Logic (PHIL 2080, COMP 2620, COMP 6262) Chapter: Propositional Logic — Recap on Proof Strategies

Introduction

Introduction •00

2.15

- You know how to prove $X \vdash A$ via ND
- You know how to prove $X \vdash A$ via ST
- ND is useful to show $X \vdash A$ is valid.
- To show invalidity, ST is more convenient.

Introduction

So, when to use which?

Introduction

- If we don't tell whether it's valid or invalid:
 - If you think the sequent is invalid: ST is most useful
 - If you think the sequent is valid: Choose what you are stronger in!
 - If you don't know either way: Use ST and let it tell you!

Strategies: Overview

Semantic Tableau:

- Always apply non-branching rules first.
- In case of invalid sequents you could follow down branches leading to an open branch more quickly – which requires "seeing" which interpretation proves invalidity.

Natural Deduction:

- See the next slide.
- We also sometimes need the fall-back strategy: Assume negation of final derivation and exploit contradiction.

How to show $X \vdash A$? Depends on A!

Note:

- X ⊢ A can also refer to sub steps!
- Usually, you will need $\forall E$ if $B \lor C \in X$, not if $B \lor C = A$.

Examples for Natural Deduction

8.15

$X \vdash A$, A is an Implication

$X \vdash A$, A is a Negation

$$\neg(p \lor q) \vdash \neg p$$

$$\frac{X,B\vdash A \qquad Y,B\vdash \neg A}{X,Y\vdash \neg B}RAA$$

$$\alpha_1$$
 (1) $\neg (p \lor q)$ A

$$\alpha_2$$
 (2) p

$$\alpha_2$$
 (3) $p \lor q$ 2 $\lor I$

$$\alpha_1$$
 (4) $\neg p$ 1,3[α_2] RAA

$X \vdash A$, A is a Disjunction (here: in one of the Substeps)

$X \vdash A$, A is an Atom (Or: all Other Strategies Fail)

If everything else fails, assume $\neg A$ and derive A: $\frac{X, \neg A \vdash A}{X \vdash A}$

Closely related is the sequent: $\neg p \rightarrow p \vdash p$ (p is so true that it's even implied by its own negation!)

(9)

 $(p \rightarrow q) \rightarrow p \vdash p$ Example: α_1 (1) $(p \rightarrow q) \rightarrow p$ A $(2) \neg p$ α_2 (3) p α_3 $(4) \neg \neg q$ 2,3[] *RAA* α_2, α_3 4 ¬¬*E* (5) q α_2, α_3 $5[\alpha_3] \rightarrow I$ (6) $p \rightarrow q$ α_2 1.6 *→E* α_1, α_2 (8) $2,7[\alpha_2]RAA$ α_1 $\neg \neg p$

8 ¬¬E

Yoshihiro Maruyama

 $lpha_1$

Examples for Semantic Tableau

We now show $(p \to q) \to p \vdash p$ via Semantic Tableau.

$$(p \rightarrow q) \rightarrow p \vdash p$$

$$(1) \quad T: \quad (p \rightarrow q) \rightarrow p \quad \checkmark$$

$$(2) \quad F: \quad p$$

$$(2) \quad F: \quad p$$

$$(3) \quad F: \quad p \rightarrow q \quad \checkmark \quad \text{from (1)} \quad (4) \quad T: \quad p \quad \checkmark \quad \text{from (1)}$$

$$(5) \quad T: \quad p \quad \checkmark \quad \text{from (3)}$$

$$(6) \quad F: \quad q \quad \text{from (3)}$$

The primary strategy (that often suffices to create small trees) is:

- Always apply rules first that don't branch!
- Don't forget branches!! And mark lines that are "done".

Summary

Content of this Lecture

 Today, we did a recap on how to prove various kinds of sequents via Natural Deduction and Semantic Tableau

