Serial No. 09/830,992

CLEAN VERSION OF AMENDED CLAIMS

Claims 1-3 and 14 should read as follows:

**(amended) A compound of the formula I or II

tally ?

in which

- is hydrogen, or branched and unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where R^{11} is hydrogen or C_1 - C_4 -alkyl, and
- is hydrogen, chlorine, bromine, iodine, fluorine, CF_3 , nitro, NHCOR²¹, NR²²R²³0H, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, or phenyl, it also being possible for the phenyl rings to be substituted by at most two radicals R²⁴, and R²¹ and R²² independently of one another are hydrogen or C₁-C₄-alkyl and R²³ is hydrogen, C₁-C₄-alkyl or phenyl, and R²⁴ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF_3 , nitro or NH₂, and
- x may be 0, 1 or 2 and

Serial No. 09/830,992

- is $-D-(F^1)_p-(E)_q-(F^2)_r$ -G, where p, q and r may not simultaneously be 0, or is $-E-(D)_u-(F^2)_s-(G)_v$, it also being possible for the radical E to be substituted by one or two radicals A, and if v=0, E is imidazole, pyrrole, pyridine, pyrimidine, piperazine, pyrazine, pyrrolidine or piperidine, or R^3 is B and
- is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, OH, nitro, CF_3 , CN, $NR^{41}R^{42}$, NH-CO- R^{43} , or O- C_1 - C_4 -alkyl, where R^{41} and R^{42} independently of one another are hydrogen or C_1 - C_4 -alkyl and R^{43} is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkylphenyl or phenyl, and
- D is S or O
- is phenyl, imidazole, pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazole, pyrrolidine, piperidine, or trihydroazepine and
- is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and
- is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and
- p may be 0 or 1
- q may be 0 or 1, and
- r may be 0 or 1 and
- s may be 0 or 1

Serial No. 09/830,992

u may be 0 or 1

v max be 0 or 1

G may be NR⁵¹R⁵² or

and

R⁵¹ is hydrogen or branched and unbranched C₁-C₆-alkyl, or (CH₂)_t-K and

R⁵² is hydrogen, branched and unbranched &-C6-alkyl, phenyl,

, -SO
$$_2$$
R 53 , -(C=N)-R 53 , or -(C=N)-NHR 53

in which

may be branched or unbranched O-C₁-C₆-alkyl, phenyl, or branched or unbranched C₁-C₄-alkylphenyl, where in the case of R⁵² and R⁵³, independently of one another, one hydrogen of the C₁-C₆-alkyl radical may be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, it also being possible for the

Serial No. 09/830,992

carbocycles of the radicals R^{52} and R^{53} independently of one another to carry one or two of the following radicals: branched or unbranched C_1 - C_6 -alkyl, branched or unbranched O- C_1 - C_4 -alkyl, OH, F, C1, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁- C_4 -alkyl, C_1 - C_4 -alkylamino, CC1₃, C_1 - C_4 -dialkylamino, SO₂- C_1 - C_4 - alkyl, SO₂phenyl, CONH₂, CONH- C_1 - C_4 -alkyl, CONHphenyl, CONH- C_1 - C_4 -alkylphenyl, NHSO₂- C_1 - C_4 -alkyl, NHSO₂phenyl, S- C_1 - C_4 -alkyl,

$$C_{1}-C_{4}-alkyl, \quad O \qquad C_{0}-C_{4}-alkylphenyl,$$

 $\label{eq:cho_cho} CHO,\ CH_2\text{-O-C}_1\text{-C}_4\text{-alkyl},\ -CH_2\text{O-C}_1\text{-C}_4\text{-alkylphenyl},\ -CH_2\text{OH},\ -S\text{O-C}_1\text{-C}_4\text{-alkylphenyl},\ -S\text{O}_2\text{NH}-\ C_1\text{-C}_4\text{-alkyl}$ alkyl, -SO-C1-C4-alkylphenyl, -SO2NH- C1-C4-alkylphenyl, or two radicals form a bridge -O-(CH2)1,2-O3

B may be

Serial No. 09/830,992

and

may be hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, OH, O-C₁-Α C_4 -alkyl, O- C_1 - C_4 -alkylphenyl, NH₂, branched and unbranched C_1 - C_6 -alkyl, CN, or NH-CO-R³³, where R³³ is hydrogen, C₁-C₄-alkyl or phenyl and

is hydrogen, C1-C6-alkyl, or (CH2)t-K and R^{31}

is hydrogen, C_1 - C_6 -alkyl, -CO- R^8 , SO $_2$ - R^8 , -(C=N)= R^8 -CO-NHR 8 , -CO-OR 8 R^{32} or -(C=N)-NHR8\and

is hydrogen or C₁-C₄-alkyl and R^{33}

is 0,1,2,3, or 4 and t

is a phenyl which may carry at most two substituents on the being, Κ comprising NR^{k1}R^{k2} wherein R^{k1} and R^{k2} re as defined for R⁴¹ and R⁴² respectively, NH-C1-C₄-alkylphenyl, pyrrolidine, piperidine, 1,2, 5, 6tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, or homopiperazine, which may also be substituted by an alk land radical C1-C6-alkyl, and may be hydrogen, C₁-C₆-alkyl, or NR₇R₉ and

 R^5

LUBİŞCH et al.

Serial No. 09/830,992

and

- is hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkylphenyl, or phenyl, it also being possible for the rings to be substituted by up to two radicals R^{71} , and is OH, C_1 - C_6 -alkyl, O- C_1 - C_4 -alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂, and
- is hydrogen, O_4 - C_6 -alkyl, phenyl, or C_1 - C_4 -alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R^{81} , and is OH C_4 - C_4 -alkyl obloring bromine inding fluoring C_4
- R^{81} is OH, C_1 - C_6 -alkyl, O_7 - C_4 -alkyl, chlorine, bromine, iodine, fluorine, CF_{3} , nitro, or NH_2 and
- is hydrogen, $COCH_3$, $CO-O-C_1-C_4$ -alkyl, $COCF_3$, branched and unbranched C_1-C_6 -alkyl, it being possible for one or two hydrogens of the C_1-C_6 -alkyl radical to be substituted in each case by one of the following radicals: OH, $O-C_1-C_4$ -alkyl and phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched and unbranched C_1-C_6 -alkyl, nitro, amino, C_1-C_4 -alkylamino, C_1-C_4 -dialkylamino, OH, $O-C_1-C_4$ -alkyl, CN, CF_3 , or $SO_2-C_1-C_4$ -alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

Serial No. 09/830,992

2 (amended) A compound of the formula I or II as claimed in claim 1 in which

 R^1 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{21}R^{22}$, NH-CO- R^{23} , OR^{21} , where

R²¹ and R²² are, independently of one another, hydrogen or C₁-C₄-alkyl, arid

R²³ is hydrogen, C₁-C₄ alkyl or phenyl, and

 R^3 is -O-(CH₂)_o-(CHR³¹)_m-(CH₂)_n-R⁵, where

 R^{31} is hydrogen, C_1 - C_4 -alkyl, OH and $O-C_1$ - C_4 -alkyl,

m,o are, independently of one another, 0, 1 or 2, and

n is 1, 2, 3 or 4 and

 R^4 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, $NR^{41}R^{42}$ NH-CO- R^{43} OR^{41} where

R⁴¹ and R⁴² are, independently of one another, hydrogen or C₁-C₄-alkyl, and

 R^{43} is C_1 - C_4 -alkyl or phenyl, and

R⁵ is NR⁵¹R⁵² or one of the following radicals

Serial No. 09/830,992

where

 R^{53}

R⁵¹ \ is hydrogen and branched and unbranched C₁-C₆-alkyl, and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl phenyl,

25

is branched or unbranched O-C₁-C₆-alkyl, phenyl, branched or unbranched C_1 - C_4 -alkyl-phenyl, where one hydrogen in the C_1 - C_6 -alkyl radical in R^{52} and R^{53} can, independently of one another, be substituted by one of the following radicals: OB, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, where the carbocycles of the R^{52} and R^{53} radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C_1 - C_6 -alkyl, branched or unbranched O-C₁- C_4 -alkyl, OH, F, C1, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁- C_4 -alkyl, C_1 - C_4 -alkylamino, CC1₃, C_1 - C_4 -dialkylamino, SO₂- C_1 - C_4 -alkyl, SO₂phenyl, CONH₂, CONH- C_1 - C_4 -alkyl, NBSO₂phenyl, S- C_1 - C_4 -alkyl,

Serial No. 09/830,992

 $\label{eq:chocho} CHO, CH_2-O-C_1-C_4-alkyl, -CH_2O-C_1-C_4-alkyl-phenyl, -CH_2OH, -SO-C_1-C_4-alkyl-phenyl, SO_2NH_2, -SO_2NH-C_1-C_4-alkyl and two radicals form a bridge -O-(CH_2)_{1,2}-O-,$

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

3.(amended) A compound of the formula I or II as claimed in claim 1 in which

is hydrogen, branched and unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{21}R^{22}$, NH-CO- R^{23} , OR^{21} , where

R²¹ and R²² independently of one another are hydrogen or

C₁-C₄-alkyl and

 \mathbb{R}^3 is

and

is hydrogen, CHO and - $(CH_2)_o$ - $(CHR^{32})_m$ - $(CH_2)_o$ - R^5 , where R^{32} is hydrogen, C_1 - C_4 -alkyl, OH and O- C_1 - C_4 -alkyl, m,o independently of one another are 0, 1 or 2 and n is 1, 2, 3 or 4, and

Serial No. 09/830,992

is hydrogen, branched and unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, $NR^{41}R^{42}$ NH-CO- R^{43} , OR^{41} , where

R⁴¹and R⁴² independently of one another are hydrogen or C₁-C₄-alkyl and

 R^{43} is C_1 - C_4 -alkyl or phenyl, and

R⁵ is NR⁵¹R⁵² or one of the radicals below

m - -

where

 R^{52}

R⁵¹ is hydrogen and branched and C₁-C₆-alkyl and

is hydrogen, $COCH_3$, $CO-O-C_1-C_4$ alkyl, $COCF_3$, branched and unbranched C_1-C_6 -alkyl, it being possible for one hydrogen of the C_1-C_6 -alkyl radical to be substituted by one of the following radicals: OH, $O-C_1-C_4$ -alkyl and phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C_1-C_4 -alkyl, nitro, amino, C_1-C_4 -alkylamino, C_1-C_4 -dialkylamino, OH, $O-C_1-C_4$ -alkyl, CN, $SO_2-C_1-C_4$ -alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

Serial No. 09/830,992

R21

14.(amended) The method as claimed in claim 11 wherein the disorder is stroke or craniocerebral trauma.

Please cancel claims 27, 28 and 30-38.