Online Appendix to Simulating Collusion:

Challenging Conventional Estimation Methods

Nicole Bellert 1,2* and Andrea Günster 3*

¹Institute for Wealth & Asset Management, Zurich University of Applied Sciences (ZHAW), Gertrudstrasse 8, Winterthur, 8401, Zurich, Switzerland.

²Department of Informatics, University of Zurich, Binzmühlestrasse 14, Zurich, 8050, Zurich, Switzerland.

³Institute of Business Information Technology, Zurich University of Applied Sciences (ZHAW), Theaterstrasse 17, Winterthur, 8400, Zurich, Switzerland.

*Corresponding author(s). E-mail(s): bell@zhaw.ch; gues@zhaw.ch;

This online appendix contains additional result tables for all estimated models.

Appendix A Linear Models Results

Table A1 Hazard Rate on Cartel Duration for Model I, II and III

		Cartel	Death	
	HRSample	HRUndetect	HRCartels	HRHeck
Number of Firms n_f	0.12***	0.60***	0.37***	-0.01***
J	(0.002)	(0.002)	(0.001)	(0.002)
Fines γ (% of Profit)	-0.10***	-0.05**	-0.05***	-0.11***
	(0.02)	(0.02)	(0.01)	(0.02)
Leniency (% of Fine) θ	-0.05***	-1.26***	-0.57***	0.02***
,	(0.004)	(0.01)	(0.003)	(0.004)
Detection Probability σ	3.34***	4.32***	4.02***	3.02***
	(0.02)	(0.02)	(0.01)	(0.02)
Structured	0.36***	0.35***	0.42***	0.34***
	(0.003)	(0.004)	(0.002)	(0.003)
Model II	-0.48***	-0.34***	-0.37***	-0.58***
	(0.01)	(0.01)	(0.01)	(0.01)
Model III	0.22***	0.87***	0.51***	0.09***
	(0.02)	(0.02)	(0.01)	(0.02)
Start	0.001***	0.001***	0.001***	0.001***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
Times Caught	0.01***	-0.34***	-0.05***	0.04***
	(0.001)	(0.003)	(0.001)	(0.001)
Repeat Offender	-0.03***	-0.26***	-0.38***	0.29***
	(0.004)	(0.01)	(0.003)	(0.01)
IMR				0.56***
				(0.01)
Observations	475'456	465'402	940'858	475'456
Log Likelihood	-2'806'284.00	-1'445'284.00	-4'442'193.00	-2'804'065.00

Note: This table shows the estimation results of Weibull Hazard Model to explain cartel death at the industry level, for data simulated for all Models I, II, and III. The estimated coefficients show the change of risk for cartel breakdown, if the covariate increases by 1 unit, keeping all others fixed. Columns 2 - 5 use HR estimation on the sample of detected cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. All estimators are significant.

Standard errors are in parentheses. Significance at the 1%, 5%, and 10% level is indicated by ***, **, and *, respectively.

Table A2 Linear Regression on Cartel Duration for Model I, II and III

		Ln(Durat	cion+1)	
	mlrSample	mlrUndetect	mlrCartels	mlrHeck
Number of Firms n_f	-0.16***	-0.60***	-0.50***	-0.0003
J	(0.002)	(0.002)	(0.001)	(0.003)
Fines γ (% of Profit)	0.06***	0.03	0.03	0.07***
	(0.02)	(0.03)	(0.02)	(0.02)
Leniency (% of Fine) θ	0.09***	1.58***	0.84***	0.003
	(0.004)	(0.01)	(0.004)	(0.005)
Detection Probability σ	-3.66***	-4.31***	-4.67***	-3.24***
	(0.02)	(0.03)	(0.02)	(0.02)
Structured	-0.40***	-0.52***	-0.56***	-0.36***
	(0.004)	(0.005)	(0.003)	(0.004)
Model II	0.53***	0.28***	0.23***	0.67***
	(0.01)	(0.01)	(0.01)	(0.01)
Model III	-0.24***	-0.82***	-0.63***	-0.07***
	(0.02)	(0.02)	(0.02)	(0.02)
Start	-0.001***	-0.001***	-0.002***	-0.0002**
	(0.0000)	(0.0000)	(0.0000)	(0.0000)
Times Caught	-0.002**	-0.01***	0.05***	-0.05***
	(0.001)	(0.002)	(0.001)	(0.001)
Repeat Offender	0.04***	1.26***	0.82***	-0.37***
	(0.01)	(0.01)	(0.005)	(0.01)
IMR				-0.71***
				(0.01)
Constant	6.38***	6.98***	7.08***	6.06***
	(0.01)	(0.02)	(0.01)	(0.01)
Observations	475'456	465'402	940'858	475'456
R ²	0.14	0.43	0.42	0.15
Adjusted R ²	0.14	0.43	0.42	0.15

Note: This table shows the estimation results of linear cross-sectional regressions to explain cartel duration (ln(duration+1)) at the industry level, for data simulated for all Models I, II, and III. Columns 2 - 5 estimate linear regression coefficients on the sample of detected cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. Except of fines (γ) , all coefficients are significant.

Standard errors are in parentheses. Significance at the 1%, 5%, and 10% level is indicated by ***, **, and *, respectively.

Table A3 Sample Selection Bias Linear Regression - Model I

Coefficients	β^s	β^l	α_{IMR}	$bias_{IMR}$
Number of Firms n_f	-0.12	-0.02	0.15	-0.10
Start	0	0	0	0
Detection Probability σ	-2.93	-3.11	-0.27	0.18
Times Caught	0.04	-0.03	-0.10	0.07
Repeat Offender	0.21	-0.18	-0.57	0.39
IMR		-0.68		
Constant	5.79	5.87	0.11	-0.07

This table shows, for the Linear Regression of Model I, the sample selection bias that we correct with the IMR following (Heckman (1979)). β^s is the estimated coefficients in the short model without IMR. β^l is the estimated coefficients in the corrected long model including IMR. α_{IMR} is the coefficient in the auxiliary regression between each variable and IMR. The last column shows the sample selection bias: $bias_{IMR} = \beta^l(IMR) * \alpha_{IMR}$.

 ${\bf Table~A4~~Sample~Selection~Bias~Linear~Regression~-~Model~II}$

Coefficients	β^s	β^l	α_{IMR}	$bias_{IMR}$
Number of Firms n_f	-0.16	-0.09	0.14	-0.07
Start	0	0	0	0
Detection Probability σ	-1.43	-1.67	-0.46	0.25
Times Caught	0.07	-0.17	-0.44	0.24
Repeat Offender	0.27	0.18	-0.16	0.09
IMR		-0.54		
Constant	6.26	6.56	0.56	-0.30

This table shows, for the Linear Regression of Model II, the sample selection bias that we correct with the IMR following (Heckman (1979)). β^s is the estimated coefficients in the short model without IMR. β^l is the estimated coefficients in the corrected long model including IMR. α_{IMR} is the coefficient in the auxiliary regression between each variable and IMR. The last column shows the sample selection bias: $bias_{IMR} = \beta^l(IMR) * \alpha_{IMR}$.

 ${\bf Table~A5}~{\rm Sample~Selection~Bias~Linear~Regression~-~Model~III}$

Coefficients	β^s	β^l	α_{IMR}	$bias_{IMR}$
Number of Firms n_f	-0.18	-0.01	0.25	-0.17
Fines γ (% of Profit)	0.06	0.07	0.01	-0.01
Leniency (% of Fine) θ	0.10	0.01	-0.13	0.09
Start	0	0	0	0
Structured	-0.40	-0.36	0.06	-0.04
Detection Probability σ	-3.85	-3.31	0.79	-0.54
Times Caught	-0.01	-0.05	-0.06	0.04
Repeat Offender	0.01	-0.37	-0.56	0.38
IMR		-0.68		
Constant	6.25	6.02	-0.33	0.23

This table shows, for the Linear Regression of Model II, the sample selection bias that we correct with the IMR following (Heckman (1979)). β^s is the estimated coefficients in the short model without IMR. β^l is the estimated coefficients in the corrected long model including IMR. α_{IMR} is the coefficient in the auxiliary regression between each variable and IMR. The last column shows the sample selection bias: $bias_{IMR} = \beta^l(IMR) * \alpha_{IMR}$.

Table A6 Linear Regression and HR for Cartel Duration on Model I - ICC on Stigler - Detection independent of Collusion

	mlrSample	$\operatorname{Ln}(\operatorname{Duration} + 1)$ $\operatorname{mlrUndetect}$ mlrC	tion+1) mlrCartels	$\operatorname{mlrHeck}$	HRSample	Cartel Death HRUndetect HR	Death HRCartels	HRHeck
N Firms n_f	-0.12***	-0.57***	-0.39***	-0.02***	0.09***	0.79***	0.30***	0.01*
7	(0.005)	(0.01)	(0.004)	(0.01)	(0.004)	(0.01)	(0.003)	(0.01)
Start	-0.001***	-0.001***	-0.002***	-0.0002***	0.001***	0.001***	0.001***	0.001***
	(0.000)	(0.0000)	(0.0000)	(0.0001)	(0.0000)	(0.0000)	(0.0000)	(0.0001)
Detection Prob. σ	-2.93***	-1.60***	-2.61^{***}	-3.11***	2.78***	1.42***	2.73***	2.94***
	(0.08)	(0.08)	(0.00)	(0.08)	(0.07)	(0.06)	(0.02)	(0.07)
Times Caught	0.04***	-0.01	0.13***	-0.03***	-0.03***	-0.56***	-0.13***	0.02***
	(0.004)	(0.01)	(0.003)	(0.01)	(0.004)	(0.02)	(0.003)	(0.005)
Repeat Offender	0.21	2.06***	1.20***	-0.18***	-0.22***	-0.19***	-0.59***	0.08***
	(0.02)	(0.03)	(0.02)	(0.03)	(0.02)	(0.05)	(0.01)	(0.02)
IMR				-0.68				0.53***
				(0.03)				(0.03)
Constant	5.79***	6.13***	5.81***	5.87**				
	(0.03)	(0.05)	(0.03)	(0.03)				
Observations	36'615	41,207	7,822	36'615	36'615	41,207	7,822	36'615
\mathbb{R}^2	0.10	0.47	0.50	0.11				
Adjusted \mathbb{R}^2	0.10	0.47	0.50	0.11				
Log Likelihood					$-218^{\circ}572.00$	-114'465.60	-350'666.30	-218'383.30

Note: This table shows the estimation results of linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the estimation results of a Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Model I. Columns 2 - 5 estimate linear regression coefficients, while columns 6 - 9 estimate HR coefficients, both on the sample of detected cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed. Standard errors are in parentheses. Significance at the 1%, 5%, and 10% level is indicated by ***, **, and *, respectively.

Table A7 Linear Regression and HR for Cartel Duration on Model II - ICC on Stigler - Detection depends on number of Firms

		Ln(Durati	ion+1)			Cartel Death	Death	
	mlrSample	mlrUndetect mlrC	mlrCartels	mlrHeck	HRSample	HRUndetect	HRCartels	HRHeck
N Firms n_f	-0.16**	***26.0-	-0.72***	***60.0	0.11***	***96.0	0.56***	***20.0
Start	(0.01) -0.002^{***}	$(0.01) \\ -0.002^{***}$	(0.01) -0.002^{***}	(0.01) -0.001^{***}	$(0.01) \\ 0.002^{***}$	$(0.01) \\ 0.001^{***}$	$(0.01) \\ 0.001^{***}$	$(0.01) \\ 0.002^{***}$
Detection Prob. σ	(0.0001) $-1.43***$	(0.0000) $-0.86***$	(0.0000) $-1.17***$	(0.0001) $-1.67***$	(0.0001)	(0.0000)	(0.0000) $1.12***$	(0.0001) $1.35***$
	(0.14)	(0.09)	(0.08)	(0.14)	(0.12)	(0.06)	(0.06)	(0.12)
Times Caught	0.07	0.75	0.68***	-0.17***	-0.04***	-1.52***	-0.49***	0.10***
	(0.02)	(0.02)	(0.01)	(0.03)	(0.02)	(0.03)	(0.01)	(0.03)
Repeat Offender	0.27***	-0.54***	-0.31^{***}	0.18***	-0.28***	1.26	0.34***	-0.21***
	(0.04)	(0.06)	(0.03)	(0.04)	(0.03)	(0.08)	(0.03)	(0.03)
IMR				-0.54***				0.33***
Constant	6.26***	**	***09.2	(0.06) $6.56***$				(0.05)
	(0.05)	(0.05)	(0.04)	(0.06)				
Observations	11,733	41,445	53,178	11,733	11,733	41,445	53,178	11,733
\mathbb{R}^2	0.17	0.51	0.56	0.17				
Adjusted \mathbb{R}^2	0.16	0.51	0.56	0.17				
Log Likelihood					-77'014.56	-120'764.40	-209'666.50	-76'995.30

of a Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Model II. Columns 2 - 5 estimate linear regression coefficients, while columns 6 - 9 estimate HR coefficients, both on the sample of detected cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, Note: This table shows the estimation results of linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the estimation results keeping all others fixed.

Standard errors are in parentheses. Significance at the 1%, 5%, and 10% level is indicated by ***, **, and *, respectively.

 Table A8
 Linear Regression and HR for Cartel Duration on Model III - ICC on Harrington et al.

	mlrSample	Ln(Duration+1 mlrUndetect mlrC	$ ext{tion}+1)$ $ ext{mlrCartels}$	$\operatorname{mlrHeck}$	HRSample	Cartel HRUndetect	Cartel Death tect HRCartels	m HRHeck
N Firms n_f	-0.18***	-0.56***	-0.49***	-0.01**	0.13***	0.58***	0.37***	-0.001
Fines γ (% of Profit)	0.06***	0.02	0.02	0.07	-0.10***	-0.05	-0.05***	-0.11^{***}
	(0.02)	(0.03)	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)	(0.02)
Leniency (% Fine) θ	0.10***	1.59***	0.87***	0.01	-0.05**	-1.28***	-0.59^{***}	0.02***
Start	(0.004) -0.001^{***}	(0.01) -0.001^{***}	(0.004) -0.002^{***}	(0.005) -0.0002^{***}	$(0.004) \\ 0.001^{***}$	$(0.01) \\ 0.001^{***}$	$(0.003) \\ 0.001^{***}$	$(0.004) \\ 0.001^{***}$
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
Structured	-0.40^{***} (0.004)	-0.52^{***} (0.005)	-0.56*** (0.003)	-0.36^{***} (0.004)	(0.003)	0.38*** (0.004)	0.44^{***} (0.002)	0.34^{***} (0.003)
Detection Prob. σ	-3.85**	-4.83***	-5.16***	-3.31***	3.51***	5.02***	4.43***	3.10***
	(0.02)	(0.03)	(0.02)	(0.03)	(0.02)	(0.02)	(0.02)	(0.02)
Times Caught	-0.01^{***}	-0.004**	0.04***	-0.05***	0.01	-0.31^{***}	-0.05***	0.04***
	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)	(0.003)	(0.001)	(0.001)
Repeat Offender	0.01**	1.16***	0.76***	-0.37***	-0.01	-0.26***	-0.35***	0.29***
	(0.01)	(0.01)	(0.005)	(0.01)	(0.005)	(0.01)	(0.004)	(0.01)
$_{ m IMR}$				-0.68*** (0.01)				0.54^{***} (0.01)
Constant	6.25***	6.04***	6.53***	6.02***				
	(0.02)	(0.03)	(0.02)	(0.02)				
Observations	427,108	382,750	809,828	427,108	427,108	382,750	809'858	427'108
$ m R^2$	0.14	0.43	0.41	0.14				
Adjusted R ²	0.14	0.43	0.41	0.14				
Log Likelihood					-2'509'783.00	-1'200'409.00	-3'867'860.00	-2'507'956.00

Note: This table shows the estimation results of linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the estimation results of a Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Models IIIa and IIIb. Columns 2 - 5 estimate linear regression coefficients, while columns 6 - 9 estimate HR coefficients, both on the sample of detected cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed. Standard errors are in parentheses. Significance at the 1%, 5%, and 10% level is indicated by ***, **, and *, respectively.

Appendix B Lasso Results

 ${\bf Table~B9~~Sample~Selection~Bias~Lasso~Regression~-~Models~I}$

Coefficients	β^s	β^l	α_{IMR}	$bias_{IMR}$
Number of Firms n_f	0.26	0.16	-0.22	0.11
n_f^3	-0.01	0	0.01	0
Detection Probability σ	-4.01	-4.25	-0.50	0.24
σ^3	3.93	5.97	4.30	-2.04
$n_f \sigma$	0.12	0.04	-0.17	0.08
Start	0	0	0	0
Times Caught	0.02	-0.02	-0.09	0.04
Repeat Offender	0.18	-0.05	-0.48	0.23
IMR		-0.47		
Constant	5.09	5.54	0.95	-0.45

This table shows, for the Lasso CV Linear Regression of Model I, the sample selection bias that we correct with the IMR following (Heckman (1979)). β^s is the estimated coefficients in the short model without IMR. β^l is the estimated coefficients in the corrected long model including IMR. α_{IMR} is the coefficient in the auxiliary regression between each variable and IMR. The last column shows the sample selection bias: $bias_{IMR} = \beta^l(IMR) * \alpha_{IMR}$.

Appendix C Additional Result Tables

 ${\bf Table~B10~~Sample~Selection~Bias~Lasso~Regression-Models~II}$

Coefficients	β^s	β^l	α_{IMR}	$bias_{IMR}$
Number of Firms n_f	0.33	0.27	-0.20	0.05
n_f^3	-0.01	-0.01	0.01	0
Detection Probability σ	-2.34	-2.64	-1.09	0.30
σ^3	3.19	4.81	5.96	-1.62
$n_f \sigma$	0.11	0.08	-0.13	0.04
Start	0	0	0	0
Times Caught	0.04	-0.08	-0.42	0.11
Repeat Offender	0.21	0.17	-0.15	0.04
IMR		-0.27		
Constant	5.32	5.71	1.44	-0.39

This table shows, for the Lasso CV Linear Regression of Model II, the sample selection bias that we correct with the IMR following (Heckman (1979)). β^s is the estimated coefficients in the short model without IMR. β^l is the estimated coefficients in the corrected long model including IMR. α_{IMR} is the coefficient in the auxiliary regression between each variable and IMR. The last column shows the sample selection bias: $bias_{IMR} = \beta^l(IMR) * \alpha_{IMR}$.

 ${\bf Table~B11~~Sample~Selection~Bias~Lasso~Regression~-~Models~III}$

Coefficients	β^s	β^l	α_{IMR}	$bias_{IMR}$
Number of Firms n_f	0.40	0.19	-0.46	0.21
n_f^3	-0.01	-0.01	0.01	-0.01
Detection Probability σ	-5.44	-9.09	-8.03	3.65
σ^2	11.03	22.02	24.20	-10.99
σ^3	-6.74	-20.94	-31.27	14.20
$n_f \sigma$	-0.83	-0.36	1.02	-0.46
$n_f \sigma \gamma^3$	0.03	0.03	0.01	0
Leniency (% of Fine) θ	-0.22	-0.14	0.17	-0.08
$n_f \theta$	0.11	0.06	-0.11	0.05
Structured	-0.39	-0.37	0.04	-0.02
Start	0	0	0	0
Times Caught	-0.01	-0.04	-0.07	0.03
Repeat Offender	-0.04	-0.26	-0.48	0.22
IMR		-0.45		
Constant	5.41	6.18	1.68	-0.76

This table shows, for the Lasso CV Linear Regression of Model III, the sample selection bias that we correct with the IMR following (Heckman (1979)). β^s is the estimated coefficients in the short model without IMR. β^l is the estimated coefficients in the corrected long model including IMR. α_{IMR} is the coefficient in the auxiliary regression between each variable and IMR. The last column shows the sample selection bias: $bias_{IMR} = \beta^l(IMR) * \alpha_{IMR}$.

 ${\bf Table~B12~}$ Sample Selection Bias Lasso Regression - Models I, II and III

Coefficients	β^s	β^l	α_{IMR}	$bias_{IMR}$
Number of Firms n_f	0.16	0.02	-0.23	0.14
n_f^3	-0.01	0	0.01	-0.01
Detection Probability σ	-8.44	-11.34	-4.81	2.90
σ^2	14.02	26.38	20.47	-12.36
σ^3	-8.44	-25.83	-28.81	17.40
$n_f \sigma$	-0.07	0.09	0.28	-0.17
Fines γ (% of Profit)	1.77	1.66	-0.17	0.10
γ^3	-1.43	-1.34	0.14	-0.09
Leniency (% of Fine) θ	0.03	-0.05	-0.14	0.08
$n_f heta$	0.02	0.02	0	0
Structured	-0.37	-0.36	0.02	-0.01
Model II	0.54	0.65	0.18	-0.11
Model III	-0.67	-0.44	0.37	-0.23
Start	0	0	0	0
Times Caught	0	-0.04	-0.07	0.04
Repeat Offender	0.02	-0.30	-0.53	0.32
IMR		-0.60		
Constant	6.25	6.75	0.82	-0.49

This table shows, for the Lasso CV Linear Regression of the combined Models I, II, and III, the sample selection bias that we correct with the IMR following (Heckman (1979)). β^s is the estimated coefficients in the short model without IMR. β^l is the estimated coefficients in the corrected long model including IMR. α_{IMR} is the coefficient in the auxiliary regression between each variable and IMR. The last column shows the sample selection bias: $bias_{IMR} = \beta^l(IMR) * \alpha_{IMR}$.

Table B13 Lasso CV Regression and HR for Cartel Duration on Model I - ICC on Stigler - Detection independent of Collusion

	elameSee, I	$\frac{\operatorname{Ln}(\operatorname{Duration} + 1)}{\operatorname{LasIIndeter}}$	tion+1)	Joe Hae I	HRI.acSamula	Cartel Death	Death HRLasCartels	HRIseHeck
	agumaaan	Topo II do no	TOO COT	TOSTICON	ordinaceanin			TICTOR
Start	-0.001***	-0.001***	-0.002***	-0.0004***	0.001***	0.001***	0.001	0.001***
	(0.0000)	(0.0000)	(0.0000)	(0.0001)	(0.0000)	(0.0000)	(0.0000)	(0.0001)
N Firms n_f	-1.37***	4.87***	2.50***	0.16***	1.04**	12.61 ***	-1.49***	-0.14***
	(0.14)	(0.17)	(0.00)	(0.02)	(0.12)	(1.42)	(0.07)	(0.02)
n_f^2	0.43***	-1.29***	-0.64^{***}		-0.33^{***}	-1.56***	0.38	
	(0.04)	(0.04)	(0.02)		(0.03)	(0.25)	(0.02)	
n_f^3	-0.04***	***60.0	0.04**	-0.005***	0.03***	0.07***	-0.02***	0.004***
•	(0.003)	(0.003)	(0.002)	(0.0004)	(0.002)	(0.01)	(0.001)	(0.0004)
Detection Prob. σ	-5.04**	-17.14***	-12.64***	-4.25***	4.97**	18.48***	12.14***	3.72***
	(2.38)	(2.25)	(1.71)	(0.36)	(2.05)	(2.12)	(1.38)	(0.31)
σ^2	4.74	26.19**	13.83*		-6.61	-15.51*	-15.50**	
	(10.82)	(10.53)	(7.93)		(9.34)	(9.02)	(6.41)	
σ^3	-2.64	-34.76**	-17.19	5.97	5.93	22.24*	18.06*	-4.94***
	(15.46)	(15.51)	(11.53)	(1.49)	(13.35)	(13.29)	(9.30)	(1.29)
$n_f \sigma$	0.12**	1.69***	1.39***	0.04	-0.06	-2.31***	-1.12***	0.005
•	(0.06)	(0.07)	(0.04)	(0.06)	(0.05)	(0.16)	(0.03)	(0.05)
Times Caught	0.02***	0.03	0.12^{***}	-0.02***	-0.02***	-0.49***	-0.12***	0.01
	(0.004)	(0.01)	(0.003)	(0.01)	(0.004)	(0.02)	(0.003)	(0.004)
Repeat Offender	0.17***	1.75	0.99	-0.05*	-0.19***	-0.23***	-0.51***	-0.03
	(0.02)	(0.03)	(0.02)	(0.02)	(0.02)	(0.05)	(0.01)	(0.02)
IMR				-0.47***				0.33***
i				(0.03)				(0.03)
Constant	7.03	1.06***	3.17***	5.54***				
	(0.24)	(0.28)	(0.17)	(0.09)				
Observations	36'615	41,207	7,822	36,615	36'615	41,207	7,822	36'615
\mathbb{R}^2	0.12	0.49	0.53	0.13				
Adjusted \mathbb{R}^2	0.12	0.49	0.53	0.13				
Log Likelihood					-218'190.40	-113'185.60	$-348^{\circ}310.50$	-218'178.10

Note: This table shows the estimation results of Lasso CV linear cross-sectional regressions to explain cartel duration (In(duration+1)) and the estimation results of a Lasso CV Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Model I. Columns 2 - 5 estimate linear regression coefficients, while columns 6 - 9 estimate HR coefficients, both on the sample of detected cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed.

Standard errors are in parentheses. Significance at the 1%, 5%, and 10% level is indicated by ***, **, and *, respectively.

Table B14 Lasso CV Regression and HR for Cartel Duration on Model II - ICC on Stigler - Detection depends on number of Firms

	LasSample	Ln(Duration+1) LasUndetec LasC	ion+1) LasCartels	LasHeck	HRLasSample	Cartel Death HRLasUnd HRI	Death HRLasCartels	HRLasHeck
Start	-0.002***	-0.002***	-0.002***	-0.001***	0.002***	0.001***	0.001***	0.002***
N Firms n_f	$(0.0001) \\ -1.98***$	8.53***	5.88**	0.27***	1.37	7.67***	-4.30^{***}	-0.26^{***}
n_2^2	(0.24) 0.61^{***}	(0.18) $-2.16***$	(0.13) $-1.48***$	(0.04)	(0.20) $-0.43***$	(1.48) $-0.55**$	(0.11) $1.08***$	(0.03)
. E	(0.06)	(0.04)	(0.03)	***	(0.05)	(0.26)	(0.03)	***
f_{f}	(0.01)	(0.003)	(0.002)	-0.01 (0.001)	(0.004)	(0.01)	(0.002)	(0.001)
Detection Prob. σ	-2.36^{***}	-5.81^{***}	-7.30***	-2.64^{***}	4.17	5.79***	8.33***	1.84***
c	(0.61)	(0.51)	(0.40)	(0.61)	(3.61)	(2.11)	(1.68)	(0.55)
σ^{2}					-11.18 (16.44)	0.25 (9.01)	-5.39 (7.83)	
σ^3	3.12	-2.29	-0.19	4.81*	12.46	1.97	7.29	-4.34*
	(2.52)	(1.64)	(1.46)	(2.55)	(23.52)	(13.27)	(11.46)	(2.29)
$n_f \sigma$	0.13	0.97	1.19***	0.08	0.01	-0.94***	-1.11**	0.04
•	(0.10)	(0.08)	(0.05)	(0.10)	(0.09)	(0.16)	(0.05)	(0.00)
Times Caught	0.02	0.62***	0.54***	-0.08**	-0.01	-1.30^{***}	-0.41^{***}	0.03
\$ ()	(0.02)	(0.02)	(0.01)	(0.03)	(0.02)	(0.03)	(0.01)	(0.03)
Repeat Offender	0.20^{***}	-0.44^{***}	-0.23^{***}	0.17***	-0.22*** (0.03)	1.07***	0.26***	-0.21^{***}
$_{ m IMR}$	(60:0)	(60:0)	(60:0)	-0.27*** -0.27***	(60:0)	(00:0)	(90:0)	0.12^{**}
Constant	***66.7	-2.81***	-0.25	5.71***				(0.00)
	(0.30)	(0.26)	(0.19)	(0.16)				
Observations \mathbb{R}^2	$\frac{11'733}{0.20}$	$41'445 \\ 0.54$	53'178 0.59	11'733 0.20	11,733	41,445	53,178	11,733
${ m Adjusted} \ { m R}^2$ ${ m Log} \ { m Likelihood}$	0.20	0.54	0.59	0.19	$-76^{\circ}836.46$	$-118^{\circ}987.30$	$-207^{\circ}949.80$	-76'867.61

estimation results of a Lasso CV Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Model II. Columns 2 - 5 estimate linear regression coefficients, while columns 6 - 9 estimate HR coefficients, both on the sample of detected cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the Note: This table shows the estimation results of Lasso CV linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the covariate increases by 1 unit, keeping all others fixed.

Table B15 Cartel Duration with CV Lasso on Model III - ICC on Harrington et al.

Note: This table shows the estimation results of Lasso CV linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the estimation results of a Lasso CV Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Models IIIa and IIIb combined. Columns 2 - 5 estimate linear regression coefficients, while columns 6 - 9 estimate HR coefficients, both on the sample of detected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed.

Standard errors are in parentheses. Significance at the 1%, 5%, and 10% level is indicated by ***, **, and *, respectively.

Table B16 Cartel Duration with CV Lasso on Model I, II and III

	LasSample	LasUndetec LasCa	tion+1) LasCartels	LasHeck	HRLasSample	Cartel HRLasUnd	Cartel Death Jnd HRLasCartels	HRLasHeck
N Firms n_f n_f^2	0.26** (0.05) -0.03**	0.45*** (0.05) -0.30***	-0.11**	0.02** (0.01)	-0.28*** (0.04) 0.04***	1.15** (0.05) 0.02**	0.07***	-0.01 (0.01)
$n_{ ext{\tiny f}}^3$	(0.01) -0.01^{***}	$(0.01) \\ 0.02^{***}$	(0.001) $-0.001***$	-0.003***	$(0.01) \\ 0.003**$	(0.01) $-0.002***$	$(0.001) \\ 0.003***$	0.002***
- c1	(0.001)	(0.001)	(0.0002)	(0.0002)	(0.001)	(0.001)	(0.0001)	(0.0001) $-0.64*$
,	****	60 0	*****	(0.38)	** ** •••	**60	***600	(0.33)
٠,	(0.01)	(0.02)	(0.01)	-1.34 (0.32)	-0.03 (0.01)	-0.03 (0.01)	-0.03 (0.01)	(0.27)
Leniency (% Fine) θ	0.03***	0.66***	-0.55	-0.05	-0.05***	-2.69^{***}	0.44***	0.03**
$n_f \theta$	$(0.01) \\ 0.02^{***}$	$(0.02) \\ 0.21^{***}$	(0.01) $0.40***$	$(0.01) \\ 0.02^{***}$	(0.01) -0.001	$(0.03) \\ 0.29***$	(0.01) $-0.28***$	(0.01) -0.002
Dataction Prob a	(0.004) $-5.43***$	(0.005)	(0.003) $-13.46***$	(0.004) $-1134**$	(0.004)	(0.01)	(0.002)	(0.003)
	(0.11)	(0.14)	(0.08)	(0.62)	(0.09)	(0.15)	(0.07)	(0.53)
σ^2				26.38***				-18.72***
σ^3	11.91***	24.02***	23.64***	-25.83***	-10.07***	-29.63	-22.95***	(5.5) $16.65***$
	(0.42)	(0.50)	(0.35)	(4.21)	(0.36)	(0.43)	(0.27)	(3.60)
$n_f \sigma$	-0.09***	2.19^{***}	1.26***	0.09***	0.10***	-2.97***	-0.93***	-0.07***
Structured	(0.02) -0.37^{***}	$(0.02) \\ -0.51^{***}$	(0.01) -0.51^{***}	(0.02) -0.36***	0.35***	0.35^{***}	0.40***	$(0.02) \\ 0.34^{***}$
<u> </u>	(0.004)	(0.005)	(0.003)	(0.004)	(0.003)	(0.004)	(0.002)	(0.003)
Model II	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	-0.39*** (0.01)	(0.01)	(0.01)
Model III	-0.30***	-0.90***	***06.0-	-0.44	0.24**	0.62***	0.73***	0.21
O+2**+	(0.01)	(0.01)	(0.01)	(0.08)	(0.01)	(0.01)	(0.01)	(0.07)
Class C	(0.0000)	(0.0000)	(0.0000)	(0.000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
Times Caught	-0.001	0.05	0.07***	-0.04***	0.005	-0.35***	-0.07***	0.04***
Benest Offender	(0.001)	(0.002)	(0.001)	(0.001) $-0.30***$	(0.001) $-0.09***$	(0.003) $-0.91***$	(0.001) $-0.32***$	(0.001)
	(0.01)	(0.01)	(0.004)	(0.01)	(0.004)	(0.01)	(0.003)	(0.01)
IMR				***09.0-				0.48***
Constant	5.95*** (0.06)	7.57*** (0.07)	7.83*** (0.02)	(0.01) $6.75***$ (0.05)				(0.01)
Observations $^{\mathrm{R}^{2}}$	475'456 0.15	465'402	940'858	475'456 0.15	475'456	465,402	940,858	475'456
Adjusted \mathbb{R}^2 Log Likelihood	0.15	0.45	0.46	0.15	-2.804.453.00	-1,432,521.00	-4,409,298.00	-2'803'121.00
001					1	1	1	1

cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed.

Standard errors are in parentheses. Significance at the 1%, 5%, and 10% level is indicated by ***, **, and *, respectively. Note: This table shows the estimation results of Lasso CV linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the estimation results of a Lasso CV Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Models T, II, IIIa, and IIIb combined. Columns 2 - 5 estimate linear regression coefficients, while columns 6 - 9 estimate HR coefficients, both on the sample of detected

Coefficients	β^s	β^l	α_{IMR}	$bias_{IMR}$
Number of Firms n_f	-0.16	0	0.23	-0.16
Fines γ (% of Profit)	0.06	0.07	0.01	-0.01
Leniency (% of Fine) θ	0.09	0	-0.13	0.09
Detection Probability σ	-3.66	-3.24	0.61	-0.43
Start	-0.40	-0.36	0	0
Structured	0.53	0.67	0.05	-0.04
Model II	-0.24	-0.07	0.19	-0.14
Model III	0	0	0.24	-0.17
Times Caught	0	-0.05	-0.07	0.05
Repeat Offender	0.04	-0.37	-0.58	0.41
IMR		-0.71		
Constant	6.38	6.06	-0.45	0.32

This table shows, for the Linear Regression of the combined Models I, II, and III, the sample selection bias that we correct with the inverse Mill's ratio (IMR) following (Heckman (1979)). β^s is the estimated coefficients in the short model without IMR. β^l is the estimated coefficients in the corrected long model including IMR. α_{IMR} is the coefficient in the auxiliary regression between each variable and IMR. The last column shows the sample selection bias: $bias_{IMR} = \beta^l(IMR) * \alpha_{IMR}.$

Table C18 Out of Sample \mathbb{R}^2 for Undetected Cartels

Model	mlrSamp	mlrHeck	lasSamp	lasHeck
I	-0.65	-0.05	-0.39	-0.07
II	-0.42	-0.05	-0.19	-0.05
III	-0.59	-0.19	-0.36	-0.16
I, II, III	-0.64	-0.2	-0.45	-0.15

Table C19 Out of Sample \mathbb{R}^2 , for Detected and Undetected Cartels

Model	mlrSamp	mlrHeck	lasSamp	lasHeck
I	0.04	0.33	0.17	0.32
II	-0.03	0.23	0.13	0.23
III	0.01	0.2	0.13	0.22
I, II, III	-0.02	0.2	0.08	0.23

 ${\bf Table~C20~~Out~of~Sample~MSE~for~Undetected~Cartels}$

Model	mlrSamp	mlrHeck	lasSamp	lasHeck
I	5.39	3.42	4.54	3.41
II	6.18	4.57	5.19	4.52
III	5.12	3.85	4.37	3.73
I, II, III	5.48	3.99	4.83	3.91

References

Heckman JJ (1979) Sample Selection Bias as a Specification Error. Econometrica: Journal of the econometric society pp 153-161

Model	mlrSamp	mlrHeck	lasSamp	lasHeck
I	3.5	2.45	3.03	2.47
II	5.1	3.84	4.32	3.85
III	3.15	2.55	2.79	2.49
I, II, III	3.41	2.67	3.08	2.59

 ${\bf Table~C22~~Mean~Duration~and~Probability~of~Death~Estimation}$

.027 .021	36.62				
	36.62				
091	30.02	154.94	0.006	5'673	36'615
.021	48.12	50.81	0.020	2'445	48'119
.012	84.73	95.81	0.010	8'118	84'734
.085	11.73	289.49	0.003	3'397	11'733
.021	48.36	98.15	0.010	4'746	48'357
.017	60.09	135.51	0.007	8'143	60'090
.005	218.12	160.20	0.006	3'4943	218'123
.004	281.70	59.82	0.017	16'852	281'703
.002	499.83	103.63	0.010	51'795	499'826
.005	208.98	130.12	0.008	27'194	208'985
.004	264.29	34.36	0.029	9'081	264'286
.002	473.27	76.65	0.013	36'275	473'271
	.085 .021 .017 .005 .004 .002	085 11.73 021 48.36 017 60.09 005 218.12 004 281.70 002 499.83 005 208.98 004 264.29	085 11.73 289.49 021 48.36 98.15 017 60.09 135.51 005 218.12 160.20 004 281.70 59.82 002 499.83 103.63 005 208.98 130.12 004 264.29 34.36	0.005	