

A Simulation TOol for Neural Network Engines

José L. Abellán, PhD

jlabellan@ucam.edu

Universidad Católica de Murcia (UCAM)

Organizers

Tushar Krishna
Associate Professor, School of ECE
Georgia Institute of Technology
tushar@ece.gatech.edu

José L. Abellán
Associate Professor
Universidad Católica de Murcia
jlabellan@ucam.edu

Manuel E. Acacio

Full Professor

University of Murcia

meacacio@um.es

Ph.D Student
Georgia Institute of Technology
raveesh.g@gatech.edu

Martinez
Ph.D Student
University of Murcia
francisco.munoz2@um.es

Time (CET)	Time (ET)	Topic	Presenter	
14:00 – 14:40	8:00 – 8:40	Flexible Accelerators	Tushar Krishna	
14:40 – 15:10	8:40 – 9:10	Cycle accurate simulation and Overview of STONNE	José Luis Abellán	
15:10 – 16:10	9:10 – 10:10	(Hands-on) STONNE Deep-Dive	Francisco Muñoz-Martínez	
16:10 – 16:40	10:10 - 10:40	Coffee Break		
16:40 – 17:10	10:40 – 11:10	(Hands-on) STONNE Deep-Dive	Francisco Muñoz-Martínez	
17:10 – 17:40	11:10 – 11:40	Dataflow exploration for Graph Neural Networks	Raveesh Garg	
17:50 – 18:00	11:50 – 12:00	Roadmap for Future Development	Manuel Acacio	

Tutorial Website https://stonne-simulator.github.io/ASPLOSTUT.html
 includes agenda and STONNE/OMEGA installation instructions

Time (CET)	Time (ET)	Topic	Presenter
14:00 – 14:40	8:00 – 8:40	Flexible Accelerators	Tushar Krishna
14:40 – 15:10	8:40 – 9:10	Cycle accurate simulation and Overview of STONNE	José Luis Abellán
15:10 – 16:10	9:10 - 10:10	(Hands-on) STONNE Deep-Dive	Francisco Muñoz-Martínez
16:10 – 16:40	10:10 - 10:40	Coffee Break	
16:40 – 17:10	10:40 – 11:10	(Hands-on) STONNE Deep-Dive	Francisco Muñoz-Martínez
17:10 – 17:40	11:10 – 11:40	Dataflow exploration for Graph Neural Networks	Raveesh Garg
17:50 – 18:00	11:50 – 12:00	Roadmap for Future Development	Manuel Acacio

Tutorial Website https://stonne-simulator.github.io/ASPLOSTUT.html
 includes agenda and STONNE/OMEGA installation instructions

Outline

- Motivation
- STONNE Framework
- Validation
- Uses Cases of STONNE
- Conclusions

Outline

- Motivation
- STONNE Framework
- Validation
- Uses Cases of STONNE
- Conclusions

Cycle-level Architectural Simulation

Chip-Designing Process

Architectural Simulation

Accurate Architectural Design Prototyping!

Cycle-level Architectural Simulators

- Microarchitectural simulators have been extensively used during the design process of CPUs (Gem5) and GPUs (MGPUSim)
- However, how can we simulate the wide diversity of DNN accelerators (i.e., rigid, flexible and data-dependent optimizations)?
 - We need cycle-level simulation.
 - We need to support flexible (dense and sparse) and rigid accelerators.
 - We need to perform end-to-end simulation.

Cycle-level Architectural Simulators

- Microarchitectural simulators have been extensively used during the design process of CPUs (Gem5) and GPUs (MGPUSim)
- However, how can we simulate the wide diversity of DNN accelerators (i.e., rigid, flexible and data-dependent optimizations)?
 - We need cycle-level simulation.
 - We need to support flexible (dense and sparse) and rigid accelerators.
 - We need to perform end-to-end simulation.

STONNE (A Simulation Tool for Neural Network Engines)

Cycle-level Architectural Simulators

- Microarchitectural simulators have been extensively used during the design process of CPUs (Gem5) and GPUs (MGPUSim)
- However, how can we simulate the wide diversity of DNN accelerators (i.e., rigid, flexible and data-dependent optimizations)?
 - We need cycle-level simulation.
 - We need to support flexible (dense and sparse) and rigid accelerators.

	Cycle Level	Architecture Type	Sparsity Support	FullModel Eval	DataDep Opt
MAERI BSV	✓	Flexible	X	×	X
SIGMA RTL	✓	Flexible	✓	×	×
SCALE-Sim	X	Rigid	X	X	X
MAESTRO TimeLoop	X	Both	×	×	×
DNNSim	X	Rigid	✓	×	X
SMAUG	✓	Rigid	X	✓	X
STONNE	✓	Both	✓	✓	✓

State-of-the-art Simulators for DNN Accelerators

March 1st, 2022

	Cycle Level	Architecture Type	Sparsity Support	FullModel Eval	DataDep Opt	
MAERI BSV	✓	Flexible	Х	X	Х	RTL implementations are
SIGMA RTL	✓	Flexible	✓	X	Х	slow to modify
SCALE-Sim	Х	Rigid	Х	X	Х	
MAESTRO TimeLoop	X	Both	X	×	×	
DNNSim	X	Rigid	✓	X	X	
SMAUG	✓	Rigid	X	✓	X	
STONNE	✓	Both	✓	✓	✓	

State-of-the-art Simulators for DNN Accelerators

		Cycle Level	Architecture Type	Sparsity Support	FullModel Eval	DataDep Opt	
Ì	MAERI BSV	√	Flexible	X	×	X	
Ì	SIGMA RTL	√	Flexible	✓	X	X	
	SCALE-Sim	Х	Rigid	X	X	Х	
	MAESTRO TimeLoop	X	Both	×	×	×	Analytical models are not accurate for complex designs
	DNNSim	X	Rigid	✓	X	X	·
	SMAUG	✓	Rigid	X	✓	X	
	STONNE	✓	Both	✓	✓	✓	

State-of-the-art Simulators for DNN Accelerators

Cycle-level simulation is required to faithfully model complex DNN architectures

Outline

- Motivation
- STONNE Framework
- Validation
- Uses Cases of STONNE
- Conclusions

STONNE Framework

- STONNE is a cycle-level microarchitectural simulator written in C++ for DNN inference accelerators.
- Open-Sourced under the MIT License:
 - https://github.com/stonne-simulator/stonne
- STONNE is composed of 3 main building blocks:

- STONNE is a cycle-level microarchitectural simulator written in C++ for DNN inference accelerators.
- Open-Sourced under the MIT License:
 - https://github.com/stonne-simulator/stonne
- STONNE is composed of 3 main building blocks:

• STONNE User Interface: A command line that the user can use to run an instance of the simulator with random input values.

```
[PC@User $] ./stonne -CONV -R=3 -S=3 -C=1 -G=1 -K=1 -N=1 -X=4 -Y=4 -T_R=3 -T_S=3 -T_C=1 -T_G=1 -T_K=1 -T_N=1 -T_X_=1 -T_Y_=1 -num_ms=64 -dn_bw=64 -rn_bw=64 [PC@User $] Running CONV layer in STONNE Simulator...
[PC@User $] Output files generated correctly.
```

• **PyTorch Framework**: We integrate Pytorch with STONNE so that instances of operations are off-loaded to the simulator.

• **PyTorch Framework**: We integrate Pytorch with STONNE so that instances of operations are off-loaded to the simulator.

• **PyTorch Framework**: We integrate Pytorch with STONNE so that instances of operations are off-loaded to the simulator.

Output Module

- STONNE is a cycle-level microarchitectural simulator written in C++ for DNN inference accelerators.
- Open-Sourced under the MIT License:
 - https://github.com/stonne-simulator/stonne
- STONNE is constituted by 3 main building blocks:

Output Module

 This module reports simulation statistics such as performance, compute unit utilization, and activity counts of different components such as wires, FIFOs or SRAM usage.

```
"MSNetworkStats": {
    "MSwitchStats":[
        "Total cycles": 396168,
        "Idle cycles": 1896,
        "N multiplications": 394272,
        "N input forwardings send": 0,
        "N input forwardings receive": 392496,
        "N inputs receive from memory": 1776,
        "N_weights_receive_from_memory": 8,
        "N weight fifo flush": 7,
        "N psums receive": 0,
        "N psum forwarding send": 0,
        "N configurations": 1
        ,"ActivationFifo" : {
          "N pops": 1776,
          "N pushes": 1776,
          "N fronts": 0.
          "Max occupancy": 1
```

```
[MSNetwork]
MN_WIRE WRITE=392496 READ=0
MN_WIRE WRITE=392496 READ=0
MN_WIRE WRITE=0 READ=0
MN_WIRE WRITE=392496 READ=0
MN_WIRE WRITE=392496 READ=0
MN_WIRE WRITE=0 READ=0
MN_WIRE WRITE=392496 READ=0
[GlobalBuffer]
GLOBALBUFFER READ=3582144 WRITE=3154176
....
```

Statistics.json

Statistics.counters

Output Module

4

• This module reports simulation statistics such as performance, compute unit utilization, and activity counts of different components such as wires, FIFOs or SRAM usage.

Simulation Platform

- STONNE is a cycle-level microarchitectural simulator written in C++ for DNN inference accelerators.
- Open-Sourced under the MIT License:
 - https://github.com/stonne-simulator/stonne
- STONNE is constituted by 3 main building blocks:

STONNE API, Mapper and Configuration Unit

```
x = self.conv(x) #simulated
x = self.max(x) #simulated
x = self.fc(x) #simulated
x = F.simulated sparse mm(x,y,conf='stonne_hw.cfg')#simulated
x = F.log_softmax(x, dim=1) #on cpu
```

Instruction	Description				
CreateInstance	Creates an instance of STONNE				
ConfigureCONV	Configures the accelerator to run a convolution operation				
ConfigureLinear	Configures the accelerator to run a fully-connected layer				
ConfigureDMM	Configures the accelerator to run a matrix multiplication				
ConfigureSpMM	Configures the accelerator to run a sparse matrix multipl.				
ConfigureMaxPool	Configures the accelerator to run a max pooling layer				
ConfigureData	Configures weights, input and outputs addresses from the CPU to the accelerator memory				
RunOperation	Launches the simulation according to the current configuration of the architecture				

- The Mapper generates a set of signals based on the tile and layer parameters (i.e., it determines the required signals to configure the virtual neurons).
- The **Configuration Unit** delivers the signals to the simulation engine, configuring the hardware.

- Most current DNN accelerator architectures can be logically organized as three configurable network fabrics:
 - Distribution Network
 - Multiplier Network
 - Reduction Network

Outline

- Motivation
- STONNE Framework
- Validation
- Uses Cases of STONNE
- Conclusions

Validation

• We have validated three state-of-the-art accelerators (i.e., MAERI, SIGMA and TPU) modeled with STONNE against their RTL implementations.

Design	Layer	M	N	K	RTL	STONNE	Error
					# cycles	# cycles	%
	MAERI-1	6	25	54	1338	1381	3.10%
MAERI	MAERI-2	20	25	180	16120	16081	0.24%
	MAERI-3	6	400	54	26178	26581	1.51%
	SIGMA-1	64	128	32	2321	2304	0.73%
SIGMA	SIGMA-2	256	64	64	8594	8448	1.72%
SIGNIA	SIGMA-3	256	128	64	17192	16896	1.75%
	SIGMA-4	128	1	64	139	138	0.72%
	TPU-1	16	16	32	66	67	1.50%
TPU	TPU-2	16	16	16	50	51	2.00%
110	TPU-3	32	32	16	200	204	2.00%
	TPU-4	64	64	32	1056	1072	1.50%

• Max 3.10% of difference in terms of number of cycles (1.5% on average)

Outline

- Motivation
- STONNE Framework
- Validation
- Uses Cases of STONNE
- Conclusions

F. Muñoz-Martínez, J. L. Abellán, M. E. Acacio and T. Krishna, "STONNE: Enabling Cycle-Level Microarchitectural Simulation for DNN Inference Accelerators". Proc. of **IISWC 2021**.

UC#1: DNN inference in TPU, MAERI and SIGMA

Aim: Demonstrate how STONNE can be used to conduct comprehensive evaluations of several DNN accelerators running complete DNN models

Simulated Accelerators: TPU, MAERI, SIGMA with 256 MSs and 128 elem/cycle BW

TPU-like MAERI-like SIGMA-like **Memory Controller** Dense Dense Sparse **Distribution Network PoPN** TNBN **Multiplier Network LMN** LMN DMN Reduce Network LRN ART FAN

Benchmarks:

Domain	DNN Model	Sparsity	Dominant Layer Types
	Mobilenets-V1 (M)	75%	Factorized Convolution (FC)
	Widdlienets- v i (Wi)	1570	Linear (L)
	Squeezenet (S)	70%	Squeeze Convolution (SC)
			Expand Convolution (EC)
Image Classification	Alexnet (A)	78%	Convolution (C)
			Linear (L)
	Resnets-50 (R)	89%	Residual Function (RF)
			Convolution (C)
	VGG-16 (V)	90%	Convolution (C)
			Linear (L)
Object	SSD-Mobilenets (S-M)	75%	Factorized Convolution (FC)
Detection			Linear (L)
Language	BERT (B)	60%	Transformer (TR)
Processing	DEKI (D)		Linear (L)

Results: Number of cycles

Results: Number of cycles

MAERI-like architecture 20% faster than the TPU-like architecture

Results: Number of cycles

Results: Energy

SIGMA-like architecture is 70% and 54% more energy efficient than the MAERI-like and TPU-like architectures

Aim: Prove how the **back-end of STONNE** can be easily extended to model data-dependent accelerators

Implementation:

Implementation:

Negative detection Logic

if(current_output < 0):
 result = 0;
else:
 continue();</pre>

Implementation:

Negative detection Logic

if(current_output < 0):
 result = 0;</pre>

else:

continue();

Parameters: 64 MSs and ASs, and 64 elements/cycle GB read/write BW

Benchmarks: Pure CNN models

Domain	DNN Model	Sparsity	Dominant Layer Types
Image Classification	Mobilenets-V1 (M) [15]	75%	Factorized Convolution (FC)
			Linear (L)
	Squeezenet (S) [16]	70%	Squeeze Convolution (SC)
			Expand Convolution (EC)
	Alexnet (A) [17]	78%	Convolution (C)
			Linear (L)
	Resnets-50 (R) [18]	89%	Residual Function (RF)
			Convolution (C)
	VGG-16 (V) [19]	90%	Convolution (C)
			Linear (L)
Object	SSD-Mobilenets (S-M) [20]	75%	Factorized Convolution (FC)
Detection			Linear (L)
Language	BERT (B) [21]	60%	Transformer (TR)
Processing			Linear (L)

Aim: Demonstrate that precise, full-model evaluation is required to expose the particular values used during inference

Aim: Demonstrate that precise, full-model evaluation is required to expose the particular values used during inference

Aim: Demonstrate that precise, full-model evaluation is required to expose the particular values used during inference

Aim: Demonstrate that precise, full-model evaluation is required to expose the particular values used during inference

Aim: Demonstrate that precise, full-model evaluation is required to expose the particular values used during inference

Aim: Demonstrate that precise, full-model evaluation is required to expose the particular values used during inference

Aim: Demonstrate that precise, full-model evaluation is required to expose the particular values used during inference

Implementation:

SIGMA-like

Implementation:

Implementation:

Implementation:

SIGMA-like

Pre-simulation function to order the filters based on a certain heuristic

Implementation: We implement two heuristic algorithms:

• Largest Filter First (LFF): The filters are reordered so that the sparse controller always selects the largest available filter.

- Random (RDM): The filters are reordered randomly.
- No Schedule (NS): The filters are selected as they are in the model.

Simulated Parameters: SIGMA-like architecture with 256 multipliers and adders and 128 elements/cycle Global Buffer(GB) read/write bandwidth.

Benchmarks:

Domain	DNN Model	Sparsity	Dominant Layer Types
	Mobilenets-V1 (M) [15]	75%	Factorized Convolution (FC)
	Woonenets- v1 (W) [13]	1370	Linear (L)
	Squeezenet (S) [16]	70%	Squeeze Convolution (SC)
			Expand Convolution (EC)
Image Classification	Alexnet (A) [17]	78%	Convolution (C)
			Linear (L)
	Resnets-50 (R) [18]	89%	Residual Function (RF)
			Convolution (C)
	VGG-16 (V) [19]	90%	Convolution (C)
			Linear (L)
Object	SSD-Mobilenets (S-M) [20]	75%	Factorized Convolution (FC)
Detection			Linear (L)
Language	BERT (B) /	60%	Transformer (TR)
Processing			Linear (L)

Results:

Low-Sensitive layers: Do not represent performance benefit at all

High-Sensitive layers: Up to 36% performance gain

Results:

Medium-Sensitive layers: Up to 17% performance gain

Outline

- Motivation
- STONNE Framework
- Validation
- Uses Cases of STONNE
- Conclusions

Conclusions

- As the complexity of the microarchitecture of DNN accelerators grows, the analytical models are not able to capture many important subtleties that simulation at cycle level does.
- **STONNE** is an accurate cycle-level simulator for next-generation DNN accelerator architectures.
- **STONNE** can model rigid, flexible and data-dependent accelerators performing actual computation.

https://github.com/stonne-simulator/stonne

F. Muñoz-Martínez, J. L. Abellán, M. E. Acacio and T. Krishna, "STONNE: Enabling Cycle-Level Microarchitectural Simulation for DNN Inference Accelerators". Proc. of **IISWC 2021**.

A Simulation TOol for Neural Network Engines

José L. Abellán, PhD

jlabellan@ucam.edu

Universidad Católica de Murcia (UCAM)