ROC and Reclassification analysis in R

R Ísland meeting

Thor Aspelund, Icelandic Heart Association, University of Iceland
Public Health

October 30th 2014

CHD risk models

- Icelandic Heart Association Risk Score
 - ▶ http://www.hjarta.is
- European HeartSCORE
 - http://www.heartscore.org/Pages/welcome.aspx
- Framingham Risk Score (Circulation 1998)
 - http: //circ.ahajournals.org/content/97/18/1837.long

The ongoing search for risk markers

- ▶ There is an existing risk score in use
- ▶ We would like to introcude a new marker to improve the score
- ▶ Is the new score better than the old score? That is the question

Introducing a new marker

Measuring improvement using statistcal models

- Model 1: Basic risk score model
- ▶ Model 2: Basic risk score model + new marker
- Is risk score 2 better than risk score 1?
- ▶ In other words: Is Model 2 an improvment of than Model 1?

How is a risk score evaluated?

- ► In categorical data analysis we have met various concordance measures, such as:
 - ► Kendall's taua
 - Somer's D
 - ► The C index

Concordance measures - binary outcome

View Y as a binary outcome, either Y=1 or Y=0. Let Z be a continous risk score. The concordance between the risk score and the outcome can be measured by Kendall's τ_a

$$\tau_a(Y,Z) = E(\operatorname{sign}(Z_1 - Z_2)\operatorname{sign}(Y_1 - Y_2)))$$

where the pairs (Y_1, Z_1) and (Y_2, Z_2) are chosen at random.

Somer's D is an adaption of au_a

$$D(Z,Y) = \tau_a(Y,Z)/\tau_a(Y,Y)$$

Concordance and the C statistic

If there are no ties in Z it can be shown that

$$D(Z, Y) = 2 \cdot P(Z_i > Z_j | Y_i > Y_j) - 1 = 2 \cdot C(Z, Y) - 1$$

Where

$$C(Z,Y) = P(Z_i > Z_j | Y_i > Y_j)$$

- ▶ The C statistic is the probability that a risk score for a case $Y_i = 1$ is greater than the risk score for a control $Y_j = 0$.
- We want this probability to be high.
- ▶ It can be shown (via integration) that 0.5 <= C(Z, Y) <= 1.

ROC analysis, AUC and the C statistic

- ROC analysis is an analysis of sensitivity and specificity
- ▶ Let Z be a continuous risk score and z be an arbitrary cutoff value. Choose a random case or a control (Denote by Y). Compute the risk score Z for each.
- ▶ Assume you are blinded to the case control status. Declare the subject to be a case if Z>z, otherwise a control.
- ▶ Then P(Z > z | Y = 1) is the sensitivity or the True Positive Probability (TP).
- ▶ P(Z > z | Y = 0) = 1 P(Z < z | Y = 0) is 1-specificity or the False Positive Probability (FP).
- A graph of TP = P(Z > z | Y = 1) vs. FP = P(Z > z | Y = 0) is the ROC curve for the diagnostic test Z.
- ▶ It can be shown that the area under the curve (AUC) equals the *C* statistic. AUC=C!
- ► Common values for *C* for risk models are in the range 0.70 to 0.75.

Frank Harrell and the rms package

- ▶ Frank Harell provides many diagnostic functions in the *rms* package. *C* and *D* are displayed as elements in *lrm* (logistic regression models) objects. However, *C* with *D* and a standard error for *D* are provided with *rcorr.cens*. Note that the standard error of *C* is half the standard error of *D*.
- ▶ Recall: $C = 0.5 \cdot (D + 1)$

The example data

- WCGS data Western Collaborative Group Study
- ► Prospective study of heart disease among men in California, initiated in 1960
- ▶ http://clinicaltrials.gov/show/NCT00005174
- ightharpoonup N = 3154, age 39 to 59, free of heart disease
- ► Follow-up for 10 years
- ▶ Data (wcgs) available via the epitools package
- ightharpoonup N = 3141 with complete data on risk factors used for analysis

C and D results from the rms package

► Consider Model 0: chd ~ age

```
fit0 <- lrm(chd69 ~ age0,data=wcgs.s,x=T,y=T)
data.frame(C=fit0$stats[6],D=fit0$stats[7])</pre>
```

```
## C 0.6212 0.2424
```

```
## Estimate SE Lower Upper
## C Index 0.6212 0.01873 0.5845 0.6579
```

We have C = 0.6212 for Model 0. There is room for improvement.

Are under the ROC curve for Model 0 and threshold

0.6374

-2.4045

##

```
roc0<-roc(fit0$y,predict(fit0),ci=T)</pre>
roc0.c <- coords(roc0,x="best",best.method=c("closest.tople")</pre>
roc0
##
## Call:
## roc.default(response = fit0$y, predictor = predict(fit0)
##
## Data: predict(fit0) in 2885 controls (fit0$y 0) < 256 ca
## Area under the curve: 0.621
## 95% CI: 0.584-0.658 (DeLong)
roc0.c
##
     threshold specificity sensitivity
```

0.5938

◆ロト ◆個ト ◆屋 ト ◆屋 ト ■ めので

ROC curve for Model 0 and threshold

The threshold on the risk scale

```
plogis(roc0.c[1])

## threshold
## 0.08283

The age where the threshold is reached

data.frame(age=(roc0.c[1]-coef(fit0)[1])/coef(fit0)[2])
```

```
## age
## threshold 47.5
```

Risk as a function of age

```
plot(39:49,predict(fit0,newdata=data.frame(age0=39:49),type
abline(v=(roc0.c[1]-coef(fit0)[1])/coef(fit0)[2])
text(45,0.05,paste("Vertical line at risk threshold, age =
```


Model 1 - add cholesterol, blood pressure, bmi, and smoking

C Index 0.7322 0.01562 0.7016 0.7628

```
fit1<-update(fit0,.~.+cholmmol + sbp0 + bmi + smoker)</pre>
data.frame(C=fit1$stats[6],D=fit1$stats[7])
##
## C 0.7323 0.4646
rc1<-rcorr.cens(predict(fit1),fit1$y)
data.frame(Estimate=rc1[1],SE=rc1[3]/2,
           Lower=rc1[1]-1.96*rc1[3]/2,Upper=rc1[1]+1.96*rc
           Estimate
##
                         SE
                                     Upper
                            Lower
```

Model 1 is an improvment

```
##
## Call:
## roc.default(response = fit1$y, predictor = predict(fit1)
##
## Data: predict(fit1) in 2885 controls (fit1$y 0) < 256 ca
## Area under the curve: 0.732
## 95% CI: 0.702-0.763 (DeLong)
##
     threshold specificity sensitivity
                                0.7578
##
      -2.5167
                   0.6308
## threshold
##
     0.0747
```

ROC curve for Model 1 and Model 0 and threshold

Test of improvement

```
roc.test(roc0,roc1)
```

```
##
## DeLong's test for two correlated ROC curves
##
## data: roc0 and roc1
## Z = -6.517, p-value = 7.156e-11
## alternative hypothesis: true difference in AUC is not ed
## sample estimates:
## AUC of roc1 AUC of roc2
## 0.6212 0.7322
```

The hunt for a new marker

- ▶ We have our basic risk model (Model 1)
- ▶ The C statistic is 0.7322
- ► This is a typical value for a chd risk model
- We would still like to improve it
- ▶ The hunt is on for a new marker
- We add the new marker to Model 1 and measure the improvement

Our new marker - Personality A vs B

Personality is associated with CHD. The OR > 2.

oddsratio.wald(wcgs\$dibpat0f,wcgs\$chd69)

```
## $data
##
           Outcome
## Predictor 0 1 Total
##
      B 1486 79 1565
##
            1411 178 1589
##
      Total 2897 257 3154
##
  $measure
##
           odds ratio with 95% C.I.
## Predictor estimate lower upper
##
          R
               1.000
                        NA
                              NΑ
               2.373 1.803 3.123
##
##
## $p.value
```

Models

- ► Model 0: 0 chd ~ age
- ▶ Model 1: chd ~ age + bmi + chol + systolic + smoker
- ▶ Model 2: chd ~ age + bmi + chol + systolic + smoker + personality
- -> personality with 2 levels (A,B) is our new marker

Model 2 - Add the personality marker

```
fit2 <- update(fit1,.~.+dibpat0f)</pre>
```

The adjusted OR is

```
data.frame(OR=exp(coef(fit2)[7]),Lower=exp(confint.default
```

```
## OR Lower Upper
## dibpat0f=A 2.007 1.512 2.663
```

ROC curves 0 1 and 2

Likelihood ratio test comparing Model 1 & 2

```
lrtest(fit1,fit2)
```

```
##
## Model 1: chd69 ~ age0 + cholmmol + sbp0 + bmi + smoker
## Model 2: chd69 ~ age0 + cholmmol + sbp0 + bmi + smoker
##
## L.R. Chisq d.f. P
## 2.453e+01 1.000e+00 7.305e-07
```

- ▶ This means that the marker is highly significant.
- ▶ Recall that the OR ≈ 2

The Pepe 2004 paper

- Limitations of the Odds Ratio in Gauging the Performance of a Diagnostic, Prognostic, or Screening Marker
- Margaret Sullivan Pepe, Holly James, Gary Longton, Wendy Leisenring, and Polly Newcomb
- American Journal of Epidemiology 2004

Message

- Tells us about the limitations of the OR as a measure of diagnostic capacity and that ROC curves and sensitivity and specificity must be studied.
- ▶ Also demonstrates how difficult it is to see a change in ROC curves between models using 1 new marker

Formally comparing ROC curves 1 and 2

```
roc.test(roc1,roc2)
```

```
##
## DeLong's test for two correlated ROC curves
##
## data: roc1 and roc2
## Z = -2.364, p-value = 0.01806
## alternative hypothesis: true difference in AUC is not ed
## sample estimates:
## AUC of roc1 AUC of roc2
## 0.7322 0.7481
```

- Statisticsally signficant
- ▶ The increment is less than 0.02!

The NEJM paper from the Icelandic Heart Association

- C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease.
- ▶ Danesh J1, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V.
- ▶ N Engl J Med. 2004 Apr 1;350(14):1387-97.

Message

- CRP is a statistically significant marker
- ► Adding CRP to a risk model using traditional risk factors increase the ROC area by 0.01
- ► C-reactive protein is a relatively moderate predictor of coronary heart disease. Recommendations regarding its use in predicting the likelihood of coronary heart disease may need to be reviewed

Frustration among CRP advocates

What are we going to do about these small increments in AUC?

Nancy R Cook paper 2006 - Reclassification

- ► The effect of including C-reactive protein in cardiovascular risk prediction models for women.
- ► Cook NR1, Buring JE, Ridker PM.
- ► Ann Intern Med. 2006 Jul 4;145(1):21-9.

Message

- Introduced the concept of reclassification
- ▶ Do subjects move between risk categories after adding the predictor?
- ▶ A global risk prediction model that includes hsCRP improves cardiovascular risk classification in women, particularly among those with a 10-year risk of 5% to 20%. In models that include age, blood pressure, and smoking status, hsCRP improves prediction at least as much as do lipid measures.

Nancy R Cook paper 2006 - Reclassification

▶ Did I mention the conflict of interest?

Potential conflict of interest reported in Cook's paper

Dr. Ridker is listed as a co-inventor on patents held by the Brigham and Women's Hospital that relate to the use of inflammatory biomarkers in cardiovascular disease.

Example of Cook's approach

tblc

```
## pred2c

## pred1c (0,10] (10,20] (20,100]

## (0,10] 2099 190 0

## (10,20] 189 384 80

## (20,100] 0 61 138
```

- This shows that many participants are reclassified.
- ► For example: 190 are reclassfied from 0 to 10% risk into 10-20% risk

Peninca 2008

- Have to consider reclassification of people who develop and who do not develop the events separately
- ▶ Defines the net reclassification improvement NRI based on risk categories

	(0,10]	(10,20]	(20,100]	(0,10]	(10,20]	(20,100]
StatusCHD		CHD=0			CHD=1	
(0,10]	2018	160	0	81	30	0
(10,20]	175	313	60	14	71	20
(20,100]	0	54	105	0	7	33

► Inroduces statistical inference about reclassification (NRI) and Integrated discrimination improvement (IDI)

Test of net reclassification NRI

Asymptotic test of

$$extit{NRI} = (\hat{p}_{up, events} - \hat{p}_{down, events}) - (\hat{p}_{up, nonevents} - \hat{p}_{down, nonevents})$$

- Notice the retrospective definition
- Doesn't really apply to case control data unless we can adjust the risk estimates to be meaningful

NRI estimate

- Using reclass from
- http://www.ucr.uu.se/en/index.php/epistat/ program-code/306-nri-and-idi

```
rcls<-reclass(chd69 ~ age0 + cholmmol + sbp0 + bmi + smokes
+ dibpat0f,lim=c(0.1,0.2),wcgs.s,1,TRUE)</pre>
```

the estimate was 0.1164 with 95% CI as (0.0503, 0.1825). In fact -0.0031 in without event and 0.1133 in with outcome.

Test of IDI

Asymptotic test of the difference in difference between risk of non-cases and cases

$$IDI = (\bar{\hat{p}}_{new,events} - \bar{\hat{p}}_{new,nonevents}) - (\bar{\hat{p}}_{down,events} - \bar{\hat{p}}_{down,events}).$$
 Estimate = 0.009 with SE = 0.0023.

Adding a new marker - Statistics to report

- JAMA 2009 Review paper:
- Assessment of Claims of Improved Prediction Beyond the Framingham Risk Score
- Ioanna Tzoulaki, PhD George Liberopoulos, MD John P. A. Ioannidis, MD

-> Set standard

- Akaike Information Criteria (AIC)
- AUCs with and without the new predictor
- ▶ Difference in AUC with a confidence interval
- Calibration with and without the new marker with a goodness of fit test
- Documentation of reclassification