Homework 4

Exercise 1 Is it true that $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if it maps compact sets to compact sets?

No. Use the counterexample of the floor function, $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = \lfloor x \rfloor$ or f(x) is the least integer less than or equal to x. Let C be a compact set and let $C \subseteq [a;b]$. Then because [a;b] is bounded there will be a least and greatest element of f([a;b]) and f only outputs integers so we have f([a;b]) is a finite set of integers. Then $f(C) \subseteq f([a;b])$ and so f(C) is finite set of integers as well. So f(C) is compact because it's closed and bounded, but f is discontinuous because the left and right hand limits as x approaches some integer are different.

Exercise 2 Let the real function f be defined as follows.

$$f(x) \begin{cases} 0 & \text{if } x = 0 \text{ or } x \text{ is irrational} \\ \frac{1}{q} & \text{if } x \text{ is rational of reduced form } \frac{p}{q}. \end{cases}$$

Then f is not continuous at nonzero rational numbers but for all $a \in \mathbb{R}$ we have

$$\lim_{x \to a} f(x) = 0.$$

Proof. Note that $0 \le f(x) \le |x|$ for all $x \in \mathbb{R}$. Consider $a \le 0$ and for all $\varepsilon > 0$ let $\delta = \varepsilon$. Then if $0 < |a - x| < \delta$ we have $x \in (a - \delta; a + \delta)$ and so $f(x) \in (a - \delta; a + \delta) = (a - \varepsilon; a + \varepsilon)$. Thus $|a - f(x)| < \varepsilon$, but $a \le 0$ and so $|-(-a + f(x))| < \varepsilon$ which means $0 \le |f(x)| \le |-a + f(x)| < \varepsilon$. Now consider a > 0 and let $\delta = \varepsilon + a$. Then if $0 < |a - x| < \delta$ we have $f(x) \in (a - \delta; a + \delta) = (-\varepsilon; \varepsilon)$ and so $|f(x)| < \varepsilon$. Thus for all $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x \in \mathbb{R}$ when $0 < |a - x| < \delta$ we have $|f(x)| < \varepsilon$ and so $\lim_{x \to a} f(x) = 0$ for all $x \in \mathbb{R}$. But we know that for nonzero rationals, $f(x) \ne 0$ because of how f is defined and since a function is only continuous at a if $\lim_{x \to a} f(x) = f(a)$ we have f is discontinuous at all nonzero rationals.

Exercise 3 Let $a \in \mathbb{R}$ such that $0 \le a$. Show that there exists $x \in \mathbb{R}$ such that $x^2 = a$.

Proof. If a=0 then $0^2=a$ so we can assume that 0 < a. Let $f: \mathbb{R} \to \mathbb{R}$ where $f(x)=x^2$ be a function. Consider the function $g: \mathbb{R} \to \mathbb{R}$ where g(x)=x. Let $O \subseteq \mathbb{R}$ be an open set. Clearly $g^{-1}(O)$ is open and so g is continuous. But then $f=g \cdot g$ is continuous as well since the product of two continuous functions is continuous. Since 0 < a we have f(0) = 0 < a and $a < a^2 + 2a + 1 = f(a+1)$. But since f is continuous, by the Intermediate Value Theorem f takes on every value between 0 and $(a+1)^2$ on the interval [0; a+1] which means there exists some $x \in \mathbb{R}$ such that $x^2 = a$.

Exercise 4 Is there a continuous function $f: \mathbb{R} \to \mathbb{R}$ that takes on every real number exactly twice?

Proof. Suppose to the contrary that there exists such a function f. Then we have f(a) = f(b) = 0 for some $a, b \in \mathbb{R}$ such that $a \neq b$. Without loss of generality suppose that a < b. There exists $c \in [a; b]$ such that $f(c) \neq 0$. Suppose first that f(c) > 0. Then by the Intermediate Value Theorem f takes on every value between 0 and f(c) on [a; c] and on [c; b]. But then f takes on every value between 0 and f(c) exactly twice on [a; b]. We know there exists some $d \in \mathbb{R}$ such that f(d) = f(c) and $d \neq c$. Note that also $d \neq a$ and $d \neq b$. Consider the case where d < a. Then f takes on every value between 0 and f(d) = f(c) on [d; a]. But this is a contradiction because f has already taken on these values twice. A similar proof holds for d > b. If

 $d \in (a; b)$ and d < c then f takes on every value between 0 and f(d) on [a; d] but this is also a contradiction because f has already taken on these values twice. So for all $d \in \mathbb{R}$ we have f taking on values of \mathbb{R} more than two times. A similar proof holds for f(c) < 0. Since we have a contradiction, f cannot exist.

Exercise 5 Define $\lim_{x\to\infty} f(x) = l$ and $\lim_{x\to-\infty} f(x) = l$.

Let f be a real function. We say that f approaches l as x goes to infinity, or

$$\lim_{x \to \infty} f(x) = l$$

if for all $\varepsilon > 0$ there exists n > 0 such that if x > n then we have $|f(x) - l| < \varepsilon$. We say that f approaches l as x goes to negative infinity, or

$$\lim_{x \to -\infty} f(x) = l$$

if for all $\varepsilon > 0$ there exists n > 0 such that if x < n then we have $|f(x) - l| < \varepsilon$.

Exercise 6 We have

$$\lim_{x \to a} f(x) = \lim_{h \to 0} f(a+h).$$

Proof. Assume that $\lim_{x\to a} f(x) = l$. Then for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in \mathbb{R}$ when $0 < |a-x| < \delta$ we have $|f(x)-l| < \varepsilon$. Now let h=x-a. So then we have for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $a+h \in \mathbb{R}$ when $0 < |0-h| < \delta$ we have $|f(a+h)-l| < \varepsilon$. So we have $\lim_{h\to 0} f(a+h) = l = \lim_{x\to a} f(x)$.

Likewise, assume that $\lim_{h\to 0} f(a+h) = l$. Then for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $a+h \in \mathbb{R}$ when $0 < |-h| < \delta$ we have $|f(a+h) - l| < \varepsilon$. Now let x = a+h. So then we have for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in \mathbb{R}$ when $0 < |a-x| < \delta$ we have $|f(x) - l| < \varepsilon$. So we have $\lim_{x\to a} f(x) = l = \lim_{h\to 0} f(a+h)$.

We can rename x = h + a because the definition is still true for all $x \in \mathbb{R}$ if we do this.