# <u>Pseudopotentials</u>



Shobhana Narasimhan JNCASR, Bangalore, India

#### Pseudopotentials:

- what are they?
- why use them?
- why do they work (or not?)
- how to obtain?
- how to test & use?

# **Nuclear Potential**

Electrons experience a Coulomb potential due to the nuclei.

This has a known and simple form:

$$V_{nuc} = -\frac{Z}{r}$$

But this leads to computational problems, especially when using a plane wave basis set!

### **Electrons in Atoms**

Electrons in atoms are arranged in shells.

Quantum numbers:

```
n [principal], l [angular], m_l [magnetic], m_s[spin]
```

Rare gas atoms

have certain complete subshells (inert configurations):

He: 1s<sup>2</sup> Ne: [He], 2s<sup>2</sup>, 2p<sup>6</sup> Ar: [Ne] 3s<sup>2</sup>, 3p<sup>6</sup>

Kr: [Ar],  $3d^{10}$ ,  $4s^2$ ,  $4p^6$  Xe: [Kr],  $4d^{10}$ ,  $5s^2$ ,  $5p^6$ 

Rn: [Xe], 4f<sup>14</sup>, 5d<sup>10</sup>, 6s<sup>2</sup>,6p<sup>6</sup>

- Can divide electrons in any atom into <u>core</u> and <u>valence</u>.
- This division is not always clear-cut, but usually core = rare gas configuration [+ filled d/f subshells]

# Obtaining atomic wavefunctions

- Hydrogen(ic) atoms: solve exactly (analytically). Recall:  $\psi_{lm}(\mathbf{r}) = \psi_l(r) Y_{lm}(\theta, \phi) = r^{-1} \phi_l(r) Y_{lm}(\theta, \phi)$
- When there are many interacting electrons: have to solve numerically.
  - Schrödinger equation / Dirac equation
  - Hartree-Fock equations
  - Kohn-Sham equations

# <u>Orthogonality</u>

For hydrogenic atoms, recall:

$$\psi_{lm}(\mathbf{r}) = \psi_l(r) Y_{lm}(\theta, \phi) = r^{-1} \phi_l(r) Y_{lm}(\theta, \phi)$$

- Radial part & Angular Part
- Being eigenfunctions of a Hermitian operator,  $\psi_{lm}$ 's are orthonormal.
- Wavefunctions with same n, different l are orthogonal due to the nature of the angular part of the wavefunction.
- Wavefunctions with different n, same l are orthogonal due to the nature of the radial part of the wavefunction.

# Example: wavefunctions for Ag atom

• Ground state configuration: [Kr], 4d<sup>10</sup> 5s<sup>1</sup> 5p<sup>0</sup> 5d<sup>0</sup>



- Core wavefunctions sharply peaked near nucleus (so high Fourier components).
- Valence wavefunctions peaked far away from nucleus, lots of wiggles near nucleus (so high Fourier components).
- Not clear whether 4d should be considered core / valence.
- In a solid, wavefunction may also have some 5p, 5d character.
- 1s, 2p, 3d, 4f,... nodeless.

# Core & Valence Electrons in Molecules & Solids

- Chemical bonds between atoms are formed by sharing / transferring electrons.
- Only the valence electrons participate in bonding.
- Wavefunctions of valence electrons can change significantly once the bond is formed.
- Wavefunctions of core electrons change only slightly when the bond is formed.
- All-electron calculations: both core and valence e<sup>-</sup>s included (whether for atom or solid).

# Problem for Plane-Wave Basis

Core wavefunctions: sharply peaked near nucleus.

Valence wavefunctions: lots of wiggles near nucleus.





High Fourier components present

i.e., need large  $E_{cut}$ 



# Problem for Plane-Wave Basis

Core wavefunctions: sharply peaked near nucleus.

Valence wavefunctions: lots of wiggles near nucleus.



i.e., need large  $E_{cut}$ 



Don't solve for the core electrons!

Remove wiggles from valence electrons.

# The Pseudopotential Approximation

Frozen core: remove core-electron degrees of freedom i.e., NOT an "All-electron" calculation.

Valence electrons see a weaker potential than the full Coulomb potential.

$$V_{nuc}(r) \rightarrow V_{ion}(r)$$

Further tailor this potential so that wavefunctions behave 'properly' in region of interest, yet computationally cheap.

# How the Pseudopotential Helps

- When solving using a basis (especially plane waves), basis size drastically reduced (smaller matrices to diagonalize).
- Have to solve for fewer eigenvalues.
- No Coulomb singularity (cusp in wavefunction) at origin.

### Disadvantages:

Can lose accuracy

# An analogy!

- "Dummy cops" used by many law-enforcement agencies!
- Stick a mannequin in uniform by the highway ... if it looks like a cop, it works like a cop!
- Don't care about internal structure as long as it works right!
- But cheaper!!
- Obviously it can't reproduce all the functions of a real cop, but should be convincing enough to produce desired results....



Hey, we have them in Bangalore, too!

# Is the core really frozen?

 Example: see how density for P changes when electronic configuration changed:



Goedecker & Maschke, 1992

- All-electron calc.: changes in ρ mostly outside core region.
- Reproduced well by a pseudopotential.

Pseudopotential won't work well in cases where polarizable semicore states contribute to bonding.

# Wish List for a Good Pseudopotential

#### For accuracy:

- Should reproduce scattering properties of true potential.
- Transferable: Nice to have <u>one</u> pseudopotential per element, to use in variety of chemical environments.
- Norm conserving? (will explain)
- Ab initio? (no fitting to experimental data)



### For (computational) cheapness:

- Smooth / Soft: Need smaller basis set (esp. plane waves)
- 'Separable'? (will skip) but 'Ghost free' (should not introduce spurious states when making separable!)

# <u>Scattering</u>

#### Recall (from a quantum mechanics course?):

- Scattering properties of a potential described by phase shift η<sub>I</sub>.
- Related to logarithmic derivatives: [see, e.g. Eq. J.6, Martin]

$$D_l(\epsilon,r) = r rac{d}{dr} \mathrm{ln} \psi_l(\epsilon,r) = r rac{d}{dr} \mathrm{ln} (\phi_l(\epsilon,r)/r)$$

- Weaker potentials will have fewer bound states.
- In the pseudopotential approximation: want to make the potential weak enough that the valence electron is the lowest bound state (with that l), while reproducing log derivatives to the extent possible....

# Log derivatives



**Eric Walter** 

(Note: general outline, schemes differ!)



- Pick electronic configuration for atom (reference config.)
   [e.g., may want to promote some electrons to excited states]
- 2) Perform all-electron calculation  $\rightarrow \phi_{nl}^{AE}(\mathbf{r}), \epsilon_{nl}^{AE}$

$$-\frac{1}{2}\frac{d^2}{dr^2}\phi_{nl}^{AE}(r) + \left[\frac{l(l+1)}{2r^2} + V_{eff}(r) - \epsilon_{nl}^{AE}\right]\phi_{nl}^{AE}(r) = 0$$

where

$$V_{eff} = -Z/r + V_H[
ho;r] + V_{XC}[
ho;r]$$



- 3) Divide electrons into core and valence.
- 4) Pick a core radius  $r_c$ 
  - $r_c$  too small  $\rightarrow$  hard pseudopotential
  - $r_c$  too large  $\rightarrow$  transferability poor
  - $r_c$  should be large enough to avoid overlapping cores
  - $r_c$  can be different for each l
  - $r_c$  should be larger than r for outermost node of radial wavefunction





- 5) Construct pseudowavefunction (one *l* at a time):
  - Pseudowavefunction & all-electron wavefunction are identical outside the cut-off radius  $r_c$ :





- 5) Construct pseudowavefunction (one l at a time):
  - Pseudowavefunction & all-electron wavefunction are identical outside the cut-off radius r<sub>c</sub>:



$$\phi_{l,ref}^{AE}(r) = \phi_{l,ref}^{PS}(r) \quad r \geq r_c$$



- 5) Construct pseudowavefunction (one l at a time):
  - Pseudowavefunction & all-electron wavefunction are identical outside the cut-off radius r<sub>c</sub>:



- Inside  $r_c$  ,  $\phi_{l,ref}^{PS}(r)=f(r)$
- Lots of freedom tor choice of *f* (choose for right log derivatives, softness, norm conservation, etc.)



(contd.)

6) Invert Schrödinger equation:

$$V_l^{scr}(r) = \epsilon_l - rac{l(l+1)}{2r^2} + rac{1}{2\phi_l(r)} \, rac{d^2[\phi_l(r)]}{dr^2}$$

- Will get correct (all-electron) eigenvalue.
  - "Screened" pseudopotential(includes Hartree + XC potentials)
- 7) "Unscreen", i.e., remove Hartree and XC contributions.

$$V_l^{PS}(r) = V_l^{scr}(r) - V_H[
ho^{val}(r)] - V_{XC}[
ho^{val}(r)]$$

# What does a pseudopotential look like?

#### Example for Mo:



- Weaker than full Coulomb potential
- No singularity at r=0
- Different
   pseudopotential
   for each l (example
   of "semilocal"
   pseudopotential)
- Will be  $V_{ext}$  (replacing nuclear potential)

### **Norm Conservation**

By construction, log derivatives satisfy:

$$D_l^{AE}(\epsilon, r_c) = D_l^{PS}(\epsilon, r_c)$$

In addition, if we impose norm conservation:

$$\int_0^{r_c} \phi^{*AE}(r) \phi^{AE}(r) dr = \int_0^{r_c} \phi^{*PS}(r) \phi^{PS}(r) dr$$

then from the identity (see e.g. pg. 214 of Martin for derivation):

$$\frac{\partial}{\partial \epsilon} D_l(\epsilon, r_c) = -\frac{r_c}{|\phi_l(r_c)|^2} \int_0^{r_c} dr |\phi_l(r_c)|^2$$

we have\*

$$\frac{\partial}{\partial \epsilon} D_l^{AE}(\epsilon, r_c) = \frac{\partial}{\partial \epsilon} D_l^{PS}(\epsilon, r_c)$$

i.e., if energy is shifted slightly from that of reference eigenvalue, log derivatives ~ unchanged →

improved transferability!

# A Pseudopotential Timeline



# BHS pseudopotentials

- Bachelet, Hamann, Schlüter, PRB 26, 4199 (1982).
- "Pseudopotentials that work: from H to Pu"
- Ab initio, norm conserving, so good transferability (?)
- Semilocal  $V_l(r)$  [local in radial coordinates, nonlocal in angular coordinates]
- Parametrized form: chosen to give nice analytical expressions with many basis sets, 9 parameters, tabulated for all elements.
- Non-linear fitting procedure, caution needed!
- Fairly hard pseudopotentials since smoothness not built in explicitly, frequently need high cut-off.

### Some Popular Pseudopotentials: BHS

- Bachelet, Hamann, Schlüter, PRB 26, 4199 (1982).
- "Pseudopotentials that work: from H to Pu"
- Ab initio norm conserving, so good transferability (?)
- Semilocal  $V_l(r)$  [local in radial coordinates, nonlocal in angular coordinates]
- Parametrized form: chosen to give nice analytical expressions with many basis sets, 9 parameters, tabulated for all elements.
- Non-linear fitting procedure, caution needed!
- Fairly hard pseudopotentials since smoothness not built in explicitly, frequently need high cut-off.

# Soft / Smooth Pseudopotentials

- Want to lower  $E_{cut}$  (cut-off for plane wave basis).
- Various strategies:
  - Optimize so as to minimize error in KE introduced by truncating basis (Rappe, Rabe, Kaxiras & Joannopoulos, 1990)
  - Make smooth near origin (Troullier & Martins, 1991)
- Cut-offs lowered considerably, but still higher than we would like, especially for
  - > first row elements (1s, 2p nodeless)
  - > transition metals (3d nodeless)
  - > rare-earths (4f nodeless)

### Fast convergence\* with soft pseudopotentials

# e.g. Cu: localized d orbitals → high cut-off needed with BHS pseudopotential

#### Troullier-Martins



FIG. 8. The calculated total energy of fcc Cu plotted against the cutoff energy of the plane-wave basis set for the four pseudopotentials shown in Fig. 7. The total energy for all four curves are referenced to the total energy calculated at a cutoff energy of 225 Ry. The squares, circles, and triangles are the calculated data points and the curves are obtained from a spline interpolation.

#### **RRKJ**



FIG. 3. Atomic (solid lines) and fcc solid (dots) total energies as a function of cutoff energy for copper in the HSC and present approaches. The zero of atomic total energy for each pseudopotential was chosen to be the total atomic energy at a cutoff energy of 324 Ry. The zero of solid total energy was chosen for each pseudopotential so that the atomic and solid total energies coincide at a cutoff energy of 80 Ry.

# <u>Ultrasoft Pseudopotentials</u>

- Vanderbilt, Phys. Rev. B 41 7892 (1990).
- Do away with norm conservation!!
- Can make ψ<sup>PS</sup> extremely soft!
- Drastically reduces  $E_{cut}$ , especially for "difficult" elements.
- New separable form.
- Choose multiple energy references (to improve transferability).
- Solve generalized eigenvalue eqn.



FIG. 1. Oxygen 2p radial wave function (solid line), and corresponding pseudo-wave-functions generated using HSC (dotted line) and current (dashed line) methods.

#### Vanderbilt



FIG. 1. Total energy of ground-state oxygen atom vs planewave -cutoff for Bachelet-Hamann-Schlüter pseudopotential (open circles) and for Vanderbilt pseudopotential with  $r_c = 1.2$  a.u. (solid squares) and  $r_c = 1.8$  a.u. (open triangles).

# **Transferability**

- Condition that pseudoatom reproduces behavior of allelectron atom in a wide variety of chemical environments.
- Recall, pseudopotential derived for reference configuration(atom with a given occupation of levels), using a reference eigenvalue.
- When eigenvalue changes from reference one: do scattering properties of potential change correctly? (Look at log derivatives)
- When the filling changes:
  - do eigenvalues shift correctly? (look at chemical hardness)
  - do scattering properties change correctly?

# Transferability: log derivatives

 Log derivatives guaranteed to match at reference energy, check how log derivatives change with energy.

Has ghost ⊗

Log derivatives don't match 🕾



# Transferability: Occupation Changes

- See how eigenvalues change with occupation Chemical Hardness matrix:  $\eta_{ij} = \frac{1}{2} \frac{\partial \epsilon_i}{\partial f_i}$  [Teter, 1993].
- See how 'tail norms'  $N_i = \int_{r_c}^{\infty} |\phi_i|^2 dr$  change with occupation: should be reproduced

e.g.: check transferability of a pseudopotential for Ag with 4d in core:



### **Non-Linear Core Correction**

- Working only with  $\rho^{val}$  corresponds to linearizing the XC potential, but  $V_{XC}(\rho^{val}+\rho^{core}) \neq V_{XC}(\rho^{val})+Vxc(\rho^{core})$
- This is particularly a problem when there is significant overlap between  $\rho^{val}$  and  $\rho^{core}$
- Correction: [Louie, Froyen & Cohen, Phys. Rev. B 26 1738 (1982)]:
  - When unscreening, subtract out  $V_H(\rho^{val})$  and  $V_{XC}(\rho^{val}+\rho^{core})$
  - Store p<sup>core</sup> from atomic calculation
  - Use  $V_{XC}(\rho^{val} + \rho^{core})$  in all calculations
  - Okay to just use partial  $\rho^{core}$  (in region of overlap)

# <u>Bibliography</u>

- R.M. Martin, "Electronic Structure Calculations, Basic Theory and Practical Applications", Cambridge, 2004.
- W.E. Pickett, "Pseudopotential methods in condensed matter applications", Computer Physics Reports 9, 115, 1989
- ... and references therein