$ au_1^{\#2}$	0	0	0	$-\frac{4i}{3kr_3+6k^3r_3}$	$\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$	0	$\frac{2(9k^2r_3-4t_3)}{3(1+2k^2)^2r_3t_3}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	$\frac{9k^2r_{3}-4t_{3}}{3(k+2k^3)^2r_{3}t_{3}}$	0	$-\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	0	4i 3kr3+6k ³ r3
$\tau_1^{\#1}{}_+\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$\frac{3\sqrt{2}}{(3+k^2)^2 t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$ au_1^{\#2} + ^{lpha}$

agrangian density
Гаĉ

 $r_2 < 0 && t_2 > 0$

 $\frac{1}{3}r_2\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_2\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_2\partial^{\beta}\omega_{\alpha}^{\ \alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}^{\ \ \prime} + \frac{2}{3}r_2\partial^{\beta}\omega_{\lambda}^{\ \lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\ \ \prime} - 4r_3\partial^{\beta}\omega_{\lambda}^{\ \lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\ \prime} - \frac{5}{2}r_3\partial_{\alpha}\omega_{\lambda}^{\ \alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\ \ \prime} + \frac{5}{2}r_3\partial_{\theta}\omega_{\lambda}^{\ \alpha}\partial_{\lambda}\omega_{\beta\kappa}^{\ \beta\kappa}$ $\frac{2}{3}t_{3}\omega_{\alpha'}^{\alpha'}\omega_{\kappa\alpha}^{\ \ \kappa+\frac{2}{3}}t_{2}\omega_{\kappa}^{\ \ \kappa\lambda}\omega_{\kappa\lambda}^{\ \ \prime}+\frac{1}{3}t_{2}\omega_{\kappa\lambda}^{\ \ \prime}\omega_{\kappa\lambda}^{\ \ \prime}+f^{\alpha\beta}\tau_{\alpha\beta}+\omega^{\alpha\beta\chi}\sigma_{\alpha\beta\chi}+$ $\alpha \partial^{\kappa} f_{\lambda \kappa}$ $_{\lambda}\partial^{\kappa}f'_{\ \ \prime}+rac{1}{3}t_{2}\ \omega_{I\theta\kappa}\ \partial^{\kappa}f'^{\theta}-rac{2}{3}t_{2}\ \omega_{I\kappa\theta}\ \partial^{\kappa}f'^{\theta} ' - \frac{2}{3} t_3 \omega_{\kappa\lambda}^{\ \lambda} \partial^{\kappa} F'$ $_{t}^{\alpha}\partial^{k}f_{k}^{\prime}+\frac{2}{3}t_{3}\omega_{j\lambda}^{\lambda}\partial^{k}f_{k}^{\prime}$ $\frac{5}{2} r_3 \partial_\theta \omega_\lambda^{\alpha} \partial_\kappa \omega^{\theta \kappa \lambda} +$ $_{\kappa}^{}\partial_{\theta}\omega_{\alpha\beta}^{\kappa} - \frac{1}{3} r_{2} \partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\alpha\beta\theta}.$ $_{\theta}^{}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ - $_{3}r_{3}\partial_{\theta}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ + $_{6}^{\frac{1}{6}}t_{2}\partial^{\alpha}f_{\beta\kappa}\partial^{\kappa}f_{\theta}^{\theta}$ - $\frac{1}{6}t_2 \partial^{\alpha} f_{\kappa\theta} \partial^{\kappa} f_{\alpha}^{\ \theta} + \frac{1}{6}t_2 \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\alpha\lambda} - \frac{2}{3}t_3 \ \omega_{\kappa\alpha}^{\ \alpha} \partial^{\kappa} f'_{\ \gamma}$ $\frac{4}{3}t_{3}\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{1} + \frac{2}{3}t_{3}\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f'_{1} + \frac{1}{3}t_{2}\omega_{1\beta\kappa}^{\alpha}$ $\frac{1}{3}t_{2}\omega_{\theta_{1\kappa}}\partial^{\kappa}f'^{1}\theta + \frac{2}{3}t_{2}\omega_{\theta\kappa_{1}}\partial^{\kappa}f'^{1} + \frac{1}{3}t_{2}\omega_{1\beta\kappa}\partial^{\kappa}f'^{1}$ $\frac{1}{6}t_{2}\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda\alpha} - \frac{1}{4}t_{2}\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f^{1}\theta + \frac{2}{3}t_{3}\omega_{1\alpha}^{\alpha}\partial^{\kappa}f'^{1}\theta + \frac{1}{3}t_{3}\omega_{1\alpha}^{\alpha}\partial^{\kappa}f'^{1}\theta + \frac{1}{3}t_{3}\omega_{1$ $_{\kappa}\partial^{\kappa}f_{\lambda\alpha}-\frac{1}{6}t_{2}\partial_{\kappa}f_{\beta}^{\lambda}\partial^{\kappa}f_{\beta}+\frac{1}{6}t_{2}\partial_{\kappa}f^{\lambda}_{}$ $\frac{3}{2}r_3\partial_i\omega^{\kappa\lambda}_{\kappa}\partial^i\omega_{\alpha}^{\alpha} + \frac{2}{3}r_2\partial^\beta\omega^{\theta\alpha}_{\alpha}\partial^\theta\omega_{\alpha\beta}^{\kappa} - \frac{1}{3}$ $\frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\theta\alpha\beta} + \frac{5}{2}r_3\partial_\alpha\omega_{\lambda}^{\alpha}\partial^\beta\kappa\omega^{\theta\kappa\lambda} - \frac{1}{3}$ $\frac{3}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\alpha}$

$f_{1^-}^{\#2} \alpha$	0	0	0	$-\frac{2}{3}$ ikt ₃	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	13 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6} \left(-9 k^2 r_3 + 4 t_3 \right)$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 ikt3</u> 3
$f_{1}^{\#1}{}_{lphaeta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	1 2 3	$-\frac{1}{3}$ \bar{l} k t_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0

 $\omega_1^{\#1} +^{\alpha\beta}$

 $\omega_1^{\#_2} + \alpha^{\beta}$

 $f_1^{\#1} +^{\alpha\beta}$

 $\omega_{1}^{\#_{1}} \dotplus^{\alpha}$

 $f_{1}^{\#1} +^{\alpha}$

 $\omega_1^{\#2} \uparrow^{\alpha}$

 $f_{1}^{#2} + \alpha$

	$\sigma_{0^+}^{\sharp 1}$	$ au_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$ au_{0^{+}}^{#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Source constraints	
SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1^{-}}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#1}{}^{\alpha\beta} == 0$	3
$\sigma_{1+}^{\#1}{}^{\alpha\beta} = \sigma_{1+}^{\#2}{}^{\alpha\beta}$	3
$\sigma_{2}^{\#1}{}^{\alpha\beta\chi} == 0$	5
$\tau_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	24

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$	
$f_{0}^{\#2}$	0	0	0	0	
$f_0^{\#1}$	$-i \sqrt{2} k t_3$	$2 k^2 t_3$	0	0	
$\omega_{0}^{\#1}$	£3	$i\sqrt{2}kt_3$	0	0	$\sigma_{2}^{\#1} + ^{a}$ $ au_{2}^{\#1} + ^{a}$
	$\omega_0^{\#1}\dagger$	$f_0^{\#1}$ †	$f_0^{#2} +$	$\omega_{0^-}^{\#1} \dagger$	$\sigma_{2}^{\sharp 1} \dagger^{\alpha \beta}$

_	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_2^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} + {}^{\alpha\beta}$	0	0	0
$\frac{1}{2}$ † $\alpha\beta\chi$	0	0	0
·-			

	Massive partic	cle	
?	Pole residue:	$-\frac{1}{r_2}$ >	
$J^P = 0^-$	Polarisations:	1	
k^{μ}	Square mass:	$-\frac{t_2}{r_2} >$	
·	Spin:	0	
	- 'I		

	Massive particle						
	Pole residue:	$-\frac{1}{r_2} > 0$					
9	Polarisations:	1					
— ?	Square mass:	$-\frac{t_2}{r_2} > 0$					
	Spin:	0					
	Parity:	Odd					