DYNAMIC PROGRAMMING ALGS

longest increasing subsequence: $O(n^2)$: L(j)=len of longest subsequence ending @ j. $L(j) = 1 + \max\{L(i)\}$ where $i < j, a_i < a_j \to (i, j)$ is an edge. Return $\max\{L(i)fori \le n\}$, and loop from $i = n \to 0$ edit distance: $O(m \cdot n)$: E[m, n] =min num of edits to change $x[1 \cdots m]$ to $y[1 \cdots n]$.

$$E[m,n] = \min \left\{ \begin{array}{ll} \cdots x[m], \cdots - & \text{delete x[m]: } E[m,n] = 1 + E[m-1,n] \\ \cdots -, \cdots y[n] & \text{insert y[n]: } E[m,n] = 1 + E[m,n-1] \\ \cdots x[m], \cdots y[n] & \text{change x[m] to y[n]: } E[m,n] = E[m-1,n-1] + (1 \text{ if diff, 0 else}) \end{array} \right.$$

Initialize $i=0\cdots m: E[i,0]=i$ $j=0\cdots n: E[0,j]=j.$ Loop $i=1\cdots m, j=1\cdots n, E[i,j]$ Knapsack: $O(W_{\max}\cdot n): K(w)=\max$ value of weight $w\leq W_{\max}.$ $K(w)=\max_{w_i\leq w}\{v_i+K(w-w_i)\}$ K(0)=0. Loop $w=1\cdots W_{\max}$

Chain Matrix Multiply: $O(n^3)$: $C(i,j) = \cos t$ of best solution to multiplying $A_i \cdots A_j$.

$$C(i,j) = \min_{i < k < j} \{ C(i,k) + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j \}$$

Solve in order of increasing subproblem length: for $i = 1 \cdots n - 1$: C(i, i = 0). for $s = 1 \cdots n - 1$, for $i = 1 \cdots n - s$: j = i + s; update. Return C(1, n).

Shortest path (all pairs of vertices): $O(|V| \cdot (|V| + |E|))$: dist(v, i) = dist from s to v using i edges. $dist(v, i) = \min_{e=(w, v)} \{len(e) + dist(w, i - 1)\}$. For all $v \in V$ $dist(v, 0) = \infty$, dist(s, 0) = 0. for $i = 1 \cdot |V|$, for all $v \in V$, update.

Independent Sets: O(|V| + |E|): I(u) =size of largest independent set in subtree rooted at u.

$$I(u) = \max \begin{cases} 1 + \sum_{\substack{grandchildren \\ children}} I(g_i) & \text{if u in largest independent set} \end{cases}$$

DFS traversal: postvisit[u] = update (does u after children of u are done) Travelling Salesman: $O(2^n n^2)$