Event history analysis An introduction

Alessandro Di Nallo

Università Bocconi

Université de Lausanne, 2 November 2022

Bocconi

JNIL | Université de Lausanne

PART III

Models with unobserved heterogeneity (or 'frailty')

2/45

Unobserved heterogeneity ('frailty')

- Frailty is a term introduced by biostatisticians
- Underlying concept: Each individual has intrinsically different risk of 'failure' (transition from a state to another)
- Standard ('no frailty') models: $\theta(t, X)$
- Frailty models: $\theta_{
 u}(t,X) \equiv \theta(t,X|
 u) = \theta(t,X)
 u$
- \bullet In the formulas, the frailty is expressed by a multiplicative scaling factor, ν
- ν is a random variable taking on positive values, with the mean normalised to one (for identification reasons) and finite variance σ^2 .
- ullet By assumption, u is distributed independently of X and t

Unobserved heterogeneity (frailty)

For proportional hazard models, the frailty model can be re-written as

$$heta_
u(t,x)\equiv heta(t,X|eta,
u)= heta_0(t) exp(eta X)
u= heta_0(t) exp(eta X+u)$$
 with $u=exp(u)$

or

$$\ln \theta_{\nu}(t, X | \nu) = \ln \theta_{0}(t) + \beta X + u$$

where $\theta_0(t)$ is the baseline hazard function and the 'error' term $u \equiv ln(\nu)$, which is random with a mean of zero

Unobserved heterogeneity (frailty)

For proportional hazard models, the frailty model can be re-written as

$$heta_
u(t,x) \equiv heta(t,X|eta,
u) = heta_0(t) exp(eta X)
u = heta_0(t) exp(eta X + u)$$
 with $u = exp(u)$

or

$$\ln \theta_{\nu}(t, X | \nu) = \ln \theta_{0}(t) + \beta X + u$$

where $\theta_0(t)$ is the baseline hazard function and the 'error' term $u \equiv ln(\nu)$, which is random with a mean of zero

For tractability reasons, the choice of distribution of ν is typically limited to those that provide a closed form expression for the frailty survivor function

 For discrete time PH models (e.g., logistic), the most popular specifications are Gamma or Normal

Université de Lausanne, 2 November 2022

Interpretation of frailty

The random variable ν , or equivalently u can be interpreted in different ways:

- The factor summarising the impact of 'omitted variables' on the hazard rate – whether the missing regressors are intrinsically unobservable or simply unobserved in the data set to hand.
- The individual-specific transition risk. Within the distribution of ν , each individual (or firm, etc...) takes a distinct position.
- The errors of measurement in recorded regressors or recorded survival times

The omission of ν (frailty or unobserved heterogeneity) has \emph{bias} as main implication:

• The non-frailty models over-estimate the degree of negative duration dependence in the (true) baseline hazard, and under-estimate the degree of positive duration dependence.

The omission of ν (frailty or unobserved heterogeneity) has *bias* as main implication:

- The non-frailty models over-estimate the degree of negative duration dependence in the (true) baseline hazard, and under-estimate the degree of positive duration dependence.
 - ▶ Selection effect. In the negative duration dependence case, observations with high ν values fail faster, other things equal, so the survivors at any given survival time are increasingly composed of observations with relatively low ν values and thence lower hazard rates.

The omission of ν (frailty or unobserved heterogeneity) has \emph{bias} as main implication:

- The non-frailty models over-estimate the degree of negative duration dependence in the (true) baseline hazard, and under-estimate the degree of positive duration dependence.
 - Selection effect. In the negative duration dependence case, observations with high ν values fail faster, other things equal, so the survivors at any given survival time are increasingly composed of observations with relatively low ν values and thence lower hazard rates.
- The proportionate effect of a given regressor on the hazard rate is no longer constant and independent of survival time
 - ▶ In the non-frailty PH model, the proportionate effect for regressor X_k is the fixed amount β_k

The omission of ν (frailty or unobserved heterogeneity) has bias as main implication:

- The presence of unobserved heterogeneity attenuates the proportionate response of the hazard to variation in each regressor at any survival time.
 - ▶ In short, the estimate of a positive (negative) β_k derived from the (wrong) no-frailty model will underestimate (overestimate) the 'true' estimate.

Frailty models in STATA

Overview of frailty models in Stata

- Continuous-time models: streg [depvar] [indepvar], frailty(.)
- Discrete-time models:
 - Logistic model with Normal ν: use xtlogit
 - Cloglog model with Gamma ν :
 - 1 ssc install pgmhaz8
 - use xtcloglog

```
use bc.dta
stset t, f(dead)
      Survival-time data settings
               Failure event: dead!=0 & dead<.
      Observed time interval: (0, t)
           Exit on or before: failure
                   total observations
                0 exclusions
               80 observations remaining, representing
               58 failures in single-record/single-failure data
         1,257.07 total analysis time at risk and under observation
                                                     At risk from t =
                                           Earliest observed entry t =
```

35

Last observed exit t =

 $oldsymbol{\mathsf{Model}}\ \mathbf{1}$: streg age smoking dietfat, d(weib) nohr nolog

t	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
age smoking dietfat _cons	.559197 1.649311 2.222411 -45.97988	.0563239 .3276501 .2404553 4.634153	9.93 5.03 9.24 -9.92	0.000 0.000 0.000 0.000	.4488042 1.007128 1.751128 -55.06265	.6695899 2.291493 2.693695 -36.89711
/ln_p	1.431728	.0978872	14.63	0.000	1.239872	1.623583
p 1/p	4.185925 .2388958	.4097485 .0233848			3.455172 .1971909	5.071228 .2894212

The risk of death is positively associated with:

- patient's age $(\beta_{age}^{m1} > 0)$
- smoking $(\beta_{smoking}^{m1} > 0)$
- average weekly calorific intake $(\beta_{dietfat}^{m1} > 0)$

Model 2: streg age smoking, d(weib) nohr nolog

_t	Coefficient	Std. err.	z	P> z	[95% conf.	. interval]
age smoking _cons	.1644213 .9056537 -11.20242	.0149837 .3061656 .9989083	10.97 2.96 -11.21	0.000 0.003 0.000	.1350538 .3055801 -13.16024	.1937888 1.505727 -9.244594
/ln_p	.3633523	.0955797	3.80	0.000	.1760195	.5506852
p 1/p	1.438142 .6953414	.1374573 .0664605			1.192461 .5765546	1.734441 .8386016

 $\texttt{dietfat} \ \textbf{is} \ \textbf{omitted} \rightarrow \textbf{unobserved} \ \textbf{heterogeneity} \ \textbf{(omitted variable bias)}$

However, unobserved heterogeneity is not 'modelled' \rightarrow no explicit treatment of individuals' frailty

- ullet corr(age, dietfat) $>0
 ightarrow eta_{
 m age}^{m2} > eta_{
 m age}^{m1}$
- ullet corr(smoking, dietfat) $> 0
 ightarrow eta_{smoking}^{m2} > eta_{smoking}^{m1}$

The β s of this model are over-estimated, hence biased.

Di Nallo

Event history analysis

13/45

Model 3: streg age smoking, d(weib) nohr nolog frailty(gamma)

interval]	[95% conf.	P> z	z	Std. err.	Coefficient	_t
.5725537	.2060467	0.000	4.16	.0934984	.3893002	age
2.049613	.0014291	0.050	1.96	.5225054	1.025521	smoking
-13.60674	-34.00966	0.000	-4.57	5.204923	-23.8082	_cons
1.523385	.6521376	0.000	4.89	.222261	1.087761	/ln_p
1.359876	698383	0.529	0.63	.5250758	.3307466	/lntheta
4.587727	1.91964			. 6595867	2.967622	р
.520931	.2179729			.0748953	.3369701	1/p
3.895711	.4973889			.7309092	1.392007	theta

theta (θ) is the component of frailty (aka ν) represented by a Gamma θ is statistically significant (p<0.05)

In M1, persons' differences in 'calories intake' was captured by dietfat In M3, part of that 'effect' is represented by $\theta \to \text{unobserved heterogeneity}$ is 'modelled'

Université de Lausanne, 2 November 202 14 / 45

Model 3: streg age smoking , d(weib) nohr nolog frailty(gamma)

_t	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
age	.3893002	.0934984	4.16	0.000	.2060467	.5725537
smoking	1.025521	.5225054	1.96	0.050	.0014291	2.049613
_cons	-23.8082	5.204923	-4.57	0.000	-34.00966	-13.60674
/ln_p	1.087761	.222261	4.89	0.000	.6521376	1.523385
/lntheta	.3307466	.5250758	0.63	0.529	698383	1.359876
р	2.967622	. 6595867			1.91964	4.587727
1/p	.3369701	.0748953			.2179729	.520931
theta	1.392007	.7309092			.4973889	3.895711

The inclusion of 'frailty' reduces the bias of the β s of the prior model:

•
$$\beta_{\rm age}^{\rm m2} > \beta_{\rm age}^{\rm m3}$$

•
$$\beta_{\rm smoking}^{\rm m2} > \beta_{\rm smoking}^{\rm m3}$$

Model 3: streg age smoking, d(weib) nohr nolog frailty(gamma)

interval]	[95% conf.	P> z	z	Std. err.	Coefficient	_t
. 5725537	.2060467	0.000	4.16	.0934984	.3893002	age
2.049613	.0014291	0.050	1.96	.5225054	1.025521	smoking
-13.60674	-34.00966	0.000	-4.57	5.204923	-23.8082	_cons
1.523385	.6521376	0.000	4.89	.222261	1.087761	/ln_p
1.359876	698383	0.529	0.63	.5250758	.3307466	/lntheta
4.587727	1.91964			. 6595867	2.967622	р
.520931	.2179729			.0748953	.3369701	1/p
3.895711	.4973889			.7309092	1.392007	theta

LR test of theta=0: chibar2(01) = 22.57

Prob >= chibar2 = **0.000**

The inclusion of 'frailty' reduces the bias of the β s of the prior model:

- $\bullet \ \beta_{\rm age}^{\rm m2} > \beta_{\rm age}^{\rm m3}$
- $\beta_{\text{smoking}}^{\text{m2}} > \beta_{\text{smoking}}^{\text{m3}}$

Model 4: streg age smoking dietfat, d(weib) nolog nohr
frailty(gamma)

_t	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
age	.5592066	. 05632	9.93	0.000	.4488214	.6695918
smoking	1.649354	.327641	5.03	0.000	1.007189	2.291518
dietfat	2.222451	.2404402	9.24	0.000	1.751197	2.693705
_cons	-45.98067	4.633826	-9.92	0.000	-55.0628	-36.89853
/ln_p	1.431747	.0978781	14.63	0.000	1.239909	1.623584
/lntheta	-15.92571	6058.646	-0.00	0.998	-11890.65	11858.8
р	4.186005	.4097183			3.4553	5.071235
1/p	.2388912	.0233822			.1971906	.2894105
theta	1.21e-07	.0007344			0	
LR test of the	eta=0: chibar2	(01) = 0.00			Prob >= chiba	r2 = 1.000

'Frailty' (θ) and dietfat are redundant.

People's heterogeneity is accounted for by two 'overlapping' components

The LR test of θ reveals that 'frailty' is not statistically significant.

Di Nallo Event history analysis 17 / 45

Bottomline

- 'Frailty' captures unobserved individuals' characteristics that are not accounted for by any other covariate.
- If you suspect that your model is affected by omitted-variable bias, it is advisable to model 'frailty'.
- Conversely, if your model is correctly specified (no OVB), you can run a model without specifying unobserved heterogeneity.

Discrete-time frailty models in Stata

Model with no 'frailty'

logit died logt age smoking dietfat, nolog

Model with 'frailty'

xtlogit died logt age smoking, nolog i(id)

The command xtlogit in combination with i(.) (the option that prompts STATA to compute the individual-specific frailty) models unobserved heterogeneity.

Discrete time models with time-varying covariates

- So far, we have addressed models with time-invariant variables
- The advantage of discrete-time survival models is to include time-varying covariates.
 - ▶ A model studying the risk of death for cancer patients with 'age at the first observation' and 'survival time' implicitly considers age as a time-varying covariate: fixed age + time-varying time
 - What if characteristics other than (say) age change over time?
 - The nature of the transition process motivates the choice of time-varying covariates.
- Examples of transition processes are associated to time-varying covariates, such as educational attainment and income
 - Home-leaving
 - Parenthood
 - Separation

identifier: coupleid
interval: wave

dependent variable: sep

time: union duration

time-varying covariates: union,
hiqual, age, income ...
time-invariant covariataes: age

homo, background

Université de Lausanne, 2 November 2022 22 / 45

Use the command logit: logit [depvar] [indepvar]

sep	Coefficient	Std. err.	z	P> z	[95% conf	interval]
union_duration_ln	2081217	.0203799	-10.21	0.000	2480656	1681778
age_xt_f	0438752	.0070841	-6.19	0.000	0577597	0299907
c.age_xt_f#c.age_xt_f	.0001858	.0000725	2.56	0.010	.0000437	.000328
income	.1034592	.0464292	2.23	0.026	.0124597	.1944587
c.income#c.income	0106885	.0047767	-2.24	0.025	0200506	0013265
1.income_miss	0277949	.1400929	-0.20	0.843	302372	. 2467821
hiqual_f						
Other higher	.1662028	.0737885	2.25	0.024	.02158	.3108256
A level etc	.2626498	.0633518	4.15	0.000	.1384826	.386817
GCSE etc	.3368424	.0622636	5.41	0.000	.214808	.4588768
Other qual	.4320462	.0814471	5.30	0.000	.2724129	.591679
No qual	.2813151	.0836438	3.36	0.001	.1173762	. 44525
99	.0771324	.0832087	0.93	0.354	0859537	.2402184
education_homo						
Man higher education	.027696	.0580988	0.48	0.634	0861755	.141567
oman higher education	.2191767	.0556055	3.94	0.000	.1101919	.328161
Missing	.6644837	.0610671	10.88	0.000	.5447943	.784173
union						
cohabitation	1.072358	.0392017	27.35	0.000	.9955241	1.149192
_cons	-3.047207	.2065594	-14.75	0.000	-3.452056	-2.642359

Use the command logit: logit [depvar] [indepvar]

sep	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
union_duration_ln	2081217	.0203799	-10.21	0.000	2480656	1681778
age_xt_f	0438752	.0070841	-6.19	0.000	0577597	0299907
c.age_xt_f#c.age_xt_f	.0001858	.0000725	2.56	0.010	.0000437	.000328
income	.1034592	.0464292	2.23	0.026	.0124597	.1944587
c.income#c.income	0106885	.0047767	-2.24	0.025	0200506	0013265
1.income_miss	0277949	.1400929	-0.20	0.843	302372	.2467821
hiqual_f						
Other higher	.1662028	.0737885	2.25	0.024	.02158	.3108256
A level etc	.2626498	.0633518	4.15	0.000	.1384826	.386817
GCSE etc	.3368424	.0622636	5.41	0.000	.214808	.4588768
Other qual	.4320462	.0814471	5.30	0.000	.2724129	.5916795
No qual	.2813151	.0836438	3.36	0.001	.1173762	.445254
99	.0771324	.0832087	0.93	0.354	0859537	.2402184
education_homo						
Man higher education	.027696	.0580988	0.48	0.634	0861755	.1415675
Woman higher education	.2191767	.0556055	3.94	0.000	.1101919	.3281615
Missing	.6644837	.0610671	10.88	0.000	.5447943	.784173
HISSING			20.00	5.300	.5.47545	
union						
cohabitation	1.072358	.0392017	27.35	0.000	.9955241	1.149192
_cons	-3.047207	.2065594	-14.75	0.000	-3.452056	-2.642359
_co5						

 $\ln(t)$: the risk of union dissolution decreases (eta < 0) as time passes

Université de Lausanne, 2 November 2022 24 / 45

Graph of $h_0(t)$ as a function of ln(t)

margins, at(union_duration_ln=(0(0.5)4.5)) marginsplot

The time scale (x-axis) is not straightforward (expressed in log).

You can choose other functions (for example the linear and quadratic terms) to have an easier interpretation of time.

Di Nallo Event history analysis 25 / 45

Use the command logit: logit [depvar] [indepvar]

sep	Coefficient	Std. err.	z	P> z	[95% conf	. interval
union_duration_ln	2081217	.0203799	-10.21	0.000	2480656	1681778
age_xt_f	0438752	.0070841	-6.19	0.000	0577597	029990
c.age_xt_f#c.age_xt_f	.0001858	.0000725	2.56	0.010	.0000437	.00032
income	.1034592	.0464292	2.23	0.026	.0124597	.194458
c.income#c.income	0106885	.0047767	-2.24	0.025	0200506	001326
1.income_miss	0277949	.1400929	-0.20	0.843	302372	.246782
hiqual_f						
Other higher	.1662028	.0737885	2.25	0.024	.02158	.310825
A level etc	.2626498	.0633518	4.15	0.000	.1384826	.38681
GCSE etc	.3368424	.0622636	5.41	0.000	.214808	.458876
Other qual	.4320462	.0814471	5.30	0.000	.2724129	.591679
No qual	.2813151	.0836438	3.36	0.001	.1173762	. 44525
99	.0771324	.0832087	0.93	0.354	0859537	.240218
education_homo						
Man higher education	.027696	.0580988	0.48	0.634	0861755	.141567
Woman higher education	.2191767	.0556055	3.94	0.000	.1101919	.328161
Missing	.6644837	.0610671	10.88	0.000	.5447943	.78417
union						
cohabitation	1.072358	.0392017	27.35	0.000	.9955241	1.14919
_cons	-3.047207	.2065594	-14.75	0.000	-3.452056	-2.64235

 age_xt_f : the risk of union dissolution decreases as women's age (linear term's $\beta < 0$) increases

sep	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
union_duration_ln	2081217	.0203799	-10.21	0.000	2480656	1681778
age_xt_f	0438752	.0070841	-6.19	0.000	0577597	0299907
c.age_xt_f#c.age_xt_f	.0001858	.0000725	2.56	0.010	.0000437	.000328
income	.1034592	.0464292	2.23	0.026	.0124597	. 1944587
c.income#c.income	0106885	.0047767	-2.24	0.025	0200506	0013265
1.income_miss	0277949	.1400929	-0.20	0.843	302372	.2467821
hiqual_f						
Other higher	.1662028	.0737885	2.25	0.024	.02158	.3108256
A level etc	.2626498	.0633518	4.15	0.000	.1384826	.386817
GCSE etc	.3368424	.0622636	5.41	0.000	.214808	.4588768
Other qual	.4320462	.0814471	5.30	0.000	.2724129	.5916795
No qual	.2813151	.0836438	3.36	0.001	.1173762	. 445254
99	.0771324	.0832087	0.93	0.354	0859537	.2402184
education homo						
Man higher education	.027696	.0580988	0.48	0.634	0861755	.1415675
Woman higher education	.2191767	.0556055	3.94	0.000	.1101919	.3281615
Missing	.6644837	.0610671	10.88	0.000	.5447943	.784173
union						
cohabitation	1.072358	.0392017	27.35	0.000	.9955241	1.149192
_cons	-3.047207	.2065594	-14.75	0.000	-3.452056	-2.642359

 $c.age_xt_f\#c.age_xt_f$: the effect of age (quadratic term's $\beta>0$) is upwardly concave (parabola 'looks' up)

Université de Lausanne, 2 November 2022 27 / 45

Di Nallo Event history analysi

Predicted probability of union dissolution by woman's age

 $c.age_xt_f\#c.age_xt_f$: the effect of age (quadratic term's $\beta>0$) is upwardly concave (parabola 'looks' up)

Predicted probability of union dissolution by woman's age

Please remember that all the predicted probabilities can be multiplied by 100 to be expressed in %.

For instance, 0.02 means **2**% on an **annual** basis, because the dataset is organized in year-long episodes (= each line corresponds to one organized in year-long episodes).

Di Nallo Event history analysis 29 / 45

Use the command logit: logit [depvar] [indepvar], or to display the odds ratios

i i						
hiqual_f						
Other higher	1.180813	.0871304	2.25	0.024	1.021815	1.364551
A level etc	1.300371	.0823808	4.15	0.000	1.14853	1.472287
GCSE etc	1.400518	.0872013	5.41	0.000	1.239624	1.582296
Other qual	1.540406	.1254616	5.30	0.000	1.313129	1.807021
No qual	1.324871	.1108173	3.36	0.001	1.124542	1.560887
99	1.080185	.0898808	0.93	0.354	.9176367	1.271527
education_homo						
Man higher education	1.028083	.0597304	0.48	0.634	.9174332	1.152078
Woman higher education	1.245051	.0692317	3.94	0.000	1.116492	1.388413
Missing	1.943487	.1186831	10.88	0.000	1.724254	2.190595
union						
cohabitation	2.922262	.1145576	27.35	0.000	2.706142	3.155642

It is very useful especially when you deal with categorical variables.

The OR associated with a category shows you how much more (OR > 1) or less (OR < 1) likely the transition is for that category.

How to interpret the OR of a categorical variable.

The case of woman's education

```
hiqual f
Other higher
                   1.180813
                              .0871304
                                                               1.021815
                                                                           1.364551
 A level etc
                   1.300371
                              .0823808
                                            4.15
                                                    0.000
                                                               1.14853
                                                                           1.472287
                                                               1.239624
    GCSE etc
                   1.400518
                              .0872013
                                            5.41
                                                    0.000
                                                                           1.582296
  Other qual
                   1.540406
                              .1254616
                                            5.30
                                                    0.000
                                                               1.313129
                                                                           1.807021
     No qual
                   1.324871
                              .1108173
                                            3.36
                                                    0.001
                                                               1.124542
                                                                           1.560887
          99
                   1.080185
                              .0898808
                                                               .9176367
                                                                           1.271527
                                            0.93
                                                    0.354
```

Examples:

- Baseline: 'Degree' (implicit odds ratio: 1)
- 'Other higher' = $1.18 \rightarrow$ The odds of separating/divorcing for women holding another higher degree are 18% *higher* than women holding a degree
- 'No qual' $=1.32 \rightarrow$ The odds of separating/divorcing for women holding no qualification are 32% *higher* than women holding a degree

How to interpret the OR of a categorical variable.

The case of woman's education

How to model multiple transitions in or out of unions?

Single	In a union	Single	In a union

Recurrent events

Use the command xtlogit jointly with the option re: xtlogit [depvar] [indepvars], re

STATA processes more than one episode of (say) separation by attributing to each individual a *underlying* propensity to separate.

Does it remind you of 'frailty'?

Indeed, a person that breaks up unions *more frequently* than others might have 'unobserved characteristics' (propensity to break up) that can be modelled with an individual-specific distribution (random effects re)

- So far, we have modelled time-to-event data and only a single type of event (hence, binary): 'failure' (e.g., time to: death, separation, birth, unemployment, promotion)
- Models in which there are different types of events multiple destinations – are also of interest.
- For example, in a model of unemployment duration, you may wish to know about (a) the time to exit from unemployment to a job, and compare this with (b) the time to exit from unemployment to economic inactivity.
- We only consider the simplest case the independent competing risk model.

Multinomial discrete time event history model. An example about the job market.

To estimate the chances of :

- (a) a transition to a job
- (b) a transition out-of-labour market ('other')
- (c) staying in unemployment

... contextually

Multinomial discrete time event history model. An example about the job market.


```
identifier: newid
unemployment duration: t
status2: status at the end of
```

depvar of mlogit: depvar

depvar of logit: leftui (job & other), job, other covariataes: age, famresp, groupreg

period

Flashback. A discrete time EH model with a *binary* variable

```
Logistic regression Number of obs = 11,234
LR chi2(8) = 64.33
Prob > chi2 = 0.0000
Log likelihood = -2495.4163 Pseudo R2 = 0.0127
```

leftui	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
age	0034686	.0048337	-0.72	0.473	0129425	.0060052
famresp	.0681293	.0854925	0.80	0.426	0994328	.2356915
tyentry	.6964857	.0934628	7.45	0.000	.513302	.8796693
reg1	.1435767	.2052072	0.70	0.484	258622	.5457754
reg2	.0696173	.2055525	0.34	0.735	3332581	.4724928
reg3	0692704	.2204173	-0.31	0.753	5012804	.3627396
reg4	0150869	.2120189	-0.07	0.943	4306364	.4004625
logt	.1662141	.0452708	3.67	0.000	.077485	.2549431
_cons	-3.440587	.2751854	-12.50	0.000	-3.979941	-2.901234

Dependent variable of logit (leftui): leaving unemployment (=0,1) Covariates:

- famresp: "No family reponsibilities", "Some family reponsibilities"
- reg*: regions of residence (dummies)
- tyentry: contract type of prior job ("permanent = 0", "temporary = 1")

Di Nallo Event history analysis 38 / 45

A multinomial discrete time EH model

mlogit depvar age famresp tyentry reg1-reg4 logt, base(0)

depvar	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
unemployed	(base outco	me)				
Exit_job						
age	0024503	.0055886	-0.44	0.661	0134037	.0085031
famresp	.0514627	.1006845	0.51	0.609	1458754	.2488008
tyentry	1.092581	.1242046	8.80	0.000	.8491446	1.336018
reg1	.2291151	.2438589	0.94	0.347	2488395	.7070698
reg2	.1313109	.2452359	0.54	0.592	3493426	.6119644
reg3	1784552	.2655201	-0.67	0.502	6988649	.3419546
reg4	0178443	.2516282	-0.07	0.943	5110265	.475338
logt	1947983	.052208	-3.73	0.000	2971241	0924725
_cons	-3.579488	.3239595	-11.05	0.000	-4.214437	-2.94454
Exit_other						
age	0084695	.0095718	-0.88	0.376	0272299	.010291
famresp	.0951781	.1600171	0.59	0.552	2184496	.4088058
tyentry	.1424349	.1666566	0.85	0.393	184206	.4690757
reg1	1239563	.3741337	-0.33	0.740	8572449	.6093324
reg2	1084249	.3704304	-0.29	0.770	8344551	.6176052
reg3	.2285222	.3886337	0.59	0.557	5331859	.9902302
reg4	.0045579	.3873852	0.01	0.991	7547031	.7638189
logt	1.931943	.1618052	11.94	0.000	1.61481	2.249075
_cons	-8.246268	.6537316	-12.61	0.000	-9.527559	-6.964978

Dependent variable of mlogit (depvar): leaving unemployment (0; baseline); entering a job (1); out of labour force (2; e.g., retirement)

Université de Lausanne, 2 November 2022

Di Nallo

A multinomial discrete time EH model

mlogit depvar age famresp tyentry reg1-reg4 logt, base(0)

xit_job						
age	0024503	.0055886	-0.44	0.661	0134037	.0085031
famresp	.0514627	.1006845	0.51	0.609	1458754	.2488008
tyentry	1.092581	.1242046	8.80	0.000	.8491446	1.336018
reg1	.2291151	.2438589	0.94	0.347	2488395	.7070698
reg2	.1313109	.2452359	0.54	0.592	3493426	.6119644
reg3	1784552	.2655201	-0.67	0.502	6988649	.3419546
reg4	0178443	.2516282	-0.07	0.943	5110265	.475338
logt	1947983	.052208	-3.73	0.000	2971241	0924725
_cons	-3.579488	. 3239595	-11.05	0.000	-4.214437	-2.94454
xit_other						
age	0084695	.0095718	-0.88	0.376	0272299	.010291
famresp	.0951781	.1600171	0.59	0.552	2184496	.4088058
tyentry	.1424349	.1666566	0.85	0.393	184206	.4690757
reg1	1239563	.3741337	-0.33	0.740	8572449	.6093324
reg2	1084249	.3704304	-0.29	0.770	8344551	.6176052
reg3	.2285222	.3886337	0.59	0.557	5331859	.9902302
reg4	.0045579	.3873852	0.01	0.991	7547031	.7638189
logt	1.931943	.1618052	11.94	0.000	1.61481	2.249075
_cons	-8.246268	.6537316	-12.61	0.000	-9.527559	-6.964978

tyentry: men who had a temporary employment contract in their last job before u/e (tyentry=1) are much more likely ($\beta>0$) to exit to a job than are men who had a permanent employment contract in their last job

(tyentry=0). Université de Lausanne, 2 November 2022

nt history analysis

40 / 45

A multinomial discrete time EH model

mlogit depvar age famresp tyentry reg1-reg4 logt, base(0)

0024503	.0055886	-0.44	0.661	0134037	.0085031
.0514627	.1006845	0.51	0.609	1458754	.2488008
1.092581	.1242046	8.80	0.000	.8491446	1.336018
.2291151	.2438589	0.94	0.347	2488395	.7070698
.1313109	.2452359	0.54	0.592	3493426	.6119644
1784552	.2655201	-0.67	0.502	6988649	.3419546
0178443	.2516282	-0.07	0.943	5110265	. 475338
1947983	.052208	-3.73	0.000	2971241	0924725
-3.579488	. 3239595	-11.05	0.000	-4.214437	-2.94454
0084695	.0095718	-0.88	0.376	0272299	.010291
.0951781	.1600171	0.59	0.552	2184496	.4088058
.1424349	.1666566	0.85	0.393	184206	.4690757
1239563	.3741337	-0.33	0.740	8572449	.6093324
1084249	.3704304	-0.29	0.770	8344551	.6176052
.2285222	.3886337	0.59	0.557	5331859	.9902302
.0045579	.3873852	0.01	0.991	7547031	.7638189
1.931943	.1618052	11.94	0.000	1.61481	2.249075
-8.246268	.6537316	-12.61	0.000	-9.527559	-6.964978
		.0514627 .1006845 1.092581 .1242046 .2291151 .2438589 .1313109 .2452359 -1.784552 .2655201 -0.178453 .516282 -1.1947983 .052208 -3.579488 .3239595 0084695 .0095718 .0951781 .1609171 .1424349 .1666566 -1.129563 .3741337 .1245249 .3704304 .2285222 .3886337 .0045579 .3873852 .0045579 .3873852	.0514627 .1006845 0.51 1.092581 .1242046 8.80 .2291151 .2438889 0.94 .1313109 .2452359 0.541784552 .2655201 -0.671947983 .052208 -3.73 -3.579488 .3239595 -11.05 0084695 .0095718 -0.88 .0951781 .1609171 0.59 .1424349 .1666566 0.851239563 .3741337 -0.331884249 .3704304 -0.29 .2285222 .3886337 0.59 .0045579 .3873852 0.01 1.331943 .1618052 11.961		.0514627 .1006845 0.51 0.6091458754 1.092581 .1242046 8.80 0.000 .8491446 .2291151 .2438589 0.94 0.3472488395 .1313109 .2452359 0.54 0.59234934261784552 .2655201 -0.67 0.50265886490178443 .2516282 -0.07 0.94351102651947983 .052208 -3.73 0.0002971241 -3.579488 .3239595 -11.05 0.000 -4.214437 0084695 .0095718 -0.88 0.3760272299 .0951781 .1606356 0.85 0.39318420612339563 .3741337 -0.33 0.74085724491084249 .366366 0.85 0.3931842061239563 .3741337 -0.33 0.74085724491084249 .3704304 -0.29 0.7768344551 .2285222 .3886337 0.59 0.557 .5331859 .0045579 .3873852 0.01 0.9917547031 1.331343 .1618052 11.94 0.000 1.61481

tyentry: the type of employment contract has no significant association ($\beta \approx 0$) with the hazard of exit from u/e for other reasons (Exit other).

A multinomial discrete time EH model

mlogit depvar age famresp tyentry reg1-reg4 logt, base(0)

xit_job						
age	0024503	.0055886	-0.44	0.661	0134037	.0085031
famresp	.0514627	.1006845	0.51	0.609	1458754	.2488008
tyentry	1.092581	.1242046	8.80	0.000	.8491446	1.336018
reg1	.2291151	.2438589	0.94	0.347	2488395	.7070698
reg2	.1313109	.2452359	0.54	0.592	3493426	.6119644
reg3	1784552	.2655201	-0.67	0.502	6988649	.3419546
reg4	0178443	.2516282	-0.07	0.943	5110265	.475338
logt	1947983	.052208	-3.73	0.000	2971241	0924725
_cons	-3.579488	. 3239595	-11.05	0.000	-4.214437	-2.94454
xit_other						
age	0084695	.0095718	-0.88	0.376	0272299	.010291
famresp	.0951781	.1600171	0.59	0.552	2184496	.4088058
tyentry	.1424349	.1666566	0.85	0.393	184206	.4690757
reg1	1239563	.3741337	-0.33	0.740	8572449	.6093324
reg2	1084249	.3704304	-0.29	0.770	8344551	.6176052
reg3	.2285222	.3886337	0.59	0.557	5331859	.9902302
reg4	.0045579	.3873852	0.01	0.991	7547031	.7638189
logt	1.931943	.1618052	11.94	0.000	1.61481	2.249075
_cons	-8.246268	.6537316	-12.61	0.000	-9.527559	-6.964978

logt: the hazard for exits to a job is declining with time on unemployment (Exit job), whereas the hazard for other types of exits is rising with time on unemployment (Exit other).

Université de Lausanne, 2 November 2022 42 / 45

Compare a logit (A.) and one outcome of the multinomial model (B.)

A. logit job age famresp tyentry reg1-reg4 logt

job	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
age	0023954	.0055883	-0.43	0.668	0133482	.0085575
mresp	.0497747	.1006708	0.49	0.621	1475364	.2470857
entry	1.093551	.1241995	8.80	0.000	.8501247	1.336978
reg1	.2316425	.2438092	0.95	0.342	2462147	.7094998
reg2	.1339491	.2451883	0.55	0.585	3466112	.6145093
reg3	1794071	.2654604	-0.68	0.499	6997001	.340885
reg4	0160927	.2515802	-0.06	0.949	5091809	.476995
logt	2101334	.05197	-4.04	0.000	3119927	108274
_cons	-3.574223	.3239443	-11.03	0.000	-4.209142	-2.939304

B. mlogit depvar age famresp tyentry regl-reg4 logt, base(0)

```
Exit iob
                -.0024503
                             .0055886
         age
                                                 0.661
                                                           -.0134037
                                                                         .0085031
                                                                         .2488008
     famresp
                 .0514627
                             .1006845
                                          0.51
                                                 0.609
                                                           -.1458754
     tventrv
                 1.092581
                             .1242046
                                          8.80
                                                 0.000
                                                            .8491446
                                                                         1.336018
                 .2291151
                             .2438589
                                          0.94
                                                 0.347
                                                          -.2488395
                                                                         .7070698
        rea1
        reg2
                 .1313109
                             .2452359
                                          0.54
                                                 0.592
                                                           -.3493426
                                                                         .6119644
        req3
                -.1784552
                             .2655201
                                         -0.67
                                                 0.502
                                                           -.6988649
                                                                         .3419546
        rea4
                -.0178443
                             .2516282
                                         -0.07
                                                 0.943
                                                           -.5110265
                                                                         .475338
                -.1947983
                                                           -.2971241
                                                                       -.0924725
        logt
                             .052208
                                         -3.73
                                                 0.000
       cons
                -3.579488
                             .3239595
                                        -11.05
                                                 0.000
                                                           -4.214437
                                                                         -2.94454
```

Bottomline

- A logit model is a 'safe' option for your survival analysis.
 - For instance, a transition from 'unemployment' to 'exit from unemployment'
- A multinomial model is 'conceptually' justified when the transition can be specified and you have proper data. For instance, a transition from 'unemployment'
 - to 'a job'
 - to 'retirement'
 - to 'maternal leave'
- A logit model for all the above transitions separately is also ok estimate-wise, although conceptually not accurate:
 - ▶ A logit model with a dependent variable such as 'transition to a job' (= 1) vs 'unemployment' (= 0) does not capture *other transitions* that may occur (e.g., to 'retirement' or 'maternal leave', etc.) and end up in the absorbing state 'unemployment'.

Université de Lausanne, 2 November 2022
Di Nallo Event history analysis 44 / 45

alessandro.dinallo@unibocconi.it