

CHEMISTRY STANDARD LEVEL PAPER 1

Wednesday 17 November 2004 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

8804-6104 11 pages

	<i>a</i> , o			30	30	2)			
0	2 He 4.00	$ \begin{array}{c} 10 \\ \mathbf{Ne} \\ 20.18 \end{array} $	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)			
۲		9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)		71 Lu 174.97	103 Lr (260)
9		8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102 No (259)
w		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101 Md (258)
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19		68 Er 167.26	100 Fm (257)
ю		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37		67 Ho 164.93	99 Es
				30 Zn 65.37	48 Cd 112.40	80 Hg 200.59		66 Dy 162.50	98 Cf (251)
a)				29 Cu 63.55	47 Ag 107.87	79 Au 196.97		65 Tb 158.92	97 Bk (247)
The Periodic Table				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96 Cm (247)
eriodia				27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95 Am (243)
The P				26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94 Pu (242)
				25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93 Np (237)
	Number	i ent : Mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92 U 238.03
	Atomic Number	Element Atomic Mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91 Pa 231.04
			I	22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	90 Th 232.04
				21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)	÷-	**
7		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
-	1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		

- 1. Which of the following contains the greatest number of molecules?
 - A. 1 g of CH₃Cl
 - B. 1 g of CH₂Cl₂
 - C. 1 g of CHCl₃
 - D. 1 g of CCl₄
- 2. Which of the following compounds has/have the empirical formula CH₂O?
 - I. CH₃COOH
 - II. $C_6H_{12}O_6$
 - III. $C_{12}H_{22}O_{11}$
 - A. II only
 - B. III only
 - C. I and II only
 - D. II and III only
- **3.** Consider the equation below.

$$Fe(s)+S(s) \rightarrow FeS(s)$$

If 10.0 g of iron is heated with 10.0 g of sulfur to form iron(II) sulfide, what is the theoretical yield of FeS in grams?

- A. 10.0 + 10.0
- B. $\frac{87.91 \times 10.0}{55.85}$
- C. $\frac{87.91 \times 10.0}{32.06}$
- $D = \frac{55.85 \times 10.0}{32.06}$

4.		uming complete reaction, what volume of $0.200 \text{ mol dm}^{-3} \text{ HCl(aq)}$ is required to neutralize 25.0 cm ³ $0.200 \text{ mol dm}^{-3} \text{ Ba(OH)}_2(\text{aq})$?
	A.	12.5 cm ³
	B.	25.0 cm ³
	C.	50.0 cm ³
	D.	75.0 cm ³
5.		ertain sample of element Z contains 60% of ^{69}Z and 40% of ^{71}Z . What is the relative atomic mass of nent Z in this sample?
	A.	69.2
	B.	69.8
	C.	70.0
	D.	70.2
6.	Wha	at is the difference between two neutral atoms represented by the symbols $^{59}_{27}$ Co and $^{59}_{28}$ Ni ?
	A.	The number of neutrons only.
	B.	The number of protons and electrons only.
	C.	The number of protons and neutrons only.
	D.	The number of protons, neutrons and electrons.
7.		oidium is an element in the same group of the periodic table as lithium and sodium. It is likely to be a all which has a
	A.	high melting point and reacts slowly with water.
	B.	high melting point and reacts vigorously with water.
	C.	low melting point and reacts vigorously with water.
	D.	low melting point and reacts slowly with water.

- **8.** When the following species are arranged in order of **increasing** radius, what is the correct order?
 - A. Cl^- , Ar, K^+
 - B. K^+ , Ar, Cl^-
 - C. Cl^-, K^+, Ar
 - D. Ar, Cl^-, K^+
- 9. According to VSEPR theory, repulsion between electron pairs in a valence shell decreases in the order
 - A. lone pair-lone pair > lone pair-bond pair > bond pair-bond pair.
 - B. bond pair-bond pair > lone pair- bond pair > lone pair-lone pair.
 - C. lone pair-lone pair > bond pair-bond pair > bond pair-lone pair.
 - D. bond pair-bond pair > lone pair-lone pair > lone pair-bond pair.
- **10.** Which molecule is linear?
 - A. SO₂
 - B. CO₂
 - C. H₂S
 - D. Cl₂O
- 11. Why is the boiling point of PH₃ lower than that of NH₃?
 - A. PH_3 is non-polar whereas NH_3 is polar.
 - B. PH₃ is not hydrogen bonded whereas NH₃ is hydrogen bonded.
 - C. Van der Waals' forces are weaker in PH₃ than in NH₃.
 - D. The molar mass of PH₃ is greater than that of NH₃.

- **12.** Which molecule is non-polar?
 - A. H₂CO
 - B. SO_3
 - C. NF₃
 - D. CHCl₃
- 13. Under what conditions would one mole of methane gas, CH₄, occupy the smallest volume?
 - A. $273 \text{ K} \text{ and } 1.01 \times 10^5 \text{ Pa}$
 - B. $273 \text{ K} \text{ and } 2.02 \times 10^5 \text{ Pa}$
 - C. $546 \text{ K} \text{ and } 1.01 \times 10^5 \text{ Pa}$
 - D. 546 K and 2.02×10⁵ Pa
- **14.** The temperature in Kelvin of 2.0 dm³ of an ideal gas is doubled and its pressure is increased by a factor of four. What is the final volume of the gas?
 - A. 1.0 dm³
 - B. 2.0 dm³
 - C. 3.0 dm³
 - $D. \quad 4.0 \ dm^3$

15. Consider the following equations.

$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$$
 $\Delta H^{\Theta} = -602 \text{ kJ}$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$
 $\Delta H^{\Theta} = -242 \text{ kJ}$

What is the ΔH^{Θ} value (in kJ) for the following reaction?

$$MgO(s) + H_2(g) \rightarrow Mg(s) + H_2O(g)$$

- A. -844
- B. -360
- C. +360
- D. +844
- 16. For which of the following is the sign of the enthalpy change different from the other three?
 - A. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - B. $Na(g) \rightarrow Na^+(g) + e^-$
 - C. $CO_2(s) \rightarrow CO_2(g)$
 - D. $2Cl(g) \rightarrow Cl_2(g)$
- 17. Which reaction has a positive entropy change, ΔS^{Θ} ?
 - A. $H_2O(g) \rightarrow H_2O(l)$
 - B. $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
 - C. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - D. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

- 18. Separate solutions of HCl(aq) and $H_2SO_4(aq)$ of the same concentration and same volume were completely neutralized by NaOH(aq). XkJ and YkJ of heat were evolved respectively. Which statement is correct?
 - A. X = Y
 - B. Y = 2X
 - C. X = 2Y
 - D. Y = 3X
- **19.** For a given reaction, why does the rate of reaction increase when the concentrations of the reactants are increased?
 - A. The frequency of the molecular collisions increases.
 - B. The activation energy increases.
 - C. The average kinetic energy of the molecules increases.
 - D. The rate constant increases.
- **20.** Which statement is correct for the reaction below?

$$4P + Q \rightarrow 2R + 2S$$

- A. The rate of formation of R is one half the rate of the disappearance of Q.
- B. The rate of disappearance of Q is one quarter of the rate of disappearance of P.
- C. The rates of formation of R and S are not equal.
- D. The rate of formation of S is double the rate of disappearance of P.
- 21. In the Haber process for the synthesis of ammonia, what effects does the catalyst have?

	Rate of formation of NH ₃ (g)	Amount of NH ₃ (g) formed	
A.	Increases	Increases	
B.	Increases	Decreases	
C.	Increases	No change	
D.	No change	Increases	

22. What will happen if $CO_2(g)$ is allowed to escape from the following reaction mixture at equilibrium?

$$CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

- A. The pH will decrease.
- B. The pH will increase.
- C. The pH will remain constant.
- D. The pH will become zero.
- 23. Consider the following equilibria in 0.10 mol dm⁻³ carbonic acid.

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

$$HCO_3^-(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq)$$

- Which species is present in the highest concentration?
- A. $H_2CO_3(aq)$
- B. $H^+(aq)$
- C. $HCO_3^-(aq)$
- D. CO_3^{2-} (aq)
- **24.** The pH of a solution is 2. If its pH is increased to 6, how many times greater is the [H⁺] of the original solution?
 - A. 3
 - B. 4
 - C. 1000
 - D. 10000

25. Consider the following reaction.

$$H_2SO_3(aq) + Sn^{4+}(aq) + H_2O(l) \rightarrow Sn^{2+}(aq) + HSO_4^-(aq) + 3H^+(aq)$$

Which statement is correct?

- A. H₂SO₃ is the reducing agent because it undergoes reduction.
- B. H₂SO₃ is the reducing agent because it undergoes oxidation.
- C. Sn⁴⁺ is the oxidizing agent because it undergoes oxidation.
- D. Sn⁴⁺ is the reducing agent because it undergoes oxidation.
- **26.** In which change does oxidation occur?

A.
$$CH_3CHO \rightarrow CH_3CH_2OH$$

B.
$$\operatorname{CrO}_4^{2-} \to \operatorname{Cr}_2\operatorname{O}_7^{2-}$$

C.
$$SO_4^{2-} \rightarrow SO_3^{2-}$$

D.
$$NO_2^- \rightarrow NO_3^-$$

27. What happens at the positive electrode in a voltaic cell and in an electrolytic cell?

	Voltaic cell	Electrolytic cell		
A.	Oxidation	Reduction		
B.	Reduction	Oxidation		
C.	Oxidation	Oxidation		
D.	Reduction	Reduction		

- **28.** Which compound has the lowest boiling point?
 - A. CH₃CH₂CH(CH₃)CH₃
 - B. (CH₃)₄C
 - C. CH₃CH₂CH₂CH₂CH₃
 - D. CH₃CH₂OCH₂CH₃
- **29.** Which species will show optical activity?
 - A. 1-chloropentane
 - B. 3-chloropentane
 - C. 1-chloro-2-methylpentane
 - D. 2-chloro-2-methylpentane
- **30.** What type of reaction does the equation below represent?

$$CH_2=CH_2 + Br_2 \rightarrow BrCH_2CH_2Br$$

- A. substitution
- B. condensation
- C. reduction
- D. addition