Denoising and Covariance Estimation of Cryo-EM Images

Tejal Bhamre

Princeton University Joint work with Teng Zhang (UCF) and Amit Singer (Princeton)

June 10, 2016

Experimental data - 80S ribosome

CWF Raw Closest projection TWF jsb_fig_80s-eps-converted-to.pdf

- FALCON II 4k×4k direct electron detector
- 105247 motion corrected, picked particle images of 360×360 pixels

Experimental data - TRPV1

CWF Raw Closest projection TWF jsb_fig_tv-eps-converted-to.pdf

- K2 direct electron detector
- 35645 motion corrected, picked particle images of 256×256 pixels

Experimental data -IP₃R1

Raw Closest projection TWF CWF jsb_fig_ip3-eps-converted-to.pdf

- Gatan 4k×4k CCD
- 37382 picked particle images of 256×256 pixels

Experimental data - 70S ribosome

CWF Closest projection TWF jsb_fig_70s-eps-converted-to.pdf

- TVIPS TEMCAM-F415 (4k x 4k) CCD
- 216517 picked particle images of 250×250 pixels

- Particle picking from micrographs
- 2D classification (Class averaging): inspect underlying
- 3D classification
- 3D refinement

- Particle picking from micrographs
- Preprocessing
- 2D classification (Class averaging): inspect underlying
- 3D classification
- 3D refinement

- Particle picking from micrographs
- Preprocessing
- 2D classification (Class averaging): inspect underlying particles, estimate viewing angles
- 3D classification
- 3D refinement

- Particle picking from micrographs
- Preprocessing
- 2D classification (Class averaging): inspect underlying particles, estimate viewing angles
- 3D classification
- 3D refinement

- Particle picking from micrographs
- Preprocessing
- 2D classification (Class averaging): inspect underlying particles, estimate viewing angles
- 3D classification
- 3D refinement

Motivation

- Visualization of underlying particles without class averaging
- Image restoration (CTF correction and denoising) in a single step
- Outlier detection

Motivation

- Visualization of underlying particles without class averaging
- Image restoration (CTF correction and denoising) in a single step
- Outlier detection

Motivation

- Visualization of underlying particles without class averaging
- Image restoration (CTF correction and denoising) in a single step
- Outlier detection

- CTF suppresses information and inverts contrast
- Information lost from one defocus group could be recovered from

¹http://www.bio.brandeis.edu/~shaikh/lab/ctf.htm 👍 🕟 📭 🔻

- CTF suppresses information and inverts contrast
- Challenge: CTF cannot be trivially inverted (zero crossings)
- Information lost from one defocus group could be recovered from

¹http://www.bio.brandeis.edu/~shaikh/lab/ctf.htm 👍 🕟 📭 🔻

- CTF suppresses information and inverts contrast
- Challenge: CTF cannot be trivially inverted (zero crossings)
- Information lost from one defocus group could be recovered from another group that has different zero crossings.

¹http://www.bio.brandeis.edu/~shaikh/lab/ctf.htm 👍 🕟 📭 🔻

- Do nothing (Denial)
- Correct Fourier phases but not amplitudes
- Correct both Fourier phases and amplitudes

• Phase flipping + steerable PCA (sPCA):

- Flip sign of the Fourier coefficients at frequencies for which the
- Data adaptive basis: eigenvectors of the sample covariance matrix
- Phase flipping corrects only phases

- Phase flipping + steerable PCA (sPCA):
 - Flip sign of the Fourier coefficients at frequencies for which the CTF is negative

 - Data adaptive basis: eigenvectors of the sample covariance matrix
 - Phase flipping corrects only phases

- Phase flipping + steerable PCA (sPCA):
 - Flip sign of the Fourier coefficients at frequencies for which the CTF is negative
 - Preserves noise statistics
 - Data adaptive basis: eigenvectors of the sample covariance matrix
 - Phase flipping corrects only phases

- Phase flipping + steerable PCA (sPCA):
 - Flip sign of the Fourier coefficients at frequencies for which the CTF is negative
 - Preserves noise statistics
 - Data adaptive basis: eigenvectors of the sample covariance matrix
 - Phase flipping corrects only phases

• Phase flipping + steerable PCA (sPCA):

- Flip sign of the Fourier coefficients at frequencies for which the CTF is negative
- Preserves noise statistics
- Data adaptive basis: eigenvectors of the sample covariance matrix
- Phase flipping corrects only phases

• Phase flipping + steerable PCA (sPCA):

- Flip sign of the Fourier coefficients at frequencies for which the CTF is negative
- Preserves noise statistics
- Data adaptive basis: eigenvectors of the sample covariance matrix
- Phase flipping corrects only phases

- Corrects both phases and amplitudes
- Requires prior estimation of the spectral signal to noise ratio
- Not in a data adaptive basis (restricted to Fourier basis)

• Phase flipping + steerable PCA (sPCA):

- Flip sign of the Fourier coefficients at frequencies for which the CTF is negative
- Preserves noise statistics
- Data adaptive basis: eigenvectors of the sample covariance matrix
- Phase flipping corrects only phases

- Corrects both phases and amplitudes
- Requires prior estimation of the spectral signal to noise ratio
- Not in a data adaptive basis (restricted to Fourier basis)

• Phase flipping + steerable PCA (sPCA):

- Flip sign of the Fourier coefficients at frequencies for which the CTF is negative
- Preserves noise statistics
- Data adaptive basis: eigenvectors of the sample covariance matrix
- Phase flipping corrects only phases

- Corrects both phases and amplitudes
- Requires prior estimation of the spectral signal to noise ratio (SSNR)
- Not in a data adaptive basis (restricted to Fourier basis)

• Phase flipping + steerable PCA (sPCA):

- Flip sign of the Fourier coefficients at frequencies for which the CTF is negative
- Preserves noise statistics
- Data adaptive basis: eigenvectors of the sample covariance matrix
- Phase flipping corrects only phases

- Corrects both phases and amplitudes
- Requires prior estimation of the spectral signal to noise ratio (SSNR)
- Cannot restore information at zero crossings of the CTF
- Not in a data adaptive basis (restricted to Fourier basis)

• Phase flipping + steerable PCA (sPCA):

- Flip sign of the Fourier coefficients at frequencies for which the CTF is negative
- Preserves noise statistics
- Data adaptive basis: eigenvectors of the sample covariance matrix
- Phase flipping corrects only phases

- Corrects both phases and amplitudes
- Requires prior estimation of the spectral signal to noise ratio (SSNR)
- Cannot restore information at zero crossings of the CTF
- Not in a data adaptive basis (restricted to Fourier basis)

- Estimate the CTF-corrected covariance matrix of the underlying clean 2D projection images
- No averaging, act on each image separately
- CTF correction and denoising in a single step

- Estimate the CTF-corrected covariance matrix of the underlying clean 2D projection images
- Wiener filtering to solve the image restoration deconvolution problem
- No averaging, act on each image separately
- CTF correction and denoising in a single step

- Estimate the CTF-corrected covariance matrix of the underlying clean 2D projection images
- Wiener filtering to solve the image restoration deconvolution problem
- No averaging, act on each image separately
- CTF correction and denoising in a single step

- Estimate the CTF-corrected covariance matrix of the underlying clean 2D projection images
- Wiener filtering to solve the image restoration deconvolution problem
- No averaging, act on each image separately
- CTF correction and denoising in a single step

Table: Comparison of CTF Correction/Denoising Methods

Property	Phaseflip $+$ sPCA	TWF	CWF
Applicable at preliminary stage	✓	✓	✓
Data dependent basis	✓	X	✓
Correct both phases and amplitudes	×	✓	✓
CTF corrected covariance estimate	×	X	✓

- The population covariance matrix Σ must be invariant under in-plane rotation of the projection images
- Block diagonal in any steerable basis in which the basis elements
- CTF and the whitening filter are also block diagonal in the Fourier
- Suffices to estimate each diagonal block of Σ , corresponding to the
- Nearly unitary transformation

- The population covariance matrix Σ must be invariant under in-plane rotation of the projection images
- Block diagonal in any steerable basis in which the basis elements are outer products of radial functions and angular Fourier modes ²
- CTF and the whitening filter are also block diagonal in the Fourier
- Suffices to estimate each diagonal block of Σ , corresponding to the
- Nearly unitary transformation

 $^{^2}$ Fast Steerable Principal Component Analysis, Z. Zhao and Y. Shkolnisky and A. Singer, IEEE Transactions on Computational Imaging

- The population covariance matrix Σ must be invariant under in-plane rotation of the projection images
- Block diagonal in any steerable basis in which the basis elements are outer products of radial functions and angular Fourier modes ²
- CTF and the whitening filter are also block diagonal in the Fourier Bessel basis (radial isotropy)
- Suffices to estimate each diagonal block of Σ , corresponding to the
- Nearly unitary transformation

 $^{^2}$ Fast Steerable Principal Component Analysis, Z. Zhao and Y. Shkolnisky and A. Singer, IEEE Transactions on Computational Imaging

- The population covariance matrix Σ must be invariant under in-plane rotation of the projection images
- Block diagonal in any steerable basis in which the basis elements are outer products of radial functions and angular Fourier modes ²
- CTF and the whitening filter are also block diagonal in the Fourier Bessel basis (radial isotropy)
- Suffices to estimate each diagonal block of Σ , corresponding to the angular frequency k, separately
- Nearly unitary transformation

 $^{^2}$ Fast Steerable Principal Component Analysis, Z. Zhao and Y. Shkolnisky and A. Singer, IEEE Transactions on Computational Imaging

Fourier-Bessel Steerable Basis

- The population covariance matrix Σ must be invariant under in-plane rotation of the projection images
- Block diagonal in any steerable basis in which the basis elements are outer products of radial functions and angular Fourier modes²
- CTF and the whitening filter are also block diagonal in the Fourier Bessel basis (radial isotropy)
- Suffices to estimate each diagonal block of Σ , corresponding to the angular frequency k, separately
- Nearly unitary transformation

² Fast Steerable Principal Component Analysis, Z. Zhao and Y. Shkolnisky and A. Singer, IEEE Transactions on Computational Imaging

Computational Complexity: Timings

n images of size $L \times L$ UNIX environment with 60 cores, running at 2.3 GHz, with total RAM of 1.5TB

Table: Timing in seconds

Dataset	L	n	Basis coeffs	CWF
TRPV1	256	35645	312s	574s
80s	360	30000	731s	385s
IP3R1	256	37382	429s	589s
70s	250	99979	1174s	113s

Relative error of estimated clean images

mse_snr_6454-eps-converted-to mse_snr_6454-eps-converted-to.

Relative error of estimated covariance

cwf_shrinkage_compare-eps-converted-to.pdf

Simulations with white noise: 80S ribosome (EMDB-6454)

Simulations with colored noise: 80S ribosome (EMDB-6454)

- Significant amount of time is spent on discarding outliers by visual inspection after the particle picking
- CWF: automatic way to classify picked particles
- Specimen particles at various depths in the ice layer: acquired

$$Y_i = \alpha_i A_i X_i + \xi_i, \quad i = 1, 2, \dots, n$$
 (1)

- Absorb α into **X** and estimate $\alpha_i X_i$
- Outlier images typically have low contrast after denoising: linear

- Significant amount of time is spent on discarding outliers by visual inspection after the particle picking
- CWF: automatic way to classify picked particles
- Specimen particles at various depths in the ice layer: acquired

$$Y_i = \alpha_i A_i X_i + \xi_i, \quad i = 1, 2, \dots, n$$
 (1)

- Absorb α into **X** and estimate $\alpha_i X_i$
- Outlier images typically have low contrast after denoising: linear

- Significant amount of time is spent on discarding outliers by visual inspection after the particle picking
- CWF: automatic way to classify picked particles
- Specimen particles at various depths in the ice layer: acquired projection images can have different contrasts

$$Y_i = \alpha_i A_i X_i + \xi_i, \quad i = 1, 2, \dots, n$$
 (1)

- Absorb α into **X** and estimate $\alpha_i X_i$
- Outlier images typically have low contrast after denoising: linear

- Significant amount of time is spent on discarding outliers by visual inspection after the particle picking
- CWF: automatic way to classify picked particles
- Specimen particles at various depths in the ice layer: acquired projection images can have different contrasts

 $Y_i = \alpha_i A_i X_i + \xi_i, \quad i = 1, 2, \dots, n$

- Absorb α into **X** and estimate $\alpha_i X_i$
- Outlier images typically have low contrast after denoising: linear

- Significant amount of time is spent on discarding outliers by visual inspection after the particle picking
- CWF: automatic way to classify picked particles
- Specimen particles at various depths in the ice layer: acquired projection images can have different contrasts

$$Y_i = \alpha_i A_i X_i + \xi_i, \quad i = 1, 2, \dots, n \tag{1}$$

- Absorb α into **X** and estimate $\alpha_i X_i$
- Outlier images typically have low contrast after denoising: linear

- Significant amount of time is spent on discarding outliers by visual inspection after the particle picking
- CWF: automatic way to classify picked particles
- Specimen particles at various depths in the ice layer: acquired projection images can have different contrasts

$$Y_i = \alpha_i A_i X_i + \xi_i, \quad i = 1, 2, \dots, n$$
 (1)

- Absorb α into **X** and estimate $\alpha_i X_i$
- Outlier images typically have low contrast after denoising: linear classifier after CWF

Outlier Detection: 80S ribosome (EMDB-6454)

SNR=1/20 $\alpha \in [0.75, 1.5]$ 10% images are pure noise

Current and Future Work

- Better class averages
- Covariance matrix: Orthogonal Replacement using Kam's method
- 3D reconstruction from denoised images, without class averaging

Current and Future Work

- Better class averages
- Covariance matrix: Orthogonal Replacement using Kam's method
- 3D reconstruction from denoised images, without class averaging

Current and Future Work

- Better class averages
- Covariance matrix: Orthogonal Replacement using Kam's method
- 3D reconstruction from denoised images, without class averaging

Resources

- Code: https://github.com/PrincetonUniversity/cwf_denoise
- Paper: Journal of Structural Biology: 10.1016/j.jsb.2016.04.013

The Model: Real space

Linear, weak phase approximation

$$y_i = a_i * x_i + \epsilon_i, \quad i = 1, 2, \dots, n$$

n: number of images

*: convolution operation

 y_i : noisy, CTF filtered i'th image in real space

 x_i : underlying clean projection image in real space

 a_i : the point spread function of the microscope

 ϵ_i : additive Gaussian noise that corrupts the image

The Model: Fourier space

$$Y_i = A_i X_i + \xi_i, \quad i = 1, 2, \dots, n$$
 (3)

 A_i : diagonal operator, whose diagonal consists of the Fourier transform of the point spread function

 X_1, \ldots, X_n : vectors in \mathbb{C}^p , where p is the number of pixels i.i.d. samples from a distribution with mean $\mathbb{E}[\mathbf{X}] = \mu$ and covariance $\mathbb{E}[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T] = \Sigma$

"All models are wrong but some are useful" - George Box

The Model

$$\mathbb{E}[\mathbf{Y}_i] = A_i \mathbb{E}[\mathbf{X}_i], \quad i = 1, 2, \dots, n.$$
(4)

$$\mathbb{E}[(\mathbf{Y}_i - \mathbb{E}[\mathbf{Y}_i])(\mathbf{Y}_i - \mathbb{E}[\mathbf{Y}_i])^T] = \mathbb{E}[A_i(\mathbf{X}_i - \mu)(\mathbf{X}_i - \mu)^T A_i^T] + \sigma^2 I$$

$$= A_i \Sigma A_i^T + \sigma^2 I.$$
(5)

Relates the second order statistics of the noisy images with the population covariance Σ of the clean images

Mean Estimation

$$\hat{\mu} = \underset{\mu}{\text{arg min}} \sum_{i=1}^{n} ||(Y_i - A_i \mu)||_2^2 + \lambda ||\mu||_2^2$$
 (6)

$$\hat{\mu} = (\sum_{i=1}^{n} A_i^T A_i + \lambda I)^{-1} (\sum_{i=1}^{n} A_i^T Y_i).$$
 (7)

Covariance Estimation

$$\hat{\Sigma} = \underset{\Sigma}{\operatorname{arg min}} \sum_{i=1}^{n} ||(Y_i - \mathbb{E}[\mathbf{Y}_i])(Y_i - \mathbb{E}[\mathbf{Y}_i])^T - (A_i \Sigma A_i^T + \sigma^2 I)||_F^2$$

$$= \underset{\Sigma}{\operatorname{arg min}} \sum_{i=1}^{n} ||A_i \Sigma A_i^T + \sigma^2 I - C_i||_F^2$$
(8)

where $C_i = (Y_i - A_i \mu)(Y_i - A_i \mu)^T$ and $||.||_F$ is the Frobenius matrix norm.

27 / 1

Solving using Conjugate Gradient

System of linear equations for the elements of the matrix Σ

$$\sum_{i=1}^{n} A_i^T A_i \hat{\Sigma} A_i^T A_i = \sum_{i=1}^{n} A_i^T C_i A_i - \sum_{i=1}^{n} \sigma^2 A_i^T A_i$$
 (9)

$$L(\hat{\Sigma}) = B \tag{10}$$

where $L: \mathbb{R}^{p \times p} \to \mathbb{R}^{p \times p}$ is the linear operator acting on $\hat{\Sigma}$ defined by the left hand side of eqn. ??, and B is the right hand side.

- Direct inversion of this linear system is slow for large image sizes
- Applying L only involves matrix multiplications: fast!
- Conjugate gradient

- $L(\hat{\Sigma})$ is a PSD matrix whenever $\hat{\Sigma}$ is PSD (as a sum of PSD) matrices)
- B may not necessarily be PSD due to finite sample fluctuations (
- Project B onto the cone of PSD matrices
- Compute the spectral decomposition of B and set all negative
- $n \gg p$

- $L(\hat{\Sigma})$ is a PSD matrix whenever $\hat{\Sigma}$ is PSD (as a sum of PSD) matrices)
- B may not necessarily be PSD due to finite sample fluctuations (n is finite)
- Project B onto the cone of PSD matrices
- Compute the spectral decomposition of B and set all negative
- $n \gg p$

- $L(\hat{\Sigma})$ is a PSD matrix whenever $\hat{\Sigma}$ is PSD (as a sum of PSD) matrices)
- B may not necessarily be PSD due to finite sample fluctuations (n is finite)
- Project B onto the cone of PSD matrices
- Compute the spectral decomposition of B and set all negative
- $n \gg p$

- $L(\hat{\Sigma})$ is a PSD matrix whenever $\hat{\Sigma}$ is PSD (as a sum of PSD) matrices)
- B may not necessarily be PSD due to finite sample fluctuations (n is finite)
- Project B onto the cone of PSD matrices
- Compute the spectral decomposition of B and set all negative eigenvalues to 0 (eigenvalue thresholding)
- $n \gg p$

- $L(\hat{\Sigma})$ is a PSD matrix whenever $\hat{\Sigma}$ is PSD (as a sum of PSD) matrices)
- B may not necessarily be PSD due to finite sample fluctuations (n is finite)
- Project B onto the cone of PSD matrices
- Compute the spectral decomposition of B and set all negative eigenvalues to 0 (eigenvalue thresholding)
- \bullet $n \gg p$

Analyze B when $X_i = 0$ for all i (input images are white noise images)

•

$$M = \sum_{i=1}^{n} A_i^T C_i A_i = \sum_{i=1}^{n} A_i^T Y_i Y_i^T A_i.$$
 (11)

- $\mathbb{E}[M] = \sigma^2 \sum_{i=1}^n A_i^T A_i$ and $B = M \mathbb{E}[M]$
- $S = (\mathbb{E}[M])^{1/2}$, i.e. S is PSD and $\mathbb{E}[M] = S^2$

•

$$S^{-1}L(\hat{\Sigma})S^{-1} = S^{-1}(M - \mathbb{E}[M])S^{-1} = S^{-1}MS^{-1} - I.$$
 (12)

- $S^{-1}MS^{-1}$ can be viewed as a sample covariance matrix of nvectors in \mathbb{R}^p whose population covariance is the identity matrix
- Eigenvalues corresponding to the signal can only be detected if
- Kritchman Nadler (KN) rank estimation to determine the number
- Apply operator norm eigenvalue shrinkage procedure (Donoho et

^{4 □ &}gt; 4 □ > 4 □ > 4 □ >

- $S^{-1}MS^{-1}$ can be viewed as a sample covariance matrix of nvectors in \mathbb{R}^p whose population covariance is the identity matrix
- Eigenvalues corresponding to the signal can only be detected if they reside outside of the support of the Marčenko Pastur (MP) distribution
- Kritchman Nadler (KN) rank estimation to determine the number
- Apply operator norm eigenvalue shrinkage procedure (Donoho et

⁴ D F 4 D F 4 D F 4 D F

- $S^{-1}MS^{-1}$ can be viewed as a sample covariance matrix of nvectors in \mathbb{R}^p whose population covariance is the identity matrix
- Eigenvalues corresponding to the signal can only be detected if they reside outside of the support of the Marčenko Pastur (MP) distribution
- Kritchman Nadler (KN) rank estimation to determine the number of eigenvalues corresponding to the signal ³
- Apply operator norm eigenvalue shrinkage procedure (Donoho et

³Determining the number of components in a factor model from limited noisy data, Shira Kritchman and Boaz Nadler, Chemometrics and Intelligent Laboratory Systems

- $S^{-1}MS^{-1}$ can be viewed as a sample covariance matrix of nvectors in \mathbb{R}^p whose population covariance is the identity matrix
- Eigenvalues corresponding to the signal can only be detected if they reside outside of the support of the Marčenko Pastur (MP) distribution
- Kritchman Nadler (KN) rank estimation to determine the number of eigenvalues corresponding to the signal ³
- Apply operator norm eigenvalue shrinkage procedure (Donoho et al.) to those eigenvalues, while setting all other eigenvalues to 0 ⁴

³Determining the number of components in a factor model from limited noisy data, Shira Kritchman and Boaz Nadler, Chemometrics and Intelligent Laboratory Systems

Optimal shrinkage of eigenvalues in the spiked covariance model, David Donoho, Matan Gavish and I M Johnstone, arxiv.org/abs/1311.0851

Wiener Filtering

• White noise: estimate X_i as

$$\hat{X}_i = (I - H_i A_i)\hat{\mu} + H_i Y_i \tag{13}$$

where $H_i = \hat{\Sigma} A_i^T (A_i \hat{\Sigma} A_i^T + \sigma^2 I)^{-1}$ is the linear Wiener filter

• Colored noise: estimate X_i as

$$\hat{X}_i = (I - H_i W A_i)\hat{\mu} + H_i Y_i \tag{14}$$

with
$$H_i = \hat{\Sigma} A_i^T W^T (W A_i \hat{\Sigma} A_i^T W^T + \sigma^2 I)^{-1}$$

Computational Complexity

 $O(TDL^4 + nL^3)$, where T is the number of conjugate gradient iterations

- D defocus groups with d_i images in group i
- Images of size $L \times L$
- \bullet *n* images

Acknowledgement

- NIGMS, AFOSR, Simons Foundation, Moore Foundation Data-Driven Discovery Investigator Award
- Maofu Liao, Sjors Scheres, Irina Serysheva and Joachim Frank
- Yoel Shkolniskly, Fred Sigworth, Zhizhen Zhao, Joakim Andén