Lista 3 de Geometria Riemanniana

IMPA, Mar/Jun 2025 - Monitor: Ivan Miranda

Parte 1: Ferramentas e Exemplos.

Exercício 1. Exercício 1 do Capítulo 3 do livro do professor Manfredo, quinta edição, sobre as geodésicas de uma Superfície de Revolução.

Exercício 2. Imersões isométricas. Seja $f:M\to \overline{M}$ uma imersão isométrica. Sejam ∇ a conexão de Levi-Civita de M e $\overline{\nabla}$ a conexão de Levi-Civita de \overline{M} .

a) Mostre que

$$f_*(\nabla_X Y) = (\overline{\nabla}_X^f f_* Y)_{TM}$$

e que essa igualdade determina ∇ em função de $\overline{\nabla}$. Aqui, para $W \in T_{f(p)}\overline{M}$, W_{TM} denota a sua projeção ortogonal ao subespaço $f_*(T_pM) \subset T_{f(p)}\overline{M}$.

b) Seja c uma curva suave em M. Mostre que para todo $Y \in \mathfrak{X}_c$ vale

$$f_* \nabla^c_{\frac{d}{dt}} Y = (\nabla^{f \circ c}_{\frac{d}{dt}} f_* Y)_{TM}.$$

c) Seja $\gamma:I\to M$ uma curva suave parametrizada pelo comprimento de arco. Mostre que γ é uma geodésica de M se, e somente se, sua aceleração em \overline{M} é perpendicular à variedade M, i.e.

$$\overline{\nabla}_{\frac{d}{dt}}^{f \circ \gamma} (f \circ \gamma)' \perp f_*(T_{\gamma(t)}M)$$

para todo $t \in I$.

Comentário: compare o exercício 4, item (a), do Capítulo 2 do livro do professor Manfredo com o resultado do item (c) deste exercício.

Exercício 3. Seja $F:(M^n,g)\to (N^n,h)$ uma isometria local.

- a) Suponha que $\gamma:(-\epsilon,\epsilon)\to M$ é uma geodésica com condições iniciais $\gamma(0)=p\in M$ e $\dot{\gamma}(0)=v\in T_pM$. Mostre que $F\circ\gamma:(-\epsilon,\epsilon)\to N$ é uma geodésica, com condições iniciais $F(p)\in N$ e $dF_pv\in T_{F(p)}N$, em N.
- b) Mostre que dado $p \in M$, existe $\epsilon > 0$ suficientemente pequeno, tal que o seguinte diagrama é comutativo:

c) Suponha que M e N são conexas. Sejam $F,G:M\to N$ isometrias. Mostre que se existe $p\in M$ tal que F(p)=G(p) e $dF_p=dG_p$, então F=G.

Exercício 4. Exemplo: esfera.

- a) Determine as geodésicas da esfera \mathbb{S}^n com sua métrica canônica.
- b) Determine o grupo de isometrias da esfera \mathbb{S}^n com sua métrica canônica.

Exercício 5. Exemplo: plano hiperbólico.

- a) Determine as geodésicas do plano hiperbólico \mathbb{H}^2 com sua métrica canônica.
- b) Determine o grupo de isometrias de \mathbb{H}^2 com sua métrica canônica.

Exercício 6. Seja \tilde{M} um espaço de recobrimento de uma variedade Riemanniana M.

- a) Mostre que é possível dar a \tilde{M} uma estrutura Riemanniana de modo que a aplicação de recobrimento $\pi: \tilde{M} \to M$ seja uma isometria local (esta é a **métrica do recobrimento**).
- b) Seja c uma curva suave em M e \tilde{c} um levantamento, i.e. $\pi \circ \tilde{c} = c$. Prove que c é geodésica de M se, e somente se, \tilde{c} é geodésica de \tilde{M} .
- c) Prove que se c minimiza a distância entre seu ponto inicial e final, então o mesmo ocorre com \tilde{c} .
- d) Prove que a recíproca do item anterior é falsa.
- e) Suponha \tilde{M} compacta e que $\pi: \tilde{M} \to M$ é um recobrimento de k folhas, $k \in \mathbb{N}$. Prove que $vol(\tilde{M}) = k \cdot vol(M)$.

Exercício 7. Sejam M,N variedades Riemannianas e considere $E:=M\times N$ com a métrica produto.

- a) Caracterize as curvas minimizantes de E.
- b) Calcule o diâmetro de E em função dos diâmetros de M e N.
- c) Calcule o volume de E em função dos volumes de M e N.

Comentário: utilizando os exercícios anteriores, é possível determinar as geodésicas de $\mathbb{R}P^n$, \mathbb{R}^n , $\mathbb{R}^n/\mathbb{Z}^n$, $\mathbb{S}^1 \times \mathbb{S}^1$, etc.

Exercício 8. Curvas minimizantes.

- a) Seja γ uma curva suave por partes parametrizada por comprimento de arco, conectado p a q, pontos de uma variedade Riemanniana (M,g). Mostre que se $d(p,q)=l(\gamma)$, então γ é uma geodésica. Dizemos que γ realiza a distância entre p e q.
- b) Suponha que $\gamma, \sigma: [0,2] \to M$ são geodésicas distintas e satisfazem: $\gamma(0) = \sigma(0) =: p, \ \gamma(1) = \sigma(1) =: q, \ \gamma \ e \ \sigma$ realizam a distância entre $p \ e \ q$. Mostre que γ não realiza a distância entre $p \ e \ \gamma(1+s)$ para nenhum s>0.

Comentário: em uma variedade Riemanniana compacta (M,g) quaisquer dois pontos podem ser conectados por uma geodésica minimizante. Isso será provado no curso como consequência do Teorema de Hopf-Rinow. Esse fato é muito útil para calcular o diâmetro de variedades Riemannianas, por exemplo.

Parte 2: Métricas Riemannianas, Conexões Afins e Geodésicas.

Exercício 9. Seja (M,g) uma variedade Riemanniana e $f \in C^{\infty}(M)$.

- a) Seja $\gamma:(a,b)\to M$ uma geodésica. Compute a primeira e segunda derivadas da função $f\circ\gamma:(a,b)\to\mathbb{R}$ em termos do gradiente e da hessiana de f.
- b) Seja $p \in M$ é um ponto de máximo (mínimo) local para f. Mostre que o gradiente da f se anula em p, e sobre esse ponto a hessiana é não-positiva (não-negativa).
- c) Mostre que f tem hessiana não-negativa se e somente, se $f \circ \gamma$ é convexa para cada geodésica em (M, g). **Exercício 10.** Geodésicas como curvas integrais. Seja (M^n, g) uma variedade Riemanniana.
 - a) Seja $f \in C^{\infty}(M)$ uma função satisfazendo $|\nabla f|_g \equiv 1$. Prove que as curvas integrais de ∇f são curvas minimizantes. Conclua que as curvas integrais de ∇f são geodésicas.
 - b) Suponha que $X \in \mathfrak{X}(M)$ satisfaz $\nabla_X X \equiv 0$. Mostre que as curvas integrais de X são geodésicas.
 - c) Sob as hipóteses do item (a), mostre que $\nabla_{\nabla f} \nabla f \equiv 0$. Utilize o item (b) para concluir que as curvas integrais de ∇f são geodésicas.

Exercício 11. Seja $B_{\varepsilon}(p)$ uma bola normal da variedade Riemanniana (M,g). Calcule $|\nabla d_p|$ e as curvas integrais de ∇d_p em $B_{\varepsilon}(p) \setminus \{p\}$.

Exercício 12. Seja (G,g) um grupo de Lie munido de uma métrica bi-invariante e ∇ sua conexão de Levi-Civita.

a) Mostre que

$$\nabla_u v = \frac{1}{2}[u, v],$$

para cada $u, v \in \mathfrak{g} \subset \mathfrak{X}(G)$.

b) Seja $\overline{\nabla}$ uma conexão afim simétrica em G. Mostre que $\overline{\nabla} = \nabla$ se, e somente se, $\overline{\nabla}_u u = 0$ para todo $u \in \mathfrak{g}$.

Exercício 13. Exercício 3 do Capítulo 3 do livro do professor Manfredo, quinta edição, sobre subgrupos a 1-parâmetro de um grupo de Lie.

Exercício 14. Dada uma variedade Riemanniana (M^n, g) denotamos por d_g a distância induzida por g.

- a) Sejam g,h duas métricas Riemannianas em M^n . Mostre que se $d_g=d_h$, então g=h.
- b) Seja (M,g) uma variedade Riemanniana e $F:M\to M$ um difeomorfismo. Mostre que F é uma isometria se e somente, se $d_g(F(\cdot),F(\cdot))=d_g(\cdot,\cdot)$.

Definição 1. Seja (M^n, g) uma variedade Riemanniana.

- a) Denotamos por Iso(M, g) o grupo de isometrias de (M, g).
- b) Dizemos que (M,g) é **homogênea** se o grupo Iso(M,g) age transitivamente em (M,g). Isto é, se para cada $p,q \in M$ existe $F \in \text{Iso}(M,g)$, tal que F(p)=q.
- c) Dizemos que (M,g) é k-homogênea se para toda k-uplas de pontos $(p_1,...,p_k)$ e $(q_1,...,q_k)$, tais que $d_g(p_i,p_j)=d_g(q_i,q_j)$, $\forall i,j$ existe $F\in \mathrm{Iso}(M,g)$, tal que $F(p_i)=q_i$, para cada i.
- d) Dizemos que (M,g) é isotrópica se para cada $p \in M$ e $u,v \in T_pM$ unitários existe $F \in Iso(M,g)$, tal que F(p) = p e $dF_pu = v$.
- e) Dizemos que (M,g) é simétrica se para cada $p \in M$ existe $F \in Iso(M,g)$, tal que F(p) = p e $dF_p = -Id$.

Exercício 15. Suponha que (M^n, g) é uma variedade Riemanniana conexa.

- a) (M, g) simétrica $\implies (M, g)$ homogênea.
- b) (M,g) 2-homogênea $\implies (M,g)$ isotrópica.

Exercício 16. Forneça exemplos de variedades Riemannianas simétricas, homogêneas e isotrópicas.

Complemento:

Exercício 17. Seja (M^n, g) uma variedade Riemanniana, $p \in M$ e $\{e_j\}_{j=1}^n$ é uma base ortonormal de T_pM . Mostre que existe um $\epsilon > 0$ tal que o mapa $\varphi : B_{\epsilon}(0) \subset \mathbb{R}^n \to M$, dado por

$$\varphi(x_1,...,x_n) = exp_p\left(\sum_{j=1}^n x_j e_j\right),$$

é um difeomorfismo sobre a sua imagem. Logo, podemos definir uma carta para M a partir do mapa φ , essa é a chamada **carta exponencial**. Mostre que nessa carta temos:

- a) $g_{ij}(p) = \delta_{ij}$.
- b) $\Gamma_{ii}^{k}(p) = 0.$
- c) $\frac{\partial g_{ij}}{\partial x_k}(p) = 0$.

Comentário: o referencial local $\{E_i := \partial \varphi_i : i = 1, \dots, n\}$ satisfaz: $[E_i, E_j] = 0$, $\{E_1(p), \dots, E_n(p)\}$ é base ortonormal de T_pM e $(\nabla_{E_i}E_j)(p) = 0$.

Exercício 18. Exercício 7 do capítulo 3 do livro do professor Manfredo: Referencial Geodésico. Esse exercício garante a existência de um referencial local, em vizinhança aberta U de um ponto $p \in M$ fixado, satisfazendo: $\{E_i : i = 1, \dots, n\}$ é referencial ortonormal em U e $(\nabla_{E_i} E_j)(p) = 0$.

Comentário: compare as propriedades do referencial geodésico com as propriedades do referencial dado pela carta exponencial. Esses referenciais são muito úteis para fazer contas.

Exercício 19. Seja G um grupo de Lie. Mostre que existe uma única conexão afim ∇ em G tal que $\nabla_v u \equiv 0$ para todo $u, v \in \mathfrak{g}$. Mostre que essa conexão é livre de torção se, e somente se, \mathfrak{g} é uma álgebra de Lie abeliana.

Exercício 20. Suponha que um grupo de Lie compacto G age transitivamente na variedade M. Mostre que M admite uma métrica Riemanniana g, de modo que a variedade Riemanniana (M^n,g) seja homogênea.

Sugestão: é possível aplicar uma ideia similar à construção de uma métrica bi-invariante em um grupo de Lie compacto.

Exercício 21. Geodésicas e conexões afins.

- a) Seja $\gamma:I\to M$ uma curva regular definida sobre um intervalo aberto $I\subset\mathbb{R}$. Prove que γ é uma reparametrização de uma geodésica se, e somente se, existe $f:I\to\mathbb{R}$ suave tal que $\nabla^{\gamma}_{\frac{d}{dt}}\gamma'=f(t)\gamma'$ para todo $t\in I$.
- b) Seja ∇ uma conexão afim em M. Prove que existe uma conexão $\overline{\nabla}$ em M que é livre de torção e admite as mesmas geodésicas que ∇ . Há unicidade?
- c) Sejam ∇ e $\overline{\nabla}$ conexões afins em M, livres de torção. Mostre que ∇ e $\overline{\nabla}$ possuem as mesmas geodésicas (a menos de reparametrizações) se, e somente se, existe uma 1-forma ω tal que

$$\nabla_X Y - \overline{\nabla}_X Y = \omega(X)Y + \omega(Y)X$$

para todo $X, Y \in \mathfrak{X}(M)$.

Referências

- [1] Livro do professor Manfredo, Geometria Riemanniana.
- [2] Exercícios do professor Luis Florit, https://luis.impa.br/.
- [3] Listas de exercícios do Diego Guajardo, https://luis.impa.br/.
- [4] Listas de exercícios do Luciano Luzzi, https://sites.google.com/impa.br/lucianojunior/.
- [5] Livro do professor P. Petersen, Riemannian Geometry.
- [6] Livro do professor J. Lee, Introduction to Riemannian Manifolds.