AERO 626 HOMEWORK #1

(50 points)

1. Using the integral definition for the mean and variance of a probability density function (pdf), i.e.,

$$m = \int_{-\infty}^{\infty} x p(x) dx$$
 and $P = \int_{-\infty}^{\infty} (x - m)^2 p(x) dx$,

determine the mean and variance of a uniform pdf of the form

$$p(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{otherwise} \end{cases}.$$

2. In Matlab, a "standard" Gaussian random number can be generated according to

$$x = randn;$$

This can be generalized to the case of generating a Gaussian random number with mean m and variance P via

$$x = m + sqrt(P)*randn;$$

Similarly, a "standard" uniform random number (with a=0 and b=1) can be generated according to

and the generalized version (for a < b) is given by

$$y = a + (b - a)*rand;$$

Both rand and rand can be used to generate n random numbers in a single call by supplying optional arguments, i.e.,

$$x = m + sqrt(P)*randn(n,1);$$

 $y = a + (b - a)*rand(n,1);$

Generate 1×10^6 uniform random numbers with a=0 and b=1. Using the Matlab functions mean and cov, compute the "sample mean" and "sample (co)variance" of the uniform random numbers. Repeat the process for 1×10^6 Gaussian random numbers with $m=\frac{1}{2}$ and $P=\frac{1}{12}$. What do you notice?

3. For the line-fitting problem discussed in class, it was found that m=2 measurements given by z_1 and z_2 , taken at times t_1 and t_2 , respectively, leads to the least-squares solution

$$\hat{a} = \frac{z_1 t_2 - z_2 t_1}{t_2 - t_1}$$
 and $\hat{b} = \frac{z_2 - z_1}{t_2 - t_1}$.

Show that the residuals, $\epsilon_1 = z_1 - h_1$ and $\epsilon_2 = z_2 - h_2$, where $h_i = \hat{a} + \hat{b}t_i$ are both zero for the case of fitting a line through two measurements.

4. Consider the unforced spring-mass system

which has the equation of motion

$$\ddot{x}(t) = -\omega_n^2 x(t)$$
 where $\omega_n^2 = k/m$.

Assume that $\omega_n = 1$ for this problem.

- (a) Define two states to be $x_1(t) = x(t)$ and $x_2(t) = \dot{x}(t)$, and determine the matrix $\mathbf{F}(t)$ for the linear dynamic system $\dot{\mathbf{x}}(t) = \mathbf{F}(t)\mathbf{x}(t)$, where $\mathbf{x}(t) = [x_1(t) \ x_2(t)]^T$.
- (b) Determine an analytic representation for the state transition matrix $\Phi(t_i, t_0)$. Hint: use the fact that this is a harmonic oscillator to find analytic solutions for $x_1(t)$ and $x_2(t)$ in terms of $x_1(t_0)$, $x_2(t_0)$, and ω_n and then deduce the state transition matrix from these solutions. You may assume that $t_0 = 0$.
- (c) Assuming that the position at time t_i , $x(t_i)$, can be observed, determine $\tilde{\boldsymbol{H}}_i$, where the measurement model is $\boldsymbol{h}_i = \tilde{\boldsymbol{H}}_i \boldsymbol{x}_i$.