PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 2014 m. birželio 11 d. įsak. Nr. (1.3)-V1-64

2014 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

Pagrindinė sesija

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10	11	12
Ats.	D	C	D	C	D	A	D	В	В	D	В	C

II dalis

	,
13	1,5 h <i>arba</i> 1,5, <i>arba</i> $1\frac{1}{2}$; 90 <i>arba</i> 90 min
14	10 626
15	24 cm ² arba 24
16	$45^{\circ} arba \frac{\pi}{4}$; 45
17	$\frac{5}{12} arba \frac{15}{36}$; 0,41(6)
18	34
19	$(-\infty; -1] \cup [1; +\infty); x \le -1 \text{ arba } x \ge 1$
20	-1
21	$68 \frac{\mathrm{km}}{\mathrm{h}} \ arba \ 68$
22	173 cm <i>arba</i> 173; 1,73 m <i>arba</i> 1,73

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23		5	
23.1		1	
	$f\left(\frac{\pi}{2}\right) = \sin\frac{\pi}{2} - \cos\pi = 1 + 1 = 2.$	• 1	Už teisingą atsakymą.
23.2		2	
	$f(x) = \sin x - \cos(2x) = \sin x - \cos^2 x + \sin^2 x =$ $= 2\sin^2 x + \sin x - 1 =$	• 1	Už teisingai pertvarkytą reiškinį.
	$= 2(\sin x + 1)\left(\sin x - \frac{1}{2}\right) =$		
22.2	$= (\sin x + 1) (2\sin x - 1).$	• 1	Už teisingai gautą sandaugą.
23.3	(: 1)(2: 1) 0	2	
	$(\sin x + 1) (2\sin x - 1) = 0,$ $\sin x = -1;$ $x = -\frac{\pi}{2} + 2\pi k, \ k \in \mathbb{Z}$	• 1	Už gautą teisingą lygties
	arba $x = (-1)^{k+1} \cdot \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}.$		sprendinį.
	$\sin x = \frac{1}{2},$ $x = (-1)^k \cdot \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}.$ $Ats.: -\frac{\pi}{2} + 2\pi k, \ (-1)^k \cdot \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}.$	• 1	Už gautą teisingą lygties sprendinį.
	Pastabos. 1. Jei sprendžiant 23.2 dauginama $(\sin x + 1)$ tai skiriamas 1 taškas. 2. Jei sprendžiant 23.2 dauginama $\sin x - \cos(2x)$, tai už 26.2 skiriami 2 taškai.		
24		4	
24.1		2	
	$V_1(x) = \pi \cdot 6^2 \cdot 2x, \ V_2(x) = \frac{4}{3} \pi \cdot x^3.$	• 1	Už teisingą bent vienos (ritinio arba rutulio) tūrio formulės panaudojimą.
	$V(x) = V_1(x) - V_2(x) = 72\pi x - \frac{4}{3}\pi x^3,$ $x \in (0; 6).$	• 1	Už teisingą vandens inde tūrio formulės užrašymą.
24.2		2	
	$V' = 72\pi - 4\pi x^2 = 0,$ $x_1 = 3\sqrt{2}, x_2 = -3\sqrt{2} \text{ (netenkina sąlygos)}$ $x = 3\sqrt{2}.$	• 1	Už teisingai apskaičiuotą teigiamą <i>x</i> reikšmę, su kuria išvestinė lygi nuliui.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	• 1	Už teisingą pagrindimą, kad vandens tūrio maksimumas pasiekiamas, kai $x = 3\sqrt{2}$.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25		5	
25.1	$x^2 - 7x + 10 > 0.$	• 1	Už teisingo sprendimo būdo pasirinkimą.
	(x-2)(x-5) > 0. $+$		
	Ats.: $x \in (-\infty, 2) \cup (5, +\infty)$.	• 1	Už gautą teisingą atsakymą.
25.2		3	
	$\log_{\frac{1}{2}}(x^2 - 7x + 10) \ge -2,$		
	$x^2 - 7x + 10 \le 4$, nes $0 < \frac{1}{2} < 1$.	• 1	Už gautą teisingą kvadratinę nelygybę.
	$x^2 - 7x + 6 \le 0,$		
	$(x-1)(x-6) \le 0.$ $+ + + + + + + + + + + + + + + + + + + $	• 1	Už teisingai išspręstą kvadratinę nelygybę.
	$x \in [1; 6]$		I I × conta toisin co atcolume
26	Ats.: $[1;2) \cup (5;6]$.	• 1 7	Už gautą teisingą atsakymą.
26.1		2	
	$f'(x) = \frac{3}{216}x^2 = \frac{x^2}{72},$		Už teisingą išvestinės
	$\frac{x^2}{72} = 2$ $x_1 = 12, x_2 = -12$ (netenkina).	• 1	apskaičiavimą ir jos prilyginimą 2.
	y = f(12) = 8. Ats.: (12; 8).	• 1	Už teisingai surastas taško <i>A</i> koordinates.
26.2		1	
	$y = f(x_0) + f'(x_0)(x - x_0) =$ $= 8 + 2(x - 12) = 2x - 16.$	• 1	Už teisingą argumentavimą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
26.3		1	
	Ats.: $B(0; -16)$.	• 1	Už teisingas taško <i>B</i> koordinates.
26.4		3	
	$S_{ADO} = \int_{0}^{12} \frac{x^3}{216} dx \; ;$		Už teisingą vienos iš figūrų
	$S_{AOC} = \int_{0}^{12} \left(8 - \frac{x^3}{216} \right) dx ;$ $S_{ABO} = \int_{0}^{12} \left(\frac{x^3}{216} - 2x + 16 \right) dx .$	• 1	AOC, ABO, ADO plotų reiškimą apibrėžtiniu integralu.
	$S_{AOC} = 72,$ $S_{ABO} = 72.$	• 1	Už teisingai apskaičiuotą vienos figūros <i>AOC</i> arba <i>ABO</i> plotą.
	$S_{\Delta ABC} = \frac{1}{2} \cdot 12 \cdot 24 = 144.$ $S_{ABO} = 144 - 72 = S_{AOC}.$	• 1	Už įrodymą, kad figūrų plotai lygūs.
27		4	
	$\begin{cases} a_1 + a_2 + a_3 = 12, \\ a_1 + a_3 = 2a_2. \end{cases}$	• 1	Už teisingą aritmetinės progresijos sumos išraišką ir aritmetinės progresijos savybių taikymą.
	$\begin{cases} a_2 + a_3 + a_4 = 19, \\ a_3^2 = a_2 \cdot a_4. \end{cases}$	• 1	Už teisingą geometrinės progresijos sumos išraišką ir geometrinės progresijos savybių taikymą.
	$3a_2 = 12,$ $a_2 = 4.$	• 1	Už bet kurio iš keturių teigiamų skaičių radimą.
	$a_1 = 2, \ a_3 = 6, \ a_4 = 9.$ Ats.: 2, 4, 6, 9.	• 1	Už gautą teisingą atsakymą.
28		4	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Už teisingo sprendimo būdo
	Iš $\triangle ADM : \overrightarrow{AD} + \overrightarrow{DM} = \overrightarrow{AM}, \overrightarrow{AD} + \overrightarrow{DM} = \overrightarrow{a},$ Iš $\triangle ABK : \overrightarrow{AB} + \overrightarrow{BK} = \overrightarrow{AK}, \overrightarrow{AB} + \overrightarrow{BK} = \overrightarrow{b}.$	• 1	pasirinkimą (pvz., gaunamos vektorių \overrightarrow{AK} arba \overrightarrow{AM} išraiškos).
	$\overrightarrow{DM} = \frac{1}{2}\overrightarrow{DC} = \frac{1}{2}\overrightarrow{AB}$ $\overrightarrow{BK} = \frac{1}{2}\overrightarrow{BC} = \frac{1}{2}\overrightarrow{AD}.$	• 1	Už teisingas vektorių $\overrightarrow{DM} = \overrightarrow{MC}$ ir $\overrightarrow{BK} = \overrightarrow{KC}$ išraiškas.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
	Iš $\triangle ADM$: $\overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{a}$, Iš $\triangle ABK$: $\overrightarrow{AB} = \overrightarrow{b} - \frac{1}{2}\overrightarrow{AD}$, $\overrightarrow{AD} + \frac{1}{2}(\overrightarrow{b} - \frac{1}{2}\overrightarrow{AD}) = \overrightarrow{a}$.	• 1	Už teisingą lygybę, siejančią vektorius \overrightarrow{AD} , \overrightarrow{a} ir \overrightarrow{b} .
29	$\overrightarrow{AD} + \frac{1}{2}\overrightarrow{b} - \frac{1}{4}\overrightarrow{AD} = \overrightarrow{a},$ $\frac{3}{4}\overrightarrow{AD} = \overrightarrow{a} - \frac{1}{2}\overrightarrow{b},$ $Ats.: \overrightarrow{AD} = \frac{4}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b}.$	• 1	Už gautą teisingą atsakymą.
29	Kadangi $EF \parallel AC$, tai $\angle BEG = \angle BAD$, $\angle BFG = \angle BCD$ – kaip atitinkamieji kampai, gauti dvi lygiagrečias tieses kirtus tiesėmis BA ir BC . Vadinasi, $\triangle BEG \sim \triangle BAD$, $\triangle BGF \sim \triangle BDC$ (pagal du lygius kampus – atitinkamuosius ir bendrą).	• 1	Už trikampių panašumo pagrindimą.
	Todėl $\frac{EG}{AD} = \frac{BG}{BD}$, $\frac{BG}{BD} = \frac{GF}{DC}$. Iš čia $\frac{EG}{AD} = \frac{GF}{DC}$. Kadangi $AD = DC$, tai $EG = GF$. Taigi G – atkarpos EF vidurio taškas.	• 1	Už dvi teisingas proporcijas. Už teisingą pagrindimą, kad <i>G</i> yra atkarpos <i>EF</i> vidurio taškas.
	II būdas Pagal Talio teoremos išvadą ΔBAD $\frac{BE}{BA} = \frac{BG}{BD} = \frac{EG}{AD}.$ Pagal Talio teoremos išvadas ΔBDC	• 1	Už teisingą Talio teoremos išvados panaudojimą.
	$\frac{BG}{BD} = \frac{BF}{BC} = \frac{GF}{DC}.$ $\text{Todėl } \frac{EG}{AD} = \frac{GF}{DC}.$ $\text{Kadangi } AD = DC, \text{ tai } EG = GF.$ $\text{Taigi } G - \text{atkarpos } EF \text{ vidurio taškas.}$	• 1	Už teisingą Talio teoremos išvados panaudojimą. Už teisingą pagrindimą, kad <i>G</i> yra atkarpos <i>EF</i> vidurio taškas.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
30		5	
	6 rutulius iš 11 galima ištraukti $n = C_{11}^6 = \frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 462 \text{ būdais.}$	• 1	Už teisingai apskaičiuotą galimų baigčių skaičių.
	1N + 5L, $3N + 3L,$ $5N + 1L.$	• 1	Už visas palankias numerių kombinacijas.
	6 rutulius, tarp kurių yra 5 su nelyginiais numeriais, galima ištraukti $C_6^5 \cdot C_5^1 = \frac{6}{1} \cdot \frac{5}{1} = 30 \text{ būdų}.$	• 1	Už teisingai apskaičiuotą palankių baigčių skaičių bent vienai numerių kombinacijai.
	6 rutulius, tarp kurių yra 3 su nelyginiais numeriais, galima ištraukti $C_6^3 \cdot C_5^3 = \frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} \cdot \frac{5 \cdot 4}{1 \cdot 2} = 200 \text{ būdų.}$ 6 rutulius, tarp kurių yra 1 su nelyginiu numeriu, galima ištraukti $C_6^1 \cdot C_5^5 = \frac{6}{1} \cdot 1 = 6 \text{ būdais.}$	• 1	Už teisingai apskaičiuotą palankių baigčių skaičių visoms numerių kombinacijoms.
	Įvykis A – "ištrauktų 6 rutulių numerių suma yra nelyginis skaičius". Palankių įvykių yra $m = 30 + 200 + 6 = 236$; $P(A) = \frac{236}{462} = \frac{118}{231}$. Ats.: $\frac{118}{231}$.	• 1	Už gautą teisingą atsakymą.