Statictical Modeling and Advanced Regression Analyses

R Tutorials

Holger Sennhenn-Reulen[®] Northwest German Forest Research Institute (NW-FVA), Germany.

December 4, 2024

Contents

1	Software						
	1.1	Organi	ze R Session	3			
2	Line	Linear Regression Model					
	2.1	Data Si	imulation	3			
		2.1.1	Visualisations	4			
	2.2	Modeli	ing	8			
		2.2.1	Visualisations	9			
	2.3	Add-O	ns	10			
		2.3.1	Add-On Linear Model: A) Stancode	10			
		2.3.2	Add-On Linear Model: B) Posterior predictive check: an introduction 'by hand'	12			
3	Binary Regression Model						
	3.1	Data Si	imulation	18			
		3.1.1	Visualisations	18			
	3.2	Modeli	ing	19			
		3.2.1	Visualisations	20			
		3.2.2	Estimated Expected Value	23			
4	Poisson Regression Model						
	4.1	Data Si	imulation	26			
		4.1.1	Visualisations	26			
	4.2	Modeli	ing	27			
		4.2.1	Estimated Expected Value				

5	Mixed models				
	5.1	Data Simulation Function f_sim_data	31		
	5.2	Random Intercept Model			
		5.2.1 small simulation study	34		
		5.2.2 small simulation study	35		
	5.3	Random Intercept with Random Slope Model	36		
	5.4	Nested Model	38		
		5.4.1 add covariate 'z' as constant within 2nd level	41		
Re	eferer	nces	44		

1 Software

We use the statistical software environment *R* (R Core Team, 2024), and R add-on packages *ggplot2* (Wickham, 2016).

This document is produced using *Quarto* (Allaire et al., 2024).

1.1 Organize R Session

```
rm(list = ls())
library("ggplot2")
```

2 Linear Regression Model

2.1 Data Simulation

Data are simulated according to the equations given in the lecture slides¹:

¹For two covariates x_1 and x_2 .

```
 df mu \leftarrow beta_0 + beta_x_1 * df x_1 + beta_x_2 * df x_2 \\ df + rnorm(n = N, mean = 0, sd = sigma)
```

2.1.1 Visualisations

```
ggplot(data = df, aes(x = x_1, y = x_2)) +
geom_point()
```


Figure 1: Scatterplot of the two simulated covariates x_1 and x_2 - each from the uniform distribution between 0 and 1.

```
ggplot(data = df, aes(x = x_1, y = mu, color = x_2)) +
  geom_point()
```


Figure 2: Scatterplot of covariate x_1 with response y - each individual observation is coloured according to the second covariate x_2 .

```
ggplot(data = df, aes(x = x_2, y = mu, color = x_1)) +
  geom_point()
```


Figure 3: Scatterplot of covariate x_2 with response y - each individual observation is coloured according to the first covariate x_1 .

```
ggplot(data = df, aes(x = x_1, y = x_2, color = mu)) +
  geom_point()
```


Figure 4: Scatterplot of the two simulated covariates x_1 and x_2 - each individual observation is coloured according to the underlying true conditional expectation mu.

```
ggplot(data = df, aes(x = x_1, y = x_2, color = y)) + geom_point()
```


Figure 5: Scatterplot of the two simulated covariates x_1 and x_2 - each individual observation is coloured according to the response y.

2.2 Modeling

The basic R command for (frequentist) estimation of the parameters of a linear regression model is a call to the function 1m:

```
Call: lm(formula = y \sim x_1 + x_2, data = df)
```

Residuals:

```
Min 1Q Median 3Q Max -0.82082 -0.19805 0.00329 0.19051 0.81138
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                        0.03448
(Intercept)
             0.91291
                                 26.476
                                          < 2e-16 ***
x_1
             0.91533
                        0.04668
                                 19.610
                                         < 2e-16 ***
x_2
            -0.36218
                        0.04566
                                 -7.933 1.43e-14 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Residual standard error: 0.2963 on 497 degrees of freedom Multiple R-squared: 0.4674, Adjusted R-squared: 0.4652 F-statistic: 218 on 2 and 497 DF, p-value: < 2.2e-16

2.2.1 Visualisations

```
nd <- data.frame(x_1 = seq(0, 1, by = .1),
	x_2 = .5)
nd$mu <- predict(m, newdata = nd)
ggplot(data = df, aes(x = x_1, y = mu, color = x_2)) +
geom_point() +
geom_line(data = nd, aes(x = x_1, y = mu, color = x_2))
```


Figure 6: Scatterplot of covariate x_1 with the true conditional expectation mu - each individual observation is coloured according to the second covariate x_2 . The line gives the point estimation for the conditional expectation with the second covariate x_2 fixed to 0.5.

```
geom_point() +
geom_line(data = nd, aes(x = x_1, y = mu, color = x_2, group = x_2))
```


Figure 7: Scatterplot of covariate x_1 with the true conditional expectation mu - each individual observation is coloured according to the second covariate x_2 . The lines give the point estimation for the conditional expectation with the second covariate x_2 taking on values between 0 and 1 (at steps of 0.1).

2.3 Add-Ons

2.3.1 Add-On Linear Model: A) Stancode

2.3.1.1 Stan Users Guide

Probabilistic Programming Languages such as *Stan* (Carpenter et al., 2017) allow to plug together the single parts of a statistical regression model²:

The following Stan-code is published here in the Stan users guide:

```
data {
  int<lower=0> N;
  vector[N] x;
```

 $^{^2}$ Which is actually pretty 'readable' if you get used to the structure for a simple model such the linear regression model.

```
vector[N] y;
}
parameters {
  real alpha;
  real beta;
  real<lower=0> sigma;
}
model {
  y ~ normal(alpha + beta * x, sigma);
}
```

2.3.1.2 Stancode generated by calling brms::brm

The R add-on package *brms* (Bürkner, 2017, 2018) allows to implent advanced regression models without being an expert in 'Stan-programming'.

Here is the Stan-code that is implemented by 'brms' for our linear regression model example:

```
brms::make_stancode(brms::bf(y ~ x_1 + x_2, center = F), data = df)
// generated with brms 2.21.0
functions {
}
data {
  int<lower=1> N; // total number of observations
  vector[N] Y; // response variable
  int<lower=1> K; // number of population-level effects
 matrix[N, K] X; // population-level design matrix
  int prior_only; // should the likelihood be ignored?
}
transformed data {
}
parameters {
  vector[K] b; // regression coefficients
  real<lower=0> sigma; // dispersion parameter
transformed parameters {
  real lprior = 0; // prior contributions to the log posterior
  lprior += student_t_lpdf(sigma | 3, 0, 2.5)
    - 1 * student_t_lccdf(0 | 3, 0, 2.5);
}
model {
  // likelihood including constants
```

```
if (!prior_only) {
   target += normal_id_glm_lpdf(Y | X, 0, b, sigma);
}
// priors including constants
target += lprior;
}
generated quantities {
}
```

2.3.2 Add-On Linear Model: B) Posterior predictive check: an introduction 'by hand'

Having an 1m object already, it is rather straightforward to get posterior samples by using function sim from the *arm* (Gelman & Su, 2024) package:

```
library("arm")
S \leftarrow sim(m)
str(S)
Formal class 'sim' [package "arm"] with 2 slots
  ..@ coef : num [1:100, 1:3] 0.882 1.014 0.904 0.978 0.958 ...
  ...- attr(*, "dimnames")=List of 2
  .. .. ..$ : NULL
  .....$ : chr [1:3] "(Intercept)" "x_1" "x_2"
  ..@ sigma: num [1:100] 0.323 0.303 0.292 0.309 0.29 ...
S <- cbind(S@coef, 'sigma' = S@sigma)
head(S)
     (Intercept)
                       x_1
                                  x_2
                                          sigma
[1,]
       0.8816414 0.9245094 -0.3362733 0.3227662
       1.0139849 0.7317948 -0.3398411 0.3033703
[2,]
[3,]
      0.9037042 0.9155575 -0.3506924 0.2922883
[4,]
      0.9776909 0.8392790 -0.3845609 0.3090220
[5,]
       0.9579213 0.8977625 -0.4284596 0.2900632
[6,]
       0.9549211 0.8478278 -0.3937226 0.3094227
```

Predict the response for the covariate data as provided by the original data-frame df - here only by using the first posterior sample:

geom_histogram(alpha = .5, position = "identity")

Figure 8: Histogram of the original and the posterior predicted response sample.

Now let's repeat the same for 9 different posterior samples:

```
data.frame(y = y_s, source = "predicted", s = s))
}
ggplot(data = pp, aes(x = y, fill = source)) +
  geom_histogram(alpha = .5, position = "identity") +
  facet_wrap(~ s)
```


Figure 9: Histogram of the original and the posterior predicted response sample.

```
ggplot(data = pp, aes(x = y, fill = source)) +
  geom_density(alpha = .5, position = "identity") +
  facet_wrap(~ s)
```


Figure 10: The same as in Figure 9, but now using kernel density visualisations.

```
ggplot(data = pp, aes(x = y, colour = source)) +
  stat_ecdf() +
  facet_wrap(~ s)
```


Figure 11: The same as in Figure 9 or Figure 10, but now using empirical cumulative density function visualisations.

Figure 12: The same as in Figure 12, but now within one plotting window: This visualisation is what brms::pp_check will produce if applied on a brm object.

3 Binary Regression Model

```
rm(list = ls())
library("ggplot2")
library("plyr")
```

3.1 Data Simulation

Data are simulated similarly as for the linear model:

3.1.1 Visualisations

Figure 13: Scatterplot of covariate x_1 with response y - each individual observation is coloured according to the second covariate x_2, and additionally 'jittered' in vertical direction.

3.2 Modeling

The basic R command for (frequentist) estimation of the parameters of a binary regression model is a call to the function glm with family argument binomial:

```
m \leftarrow glm(y \sim x_1 + x_2, data = df,
        family = binomial(link = 'logit'))
summary(m)
Call:
glm(formula = y ~ x_1 + x_2, family = binomial(link = "logit"),
    data = df
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.2908 0.2358 -1.233 0.217531
             1.1598
x 1
                        0.3248 3.570 0.000356 ***
            -0.1713
                        0.3138 -0.546 0.585034
x_2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
```

Null deviance: 688.53 on 499 degrees of freedom Residual deviance: 675.30 on 497 degrees of freedom

AIC: 681.3

Number of Fisher Scoring iterations: 4

3.2.1 Visualisations

Figure 14: Scatterplot of covariate x_1 with the true linear predictor eta - each individual observation is coloured according to the second covariate x_2 . The line gives the point estimation for the conditional expectation with the second covariate x_2 fixed to 0.5.

Figure 15: Scatterplot of covariate x_1 with the true conditional expectation p - each individual observation is coloured according to the second covariate x_2. The line gives the point estimation for the conditional expectation with the second covariate x_2 fixed to 0.5.

3.2.2 Estimated Expected Value

We can apply the Bernstein-von Mises theorem to estimate the *expected value*:

- **Fit the model**: Obtain the maximum likelihood estimate for the model's coefficients (coef) along with their variance-covariance matrix (vcov).
- **Simulate coefficients**: Perform an 'informal' Bayesian posterior simulation using the multivariate normal distribution, based on the *Bernstein-von Mises theorem*.
- **Convert simulated coefficients**: Apply an appropriate transformation to the simulated coefficients to compute the *simulated quantity of interest*. This quantity typically depends on the values of all explanatory variables, and researchers may:
- Focus on a specific observation (usually an 'average'), or
- Average across all sample observations.

In both cases, the applied transformation incorporates the researcher's specific choice.

```
library("MASS")
coef(m)
(Intercept)
                    x_1
 -0.2907775
            1.1597730 -0.1713224
vcov(m)
            (Intercept)
                                 x_1
                                              x_2
(Intercept) 0.05560471 -0.048970067 -0.047028038
x_1
            -0.04897007 0.105509175 -0.004560743
x_2
            -0.04702804 -0.004560743 0.098439583
set.seed(0)
B <- mvrnorm(n = 100, mu = coef(m), Sigma = vcov(m))
head(B)
     (Intercept)
                                  x_2
                       x_1
[1,] -0.08125910 0.6544775 -0.2581602
[2,] -0.40299145 1.3779659 -0.3263178
[3,] 0.09915843 1.0089580 -0.5398310
[4,] 0.03289839 0.8600445 -0.3880109
[5,] -0.12814786 1.3256621 -0.5036957
[6,] -0.55953065 1.4562644 0.3176658
```

```
nd \leftarrow expand.grid('x_1' = nd$x_1,
                   'x_2' = nd$x_2,
                   's' = 1:nrow(B)
head(nd)
  x_1 x_2 s
1 0.0 0.5 1
2 0.1 0.5 1
3 0.2 0.5 1
4 0.3 0.5 1
5 0.4 0.5 1
6 0.5 0.5 1
nd$p \leftarrow plogis(B[nd$s, 1] + B[nd$s, 2] * nd$x_1 +
                 B[nd\$s, 3] * nd\$x_2)
dd <- ddply(nd, c('x_1'), summarise,</pre>
            p_{mean} = mean(p),
            p_lwr_95 = quantile(p, prob = .025),
            p_upr_95 = quantile(p, prob = .975),
            p_lwr_9 = quantile(p, prob = .05),
            p_upr_9 = quantile(p, prob = .95),
            p_lwr_75 = quantile(p, prob = .125),
            p_upr_75 = quantile(p, prob = .875))
set.seed(0)
ggplot(data = df, aes(x = x_1)) +
  geom_jitter(aes(y = y, color = x_2), width = 0, height = .1) +
  geom_ribbon(data = dd, aes(x = x_1, ymin = p_lwr_95,
                              ymax = p_upr_95), alpha = .4) +
  geom_ribbon(data = dd, aes(x = x_1, ymin = p_lwr_9,
                              ymax = p_upr_9), alpha = .4) +
  geom_ribbon(data = dd, aes(x = x_1, ymin = p_lwr_75,
                              ymax = p_upr_75), alpha = .4) +
  geom_line(data = dd, aes(y = p_mean))
```


Figure 16: Scatterplot of covariate x_1 with the true conditional expectation mu - each individual observation is coloured according to the second covariate x_2 . The line gives the point estimation for the conditional expectation with the second covariate x_2 fixed to 0.5.

4 Poisson Regression Model

```
rm(list = ls())
library("ggplot2")
```

4.1 Data Simulation

Data are simulated similarly as for the linear model:

4.1.1 Visualisations

Figure 17: Scatterplot of covariate x_1 with response y - each individual observation is coloured according to the second covariate x_2.

4.2 Modeling

The basic R command for (frequentist) estimation of the parameters of a binary regression model is a call to the function glm with family argument poisson(link = 'log'):

```
m \leftarrow glm(y \sim x_1 + x_2, data = df, family = poisson(link = 'log')) summary(m)
```

```
Call:
glm(formula = y \sim x_1 + x_2, family = poisson(link = "log"),
   data = df
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.09637 0.11000 -0.876
                                           0.381
                        0.14351 7.354 1.93e-13 ***
x_1
            1.05534
x_2
            -0.54067
                        0.13875 -3.897 9.74e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 619.76 on 499 degrees of freedom
Residual deviance: 551.67 on 497 degrees of freedom
AIC: 1395.1
Number of Fisher Scoring iterations: 5
4.2.1 Estimated Expected Value
Let's again apply the Bernstein-von Mises theorem
library("MASS")
coef(m)
(Intercept)
                    x_1
-0.09636825 1.05534471 -0.54067416
vcov(m)
             (Intercept)
                                   x_1
(Intercept) 0.012100215 -0.0115419704 -0.0083283575
            -0.011541970 0.0205956476 -0.0008112633
x_1
           -0.008328358 -0.0008112633 0.0192505213
x_2
set.seed(0)
B <- mvrnorm(n = 100, mu = coef(m), Sigma = vcov(m))
head(B)
```

```
(Intercept)
                        x_1
[1,] 0.05743986 0.8596548 -0.5240625
[2,] -0.10120645 1.1692825 -0.5989887
[3,] 0.01910641 0.9263818 -0.7232511
[4,] 0.02386701 0.8912981 -0.6321912
[5,] -0.06117581 1.0833727 -0.7137618
[6,] -0.30539283 1.1687677 -0.3825595
nd \leftarrow expand.grid('x_1' = seq(0, 1, by = .1),
                   'x_2' = .5,
                   's' = 1:nrow(B)
head(nd)
  x_1 x_2 s
1 0.0 0.5 1
2 0.1 0.5 1
3 0.2 0.5 1
4 0.3 0.5 1
5 0.4 0.5 1
6 0.5 0.5 1
nd$mu \leftarrow exp(B[nd$s, 1] +
                B[nd\$s, 2] * nd\$x_1 +
                B[nd\$s, 3] * nd\$x_2)
dd <- ddply(nd, c('x_1'), summarise,</pre>
            mu_mean = mean(mu),
            mu_lwr_95 = quantile(mu, prob = .025),
            mu_upr_95 = quantile(mu, prob = .975),
            mu_lwr_9 = quantile(mu, prob = .05),
            mu_upr_9 = quantile(mu, prob = .95),
            mu_lwr_75 = quantile(mu, prob = .125),
            mu_upr_75 = quantile(mu, prob = .875))
df_p_B \leftarrow data.frame('x_1' = seq(0, 1, by = .01),
                      'mu' = \exp(\operatorname{coef}(m)[1] +
                                    coef(m)[2] * seq(0, 1, by = .01) +
                                    coef(m)[3] * .5))
set.seed(0)
ggplot(data = df, aes(x = x_1)) +
  geom_jitter(aes(y = y, color = x_2), width = 0, height = .1) +
  geom_ribbon(data = dd, aes(x = x_1, ymin = mu_lwr_95,
                              ymax = mu_upr_95), alpha = .4) +
  geom_ribbon(data = dd, aes(x = x_1, ymin = mu_lwr_9,
                              ymax = mu_upr_9), alpha = .4) +
```


Figure 18: Scatterplot of covariate x_1 with the response observations y - each individual observation is coloured according to the second covariate x_2. The line gives the point estimation for the conditional expectation with the second covariate x_2 fixed to 0.5, the coloured intervals give point-wise central 75%, 90%, and 95% credible intervals for the conditional expectation.

5 Mixed models

```
... a.k.a. hierarchical model, multilevel model, ...
rm(list = ls())
library("lme4")
library("ggplot2")
library("plyr")
```

5.1 Data Simulation Function f_sim_data

```
f_sim_data <- function(seed, type) {</pre>
  set.seed(seed) # Set seed for reproducibility
 parameters <- list(## Global intercept:</pre>
    "beta_0" = rnorm(n = 1, mean = 2, sd = .1),
    ## Global slope of 'x':
    "beta_x" = rnorm(n = 1, mean = 1.5, sd = .1),
    ## Standard deviation of residuals:
    "sigma" = abs(rnorm(n = 1, mean = 1,
                         sd = .1)))
  if (type == "Random_Intercept") {
    ## Standard deviation of random intercept parameters:
    parameterss'sigma_u' \leftarrow abs(rnorm(n = 1, mean = 1, sd = .1))
    ## Number of groups:
    parameters$'G' <- 30
    ## Number of observations per group:
    parameters$'n_per_g' <- 30</pre>
    g <- rep(1:parameters$'G', each = parameters$'n_per_g')</pre>
    x <- runif(n = parameters$'G' * parameters$'n_per_g',</pre>
                min = -1, max = 1)
    df \leftarrow data.frame('x' = x,
                      'g' = g)
    df$u <- rnorm(n = parameters$'G', mean = 0,</pre>
                   sd = parameters$'sigma_u')[df$g]
    df$mu <- parameters$'beta_0' +</pre>
      parameters$'beta_x' * df$x + df$u
    attributes(df)$'type' <- type
    attributes(df)$'parameters' <- parameters
  if (type == "Nested") {
    ## Standard deviation of random intercept parameters:
```

```
parameters$'sigma_u_a' <- abs(rnorm(n = 1, mean = 1, sd = .1))</pre>
  parameters$'sigma_u_b' <- abs(rnorm(n = 1, mean = 1, sd = .1))</pre>
  ## Number of groups in 1st level:
  parameters$'G_a' <- 30
  ## Number of observations per group:
  parameters$'n_per_g_a' <- 30</pre>
  ## Number of groups in 2nd level:
  parameters$'G_b' <- 10
  ## Number of observations per group:
  parameters$'n_per_g_b' <- 6</pre>
  gr <- as.data.frame(expand.grid('g_a' = 1:parameters$'G_a',</pre>
                                     'g_b' = 1:parameters$'G_b'))
  df <- gr[rep(1:nrow(gr), each = parameters$'n_per_g_b'), ]</pre>
  df <- df[order(df$g_a, df$g_b), ]</pre>
  rownames(df) <- NULL
  df$g_ab <- paste0(df$g_a, "_", df$g_b)</pre>
  df$x <- runif(n = parameters$'G_a' * parameters$'n_per_g_a',</pre>
                 min = -1, max = 1
  u_a <- rnorm(n = parameters$'G_a', mean = 0,
                sd = parameters$'sigma_u_a')
  df$u_a \leftarrow u_a[df$g_a]
  u_b <- rnorm(n = length(unique(df$g_ab)), mean = 0,</pre>
                sd = parameters$'sigma_u_b')
  names(u_b) <- unique(df$g_ab)</pre>
  df$u_b <- as.numeric(u_b[df$g_ab])</pre>
  df$mu <- parameters$'beta_0' + parameters$'beta_x' * df$x +</pre>
    df$u_a + df$u_b
  attributes(df)$'type' <- type
  attributes(df)$'parameters' <- parameters
epsilon <- rnorm(n = nrow(df), mean = 0, sd = parameters$'sigma')
df$y <- df$mu + epsilon
return(df)
```

5.2 Random Intercept Model

x g u

}

```
df <- f_sim_data(seed = 0, type = "Random_Intercept")
head(df)</pre>
```

mu

У

```
1 \quad 0.3215956 \ 1 \ -1.095936 \quad 1.50226149 \quad 2.9095988
```

2 0.2582281 1 -1.095936 1.40927751 2.1118975

3 -0.8764275 1 -1.095936 -0.25568956 -0.1425014

4 -0.5880509 1 -1.095936 0.16746754 2.2155593

5 -0.6468865 1 -1.095936 0.08113349 -1.6210895

6 0.3740457 1 -1.095936 1.57922556 1.9028505

unlist(attributes(df)\$parameters)

beta_0 beta_x sigma sigma_u G n_per_g 2.126295 1.467377 1.132980 1.127243 30.000000 30.000000

 $m \leftarrow lmer(y \sim x + (1 \mid g), data = df)$ summary(m)

Linear mixed model fit by REML ['lmerMod']

Formula: $y \sim x + (1 \mid g)$

Data: df

REML criterion at convergence: 2889.6

Scaled residuals:

Min 1Q Median 3Q Max -3.10483 -0.67888 -0.01549 0.67941 2.97945

Random effects:

Groups Name Variance Std.Dev.
g (Intercept) 1.421 1.192
Residual 1.287 1.134
Number of obs: 900, groups: g, 30

Fixed effects:

Estimate Std. Error t value (Intercept) 2.00545 0.22090 9.078 x 1.51171 0.06674 22.652

Correlation of Fixed Effects:

(Intr)

x 0.000

5.2.1 ... small simulation study

```
R <- 50
ci_df <- NULL</pre>
for (r in 1:R) {
  ## Simulate data:
  df <- f_sim_data(seed = r, type = "Random_Intercept")</pre>
  ## Estimate models:
  lm_model \leftarrow lm(y \sim x, data = df)
  lmer_model \leftarrow lmer(y \sim x + (1 \mid g), data = df)
  ## Extract confidence intervals:
  lm_ci <- confint(lm_model, level = 0.95)</pre>
  lmer_ci <- suppressMessages(confint(lmer_model, level = 0.95))</pre>
  ## Store results:
  par_name <- "sigma"</pre>
  tmp <- data.frame(r = r,</pre>
                      par_name = par_name,
                      Value = rep(attributes(df)$parameters$sigma,
                                   times = 2),
                      Model = c("lm", "lmer"),
                      Estimate = c(summary(lm_model)$sigma,
                                    summary(lmer_model)$sigma),
                      CI_{Low} = rep(NA, 2),
                      CI_{High} = c(NA, 2)
  ci_df <- rbind(ci_df, tmp)</pre>
  par_name <- "x"
  tmp \leftarrow data.frame(r = r,
                      par_name = par_name,
                      Value = rep(attributes(df)$parameters$beta_x,
                                   times = 2),
                      Model = c("lm", "lmer"),
                      Estimate = c(coef(lm_model)[par_name],
                                    fixef(lmer_model)[par_name]),
                      CI_Low = c(lm_ci[par_name, 1],
                                  lmer_ci[par_name, 1]),
                      CI_High = c(lm_ci[par_name, 2],
                                   lmer_ci[par_name, 2]))
  ci_df <- rbind(ci_df, tmp)</pre>
  par_name <- "(Intercept)"</pre>
  tmp <- data.frame(r = r,</pre>
                      par_name = par_name,
                      Value = rep(attributes(df)$parameters$beta_0,
                                   times = 2),
```

5.2.2 ... small simulation study

Figure 19: Simulation study results: Red dots show true underlying values.

5.3 Random Intercept with Random Slope Model

```
f_add_random_slope <- function(df, x_lab, g_lab) {</pre>
  ## assign(paste0("sigma_u_", x_label, "_", g_label), 1)
  sigma_u_slope \leftarrow abs(rnorm(n = 1, mean = 1, sd = .1))
  u_slope <- rnorm(length(unique(df[, g_lab])), mean = 0,</pre>
                    sd = sigma_u_slope)
  df$u_slope <- u_slope[df[, g_lab]]</pre>
  df$y \leftarrow df$y + df[, x_lab] * df$u_slope
  attributes(df)$parameters[[paste0("sigma_u_", x_lab, "_", g_lab)]] <-
    sigma_u_slope
  return(df)
}
df <- f_sim_data(seed = 0, type = "Random_Intercept")</pre>
df <- f_add_random_slope(df = df, x_lab = "x", g_lab = "g")</pre>
head(df)
                                                     u_slope
           x g
                                    mu
   0.3215956 1 -1.095936
                           1.50226149
                                        2.4603313 -1.396995
2 0.2582281 1 -1.095936
                           1.40927751
                                        1.7511541 -1.396995
                                        1.0818636 -1.396995
3 -0.8764275 1 -1.095936 -0.25568956
```

```
4 -0.5880509 1 -1.095936 0.16746754 3.0370635 -1.396995
5 -0.6468865 1 -1.095936  0.08113349 -0.7173922 -1.396995
6 0.3740457 1 -1.095936 1.57922556 1.3803104 -1.396995
gr \leftarrow expand.grid('x' = c(-1, 1),
                   'g' = 1:attributes(df)$parameters$G)
dd <- ddply(df, c("g"), summarise,</pre>
            'intercept' = u[1],
            'slope' = u_slope[1])
gr$y <- attributes(df)$parameters$beta_0 + dd$intercept[gr$g] +</pre>
  gr$x * (attributes(df)$parameters$beta_x + dd$slope[gr$g])
ggplot(data = df, aes(x = x, y = y)) +
  geom_line(data = data.frame(x = c(-1, 1),
                               y = attributes(df)$parameters$beta_0 +
                                 c(-1, 1) *
                                 attributes(df)$parameters$beta_x)) +
  geom_point(alpha = .5) +
  geom_line(data = gr, aes(group = g), linetype = 2) +
  facet_wrap(~ g)
unlist(attributes(df)$parameters)
     beta 0
                 beta x
                               sigma
                                        sigma_u
                                                                  n_per_g
                                        1.127243 30.000000
   2.126295
               1.467377 1.132980
                                                                30.000000
sigma_u_x_g
   1.066731
m \leftarrow lmer(y \sim x + (1 + x|g), data = df)
summary(m)
Linear mixed model fit by REML ['lmerMod']
Formula: y \sim x + (1 + x \mid g)
   Data: df
REML criterion at convergence: 2969.4
Scaled residuals:
               1Q
                    Median
                                  3Q
                                          Max
-2.73036 -0.66985 -0.01614 0.65063 2.87938
Random effects:
Groups
                     Variance Std.Dev. Corr
          Name
          (Intercept) 1.410
                                1.187
```

x 1.488 1.220 0.03

Residual 1.299 1.140 Number of obs: 900, groups: g, 30

Fixed effects:

Estimate Std. Error t value (Intercept) 2.0000 0.2202 9.084 x 1.3435 0.2328 5.772

Correlation of Fixed Effects:

(Intr)

x 0.024

Figure 20: Scatterplot for simulated data with random intercept und randon slope: Dashed lines shows the underlying group specific conditional expectation.

5.4 Nested Model

df <- f_sim_data(seed = 0, type = "Nested")
head(df)</pre>

```
1 1 1_1 -0.8764275 -1.936757 0.6458663 -0.45064437 -0.8523900
1
2
   1 1 1 1 -0.5880509 -1.936757 0.6458663 -0.02748727 0.1857836
3
    1 1 1_1 -0.6468865 -1.936757 0.6458663 -0.11382132 0.9328256
4 \quad 1 \quad 1 \quad 1_{-1} \quad 0.3740457 \quad -1.936757 \quad 0.6458663 \quad 1.38427075 \quad 3.8232376
      1 1_1 -0.2317926 -1.936757 0.6458663 0.49527783 -0.7620346
5
    1 1 1 1 0.5396828 -1.936757 0.6458663 1.62732283 2.7937350
## ... two alternatives:
m1 \leftarrow lmer(y \sim x + (1|g_a/g_b), data = df)
m2 \leftarrow lmer(y \sim x + (1|g_a) + (1|g_ab), data = df)
unlist(attributes(df)$parameters)
   beta_0
             beta_x
                       sigma sigma_u_a sigma_u_b
                                                         G_a n_per_g_a
 2.126295 1.467377 1.132980 1.127243 1.041464 30.000000 30.000000 10.000000
n_per_g_b
 6.000000
summary(m1)
Linear mixed model fit by REML ['lmerMod']
Formula: y \sim x + (1 \mid g_a/g_b)
  Data: df
REML criterion at convergence: 6235.4
Scaled residuals:
              1Q Median
                                 3Q
                                         Max
-3.06066 -0.65621 0.02234 0.63566 2.79567
Random effects:
Groups Name
                      Variance Std.Dev.
 g_b:g_a (Intercept) 0.8489 0.9214
      (Intercept) 1.4214 1.1922
Residual
                      1.3809 1.1751
Number of obs: 1800, groups: g_b:g_a, 300; g_a, 30
Fixed effects:
            Estimate Std. Error t value
(Intercept) 2.10415 0.22578 9.319
```

Correlation of Fixed Effects:

1.41589 0.05253 26.954

```
(Intr)
x 0.001
summary(m2)
Linear mixed model fit by REML ['lmerMod']
Formula: y \sim x + (1 | g_a) + (1 | g_ab)
   Data: df
REML criterion at convergence: 6235.4
Scaled residuals:
     Min
                                  3Q
                                          Max
               1Q
                    Median
-3.06066 -0.65621 0.02234 0.63566 2.79567
Random effects:
                      Variance Std.Dev.
 Groups
          Name
          (Intercept) 0.8489
                               0.9214
 g_ab
          (Intercept) 1.4214
                                1.1922
 g_a
Residual
                      1.3809 1.1751
Number of obs: 1800, groups: g_ab, 300; g_a, 30
Fixed effects:
            Estimate Std. Error t value
                                 9.319
(Intercept) 2.10415
                        0.22578
             1.41589
                        0.05253 26.954
Correlation of Fixed Effects:
  (Intr)
x 0.001
cowplot::plot_grid(
  ggplot(data = data.frame(x = ranef(m1)$'g_a'[, 1],
                           y = ranef(m2) \frac{g_a'[, 1]}{} +
    geom_point(aes(x = x, y = y)) +
    geom_abline(intercept = 0, slope = 1) +
    labs(x = "ranef(m1)\frac{g_a'}{1}, 1]", y = "ranef(m2)\frac{g_a'}{1}, 1]"),
  ggplot(data = data.frame(x = sort(ranef(m1)$'g_b:g_a'[, 1]),
                           y = sort(ranef(m2)\$'g_ab'[, 1]))) +
    geom_point(aes(x = x, y = y)) +
    geom_abline(intercept = 0, slope = 1) +
    labs(x = "sort(ranef(m1)\$'g_b:g_a'[, 1])",
         y = "sort(ranef(m2)$'g_ab'[, 1])"))
```


Figure 21: Visual check of equality of coefficient values.

5.4.1 ... add covariate 'z' as constant within 2nd level

```
f_add_covariate_constant_within_b <- function(df) {</pre>
  attributes(df)$'parameters'$'beta_z' <- rnorm(n = 1, mean = 1.5,
                                                    sd = .1)
  if (attributes(df)$type != "Nested") {
    stop("Use type 'Nested' to generate 'df'.")
  z <- runif(n = length(unique(df$g_ab)), min = -1, max = 1)</pre>
  names(z) \leftarrow unique(df\$g_ab)
  df$z <- as.numeric(z[df$g_ab])</pre>
  df$y <- df$y + df$z * attributes(df)$'parameters'$'beta_z'</pre>
  return(df)
}
df <- f_sim_data(seed = 0, type = "Nested")</pre>
df <- f_add_covariate_constant_within_b(df = df)</pre>
ggplot(data = df, aes(x = x, y = y, colour = z)) +
  geom_point() +
  facet_wrap(~ g_a) +
  theme(legend.position = 'top')
```

 $m \leftarrow lmer(y \sim x + z + (1 \mid g_a / g_b), data = df)$ summary(m)

Linear mixed model fit by REML ['lmerMod']

Formula: $y \sim x + z + (1 \mid g_a/g_b)$

Data: df

REML criterion at convergence: 6236.8

Scaled residuals:

Min 1Q Median 3Q Max -3.05900 -0.66108 0.02254 0.63115 2.78727

Random effects:

Groups Name Variance Std.Dev. g_b:g_a (Intercept) 0.848 0.9209 g_a (Intercept) 1.429 1.1955 Residual 1.381 1.1751

Number of obs: 1800, groups: g_b:g_a, 300; g_a, 30

Fixed effects:

Estimate Std. Error t value (Intercept) 2.09644 0.22647 9.257 x 1.41538 0.05253 26.943 z 1.72034 0.11487 14.976

Correlation of Fixed Effects:

(Intr) x

x 0.001

z -0.033 -0.009

Figure 22: Scatterplot of two-level grouped data with constant covariate for 2nd level.

References

- Allaire, J. J., Teague, C., Scheidegger, C., Xie, Y., & Dervieux, C. (2024). *Quarto (Version 1.4.553)*. https://doi.org/10.5281/zenodo.5960048
- Bürkner, P.-C. (2017). Brms: An R Package for Bayesian Multilevel Models Using Stan. *Journal of Statistical Software*, 80, 1–28. https://doi.org/10.18637/jss.v080.i01
- Bürkner, P.-C. (2018). Advanced Bayesian Multilevel Modeling with the R Package brms. *The R Journal*, *10*(1), 395–411.
- Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A Probabilistic Programming Language. *Journal of Statistical Software*, 76, 1–32. https://doi.org/10.18637/jss.v076.i01
- Gelman, A., & Su, Y.-S. (2024). *Arm: Data analysis using regression and multilevel/hierarchical models*. https://CRAN.R-project.org/package=arm
- R Core Team. (2024). R: A Language and Environment for Statistical Computing (Version 4.4.1). R Foundation for Statistical Computing.
- Wickham, H. (2016). *ggplot2: Elegant graphics for data analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org