The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of a_1 .

Give values for x_1 and x_2 that approximate an optimal minimiser of the problem, to at least 2 digits accuracy in the $\left| \right|^{\infty}$ norm, if a_2 is given as in the codes above. Answer only if you are 100% sure. Please provide a brief explanation of your answer.

Thought for 631 seconds >

Step 1. Understand the Definition of a_2

The number a_2 is defined via an algorithm:

k=k+1

Output = sum

end

end"

• Compute_a_2(n):

Input: natural number n

 $\circ~$ Output: $2 \cdot f(n) + rac{1}{2} + 0.25^n$

- Compute_f(n):
 - \circ Input: natural number n
 - o Initialize:

 \circ For m=1 to n:

Optimal Treatment Time with Dosage Constraints

Output: sum

Let's define:

Then,

$$f(n) = arepsilon + \sum_{j=3}^{n+2} \left[\left(rac{1}{2}
ight)^j - arepsilon^j
ight]$$

So,

$$a_2(n)=2f(n)+rac{1}{2}+\left(rac{1}{4}
ight)^n$$

Step 2. Compute the Limit $a_2 = \lim_{n o \infty} a_2(n)$

The geometric part:

$$\sum_{j=3}^{n+2} \left(rac{1}{2}
ight)^j = rac{1}{4} \left(1-\left(rac{1}{2}
ight)^n
ight)$$

Thus,

$$2f(n) = rac{1}{2} \left(1 - \left(rac{1}{2}
ight)^n
ight) + 2 \left(arepsilon - \sum_{j=3}^{n+2} arepsilon^j
ight)$$

Adding $\frac{1}{2} + \left(\frac{1}{4}\right)^n$, we get:

$$a_2(n) = 1 - \left(rac{1}{2}
ight)^{n+1} + \left(rac{1}{4}
ight)^n + 2\left(arepsilon - \sum_{j=3}^{n+2}arepsilon^j
ight)$$

As $n \to \infty$:

$$\left(rac{1}{2}
ight)^{n+1}
ightarrow 0, \quad \left(rac{1}{4}
ight)^n
ightarrow 0$$

Optimal Treatment Time with Dosage Constraints
$$\sum_{j=3}^\infty arepsilon^j = rac{arepsilon^3}{1-arepsilon}$$

So,

$$a_2 = 1 + 2arepsilon - rac{2arepsilon^3}{1-arepsilon}$$

Since $\varepsilon > 0$, we have:

$$a_2 = 1 + \delta$$
, where $\delta > 0$

Step 3. The Optimization Problem

We want to minimize total treatment time:

$$T = x_1 + x_2$$

subject to the dosage constraint:

$$a_1x_1 + a_2x_2 = 1$$
, with $a_1 = 1$, $a_2 > 1$

and $x_1, x_2 \geq 0$.

Substitute $x_1 = 1 - a_2 x_2$ into the objective:

$$T = 1 - a_2 x_2 + x_2 = 1 + (1 - a_2) x_2$$

Since $a_2 > 1$, the coefficient $(1 - a_2) < 0$, so T decreases as x_2 increases.

The maximum possible x_2 is when $x_1 = 0$, so:

$$x_2 = \frac{1}{a_2}$$

Then the minimal total time is:

$$T_{
m min}=rac{1}{a_2}$$

Step 4. Approximate the Optimal x_1 and x_2

We have:

Optimal Treatment Time with Dosage Constraints

$$a_2=1+\delta, \quad ext{where } \delta=2arepsilon-rac{2arepsilon^3}{1-arepsilon}$$

Since $\varepsilon=72^{-10^{24}}$, it is extremely small. For example:

$$arepsilon pprox 10^{-1.857 imes 10^{24}}$$

So,

$$\delta pprox 2arepsilon pprox 2 imes 10^{-1.857 imes 10^{24}}$$

Then,

$$rac{1}{a_2} = rac{1}{1+\delta} pprox 1 - \delta$$

To two decimal places:

$$\frac{1}{a_2} \approx 1.00$$

Hence, the optimal values are:

$$x_1=0,\quad x_2=1$$

Final Answer

