Computational Quantum Physics & Applications: Shannon Entropy and Information Content in Restricted Hartree-Fock Atomic Densities (Z=2-10)

ELEFTHERIOS MARIOS ZOGRAFOS AEM: 4428

Introduction

Information-theoretic tools offer a powerful lens for quantifying the complexity and uncertainty inherent in quantum systems. Central to this framework are information-theoretic measures such as the Shannon entropy, which provides a basis-independent measure of how delocalized a particle's wavefunction is, far beyond what simple variances or expectation values can capture ^[1]. Complementary metrics and divergence measures have been introduced to probe other facets of a quantum density's shape and its deviation from idealized models.

In this study, we apply this suite of information measures to the second-period atoms (He through Ne), using Restricted Hartree–Fock (RHF) wavefunctions expanded in Slater-type orbitals^[2].

Objectives

The specific goals of this study are to:

- 1. Compute the coordinate-space Shannon entropy S_r and momentum-space entropy S_k for each element Z=2–10 in its RHF ground state.
- 2. Evaluate the maximum-entropy bound S_{max} , the Fisher information I, the Onicescu information energy inverse O and the order parameter Ω .
- 3. Construct two reference radial densities:
 - (a) A hydrogenic 1s density determined by the first ionization potential.
 - (b) The Thomas–Fermi statistical density for atomic charge Z.
- 4. Quantify the deviation of the RHF densities from each reference model using symmetrized Kullback–Leibler and Jensen–Shannon divergences.

Theory

RHF Radial Expansion

In the Roothaan–Hartree–Fock approach, each spin-independent radial orbital $R_{n\ell}(r)$ is expanded in a finite sum of primitive Slater-type functions:

$$R_{n\ell}(r) = \sum_{j} C_{jn\ell} \, S_{j\ell}(r),$$

where the normalized primitive basis functions are

$$S_{j\ell}(r) = N_{j\ell} r^{n_{j\ell}-1} e^{-Z_{j\ell} r},$$

and the normalization constants $N_{j\ell}$ are

$$N_{j\ell} = \frac{(2Z_{j\ell})^{n_{j\ell} + \frac{1}{2}}}{\sqrt{(2n_{j\ell})!}}.$$

Here $n_{j\ell}$ is the principal quantum number of the primitive, $Z_{j\ell}$ its exponent, and $C_{jn\ell}$ the self-consistent RHF expansion coefficients [2].

Momentum-Space Radial Wavefunctions

The corresponding radial wavefunction in momentum space, $\widetilde{R}_{n\ell}(k)$, is related to $R_{n\ell}(r)$ by a spherical Bessel transform:

$$\widetilde{R}_{n\ell}(k) = 4\pi \int_0^\infty r^2 R_{n\ell}(r) j_\ell(k r) dr,$$

where $j_{\ell}(k\,r)$ is the spherical Bessel function of order ℓ . This transform ensures the normalization $\int_0^\infty |\widetilde{R}_{n\ell}(k)|^2\,k^2\,dk = 1$ whenever $\int_0^\infty |R_{n\ell}(r)|^2\,r^2\,dr = 1$.

Shannon Entropy and Related Measures

Given the normalized radial probability density in coordinate space,

$$p_r(r) = \frac{1}{4\pi} \sum_{i=1}^{N_e} |R_i(r)|^2, \quad \int_0^\infty p_r(r) 4\pi r^2 dr = 1,$$

the coordinate-space Shannon entropy is^[3]

$$S_r = -4\pi \int_0^\infty p_r(r) \ln p_r(r) r^2 dr$$

Similarly, the momentum-space density $p_k(k)$ (obtained via Fourier/Bessel transform of $R_i(r)$) yields

$$S_k = -4\pi \int_0^\infty p_k(k) \ln p_k(k) \ k^2 dk^{[3]}$$

The upper limit is defined

$$S_{\text{max}} = 3(1 + \ln \pi) + \frac{3}{2} \ln \left(\frac{4}{9} \langle r^2 \rangle \langle k^2 \rangle \right),$$

$$\langle r^2 \rangle = 4\pi \int_0^\infty p_r(r) r^4 dr, \qquad \langle k^2 \rangle = 4\pi \int_0^\infty p_k(k) k^4 dk.$$

Other information measures include:

• Fisher information:

$$I = 4\pi \int_0^\infty \frac{(p_r'(r))^2}{p_r(r)} r^2 dr,$$

which quantifies the "sharpness" of the density via its local gradients.

• Onicescu's information energy:

For a three-dimensional spherically-symmetric atomic density $p_r(r)$ in coordinate space and its momentum-space analogue $p_k(k)$, these generalize to

$$E_r = \int_0^\infty p_r(r)^2 4\pi r^2 dr, \quad E_k = \int_0^\infty p_k(k)^2 4\pi k^2 dk.$$

To obtain a single measure of information concentration that spans both spaces, we therefore define [3]

$$O = \frac{1}{E_r E_k}$$

which decreases as the overall density becomes more delocalized and increases as the electron density becomes more tightly concentrated.

• Order parameter: Following Landsberg's approach. Let

$$S = S_r + S_k$$

be the total Shannon entropy of the system and S_{max} its maximum allowed value. Then the order parameter is defined as ^[3]

$$\Omega = 1 - \frac{S}{S_{\text{max}}}$$

By construction, $0 \le \Omega \le 1$, with $\Omega = 1$ indicating a perfectly "ordered" state and $\Omega = 0$ corresponding to complete disorder.

Divergence Measures

To compare an density p against a reference density q, we employ:

Symmetrized Kullback-Leibler divergence

$$SK(p,q) = \int \left[p(r) \ln \frac{p(r)}{q(r)} + q(r) \ln \frac{q(r)}{p(r)} \right] dr,$$

Jensen-Shannon divergence

$$JS(p,q) = H(\frac{p+q}{2}) - \frac{1}{2}H(p) - \frac{1}{2}H(q),$$

with Shannon entropy functional

$$H(r) = -\int r(x) \ln r(x) d\tau.$$

The Jensen–Shannon divergence is symmetric, bounded $(0 \le JS \le \ln 2)$, and defines a true metric on the space of probability densities ^[3].

Results

Shannon Entropies & Information Measures

Figure 1: Coordinate-space entropy S_r (blue circles), momentum-space entropy S_k (orange squares), and total entropy $S = S_r + S_k$ (green diamonds) as functions of atomic number Z.

Figure 1 shows how the coordinate-space entropy S_r , momentum-space entropy S_k , and their sum $S = S_r + S_k$ evolve across the second-period atoms. As Z increases from He to Ne, S_r decreases monotonically, reflecting the fact that the electrons become more tightly bound (more localized near the nucleus). Conversely, S_k increases steadily, indicating greater spread in momentum space as the wavefunctions sharpen in r-space. The total entropy S thus grows slowly with Z, illustrating the entropic uncertainty trade-off between position and momentum.

Figure 2 shows:

- (a) Fisher information I: Increases rapidly with Z
- (b) **Onicescu measure** O: Drops steeply from He to a minimum near B/Be and then grows steadily for higher Z.
- (c) Order parameter Ω : Peaks at Li (Z=3) and then decreases as the total entropy S approaches its maximum bound less rapidly in heavier atoms.
- (d) **Entropy bound** S_{max} : Rises from He to a maximum around Be/B, then decreases gradually for larger Z, mirroring the combined variance in r- and k-space.

Figure 2: (a) Fisher information, (b) Onicescu measure, (c) order parameter, and (d) entropic bound as functions of Z.

Table 1: Information measures for second-period atoms (He–Ne).

\overline{Z}	S_r	S_k	S	$S_{ m max}$	0	I	Ω
2	2.698508	3.913415	6.611923	7.049306	100.361884	11.454178	0.062046
3	3.701437	3.996822	7.698259	10.357876	9.157066	19.215893	0.256772
4	3.623855	4.190193	7.814047	10.395109	8.454199	27.401481	0.248296
5	3.405437	4.705913	8.111350	10.373994	15.964618	35.197331	0.218107
6	3.106013	5.156601	8.262614	10.262665	25.709658	42.863441	0.194886
7	2.801667	5.549377	8.351044	10.152339	37.425422	50.495983	0.177427
8	2.550506	5.867411	8.417917	10.111782	48.469644	58.190730	0.167514
9	2.298780	6.163409	8.462190	10.053962	61.117092	65.928619	0.158323
10	2.055072	6.437178	8.492251	9.991642	75.194302	73.749726	0.150065

Information-theoretic Divergences

Figures 3a–3b and 3c–3d chart the symmetrized Kullback–Leibler (KL) and Jensen–Shannon (JS) divergences against two reference densities:

Both hydrogenic- and Thomas–Fermi reference models yield low JS divergences ($\lesssim 0.2$), indicating that simple one-electron or statistical densities capture the bulk of the RHF radial distribution.

Figure 3: Information-theoretic divergences for the two reference densities. (a,b) Ionization-model KL and JS. (c,d) Thomas–Fermi-model KL and JS.

Figure 4: Total Shannon entropy S plotted against $\ln Z$, with a linear fit $S\approx 1.046\,\ln(Z)+6.330,\quad R^2=0.9895.$

The nearly perfect \mathbb{R}^2 demonstrates that across many Z values the total entropy grows logarithmically with nuclear charge Z.

Summary

We have carried out a systematic information-theoretic analysis of the second-period atoms (He—Ne) in their RHF ground states. These results demonstrate that atomic information content grows in a simple, predictable way with nuclear charge, and that RHF densities remain close to classical reference models in an information-theoretic sense.

Computational Resources & Libraries

All code was written in Python using the following libraries:

- numpy
- matplotlib
- scipy

The computations were performed on a system with an Intel® CoreTM i7-8750H CPU @ 2.20 GHz and 16 GB of DDR4 RAM.

References

- [1] C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal 27, 379–423 (1948).
- [2] C. F. Bunge and J. A. Barrientos, *Hartree–Fock Ground-State Atomic Wave Functions Expanded in Slater-Type Orbitals*, At. Data Nucl. Data Tables **53**(1), 113–162 (1993).
- [3] Ch. C. Moustakidis, K. Ch. Chatzisavvas, and C. P. Panos, *Information entropy, information distances, and complexity in atoms*, Phys. Rev. A **72**, 032514 (2005).