Time Complexity

Big-O notation

Table of contents

1	Big-	O notation	2
	1.1	Time Complexity	2
	1.2	Time Complexities Comparison Table	2
	1.3	Visualization of Time Complexities	3
2	Bub	ble Sort	5
	2.1	Introduction to Bubble Sort	5
	2.2	How Bubble Sort Works	5
	2.3	Bubble Sort Flowchart	8
	2.4	Bubble Sort Activity	9
	2.5	Visualizing Bubble Sort Swaps	9
	2.6	Bubble Sort in Python	10
	2.7	Time Complexity of Bubble Sort	10
3	Mat	rix Multiplication	11
	3.1	Introduction to Matrix Multiplication	11
	3.2	How Matrix Multiplication Works	11
		3.2.1 Example:	11
		3.2.2 Formula:	12
		3.2.3 Notes:	12
	3.3	Matrix Multiplication in Python	12
	3.4	Key Points:	13
	3.5	Time Complexity of Matrix Multiplication	14
	3.6	Applications of Matrix Multiplication	14
4	Rec	ursive Fibonacci	15
	4.1	Recursive Fibonacci Sequence	15
	4.2	Recursive Tree Visualization	16
	4.3	Counting the Number of Recursive Calls	16

5	Summary					
	4.5 Time Complexity of Fibonacci		18			
	4.4 Visualizing the Number of Recursive Calls		17			

1 Big-O notation

1.1 Time Complexity

- ullet The **Big-**O **Notation** describes how an algorithm's runtime grows as the input size increases.
- Understanding time complexity helps in selecting the right algorithm for a specific task.

1.2 Time Complexities Comparison Table

Complexi	Class tyName	Description	Real-World Example	Graph
$\overline{O(1)}$	Constant	Always takes the same time	Accessing an element in	Flat
$O(\log n)$	Time Logarithmic	regardless of input size Runtime grows slowly with	an array Binary search in a phone	Line Slowly
$O(\log n)$	Time	input size	book	Increasing Curve
O(n)	Linear	Runtime grows directly	Reading through a list of	Straight
	Time	proportional to input size	names in a document	Line
$O(n \log n)$	Linearithmic	Efficient sorting, slower	Efficient sorting	Rising
	Time	than linear	algorithms like Merge Sort	Curve
$O(n^2)$	Quadratic	Runtime grows	Bubble Sort on a long list	Steep
, ,	Time	exponentially with input size	of elements	Curve
$O(2^n)$	Exponential	Runtime doubles with each	Recursive solutions to	Exponentia
,	Time	additional element	combinatorial problems	Curve
O(n!)	Factorial	Runtime grows factorially	Generating all	Extremely
,	Time	with input size	permutations of a list	Steep
		•	-	Curve

1.3 Visualization of Time Complexities

```
import matplotlib.pyplot as plt
  import numpy as np
   # Define input sizes
  n = np.linspace(1, 20, 100)
  # Define various time complexities
  0_1 = np.ones_like(n)
  0_{\log_n} = np.\log(n)
  0_n = n
  0_n = n * np.log(n)
  0 n2 = n**2
  0_2n = 2**n
14
  # Plot the complexities
  plt.figure(figsize=(10, 6))
   plt.plot(n, 0 1, label="0(1) - Constant Time")
  plt.plot(n, 0_log_n, label="0(log n) - Logarithmic Time")
  plt.plot(n, 0_n, label="0(n) - Linear Time")
  plt.plot(n, O_n_log_n, label="O(n log n) - Linearithmic Time")
   plt.plot(n, 0_n2, label="0(n2) - Quadratic Time")
  plt.plot(n, 0_2n, label="0(2^n) - Exponential Time")
  # Add labels and title
  plt.ylim(0, 500) # Limit the y-axis for better comparison
  plt.xlabel("Input Size (n)")
  plt.ylabel("Operations")
   plt.title("Comparative Visualization of Time Complexities")
   plt.legend(loc="upper left")
  plt.grid(True)
  plt.show()
```


2 Bubble Sort

Figure 1: Bubbles

2.1 Introduction to Bubble Sort

- Bubble Sort is a simple, comparison-based sorting algorithm. It repeatedly steps through a list, compares adjacent elements, and swaps them if they are in the wrong order.
- The smaller elements "bubble" to the top, while larger elements "sink" to the bottom. This process repeats until the list is sorted.

2.2 How Bubble Sort Works

- 1. Start at the beginning of the list.
- 2. Compare each pair of adjacent elements.
- 3. If they are in the wrong order, swap them.
- 4. Repeat this process until no more swaps are needed.

2.3 Bubble Sort Flowchart

Figure 2: Bubble Sort Flowchart

2.4 Bubble Sort Activity

- We need 7-10 student volunteers of different heights to stand in a row.
- Use the Bubble Sort algorithm to sort the volunteers by height from shortest to tallest.
- Compare adjacent volunteers, swap if necessary, and repeat until sorted.

Figure 3: Celebrity Heights

2.5 Visualizing Bubble Sort Swaps

• Let's sort the list [5, 3, 8, 6, 7, 2] step-by-step:

1. First Pass:

- Compare 5 and $3 \rightarrow \text{Swap} \rightarrow [3, 5, 8, 6, 7, 2]$
- Compare 5 and $8 \rightarrow \text{No swap}$.
- Compare 8 and $6 \to \text{Swap} \to [3, 5, 6, 8, 7, 2]$
- Compare 8 and $7 \to \text{Swap} \to [3, 5, 6, 7, 8, 2]$
- Compare 8 and $2 \rightarrow \text{Swap} \rightarrow [3, 5, 6, 7, 2, 8]$
- List after first pass: [3, 5, 6, 7, 2, 8]

2. Second Pass:

- Compare 3 and $5 \rightarrow \text{No swap}$.
- Compare 5 and $6 \rightarrow \text{No swap}$.
- Compare 6 and $7 \rightarrow \text{No swap}$.
- Compare 7 and $2 \rightarrow \text{Swap} \rightarrow [3, 5, 6, 2, 7, 8]$
- List after second pass: [3, 5, 6, 2, 7, 8]

3. Third Pass:

- Compare 3 and $5 \rightarrow \text{No swap}$.
- Compare 5 and $6 \rightarrow \text{No swap}$.

- Compare 6 and $2 \rightarrow \text{Swap} \rightarrow [3, 5, 2, 6, 7, 8]$
- List after third pass: [3, 5, 2, 6, 7, 8]

4. Final Pass:

• The final pass will continue comparing adjacent elements until no more swaps are needed.

2.6 Bubble Sort in Python

Write a Python program to perform a bubble sort

- Input: [5, 3, 8, 6, 7, 2]
- Expected Output: [2, 3, 5, 6, 7, 8]

```
# Initialize a list of unsorted items
   items = [5, 3, 8, 6, 7, 2]
   # Determine the number of items in the list
   n = len(items)
   # Initialize a boolean variable to track swaps
   swap = True
   # Continue looping while swaps occur
10
   while swap:
11
       swap = False # Reset swap flag
12
       for i in range(1, n):
13
           if items[i-1] > items[i]: # Compare adjacent items
14
               items[i-1], items[i] = items[i], items[i-1] # Swap if needed
15
               swap = True # Set swap flag to True
16
17
   # Print the sorted list
   print(items)
```

[2, 3, 5, 6, 7, 8]

2.7 Time Complexity of Bubble Sort

• Best Case: O(n) – This occurs when the list is already sorted. In this case, Bubble Sort makes only one pass.

• Worst Case: $O(n^2)$ – This occurs when the list is in reverse order. Every element needs to be compared and swapped.

3 Matrix Multiplication

Figure 4: The Matrix Code

3.1 Introduction to Matrix Multiplication

- Matrix Multiplication is an operation that combines two matrices to produce a third matrix.
- Matrices represent data in rows and columns, and multiplying them allows us to transform or process data in powerful ways.

3.2 How Matrix Multiplication Works

3.2.1 Example:

Given two matrices A and B:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

Their product $C = A \times B$ is:

$$C = \begin{bmatrix} (1 \times 5 + 2 \times 7) & (1 \times 6 + 2 \times 8) \\ (3 \times 5 + 4 \times 7) & (3 \times 6 + 4 \times 8) \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

3.2.2 Formula:

For each element $C_{i,j}$ in the resulting matrix:

$$C_{i,j} = \sum_{k=1}^{n} A_{i,k} \times B_{k,j}$$

Where A is an $m \times n$ matrix, and B is an $n \times p$ matrix.

3.2.3 Notes:

- The product of $A \times B$ will be of dimension $m \times p$.
- The number of columns in matrix A (i.e., n) must match the number of rows in matrix B for the multiplication to be possible.

3.3 Matrix Multiplication in Python

Write a Python function matrix_multiply that takes to input matrices, A and B and returns the product of their matrix multiplication

• Example:

```
A = [[1, 2], [3, 4]]
B = [[5, 6], [7, 8]]
matrix_multiply(A, B)
```

[[19, 22], [43, 50]]

• Answer:

```
def matrix_multiply(A, B):
     # Initialize an empty list to store the result of the matrix multiplication
     result = []
3
4
     # Create a matrix with the same number of rows as A and columns as B,
      for i in range(len(A)):
       row = [] # Initialize a new row
       for j in range(len(B[0])): # Iterate over columns of B
         row.append(0) # Append 0 to represent the initial state
       result.append(row) # Append the row to the result matrix
10
11
     # Perform matrix multiplication
12
     for i in range(len(A)): # Loop over rows of A
13
       for j in range(len(B[0])): # Loop over columns of B
         for k in range(len(B)): # Loop over rows of B (and columns of A)
15
           # Multiply corresponding elements and add to the current cell in
16

    result

           result[i][j] += A[i][k] * B[k][j]
17
18
     return result # Return the result matrix
19
20
   # Example matrices to test the function
   A = [[1, 2], [3, 4]]
   B = [[5, 6], [7, 8]]
   matrix multiply(A, B) # Expected output: [[19, 22], [43, 50]]
```

[[19, 22], [43, 50]]

- Explanation:
- 1. **Matrix Setup:** The first loop constructs a result matrix with the appropriate dimensions (rows of $A \times$ columns of B), initialized to zeros.
- 2. **Matrix Multiplication:** The nested loops calculate the dot product for each element in the result matrix by summing the products of corresponding elements in each row of A and column of B.
- 3. **Return Statement:** Finally, the function returns the resulting matrix after the multiplication.

3.4 Key Points:

• The outer loops traverse the rows and columns.

• The inner loop calculates the dot product between rows of A and columns of B.

3.5 Time Complexity of Matrix Multiplication

- For two matrices, A of size $m \times n$ and B of size $n \times p$, the time complexity of standard (naive) matrix multiplication is: $O(m \times n \times p)$
- If the matrices are square (i.e., m = n = p), the time complexity simplifies to $O(n^3)$.

3.6 Applications of Matrix Multiplication

- Transformation: In computer graphics, matrix multiplication is used to rotate, scale, or translate objects.
- Data Representation: In machine learning, data is often represented as matrices, such as weights in neural networks.
- Solving Systems of Equations: In linear algebra, matrix multiplication helps solve systems of equations.

4 Recursive Fibonacci

Figure 5: Nautilus shell

4.1 Recursive Fibonacci Sequence

- Write a recursive function that calculates the Fibonacci number for a given n.
- Test it with small values like n = 5 and n = 6.

```
def fibonacci(n):
    if n <= 1:
        return n
    else:
        return fibonacci(n - 1) + fibonacci(n - 2)

print(fibonacci(5)) # Output: 5
    print(fibonacci(6)) # Output: 8</pre>
```

4.2 Recursive Tree Visualization

• Draw the recursion tree to visualize the recursive calls n = 5:

• Notice how the same values are recomputed multiple times.

4.3 Counting the Number of Recursive Calls

• Modify the fibonacci function to count the number of recursive calls.

```
def fibonacci(n):
    global call_count
    call_count += 1
    if n <= 1:
        return n
    else:
        return fibonacci(n - 1) + fibonacci(n - 2)</pre>
```

• Number of calls for fibonacci(5)

```
n = 5
call_count = 0
fibonacci(n)
print("Number of recursive calls for n = ", 5, ": " , call_count)
```

Number of recursive calls for n = 5 : 15

• Number of calls for fibonacci(6)

```
n = 6
call_count = 0
fibonacci(n)
print("Number of recursive calls for n = ", 6, ": " , call_count)
```

Number of recursive calls for n = 6 : 25

4.4 Visualizing the Number of Recursive Calls

• Count the recursive calls for multiple values of n and plot the results.

4.5 Time Complexity of Fibonacci

- Every call to fibonacci(n) splits into two subproblems: fibonacci(n-1) and fibonacci(n-2).
- The total number of nodes in the tree is approximately 2^n , leading to the time complexity of $O(2^n)$.

5 Summary

[Source: Big O Notation Tutorial – A Guide to Big O Analysis]