Department of Mathematics and Statistics: MT232P

Assignment 4

Deadline: 4pm Monday 12 December.

Please upload your solutions as a pdf file to the MT232P Moodle page.

- 1. Let $x_1 = 1$, and set $x_{n+1} = \sqrt{2 + x_n}$ for all $n \in \mathbb{N}$. Use the Monotone Convergence Theorem to show that $\{x_n\}_1^{\infty}$ converges, and find $\lim_{n\to\infty} x_n$.
- 2. Show that if every subsequence of $\{a_n\}_1^{\infty}$ has itself a subsequence which converges to 0, then $\{a_n\}_1^{\infty}$ converges to 0.
- 3. Assume $\{a_n\}_1^{\infty}$ and $\{b_n\}_1^{\infty}$ are Cauchy sequences. Use a triangle inequality argument to prove directly from the definition of a Cauchy sequence that $\{c_n\}_1^{\infty}$, where $c_n = |a_n b_n|$, is also a Cauchy sequence.
- 4. What is the value of $\lim_{x\to 1} \frac{1}{1+\sqrt{x}}$? Prove your assertion using an $\epsilon-\delta$ argument.