

The Thinking Man and MPC

BobFest, June 8, 2024

My first observation of Bob in action

- IFAC World Congress in Sydney
- Conference best paper award
- Presentation style

Sabbatical at UCSD

Academic year 2002-03

Returned to academia from industry a few years earlier

Learned a lot from Bob and Miroslav

Vital for my academic carreer

Typical academic MPC formulation

$$\min_{\mathbf{u}} x_{k+N}^{T} P_{N} x_{k+N} + \sum_{i=0}^{N-1} x_{k+i}^{T} Q_{i} x_{k+i} + u_{k+i}^{T} R_{i} u_{k+i}$$
s.t. $x_{k+i+1} = f(x_{k+i}, u_{k+i}, d_{k+i})$

$$x_{k+i} \in \mathcal{X} \quad i = 1, \dots, N$$

$$u_{k+i} \in \mathcal{U} \quad i = 0, \dots, N-1$$

$$\mathbf{u}^{T} = \begin{bmatrix} u_{k}^{T}, \dots, u_{k+N-1}^{T} \end{bmatrix}^{T}$$

- x_k 'known' at time k.
- Must 'guess' future disturbances
- Hope for certainty equivalence
 - Interactions between control and estimation not made clear

Two simulations with the same MPC

Identical MPC, same disturbance
Identically tuned augmented Kalman filter (same noise variances)
Different disturbance modeling — left: common industrial practice

State estimation and Stochastic MPC

- Yan & Bitmead: Incorporating State Estimation in Predictive Control and its application to network traffic control, (Automatica, 2005)
- Use deterministic MPC, but 'back off' from constraint depending on predicted Kalman filter covariance.
- Avoid exaggerating predicted covariance in the far future.

Dual Adaptive MPC

- Dual control: control input used both for regulation and for learning about the system.
 - The two objectives often in conflict at least in the short term
- Interaction between Control and State Estimation in Nonlinear MPC
 - IFAC DYCOPS 2004
- System: marginally stable and weakly unobservable at the reference
 - Certainty equivalence does not apply, 'standard' MPC + EKF unstable.
 - Stable using MPC where the objective function includes a term depending on the predicted EKF covariance

Dual Adaptive MPC

Standard MPC + EKF

Locally unobservable, state estimate does not update, no control action

Modified MPC + RHE

Actual and estimated state

Input action makes estimate update possible. This enables stabilizing control

Continued cooperation

Research project funding

Hosting PhD students visiting UCSD

Sabbatical at NTNU

Persistently exciting MPC

- Controlling to a fixed reference 'ensures' that there is not sufficient information in input/output data to update the plant model (model parameters)
- Persistently exciting model predictive control
 - Makes updating plant parameters possible
 - Marafioti, Bitmead, H., IJACSP (2013)
 - PE constraint added to MPC formulation
 - Makes optimization non-convex (input outside ellipsoid)
- Brüggeman & Bitmead: Forward-looking persistent excitation in model predictive control
 - Automatica, 2022
 - Designing reference trajectory to ensure PE

MPC without PE

Step change in parameter 2 at t=100. Reference change at t = 300.

MPC with PE

Small perturbations in the input keep parameter estimates from drifting. Change in parameter tracked. Reference change tracked well.

Simultaneous Input and State Estimation (SISE)

- Work initiated during Bob's sabbatical in Trondheim shortly before COVID
- Motivated by state estimation in power systems
 - Systems may be partly unknown
 - Not full knowledge of what goes on at custormer's sites.
- Relationship between SISE and Kalman filter clarified
- Guaranteed stable version of SISE derived
 - Also for when system is not stably invertible
- Bitmead, H., Abooshahab: A Kalman filtering derivation of simultaneous inout and state estimation. Automatica, 2019
- Abooshahab, Alyaseen, Bitmead, H.: Simultaneous input & state estimation, singular filtering and stability.
 Automatica, 2022.
- Abooshahab, H., Bitmead: Disturbance and state estimation in partially known power systems. IEEE CCTA 2019
- Abooshahab: PhD thesis

Thank you Bob!

