

FIGURE 1

1. 3 - 13 - 1 - 1 - 1

FIGURE 2

Seq										•
ld						Coding Chart		TATA to Start (ba)		
No	Gene	<u>ene</u> <u>Strain</u>		TATA Box			Coding Start		TATA to Start (bp)	
81	W 03	а а	лсстасаст	TTTAAT	TGGG	ATCCGGCGGG	GCGGCGCATG			25
82	Hypoth 03						CCGCCGCGTG			
83	Timoth 02						CGGGGCCCAT			26
84	Hypoth 02						CGGGGCCCAT			
85	ORF 02						AACGGCCGTA			27
86	OKF UZ	B A	CGGCAAGGT	AATAAT	AGCC	TGCCGTCCGT	ACCTGCCGTA	TG		
87	ORF 03						ATCCCATGCA			27
	ORF US	ВС	ATGGAACTA	GATAAT	AACC	GGTCCCGCGG	GTACAATGCA	TG		
88 89	PPI						GTGCGCGCGC			28
•	FFI	BA	GCACGACAA	GTTATA	GCAG	GGTACAAAGG	AGCAGCGCAC	ATG		
90	GSAT						GCCTGCTGCC			. 28
	GSAI						ACCTGCTGCC		-,	
92							GCGGCTGCGC			28
	ORF 05						TCGTCCGCGC			,
94							CACCATGGCC		٠,	297
95	deaminase						CAGGCTGCCC			A Partie
96	RNA helic						CAGGGCCGCG			໓ ີ 29
97 98	KNA Helic	В	GGTAGAAAC	CATAAA	ACAA	CAGGCCGCGG	CAGGGCG.CG	CGTG		
99	ORF 06						GCGCGTATCA			29
100	0	B A	TACACGTGG	TATAAA	CAGA	GG.CCGGACG	GCGCGGACCA	CATG	~~	
	tRNA-tyr						CACGGATCGT			29
102		вс	CGATAGTTA	TTTAAA	ACTA	GGATGCCGGG	CACCCGTCGT	CCCA		
	TBP	A C	CGGGCCCCG	GTTAAA	ATAG	CG.CACGGGC	GGATCCTGAC	CAATG	~~~~~	30
104		вС	CGGGCCCCG	GTTAAA	ATAG	AGTGCGGCCG	GGCACCGGAT	CAATG		
	TIM	A C	CGTCGATAG	AATAAA	TACG	CGCAGGGGGC	CCCGTGGCGC	GATCGCCCGT	G	36
106		вс	CGTCGATAG	AATAAA	TACG	CGC.GGGGCC	GCGGTGC	GATCGCCCGT	G	
	Hypoth 01	A A	TTTCAACTA	CATAAA	TGCC	TAGTTACGCA	GAAATAGCAA	ACGACGTACT	TCGACTAATG	45
108		В	CTTCAACTA	CATAAA	TGCC	TAGCTACGCA	GAAATATCAA	ACAAAGTACT	TCGACTAATG	
109	000 01	A A	CGGCAGGCT	ATTATT	ACCT	TGCCTTGCGT	TGTA //G	CGGGGTGCGG	CAGGGGATG	52"
110		В	ACGGCAGGCT	ATTATT	ACCT	TGCCGTGTG.	TACA //G	AGGGGGCCTG	CCGGGAGTG	A 44 : '
111	Wathwilesa	A (TACAACGAT	TTTAAG	TCGG	CGCCGGGGCA	GCCG.//G	ATGTGGGGCA	GGCAACATG	104
112	_						GCGG.//T			
112	ICC DNA	A 7	regegateg	TTTATA	TGCC	CATGGACGGG	CCGATCCGAT	CGTACGTGAC	GC.//AAT	220
, , ,		в	CCGCCGATGG	TITATA	TGCC	CATGGACAAG	GCGATCCGAT	CGTACGTGAC	GC.//AAT	
114	Archaeal	er								
	consensus		AMATTY							

FIGURE 3

FIGURE 4

