ArcFace: Additive Angular Margin Loss for Deep Face Recognition

Jiankang Deng, Jia Guo, Niannan Xue Stefanos Zafeiriou Imperial College London CVPR 2019

> 인공지능 연구실 석사과정 구자봉

문제 정의 :

Face Recognition

Embedding:

Embedding은 고차원의 정보를 상대적으로 낮은 차원으로 변환하는 것을 의미한다. 아무 숫자로 바꾸는 것이 아니라 **정보를 보존**해야 한다.

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

where
$$x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$$

$$sim(x,y) = \frac{\langle x,y \rangle}{\|x\| \|y\|}$$
where $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$

$$\|x\| = \sqrt{\sum_{i=1}^{n} (x_i)^2}, \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

Image Embedding:

Embedding은 고차원의 정보를 상대적으로 낮은 차원으로 변환하는 것을 의미한다. 아무 숫자로 바꾸는 것이 아니라 **정보를 보존**해야 한다.

Figure 3. The **Triplet Loss** minimizes the distance between an *an-chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

DeepFace:

목표:

더 잘 임베딩 시키는 것 (with ArcFace loss)

제안하는 모델:

https://www.researchgate.net/figure/Distance-measures-Geodesic-distance-measures-the-shortest-pathbetween-two-points-across_fig7_272944982

http://openaccess.thecvf.com/content_cvpr_2018/papers/ Wang CosFace Large Margin CVPR_2018_paper.pdf

ArcFace:

$$L_1 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{W_{y_i}^T x_i + b_{y_i}}}{\sum_{i=1}^{n} e^{W_{j}^T x_i + b_{j}}},$$

$$b_j = 0$$

$$W_j^T x_i = \|W_j\| \|x_i\| \cos \theta_j$$

 $||W_j|| = 1$ by l_2 normalisation

 $||x_i||$ by l_2 normalisation re-scale it to s.

여러 논문의 방법들을 가져오고 간단히 만들기 위해

$$L_2 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s \cos \theta_{y_i}}}{e^{s \cos \theta_{y_i}} + \sum_{j=1, j \neq y_i}^{n} e^{s \cos \theta_j}}.$$
 (2) 변형된 로스

Algorithm 1 The Pseudo-code of ArcFace on MxNet

Input: Feature Scale s, Margin Parameter m in Eq. 3, Class Number n, Ground-Truth ID gt.

- 1. x = mx.symbol.L2Normalization (x, mode = 'instance')
- 2. W = mx.symbol.L2Normalization (W, mode = 'instance')
- 3. fc7 = mx.sym.FullyConnected (data = x, weight = W, no_bias = True, num_hidden = n)
- 4. original_target_logit = mx.sym.pick (fc7, gt, axis = 1)
- 5. theta = mx.sym.arccos (original_target_logit)
- 6. marginal_target_logit = mx.sym.cos (theta + m)
- 7. one_hot = mx.sym.one_hot (gt, depth = n, on_value = 1.0, off_value = 0.0)
- 8. fc7 = fc7 + mx.sym.broadcast_mul (one_hot, mx.sym.expand_dims (marginal_target_logit original_target_logit, 1))
- 9. fc7 = fc7 * s

Output: Class-wise affinity score fc7.

ArcFace:

$$L_3 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta_{y_i} + m))}}{e^{s(\cos(\theta_{y_i} + m))} + \sum_{j=1, j \neq y_i}^{n} e^{s\cos\theta_j}}.$$
 마진 m을 더함

(a) Softmax

(b) ArcFace

마진 m은 일종의 패널티임, 하이퍼 파라미터, 마진을 세분화 시키면

$$\cos(\theta_{y_i} + m) \longrightarrow (\cos(m_1\theta + m_2) - m_3)$$

$$L_4 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(m_1 \theta_{y_i} + m_2) - m_3)}}{e^{s(\cos(m_1 \theta_{y_i} + m_2) - m_3)} + \sum_{j=1, j \neq y_i}^{n} e^{s \cos \theta_j}}$$

(a) θ_j Distributions

(b) Target Logits Curves

https://arxiv.org/pdf/1704.08063.pdf https://arxiv.org/pdf/1801.09414.pdf

Other Losses

$$L_5 = L_2 + \frac{1}{\pi N} \sum_{i=1}^{N} \theta_{y_i}.$$

Intra-Loss

$$L_6 = L_2 - \frac{1}{\pi N (n-1)} \sum_{i=1}^{N} \sum_{j=1, j \neq y_i}^{n} \arccos(W_{y_i}^T W_j).$$

Inter-Loss

$$\arccos(x_i^{pos}x_i) + m \le \arccos(x_i^{neg}x_i)$$

Triplet-Loss

데이터셋

Datasets	#Identity	#Image/Video
CASIA [43]	10K	0.5M
VGGFace2 [6]	9.1K	3.3M
MS1MV2	85K	5.8M
MS1M-DeepGlint [2]	87K	3.9M
Asian-DeepGlint [2]	94 K	2.83M
LFW [13]	5,749	13,233
CFP-FP [30]	500	7,000
AgeDB-30 [22]	568	16,488
CPLFW [48]	5,749	11,652
CALFW [49]	5,749	12,174
YTF [40]	1,595	3,425
MegaFace [15]	530 (P)	1M (G)
IJB-B [39]	1,845	76.8K
IJB-C [21]	3,531	148.8K
Trillion-Pairs [2]	5,749 (P)	1.58M (G)
iQIYI-VID [20]	4,934	172,835

Loss Functions	LFW	CFP-FP	AgeDB-30
ArcFace (0.4)	99.53	95.41	94.98
ArcFace (0.45)	99.46	95.47	94.93
ArcFace (0.5)	99.53	95.56	95.15
ArcFace (0.55)	99.41	95.32	95.05
SphereFace [18]	99.42	-	-
SphereFace (1.35)	99.11	94.38	91.70
CosFace [37]	99.33	-	-
CosFace (0.35)	99.51	95.44	94.56
CM1 (1, 0.3, 0.2)	99.48	95.12	94.38
CM2 (0.9, 0.4, 0.15)	99.50	95.24	94.86
Softmax	99.08	94.39	92.33
Norm-Softmax (NS)	98.56	89.79	88.72
NS+Intra	98.75	93.81	90.92
NS+Inter	98.68	90.67	89.50
NS+Intra+Inter	98.73	94.00	91.41
Triplet (0.35)	98.98	91.90	89.98
ArcFace+Intra	99.45	95.37	94.73
ArcFace+Inter	99.43	95.25	94.55
ArcFace+Intra+Inter	99.43	95.42	95.10
ArcFace+Triplet	99.50	95.51	94.40
ARTIFICIAL INTELLIGENCE LAB.			

실험 (마진 비교)

	NS	ArcFace	IntraL	InterL	TripletL
W-EC	44.26	14.29	8.83	46.85	-
W-Inter	69.66	71.61	31.34	75.66	-
Intra1	50.50	38.45	17.50	52.74	41.19
Inter1	59.23	65.83	24.07	62.40	50.23
Intra2	33.97	28.05	12.94	35.38	27.42
Inter2	65.60	66.55	26.28	67.90	55.94

(a) ArcFace

(b) Triplet-Loss

실험 (다른 모델과의 비교)

Method	#Image	LFW	YTF
DeepID [32]	0.2M	99.47	93.20
Deep Face [33]	4.4M	97.35	91.4
VGG Face [24]	2.6M	98.95	97.30
FaceNet [29]	200M	99.63	95.10
Baidu [16]	1.3M	99.13	-
Center Loss [38]	0.7M	99.28	94.9
Range Loss [46]	5M	99.52	93.70
Marginal Loss [9]	3.8M	99.48	95.98
SphereFace [18]	0.5M	99.42	95.0
SphereFace+ [17]	0.5M	99.47	-
CosFace [37]	5M	99.73	97.6
MS1MV2, R100, ArcFace	5.8M	99.83	98.02

Method	LFW	CALFW	CPLFW
HUMAN-Individual	97.27	82.32	81.21
HUMAN-Fusion	99.85	86.50	85.24
Center Loss [38]	98.75	85.48	77.48
SphereFace [18]	99.27	90.30	81.40
VGGFace2 [6]	99.43	90.57	84.00
MS1MV2, R100, ArcFace	99.82	95.45	92.08

(a) LFW (99.83%)

(b) CFP-FP (98.37%)

(c) AgeDB (98.15%)

(d) YTF (98.02%)

(e) CPLFW (92.08%) (f) CALFW (95.45%)

실험 (MegaFace)

Methods	Id (%)	Ver (%)
Softmax [18]	54.85	65.92
Contrastive Loss[18, 32]	65.21	78.86
Triplet [18, 29]	64.79	78.32
Center Loss[38]	65.49	80.14
SphereFace [18]	72.729	85.561
CosFace [37]	77.11	89.88
AM-Softmax [35]	72.47	84.44
SphereFace+ [17]	73.03	-
CASIA, R50, ArcFace	77.50	92.34
CASIA, R50, ArcFace, R	91.75	93.69
FaceNet [29]	70.49	86.47
CosFace [37]	82.72	96.65
MS1MV2, R100, ArcFace	81.03	96.98
MS1MV2, R100, CosFace	80.56	96.56
MS1MV2, R100, ArcFace, R	98.35	98.48
MS1MV2, R100, CosFace, R	97.91	97.91

(b) ROC

MSTMV2

ARTIFICIAL INTELLIGENCE LAB.

17

실험 (IJB-B,C, Trillion Pairs)

Method	IJB-B	IJB-C
ResNet50 [6]	0.784	0.825
SENet50 [6]	0.800	0.840
ResNet50+SENet50 [6]	0.800	0.841
MN-v [42]	0.818	0.852
MN-vc [42]	0.831	0.862
ResNet50+DCN(Kpts) [41]	0.850	0.867
ResNet50+DCN(Divs) [41]	0.841	0.880
SENet50+DCN(Kpts) [41]	0.846	0.874
SENet50+DCN(Divs) [41]	0.849	0.885
VGG2, R50, ArcFace	0.898	0.921
MS1MV2, R100, ArcFace	0.942	0.956

(a) ROC for IJB-B

(b) ROC for IJB-C

Method	Id (@FPR=1e-3)	Ver(@FPR=1e-9)
CASIA	26.643	21.452
MS1MV2	80.968	78.600
DeepGlint-Face	80.331	78.586
MS1MV2+Asian	84.840 (1st)	80.540
CIGIT_IRSEC	84.234 (2nd)	81.558 (1st)

Q&A

