

INTRODUCCIÓN

- Generación de números aleatorios
 - Simulación
 - Testeo de programas
 - Juegos de azar
- $G = (X, X_0, T, U, g)$

PARTE 1 METODOLOGÍA

$$y_i = (ay_{i-1} + c) mod M, \qquad i \ge 1$$

 y_0 : semilla

a: multiplicador

c: incremento

M: módulo

- Generador Congruencial Mixto o Lineal: $c \neq 0$
- Generador Congruencial Aditivo: a = 1
- Generador Congruencial Multiplicativo: c = 0

$$\int_{a}^{b} f(x) = \frac{n^{\circ} y \le f(x)}{n^{\circ} y total} \cdot (b - a) \cdot y_{max}$$

PARTE 1 RESULTADOS

Condiciones iniciales:

N = 10000

multiplicadorX = 13

multiplicadorY = 45

incrementoX = 17

incrementoY = 871

semillaX = 7

semillaY = 71

Valor de la Integral = 1.04021432838262

Método	Eficacia [RMSE]	Eficiencia [s]	Integral
Simpson 1/3	0.2×10^{-6}	0.0011	1.0402
Generador Mixto	0.4108	0.0058	1.4510
Generador Aditivo	0.4318	0.0053	1.4720
Generador Multiplicativo	0.4328	0.0049	1.4730

Generador Mixto o Lineal

Generador Aditivo

Generador Multiplicativo

$$Ly = x^2 \frac{d^2y}{dx^2} + (2x) \frac{dy}{dx} - xy = x^2 y'' + 2xy' - xy = 0$$

$$y = \sum_{n=0}^{\infty} a_n \cdot x^n$$

$$y' = \sum_{n=1}^{\infty} n \cdot a_n \cdot x^{n-1}$$

$$y' = \sum_{n=1}^{\infty} n \cdot a_n \cdot x^{n-1}$$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$

$$x^{2}\left[\sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_{n} \cdot x^{n-2}\right] + 2x\left[\sum_{n=1}^{\infty} n \cdot a_{n} \cdot x^{n-1}\right] - x\left[\sum_{n=0}^{\infty} a_{n} \cdot x^{n}\right] = 0$$

•
$$\sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^n + 2 \sum_{n=1}^{\infty} n \cdot a_n \cdot x^n - \sum_{n=0}^{\infty} a_n \cdot x^{n+1} = 0$$

$$k = n$$
$$k=2$$

$$k = n+1$$
$$k=1$$

•
$$\sum_{k=2}^{\infty} k \cdot (k-1) \cdot a_k \cdot x^k + 2 \sum_{k=1}^{\infty} k \cdot a_k \cdot x^k - \sum_{k=1}^{\infty} a_{k-1} \cdot x^k = 0$$

•
$$\sum_{k=2}^{\infty} k \cdot (k-1) \cdot a_k \cdot x^k + 2 \sum_{k=2}^{\infty} k \cdot a_k \cdot x^k - \sum_{k=2}^{\infty} a_{k-1} \cdot x^k + 2a_1 \cdot x - a_0 \cdot x = 0$$

•
$$\sum_{k=2}^{\infty} k \cdot (k-1) \cdot a_k \cdot x^k + 2 \sum_{k=2}^{\infty} k \cdot a_k \cdot x^k - \sum_{k=2}^{\infty} a_{k-1} \cdot x^k + x(2a_1 - a_0) = 0$$

$$\sum_{k=2}^{\infty} x^k \cdot [k \cdot (k-1) \cdot a_k) + 2 \cdot k \cdot a_k - a_{k-1}] + x(2a_1 - a_0) = 0$$

$$\sum_{k=2}^{\infty} k \cdot (k-1) \cdot a_k + 2 \cdot k \cdot a_k - a_{k-1} = 0$$

$$2 \cdot a_1 - a_0 = 0 \to a_1 = \frac{a_0}{2}$$

•
$$\sum_{k=2}^{\infty} x^k \cdot [k \cdot (k-1) \cdot a_k) + 2 \cdot k \cdot a_k - a_{k-1}] = 0$$

•
$$k \cdot (k-1) \cdot a_k + 2 \cdot k \cdot a_k - a_{k-1} = 0$$

•
$$k \cdot (k-1) \cdot a_k + 2 \cdot k \cdot a_k = a_{k-1}$$

•
$$a_k \cdot (k \cdot (k-1) + 2 \cdot k) = a_{k-1}$$

•
$$a_k \cdot (k^2 - k + 2k) = a_{k-1}$$

$$\bullet \ a_k \cdot (k^2 + k) = a_{k-1}$$

Ecuación de recurrencia

$$a_k = \frac{a_{k-1}}{k(k+1)}$$

PARTE 2 EJEMPLO NUMÉRICO

•
$$y = \sum_{k=0}^{\infty} \frac{a_{k-1}}{k(k+1)} \cdot x^k$$

•
$$a_1 = \frac{a_0}{2} = \frac{1}{2}$$

•
$$a_2 = \frac{a_1}{2 \cdot (2+1)} = \frac{1}{2 \cdot 2 \cdot (2+1)} = \frac{1}{12}$$

•
$$a_3 = \frac{a_2}{3 \cdot (3+1)} = \frac{1}{12 \cdot 3 \cdot (3+1)} = \frac{1}{144}$$

•
$$a_4 = \frac{a_3}{4 \cdot (4+1)} = \frac{1}{144 \cdot 4 \cdot (4+1)} = \frac{1}{2880}$$

•
$$a_5 = \frac{a_4}{5 \cdot (5+1)} = \frac{1}{2880 \cdot 5 \cdot (5+1)} = \frac{1}{86400}$$

$$y = \sum_{n=0}^{\infty} \frac{a_{n-1}}{n(n+1)} \cdot x^n = 1 + \frac{1}{2}x + \frac{1}{12}x^2 + \frac{1}{144}x^3 + \frac{1}{2880}x^4 + \frac{1}{86400}x^5 \dots$$

CONCLUSIÓN

- Objetivos cumplidos de manera satisfactoria
- Dificultades y complicaciones