

Factors controlling N₂O and CH₄ fluxes in mixed broad-leaved/Korean pine forest of Changbai Mountain, China¹

Xu Hui(徐慧) Chen Guanxiong (陈冠雄) Huang Guohong (黄国宏)

Han Shijie (韩士杰) Zhang Xiuju (张秀君)

Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110015, P.R. China

Abstract Using the closed chamber technique, the *in situ* measurements of N₂O and CH₄ fluxes was conducted in a broad-leaved Korean pine mixed forest ecosystem in Changbai Mountain, China, from June 1994 to October 1995. The relationships between fluxes (N₂O and CH₄) and some major environmental factors (temperature, soil water content and soil available nitrogen) were studied. A significant positive correlation between N₂O emission and air/soil temperature was observed, but no significant correlation was found between N₂O emission and soil water content (SWC). This result showed that temperature was an important controlling factor of N₂O flux. There was a significant correlation between CH₄ uptake and SWC, but no significant correlation was found between CH₄ uptake and temperature. This suggested SWC was an important factor controlling CH₄ uptake. The very significant negative correlation between logarithmic N₂O flux and soil nitrate concentration, significant negative correlation between CH₄ flux and soil ammonium content were also found.

Key words: Broad-leaved/Korean pine forest, N₂O, CH₄, Flux, Environmental factors

Introduction

The increasing greenhouse gas concentrations have received much attention. Two of these gases that scientists are very concerned about are N₂O and CH₄, because of their rapid increase and their important chemistry in the atmosphere (Bouwman 1990). The molecule global warming potential of N₂O and CH₄ are about 58 and 206 times than that of CO₂. In addition, atmospheric concentrations of N₂O and CH₄ are increasing at annual rates of 0.25% and 0.9% respectively (Houghton *et al.* 1992). Forest ecosystem has been known as an important terrestrial ecosystem at the aspect of study in source and sink of greenhouse gases. On the one hand, forest ecosystem is an important source of N₂O. From the estimate of known global sources and sinks of N₂O made by IPCC (1992), the total natural source of N₂O was 4.15~10.3 Tg·a⁻¹, and the emission from tropical wet forests and temperate forests were 2.2~3.7 and 0.05~2.2 Tg·a⁻¹, respectively. Kreileman and Bouwman (1994) also estimated that the N₂O emissions from closed tropical forests, open tropical forests and temperate forests were 2.3, 1.0 and 0.5 Tg·a⁻¹ respectively. In the meantime, their estimation of total amount of N₂O emission from terrestrial surface was only 6.6 Tg·a⁻¹. Therefore, from the above

data, forest ecosystem can be regarded as the biggest contributor to the atmospheric N₂O among the terrestrial ecosystems. On the other hand, forest ecosystem is an important sink of atmospheric CH₄. Soils can consume about 30~40 Tg CH₄ per year, especially the forest soil (King & Schnell 1994).

The area of Chinese forest is 13370×10⁴ hm², the percentage of forest area in terrestrial area is 13.92%. The forest ecosystem is an important component of Chinese terrestrial ecosystems. However, till now, there is very little data reported on N₂O and CH₄ fluxes from forest ecosystem in China. In this paper, *in situ* field measurements of N₂O and CH₄ fluxes from a mixed broad-leaved/Korean pine forest in Changbai Mountain were conducted. The effects of some environmental factors (temperature, soil water content, and available nitrogen) on fluxes of N₂O and CH₄ were studied.

Methods

Natural reserve in Changbai Mountain is the region of famous original forests, in which *Pinus koraiensis* is the main stand, and biological resources are rich. Experimental site is located in a mixed broad-leaved/Korean pine forest (42°24' N, 128°28' E), which annual mean temperature is 3°C, and annual mean precipitation is 700~800 mm. The soil of the forest is mountain dark brown forest soil.

Fluxes were measured during the period between June 1994 and October 1995 (except wintertime,

¹This project is supported by Chinese Academy of Sciences

Received: 1999-08-25

Responsible editor: Chai Ruihai

details on sampling date are given in Fig.1). The closed chamber technique was used. PVC boxes (upturned bucket), 24 cm in height and 10 cm in diameter, were inserted into soil at 4-cm depth. 5-7 boxes of replicate were distributed randomly within an area of 10 m×10 m. Gas samples in the boxes were taken by plastic syringes at 0 and 1 hour after the inserting of boxes. Samples were stored in the gas storing bags (Institute of Chemistry Engineering, Dalian, China), and then were transported to laboratory and analyzed for the N₂O and CH₄ concentrations.

N₂O were measured with Shimadzu GC-14A, electron capture detector (⁶³Ni) at 300 °C, Porapak Q column at 60°C, 1 ml gas sample in sample loop was injected automatically into column and with back-flowing of water in sample. CH₄ was quantified with a flame ionization detector at 150 °C, 5 Å molecular sieve column at 60 °C, 4 mL gas sample in sample loop was injected into column.

Fluxes of gases (F) are calculated from the change in concentration (ΔC) over a period of time (Δt).

$$F = \frac{\rho \times V \times \Delta C}{A \times \Delta t}$$

Where V is the volume of the chamber above the enclosed soil with surface area (A). ρ is the density of gas.

Soil water content was measured with fresh soil from 0-10 cm depth sampled immediately after measurement of fluxes finished and expressed with percentage of soil field capacity. Soil temperature was measured at the soil depth of 5-8 cm. Soil exchangeable NO₃⁻ and NH₄⁺ were determined by MgO-Devarda alloy method.

The relationships between gases' fluxes and environmental factors were statistically analyzed with SPSS 6.0 software.

Results and discussion

Recent studies showed that the environmental factors, such as temperature, soil aeration, soil water content and available nitrogen, pH, etc, may have important effect on N₂O and CH₄ fluxes from forest ecosystem. However, no *in situ* measurement has been reported in China. In this paper, relationships between some environmental factors and fluxes from the *in situ* measurements in a mixed broad-leaved/Korean pine forest in China were described.

Temperature and N₂O flux

The seasonal variation of air temperature, soil temperature and N₂O flux in the mixed broad-leaved/Korean pine forest were shown in Fig. 1. Statistical positive correlations between N₂O flux and air/soil

temperature were found. These relationships were described as following equations (1) and (2).

$$F(N_2O) = 7.4989 \times T_a - 16.854 \quad (r=0.6011, n=15, P<0.05) \quad (1)$$

$$F(N_2O) = 4.9592 \times T_s - 8.538 \quad (r=0.5884, n=15, P<0.05) \quad (2)$$

Where $F(N_2O)$ is the N₂O flux ($\mu\text{g} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$), T_a is the air temperature, T_s is the soil temperature.

Fig. 1. N₂O flux and temperature of mixed broad-leaved/Korean pine forest

Within the period of observation, large ranges of seasonal fluctuation of air and soil temperature were found. The air temperature varied from 4 °C to 27 °C, and the soil temperature varied from -3 °C to 17 °C. The correlation between N₂O flux and temperature indicates that the temperature variation is one of main controlling factors of seasonal N₂O variation. In general, the nitrification and denitrification are the main N₂O production processes in the soil. The incubation study showed that Q₁₀ value of nitrification and denitrification of the soil were 2.80 (6-28 °C) and 2.78 (6-28 °C), respectively (in: Xu Hui's doctoral dissertation). A Q₁₀ value greater than 2 indicated a significant effect of temperature on this biological process. Therefore, the effect of temperature on N₂O flux is the result of temperature's effect on nitrification and denitrification.

Temperature and CH₄ flux

No significant correlation was found between the air/soil temperature and CH₄ flux in this study. Due to the limitation of fieldwork condition, the *in situ* experiments were only conducted in spring, summer

and autumn. The result of incubation experiment showed that Q_{10} value of CH_4 oxidation in this mountain dark brown forest soil was only 1.20 (6-28 °C). A Q_{10} value smaller than 2 indicates the weak effect of temperature on the biological process. However, Other studies showed the significant influence of temperature on CH_4 oxidation at low temperature. Castro (1995) reported that soil temperature was an important controller of CH_4 consumption at temperatures between -5 °C and 10 °C, but had no effect on CH_4 consumption at temperature between 10 and 20 °C. King and Adamsen (1992) showed also that temperature increases from -2 °C to 2 °C significantly increased CH_4 consumption by soil cores from a mixed deciduous-coniferous forest in Maine, while temperature increases from 2 °C to 30 °C had little effect on CH_4 consumption. Collectively, results from these studies support the idea that temperature is an important controller of CH_4 consumption by forest soils in winter and during the transition from spring to summer and fall to winter. This suggests that future changes in soil temperature above our normal high of 20°C are not likely to increase the strength of this CH_4 sink.

Soil Moisture and N_2O Flux

The soil water content was varied between 58.64%~121.23% FC in the period of observation. No significant correlation was found between soil water content and N_2O flux in the mixed broad-leaved/ Korean pine forest. This result indicated that soil water content was not the limiting factor on N_2O flux in this period. Water is necessary for microbial activity. Increasing water content can, up to a point, increase the rate of mineralization and the availability of nutrients. Linn and Doran (1984) illustrated the effect of soil water on soil processes through its influence on aeration and microbial activity. With increasing water content up to 60% WFPS, nitrification increased with enhanced microbial activity. An increase in WFPS from 60% to 100% gives a marked reduction in nitrification, some reduction in microbial activity and an increase in denitrification rate as conditions become more anaerobic. The soil water content, therefore in this study, met the need for either nitrification or denitrification during the measuring period.

Soil moisture and CH_4 flux

The relationship between CH_4 flux and soil water content in the mixed broad-leaved/Korean pine forest was found to be a negatively correlation (Fig.2). This correlation was presented as the equation (3):

$$F(\text{CH}_4) = 112.8277 \times \text{SWC} - 139.592 \quad (r= 0.7779, n=7, P<0.05)$$
(3)

Where $F(\text{CH}_4)$ is the CH_4 flux ($\mu\text{g} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$), SWC is the soil water content.

This pattern is consistent with the results from other field studies of Koschorreck & Conrad (1993), Keller & Reiners (1994) and Castro *et al.* (1995). Koschorreck & Conrad (1993) reported that CH_4 (expressed as $\text{CH}_4\text{-C}$) consumption by forest soils in Germany decreased from 0.03 to 0.006 $\text{mg} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$ as soil moisture increased from about 40% to 90% water-holding capacity. Castro (1994) reported that soil moisture exerted strong control on CH_4 consumption over a range of 60% to 100% WFPS, CH_4 consumption decreased linearly from 0.1 to 0 $\text{mg} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$. Potential explanations for the moisture-induced reduction of CH_4 consumption include: (1) a shift in the net flux towards more CH_4 production at high soil moisture, (2) physiological stress on the microbial communities that oxidize CH_4 at high soil moisture, and (3) alternations in soil gas transport rates at high soil moisture. Results from our incubation experiments showed that very little CH_4 was produced in this soil under wet conditions (in: Xu Hui's doctoral dissertation). In addition, soil microbial communities did not appear to be severely stressed by exposure to high soil moisture. Therefore, the reduced CH_4 consumption is likely to be caused by slower transport of CH_4 from the atmosphere to the subsurface zone of consumption at high soil moisture because CH_4 transport is 10 000 times slower in water than in air.

Fig. 2. CH_4 flux and water content of mixed broad-leaved/Korean pine forest

Soil available NO_3^- and N_2O Flux

Availability of mineral nitrogen (NH_4^+ and NO_3^-) to bacteria is an important controller for the microbial processes that produce N_2O . The soil NO_3^- content of

soil at 0-10cm depth in the mixed broad-leaved/Korean pine forest varied between 2.5-33.5 mg N·kg⁻¹ dry soil (Fig.3). A correlation which was found between soil available nitrate concentration and N₂O flux was presented as equation (4).

$$\text{Log } F(\text{N}_2\text{O}) = -6.6704 \times [\text{NO}_3^- - \text{N}] + 5.1969 \quad (4)$$

(r= 0.9612 , n=5, P<0.01)

Where [NO₃⁻ - N] is concentration of soil available nitrate(N) (mg·kg⁻¹ dry soil), Log F(N₂O) is logarithmic value of N₂O flux.

Nitrification and denitrification were known as two main N₂O production processes in the terrestrial ecosystem. NO₃⁻ is one of the products of nitrification, as well as a substrate of denitrification. In general, high NO₃⁻ concentration can increase the rate of denitrification and the N₂O/N₂ ratio in the product, but inhibit the rate of nitrification. The negative correlation between soil NO₃⁻ content and N₂O flux found in this study can be explained by the inhibition of NO₃⁻ on nitrification, which is the dominant process of N₂O production in this soil.

Fig. 3. Soil nitrate concentration and N₂O flux of mixed broad-leaved Korean pine forest

Soil available NH₄⁺ and CH₄ Flux

The soil NH₄⁺ content (0~10-cm depth) varied between 23.1~43.1 mgN·kg⁻¹ dry soil. A positive correlation (equation (5)) between CH₄ flux and soil NH₄⁺ content was found (Fig.4).

$$F(\text{CH}_4) = 1.7649 \times [\text{NH}_4^+] - 68.9797 \quad (5)$$

(r= 0.8918, n= 7, P<0.05)

Where F(CH₄) is the CH₄ flux (µg·m⁻²·h⁻¹), [NH₄⁺] is the soil NH₄⁺ content (mgN·kg⁻¹ dry soil).

The nitrogen fertilization may decrease the rate at which temperate forest soils uptake CH₄ from the atmosphere was first reported by Steudler *et al.* (1989). Mosier (1991) suggested that high N turnover, whether native or due to fertilization, suppressed CH₄ uptake. Castro *et al.* (1995) gave a further explanation: changes in the soil nitrogen cycle following fertilization may induce shifts in the relative activities of the microbial populations that oxidize atmospheric methane from those dominated by methanotrophs in fertilized soils to those dominated by ammonium oxidizers in fertilized soils. Ammonium oxidizers have 100 to 10,000 times lower CH₄ oxidation rates than that of the methanotrophs. Another hypothesis was described by Megraw & Knowles (1989). The methane-dependent nitrate production (methanotrophic nitrification) existed in soil. The increased CH₄ concentration enhanced the oxidation of NH₄⁺ by methanotrophs, but nitrite, the product of NH₄⁺ oxidation, is the inhibitor of CH₄ oxidation. Methanotrophic nitrification, although inhibited by increasing CH₄ concentrations, is dependent on CH₄. In addition, Xu Hui *et al.* (1999) reported the statistical correlations between *in situ* N₂O emission rate and CH₄ consumption rate of different forest soils. Therefore, CH₄ is likely to be an important factor in the regulation of nitrification and N₂O production and, more generally, in the N cycle in natural environments.

An important challenge is to predict how global changes, such as climate, land use, and atmospheric nitrogen deposition, will affect the exchange of greenhouse gases between the atmosphere and biosphere. From the data of current studies, increased nitrogen deposition may lower the ability of soil to consume atmospheric CH₄.

Fig. 4. Soil ammonium concentration and CH₄ flux of mixed broad-leaved/Korean pine forest

Conclusion

The simultaneous *in situ* measurements of N₂O and CH₄ fluxes and the environmental factors allowed the discussion of which may be the controlling factors. In this study, a significant positive correlation between N₂O emission and temperature, and a significant correlation between CH₄ uptake and soil moisture indicated that temperature and soil moisture were the controlling factor for N₂O flux and CH₄ flux, respectively. The results of correlation between soil nitrate content and N₂O flux, and correlation between soil ammonium content and CH₄ flux indicated that soil nitrate and ammonium concentrations were also the important influencing factor for N₂O flux and CH₄ flux.

References

Bouwman, A.F. 1990. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. pp. 61-127 in A.F. Bouwman (ed.). Soils and the greenhouse effect. John Wiley & Sons Ltd., Chichester

Castro, M.S. et al., 1995. Factor controlling atmospheric methane consumption by temperate forest soils, Global Biogeological cycles, **9**: 1-10

Castro, M.S. et al., 1994. Soil moisture as a predictor of methane uptake by forest soils, Can. J. For. Res., **24**

IPCC 1992. Climate Change 1992. The supplementary report to the IPCC Scientific Assessment. J. T. Houghton, B.A. Callander & S. K. Varney (eds.). Cambridge University Press, Cambridge

Keller, M. & Reiners, W.A. 1994. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochemical Cycles. **8**: 399-409.

King, G.M. & Schnell, S. 1994. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature, **370**(28): 282-284.

King, G.M., and Adamsen, A.P.S. 1992. Effects of temperature on methane consumption in a forest soil and pure cultures of the methanotroph *methylomonas redra*. Appl. Environ. Microbiol., **58**: 2758-2763

King, G.M., and Schnell, S. 1994. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature, **370**: 282-284

Koschorreck, M., and Conrad, R. 1993. Oxidation of atmospheric methane in soil: Measurements in the field, in soil cores, and soil samples. Global Biogeochem. Cycles, **7**: 109-121.

Kreileman, G.J.J. and Bouwman, A. F. 1994. Computing land use emissions of greenhouse gases. Water, Air and Soil Pollution, **76**: 231-258

Linn, D.M. & Doran, J.W. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils. Soil Sci. Soc. Am. J., **48**:1267-1272

Megraw, S.R. and Knowles, R. 1989. Methane-dependent nitrate production by a microbial consortium enriched from a cultivated humisol. FEMS Microbiol. Ecol., **62**:359-366

Mosier, A., et al. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands, Nature (London), **350**:330-332

Steudler, P.A., Bowden, R.D., Melillo, J.M. and Aber, J.D. 1989. Influence of nitrogen fertilization on methane uptake on temperate forest soils. Nature, **341**: 314-316.

Xu Hui and Chen Guanxiong, 1999. Correlations between N₂O emission rate and CH₄ consumption rate of forest soils. Chinese Science Abstracts, **5**(10): 1360