Master 2 M.O. 2020 - 2021

Time Series Tutorial n^0 1 : How to manipulate and generate time series?

The aims of this tutorial is a to provide a first overview on the objects and commands of the R software relative to time series.

R is a free software of numerical applied mathematics and more precisely statistics. It is continuously developed from the more recent researches of mathematicians. It can be downloaded from http://www.r-project.org/ as well for Windows, Mac or Linux. An accurate version of R, called R-studio, could also be downloaded on https://www.rstudio.com/.

In the sequel, you may read at the left side the R commands which could be written on your computer, comments on these commands could be found on the right-side.

An interesting way of using this software is to open a R-script (on File) and write all your commands indeed. You could save the R-script and directly make run the commands on the command window.

Manipulations of R objects

frequency(z)

length(z)

(4 9 7 1 7 9 0 4 7 10 0 10)	
x=c(4,3,7,1.7,3,8.4,5,12,9,12)	Generate a numerical vector (c as collector).
xx = rep(c(-1,4,-log(2)),3)	To repeat a sequence of numbers.
x=c(x,xx)	New vector x from its previous affectation.
X	To print the value of x .
is.ts(x)	Is x a "time series" object?
y=as.ts(x)	Transform x to a "time series" object
у	Changes?
time(y)	See the vector of time of this time series
is.ts(y)	Just to verify
	More generally, R software run with several types of objects:
	Vectors (commands is.vector and as.vector);
	Matrices (commands $is.matrix$ and $as.matrix$);
	Data tables (commands $is.data.frame$ and $as.data.frame$);
	Time series (commands $is.ts$ and $as.ts$);
	Lists (commandes $is.list$ and $as.list$);
t = t sp(y)	Associate to y a vector of times t (by default from 1 to 1, with frequency 1).
plot.ts(y)	Draw the path of the time series y
plot.ts(y,type="b")	To indicate the points of the time series.
z=ts(y,freq=4)	Divide the time series in trimesters (run also with divisions in months where $freq = 12 \dots$).
Z	Verification.
$\mathrm{time}(\mathrm{z})$	Associate vector of time
z=ts(x,freq=4,1991+1/4,1993)	A new vector of times, with the beginning and the end.
$\mathrm{time}(\mathrm{z})$	
$\mathrm{plot.ts}(\mathrm{z})$	New graph.

To specify the frequency. Length of the time series z.

Generation of a time series

In the help desk, write the keyword "distributions".

Note that prefix "r" is used to generate pseudo-random variables, "d" for density,

"p" for cumulative distribution function and "q" for quantile.

qnorm(0.95) 95% percentile of standard Gaussian distribution.

pnorm(2) Cumulative distribution function in 2 of standard Gaussian distribution.

x=rnorm(300) On génère un bruit blanc.

mean(x) Empirical mean. sd(x) Standard deviation.

 $\operatorname{var}(x)$ Empirical deviation. Which is the renormalization? $\operatorname{cov}(x,x \wedge 2)$ Empirical covariance between both the vectors. $\operatorname{cor}(x,x)$ Empirical correlation. Explain the result? $\operatorname{cor}(x,x \wedge 2)$ Empirical correlation. Explain the result?

par(mfrow=c(2,2)) Share the window in 4 windows.

plot.ts(x) Graph.

hist(x,nclass=6) Histogram with a specified number of classes.

Generate 100 independent realizations of $\mathcal{N}(-1,3)$ random variables.

Compute the empirical mean, the standard deviation and draw an histogram.

Explain the results...

x=rbinom(30,10,0.3) Generation of another vector of independent binomial random variables.

Compute the usual statistics relative to this vector.

Center and normalize this time series. Let z be this new vector.

y=as.ts(x) Transform y in a time series.

y=sort(y) To order y.

plot.ts(x,y) Explain this graph.

acf(x) Correlogram of x. Explain the result. acf(y) Correlogram of y. Explain the result.

Exercices

Exercice 1: Let $(\varepsilon_i)_{i \in \mathbb{Z}}$ be a white noise of [-3,3]-uniform distribution.

- 1. Generate a realization of $(\varepsilon_1, \dots, \varepsilon_{100})$.
- 2. Let $X_i = \varepsilon_{i+1} 2 \varepsilon_i$ for $i \in \mathbf{Z}$. Generate (X_1, \dots, X_{100}) .
- 3. Draw the correlogram of $(\varepsilon_1, \dots, \varepsilon_{100})$ and (X_1, \dots, X_{100}) . Explain the results.

Exercice 2: Let $Z = (Z_i)_{1 \le i \le n}$ be a vector of independent standard Gaussian random variables.

- 1. Let $A = (A_1, \dots, A_n)$ be a (deterministic) vector of real numbers and Σ be a (n, n) definite positive matrix. Show that $A + \Sigma^{1/2} Z$ is a realization of a $\mathcal{N}(A, \Sigma)$ random vector. In the sequel n = 100.
- 2. Use R software to generate a realization X of a $\mathcal{N}(A, \Sigma)$ random vector with A = 0 and $\Sigma_{ii} = 5$, $\Sigma_{ij} = -2$ if |j i| = 1 and $\Sigma_{ij} = 0$ if |j i| > 1 for $1 \le i, j \le n$ (you may use the command matrix and chol).
- 3. Prove that the distribution of $(X_i)_i$ is the same than the distribution of $(Z_{i+1} 2Z_i)_i$.
- 4. Compute the autocorrelation of (X_i) and draw the correlogram of (X_1, \ldots, X_n) . What's happening when n increases?
- 5. Using Monte-Carlo experiments, establish numerically the $\sqrt{n} (\widehat{\rho}_X(1) + 0.4) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0, \gamma^2)$ and give an approximation of γ^2 . Provide a theoretical prove of this result and the exact value of γ^2 .