

Выявление проблем и потребностей

Проблема - Последствие - Цель - Решение

Метод пяти «Почему?»

- 1. Определить конкретную проблему, которую необходимо решить.
- 2. Четко сформулировать проблему.
- 3. Поиск решения следует начинать с конечного результата (проблемы) и идти к первопричине, спрашивая, почему возникает проблема.
- 4. Ответ записать под проблемой.
- 5. Если ответ не выявляет первопричину проблемы, снова задать вопрос "Почему?" и новый ответ записать ниже.
- 6. Повторять до тех пор, пока первопричина не станет очевидной.
- 7. Если ответ решает проблему, и группа согласна с ним, принимается решение, использующее ответ.

Дерево текущей реальности

Этапы построения ДТР:

- 1. Составить список нежелательных явлений
- 2. Выявить связи имеющихся проблем
- 3. Найти корневые проблемы

Диаграмма Исикавы (Рыбья кость)

- Проблема
- Причины
- Количественная оценка причин

Диаграмма Исикавы (Рыбья кость)

Customer Journey Map

Customer Journey Map (карта путешествия пользователя) — это методология развития продукта, которая основывается на подробном анализе потребностей и поведения аудитории.

Что показывает СЈМ:

- в каких точках аудитория соприкасается с продуктом;
- как разные сегменты аудитории взаимодействуют с продуктом;
- какие этапы пользователи проходят на пути к своим целям и какие эмоции при этом испытывают;
- где они сталкиваются с барьерами, не позволяющими достигать целей;
- насколько благополучно пользователи переходят с одного этапа на другой.

Карта эмпатии

Метрики сервиса

- Оценка заинтересованности клиента Как бы вы себя почувствовали, если бы вам пришлось отказаться от использования нашего продукта?
- MRR (регулярный месячный доход)
- Lifetime Value (LTV) пожизненная ценность клиента (сколько дохода принесёт один клиент за все время работы)
- СРА Расходы на привлечение клиента

Практическое задание 004

Элемент	Описание
Проблема	*описание проблемы*
Воздействует на	*Указание лиц, на которых оказывает влияние
	данная проблема*
результатом чего	*Описание воздействия данной проблемы на
является	заинтересованных лиц и бизнес-деятельность*
Выигрыш от	*Указание предлагаемого решения*
может состоять в	*Список основных предоставляемых решением
следующем	преимуществ*

Графические нотации моделирования бизнес процессов

Виды графических нотаций

- BPMN
- IDEF0
- IDEF3
- ARIS eEPC
- UML

IDEF0

IDEF0 - нотация графического моделирования, используемая для создания функциональной модели, отображающей структуру и функции системы, а также потоки информации и материальных объектов, связывающих эти функции.

Особенности:

- использование контекстной диаграммы;
- поддержка декомпозиции;
- доминирование;
- 4 типа стрелок: "Вход", "Выход", "Механизм", "Управление".

IDEF0 - Контекстная диаграмма

Диаграмма, на которой объект моделирования представлен единственным блоком с граничными стрелками.

Стрелки отображают связи объекта моделирования с окружающей средой.

IDEF0 - Диаграмма процесса

Входы - преобразуются или расходуются процессом.

Управления (сверху) - условия, при которых выполняется процесс.

Выходы - произведенные данные или материальные объекты.

Механизмы (снизу) - средства, обеспечивающие выполнение процесса.

Практическое задание 005

Построить контекстную диаграмму системы

IDEF3

IDEF3 предназначен для описания бизнес-процессов нижнего уровня.

Объекты:

- бизнес операции
- логические операторы
- стрелки, показывают временную последовательность работ

ARIS eEPC

Методология ARIS, рассматривает организацию с четырех позиций: организационной, функциональной, структуры данных и бизнес-процессов.

Нотация EPC (Event-Driven Process Chain - событийная цепочка процессов) используется для описания процессов нижнего уровня.

UML (Unified Modeling Language)

UML (Unified Modeling Language) — это унифицированный графический язык моделирования для описания, визуализации, проектирования и документирования ОО систем.

UML - Диаграммы

Диаграммы, описывающие поведение системы:

- Диаграммы состояний;
- Диаграммы деятельностей;
- Диаграммы объектов;
- Диаграммы последовательностей;
- Диаграммы взаимодействия;
- Диаграмма вариантов использования.

Диаграммы, описывающие физическую реализацию системы:

- Диаграммы компонент;
- Диаграммы развертывания.

Диаграмма вариантов использования

Диаграмма вариантов использования (англ. use case diagram) - описывает взаимоотношения и зависимости между группами вариантов использования и действующих лиц, участвующими в процессе.

Практическое задание 006

Построить диаграмму вариантов использования системы

Диаграмма объектов

Диаграмма объектов - мощность связей

Мощность описывает, количественное свойство связи от родительского элемента к подчиненным/вложенным/дочерним.

Связь	Описание	Пример
1	обязательно должен быть 1 объект	
01	объект может быть 1 или не быть	◆ <u>1</u> →
0*	объектов может не быть или быть много	◆ <u>0*</u>
1*	обязательно объект должен быть или может быть много	◆ ^{1*}

Диаграмма объектов - мощность связей

IE Notation - Logical Data Model

Диаграмма состояний

Диаграммы состояний применяются для того, чтобы объяснить, каким образом работают сложные объекты.

Диаграмма состояний показывает, как объект переходит из одного состояния в другое.

Состояние - ситуация в жизненном цикле объекта, во время которой он удовлетворяет некоторому условию, выполняет определенную деятельность или ожидает какого-то события.

BPMN 2.0

Hoтaция BPMN (Business Process Model and Notation - модель бизнес-процессов и нотация) используется для описания процессов нижнего уровня и представляет собой алгоритм выполнения процесса.

BPMN 2.0 - основные элементы

Swim Lane

Поток сообщений

Ассоциация

ВРМN 2.0 - События

Начальные

Промежуточные

Конечные

ВРМN 2.0 - Действия

BPMN 2.0 - Соединяющие элементы

- Стрелки на диаграмме BPMN могут быть только горизонтальными или вертикальными. Наклонные стрелки запрещены.
- Стрелки BPMN нельзя объединять или разветвлять.
- Рекомендуется избегать большого количества пересечений стрелок BPMN, так как это ухудшает читабельность диаграммы.

BPMN 2.0 - Шлюзы

- Неопределенный/эксклюзивный шлюз при разделении направляет поток в одну исходящую ветвь.
- Параллельный шлюз при разделении активирует все исходящие ветви одновременно.
- Неэксклюзивный шлюз при разделении активирует одну или несколько ветвей.
- Комплексный шлюз обрабатывает комплексное поведение объединения и ветвления, не предусматриваемое другими шлюзами.

BPMN 2.0 - Шлюзы

Визуализация процесса

- основные действующие лица
- ключевые объекты
- ключевые взаимодействия
- ключевые потоки информации

Использование графических нотаций

Уровень модели	Нотация	Комментарий
0	IDEF0 (контекстная диаграмма)	Модель, выполненная в нотации IDEFO, имеет контекстную диаграмму верхнего уровня A-O, на которой объект моделирования представлен единственным блоком с граничными стрелками, отражающими связи объекта моделирования с окружающей средой.
1	IDEF0	1 уровень содержит процессы верхнего уровня модели.
2	IDEF0	2 уровень содержит декомпозицию процессов верхнего уровня.
3 и далее	BPMN, EPC	3 уровень при корректной декомпозиции представляет собой работы - наименьшие возможные процессы, создающие минимальный отделимый результат, за отдельные действия внутри работы будут отвечать конкретные должностные лица.

Thank you

Join us!

VK

WhatsApp

Telegram

nxbootcamp@nexign.com