Interro1 - Analyse dimensionnelle

Nom:	Note:
Prénom:	

Exercice 1 – Le système international (3 points)

/3 1. Compléter le tableau ci-dessous.

Dimension	(symbole)	Unité	(symbole)
Intensité lumineuse	(J)	candela	(cd)

Exercice 2 – Analyse dimensionnelle (6 points)

1. L'énergie cinétique d'un corps de masse m et de vitesse v est $E = \frac{1}{2}mv^2$. Une puissance P est homogène à une énergie E divisée par un temps $\Delta t : P = \frac{E}{\Delta t}$. Exprimer la dimension d'une puissance en fonction des dimensions de base.

2. En déduire l'expression du watt (W) en fonction des unités du SI.

3. La constante gravitationnelle vaut : $G = 6.67 \times 10^{-11} \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1} \cdot \mathrm{s}^{-2}$. Exprimer la dimension de G en fonction des dimensions de base.

4. Voici deux expressions pour la période de révolution T de la Terre autour du Soleil, exprimée en fonction de la masse du Soleil M_{\odot} , de la constante gravitationnelle G et du rayon de de l'orbite r:

•
$$T=2\pi\sqrt{\frac{GM_{\odot}}{r}}$$
 • $T=2\pi\sqrt{\frac{r^3}{GM_{\odot}}}$

Identifier celle qui est correcte. Justifier par analyse dimensionnelle.

