I. Amendments to the Claims

Claims 1-41 (canceled)

42. (currently amended) A compound of formula II:

$$(R^{q})_{z} \xrightarrow{V} R^{2} = O$$

$$(R^{q})_{w} \qquad (R^{q})_{y} \qquad (R^{q})_{z} \qquad$$

wherein:

Q is -CR⁵R⁶- wherein Q is attached to each phenyl ring in a para position relative to the oxygen atom attached to each phenyl ring;

each R^1 is independently alkyl, alkenyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, halo, or R^n ;

R² is a covalent bond;

each R^3 is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, oxo, or heterocyclyl; and each R^4 is independently alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, or R^b ; or R^3 and R^4 are joined to form a C_{1-4} alkylene group, wherein the alkylene group is optionally substituted with 1 to 4 substituents independently selected from R^b ;

each R^5 and R^6 is independently hydrogen, or $\underline{C_{1.10}alkyl}$; alkyl, alkenyl, alkynyl, aryl, heteroaryl, eyeloalkyl, or heterocyclyl; or R^5 and R^6 together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms in the ring independently selected from oxygen, sulfur or nitrogen;

wherein for R¹, R³, R⁴, R⁵, and R⁶, each alkyl, alkenyl, and alkynyl is optionally substituted with R^x, or with 1, 2, 3, or 4 substituents independently selected from R^b; for R¹-R⁶, each aryl and heteroaryl is optionally substituted with 1 to 4 substituents independently selected from R^c, and for

R¹-R⁶, each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^b and R^c;

each R^a is independently $-OR^d$, $-NO_2$, halo, $-S(O)_mR^d$, $-SR^d$, $-S(O)_2OR^d$, $-S(O)_mNR^dR^e$, $-NR^dR^e$, $-O(CR^fR^g)_nNR^dR^e$, $-C(O)R^d$, $-CO_2(R^dR^g)_nCONR^dR^e$, $-OC(O)R^d$, -CN, $-C(O)NR^dR^e$, $-NR^dC(O)R^e$, $-OC(O)NR^dR^e$, -OC(O)

each R^b is independently R^a, oxo or =N-OR^e;

each R^c is independently R^a, alkyl, alkenyl, or alkynyl; wherein each alkyl, alkenyl and alkynyl is optionally substituted with 1 to 4 substituents independently selected from R^b;

each R^d and R^e is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^d and R^e together with the atoms to which they are attached form a heterocyclic ring having from 5 to 7 ring atoms, wherein the heterocyclic ring optionally contains 1 or 2 additional heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^f and R^g is independently hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^f and R^g together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^h is independently halo, C_{1-6} alkyl, C_{1-6} alkoxy, aryl, (aryl)- C_{1-6} alkyl, heteroaryl, (heteroaryl)- C_{1-6} alkyl, hydroxy, amino, -NHC₁₋₆ alkyl, -N(C_{1-6} alkyl)₂, -OC(O)C₁₋₆ alkyl, -C(O)C₁₋₆ alkyl, -C(O)NHC₁₋₆ alkyl, carboxy, nitro, -CN, or -CF₃;

each R^x is independently aryl, heteroaryl, cycloalkyl or heterocyclyl; wherein each aryl or heteroaryl is optionally substituted with 1 to 4 substituents selected from the group consisting of R^c, and wherein each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents selected from R^b;

m is 0, 1, or 2;

n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10; each w is independently $\underline{1}$ or $\underline{2}$ 0 1, 2, 3, or 4; each y is independently 0, 1, 2, or 3; and each z is independently 0, 1, 2, 3, or 4; or a pharmaceutically-acceptable salt thereof.

43. (currently amended) The compound of claim 42 which is a A compound of formula (III):

$$y = \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ Q & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^7 & R^7 \end{pmatrix} \begin{pmatrix} R^7 & R^7 & R^7 \\ R^7 & R^$$

(III)

wherein

Q is -CR5R6-;

R² is a covalent bond;

each R^7 is independently hydrogen, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, cycloalkyl, <u>halo</u> or R^a ;

each R^3 is independently hydrogen, C_{1-10} alkyl, or oxo;

each R^5 and R^6 is independently hydrogen or C_{1-10} alkyl; or R^5 -and R^6 -together with the earbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms in the ring independently selected from oxygen, sulfur and nitrogen;

wherein for R^3 , R^5 , R^6 , and R^7 , each alkyl, alkenyl, and alkynyl is optionally substituted with R^x , or with 1 to 4 substituents independently selected from R^b ; and each cycloalkyl is optionally substituted with 1 to 4 substituents independently selected from R^b and R^c ; and

each Ra is independently -ORd, -NO2, halo, -S(O)mRd, -SRd, -S(O)2ORd, -S(O)mNRdRe,

 $-NR^{d}R^{c}, -O(CR^{f}R^{g})_{n}NR^{d}R^{c}, -C(O)R^{d}, -CO_{2}R^{d}, -CO_{2}(CR^{f}R^{g})_{n}CONR^{d}R^{c}, -OC(O)R^{d}, -CN,$ $-C(O)NR^{d}R^{c}, -NR^{d}C(O)R^{c}, -OC(O)NR^{d}R^{c}, -NR^{d}C(O)OR^{c}, -NR^{d}C(O)NR^{d}R^{c}, -CR^{d}(=N-OR^{c}), -CF_{3},$ or $-OCF_{3}$;

each R^b is independently R^a , oxo or = N-O R^c ;

heteroatoms independently selected from oxygen, sulfur and nitrogen;

each R^c is independently R^a, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, or C₂₋₁₀alkynyl; wherein each alkyl, alkenyl and alkynyl is optionally substituted with 1 to 4 substituents independently selected from R^b; each R^d and R^e is independently hydrogen, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^d and R^e together with the atoms to which they are attached form a heterocyclic ring having from 5 to 7 ring atoms, wherein the heterocyclic ring optionally contains 1 or 2 additional

each R^f and R^g is independently hydrogen, C₁₋₁₀alkyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^f and R^g together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen;

each R^h is independently halo, C₁₋₆alkyl, C₁₋₆alkyl, aryl, (aryl)-C₁₋₆alkyl, heteroaryl, (heteroaryl)-C₁₋₆alkyl, hydroxy, amino, -NHC₁₋₆alkyl, -N(C₁₋₆alkyl)₂, -OC(O)C₁₋₆alkyl, -C(O)C₁₋₆alkyl, -C(O)NHC₁₋₆alkyl, -C(O)NHC₁₋₆alkyl, carboxy, nitro, -CN, or -CF₃; and

each R^x is independently aryl, heteroaryl, cycloalkyl or heterocyclyl; wherein each aryl or heteroaryl is optionally substituted with 1 to 4 substituents selected from the group consisting of R^c , and wherein each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents selected from R^b ;

n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10; each y is independently 1, 2, or 3; or a pharmaceutically-acceptable salt thereof.

Claims 44-45 (canceled)

- 46. (previously presented) The compound of claim 42 wherein each R^1 is independently C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, cycloalkyl, or R^n .
- 47. (previously presented) The compound of claim 42 wherein each R^1 is independently C_{1-10} alkyl or halo.
- 48. (previously presented) The compound of claim 42 wherein each R¹ is independently methyl, ethyl, propyl, chloro, bromo, fluoro, or isopropyl.
- 49. (previously presented) The compound of claim 42 wherein each R¹ is independently methyl, or chloro.

Claims 50-63 canceled.

64. (currently amended) The compound of claim 42 wherein

$$\begin{array}{c|c}
 & (\bigvee_{y} y) \\
 & \bigvee_{R^3}
\end{array}$$

is independently 1-methyl-4-piperidinyl, 1-methyl-3-piperidinyl, 1-methyl-2-piperidinyl, 4-piperidinyl, 2-piperidinyl, 1-isopropyl-3-pyrrolidinyl, (2R,4R)-2-methoxycarbonyl-4-pyrrolidinyl, 1-methyl-3-pyrrolidinyl, 1-methyl-2-pyrrolidinyl, 3-pyrrolidinyl, 2-pyrrolidinyl, (2S,4R)-2-methyl-4-pyrrolidinyl, (2R,4R)-2-carboxy-4-pyrrolidinyl, (2S,4S)-2-(N,N-dimethylamino)carbonyl-4-pyrrolidinyl, (2R,4R)-2-hydroxymethyl-4-pyrrolidinyl, or (2R,4R)-2-methoxymethyl-4-pyrrolidinyl.

- 65. (canceled)
- 66. (previously presented) The compound of claim 42 wherein each w is 1.
- 67. (previously presented) The compound of claim 42 wherein each w is 2.
- 68. (canceled)
- 69. (previously presented) The compound of claim 42 wherein each z is independently 0, 1, or 2.
- 70. (canceled)
- 71. (currently amended) The compound of claim 42, which is any one of compounds 1, 3-5, 4, 5, 8, 9, 11, 18-20, 18, 20, 22, 23, 32, 34, 39, 40-42, 44-50, 54, 44-48, 50, 58, 59, 118, and 123-126:

Ø 009

$$\begin{bmatrix} H_3C & CH_3 & 32 \\ CH_3 & CH_3 & N \end{bmatrix}$$

$$H_3C$$
 CH_3
 $CONMe_2$
 CH_3
 CH_3

or a pharmaceutically acceptable salt thereof.

72. (currently amended) A pharmaceutical composition comprising a compound as described in any one of claims 42, 43, 46-49, 64-69 64, 66, 67, 69 and 71 and a pharmaceutically acceptable carrier.

Application No. 09/943,420 Attorn y's Docket No. P-097-R Page 14

- 73. (previously presented) A method of treating a disease or condition associated with sodium channel activity in a mammal, comprising administering to the mammal, a therapeutically effective amount of a pharmaceutical composition comprising a compound as described in claim 42 and a pharmaceutically acceptable carrier.
- 74. (previously presented) The method of claim 73 wherein the disease or condition is neuropathic pain.