

ETCC I.O

软件测试技术

黑盒测试用例设计

本章目标

- * 掌握黑盒测试用例常用设计方法
- * 掌握等价类设计方法
- * 掌握边界值设计方法
- * 掌握因果图设计方法
- * 掌握正交试验设计方法

黑盒测试用例设计方法

- * 等价类划分
- * 边界值划分
- * 错误推测法
- ☀ 因果图法
- ☀ 正交表试验法
- ☀ 场景图
- * 功能图

错误推测方法的基本思想是:利用直觉和经验猜测出出错的可能 类型,列举出程度中所有可能的错误和容易发生错误的情况,基本思 想是列举出可能犯的错误或错误易发生的清单,然后根据清单编写测 试用例;这种方法很大程度上是凭经验进行的,即凭人们对过去所作 测试结果的分析,对所揭示缺陷的规律性作直觉的推测来发现缺陷

☀ 因果图法

因果图法比较适合输入条件比较多的情况,测试所有的输入条件的排列组合。所谓的原因就是输入,所谓的结果就是输出。

利用因果图导出测试用例需要经过以下几个步骤:

- ① 分析程度规格说明的描述中,哪些是原因,哪些是结果.原因常常是输入条件或输入条件的等价类,而结果是输出条件
- ② 分析程度规格说明的描述中语义内容,并将其表示成连接各个原因与各个结果的"因果图"
- ③ 标明约束条件。由于语法或环境的限制,有些原因和结果的组合情况是不可能出现的。
- ④ 把因果图转换成判定表。
- ⑤ 为判定表中的每一列表示的情况设计测试用例

因果图基本图形符号

- 恒等: 若原因出现,则结果出现;若原因不出现,则结果不出现。
- ☀ 非(~): 若原因出现,则结果不出现;若原因不出现,则结果出现。
- * 或(V): 若几个原因中有一个出现,则结果出现;若几个原因都不出现,则结果不出现。
- ◆ 与(△):若几个原因都出现,结果才出现;若其中有一个原因不出现,则结果不出现。

因果图的约束符号

- ☀ E(互斥):表示两个原因不会同时成立,两个中最多有一个可能成立
- ☀ I(包含):表示三个原因中至少有一个必须成立
- ♦ 0(惟一):表示两个原因中必须有一个,且仅有一个成立
- * R(要求):表示两个原因,a出现时,b也必须出现,a出现时,b不可能不出现
- * M(屏蔽):两个结果,a为1时,b必须是0,当a为0时,b值不定

☀ 因果图测试用例

例如:有一个处理单价为2.5元的盒装饮料的自动售货机软件。若投入2.5元硬币,按"可乐"、"啤酒"、或"奶茶"按钮,相应的饮料就送出来。若投入的是3元硬币,在送出饮料的同时退还5角硬币。分析这一段说明,我们可列出原因和结果

原因(输入): ① 投入2.5元硬币;

- ② 投入3元;
- ③ 按"可乐"按钮;
- ④ 按"啤酒"按钮;
- ⑤ 按"奶茶"按钮。

中间状态: ① 已投币; ②已按钮

- 结果(输出): ① 退还5角硬币;
 - ② 送出"可乐"饮料;
 - ③ 送出"啤酒"饮料;
 - ④ 送出"奶茶"饮料;

☀ 根据原因和结果,我们可以设计这样一个因果图

输入(原因)

输出(结果)

* 因果图转换为判定表

			1	2	3	4	5	6	7	8	9	10	11
	投入2.5元硬币	(1)	1	1	1	1	0	0	0	0	0	0	0
	投入3元硬币	(2)	0	0	0	0	1	1	1	1	0	0	0
输入	按可乐按钮	(3)	1	0	0	0	1	0	0	0	1	0	0
	按啤酒按钮	(4)	0	1	0	0	0	1	0	0	0	1	0
	按奶茶按钮	(5)	0	0	1	0	0	0	1	0	0	0	1
中间	已投币	(11)	1	1	1	1	1	1	1	1	0	0	0
结点	已按钮	(12)	1	1	1	0	1	1	1	0	1	1	1
	退还5角	(21)	0	0	0	0	1	1	1	0	0	0	0
输出	送出可乐	(22)	1	0	0	0	1	0	0	0	0	0	0
	送出啤酒	(23)	0	1	0	0	0	1	0	0	0	0	0
	送出奶茶	(24)	0	0	1	0	0	0	1	0	0	0	0

* 根据判定表设计测试用例

用例编号	用例说明	输入数据	预期结果
SHJ-001	投入硬币、按下按钮	2.5元、可乐按钮	送出可乐
SHJ-002	投入硬币、按下按钮	2.5元、啤酒按钮	送出啤酒
SHJ-003	投入硬币、按下按钮	2.5元、奶茶按钮	送出奶茶
SHJ-004	投入硬币	2.5元	给出提示信息
SHJ-005	投入硬币、按下按钮	3元、可乐按钮	找0.5元、送出可乐
SHJ-006	投入硬币、按下按钮	3元、啤酒按钮	找0.5元、送出啤酒
SHJ-007	投入硬币、按下按钮	3元、奶茶按钮	找0.5元、送出奶茶
SHJ-008	投入硬币	3元	给出提示信息
SHJ-009	按下按钮	可乐按钮	给出提示信息
SHJ-010	按下按钮	啤酒按钮	给出提示信息
SHJ-011	按下按钮	奶茶按钮	给出提示信息

- ♣ 利用因果图来设计测试用例时,作为输入条件的原因和输出结果之间的因果关系,有时候很难从软件规格说明中得到,而且即使是对于一般中小规模的软件,给出其因果图也可能是很庞大,以至于据此因果图的得到的测试用例数量将达到惊人的程度,这给软件测试工作带来了沉重负担。
- ♣ 利用正交实验设计方法设计测试用例,可以控制生成的测试用例数量;设计的测试用例也具有一定的覆盖率和代表性。

- # 什么是正交试验设计? 正交试验设计法,是一种成对测试交互的系统的统计方法。它提供了一种能对所有变量对的组合进行典型覆盖(均匀分布)的方法。可以从大量的试验点中挑出适量的、有代表性的点,利用"正交表",合理的安排试验的一种科学的试验设计方法。
- * 正交表的构成
 - ♣ 行数: 正交表中的行的个数,即试验的次数,也是我们通过正交 实验法设计的测试用例的个数。
 - * 因素数:正交表中列的个数,即要测试的功能点。
 - *水平数:任何单个因素能够取得的值的最大个数,即要测试功能 点的取值个数。
 - ♣ 正交表的形式: L_{行数}(水平数^{因素数}) 如: L₈(2⁷)

因数

列号 ()()()行号 ()()

水平数

 $L_8(2^7)$

- * 用正交表设计测试用例的步骤
 - (1) 有哪些因素(功能点)
 - (2) 每个因素有哪几个水平(功能点的取值)
 - (3) 选择一个合适的正交表
 - (4) 把变量的值映射到表中
 - (5) 把每一行的各因素水平的组合做为一个测试用例
 - (6) 加上你认为可疑且没有在表中出现的组合

- * 如何选择正交表
 - * 考虑因素(功能点)的个数
 - **考虑因素水平(功能点的取值)的个数
 - * 考虑正交表的行数
 - * 取行数最少的一个

- * 设计测试用例的三种情况
 - ◆ 因素数(变量)、水平数(变量值)相符:因素数与水平数刚好符合正交表。
 - ♣ 因素数不相同:如果因素数不同的话,可以采用包含的方法, 在正交表公式中找到包含该情况的公式,如果有N个符合条件 的公式,那么选取行数最少的公式。
 - 常水平数不相同:采用包含和组合的方法选取合适的正交表公式。

案例一:

视图选项卡上的"显示/隐藏"组中有3个可用选项:

- ☀ 有3个因素: 网格线、编辑栏、标题
- ♣ 每个因素有2个水平: 选与不选

- 选择正交表的分析:
 - 1、表中的因素数>=3;
 - 2、表中至少有3个因素数的水平数>=2;
 - 3、行数取最少的一个。
 - 4、从正交表公式中开始查找,结果为: L₄(23)

* 正交表变量的映射

* 网格线: 0 → 选, 1 → 不选

*编辑栏: 0 → 选, 1 → 不选

♣标 题: 0 → 选, 1 → 不选

		列号					
		1	2	3			
	1	0	0	0			
定 具	2	0	1	1			
行号	3	1	0	1			
	4	1	1	0			

		列号					
		网格线	编辑栏	标题			
	1	选	选	选			
行 早	2	选	不选	不选			
行号	3	不选	选	不选			
	4	不选	不选	选			

☀ 测试用例如下:

- 1. 选中网格线、选中编辑栏、选中标题
- 2. 选中网格线、不选编辑栏、不选标题
- 3. 不选网格线、选中编辑栏、不选标题
- 4. 不选网格线、不选编辑栏、选中标题

增补测试用例

5. 不选风格线、不选编辑栏、不选标题

测试用例的减少数:8 → 5

☀ 案例二:

根据PowerPoint的打印功能的描述设计测试用例,功能描述如下:

- * 打印范围分:全部、当前幻灯片、给定范围
- * 打印内容分: 幻灯片、讲义、备注页、大纲视图
- * 打印颜色/灰度分: 颜色、灰度、黑白
- * 打印效果分: 幻灯片加框、幻灯片不加框

* 案例分析:

* 根据以上提到的功能说明,构造因子状态表,得到因子状态

状态/因素	A打印范围	B打印内容	C打印颜色/灰度	D打印效果
0	全部	幻灯片	颜色	幻灯片加框
1	当前幻灯片	讲义	灰度	幻灯片不加框
2	给定范围	备注页	黑白	
3		大纲视图		

* 将中文字转换成字母的因子状态表

状态/因素	A	В	С	D
0	A1	B1	C1	D1
1	A2	В2	C2	D2
2	A3	В3	C3	50
3		В4		

- * 选择正交表的分析:
 - 1、表中的因素数>=4;
 - 2、表中至少有4个因素数的水平数>=2;
 - 3、行数取最少的一个。
 - 4、从正交表公式中开始查找,结果为: L₁₆(4⁵)

注:此案例中有四个被测对象,每个被测对象的状态都不一样。

☀ 正交表为

状态/因素	1	2	3	4	5
1	0	0	0	0	0
2	0	1	1	1	1
3	0	2	2	2	2
4	0	3	3	3	3
5	1	0	1	2	3
6	1	1	0	3	2
7	1	2	3	0	1
8	1	3	2	1	0
9	2	0	2	3	1
10	2	1	3	2	0
11	2	2	0	1	3
12	2	3	1	0	2
13	3	0	3	1	2
14	3	1	2	0	3
15	3	2	1	3	0
16	3	3	0	2	

* 用字母代替的正交表为

状态/因素	1	2	3	4	5
1	A1	В1	C1	D1	0
2	A1	В2	C2	D2	1
3	A1	В3	С3	D1	2
4	A1	В4	C1	D2	3
5	A2	B1	C2	D1	3
6	A2	В2	C1	D2	2
7	A2	В3	C2	D1	1
8	A2	B4	С3	D2	0
9	A3	B1	С3	D2	1
10	А3	В2	C3	D1	0
П	Å3	В3	CI	D2	3
12	А3	В4	C2	D1	2
13	A1	В1	C1	D2	2
14	A2	B2	С3	D1	3

● 通过分析5 第5列没有意义可段删掉,由各四个因繁里有三个的水平值小于3, 所以从第63行到16号的测试用例可以忽略。

* 得到的测试用例如下

状态/因子	打印范围	打印内容	打印颜色/灰度	打印效果
1	A1全部	B1幻灯片	C1颜色	D1幻灯片加框
2	A1全部	B2讲义	C2灰度	D2幻灯片不加框
3	A1全部	B3备注页	C3黑白	D1幻灯片加框
4	A1全部	B4大纲视图	C3黑白	D2幻灯片不加框
5	A2当前幻灯片	B1幻灯片	C2灰度	D1幻灯片加框
6	A2当前幻灯片	B2讲义	C3黑白	D1幻灯片加框
7	A2当前幻灯片	B3备注页	C1颜色	D2幻灯片不加框
8	A2当前幻灯片	B4大纲视图	C1颜色	D1幻灯片加框
9	A3给定范围	B1幻灯片	C3黑白	D2幻灯片不加框
10	A3给定范围	B2讲义	C1颜色	D1幻灯片加框
11	A3给定范围	B3备注页	C2灰度	D1幻灯片加框
12	A3给定范围	B4大纲视图	C2灰度	D2幻灯片不加框

场景图设计法

- 用例场景是用来描述流经用例路径的过程,这个过程从开始到结束 遍历用例中所有基本流和备选流。
- # 用例场景举例

用例场景举例描述

☀ 场景1: 基本流

☀ 场景2: 基本流 备选流1

☀ 场景3: 基本流 备选流1 备选流2

☀ 场景4: 基本流 备选流3

☀ 场景5: 基本流 备选流3 备选流1

场景6:基本流 备选流3 备选流1 备选流2

☀ 场景7: 基本流 备选流4

☀ 场景8: 基本流 备选流3 备选流4

- * 基本流
- 1、准备提款:用户将银行卡插入ATM取款机
- 2、验证银行卡: ATM机从银行卡的磁条中读取帐户代码, 检查它是否是可接收的银行卡
- 3、输入密码: ATM机要求用户输入密码
- 4、验证账户和密码:确定该帐户是否有效和所输入密码是否正确
- 5、ATM选项:显示本机的各种选项,如果选择"取款".
- 6、输入金额:要从ATM机取款金额
- 7、授权: ATM机通过帐户、密码、金额以及帐户信息作为一笔交易发给银行系统来启动验证过程。对此事件,银行系统处理连机状态,并对授权请求给予答复,批准完成取款过程,同时更新帐户余额
- 8、出钞: 提供现金
- 9、返回银行卡:银行卡被返还
- 10、打印收据: 打印收据并提供给用户, 同时更新内部记录

- * 备选流2 ATM机内没有现金
- ♣ 备选流3 ATM机内现金不足
- 备选流4密码有误
- 备选流5帐户不存在或帐户类型有误
- 备选流6帐面金额不足

* 测试用例矩阵

用例编号	场景/条件	密码	帐号	输入/选 择金额	帐面 金额	ATM内 金额	预期结果
CD1	场景1-成功取款	Y	Y	Y	Y	Y	成功取款
CD2	场景2-ATM内没有现金	Y	Y	Y	Y	N	取款选项不可 用,用例结束
CD3	场景3-ATM内现金不足	Y	Y	Y	Y	N	警告信息,返 回步骤6
CD4	场景4-密码有误 (不止一次)	N	Y	n/a	Y	Y	警告信息,返 回步骤3
CD5	场景5-密码有误 (只有一次)	N	Y	n/a	Y	Y	警告信息,返 回步骤3
CD6	场景6-密码有误 (不能再输入)	N	Y	n/a	Y	Y	警告信息,卡被吞,结束。

测试用例数据

用例编号	场景/条件	密码	帐号	输入/选 择金额	帐面 金额	ATM内 金额	预期结果
CD1	场景1-成功取款	432134	9876543213	100	800	2000	取款成功,帐 户余额为700
CD2	场景2-ATM内没有 现金	432134	9876543213	100	800	0	取款选项不可 用,用例结束
CD3	场景3-ATM内现金 不足	432134	9876543213	100	800	300	警告信息,返 回步骤6
CD4	场景4-密码有误 (不止一次)	1234	9876543213	n/a	800	2000	警告信息,返 回步骤3
CD5	场景5-密码有误 (只有一次)	1234	9876543213	n/a	800	2000	警告信息,返 回步骤3
CD6	场景6-密码有误 (不能再输入)	1234	9876543213	n/a	800	2000	警告信息,卡 被吞,结束

流程图法

我们在编程时,一般都需要画程序的算法流程图,可以将这一思想应用到黑盒测试领域。算法流程图是针对程序的内部结构的,而黑盒测试的流程图是针对整个系统业务功能流程的。

- ☀ 流程图法的步骤:
 - * 第一步:详细了解需求
 - 常二步:根据需求说明或界面原型,找出业务流程的各个页面以及各页面之间的流转关系
 - * 第三步: 画出业务流程
 - * 第四步: 写用例,覆盖所有的路径分支

流程图法

* 流程图用例: 订票模块业务流程图

黑盒测试方法的踪合

在实际测试过程中,我们往往需要踪合各种测试技术,现在我们 来总结一下如何踪合运用的前面学的测试技术

测试用例的设计方法不是单独存在的,具体到每个测试项目里都会用到多种方法,每种类型的软件有各自的特点,每种测试用例设计的方法也有各自的特点,针对不同软件如何利用这些黑盒方法是非常重要的,在实际测试中,往往是综合使用各种方法才能有效提高测试效率和测试覆盖度,这就需要认真掌握这些方法的原理,积累更多的测试经验,以有效提高测试水平。