3. 識別一概念学習一

- 問題設定
 - 教師あり学習
 - カテゴリ入力 → カテゴリ出力

• カテゴリ特徴

• 数值特徵

3.1 カテゴリ特徴に対する「教師あり・識別」問題の定義

- 「教師あり・識別」問題のデータ
 - 特徴ベクトル x と正解情報 y のペア $\{(x_i, y_i)\}, i = 1...N$
 - 特徴ベクトルは次元数 d の固定長ベクトル $\mathbf{x}_i = (x_{i1}, \dots, x_{id})^T$
 - カテゴリ形式の正解情報を**クラス**とよぶ
- 学習の目的
 - クラスを説明する概念モデルを得る(→3章)
 - 与えられた特徴が、あるクラスに属する確率を計算するモデルを得る(→4章)

contact-lenses データ

特徴

年齢・眼鏡・乱視・涙量

🔞 🗊 Viewer

elation: contact-lenses							
No.	1: age Nominal	2: spectacle-prescrip Nominal	3: astigmatism Nominal	4: tear-prod-rate Nominal	5: contac Nom		
1	young	myope	no	reduced	none		
	young	myope	no	normal	soft	推薦コンタ	クトレンズ
3	young	myope	yes	reduced	none	none, so	
	young	myope	yes	normal	hard l	110110, 00	Tit, Hara
5	young	hypermetrope	no	reduced	none		
6	young	hypermetrope	no	normal	soft		
7	young	hypermetrope	yes	reduced	none		
8	young	hypermetrope	yes	normal	hard		
9	pre-presbyopic	myope	no	reduced	none		
10	pre-presbyopic	myope	no	normal	soft		
11	pre-presbyopic	myope	yes	reduced	none		
12	pre-presbyopic	myope	yes	normal	hard		
13	pre-presbyopic	hypermetrope	no	reduced	none		
14	pre-presbyopic	hypermetrope	no	normal	soft		
15	pre-presbyopic	hypermetrope	yes	reduced	none		
16	pre-presbyopic	hypermetrope	yes	normal	none		
17	presbyopic	myope	no	reduced	none		
18	presbyopic	myope	no	normal	none		
19	presbyopic	myope	yes	reduced	none		
20	presbyopic	myope	yes	normal	hard		
21	presbyopic	hypermetrope	no	reduced	none		
22	presbyopic	hypermetrope	no	normal	soft		
23	presbyopic	hypermetrope	yes	reduced	none		
24	presbyopic	hypermetrope	yes	normal	none		

Undo

OK

Cancel

3.2 概念学習とバイアス

- 概念学習とは
 - 正解の概念を説明する特徴ベクトルの性質 (論理式) を求めること
 - ・ 論理式の例
 (乱視 = なし) ∧ (涙暈 = 減少) ⇒ 使用を勧めない
- 学習の方法
 - 可能な論理式が少数
 - 正解概念の候補を絞り込んでゆく ⇒ 候補削除アルゴリズム
 - 可能な論理式が多数
 - バイアス(偏見)をかけて探索する ⇒ 決定木

3.2.1 初期の概念学習

FIND-S アルゴリズム

3.2.1 初期の概念学習

候補削除アルゴリズム

• 正解となり得る概念に強いバイアス(条件の AND 結合)をかけているため、正解が得られないことが多い

3.3 決定木の学習

• 学習した決定木の例

3.3 決定木の学習

- 決定木学習の考え方
 - ノードは、データを分割する条件を持つ
 - できるだけ同一クラスのデータがリーフに偏るように
 - 分割後のデータ集合に対して、同様の操作を行う
 - 全てのリーフが単一クラスの集合になれば終了

決定木の構築 (1/2)

Algorithm 3.1 ID3 アルゴリズム

入力: 正解付き学習データ D, クラス特徴 y, 特徴集合 A

出力:決定木T

root ノードを作成

if D が全て正例 then

return ラベル Yes

else if D が全て負例 then

return ラベル No

else if 特徴集合 $A == \emptyset$ (空集合) then

return D中の最頻値のクラス

else

決定木の構築 (2/2)

```
a \leftarrow A 中で最も分類能力の高い特徴
 root ノードの決定特徴 \leftarrow a
 for all a の取りうる値 v do
   a=v に対応する枝を作成
   データの中から値vを取る部分集合D_vを作成
   if D_v == \emptyset then
     return D 中の最頻値のクラス
   else
     ID3(部分集合 D_v, クラス特徴 y, 特徴集合 A-a)
   end if
 end for
end if
return root ノード
```

属性の分類能力(1/2)

- 分類能力の高い属性を決定する方法
 - その属性を使った分類を行うことによって、なるべくきれいにクラスが分かれるように
 - ・エントロピー
 - データ集合 D の乱雑さを表現
 - 正例の割合: P_+ , 負例の割合: P_-
 - エントロピーの定義

$$E(D) = -P_{+} \log_{2} P_{+} - P_{-} \log_{2} P_{-}$$

属性の分類能力(2/2)

- 情報獲得量
 - 属性 α を用いた分類後のエントロピーの減少量
 - 値 v を取る訓練例の集合:Dv
 - Dv の要素数: |Dv|
 - 情報獲得量の定義

Gain
$$(D,a) \equiv E(D) - \sum_{v \in \text{Values}(a)} \frac{|D_v|}{|D|} E(D_v)$$

3.3.3 過学習を避ける

なぜ単純な木の方がよいか

- オッカムの剃刀
 - 「データに適合する最も単純な仮説を選べ」
 - 複雑な仮説
 - → 表現能力が高い
 - → 偶然にデータを説明できるかもしれない
 - 単純な仮説
 - → 表現能力が低い
 - → 偶然にデータを説明できる確率は低い
 - → でも説明できた!
 - \rightarrow 必然

3.3.3 過学習を避ける

- 枝刈りによる過学習の回避
 - 学習データを正しく識別できるまで木を成長させる
 - 下記手順で枝刈りを行う

```
Algorithm 3.2 決定木の枝刈りアルゴリズム
入力: 学習済みの決定木 T, 検証用データ D'
出力: 枝刈り後の決定木 T'
 for all T のノード N,ルートから遠いものから順に do
   T_N \leftarrow N をルートとする木
   D_N \leftarrow D'の中で、T_Nによってカバーされるデータ
   if accuracy(T_N, D_N) < majority(D_N) then
     T_Nを、リーフ majority_class(D_N) に置き換え
   end if
 end for
 return 枝刈り後の決定木 T'
```

3.3.4 分類基準の再検討

獲得率

$$SplitInformation(D, a) \equiv -\sum_{v \in Values(a)} \frac{|D_v|}{|D|} \log_2 \frac{|D_v|}{|D|}$$

$$GainRatio(D, a) \equiv \frac{Gain(D, a)}{SplitInformation(D, a)}$$

・ ジニ不純度

GiniImpurity(D)
$$\equiv 2 \cdot P_+ \cdot P_-$$

Root Gini Impurity

RootGiniImpurity(D)
$$\equiv \sqrt{P_+ \cdot P_-}$$

3.4 数値特徴に対する決定木

- 連続値 A を持つ属性から真偽値 (A < c?) を値とする
 ノードを作成
 - → 最もエントロピーが低くなる分割を行う

