Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Model Search: Data Examples

About This Lesson

Ranking States by SAT Performance

SAT Mean Score by State – Year 1982 790 (South Carolina) – 1088 (Iowa)

- Which variables are associated with state average SAT scores?
- After accounting for selection biases, how do the states rank?
- Which states perform best for the amount of money they spend?

Georgia Tech

Compare All Models

library(leaps)

out = leaps(datasat[,-c(1,2)], sat, method = "Cp")
cbind(as.matrix(out\$which),out\$Cp)

123456

1000001 34.026834

1 1 0 0 0 0 0 47.639512

101000187.387572

1 0 0 1 0 0 0 269.647903

100010306.188562

1 0 0 0 0 1 0 307.076043

6 1 1 1 1 1 1 7.000000

best.model = which(out\$Cp=min(out\$Cp))
cbind(as.matrix(out\$which), out\$Cp)[best.model,]

1 2 3 4 5 6 0.000000 0.000000 1.000000 1.000000 1.000000 3.581157 The output includes all 64 combinations of predictors with specification of which predictors are in the model and the Cp score value for each model.

The best model with respect to Mallow's Cp criterion: years, public, expend, rank (last four predictors in the input dataset)

Does not allow for specification of controling variables!!!

Stepwise Regression

Forward Stepwise Regression

step(lm(sat~log(takers)+rank), scope=list(lower=sat~log(takers)+rank, upper=sat~log(takers)+rank+expend+years+income+public), direction="forward")

Start: AIC=346.7

sat ~ log(takers) + rank

	Df	Sum of Sq	RSS	AIC
+ expend	1	13149.5	32380	331.66
+ years	1	9827.2	35703	336.55
<none></none>			45530	346.70
+ income	1	1305.3	44224	347.25
+ public	1	15.9	45514	348.69

Step: AIC=331.66

sat ~ log(takers) + rank + expend

	Df	Sum of Sq	RSS	AIC
+ years	1	5743.5	26637	323.90
<none></none>			32380	331.66
+ public	1	421.0	31959	333.01
+ income	1	317.3	32063	333.17

Step: AIC=323.9

sat ~ log(takers) + rank + expend + years

Df Sum of Sq RSS 26637 323.90 <none> 26.6165 26610 325.85 + income 1 4.5743 26632 325.89 + public

Im(formula = sat ~ log(takers) + rank + expend + years)

Coefficients:

(Intercept) log(takers) expend rank years 388.425 -38.015 4.004 2.423 17.857

Selected model: expend and years, with confounding variables log(takers) and rank

> Georgia Tech

Stepwise Regression (cont'd)

Backward Stepwise Regression

full = Im(sat ~ log(takers) + rank + expend + years + income + public) $minimum = Im(sat \sim log(takers) + rank)$

step(full, scope=list(lower=minimum, upper=full), direction="backward")

32063

34040

333.17

336.16

Start: AIC=327.8

- years

- expend

sat ~ log(takers) + rank + expend + years + income + public

	Df	Sum of Sq	RSS	AIC		
- public	1	25.0	26610	325.85		
- income	1	47.0	26632	325.89		
<none></none>			26585	327.80		
- years	1	4588.8	31174	333.77		
- expend	1	6264.4	32850	336.38		
Step: AIC=325.85						
sat ~ log(tal	(ers	+ rank + expen	d + years	+ income		
	ъ,	0 (0	D00	410		
	Df	Sum of Sq	RSS	AIC		
- income	1	26.6	26637	323.90		
<none></none>			26610	325.85		

5452.8

7430.3

Step: AIC=323.9

sat ~ log(takers) + rank + expend + years

Sum of Sq RSS AIC 26637 323.90 <none> - years 5743.5 32380 331.66 9065.8 35703 336.55 expend

Im(formula = sat ~ log(takers) + rank + expend + years)

Coefficients:

(Intercept) log(takers) rank expend years 388.425 -38.015 4.004 2.423 17.857

Stepwise Regression (cont'd)

Backward Stepwise Regression

full = Im(sat ~ log(takers) + rank + expend + years + income + public) minimum = Im(sat ~ log(takers) + rank)

step(full, scope=list(lower=minimum, upper=full), direction="backward")

Start: AIC=327.8

sat ~ log(takers) + rank + expend + years + income + public

	Df	Sum of Sq	RSS	AIC
- public	1	25.0	26610	325.85
- income	1	47.0	26632	325.89
<none></none>			26585	327.80
- years	1	4588.8	31174	333.77
- expend	1	6264.4	32850	336.38
Step: AIC=	325.8	5		
sat ~ log(tal	kers)	+ rank + exper	nd + years	+ income
	Df	04.0-	DOO	AIO.
	Df	Sum of Sq	RSS	AIC
 income 	1	26.6	26637	323.90
<none></none>			26610	325.85
- years	1	5452.8	32063	333.17
- expend	1	7430.3	34040	336.16

Selected model includes

-38.015

388.425

- expend and years
- confounding variables log(takers) and rank
- The same model was selected using forward regression
 - Generally, for a large number of predictors, the two methods will select different models

Step: AIC=323.9 sat ~ log(takers) + rank + expend + years Df Sum of Sq 26637 323.90 <none> - vears 5743.5 32380 331.66 35703 9065.8 336 55 - expend Im(formula = sat ~ log(takers) + rank + expend + years) Coefficients: (Intercept) log(takers) rank expend years

4 004

2.423

17.857

Georgia Tech

Predicting Bankruptcy

- Effective bankruptcy prediction is useful for investors and analysts, allowing for accurate evaluation of a firm's prospects.
- Roughly 40 years ago, Ed Altman showed that publicly available financial indicators can be used to distinguish between firms that are about to go bankrupt and those that are not.

Which financial indicators are associated with bankruptcy for telecommunications firms?

<u>Acknowledgement</u>: This example was provided by Dr. Jeffrey Simonoff from New York University and was inspired by the honors thesis of Jeffrey Lui.

Compare All Models

library(bestglm)

input.Xy <- as.data.frame(cbind(WC.TA, RE.TA, EBIT.TA, S.TA, BVE.BVL,Bankrupt))

bestAIC <- bestglm(input.Xy, IC="AIC")

The best model selected with respect to AIC: RE.TA, EBIT.TA, BVE.BVL

bank2 = glm(Bankrupt~RE.TA+EBIT.TA+BVE.BVL, family=binomial, epsilon=1e-14, maxit=500, x=T) summary(bank2)

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.29478	1.12323	-0.262	0.7930
RE.TA	-0.05627	0.02745	-2.050	0.0404*
EBIT.TA	-0.16763	0.09270	-1.808	0.0706.
BVE.BVL	-0.62975	0.39435	-1.597	0.1103

- RE.TA is now statistically significant at α = 0.05
- Not all coefficients are statistically significant

- RE.TA is associated with a decrease in the odds of going bankrupt in the next year by 5.6% holding all else fixed
- EBIT.TA) is associated with a decrease in the odds of going bankrupt by 17%

Georgia Tech

Compare All Models (cont'd)

Testing for subset of regression coefficients

[1,] 4.040336 0.1326332

The null (reduced model) is not rejected

Remove Outlier

bankrupt2 = bankruptcy[-1,] attach(bankrupt2)

bank3 = glm(Bankrupt ~ WC.TA + RE.TA + EBIT.TA + S.TA + BVE.BVL, family=binomial,

maxit=500, data=bankrupt2)

Warning message:

glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(bank3)
Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) 265.467 576281.709 WC.TA -4.297 12439.717 1 0 RE.TA -1.516 5131.146 0 EBIT.TA -17.043 35543.170 0 1 S.TA -2.859 7408.747 0 1 BVE.BVL -77.540 184903.001 0

The model fits perfectly. This is complete separation, and the solution is to simplify the model if that is possible.

> Georgia Tech

Compare All Models: Without Outlier

input.Xy <- as.data.frame(cbind(WC.TA, RE.TA, EBIT.TA, S.TA, BVE.BVL,Bankrupt))
bestAIC <- bestglm(input.Xy, IC="BIC")

bank4 = glm(Bankrupt ~ RE.TA + EBIT.TA + BVE.BVL, family=binomial, maxit=500) summary(bank4)

Coefficients:

Estimate Std. Error z value Pr(>|z|)-0.09166 1.47135 -0.062 0.9503 (Intercept) 0.0517. RE.TA -0.08229 0.04230 -1.945EBIT.TA -0.26783 0.15854 -1.689 0.0912. -1.592 BVE.BVL -1.21810 0.76536 0.1115

exp(coef(bank2)[-1]) RE.TA EBIT.TA BVE.BVL 0.9452862 0.8456655 0.5327273

exp(coef(bank4)[-1]) RE.TA EBIT.TA BVE.BVL 0.9210091 0.7650371 0.2957930

The best model selected with respect to BIC: WC.TA, RE.TA, EBIT.TA, BVE.BVL

Stepwise Regression: Without Outlier

bank3.select=step(bank3, direction="backward") summary(bank3.select)

Start: AIC=12

Bankrupt ~ WC.TA + RE.TA + EBIT.TA + S.TA +

BVE.BVL

	Df	Deviance	AIC	
- S.TA	1	0.0000	10.000	
<none></none>		0.0000	12.000	
- WC.TA	1	9.3839	19.384	
- RE.TA	1	10.7362	20.736	
- EBIT.TA	1	14.7992	24.799	
- BVE.BVL	1	19.0267	29.027	

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	255.413	728539.823	0	1
WC.TA	-9.542	23920.936	0	1
RE.TA	-5.152	15669.825	0	1
EBIT.TA	-28.983	90578.211	0	1
BVE.BVL	-103.614	225264.760	0	1

Step: AIC=10

Bankrupt ~ WC.TA + RE.TA + EBIT.TA +

BVE.BVL

	Df	Deviance	AIC
<none></none>		0.0000	10.000
- WC.TA	1	9.3841	17.384
- RE.TA	1	12.8531	20.853
- EBIT.TA	1	14.8672	22.867
- BVE.BVL	1	19.1321	27.132

Stepwise regression selects the same four predictors as the best subset selection approach using BIC.

Georgia Tech

Summary

