OUTPUT_SIZE	8'h03	RW	high byte of DVP vertical output size(pixel)
0x320b	TIMING_Y_OUTPUT_SIZE	8'he3	RW	low byte of DVP vertical output size(pixel)
0x320c	TIMING_HTS	8'h07	RW	high byte of horizontal total size
0x320d	TIMING_HTS	8'he0	RW	low byte of horizontal total size
0x320e	TIMING_VTS	8'h04	RW	high byte of vertical total size
0x320f	TIMING_VTS	8'h38	RW	low byte of vertical total size
0x3210	TIMING_HOFFS	8'h00	RW	high byte of win_hoffs
0x3211	TIMING_HOFFS	8'h10	RW	low byte of win_hoffs
0x3212	TIMING_VOFFS	8'h00	RW	high byte of win_voffs
0x3213	TIMING_VOFFS	8'h02	RW	low byte of win_voffs

地址	寄存器名	默认值	读/写	描述
0x3215	TIMING_CTRL15	8'h80	RW	Bit[7]: black line href enable Bit[6]: FSIN interrupt enable Bit[5]: rip sof enable Bit[4]: horizontal crop manual enable Bit[2]: r_vts_double_opt_en Bit[1]: r_vts_double_en Bit[0]: r_vts_double_change_sel 1~ asp_rd 0~ tc_cs==1&&tc_r==0
0x3216	TIMING_CTRL16	8'h1a	RW	black lines number
0x3217	TIMING_CTRL17	8'h00	RW	Bit[7:4]: tc_sof vertical start line number
0x3219	TIMING_CTRL19	8'h00	RW	
0x321c	TIMING_CTRL1C	8'h00	RW	Bit[7]: vflip to digital Bit[6]: vflip in array Bit[1]: vsub4 Bit[0]: vsub2
0x321d	TIMING_CTRL1D	8'h00	RW	Bit[7]: vflip black line Bit[6]: hdr_en Bit[1]: mirror to digital Bit[0]: mirror to array
0x321e	REGVS	8'h00	RW	high byte of the vref1 start row
0x321f	REGVS	8'h1a	RW	low byte of the vref1 start row

地址	寄存器名	默认值	读/写	描述
				Bit[7]: r_debug_sof_sel
				0~ data_pre_sof
				1∼ tc_sof_blc
				Bit[6]: r_dvp_href_in_sel
				0∼ use normal rows
				1∼ use href from dvp_pre
				that remove four rows
0x3220	CORE_CTRL3	8'h00	RW	Bit[5]: r_dvp_hsub2_man_en
				Bit[4]: r_f5060_sel
				Bit[3]: r_dvp_eof_sel
				0∼ eof from isp
		1		1∼ eof from dvp_pre
				Bit[2]: r_adclk1_neg_sel
				Bit[1]: r_adclk_inv
				Bit[0]: r_dvp_hsub2_man
	CODE CEDIA		RW	Bit[6:3]: r_fine_gain_man
02221		0'L01		Bit[2]: r_fine_gain_man_en
0x3221	CORE_CTRL2	8'h01		Bit[1]: r_aec_agc_change
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Bit[0]: r_sa1_off_s[4]
0-2222	CODE CIDI 1	0.1-00	DW	Bit[7:4]: r_sa1_off_s[3:0]
0x3222	CORE_CTRL1	8'h00	RW	Bit[3:0]: r_sa1_off_l[4:1]
				Bit[7]: r_sa1_off_l[0]
0x3223	CORE_CTRL0	8'h02	RW	Bit[2]: r_fmt_change for blc
				Bit[0]: fexp_sel for sensor ctrl
0. 2222	TRANC TO CO DOT	8'h00	DW	timing control horizontal
0x3232	TIMING_TC_CS_RST		RW	counter reset value, high byte

地址	寄存器名	默认值	读/写	描述
0x3233	TIMING_TC_CS_RST	8'h00	RW	timing control horizontal
				counter reset value, low byte
				timing control vertical counter
0x3234	TIMING_TC_R_RST	8'h00	RW	reset value(vts-tc_r_rst), high
				byte
				timing control vertical counter
0x3235	TIMING_TC_R_RST	8'h00	RW	reset value(vts-tc_r_rst), low
				byte
0x3240	TIMING_TC_P_CNT	8'h00	RO	timing control pixel counter
		0 1100	NO	high byte
0x3241	TIMING_TC_P_CNT	8'h00	RO	timing control pixel counter low
				byte
0x3242	TIMING_TC_R_CNT	8'h00	RO	timing control line counter high
				byte
0x3243	TIMING_TC_R_CNT	8'h00	RO	timing control line counter low
	111/111/0_10_10_1/1	0 1100		byte
				Bit[3]: group 3 hit, can be
				written to 0
				Bit[2]: group 2 hit, can be
0x3244	TIMING_GRP_STS	8'h00	RO	written to 0
0.0.3.2.1.1	TIMINO_GINT_BTB	0 1100	RO	Bit[1]: group 1 hit, can be
				written to 0
				Bit[0]: group 0 hit, can be
				written to 0
0x3248	TIMING_FRAME_CNT	8'h00	RO	timing control frame counter
0AJ2 1 0	THAIN TO THE MANUEL CITY	0 1100	KU	high byte

地址	寄存器名	默认值	读/写	描述
0v2240 T	TIMING_FRAME_CNT	8'h00	RO	timing control frame counter
UAJ2 4 7	THVIIIVO_TRAINIL_CIVI	0 1100	RO	low byte

5.10 BLC

表 5-10 BLC 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x3209	BLC_CTRL00	8'h05	RW	Bit[3]: blackline_avg_frame Bit[2]: adc_11bit_mode Bit[1]: apply2blackline Bit[0]: blc_enable
0x3901	BLC_CTRL01	8'h00	RW	Bit[5:0]: blc_start_line[5:0]
0x3902	BLC_CTRL02	8'h45	RW	Bit[7]: format_change_en format_change_i from fmt will be effect when it is enable Bit[6]: blc_auto_en Bit[5:0]: reset_frame_num
0x3903	BLC_CTRL03	8'h08	RW	Bit[7]: blc_redo_en 1~ trigger a blc redo N frames begin Bit[6]: freeze_enable Bit[5:0]: manual_frame_num
0x3904	BLC_CTRL04	8'h08	RW	Bit[5:0]: blc_line_num

Company Confidential

地址	寄存器名	默认值	读/写	描述
				Bit[7]: RESERVED
				Bit[6]: one_channel
				Bit[5]: one_line_mode
				Bit[4]: remove_none_imagedata
				Bit[3]: blc_man_1_en
				Bit[2]: blackline_bggr_man_en
0x3905	BLC_CTRL05	8'h18	RW	1∼ bgbg/grgr fix
				0∼ bgbg/gtgr is decided by
				rblue/hswap
				Bit[1]: blc_always_up_en
				1∼ blc always update
				0∼ normal freeze
				Bit[0]: agc_change_from_sys

				Bit[7:5]: RESERVED
				Bit[4:3]: win_sel
				00∼ full image
				01∼ a window don't contain
				the first 16 pixels and the end 16
				pixels
				10∼ a window don't contain
				the first 1/16 image and the end
				1/16image
0x3906 BLC_	CTRL06	8'h02	RW	11~ a window don't contain
				the first 1/8 image and the end
				1/8 image
				Bit[2:0]: bypass_mode
			y	000∼ bypass data_i after limit
				bits
				001~ bypass data_i[11:0]
				010~ bypass data_i[12:1]
				011~ bypass debug data bbrr
	>			100∼ bypass debug data gggg
0x3907 TARC	ET	8'h00	RW	high byte of target
0x3908 TARC	ET	8'h40	RW	low byte of target
0x3909 BLC_	MANUAL00	8'h00	RW	high byte of blc_manual00
0x390a BLC_	MANUAL00	8'h00	RW	low byte of blc_manual00
0x390b BLC_	MANUAL01	8'h00	RW	high byte of blc_manual01
0x390c BLC_	MANUAL01	8'h00	RW	low byte of blc_manual01
0x390d BLC_	MANUAL02	8'h00	RW	high byte of blc_manual02

地址	寄存器名	默认值	读/写	描述
0x390e	BLC_MANUAL02	8'h00	RW	low byte of blc_manual02
0x390f	BLC_MANUAL03	8'h00	RW	high byte of blc_manual03
0x3910	BLC_MANUAL03	8'h00	RW	low byte of blc_manual03
0x3911	BLC_LEVEL00	—	RO	high byte of blc_level00
0x3912	BLC_LEVEL00	—	RO	low byte of blc_level00
0x3913	BLC_LEVEL01	_	RO	high byte of blc_level01
0x3914	BLC_LEVEL01	_	RO	low byte of blc_level01
0x3915	BLC_LEVEL10	—	RO	high byte of blc_level10
0x3916	BLC_LEVEL10		RO	low byte of blc_level10
0x3917	BLC_LEVEL11	_	RO	high byte of blc_level11
0x3918	BLC_LEVEL11	-	RO	low byte of blc_level11
0x391b	BLC_MAX	8'hff	RW	blc_man[7:0]
	BLC_CTRL1C	8'h8f	RW	Bit[7]: stable_range_en
				Bit[6:0]: stable_range
0x391c				if offset difference of two
				frames out of the stable range
				blc will work
				Bit[7]: hswap_sync
				Bit[6]: hswap_blc
				Bit[5]: mirror_man_en
0x391d	BLC_CTRL1D	8'h00	RW	Bit[4]: mirror_man
UAJJIU	DLC_CIKLID	0 1100	17. 44	Bit[3]: RESERVED
				Bit[2]: r_col_13_exchange_1
				Bit[1]: r_col_02_exchange_1
				Bit[0]: r_col_01_exchange_1

地址	寄存器名	默认值	读/写	描述
			·	Bit[7:5]: RESERVED
				Bit[4]: hswap_sync_2
0x391e	BLC_CTRL1E	8'h00	RW	Bit[3]: RESERVED
0,3,710	DEC_CIREIE	6 H00	IXVV	Bit[2]: r_col_13_exchange_2
				Bit[1]: r_col_02_exchange_2
				Bit[0]: r_col_01_exchange_2
0x3920	BLC_MANUAL10	8'h00	RW	high byte of blc_manual10
0x3921	BLC_MANUAL10	8'h00	RW	low byte of blc_manual10
0x3922	BLC_MANUAL11	8'h00	RW	high byte of blc_manual11
0x3923	BLC_MANUAL11	8'h00	RW	low byte of blc_manual11
0x3924	BLC_MANUAL12	8'h00	RW	high byte of blc_manual12
0x3925	BLC_MANUAL12	8'h00	RW	low byte of blc_manual12
0x3926	BLC_MANUAL13	8'h00	RW	high byte of blc_manual13
0x3927	BLC_MANUAL13	8'h00	RW	low byte of blc_manual13
0x3928	BLC_CTRL28	8'h01	RW	Bit[0]: r_blc_4channel_en
0x3929	BLC_LEVEL02	_	RO	high byte of blc_level02
0x392a	BLC_LEVEL02	_	RO	low byte of blc_level02
0x392b	BLC_LEVEL03	_	RO	high byte of blc_level03
0x392c	BLC_LEVEL03		RO	low byte of blc_level03
0x392d	BLC_LEVEL12		RO	high byte of blc_level12
0x392e	BLC_LEVEL12		RO	low byte of blc_level12
0x392f	BLC_LEVEL13	_	RO	high byte of blc_level13
0x3930	BLC_LEVEL13		RO	low byte of blc_level13

SC1035	Datasheet

5.11 RNC

表 5-11 RNC 控制寄存器

地址	寄存器名	默认值	读/写	描述
				Bit[7]: hswap
				Bit[6]: r_blacklevel_on_channel
				Bit[5]: r_one_channel
				Bit[4]:
0x3400	RNC_CTRL00	8'h05	RW	r_remove_none_imagedata
				Bit[3]: r_apply2blackline
				Bit[2]: r_rnc_man_1_en
				Bit[1]: r_rnc_auto_en
				Bit[0]: r_rnc_en
				Bit[7:6]: r_rnc_bypass_mode
	$A\lambda$			00~ data_i[IM_DW-2:0]
				don't care
				the high bit data_i[IM_DW-1]:
				data_i[IM_DW-1:1]
0x3401	RNC_CTRL01	8'h07	RW	Bit[5]: dkc_channel_gain_en
				Bit[4]: dkc_blc_en
				Bit[3]: dkc_f_en_o
				Bit[2]: r_8channel
				Bit[1]: r_rnc_offset_sign
				Bit[0]: r_darkrow_f_auto
0x3402	RNC_CTRL02	8'h00	RW	r_rnc_start_col
0x3403	RNC_CTRL03	8'h40	RW	r_rnc_col_num

地址	寄存器名	默认值	读/写	描述
0x3404	RNC_CTRL04	8'h00	RW	r_rnc_man00[7:0]
0x3405	RNC_CTRL05	8'h00	RW	Bit[4:0]: r_rnc_man00[12:8]
0x3406	RNC_CTRL06	8'h00	RW	r_rnc_man01[7:0]
0x3407	RNC_CTRL07	8'h00	RW	Bit[4:0]: r_rnc_man01[12:8]
0x3408	RNC_CTRL08	8'h00	RW	r_rnc_man02[7:0]
0x3409	RNC_CTRL09	8'h00	RW	Bit[4:0]: r_rnc_man02[12:8]
0x340a	RNC_CTRL0A	8'h00	RW	r_rnc_man03[7:0]
0x340b	RNC_CTRL0B	8'h00	RW	Bit[4:0]: r_rnc_man03[12:8]
0x340c	RNC_CTRL0C	8'h00	RW	r_rnc_man10[7:0]
0x340d	RNC_CTRL0D	8'h00	RW	Bit[4:0]: r_rnc_man10[12:8]
0x340e	RNC_CTRL0E	8'h00	RW	r_rnc_man11[7:0]
0x340f	RNC_CTRL0F	8'h00	RW	Bit[4:0]: r_rnc_man11[12:8]
0x3410	RNC_CTRL10	8'h00	RW	r_rnc_man12[7:0]
0x3411	RNC_CTRL11	8'h00	RW	Bit[4:0]: r_rnc_man12[12:8]
0x3412	RNC_CTRL12	8'h00	RW	r_rnc_man13[7:0]
0x3413	RNC_CTRL13	8'h00	RW	Bit[4:0]: r_rnc_man13[12:8]
0x3414	RNC_CTRL14	8'h00	RW	r_rnc_offset[7:0]
				Bit[6:4]:
0x3415	RNC_CTRL15	8'h00	RW	r_blacklevel_man[10:8]
				Bit[2:0]: r_rnc_offset[10:8]
0x3416	RNC_CTRL16	8'hc0	RW	r_blacklevel_man[7:0]

SC1035	Datasheet

5.12 ISP PRE

表 5-12 ISP PRE 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x503d	ISP_CTRL61	8'h00	RW	Bit[7]: color bar test pattern enable 0~ disable 1~ enable Bit[6]: dmy_half Bit[5:4]: color bar style Bit[3]: dmy_man Bit[2]: rolling Bit[1]: isp_test Bit[0]: squ_size
0x503e	ISP_CTRL62	8'h00	RW	Bit[6:4]: rnd_seed Bit[3]: squ_bw Bit[2]: trans Bit[1:0]: test_sel
0x5054	ISP_CTRL63	8'h92	RW	Bit[7]: r_vsize_in_sel 1:select calculate result 0: normal value Bit[6:0]: r_fpn_num The number of fpn to calculate vsize

SC1035	Datasheet

5.13 LENC

表 5-13 LENC 控制寄存器

地址	寄存器名	默认值	读/写	描述
	·	•		Bit[7]: LENC correction enable
0x5000	ISP_CTRL00	8'h99	RW	0~ disable
				1~ enable
				Bit[6]: no_delay
				1~ sel data_i do lenc
				0~ data_3d do lenc
0.5000 LENG CEPLOO 01100	1	Bit[5]: debug mode		
	0.11-00	DW	Bit[4]: lenc_bias_en	
UX38UU	0x5800 LENC_CTRL00	8'h90	RW	1~ sub bias before do lenc
			Y	0∼ use data_i do lenc
				Bit[1]: sel deltagain
		Bit[0]: sel_ra, if lenc enable select		
				test mode
0x5801	LENC_RADIUS	8'h20	RW	Bit[7:0]: lenc_radius
0x5802	LENC_XOFFSET	8'h20	RW	Bit[7:0]: the horizontal start size
0x5803	LENC_YOFFSET	8'h10	RW	Bit[7:0]: the vertical start size
0x5804	LENC_RGAIN	8'h80	RW	Bit[7:0]: red color coefficient
0x5805	LENC_GGAIN	8'h80	RW	Bit[7:0]: green color coefficient
0x5806	LENC_BGAIN	8'h80	RW	Bit[7:0]: blue color coefficient

地址	寄存器名	默认值	读/写	描述
				Bit[7]: xy_offset_man_en
				Bit[5]: hskip_man_en
0x5807	LENC_CTRL07	8'h00	RW	Bit[4]: vskip_man_en
				Bit[3:2]: r_hskip
				Bit[1:0]: r_vskip
				Bit[7:2]: RESERVED
0x5808	LENC_XCNT	8'h2	RW	Bit[1:0]: xcnt[9:8]
				horizontal center
0x5809	LENC_XCNT	8'h8a	RW	Bit[7:0]: xcnt[7:0]
				Bit[7:2]: RESERVED
0x580a	LENC_YCNT	8'h1	RW	Bit[1:0]: ycnt[9:8]
				vertical center
0x580b	LENC_YCNT	8'hf0	RW	Bit[7:0]: ycnt[7:0]

5.14 AWB

表 5-14 AWB 控制寄存器

地址	寄存器名	默认值	读/写	描述
				Bit[3]: awb_gain_en
0.5000 100 000 000 000 000	8'h99	DIII	Bit[0]: auto white balance enable	
0x3000	0x5000 ISP_CTRL00 8	8 1199	RW	0~ disable
			1~ enable	
0x5180	AWB_CTRL00	8'h04	RW	Bit[7:0]: stable_range
0x5181	AWB_CTRL01	8'h8	RW	Bit[7:6]: stable_range
8x5182	AWB_CTRL02	8'h0	RW	Bit[0]: gain_man_en

SC1035	Datasheet

5.15 DPC ONED

表 5-15 DPC ONED 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x5000	ISP CTRL00	8'h99	RW	Bit[2]: wc_en white pixel cancellation
023000	ISI_CTRL00	8 H23	IX VV	Bit[1]: bc_en black pixel cancellation

5.16 WINDOW

表 5-16 WINDOW 控制寄存器

0x5700 WINDOW_XSTART 8'h00 RW Bit[7:4]: RESERVED 0x5701 WINDOW_XSTART 8'h00 RW Bit[7:0]: r_x_start[11:8] horizontal start position for window Bit[7:0]: r_x_start[7:0] horizontal start position for window Bit[7:4]: RESERVED 8'h00 RW Bit[3:0]: r_y_start[11:8] vertical start position for window 0x5703 WINDOW_YSTART 8'h00 RW Bit[7:0]: r_y_start[7:0] vertical start position for window Bit[7:4]: RESERVED	地址	寄存器名	默认值	读/写	描述
horizontal start position for window 0x5701 WINDOW_XSTART 8'h00 RW Bit[7:0]: r_x_start[7:0] horizontal start position for window Bit[7:4]: RESERVED Bit[3:0]: r_y_start[11:8] vertical start position for window Bit[7:0]: r_y_start[7:0] vertical start position for window Bit[7:0]: r_y_start[7:0] vertical start position for window					Bit[7:4]: RESERVED
0x5701 WINDOW_XSTART 8'h00 RW Bit[7:0]: r_x_start[7:0] horizontal start position for window Bit[7:4]: RESERVED Bit[3:0]: r_y_start[11:8] vertical start position for window Bit[7:0]: r_y_start[11:8] vertical start position for window REV Bit[7:0]: r_y_start[11:8] vertical start position for window	0x5700	WINDOW_XSTART	8'h00	RW	Bit[3:0]: r_x_start[11:8]
0x5701 WINDOW_XSTART 8'h00 RW horizontal start position for window Bit[7:4]: RESERVED 0x5702 WINDOW_YSTART 8'h00 RW Bit[3:0]: r_y_start[11:8] vertical start position for window 0x5703 WINDOW_YSTART 8'h00 RW Bit[7:0]: r_y_start[7:0] vertical start position for window					horizontal start position for window
horizontal start position for window Bit[7:4]: RESERVED Bit[3:0]: r_y_start[11:8] vertical start position for window Bit[7:0]: r_y_start[7:0] vertical start position for window	0v5701	WINDOW YSTART	8'h00	DW	Bit[7:0]: r_x_start[7:0]
0x5702 WINDOW_YSTART 8'h00 RW Bit[3:0]: r_y_start[11:8] vertical start position for window 0x5703 WINDOW_YSTART 8'h00 RW Bit[7:0]: r_y_start[7:0] vertical start position for window	023701	WINDOW_ASTAKT	8 1100	IX VV	horizontal start position for window
vertical start position for window 0x5703 WINDOW_YSTART 8'h00 RW Bit[7:0]: r_y_start[7:0] vertical start position for window					Bit[7:4]: RESERVED
0x5703 WINDOW_YSTART 8'h00 RW Bit[7:0]: r_y_start[7:0] vertical start position for window	0x5702	WINDOW_YSTART	8'h00	RW	Bit[3:0]: r_y_start[11:8]
0x5703 WINDOW_YSTART 8'h00 RW vertical start position for window					vertical start position for window
vertical start position for window	0v5703	WINDOW VCTADT	9°500	DW	Bit[7:0]: r_y_start[7:0]
Bit[7:4]: RESERVED	0x3703	window_isiaki	KI 8 NOO KW	K W	vertical start position for window
					Bit[7:4]: RESERVED
0x5704 WINDOW_WIDTH 8'h03 RW Bit[3:0]: r_win_width[11:8]	0x5704	WINDOW_WIDTH	8'h03	RW	Bit[3:0]: r_win_width[11:8]
the width for window					the width for window

地址	寄存器名	默认值	读/写	描述
0x5705	WINDOW_WIDTH	8'h20	8'h20 RW	Bit[7:0]: r_ win_width [7:0]
	_			the width for window
0x5706	6 WINDOW_HEIGHT 8'h02 RW	8'h02	RW	Bit[7:4]: RESERVED
				Bit[3:0]: r_win_height[11:8]
		the height for window		
0x5707	WINDOW HEIGHT	8'h5c RW	Bit[7:0]: r_ win_ height[7:0]	
0.007	WINDOW_HEIGHT		the height for window	
0x5708	WINDOW_MAN_EN	8'h00	RW	Bit[0]: win_man_en

5.17 VAR

表 5-17 VAR 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x5000	ISP_CTRL00	8'h99	RW	Bit[4]: var_en
	1			Bit[7]: b_avg_en
				Bit[6]: gb_avg_en
				Bit[5]: gr_avg_en
0x5900	VAR_CTRL00	8'h01	RW	Bit[4]: r_avg_en
			Bit[3]: debug_en	
			Bit[2]: single_channel bypass	
				Bit[1:0]: addopt
0x5901	VAR_CTRL01	8'h0	RW	Bit[3:2]: hskip
	VIII_CIREUI	0 110	17.11	Bit[1:0]: vskip

SC1035	Datasheet

5.18 YAVG

表 5-18 YAVG 控制寄存器

地址	寄存器名	默认值	读/写	描述
0x5680	AVG_XSTART	8'h00	RW	Bit[7:4]: RESERVED Bit[3:0]: r_avg x start[11:8] horizontal start position for average window
0x5681	AVG_XSTART	8'h00	RW	Bit[7:0]: r_avg x start[11:8] horizontal start position for average window
0x5682	AVG_YSTART	8'h00	RW	Bit[7:4]: RESERVED Bit[3:0]: r_avg y start[11:8] vertical start position for average window
0x5683	AVG_YSTART	8'h00	RW	Bit[7:0]: r_avg y start[11:8] vertical start position for average window
0x5684	AVG_WIN_WIDTH	8'h10	RW	Bit[7:4]: RESERVED Bit[3:0]: r_win_width[11:8] the width for average window
0x5685	AVG_WIN_WIDTH	8'ha0	RW	Bit[7:0]: r_win_width[7:0] the width for average window
0x5686	AVG_WIN_HEIGHT	8'h0c	RW	Bit[7:4]: RESERVED Bit[3:0]: r_win_height[11:8] the height for average window

SC1035	Datasheet

地址	寄存器名	默认值	读/写	描述
0x5687	AVG_WIN_HEIGHT	8'h67	RW	Bit[7:0]: r_win_height[7:0] the height for average window
0x5688	AVG_CTRL08	8'h2	RW	Bit[1]: avg_opt Bit[0]: win_man

5.19 DATA PRE

表 5-19 DATA PRE 控制寄存器

地址	寄存器名	默认值	读/写	描述
				Bit[7:3]: RESERVED
				Bit[2]: the switch of hsub_i
				Bit[1]: pclk inv en
0x3f00	DATA_PRE_CTRL00	8'h00	RW	1∼ enable
0x3100	DATA_FRE_CTRE00	8 1100	IX VV	0∼ disable
				Bit[0]: data_pre en
				1∼ enable
				0∼ disable
0x3f01	DATA_PRE_CTRL01	8'h00	RW	RESERVED

5.20 DVP PRE

表 5-20 DVP PRE 控制寄存器

地址	寄存器名	默认值	读/写	描述
				Bit[7]: r_hsync_sel
				Bit[6]: r_hsync_mod
				Bit[5:4]: r_first_sel
0x3f80	DVP_PRE_CTRL00	8'h00	RW	Bit[1]: r_hsync_sel2
				Bit[0]: r_dvp_pre_en
				1∼ enable
				0∼ disable
				Bit[7:0]: r_hsync_st
0x3f81	DVP_PRE_CTRL01	8'h06	RW	length of hsync posedge to href
				posedge
				Bit[7:0]: r_hsync_ed
0x3f82	DVP_PRE_CTRL02	8'h06	RW	length of href negedge to hsync
				negedge
				Bit[7:0]: r_eof_dly
0x3f83	DVP_PRE_CTRL03	8'h30	RW	length of eof posedge to href
				negedge

5.21 **DVP**

表 5-21 DVP 控制寄存器

地址	寄存器名	默认值	读/写	描述
			•	Bit[7:4]: RESERVED
				Bit[3]: CCIR v select
0x3d00	DVP_MOD_SEL	8'h04	RW	Bit[2]: CCIR f select
				Bit[1]: CCIR565 mode enable
				Bit[0]: HSYNC mode enable
0x3d01	DVP_VSYNC_WIDTH	8'h00	RW	VSYNC length, line count
0x3d02	DVP_HSYNVSY_	8'h00	RW	VSYNC length, pixel count high
0x3u02	NEG_WIDTH			byte
0x3d03	DVP_HSYNVSY_	8'h01	RW	VSYNC length, pixel count low
	NEG_WIDTH	0 1101	KW	byte
			RW	Bit[7:4]: RESERVED
0x3d04	DVP_VSYNC_MOD	8'h00		Bit[3:2]: r_vsyncout_sel
0A3d0+	DVI_VSTNC_WOD	0 1100		Bit[1]: r_vsync3_mod
		Y		Bit[0]: r_vsync2_mod
0x3d05	DVP_EOF_VSYNC_	8'h00	RW	SOF/EOF negative edge to vsync
	DELAY	0 1100	IX VV	positive edge high byte
0x3d06	DVP_EOF_VSYNC_	8'h00	RW	SOF/EOF negative edge to vsync
OAJUOU	DELAY	0 1100	17.11	positive edge middle byte
0x3d07	DVP_EOF_VSYNC_	8'h00	RW	SOF/EOF negative edge to vsync
UAJUU I	DELAY	0 1100	17.44	positive edge low byte

地址	寄存器名	默认值	读/写	描述
				Bit[7]: CLK DDR mode enable
				Bit[6]: RESERVED
				Bit[5]: VSYNC gate clock enable
				Bit[4]: HREF gate clock enable
0x3d08	DVP_POL_CTRL	8'h01	RW	Bit[3]: No first for FIFO
				Bit[2]: HREF polarity
				Bit[1]: VSYNC polarity
				Bit[0]: PCLK polarity/PCLK gate
				low enable
				Bit[7]: fifo_bypass_mode
		8'h00	RW	Bit[6:4]: data bit swap
02400				Bit[3]: bit test mode
0x3d09	DVP_MOTO_ORDER			Bit[2]: bit test 10-bit
				Bit[1]: bit test 8-bit
				Bit[0]: bit test enable
				Bit[4]: href_sel
				1∼ hsync
0240-	DVD CTDI 04	021-00	DW	0∼ href
0x3d0a	DVP_CTRL0A	8'h00	RW	Bit[3:0]: byp_sel for debug mode
				Bit[3]: debug mode en
				Bit[2:0]: debug mode sel

6 图像传感器数据输出格式和时序

SC1035 提供并行视频端口(DVP),输出 10-bit 并行数据。其中,每个 FSYNC 脉冲信号表示新的一帧数据的起始。

图 6-1 DVP 时序

注 1: 通常情况下,L2F_dly 表示最后视频线下降沿至 FSYNC 上升沿间时延; F2L_dly 表示 FSYNC 下降沿至第一条视频线上升沿间时延; FSYNC 宽度默认值为一条视频线的宽度; 一条视频线的宽度默认为 1400 个 Tp (像素时钟周期)。

2: 以上各参量均可通过寄存器来修改。

7 电特性参数

表 7-1 最大额定值

项目	符号	额定值	单位	备注
电源电压	AVDD	0.2.45	V	/
(模拟 3.3V)	AVDD	-0.3~4.5	V	
电源电压	DOVDD	0.2.45	V	
(接口 3.3V)	DOVDD	-0.3~4.5	V	7
电源电压	DUDD	0.2.2.0	V	
(数字 1.5V)	DVDD	-0.3~2.0	V	
输入电压		-0.3~DOVDD+0.3	V	
输出电压		-0.3~DOVDD+0.3	V	
工作温度		-40~+85	°C	
贮存温度		-50~+120	°C	
性能保证温度		-10~+65	°C	
输出电压 工作温度 贮存温度		-0.3~DOVDD+0.3 -40~+85 -50~+120	V °C °C	

表 7-2 直流电气特性

项目	符号	最小值	典型值	最大值	単位
电源					
供电电压	AVDD	2 14	2.2	2 47	V
(模拟 3.3V)	AVDD	3.14	3.3	3.47	V
供电电压	DOVDD	1.7	3.3	3.47	V
(接口 3.3V)	DOVDD	1./	3.3	3.47	V
供电电压	DVDD	1.43	1.5	1.57	V
(数字 1.5V)	טטיט	1.43	1.5	1.37	v

项目	符号	最小值	典型值	最大值	单位
有效电流 (模拟电源)	I_{DD-A}	_	40	60	mA
有小电流 (IO 电源)	$I_{DD\text{-}IO}$	_	30	45	mA
数字输入(典型	型条件:AVI	DD=3.3V, DOV	DD=1.8~3.3V)		
输入低电平	V_{IL}	_	_	$0.3 \times DOVDD$	V
输入高电平	V _{IH}	$0.7 \times DOVDD$		-	V
输入电容	C_{IN}	_	-	10	pF
数字输出(25p	F 标准负载))			
输出高电平	V_{OH}	0.9×DOVDD	7		V
输出低电平	V_{OL}	-	-)	$0.1 \times DOVDD$	V
串行接口输入					
SCL和 SDA	$ m V_{IL}$	-0.5	0	0.3×DOVDD	V
输入低电平	V IL	-0.3	U	עעייטע < כ.ט	v
SCL和 SDA	V_{IH}	$0.7 \times DOVDD$	DOVDD	DOVDD+0.5	V
输入高电平	V IH	0.7 × DO V DD	DOVDD	DO (DD⊤0.5	v

表 7-3 交流特性 (TA=25 °C, AVDD=3.3V, DOVDD=3.3V)

项目	符号	最小值	典型值	最大值	单位
交流参数					
直流微分线性误差	ILE	_	<2	_	LSB
软复位设置时间		_	_	1	ms
更改分辨率设置时间		_	_	1	ms

Company Confidential

项目	符号	最小值	典型值	最大值	単位
配置寄存器设置时间		<u> </u>	<u> </u>	300	ms
晶振和时钟输入					
输入时钟频率	Fosc	_	6	_	MHz
输入时钟上升/下降				5	n .c
时间		_	_	5	ns

8 封装

8.1 封装尺寸

图 8-1 PLCC44 封装示意图 (单位:mm)

SC1035	Datasheet

9 光学参数

9.1 传感器阵列中心

表 9-1 传感器阵列中心

项目	坐标
模具中心	(0,0)
阵列中心	(145μm,-105μm)

注: 阵列中心与封装体中心在±0.1mm 误差允许范围内重合。

版本历史

版本	说明	章节
1.0	初始版本。	N/A
1.1	1.在"关键指标"节更改封装类型和封装	1.提供信息和关键指标。
	尺寸。	4
	2.更改 表 1-1 和 图 1-1 中封装信息。	2.第1章。
	3.更新 图 8-1。	3.第7章。
1.2	1.增加 I ² C 接口时序参数(表 2-3)和 I ² C	1.第 2.4 节。
	时序图(图 2-4)。	
	2.更新应用电路。	2.第 2.2 节。
	3.更新封装信息。	3.第1章和第7章。
	4.为表 9-1 加标注。	4.第8章。