Problema 15

Elías López Rivera ¹

¹ Universidad Nacional Autónoma de México Facultad de ciencias

26 de enero de 2025

1. Enunciado

Sea $A \subseteq \mathbb{R}$ un conjunto no vacio. Para cada $n \in \mathbb{N}$ se define

$$A_n := \{ x \in \mathbb{R} : \exists y \in A, |x - y| < \frac{1}{n} \}$$

Sea $\overline{A} := \bigcap_{n \in \mathbb{N}} A_n$. **Demuestre** lo siguiente:

i) Si A esta acotado superiormente, entonces \overline{A} también lo esta, y:

$$\max \overline{A} = \sup A$$

ii) Se tiene:

$$\overline{A} = \{x \in \mathbb{R} : \exists (x_n)_{n \in \mathbb{N}} \in A, \lim_{n \to \infty} x_n = x\}$$

iii) **Demuestre** que $\overline{\mathbb{Q}} = \mathbb{R}$. Esto implica que todo número real es el límite de una sucesión de números racionales.

2. Solución

i) Primero, si A es acotado existe $\sup A$, demostraremos que $\sup A \in \overline{A}$, luego que sí $x > \sup A$, entonces $x \notin \overline{A}$.

Aplicando la condición de supremo obtenemos que $\forall \epsilon > 0$ existe $y' \in A$ tal que:

$$\sup A - \epsilon < y' < \sup A + \epsilon$$

Problema 15 2 SOLUCIÓN

de donde se deduce que:

$$|sup A - y'| < \epsilon$$

debido a que $\frac{1}{n} > 0 \ \forall n \in \mathbb{N}$ se sigue que $\exists y_n \in A$ tal que:

$$|\sup A - y_n| < \frac{1}{n}$$

se conluye:

$$\sup A \in \overline{A}$$

Luego tomemos $x>\sup A,\,x:=\sup A+\delta,$ para algún $\delta>0,$ aplicando nuevamente la condición de supremo:

$$x = \sup A + \delta > y + \delta$$

$$\forall y \in A$$

De donde se sigue que :

$$|x - y| > \delta$$

Como $\delta>0$ por propiedad arquimediana, $\exists\,n\in\mathbb{N}$ tal que $\frac{1}{n}<\delta$ de donde se tiene que

$$|x - y| > \frac{1}{n}$$

Finalmente concluimos que:

$$x>\sup A\implies x\notin \overline{A}$$

Por tanto sup A es cota superior del conjunto \overline{A} , además de que sup A $\in \overline{A}$, de donde se sigue que:

$$\max \overline{A} = \sup A$$

ii) Sea

$$B := \{ x \in \mathbb{R} : \exists (x_n)_{n \in \mathbb{N}} \in A, \lim_{n \to \infty} x_n = x \}$$

 \subseteq) Tomemos $x \in \overline{A}$, esto implica que $\forall \frac{1}{n}$ con $n \in \mathbb{N}$, $\exists y_n \in A$, tal que:

$$|y_n - x| < \frac{1}{n}$$

Como $\lim_{n\to\infty} \frac{1}{n} = 0$ se sigue que:

$$\lim_{n \to \infty} y_n = x$$

Por tanto se concluye que $x \in B$, de donde se sigue:

$$\overline{A} \subseteq B$$

 \supseteq) Tomemos $x \in B$, se sigue que $\exists (x_n)_{n \in \mathbb{N}} \in A$ tal que $\forall \epsilon > 0 \ \exists k \in \mathbb{N}$ que cumple que:

$$n > k \implies |x_n - x| < \epsilon$$

por tanto $\forall n \in \mathbb{N} \ \exists k_n \in \mathbb{N} \ \text{tal que:}$

$$n > k_n \implies |x - x_n| < \frac{1}{n}$$

se conluye que:

$$B\subseteq \overline{A}$$

 $De \subseteq$), \supseteq) se sigue:

$$B = \overline{A}$$

iii)Es claro que $\overline{\mathbb{Q}} \subseteq \mathbb{R},$ ahora tomemos $x \in \mathbb{R},$ sabemos que $x + \frac{1}{n}, x - \frac{1}{n} \in \mathbb{R}$ $\forall n \in \mathbb{N},$ además $x - \frac{1}{n} < x + \frac{1}{n},$ aplicando el principio de densidad sobre $\mathbb{Q},$ $\exists \, r \in \mathbb{Q}$ tal que $x - \frac{1}{n} < r < x + \frac{1}{n}$ de donde se concluye que:

$$|x - r| < \frac{1}{n}$$

Se obtiene:

$$\mathbb{R}\subseteq\overline{\mathbb{Q}}$$

finalmente:

$$\overline{\mathbb{Q}} = \mathbb{R}$$