NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR TELETEKNIKK

Faglig kontakt under eksamen:

Navn: Magne H. Johnsen Tlf.: 73 59 26 78/930 25 534

EKSAMEN I FAG TTT4120 DIGITAL SIGNALBEHANDLING

Dato: Tirsdag 13. desember 2011

Tid: Kl. 09.00 - 13.00

Hjelpemidler: D–Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

INFORMASJON

- Dette er en korrigert eksamen. Korreksjoner er i fet skrift.
 - Oppgave 1 omhandler analyse av filtre.
 - Oppgave 2 omhandler rasjonale prosessmodeller.
 - Oppgave 3 omhandler fast komma realisering.
 - Oppgave 4 omhandler frekvenstransformasjoner.
 - En del formler er oppgitt i appendiks
 - Vekting av hver deloppgave er angitt i parentes. Totalt antall poeng er 63.
- Alle svar skal begrunnes!
- Faglig kontakt vil gå rundt to ganger, første gang ca. kl. 10.00 og andre gang ca. 11.45.

Oppgave 1 (3+3+6+3 = 15 poeng)

1a) Et stabilt, kausalt LTI-filter er beskrevet ved følgende differanse-ligning:

$$y(n) - \frac{7}{6}y(n-1) + \frac{1}{3}y(n-2) = x(n) - \frac{7}{6}x(n-1), \ n = -\infty, \infty$$
 (1)

Vis at filterets transferfunksjon er gitt ved:

$$H(z) = H_1(z)H_2(z) = \frac{\left(1 - \frac{7}{6}z^{-1}\right)}{\left(1 - \frac{1}{2}z^{-1}\right)} \frac{1}{\left(1 - \frac{2}{3}z^{-1}\right)}$$
(2)

Svar:

$$Y(z) - \frac{7}{6}Y(z)z^{-1} + \frac{1}{3}Y(z)z^{-2} = X(z) - \frac{7}{6}X(z)z^{-1} \implies Y(z)(1 - \frac{7}{6}z^{-1} + \frac{1}{3}z^{-2}) = X(z)(1 - \frac{7}{6}z^{-1}) \implies H(z) = \frac{Y(z)}{X(z)} = \frac{1 - \frac{7}{6}z^{-1}}{1 - \frac{7}{6}z^{-1} + \frac{1}{3}z^{-2}}$$

Ved å multiplisere parantesene i nevneren i ligning 2 får en nevneren over, ergo er polene gitt ved $z=\frac{1}{2}$ and $z=\frac{2}{3}$

- **1b)** Gi et *begrunnet* svar på følgende :
 - Hva blir konvergensområdet til filteret i oppgave 1a?
 - Har filteret lineær fase?
 - Har filteret minimum fase?

Svar:

- $\max[|p_1|, |p_2|] = \max[\frac{1}{2}, \frac{2}{3}] = \frac{2}{3} \implies \text{ROC} : |z| > \frac{2}{3}$
- Filteret har ikke lineær fase da det har poler.
- Minimum fase krever at både poler og nullpunkter ligger innenfor enhetssirkelen. Vi har her et nullpunkt i $z = \frac{7}{6} > 1$. Altså har filteret ikke minimum fase.

1c) Gitt parallellstrukturen i Figur 1.

Figur 1: Parallellstruktur

Vis at enhetspulsresponsen til filteret er gitt ved :

$$h_P(n) = h_3(n) + h_4(n) \quad \text{hvor}$$

$$h_3(n) = \begin{cases} 4(\frac{1}{2})^n & n \ge 0\\ 0 & n < 0 \end{cases}$$

$$h_4(n) = \begin{cases} -3(\frac{2}{3})^n & n \ge 0\\ 0 & n < 0 \end{cases}$$

Vis også at parallellstrukturen implementerer filteret gitt ved lign 2, dvs :

$$H(z) = H_P(z) = H_3(z) + H_4(z)$$
 (3)

Svar:

$$H_P(z) = \frac{1 - \frac{7}{6}z^{-1}}{1 - \frac{5}{6}z^{-1} - \frac{1}{3}z^{-2}} = \frac{C}{1 - \frac{1}{2}z^{-1}} + \frac{D}{1 - \frac{2}{3}z^{-1}} \implies$$

$$H_P(z) = \frac{C + D - (\frac{2C}{3} + \frac{D}{2})z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - \frac{2}{3}z^{-1})}$$

$$C + D = 1$$

$$(\frac{2C}{3} + \frac{D}{2})z^{-1} = \frac{7}{6}z^{-1} \implies 4C + 3D = 7$$

$$4(1 - D) + 3D = 4 - D = 7 \implies D = -3 \text{ og } C = 4$$

Dermed har en:

$$H_P(z) = H_3(z) + H_4(z) = \frac{4}{1 - \frac{1}{2}z^{-1}} + \frac{-3}{1 - \frac{2}{3}z^{-1}} \Rightarrow$$

$$h(n) = h_3(n) + h_4(n) = \begin{cases} 4(\frac{1}{2})^n - 3(\frac{2}{3})^n & n \ge 0\\ 0 & n < 0 \end{cases}$$

Setter vi $H_P(z)$ på en felles brøkstrek får vi identisk nevner med lign 2. mens teller blir :

$$4(1 - \frac{2}{3}z^{-1}) - 3(1 - \frac{1}{2}z^{-1}) = 4 - 3 - (\frac{8}{3} - \frac{3}{2})z^{-1} = 1 - \frac{16 - 9}{6}z^{-1} = 1 - \frac{7}{6}z^{-1} \Rightarrow \text{qed } (4)$$

- 1d) Skisser en kaskadestruktur basert på lign. 2 som oppfyller følgende to kriterier :
 - $\bullet~H_1(z)$ er på direkte form 2 (DF2)
 - $\bullet \ H_2(z)$ er plassert nærmest utgangen

Svar:

Kaskade

Figur 2: Kaskadestrukturen

Oppgave 2 (4+5+3+4 = 16 poeng)

2a) Krysskorrelasjonssekvensen til to sekvenser y(n) og x(n) med endelig energi er gitt ved

$$r_{yx}(m) = \sum_{n=-\infty}^{\infty} y(n+m)x(n) \quad m \ge 0$$

$$r_{yx}(m) = r_{xy}(-m) \qquad m < 0$$

Vis at krysskorrelasjonssekvensen til $h_3(n)$ og $h_4(n)$ i deloppgave 1c er gitt ved

$$r_{h_3h_4}(m) = \begin{cases} -18(\frac{1}{2})^m & m \ge 0\\ -18(\frac{3}{2})^m & m < 0 \end{cases}$$
 (5)

Svar:

$$r_{h_3h_4}(m) = \sum_{n=-\infty}^{\infty} h_3(n+m)h_4(n) \qquad m \ge 0$$

$$r_{h_3h_4}(m) = \sum_{n=0}^{\infty} 4(\frac{1}{2})^{n+m}(-3(\frac{2}{3})^n) \qquad m \ge 0$$

$$r_{h_3h_4}(m) = -12(\frac{1}{2})^m \sum_{n=0}^{\infty} (\frac{1}{3})^n \quad m \ge 0$$

$$r_{h_3h_4}(m) = -12(\frac{1}{2})^m \frac{1}{1-\frac{1}{3}} = -18(\frac{1}{2})^m$$

Tilsvarende utregning for $r_{h_4h_3}(m)$ gir :

$$r_{h_4h_3}(m) = \sum_{n=0}^{\infty} -3(\frac{2}{3})^{n+m} (4(\frac{1}{2})^n) \qquad m \ge 0$$

$$r_{h_4h_3}(m) = -12(\frac{2}{3})^m \frac{1}{1-\frac{1}{3}} = -18(\frac{2}{3})^m$$

Da $r_{h_3h_4}(m) = r_{h_4h_3}(-m)$ for m < 0 er ligning 4 bevist!

2b) Vis at filteret H(z) gitt i oppgave 1 har autokorrelasjonssekvensen :

$$r_{hh}(m) = \begin{cases} \frac{10}{3} (\frac{1}{2})^m - \frac{9}{5} (\frac{2}{3})^m & m \ge 0\\ r_{hh}(-m) & m < 0 \end{cases}$$
 (6)

Svar:

Setter en $h(n) = h_3(n) + h_4(n)$ inn i

$$r_{hh}(m) = \sum_{n=-\infty}^{\infty} h(n+m)h(n)$$
 får en

$$r_{hh}(m) = r_{h_3h_3}(m) + r_{h_3h_4}(m) + r_{h_4h_3}(m) + r_{h_4h_4}(m)$$

De to autokorrelasjonssekvensene for hhv $h_3(n)$ og $h_4(n)$ blir

$$r_{h_3h_3}(m) = 16 \sum_{n=0}^{\infty} (\frac{1}{2})^{n+m} (\frac{1}{2})^n \qquad m \ge 0$$

$$r_{h_3h_3}(m) = 16 (\frac{1}{2})^m \sum_{n=0}^{\infty} (\frac{1}{4})^n \qquad m \ge 0$$

$$r_{h_3h_3}(m) = 16 (\frac{1}{2})^m \frac{1}{1 - \frac{1}{4}} = \frac{64}{3} (\frac{1}{2})^m \qquad m \ge 0$$

$$r_{h_4h_4}(m) = 9 \sum_{n=0}^{\infty} (\frac{2}{3})^{n+m} (\frac{2}{3})^n \qquad m \ge 0$$

$$r_{h_4h_4}(m) = 9 (\frac{2}{3})^m \sum_{n=0}^{\infty} (\frac{4}{9})^n \qquad m \ge 0$$

$$r_{h_4h_4}(m) = 9 (\frac{2}{3})^m \frac{1}{1 - \frac{4}{9}} = \frac{81}{5} (\frac{2}{3})^m \qquad m \ge 0$$

$$(7)$$

Fra deloppgave 2a henter vi uttrykkene for krysskorrelasjonene og samler to og to ledd med samme eksponent

$$(\frac{64}{3} - 18)(\frac{1}{2})^m = \frac{(64 - 3 * 18)}{3}(\frac{1}{2})^m = \frac{10}{3}(\frac{1}{2})^m$$

$$(\frac{81}{5} - 18)(\frac{2}{3})^m = \frac{(81 - 5 * 18)}{5}(\frac{2}{3})^m = -\frac{9}{5}(\frac{2}{3})^m$$

Som tilsvarer de to leddene i lign 5.

2c) Hvit støy w(n) med effekt $\sigma_w^2 = 1$ påtrykkes parallellstrukturen i deloppgave 1c.

Hvilke parametriske prosess-typer tilsvarer henholdsvis utgangssignalet og de interne signalene i strukturen? Begrunn svaret!

Svar:

Vi har to interne signaler i parallellstrukturen, nemlig utgangene av de to summasjonsjonsnodene. Forsinkelser eller grenforsterkninger (hhv 4 og -3) endrer ikke de statistiske egenskapene til signaler.

Den øverste grenen tilsvarer responsen ut fra filteret $h_1(n)$ (bortsett fra grenforsterkning). Filteret er av første ordens allpoltype (en pol), noe som tilsier at en her har en AR[1]-prosess. Det samme resonnementet gjelder for den nederste grenen og filteret $h_2(n)$, altså har en også der en AR[1]-prosess.

Utgangen av filteret er selvsagt gitt av hele filterresponsen h(n). Fra lign 2 ser en at filteret har et nullpunkt og to poler, ergo er utgangssignalet en ARMA[1,2]-prosess.

2d) Hvit støy w(n) med effekt $\sigma_w^2 = 1$ påtrykkes filteret H(z). Finn, ved hjelp av lineær prediksjon (dvs. Yule-Walker eller Normal ligningene) filterkoeffisienten a_1 for den beste AR[1]-modellen til filterets utgangssignal y(n).

Vis at prediksjonsfeileffekten σ_f^2 alltid oppfyller : $\sigma_f^2 \leq \sigma_y^2$ hvor $\sigma_y^2 = \gamma_{yy}(0)$ er signaleffekten til inngangssignalet.

Svar:

For hhv tidslag m=1 og prediksjonsfeileffekten (m=0) får en :

$$a_1 \gamma_{yy}(0) = -\gamma_{yy}(1) \qquad m = 1$$

$$\sigma_f^2 = \gamma_{yy}(0) + a_1 \gamma_{yy}(1) \qquad m = 0$$

Vi har at $\gamma_{yy}(m)=\sigma_w^2 r_{hh}(m),$ dvs med $\sigma_w^2=1$ får vi

$$\begin{split} \gamma_{yy}(0) &= \frac{10}{3}(\frac{1}{2})^0 - \frac{9}{5}(\frac{2}{3})^0 = \frac{10}{3} - \frac{9}{5} = \frac{10*5 - 9*3}{3*5} = \frac{23}{15} \\ \gamma_{yy}(1) &= \frac{10}{3}(\frac{1}{2})^1 - \frac{9}{5}(\frac{2}{3})^1 = \frac{5}{3} - \frac{6}{5} = \frac{25 - 18}{15} = \frac{7}{15} \end{split}$$

Dvs
$$a_1 = -\gamma_{yy}(1)/\gamma_{yy}(0) = -7/23 \approx -0.3$$

Videre kan vi omskrive prediksjonsfeileffekten : $\sigma_f^2 = \gamma_{yy}(0)(1+a_1\gamma_{yy}(1)/\gamma_{yy}(0))$. Brøken i siste ledd tilsvarer filterkoeffisienten, ergo har vi $\sigma_f^2 = \gamma_{yy}(0)(1-a_1^2)$. For alle stabile filtre (dvs. $|a_1|<1$) vil $\sigma_f^2 \leq \gamma_{yy}(0)$. Forholdet $\gamma_{yy}(0)/\sigma_f^2 = 1/(1-a_1^2)$ kalles derfor prediksjonsgevinsten.

Oppgave 3 (4+4+5+4=17 poeng)

Det diskrete filteret i oppgave 1 skal implementeres ved hjelp av **parallellstrukturen** i figur 1.

Filteret skal videre realiseres med fast komma tallrepresentasjon med B+1 bit og dynamikk [-1,1). Avrunding (kvantisering) foretas etter hver multiplikasjon og avrundingsfeilen, e(n), kan regnes som hvit støy med effekt $\sigma_e^2 = \frac{2^{-2B}}{12}$. Til sammen bidrar alle støykildene på grunn av avrunding til et støysignal z(n) på utgangen med totaleffekt σ_z^2 .

3a) Finn resulterende støyeffekt, σ_z^2 , på utgangen av parallellestrukturen uttrykt ved σ_e^2 .

Svar:

I parallellstrukturen har vi fire multiplikasjoner/avrundinger og dermed fire hvitstøy-kilder. Kildene ved hhv 1/2 og 2/3 kan begge flyttes til foran sine respektive summasjonsnoder. De tilsvarende enhetspulsresponsene er derfor $h_1(n)$ og $h_2(n)$. De to kildene som oppstår pga multiplikasjon med grenforsterkningene 4 og -3 er begge i forovergrener og kan flyttes til utgangen (etter siste summasjonsnode). Den tilsvarende enhetspulsresponsen er dermed en enhetspulssekvens $\delta(n)$ som har en autokorrelasjon også lik en enhetspulssekvens, dvs lik 1 for tidslag 0 .

Vi får da :
$$\sigma_z^2 = (r_{h_3h_3}(0) + r_{h_4h_4}(0) + 2 * 1)\sigma_e^2 = (64/3 + 81/5 + 2)\sigma_e^2 = ((64 * 5 + 81 * 3 + 30)/15)\sigma_e^2 = (593/15)\sigma_e^2 \approx 39.5\sigma_e^2$$

3b) Finn resulterende støyeffekt, σ_z^2 , på utgangen av parallell-strukturen når en flytter de to grenforsterkningene *foran* sine respektive tilbakekoblinger.

Svar:

Kildene ved hhv 1/2 og 2/3 kan også nå flyttes til foran sine respektive summasjonsnoder men ser nå hhv. $h_3(n)/4$ og $-h_4(n)/3$ pga flyttingen. De to støykildene tilsvarende grenforsterkningene vil også se de samme enhetspulsresponsene, dvs $h_3(n)/4$ og $-h_4(n)/3$. Ergo har vi nå fått to støykilder for hvert nedskalerte delfilter.

Vi får da:
$$\sigma_z^2 = 2 * (r_{h_3h_3}(0)/16 + r_{h_4h_4}(0)/9)\sigma_e^2 = 2 * (64/(3*16) + 81/(5*9))\sigma_e^2 = 2 * ((4*5+9*3)/15)\sigma_e^2 = 2 * (47/15)\sigma_e^2 \approx 6.2\sigma_e^2$$

Altså ser det klart lurest ut å sette grenforsterkningene foran tilbakekoblingene.

3c) Inngangssignalet x(n) til filteret har full utstyring, dvs. $x_{max} = \max_{n} |x(n)| = 1$.

Vis at en for å unngå overstyring i parallellstrukturen brukt i deloppgave 3a må skalere på inngangen med 1/3 (nedskalering med 3).

Vis videre at man for den andre parallellstrukturen (deloppgave 3b) må skalere på inngangen med S = 1/9 (dvs. nedskalering med 9).

Svar:

En har to interne summasjonsnoder og en ved utgangen. Strukturen i deloppgave 3a er lik figur 1. For de to interne nodene er enhetspulsresponsene fra inngang til nodene gitt ved hhv. $h_3(n)/4$ og $-h_4(n)/3$. Utgangsnoden tilsvarer selvsagt en enhetspulsrespons lik h(n). Dette gir for de interne nodene:

$$\frac{1}{4} \sum_{n=0}^{\infty} |h_3(n)| = \sum_{n=0}^{\infty} (\frac{1}{2})^n = \frac{1}{1 - \frac{1}{2}} = 2$$

$$\frac{1}{3} \sum_{n=0}^{\infty} |h_4(n)| = \sum_{n=0}^{\infty} (\frac{2}{3})^n = \frac{1}{1 - \frac{2}{3}} = 3$$
(8)

For utgangsnoden ser en at $h(n) = h_3(n) + h_4(n) \le 0$ for $n \ge 1$ mens $h(0) = h_3(0) + h_4(0) = 1$. Dette kan skrives

$$\sum_{n=0}^{\infty} |h(n)| = 1 - \sum_{n=1}^{\infty} (h_3(n) + h_4(n)) = 2 - \sum_{n=0}^{\infty} (h_3(n) + h_4(n)) \Rightarrow$$
$$\sum_{n=0}^{\infty} |h(n)| = 2 - 4 * 2 + 3 * 3 = 2 - 8 + 9 = 3$$

En har at 3 er størst, ergo må en velge skalering med 1/3.

I den andre strukturen kommer grenforsterkninger før nodene, dvs. en må bruke $h_3(n)$ og $h_4(n)$ for de interne nodene. Fra utregningen over har en at dette tilsvarer hhv. verdiene 8 og 9. For utgangsnoden får en selvsagt samme verdi som for den andre strukturen, dvs. 3. Da 9 er den største verdien er skaleringen gitt ved 1/9.

3d) Signal-støy forholdet på utgangen er definert ved $SNR = \sigma_y^2/\sigma_z^2$, hvor σ_y^2 og σ_z^2 er henholdsvis signaleffekt og total støyeffekt på utgangen av det nedskalerte filteret.

Beregn SNR på utgangen av to nedskalerte parallellstrukturene.

Svar:

Vi kaller signaleffekten på utgangen uten nedskalering for σ_{y1}^2 . Etter nedskalering får en da hhv signaleffekter på utgangen gitt ved hhv. $\sigma_y^2 = (1/3)^2 \sigma_{y1}^2$ og $\sigma_y^2 = (1/9)^2 \sigma_{y1}^2$. De tilsvarende støyeffektene er gitt av deloppgavene 3a og 3b som $\sigma_z^2 \approx 40\sigma_w^2$ og $\sigma_z^2 \approx 6\sigma_w^2$. Ergo får en for de to strukturene :

$$SNR_a \approx (\frac{1}{3})^2 \sigma_{y1}^2 / (40\sigma_w^2) = \frac{1}{360} \frac{\sigma_{y1}^2}{\sigma_w^2}$$

 $SNR_b \approx (\frac{1}{9})^2 \sigma_{y1}^2 / (6\sigma_w^2) \approx \frac{1}{486} \frac{\sigma_{y1}^2}{\sigma_w^2}$

En ser altså at selv om en må nedskalere mest i strukturen fra deloppgave 3b så gir den likevel størst SNR på utgangen.

Oppgave 4 (3+4+4+4=15 poeng)

4a) An analogue signal, $x_a(t)$, is sampled by a distance $T = 1/F_s$, i.e. $x(n) = x_a(nT)$

Which condition must the signal $x_a(t)$ fulfil if it shall be possible to reconstruct it from x(n)?

Answer:

The analogue signal must be bandlimited to $-F_s/2 < F < F_s/2$ (Nyquist theorem)

Given that the sequence x(n) has length L. An N-point DFT (Discrete Fourier Transform) is performed on the sequence.

For which frequency values are the DFT calculated? Discuss the importance of the size of N versus L.

Answer:

N frequency values uniformly spaced over a period, $0 \ge f < 1$.

That is $f_k = k/N \ k = 0, ..., N-1$.

One must choose $N \geq L$ in order to reconstruct x(n) from X(k). If N > L so called zero-padding is used.

4b) How can DFT be used to perform linear convolution of two signals $x_1(n)$ og $x_2(n)$ of lengths L_1 and L_2 ?

Answer:

The result $x(n) = x_1(n) * x_2(n)$ has length $L = L_1 + L_2 - 1$. Thus one has to use $N \ge L$ samples of X(f) in order to calculate x(n). Given that $X(f) = X_1(f)X_2(f)$ one therefore has to use a corresponding number of samples also of $X_1(f)$ and $X_2(f)$. This leads to the following procedure:

- $x_1(n) \to X_1(k)$ for k = 0, ..., N-1
- $x_2(n) \to X_2(k)$ for k = 0, ..., N-1
- $X(k) = X_1(k)X_2(k)$ k = 0, ..., N-1
- $X(k) \rightarrow x(n)$ n = 0, ..., N-1 (where x(n) = 0 for n = L, ..., N-1)

4c) What is the basic idea of the "overlap-add" method for FIR filtering of long sequences?

Why should the DFT technique in subtask 4b be used as a part of this method?

Answer:

The (infinitely) log input sequence is split into non-overlapping segments of length L. Each segment is filtered by the FIR-filter h(n) of length M. The result is a segment of length N = L + M - 1. These output segments must be added in time as subsequent segments overlap with M samples.

L is chosen such that $N = 2^R$. Thus each filtering operation can be performed as described in subtask 4b. However, of course FFT is applied instead of direct DFT. This leads to substantial fewer operations (m+a) than by implementing the filtering in the time domain.

4d) Explain shortly the principle of the radix-2 N-point FFT (Fast Fourier Transform).

Answer:

The main idea is to utilize the fact that a $N=2^R$ point DFT can be implemented by 2 N/2 point DFTs plus N multiplications. It can easily be shown that the latter can be implemented by substantial fewer m+a. Comparing we get $N^2 \ge 2*(N/2)^2 + N = N^2/2 + N$ for all N > 2!

The algorithm successively splits DFTs in accordance with the above idea. One ends up with a structure consisting of $(N/2) * log_2(N)$ 2-point DFTs (so called butterflies), where one butterfly takes 2 m+a. The complexity relation thus becomes $N^2/(N * log_2(N)) = N/log_2(N)$. This relation becomes large for typical values. N = 64, 128, 256, 512, 1024, ...

Oppgave 5 (3+4+4+4=15 poeng)

5a) Et analogt signal, $x_a(t)$, punktprøves med en avstand $T = 1/F_s$, dvs. $x(n) = x_a(nT)$

Hvilken betingelse må signalet $x_a(t)$ oppfylle hvis det skal kunne gjenvinnes fra x(n)?

Svar:

Det analoge signalet må være båndbegrenset til $-F_s/2 < F < F_s/2$ (Nyquist teoremet)

Gitt at sekvensen x(n) har lengde L. En utfører en N-punkts DFT (Diskret Fourier Transform) på sekvensen.

Hvilke frekvensverdier blir beregnet?

Diskuter betydningen av størrelsen på N versus L.

Svar:

En beregner N frekvensverdier med lik avstand over en periode dvs $0 \ge f < 1$.

Dvs.
$$f_k = k/N \ k = 0, ..., N-1$$
.

En må velge $N \ge L$ for å kunne gjenvinne x(n) fra X(k). Hvis N > L brukes såkalt zero-padding.

5b) Hvordan kan man ved bruk av DFT beregne lineær foldning til to signaler $x_1(n)$ og $x_2(n)$ av lengde henholdsvis L_1 og L_2 ?

Svar:

Resultatet $x(n) = x_1(n) * x_2(n)$ har lengde $L = L_1 + L_2 - 1$. Altså må en beregne $N \ge L$ punktprøver av X(f) for å kunne beregne x(n). Da $X(f) = X_1(f)X_2(f)$ må en derfor også beregne tilsvarende antall punktprøver av $X_1(f)$ og $X_2(f)$.

Altså blir prosedyren som følger :

- $x_1(n) \to X_1(k)$ for k = 0, ..., N-1
- $x_2(n) \to X_2(k)$ for k = 0, ..., N-1
- $X(k) = X_1(k)X_2(k)$ k = 0, ..., N-1
- $X(k) \to x(n)$ n = 0, ..., N-1 (hvor x(n) = 0 for n = L, ..., N-1)

5c) Hva menes med "overlap-add" metoden for FIR-filtrering av lange sekvenser?

Hvorfor bør en bruke teknikken i deloppgave 4b i denne metoden?

Svar:

Den lange inngangssekvensen deles opp i ikke-overlappende segmenter av lengde L. Hvert segment filtreres av FIR-filteret h(n) av lengde M. Resultatet blir et segment av lengde N = L + M - 1. Utgangs-segmentene adderes i tid da påfølgende utgangs-segment overlapper med M punktprøver.

L velges slik at $N=2^R$. Da kan hver filtrering utføres som angitt i 4b men hvor en bruker FFT i stedet for DFT. Dette vil resultere i langt færre m+a enn å gjøre filtreringen i tidsplanet.

5d) Forklar kort prinsippet for en radix-2 N-punkts FFT (Fast Fourier Transform).

Svar:

Hovedideen er at man kan implementere en $N=2^R$ punkts DFT vha. 2 N/2 punkts DFTer samt N multiplikasjoner. En kan videre lett vise at sistnevnte alternativ krever færre operasjoner (m+a). En sammenligning gir $N^2 \geq 2*(N/2)^2$) + $N=N^2/2+N$ for alle N>2!

En splitter suksessivt opp DFTer i henhold til ovenstående. En ender opp med en struktur bestående av $(N/2) * log_2(N)$ 2-punkts DFTer (såkalte butterflies), som hver enkelt krever 2 m+a. Altså blir forholdet $N^2/(N*log_2(N)) = N/log_2(N)$. Forholdet blir stort for typiske verdier, dvs. N = 64, 128, 256, 512, 1024, ...

Some basic equations and formulas.

A. Sequences:

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha} \iff |\alpha| < 1$$

$$\sum_{n=0}^{N-1} \alpha^n = \frac{1-\alpha^N}{1-\alpha}$$

B. Linear convolution:

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k) = \sum_{k} x(k)h(n-k)$$

$$Y(z) = H(z)X(z) \Rightarrow Y(f) = H(f)X(f) \Rightarrow$$

$$Y(f_k) = H(f_k)X(f_k) \quad f_k = k/N \text{ for } k = 0, \dots, N-1 \text{ where we write } Y(k) = Y(f_k)$$

C. Transforms:

$$\begin{split} H(z) &=& \sum_n h(n) z^{-n} \Rightarrow H(f) = \sum_n h(n) \ e^{-j2\pi nf} \\ \text{DFT} &: H(k) &=& \sum_{n=0}^{L-1} h(n) \ e^{-j2\pi nk/N} \qquad k = 0,...,N-1 \\ \text{IDFT} &: h(n) &=& \frac{1}{N} \sum_{k=0}^{N-1} H(k) \ e^{j2\pi nk/N} \qquad n = 0,...,L-1 \end{split}$$

D. The sampling (Nyquist) theorem:

Given an analog signal $x_a(t)$ with bandwidth $\pm B$ which is sampled by $F_s=1/T_s$:

$$x(n) = x(nT_s) = x_a(t)|_{t=nT_s} \quad n = -\infty,, \infty$$

$$X(f) = X(F/F_s) = F_s \sum_k X_a[(f-k)F_s]$$

$$x_a(t) \text{ can be recovered from } x(n) \iff F_s \ge 2B$$

$$(9)$$

E. Autocorrelation, energy spectrum and Parsevals theorem:

Given a sequence h(n) with finite energy E_h :

Autocorrelation:
$$r_{hh}(m) = \sum_{n} h(n)h(n+m)$$
 $m = -\infty,, \infty$
Energy spectrum: $S_{hh}(z) = H(z)H(z^{-1}) \Rightarrow S_{hh}(f) = |H(f)|^2$

Parsevals theorem:
$$E_h = r_{hh}(0) = \sum_n h^2(n) = \int_0^{2\pi} |H(f)|^2 df$$

F. Multirate formulaes:

Decimation where
$$T_{sy} = DT_{sx}$$
:
$$v(mT_{sy}) = \sum_{k} h[(mD - k)T_{sx}] \ x(kT_{sx}) \quad m = -\infty,, \infty$$
Upsampling where $T_{sx} = UT_{sy}$:
$$y(lT_{sy}) = \sum_{n} h[(l - nU)T_{sy}] \ x(nT_{sx}) \quad l = -\infty,, \infty$$
Interpolation where $T_{sy} = DT_{sv} = \frac{D}{U}T_{sx}$:
$$y(lT_{sy}) = \sum_{m} h[(lD - mU)T_{sv}] \ x(mT_{sx}) \quad l = -\infty,, \infty$$

G. Autocorrelation, power spectrum and Wiener-Khintchin theorem :

Given a stationary, ergodic sequence x(n) with infinite energy:

Autocorrelation :
$$\gamma_{xx}(m) = E[x(n)x(n+m)] \ m = -\infty,, \infty$$

Power spectrum:
$$\Gamma_{xx}(z) = Z[\gamma_{xx}(m)] \Rightarrow$$

Wiener-Khintchin:
$$\Gamma_{xx}(f) = DTFT[\gamma_{xx}(m)] = \sum_{m} \gamma_{xx}(m) e^{-j2\pi mf}$$

H. The Yule-Walker and Normal equations where $a_0=1$:

Yule-Walker equations :
$$\sum_{k=0}^{P} a_k \gamma_{xx}(m-k) = \sigma_f^2 \ \delta(m) \ \ m=0,...,P$$

Normal equations:
$$\sum_{k=1}^{P} a_k \gamma_{xx}(m-k) = -\gamma_{xx}(m) \quad m=1,...,P$$