

Diplomski studij

Informacijska i komunikacijska tehnologija:

Telekomunikacije i informatika

Računarstvo

Programsko inženjerstvo i informacijski sustavi Računarska znanost

Ak.god. 2009./2010.

Raspodijeljeni sustavi

12.

Raspodijeljeno pretraživanje informacija

Sadržaj predavanja

- Pretraživanje sadržaja: osnovni pojmovi
- Pretraživanje tekstualnih kolekcija dokumenata
- Arhitektura raspodijeljene tražilice u grozdu/spletu računala
- Pretraživanje u mrežama P2P
- Pretraživanje tekstualne kolekcije dokumenata u mrežama P2P
- Primjeri tražilica temeljenih na mrežama P2P

Pretraživanje sadržaja

PODSJETIMO SE: Višemedijske usluge

- pronaći sadržaj iz informacijskog prostora koji zadovoljava informacijske potrebe korisnika
- zadaća tražilice: pronaći sadržaj koji je relevantan za korisnički upit

Sustav za pretraživanje sadržaja (tražilica)

Objašnjenje pojmova

- informacijski prostor čini kolekcija dokumenata
- kolekcija je konačni skup višemedijskih dokumenata (npr. tekst, audio, video)
- upit je formalni iskaz koji definira korisnik, njime izražava svoje potrebe za informacijama prilikom pretraživanja
- odgovor je skup dokumenata koji sustav za pretraživanje nalazi relevantnim za neki upit
 - skup dokumenata je najčešće rangirana lista, prvi dokument je najrelevantniji

Ocjena kvalitete tražilice

- dokument iz kolekcije je relevantan ili nije relevantan za neki upit
- Kako odlučiti koji su dokumenti iz kolekcije relevantni za neki upit?
 - jedino korisnik (ekspert) može odlučiti o relevantnosti dokumenta za neki upit
- cilj: povećati R ∩ A, idealno A = R

Ocjena kvalitete tražilice: odziv i preciznost

- Odziv (engl. recall)
 - postotak relevantnih dokumenata iz odgovora u odnosu na ukupni broj relevantnih dokumenata u kolekciji

$$Recall = \frac{|A \cap R|}{|R|}$$

- Preciznost (engl. precision)
 - postotak relevantnih dokumenata iz odgovora u odnosu na ukupni broj dokumenata u odgovoru

$$Precision = \frac{|A \cap R|}{|A|}$$

- Odziv i preciznost se obično računa za "top-k" rezultata iz odgovora (precision@k, recall@k)
- Za manji broj dokumenata u odgovoru se pretpostavlja bolja preciznost, a time manji odziv
- Odziv će uvijek biti 1 ako su u odgovoru svi dokumenti iz kolekcije
- Idealna tražilica ima preciznost = 1

Primjer grafa preciznost/odziv

Sadržaj predavanja

- Pretraživanje sadržaja: osnovni pojmovi
- Pretraživanje tekstualnih kolekcija dokumenata
- Arhitektura raspodijeljene tražilice u grozdu/spletu računala
- Pretraživanje u mrežama P2P
- Pretraživanje tekstualne kolekcije dokumenata u mrežama P2P
- Primjeri tražilica temeljenih na mrežama P2P

Sustav za pretraživanje tekstualne kolekcije

Pojmovi (1)

- indeksni termin (riječ) ključna riječ ili grupa povezanih riječi koje imaju svoje značenje ili se pojavljuju u dokumentu
- rječnik skup riječi koje se pojavljuju u tekstualnoj kolekciji
- upit podskup riječi iz rječnika
- indeksiranje izdvajanje rječnika i invertiranog indeksa iz kolekcije

Invertirani indeks

 povezuje svaku riječ iz rječnika s listom dokumenata u kojima se pojavljuje te s brojem pojavljivanja te riječi u

dokumentu (tf) dokumenti document id tf, term frequency D1, 1₄ potonuti D3, 2 D1, 1 teretni df, document frequency D1, 1 D2, 1 **D3.1** brod rječnik df(brod)=3D1, 1 opasni df(automobil)=2 D1, 1 materijal D2, 1 prevoziti D2, 1 D3, 1 automobil nestati D3, 1

Vektorski prostorni model

Primjer 3-dimenzionalnog vektorskog prostora

Pretpostavka: Dokumenti koji su "bliže" u vektorskom prostoru semantički su slični ("govore o sličnim stvarima").

Rangiranje dokumenata

- Za rangiranje dokumenata u odgovoru na upit koristi se mjera sličnosti dokumenta i upita
- sličnost dokumenata d_j i d_k
 računa se kao kosinus kuta
 među njihovim vektorima

$$sim(d_j, d_k) = cos(\theta) = \frac{\vec{d}_j \bullet \vec{d}_k}{\left| \vec{d}_j \right| \left| \vec{d}_k \right|}$$

$$sim(d_{j}, d_{k}) = \frac{\sum_{i=1}^{m} w_{i,j} w_{i,k}}{\sqrt{\sum_{i=1}^{m} w_{i,j}^{2}} \sqrt{\sum_{i=1}^{m} w_{i,k}^{2}}}$$

vektori dokumenata d_j i d_k $\vec{d}_j = (w_{1j}, w_{2j}, \dots w_{mj}), w_{ij} > 0 \text{ if } t_i \in d_j$ $\vec{d}_k = (w_{1k}, w_{2k}, \dots w_{mk}), w_{ik} > 0 \text{ if } t_i \in d_k$ $w_{ij} \text{ je težinski faktor vezan}$ uz riječ t_i u dokumentu d_j

Upit se razmatra kao kratki dokument!

Težinski faktor

Kako odrediti težinski faktor w_{ij} vezan uz riječ t_i ?

• težinski faktor w_{ij} vezan uz riječ t_i određuje se najčešće kao tf x idf

$$w_{ij} = tf(i, j) \cdot idf(i) = tf(i, j) \cdot \log\left(\frac{N}{df_i}\right)$$

- ◆ tf (i, j) term frequency
 - lacktriangle broj pojavljivanja riječi t_i u dokumentu d_j
- idf (i) − inverse document frequency
 - N veličina kolekcije (broj dokumenata)
 - $lacktriangledown df_i$ broj dokumenata kolekcije u kojima se pojavljuje t_i

Vektorski prostorni model (primjer)

 neka imamo zadan upit Q i kolekciju dokumenata koja se sastoji od dokumenta D1,D2 i D3. Upit i dokumenti definirani su kao:

Q: teretni automobil (upit)

D1: Potonuo teretni brod s opasnim materijalom.

D2: Brod prevozi automobile.

D3: Nestao teretni automobil s teretnog broda.

- broj dokumenata u kolekciji d=3
- ako je riječ pojavljuje u samo jednom dokumentu idf=log(3/1)=0,477
- ako se riječ pojavljuje u dva dokumenta idf=log(3/2)=0,176
- ako se riječ pojavljuje u svim dokumentima idf=log(3/3)=0

Vektorski prostorni model (primjer)

 računamo za svaku riječ koja se pojavljuje bilo u upitu ili u dokumentu inverznu frekvenciju idf

	D 1	D2	D3	Q
potonuti	0,477	0	0	0
teretni	0,176	0	0,176	0,176
brod	0	0	0	0
opasni	0,477	0	0	0
materijal	0,477	0	0	0
prevoziti	0	0,477	0	0
automobil	0	0,176	0,176	0,176
nestati	0	0	0,477	0

Q: Preuzeti vrijednost za riječi iz upita, ostale riječi = 0

Vektorski prostorni model (primjer)

računamo za svaku riječ težinski faktor w_{ij}

	D 1	D2	D3	Q
potonuti	0,477	0	0	0
teretni	0,176	0	0,352	0,176
brod	0	0	0	0
opasni	0,477	0	0	0
materijal	0,477	0	0	0
prevoziti	0	0,477	0	0
automobil	0	0,176	0,176	0,176
nestati	0	0	0,477	0

Riječ teretni se pojavljuje 2 puta u D3.

Rezultat: 1. sim(Q,D3) = 0.6037

2. sim(Q,D2) = 0.2448

3. sim(Q,D1) = 0,1473

Veći iznos sim(Q,D) znači manji kut između Q i D!

Sadržaj predavanja

- Pretraživanje sadržaja: osnovni pojmovi
- Pretraživanje tekstualnih kolekcija dokumenata
- Arhitektura raspodijeljene tražilice u grozdu/spletu računala
- Pretraživanje u mrežama P2P
- Pretraživanje tekstualne kolekcije dokumenata u mrežama P2P
- Primjeri tražilica temeljenih na mrežama P2P

Raspodiljene tražilice

Okruženje

 velika kolekcija dokumenata, veliki broj korisnika, visoki intenzitet korisničkih upita

Raspodijeljenost

- kolekcija i/ili indeks je raspodijeljen na veći broj računala
- dijeljenje indeksa prema dokumentima ili riječima

Replikacija

- replikacija cjelokupnog sustava
- u skladu s intenzitetom korisničkih upita, zadovoljavajuće vrijeme odziva

Dijeljenje indeksa prema dokumentima

Invertirani indeks (inverted index)				
rječnik	lista dokumenata (posting list)			
a	d1	d5	d6	d9
	10	[]	1-7	-10
b	d2	d4	d7	d6
С	d3	d5	d8	d10
d	d2	d1	d6	d10

Dijeljenje indeksa prema dokumentima, svaki čvor zadužen za particiju dokumenata

čvor 1: d1, d2, d3

čvor 2: d4, d5

čvor 3: d6, d7,d8

čvor 4: d9, d10

Dijeljenje indeksa prema riječima

Invertirani indeks (inverted index)				
rječnik	lista dokumenata (posting list)			
а	d1	d5	d6	d9
b	d2	d4	d7	d6
	r,	·	·	·
С	d3	d5	d8	d6
	··································			··································
d	d2	d1	d6	d10

Dijeljenje indeksa prema riječima iz rječnika, svaki čvor zadužen na skup riječi iz rječnika

čvor 1: a

čvor 2: b, c

čvor 3: d

Arhitektura tražilice u grozdu računala

Arhitektura tražilice u spletu računala

Sadržaj predavanja

- Pretraživanje sadržaja: osnovni pojmovi
- Pretraživanje tekstualnih kolekcija dokumenata
- Arhitektura raspodijeljene tražilice u grozdu/spletu računala
- Pretraživanje u mrežama P2P
- Pretraživanje tekstualne kolekcije dokumenata u mrežama P2P
- Primjeri tražilica temeljenih na mrežama P2P

Pretraživanje u mrežama P2P

- Mreže P2P inherentno podržavaju pretraživanje
- Svaki peer pohranjuje, indeksira i dijeli sadržaj (lokalna kolekcija dokumenata)
- Svaki peer implementira funkciju pretraživanja
 - prima korisničke upite, ali i upite susjednih peerova
 - generira odgovor na primljeni upit na temelju lokalne i/ili globalne kolekcije dokumenata (unija svih lokalnih kolekcija), prosljeđuje upit susjedima

Pretraživanje u nestrukturiranim mrežama P2P

- podržavaju proizvoljnu strukturu upita
 - u skladu s funkcionalnošću tražilice peera
 - primjeri upita: niz riječi, booleov izraz, regularni izraz, semantički upit
- problem: usmjeravanje upita u mreži peerova i pronalaženje peerova koji mogu dati kvalitetan odgovor na upit

Pretraživanje u strukturiranim mrežama P2P

- raspodijeljena hash tablica
 - povezuje vrijednost atributa (hash kod) i sadržaj (npr. ime datoteke)
- podržava samo jednostavne upite (exact-match queries)
- skalabilno pretraživanje, no ograničena funkcionalnost

Sadržaj predavanja

- Pretraživanje sadržaja: osnovni pojmovi
- Pretraživanje tekstualnih kolekcija dokumenata
- Arhitektura raspodijeljene tražilice u grozdu/spletu računala
- Pretraživanje u mrežama P2P
- Pretraživanje tekstualne kolekcije dokumenata u mrežama P2P
- Primjeri tražilica temeljenih na mrežama P2P

Motivacija

- Postojeće tražilice u grozdu/spletu računala dostižu gornju granicu u smislu skalabilnosti
 - Npr. 20*10⁹ web stranica ≈ 100 terabyte tekstualnih dokumenata

 za održavanje indeksa (25 terabyte) treba oko 3.000 računala u 1 grozdu računala (x c radi redundancije i zadovoljavajućeg vremena odziva)
 - 10.000 upita u sekundi \rightarrow c=10, treba ukupno 30.000 računala
 - količina sadržaja na webu eksponencijalno raste
 - današnje tražilice indeksiraju mali postotak dostupnog sadržaja
 - postoji velika količina privatnog sadržaja (npr. NASA) koje su zatvorene za tražilice kao Google ili Yahoo
 - problem indeksiranja sadržaja koji se dinamički mijenja (npr. vijesti, blog)

P2P mreže kao web tražilice?

- Ideja: koristiti mreže P2P za izgradnju web tražilice ili specijalizirane tražilice za određeno znanstveno područje
- Izgraditi sustav bez velikih početnih ulaganja
- Sustav može potencijalno obuhvatiti milijune čvorova, svaki čvor doprinosi vlastite dokumente u kolekciju, ali i resurse računala
- Onemogućuje zlouporabu rezultata pretraživanja
- Omogućuje organizaciju društvene mreže za pretraživanje i dijeljenje znanja
- Kako organizirati i koristiti postojeće mreže P2P kao web tražilice?

Dijeljenje indeksa prema dokumentima (1)

Dijeljenje indeksa prema dokumentima (2)

- pogodna organizacija indeksa za nestrukturirane mreže P2P
 - svaki čvor obrađuje upit neovisno o ostalim čvorovima kao samostalna tražilica nad lokalnom kolekcijom dokumenata
- glavni nedostatak: upit mora procesirati svaki čvor u mreži ili dio čvorova (kako pronaći "kvalitetne" čvorove i relevantne dokumente?)
 - neskalabilno rješenje zbog broja generiranih zahtjeva tijekom obrade upita, raste s
 O(n) gdje je n broj čvorova
 - veličina poruke koja prenosi odgovor je relativno mala (samo skup dokumenata koji čine odgovor iz lokalne kolekcije)
- jednostavno je održavanje informacije o lokalnim dokumentima, ali ne i o globalnoj kolekciji
 - nemoguće je izračunati globalni tf*idf jer nemamo podatke za N ili df
- problem integriranja odgovora, čvorovi mogu koristiti različite modele za ocjenu relevantnosti svojih lokalnih dokumenata

Dijeljenje indeksa prema riječima (1)

Dijeljenje indeksa prema riječima (2)

- pogodna organizacija indeksa za strukturirane mreže P2P
 - upit obrađuju samo oni čvorovi koji su zaduženi za ključne riječi iz upita
 - npr. ključ(peer) = hash("a")
 - za upit od *k* riječi potrebno je kontaktirati najviše *k* čvorova
- podaci o ključnim riječima odnose se na globalnu kolekciju pa je moguće izračunati globalni tf*idf jer svaki peer ima informaciju o df(t), a N možemo procijeniti
- generira se dodatni promet radi organizacije indeksa u mreži peerova
- skalabilno rješenje u smislu broja generiranih poruka po upitu
 - raste s O(k)
- neskalabilno rješenje zbog veličine poruke koja prenosi listu dokumenata vezanu uz ključnu riječ iz upita
 - raste s $O(\sqrt{D})$, gdje je D veličina globalne kolekcije dokumenata izražena ukupnim brojem riječi (ova kompleksnost se dobije iz tzv. Heapovog zakona)

- Niti jedno od predložena 2 rješenja ne daje zadovoljavajuće performanse:
 - rezultati pretraživanja su nezadovoljavajuće kvalitete za nestrukturiranu organizaciju mreže
 - i u nestrukturiranim i u strukturiranim mrežama generira se značajan promet (nije skalabilan)
- Stoga se oblikuju posebne tražilice (P2P-IR) koje pokušavaju smanjiti generirani mrežni promet a da pri tome ne utječu na kvalitetu odgovora tražilice

Raspodijeljeni sustavi 22.12.2009. 36 od 54

Sadržaj predavanja

- Pretraživanje sadržaja: osnovni pojmovi
- Pretraživanje tekstualnih kolekcija dokumenata
- Arhitektura raspodijeljene tražilice u grozdu/spletu računala
- Pretraživanje u mrežama P2P
- Pretraživanje tekstualne kolekcije dokumenata u mrežama P2P
- Primjeri tražilica temeljenih na mrežama P2P

PlanetP

- koristi nestrukturiranu mrežu P2P
- peerovi međusobno razmjenjuju informacije o svom lokalnom indeksu, koristi se algoritam poznat pod nazivom "gossiping"
 - na slučajan odaberi susjeda i proslijedi mu informaciju o lokalnom indeksu
- informacija o lokalnom indeksu kodirana je pomoću Bloom filtra

Rutgers University

Bloom filtar (1)

- Niz bitova duljine m koji omogućuje provjeru je li riječ dio rječnika ili nije
 - koriste se hash funkcije koje određene bitove bloom filtra postavljaju u 1
 - pomoću istih hash funkcija se provjerava članstvo u skupu
 - veličina bloom filtra << veličina kodiranog rječnika</p>
 - postoji mala vjerojatnost za "false positive" (zaključujemo da je riječ dio rječnika, premda nije)
- ◆ Za skup $S = \{x_1, x_2, x_3, ..., x_n\}$ gdje je $x_i \in U$, bloom filtar daje odgovor na sljedeće pitanje

 $y \in S$? (odgovor T ili F)

Bloom filtar (2)

Niz bitova duljine *m* inicijalno se postavlja u 0.

Primijeni funkciju hash na x_i iz S k puta. Ako je $H_i(x_i) = a$, postavi B[a] = 1.

Za provjeru je li y u S, provjeri $B[H_i(y)]$ za i=1...k. Svi bitovi moraju biti 1.

Moguće je da je svih *k* bitova 1, iako *y* nije element iz *S*.

PlanetP: svojstva

- Svaki peer koristi posebnu heurističku funkciju za ocjenu "kvalitete" pojedinog peera za dani upit na temelju informacije o njegovom rječniku te odlučuje koliko će peerova kontaktirati tijekom pretraživanja
- Upitna je kvaliteta odgovora jer nije moguće ocijeniti kvalitetu lokalne kolekcije peera
- Nije moguće izračunati sličnost upita i kolekcije peera, nedostaju podaci za računanje tf*idf
- Rješenje je skalabilno za manje mreže (do 1000 peerova) u smislu generiranog prometa

Max-Planck Institute for Informatics, Saarbrücken

Peer Index u strukturiranoj mreži P2P

 Izgrađuje indeks na nivou peera, a ne dokumenta i time smanjuje promet vezan uz indeksiranje kolekcije

Upit se obrađuje u 2 koraka

korak: pronađi peerove koji indeksiraju relevantne dokumente

2. korak: pošalji originalni upit identificiranim peerovima te integriraj primljene odgovore

Minerva: 1. korak

Minerva: 2. korak

Minerva: svojstva

- rješenje je skalabilno u smislu generiranog prometa jer u koraku 1 prikuplja listu peerova, a nakon toga kontaktira mali skup peerova
 - broj peerova je značajno manji od broja dokumenata
- vrijeme odziva je povećano jer se na upit odgovara u 2 koraka
- upitna je kvaliteta odgovora jer ovisi značajno o ocjenama kolekcije pojedinog peera
 - koriste se posebni modeli za izračun relevantnosti kolekcije peera za dani upit, npr. CORI

AlvisP2P

Tražilica razvijena u okviru istraživačkog projekta ALVIS, EU FP6 (2004-2006)

http://globalcomputing.epfl.ch/alvis/

Daljnji razvoj: suradnja EPFL i FER

- Tražilica za pretraživanje tekstualne kolekcije dokumenata
 - koristi strukturiranu mrežu P2P za izgradnju i održavanje indeksa dokumenata
 - indeksira skupove riječi radi smanjenja mrežnog prometa tijekom obrade upita
- Koristi sljedeće činjenice vezane uz pretraživanje weba
 - korisnički upiti su kratki (u prosjeku 2 do 3 riječi)
 - riječi iz upita su "česte riječi" (riječi koje se često pojavljuju u tekstualnim dokumentima)
 - korisnike zanima mali broj kvalitetnih odgovora (preciznost je važnija od odziva)

Arhitektura tražilice AlvisP2P

Strukturirana mreža P2P s N čvorova

Globalna kolekcija dokumenata ${\mathcal D}$ je podijeljena među peerovima, a svaki peer

- a) indeksira lokalnu kolekciju $\mathcal{D}(P_i)$ i unosi parove (k, postinglist(k)) u globalni indeks
- b) održava dio globalnog indeksa (zadužen je za podskup ključeva)

Indeksiranje skupa riječi (1)

Indeksiranje skupa riječi (2)

Promet tijekom pretraživanja ograničen je parametrom DF_{max} i brojem riječi iz upita!

Indeksiranje skupa riječi (3)

Kako odabrati skupove riječi za indeksiranje tako da kvaliteta odgovora (odziv i preciznost) bude zadovoljavajuća, a da veličina rječnika ne raste eksponencijalno?

- Indeksiranje pomoću Highly Discriminative Keys (HDKs)
- Indeksiranje na temelju upita (Query-driven indexing)

Indeksiranje pomoću HDKs

Non-Discriminative Keys (NDKs)

- t₁ je NDK iff
 - t₁ se pojavljuje u više od DF_{max} dokumenata kolekcije
- Lista dokumenata je ograničene veličine i sadrži samo najboljih DF_{max} dokumenata

Highly-Discriminative Keys (HDKs)

- e.g., (t₁, t₂) je HDK iff:
 - t₁ & t₂ se pojavljuje u manje od DF_{max} dokumenata kolekcije (diskriminativan ključ)
 - t₁ i t₂ su NDK (redundantnost)
 - t₁ i t₂ su u dokumentu udaljeni najviše w (udaljenost)
 - broj riječi koje čine ključ ograničena je s s_{max}

AlvisP2P: svojstva

- Indeksiranje pomoću HDKs se izvodi na temelju dokumenata kolekcije
 - veličina rječnika ključeva raste linearno s rastom veličine kolekcije korištenjem prethodno navedenih filtara
 - veličina rječnika i dalje je značajno veća od "običnog" rječnika (single-term)
- Indeksiranje na temelju upita, Query-driven indexing (QDI)
 - skup riječi čini ključ ako je HDK i pojavljuje se kao podskup riječi u upitu
 - na ovaj način se značajno smanjuje broj riječi u rječniku ključeva
- Eksperimenti pokazuju sljedeće:
 - tražilica AlvisP2P ima zadovoljavajuću kvalitetu odgovora
 - generirani promet tijekom indeksiranja je skalabilan (značajno manji za QDI)
 - performanse tražilice tijekom pretraživanja su izrazito dobre jer su odgovori na upite s više riječi već pripremljeni u indeksu, a generira se ograničen promet u mreži P2P

Dodatne informacije

- Kolegiji na FER-u
 - Umrežavanje sadržaja, 3. semestar
 - Sadržaj kolegija
 - Organizacija mreže posredničkih spremišta na webu
 - Mreže P2P i primjena za niz aplikacija
 - IPTV i video usluge
 - Obrada podataka u mrežama senzora
 - Trenutno poručivanje i prisutnost

Literatura

- Baeza-Yates, R.; Castillo, C.; Junqueira, F.; Plachouras, V.; Silvestri, F., "Challenges on Distributed Web Retrieval,", IEEE 23rd International Conference on Data Engineering (ICDE 2007), pp.6-20, 15-20 April 2007.
- PlanetP: F.M. Cuenca-Acuna, C. Peery, R.P. Martin, T.D. Nguyen, PlanetP: Using gossiping to build content addressable peer-to-peer information sharing communities, Proc. HPDC, 2003.
- Minerva: M. Bender, S. Michel, P. Triantafillou, G. Weikum, C. Zimmer, Improving collection selection with overlap awareness in P2P search engines, Proc. SIGIR, 2005.
- AlvisP2P: G. Skobeltsyn, T. Luu, I. Podnar Žarko, M. Rajman, K. Aberer, Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval, Future Generation Computer Systems, 25(2009), pp.88-99