Lecture 14

Gradient Descent

DSC 40A, Fall 2024

The Midterm Exam is on Monday, Nov 4th!

- Randomized seat assignment is in the homework look up your seat.
- 50 minutes, on paper, no calculators or electronics.
 - You are allowed to bring one two-sided page of notes.
- Content: Lectures 1-13, Homeworks 1-4, Groupworks 1-4.
- Prepare by practicing with old exam problems at practice.dsc40a.com.
 - Problems are sorted by topic!

Agenda

- Minimizing functions using gradient descent.
- Convexity.
- More examples.
 - Huber loss.
 - Gradient descent with multiple variables.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " E Lecture Questions" link in the top right corner of dsc40a.com.

The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

Minimizing functions using gradient descent

Minimizing empirical risk

- Repeatedly, we've been tasked with minimizing the value of empirical risk functions.
 - \circ Why? To help us find the **best** model parameters, h^* or w^* , which help us make the **best** predictions!
- We've minimized empirical risk functions in various ways.

$$\circ \ R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2$$

$$| \circ | R_{ ext{abs}}(w_0, w_1) = rac{1}{n} \sum_{i=1}^n |y_i - (w_0 + w_1 x)| .$$

$$\| \circ \| R_{ ext{sq}}(ec{w}) = rac{1}{n} \| ec{y} - X ec{w} \|^2 .$$

Minimizing arbitrary functions

- Assume f(t) is some **differentiable** single-variable function.
- ullet When tasked with minimizing f(t), our general strategy has been to:
 - i. Find $\frac{df}{dt}(t)$, the derivative of f.
 - ii. Find the input t^* such that $\frac{df}{dt}(t^*)=0$.
- However, there are cases where we can find $\frac{df}{dt}(t)$, but it is either difficult or impossible to solve $\frac{df}{dt}(t^*)=0$.

$$f(t) = 5t^4 - t^3 - 5t^2 + 2t - 9$$

Then what?

What does the derivative of a function tell us?

- Goal: Given a differentiable function f(t), find the input t^* that minimizes f(t).
- What does $\frac{d}{dt}f(t)$ mean?

Let's go hiking!

- Suppose you're at the top of a mountain and need to get to the bottom.
- Further, suppose it's really cloudy
 , meaning you can only see a few feet around you.
- **How** would you get to the bottom?

Searching for the minimum

Suppose we're given an initial guess for a value of t that minimizes f(t).

If the slope of the tangent line at f(t) is positive \mathbb{Z} :

- Increasing t increases f.
- This means the minimum must be to the **left** of the point (t, f(t)).
- Solution: Decrease $t \$ $\$

Searching for the minimum

Suppose we're given an initial guess for a value of t that minimizes f(t).

If the slope of the tangent line at f(t) is negative \square :

- Increasing t decreases f.
- This means the minimum must be to the **right** of the point (t, f(t)).
- Solution: Increase t \triangle .

Intuition

- To minimize f(t), start with an initial guess t_0 .
- Where do we go next?
 - \circ If $rac{df}{dt}(t_0)>0$, decrease t_0 .
 - \circ If $rac{df}{dt}(t_0) < 0$, increase t_0 .
- One way to accomplish this:

$$t_1=t_0-rac{df}{dt}(t_0)$$

Gradient descent

To minimize a **differentiable** function f:

- Pick a positive number, α . This number is called the **learning rate**, or **step size**.
- Pick an initial guess, t_0 .
- Then, repeatedly update your guess using the **update rule**:

$$t_{i+1} = t_i - lpha rac{df}{dt}(t_i)$$

- ullet Repeat this process until **convergence** that is, when t doesn't change much.
- This procedure is called **gradient descent**.

What is gradient descent?

- ullet Gradient descent is a numerical method for finding the input to a function f that minimizes the function.
- Why is it called gradient descent?
 - The gradient is the extension of the derivative to functions of multiple variables.
 - We will see how to use gradient descent with multivariate functions next class.
- What is a numerical method?
 - A numerical method is a technique for approximating the solution to a mathematical problem, often by using the computer.
- Gradient descent is **widely used** in machine learning, to train models from linear regression to neural networks and transformers (including ChatGPT)!

See this notebook for a demo!

Gradient descent and empirical risk minimization

- While gradient descent can minimize other kinds of differentiable functions, its most common use case is in minimizing empirical risk.
- For example, consider:
 - \circ The constant model, H(x) = h.
 - \circ The dataset -4, -2, 2, 4.
 - \circ The initial guess $h_0=4$ and the learning rate $lpha=rac{1}{4}.$
- Exercise: Find h_1 and h_2 .

Lingering questions

Now, we'll explore the following ideas:

- When is gradient descent *guaranteed* to converge to a global minimum?
 - What kinds of functions work well with gradient descent?
- How do I choose a step size?
- How do I use gradient descent to minimize functions of multiple variables, e.g.:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2.$$

When is gradient descent guaranteed to work?

Convex functions

Convexity

• A function f is **convex** if, for **every** a, b in the domain of f, the line segment between:

$$(a, f(a))$$
 and $(b, f(b))$

does not go below the plot of f.

A convex function

A non-convex function X

Formal definition of convexity

• A function $f:\mathbb{R} o \mathbb{R}$ is **convex** if, for every a,b in the domain of f, and for every $t \in [0,1]$:

$$\left| (1-t)f(a) + tf(b) \geq f((1-t)a + tb)
ight|$$

• This is a formal way of restating the definition from the previous slide.

Question 👺

Answer at q.dsc40a.com

Which of these functions are **not** convex?

- A. f(x) = |x|.
- B. $f(x) = e^x$.
- C. $f(x) = \sqrt{x-1}$.
- D. $f(x) = (x-3)^{24}$.
- E. More than one of the above are non-convex.

Second derivative test for convexity

• If f(t) is a function of a single variable and is **twice** differentiable, then f(t) is convex **if and only if**:

$$rac{d^2f}{dt^2}(t) \geq 0, \;\; orall \, t$$

• Example: $f(x) = x^4$ is convex.

Why does convexity matter?

- Convex functions are (relatively) easy to minimize with gradient descent.
- Theorem: If f(t) is convex and differentiable, then gradient descent converges to a global minimum of f, as long as the step size is small enough.

• Why?

- Gradient descent converges when the derivative is 0.
- For convex functions, the derivative is 0 only at one place the global minimum.
- \circ In other words, if f is convex, gradient descent won't get "stuck" and terminate in places that aren't global minimums (local minimums, saddle points, etc.).

Nonconvex functions and gradient descent

- We say a function is **nonconvex** if it does not meet the criteria for convexity.
- Nonconvex functions are (relatively) difficult to minimize.
- Gradient descent might still work, but it's not guaranteed to find a global minimum.
 - We saw this at the start of the lecture, when trying to minimize $f(t) = 5t^4 t^3 5t^2 + 2t 9$.

Choosing a step size in practice

- In practice, choosing a step size involves a lot of trial-and-error.
- In this class, we've only touched on "constant" step sizes, i.e. where α is a constant.

$$t_{i+1} = t_i - lpha rac{df}{dt}(t_i)$$

- Remember: α is the "step size", but the amount that our guess for t changes is $\alpha \frac{df}{dt}(t_i)$, not just α .
- In future courses, you'll learn about "decaying" step sizes, where the value of α decreases as the number of iterations increases.
 - Intuition: take much bigger steps at the start, and smaller steps as you progress, as you're likely getting closer to the minimum.