Logistic & Tobit Regression

Different Types of Regression

- Means → Linear regression
- Odds → Logistic regression
- Rates → Poisson regression
- Hazards → Proportional Hazards regression
- Quantiles → Parametric survival regression

Binary Regression

- Imagine a simple linear regression setting with a continuous predictor of interest and a binary response of interest (D)
- What would a scatterplot of the data look like?
- How would a linear regression line fit these data?

- If our response D is binary, we are generally interested in inference about P(D).
 - If our predictor X is related to D, then we want to know P(D|X)
- Our software is happy to perform a linear regression with a 0/1 response and a continuous predictor.
- So what's the problem?
- Proportions/Probabilities have to be between 0 and 1
- –With binary data, the variance within a group depends on the mean

Regression with Binary Response

- Instead of using linear regression to model probabilities, we use logistic regression to model the log odds.
- The odds of an event are between 0 and infinity

odds = prob /
$$(1 - prob)$$

 log(odds) are between negative infinity and positive infinity (even better)

Simple Logistic Regression

 Modeling odds of binary response Y on predictor X

$$Pr(D_i = 1 \mid X_i) = p_i$$

$$\operatorname{logit}(p_i) = \operatorname{log}\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 \times X_i$$

$$X_i = 0$$
 log odds = β_0
 $X_i = x$ log odds = $\beta_0 + \beta_1 \times x$

$$X_i = x + 1$$
 log odds = $\beta_0 + \beta_1 \times x + \beta_1$

Logistic transformation

$$P(y|x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

$$\ln\left[\frac{P(y|x)}{1 - P(y|x)}\right] = \alpha + \beta x$$

Data that has a sharp survival cut off point between patients who live or die should have a large value of β .

Data with a lengthy transition from survival to death should have a low value of β .

Log likelihood

$$l(w) = \sum_{i=1}^{N} y_i \log p(x_i; w) + (1 - y_i) \log(1 - p(x_i; w))$$

Log likelihood

$$l(w) = \sum_{i=1}^{N} y_i \log p(x_i; w) + (1 - y_i) \log(1 - p(x_i; w))$$

$$= \sum_{i=1}^{N} y_i \log \frac{p(x_i; w)}{(1 - p(x_i; w))} + \log(\frac{1}{1 + e^{x_i w}})$$

$$= \sum_{i=1}^{N} y_i x_i w - \log(1 + e^{x_i w})$$

Note: this likelihood is a concave

Maximum likelihood estimation

$$\frac{\partial}{\partial w_i} l(w) = \frac{\partial}{\partial w_i} \sum_{i=1}^{N} \{ y_i x_i w - \log(1 + e^{x_i w}) \}$$

Common (but not only) approaches:

Numerical Solutions:

- Line Search
- Simulated Annealing
- Gradient Descent
- Newton's Method

 $\sum_{i=1}^{N} x_{ij} \left(\underbrace{y_i - p(x_i, w)} \right)$

prediction error

No closed form solution!

Inferential Methods in Logistic Regression

- Unlike linear regression, in logistic regression the Wald, score, and likelihood ratio tests are only <u>asymptotically</u> equivalent
 - The Wald test can be poorly behaved in small samples
 - Thus it is important to know how to perform a LRT for datasets of smaller size

Likelihood Ratio Tests

- A likelihood ratio test compares the fit of the full model relative to that of the restricted model
 - -Key points
 - The two models <u>must</u> be hierarchical: The full model must contain all terms present in the restricted model
 - E.g., compare model of age and height to a model just of age
 - (Cannot compare model of age to a model of height)
 - The same cases should be used to fit each model
 - Watch out for missing data!!!!

Training Data for a Logistic Regression Model

	×	у	
1	-0.8295888	1	
2	-0.4187467	0	ı
3	-0.2015895	0	
4	-1.3645905	0	
5	1.31729882	1	
6	1.01640971	1	ı
7	1.27554669	1	
8	2.78164437	1	
9	1.55595732	1	
10	1.20748755	1	
11	-0.6737214	0	
12	-1.535182	0	
13	0.69754466	1	
14	0.5412154	1	
15	0.98863218	1	
16	2.29068842	1	
17	-1.2629932	0	
18	1.75089817	1	
19	0.51903111	1	
20	1.61445784	1	

		×	У	yhat
0	21	-1.8826435	0	0.00569376
0	22	-1.7042119	0	0.00991067
0	23	-1.3975266	0	0.02547486
0	24	-1.2538216	0	0.03937468
0	25	-1.0572248	0	0.07049479
0	26	-1,0127313	0	0.08018405
0	27	-0.9385969	0	0.09905148
0	28	-0.4356167	0	0.34672181
0	29	-0.2414375	0	0.49357551
0	30	-0.0555006	0	0.6355921
0	31	0.04653626		0.70592175
0	32	0.12306672		0.75309706
0	33	0.40439298	0	0.88035014
0	34	0.58503442		0.92831953
0	35	0.88483088	Ö	0.97067413
0	36	1.00772934		0.97984995
0	37	1.0785977	1	0.98379361
0	38	1.08545156	4	0.98413212
0	39	1.55540951		0.99631
0	40	2.6417006	1	0.99987642

Test Data

predicted probabilities

Suppose we use a cutoff of 0.5...

actual outcome

1 0

1 8 3 predicted outcome 0 0 9

More generally...

misclassification rate: $\frac{b+c}{a+b+c+d}$

sensitivity: $\frac{a}{a+c}$

(aka recall)

specificity: $\frac{d}{b+d}$

predicitive value positive: $\frac{a}{a+b}$

(aka precision)

Suppose we use a cutoff of 0.5...

actual outcome

1 8 3 predicted outcome 0 9

sensitivity:
$$\frac{8}{8+0}$$
 = 100%

specificity:
$$\frac{9}{9+3} = 75\%$$

Suppose we use a cutoff of 0.8...

actual outcome

1 0
predicted outcome 0 2 10

sensitivity:
$$\frac{6}{6+2} = 75\%$$

specificity:
$$\frac{10}{10+2} = 83\%$$

Note there are 20 possible thresholds

 ROC computes sensitivity and specificity for all possible thresholds and plots them

- Note if threshold = minimum
 c=d=0 so sens=1; spec=0
- If threshold = maximum
 a=b=0 so sens=0; spec=1

	A1	~	fx	-	1						
	Α	С	,	D	Е	F		G	Н	1	
1			а		b	С	d		sensitivity	specificity	
2	0	0.005694		8	11	0		1	1	0.083333	
3	0	0.009911		8	10			2	1	0.166667	
4	0	0.025475		8	9	0		3	1	0.25	
5	0	0.039375		8	8			4	1	0.333333	
6	0	0.070495		8	7			5	1	0.416667	
7	0	0.080184		8	7 8	0		6	1	0.5	
8	0	0.099051		8	5	0		7	1	0.583333	
9	0	0.346722		8	4			8	1	0.666667	
10	0	0.493576		8	3	0		9	1	0.75	
11	0	0.635592		8	2	. 0		10	1	0.833333	
12	1	0.705922		7	2	! 1		10	0.875	0.833333	
13	1	0.753097		6	2	. 2		10	0.75	0.833333	
14	0	0.88035		6	1			11	0.75	0.916667	
15	1	0.92832		5	1	3		11	0.625	0.916667	
16	0	0.970674		5	0	3		12	0.625	1	
17	1	0.97985		4	0	4		12	0.5	1	
18	1	0.983794		3	(5		12	0.375	1	
19	1	0.984132		2	(6		12	0.25	1	
20	1	0.99631		1	C	7		12	0.125	1	
21	1	0.999876		1	C	8	l	12	0.111111	1	
22											
23											

sens<-c(1,1,1,1,1,1,1,1,1,1,0.875,0.75,0.75,0.625,0.625,0.5,0.375,0.25,0.125,0.1111]
spec<-c(0.083333333,0.166666667,0.25,0.333333333,0.4166666667,0.5,0.583333333,0.66666
33333,0.916666667,0.916666667,1,1,1,1,1,1)
plot(1-spec,sens,type="b",xlab="1-specificity",ylab="sensitivity",main="ROC curve")</pre>

ROC curve

 "Area under the curve" is a common measure of predictive performance

• So is squared error: $\Sigma(y_i - y_i)^2$ also known as the "Brier Score"

Penalized Logistic Regression

Ridge Logistic Regression

Maximum likelihood plus a constraint:

$$\sum_{j=1}^{p} \beta_j^2 \le S$$

Lasso Logistic Regression

Maximum likelihood plus a constraint:

$$\sum_{j=1}^{p} \left| \beta_{j} \right| \leq S$$

Posterior Modes with Varying Hyperparameter - Gaussian

Posterior Modes with Varying Hyperparameter - Laplace

http://www.bayesianregression.org

http://www.stanford.edu/~boyd/l1_logreg/

Polytomous Logistic Regression (PLR)

$$P(y_i = k \mid \mathbf{x_i}) = \frac{\exp(\vec{\beta}_k \mathbf{x}_i)}{\sum_{k'} \exp(\vec{\beta}_{k'} \mathbf{x}_i)}$$

- Elegant approach to multiclass problems
- Also known as polychotomous LR, multinomial LR, and, ambiguously, multiple LR and multivariate LR

1-of-K Sample Results: brittany-l

Feature Set	% errors	Number of Features		
"Argamon" function words, raw tf	74.8	380		
POS	75.1	44		
1suff	64.2	121		
1suff*POS	50.9	554		
2suff	40.6	1849		
2suff*POS	34.9	3655	4.6	million parameters
3suff	28.7	8676		
3suff*POS	27.9	12976		
3suff+POS+3suff*POS+Arga mon	27.6	22057		
All words	23.9	52492		

89 authors with at least 50 postings. 10,076 training documents, 3,322 test documents.

BMR-Laplace classification, default hyperparameter

Generalized Linear Model

- ② Linear predictor $X\beta$ with X is $n \times k$ predictor matrix and β is $k \times 1$ vector of coefficients.
- **3** Link function g to transform $X\beta$ into $\hat{y} = g^{-1}(X\beta)$.
- ① Data distribution $p(y|\hat{y})$.
- Other parameters: variances, overdispersions, cutpoints, etc

So far we studied:

- ① Linear regression: g(u) = u and $y \sim N(X\beta, \sigma^2)$.
- 2 Logistic regression: g(u) = logit(u) and $P(y = 1) = \hat{y}$.

Logistic Regression in R

```
> anesthetic
  move conc logconc nomove
1     0  1.0  0.00000000     1
2     1  1.2  0.1823216     0
3     0  1.4  0.3364722     1
4     1  1.4  0.3364722     0
5     1  1.2  0.1823216     0
6     0  2.5  0.9162907     1
```

plot(nomove~conc,data=anesthetic)


```
> anes.logit <- glm(nomove ~ conc, family=binomial(link="logit"),</pre>
data=anesthetic)
> summary(anes.logit)
Call:
glm(formula = nomove ~ conc, family = binomial(link = "logit"),
   data = anesthetic)
Deviance Residuals:
    Min
               1Q Median
                                  30
                                           Max
-1.76666 -0.74407 0.03413 0.68666
                                       2.06900
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.469 2.418 -2.675 0.00748 **
conc 5.567 2.044 2.724 0.00645 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 41.455 on 29 degrees of freedom
Residual deviance: 27.754 on 28 degrees of freedom
AIC: 31.754
Number of Fisher Scoring iterations: 5
```

Deviance (statistics)

From Wikipedia, the free encyclopedia

In statistics, deviance is a quantity whose expected values can be used for statistical hypothesis testing.

It is defined as

$$D(y, \theta) = -2 \log[p(y|\theta)].$$

As a function of θ with y treated as fixed, it is -2 times the log-likelihood. In the framework of the generalized linear model, if θ is the true parameter, $D(y, \theta)$ follows a chi-squared distribution.

Deviance Residuals:

$$r_D(i) = sign(y_i - \hat{y}_i)\sqrt{D(y_i, \theta)}$$

> frogs

	pres.abs	northing	easting	altitude	distance	NoOfPools	NoOfSites	avrain	meanmin	meanmax
2	1	115	1047	1500	500	232	3	155.0000	3.566667	14.00000
3	1	110	1042	1520	250	66	5	157.6667	3.466667	13.80000
4	1	112	1040	1540	250	32	5	159.6667	3.400000	13.60000
5	1	109	1033	1590	250	9	5	165.0000	3.200000	13.16667
6	1	109	1032	1590	250	67	5	165.0000	3.200000	13.16667
7	1	106	1018	1600	500	12	4	167.3333	3.133333	13.06667
Q	1	105	1015	1600	250	30	2	167 2222	2 100000	12 06667


```
> frogs.glm0 <- glm(pres.abs ~ .,data=frogs,family=binomial(link=logit))
> summary(frogs.glm0)
```

Call:

Deviance Residuals:

```
Min 1Q Median 3Q Max -1.8987 -0.7987 -0.2735 0.8035 2.6991
```

Coefficients:

```
Estimate Std. Error
                               z value Pr(>|z|)
                              -0.759 0.44764
(Intercept) -1.635e+02 2.153e+02
northina
       1.041e-02 1.654e-02 0.630 0.52901
easting -2.158e-02 1.268e-02
                                -1.702 0.08872 .
altitude 7.091e-02 7.705e-02 0.920 0.35745
distance -4.835e-04 2.060e-04 -2.347 0.01893 *
NoOfPools 2.968e-02 9.444e-03 3.143 0.00167 **
NoOfSites
         4.294e-02 1.095e-01
                                0.392 0.69482
          -4.058e-05 1.300e-01 -0.000312
                                      0.99975
avrain
          1.564e+01 6.479e+00 2.415 0.01574 *
meanmin
           1.708e+00 6.809e+00
                                0.251 0.80198
meanmax
```

Null deviance: 279.99 on 211 degrees of freedom Residual deviance: 195.66 on 202 degrees of freedom AIC: 215.66

```
> frogs.glm1 <- glm(pres.abs ~ easting + distance + NoOfPools +
meanmin,data=frogs,family=binomial(link=logit))
> summary(frogs.glm1)
```

Call:

Deviance Residuals:

```
Min 1Q Median 3Q Max -1.8082 -0.7942 -0.4048 0.8751 2.9700
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.4501010 2.5830600 -2.497 0.012522 *
easting 0.0024885 0.0031229 0.797 0.425533
distance -0.0005908 0.0001744 -3.387 0.000706 ***
NoOfPools 0.0244347 0.0080995 3.017 0.002555 **
meanmin 1.1130796 0.4191963 2.655 0.007924 **
```

Null deviance: 279.99 on 211 degrees of freedom Residual deviance: 215.45 on 207 degrees of freedom AIC: 225.45

AIC not as good...

> CVbinary(frogs.glm0)

Fold: 5 4 9 6 3 2 1 10 8 7
Internal estimate of accuracy = 0.792
Cross-validation estimate of accuracy = 0.778
> CVbinary(frogs.glm1)

Fold: 4 6 1 10 8 2 3 7 5 9
Internal estimate of accuracy = 0.759
Cross-validation estimate of accuracy = 0.731

- •CV accuracy estimates quite variable with small datasets
- Best to repeat comparing models on same split

```
all.acc <- numeric(10)
red.acc <- numeric(10)
for (j in 1:10) {
  randsam <- sample (1:10,dim(frogs)[1], replace=TRUE)
  all.acc[j] <- CVbinary(frogs.glm0, rand=randsam)$acc.cv
  red.acc[j] <- CVbinary(frogs.glm1, rand=randsam)$acc.cv
}</pre>
```

```
> all.acc
[1] 0.7688679 0.7783019 0.7783019 0.7830189 0.7735849 0.7735849 0.7735849 0.7735849
> red.acc
[1] 0.7264151 0.7500000 0.7264151 0.7358491 0.7358491 0.7358491 0.7547170 0.7452836
```

```
par(mfrow=c(3,3))
for (i in 2:10) {
  ints <- pretty(frogs[,i],n=10)</pre>
  J <- length(ints)-2</pre>
  y <- n <- x <- rep(0,J-1)
  for (j in 2:J) {
        temp <- frogs[((frogs[,i]>ints[j]) & (frogs[,i]<=ints[j+1])),];</pre>
        y[j-1] <- sum(temp$pres.abs);</pre>
        n[j-1] <- dim(temp)[1];
        x[j-1] \leftarrow (ints[j]+ints[j+1])/2;
  }
  y < - \log it((y+0.5)/(n+1))
  # plot(x,y,type="b",col="red")
  # par(new=TRUE)
  plot(lowess(x,y), main=names(frogs)[i], type="l", col="red")
}
```



```
> frogs.glm2 <- glm(pres.abs ~ northing + easting +
altitude + distance + I(distance^2)+ NoOfPools + NoOfSites
+ avrain + meanmin + meanmax,
data=frogs,family=binomial(link=logit))</pre>
```

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.006e+02 2.176e+02 -0.922 0.35658
northing 4.852e-03 1.656e-02 0.293 0.76952
easting -2.246e-02 1.271e-02 -1.767 0.07717.
altitude 8.864e-02 7.786e-02 1.138 0.25491
distance -7.705e-04 2.815e-04 -2.738 0.00619 **
I(distance^2) 4.270e-08 2.385e-08 1.790 0.07342 .
NoOfPools 2.992e-02 9.516e-03 3.144 0.00167 **
NoOfSites 7.765e-04 1.120e-01 0.007 0.99447
         -4.526e-02 1.291e-01 -0.350 0.72598
avrain
          1.618e+01 6.532e+00 2.477 0.01325 *
meanmin
          2.966e+00 6.873e+00 0.432 0.66610
meanmax
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 279.99 on 211 degrees of freedom
Residual deviance: 193.57 on 201
                               degrees of freedom
AIC: 215.57
```

```
glm(formula = pres.abs ~ northing + easting + altitude + log(distance) +
    NoOfPools + NoOfSites + avrain + meanmin + meanmax, family =
binomial(link = logit),
    data = frogs)
Deviance Residuals:
    Min
             10 Median 30
                                      Max
-2.0974 -0.7644 -0.2583 0.7443 2.6454
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.435e+02 2.130e+02 -0.674 0.50061
northing 9.661e-03 1.576e-02 0.613 0.53992 easting -1.874e-02 1.280e-02 -1.464 0.14322
altitude 6.550e-02 7.579e-02 0.864 0.38749
log(distance) -7.999e-01 2.551e-01 -3.136 0.00171 **
NoOfPools 2.813e-02 9.499e-03 2.961 0.00306 **
NoOfSites 1.897e-03 1.104e-01 0.017 0.98629
         -7.682e-03 1.229e-01 -0.062 0.95018
avrain
meanmin 1.463e+01 6.531e+00 2.239 0.02513 *
meanmax 1.336e+00 6.690e+00
                                    0.200
                                          0.84174
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 279.99 on 211 degrees of freedom
Residual deviance: 192.47 on 202 degrees of freedom
ATC: 212.47
               CVbinary: 0.77 - 0.79
```

Other things to try...

- changepoints
- more log, ^2, exp, etc.

```
> frogs.glm3 <- glm(pres.abs ~ northing + easting + altitude+ log(distance)+
NoOfPools + NoOfSites + avrain + log(meanmin) + meanmax +
I(avrain*(avrain>155)),data=frogs,family=binomial(link=logit))
```

Latent Variable Interpretations

- If Y is discrete—taking on the values 0 or 1 if someone buys a car, for instance
 - Can imagine a continuous variable Y* that reflects a person's desire to buy the car
 - Y* would vary continuously with some explanatory variable like income

Logit and Probit Models

Written formally as

$$Y_i^* = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$$

 If the utility index is "high enough," a person will buy a car

$$Y_i = 1 \text{ if } Y_i^* \ge 0$$

 If the utility index is not "high enough," a person will not buy a car

$$Y_i = 0 \text{ if } Y_i^* < 0$$

Logit and Probit Models

$$P_{i} = \operatorname{Prob}(Y_{i} = 1)$$

$$= \operatorname{Prob}(Y_{i}^{*} \geq 0)$$

$$= \operatorname{Prob}(\beta_{0} + \beta_{1}X_{1i} + \varepsilon_{i} \geq 0)$$

$$= \operatorname{Prob}(\varepsilon_{i} \geq -\beta_{0} - \beta_{1}X_{1i})$$

$$= 1 - F(-\beta_{0} - \beta_{1}X_{1i}) \text{ where } F \text{ is the c.d.f. for } \varepsilon$$

$$= F(\beta_{0} + \beta_{1}X_{1i}) \text{ if } F \text{ is symmetric}$$

- The basic problem is selecting F—the cumulative density function for the error term
 - This is where where the two models differ

Logit Model

For the logit model we specify

$$Prob(Y_i = 1) = F(\beta_0 + \beta_1 X_{1i}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_{1i})}}$$

- Prob $(Y_i = 1) \rightarrow 0$ as $\beta_0 + \beta_1 X_{1i} \rightarrow -\infty$
- Prob $(Y_i = 1) \rightarrow 1$ as $\beta_0 + \beta_1 X_{1i} \rightarrow \infty$
 - Thus, probabilities from the logit model will be between 0 and 1

Probit Model

 In the probit model, we assume the error in the utility index model is normally distributed

$$-\varepsilon_i \sim N(0,\sigma^2)$$

$$Prob(Y_i = 1) = F\left(\frac{\beta_0 + \beta_1 X_{1i}}{\sigma}\right)$$

 Where F is the standard normal cumulative density function (c.d.f.)

$$Prob(Y_i = 1) = F\left(\frac{\beta_0 + \beta_1 X_{1i}}{\sigma}\right) = \int_{-\infty}^{\frac{\beta_0 + \beta_1 X_{1i}}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

The Tobit Model

- Can also have latent variable models that don't involve binary dependent variables
- Say $y^* = x\beta + u$, $u|x \sim \text{Normal}(0,\sigma^2)$
- But we only observe y = max(0, y*)
- The Tobit model uses MLE to estimate both β and σ for this model
- Important to realize that β estimates the effect of x on y*, the latent variable, not y

Conceptualizing Censored Data

- What do we make of a variable like "Hersheys chocolate bars consumed in the past year"?
- For all the respondents with 0 bars, we think of those cases as "left censored from below".
- Think of a latent variable for "willingness to consume Hershey bars" that underlies "bars consumed in the past year". Individuals who most detest Hershey Bars would score a negative number of bars consumed if that were possible.

Censored Regression Models & Truncated Regression Models

- More general latent variable models can also be estimated, say
- $y = x \beta + u$, $u|x,c \sim \text{Normal}(0, \sigma^2)$, but we only observe $w = \min(y,c)$ if right censored, or $w = \max(y,c)$ if left censored
- Truncated regression occurs when rather than being censored, the data is missing beyond a censoring point

Estimation

Probability

$$\Pr[Y_i = 0 \mid X_i] = \Pr[X_i \beta + \varepsilon_i \le 0 \mid X_i] = \Pr[\varepsilon_i \le -X_i \beta \mid X_i]$$

$$= \Pr\left[\frac{\varepsilon_i}{\sigma} \le -\frac{X_i \beta}{\sigma} \mid X_i\right] = \Phi\left(-\frac{X_i \beta}{\sigma}\right)$$

$$\Pr[Y_i > 0 \mid X_i] = 1 - \Phi\left(-\frac{X_i\beta}{\sigma}\right)$$

Estimation– see how OLS biased

Standard Tobit with:

$$N = 30$$

$$K = 2$$

$$\beta = \begin{bmatrix} -2\\0.5 \end{bmatrix}$$

$$\sigma = 1$$

Empirical Example (Extramarital Affairs)

- A Theory of Extramarital Affairs, Ray C.Fair, 1978.
- 601 observations
- Left-censored at 0; Right-censored at 12
- Steps:
 - 1. Guess the signs of coefficients
 - 2. Build the final model (compare to our guess)
 - 3. Who are the most and least "restraint"?

Introduce Variables & Guess signs

- y_pt = number of extramarital affairs (annually)
 (0, 1, 2, 3, 7 ~ 4-10 times, 12 ~ more than 12)
- **Z1**= male dummy (+)
- **Z2**= <u>age</u> (-)
- Z3= number of years married (+)
- **Z4**= <u>child dummy</u> (-)
- Z5= How religious (-)
- Z6= Level of education (ambiguous)
- Z7= occupation (ambiguous)
- **Z8**= marriage satisfaction (-)

Variables	OLS ₆₀₁	Tobit	OLS ₁₅₀	
Constant	5.8860	9.0829	8.0963	
	(0.7753)	(2.6588)	(1.4254)	
Z2	-0.0433	-0.1603		
age	(0.0216)	(0.0777)		
Z 3	0.1551	0.5389	0.2179	
number of years married	(0.0367)	(0.1342)	(0.0651)	
Z 5	-0.4868	-1.7234	-0.6999	
religiousness	(0.1112)	(0.4047)	(0.2844)	
Z8	-0.7055	-2.2673	-0.6797	
self-rating of marriage	(0.1183)	(0.0408)	(0.2737)	

A weakness of the Tobit model

- The Tobit model makes the same assumptions about error distributions as the OLS model, but it is much more vulnerable to violations of those assumptions.
- In an OLS model with *heteroskedastic* errors, the estimated standard errors can be too small.
- In a Tobit model with heteroskedastic errors, the computer uses a bad estimate of the error distribution to determine the chance that a case would be censored, and the coefficient is <u>badly biased</u>.

Data set with heteroskedastic error distribution

• This data set still has Y = X + e, but the range of e increases with X.

OLS with heteroskedastic error

• The OLS regression model still gives good values for the slope and intercept, but you can't really trust the *t* scores.

```
. * try models with heteroskedastic error terms
```

```
. generate e2 = x*zscore
```

- . generate y2 = x + e2
- . regress y2 x

Source	l SS	df	MS		Number of obs	=	100
	+				F(1, 98)	=	34.77
Model	829.11703	1	329.11703		Prob > F	=	0.0000
Residual	2337.02002	98 2	3.8471431		R-squared	=	0.2619
	+				Adj R-squared	=	0.2543
Total	3166.13705	99 3	1.9811824		Root MSE	=	4.8834
y2	 Coef. +		r.	•	[95% Conf.	In	terval]
Х		.170016			.6650998	1	.339884
_cons	2737584	.9076	4 -0.3	302 0.764	-2.07494	1	.527424

Tobit with heteroskedastic error

• The Tobit model gives values for the slope and intercept that are simply incorrect. (Too steep)

Tobit estimates	Number of obs =					
			LR ch	i2(1)	=	38.04
			Prob	> chi2	=	0.0000
Log likelihood = -175 .	25383	Pseud	Pseudo R2		0.0979	
<u>.</u>	Std. Err.			-		_
'			0.000			2.527351
_cons -6.947138			0.001		574	-2.798537
_se 6.612864			(Ancillar		ter)	

Obs. summary:

55 left-censored observations at $y2 \le 3$

45 uncensored observations

Summary of Tobit models

- Tobit models can be very useful, but you must be *extremely* careful.
- Graph the relationship between each explanatory variable and the outcome variable. Look for evidence that the errors are not identically and normally distributed.