Adaptive protein evolution

Marine Biological Laboratories Workshop in Molecular Evolution

Adaptive protein evolution: Introduction

Belinda Chang

Department of Ecology & Evolutionary Biology
Department of Cell & Systems Biology
University of Toronto

@opsinlab

How do protein sequences evolve?

Can we identify evolutionary patterns of selection associated with adaptive shifts in protein function?

Can we identify the underlying mechanisms associated with adaptive shifts?

•

Comparative sequencing can be used to address questions at many different levels

- Evolution of organisms, systematics
- Evolution of genomes
- Evolution of gene regulation
- Evolution of proteins

6

Evolution of protein-coding genes: Comparative sequence analysis

- Phylogenetically based methods
- Models of evolution (nucleotide, amino acid, codon)
- Hypothesis testing of theories of selection
- dN/dS as a measure of the strength of selection

. . 7

Codon-based testing for positive selection: Why so popular? Hypothesis testing!

- WHEN selection occurred in evolution
 - Episodic, pervasive, lineage-specific selection
- WHICH proteins were targets of selection
 - Physiology: sensory, metabolic, developmental
- WHICH regions of the protein
 - Mechanisms underlying evolution of function
- Hints as to WHY selection occurred

۵

Rapid accumulation of protein structures

- Driven by interest in high-throughput crystallography
- Advances in protein structure determination methods
- Programs such as the Protein Structure Initiative
- Targeted difficult to crystallize proteins such as membrane proteins and large macromolecular assemblies

[12]

Largest monomeric TM protein: FecA Bacterial ion transporter Large transmembrane protein 22 beta strands (16)

Recent advances in protein structure studies

- Difficulties of working with proteins
- Required the development of expression methods to obtain large amounts of properly folded protein
- Mostly X-ray crystallography, but also NMR, and more recently cryo-electron microscopy
- Homology modeling, molecular dynamics
- Structure predictions

19

In vitro expression vs. purification from tissue

- Many proteins only present in small amounts in tissue
- Purity of sample may be an issue with complex tissues
- Purification from tissue samples does not allow for site-directed mutagenesis studies
- In vitro expression allows for testing of evolutionary hypotheses of protein structure and function

[21

In vitro protein expression methodologies

- Bacteria: E. coli

Yeast cells: S. cerevisiae

- Insect cells: SF9

- Mammalian cell culture: HEK293

22)

Protein structure methodologies X-ray crystallography

Synchotron

Diffraction pattern

Electron density map

- Multiple conformations, flexible regions often unresolved
- Crystallization conditions not found in nature
- Serial femtosecond crystallography

[2:

Protein structure methodologies NMR spectroscopy

- Advantage of measuring proteins in solution
- Great for studying flexible proteins
- Limited to small proteins

24

Protein structure methodologies Cryo-electron microscopy Freeze Grid Electron microscope 2D projections Pick particles Pick particles Pick particles Advances in direct detection, sample prep, and instrumentation have achieved high resolution for larger protein complexes This technique offers high resolution of larger proteins in a native state Requires highly specialized instrumentation

Protein structure prediction

- Homology modeling
 - MODELLER (https://salilab.org/modeller/)
 - Rosetta suite (http://robetta.bakerlab.org/)
 - SWISS-MODEL (https://swissmodel.expasy.org/)
- Molecular dynamics simulations

27

The twilight zone for ab initio protein folding predictions

Dill & MacCallum, Science 2012

Molecular evolution: Evolution of protein function

DATA

- Genomic sequencing
- Protein structures

TOOLS

- Phylogenetic models of coding sequence evolution
- Experimental studies, mutagenesis and ancestral resurrection

(30

Phylogenetic approaches to the study of protein structure and function

- Ancestral protein reconstruction
- Computational analyses of selection (dN/dS)
- Combining computational with experimental approaches allows us to test hypotheses of selection in protein evolution

21

Ancestral reconstruction: considerations

- Most studies use ML/Bayes methods to infer ancestral sequence with highest probability, single point estimate
- Violations of model assumptions, e.g. shifts in equilibrium frequencies
- Uncertainty in tree topology
- Statistical bias towards states with highest equilibrium frequencies
- This may also result in functional bias towards more stable proteins (Goldstein et al. 2013)
- -> How to assess robustness of reconstruction in a functional context?

oo l

Assessing robustness of reconstruction in a functional context

- Alternate tree topologies, species tree topology
- Alternate approaches, models of evolution
- Sampling alternate ancestors from the posterior distribution (Pollack & Chang 2012)
- Sampling of near ancestor sequences (Bar-Rogovsky et al. 2015)
- Uncertainty in genotype does not necessarily reflect uncertainty in phenotype (Gaucher et al. 2008)
- -> Need for experimental data to inform effects of uncertainty in reconstruction on function

Uricase evolution in primates

- Key enzyme metabolizing uric acid in vertebrates
- Lost in some primates, including humans
- Prevalence of diseases such as gout, hypertension, obesity, cardiovascular disease
- Uricase knockouts in mice result in mortality in first 4 weeks
- -> Kratzer *et al.* 2014 (PNAS) used experimentally recreated ancient uricases to determine exactly when, and how, uricase function was lost in primates.

, , ЭЕ

Paleoenvironments (EF-Tu)

- Resurrected proteins can provide clues about the temps at which ancient organisms lived
- EF-Tu, an elongation factor crucial for protein synthesis in all cells throughout evolutionary history
- Present day organisms have EF-Tu's which are highly correlated to temp at which organisms live
- Express resurrected gene into E coli, measure thermostability (T_m) of proteins using CD
- Bacterial ancestors appear to be thermophilic (60-80 deg C)

41

Conclusions: Ancestral reconstruction

Ancestral reconstruction approaches can offer a window into the past in studying ancient adaptive shifts in protein function

Computational analyses can be used to generate specific evolutionary hypotheses that can then be tested experimentally

Experimental approaches should not be viewed as applications of computational methods, instead serve to extend the hypothesis testing framework to study the evolution of protein function

Need for more interaction between computational and experimental methods in order to provide better insight into both approaches in the study of molecular evolution

رد)