Design of a Generalized Quantum Arithmetic Logic Unit (QALU) Using QFT and Multiplexed Unitaries

Jaikaran Singh Pahwa
Age: 18
GGSIPU University, India
jaikaransingh2007@gmail.com

Abstract

This paper proposes a modular and generalized Quantum Arithmetic Logic Unit (QALU) that can perform essential arithmetic and logical operations using:

- Quantum Fourier Transform (QFT)
- Standard quantum gates (CNOT, Toffoli)
- A quantum multiplexer for unitary selection

The architecture supports QFT-based addition and subtraction, quantum XOR and AND, and dynamic operation switching via multiplexed unitaries. Its reprogrammable and modular structure makes it a suitable candidate for the arithmetic core in scalable Quantum Processing Units (QPUs).

Highlights

- General-purpose quantum ALU framework
- Arithmetic: QFT Adder and Subtractor
- Logic: Quantum XOR (CNOT), AND (Toffoli)
- Operation Selection via Quantum Multiplexed Unitaries (QMU)
- \bullet Modular design with extensible unitary blocks

Operations Table

Index	Unitary	Operation
00	U_1	QFT Adder
01	U_2	Quantum XOR
10	U_3	Quantum AND
11	U_4	QFT Subtract

Core Concepts

1. QFT-Based Arithmetic

Adder:

$$R|\psi\rangle = \sum e^{2\pi i(x+a)y/N}|y\rangle$$

$$IQFT(R|\psi\rangle) = \sum |x + a\rangle$$

Subtractor:

$$R|\psi\rangle = \sum e^{2\pi i(x-a)y/N}|y\rangle$$

$$IQFT(R|\psi\rangle) = \sum |x - a\rangle$$

2. Logical Operators

Quantum XOR (CNOT):

$$CNOT|\psi\rangle = |x \oplus a\rangle$$

Quantum AND (Toffoli):

$$Toffoli|\psi\rangle = |x \cdot a\rangle$$

3. Quantum Multiplexed Unitaries (QMU)

Dynamic selection of operations using:

$$m = \sum |z\rangle\langle z| \otimes U_z$$

Each index of the control register corresponds to a specific operation unitary.

Contents

• Generalized_Quantum_Arithmetic_Logic_Unit.pdf: Full research paper describing the QALU architecture

Citation

If you use or reference this work in your research, please cite it as:

Jaikaran Singh Pahwa, Design of a Generalized Quantum Arithmetic Logic Unit Using QFT and Multiplexed Unitaries, GGSIPU University, India, 2025.

Contact

Feel free to reach out for collaboration, discussion, or implementation inquiries: jaikaransingh2007@gmail.com

License

For academic and educational purposes only. Commercial use requires explicit permission from the author.