ESC195 Notes

QiLin Xue

March 1, 2021

Contents

Power Series 1

Taylor and Maclaurin Series $\mathbf{5}$

1 Power Series

• We can introduce the power series:

Definition: A power series is a series in the form:

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$
 (1)

• For example, if we let $c_n = 1$. Then for all n, we get:

$$\sum_{n=0}^{\infty} x_n = 1 + x + x^2 + \dots = \frac{1}{1-x}$$
 (2)

and converges if |x| < 1.

• A power series about a can be written as:

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$$
(3)

• Note that for x = a, the sum will always converge. However, we are interested for the entire range of values at which it converges..

Example 1: Suppose we have the power series $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$. To test when it converges, we can apply the ratio test:

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}}{(n+1)^2} \cdot \frac{n^2}{x^n} \right|$$

$$= |x| \frac{n^2}{n+1}$$
(5)

$$=|x|\frac{n^2}{n+1}^2$$
 (5)

As $n \to \infty$, we get |x|. Therefore, the series converges when |x| < 1. However, the test says nothing about the endpoints, so we have to test them separately. If x = 1, we have:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \tag{6}$$

We can apply a p-series test to show it converges. For x = -1, we have:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \tag{7}$$

and apply the alternating series test to show that it converges. Therefore, the power series converges for:

$$-1 \le x \le 1 \tag{8}$$

Example 2: Suppose we have the power series $\sum_{n=0}^{\infty} \frac{(1+5^n)x^n}{n!}$. Using the ratio test, we have:

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(1+5^{n+1})x^{n+1}}{(n+1)!} \cdot \frac{n!}{(1+5^n)x^n} \right| = \frac{1+5^{n+1}}{1+5^n} \cdot \left| \frac{x}{n+1} \right|$$
(9)

which approaches 0 as $n \to \infty$ so it is convergent for all $x \in \mathbb{R}$.

Example 3: Take the power series $\sum n!x^n$. The ratio test then gives:

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)!}{n!} \cdot \frac{x^{n+1}}{x^n} \right| = (n+1)|x| \tag{10}$$

This approaches ∞ as $n \to \infty$ so it diverges except for x = 0.

Theorem: For a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, there are three possibilities with respect to convergence:

- 1. The series converges only when x = a
- 2. The series converges for all x
- 3. The series converges in some interval |x a| < R where R is the **radius of convergence**. However, the endpoints must be tested serparately.

Example 4: Take the power series $\sum_{n=0}^{\infty} \frac{(-2)^n (x-1)^n}{n+2}$. The ratio test gives us:

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{2^{n+1}(x-1)^{n+1}}{n+3} \cdot \frac{n+2}{2^n(x-1)^n} \right| = 2\left(\frac{n+2}{n+3}\right)|x-1|$$
(11)

As $n \to \infty$, we get:

$$|x-1| < \frac{1}{2} : R = \frac{1}{2}$$
 (12)

We now need to check the endpoints. Test $x = \frac{1}{2}$. We get:

$$\sum_{n=0}^{\infty} \frac{(-2)^n \left(-\frac{1}{2}\right)^n}{n+2} = \sum_{n=0}^{\infty} \frac{1}{n+2} = \sum_{i=2}^{\infty} \frac{1}{i}$$
 (13)

which diverges as it is the harmonic series. We now need to test $x = \frac{3}{2}$. We then get:

$$\sum_{n=0}^{\infty} \frac{(-2)^n \left(\frac{1}{2}\right)^n}{n+2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+2}$$
 (14)

Using the alternating series test, we see that this converges. Therefore, the interval of convergence is $\left(\frac{1}{2}, \frac{3}{2}\right]$.

• It is possible to represent functions as a power series. We saw that for |x| < 1, the infinite series:

$$\sum_{n=0}^{\infty} = 1 + x + x^2 + \dots = \frac{1}{1-x}$$
 (15)

If we let $f(x) = \frac{1}{1-x}$, then we can approximate it using a truncated power series representation for between -1 < x < 1.

Example 5: Suppose we have the function $\frac{x}{x-3}$. If we want to write it as a power series, we can write it as:

$$x \cdot \frac{1}{x - 3} = -x \frac{1}{3 - x} \tag{16}$$

$$= -\frac{x}{3} \frac{1}{1 - \frac{x}{2}} \tag{17}$$

$$= -\frac{x}{3} \left[1 + \frac{x}{3} + \left(\frac{x}{3}\right)^2 + \cdots \right] \tag{18}$$

$$= -\frac{x}{3} \sum_{n=0}^{\infty} \left(\frac{x}{3}\right)^n \tag{19}$$

$$= -\sum_{n=0}^{\infty} \left(\frac{x}{3}\right)^{n+1} \tag{20}$$

$$= -\sum_{n=1}^{\infty} \left(\frac{x}{3}\right)^n \tag{21}$$

and it converges for |x| < 3.

Theorem: Term by Term Differentiation and Integration: Consider the pwoer series $\sum c_n(x-a)^n$ with $R=R_0>0$, then

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots = \sum_{n=0}^{\infty} c_n(x - a)^n$$
 (22)

is differentiable and continuous on $(a - R_0, a + R_0)$ and:

$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \dots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$
(23)

We can also take the integral:

$$\int f(x) dx = C + c_0(x - a) + \frac{c_1(x - a)^2}{2} + \frac{c_2(x - a)^3}{3} + \dots = C + \sum_{n=0}^{\infty} \frac{c_n(x - a)^{n+1}}{n+1}$$
 (24)

Notice that derivatives and infinite sums can be interchanged. Specifically:

$$\frac{d}{dx}\sum_{n=0}^{\infty}c_n(x-a)^n = \sum_{n=0}^{\infty}\frac{d}{dx}c_n(x-a)^n$$
(25)

$$\int \sum_{n=0}^{\infty} c_n (x-a)^n \, dx = \sum_{n=0}^{\infty} \int c_n (x-a)^n \, dx$$
 (26)

Warning: The radius of convergence between derivatives will always be the same, but the endpoints may change.

Example 6: Suppose we have the function $f(x) = \frac{1}{(1+x)^2}$. Note that:

$$\frac{d}{dx}\frac{-1}{1+x} = -\frac{1}{(1+x)^2} \tag{27}$$

so we can write it in terms of its derivative:

$$\frac{d}{dx} - \frac{1}{1+x} = \frac{d}{dx} \left[-\sum_{n=0}^{\infty} (-x)^n \right] = \sum_{n=1}^{\infty} (-1)^{n+1} n x^{n-1} = \sum_{n=0}^{\infty} (-1)^n (n+1) x^n$$
 (28)

Example 7: Let's find the power series representation of $\ln(1-x)$. We notice that it can be written as an integral:

$$\ln(1-x) = -\int \frac{\mathrm{d}x}{1-x} = -\int \sum_{n=0}^{\infty} x^n \, \mathrm{d}x = C - \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$
 (29)

We can determine the constant of integration by setting x=0, which gives $\ln(1)=0=C$. Therefore, we can write:

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 (30)

For x = 1, this diverges and for x = -1, it conditionally converges.

Example 8: Let us attempt to evaluate $\int_0^{0.1} \frac{dx}{1+x^4}$ to 6 decimal places without a calculator. We first write it as a power series:

$$\frac{1}{1 - (-x)^4} = \sum_{n=0}^{\infty} (-x^4)^n = 1 - x^4 - x^8 - \dots$$
 (31)

which converges for |x| < 1. Therefore, the integral is:

$$\int \frac{\mathrm{d}x}{1+x^4} = \sum_{n=0}^{\infty} \int (-x^4)^n \, \mathrm{d}x$$
 (32)

$$=C + \sum_{n=0}^{\infty} (-1)^n \frac{x}{4n+1} \tag{33}$$

$$=C+x-\frac{x^5}{5}+\frac{x^9}{9}-\cdots (34)$$

The integral is then:

$$\int_{0}^{0.1} \frac{\mathrm{d}x}{1+x^4} = 0.1 - \frac{0.1^5}{5} + \frac{0.1^9}{9} - \dots = 0.099998 \pm 1.1 \times 10^{-10}$$
 (35)

Example 9: Let us try to write the power series representation of the inverse tangent function $f(x) = \tan^{-1}(x)$. Note that:

$$\frac{d}{dx}\tan^{-1}(x) = \frac{1}{1+x^2} \tag{36}$$

We can write f(x) as the integral:

$$\tan^{-1}(x) = \int \frac{\mathrm{d}x}{1+x^2} = \int (1-x^2+x^4-x^6+\cdots)\,\mathrm{d}x = C+x-\frac{x^3}{3}+\frac{x^5}{5}-\cdots$$
 (37)

We can calculate the constant of integration to be $C = \tan^{-1}(0) = 0$ such that we have:

$$\tan^{-1}(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
(38)

with a radius of convergence of R = 1.

Remarks: If we substitute in x = 1, then we can a special series:

$$\tan^{-1}(1) = \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
(39)

and is known as Leibniz's formula for π .

2 Taylor and Maclaurin Series

• Recall that the power series can be written as:

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \cdots$$
(40)

for |x-a| < R, we note that $f(a) = c_0$. However, if we take the derivative:

$$f'(x) = c_1 + 2c_2(x - a) + 3c_3(x - a)^2 + \cdots$$
(41)

and we similarly get $f'(a) = c_1$. For the second derivative:

$$f''(x) = 2c_2 + 6c_3(x - a) + \cdots$$
(42)

we get $f''(a) = 2c_2$.

• In general:

$$f^{(n)}(a) = n!c_n \tag{43}$$

Theorem: If f(x) has a power series representation about a:

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \tag{44}$$

with |x-a| < R. Then the coefficients of the series are $c_n = \frac{f^{(n)(a)}}{n!}$

• For a Taylor series of f about a, we have:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n = f(a) + \frac{f'(a)(x - a)}{1!} + \frac{f''(a)(x - a)^2}{2!} + \cdots$$
 (45)

• For the Maclaurin Series, it is simply a Taylor series taken at x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots$$
 (46)

Definition: A definition is called **analytic at a** if it can be represented as a power series about a.

Example 10: Let us attempt to write out the Maclaurin series of $f(x) = e^x$. First note that:

$$f'(x) = e^x = f''(x) = f'''(x) = f^{(n)}(x)$$
(47)

Therefore: $f^{(n)}(0) = e^0 = 1$. Therefore, we can write it as the series:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
 (48)

We can check that this converges using the ratio test. Let $a_n = \frac{x^n}{n!}$. Then:

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \tag{49}$$

which approaches zero as $n \to \infty$. As a result, $R = \infty$

• We ask ourselves the question: When is it true that $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$

Definition: The nth degree Taylor polynomial of f about a can be written as:

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i = f(a) + \frac{f'(a)}{1!} (x-a) + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 (50)

Example 11: Let us take a look at e^x about a = 0. Then the first, second, third degree series can be written as:

$$T_1(x) = 1 + x \tag{51}$$

$$T_2(x) = 1 + x + \frac{x^2}{2} \tag{52}$$

$$T_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} \tag{53}$$

We can then define the remainder function as:

$$R_n(x) = f(x) - T_n(x) \tag{54}$$

Theorem: If $f(x) = T_n(x) + R_n(x)$ and $\lim_{n \to \infty} R_n(x) = 0$ for |x - a| < R. Then f is equal to the sum of its Taylor series.

Given that f has n+1 continuous derivatives on an open interval I containing a, typen for all $x \in I$:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \dots + \frac{f^{(n)}(a)(x - a)^n}{n!} + R_n(x)$$
 (55)

where

$$R_n(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x-t)^n dt$$
 (56)

Proof. Consider the fundamental theorem of calculus:

$$\int_{a}^{b} f'(t) dt = f(b) - f(a)$$
 (57)

Suppose we evaluate this via integration by parts:

$$u = f'(t)$$
 $dv = dt$
 $du = f''(t)$ $v = t - b$

This gives:

$$\int_{a}^{b} f'(t) dt = [f'(t)(t-b)]_{a}^{b} - \int_{a}^{b} f''(t)(t-b) dt$$
(58)

$$= (b-a)f'(a) + \int_{a}^{b} (b-t)fL''(t) dt$$
 (59)

We integrate by parts again:

$$u = f''(t) dv = (b - t) dt (60)$$

$$du = f'''(t) dt$$
 $v = -\frac{(b-t)^2}{2}$ (61)

which gives:

$$\int_{a}^{b} f^{n}(t)(b-t) dt = \left[-\frac{(b-t)^{2}}{2} f''(t) \right]_{a}^{b} + \int_{a}^{b} \frac{(b-t)^{2}}{2} f'''(t) dt$$
 (62)

If we continue this a total of n times, then we eventually get:

$$\int_{a}^{b} f'(t) dt = (b-a)f'(a) + \frac{(b-a)^{2}}{2!}f''(a) + \frac{(b-a)^{3}}{3!}f''(a) + \dots + \frac{(b-a)^{n}}{n!}f^{(n)}(a) + \int_{a}^{b} \frac{(b-t)^{n}}{n!}f^{n+1}(t) dt$$
 (63)

However, remember that this integration is equal to f(b) - f(a). If we let x = b, then we get:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \dots + \frac{(x - a)^n}{n!}f^{(n)}(a) + R_n(x)$$
(64)

where from our previous work, we have

$$R_n(x) = \int_a^x \frac{(x-t)^n}{n!} f^{n+1}(t) dt$$
 (65)

• For $|f^{(n+1)}(t)| \leq M$ for a < t < x we can bound the remainder function by:

$$|R_n(x)| \le \left| \int_0^x \frac{M(x-t)^n}{n!} \, \mathrm{d}t \right| = \left| M \left[\frac{(x-t)^{n+1}}{(n+1)!} \right]_a^x \right| = M \frac{|x-a|^{n+1}}{(n+1)!}$$
 (66)

• If we instead use the MVT, we can obtain a slightly different expression for the reaminder:

$$R_n(x) = \frac{f^{n+1}(c)(x-a)^{n+1}}{(n+1)!}$$
(67)

with a < c < x.

Example 12: Suppose we wish to continue the proof that e^x is indeed equal to the sum of its Taylor series, we note again that $f^{(n+1)}(t) = e^t$. For x > 0, we can pick an x such that 0 < t < x where $e^t < e^x$. The remainder can then be written as:

$$R_n(x) < \frac{e^x x^{n+1}}{(n+1)!} \tag{68}$$

As $n \to \infty$, the remainder approaches zero and as a result:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \tag{69}$$

for all x is a true statement.

Example 13: Let us now find the Maclaurin series for $\cos x$. We have:

$$f(x) = \cos x \qquad \qquad f(0) = 1 \tag{70}$$

$$f'(x) = -\sin x f'(0) = 0 (71)$$

$$f''(x) = -\cos x \qquad f''(0) = -1 \tag{72}$$

$$f'''(x) = \sin x \qquad f'''(0) = 0 \tag{73}$$

$$f^{(4)}(x) = \cos x \qquad f(0) = 1 \tag{74}$$

and it repeats. Therefore, we propose that:

$$\cos x = f(0) + f'(0)x + \frac{f''(0)x^2}{2} + \cdots$$
 (75)

$$=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots (76)$$

$$=\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \tag{77}$$

We can use the ratio test to show that the radius of convergence is $R = \infty$. Finally, we need to prove that this sum is $\cos x$. We note that:

$$|f^{n+1}(t)| = \pm \cos t \text{ or } \pm \sin t \le 1 \tag{78}$$

so we can bound the remainder by:

$$|R_n(x)| \le \left| \frac{Mx^{n+1}}{(n+1)!} \right| = \left| \frac{x^{n+1}}{(n+1)!} \right|$$
 (79)