Gymnázium Evolution Jižní Město

Eric Dusart

Polytop maximální dimenze a minimálního obvodu s vrcholy v dané množině bodů.

Ročníková práce

Školitel práce: Mgr. Adam Klepáč

Školní rok: 2023/2024

Prohlášení

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Abstrakt

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Klíčová slova: graf, polytop, algoritmus

Abstract

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Keywords: graph, polytope, algorithm

Obsah

Úv	Úvod	9
Ι	I Teoretická část	11
1	1 110010III (C 22	13
	1.1 Základní pojmy	
	1.2 Adaptace Dijkstrova algoritmu	
	1.2.1 Popis algoritmu	
	1.3 Začátek	
	1.4 Algoritmus	
	1.5 Důkaz algoritmu	
II	II Praktická část	19
2	2 Další zajímavá kapitola	21
Z á	Závěr	23

Úvod

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur

a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Část I Teoretická část

Kapitola 1

Problém ve 2D

Předpokládám, že všechny grafy, o kterých mluvím, jsou souvislé!

1.1 Základní pojmy

Definice 1 (Polytop) Polytop dimenze $n \in \mathbb{N}$ je uzavřená podmnožina $P \subseteq \mathbb{R}^n$ definovaná induktivně:

- Polytop dimenze 1 je úsečka.
- Polytop dimenze n je slepením polytopů dimenze n-1, jež spolu mohou sdílet stěny libovolné dimenze, kde stěnou polytopu rozumíme jeho libovolnou podmnožinu jsoucí rovněž polytopem. [Ada24]

Definice 2 (Vzdálenost) Zobrazení $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^+$ nám udává vzdálenost dvou bodů $u, v \in \mathbb{R}^2$ podle předpisu $d(u, v) := \sqrt{(v_x - u_x)^2 + (v_y - u_y)^2}$, kde v_x a v_y jsou souřadnice bodu v.

Definice 3 (Ohodnocený graf) G = (V, E, w) je ohodnocený graf, kde V je množina vrcholů, E je množina dvojprvkových podmnožin $E \subseteq \binom{V}{2}$ a w je libovolné zobrazení $E \to \mathbb{R}^+$, které hranám přiřazuje jejich váhu.

Definice 4 (Úplný ohodnocený graf) Úplný ohodnocený graf G = (V, E, w) má každé dva vrcholy spojeny hranou, neboli $E = \binom{V}{2}$. Takový graf můžeme také zapsat jako $K_n := (V, \binom{V}{2}, w)$.

Obrázek 1.1: Úplné grafy K_3 , K_5 a K_7

Definice 5 (Cesta) Cestou v grafu nazveme posloupnost $\mathbf{ruznych}$ vrcholů v_1, \ldots, v_n , pokud $\forall i \in \{1, \ldots, n-1\}$ platí $\{v_i, v_{i+1}\} \in E$. **Definice 6 (Váha cesty)** Pokud cestu tvoří posloupnost vrcholů v_1, \ldots, v_n , tak váha cesty je rovna

$$\sum_{i=1}^{n-1} w(\{v_i, v_{i+1}\}).$$

Definice 7 (Cyklus) Cyklus je posloupnost vrcholů $v_1, \ldots, v_n, v_1, kde v_1, \ldots, v_n$ je cesta a poslední dva vrcholy $\{v_1, v_n\} \in E$.

Definice 8 (Váha cyklu) Pokud cyklus tvoří posloupnost vrcholů v_1, \ldots, v_n , tak váha cesty je rovna

$$w({v_1, v_n}) + \sum_{i=1}^{n-1} w({v_i, v_{i+1}}).$$

Definice 9 (Trojúhelníková nerovnost) Trojúhelníková nerovnost říká, že pro každé tři různé body a, b, c platí $d(a, b) + d(c, b) \ge d(A, B)$, neboli vzdálenost mezi dvěma body je vždy menší nebo rovna součtu vzdáleností mezi těmito body a třetím bodem.

Obrázek 1.2: Trojúhelníková nerovnost

Definice 10 (Soused) V grafu G = (V, E, w) je bod u soused bodu v, pokud $\{u, v\} \in E$.

1.2 Adaptace Dijkstrova algoritmu

Dijkstrův algoritmus, pojmenovaný po Edsgeru W. Dijkstrovi, je algoritmus na hledání cesty s minimální váhou mezi dvěma body v ohodnoceném grafu. Obecně taková cesta může mít několik vrcholů, ale protože náš graf je převzatý z roviny, tak cesta s minimální váhou mezi vrcholy u a v je hrana $\{u,v\}$. Kdyby náš graf nebyl převzatý z roviny, tak by mohla nastat situace na obrázku 1.3. Aby nám vznikl trojúhelník, tak hranu $\{u,v\}$ z grafu odebereme, a až teď budeme hledat cestu s miniální váhou mezi body u a v. Taková cesta povede právě přes jeden vrchol (plyne z trojúhelníkové nerovnosti), který nazveme j, a bude se skládat právě ze dvou hran. Jedna hrana bude vést z u do j a druhá z j do v.

1.2.1 Popis algoritmu

- 1. Vytvoříme množinu všech nenavštívených bodů a vybereme startovní a cílový bod. Označíme všechny body nenavštívenými.
- 2. Každému bodu přiřadíme vzdálenost od počátečního bodu; prozatím na ∞ . Vzdálenost počátečního bodu od sebe samého nastavíme na 0.

Obrázek 1.3: V obecném grafu nemusí platit trojúhelníková nerovnost.

- 3. Nejdříve projdeme všechny sousedy počátečního bodu. Každému sousedu spočítáme vzdálenost od počátečního bodu (v tomto případě váha hrany vedoucí z počátečního bodu do souseda) a připíšeme ji sousedovi, bude-li menší než ∞. Až zkontrolujeme všechny jeho sousedy, odebereme počáteční bod z množiny nenavštívených bodů.
- 4. Potom se přesuneme na nenavštívený bod s minimální vzdáleností od počátečního bodu. Tento bod označíme jako aktuální a začneme kontrolovat jeho sousedy. Je-li součet vzdálenosti od počátečního bodu do aktuálního s váhou hrany vedoucí k sousedu menší než vzdálenost, kterou má u sebe soused uloženou, změníme ji. Je třeba myslet na to, že když přepíšeme vzdálenost souseda od startovního bodu, souseda neoznačujeme za navštíveného. Počáteční bod odebereme z množiny nenavštívených bodů, až zkontrolujeme všechny jeho sousedy.
- 5. Čtvrtý bod opakujeme, dokud nevybereme za aktuální bod ten cílový. V tomto okamžiku jsme našli nejkratší cestu.

1.3 Začátek

Tohle upravím až potom, já jsem to napsal do latexu, ale to sis asi nepřečetl. Chtěl bych napsat lepší a delší úvod.

Úkolem je nalézt trojúhelník minimálního obvodu s vrcholy v zadané množině rovinných bodů. Ano, mohli bychom zkoušet všechny trojúhelníky, ale to by zabralo až moc času. Pokusím se tedy najít nějaký algoritmus, který by to zvládl rychleji.

Nejlepší způsob jak řešit úlohy tohoto typu je převést si úlohu na grafovou úlohu. V teorii grafů nás nezajímá umístění bodů a hran, ale zajímá nás pouze to, jak jsou tyto body a hrany propojeny. Hrany pak mají svoje ohodnocení, neboli váhu. V našem případě bude váha hrany odpovídat délce úsečky, která spojuje dva body.

1.4 Algoritmus

Nechť V je množina bodů v rovině a pro každé dva body $u,v \in V$ označme d(u,v) jejich vzájemnou vzdálenost. Pomocí zobrazení d definujeme ohodnocený graf G=(V,E,w). Množinu hran označíme $E=\{\{u,v\}\mid u,v\in V\}$ a váhu, neboli ohodnocení, nám určuje zobrazení w dané předpisem $w(\{u,v\})\coloneqq d(u,v), \forall (u,v)\in E$. Nyní chceme najít cyklus délky tři. Náhodně vybereme jednu hranu $\{u,v\}\in E$ a odebereme ji z množiny hran E. Dále potřebujeme najít cestu s minimální váhou mezi body u a v. K tomuto použijeme Dijkstrův algoritmus. Když cesta existuje, společně s hranou $\{u,v\}$ tvoří cyklus. Není těžké si rozmyslet, že tento cyklus bude mít délku tři. Cestu tvoří dvě

hrany $\{u, j\}$ a $\{j, v\}$, které společně s hranou $\{u, v\}$ tvoří podgraf ve tvaru trojúhelníku $T = (V_T, E_T, w)$, kde $V_T = \{u, j, v\}$, $E_T = \{\{u, j\}, \{j, v\}, \{u, v\}\}$ a váha hran se zachová. Pokud trojúhelník (cyklus délky tři) bude mít celkovou váhu menší než ten, který jsme doposud našli, uložíme tento trojúhelník. Nezapomeneme vrátit hranu $\{u, v\}$ do množiny hran E. Tento postup opakujeme do vyčerpání hran. Výsledkem bude trojúhelník s minimálním obvodem.

Algoritmus 1: Algoritmus na hledání trojúhelníku s nejkratším obvodem.

```
input: Množina bodů V v rovině, kde každý bod je reprezentován jako
                dvojice souřadnic (v_x, v_y)
    output: Trojúhelník T = (V_T, E_T, w)
 1 for u \in V do
         for v \in V do
           d(u,v) \leftarrow \sqrt{(v_x - u_x)^2 + (v_y - u_y)^2}; 
 w(\{u,v\}) \leftarrow d(u,v); 
5 E \leftarrow \binom{V}{2};
 6 G \leftarrow (V, E, w);
 7 min_T \leftarrow \infty;
 s for \{u,v\} \in E do
         E \leftarrow E \setminus \{u, v\};
         j \leftarrow dijkstra(G, u, v);
10
         if d(u, j) + d(j, v) + d(u, v) < min_T then
11
              min_T \leftarrow d(u, j) + d(j, v) + d(u, v);
12
              V_T \leftarrow \{u, j, v\};
            E_T \leftarrow \{\{u, j\}, \{j, v\}, \{u, v\}\};
             T \leftarrow (V_T, E_T, w);
15
        E \leftarrow E \cup \{u, v\};
17 return T;
```

1.5 Důkaz algoritmu

Abychom mohli dokázat korektnost algoritmu, musíme dokázat, že algoritmus skončí a že je správný, to znamená, že dělá přesně co chceme. Dijkstrův algoritmus, který je součástí algoritmu, dokazovat nebudu, protože důkaz je příliš dlouhý a je dostupný v literatuře.

Dokázat konečnost algoritmu není těžké. Jediným cyklem v algoritmu je procházení všech stran. Jelikož je množina hran konečná, tento cyklus skončí. Dále používáme Dijkstrův algoritmus, který také skončí, protože náš graf je souvislý.

Dokázat, že algoritmus funguje je těžší. Povedeme důkaz sporem; náš předpoklad bude následující výrok:

Výrok 1 (Předpoklad) Existuje trojúhelník x, y, z, který má kratší obvod, než trojúhelník a, b, c, který našel algoritmus, neboli:

 $\exists \{x,y,z\} \subseteq V: d(x,y) + d(y,z) + d(x,z) < d(a,b) + d(b,c) + (a,c) | \forall a,b,c \leftarrow algoritmus.$

Část II Praktická část

Kapitola 2 Další zajímavá kapitola

Závěr

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur

a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Literatura

[Ada24] Adam Klepáč. Definice polytopu. 9. led. 2024.