#### Decidable and Undecidable Problems

Beulah A.

AP/CSE

#### Decidable Problems

- Decidable problems about regular Languages
  - Acceptance problem for DFAs
  - Acceptance problem for NFAs
  - Acceptance problem for Regular Expressions
  - Emptiness testing for DFAs
  - 2 DFAs recognizing the same language
- Decidable problems about Context Free Languages
  - Does a given CFG generate a given string?
  - Is the language of a given CFG empty?
  - Every CFL is decidable by a Turing machine

## Acceptance problem for DFAs

 $A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts a given string } w \}$ 

- Language includes encodings of all DFAs and strings they accept.
- Showing language is decidable is same as showing the computational problem is decidable.
- Theorem 1: A<sub>DFA</sub> is a decidable language.
  - **Proof Idea**: Specify a TM M that decides  $A_{DFA}$ .
    - M = "On input  $\langle B, w \rangle$ , where B is a DFA and w is a string:
    - 1. Simulate *B* on input *w*.
    - 2. If simulation ends in accept state, *accept*. If it ends in nonaccepting state, *reject*."

## Acceptance problem for DFAs



## Acceptance problem for NFAs

 $A_{NFA} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts a given string } w \}$ 

- Theorem 2: A<sub>NFA</sub> is a decidable language.
  - **Proof Idea**: Specify a TM N that decides  $A_{NFA}$ .
    - N = "On input  $\langle B, w \rangle$ , where B is an NFA and w is a string:
      - 1. Convert NFA B to equivalent DFA C.
      - 2. Run TM M from Theorem 1 on input  $\langle C, w \rangle$ .
      - 3. If M accepts, accept. Otherwise, reject."

## Acceptance problem for RE

 $A_{REX} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$ 

- Theorem 3: A<sub>REX</sub> is a decidable language.
  - **Proof Idea**: Specify a TM P that decides  $A_{REX}$ .
    - P = "On input  $\langle R, w \rangle$ , where R is a regular expression and w is a string:
      - 1. Convert regular expression R to equivalent NFA A
      - 2. Run TM N from Theorem 2 on input  $\langle A, w \rangle$ .
      - 3. If N accepts, accept. If N rejects, reject."

## Emptiness problem for DFAs

$$E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$$

- Theorem 4: E<sub>DFA</sub> is a decidable language.
  - **Proof Idea**: Specify a TM T that decides  $E_{DFA}$ .
    - T = "On input <A>, where A is a DFA:
      - 1. Mark start state of A.
      - 2. Repeat until no new states are marked:

        Mark any state that has a transition coming into it from any state that is already marked.
      - 3. If no accept state is marked, accept; otherwise, reject."

# 2 DFAs recognizing the same language

$$EQ_{DFA} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

• Theorem 5: EQ<sub>DFA</sub> is a decidable language.

#### symmetric difference:

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$
 emptiness: 
$$L(C) = \emptyset \iff L(A) = L(B)$$



# Does a given CFG generate a given string?

$$A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$$

- Theorem 6 : A<sub>CFG</sub> is a decidable language.
  - Why is this unproductive: use *G* to go through all derviations to determine if any yields *w*?
  - Better Idea...**Proof Idea**: Specify a TM S that decides  $A_{CFG}$ .
    - S = "On input  $\langle G, w \rangle$ , where G is a CFG and w is a string:
      - 1. Convert G to equivalent Chomsky normal form grammar.
      - 2. List all derivations with 2n-1 steps (why?), where n = length of w. (Except if n=0, only list derivations with 1 step.)
      - 3. If any of these derivations yield w, accept; otherwise, reject."

# Is the language of a given CFG empty?

$$E_{CFG} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$$

- Theorem 7: E<sub>CFG</sub> is a decidable language.
  - **Proof Idea**: Specify a TM R that decides E<sub>CFG</sub>.
    - R = "On input  $\langle G \rangle$ , where G is a CFG:
      - 1. Mark all terminal symbols in G.
      - 2. Repeat until no new variables get marked: Mark any variable A where G has rule  $A \rightarrow U_1, U_2 \dots U_k$  and each symbol  $U_1, U_2 \dots U_k$  has already been marked.
      - 1. If start variable is not marked, accept; otherwise, reject."

#### Every CFL is decidable by a Turing machine

- Theorem 8: Every context-free language is decidable.
  - Let A be a CFL and G be a CFG for A.
  - Design TM  $M_G$  that decides A.
  - $M_G$  = "On input w, where w is a string:
    - 1. Run TM S from Theorem 6 on input  $\langle G, w \rangle$ .
    - 2. If S accepts, accept. If S rejects, reject."

#### Undecidable Problems

- Halting Problem
- Post's Correspondence problem
- Busy Beaver problem
- Whether the language accepted by a TM is empty
- Whether the language accepted by a TM is regular language
- Whether the language accepted by a TM is context free language

## The Halting Problem

An example of a <u>recursive enumerable</u> problem that is also <u>undecidable</u>

#### What is the Halting Problem?

- Does a given Turing Machine M halt on a given input w?
- Example: Given an arbitrary Turing machine M over alphabet  $\Sigma = \{ a, b \}$ , and an arbitrary string w over, does M halt when it is given w as an input?

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM which h alts on } w \}$ 



#### Revisit UTM

Input string U accepts, if M accepts w **→**accepts W→ rejects U rejects, if M does not accept w

#### Theorem: Is HALT<sub>TM</sub> decidable?

- Halting Problem is undecidable
- ie, there is no Turing Machine that solves Halting Problem
- If there was such a Turing Machine
  - Its input will have two portions, M and w
  - It outputs either aYES or a NO depending on whether M halts on input w

- Suppose Halting Problem is decidable
  - Plan: arrive at a contradiction
- If Halting Problem is decidable, then there exists a TM T that decides Halting Problem



- Create a TM T' based on T as follows:
  - T takes in a TM M
  - In T', M is duplicated so that there are now two portions on the input tape
  - Feed this new input into T
  - When it is about to print reject, print accept instead
  - When it is about to print accept, send the program to an infinite loop



 Program T' takes a M as input, prints accept if M does not halt on input M, but goes into an infinite loop if M halts on input M

- Consider feeding TMT' to itself
- Consequence (two possibilities)
  - It prints accept
    - T' halts on input T'
      if T' does not halt on input T' → a contradiction
  - It goes to an infinite loop
    - T' does not halt on input T'
      if T' halts on input T' → a contradiction
- Therefore the supposition cannot hold, and Halting Problem is undecidable



- T' halts on input T' (prints a accept, see outer box) if
- T' does not halt on input T' (T should yield a reject, see inner box)
- T' does not halt on input T' (infinite loop, see outer box) if
- T' halts on input T' (T should yield a accept, see inner box)

#### HP is semidecidable

- There are problems such as HP that cannot be solved
- Actually, HP is semidecidable, that is if all we need is print accept when M on w halts, but not worry about printing reject if otherwise, a TM machine exists for the halting problem
  - Just simulate M on w, print accept (or go to a final state) when the simulation stops
  - This means that HP is not recursive but it is recursively enumerable

#### HP is semidecidable

The Halting Problem (Partially solvable)



## The Diagonalization Language

Example of a language that is not recursive enumerable

(i.e, no TMs exist)



#### A Language about TMs & acceptance

- Let L be the language of all strings <M,w> s.t.:
  - 1. M is a TM (coded in binary) with input alphabet also binary
  - 2. w is a binary string
  - 3. M accepts input w.

#### Enumerating all binary strings

- Let w be a binary string
- Then  $1w \equiv i$ , where i is some integer
  - E.g., If  $w=\varepsilon$ , then i=1;
  - If w=0, then i=2;
  - If w=1, then i=3; so on...
- If  $1w\equiv i$ , then call w as the i<sup>th</sup> word or i<sup>th</sup> binary string, denoted by  $w_i$ .
- A canonical ordering of all binary strings:
  - {\varepsilon, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110, \ldots\}
  - $\{w_p, w_2, w_3, w_4, \dots, w_i, \dots\}$

## Any TM M can also be binary-coded

- $M = \{ Q, \{0,1\}, \Gamma, \delta, q_0, B, F \}$ 
  - Map all states, tape symbols and transitions to integers
     (→ binary strings)
  - $\delta(q_i, X_j) = (q_k, X_l, D_m)$  will be represented as:  $\rightarrow 0^{i_1} 0^{j_1} 0^{k_1} 0^{l_1} 0^m$
- Result: Each TM can be written down as a long binary string
- Canonical ordering of TMs:
  - $\{M_1, M_2, M_3, M_4, \dots M_i, \dots \}$

# The Diagonalization Language

- $L_d = \{ w_i \mid w_i \notin L(M_i) \}$ 
  - The language of all strings whose corresponding machine does *not* accept itself (i.e., its own code)



• <u>Table:</u> T[i,j] = 1, if  $M_i$  accepts  $w_j = 0$ , otherwise.

• Make a new language called  $L_d = \{w_i \mid T[i,i] = 0\}$ 

-diagonal-

## L<sub>d</sub> is not RE (i.e., has no TM)

#### Proof (by contradiction):

Let M be the TM for L<sub>d</sub>

 $\rightarrow$  M has to be equal to some  $M_k$  s.t.

$$L(M_k) = L_d$$

- $\rightarrow$  Will  $w_k$  belong to  $L(M_k)$  or not?
  - 1. If  $w_k \in L(M_k) ==> T[k,k]=1 ==> w_k \notin L_d$
  - 2. If  $w_k \notin L(M_k) ==> T[k,k]=0 ==> w_k \in L_d$

A contradiction either way!!

# Post's Correspondence Problem

Emil Post

(Post Correspondence Problem)

#### Definition

Given two lists A and B:

$$A = w_1, w_2, ..., w_k$$
  $B = x_1, x_2, ..., x_k$ 

The problem is to determine if there is a sequence of one or more integers  $i_1, i_2, ..., i_m$  such that:

$$\mathbf{w}_{i_1}\mathbf{w}_{i_2}...\mathbf{w}_{i_m} = \mathbf{x}_{i_1}\mathbf{x}_{i_2}...\mathbf{x}_{i_m}$$

 $(w_i, x_i)$  is called a corresponding pair.

Indices may be repeated or omitted

# Example

|    | $w_1$ | $w_2$ | $w_3$ |
|----|-------|-------|-------|
| A: | 100   | 11    | 111   |
|    |       |       |       |

PC-solution: 2,1,3  $w_2w_1w_3 = x_2x_1x_3$ 

11100111

#### Example

 $A: \begin{array}{cccc} w_1 & w_2 & w_3 \\ 00 & 001 & 1000 \end{array}$ 

- There is no solution
- Because total length of strings from B is smaller than total length of strings from A

#### Modified Post Correspondence Problem (MPCP)

Given two lists A and B:

$$A = w_1, w_2, ..., w_k$$
  $B = x_1, x_2, ..., x_k$ 

The problem is to determine if there is a sequence of one or more integers  $i_1, i_2, ..., i_m$  such that:

$$w_1 w_{i_1} w_{i_2} \dots w_{i_m} = x_1 x_{i_1} x_{i_2} \dots x_{i_m}$$

(w<sub>i</sub>, x<sub>i</sub>) is called a corresponding pair.

• Pair  $(w_1, x_1)$  is forced to be at the beginning of the two strings.

#### Example

|   | A                | В       |
|---|------------------|---------|
| i | $\mathrm{W_{i}}$ | $X_{i}$ |
| 1 | 11               | 1       |
| 2 | 1                | 111     |
| 3 | 0111             | 10      |
| 4 | 10               | 0       |

This MPCP instance has a solution: 3, 2, 4:  $w_1w_3w_2w_2w_4 = x_1x_3x_2x_2x_4 = 11011111110$ 

|   | A       | В             |
|---|---------|---------------|
| i | $W_{i}$ | $X_{\dot{1}}$ |
| 1 | 10      | 101           |
| 2 | 011     | 11            |
| 3 | 101     | 011           |

Does this MPCP instance have a solution?

#### Undecidability of PCP

• To show that MPCP is undecidable, we will reduce the universal language problem (L<sub>U</sub>) to MPCP:



• If MPCP can be solved,  $L_U$  can also be solved. Since we have already shown that  $L_U$  is un-decidable, MPCP must also be undecidable.

- Mapping a universal language problem instance to an MPCP instance is not as easy.
- In a L<sub>U</sub> instance, we are given a Turing machine M and an input w, we want to determine if M will accept w.
- To map a L<sub>U</sub> instance to an MPCP instance successfully, the mapped MPCP instance should have a solution if and only if M accepts w.



If M accepts w, the two lists can be matched. Otherwise, the two lists cannot be matched.

- We assume that the input Turing machine M:
  - Never prints a blank
  - Never moves left from its initial head position.
- Given M and w, the idea is to map the transition function of M to strings in the two lists in such a way that a matching of the two lists will correspond to <u>a</u> concatenation of the tape contents at each time step.

- Given M and w, there are five types of strings in list A and B:
- Starting string (first pair):

List A List B #q<sub>0</sub>w#

where  $q_0$  is the starting state of M.

• Strings from the transition function  $\delta$ :

| List A         | List B         |                             |
|----------------|----------------|-----------------------------|
| qX             | Yp             | from $\delta(q,X)=(p,Y,R)$  |
| ZqX            | pZY            | from $\delta(q,X)=(p,Y,L)$  |
| q#             | Yp#            | from $\delta(q,\#)=(p,Y,R)$ |
| Zq#            | pZY#           | from $\delta(q,\#)=(p,Y,L)$ |
| where Z is any | tape symbol ex | xcept the blank.            |

• Strings for copying:

List A List B

X

where X is any tape symbol (including the blank).

• Strings for consuming the tape symbols at the end:

| List A | List B |  |
|--------|--------|--|
| Xq     | q      |  |
| qY     | q      |  |
| XqY    | q      |  |

where q is an accepting state, and each X and Y is any tape symbol except the blank.

Ending string:

**List A**q##

#

where q is an accepting state.

• Using this mapping, we can prove that the original L<sub>U</sub> instance has a solution if and only if the mapped MPCP instance has a solution.

• Consider the following Turing machine:

$$M = (\{q_0, q_1\}, \{0,1\}, \{0,1,\#\}, \delta, q_0, \#, \{q_1\})$$



$$\delta(q_0,1) = (q_0,0,R)$$
  $\delta(q_0,0) = (q_1,0,L)$ 

• Consider input w=110.

• Now we will construct an MPCP instance from M and w. There are <u>five</u> types of strings in list A and B:

• Starting string (first pair):

**List A**# 4q<sub>0</sub>110#

• Strings from the transition function  $\delta$ :

| List A    | List B                                     |              |
|-----------|--------------------------------------------|--------------|
| $q_01$    | $0q_0$ (from $\delta(q_0, 1) = (q_0, 0)$   | ,R))         |
| $0q_{0}0$ | $q_100$ (from $\delta(q_0,0)=(q_1,0)$      | <b>,</b> L)) |
| $1q_{0}0$ | $q_1 10$ (from $\delta(q_0, 0) = (q_1, 0)$ | <b>,</b> L)) |

• Strings for copying:

| List A | List B |
|--------|--------|
| #      | #      |
| 0      | 0      |
| 1      | 1      |

• Strings for consuming the tape symbols at the end:

| List A   | List B | List A    | List B |
|----------|--------|-----------|--------|
| $0q_1$   | $q_1$  | $0q_{1}1$ | $q_1$  |
| $1q_{1}$ | $q_1$  | $1q_{1}0$ | $q_1$  |
| $q_{1}0$ | $q_1$  | $0q_{1}0$ | $q_1$  |
| $q_1 1$  | $q_1$  | $1q_{1}0$ | $q_1$  |

• Ending string:

**List A**q<sub>1</sub>##

#

Now, we have constructed an MPCP instance.

| List A               | List B          | List A                | List B |
|----------------------|-----------------|-----------------------|--------|
| 1.#                  | $\#q_0110\#$    | 9. $0q_1$             | $q_1$  |
| 2. $q_0 1$           | $0\mathbf{q}_0$ | 10. 1q <sub>1</sub>   | $q_1$  |
| 3. $0q_00$           | $q_100$         | 11. $q_10$            | $q_1$  |
| 4. $1q_00$           | $q_1 10$        | 12. $q_1 1$           | $q_1$  |
| 5. #                 | #               | 13. $0q_11$           | $q_1$  |
| <b>6.</b> 0          | 0               | 14. 1q <sub>1</sub> 0 | $q_1$  |
| 7. 1                 | 1               | 15. 0q <sub>1</sub> 0 | $q_1$  |
| 8. q <sub>1</sub> ## | #               | 16. 1q <sub>1</sub> 0 | $q_1$  |

#### Example of ULP to MPCP

• This ULP instance has a solution:

$$q_0 110 \rightarrow 0q_0 10 \rightarrow 00q_0 0 \rightarrow 0q_1 00 \text{ (halt)}$$

• Does this MPCP instance has a solution?

The solution is the sequence of indices: 2, 7, 6, 5, 6, 2, 6, 5, 6, 3, 5, 15, 6, 5, 11, 5, 8

#### Class Discussion

Consider the input w = 101. Construct the corresponding MPCP instance I and show that M will accept w by giving a solution to I.

# Class Discussion (cont'd)

| List A               | List B          | List A                | List B |
|----------------------|-----------------|-----------------------|--------|
| 1. #                 | $\#q_0101\#$    | 9. $0q_1$             | $q_1$  |
| 2. $q_0 1$           | $0\mathbf{q}_0$ | 10. $1q_1$            | $q_1$  |
| 3. $0q_00$           | $q_1 00$        | 11. $q_10$            | $q_1$  |
| 4. $1q_00$           | $q_1 10$        | 12. q <sub>1</sub> 1  | $q_1$  |
| 5. #                 | #               | 13. $0q_11$           | $q_1$  |
| <b>6.</b> 0          | 0               | 14. 1q <sub>1</sub> 0 | $q_1$  |
| 7. 1                 | 1               | 15. $0q_10$           | $q_1$  |
| 8. q <sub>1</sub> ## | #               | 16. 1q <sub>1</sub> 0 | $q_1$  |