第六册

大青花鱼

目录

第一章	代数式的关系	5
1.1	代数恒等式	5
1.2	代数不等式	5
第二章	三段论(下)	7
2.1	三段论的规则	7
2.2	三段论的应用	7
第三章	投影和视图	9
3.1	平面和立体	9
	平面和立体	9
3.2	三视图	9
3.2	三视图	9

4	E	录
4.3	方余定理	17
第五章	用数据说话	19
5.1	样本和特征	19
5.2	描述和分析	19
5.3	数据的结构	19
第六章	数学和社会	21
6.1	随时代变化的数学	21
6.2	数学和科学	21
6.3	数学和现代化	21

第一章 代数式的关系

- 1.1 代数恒等式
- 1.2 代数不等式

第二章 三段论(下)

- 2.1 三段论的规则
- 2.2 三段论的应用

第三章 投影和视图

- 3.1 平面和立体
- 3.2 三视图
- 3.3 表面的展开

第四章 同余

例子 4.0.1. 7⁶⁵ 的个位数是多少?

解答. 从 7^0 , 7^1 , 7^2 , 7^3 · · · 开始找规律。 $7^0 = 1$, $7^1 = 7$, $7^2 = 49$, $7^3 = 343$, $7^4 = 2401$, $7^5 = 16807$ 。 7^4 和 7^0 的个位数都是 1, 7^5 和 7^1 的个位数都是 7。我们可以总结出这样的规律:个位数是 1 的,乘以 7 得到 7;个位数是 7 的,乘以 7 得到 9;个位数是 9 的,乘以 7 得到 3;个位数是 3 的,乘以 7 得到 1。

也就是说,如果把 7^0 , 7^1 , 7^2 , 7^3 … 的个位数写成一列,应该是这个样子的:

$$1, 7, 9, 3, 1, 7, 9, 3, 1, 7, \cdots$$

用归纳法不难证明,这列数字以 4 为周期不断重复。所以,要求 7^{65} 的个位数,可以看 65 在相关的周期里处于哪个位置。换句话说,只要看 65 除以 4 的余数。 $65 = 16 \times 4 + 1$,所以 7^{65} 的个位数和 7^{1} 的个位数一样,都是 7。

从这个例子可以看出,两个整数除以同一个数得到相同的余数,是一个重要的性质。我们把这种性质称为**同余**。比如,65 和 1 除以 4 余数都是 1,我们就说 65 和 1 模 4 同余。 7^{65} 和 7^{1} 除以 10 余数都是 7,我们说 7^{65} 和 7^{1} 模 10 同余,记为:

$$7^{65} \equiv_{10} 7^1$$

12 第四章 同余

4.1 同余类

整数除以 3,余数有 0,1,2 三种可能。整数除以 10,余数有 $0,1,\cdots,9$ 十种可能。一般来说,给定正整数 n,整数除以 n,余数有 $0,1,\cdots,n-1$ 这 n 种可能。因此,按除以 n 的余数,可以把整数集分成 n 类。同属一类的数,模 n 同余,所以这 n 类数叫作模 n 同余类。所有模 n 同余类的集合,叫作模 n 同余系。

每个模 n 同余类,可以写成 $\{kn+a\,|\,k\in\mathbb{Z}\}$ 的形式。也就是说,可以看成某个数 a 不断加上或减去 n 得到的所有数的集合。这个集合是无穷的。不同的模 n 同余类,交集是空集,并集是 \mathbb{Z} 。也就是说,它们是 \mathbb{Z} 的分划。

为了方便,我们从每个模 n 同余类中选一个元素,代表这个同一类。一般来说,可以选 $0,1,\cdots,n-1$ 个数。我们给它们加个上划线,以和作为整数的 $0,1,\cdots,n-1$ 区分:

$$\overline{0},\overline{1},\cdots,\overline{n-1}$$

如果要强调 n, 可以把 n 加在右上角:

$$\overline{0}^n, \overline{1}^n, \cdots, \overline{n-1}^n$$

给定整数 m,我们可以把它对应到某个模 n 同余类,称为对 n **取模**。 比如 n=5 时, $24 \equiv_5 4$,我们把 24 对应到 $\overline{4}^5$,或者说,24 对 5 取模,得 $\overline{4}^5$ 。

同余关系和相等关系很像,它们是否有一样的性质呢?我们可以验证,同余关系满足以下的性质:

- 1. $\forall a \in \mathbb{Z}, a \equiv_n a$;
- 2. $\forall a, b \in \mathbb{Z}$, 如果 $a \equiv_n b$, 那么 $b \equiv_n a$;
- 3. $\forall a, b \in \mathbb{Z}$, 如果 $a \equiv_n b$, $b \equiv_n c$, 那么 $a \equiv_n c$ 。

4.1 同余类 13

满足以上三个性质的二元关系(两个元素之间的关系)称为等价关系。 数与数的等于关系是等价关系,数与数的同余关系也是等价关系。因此,我 们可以把同余关系用作同余类之间的等于关系。

整数之间有四则运算,模 n 同余类之间,也可以进行运算。以 n=5 为例子。我们分别计算 24 和 37 除以 5 的余数,以及它们的和 61 除以 5 的余数:

$$24 \equiv_5 4$$
, $37 \equiv_5 2$, $61 \equiv_5 1$

可以发现: $4+2 \equiv_5 1$,也就是说,取模和加法可以交换顺序。可以验证,两个同余类中各取一个元素相加,和所在的同余类,就是两者取模后的和所在的同余类。用集合的语言,可以写成:

$$\{kn + a + ln + b \mid k \in \mathbb{Z}, l \in \mathbb{Z}\} = \{kn + a + b \mid k \in \mathbb{Z}\}\$$

所以,可以定义同余类的加法:

$$\overline{a} + \overline{b} = \overline{a+b}$$

其中的 $\overline{a+b}$ 指的是 a+b 所在的同余类。为了方便,我们用 a+b 作为代表。

可以验证,同余类的加法也满足结合律和交换律。这里我们只证明同余类的加法满足结合律:

证明. 由上可知 $\overline{a} + \overline{b} = \overline{a+b}$, 所以

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a+b} + \overline{c} = \overline{a+b+c}.$$

类似可得:

$$\overline{a} + (\overline{b} + \overline{c}) = \overline{a} + \overline{b + c} = \overline{a + b + c}.$$

于是

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a + b + c} = \overline{a} + (\overline{b} + \overline{c}).$$

类似可以定义同余类的减法和乘法:

$$\overline{a} - \overline{b} = \overline{a - b}, \ \overline{a} \cdot \overline{b} = \overline{a \cdot b}$$

可以验证,同余类的减法性质和整数减法一样,同余类的乘法也满足结合律、交换律和分配律。

能否定义同余类的除法呢? 我们来看一个例子。设 n=6,考虑等式 $12\div 4=3$ 。 12、 4 和 3 对 6 取模,得到 0、 4 和 3。考虑等式 $60\div 10=6$ 。 60、 10 和 6 对 6 取模,得到 0、 4 和 0。也就是说,两个模 6 同余类中各 取元素相除,商所在的同余类不是唯一的。所以,我们没法定义模 6 同余类的除法。

再看另一个例子。设 n=5,考虑以下的"乘法表":

×	$\overline{0}$	$\overline{1}$	$\overline{2}$	3	$\overline{4}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
1	$\overline{0}$	$\overline{1}$	$\overline{2}$	3	$\overline{4}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	1	3
3	$\overline{0}$	3	$\overline{1}$	$\overline{4}$	$\overline{2}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	3	$\overline{2}$	$\overline{1}$

可以看出,任何模 5 同余类乘以 $\bar{0}$ 都得到 $\bar{0}$,非 $\bar{0}$ 同余类乘以不同的 同余类,结果也不同。这说明每个同余类除以另一个同余类(非 $\bar{0}$),都必 然有唯一的结果。这样我们就定义了模 5 同余系里的除法。

习题 4.1.1.

动手做一做:

- 1. 证明同余关系满足等价关系所要求的三个性质。
- 2. 证明同余类的加法满足交换律。
- 3. 证明同余类的减法是加法的逆运算。
- 4. 证明同余类的乘法满足结合律和交换律。

- 5. 证明同余类的乘法满足分配律。
- 6. 分别画出模 3 同余系和模 4 同余系的"乘法表"。它们和模 5 同余系的"乘法表"哪些地方相同,哪些地方不同?

4.2 完全同余系和简化同余系

上一节我们提到模 6 同余系无法定义除法,而模 5 同余系可以定义除法。两者有什么不同呢? 我们画出模 6 同余系的"乘法表":

×	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	<u>5</u>
$\overline{0}$						
$\overline{1}$	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	5
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{0}$	$\overline{2}$	$\overline{4}$
3	$\overline{0}$	3	$\overline{0}$	3	$\overline{0}$	3
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{2}$	$\overline{0}$	$\overline{4}$	$\overline{2}$
5	$\overline{0}$	<u>5</u>	$\overline{4}$	3	$\overline{2}$	$\overline{1}$

可以看到,这个"乘法表"和模 5 同余系的大有不同。同一行或同一列常有重复。这说明不同的同余类乘同一个同余类得到同一个结果。比如

$$\overline{2} \times \overline{4} = \overline{5} \times \overline{4} = \overline{2}$$
.

这就使我们没法定义除法。

如果我们把上面的等式稍作变化,会得到:

$$\overline{0} = (\overline{5} - \overline{2}) \times \overline{4} = \overline{3} \times \overline{4}.$$

也就是说,有非 $\bar{0}$ 的同余类相乘等于 $\bar{0}$ 。同余类乘法的这个性质和整数乘法完全不同。我们把这种非 $\bar{0}$ 同余类叫做**零因子**。整数中没有零因子: 非0

的整数相乘必然不是 0。而只要有这种零因子存在,同余系中就会发生"不同的同余类乘同一个同余类得到同一个结果"的现象,从而无法定义除法。

有什么办法在模 6 同余系中定义除法呢? 我们可以选一部分同余类, 在其中定义除法。如果同余类 \overline{a} 的代表 a 与 6 不互素, 设最大公因数是 b, 那么

$$\frac{a}{b} \times 6 = a \times \frac{6}{b}$$

于是有 $\overline{a} \times \frac{\overline{6}}{b} = \overline{0}$,出现零因子。因此,为了避免零因子问题,我们只选和 6 互素的数所在的同余类,也就是 $\overline{1}$ 和 $\overline{5}$ 。我们发现 $\{\overline{1},\overline{5}\}$ 中可以定义乘法和除法(但不再满足加减法)。我们把模 6 同余系称为模 6 的**完全同余系**,把 $\{\overline{1},\overline{5}\}$ 称为模 6 的**简化同余系**。

一般来说,我们把模 n 同余系称为模 n 的完全同余系,在其中可以定义加减法和乘法;把其中所有和 n 互素的同余类的集合称为模 n 的简化同余系,在其中可以定义乘法和除法 1 。

简化同余系的除法和整数不同之处是,任何同余类都能整除另一个同余类,不需要余数、带余除法的概念。每个同余类都有自己的"倒数",比如在模 6 简化同余系中, $\overline{5} \times \overline{5} = \overline{1}$ 。我们把同余类的"倒数"称为它的(乘法)**逆**。

习题 4.2.1.

- 1. 写出模 12 的简化同余系。写出 $\overline{7}^{12}$ 的逆。
- 2. 比较模 12 简化同余系中的乘除法和模 4 完全同余系中的加减法, 它们有何异同?
 - 3. 写出模 10 的简化同余系。写出 $\overline{7}^{10}$ 的逆。
- 4. 比较模 10 简化同余系中的乘除法和模 4 完全同余系中的加减法, 它们有何异同?
 - 5. 证明简化同余系中的乘法满足消去律: 如果 $\overline{ab} \equiv \overline{ac}$, 那么 $\overline{b} \equiv \overline{c}$.

 $^{^{1}}$ 通常不把 $\bar{0}$ 计入简化剩余系,以省去讨论除以 $\bar{0}$ 的问题。

4.3 方余定理 17

4.3 方余定理

与模 n 简化同余系密切相关的一个定理是方余定理。

定理 4.3.1. 方余定理 设 a 是模 n 简化同余系中某个同余类中的元素,则:

$$a^{\varphi(n)} \equiv_n 1$$

其中 $\varphi(n)$ 是模 n 简化同余系中同余类的个数。

比如,模 10 简化同余系有 4 个元素: $\bar{1}, \bar{3}, \bar{7}, \bar{9}$ 。7 属于同余类 $\bar{7}$,则 $7^4 \equiv_{10} 1$ 。

证明. 从模 n 简化同余系中的每个同余类中选一个代表 $b_1, b_2, \dots, b_{\varphi(n)}$,它们两两不同余。把它们各自乘以 a,得到 $\varphi(n)$ 个整数: $ab_1, ab_2, \dots, ab_{\varphi(n)}$ 。它们仍然两两不同余。

用反证法来证明。反设其中某两个数模 n 同余,不妨设 ab_1 和 ab_2 模 n 同余:

$$ab_1 \equiv_n ab_2$$
.

这说明 $n|a(b_1-b_2)$ 。由于 a 和 n 互素,根据倍和析因定理,存在整数 p,q,使得:

$$ap + nq = 1$$
.

两边乘以 $b_1 - b_2$, 就得到:

$$a(b_1 - b_2)p + nq(b_1 - b_2) = b_1 - b_2.$$

等式左边是 n 的倍数,因此 b_1 和 b_2 模 n 同余,这与 $b_1, b_2, \cdots, b_{\varphi(n)}$ 的选取方式矛盾。

因此命题的否定为假,原命题为真: $ab_1, ab_2, \dots, ab_{\varphi(n)}$ 两两不同余。这说明这 $\varphi(n)$ 个整数也可以分别代表模 n 简化同余系中的各个同余类。

考虑这样一个数:"小于n的正整数中所有与n互素的数的乘积"。 $b_1b_2\cdots b_{\varphi(n)}$ 和 $(ab_1)(ab_2)\cdots (ab_{\varphi(n)})$ 都和这个数同余。也就是说:

$$b_1b_2\cdots b_{\varphi(n)} \equiv_n (ab_1)(ab_2)\cdots (ab_{\varphi(n)}) \equiv_n a^{\varphi(n)}b_1b_2\cdots b_{\varphi(n)}.$$

由于 $b_1b_2\cdots b_{\varphi(n)}$ 也与 n 互素,我们可以把等式两边除以 $b_1b_2\cdots b_{\varphi(n)}$,就得到:

$$a^{\varphi(n)} \equiv_n 1.$$

习题 4.3.1. 设 a 与 n 互素,称使得 $a^m \equiv_n 1$ 的最小正整数 m 为 a 模 n 的**阶**。

- 1. 证明 a 的阶整除 $\varphi(n)$ 。
- 2. 如果 a 的阶等于 $\varphi(n)$, 就说 a 是模 n 的**原根**。证明: 如果 a 是模 n 的原根,那么模 n 简化同余系可以写成: $\{\overline{a^0}, \overline{a^1}, \cdots, \overline{a^{\varphi(n)-1}}\}$ 。
 - 3. 找出所有模7的原根。

第五章 用数据说话

- 5.1 样本和特征
- 5.2 描述和分析
- 5.3 数据的结构

第六章 数学和社会

- 6.1 随时代变化的数学
- 6.2 数学和科学
- 6.3 数学和现代化