TEMPERATURE SCALE

 $\frac{C}{5} = \frac{F-32}{9} = \frac{K-273}{5}$ (celcius-fahrenheitkelvin conversion)

any scale conversion formula

Reading on any scale - lower fixed point = constant

Upper fixed point - lower fixed point

LINEAR THERMAL EXPANSION

 $3. \propto = \frac{\Delta I}{I \wedge \Omega}$ — unit — /°c or/k, dimension-K⁻¹

APPLICATIONS OF LINEAR EXPANSION

Pendulum clock

Fact - When temperature increases time period increases, clock runs slow

→ When temperature decreases, time period decreases, clock runs fast

1) Loss of time in any given time interval t,

$$\Delta t = \frac{1}{2} \alpha \Delta \theta t$$

2) Time lost by clock in a day

$$\Delta \textbf{t} = \frac{1}{2} \alpha \Delta \theta \, \textbf{t} = \frac{1}{2} \alpha \Delta \theta \, \textbf{86400} = \textbf{43200} \, \alpha \Delta \theta$$

Thermal Stress in a rigidly fixed rod

Thermal Stress=Yabe

Y-Young's Modulus

a-coefficent of linear Thermal Force=YA a A B

expansion $\Delta\theta$ -temperature change

A - Area of rod

ERROR IN SCALE READING DUE TO EXPANSION OR CONTRACTION

Result: At $\theta' > \theta$ True value > Scale reading At 0'<0 True value < Scale reading

True value= Scale reading $(1+\propto \Delta\theta)$

BIMETALLIC STRIP

 \propto_{cu} \rightarrow \propto_{Fe} \longrightarrow So when temperature increases $\rightarrow \triangle I$ of $Cu > \triangle I$ of Fe

 \rightarrow strip with higher value of \propto will be on convex side

EXPANSION OF CAVITY

Area of hole increases. Body expands on heating. Expansion of area of body is independent of shape and size of hole

SUPERFICIAL/AREAL EXPANSION

 $1.\Delta A = A \beta \Delta \theta$ $2.A^{\dagger} = A(1+\beta\Delta\theta)$

1. $\Delta V = V \gamma \Delta \theta$

2. $V'=V(1+\gamma_{\Delta\theta})$

3. $\gamma = \frac{\Delta V}{V\Delta\theta} \longrightarrow \text{unit} \longrightarrow 0^{\circ} \text{c or/K}$

Density $\propto \frac{1}{\text{Volume}}$

2. On heating.

k, dimension-[K⁻¹] $\propto : \beta : \gamma = 1:2:3$

Variation of density with temperature

then $\rho' = \rho_{(1-\gamma_{\Delta\theta})}$

 $V' = V(1 + \gamma_{\Delta \theta})$

ANOMALOUS EXPANSION OF WATER

1. Water has maximum density at 4°C (minimum volume)

 $0^{\circ}C \longrightarrow 4^{\circ}C$, water contracts

4°C → above, water expands

B -coefficient of areal expansion

 $\gamma = \text{coefficient of volumetric}$

3. $\beta = \frac{\Delta A}{A \wedge T}$ — unit — /°c or/k, dimension-[K-1]

CUBICAL EXPANSION/VOLUME EXPANSION

CALORIMETRY

1 calorie=4.2J

Heat Supplied (AQ)

change in temperature of body

1. ∆Q=ms ∆T s-specific heat capacity

SI unit- $\frac{\text{Joule}}{\text{kg Kelvin}} \longrightarrow \text{J kg}^{-1}\text{K}^{-1}$

2. $s_{water} = 1 \frac{cal}{q^{\circ}C} = 4.2 \frac{J}{q^{\circ}C} = 4200 \frac{J}{ka^{\circ}C}$

 $S_{ice} = \frac{1}{2} \frac{cal}{g^0 C} = 2.1 \frac{J}{g^0 C} = 2100 \frac{J}{kg^0 C}$

Heat supplied at constant rate

Graph & equation

if specific heat is variable

S=f(T) $T_1 \longrightarrow T_2$

change of state of body

Meltina $\Delta Q = mL_{z}$ L.-Latent heat of fusion

Boilina $\triangle Q = mL$ L -Latent heat of vaporization

• $L_f = L_{ice} = 80 \frac{\text{cal}}{a} = 80 \times 4.2 \frac{\text{J}}{a} = 80 \times 4200 \frac{\text{J}}{k_B}$ $\bullet L_v = L_{steam} = 540 \frac{cal}{g} = 540 \times 4.2 \frac{J}{g} = 540 \times 4200 \frac{J}{kg}$

HEAT CAPACITY

Heat capacity=mass×specific heat capacity Unit= $\frac{\text{cal}}{0C}$, SI unit is $\frac{J}{K}$

WATER EQUIVALENT

or lose the same quantity of heat as a given substance will do for same change in temperature

b=body

The mass of water that will absorb

 $m_w s_w = m_b s_b$

PRINCIPLE OF CALORIMETRY

 $\triangle Q = \int_{0}^{T_2} msdT$

Heat lost by the hotter bodies = Heat gained by colder bodies $Q_3 = Q_1 + Q_2$

process.

$$T_{eq} = \frac{m_1 s_1 T_1 + m_2 s_2 T_2 + m_3 s_3 T_3}{m_1 s_1 + m_2 s_2 + m_3 s_3} = \frac{\sum msT}{\sum ms}$$

ICE-WATER SYSTEM

Problem solving methodology

- 1. m, gram ice $[-\theta \, {}^{\circ}C]$ mixed with m, gram water $[\theta \, {}^{\circ}C]$
- 2. Convert $-\theta_{.}^{\circ}C$ ice $\longrightarrow 0^{\circ}C$ ice

$$\Delta Q_1 = m_1 S_{ice} \theta_1$$

3. Convert $0^{\circ}C$ ice $\longrightarrow 0^{\circ}C$ water

$$\Delta Q_2 = m_1 L_f$$

4. Convert θ_2 °C water \longrightarrow 0°C water

$$\Delta \mathbf{Q}_3 = \mathbf{m}_2 \mathbf{S}_{water} \mathbf{\theta}_2$$

 $\triangle \mathbf{Q}_{2} > = \langle \text{ or } \triangle \mathbf{Q}_{1} + \triangle \mathbf{Q}_{2} \rangle$ check

 $\triangle Q_3 > \triangle Q_1 + \triangle Q_2$

1. Whole ice melts into water

 $\triangle Q_3 < \triangle Q_1 + \triangle Q_2$ 1. Only m' g of ice melts

- 2. Additional heat [$\Delta Q' = \Delta Q_3 (\Delta Q_1 + \Delta Q_2)$]
 - is used to increase the temperature of system from 0°C
- 3. Final temperature can be found out by AQ' = Mtotal Swater T
- found by [m=mass of ice m L_f=Q melted]

2. Mass of ice melted can be

3. Final temperature is 0°C

CONVERSION OF MECHANICAL ENERGY TO HEAT ENERGY

1. Potential energy to heat energy

 $\Delta U = mgh \xrightarrow{converts to heat} \Delta Q = m'L_{\epsilon}$

[m' = mass of substance melted/vaporized1 When equating, multiply $\triangle Q$ with 4200 J if L is in cally

i.e., mgh = m'L. × 4200

2. Kinetic energy to Heat energy

 $K.E = \frac{1}{2}mv^2 \xrightarrow{\text{converts to heat}} \Delta Q = m'L_f [m' = \text{mass of substance}]$ melted/vaporized] If L_f is in calorie

$$\frac{1}{2}$$
mv² = m'L_f × 4200

HEAT TRANSFER

1. Conduction:

Heat flows from hot end to cold end. Medium is necessary.

Slow process.

Unit of 'K' = $\frac{\text{watt}}{\text{metre}^{\circ}C}$ or $\frac{\text{watt}}{\text{metre} K}$

'K' depends on the nature of material

K = coefficient of thermal conductivity

 $\frac{d\theta}{d\theta}$ = Temperature gradient

 $\frac{dQ}{dt}$ = Rate of flow of heat

A = Area of cross section

THERMAL PROPERTIES OF MATTER

REAL AND APPARENT EXPANSION OF LIQUID

1. Apparent expansion of liquid—

2. Apparent change in volume

 $\Delta V_{\text{apparent}} = V_0 \gamma_{\text{apparent}} \Delta \theta$

 $\Rightarrow \Delta V_{\text{apparent}} = V_0 (\gamma_1 - \gamma_s) \Delta \theta$

 \Rightarrow $\gamma_{\text{apparent}} = \gamma_{\text{I}} - 3 \propto_{\text{s}}$

 $\Rightarrow \Delta \textbf{V}_{\text{apparent}} \text{=} \textbf{V}_{\text{0}} (\gamma_{\text{I}} \text{-} \textbf{3} \boldsymbol{\propto}_{\text{s}}) \Delta \boldsymbol{\theta}$

(Real expansion of liquid expansion of solid in which liquid is contained)

 γ_1 -Real expansion of liquid

∝. -coefficent of linear expansion

Final equilibrium temperature

Facts: Calorimeter -A device for measurement of amount of heat involved in a

OHM'S LAW OF CONDUCTION

Electrical Conduction

1) current, $I = \frac{dq}{dt}$

2)
$$I = \frac{\Delta V}{R} (\Delta V = V_{high} - V_{low})$$

3) electrical resistance, $R = \frac{PI}{A}$

4)
$$I = \frac{V_1 - V_2}{R} = \frac{(V_1 - V_2)A = \sigma A}{|P|} (V_1 - V_2)$$

- 5) Combination of resistors
- i) Series Combination

Here 'I' is same in all resistors

ii) Parallel Combination

Here $(V_1 - V_2)$ is same for all resistors

Thermal Conduction

1) Heat current, $H = \frac{dQ}{dt}$

2)
$$H = \frac{\theta_1 - \theta_2}{R} = \frac{\Delta \theta}{R} (\theta_1 > \theta_2)$$

3) Thermal resistance, $R = \frac{1}{KA}$

4) H=
$$\frac{\theta_1 - \theta_2}{R}$$
 = $\frac{\theta_1 - \theta_2}{(I/KA)}$ = $\frac{KA}{I}$ ($\theta_1 - \theta_2$)

5) Combination of conductors

i) Series Combination

replace to resistors

$$R_1 = \frac{I_1}{K_1 A} \quad R_2 = \frac{I_2}{K_2 A} \quad R_1 \quad R_2$$

Find R_{ea}=R₁+R₂+...... Here, heat current, From that find 'K'. H is same in a conductors

ii) Parallel Combination

replace with resistors

Find $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

from that find Ken

Here Temp Difference is same for all conductors

CONVECTION

Requires a medium. Actual movement of fluid. Occus naturally or forced.

Natural convection takes place due to the effect of gravity Applications:

Sea Breeze

Land Breeze

Wind blows from sea to land during day time

Wind blows from land to sea during night

RADIATION

Absorptive, reflective and Transmittive power

a+r+t=1

Absorptive power(a)= $\frac{Q_a}{Q}$ = $\frac{Energy\ absorbed}{Energy\ inciden+}$

Reflective power(r)= $\frac{Q_r}{Q}$ = $\frac{\text{Energy reflected}}{\text{Energy incident}}$

Transmittive power(t)= $\frac{Q_t}{Q}$ = $\frac{Energy transmitted}{Energy incident}$

fourth power of

of the body

and surface area

absolute temperature

EMISSIVE POWER/INTENSITY OF THERMAL RADIATION

Emissive power(E)= $\frac{\text{Energy radiated}}{\text{area} \times \text{time}}$

Spectral emissive power(E_{λ})= $\frac{\text{Energy radiated}}{\text{area} \times \text{time} \times \text{wavelength}} \stackrel{\text{unit}}{\rightarrow} \frac{\text{Watt}}{\text{m}^3}$

Relation between E & E $_{\lambda}$ ==> E= $\int_{-\infty}^{\infty} E_{\lambda} d\lambda$

For ordinary body $E = e \sigma T^4$

$$\frac{\Delta \mathbf{Q}}{\Delta t} = e \mathbf{A} \circ \mathsf{T}^4 \qquad \text{e-emissivity}$$

In the presence of a surrounding. (T₀=Surrounding temperature) For black body,

$$E = \sigma A(T^4 - T_0^4)$$

In the presence of a surrounding. (T₀=Surrounding temperature) For general body,

NEWTON'S LAW OF COOLING

EQUATION FOR PROBLEM SOLVING if $\theta = \theta$ is small, then

$$\frac{-[\theta_2 - \theta_1]}{\Delta t} = K \left[\left(\frac{\theta_2 + \theta_1}{2} \right) - \theta_0 \right]$$

$$\theta_1 \xrightarrow{\theta_0} \Delta t \xrightarrow{\Phi_2} \theta_2$$

 $\theta_1 > \theta_2$

∆t=time

 $\theta \rightarrow$ surrounding temperature

WIEN'S LAW

Hence $\frac{A_1}{A_2} = \left[\frac{T_1}{T_2}\right]^2$

 $\lambda_{\mathbf{m}_{1}} \mathbf{T}_{1} = \lambda_{\mathbf{m}_{2}} \mathbf{T}_{2}$ Area under the graph, $A = \int_{0}^{\infty} \mathbf{E}_{\lambda} d\lambda = \mathbf{E} = \sigma \mathbf{T}^{4}$ [Dimensions]=[b]=[LK]

b= 2.89 10⁻³ mK

EMISSIVITY (e)

e= Energy radiated by a general body
Energy radiated by a black body

value of $e \implies 0 < e < 1$

If e=0, the body radiates no energy

If e=1, the body is a perfect black body

KIRCHHOFF'S LAW

Ratio of emissive power to absorptive power is same for all surfaces at the same temperature and is equal to the emissive power of a perfectly black body at that temperature.

STEFAN'S LAW

 $\sigma \longrightarrow Stefan's constant$ $\frac{\Delta Q}{\Delta t} \longrightarrow Radiant power$

value of $\sigma \longrightarrow 5.67 \times 10^{-8}$ W m⁻² K⁻⁴

Dimension \longrightarrow [σ] = MT⁻³K⁻⁴

$$\frac{\mathsf{E}_1}{\mathsf{a}_1} = \frac{\mathsf{E}_2}{\mathsf{a}_2} = \dots = \mathsf{E}_\mathsf{b}$$

Emissive power

of a black body

"As the temperature of the body increases, the wavelength at which the spectral intensity (E,) is maximum shift towards left."

Rate of cooling ∞ excess temperature of the body over the surrounding.

$$\frac{-dT}{dt}$$
 \propto (T-T_o)

T, = initial temperature of the body

NEWTON'S LAW OF COOLING

Rate of cooling
$$\infty$$
 excess temperature of the body over the surrounding.

$$\frac{-a_1}{dt} \propto (T-T_0)$$

T=Temperature of body T₀=Temperature of surrounding

$$\frac{\Gamma - \Gamma_0}{\Gamma_i - \Gamma_0} = e^{-k\tau}$$

TEMPERATURE OF INTERMEDIATE JUNCTION

