Predicting Cervical Cancer Test Results

Jaedon Jensen

Data Science Intensive Capstone Project, April 2024 Cohort

The problem

 Cervical cancer is 100% preventable but causes 350,000 deaths every year

Who would care?

- Healthcare Professionals
- Patients

Data Information

Survey conducted at hospital in Venezuela

https://archive.ics.uci.edu/dataset/383/cervical+cancer+risk+factors

Data Information

- Survey conducted at hospital in Venezuela
- 858 Records, 36 Features

https://archive.ics.uci.edu/dataset/383/cervical+cancer+risk+factors

Data Cleaning

- Missing Values
- Dropped records with too many missing fields

Data Cleaning

- Missing Values
- Dropped records with too many missing fields
- Mean imputation and standardization for numerical values

Data Exploration

Most significant test: Schiller

Data Exploration

- Important features:
 - HIV
 - HPV
 - Vulvo-perineal condylomatosis

Machine Learning Modeling

- Logistic Regression
- Random Forest
- SVM
- Metric: F-macro

	Best Score	Train Time
Logistic Regression	0.851064	13.617378
Random Forest	0.888462	181.422026
SVM	0.872447	0.139997

	Best Score	Train Time
Logistic Regression	0.851064	13.617378
Random Forest	0.888462	181.422026
SVM	0.872447	0.139997

	Best Score	Train Time
Logistic Regression	0.851064	13.617378
Random Forest	0.888462	181.422026
SVM	0.872447	0.139997

	Best Score	Train Time
Logistic Regression	0.851064	13.617378
Random Forest	0.888462	181.422026
SVM	0.872447	0.139997

Logistic Regression

	precision	recall	f1-score	support
0.0 1.0	0.98 0.76	0.97 0.81	0.97 0.79	136 16
accuracy macro avg weighted avg	0.87 0.96	0.89 0.95	0.95 0.88 0.95	152 152 152

Random Forest

	precision	recall	f1-score	support
0.0 1.0	0.98 0.87	0.99 0.81	0.98 0.84	136 16
accuracy macro avg weighted avg	0.92 0.97	0.90 0.97	0.97 0.91 0.97	152 152 152

SVM

	precision	recall	f1-score	support
0.0 1.0	0.96 0.83	0.99 0.62	0.97 0.71	136 16
accuracy macro avg weighted avg	0.90 0.94	0.81 0.95	0.95 0.84 0.94	152 152 152

• Without Hinselmann test as a feature:

	precision	recall	f1-score	support
0.0 1.0	0.96 0.83	0.99 0.62	0.97 0.71	136 16
accuracy macro avg weighted avg	0.90 0.94	0.81 0.95	0.95 0.84 0.94	152 152 152

• Without Hinselmann or Biopsy tests as features:

	precision	recall	f1-score	support
0.0 1.0	0.92 0.67	0.99 0.25	0.95 0.36	136 16
accuracy macro avg weighted avg	0.79 0.89	0.62 0.91	0.91 0.66 0.89	152 152 152

Future Improvements

- Improved Feature Engineering
- Predict diagnosis instead

Conclusions

- SVM model the most ideal
- All models were inaccurate if no test results used as data features
- Options:
 - Work to improve AI models
 - Focus efforts elsewhere