浙江大学 20 17-20 18 学年 秋冬 学期

《微积分(甲)I》课程期末考试试卷

课程号: <u>821T0010</u>, 开课学院: 数学科学学院

考试试卷: A卷、B卷(请在选定项上打 ✓) 任课教师: _____

考试形式: 闭、开卷(请在选定项上打 ✓), 允许带 笔 入场

考试日期: 2018 年 1 月 22 日, 考试时间: 120 分钟

诚信考试, 沉着应考, 杜绝违纪。

生姓名:			学	号:					
	题序	— (1 ~ 3)	(4 ~ 5)	(6 = 7)	(8~9)	(10~11)	(12~13)	(14~14)	总分
	得分								
	评卷人								

1. (8分)设 a,b 为实常数, 已知函数 $f(x)=\begin{cases} (2017+x)^x+b \ , & x\geq 0; \\ a(1-x)^{\frac{1}{x}} & , & x<0. \end{cases}$ 年 x=0 处可导,试求 a,b 的值.

2. (7分)计算极限值: $\lim_{x\to +\infty} \left(\sqrt[3]{x^3+x^2+1} - \sqrt[4]{x^4+1}\right)$.

3. (5分)设 $f(x) = \arctan x$, 试求 $f^{(2018)}(0)$ 的值.

4. (5分)用
$$\varepsilon - N$$
 语言证明: $\lim_{n \to \infty} \frac{2n^2 + 1}{3n^2 + 4} = \frac{2}{3}$.

5.
$$(5分)$$
设 $f(t) = \begin{cases} \sin\frac{1}{t}, & t \neq 0; \\ 1, & t = 0. \end{cases}$, 又设 $F(x) = \int_0^x f(t)dt$, 试求 $F'(0)$ 的值.

6. (10分)设可导函数 y=y(x) 满足方程 $x^y+y^x=2$, 试求 $dy\Big|_{x=1}$.

7. (10分)设 y = y(x) 由参数方程 $\begin{cases} x = t - \sin t, & t \in (0,1); \\ y = 1 - \cos t, & t \in (0,1). \end{cases}$ 决定, 试求 y'(x), y''(x).

8. (7分)求不定积分 $\int \arctan \sqrt{\frac{1-x}{1+x}} dx, x \in (-1,1)$.

9. (8分)求函数 $y = x^3 - 3|x| + 1$ 的极值.

10. (8分)计算反常积分 $\int_1^{+\infty} \frac{\arctan x}{x^2} dx$ 的值.

11. (7分)从半径为r>0的圆形铁皮中剪去一个顶点在圆心的扇形, 使卷起所得的漏斗具有最大的容积, 问此时应剪去的扇形的中心角为多少?

12. (5分)设 c < d 是两个实数, f 是开区间 (c,d) 上的二阶可导函数,且 $\forall x \in (c,d), f''(x) > 0$,试证 明: $\forall x_1, x_2 \in (c, d), 且x_1 < x_2$ 有

$$f(\frac{x_1+x_2}{2}) \leq \frac{1}{x_2-x_1} \int_{x_1}^{x_2} f(t) dt \leq \frac{f(x_1)+f(x_2)}{2}.$$

- 13. (7分)(1) 证明: $\forall n \in \mathbb{N}, \int_0^{\frac{\pi}{2}} (\sin x)^n dx = \int_0^{\frac{\pi}{2}} (\cos x)^n dx$;
 - (2) $\forall n \in \mathbb{N}$,记 $I_n = \int_0^{\frac{\pi}{2}} (\sin x)^n dx$,证明: $\forall n \in \mathbb{Z}, n \geq 2,$ 有 $I_n = \frac{n-1}{n} I_{n-2}$;
 (3) 证明: $\forall n \in \mathbb{Z}^+, I_{2n} = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2}$, $\forall n \in \mathbb{N}, I_{2n+1} = \frac{(2n)!!}{(2n+1)!!}$;
 (4) 证明 Wallis 公式: $\lim_{n \to \infty} \frac{(n!)^2 2^{2n}}{(2n)! \sqrt{n}} = \sqrt{\pi}$.

(8 %)(1) $\forall n \in \mathbb{Z}^+, \diamondsuit a_n = \frac{n!e^n}{n^{n+\frac{1}{2}}}$,试证明正数数列 $\{a_n\}$ 单调递减. 从而由单调有界数列必有极度,数别 $\{a_n\}$ 收敛,记其极限为 α ;

- $\forall n \in \mathbb{Z}^+, \diamondsuit b_n = a_n e^{-\frac{1}{4n}}$,试证明数列 $\{b_n\}$ 单调递增. 又 $\lim_{n \to \infty} b_n = \alpha$,由此可得 $\alpha > 0$;
- (3) 利用 Wallis 公式证明 $\alpha = \sqrt{2\pi}$;
- (4) 证明最简形式的 Stirling 公式: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (n \to \infty)$.