Марковские процессы

Случайный процесс называется марковским процессом (или процессом без последействия), если его поведение в будущем зависит только от фиксированного настоящего и не зависит от прошлого.

Пример. Пусть рассматриваются состояния погоды: {солнечно; пасмурно; дождь, шторм}, причем

$$P$$
(солнечно)=0.4, P (пасмурно)=0.3, P (дождь)=0.25, P (шторм)=0.05.

Если предположить, что погода завтрашнего дня зависит только от состояния погоды сегодня, то получим марковский процесс.

Определение. Последовательность дискретных случайных величин $\{X_n\},\ n=0,1,\dots$ образует цепь Маркова с начальными условиями $P(X_0=i)=\pi_i^{(0)},\ i=1,\dots,k\,,\ \sum_i \pi_i^{(0)}=1,$

если выполняется:

$$P(X_n = j \mid X_0 = i_0, X_1 = i_1, ..., X_{n-1} = i) = P(X_n = j \mid X_{n-1} = i) = p_{ijn}.$$

Вероятности p_{ijn} - называются вероятностями перехода системы из состояния i в состояние j в момент n.

Например, можно задать вероятности для некоторого дня n:

P(солнечно | вчера солнечно)=0.6, P(пасмурно | вчера солнечно)=0.25, P(дождь | вчера солнечно)=0.1, P(шторм | вчера солнечно)=0.05.

Определение. Цепь Маркова называется однородной, если вероятности перехода не зависят от времени:

$$\forall n, \ p_{ijn} = p_{ij}.$$

Пусть x_i соответствует i-му состоянию, тогда цепь Маркова можно представить в виде графа:

Очевидно, должно выполняться:

$$\sum_{j} p_{ij} = 1.$$

Матрица переходов:

$$\mathbf{P} = \begin{pmatrix} p_{11} & \dots & p_{1k} \\ \dots & \dots & \dots \\ p_{k1} & \dots & p_{kk} \end{pmatrix}, 0 \le p_{ij} \le 1.$$

1 задача: найти вероятности состояний цепи через *п* переходов, зная вероятности начальных состояний и матрицу переходов.

Пусть

$$\pi_{j}^{(n)} = P(X_{n} = j)$$

- вероятность j-го состояния после n переходов;

$$\pi^{(n)} = (\pi_1^{(n)}, ..., \pi_k^{(n)})$$

- вектор-строка вероятностей.

При n = 1 по формуле полной вероятности получим:

$$P(X_1 = j) = \sum_{i} P(X_0 = i) P(X_1 = j | X_0 = i)$$

ИЛИ

$$\pi_j^{(1)} = \sum_i \pi_i^{(0)} p_{ij} \implies \pi^{(1)} = \pi^{(0)} \mathbf{P}.$$

В общем случае

$$\pi_j^{(n)} = \sum_i \pi_i^{(n-1)} p_{ij} \implies$$

$$\pi^{(n)} = \pi^{(n-1)} \mathbf{P} = \pi^{(n-2)} \mathbf{P} \cdot \mathbf{P} = \dots = \pi^{(0)} \mathbf{P}^n.$$

Обозначим через $p_{ij}(n)$ вероятность перейти из начального состояния i в состояние j после n переходов.

Из
$$\pi^{(n)} = \pi^{(0)} \mathbf{P}^n \Longrightarrow$$

числа $p_{ij}(n)$ являются элементами \mathbf{P}^n .

Пример. Дан граф состояний:

1/4

Пусть $\pi^{(0)} = (1,0,0)$, тогда

$$\pi^{(1)} = (1,0,0) \cdot \begin{pmatrix} 0 & 0.75 & 0.25 \\ 0.25 & 0 & 0.75 \\ 0.25 & 0.25 & 0.5 \end{pmatrix} = (0,0.75,0.25),$$

$$\pi^{(2)} = (0, 0.75, 0.25) \cdot \begin{pmatrix} 0 & 0.75 & 0.25 \\ 0.25 & 0 & 0.75 \\ 0.25 & 0.25 & 0.5 \end{pmatrix} = (0.25, 0.0625, 0.6875).$$

Можно проверить, что
$$\mathbf{P}^2 = \begin{pmatrix} 0.25 & 0.0625 & 0.6875 \\ 0.1875 & 0.375 & 0.4375 \\ 0.1875 & 0.3125 & 0.5 \end{pmatrix}$$
.

2 задача: изучить предельное поведение цепи при увеличении числа переходов.

Если существуют пределы

$$\pi_{j} = \lim_{n \to \infty} \pi_{j}^{(n)}, j = 1, ..., k,$$

то соответствующее состояние системы назовем стационарным.

Теорема (эргодическая). Если при некотором n_0 все элементы матрицы \mathbf{P}^{n_0} положительны, то существуют такие постоянные числа π_j , j=1,...,k, что независимо от индекса i имеют место равенства

$$\lim_{n\to\infty} p_{ij}(n) = \pi_j, \quad \sum_j \pi_j = 1,$$

причем эти числа являются единственным решением системы уравнений

$$\sum_{i} \pi_{i} \cdot p_{ij} = \pi_{j}, \ j = 1, ..., k.$$

Замечание1. Из теоремы следует, что

$$\pi_j^{(n)} = \sum_i \pi_i^{(0)} p_{ij}(n) \xrightarrow[n \to \infty]{} \sum_i \pi_i^{(0)} \pi_j = \pi_j \cdot \sum_i \pi_i^{(0)} = \pi_j,$$

значит вектор $(\pi_1,...,\pi_k)$ определяет стационарное распределение цепи.

Замечание 2. Если положить $\pi_j^{(0)} = \pi_j, \ j = 1,...,k$, то выполняется:

$$\pi_{j}^{(1)} = \sum_{i} \pi_{i} p_{ij} = \pi_{j} , \ \pi_{j}^{(2)} = \sum_{i} \pi_{i}^{(1)} p_{ij} = \sum_{i} \pi_{i} p_{ij} = \pi_{j}$$

и т.д., то есть цепь постоянно находится в стационарном состоянии.

Пример (продолжение).

$$\mathbf{P} = \begin{pmatrix} 0 & 0.75 & 0.25 \\ 0.25 & 0 & 0.75 \\ 0.25 & 0.25 & 0.5 \end{pmatrix}, \quad \mathbf{P}^2 = \begin{pmatrix} 0.25 & 0.0625 & 0.6875 \\ 0.1875 & 0.375 & 0.4375 \\ 0.1875 & 0.3125 & 0.5 \end{pmatrix}$$

Так как элементы \mathbf{P}^2 положительны, то можем применять эргодическую теорему. Для нахождения стационарных вероятностей нужно решить систему:

$$\begin{cases} \pi_1 = 0 \cdot \pi_1 + 0.25 \cdot \pi_2 + 0.25 \cdot (1 - \pi_1 - \pi_2), \\ \pi_2 = 0.75 \cdot \pi_1 + 0 \cdot \pi_2 + 0.25 \cdot (1 - \pi_1 - \pi_2) \end{cases}$$

Решение: $\vec{\pi} = (0,2; 0,28; 0,52)$.

Для иллюстрации скорости сходимости рассмотрим разные начальные состояния. Для $\pi^{(0)} = (1,0,0)$ получим

n	0	1	2	3	4	• • •	∞
			0,250				
$\pi_2^{(n)}$	0	0,75	0,062	0,359	0,254	• • •	0,28
$\pi_3^{(n)}$	0	0,25	0,688	0,454	0,543	• • •	0,52

для $\pi^{(0)} = (0,1,0)$:

			2				
$oldsymbol{\pi_1^{(n)}}$	0	0	0,187	0,203	0,199	• • •	0,2
2			0,375				
$\pi_3^{(n)}$	0	0,25	0,438	0,547	0,512	• • •	0,52