

GDAL 2.3 20 ans déjà et la tête dans les nuages!

Even Rouault

SPATIALYS

Qui suis-je?

- Contributeur à GDAL/OGR depuis 2007 et responsable du comité de pilotage depuis 2015.
- Contributeur à MapServer, QGIS
- Co-mainteneur: libtiff, libgeotiff, PROJ.4
- Fondateur de Spatialys, SS2L dans la géomatique.
 Forte expertise sur GDAL / MapServer

GDAL/OGR: Introduction

- GDAL? Geospatial Data Abstraction Library. Le couteau suisse du géomaticien
- Raster (GDAL) et Vecteur (OGR)
- Accès lecture/écriture à plus de 240 formats et protocoles de données (principalement) géospatiales.
- Utilisé très largement (Open Source et propriétaire): QGIS, GRASS, MapServer, Mapnik, PostGIS, OTB, SAGA, FME, ArcGIS, Google Earth...
 - (> 100 http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal)
- License open-source MIT/X (permissive)

GDAL/OGR: Introduction

- GDAL? Geospatial Data Abstraction Library. Le couteau suisse du géomaticien
- Raster (GDAL) et Vecteur (OGR)
- Accès lecture/écriture à plus de 240 formats et protocoles de données (principalement) géospatiales.
- Utilisé très largement (Open Source et propriétaire): QGIS, GRASS, MapServer, Mapnik, PostGIS, OTB, SAGA, FME, ArcGIS, Google Earth...
 - (> 100 http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal)
- License open-source MIT/X (permissive)
- Débuté en 1998 par Frank Warmerdam

GDAL/OGR 2.2 en résumé

- V2.2.0: mai 2017 → V2.2.4: mars 2018
- 4 RFCs implémentées dans le cycle 2.0 dont:
 - Gestion des zones sans données dans les pilotes GeoTIFF et VRT
 - Nouvelles géométries: surfaces polyédrales, réseaux irréguliers triangulés (TIN)
 - Distinction entre attribut nul et manquant (pour JSon et GML)
- 7 nouveaux drivers dont:
 - CAD: lecture fichiers DWG R2000
 - DGNv8: lecture/écriture format propriétaire DGN v8 (utilisation SDK propriétaire)
 - GMLAS: lecture/écriture de fichiers XML/GML pilotée par les schémas applicatifs ("Complex features")

GDAL/OGR 2.3

- Sortie le 4 mai 2018
- 3801 "commits" (total depuis 1998: 37988)
- 3 RFCs implémentées dans le cycle 2.3
 - Utilisation de C++11
 - Migration de Trac+Subversion vers GitHub
 - La base de tickets existants reste sous Trac
 - Les nouveaux tickets à créer sous GitHub
 - Auto-détection du format de sortie des utilitaires en fonction de l'extension
 - gdal_translate mon.tif mon.png
 - ogr2ogr mon.gpkg mon.shp

GDAL/OGR 2.3

- 2 nouveaux pilotes raster
 - PDS4: Planetary Data System v4 (format NASA)
 - Entête XML pour métadonnées + fichier brut pour l'imagerie.
 - Lecture/écriture
 - RDA: DigitalGlobe Raster Data Access. Accès en lecture aux images via l'API REST
- 2 nouveaux pilotes vecteur:
 - MVT: MapBox Vector Tiles
 - o WFS3
- Drivers ESRIJSON et TOPOJSON séparés du driver GeoJSON existant (périmètres fonctionnels inchangés)

Pilote MVT (Mapbox Vector Tiles)

- Lecture/écriture
- Sous-formats: une tuile par fichier ou MBTILES

```
/metadata.json
/0/
0/
0.pbf
/1/
0/
0.pbf
1.pbf
1.pbf
1.pbf
```

Pilote MVT

Lecture:

o sur disque ou tuiles sur le réseau

```
ogrinfo MVT:https://free.tilehosting.com/data/v3/1 -oo tile_extension="pbf.pict?key=${YOUR_KEY}" \
-oo metadata_file="https://free.tilehosting.com/data/v3.json?key=${YOUR_KEY}"
```

clipping de géométrie ou non

• Ecriture:

- Paramétrage des niveaux de zoom
- Choix de la résolution et du buffer
- Paramétrage de la simplification géométrique
- Assignation de couche par niveaux de zoom

Pilote WFS3

- <u>EXPERIMENTAL</u>! basé sur la version de la spécification alpha de début mars 2018 qui a évolué depuis.
- WFS v3:
 - Rupture par rapport aux versions précédentes
 - Philosophie REST
 - GET /collections
 - GET /collections/{name}/items?bbox=160.6,-55.95,-170,-25.89
 - GET /collections/{name}/items/{id}
 - Fin du tout XML. Négociation de contenu
 - OpenAPI 3.0
 - Coeur minimal, facile à implémenter

Cloud Optimized GeoTIFF (COG)

- "Profil" du format TIFF optimisé pour lecture au travers d'HTTP
- But: accès efficace à des parties de fichier sans serveur spécialisé
- ~ WCS avec uniquement serveur de fichier
- Côté client: utilisation de requête HTTP GET avec en-tête Range
- Adoption croissante par les logiciels et fournisseurs de données

Structure fichier TIFF: haut niveau

Structure fichier TIFF: bas niveau

GeoTIFF)

Structure d'un fichier COG

Entête (4 octets)

IFD 1: image résolution100%

Valeur des champs IFD 1 (dont offsets et taille de blocs)

IFD 2: image résolution 50%

Valeur des champs IFD 2

IFD 3: image résolution 25%

Valeur des champs IFD 3

Imagerie IFD 3

Imagerie IFD 2

Imagerie IFD 1

Block X=1 Y=1

Block X=2 Y=1

Block X=N Y=1

Block X=2 Y=1

Block X=N Y=M

Imagerie

Métadonnées

Génération d'un fichier COG

- Création d'un fichier GeoTIFF:
 - gdal_translate source temp.tif
- Création de ses pyramides:
 - gdaladdo -r average temp.tif
- Création du COG:
 - gdal_translate temp.tif cog.tif \

```
-co TILED=YES \
```

-co COMPRESS=DEFLATE \ (ou JPEG -co

PHOTOMETRIC=YCBCR)

-co COPY_SRC_OVERVIEWS=YES

- /vsicurl/
 - gdalinfo
 /vsicurl/<u>http://landsat-pds.s3.amazonaws.com/L8/139/045/LC81</u>
 390452014295LGN00/LC81390452014295LGN00 B1.TIF
- /vsis3/ : Amazon AWS S3
- /vsigs/ : Google Cloud Storage
- /vsiaz/ : Microsoft Azure Blob storage
- /vsiswift/: OpenStack SWIFT
- /vsioss/: Alibaba Object Storage Service
- Tous disponibles en lecture (aléatoire) / écriture (séquentielle)
- Version "streamée" pour la lecture: /vsicurl_streaming/, /vsis3_streaming/ etc,...
- Fonction VSIGetSignedURL() pour obtenir une URL signée

- Plusieurs méthodes d'authentification gérées
 - vsis3:
 - AWS_SECRET_ACCESS_KEY + AWS_ACCESS_KEY_ID
 - ~/.aws/credentials (AWS PROFILE)
 - ~/.aws/config
 - Identification automatique sur AWS EC2
 - o /vsigs:
 - GS_SECRET_ACCESS_KEY + GS_ACCESS_KEY_ID
 - GDAL_HTTP_HEADER_FILE
 - GS_OAUTH2_REFRESH_TOKEN
 - GS_OAUTH2_PRIVATE_KEY + GS_OAUTH2_CLIENT_EMAIL
 - ~/.boto
 - Identification automatique sur Google Compute Engine
- Utilitaires:
 - https://github.com/OSGeo/gdal/tree/master/gdal/swig/python/samples
 - gdal_ls.py
 - gdal_cp.py
 - gdal_rm.py

• Lecture facilitée dans QGIS 3.2 (Mathieu Pellerin, iMHere Asia)

Amélioration du driver GeoTIFF pour requêtes HTTP plus efficaces

Block X=1 Y=1	Block X=2 Y=1		Block X=3 Y=1	
Block X=1 Y=2	Block X=	2 Y=2	Block X=	3 Y=2
Block X=1 Y=3	Block X=	2 Y=3	Block X=	3 Y=3

Block X=N Y=1
Block X=N Y=2
Block X=N Y=3

⇒ 3 requêtes GET Range parallélisées

COG et systèmes de fichiers: liens utiles

Documentation générale

- http://www.cogeo.org
- https://trac.osgeo.org/gdal/wiki/CloudOptimizedGeoTIFF

Clients Javascript:

- https://geotiffjs.github.io/cog-explorer (EOX)
- http://www.cogeo.org/map/ (Radiant Earth) + tiles.rdnt.io (serveur)

Validation:

- http://cog-validate.radiant.earth/html
- https://github.com/rouault/cog_validator

Documentation driver GeoTIFF GDAL:

- http://gdal.org/frmt_gtiff.html
- Documentation systèmes de fichiers virtuels:
 - http://gdal.org/gdal_virtual_file_systems.html

GDAL/OGR 2.3: autres changements

- Gestion de PROJ v5
- Mise à jour vers base de SRS EPSG v9.2
- Meilleure identification des codes EPSG pour les shapefiles
- Améliorations dans les pilotes:
 - GeoJSON: lecture de fichiers arbitrairement grands
 - GRIB: création de fichiers GRIB2
 - O WCS:
 - ajout de la gestion de WCS 2.0(Ari Jolma)
 - Cache disque de métadonnées
 - Multiples options pour gérer non-conformités
 - DXF: multiples améliorations (Alan Thomas / ThinkSpatial thinkspatial.com.au)

DXF: LEADER / Ligne de repères

DXF: DIMENSION / Ligne de cotes

DXF: BLOCK

Intégration au projet oss-fuzz

(source: https://github.com/google/oss-fuzz)

> 1000 problèmes corrigés

Activité communautaire

- 19 développeurs avec accès GitHub
- 95 contributeurs durant le cycle 2.3.0
- 2295 inscrits à gdal-dev.
 1924 messages mai 2017→ mai 2018
- ~470 tickets créés / 12 derniers mois (7310 au total).
 ~480 ouverts

Et après ?

- Projet de modernisation et refonte profonde des systèmes de coordonnées de référence dans GDAL, libgeotiff et PROJ
- Opportunité liée à la sortie de PROJ 5.0
- Adoption du standard OGC WKTv2 (12-063r5) / ISO 19162
 - Résolution de problèmes d'interopérabilité
 - Gestion de la dimension temporelle
 - Meilleure gestion de la dimension verticale

- Base de données SQLite pour stocker les définitions de SRS
 - Plus de fichiers CSV dupliqués entre logiciels
 - Meilleure capacité d'interrogation
- Utilisation des aires de validité
- Gestion de la composante temporelle
 - Transformation de Helmert avec termes dérivés
 - Transformations avec modèles de déformation

 Fin de WGS84 comme système pivot pour les transformations entre datum

Actuel "early-binding"

NZGD49
(EPSG:4272)
Coordinate Frame Rotation (EPSG:1564)
Ou
Utilisation de grille NTv2 (EPSG:1670)

NZGD2000
(EPSG:4167)
Transformation géocentrique (EPSG:1865)

Utilisation de grille NTv2 (EPSG:1670)

Après "late-binding"

NZGD49 (EPSG:4272)

NZGD2000 (EPSG:4167)

Coordinate Frame Rotation (EPSG:1761)
Ou utilisation de grille NTv2 (EPSG:1568)

 Fin de WGS84 comme système pivot pour les transformations entre datum

Merci aux sponsors de GDAL barn!

OSLANDIA

Timoney Group

patial Networks

Questions?

Liens:

http://www.gdal.org/

https://trac.osgeo.org/gdal/wiki/Release/2.3.0-News

https://trac.osgeo.org/gdal/wiki/RfcList

