→ BCG Task 2

Arnav Singh

▼ Exploratory Data Analysis&Data Cleaning

- 1. Gathering Data
- 2. Assessing Data
- 3. Cleaning Data

▼ Gathering data

#Import packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set(color_codes=True)
import pickle

#Loading data
train_data=pd.read_csv('ml_case_training_data.csv')
history_data=pd.read_csv('ml_case_training_hist_data.csv')
churn_data=pd.read_csv('ml_case_training_output.csv')

#Show the first 5 rows of data
train_data.head()

	id	activity_new	<pre>campaign_disc_ele</pre>	
0	48ada52261e7cf58715202705a0451c9	esoiiifxdlbkcsluxmfuacbdckommixw	NaN	Imkeba
1	24011ae4ebbe3035111d65fa7c15bc57	NaN	NaN	foos
2	d29c2c54acc38ff3c0614d0a653813dd	NaN	NaN	
3	764c75f661154dac3a6c254cd082ea7d	NaN	NaN	foos
4	bba03439a292a1e166f80264c16191cb	NaN	NaN	Imkeba

5 rows × 32 columns

history_data.head()

	id	price_date	price_p1_var	price_p2_var	price_p3_var	рі
0	038af19179925da21a25619c5a24b745	2015-01-01	0.151367	0.0	0.0	
1	038af19179925da21a25619c5a24b745	2015-02-01	0.151367	0.0	0.0	
2	038af19179925da21a25619c5a24b745	2015-03-01	0.151367	0.0	0.0	
3	038af19179925da21a25619c5a24b745	2015-04-01	0.149626	0.0	0.0	
4	038af19179925da21a25619c5a24b745	2015-05-01	0.149626	0.0	0.0	

churn_data.head()

id churn 0 48ada52261e7cf58715202705a0451c9 0

#merge the train_data and churn_data into one dataframe train=pd.merge(train_data,churn_data, on="id") train.head()

	id	activity_new	campaign_disc_ele	
0	48ada52261e7cf58715202705a0451c9	esoiiifxdlbkcsluxmfuacbdckommixw	NaN	Imkeba
1	24011ae4ebbe3035111d65fa7c15bc57	NaN	NaN	foos
2	d29c2c54acc38ff3c0614d0a653813dd	NaN	NaN	
3	764c75f661154dac3a6c254cd082ea7d	NaN	NaN	foos
4	bba03439a292a1e166f80264c16191cb	NaN	NaN	Imkeba

▼ Accessing Data

#See the datatype of train data train.dtypes

5 rows × 33 columns

id	object
activity_new	object
campaign_disc_ele	float64
channel_sales	object
cons_12m	int64
cons_gas_12m	int64
cons_last_month	int64
date_activ	object
date_end	object
date_first_activ	object
date_modif_prod	object
date_renewal	object
forecast_base_bill_ele	float64
forecast_base_bill_year	float64
forecast_bill_12m	float64
forecast_cons	float64
forecast_cons_12m	float64
forecast_cons_year	int64
<pre>forecast_discount_energy</pre>	float64
forecast_meter_rent_12m	float64
forecast_price_energy_p1	float64
<pre>forecast_price_energy_p2</pre>	float64
forecast_price_pow_p1	float64
has_gas	object
imp_cons	float64
margin_gross_pow_ele	float64
margin_net_pow_ele	float64
nb_prod_act	int64
net_margin	float64
num_years_antig	int64
origin_up	object
pow_max	float64
churn	int64
dtype: object	

history_data.dtypes

id	object
price_date	object
price_p1_var	float64
price_p2_var	float64
price_p3_var	float64
price_p1_fix	float64
price_p2_fix	float64
price_p3_fix	float64
dtype: object	

#See the shape of dataset train.shape

(16096, 33)

history_data.shape

(193002, 8)

#See the general descriptive statistics of data train.describe()

	<pre>campaign_disc_ele</pre>	cons_12m	cons_gas_12m	cons_last_month	<pre>forecast_base_bill_e</pre>
count	0.0	1.609600e+04	1.609600e+04	1.609600e+04	3508.00000
mean	NaN	1.948044e+05	3.191164e+04	1.946154e+04	335.84385
std	NaN	6.795151e+05	1.775885e+05	8.235676e+04	649.40600
min	NaN	-1.252760e+05	-3.037000e+03	-9.138600e+04	-364.94000
25%	NaN	5.906250e+03	0.000000e+00	0.000000e+00	0.00000
50%	NaN	1.533250e+04	0.000000e+00	9.010000e+02	162.95500
75%	NaN	5.022150e+04	0.000000e+00	4.127000e+03	396.18500
max	NaN	1.609711e+07	4.188440e+06	4.538720e+06	12566.08000

8 rows × 23 columns

It's seems that the campaign_disc_lel is an empty column

history_data.describe()

	price_p1_var	price_p2_var	price_p3_var	price_p1_fix	price_p2_fix	price_p3_fi
count	191643.000000	191643.000000	191643.000000	191643.000000	191643.000000	191643.000000
mean	0.140991	0.054412	0.030712	43.325546	10.698201	6.455436
std	0.025117	0.050033	0.036335	5.437952	12.856046	7.782279
min	0.000000	0.000000	0.000000	-0.177779	-0.097752	-0.065172
25%	0.125976	0.000000	0.000000	40.728885	0.000000	0.000000
50%	0.146033	0.085483	0.000000	44.266930	0.000000	0.000000
75%	0.151635	0.101780	0.072558	44.444710	24.339581	16.226389
max	0.280700	0.229788	0.114102	59.444710	36.490692	17.45822°

#See The missing data of train
train.isnull().sum()/train.shape[0]

id	0.000000
activity_new	0.593004
campaign_disc_ele	1.000000
channel_sales	0.262053
cons_12m	0.000000
cons_gas_12m	0.000000
cons_last_month	0.000000
date_activ	0.000000
date_end	0.000124
date_first_activ	0.782058
date_modif_prod	0.009754
date_renewal	0.002485
forecast_base_bill_ele	0.782058
forecast_base_bill_year	0.782058
forecast_bill_12m	0.782058
forecast_cons	0.782058
forecast_cons_12m	0.000000
forecast_cons_year	0.000000
forecast_discount_energy	0.007828
forecast_meter_rent_12m	0.000000
forecast_price_energy_p1	0.007828
forecast_price_energy_p2	0.007828
forecast_price_pow_p1	0.007828
has_gas	0.000000
imp_cons	0.000000
margin_gross_pow_ele	0.000808
margin_net_pow_ele	0.000808
nb_prod_act	0.000000
net_margin	0.000932
num_years_antig	0.000000
origin_up	0.005405
pow_max	0.000186

```
churn 0.000000 dtype: float64
```

As we can see that some of columns have missing data over 50%, we need to clean them in the later

```
history_data.isnull().sum()/history_data.shape[0]
                     0.000000
     id
                     0.000000
     price_date
                     0.007041
     price_p1_var
     price_p2_var
                     0.007041
                     0.007041
     price_p3_var
     price_p1_fix
                     0.007041
     price_p2_fix
                     0.007041
     price_p3_fix
                     0.007041
     dtype: float64
```


About 10% of total customers have chruned

plt.ylabel("Company base(%)");

```
#Next see the acitivity distribution
activity=train[['id','activity_new','churn']]
activity=activity.groupby([activity['activity_new'],activity['churn']])['id'].count().unstack(level=1).sort_values(by=[0],ascending=False

activity.plot(kind='bar',figsize=(12,10),width=2,stacked=True,title="SME Activity")
plt.ylabel("Number of Companies")
plt.xlabel('Activity')
plt.legend(['Retention','Churn'],loc="upper right")
plt.xticks([])
plt.show()
```


The xticks is not showing to facilitate the visualization and the distribution of the activity is despite the lack of 60% of the entries

Percentage churn Total companies

activity_new xwkaesbkfsacseixxksofpddwfkbobki 100.0 1.0 wkwdccuiboaeaalcaawlwmldiwmpewma 100.0 1.0 ikiucmkuisupefxcxfxxulkpwssppfuo 100.0 1.0 opoiuuwdmxdssidluooopfswlkkkcsxf 100.0 1.0 pfcocskbxlmofswiflsbcefcpufbopuo 100.0 2.0

channel_total=channel.fillna(0)[0]+channel.fillna(0)[1]
channel_percentage=channel.fillna(0)[1]/(channel_total)*100
pd.DataFrame({"Churn percentage":channel_percentage,

"Total companies":channel_total}).sort_values(by='Churn percentage',ascending=False).head()

Churn percentage Total companies

channel_sales

axs[3].ticklabel_format(style='plain',axis='x')

foosdfpfkusacimwkcsosbicdxkicaua	12.498306	7377.0
usilxuppasemubllopkaafesmlibmsdf	10.387812	1444.0
ewpakwlliwisiwduibdlfmalxowmwpci	8.488613	966.0
Imkebamcaaclubfxadlmueccxoimlema	5.595755	2073.0
epumfxlbckeskwekxbiuasklxalciiuu	0.000000	4.0

channel_sales

```
#Next is the consumption
consumption = train[['id','cons\_12m','cons\_gas\_12m','cons\_last\_month','imp\_cons','has\_gas','churn']]
fig,axs=plt.subplots(nrows=4,figsize=(8,15))
cons_12m=pd.DataFrame({'Retention':consumption[consumption['churn']==0]['cons_12m'],
                                                                                   'Churn':consumption[consumption['churn']==1]['cons_12m']})
 cons_12m[['Retention','Churn']].plot(kind='hist',bins=20,ax=axs[0],stacked=True);
axs[0].set xlabel('cons 12m')
axs[0].ticklabel_format(style='plain',axis='x')
cons_gas_12m=pd.DataFrame({'Retention':consumption[consumption['has_gas']=='t'][consumption[consumption['has_gas']=="t"]['consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[consumption[cons
                                                                                  'Churn':consumption[consumption['has_gas']=='t'][consumption[consumption['has_gas']=='t']['churn']==1]['cons_gas_12
cons\_gas\_12m[['Retention','Churn']].plot(kind='hist',bins=20,ax=axs[1],stacked=True);
axs[1].set_xlabel('cons_12m')
axs[1].ticklabel_format(style='plain',axis='x')
cons\_last\_month = pd.DataFrame( \{ 'Retention': consumption[consumption['churn'] == 0 \} [ 'cons\_last\_month'], for example of the property of 
                                                                                 'Churn':consumption[consumption['churn']==1]['cons_last_month']})
cons_last_month[['Retention','Churn']].plot(kind='hist',bins=20,ax=axs[2],stacked=True);
axs[2].set_xlabel('cons_12m')
axs[2].ticklabel_format(style='plain',axis='x')
imp\_cons = pd.DataFrame(\{'Retention': consumption[consumption['churn'] == \emptyset]['imp\_cons'],
                                                                                   'Churn':consumption[consumption['churn']==1]['imp_cons']})
imp_cons[['Retention','Churn']].plot(kind='hist',bins=20,ax=axs[3],stacked=True);
axs[3].set_xlabel('imp_cons')
```


The distribution of the consumptions is highly right skewed and has a long tail, we need to check the outliers by use boxplot

```
fig,axs=plt.subplots(nrows=4,figsize=(10,15))
sns.boxplot(consumption['cons_12m'],ax=axs[0])
sns.boxplot(consumption[consumption['has_gas']=='t']['cons_gas_12m'],ax=axs[1])
sns.boxplot(consumption['cons_last_month'],ax=axs[2])
sns.boxplot(consumption['imp_cons'],ax=axs[3])
for ax in axs:
    ax.ticklabel_format(style='plain',axis='x')
axs[0].set_xlim(-200000,2000000)
axs[1].set_xlim(-200000,1000000)
plt.show();
```

/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass th

/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass th

warnings.warn(

```
warnings.warn(
     /opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass th
       warnings.warn(
It clearly that we can see the outliers and we will deal with them in the data cleaning
#Now is about Dates
dates=train[['id','date_activ','date_end','date_modif_prod','date_renewal','churn']].copy()
dates['date_activ']=pd.to_datetime(dates['date_activ'],format='%Y-%m-%d')
dates['date_end']=pd.to_datetime(dates['date_end'],format='%Y-%m-%d')
dates['date_modif_prod']=pd.to_datetime(dates['date_modif_prod'],format='%Y-%m-%d')
dates['date_renewal']=pd.to_datetime(dates['date_renewal'],format='%Y-%m-%d')
def line_format(label):
    Convert time label to the format of pandas line plot
    month=label.month_name()[:1]
    if label.month_name()=="January":
       month+=f'\n{label.year}'
    return month
              fig,axs=plt.subplots(nrows=4,figsize=(18,15))
date_activ=dates[['date_activ','churn','id']].set_index('date_activ').groupby([pd.Grouper(freq='M'),'churn']).count().unstack(level=1)
date_activ.plot(kind='bar',stacked=True,rot=0,ax=axs[0])
axs[0].set_xticklabels(map(lambda x:line_format(x),date_activ.index),fontsize=8)
axs[0].set_ylabel("Number of companies")
axs[0].legend(['Retention','Churn'],loc='upper right')
date_end=dates[['date_end','churn','id']].set_index('date_end').groupby([pd.Grouper(freq='M'),'churn']).count().unstack(level=1)
date_end.plot(kind='bar',stacked=True,rot=0,ax=axs[1])
axs[1].set_xticklabels(map(lambda x:line_format(x),date_end.index),fontsize=8)
axs[1].set ylabel("Number of companies")
axs[1].legend(['Retention','Churn'],loc='upper right')
date_modif_prod=dates[['date_modif_prod','churn','id']].set_index('date_modif_prod').groupby([pd.Grouper(freq='M'),'churn']).count().unst
date_modif_prod.plot(kind='bar',stacked=True,rot=0,ax=axs[2])
axs[2].set_xticklabels(map(lambda x:line_format(x),date_modif_prod.index),fontsize=8)
axs[2].set_ylabel("Number of companies")
axs[2].legend(['Retention','Churn'],loc='upper right')
date_renewal=dates[['date_renewal','churn','id']].set_index('date_renewal').groupby([pd.Grouper(freq='M'),'churn']).count().unstack(level
date renewal.plot(kind='bar',stacked=True,rot=0,ax=axs[3])
axs[3].set_xticklabels(map(lambda x:line_format(x),date_renewal.index),fontsize=8)
axs[3].set_ylabel("Number of companies")
axs[3].legend(['Retention','Churn'],loc='upper right');
```


However, the date's distribution seems does not provide any insight

```
Churn
fig,axs=plt.subplots(nrows=11,figsize=(12,50))
forecast_base_bill_ele=pd.DataFrame({'Retention':train[train['churn']==0]['forecast_base_bill_ele'],
                                                                                                 'Churn':train[train['churn']==1]['forecast_base_bill_ele']})
forecast\_base\_bill\_ele[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[0],stacked=True);
axs[0].set_xlabel('forecast_base_bill_ele')
axs[0].ticklabel_format(style='plain',axis='x')
'Churn':train[train['churn']==1]['forecast_base_bill_year']})
forecast_base_bill_year[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[1],stacked=True);
axs[1].set_xlabel('forecast_base_bill_year')
axs[1].ticklabel_format(style='plain',axis='x')
forecast\_bill\_12m = pd.DataFrame(\{'Retention': train[train['churn'] == 0]['forecast\_bill\_12m'], forecast\_bill\_12m'], forecast\_bill\_12m = pd.DataFrame(\{'Retention': train[train['churn'] == 0]['forecast\_bill\_12m'], forecast\_bill\_12m'], fore
                                                                                                 'Churn':train[train['churn']==1]['forecast_bill_12m']})
forecast_bill_12m[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[2],stacked=True);
axs[2].set_xlabel('forecast_bill_12m')
axs[2].ticklabel_format(style='plain',axis='x')
forecast_cons=pd.DataFrame({'Retention':train[train['churn']==0]['forecast_cons'],
                                                                                                'Churn':train[train['churn']==1]['forecast_cons']})
forecast_cons[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[3],stacked=True);
axs[3].set_xlabel('forecast_cons')
axs[3].ticklabel_format(style='plain',axis='x')
forecast\_cons\_12m = pd.DataFrame(\{'Retention':train[train['churn'] == 0]['forecast\_cons\_12m'], forecast\_cons\_12m'], forecast\_cons\_12m
                                                                                                 'Churn':train[train['churn']==1]['forecast_cons_12m']})
forecast_cons_12m[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[4],stacked=True);
axs[4].set_xlabel('forecast_cons_12m')
axs[4].ticklabel_format(style='plain',axis='x')
forecast_cons_year=pd.DataFrame({'Retention':train[train['churn']==0]['forecast_cons_year'],
                                                                                                 'Churn':train[train['churn']==1]['forecast_cons_year']})
forecast_cons_year[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[5],stacked=True);
axs[5].set_xlabel('forecast_cons_year')
axs[5].ticklabel_format(style='plain',axis='x')
forecast\_discount\_energy=pd.DataFrame(\{'Retention':train[train['churn']=0\}['forecast\_discount\_energy'], forecast\_discount\_energy'], forecast\_discount_energy'], forecast
                                                                                               'Churn':train[train['churn']==1]['forecast_discount_energy']})
forecast_discount_energy[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[6],stacked=True);
axs[6].set_xlabel('cons_12m')
axs[6].ticklabel_format(style='plain',axis='x')
forecast_meter_rent_12m=pd.DataFrame({'Retention':train[train['churn']==0]['forecast_meter_rent_12m'],
                                                                                                 'Churn':train[train['churn']==1]['forecast_meter_rent_12m']})
forecast_meter_rent_12m[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[7],stacked=True);
axs[7].set_xlabel('forecast_meter_rent_12m')
axs[7].ticklabel_format(style='plain',axis='x')
forecast\_price\_energy\_p1=pd.DataFrame(\{'Retention':train['rction']=0\}['forecast\_price\_energy\_p1'], forecast\_price\_energy\_p1'], forecast\_price\_energy\_p1''], forecast\_price\_energy\_p1''], forecast\_price\_energy\_p1''], forecast\_price\_energy\_p1''], forecast\_price\_energy\_p1''], forecast\_price\_energy\_p1''], forecast\_price\_energy\_p1''], forecast\_price\_energy\_p1''], forecast\_p1''], forecast\_p1''
                                                                                                 'Churn':train[train['churn']==1]['forecast_price_energy_p1']})
forecast_price_energy_p1[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[8],stacked=True);
axs[8].set_xlabel('forecast_price_energy_p1')
axs[8].ticklabel_format(style='plain',axis='x')
forecast\_price\_energy\_p2=pd.DataFrame(\{'Retention':train[train['churn']==0\}['forecast\_price\_energy\_p2'], forecast\_price\_energy\_p2'], forecast\_p2'], forecast\_
                                                                                                 'Churn':train[train['churn']==1]['forecast_price_energy_p2']})
forecast_price_energy_p2[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[9],stacked=True);
axs[9].set_xlabel('forecast_price_energy_p2')
axs[9].ticklabel_format(style='plain',axis='x')
forecast\_price\_pow\_p1=pd.DataFrame(\{'Retention':train[train['churn']==0\}['forecast\_price\_pow\_p1'], forecast\_price\_pow\_p1'], forecast\_price\_pow\_p
                                                                                               'Churn':train[train['churn']==1]['forecast_price_pow_p1']})
forecast_price_pow_p1[['Retention','Churn']].plot(kind='hist',bins=50,ax=axs[10],stacked=True);
axs[10].set_xlabel('forecast_price_pow_p1')
axs[10].ticklabel_format(style='plain',axis='x')
```


It's similarily to the consumption plots, that lots of variables are highly skewed to the right.


```
#Now is about Margins
margin=train[['id','margin_gross_pow_ele','margin_net_pow_ele','net_margin']]

fig,axs=plt.subplots(nrows=3,figsize=(10,15))
sns.boxplot(margin['margin_gross_pow_ele'],ax=axs[0])
sns.boxplot(margin['margin_net_pow_ele'],ax=axs[1])
sns.boxplot(margin['net_margin'],ax=axs[2])
for ax in axs:
    ax.ticklabel_format(style='plain',axis='x')
plt.show()
```

```
/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass th
warnings.warn(
/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass th
warnings.warn(
/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass th
warnings.warn(
```


#Next is about the Subcribed power
power=train[['id','pow_max','churn']].fillna(0)

<Figure size 432x288 with 0 Axes>

 $\label{lem:pears_antig} years_antig=others.groupby([others['num_years_antig'],others['churn']])['id'].count().unstack(level=1)\\ years_antig_percentage=(years_antig.div(years_antig.sum(axis=1),axis=0)*100)$


```
plt.title('Origin contract/offer')
plt.legend(['Retention','Churn'],loc="upper right")
plt.ylabel("Company base(%)");
```


▼ Data Cleaning

```
#plot the missing data
plt.figure(figsize=(15,12))
(train.isnull().sum()/len(train.index)*100).plot(kind='bar')
plt.xlabel('Variables')
plt.ylabel('Missing values(%)')
plt.show()
```


From the figure above, we can remove the variables that more than 60% values missing

train.drop(columns=['campaign_disc_ele','date_first_activ','forecast_base_bill_ele','forecast_base_bill_year','forecast_bill_12m','forecast_base_bill_ele','forecast_base_bill_year','forecast_bill_year','forecast_bill_year','forecast_bill_year','forecast_bill_year','forecast_bil

#Check The removed dataframe
pd.DataFrame({'Dataframe columns':train.columns})

	Dataframe columns
0	id
1	channel_sales
2	cons_12m
3	cons_gas_12m
4	cons_last_month
5	date_activ
6	date_end
7	date_modif_prod
8	date_renewal
9	forecast_cons_12m
10	forecast_cons_year
11	forecast_discount_energy
12	forecast_meter_rent_12m
13	forecast_price_energy_p1
14	forecast_price_energy_p2
15	forecast_price_pow_p1
16	has_gas
17	imp_cons
18	margin_gross_pow_ele
19	margin_net_pow_ele
20	nb_prod_act
21	net_margin
22	num_years_antig
23	origin_up
24	pow_max
25	churn

#Check the duplicates
train[train.duplicated()]

```
id channel_sales cons_12m cons_gas_12m cons_last_month date_activ date_end date_modi

0 rows × 26 columns
```

There seems no duplicated data of the train dataframe

```
#Check the history missing data
missing_data_percentage=history_data.isnull().sum()/len(history_data.index)*100
```

```
plt.figure(figsize=(15,12))
missing_data_percentage.plot(kind='bar')
plt.xlabel('Variables')
plt.ylabel('Missing values(%)')
plt.show()
```


There is not much data missing, we will subsitute them with the median in the next step

▼ Formating data

```
#fill the missing date with the median date which use the value_counts()
train.loc[train['date_modif_prod'].isnull(), 'date_modif_prod']=train['date_modif_prod'].value_counts().index[0]
train.loc[train['date_end'].isnull(),'date_end']=train['date_end'].value_counts().index[0]
train.loc[train['date_renewal'].isnull(), 'date_renewal']=train['date_renewal'].value_counts().index[0]
#fill the price data with median
history_data.loc[history_data['price_p1_var'].isnull(),'price_p1_var']=history_data['price_p1_var'].median()
history_data.loc[history_data['price_p2_var'].isnull(),'price_p2_var']=history_data['price_p2_var'].median()
\label{linear_pa_var'} history\_data['price\_p3\_var'].isnull(), 'price\_p3\_var'] = history\_data['price\_p3\_var'].median()
history\_data.loc[history\_data['price\_p1\_fix'].isnull(), 'price\_p1\_fix'] = history\_data['price\_p1\_fix'].median()
\label{linear_p2_fix'} history\_data['price\_p2\_fix']. is null(), 'price\_p2\_fix'] + history\_data['price\_p2\_fix']. median()
\label{linear_pa_fix'} history\_data['price\_p3\_fix'].isnull(), 'price\_p3\_fix'] = history\_data['price\_p3\_fix'].median()
\# fill the negative data of history with median
history_data.loc[history_data['price_p1_fix']<0,'price_p1_fix']=history_data['price_p1_fix'].median()
history_data.loc[history_data['price_p2_fix']<0,'price_p2_fix']=history_data['price_p2_fix'].median()
history_data.loc[history_data['price_p3_fix']<0,'price_p3_fix']=history_data['price_p3_fix'].median()
\hbox{\#Transform date columns to datetime type}\\
train['date_activ']=pd.to_datetime(train['date_activ'],format='%Y-%m-%d')
train['date_end']=pd.to_datetime(train['date_end'],format='%Y-%m-%d')
train['date_modif_prod']=pd.to_datetime(train['date_modif_prod'],format='%Y-%m-%d')
```

train['date_renewal']=pd.to_datetime(train['date_renewal'],format='%Y-%m-%d')
history_data['price_date']=pd.to_datetime(history_data['price_date'],format='%Y-%m-%d')

→ Saving data

#Make directly processed_data if it does not exist
train.to_csv('train_clean.csv', index = False)
history_data.to_csv('history_clean.csv', index = False)