(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特期2002-305702 (P2002-305702A)

(43)公開日 平成14年10月18日(2002.10.18)

(51) Int.Cl. ⁷		識別記号	•	FΙ			Ť	-73-1*(参考)
H04N	5/76			H04N	5/76		E	2H018
G 0 3 B	13/02			G 0 3 B	13/02		•	2H102
	17/18				17/18		Z	2H104
	17/53				17/53			5 C 0 2 2
H04N	5/225			H04N	5/225		F	5 C O 5 2
			審查請求	有 請求	表項の数27	OL	(全 7 頁)	最終頁に続く

(21)出願番号

特顧2001-389629(P2001-389629)

(62)分割の表示

特願平9-82897の分割

(22)出顧日

平成9年4月1日(1997.4.1)

(31) 優先権主張番号 特願平8-279205

(32) 優先日

平成8年10月22日(1996.10,22)

(33)優先権主張国

日本(JP)

(71)出願人 000005201

宮士写真フイルム株式会社 神奈川県南足柄市中沼210番地

(72) 発明者 塩田 和生

神奈川県足柄上郡開成町宮台798番地 富

士写真フイルム株式会社内

(72)発明者 羽田 典久

埼玉県朝霞市泉水3丁目11番46号 富士写

真フイルム株式会社内

(74)代理人 100073184

弁理士 柳田 征史 (外1名)

最終頁に続く

(54) 【発明の名称】 画像処理方法および装置並びにプログラム

(57)【要約】

【課題】 デジタルカメラにより撮影された写真画像を 再生する際に、画質を高めるためのテストプリントある いはモニタの確認による微調整を繰り返すことなく、直 ちに高画質な写真画像を再生する。

【解決手段】 撮影により取得したデジタル画像データ 8に撮影条件を表す撮影情報9を付与する機能(撮影情 報付与部6)を有するデジタルカメラ1により撮影を行 う。この撮影により得られた画像データ8に対し、画像 再生装置3はセットアップ処理部11において、画像デー タ8に付与された撮影情報9を使用して画質を高めるた めの画像処理を行ってからその画像データをプリント14 としてあるいはモニタ15の表示画像として再生する。画 像データ8に画像処理のための処理条件が付与されてい る場合は、この処理条件を使用して画像データ8に対し て画像処理を行う。

【特許請求の範囲】

【請求項1】 撮影情報が付与されたデジタル画像データの入力を受け付け、該デジタル画像データに対し、該デジタル画像データに付与された前記撮影情報を使用して前記デジタル画像データの画質を高めるための画像処理を行う画像処理方法において、

前記撮影情報に代えて前記画像処理の各種処理条件が前 記デジタル画像データに付与されている場合には、該処 理条件を使用して前記画像処理を行うことを特徴とする 画像処理方法。

【請求項2】 前記デジタル画像データに、前記撮影情報が付与されているか前記処理条件が付与されているかを判定することを特徴とする請求項1記載の画像処理方法。

【請求項3】 前記デジタル画像データがデジタルカメラにより取得されたものであることを特徴とする請求項1または2記載の画像処理方法。

【請求項4】 前記デジタル画像データの入力の受け付けを、前記デジタルカメラに接続されたケーブルまたは前記デジタルカメラにおいて記憶媒体に記録された前記デジタル画像データを読み取るカードリーダを介して行うことを特徴とする請求項3記載の画像処理方法。

【請求項5】 前記処理条件はルックアップテーブルであり、該ルックアップテーブルを使用して前記画像処理を行うことを特徴とする請求項1から4のいずれか1項記載の画像処理方法。

【請求項6】 前記画像処理が施されたデジタル画像 データを出力することを特徴とする請求項1から5のいずれか1項記載の画像処理方法。

【請求項7】 前記出力は、プリント出力であることを特徴とする請求項6記載の画像処理方法。

【請求項8】 前記出力は、モニタへの表示であることを特徴とする請求項6記載の画像処理方法。

【請求項9】 撮影情報が付与されたデジタル画像データの入力を受け付ける受け付け手段と、該デジタル画像データに対し、該デジタル画像データに付与された前記撮影情報を使用して前記デジタル画像データの画質を高めるための画像処理を行う画像処理手段とを備えた画像処理装置において、

前記画像処理手段は、前記撮影情報に代えて前記画像処理の各種処理条件が前記デジタル画像データに付与されている場合には、該処理条件を使用して前記画像処理を 行う手段であることを特徴とする画像処理装置。

【請求項10】 前記デジタル画像データに、前記撮影情報が付与されているか前記処理条件が付与されているかを判定する判定手段をさらに備えたことを特徴とする請求項9記載の画像処理装置。

【請求項11】 前記デジタル画像データがデジタルカメラにより取得されたものであることを特徴とする請求項9または10記載の画像処理装置。

【請求項12】 前記受け付け手段は、前記デジタル画像データの入力の受け付けを、前記デジタルカメラに接続されたケーブルまたは前記デジタルカメラにおいて記憶媒体に記録された前記デジタル画像データを読み取るカードリーダを介して行う手段であることを特徴とする請求項11記載の画像処理装置。

【請求項13】 前記処理条件はルックアップテーブルであり、前記画像処理手段は、該ルックアップテーブルを使用して前記画像処理を行う手段であることを特徴とする請求項9から12のいずれか1項記載の画像処理装置。

【請求項14】 前記画像処理が施されたデジタル画像データを出力する出力手段をさらに備えたことを特徴とする請求項9から13のいずれか1項記載の画像処理装置。

【請求項15】 前記出力手段は、プリンタであることを特徴とする請求項14記載の画像処理装置。

【請求項16】 前記出力手段は、モニタであることを特徴とする請求項14記載の画像処理装置。

【請求項17】 前記デジタル画像データを蓄積する 画像サーバの形態であることを特徴とする請求項9から 16のいずれか1項記載の画像処理装置。

【請求項18】 請求項9から13のいずれか1項記載の画像処理装置を備えたことを特徴とするプリンタ。 【請求項19】 請求項9から13のいずれか1項記載の画像処理装置を備えたことを特徴とするモニタ。

【請求項20】 撮影情報が付与されたデジタル画像 データの入力を受け付ける手順と、該デジタル画像データに対し、該デジタル画像データに付与された前記撮影 情報を使用して前記デジタル画像データの画質を高める ための画像処理を行う手順とをコンピュータに実行させるためのプログラムにおいて、

前記撮影情報に代えて前記画像処理の各種処理条件が前 記デジタル画像データに付与されている場合には、該処 理条件を使用して前記画像処理を行う手順を有すること を特徴とするプログラム。

【請求項21】 前記デジタル画像データに、前記撮影情報が付与されているか前記処理条件が付与されているかを判定する手順をさらに有することを特徴とする請求項20記載のプログラム。

【請求項22】 前記デジタル画像データがデジタルカメラにより取得されたものであることを特徴とする請求項20または21記載のプログラム。

【請求項23】 前記デジタル画像データの入力を受け付ける手順は、該デジタル画像データの入力の受け付けを、前記デジタルカメラに接続されたケーブルまたは前記デジタルカメラにおいて記憶媒体に記録された前記デジタル画像データを読み取るカードリーダを介して行う手順であることを特徴とする請求項22記載のプログラム。

【請求項24】 前記処理条件はルックアップテーブルであり、前記画像処理を行う手順は、該ルックアップテーブルを使用して前記画像処理を行う手順であることを特徴とする請求項20から23のいずれか1項記載のプログラム。

【請求項25】 前記画像処理が施されたデジタル画像データを出力する手順をさらに有することを特徴とする請求項20から24のいずれか1項記載のプログラム。

【請求項26】 前記出力は、プリント出力であることを特徴とする請求項25記載のプログラム。

【請求項27】 前記出力は、モニタへの表示であることを特徴とする請求項25記載のプログラム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はデジタルカメラにより取得されたデジタル画像データをプリンタやモニタ上で再生するための画像再生方法および装置、並びにその方法に使用するデジタルカメラに関するものである。

[0002]

【従来の技術】一般に写真の画質、特にカラー写真の仕上がりは、露出条件によって大きく変わるものである。したがってカメラには、撮影時の明るさや被写体の輝度分布に対応して適正な露光量を設定するためのAE機構が搭載されている。しかし、AE機構にも限界があり、またその性能はカメラによって差があるため、常に良好な写真が撮影できるとは限らない。

【0003】このため、写真店などでは、顧客にできる限り高画質な写真プリントを提供できるように、プリントする際に露光条件を調整して露出の過不足や色の偏りを補正する処理を施している。この場合、当然のことながら処理する写真によって行うべき画像処理は異なるため、モニタに表示された画像の微妙な違いを経験に基づいて判断しながら画像処理条件の調整を繰り返し行ったり、何枚ものテストプリントを作成してその仕上がり具合を確認したりすることによって最適な画像処理条件を求め、その求められた画像処理条件によって画像処理を施して最終的に顧客に提供するプリントを作成することが行われている。

【 0 0 0 4 】電子撮像素子を用いた電子カメラ(以下デジタルカメラという)の場合には、コストや演算時間の制約からカメラ側であまり高度な処理をできないことが多い。デジタルカメラの場合には写真店を介さずに取得された画像をそのまま利用することも多いため、CRT モニタあるいはカメラに付属する液晶モニタに表示される画像など、画質許容度の比較的広いモニタ表示画像が観察に耐えうる画像であれば画質として十分であるとして、AE機構としてあまり高性能なものが搭載されない場合もある。このため、プリントとしてデジタルカメラで撮影されたデジタル画像データを再生する場合には、

画質許容度の狭いプリント画像として最適な仕上がりを 得るのは容易ではなく、前述のようなテストプリントの 繰り返しなど手間のかかる作業が必要となる。

[0005]

【発明が解決しようとする課題】しかしながら、上記のような試行錯誤による補正は時間がかかるばかりでなく、テストプリントのためのコストもかかる。また当然のことながら、調整を行うオペレータの経験や技能によって仕上がりに差が生じるという問題もある。

【0006】本発明は、上記問題に鑑みて、デジタルカメラで取得したデジタル画像データの再生において、テストプリントや、モニタの確認による画像処理条件の調整を繰り返すことなく、早くかつ簡単に最適な画像処理条件を求め、これにより高画質なプリントを迅速に顧客に提供できる画像再生方法および装置、並びにその方法に使用するデジタルカメラを提供することを目的とするものである。

[0.007]

20

【課題を解決するための手段】本発明の画像処理方法は、撮影情報が付与されたデジタル画像データの入力を受け付け、該デジタル画像データに対し、該デジタル画像データに付与された前記撮影情報を使用して前記デジタル画像データの画質を高めるための画像処理を行う画像処理方法において、前記撮影情報に代えて前記画像処理の各種処理条件が前記デジタル画像データに付与されている場合には、該処理条件を使用して前記画像処理を行うことを特徴とするものである。

【0008】なお、本発明の画像処理方法においては、 前記デジタル画像データに、前記撮影情報が付与されて いるか前記処理条件が付与されているかを判定するよう にしてもよい。

【0009】また、本発明の画像処理方法においては、 前記デジタル画像データがデジタルカメラにより取得さ れたものであってもよい。

【0010】また、本発明の画像処理方法においては、前記デジタル画像データの入力の受け付けを、前記デジタルカメラに接続されたケーブルまたは前記デジタルカメラにおいて記憶媒体に記録された前記デジタル画像データを読み取るカードリーダを介して行ってもよい。

【0011】さらに、本発明の画像処理方法においては、前記処理条件をルックアップテーブルとし、該ルックアップテーブルを使用して前記画像処理を行ってもよい。

【0012】また、本発明の画像処理方法においては、 前記画像処理が施されたデジタル画像データを出力する ようにしてもよい。

【0013】この場合、前記出力は、プリント出力であってもよく、モニタへの表示であってもよい。

【0014】本発明の画像処理装置は、撮影情報が付与 されたデジタル画像データの入力を受け付ける受け付け

40

6

手段と、該デジタル画像データに対し、該デジタル画像 データに付与された前記撮影情報を使用して前記デジタ ル画像データの画質を高めるための画像処理を行う画像 処理手段とを備えた画像処理装置において、前記画像処 理手段が、前記撮影情報に代えて前記画像処理の各種処 理条件が前記デジタル画像データに付与されている場合 には、該処理条件を使用して前記画像処理を行う手段で あることを特徴とするものである。

【0015】なお、本発明の画像処理装置においては、 前記デジタル画像データに、前記撮影情報が付与されて いるか前記処理条件が付与されているかを判定する判定 手段をさらに備えるものとしてもよい。

【0016】また、本発明の画像処理装置においては、 前記デジタル画像データはデジタルカメラにより取得さ れたものであってもよい。

【0017】また、本発明の画像処理装置においては、前記受け付け手段を、前記デジタル画像データの入力の受け付けを、前記デジタルカメラに接続されたケーブルまたは前記デジタルカメラにおいて記憶媒体に記録された前記デジタル画像データを読み取るカードリーダを介20して行う手段としてもよい。

【0018】さらに、本発明の画像処理装置においては、前記処理条件をルックアップテーブルとし、前記画像処理手段を、該ルックアップテーブルを使用して前記画像処理を行う手段としてもよい。

【0019】また、本発明の画像処理装置においては、 前記画像処理が施されたデジタル画像データを出力する 出力手段をさらに備えるようにしてもよい。

【0020】この場合、前記出力手段は、プリンタであってもよく、モニタであってもよい。

【0021】また、本発明の画像処理装置は、前記デジタル画像データを蓄積する画像サーバの形態であってもよい。

【0022】本発明のプリンタは、本発明の画像処理装置を備えたことを特徴とするものである。

【0023】本発明のモニタは、本発明の画像処理装置を備えたことを特徴とするものである。

【0024】なお、本発明の画像処理方法をコンピュータに実行させるためのプログラムとして提供してもよい。

【0025】本発明の画像再生方法は、撮影により取得したデジタル画像データに撮影条件を表す撮影情報を付与する機能を有するデジタルカメラにより前記撮影情報が付与されたデジタル画像データを得、前記撮影情報が付与されたデジタル画像データを所定の記憶媒体に記憶し、前記記憶媒体に記憶されたデジタル画像データに対し、該デジタル画像データに付与された前記撮影情報を使用して前記デジタル画像データの画質を高めるための画像処理を行い、前記画像処理されたデジタル画像データを再生することを特徴とするものである。

【0026】ここで「撮影条件を表す撮影情報」とは、例えばカメラの y 特性(入力光量対出力電圧比)やレンズ焦点距離のようなカメラ固有の情報と、フォーカス距離、E V値、照明の種類(色温度)、ストロボ使用有無のように撮影環境や撮影者の操作によって1回の撮影毎に異なる情報の両方を含むものとする。前者の(カメラ固有の)情報は無条件に撮影情報として付与されるものであり、撮影者はその情報を変更することはできない。一方、後者の情報は撮影者が何らかの操作を行うことにより意図的に決定することができるものである。

【0027】また「撮影により取得したデジタル画像データに撮影条件を表す撮影情報付与する」とは、画像データと撮影情報とからなるファイルフォーマットを定め、画像データを撮影情報とともにそのようなフォーマットのファイルとして、例えばカメラの内蔵メモリあるいはカードメモリなどに記憶することである。

【0028】なお、ここで前記「所定の記憶媒体」は、カメラに付属する上記内蔵メモリなどの他、写真のラボシステムの画像サーバあるいはパソコンに接続されるハードディスクなどを意味する。この場合カメラに付属するメモリからそのような大容量記憶媒体への画像データの複写はカードリーダやケーブル接続などにより行うことができる。

【0029】また、「前記デジタル画像データの画質を高めるための画像処理」とは、与えられた条件にしたがって所定のアルゴリズムに基づく演算を行うことなどであり、例えば階調や色の補正を行うためのルックアップテーブルを求めることなどを意味する。この場合、「前記撮影情報を使用して前記デジタル画像データの画質を高めるための画像処理を行う」とは最適なテーブルを求めるための演算で撮影情報を使用するということである。

【0030】さらに、本発明の画像再生方法では、前記画像処理を行った後に、該画像処理の各種処理条件を前記デジタル画像データに付与して前記記憶媒体に記憶し、前記記憶媒体に記憶されたデジタル画像データに対し、該デジタル画像データに付与された前記処理条件を使用して前記デジタル画像データの画質を高めるための画像処理を行い、前記画像処理されたデジタル画像データを再生してもよい。

【0031】ここで「画像処理の各種処理条件を前記デジタル画像データに付与する」とは、例えば上記階調や色の補正の場合、演算により求められたルックアップテーブル(LUT)をデジタル画像データに付与することなどを意味する。これにより、「デジタル画像データの画質を高めるための画像処理を行う」場合には演算を行わずにそのルックアップテーブルでデジタル画像データを変換すればよいため、演算量を減らすことができる。

【0032】本発明の画像再生装置は上記画像再生方法 に使用する装置であって、前記デジタル画像データに付 20

8

与された撮影情報を使用して前記デジタル画像データの 画質を高めるための画像処理を行う画像処理手段と、該 画像処理手段により処理されたデジタル画像データを再 生する再生手段とを有することを特徴とするものであ る。この際「画像処理手段」は、前記撮影情報の代わり に前記デジタル画像データに付与された前記画像処理の 処理条件を使用して前記デジタル画像データの画質を高 めるための画像処理を行うものであってもよい。

【0033】なお、本発明の画像再生方法により再生されるデジタル画像データを取得するためのデジタルカメラは、前記撮影情報を撮影により得られたデジタル画像データに付与する撮影情報付与手段を有するものである。

[0034]

【発明の効果】本発明の画像再生方法および装置は、撮影時に、デジタルカメラにより取得したデジタル画像データに撮影条件を表す撮影情報を付与し、再生時にその撮影情報を使用して画質を高めるための画像処理を行うようにしたので、撮影条件を考慮した再生のための画像処理ができ、テストプリントを繰り返すことなく最適な仕上がりのプリントを容易に得ることができる。

【0035】さらにデジタルカメラ側のみならず画像再生装置側でも、演算などにより求められた最適な画像処理条件をその画像データに付与するようにしているので、一度画像処理条件が求められた画像データについては、それ以降はその情報を参照するだけでよく、演算のために時間を費やすことがなくなる。

[0036]

【発明の実施の形態】以下、本発明の一実施の形態について図面を参照して説明する。図 1 は、本発明の一実施の形態を示す図であり、デジタルカメラにより取得された画像データをプリントなどとして再生するラボシステムの概要が示されている。

【0037】デジタルカメラ1は従来のデジタルカメラと同様、撮影を行うための光学系などの撮像部4と、自動露出処理を行うためのAE処理部5とを有している。ここで、撮像部4には例えばオートフォーカス機能などの機能も含まれるものとするが、このような機能の有無あるいは機能のレベルは機種毎に異なるものとする。

【0038】本発明のデジタルカメラ1は、これに加えさらに撮影情報付与部6を有することを特徴とする。撮影情報付与部6は撮影により取得されたデジタル画像データに種々の撮影情報を付与するものであるが、ここで付与される情報としては例えば以下のようなものがある。

【0039】まず、カメラ固有の情報として、カメラの入力光量に対する出力電圧の比を表す y 特性が挙げられる。 y 特性は写真のコントラストに影響し、高価格なカメラと廉価版のカメラではその y 特性は異なることが多い。この他、カメラ固有の撮影情報としては、例えばレ 50

ンズ焦点距離やレンズのF値などがある。

【0040】また、カメラ側で行われたAE処理の内容も撮影情報として付与することが望ましい。一般的に行われているAE処理としては、例えば平均値処理、ピーク値処理、マルチパターン処理などが知られている。この場合撮影情報としては、このような処理のうちどの処理が行われたかという情報、あるいはその処理において用いられたパラメータなどを付与するものとする。同様に被写体の明るさそのものを示すEV値も撮影情報として付与することが望ましい。

【0041】但し、露出が自動ではなくマニュアルで行われた場合には、マニュアルで設定された各種設定値を撮影情報として付与するのがよい。これにより、例えば明るい雰囲気の写真にしたいとか暗い雰囲気の写真にしたいとか、シャープな写真にしたいとか柔らかい感じにしたいとかいった撮影者の意図が撮影情報に反映されることとなり、プリント時に撮影者の意図を尊重した画像処理を行うことができる。

【0042】また、デジタルカメラの中には、露出など の設定値としてではなく、より曖昧な表現で撮影者の意 図を指定することができるものがある。例えば夕陽を背 景にして撮影する場合には夕陽モード、人物を撮影する 際にはポートレートモードというようにモード設定がで き、設定されたモードに基づいて自動的に露出などが設 定されるカメラなどがある。このようなカメラの場合に は、このようなモード情報も撮影情報としてデジタルカ メラに付与するのがよい。これにより、例えば撮影者が 夕陽らしく仕上げたいと思う写真については、画像処理 において夕陽仕上げを施して、撮影者のイメージ通りの 夕陽のプリントを提供することができる。同様に、雪の 質感を出したい写真については雪仕上げ、風景らしさを 出したい写真については風景仕上げ、人物の顔色(肌の 色)をきれいに出したい写真についてはポートレート仕 上げ、白黒写真にしたい写真については白黒仕上げとい うように、それぞれ撮影情報に基づいて最適な画像処理 を施すことにより、撮影者の意図通りに写真を再生する ことができる。

【0043】あるいは、逆に、サービス店において一切 補正処理を加えないことを望むユーザもいるため、カメ ラの機能として、補正が不要であることを示す無補正指 定ができる場合もある。この場合には、この無補正とい う指定を撮影情報に含めればよい。

【0044】さらに、高機能なカメラでは、カメラの機能としてトリミング指定ができる場合も考えられる。このような場合には、カメラの機能により指定された大まかな情報(例えば写真中の人物1人のトリミングか、あるいは2人のトリミングかといった指定)のみを撮影情報に含め、細かい範囲指定についてはサービス店に一任するというようにすればよい。

【0045】さらに、フォーカス距離、フォーカス位置

なども画像処理の際の重要な情報となるため、撮影情報として付与するのがよい。例えば、プリント時の画像処理では、主要被写体の画質を特に髙めるために主要被写体の抽出処理を行うことがあるが、フォーカスに関する情報が撮影情報として付与されていれば、ピントが合わせられた部分に主要被写体があると判断することができるため、複雑な抽出処理を行う必要がなくなる。

【0046】また、撮影時の周囲光の種類や強さを画像処理に反映させるためには、色温度センサや露出計などにより得られる照明条件、ストロボ使用有無、屋外撮影の場合には撮影時の天候などを撮影情報として付与することが望ましい。

【0047】なお、この他、例えば撮影年月日や撮影時刻、あるいは写真のテーマタイトルなどの情報を撮影情報の一種として画像データに付与することも可能である。

【0048】撮影情報付与部6は、上記のような撮影情報を、カメラ固有の値については出荷時の設定により、また撮影毎に変わる撮影条件については必要に応じて撮像部4あるいはAE処理部5からデータを受信することにより取得し、それを所定のデータフォーマットに組み立てた後、画像データに付与する。具体的には、画像データが取得され内蔵メモリあるいはカードメモリなどに記憶される際に、その画像データ8を撮影情報9とセットで1つの画像ファイル7として記憶するようにする。

【0049】デジタルカメラにおいてメモリに記憶されたデジタル画像データは、カードリーダやケーブルを介して画像サーバ2に記憶される。ここで画像サーバ2へのデータの複写方法は、ネットワークなども含め通常用いられているあらゆるデータ複写方法を用いることがで 30きる。

【0050】一方、本実施の形態における画像再生装置 3は、上記画像サーバ2に蓄積された画像ファイル7を 順次再生処理するものであり、各画像ファイル7の画像 データに対し画質を高めるための画像処理を施すセット アップ処理部11と、セットアップされた画像データをプリント14として出力するためのプリンタ12、あるいはモニタ15に表示するための表示インタフェース13などからなる。上記撮影情報9はこのうちセットアップ処理部11

において演算に直接使用されたり、所定の処理を行うか 否かの判定に使用されたりする。

【0051】ここで、セットアップ処理部11は、撮影情報9に基づいて所定のアルゴリズムにしたがって演算を行い、最適な画像処理条件を求めて画像処理を行うものであるが、この際画像処理の処理条件10をさらに画像データ8に付与してもよい。これにより、例えば写真の焼き増しなどのためにプリントを行う場合に再度演算を行う必要がなくなり、時間およびコストの節約を図ることができる。また、プリントはモニタ表示に比べてより高い画質が要求されるため、プリントに合わせて一旦画像処理条件を求めて記憶しておけば、以降その画像データをモニタ表示する場合にはその情報を利用して短時間で高画質な画像を表示することができる。

【0052】以上、プリントにおいて特に高画質が要求されることからラボシステムを例に説明したが、本発明は例えばパソコンで画像を鑑賞する場合などにも適用できるものである。すなわち上記ラボシステムと同様にパソコンにおいて撮影情報9を利用した画像処理を行うことによりモニタ上に高画質な写真画像を表示することが可能となる。

【図面の簡単な説明】

【図1】本発明の一実施の形態を示す図

【符号の説明】

- 1 デジタルカメラ
- 2 画像サーバ
- 3 画像再生装置
- 4 撮像部
- 5 A E 処理部
- 6 撮影情報付与部
 - 7 画像ファイル
 - 8 画像データ
 - 9 撮影情報
 - 10 処理条件
 - 11 セットアップ処理部
 - 12 プリンタ
 - 13 表示インタフェース
 - 14 プリント
 - 15 モニタ

【図1】

フロントページの続き

(51) Int.C1. ⁷	識別記号	FΙ			テーマコード(参考)
H O 4 N 5/22	5	H 0 4 N	5/225	Z	5 C O 5 3
5/91		10	01:00		
// H O 4 N 101:00			5/91	Н	
				J	
				7	

(72)発明者 深田 重一 埼玉県朝霞市泉水3丁目11番46号 富士写 真フイルム株式会社内

(72)発明者 竹村 和彦 神奈川県足柄上郡開成町宮台798番地 富 士写真フイルム株式会社内 F ターム(参考) 2H018 AA32 2H102 AB11 CA34 2H104 AA19 5C022 AA13 AB02 AC42 AC52 5C052 FA02 FA03 FA04 FA06 FB01 FB05 FD10 FE01 FE06 5C053 FA04 FA08 FA23 FA27 GB06 HA40 KA04 LA02 LA03 LA06 LA14