Temas de Álgebra

exame — 8 de fevereiro de 2023 — 8

- 1. Factorize, usando o método de Lenstra, o número n=2059, usando a curva elíptica $E: y^2=x^3+1464x+747$ sobre \mathbb{Z}_n , e $P=(1000:1738:1)\in E$.
- 2. Considere a curva elíptica $E: y^2 = x^3 + 2585x + 9201$ sobre \mathbb{Z}_{209887} . Para $P = (36630: 104122: 1) \in E$.
 - (a) mostre que $E = \langle P \rangle$ (ou seja, que E é grupo cíclico e que P é gerador de E);
 - (b) para (k, a) = (1758, 1728), use o sistema Menezes-Vanstone para cifrar mens=(314, 159);
 - (c) conhecendo a chave privada, decifre o que obteve na alínea anterior.
- 3. Calcule, usando (pelo menos uma vez) a Lei da Reciprocidade Quadrática, $\left(\frac{12345}{543211}\right)$.
- 4. Seja p um primo tal que $p \equiv 3 \mod 4$, e suponha que $x^2 \equiv y \mod p$.
 - (a) Mostre que $(y^{\frac{p+1}{2}})^2 \equiv y^2 \mod p$.
 - (b) Mostre que $y^{\frac{p+1}{2}} \equiv \pm y \mod p$.
 - (c) Mostre que $(x^{\frac{p+1}{4}})^2 \equiv x \mod p$.
 - (d) Mostre que -1 é um não resíduo quadrático módulo p.
 - (e) Supondo que z é um não resíduo quadrático módulo p, mostre que -z é um resíduo quadrático módulo p.
 - (f) Mostre que $z^{\frac{p+1}{4}}$ é uma raiz quadrada de -z módulo p.

- 5. Usando transformações de Householder ou rotações de Givens, obtenha a factorização QR de A, com $A = \begin{bmatrix} 6 & 5 & 0 \\ 5 & 1 & 4 \\ 0 & 4 & 3 \end{bmatrix}$.
- 6. Sejam \mathcal{X} e \mathcal{Y} subespaços de \mathbb{R}^3 com bases $B_{\mathcal{X}} = \{(1,0,1),(0,1,2)\}$ e $B_{\mathcal{Y}} = \{(0,1,1)\}$.
 - (a) Mostre que \mathcal{X} e \mathcal{Y} são complementares.
 - (b) Calcule o projector P sobre \mathcal{X} ao longo de \mathcal{Y} , assim como o seu projector complementar Q.
 - (c) Determine a projecção de v = (1, 1, 1) sobre \mathcal{Y} ao longo de \mathcal{X} .