Über die Operation Fortsetzung bei formalen Sprachen

Robert Hartmann

24. September 2010

Inhaltsverzeichnis

1	Einleitung	3
2	allgemeine Eigenschaften2.1 Gilt für alle Sprachen2.2 Konkatenation2.3 Gilt nicht	7
3	Eigenschaften bei Sprachen spezieller Gestalt	8
4	Abgeschlossenheit in der CHOMSKY-Hierachie 4.1 Regularität	10 10
5	Schlusswort	12
6	Quellen und Literatur	12

1 Einleitung

In dieser Arbeit untersuchen wir die Operation Fortsetzung bei formalen Sprachen. Diese Operation wird in der Arbeit [St87] eingeführt.

Wir bezeichnen die Menge X^* als Menge aller endlichen Wörter über dem Alphabet X.

Wir bezeichnen weiterhin die Menge X^{ω} als Menge aller unendlichen Wörter über dem Alphabet X.

Sei ferner die Präfixrelation ⊑ wie üblich definiert:

Definition 1.

$$w \sqsubseteq b \Leftrightarrow w \cdot b' = b, \text{ für ein } b' \in X^*$$

 $pref(L) = \{v : v \sqsubseteq w \land w \in L\}$

Es wird nun der δ -Limes einer Wortmenge W^{δ} definiert (s. [St87, Seite X])

Definition 2.

$$W^{\delta} = \{\beta : \beta \in X^{\omega} \ und \ pref(\beta) \cap W \ ist \ unendlich\}$$

Die folgende Eigenschaft (13) aus [St87] ist leich einzusehen:

$$(U \cup W)^{\delta} = U^{\delta} \cup W^{\delta}$$

Definition 3. Eine Sprache nennen wir eine (σ, δ) -Teilmenge von X^* genau dann, wenn für alle $\beta \in X^{\omega}$ entweder $pref(\beta) \cap W$ oder $pref(\beta) \setminus W$ endlich ist.

Beispiele für (σ, δ) -Teilmengen sind alle endlichen Sprachen und deren Komplemente. Weitere Beispiele sind Sprachen der Form pref(U) oder $W \cdot X^*$. Eine Eigenschaft für diese Teilmengen ergibt sich wiefolgt :

Satz 1 (St87). Sei U eine (σ, δ) – Teilmenge von X^* , dann gilt:

$$(U \cap W)^{\delta} = U^{\delta} \cap W^{\delta}, \quad \text{für alle } W \subseteq X^*$$

Nun wird die Operation "Fortsetzung" wie in [St87] eingeführt, im nachfolgenden als \triangleright bezeichnet. Die Fortsetzung eines Wortes w in eine Sprache $V \subseteq X^*$ sei definiert als:

Definition 4.

$$w \triangleright V := Min \sqsubseteq \{v : v \in V \land w \sqsubseteq v\} = Min (w \cdot X^* \cap V)$$

Diese Operation wird wie folgt auf Sprachen ausgedehnt, dabei bezeichnen wir die Fortsetzung einer Sprache W in eine Sprache $V \subseteq X^*$ mit:

Definition 5.

$$W \triangleright V := \bigcup_{w \in W} w \triangleright V$$

Diese Operation hat nun folgende Eigenschaft bezüglich des δ -Limes: Während

$$(W \cap U)^{\delta} = W^{\delta} \cap U^{\delta}$$

nur für $(\sigma,\delta)\text{-Teilemgen gilt, so gilt}$

$$(W \triangleright U)^{\delta} = W^{\delta} \cap U^{\delta}$$

für sämtliche Sprachen

Daher wird nun im Verlauf der Arbeit die Operation Fortsetzung untersucht.

2 allgemeine Eigenschaften

2.1 Gilt für alle Sprachen

Folgende Eigenschaft folgt direkt aus der Definition:

Gleichung 2.1.1.

$$u \in L \to (u \triangleright L = \{u\})$$

Aus 2.1.1 folgt direkt

Gleichung 2.1.2.

$$U \triangleright L \subseteq L$$

Eine unmittelbare Folgerung aus der Definition 5 ergibt sich:

Gleichung 2.1.3.

$$(L \cup U) \triangleright V = (L \triangleright V) \cup (U \triangleright V)$$

Aus dieser Gleichung 2.1.3 folgt wiederum direkt:

Gleichung 2.1.4.

$$L_2 \subseteq L_1 \to L_2 \triangleright W \subseteq L_1 \triangleright W$$

Auf Gleichung 2.1.4 folgt direkt:

Gleichung 2.1.5.

$$(L \cap U) \triangleright V \subseteq (L \triangleright V) \cap (U \triangleright V)$$

Dabei muss nicht notwendigerweise die Gleichheit, wie das folgende Beispiel zeigt

$$Sei\ L=\{aa,bb\}\ U=\{aa,b\}\ V=\{aa,bb\}$$

$$(L \cap U) \triangleright V = \{aa\} \subset \{aa, bb\} = (L \triangleright V) \cap (U \triangleright V)$$

Gleichung 2.1.6.

$$L \triangleright (U \cup V) \subseteq (L \triangleright U) \cup (L \triangleright V)$$

Lemma 1.

$$Min (A \cup B) \subseteq Min A \cup Min B$$

Beweis. Es genügt, die Eigenschaft für $L=\{w\}$ zu zeigen.

$$w \triangleright (W \cup V) = Min \ (w \cdot X^* \cap (W \cup V))$$

Nach Anwenden der Distributivgesetze ergibt sich:

$$= Min ((w \cdot X^* \cap W) \cup (w \cdot X^* \cap V))$$

und mit Lemma 1 erhalten wir:

$$\subseteq Min \ (w \cdot X^* \cap W) \cup Min \ (w \cdot X^* \cap V)$$
$$= (L \triangleright W) \cup (L \triangleright V)$$

Dabei muss nicht notwendigerweise die Gleichheit gelten, wie das folgende Beispiel zeigt.

$$Sei\ L = \{a, b\}\ U = \{aaa\}\ V = \{bb, aa\}$$

$$L \triangleright (U \cup V) = \{aa, bb\} \subset \{aa, bb, aaa\} = (L \triangleright U) \cup (L \triangleright V)$$

Gleichung 2.1.7.

$$L \triangleright (U \cap V) \supseteq (L \triangleright U) \cap (L \triangleright V)$$

Lemma 2.

$$Min (A \cap B) \supseteq Min A \cap Min B$$

Beweis. Es genügt die Eigenschaft für $L = \{w\}$ zu zeigen.

$$w \triangleright (U \cap V) = Min \ (w \cdot X^* \cap (U \cap V))$$

Nach Anwenden der Distributivgesetze ergibt sich

$$= Min \ ((w \cdot X^* \cap U) \cap (w \cdot X^* \cap V))$$

und mit Lemma 2 erhalten wir

$$\supseteq Min \ (w \cdot X^* \cap U) \cap Min \ (w \cdot X^* \cap V)$$
$$= (L \triangleright U) \cap (L \triangleright V)$$

Dabei muss nicht notwendigerweise die Gleichheit gelten, wie das folgende Beispiel zeigt

$$Sei\ L = \{a, b\}\ U = \{aaa, b, bb\}\ V = \{bb, aaa\}$$

$$L \triangleright (U \cap V) = \{bb, aaa\} \supset \{aaa\} = (L \triangleright U) \cap (L \triangleright V)$$

Gleichung 2.1.8.

$$L_1 \subseteq L_2 \rightarrow L_1 \triangleright L_2 = L_1$$

Eigenschaft 1.

$$l \in L \rightarrow l \triangleright L = \{l\}$$

Beweis. Nach Definition ist $L_1 \triangleright L_2 = \bigcup_{l \in L_1} l \triangleright L_2$. Laut Vorbedinung gilt für jedes $l \in L_1$, dass $l \triangleright L_2 = \{l\}$ ist. Damit ergibt sich $\bigcup_{l \in L_1} \{l\} = L_1$

Gleichung 2.1.9.

$$L_2 \subset L_1 \to L_1 \triangleright L_2 = L_2$$

Beweis. Da $L_2 \subseteq L_1$ gilt für alle $l \in L_2 \cap L_1 : l \triangleright L_2 = \{l\}$ Demnach ergibt sich dann für $\bigcup_{l \in L_1} l \triangleright L_2 = \bigcup_{l \in L_1} \{l\} = L_2$

2.2 Konkatenation

Für die Konkatenation ergeben sich keine allgemeinen Eigenschaften. So gibt es Sprachen derart, dass gilt

$$L \triangleright (U \cdot V) = (L \triangleright U) \cdot (L \triangleright V)$$

Beispiel:

$$Sei \ L = \{e\} \quad U = \{a\} \quad V = \{b\}$$

$$L \triangleright (U \cdot V)\{ab\} = \{ab\} = (L \triangleright U) \cdot (L \triangleright V)$$

außerdem gibt es andere Sprachen, sodass gilt

$$L \triangleright (U \cdot V) \supset (L \triangleright U) \cdot (L \triangleright V)$$

Beispiel:

$$Sei \ L = \{a\} \quad U = \{aa\} \quad V = \{b,a\}$$

$$L \triangleright (U \cdot V) = \{aab,aaa\} \supset \{aaa\} = (L \triangleright U) \cdot (L \triangleright V)$$

desweiteren gibt es Sprachen, sodass gilt

$$L \triangleright (U \cdot V) \neq (L \triangleright U) \cdot (L \triangleright V)$$

Beispiel:

$$Sei \ L = \{aab, a\} \quad U = \{aa\} \quad V = \{b\}$$

$$L \triangleright (U \cdot V) = \{aab\} \neq \{aa\} = (L \triangleright U) \cdot (L \triangleright V)$$

Betrachtet man nun die Konkatenation 'vorn', also $(L \cdot U) \triangleright V?(L \triangleright V) \cdot (U \triangleright V)$ so sieht man leicht, dass es sich auf der linken Seite der Gleichung um Wörter aus V handelt die man vergleicht mit Wörtern aus V^2 . Demnach treten hier Eigenschaften nur auf wenn V eine ganz spezielle Gestalt hat.

2.3 Gilt nicht...

Folgt direkt aus den Gleichungen in 2.1

$$L \triangleright (U \cup V) \supset (L \triangleright U) \cup (L \triangleright V)$$

$$L \triangleright (U \cap V) \subset (L \triangleright U) \cap (L \triangleright V)$$

$$L \triangleright (U \cdot V) \subset (L \triangleright U) \cdot (L \triangleright V)$$

$$(L \cap U) \triangleright V \supset (L \triangleright V) \cap (U \triangleright V)$$

3 Eigenschaften bei Sprachen spezieller Gestalt

Lemma 3. Sei $V \subseteq X^* \backslash W \cdot X^*$, so gilt $V \triangleright W \cdot X^* = V \triangleright Min(W)$

zu zeigen:

- 1. $V \triangleright W \cdot X^* \subseteq V \triangleright Min(W)$
- $2.\ V \triangleright W \cdot X^* \supseteq V \triangleright \mathit{Min}\ (W)$

Beweis.:

zu 1. Die Inklusion \supseteq folg aus $W \cdot X^* \supseteq Min(W)$.

zu 2. Zum Beweis der der anderen Inklusion genügt es, diese für den Fall $V=\{v\}$ zu zeigen.

Es sei nun $w \in v \triangleright W \cdot X^*$, wobei nach Vorraussetzung $v \notin W \cdot X^*$ gelte. Dann gilt für kein $u, v \sqsubseteq u \sqsubset w$ oder $u \sqsubseteq v$ die Beziehung $u \in W \cdot X^*$.

Also haben wir
$$w \in Min(W \cdot X^*) = Min(W)$$

Eigenschaft 2. $pref(V) \triangleright W$

Beweis. 1. Fall: $w \in W \cap pref(V) \to w \in pref(V) \triangleright W$

2. Fall: $w \in W \setminus pref(V) \to w \in V \triangleright Min(W)$

$$\rightarrow pref(V) \triangleright W = (pref(V) \cap W) \cup (pref(V) \triangleright Min(W))$$

Eigenschaft 3. $W \triangleright pref(V) = W \cap pref(V)$

Beweis. Es genügt die Eigenschaft für $W = \{w\}$ zu zeigen:

Aus der Definition wissen wir, dass $w \triangleright pref(V) = Min(\{w\} \cdot X^* \cap pref(V))$ entspricht. Sei $w' \in (\{w\} \cdot X^* \cap pref(V))$, so sieht man leicht, dass $w \sqsubseteq w'$ und demnach $w \in pref(V)$ gelten muss. Daraus folgt sofort $Min(\{w\} \cdot X^* \cap pref(V)) = \{w\} \cap pref(V)$

Eigenschaft 4. $V \cdot X^* \triangleright W = V \cdot X^* \cap W$

Beweis. Es genügt die Eigenschaft für ein $v \in V \cdot X^*$ zu zeigen:

Aus der Definition wissen wir, dass $v \triangleright W = Min\ (\{v\} \cdot X^* \cap W)$ entspricht. Da laut Voraussetzung $v \in V \cdot X^*$, so gilt = $Min\ (\{v\} \cdot X^* \cap W) = Min\ (\{v\} \cap W)$. Da $\{v\} \cap W$ in jedem Fall einelementig ist, wissen wir, dass $Min\ (\{v\} \cap W) = \{v\} \cap W$ gilt.

Eigenschaft 5.
$$W \triangleright V \cdot X^* = (W \triangleright Min(V)) \cup (W \cap V \cdot X^*)$$

Beweis. W lässt sich in 2 Teile aufspliten: $W=(W\cap V\cdot X^*)\cup (W\backslash V\cdot X^*)$ Nun betrachten wir folgende 2 Fälle:

Fall a)
$$w \in W \cap V \cdot X^*$$

Fall b) $w \in W \backslash V \cdot X^*$

zu a): $w \triangleright V \cdot X^* \rightarrow w \in (W \cap V \cdot X^*)$

zu b): Es gilt nach Vorraussetzung $\{w\}\subseteq X^*\backslash V\cdot X^*$ und mit Hilfe von Lemma 3 erhalten wir $\{w\}\triangleright V\cdot X^*=\{w\}\triangleright Min\ (V)$

Daraus folgt:

$$W \triangleright V \cdot X^* = (W \triangleright Min\ (V)) \cup (W \cap V \cdot X^*)$$

4 Abgeschlossenheit in der CHOMSKY-Hierachie

4.1 Regularität

Seien L und W regulär, so ist auch $L \triangleright W$ regulär.

Automat $A_L = (X, Z, z_0, \delta_L, Z_f)$ akzeptiere L, Automat $A_W = (X, S, s_0, f, S_f)$ akzeptiere W. Automat A akzeptiert $L \triangleright W$,

Vorgehensweise:

 A_L und A_W lesen das Wort w parallel. Falls A_L akzeptiert und wählt A nicht-deterministisch aus ob Schritt 2 aktiviert wird oder nicht.

Schritt 2: A_W liest das Wort w zu Ende, während A_L im Zustand z'_f verweilt. Sollte A_W auf diesem mehr als einmal akzeptieren, so akzeptiert A nicht indem A_W im Stoppzustand s_x stehen bleibt, ansonsten akzeptiert A.

$$A = (X, Z \cup \{z_f'\} \times S \cup \{s_x\}, (z_0, s_0), \delta, \{(z_f', s') : s' \in S_f\}), s_x \notin S \text{ mit}$$

$$\begin{split} \delta &= \{ ((z_i, s_i), x, (z_j, s_j)) : (z_i, x, z_j) \in \delta_L \land f(s_i, x) = s_j \} \cup \\ \{ ((z_i, s_i), x, (z_f', s_j)) : (z_i, x, z') \in \delta_L \land z' \in Z_f \land f(s_i, x) = s_j \} \cup \\ \{ ((z_f', s_i), x, (z_f', s_j)) : f(s_i, x) = s_j \land s_i \notin S_f \} \cup \\ \{ ((z_f', s_i), x, (z_f', s_x)) : f(s_i, x) = s_j \land s_i \in S_f \} \end{split}$$

Beweis. Der konstruierte Automat A akzeptiert nur in einem Zustand $(z'_f, s'), s' \in S_f$ Nach Konstruktion gelangt A bei Eingabe w genau dann in (z'_f, s) , wenn ein Wort $l \in L$ mit $l \sqsubseteq w$ existiert. In solch einem Fall kann der Automat umschalten. Wenn dies der Fall ist, so arbeitet A weiter auf der Eingabe w wie A_W es tut. Sollte A_W nun akzeptieren und w ist noch nicht zu Ende gelesen, so wird A nach Konstruktion in einen Stoppzustand (z'_f, s_x) geleitet, in dem er nie wieder akzeptiert. A akzeptiert also nur wenn A_L akzeptiert hat (es existiert ein $l \in L \land l \sqsubseteq w$) und wenn für alle v' mit $l \sqsubseteq v' \sqsubseteq w$ gilt $v' \notin W$.

Demnach akzeptiert A die Eingabe w genau dann, wenn $w \in L \triangleright W$

4.2 Kontextfreiheit

4.2.1 deterministisch kontextfrei

Es existieren deterministisch kontextfreie Sprachen L, W, sodass $L \triangleright W$ nicht deterministisch kontextfrei ist!

$$L = \{a^n b^n c^i : i, n > 0\} \qquad W = \{a^i b^n c^n : i, n > 0\}$$

So ist

$$L \triangleright W = \bigcup_{l \in L} \mathit{Min} \sqsubseteq \{w : w \in W \land l \sqsubseteq w\} = \{a^n b^n c^n : n > 0\} = U$$

Und von U wissen wir, dass es nicht kontextfrei, also auch nicht deterministisch kontextfrei ist.

4.3 Entscheidbarkeit

Seien L und W (Turing)entscheidbar, so ist auch $L \triangleright W$ entscheidbar.

Seien die Turing Maschinen T_L und T_W .

Die Turing Maschine T entscheidet $L \triangleright W$ nach folgendem Algorithmus:

Algorithm 1 entscheide $L \triangleright W$, Input w

```
if (w \notin W) then
  T rejects
else
  if (w \in L) then
    T accepts
  end if
end if
w' = w
repeat
  w' \leftarrow cut(w')
  if (w' \in W) then
    T rejects
  end if
  if (w' \in L) then
    T accepts
  end if
until (w' == e)
T rejects
```

- 5 Schlusswort
- 6 Quellen und Literatur