

PT diagnosis, prevention and treatment of disorders associated with
PT abnormal nucleolin-like protein expression such as cancers,
XX autoimmune disorders and Alzheimer's disease

PS Claim 8; Fig 1; 33pp; English.

CC The present sequence represents human nucleolin-like peptide, designated
CC HNLP, which is the main protein component in the nucleolus of eukaryotic
CC cells and is an essential part of ribosome biosynthesis and also plays
CC an important role in importing proteins to the nucleus. HNLP may be used
CC in the diagnosis, prevention and treatment of disorders associated with
CC abnormal expression of HNLP. For example, it may be used to treat
CC cancers (e.g. melanoma, breast cancer and prostate cancer), autoimmune
CC disorders (e.g. autoimmune haemolytic anaemia and inflammatory bowel
CC disease) and, in particular, Alzheimer's disease. It may also be used to
CC study the function of the HNLP peptides, the formation (biosynthesis) of
CC ribosomes and the intake of proteins into the nucleus.

XX Sequence 545 AA;

Query Match 100.0%; Score 2898; DB 20; Length 545;
Best Local Similarity 100.0%; Pred. No. 7.6e-243;
Matches 545; Conservative 0; Indels 0; Gaps 0;

Db 1 MATIEVNGNCTEEPMDTTAVTHSENFCQLDAGLPOKVAEKLDEIYNYGLVAHSQDLER 60

Db 1 MATIEVNGNCTEEPMDTTAVTHSENFCQLDAGLPOKVAEKLDEIYNYGLVAHSQDLER 60

Qy 61 AIEALKREFINEDGALVQQLPFDSDLSHVQNSKAFLCGVNKTYRQEKGTKVADSSKGDF 120

Db 61 AIEALKREFINEDGALVQQLPFDSDLSHVQNSKAFLCGVNKTYRQEKGTKVADSSKGDF 120

Qy 121 EAKTAKLLERITYGLTDVTTGORKYTGPPDSVYSGQQPSVGTEIFVGKIPRDLFPEDELVP 180

Db 121 EAKTAKLLERITYGLTDVTTGORKYTGPPDSVYSGQQPSVGTEIFVGKIPRDLFPEDELVP 180

Qy 181 LFEKAGPIMDLRLMMDPDPLTGLNRGTAFTRCTKEAAQAVKLNNHEITSKGHIGVCTSV 240

Db 181 LFEKAGPIMDLRLMMDPDPLTGLNRGTAFTRCTKEAAQAVKLNNHEITSKGHIGVCTSV 240

Qy 241 ANNRLFGSIPKSITKMEQILJBEFSKVTEGLTDVLYHQDDKKNRGFPLETEDHKTA 300

Db 241 ANNRLFGSIPKSITKMEQILJBEFSKVTEGLTDVLYHQDDKKNRGFPLETEDHKTA 300

Qy 301 QARRRLMSGVKUWGNVGTWADPLDPREMAVKVYLFRNLANTVTEELKEAFSQ 360

Db 301 QARRRLMSGVKUWGNVGTWADPLDPREMAVKVYLFRNLANTVTEELKEAFSQ 360

Qy 361 FGKLERVKLKDYAPTHEDRGAVKAMBEMNGKDLLEGEMIEIVFAKPPDQKRKERKACR 420

Db 361 FGKLERVKLKDYAPTHEDRGAVKAMBEMNGKDLLEGEMIEIVFAKPPDQKRKERKACR 420

Qy 421 QAQRNQMYDDYYGGPPHMPPTRGRGRGRRGGYGYPPDYDYYGYDHNYRG 480

Db 421 QAQRNQMYDDYYGGPPHMPPTRGRGRGRRGGYGYPPYYGYDYYGYDHNYRG 480

Qy 481 YEDPYGYEDFOVGARGRGRGARGAAAPSRRGGAAPPGRAGYSORGPGSARGVRAGR 540

Db 481 YEDPYGYEDFOVGARGRGRGARGAAAPSRRGGAAPPGRAGYSORGPGSARGVRAGR 540

Qy 541 GRGRS 545

Db 541 GRGRS 545

Qy 100.0%; Score 2898; DB 23; Length 545;

Best Local Similarity 100.0%; Pred. No. 7.6e-243;

Matches 545; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 MATEHVNGNGTEBMDTTSAVIHSENFOTLIDAGLPOKVAEKLDEIYAGLVRAHSQDLER 60

DT 1 MATEHVNGNGTEBMDTTSAVIHSENFOTLIDAGLPOKVAEKLDEIYAGLVRAHSQDLER 60

PT Human nucleolin-like protein, HNLP.

PT Human: nucleolin-like protein; HNLP: autoimmune disorder;
XX acquired immunodeficiency syndrome; AIDS; Addison's disease; allergy;
KW asthma; atherosclerosis; multiple sclerosis; rheumatoid arthritis;
KW osteoporosis; viral infection; bacterial infection; fungal infection;
KW parasitic infection; protozoal infection; helminthic infection; cancer;
KW Alzheimer's disease; systemic sclerosis; graft-versus-host disease;
KW systemic lupus erythematosus; INCYTE 280975.

CC Homo sapiens.

XX US2002098566-A1.

PD 25-JUL-2002.

XX 15-OCT-2001; 2001US-0978242.

XX PR 12-DEC-1997; 97US-0990114.

XX PR 01-FEB-1999; 99US-0241333.

XX PA (INCY-) INCYTE PHARM INC.

XX PI Bandman O, Yue H, Corley NC, Shah P;

XX DR 2002-690482/74.

XX DR N-PSDB; ABSS299.

XX Novel human nucleolin-like polypeptide, useful in diagnosis, prevention
PT and treatment of cancer, Alzheimer's disease and autoimmune disorder
PT such as AIDS, Addison's disease, allergy, asthma, and atherosclerosis -
XX

CC Claim 1: Fig 1: 37PP: English.

XX The invention relates to an isolated human nucleolin-like polypeptide
CC (HNLP) (S1), a polypeptide comprising a naturally occurring sequence
CC having at least 90% identity to S1, or a biologically active or
CC immunogenic fragment of S1 and the HNLP encoding nucleic acid. HNLP is
CC useful for screening a compound for effectiveness as an agonist or
CC antagonist, for screening a compound that specifically binds HNLP or
CC modulates the activity of HNLP, and for preparing a polyclonal or
CC monoclonal antibody by hybridoma technology. HNLP nucleic acid is useful
CC for screening a compound for effectiveness in altering expression of a
CC target polynucleotide comprising HNLP nucleic acid and HNLP probes are
CC useful for assessing toxicity of a test compound. Anti-HNLP antibody is
CC useful in a diagnostic test for a condition or a disease associated with
CC the expression of HNLP in a biological sample, for detecting HNLP in a
CC sample, and for preparing HNLP from a sample. HNLP ant agonists are
CC useful for treating a disease or condition associated with decreased or
CC increased expression of functional HNLP. The antibody is useful
CC for diagnosing a condition or disease associated with the expression of
CC HNLP in a subject. A HNLP nucleic acid microarray is useful for
CC generating a transcript image of a sample which contains polynucleotides.
CC HNLP and its nucleic acid are useful for diagnosing, treating and
CC preventing an autoimmune disorder (e.g. acquired immunodeficiency
CC syndrome (AIDS), Alzheimer's disease, allergy, asthma, atherosclerosis,
CC multiple sclerosis, rheumatoid arthritis), osteoporosis, viral, bacterial,
CC fungal, parasitic, protozoal, helminthic infections, cancer,
CC Alzheimer's disease, systemic sclerosis, graft-versus-host disease and
CC systemic lupus erythematosus (many more diseases are listed in the
CC specification). The present sequence is the human HNLP protein encoded by
CC a cDNA from INCYTE clone 280975.

XX SQ Sequence 545 AA;

XX Query Match 100.0%; Score 2898; DB 23; Length 545;

Best Local Similarity 100.0%; Pred. No. 7.6e-243;

Matches 545; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 MATEHVNGNGTEBMDTTSAVIHSENFOTLIDAGLPOKVAEKLDEIYAGLVRAHSQDLER 60

Db 1 MATEHVNGNGTEBMDTTSAVIHSENFOTLIDAGLPOKVAEKLDEIYAGLVRAHSQDLER 60

Best Local Similarity 100.0%; Pred. No. 6.2e-239; Matches 545; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

FILING DATE: ; ATTORNEY/AGENT INFORMATION: ; BILLING, Lucy J.; REGISTRATION NUMBER: 36,749; REFERENCE/DOCKET NUMBER: PF-0451 US; TELEPHONE: ; TELEFAX: 650-855-4166; TELEX: ; INFORMATION FOR SEQ ID NO: 1: ; SEQUENCE CHARACTERISTICS: ; LENGTH: 545 amino acids; TYPE: amino acid; STRANDEDNESS: single; TOPOLOGY: linear; IMMEDIATE SOURCE: ; LIBRARY: TLYMNOT05; CLONE: 2809795; US-09-241-333-1:

Query Match 100.0%; Score 2898; Db 4; Length 545; Best Local Similarity 100.0%; Pred. No. 6.2e-239; Mismatches 0; Indels 0; Gaps 0; Matches 545; Conservative 0;

Qy 1 MATHEVNGNTGTEPMOTTSAVTHSENQTLDAGLPQKVAELDEIYAGLVAHSDLDER 60
Db 1 MATHEVNGNTGTEPMOTTSAVTHSENQTLDAGLPQKVAELDEIYAGLVAHSDLDER 60
Qy 61 AIEALKSFNEQDGAALVLIQFKQFDSDLSHQNKSFLCGVMKTYTREPKQGTKVADSSKGPD 120
Db 61 AIEALKSFNEQDGAALVLIQFKQFDSDLSHQNKSFLCGVMKTYTREPKQGTKVADSSKGPD 120
Qy 121 EAKIKALLERTGYTLDVTGORKYGGPPDSVYSGQQPSVSTEIFVGKIPRDLFEDLYP 180
Db 121 EAKIKALLERTGYTLDVTGORKYGGPPDSVYSGQQPSVSTEIFVGKIPRDLFEDLYP 180
Qy 181 LPEKAGPTWDLRMMPLTGRLNRGYAFVTFCTKEAAQEAVLYNNHEIRSGKHHIGVCISV 240
Db 181 LPEKAGPTWDLRMMPLTGRLNRGYAFVTFCTKEAAQEAVLYNNHEIRSGKHHIGVCISV 240
Qy 241 ANNRLFVGSPISPKSKTKBQIILEFSKTYEGLTDVILYHQPDDKKRNQFCPEYEDHKTA 300
Db 241 ANNRLFVGSPISPKSKTKBQIILEFSKTYEGLTDVILYHQPDDKKRNQFCPEYEDHKTA 300
Qy 301 QARRRLMSGKYKVGNGTVBWDPLIEDPDEVMAKVVKLFVRNLANTYTEELEKAFFSQ 360
Db 301 QARRRLMSGKYKVGNGTVBWDPLIEDPDEVMAKVVKLFVRNLANTYTEELEKAFFSQ 360
Qy 361 FGKLERVKLKDYAIFHFDERDGAVKAMEEENKGDKLEGENTIEIVPAKPDQKRKERAQK 420
Db 361 FGKLERVKLKDYAIFHFDERDGAVKAMEEENKGDKLEGENTIEIVPAKPDQKRKERAQK 420
Qy 421 QAAKNQMDYYGGPHMPPTGRGRGGCYGPPYYGYEDYYGYDHYNYRG 480
Db 421 QAAKNQMDYYGGPHMPPTGRGRGGCYGPPYYGYEDYYGYDHYNYRG 480
Qy 481 YEDPYGYEDFQVARGRRGARGAAPSRRGAAAPPGRAGYSORGGSAREVRAGR 540
Db 481 YEDPYGYEDFQVARGRRGARGAAPSRRGAAAPPGRAGYSORGGSARGVRAGR 540
Qy 541 GRGRS 545
Db 541 GRGRS 545

RESULT 2
US-09-241-333-1
Sequence 1, Application US/09241333
Patent No. 6313266
GENERAL INFORMATION:
APPLICANT: Bandman, Olga
APPLICANT: Yue, Henry
APPLICANT: Corley, Neil C.
APPLICANT: Shah, Purvi
TITLE OF INVENTION: HUMAN NUCLEOLIN-LIKE PROTEIN
NUMBER OF SEQUENCES: 3
CORRESPONDENCE ADDRESS:
ADDRESSEE: Incyte Pharmaceuticals, Inc.
STREET: 3174 Porter Drive
CITY: Palo Alto
COUNTRY: USA
ZIP: 94304
COMPUTER READABLE FORM:
MEDIUM TYPE: Diskette
COMPUTER: IBM Compatible
OPERATING SYSTEM: DOS
SOFTWARE: FastSEQ for Windows Version 2.0
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/09/241,333
FILING DATE:
CLASSIFICATION:
PRIOR APPLICATION DATA:
APPLICATION NUMBER: 08/990,114

RESULT 3
US-09-347-833-2
Sequence 2, Application US/09347833
Patent No. 6394658
GENERAL INFORMATION:
APPLICANT: Famodu, Layo O.
APPLICANT: Odell, Joan T.
TITLE OF INVENTION: Factors Involved in Gene Expression

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 28, 2004, 09:23:45 ; Search time 21 Seconds
(without alignments)
1098.068 Million cell updates/sec

Title: US-09-978-242-1
Perfect score: 2898
Sequence: 1 MATEHVNNGNCTTEPMDDTSA.....RGGPGSARGVRAGKRGGRS 545

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 328717 seqs, 42310858 residues

Total number of hits satisfying chosen parameters: 328717

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : Issued Patents AA:
 1: /cgn2_6.ptodata/1/iaa/5A_COMB.pep:/*
 2: /cgn2_6.ptodata/1/iaa/5B_COMB.pep:/*
 3: /cgn2_6.ptodata/1/iaa/6A_COMB.pep:/*
 4: /cgn2_6.ptodata/1/iaa/6B_COMB.pep:/*
 5: /cgn2_6.ptodata/1/iaa/BctUS_COMB.pep:/*
 6: /cgn2_6.ptodata/1/iaa/backFiles1.pep:/*

Pred: No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

RESULTS

RESULT 1
US-09-990-114-1
; Sequence 1, Application US/08990114
; Patent No. 592475

; GENERAL INFORMATION:
 ; APPLICANT: Bandman, Olga
 ; APPLICANT: Yue, Henry
 ; APPLICANT: Corley, Neil C.
 ; APPLICANT: Shah, Purvi
 ; TITLE OF INVENTION: HUMAN NUCLEOLIN-LIKE PROTEIN
 ; NUMBER OF SEQUENCES: 3
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: Incyte Pharmaceuticals, Inc.
 ; STREET: 3174 Porter Drive
 ; CITY: Palo Alto
 ; STATE: CA
 ; COUNTRY: USA
 ; ZIP: 94304

; COMPUTER READABLE FORM:
 ; MEDIUM TYPE: Diskette
 ; COMPUTER: IBM Compatible
 ; OPERATING SYSTEM: DOS
 ; SOFTWARE: FASTSEQ For Windows Version 2.0
 ; CURRENT APPLICATION DATA:
 ; APPLICATION NUMBER: US/08/990,114
 ; FILING DATE: Herewith
 ; CLASSIFICATION:
 ; PRIORITY APPLICATION DATA:
 ; APPLICATION NUMBER:
 ; FILING DATE:
 ; ATTORNEY/AGENT INFORMATION:
 ; NAME: Billings, Lucy J.
 ; REGISTRATION NUMBER: 36,749
 ; REFERENCE/DOCKET NUMBER: PF-0451 US
 ; TELECOMMUNICATION INFORMATION:
 ; TELEPHONE: 650-855-0555
 ; TELEFAX: 650-845-4166
 ; TELEX:
 ; INFORMATION FOR SEQ ID NO: 1:
 ; SEQUENCE CHARACTERISTICS:
 ; LENGTH: 545 amino acids
 ; TYPE: amino acid
 ; STRANDEDNESS: single
 ; TOPOLOGY: linear
 ; IMMEDIATE SOURCE:
 ; LIBRARY: TLYMNNT05
 ; CLONE: 2806795
 ; US-08-990-114-1

Query Match 100.0%; Score 2898; DB 2; Length 545;

Result No.	Score	Query	Match	Length	DB ID	Description
1	2898	100.0	545	2	US-08-990-114-1	Sequence 1, Appli
2	2898	100.0	545	4	US-09-241-333-1	Sequence 1, Appli
3	299.5	10.3	652	3	US-09-347-833-2	Sequence 2, Appli
4	269	9.3	655	3	US-09-347-833-4	Sequence 4, Appli
5	258.5	8.9	714	2	US-08-990-114-3	Sequence 3, Appli
6	258.5	8.9	714	4	US-09-241-333-3	Sequence 3, Appli
7	223.5	7.7	336	1	US-07-667-276A-8	Sequence 8, Appli
8	209	7.2	359	1	US-07-881-015-2	Sequence 2, Appli
9	209	7.2	359	1	US-08-120-827-2	Sequence 2, Appli
10	209	7.2	359	1	US-08-147-675-2	Sequence 2, Appli
11	206.5	7.1	380	1	US-07-881-015-51	Sequence 51, Appli
12	206.5	7.1	380	1	US-08-120-827-51	Sequence 51, Appli
13	206.5	7.1	380	1	US-08-478-675-51	Sequence 5, Appli
14	205.5	7.1	675	3	US-08-573-273-5	Sequence 5, Appli
15	204.5	7.1	688	3	US-08-573-273-26	Sequence 26, Appli
16	204.5	7.1	747	3	US-08-973-273-3	Sequence 3, Appli
17	197.5	6.8	341	2	US-08-538-711A-8	Sequence 8, Appli
18	197.5	6.8	341	3	US-08-725-027-8	Sequence 8, Appli
19	197.5	6.8	341	4	US-09-542-552-8	Sequence 8, Appli
20	197.5	6.8	353	2	US-08-538-711A-7	Sequence 7, Appli
21	197.5	6.8	353	4	US-09-542-552-7	Sequence 7, Appli
22	197.5	6.8	444	1	US-07-881-075-3	Sequence 3, Appli
23	197.5	6.8	444	1	US-08-120-827-3	Sequence 3, Appli
24	197.5	6.8	444	1	US-08-478-675-3	Sequence 3, Appli
25	194.5	6.7	223	1	US-07-667-276A-10	Sequence 10, Appli
26	194.5	6.7	428	3	US-09-347-833-6	Sequence 6, Appli

TELEFAX: 650-845-4166
 INFORMATION FOR SEQ ID NO: 1:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 545 amino acids
 TYPE: amino acid
 STRANDEDNESS: single
 TOPOLOGY: linear
 IMMEDIATE SOURCE:
 LIBRARY: TLYMNOTOS
 CLONE: 2899795
 SEQUENCE DESCRIPTION: SEQ ID NO: 1:

US-09-978-242-1

Query Match 100.0%; Score 2098; DB 9; Length 545;
 Best Local Similarity 100.0%; Pred. No. 8.3e-239; Indels 0; Gaps 0;
 Matches 545; Conservative 0; Mismatches 2; Gaps 1;

Qy 1 MATHEVNGNTTEEPMDTTSAVHSNFQTLLDAGLPQKVAEKLDEIYAGLVAHSDLDER 60
 Db 1 MATHEVNGNTTEEPMDTTSAVHSNFQTLLDAGLPQKVAEKLDEIYAGLVAHSDLDER 60
 Qy 61 AIEALKEFNSDGLAVLQOQFKDSLISHVQNKSAFLCGVMKTYREKEQTKVADSSKGPD 120
 Db 61 AIEALKEFNSDGLAVLQOQFKDSLISHVQNKSAFLCGVMKTYREKEQTKVADSSKGPD 120
 Qy 121 EAKIKALLBERTGTYTLDTTGQRKYGGPPDSTSQQGQPSVGTEIVFGKIPRDLFEDELVP 180
 Db 121 EAKIKALLBERTGTYTLDTTGQRKYGGPPDSTSQQGQPSVGTEIVFGKIPRDLFEDELVP 180
 Qy 122 LFEKAGPIMDLRLLMDPLTGLNRGYAFVTPCTKEAQAEEVAKLYNNHEITRSKGHIGVCISV 240
 Db 122 LFEKAGPIMDLRLLMDPLTGLNRGYAFVTPCTKEAQAEEVAKLYNNHEITRSKGHIGVCISV 240
 Qy 181 LFEKAGPIMDLRLLMDPLTGLNRGYAFVTPCTKEAQAEEVAKLYNNHEITRSKGHIGVCISV 240
 Db 181 LFEKAGPIMDLRLLMDPLTGLNRGYAFVTPCTKEAQAEEVAKLYNNHEITRSKGHIGVCISV 240
 Qy 241 ANNRLFVGSIPKSXKTEQILEEFSKTEGLDVKKRNRCFCFLEYEDHTAA 300
 Db 241 ANNRLFVGSIPKSXKTEQILEEFSKTEGLDVKKRNRCFCFLEYEDHTAA 300
 Qy 258 ANNRLFVGSIPKSXKTEQILEEFSKTEGLDVKKRNRCFCFLEYEDHTAA 317
 Db 258 ANNRLFVGSIPKSXKTEQILEEFSKTEGLDVKKRNRCFCFLEYEDHTAA 317
 Qy 301 QAARRLMSCKVKWVNGNTVEADPIDEPPVEMAKYKVLFVNLANTVTEILEKAFAQSO 360
 Db 301 QAARRLMSCKVKWVNGNTVEADPIDEPPVEMAKYKVLFVNLANTVTEILEKAFAQSO 360
 Qy 318 QAARRLMSCKVKWVNGNTVEADPIDEPPVEMAKYKVLFVNLANTVTEILEKAFAQSO 377
 Db 318 QAARRLMSCKVKWVNGNTVEADPIDEPPVEMAKYKVLFVNLANTVTEILEKAFAQSO 377
 Qy 361 FGKLERVKLKDYAFHDERGAVKAMBEMNGKDLEGENTIEVAKPDPDKRKERKAQR 420
 Db 361 FGKLERVKLKDYAFHDERGAVKAMBEMNGKDLEGENTIEVAKPDPDKRKERKAQR 420
 Qy 378 FGKLERVKLKDYAFHDERGAVKAMBEMNGKDLEGENTIEVAKPDPDKRKERKAQR 437
 Db 378 FGKLERVKLKDYAFHDERGAVKAMBEMNGKDLEGENTIEVAKPDPDKRKERKAQR 437
 Qy 421 QAAKQMDDYYYYGPAMPMPPTGRGRGRRGGYGPDDYYGYEDYYGYDYYHNYRG 480
 Db 421 QAAKQMDDYYYYGPAMPMPPTGRGRGRRGGYGPDDYYGYEDYYGYDYYHNYRG 480
 Qy 438 QAAKQMDDYYYYGPMPMPPTGRGRGRRGGYGPDDYYGYEDYYGYDYYHNYTRGG 497
 Db 438 QAAKQMDDYYYYGPMPMPPTGRGRGRRGGYGPDDYYGYEDYYGYDYYHNYTRGG 497
 Qy 481 YEDPYGYEDFOVQARGRRGRRGARGAAPSRGRAAAPPRGRAGYSORGPGSARGVRGARG 539
 Db 481 YEDPYGYEDFOVQARGRRGRRGARGAAPSRGRAAAPPRGRAGYSORGPGSARGVRGARG 539
 Qy 498 YEDPYGYEDFOVQARGRRGRRGARGAAPSRGRAAAPPRGRAGYSORGPGSARGVRGARG 557
 Db 498 YEDPYGYEDFOVQARGRRGRRGARGAAPSRGRAAAPPRGRAGYSORGPGSARGVRGARG 557
 Qy 540 ---RGRGR 544
 Db 540 ---RGRGR 544
 Qy 558 GAQQQRGRSQ 567
 Db 558 GAQQQRGRSQ 567

RESULT 3
 US-10-106-698-5319
 ; Sequence 5319, Application US/10106698
 ; Publication No. US20030109690A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Ruben et al.
 ; TITLE OF INVENTION: Colon and Colon Cancer Associated Polynucleotides and Polypeptide;
 ; FILE REFERENCE: PA005P1
 ; CURRENT APPLICATION NUMBER: US/10/106-698
 ; PRIORITY INFORMATION:
 ; CURRENT FILING DATE: 2002-03-27
 ; PRIOR APPLICATION NUMBER: PCT/US00/26524
 ; PRIOR FILING DATE: 2000-09-28
 ; PRIOR APPLICATION NUMBER: US 60/157,137
 ; PRIOR FILING DATE: 1999-09-29
 ; PRIOR APPLICATION NUMBER: US 60/163,280
 ; PRIOR FILING DATE: 1999-11-03
 ; NUMBER OF SEQ ID NOS: 8554
 ; SOFTWARE: PatentIn Ver. 3.0
 ; SEQ ID NO 5319

RESULT 2
 US-09-925-300-1415
 ; Sequence 1415, Application US/09925300
 ; Patent No. US2002015168A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Craig Rosen,
 ; APPLICANT: Steve Ruben,
 ; TITLE OF INVENTION: Nucleic Acids, Proteins and Antibodies
 ; FILE REFERENCE: PA101
 ; CURRENT APPLICATION NUMBER: US/09/925,300
 ; CURRENT FILING DATE: 2001-08-10
 ; PRIOR APPLICATION NUMBER: PCT/US00/0598
 ; PRIOR FILING DATE: 2000-03-08
 ; PRIOR APPLICATION NUMBER: 60/124,270

Qy 474 YHNYRGGYEDPYGYED-FOVGARGRGGRGARGA-APSRGRGAAAPRGRAGYSGORGPP G 530
 Db 479 YHDYRGGYEPYGYDDGAVGRG-GRGRGGRGAPPGRGAGYSGORGAPG 537

RESULT 3
 hypothetical protein A-TM018A10.14 - Arabidopsis thaliana
 C;Species: Arabidopsis thaliana (mouse-ear cress)
 C;Accession: T01563
 R;Dempsey, S.; Harper, M.
 Submitted to the EMBL Data Library, July 1997
 A;Description: The sequence of A. thaliana TM018A10.
 A;Reference number: Z14348
 A;Map position: 4
 A;Status: translated from GB/EMBL/DDJB
 A;Molecule type: DNA
 A;Residues: 1-521 <DEML>
 A;Cross-references: EMBL:AF013294; NID:92252848; PID:92252863
 A;Experimental source: Cultivar Columbia
 C;Genetics:
 A;Map position: 4
 A;Introns: 158/3; 209/3; 256/3; 316/3; 384/1; 444/3; 473/2
 A;Note: A_TM018A10.14

Query Match Score 495.5; DB 2; Length 521;
 Best Local Similarity 26.2%; Pred. No. 3.9e-29;
 Matches 149; Conservative 97; Mismatches 178; Indels 145; Gaps 17;

Qy 53 AHSDL-DERAIALKEFNEFGCALAVLQQPKFDSDLSHVQNSKAFLCGVMMTYQRBEKQGTK 111
 Db 17 SYSEMDDEVEEQVEEYE-----EEEDDDDDVGQNA-----BEREVD 58

Qy 112 VADSSKGPDPEAKIKAIALLERTSYTLDVTGORKYKGPPP----DSVYSG- -QQPSSVGTI 164
 Db 59 YGDTRGGDMEDVQEETAEDDNHIDLETADDEKFPSPIIDREKYSVHSLSLPHGSEV 118

Qy 165 FVGKIPRLDFDELVLPLFEXAKPIWD-----LRLAMDPPLTCNLNRGYAFVTF 210
 Db 119 FIGGLRDLVGEEDLRLCCEIEIFVRATLIFVPHDILVKMDRSODSKGAYFAVF 178

Qy 211 CTKEAQAEAVLYNNHEIR-----SGKHIGVCIYANNRFLFGSISPKSKTKEQI 259
 Db 179 KTKDVAQKATEELHSKEFKASSTANCSLSSLGKTIRCSLSETKONLFIGNIPKNWTEDBF 238

Qy 260 LBEFSKTVTEGTDVLYHQPDIDKKRNRFCPLEYBDHKTAQARERLMSGRVKWGNVGT 319
 Db 239 RKVIEDVGPVGYENIELKDPTNTNNGFAFLVLYNNACADYSRKMDNSNFKLEGNAPT 298

Qy 320 VEADPFLDPEWMAKVYKLVFRNLANTYTEELEKAFSQGKLERVK-----LKD 372
 Db 299 VTWADPKSPBSAAAQKVLYKVNIPENTSTEQKELFQRGKLERVK-----LKD 358

RESULT 4
 DNZPRA
 polyadenylate-binding protein - fission yeast (Schizosaccharomyces pombe)
 C;Species: Schizosaccharomyces pombe
 C;Date: 14-Feb-1992 #sequence_revision 19-Jan-2001 #text_change 19-Jan-2001
 C;Accession: T38950; A39720
 R;Skelton, J.; Churcher, C.M.; Barrell, B.G.; Rajandream, M.A.; Wood, V.
 Submitted to the EMBL Data Library, May 1997
 A;Reference number: Z21819
 A;Accession: T38950
 A;Molecule type: DNA
 A;Residues: 1-653 <SKE>
 A;Cross-references: EMBL:Z99396; NID:96090525; PIDN:CA08762.1; PID:92104439; GSPDB:GN00

Qy 373 YAFIHEDRGAVKAMEEMNGKDLGENIEIVFAPPDKRKERKAQRQAKNQMYDDY 432
 Db 359 FGFVHYAERSSALKAVKDTEREVNGQPLEVYLAKPQAERKHDPS-----Y 405

Qy 433 YYGPPHMPPPTRGRGRRGGYGPDDYGYEDYYDYGDYHNVRGGETDYYGYEDFQ 492
 Db 406 SYGAAPTAPF-----VHPTFGFFAAAPYG-----A 431

Qy 493 VGARGRGRRGARGAAPSRGRGAAP-----PRGRAGY-SQRGGP-----529
 Db 432 MGA-GUGAGTGSQPMYGRAMPMTQMVBNLPPGQGVYLVQGGMWAAAPPQRPRR 490

Qy 530 -----GSAR-----GVRAKGKRGR 542
 Db 491 NDRNNGSSGGSGCRDNSHEDNGNRRYR 519

Result No.	Score	Query Match	Length	DB ID	Description
1	23.55	81.3	633	2 T02673	- heterogeneous nucleic acid binding protein
2	49.5	17.1	521	2 T01563	- hypothetical protein
3	43.5	15.0	471	2 T49019	- putative protein
4	287.5	9.9	653	1 DNZPPA	- putative protein
5	28.6	9.9	651	2 S18874	- putative protein
6	27.9	9.7	693	2 JC7925	- putative protein
7	27.9	9.6	671	2 C96534	- putative protein
8	27.8	9.6	705	2 S32644	- putative protein
9	27.5	9.5	345	1 B41732	- putative protein
10	27.4	9.5	651	2 T06979	- putative protein
11	26.8	9.3	623	2 T07933	- putative protein
12	26.6	9.2	662	2 T00497	- putative protein
13	25.8	8.9	629	2 T05425	- putative protein
14	25.8	8.9	713	2 A27441	- putative protein
15	25	8.7	405	2 H86249	- putative protein
16	251.5	8.7	638	2 S37085	- putative protein
17	251	8.7	448	2 T15542	- putative protein
18	24.9	8.6	353	1 S56750	- putative protein
19	24.9	8.6	692	2 T21095	- putative protein
20	24.7	8.5	500	2 S55785	- putative protein
21	24.4	8.4	707	2 A35804	- putative protein
22	242.5	8.4	636	2 I48708	- putative protein
23	24.2	8.4	427	2 T04823	- putative protein
24	24.1	8.3	712	2 JH0148	- putative protein
25	23.9	8.2	320	1 S20261	- putative protein
26	23.6	8.2	668	2 B96740	- putative protein
27	23.6	8.1	577	1 DNBYPA	- putative protein
28	23.4	8.1	574	2 S30887	- putative protein
29	23.3	8.0	308	1 DDRT	- putative protein

Copyright (c) 1993 - 2004 Compugen Ltd.	GenCore version 5.1.6	30	233	8.0	320	1 A44485
OM protein - protein search, using sw model		31	233	8.0	320	2 S04617
Run on:	January 28, 2004, 09:23:10 ; Search time 20 Seconds (without alignments)	32	233	8.0	707	1 DNMS
Title:	US-09-978-242-1	33	232.5	8.0	414	2 JN0866
Perfect score:	2898	34	232.5	8.0	633	1 DNXLPA
Sequence:	1 MATEHVNGNGTTEPMDTTSA.....RGPGSARGVAGKGRGRGRS 545	35	231	8.0	566	2 T21096
Scoring table:	BLOSUM62	36	229	7.9	694	1 DNCHNL
Gapop:	10.0 , Gapext 0.5	37	227.5	7.9	628	2 S44138
Searched:	283308 seqs, 96168682 residues	38	227	7.8	522	2 S52431
Total number of hits satisfying chosen parameters:	283308	39	226.5	7.8	633	1 DNHUBA
Minimum DB seq length: 0	40	225	7.8	301	2 JW0079	
Maximum DB seq length: 2000000000	41	223	7.7	320	2 S30192	
Post-processing: Minimum Match 0%	42	222.5	7.7	646	2 T26427	
Maximum Match 100%	43	222	7.6	655	2 T07768	
Listing First 45 summaries	44	221	7.6	609	2 B84783	
Database :	PIR 76:*	45	218.5	7.5	308	2 B47369
	1: Pirl1:*					
	2: pir2:*					
	3: pir3:*					
	4: pir4:*					
Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.						
SUMMARIES	\$	Query	Match	Length	DB ID	Description
RESULT 1		T02673	heterogeneous nuclear ribonucleoprotein R - human			
C.Species: Homo sapiens (man)						
C;Accession: T02673						
R;Chan, E.K.L.; Mathison, D.A.; Portman, D.; Dreyfuss, G.; Steiner, G.; Tan, E.M.; Hassett, Nucleic Acids Res. 26, 439-445, 1998						
A;Title: Molecular definition of heterogeneous nuclear ribonucleoprotein R (hnRNP R) using a reference number: Z14697; PMID: 98083170; PMID: 9421497						
A;Accession: T02673						
A;Status: preliminary; translated from GB/EMBL/DDJB						
A;Molecule type: mRNA						
A;Residues: 1-633 <CHA>						
A;Cross-references: EMBL:AF00364; PID: AAC39540.1; PID: 92697102; PID: 92697103						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						
Matches 449; Conservative 51; Mismatches 40; Indels 20; Gaps 10;						
QY 1 MATRHVNNGNT---EFPMDTTSAVIHSENFTQLDAGLPQVAEKLDEIYVAGLYVHS 55						
Db 1 MANQ-VNGNAVQLKEEEFPMD-TSSVTHTEHYKTLIEAGLPQVAEKLDEIFQTGLVAYV 58						
Query Match 81.3%; Score 2355; DB 2; Length 633;						
Best Local Similarity 80.2%; Pred. No. 5.1e-143;						

Query Match		NUCLEAR LOCALIZATION SIGNAL (POTENTIAL).	
Best Local Similarity	80.2%	RNA-BINDING (RRM) 1.	
Matches 449;	Conservative	RNA-BINDING (RRM) 2.	
		RNA-BINDING (RRM) 3.	
		RNA-BINDING (RGG-BOX).	
		X 11 AA APPROXIMATE REPEATS OF D-D-Y-Y.	
		G-Y-D-Y-H-D-Y.	
REPEAT	462	471	(APPROXIMATE).
REPEAT	472	482	2
REPEAT	488	497	3 (APPROXIMATE).
DOMAIN	579	633	GLN ASN RICH DOMAIN.
SEQUENCE	633 AA;	670943 MW;	089341F6465F0D46F CRC64;
Qy	81.3%;	Score: 2355;	DB 1; Length: 633;
Ddb	Pred. No.: 8.9e-138;	Mismatches: 51;	Indels: 20; Gaps
Qy	1 MATEHVNNGT - - - EEPMDTTSAVHSSENQFTLIDQCLPQYKAELDEIYTAVLYAHS :		
Ddb	1 MANQ - VNGHAVLQKKEEPMID - TSSVTHTEHYKTLIEAGLPQYKAELDEIYTQGTVAYV :		
Qy	56 DLDERIAEALKENEDGALAVLQQFKDSLJSHVNOKSAFLCGWMTKTYOREKOSTKVDAS :		
Ddb	59 DLDEDAIDALREFEEGALSVLQOOPKESDLJSHVNOKSAFLCGWMTKTYOREKOSKVDQS :		
Qy	116 SKGPDEAKIKALLERTGYTLDVITGQKRYGGPPDPDSVYSSGQOPSVGTETLVFGKIPRDLFE :		
Ddb	119 TKGPDDEAKIKALLERTGYTLDVITGQKRYGGPPDPDSVYSSGVPQSTIGEVFGKIPRDLFE :		
Qy	176 DELPLFEKAGPIPDLRLAMDPLTGLNRGTAFVIFCTCREAAQEAVKLNNHEIRSGRHLG :		
Ddb	179 DELPLFEKAGPIPDLRLAMDPLSQNRGYAFITFCGEAAQEAVKLCDSYEIRPGKHLG :		
Qy	236 VCISVANNRLFVGSIPKSKTKIEEFSKVTTEGLTDVLYHQDDKKCKNRGCFLEYED :		
Ddb	239 VCISVANNRLFVGSIPIKNTKRNLEBEFSKVTTEGLTDVLYHQDDKKCKNRGCFLEYED :		
Qy	296 HKTAQQAARRRLMSGVKVKVNGVTVIEWADPEVMAKVVLFVRNLANTVTEEL :		
Ddb	299 HKSAQAARRRLMSGVKVKVNGVTVIEWADPEVMAKVVLFVRNLANTVTEEL :		
Qy	356 KAFSGQFKLERVRQLKDYAIFIHDGRGAVKAMEMNGDLEGINIEIVFAKPDQKRKE :		
Ddb	359 KSFSEFGKLERVKLKDYAFVHFEDRGAAVKADMENGKEIEGEIEIVLAQPDQKRKE :		
Qy	416 RKAQROQAAKNOMYDDYYYYGPPHMBPTGRGR - GGRRGGYGYPPDYYGYEDYY :		
Ddb	419 RQAARQASRTAYEDYYHHPRMPEPIRGRRGGGRGGYPPDYYGYEDYYDYYGYD :		
Qy	474 YHNRYGGYESPPYYGYED - FOVGARORGGRGARGA - APSRGRAAAPPGRGAGSRGGP G :		
Ddb	479 YHDTRGGYEPPYYGYDDGAVARGRG - GGRCGRGAPPGRGAGPRGRGAGSRGAUPG :		
Qy	531 SARGTRAGK - - - - RGRG 543		
Ddb	538 PPRGSRGRRGGPAQQQRGRG 557		
RESULT 2			
PABP	SCHPO	STANDARD;	PRT;
ID	P31209 ; P87135 ;		653 AA.
AC	Created)		
DT	01-JUL-1993 (Rel. 26,		
DT	15-JUL-1998 (Rel. 36,		Last sequence update)
DT	28-FEB-2003 (Rel. 41,		Last annotation update)
DE	Polynucleotide-binding protein (Poly(A)-binding protein) (PABP).		
PABP	OR PABP OR SPAC57A-04C.		
GN	Schizosaccharomyces pombe (Fission yeast).		
OS	Eukaryota; Fungi; Ascomycota; Schizosaccharomyces; Schizosaccharomycetales; Schizosaccharomyces.		
OC	NCBI TaxID=4896 ;		
OC			

Result No.	Score	Query	Match	Length	DB ID	Description
1	2355	81.3	633	1	ROR_HUMAN	043290 homo sapien
2	2875	9.9	653	1	PABP_SCHPO	P31209 schizosaccharomyces pombe
3	286	9.9	650	1	NUCL_XENLA	P20397 xenopus laevis
4	274	9.5	345	1	SQD_DROME	Q08473 drosophila melanogaster
5	260.5	9.0	644	1	PAB4_HUMAN	Q13310 homo sapien
6	258.5	8.9	629	1	PAB2_ARATH	P4231 arabidopsis thaliana
7	258	8.9	713	1	NUCL_MESAU	P08199 mesocyclospora ulei
8	248	8.6	631	1	PAB3_HUMAN	Q91361 homo sapien
9	247	8.5	500	1	GAR2_SCHPO	P41891 schizosaccharomyces pombe
10	244	8.4	706	1	NUCL_HUMAN	P19338 homo sapien
11	242.5	8.4	636	1	PAB1_MOUSE	P23341 mus musculus
12	241.5	8.3	712	1	NUCL_RAT	P13383 rattus norvegicus
13	240.5	8.3	636	1	PAB1_HUMAN	P11940 homo sapien
14	236.5	8.2	668	1	PAB5_ARATH	Q05196 arabidopsis thaliana
15	236	8.1	576	1	PABP_YEAST	P04147 saccharomyces cerevisiae
16	234	8.1	632	1	PABP_DROME	P21187 drosophila melanogaster
17	233	8.0	319	1	ROA1_MOUSE	P49312 mus musculus
18	233	8.0	706	1	NUCL_MOUSE	P09405 mus musculus
19	232.5	8.0	414	1	NOP3_YEAST	Q01560 saccharomyces cerevisiae
20	232.5	8.0	633	1	PAB1_XENLA	P20965 xenopus laevis
21	231	8.0	319	1	ROA1_RAT	P04256 rattus norvegicus
22	229	7.9	391	1	ROG_HUMAN	P38159 homo sapien
23	229	7.9	694	1	NUCL_CHICK	P15771 gallus gallus
24	227	7.8	522	1	PAB2_HUMAN	Q15097 homo sapien
25	224.5	7.7	660	1	PAB3_ARATH	Q61380 arabidopsis thaliana
26	223	7.7	319	1	ROA1_MACMU	Q28521 macaca mulatta
27	222.5	7.7	353	1	ROD_FAT	Q93154 rattus norvegicus
28	222	7.7	371	1	ROA1_HUMAN	P03651 homo sapien
29	221.5	7.6	379	1	ROA3_MOUSE	Q88905 mus musculus
30	221	7.6	609	1	PABX_ARATH	Q92948 arabidopsis thaliana
31	219.5	7.6	305	1	ROA0_HUMAN	Q13151 homo sapien
32	219.5	7.6	355	1	ROD_HUMAN	Q14103 homo sapien
33	218.5	7.5	424	1	SD3B4_HUMAN	Q15427 homo sapien

Db	121 BAKIKALLERTGTYLDTQORKYGGPPPSVSGQQPSVGTEIFVGKIPRDLFEDELVP 180	Qy	61 AIEALKKEFNEGDALAVLQQFKOSDLHIVONKSAAFLCGVMKTYQRREKOGTKVADSKGPD 120
Qy	181 LFEKAGPINDLRLIMMDPLTCLSLNRYGAFVTFECTKEAAQEAVKLVNHEITRSKGHIGCVTSV 240	Db	61 AIEALKKEFNEGDALAVLQQFKOSDLHIVONKSAAFLCGVMKTYQRREKOGTKVADSKGPD 120
Db	181 LFEKAGPINDLRLIMMDPLTCLSLNRYGAFVTFECTKEAAQEAVKLVNHEITRSKGHIGCVTSV 240	Qy	121 BAKIKALLERTGTYLDTQORKYGGPPPSVSGQQPSVGTEIFVGKIPRDLFEDELVP 180
Qy	241 ANNRLFGS1PKSKTKEQ1LLEFSKVTGILTDLHYHQDDKKNGPFFLEYEDHKTA 300	Db	121 BAKIKALLERTGTYLDTQORKYGGPPPSVSGQQPSVGTEIFVGKIPRDLFEDELVP 180
Db	241 ANNRLFGS1PKSKTKEQ1LLEFSKVTGILTDLHYHQDDKKNGPFFLEYEDHKTA 300	Qy	181 LFEKAGPIWDLRLIMMDPLTGLNRGYAFTFCTKEAAQEAVLYNNHEIRSGKHIGCVTSV 240
Qy	301 QARRRLMSGRVKYKVGNGVGTGEWAIDPDEPEWAKVYLVRNLANTVTEELKEAFSQ 360	Db	181 LFEKAGPFWDLRLIMMDPLTGLNRGYAFTFCTKEAAQEAVLYNNHEIRSGKHIGCVTSV 240
Db	301 QARRRLMSGRVKYKVGNGVGTGEWAIDPDEPEWAKVYLVRNLANTVTEELKEAFSQ 360	Qy	241 ANNRLFVGS1PKSKTKEQ1LLEFSKVTGILTDLHYHQDDKKNGPFFLEYEDHKTA 300
Qy	361 FGKLERVKLKDKYDIAFHFDERGAVKAMEEMNGKDLLEGENEIYFAKPPDKRKERKACR 420	Db	241 ANNRLFVGS1PKSKTKEQ1LLEFSKVTGILTDLHYHQDDKKNGPFFLEYEDHKTA 300
Db	361 FGKLERVKLKDKYDIAFHFDERGAVKAMEEMNGKDLLEGENEIYFAKPPDKRKERKACR 420	Qy	301 QARRRLMSGRVKYKVGNGVGTGEWAIDPDEPEWAKVYLVRNLANTVTEELKEAFSQ 360
Qy	421 QAAKNQMYDDYYGGPPMPPTGRGRGRRGGYGYPPDYYGYDYDHNYRG 480	Db	301 QARRRLMSGRVKYKVGNGVGTGEWAIDPDEPEWAKVYLVRNLANTVTEELKEAFSQ 360
Db	421 QAAKNQMYDDYYGGPPMPPTGRGRGRRGGYGYPPDYYGYDYDHNYRG 480	Qy	361 FGKLERVKLKDKYDIAFHFDERGAVKAMEEMNGKDLLEGENEIYFAKPPDKRKERKACR 420
Qy	481 YEDPYGYEDEQVQARGRGERGARGAAAPSQRGRGAAPPRGRAGYSQRGGSARGVRAGK- 539	Db	361 FGKLERVKLKDKYDIAFHFDERGAVKAMEEMNGKDLLEGENEIYFAKPPDKRKERKACR 420
Db	481 YEDPYGYEDEQVQARGRGERGARGAAAPSQRGRGAAPPRGRAGYSQRGGSARGVRAGK 540	Qy	421 QAARKNQMYDDYYGGPPMPPTGRGRGRRGGYGYPPDYYGYDYDHNYRG 480
Qy	540 ----RGRGR 544	Db	421 QAARKNQMYDDYYGGPPMPPTGRGRGRRGGYGYPPDYYGYDYDHNYRG 480
Db	541 GAQQQRGRGQ 550	Qy	481 YEDPYGYEDEQVQARGRGERGARGAAAPSQRGRGAAPPRGRAGYSQRGGSARGVRAGK- 539
Qy	540 ----RGRGR 543	Db	481 YEDPYGYEDEQVQARGRGERGARGAAAPSQRGRGAAPPRGRAGYSQRGGSARGVRAGK 540
RESULT 2			
Q9QYF4	PRELIMINARY; PRT; 561 AA.	Q9QYF4	PRELIMINARY; PRT; 561 AA.
ID	Q9QYF4	AC	Q9QYF4;
DT	01-MAY-2000 (TrEMBLrel. 13, Created)	DT	01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT	01-MAY-2000 (TrEMBLrel. 13, Last annotation update)	DT	01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DE	SYNCRIP protein.	DE	SYNCRIP protein.
GN	NSAPI OR SYNCRIPI.	GN	NSAPI OR SYNCRIPI.
OS	Mus musculus (Mouse)	OS	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Muriinae; Mus. NCBI_TaxID=10900; [1]
OC		OC	
OX		OX	
RN	SEQUENCE FROM N.A.	RN	SEQUENCE FROM N.A.
RP	STRAIN=DDV;	RP	Homo sapiens (Human).
RX	MEDLINE=20200483; PubMed=10734137;	RX	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
RA	Mizutani A., Fukuda M., Ibara K., Shiraiishi Y., Mikoshiba K.;	RA	Harris C.E., Boden R.A., Arell C.R.;
RT	"SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptoctagmin isoforms."	RT	"A novel heterogeneous nuclear ribonucleoprotein-like protein interacts with NS1 of the minute virus of mice."
RT	InterPro: IPR000504; RNA_recC_mot.	RT	interacts with NS1 of the minute virus of mice."
DR	SMART: SM00360; RNA_recC.	DR	[1] J. Virol. 73:72-80 (1999).
DR	InterPro: IPR006535; hnRNP_R_Q.	DR	EMBL: AP155568; AACD38198.1; -.
DR	MGD: 14891620; RRM; 3.	DR	HSSP: P19339; 2SXL.
DR	InterPro: IPR000504; RNA_recC_mot.	DR	InterPro: IPK000504; hnRNP_R_Q.
DR	SMART: SM00360; RNA_recC.	DR	InterPro: IPK000504; RNA_recC_mot.
DR	TIGRFAMS: TIGR01648; hnRNP_R-Q; 1.	DR	Pfam: PF00076; rrm; 3.
DR	PROSITE: PS00030; RRM; 3.	DR	SMART: SM00360; RRM; 3.
DR	PROSITE: PS00030; RRM_RNP_1; 2.	DR	TIGRFAMS: TIGR01648; hnRNP_R-Q; 1.
SQ	SEQUENCE 561 AA; 62514 MW; C0259CS4014616A CRC64;	SQ	DR PROSITE: PS50102; RRM; 3.
Query Match	98.7%; Score 2860; DB 11; Length 561;	DR PROSITE: PS00030; RRM_RNP_1; 2.	DR PROSITE: PS50102; RRM; 3.
Best Local Similarity	98.2%; Pred. No. 1..7e-191; Indels 6; Gaps 1;	SEQUENCE 562 AA; 62656 MW;	SEQUENCE 562 AA; 62656 MW;
Matches	Conservative 2; Mismatches 2;	Query Match 98.7%; Best Local Similarity 98.0%; Pred. No. 1..7e-191; Mismatches 3; Conservative 3; Indels 6; Gaps 1;	Best Local Similarity 98.0%; Pred. No. 1..7e-191; Mismatches 3; Conservative 3; Indels 6; Gaps 1;
Qy	1 MATEHYNNGTEEPMDTTSAVHSENFTQLDAGLPQKVAEKLDEIYVAGLVLAISDLDR 60	Qy	1 MATEHYNNGTEEPMDTTSAVHSENFTQLDAGLPQKVAEKLDEIYVAGLVLAISDLDR 60
Db	1 MATEHYNNGTEEPMDTTSAVHSENFTQLDAGLPQKVAEKLDEIYVAGLVLAISDLDR 60	Db	

Result No.	Score	Query	Match	Length	DB	ID	Description
1	2861	98.7	562	11	Q8BGP1	Q8bgp1	mus musculu
2	2860	98.7	561	11	Q9QFP4	Q9qfp4	mus musculu
3	2860	98.7	562	4	Q9YSB3	Q9y5b3	homo sapien
4	2860	98.7	627	11	Q8CCC2	Q8ccg2	mus musculu
5	2857	98.6	561	4	Q96LC1	Q96lc1	homo sapien
6	2857	98.6	623	4	060506	060506	homo sapien
7	2823	97.6	625	11	Q8BS91	Q8bs91	mus musculu
8	2647	91.4	527	4	Q9Y599	Q9y599	homo sapien
9	2640	91.4	588	4	Q96LC2	Q96lc2	homo sapien
10	2533	87.4	558	11	Q91ZRO	Q91zro	mus musculu
11	2447	85.8	491	11	Q8VEM6	Q8cem6	mus musculu
12	2365	81.6	632	11	Q8VEM5	Q8cem5	mus musculu
13	2343	80.9	636	4	Q9BV64	Q9bv64	homo sapien
14	2227	76.8	601	11	Q99KG1	Q99kg1	mus musculu
15	2043	69.8	410	4	Q8IW78	Q8iw78	homo sapien
16	1667	57.5	380	11	Q9CT37	Q9ct37	mus musculu

ALIGNMENTS

RESULT	1	QBGP1	QBGP1;	PRELIMINARY;	PRT;	562 AA.
		ID	QBGP1;			
		AC	QBGP1;			
		DT	01-MAR-2003	(TrEMBLrel. 23, Created)		
		DT	01-MAR-2003	(TrEMBLrel. 23, Last sequence update)		
		DT	01-MAR-2003	(TrEMBLrel. 23, Last annotation update)		
		DE				
		OS				
		OC				
		RN	[1]			
		RP				
		RC	SEQUENCE FROM N.A.			
		RC	STRAIN=C57BL/6J; TISSUE=Body, and Embryo;			
		RX	MEDLINE=22334683; PubMed=12466651;			
		RA	The FANTOM Consortium,			
		RA	the RIKEN Genome Exploration Research Group Phase I & II Team;			
		RT	"Analysis of the mouse transcriptome based on functional annotation of			
		RT	60,770 full-length cDNAs."			
		RL	Nature 420:563-573 (2002)			
		DR	EMBL; AK034845; BAC28852; EMBL; AK077588; BAC36880; -			
		DR	SEQUENCE 562 AA; 62672 MW; 8103CFA286105377 CRC64;			
		DR	98.7% Score 2861; DB 11; Length 562;			
		DR	1 MATEHYNQNGTEPMDITSAVHSNFQTLIDAGLPQKVAEKLDETVAGLYAHSDILDE 60			
		DR	1 MATEHYNQNGTEPMDITSAVHSNFQTLIDAGLPQKVAEKLDETVAGLYAHSDILDE 60			
		QY	61 AIEALKFNEQDALAVLQQPKQDSLIVQNSKAFLQGYMCKTYRQEKGTYADSKGPD 120			
		Db	1 MATEHYNQNGTEPMDITSAVHSNFQTLIDAGLPQKVAEKLDETVAGLYAHSDILDE 60			
		QY	61 AIEALKFNEQDALAVLQQPKQDSLIVQNSKAFLQGYMCKTYRQEKGTYADSKGPD 120			
		Db	1 MATEHYNQNGTEPMDITSAVHSNFQTLIDAGLPQKVAEKLDETVAGLYAHSDILDE 60			
		QY	121 EAKIKALLERTGTYLTDYTGTGKGGPPDVSYSGQQPSVGTEIFVKIIPDLFEDLV P 180			

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the distribution and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB	ID	Description
1	2861	98.7	562	11	Q8BGP1	Q8bgp1	mus musculu
2	2860	98.7	561	11	Q9QFP4	Q9qfp4	mus musculu
3	2860	98.7	562	4	Q9YSB3	Q9y5b3	homo sapien
4	2860	98.7	627	11	Q8CCC2	Q8ccg2	mus musculu
5	2857	98.6	561	4	Q96LC1	Q96lc1	homo sapien
6	2857	98.6	623	4	060506	060506	homo sapien
7	2823	97.6	625	11	Q8BS91	Q8bs91	mus musculu
8	2647	91.4	527	4	Q9Y599	Q9y599	homo sapien
9	2640	91.4	588	4	Q96LC2	Q96lc2	homo sapien
10	2533	87.4	558	11	Q91ZRO	Q91zro	mus musculu
11	2447	85.8	491	11	Q8VEM6	Q8cem6	mus musculu
12	2365	81.6	632	11	Q8VEM5	Q8cem5	mus musculu
13	2343	80.9	636	4	Q9BV64	Q9bv64	homo sapien
14	2227	76.8	601	11	Q99KG1	Q99kg1	mus musculu
15	2043	69.8	410	4	Q8IW78	Q8iw78	homo sapien
16	1667	57.5	380	11	Q9CT37	Q9ct37	mus musculu

source	1. .2079	/organism="unknown"	535	9	528	t
BASE COUNT	619	a	377	c	528	t
ORIGIN						
Query Match	100.0%	Score 2079; DB 6; Length 2079;				
Best Local Similarity	100.0%	Pred. No. 0; Mismatches 0; Indels 0; Gaps 0;				
Matches 2079; Conservative						
Qy	1	GGGGCGCGGGCACCGGAGCCGGCTGGAGCGACTGGATCGGGTTCGGCT 60				
Db	1	GGGGCGCGGGCACCGGAGCCGGCTGGAGCGACTGGATCGGGTTCGGCT 60				
Qy	61	CCAGGGCGTGAGCTTGCGGGCATTTACACAGCTCCACTGGGGCACAGGA 120				
Db	61	CCAGGGCGTGAGCTTGCGGGCATTTACACAGCTCCACTGGGGCACAGGA 120				
Qy	121	GCAGGGAGGACGGACGGCTTCCGGCAACCCGATAACATCGGACAGGATTCTCGGCC 180				
Db	121	GCAGGGAGGACGGACGGCTTCCGGCAACCCGATAACATCGGACAGGATTCTCGGCC 180				
Qy	181	CAACGGGGAGATCTGGAAACATGGCTACAGAACATGTAAATGGTACTGAGA 240				
Db	181	CAACGGGGAGATCTGGAAACATGGCTACAGAACATGTAAATGGTACTGAGA 240				
Qy	241	GCCATGGAPACTACTTCGAGTTACCATTCGAGTTACAGCTTTGCTGTATGC 300				
Db	241	GCCATGGAPACTACTTCGAGTTACCATTCGAGTTACAGCTTTGCTGTATGC 300				
Qy	301	TGGTTACACAGAAAGTTCTGAAAAACTATGATGAAATTACGTTGAGGGTAGITTC 360				
Db	301	TGGTTACACAGAAAGTTCTGAAAAACTATGATGAAATTACGTTGAGGGTAGITTC 360				
Qy	361	ACATAGTGATTATGATGAAAGAGCTTAAAGAACATGGCTTAAGAACAGGGTTC 420				
Db	361	ACATAGTGATTATGATGAAAGAGCTTAAAGAACATGGCTTAAGAACAGGGTTC 420				
Qy	421	ATGGCAGTTCTCACAGTTAACAGCTTAAGACAGCTCATCTCATGTTAACAAAGTC 480				
Db	421	ATGGCAGTTCTCACAGTTAACAGCTTAAGACAGCTCATCTCATGTTAACAAAGTC 480				
Qy	481	CTTTTTATGTTGGAGCTCATGAGACTTACAGGAGAAAACAGGGGACAAAGTAC 540				
Db	481	CTTTTTATGTTGGAGCTCATGAGACTTACAGGAGAAAACAGGGGACAAAGTAC 540				
Qy	541	AGATCTTGTAAAGGACCAGTGTGGAAAGAACAGGGCAAAAGCTTCACTGGT 600				
Db	541	AGATCTTGTAAAGGACCAGTGTGGAAAGAACAGGGCAAAAGCTTCACTGGT 600				
Qy	601	CACACTTGAGTGACCACTGGACACTGGACAGGGAGTATGGGACCACTCCGTTA 660				
Db	601	CACACTTGAGTGACCACTGGACACTGGACAGGGAGTATGGGACCACTCCGTTA 660				
Qy	661	TTCAAGTCAGTCAGCTTCTGTGGACTGGAGATTTGTGGAAAGATCCAAAGAGCT 720				
Db	661	TTCAAGTCAGTCAGCTTCTGTGGACTGGAGATTTGTGGAAAGATCCAAAGAGCT 720				
Qy	721	ATTTGGGGATGCACTGCACTGCAACTGTGTCATTATGGAAAAGCTGGCTTCTG 780				
Db	721	ATTTGGGGATGCACTGCACTGCAACTGTGTCATTATGGAAAAGCTGGCTTCTG 780				
Qy	781	AATGATGGATCCACTCACTGGTCAATAGAGCTTATGGCTTGTCACTTTTGTCACA 840				
Db	781	AATGATGGATCCACTCACTGGTCAATAGAGCTTATGGCTTGTCACTTTTGTCACA 840				
Qy	841	AGAAGCAGCTCAGGGCTGGTTAACTGTATAAATATGAAATTGTCTGAAAACA 900				
Db	841	AGAAGCAGCTCAGGGCTGGTTAACTGTATAAATATGAAATTGTCTGAAAACA 900				
Qy	901	TATTGGTGCTGCACTGCACTGCAACTAGGCTTCTGCAACAACTGGCTTCTG 960				
Db	901	TATTGGTGCTGCACTGCACTGCAACTAGGCTTCTGCAACAACTGGCTTCTG 960				
Qy	961	TAAACCAGGAAACAGATTCTGAAAGAATTAGCAAAAGTAACAGGGCTTACAGACGT 1020				
Db	961	TAAACCAGGAAACAGATTCTGAAAGAATTAGCAAAAGTAACAGGGCTTACAGACGT 1020				
Qy	1021	CATTATACACCAACCGATGACAGAAACAAACAGGGCTTTCGCTTCTGATA 1080				
Db	1021	CATTATACACCAACCGATGACAGAAACAAACAGGGCTTTCGCTTCTGATA 1080				
Qy	1081	TGAGATCACAAAACAGTGCCTGGAGGGCTAGGTAAATGAGTGTAAAGTCAGGT 1140				
Db	1081	TGAGATCACAAAACAGTGCCTGGAGGGCTAGGTAAATGAGTGTAAAGTCAGGT 1140				
Qy	1141	CTGGGGAAATGTGGBACTGTGAACTGGCTGATCTATAGAGATCCTGATCTG 1200				
Db	1141	CTGGGGAAATGTGGBACTGTGAACTGGCTGATCTATAGAGATCCTGATCTG 1200				
Qy	1201	TATGCCAAGTTAAAGTAAAGTGTGCTGTTAGCTGAACTTGTCAACAGAAAGAT 1260				
Db	1201	TATGCCAAGTTAAAGTGTGCTGTTAGCTGAACTTGTCAACAGAAAGAT 1260				
Qy	1261	TTTAGAAAGGCAATTACTCGTTGAGCTTACTGAGTAAAGGTTAAAGGATTA 1320				
Db	1261	TTTAGAAAGGCAATTACTCGTTGAGCTTACTGAGTAAAGGTTAAAGGATTA 1320				
Qy	1321	TGCGTCATTCATTGATGAGGGAGATGGCTTACGGCTATGGAGAAATGATG 1380				
Db	1321	TGCGTCATTCATTGATGAGGGAGATGGCTTACGGCTATGGAGAAATGATG 1380				
Qy	1381	CAAGACTTGGAGGGAGAAATTGAGATTGTTGCTGCAAGCCACCGATCAGAAAG 1440				
Db	1381	CAAGACTTGGAGGGAGAAATTGAGATTGTTGCTGCAAGCCACCGATCAGAAAG 1440				
Qy	1441	GAAGAAAGAAAAGCTCAGAGGAAGCAGCAAAATAAATGATGAGTAACTACTA 1500				
Db	1441	GAAGAAAGAAAAGCTCAGAGGAAGCAGCAAAATAAATGATGAGTAACTACTA 1500				
Qy	1501	TTATGTCACCTCATATGCCCTCCACAAAGGTTGGGGCTGGAGGTAGGTG 1560				
Db	1501	TTATGTCACCTCATATGCCCTCCACAAAGGTTGGGGCTGGAGGTAGGTG 1560				
Qy	1621	TTACCCATAACTATGTGGTATGAGATCCATACTATGGTTGAGATTTCACTG 1680				
Db	1621	TTACCCATAACTATGTGGTATGAGATCCATACTATGGTTGAGATTTCACTG 1680				
Qy	1681	TGGAGCTAGAGGAAGGGGGTTAGAGGGCAAGGGCTGGCTCATCCAGGTG 1740				
Db	1681	TGGAGCTAGAGGAAGGGGGTTAGAGGGCAAGGGCTGGCTCATCCAGGTG 1740				
Qy	1801	AGGGCTTCAGAGGGAAAGGGGTGAGGCCGTTCTGAGGCCGTTCTGAGACTCA 1860				
Db	1801	AGGGCTTCAGAGGGAAAGGGGTGAGGCCGTTCTGAGGCCGTTCTGAGACTCA 1860				
Qy	1861	CTTGCTCATGTGGATTAACAGGAGCTTCCTGAGCTTCTGAGCTTCTGAGTC 1920				
Db	1861	CTTGCTCATGTGGATTAACAGGAGCTTCCTGAGCTTCTGAGCTTCTGAGTC 1920				
Qy	1921	CCTTAATAATGTCGGCTGATAGGAGCATATTCTGAGAAAGACCTTCCTGAGTC 1980				
Db	1921	CCTTAATAATGTCGGCTGATAGGAGCATATTCTGAGAAAGACCTTCCTGAGTC 1980				
Qy	1981	CATGGAAATAAACATGGGCAATTGAGCTTACATGGAACTTGTGAGTTAACCTACT 2040				
Db	1981	CATGGAAATAAACATGGGCAATTGAGCTTACATGGAACTTGTGAGTTAACCTACT 2040				
Qy	2041	AATTTCCTCTGCACTGCACTGCACTGCACTGCACTGCACTGCACTGCACTG 2079				

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

score greater than or equal to the score of the result being printed,
 and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB	ID	Description	
1	2079	100.0	2079	6	AR177851		ARI177851 Sequence	
2	2012.6	96.8	2221	9	AF155568	Homo sapi	AF155568 Sequence	
3	1883.2	90.6	2208	10	BC041148	Mus muscu	BC041148 Sequence	
4	1848.4	88.9	103819	9	HSU775C13	Human DNA	AL109618 Sequence	
5	1848.4	88.9	212659	2	AL390737	Homo sapi	AL390737 Sequence	
6	1826.2	87.8	3452	6	BD143848	RNA-bind	BD143848 Sequence	
7	1826.2	87.8	3452	10	AB035725	Mus muscu	AB035725 Sequence	
8	1810.6	87.1	2932	9	AF037448	Homo sapi	AF037448 Sequence	
9	1809.2	87.0	3671	10	BC050079	Mus muscu	BC050079 Sequence	
10	1695.4	81.5	3319	9	BC032643	Homo sapi	BC032643 Sequence	
11	1619.8	77.9	1941	9	BC040844	Homo sapi	BC040844 Sequence	
12	1610.2	77.5	1686	9	AY034483	Homo sapi	AY034483 Sequence	
13	1610.2	77.5	1872	9	AY034481	Homo sapi	AY034481 Sequence	
14	1502.8	72.3	2373	10	AF093821	Mus muscu	AF093821 Sequence	
15	1463.4	70.4	3101	6	AK011753	Sequence	AK011753 Sequence	
16	1390.2	66.9	1767	9	AY034482	Homo sapi	AY034482 Sequence	
17	1329.2	63.9	2232	10	AF040843	Mus muscu	AF040843 Sequence	
18	1089.4	52.4	259969	2	AC118904	Rattus no	AC118904 Sequence	
c	19	1089.4	52.4	288143	2	AC109106	Rattus no	AC109106 Sequence
c	20	935.2	45.0	2371	5	BC046902	Danio rer	BC046902 Sequence
c	21	901.8	43.4	226602	2	AC122217	Mus muscu	AC122217 Sequence
c	22	895	43.0	1899	10	AF411128	Sequence	AF411128 Sequence
c	23	895	43.0	2725	10	BC038051	Mus muscu	BC038051 Sequence
c	24	884.4	42.5	1899	10	AY184814	Rattus no	AY184814 Sequence
c	25	882	42.4	2644	9	AF000364	Homo sapi	AF000364 Sequence
c	26	864.6	41.6	2722	9	BC001449	Human DNA	BC001449 Sequence
c	27	852.8	41.0	202374	10	BC046779	Mus muscu	BC046779 Sequence
c	28	846.4	40.7	235938	2	AC126148	Rattus no	AC126148 Sequence
c	29	846.4	40.7	264178	2	AC098650	Rattus no	AC098650 Sequence
c	30	792.4	38.1	934	6	AC103715	Sequence	AC103715 Sequence
c	31	763	36.7	196188	2	AC084410	Mus muscu	AC084410 Sequence
c	32	763	36.7	205520	2	AC079134	Mus muscu	AC079134 Sequence
c	33	705.6	33.9	202374	10	AC122868	Mus muscu	AC122868 Sequence
c	34	693.8	33.4	204962	2	AC127932	Rattus no	AC127932 Sequence
c	35	693.8	33.4	225370	2	AC129693	Rattus no	AC129693 Sequence
c	36	686.6	33.0	215801	2	AC140330	Mus muscu	AC140330 Sequence
c	37	642.2	30.9	139936	9	AL161799	Human DNA	AL161799 Sequence
c	38	482.8	23.2	2195	10	BC004001	Mus muscu	BC004001 Sequence
c	39	445.2	21.4	1236	3	AK116214	Ciona int	AK116214 Sequence
c	40	435.2	20.9	263129	2	AC098289	Human DNA	AC098289 Sequence
c	41	424.6	20.4	121127	2	AC119124	Rattus no	AC119124 Sequence
c	42	424.6	20.4	241168	2	AC105884	Rattus no	AC105884 Sequence
c	43	407.2	19.6	265259	2	AC121468	Rattus no	AC121468 Sequence
c	44	395.8	19.0	483	6	BD143847	RNA-bind	BD143847 Sequence
c	45	378.6	18.2	2606	3	AY058477	Drosophil	AY058477 Sequence

ALIGNMENTS

RESULT	1	ARI177851	2	from patent	2079 bp	DNA	linear	PAT 17-DEC-2001
LOCUS	ARI177851	Sequence	2	US 6313266.				
DEFINITION								
ACCESSION		ARI177851						
VERSION								
KEYWORDS								
SOURCE								
ORGANISM								
UNCLASSIFIED								
REFERENCE	1	(bases 1 to 2079)						
AUTHORS	Bandman, O.							
TITLE	Human nucleolin-like protein							
JOURNAL	Corley, N.C. and Shah, P.							
FEATURES	Location/Qualifiers							

Pred. No. is the number of results predicted by chance to have a a

Copyright (c) 1993 - 2004 Compugen Ltd.

Copyright (c) 1993 - 2004 Compugen Ltd.

The present sequence encodes human nucleolin-like peptide, designated HNLPL. HNLPL is the main protein component in the nucleolus of eukaryotic cells and is an essential part of ribosome biosynthesis and also plays an important role in importing proteins to the nucleus. HNLPL may be used in the diagnosis, prevention and treatment of disorders associated with abnormal expression of HNLPL. For example, it may be used to treat cancers (e.g. melanoma, breast cancer and prostate cancer), autoimmune diseases (e.g. autoimmune haemolytic anaemia and inflammatory bowel disease) and, in particular, Alzheimer's disease. It may also be used to study the function of the HNLPL peptides, the formation (biosynthesis) of the complex of ribosomes and nucleolus, the assembly of ribosomes and the removal of the nucleolus.

X	Q	Sequence 2079 BP; 639 A; 377 C; 535 G; 528 T; 0 other;	Qy	
	Query Match	100.0% ; Score 2079; DB 20; Length 2079;	Db	
	Best Local Similarity	100.0% ; Pred. No. 0;	Db	1021 CATTTTATACCAACCCGATACAGAAAACAGGGCTTTCCTTGATAA 108
	Matches 2079; Conservative	0; Mismatches 0; Indels 0; Gaps 0;	Db	1021 CATTTTATACCAACCCGATACAGAAAACAGGGCTTTCCTTGATAA 108
b	1	GGGGCGCCGCCGCCGCCACCGGAGGCCCTCGGAGGGAGTGAACTGGATGGGTTTGCTG 60	Qy	1081 TGAGATCACAAACAGCTGCCAGGCTAGGCTTAAGCTTAAGTCAAAGT 114
b	1	GGGGCGCCGCCGCCACGGAGGCCCTCGGAGGGAGTGAACTGGATGGGTTTGCTG 60	Db	1081 TGAGATCACAAACAGCTGCCAGGCTAGGCTTAAGTCAAAGTCAAAGT 114
b	61	CCAGGGCGGTGAGCTGGGGGCATTAAACAGCTCCACTCGCCGAGACAGGGA 120	Qy	1141 CTGGGGAAATGTTGAACTGTTGAATGGCTGATCCTATAGAAGATCTTGATCTTGAGCT 120
b	61	CCAGGGCGGTGAGCTGGGGGCATTAAACAGCTCCACTCGCCGAGACAGGGA 120	Db	1141 CTGGGGAAATGTTGAACTGTTGAATGGCTGATCCTATAGAAGATCTTGATCTTGAGCT 120
b	121	GCAGGGCGACGGCGTCCCGCAACCGATACCATGACAGGATTCTCGCCCTCAGCC 180	Qy	1201 TATGCCAAGGTAAGTAAAGTGCTGTTGAGCAGGTTAACCTGTAACAGAGAT 126
b	121	GCAGGGCGACGGCGTCCCGCAACCGATACCATGACAGGATTCTCGCCCTCAGCC 180	Db	1201 TATGCCAAGGTAAGTAAAGTGCTGTTGAGCAGGATTCAACAGAGAT 126
b	181	CAACGGGAGATCTCGGAACATGGCTACAGAACATGTTAATGGTACTGAGA 240	Qy	1261 TTGAAAGGGCATTTAGTCAGTTGGAAACTCTGTTGAGCTTAAAGATTA 132
b	181	CAACGGGAGATCTCGGAACATGGCTACAGAACATGTTAATGGTACTGAGA 240	Db	1261 TTGAAAGGGCATTTAGTCAGTTGGAAACTCTGTTGAGCTTAAAGATTA 132
b	241	GCCCCATGATACTACTCTCGATGTTATCCATTAGAACATTTCAGAACATGCTGATGC 300	Qy	1321 TGGCTTCATTCATTTGATGAGCCAGATGGCTGCTCAAGGCTATGGAAATGAAATG 138
b	241	GCCCCATGATACTACTCTCGATGTTATCCATTAGAACATTTCAGAACATGCTGATGC 300	Db	1321 TGGCTTCATTCATTTGATGAGCCAGATGGCTGCTCAAGGCTATGGAAATGAAATG 138
b	301	TGGTTAACACAGAACATTAGTGAATAATTAGTGAATAATTTCAGAACATTTCAGAACATGCTGATGC 360	Qy	1381 CAAGACATTTGGAGGAGAAAATTTGAAATTGTTTTGCCAACCCAGATGCAAAG 144
b	301	TGGTTAACACAGAACATTAGTGAATAATTAGTGAATAATTTCAGAACATTTCAGAACATGCTGATGC 360	Db	1381 CAAGACATTTGGAGGAGAAAATTTGAAATTGTTTTGCCAACCCAGATGCAAAG 144
b	361	ACATAGTGTAGTAAAGGCTATTGAGCTTAAAGAATTCAATGAAAGGGTGC 420	Qy	1441 GAAAGAAAAGCTCAGGGCAAGCAAAATCAATGTTGAGCTTACTA 150
b	361	ACATAGTGTAGTAAAGGCTATTGAGCTTAAAGAATTCAATGAAAGGGTGC 420	Db	1441 GAAAGAAAAGCTCAGGGCAAGCAAAATCAATGTTGAGCTTACTA 150
b	421	ATTGGCGATTCTTCACAGTTAAAGACAGTCACTCTCATGTTCAAGAACAAAGTGC 480	Qy	1501 TTATGGTCCACCTCATATGCCCTTCACAAGGGCTGAGGGTAGGGCTGG 156
b	421	ATTGGCGATTCTTCACAGTTAAAGACAGTCACTCTCATGTTCAAGAACAAAGTGC 480	Db	1501 TTATGGTCCACCTCATATGCCCTTCACAAGGGCTGAGGGTAGGGCTGG 156
b	481	CCTTTTATGTGGAGTCATGAGAACATCAAGGGAGAGAAAACAGGGACCAAGTGC 540	Qy	1561 TTATGGTATTCCTCCAGATTATTTGATATGAGATTATTATGTTTATCA 162
b	481	CCTTTTATGTGGAGTCATGAGAACATCAAGGGAGAGAAAACAGGGACCAAGTGC 540	Db	1561 TTATGGTATTCCTCCAGATTATTTGATATGAGATTATTATGTTTATCA 162
b	541	AGATTCTAGTAAAGGACCCAGTGGGAAATTAGGCACTCTGGAAACAGGGCTA 600	Qy	1621 TTACCAATAACTATCTGGGATATGAGATTCTGTTATGAGATTTCAGT 168
b	541	AGATTCTAGTAAAGGACCCAGTGGGAAATTAGGCACTCTGGAAACAGGGCTA 600	Db	1621 TTACCAATAACTATCTGGGATATGAGATTCTGTTATGAGATTTCAGT 168
b	601	CAACATGTGTGACCACTGGACAGACGGAAAGTATGGAGCCACCTCTCAGATTCCGTTA 660	Qy	1681 TGGAGCTAGGGAAAGGGCTGGTAGGGACCAAGGGCTGTCATCCAGAGTCTGTC 174
b	601	CAACATGTGTGACCACTGGACAGACGGAAAGTATGGAGCCACCTCTCAGATTCCGTTA 660	Db	1681 TGGAGCTAGGGAAAGGGCTGGTAGGGACCAAGGGCTGTCATCCAGAGTCTGTC 174
b	1741	GGCTGGTCTCCCGCCGGTAGAGGGGGTATTCAAGAGGGAGCTGGATAGGCAAG 184	Qy	

CDNA downregulated 25 ACA03964
 CDNA sequence #199 ABX35808
 Human breast cancer 24 AAL2671
 Human colon cancer 22 AAH33268
 Human normal bladd 20 AAZ42164
 Human colon cancer 21 AAC98058
 Human colon cancer 21 AAZ80570
 Human cDNA encodin 24 ABK35125
 Human colon cancer 24 ABOS893
 Human foetal liver 22 ABAS1954
 Probe #238 for gen 22 ABP21772
 Human brain expres 21 AAU0240
 Human bone marrow 22 AAU25682
 Probe #242 for gen 22 AAU10309
 Probe #248 used to 22 AAU131562
 Probe #246 used to 22 AAU100245
 Human liver single 23 ABS25267
 Human genome-deriv 24 ABU0260
 Nucleotide sequenc 24 ABUS9087
 Human secretary pr 24 AAU54582
 Human secreted pro 24 AAU25601
 Frog embryonic gen 24 ABS77417
 Human colon cancer 23 AAH35088
 Frog embryonic gen 24 ABS77066
 Human breast cell 22 ABAB6733
 Human foetal liver 22 ABAB64613
 Probe #10206 for g 22 AAK31740
 Human brain expres 22 AAK13051
 Human bone marrow 22 AAK31781
 Probe #13469 used 22 AAU119587
 Probe #5298 used t 22 AAU144783
 Human liver single 22 AAU105307
 Human genome-deriv 23 ABS383864
 Human brain Express 24 ABS12860
 Expressed Sequence 24 AQS9054
 FISH clone, BK260 24 AQS9642
 Datasheet : 24 AAV69142
 45 307
 44 342
 46 342
 47 342
 48 342
 49 342
 50 342
 51 342
 52 342
 53 342
 54 342
 55 342
 56 342
 57 342
 58 342
 59 342
 60 342
 61 342
 62 342
 63 342
 64 342
 65 342
 66 342
 67 342
 68 342
 69 342
 70 342
 71 342
 72 342
 73 342
 74 342
 75 342
 76 342
 77 342
 78 342
 79 342
 80 342
 81 342
 82 342
 83 342
 84 342
 85 342
 86 342
 87 342
 88 342
 89 342
 90 342
 91 342
 92 342
 93 342
 94 342
 95 342
 96 342
 97 342
 98 342
 99 342
 100 342
 101 342
 102 342
 103 342
 104 342
 105 342
 106 342
 107 342
 108 342
 109 342
 110 342
 111 342
 112 342
 113 342
 114 342
 115 342
 116 342
 117 342
 118 342
 119 342
 120 342
 121 342
 122 342
 123 342
 124 342
 125 342
 126 342
 127 342
 128 342
 129 342
 130 342
 131 342
 132 342
 133 342
 134 342
 135 342
 136 342
 137 342
 138 342
 139 342
 140 342
 141 342
 142 342
 143 342
 144 342
 145 342
 146 342
 147 342
 148 342
 149 342
 150 342
 151 342
 152 342
 153 342
 154 342
 155 342
 156 342
 157 342
 158 342
 159 342
 160 342
 161 342
 162 342
 163 342
 164 342
 165 342
 166 342
 167 342
 168 342
 169 342
 170 342
 171 342
 172 342
 173 342
 174 342
 175 342
 176 342
 177 342
 178 342
 179 342
 180 342
 181 342
 182 342
 183 342
 184 342
 185 342
 186 342
 187 342
 188 342
 189 342
 190 342
 191 342
 192 342
 193 342
 194 342
 195 342
 196 342
 197 342
 198 342
 199 342
 200 342
 201 342
 202 342
 203 342
 204 342
 205 342
 206 342
 207 342
 208 342
 209 342
 210 342
 211 342
 212 342
 213 342
 214 342
 215 342
 216 342
 217 342
 218 342
 219 342
 220 342
 221 342
 222 342
 223 342
 224 342
 225 342
 226 342
 227 342
 228 342
 229 342
 230 342
 231 342
 232 342
 233 342
 234 342
 235 342
 236 342
 237 342
 238 342
 239 342
 240 342
 241 342
 242 342
 243 342
 244 342
 245 342
 246 342
 247 342
 248 342
 249 342
 250 342
 251 342
 252 342
 253 342
 254 342
 255 342
 256 342
 257 342
 258 342
 259 342
 260 342
 261 342
 262 342
 263 342
 264 342
 265 342
 266 342
 267 342
 268 342
 269 342
 270 342
 271 342
 272 342
 273 342
 274 342
 275 342
 276 342
 277 342
 278 342
 279 342
 280 342
 281 342
 282 342
 283 342
 284 342
 285 342
 286 342
 287 342
 288 342
 289 342
 290 342
 291 342
 292 342
 293 342
 294 342
 295 342
 296 342
 297 342
 298 342
 299 342
 300 342
 301 342
 302 342
 303 342
 304 342
 305 342
 306 342
 307 342
 308 342
 309 342
 310 342
 311 342
 312 342
 313 342
 314 342
 315 342
 316 342
 317 342
 318 342
 319 342
 320 342
 321 342
 322 342
 323 342
 324 342
 325 342
 326 342
 327 342
 328 342
 329 342
 330 342
 331 342
 332 342
 333 342
 334 342
 335 342
 336 342
 337 342
 338 342
 339 342
 340 342
 341 342
 342 342
 343 342
 344 342
 345 342
 346 342
 347 342
 348 342
 349 342
 350 342
 351 342
 352 342
 353 342
 354 342
 355 342
 356 342
 357 342
 358 342
 359 342
 360 342
 361 342
 362 342
 363 342
 364 342
 365 342
 366 342
 367 342
 368 342
 369 342
 370 342
 371 342
 372 342
 373 342
 374 342
 375 342
 376 342
 377 342
 378 342
 379 342
 380 342
 381 342
 382 342
 383 342
 384 342
 385 342
 386 342
 387 342
 388 342
 389 342
 390 342
 391 342
 392 342
 393 342
 394 342
 395 342
 396 342
 397 342
 398 342
 399 342
 400 342
 401 342
 402 342
 403 342
 404 342
 405 342
 406 342
 407 342
 408 342
 409 342
 410 342
 411 342
 412 342
 413 342
 414 342
 415 342
 416 342
 417 342
 418 342
 419 342
 420 342
 421 342
 422 342
 423 342
 424 342
 425 342
 426 342
 427 342
 428 342
 429 342
 430 342
 431 342
 432 342
 433 342
 434 342
 435 342
 436 342
 437 342
 438 342
 439 342
 440 342
 441 342
 442 342
 443 342
 444 342
 445 342
 446 342
 447 342
 448 342
 449 342
 450 342
 451 342
 452 342
 453 342
 454 342
 455 342
 456 342
 457 342
 458 342
 459 342
 460 342
 461 342
 462 342
 463 342
 464 342
 465 342
 466 342
 467 342
 468 342
 469 342
 470 342
 471 342
 472 342
 473 342
 474 342
 475 342
 476 342
 477 342
 478 342
 479 342
 480 342
 481 342
 482 342
 483 342
 484 342
 485 342
 486 342
 487 342
 488 342
 489 342
 490 342
 491 342
 492 342
 493 342
 494 342
 495 342
 496 342
 497 342
 498 342
 499 342
 500 342
 501 342
 502 342
 503 342
 504 342
 505 342
 506 342
 507 342
 508 342
 509 342
 510 342
 511 342
 512 342
 513 342
 514 342
 515 342
 516 342
 517 342
 518 342
 519 342
 520 342
 521 342
 522 342
 523 342
 524 342
 525 342
 526 342
 527 342
 528 342
 529 342
 530 342
 531 342
 532 342
 533 342
 534 342
 535 342
 536 342
 537 342
 538 342
 539 342
 540 342
 541 342
 542 342
 543 342
 544 342
 545 342
 546 342
 547 342
 548 342
 549 342
 550 342
 551 342
 552 342
 553 342
 554 342
 555 342
 556 342
 557 342
 558 342
 559 342
 560 342
 561 342
 562 342
 563 342
 564 342
 565 342
 566 342
 567 342
 568 342
 569 342
 570 342
 571 342
 572 342
 573 342
 574 342
 575 342
 576 342
 577 342
 578 342
 579 342
 580 342
 581 342
 582 342
 583 342
 584 342
 585 342
 586 342
 587 342
 588 342
 589 342
 590 342
 591 342
 592 342
 593 342
 594 342
 595 342
 596 342
 597 342
 598 342
 599 342
 600 342
 601 342
 602 342
 603 342
 604 342
 605 342
 606 342
 607 342
 608 342
 609 342
 610 342
 611 342
 612 342
 613 342
 614 342
 615 342
 616 342
 617 342
 618 342
 619 342
 620 342
 621 342
 622 342
 623 342
 624 342
 625 342
 626 342
 627 342
 628 342
 629 342
 630 342
 631 342
 632 342
 633 342
 634 342
 635 342
 636 342
 637 342
 638 342
 639 342
 640 342
 641 342
 642 342
 643 342
 644 342
 645 342
 646 342
 647 342
 648 342
 649 342
 650 342
 651 342
 652 342
 653 342
 654 342
 655 342
 656 342
 657 342
 658 342
 659 342
 660 342
 661 342
 662 342
 663 342
 664 342
 665 342
 666 342
 667 342
 668 342
 669 342
 670 342
 671 342
 672 342
 673 342
 674 342
 675 342
 676 342
 677 342
 678 342
 679 342
 680 342
 681 342
 682 342
 683 342
 684 342
 685 342
 686 342
 687 342
 688 342
 689 342
 690 342
 691 342
 692 342
 693 342
 694 342
 695 342
 696 342
 697 342
 698 342
 699 342
 700 342
 701 342
 702 342
 703 342
 704 342
 705 342
 706 342
 707 342
 708 342
 709 342
 710 342
 711 342
 712 342
 713 342
 714 342
 715 342
 716 342
 717 342
 718 342
 719 342
 720 342
 721 342
 722 342
 723 342
 724 342
 725 342
 726 342
 727 342
 728 342
 729 342
 730 342
 731 342
 732 342
 733 342
 734 342
 735 342
 736 342
 737 342
 738 342
 739 342
 740 342
 741 342
 742 342
 743 342
 744 342
 745 342
 746 342
 747 342
 748 342
 749 342
 750 342
 751 342
 752 342
 753 342
 754 342
 755 342
 756 342
 757 342
 758 342
 759 342
 760 342
 761 342
 762 342
 763 342
 764 342
 765 342
 766 342
 767 342
 768 342
 769 342
 770 342
 771 342
 772 342
 773 342
 774 342
 775 342
 776 342
 777 342
 778 342
 779 342
 780 342
 781 342
 782 342
 783 342
 784 342
 785 342
 786 342
 787 342
 788 342
 789 342
 790 342
 791 342
 792 342
 793 342
 794 342
 795 342
 796 342
 797 342
 798 342
 799 342
 800 342
 801 342
 802 342
 803 342
 804 342
 805 342
 806 342
 807 342
 808 342
 809 342
 810 342
 811 342
 812 342
 813 342
 814 342
 815 342
 816 342
 817 342
 818 342
 819 342
 820 342
 821 342
 822 342
 823 342
 824 342
 825 342
 826 342
 827 342
 828 342
 829 342
 830 342
 831 342
 832 342
 833 342
 834 342
 835 342
 836 342
 837 342
 838 342
 839 342
 840 342
 841 342
 842 342
 843 342
 844 342
 845 342
 846 342
 847 342
 848 342
 849 342
 850 342
 851 342
 852 342
 853 342
 854 342
 855 342
 856 342
 857 342
 858 342
 859 342
 860 342
 861 342
 862 342
 863 342
 864 342
 865 342
 866 342
 867 342
 868 342
 869 342
 870 342
 871 342
 872 342
 873 342
 874 342
 875 342
 876 342
 877 342
 878 342
 879 342
 880 342
 881 342
 882 342
 883 342
 884 342
 885 342
 886 342
 887 342
 888 342
 889 342
 890 342
 891 342
 892 342
 893 342
 894 342
 895 342
 896 342
 897 342
 898 342
 899 342
 900 342
 901 342
 902 342
 903 342
 904 342
 905 342
 906 342
 907 342
 908 342
 909 342
 910 342
 911 342
 912 342
 913 342
 914 342
 915 342
 916 342
 917 342
 918 342
 919 342
 920 342
 921 342
 922 342
 923 342
 924 342
 925 342
 926 342
 927 342
 928 342
 929 342
 930 342
 931 342
 932 342
 933 342
 934 342
 935 342
 936 342
 937 342
 938 342
 939 342
 940 342
 941 342
 942 342
 943 342
 944 342
 945 342
 946 342
 947 342
 948 342
 949 342
 950 342
 951 342
 952 342
 953 342
 954 342
 955 342
 956 342
 957 342
 958 342
 959 342
 960 342
 961 342
 962 342
 963 342
 964 342
 965 342
 966 342
 967 342
 968 342
 969 342
 970 342
 971 342
 972 342
 973 342
 974 342
 975 342
 976 342
 977 342
 978 342
 979 342
 980 342
 981 342
 982 342
 983 342
 984 342
 985 342
 986 342
 987 342
 988 342
 989 342
 990 342
 991 342
 992 342
 993 342
 994 342
 995 342
 996 342
 997 342
 998 342
 999 342
 1000 342

Page 2

TELEFAX:	650-845-4166	
TELEX:	<Unknown>	
INFORMATION FOR SEQ ID NO: 2:		
SEQUENCE CHARACTERISTICS:		
LENGTH:	2079 base pairs	
TYPE: nucleic acid		
STRANDEDNESS: single		
TOPOLOGY: linear		
IMMEDIATE SOURCE:		
LIBRARY: TIYMNOTOS		
CLONE: 2805795		
SEQUENCE DESCRIPTION: SEQ ID NO: 2:		
Query Match	100.0%	Score 2079; DB 9; Length 2079;
Best Local Similarity	100.0%	Pred. No. 0;
Matches	2079;	Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Qy	61	CCAGCGCGTGAAGCTGGCGAACCGGGAGCGCGCTCGGAGGGAGTGGAACCTGGANTGGCTTTGCTG 60
Db	61	CCAGCGCGTGAAGCTGGCGAACCGGGAGCGCGCTCGGAGGGAGTGGAACCTGGANTGGCTTTGCTG 60
Qy	121	GCAGCGAGCAGCGTTTCGGCCAAACCCGATAACCATCGGAGAGGATTTCGGCTCGGCCAACCGGA 120
Db	121	GCAGCGAGCAGCGTTTCGGCCAAACCCGATAACCATCGGAGAGGATTTCGGCTCGGCCAACCGGA 120
Qy	1201	TATGCCAAGGTAAAGCTGGCTGTTGCAAGGGCTTAACAGGCTTACGTGAACTGGCTGATCTGGGT 1200
Db	1201	TATGCCAAGGTAAAGCTGGCTGTTGCAAGGGCTTAACAGGCTTACGTGAACTGGCTGATCTGGGT 1200
Qy	1081	TGAAAGATCACAAAACAGTGCAGGCCAGGGTAGTTAATGAGTTAAAGTCAGTGTAAAGTCAGGT 1140
Db	1081	TGAAAGATCACAAAACAGTGCAGGCCAGGGTAGTTAATGAGTTAAAGTCAGTGTAAAGTCAGGT 1140
Qy	1021	CATTATAACCACACGGATGACGAAAAAACAGAGCTTNGCTTCTTGATAA 1080
Db	1021	CATTATAACCACACGGATGACGAAAAAACAGAGCTTNGCTTCTTGATAA 1080
Qy	1141	CTGGGGAAATGTGGAACTGTGAACTGGCTGATCTGGATCTAGAGATCTGTGATCTGGGT 1260
Db	1141	CTGGGGAAATGTGGAACTGTGAACTGGCTGATCTGGATCTAGAGATCTGTGATCTGGGT 1260
Qy	1201	TATGCCAAGGTAAAGCTGGCTGTTGCAAGGGCTTAACAGGCTTACGTGAACTGGCTGATCTGGGT 1260
Db	1201	TATGCCAAGGTAAAGCTGGCTGTTGCAAGGGCTTAACAGGCTTACGTGAACTGGCTGATCTGGGT 1260
Qy	1261	TTTAGAAAGGCCATTAGTCAGTTGGGAAACTCTGAACAGGTGAGGTAAAGGATTA 1320
Db	1261	TTTAGAAAGGCCATTAGTCAGTTGGGAAACTCTGAACAGGTGAGGTAAAGGATTA 1320
Qy	1321	TGCGTTCATTCATTGTGAGGGAGATGGTGTCAAGGGTATGGAGAAATGATGG 1380
Db	1321	TGCGTTCATTCATTGTGAGGGAGATGGTGTCAAGGGTATGGAGAAATGATGG 1380
Qy	1381	CAAGACTTGGAGGGAGAAATTGGAAATTGGTGTGGCTGAGGTGAGGTGGATGATGG 1440
Db	1381	CAAGACTTGGAGGGAGAAATTGGAAATTGGTGTGGCTGAGGTGAGGTGGATGATGG 1440
Qy	1441	GAAGAAAGAAAAGCTCAGGGAAAGCAGCAAAATAAATGTAAGGATTACTACTA 1500
Db	1441	GAAGAAAGAAAAGCTCAGGGAAAGCAGCAAAATAAATGTAAGGATTACTACTA 1500
Qy	1501	TTATGTCACCTCATATGCCCTCCACAAAGGTGAGGTGGATGGTGG 1560
Db	1501	TTATGTCACCTCATATGCCCTCCACAAAGGTGAGGTGGATGGTGG 1560
Qy	1561	TTATGATPATCCMCAGATTATGGATTATGGATTATTATGGTATG 1620
Db	1561	TTATGATPATCCMCAGATTATGGATTATGGATTATGGTATG 1620
Qy	1621	TTACCATAACTACTGTGGTGGPATGAGATCCATACTATGGTTAGGATTTCAGT 1680
Db	1621	TTACCATAACTACTGTGGTGGPATGAGATCCATACTATGGTTAGGATTTCAGT 1680
Qy	1681	TGGAGCTTACAGGGAGGGGGTGAAGGAGCAACGGTCTCAGAGCTTGGGG 1740
Db	1681	TGGAGCTTACAGGGAGGGGGTGAAGGAGCAACGGTCTCAGAGCTTGGGG 1740
Qy	1741	GGCTGCTCTCCCTCCCGGGTTAGGCCGGTTATTCACAGAGGGGTCTGGATCAGGCTGTGG 1800
Db	1741	GGCTGCTCTCCCTCCCGGGTTAGGCCGGTTATTCACAGAGGGGTCTGGATCAGGCTGTGG 1800
Qy	1801	AGGCCTTCAGCAGGGAAAGGGCTGAGGGCTCTGACCTGTACATGAGACTGA 1860
Db	1801	AGGCCTTCAGCAGGGAAAGGGCTGAGGGCTCTGACCTGTACATGAGACTGA 1860
Qy	1861	CTTGCTTATCTGGGATTAACCCAGAGCTGGTCACTGGTTTGTACAA 1920
Db	1861	CTTGCTTATCTGGGATTAACCCAGAGCTGGTCACTGGTTTGTACAA 1920

Result No.	Score	Query Match Length DB ID	Description
1	2079	100.0	US-09-978-242-2 Sequence 2, App1
2	1844	88.7	Sequence 475, App
3	1826.2	87.8	Sequence 3, App1
4	1813.4	87.2	Sequence 1042, App
5	882	42.4	Sequence 127, App
6	882	42.4	Sequence 85, App1
c	7	871.6	Sequence 199, App
8	839.8	40.4	Sequence 1381, App
9	833.6	40.1	Sequence 334, App
10	730	35.1	Sequence 68, App1
11	730	35.1	Sequence 1024, App1
12	498.8	24.0	Sequence 654, App
13	487	23.4	Sequence 263, App
14	434.8	20.9	Sequence 9841, App
15	425	20.4	Sequence 238, App

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length DB ID	Description
1	2079	100.0	US-09-978-242-2 Sequence 2, App1
2	1844	88.7	Sequence 475, App
3	1826.2	87.8	Sequence 3, App1
4	1813.4	87.2	Sequence 1042, App
5	882	42.4	Sequence 127, App
6	882	42.4	Sequence 85, App1
c	7	871.6	Sequence 199, App
8	839.8	40.4	Sequence 1381, App
9	833.6	40.1	Sequence 334, App
10	730	35.1	Sequence 68, App1
11	730	35.1	Sequence 1024, App1
12	498.8	24.0	Sequence 654, App
13	487	23.4	Sequence 263, App
14	434.8	20.9	Sequence 9841, App
15	425	20.4	Sequence 238, App

Scoring table: IDENTITY_NUC Gapop 10.0 , Gapext 1.0
 Searched: 2356869 seqs, 1788235258 residues
 Total number of hits satisfying chosen parameters: 4713738
 Minimum DB seq length: 0
 Maximum DB seq length: 2000000000
 Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries
 Database : Published Applications NA:
 1: /cgn2_6/podata/1/pubnpna/us07_pubcomb.seq;
 2: /cgn2_6/podata/1/pubnpna/us07_pubcomb.seq;
 3: /cgn2_6/podata/1/pubnpna/us06_pubseq.*
 4: /cgn2_6/podata/1/pubnpna/us06_pubcomb.seq;
 5: /cgn2_6/podata/1/pubnpna/us07_pubseq.*
 6: /cgn2_6/podata/1/pubnpna/pctus_pubcomb.seq.*
 7: /cgn2_6/podata/1/pubnpna/us08_pubseq.*
 8: /cgn2_6/podata/1/pubnpna/us08_pubcomb.seq.*
 9: /cgn2_6/podata/1/pubnpna/us09_pubcomb.seq.*
 10: /cgn2_6/podata/1/pubnpna/us09b_pubcomb.seq.*
 11: /cgn2_6/podata/1/pubnpna/us09c_pubcomb.seq.*
 12: /cgn2_6/podata/1/pubnpna/us09_pubseq.*
 13: /cgn2_6/podata/1/pubnpna/us09_pubseq.*
 14: /cgn2_6/podata/1/pubnpna/us10_pubcomb.seq.*
 15: /cgn2_6/podata/1/pubnpna/us10b_pubcomb.seq.*
 16: /cgn2_6/podata/1/pubnpna/us10_pubseq.*
 17: /cgn2_6/podata/1/pubnpna/us10_pubseq.*
 18: /cgn2_6/podata/1/pubnpna/us60_pubcomb.seq.*
 RESULT 1
 US-09-978-242-2
 ; Sequence 2, Application US/09978242
 ; Patent No. US20020098566A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Bandman, Olga
 ; Yue, Henry
 ; Corley, Neil C.
 ; Shah, Purvi
 ; TITLE OF INVENTION: HUMAN NUCLEOLIN-LIKE PROTEIN
 ; NUMBER OF SEQUENCES: 3
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: Incyte Pharmaceuticals, Inc.
 ; STREET: 3174 Porter Drive
 ; CITY: Palo Alto
 ; STATE: CA
 ; COUNTRY: USA
 ; ZIP: 94304
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Diskette
 COMPUTER: IBM Compatible
 OPERATING SYSTEM: DOS
 SOFTWARE: FastSeq for Windows Version 2.0
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/09/978,242
 FILING DATE: 15-Oct-2001
 CLASSIFICATION: <Unknown>
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: 09/241,333
 FILING DATE: <Unknown>
 APPLICATION NUMBER: 08/990,114
 FILING DATE: <Unknown>
 ATTORNEY/AGENT INFORMATION:
 NAME: Billings, Lucy J.
 REGISTRATION NUMBER: 36,749
 REFERENCE/DOCKET NUMBER: PF-0451 US
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 650-855-0555

ALIGNMENTS

US-09-978-242-2
 ; Sequence 2, Application US/09978242
 ; Patent No. US20020098566A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Bandman, Olga
 ; Yue, Henry
 ; Corley, Neil C.
 ; Shah, Purvi
 ; TITLE OF INVENTION: HUMAN NUCLEOLIN-LIKE PROTEIN
 ; NUMBER OF SEQUENCES: 3
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: Incyte Pharmaceuticals, Inc.
 ; STREET: 3174 Porter Drive
 ; CITY: Palo Alto
 ; STATE: CA
 ; COUNTRY: USA
 ; ZIP: 94304
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Diskette
 COMPUTER: IBM Compatible
 OPERATING SYSTEM: DOS
 SOFTWARE: FastSeq for Windows Version 2.0
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/09/978,242
 FILING DATE: 15-Oct-2001
 CLASSIFICATION: <Unknown>
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: 09/241,333
 FILING DATE: <Unknown>
 APPLICATION NUMBER: 08/990,114
 FILING DATE: <Unknown>
 ATTORNEY/AGENT INFORMATION:
 NAME: Billings, Lucy J.
 REGISTRATION NUMBER: 36,749
 REFERENCE/DOCKET NUMBER: PF-0451 US
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 650-855-0555

REFERENCE	3	Shibata,K., Itoh,M., Aizawa,K., Nagaoa,S., Sasaki,N., Carninci,P., Konno,H., Akiyama,J., Kitaunai,T., Tashiro,H., Itoh,M., Nishi,K., Kiyosawa,M., Yashima,T., Hazama,M., Nishine,T., Harada,A., Sumi,N., Ishii,Y., Nakamura,S., Hidemoto,O., Sakai,C., Ikeyama,T., Kashiwagi,K., Yamamoto,R., Matsumoto,T., Togawa,Y., Izawa,M., Ohara,E., Watanuki,M., Fujimoto,S., Inoue,K., Togawa,Y., Ozawa,K., Tanaka,T., Matsuru,S., Kawai,J., Yoneda,Y., Ishikawa,T., Okuno,H., Matsuru,S., Kawai,J., Okazaki,Y., Muramatsu,M., Inoue,Y., Kira,A., and Hayashizaki,Y.	SOURCE	1. .3838 organism="Mus musculus" /mol type="mRNA" /strain="C57BL/6J" /db_xref="FANTOM DB:9430046J23" /db_xref="ITAXON:10090" /clone="9430046J23" /tissue_type="embryonic body between diaphragm region and neck" /clone_id="RIKEN full-length enriched mouse cDNA library" /dev_stage="12 days embryo" /note="unnamed protein product; NS1-associated protein 1 (MGI:MGI:1891650, GB AB055725, evidence: BLASTN, 99%, match=31.07) putative" /codon_start=1 /protein_id="BAC28852.1" /db_xref="GI: 26330244" /translation="MATEHYUNGTEPEMDTSAVHSNENPQTLIDAGLPOKVAEKLDBIYAGIVAHSDLDRAEALKEPNEDGALAVLQOQFKDSUHVONKSAPLGWVKT ROREKGTYVADSSKGPDDEAKIKALLERTGYTLDVTGQRQYGGPPDSDYSGQPSV GTEIFVGKIPRDFFEDVPLPKAGPNDPLTGLNRGTAUTPCTEKAQAE AVKLNNHETRSRGHTGVCSVANNRLFVEISPKSTKEOLLEPSTKVTEBLDVLY HOPDDEKKRNKGFCFLYEIDHDKTAQARRRUMSGKVWGMNGTVWMAPIBDPDEVM AKVFLVFLNLTNTILEKSFQGKLERVKLKDAPTHPDERGAVKAMEM GRDLIGENELTIVFAKEPDKRKERKAQKANQMDYYGGPHMPPTGRGRGG RGGYGYPPDYGYEDYYGYDYYNYRGYEDPYGYEDFOVGARGRRGGARGAAP SRGRGAAPPRGRAGSQRGGPSARGVARGGAAQQRGCGQKGVEAGGPDLLO"
AUTHORS	4	Kawai,J., Shinagawa,A., Shibata,K., Yoshino,M., Itoh,M., Ishii,Y., Arakawa,T., Hara,A., Fukunishi,Y., Konno,H., Adachi,J., Fukuda,S., Aizawa,K., Iwaza,M., Nishi,K., Kiyosawa,M., Yamanaka,I., Saito,T., Okazaki,Y., Gojobori,T., Bono,H., Kasukawa,Y., Tomita,M., Kadota,K., Matsuda,H., Ashburner,M., Battalov,S., Cesavant,T., Fleischmann,W., Gaasterland,T., Gissel,A., King,B., Kochiwa,H., Kiehl,P., Lewis,S., Matsuo,Y., Nikaido,I., Pecole,G., Quackenbush,J., Schriml,L.M., Straubli,F., Suzuki,R., Tomita,M., Wagner,B., Washio,T., Sakai,K., Okido,T., Furuno,M., Aono,H., Baldarelli,R., Barsh,G., Blake,J., Boffelli,D., Boujunga,N., Carninci,P., de Bonaldo,M.F., Brownstein,M.J., Bult,C., Fletcher,C., Fujita,M., Garibotti,M., Lee,N.H., Lyons,P., Marchionni,L., Mashima,J., Mazzarelli,J., Mombaerts,P., Nordone,P., Ring,B., Ringwald,M., Rodriiguez,I., Sakamoto,N., Sasaki,H., Sato,K., Schonbach,C., Seye,T., Shiba,Y., Storch,K.F., Suzuki,H., Toyooka,K., Wang,K.H., Weitz,C., Whittaker,C., Wilming,L., Wynshaw-Boris,A., Yoshida,K., Hasegawa,Y., Kawaji,H., Kohtsuki,S., and Hayashizaki,Y.	CDS	167. .1855 /note="sequencing pipeline with 384 multicapillary sequencer sequencing pipeline with 384 multicapillary sequencer Genome Res. 10 (11), 1757-1771 (2000) 1.0766861
AUTHORS	5	Kawai,J., Shinagawa,A., Shibata,K., Yoshino,M., Itoh,M., Ishii,Y., Arakawa,T., Hara,A., Fukunishi,Y., Konno,H., Adachi,J., Fukuda,S., Aizawa,K., Iwaza,M., Nishi,K., Kiyosawa,M., Yamanaka,I., Saito,T., Okazaki,Y., Gojobori,T., Bono,H., Kasukawa,Y., Tomita,M., Kadota,K., Matsuda,H., Ashburner,M., Battalov,S., Cesavant,T., Fleischmann,W., Gaasterland,T., Gissel,A., King,B., Kochiwa,H., Kiehl,P., Lewis,S., Matsuo,Y., Nikaido,I., Pecole,G., Quackenbush,J., Schriml,L.M., Straubli,F., Suzuki,R., Tomita,M., Wagner,B., Washio,T., Sakai,K., Okido,T., Furuno,M., Aono,H., Baldarelli,R., Barsh,G., Blake,J., Boffelli,D., Boujunga,N., Carninci,P., de Bonaldo,M.F., Brownstein,M.J., Bult,C., Fletcher,C., Fujita,M., Garibotti,M., Lee,N.H., Lyons,P., Marchionni,L., Mashima,J., Mazzarelli,J., Mombaerts,P., Nordone,P., Ring,B., Ringwald,M., Rodriiguez,I., Sakamoto,N., Sasaki,H., Sato,K., Schonbach,C., Seye,T., Shiba,Y., Storch,K.F., Suzuki,H., Toyooka,K., Wang,K.H., Weitz,C., Whittaker,C., Wilming,L., Wynshaw-Boris,A., Yoshida,K., Hasegawa,Y., Kawaji,H., Kohtsuki,S., and Hayashizaki,Y.	CDNA	Functional annotation of a full-length mouse cDNA collection Nature 409 (6821), 685-690 (2001)
AUTHORS	5	The FANTOM Consortium and the RIKEN Genome Exploration Research Group Phase I & II Team.	REFERENCE	Functional annotation of a full-length mouse cDNA collection Nature 409 (6821), 685-690 (2001)
AUTHORS	6	Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs	JOURNAL	5
AUTHORS	6	Nature 420, 563-573 (2002)	REFERENCE	The FANTOM Consortium and the RIKEN Genome Exploration Research Group Phase I & II Team.
AUTHORS	7	Adachi,J., Aizawa,K., Akimura,T., Arikawa,T., Bono,H., Carninci,P., Fukuda,S., Furuno,M., Hanagaki,T., Hara,A., Hashizume,W., Hayashizaki,Y., Hayatsu,N., Hiramoto,K., Hiraoka,T., Hirozane,T., Horii,F., Imorani,K., Ishii,Y., Itoh,M., Kagawa,I., Kasukawa,T., Katsch,H., Kawai,J., Koijima,Y., Kondo,S., Konno,H., Kouda,M., Koya,S., Kurihara,C., Matsuyama,T., Miyazaki,A., Morata,M., Nakamura,M., Nishi,K., Nomura,K., Numazaki,R., Ohno,M., Ohsato,N., Okazaki,Y., Saito,R., Saitoh,H., Sakai,C., Sakai,K., Sakazume,N., Sogabe,Y., Sasaki,D., Shibata,K., Shingawa,A., Shiraki,T., Tagawa,A., Takeda,Y., Tanaka,T., Tomaru,A., Toyoda,T., Yasunishi,A., Muramatsu,M., and Hayashizaki,Y.	JOURNAL	6
AUTHORS	7	Submitted (16-JUL-2001) Yoshihide Hayashizaki, The Institute of Physical and Chemical Research (RIKEN), Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (E-mail: genome-res@gbc.riken.go.jp, URL: http://genome.gsc.riken.go.jp/), Tel: 81-45-503-9222, Fax: 81-45-503-9216).	REFERENCE	Submitted (16-JUL-2001) Yoshihide Hayashizaki, The Institute of Physical and Chemical Research (RIKEN), Laboratory for Genome Exploration Research Group in Riken Genomic Sciences Center and Genome Science Laboratory in RIKEN Division of Experimental Animal Research in Riken contributed to
AUTHORS	8	CDNA library was prepared and sequenced in Mouse Genome Encyclopedia Project of Genome Exploration Research Group in Riken Genomic Sciences Center and Genome Science Laboratory in RIKEN Division of Experimental Animal Research in Riken contributed to prepare mouse tissues. Please visit our web site for further details. URL: http://fantom.gsc.riken.go.jp/	JOURNAL	8
COMMENT	9	CDNA library was prepared and sequenced in Mouse Genome Encyclopedia Project of Genome Exploration Research Group in Riken Genomic Sciences Center and Genome Science Laboratory in RIKEN Division of Experimental Animal Research in Riken contributed to prepare mouse tissues. Please visit our web site for further details. URL: http://fantom.gsc.riken.go.jp/	JOURNAL	9
FEATURES	10	578 GCACCTTGAAAAGAACGGCTACACTGTGACATAGTTAGTAGAAGAGCTATTGAGCTTTA 577 GAAAAACAGGGACCAAGAACGGCTACACTGTGACATAGTTAGTAGAAGAGCTATTGAGCTTTA 576 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 575 AAAGATTCAATGAAAGCCGTCAGTGCATGGAGCTTCAACAGTTAACAGCTATGCTACAGTTAACATTAG 574 TCTCTGTTCAAGAACGGCTACACTGTGACATAGTTAGTAGAAGAGCTATTGAGCTTTA 573 GAAACACAGGGACCAAGAACGGCTACACTGTGACATAGTTAGTAGAAGAGCTATTGAGCTTTA 572 GAAACACAGGGACCAAGAACGGCTACACTGTGACATAGTTAGTAGAAGAGCTATTGAGCTTTA 571 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 570 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 569 AAAGATTCAATGAAAGCCGTCAGTGCATGGAGCTTCAACAGTTAACAGCTATGCTACAGTTAACATTAG 568 TCTCTGTTCAAGAACGGCTACACTGTGACATAGTTAGTAGAAGAGCTATTGAGCTTTA 567 GAAACACAGGGACCAAGAACGGCTACACTGTGACATAGTTAGTAGAAGAGCTATTGAGCTTTA 566 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 565 AAAGATTCAATGAAAGCCGTCAGTGCATGGAGCTTCAACAGTTAACAGCTATGCTACAGTTAACATTAG 564 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 563 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 562 AAAGATTCAATGAAAGCCGTCAGTGCATGGAGCTTCAACAGTTAACAGCTATGCTACAGTTAACATTAG 561 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 560 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 559 AAAGATTCAATGAAAGCCGTCAGTGCATGGAGCTTCAACAGTTAACAGCTATGCTACAGTTAACATTAG 558 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 557 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 556 AAAGATTCAATGAAAGCCGTCAGTGCATGGAGCTTCAACAGTTAACAGCTATGCTACAGTTAACATTAG 555 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 554 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 553 AAAGATTCAATGAAAGCCGTCAGTGCATGGAGCTTCAACAGTTAACAGCTATGCTACAGTTAACATTAG 552 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 551 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 550 AAAGATTCAATGAAAGCCGTCAGTGCATGGAGCTTCAACAGTTAACAGCTATGCTACAGTTAACATTAG 549 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 548 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 547 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 546 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 545 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 544 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 543 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 542 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 541 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 540 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 539 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 538 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 537 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 536 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 535 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 534 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 533 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 532 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 531 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 530 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 529 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 528 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 527 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 526 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 525 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 524 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 523 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 522 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 521 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 520 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 519 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 518 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 517 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 516 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 515 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 514 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 513 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 512 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 511 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 510 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 509 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 508 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 507 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 506 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 505 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 504 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 503 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 502 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 501 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 500 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 499 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 498 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 497 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 496 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 495 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 494 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 493 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 492 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 491 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 490 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 489 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 488 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 487 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 486 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 485 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 484 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 483 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 482 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 481 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 480 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 479 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 478 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 477 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 476 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 475 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 474 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 473 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 472 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 471 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 470 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 469 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 468 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 467 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 466 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 465 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 464 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 463 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 462 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 461 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 460 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 459 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 458 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 457 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 456 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 455 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 454 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 453 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 452 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 451 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 450 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 449 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 448 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 447 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 446 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 445 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 444 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 443 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 442 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 441 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 440 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 439 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 438 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 437 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 436 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 435 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 434 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 433 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 432 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 431 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 430 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 429 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 428 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 427 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 426 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 425 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 424 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 423 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 422 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 421 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 420 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 419 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 418 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 417 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 416 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 415 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 414 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 413 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 412 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 411 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 410 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 409 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 408 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 407 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 406 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 405 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 404 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 403 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 402 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 401 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 400 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 399 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 398 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 397 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 396 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 395 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 394 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 393 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 392 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 391 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 390 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 389 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 388 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 387 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 386 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 385 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 384 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 383 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 382 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 381 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 380 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 379 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 378 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 377 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 376 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 375 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 374 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 373 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 372 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 371 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 370 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 369 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 368 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 367 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 366 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 365 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 364 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 363 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAGAGA 362 ATTACGTTGAGGCTAGTGCACATAGTTAGTAGAAGAGCTATTGAGCTTTA 361 GCTCATGTTGAGAACAAGTGGCTTATGTCAGTGCATGGAGCTTACAGGAG		

Result No.	Score	Query	Match length	DB ID	Description	SUMMARIES
1	1792.4	gb_gss1*	89.0	AK034845	AK034845 Mus musculus	1
2	1792.4	gb_gss1*	86.2	2141	AK076026 Mus musculus	2
3	1787.4	gb_gss1*	86.0	2030	AK077588 Mus musculus	3
4	1537	gb_gss1*	73.9	4064	AK0833398 Mus musculus	4

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Run on:	January 29, 2004, 00:06:34 ; Search time 2986 Seconds (without alignments)	5	1494.8	AK078158 Mus musculus	3289 11
Title:	US-09-978-242-2	6	1386.6	BC021932 Homo sapi	3289 11
Perfect score:	2079	7	1353.6	BC024283 Homo sapi	3289 11
Sequence:	1 GGGCGCCGCGCACGGG,..... GTTATAACTAAAGCTACT 2079	8	1343.6	BC019360 Homo sapi	3289 11
Scoring table:	IDENTITY_NUC Gapop 10.0 , Gapext 1.0	9	1331.6	BC009176 Homo sapi	3289 11
Searched:	22781392 seqs, 12152238056 residues	10	1327.4	BC015575 Homo sapi	3289 11
Total number of hits satisfying chosen parameters:	45562784	11	983.8	AL541211 AL541211	3289 11
Minimum DB seq length:	0	12	975.2	AL541223 AL541223	3289 11
Maximum DB seq length:	2000000000	13	921.6	AL541248 AL541248	3289 11
Post-processing:	Minimum Match 0% Maximum Match 100%	14	884.2	BC026850 Mus musculus	3289 11
Database :	EST:*	15	883	BN466029 AGENCOURT	3289 11
	1: em_estba:*	16	866.6	B0686098 AGENCOURT	3289 11
	2: em_estchum:*	17	862.8	BM809311 AGENCOURT	3289 11
	3: em_estin:*	18	844.6	BN945048 AGENCOURT	3289 11
	4: em_estmu:*	19	838.2	BX420656 BX420656	3289 11
	5: em_estov:*	20	836.6	BU056813 AGENCOURT	3289 11
	6: em_estpl:*	21	831.8	BU194176 AGENCOURT	3289 11
	7: em_estro:*	22	829.2	BUT83896 AGENCOURT	3289 11
	8: em_ntc:*	23	826.8	BM451217 AGENCOURT	3289 11
	9: gb_est1:*	24	807.6	BU845727 AGENCOURT	3289 11
	10: gb_est2:*	25	768	BM43159 AGENCOURT	3289 11
	11: gb_htc:*	26	757.8	BU056813 AGENCOURT	3289 11
	12: gb_est3:*	27	756.6	BU194176 AGENCOURT	3289 11
	13: gb_est4:*	28	747.6	BU731663 601567050	3289 11
	14: gb_est5:*	29	744.6	BU650432 AGENCOURT	3289 11
	15: em_eston:*	30	740.8	BU680994 AGENCOURT	3289 11
	16: em_eston:*	31	740.2	BU950249 AGENCOURT	3289 11
	17: em_gss_hum:*	32	736.2	BU959242 AGENCOURT	3289 11
	18: em_gss_inv:*	33	729	AV298691 AV298691	3289 11
	19: em_gss_pln:*	34	728.6	CB182505 AGENCOURT	3289 11
	20: em_gss_rtc:*	35	721.2	BB731663 601567050	3289 11
	21: em_gss_mam:*	36	719	BB43866 UI-M-FCO-	3289 11
	22: em_gss_nus:*	37	715.6	BB407142 601301856	3289 11
	23: em_gss_pro:*	38	712.8	BB026689 602293533	3289 11
	24: em_gss_rod:*	39	710.6	BB158562 602403281	3289 11
	25: em_gss_phg:*	40	709.8	BB282140 602403281	3289 11
	26: em_gss_vrl:*	41	704.6	BB571781 UI-M-FCO-	3289 11
	27: em_gss_vrt:*	42	700.4	BB1661316 603346285	3289 11
	28: gb_gss1:*	43	700.2	BBE60849 601346126	3289 11
	29: gb_gss2:*	44	698.8	BB558142 601240061	3289 11
		45	697.8	BB191822 AGENCOURT	3289 11

ALIGNMENTS

RESULT 1	AK034845 LOCUS	AK034845 Mus musculus 12 days embryo linear mRNA
	DEFINITION	Mus musculus 12 days embryo linear mRNA and neck cDNA, RIKEN full-length enriched library, clone: 930046223 product: NS1-associated protein 1, full insert sequence.
	ACCESSION	AK034845
	VERSION	.1 GI:26330243
	KEYWORDS	HTC; CAP trapper.
	SOURCE	Mus musculus (house mouse)
	ORGANISM	Mus musculus
REFERENCE	AUTHORS	Carninci, P. and Hayashizaki, Y.
	TITLE	High-efficiency full-length cDNA cloning
	JOURNAL	Meth. Enzymol. 303, 19-44 (1999)
	MEDLINE	99229253
	PUBMED	10349636
REFERENCE 2	AUTHORS	Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibusawa, K., Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M., and Hayashizaki, Y.
	TITLE	Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes
	JOURNAL	Genome Res. 10 (10), 1617-1630 (2000)
	MEDLINE	2049374
	PUBMED	11042159