>>> Introducción a la Teoría de Valuaciones

Name: Néstor Aponte[†] Date: June 7, 2024

[~]\$_

[†]nhapontea@udistrital.edu.co

Filtración Sucesión decreciente $\{X_{\lambda}\}$ de subespacios que descomponen una estructura algebraíca X.

Ej:
$$3^n \mathbb{Z} \subseteq \cdots 3^2 \mathbb{Z} \subseteq 3 \mathbb{Z} \subseteq \mathbb{Z}$$

 $!\,!\,$ Induce una topología sobre X

[2/18]

Filtración Sucesión decreciente $\{X_{\lambda}\}$ de subespacios que descomponen una estructura algebraíca X.

Ej:
$$3^n \mathbb{Z} \subseteq \cdots 3^2 \mathbb{Z} \subseteq 3 \mathbb{Z} \subseteq \mathbb{Z}$$

!! Induce una topología sobre X

Valuación Función que mide el tamaño u orden en mi objeto algebraico X.

Ej:
$$v(x) := \max\{n \in \mathbb{N} : x \in 3^n \mathbb{Z}\}\$$

[2/18]

Seminorma No Arquimediana Inducida por la valuación, formaliza en términos analíticos nuestro deseo de 'medir'.

Ej:
$$||x|| := e^{v(x)}$$
 $\epsilon \in (0,1)$

¹Todos los triángulos son isósceles

Seminorma No Arquimediana Inducida por la valuación, formaliza en términos analíticos nuestro deseo de 'medir'.

Ej:
$$||x|| := e^{v(x)}$$
 $\epsilon \in (0,1)$

*
$$(\neg \forall x \in X)(\|x\| = 0 \Rightarrow x = 0)$$
 Seminorma

[~]\$ _

¹Todos los triángulos son isósceles

Seminorma No Arquimediana Inducida por la valuación, formaliza en términos analíticos nuestro deseo de 'medir'.

Ej:
$$||x|| := e^{v(x)}$$
 $\epsilon \in (0,1)$

- * $(\neg \forall x \in X)(\|x\| = 0 \Rightarrow x = 0)$ Seminorma
- * $||x + y|| \le \max\{||x||, ||y||\}$ No Arquimediana¹

[*]\$ _

¹Todos los triángulos son isósceles

>>> § Algunas Propiedades

TOPOLOGÍA	ÁLGEBRA	ANÁLISIS
$\{X_{\lambda}\}$	v(x)	x
Hausdorff	$\bigcap X_{\lambda} = 0$!! Norma
$(\forall X_{\lambda})(\exists N > 0) : \{x_n - x_m\}_{n,m \ge N} \subseteq X_{\lambda}$		$\{x_n\}\subseteq X$ Cauchy

>>> § Completación

* Sea \mathcal{U} : Comp \hookrightarrow Filt el funtor olvido que va de los espacios normados completos en los normados. Existe \mathcal{V} : Filt \hookrightarrow Comp tal que la pareja $(\mathcal{U},\mathcal{V})$ son adjuntos.

[5/18]

²Límite Proyectivo

- * Sea $\mathcal U$: Comp \hookrightarrow Filt el funtor olvido que va de los espacios normados completos en los normados. Existe $\mathcal V$: Filt \hookrightarrow Comp tal que la pareja $(\mathcal U,\mathcal V)$ son adjuntos.
- * La completación \widehat{X} de mi espacio $(X,\{X_{\lambda}\})$ surge precisamente como el objeto universal de ese funtor ${\mathcal V}$

$$\hat{X} := \lim_{\leftarrow} X/X_{\lambda}^{-2}$$

²Límite Provectivo

Figure: Enteros p-ádicos

$$\mathbb{Z}_p\ni a=\sum_{n=0}^\infty a_np^n\quad a_n\in\{0,1,\cdots,p-1\}$$

[6/18]

>>> § Lemma de Hensel

Theorem (Hensel)

Sea A un anillo noetheriano local completo con respecto a su ideal máximal m y K:=A/m su campo de residuos. Para cada $f(x)\in A[x]$ mónico sea $\widehat{f}(x)\in K[x]$ su reducción módulo m. Si $\widehat{f}(x)=G(x)H(x)$ para G y H coprimos entonces existen únicos $g(x),h(x)\in A[x]$ mónicos tales que

- 1. deg(g) = deg(G) y deg(h) = deg(H)
- 2. f(x) = g(x)h(x)

[7/18]

* El lemma de Hensel es una versión extendida del Método de Newton-Rhapson para la aproximación de raíces. El algoritmo no cambia.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

* Interpretado en p-ádicos, $f(x) \in \mathbb{Z}_p$ tiene solución sii tiene solución en $\mathbb{Z}/p\mathbb{Z}$. Requerimos acá

$$x_0 \in \mathbb{Z}/p\mathbb{Z}$$
: $f(x_0) = 0 \land f'(x_0) \neq 0$

[8/18]

>>> Ejercicio

Determinar la existencia de soluciones $x^2 + 1 = 0$ en \mathbb{Z}_5 y \mathbb{Z}_7 .

$$\mathbb{Z}/5\mathbb{Z} \qquad \qquad \mathbb{Z}/7\mathbb{Z}$$

$$\bar{0} \longmapsto \bar{1}$$

$$\bar{0} \mapsto \bar{1}$$

$$\bar{1} \mapsto \bar{2}$$

$$\bar{2} \mapsto \bar{5}$$

$$\bar{2} \mapsto \bar{0}$$

$$\bar{3} \mapsto \bar{3}$$

$$\bar{3} \mapsto \bar{0}$$

$$\bar{4} \mapsto \bar{3}$$

$$\bar{4} \mapsto \bar{2}$$

$$\bar{5} \mapsto \bar{5}$$

$$\bar{6} \mapsto \bar{2}$$

*
$$\alpha_0^{(1)} = \bar{2}$$
 o $\alpha_0^{(2)} = \bar{3}$ son soluciones (mod 5)

$$\Rightarrow \exists \beta \in \mathbb{Z}_5 : (\beta)^2 + 1 = 0$$

* No hay soluciones en \mathbb{Z}_7 .

[9/1

Mejoremos la solución $\alpha_0^{(1)}=2$, $f'(2)=4\neq 0$ por lo que podemos aplicar el algoritmo

Iteración 1
$$\alpha_1^{(1)} = 2 - \frac{5}{4} \equiv 2 - 5 \cdot 19 \equiv -93 \equiv 7 \pmod{25}$$

Iteración 2
$$\alpha_2^{(1)} = 7 - \frac{50}{14} \equiv 7 - 50 \cdot 9 \equiv 57 \pmod{125}$$

$$\beta \approx 2 \cdot 5^0 + 1 \cdot 5^1 + 2 \cdot 5^2$$

[10/18]

[11/18]

[12/18]

[13/18]

[14/18]

>>> § Visualización $\beta \in \mathbb{Z}_5$: $(\beta)^2 + 1 = 0$ - Árboles p-ádicos

Figure: $\beta \approx 2 \cdot 5^0$

[15/18]

>>> § Visualización $\beta \in \mathbb{Z}_5$: $(\beta)^2 + 1 = 0$ - Árboles p-ádicos

Figure: $\beta \approx 2 \cdot 5^0 + 1 \cdot 5^1$

[16/18]

>>> § Visualización $\beta \in \mathbb{Z}_5$: $(\beta)^2 + 1 = 0$ - Árboles p-ádicos

Figure: $\beta \approx 2 \cdot 5^0 + 1 \cdot 5^1 + 2 \cdot 5^2$

[7]\$ _ [17/18]

- Ferreti, Andrea, *Commutative Algebra*, American Mathematical Society, 2023.
- Alain M., Robert, A course in p-adic analysis, Springer Science & Business Media, 2013.
- Engler, Antonio J., Prestel, Alexander, Valued Fields, Springer Science & Business Media, 2005.
- Atiyah, Michael, Introduction to commutative algebra, CRC Press, 2018.

[18/18]