AMATEURISH PI STUNT NOTES

PERMUTATION ENTHUSIASTS

1. Problems 1.13

1 (a) Consider the transposition $\pi=(i,j)$. It swaps the order of exactly 2(j-i-1)+1 pairs of inputs. This is because there are j-i-1 entries strictly between i and j, and π swaps both i and j with all of these. It also swaps the order of i and j. Therefore, $\operatorname{inv}((i,j)) \equiv 1 \mod 2$. Next we show that inv is a homomorphism to $\mathbb{Z}/2$. To do this, let $\operatorname{inv}_{i,j}(\pi)$ be 1 if π swaps the order of i and j and 0 otherwise, so $\operatorname{inv}(\pi) = \sum_{i \neq j} \operatorname{inv}_{i,j}(\pi)$. If we have two permutations π and τ , we have $\operatorname{inv}_{i,j}(\tau\pi) = \operatorname{inv}_{i,j}(\pi) + \operatorname{inv}_{\pi(i),\pi(j)}(\tau) \mod 2$. I.e. i and j get swapped if π swaps i and j or τ swaps $\pi(i),\pi(j)$ (but not both because they get swapped back if so). Therefore

$$\operatorname{inv}(\tau\pi) = \sum_{i \neq j} \operatorname{inv}_{i,j}(\tau\pi)$$

$$\equiv \sum_{i \neq j} \operatorname{inv}_{i,j}(\pi) + \operatorname{inv}_{\pi(i),\pi(j)}(\tau) \bmod 2$$

$$\equiv \left(\sum_{i \neq j} \operatorname{inv}_{i,j}(\pi) + \sum_{i \neq j} \operatorname{inv}_{\pi(i),\pi(j)}(\tau)\right) \bmod 2$$

$$\equiv \operatorname{inv}(\pi) + \operatorname{inv}(\tau) \bmod 2$$

Taken together, these facts imply that if π is a product of k transpositions, then $\operatorname{inv}(\pi) \equiv k \mod 2$.

- (b) We defined $\operatorname{sgn}(\pi) = (-1)^k$ when π is a product of k transpositions. It may be that π can be written as a product of k transpositions and also as a product of $\ell \neq k$ transpositions. However, we can see that $\operatorname{sgn}(\pi)$ is well defined because $\operatorname{inv}(\pi)$ is well defined, and we saw in (a) that $k \equiv \operatorname{inv}(\pi) \equiv \ell \mod 2$. Thus $(-1)^k = (-1)^\ell$.
- 2 (a) We clearly have $\epsilon \in G_s$ because $\epsilon s = s$ by an axiom of group actions. To see that G_s is closed under multiplication, let us be given $g, h \in G_s$, and we compute (gh)s = g(hs) = gs = s (the second equality uses a group action axiom).
 - (b) Define $\phi: G/G_s \to \mathcal{O}_s$ by $\phi(hG_s) = hs$. This is well-defined because if h = hg for $g \in G_s$, then (hg)s = h(g(s)) = hs. (I'm assuming left cosets.) The map ϕ is surjective because if we are given any $h \in G$, then $\phi(hG_s) = hs$. The map ϕ is injective because if $\phi(hG_s) = \phi(kG_s)$, then hs = ks, so $k^{-1}h \in G_s$ and hence $hG_s = kG_s$.

Date: November 2024.

- (c) We know $|G/G_s| = |G|/|G_s|$ by some isomorphism theorem, and by (b) we know $|\mathcal{O}_s| = |G/G_s|$.
- 3 (a) We must show that every matrix $X(\pi)$ has exactly one 1 in each row and column, and zeros elsewhere. The definition of the permutation representation has $X(\pi)_{i,j} = \delta_{i=\pi(j)}$. Because π is a permutation, for each i there is exactly one j such that $i = \pi(j)$, and for each j there is exactly one i such that $i = \pi(j)$.
 - (b) A fixed point i of π has $\pi(i) = i$, so $X(\pi)_{i,i} = 1$, so there is a 1 on the diagonal of $X(\pi)$ in position (i,i) exactly when i is fixed under π . Thus $\text{Tr}(X(\pi))$ is the number of fixed points of π .
- 4 Since G is finite, it can be written as $\bigoplus_i C_{j_i}$, where C_{j_i} is a cyclic group of order j_i , say with generator g_i . By Corollary 1.6.8 (see also Problem 12), we must have X(g) = cI for all $g \in G$, so X is one dimensional, and $X(g_i)$ is some j_i th root of unity. All such representations are irreducible since they are one dimensional.
- 5 (a) Let $g \in N$ and $h \in G$. Then $X(hgh^{-1}) = X(h)X(g)X(h^{-1}) = X(h)X(h)^{-1} = I$, so $hgh^{-1} \in N$. This holds for all $g \in N$, so N is normal. A condition is: X is faithful iff $N = \{\epsilon\}$. To see one direction, suppose X is faithful. Then $I = X(\epsilon) = X(g)$ only if $g = \epsilon$; hence $N = \{\epsilon\}$. For the other direction, suppose $N = \{\epsilon\}$ and X(g) = X(h) for some g, h. Then $X(gh^{-1}) = I$, so $gh^{-1} = \epsilon$, so g = h, and X is faithful.
 - (b) One direction is immediate, because if $g \in N$, then Tr(X(g)) = Tr(I) = d. For the other direction, suppose $\chi(g) = d$. TODO
 - (c) For one direction, suppose that $h \in \bigcap_i g_i H g_i^{-1}$. Then for all i, we have $hg_i \in g_i H$, so $hg_i H \subseteq g_i H H = g_i H$ sends each coset to itself, so $h \in N$. Conversely, if X(h) = I, then h sends each coset to itself, so $hg_i H \in g_i H$ for all i. Hence $h \in g_i H g_i^{-1}$ for all i.
 - (d) (i) Trivial: this is faithful exactly if G is trivial
 - (ii) Regular: always
 - (iii) Coset: when the intersection of the conjugates of H is trivial (see previous)
 - (iv) Sign for S_n : for S_1 and S_2
 - (v) Defining for S_n : always
 - (vi) Degree 1 for C_n : exactly when X(g) is a primitive root of unity, for a generator g
 - (e) (i) Y is well-defined because if gN = hN, then there is $n \in N$ so that gn = h. Then X(h) = X(gn) = X(g)X(n) = X(g)I = X(g). It is faithful because if Y(gN) = I, then by definition we have X(g) = I, so $g \in N$, ie. the only coset that maps to I under Y is ϵN .
 - (ii) Whether or not a representation is irreducible depends only on the set of matrices (or endomorphisms) in the image. The image of Y is the same as the image of X. Said another way, if $X(g)(V) \subseteq V$ for some subspace V and for all g, then $Y(gN)(V) = X(g)(V) \subseteq V$ as well, and vice versa.

- (iii) The representation Y is the regular representation of G/H. To see this, let us start by finding the kernel N of the coset representation. Suppose $n \in N$, so ngH = gH for all g. Because H is normal, we have ngH = Hng, so Hng = gH. Thus $Hn = gHg^{-1} = H$, so $n \in H$. The entire argument runs backward, so N = H. Let V be the coset representation (so Y is a map $Y: G/H \to GL(V)$) and consider the map $\theta: V \to \mathbb{C}[G/H]$ defined by $\theta(gH) = gH$. This is clearly a bijection, so we just need to check it is a G/H-homomorphism. To see this, we compute $\theta(Y(gH)(hH)) = ghH$ and $gH\theta(hH) = ghH$ (by the definition of group multiplication in G/H).
- (6) (a) To see that X is a representation, we just need to check that X(gh) = X(g)X(h). We compute X(gh) = Y(ghN) = Y(gNhN) = Y(gN)Y(hN) = X(g)X(h), where in the middle we used the multiplication in G/H.
 - (b) Let $g \ker(X)$, so I = X(g) = Y(gN). Since Y is faithful, we have $gN = \epsilon N$, so $g \in N$. Conversely, any ginN is in $\ker(X)$ because $X(g) = Y(gN) = Y(\epsilon N) = I$.
 - (c) This is the same as (5)(e)(ii) the irreducibility only depends on the image set of matrices, which remains the same under lifting.
- (7) The block decomposition of X expresses V as the internal direct sum W+Y, where if we write any vector (w,y) aligned with the block form, we have X(g)(w,y)=(A(g)w+B(g)y,C(g)y). The quotient map $V\to V/W$ projects to the second coordinate and is a G-homomorphism which takes the action X to C. Maschke's theorem says that V is isomorphic to a block diagonal action with the matrices A and C, and this is exactly the actions on W and V/W.
- (8) I'm not sure about these
 - (a) The action of G can be given by a matrix in the basis?
 - (b) The map θ is linear and for all $g \in G$ and b in the basis, we have $g\theta(b) = \theta(gb)$?
 - (c) For all b, c in the basis, we have $\langle b, c \rangle = \langle gb, gc \rangle$?
- (10) The map $X(r) = \begin{bmatrix} 1 & \log r \\ 0 & 1 \end{bmatrix}$ satisfies

$$X(r)X(s) = \begin{bmatrix} 1 & \log r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \log s \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \log(rs) \\ 0 & 1 \end{bmatrix}$$
$$= X(rs),$$

and we can see $X(r) \begin{bmatrix} c \\ 0 \end{bmatrix} = \begin{bmatrix} c \\ 0 \end{bmatrix}$.

(11) Let $H = S_{n-1} \subseteq S_n$, and let S be the set of tabloids of shape (n-1,1). We want to show that $\mathbb{C}H \cong \mathbb{C}S \cong \mathbb{C}\{1,\ldots,n\}$. First we need to find a transversal for H. Note that |H| = (n-1)!, so the index of H in S_n is n, so it suffices to show our n chosen cosets are pairwise disjoint. To do this, suppose (i,n)H = (j,n)H, so $(j,n)(i,n) \in H$. Note this product fixes n (equivalently, is in H) exactly when i = j. Hence the cosets are disjoint. It is also useful to observe that if $i \neq j$, we have (i,n)(j,n) = (j,n)(i,j),

so $(i,n)(\mathbf{j},\mathbf{n})\mathbf{H} = (\mathbf{j},\mathbf{n})\mathbf{H}$, while if i=j, then we compute that (i,n) interchanges the cosets ϵH and (i,n)H. This gives us the action on cosets. Now define the equivalence $\theta: \mathbb{C}\mathcal{H} \to \mathbb{C}\{\mathbf{1},\ldots,\mathbf{n}\}$ by $\theta((\mathbf{i},\mathbf{n})\mathbf{H}) = \mathbf{i}$ and $\iota: \mathbb{C}\mathbf{S} \to \mathbb{C}\{\mathbf{1},\ldots,\mathbf{n}\}$ by taking a tabloid basis element to the basis element of $\mathbb{C}\{\mathbf{1},\ldots,\mathbf{n}\}$ associated with the single entry in the second level of the tabloid. Since $\{(i,n)\}_{i=1}^n$ generates \mathcal{S}_n , it suffices to show that these maps commute with the action of these involutions. This is immediate for ι because the image is by definition the entry in the bottom of the tabloid. For θ , we use the coset action we determined above, so $\theta((i,n)(\mathbf{j},\mathbf{n})\mathbf{H}) = \theta((\mathbf{j},\mathbf{n})\mathbf{H}) = \mathbf{j}$ if $i \neq j$, and $\theta((i,n)(\mathbf{i},\mathbf{n})\mathbf{H}) = \mathbf{n}$ and $\theta((i,n)\epsilon\mathbf{H}) = \mathbf{i}$. That is, the action of (i,n) swaps the corresponding pairs of basis elements on both sides of θ .

- (12) By Corollary 1.6.8, any matrix that commutes with X(g) for all g must be of the form cI. If $g \in Z_G$, then by definition X(g) commutes with X(h) for all $h \in G$, and the conclusion is immediate.
- (13) Let G be the abelian group formed by the matrices X_i . So the map $Y(X_i) = X_i$ is a d-dimensional representation of G. By Maschke's theorem, there is a single matrix T such that TX_iT^{-1} is a block diagonal matrix of irreducible representations. It remains to show that any irreducible representation of an abelian group is 1-dimensional, which maybe we just know that, or maybe we observe that by Corollary 1.6.8, if G is an abelian group, any image matrix in an irreducible representation must be a multiple of the identity and thus must be 1-dimensional.
- (14) Suppose towards a contradiction that X is reducible, so up to isomorphism we can simultaneously write the matrices X(g) in a nontrivial block form. But then X(g) commutes with block diagonal matrices with blocks xI, yI, for any $x,y \in \mathbb{C}$. Many such matrices are not of the form cI, which is a contradiction.
- (15) (a) We must check that $(X \hat{\otimes} Y)(gh) = (X \hat{\otimes} Y)(g)(X \hat{\otimes} Y)(h)$. To do this, we compute:

$$\begin{split} (X \hat{\otimes} Y)(g)(X \hat{\otimes} Y)(h) &= (X(g) \otimes Y(g))(X(h) \otimes Y(h)) \\ &= X(g)X(h) \otimes Y(g)Y(h) \\ &= X(gh) \otimes Y(gh) \\ &= (X \hat{\otimes} Y)(gh) \end{split}$$

The second equality uses Lemma 1.7.7.

(b) We can compute

$$(\chi \hat{\otimes} \psi)(g) = \text{Tr}((X \hat{\otimes} Y)(g))$$

$$= \text{Tr}(X(g) \otimes Y(g))$$

$$= \sum_{i} X(g)_{i,i} \text{Tr}(Y(g))$$

$$= \sum_{i} X(g)_{i,i} \psi(g)$$

$$= \chi(g) \psi(g)$$

- (c) If X and Y are both the irreducible 2-dimensional representation of S_3 , then $X \hat{\otimes} Y$ has dimension 4, but S_3 has no 4-dimensional irreducible representations.
- (d) We can check that it is irreducible by computing

$$\begin{split} \langle \chi \hat{\otimes} \psi, \chi \hat{\otimes} \psi \rangle &= \frac{1}{|G|} \sum_g (\chi \hat{\otimes} \psi)(g) (\chi \hat{\otimes} \psi)(g^{-1}) \\ &= \frac{1}{|G|} \sum_g \chi(g) \psi(g) \chi(g^{-1}) \psi(g^{-1}) \\ &= \frac{1}{|G|} \sum_g \psi(g) \psi(g^{-1}) \\ &= \langle \psi, \psi \rangle \\ &= 1 \end{split}$$

This relies on the fact that X is one-dimensional, so $\text{Tr}(X(g^{-1})) = 1/\text{Tr}(X(g))$, so $\chi(g)\chi(g^{-1}) = 1$.

(16) There are five cycle types/conjugacy classes ϵ , (1,2), (1,2,3), (1,2)(3,4), (1,2,3,4), of sizes 1, 6, 8, 3, and 6, respectively. Because there are five, we are expecting five irreducible representations. We know the trivial $\chi^{(1)}$ and sign $\chi^{(2)}$ representations are irreducible, and we know the representation χ^{\perp} orthogonal to the trivial one inside the defining representation, which we can verify is irreducible by computing its self inner product. In addition, we compute the character for $\chi^{(2)} \hat{\oplus} \chi^{\perp}$ and see it too is irreducible.

For the final irreducible, consider the normal subgroup N which is ϵ and the conjugacy class of (1,2)(3,4) (This is the Klein four group $\mathbb{Z}/2 \times \mathbb{Z}/2$). In fact, we have $\mathcal{S}_4/N \cong \mathcal{S}_3$. To see this, consider the map $\phi: \mathcal{S}_3 \to \mathcal{S}_4$ defined by $\phi(\pi) = \pi N$. If $\pi N = \rho N$, then there is $n \in N$ so that $\pi = \rho n$. If $n \neq \epsilon$, then note that n, and thus ρn , does not fix 4 (here $\rho \in \mathcal{S}_3$, so if n permutes 4 away from itself, ρ cannot put it back). On the other hand π does fix 4. This contradiction implies that $n = \epsilon$, so ϕ is injective. Since $|\mathcal{S}_3| = 6$ and $|\mathcal{S}_4/N| = 6$, in fact ϕ is an isomorphism. To compute the quotient map from \mathcal{S}_4 to \mathcal{S}_3 on a permutation π which does not fix 4, we need to find $\rho n = \pi$, with $n \in N$ and ρ fixing 4.

So we can use the lifting process from problem 6 to lift each of the 3 irreducible representations of S_3 to representations of S_4 . The trivial and sign representations lift to the trivial and sign representations, respectively, and give us nothing new. But the third irreducible $\chi^{(3)}$ does give us the final, 2 dimensional, irreducible representation $\chi^{(3)}$ of S_4 . (We can check that it is irreducible by computing its self inner product.)

	ϵ	(1, 2)	(1, 2, 3)	(1,2)(3,4)	(1, 2, 3, 4)
$\chi^{(1)}$ trivial		1	1	1	1
$\chi^{(2)}$ sign	1	-1	1	1	-1
χ^{\perp}	3	1	0	-1	-1
$\chi^{(2)} \hat{\otimes} \chi^{\perp}$	3	-1	0	-1	1
$\chi^{(3)}$	2	0	-1	2	0

(17) (a) We can flip $(\tau, \text{ order } 2)$ rotate $(\rho, \text{ order } n)$, and playing with a shape shows that $\rho \tau = \tau \rho^{-1}$.

- (b) If we have any sequence of τ and ρ , we can slide all ρ to the right using the relation $\rho\tau=\tau\rho^{-1}$
- (c) We compute:

$$(\tau^e \rho^\ell) \rho^j (\rho^{-\ell} \tau^e) = \begin{cases} \rho^j & \text{if } e = 0\\ \rho^{-j} & \text{if } e = 1 \end{cases}$$

$$(\tau^e \rho^\ell) \tau \rho^j (\rho^{-\ell} \tau^e) = \left\{ \begin{array}{ll} \tau \rho^{2\ell-j} & \text{if } e = 0 \\ \tau \rho^{j-2\ell} & \text{if } e = 1 \end{array} \right.$$

These relations determine the conjugacy classes of D_n . The answer depends on whether n is odd (the issue is whether 2 is relatively prime to n, ie. whether 2 is a generator of the additive group \mathbb{Z}/n). If n is even, then the conjugacy classes are

$$\{\epsilon\}, \{\rho^1, \rho^{n-1}\}, \dots, \{\rho^{n/2-1}, \rho^{n/2+1}\}, \{\rho^{n/2}\}, \{\tau, \tau\rho^2, \dots, \tau\rho^{n-2}\}, \{\tau\rho, \tau\rho^3, \dots, \tau\rho^{n-1}\}, \{\tau\rho^3, \dots, \tau\rho$$

so there are n/2+3 classes total. If n is odd, the conjugacy classes are

$$\{\epsilon\}, \{\rho^1, \rho^{n-1}\}, \dots, \{\rho^{\frac{n-1}{2}}, \rho^{\frac{n+1}{2}}\}, \{\tau, \tau\rho, \dots, \tau\rho^{n-1}\},$$

so there are $\lfloor n/2 \rfloor + 2$ classes total.

(d) There are some simple-to-define representations X_j , which we will check are irreducible. Define X_j as follows, where ρ is mapped to a rotation

$$X_{j}(\rho) = \begin{bmatrix} \cos\frac{2\pi j}{n} & -\sin\frac{2\pi j}{n} \\ \sin\frac{2\pi j}{n} & \cos\frac{2\pi j}{n} \end{bmatrix}$$

and τ to a flip

$$X_j(\tau) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

The representation X_1 is the "defining" representation of D_n as it's usually defined acting on a n-sided polygon in the plane. (Although this is a 2-dimensional *complex* representation!) Let χ_j be the character of X_j . Note that

$$\chi_j(\rho^i) = \text{Tr}(X_j(\rho^i)) = 2\cos\frac{2\pi i j}{n}$$
 and $\chi_j(\tau \rho^i) = 0$.

In particular, we can ignore $\tau \rho^i$ for all subsequent calculations of characters.

We can compute

$$\langle \chi_j, \chi_j \rangle = \frac{1}{|D_n|} \sum_{i=0}^{n-1} \chi_j(\rho^i) \chi_j(\rho^{-i})$$

$$= \frac{1}{2n} \sum_{i=0}^{n-1} \left(2 \cos \frac{2\pi i j}{n} \right) \left(2 \cos \frac{-2\pi i j}{n} \right)$$

$$= \frac{2}{n} \sum_{i=0}^{n-1} \cos^2 \left(\frac{2\pi i j}{n} \right)$$

$$= \frac{2}{n} \sum_{i=0}^{n-1} \frac{1 + \cos \frac{4\pi i j}{n}}{2}$$

$$= 1 + \frac{1}{n} \sum_{i=0}^{n-1} \cos \frac{4\pi i j}{n}$$

$$= 1 + \delta_{j=0}$$

The last equality uses the fact that the sum is zero as long as $j \neq 0$ because the sum of the kth roots of unity is zero for any k > 1. We conclude that X_j is irreducible for j > 0. This makes sense, because if j = 0, then the representation is diagonal and is clearly the direct sum of two other representations: the trivial representation $X^{(1)}$ and the sign representation X^{τ} defined by $X^{\tau}(\tau^e \rho^i) = (-1)^e$.

We appear to have created n+1 irreducible representations (the n-1 representations $\{X_j\}_{j=1}^{n-1}$, plus $X^{(1)}$ and X^{τ}), but these are not all distinct. It suffices to check which characters are the same, and it is straightforward to see that we have $\chi_j(\rho^i) = 2\cos\frac{2\pi ij}{n} = \chi_{n-j}(\rho^i)$, and these are the only pairs of characters which are the same.

That is, for n even, we have given n/2+2 irreducibles, and for n odd we have given $\lfloor n/2 \rfloor +2$

We are missing one representation when n is even, which is given by an alternating representation $X^{\rho}(\tau^{e}\rho^{i})=(-1)^{i}$.

(18) Suppose that s_i is a transversal for $K \subseteq H$ and u_i is a transversal for $H \subseteq G$. Then by definition we have

$$((X\uparrow^H_K)\uparrow^G_H)(g) = \left((X\uparrow^H_K)(u_i^{-1}gu_j)\right)_{i,j} = \left(\left(X(s_n^{-1}u_i^{-1}gu_js_m)\right)_{n,m}\right)_{i,j}.$$

By Proposition 1.12.5, it suffices to show that $u_j s_i$ is a transversal for $K \subseteq G$ since the representation $X \uparrow_K^G$ does not depend on the choice of transversal. To see this, suppose we have $u_j s_i K = u_n s_m K$. Then since $s_i K, s_m K \subseteq H$, we have that the cosets $u_j H$ and $u_n H$ are not disjoint, so they coincide, so j = n. Multiplying by u_j^{-1} , we have $s_i K = s_m K$, so immediately we have that i = m. Thus j = n and i = m, so we do have a transversal of K in G, as desired.