FINITE ELEMENT TECHNIQUES (FALL 2018)

Final Project

Damacharla, vishnu Vardhan

vxd180005@utdallas.edu

Objective: -Q4 and Q8 element implementation for a cantilever beam with end load in MATLAB for different mesh sizes under plane stress state and comparing stresses and deflection with Ansys results.

Implementation in MATLAB: -

1) Plane stress analysis of solid using linear Q4 elements

Variable descriptions

k = element matrix

f = element vector

kk = system matrix

ff = system vector

displ = system nodal displacement vector

eldisp = element nodal displacement vector

gcoord = coordinate values of each node

nodes = nodal connectivity of each element

index = a vector containing system dofs associated with each element

bcdof = a vector containing dofs associated with boundary conditions

bcval = a vector containing boundary condition values associated with

the dofs in 'bcdof'

q=shear stress equation

ForceNodes=nodes on which load is acting

ShapFun=Shape functions matrix;

DiffMatr=Differentiation matrix

Jacobian=jacobian matrix

TransMatrx=Transformation matrix

Bmtx2='B' matrix

DisplX=Displacement along X,DisplX=Displcement along Y

NodeStrain=Nodal strains

NodeStress=nodal stresses

ElemeStrains=Element strains

ElemeStresses=Element stresses

eleStrain.m file consists of element strain calculation.

Input data:-D=1; Load=10000, E=2e11, Length=5, Poisson ratio-0.3

Procedure: -

Meshing with Element sizes of 0.3,0.4,0.7

- 1) Initializing all the input variables like number of elements, number of nodes, number of degrees of freedom etc.
- 2) Importing the nodal coordinates, mesh data and force nodes from Ansys through excel File named 'Data.xlsx'. Then we have find the loads on the nodes using the shear stress and shape functions matrix.
- 3)Ux, Uy equations are used for specifying the displacement boundary conditions.
- 4) Calculating a Constitutive matrix for plain stress analysis.

Here in command window you are prompted to enter Desired gaussian quadrature points 1,2 or 3

5)finding Jacobean, transformation matrix, differentiation matrix and B matrix

- 6) Then Calculating element stiffness matrix using 2X2 ,3,1-point gaussian quadrature;
- 7) Assembling of the elements.
- 8) Finding the system matrix.
- 9) Then finding out stress at different nodes and elements.

Ansys for very fine Mesh-Q4 element

Preprocessing

Step 1. Define Element Type

ANSYS Main Menu: Preprocessor \rightarrow Element Type \rightarrow Add/Edit/Delete

In the pop-up window (Element Types), select Add. Then in the new window (Library of Element Types), select Structural Mass \rightarrow Solid, Quad 4 node 182. OK to close.

In options, element behavior, pick 'plane stress'.

Step 2. Define Material Type

(1) ANSYS Main Menu: Preprocessor → Material Props → Material Models → Structural (double click) → Linear → Elastic → Isotropic

Input Mat'l Properties {EX=Young's '2. e11'; PRXY=0.3; OK}

Step3.Define Geometry

(1) Ansys Main Menu: Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Areas \rightarrow Rectangle \rightarrow By 2 Corners Enter X = 0; WP Y = -0.5; Width = 5; Height = 1, Click Apply to create rectangle.

Step 4. Create Mesh

Ansys Main Menu: Preprocessor → Meshing → Mesh Tool

A new "Mesh Tool" Window opens. Select Global.

In Size Controls panel, set global element SIZE as 0.3.

In Mesh panel, select Area, click Mesh. And pick the plate area to mesh

Solving

Step 6. Apply Displacement Constraints:

Solve->Define Loads->Apply->Functions>

First define the displacement equations of UX, UY given and save the file.

Then Read the files UY.fun, UY.fun and names as DisplX and DisplY correspondingly.

Ansys Main Menu: Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow On nodes

Pick the left edge, select UX->instead of 'Constant value' use 'Existing Table'->then select 'DisplX'. Repeat the same for UY also.

Step 7. Apply Loads

For Loads first find the individual nodal in MATLAB by using sigma-xy and shape functions Ansys Main Menu: Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Force/Moment \rightarrow On nodes ->pick->top node and give Fy=-468.8, similarly for bottom node Fy=-468.8. node-22=-2500,node-21=-3437.5,Node-20=-2500

Step 8. Solve

Ansys Main Menu: Solution \rightarrow Solve \rightarrow Current LS Close Solution Done Window.

Postprocessing

Step 9. Plot Deformed Shape

ANSYS Main Menu: General Postproc → Plot Results → Deformed Shape

Fig. 3 Deformed shape overlaid on outline of undeformed shape

<u>Step 10. Contour Plots of Stresses</u> ANSYS Main Menu: General Postproc → Plot Results → Contour Plot
→Element Solu Select 'Element Solution', 'Stress', and 'X-Component of stress'. OK.

Element-Stresses

Nodal-Stresses

Ansys for fine Mesh:Follow the same procedure as of above

Mesh-size:0.5

Nodal loads along y=node-15=-740.7,node 17=--3703.7,node 16=-3703.7,node-2=-740.7

<u>Deformed Shape</u>

Element-Stress-X

Nodal-Stress

Ansys for coarse Mesh:-

Mesh-size-0.7

Deformed shape

Nodal-loads->node-10=-1250,node-11=-5000,node-2=-1250

Element-Stress

Observations from three types of mesh:-

- 1)As we make the mesh more fine then a very good convergence of the values can be seen.
- 2)As we decrease the mesh size the nodal loads at the end become more covergent to the applied load.

Ansys for Q8 element-Very fine mesh(0.3)

Preprocessing

Step 1. Define Element Type

ANSYS Main Menu: Preprocessor → Element Type → Add/Edit/Delete

In the pop-up window (Element Types), select Add. Then in the new window (Library of Element Types), select Structural Mass \rightarrow Solid, Quad 8 node 183. OK to close.

In options, element behavior, pick 'plane stress'.

Step 2. Define Material Type

(1) ANSYS Main Menu: Preprocessor \rightarrow Material Props \rightarrow Material Models \rightarrow Structural (double click) \rightarrow Linear \rightarrow Elastic \rightarrow Isotropic

Input Mat'l Properties {EX=Young's '2. e11'; PRXY=0.3; OK}

Step3.Define Geometry

(1) Ansys Main Menu: Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Areas \rightarrow Rectangle \rightarrow By 2 Corners Enter X = 0; WP Y = -0.5; Width = 5; Height = 1, Click Apply to create rectangle.

Step 4. Create Mesh

Ansys Main Menu: Preprocessor \rightarrow Meshing \rightarrow Mesh Tool

A new "Mesh Tool" Window opens. Select Global.

In Size Controls panel, set global element SIZE as 0.3.

In Mesh panel, select Area, click Mesh. And pick the plate area to mesh

Mesh

Solving

Step 6. Apply Displacement Constraints:

Solve->Define Loads->Apply->Functions>

First define the displacement equations of UX, UY given and save the file.

Then Read the files UY.fun, UY.fun and names as DisplX and DisplY correspondingly.

Ansys Main Menu: Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow On nodes Pick the left edge, select UX->instead of 'Constant value' use 'Existing Table'->then select 'DisplX'. Repeat the same for UY also.

Step 7. Apply Loads

For Loads first find the individual nodal in MATLAB by using sigma-xy and shape functions Ansys Main Menu: Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Force/Moment \rightarrow On nodes ->pick->top node and give Fy=-468.8, similarly for bottom node-2 Fy=-468.8. node-42=-2500, node-40=-3437.5,Node-38=-2500

Step 8. Solve

Ansys Main Menu: Solution → Solve → Current LS

Close Solution Done Window.

Postprocessing

Step 9. Plot Deformed Shape

ANSYS Main Menu: General Postproc → Plot Results → Deformed Shape

<u>Deformed Shape</u>

Fig. 3 Deformed shape overlaid on outline of undeformed shape

<u>Step 10. Contour Plots of Stresses</u> ANSYS Main Menu: General Postproc → Plot Results → Contour Plot
→Element Solu Select 'Element Solution', 'Stress', and 'X-Component of stress'. OK.

Element-Stress:-

Displacement:

Similarly for Fine Mesh-

Deformed shape:-

Stress-x

Q8 Coarse Mesh-(0.7)

Stress-X

Displacement

Sigma-x comparisions for different meshes at x=L/2

Considering nodes at x=L/2

Nodes at x=L/2			_/2-very fine Mesh		/2-very fine
TO GOOD GEN L/L		nodes at x=L/2		Nodes at x=L.2	
46	1.23E+05	62	1.49E+05	18	-1.00E+05
113	9.31E+04	164	1.29E+05	19	-82641
112	41025	163	74449	20	-3.15E-05
111	-21025	162	24563	21	82641
110	-41025	161	1.33E-08	2	1.00E+05
103	-9.31E+04	160	-24563		
1	-1.03E+05	159	-74449		
		158	-1.22E+05		
		20	-1.32E+05		

Observations:

- 1)As mesh size increases the values are more convergent to analytical results.
- 2)The stress values for corresponding nodes on both the sides are almost same but with different signs

2)Comparision of Ansys and Matlab Results for Very Fine Mesh(90 nodes) of Q4 element

Ansys-Disp	lacement-Y	Matlab-Displacement Y	
NODE	UY		
1	-1.13E-07	-1.13E-07	
2	-2.33E-05	-2.36E-05	
3	-2.53E-07	-2.23E-07	
4	-6.30E-07	-6.25E-07	
5	-1.21E-06	-1.23E-06	
6	-1.99E-06	-2.02E-06	
7	-2.94E-06	-2.99E-06	
8	-4.06E-06	-4.12E-06	
9	-5.33E-06	-5.41E-06	
10	-6.74E-06	-6.83E-06	
11	-8.27E-06	-8.38E-06	
12	-9.91E-06	-1.00E-05	
13	-1.16E-05	-1.18E-05	
14	-1.35E-05	-1.36E-05	
15	-1.54E-05	-1.55E-05	
16	-1.73E-05	-1.75E-05	
17	-1.93E-05	-1.95E-05	
18	-2.13E-05	-2.15E-05	
19	-2.33E-05	-2.36E-05	
20	-2.33E-05	-2.36E-05	
21	-2.33E-05	-2.36E-05 Maximun	n Value
22	-2.33E-05	-2.36E-05	
23	-1.13E-07	-1.12E-07	
24	-2.13E-05	-2.15E-05	
25	-1.93E-05	-1.95E-05	
26	-1.73E-05	-1.75E-05	
27	-1.54E-05	-1.55E-05	
28	-1.35E-05	-1.36E-05	
29	-1.16E-05	-1.18E-05	
30	-9.91E-06	-1.00E-05	
31	-8.27E-06	-8.38E-06	
32	-6.74E-06	-6.83E-06	
33	-5.33E-06	-5.41E-06	
34	-4.06E-06	-4.12E-06	

34	-4.06E-06	-4.12E-06
35	-2.94E-06	-2.99E-06
36	-1.99E-06	-2.02E-06
37	-1.21E-06	-1.23E-06
38	-6.30E-07	-6.30E-07
39	-2.53E-07	-2.37E-07
40	-2.81E-08	1.25E-10
41	0	0
42	-2.81E-08	2.61E-10
43	-1.84E-07	-1.52E-07
44	-1.63E-07	-1.47E-07
45	-1.84E-07	-1.74E-07
46	-5.63E-07	-5.59E-07
47	-5.41E-07	-5.37E-07
48	-5.63E-07	-5.61E-07
49	-1.15E-06	-1.16E-06
50	-1.13E-06	-1.14E-06
51	-1.15E-06	-1.16E-06
52	-1.93E-06	-1.96E-06
53	-1.91E-06	-1.94E-06
54	-1.93E-06	-1.96E-06
55	-2.89E-06	-2.93E-06
56	-2.87E-06	-2.91E-06
57	-2.89E-06	-2.93E-06
58	-4.01E-06	-4.07E-06
59	-3.99E-06	-4.06E-06
60	-4.01E-06	-4.07E-06
61	-5.28E-06	-5.36E-06
62	-5.27E-06	-5.35E-06
63	-5.28E-06	-5.36E-06
64	-6.69E-06	-6.79E-06
65	-6.68E-06	-6.78E-06
66	-6.69E-06	-6.79E-06
67	-8.23E-06	-8.34E-06
68	-8.22E-06	-8.33E-06
69	-8.23E-06	-8.34E-06
70	-9.88E-06	-1.00E-05

6	73	-1.16E-05	-1.18E-05
7	74	-1.16E-05	-1.18E-05
8	75	-1.16E-05	-1.18E-05
9	76	-1.34E-05	-1.36E-05
0	77	-1.34E-05	-1.36E-05
1	78	-1.34E-05	-1.36E-05
2	79	-1.53E-05	-1.55E-05
3	80	-1.53E-05	-1.55E-05
4	81	-1.53E-05	-1.55E-05
5	82	-1.73E-05	-1.75E-05
6	83	-1.73E-05	-1.75E-05
7	84	-1.73E-05	-1.75E-05
8	85	-1.93E-05	-1.95E-05
9	86	-1.93E-05	-1.95E-05
0	87	-1.93E-05	-1.95E-05
1	88	-2.13E-05	-2.15E-05
2	89	-2.13E-05	-2.15E-05
3	90	-2.13E-05	-2.15E-05
4			
5	MAXIMUM	ABSOLUTE VALUES	
6	NODE	21	
7	VALUE -	2.33E-05	

Stress-X values Comparision at nodes:-

Ansy	s-N	odal Str	esses			MATL	AB NO	DDAL	STRE	SSES							
NODE	SX		SY	SXY		The Noda	l Stresse	are									
 r	1	-2.76E+05	-15421	-39948		1.0e+05	*										
	2	-8850.7	-4130.2	-4236.1													
	3	-2.67E+05	-25062	-4149.7		Columns	1 throug	h 12									
	4	-2.45E+05	-19954	-4726.1													
	5	-2.28E+05	-18330	-4510.4	Maxmimum SX	-2.76490	-0.0885	-2.535	2 -2.343	9 -2.189	6 -2.031	5 -1.869	7 -1.706	8 -1.543	36 -1.38	09 -1.217	73 -1.0542
	6	-2.12E+05	-17044	-4505.7	SY	-1.0172	-0.0413	-0.1972	-0.1785	-0.1541	-0.1438	-0.1310	-0.1181	-0.1050	0.092	0 -0.0787	7 -0.0656
	7	-1.96E+05	-15743	-4506.8	SXY	-0.9291	-0.0424	-0.3570	-0.3088	-0.2933	-0.2782	-0.2610	-0.2432	-0.2251	1 -0.208	5 -0.1891	1 -0.1711
	8	-1.79E+05	-14430	-4507.3													
	9	-1.63E+05	-13118	-4507.2		Columns	13 throu	gh 24									
	10	-1.47E+05	-11806	-4507.2													
	11	-1.30E+05	-10494	-4507.2	SX	-0.8911	-0.7280	-0.5650	-0.4019	-0.2375	-0.0712	0.0885	-0.0456	0.0023	0.0482	2.7239	0.0712
	12	-1.14E+05	-9182.5	-4507.2	SY	-0.0525	-0.0394	-0.0263	-0.0131	0.0004	0.0164	0.0413	-0.0206	0.0076	0.0292	-0.0828	-0.0164
	13	-97859	-7870.8	-4507.3	SXY	-0.1531	-0.1351	-0.1171	-0.1009	-0.0815	-0.0589	-0.0424	-0.1161	-0.1225	-0.059	5 -0.3599	9 -0.0589
	14	-81549	-6558.7	-4507.1													
	15	-65241	-5248.8	-4507.5		Columns	25 throu	gh 36									
	16	-48929	-3932.1	-4506.8													
	17	-32554	-2604.6	-4528.6	SX	0.2375	0.4019	0.5650	0.7280	0.8911	1.0542	1.2173	1.3809 1	.5435	1.7065	1.8697 2	.0341
	18	-15992	-1024.7	-4380.6	SY	-0.0004	0.0131	0.0263	0.0394	0.0525	0.0656	0.0787	0.0920	0.1049	0.1181	0.1314 0).1449
	19	8850.7	4130.2	-4236.1	SXY	-0.0815	-0.1009	-0.1171	-0.1351	-0.1531	-0.1711	-0.1891	-0.2085	-0.2251	1 -0.243	1 -0.2612	2 -0.2801
	20	-4694.2	-2491.7	-8783													
	21	3.27E-06	7.20E-07	-12254		Columns	37 throu	gh 48									
	22	4694.2	2491.7	-8783													
	23	2.76E+05	15421	-39948	SX	2.2018	2.3649	2.5589	1.0287	-0.1110	-0.8619	-1.3281	-0.0266	1.1536	-1.2158	-0.0699	1.0914
	24	15992	1024.7	-4380.6	SY	0.1586	0.1614	0.2635	-0.5914	-0.0308	-0.2622	-0.3586	-0.2255	-0.1580	-0.1892	-0.2103	-0.2207
	25	32554	2604.6	-4528.6	SXY	-0.3007	-0.3146	-0.3606	-0.4893	-0.3184	-0.0859	-0.4438	-0.3627	-0.3462	2 -0.387	4 -0.3985	5 -0.3296
	26	48929	3932.1	-4506.8													
	27	65241	5248.8	-4507.5		Columns	49 throu	gh 60									
	28	81549	6558.7	-4507.1				_									
	29	97859	7870.8	-4507.3	SX	-1.1268	-0.0591	1.0143	-1.0415	-0.0522	0.9394	-0.9583	-0.0472	0.8641	-0.8749	-0.0432	0.7884
	30	1.14E+05	9182.5	-4507.2	SY	-0.1681	-0.1833	-0.1977	-0.1551	-0.1688	-0.1835	-0.1436	-0.1567	-0.1703	3 -0.131	1 -0.1442	2 -0.1574
	31	1.30E+05	10494	-4507.2	SXY	-0.3674	-0.3753	-0.3126	-0.3495	-0.3552	-0.2918	-0.3324	-0.3366	-0.2729	9 -0.314	7 -0.3185	5 -0.2548

33	1.63E+05	13118	-4507.2		Column	s 61 thro	ugh 72									
34	1.79E+05	14430	-4507.3													
35	1.96E+05	15743	-4506.8	SX	-0.7914	-0.0393	0.7127	-0.7082	-0.0354	0.6373	-0.6244	-0.0315	0.5614	-0.5409	-0.0275	0.4858
36	2.12E+05	17044	-4505.7	SY	-0.1181	-0.1312	-0.1443	-0.1050	-0.1181	-0.1311	-0.0918	-0.1049	-0.1181	-0.0787	-0.0918	-0.1049
37	2.28E+05	18330	-4510.4	SXY	-0.2967	-0.3005	-0.2368	-0.2801	-0.2840	-0.2202	-0.2606	-0.2645	-0.2008	-0.2426	-0.2465	-0.1828
38	2.45E+05	19954	-4726.1													
39	2.67E+05	25062	-4149.7		Column	5 73 thro	ugh 84									
40	1.22E+05	-8512.6	-40672													
41	-7.19E-05	4.11E-04	-39226	SX	-0.4574	-0.0236	0.4102	-0.3739	-0.0197	0.3345	-0.2903	-0.0157	0.2588	-0.2070	-0.0118	0.1833
42	-1.22E+05	8512.6	-40672	SY	-0.0656	-0.0787	-0.0918	-0.0525	-0.0656	-0.0787	-0.0393	-0.0525	-0.0656	-0.0263	-0.0393	-0.0525
43	-1.23E+05	-985.81	-8394.6	SXY	-0.2246	-0.2285	-0.1648	-0.2066	-0.2105	-0.1468	-0.1886	-0.1926	-0.1288	-0.1725	-0.1762	-0.1126
44 -	-0.36633E-004-	4.07E-05	-11150													
45	1.23E+05	985.81	-8394.6		Column	s 85 thro	ugh 90									
46	-1.18E+05	144.38	-8603.1													
47	-1.12E-05	4.42E-05	-11665	SX	-0.1249	-0.0080	0.1092	-0.0392	-0.0042	0.0309						
48	1.18E+05	-144.38	-8603.1	SY	-0.0132	-0.0267	-0.0388	0.0009	-0.0139	-0.0284						
49	-1.11E+05	18.504	-8677.4	SXY	-0.1523	-0.1561	-0.0925	-0.1340	-0.1404	-0.0761						
50	-3.57E-05	2.07E-04	-12050													
51	1.11E+05	-18.504	-8677.4													
52	-1.03E+05	-1.5695	-8670.2													
53	-5.41E-05	6.39E-05	-12059													
54	1.03E+05	1.5691	-8670.2													
55 -	95498	0.35601	-8670.1													
56	-2.39E-05	8.32E-05	-12052													
57	95498	0.35634	-8670.1													
58	-87540	1.98E-02	-8669.9													
59 -	-0.50137E-004-	4.34E-06	-12052													
60	-87540	1.97E-02	-8669.9													
61	-79582	5.15E-03	-8670													
62	2.66E-05	8.86E-05	-12052													
63	-79582	5.20E-03	-8670													
64	-71624	9.47E-05	-8670													
65	-8.92E-06	1.09E-05	-12052													
66	-71624	1.65E-04	-8670													
67 -	63665	3.60E-04	-8670													

67	-63665	3.60E-04	-8670	
68	-0.13377E-004-	8.53E-05	-12052	
69	63665	2.71E-04	-8670	
70	-55707	2.17E-06	-8670	
71	-0.13418E-004-	8.54E-05	-12052	
72	55707	2.16E-04	-8670	
73	-47749	7.37E-04	-8670	
74	-0.28827E-004-	5.54E-05	-12052	
75	47749	8.34E-04	-8670	
76	-39791	3.78E-02	-8670	
77	-2.49E-06	3.24E-05	-12052	
78	-39791	3.78E-02	-8670	
79	-31831	1.54E-02	-8669.8	
80	1.50E-05	5.00E-05	-12053	
81	31831	1.55E-02	-8669.8	
82	-23877	-1.8416	-8671.2	
83	-8.69E-06	1.17E-05	-12049	
84	23877	1.8415	-8671.2	
85	-15997	-5.4264	-8659	
86	1.27E-06	1.44E-05	-12027	
87	15997	5.4264	-8659	
88	-7980.9	125.08	-8687.4	
89	-1.36E-06	5.38E-07	-12092	
90	7980.9	-125.08	-8687.4	
MINIMUN	VALUES			
NODE	1	3	40	
VALUE	-0.27649E+006 -	25062.	-40672	
MAXIMUN	VALUES			
NODE	23	39	3	
VALUE	2.76E+05	25062.	-4149.7	

Comparision of Ansys and Matlab Results for Fine-Mesh of Q4 element

Ansys-Y-Dis	placeme	ent	Matlab Y-D	isplacement
IODE	UY			
	-1.13E-07		-1.13E-07	
	-2.15E-05	Max	-2.13E-05	Max
	-3.21E-07		-3.49E-07	
	-8.92E-07		-8.80E-07	
	-1.77E-06		-1.75E-06	
	-2.94E-06		-2.90E-06	
	-4.36E-06		-4.30E-06	
	-6.00E-06		-5.94E-06	
	-7.85E-06 -9.87E-06		-7.77E-06 -9.77E-06	
	-1.20E-05		-1.19E-05	
	-1.43E-05		-1.19E-05	
	-1.67E-05		-1.65E-05	
	-1.91E-05		-1.89E-05	
	-2.15E-05		-2.13E-05	
	-2.15E-05		-2.13E-05	
17	-2.15E-05		-2.13E-05	
18	-1.13E-07		-1.13E-07	
19	-1.91E-05		-1.89E-05	
20	-1.67E-05		-1.65E-05	
21	-1.43E-05		-1.42E-05	
22	-1.20E-05		-1.19E-05	
23	-9.87E-06		-9.77E-06	
24	-7.85E-06		-7.77E-06	
25	-6.00E-06		-5.94E-06	
26	-4.36E-06		-4.30E-06	
27	-2.94E-06		-2.90E-06	
	-1.77E-06		-1.75E-06	
	-8.92E-07		-8.87E-07	
	-3.21E-07		-3.27E-07	
	-1.25E-08		-8.61E-09	
	-1.25E-08		-1.13E-07	
	-2.48E-07		-2.38E-07	
	-2.48E-07		-2.61E-07	
	-8.21E-07		-8.15E-07	
	-8.21E-07		-8.12E-07	
	-1.71E-06 -1.71E-06		-1.68E-06 -1.69E-06	
	-1.712-00		-1.092-00	
39	-2.88E-06		-2.84E-06	
40	-2.88E-06		-2.84E-06	
41	-4.31E-06		-4.25E-06	
42	-4.31E-06		-4.25E-06	
43	-5.96E-06		-5.89E-06	
44	-5.96E-06		-5.89E-06	
	-7.81E-06		-7.73E-06	
	-7.81E-06		-7.73E-06	
	-9.84E-06		-9.74E-06	
	-9.84E-06		-9.74E-06	
	-1.20E-05		-1.19E-05	
	-1.20E-05		-1.19E-05	
51	-1.43E-05		-1.42E-05	
52	-1.43E-05		-1.42E-05	
53	-1.66E-05		-1.65E-05	
54	-1.66E-05		-1.65E-05	
	-1.91E-05		-1.89E-05	
	-1.91E-05		-1.89E-05	
30	1.516-03		1.631-03	
MAXIMUM	ABSOLUTE	VALUES		
		VALUES		
IODE	16			
ALUE	-2.15E-05			

Stress-X values Comparision at nodes:-

18 30 2.51E+05 29253

NODE VALUE 3 -3879.5

	Ansv	s Stres	s Resul	ts		MATL	AB RES	ULTS F	FOR ST	RESSI	ES AT I	NODE:	S					
		SX	SY	SX	Y		NODES 1		NODES 1									
mum Stress		1 -2.51E			-43576		1.0e+05*											
		2 -10	773 -513	9.6	-4647	SX	-2.7532	-0.1077	-2.2369	-2.0848	-1.8774	-1.6802	-1.4818	-1.2834	-1.0850	-0.8866	5 -0.6883	-0.489
		3 -2.42E	+05 -292	53	-3879.5	SY	-1.5016	-0.0514	-0.0085	-0.2381	-0.1734	-0.1594	-0.1369	-0.1161	-0.0950	-0.0739	9 -0.0528	-0.031
		4 -2.18E			-5188.1		-0.6979											
		5 -1.98E			-4958.8													
		6 -1.79E			-4979.5		Columns	13 throu	gh 24									
		7 -1.59E			-4978													
		8 -1.39E			-4978.1	SX	-0.2910	-0.0877	0.1077	-0.0350	0.0413	2.4782	0.0877	0.2910	0.4898	0.6883	0.8866	1.0850
		9 -1.19E			-4978.1		-0.0107											
			211 -105		-4978.1		-0.1072											
	1		369 -844	_	-4978.2													
	1		529 -633	1.4	-4976		Columns	25 throu	gh 36									
			676 -424		-5002.8				Ĭ									
			512 -169		-4803	SX	1.2834	1.4818	1.6803	1.8803	2.0756	2.2462	0.5693	-0.5560	-0.8767	0.7251	-0.7287	0.5883
			773 5139		-4647	SY											-0.1994	
			8.2 -209	_	-8961.6		-0.2487											
			8.2 209		-8961.6					T		1	T					
		8 2.51E			-43576		Columns	37 throu	gh 48									
			512 169		-4803													
			676 424		-5002.8	SX	-0.6708	0.5436	-0.5978	0.4836	-0.5278	0.4265	-0.4573	0.3687	-0.3870	0.3110	-0.3166	0.2533
			529 633		-4976	SY											2 -0.0950	
			369 844		-4978.2		-0.3977											
			211 105		-4978.1													
		4 1.19E			-4978.1		Columns	49 throu	gh 56									
		5 1.39E		_	-4978.1													
		6 1.59E			-4978	SX	-0.2463	0.1957	-0.1757	0.1377	-0.1070	0.0818	-0.0350	0.0213				
		7 1.79E			-4979.5		-0.0739											
		8 1.98E			-4958.8		-0.2264											
		9 2.18E			-5188.1	57.1	0.2201	0.277	0.2500	0.2175	0.2002	0.2203	0.2107	0.0303				
		0 2.42E			-3879.5													
			356 -830		-46148													
		2 -72			-46148													
			870 -430.		-8626.3													
			870 430.		-8626.3													
			914 284.		-8577.3													
			914 -284.		-8577.3													
			100 -30.2		-8728.8													
	3		100 30.2		-8728.8													
	39	57621	2.2853		-8712													
	40		-2.2854		-8712													
			0.13827		-8713.3													
	42		0.13887		-8713.3													
			0.69305E		-8713.2													
			0.66073E		-8713.2													
			D.10975E		-8713.2													
			0.75021E		-8713.2													
			D.13904E		-8713.2													
	48	32015	D.13586E		-8713.2													
	49 -250	513	0.23881		-8713.1													
!	50	25613	0.23842		-8713.1													
	51 -	19201	3.3454		-8714.9													
	52	19201	-3.3454		-8714.9													
		12876	-35.145		-8695.9													
			35.145		-8695.9													
			153.83		-8763.6													
			-153.83		-8763.6													
-	50	0417.0	-133.63		-5703.0													
B ACRES C		IEC																
MINIM																		
NODE		1	3		31													
NODE			29253		-46148													

Comparisions between Ansys and Matlab for Coarse Mesh(27 Nodes)

А	В	C	U	E	r	U	н
Ansys I	Displaceme	nt-Y			MATLAB DISP	LACEM	ENT-Y
	UY						
1	-1.13E-07				-1.13E-07		
2	-1.65E-05				-1.69E-05		
3	-5.00E-07				-5.52E-07		
4	-1.58E-06				-1.67E-06		
5	-3.21E-06				-3.36E-06		
6	-5.30E-06				-5.52E-06		
7	-7.78E-06				-8.05E-06		
8	-1.05E-05				-1.09E-05		
9	-1.35E-05				-1.39E-05		
10	-1.65E-05				-1.69E-05		
11	-1.65E-05				-1.68E-05		
12	-1.13E-07				-1.13E-07		
13	-1.35E-05				-1.39E-05		
14	-1.05E-05				-1.09E-05		
15	-7.78E-06				-8.05E-06		
16	-5.30E-06				-5.52E-06		
17	-3.21E-06				-3.36E-06		
18	-1.58E-06				-1.67E-06		
19	-5.00E-07				-5.31E-07		
20	0				2.15E-18		
21	-4.46E-07				-4.75E-07		
22	-1.52E-06				-1.61E-06		
23	-3.16E-06				-3.31E-06		
24	-5.27E-06				-5.48E-06		
25	-7.75E-06				-8.02E-06		
26	-1.05E-05				-1.08E-05		
27	-1.35E-05				-1.38E-05		
MAXIMUN	ABSOLUTE VALUES						
NODE	11						
VALUE -	1.65E-05						
VALUE -0.:	16505E-004						

- 1	Ansys	_Sti	ress at no	odes							MAILA	IB STRE	SS AT	NODES	,							
-	NODE	SX	5	Υ	SZ	SXY	SYZ	SXZ	i											i		
um		L	-1.85E+05	-10559	(-47696	i	0	0		TThe Noda	al Stresses	are									
	2	2	-13428	-5783.7	(-3811.3		0	0		Columns	1 through	12									
	3	3	-1.78E+05	-31640	(-2499.1		0	0 1.	0e+05 ¹	-1.8519	-0.1343	-1.5950	-1.3801	-1.1246	-0.8733	-0.6219	-0.3718	-0.1155	0.1343	0.0058	1.9239
	4	1	-1.50E+05	-22846	(-4394.1		0	0		-0.5556	-0.0578	-0.1728	-0.2010	-0.1582	-0.1184	-0.0787	-0.0405	0.0049	0.0578	0.0193	0.1270
		5	-1.26E+05	-19898	(-4003.7		0	0		-0.5057	-0.0381	-0.4123	-0.3896	-0.3286	-0.2708	-0.2132	-0.1566	-0.0943	-0.0381	-0.0557	-0.5147
	(5	-1.00E+05	-15751	(-4085.8		0	0		Columns	13 throu	gh 24							i		
	-	7	-75356	-11826	(-4060.6	,	0	0	SX	0.1155	0.3718	0.6219	0.8735	1.1242	1.3721	1.6548	-0.1981	-0.1034	-0.0658	-0.0595	-0.0474
	8	3	-50290	-7979	(-4106	,	0	0	SY	-0.0049	0.0405	0.0787	0.1187	0.1563	0.1991	0.2739	-0.5096	-0.2536	-0.2323	-0.1988	-0.1576
	9	9	-24881	-3512.7	(-3901.2		0	0	SX	-0.0943	-0.1566	-0.2132	-0.2710	-0.3281	-0.3831	-0.4709	-0.5848	-0.4740	-0.3928	-0.3396	-0.2819
	10)	13428	5783.7	(-3811.3		0	0		Columns	25 throu	gh 27									
	11	L	2.10E-06	2.74E-05	(-5567.3		0	0	SX	-0.0356	-0.0234	-0.0130									
	12	2	1.85E+05	10559	(-47696	i	0	0	SY	-0.1186	-0.0781	-0.0434									
	13	3	24881	3512.7	(-3901.2	!	0	0	SX	-0.2245	-0.1663	-0.1119							i		
	14	1	50290	7979	(-4106	i	0	0											i		
	15	5	75356	11826	(-4060.6	,	0	0											i		
	16	5	1.00E+05	15751	(-4085.8	1	0	0													
	17	7	1.26E+05	19898	(-4003.7	•	0	0													
	18	3	1.50E+05	22846	(-4394.1		0	0													
	19	9	1.78E+05	31640	(-2499.1		0	0													
	20)	1.44E-04	-8.22E-04	(-54846	i	0	0													
	2:	l	3.36E-05	-1.32E-04	(-6004.4	ļ	0	0											į		
	22	2	-1.38E-05	3.54E-05	(-5004.7	,	0	0													
	23	3	5.68E-05	-2.17E-04	(-5210.6	i	0	0											- 1		
	24	1	-3.15E-05	5.79E-05	(-5167.4	ļ	0	0											- 1		
	25	5	-2.31E-05	4.26E-06	(-5180.6	,	0	0													
	26	5	1.07E-05	-4.57E-05	(-5156.7	'	0	0													
	27	7	-4.00E-06	-1.33E-05	(-5264.7	'	0	0													
																				i		
-	MINIMU	N VAL	.UES																	į		
_	NODE		1	3		L 20)	1	1													
١	/ALUE		-1.85E+05	-31640	(-54846	i	0	0													
ı	MAXIMU	N VAL	.UES																			
ı	NODE		12	19	:	1 3	1	1	1													
١	/ALUE		1.85E+05	31640	(-2499.1		0	0													

3) Sigma-X at x=L/2 for three types of mesh:

The nodes which are at x=L/2 are Considered

Sigma-X at x=L/2:Very Fine Mesh

s_STRESS-X	X at x=L/2	MATLAB S	TRESS-X at X=L/2		
s at X=L/2					
32	1.47E+05		1.41E+05		
66	71624		70624		
65	8.92E-06		9.82E-06		
64	1.19E+05		1.19E+05		
10	-1.47E+05		-1.40E+05		
10	-1.47E+05		-1.40E+05	5	5

Sigma-X at x=L/2:Fine Mesh

ANSYS Sigma X at x=L/2			MATLAB STRESS-X at X=L/2 2-Point				
Nodes at x=L/	' 2						
9	-1.19E+05			-1.25E+05			
45	-38418			-45418			
46	38418			45418			
24	1.19E+05			1.25E+05			

Sigma-X at x=L/2:Coarse Mesh

Ansys Stress at x=L/	2	Matlab Stress at x=L/22point Gauss
Nodes at x=L/2		
6	-1.00E+05	-9.00E+04
24	-3.15E-05	-2.90E+05
16	1.00E+05	9.00E+04

3)Comparison of Stress(sigma-x) at 2-point,1-point,3-point Gauss Quadrature

ANSYS Sigma X at x=L/2		MATLAB STRI	MATLAB STRESS-X at X=L/2 2-Point			MATLAB STRESS-X at X=L/2 1-Point			MATLAB STRESS-X at X=L/2		
Nodes at x=L,	/2										
9	-1.19E+05		-1.25E+05				3.10E+05		-1.09E+05		
45	-38418		-45418				-68418		-38700		
46	38418		45418				68418		38700		
24	1.19E+05		1.25E+05				-309930.00		1.09E+05		