

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 January 2002 (17.01.2002)

PCT

(10) International Publication Number
WO 02/004424 A1

(51) International Patent Classification⁷: C07D 231/12,
231/18, 405/04, 403/12, 231/14, 231/38, 231/40, A61K
31/415, C07D 401/12, 401/12, 417/12

Research and Development, Ramsgate Road, Sandwich,
Kent CT13 9NJ (GB).

(21) International Application Number: PCT/IB01/01174

(74) Agents: WOOD, David, J. et al.; Pfizer Limited, Rams-
gate Road, Sandwich, Kent CT13 9NJ (GB).

(22) International Filing Date: 21 June 2001 (21.06.2001)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0016787.4 7 July 2000 (07.07.2000) GB

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (*for GB only*): PFIZER LIMITED [GB/GB];
Ramsgate Road, Sandwich, Kent CT13 9NJ (GB).

Published:
— with international search report

(71) Applicant (*for all designated States except GB, US*):
PFIZER INC. [US/US]; 235 East 42nd Street, New York,
NY 10017 (US).

(48) Date of publication of this corrected version:
12 December 2002

(72) Inventors; and
(75) Inventors/Applicants (*for US only*): CORBAU, Ro-
muwald, Gaston [FR/GB]; Pfizer Global Research and
Development, Ramsgate Road, Sandwich, Kent CT13
9NJ (GB). MOWBRAY, Charles, Eric [GB/GB]; Pfizer
Global Research and Development, Ramsgate Road,
Sandwich, Kent CT13 9NJ (GB). PERROS, Manoussos
[GB/GB]; Pfizer Global Research and Development,
Ramsgate Road, Sandwich, Kent CT13 9NJ (GB). STUP-
PLE, Paul, Anthony [GB/GB]; Pfizer Global Research
and Development, Ramsgate Road, Sandwich, Kent CT13
9NJ (GB). WOOD, Anthony [GB/GB]; Pfizer Global

(15) Information about Correction:
see PCT Gazette No. 50/2002 of 12 December 2002, Sec-
tion II

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 02/004424 A1

(54) Title: PYRAZOLE DERIVATIVES

(I)

(57) Abstract: This invention relates to the use of pyrazole derivatives of formula (I) and phar-
maceutically acceptable salts and solvates thereof, in the manufacture of a reverse transcriptase
inhibitor or modulator, to certain novel such pyrazole derivatives and to processes for the prepa-
ration of and compositions containing such novel derivatives.

PYRAZOLE DERIVATIVES

This invention relates to the use of pyrazole derivatives in the manufacture of a reverse transcriptase inhibitor or modulator, to certain novel such pyrazole derivatives and to processes for the preparation of and compositions containing such novel derivatives.

The present pyrazole derivatives bind to the enzyme reverse transcriptase and are modulators, especially inhibitors thereof. Reverse transcriptase is implicated 10 in the infectious lifecycle of HIV, and compounds which interfere with the function of this enzyme have shown utility in the treatment of conditions including AIDS. There is a constant need to provide new and better modulators, especially inhibitors, of HIV reverse transcriptase since the virus is able to mutate, becoming resistant to their effects.

15 The present pyrazole derivatives are useful in the treatment of a variety of disorders including those in which reverse transcriptase is implicated. Disorders of interest include those caused by Human Immunodeficiency Virus (HIV) and genetically related retroviruses, such as Acquired Immune Deficiency Syndrome 20 (AIDS).

European Patent Application EP 0 786 455 A1 discloses a class of imidazole compounds which inhibit the growth of HIV. A class of N-phenylpyrazoles which act as reverse transcriptase inhibitors are disclosed in *J. Med. Chem.*, 2000, 43, 25 1034. Antiviral activity is ascribed to a class of N-(hydroxyethyl)pyrazole derivatives in US patent number 3,303,200.

According to the present invention there is provided the use of a compound of the formula

or a pharmaceutically acceptable salt or solvate thereof, wherein

either (i) R¹ is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, halo, -CN, -OR⁷,

- 5 -OR⁸, -CO₂R⁶, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵,
 -NR⁵CO-(C₁-C₆ alkylene)-OR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C₁-C₆ alkyl,
 C₃-C₇ cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN,
 -OR⁵, -OR⁸, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁸R⁸,
 -NR⁵COR⁵, -NR⁵COR⁸, -NR⁵COR⁸, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶,

10 and

R² is H or -Y-Z,

or, (ii) R¹ and R², when taken together, represent unbranched C₃-C₄ alkylene,

- 15 optionally wherein one methylene group of said C₃-C₄ alkylene is replaced by an oxygen atom or a nitrogen atom, said nitrogen atom being optionally substituted by R⁵ or R⁸;

Y is a direct bond or C₁-C₃ alkylene;

20

Z is R¹⁰ or, where Y is C₁-C₃ alkylene, Z is -NR⁵COR¹⁰, -NR⁵CONR⁵R¹⁰,
 -NR⁵CONR⁵COR¹⁰ or -NR⁵SO₂R¹⁰;

R³ is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, -CN, halo, -OR⁷, -CO₂R⁵,

- 25 -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CONR⁵R⁵,
 -NR⁵SO₂R⁷ or R⁶, said C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl and benzyl being
 optionally substituted by halo, -CN, -OR⁵, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵,
 -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶;

- 30 R⁴ is phenyl or pyridyl, each being optionally substituted by R⁸, halo, -CN, C₁-C₆
 alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy;

- each R⁵ is independently either H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl, phenyl or benzyl, or, when two such groups are attached to the same nitrogen atom, those two groups taken together with the nitrogen atom to which they are attached represent azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl,
5 piperazinyl, homopiperazinyl or morpholinyl, said azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, homopiperazinyl and morpholinyl being optionally substituted by C₁-C₆ alkyl or C₃-C₇ cycloalkyl and said piperazinyl and homopiperazinyl being optionally substituted on the nitrogen atom not taken together with the two R⁵ groups to form the ring by -COR⁷ or -SO₂R⁷;

10 R⁶ is a four to six-membered, aromatic, partially unsaturated or saturated heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen or sulphur heteroatom(s), said heterocyclic group being optionally
15 substituted by -OR⁵, -NR⁵R⁵, -CN, oxo, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, -COR⁷ or halo;

R⁷ is C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl, phenyl or benzyl;

- 20 R⁸ is C₁-C₆ alkyl substituted by phenyl, phenoxy, pyridyl or pyrimidinyl, said phenyl, phenoxy, pyridyl and pyrimidinyl being optionally substituted by halo, -CN, -CONR⁵R⁵, -SO₂NR⁵R⁵, -NR⁵SO₂R⁷, -NR⁵R⁵, -(C₁-C₆ alkylene)-NR⁵R⁵, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy;

- 25 R⁹ is H, C₁-C₆ alkyl or C₃-C₇ cycloalkyl, said C₁-C₆ alkyl and C₃-C₇ cycloalkyl being optionally substituted by -OR⁵, -NR⁵R⁵, -NR⁵COR⁵, -CONR⁵R⁵ or R⁶;

- 30 R¹⁰ is C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₇ cycloalkyl, phenyl, benzyl or C-linked R⁸, said C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl and benzyl being optionally substituted by halo, -OR⁵, -OR¹², -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -C(=NR⁵)NR⁵OR⁵, -CONR⁵NR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R¹², -NR⁵COR⁵, -NR⁵CO₂R⁷, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁶;

X is -CH₂-, -CHR¹¹-, -CO-, -S-, -SO- or -SO₂-;

R¹¹ is C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl or C₁-C₆ alkoxy; and

R¹² is C₁-C₆ alkyl substituted by R⁶, -OR⁵, -CONR⁵R⁶, -NR⁵COR⁵ or -NR⁵R⁵;

5

in the manufacture of (a) a reverse transcriptase inhibitor or modulator or (b) a medicament for the treatment of a human immunodeficiency viral (HIV), or genetically related retroviral, infection or a resulting acquired immunodeficiency syndrome (AIDS).

10

The present invention also provides a novel compound of the formula:

or a pharmaceutically acceptable salt or solvate thereof, wherein

- 15 either (i) R¹ is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, halo, -CN, -OR⁷, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CO-(C₁-C₆ alkylene)-OR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -OR⁶, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁸R⁹, -NR⁵COR⁵, -NR⁵COR⁶,
- 20 -NR⁵COR⁸, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶ and

R² is -Y-Z,

- or, R¹ and R², when taken together, represent unbranched C₃-C₄ alkylene, optionally wherein one methylene group of said C₃-C₄ alkylene is replaced by an oxygen atom or a nitrogen atom, said nitrogen atom being optionally substituted by R⁵ or R⁶,

and R³ is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, -CN, halo, -OR⁷,

-CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶,

5

or (ii) R¹ and R³ are each independently C₁-C₆ alkyl, C₃-C₇ cycloalkyl or halo-(C₁-C₆ alkyl), and R² is H,

provided that

10

- (a) for definition (i), R¹ and R³ are not both H,
- (b) for definition (i), R¹ and R³ are not both optionally substituted phenyl, as defined therein,
- (c) for definition (i), when R¹ and R³ are both methyl, R² is not phenyl or methyl, and
- (d) for definition (ii), R¹ and R³ are not both methyl;

Y is a direct bond or C₁-C₃ alkylene;

20 Z is R¹⁰ or, where Y is C₁-C₃ alkylene, Z is -NR⁵COR¹⁰, -NR⁵CONR⁵R¹⁰, -NR⁵CONR⁵COR¹⁰ or -NR⁵SO₂R¹⁰;

R⁴ is phenyl or pyridyl, each substituted by at least one substituent selected from halo, -CN, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl and C₁-C₆ alkoxy;

25

each R⁵ is independently either H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl, phenyl or benzyl, or, when two such groups are attached to the same nitrogen atom, those two groups taken together with the nitrogen atom to which they are attached represent azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl,

30 piperazinyl, homopiperazinyl or morpholinyl, said azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, homopiperazinyl and morpholinyl being optionally substituted by C₁-C₆ alkyl or C₃-C₇ cycloalkyl and said piperazinyl and homopiperazinyl being optionally substituted on the nitrogen atom not taken together with the two R⁵ groups to form the ring by -COR⁷ or -SO₂R⁷;

R⁶ is a four to six-membered, aromatic, partially unsaturated or saturated heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen or sulphur heteroatom(s), said heterocyclic group being optionally substituted by -OR⁵, -NR⁵R⁵, -CN, oxo, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, -COR⁷ or halo;

R⁷ is C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl, phenyl or benzyl;

10

R⁸ is C₁-C₆ alkyl substituted by phenyl, pyridyl or pyrimidinyl, said phenyl, pyridyl and pyrimidinyl being optionally substituted by halo, -CN, -CONR⁵R⁵, -SO₂NR⁵R⁵, -NR⁵SO₂R⁷, -NR⁵R⁵, -(C₁-C₆ alkylene)-NR⁵R⁵, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy;

15

R⁹ is H, C₁-C₆ alkyl or C₃-C₇ cycloalkyl, said C₁-C₆ alkyl and C₃-C₇ cycloalkyl being optionally substituted by -OR⁵, -NR⁵R⁵, -NR⁵COR⁵, -CONR⁵R⁵ or R⁶;

20

R¹⁰ is (a) benzyl or C-linked R⁶, said benzyl being optionally substituted by halo, -OR⁵, -OR¹², -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -C(=NR⁵)NR⁵OR⁶, -CONR⁵NR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R¹², -NR⁵COR⁵, -NR⁵CO₂R⁷, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁶, or (b) when R¹ and R³ are each independently C₁-C₆ alkyl, C₃-C₇ cycloalkyl or halo-(C₁-C₆ alkyl), R¹⁰ is phenyl, C₁-C₆ alkyl or C₃-C₇ cycloalkyl each being optionally substituted by halo, -OR⁵, -OR¹², -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -C(=NR⁵)NR⁵OR⁶, -CONR⁵NR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R¹², -NR⁵COR⁵, -NR⁵CO₂R⁷, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁶;

X is -CH₂-, -CHR¹¹-, -CO-, -S-, -SO- or -SO₂-;

30

R¹¹ is C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl or C₁-C₆ alkoxy; and

R¹² is C₁-C₆ alkyl substituted by R⁶, -OR⁵, -CONR⁵R⁵, -NR⁵COR⁵ or -NR⁵R⁵.

In the above definitions, halo means fluoro, chloro, bromo or iodo. Unless otherwise stated, alkyl, alkenyl, alkynyl, alkylene and alkoxy groups containing the requisite number of carbon atoms can be unbranched or branched chain. Examples of alkyl include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl and t-butyl. Examples of alkenyl include ethenyl, propen-1-yl, propen-2-yl, propen-3-yl, 1-buten-1-yl, 1-buten-2-yl, 1-buten-3-yl, 1-buten-4-yl, 2-buten-1-yl, 2-buten-2-yl, 2-methylpropen-1-yl or 2-methylpropen-3-yl. Examples of alkynyl include ethynyl, propyn-1-yl, propyn-3-yl, 1-butyn-1-yl, 1-butyn-3-yl, 1-butyn-4-yl, 2-butyn-1-yl. Examples of alkylene include methylene, 1,1-ethylene, 1,2-ethylene, 1,1-propylene, 1,2-propylene, 2,2-propylene and 1,3-propylene. Examples of alkoxy include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, sec-butoxy and t-butoxy. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. 'C-linked' used in the definition of R¹⁰ means that the R¹⁰ substituent is attached through a ring carbon atom. Where R¹ and R² are taken together, they form, along with the nitrogen atom and the carbon atom of the pyrazole ring to which they are attached, a 5- or 15 6-membered ring.

The pharmaceutically acceptable salts of the compounds of the formula (I) and 20 the compounds of the formula (Ib) include the acid addition and the base salts thereof.

Suitable acid addition salts are formed from acids which form non-toxic salts and examples are the hydrochloride, hydrobromide, hydroiodide, sulphate, 25 bisulphate, nitrate, phosphate, hydrogen phosphate, acetate, maleate, fumarate, lactate, tartrate, citrate, gluconate, succinate, saccharate, benzoate, methanesulphonate, ethanesulphonate, benzenesulphonate, para-toluenesulphonate and pamoate salts.

30 Suitable base salts are formed from bases which form non-toxic salts and examples are the sodium, potassium, aluminium, calcium, magnesium, zinc and diethanolamine salts.

For a review on suitable salts see Berge et al, *J. Pharm. Sci.*, 66, 1-19, 1977.

The pharmaceutically acceptable solvates of the compounds of the formula (I) and the compounds of the formula (Ib), and the salts thereof, include the hydrates thereof.

5

Also included within the present scope of the compounds of the formula (I) and the compounds of the formula (Ib) are polymorphs thereof.

A compound of the formula (I) or a compound of the formula (Ib) may contain one
10 or more asymmetric carbon atoms and therefore exist in two or more stereoisomeric forms. The present invention includes the individual stereoisomers of the compounds of the formula (I) and the compounds of the formula (Ib) together with, where appropriate, the individual tautomers thereof, and mixtures thereof.

15

Separation of diastereoisomers may be achieved by conventional techniques, e.g. by fractional crystallisation, chromatography or high performance liquid chromatography (HPLC) of a stereoisomeric mixture of a compound of the formula (I) or a compound of the formula (Ib) or a suitable salt or derivative
20 thereof. An individual enantiomer of a compound of the formula (I) or a compound of the formula (Ib) may also be prepared from a corresponding optically pure intermediate or by resolution, such as by HPLC of the corresponding racemate using a suitable chiral support or by fractional crystallisation of the diastereoisomeric salts formed by reaction of the
25 corresponding racemate with a suitable optically active acid or base, as appropriate.

Preferred individual compounds according to the invention include the Examples below.

30

Particularly preferred individual compounds according to the invention include

2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-dimethyl-1*H*-pyrazol-1-yl}ethanol;

2-[4-[(3,5-dichlorophenyl)sulfanyl]-3-ethyl-5-(hydroxymethyl)-1*H*-pyrazol-1-
y]ethanol; and

2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazol-1-y}ethanol.

- 5 The following preferred features of the invention relate both to compounds of the formula (I) and compounds of the formula (Ib).

Preferably, R¹ is C₁-C₆ alkyl, -OR⁷, -CO₂R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵CO-(C₁-C₆
alkylene)-OR⁵ or R⁶, said C₁-C₆ alkyl being optionally substituted by halo, -CN,

- 10 -OR⁵, -OR⁸, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁸R⁹,
-NR⁵COR⁵, -NR⁵COR⁸, -NR⁵COR⁸, -SO₂NR⁵R⁶, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁸.

Preferably, R¹ is C₁-C₆ alkyl, -OR⁷, -CO₂R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵CO-(C₁-C₆
alkylene)-OR⁵ or R⁶, said C₁-C₆ alkyl being optionally substituted by halo or -OR⁵.

Preferably, R¹ is C₁-C₃ alkyl, -OCH₃, -CO₂(C₁-C₂ alkyl), -NHCO₂(C₁-C₂ alkyl), -NH₂,

- 15 -N(CH₃)₂, -NHCOCH₂OCH₃ or furanyl, said C₁-C₃ alkyl being optionally substituted
by fluoro or -OH.

Preferably, R¹ is methyl, ethyl, prop-2-yl, hydroxymethyl, trifluoromethyl, -OCH₃,
-CO₂CH₂CH₃, -NHCO₂CH₂CH₃, -NH₂, -N(CH₃)₂, -NHCOCH₂OCH₃ or furan-2-yl.

Preferably, R¹ is ethyl.

- 20 Preferably, R¹ is methyl, ethyl, trifluoromethyl or -CH₂NHCH₂(4-cyanophenyl).

Preferably, R² is H, C₁-C₆ alkyl, -(C₁-C₃ alkylene)-NR⁵CO-(C₁-C₆ alkyl), -(C₁-C₃
alkylene)-NR⁵CONR⁵-(C₁-C₆ alkyl), -(C₁-C₃ alkylene)-NR⁵CONR⁵CO-(phenyl),
-(C₁-C₃ alkylene)-NR⁵SO₂(C-linked R⁶), -(C₁-C₃ alkylene)-NR⁵CO(C-linked R⁶),

- 25 -(C₁-C₃ alkylene)-NR⁵CO-(phenyl), each C₁-C₆ alkyl and phenyl being optionally
substituted by halo, -OR⁵, -OR¹², -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵,
-C(=NR⁵)NR⁵OR⁵, -CONR⁵NR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R¹², -NR⁵COR⁵,
-NR⁵CO₂R⁷, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁸.

Preferably, R² is H, C₁-C₆ alkyl, -(C₁-C₃ alkylene)-NR⁵CO-(C₁-C₆ alkyl), -(C₁-C₃

- 30 alkylene)-NR⁵CONR⁵-(C₁-C₆ alkyl), -(C₁-C₃ alkylene)-NR⁵CONR⁵CO-(phenyl),
-(C₁-C₃ alkylene)-NR⁵SO₂R⁶, -(C₁-C₃ alkylene)-NR⁵COR⁶, -(C₁-C₃ alkylene)-
NR⁵CO-(phenyl), each C₁-C₆ alkyl and phenyl being optionally substituted by
halo, -OR⁵, -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵,
-NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵ or R⁸.

- Preferably, R² is H, C₁-C₃ alkyl, -(C₁-C₂ alkylene)-NHCO-(C₁-C₃ alkyl), -(C₁-C₂ alkylene)-NHCONH-(C₁-C₃ alkyl), -(C₁-C₂ alkylene)-NHCONHCO-(phenyl), -(C₁-C₂ alkylene)-NHSO₂R⁶, -(C₁-C₂ alkylene)-NHCOR⁶, -(C₁-C₂ alkylene)-NHCO-(phenyl), each C₁-C₃ alkyl and phenyl being optionally substituted by fluoro, -OH, -O(C₁-C₆ alkyl), -CN, -CO₂(C₁-C₆ alkyl), -CONH₂, -OCONH₂, -OCONHCO₂Ph, -NH₂, -N(C₁-C₆ alkyl)₂, -NHCONH₂, -NHCOCOCONH₂ or R⁸.
- Preferably, R² is H, -CH₂OH, -CH₂CH₂OH, -CH₂CH₂CH₂OH, -CH₂OCONH₂, -CH₂CH₂OCONH₂, -CH₂OCONHCO₂Ph, -CH₂CO₂CH₂CH₃, -CH₂CH₂CO₂CH₃, -CH₂CH₂CO₂CH₂CH₃, -CH₂CH₂CONH₂, -CH₂CH₂NH₂, -CH₂CH₂CH₂NH₂,
- 10 -CH₂CH₂NHCOCHF₂, -CH₂CH₂NHCOCH₂CN, -CH₂CH₂NHCOCH₂N(CH₃)₂, -CH₂CH₂NHCOCH₂OCH₃, -CH₂CH₂NHCOCH₂OH, -CH₂CH₂NHCOCH₂OCH₂CH₃, -CH₂CH₂NHCOCH₂NHCONH₂, -CH₂CH₂NHCOCONH₂, -CH₂CH₂NHCONHCH₂CH₂CH₃, -CH₂CH₂NHCONHCOPh, -CH₂CH₂NHCONHCO(2,6-difluorophenyl), -CH₂CH₂NHSO₂(2,4-
- 15 dihydroxypyrimidin-5-yl), -CH₂CH₂NHSO₂(1-methylimidazol-4-yl), -CH₂CH₂NHCO(tetrahydrofuran-2-yl), -CH₂CH₂NHCO(1,5-dimethylpyrazol-3-yl), -CH₂CH₂NHCOCH₂(tetrazol-1-yl), -CH₂CH₂NHCOPh, -CH₂CH₂NHCO(pyridin-2-yl), -CH₂CH₂NHCO(pyrimidin-2-yl), -CH₂CH₂NHCO(2-fluorophenyl), -CH₂CH₂NHCO(3-hydroxyphenyl), -CH₂CH₂NHCO(3-hydroxypyridazin-6-yl),
- 20 -CH₂CH₂NHCO(2-hydroxypyridin-6-yl), -CH₂CH₂NHCO(2-oxo-2H-pyran-5-yl) or -CH₂CH₂NHCO(1,2,3-thiadiazol-4-yl).
- Preferably, R² is H, methyl, -CH₂CH₂OH, -CH₂CH₂CH₂OH, -CH₂CH₂NH₂, -CH₂CH₂CH₂NH₂, -CH₂CN, -CH₂CH₂OCH₃, -CH₂CONH₂, -CH₂CH₂NHCOCH₂OCH₃ or azetidin-3-yl.
- 25 Preferably, R² is -CH₂CH₂OH, -CH₂CH₂NH₂, -CH₂CN or azetidin-3-yl.
- Preferably, R³ is C₁-C₆ alkyl, -CO₂R⁵, -CONR⁵R⁵, -NR⁵CO₂R⁷ or -NR⁵R⁵, said C₁-C₆ alkyl being optionally substituted by halo, -CN, -OR⁵, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵,
- 30 -NR⁵SO₂R⁷ or R⁸.
- Preferably, R³ is C₁-C₆ alkyl, -CO₂R⁵, -CONR⁵R⁵, -NR⁵CO₂R⁵ or -NR⁵R⁵, said C₁-C₆ alkyl being optionally substituted by halo, -CN or -OR⁵.
- Preferably, R³ is C₁-C₃ alkyl, -CO₂(C₁-C₂ alkyl), -CONH₂, -NHCOCO₂(C₁-C₄ alkyl), -N(CH₃)₂ or -NH₂, said C₁-C₃ alkyl being optionally substituted by halo, -CN or

-OH.

Preferably, R³ is methyl, ethyl, prop-2-yl, hydroxymethyl, cyanomethyl, trifluoromethyl, -CO₂CH₂CH₃, -CONH₂, -NHCO₂C(CH₃)₃, -N(CH₃)₂ or -NH₂.

Preferably, R³ is methyl, ethyl, prop-2-yl or trifluoromethyl.

- 5 Preferably, R³ is ethyl.

Preferably, X is -CH₂-, -CHR¹¹-, -CO-, -S- or -SO₂-.

Preferably, X is -CH₂-, -CH(OCH₃)-, -CO-, -S- or -SO₂-.

Preferably, X is -CH₂- or -S-.

10

Preferably, R⁶ is azetidinyl, tetrahydropyrrolyl, piperidinyl, azepinyl, oxetanyl, tetrahydrofuranlyl, tetrahydropyranyl, oxepinyl, morphoninyl, piperazinyl, diazepinyl, pyrrolyl, furanyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyridinyl, pyranyl, pyridazinyl, pyrimidinyl or pyrazinyl each being optionally substituted by

15 -OR⁵, -NR⁵R⁵, -CN, oxo, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, -COR⁷ or halo.

Preferably, R⁶ is furan-2-yl, 2,4-dihydroxypyrimidinyl, 1-methylimidazolyl, tetrahydrofuranlyl, 1,5-dimethylpyrazolyl, tetrazolyl, pyridinyl, pyrimidinyl, 3-hydroxypyridazinyl, 2-hydroxypyridinyl, 2-oxo-2H-pyranyl or 1,2,3-thiadiazolyl.

20 Preferably, R⁶ is 2,4-dihydroxypyrimidinyl, 1-methylimidazolyl, tetrahydrofuranlyl, 1,5-dimethylpyrazolyl, tetrazolyl, pyridinyl, pyrimidinyl, 3-hydroxypyridazinyl, 2-hydroxypyridinyl, 2-oxo-2H-pyranyl or 1,2,3-thiadiazolyl.

25 Preferably, R¹⁰ is C₁-C₆ alkyl, phenyl, or C-linked R⁶, said C₁-C₆ alkyl and phenyl being optionally substituted by halo, -OR⁵, -OR¹², -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -C(NR⁵)NR⁵OR⁵, -CONR⁵NR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R¹², -NR⁵COR⁵, -NR⁵CO₂R⁷, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁶.

30 Preferably, R¹⁰ is C₁-C₆ alkyl, phenyl, or C-linked R⁶, said C₁-C₆ alkyl and phenyl being optionally substituted by halo, -OR⁵, -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵ or R⁶.

Preferably, R¹⁰ is C₁-C₃ alkyl, phenyl, or R⁶, said C₁-C₃ alkyl and phenyl being optionally substituted by fluoro, -OH, -O(C₁-C₆ alkyl), -CN, -CO₂(C₁-C₆ alkyl), -CONH₂, -OCONH₂, -OCONHCO₂Ph, -NH₂, -N(C₁-C₆ alkyl)₂, -NHCONH₂,

-NHCOCOCONH₂ or R⁶.

Preferably, R¹⁰ is -CH₂OH, -CH₂CH₂OH, -CH₂CH₂CH₂OH, -CH₂OCONH₂,

-CH₂CH₂OCONH₂, -CH₂OCONHCO₂Ph, -CH₂CO₂CH₂CH₃, -CH₂CH₂CO₂CH₃,

-CH₂CH₂CO₂CH₂CH₃, -CH₂CH₂CONH₂, -CH₂CH₂NH₂, -CH₂CH₂CH₂NH₂,

- 5 -CHF₂, -CH₂CN, -CH₂N(CH₃)₂, -CH₂OCH₃, -CH₂OH, -CH₂OCH₂CH₃,
 -CH₂NHCONH₂, -CH₂CH₂NHCOCOCONH₂, -CH₂CH₂CH₃, phenyl, 2,6-difluorophenyl,
 2,4-dihydroxypyrimidin-5-yl, 1-methylimidazol-4-yl, tetrahydrofuran-2-yl, 1,5-dimethylpyrazol-3-yl, -CH₂(tetrazol-1-yl), pyridin-2-yl,
 pyrimidin-2-yl, 2-fluorophenyl, 3-hydroxyphenyl, 3-hydroxypyridazin-6-yl, 2-hydroxypyridin-6-yl, 2-oxo-2H-pyran-5-yl or 1,2,3-thiadiazol-4-yl.

10 Preferably, R¹⁰ is methyl, -CH₂CH₂OH, -CH₂CH₂CH₂OH, -CH₂CH₂NH₂,
 -CH₂CH₂CH₂NH₂, -CH₂CN, -CH₂CH₂OCH₃, -CH₂CONH₂, -CH₂CH₂NHCOCH₂OCH₃
 or azetidin-3-yl.

- 15 The following preferred features of the invention relate to compounds of the formula (I).

Preferably, R⁴ is phenyl optionally substituted by R⁶, halo, -CN, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy.

- 20 Preferably, R⁴ is phenyl substituted by halo, -CN or C₁-C₃ alkyl.

Preferably, R⁴ is phenyl substituted by fluoro, chloro, bromo, -CN, or methyl.

Preferably, R⁴ is 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl, 3,5-dichlorophenyl, 2,6-difluorophenyl, 3,5-difluorophenyl, 3,5-dicyanophenyl, 3,5-dibromophenyl or 3,5-dimethylphenyl.

- 25 Preferably, R⁴ is (i) phenyl substituted at the 3 position by fluoro, chloro, methyl or cyano or (ii) phenyl substituted at the 3 and 5 positions by two substituents independently chosen from fluoro, chloro, methyl and cyano.

- The following preferred features of the invention relate to compounds of the formula (Ib).

30 Preferably, R⁴ is phenyl substituted by at least one substituent selected from halo, -CN, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl and C₁-C₆ alkoxy.

Preferably, R⁴ is phenyl substituted by at least one substituent selected from halo, -CN and C₁-C₃ alkyl.

Preferably, R⁴ is phenyl substituted by at least one substituent selected from fluoro, chloro, bromo, -CN and methyl.

5 Preferably, R⁴ is 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl, 3,5-dichlorophenyl, 2,6-difluorophenyl, 3,5-difluorophenyl, 3,5-dicyanophenyl, 3,5-dibromophenyl or 3,5-dimethylphenyl.

10 Preferably, R⁴ is (i) phenyl substituted at the 3 position by fluoro, chloro, methyl or cyano or (ii) phenyl substituted at the 3 and 5 positions by two substituents independently chosen from fluoro, chloro, methyl and cyano.

All of the compounds of the formula (I) and the compounds of the formula (Ib) can be prepared by conventional routes such as by the procedures described in the general methods presented below or by the specific methods described in the
15 Examples section, or by similar methods thereto. The present invention also encompasses any one or more of these processes for preparing the compounds of formula (Ib).

In the following general methods, R¹, R², R³, R⁴ and X are as previously defined
20 for a compound of the formula (Ib) or a compound of the formula (I) unless otherwise stated.

Compounds of the formula (Ib) and compounds of the formula (I) in which R¹ and R³ are each either H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, -CO₂R⁵,
25 -CONR⁶R⁵, or C-linked R⁶, optionally substituted where allowed, may be prepared by the reaction of a compound of the formula

with a compound of the formula

or a salt or hydrate thereof, optionally in the presence of an acid or a base, the
 5 base preferably being a tertiary amine base such as triethylamine and the acid
 preferably being acetic acid. In a typical procedure, a solution of the compound of
 the formula (II) in a suitable solvent, such as ethanol, is treated with the
 compound of the formula (III), or the salt or hydrate thereof, and, if used, the
 appropriate acid or base, at a temperature of from room temperature to the reflux
 10 temperature of the solvent. In a preferred procedure, the reaction mixture is
 heated under reflux.

Functional equivalents of compounds of the formula (II) may also be used in this
 reaction. These include compounds of the formula (IV) or (V), in which L¹ and L²,
 15 respectively, are each suitable leaving groups, preferably -N(C₁-C₆ alkyl)₂, most
 preferably -N(CH₃)₂.

Thus, a compound of the formula (Ib) or a compound of the formula (I) may be
 prepared by the condensation of a compound of the formula (IV) or (V) with a
 20 compound of the formula (III), or a salt or hydrate thereof, optionally in the
 presence of an acid or a base, the base preferably being a tertiary amine base
 such as triethylamine and the acid preferably being acetic acid. In a typical
 procedure, a solution of the compound of the formula (IV) or (V) in a suitable
 solvent, such as acetic acid, is treated with the compound of the formula (III), or
 25 the salt or hydrate thereof, and, if used, the appropriate acid or base, at a
 temperature of from room temperature to the reflux temperature of the solvent. In
 a preferred procedure, the reaction mixture is heated under reflux. Compounds of
 the formula (IV) or (V) are particularly suitable for the synthesis of compounds of

the formula (Ib) or compounds of the formula (I) in which R¹ or R³, respectively, is H.

Compounds of the formula (IV) in which R¹ is H and L¹ is dimethylamino may be prepared by the reaction of a compound of the formula (VI) with dimethylformamide dimethylacetal at an elevated temperature, preferably at about 100°C. Compounds of the formula (V) in which R³ is H and L² is dimethylamino may be prepared by the reaction of a compound of the formula (VII) under the same conditions. Other compounds of the formula (IV) or (V) in which L¹ or L² is dimethylamino may be prepared analogously.

Compounds of the formula (VI) are either commercially available or may be prepared by methods well known in the art. For example, where X is S, compounds of the formula (VI) may be prepared by the reaction of a compound of the formula

with a compound of the formula

R^4SH (IX).

In a typical procedure a solution of a compound of the formula (VIII) in a suitable solvent, such as acetone, is treated with a compound of the formula (IX), optionally treated with a base, such as potassium carbonate and optionally treated with a catalyst such as sodium iodide or tetrabutylammonium iodide. The reaction is preferably performed at room temperature.

Compounds of the formula (VII) are either commercially available or may be prepared from a compound of the formula

5

and a compound of the formula (IX) in the same way that a compound of the formula (VI) may be prepared from a compound of the formula (VIII).

- Compounds of the formula (II) may be prepared using the route shown in
10. Scheme 1 in which L^3 is a suitable leaving group, preferably chloro.

Scheme 1

15

- In Scheme 1, compounds of the formula (II) in which X is $-\text{CH}_2-$ may be prepared by the reduction of a compound of the formula (XI) with a suitable reducing agent such as (a) hydrogen in the presence of a palladium catalyst, (b) diphenylsilane in the presence of a palladium catalyst and a zinc salt or (c) triethylsilane in the presence of an acid such as trifluoroacetic acid. In a typical procedure, a solution
20. 20. of

- of the compound of the formula (XI) in a suitable solvent, such as ethanol or a mixture of ethanol and ethyl acetate, under a hydrogen atmosphere, is treated with 5% w/w palladium on barium sulphate. In another typical procedure, a solution of the compound of the formula (XI) in a suitable solvent, such as dichloromethane, is treated with diphenylsilane, tetrakis(triphenylphosphine)palladium (0) and zinc chloride. In a further typical example, a solution of the compound of the formula (XI) in a suitable solvent, such as dichloromethane, is treated with triethylsilane and trifluoroacetic acid.
- 5 Compounds of the formula (XI) may be prepared by the condensation of a compound of the formula (XII) with a compound of the formula
- 10 R^4CHO (XV),
- 15 or a functional equivalent thereof, such as an acetal, optionally in the presence of a suitable catalyst, such as a mixture of acetic acid and piperidine. In a typical procedure, a solution of the compound of the formula (XII) in a suitable solvent such as toluene is treated with a compound of the formula (XV), acetic acid and piperidine and heated at a temperature of from room temperature to the reflux
- 20 temperature of the solvent. Preferably, the reaction mixture is heated under reflux using a Dean-Stark apparatus. Compounds of the formula (XI), prepared in this way, in which R^1 and R^3 are different, are usually formed as a mixture of stereoisomers. Such a mixture may be used directly in subsequent transformations or separated into its individual stereoisomers which may then be
- 25 used separately.

Alternatively, compounds of the formula (II) in which X is $-CH_2-$ may be prepared by the reaction of a compound of the formula (XII) with a compound of the formula

30

in which L^6 is a suitable leaving group, preferably is chloro, bromo, iodo or para-toluenesulphonate, in the presence of a suitable base. In a typical procedure, a

solution of the compound of the formula (XII) in a suitable solvent, such as 2-butanone, tetrahydrofuran, acetonitrile or diethylether, is treated with a base, such as sodium ethoxide, sodium hydride or sodium carbonate, and the compound of the formula (XXVIII), optionally with heating. A preferred
5 combination is 2-butanone as the solvent and sodium hydride as the base.

Compounds of the formula (XII) and compounds of the formula (XXVIII) are either commercially available or are easily prepared by methods well known to the skilled person.

10 Compounds of the formula (II) in which X is -CHR¹⁰- (other than where R¹⁰ is C₁-C₆ alkoxy - see below for the preparation of these compounds) may be prepared by the reduction of a compound of the formula (XIII) with a suitable reducing agent such as (a) hydrogen in the presence of a palladium catalyst, (b)
15 diphenylsilane in the presence of a palladium catalyst and a zinc salt or (c) triethylsilane in the presence of an acid such as trifluoroacetic acid. In a typical procedure, a solution of the compound of the formula (XIII) in a suitable solvent, such as ethanol or a mixture of ethanol and ethyl acetate, under a hydrogen atmosphere, is treated with 5% w/w palladium on barium sulphate. In another
20 typical procedure, a solution of the compound of the formula (XIII) in a suitable solvent, such as dichloromethane, is treated with diphenylsilane, tetrakis(triphenylphosphine)palladium (0) and zinc chloride. In a further typical example, a solution of the compound of the formula (XIII) in a suitable solvent, such as dichloromethane, is treated with triethylsilane and trifluoroacetic acid.

25 Compounds of the formula (XIII) may be prepared by the condensation of a compound of the formula (XII) with a compound of the formula

30 or a functional equivalent thereof, such as a ketal, optionally in the presence of a suitable catalyst, such as a mixture of acetic acid and piperidine. In a typical procedure, a solution of the compound of the formula (XII) in a suitable solvent such as toluene is treated with a compound of the formula (XVI), acetic acid and

piperidine and heated at a temperature of from room temperature to the reflux temperature of the solvent. Preferably, the reaction mixture is heated under reflux using a Dean-Stark apparatus. Compounds of the formula (XIII), prepared in this way, in which R¹ and R³ are different, are usually formed as a mixture of 5 stereoisomers. Such a mixture may be used directly in subsequent transformations or separated into its individual stereoisomers which may then be used separately.

Compounds of the formula (II) in which X is -S- may be prepared by the reaction 10 of a compound of the formula (XIV) with a compound of the formula (IX). In a typical procedure a solution of a compound of the formula (XIV) in a suitable solvent, such as acetone, is treated with a compound of the formula (IX), optionally treated with a base, such as potassium carbonate and optionally treated with a catalyst such as sodium iodide or tetrabutylammonium iodide. The 15 reaction is preferably performed at room temperature.

Compounds of the formula (XIV) may be prepared by the reaction of a compound 20 of the formula (XII) with a suitable activating agent, e.g. in the case where L³ is chloro, with a chlorinating agent such as sulphuryl chloride. In a typical procedure, where L³ is chloro, the compound of the formula (XII) is treated with sulphuryl chloride, optionally in the presence of a suitable solvent such as dichloromethane.

Compounds of the formula (Ib) and compounds of the formula (I) in which R¹ or 25 R³ is -OR⁷ may be prepared using the route shown in Scheme 2 in which R^a is C₁-C₆ alkyl and L⁴ is a suitable leaving group, preferably trifluoromethanesulphonate.

Scheme 2

- 5 In Scheme 2, compounds of the formula (Ib) and compounds of the formula (I) in which R¹ is -OR⁷ may be prepared by the reaction of a compound of the formula (XVII) with an alcohol of the formula

R^7OH (XXV)

in the presence of a suitable catalyst, preferably a palladium catalyst, and carbon monoxide. In a typical procedure a mixture of the compound of the formula 5 (XVII), a suitable palladium catalyst such as 1,1'-bis(diphenylphosphino)ferrocenepalladium(II)chloride, the alcohol of the formula (XXV) and, optionally, a suitable solvent such as N,N-dimethylformamide is heated, preferably to about 50°C, under an atmosphere of carbon monoxide, preferably at a pressure of 345 kPa.

10

Compounds of the formula (XVII) may be prepared by the derivatisation of a compound of the formula (XVIII). In the case where L^4 is trifluoromethanesulphonate a suitable derivatising agent is phenyltriflamide. In a typical procedure, where L^4 is trifluoromethanesulphonate, a solution of the 15 compound of the formula (XVIII) and a suitable base, preferably a trialkylamine base such as triethylamine, in a suitable solvent such as dichloromethane is treated with phenyltriflamide.

Compounds of the formula (XVIII) may be prepared by the reaction of a 20 compound of the formula (XIX) with a compound of the formula (III), or a salt or hydrate thereof, optionally in the presence of an acid or a base, the base preferably being a tertiary amine base such as triethylamine and the acid preferably being acetic acid. In a typical procedure, a solution of the compound of the formula (XIX) in a suitable solvent, such as ethanol, is treated with the 25 compound of the formula (III), or the salt or hydrate thereof, and, if used, the appropriate acid or base, at a temperature of from room temperature to the reflux temperature of the solvent. In a preferred procedure, the reaction mixture is heated under reflux.

30 Compounds of the formula (XIX) may be prepared by the derivatisation of a compound of the formula (XX) in the same way that compounds of the formula (II) may be prepared by the derivatisation of a compound of the formula (XII) as described above.

Compounds of the formula (XX) are either commercially available or are readily prepared by methods well known to the skilled person.

- In Scheme 2, compounds of the formula (Ib) and compounds of the formula (I) in which R³ is -OR⁷ may be prepared from a compound of the formula (XXIV) in the same way that a compound of the formula (I) or a compound of the formula (Ib) in which R¹ is -OR⁷ is prepared from a compound of the formula (XX), as described above, *mutatis mutandis*.
- 10 The skilled man will appreciate that compounds of the formula (XVIII) and compounds of the formula (XXII) may exist in one of several tautomeric forms.

Alternatively, compounds of the formula (Ib) and compounds of the formula (I) in which R¹ or R³ is -OR⁷ may be prepared from compounds of the formula (XVIII) or (XXII), respectively, by reaction with a compound of the formula (XXV) under dehydrating conditions, e.g. using the Mitsunobu reaction. In a typical procedure, a solution of the compound of the formula (XVIII) or (XXII) in a suitable solvent, such as tetrahydrofuran is treated with a dialkylazodicarboxylate, preferably diethylazodicarboxylate, a triarylphosphine, preferably triphenylphosphine and a compound of the formula (XXV).

Alternatively, compounds of the formula (Ib) and compounds of the formula (I) in which R¹ or R³ is -OR⁷ may be prepared from compounds of the formula (XVIII) or (XXII), respectively, by reaction with a compound of the formula

25

in which L⁷ is a suitable leaving group, preferably halo, optionally in the presence of a suitable base. In a typical procedure, a solution of the compound of the formula (XVIII) or the compound of the formula (XXII) in a suitable solvent, such as tetrahydrofuran, dimethylformamide or ethanol, is treated with a base, such as sodium ethoxide or sodium carbonate, and the compound of the formula (XXIX), optionally with heating.

Compounds of the formula (Ib) and compounds of the formula (I) in which R¹ or R³ is halo may be prepared by the reaction, respectively, of a compound of the formula (XVIII) or a compound of the formula (XXII) with a suitable halogenating agent. In a typical procedure, the compound of the formula (XVIII) or (XXII) is
5 treated with POCl₃, optionally in the presence of a suitable solvent such as dimethylformamide, to give a compound of the formula (Ib) or a compound of the formula (I) in which R¹ or R³, respectively, is chloro.

Compounds of the formula (Ib) and compounds of the formula (I) in which R¹ or
10 R³ is -OCONR⁵R⁵ may be prepared by the reaction, respectively, of a compound of the formula (XVIII) or a compound of the formula (XXII) with a compound of the formula

15

in which L⁵ is a suitable leaving group, preferably chloro, or, in the case where one of the R⁵ groups is H, with a compound of the formula

20

Compounds of the formula (Ib) and compounds of the formula (I) in which R¹ or R³ is -NH₂ may be prepared by the route shown in Scheme 3.

25

30

Scheme 3

- 5 In Scheme 3, compounds of the formula (Ib) and compounds of the formula (I) in which R^1 is $-\text{NH}_2$ may be prepared by the reaction of a compound of the formula (XXX) with a compound of the formula (III), or a salt or hydrate thereof, optionally in the presence of an acid or a base, the base preferably being a tertiary amine base such as triethylamine and the acid preferably being acetic acid. In a typical procedure, a solution of the compound of the formula (XXX) in a suitable solvent, such as ethanol, is treated with the compound of the formula (III), or the salt or hydrate thereof, and, if used, the appropriate acid or base, at a temperature of from room temperature to the reflux temperature of the solvent. In a preferred procedure, the reaction mixture is heated under reflux.
- 10
- 15 Compounds of the formula (XXX) may be prepared from a compound of the formula (XXXI) in the same way that compounds of the formula (II) may be prepared from a compound of the formula (XII) as described above.
- 20 Compounds of the formula (XXXI) are either commercially available or readily prepared by methods well known to the skilled person.

In Scheme 3, compounds of the formula (Ib) and compounds of the formula (I) in which R³ is -NH₂ may be prepared from a compound of the formula (XXXIII) in the same way that compounds of the formula (Ib) and compounds of the formula 5 (I) in which R¹ is NH₂ may be prepared from compounds of the formula (XXXI), *mutatis mutandis*.

Compounds of the formula (Ib) and compounds of the formula (I) in which X is -CO- or -CHR¹⁰- and R¹⁰ is C₁-C₆ alkoxy may be prepared by the route shown in 10 Scheme 4 in which R^b is C₁-C₆ alkyl.

Scheme 4

In Scheme 4, compounds of the formula (Ib) and compounds of the formula (I) in which X is -CO- (i.e. compounds of the formula (Ic)) may be prepared by the oxidation of a compound of the formula (XXXIV). In a typical procedure, a
5 solution of a compound of the formula (XXXIV) in a suitable solvent, such as dichloromethane, is treated with N-methylmorpholine-N-oxide and tetra-n-propylammonium perruthenate^(VI).

Compounds of the formula (Ib) and compounds of the formula (I) in which X is
10 -CHR¹⁰- and R¹⁰ is C₁-C₆ alkoxy (i.e. compounds of the formula (Id)) may be prepared by the alkylation of a compound of the formula (XXXIV). In a typical procedure, a solution of a compound of the formula (XXXIV) in a suitable solvent, such as N,N-dimethylformamide, is treated with a base, such as sodium hydride, and a compound of the formula
15

wherein R^b is C₁-C₆ alkyl and L⁸ is a suitable leaving group, preferably chloro, bromo or iodo.

20 Compounds of the formula (XXXIV) may be prepared by the reaction of a compound of the formula (XXXV) with a suitable metal or organometallic reagent to form an organometallic intermediate which is reacted with a compound of the formula (XV). A preferred metal is magnesium. In a typical procedure, a solution
25 of the compound of the formula (XXXV) in a suitable solvent, such as tetrahydrofuran, is treated with an alkylmagnesium chloride, e.g. isopropylmagnesium chloride, preferably with cooling in an ice bath, and a compound of the formula (XV) is added.

30 Compounds of the formula (XXXV) may be prepared by the reaction of a compound of the formula (XXXVI) with a suitable base, preferably sodium hydride, and the addition of a compound of the formula

- wherein L⁹ is a suitable leaving group, preferably a chloro, bromo, iodo or tosylate group. In a typical procedure, a solution of the compound of the formula (XXXVI) in a suitable solvent, such as N,N-dimethylformamide, is treated firstly
- 5 with a suitable base, such as sodium hydride, and then with a compound of the formula (XXXIX). The reaction is then preferably heated, most preferably to 50°C. If R² contains a free -OH, -NH₂, or -NH- group then a protecting group is preferably employed to mask such functionality. Examples of suitable protecting groups will be apparent to the skilled person [see, for instance, 'Protecting groups
- 10 in Organic Synthesis (Second Edition)' by Theodora W. Green and Peter G. M. Wuts, 1991, John Wiley and Sons]. The protecting group may be removed immediately or carried through subsequent steps, as described above, and removed as a final step (see below).
- 15 Compounds of the formula (XXXVI) may be prepared by the reaction of a compound of the formula (XXXVII) with a suitable iodinating agent. In a typical procedure, a solution of the compound of the formula (XXXVII) in a suitable solvent, such as dichloromethane, is treated with the iodinating agent which is preferably N-iodosuccinimide.
- 20 Compounds of the formula (XXXVII) are either commercially available or are readily prepared by methods well known to the skilled man. Such compounds may, for instance, be prepared by analogy with the methods presented above, for example by the reaction of a diketone (XII) with a compound of the formula (III),
- 25 or a salt or solvate thereof.
- It will be appreciated by those skilled in the art that, in many cases, compounds of the formula (Ib) and compounds of the formula (I) may be converted, respectively, into other compounds of the formula (Ib) or compounds of the
- 30 formula (I) by functional group transformations. For instance:

(a) Compounds of the formula (Ib)/(I) in which R² is H may be converted into compounds of the formula (Ib)/(I) in which R² is optionally substituted C₁-C₆ alkyl by reaction with an appropriate alkylating agent. In a typical procedure, a solution

of a compound of the formula (Ib)/(I) in which R² is H in a suitable solvent such as ethanol or N,N-dimethylformamide is treated with an alkyl bromide and a base such as sodium ethoxide or sodium hydride and heated at a temperature of from room temperature to the reflux temperature of the solvent. A preferred 5 combination is N,N-dimethylformamide as the solvent, sodium hydride as the base and room temperature as the temperature. Examples of specific alkylating agents include bromoacetonitrile, ethyl 4-chloroacetoacetate, ethyl bromoacetate, methyl bromoacetate and chloroethylamine hydrochloride. The use of further specific alkylating agents is illustrated by the Examples below.

10

(b) Compounds of the formula (Ib)/(I) in which R² contains an ester functionality may be reduced with a suitable reducing agent, such as lithium aluminium hydride, to give corresponding compounds of the formula (Ib)/(I) in which R² contains a hydroxy group. In a typical procedure, a solution of the 15 compound of the formula (Ib)/(I), in which R² contains an ester group, in a suitable solvent, such as diethyl ether, is treated with lithium aluminium hydride, preferably with cooling to a temperature of from -78 °C to 0 °C.

(c) Compounds of the formula (Ib)/(I) in which R¹ or R³ is -NH₂, may be 20 converted into compounds of the formula (Ib)/(I) in which R¹ or R³, respectively, is -NHR^c, where R^c is C₁-C₆ alkyl, C₃-C₈ cycloalkyl or benzyl by a reductive amination with an appropriate aldehyde or ketone. In a typical reductive amination, the reaction will proceed in a suitable solvent such as dichloromethane, in the presence of a suitable reducing agent such as sodium 25 triacetoxyborohydride and optionally in the presence of an acid such as acetic acid. A further reductive amination may be performed on a compound of the formula (Ib)/(I) in which R¹ or R³ is -NHR^c to give a compound of the formula (Ib)/(I) in which R¹ or R³, respectively, is -NR^cR^c, where R^c is as defined above and each R^c may be the same or different.

30

(d) Compounds of the formula (Ib)/(I) in which R¹ or R³ is -NHR⁵, may be converted into compounds of the formula (Ib)/(I) in which, respectively, R¹ is -NR⁵COR⁶, -NR⁵CONR⁵R⁵, -NR⁵CO₂R⁷ or -NR⁵SO₂R⁷ or R³ is -NR⁵COR⁵,

-NR⁵CONR⁵R⁵, -NR⁵CO₂R⁷ or -NR⁵SO₂R⁷ by reaction with an appropriate acylating or sulphonylating agent in a suitable inert solvent, such as dichloromethane, optionally in the presence of a base, preferably a tertiary amine base such as triethylamine.

5

- (e) compounds of the formula (Ib)/(I) in which R¹ or R³ is -CO₂R⁵, wherein R⁵ is other than H, may be converted into compounds of the formula (Ib)/(I) in which R¹ or R³, respectively, is -CO₂H by hydrolysis. Typically the reaction will be carried out in a suitable solvent, such as aqueous ethanol, or aqueous 1,4-dioxan 10 and in the presence of a base such as sodium hydroxide. Such an acid may be converted to a primary amide by reaction with ammonia and a suitable coupling agent, such as a carbodiimide, e.g. dicyclohexylcarbodiimide. Such a primary amide may then be converted into a nitrile by dehydration with a suitable dehydrating agent, such as phosphoryl chloride.

15

- (f) Compounds of the formula (Ib)/(I) in which R¹ or R³ is -CO₂H, may be converted into compounds of the formula (Ib)/(I) in which R¹ or R³, respectively, is -NH₂, by the Curtius rearrangement. In a typical procedure, the reaction is carried out in a suitable solvent, such as dichloromethane, in the presence of a 20 reagent such as diphenylphosphoryl azide.

- (g) Compounds of the formula (Ib)/(I) in which X is -S- may be converted into compounds of the formula (Ib)/(I) in which X is -SO- by reaction with a suitable oxidising agent, such as meta-chloroperoxybenzoic acid. The reaction is carried 25 out in the presence of a suitable solvent such as dichloromethane.

- (h) Compounds of the formula (Ib)/(I) in which X is -S- may be converted into compounds of the formula (Ib)/(I) in which X is -SO₂- by reaction with a suitable oxidising agent such as Oxone (trade mark), meta-chloroperoxybenzoic acid or 30 hydrogen peroxide. In a typical procedure, a solution of the compound of the formula (Ib)/(I) in which X is -S- in a suitable solvent, such as dichloromethane, is treated with meta-chloroperoxybenzoic acid.

- (i) Compounds of the formula (Ib)/(I) in which R¹, R² or R³ contain a heterocycle of the formula R⁶ may be prepared by standard heterocycle-forming reactions well known to the skilled person (see, for example, Advanced Organic Chemistry, 3rd Edition, by Gerry March or Comprehensive Heterocyclic Chemistry, A.R. Katritzky, C.W. Rees, E.F.V. Scriven, Volumes 1-11), either from another compound of the formula (Ib)/(I) or otherwise. For instance, compounds of the formula (Ib)/(I) in which R² is (2-amino-6-hydroxypyrimidin-4-yl)methyl may be prepared by the sequential reaction of a compound of the formula (Ib)/(I) in which R² is H with methyl 4-chloroacetooacetate and then guanidine hydrochloride.
- (j) Compounds of the formula (Ib)/(I) in which either R¹ or R³ is an N-linked heterocycle of the formula R⁶ may be prepared from compounds of the formula (Ib)/(I) in which R¹ or R³, respectively, is -NH₂, by standard heterocycle-forming reactions well known to the skilled man (see, for example, Advanced Organic Chemistry, 3rd Edition, by Gerry March or Comprehensive Heterocyclic Chemistry, A.R. Katritzky, C.W. Rees, E.F.V. Scriven, Volumes 1-11).
- Compounds of the formula (Ib)/(I) containing an -OH, -NH- or -NH₂ group may be prepared by the deprotection of the corresponding compound bearing an -OP¹, -NP¹- or -NHP¹ group, respectively, wherein the group P¹ is a suitable protecting group. Examples of suitable protecting groups will be apparent to the skilled person [see, for instance, 'Protecting groups in Organic Synthesis (Second Edition)' by Theodora W. Green and Peter G. M. Wuts, 1991, John Wiley and Sons]. Such compounds bearing an -OP¹, -NP¹- or -NHP¹ group may be prepared using the routes described above, *mutatis mutandis*.
- The compounds of the formula (I) and the compounds of the formula (Ib) can be administered alone but will generally be administered in admixture with a suitable pharmaceutical excipient, diluent or carrier selected with regard to the intended route of administration and standard pharmaceutical practice.

For example, the compounds of the formula (I) and the compounds of the formula (Ib) can be administered orally, buccally or sublingually in the form of

- tablets, capsules, multi-particulates, gels, films, ovules, elixirs, solutions or suspensions, which may contain flavouring or colouring agents, for immediate-, delayed-, modified-, sustained-, pulsed- or controlled-release applications. The compounds of the formula (I) and the compounds of the formula (Ib) may also be
- 5 administered as fast-dispersing or fast-dissolving dosage forms or in the form of a high energy dispersion or as coated particles. Suitable formulations of the compounds of the formula (I) and the compounds of the formula (Ib) may be in coated or uncoated form, as desired.
- 10 Such solid pharmaceutical compositions, for example, tablets, may contain excipients such as microcrystalline cellulose, lactose, sodium citrate, calcium carbonate, dibasic calcium phosphate, glycine and starch (preferably corn, potato or tapioca starch), disintegrants such as sodium starch glycollate, croscarmellose sodium and certain complex silicates, and granulation binders such as
- 15 polyvinylpyrrolidone, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC), sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, stearic acid, glyceryl behenate and talc may be included.
- 20 **General Example**
A formulation of the tablet could typically contain between about 0.01mg and 500mg of active compound whilst tablet fill weights may range from 50mg to 1000mg. An example of a formulation for a 10mg tablet is illustrated below:
- | | <u>Ingredient</u> | <u>%w/w</u> |
|----|--|-------------|
| 25 | Compound of the formula (I)/(Ib) or salt | 10.000* |
| | Lactose | 64.125 |
| | Starch | 21.375 |
| | Croscarmellose sodium | 3.000 |
| 30 | Magnesium Stearate | 1.500 |

* Quantity adjusted in accordance with drug activity.

The tablets are manufactured by a standard process, for example, direct compression or a wet or dry granulation process. The tablet cores may be coated with appropriate overcoats.

- 5 Solid compositions of a similar type may also be employed as fillers in gelatin or HPMC capsules. Preferred excipients in this regard include lactose, starch, a cellulose, milk sugar or high molecular weight polyethylene glycols. For aqueous suspensions and/or elixirs, the compounds of the formula (I) and the compounds of the formula (Ib) may be combined with various sweetening or flavouring
10 agents, colouring matter or dyes, with emulsifying and/or suspending agents and with diluents such as water, ethanol, propylene glycol and glycerin, and combinations thereof.

15 The compounds of the formula (I) and the compounds of the formula (Ib) can also be administered parenterally, for example, intravenously, intra-arterially, intraperitoneally, intrathecally, intraventricularly, intraurethrally, intrasternally, intracranially, intramuscularly or subcutaneously, or they may be administered by infusion or needleless injection techniques. For such parenteral administration they are best used in the form of a sterile aqueous solution which may contain
20 other substances, for example, enough salts or glucose to make the solution isotonic with blood. The aqueous solutions should be suitably buffered (preferably to a pH of from 3 to 9), if necessary. The preparation of suitable parenteral formulations under sterile conditions is readily accomplished by standard pharmaceutical techniques well-known to those skilled in the art.

25 For oral and parenteral administration to human patients, the daily dosage level of the compounds of the formula (I) and the compounds of the formula (Ib) will usually be from 0.01 to 30 mg/kg, preferably from 0.01 to 10 mg/kg (in single or divided doses).

30 Thus tablets or capsules of the compound of the formula (I) or the compound of the formula (Ib) may contain from 1 to 500 mg of active compound for administration singly or two or more at a time, as appropriate. The physician in any event will determine the actual dosage which will be most suitable for any

individual patient and it will vary with the age, weight and response of the particular patient. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited and such are within the scope of this invention. The skilled 5 person will appreciate that, in the treatment of certain conditions the compounds of the formula (I) and the compounds of the formula (Ib) may be taken as a single dose as needed or desired.

The compounds of formula (I) and the compounds of the formula (Ib) can also be 10 administered intranasally or by inhalation and are conveniently delivered in the form of a dry powder inhaler or an aerosol spray presentation from a pressurised container, pump, spray, atomiser or nebuliser, with or without the use of a suitable propellant, e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, a hydrofluoroalkane such as 1,1,1,2-tetrafluoroethane 15 (HFA 134A [trade mark]) or 1,1,1,2,3,3-heptafluoropropane (HFA 227EA [trade mark]), carbon dioxide or other suitable gas. In the case of a pressurised aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. The pressurised container, pump, spray, atomiser or nebuliser 20 may contain a solution or suspension of the active compound, e.g. using a mixture of ethanol and the propellant as the solvent, which may additionally contain a lubricant, e.g. sorbitan trioleate. Capsules and cartridges (made, for example, from gelatin) for use in an inhaler or insufflator may be formulated to contain a powder mix of a compound of the formula (I) or a compound of the formula (Ib) and a suitable powder base such as lactose or starch.

25

Alternatively, the compounds of the formula (I) and the compounds of the formula (Ib) can be administered in the form of a suppository or pessary, or they may be applied topically in the form of a gel, hydrogel, lotion, solution, cream, ointment or dusting powder. The compounds of the formula (I) and the compounds of the 30 formula (Ib) may also be dermally or transdermally administered, for example, by the use of a skin patch. They may also be administered by the pulmonary or rectal routes.

They may also be administered by the ocular route. For ophthalmic use, the compounds can be formulated as micronised suspensions in isotonic, pH adjusted, sterile saline, or, preferably, as solutions in isotonic, pH adjusted, sterile saline, optionally in combination with a preservative such as a benzylalkonium chloride. Alternatively, they may be formulated in an ointment such as petrolatum.

For application topically to the skin, the compounds of the formula (I) and the compounds of the formula (Ib) can be formulated as a suitable ointment containing the active compound suspended or dissolved in, for example, a mixture with one or more of the following: mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water. Alternatively, they can be formulated as a suitable lotion or cream, suspended or dissolved in, for example, a mixture of one or more of the following: mineral oil, sorbitan monostearate, a polyethylene glycol, liquid paraffin, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.

The compounds of the formula (I) and the compounds of the formula (Ib) may also be used in combination with a cyclodextrin. Cyclodextrins are known to form inclusion and non-inclusion complexes with drug molecules. Formation of a drug-cyclodextrin complex may modify the solubility, dissolution rate, bioavailability and/or stability of a drug molecule. Drug-cyclodextrin complexes are generally useful for most dosage forms and administration routes. As an alternative to direct complexation with the drug the cyclodextrin may be used as an auxiliary additive, e.g. as a carrier, diluent or solubiliser. Alpha-, beta- and gamma-cyclodextrins are most commonly used and suitable examples are described in WO-A-91/11172, WO-A-94/02518 and WO-A-98/55148.

It is to be appreciated that all references herein to treatment include curative, palliative and prophylactic treatment.

Oral administration is preferred.

Included within the scope of the present invention are embodiments comprising the co-administration of a compound of the present invention with one or more additional therapeutic agents, and compositions containing a compound of the present invention along with one or more additional therapeutic agents. Such a 5 combination therapy is especially useful for the treatment of infection by HIV and related retroviruses which may evolve rapidly into strains resistant to any monotherapy. Alternatively, additional therapeutic agents may be desirable to treat diseases and conditions which result from or accompany the disease being treated with the compound of the present invention. For example, in the 10 treatment of an HIV or related retroviral infection, it may be desirable to additionally treat opportunistic infections, neoplasms and other conditions which occur as a result of the immuno-compromised state of the patient being treated.

Preferred combinations of the present invention include simultaneous or 15 sequential treatment with a compound of the formula (I) or a compound of the formula (Ib), as defined above, or a pharmaceutically acceptable salt thereof, and:

- (a) one or more reverse transcriptase inhibitors such as zidovudine, 20 didanosine, zalcitabine, stavudine, lamivudine, abacavir, adefovir, combivir or trizivir;
- (b) one or more non-nucleoside reverse transcriptase inhibitors such as nevirapine, delavirdine or efavirenz;
- (c) one or more HIV protease inhibitors such as indanavir, ritonavir, saquinavir 25 or nelfinavir;
- (d) one or more CCR5 antagonists such as TAK-779 or SCH-351125;
- (e) one or more CXCR4 antagonists such as AMD-3100;
- (f) one or more integrase inhibitors;
- (g) one or more inhibitors of viral fusion such as T-20 or T-1249;
- 30 (h) one or more investigational drugs such as KNI-272, amprenavir, GW-33908, FTC, PMPA, S-1153, MKC-442, MSC-204, MSH-372, DMP450, PNU-140690, ABT-378, KNI-764, DPC-083, TMC-120 or TMC-125; or
- (i) one or more antifungal or antibacterial agents such as fluconazole.

The activity of the compounds of the invention as reverse transcriptase inhibitors and as agents for treating HIV infections may be measured using the following assays.

5 A. Inhibition of HIV-1 reverse transcriptase enzyme

The reverse transcriptase activity of the compounds of the invention may be assayed as following. Using the purified recombinant HIV-1 reverse transcriptase (RT, EC, 2.7.7.49) obtained by expression in Escherichia Coli, a 96-well plate assay system was established for assaying a large number of samples using either the Poly(rA)-oligo(dT) Reverse Transcriptase [³H]-SPA enzyme assay system (Amersham NK9020) or the [³H]-flashplate enzyme assay system (NEN - SMP 103) and following the manufacturer's recommendations. The compounds were dissolved in 100% DMSO and diluted with the appropriate buffer to a 5% final DMSO concentration. The inhibitory activity was expressed in percent inhibition relative to the DMSO control. The concentration at which the compound inhibited the reverse transcriptase by 50% was expressed as the IC₅₀ of the compound.

20 B. Anti-Human Immunodeficiency Virus (HIV-1) cell culture assay

The anti-HIV activity of the compounds of the invention may be assayed by the following procedures.

- 1) SupT1 cells were cultured in an RPMI-1640 medium supplemented with 10% foetal calf serum and were split so that they were in growth phase on the day of use.
- 2) The compounds were dissolved in 100% DMSO and diluted with the above culture medium to predetermined concentrations and distributed in 20µl aliquots into a 96-well microtiter plate (0.1% DMSO final concentration).
- 30 3) To prepare infected cells, 100µl of RF viruses (TCID₅₀ of 10⁷/ml) were added to 10⁶ cells and incubated for 1 hour at 37°C. The cells were then washed twice in PBS and resuspended in the culture medium at a density of 2.2 x10⁵cells/ml.

180 μ l of these infected cells was transferred to wells of the 96 well plate containing the compounds.

- 4) The plate was incubated in a CO₂ incubator at 37°C for 4 days. The cell survival rates were measured following the manufacturer's recommendations
- 5 (CellTiter 96® AQ_{deox} Non-Radioactive Assay - Promega (cat no: G5430)). The concentration at which the compound inhibited the cytotoxic effect of the virus by 50% was expressed as the EC₅₀.

Thus the invention provides:

- (i) the use of a compound of the formula (I) or a compound of the formula (Ib) or a pharmaceutically acceptable salt or solvate of either in the manufacture of a reverse transcriptase inhibitor or modulator;
- 5 (ii) the use of a compound of the formula (I) or a compound of the formula (Ib), or a pharmaceutically acceptable salt or solvate of either in the manufacture of a medicament for the treatment of a human immunodeficiency viral (HIV), or genetically related retroviral, infection or a resulting acquired immunodeficiency syndrome (AIDS);
- 10 (iii) a compound of the formula (I) or a compound of the formula (Ib), or a pharmaceutically acceptable salt or solvate of either, for use as a reverse transcriptase inhibitor;
- (iv) a compound of the formula (I) or a compound of the formula (Ib) or a pharmaceutically acceptable salt or solvate of either, for use in the treatment of a human immunodeficiency viral (HIV), or genetically related retroviral, infection or a resulting acquired immunodeficiency syndrome (AIDS);
- 15 (v) a method of treatment or prevention of a disorder treatable by the inhibition of reverse transcriptase, comprising the administration of an effective amount of a compound of the formula (I) or a compound of the formula (Ib), or a pharmaceutically acceptable salt or solvate of either, to a patient in need of such treatment;
- 20 (vi) a method of treatment of a human immunodeficiency viral (HIV), or genetically related retroviral, infection or a resulting acquired immunodeficiency syndrome (AIDS) comprising the administration of an effective amount of a compound of the formula (I) or a compound of the formula (Ib), or a pharmaceutically acceptable salt or solvate of either, to a patient in need of such treatment;
- 25 (vii) a compound of the formula (Ib) or a pharmaceutically acceptable salt or solvate thereof;
- (viii) a process for the preparation of a compound of the formula (Ib) or a pharmaceutically acceptable salt or solvate thereof;

- (ix) a pharmaceutical composition including a compound of the formula (Ib) or a pharmaceutically acceptable salt or solvate thereof, together with a pharmaceutically acceptable excipient, diluent or carrier;
- (x) a compound of the formula (Ib) or a pharmaceutically acceptable salt, solvate or composition thereof, for use as a medicament;

5

The following Examples illustrate the preparation of the compounds of the formula (I) and the compounds of the formula (Ib). The synthesis of certain intermediates used therein are described in the Preparations section that follows the Examples.

5

¹H Nuclear magnetic resonance (NMR) spectra were in all cases consistent with the proposed structures. Characteristic chemical shifts (δ) are given in parts-per-million downfield from tetramethylsilane using conventional abbreviations for designation of major peaks: e.g. s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. The following abbreviations have been used: HRMS, high resolution mass spectrometry; hplc, high performance liquid chromatography; nOe, nuclear Overhauser effect; m.p., melting point; h, hour; Et, ethyl; CDCl₃, deuteriochloroform; D₆-DMSO, deuteriodimethylsulphoxide; CD₃OD, deuteromethanol; THF, tetrahydrofuran. '0.880 Ammonia solution' means a concentrated aqueous solution of ammonia having a specific gravity of 0.88. Where thin layer chromatography (TLC) has been used it refers to silica gel TLC using silica gel 60 F₂₅₄ plates, R_f is the distance travelled by a compound divided by the distance travelled by the solvent front on a TLC plate. In certain of the Examples there is the possibility of regioisomerism in the product. The structures of certain Examples, for instance Examples 7 and 13 have been proven by nOe experiments. The regiochemistry of other Examples has been assigned by comparing characteristic shifts in their NMR spectra with the corresponding shifts in the NMR spectra of Examples 7 and 13.

25

30

EXAMPLE 1**2-[4-(3,5-Dichlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]ethanol**

5

A solution of the ester of Example 7 (170mg, 0.46mmol) in dry ether (3.5ml) was added to a suspension of lithium aluminium hydride (17.5mg, 0.46mmol) in dry ether (2ml) cooled to -78°C under nitrogen. After stirring at -78°C for 1hour and at 0°C for 1hour the reaction was quenched with water (5ml) and then partitioned between ether (30ml) and aqueous hydrochloric acid solution (pH=3, 30ml) and the aqueous layer was further extracted with ether (2x30ml). The combined organic layers were dried over magnesium sulphate and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (2:1, by volume) to provide the title compound (116.3mg) as a white solid, m.p. 77-78°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.18 (d, 6H), 2.08 (s, 3H), 2.80 (heptet, 1H), 3.75 (s, 2H), 4.00 (m, 2H), 4.06 (m, 2H), 4.19 (t, 1H), 6.97 (s, 2H), 7.18 (s, 1H).

HRMS (electrospray): m/z [MH⁺] 327.1026 (calculated 327.1026).

20

25

EXAMPLES 2 TO 6

The compounds of the following tabulated examples of the general formula:

5

were prepared by a similar method to that of Example 1 using the appropriate esters.

Example No.	R ³	R ¹	R ²	R ^Y	LRMS m/z =	Analytical data, starting ester and variations in procedure.
2	CH ₃ CH ₂ -	CH ₃ CH ₂ -	Cl	Cl	(thermospray): [MH ⁺]	¹ H-NMR (300MHz, CDCl ₃): δ = 1.06 (t, 3H), 1.18 (t, 3H), 2.50 (m, 4H), 3.72 (s, 2H), 4.05 (m, 2H), 4.12 (m, 2H), 4.19 (br. t, 1H), 6.99 (s, 2H), 7.19 (s, 1H). Contains ca. 10% monodechlorinated impurity as judged by LCMS (50x2mm Magellen 3 micron C18 column, solvent gradient 0.1%, by volume aqueous formic acid:0.1%, by volume formic acid in acetonitrile (95:5, by volume) to 0.1%, by volume aqueous formic acid:0.1%, by volume formic acid in acetonitrile (5:95, by volume), electrospray MS).
3	CH ₃ CH(CH ₃) ₂ -	CH ₃ -	Cl	H	(thermospray):	Ester of Example 9. Chromatography with a solvent gradient of toluene:ethyl acetate (1:1, by volume) then toluene:ethyl acetate (1:2, by volume). ¹ H-NMR (400MHz, CDCl ₃): δ = 1.15 (d, 6H), 2.06 (s, 3H), 2.82 (m, 1H), 3.73 (s, 2H), 3.99 (m, 2H), 4.06 (m,

				293 [MH ⁺]	2H), 4.29 (br. s, 1H), 6.96 (m, 1H), 7.05 (s, 1H), 7.15 (m, 2H).
					Microanalysis: Found: C, 65.58; H, 7.30; N, 9.33. $C_{10}H_{21}ClN_2O$ requires C, 65.63; H, 7.23; N, 9.57%.
					Ester of Example 15.
					Chromatography with a solvent gradient of pentane:ethyl acetate (2:1, by volume) then pentane:ethyl acetate (1:1, by volume).
4	$CH_3CH(CH_3)-$	CH_3-	F	F	¹ H-NMR (400MHz, CDCl ₃): δ = 1.10 (d, 6H), 2.10 (s, 3H), 2.80 (heptet, 1H), 3.74 (s, 2H), 4.00 (m, 2H), 4.06 (m, 2H), 4.20 (t, 1H), 6.60 (m, 3H).
					Ester of Example 16.
					Chromatography with a solvent gradient of pentane:ethyl acetate (2:1, by volume) then pentane:ethyl acetate (1:1, by volume).
5	$CH_3CH(CH_3)-$	CH_3-	F	H	¹ H-NMR (400MHz, CDCl ₃): δ = 1.18 (d, 6H), 2.08 (s, 3H), 2.84 (heptet, 1H), 3.76 (s, 2H), 3.98 (m, 2H), 4.05 (m, 2H), 4.23 (t, 1H), 6.75 (d, 1H), 6.86 (m, 2H), 7.20 (m, 1H).

					Microanalysis: Found: C, 69.45; H, 7.71; N, 9.96. $C_{18}H_{21}FN_2O$ requires C, 69.54; H, 7.66; N, 10.14%. Ester of Example 10.
6	CH_3-	$CH_3CH(CH_3)-$	Cl	Cl	<p>¹H-NMR (400MHz, CDCl₃): δ = 1.10 (d, 6H), 2.06 (s, 3H), 3.06 (heptet, 1H), 3.79 (s, 2H), 4.00 (m, 2H), 4.13 (m, 2H), 6.95 (s, 2H), 7.18 (s, 1H).</p> <p>HRMS (electrospray): m/z [MH⁺] 327.1031 (calculated 327.1026).</p> <p>Ester of Example 8, using Method B</p> <p>Chromatography with a solvent gradient of pentane:ethyl acetate (1:1, by volume) then ethyl acetate.</p>

EXAMPLES 7 AND 8**Ethyl [4-(3,5-dichlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]acetate****(Example 7)****Method A:**

A solution of 21% weight/volume sodium ethoxide in ethanol (227 μ L, 0.7mmol) was added dropwise to a stirred solution of the pyrazole of Example 17 (172.7mg, 0.61mmol) in dry ethanol (1ml) at room temperature in a Reacti-vial (Trade Mark) (a sealable reaction vessel; available from Pierce & Warriner (UK) Ltd). Ethyl bromoacetate (136 μ L, 1.22mmol) was added and the Reacti-vial (Trade Mark) was sealed and heated at 80°C for 2 hours and then stirred at room temperature for 16 hours. Further sodium ethoxide in ethanol (227 μ L, 0.7mmol) and ethyl bromoacetate (136 μ L, 1.22mmol) were added and the sealed mixture was heated for a further 7 hours. After cooling to room temperature further sodium ethoxide in ethanol (227 μ L, 0.7mmol) and ethyl bromoacetate (136 μ L, 1.22mmol) were added and the sealed mixture was heated for a further 10 hours. After cooling to room temperature the mixture was concentrated under reduced pressure and the residue was partitioned between water (30ml) and dichloromethane (30ml) and the aqueous layer was further extracted with dichloromethane (2x30ml). The combined organic layers were dried over magnesium sulphate and concentrated under reduced pressure and the crude product (321mg) was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (7:1, by volume) to provide Example 7 (175.3mg) as a white solid, m.p. 90-92°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.18 (d, 6H), 1.27 (t, 3H), 2.06 (s, 3H), 2.81 (heptet, 1H), 3.74 (s, 2H), 4.22 (q, 2H), 4.83 (s, 2H), 6.96 (s, 2H), 7.17 (s, 1H). This structure was confirmed by nOe experiments.

HRMS (electrospray): m/z [MH⁺] 369.1135 (calculated 369.1131).

5

Method B:

A solution of the β-diketone of Preparation 1 (245mg, 0.85mmol), ethyl hydrazinoacetate hydrochloride (132mg, 0.85mmol) and triethylamine (131μL, 0.94mmol) in ethanol (1ml) was stirred and heated in a sealed Reacti-vial (Trade

- 10 Mark) at 80°C for 24 hours. After cooling the mixture was concentrated under reduced pressure and the residue purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ethyl acetate (10:1, by volume) then pentane:ethyl acetate (5:1, by volume) to provide Example 7 (28.6mg) as a white solid, m.p. 94–95°C.

15

Further elution of the column afforded ethyl [4-(3,5-dichlorobenzyl)-5-isopropyl-3-methyl-1*H*-pyrazol-1-yl]acetate (Example 8) (228.8mg) as a yellow oil.

20

¹H-NMR (400MHz, CDCl₃): δ = 1.19 (d, 6H), 1.28 (t, 3H), 2.06 (s, 3H), 2.92 (heptet, 1H), 3.82 (s, 2H), 4.23 (q, 2H), 4.86 (s, 2H), 6.96 (s, 2H), 7.17 (s, 1H). This structure was confirmed by nOe experiments.

HRMS (electrospray): m/z [MH⁺] 369.1134 (calculated 369.1131).

25

EXAMPLES 9 TO 10

The compounds of the following tabulated Examples of the general formula:

- 5 were prepared by a similar method to that of Example 7, Method A using the appropriate pyrazole.

Example No.	R ³	R ¹	R ²	R ^Y	L RMS m/z =	Analytical data, starting pyrazole and variations in procedure.
9	CH ₃ CH ₂ -	CH ₃ CH ₂ -	Cl	Cl	(thermos pray): 369 [MH ⁺]	¹ H-NMR (300MHz, CDCl ₃): δ = 1.14 (t, 3H), 1.28 (t, 3H), 2.48 (m, 4H), 3.75 (s, 2H), 4.24 (q, 2H), 4.84 (s, 2H), 6.99 (s, 2H), 7.19 (s, 1H). Pyrazole of Example 11. Microanalysis: Found: C, 58.41; H, 5.95; N, 7.39. C ₁₈ H ₂₂ Cl ₂ N ₂ O ₂ requires C, 58.54; H, 6.00; N, 7.59%. Contains ca. 10% monodechlorinated impurity as judged by LCMS. Chromatography with a solvent gradient of dichloromethane then dichloromethane:methanol (99:1, by volume).
10	CH ₃ CH(CH ₃)-	CH ₃ -	F	H	(thermos pray): 319 [MH ⁺]	¹ H-NMR (400MHz, CDCl ₃): δ = 1.13 (d, 6H), 1.23 (t, 3H), 2.03 (s, 3H), 2.80 (heptet, 1H), 3.75 (s, 2H), 4.20 (q, 2H), 4.80 (s, 2H), 6.71 (d, 1H), 6.85 (m, 2H), 7.16 (m, 1H). HRMS (electrospray): m/z [MH ⁺] 319.1814 (calculated

Pyrazole of Example 19.
Chromatography with pentane:ethyl acetate (5:1, by volume).

EXAMPLE 11**4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazole**

5

Hydrazine hydrate (187µL, 3.85mmol) was added to a stirred solution of the β-diketone of Preparation 5 (1.00g, 3.5mmol) in ethanol (2.5ml) in a Reacti-vial (Trade Mark) at room temperature. The Reacti-vial (Trade Mark) was sealed and the mixture heated at 100°C for 3 hours. After cooling to room temperature the mixture was concentrated under reduced pressure to leave an oily white solid (1g) which was purified by flash chromatography on silica gel eluting with dichlormethane:methanol (98:2, by volume) to give the crude product which was recrystallised from diisopropylether (10ml) to give the title compound (150mg) as a white solid. LCMS analysis revealed a small amount (ca.10%) of monodechlorinated impurity carried through of Preparation 5. This impurity could be removed by hplc (150x21.2mm Phenomenex Luna C₁₈ 5 micron column, solvent gradient 0.1%,by volume aqueous diethylamine:methanol (90:10, by volume) to 0.1%,by volume aqueous diethylamine:methanol (10:90, by volume)) to afford pure title compound.

20

¹H-NMR (300MHz, CDCl₃): δ = 1.20 (t, 6H), 2.55 (q, 4H), 3.73 (s, 2H), 6.99 (s, 2H), 7.19 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 283.

Microanalysis: Found: C, 59.53; H, 5.71; N, 9.82. C₁₄H₁₆Cl₂N₂ requires C, 59.38;

25 H, 5.69; N, 9.89%.

EXAMPLE 12**2-[4-(3,5-Dichlorobenzyl)-3,5-dimethyl-1*H*-pyrazol-1-yl]ethanol**

5

- To a stirred suspension of the diketone of Preparation 4 (302mg, 1.17mmol) in ethanol (1ml) was added 2-hydroxyethyl hydrazine (81 μ L, 1.29mmol) and the resulting mixture was heated at 100°C in a sealed Reacti-vial (Trade Mark) for 6 hours. After cooling, the mixture was concentrated under reduced pressure and
- 10 the residue was purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ethyl acetate (1:2, by volume) then pentane:ethyl acetate (1:5, by volume) to afford the title compound (351mg) as a white powder.

- 15 $^1\text{H-NMR}$ (400MHz, CDCl_3): δ = 2.08 (s, 3H), 2.11 (s, 3H), 3.62 (br. m, 1H), 3.66 (s, 2H), 4.00 (m, 2H), 4.07 (m, 2H), 6.95 (s, 2H), 7.16 (s, 1H).
- LRMS (thermospray): m/z [MH $^+$] 299.
- Microanalysis: Found: C, 56.15; H, 5.38; N, 9.27. $\text{C}_{14}\text{H}_{16}\text{Cl}_2\text{N}_2\text{O}$ requires C, 56.20; H, 5.39; N, 9.36%.
- 20 LCMS analysis revealed a small amount (<10%) of dechlorinated impurities presumably arising from the reduction step in Preparation 4 but not detected at that stage. A portion of the product (190mg) was recrystallised from ethanol:water (2:1, by volume) (3ml) to afford a white solid (150mg). LCMS analysis then revealed only a trace amount (<5%) of mono-chlorinated product.
- 25 This over reduction could probably be avoided by using the alternative reduction procedure of Preparation 6.

EXAMPLE 13**2-[4-(3,5-Dichlorobenzyl)-5-methyl-3-(trifluoromethyl)-1*H*-pyrazol-1-yl]ethanol**

5

A solution of the diketone of Preparation 6 (76mg, 0.243mmol) in ethanol (2ml) was added to 2-hydroxethyl hydrazine (18 μ L, 0.267mmol) and the resulting mixture was heated at 90°C in a sealed Reacti-vial (Trade Mark) for 2 hours.

- 10 After cooling the mixture was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with a solvent gradient of dichloromethane then dichloromethane:methanol (99:1, by volume) to afford the title compound (62mg) as an off-white solid, m.p. 91-93°C.

- 15 $^1\text{H-NMR}$ (400MHz, CDCl_3): δ = 2.13 (s, 3H), 2.61 (m, 1H), 3.80 (s, 2H), 4.05 (m, 2H), 4.17 (m, 2H), 6.92 (s, 2H), 7.16 (s, 1H). This structure was confirmed by nOe experiments.
LRMS (thermospray): m/z [MH $^+$] 353.
Microanalysis: Found: C, 47.66; H, 3.75; N, 7.78. $\text{C}_{14}\text{H}_{13}\text{Cl}_2\text{F}_3\text{N}_2\text{O}$ requires C, 47.61; H, 3.71; N, 7.93%.
- 20

EXAMPLE 14**2-{4-[{(4-Chlorophenyl)sulfanyl]-3,5-dimethyl-1*H*-pyrazol-1-yl}ethanol**

5

The title compound was prepared by a similar method to that of Example 13 using 3-(4-chlorophenylthio)pentane-2,4-dione except that the crude product was purified by recrystallisation from diisopropylether (ca. 25ml) to give pale yellow crystals, m.p. 88.9-90.3°C

10

¹H-NMR 300MHz, CDCl₃): δ = 2.20 (s, 3H), 2.29 (s, 3H), 4.04 (t, 2H), 4.12 (t, 2H), 6.90 (d, 2H), 7.18 (d, 2H).

LRMS (thermospray): m/z [MH⁺] 282.

Microanalysis: Found: C, 54.92; H, 5.39; N, 9.91. C₁₃H₁₅CIN₂OS requires C,

15 55.22; H, 5.35; N, 9.91%.

20

EXAMPLE 15Ethyl [4-(3-chlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]acetate

- 5 The title compound was prepared by a method similar to that of Example 7, Method A using the pyrazole of Example 20, and was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (5:1, by volume) and was obtained as a colourless oil.
- 10 $^1\text{H-NMR}$ (400MHz, CDCl_3): δ = 1.13 (d, 6H), 1.26 (t, 3H), 2.03 (s, 3H), 2.79 (m, 1H), 3.72 (s, 2H), 4.19 (q, 2H), 4.81 (s, 2H), 6.93 (m, 1H), 7.03 (s, 1H), 7.11 (m, 2H).
- LRMS (thermospray): m/z [M $^+$] 335.

15 EXAMPLE 16Ethyl [4-(3,5-difluorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]acetate

The title compound was prepared by a method similar to that of Example 7, Method A using the pyrazole of Example 18 and was obtained as a yellow oil.

¹H-NMR (400MHz, CDCl₃): δ = 1.16 (d, 6H), 1.27 (t, 3H), 2.06 (s, 3H), 2.82

5 (heptet, 1H), 3.76 (s, 2H), 4.23 (q, 2H), 4.84 (s, 2H), 6.60 (m, 3H).

HRMS (electrospray): m/z [MH⁺] 337.1719 (calculated 337.1722).

EXAMPLE 17

4-(3,5-Dichlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazole

10

Hydrazine hydrate (50.1mg, 1mmol) was added dropwise to a stirred solution of the β-diketone of Preparation 1 (287.2mg, 1mmol) in dry ethanol (1ml) in a Reacti-vial (Trade Mark) at RT. The Reacti-vial (Trade Mark) was sealed and the 15 mixture heated at 80°C for 24 hours. After cooling to room temperature the mixture was concentrated under reduced pressure and the residue purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ethyl acetate (3:1, by volume) then pentane:ethyl acetate (2:1, by volume) to afford the title compound (225.6mg) as a yellow oil.

20

¹H-NMR (400MHz, CDCl₃): δ = 1.10 (d, 6H), 2.11 (s, 3H), 2.89 (heptet, 1H), 3.74 (s, 2H), 6.97 (s, 2H), 7.18 (s, 1H).

LRMS (electrospray): m/z [MH⁺] 285.

EXAMPLE 18**4-(3,5-Difluorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazole**

- 5 The title compound was prepared by a method similar to that of Example 17 using the β -diketone of Preparation 2 and was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (2:1, by volume) to afford the title compound as a yellow oil.
- 10 ¹H-NMR (400MHz, CDCl₃): δ = 1.16 (d, 6H), 2.08 (s, 3H), 2.85 (heptet, 1H), 3.71 (s, 2H), 6.58 (m, 3H).
LRMS (thermospray): m/z [MH⁺] 251.

EXAMPLE 19**4-(3-Fluorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazole**

- The title compound was prepared by a method similar to that of Example 17 using the β -diketone of Preparation 3 and was purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ethyl acetate (3:1, by

volume) then pentane:ethyl acetate (2:1, by volume) to afford the title compound as a yellow oil.

- ¹H-NMR (400MHz, CDCl₃): δ = 1.22 (d, 6H), 2.11 (s, 3H), 2.90 (heptet, 1H), 3.77
 5 (s, 2H), 6.77 (d, 1H), 6.89 (m, 2H), 7.20 (m, 1H).
 LRMS (thermospray): m/z [MH⁺] 233.

EXAMPLE 20

4-(3-Chlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazole

10

- The title compound was prepared by a method similar to that of Example 11 using the β-diketone of Preparation 7 and was purified by flash chromatography
 15 on silica gel eluting with a solvent gradient of pentane:ethyl acetate (5:1, by volume) then pentane:ethyl acetate (3:1, by volume) to afford the title compound as a colourless oil.

- ¹H-NMR (400MHz, CDCl₃): δ = 1.19 (d, 6H), 2.10 (s, 3H), 2.84-2.97 (m, 1H), 3.74
 20 (s, 2H), 6.94-6.99 (m, 1H), 7.06 (s, 1H), 7.11-7.21 (m, 2H).
 LRMS (thermospray): m/z [MH⁺] 249.

EXAMPLE 21**2-{4-[(3,5-Dichlorophenyl)sulfanyl]-3,5-dimethyl-1*H*-pyrazol-1-yl}ethanol**

5

The β -diketone of Preparation 15 (750mg, 2.71mmol) was added to a stirred solution of 2-hydroxyethyl hydrazine (202 μ L, 2.98mmol) in ethanol (27ml) at room temperature under nitrogen and the resulting yellow solution was heated under reflux for 22 hours. After cooling the mixture was concentrated under reduced pressure and the resulting pale yellow solid was purified by flash chromatography on silica gel eluting with methanol:dichloromethane (2:98, by volume) to provide the title compound (729mg) as a white powder, m.p. 118-120°C.

15 $^1\text{H-NMR}$ (400MHz, CDCl_3): δ = 2.18 (s, 3H), 2.24 (s, 3H), 3.19 (t, 1H), 4.01 (m, 2H), 4.12 (m, 2H), 6.78 (s, 2H), 7.02 (s, 1H).

LRMS (thermospray): m/z [MH $^+$] 317.

Microanalysis: Found: C, 49.13; H, 4.45; N, 8.59. $\text{C}_{13}\text{H}_{14}\text{Cl}_2\text{N}_2\text{OS}$ requires C, 49.22; H, 4.45; N, 8.83%.

20

25

EXAMPLE 22**2-[4-[(3,5-Dichlorophenyl)sulfonyl] -3,5-dimethyl-1*H*-pyrazol-1-yl]ethanol**

5

A solution of Oxone (Trade Mark) (581mg, 0.946mmol) in water was added to a stirred suspension of the sulphide of Example 21 (200mg, 0.63mmol) in methanol (2.5ml) at 0°C producing a viscous white suspension. The cooling bath was removed and further methanol (2.5ml) was added to aid dissolution and stirring.

- 10 The mixture was stirred at room temperature for 2½ hours and at 50°C for 24 hours. After cooling the mixture was concentrated under reduced pressure and the residue was partitioned between dichloromethane (50ml) and water (25ml). The organic layer was washed with brine (25ml), dried over magnesium sulphate, filtered and concentrated under reduced pressure to leave a white solid (195mg).
- 15 The crude product was pre-absorbed on silica gel and purified by flash chromatography on silica gel eluting with methanol:dichloromethane (2:98, by volume) to provide the title compound (175mg) as a white solid, m.p. 199–200°C.

¹H-NMR (400MHz, CDCl₃): δ = 2.37 (s, 3H), 2.51 (s, 3H), 2.70 (s, 1H), 3.99 (m,

- 20 2H), 4.05 (m, 2H), 7.51 (s, 1H), 7.70 (s, 2H).

LRMS (thermospray): m/z [MH⁺] 349.

Microanalysis: Found: C, 44.62; H, 4.03; N, 7.96. C₁₃H₁₄Cl₂N₂O₃S requires C, 44.71; H, 4.04; N, 8.02%.

EXAMPLE 23**4-(3,5-Dichlorobenzyl)-3,5-dimethyl-1*H*-pyrazole**

5

A stirred suspension of the β -diketone of Preparation 4 (1.01g, 3.90mmol) in ethanol (3ml) was treated with hydrazine hydrate (208 μ L, 4.29mmol) and the resulting mixture was heated at 100°C in a sealed Reacti-vial (Trade Mark) for 3 hours. After cooling, the mixture was concentrated under reduced pressure and 10 the residue was purified by flash chromatography on silica gel eluting with methanol:dichloromethane (2:98, by volume) and then methanol:dichloromethane (5:95, by volume) to afford the title compound (485mg) as a pale yellow solid, m.p. 133–134°C.

15 $^1\text{H-NMR}$ (400MHz, CDCl_3): δ = 2.18 (s, 6H), 2.69 (s, 2H), 6.98 (s, 2H), 7.18 (s, 1H).

LRMS (electrospray): m/z [MH $^+$] 255.

Microanalysis: Found: C, 56.72; H, 4.79; N, 10.90. $\text{C}_{12}\text{H}_{12}\text{Cl}_2\text{N}_2$ requires C, 56.49; H, 4.74; N, 10.98%.

20

LCMS analysis of the product revealed a small amount (<20%) of dechlorinated impurities presumably arising from the reduction step in Preparation 4 but not detected at that stage. This over-reduction could be avoided by using the alternative reduction procedure of Preparation 6.

25

EXAMPLE 24**2-[4-(3,5-Dichlorobenzyl)-3,5-dimethyl-1*H*-pyrazol-1-yl]ethanamine**

5

A stirred suspension of the pyrazole (200mg, 0.78mmol) of Example 23 and 2-chloroethylamine hydrochloride (136mg, 1.18mmol) in toluene (1ml) was heated at 120°C in a sealed Reacti-vial (Trade Mark) for 18 hours. After cooling, the mixture was diluted with dichloromethane (30ml), washed with 2M aqueous sodium hydroxide solution (20ml), dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with methanol:dichloromethane:ammonia (5:95:0.5, by volume) to afford the title compound (45mg) as white crystals, m.p. 70-72°C.

15

¹H-NMR (400MHz, CDCl₃): δ = 2.08 (s, 3H), 2.13 (s, 3H), 3.08 (t, 2H), 3.62 (s, 2H), 4.02 (t, 2H), 6.95 (s, 2H), 7.17 (s, 1H).

LRMS (electrospray): m/z [MH⁺] 298.

20

25

EXAMPLES 25 AND 26

2-[4-(3,5-Dichlorobenzyl)-5-ethyl-3-(trifluoromethyl)-1*H*-pyrazol-1-yl]ethanol (Example 25) and 2-[4-(3,5-Dichlorobenzyl)-3-ethyl-5-(trifluoromethyl)-1*H*-pyrazol-1-yl]ethanol (Example 26)

5

A solution of the β -diketone of Preparation 17 (180mg, 0.55mmol) in ethanol (5ml) was treated with 2-hydroxyethyl hydrazine (41 μ L, 0.61mmol) and heated at 10 90°C in a sealed Reacti-vial (Trade Mark) for 5 hours. After cooling, the mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with a solvent gradient of methanol:dichloromethane (0:100, by volume) then methanol:dichloromethane (0.5:99.5, by volume). The less polar product to elute from the column was 2-[4-(3,5-Dichlorobenzyl)-5-ethyl-3-(trifluoromethyl)-1*H*-pyrazol-1-yl]ethanol isolated as a colourless oil (40mg), which solidified on standing, m.p. 70-72°C.

$^1\text{H-NMR}$ (300MHz, CDCl_3): δ = 1.03 (t, 3H), 2.60 (q, 2H), 2.90 (t, 1H), 3.87 (s, 2H), 4.13 (m, 2H), 4.20 (m, 2H), 7.00 (s, 2H), 7.20 (s, 1H).

20 LRMS (thermospray): m/z [MH $^+$] 367.

Microanalysis: Found: C, 48.86; H, 4.07; N, 7.45. $\text{C}_{15}\text{H}_{15}\text{Cl}_2\text{F}_3\text{N}_2\text{O}$ requires C, 49.07; H, 4.12; N, 7.43%.

The more polar product to elute from the column was further purified by flash 25 chromatography on silica gel eluting with a solvent gradient of acetonitrile:dichloromethane (5:95, by volume) then acetonitrile:dichloromethane (10:90, by volume). 2-[4-(3,5-Dichlorobenzyl)-3-ethyl-5-(trifluoromethyl)-1*H*-pyrazol-1-yl]ethanol was isolated as a colourless oil (10mg).

¹H-NMR (300MHz, CDCl₃): δ = 1.17 (t, 3H), 2.52 (q, 2H), 3.48 (brs, 1H), 3.87 (s, 2H), 4.10 (s, 2H), 4.32 (s, 2H), 6.94 (s, 2H), 7.20 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 367.

5

EXAMPLES 27 AND 28

2-[4-(3,5-Dichlorobenzyl)-5-ethyl-3-methyl-1*H*-pyrazol-1-yl]ethanol (Example 27)
and 2-[4-(3,5-Dichlorobenzyl)-3-ethyl-5-methyl-1*H*-pyrazol-1-yl]ethanol (Example 28)

10

A solution of the β-diketone of Preparation 20 (300mg, 1.10mmol) in ethanol (5ml) was treated with 2-hydroxyethyl hydrazine (81μL, 1.20mmol) and heated at 90°C for 18 hours. After cooling, the mixture was concentrated under reduced pressure. The two isomers were separated by HPLC (Chiracel OD 25cm x 2cm column; mobile phase, by volume: 80% hexane, 20% iso-propyl alcohol; flow rate: 10 ml/min). The major isomer was isolated as a white solid (60mg, retention time 12.4 minutes), m.p. 106-107°C and shown to be 2-[4-(3,5-dichlorobenzyl)-5-ethyl-3-methyl-1*H*-pyrazol-1-yl]ethanol by nOe experiments.

20

¹H-NMR (300MHz, CDCl₃): δ = 1.06 (t, 3H), 2.10 (s, 3H), 2.55 (q, 2H), 3.71 (s, 2H), 4.03 (s, 2H), 4.10 (s, 2H), 6.98 (s, 2H), 7.20 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 313.

25

The minor isomer was shown to be 2-[4-(3,5-Dichlorobenzyl)-3-ethyl-5-methyl-1*H*-pyrazol-1-yl]ethanol and isolated as a white solid (10mg, retention time 10.0 minutes), m.p. 100-101°C.

- 5 ¹H-NMR (300MHz, CDCl₃): δ = 1.16 (t, 3H), 2.16 (s, 3H), 2.52 (q, 2H), 3.74 (s, 2H), 4.03 (s, 2H), 4.13 (s, 2H), 6.98 (s, 2H), 7.20 (s, 1H).
 LRMS (thermospray): m/z [MH⁺] 313.

EXAMPLE 29

- 10 2-[4-(3,5-Dichlorobenzyl)-3-(dimethylamino)-5-methyl-1*H*-pyrazol-1-yl]ethanol

- A solution of the amine of Example 87 (18mg, 0.06mmol) in dichloromethane (0.3ml) was treated with triethylamine (8.0μL, 0.06mmol) followed by paraformaldehyde (4.0mg, 0.13mmol) and stirred at room temperature for 1 hour. Acetic acid was added (3.5μL, 0.06mmol) and after a further hour sodium triacteoxyborohydride (19mg, 0.09mmol) was added and the reaction mixture was stirred at room temperature for 18 hours. Further paraformaldehyde (2.2eq) and sodium triacteoxyborohydride (1.5eq) were added and the reaction mixture was stirred at room temperature for 20 hours. The reaction mixture was diluted with dichloromethane (10ml) and washed with 10% aqueous potassium carbonate solution (10ml). The organic extract was concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with dichloromethane:methanol:ammonia (98:2:0.5) to afford the title compound as a colourless oil (4.5mg).

¹H-NMR (300MHz, CDCl₃): δ = 2.08 (s, 3H), 2.70 (s, 6H), 3.78 (s, 2H), 4.00 (s, 4H), 4.19 (m, 1H), 7.02 (s, 2H), 7.20 (s, 1H).

LRMS (thermospray): m/z [MNH₄⁺] 346.

5

EXAMPLE 30

2-[4-(3,5-Dimethylbenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol

10

The title compound was prepared by a method similar to that of Example 25, using the β-diketone of Preparation 24. The crude material was purified by flash chromatography on silica gel eluting with methanol:dichloromethane (2:98, by volume) to afford the title compound as a yellow oil, which solidified on standing,

15 m.p. 49.5–51.5°C.

¹H-NMR (300MHz, CDCl₃): δ = 1.03 (t, 3H), 1.16 (t, 3H), 2.29 (s, 6H), 2.55 (m, 4H), 3.71 (s, 2H), 4.03 (m, 2H), 4.13 (m, 2H), 4.35 (brs, 1H), 6.77 (s, 2H), 6.84 (s, 1H).

20 LRMS (thermospray): m/z [MH⁺] 287.

25

EXAMPLE 312-[4-(3,5-Dichlorobenzyl)-5-methoxy-3-methyl-1*H*-pyrazol-1-yl]ethanol

5

- A solution of the ester of Example 88 (42mg, 0.12mmol) in tetrahydrofuran (2ml) at 0°C was treated dropwise with a solution of lithiumaluminiumhydride (1M in THF) and the resulting mixture was allowed to warm to room temperature and was stirred at this temperature for a further 30 minutes. The reaction mixture 10 was diluted with ethyl acetate and washed with 1M aqueous sodium hydroxide solution and brine. The organic layer was dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure to afford the title compound (34mg) as a white solid.
- 15 ¹H-NMR (400MHz, CDCl₃): δ = 2.07 (s, 3H), 3.45 (brs, 1H), 3.72 (s, 2H), 3.79 (s, 3H), 3.95 (m, 2H), 4.03 (m, 2H), 7.02 (s, 2H), 7.20 (s, 1H).
- LRMS (thermospray): m/z [MH⁺] 315.

EXAMPLE 322-[4-(3,5-Dichlorobenzyl)-5-(2-furyl)-3-methyl-1*H*-pyrazol-1-yl]ethanol

A solution of the β -diketone of Preparation 27 (1.0g, 3.20mmol) in ethanol (38ml) was treated with 2-hydroxyethyl hydrazine (239 μ L, 3.53mmol) and heated under reflux for 18 hours. After cooling, the reaction mixture was concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (2:1, by volume) to afford the title compound as a yellow oil, which solidified on standing (703mg).

¹H-NMR (400MHz, CDCl₃): δ = 2.16 (s, 3H), 3.58 (t, 1H), 3.80 (s, 2H), 4.01 (m, 2H), 4.28 (m, 2H), 6.37 (d, 1H), 6.49 (m, 1H), 6.99 (s, 2H), 7.18 (s, 1H), 7.36 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 351.

Microanalysis: Found: C, 58.12; H, 4.63; N, 7.84. C₁₇H₁₆Cl₂N₂O₂ requires C, 58.13; H, 4.59; N, 7.98%.

15

EXAMPLE 33

(3,5-Dichlorophenyl)[3,5-diethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-4-yl]methanone

20

A solution of the protected alcohol of Preparation 32 (70mg, 0.15mmol) in tetrahydrofuran (1ml) was treated with tetrabutylammonium fluoride (1M in THF) (300 μ L, 0.30mmol), at room temperature, under a nitrogen atmosphere. After the reaction mixture had been stirred for 18 hours the solution was concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with cyclohexane:ethyl acetate (5:1, by volume) to afford the title compound (30mg) as a white solid, m.p. 133.5-134.4°C.

¹H-NMR (300MHz, CDCl₃): δ = 1.13 (m, 6H), 2.52 (q, 2H), 2.74 (q, 2H), 3.65 (t, 1H), 4.10 (m, 2H), 4.19 (m, 2H), 7.61 (m, 3H).

LRMS (thermospray): m/z [MH⁺] 341.

- 5 Microanalysis: Found: C, 56.03; H, 5.28; N, 8.13. C₁₆H₁₅Cl₂N₂O₂ requires C, 56.32; H, 5.32; N, 8.21%.

EXAMPLE 34

- (±)-2-[4-[(3,5-Dichlorophenyl)(methoxy)methyl]-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol

- 15 The title compound was prepared by a similar method to that of Example 33 using the protected alcohol of Preparation 33. The crude material was purified by flash chromatography on silica gel eluting with a solvent gradient of cyclohexane:ethyl acetate (5:1, by volume) gradually changing to cyclohexane:ethyl acetate (1:2, by volume) to afford the title compound as a colourless oil.

20

¹H-NMR (300MHz, CDCl₃): δ = 1.00 (t, 3H), 1.20 (t, 3H), 2.55 (m, 4H), 3.39 (s, 3H), 4.06 (m, 4H), 5.23 (s, 1H), 7.26 (m, 3H).

LRMS (thermospray): m/z [MH⁺] 357.

25

EXAMPLE 35

2-[4-(2,6-Difluorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol

5

A mixture of the β -diketone of Preparation 35 (89mg, 0.35mmol), 2-hydroxyethyl hydrazine (24 μ L, 0.35mmol) and ethanol (350 μ L) was heated at 80°C in a sealed Reacti-vial (Trade Mark) for 18 hours. After cooling, the solution was concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (2:1, by volume) to afford the title compound (67mg) as a white solid, m.p. 70-71°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.00 (t, 3H), 1.15 (t, 3H), 2.55 (q, 2H), 2.62 (q, 2H), 3.73 (s, 2H), 3.97 (m, 2H), 4.00 (m, 2H), 4.26 (t, 1H), 6.84 (t, 2H), 7.15 (m, 1H).

LRMS (electrospray): m/z [MH⁺] 295.

Microanalysis: Found: C, 65.20; H, 6.87; N, 9.48. $C_{16}H_{20}F_2N_2O$ requires C, 65.29; H, 6.85; N, 9.52%.

20

25

EXAMPLE 36**2-[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl carbamate**

5

A solution of the alcohol of Example 2 (50mg, 0.15mmol) in dichloromethane (1.5ml) was cooled to 0°C and treated dropwise with trichloroacetyl isocyanate (22μL, 0.18mmol) under a nitrogen atmosphere. After stirring at 0°C for 1.5 hours the solution was concentrated under reduced pressure. The residue was dissolved in methanol (1ml) and water (0.5ml) and cooled to 0°C. Potassium carbonate (64mg, 0.46mmol) was added and the resulting mixture was stirred at this temperature for 1 hour. The reaction mixture was allowed to warm to room temperature and stirred for 18 hours. The solution was concentrated under reduced pressure. The residue was partitioned between dichloromethane and water. The organic extract was dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with dichloromethane:methanol (98:2, by volume) to afford the title compound (42mg) as a white solid, m.p. 145-147°C.

20

¹H-NMR (400MHz, CDCl₃): δ = 1.02 (t, 3H), 1.10 (t, 3H), 2.42 (m, 2H), 2.50 (m, 2H), 3.68 (s, 2H), 4.21 (t, 2H), 4.42 (t, 2H), 4.55 (brs, 2H), 6.94 (s, 2H), 7.15 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 370.

25 Microanalysis: Found: C, 54.95; H, 5.65; N, 11.20. C₁₇H₂₁Cl₂N₃O₂ requires C, 55.14; H, 5.72; N, 11.35%.

EXAMPLES 37 AND 38

Methyl 3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]propanoate (Example 37)

5

- A solution of the pyrazole of Example 11 (198mg, 0.70mmol) in ethanol (1ml) was treated with sodium ethoxide (21% w/v, in EtOH) (261 μ L, 0.81mmol) and then methyl-3-bromopropionate (153 μ L, 1.40mmol) and heated at 70°C in a sealed 10 Reacti-vial (Trade Mark) for 18 hours. Over a period of 3 days more sodium ethoxide (2.65eq) and methyl-3-bromopropionate (6.0eq) were added and the reaction was maintained under the same conditions. After cooling, the solution was concentrated under reduced pressure. The residue was partitioned between dichloromethane and water. The organic phase was dried over anhydrous 15 magnesium sulphate, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (5:1, by volume) to afford two products.

- The first compound eluted off the column was ethyl 3-[4-(3,5-dichlorobenzyl)-3,5-20 diethyl-1*H*-pyrazol-1-yl]propanoate (Example 38) isolated as a pale yellow oil (150mg).

- ¹H-NMR (300MHz, CDCl₃): δ = 1.06 (t, 3H), 1.13 (t, 3H), 1.26 (t, 3H), 2.47 (q, 2H), 2.56 (q, 2H), 2.94 (t, 2H), 3.71 (s, 2H), 4.15 (q, 2H), 4.29 (t, 2H), 6.98 (s, 2H), 7.20 (s, 1H).
- 25 LRMS (thermospray): m/z [MH⁺] 383.

Accurate Mass: Found: 383.1284 [MH⁺]; C₁₉H₂₄Cl₂N₂O₂ requires 383.1288 [MH⁺].

The second compound eluted was Example 37 (21mg) isolated as a colourless oil.

1H-NMR (300MHz, CDCl₃): δ = 1.06 (t, 3H), 1.15 (t, 3H), 2.47 (q, 2H), 2.56 (q, 5 H), 2.97 (t, 2H), 3.71 (s, 5H), 4.31 (t, 2H), 6.97 (s, 2H), 7.20 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 369.

Accurate Mass: Found: 369.1128 [MH⁺]; C₁₈H₂₂Cl₂N₂O₂ requires 369.1131 [MH⁺].

EXAMPLE 39

10 3-[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]propanamide

A solution of the ethyl ester of Example 38 (60mg, 0.16mmol) in a saturated
 15 solution of ammonia in methanol (1.2ml) was heated at 90°C in a sealed Reacti-vial (Trade Mark) for 18 hours. Further saturated ammonia in methanol (1.0ml) was added and the reaction mixture was stirred at 90°C for 3 days. After cooling, the solution was concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with ethyl acetate to afford
 20 the title compound (50mg) as a white solid, m.p. 140-142°C.

1H-NMR (400MHz, CDCl₃): δ = 1.00 (t, 3H), 1.08 (t, 3H), 2.40 (q, 2H), 2.52 (q, 2H), 2.80 (t, 2H), 3.66 (s, 2H), 4.26 (t, 2H), 5.26 (brs, 1H), 6.29 (brs, 1H), 6.92 (s, 2H), 7.15 (s, 1H).

25 LRMS (electrospray): m/z [MH⁺] 354.

Microanalysis: Found: C, 57.51; H, 6.01; N, 11.57. $C_{17}H_{21}Cl_2N_3O$ requires C, 57.63; H, 5.97; N, 11.86%.

EXAMPLE 40

5 3-[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]-1-propanol

A solution of the ethyl ester of Example 38 (60mg, 0.16mmol) in diethyl ether
 10 (2ml) was cooled to -78°C, treated dropwise with lithium aluminium hydride (1M
 in THF) (170µL, 0.17mmol) and stirred at -78°C, under a nitrogen atmosphere for
 30 minutes. The reaction mixture was allowed to warm to 0°C and stirred at this
 temperature for 1 hour. The reaction was quenched with a few drops of water.
 The reaction mixture was partitioned between diethyl ether and dilute aqueous
 15 hydrochloric acid. The organic phase was dried over anhydrous magnesium
 sulphate, filtered and concentrated under reduced pressure. The crude material
 was purified by flash chromatography on silica gel eluting with pentane:ethyl
 acetate (1:1, by volume) to afford the title compound (39mg) as a white solid,
 m.p. 56–59°C.

20

¹H-NMR (300MHz, CDCl₃): δ = 1.05 (t, 3H), 1.16 (t, 3H), 2.02 (m, 2H), 2.47 (q,
 2H), 2.53 (q, 2H), 3.69 (m, 4H), 4.06 (brs, 1H), 4.20 (t, 2H), 6.97 (s, 2H), 7.20 (s,
 1H).

LRMS (thermospray): m/z [MH⁺] 341.

25 Microanalysis: Found: C, 59.86; H, 6.54; N, 8.14. $C_{17}H_{22}Cl_2N_2O$ requires C, 59.83;
 H, 6.50; N, 8.21%.

EXAMPLE 41**[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]methanol**

5

A solution of the pyrazole of Example 11 (283mg, 1.00mmol) in water (1ml) and ethanol (0.5ml) was treated with 37%^{w/w} aqueous formaldehyde solution (112μL, 1.50mmol) and the resulting mixture was stirred at room temperature for 18 hours. The reaction was then stirred under reflux for 2 hours. The reaction mixture was diluted with water and extracted with dichloromethane. The organic extract was dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (2:1, by volume) to afford the title compound (231mg) as a white solid, m.p. 117-118°C.

¹H-NMR (300MHz, CDCl₃): δ = 1.16 (m, 6H), 2.48 (q, 2H), 2.65 (q, 2H), 3.73 (s, 2H), 5.50 (s, 2H), 5.80 (brs, 1H), 7.00 (s, 2H), 7.20 (s, 1H).

Microanalysis: Found: C, 57.48; H, 5.78; N, 8.87. C₁₅H₁₈Cl₂N₂O requires C, 57.52; H, 5.79; N, 8.94%.

EXAMPLE 42**[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]methyl carbamate**

A solution of the alcohol of Example 41 (280mg, 0.90mmol) in dichloromethane (5ml) was cooled to 0°C, treated with trichloroacetyl isocyanate (128μl, 1.1mmol) and stirred at 0°C for 30 minutes. The solution was soaked into a pad of alumina 10 (neutral, activity II, Brockmann), washed with dichloromethane and then extracted with ethyl acetate. The organic extract was concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with a solvent gradient of cyclohexane:ethyl acetate (2:1, by volume) gradually changing to cyclohexane:ethyl acetate (1:1, by volume) to 15 afford the title compound (238mg) as a solid, m.p. 153-155°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.03 (t, 3H), 1.11 (t, 3H), 2.42 (q, 2H), 2.60 (q, 2H), 3.66 (s, 2H), 4.66 (brs, 2H), 5.94 (s, 2H), 6.92 (s, 2H), 7.13 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 356.

20 Microanalysis: Found: C, 54.04; H, 5.39; N, 11.65. C₁₆H₁₉Cl₂N₃O₂ requires C, 53.94; H, 5.38; N, 11.79%.

EXAMPLE 43**2-[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethanamine**

The pyrazole of Example 11 (5.47g, 19.3mmol) was mixed with 2-chloroethylamine hydrochloride (2.46g, 21.3mmol) and heated neat at 150°C for 20 hours. After cooling, the solid was partitioned between dichloromethane and 10 10% aqueous potassium carbonate solution. The organic extract was concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with a solvent gradient of dichloromethane:methanol:ammonia (95:5:0, by volume) gradually changing to dichloromethane:methanol:ammonia (90:10:1, by volume) to afford the title 15 compound (3.37g) as a colourless oil.

¹H-NMR (400MHz, CDCl₃): δ = 1.03 (t, 3H), 1.15 (t, 3H), 2.45 (q, 2H), 2.52 (q, 2H), 3.16 (t, 2H), 3.71 (s, 2H), 4.06 (t, 2H), 6.97 (s, 2H), 7.18 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 326

EXAMPLE 44**N-[2-[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl]benzamide**

5

A solution of the amine of Example 43 (98mg, 0.30mmol) in dimethylformamide (3.75ml) was treated with benzoic acid (41mg, 0.33mmol), 1-(3-dimethylaminopropyl)-3-ethylicarbodiimide hydrochloride (64mg, 0.33mmol) and 10 4-dimethylaminopyridine (81mg, 0.66mmol) and stirred at room temperature for 18 hours. The solution was concentrated under reduced pressure. The residue was partitioned between dichloromethane and saturated sodium hydrogencarbonate solution. The organic extract was dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The 15 crude material was purified by flash chromatography on silica gel eluting with dichloromethane:methanol (95:5, by volume) to afford the title compound (48mg) as a white solid, m.p. 115–117°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.03 (t, 3H), 1.20 (t, 3H), 2.48 (q, 2H), 2.55 (q, 2H), 3.68 (s, 2H), 3.89 (m, 2H), 4.23 (t, 2H), 6.97 (s, 2H), 7.18 (s, 1H), 7.42 (m, 2H), 7.48 (m, 1H), 7.60 (brs, 1H), 7.80 (d, 2H).

LRMS (thermospray): m/z [MH⁺] 430.

EXAMPLE 45**N-[2-[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1H-pyrazol-1-yl]ethyl]-1-methyl-1H-imidazole-4-sulfonamide**

5

A solution of the amine of Example 43 (98mg, 0.30mmol) in dimethylformamide (3.75ml) was treated with 1-methylimidazole-4-sulphonyl chloride (60mg, 0.33mmol) and triethylamine (46 μ L, 0.33mmol) and the resulting mixture was stirred at room temperature for 18 hours. The solution was concentrated under reduced pressure. The residue was partitioned between dichloromethane and saturated aqueous sodium hydrogencarbonate solution. The organic extract was dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with dichloromethane:methanol (95:5, by volume) to afford the title compound (55mg) as a white solid, m.p. 172-174°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.00 (t, 3H), 1.08 (t, 3H), 2.40 (q, 2H), 2.50 (q, 2H), 3.52 (m, 2H), 3.66 (s, 2H), 3.71 (s, 3H), 4.15 (m, 2H), 6.06 (t, 1H), 6.95 (s, 2H), 7.16 (s, 1H).

LRMS (electrospray): m/z [MH⁺] 470.

EXAMPLES 46 AND 47**Ethyl 4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazole-3-carboxylate (Example 46)**

5

To a stirred suspension of the β -diketone of Preparation 36 (664mg, 1.90mmol) in ethanol (1.3ml) was added 2-hydroxyethyl hydrazine (145mg, 1.90mmol) and 10 the resulting mixture was heated at 80°C in a sealed Reacti-vial (Trade Mark) for 3 hours. After cooling, the mixture was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (3:1, by volume) and then pentane:ethyl acetate (1:1, by volume) to afford two compounds.

15

The more polar material was Example 46 (587mg) isolated as a pale yellow oil.

$^1\text{H-NMR}$ (400MHz, CDCl_3): δ = 1.13 (t, 3H), 1.25 (t, 3H), 2.82 (q, 2H), 4.12 (q, 2H), 4.35 (m, 4H), 6.89 (s, 2H), 7.00 (s, 1H).

20 LRMS (electrospray): m/z [MNa]⁺ 411.

The less polar material was ethyl 4-[(3,5-dichlorophenyl)sulfanyl]-3-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazole-5-carboxylate (Example 47) (40mg) isolated as a colourless oil.

25

¹H-NMR (400MHz, CDCl₃): δ = 1.15 (m, 6H), 2.61 (q, 2H), 4.03 (m, 2H), 4.04 (q, 2H), 4.64 (t, 2H), 6.83 (s, 2H), 7.03 (s, 1H).

LRMS (electrospray): m/z [MH⁺] 389.

Accurate Mass: Found 389.0481 [MH⁺]; C₁₆H₁₈Cl₂N₂O₃S requires 389.0488 [MH⁺].

5

EXAMPLE 48

4-[(3,5-Dichlorophenyl)sulfanyl]-5-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazole-3-carboxamide

10

A mixture of Example 46 (407mg, 1.05mmol) and 0.880 ammonia solution was heated at 90°C in a sealed Reacti-vial (Trade Mark) for 18 hours. The precipitate was filtered off and washed with water (5ml) to afford the title compound (273mg)

15 as a white solid, m.p. 214–216°C.

¹H-NMR (300MHz, CD₃OD): δ = 1.13 (t, 3H), 2.82 (q, 2H), 4.01 (t, 2H), 4.32 (t, 2H), 6.99 (s, 2H), 7.19 (s, 1H).

LRMS (thermospray): m/z [MNa⁺] 382.

20 Microanalysis: Found: C, 46.59; H, 4.10; N, 11.23. C₁₄H₁₅Cl₂N₃O₂S requires C, 46.68; H, 4.20; N, 11.66%.

EXAMPLE 49

2-[4-[(3,5-Dichlorophenyl)sulfanyl]-5-ethyl-3-(hydroxymethyl)-1*H*-pyrazol-1-yl]ethanol

5

A solution of Example 46 (65mg, 0.17mmol) in tetrahydrofuran (2.5ml) was cooled to -78°C and treated with lithiumaluminium hydride (1M in THF) (170µL, 0.17mmol). After stirring at -78°C for 2 hours the reaction mixture was allowed to warm to 0°C for 1 hour and was then allowed to warm to room temperature. After stirring at this temperature for 18 hours, water (1ml) was added. The reaction mixture was partitioned between ethyl acetate (25ml) and water (25ml). The organic phase was dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with dichloromethane:methanol (95:5, by volume) to afford the title compound (42mg) as a colourless oil, which solidified on standing, m.p. 89-90°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.06 (t, 3H), 2.09 (brs, 1H), 2.67 (q, 2H), 3.13 (brs, 1H), 4.03 (m, 2H), 4.18 (t, 2H), 4.60 (m, 2H), 6.92 (s, 2H), 7.03 (s, 1H).

LRMS (electrospray): m/z [MNa⁺] 369.

Accurate Mass: Found 347.0383 [MH⁺]; C₁₄H₁₆Cl₂N₂O₂S requires 347.0383 [MH⁺].

EXAMPLE 50**3-[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]-1-propanamine**

5

The pyrazole of Example 11 (200mg, 0.71mmol) was mixed with 3-chloropropylamine hydrochloride (138mg, 1.06mmol). The resulting mixture was heated neat at 150°C, for 24 hours, under a nitrogen atmosphere. After cooling, the reaction mixture was partitioned between dichloromethane (30ml) and 10 saturated aqueous sodium hydrogencarbonate solution (30ml). The organic phase was dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel eluting with a solvent gradient of dichloromethane:methanol:ammonia (90:10:0, by volume) gradually changing to 15 dichloromethane:methanol:ammonia (90:10:1, by volume) to afford the title compound (203mg) as a brown oil.

1H-NMR (400MHz, CDCl₃): δ = 1.04 (t, 3H), 1.13 (t, 3H), 1.96 (m, 2H), 2.45 (q, 2H), 2.50 (q, 2H), 2.78 (t, 2H), 3.69 (s, 2H), 4.09 (t, 2H), 6.99 (s, 2H), 7.19 (s, 20 1H).

LRMS (electrospray): m/z [MH⁺] 342.

EXAMPLE 51**2-[4-[(3,5-Dichlorophenyl)sulfanyl]-3-ethyl-5-(hydroxymethyl)-1*H*-pyrazol-1-yl]ethanol**

5

The title compound was prepared by a similar method to that of Example 49 using Example 47 except that the crude material was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (1:1, by volume)

10 to afford the title compound as a white solid, m.p. 106-108°C.

¹H-NMR (300MHz, CDCl₃): δ = 1.20 (t, 3H), 2.61 (q, 2H), 2.78 (brs, 1H), 2.97 (brs, 1H), 4.09 (m, 2H), 4.39 (t, 2H), 4.69 (m, 2H), 6.84 (s, 2H), 7.08 (s, 1H).

LRMS (electrospray): m/z [MNa⁺] 369.

15 Accurate Mass: Found 347.0394 [MH⁺]; C₁₄H₁₆Cl₂N₂O₂S requires 347.0383 [MH⁺].

EXAMPLE 52**N-[2-[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl]-2,2-difluoroacetamide**

20

Standard solution: The amine of Example 43 (372mg, 1.14mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (437mg, 2.28mmol) and 4-dimethylaminopyridine (342mg, 2.28mmol) were dissolved in dimethylformamide (14.25ml).

- 5 Difluoroacetic acid (2.5μL, 40μmol) was treated with the standard solution of amine (250μL) in a 96 well plate and the mixture was shaken for 18 hours. The reaction mixture was filtered and the filtrate was purified by HPLC (Magellen C₈(2) 150x10mm column; a gradient mobile phase was used, 5:95 (by volume)→95:5 (by volume) acetonitrile: (water, 95% by volume/trifluoroacetic acid, 0.1% by volume/acetonitrile 5%, by volume)).
- 10 Retention time: 6.05 minutes

LRMS (electrospray): m/z [MH⁺] 404.

EXAMPLES 53-70

15

The compounds of the following tabulated Examples of the general formula:

- 20 were prepared by a similar method to that of Example 52 using the appropriate acid.

Example No.	R	HPLC retention time (minutes)	LRMS (electrospray) m/z [M ⁺] =
53		5.15	397

54		4.96	448
55		5.73	448
56		4.37	426
57		6.00	412
58		6.20	431
59		5.61	398
60		5.12	447
61		5.84	432
62		5.96	448
63		5.22	436
64		5.82	424
65		5.49	446

66		4.96	384
67		6.05	438
68		3.85	411
69		5.54	393
70		6.46	448

EXAMPLE 71

[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]methyl phenyl imidodicarbonate

5

A solution of the alcohol of Example 41 (6.3mg, 20 μ mol) in dimethylformamide (250 μ L) was treated with phenyl isocyanatoformate (3.6mg, 22 μ mol) and the mixture was shaken for 1.5 hours. The reaction mixture was filtered and the filtrate was purified by HPLC (Hypersil Thermoquest Luna C₈ 150x10mm column; a gradient mobile phase was used, 10:90 (by volume) \rightarrow 95:5 (by volume) acetonitrile:(water, 95% by volume/trifluoroacetic acid, 0.1% by volume/acetonitrile 5%, by volume)).

15 Retention time: 7.64 minutes

LRMS (electrospray): m/z [MH⁺] 476.

EXAMPLE 72

N-(2-[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl)-N-(2,6-difluorobenzoyl)urea

5

- A solution of the amine of Example 43 (6.5mg, 20 μ mol) in dimethylformamide (250 μ L) was treated with 2,6-difluorobenzoylisocyanate (4.0mg, 22 μ mol) and the mixture was shaken for 18 hours. The reaction mixture was filtered and the
10 filtrate was purified by HPLC (Hypersil Thermoquest Luna C₈ 150x10mm column; a gradient mobile phase was used, 10:90 (by volume) \rightarrow 95:5 (by volume) acetonitrile:(water, 95% by volume/trifluoroacetic acid, 0.1% by volume/acetonitrile 5%, by volume)).
Retention time: 6.8-7.4 minutes
15 LRMS (electrospray): m/z [MH⁺] 509.

EXAMPLES 73-74

The compounds of the following tabulated Examples of the general formula:

20

were prepared by a similar method to that of Example 72 using the appropriate isocyanate.

Example No.	R	HPLC retention time (minutes)	LRMS (electrospray) m/z [M ⁺] =
73		6.23	411
74		7.21	473

5

EXAMPLE 75

N-[2-[4-(3,5-Dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl]-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinesulfonamide

10

A solution of the amine of Example 43 (6.5mg, 20μmol) and triethylamine (6μL, 40μmol) in dimethylformamide (250μL) was treated with 2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinesulfonyl chloride (J. Am. Chem. Soc., 1956, 78, 401)

- 15 (0.8mg, 4.0μmol) and the mixture was shaken for 18 hours. The reaction mixture was filtered and the filtrate was purified by HPLC (Hypersil Thermoquest Luna C₈ 150x10mm column; a gradient mobile phase was used, 10:90 (by volume)→95:5 (by volume) acetonitrile:(water, 95% by volume/trifluoroacetic acid, 0.1% by volume/acetonitrile 5%, by volume)).

Retention time: 6.00 minutes
 LRMS (electrospray): m/z [MH⁺] 500.

EXAMPLE 76

5 Ethyl 4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1*H*-pyrazole-3-carboxylate

To a stirred solution of the β -diketone of Preparation 36 (2.00g, 5.73mmol) in ethanol (3ml) was added hydrazine monohydrate (278 μ l, 5.73mmol) and the resulting mixture was heated at 80°C in a sealed Reacti-vial (Trade Mark) for 2 hours. After cooling, the mixture was dissolved in water and the resulting solution was extracted with dichloromethane and followed by ethyl acetate. The combined organic phases were washed with brine and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with cyclohexane:ethyl acetate (5:1, by volume) and then cyclohexane:ethyl acetate (3:1, by volume) to afford the product as an oily white solid. This material was washed with pentane and the white solid was collected by filtration and air dried to give a pure sample of the title compound (450mg),
 10 m.p. 138-139°C.
 15
 20

¹H-NMR (400MHz, CDCl₃): δ = 1.21 (m, 6H), 2.72 (q, 2H), 4.32 (q, 2H), 6.84 (s, 2H), 7.04 (s, 1H).

LRMS (electrospray): m/z [M-H⁺] 343.

25 Microanalysis: Found: C, 48.53; H, 3.95; N, 8.00. C₁₄H₁₄Cl₂N₂O₂S requires C, 48.71; H, 4.09; N, 8.11%.

EXAMPLE 77**[4-[(3,5-Dichlorophenyl)sulfanyl]-5-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-3-y]acetonitrile**

A solution of the protected alcohol of Preparation 39 (70mg, 0.15mmol) in tetrahydrofuran (1ml) was treated with tetrabutylammonium fluoride (1M in THF) (300 μ L, 0.30mmol), at room temperature. After the reaction mixture had stirred
 10 for 3 hours the solution was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with cyclohexane:ethyl acetate (3:1, by volume) to afford the title compound (30mg) as a white solid, m.p. 84-85°C.

15 $^1\text{H-NMR}$ (400MHz, CDCl_3): δ = 1.15 (m, 3H), 2.75 (q, 2H), 2.83 (t, 1H), 3.63 (s, 2H), 4.12 (m, 2H), 4.22 (m, 2H), 6.82 (s, 2H), 7.10 (s, 1H).

LRMS (electrospray): m/z [M-H $^+$] 354.

Microanalysis: Found: C, 50.86; H, 4.28; N, 11.70. $\text{C}_{15}\text{H}_{15}\text{Cl}_2\text{N}_3\text{OS}$ requires C, 50.57; H, 4.24; N, 11.79%.

EXAMPLE 78

[4-[(3,5-Dichlorophenyl)sulfonyl]-5-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-3-yl]acetonitrile

5

To a stirred solution of the pyrazole (68mg, 0.14mmol) of Preparation 39 in methanol (2ml) was added dichloromethane (3ml), followed by meta-chloroperoxybenzoic acid (60% w/w) (125mg, 0.43mmol). After 18 hours the mixture was partitioned between dichloromethane and water. The aqueous component was separated and further extracted with dichloromethane. The combined organic phases were dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure to give a white solid. To a stirred solution of this material in THF (2ml) was added water (2ml) followed by acetic acid (2ml). After 18 hours at room temperature the mixture was partitioned between water and dichloromethane and the aqueous component was separated and further extracted with dichloromethane. The combined organic phases were washed with aqueous sodium bicarbonate solution, dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with cyclohexane:ethyl acetate (2:1, by volume) followed by cyclohexane:ethyl acetate (1:1, by volume) to afford the title compound (45mg) as a white solid, m.p. 117-118°C.

25 ¹H-NMR (400MHz, CDCl₃): δ = 1.11 (t, 3H), 2.41 (t, 1H), 2.89 (q, 2H), 4.02 (s, 2H), 4.05 (m, 4H), 7.57 (s, 2H), 7.79 (s, 1H).
LRMS (electrospray): m/z [MH⁺] 388.

Microanalysis: Found: C, 46.39; H, 3.89; N, 10.53. $C_{15}H_{15}Cl_2N_3O_3S$ requires C, 46.40; H, 3.89; N, 10.82%.

EXAMPLE 79

5 2-[4-[(3,5-Dichlorophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol

To a stirred solution of the diketone (500mg, 1.64mmol) of Preparation 41 in
 10 ethanol (1ml) was added 2-hydroxyethylhydrazine (113 μ l, 1.80mmol). The reaction mixture was heated at 80°C in a sealed Reacti-vial (Trade Mark) for 4 hours. After cooling, the mixture was concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel eluting with pentane:ethyl acetate (3:1, by volume) to afford the title compound as a
 15 yellow solid (349mg), 77-79°C.

1H -NMR (400MHz, CDCl₃): δ = 1.04 (t, 3H), 1.18 (t, 3H), 2.52 (q, 2H), 2.62 (q, 2H), 3.64 (s, 1H), 4.03 (m, 2H), 4.17 (m, 2H), 6.79 (s, 2H), 7.02 (s, 1H).

LRMS (electrospray): m/z [MH⁺] 345.

Microanalysis: Found: C, 51.88; H, 5.20; N, 8.03. $C_{15}H_{18}Cl_2N_2OS$ requires C,
 20 52.18; H, 5.25; N, 8.11%.

EXAMPLE 804-(3,5-Dichlorobenzyl)-3-ethyl-1*H*-pyrazol-5-amine

5

To a stirred solution of the nitrile (500mg, 1.95mmol) of Preparation 43 in ethanol (50ml) was added hydrazine monohydrate (100mg, 1.95mmol) and the mixture was heated under reflux. After 15 hours the reaction mixture was cooled and the solvent was removed under reduced pressure. The crude product was purified
10 by flash column chromatography on silica gel eluting with dichloromethane:methanol:ammonia (95:5:0.5, by volume) to afford the title compound as a yellow oil (250mg).

¹H-NMR (400MHz, CD₃OD): δ = 1.05 (t, 3H), 2.43 (q, 2H), 3.66 (s, 2H), 7.09 (s,
15 2H), 7.19 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 345.

EXAMPLE 81Ethyl 4-(3,5-dichlorobenzyl)-3-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-5-ylcarbamate

20

- To a stirred solution of the pyrazole (150mg, 0.35mmol) of Preparation 44 and triethylamine (70 μ l, 0.53mmol) in dichloromethane (6ml) was added ethyl chloroformate (40 μ l, 0.39mmol) and the mixture was heated under reflux. After 15 hours the solution was concentrated under reduced pressure. To a solution of 5 the residue in pyridine (2ml) was added ethyl chloroformate (40 μ l, 0.39mmol). After 7 days at room temperature the solvent was removed under reduced pressure and the residue was filtered through silica, eluting with dichloromethane:methanol:ammonia (98:2:0.2, by volume). The resulting solution was concentrated under reduced pressure and the residue was 10 dissolved in a mixture of tetrahydrofuran (2ml), acetic acid (2ml) and water (1ml). After stirring at room temperature for 15 hours the reaction mixture was partitioned between water and dichloromethane. The aqueous phase was separated and further extracted with dichloromethane. The combined organic phases were washed with brine, dried over anhydrous magnesium sulphate, 15 filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with dichloromethane followed by dichloromethane:methanol:ammonia (95:5:0.5, by volume) to afford the title compound (18mg) as a colourless oil.
- 20 $^1\text{H-NMR}$ (300MHz, CDCl_3): δ = 1.20 (m, 6H), 2.49 (m, 2H), 3.71 (s, 2H), 3.99 (m, 2H), 4.10 (m, 4H), 6.30 (m, 1H), 7.03 (s, 2H), 7.20 (s, 1H).
- LRMS (electrospray): m/z [M-H $^+$] 384.

EXAMPLE 82

N-[4-(3,5-Dichlorobenzyl)-3-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-5-yl]-2-methoxyacetamide

To a stirred mixture of the pyrazole (200mg, 0.47mmol) of Preparation 44 and methoxyacetyl chloride (56mg, 0.52mmol) in dichloromethane (10ml) was added triethylamine (72 μ l, 0.52mmol). After 15 hours at room temperature the solvent
 10 was removed under reduced pressure and the resulting orange oil was partitioned between dichloromethane and water. The organic phase was separated, washed with brine, dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. To a stirred solution of the residue in acetic acid (2ml) was added water (1ml). After 3 days at room
 15 temperature the mixture was heated at 60°C. After 4 hours the solution was cooled to room temperature and partitioned between aqueous sodium carbonate solution and dichloromethane. The organic phase was separated and twice washed with water, twice washed with brine, dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The title compound
 20 was isolated as a white solid (100mg) which was used without further purification, m.p. 142-144°C.

¹H-NMR (400MHz, CF₃CO₂D): δ = 1.38 (t, 3H), 2.90 (q, 2H), 3.52 (s, 3H), 3.88 (s, 2H), 4.16 (s, 2H), 4.21 (m, 2H), 4.58 (m, 2H), 7.03 (s, 2H), 7.30 (s, 1H).

25 LRMS (thermospray): m/z [MH⁺] 386.

EXAMPLE 83**2-[4-(3,5-Dichlorobenzyl)-5-(dimethylamino)-3-ethyl-1*H*-pyrazol-1-yl]ethanol**

5

A stirred solution of the pyrazole (300mg, 0.70mmol) of Preparation 44 and paraformaldehyde (46mg, 1.54mmol) in formic acid (2ml) was heated under reflux. After 15 hours the mixture was cooled and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with dichloromethane followed by dichloromethane:methanol (99:1, by volume) to afford the title compound (50mg) as a colourless oil.

15 ¹H-NMR (400MHz, CDCl₃): δ = 1.09 (t, 3H), 2.38 (q, 2H), 2.62 (s, 6H), 3.77 (s, 2H), 3.91 (m, 2H), 4.04 (m, 2H), 4.23 (t, 1H), 6.95 (s, 2H), 7.17 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 342.

20

25

EXAMPLES 84 AND 85

Ethyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-5-methyl-1*H*-pyrazole-3-carboxylate (Examples 84) and ethyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-3-methyl-1*H*-pyrazole-5-carboxylate (Example 85)

5

The title compounds were prepared by a similar method to that of Examples 27 and 28 using the β -diketone of Preparation 22. The crude product was purified by

- 10 flash chromatography on silica gel eluting with pentane:ethyl acetate (1:1, by volume) to afford the two isomers.

Less polar isomer (Example 85):

- Shown to be ethyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-3-methyl-1*H*-pyrazole-5-carboxylate by nOe experiments. Isolated as a white solid, m.p. 15 105.8-107.5°C.

$^1\text{H-NMR}$ (300MHz, CDCl_3): δ = 1.35 (t, 3H), 2.20 (s, 3H), 3.10 (t, 1H), 4.00 (s, 2H), 4.01 (m, 2H), 4.30 (q, 2H), 4.67 (m, 2H), 6.98 (s, 2H), 7.20 (s, 1H).

LRMS (thermospray): m/z [MH $^+$] 357.

- 20 Microanalysis: Found: C, 53.81; H, 5.02; N, 7.59. $\text{C}_{16}\text{H}_{18}\text{N}_2\text{O}_3$ requires C, 53.80; H, 5.08; N, 7.84%.

More polar isomer (Example 84):

Ethyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-5-methyl-1*H*-pyrazole-3-carboxylate was isolated as a white solid, 110.7-112.4°C.

¹H-NMR (300MHz, CDCl₃): δ = 1.35 (t, 3H), 2.21 (s, 3H), 2.70 (brs, 1H), 4.01 (m, 4H), 4.22 (m, 2H), 4.33 (q, 2H), 7.00 (s, 2H), 7.19 (s, 1H).

- 5 LRMS (thermospray): m/z [M+]⁺ 357.

Microanalysis: Found: C, 53.53; H, 5.06; N, 7.59. C₁₆H₁₈N₂O₃ requires C, 53.80; H, 5.08; N, 7.84%.

EXAMPLE 86

- 10 tert-Butyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-5-methyl-1*H*-pyrazol-3-ylcarbamate

- 15 A suspension of the carboxylic acid of Preparation 23 (550mg, 1.67mmol) in *tert*-butanol (8.35ml) was treated with triethylamine (244μL, 1.84mmol) and diphenylphosphoryl azide (396μL, 1.84mmol) and the reaction mixture was stirred under reflux for 18 hours, under a nitrogen atmosphere. After cooling, the solution was concentrated under reduced pressure. The residue was diluted with
20 water and extracted with ethyl acetate (x3). The combined organic extracts were dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (1:2, by volume) followed by dichloromethane:methanol:ammonia (95:5:0.5, by volume) to afford the title
25 compound (160mg).

¹H-NMR (300MHz, CDCl₃): δ = 1.44 (s, 9H), 2.17 (s, 3H), 3.42 (s, 1H), 3.77 (s, 2H), 3.92 (m, 2H), 4.02 (m, 2H), 6.43 (s, 1H), 6.99 (s, 2H), 7.18 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 400.

5

EXAMPLE 87

2-[3-Amino-4-(3,5-dichlorobenzyl)-5-methyl-1*H*-pyrazol-1-yl]ethanol

10

A solution of the protected amine of Example 86 (50mg, 0.13mmol) in 1,4-dioxan was treated with 4M hydrogen chloride in 1,4-dioxan (320μL, 1.25mmol) and stirred at room temperature for 2 days. The solution was concentrated under reduced pressure. The residue was diluted with water (15ml) and extracted with ethyl acetate (3x10ml). The combined organic phases were dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure to afford the title compound as a white solid and as the hydrochloride salt (19.5mg).

¹H-NMR (300MHz, d₆-DMSO): δ = 2.13 (s, 3H), 3.59 (m, 2H), 3.69 (s, 2H), 3.89 (m, 2H), 7.09 (s, 2H), 7.25 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 300.

25

EXAMPLE 88**Ethyl [4-(3,5-dichlorobenzyl)-5-methoxy-3-methyl-1*H*-pyrazol-1-yl]acetate**

5

A suspension of the ester of Preparation 26 (100mg, 0.29mmol) in toluene (4ml) was treated with triphenylphosphine (115mg, 0.44mmol), followed by methanol (15µL, 0.30mmol) then diethyl azodicarboxylate (69µL, 0.44mmol) and the resulting mixture was stirred at room temperature, under a nitrogen atmosphere

10 for 18 hours. The reaction mixture was diluted with ethyl acetate and washed with 10% aqueous sodium carbonate solution. The organic phase was dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The resulting oil was purified by flash chromatography on silica gel eluting with cyclohexane:ethyl acetate (3:1, by volume) to afford the title

15 compound (73mg) as a colourless oil, which solidified under reduced pressure.

¹H-NMR (300MHz, CDCl₃): δ = 1.31 (t, 3H), 2.08 (s, 3H), 3.78 (s, 2H), 3.81 (s, 3H), 4.27 (q, 2H), 4.73 (s, 2H), 7.03 (s, 2H), 7.20 (s, 1H).

LRMS (thermospray): m/z [M+H]⁺ 357.

20 Microanalysis: Found: C, 53.66 H, 5.08; N, 7.84. C₁₆H₁₈Cl₂N₂O₃ requires C, 53.80; H, 5.08; N, 7.84%.

EXAMPLE 89**2-[5-Amino-4-(3,5-dichlorobenzyl)-3-ethyl-1H-pyrazol-1-yl]ethanol**

5

To a stirred solution of the nitrile (500mg, 1.95mmol) of Preparation 43 in ethanol (50ml) was added 2-hydroxyethylhydrazine (153mg, 1.95mmol) and the mixture was heated under reflux. After 15 hours the mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on 10 silica gel eluting with dichloromethane:methanol:ammonia (95:5:0.5, by volume) to afford the title compound (450mg) as a white solid, m.p. 135°C.

¹H-NMR (400MHz, DMSO): δ = 0.90 (t, 3H), 2.19 (q, 2H), 3.58 (m, 4H), 3.82 (t, 2H), 4.82 (t, 1H), 4.90 (s, 2H), 7.07 (s, 2H), 7.30 (s, 1H).

15 LRMS (thermospray): m/z [M+H]⁺ 314.

Microanalysis: Found: C, 53.33; H, 5.50; N, 13.20. C₁₄H₁₇Cl₂N₃O requires C, 53.52; H, 5.45; N, 13.37%.

EXAMPLE 90**2-[3,5-Diethyl-1-(2-hydroxyethyl)-1H-pyrazol-4-yl]methyl]isophthalonitrile**

2-Hydroxyethylhydrazine (34mg, 0.44mmol) was added to a stirred solution of the diketone (105mg, 0.4mmol) of Preparation 45 in glacial acetic acid (3ml) at room temperature under nitrogen. After stirring for 3 days the acetic acid was 5 evaporated under reduced pressure and the residue was partitioned between 10% aqueous potassium carbonate solution (40ml) and dichloromethane (40ml). The organic phase was separated, dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with dichloromethane:methanol 10 (98:2, by volume) to give the title compound as a white solid (76mg) m.p. 115-117°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.0 (3H, t), 1.1 (3H, t), 1.55 (1H, br.s), 2.37 (2H, q), 2.48 (2H, q), 3.79 (2H, s), 4.02 (2H, m), 4.08 (2H, m), 7.55 (2H, s), 7.71 (1H, 15 s).

LRMS (thermospray): m/z [MH⁺] 309.

Microanalysis: Found: C, 69.64; H, 6.54; N, 18.06. C₁₆H₁₆N₂O₂ requires C, 70.11; H, 6.54; N, 18.17%.

20

EXAMPLE 91

5-[(3,5-Diethyl-1*H*-pyrazol-4-yl)methyl]isophthalonitrile

25

Hydrazine hydrate (49μL, 1mmol) was added to a stirred solution of the diketone (237mg, 0.9mmol) of Preparation 45 in glacial acetic acid (3ml) at room

temperature under nitrogen. After stirring for 3 days the acetic acid was evaporated under reduced pressure and the residue was partitioned between 10% aqueous potassium carbonate solution (40ml) and dichloromethane (40ml). The organic phase was separated, dried over anhydrous magnesium sulphate, 5 filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with dichloromethane:methanol (98:2, by volume) to give the title compound as a white solid (188mg) m.p. 141-143°C.

- 10 $^1\text{H-NMR}$ (400MHz, CDCl_3): δ = 1.15 (6H, t), 2.47 (4H, q), 3.82 (2H, s), 7.58 (2H, s), 7.73 (1H, s).

LRMS (thermospray): m/z [MH $^+$] 265.

15 EXAMPLE 92

5-[(1-(2-Aminoethyl)-3,5-diethyl-1*H*-pyrazol-4-yl)methyl]isophthalonitrile

20

A stirred mixture of the pyrazole (106mg, 0.4mmol) of Example 91 and 2-chloroethylamine hydrochloride (70mg, 0.6mmol) was heated at 150°C under nitrogen for 18 hours. After cooling the mixture was partitioned between 10% aqueous potassium carbonate (40ml) and dichloromethane (40ml) and the 25 organic layer was dried over magnesium sulphate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with a solvent gradient of dichloromethane:methanol (98:2, by

volume) and then dichloromethane:methanol:0.880 ammonia (95:5:0.5, by volume) to give the title compound as a white solid (51mg) m.p. 100-105°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.02 (3H, t), 1.09 (3H, t), 1.49 (2H, br.s), 2.38 (2H, q), 2.52 (2H, q), 3.13 (2H, t), 3.78 (2H, s), 4.04 (2H, t), 7.58 (2H, s), 7.74 (1H, s).
LRMS (electrospray): m/z [MH⁺] 308.

EXAMPLE 93

2-{4-[(3,5-Dibromophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazol-1-yl}ethanol

10

2-Hydroxyethylhydrazine (0.43mL, 6.3mmol) was added to a suspension of the diketone (2.5g, 6.3mmol) from Preparation 49 in glacial acetic acid (2ml) and the mixture was stirred for three days. 2-Hydroxyethylhydrazine (0.5mL, 7.3mmol) was added and the mixture was stirred for 16 hours. The mixture was concentrated under reduced pressure and the residue was partitioned between ethyl acetate (100ml) and water (150ml). The aqueous layer was extracted with ethyl acetate (100ml) and the combined organic layers were washed with brine (100ml), dried over magnesium sulphate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with dichloromethane gradually changing to dichloromethane:ethyl acetate (17:3, by volume) to provide the title compound (1.3g) as a colourless oil.

25

¹H-NMR (300MHz, CDCl₃): δ = 1.11 (t, 3H), 1.20 (t, 3H), 2.6 (q, 2H), 2.7 (q, 2H), 4.10 (m, 2H), 4.18 (m, 2H), 7.02 (s, 2H), 7.37 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 435.

Microanalysis: Found: C, 41.29; H, 4.17; N, 6.36. C₁₅H₁₈Br₂N₂OS requires C,

5 41.49; H, 4.18; N, 6.45%.

EXAMPLE 94

5-[[3,5-Diethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-4-yl]sulfanyl]isophthalonitrile

10

5-[[1-(2-[[tert-Butyl(dimethyl)silyl]oxy]ethyl)-3,5-diethyl-1*H*-pyrazol-4-yl]sulfanyl]isophthalonitrile (180mg, 0.4mmol) (Preparation 51) was treated with tetrabutylammonium fluoride (1M solution in tetrahydrofuran, 0.8ml, 0.8mmol) 15 and the resulting solution was stirred for 2½ hours. The mixture was concentrated under reduced pressure to give a brown oil. The crude product was purified by flash chromatography on silica gel eluting with ethyl acetate:dichloromethane (1:4, by volume) to provide the title compound (70mg) as a yellow oil.

20

¹H-NMR (300MHz, CDCl₃): δ = 1.11 (t, 3H), 1.19 (t, 3H), 2.56 (q, 2H), 2.69 (q, 2H), 3.50 (br.s, 1H), 4.12 (m, 2H), 4.22 (m, 2H), 7.41 (s, 2H), 7.61 (s, 1H).

LRMS (electrospray): m/z [MH⁺] 327.

25

The following Preparations describe the preparation of certain intermediates used in the preceding Examples.

PREPARATION 1

5 3-(3,5-Dichlorobenzyl)-5-methyl-2,4-hexanedione

Method A:

- 5% Palladium on barium sulphate (10mg) was added to a stirred solution of the
 10 more polar alkene isomer of Preparation 8 (100mg) in ethanol (2.5ml) and the resulting mixture was stirred under an atmosphere of hydrogen (103.4kPa, 15 psi) for 3 hours. The mixture was filtered through a filter aid (Arbocel (Trade Mark))(caution - fire hazard) and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting
 15 with pentane:ethyl acetate (10:1, by volume) to give the title compound (72mg) as a 43:57 mixture with its enol tautomer as estimated by ¹H-NMR and as a yellow oil.

- ¹H-NMR (400MHz, CDCl₃): δ = 1.03 (d, 6H, diketone and enol), 2.02 (s, 3H, enol),
 20 2.11 (s, 3H, diketone), 2.52 (heptet, 1H, diketone), 2.61 (heptet, 1H, d, enol), 3.00 (dd, 1H, diketone), 3.06 (dd, 1H, diketone), 3.60 (s, 2H, enol), 4.00 (t, 1H, diketone), 6.98 and 7.00 (2s, 2x2H, diketone and enol), 7.18 (s, 1H, diketone and enol).

LRMS (thermospray): m/z [MH⁺] 304.

The less polar alkene isomer of Preparation 8 was reduced in the same way as for the more polar isomer in Method A above but stirring the mixture for 9 hours and flash chromatography on silica gel eluting with a solvent gradient of pentane:ether (20:1, by volume) then pentane:ether (10:1, by volume) to give
 5 the title compound as a yellow oil.

PREPARATION 2

3-(3,5-Difluorobenzyl)-5-methyl-2,4-hexanedione

10

Method A:

5% Palladium on barium sulphate (56mg) was added to a stirred solution of the more polar alkene isomer of Preparation 11 (560mg) in ethanol (16ml) and the resulting mixture was stirred under an atmosphere of hydrogen (103.4kPa, 15
 15 psi) for 4 hours. The mixture was filtered through a filter aid (Arbocel (Trade Mark))(caution - fire hazard) and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with pentane:ether (10:1, by volume) to give the title compound (513.1mg) as a 35:65 mixture with its enol tautomer as estimated by ¹H-NMR as a yellow oil.

20

¹H-NMR (400MHz, CDCl₃): δ = 1.03 (d, 6H, diketone and enol), 2.03 (s, 3H, enol), 2.13 (s, 3H, diketone), 2.55 (heptet, 1H, diketone), 2.65 (heptet, 1H, enol), 3.03 (dd, 1H, diketone), 3.11 (dd, 1H, diketone), 3.65 (s, 2H, enol), 4.03 (t, 1H, diketone), 6.65 (m, 3H, diketone and enol).

25 LRMS (electrospray): m/z [MNa⁺] 277.

Method B:

The less polar alkene isomer of Preparation 11 was reduced in the same way as for the more polar isomer in Method A above but stirring the mixture for 25 hours to give the title compound as a yellow oil.

5

PREPARATION 3**3-(3-Fluorobenzyl)-5-methyl-2,4-hexanedione**

10

The title compound was prepared by a method similar to that of Preparation 2 using the alkene isomers of Preparation 12 to give the title compound as a 38:62 mixture with its enol tautomer as estimated by $^1\text{H-NMR}$ as a yellow oil.

- 15 $^1\text{H-NMR}$ (400MHz, CDCl_3): δ = 1.06 (d, 6H, diketone and enol), 2.06 (s, 3H, enol), 2.16 (s, 3H, diketone), 2.55 (heptet, 1H, diketone), 2.73 (heptet, 1H, enol), 3.08 (dd, 1H, diketone), 3.16 (dd, 1H, diketone), 3.68 (s, 2H, enol), 4.10 (t, 1H, diketone), 6.89 (m, 3H, diketone and enol), 7.27 (m, 1H, diketone and enol).
LRMS (electrospray): m/z [MNa $^+$] 259.

20

PREPARATION 4**3-(3,5-Dichlorobenzyl)-2,4-pentanedione**

5

- To a solution of the alkene of Preparation 9 (6.4g, 24.9mmol) in ethanol (100ml) and ethyl acetate (40ml) was added 5% palladium on barium sulphate (640mg) and the resulting mixture was stirred under an atmosphere of hydrogen (103.4kPa, 15 psi) for 18 hours. The mixture was filtered through a filter aid 10 (Arbocel (Trade Mark))(caution - fire hazard) under nitrogen and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ethyl acetate (10:1, by volume) and then pentane:ethyl acetate (7:1, by volume) to give the title compound (5.3g) as a mixture with its enol tautomer as shown by 15 ¹H-NMR as a yellow powder, m.p. 85-87°C.

¹H-NMR (400MHz, CDCl₃): δ = 2.02 (s, 6H, enol), 2.15 (s, 6H, diketone), 3.06 (d, 2H, diketone), 3.60 (s, 2H, enol), 3.93 (t, 1H, diketone), 7.00 (s, 2H, enol), 7.03 (s, 2H, diketone), 7.21 (s, 1H, diketone and enol), 16.78 (s, 1H, enol).

- 20 LRMS (electrospray): m/z [M-H⁺] 257.

Microanalysis: Found: C, 55.91; H, 4.72. C₁₂H₁₂Cl₂O₂ requires C, 55.62; H, 4.67.

PREPARATION 5

4-(3,5-Dichlorobenzyl)-3,5-heptanedione

5

The title compound was prepared by a method similar to that of Preparation 1, Method B using the alkene of Preparation 14 and purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ethyl acetate (20:1, by volume) and then pentane:ethyl acetate (10:1, by volume) to give the title compound as a mixture with its enol tautomer as estimated by ¹H-NMR and as an orange oil. A small amount (ca.10%) of dechlorinated impurities presumably arising from over reduction were detected by ¹H-NMR. This over reduction could probably be avoided by using the alternative reduction procedure of Preparation 6.

15

¹H-NMR (400MHz, CDCl₃): δ = 1.00 (m, 6H, diketone and enol), 2.40 (m, 4H, diketone and enol), 3.11 (d, 2H, diketone), 3.64 (d, 2H, enol), 3.97 (t, 1H, diketone), 7.03 (d, 2H), 7.22 (s, 1H), 17.02 (s, 1H, enol).

20

25

PREPARATION 6

3-(3,5-Dichlorobenzyl)-1,1,1-trifluoro-2,4-pentanedione

5

To a solution of a mixture of the alkenes of Preparation 13 (100mg, 0.321mmol) in dichloromethane (3ml) was added diphenylsilane (88.6mg, 0.481mmol), tetrakis(triphenylphosphine)palladium(0) and zinc chloride (8mg, 0.06mmol) and the resulting mixture was stirred under nitrogen at room temperature for 3 days.

10 The mixture was applied directly to a silca gel column and purified by flash chromatography eluting with a solvent gradient of dichloromethane:pentane (1:3, by volume)and then dichloromethane:pentane (1:2, by volume) to give the title compound (78mg) as a mixture with its enol tautomer as shown by ¹H-NMR and as a pale yellow oil.

15

¹H-NMR (300MHz, CDCl₃): δ = (enol only, signals for diketone not assigned) 2.14 (s, 3H), 3.78 (s, 2H), 7.02 (2, 2H), 7.09 (m, 1H), 16.29 (br. s, 1H).

LRMS (electrospray): m/z [M-H⁻] 311.

20

25

PREPARATION 7**3-(3-Chlorobenzyl)-5-methyl-2,4-hexanedione**

5

The title compound was prepared by a similar method to that of Preparation 6 using a mixture of the alkenes of Preparation 10, being purified by flash chromatography eluting with pentane:ethyl acetate (3:1, by volume) and being obtained as a mixture with its enol tautomer as shown by $^1\text{H-NMR}$ as a yellow oil.

10

$^1\text{H-NMR}$ (300MHz, CDCl_3): δ = 0.97-1.01 (m, 6H, diketone and enol), 2.02 and 2.10 (2s, 2x3H, diketone and enol), 2.53 and 2.66 (2m, 2x1H, diketone and enol), 3.07 (m, 2H, diketone), 3.61 (s, 2H, enol), 4.05 (m, 1H, diketone), 7.08 (m, 4H, diketone and enol).

15

20

25

30

PREPARATION 8

(3E)-3-(3,5-Dichlorobenzylidene)-5-methyl-2,4-hexanedione and (3Z)-3-(3,5-dichlorobenzylidene)-5-methyl-2,4-hexanedione

5

A mixture of 5-methyl-2,4-hexanedione (*J. Am. Chem. Soc.*, 1980, 2095-6.) (1.84g, 14.33mmol), 3,5-dichlorobenzaldehyde (2.5g, 14.33mmol), glacial acetic acid (214 μ L, 3.73mmol), piperidine (29 μ L, 0.29mmol), dry toluene (10.2ml) and powdered 3 \AA molecular sieves (100mg) was heated under reflux under nitrogen for 24 hours. A Dean-Stark trap was attached to the reaction and heating under reflux was continued for 3 hours, during which time the toluene evaporated from the reaction. The residue was diluted with dichloromethane (80ml) and filtered to remove molecular sieves. The filtrate was washed with water (80ml), dried over magnesium sulphate and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with pentane:ether (10:1, by volume) to give the less polar title compound (510.6mg) as a yellow oil.

¹H-NMR (400MHz, CDCl₃): δ = 1.19 (d, 6H), 2.29 (s, 3H), 3.19 (heptet, 1H), 7.24 (s, 2H), 7.34 (s, 1H), 7.40 (s, 1H).
LRMS (thermospray): m/z [MNH₄⁺] 302.

Further elution of the same column gave the more polar title compound (993.3mg) as a yellow oil.

¹H-NMR (400MHz, CDCl₃): δ = 1.05 (d, 6H), 2.40 (s, 3H), 2.58 (heptet, 1H), 7.24 (s, 2H), 7.39 (s, 1H), 7.45 (s, 1H).

LRMS (thermospray): m/z [MNH₄⁺] 302.

5 PREPARATION 9

3-(3,5-Dichlorobenzylidene)-2,4-pentanedione

- 10 Glacial acetic acid (0.49ml, 8.6mmol) and piperidine (57μL, 0.6mmol) were added to a stirred solution of 2,4-pentanedione (2.86g, 28.6mmol) and 3,5-dichlorobenzaldehyde (5.00g, 28.6mmol) in toluene (25ml) and the mixture was heated under reflux using a Dean-Stark trap for 18 hours. After cooling, the mixture was concentrated under reduced pressure and the residue was purified
 15 by flash chromatography on silica gel eluting with pentane:ethyl acetate (10:1, by volume) to give the title compound (6.5g) as a red/brown solid, m.p. 85-87°C.

¹H-NMR (400MHz, CDCl₃): δ = 2.22 (s, 3H), 2.39 (s, 3H), 7.21 (s, 2H), 7.26 (s, 1H), 7.35 (s, 1H).

20 LRMS (thermospray): m/z [MNH₄⁺] 274.

Microanalysis: Found: C, 55.93; H, 3.81. C₁₂H₁₀Cl₂O₂ requires C, 56.06; H, 3.92.

PREPARATION 10

(3E)-3-(3-Chlorobenzylidene)-5-methyl-2,4-hexanedione and (3Z)-3-(3-chlorobenzylidene)-5-methyl-2,4-hexanedione

5

The title compounds were prepared by a similar method to that of Preparation 9 using 5-methyl-2,4-hexanedione (*J. Am. Chem. Soc.*, 1980, 2095-6) and 3-chlorobenzaldehyde and were obtained as yellow oils.

10

Less polar isomer:

$^1\text{H-NMR}$ (400MHz, CDCl_3): $\delta = 1.16$ (d, 6H), 2.24 (s, 3H), 3.18 (m, 1H), 7.30 (m, 6H).

LRMS (thermospray): m/z [MNH_4^+] 268.

15

More polar isomer:

$^1\text{H-NMR}$ (400MHz, CDCl_3): $\delta = 1.02$ (d, 6H), 2.39 (s, 3H), 2.55 (m, 1H), 7.31 (m, 5H), 7.50 (s, 1H).

LRMS (thermospray): m/z [MNH_4^+] 268.

20

PREPARATION 11

(3E)-3-(3,5-Difluorobenzylidene)-5-methyl-2,4-hexanedione and (3Z)-3-(3,5-difluorobenzylidene)-5-methyl-2,4-hexanedione

5

The title compounds were prepared by a similar method to that of Preparation 9 using 5-methyl-2,4-hexanedione (*J. Am. Chem. Soc.*, 1980, 2095-6) and 3,5-difluorobenzaldehyde and purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ether (20:1, by volume) and then pentane:ethyl acetate (10:1, by volume) to give the less polar title compound as a yellow oil.

Less polar isomer:

¹H-NMR (400MHz, CDCl₃): δ = 1.15 (d, 6H), 2.27 (s, 3H), 3.19 (heptet, 1H), 6.92 (m, 3H), 7.32 (s, 1H).
15 LRMS (electrospray): m/z [MNH₄⁺] 253.

Further elution of the same column gave the more polar title compound as a yellow oil.

20

More polar isomer:

¹H-NMR (400MHz, CDCl₃): δ = 1.03 (d, 6H), 2.40 (s, 3H), 2.56 (heptet, 1H), 6.96 (m, 3H), 7.44 (s, 1H).
LRMS (electrospray): m/z [MNH₄⁺] 253.

PREPARATION 12

(3E)-3-(3-Fluorobenzylidene)-5-methyl-2,4-hexanedione and (3Z)-3-(3-fluorobenzylidene)-5-methyl-2,4-hexanedione

5

The title compounds were prepared by a similar method to that of Preparation 9 using 5-methyl-2,4-hexanedione (*J. Am. Chem. Soc.*, 1980, 2095-6) and 3-fluorobenzaldehyde and purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ether (20:1, by volume) and then pentane:ethyl acetate (10:1, by volume) to give the less polar title compound as a yellow oil.

Less polar isomer:

15 $^1\text{H-NMR}$ (300MHz, CDCl_3): δ = 1.23 (d, 6H), 2.29 (s, 3H), 3.24 (heptet, 1H), 7.13 (m, 3H), 7.39 (m, 1H), 7.44 (s, 1H).
 LRMS (thermospray): m/z $[\text{MNH}_4^+]$ 235.

Further elution of the same column gave the more polar title compound as a
 20 yellow oil.

More polar isomer:

¹H-NMR (300MHz, CDCl₃): δ = 1.06 (d, 6H), 2.42 (s, 3H), 2.60 (heptet, 1H), 7.11 (m, 3H), 7.35 (m, 1H), 7.55 (s, 1H).

LRMS (thermospray): m/z [MNH₄⁺] 235.

5 PREPARATION 13

(3E)-3-(3,5-Dichlorobenzylidene)-1,1,1-trifluoro-2,4-pentanedione and (3Z)-3-(3,5-dichlorobenzylidene)-1,1,1-trifluoro-2,4-pentanedione

10

Glacial acetic acid (0.425ml, 7.423mmol) and piperidine (57μL, 0.571mmol) were added to a stirred solution of 1,1,1-trifluoro-2,4-pentanedione (4.40g, 28.55mmol) and 3,5-dichlorobenzaldehyde (5.0g, 28.55mmol) in toluene (20ml) and the mixture was heated under reflux using a Dean-Stark trap for 16h. After cooling
 15 the mixture was washed with brine (30ml), dried over magnesium sulphate and concentrated under reduced pressure to give a dark brown oil (9.1g) which was purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ether (10:1, by volume), pentane:ether (5:1, by volume) and then dichloromethane:pentane (1:1, by volume) to give the crude products (4.2g) as a
 20 brown oil. The crude products were further purified by flash chromatography on silica gel eluting with a solvent gradient of dichloromethane:pentane (1:4, by volume) and then dichloromethane:pentane (1:3, by volume) to give a mixture of the title compounds (683mg) as shown by thin layer chromatography using dichloromethane:pentane (1:1, by volume), major isomer R_f 0.54, minor isomer R_f
 25 0.17, and as a pale yellow oil.

¹H-NMR (300MHz, CDCl₃): δ = 2.49 (s, 3H), 7.23 (s, 2H), 7.46 (s, 1H), 7.66 (s, 1H).

LRMS (electrospray): m/z [MH⁺] 328.

5 PREPARATION 14

4-(3,5-Dichlorobenzylidene)-3,5-heptanedione

10 The title compound was prepared by a method similar to that of Preparation 13 using 3,5-heptanedione and was purified by chromatography on silica gel eluting with pentane:ether (10:1, by volume) to give a product which was triturated with pentane to give the title compound as a white solid, m.p. 80-82°C.

15 ¹H-NMR (300MHz, CDCl₃): δ = 1.16 (m, 6H), 2.50 (q, 2H), 2.73 (q, 2H), 7.22 (s, 2H), 7.37 (m, 2H).

LRMS (thermospray): m/z [MH⁺] 285.

Microanalysis: Found: C, 58.97; H, 4.95. C₁₄H₁₄Cl₂O₂ requires C, 58.98; H, 4.93.

PREPARATION 15

3-[(3,5-Dichlorophenyl)sulfanyl]-2,4-pentanedione

5

3-Chloro-2,4-pentanedione (723µL, 6.07mmol) and then sodium iodide (910mg, 6.07mmol) were added to a stirred suspension of 3,5-dichlorothiophenol (1.09g, 6.07mmol) and potassium carbonate (923mg, 6.68mmol) in acetone (30ml), at room temperature, in a flask equipped with a calcium chloride drying tube. The mixture became yellow, then orange and finally red accompanied by a slight exotherm and was stirred for 23 hours at room temperature. The mixture was diluted with water (20ml) and concentrated under reduced pressure in a fumehood (Caution: possible residual lachrymator) to remove acetone. The residue was diluted with 2M hydrochloric acid (20ml) and extracted with dichloromethane (1x40ml, 2x20ml). The combined organic phases were washed with brine (20ml), dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure to leave an orange solid (1.66g). The crude product was purified by flash chromatography on silica gel eluting with pentane:diethyl ether (99:1, by volume) to give the title compound (807mg) as a yellow solid m.p. 79–81°C.

¹H-NMR (400MHz, CDCl₃): δ = 2.30 (2, 6H), 6.91 (s, 2H), 7.09 (s, 1H).

LRMS (thermospray): m/z [MNH₄⁺] 294.

Microanalysis: Found: C, 47.45; H, 3.54; C₁₁H₁₀Cl₂O₂S requires C, 47.67; H,

25 3.64%.

PREPARATION 16**(3E and 3Z)-3-(3,5-Dichlorobenzylidene)-1,1,1-trifluoro-2,4-hexanedione**

5

The title compound was prepared by a similar method to that of Preparation 9 using 1,1,1-trifluorohexane-2,4-dione and 3,5-dichlorobenzaldehyde. The crude product was purified by flash chromatography on silica gel eluting with a solvent gradient of pentane gradually changing to pentane:ethyl acetate (5:1, by volume).
 10 The product was further purified by flash chromatography eluting with dichloromethane:pentane (1:10, by volume) to afford a mixture of the title compounds (500mg) as a yellow oil.

15 ¹H-NMR (300MHz, CDCl₃): δ = 1.23 (t, 3H), 2.80 (q, 2H), 7.32 (s, 2H), 7.52 (s, 1H), 7.74 (s, 1H).

PREPARATION 17**3-(3,5-Dichlorobenzyl)-1,1,1-trifluoro-2,4-hexanedione**

20

The title compound was prepared by a similar method to that of Preparation 6 using 3-(3,5-dichlorobenzylidene)-1,1,1-trifluoro-2,4-hexanedione of Preparation 16 and was obtained as an oily white solid (180mg).

- 5 LRMS (thermospray): m/z [M⁺] 325.

PREPARATIONS 18 AND 19

(3Z)-3-(3,5-Dichlorobenzylidene)-2,4-hexanedione and (3E)-3-(3,5-Dichlorobenzylidene)-2,4-hexanedione

10

The title compounds were prepared by a similar method to that of Preparation 9 using 2,4-hexanedione and 3,5-dichlorobenzaldehyde. The crude products were 15 purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ether (20:1, by volume) gradually changing to pentane:ether (10:1, by volume) to afford the title compounds as white solids.

Less polar isomer:

- 20 ¹H-NMR (300MHz, CDCl₃): δ = 1.10 (t, 3H), 2.40 (s, 3H), 2.52 (q, 2H), 7.20 (s, 2H), 7.39 (s, 1H), 7.40 (s, 1H).

Microanalysis: Found: C, 57.07; H, 4.40. C₁₃H₁₂Cl₂O₂ requires C, 57.59; H, 4.46.

More polar isomer:

- 25 ¹H-NMR (300MHz, CDCl₃): δ = 1.16 (t, 3H), 2.29 (s, 3H), 2.77 (q, 2H), 7.29 (s, 2H), 7.39 (s, 1H), 7.40 (s, 1H).

Microanalysis: Found: C, 57.21; H, 4.22. C₁₃H₁₂Cl₂O₂ requires C, 57.59; H, 4.46.

PREPARATION 20**3-(3,5-Dichlorobenzyl)-2,4-hexanedione**

5

The title compound was prepared by a similar method to that of Preparation 6 using (3Z)-3-(3,5-dichlorobenzylidene)-2,4-hexanedione and (3E)-3-(3,5-dichlorobenzylidene)-2,4-hexanedione of Preparations 18 and 19 and was obtained as yellow oil (300mg).

¹H-NMR (300MHz, CDCl₃): (5:4 keto tautomer:enol tautomer) δ = 1.00 (t, 3H, keto), 1.13 (t, 3H, enol), 2.06 (s, 3H, enol), 2.16 (s, 3H, keto), 2.35 and 2.52 (2xm, 2x2H, keto and enol), 3.13 (d, 2H, keto), 3.65 (s, 2H, enol), 3.96 (t, 1H, keto), 7.00 (m, 2x2H, keto and enol), 7.20 (s, 2x1H, keto and enol), 16.87 (s, 1H, enol).

LRMS (thermospray): m/z [MNa⁺] 295.

20

25

PREPARATION 21Ethyl (3*E* and 3*Z*)-3-acetyl-4-(3,5-dichlorophenyl)-2-oxo-3-butenoate

5

The title compounds were prepared by a similar method to that of Preparation 9 using ethyldioxovalerate and 3,5-dichlorobenzaldehyde and a mixture was obtained (2:3 ratio of isomers, stereochemistry unknown) as an orange oil.

- 10 $^1\text{H-NMR}$ (300MHz, CDCl_3): $\delta = 1.25$ (m, 3H), 1.29 (m, 3H), 2.37 (s, 3H), 2.44 (s, 3H), 4.21 (q, 2H), 4.30 (q, 2H), 7.21 (s, 2H), 7.22 (s, 2H), 7.40 (s, 1H), 7.41 (s, 1H), 7.68 (s, 2x1H).

LRMS (thermospray): m/z [MNH₄⁺] 332.

15 PREPARATION 22Ethyl 3-(3,5-dichlorobenzyl)-2,4-dioxopentanoate

The title compound was prepared by a similar method to that of Preparation 6 using ethyl (3E and 3Z)-3-acetyl-4-(3,5-dichlorophenyl)-2-oxo-3-butenoate of Preparation 21 and was obtained as a yellow oil (8.2g).

5

¹H-NMR (300MHz, CDCl₃): δ = 1.19 (m, 3H), 1.31 (m, 3H), 2.12 (s, 3H), 2.20 (s, 3H), 2.98 (dq, 1H, diketone), 3.74 (s, 2H, enol), 4.23 (m, 4H), 7.03 (s, 4H), 7.20 (s, 2H), 15.91 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 317.

10

PREPARATION 23

4-(3,5-Dichlorobenzyl)-1-(2-hydroxyethyl)-5-methyl-1*H*-pyrazole-3-carboxylic acid

15

A solution of the ester of Example 84 (1.0g, 2.8mmol) in 1,4-dioxan (14ml) was treated with 1M aqueous sodium hydroxide solution (7ml) and the reaction mixture was stirred at room temperature for 4 hours. The solution was concentrated under reduced pressure. The residue was dissolved in water (25ml) and 2M aqueous hydrochloric acid was added. A precipitate formed and was filtered off to afford the title compound as a white solid (613mg), m.p. 241.2-242.4°C. Further product was obtained from the filtrate by adding methanol and concentrating the solvents under reduced pressure. The residue was dissolved in water and aqueous hydrochloric acid added. A precipitate formed and was filtered off to afford a white solid (108mg).

¹H-NMR (300MHz, d₆-DMSO): δ = 2.20 (s, 3H), 3.69 (s, 2H), 4.01 (m, 2H), 4.13 (m, 2H), 7.19 (s, 2H), 7.38 (s, 1H).

LRMS (electrospray): m/z [MH⁺] 327.

5 PREPARATION 24

4-(3,5-Dimethylbenzyl)-3,5-heptanedione

- 10 A solution of 3,5-heptanedione (1.24ml, 9.13mmol) in 2-butanone (40ml) was treated with sodium hydride (60% dispersion in oil) (402mg, 10.05mmol) (added in portions) and stirred at room temperature for 10 minutes. Sodium iodide (1.5g, 10.05mmol) and then by 3,5-dimethylbenzyl bromide (2.0g, 10.05mmol) were added to the reaction mixture which was stirred at room temperature for 18
15 hours. The solution was concentrated under reduced pressure. The residue was dissolved in ethyl acetate and washed with water (x3). The organic phase was dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with cyclohexane followed by cyclohexane:ethyl acetate (40:1,
20 by volume) to afford the title compound as a yellow oil (995mg).

- ¹H-NMR (300MHz, CDCl₃): (1.7:1 keto tautomer:enol tautomer) δ = 1.00 (t, 6H, keto), 1.10 (t, 6H, enol), 2.28 (s, 6H, keto), 2.30 (s, 6H, enol), 2.40 (m, 2x4H, keto and enol), 3.10 (d, 2H, keto), 3.61 (s, 2H, enol), 4.00 (t, 1H, keto), 6.77 (s, 2x2H, keto and enol), 6.87 (s, 2x1H, keto and enol), 16.97 (s, 1H, enol).

LRMS (thermospray): m/z [MH⁺] 247.

PREPARATION 25Ethyl 2-(3,5-dichlorobenzyl)-3-oxobutanoate

5

Sodium metal (1.01g, 44mmol) was added to ethanol (100ml) and stirred until all the metal had dissolved. Ethylacetooacetate (15.6g, 111mmol) was added and the reaction mixture was stirred under a nitrogen atmosphere for 10 minutes.

10 3,5-dichlorobenzyl chloride (7.24g, 40mmol) was added and the reaction mixture was stirred at room temperature for 3 days. The reaction mixture was filtered and the solution was concentrated under reduced pressure. The orange oil was purified by flash chromatography on silica gel eluting with pentane followed by pentane:ethyl acetate (30:1, by volume) to afford the title compound as a

15 colourless oil (6.4g).

¹H-NMR (300MHz, CDCl₃): (3.3:1 keto tautomer:enol tautomer) δ = 1.23 (t, 2x3H, keto and enol), 2.10 (s, 3H, enol), 2.26 (s, 3H, keto), 3.13 (m, 2H, keto), 3.55 (s, 2H, enol), 3.74 (t, 1H, keto), 4.23 (q, 2H, keto and enol), 7.10 (s, 2H, enol), 7.13 (s, 2H, keto), 7.20 (s, 1H, enol), 7.29 (s, 1H, keto), 12.97 (s, 1H, enol).

LRMS (thermospray): m/z [MNH₄⁺] 306, 308.

PREPARATION 26

Ethyl [4-(3,5-dichlorobenzyl)-3-methyl-5-oxo-2,5-dihydro-1*H*-pyrazol-1-yl]acetate

5

A solution of the β -ketoester of Preparation 25 (100mg, 0.35mmol) in ethanol (2ml) was treated with triethylamine (53 μ L, 0.38mmol) and by ethyl hydrazinoacetate hydrochloride (54mg, 0.35mmol) and the resulting mixture was heated at 80°C in a sealed Reacti-vial (Trade Mark) for 18 hours. After cooling,
 10 the mixture was concentrated under reduced pressure. The residue was partitioned between aqueous saturated sodium hydrogen carbonate solution and dichloromethane. The organic phase was dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The resulting solid was purified by flash chromatography on silica gel eluting with
 15 methanol:dichloromethane (1:99, by volume) to afford the title compound (40mg) as a white solid, m.p. 183.1-184.4°C.

¹H-NMR (300MHz, CDCl₃): δ = 1.20 (t, 3H), 1.97 (s, 3H), 3.45 (brs, 1H), 3.52 (s, 2H), 4.16 (q, 2H), 4.48 (s, 2H), 7.06 (s, 2H), 7.13 (s, 1H).

20 LRMS (thermospray): m/z [MH⁺] 343.

Microanalysis: Found: C, 52.39; H, 4.68; N, 8.08. C₁₅H₁₆Cl₂N₂O₃ requires C, 52.49; H, 4.70; N, 8.16%.

PREPARATION 27**2-(3,5-Dichlorobenzyl)-1-(2-furyl)-1,3-butanedione**

5

The title compound was prepared by a similar method to that of Preparation 24 using 1-(2-furyl)-1,3-butanedione except that the reaction mixture was heated at 85°C. The crude product was purified by flash chromatography on silica gel eluting with pentane:ethyl acetate (10:1, by volume) to afford the title compound

10 (1.8g) as a yellow oil.

¹H-NMR (400MHz, CDCl_3): δ = 2.13 (s, 3H), 3.17 (d, 2H), 4.54 (t, 1H), 6.57 (m, 1H), 7.05 (s, 2H), 7.12 (s, 1H), 7.22 (m, 1H), 7.60 (m, 1H).

LRMS (thermospray): m/z [M $^+$] 312.

15 Microanalysis: Found: C, 57.85 H, 4.23. $\text{C}_{15}\text{H}_{12}\text{Cl}_2\text{O}_3$ requires C, 57.90; H, 3.89.**PREPARATION 28****3,5-Diethyl-1*H*-pyrazole**

20

A solution of 3,5-heptanedione (10.0g, 0.078mmol) in ethanol (40ml) was treated dropwise with hydrazine hydrate (4.2ml, 0.086mmol) at room temperature

producing an exotherm that was cooled by use of an ice bath. After the addition was complete the reaction mixture was allowed to warm to room temperature. The solution was concentrated under reduced pressure. The oil was partitioned between dichloromethane and brine. The aqueous layer was extracted with 5 dichloromethane (x2). The combined organic phases were dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure to afford the title compound (9.66g) as a pale yellow oil that partly solidified on standing.

¹H-NMR (400MHz, CDCl₃): δ = 1.22 (t, 6H), 2.60 (q, 4H), 5.85 (s, 1H).

10 LRMS (thermospray): m/z [MH⁺] 124.

Microanalysis: Found: C, 67.00 H, 9.85; N, 22.37. C₇H₁₂N₂ requires C, 66.73; H, 9.76; N, 22.23%.

PREPARATION 29

15 3,5-Diethyl-4-iodo-1*H*-pyrazole

A solution of the pyrazole of Preparation 28 (2.0g, 16.1mmol) in dichloromethane 20 (80ml) was cooled to 0°C and treated with N-iodosuccinimide (3.97g, 17.7mmol) and the resulting mixture was stirred for 18 hours. Further N-iodosuccinimide (360mg, 1.77mmol) was added and the solution was stirred for a further hour. The reaction mixture was washed with saturated aqueous sodium hydrogencarbonate solution. The organic layer was dried over anhydrous 25 magnesium sulphate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with a solvent gradient of pentane:ethyl acetate (4:1, by volume) gradually changing to pentane:ethyl acetate (2:1, by volume). Methanol was added to the resulting

solid, which was collected by filtration and the filtrate was concentrated under reduced pressure. The resulting oil was dissolved in dichloromethane and washed with 10% aqueous sodium metabisulphite solution. The organic layer was dried over anhydrous magnesium sulphate, filtered and evaporated under 5 reduced pressure to afford the title compound (3.3g) as a white solid.

¹H-NMR (400MHz, CDCl₃): δ = 1.26 (t, 6H), 2.68 (q, 4H).

LRMS (thermospray): m/z [MH⁺] 251.

Microanalysis: Found: C, 33.41 H, 4.38; N, 11.14. C₇H₁₁N₂I requires C, 33.62; H, 10 4.43; N, 11.20%.

PREPARATION 30

1-(2-[tert-Butyl(dimethyl)silyloxy]ethyl)-3,5-diethyl-4-iodo-1*H*-pyrazole

15

A solution of the pyrazole of Preparation 29 (3.3g, 13.2mmol) in dimethylformamide (70ml) was cooled to 0°C and treated with sodium hydride (60% dispersion in oil) (580mg, 14.5mmol). After 20 minutes sodium iodide 20 (2.17g, 14.5mmol) and (2-bromoethoxy)-tert-butylidemethylsilane (3.11ml, 14.5mmol) were added and the resulting mixture was stirred at 0°C for 30 minutes. The reaction mixture was allowed to warm to room temperature and was stirred for 18 hours at this temperature. Further (2-bromoethoxy)-tert-butylidemethylsilane (2x2.8ml) was added over a 2 hour period. The reaction 25 mixture was then heated at 50°C for 1 hour. After cooling to 0°C, the reaction mixture was diluted with water (2ml) and evaporated under reduced pressure. The resulting solid was partitioned between dichloromethane and water. The organic layer was dried over anhydrous magnesium sulphate, filtered and

evaporated under reduced pressure. The resulting oil was then dissolved in ethyl acetate and washed with brine (x4). The organic phase was dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel 5 eluting with a solvent gradient of cyclohexane gradually changing to cyclohexane:ethyl acetate (10:1, by volume) to afford the title compound (2.6g) as a colourless oil.

¹H-NMR (400MHz, CDCl₃): δ = -0.10 (s, 6H), 0.80 (s, 9H), 1.16 (t, 3H), 1.23 (t, 10 3H), 2.60 (q, 2H), 2.74 (q, 2H), 3.97 (t, 2H), 4.16 (t, 2H).

LRMS (thermospray): m/z [M+H]⁺ 409.

PREPARATION 31

[1-(2-[[tert-Butyl(dimethyl)silyloxy]ethyl]-3,5-diethyl-1*H*-pyrazol-4-yl](3,5-dichlorophenyl)methanol

A solution of the iodo-pyrazole (500mg, 1.22mmol) of Preparation 30 in 20 tetrahydrofuran (7.5ml) at 0°C was treated with iso-propylmagnesium chloride (2M in diethylether) (725μL, 1.46mmol). After 1 hour, 3,5-dichlorobenzaldehyde (252mg, 1.46mmol) was added and after a further 10 minutes the reaction mixture was allowed to warm to room temperature. After 3 days saturated aqueous ammonium chloride solution was added to the reaction mixture which 25 was then extracted with dichloromethane. The organic extract was dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel

RECEIVED
MAY - 5 2005
OIPE / JCWS

eluting with a solvent gradient of pentane:ethyl acetate (5:1, by volume) gradually changing to pentane:ethyl acetate (2:1, by volume) to afford the title compound (190mg) as a white solid.

- 5 $^1\text{H-NMR}$ (400MHz, CDCl_3): $\delta = -0.10$ (s, 6H), 0.80 (s, 9H), 1.03 (t, 3H), 1.16 (t, 3H), 2.58 (m, 4H), 4.00 (t, 2H), 4.10 (t, 2H), 5.80 (s, 1H), 7.39 (m, 3H).
 LRMS (thermospray): m/z [MH $^+$] 457.

PREPARATION 32

- 10 [1-(2-[[tert-Butyl(dimethyl)silyloxy]ethoxy]ethyl)-3,5-diethyl-1*H*-pyrazol-4-yl](3,5-dichlorophenyl)methanone

- 15 A solution of the alcohol of Preparation 31 (75mg, 0.16mmol) in dichloromethane (2ml) was treated with *N*-methylmorpholine *N*-oxide (28mg, 0.24mmol) and tetra-n-propylammonium perruthenate (VII) (3mg, 0.008mmol) and stirred at room temperature, under a nitrogen atmosphere for 2 hours. The reaction was diluted with dichloromethane and washed with aqueous sodium sulphite solution (x3).
- 20 The organic layer was dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The crude material was pre-absorbed onto silica and purified by flash chromatography on silica gel eluting with a solvent gradient of pentane gradually changing to pentane:ethyl acetate (10:1, by volume) to afford the title compound (73mg) as a colourless oil.

- $^1\text{H-NMR}$ (400MHz, CDCl_3): $\delta = -0.03$ (s, 6H), 0.84 (s, 9H), 1.13 (m, 6H), 2.48 (m, 2H), 2.77 (m, 2H), 4.06 (m, 2H), 4.19 (m, 2H), 7.29 (s, 1H), 7.58 (s, 2H).

LRMS (thermospray): m/z [MH⁺] 455.

PREPARATION 33

1-(2-[{Tert-butyl(dimethyl)silyloxy}ethyl)-4-[(3,5-dichlorophenyl)(methoxy)methyl]-

5 3,5-diethyl-1H-pyrazole

A solution of the alcohol of Preparation 31 (75mg, 0.16mmol) in
10 dimethylformamide (1ml) was treated with sodium hydride (60% dispersion in oil)
(7mg, 0.18mmol) and stirred under a nitrogen atmosphere, at room temperature
for 30 minutes. Methyl iodide (11µL, 0.18mmol) was added and the resulting
mixture was stirred for 7 days. The solution was concentrated under reduced
pressure. The residue was partitioned between dichloromethane and saturated
15 aqueous sodium hydrogencarbonate solution. The organic phase was dried over
anhydrous magnesium sulphate, filtered and evaporated under reduced
pressure. The crude material was purified by flash chromatography on silica gel
eluting with cyclohexane:ethyl acetate (10:1, by volume) to afford the title
compound (30mg) as a colourless oil.

20

¹H-NMR (400MHz, CDCl₃): δ = -0.10 (m, 6H), 0.81 (s, 9H), 1.03 (t, 3H), 1.16 (t,
3H), 2.58 (m, 4H), 3.39 (s, 3H), 4.03 (m, 2H), 4.13 (m, 2H), 5.20 (s, 1H), 7.29 (s,
3H).

LRMS (thermospray): m/z [MH⁺] 471.

25

PREPARATION 34**4-(2,6-Difluorobenzylidene)-3,5-heptanedione**

5

A mixture of 3,5-heptanedione (1.36ml, 10mmol), 2,6-difluorobenzaldehyde (1.08ml, 10mmol), piperidine (20 μ L, 0.2mmol), glacial acetic acid (149 μ L, 2.6mmol), molecular sieves and toluene (7ml) was heated at 70°C, under a nitrogen atmosphere for 3 hours. Further 2,6-difluorobenzaldehyde (540 μ L,

10 5mmol) was added and the resulting mixture was stirred at 70°C for a further 7 hours. After cooling, the molecular sieves were filtered off. The filtrate was concentrated under reduced pressure. The residue was partitioned between dichloromethane and water. The organic phase was dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The 15 crude material was purified by flash chromatography on silica gel eluting with pentane:dichloromethane (4:1, by volume) and then with a solvent gradient of pentane:diethylether (20:1, by volume) gradually changing to pentane:diethylether (10:1, by volume) to afford the title compound (775mg) as a colourless oil.

20

¹H-NMR (400MHz, CDCl₃): δ = 1.11 (t, 3H), 1.20 (t, 3H), 2.63 (q, 2H), 2.80 (q, 2H), 6.95 (m, 2H), 7.40, (s, 1H), 7.65 (m, 1H).

LRMS (electrospray): m/z [MH⁺] 253.

25

PREPARATION 35**4-(2,6-Difluorobenzyl)-3,5-heptanedione**

5

The title compound was prepared by the same method as Preparation 2 using the alkene of Preparation 34 and was obtained as a white solid, m.p. 55-56°C.

- ¹H-NMR (400MHz, CDCl_3): δ = 1.00 (t, 6H), 2.46 (m, 4H), 3.20 (d, 2H), 4.03 (t, 1H), 6.84 (m, 2H), 7.18 (m, 1H).
- LRMS (thermospray): m/z [MNH₄⁺] 272.
- Microanalysis: Found: C, 66.22 H, 6.34. $\text{C}_{14}\text{H}_{16}\text{F}_2\text{O}_2$ requires C, 66.13; H, 6.34.

PREPARATION 36**15 Ethyl 3-[(3,5-dichlorophenyl)sulfanyl]-2,4-dioxohexanoate**

- A solution of ethyl 3-chloro-2,4-dioxohexanoate (EP117082 A2) (7.10g, 20 34.4mmol) in acetone (175ml) was treated with 3,5-dichlorothiophenol (6.16g,

34.4mmol), potassium carbonate (5.22g, 37.8mmol) and sodium iodide (5.16g, 34.4mmol) and the resulting mixture was stirred at room temperature for 18 hours. The reaction mixture was diluted with water (70ml) and concentrated under reduced pressure. The residue was diluted with 2M aqueous hydrochloric acid (70ml) and extracted with dichloromethane (3x150ml). The combined organic extracts were dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with a solvent gradient of cyclohexane:ethyl acetate (3:1, by volume) gradually changing to cyclohexane:ethyl acetate (1:1, by volume) to afford the title compound (12.3g) as a red oil .

¹H-NMR (400MHz, CDCl₃): δ = 1.14 (t, 3H), 1.19 (t, 3H), 2.70 (q, 2H), 4.28 (q, 2H), 7.02 (s, 2H), 7.14 (s, 1H), 16.15 (brs, 1H).

LRMS (electrospray): m/z [M-H⁺] 347.

15

PREPARATION 37

Ethyl 1-(2-[tert-butyl(dimethyl)silyloxy]ethyl)-4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1*H*-pyrazole-3-carboxylate

20

To a solution of Example 46 (1.03g, 2.65mmol) in dimethylformamide (5ml) was added imidazole (361mg, 5.30mmol), followed by tert-butyldimethylchlorosilane (600mg, 3.97mmol). The solution was stirred at room temperature for 4 days.

25 The reaction mixture was partitioned between ethyl acetate and water and the aqueous phase was further extracted with ethyl acetate. The combined organic

phases were dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure to give a yellow oil. The crude product was purified by flash chromatography on silica gel eluting with cyclohexane:ethyl acetate (20:1, by volume), followed by cyclohexane:ethyl acetate (5:1, by volume) to afford the title compound (1.1g) as a white powder, m.p. 83-84°C.

¹H-NMR (400MHz, CDCl₃): δ = -0.08 (s, 6H), 0.80 (s, 9H), 1.12 (t, 3H), 1.22 (t, 3H), 2.84 (q, 2H), 4.04 (t, 2H), 4.32 (m, 4H), 6.91 (s, 2H), 7.04 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 503.

Microanalysis: Found: C, 52.35; H, 6.43; N, 5.46. C₂₂H₃₂Cl₂N₂O₃SSi requires C, 52.47; H, 6.41; N, 5.56%.

PREPARATION 38

{1-(2-[(tert-Butyl(dimethyl)silyloxy)ethyl)-4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-
15 1H-pyrazol-3-yl}methanol

A stirred solution of the pyrazole (1.11g, 2.21mmol) of Preparation 37 in THF (20ml) was cooled to -78°C and treated dropwise with a solution of lithium aluminium hydride in THF (2.65ml of a 1.0M solution). After 1 hour the mixture was warmed to 0°C and after a further 2 hours water (2ml) was carefully added. The reaction mixture was partitioned between ethyl acetate and water and then the aqueous phase was further extracted with ethyl acetate. The combined organic phases were dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure to give a colourless oil. The crude product was purified by flash chromatography on silica gel eluting with cyclohexane:ethyl

acetate (10:1, by volume) followed by cyclohexane:ethyl acetate (5:1, by volume) to afford the title compound (891mg) as a colourless oil.

- ¹H-NMR (400MHz, CDCl₃): δ = -0.08 (s, 6H), 0.80 (s, 9H), 1.04 (t, 3H), 2.00 (t, 1H), 2.75 (q, 2H), 4.00 (t, 2H), 4.18 (t, 2H), 4.60 (d, 2H), 6.84 (s, 2H), 7.02 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 461.

PREPARATION 39

- 10 {1-(2-[[tert-Butyl(dimethyl)silyl]oxy]ethyl)-4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1H-pyrazol-3-yl}acetonitrile

- 15 To a stirred solution of the alcohol (340mg, 0.74mmol) of Preparation 38 in dichloromethane (6ml) was added triethylamine (113μl, 0.81mmol) and methanesulfonyl chloride (63μl, 0.81mmol). After 1 hour at room temperature the reaction mixture was partitioned between dichloromethane and water and then the aqueous phase was further extracted with dichloromethane. The combined
20 organic phases were dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure to give a colourless oil. This crude mesylate was dissolved in dimethylformamide (5ml) and sodium cyanide (109mg, 2.22mmol) was added. The reaction mixture was heated at 60°C for 1 hour. After cooling to room temperature, the mixture was concentrated under reduced
25 pressure and the residue was partitioned between dichloromethane and water. The organic phase was separated, washed with water and brine, dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure

to give a yellow oil. The crude product was purified by flash chromatography on silica gel eluting with cyclohexane:ethyl acetate (3:1, by volume) to afford the title compound (240mg) as a colourless oil.

- 5 $^1\text{H-NMR}$ (400MHz, CDCl_3): $\delta = -0.04$ (s, 6H), 0.82 (s, 9H), 1.11 (t, 3H), 2.78 (q, 2H), 3.62 (s, 2H), 4.02 (t, 2H), 4.20 (t, 2H), 6.82 (s, 2H), 7.10 (s, 1H).

LRMS (electrospray): m/z $[\text{M}+\text{Na}^+]$ 492.

Accurate Mass: Found: 470.1250 $[\text{MH}^+]$; $\text{C}_{21}\text{H}_{30}\text{Cl}_2\text{N}_3\text{OSSi}$ requires 470.1250 $[\text{MH}^+]$.

10

PREPARATION 40

4-Chloro-3,5-heptanedione

15

- Chlorotrimethylsilane (29.7ml, 0.234mol) was added dropwise to a stirred pale yellow solution of tetrabutylammonium bromide (1.26g, 3.9mmol) in dry acetonitrile (116ml) at room temperature under nitrogen. The resulting solution was cooled in ice and 3,5-heptanedione (10.6ml, 78.0mmol) and then dry dimethylsulphoxide (16.6ml, 0.234mol) were added dropwise over 5 minutes producing a yellow solution which was allowed to warm slowly to room temperature, with stirring, over 4 hours. The mixture was diluted with water (1litre), stirred for 10min and then extracted with ether (1x500ml, 2x250ml). The combined ether layers were dried over magnesium sulphate, filtered and concentrated under reduced pressure to leave a yellow oil. The crude product was purified by distillation under reduced pressure to afford the title compound (5.5g) as a pale yellow oil, b.p. 102-105°C/54mmHg containing ca. 10% 4,4-dichloro-3,5-heptanedione as estimated by microanalysis.

¹H-NMR (400MHz, CDCl₃): δ = 1.12 (t, 6H), 2.59 (q, 4H), 4.77 (s, 0.2H, diketone), 15.50 (s, 0.8H, enol).

LRMS (thermospray): m/z [MNH₄⁺] 180 for title compound and 214 for dichlorinated impurity.

5

PREPARATION 41

4-[(3,5-Dichlorophenyl)sulfanyl]-3,5-heptanedione

10

To a stirred solution of the chlorodiketone (1.0g) of Preparation 40 in acetone (30ml) was added 3,5-dichlorothiophenol (1.1g, 6.15mmol), potassium carbonate (900mg, 6.77mmol) and sodium iodide (900mg, 6.15mmol). After 18 hours the reaction mixture was diluted with water (20ml) and the acetone was removed under reduced pressure. The residue was partitioned between 2M HCl and dichloromethane. The aqueous phase was separated and further extracted with dichloromethane. The combined organic phases were washed with brine, dried over magnesium sulphate, filtered and concentrated under reduced pressure to leave a yellow oil (2g). The crude product was used without further purification.

15

¹H-NMR (400MHz, CDCl₃): enol tautomer, δ = 1.03 (t, 6H), 2.62 (m, 4H), 6.91 (s, 2H), 7.08 (s, 1H).

LRMS (electrospray): m/z [M-H⁺] 303.

20

25

PREPARATION 42**3-Oxopentanenitrile**

5

A mixture of ethyl propionate (20g, 196mmol) and sodium ethoxide (13.3g, 196mmol) was heated at 80°C. After 15 mins acetonitrile (13.3ml, 255mmol) was added and the mixture was heated at 120°C. After 13 hours the reaction mixture was cooled and acidified to pH2 using 1M HCl. The volatile reaction components 10 were removed under reduced pressure and the mixture was extracted using dichloromethane. The organic phase was separated, washed with water, washed with brine and concentrated under reduced pressure to give a brown oil (10g). The crude product was used without further purification.

15 ¹H-NMR (400MHz, CDCl₃): δ = 1.01 (t, 3H), 2.56 (q, 2H), 3.43 (s, 2H).

PREPARATION 43**2-(3,5-Dichlorobenzyl)-3-oxopentanenitrile**

20

A stirred solution of the nitrile (11.3g, 117mmol) of Preparation 42 and 3,5-dichlorobenzylchloride (27.8g, 117mmol) in N, N-dimethylformamide (200ml) was cooled to 0°C before addition of sodium hydride (60% w/w suspension in mineral 25 oil) (9.3g, 234mmol) portionwise. After 2 hours the reaction mixture was quenched by the addition of saturated aqueous ammonium chloride solution (500ml) and the resulting mixture was extracted with ethyl acetate. The organic

phase was separated and twice washed with water, washed with brine, dried over magnesium sulphate, filtered and concentrated under reduced pressure to give a dark oil. The crude product was purified by flash chromatography on silica gel eluting with cyclohexane:ethyl acetate (9:1, by volume) to afford the title 5 compound (7g) as a white solid, m.p. 59-60°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.04 (t, 3H), 2.68 (m, 2H), 3.02 (m, 1H), 3.18 (m, 1H), 3.58 (m, 1H), 7.10 (s, 2H), 7.25 (s, 1H).

LRMS (thermospray): m/z [M+NH₄⁺] 273.

- 10 Microanalysis: Found: C, 56.06; H, 4.33; N, 5.41. C₁₂H₁₁Cl₂NO requires C, 56.27; H, 4.33; N, 5.47%.

PREPARATION 44

1-(2-[{[tert-Butyl(dimethyl)silyl]oxy}ethyl)-4-(3,5-dichlorobenzyl)-3-ethyl-1*H*-

- 15 pyrazol-5-amine

- To a solution of the pyrazole of Example 89 (3.0g, 9.6mmol) in 20 dimethylformamide (20ml) was added imidazole (850mg, 12.5mmol), followed by tert-butyldimethylchlorosilane (1.58g, 10.6mmol). The solution was stirred at room temperature for 20 hours. The reaction mixture was partitioned between diethyl ether and aqueous sodium carbonate and the aqueous phase was separated and further extracted with diethyl ether. The combined organic phases 25 were washed with water, washed with brine, dried over anhydrous magnesium sulphate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with

dichloromethane:methanol:ammonia (95:5:0.5, by volume) to afford the title compound (4.0g) as a colourless oil.

¹H-NMR (400MHz, CDCl₃): δ = -0.08 (s, 6H), 0.79 (s, 9H), 1.11 (t, 3H), 2.42 (q, 5 2H), 3.58 (s, 2H), 3.63 (s, 2H), 3.87 (t, 2H), 4.07 (t, 2H), 7.00 (s, 2H), 7.14 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 428.

Microanalysis: Found: C, 55.92; H, 7.28; N, 9.74. C₂₀H₃₁Cl₂N₃OSi requires C, 56.06; H, 7.29; N, 9.81%.

10

PREPARATION 45

5-(3-Oxo-2-propionylpentyl)isophthalonitrile

15

Sodium hydride (60% dispersion in oil, 116mg, 2.90mmol) was added to a stirred solution of 3,5-heptanedione (358μl, 2.64mmol) in 2-butanone (5ml) at room temperature under nitrogen. After evolution of hydrogen had ceased, sodium iodide (396mg, 2.64mmol) and then a solution of 5-bromomethyl-isophthalonitrile 20 (J.Org.Chem., 1990, 55 (3), 1040-1043) (584mg, 2.64mmol) in 2-butanone (6ml) was added and the mixture was heated at reflux for 6 hours. After cooling, the mixture was quenched with water (1ml) and the 2-butanone was removed under reduced pressure. The residue was partitioned between water (40ml) and dichloromethane (40ml) and the organic layer was separated, dried over magnesium sulphate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with a solvent gradient starting with pentane:ethyl acetate (10:1, by volume) and

finishing with pentane:ethyl acetate (3:1, by volume) to give the title compound (370mg) as a white solid m.p. 67-69°C.

- ¹H-NMR (300MHz, CDCl₃): δ = 1.1 (6H, m), 2.44 (4H, m), 3.20 (2H, d, keto), 3.79 (2H, s, enol), 3.98 (1H, t, keto), 7.61 (2H, s), 7.8 (1H, s), 17.11 (1H, s, enol).
 5 LRMS (electrospray): m/z [M-H⁺] 267.
 Microanalysis: Found: C, 71.35; H, 6.02; N, 10.41. C₁₆H₁₆N₂O₂ requires C, 71.62; H, 6.01; N, 10.44%.

10 PREPARATION 46

O-(3,5-Dibromophenyl) diethylthiocarbamate

- 15 A solution of 3,5-dibromophenol (prepared according to Recd. Trav. Chim. Pays-Bas. 1908, 27, 30) (10.08g, 40mmol) and diethylthiocarbamyl chloride (7.9g, 52 mmol) in 1-methyl-2-pyrrolidinone (80ml) was cooled to 0°C under an atmosphere of nitrogen. Sodium hydride (60% dispersion in mineral oil, 1.92g, 48 mmol) was added portionwise with stirring. The mixture was allowed to warm
 20 to 20°C and stirred under nitrogen for two hours. The mixture was partitioned between diethyl ether (250ml) and water (350ml) and the aqueous layer was further extracted with diethyl ether (250ml then 100ml). The organic layers were combined, washed with water (150ml) and brine (150ml), dried over magnesium sulphate, filtered and concentrated under reduced pressure to leave a yellow
 25 solid. The crude product was purified by flash chromatography on silica gel eluting with dichloromethane:pentane (1:1, by volume) to provide the title compound (13.4g) as a white solid, m.p. 72-74°C.

¹H-NMR (400MHz, CDCl₃): δ = 1.27 (m, 6H), 3.62 (q, 2H), 3.84 (q, 2H), 7.17 (d, 2H), 7.51 (d, 1H).

Microanalysis: Found: C, 35.99; H, 3.54; N, 3.73. C₁₁H₁₃Br₂NOS requires C, 35.99; H, 3.57; N, 3.82%.

5

PREPARATION 47

S-(3,5-dibromophenyl) diethylthiocarbamate

10

O-(3,5-dibromophenyl) diethylthiocarbamate (13.24g, 36.1 mmol) (Preparation 46) was heated to 200°C, with stirring, under an atmosphere of nitrogen, for 15 hours to leave a yellow oil. A sample of this material (1g) was purified by flash chromatography on silica gel eluting with pentane:dichloromethane (1:1, by volume) to provide the title compound (700mg) as a colourless oil.

¹H-NMR (300MHz, CDCl₃): δ = 1.26 (m, 6H), 3.43 (q, 4H), 7.62 (s, 2H), 7.68 (s, 1H).

20 Microanalysis: Found: C, 35.92; H, 3.47; N, 3.69. C₁₁H₁₃Br₂NOS requires C, 35.99; H, 3.57; N, 3.82%.

25

30

PREPARATION 48

3,5-Dibromobenzenethiol

5

- Sodium hydroxide (1.96g, 49mmol) was added to a solution of S-(3,5-dibromophenyl) diethylthiocarbamate (12g, 32.7mmol) (Preparation 47) in methanol (33ml) and the mixture was heated at reflux for 15 hours. The mixture was cooled to 20°C and concentrated under reduced pressure. The residue was
- 10 partitioned between dichloromethane (90ml) and water (250ml) and the aqueous layer was further extracted with dichloromethane (90ml). The combined organic layers were washed with a solution of sodium hydroxide (1N, 100ml). The combined aqueous layers were cooled to 0°C and the pH was adjusted to 2 by the addition of concentrated hydrochloric acid, giving a white suspension. This
- 15 suspension was extracted with dichloromethane (2x250ml) and the combined extracts were washed with brine (25ml), dried over magnesium sulphate, filtered and concentrated under reduced pressure to leave the title compound as a yellow solid (6.7g).
- 20 $^1\text{H-NMR}$ (300MHz, CDCl_3): δ = 3.55 (s, 1H), 7.36 (m, 2H), 7.46 (s, 1H).
 LRMS (electrospray): m/z [M-H] 267.
 Microanalysis: Found: C, 27.01; H, 1.42. $\text{C}_6\text{H}_4\text{Br}_2\text{S}$ requires C, 26.89; H, 1.50%.

25

30

PREPARATION 49

4-[(3,5-Dibromophenyl)sulfanyl]-3,5-heptanedione

5

- Potassium carbonate (1.9g, 14mmol) was added to a solution of 3,5-dibromobzenethiol (2.84g, 10.5mmol) (Preparation 48) and 4-chloroheptane-3,5-dione (1.7g, 10.5mmol) (Preparation 40) in acetone (12ml) producing a white suspension. The mixture was stirred at room temperature for 15 hours. The 10 mixture was concentrated under reduced pressure and the residue was partitioned between dichloromethane (100ml) and 1N hydrochloric acid (70ml). The aqueous layer was extracted with further dichloromethane (2x100ml). The combined organic layers were washed with brine (50ml), dried over magnesium sulphate, filtered and concentrated under reduced pressure to leave a pink oil.
- 15 The crude product was purified by flash chromatography on silica gel eluting with pentane:dichloromethane (1:1, by volume) to provide the title compound (3g) as a pink oil.

- ¹H-NMR (300MHz, CDCl₃): δ = 1.13 (m, 6H), 2.7 (m, 4H), 7.12 (s, 2H), 7.42 (s, 20 1H), 17.70 (s, 1H).
- LRMS (thermospray): m/z [MNH₄⁺] 412.
- LRMS (electrospray): m/z [M-H] 393.

PREPARATION 50

1-(2-{{[tert-Butyl(dimethyl)silyl]oxy}ethyl}-4-[(3,5-dibromophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazole

5

A solution of 2-{4-[(3,5-dibromophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazol-1-yl}ethanol (1.3g, 3mmol) (Example 93) in dimethylformamide (3ml) was treated with imidazole (270mg, 4mmol) and *tert*-butyl(chloro)dimethylsilane (500mg, 10 3.3mmol) and stirred at 20°C for 15 hours. The mixture was partitioned between diethyl ether (70ml) and citric acid solution (5% weight:volume in water, 150ml). The aqueous layer was further extracted with diethyl ether (70ml) and the combined organic layers were washed with brine (2x70ml), dried over magnesium sulphate, filtered and concentrated under reduced pressure. The 15 crude product was purified by flash chromatography on silica gel eluting with pentane:dichloromethane (1:1, by volume) to provide the title compound (1.2g) as a colourless oil.

¹H-NMR (300MHz, CDCl₃): δ = -0.05 (s, 6H), 0.84 (s, 9H), 1.10 (t, 3H), 1.19 (t, 20 3H), 2.58 (q, 2H), 2.75 (q, 2H), 4.04 (m, 2H), 4.18 (m, 2H), 7.05 (s, 2H), 7.35 (s, 1H).

LRMS (electrospray): m/z [MH⁺] 549.

PREPARATION 51

5-[1-(2-[(tert-Butyl(dimethyl)silyloxy)ethyl]-3,5-diethyl-1*H*-pyrazol-4-yl]sulfanyl}isophthalonitrile

A solution of 1-(2-[(*tert*-butyl(dimethyl)silyloxy)ethyl]-4-[(3,5-dibromophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazole (500mg, 0.9mmol) (Preparation 50) in dimethylformamide (2ml) was treated with zinc cyanide (130mg, 1.1mmol), 10 1,1'-bis(diphenylphosphino)ferrocene (65mg, 0.12mmol) and tris(dibenzylideneacetone)dipalladium (92mg, 0.1mmol) and the resulting brown suspension was heated at 100°C for 2½ days. After cooling the mixture was diluted with water (70ml) and extracted with ethyl acetate (2x60ml). The combined organic layers were washed with water (20ml) and brine (30ml), dried 15 over magnesium sulphate, filtered and concentrated under reduced pressure to leave a brown oil. The crude product was purified by flash chromatography on silica gel eluting with pentane:dichloromethane (1:1, by volume) then dichloromethane and finally with dichloromethane:ethyl acetate (19:1, by volume) to provide the title compound (180mg) as a brown oil.

20

¹H-NMR (300MHz, CDCl₃): δ = -0.03 (s, 6H), 0.84 (s, 9H), 1.10 (t, 3H), 1.18 (t, 3H), 2.56 (q, 2H), 2.72 (q, 2H), 4.06 (m, 2H), 4.20 (m, 2H), 7.43 (s, 2H), 7.60 (s, 1H).

LRMS (thermospray): m/z [MH⁺] 441.

25

PHARMACOLOGICAL ACTIVITY

All the compounds of the Examples were tested for their ability to inhibit HIV-1 reverse transcriptase by the method described on page 36 and all had an IC₅₀ of
5 less than 100 micromolar.

CLAIMS

1. The use of a compound of the formula

5 or a pharmaceutically acceptable salt or solvate thereof, wherein

either (i) R^1 is H, C_1-C_6 alkyl, C_3-C_7 cycloalkyl, phenyl, benzyl, halo, -CN, -OR⁷, -OR⁸, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CO-(C_1-C_6 alkylene)-OR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R^6 , said C_1-C_6 alkyl, C_3-C_7 cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -OR⁸, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁸R⁹, -NR⁵COR⁵, -NR⁵COR⁶, -NR⁵COR⁸, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R^6 , and

R^2 is H or -Y-Z,

15

or, (ii) R^1 and R^2 , when taken together, represent unbranched C_3-C_4 alkylene, optionally wherein one methylene group of said C_3-C_4 alkylene is replaced by an oxygen atom or a nitrogen atom, said nitrogen atom being optionally substituted by R^5 or R^8 ;

20

Y is a direct bond or C_1-C_3 alkylene;

Z is R^{10} or, where Y is C_1-C_3 alkylene, Z is -NR⁵COR¹⁰, -NR⁵CONR⁵R¹⁰, -NR⁵CONR⁵COR¹⁰ or -NR⁵SO₂R¹⁰;

25

R^3 is H, C_1-C_6 alkyl, C_3-C_7 cycloalkyl, phenyl, benzyl, -CN, halo, -OR⁷, -CO₂R⁵,

-CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CONR⁵R⁵,
 -NR⁵SO₂R⁷ or R⁶, said C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl and benzyl being
 optionally substituted by halo, -CN, -OR⁵, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵,
 -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶;

5

R⁴ is phenyl or pyridyl, each being optionally substituted by R⁶, halo, -CN, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy;

each R⁵ is independently either H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl,
 10 phenyl or benzyl, or, when two such groups are attached to the same nitrogen atom,
 those two groups taken together with the nitrogen atom to which they are attached
 represent azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl,
 homopiperazinyl or morpholinyl, said azetidinyl, pyrrolidinyl, piperidinyl,
 homopiperidinyl, piperazinyl, homopiperazinyl and morpholinyl being optionally
 15 substituted by C₁-C₆ alkyl or C₃-C₇ cycloalkyl and said piperazinyl and
 homopiperazinyl being optionally substituted on the nitrogen atom not taken together
 with the two R⁵ groups to form the ring by -COR⁷ or -SO₂R⁷;

R⁶ is a four to six-membered, aromatic, partially unsaturated or saturated
 20 heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2
 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen
 or sulphur heteroatom(s), said heterocyclic group being optionally substituted by
 -OR⁵, -NR⁵R⁵, -CN, oxo, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, -COR⁷ or halo;

25 R⁷ is C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl, phenyl or benzyl;

R⁸ is C₁-C₆ alkyl substituted by phenyl, phenoxy, pyridyl or pyrimidinyl, said phenyl,
 phenoxy, pyridyl and pyrimidinyl being optionally substituted by halo,
 -CN, -CONR⁵R⁵, -SO₂NR⁵R⁵, -NR⁵SO₂R⁷, -NR⁵R⁵, -(C₁-C₆ alkylene)-NR⁵R⁵, C₁-C₆
 30 alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy;

R⁹ is H, C₁-C₆ alkyl or C₃-C₇ cycloalkyl, said C₁-C₆ alkyl and C₃-C₇ cycloalkyl being optionally substituted by -OR⁵, -NR⁵R⁵, -NR⁵COR⁵, -CONR⁵R⁵ or R⁶;

5 R¹⁰ is C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₇ cycloalkyl, phenyl, benzyl or C-linked R⁶, said C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl and benzyl being optionally substituted by halo, -OR⁵, -OR¹², -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -C(=NR⁵)NR⁵OR⁵, -CONR⁵NR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R¹², -NR⁵COR⁵, -NR⁵CO₂R⁷, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁶;

10 X is -CH₂-, -CHR¹¹-, -CO-, -S-, -SO- or -SO₂-;

R¹¹ is C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl or C₁-C₆ alkoxy; and

15 R¹² is C₁-C₆ alkyl substituted by R⁶, -OR⁵, -CONR⁵R⁵, -NR⁵COR⁵ or -NR⁵R⁵,

in the manufacture of a reverse transcriptase inhibitor or modulator.

2. The use of a compound of the formula (I), or a pharmaceutically acceptable salt or solvate thereof, as defined in claim 1, in the manufacture of a medicament for
20 the treatment of a human immunodeficiency viral (HIV), or genetically related retroviral, infection or a resulting acquired immunodeficiency syndrome (AIDS).

3. The use of claim 1 or claim 2, wherein R¹ is C₁-C₆ alkyl, -OR⁷, -CO₂R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵CO-(C₁-C₆ alkylene)-OR⁵ or R⁶, said C₁-C₆ alkyl being
25 optionally substituted by halo, -CN, -OR⁵, -OR⁸, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁸R⁹, -NR⁵COR⁵, -NR⁵COR⁶, -NR⁵COR⁸, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶.

4. The use of claim 3 wherein R¹ is C₁-C₆ alkyl, -OR⁷, -CO₂R⁵, -NR⁵CO₂R⁷,
30 -NR⁵R⁵, -NR⁵CO-(C₁-C₆ alkylene)-OR⁵ or R⁶, said C₁-C₆ alkyl being optionally substituted by halo or -OR⁵.

5. The use of claim 4 wherein R¹ is C₁-C₃ alkyl, -OCH₃, -CO₂(C₁-C₂ alkyl), -NHCO₂(C₁-C₂ alkyl), -NH₂, -N(CH₃)₂, -NHCOCH₂OCH₃ or furanyl, said C₁-C₃ alkyl being optionally substituted by fluoro or -OH.

5

6. The use of claim 5 wherein R¹ is methyl, ethyl, prop-2-yl, hydroxymethyl, trifluoromethyl, -OCH₃, -CO₂CH₂CH₃, -NHCO₂CH₂CH₃, -NH₂, -N(CH₃)₂, -NHCOCH₂OCH₃ or furan-2-yl.

10 7. The use of claim 6 wherein R¹ is ethyl.

8. The use of claim 1 or claim 2 wherein R¹ is methyl, ethyl, trifluoromethyl or -CH₂NHCH₂(4-cyanophenyl).

15 9. The use of any one of the preceding claims wherein R² is H, C₁-C₆ alkyl, -(C₁-C₃ alkylene)-NR⁵CO-(C₁-C₆ alkyl), -(C₁-C₃ alkylene)-NR⁵CONR⁵-(C₁-C₆ alkyl), -(C₁-C₃ alkylene)-NR⁵CONR⁵CO-(phenyl), -(C₁-C₃ alkylene)-NR⁵SO₂(C-linked R⁶), -(C₁-C₃ alkylene)-NR⁵CO(C-linked R⁶), -(C₁-C₃ alkylene)-NR⁵CO-(phenyl), each C₁-C₆ alkyl and phenyl being optionally substituted by halo, -OR⁵, -OR¹², -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -C(=NR⁵)NR⁵OR⁵, -CONR⁵NR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R¹², -NR⁵COR⁵, -NR⁵CO₂R⁷, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁶.

20 10. The use of claim 9 wherein R² is H, C₁-C₆ alkyl, -(C₁-C₃ alkylene)-NR⁵CO-(C₁-C₆ alkyl), -(C₁-C₃ alkylene)-NR⁵CONR⁵-(C₁-C₆ alkyl), -(C₁-C₃ alkylene)-NR⁵CONR⁵CO-(phenyl), -(C₁-C₃ alkylene)-NR⁵SO₂R⁶, -(C₁-C₃ alkylene)-NR⁵COR⁶, -(C₁-C₃ alkylene)-NR⁵CO-(phenyl), each C₁-C₆ alkyl and phenyl being optionally substituted by halo, -OR⁵, -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵ or R⁶.

25 30

11. The use of claim 10 wherein R² is H, C₁-C₃ alkyl, -(C₁-C₂ alkylene)-NHCO-(C₁-C₃ alkyl), -(C₁-C₂ alkylene)-NHCONH-(C₁-C₃ alkyl), -(C₁-C₂ alkylene)-NHCONHCO-(phenyl), -(C₁-C₂ alkylene)-NHSO₂R⁶, -(C₁-C₂ alkylene)-NHCOR⁶, -(C₁-C₂ alkylene)-NHCO-(phenyl), each C₁-C₃ alkyl and phenyl being optionally substituted by fluoro, -OH, -O(C₁-C₆ alkyl), -CN, -CO₂(C₁-C₆ alkyl), -CONH₂, -OCONH₂, -OCONHCO₂Ph, -NH₂, -N(C₁-C₆ alkyl)₂, -NHCONH₂, -NHCOCOCONH₂ or R⁶.
- 5
12. The use of any one of claims 9 to 11 wherein R⁶ is 2,4-dihydroxypyrimidinyl, 10 1-methylimidazolyl, tetrahydrofuranyl, 1,5-dimethylpyrazolyl, tetrazolyl, pyridinyl, pyrimidinyl, 3-hydroxypyridazinyl, 2-hydroxypyridinyl, 2-oxo-2H-pyranyl or 1,2,3-thiadiazolyl.
13. The use of claim 11 wherein R² is H, -CH₂OH, -CH₂CH₂OH, -CH₂CH₂CH₂OH, 15 -CH₂OCONH₂, -CH₂CH₂OCONH₂, -CH₂OCONHCO₂Ph, -CH₂CO₂CH₂CH₃, -CH₂CH₂CO₂CH₃, -CH₂CH₂CO₂CH₂CH₃, -CH₂CH₂CONH₂, -CH₂CH₂NH₂, -CH₂CH₂CH₂NH₂, -CH₂CH₂NHCOCHF₂, -CH₂CH₂NHCOCH₂CN, -CH₂CH₂NHCOCH₂N(CH₃)₂, -CH₂CH₂NHCOCH₂OCH₃, -CH₂CH₂NHCOCH₂OH, -CH₂CH₂NHCOCH₂OCH₂CH₃, -CH₂CH₂NHCOCH₂NHCONH₂, 20 -CH₂CH₂NHCOCOCONH₂, -CH₂CH₂NHCONHCH₂CH₂CH₃, -CH₂CH₂NHCONHCOPh, -CH₂CH₂NHCONHCO(2,6-difluorophenyl), -CH₂CH₂NHSO₂(2,4-dihydroxypyrimidin-5-yl), -CH₂CH₂NHSO₂(1-methylimidazol-4-yl), -CH₂CH₂NHCO(tetrahydrofuran-2-yl), -CH₂CH₂NHCO(1,5-dimethylpyrazol-3-yl), -CH₂CH₂NHCOCH₂(tetrazol-1-yl), -CH₂CH₂NHCOPh, -CH₂CH₂NHCO(pyridin-2-yl), -CH₂CH₂NHCO(pyrimidin-2-yl), 25 -CH₂CH₂NHCO(2-fluorophenyl), -CH₂CH₂NHCO(3-hydroxyphenyl), -CH₂CH₂NHCO(3-hydroxypyridazin-6-yl), -CH₂CH₂NHCO(2-hydroxypyridin-6-yl), -CH₂CH₂NHCO(2-oxo-2H-pyran-5-yl) or -CH₂CH₂NHCO(1,2,3-thiadiazol-4-yl).
14. The use of any one of claims 1 to 8 wherein R² is H, methyl, -CH₂CH₂OH, 30 -CH₂CH₂CH₂OH, -CH₂CH₂NH₂, -CH₂CH₂CH₂NH₂, -CH₂CN, -CH₂CH₂OCH₃, -CH₂CONH₂, -CH₂CH₂NHCOCH₂OCH₃ or azetidin-3-yl.

15. The use of claim 14 wherein R² is -CH₂CH₂OH, -CH₂CH₂NH₂, -CH₂CN or azetidin-3-yl.
- 5 16. The use of any one of the preceding claims wherein R³ is C₁-C₆ alkyl, -CO₂R⁵, -CONR⁵R⁵, -NR⁵CO₂R⁷ or -NR⁵R⁵, said C₁-C₆ alkyl being optionally substituted by halo, -CN, -OR⁵, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶.
- 10 17. The use of claim 16 wherein R³ is C₁-C₆ alkyl, -CO₂R⁵, -CONR⁵R⁵, -NR⁵CO₂R⁵ or -NR⁵R⁵, said C₁-C₆ alkyl being optionally substituted by halo, -CN or -OR⁵.
- 15 18. The use of claim 17 wherein R³ is C₁-C₃ alkyl, -CO₂(C₁-C₂ alkyl), -CONH₂, -NHCO₂(C₁-C₄ alkyl), -N(CH₃)₂ or -NH₂, said C₁-C₃ alkyl being optionally substituted by halo, -CN or -OH.
- 20 19. The use of claim 18 wherein R³ is methyl, ethyl, prop-2-yl, hydroxymethyl, cyanomethyl, trifluoromethyl, -CO₂CH₂CH₃, -CONH₂, -NHCO₂C(CH₃)₃, -N(CH₃)₂ or -NH₂.
- 25 20. The use of claim 19 wherein R³ is methyl, ethyl, prop-2-yl or trifluoromethyl.
21. The use of claim 20 wherein R³ is ethyl.
- 25 22. The use of any one of the preceding claims wherein R⁴ is phenyl optionally substituted by R⁶, halo, -CN, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy.
- 30 23. The use of claim 22 wherein R⁴ is phenyl substituted by halo, -CN or C₁-C₃ alkyl.

24. The use of claim 23 wherein R⁴ is phenyl substituted by fluoro, chloro, bromo, -CN, or methyl.
- 5 25. The use of claim 24 wherein R⁴ is 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl, 3,5-dichlorophenyl, 2,6-difluorophenyl, 3,5-difluorophenyl, 3,5-dibromophenyl, 3,5-dicyanophenyl or 3,5-dimethylphenyl.
- 10 26. The use of claim 23 wherein R⁴ is (i) phenyl substituted at the 3 position by fluoro, chloro, methyl or cyano or (ii) phenyl substituted at the 3 and 5 positions by two substituents independently chosen from fluoro, chloro, methyl and cyano.
- 15 27. The use of any one of the preceding claims wherein X is -CH₂-, -CHR¹¹-, -CO-, -S- or -SO₂-.
28. The use of claim 27 wherein X is -CH₂-, -CH(OCH₃)-, -CO-, -S- or -SO₂-.
29. The use of claim 28 wherein X is -CH₂- or -S-.
- 20 30. The use of claim 1 or claim 2 wherein the compound of the formula (I) is selected from
- 2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol;
- 2-[4-(3-chlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]ethanol;
- 25 2-[4-(3,5-difluorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]ethanol;
- 2-[4-(3-fluorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]ethanol;
- 2-[4-(3,5-dichlorobenzyl)-5-isopropyl-3-methyl-1*H*-pyrazol-1-yl]ethanol;
- ethyl [4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]acetate;
- ethyl [4-(3-fluorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]acetate;
- 30 N¹-(2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl)ethanediamide;

- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-6-oxo-1,6-dihydro-3-pyridazinecarboxamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-1,5-dimethyl-1*H*-pyrazole-3-carboxamide;
- 5 2-[(aminocarbonyl)amino]-*N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}acetamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2-ethoxyacetamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2-pyridinecarboxamide;
- 10 *N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2-methoxyacetamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-6-oxo-1,6-dihydro-2-pyridinecarboxamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2-pyrazinecarboxamide;
- 15 *N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2-oxo-2*H*-pyran-5-carboxamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2-(1*H*-tetraazol-1-yl)acetamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}tetrahydro-2-furancarboxamide;
- 20 *N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-3-hydroxybenzamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2-hydroxyacetamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-1,2,3-thiadiazole-4-carboxamide;
- 25 *N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2-(dimethylamino)acetamide;
- 2-cyano-*N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}acetamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2-fluorobenzamide;
- N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-*N*-propylurea;
- 30 *N*-benzoyl-*N*-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}urea;
- 2-[4-(3,5-dichlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]ethanol;

- ethyl [4-(3,5-dichlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]acetate;
ethyl [4-(3,5-dichlorobenzyl)-5-isopropyl-3-methyl-1*H*-pyrazol-1-yl]acetate;
4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazole;
2-[4-(3,5-dichlorobenzyl)-3,5-dimethyl-1*H*-pyrazol-1-yl]ethanol;
- 5 2-[4-(3,5-dichlorobenzyl)-5-methyl-3-(trifluoromethyl)-1*H*-pyrazol-1-yl]ethanol;
2-[4-[(4-chlorophenyl)sulfanyl]-3,5-dimethyl-1*H*-pyrazol-1-yl]ethanol;
ethyl [4-(3-chlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]acetate;
ethyl [4-(3,5-difluorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazol-1-yl]acetate;
4-(3,5-dichlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazole;
- 10 4-(3,5-difluorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazole;
4-(3-fluorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazole;
4-(3-chlorobenzyl)-3-isopropyl-5-methyl-1*H*-pyrazole;
2-[4-[(3,5-dichlorophenyl)sulfanyl]-3,5-dimethyl-1*H*-pyrazol-1-yl]ethanol;
2-[4-[(3,5-dichlorophenyl)sulfonyl]-3,5-dimethyl-1*H*-pyrazol-1-yl]ethanol;
- 15 4-(3,5-dichlorobenzyl)-3,5-dimethyl-1*H*-pyrazole;
2-[4-(3,5-dichlorobenzyl)-3,5-dimethyl-1*H*-pyrazol-1-yl]ethanamine;
2-[4-(3,5-dichlorobenzyl)-5-ethyl-3-(trifluoromethyl)-1*H*-pyrazol-1-yl]ethanol;
2-[4-(3,5-dichlorobenzyl)-3-ethyl-5-(trifluoromethyl)-1*H*-pyrazol-1-yl]ethanol;
2-[4-(3,5-dichlorobenzyl)-5-ethyl-3-methyl-1*H*-pyrazol-1-yl]ethanol;
- 20 2-[4-(3,5-dichlorobenzyl)-3-ethyl-5-methyl-1*H*-pyrazol-1-yl]ethanol;
2-[4-(3,5-dichlorobenzyl)-3-(dimethylamino)-5-methyl-1*H*-pyrazol-1-yl]ethanol;
2-[4-(3,5-dimethylbenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol;
2-[4-(3,5-dichlorobenzyl)-5-methoxy-3-methyl-1*H*-pyrazol-1-yl]ethanol;
2-[4-(3,5-dichlorobenzyl)-5-(2-furyl)-3-methyl-1*H*-pyrazol-1-yl]ethanol;
- 25 (3,5-dichlorophenyl)[3,5-diethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-4-yl]methanone;
 \pm -2-[4-[(3,5-dichlorophenyl)(methoxy)methyl]-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol;
2-[4-(2,6-difluorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol;
2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl carbamate;
methyl 3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]propanoate;
- 30 ethyl 3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]propanoate;
3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]propanamide;

- 3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]-1-propanol;
[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]methanol;
[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]methyl carbamate;
2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethanamine;
- 5 N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}benzamide;
N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-1-methyl-1*H*-imidazole-4-sulfonamide;
ethyl 4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazole-3-carboxylate;
- 10 ethyl 4-[(3,5-dichlorophenyl)sulfanyl]-3-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazole-5-carboxylate;
4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazole-3-carboxamide;
2-[4-(3,5-dichlorophenyl)sulfanyl]-5-ethyl-3-(hydroxymethyl)-1*H*-pyrazol-1-yl]ethanol;
- 15 3-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]-1-propanamine;
2-[4-(3,5-dichlorophenyl)sulfanyl]-3-ethyl-5-(hydroxymethyl)-1*H*-pyrazol-1-yl]ethanol;
N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2,2-difluoroacetamide;
[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]methyl phenyl imidodicarbonate;
- 20 N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-N-(2,6-difluorobenzoyl)urea;
N-{2-[4-(3,5-dichlorobenzyl)-3,5-diethyl-1*H*-pyrazol-1-yl]ethyl}-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinesulfonamide;
- 25 ethyl 4-[(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1*H*-pyrazole-3-carboxylate;
[4-(3,5-dichlorophenyl)sulfanyl]-5-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-3-yl]acetonitrile;
- [4-(3,5-dichlorophenyl)sulfonyl]-5-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-3-yl]acetonitrile;
- 30 2-[4-(3,5-dichlorophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazol-1-yl]ethanol;
4-(3,5-dichlorobenzyl)-3-ethyl-1*H*-pyrazol-5-amine;
ethyl 4-(3,5-dichlorobenzyl)-3-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-5-ylcarbamate;

- N-[4-(3,5-dichlorobenzyl)-3-ethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-5-yl]-2-methoxyacetamide;
 2-[4-(3,5-dichlorobenzyl)-5-(dimethylamino)-3-ethyl-1*H*-pyrazol-1-yl]ethanol;
 ethyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-5-methyl-1*H*-pyrazole-3-carboxylate;
 5 ethyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-3-methyl-1*H*-pyrazole-5-carboxylate;
tert-butyl 4-(3,5-dichlorobenzyl)-1-(2-hydroxyethyl)-5-methyl-1*H*-pyrazol-3-ylcarbamate;
 10 2-[3-amino-4-(3,5-dichlorobenzyl)-5-methyl-1*H*-pyrazol-1-yl]ethanol;
 ethyl [4-(3,5-dichlorobenzyl)-5-methoxy-3-methyl-1*H*-pyrazol-1-yl]acetate;
 15 2-[5-amino-4-(3,5-dichlorobenzyl)-3-ethyl-1*H*-pyrazol-1-yl]ethanol;
 5-{[3,5-diethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-4-yl]methyl}isophthalonitrile;
 5-{[(3,5-diethyl-1*H*-pyrazol-4-yl)methyl]isophthalonitrile;
 5-{[1-(2-aminoethyl)-3,5-diethyl-1*H*-pyrazol-4-yl]methyl}isophthalonitrile;
 2-{4-[(3,5-dibromophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazol-1-yl}ethanol; and
 5-{[3,5-diethyl-1-(2-hydroxyethyl)-1*H*-pyrazol-4-yl]sulfanyl}isophthalonitrile;

and the pharmaceutically acceptable salts and solvates thereof.

31. The use of a compound of the formula

20

or a pharmaceutically acceptable salt or solvate thereof, wherein:

- R¹ is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, halo, -OR⁵, -CO₂R⁵, -CONR⁵R⁶, -OCONR⁵R⁶, -NR⁵CO₂R⁶, -NR⁵R⁶, -NR⁵COR⁶, -SO₂NR⁵R⁶,
 25 -NR⁵CONR⁶R⁷, -NR⁵SO₂R⁶ or R⁸, said C₁-C₆ alkyl, phenyl and benzyl being optionally substituted by halo, -OR⁵, -CO₂R⁵, -CONR⁵R⁶, -OCONR⁵R⁶, -NR⁵CO₂R⁶,

-NR⁵R⁶, -NR⁵COR⁶, -SO₂NR⁵R⁶, -NR⁵CONR⁶R⁷, -NR⁵SO₂R⁶ or R⁸;

R² is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl or C-linked R¹², said C₁-C₆ alkyl, phenyl and benzyl being optionally substituted by -OR⁹, -CO₂R⁹, -CO₂NR⁹R¹⁰,

5 -NR⁹R¹⁰, -NR⁹COR¹⁰, -NR⁹CO₂R¹⁰, -NR⁹CONR¹⁰R¹¹, -SO₂NR⁹R¹⁰, -NR⁹SO₂R¹⁰ or R¹²;

R³ is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, halo, -OR¹³, -CO₂R¹³, -CONR¹³R¹⁴, -OCONR¹³R¹⁴, -NR¹³CO₂R¹⁴, -NR¹³R¹⁴, -NR¹³COR¹⁴, -SO₂NR¹³R¹⁴,

10 -NR¹³CONR¹⁴R¹⁵, -NR¹³SO₂R¹⁴ or R¹⁶, said C₁-C₆ alkyl, phenyl and benzyl being optionally substituted by halo, -OR¹³, -CO₂R¹³, -CONR¹³R¹⁴, -OCONR¹³R¹⁴, -NR¹³CO₂R¹⁴, -NR¹³R¹⁴, -NR¹³COR¹⁴, -SO₂NR¹³R¹⁴, -NR¹³CONR¹⁴R¹⁵, -NR¹³SO₂R¹⁴ or R¹⁶;

15 R⁴ is phenyl or pyridyl, each being optionally substituted by halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy;

R⁵, R⁶, R⁷, R⁹, R¹⁰, R¹¹, R¹³, R¹⁴ and R¹⁵ are either each H, C₁-C₆ alkyl or C₃-C₆ cycloalkyl or, when two such groups are attached to the same nitrogen atom, those two groups taken together with the nitrogen atom to which they are attached may represent azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, homopiperazinyl or morpholinyl, said azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, homopiperazinyl and morpholinyl being optionally substituted by C₁-C₆ alkyl or C₃-C₇ cycloalkyl;

25 R⁸, R¹² and R¹⁶ are each a five- or six-membered heterocyclic group containing 1 to 4 heteroatoms selected from O, N and S and optionally substituted by oxo, C₁-C₆ alkyl, C₃-C₇ cycloalkyl or halo; and

30 X is -CH₂-, -S-, -SO- or -SO₂;

in the manufacture of a reverse transcriptase inhibitor.

32. The use of a compound of the formula (Ia), or a pharmaceutically acceptable salt or solvate thereof, as defined in claim 31, in the manufacture of a medicament for the treatment of a human immunodeficiency viral (HIV), or genetically related retroviral, infection or a resulting acquired immunodeficiency syndrome (AIDS).
- 5
33. A compound of the formula (I), as defined in any one of claims 1 or 3 to 30, or a compound of the formula (Ia), as defined in claim 31, or a pharmaceutically acceptable salt or solvate of either, for use as a reverse transcriptase inhibitor.
- 10
34. A compound of the formula (I), as defined in any one of claims 1 or 3 to 30, or a compound of the formula (Ia), as defined in claim 31, or a pharmaceutically acceptable salt or solvate of either, for use in the treatment of a human immunodeficiency viral (HIV), or genetically related retroviral, infection or a resulting acquired immunodeficiency syndrome (AIDS).
- 15
35. A method of treatment of a disorder treatable by the inhibition of reverse transcriptase, comprising the administration of an effective amount of a compound of the formula (I), as defined in any one of claims 1 or 3 to 30, or a compound of the formula (Ia), as defined in claim 31, or a pharmaceutically acceptable salt or solvate of either, to a patient in need of such treatment.
- 20
36. A method of treatment of a human immunodeficiency viral (HIV), or genetically related retroviral, infection or a resulting acquired immunodeficiency syndrome (AIDS) comprising the administration of an effective amount of a compound of the formula (I), as defined in any one of claims 1 or 3 to 30, or a compound of the formula (Ia), as defined in claim 31, or a pharmaceutically acceptable salt or solvate of either, to a patient in need of such treatment.
- 25

37. A compound of the formula

or a pharmaceutically acceptable salt or solvate thereof, wherein

- 5 either (i) R¹ is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, halo, -CN, -OR⁷, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CO-(C₁-C₆ alkylene)-OR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -OR⁸, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁸R⁹, -NR⁵COR⁵, -NR⁵COR⁶,
- 10 -NR⁵COR⁸, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶ and

R² is -Y-Z,

- or, R¹ and R², when taken together, represent unbranched C₃-C₄ alkylene, optionally wherein one methylene group of said C₃-C₄ alkylene is replaced by an oxygen atom or a nitrogen atom, said nitrogen atom being optionally substituted by R⁵ or R⁸,

- and R³ is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, -CN, halo, -OR⁷, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶, said C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR⁵, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶,

- or (ii) R¹ and R³ are each independently C₁-C₆ alkyl, C₃-C₇ cycloalkyl or halo-(C₁-C₆ alkyl), and R² is H,

provided that

- (a) for definition (i), R¹ and R³ are not both H,
- (b) for definition (i), R¹ and R³ are not both optionally substituted phenyl, as defined therein,
- (c) for definition (i), when R¹ and R³ are both methyl, R² is not phenyl or methyl, and
- (d) for definition (ii), R¹ and R³ are not both methyl;

10 Y is a direct bond or C₁-C₃ alkylene;

Z is R¹⁰ or, where Y is C₁-C₃ alkylene, Z is -NR⁵COR¹⁰, -NR⁵CONR⁵R¹⁰, -NR⁵CONR⁵COR¹⁰ or -NR⁵SO₂R¹⁰;

15 R⁴ is phenyl or pyridyl, each substituted by at least one substituent selected from halo, -CN, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl and C₁-C₆ alkoxy;

each R⁵ is independently either H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl, phenyl or benzyl, or, when two such groups are attached to the same nitrogen atom, those two groups taken together with the nitrogen atom to which they are attached represent azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, homopiperazinyl or morpholinyl, said azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, homopiperazinyl and morpholinyl being optionally substituted by C₁-C₆ alkyl or C₃-C₇ cycloalkyl and said piperazinyl and homopiperazinyl being optionally substituted on the nitrogen atom not taken together with the two R⁵ groups to form the ring by -COR⁷ or -SO₂R⁷;

20 R⁶ is a four to six-membered, aromatic, partially unsaturated or saturated heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen or sulphur heteroatom(s), said heterocyclic group being optionally substituted by

-OR⁵, -NR⁵R⁵, -CN, oxo, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, -COR⁷ or halo;

R⁷ is C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl, phenyl or benzyl;

- 5 R⁸ is C₁-C₆ alkyl substituted by phenyl, pyridyl or pyrimidinyl, said phenyl, pyridyl and pyrimidinyl being optionally substituted by halo, -CN, -CONR⁵R⁵, -SO₂NR⁵R⁵, -NR⁵SO₂R⁷, -NR⁵R⁵, -(C₁-C₆ alkylene)-NR⁵R⁵, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl or C₁-C₆ alkoxy;
 - 10 R⁹ is H, C₁-C₆ alkyl or C₃-C₇ cycloalkyl, said C₁-C₆ alkyl and C₃-C₇ cycloalkyl being optionally substituted by -OR⁵, -NR⁵R⁵, -NR⁵COR⁵, -CONR⁵R⁵ or R⁶;
 - 15 R¹⁰ is (a) benzyl or C-linked R⁶, said benzyl being optionally substituted by halo, -OR⁵, -OR¹², -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -C(=NR⁵)NR⁵OR⁵, -CONR⁵NR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R¹², -NR⁵COR⁵, -NR⁵CO₂R⁷, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁶, or (b) when R¹ and R³ are each independently C₁-C₆ alkyl, C₃-C₇ cycloalkyl or halo-(C₁-C₆ alkyl), R¹⁰ is phenyl, C₁-C₆ alkyl or C₃-C₇ cycloalkyl each being optionally substituted by halo, -OR⁵, -OR¹², -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -C(=NR⁵)NR⁵OR⁵, -CONR⁵NR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R¹², -NR⁵COR⁵, -NR⁵CO₂R⁷, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁶;
 - 20 X is -CH₂-, -CHR¹¹-, -CO-, -S-, -SO- or -SO₂-,
 - 25 R¹¹ is C₁-C₆ alkyl, C₃-C₇ cycloalkyl, fluoro-(C₁-C₆)-alkyl or C₁-C₆ alkoxy; and
 - 30 R¹² is C₁-C₆ alkyl substituted by R⁶, -OR⁵, -CONR⁵R⁵, -NR⁵COR⁵ or -NR⁵R⁵.
38. A compound as claimed in claim 37 wherein R¹ is C₁-C₆ alkyl, -OR⁷, -CO₂R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵CO-(C₁-C₆ alkylene)-OR⁵ or R⁶, said C₁-C₆ alkyl being optionally substituted by halo, -CN, -OR⁵, -OR⁸, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵,

-NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁸R⁹, -NR⁵COR⁵, -NR⁵COR⁶, -NR⁵COR⁸, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶.

39. A compound as claimed in claim 38 wherein R¹ is C₁-C₆ alkyl, -OR⁷, -CO₂R⁵,

5 -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵CO-(C₁-C₆ alkylene)-OR⁵ or R⁶, said C₁-C₆ alkyl being optionally substituted by halo or -OR⁵.

40. A compound as claimed in claim 39 wherein R¹ is C₁-C₃ alkyl, -OCH₃,

-CO₂(C₁-C₂ alkyl), -NHCO₂(C₁-C₂ alkyl), -NH₂, -N(CH₃)₂, -NHCOCH₂OCH₃ or furanyl,

10 said C₁-C₃ alkyl being optionally substituted by fluoro or -OH.

41. A compound as claimed in claim 40 wherein R¹ is methyl, ethyl, prop-2-yl,

hydroxymethyl, trifluoromethyl, -OCH₃, -CO₂CH₂CH₃, -NHCO₂CH₂CH₃, -NH₂,

-N(CH₃)₂, -NHCOCH₂OCH₃ or furan-2-yl.

15

42. A compound as claimed in claim 41 wherein R¹ is ethyl.

43. A compound as claimed in claim 37 wherein R¹ is methyl, ethyl,

trifluoromethyl or -CH₂NHCH₂(4-cyanophenyl).

20

44. A compound as claimed in any one of claims 37 to 43 wherein R² is H, C₁-C₆ alkyl, -(C₁-C₃ alkylene)-NR⁵CO-(C₁-C₆ alkyl), -(C₁-C₃ alkylene)-NR⁵CONR⁵-(C₁-C₆ alkyl), -(C₁-C₃ alkylene)-NR⁵CONR⁵CO-(phenyl), -(C₁-C₃ alkylene)-NR⁵SO₂(C-linked R⁶), -(C₁-C₃ alkylene)-NR⁵CO(C-linked R⁶), -(C₁-C₃ alkylene)-NR⁵CO-(phenyl), each

25 C₁-C₆ alkyl and phenyl being optionally substituted by halo, -OR⁵, -OR¹², -CN,

-CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -C(=NR⁵)NR⁵OR⁵, -CONR⁵NR⁵R⁵,

-OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵R¹², -NR⁵COR⁵, -NR⁵CO₂R⁷, -NR⁵CONR⁵R⁵,

-NR⁵COCONR⁵R⁵, -NR⁵SO₂R⁷, -SO₂NR⁵R⁵ or R⁶.

30 45. A compound as claimed in claim 44 wherein R² is H, C₁-C₆ alkyl, -(C₁-C₃ alkylene)-NR⁵CO-(C₁-C₆ alkyl), -(C₁-C₃

alkylene)-NR⁵CONR⁵CO-(phenyl), -(C₁-C₃ alkylene)-NR⁵SO₂R⁶, -(C₁-C₃ alkylene)-NR⁵COR⁶, -(C₁-C₃ alkylene)-NR⁵CO-(phenyl), each C₁-C₆ alkyl and phenyl being optionally substituted by halo, -OR⁵, -CN, -CO₂R⁷, -CONR⁵R⁵, -OCONR⁵R⁵, -OCONR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵COCONR⁵R⁵ or R⁶.

5

46. A compound as claimed in claim 45 wherein R² is H, C₁-C₃ alkyl, -(C₁-C₂ alkylene)-NHCO-(C₁-C₃ alkyl), -(C₁-C₂ alkylene)-NHCONH-(C₁-C₃ alkyl), -(C₁-C₂ alkylene)-NHCONHCO-(phenyl), -(C₁-C₂ alkylene)-NHSO₂R⁶, -(C₁-C₂ alkylene)-NHCOR⁶, -(C₁-C₂ alkylene)-NHCO-(phenyl), each C₁-C₃ alkyl and phenyl being optionally substituted by fluoro, -OH, -O(C₁-C₆ alkyl), -CN, -CO₂(C₁-C₆ alkyl),

10 -CONH₂, -OCONH₂, -OCONHCO₂Ph, -NH₂, -N(C₁-C₆ alkyl)₂, -NHCONH₂, -NHCOCOCONH₂ or R⁶.

47. A compound as claimed in any one of claims 44 to 46 wherein R⁶ is 2,4-dihydroxypyrimidinyl, 1-methylimidazolyl, tetrahydrofuranyl, 1,5-dimethylpyrazolyl, tetrazolyl, pyridinyl, pyrimidinyl, 3-hydroxypyridazinyl, 2-hydroxypyridinyl, 2-oxo-2H-pyranyl or 1,2,3-thiadiazolyl.

48. A compound as claimed in claim 46 wherein R² is H, -CH₂OH, -CH₂CH₂OH, -CH₂CH₂CH₂OH, -CH₂OCONH₂, -CH₂CH₂OCONH₂, -CH₂OCONHCO₂Ph, -CH₂CO₂CH₂CH₃, -CH₂CH₂CO₂CH₃, -CH₂CH₂CO₂CH₂CH₃, -CH₂CH₂CONH₂, -CH₂CH₂NH₂, -CH₂CH₂CH₂NH₂, -CH₂CH₂NHCOCHF₂, -CH₂CH₂NHCOCH₂CN, -CH₂CH₂NHCOCH₂N(CH₃)₂, -CH₂CH₂NHCOCH₂OCH₃, -CH₂CH₂NHCOCH₂OH, -CH₂CH₂NHCOCH₂OCH₂CH₃, -CH₂CH₂NHCOCH₂NHCONH₂, -CH₂CH₂NHCOCONH₂, -CH₂CH₂NHCONHCH₂CH₂CH₃, -CH₂CH₂NHCONHCOPh, -CH₂CH₂NHCONHCO(2,6-difluorophenyl), -CH₂CH₂NHSO₂(2,4-dihydroxypyrimidin-5-yl), -CH₂CH₂NHSO₂(1-methylimidazol-4-yl), -CH₂CH₂NHCO(tetrahydrofuran-2-yl), -CH₂CH₂NHCO(1,5-dimethylpyrazol-3-yl), -CH₂CH₂NHCOCH₂(tetrazol-1-yl), -CH₂CH₂NHCOPh, -CH₂CH₂NHCO(pyridin-2-yl), -CH₂CH₂NHCO(pyrimidin-2-yl), -CH₂CH₂NHCO(2-fluorophenyl), -CH₂CH₂NHCO(3-hydroxyphenyl), -CH₂CH₂NHCO(3-hydroxypyridazin-6-yl), -CH₂CH₂NHCO(2-hydroxypyridin-6-yl),

- CH₂CH₂NHCO(2-oxo-2H-pyran-5-yl) or -CH₂CH₂NHCO(1,2,3-thiadiazol-4-yl).
49. A compound as claimed in claim 37 wherein R² is H, methyl, -CH₂CH₂OH, -CH₂CH₂CH₂OH, -CH₂CH₂NH₂, -CH₂CH₂CH₂NH₂, -CH₂CN, -CH₂CH₂OCH₃,
5 -CH₂CONH₂, -CH₂CH₂NHCOCH₂OCH₃ or azetidin-3-yl.
50. A compound as claimed in claim 49 wherein R² is -CH₂CH₂OH, -CH₂CH₂NH₂, -CH₂CN or azetidin-3-yl.
- 10 51. A compound as claimed in any one of claims 37 to 50 wherein R³ is C₁-C₆ alkyl, -CO₂R⁵, -CONR⁵R⁵, -NR⁵CO₂R⁷ or -NR⁵R⁵, said C₁-C₆ alkyl being optionally substituted by halo, -CN, -OR⁵, -CO₂R⁵, -CONR⁵R⁵, -OCONR⁵R⁵, -NR⁵CO₂R⁷, -NR⁵R⁵, -NR⁵COR⁵, -SO₂NR⁵R⁵, -NR⁵CONR⁵R⁵, -NR⁵SO₂R⁷ or R⁶.
- 15 52. A compound as claimed in claim 51 wherein R³ is C₁-C₆ alkyl, -CO₂R⁵, -CONR⁵R⁵, -NR⁵CO₂R⁷ or -NR⁵R⁵, said C₁-C₆ alkyl being optionally substituted by halo, -CN or -OR⁵.
53. A compound as claimed in claim 52 wherein R³ is C₁-C₃ alkyl, -CO₂(C₁-C₂ alkyl), -CONH₂, -NHCO₂(C₁-C₄ alkyl), -N(CH₃)₂ or -NH₂, said C₁-C₃ alkyl being optionally substituted by halo, -CN or -OH.
- 20 54. A compound as claimed in claim 53 wherein R³ is methyl, ethyl, prop-2-yl, hydroxymethyl, cyanomethyl, trifluoromethyl, -CO₂CH₂CH₃, -CONH₂, -NHCO₂C(CH₃)₃, -N(CH₃)₂ or -NH₂.
- 25 55. A compound as claimed in claim 54 wherein R³ is methyl, ethyl, prop-2-yl or trifluoromethyl.
- 30 56. A compound as claimed in claim 55 wherein R³ is ethyl.

57. A compound as claimed in any one of claims 37 to 56 wherein R⁴ is phenyl substituted by at least one substituent selected from halo, -CN, C₁-C₆ alkyl, fluoro-(C₁-C₆)-alkyl, C₃-C₇ cycloalkyl and C₁-C₆ alkoxy.
- 5 58. A compound as claimed in claim 57 wherein R⁴ is phenyl substituted by at least one substituent selected from halo, -CN and C₁-C₃ alkyl.
59. A compound as claimed in claim 58 wherein R⁴ is phenyl substituted by at least one substituent selected from fluoro, chloro, bromo, -CN and methyl.
- 10 60. A compound as claimed in claim 59 wherein R⁴ is 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl, 3,5-dichlorophenyl, 2,6-difluorophenyl, 3,5-difluorophenyl, 3,5-dibromophenyl, 3,5-dicyanophenyl or 3,5-dimethylphenyl.
- 15 61. A compound as claimed in claim 58 wherein R⁴ is (i) phenyl substituted at the 3 position by fluoro, chloro, methyl or cyano or (ii) phenyl substituted at the 3 and 5 positions by two substituents independently chosen from fluoro, chloro, methyl and cyano.
- 20 62. A compound as claimed in any one of claims 37 to 61 wherein X is -CH₂-, -CHR¹¹-, -CO-, -S- or -SO₂-.
63. A compound as claimed in claim 62 wherein X is -CH₂-, -CH(OCH₃)-, -CO-, -S- or -SO₂-.
- 25 64. A compound as claimed in claim 63 wherein X is -CH₂- or -S-.
65. A compound as defined in claim 30.

66. A pharmaceutical composition including a compound of the formula (Ib) or a pharmaceutically acceptable salt or solvate thereof, as defined in any one of claims 37 to 65, together with a pharmaceutically acceptable excipient, diluent or carrier.
- 5 67. A compound of the formula (Ib) or a pharmaceutically acceptable salt, solvate or composition thereof, as defined in any one of claims 37 to 65 and 66, respectively, for use as a medicament.
- 10 68. A process for the preparation of a compound of the formula (Ib), as defined in claim 37, wherein R¹ and R³ are each either H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, phenyl, benzyl, -NH₂, -CO₂R⁵, -CONR⁵R⁵, or C-linked R⁶, optionally substituted where allowed, which includes the reaction of

(a) a compound of the formula

15

wherein R¹, R³ and R⁴ are as defined in claim 37, or a functional equivalent thereof, particularly a compound of the formula

174

wherein R¹, R³, R⁴ and X are as defined in claim 37 and L¹ is a suitable leaving group, preferably dimethylamino, or a compound of the formula

(V)

wherein R¹, R³, R⁴ and X are as defined in claim 37 and L² is a suitable leaving group, preferably dimethylamino; or

(b) a compound of the formula

(XXX)

wherein R³, R⁴ and X are as defined in claim 37; or

10

(c) a compound of the formula

(XXXII)

wherein R¹, R⁴ and X are as defined in claim 37;

with a compound of the formula

5

wherein R² is as defined in claim 37, or a salt or solvate thereof, optionally followed by the conversion of the compound of the formula (Ib) to a pharmaceutically acceptable salt thereof.

10

69. A process for the preparation of a compound of the formula (Ib), as defined in claim 37, wherein R¹ or R³ is -OR⁷, or a pharmaceutically acceptable salt or solvate thereof, which includes the reaction of a compound of the formula

15 wherein R¹, R³, R⁴ and X are as defined in claim 37 and L⁴ is a suitable leaving group, preferably trifluoromethanesulphonate; or a compound of the formula

20 wherein R¹, R³, R⁴ and X are as defined in claim 37 and L⁴ is a suitable leaving group, preferably trifluoromethanesulphonate;

with a compound of the formula

R^7OH (XXV)

- wherein R^7 is as defined in claim 37, in the presence of a suitable catalyst,
 5 preferably a suitable palladium catalyst, optionally followed by the conversion of the compound of the formula (Ib) to a pharmaceutically acceptable salt thereof.
70. A process for the preparation of a compound of the formula (Ib), as defined in claim 37, wherein R^1 or R^3 is $-OR^7$, or a pharmaceutically acceptable salt or solvate
 10 thereof, which includes the reaction of a compound of the formula

wherein R^2 , R^3 , R^4 and X are as defined in claim 37, or a compound of the formula

- 15 wherein R^1 , R^2 , R^4 and X are as defined in claim 37, with a compound of the formula

 R^7OH (XXV)

- wherein R^7 is as defined in claim 37, under dehydrating conditions, preferably in the
 20 presence of a dialkylazodicarboxylate such as diethylazodicarboxylate, and a triarylphosphine such as triphenylphosphine, optionally followed by the conversion of the compound of the formula (Ib) to a pharmaceutically acceptable salt thereof.

71. A process for the preparation of a compound of the formula (Ib), as defined in claim 37, wherein R¹ or R³ is -OR⁷, or a pharmaceutically acceptable salt or solvate thereof, which includes the reaction of a compound of the formula (XVIII), as defined
5 in claim 70, or a compound of the formula (XXII), as defined in claim 70, with a compound of the formula

10 wherein R⁷ is as defined in claim 37 and L⁷ is a suitable leaving group, preferably halo, optionally followed by the conversion of the compound of the formula (Ib) to a pharmaceutically acceptable salt thereof.

72. A process for the preparation of a compound of the formula (Ib), as defined in claim 37, wherein R¹ or R³ is -OCONR⁵R⁵, or a pharmaceutically acceptable salt or solvate thereof, which includes the reaction of a compound of the formula (XVIII), as defined in claim 70, or a compound of the formula (XXII), as defined in claim 70, with a compound of the formula

in which R⁵ is as defined in claim 37 and L⁵ is a suitable leaving group, preferably chloro, or with a compound of the formula

in which R⁵ is as defined in claim 37, optionally followed by the conversion of the compound of the formula (Ib) to a pharmaceutically acceptable salt thereof.

73. A process for the preparation of a compound of the formula (Ib), as defined in claim 37, wherein X is -CO- or -CHR¹⁰- and R¹⁰ is C₁-C₆ alkoxy, or a pharmaceutically acceptable salt or solvate thereof, which includes

- 5 (a) the oxidation of a compound of the formula

(XXXIV)

wherein R¹, R², R³ and R⁴ are as defined in claim 37, or

- 10 (b) the reaction of a compound of the formula (XXXIV), as defined above, with a compound of the formula

wherein R^b is C₁-C₆ alkyl and L⁸ is a suitable leaving group, preferably chloro, bromo or iodo, optionally followed by the conversion of the compound of the formula (Ib) to a pharmaceutically acceptable salt thereof.

- 15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955<br

75. A compound as defined in claim 65, selected from

2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-dimethyl-1*H*-pyrazol-1-yl}ethanol;

2-[4-[(3,5-dichlorophenyl)sulfanyl]-3-ethyl-5-(hydroxymethyl)-1*H*-pyrazol-1-yl]ethanol;

5 and

2-{4-[(3,5-dichlorophenyl)sulfanyl]-3,5-diethyl-1*H*-pyrazol-1-yl}ethanol.