Neutral Beam Injector (NBI)

Introduction

Neutral Beam Injection (NBI) is a key technique used in tokamak fusion devices to heat the plasma and drive current. In NBI systems, neutral atoms—typically hydrogen or deuterium—are accelerated to high energies and injected into the plasma. Because charged particles would be deflected by the magnetic fields in the tokamak, the ions are first neutralized before injection. Once inside the plasma, these fast neutrals transfer their energy to the plasma particles through collisions, increasing the plasma temperature and contributing to the overall performance of the fusion experiment. NBI is valued for its ability to deliver precise and controllable heating, making it an essential tool in plasma physics research and fusion reactor development.

Neutral Beam Injectors on TCV

Parameter	NBI-1	NBI-2	DNBI	Comment
Beam				
NB power range in TCV	501100 kW	2501100 kW	7090 kW	14% of losses in the beam duct excluded for NBI-1
NB energy range	728 keV	2951 keV	4850 keV	DNBI with lower (up to 25-30 keV) possible
NB energy stability	$\pm 100 \text{ eV}$	$\pm 100 \text{ eV}$	$\pm 600 \text{ eV}$	
Power losses in beam duct	15-20 %	2-5 %	< 2 %	NBI-1 size in horizontal direction mismatch specification
Beam main species	\mathbf{D}^O	\mathbf{D}^O	H^O	
Max. NB energy per shot	1.1 MJ	$2 \mathrm{~MJ}$	50 kJ	

Parameter	NBI-1	NBI-2	DNBI	Comment
Max. NB pulse duration	0.82.0 s	2 s	1.4 s	
Neutral beam energy fraction (in % of power)	73:22:05 %	59:33:8	78.5:8.5:13.0 %	0 at [1:1/2:1/3] of NB energy for nominal beam energy: 25/47/49 keV for NBI-1(D)/NBI-2(D)/DNBI(H)
Low energy fraction (in % of power) Modulation	<0.1 %	<0.4%	<0.3%	with $1/(1216)$ of NB energy
Power sweep during TCV shot	full power range	full power range	not available	few sweeps for NBIs possible
Power sweep response dP/dt	$\frac{25}{40}$ MW/s	$\frac{25}{40}$ MW/s	not available	slope limit of NBI power (up/down)
Full power modulation on-time	2.5 ms 2 s	3.5 ms 2 s	630 ms	Min. DNBI modulation on-time is limited by current rise time
Minimal modulation off-time	5 ms	4.5 ms	8 ms	limited by delay between suppression grid modulation and beam current
Modulation rise/fall time	13 ms	1.53.5 ms	1.52.5 ms/250 mks	shorter DNBI time planned after upgrade of power supply
Fast modulation Geometry be- fore/from August 2019	100300 Hz	100 Hz	50 Hz	NBIs at reduced power and higher divergence
Grids (IOS) aperture	$\emptyset 250~\mathrm{mm}$	$\emptyset 250~\mathrm{mm}$	ø87.2 mm	area of grids with beamlet apertures
Beam divergence, mrad (deg.)	36x8 (2.06x0.46) / 23.6x9.9 (1.35x0.57)	13.8x5.1 (0.79x0.30)	9.25 (0.53)/9.20(NBIs (horizontal) x (vertical) according 0t53)measurement

Parameter	NBI-1	NBI-2	DNBI	Comment
Focal length	3.20 m / 4.20(h)/4.25		5(4:)00 /	according to measurement
	3.76(h)/3.98	76(h)/3.98(m)		
	m			
Distance	$4.05~\mathrm{m}$	$4.28~\mathrm{m}$	$3.81~\mathrm{m}$	along beam axis
from IOS to				
port exit in				
TCV				
TCV port	220x170	210x160	$\emptyset 160~\mathrm{mm}$	NBIs: rectangular, DNBI: circular
size	mm^2	mm^2		
(horizontal x				
vertical)				
NB tangency	736.0 mm	736.0 mm	235.3 mm	distance from NB axis to TCV machine
radius				vertical axis
Beam	24.37x10.22	13.2x5.2	8.02 /	(1/e) level, NBIs in horizontal cutted by
	$\mathrm{cm}\ /$	cm	$12.1~\mathrm{cm}$	port size
TCV (hor. x	21.6x9.4			
vert.)	cm			

$$\mathrm{DCD_{NBI-2}} = (r_d, Z_d, \phi_d, \theta_d, tv_d) = (5.2123, -0.0025, 212, 6947 \cdot \pi/180, 0, -8.4896 \cdot \pi/180)$$