Итоговый конспект 1 из 57

1 Определения

1.1 Локальный максимум, минимум, экстремум

Определение. $f:E\subset\mathbb{R}\to\mathbb{R}, x_0\in E$ — локальный максимум функции, если

$$\exists U(x_0) \ \forall x \in U(x_0) \cap E \ f(x) \le f(x_0)$$

Аналогично определяется минимум.

Определение. Экстремум — точка минимума либо максимума.

1.2 ! Первообразная, неопределенный интеграл

$$F,f:\langle a,b
angle o\mathbb{R}$$
 F — первообразная f на $\langle a,b
angle$
$$\forall x\in\langle a,b
angle \quad F'(x)=f(x)$$

Неопределенный интеграл f на $\langle a,b\rangle$ — множество всех первообразных f:

$$\{F+c,c\in\mathbb{R}\}$$
, где F — первообразная

Обозначается $\int f = F + c$ или $\int f(x)dx$

1.3 Теорема о существовании первообразной

 $f \in C^0(\langle a,b \rangle)$ тогда у f существует первообразная. Теорема о существовании первообразной — следствие теоремы Барроу.

1.4 ! Таблица первообразных

$$\int x^n dx = \frac{x^{(n+1)}}{n+1} + C, n \neq -1$$

$$\int \frac{1}{x} dx = \ln x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$$

$$\int \frac{1}{\sqrt{1+x^2}} dx = \ln(x+\sqrt{1+x^2}) + C -$$
 длинный логарифм
$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + C$$

Итоговый конспект 2 из 57

1.5 Равномерная непрерывность

 $f:\langle a,b\rangle\subset\mathbb{R}\to\mathbb{R}$ равномерно непрерывна на $\langle a,b\rangle$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in \langle a, b \rangle : |x_1 - x_2| < \delta \ |f(x_1) - f(x_2)| < \varepsilon$$

Или для метрического пространства:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \ \rho(x_1, x_2) < \delta \ \rho(f(x_1), f(x_2)) < \varepsilon$$

Отличие от непрерывности на отрезке в том, что δ зависит только от ε и подходит для всех $x_1,x_2.$

1.6 Площадь, аддитивность площади, ослабленная аддитивность

 \mathcal{E} — множество всех ограниченных фигур в \mathbb{R}^2 ("фигура" = подмножество \mathbb{R}^2) Площадь это $\sigma:\mathcal{E}\to\mathbb{R}_+$, такое что:

- 1. $A \in \mathcal{E}$ $A = A_1 \sqcup A_2$ $\sigma A = \sigma A_1 + \sigma A_2$ (конечная аддитивность)
- 2. $\sigma([a, b] \times [c, d]) = (d c)(b a)$

- 1. Монотонна: $E \subset D \Rightarrow \sigma E \leq \sigma D$
- 2. Нормирована
- 3. Ослабленная аддитивность: $E\in\mathcal{E}$ $E=E_1\cup E_2$ $E_1\cap E_2$ вертикальный отрезок, E_1 и E_2 лежат каждый в своей полуплоскости относительно этого отрезка $\Rightarrow \sigma E=\sigma E_1+\sigma E_2$

Отрезок вертикальный, потому что этого требует определение определенного интеграла.

1.7 ! Определенный интеграл

$$f:[a,b]\to\mathbb{R};f\geq0$$

Под графиком (ПГ)
$$(f, [a, b]) = \{(x, y) : x \in [a, b]; 0 \le y \le f(x)\}$$

 $f:[a,b]\to\mathbb{R}$, непр.

$$\int_a^b f = \int_a^b f(x) dx := \sigma \Pi \Gamma(f_+, [a,b]) - \sigma \Pi \Gamma(f_-, [a,b])$$

1.8 Положительная и отрицательная срезки

 $f:\langle a,b\rangle\to\mathbb{R}$

 $f_{+} := \max(f, 0) -$ положительная срезка

 $f_{-} := \max(-f, 0)$ — отрицательная срезка

Итоговый конспект 3 из 57

1.9 Среднее значение функции на промежутке

Среднее значение функции на промежутке:

$$\frac{\int_{a}^{b} f(x)dx}{b-a}$$

1.10 Кусочно-непрерывная функция

 $f:[a,b] \to \mathbb{R}$, кусочно непрерывна f — непр. на [a,b] за исключением конечного числа точек, в которых разрывы I рода Пример. $f(x) = [x], x \in [0,2020]$

1.11 Почти первообразная

 $F:[a,b] o \mathbb{R}$ — почти первообразная кусочно непрерывной функции f: F — непр. и $\exists F'(x) = f(x)$ всюду, кроме конечного числа точек Пример. $f = \mathrm{sign}\, x, x \in [-1,1]$ F:=|x|

1.12 Функция промежутка, аддитивная функция промежутка

 $Segm\langle a,b\rangle=\{[p,q]:[p,q]\subset\langle a,b\rangle\}$ — множество всевозм. отрезков, лежащих в $\langle a,b\rangle$ Функция промежутка $\Phi:Segm\langle a,b\rangle\to\mathbb{R}$ Аддитивная функция промежутка: Φ — функция промежутка и

$$\forall [p,q] \in Segm \langle a,b \rangle \ \forall r: p < r < q \quad \Phi([p,q]) = \Phi([p,r]) + \Phi([r,q])$$

1.13 Плотность аддитивной функции промежутка

Плотность аддитивной функции промежутка: $f:\langle a,b\rangle \to \mathbb{R}$ — плотность Φ , если:

$$\forall \delta \in Segm\langle a,b\rangle \quad \inf_{x \in \delta} f(x) \cdot len_{\delta} \leq \Phi(\delta) \leq \sup f \cdot len_{\delta}$$

1.14 Выпуклая функция

 $f:\langle a,b
angle
ightarrow\mathbb{R}$ — выпуклая

$$\forall x, y \in \langle a, b \rangle \quad \forall \alpha \in [0, 1] \quad f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Примечание. f — выпуклая \Leftrightarrow всякая хорда графика f расположена "выше" графика (нестрого выше) \Leftrightarrow $\mathrm{H}\Gamma(f,\langle a,b\rangle)\{(x,y):x\in\langle a,b\rangle\ y\geq f(x)\}$

 $f:\langle a,b
angle
ightarrow\mathbb{R}$ — строго выпуклая

$$\forall x, y \in \langle a, b \rangle \quad \forall \alpha \in (0, 1) \quad f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

Итоговый конспект 4 из 57

1.15 Выпуклое множество в \mathbb{R}^m

 $A \subset \mathbb{R}^m$ — выпуклое множество в \mathbb{R}^m , если

$$\forall x, y \in A, \alpha \in [0, 1] \quad \alpha x + (1 - \alpha)y \in A$$

Это определение с вики

1.16 Надграфик

Надграфик функции $f:\langle a,b\rangle\to\mathbb{R}$ это множество $\{(x,y)\mid x\in\langle a,b\rangle,y\geq f(x)\}$

1.17 Опорная прямая

 $A \subset \mathbb{R}^2$ — вып. $l \subset \mathbb{R}^2$ — прямая l — опорная прямая к A, если:

- 1. A содержится в одной полуплоскости относительно l
- 2. $l \cap A \neq \emptyset$

1.18 Гладкий путь, вектор скорости, носитель пути

$$\begin{split} \gamma: [a,b] &\to \mathbb{R}^m - \text{непр.} \\ \gamma(a) &- \text{начало; } \gamma(b) - \text{конец} \\ \gamma: t &\mapsto \begin{pmatrix} \gamma_1(t) \\ \gamma_2(t) \\ \vdots \\ \gamma_m(t) \end{pmatrix}; \gamma_i - \text{коорд. функции} \end{split}$$

Если все $\gamma_i \in C^1[a,b]$, то γ — гладкий путь.

 $C_{\gamma}:=\gamma([a,b])$ — носитель пути.

Вектор скорости:

$$\gamma'(t) = \lim_{\Delta t \to 0} \frac{\gamma(t + \Delta t) - \gamma(t)}{\Delta t} = \lim \begin{pmatrix} \frac{\gamma_1(t + \Delta t) - \gamma_1(t)}{\Delta t} \\ \vdots \\ \frac{\gamma_m(t + \Delta t) - \gamma_m(t)}{\Delta t} \end{pmatrix} = \begin{pmatrix} \gamma'_1(t) \\ \gamma'_2(t) \\ \vdots \\ \gamma'_m(t) \end{pmatrix}$$

1.19 Длина гладкого пути

Длина пути — фукнция l, заданная на множестве гладких путей в \mathbb{R}^m , такая что:

- 1. $l \ge 0$
- 2. l аддитивна: $\forall [a,b] \ \forall \gamma: [a,b] \to \mathbb{R}^m \ \forall c \in (a,b) \ l(\gamma) = l(\gamma|_{[a,c]}) + l(\gamma|_{[c,b]})$
- 3. $\forall \gamma, \tilde{\gamma}$ гладкие пути, $C_{\gamma}, C_{\tilde{\gamma}}$ носители путей Если $\exists T: C_{\gamma} \to C_{\tilde{\gamma}}$ сжатие: $(\forall M, M' \; \rho(T(M), T(M')) \leq \rho(M, M'))$, тогда $l(\tilde{\gamma}) \leq l(\gamma)$
- 4. Нормировка: γ гладкий путь, $\gamma(t) = vt + u; \ u, v \in \mathbb{R}^m$:

$$l(\gamma) = \rho(\gamma(a), \gamma(b))$$

Итоговый конспект 5 из 57

1.20 Формулы для длины пути: в \mathbb{R}^m , в полярных координатах, длина графика

1.20.1 B \mathbb{R}^m

$$\gamma \in C^1([a,b] o \mathbb{R}^m)$$
 Тогда $l(\gamma) = \int\limits_a^b ||\gamma'(t)|| dt$

1.20.2 В полярных координатах

Длина кривой $r=r(\varphi)$ в полярных координатах, $\varphi\in[\alpha,\beta]$

$$x = r(\varphi)\cos\varphi \quad y = r(\varphi)\sin\varphi$$

$$\gamma'(\varphi) = \begin{pmatrix} r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi \\ r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi \end{pmatrix}$$

$$||\gamma'(\varphi)|| = \sqrt{(r'(\varphi))^2 + (r(\varphi))^2 - 2r'(\varphi)r(\varphi)\cos\varphi\sin\varphi + 2r'(\varphi)r(\varphi)\cos\varphi\sin\varphi}$$

$$||\gamma'(\varphi)|| = \sqrt{(r'(\varphi))^2 + (r(\varphi))^2}$$

$$l = \int_{\alpha}^{\beta} \sqrt{r^2 + (r')^2} d\varphi$$

1.20.3 Длина графика

Длина графика $y = f(x), f \in C^1$ на отрезке [a, b]

$$\gamma(x) = \begin{pmatrix} x \\ f(x) \end{pmatrix} \quad \gamma'(x) = \begin{pmatrix} 1 \\ f'(x) \end{pmatrix} \quad ||\gamma'(x)|| = \sqrt{1 + (f'(x))^2}$$
$$l = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

1.21 Вариация функции на промежутке

$$\gamma: [a,b] \to \mathbb{R}^n \quad t_0 = a < t_1 < t_2 < \ldots < t_n = b$$
 $\tau = \{t_0 \ldots t_n\}$ — дробление отрезка.

Тогда вариация функции γ на отрезке [a,b] это l:

$$l(\gamma) = \sup_{\tau} \left\{ \sum_{i=1}^{n} \rho(\gamma(t_{i-1}), \gamma(t_i)) \right\}$$

1.22 Дробление отрезка, ранг дробления, оснащение

Дробление отрезка [a,b] это разбиение отрезка на n частей следующим образом:

$$x_0 = a < x_1 < x_2 < \ldots < x_n = b \quad [x_{i-1}, x_i]$$

Ранг (мелкость) дробления — длина самого длинного из отрезков дробления:

$$\tau = \{x_0 \dots x_n\} \quad |\tau| = \max(x_i - x_{i-1})$$

Оснащение — множество точек $\{\xi_1 \dots \xi_n\}: \xi_i \in [x_{i-1}, x_i]$

Итоговый конспект 6 из 57

1.23 Риманова сумма

Интегральная *(риманова)* сумма для разбиения $\{x_i\}$, произвольной функции f и оснащения $\{\xi_i\}$ это следующая сумма:

$$\sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$

1.24 Постоянная Эйлера

 γ — постоянная Эйлера. pprox 0.577

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right)$$

1.25 Допустимая функция

 $f:[a,b) \to \mathbb{R}$ $-\infty < a < b \le +\infty$ f допустима, если f — кусочно-непрерывна на [a,A] $\forall A \in (a,b)$

1.26 ! Несобственный интеграл, сходимость, расходимость

$$\Phi(A) := \int_{a}^{A} f$$

$$?\exists \lim_{A \to b-0} \Phi(A)$$

- Если да, то это несобственный интеграл $\int\limits_a^{\to b} f dx.$
- Если этот предел конечный, то тот несобственный интеграл сходится.
- Если этот предел бесконечный или не существует, то несобственный интеграл расходится.

1.27 Критерий Больцано-Коши сходимости несобственного интеграла

$$\lim_{A\to b-0}\int_a^A \ \text{кон.} \Leftrightarrow \forall \varepsilon>0 \ \ \exists \Delta\in(a,b) \ \ \forall A,B\in(\Delta,b) \quad \left|\int_A^B f\right|<\varepsilon$$

Доказательство. Тривиально из определения предела.

1.28 Гамма функция Эйлера

 Γ — гамма-функция Эйлера

$$\Gamma(t) = \int_0^{+\infty} x^{t-1} e^{-x} dx$$

Итоговый конспект 7 из 57

1.29 ! Верхний и нижний пределы

- $y_n := \sup(x_n, x_{n+1}, x_{n+2}, \ldots)$
- $z_n := \inf(x_n, x_{n+1}, x_{n+2}, \ldots)$
- Верхний предел $x_n \colon \overline{\lim_{n \to +\infty}} x_n \vcentcolon= \lim_{n \to +\infty} y_n$
- Нижний предел x_n : $\lim_{n \to +\infty} x_n := \lim_{n \to +\infty} z_n$

1.30 Частичный предел

Частичный предел вещественной последовательности x_n — предел вдоль подпоследовательности n_k :

$$n_k \to +\infty, n_1 < n_2 < \dots \quad \lim x_{n_k} \in \overline{\mathbb{R}}$$

1.31 ! Абсолютно сходящийся интеграл, ряд

f — допустимая функция на [a,b) $\int_a^b f$ — абсолютно сходится, если:

- 1. $\int_a^b f$ сходится
- 2. $\int_{a}^{b} |f| \text{сходится}$

Ряд A абсолютно сходится, если 1 и 2:

- 1. $\sum a_n \operatorname{cx.}$
- 2. $\sum |a_n| \operatorname{cx.}$

1.32 Числовой ряд, сумма ряда, сходимость, расходимость

 $a_1+a_2+\ldots$, $\sum\limits_{i=1}^{+\infty}a_i$ — числовой ряд ($a_i\in\mathbb{R}$) $\qquad \forall N\in\mathbb{N} \quad S_n:=\sum\limits_{i=1}^na_i$ — частичная сумма — Если $\exists \lim_{N\to+\infty}S_n=S\in\mathbb{R}$, ряд сходится, иначе ряд расходится.

1.33 N-й остаток ряда

$$\sum\limits_{k=N}^{+\infty}a_k-N$$
-й остаток ряда

1.34 Критерий Больцано-Коши сходимости числового ряда

Критерий сходимости ряда Больцано-Коши:

$$\sum a_n \ \text{сходится} \ \Leftrightarrow \forall \varepsilon > 0 \ \exists N \ \forall k > N \ \forall m \in \mathbb{N} \quad |a_{k+1} + a_{k+2} + \ldots + a_{k+m}| < \varepsilon$$

Доказательство. Тривиально.

Итоговый конспект 8 из 57

1.35 Произведение рядов

$$\begin{array}{l} \sum a_k, \sum b_k \\ \gamma: \mathbb{N} \to \mathbb{N} \times \mathbb{N} - \text{биекция, } \gamma(k) = (\varphi(k), \psi(k)) \\ \textbf{Произведение рядов } A \text{ и } B - \text{ряд } \sum_{k=1}^{+\infty} a_{\varphi(k)} b_{\psi(k)} \end{array}$$

1.36 Произведение степенных рядов

 $x \in \mathbb{R}, x$ — фиксированный

$$\sum_{k=0}^{+\infty} a_k x^k \sum_{j=0}^{+\infty} b_j x^j = \sum_{n=0}^{+\infty} c_n x^n$$
$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0$$

Это называется произведение степенных рядов.

1.37 Скалярное произведение, евклидова норма и метрика в \mathbb{R}^m

$$\langle x, y \rangle = \sum_{i=1}^{m} x_i y_i$$
$$|x| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{m} x_i^2}$$
$$\rho(x, y) := |x - y|$$

1.38 Окрестность точки в \mathbb{R}^m , открытое множество

 $B(a,r)=\{x\in\mathbb{R}^m:|x-a|< r\}$ — открытый шар, r-окрестность точки a a — внутренняя точка множества D, если $\exists U(a):U(a)\subset D$, т.е. $\exists r>0:B(a,r)\subset D$ D — открытое множество, если $\forall a\in D:a$ — внутренняя точка D

1.39 $\,!\,$ Сходимость последовательности в \mathbb{R}^m , покоординатная сходимость

 $\sphericalangle x_n$ — посл. в $\mathbb{R}^m, a \in \mathbb{R}^m$

$$x_n \to a \Leftrightarrow \forall U(a) \ \exists N \ \forall n > N \ x_n \in U(a)$$

Норма и скалярное произведение сохраняют сходимость:

$$x_n \to a, y_n \to b \Rightarrow \langle x_n, y_n \rangle \to \langle a, b \rangle, |x_n| \to |a|$$

Сходимость функций:

$$f:O\subset\mathbb{R}^m o\mathbb{R}^n$$
 a — предельная точка $O,L\in\mathbb{R}^n$

$$\lim_{x \to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x : 0 < |x - a| < \delta \quad |f(x) - L| < \varepsilon$$

То же самое, но по Гейне:

$$\forall (x_k) : \begin{cases} x_k \in O \subset \mathbb{R}^m \\ x_k \to a \\ \forall k \ x_k \neq a \end{cases} \qquad f(x_k) \xrightarrow[k \to +\infty]{} L$$

Итоговый конспект 9 из 57

Покоординатная сходимость:

$$\lim_{x \to a} f(x) = L \Leftrightarrow \forall i : 1 \le i \le n : \lim_{x \to a} f(x)_i = L_i$$
$$x_k \to a \Leftrightarrow \forall i : 1 \le i \le m : x_i^{(k)} \xrightarrow[k \to +\infty]{} a_i$$

1.40 ! Предельная точка, замкнутое множество, замыкание

a — предельная точка множества D, если $\forall \dot{U}(a) \ \dot{U}(a) \cap D \neq \emptyset$ D — замкнутое множество, если оно содержит все свои предельные точки. Замыканием множества D называется $\overline{D} = D \cup ($ множество предельных точек D)

1.41 Компактность, секвенциальная компактность, принцип выбора Больцано-Вейерштрасса

$$K$$
компактно, если $K\subset\bigcup_{\alpha\in A}\underbrace{G_\alpha}_{\mathrm{otkp.}}\Rightarrow K\subset\bigcup_{i=1}^nG_{\alpha_i}$

 $\mathbb{B} \mathbb{R}^m$ комп. \Leftrightarrow замкн. и огр.

Секвенциальная компактность: $\forall (x_n), x_n \in K \Rightarrow \exists n_k, a \in K : x_{n_k} \to a$

Принцип выбора Больцано-Вейерштрасса: если в \mathbb{R}^m (x_n) — ограниченная последовательность, то у неё существует сходящаяся подпоследовательность.

1.42 Координатная функция

 $\sphericalangle F:X\to \mathbb{R}^m;x\mapsto F(x)=(F_1(x),\dots,F_m(x)),$ то $F_1(x)\dots F_m(x)$ — координатные функции отображения F

1.43 Двойной предел, повторный предел

$$D_1,D_2\subset\mathbb{R},$$
 a — пр. точка $D_1,$ b — пр. точка D_2 $(D_1\setminus\{a\}) imes(D_2\setminus\{b\})\subset D$ $f:D o\mathbb{R}$ $orall x\in D_1\setminus\{a\}$ \exists кон. $\varphi(x)=\lim_{y o b}f(x,y)$

Если $\exists \lim_{x \to a} \varphi(x)$ — это повторный предел.

Двойной предел:

$$\lim_{\substack{x \to a \\ y \to b}} f(x,y) = A \Leftrightarrow \forall W(A) \ \exists U(a), V(b) \ \forall x \in \dot{U}(a), \forall y \in \dot{V}(b) \quad f(x,y) \in W(A)$$

1.44 Предел по направлению, предел вдоль пути

Предел по направлению l, |l| = 1:

$$\lim_{t \to 0+0} f(a + t\vec{l})$$

Предел вдоль пути (непрерывного) $\gamma: [-\alpha, \alpha] \to \mathbb{R}^m$ функции $f: \mathbb{R}^m \to \mathbb{R}$:

$$\lim_{t\to 0} f(\gamma(t))$$

Итоговый конспект 10 из 57

1.45 ! Предел отображения (определение по Коши и по Гейне)

Дано выше. (1.39, стр. 9)

1.46 Линейный оператор

Линейное отображение = линейный оператор

$$f: \mathbb{R}^m \to \mathbb{R}^n$$
 – лин. $\forall \alpha, \beta \in \mathbb{R} \ \forall x, y \in \mathbb{R}^m \ f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$

1.47 ! Отображение бесконечно малое в точке.

Бесконечно малое отображение $\varphi: E \subset \mathbb{R}^m \to \mathbb{R}^l$

 x_0 — предельная точка E

 φ — бесконечно малое отображение при $x \to x_0 \ \varphi(x) \xrightarrow{x \to x_0} 0$

1.48
$$o(h)$$
 при $h \to 0$

o(h) (оно же o(|h|))

 $\varphi: E \subset \mathbb{R}^m \to \mathbb{R}^l, 0$ — предельная точка E

 $\varphi(h)=o(h)$ при $h\to 0,$ если $\frac{\varphi(h)}{|h|}\xrightarrow{h\to 0} 0$

По-другому: $\exists \alpha: E \to \mathbb{R}^l$ — бесконечно малое при $h \to 0$:

$$\varphi(h) = |h|\alpha(h)$$

1.49 ! Отображение, дифференцируемое в точке

 $F:E\subset\mathbb{R}^m o\mathbb{R}^l,a\in IntE$ F — дифф. в точке a, если:

 \exists лин. оп. $L:\mathbb{R}^m \to \mathbb{R}^l$ \exists бесконечно малое $\alpha:E \to \mathbb{R}^l:$ $F(a+h)=F(a)+Lh+|h|\alpha(h),h \to 0$

$$F(a+h) = F(a) + Lh + o(h)$$

$$x := a + h$$

$$F(x) = F(a) + L(x - a) + |x - a|\alpha(x - a)$$

1.50 ! Производный оператор, матрица Якоби, дифференциал

Оператор L из определения — **производный оператор** отображениия F в точке a ("производная"), обозначается F'(a).

Матрица F'(a) — матрица Якоби F в точке a

Выражение F'(a)h называется **дифференциалом** отображения F в точке a.

Это понимают как:

- 1. Производный оператор $h\mapsto F'(a)h$
- 2. Отображение $E \times \mathbb{R}^m \to \mathbb{R}^l \quad (x,h) \mapsto F'(x) \cdot h$

Итоговый конспект 11 из 57

1.51 Частные производные

 $f:E\subset\mathbb{R}^m o\mathbb{R},a\in IntE$ Фиксируем $k\in\{1\dots m\}$ $\varphi_k(t):=f(a_1,a_2\dots t\dots a_m)$ $\lim\limits_{h\to 0}rac{arphi_k(a_k+h)-arphi_k(a_k)}{h}=arphi_k'(a_k)$ называется частной производной функции f в точке a

1.52 ! Бесконечное произведение

$$\prod_{i=1}^{+\infty} p_n: \prod_N:=\prod_{n=1}^N p_n \lim_{n\to +\infty} \prod_N=P$$

•
$$P\in (0,+\infty)\Rightarrow \prod\limits_{i=1}^{+\infty}p_n$$
 сходится к P

•
$$P=+\infty \Rightarrow \prod\limits_{i=1}^{+\infty} p_n$$
 расходится к $+\infty$

•
$$P=0\Rightarrow\prod_{i=1}^{+\infty}p_n$$
 расходится к 0

• $\exists \lim_{n} \prod_{n} :$ расходится

1.53 ! Классы $C^r(E)$

 $E \subset \mathbb{R}^m$, откр. Класс $C^r(E), r \in \mathbb{N}$:

 $f\in C^r(E)$, если у f существуют все частные производные порядка $\leq r$ на всём E и они непрерывны.

$$C(E)$$
 — непр. функции $=C^0(E)$

$$C(E) \stackrel{\neq}{\supset} C^1(E) \stackrel{\neq}{\supset} C^2(E) \dots$$

1.54 Мультииндекс и обозначения с ним

Мультииндекс (для \mathbb{R}^m) — вектор $(k_1, k_2 \dots k_m), k_i \in \mathbb{N} \cup \{0\}$

•
$$|k| := \sum_{i=1}^m k_i$$
 — высота мультииндекса

•
$$k! = k_1!k_2!\ldots k_m!$$

•
$$x \in \mathbb{R}^m$$
 $x^k = x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}$

•
$$f^{(k)} = \frac{\partial^{|k|} f}{\partial x^k} f = \frac{\partial^{|k|} f}{\partial x_1^{k_1} \partial x_2^{k_2} ... \partial x_m^{k_m}}$$

2 Теоремы

2.1 Критерий монотонности функции. Следствия

$$f \in C(\langle a,b \rangle)$$
, дифф. в (a,b)

Тогда
$$f$$
 — возрастает $\Leftrightarrow \forall x \in (a,b) \;\; f'(x) \geq 0$

Доказательство. "
$$\Rightarrow$$
" По определению $f' ext{ } footnote{f(x+h)-f(x)}{h} \geq 0$ " \Leftarrow " $x_1 > x_2$, по т. Лагранжа: $\exists c: f(x_1) - f(x_2) = f'(c)(x_1 - x_2) \geq 0$

$$C$$
ледствие. $f:\langle a,b\rangle\to\mathbb{R}$, тогда:

$$f = \mathrm{const} \Leftrightarrow (f \in C(\langle a, b \rangle) - \mathrm{дифф}.\ \mathrm{Ha}\ (a, b), f' \equiv 0)$$

Итоговый конспект 12 из 57

Cледствие. $f \in C\langle a,b \rangle$, дифф. на (a,b). Тогда: f строго возрастает \Leftrightarrow (1) и (2)

(1) $f' \ge 0$ на (a, b)

 $\ \ 2) \ f'\not\equiv 0$ ни на каком промежутке

Доказательство. "⇒" очевидно "⇐" По лемме Ферма.

Следствие. О доказательстве неравенств

$$g,f\in C([a,b
angle)$$
, дифф. в (a,b) $f(a)\leq g(a); \forall x\in (a,b) \ f'(x)\leq g'(x)$ Тогда $\forall x\in [a,b
angle \ f(x)\leq g(x)$

Доказательство. $g - f - \text{возр.}, g(a) - f(a) \ge 0$

2.2 Теорема о необходимом и достаточном условиях экстремума

 $f:\langle a,b \rangle \to \mathbb{R}$ $x_0 \in (a,b)$ f — дифф. на (a,b) Тогла:

1.
$$x_0 - \text{лок.}$$
 экстремум $\Rightarrow f'(x_0) = 0$

2.
$$f - n$$
 раз дифф. в x_0

$$f'(x_0) = f''(x_0) = \ldots = f^{(n-1)}(x_0) = 0$$
 Если $f^{(n)}(x_0) < 0$, то
$$\begin{cases} n - \text{чет.}: & x_0 - \text{локальный максимум} \\ n - \text{нечет.}: & x_0 - \text{не экстремум} \end{cases}$$
 Если $f^{(n)}(x_0) > 0$, то
$$\begin{cases} n - \text{чет.}: & x_0 - \text{локальный минимум} \\ n - \text{нечет.}: & x_0 - \text{не экстремум} \end{cases}$$

Доказательство. 1. т. Ферма

2. ф. Тейлора

$$f(x) = T_n(f, x_0)(x) + o((x - x_0)^n)$$

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

при x, близких к x_0 :

$$sign(f(x) - f(x_0)) = sign\left(\frac{f^{(n)}(x_0)}{n!}(x - x_0)^n\right)$$

Тогда при чётном n

$$sign(f(x) - f(x_0)) = sign f^{(n)}(x_0) \Rightarrow x_0 - экстр.$$

При нечётном n

$$\operatorname{sign}(f(x) - f(x_0)) = \begin{cases} f^{(n)}(x_0), & x > x_0 \\ -f^{(n)}(x_0), & x < x_0 \end{cases} \Rightarrow x_0 - \operatorname{He}$$
 экстр.

Итоговый конспект 13 из 57

Теорема Кантора о равномерной непрерывности

 $f: X \to Y, X$ — секвенциальный компакт, f — непр. на XТогда f — равномерно непр.

Доказательство. От противного.

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x_n, \overline{x}_n : \rho(x_n, \overline{x}_n) < \delta \quad \rho(f(x_n), f(\overline{x}_n)) \ge \varepsilon$$
$$\delta := \frac{1}{n} \ \exists x_n, \overline{x}_n : \rho(x_n, \overline{x}_n) < \delta \quad \rho(f(x_n), f(\overline{x}_n)) \ge \varepsilon$$

Выберем $x_{n_k} \to \tilde{x}, \overline{x}_{n_k} \to \tilde{\tilde{x}}$

$$\rho(\tilde{x},\tilde{\tilde{x}}) \leq \lim_{n \to \infty} \delta = 0 \Rightarrow \tilde{x} = \tilde{\tilde{x}}$$

Тогда $f(x_{n_k}) \to f(\tilde{x}), f(\overline{x}_{n_k}) \to f(\tilde{x})$, противоречие с $\rho(f(x_n), f(\overline{x}_n)) \ge \varepsilon$

2.4 Теорема Брауэра о неподвижной точке

 $f: [0,1] \times [0,1] \to [0,1] \times [0,1]$, непр. Тогда $\exists x \in [0,1]^2 : f(x) = x$, т.е. есть неподвижная точка.

Обобщенный вариант:

1.
$$f:[0,1]^m \to [0,1]^m$$
 — непр.

2.
$$f: B(0,1) \subset \mathbb{R}^m \to B(0,1)$$
 — непр.

3.
$$f: S(0,1) \subset \mathbb{R}^m \to S(0,1)$$
 — непр.

Доказательство. $\rho:[0,1]^2\to\mathbb{R}$

 $\rho(x,y) = \max(|x_1 - y_1|, |x_2 - y_2|) - \text{непр. в } [0,1]^2$

От противного — пусть $\forall x \in [0,1]^2$ $f(x) \neq x$

Тогда $\forall x \quad \rho(f(x), x) > 0 \quad x \mapsto \rho(f(x), x) - \text{непр.}, > 0$

По т. Вейерштрасса $\exists \varepsilon > 0 \ \forall x \in [0,1] \ \rho(f(x),x)) > \varepsilon$

По т. Кантора для f: для этого $\varepsilon \exists \delta < \varepsilon$:

$$\forall x, \overline{x} : ||x - \overline{x}|| < \delta \quad ||f(x) - f(\overline{x})|| < \varepsilon$$

Можно писать не $||\cdot||$, а ρ .

Возьмём $n:\frac{\sqrt{2}}{n}<\delta$

Построим доску Hex(n+1, n+1), где n+1 — число узлов.

Логические координаты узла (v_1,v_2) $v_1,v_2\in\{0\dots n\}$ имеют физические координаты, то есть

узлу сопоставляется точка на квадрате с координатами
$$\left(\frac{v_1}{n},\frac{v_2}{n}\right)$$
 $K(V):=\min\{i\in\{1,2\}:|f(\frac{v}{n})-\frac{v_i}{n}|\geq\varepsilon\}$ В точке $A=(0,k)\leadsto(0,\frac{k}{n})$

$$\left| f_1(\frac{A}{n}) - \frac{A_1}{n} \right| \ge \varepsilon$$

$$A_1=0; f_1(\frac{A}{n})\geq 0\Rightarrow$$
 при $v=A$

$$f_1(\frac{v}{n}) - \frac{v_1}{n} \ge 0$$

B точке $B=(n,l) \rightsquigarrow (1,\frac{l}{n})$

$$\left| f_1\left(\frac{B}{n}\right) - \frac{B_1}{n} \right| \ge \varepsilon$$

Итоговый конспект 14 из 57

При v = B

$$f_1\left(\frac{v}{n}\right) - \frac{v_1}{n} \ge -\varepsilon$$

Надо дописать

2.5 Теорема о свойствах неопределенного интеграла

f,g имеют первообразную на $\langle a,b \rangle$. Тогда

1. Линейность:

$$\int (f+g) = \int f + \int g$$

$$\forall \alpha \in \mathbb{R} \int \alpha f = \alpha \int f$$

2. $\varphi(c,d) \to \langle a,b \rangle$

$$\int f(\varphi(t)) \cdot \varphi'(t)dt = \left(\int f(x)dx\right)|_{x=\varphi(t)} = F(\varphi(t))$$

Частный случай: $\alpha, \beta \in \mathbb{R}$:

$$\int f(\alpha t + \beta)dt = \frac{1}{\alpha}F(\alpha t + \beta)$$

3. f,g — дифф. на $\langle a,b \rangle$; f'g — имеет первообр.

Тогда fg' имеет первообразную и

$$\int fg' = fg - \int f'g$$

Доказательство. 1. (F+G)'=F'+G' $(\alpha F)'=\alpha F'$

2.
$$(F(\varphi(t)))' = f(\varphi(t)) \cdot \varphi'(t)$$

3.
$$(fg - \int f'g)' = f'g + fg' - f'g = fg'$$

2.6 ! Интегрирование неравенств. Теорема о среднем

 $f,g\in C[a,b]\quad f\leq g$. Тогда

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

Доказательство.

$$\Pi\Gamma(f_{+}) \subset \Pi\Gamma(g_{+}) \Rightarrow \sigma\Pi\Gamma(f_{+}) \leq \sigma\Pi\Gamma(g_{+})$$

$$\Pi\Gamma(f_{-}) \supset \Pi\Gamma(g_{-}) \Rightarrow \sigma\Pi\Gamma(f_{-}) \geq \sigma\Pi\Gamma(g_{-})$$

$$\sigma\Pi\Gamma(f_{+}) - \sigma\Pi\Gamma(f_{-}) \leq \sigma\Pi\Gamma(g_{+}) - \sigma\Pi\Gamma(g_{-})$$

Теорема о среднем: $f \in C[a,b] \Rightarrow \exists c \in [a,b]: \int_a^b f = f(c)(b-a)$

M3137y2019

Итоговый конспект 15 из 57

Доказательство.

$$\min f(b-a) \le \int_a^b f \le \max f(b-a)$$

$$\min f \le \frac{1}{b-a} \int_a^b f \le \max f$$

$$f(c) := \frac{1}{b-a} \int_a^b f$$

Такое c существует, т.к. $f \in C[a,b]$

2.7 Теорема Барроу

 $f \in C[a,b]$ Ф — интеграл с переменным верхним пределом. Тогда

$$\forall x \in [a, b] \quad \Phi'(x) = f(x)$$

Доказательство. Зафиксируем $x \in [a, b]$ $y > x, y \le b$

$$\frac{\Phi(y) - \Phi(x)}{y - x} = \frac{\int_{a}^{y} f - (\int_{a}^{y} f + \int_{y}^{x} f)}{y - x} = \frac{\int_{x}^{y} f}{y - x} = \frac{f(c)(y - x)}{y - x} = f(c) \xrightarrow[y \to x+0]{} f(x)$$

x > y

$$\frac{\Phi(y) - \Phi(x)}{y - x} = \frac{1}{x - y} \int_{y}^{x} f(x) dx dx = f(c) \xrightarrow{y \to x - 0} f(x)$$

Формула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функ-2.8

 $f\in C[a,b]$ F — первообр. f Тогда $\int_a^b f=F(b)-F(a)$

Доказательство. $\Phi(x) = \int_a^x f$ — первообр. $\exists C: F = \Phi + C$

$$\int_{a}^{b} f = \Phi(b) - \Phi(a) = F(b) - F(a)$$

Для кусочно-непрерывных:

f — кус. непр. на [a, b], F — почти первообразная

Доказательство.

$$\int_{a}^{b} f = \sum_{x_{k-1}}^{x_k} \int_{x_{k-1}}^{x_k} f = \sum_{x_{k-1}}^{x_k} F(t) \Big|_{x_{k-1}}^{x_k} = \sum_{x_{k-1}}^{x_k} F(x_k) - F(x_{k-1}) = F(b) - F(a)$$

Итоговый конспект 16 из 57

2.9 Лемма об ускоренной сходимости

1. $f,g:D\subset X\to\mathbb{R}$ a — предельная точка D

$$\exists U(a):$$
 при $x\in \dot{U}(a)\cap D$ $f(x)\neq 0, g(x)\neq 0$

Пусть
$$\lim_{x\to a} f(x) = 0$$
 $\lim_{x\to a} g(x) = 0$

Тогда

$$\forall x_k \to a \quad (x_k \neq a, x_k \in D) \quad \exists y_k \to a \quad (y_k \neq a, y_k \in D)$$

такое, что

$$\lim_{k \to +\infty} \frac{f(y_k)}{g(x_k)} = 0 \quad \lim_{k \to +\infty} \frac{g(y_k)}{g(x_k)} = 0$$

Таким образом, $g(y_k) \to 0$ быстрее, чем $g(x_k) \to 0$

2. То же самое, но $\lim f(x) = +\infty$, $\lim g(x) = +\infty$

Доказательство. 1. Очевидно.

$$\forall k \quad \exists N \quad \forall n > N \quad |f(x_n)| < |g(x_k)| \frac{1}{k} \quad |g(x_n)| < |g(x_k)| \frac{1}{k}$$

 $\varepsilon := |g(x_k)|$

$$k=1$$
 $y_1:=$ какой-нибудь $x_n:\left|rac{f(x_n)}{g(x_k)}
ight|<1$ $\left|rac{g(x_n)}{g(x_k)}
ight|<1$ $k=2$ $y_2:=$ какой-нибудь $x_n:\left|rac{f(x_n)}{g(x_k)}
ight|<rac{1}{2}$ $\left|rac{g(x_n)}{g(x_k)}
ight|<rac{1}{2}$

:

2. (а) Частный случай: Пусть $g(x_n)$ возрастает. Берем $k:m:=\min\{n:|f(x_n)|\geq \sqrt{g(x_k)}$ или $|g(x_n)|\geq \sqrt{g(x_k)}\}$

$$y_k := x_{m-1} \Rightarrow |f(y_k)| \le \sqrt{g(x_k)} |g(y_k)| \le \sqrt{g(x_k)}$$

$$\left| \frac{f(y_k)}{g(x_k)} \right| \le \frac{\sqrt{g(x_k)}}{g(x_k)} = \frac{1}{\sqrt{g(x_k)}} \xrightarrow[k \to +\infty]{} 0$$

$$\left| \frac{g(y_k)}{g(x_k)} \right| \le \frac{\sqrt{g(x_k)}}{g(x_k)} = \frac{1}{\sqrt{g(x_k)}} \xrightarrow[k \to +\infty]{} 0$$

Зачем нужно возрастание?

(b) Общий случай: $\tilde{g}(x_k) := \inf\{g(x_n), n = k, k+1 \ldots\}$ $\tilde{g}(x_k) \uparrow, \tilde{g}(x_k) \leq g(x_k)$. Как в пункте (a) построим y_k

$$\frac{f(y_k)}{g(x_k)} \le \frac{f(y_k)}{\tilde{g}(x_k)} \le \frac{1}{\sqrt{\tilde{g}(x_k)}} \xrightarrow[k \to +\infty]{} 0$$

$$\frac{g(y_k)}{g(x_k)} \le \frac{g(y_k)}{\tilde{g}(x_k)} \le \frac{1}{\sqrt{\tilde{g}(x_k)}} \to 0$$

Правило Лопиталя

$$\begin{array}{ll} f,g:(a,b)\to\mathbb{R} & a\in\overline{\mathbb{R}}\\ f,g-\text{дифф.},\,g'\neq 0\text{ на }(a,b)\\ \Pi \text{усть } \frac{f'(x)}{g'(x)}\xrightarrow[x\to a+0]{}A\in\overline{\mathbb{R}}\\ \Pi \text{усть } \lim_{x\to a}\frac{f(x)}{g(x)}-\text{ неопределенность }\left\{\frac{0}{0},\frac{+\infty}{+\infty}\right\} \end{array}$$

Тогда $\exists \lim_{x \to a} \frac{f(x)}{g(x)} = A$

Доказательство. $g' \neq 0 \Rightarrow g' - \exp$. знак $\Rightarrow g - \text{монотонна}$.

Для $\frac{0}{0}$ $g(x) \neq 0$ в (a,b)

По Гейне $x_k \to a \ (x_k \neq a, x_k \in (a, b))$

Выберем y_k по лемме об ускоренной сходимости.

$$\frac{f(x_k) - f(y_k)}{g(x_k) - g(y_k)} = \frac{f'(\xi_k)}{g'(\xi_k)} - \text{т. Коши}$$

$$f(x_k) - f(y_k) = \frac{f'(\xi_k)}{g'(\xi_k)} (g(x_k) - g(y_k))$$

$$\frac{f(x_k)}{g(x_k)} - \frac{f(y_k)}{g(x_k)} = \frac{f'(\xi_k)}{g'(\xi_k)} \left(1 - \frac{g(y_k)}{g(x_k)}\right)$$

$$\frac{f(y_k)}{g(x_k)} \to 0 \quad \frac{g(y_k)}{g(x_k)} \to 0$$

 $x_k \to a \quad y_k \to a \quad \xi_k \to a$

Теорема Штольца 2.11

"Неправильное" сложение дробей:

a, b, c, d > 0

$$\frac{a}{b} < \frac{c}{d} \Rightarrow \frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

Доказательство.

$$\frac{a+c}{b+d} - \frac{a}{b} = \frac{ba-ba+bc-ad}{b(b+d)} = \frac{d}{b+d} \left(\frac{c}{d} - \frac{a}{b}\right) > 0$$

$$\frac{c}{d} - \frac{a+c}{b+d} = \frac{bc-ad}{d(b+d)} = \frac{b}{b+d} \left(\frac{c}{d} - \frac{a}{b}\right) > 0$$

Теорема Штольца.

Это дискретная версия правила Лопиталя.

 $y_n \to 0, x_n \to 0$ — строго монот.

$$\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = a \in \mathbb{R}$$

Тогда $\exists \lim \frac{x_n}{y_n} = a$

Примечание. Аналогичное верно, если $x_n \to +\infty, y_n \to +\infty$

Итоговый конспект 18 из 57

Доказательство. 1. a > 0 $(a \neq +\infty)$

$$\forall \varepsilon > 0 \ [\varepsilon < a] \ \exists N_1 \ \forall n > N_1 \ a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

Берем $N > N_1$

$$a - \varepsilon < \frac{x_{N+1} - x_N}{y_{N+1} - y_N} < a + \varepsilon$$

:

$$a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

По неправильному сложению: (оно применимо, т.к. все дроби положительные)

$$a - \varepsilon < \frac{x_n - x_N}{y_n - y_N} < a + \varepsilon$$

 $n \to +\infty$

$$a - \varepsilon < \frac{x_N}{y_N} < a + \varepsilon$$

- 2. $a = +\infty$ доказывается так же
- 3. a < 0 поменяем знак и докажем так же

4. a=0 т.к. знаки x_n-x_{n-1} и y_n-y_{n-1} фикс., a=+0 или a=-0

Для
$$a=+0$$

$$\lim \frac{y_n-y_{n-1}}{x_n-x_{n-1}}=+\infty$$

2.12 Пример неаналитической функции

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

$$f'(x) = \frac{2}{x^3} e^{-\frac{1}{x^2}}, x \neq 0$$

$$f'(0) = ?$$

Следствие из теоремы Лагранжа:

$$\lim_{x \to x_0} f'(x) = A$$
 тогда $f'(x_0) = A$

$$f'(0)=\lim_{x o 0}rac{2}{x^3}\,e^{-rac{1}{x^2}}=\left[rac{0}{0}
ight]=\lim2rac{rac{2}{x^3}\,e^{-rac{1}{x^2}}}{3x^2}=\limrac{4}{3}rac{e^{-rac{1}{x^2}}}{x^5}=$$
 больно, не надо так

$$\lim_{x \to 0} \frac{2}{x^3} e^{-\frac{1}{x^2}} = \lim_{x \to 0} \frac{\frac{2}{x^3}}{e^{\frac{1}{x^2}}} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to 0} \frac{\frac{-6}{x^4}}{\frac{-2}{x^3} e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{\frac{3}{x}}{e^{\frac{1}{x^2}}} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to 0} \frac{\frac{-3}{x^2}}{\frac{-2}{x^3} e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{3}{2e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{3}{$$

$$f'(x) = \begin{cases} \frac{2}{x^3} e^{-\frac{1}{x^2}} & , x \neq 0 \\ 0 & , x = 0 \end{cases}$$

Итоговый конспект 19 из 57

$$f^{(n)}(x) = \begin{cases} P_n\left(\frac{1}{x}\right) \cdot e^{-\frac{1}{x^2}} & , x \neq 0\\ 0 & , x = 0 \end{cases}$$

Заметим, что многочлен Тейлора этой функции при $x\to 0$ не становится точнее при увеличении числа слагаемых, т.к. они все =0. Таким образом, эта функция по определению неаналитическая.

2.13 Интегральное неравенство Чебышева. Неравенство для сумм

Неравенство Чебышева

 $f,g \in C[a,b]$ монот. возр.

 $I_f := \frac{\int_a^b f}{b - a}$

Тогда

$$I_f \cdot I_g \le I_{fg}$$

$$\int_a^b f \int_a^b g \le (b-a) \int_a^b fg$$

Доказательство. $x, y \in [a, b] : x \ge y \Rightarrow f(x) \ge f(y), g(x) \ge g(y)$

$$(f(x) - f(y))(g(x) - g(y)) \ge 0$$

$$f(x)g(x) - f(y)g(x) - f(x)g(y) + f(y)g(y) \ge 0$$

Интегрируем по x по [a,b] и делим на b-a:

$$I_{fg} - f(y)I_g - g(y)I_f + f(y)g(y) \ge 0$$

Интегрируем по y по [a, b] и делим на b - a:

$$I_{fg} - I_f I_g - I_g I_f + I_{fg} \ge 0$$

Дискретное неравенство Чебышева

$$a_1 \le a_2 \le \ldots \le a_n, b_1 \le b_2 \le \ldots \le b_n$$

$$\frac{1}{n} \left(\sum_{i=1}^{n} a_i \right) \cdot \frac{1}{n} \left(\sum b_i \right) \le \frac{1}{n} \sum a_i b_i$$

Доказательство.

$$f(x)=a_i, x\in (i-1,i], i=1\dots n$$
— задана на $(0,n]$
$$g(x)=\dots b_i$$

$$I_fI_g\leq I_{fg}$$

Итоговый конспект 20 из 57

2.14 Свойства определенного интеграла: линейность, интегрирование по частям, замена переменных

Тривиально из свойств неопределенного интеграла: Дано выше. (2.5, стр. 14)

2.15 Иррациональность числа пи

$$H_{n} := \frac{1}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n} \cos t dt = \begin{bmatrix} f = \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n} & g = \sin t \\ df = -2n\left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-1} t dt & dg = \cos t dt \end{bmatrix} =$$

$$= \frac{1}{n!} \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n} \sin t \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{2}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-1} t \sin t =$$

$$= \begin{bmatrix} f = \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-1} t & g = -\cos t \\ df = \left(-2(n-1)\left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-2} t^{2} + \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-1}\right) dt & dg = \sin t dt \end{bmatrix} =$$

$$= \begin{bmatrix} df = \left(-2(n-1)\left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-2} t^{2} + \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-1} + t^{2} + \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-1} + t^{2} + t^{2} + \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-1} + t^{2} +$$

Число π — иррационально

Доказательство. Пусть $\pi=rac{p}{q}; H_n$ задано выше

$$H_n = (4n - 2)H_{n-1} - \pi^2 H_{n-2}$$

$$H_0 = 2$$
, $H_1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\frac{\pi^2}{4} - t^2) \cos t = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \sin t dt = 2t(-\cos t) \Big|_{\dots}^{\infty} + 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t = 4$

Итоговый конспект 21 из 57

 $H_n = \dots H_1 + \dots H_0 = P_n(\pi^2) - \text{многочлен с целыми коэффициентами, степень} \leq n$ $q^{2n} P_n\left(\frac{p^2}{q^2}\right) = \text{ целое число } = q^{2n} H_n > 0 \Rightarrow q^{2n} H_n \geq 1$ $1 \leq \frac{q^{2n}}{n!} \int_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t dt \leq \frac{q^{2n} 4^n}{n!} \pi \xrightarrow[n \to +\infty]{} 0$

Противоречие.

2.16 ! Теорема о вычислении аддитивной функции промежутка по плотности

О вычислении аддитивной функции промежутка по плотности

$$\begin{array}{l} f:\langle a,b\rangle\to\mathbb{R}-\text{непр.} & \Phi:Segm\langle a,b\rangle\to\mathbb{R} \\ f-\text{плотность}\ \Phi \end{array}$$

Тогда
$$\Phi([p,q]) = \int\limits_{p}^{q} f, \quad \forall [p,q] \in Segm\langle a,b \rangle$$

Доказательство.

$$F(x) := egin{cases} 0 &, x = a \\ \Phi([a,x]) &, x > a \end{cases}$$
 — первообразная f

Это утверждение ещё не доказано, но если мы его докажем, то:

$$\Phi([p,q]) = \Phi[a,q] - \Phi[a,p] = F(q) - F(p) = \int_{p}^{q} f$$

Докажем утверждение:

$$\frac{F(x+h)-F(x)}{h} = \frac{\Phi[a,x+h]-\Phi[a,x]}{h} = \frac{\Phi[x,x+h]}{h} = [0 \le \Theta \le 1] = f(x+\Theta h) \xrightarrow[h\to 0]{} f(x)$$

2.17 Площадь криволинейного сектора: в полярных координатах и для параметрической кривой

 $\Phi([\alpha, \beta]) := S_{\text{cektop}(\alpha, \beta)} \quad g(\varphi) := r^2(\varphi)/2$

 $\forall \Delta \in Segm \ |\Delta| \inf_{\Delta} g \leq \Phi(\Delta) \leq |\Delta| \sup_{\Delta} g$ очевидно выполняется, т.к. $|\Delta| \inf_{\Delta} g$ — площадь синего сектора, а $|\Delta| \sup_{\Delta} g$ — площадь зеленого:

По теореме о вычислении аддитивной функции отрезка по плотности:

$$\Phi([\alpha,\beta]) = \int_{\alpha}^{\beta} g(\varphi)d\varphi = \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\varphi)d\varphi$$

 $\sphericalangle x(t), y(t)$ — кривая в \mathbb{R}^2

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) d\varphi = \frac{1}{2} \int_{t_{\alpha}}^{t_{\beta}} r^2(\varphi(t)) d\varphi(t) = \frac{1}{2} \int_{t_{\alpha}}^{t_{\beta}} r^2(t) \varphi'(t) dt =$$

Итоговый конспект 22 из 57

$$\begin{split} &=\frac{1}{2}\int_{t_{\alpha}}^{t_{\beta}}\sqrt{x^{2}(t)+y^{2}(t)}^{2}\left(\arctan\frac{y(t)}{x(t)}\right)'dt = \\ &=\frac{1}{2}\int_{t_{\alpha}}^{t_{\beta}}\left(x^{2}(t)+y^{2}(t)\right)\frac{1}{1+\left(\frac{y(t)}{x(t)}\right)^{2}}\left(\frac{y(t)}{x(t)}\right)'dt = \\ &=\frac{1}{2}\int_{t_{\alpha}}^{t_{\beta}}\left(x^{2}(t)+y^{2}(t)\right)\frac{1}{1+\left(\frac{y(t)}{x(t)}\right)^{2}}\frac{y'(t)x(t)-y(t)x'(t)}{x^{2}(t)}dt = \\ &=\frac{1}{2}\int_{t_{\alpha}}^{t_{\beta}}\left(x^{2}(t)+y^{2}(t)\right)\frac{x^{2}(t)}{x^{2}(t)+y^{2}(t)}\frac{y'(t)x(t)-y(t)x'(t)}{x^{2}(t)}dt = \\ &=\frac{1}{2}\int_{t_{\alpha}}^{t_{\beta}}\left(y'(t)x(t)-y(t)x'(t)\right)dt \end{split}$$

2.18 Изопериметрическое неравенство

Изопериметрическое неравенство

 $G \subset \mathbb{R}^2$ — выпуклое замкнутое множество (ограниченное)

 $diamG = \sup\{\rho(x, y), x, y \in G\}$

 $diamG \leq 1$

Тогда $\sigma(G) \leq \frac{\pi}{4}$

Доказательство. Пойдём от некоторой точки на границе G под углом φ внутрь фигуры по прямой. В какой-то момент мы встретим другую граничную точку. Назовем этот процесс $r(\varphi)$ (возвращает длину пути). Очевидно, что $r^2(\varphi)+r^2(\varphi-\frac{\pi}{2})\leq (diam G)^2\leq 1$

$$\sigma(G) = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^2(\varphi) d\varphi = \frac{1}{2} \left(\int_{-\frac{\pi}{2}}^{0} r^2(\varphi) d\varphi + \int_{0}^{\frac{\pi}{2}} r^2(\varphi) d\varphi \right) =$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \left(r^2(\varphi) + r^2 \left(\varphi - \frac{\pi}{2} \right) \right) d\varphi \le \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 d\varphi = \frac{\pi}{4}$$

2.19 Лемма о трех хордах

 $f:\langle a,b\rangle\to\mathbb{R}.$ Тогда эквивалентны следующие утверждения:

1. f — вып. $\langle a, b \rangle$

2.
$$\forall x_1, x_2, x_3 \in \langle a, b \rangle$$
 $x_1 < x_2 < x_3$ $\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$

Доказательство. Левое $\Leftrightarrow f(x_2)(x_3-x_1) \leq f(x_3)(x_2-x_1) + f(x_1)(x_3-x_1-(x_2-x_1))$

$$f\left(x_3\frac{x_2-x_1}{x_3-x_1}+x_1\frac{x_3-x_2}{x_3-x_1}\right)=f(x_2) \le f(x_3)\frac{x_2-x_1}{x_3-x_1}+f(x_1)\frac{x_3-x_2}{x_3-x_1}$$

Итоговый конспект 23 из 57

Теорема об односторонней дифференцируемости выпуклой функции

f — вып. (a,b). Тогда $\forall x \in (a,b) \ \exists f'_+(x), f'_-(x)$ и $\forall x_1, x_2 \in (a,b), x_1 < x_2$

$$f'_{-}(x_1) \le f'_{+}(x_1) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le f'_{-}(x_2)$$

 Доказательство. $f'_+(x_1) = \lim_{x \to x_1 + 0} \frac{f(x) - f(x_1)}{x - x_1}$ — монотонно убывающая функция от xФиксируем $x_0 < x_1$. По лемме о трех хордах $\frac{f(x_0) - f(x_1)}{x_0 - x_1} \le \frac{f(x) - f(x_1)}{x - x_1}$

Следствие о точках разрыва производной выпуклой функции

 $f:\langle a,b\rangle\to\mathbb{R}$ — вып.

Тогда f — дифф. на (a, b) за исключением, может быть, счетного множества точек.

Доказательство. $\forall x \; \exists f'_+(x), f'_-(x)$

 f'_+ возрастает

 $f_-'(x) = f_+'(x) \Rightarrow f$ дифф. в x

 $f'_{-}(x) < f'_{+}(x) \Rightarrow f$ не дифф. в x

Тогда x — точка скачка для f'_+, f'_- , их НБСЧ, т.к. f^+ и f^- возрастают.

Описание выпуклости с помощью касательных

f — вып. на $\langle a,b \rangle$. Тогда график f расположен не ниже любой касательной T.e. $\forall x, x_0 \quad f(x) \ge f(x_0) + f'(x_0)(x - x_0)$

Доказательство. "⇒"

Если $x>x_0$ $f'(x_0)\leq rac{f(x)-f(x_0)}{x-x_0}$, это неравенство 2. из предыдущей теоремы $x < x_0$ аналогично

" \Leftarrow " фиксируем x_0 . Берем $x_1 < x_0 < x_2$

" \Leftarrow " фиксируем x_0 . Берем $x_1 < x_0 < x_2$ $f(x_1) \ge f(x_0) + f'(x_0)(x_1 - x_0); f(x_2) \ge f(x_0) + f'(x_0)(x_2 - x_0),$ т.е. $\frac{f(x_1) - f(x_0)}{x_1 - x_0} \le f'(x_0) \le \frac{f(x_2) - f(x_0)}{x_2 - x_0}.$ Это верно по лемме.

2.23 Дифференциальный критерий выпуклости

1. $f:\langle a,b\rangle\to\mathbb{R}$, дифф. в (a,b)

Тогда f — вып. $\Rightarrow f'$ возр. на (a, b)

Если f — строго выпуклая $\Rightarrow f'$ строго возрастает

2. $f:\langle a,b\rangle\to\mathbb{R}$, дважды дифф. на (a,b)

f — вып. $\Leftrightarrow f'' \geq 0$ на (a,b)

(a) "
$$\Rightarrow$$
" $f'_+(x_1) \le f'_-(x_2)$ $(x_1 < x_2)$
" \Leftarrow " ? f вып. $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c_1) < f'(c_2) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$

Теперь утверждение 2. очевидно.

2.24 Обобщенная теорема о плотности

Обобщенная теорема о плотности.

 $\Phi: Segm\langle a,b
angle o \mathbb{R}$ — аддитивная функция промежутка

 $f:\langle a,b\rangle \to \mathbb{R}$ — непр.

 $\forall \Delta \in Segm\langle a,b \rangle \;\; \exists m_\Delta, M_\Delta -$ не точный минимум/максимум

1.
$$m_{\Delta}l_{\Delta} \leq \Phi(\Delta) \leq M_{\Delta}l_{\Delta}$$

2.
$$m_{\Delta} \leq f(x) \leq M_{\Delta}$$
 при всех $x \in \Delta$

3.
$$\forall$$
 фикс. $x M_{\Delta} - m_{\Delta} \xrightarrow{\text{"}_{\Delta \to x}} 0$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \Delta : l_{\Delta} < \delta \ |M_{\Delta} - m_{\Delta}| < \varepsilon$$

Тогда
$$\forall [p,q] \in Segm\langle a,b \rangle \quad \Phi([p,q]) = \int\limits_p^q f$$

Доказательство.
$$F(x) = \begin{cases} 0, & x = a \\ \Phi[a,x], & x > a \end{cases}$$

Докажем, что F — первообразная f.

 Φ иксируем x

По 1.:

$$m_{\Delta} \le \frac{F(x+h) - F(x)}{h} = \frac{\Phi[x, x+h]}{h} \le M_{\Delta}$$

По 2.:

$$m_{\Delta} \le f(x) \le M_{\Delta}$$

$$\left| \frac{F(x+h) - F(x)}{h} - f(x) \right| \le M_{\Delta} - m_{\Delta} \xrightarrow{\text{``}\Delta \to x\text{''}} 0$$

Мы не можем написать " $\Delta \to x$ " без кавычек, т.к. $\Delta-$ не число, но " $\Delta \to x$ " $\Leftrightarrow h \to 0$ Таким образом,

$$\frac{F(x+h) - F(x)}{h} - f(x) \xrightarrow[h \to 0]{} 0$$

2.25 Вычисление длины гладкого пути

$$\gamma \in C^1([a,b] o \mathbb{R}^m)$$

Тогда $l(\gamma) = \int\limits_a^b ||\gamma'(t)|| dt$

Доказательство. Будем считать $\gamma' \neq 0, \, \gamma$ — инъективная.

 $\Phi:[p,q]\subset [a,b]\mapsto l(\gamma|_{[p,q]})$ — адд. ф-ция промежутка.

Докажем, что $f(t) = ||\gamma'(t)|| -$ плотность Φ

$$\Delta \subset [a,b]$$
 $m_i(\Delta) := \min_{t \in \Delta} |\gamma_i'(t)|$ $M_i(\Delta) = \max |\gamma_i'(t)|$

$$m_{\Delta} = \sqrt{\sum_{i=1}^{m} m_i(\Delta)^2}$$
 $M_{\Delta} = \sqrt{\sum_{i=1}^{m} M_i(\Delta)^2}$

Докажем, что $m_{\Delta}l_{\Delta} \leq \Phi(\Delta) \leq M_{\Delta}l_{\Delta}$

M3137y2019

Итоговый конспект 25 из 57

$$ilde{\gamma}:\Delta o \mathbb{R}^m$$
 — лин. путь $ilde{\gamma}(t)=ec{M}\cdot t$, где $ec{M}=ig(M_1(\Delta) \quad \dots \quad M_m(\Delta)ig)$ $T:C_{\gamma|_\Delta} o C_{ ilde{\gamma}} \quad \gamma(t)\mapsto ilde{\gamma}(t)$ Утверждение: T — растяжение.

$$||\vec{M}q - \vec{M}p|| = (q-p)||\vec{M}|| = (q-p)M_{\Delta}$$

$$\begin{split} \rho(\gamma(t_0),\gamma(t_1)) &= \sqrt{\sum_{i=1}^m (\gamma_i(t_0) - \gamma_i(t_1))^2} \stackrel{\text{т. Лагранжа}}{=} \sqrt{\sum_{i=1}^m \gamma_i'(\bar{t}_i)^2(t_0 - t_1)^2} \leq ||\vec{M}|| \cdot |t_0 - t_1| = \\ &= \rho(\tilde{\gamma}(t_0),\tilde{\gamma}(t_1)) = \rho(T(\gamma(t_0)),T(\gamma(t_1))) \end{split}$$

Доказательство. (альтернативное).

Покажем, что $\int ||\gamma'||$ удовлетворяет всем требованиям длины гладкого пути:

1.
$$\forall \gamma \ l(\gamma) \geq 0$$
 — очевидно, т.к. $||\gamma'|| \geq 0$

- 2. Линейность: очевидно по линейности определенного интеграла.
- 3. Сжатие: $\exists T: C_{\gamma} \to C_{\tilde{\gamma}}$

$$\gamma'(t) = \lim_{h \to 0} \frac{\gamma(t+h) - \gamma(t)}{h}$$

$$||\gamma'(t)|| = \lim_{h \to 0} \frac{||\gamma(t+h), \gamma(t)||}{|h|}$$

$$||\gamma'(t)|| = \lim_{h \to 0} \frac{\rho(\gamma(t+h), \gamma(t))}{|h|} \quad ||\tilde{\gamma}'(t)|| = \lim_{h \to 0} \frac{\rho(\tilde{\gamma}(t+h), \tilde{\gamma}(t))}{|h|}$$

$$\rho(\gamma(t+h), \gamma(t)) \ge \rho(\tilde{\gamma}(t+h), \tilde{\gamma}(t)) \Rightarrow ||\gamma'(t)|| \ge ||\tilde{\gamma}'(t)|| \Rightarrow l(\gamma) \ge l(\tilde{\gamma})$$

4. Нормировка. $\langle \gamma : \gamma(t) = \vec{u} + \vec{v}t \rangle$

$$l(\gamma) = \int_{a}^{b} ||\vec{v}||dt = ||\vec{v}||(b-a)$$

$$\rho(\gamma(a), \gamma(b)) = ||\vec{u} + \vec{v}a - \vec{u} - \vec{v}b|| = ||\vec{v}(a-b)|| = \sqrt{\sum_{i=1}^{m} v_i^2 (b-a)^2} = (b-a)||\vec{v}||$$

2.26 Объем фигур вращения

$$f:\langle a,b \rangle \to \mathbb{R}$$
 — непр., $f \geq 0$ $\Phi_x(\Delta)=$ "объем фигуры вращения вокруг оси OX " $\Phi_y(\Delta)=$ "объем фигуры вращения вокруг оси OY " Тогда: $\forall \Delta=[p,q] \in Segm\langle a,b \rangle$:

1.
$$\Phi_x[p,q] = \pi \int_{p}^{q} f^2(x) dx$$

2.
$$\Phi_y[p,q] = 2\pi \int_p^q x f(x) dx$$

Итоговый конспект 26 из 57

Доказательство. 1. Это — упражнение, оно не использует ничего умного.

На лекции было сказано, что это доказывается через плотность аналогично площади криволинейного сектора.

2. Мы знаем, что объем цилиндра = $S(\text{основание}) \cdot h$.

Для оценки $\Phi(\Delta)$ найдем прямоугольник, который является минимальным по площади сечения и максимальный прямоугольники: Π_{min} и Π_{max} .

Покажем, что $2\pi x f(x)$ подходит под обобщенную теорему о плотности для Φ :

$$V((\Pi_{\min})_y) \le \Phi(\Delta) \le V((\Pi_{\max})_y)$$

$$V((\Pi_{\max})_y) = S_{\text{кольца}} \max_{x \in [p,q]} f = \pi(q-p)(q+p) \max_{x \in [p,q]} f \le \pi(q-p) \underbrace{\max_{x \in [p,q]} 2x}_{x \in [p,q]} \max_{x \in [p,q]} f$$

$$V((\Pi_{\min})_y) \ge \pi \min 2x (q-p) \min f$$

$$M_{\Delta} := \pi \max_{x \in [p,q]} 2x \max_{x \in [p,q]} f(x) \quad m_{\Delta} := \pi \min_{x \in [p,q]} 2x \min_{x \in [p,q]} f(x)$$

На лекции было дано m_{Δ} и M_{Δ} без π .

Все три условия теоремы очевидно выполнены:

(a)
$$m_{\Delta}(q-p) \leq \Phi(\Delta) \leq M_{\Delta}(q-p)$$

(b)
$$m_{\Delta} \leq 2\pi x f(x) \leq M_{\Delta} \quad \forall x \in \Delta$$

(c)
$$\pi(\max f \max 2x - \min f \min 2x) \xrightarrow{\text{``}\Delta \to x\text{''}} 0$$

2.27 ! Интеграл как предел интегральных сумм

$$f \in C[a, b]$$

Итоговый конспект 27 из 57

Доказательство. По теореме Кантора о равномерной непрерывности на компакте. [a,b] — компакт, f непрерывна на $[a,b] \Rightarrow f$ равномерно непрерывна на [a,b]:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, \overline{x} \in [a, b] : |x - \overline{x}| < \delta \ |f(x) - f(\overline{x})| < \varepsilon$$

По двойной бухгалтерии заменим ε на $\frac{\varepsilon}{b-a}$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, \overline{x} \in [a, b] : |x - \overline{x}| < \delta \ |f(x) - f(\overline{x})| < \frac{\varepsilon}{b - a}$$

Разобьем интеграл на части:

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \left(\int_{x_{i-1}}^{x_i} f(x)dx \right)$$

Запишем (x_i-x_{i-1}) в виде интеграла $\int_{x_{i-1}}^{x_i} dx$

$$\left| \int_{a}^{b} f(x)dx - \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}) \right| = \left| \sum_{i=1}^{n} \left(\int_{x_{i-1}}^{x_{i}} f(x)dx - f(\xi_{i}) \int_{x_{i-1}}^{x_{i}} dx \right) \right| =$$

$$= \left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} (f(x) - f(\xi_{i}))dx \right| \le \sum_{i=1}^{n} \left| \int_{x_{i-1}}^{x_{i}} |(f(x) - f(\xi_{i}))dx| \le \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \frac{\varepsilon}{b - a} dx =$$

$$= \frac{\varepsilon}{b - a} \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} dx = \frac{\varepsilon}{b - a} \sum_{i=1}^{n} (x_{i} - x_{i-1}) = \frac{\varepsilon}{b - a} (b - a) = \varepsilon$$

2.28 Теорема об интегральных суммах для центральных прямоугольников

$$f \in C^2[a,b] \ x_0 = a < x_1 \ldots < x_n = b \ \delta = \max(x_i - x_{i-1}) \ \xi_i := rac{x_{i-1} + x_i}{2}$$
. Тогда

$$\left| \int_{a}^{b} f - \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}) \right| \le \frac{\delta^{2}}{8} \int_{a}^{b} |f''| dx$$

Доказательство.

$$\int_{x_{i-1}}^{x_i} f(x)dx = \int_{x_{i-1}}^{\xi_i} f(x)dx + \int_{\xi_i}^{x_i} f(x)dx = \int_{x_{i-1}}^{\xi_i} f(x)d(x-x_{i-1}) + \int_{\xi_i}^{x_i} f(x)d(x-x_i) =$$

$$= f(x)(x-x_{i-1})\Big|_{x=x_{i-1}}^{x=\xi_i} - \int_{x_{i-1}}^{\xi_i} f'(x)(x-x_{i-1})dx + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=x_i} - \int_{\xi_i}^{x_i} f'(x)(x-x_i)dx = (*)$$
Заметим, что $\xi_i - x_{i-1} = x_i - \xi_i$, поэтому $f(x)(x-x_{i-1})\Big|_{x=x_{i-1}}^{x=\xi_i} + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=x_i} = f(\xi_i)(x_i-x_{i-1})$

$$(*) = f(\xi_i)(x_i-x_{i-1}) - \left(f'(x)\frac{(x-x_{i-1})^2}{2}\Big|_{\xi_i}^{\xi_i} - \frac{1}{2}\int_{x_{i-1}}^{\xi_i} f''(x)(x-x_i)^2dx\right) =$$

Итоговый конспект 28 из 57

$$= f(\xi_i)(x_i - x_{i-1}) - 0 + \frac{1}{2} \int_{x_{i-1}}^{x_i} f''(x)\varphi(x)dx$$
$$\varphi(x) = \begin{cases} (x - x_{i-1})^2, & x \in [x_{i-1}, \xi_i] \\ (x - x_i)^2, & x \in [\xi_i, x_i] \end{cases}$$

Итого:

$$\int_a^b f(x) = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}) + \frac{1}{2} \int_a^b f''(x)\varphi(x)dx$$

$$\left| \int -\sum \right| \le \frac{1}{2} \int_a^b |f''(x)|\varphi(x)dx$$

$$\max_{x \in [a,b]} \varphi(x) \overset{\text{достигается на отрезке длины } \delta}{=} \frac{\delta^2}{4}$$

$$\frac{1}{2} \int_a^b |f''(x)|\varphi(x)dx \le \frac{\delta^2}{8} \int_a^b |f''|$$

2.29 Теорема о формуле трапеций, формула Эйлера-Маклорена

2.29.1 Теорема о формуле трапеций

$$f \in C^2[a,b], \tau, \delta = |\tau|$$

Тогда

$$\left| \int_{a}^{b} f dx - \sum \frac{f(x_{i}) + f(x_{i-1})}{2} (x_{i} - x_{i-1}) \right| \le \frac{\delta^{2}}{8} \int_{a}^{b} |f''|$$

Доказательство. Берем $\xi_i = \frac{x_{i-1} + x_i}{2}$

$$\int_{x_{i-1}}^{x_i} f(x)dx = \int_{x_{i-1}}^{x_i} f(x)d(x - \xi_i) = f(x)(x - \xi_i) \Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f'(x)(x - \xi_i)dx =$$

$$= (f(x_i) + f(x_{i-1})) \frac{x_i - x_{i-1}}{2} - \int_{x_{i-1}}^{x_i} f'(x) \cdot \left(-\frac{1}{2}\right) d((x - x_{i-1})(x_i - x)) = (*)$$

Проверим, что замена выражения под дифференциалом верная:

$$((x - x_{i-1})(x_i - x))' = (-x^2 + x(x_i + x_{i-1}) - x_{i-1}x)' = -2\left(x - \frac{x_i + x_{i-1}}{2}\right)$$

Действительно верно.

$$\psi(x) := (x - x_{i-1})(x_i - x)$$

$$(*) = (f(x_i) + f(x_{i-1}))\frac{x_i - x_{i-1}}{2} + \frac{1}{2}f'(x)(x - x_{i-1})(x_i - x)\Big|_{x_{i-1}}^{x_i} - \frac{1}{2}\int_{x_{i-1}}^{x_i} f''\psi(x)dx$$

$$\left| \int -\sum \right| \le \frac{1}{2}\int_a^b |f''|\psi(x)dx$$

$$\max \psi = \frac{\delta^2}{4}$$

Итоговый конспект 29 из 57

2.29.2 Формула Эйлера-Маклорена

 $m,n\in\mathbb{Z},f\in C^2[m,n]$. Тогда

$$\int_{m}^{n} f(x)dx = \left(\sum_{i=m}^{n}\right)' f(i) - \frac{1}{2} \int f''(x)\{x\}(1 - \{x\})dx$$

'означает, что крайние слагаемые берутся с весом $\frac{1}{2}, \{x\}$ — дробная часть x

Доказательство. Это очевидно по формуле трапеций: $x_i := i$

$$\int_{m}^{n} f(x)dx = \sum_{i=m+1}^{n} \frac{f(i) + f(i-1)}{2} \cdot 1 - \frac{1}{2} \int_{m}^{n} f''(x)\psi(x)$$

$$\psi(x) \stackrel{\text{def}}{=} (x - x_{i-1})(x_i - x) = (x - i + 1)(i - x) = (x - i + 1)(1 - (x - i + 1)) = \{x\}(1 - \{x\})$$

2.30 Асимптотика степенных сумм

p > -1 $f(x) = x^p$

$$1^{p} + 2^{p} + \dots + n^{p} = \int_{1}^{n} x^{p} dx + \frac{1}{2} 1^{p} + \frac{1}{2} n^{p} + \frac{1}{2} \int_{1}^{n} p(p-1) x^{p-2} \{x\} (1 - \{x\}) = 0$$

 $\frac{1}{2}1^{p}+\frac{1}{2}n^{p}$ добавлены, чтобы не писать слева деление крайних слагаемых на 2.

$$=\frac{n^{p+1}}{p+1}-\frac{1}{p+1}+\frac{1}{2}+\frac{1}{2}n^p+\mathcal{O}(\max(1,n^{p-1}))=(*)$$

Откуда появилось \mathcal{O} ? $\{x\}(1-\{x\})<1\Rightarrow\int_1^np(p-1)x^{p-2}\{x\}(1-\{x\})\leq C(n^{p-1}-1), C$ — некоторая константа.

Занесем константы под \mathcal{O} :

$$(*) = \frac{n^{p+1}}{p+1} + \frac{1}{2}n^p + \mathcal{O}(\max(1, n^{p-1}))$$

2.31 Асимптотика частичных сумм гармонического ряда

$$]p = -1 \quad 1 + \frac{1}{2} + \ldots + \frac{1}{n} = \ln n + \frac{1}{2} + \frac{1}{2n} + \int_{1}^{n} x^{-3} \{x\} (1 - \{x\}) = (*)$$
$$\int_{1}^{n} x^{-3} \{x\} (1 - \{x\}) \le \frac{1}{4} \int_{1}^{n} \frac{dx}{x^{3}} = \frac{1}{8} \frac{-1}{\alpha^{2}} \Big|_{1}^{n} = \frac{1}{8} \left(1 - \frac{1}{n^{2}} \right) < \frac{1}{8}$$
$$(*) = \ln n + \gamma + o(1) \quad \gamma \in \left[\frac{1}{2}, \frac{1}{2} + \frac{1}{8} \right]$$

Итоговый конспект 30 из 57

2.32 Формула Валлиса

$$\lim_{k \to +\infty} \left(\frac{(2k)!!}{(2k-1)!!} \right)^2 \frac{1}{2k} = \frac{\pi}{2}$$

Вывод формулы Валлиса:

$$I_n := \int_0^{\frac{\pi}{2}} \sin^n x dx = \begin{bmatrix} u = \sin^{n-1} x & du = (n-1)\sin^{n-2} x \cos x dx \\ dv = \sin x dx & v = -\cos x \end{bmatrix} =$$

$$= -\cos x \sin^{n-1} x \Big|_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos^2 x (n-1)\sin^{n-2} x dx =$$

$$(n-1) \int_0^{\frac{\pi}{2}} (1 - \sin^2 x) \sin^{n-2} x = (n-1)(I_{n-2} - I_n)$$

$$I_0 = \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{2} \quad I_1 = \int_0^{\frac{\pi}{2}} \sin x dx = -\cos x \Big|_0^{\frac{\pi}{2}} = 1$$

$$I_n = \frac{n-1}{n} I_{n-2} = \frac{n-1}{n} \frac{n-3}{n-2} I_{n-4} = \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} I_{n-6} = \dots = \begin{cases} \frac{(n-1)!!}{n!!} \frac{\pi}{2}, & n - \text{uët.} \\ \frac{(n-1)!!}{n!!} 1, & n - \text{heuet.} \end{cases}$$

$$\sin^{2k+1} x \le \sin^{2k} x \le \sin^{2k-1} x$$

Проинтегрируем по $[0, \frac{\pi}{2}]$:

$$\frac{(2k)!!}{(2k+1)!!} \leq \frac{(2k-1)!!}{(2k)!!} \frac{\pi}{2} \leq \frac{(2k-2)!!}{(2k-1)!!}$$

$$\left(\frac{(2k)!!}{(2k-1)!!}\right)^2 \frac{1}{2k+1} \leq \frac{\pi}{2} \leq \left(\frac{(2k)!!}{(2k-1)!!}\right)^2 \frac{1}{2k}$$
 Правая часть — левая часть =
$$\left(\frac{(2k)!!}{(2k-1)!!}\right)^2 \left(\frac{1}{2k} - \frac{1}{2k+1}\right) = \left(\frac{(2k)!!}{(2k-1)!!}\right)^2 \frac{1}{2k} \frac{1}{2k+1} \leq \frac{\pi}{2} \frac{1}{2k} \xrightarrow{k \to +\infty} 0$$

2.33 Формула Стирлинга

$$n! \underset{n \to +\infty}{\sim} n^n e^{-n} \sqrt{n} \sqrt{2\pi}$$

$$]f(x) = \ln x \quad \ln 1 + \ln 2 + \ldots + \ln n = \int_1^n \ln x dx + \frac{\ln n}{2} - \frac{1}{2} \int_1^n \frac{\{x\}(1 - \{x\})}{x^2} dx =$$

$$= n \ln n - n + \frac{\ln n}{2} + C_1 + o(1)$$

$$\ln 1 + \ln 2 + \ldots + \ln n = \ln n!$$

$$n! = e^{n \ln n - n + \frac{\ln n}{2} + C_1 + o(1)}$$

$$n! = n^n e^{-n} \sqrt{n} e^{C_1 + o(1)} \underset{n \to +\infty}{\sim} C n^n e^{-n} \sqrt{n}$$
 Найдём C .

Таким образом, левая и правая части стремятся друг другу и зажимают $\pi/2$.

Итоговый конспект 31 из 57

Домножим дробь на числитель:

$$= \lim_{k \to +\infty} \frac{1}{\sqrt{k}} \frac{2^2 \cdot 4^2 \cdot \cdot \cdot (2k)^2}{(2k)!} =$$

Вынесем 2 из каждого множителя в числителе:

$$=\lim_{k\to+\infty} \frac{1}{\sqrt{k}} \frac{(2^k k!)^2}{(2k)!} =$$

Замена на эквивалент:

$$= \lim_{k \to +\infty} \frac{1}{\sqrt{k}} \frac{(2^k C k^k e^{-k} \sqrt{k})^2}{C(2k)^{2k} e^{-2k} \sqrt{2k}} = \lim_{k \to +\infty} \frac{C}{\sqrt{2}} = \frac{C}{\sqrt{2}}$$

$$C = \sqrt{2\pi}$$

Простейшие свойства несобственного интеграла

Критерий Больцано-Коши

$$\lim_{A\to b-0}\int_a^A \text{ Koh.} \Leftrightarrow \forall \varepsilon>0 \ \ \exists \Delta\in(a,b) \ \ \forall A,B\in(\Delta,b) \quad \ \left|\int_A^B f\right|<\varepsilon$$

Аддитивность по промежутку

f — допустима. [a,b) $c\in(a,b)$ Тогда $\int_a^{\to b}f$ и $\int_c^{\to b}f$ — сходятся/расходятся одновременно и, если сходятся, $\int_a^{\to b}f=\int_a^cf+\int_c^{\to b}f$ Берем $A>c\int_a^A=\int_a^c+\int_c^A$

 $\mathit{Спедствие}.\ f$ — допустима. $[a,+\infty), \int_a^{+\infty} f$ — сходится. Тогда

$$\int_{A}^{+\infty} f \xrightarrow{A \to +\infty} 0$$

Это называется "хвост".

Линейность

f,g — допустима $\int_a^{\to b} f, \int_a^{\to b} g - \cos \alpha$.

Тогда $\lambda f, f\pm g$ — допустима b $\int_a^{\to b} \lambda f, \int_a^{\to b} f\pm g$ — сходятся.

$$\int_{a}^{\to b} \lambda f = \lambda \int_{a}^{\to b} f \qquad \int_{a}^{\to b} f \pm g = \int_{a}^{\to b} f \pm \int_{a}^{\to b} g$$

Доказательство. Тривиально.

Интегрирование неравенств

$$f,g$$
— доп., $\int_a^{\to b}f,\int_a^{\to b}g$ — существуют в $\overline{\mathbb{R}}$ $f\leq g$ на $[a,b).$ Тогда

$$\int_{a}^{\to b} f \le \int_{a}^{\to b} g$$

Очевидно: $\int_a^A f \le \int_a^A g, A \to b - 0$

Итоговый конспект 32 из 57

Интеграл произведения

f,g — дифф. [a,b);f',g' — допустимы. Это эквивалентно $f,g\in C^1[a,b)$. Тогда*

$$\int_{a}^{\to b} fg' = fg \bigg|_{a}^{\to b} - \int_{a}^{\to b} f'g$$

* значит, что если два из трех пределов существуют, то существует третий и выполняется равенство.

Интеграл композиции

 $\varphi: [\alpha,\beta) \to \langle A,B\rangle, \varphi \in C^1$ $f: \langle A,B\rangle \to \mathbb{R}, f$ — непр., $\exists \varphi(\beta-0) \in \overline{\mathbb{R}}$ Тогда*

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(\alpha)}^{\beta} f(x)dx$$

Примечание. f — кусочно непрерывна на [a,b]. f можно также рассматривать на [a,b). Тогда

$$\int_{a}^{b} f = \int_{a}^{b} f$$

2.35 ! Признаки сравнения сходимости несобственного интеграла

 $f,g\geq 0$, допустимы на [a,b)

1. $f \leq g$ на [a,b). Тогда:

(a)
$$\int_a^b g - \text{сходится} \Rightarrow \int_a^b f - \text{сходится}$$

(b)
$$\int_a^b f$$
 — расходится $\Rightarrow \int_a^b g$ — расходится

2.
$$\exists \lim_{x \to b-0} \frac{f(x)}{g(x)} = l < +\infty :$$

(a)
$$\int_a^b g - \operatorname{cxoдитcs} \Rightarrow \int_a^b f - \operatorname{cxoдитcs}$$

(b)
$$\int_a^b f -$$
расходится $\Rightarrow \int_a^b g -$ расходится

Доказательство. 1. $\Phi(A) := \int_a^A f, \Psi(A) = \int_a^A g$

$$0 \le \Phi(A) \le \Psi(A)$$

(a)
$$\int_a^b g - \mathrm{cxogutcs} \Rightarrow \Psi$$
 orp. $\Rightarrow \Phi$ orp. $\Rightarrow \int_a^b f - \mathrm{cxogutcs}$

(b)
$$\int_a^b f -$$
расходится $\Rightarrow \Phi$ неогр. $\Rightarrow \Psi$ неогр. $\Rightarrow \int_a^b g -$ расходится

2.
$$l < +\infty \stackrel{def}{\Longrightarrow} \exists a_1 : \forall x > a_1 \ 0 \le \frac{f(x)}{g(x)} \le l+1 \Rightarrow f(x) \le g(x)(l+1)$$
, дальше тривиально (предположительно по пункту 1.)

Примечание. l > 0:

$$\exists a_2 : \forall x > a_2 \quad \frac{l}{2} < \frac{f(x)}{g(x)}$$

1. $\int_a^b f - \text{сходится} \Rightarrow \int_a^b g - \text{сходится}$

Итоговый конспект 33 из 57

2. $\int_a^b g - \text{расходится} \Rightarrow \int_a^b f - \text{расходится}$

Следствие. Если $+\infty > l > 0$, то:

1.
$$\int_a^b f - \text{сходится} \Leftrightarrow \int_a^b g - \text{сходится}$$

2.
$$\int_a^b f$$
 — расходится $\Leftrightarrow \int_a^b g$ — расходится

2.36 Интеграл Эйлера-Пуассона

$$\Gamma\left(\frac{1}{2}\right)=\int_{0}^{+\infty}\frac{1}{\sqrt{x}}e^{-x}dx\stackrel{x=y^2}{=}2\int_{0}^{+\infty}e^{-y^2}dy=2\frac{1}{2}\sqrt{\pi}$$
— интеграл Эйлера-Пуассона

Доказательство.

$$1 - x^2 \le e^{-x^2} \le \frac{1}{1 + x^2} \quad \forall x \in \mathbb{R}$$

Оба неравенства следуют из неравенства $e^t \geq 1 + t \;\; \forall t.$ Зафиксируем $n \in \mathbb{N}$

$$(1-x^2)^n \le e^{-nx^2} \le \left(\frac{1}{1+x^2}\right)^n$$
$$\int_0^1 (1-x^2)^n dx \le \int_0^1 e^{-nx^2} \le \int_0^{+\infty} e^{-nx^2} \le \int_0^{+\infty} \frac{1}{(1+x^2)^n}$$

Казалось бы, переход от интеграла \int_0^1 к $\int_0^{+\infty}$ очень грубый, но это не так.

$$\int_0^{+\infty} e^{-nx^2} \stackrel{y=\sqrt{n}x}{=} \frac{1}{\sqrt{n}} I$$

$$\int_0^1 (1-x^2)^n dx \stackrel{x=\cos y}{=} \int_0^{\frac{\pi}{2}} \sin^{2n+1} y dy$$

$$\int_0^{+\infty} \frac{1}{(1+x^2)^n} \stackrel{x=\operatorname{tg}y}{=} \int_0^{\frac{\pi}{2}} (\cos y)^{2n-2} dy = \int_0^{\frac{\pi}{2}} (\sin t)^{2n-2} dt$$

$$\sqrt{n} \int_0^{\frac{\pi}{2}} \sin^{2n+1} y dy \le I \le \sqrt{n} \int_0^{\frac{\pi}{2}} (\sin t)^{2n-2} dt$$

$$\int_0^{\frac{\pi}{2}} \sin^n x dx = \frac{(n-1)!!}{n!!!} \begin{cases} \frac{\pi}{2}, & n \text{ чет.} \\ 1, & n \text{ нечет.} \end{cases}$$

$$\sqrt{n} \frac{(2n)!!}{(2n+1)!!} \le I \le \frac{(2n-3)!!}{(2n-2)!!} \frac{\pi}{2} \sqrt{n}$$

По формуле Валлиса $\frac{(2k)!!}{(2k-1)!!} \cdot \frac{1}{\sqrt{k}} o \sqrt{\pi}$:

$$\sqrt{n} \frac{(2n)!!}{(2n+1)!!} = \left(\frac{1}{\sqrt{n}} \frac{(2n)!!}{(2n-1)!!}\right) \frac{n}{2n+1} \to \frac{\sqrt{\pi}}{2}$$
$$\frac{(2n-3)!!}{(2n-2)!!} \frac{\pi}{2} \sqrt{n} = \frac{\frac{\pi}{2} \sqrt{n} \frac{1}{\sqrt{n-1}}}{\frac{(2n-2)!!}{(2n-3)!!} \frac{1}{\sqrt{n-1}}} \to \frac{\sqrt{\pi}}{2}$$

Итоговый конспект 34 из 57

2.37 ! Гамма функция Эйлера. Простейшие свойства.

Область определения

1. $\int_1^{+\infty} x^{t-1} e^{-x} dx$ — сходится при всех $t \in \mathbb{R}^+$:

$$\int_{1}^{+\infty}e^{-x}dx=-e^{-x}\Bigg|_{1}^{+\infty}=e$$

$$0\leq x^{t-1}e^{-x}\leq x^{t-1}e^{-\frac{x}{2}}e^{-\frac{x}{2}}$$

$$x^{t-1}e^{-\frac{x}{2}}\xrightarrow{x\to+\infty}0\Rightarrow\text{ при больших }x\ x^{t-1}e^{-\frac{x}{2}}e^{-\frac{x}{2}}\leq e^{-\frac{x}{2}}$$

2.
$$\int_{\to 0}^1 x^{t-1}e^{-x}dx$$

$$x^{t-1}e^{-x} \mathop{\sim}_{x \to 0} x^{t-1} \quad t>0 \ \text{сходится}, \ t\leq 0 \ \text{расходится}$$

Выпуклость

Подынтегральное выражение как функция от t является выпуклой функцией (при $x \ge 0$)

$$t \mapsto x^{t-1}e^{-x} = f_x(t)$$

$$f(\alpha t_1 + (1-\alpha)t_2) \le \alpha f_x(t_1) + (1-\alpha)f_x(t_2)$$

$$\int_0^{+\infty} f_x dx \le \alpha \int_0^{+\infty} f_x(t_1) dx + (1-\alpha) \int_0^{\infty} f_x(t_2) dx$$

Определение выпуклости:

$$x^{(\alpha t_1 + (1-\alpha)t_2) - 1}e^{-x} \le \alpha x^{t_1 - 1}e^{-x} + (1-\alpha)x^{t_2 - 1}e^{-x}$$

Зафиксируем α, t_1, t_2 . Проинтегрируем по x от 0 до $+\infty$:

$$\Gamma(\alpha t_1 + (1 - \alpha)t_2) \le \alpha \Gamma(t_1) + (1 - \alpha)\Gamma(t_2)$$

 Γ — выпуклая \Rightarrow Γ — непрерывная

Третье свойство

$$\Gamma(t+1) = t\Gamma(t)$$

$$\Gamma(t+1) = \int_0^{+\infty} x^t e^{-x} dx = -x^t e^{-x} \bigg|_0^{+\infty} + t \int_0^{+\infty} x^{t-1} e^{-x} dx = 0 + t \Gamma(t)$$

Следствие. $\Gamma(n+1) = n!$

Доказательство.

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = \dots = n(n-1)\cdots 1\Gamma(1) = n!$$

Четвертое свойство

$$\Gamma(t) = \frac{\Gamma(t+1)}{t} \underset{t \to +0}{\sim} \frac{1}{t}$$

Итоговый конспект 35 из 57

Пятое свойство

Дано выше. (2.36, стр. 33)

2.38 Изучение сходимости интеграла $\int_{10}^{\infty} rac{dx}{x^{lpha}(\ln x)^{eta}}$

При каких α и β сходится:

$$\int_{10}^{+\infty} \frac{dx}{x^{\alpha} (\ln x)^{\beta}}$$

Мы знаем, что $\int_1^\infty \frac{dx}{x^p}$ сходится при p>1 и расходится при $p\leq 1.$ При $\alpha>1, \beta>0$

$$\frac{1}{x^{\alpha}(\ln x)^{\beta}} < \frac{1}{x^{\alpha}}$$

Таким же образом можно еще что-то выяснить, но мы так делать не будем. Вместо этого воспользуемся методом "удавливание логарифма"

1.
$$\alpha > 1$$
 $\alpha = 1 + 2a, a > 0$

$$0 \leq \frac{1}{x^{1+2a}(\ln x)^{\beta}} = \frac{1}{x^{1+a}} \cdot \frac{1}{x^a(\ln x)^{\beta}}$$

$$\beta \geq 0 \quad x^a(\ln x)^{\beta} \to +\infty$$

$$b := -\beta \quad \beta < 0 \quad x^a(\ln x)^{\beta} = \frac{x^a}{(\ln x)^b} = \left(\frac{x^{\frac{a}{b}}}{\ln x}\right)^b \xrightarrow[x \to \infty]{} \left[\frac{\infty}{\infty}\right] \xrightarrow[x \to \infty]{} \frac{\frac{a}{b}x^{\frac{a}{b}-1}}{\frac{1}{x}} \to +\infty$$

$$x^a(\ln x)^{\beta} \xrightarrow[x \to +\infty]{} +\infty \Rightarrow \frac{1}{x^{1+a}} \cdot \frac{1}{x^a(\ln x)^{\beta}} < \frac{1}{x^{1+a}} - \text{сходится}$$

2.
$$\alpha < 1$$
 $\alpha = 1 - 2a, a > 0$

$$\frac{1}{x^{1-2a}(\ln x)^{\beta}} = \frac{1}{x^{1-a}} \cdot \frac{x^a}{(\ln x)^{\beta}} > \frac{1}{x^{1-a}}$$

3.
$$\alpha = 1$$

$$\int_{10}^{+\infty} \frac{dx}{x(\ln x)^{\beta}} \stackrel{y=\ln x}{=} \int_{\ln 10}^{+\infty} \frac{dy}{y^{\beta}}$$

Сходится при $\beta>1$, расходится при $\beta\leq 1$

2.39 Теорема об абсолютно сходящихся интегралах и рядах.

f — доп. на [a,b). Тогда эквивалентны следующие утверждения:

- 1. $\int_a^b f$ абсолютно сходится
- 2. $\int_a^b |f| \operatorname{сходится}$
- 3. $\int_a^b f^+, \int_a^b f^-$ оба сходятся

Примечание. $f^+ = \max(f, 0), f^- = \max(-f, 0)$

Доказательство. $1\Rightarrow 2$ — тривиально

$$2 \Rightarrow 3: 0 \le f^{\pm} \le |f|$$

$$3 \Rightarrow 1: f = f^{+} - f^{-} \Rightarrow \int_{a}^{b} f = \int_{a}^{b} f^{+} - \int_{a}^{b} f^{-} \quad |f| = f^{+} + f^{-} \Rightarrow \int_{a}^{b} |f| = \int_{a}^{b} f^{+} + \int_{a}^{b} f^{-} \qquad \Box$$

Итоговый конспект 36 из 57

 $\sum a_n, a_n \in \mathbb{R}$. Тогда эквивалентны следующие утверждения:

- 1. $\sum a_n$ абс. сх.
- 2. $\sum |a_n| \cos a$
- 3. Оба ряда $\sum a_n^+, \sum a_n^-$ сх.

2.40 Изучение интеграла $\int_1^\infty \frac{\sin x \, dx}{x^p}$ на сходимость и абсолютную сходимость

$$\int_{1}^{+\infty} \frac{\sin x}{x^p} dx$$

- При каких p сходится?
- При каких p абсолютно сходится?
- 1. $p>1\Rightarrow$ абсолютно сходится, т.к. $\left|\frac{\sin x}{x^p}\right|<\frac{1}{x^{p-1}}$
- 2. $p > 0 \Rightarrow$ сходится, т.к. (по частям):

$$\int_{1}^{+\infty} \frac{\sin x}{x^{p}} = -\frac{\cos x}{x^{p}} \bigg|_{1}^{+\infty} - p \int_{1}^{+\infty} \frac{\cos x}{x^{p+1}}$$

Первое конечно, второе абсолютно сходится.

3. $p \le 0$, по критерию Коши:

$$\exists A_n,B_n\to b\quad \int_{A_n}^{B_n}f\not\to 0\Rightarrow \int_a^bf\ \text{расходится}$$

$$A_n:=2\pi n,B_n:=2\pi n+\pi\quad \int_{A_n}^{B_n}\frac{\sin x}{x^p}dx\geq (2\pi n)^{-p}\int_{A_n}^{B_n}\sin x\ \text{расходится}$$

Итого для $p \leq 0$ расходится.

4. 0 , абсолютная сходимость?

$$\int_{1}^{+\infty} \frac{|\sin x|}{x^{p}}$$

(a) Первый способ. $A_n := \pi n, B_n := 2\pi n$

$$\int_{A_n}^{B_n} \frac{|\sin x|}{x^p} \ge \frac{1}{(2\pi n)^p} \underbrace{\int_{A_n}^{B_n} |\sin x|}_{\text{площадь } n \text{ арок синуса}} = \frac{2n}{(2\pi n)^p} = Cn^{1-p} \not\to 0$$

(b) Второй способ.

$$\int_{1}^{+\infty} \frac{|\sin x|}{x^{p}} \ge \int_{1}^{+\infty} \frac{\sin^{2} x}{x^{p}} = \int_{1}^{+\infty} \frac{1 - \cos(2x)}{2x^{p}} = \underbrace{\int_{1}^{+\infty} \frac{1}{2x^{p}}}_{+\infty} - \underbrace{\int_{1}^{+\infty} \frac{\cos 2x}{2x^{p}}}_{\text{При } p > 0 \text{ сходится } \text{как в пункте } 2}$$

Итого абсолютной сходимости нет.

Итоговый конспект 37 из 57

2.41 Признак Абеля-Дирихле сходимости несобственного интеграла

f — допустима на [a,b), $g\in C^1[a,b)$ Если выполняется 1 или 2, то $\int_a^b fg$ — сходится

1. (a) $F(A) := \int_a^A f(x) dx, A \in [a, b), F$ ограничена, т.е.:

$$\exists K : \forall A \in [a,b) \quad \left| \int_a^A f \right| \leq K$$

- (b) g(x) монотонна, $g(x) \xrightarrow{x \to b 0} 0$
- 2. (a) $\int_a^b f(x)dx$ сходится, необязательно абсолютно
 - (b) g(x) монотонна, g(x) ограничена, т.е.: $\exists L \ \forall x \in [a,b) \ |g(x)| \leq L$

1 часть — Дирихле, 2 — Абель.

Доказательство. 1.

$$\int_a^b fg = F(x)g(x)\Big|_a^b - \int_a^b F(x)g'(x)dx$$

$$\lim_{x\to b-0}\underbrace{F(x)}_{\text{orp.}}\underbrace{g(x)}_{\text{6.м.}} = 0 \Rightarrow F(x)g(x)\Big|_a^b - \text{конечн.}$$

Покажем абсолютную сходимость, из нее следует обычная сходимость:

$$\int_a^b |F(x)g'(x)|dx \le \int_a^b K \int_a^b |g'| =$$

Можно снять модуль, т.к. g монотонна \Rightarrow sign(g') = const

$$=\pm K\int_a^b g'=\pm Kg(x)\Big|_a^b=\pm K(\underbrace{\lim_{x\to b-0}g(x)}_0-\underbrace{g(a)}_{\text{koh.}})$$

2. $\alpha := \lim_{x \to b-0} g(x)$ — кон.

$$\int_{a}^{b} fg = \underbrace{\int_{a}^{b} f\alpha}_{\text{кон. по (a)}} + \underbrace{\int_{a}^{b} f(g - \alpha)}_{\text{сходится по 1}}$$

Пояснение насчет сходимости $\int_a^b f(g-\alpha)$:

- (a) $F:A\mapsto \int_a^A f$ ограничена, т.к. $\int_a^b f$ сходится
- (b) $g \to \alpha \Rightarrow (g \alpha) \to 0$

Итоговый конспект 38 из 57

2.42 Интеграл Дирихле

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Доказательство.

$$\cos x + \cos 2x + \ldots + \cos nx = \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\frac{x}{2}} - \frac{1}{2}$$

Проверим формулу:

$$2\sin\frac{x}{2}\cos x + 2\sin\frac{x}{2}\cos 2x + \dots + 2\sin\frac{x}{2}\cos nx = \sin\left(n + \frac{1}{2}\right)x - \sin\frac{x}{2}$$

$$\sin\frac{3}{2}x - \sin\frac{1}{2}x + \dots + \sin\left(n + \frac{1}{2}\right)x - \sin\left(n - \frac{1}{2}\right)x = \sin\left(n + \frac{1}{2}\right)x - \sin\frac{x}{2}$$

$$\int_0^\pi \cos kx = \frac{1}{k}\sin kx\Big|_0^\pi = 0$$

Проинтегрируем исходное выражение по $[0, \pi]$:

$$0 = \int_0^{\pi} \dots = \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right) x}{2\sin\frac{x}{2}} dx - \frac{\pi}{2}$$

$$\int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right) x}{2\sin\frac{x}{2}} dx = \frac{\pi}{2}$$

$$\int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right) x}{x} dx = \begin{bmatrix} y = \left(n + \frac{1}{2}\right) x \\ x = \frac{1}{n + \frac{1}{2}} y \end{bmatrix} dx = \frac{1}{n + \frac{1}{2}} dy \end{bmatrix} =$$

$$= \int_0^{\left(n + \frac{1}{2}\right)\pi} \frac{\sin y}{n + \frac{1}{2}} dy = \int_0^{\left(n + \frac{1}{2}\right)\pi} \frac{\sin y}{y} dy$$

Итого:

$$\int_0^\pi \frac{\sin\left(n + \frac{1}{2}\right)x}{x} dx = \int_0^{\left(n + \frac{1}{2}\right)\pi} \frac{\sin y}{y} dy$$

Проверим:

Проверим:
$$\int_0^\pi \frac{\sin\left(n+\frac{1}{2}\right)x}{2\sin\frac{x}{2}}dx - \int_0^\pi \frac{\sin\left(n+\frac{1}{2}\right)x}{x}dx \xrightarrow[n \to +\infty]{} 0$$

$$\int_0^\pi \sin\left(n+\frac{1}{2}\right)xh(x)dx$$

$$h(x) = \frac{1}{2\sin\frac{x}{2}} - \frac{1}{x} = \frac{x-2\sin\frac{x}{2}}{2x\sin\frac{x}{2}} = \frac{\mathcal{O}(x^3)}{x^2} \xrightarrow[x \to 0]{} 0$$

$$\int_0^\pi \sin\left(n+\frac{1}{2}\right)xh(x)dx = \left[\begin{array}{c} f = h(x) \\ g' = \sin\left(n+\frac{1}{2}\right)x \end{array}\right] =$$

$$= \frac{-1}{n+\frac{1}{2}}\cos\left(n+\frac{1}{2}\right)xh(x)\Big|_0^\pi + \frac{1}{n+\frac{1}{2}}\int_0^\pi \cos\left(n+\frac{1}{2}\right)h'(x)dx$$

$$h'(x) = -\frac{\cos\frac{x}{2}}{4\sin^2\frac{x}{2}} + \frac{1}{x^2} = \frac{x^2\cos\frac{x}{2} - 4\sin^2\frac{x}{2}}{4x^2\sin^2\frac{x}{2}} = \frac{x^2\left(1-\frac{x^2}{4} + o(x^3)\right) - 4\left(\frac{x}{2} - \frac{x^3}{48} + o(x^3)\right)}{4x^2\sin^2\frac{x}{2}} \xrightarrow[x \to 0]{} \text{const}$$

Итоговый конспект 39 из 57

 $\Rightarrow h'(0) = \mathrm{const}$ (той, которая lim) и $h \in C^1[0,\pi]$

$$\int_0^\pi \sin\left(n+\frac{1}{2}\right)xh(x)dx = \underbrace{\frac{-1}{n+\frac{1}{2}}\underbrace{\cos\left(n+\frac{1}{2}\right)x}_{\text{orp.}}\underbrace{\underbrace{h(x)}_{\text{orp.}}\Big|_0^\pi + \underbrace{\frac{1}{n+\frac{1}{2}}\int_0^\pi \cos\left(n+\frac{1}{2}\right)\underbrace{\underbrace{h'(x)}_{\text{orp., t.k.} \in C^1}}_{\text{orp., henp.}}\underbrace{\underbrace{h'(x)}_{\text{orp., t.k.} \notin \text{-tlug ot } n}_{\text{orp. kak } \oint \text{-tlug ot } n}$$

$$\underbrace{\int_0^{\left(n+\frac{1}{2}\right)\pi} \frac{\sin x}{x} dx}_{\rightarrow \text{инт. Дирихле}} = \underbrace{\int_0^\pi \frac{\sin \left(n+\frac{1}{2}\right) x}{x} dx}_{\rightarrow 0} - \int_0^\pi \frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} dx}_{\rightarrow 0} + \int_0^\pi \frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} dx \rightarrow \frac{\pi}{2}$$

2.43 Неравенство Йенсена для сумм

f — выпуклая на $\langle a, b \rangle$. Тогда

$$\forall x_1 \dots x_n \in \langle a, b \rangle \ \forall \alpha_1 \dots \alpha_n : \alpha_i \ge 0 \ \alpha_1 + \dots + \alpha_n = 1 \quad f(\alpha_1 x_1 + \dots + \alpha_n x_n) \le \alpha_1 f(x_1) + \dots + \alpha_n f(x_n)$$

Доказательство. Для $x_1 = x_2 = \ldots = x_n$ тривиально. Покажем, что $x^* := \alpha_1 x_1 + \ldots + \alpha_n x_n \in \langle a, b \rangle$:

$$\min x_i < x^* < (\alpha_1 + \ldots + \alpha_n) \max(x_i) = \max(x_i) \Rightarrow x^* \in \langle a, b \rangle$$

В x^* можно провести опорную прямую y = kx + b

$$f(x^*) = kx^* + b = \sum_{i=1}^n (\alpha_i kx_i) + b = \sum_{i=1}^n \alpha_i (kx_i + b) \le \sum_{i=1}^n \alpha_i f(x_i)$$

2.44 Неравенство Йенсена для интегралов

- f выпуклая на $\langle A, B \rangle$
- $\varphi:[a,b] \to \langle A,B \rangle$ непрерывная
- $\lambda:[a,b] o [0,+\infty)$ непрерывная (для кусочно-непрерывной тоже верно)
- $\int_a^b \lambda(t)dt = 1$

Тогда

$$f\left(\int_a^b \lambda(t)\varphi(t)dt\right) \leq \int_a^b \lambda(t)f(\varphi(t))dt$$

M3137y2019

Итоговый конспект 40 из 57

Доказательство. $m := \inf \varphi, M := \sup \varphi$

$$m \le m \int_a^b \lambda(t) \le \int_a^b \lambda(t)\varphi(t) \le M \int_a^b \lambda(t) = M$$
$$x^* := \int_a^b \lambda(t)\varphi(t)dt \Rightarrow x^* \in \langle A, B \rangle$$

Для m=M тривиально.

y = kx + b — опорная прямая в точке x^* графика f.

$$f(x^*) = kx^* + b = k \int_a^b \lambda \varphi + b \int_a^b \lambda = \int_a^b \lambda(t)(k\varphi(t) + b)dt \le$$
$$\le \int_a^b \lambda(t)f(\varphi(t))dt$$

2.45 Неравенство Коши (для сумм и для интегралов)

$$a_i > 0$$
 $\frac{1}{n} \sum a_i \ge \sqrt[n]{a_1 \cdots a_n}$

Доказательство. $f(x)=\ln x$ — вогн., $\alpha_i=\frac{1}{n}$, по неравенству Йенсена:

$$\ln\left(\frac{1}{n}a_1 + \dots + \frac{1}{n}a_n\right) \ge \frac{1}{n}\ln a_1 + \dots + \frac{1}{n}\ln a_n$$

$$\ln\left(\frac{a_1 + \dots + a_n}{n}\right) \ge \frac{1}{n}\ln(a_1 \cdots a_n)$$

$$\ln\left(\frac{a_1 + \dots + a_n}{n}\right) \ge \ln(a_1 \cdots a_n)^{\frac{1}{n}}$$

$$\frac{a_1 + \dots + a_n}{n} \ge (a_1 \cdots a_n)^{\frac{1}{n}}$$

Неравенство Коши для интегралов:

$$f > 0, f \in C[a, b]$$
 $\exp\left(\frac{1}{b - a} \int_a^b \ln f(x) dx\right) \le \frac{1}{b - a} \int_a^b f(x) dx$

Правая часть — среднее значение f на [a,b], похоже на среднее арифметическое, если рассмотреть интегральную сумму:

$$\frac{1}{b-a} \int_{a}^{b} f \approx \frac{1}{b-a} \sum_{i=1}^{n} \frac{1}{n} f(x_i)$$

Аналогично левая часть ≈ среднее геометрическое:

$$\exp\left(\frac{1}{b-a}\int_a^b \ln f(x)dx\right) \approx \exp\left(\sum \frac{1}{n}\ln f(x_i)\right) = \prod_{i=1}^n \exp\left(\frac{\ln(f(x_i))}{n}\right) = \sqrt[n]{f(x_i)\cdots f(x_n)}$$

Возьмём логарифм от искомого неравенства:

$$\frac{1}{b-a} \int_{a}^{b} \ln f(x) dx \le \ln \left(\frac{1}{b-a} \int_{a}^{b} f \right)$$

Подставим в интегральное неравенство Йенсена:

Итоговый конспект 41 из 57

- $f \leftrightarrow \ln$
- $\lambda(t) \leftrightarrow \frac{1}{h-a}$
- $\varphi \leftrightarrow f$

2.46 Неравенство Гельдера для сумм

 $a_1 \dots a_n, b_1 \dots b_n > 0, p > 1, q > 1$ $\frac{1}{p} + \frac{1}{q} = 1$. Тогда

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum a_i^p\right)^{\frac{1}{p}} \left(\sum b_i^q\right)^{\frac{1}{q}}$$

Частный случай при p=q=2 — неравенство Коши-Буняковского.

Доказательство. $f(x)=x^p, (p>1)$ — строго выпуклая, т.к. $f''=p(p-1)x^{p-2}>0$ По Йенсену $(\sum \alpha_i x_i)^p \leq \sum \alpha_i x_i^p$

$$\alpha_i := \frac{b_i^q}{\sum b_j^q} \quad x_i := a_i b_i^{\frac{-1}{p-1}} \left(\sum b_j^q \right)$$
 Левая часть $\frac{1}{p} = \sum_{i=1}^n \left(\frac{b_i^q}{\sum b_j^q} a_i b_i^{\frac{-1}{p-1}} \sum b_j^q \right) = \sum a_i b_i^{q-\frac{1}{p-1}} = \sum a_i b_i$ Правая часть $= \sum \frac{b_i^q}{\sum b_j^q} a_i^p b_i^{\frac{-p}{p-1}} \left(\sum b_j^q \right)^p = \sum \frac{b_i^q}{\sum b_j^q} a_i^p b_i^{-q} \left(\sum b_j^q \right)^p = \left(\sum a_i^p \right) \left(\sum b_j^q \right)^{\frac{p}{q}}$ Правая часть $\frac{1}{p} = \left(\sum a_i^p \right) \frac{1}{p} \left(\sum b_j^q \right)^{\frac{1}{q}}$

Общий вид: $a_i, b_i \in \mathbb{R}$

$$\left|\sum a_i b_i\right| \le \left(\sum |a_i|^p\right)^{\frac{1}{p}} \left(\sum |b_i|^q\right)^{\frac{1}{q}}$$

2.47 Неравенство Гельдера для интегралов

 $p>1,q>1,rac{1}{p}+rac{1}{q}=1$ $f,g\in C[a,b].$ Тогда

$$\left| \int_a^b f(x)g(x)dx \right| \le \left(\int_a^b |f|^p \right)^{\frac{1}{p}} \left(\int_a^b |g|^q \right)^{\frac{1}{q}}$$

Неравенство КБШ в пространстве функций — частный случай этого неравенства.

Доказательство. По интегральным суммам:

$$x_{i} := a + i \frac{b - a}{n} \quad \Delta x_{i} = x_{i} - x_{i-1} \quad a_{i} := f(x_{i})(\Delta x_{i})^{\frac{1}{p}} \quad b_{i} = g(x_{i})(\Delta x_{i})^{\frac{1}{q}}$$

$$a_{i}b_{i} = f(x_{i})g(x_{i})(\Delta x_{i})$$

$$\left| \sum_{i=1}^{n} f(x_{i})g(x_{i})\Delta x_{i} \right| \leq \left(\sum |f(x_{i})|^{p} \Delta x_{i} \right)^{\frac{1}{p}} \left(\sum |g(x_{i})|^{q} \Delta x_{i} \right)^{\frac{1}{q}}$$

Предельный переход доказывает искомое.

Итоговый конспект 42 из 57

2.48 Неравенство Минковского

 $p \ge 1, \ a_i, b_i \in \mathbb{R}$

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{\frac{1}{p}} \le \left(\sum |a_i|^p\right)^{\frac{1}{p}} + \left(\sum |b_i|^p\right)^{\frac{1}{p}}$$

Это неравенство треугольника для нормы $||a||_p = (\sum |a_i|^p)^{\frac{1}{p}}$

Доказательство. p=1 тривиально, $|a_i+b_i|\leq |a_i|+|b_i|$ Докажем для положительных a_i,b_i , другие случаи сводятся к этому. По неравенству Гёльдера для q=p/(p-1):

$$\sum a_i (a_i + b_i)^{p-1} \le \left(\sum a_i^p\right)^{\frac{1}{p}} \left(\sum (a_i + b_i)^{q(p-1)}\right)^{\frac{1}{q}} = \left(\sum a_i^p\right)^{\frac{1}{p}} \left(\sum (a_i + b_i)^p\right)^{\frac{1}{q}}$$
$$\sum b_i (a_i + b_i)^{p-1} \le \left(\sum b_i^p\right)^{\frac{1}{p}} \left(\sum (a_i + b_i)^{q(p-1)}\right)^{\frac{1}{q}} = \left(\sum b_i^p\right)^{\frac{1}{p}} \left(\sum (a_i + b_i)^p\right)^{\frac{1}{q}}$$

Сложим эти два неравенства:

$$\sum (a_i + b_i)^p \le \left(\left(\sum a_i^p \right)^{\frac{1}{p}} + \left(\sum b_i^q \right)^{\frac{1}{q}} \right) \left(\sum (a_i + b_i)^p \right)^{\frac{1}{q}}$$
$$\left(\sum (a_i + b_i)^p \right)^{1 - \frac{1}{q}} \le \left(\sum a_i^p \right)^{\frac{1}{p}} + \left(\sum b_i^q \right)^{\frac{1}{q}}$$
$$\left(\sum (a_i + b_i)^p \right)^{\frac{1}{p}} \le \left(\sum a_i^p \right)^{\frac{1}{p}} + \left(\sum b_i^q \right)^{\frac{1}{q}}$$

2.49 Свойства верхнего и нижнего пределов

 $1. \ \underline{\lim} x_n \le \overline{\lim} x_n$

 $2. \ \forall n \ x_n \leq \tilde{x}_n \Rightarrow :$

- (a) $\overline{\lim} x_n \leq \overline{\lim} \tilde{x}_n$
- (b) $\underline{\lim} x_n \leq \underline{\lim} \tilde{x}_n$
- 3. $\lambda \geq 0 \Rightarrow \overline{\lim}(\lambda x_n) = \lambda \overline{\lim} x_n; \underline{\lim} \lambda x_n = \lambda \underline{\lim} x_n,$ считаем что $0 \cdot (\pm \infty) = 0$
- 4. $\overline{\lim} x_n = -\underline{\lim} x_n; \underline{\lim} x_n = -\overline{\lim} x_n$
- 5. $\overline{\lim}(x_n+y_n) \leq \overline{\lim}x_n + \overline{\lim}y_n$, если правая часть имеет смысл, т.е. нет ситуации вида $+\infty \infty$ $\lim(x_n+y_n) \geq \lim x_n + \lim y_n$
- 6. $t_n \to l \in \mathbb{R} \Rightarrow \overline{\lim}(x_n + t_n) = \overline{\lim}x_n + l$
- 7. $t_n \to l \in (0, +\infty) \Rightarrow \overline{\lim}(t_n x_n) = l\overline{\lim} x_n$

Доказательство. 1. $y_n \le x_n \le z_n$, по предельному переходу тривиально.

- 2. $z_n = \sup(x_n, x_{n+1}, \ldots), \tilde{z}_n = \sup(\tilde{x}_n, \tilde{x}_{n+1}, \ldots) \Rightarrow z_n \leq \tilde{z}_n$
- 3. $\sup \lambda E = \lambda \sup E$

Итоговый конспект 43 из 57

- 4. $\sup -E = -\inf E$
- 5. $\sup(x_n + y_n, x_{n+1} + y_{n+1}, \dots) \le \sup(x_n, x_{n+1}, \dots) + \sup(y_n, y_{n+1}, \dots)$
- 6. $\forall \varepsilon>0 \ \exists N_0 \ \forall k>N_0 \ x_k+l-\varepsilon < x_k+t_k < x_k+l+\varepsilon$ $\lessdot N>N_0$, перейдем к sup по $k\geq N$:

$$y_N + l - \varepsilon < \sup(x_N + t_N, x_{N+1} + t_{N+1}, \dots) \le y_N + l + \varepsilon$$

Предельный переход:

$$\overline{\lim} x_N + l - \varepsilon \le \overline{\sup} (x_N + t_N) \le \overline{\lim} x_N + l + \varepsilon$$
$$\lim (x_n + t_n) = \overline{\lim} x_n + l$$

7. То же самое.

2.50 Техническое описание верхнего предела

- 1. $\overline{\lim} x_n = +\infty \Leftrightarrow x_n$ неогр. сверху
- 2. $\overline{\lim} x_n = -\infty \Leftrightarrow x_n \to -\infty$
- 3. $\overline{\lim} x_n = l \in \mathbb{R} \Leftrightarrow$ аи b:
 - (a) $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ x_n < l + \varepsilon$
 - (b) $\forall \varepsilon > 0$ для бесконечного множества номеров $n: l-\varepsilon < x_n$

Доказательство. 1. Очевидно, т.к. $y_n = \sup(x_n, x_{n+1}...) = +\infty \Leftrightarrow x_n$ — неогр. сверху

- 2. " \Rightarrow " $x_n \leq y_n \to -\infty$ " \Leftarrow " $\forall A \exists N \ \forall n > N \ y_n \leq A, x_n < A$
- 3. " \Rightarrow " (a) $y_n \to l \quad \forall \varepsilon > 0 \ \exists N \ \forall n > N \quad x_n \le y_n < l + \varepsilon$
 - (b) Берём $\varepsilon>0$, предположим противное : \exists конечное мн-во $n:l-\varepsilon< x_n$ $]n_0$ максимальный номер, такой что $l-\varepsilon< x_{n_0}$, тогда $y_{n_0}\leq l-\varepsilon$, но $y_n\downarrow\Rightarrow\lim y_n\leq l-\varepsilon$
 - " \Leftarrow " $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ x_n < l + \varepsilon \Rightarrow y_n \leq l + \varepsilon$, но в $x_n, x_{n+1} \ldots \exists \underline{x_i} : l \varepsilon < x_i \Rightarrow y_n = \sup(x_n, x_{n+1} \ldots) > l \varepsilon$. Итого $l + \varepsilon \geq y_n > l \varepsilon \Rightarrow l = \lim y_n = \overline{\lim} x_n$

2.51 Теорема о существовании предела в терминах верхнего и нижнего пределов

$$\exists \lim x_n \in \overline{\mathbb{R}} \Leftrightarrow \overline{\lim} x_n = \underline{\lim} x_n$$

Доказательство. " \Rightarrow " 1. $\lim x_n = +\infty \Rightarrow \overline{\lim} x_n = \lim y_n \geq \lim x_n = +\infty$

- 2. $\lim x_n = -\infty$ аналогично
- 3. $\lim x_n = l \in \mathbb{R}$ очевидно из технического описания предела, пункт 3.

" \Leftarrow " $\varliminf x_n \leftarrow z_n \le x_n \le y_n \to \varlimsup x_n$, по теореме о городовых $\exists \lim x_n = \varlimsup x_n$

2.52 Теорема о характеризации верхнего предела как частичного

- 1. $\forall l$ частичный пр. $x_n \underline{\lim} x_n \leq l \leq \overline{\lim} x_n$
- 2. $\exists (n_k): x_{n_k} \to \overline{\lim} x_n \ \exists m_k: x_{m_k} \to \underline{\lim} x_n$

Доказательство. 1. $x_{n_k} \to l$ $\underline{\lim} x_n \leftarrow z_{n_k} \le x_{n_k} \le y_{n_k} \to \overline{\lim} x_n \Rightarrow \underline{\lim} x_n \le l \le \overline{\lim} x_n$

- 2. (a) $\overline{\lim} x_n = +\infty \Leftrightarrow x_n$ неогр сверху \Rightarrow можно выбрать $x_{n_1} < x_{n_2} < \dots x_n \to +\infty$
 - (b) $\overline{\lim} x_n = -\infty$ тривиально.
 - (c) $\overline{\lim} x_n = l \in \mathbb{R} \ \exists x_{n_k} : l \frac{1}{k} < x_{n_k} < l + \frac{1}{k}$

2.53 Частичные пределы последовательности $\sin(n)$

- 1. $\overline{\lim} \sin n = 1$, $\lim \sin n = -1$
- 2. $\forall l \in [-1,1]$ частичный передел последовательности $\sin n$

Доказательство. 1. Тривиально

2. $n_k := \arcsin l + 2\pi k$

Кроме того, можно составить $n_k \in \mathbb{N}$.

2.54 Свойства рядов: линейность, свойства остатка, необх. условие сходимости, критерий Больцано-Коши

- 1. $\sum a_n, \sum b_n$ сходятся, $c_n := a_n + b_n$. Тогда $\sum c_n$ сходится
- 2. $\sum a_n$ сходится, $\lambda \in \mathbb{R}$. Тогда $\sum \lambda a_n$ сходится и $\sum \lambda a_n = \lambda \sum a_n$
- 3. (a) $\sum a_n \text{сходится} \Rightarrow \text{любой остаток сходится}$
 - (b) остаток сходится $\Rightarrow \sum a_n$ сходится
 - (c) $r_N = \sum_{n > N} a_n$, $\sum a_n$ сходится $\Leftrightarrow r_N \xrightarrow[N \to +\infty]{} 0$

Доказательство. (a) ?m-й остаток, $N \geq m: \sum\limits_{n=1}^{N} a_n = \sum\limits_{n=1}^{m-1} a_n + \sum\limits_{n=m}^{N} a_n$

- (b) Аналогично.
- (с) "⇐" Тривиально.

"\Rightarrow"
$$\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{m-1} a_n + r_m \xrightarrow{m \to +\infty} \sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} a_n + r_{+\infty} \Rightarrow r_N \to 0$$

Необходимое условие сходимости:

$$\sum a_n$$
 сходится $\Rightarrow a_n \to 0$

Доказательство. Тривиально. $a_n = S_n - S_{n-1} \to 0$

Критерий сходимости ряда Больцано-Коши:

$$\sum a_n \ \text{сходится} \ \Leftrightarrow \forall \varepsilon > 0 \ \ \exists N \ \ \forall k > N \ \ \forall m \in \mathbb{N} \quad |a_{k+1} + a_{k+2} + \ldots + a_{k+m}| < \varepsilon$$

Доказательство. Тривиально.

M3137y2019

Итоговый конспект 45 из 57

2.55 ! Признак сравнения сходимости положительных рядов

 $a_k, b_k \geq 0$

1. $\forall k \ a_k \leq b_k$, или $\exists c > 0 \ \forall k \ a_k \leq cb_k$. Тогда $\sum b_k$ сх. $\Rightarrow \sum a_k$ сх., $\sum a_k$ расх. $\Rightarrow \sum b_k$ расх.

2. $\exists \lim \frac{a_k}{b_k} = l \in [0, +\infty]$. Тогда при

 $0 < l < +\infty$: $\sum a_k \operatorname{cx.} \Leftrightarrow \sum b_k \operatorname{cx.}$

$$l=0: \sum b_k \operatorname{cx.} \Rightarrow \sum a_k \operatorname{cx.}, \sum a_k \operatorname{pacx.} \Rightarrow \sum b_k \operatorname{pacx.}$$

$$l = +\infty$$
: $\sum a_k \operatorname{cx.} \Rightarrow \sum b_k \operatorname{cx.}, \sum b_k \operatorname{pacx.} \Rightarrow \sum a_k \operatorname{pacx.}$

Доказательство.

Пемма 1. $a_n \ge 0$ $\sum a_n$ сходится $\Leftrightarrow S_n$ ограничено сверху.

Доказательство. \exists кон. $\lim S_n \Leftrightarrow S_n$ ограничено сверху.

- 1. $S_n^{(a)} \leq S_n^{(b)}; \ S_n^{(b)}$ orp. $\Rightarrow S_n^{(a)}$ orp., по леммме a_n сходится. Аналогично расходимость.
- 2. (a) $0 < l < +\infty$: Для $\varepsilon = \frac{l}{2} \; \exists N \; \forall n > N \; \frac{1}{2} lb_n < a_n < \frac{3}{2} lb_n$, дальше по 1 пункту.
 - (b) $l=0: \forall \varepsilon>0 \ \exists N \ \forall n>N \ \frac{a_n}{b_n}<\varepsilon \Rightarrow a_n<\varepsilon b_n \Rightarrow$ по 1 пункту.
 - (c) $l=+\infty: \forall \varepsilon>0 \ \exists N \ \forall n>N \ \frac{a_n}{b_n}>\varepsilon \Rightarrow a_n>b_n \varepsilon \Rightarrow$ по 1 пункту.

2.56 ! Признак Коши сходимости положительных рядов

 $a_n \ge 0, K_n := \sqrt[n]{a_n}$. Тогда:

Lite:

- 1. Если $\exists q < 1: K_n \leq q$, начиная с некоторого места (НСНМ) ($\exists N: \forall n > N$) $\Rightarrow \sum a_n$ сходится.
- 2. $K_n \geq 1$ для бесконечного множества $n \Rightarrow \sum a_n$ расходится.

 $\operatorname{Pro}:K:=\overline{\lim}K_n$

- 1. $K < 1 \Rightarrow \sum a_n$ сходится
- 2. $K>1\Rightarrow\sum a_n$ расходится

Доказательство. Lite:

- 1. HCHM $\sqrt[n]{a_n} \le q \Leftrightarrow a_n \le q^n, \sum q^n \text{ cx.} \Rightarrow \sum a_n \text{ cx.}$
- 2. $\sqrt[n]{a_n} \ge 1 \Leftrightarrow a_n \ge 1 \Rightarrow a_n \not\to 0 \Rightarrow \sum a_n$ pacx.

Pro:

- 1. По техническому описанию $\overline{\lim} \; \exists N \; \; \forall n > N \; \; K_n < q \Rightarrow$ по Lite.1 сходится.
- 2. $l=\overline{\lim}K_n>1, 1=l-arepsilon$. Тогда $K_n\geq 1$ для бесконечного множества $n\Rightarrow$ по Lite.2 расходится.

Итоговый конспект 46 из 57

2.57 Признак Коши сходимости положительных рядов (pro)

Дано выше. (2.56, стр. 45)

2.58 Признак Даламбера сходимости положительных рядов

$$a_n > 0, D_n := \frac{a_{n+1}}{a_n}$$

Lite

1. $\exists q < 1 : D_n < q \text{ HCHM} \Rightarrow \sum a_n \text{ cx.}$

2. $D_n \ge 1 \text{ HCHM} \Rightarrow \sum a_n \text{ pacx.}$

Pro: $D := \lim D_n$

1. $D < 1 \Rightarrow \sum a_n \operatorname{cx}$.

2. $D > 1 \Rightarrow \sum a_n$ pacx.

Доказательство. Lite:

1. $\exists N : \frac{a_{N+1}}{a_N} < q, \frac{a_{N+2}}{a_{N+1}} < q, \dots$

$$\frac{a_n}{a_N} < q^{n-N}$$

$$a_n < q^n \left(\frac{a_N}{q^N}\right)$$

$$\sum q^n \operatorname{cx.} \Rightarrow \sum a_n \operatorname{cx.}$$

2. $D_n \ge 1 \Leftrightarrow a_{n+1} \ge a_n$, при n > N $a_n \ge a_N \Rightarrow a_n \ge A_N \Rightarrow a_n \not\to 0$. Также можно аналогично пункту 1.

Pro:

1. $q:=\frac{1+D}{2}$. По определению предела $\varepsilon:=q-D \ \exists N \ \forall n>N \ D_n < q \xrightarrow{Lite1} \sum a_n \ {\rm cx.}$

2. $\varepsilon := D - 1 \ \exists N \ \forall n > N \ D_n > 1 \xrightarrow{Lite2} \sum a_n \text{ pacx.}$

2.59 Признак Раабе сходимости положительных рядов

$$a_n > 0, R_n := n \left(rac{a_n}{a_{n+1}} - 1
ight)$$
. Тогда:

1. $\exists r > 1 \ R_n \ge r \text{ HCHM} \Rightarrow \sum a_n \text{ cx.}$

2. $R_n \le 1 \text{ HCHM} \Rightarrow \sum a_n \text{ cx.}$

Доказательство. 1. $R_n \ge r \Leftrightarrow \frac{a_n}{a_{n+1}} \ge 1 + \frac{r}{n}$

$$\frac{\left(1+\frac{1}{n}\right)^s - 1}{\frac{1}{n}} < r \Leftrightarrow \left(1+\frac{1}{n}\right)^s < 1 + \frac{r}{n}$$

$$b_n := \frac{1}{n^s} \quad \frac{a_{n+1}}{a_n} = \frac{1}{\frac{a_n}{a_{n+1}}} \le \frac{1}{1 + \frac{r}{n}} < \frac{1}{\left(1 + \frac{1}{n}\right)^s} = \frac{b_{n+1}}{b_n}$$

 $\sum b_n \operatorname{cx.} \Rightarrow \sum a_n \operatorname{cx.}$ по лемме 1.

Итоговый конспект 47 из 57

2.
$$R_n \leq 1 \Leftrightarrow \frac{a_n}{a_{n+1}} \leq 1 + \frac{1}{n}$$

$$\frac{a_{n+1}}{a_n} \ge \frac{n}{n+1} = \frac{\frac{1}{n+1}}{\frac{1}{n}}$$

$$b_n = \frac{1}{n} \text{ pacx.} \Rightarrow \sum a_n \text{ pacx.}$$

2.60 Интегральный признак Коши сходимости числовых рядов

 $f:[1,+\infty) \to \mathbb{R}$ монотонно убывает, $f \ge 0, f$ непр. Тогда $\sum_{k=1}^\infty f(k)$ и $\int_1^{+\infty} f(x) dx$ сходится/расходится одновременно.

Доказательство.

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n+1} f(x)dx + \Delta_n$$

 Δ_n — площадь криволинейных треугольников, получаемых отсечением кривой y=f(x).

$$0 \le \Delta_n \le f(1) - f(n) \le f(1)$$

 $\Delta_n \uparrow \Rightarrow \exists$ кон. $\lim \Delta_n$

Более формальный вариант, без картинок:

$$\sum_{k=1}^{n} - \int_{1}^{n+1} = \sum_{k=1}^{n} \left(f(k) - \int_{k}^{k+1} f(x) dx \right)$$

T.к. $f \downarrow$:

$$\int_{k}^{k+1} f(x)dx \ge \int_{k}^{k+1} f(k+1)dx = f(k+1)$$
$$\sum_{k=1}^{n} \left(f(k) - \int_{k}^{k+1} f(x)dx \right) \le \sum_{k=1}^{n} f(k) - f(k+1) = f(1) - f(n+1)$$

2.61 ! Признак Лейбница

$$c_n \geq 0, c_1 \geq c_2 \geq c_3 \geq \dots, c_n \to 0$$
 Тогда $\sum_{n=1}^{+\infty} (-1)^{n-1} c_n$ сх.

Доказательство.

$$S_{2N} = c_1 - c_2 + \ldots + c_{2N-1} - c_{2N}$$

$$S_{2N+2} = S_{2N} + \underbrace{(c_{2N+1} - c_{2N+2})}_{\geq 0} \geq S_{2N} \Rightarrow S_{2N} \uparrow$$

M3137y2019

Итоговый конспект 48 из 57

$$S_{2N} = c_1 - \underbrace{(c_2 - c_3)}_{\geq 0} - \underbrace{(c_3 - c_4)}_{\geq 0} - \dots - c_{2N} \leq c_1$$

$$S_{2N} \uparrow \atop S_{2N} \leq c_1$$

$$\Rightarrow \exists \lim_{N \to +\infty} S_{2N} \in \mathbb{R}$$

$$S_{2N+1} = \underbrace{S_{2N}}_{\rightarrow l \in \mathbb{R}} + \underbrace{c_{2N+1}}_{\rightarrow 0} \Rightarrow S_{2N+1} \to l \Rightarrow S_N \to l$$

2.62 Признаки Дирихле и Абеля сходимости числового ряда

Дирихле:

- 1. Последовательность $A_k = \sum\limits_{i=1}^k a_i$ ограничена: $\exists C_A > 0 \;\; \forall k \;\; |A_k| < C_A$
- 2. b_k монотонна и ightarrow 0

Абеля:

- 1. Ряд $\sum a_k$ сходится
- 2. b_k монотонна, ограничена: $\exists C_B > 0 \ \forall k \ |b_k| < C_B$

Если хотя бы один из этих признаков состоялся, $\sum_{k=1}^{n} a_k b_k$ сходится.

Доказательство.

$$\sum_{k=1}^n a_k b_k = \underbrace{A_n b_n}_{ o 0} + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$
 д конечный предел, т.к. ряд абсолютно сходится

Докажем Дирихле.

$$\sum_{k=1}^{n-1} |A_k| |b_k - b_{k+1}| \le C_A \sum_{k=1}^{n-1} |b_k - b_{k+1}| = \pm C_A \sum_{k=1}^{n-1} b_k - b_{k+1} = \pm \underbrace{C_a(b_1 - b_n)}_{\text{orp.}} \le C_A C_B$$

Докажем Абеля.

$$\exists$$
 конечный $\beta = \lim_{k \to +\infty} b_k$

$$\sum_{k=1}^{n} a_k b_k = \beta \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} a_k (b_k - \beta)$$

Второй ряд сходится по признаку Дирихле, первый сходится по условию.

2.63 Теорема о перестановке слагаемых

Ряд A абсолютно сходится, тогда его перестановка B тоже абсолютно сходится и имеет ту же сумму.

Итоговый конспект 49 из 57

Доказательство. 1. $a_k > 0$

$$S_n^{(b)} = b_1 + \ldots + b_n = a_{w(1)} + \ldots + a_{w(n)} \le S_N^{(a)}, N = \max(w(1) \ldots w(n))$$

Предельный переход: $S^{(b)} \leq S^{(a)}$

Т.к. A — перестановка B, то $S^{(a)} \leq S^{(b)} \Rightarrow S^{(a)} = S^{(b)}$

2. Общий случай

$$a_k^+ = \max(a_k, 0), a_k^- = \max(-a_k, 0)$$

$$\sum b_k^+$$
 — перестановка $\sum a_k^+; \sum b_k^-$ — перестановка $\sum a_k^-$

Срезки сходятся по пункту 1., в силу абсолютной сходимости $\sum a_k^+$ и $\sum a_k^-$ конечны \Rightarrow $S^{(a)} = S^{(b)}$

2.64 Теорема о произведении рядов

Пусть ряды $\sum a_k, \sum b_k$ абсолютно сходятся. Тогда \forall биекции $\gamma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ произведение рядов абсолютно сходится и его сумма = AB

Доказательство. $\sum |a_k| = A^*, \sum |b_k| = B^*, 0 \le A^*, B^* < +\infty$

$$\sum_{k=1}^{N} |a_{\varphi(x)} b_{\psi(x)}| \le \sum_{i=1}^{M} |a_i| \sum_{j=1}^{L} |b_j| \le A^* B^*$$

$$M:=\max(\varphi(1)\ldots\varphi(N)) \quad N:=\max(\psi(1)\ldots\psi(N))$$

Итого произведение сходится абсолютно.

Произведение для $\overline{\gamma} \neq \gamma$ есть перестановка произведения для $\gamma \Rightarrow \forall \gamma$ произведение рядов имеет одинаковую сумму.

Возьмём γ такое, что оно обходит точки $\mathbb{N} \times \mathbb{N}$ "по квадратам", т.е. не заходит в следующий квадрат, пока не обошло предыдущий. Тогда:

$$\sum_{k=1}^{n^2} a_{\varphi(k)} b_{\psi(k)} = \sum_{i=1}^n a_i \sum_{j=1}^n b_j \xrightarrow[n \to +\infty]{} AB$$

2.65 Теорема об условиях сходимости бесконечного произведения

- 1. $a_n>0$ НСНМ. Тогда $\prod 1+a_n$ сходится $\Leftrightarrow \sum a_n$ сходится.
- 2. $\sum a_n$ сходится, $\sum a_n^2$ сходится $\Rightarrow \prod (1+a_n)$ сходится.

Доказательство. 1. $\prod (1+a_n) - \operatorname{cx.} \Leftrightarrow \sum \ln(1+a_n) - \operatorname{cx.} \Leftrightarrow \sum a_n - \operatorname{cx.}$

2.
$$\ln(1+a_n) = a_n - \frac{a_n^2}{2} + o(a_n^2)$$

$$\sum_{n=1}^N \ln(1+a_n) = \sum_{n=1}^N a_n - \frac{1}{2} \sum_{n=1}^N a_n^2 + \underbrace{\sum_{n=1}^N o(a_n^2)}_{\text{agc.Cx, t.k.}} \underbrace{|o(a_n^2)| \leq a_n^2}_{\text{agc.cx, t.k.}}$$

Итоговый конспект 50 из 57

2.66 Лемма об оценке приближения экспоненты ее замечательным пределом

 $0 \le t \le n$. Тогда

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n \le \frac{t^2 e^{-t}}{n}$$

Доказательство. Т.к. y = 1 + x — график касательной к e^x в x = 0 и экспонента выпуклая:

$$1 + y \le e^y$$

Произошла коллизия переменных, x стал y.

Заменим y на -y:

$$1 - y < e^{-y}$$

Возведем в степень -1:

$$(1-y)^{-1} \ge e^y$$

Итого:

$$1 + y \le e^y \le (1 - y)^{-1}$$
$$y := \frac{t}{n}$$
$$1 + \frac{t}{n} \le e^{\frac{t}{n}} \le \left(1 - \frac{t}{n}\right)^{-1}$$
$$\left(1 + \frac{t}{n}\right)^{-n} \ge e^{-t} \ge \left(1 - \frac{t}{n}\right)^n$$

По правому неравенству:

$$e^{-t} - \left(1 - \frac{t}{n}\right)^n \ge 0$$

Возведем левое неравенство в степень -1:

$$\left(1 + \frac{t}{n}\right)^n \leq e^t$$

$$e^{-t} - \left(1 - \frac{t}{n}\right)^n = e^{-t} \left(1 - e^t \left(1 - \frac{t}{n}\right)^n\right) \leq e^{-t} \left(1 - \left(1 + \frac{t}{n}\right)^n \left(1 - \frac{t}{n}\right)^n\right) = e^{-t} \left(1 - \left(1 - \frac{t^2}{n^2}\right)^n\right)$$

$$e^{-t} \left(1 - \left(1 - \frac{t^2}{n^2}\right)^n\right) \overset{\text{неравенство Бернулли}}{\leq} \frac{t^2}{n} e^{-t}$$

Примечание. Неравенство Бернулли: $(1+a)^n \geq 1+an, a \geq -1$, в данном случае $a=-\frac{t^2}{n^2}$ В неравенстве Бернулли $n \in \mathbb{N} \Rightarrow$ предположительно в лемме $n \in \mathbb{N}$, на лекции этого не было сказано.

2.67 Формула Эйлера для Г-функции

Лемма 2.
$$\prod (n,x) := \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{x-1} dt, x > 0$$

Примечание. При $x \leq 0$ интеграл расходится.

Тогда
$$\prod (n,x) = \frac{1\cdot 2\cdots n}{x\cdot (x+1)\cdots (x+n)} n^x$$

Итоговый конспект 51 из 57

Доказательство.

$$\prod (n,x) \stackrel{t=ny}{=} n^x \int_0^1 (1-y)^n y^{x-1} dy =$$

$$= n^x \left((1-y)^n \frac{1}{x} y^x \Big|_{y=0}^{y=1} + \frac{n}{x} \int_0^1 (1-y)^{n-1} y^x dy \right) =$$

$$= n^x \frac{n}{x} \int_0^1 (1-y)^{n-1} y^x dy =$$

$$= n^x \frac{n}{x} \frac{n-1}{x+1} \int_0^1 (1-y)^{n-2} y^{x+1} dy =$$

$$= \dots = n^x \frac{n}{x} \frac{n-1}{x+1} \dots \frac{1}{x+n-1} \int_0^1 y^{x+n-1} dy$$

Формула Эйлера.

При x > 0

$$\lim_{n \to +\infty} \frac{1 \cdot 2 \cdots n}{x(x+1) \cdots (x+n)} n^x = \Gamma(x)$$

Доказательство.

$$\Gamma(x) - \lim \Pi(n, x) = \int_{0}^{+\infty} t^{x-1} e^{-t} dt - \lim \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{x-1} dt$$

$$\lim_{n \to +\infty} \left(\int_{0}^{n} \left(e^{-t} - \left(1 - \frac{t}{n}\right)^{n}\right) t^{x-1} dt + \int_{n}^{+\infty} e^{-t} t^{x-1} dt \right) \stackrel{?}{=} 0$$

II $\xrightarrow[n \to +\infty]{} 0$, т.к. это "остаточный интеграл", при $n \to +\infty$ интеграл "берется по нулевому промежутку".

По лемме о приближении e пределом:

$$0 \le \mathbf{I} \le \int_0^n \frac{1}{n} t^2 e^{-t} t^{x-1} dt \le \frac{1}{n} \int_0^n e^{-t} t^{x+1} dt \le \frac{1}{n} \int_0^{+\infty} e^{-t} t^{x+1} dt = \frac{\Gamma(x+2)}{n} \xrightarrow[n \to +\infty]{} 0$$

M3137y2019

Итоговый конспект 52 из 57

2.68 Формула Вейерштрасса для Г-функции

При x > 0:

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}}$$

где $\gamma = \lim_{n \to +\infty} (1 + \ldots + \frac{1}{n} - \ln n) -$ постоянная Эйлера.

Вывод формулы Вейерштрасса (из формулы Эйлера):

Доказательство.

$$\frac{1}{\Gamma(x)} = \lim n^{-x} \frac{x(x+1)\dots(x+n)}{n!} = x \lim n^{-x} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right) = x \lim \underbrace{e^{x\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) - x \ln n}}_{e^{\gamma + o(1)}} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}} = e^{\gamma x} \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}}$$

2.69 Вычисление произведений с рациональными сомножителями

 $a_n = \frac{P(n)}{Q(n)}$, P и Q — многочлены.

 $\prod a_n = ?$

Пусть P и Q разложены на множители, т.е:

$$P(n) = \alpha(n+a_1)(n+a_2)\dots(n+a_k)$$

$$Q(n) = \beta(n+b_1)(n+b_2)\dots(n+b_l)$$

$$a_n = \frac{\alpha}{\beta} \frac{(n+a_1)\dots(n+a_k)}{(n+b_1)\dots(n+b_l)}$$

Если $k \neq l$, то $a_n \to 0$ или $a_n \to +\infty \Rightarrow \prod a_n$ расходится. $\triangleleft k = l$

$$a_n \xrightarrow[n \to +\infty]{} \frac{\alpha}{\beta}$$

Если $\frac{\alpha}{\beta}$, то $a_n \not\to 1 \Rightarrow \prod a_n$ расходится. $\triangleleft \frac{\alpha}{\beta} = 1$

$$a_n = \frac{\left(1 + \frac{a_1}{n}\right) \dots \left(1 + \frac{a_k}{n}\right)}{\left(1 + \frac{b_1}{n}\right) \dots \left(1 + \frac{b_l}{n}\right)} = 1 + \frac{1}{n}(a_1 + \dots + a_k - b_1 - \dots - b_k) + O(\frac{1}{n^2})$$

Если $\sum\limits_{i=1}^k a_i
eq \sum\limits_{i=1}^l b_i$, то $\prod a_n$ расходится. $<\sum\limits_{i=1}^k a_i = \sum\limits_{i=1}^l b_i$

$$\prod_{n=1}^{N} \frac{\left(1 + \frac{a_1}{n}\right) \dots \left(1 + \frac{a_k}{n}\right)}{\left(1 + \frac{b_1}{n}\right) \dots \left(1 + \frac{b_l}{n}\right)} = \prod_{n=1}^{N} \frac{\left(1 + \frac{a_1}{n}\right) e^{-\frac{a_1}{n}} \dots \left(1 + \frac{a_k}{n}\right) e^{-\frac{a_k}{n}}}{\left(1 + \frac{b_1}{n}\right) e^{-\frac{b_1}{n}} \dots \left(1 + \frac{b_l}{n}\right) e^{-\frac{b_l}{n}}}$$

Равенство состоялось, т.к. $\sum a_i = \sum b_i$.

По формуле Вейерштрасса:

$$\prod_{n=1}^{N} \left(1 + \frac{a_n}{n} \right) e^{-\frac{a_n}{n}} \xrightarrow[N \to +\infty]{} \frac{1}{ae^{\gamma a} \Gamma(a)}$$

$$\prod_{n=1}^{N} \frac{\left(1 + \frac{a_1}{n} \right) e^{-\frac{a_1}{n}} \dots \left(1 + \frac{a_k}{n} \right) e^{-\frac{a_k}{n}}}{\left(1 + \frac{b_1}{n} \right) e^{-\frac{b_1}{n}} \dots \left(1 + \frac{b_l}{n} \right) e^{-\frac{b_l}{n}}} \to \frac{b_1 e^{\gamma b_1} \Gamma(b_1) \dots b_l e^{\gamma b_l} \Gamma(b_l)}{a_1 e^{\gamma a_1} \Gamma(a_1) \dots a_k e^{\gamma a_k} \Gamma(a_k)} = \frac{e^{\gamma b_1} \Gamma(b_1 + 1) \dots e^{\gamma b_l} \Gamma(b_l + 1)}{e^{\gamma a_1} \Gamma(a_1 + 1) \dots e^{\gamma a_k} \Gamma(a_k + 1)} = \frac{\Gamma(b_1 + 1) \dots \Gamma(b_l + 1)}{\Gamma(a_1 + 1) \dots \Gamma(a_k + 1)}$$

Итоговый конспект 53 из 57

2.70 Единственность производной

Производный оператор единственный.

Доказательство.

$$\exists \delta > 0 \ \forall h : |h| < \delta \ a + h \in E$$

Возьмём $v \in \mathbb{R}^m \quad h := tv, t < \frac{\delta}{|v|}$

По определению дифференциала:

$$F(a+tv) = F(a) + F'(a)tv + |tv|\alpha(tv) = F(a) + tF'(a)v + |t||v|\alpha(tv)$$

$$F'(a)v = \frac{F(a+tv) - F(a)}{t} - \underbrace{\frac{|t|}{t}|v|\alpha(tv)}_{\pm 1}$$

$$F'(a)v = \lim_{t \to 0} \frac{F(a+tv) - F(a)}{t}$$

Т.к. по всем направлениям производная равна, оператор единственный.

2.71 Лемма о дифференцируемости отображения и его координатных функций

$$F:E\subset \mathbb{R}^m o \mathbb{R}^n\quad a\in IntE$$
 $F(x)=(f_1(x),f_2(x)\dots f_n(x)).$ Тогда:

- 1. F дифф. в $a \Leftrightarrow$ все f_i дифференциируемы в a
- 2. $\forall i=1\dots n$ i-я строка матрицы Якоби F есть матрица Якоби f_i

2.72 Необходимое условие дифференцируемости.

$$f:E\subset\mathbb{R}^m o\mathbb{R},a\in IntE,f$$
 — дифф. a Тогда $\exists f_1'(a),\ldots,f_m'(a)$ и матрица Якоби f в точке $a=(f_1'(a),\ldots,f_m'(a))$

Доказательство.

$$f(x) = f(a) + (l_1 \dots l_m)(x - a) + \alpha(x)|x - a|$$

$$\lim_{x \to a} \frac{f(x) - f(a) - L(x - a)}{|x - a|} = 0$$

Посчитаем предел по направлению $x = a + te_k, e_k = (0 \dots 0, 1, 0 \dots 0)$

$$f(a+te_k) - f(a) + l_x t + \alpha_k(t)|t| \Rightarrow \exists \frac{\partial f}{\partial x_k}(a) = l_k$$

Итоговый конспект 54 из 57

2.73 ! Достаточное условие дифференцируемости

 $f:E\subset\mathbb{R}^m o\mathbb{R}\ \exists r>0\ B(a,r)\subset E$ и в этом шаре $\exists f_1'\dots f_m$ (конечные) и они непрерывны в точке a. Тогда f дифф. в a

Доказательство. $\triangleleft m=2$

$$f(x_1,x_2)-f(a_1,a_2)=$$

$$=f(x_1,x_2)-f(x_1,a_2)+f(x_1,a_2)-f(a_1,a_2)=$$

$$=f_2'(x_1,\overline{x}_2)(x_2-a_2)+f_1'(\overline{x}_1,a_2)(x_1-a_1)=$$

$$=f_2'(a_1,a_2)(x_2-a_2)+f_1'(a_1,a_2)(x_1-a_2)+(f_2'(x_1,\overline{x}_2)-f_2'(a_1,a_2))\frac{x_2-a_1}{|x-a|}|x-a|+\ \text{аналогично}$$

2.74 Лемма об оценке нормы линейного оператора

$$A:\mathbb{R}^m o\mathbb{R}^l\;\;A=(a_{ij})$$
. Тогда $orall x\in\mathbb{R}^m$: $|Ax|\leq C_A|x|$, где $C_a=\left(\sum\limits_{i,j}a_{ij}^2
ight)^{rac{1}{2}}$

Доказательство.

$$|Ax|^2 = \sum_{j} \left(\sum_{j} a_{ij} x_j \right)^2 \stackrel{\text{KBIII}}{\leq} \sum_{i} \left(\left(\sum_{j} a_{ij}^2 \right) \left(\sum_{j} x_j^2 \right) \right)$$

2.75 ! Дифференцирование композиции

- $F: E \subset \mathbb{R}^m \to \mathbb{R}^l$
- $G:I\subset\mathbb{R}^l\to\mathbb{R}^n$
- $F(E) \subset I$
- $a \in IntE$
- F дифф. в а
- $F(a) \in IntI$
- G дифф. в F(a)

Тогда $G \circ F$ дифф. в $a, (G \circ F)'(a) = G'(F(a))F'(a)$

Доказательство. b := F(a). По определению:

$$F(a+h) = F(a) + F'(a)h + \alpha(h)|h|$$

$$G(b+k) = G(b) + G'(b)k + \beta(k)|k|$$

$$G(F(a+h)) = G(F(a)) + G'(F(a))(F'(a)h + \alpha(h)|h|) + \beta(k)|k| =$$

$$= G(F(a)) + G'(F(a))F'(a)h + G'(b)\alpha(h)|h| + \beta(k)|F'(a)h + \alpha(h)|h||$$

П

Итоговый конспект 55 из 57

Надо доказать, что
$$\underbrace{G'(b)\alpha(h)|h|}_{\mathbf{I}} + \beta(k) \underbrace{|F'(a)h + \alpha(h)|h||}_{\mathbf{II}} = \gamma(h)|h|.$$

$$|\mathbf{I}| = |G'(b)\alpha(h)|h|| \leq C_{G'(b)}|\alpha(h)||h|$$

$$|F'(a)h + \alpha(h)|h|| \leq |F'(a)h| + |\alpha(h)||h|| \leq \underbrace{(C_{F'(a)} + \alpha(h))}_{\text{orp.}} \underbrace{|h|}_{\to 0}$$

$$|\mathbf{II}| \leq \underbrace{|\beta(k)|}_{\to 0} \underbrace{(C_{F'(a)} + \alpha(h))}_{\text{orp.}} \underbrace{|h|}_{\to 0}$$

$$|\mathbf{I}| + |\mathbf{II}| \xrightarrow{\to} 0$$

2.76 Дифференцирование "произведений"

- $F, G: E \subset \mathbb{R}^m \to \mathbb{R}^l$
- $a \in IntE$
- $\lambda: E \to \mathbb{R}$
- F, G, λ дифф. в a

Тогда $\lambda F, \langle F, G \rangle$ — дифф. в a:

1.
$$(\lambda F)'(a)(h) = (\lambda'(a)h)F(A) + \lambda(a)F'(a)h$$

2.
$$\langle F, G \rangle'(a)(h) = \langle F'(a)h, G(a) \rangle + \langle F(a), G'(a)h \rangle$$

Здесь h нигде не умножается, на него действуют операторы дифференциирования.

Доказательство. 1. Для координатной функции l=1:

$$\lambda f(a+h) - \lambda f(a) = (\lambda(a) + \lambda'(a)h + o(h))(f(a) + f'(a)h + o(h)) - \lambda(a)f(a) =$$

$$= (\lambda'(a)h)f(a) + \lambda(a)f'(a)h + o(h)$$

$$|(\lambda'(a)h)(f'(a)h)| \le C_{\lambda'(a)}|h|C_{f'(a)}|h|$$

2.

$$\langle F, G \rangle = \sum_{i=1}^{l} f_i g_i$$

По линейности всего и пункту 1:

$$\langle F, G \rangle'(a)h = \sum_{i} (f_i g_i)'(a)h \stackrel{1}{=} \sum_{i} f_i'(a)hg_i(a) + f(a)g_i'(a)(h) = \langle F'(a)h, G(a) \rangle + \langle F(a), G'(a)h \rangle$$

Итоговый конспект 56 из 57

! Теорема Лагранжа для векторнозначных функций

 $F:[a,b]\to\mathbb{R}^m$ — непр. на [a,b], дифф. на (a,b)Тогда $\exists c \in (a,b) : |F(b) - F(a)| \le |F'(c)|(b-a)$

Доказательство.

$$\varphi(t) := \langle F(b) - F(a), F(t) - F(a) \rangle, t \in [a, b]$$

$$\varphi(a) = 0 \quad \varphi(b) = |F(b) - F(a)|^2$$

$$\varphi'(t) = \langle F(b) - F(a), F'(t) \rangle$$

Теорема Лагранжа (для обычных функций):

$$\varphi(b) - \varphi(a) = \varphi'(c)(b - a)$$
$$|F(b) - F(a)|^2 = (b - a)\langle F(b) - F(a), F'(c) \rangle \stackrel{\text{KBIII}}{\leq} (b - a)|F(b) - F(a)||F'(c)|$$

2.78 Экстремальное свойство градиента

 $f:E\subset\mathbb{R}^m o\mathbb{R},\,f$ дифф. $a\in IntE,\,
abla f(a)
eq 0.$ Тогда $l=rac{
abla f(a)}{|
abla f(a)|}$ — направление наискорейшего возрастания функции, т.е.

$$\forall h \in \mathbb{R}^m : |h| = 1 \quad -|\nabla f(a)| \le \frac{\partial f}{\partial h}(a) \le |\nabla f(a)|$$

, причем "=" достигаеся только при $h = \pm l$, где при "+" достигается "="

Доказательство.

$$\frac{\partial f}{\partial h}(a) = \langle \nabla f, h \rangle$$
$$-|\nabla f(a)||h| \le \langle \nabla f, h \rangle \le |\nabla f(a)||h|$$

|h|=1 по построению:

$$-|\nabla f(a)| \le \langle \nabla f, h \rangle \le |\nabla f(a)|$$

2.79 Независимость частных производных от порядка дифференцирования

 $f: E \subset \mathbb{R}^2 \to \mathbb{R}, (x_0, y_0) \in E$ $\exists r > 0 \ B((x_0, y_0), r) \subset E$

Пусть в этом шаре $\exists f''_{xy}, f''_{yx}$ и они непрерывны. Тогда $f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$

Доказательство. $\Delta^2(h,k) = f(x_0+h,y_0+k) - f(x_0+h,y_0) - f(x_0,y_0+k) + f(x_0,y_0)$

 $\alpha(h) := \Delta^2(h,k)$ при фиксированном k

 $\alpha(h) = \alpha(h) - \alpha(0) \stackrel{\text{т. Лагранжа}}{=} \alpha'(\overline{h}) h = (f_x'(x_0 + \overline{h}, y_0 + k) - f_x'(x_0 + \overline{h}, y)) h \stackrel{\text{т. Лагранжа}}{=} f_{xy}''(x_0 + \overline{h}, y_0 + \overline{k}) h k$

 $\beta(k) := \Delta^2(h,k)$ при фиксированном h

 $\beta(k) = f_{yx}''(x_0 + \overline{\overline{h}}, y_0 + \overline{\overline{k}})hk$

$$f''_{xy}(x_0 + \overline{h}, y_0 + \overline{k})hk = f''_{yx}(x_0 + \overline{\overline{h}}, y_0 + \overline{\overline{k}})hk$$

$$(h, k) \to (0, 0) \Rightarrow (\overline{h}, \overline{k}) \to (0, 0), (\overline{\overline{h}}, \overline{\overline{k}}) \to (0, 0)$$

$$f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$$

Итоговый конспект 57 из 57

2.80 Полиномиальная формула

 $a_i \in \mathbb{R}$ (верно для любого кольца). Тогда $\forall r \in \mathbb{N}$:

$$(a_1 + \ldots + a_m)^r \stackrel{\text{oyeb}}{=} \sum_{n_1=1}^m \ldots \sum_{n_r=1}^m a_{n_1} a_{n_2} \ldots a_{n_r} = \sum_{j:|j|=r} \frac{r!}{j!} a^j$$

Доказательство. По индукции.

База: $\triangleleft r = 1$

$$a_1 + \ldots + a_m = \frac{1!}{1!0! \ldots 0!} a_1 + \frac{1!}{0!1! \ldots 0!} a_2 + \ldots + a_m$$

 $a_1 + \ldots + a_m = a_1 + \ldots + a_m$

Переход:

$$(a_{1} + \ldots + a_{m})^{r+1} = (a_{1} + \ldots + a_{m}) \sum_{\substack{j_{1} \ldots j_{m} \geq 0 \\ j_{1} + \ldots + j_{m} = r}} \frac{r!}{j_{1}! \ldots j_{m}!} a_{1}^{j_{1}} \ldots a_{m}^{j_{m}} =$$

$$= \sum_{\substack{k_{1} \geq 1 \\ k_{2} \ldots k_{m} \geq 0 \\ k_{1} + \ldots k_{m} = r+1}} \frac{r!k_{1}}{k_{1}! \ldots k_{m}!} a_{1}^{k_{1}} \ldots a_{m}^{k_{m}} + \ldots + \sum_{\substack{k_{2} \geq 1 \\ k_{1}, k_{3}, k_{4} \ldots k_{m} \geq 0 \\ k_{1} + \ldots k_{m} = r+1}} \frac{r!k_{2}}{j_{1}! \ldots j_{m}!} a_{1}^{j_{1}} \ldots a_{m}^{j_{m}+1} =$$

$$= \sum_{\substack{k_{1} \geq 0 \\ k_{2} \ldots k_{m} \geq 0 \\ k_{1} + \ldots k_{m} = r+1}} \frac{r!k_{1}}{k_{1}! \ldots k_{m}!} a_{1}^{k_{1}} \ldots a_{m}^{k_{m}} + \ldots + \sum_{\substack{k_{2} \geq 0 \\ k_{1}, k_{3}, k_{4} \ldots k_{m} \geq 0 \\ k_{1} + \ldots k_{m} = r+1}} \frac{r!k_{2}}{j_{1}! \ldots j_{m}!} a_{1}^{j_{1}} \ldots a_{m}^{j_{m}+1} =$$

$$= \sum_{\substack{k_{1} \ldots k_{m} \geq 0 \\ k_{1} + \ldots k_{m} = r+1}} \frac{r!(k_{1} + \ldots + k_{m})}{k_{1}! \ldots k_{m}!} a_{1}^{k_{1}} \ldots a_{m}^{k_{m}} =$$

$$= \sum_{\substack{k_{1} \ldots k_{m} \geq 0 \\ k_{1} + \ldots k_{m} = r+1}}} \frac{(r+1)!}{k_{1}! \ldots k_{m}!} a_{1}^{k_{1}} \ldots a_{m}^{k_{m}}$$