11.9.3.6

EE23BTECH11022 - G DILIP REDDY

Question:

For what values of x, the numbers $-\frac{2}{7}$, x, $-\frac{7}{2}$ are in **G.P** ?

Solution:

Let *r* be the common ratio

Variable	Description	Value
x(0)	First term of the GP	$-\left(\frac{2}{7}\right)$
x(1)	Second term of the GP	х
x(2)	Third term of the GP	$-\left(\frac{7}{2}\right)$
r	Common ratio of the GP	
x(n)	General term	$x(0) r^n u(n)$

TABLE 1: Variables Used

From Table 1:

$$\implies \frac{x}{\left(-\frac{2}{7}\right)} = \frac{\left(-\frac{7}{2}\right)}{x} = r \tag{1}$$

$$x^2 = \left(-\frac{2}{7}\right) \cdot \left(-\frac{7}{2}\right) \tag{2}$$

$$x = \pm 1 \tag{3}$$

$$\implies r = \pm \frac{7}{2} \tag{4}$$

Fig. 1: Stem Plot of $x_1(n)$

The signal corresponding to this is

$$x(n) = \left(-\frac{2}{7}\right) \left(\pm \frac{7}{2}\right)^n u(n) \tag{5}$$

Applying z-Transform:

$$\implies X_1(z) = \left(\frac{1}{7}\right) \left(\frac{4}{7z^{-1} + 2}\right) \quad |z| > \frac{7}{2}$$
 (6)

$$\implies X_1(z) = \left(\frac{1}{7}\right) \left(\frac{4}{7z^{-1} + 2}\right) \quad |z| > \frac{7}{2} \qquad (6)$$

$$\implies X_2(z) = \left(\frac{1}{7}\right) \left(\frac{4}{7z^{-1} - 2}\right) \quad |z| > \frac{7}{2} \qquad (7)$$

Fig. 2: Stem Plot of $x_2(n)$