

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

Matemáticas Discretas - IIC1253 Guía de relaciones

1. Dado un grafo G = (N, A), decimos que un orden total \leq sobre N es un orden topológico para G si para cada $u, v \in N$, si $(u, v) \in A$, entonces $u \leq v$.

Determine todos los ordenes topológicos para el siguiente grafo:

- 2. Un ciclo simple en un grafo G = (N, A) es una secuencia (a_1, \ldots, a_n) de nodos en N tal que:
 - $(a_i, a_{i+1}) \in A$ para cada $i \in \{1, \dots, n-1\},$
 - $(a_n, a_1) \in A$, y
 - $a_i \neq a_j$ para cada $i, j \in \{1, \dots, n\}$ tal que $i \neq j$.

El largo de un ciclo simple (a_1, \ldots, a_n) es n, vale decir, es el número de arcos en el ciclo. Demuestre que si un grafo G tiene un ciclo simple de largo $n \ge 2$, entonces no existe un orden topológico para G.

- 3. Defina una relación \leq_{lex} sobre $\mathbb{N} \times \mathbb{N}$ de la siguiente forma. Para cada $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$, se tiene que $(a, b) \leq_{\text{lex}} (c, d)$ si y sólo si (a < c) o $(a = c \text{ y } b \leq d)$, donde \leq es el orden usual de los números naturales. Demuestre que \leq_{lex} es un orden total sobre $\mathbb{N} \times \mathbb{N}$.
- 4. Generalice la definición de la relación \leq_{lex} en el ejercicio 3 para el caso de \mathbb{N}^k , donde $k \geq 3$. Demuestre que la relación resultante es un orden total sobre \mathbb{N}^k .
- 5. Considere las siguientes interpretaciones sobre el predicado binario ≤:
 - \mathcal{I}_1 tiene como dominio a \mathbb{N} e interpreta a \leq como el orden usual en \mathbb{N} .
 - \mathcal{I}_2 tiene como dominio a $\mathbb{N} \times \mathbb{N}$ e interpreta a \leq como el orden lexicográfico sobre $\mathbb{N} \times \mathbb{N}$ definido en la pregunta 3.

Construya una oración φ en lógica de predicados sobre el vocabulario \leq tal que φ es cierta en \mathcal{I}_2 y falsa en \mathcal{I}_1 .

- 6. Dado un orden parcial R sobre un conjunto A:
 - $a \in A$ es un elemento máximo de R si bRa para todo $b \in A$, y
 - $a \in A$ es un elemento maximal de R si no existe un elemento $b \in B$ tal que aRb y $a \neq b$.

De ejemplo de órdenes parciales que satisfagan las siguientes propiedades:

- a) El orden parcial tiene exactamente un elemento máximo.
- b) El orden parcial tiene exactamente un elemento maximal, y no tiene elementos máximos.
- c) El orden parcial tiene una cantidad infinita de elementos maximales.
- d) El orden parcial no tiene elementos maximales.
- 7. Sea \leq el orden usual sobre \mathbb{N} , y sea F el conjunto de las funciones $f:\{1,2,3\} \to \{1,2,3\}$. Además, defina una relación R sobre F como:

$$(f,g) \in R$$
 si y sólo si $f(i) \le g(i)$ para todo $i \in \{1,2,3\}$.

Responda las siguientes preguntas sobre la relación R.

- a) Demuestre que R es un orden parcial.
- b) Demuestre que R no es conexa.
- c) Encuentre los elementos mínimos y minimales de R.
- d) Encuentre los elementos máximos y maximales de R.
- 8. Sea \leq el orden usual sobre \mathbb{Z} . A partir de este orden, defina la siguiente relación R sobre \mathbb{Z} . Para cada $a,b\in\mathbb{Z}$, se tiene que aRb si y sólo si alguna de las siguientes tres condiciones se cumple:
 - \bullet a es par y b es impar;
 - a y b son pares, $y a \leq b$;
 - a y b son impares, $y a \le b$;

Demuestre que R es un orden total sobre \mathbb{Z} .

9. Sea A un conjunto. Una partición \mathcal{P} de A es una conjunto de subconjuntos de A tal que: (i) para todo $X \in \mathcal{P}$, se tiene $X \neq \emptyset$; (ii) $\bigcup_{X \in \mathcal{P}} X = A$; (iii) para todo $X, Y \in \mathcal{P}$, si $X \neq Y$, entonces $X \cap Y = \emptyset$.

Sea $\mathbb{P}(A)$ el conjunto de todas las particiones de A. Definimos la relación refinamiento \preceq sobre $\mathbb{P}(A)$ como sigue:

$$\mathcal{P} \preceq \mathcal{P}' \iff \text{para todo } X \in \mathcal{P}, \text{ existe } Y \in \mathcal{P}' \text{ tal que } X \subseteq Y.$$

- a) Demuestre que \leq es un orden parcial sobre $\mathbb{P}(A)$.
- b) ¿Es \leq un orden total? Justifique con una demostración.

- c) ¿Existe un mínimo de $\mathbb{P}(A)$ con respecto a \leq ? ¿Qué sucede con el máximo?
- 10. Decimos que una relación R sobre un conjunto A es un preorden si es refleja y transitiva. Sea R un preorden sobre A:
 - a) Demuestre que $R \cap R^{-1}$ es una relación de equivalencia en A.
 - b) Definimos una relación S sobre el conjunto cociente de A con respecto a $R\cap R^{-1}$ como sigue:

$$(C,D) \in S \iff \text{existe } c \in C \text{ y existe } d \in D \text{ tal que } (c,d) \in R.$$

Demuestre que S es un orden parcial.

- 11. Considere el conjunto potencia de los naturales $\mathcal{P}(\mathbb{N}) = \{A \mid A \subseteq \mathbb{N}\}$. Se define la relación $R \subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ tal que $(A, B) \in R$ si, y solo si, $(A \setminus B) \cup (B \setminus A)$ es un conjunto finito. Demuestre que R es una relación de equivalencia.
- 12. Sea n un número natural mayor o igual a 2, y sea $A = \{1, \ldots, n\}$. Demuestre que el número de relaciones de equivalencia sobre A es estrictamente menor que el número de órdenes parciales sobre A.
- 13. Sea A un conjunto, y $S, T \subseteq A \times A$ ambas relaciones de equivalencia sobre A. Demuestre que:

$$S \circ T = T \circ S \iff S \circ T$$
 es una relación de equivalencia.

Recuerde que si R_1 y R_2 son relaciones sobre A, entonces $R_1 \circ R_2$ es la siguiente relación sobre A:

$$R_1 \circ R_2 = \{(a,b) \in A \times A \mid \text{existe } c \in A \text{ tal que } (a,c) \in R_1 \text{ y } (c,b) \in R_2\}.$$

14. Sea A un conjunto no vacío. Considere el conjunto:

$$\mathcal{R} = \{ R \mid R \subseteq A \times A \}$$

En otras palabras, \mathcal{R} es el conjunto de todas las relaciones binarias sobre A.

- a) Sea $\leq_1 \subseteq \mathcal{R} \times \mathcal{R}$ tal que, para todo $R, S \in \mathcal{R}, R \leq_1 S$ si, y solo si, $R \circ S = S$. ¿Es \leq_1 transitiva? Demuestre su afirmación.
- b) Sea $\leq_2 \subseteq \mathcal{R} \times \mathcal{R}$ tal que, para todo $R, S \in \mathcal{R}$, $R \leq_2 S$ si, y solo si, $R \circ S \subseteq S$. ¿Es \leq_2 transitiva? Demuestre su afirmación.
- 15. ¿Cuántas relaciones de equivalencia existen sobre el conjunto $\{1, 2, 3, 4\}$?
- 16. Demuestre que para cada conjunto A, existe una relación de equivalencia \sim sobre A tal que A/\sim es un conjunto finito.
- 17. Sea A un conjunto. Demuestre que existen relaciones de equivalencia \sim_1 y \sim_2 sobre A tales que para toda relación de equivalencia \sim sobre A, se tiene que $\sim_1 \subseteq \sim \subseteq \sim_2$ (vale decir, para todo $(a,b) \in A \times A$, si $a \sim_1 b$, entonces $a \sim_b b$, entonces $a \sim_b b$).

18. Sea (A, \preceq) un orden parcial. Una sucesión infinita (x_0, x_1, x_2, \ldots) de elementos de A se dice estrictamente decreciente si se cumple que $x_n \neq x_{n+1}$ y que $x_{n+1} \preceq x_n$ para todo $n \in \mathbb{N}$. Demuestre que:

todo subconjunto no vacío de A tiene un elemento minimal si y sólo si

no existen sucesiones infinitas estrictamente decrecientes en A.

19. Define la relación \sim sobre $\mathbb R$ como:

$$r \sim s$$
 si y sólo si $|r| = |s|$

Responda las siguientes preguntas sobre esta relación.

- a) Demuestre que \sim es una relación de equivalencia sobre \mathbb{R} .
- b) Describa de manera detallada el conjunto cociente \mathbb{R}/\sim .
- 20. Defina la relación \sim sobre $\mathbb{R} \times \mathbb{R}$ como:

$$(x,y) \sim (w,z)$$
 si y sólo si $x^2 + y^2 = w^2 + z^2$.

- a) Demuestre que \sim es una relación de equivalencia sobre $\mathbb{R} \times \mathbb{R}$.
- b) Describa de manera detallada el conjunto cociente $\mathbb{R} \times \mathbb{R}/\sim$. En particular, de una interpretación geométrica a los elementos de este conjunto cociente.
- 21. Defina la relación \sim sobre $\mathbb{R} \times \mathbb{R} \setminus \{(0,0)\}$ como:

$$(x,y) \sim (w,z)$$
 si y sólo si existe $k \in \mathbb{R}$ tal que $k > 0$ y $(x,y) = (k \cdot w, k \cdot z)$.

- a) Demuestre que \sim es una relación de equivalencia sobre $\mathbb{R} \times \mathbb{R} \setminus \{(0,0)\}$.
- b) Describa de manera detallada el conjunto cociente $(\mathbb{R} \times \mathbb{R} \setminus \{(0,0)\})/\sim$. En particular, de una interpretación geométrica a los elementos de este conjunto cociente.