

Formal Language Driven Data Analysis Research Group Report

Semyon Grigorev

Saint Petersburg State University

September 14, 2022

Applications

- Code analysis
- Code querying
- Code parsing

Applications

- Code analysis
- Code querying
- Code parsing

Research directions

- Graph algorithms
 - Dynamic graphs
 - Linear algebra
- Path queryingFormal languages
 - Languages classes and properties
 - Parsing algorithms
 - Formal language constrained path querying

Huge software projects

- Millions LOC
- Complex structure
- Dynamic (IDE-level analysis)

Huge software projects

- Millions LOC
- Complex structure
- Dynamic (IDE-level analysis)

Huge graphs for analysis

- Millions of vertices
- Complex structure
- Dynamic

Huge software projects

- Millions LOC
- Complex structure
- Dynamic (IDE-level analysis)

Huge graphs for analysis

- Millions of vertices
- Complex structure
- Dynamic

Graph storage

- Graph representation
- Query languages
- Query evaluation engines

Huge software projects Huge graphs for analysis Millions LOC Millions of vertices Complex structure Complex structure Dynamic (IDE-level) Dynamic analysis) Graph analysis algorithms Performance

- Graph representation
- Query languages
- Query evaluation engines

 Nontrivial techniques (esp. for dynamic graphs)

Huge software projects Huge graphs for analysis Graph storage Millions LOC Millions of vertices Graph representation Complex structure Complex structure Query languages Dynamic (IDE-level) Query evaluation engines Dynamic analysis) Graph analysis algorithms Linear algebra (GraphBLAS) Performance Parallel (multicore CPU. GPGPU) Nontrivial techniques (esp. for dynamic graphs) Flexible, expressive

Parsing for IDE

- Frequent code updates
- Partially correct code
- Multiple languages support
- Performance-critical

Parsing for IDE

- Frequent code updates
- Partially correct code
- Multiple languages support
- Performance-critical

Parsing technique

- Error recovery
- Reparsing
- Performance
- Flexibility

Parsing for IDE

- Frequent code updates
- Partially correct code
- Multiple languages support
- Performance-critical

Language description

- Modern syntax support (ambiguity, formatting-sensitivity)
- Human-friendly

Parsing technique

- Error recovery
- Reparsing
- Performance
- Flexibility

Parsing for IDE

- Frequent code updates
- Partially correct code
- Multiple languages support
- Performance-critical

Language description

- Modern syntax support (ambiguity, formatting-sensitivity)
- Human-friendly

Parsing technique

- Error recovery
- Reparsing
- Performance
- Flexibility

Advanced parsing algorithms

- New formal classes of languages
- Error recovery
- Incrementalization
- Performance

Results

Graph analysis for symbolic execu- Research prototype tion engine

- Graph extraction and update mechanism
- Constrained shortest paths for dynamic graph

Results

Graph analysis for symbolic execution engine	Research prototype	 Graph extraction and update mechanism Constrained shortest paths for dynamic graph
Graph querying algorithms	Research prototype	New algorithmsComplexity analysisPerformance analysis

Results

Graph analysis for symbolic execution engine	Research prototype	 Graph extraction and update mechanism Constrained shortest paths for dynamic graph
Graph querying algorithms	Research prototype	New algorithmsComplexity analysisPerformance analysis
Sparse linear algebra library on GPGPU	Research prototype	 Operations implementation Optimizations Performance analysis

Rustam Azimov (Graph analysis and querying)

- Linear algebra based graph analysis algorithms research and development
 - Regular path querying
 - Context-free path querying
 - Multiple context-free path querying
- ✓ Graph analysis algorithms evaluation
 - Formal language constrained path querying
 - Static code analysis cases
 - Linear algebra based algorithms

Rustam Azimov (Graph analysis and querying)

- Linear algebra based graph analysis algorithms research and development
 - Regular path querying
 - Context-free path querying
 - Multiple context-free path querying
- ✓ Graph analysis algorithms evaluation
 - Formal language constrained path querying
 - Static code analysis cases
 - Linear algebra based algorithms

- - New graphs
 - New scenarios
 - New quey types
- □ Graph analysis algorithms evaluation and comparison
 - New cases
 - New graphs
 - New algorithms

Ekaterina Shemetova (Graph analysis and querying)

- Linear algebra based graph analysis algorithms research and development
 - Complexity analysis
 - Specific cases of graphs and language classes
- ✓ Graph analysis algorithms evaluation
 - Formal language constrained path querying
 - Static code analysis cases
 - GLL-based algorithms

Ekaterina Shemetova (Graph analysis and querying)

- Linear algebra based graph analysis algorithms research and development
 - Complexity analysis
 - Specific cases of graphs and language classes
- ✓ Graph analysis algorithms evaluation
 - Formal language constrained path querying
 - Static code analysis cases
 - GLL-based algorithms

- Z Dynamic graph analysis
 - Specific algorithms for symbolic execution engine and code analysis
 - ► Theoretical analysis
 - Performance analysis
- □ Parsing algorithms development end evaluation
 - Dynamic reparsing
 - Error recovery

Vladimir Kutuev (Graph analysis and querying)

- Graph analysis algorithms development and evaluation
 - ► Linear algebra based algorithm
 - Static code analysis cases
- Graph querying algorithm fo Neo4j development and evaluation
 - Static code analysis cases
 - GLL-based algorithms

Vladimir Kutuev (Graph analysis and querying)

- Graph analysis algorithms development and evaluation
 - ► Linear algebra based algorithm
 - Static code analysis cases
- Graph querying algorithm fo Neo4j development and evaluation
 - Static code analysis cases
 - GLL-based algorithms

Scholarship will be paused

Denis Porsev (Graph analysis and querying)

- New linear algebra based algorithm for multiple source regular path querying
 - Development
 - ► Implementation
 - Evaluation

Denis Porsev (Graph analysis and querying)

- New linear algebra based algorithm for multiple source regular path querying
 - Development
 - Implementation
 - Evaluation

- ▼ The algorithm improvements
 - Performance analysis and improvements
 - Evaluation and comparison
 - Flexibility improvements

Vlada Pogozhelskaya (Graph analysis and querying)

- Neo4j-based graph analysis algorithm evaluation
 - General cases
 - Static code analysis cases

Vlada Pogozhelskaya (Graph analysis and querying)

- Neo4j-based graph analysis algorithm evaluation
 - General cases
 - Static code analysis cases

Scholarship will be paused

Ilya Epelbaum (Graph analysis and querying)

- Multiple Context-Free Language constrained path querying algorithm in terms of linear algebra
 - Development
 - ► Implementation
 - Evaluation

Ilya Epelbaum (Graph analysis and querying)

- Multiple Context-Free Language constrained path querying algorithm in terms of linear algebra
 - Development
 - ► Implementation
 - Evaluation

Collaboration stopped

Egor Orachyov (Linear algebra for GPGU)

- GPGPU-based sparse linear algebra library design and implementation
 - High-level design and architecture of portable extensible library
 - Project infrastructure
 - ▶ High-level concepts implementation

Egor Orachyov (Linear algebra for GPGU)

- GPGPU-based sparse linear algebra library design and implementation
 - High-level design and architecture of portable extensible library
 - Project infrastructure
 - ► High-level concepts implementation

- ▼ Basic low-level primitives implementation
 - Data structures
 - Operations
- Basic graph algorithms implementation and evaluation
 - BFS
 - ► TC
- \blacksquare Out-of-GPGPU-memory graphs handling

Dmitriy Panfilenok (Linear algebra for GPGU)

- Kernel fusion optimization for element-wise matrix-matrix operations
 - Development
 - ► Implementation
 - Evaluation

Dmitriy Panfilenok (Linear algebra for GPGU)

- Kernel fusion optimization for element-wise matrix-matrix operations
 - Development
 - ► Implementation
 - Evaluation

Scholarship will be paused

Kirill Garbar (Linear algebra for GPGU)

- Well-typed element-wise matrix-matrix operations: generic generalized kernels for GPPGU
 - Development
 - ► Implementation
 - Evaluation

Kirill Garbar (Linear algebra for GPGU)

- Well-typed element-wise matrix-matrix operations: generic generalized kernels for GPPGU
 - Development
 - Implementation
 - Evaluation

- Applied linear algebra based graph analysis algorithms
 - ► BFS
 - ► TC
 - Supplementary matrix-vector operations
 - Implementation and evaluation

Artem Chernikov (Linear algebra for GPGU)

- GPGPU-based operations on vectors and matrices
 - Collections sort
 - Matrix transpose

Artem Chernikov (Linear algebra for GPGU)

- GPGPU-based operations on vectors and matrices
 - Collections sort
 - Matrix transpose

- Generic well-typed matrix-matrix multiplication
 - Sparse matrices
 - Evaluation and comparison

Alexandra Istomina (Graph analysis and querying)

- Collaboration research in previous academic year but was paused for summer
- Research topic: graph analysis algorithms for special types of graphs and languages

Alexandra Istomina (Graph analysis and querying)

- Collaboration research in previous academic year but was paused for summer
- Research topic: graph analysis algorithms for special types of graphs and languages

- ☐ Graph analysis algorithms for special types of graphs and languages
 - Code analysis specific cases

The Plan

Code querying for declarative code analysis

- Code querying and graph querying languages
 - CodeQL
 - Datalog
 - GQL
 - **...**
- Query evaluation engines
 - Performance
 - Flexibility
- Graph analysis algorithms
 - Performance
 - Scalability
 - Incrementalization

The Plan

Code querying for declarative code analysis

- Code querying and graph querying languages
 - CodeQL
 - Datalog
 - GQL
- Query evaluation engines
 - Performance
 - Flexibility
- Graph analysis algorithms
 - Performance
 - Scalability
 - Incrementalization

Parsing techniques and algorithms

- Language specification formalisms
- Error recovery techniques
- Reparsing techniques

Scholarships request (2022–2023 academic year, 9 months)

- Egor Orachyov
- Alexandra Istomina
- Kirill Garbar
- Denis Porsev
- 2-3 new students