Lecture 1 — Introduction to Duality

Module 6 – Duality in Linear Programming CS/ISyE/ECE 524

LP Duality Module Learning Outcomes

By the end of this module, you should be able to...

- Find lower and upper bounds on any linear program's optimal objective
- Define duality in linear programs
 - Understand the relationship between primal and dual linear programs
 - State the strong duality theorem
- Perform sensitivity analysis on a linear program using duality
 - Understand relationship between duality and sensitivity analysis

LP Duality Learning Outcomes

By the end of this module, you should be able to...

- Define complementary slackness
 - Use complementary slackness to find primal and/or dual solutions
- Write down the dual for the general form of the general mincost network flow problem as well as specifically for
 - Longest path
 - Max flow
- Describe the real-world interpretation of the dual problem for some MCNF problems

Bounds on optimal objective values

Recall the "Top Brass" model from the first class:

$$p^* \ge 12(1000) + 9(400) = 15600$$
 check feasibility:
 $4(1000) + 2(400) = 4800 \le 4800$ (1000) + (400) = 1400 \le 1750 \checkmark 0 \le 1000 \le 1000 \checkmark Try (1000,400)

Let's call the optimal objective value (max profit) p^*

Question: Is there a way to find **bounds** on p^* ?

• Finding a *lower bound* is easy...we can use any feasible point!

Every feasible point givesa lower bound on the LP'soptimal objective! Finding the largest lowerbound (best feasible point)amounts to solving the LP.

Bounds on optimal objective values

What about upper bounds?

$$\max_{x_s, x_f} 12x_f + 9x_s$$
s.t. $4x_f + 2x_s \le 4800$

$$x_f + x_s \le 1750$$

$$0 \le x_f \le 1000$$

$$0 \le x_s \le 1500$$

Question: What is the best upper bound we can find by combining constraints in this manner?

- Finding an upper bound is not so easy....
- We can use constraints:
 - **1.** We know $x_f \le 1000$ and $x_s \le 1500$
 - **2.** Thus, $12x_f \le 12 \times 1000 = 12000$ and $9x_s \le 9 \times 1500 = 13500$
 - 3. So $p^* \le 12,000 + 13500 = 25,500$
- 25,500 is very far away from the best lower bound 15,600
 - Can we do better?
 - **1.** Rewrite: $12x_f + 9x_s = x_f + (4x_f + 2x_s) + 7(x_f + x_s)$
 - 2. We know

$$x_f + (4x_f + 2x_s) + 7(x_f + x_s)$$

 $\leq 1000 + 4800 + 7(1750)$

- 3. So $p^* \le 18,050$
- Combining constraints in different ways gives us different upper bounds on p^*

Constraint multipliers

$$\max_{x_{s}, x_{f}} 12x_{f} + 9x_{s}$$
s.t. $4x_{f} + 2x_{s} \le 4800$

$$x_{f} + x_{s} \le 1750$$

$$0 \le x_{f} \le 1000$$

$$0 \le x_{s} \le 1500$$

$$\lambda 4 \times 5$$

Question: If we choose multipliers $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0$, what values are we "allowed" to use to find an upper bound on p^* ?

In general, what we've been doing is:

1. Combine all constraints with different multipliers (that sum to at least 12 for x_f and 9 for x_s):

•
$$0(4x_f + 2x_s) + 0(x_f + x_s) + 12x_f + 9x_s$$

•
$$1(4x_f + 2x_s) + 7(x_f + x_s) + 1x_f + 0x_s$$

2. Then plug in the maximum value the constraint can take:

•
$$0(4x_f + 2x_s) + 0(x_f + x_s) + 12x_f + 9x_s$$

 $\le 0 + 0 + 12(1000) + 9(1500) = 25,500$

$$\begin{array}{c}
1(4x_f + 2x_s) + 7(x_f + x_s) + 1x_f + 0x_s \\
\leq 4800 + 7(1750) + 1000 + 0 = 18,050
\end{array}$$

Rephrased question: For what values of $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0$ is the following inequality *guaranteed* to hold for *any* feasible values of x_f, x_s ?

$$12x_f + 9x_s \le \lambda_1(4x_f + 2x_s) + \lambda_2(x_f + x_s) + \lambda_3x_f + \lambda_4x_s$$

Allowable constraint multipliers

$$\max_{x_s, x_f} 12x_f + 9x_s$$
s.t. $4x_f + 2x_s \le 4800$

$$x_f + x_s \le 1750$$

$$0 \le x_f \le 1000$$

$$0 \le x_s \le 1500$$

• First, let's rearrange the inequality to get a constant on one side:

$$12x_f + 9x_s \le \lambda_1(4x_f + 2x_s) + \lambda_2(x_f + x_s) + \lambda_3x_f + \lambda_4x_s \Rightarrow 0 \le x_f(4\lambda_1 + \lambda_2 + \lambda_3 - 12) + x_s(2\lambda_1 + \lambda_2 + \lambda_4 - 9)$$

- Next, because x_f , $x_s \ge 0$, the only way to guarantee this holds for *any* feasible solution is if:
 - $4\lambda_1 + \lambda_2 + \lambda_3 12 \ge 0$ and $2\lambda_1 + \lambda_2 + \lambda_4 9 \ge 0$

Question: This gives us the allowable choices of λ , but if we want the **best upper bound**, how do we find the **best possible** λ ?

Rephrased question: Given that

$$p^* \le \lambda_1 (4x_f + 2x_s) + \lambda_2 (x_f + x_s) + \lambda_3 x_f + \lambda_4 x_s$$

$$\le 4800\lambda_1 + 1750\lambda_2 + 1000\lambda_3 + 1500\lambda_4,$$

what choices of λ give us the smallest value for the right-hand side?

Best constraint multipliers

$$\max_{x_s, x_f} 12x_f + 9x_s$$
s.t. $4x_f + 2x_s \le 4800$

$$x_f + x_s \le 1750$$

$$x_f \le 1000$$

$$x_s \le 1500$$

$$x_f, x_s \ge 0$$

Let's recap. We want to find values of λ_1 , λ_2 , λ_3 , λ_4 such that:

- $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0$ (otherwise things get funky with plugging in upper bounds on constraints)
- $4\lambda_1 + \lambda_2 + \lambda_3 \ge 12$, $2\lambda_1 + \lambda_2 + \lambda_4 \ge 9$ (so we can guarantee we have an upper bound)
- The value $4800\lambda_1 + 1750\lambda_2 + 1000\lambda_3 + 1500\lambda_4$ is as small as possible.

We can rewrite this more compactly:

This is just an LP!

$$\min_{\lambda_1, \lambda_2, \lambda_3, \lambda_4} 4800\lambda_1 + 1750\lambda_2 + 1000\lambda_3 + 1500\lambda_4$$
s.t.
$$4\lambda_1 + \lambda_2 + \lambda_3 \ge 12$$

$$2\lambda_1 + \lambda_2 + \lambda_4 \ge 9$$

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0$$

Duality

(Or, the part where Prof. Smith always gets really excited)

Primal problem

$$\max_{x_s, x_f} 12x_f + 9x_s$$
s.t. $4x_f + 2x_s \le 4800$

$$x_f + x_s \le 1750$$

$$x_f \le 1000$$

$$x_s \le 1500$$

$$x_f, x_s \ge 0$$

The problem of finding the lambda multipliers that give the best upper bound is called the dual problem. The original LP is called the primal problem.

Dual problem

$$\min_{\lambda_1, \lambda_2, \lambda_3, \lambda_4} 4800\lambda_1 + 1750\lambda_2 + 1000\lambda_3 + 1500\lambda_4$$
s.t.
$$4\lambda_1 + \lambda_2 + \lambda_3 \ge 12$$

$$2\lambda_1 + \lambda_2 + \lambda_4 \ge 9$$

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0$$

Fact: Every primal LP has an associated dual!

Some observations:

- Primal is max, dual is min
- There is a dual variable for every primal constraint
- There is a dual constraint for every primal variable
- (any feasible primal point) $\leq p^* \leq d^* \leq$ (any 9 feasible dual point)

Duality in Top Brass with matrices

Primal problem

$$\max_{f,s} \begin{bmatrix} 12 \\ 9 \end{bmatrix}^T \begin{bmatrix} f \\ s \end{bmatrix}$$
s.t.
$$\begin{bmatrix} 4 & 2 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} f \\ s \end{bmatrix} \le \begin{bmatrix} 4800 \\ 1750 \\ 1000 \\ 1500 \end{bmatrix}$$

$$f, s \ge 0$$

Dual problem

$$\min_{\lambda} \begin{bmatrix} 4800 \\ 1750 \\ 1000 \\ 1500 \end{bmatrix}^T \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix}$$
s.t.
$$\begin{bmatrix} 4 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} \ge \begin{bmatrix} 12 \\ 9 \end{bmatrix}$$

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0$$

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0$$

In Julia: <u>Top Brass Dual</u>

General LP Duality

Primal problem (P)

$$\max_{x} c^{T} x$$

$$s.t. Ax \le b$$

$$x > 0$$

Dual problem (D)

$$\min_{\lambda} b^{T} \lambda$$

s.t. $A^{T} \lambda \ge c$
 $\lambda \ge 0$

Challenge: See if you can prove the Weak Duality Theorem for the general case.

Hint: This is exactly what we did for Top Brass.

Theorem (Weak Duality): If x and λ are feasible points of (P) and (D) (respectively), then:

$$c^T x \le p^* \le d^* \le b^T \lambda$$

Theorem (Strong Duality): If either p^* or d^* exist and are finite, then:

$$p^* = d^*$$

Possible outcomes for Primal/Dual pairs

Primal problem (P)

$$\max_{x} c^{T} x$$

$$s.t. Ax \le b$$

$$x \ge 0$$

Dual problem (D)

$$\min_{\lambda} b^{T} \lambda$$
s.t. $A^{T} \lambda \ge c$

$$\lambda \ge 0$$

Question: Given Weak Duality, which primal/dual combinations are possible?

- 1. Optimal p^* is attained
- 2. (P) is unbounded: $p^* = \infty$
- 3. (P) is infeasible: $p^* = -\infty$
- 1. Optimal d^* is attained
- 2. (D) is unbounded: $d^* = -\infty$
- 3. (D) is infeasible: $d^* = \infty$

What if your LP is not in standard form?

If your LP is not in standard form and you need to take the dual:

- 1. Convert the LP to standard form
- 2. Write the dual
- 3. Make any simplifications

Exercise: What is the dual of the dual?

Standard form:

$$\max_{x} c^{\mathsf{T}}x$$
s.t. $Ax \le b$

$$x \ge 0$$

dual

$$\min_{\lambda} b^{\mathsf{T}} \lambda$$
s.t. $\lambda \ge 0$

$$A^{\mathsf{T}} \lambda \ge c$$

Common primal/dual pairs

Free form:

Mixed constraints:

$$\max_{x} c^{\mathsf{T}}x$$
s.t. $Ax \leq b$

$$x \text{ free}$$

dual

$$\min_{\lambda} b^{\mathsf{T}} \lambda$$
s.t. $\lambda \ge 0$

$$A^{\mathsf{T}} \lambda = c$$

 $\max_{x} c'x$ s.t. $Ax \le b$ Fx = g

x free

dual

$$\min_{\lambda,\mu} b^{\mathsf{T}}\lambda + g^{\mathsf{T}}\mu$$
s.t. $\lambda \geq 0$

$$\mu \text{ free}$$

$$A^{\mathsf{T}}\lambda + F^{\mathsf{T}}\mu = 0$$

Dual Rules

Here are some useful rules for transitioning between primal and dual problems (either side can be primal or dual):

Minimization	Maximization
Nonnegative variable ≥	Inequality constraint ≤
Nonpositive variable ≤	Inequality constraint ≥
Free variable	Equality constraint =
Inequality constraint ≥	Nonnegative variable ≥
Inequality constraint ≤	Nonpositive variable ≤
Equality constraint =	Free variable

Key:

Dual variables ≡ Primal constraints

Dual constraints ≡ Primal variables

The same information but in math

$$\max_{x} c^{T}x \pmod{\max}$$

$$\min_{\lambda} b^{T}\lambda \pmod{\min}$$
s.t. $Ax \leq b \pmod{\text{constraint } \leq 1}$

$$x \geq 0 \pmod{\text{variable } \geq 1}$$

$$A^{T}\lambda \geq c \pmod{\text{constraint } \geq 1}$$

LP primal-dual pair with every possible situation:

$$\max_{x,y,z} c^{T}x + d^{T}y + f^{T}z$$
s.t.
$$Ax + By + Cz \le p$$

$$Dx + Ey + Fz \ge q$$

$$Gx + Hy + Jz = r$$

$$x \ge 0$$

$$y \le 0$$

$$z \text{ free}$$

$$\min_{\lambda,\eta,\mu} p^T \lambda + q^T \eta + r^T \mu$$
s.t. $\lambda \ge 0$

$$\eta \le 0$$

$$\mu \text{ free}$$

$$A^T \lambda + D^T \eta + G^T \mu \ge c$$

$$B^T \lambda + E^T \eta + H^T \mu \le d$$

 $C^T \lambda + F^T \eta + J^T \mu = f$

The real question: so what?

- Why should we care about the dual? (Other than the fact that it's really cool, of course!)
- Sometimes the dual is much easier to solve than the primal:
 - The dual is much easier than the primal in this case
 - Many solvers take advantage of duality to get solutions quickly
- Duality is very closely related to the idea of sensitivity: how sensitive is a solution to changes in the problem data? (e.g., if you change a constraint, how much does it affect the objective?)

