IN THE CLAIMS:

1 - 9 (Cancelled)

10. (Currently Amended) A process for preparing a compound of formula (III)

$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^3

wherein R^1 , R^2 , R^3 and R^4 are identical or different and in each case represent hydrogen, fluorine, chlorine or bromine, at least two of these radicals being other than hydrogen and

X represents OR^5 or $N(R^6)(R^7)$, where R^5 represents hydrogen or optionally substituted C_1 - C_{10} -alkyl, optionally substituted phenyl or benzyl and R^6 and R^7 are identical or different and in each case represent optionally substituted C_1 - C_{10} -alkyl and

R⁸ represents hydrogen, chlorine, bromine or optionally substituted C₁-C_{1n}-alkyl,

the process comprising: reacting (1) an aniline of the formula (VI)

$$R^2$$
 R^3
 R^4
 NH_2
(IV),

Mo6874

wherein

R¹, R², R³ and R⁴ have the meaning indicated in formula (III) with sodium nitrite in aqueous sulfuric acid <u>or with methyl, ethyl, butyl or amyl nitrite sulfuric acid-containing methanol</u> into a diazonium salt and reacting (2) the resulting reaction mixture

with a compound of formula (V)

wherein

X has the meaning indicated in formula (III) and

 R^8 represents hydrogen, chlorine, bromine or optionally substituted $C_1 - C_{10}$ -alkyl,

in the presence of a homogeneous, palladium-containing catalyst at a temperature ranging from about -5 to about +100°C.

11. (Currently Amended) The process according to Claim 10, wherein

R¹ represents hydrogen or chlorine,

R² represents hydrogen, fluorine, chlorine or bromine,

R³ represents hydrogen or chlorine and

 R^4 represents fluorine or chlorine, at least one of the radicals R^1 ,

 R^2 and R^3 being other than hydrogen,

R⁵ represents hydrogen, methyl, ethyl, isopropyl or benzyl,

R⁶ and R⁷ represent methyl or ethyl, and

R⁸ represents hydrogen or methyl and

represents an equivalent of chloride, hydrogensulfate or acetate or 1/2 an equivalent of sulfate.

12. (Currently Amended) The process according to Claim [[11]]10, wherein, the palladium-containing catalyst is selected from the group consisting of

Mo6874

 $PdCl_2$, $PdBr_2$, $Pd(NO_3)_2$, H_2PdCl_4 , $Pd(CH_3COO)_2$, Na_2PdCl_4 , K_2PdCl_4 , Pd(II) acetylacetonate, tetra-(trisphenylphosphine)Pd, tris-(dibenzylidene-acetone)Pd₂ and wherein the palladium-containing catalyst is used in an amount ranging from about 0.001 to about 10 mol%, based on the diazonium salt of the formula (IV).

- 13. (Previously Presented) The process according to Claim 10, wherein from about 0.5 to about 2 moles of compounds of formula (V) are employed, per mole of diazonium salt of the formula (IV).
- 14. (Previously Presented) The process according to Claim 10, wherein the process is carried out without a base.
 - 15. (Cancelled)
 - 16. (New) The process according to Claim 10, wherein,
 - R¹, R², R³, R⁴, R⁸ has the meaning indicated in formula (III) and
 - X represents OR⁵, where R⁵ represents hydrogen.