

Part3 NerFACE

Presenter: 형준하

Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction

CVPR 2021 Oral

Guy Gafni¹ Justus Thies¹ Michael Zollhöfer² Matthias Nießner¹
¹Technical University of Munich ²Facebook Reality Labs

Introduction

Task: Reconstruct 4D models of human head (4D avatars)

- Augmented reality(AR), Virtual reality (VR), visual dubbing ...
- Representing human head with explicit representation is difficult
 - Albedo, reflectance
 - Complex geometry of hair

Introduction

Contribution

- Dynamic Neural Radiance Fields to represent 4D facial avatars based on a low dimensional morphable model.
- An efficient end-to-end learnable approach that uses a single camera to reconstruct such a radiance field.

- Low dimensional representation of 3D human head in 3D mesh
 - Face warehouse (FaceWarehouse: a 3D Facial Expression Database for Visual Computing)
 - Basel Face Model
 - FLAME (Learning a model of facial shape and expression from 4D scans)
- Control identity, expression, pose ...

$$B_E(\vec{\psi}; \mathcal{E}) = \sum_{n=1}^{|\vec{\psi}|} \vec{\psi}_n \mathbf{E}_n,$$
 (5)

where $\vec{\psi} = [\psi_1, \cdots, \psi_{|\vec{\psi}|}]^T$ denotes the expression coefficients, and $\mathcal{E} = [\mathbf{E}_1, \cdots, \mathbf{E}_{|\vec{\psi}|}] \in \mathbb{R}^{3N \times |\vec{\psi}|} \text{ denotes the orthonormal expression}$

• 2D Image to 3DMM(coefficients): Face reconstruction, retargeting

Optimization based reconstruction(e.g. Face2face)

Projected 3D vertices to 2D

Predicted 2D landmarks with pre-trained landmark detectors

- Accurate, necessary for tracking videos
- Takes long time ⊗

• 2D Image to 3DMM(coefficients): Face reconstruction, retargeting

Reconstruction w/o optimization(e.g. DECA)

- Fast, able to capture further details
- Can be less accurate, poor tracking quality for videos
- => Initialize with DECA, and further optimize

Method

Optimize with gradient descent on rendering loss

Method – Dynamics Conditioning

Expression coefficients of delta-blendshape basis

$$\mathcal{D}_{\theta}(\mathbf{p}, \vec{v}, \underline{\delta}, \underline{\gamma}) = (RGB, \sigma)$$

- Pose
 - Define canonical space of head
 - Same method as NeRF
 - Cannot handle torso direction

- Per-frame Latent codes
 - Details that Expression parameters cannot handle
 - Eyeballs
 - Torso
 - Wrinkles ...

Method – Bbox Ray sampling

P=0.05

- Sample rays inside of face bounding box
 - Focus on important areas
 - Similar to center crop of NeRF

Method – Fixed Background

- Want to decouple static background with dynamic foreground
 - Want the background to be fixed with different inputs
- How?
 - Replace the last sample of the ray with background rgb value
 - Easiest way for the model to learn the concept
 - For background rays, densities converge to zero except for the last sample

Background

Ground Truth

Method

Volume rendering of NeRF

$$C(\mathbf{r}; \theta, P, \delta, \gamma) = \int_{z_{\text{near}}}^{z_{\text{far}}} \sigma_{\theta} (\mathbf{r}(t)) \cdot \text{RGB}_{\theta} (\mathbf{r}(t), \vec{d}) \cdot T(t) dt,$$
(2)

• Hierarchical sampling and loss function + 12 regularization of latent codes

$$L_{total} = \sum_{i=1}^{M} L_i(\theta_{coarse}) + L_i(\theta_{fine})$$
 (4)

with

$$L_i(\theta) = \sum_{j \in \text{pixels}} \left\| \mathcal{C}(\mathbf{r}_j; \theta, P_i, \delta_i, \gamma_i) - I_i[j] \right\|^2.$$
 (5)

Method

- Training details
 - Batch of 2048 rays
 - 64 points per ray
 - 400K iterations(but generally converge after 600K)

- Dataset
- 2 min video of a single person, static camera (~6000 frames)
 - Conversation, rotation of head
 - 512×512 size frames
 - Last 1000 frames for test sequence

• Good at modeling view dependent changes

Good at modeling head rotations

Quantitative results

Method	$L_1\downarrow$	PSNR ↑	SSIM ↑	LPIPS ↓
FOMM [24]	0.036	23.77	0.91	0.16
DVP [16]	0.021	25.67	0.93	0.10
Ours (no BG)	0.035	23.52	0.90	0.18
Ours (no dyn.)	0.024	26.65	0.93	0.11
Ours (full)	0.019	26.85	0.95	0.06

Table 1: Quantitative evaluation of our method in comparison to state-of-the-art facial reenactment methods based on self-reenactment (see. Fig. 5). Ours (no dyn.) refers to our method without conditioning on dynamics. Ours (no BG) is our method without background image input.

• But other baseline methods can handle multiple identities..

Ablation study

Method	$L_1\downarrow$	PSNR ↑	SSIM ↑	LPIPS ↓
Ours (25%)	0.029	24.22	0.93	0.09
Ours (50%)	0.024	25.47	0.94	0.07
Ours (full)	0.019	26.85	0.95	0.06

Cross-reenactment

- Limitations
 - Cannot control details such as eye blinks
 - Cannot control torso
 - Single identity fitting
 - 2D based works generally work on one-shot setting

- Further Works
 - IMAVATAR(<u>I M Avatar: Implicit Morphable Head Avatars from Videos</u>)
 - Use 3DMM directly with deformation field
 - RigNeRF (<u>RigNeRF: Fully Controllable Neural 3D Portraits</u>)
 - Control camera pose & head pose