Aviation Safety Analysis for Aircraft Acquisition

Overview

- Purpose: Guide aircraft purchase decisions
- Dataset: NTSB accident data (1962–2022)
- Goal: Identify low-risk aircraft models
- Focus: Risk factors, trends, safety insights
- Outcome: Actionable recommendations for stakeholders

Business Understanding

- Company is preparing to expand into aviation operations
- Expansion covers both commercial services and private aircraft
- Risks associated with different aircraft types are not well understood
- Identifying the safest aircraft models is critical for acquisition
- Understanding conditions that increase accident severity is essential
- Tracking safety improvements over time provides valuable insights

Data Understanding

- Dataset contains ~88,000 records, filtered to 2000–2022 period.
- Key fields include Event Date, Aircraft Make/Model, Engines, Injuries.
- New metrics created: Severity Index and overall Fatality Rate.
- Missing values addressed for weather, injuries, and coordinates fields.
- Categories standardized for flight purpose, weather conditions, and flight phases.
- Duplicates removed, irrelevant columns dropped for cleaner dataset.

Data Analysis – Accident Trends

 Annual accident s remain relativel y steady, but fatalities show a clear downwa rd trend.

Data Analysis – Risk by Aircraft

Model	Туре	Accidents	Fatalities	Severity Index	Fatality Rate
Boeing 737-800	Commercial jet	32	0	0.1875	0.0000
Grumman G-164B Ag Cat	Agricultural	31	1	0.2581	0.0323
Eagle DW-1	Agricultural	39	1	0.3333	0.0256
Piper PA-18 Super Cub (160)	Light aircraft	31	1	0.3548	0.0323
Piper PA-12 Super Cruiser	Light aircraft	37	2	0.3784	0.0541
Embraer E175	Commercial jet	45	2	0.4222	0.0444

- Boeing 737-800 and
 Embraer E175 stand out as
 the safest commercial
 aircraft.
- Piper PA-18 Super Cub and Grumman G-164B show
 very low fatality rates
 among smaller aircraft.

Operational/Environmental Factors

- Accidents in poor weather show higher severity
- Approach and landing phases carry the greatest risk
- Instrument conditions (IMC) strongly increase accident severity
- Visual conditions (VMC) are linked to safer outcomes
- Commercial operations show lower risk than general aviation

KPI (2000-2022)

- Total accidents analyzed: 40,972
- Average severity index: 2.45
- Overall fatality rate: 55.2%
- Safest commercial aircraft: Boeing 737-800
- Safest private aircraft: Embraer E75

Key Findings

- Accident and fatality rates have declined since 2000
- Fatalities decreased faster than overall accident counts
- Adverse weather (IMC) greatly increases accident severity
- Approach and landing phases carry the highest risk
- Boeing 737-800 ranks as the safest commercial aircraft
- Embraer E75 ranks as the safest private aircraft

Recommendations

- Prioritize acquisition of Boeing 737-800 for commercial operations due to lowest severity index and zero fatality rate.
- Select Embraer E75 or equivalent small jets for private operations, offering low risk with manageable accident counts.
- Favor commercial operations over general aviation, as accidents in commercial aircraft show consistently lower fatality proportions.