taxize - taxonomic search and retrieval in R

Scott Chamberlain^{1,*} and Eduard Szöcs^{2,†}

 $^1 Biology\ Department,\ Simon\ Fraser\ University,\ Canada.$ $^2 Institute\ for\ Environmental\ Sciences,\ University\ Koblenz-Landau,\ Fortstr.\ 7,\ 76829\ Landau,\ Germany$

Keywords: taxonomy; R; software; data; API

* E-mail: myrmecocystus@gmail.com † E-mail: szoe8822@uni-landau.de

ABSTRACT

All species are hierarchically related to one another, and we use taxonomic names to label the nodes in this hierarchy. Taxonomic data is becoming easily available on the web, but scientists need a way to access taxonomic data on the web in a programmatic fashion that's easy and reproducible. We have developed taxize, an open-source software package (freely available from http://cran.r-project.org/web/packages/taxize/index.html) for the R language. taxize provides simple, programmatic access to taxonomic data for 13 data sources around the web. We discuss the need for a taxonomic toolbelt in R, and outline a suite of use cases for which taxize is ideally suited (including a full workflow as an appendix). The taxize package will facilitate open and reproducible science by allowing taxonomic data collection to be done in the open-source R platform. facilitates

INTRODUCTION TT.

Evolution by natural selection has led to a hierarchical relationship among all living organisms. Thus, species are categorized using a taxonomic hierarchy, starting with the binomial species name (e.g., Homo sapiens), moving up to genus (Homo), then family (Hominidae), and on up to Domain (Eukarya). Biologists, whether studying organisms at the cell, organismal, or community level, can put their study taxa into taxonomic context, allowing them to know close and distant relatives, find relevant literature, and more. Discovering the correct taxonomic names is, unfortunately, not straightforward. Taxonomic names often change due to name changes at the generic or specific levels, lumping or splitting lower taxa (genera, species) among higher taxa (families), and name spelling changes. In addition, there is no one authoritative taxonomic names source. Instead, there are essentially competing sources (e.g., uBio, Tropicos, replicable ITIS) that may have different accepted names for the same taxon. The goal of taxize, an R package in development, or define it a is to make all use cases having to do with retrieving and resolving taxonomic names easy and replicable. Taxonomic data is getting easier to obtain through web interfaces (e.g., [4]). However, there are a number of good er iney not the

reproducibl e? They are

reasons to obtain taxonomic information programatically rather than through a web interface. First, if you have more same. than a few names to lookup on a website, it can take quite a long time to enter each name, get data, and repeat for each species. Second, programatically getting taxonomic names solves the first problem by looping over a list of names. In addition, doing taxonomic searching, etc. is reproducible. With increasing reports of irreproducibility in science [19, 31], it is extremely important to make science workflows repeatable. Science workflows can now easily incorporate text, code, and images in a single executable document [30].

The R language is the dominant language used by biologists (reference), and now has over 5,000 packages on the R package repositor (CRAN) and more than 2,500 packages on other repositories to extend R. R is great for manipulating, visualizing and fitting statistical models to data. However, the key missing piece in R is the ability to get data from the internet within R. Getting data from the web will be increasingly common as more and more disagree. data gets moved to the cloud. Increasingly, data is available from the web via API's, or application programming Like interfaces. These are bits of code that allow computers to talk to one another using code that is not human readable, recently? but is magnine readable. Web APIs often define a number of methods that allow users to search for a species name, or always? retrieve the synonyms for a species name, for example. A further strength of APIs is that they are language agnostic, even now? meaning that data can be consumed in almost any computing context, allowing users to interact with the web API without having to know the details of the code. Whereas, if data are stored in an Excel file, for example, the file can only be opened in a few programs.

In taxize, we have written a suite of R functions that interact with many taxonomic data sources via their web APIs (Table I). The interface to each function is usually a simple list of species names, just as a user would do with a web API. Therefore, we hope moving from a web to R interface for taxonomic names will be relatively seamless (if one is already nominally familiar with R).

Here, we justify the need for taxize, discuss our data sources, and run through a suite of use cases to demonstrate the variety of way that users can interact with taxize. There is a logic jump here. The major

advantage of APIs is not that they get around proprietary formats. If I had the data as plain-text then are APIs useless? No, right?

maybe state this more generally here. e.g. We justify programmatic taxonomic resolution using packages III. WHY DO WE NEED TAXIZE? like taxize. There are a large suite of applications developed around the problem of searching for, resolving, and getting higher taxonomy for species names. For example, Linnaeus [10] provides the ability to search for taxonomic names in documents and normalize those names found. In addition, there are many web interfaces to search for and normalize names such as Encyclopedia of Life's Global Names Resolver [6], uBio tools [24], and iPlant's Taxonomic Name

First mention of web interfaces Would be good to bit early on so readers aren't lost.

You're essentially saying that repetitive tasks can be automated. Could be said more succinctly.

Dominant doesn't seem accurate. By what criteria? Even saying it's most widelv used is somewhat anecdotal

Resolution Service [23].

All of these tools provide great ways to search for taxonomic names and resolve them in some cases. However, scientists ideally need a tool that can be used programmatically, and thereby facilitate reproducible research. The goal of taxize is to make it easy to create reproducible and easy to use workflows for searching for taxonomic names, resolving them, getting higher taxonomic names, and other tasks related to research dealing with species.

One could argue that a different programming language would have been better than R. For example, Python performs many actions faster than R, and Ruby plays really nicely in a browser, facilitating web applications. However, our goal with taxize is to create a product for researchers primarily, and the most common programming language for researchers, at least in the life sciences, is R. Gentleman et al. [5] gives a detailed discussion of advantages of R in computational biology.

While I agree that R is more widely used than Ruby, this statement is again anecdotal.

Not sure why this statement is relevant here at all. Seems like you are pointing out a possible flaw even before anyone brought it up.

Language is really informal here. What does play nicely mean?

IV. DATA SOURCES

taxize uses many data sources (Table I), and more can easily be added. There are two common tasks provided by the data sources: name search and name resolution. Other functionality in taxize includes retrieving a classification tree for a species, or retrieving child taxa of a focal taxon. One of the data sources (Phylomat) returns phylogenies, while another (NCBI) returns genetic sequence data. However, there are other R packages that are focused solely on sequence data, such as rsnps [3], rentrez [29], BoSSA [9], and ape [14], so taxize will not venture deeply into these other domains. Another advantage of APIs is that a subset of keys can be revoked without disabling others. cannot do the same if folks were using usernames/passwords.

Some of the data sources taxize interacts with require authentication. That is, in addition to the search terms the user provides (e.g., Homo sapiens), the data provider requires an alphanumeric identification key so that they can better manage their servers, collect analytics, and shut down users that abuse the API. The services that do require an API key in taxize are: Encyclopedia of Life (EOL), the Universal Biological Indexer and Organizer (uBio), Tropicos, and Plantminer. You can easily obtain an API keys by visiting the website of each service (see (Table I) for links to each site). There are two ways of using your API keys. First, you can pass in your API key in a function call $(e.g., ubio_namebank(srchName='Ursus\ americanus', key='your_alphanumeric_key'))$. Second, you can store your API keys in your .Rprofile file. On a Mae this file is at /yourhomefolder/.Rprofile; on a Windows machine at /yourhomefolder/.Rprofile; and on Linux at /yourhomefolder/.Rprofile. This is an hidden file, so open up this file in your terminal .g., open .Rprofile), and add the API key as an entry like options(myapikey = 'your_alphanumeric_key'). We recommend the second option as it simplifies function calls.

One data source available in taxize is available in another R package that solely interact with that data source. We provide a few convenience functions that wrap functions in taxonstand, an R interface to The Plant List [22].

You could state this

sounds

absolute.

These are

the two

typical ways to

do it.

more generally. A .profile is a common place to store settings for most unix applications . Since this article is not a tutorial, no need to get into details of where it is stored.

TABLE I. Data sources used in taxize, tasks available, and links to them

Is it possible to avoid bitly (or shortened) links?

n						
	Source name	Name search	Name resolution	Phylogeny	Sequences	URL
	Encyclopedia of Life [4]	Yes	See GNR below	No	No	http://eol.org/
or	Integrated Taxonomic Information System [7]	Yes	Synonyms	No	No	http://www.itis.gov/
	iPlant Taxonomic Name Resolution Service [23]	Yes	Yes	No	No	http://bit.ly/16dHkBy
าร	Phylomatic [27]	No	No	Yes	No	http://bit.ly/P0pjMz
LS	uBio [24]	Yes	Yes	No	No	http://www.ubio.org/
	Global Names Resolver [6]	Yes	Yes	No	No	http://bit.ly/11R3Pbr
าด	Global Names Index [6]	Yes	No	No	No	http://bit.ly/11R3RQB
t	IUCN Red List [8]	Yes	No	No	No	http://bit.ly/11R3RQC
Ls	Tropicos [11]	Yes	Yes	No	No	http://www.tropicos.org/
t	Plantminer [2]	Yes	No	No	No	http://www.plantminer.com/
	The Plant List	Yes	Yes	No	No	http://www.theplantlist.org/
	Catalogue of Life [16]	Yes	Yes	No	No	http://bit.ly/11R3S75
	National Center for Biotechnology Information [12]	Yes	X	Yes ^a	Yes	http://www.ncbi.nlm.nih.gov/

^a Web only, no API, see http://l.usa.gov/11R446a

New data sources can be added; we may add the following sources: Wikispecies and The Tree of Life. A connection to freshwaterecology.info [17] (a database with autecological characteristics, ecological preferences and biological traits as well as distribution patterns of more than 12.000 European freshwater organisms belonging to fish, macroinvertebrates, macrophytes, diatoms and phytoplankton) will be finished when their new API will be released. Get in touch with one of the authors if you would like any data sources added.

V. USE CASES

There are a variety of use cases for which taxize is ideally suited, and a few side cases in which taxize can be useful. We discuss five ideal use cases for taxize at length, and highlight the side cases in brief.

```
and briefly highlight the smaller use cases.
```

First, install taxize

one

First, we must install taxize. There are two versions of taxize, a) a stable release that can be installed from the R package repository, CRAN, and b) from GitHub [20], where the code is developed.

```
Installing from CRAN or GitHub

## From CRAN
install.packages("taxize")

## From GitHub
install.packages("devtools")

require(devtools)
install_github("taxize_", "ropensci")
I wouldn't call them two versions (sounds confusing) especially since you are not getting into details on why someone should install one over the other.

Can you just say advanced users seeking the latest development copy can obtain one from GitHub. Just add the link but don't include the devtools instructions.

## From GitHub
install_packages("devtools")

require(devtools)

install_github("taxize_", "ropensci")
```

Loading taxize into your R session

library(taxize)

A. Resolve taxonomic names

Feels overgeneralized.

The pronouns are not consistent throught the article

This is a common task in biology. We often have a list of species names and we want to know if a) we have the most up to date names, b) our names are spelled correctly, and c) if we have common names, we likely need the scientific names. One way to resolve names is via the Global Names Resolver (GNR) service provided by the Encyclopedia of Life [6].

```
# Here, we are searching for two misspelled names
temp <- gnr_resolve(names = c("Helianthos annus", "Homo saapiens"), returndf = TRUE)
# Let's take a peek at the data, excluding the data source ID and score
# columns
temp[, -c(1, 4)]</pre>
```

It looks like the correct spellings are *Helianthus annuus* and *Homo sapiens*. Another approach uses the Taxonomic Name Resolution Service via the Taxosaurus API ([21]) developed by iPLant and the Phylotastic organization.

```
# A list of species names, some of which are misspelled
mynames <- c("Helianthus annuus", "Pinus contort", "Poa anua", "Abis magnifica",
    "Rosa california", "Festuca arundinace", "Sorbus occidentalos", "Madia sateva")
# And we'll call the API with the thrs function, and remove a few columns
tnrs(query = mynames)[, -c(5:7)]
        submittedName
                             acceptedName
                                             sourceId score
   Helianthus annuus
7
                        Helianthus annuus iPlant_TNRS
                                                       1.00
4
        Pinus contort
                           Pinus contorta iPlant_TNRS
                                                       0.98
5
                                Poa annua iPlant_TNRS
            Poa anua
                          Abies magnifica iPlant_TNRS
3
       Abis magnifica
                                                       0.96
8
      Rosa california
                         Rosa californica iPlant_TNRS
                                                       0.99
2 Festuca arundinace Festuca arundinacea iPlant_TNRS
                                                       0.99
1 Sorbus occidentalos Sorbus occidentalis iPlant_TNRS
                                                       0.99
        Madia sateva
                             Madia sativa iPlant_TNRS
```

It looks like there are a few corrections: e.g., *Madia sateva* should be *Madia sativa*, and *Rosa california* should be *Rosa californica*. Note that this search worked because fuzzy matching was employed to retrieve names that were close, but not exact matches. Fuzzy matching is only available for plants in the TNRS service, so we advise using EOL's Global Names Resolver if you need to resolve animal names.

taxize takes the approach that the user should be able to make decisions about what resource to trust, rather than taxize making the decision. Both the EOL GNR and the TNRS services provide data from a variety of data sources. The user may trust a specific data source, thus may want to use the names from that data source. In the future, we may provide the ability for taxize to suggest the best match from a variety of sources, but since R is relatively inefficient in memory management, etc., we would rather offload this sort of computationally intensive task.

B. Retrieve higher taxonomic names

Another task biologists often face is getting higher taxonomic names for a taxa list. Having the higher taxonomy allows you to put into context the relationships of your species list. For example, you may find out that species A and species B are in Family C, which may lead to some interesting insight, as opposed to not knowing that Species A and B are closely related. This also makes it easy to aggregate/standardize data to a specific taxonomic level (e.g., family level) or to match data to other databases with different taxonomic resolution (e.g., trait databases).

A number of data sources in taxize provide the capability to retrieve higher taxonomic names, but we will highlight two of the more useful ones: ITIS and NCBI. The principle in both is the same - first you need to get a numeric identifier for the queried species, then retrieve the higher taxonomy with this identifier. First, we'll explore the user of ITIS, by searching for two species, *Abies procera* and *Pinus contorta*.

```
specieslist <- c("Abies procera", "Pinus contorta")</pre>
classification(get_tsn(specieslist, "sciname"))
[[1]]
        parentName parentTsn
                                    rankName
                                                    taxonName
                                                                  tsn
1
                                     Kingdom
                                                      Plantae 202422
2
           Plantae
                       202422
                                  Subkingdom
                                               Viridaeplantae 846492
3
    Viridaeplantae
                       846492
                                Infrakingdom
                                                 Streptophyta 846494
4
      Streptophyta
                       846494
                                    Division
                                                 Tracheophyta 846496
5
      Tracheophyta
                       846496
                                 Subdivision Spermatophytina 846504
6
   Spermatophytina
                       846504 Infradivision
                                                 Gymnospermae 846506
7
      Gymnospermae
                       846506
                                       Class
                                                    Pinopsida 500009
8
         Pinopsida
                       500009
                                       Order
                                                      Pinales 500028
9
           Pinales
                       500028
                                      Family
                                                     Pinaceae 18030
10
          Pinaceae
                        18030
                                       Genus
                                                        Abies 18031
11
             Abies
                        18031
                                     Species
                                                Abies procera 181835
[[2]]
                                    rankName
                                                    taxonName
        parentName parentTsn
                                                                  tsn
1
                                                      Plantae 202422
                                     Kingdom
2
                                  Subkingdom
           Plantae
                       202422
                                               Viridaeplantae 846492
3
    Viridaeplantae
                       846492
                                Infrakingdom
                                                 Streptophyta 846494
4
      Streptophyta
                       846494
                                                 Tracheophyta 846496
                                    Division
5
      Tracheophyta
                                 Subdivision Spermatophytina 846504
                       846496
6
   Spermatophytina
                       846504 Infradivision
                                                 Gymnospermae 846506
7
      Gymnospermae
                                                    Pinopsida 500009
                       846506
                                       Class
8
         Pinopsida
                                                      Pinales 500028
                       500009
                                       Order
9
           Pinales
                       500028
                                      Family
                                                     Pinaceae
                                                              18030
10
          Pinaceae
                        18030
                                       Genus
                                                        Pinus 18035
11
             Pinus
                        18035
                                     Species
                                              Pinus contorta 183327
```

It turns out both species are in the family Pinaceae. You can also get this type of information from the NCBI by doing classification(get_uid(specieslist)).

Instead of a full classification, you may only want a single name, say a family name for your species of interest. The function tax_name is built just for this purpose. And you can specify the data source you retrieve the taxonomic name from with the db parameter.

```
# Using ITIS
tax_name(query = "Helianthus annuus", get = "family", db = "itis")

family
1 Asteraceae

# Using NCBI
tax_name(query = "Helianthus annuus", get = "family", db = "ncbi")

family
1 Asteraceae

Is there any discussion on why users must choose one source over another or how they
```

C. Interactive name selection

would go about doing it?

In the previous section we used the function *get_tsn* to get a classification for two plant species. Below are a few examples. When you run these examples in R, you are presented with a command prompt asking for the row that contains the name you would like back; that output is not printed below fro brevity.

```
# In this example, this search term has many matches. The function returns
# a data.frame of the matches, and asks for user input. Enter the row
# number of the name you want.
get_tsn(searchterm = "Elisabethae", searchtype = "sciname")
                           combinedname
1
                   Bittacus elisabethae 810495
2
             Caenaugochlora elisabethae 754498
3
                   Ceratina elisabethae 765455
4
             Dolicheremaeus elisabethae 740429
5
                   Euphione elisabethae 64893
6
                  Harmothoe elisabethae 573734
7
                   Hydraena elisabethae 815669
8
                     Lizzia elisabethae 48875
9
                    Melinna elisabethae 67765
10
              Myrmicocrypta elisabethae 580527
             Myzomela boiei elisabethae 713955
11
12
               Notosacantha elisabethae 838430
13
                 Odontomyia elisabethae 627043
14
               Parabelbella elisabethae 737749
15
                  Peltigera elisabethae 191230
16
            Polymorphanisus elisabethae 600292
17
          Pseudopterogorgia elisabethae 52264
18
                    Rhantus elisabethae 815107
19
                Scyllarides elisabethae 553004
20
         Sellnickochthonius elisabethae 735137
21
         Serilophus lunatus elisabethae 711636
22
                  Stenhelia elisabethae 87927
23
                Tetramorium elisabethae 582397
24
                  Theridion elisabethae 868794
25
               Trichoniscus elisabethae 597365
26 Trichoniscus elisabethae estoniensis 598124
1
NΑ
attr(,"class")
[1] "tsn"
```

D. Retrieve a phylogeny

Ecologists are increasingly taking a phylogenetic approach to ecology, applying phylogenies to topics such as the study of community structure [26], ecological networks [15], functional trait ecology [?]. Yet, Many biologists are not adequately trained in reconstructing phylogenies. Fortunately, there are some sources for getting a phylogeny without having to know how to build one; one of these is for angiosperms, called Phylomatic [27]. We have created a workflow in taxize that accepts a species list, and taxize works behind the scenes to get higher taxonomic names, which are required by Phylomatic to get a phylogeny. Here is a short example, producing the tree in figure 1:

FIG. 1. A Phylogeny for the three species.

Behind the scenes the function <code>phylomatic_tree</code> retrieves a Taxonomic Serial Number (TSN) from ITIS for each species name, then a string is created for each species like this <code>poaceae/oryza/oryza_sativa</code> (with format 'family/genus/genus_epithet'). These strings are submitted to the Phylomatic API, and if no errors occur, a phylogeny in newick format is returned. The <code>phylomatic_tree()</code> function also cleans up the newick string and converts it to an <code>ape phylo</code> object. The output from <code>phylomatic_tree()</code> is a <code>phylo</code> object, which can be used for plotting and phylogenetic analyses.

There are currently no resources for getting a phylogeny of animals simply from species names. However, a few projects are working on this problem, including the Open Tree of Life [13]. We will incorporate these resources when the appropriate APIs are available.

E. What taxa are the children of my taxon of interest?

If you aren't a taxonomic specialist on a particular taxon you likely don't know what children taxa are within a family, or within a genus. This task becomes especially unwieldy when there are a large number of taxa downstream. You can of course go to a website like Wikispecies ([28]) or Encyclopedia of Life ([4]) to get downstream names.

However, taxize provides an easy way to programatically search for downstream taxa, both for the Catalogue of Life (CoL; [16]) and the Integrated Taxonomic Information System ([7]). Here is a short example using the CoL in which we want to find all the species within the genus Apis (honey bees).

```
# Search for all species downstream from Apis
col_downstream(name = "Apis", downto = "Species")[[1]]
                   childtaxa_name childtaxa_rank
  childtaxa_id
1
       6971712 Apis andreniformis
                                          Species
2
       6971713
                      Apis cerana
                                          Species
3
       6971714
                     Apis dorsata
                                          Species
4
       6971715
                      Apis florea
                                          Species
5
                                          Species
       6971716 Apis koschevnikovi
6
                   Apis mellifera
                                          Species
       6845885
7
       6971717
                 Apis nigrocincta
                                          Species
```

The result from the above call to $col_downstream()$ is a data.frame that gives a number of columns of different information.

F. Matching species tables with different taxonomic resolution

Trait-based approaches are a promising tool in ecology. Unlike taxonomy-based methods, traits may not be constrained to biogeographic boundaries [1] and have potential to disentangle the effects of multiple stressors [18].

To analyse trait-composition abundance data must be matched with trait databases like Usseglio-Polatera *et al.* [25]. However these two data tables may contain species information on different taxonomic levels and perhabs data must be aggregated to a joint taxomic level.

taxize can help in this data-cleaning step, providing a reproducible workflow. This is illustrated on a small fictitious example in appendix B.

```
Can you call this something other than side? Just a thought.
```

VI. SIDE USE CASES

A. IUCN Status

There are a number of things we can do once we have the correct taxonomic names. One thing we can do is ask about the conservation status of a species. We have provided a set of functions, *iucn_summary* and *iucn_status*, to search for species names, and extract the status information, respectively. Here, we search for the Panther and Lynx.

It turns out that the panther has a status of endangered (EN) and the lynx has a status of least concern (LN).

B. Search for available genes in GenBank

Another use case available in taxize deals with genetic sequences. taxize has three functions to interact with GenBank to search for available genes (get_genes_avail), download genes by GenBank ID (get_genes), and download genes via taxonomic name search, including retrieving a congeneric if the searched taxon does not exist in the database (get_segs). In this example, we search for gene sequences for $Umbra\ limi$.

```
# Serch for available genes in GenBank.
out <- get_genes_avail(taxon_name = "Umbra limi", seqrange = "1:2000", getrelated = FALSE)</pre>
```

```
# Get a list of available genes, removing non-unique records.
# unique(out$genesavail)
# Does the string 'RAG1' exist in any of the gene names?
out[grep("RAG1", out$genesavail, ignore.case = T), ]
        spused length
413 Umbra limi
                  732
427 Umbra limi
                  959
434 Umbra limi
                 1631
                                                                              genesavail
413 isolate UlimA recombinase activating protein 1 (rag1) gene, exon 3 and partial cds
427
              recombination-activating protein 1 (RAG1) gene, intron 2 and partial cds
434
                           recombination-activating protein 1 (RAG1) gene, partial cds
   access_num
                     ids
      JX190826 394772608
413
427
      AY459526
               45479841
      AY380548 38858304
434
```

I assume these will get filled in soon.

It turns out that there are XX different unique records found. However, this doesn't mean that there are XX different genes found as the API does not provide metadata to classify genes. However, at the end of the example, we showed that you can use regular expressions via (e.g., via grep) to search for the gene of interest.

VII. CONCLUSION

again there are mixed pronouns here.

Taxonomic information is increasingly sought out by biologists as we take phylogenetic and taxonomic approaches to science. Taxonomic data is quickly becoming available on the web, yet scientists require programmatic access to integrat this data to ereate reproducible workflows. taxize was created to bridge this gap - to bring taxonomic data on the web into R, where the data can be easily manipulated, visualized, and analyzed in a reproducible workflow.

We have outlined a suite of use cases in taxize that will likely fit real use cases of many biologists. Of course we have not thought of all possible use cases, so we hope that the biology community can give us feedback on what use cases they want to see available in taxize. One thing we could change in the future is to make functions that fit use cases, and then allow users to select the data source as a parameter in the function. This could possibly make the user interface easier to understand. For feedback maybe incl. a GitHub issues link (in full).

taxize is currently under development and will be for some time given the large number of data sources kitted together in the package, and the fact that APIs for each data source can change, requiring changes in taxize code. Contributions to taxize are strongly encouraged, and can be easily done using GitHub here [20]. We hope taxize will be taking up by the community and developed collaboratively, making it progressively better through time as new use cases arise, bug reports squashed, and contributions merged.

VIII. ACKNOWLEDGEMENTS

The taxize package is part of the rOpenSci project http://ropensci.org/. We thank X, Y, and Z for comments on previous versions of this manuscript. SAC is supported by CANPOLIN of Canada, grant number XXXXXX. We thank all API maintainers for their work making their databases open to the public.

IX. APPENDICES

- Appendix A. A complete reproducible workflow, from a species list to a phylogeny, and a species distribution map.
- Appendix B. Matching species tables with different taxonomic resolution.

Taxonomic data is becoming more widelv available...

- Baird, D.J., Baker, C.J.O., Brua, R.B., Hajibabaei, M., McNicol, K., Pascoe, T.J. & de Zwart, D. (2011). Toward a knowledge infrastructure for traits-based ecological risk assessment. *Integrated Environmental Assessment and Management*, 7, 209215.
- [2] Carvalho, G.H., Cianciaruso, M.V. & Batalha, M.A. (2010). Plantminer: a web tool for checking and gathering plant species taxonomic information. *Environmental Modelling & Software*, 25, 815–816.
- [3] Chamberlain, S. & Ushey, K. (2013). rsnps: Interface to SNP data on the web. R package version 0.0.4.
- [4] Encylopedia of Life (2013). Available: http://eol.org/. Accessed May 27 2013.
- [5] Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y. & Zhang, J. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biology, 5, R80. PMID: 15461798.
- [6] Global Names Index (2013). Available: http://resolver.globalnames.org/. Accessed May 27 2013.
- [7] ITIS (2013). Integrated taxonomic information service. Available: http://www.itis.gov/. Accessed May 27 2013.
- [8] IUCN (2013). Iucn red list of threatened species. Available: http://www.iucnredlist.org. Accessed May 27 2013.
- [9] Lefeuvre, P. (2010). BoSSA: a Bunch of Structure and Sequence Analysis. R package version 1.2.
- [10] Linnaeus (2013). Available: http://linnaeus.sourceforge.net/. Accessed May 27 2013.
- [11] Missouri Botanical Garden (2013). Tropicos.org. Available: http://www.tropicos.org/. Accessed May 27 2013.
- [12] National Center for Biotechnology Information (2013). Taxonomy database. Available: http://www.ncbi.nlm.nih.gov/taxonomy. Accessed May 27 2013.
- [13] Open Tree of Life (2013). Available: http://blog.opentreeoflife.org/. Accessed May 27 2013.
- [14] Paradis, E., Claude, J. & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.
- [15] Rafferty, N.E. & Ives, A.R. (2013). Phylogenetic trait-based analyses of ecological networks. Ecology.
- [16] Roskov, Y., Kunze, T., Paglinawan, L., Orrell, T., Nicolson, D., Culham, A., Bailly, N., Kirk, P., Bourgoin, T., Baillargeon, G., Hernandez, F. & De Wever, A. (2013). Catalogue of Life. Available: http://www.catalogueoflife.org/. Accessed May 27 2013.
- [17] Schmidt-Kloiber, A. & Hering, D. (2013). www.freshwaterecology.info the taxa and autecology database for freshwater organisms, version 5.0. Available: www.freshwaterecology.info.
- [18] Statzner, B. & Bche, L. (2010). Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? *Freshwater Biology*, 55, 80119.
- [19] Stodden, V.C. (2010). Reproducible research: Addressing the need for data and code sharing in computational science. Computing in Science & Engineering, 12, 8–12.
- [20] taxize (2013). taxize on github. Available: https://github.com/ropensci/taxize_.
- [21] Taxosaurus (2013). The taxonomic thesaurus. Available: http://taxosaurus.org/. Accessed May 27 2013.
- [22] The Plant List (2013). A working list of all plant species. Available:http://www.theplantlist.org. Accessed May 27 2013.
- [23] TNRS (2013). Taxonomic name resolution service. Available: http://tnrs.iplantcollaborative.org/. Accessed May 27 2013.
- [24] uBio (2013). Universal biological indexer and organizer. Available: http://www.ubio.org/index.php?pagename=sample_tools. Accessed May 27 2013.
- [25] Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. (2000). Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology, 43, 175205.
- [26] Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, pp. 475–505.
- [27] Webb, C.O. & Donoghue, M.J. (2005). Phylomatic: tree assembly for applied phylogenetics. *Molecular Ecology Notes*, 5, 181–183.
- [28] Wikispecies (2013). Available: http://species.wikimedia.org/wiki/Main_Page. Accessed May 27 2013.
- [29] Winter, D. (2013). rentrez: Entrez in R. R package version 0.2.1.
- [30] Xie, Y. (2013). Dynamic Documents with R and knitr. Chapman and Hall/CRC.
- [31] Zimmer, C. (2012). A sharp rise in retractions prompts calls for reform. New York Times.