Planilha1

Método Jacobi-Richardson

 $4x_0 + 2x_1 + x_2 = 7$ Sistema $x_0 + 3x_1 + x_2 = -8$ Linear $2x_0 + 3x_1 + 6x_2 = 6$

Matriz A

			verb
4	2	1	7
1	3	1	-8
2	3	6	6

Matriz A*

			Vet B*
0	0,5	0,25	1,75
0,333333	0	0,33333	-2,6667
0,333333	0,5	0	1

A* e B* tem seus valores divididos pelo respectivo elemento da diagonal principal de A. Diagonal de A* é nula

Converge? 0,75 =>Soma dos absolutos da linha A*[0] Se max < 1

0,833333 =>Soma dos absolutos da linha A*[3]

Vetor $x[i]^{k+1} = B^*[i] - (A^*[ij].x[j]^k)$, para i <> j e 0 >= j < n

0,666667 =>Soma dos absolutos da linha A*[1]

Iterações k	x[0]	x[1]	x[2]	Somat de	(A*[i j].x	[j]k)
X^0	1,750	-2,667	1,000			
X^1	2,833	-3,583	1,750	1,083	-0,917	0,750
X^2	3,104	-4,194	1,847	1,354	-1,528	0,847
X ³	3,385	-4,317	2,063	1,635	-1,650	1,063
X^4	3,393	-4,483	2,030	1,643	-1,816	1,030
X ⁵	3,484	-4,474	2,110	1,734	-1,808	1,110
X ⁶	3,460	-4,531	2,076	1,710	-1,865	1,076
X ⁷	3,497	-4,512	2,112	1,747	-1,845	1,112
X8	3,478	-4,536	2,090	1,728	-1,870	1,090
X ⁹	3,496	-4,523	2,109	1,746	-1,856	1,109
X^{10}	3,484	-4,535	2,096	1,734	-1,868	1,096
X^{11}	3,493	-4,527	2,106	1,743	-1,860	1,106
X^{12}	3,487	-4,533	2,099	1,737	-1,866	1,099
X ¹³	3,492	-4,529	2,104	1,742	-1,862	1,104

i=0	$A_{00}.X_0 + A_{01}.X_1 + A_{02}.X_2 = B_0$	
	$-A_{00}.X_0 = A_{01}.X_1 + A_{02}.X_2 - B_0$	
	$-X_0 = 1/A_{00}$. (- $B_0 + A_{01}.X_1 + A_{02}.X_2$)	
	$X_0 = 1/A_{00}$. (B_0 - A_{01} . X_1 - A_{02} . X_2)	Substitui $x_1^{(k)}$ e $x_2^{(k)}$ para encontrar $x_0^{(k+1)}$.
	$X_0^{k+1} = 0.X_0 - (A_{01}/A_{00}).X_1 - (A_{02}/A_{00}).X_2 + (A_{01}/A_{00}).X_1 - (A_{02}/A_{00}).X_2 + (A_{01}/A_{00}).X_1 - (A_{01}/A_{00}).X_2 + (A_{01}/A_{00}).X_3 + $	- B ₀ /A ₀₀

i=1 $A_{10}.X_0 + A_{11}.X_1 + A_{12}.X_2 = B_1$ $-A_{11}.X_1 = A_{10}.X_0 + A_{12}.X_2 - B_1$ $-X_1 = 1/A_{11}$. (- $B_1 + A_{10}$. $X_0 + A_{12}$. X_2) $X_1 = 1/A_{11}$. ($B_1 - A_{10}$. $X_0 - A_{12}$. X_2) Substitui $x_0^{(k)}$ e $x_2^{(k)}$ para encontrar $x_1^{(k+1)}$. $X_1^{k+1} = -(A_{10}/A_{11}).X_0 - 0.X_1 - (A_{12}/A_{11}).X_2 + B_1/A_{11}$

$$\begin{split} i=2 & A_{20}.X_0 + A_{21}.X_1 + A_{22}.X_2 = B_2 \\ & -A_{22}.X_2 = A_{20}.X_0 + A_{21}.X_1 - B_2 \\ & -X_2 = 1/A_{22} \cdot (-B_2 + A_{20}.X_0 + A_{21}.X_1) \\ & X_2 = 1/A_{22} \cdot (B_2 - A_{20}.X_0 - A_{21}.X_1) \end{split}$$
 Substitui $x_0^{(k)}$ e $x_1^{(k)}$ para encontrar $x_2^{(k+1)}$.

 $X_2^{k+1} = -(A_{20}/A_{22}).X_0 - (A_{21}/A_{22}).X_1 - 0.X_2 + B_2/A_{22}$

Qual é o critério de parada? Enquanto $mr^{k+1} > 0,001$

 $Dif[i]^{k+1} = Abs(x[i]^{k+1} - x[i]^k), para 0 >= i < n$

 $Mr^{k+1} = Max(Dif[0]^{k+1}; ...; Dif[n-1]^{k+1}) / Max(Abs(x[0]^{k+1}; ...; x[n-1]^{k+1}))$

	Dif.[0n-:	Mr^{k+1}			
Dif[0]		Dif[1]	Dif[2]		
	1,083	0,917	0,750	0,302	
	0,271	0,611	0,097	0,146	
	0,281	0,123	0,215	0,065	
	0,008	0,166	0,032	0,037	
	0,091	0,008	0,080	0,020	
	0,024	0,057	0,034	0,013	
	0,037	0,020	0,037	0,008	
	0,019	0,025	0,022	0,005	
	0,018	0,014	0,019	0,004	
	0,011	0,012	0,013	0,003	
	0,009	0,008	0,010	0,002	
	0,007	0,006	0,007	0,002	
	0.005	0.005	0.005	0.001	

O resultado final encontra-se na última iteração de x $(x^{13}=\{3,492; -4,529; 2,104\})$ (comparando 7.01 o resultado -7.99 Substituindo-se $x^{13}[0]$, $x^{13}[1]$ e $x^{13}[2]$ no sistema tem-se, aproximadamente, 7, -8 e 6 com B) 6.02