# Assignment 1.1



| 1 | 110  |
|---|------|
| 0 | 100  |
| N | 010  |
| R | 000  |
| F | 1111 |
| M | 1110 |
| Α | 1011 |
| Т | 1010 |
| S | 0111 |
| Р | 0110 |
| W | 0011 |
| E | 0010 |
|   |      |

## Assignment 1.2

Encode the original string "INFORMATIONISPOWER". Replace each character in the original string "INFORMATIONISPOWER" with its Huffman code. Write out the final bit string representing the compressed original string.

| 1   | N   | F    | 0   | R   | М    | Α    | Т    | ı   | 0   | N   | ı   | S    | Р    | 0   | W    | Е    | R   |
|-----|-----|------|-----|-----|------|------|------|-----|-----|-----|-----|------|------|-----|------|------|-----|
| 110 | 010 | 1111 | 100 | 000 | 1110 | 1011 | 1010 | 110 | 100 | 010 | 110 | 0111 | 0110 | 100 | 0011 | 0010 | 000 |

## Assignment 1.3

Write the string "INFORMATIONISPOWER" in the form of 8-bit ASCII code.

| Char  | I            | N            | F            | 0            | R            | М            | A            | Т            | I            | 0            | N            | I            | S            | Р            | 0            | W            | E            | R            |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| ASCII | 73           | 78           | 70           | 79           | 82           | 77           | 65           | 84           | 73           | 79           | 78           | 73           | 83           | 80           | 79           | 87           | 69           | 82           |
| Bin   | 01001<br>001 | 01001<br>110 | 01000<br>110 | 01001<br>111 | 01010<br>010 | 01001<br>101 | 01000<br>001 | 01010<br>100 | 01001<br>001 | 01001<br>111 | 01001<br>110 | 01001<br>001 | 01010<br>011 | 01010<br>000 | 01001<br>111 | 01010<br>111 | 01000<br>101 | 01010<br>010 |

### **Resulting ASCII binary string:**

## Compression ratio:

$$\frac{C(M) \ bits}{M \ bits} = \frac{(3*10+4*8)}{(8*18)} = 0.43$$

## Assignment 2.1

### TOBEORNOTTOBEORTOBEORNOT

## Resulting dictionary:

| Character | ASCII   | Last word | Current word | New entry    | Dict-Code |
|-----------|---------|-----------|--------------|--------------|-----------|
|           |         |           | Т            |              |           |
| В         | 66      | Т         | 0            | TO = 256     | 84        |
| E         | 69      | 0         | В            | OB = 257     | 79        |
| N         | 78      | В         | Е            | BE = 258     | 66        |
| 87.07     | 0000000 | E         | 0            | EO = 259     | 69        |
| 0         | 79      | 0         | R            | OR = 260     | 79        |
| R         | 82      | R         | N            | RN = 261     | 82        |
| Т         | 84      | N         | 0            | NO = 262     | 78        |
| '         | 04      | 0         | Т            | OT = 263     | 79        |
| ***       |         | Т         | Т            | TT = 264     | 84        |
| ТО        | 256     | Т         | 0            | 0-           | -         |
|           |         | то        | В            | TOB = 265    | 256       |
| OB        | 257     | В         | E            | -            | -         |
| BE        | 258     | BE        | 0            | BEO = 266    | 258       |
| EO        | 259     | 0         | R            | ( <b>a</b> ) | -         |
|           | 233     | OR        | Т            | ORT = 267    | 260       |
| OR        | 260     | Т         | 0            | (4)          | -         |
| RN        | 261     | то        | В            | 120          |           |
|           |         | ТОВ       | E            | TOBE = 268   | 265       |
| ОТ        | 263     | E         | 0            | U#.          | -         |
| TOB       | 265     | EO        | R            | EOR = 269    | 259       |
| BEO       | 266     | R         | N            | -            | -         |
| DEU       | 200     | RN        | 0            | RNO = 270    | 261       |
| ORT       | 267     | 0         | Т            | 1.E.         | -         |
| *         | ı.b     | ОТ        | NULL         | 520          | 263       |

#### Result:

Original string

| т  | О  | В  | Е  | О  | R  | N  | О  | т  | т  | О  | В  | E  | О  | R  | т  | О  | В  | E  | О  | R  | N  | 0  | т  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 84 | 79 | 66 | 69 | 79 | 82 | 78 | 79 | 84 | 84 | 79 | 66 | 69 | 79 | 82 | 84 | 79 | 66 | 69 | 79 | 82 | 78 | 79 | 84 |

#### Encoded

| т  | 0  | В  | E  | o  | R  | N  | 0  | т  | то  | BE  | OR  | тов | EO  | RN  | от  |
|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| 84 | 79 | 66 | 69 | 79 | 82 | 78 | 79 | 84 | 256 | 258 | 260 | 265 | 259 | 261 | 263 |

Compression ratio: 
$$\frac{C(M) \ bits}{M \ bits} = \frac{16 * 12}{24 * 12} = 0.67$$

# Assignment 2.2 Decoding

Given sequence: 83 69 81 85 69 78 67 69 256 258 260 265

| CIVOIT       | ocquerioe. | 00 00 01 00 00 | 70 07 09 230 230 | 200 200 |
|--------------|------------|----------------|------------------|---------|
| Current code | Output     | New entry      | Dictionar        | у       |
| 83           | S          | -              | Character        | ASCII   |
| 69           | E          | SE = 256       | 67               | С       |
| 81           | Q          | EQ = 257       | 69               | Е       |
| 85           | U          | QU = 258       | 78               | N       |
| 69           | E          | UE = 259       | 81               | Q       |
| 78           | N          | EN = 260       | 83               | S       |
| 67           | С          | NC = 261       | 85               | U       |
| 69           | E          | CE = 262       |                  |         |
| 256          | SE         | ES = 263       | 256              | SE      |
| 258          | QU         | SEQ = 264      | 257              | EQ      |
| 260          | EN         | QUE = 265      | 258              | QU      |
| 265          | QUE        | ENQ = 266      | 259              | UE      |
| 7.8          |            |                | 260              | EN      |
|              |            |                | 261              | NC      |
|              |            |                | 262              | CE      |
|              |            |                | 263              | ES      |
|              |            |                | 264              | SEQ     |
|              |            |                | 265              | QUE     |
|              |            |                | 266              | ENQ     |

Output: S E Q U E N C E SE QU EN QUE

# Assignment 3.1 Representation - Adjacency list



## Assignment 3.1 Representation - Adjacency matrix



G

DFS



BFS



# ABDCEDFG

# Assignment 3.3 Shortest path (Dijkstra's algorithm)



1 Unvisited {A, B, D, C, E, F, G}



2 Unvisited {B, D, C, E, F, G}



# Assignment 3.3 Shortest path (Dijkstra's algorithm)

3 Unvisited {B, C, E, F, G}

Nothing to update, proceed to next



4 Unvisited {E, F, G}



5 Unvisited {E, F, G}



6 Unvisited (F, G)

Distance from F to G = 14. Nothing to update.



# Assignment 3.3 Shortest path (Dijkstra's algorithm) RESULT



# Assignment 3.3 Shortest path (Bellman-Ford algorithm)





Traversal order:
AB - AD - AC - BE - BD - DE - DF - DC
- CF - EG - FG

Iterations: 7 - 1 = 6





Traversal order:

AB - AD - AC - BE - BD - DE - DF - DC - CF - EG - FG

Iterations: 7 - 1 = 6

# Resulting table

| i | Α | В   | С      | D      | Е     | F   | G   |
|---|---|-----|--------|--------|-------|-----|-----|
| 1 | 0 | inf | inf    | inf    | inf   | inf | inf |
| 2 | 0 | 3   | 6      | 2      | 7     | 12  | 12  |
| 3 | 0 | 3   | 6      | 2      | 7     | 12  | 12  |
| 4 |   |     | Algori | thm st | opped |     |     |

Assignment 3.4 Minimum spanning tree (Kruskal's algorithm)



Assignment 3.4 Minimum spanning tree (Kruskal's algorithm)



Assignment 3.4 Minimum spanning tree (Prim's algorithm)



Assignment 3.4 Minimum spanning tree (Prim's algorithm)



Assignment 3.4 Minimum spanning tree (Comparing the results)

