Visualizing and Predicting Heart Diseases with an Interactive Dash Board

A PROJECT REPORT

Submitted By

JITENDAR PATEL B 210819205022
GIRITHARAN B 210819205009
HARISH K 210819205013
NAVEEN KUMAR R 210819205032

In partial fulfilment for the award of the degree

Of

BACHELOR OF TECHNOLOGY

In

INFORMATION TECHNOLOGY KINGS ENGINEERING COLLEGE, IRUNGATTUKOTAI ANNA UNIVERSITY: CHENNAI 600025

BONAFIDE CERTIFICATE

Certified that mini project report "Visualizing and Predicting Heart

Diseases with an Interactive Dash Board" is bonafide work of "JITENDAR

PATEL B, GIRITHARAN B, HARISH K, NAVEEN KUMAR R" who carried out this mini project work under my supervision.

SIGNATURE SIGNATURE

Dr.G. MANIKANDAN Mr. J Briso Becky Bell

HEAD OF THE DEPARTMENT SUPERVISOR

Professor Associate Professor

Dept of Information Technology,

Dept of Information Technology

Kings Engineering College, Kings Engineering College,

Irungattukottai, Irungattukottai,

Chennai-602 117 Chennai-602 117.

ACKNOWLEDGEMENT

We thank God for his blessings and also for giving as good knowledge and strength in enabling us to finish our project. Our deep gratitude goes to our founder late **Dr. D. SELVARAJ**, **M.A.**, **M.Phil.**, for his patronage in the completion of our project. We like to take this opportunity to thank our honourable chairperson **Dr.S. NALINI SELVARAJ**, **M.COM.**, **MPhil.**, **Ph.D.** and honourable director, **MR.S. AMIRTHARAJ**, **M.Tech.**, **M.B.A** for their support given to us to finish our project successfully. We wish to express our sincere thanks to our beloved principal. **Dr.T.JOHN ORAL BASKAR.**, **M.E.**, **Ph.D** for his kind encouragement and his interest towards us.

We are extremely grateful and thanks our professor to Dr.G.MANIKANDAN, head of Information Technology, Kings Engineering College, for his valuable suggestion, guidance and encouragement. We wish to express our sense of gratitude to our project supervisor Dr. J Briso Becky Bell, Assistant Professor of Information Technology Department, Kings Engineering College and project evaluator Dr.M Robinson Joel, Associate Professor of Information Technology Department, Kings Engineering College whose idea and direction made our project a grand success. We express our sincere thanks to our parents, friends and staff members who have helped and encouraged us during the entire course of completing this project work successfully.

TABLE OF THE CONTENT

CHAPTER	CONTENTS	PAGE NO
1	INTRODUCTION	
	1.1 PROJECT OVERVIEW	1
	1.2 PURPOSE	1
2	LITERATURE SURVEY	
	2.1 EXISTING PROBLEMS	3
	2.2 REFERENCES	3
3	IDEATION AND PROPOSED SOLUTION	
	3.1 EMPATHY MAP	5
	3.2 IDEATION AND BRAINSTORMING	6
	3.3 PROPOSED SOLUTION	7
	3.4 PROBLEM SOLUTION FIT	9

4	REQUIREMENT ANALYSIS	
	4.1 FUNCTIONAL REQUIREMENTS	10
	4.2 NON-FUNCTIONAL REQUIREMENTS	11
5	PROJECT DESIGN	
	5.1 DATA FLOW DIAGRAMS	12
	5.2 SOLUTION AND TECHNICAL ARCHITECTURE	13
	5.3 USER STORIES	13
	5.4 Application Characteristics	14
6	PROJECT PLANNING AND SCHEDULING	
	6.1 SPRINT PLANNING AND ESTIMATION	15
	6.2 SPRINT DELIVERY SCHEDULE	16
	6.3 REPORTS FROM JIRA	16
7	CODING AND SOLUTIONING	
	7.1 FEATURE 1: PREDICTION MODEL	17
	7.2 FEATURE 2: DASHBOARD	24
	7.3 FEATURE 3: LOGIN	26
	7.3.1 FEATURE 4: SIGNUP	29
	7.3.2 DATABASE SCHEMA	32
	7.4 Training and Testing the Dataset	32
8	TESTING	
	8.1 TEST CASES	42
	8.2 USER ACCEPTANCE TESTING	42

9	RESULTS	
	9.1 PERFORMANCE METRICS	43
10	ADVANTAGES AND DISADVANTAGES	43
11	CONCLUSION	44
12	FUTURE SCOPE	44
13	APPENDIX	44
	APPENDIX A1- SCREENSHOTS	45

INTRODUCTION:

1.1: PROJECT OVERVIEW

The terms "heart disease" and "cardiovascular disease" are frequently used interchangeably. Heart disease is a general term that covers a wide range of heart related medical conditions. The irregular health state that directly affects the heart and all of its components is characterized by these medical conditions. In order to forecast cardiac disease, this study discusses various data mining, big data, and machine learning techniques. Building an important model for the medical system to forecast heart disease or cardiovascular illness requires the use of data mining and machine learning. Our application helps the user in finding out if they have heart disease or not. They can find out by entering details such as their heart rate, cholesterol, blood pressure etc. A dashboard is also attached along with the results for better understanding where they can compare their blood pressure and similar metrics with other users. This project focuses on Random Forest Classifier. The accuracy of our project is 87% for which is better than most other systems in terms of achieving accuracy quickly.

1.2: PURPOSE

This project's goal is to determine, depending on the patient's medical characteristics—such as gender, age, chest pain, fasting blood sugar level, etc.—whether they are likely to be diagnosed with any cardiovascular heart illnesses. The leading cause of death in the developed world is heart disease. Heart disease cases are rising quickly every day, thus it's crucial and worrisome to predict any potential illnesses in advance. This diagnosis is a challenging task that requires accuracy and efficiency. Therefore, there needs to be work done to help prevent the risks of having a heart attack or stroke. It is the main factor in adult deaths. By using a person's medical history, our initiative can identify

those who are most likely to be diagnosed with a cardiac condition. It can assist in identifying disease with less medical tests and effective therapies, so that patients can be treated appropriately. It can identify anyone who is experiencing any heart disease symptoms, such as chest pain or high blood pressure. Around the world, machine learning is applied in many different fields. There is no exception in the healthcare sector. Machine learning may be crucial in determining whether locomotor disorders, heart illnesses, and other conditions are present or absent. If foreseen well in advance, such information can offer valuable insights to doctors, who can then customise their diagnosis and course of care for each patient.

The EHDPS predicts the likelihood of patients getting heart disease. It enables significant knowledge, eg, relationships between medical factors related to heart disease and patterns, to be established. We have employed the multilayer perceptron neural network with backpropagation as the training algorithm

.

LITERATURE SURVEY

2.1 EXISTING PROBLEM

A quiet significant amount of works related to the diagnosis of heart disease using Machine Learning algorithms have been made. An efficient heart disease prediction has been made by using various algorithms some of them include Logistic Regression, KNN, Random Forest Classifier etc. It can be seen in results that each algorithm has its strength to register the defined objectives. The model incorporating IHDPS had the ability to calculate the decision boundary using the previous and new model of machine learning and deep learning. It facilitated the important and the most basic factors/knowledge such as family history connected with any heart disease. But the accuracy that was obtained in such IHDPS model was far more less than the new upcoming model such as detecting coronary heart disease using artificial neural network and other algorithms of machine and deep learning.

2.2 REFERENCES

- [1] Ali, Liaqat, et al, "An optimized stacked support vector machines based expert system for the effective prediction of heart failure." IEEE Access 7 (2019): 54007-54014. www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 8 August 2020 | ISSN: 2320-2882 IJCRT2008170 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1606
- [2] Mohan, Senthilkumar, Chandrasegar Thirumalai, and Gautam Srivastava, "Effective heart disease prediction using hybrid machine learning techniques." IEEE Access 7 (2019): 81542-81554.

- [3] Purushottam, Kanak Saxena and Richa Sharma, "Efficient heart disease prediction system." Procedia Computer Science 85 (2016): 962-969.
- [4] Singh, Yeshvendra K., Nikhil Sinha, and Sanjay K. Singh, "Heart Disease Prediction System Using Random Forest", International Conference on Advances in Computing and Data Sciences. Springer, Singapore, 2016.
- [5] Santhana Krishnan. J, Geetha S., "Prediction of Heart Disease Using Machine Learning Algorithms", 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)
- [6] Bo Jin ,Chao Che, Zhen Liu, Shulong Zhang, Xiaomeng Yin, And Xiaopeng Wei, "Predicting the Risk of Heart Failure With EHR Sequential Data Modeling", IEEE Access 2018.
- [7] Aakash Chauhan, Aditya Jain, Purushottam Sharma, Vikas Deep, "Heart Disease Prediction using Evolutionary Rule Learning", "International Conference on "Computational Intelligence and Communication Technology" (CICT 2018).
- [8] Boshra Bahrami, Mirsaeid Hosseini Shirvani, "Prediction and Diagnosis of Heart Disease by Data Mining Techniques", Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 2, February–2015.
- [9] M.Satish, D Sridhar, "Prediction of Heart Disease in Data Mining Technique", International Journal of Computer Trends & Technology (IJCTT), 2015.
- [10] Lokanath Sarangi, Mihir Narayan Mohanty, Srikanta Pattnaik, "An Intelligent Decision Support System for Cardiac Disease Detection", IJCTA, International Press 2015.

IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

Build empathy and keep your focus on the user by putting yourself in their shoes.

3.2 IDEATION & BRAINSTORMING

Brainstorm & Idea Prioritization Template:

3.3 PROPOSED SOLUTION

Our application helps the user in finding out if they have heart disease or not. They can find out by entering details such as their heart rate, cholesterol, blood pressure etc. A dashboard is also attached along with the results for better understanding where they can compare their blood pressure and similar metrics with other users. Our application has one of the smoothest user interfaces on the internet making it easy for the user to find their needs quickly and efficiently. And the tool utilizes best machine learning algorithms for better prediction. There are separate sections for viewing treatment options, warning signs of cardiac arrest, risk factors and causes of various types of heart diseases.

S. No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The leading cause of death in the developed world is heart disease. Therefore, there needs to be work done to help prevent the risks of having a heart attack or stroke.
2.	Idea / Solution description	An effective heart disease prediction system (EHDPS) is developed using neural network for predicting the risk level of heart disease. The system uses 15 medical parameters such as age, sex, blood pressure, cholesterol, and obesity for prediction. The EHDPS predicts the likelihood of patients getting heart disease. It enables significant knowledge, eg, relationships between medical factors related to heart disease and patterns, to be established. We have employed the multilayer perceptron neural network with backpropagation as the training algorithm. The obtained results have illustrated that the designed diagnostic system can effectively predict the risk level of heart diseases. Keywords: data mining, neural network, multilayer perceptron neural network, backpropagation, disease diagnosis
3.	Novelty / Uniqueness	The predict of heart disease is done in three phases: feature selection process in this process we will automatically or manually select those features which contribute most to your prediction variable or output in which you are interested in. The second phase is applying the machine learning algorithms which are AdaBoost, XGBoost and Stacking in which the data will be trained and tested. The third and the last phase is the User interface in which the user will enter his details and then the machine learning models will predict that the user will have heart diseases in future or not.

	0 117 110 1 0 10 1	61 4 1 6 3 3 3
4.	Social Impact / Customer Satisfaction	Given their flexibility, machine learning approaches may provide an opportunity to incorporate the complex nature of social determinants of health. The limited variety of sources and data in the reviewed studies emphasize that there is an opportunity to include
		more social determinants of health variables, especially environmental ones, that are known to impact cardiovascular disease risk and that recording such data in electronic databases will enable their use.
5.	Business Model (Revenue Model)	In today's digital world, several clinical decision support systems on heart disease prediction have been developed by different scholars to simplify and ensure efficient diagnosis. This paper investigates the state of the art of various clinical decision support systems for heart disease prediction, proposed by various researchers using data mining and machine learning techniques. Classification algorithms such as the Naïve Bayes (NB), Decision Tree (DT), and Artificial Neural Network (ANN) have been widely employed to predict heart diseases, where various accuracies were obtained. Hence, only a marginal success is achieved in the creation of such predictive models for heart disease patients therefore, there is need for more complex models that incorporate multiple geographically diverse data sources to increase the accuracy of predicting the early onset of the disease.
6.	Scalability of the Solution	Our system response the user request with in few seconds. Our system response many numbers of request at a time. So, this will ensure our application will scalable

3.4 PROBLEM SOLUTION FIT

The Problem-Solution Fit simply means that we have found a problem with our customer and that the solution we have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioural patterns and recognize what would work and why. The purpose is to solve complex problems in a way that fits the state of your customers and succeed faster and increase your solution adoption by tapping into existing mediums and channels of behaviour.

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

- Users have to register.
- Function to view the homepage by the user.
- Function to display information related to heart diseases on the website.
- Function to provide textboxes to enter medical results.
- Function to predict heart disease using ML model.
- Function to display visualisations of the final results.
- Function to provide dashboard to user.

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	User verification	Verification through CAPTCHA Verification through I'm not a robot.
FR-4	User Authentication	Recognition of correct person Resending the code in case of forgot password.
FR-5	User validation	Reconfirming the new password Sending a two digit number in (Google account) your Old devices, so that you can enter into a new device By entering the two digit number.
FR-6	User Submission	Submission through Google form Submission through Email.

4.2 NON-FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The EHDPS predicts the likelihood of patients getting heart disease. It enables significant knowledge, eg, relationships between medical factors related to heart disease and patterns, to be established
NFR-2	Security	When we predict health analysis we provide a correct accuracy and prediction based on these prediction only the seriousness of diseases will be predicted. So the taken data will contains atleast some of true values.
NFR-3	Reliability	Support vector machine (SVM), Gaussian Naive Bayes, logistic regression, LightGBM, XGBoost, and random forest algorithm have been employed for developing heart disease risk prediction model and obtained the accuracy as 80.32%, 78.68%, 80.32%, 77.04%, 73.77%, and 88.5%, respectively
NFR-4	Performance	This study found that using a heart disease dataset collected from Kaggle three classification based decision tree along with accuracy, sensitivity and specificity.
NFR-5	Availability	Machine Learning can play an essential role in predicting presence/absence of Locomotor disorders, Heart diseases and more. Such information, if predicted well in advance, can provide important insights to doctors who can then adapt their diagnosis and treatment per patient basis.
NFR-6	Scalability	It is depend on the model performance. If the accuracy will not satisfied we will improve the accuracy by boosting method. The high accuracy can achieved through removing duplicates and performing data Cleaning.

PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

5.2 SOLUTION & TECHNICAL ARCHITECTURE

5.3 User Stories:

S.No	Component	Description	Technology
1.	Importing data	Data Import lets you upload data from external sources and combine it with data you collect via Analytics	Python,numpy, pandas.
2.	Data Cleaning	Data cleaning is a process by which inaccurate, poorly formatted, or otherwise messy data is organized and corrected	Python
3.	Data Pre- processing	Python	
4.	Training data	Training data is the subset of original data that is used to train the machine learning model,	python
5.	Testing data	Test data is data which has been specifically identified for use in tests, typically of a computer program.	python.
6.	Machine learning model	A machine learning model is a file that has been trained to recognize certain types of patterns. You train a model over a set of data, providing it an algorithm that it can use to reason over and learn from those data	python.
7.	Improve model performance	Accuracy is one metric for evaluating classification models. Informally, accuracy is the fraction of predictions our model got right.	python.
		A data accuracy check, sometimes called a data sanity check, is a set of quality validations that take place before using data.	python.

5.4: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Collection of data	Data collection is the process of gathering, measuring, and analyzing accurate data from a variety of relevant sources to find answers to research problems, answer questions, evaluate outcomes, and forecast trends and probabilities	Python,numpy,pandas
2.	EDA Analysis	Exploratory Data Analysis (EDA) is an approach to analyze the data using visual techniques. It is used to discover trends, patterns, or to check assumptions with the help of statistical summary and graphical representations	Technology used
3.	Train & Test split of data	The train-test split is used to estimate the performance of machine learning algorithms that are applicable for prediction-based Algorithms/Applications. This method is a fast and easy procedure to perform such that we can compare our own machine learning model results to machine results.	Technology used

PROJECT PLANNING & SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Sprint 1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Jitendar Patel B
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	
		USN-4	As a user, I can register for the application through Gmail	I can register & access the dashboard with Gmail Login	Medium	
Sprint 2	Login	USN-5	As a user, I can log into the application by entering email & password	I can register & access the dashboard with Gmail Login	High	Giritharan B
Sprint 3	Dashboard	USN-6	Profile - view & update your profile	I can see the profile.	High	Harish K
		USN-7	Change Password - user can change the password	I can able to change the password.	High	
Sprint 4	Classified result	USN-8	Home - Analyse your Heart	I can detect the health condition from where ever I want.	High	Naveen Kumar R

USN-9	The user will have to fill in the below 13 fields for the system to predict a disease -Age in Year Gender -Chest Pain Type -Fasting Blood Sugar -Resting Electrographic Results (Restecg) -Exercise Induced	These are the categories available in that applicatio n.	High	
-------	---	--	------	--

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	1	3 Days	24 Oct 2022	26 Oct 2022	1	26 Oct 2022
Sprint-2	1	3 Days	31 Oct 2022	02 Nov 2022	1	02 Nov 2022
Sprint-3	1	3 Days	07 Nov 2022	09 Nov 2022	1	09 Nov 2022
Sprint-4	1	3 Days	14 Nov 2022	16 Nov 2022	1	16 Nov 2022

6.3 REPORTS FROM JIRA

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

CODING & SOLUTIONING

7.1 FEATURE 1

Prediction Model: When applied to a nonlinear data set, the random forest technique performs better than the decision tree. The collection of decision trees known as a random forest was produced by several root nodes. The random forest algorithm can achieve more accuracy quickly and produce expected results.

Algorithm:

Step 1: Input the required details

Step 2: The model processes the input with the help of random forest algorithm

Step 3: The results are displayed

```
import axios from 'axios'; import React, { useState }
from 'react'; import { useNavigate } from 'react-router-
dom'; import './FormPageCommons.css'; function
PredictionPage() { const [age, setAge] = useState(");
const [sex, setSex] = useState("); const
[chestPainType, setChestPainType] = useState(");
const [bp, setBp] = useState("); const [cholesterol,
setCholesterol] = useState("); const [fbs, setFbs] =
useState(");
```

```
const [ekg, setEkg] = useState("); const [maxHr, setMaxHr] = useState("); const [angina,
setAngina] = useState("); const [stDepression, setStDepression] = useState("); const
[slopeOfSt, setSlopeOfSt] = useState("); const [fluro, setFluro] = useState("); const
[thallium, setThallium] = useState("); const navigate = useNavigate(); function
predictResult(event) {     event.preventDefault();     if (age && sex && chestPainType &&
bp && cholesterol && fbs && ekg && maxHr && angina && stDepression && slopeOfSt
&& fluro && thallium) {
              predictionParams
                                            {age,sex,chest_pain_type:
   const
chestPainType,bp,cholesterol,fbs_over_120:
                                                   fbs.
                                                          ekg_results:
                                                                        ekg,max_hr:
maxHr,exercise_angina:
                             angina,
                                           st_depression: stDepression,slope_of_st:
slopeOfSt, number_of_vessels_fluro: fluro, thallium,};
                                                         const headers = {
    Authorization: `Bearer ${sessionStorage.getItem('token')}`,
   };
   axios.post('http://127.0.0.1:8000/predict', predictionParams, { headers })
     .then((response) => {
                                predictionParams.prediction
= response.data.prediction;
      [predictionParams.date, predictionParams.time] = new Date().toLocaleString().split(',
                    sessionStorage.setItem('prediction', JSON.stringify(predictionParams));
');
navigate('/results');
     }) // eslint-disable-line no-console
     .catch((ex) => console.log(ex)); // eslint-disable-line no-console
  } }
return (
  <div className="main-container">
   <form className="main-form" onSubmit={predictResult}>
```

```
<div className="title">Enter your details</div>
    <div className="form-input">
     <p>Age</p>
     <input type="number" name="Age" id="text-input" value={age} onChange={(e) =>
setAge(e.target.value)} />
    </div>
    <div className="form-input">
     Sex
                      <select
name="sex"
                 id="sel-input"
value={sex}
                  onChange=\{(e) =>
setSex(e.target.value)}
     >
      <option value="-1">--Select Value--</option>
      <option value="1">Male</option>
      <option value="0">Female</option>
     </select>
    </div>
    <div className="form-input">
     Chest Pain Type
     <select
                                           id="sel-
                  name="chest-pain"
input"
            value={chestPainType}
onChange={(e) => setChestPainType(e.target.value)}
      <option value="-1">--Select Value--</option>
      <option value="1">Typical Angina
```

```
<option value="2">Atypical Angina
      <option value="3">Non Anginal Pain
      <option value="4">Asymptomatic Pain
     </select>
    </div>
    <div className="form-input">
     Blood Pressure
     <input type="number" className="form__field" name="bp" id="text-input"</pre>
value={bp} onChange={(e) => setBp(e.target.value)} />
    </div>
    <div className="form-input">
     Cholesterol
     <input type="number"
                                name="cholesterol" id="text-input"
value={cholesterol} onChange={(e) => setCholesterol(e.target.value)} />
    </div>
    <div className="form-input">
     Fasting Blood Sugar Over 120
                  name="fbs"
     <select
                                   id="sel-
            value = \{fbs\}
input"
onChange={(e) => setFbs(e.target.value)}
     >
      <option value="-1">--Select Value--</option>
      <option value="1">Yes</option>
      <option value="0">No</option>
     </select>
```

```
</div>
    <div className="form-input">
     EKG Results
                                     id="sel-
     <select
                   name="ekg"
input"
            value={ekg}
onChange={(e) => setEkg(e.target.value)}
     >
      <option value="-1">--Select Value--</option>
      <option value="0">Normal</option>
      <option value="1">Having ST-T wave abnormality (T wave inversions and/or ST
elevation or depression of greater than 0.05 mV)</option>
      <option value="2">Showing probable or definite left ventricular hypertrophy by
Estes`'` criteria</option>
     </select>
    </div>
    <div className="form-input">
     Maximum Heart Rate
     <input type="number" name="mhr" id="text-input" value={maxHr} onChange={(e)</pre>
=> setMaxHr(e.target.value)} />
    </div>
    <div className="form-input">
     Exercise Induced Angina
     <select
                   name="angina"
                                        id="sel-
            value={angina}
input"
onChange={(e) => setAngina(e.target.value)}
```

```
>
      <option value="-1">--Select Value--</option>
      <option value="1">Yes</option>
      <option value="0">No</option>
     </select>
    </div>
    <div className="form-input">
     ST Depression
     <input type="number" name="stdep" id="text-input" value={stDepression}</pre>
onChange={(e) => setStDepression(e.target.value)} />
    </div>
    <div className="form-input">
     Slope of ST
     <select
                   name="slope-st"
                                         id="sel-
input"
            value={slopeOfSt}
onChange={(e) => setSlopeOfSt(e.target.value)}
     >
      <option value="-1">--Select Value--</option>
      <option value="1">Upsloping</option>
      <option value="2">Flat</option>
      <option value="3">Downsloping</option>
     </select>
    </div>
    <div className="form-input">
     Number of major vessels colored by Flouroscopy
```

```
name="fluro" id="sel-
     <select
input"
            value={fluro}
onChange={(e) => setFluro(e.target.value)}
>
      <option value="-1">--Select Value--
      <option value="0">0</option>
      <option value="1">1</option>
      <option value="2">2</option>
<option value="3">3</option>
     </select>
    </div>
    <div className="form-input">
     Thallium
                  name="thallium" id="sel-
     <select
input"
            value={thallium}
onChange={(e) => setThallium(e.target.value)}
     >
      <option value="-1">--Select Value--
      <option value="3">Normal</option>
      <option value="6">Fixed Defect</option>
      <option value="7">Reversable Defect</option>
     </select>
    </div>
    <button type="text" className="submit">Submit
```

```
</form>
</div>
);
} export default
PredictionPage;
```

7.2 FEATURE 2

Dashboard: Our application helps the user in finding out if they have heart disease or not. They can find out by entering details such as their heart rate, cholesterol, blood pressure etc. A dashboard is also attached along with the results for better understanding where they can compare their blood pressure and similar metrics with other users.

```
<br/>>
    <br/>br />
    <h3>Here you can check out different kind of visualizations to get a general idea about
the factors increasing causes of getting a cardiac arrest.</h3>
    <br/>
    <div class="row">
     <div class="col-md-4 col-xl-3">
      <div class="card bg-c-blue order-card">
        <div class="card-block">
         <h2 class="text-right"><i class="fa
                                                fa-cart-plus
fleft"></i><span>87%</span></h2>
         Accuracy
        </div>
      </div>
     </div>
     <div class="col-md-4 col-xl-3">
      <div class="card bg-c-green order-card">
       <div class="card-block">
         <h2 class="text-right"><i class="fa fa-cart-plus f-left"></i><span>5</span></h2>
         Visualization Types
        </div>
      </div>
     </div>
     <div class="col-md-4 col-xl-3">
      <div class="card bg-c-yellow order-card">
```

7.3 FEATURE 3

Login

Algorithm:

- 1. Input the credentials (email and password).
- 2. If already logged in user is taken to home page
- 3. Else, check for validity of credentials
- 4. If wrong credentials entered, notification is displayed to user and user stays in login page.
- 5. On correct credentials, user is taken to home page.

```
import axios from 'axios'; import React, {
useState } from 'react'; import
'./FormPageCommons.css'; import {
useNavigate } from 'react-router-dom'; const
Login = () => { const [email, setEmail] =
useState("); const [password, setPassword] =
useState("); const navigate = useNavigate();
function loginUser(event) {
event.preventDefault(); const userDetails = {
email, password,
  };
  // console.log(userDetails); // eslint-disable-line no-console if
(userDetails && userDetails.email && userDetails.password) {
axios.post('http://127.0.0.1:8000/login', userDetails)
     .then((response) => {
sessionStorage.setItem('token', response.data.token);
navigate('/predict');
     })
     .catch((ex) => \{
     // console.log(ex); // eslint-disable-line no-console
      // const error = JSON.parse(ex);
      if (ex.response && ex.response.status && ex.response.status === 404) {
alert('User not found'); // eslint-disable-line no-alert
```

```
} else {
                   console.log(ex); // eslint-disable-
line no-console
     }
    });
  } else {
            alert('Please enter valid credentials'); // eslint-disable-
<div className="main-container">
   <form className="main-form" onSubmit={loginUser}>
    <div className="form-input">
     e-mail
     <input type="email" name="email" id="email" value={email} onChange={(e) =>
setEmail(e.target.value)} />
    </div>
    <div className="form-input">
     Password
     <input type="password" name="password" id="password" value={password}</pre>
onChange={(e) => setPassword(e.target.value)} />
    </div>
    <div className="button-container">
     <input type="submit" />
    </div>
   </form>
  </div>
); }; export default
Login;
```

7.3.1 FEATURE 4:

Signup

Algorithm:

- 1. Input the signup form fields (name, email, password, re-enter password).
- 2. All credentials are validated.
- 3. Website checks whether the given email exists in the database.
- 4. If already registered, notification is displayed. Or else, the user is taken to the login page.

```
import axios from 'axios'; import React, {
  useState } from 'react'; import { useNavigate }
  from 'react-router-dom'; import { Link } from
  'react-router-dom'; const Register = () => {
  const [name, setName] = useState(");
   const [email, setEmail] = useState("); const
  [password, setPassword] = useState("); const
  [confPassword, setConfPassword] = useState("); const
  navigate = useNavigate(); function
  registerUser(event) { event.preventDefault();
  const userDetails = { fullName: name, email,
    password,
```

```
};
  if (userDetails && userDetails.fullName && userDetails.password && userDetails.email)
   // console.log('Hi'); // eslint-disable-line no-console
axios.post('http://127.0.0.1:8000/register', userDetails)
    .then(() => {
     // console.log(response.json); // eslint-disable-line no-console
navigate('/login');
    })
    .catch((ex) => console.log(ex)); // eslint-disable-line no-console
  } }
return (
  <div className="main-container">
   <form className="login-form" onSubmit={registerUser}>
    <div className="form-input">
      Name
      <input type="text" name="text" id="text" value={name} onChange={(e) =>
setName(e.target.value)} />
    </div>
    <div className="form-input">
     e-mail
      <input type="email" name="email" id="email" value={email} onChange={(e) =>
setEmail(e.target.value)} />
    </div>
    <div className="form-input">
```

```
Password
     <input type="password" name="password" id="password" value={password}</pre>
onChange={(e) => setPassword(e.target.value)} />
    </div>
    <div className="form-input">
     Confirm Password
     <input type="password" name="password" id="conf-password" value={confPassword}</pre>
onChange={(e) => setConfPassword(e.target.value)} />
    </div>
    <div className="button-container">
     <input type="submit" />
     Already have an account?
     <Link to="/login">
      <button type="button">Login</button>
     </Link>
    </div>
   </form>
  </div>
); }; export default
Register;
```

7.3.2 DATABASE SCHEMA

NoSQL databases like MongoDB offer high performance, high availability, and easy scalability. MongoDB is a documentoriented database which stores data in JSON-like documents with dynamic schema. It means you can store your records without worrying about the data structure such as the number of fields or types of fields to store values. MongoDB documents are similar to JSON objects. Details like name, e-mail, password of the registered user are stored so that when the user tries to login, authentication takes place and the user is logged in.

7.4 Training and Testing the Dataset

```
In [84]: import numpy as np
import pandas as pd
import plotly
import plotly.express as px

import cufflinks as cf
import matplotlib.pyplot as plt
import seaborn as sns

import plotly.offline as pyo
from plotly.offline import init_notebook_mode,plot,iplot

In [85]: pyo.init_notebook_mode(connected=True)
cf.go_offline()
```

in	eart														
:	A	ge S	Sex	Chest pain type	В	Cholesterol	FBS over 120	EKG results	Max HR	Exercise angina	ST depression	Slope of ST	Number of vessels fluro	Thallium	Heart Disease
	0	70	1	4	13	322	0	2	109	0	2.4	2	3	3	1
	1	67	0	3	11	5 564	0	2	160	0	1.6	2	0	7	0
	2	57	1	2	12	261	0	0	141	0	0.3	1	0	7	1
	3	64	1	4	12	3 263	0	0	105	1	0.2	2	1	7	0
	4	74	0	2	12	269	0	2	121	1	0.2	1	1	3	0
2	65	52	1	3	17	199	1	0	162	0	0.5	1	0	7	0
2	.66	44	1	2	12	263	0	0	173	0	0.0	1	0	7	0
2	67	56	0	2	14	294	0	2	153	0	1.3	2	0	3	0
2	.68	57	1	4	14	192	0	0	148	0	0.4	2	0	6	0
2	:69	67	1	4	16	286	0	2	108	1	1.5	2	3	3	1

```
In [87]: heart = pd.read_csv(r'C:\Users\91967\Desktop\data\heart.csv')
   In [88]: info = ["Age","1: male, 0: female","Chest pain type, 1: typical angina, 2: atypical angina, 3: non-anginal pain, 4: asymptomatic", "resting blood pressure", " serum cholestoral in mg
                for i in range(len(info)):
    print(heart.columns[i]+":\t\t"+info[i])
                                                      Age
1: male, 0: female
Chest pain type, 1: typical angina, 2: atypical angina, 3: non-anginal pain, 4: asymptomatic
                 Sex:
Chest pain type:
                Cholesterol:
FBS over 120:
EKG results:
Max HR:
Exercise angina:
                                                   resting blood pressure
serum cholestoral in mg/dl
fasting blood sugar > 120 mg/dl
resting electrocardiographic results (values 0,1,2)
maximum heart rate achieved
exercise induced angina
oldpeak = ST depression induced by exercise relative to rest
the slope of the peak exercise ST segment
uro:
unber of major vessels (0-3) colored by flourosopy
thal: 3 = normal; 6 = fixed defect; 7 = reversable defect
                 ST depression:
                 Slope of ST:
Number of vessels fluro:
Thallium:
   In [89]: heart['Heart Disease']
  Out[89]: 0
                           Presence
                            Absence
Presence
                             Absence
Absence
                            Absence
Absence
Absence
                 265
266
267
                 268 Absence
269 Presence
Name: Heart Disease, Length: 270, dtype: object
   In [90]: heart.groupby('Heart Disease').size()
  Dut[90]: Heart Disease
                 Absence 150
Presence 120
dtype: int64
   In [91]: heart.groupby('Heart Disease').sum()
                                  Age Sex Chest pain type BP Cholesterol FBS over 120 EKG results Max HR Exercise angina ST depression Slope of ST Number of vessels fluro Thallium
                      Absence 7906 83
                Presence 6791 100 434 16133 30776 17 147 16663 66 190.1 218
  In [92]: heart.shape
  Dut[92]: (270, 14)
In [93]: heart.describe()
                                                Sex Chest pain type
                                                                                       BP Cholesterol FBS over 120 EKG results
                                                                                                                                                   Max HR Exercise angina ST depression Slope of ST Number of vessels fluro Thallium
                count 270.000000 270.000000
                                                             270.000000 270.000000 270.000000 270.000000 270.000000 270.000000
                                                                                                                                                                       270.000000
                                                                                                                                                                                          270.00000 270.000000
                                                                                                                                                                                                                                          270.000000 270.000000
                mean 54.43333 0.677778 3.174074 131.344444 249.659259 0.148148 1.02222 149.677778 0.329630 1.05000 1.585185 0.670370 4.696296
                  std 9.109067 0.468195
                                                                 0.950090 17.861608 51.686237
                                                                                                                   0.355906
                                                                                                                                     0.997891 23.165717
                                                                                                                                                                          0.470952
                                                                                                                                                                                                1.14521
                                                                                                                                                                                                              0.614390
                                                                                                                                                                                                                                              0.943896
                                                                                                                                                                                                                                                              1.940659
                min 29,00000 0,00000 1,00000 94,00000 126,00000 0,00000 0,00000 71,00000 0,00000
                                                                                                                                                                                           0.00000 1.000000
                                                                                                                                                                                                                                            0.000000 3.000000
                  25% 48.000000 0.000000
                                                                 3.000000 120.000000 213.000000
                                                                                                                                     0.000000 133.000000
                                                                                                                                                                                                              1.000000
                                                                                                                    0.000000
                                                                                                                                                                           0.000000
                                                                                                                                                                                                0.00000
                                                                                                                                                                                                                                             0.000000
                                                                                                                                                                                                                                                              3.000000

        50%
        55,00000
        1,00000
        3,00000
        13,00000
        245,00000
        0,00000
        2,00000
        13,50000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        0,00000
        <
                  75% 61.000000 1.000000
                                                                 4.000000 140.000000 280.000000
                                                                                                                   0.000000
                                                                                                                                     2.000000 166.000000
                                                                                                                                                                          1.000000
                                                                                                                                                                                                1.60000
                                                                                                                                                                                                              2.000000
                                                                                                                                                                                                                                              1.000000
                                                                                                                                                                                                                                                              7.000000

        max
        77.00000
        1.00000
        4.00000
        200.00000
        564.00000
        1.00000
        2.000000
        202.000000

                                                                                                                                                                          1.000000
                                                                                                                                                                                                6.20000
                                                                                                                                                                                                              3.000000
                                                                                                                                                                                                                                             3.000000 7.000000
In [94]: heart.info()
                <class 'pandas.core.frame.DataFrame'>
RangeIndex: 270 entries, 0 to 269
Data columns (total 14 columns):
# Column Non-Null Count Dtype
              int64
                                                                                           int64
                                                                                           int64
                                                                                           int64
                                                                                           float64
                                                                                          int64
int64
int64
object
In [95]: heart['Heart Disease'].unique()
 Out[95]: array(['Presence', 'Absence'], dtype=object)
In [96]: heart.hist(figsize=(14,14))
```

33


```
DATA Processing
In [134_ heart['target'].value_counts()
Out[134]: 0 150
1 120
           Name: target, dtype: int64
In [135. heart['target'].isnull()
Out[135]: 0 False
                  False
                 False
          265 False
           267
                  False
           268 False
           269 False
           Name: target, Length: 270, dtype: bool
In [136_ heart['target'].sum()
Out[136]: 120
In [137_ heart['target'].unique()
Out[137]: array([1, 0], dtype=int64)
In [138_ heart.isnull().sum()
Out[138]: Age
           Chest pain type
          Cholesterol
          FBS over 120
EKG results
           Exercise angina
          ST depression
Slope of ST
Number of vessels fluro
Thallium
          target
dtype: int64
          Storing in X and y
In [139. X,y=heart,heart.target
In [148.. X.drop('target',axis=1,inplace=True)
 In [141_ y
Out[141]: 0 1
           265 0
           267
           268
          Zby 1
Name: target, Length: 270, dtype: int64
         Or X, y = heart.iloc[:, :-1], heart.iloc[:, -1]
In [142... X.shape
Out[142]: (270, 13)
In [143... y.shape
Out[143]: (270,)
In (144. from ableum.model_selection import train_test_aplit
from sklearn.preprocessing import StandardScaler
in [145... sc = standardscaler()
         X = sc.fit_transform(X)
```

```
A = ac.TAC_CIMISTORM(A)
In [146... X_train, X_test, y_train, y_test=train_test_split(X, y, random_state=10, test_size=0.3, shuffle=True)
In [147... X_test
Out[147]: array([[-1.47745975, 0.6894997 , -1.23804513, ..., -0.95423434,
                    -0.71153494, -0.87570581],
                  [ 1 68218896, 8 6894997 , +2 29253153, ..., 8 67641928,
                    0.3498/077, -0.875/0581],
                  [-0.37761378, 0.6894997 , -0.18355874, ..., 0.67641928, -0.71153494, -0.07570501],
                  [-0.81755217, 0.6894997 , -0.18355874, ..., -0.95423434,
                     -0.71153494, -0.87570581],
                  [ 0.50226299, -1.45032695, 0.87092765, ..., 0.67641928,
                    -0.71153494, -0.87570581],
                  [-0.70756757, 0.6894997 , -0.18355874, ..., -0.95423434,
                    1.41127648, -0.87570581]])
In [148. y_test
Out[148]: 111 0
           170
           186
           185
           121
                 1
           217
           250
           69
           58
           194 8
           Name: target, Length: 81, dtype: int64
print ("train_set_x snape: " + str(x_train.snape))
print ("train_set_y shape: " + str(y_train.shape))
print ("test_set_x shape: " + str(X_test.shape))
          print ("test_set_y shape: " + str(y_test.shape))
          train_set_x shape: (189, 13)
train_set_y shape: (189,)
          test_set_x shape: (81, 13)
          test_set_y shape: (81,)
          Model
In [150... # Decision Tree Classifier
          scores_dict = {}
In [15i... Catagory=['No....but i pray you get Heart Disease or at leaset Corona Virus Soon...','Yes you have Heart Disease....RIP in Advance']
In [155... from sklearn.tree import DecisionTreeClassifier
          dt=DecisionTreeClassifier()
          dt.fit(X_train,y_train)
Out[155]: - DecisionTreeClassifier
           DecisionTreeClassifier()
In [156. print("Accuracy on training set: {:.3f}".format(dt.score(X_train, y_train)))
          print("Accuracy on test set: {:.3f}".format(dt.score(X_test, y_test)))
          Accuracy on training set: 1.000
          Accuracy on test set: 0.778
In [157... prediction
1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0], dtype=int64)
In [158. X_DT=np.array([[63 ,1, 3,145,233,1,0,150,0,2.3,0,0,1]])
X_DT_prediction=dt.predict(X_DT)
In [159. X DT prediction[0]
Out[159]: 1
In [160. print(Catagory[int(X_DT_prediction[0])])
          Yes you have Heart Disease....RIP in Advance
          Feature Importance in Decision Trees
```

```
In [101 print("Feature importances:\n{}".format(dt.feature_importances_))
          Feature importances:
          [8.88148922 0.03287338 0.87828353 0.06957237 8.18489245 0.
8.82144372 0.08531475 0.03652597 0.07047152 8. 0.10448896
            0.34272413]
In [182] def plot_feature_importances_diabetes(model):
               plt.figure(figsize=(8,6))
               n_features = 13
plt.barh(range(n_features), model.feature_importances_, align='center')
               plt.yticks(np.arange(n_features), X)
plt.xlabel("Feature importance")
               plt.ylabel("Feature")
               plt.ylim(-1, n_features)
          plot_feature_importances_diabetes(dt)
plt.savefig('feature_importance')
           ValueError
                                                         Traceback (most recent call last)
           Cell In [162], line 9
           7 plt.ylabel("feature")
8 plt.ylim(-1, n.features)
----> 9 plot_feature_importances_diabetes
18 plt.savefig("feature_importance")
          cell in [162], line 5, in plot feature importances diameter (model)
                  3 n features = 13
                  a plt.barh(range(n_features), model.feature_importances_, align='center')
                 7 plt.ylabel("Feature")
          File -\AppBata\local\Programs\Python\Python318\lib\site-packages\matplotlib\pyplot.py:1887, in ytickn(ticks, labels, minor, **kwargi)
                           1._internal_update(kwargs)
              1888 else:
                        labels = ax.set_yticklabels(labels, minor-minor, "*kwargs)
             1889 return locs, labels
          File -\AppBata\LocalPrograms\Python\Python3id\lib\site-packages\matplotlib\axes\base.py:73, in _min_mothon_wrapper__set_name__<incals>.wrapper(self, *args, **kwargs) 72 def wrapper(self, *args, **kwargs): ---> 73 return get_method(self)(*args, **kwargs)
          File -\AppBata\local\Programs\Pythom\Pythom\IB\lib\site-packages\matplotlib\axis.py:1968, in Arin_sur_rirklandis(self, labels, fontdict, minor, **kwarqs)
             1988 if fontdict is not None:
           1987 kwargs.update(fontdict)
-> 1988 return self.set_ticklabels(labels, minor-minor, "'kwargs)
           File -\AppBata\Local\Programs\Pythom\Pythom310\lib\site-packages\matplotlib\axis.py:1800, in Add. not ricklindia(self, ticklabels, minor, "*kwargs}
             if len(locator.locs) := len(ticklabels) and len(ticklabels) != 8:
                            "The number of FixedLocator locations"
           -> 1890
              1891
                                 f" ((lun(locator.locs))), usually from a call to"
" set_ticks, does not match"
              1892
                        f" the number of ticklabels ((lon(ticklabels))).")
tickd = {loc: lab for loc, lab in zip(locator.locs, ticklabels)}
              1894
              2856
                        func = functools.partial(self._format_with_dict, tickd)
          ValueError: The number of FixedLocator locations (13), usually from a call to set_ticks, does not match the number of ticklabels (276).
```


[4] from sklearn.neighbors import KNeighborsClassifier

CHAPTER 8

TESTING

8.1 TEST CASES

Testcase 1: Logging in with registered login details.

Testcase 2: Logging in with invalid login details.

Testcase 3: Registering with existing user's details.

Testcase 4: Entering wrong values while filling medical related details.

Testcase 5: Producing visualisations for given input.

8.2 USER ACCEPTANCE TESTING

Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Statu	Comments	TC for Automation(Y/N	BUG
LoginPage_TC_001	Functional	Home Page	Verify user is able to see the Login/Signup popup when user clicked on My account button	Stable internet connection, Compatible browser, Login credentials	Enter URL and click go Click on My Account dropdown button S.Verify login/Signup popup displayed or not	https://shopenzer.com/	Login/Signup popup should display	Working as expected	Pass	Login page displayed successfully	N	1
LoginPage_TC_OO2	UI	Home Page	Verify the UI elements in Login/Signup popup	Proper code for UI elements, Elements position, Buttons and Textbox response	1.Enter URL and click go 2.Click on My. Account dropdown button 3.Verify login/signup popup with below UI elements: a.email text box b.password text box c.login button d. New customer? Create account link e.Last password? Recovery password e.Last password? Recovery password	https://shopenzer.com/	Application should show below UI elements: a.email text box b. password text box c. Login button with orange colour d.New customer? Create account link e.Last password? Recovery password link	Working as expected	Fail	Elements are displayed successfully but recovery password button is not present	N	2
LoginPage_TC_003	Functional	Home page	Verify user is able to log into application with Valid credentials	User credentials, Database with credentials of existing users	Lienter URLIntrips://shopenzer.com/) and click go 2. Click on My Account dropdown button 3. Enter Valid username/email in Email text box 4. Enter valid password in password text box 6. Click on the Valid password text box	Username: chalam@gmail.com password: Testing 123	User should navigate to user account homepage	Working as expected	Pass	Logged in successfully	N	3

Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Statu	Comments	TC for Automation(Y/N)	BUG II
LoginPage_TC_OO4	Functional	Login page	Verify user is able to log into application with invalid credentials	User credentials, Database with credentials of existing users	click go 2.Click on My Account dropdown	Username: chalam@gmail password: Testing123	Application should show 'Incorrect email or password 'validation message.	Working as expected	Fail	Login failed due to incorrect login details or user not registered	N	4
LoginPage_TC_004	Functional	Login page	Verify user is able to log into application with inValid credentials	User credentials, Database with credentials of existing users	1.Enter URL(https://shopenzer.com/) and click go 2.Click on My Account dropdown	Username: chalam@gmail.com password: Testing12367868678687687 6	Application should show 'incorrect email or password' validation message.	Working as expected	Fail	Login failed due to incorrect login details or user not registered	N	5
LoginPage_TC_005	Functional	Login page	Verify user is able to log into application with inValid credentials		1.Enter URL(https://shopenzer.com/) and click go 2.Click on My Account dropdown	Testing 12367868678687687	Application should show 'incorrect email or password 'validation message.	Working as expected	Fail	Login failed due to incorrect login details or user not registered	N	6

CHAPTER 9

RESULTS

9.1 PERFORMANCE METRICS

1. Hours worked: 50 hours

2. Stick to Timelines: 100%

3. Stay within budget: 100%

4. Consistency of the product: 85%

5. Efficiency of the product: 85%

6. Quality of the product: 85%

CHAPTER 10

ADVANTAGES & DISADVANTAGES

ADVANTAGES:

- Smooth User Interface
- Accuracy is achieved quickly

DISADVANTAGES:

• Random forest can be used for both classification and regression tasks, but it is not more suitable for Regression tasks.

CHAPTER 11

CONCLUSION

This overview of the project conveys the idea that numerous methods have been investigated for diagnosing cardiovascular disease. Big data, machine learning, and data mining can be used to great success to analyse the prediction model with the highest degree of accuracy. The primary goal of this project is to diagnose cardiovascular disease or heart disease utilizing a variety of techniques and procedures to obtain a prognosis.

CHAPTER 12

FUTURE SCOPE

A future update shall comprise of section for viewing renowned cardiologists and scan centres in their city. The obtained output can be further processed and sent to smart devices to provide necessary assistance. Constant monitoring can provide necessary data to recommend to consult a doctor in case of an emergency.

CHAPTER 13

APPENDIX

PROJECT DEMONSTRATION LINK: https://youtu.be/mnNkPE5JoMY

GITHUB LINK: https://github.com/IBM-EPBL/IBM-Project-26570-

1660029758

APPENDIX A1: SCREENSHOTS

