DS311 - R Lab Assignment

Miles Mendez

11/28/23

R Assignment 1

- In this assignment, we are going to apply some of the build in data set in R for descriptive statistics analysis.
- To earn full grade in this assignment, students need to complete the coding tasks for each question to get the result.
- After finished all the questions, knit the document into HTML format for submission.

Question 1

Using the **mtcars** data set in R, please answer the following questions.

```
# Loading the data
data(mtcars)

# Head of the data set
head(mtcars)
```

```
##
                     mpg cyl disp hp drat
                                              wt qsec vs am gear carb
## Mazda RX4
                           6 160 110 3.90 2.620 16.46
                    21.0
## Mazda RX4 Wag
                                                                     4
                    21.0
                           6
                             160 110 3.90 2.875 17.02
## Datsun 710
                    22.8
                           4 108 93 3.85 2.320 18.61
                                                                     1
## Hornet 4 Drive
                    21.4
                           6 258 110 3.08 3.215 19.44
                                                                     1
## Hornet Sportabout 18.7
                           8
                              360 175 3.15 3.440 17.02
                                                                3
                                                                     2
## Valiant
                    18.1
                              225 105 2.76 3.460 20.22
```

a. Report the number of variables and observations in the data set.

```
# Enter your code here!
?mtcars

## starting httpd help server ... done
dim(mtcars)
```

[1] 32 11

names(mtcars) ## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" ## [11] "carb" # Answer: print("There are total of 11 numeric variables and 32 observations in this data set.")

- ## [1] "There are total of 11 numeric variables and 32 observations in this data set."
 - b. Print the summary statistics of the data set and report how many discrete and continuous variables are in the data set.

```
# Enter your code here!
summary(mtcars)
```

```
##
                          cyl
                                           disp
                                                             hp
         mpg
##
           :10.40
                            :4.000
                                             : 71.1
                                                              : 52.0
    Min.
                     Min.
                                      Min.
                                                       Min.
                                      1st Qu.:120.8
##
    1st Qu.:15.43
                     1st Qu.:4.000
                                                       1st Qu.: 96.5
   Median :19.20
                     Median :6.000
                                      Median :196.3
##
                                                       Median :123.0
##
   Mean
           :20.09
                     Mean
                            :6.188
                                      Mean
                                             :230.7
                                                       Mean
                                                              :146.7
    3rd Qu.:22.80
                                                       3rd Qu.:180.0
##
                     3rd Qu.:8.000
                                      3rd Qu.:326.0
                                              :472.0
##
    Max.
           :33.90
                     Max.
                            :8.000
                                      Max.
                                                       Max.
                                                               :335.0
##
         drat
                           wt
                                           qsec
                                                              vs
##
           :2.760
                     Min.
                            :1.513
                                             :14.50
                                                               :0.0000
   Min.
                                      Min.
                                                       Min.
##
    1st Qu.:3.080
                     1st Qu.:2.581
                                      1st Qu.:16.89
                                                       1st Qu.:0.0000
##
   Median :3.695
                     Median :3.325
                                      Median :17.71
                                                       Median :0.0000
##
   Mean
           :3.597
                     Mean
                            :3.217
                                      Mean
                                             :17.85
                                                       Mean
                                                              :0.4375
##
    3rd Qu.:3.920
                     3rd Qu.:3.610
                                      3rd Qu.:18.90
                                                       3rd Qu.:1.0000
##
    Max.
           :4.930
                     Max.
                            :5.424
                                      Max.
                                              :22.90
                                                       Max.
                                                               :1.0000
##
                                             carb
          am
                           gear
##
   Min.
           :0.0000
                      Min.
                              :3.000
                                       Min.
                                               :1.000
   1st Qu.:0.0000
                      1st Qu.:3.000
                                       1st Qu.:2.000
##
   Median :0.0000
                      Median :4.000
                                       Median :2.000
##
                                               :2.812
##
  Mean
           :0.4062
                              :3.688
                      Mean
                                       Mean
    3rd Qu.:1.0000
                      3rd Qu.:4.000
                                       3rd Qu.:4.000
## Max.
           :1.0000
                      Max.
                              :5.000
                                       Max.
                                               :8.000
```

Answer:

```
print("There are 5 discrete variables and 6 continuous variables in this data set.")
```

- ## [1] "There are 5 discrete variables and 6 continuous variables in this data set."
 - c. Calculate the mean, variance, and standard deviation for the variable **mpg** and assign them into variable names m, v, and s. Report the results in the print statement.

```
# Enter your code here!
m <- mean(mtcars$mpg)
v<-var(mtcars$mpg)
s<-sd(mtcars$mpg)</pre>
```

```
print(paste("The average of Mile Per Gallon from this data set is ", m , " with variance ", v , " and s
## [1] "The average of Mile Per Gallon from this data set is 20.090625 with variance 36.324102822580
  d. Create two tables to summarize 1) average mpg for each cylinder class and 2) the standard deviation
     of mpg for each gear class.
# Enter your code here!
m_mpg_cyl<-aggregate(mpg ~ cyl, mtcars, mean)</pre>
sd_mpg_gr<-aggregate(mpg ~ cyl, mtcars, sd)</pre>
print(m_mpg_cyl)
##
     cyl
              mpg
## 1
       4 26.66364
## 2
       6 19.74286
## 3
       8 15.10000
print(sd_mpg_gr)
##
     cyl
              mpg
```

e. Create a crosstab that shows the number of observations belong to each cylinder and gear class combinations. The table should show how many observations given the car has 4 cylinders with 3 gears, 4 cylinders with 4 gears, etc. Report which combination is recorded in this data set and how many observations for this type of car.

```
# Enter your code here!
cyl_gr_ctable<-table(mtcars$cyl, mtcars$gear)
print(cyl_gr_ctable)</pre>
```

1

3

4 4.509828 6 1.453567 8 2.560048

print("The most common car type in this data set is car with 8 cylinders and 3 gears. There are total o

[1] "The most common car type in this data set is car with 8 cylinders and 3 gears. There are total

Question 2

Use different visualization tools to summarize the data sets in this question.

a. Using the **PlantGrowth** data set, visualize and compare the weight of the plant in the three separated group. Give labels to the title, x-axis, and y-axis on the graph. Write a paragraph to summarize your findings.

```
# Load the data set
data("PlantGrowth")
# Head of the data set
head(PlantGrowth)
     weight group
##
## 1
       4.17 ctrl
## 2
       5.58 ctrl
       5.18 ctrl
## 3
## 4
       6.11 ctrl
## 5
       4.50 ctrl
## 6
       4.61 ctrl
# Enter your code here!
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.2
ggplot(PlantGrowth, aes(x=group, y=weight, fill=group))+geom_boxplot()+
 labs(title="Plant Weight Groups", x="Group", y="Weight")
```

Plant Weight Groups

Result:

=> Report a paragraph to summarize your findings from the plot! The Plant weight groups reflect that the treatment groups provided vastly different results on both ends of the control group. Treatment 1 had the most similarities with the control group while treatment 2 was on the upper end of the control range barely intersecting at all. Treatment 2 produced bigger, healthier plants given this data. Treatment 2 had the highest median followed by the control and then treatment 1. The upper quartile for treatment 1 was very small with most plants in this group reflecting quartile 3 and 2. the median for the control group was roughly \sim 5.2, treatment 1 \sim 4.55, and treatment 3 at \sim 5.4.

b. Using the **mtcars** data set, plot the histogram for the column **mpg** with 10 breaks. Give labels to the title, x-axis, and y-axis on the graph. Report the most observed mpg class from the data set.

ggplot(data=mtcars)+geom_histogram(aes(x=mpg),bins=10)

print("Most of the cars in this data set are in the class of 15 mile per gallon.")

- ## [1] "Most of the cars in this data set are in the class of 15 mile per gallon."
 - c. Using the **USArrests** data set, create a pairs plot to display the correlations between the variables in the data set. Plot the scatter plot with **Murder** and **Assault**. Give labels to the title, x-axis, and y-axis on the graph. Write a paragraph to summarize your results from both plots.

```
# Load the data set
data("USArrests")

# Head of the data set
head(USArrests)
```

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7

pairs(USArrests, main="US Arrest Pair Plots")

US Arrest Pair Plots

plot(USArrests\$Murder, USArrests\$Assault, xlab= "Murder", ylab="Assault", main="Murder & Assault Rates

Murder & Assault Rates in US

Result:

=> Report a paragraph to summarize your findings from the plot!

Assaults are far more common than murder. As assaults increase, murders also increase showing a positive correlation. The trend also seems pretty linear in nature.

Question 3

Download the housing data set from www.jaredlander.com and find out what explains the housing prices in New York City.

Note: Check your working directory to make sure that you can download the data into the data folder.

a. Create your own descriptive statistics and aggregation tables to summarize the data set and find any meaningful results between different variables in the data set.

Head of the cleaned data set head(housingData)

##		Neighborhood	Market.Value.per.SqFt	Boro	Year.Built
##	1	FINANCIAL	200.00	Manhattan	1920
##	2	FINANCIAL	242.76	Manhattan	1985
##	4	FTNANCTAL.	271 23	Manhattan	1930

```
## 5
          TRIBECA
                                  247.48 Manhattan
                                                          1985
## 6
          TRIBECA
                                  191.37 Manhattan
                                                          1986
## 7
          TRIBECA
                                  211.53 Manhattan
                                                          1985
# Enter your code here!
summary(housingData)
                       Market.Value.per.SqFt
                                                                    Year.Built
  Neighborhood
                                                  Boro
  Length:2530
                             : 10.66
                       Min.
                                              Length: 2530
                                                                  Min.
                                                                        :1825
                       1st Qu.: 75.10
## Class :character
                                              Class : character
                                                                  1st Qu.:1926
## Mode :character
                       Median:114.89
                                              Mode :character
                                                                  Median:1986
                              :133.17
##
                                                                  Mean
                                                                        :1967
                       Mean
##
                       3rd Qu.:189.91
                                                                  3rd Qu.:2005
##
                       Max.
                               :399.38
                                                                  Max.
                                                                         :2010
MVSFmean<-aggregate(Market.Value.per.SqFt~Boro, data=housingData, FUN=mean)
MVSFvar <- aggregate (Market. Value.per. SqFt~Boro, data=housingData, FUN=var)
MVSFsd<-aggregate(Market.Value.per.SqFt~Boro, data=housingData, FUN=sd)
print(MVSFmean)
##
              Boro Market.Value.per.SqFt
## 1
                                47.93232
             Bronx
## 2
                                80.13439
          Brooklvn
## 3
                                180.59265
         Manhattan
## 4
            Queens
                                77.38137
## 5 Staten Island
                                41.26958
print(MVSFvar)
##
              Boro Market.Value.per.SqFt
## 1
             Bronx
                                227.3035
## 2
          Brooklyn
                                524.9035
## 3
         Manhattan
                                3146.9929
## 4
            Queens
                                947.1520
## 5 Staten Island
                                 46.1433
print(MVSFsd)
##
              Boro Market.Value.per.SqFt
## 1
             Bronx
                                15.076589
## 2
          Brooklyn
                                22.910773
## 3
         Manhattan
                                56.098065
## 4
            Queens
                                30.775835
## 5 Staten Island
                                6.792886
MVYBmean <- aggregate (Market. Value.per. SqFt~Year. Built, data=housingData, FUN=mean)
MVYBvar<-aggregate(Market.Value.per.SqFt~Year.Built, data=housingData, FUN=var)
MVYBsd<-aggregate(Market.Value.per.SqFt~Year.Built, data=housingData, FUN=sd)
```

print(MVYBmean)

##	Year.Built	Market.Value.per.SqFt
## 1	1825	76.36000
## 2	1836	273.77000
## 3	1853	152.79000
## 4	1860	159.64500
## 5	1874	111.17000
## 6	1875	166.05000
## 7	1879	194.52000
## 8	1881	109.70500
## 9	1883	172.10000
## 10	1890	113.28750
## 11	1891	72.83000
## 12	1892	95.21000
## 13	1893	168.85000
## 14	1894	110.62000
## 15	1895	151.77500
## 16	1896	117.26500
## 17	1897	40.83000
## 18	1898	83.25000
## 19	1899	108.16000
## 20	1900	137.55908
## 21	1901	172.36778
## 22	1902	167.62167
## 23	1903	147.97000
## 24	1904	123.09333
## 25	1905	187.76583
## 26	1906	169.03364
## 27	1907	173.80000
## 28	1908	150.35000
## 29	1909	135.23667
## 30	1910	147.36257
## 31	1911	179.76067
## 32	1912	159.51636
## 33	1913	175.93500
## 34	1914	160.29286
## 35	1915	147.08673
## 36	1916	128.20714
## 37	1917	73.87000
## 38	1918	181.84000
## 39	1919	63.11000
## 40	1920	145.30862
## 41	1921	122.39125
## 42	1922	118.33250
## 43	1923	115.47625
## 44	1924	165.94091
## 45	1925	147.51316
## 46	1926	148.36423
## 47	1927	131.63357
## 48	1928	153.68375
## 49	1929	106.32121
## 50	1930	142.28936
## 51	1931	129.51731
## 52	1932	91.74333
## 53	1933	40.97000

##	54	1934	203.80000
##	55	1935	176.23000
##	56	1936	46.04333
##	57	1937	51.77250
##	58	1938	99.23857
##	59	1939	93.65083
##	60	1940	154.89857
##	61	1941	111.83733
	62		128.38600
##		1942	
##	63	1947	113.13500
##	64	1948	186.25000
##	65	1949	44.98000
##	66	1950	141.96182
##	67	1951	132.98833
##	68	1952	97.95143
##	69	1954	81.56500
##	70	1955	130.17538
##	71	1956	178.42786
##	72	1957	127.24091
##	73	1958	159.77000
##	74	1959	108.62692
##	75	1960	104.91200
##	76	1961	106.63000
##	77	1962	129.26294
##	78	1963	152.82937
##	79	1964	103.15000
##	80	1965	121.01313
##	81	1966	79.94375
##	82	1967	91.94000
##	83	1968	126.76000
##	84	1969	157.28000
##	85	1970	214.59000
##	86	1971	57.60000
##	87	1972	185.72000
##	88	1973	196.75500
##	89	1974	124.42500
##	90	1975	201.26667
##	91	1977	161.32250
##	92	1978	254.69000
##	93	1979	155.71333
##	94	1980	161.74500
##	95	1981	175.96800
##	96	1982	151.30364
##	97		114.79917
		1983	
##	98	1984	179.48333
##	99	1985	182.66868
##	100	1986	157.62328
##	101	1987	142.14055
##	102	1988	126.43686
##	103	1989	109.25390
##	104	1990	99.31500
##	105	1991	145.76105
##	106	1992	83.92333
##	107	1993	55.45000

108	1994	73.13500
109	1995	75.77375
110	1996	152.36750
111	1997	137.41364
112	1998	138.25125
113	1999	145.93217
114	2000	165.47296
115	2001	124.74295
116	2002	117.92442
117	2003	121.56193
118	2004	113.79702
119	2005	122.70817
120	2006	119.73598
121	2007	134.12665
122	2008	144.34935
123	2009	96.52619
124	2010	90.36667
	109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	109 1995 110 1996 111 1997 112 1998 113 1999 114 2000 115 2001 116 2002 117 2003 118 2004 119 2005 120 2006 121 2007 122 2008 123 2009

print(MVYBvar)

##		Year.Built	${\tt Market.Value.per.SqFt}$
##	1	1825	NA
##	2	1836	NA
##	3	1853	NA
##	4	1860	3258.666450
##	5	1874	NA
##	6	1875	4523.907200
##	7	1879	0.000000
##	8	1881	530.402450
##	9	1883	NA
##	10	1890	1368.484825
##	11	1891	NA
##	12	1892	NA
##	13	1893	210.125000
##	14	1894	474.936200
##	15	1895	2060.178050
##	16	1896	2483.010450
##	17	1897	NA
##	18	1898	NA
##	19	1899	254.218900
##	20	1900	2716.073519
##	21	1901	2381.137494
##	22	1902	2614.890137
##	23	1903	7867.772743
##	24	1904	5116.211187
##	25	1905	2499.019790
##	26	1906	6565.315225
##	27	1907	6351.736060
##	28	1908	3073.581040
##	29	1909	5231.293747
##	30	1910	3950.707225
##	31	1911	3272.755964
##	32	1912	2638.376824
##	33	1913	3197.830642

## 34	1914	6420.206124
## 35	1915	1610.568502
## 36	1916	2994.437724
## 37	1917	15.456800
## 38	1918	NA
## 39	1919	NA
## 40	1920	3756.092403
## 41	1921	2509.008813
## 42	1922	4730.988130
## 43	1923	3883.373884
## 44	1924	3318.562269
## 45	1925	3276.497145
## 46	1926	4403.390081
## 47	1927	6225.151563
## 48	1928	4614.811816
## 49	1929	4420.556698
## 50	1930	4208.858741
## 51	1931	4071.365388
## 52	1932	6129.611907
## 53	1933	374.522950
## 54	1934	NA
## 55	1935	NA
## 56	1936	2.104633
## 57	1937	645.077936
## 58	1938	5686.392981
## 59	1939	5181.063045
## 60	1940	3650.905681
## 61	1941	5302.484250
## 62	1942	5352.763680
## 63	1947	8492.954450
## 64	1948	1497.139200
## 65	1949	NA
## 66	1950	11349.892396
## 67	1951	10220.160137
## 68	1952	3400.728848
## 69	1954	2495.711250
## 70	1955	5940.094144
## 71	1956	3423.359649
## 72	1957	4052.401929
## 73	1958	3266.229900
## 74	1959	4968.902790
## 75	1960	5215.848089
## 76	1961	6241.680876
## 77	1962	3364.996822
## 78	1963	2937.430966
## 79	1964	4104.748978
## 80	1965	5268.727596
## 81	1966	1945.375284
## 82	1967	5328.842571
## 83	1968	16006.183200
## 84	1969	4120.063000
## 85	1909	2620.880000
## 86	1970	2020.800000 NA
## 87	1971	526.825800
ππ ΟΙ	1312	320.023000

##	88	1973	3727.558550
##	89	1974	6998.628050
##	90	1975	108.480433
##	91	1977	5467.827692
##	92	1978	194.439200
##	93	1979	7735.403433
##	94	1980	7562.697310
##	95	1981	4973.035084
##	96	1982	7212.187853
##	97	1983	5247.755251
##	98	1984	6428.969261
##	99	1985	5291.172644
##	100	1986	6028.058382
##	101	1987	7639.721625
##	102	1988	5561.143562
##	103	1989	5939.763334
##	104	1990	3970.088329
##	105	1991	6200.911421
##	106	1992	5694.161267
##	107	1993	336.823600
##	108	1994	194.587710
##	109	1995	4108.392055
##	110	1996	10250.771692
##	111	1997	8088.192905
##	112	1998	7845.024158
##	113	1999	5529.888081
##	114	2000	7727.011606
##	115	2001	5202.246635
##	116	2002	4201.514013
##	117	2003	3690.549708
##	118	2004	3349.703398
##	119	2005	4368.012474
##	120	2006	3345.778459
##	121	2007	4816.248152
##	122	2008	4926.957866
##	123	2009	4305.694575
##	124	2010	1128.816133

print(MVYBsd)

##		Year.Built	Market.Value.per.SqFt
##	1	1825	NA
##	2	1836	NA
##	3	1853	NA
##	4	1860	57.084730
##	5	1874	NA
##	6	1875	67.259997
##	7	1879	0.000000
##	8	1881	23.030468
##	9	1883	NA
##	10	1890	36.993038
##	11	1891	NA
##	12	1892	NA
##	13	1893	14.495689

##	14	1894	21.793031
##	15	1895	45.389184
##	16	1896	49.829815
##	17	1897	NA
##	18	1898	NA
##	19	1899	15.944243
##	20	1900	52.115962
##	21	1901	48.796900
##	22	1902	51.135996
##	23	1903	88.700466
##	24	1904	71.527695
##	25	1905	49.990197
##	26	1906	81.026633
	27	1907	79.697780
##	28	1908	55.439887
##	29	1909	72.327683
##	30	1910	62.854652
##	31	1911	57.208006
##	32	1912	51.365132
##	33	1913	56.549365
##	34	1914	80.126189
##	35	1915	40.131889
##	36	1916	54.721456
##	37	1917	3.931514
##	38	1918	NA
##	39	1919	NA
##	40	1920	61.286968
##	41	1921	50.090007
##	42	1922	68.782179
##	43	1923	62.316722
##	44	1924	57.606964
	45	1925	57.240695
	46	1926	66.358045
##	47	1927	78.899630
	48	1928	67.932406
##	49	1929	66.487267
##	50	1930	64.875718
##	51	1931	63.807252
##	52	1932	78.291838
##	53	1933	19.352595
##	54	1934	NA
##	55	1935	NA
##	56	1936	1.450735
##	57	1937	25.398385
##	58	1938	75.408176
##	59	1939	71.979602
##	60	1940	60.422725
##	61	1941	72.818159
##	62	1942	73.162584
##	63	1947	92.157227
##	64	1948	38.692883
##	65	1949	NA
##	66		106.535874
##	67	1951	101.094808

## 68	1952	58.315768
## 69	1954	49.957094
## 70	1955	77.072006
## 71	1956	58.509483
## 72	1957	63.658479
## 73	1958	57.150940
## 74	1959	70.490445
## 75	1960	72.220829
## 76	1961	79.004309
## 77	1962	58.008593
## 78	1963	54.198072
## 79	1964	64.068315
## 80	1965	72.586001
## 81	1966	44.106409
## 82	1967	72.998922
## 83	1968	126.515545
## 84	1969	64.187717
## 85	1970	51.194531
## 86	1971	NA
## 87	1972	22.952686
## 88	1973	
## 89	1974	
## 90	1975	10.415394
## 91	1977	73.944761
## 92	1978	13.944146
## 93	1979	87.951142
## 94	1980	86.963770
## 95	1981	70.519750
## 96	1982	84.924601
## 97	1983	72.441392 80.180853
## 98 ## 99	1984 1985	72.740447
## 99		77.640572
## 100		87.405501
## 10:		74.573075
## 103		77.069860
## 104		63.008637
## 105		78.745866
## 106		75.459666
## 107		18.352755
## 108		13.949470
## 109		64.096740
## 110		101.246095
## 11:		89.934381
## 112		88.572141
## 113		74.363217
## 114		87.903422
## 119		72.126601
## 116		64.819087
## 117		60.749895
## 118		57.876622
## 119		66.090941
## 120		57.842704
## 12:		69.399194
	2001	20.223101

```
## 123     2009     65.617792
## 124     2010     33.597859

MVNmean<-aggregate(Market.Value.per.SqFt~Neighborhood, data=housingData, FUN=mean)
MVNvar<-aggregate(Market.Value.per.SqFt~Neighborhood, data=housingData, FUN=var)
MVNsd<-aggregate(Market.Value.per.SqFt~Neighborhood, data=housingData, FUN=sd)</pre>
```

70.192292

Neighborhood Market.Value.per.SqFt ## 1 ALPHABET CITY 148.35500 ## 2 ARROCHAR-SHORE ACRES 57.75000 ## 3 ASTORIA 91.48167 ## 4 BATH BEACH 70.34000 ## 5 BAY RIDGE 68.03500 ## 6 BAYSIDE 71.42111 BEDFORD PARK/NORWOOD ## 7 38.24500 ## 8 BEDFORD STUYVESANT 83.24172 ## 9 BELMONT 56.45000 ## 10 BENSONHURST 71.70429 ## 11 BERGEN BEACH 73.27000 ## 12 BOERUM HILL 96.57600 ## 13 BOROUGH PARK 64.10857 ## 14 BRIARWOOD 75.36250 ## 15 BRIGHTON BEACH 81.91429 ## 16 BRONX-UNKNOWN 32.06500 ## 17 BRONXDALE 28.94333 ## 18 BROOKLYN HEIGHTS 114.11778 ## 19 BUSH TERMINAL 60.95000 ## 20 BUSHWICK 76.13500 ## 21 CANARSIE 46.58000 ## 22 CARROLL GARDENS 93.40556 ## 23 **CHELSEA** 215.94932 ## 24 CHINATOWN 154.17952 ## 25 CITY ISLAND 40.83000 CIVIC CENTER ## 26 174.06696 ## 27 CLINTON 176.70032 ## 28 CLINTON HILL 88.97385 ## 29 COBBLE HILL 120.69800 ## 30 COBBLE HILL-WEST 85.71125 ## 31 COLLEGE POINT 65.05000 ## 32 CONEY ISLAND 55.05750 ## 33 CORONA 94.20706 ## 34 CROWN HEIGHTS 64.26286 ## 35 DOWNTOWN-FULTON FERRY 103.26857 ## 36 DOWNTOWN-FULTON MALL 132.42500 DOWNTOWN-METROTECH ## 37 122.48000 ## 38 DYKER HEIGHTS 68.36000 ## 39 EAST NEW YORK 36.99167 ## 40 EAST TREMONT 72.33333 ## 41 EAST VILLAGE 207.46115 ## 42 **ELMHURST** 69.80564 FAR ROCKAWAY ## 43 74.88500

122

print(MVNmean)

2008

шш	11	EAGIIION	194.81067
## ##		FASHION FINANCIAL	194.81067
##		FLATBUSH-CENTRAL	65.71167
##		FLATBUSH-LEFFERTS GARDEN	46.27000
##		FLATBUSH-NORTH	54.00000
##		FLATIRON	223.30311
##		FLUSHING-NORTH	80.16992
##	51	FLUSHING-SOUTH	89.62750
##	52	FLUSHING MEADOW PARK	58.59000
##	53	FOREST HILLS	70.20706
##	54	FORT GREENE	81.76900
##	55	GLENDALE	57.39667
##	56	GOWANUS	82.45333
##	57	GRAMERCY	188.68471
##	58	GRANT CITY	47.60000
##	59	GRAVESEND	75.63526
##	60	GREAT KILLS	33.74000
##	61	GREENPOINT	86.18053
##	62	GREENWICH VILLAGE-CENTRAL	142.57767
##	63	GREENWICH VILLAGE-WEST	202.13667
	64	GRYMES HILL	50.09000
##		HAMMELS	139.07200
##		HARLEM-CENTRAL	102.79106
##		HARLEM-EAST	139.93972
##		HARLEM-UPPER	79.25667
##		HARLEM-WEST	95.20500
	70	HIGHBRIDGE/MORRIS HEIGHTS	61.82000
	71	HILLCREST	53.95000
	72	HOLLIS	109.56000
	73	HOWARD BEACH	55.06000
	74		
		INWOOD	62.05500
	75 76	JACKSON HEIGHTS	47.79238
	76 77	JAMAICA	104.76600
	77	JAMAICA ESTATES	79.69500
	78	JAVITS CENTER	125.09000
##	79	KENSINGTON	56.87500
##		KEW GARDENS	69.64300
##		KINGSBRIDGE HTS/UNIV HTS	23.86000
	82	KINGSBRIDGE/JEROME PARK	58.37800
##		KIPS BAY	191.31769
	84	LITTLE ITALY	142.52308
##		LITTLE NECK	65.85000
##		LONG ISLAND CITY	108.16667
##		LOWER EAST SIDE	173.56262
##		MADISON	71.26000
##		MANHATTAN VALLEY	111.30043
##		MASPETH	53.32750
##		MIDDLE VILLAGE	78.35857
##		MIDTOWN CBD	234.36154
##		MIDTOWN EAST	211.04750
##		MIDTOWN WEST	222.06489
##	95	MIDWOOD	79.50273
##	96	MORNINGSIDE HEIGHTS	74.63000
##	97	MORRIS PARK/VAN NEST	26.90000

##	98	MORRISANIA/LONGWOOD	44.21250
##		MOTT HAVEN/PORT MORRIS	30.96000
##	100	MURRAY HILL	206.26795
##	101	NEW BRIGHTON	41.47667
##	101	NEW BRIGHTON-ST. GEORGE	41.06000
##	103	NEW SPRINGVILLE	40.47000
##	103	OAKLAND GARDENS	66.94000
	105	OCEAN HILL	37.92900
	106	OCEAN PARKWAY-NORTH	76.51111
	107	OCEAN PARKWAY-SOUTH	75.08000
	108	OZONE PARK	54.10000
	109	PARK SLOPE	88.01774
	110	PARK SLOPE SOUTH	95.84200
	111	PARKCHESTER	32.67500
	112	PELHAM PARKWAY SOUTH	30.55000
	113	PROSPECT HEIGHTS	79.16200
	114	REGO PARK	62.13630
	115	RIDGEWOOD	64.28667
	116	RIVERDALE	57.10176
	117	ROCKAWAY PARK	88.13600
	118	SCHUYLERVILLE/PELHAM BAY	49.68000
	119	SHEEPSHEAD BAY	79.79704
	120	SILVER LAKE	35.80500
	121	SOHO	162.72473
	122	SOUNDVIEW	43.40333
	123	SOUTH OZONE PARK	40.78000
	124	SOUTHBRIDGE	159.53333
##	125	SUNNYSIDE	61.61818
##	126	SUNSET PARK	80.58348
##	127	THROGS NECK	53.70667
##	128	TOMPKINSVILLE	35.81000
##	129	TRIBECA	180.18473
##	130	UPPER EAST SIDE (59-79)	216.83715
##	131	UPPER EAST SIDE (79-96)	202.45179
##	132	UPPER EAST SIDE (96-110)	167.41600
##	133	UPPER WEST SIDE (59-79)	200.24391
##	134	UPPER WEST SIDE (79-96)	171.84515
##	135	UPPER WEST SIDE (96-116)	134.09353
##	136	WASHINGTON HEIGHTS LOWER	65.29600
##	137	WASHINGTON HEIGHTS UPPER	93.50833
##	138	WEST NEW BRIGHTON	39.69000
##	139	WHITESTONE	72.90000
##	140	WILLIAMSBRIDGE	42.46000
##	141	WILLIAMSBURG-CENTRAL	79.97017
##	142	WILLIAMSBURG-EAST	84.32605
##	143	WILLIAMSBURG-NORTH	84.10577
##	144	WILLIAMSBURG-SOUTH	82.27618
##	145	WINDSOR TERRACE	70.21200
##	146	WOODHAVEN	38.61000
##	147	WOODSIDE	80.52625
##	148	WYCKOFF HEIGHTS	84.93000

print(MVNvar)

##			Market.Value.per.SqFt
##	1	ALPHABET CITY	1.432603e+03
##	2	ARROCHAR-SHORE ACRES	NA
##	3	ASTORIA	4.765799e+02
##	4	BATH BEACH	4.725531e+02
##	5	BAY RIDGE	2.747751e+02
##	6	BAYSIDE	4.975028e+02
##	7	BEDFORD PARK/NORWOOD	1.786050e+00
##	8	BEDFORD STUYVESANT	1.686591e+02
##	9	BELMONT	NA
##	10	BENSONHURST	5.181109e+02
##	11	BERGEN BEACH	NA
##	12	BOERUM HILL	5.717304e+02
##	13	BOROUGH PARK	4.663342e+02
##	14	BRIARWOOD	7.877535e+02
##	15	BRIGHTON BEACH	1.340269e+03
##	16	BRONX-UNKNOWN	6.661250e+00
##	17	BRONXDALE	1.252563e+01
##	18	BROOKLYN HEIGHTS	1.615134e+02
##	19	BUSH TERMINAL	NA
##	20	BUSHWICK	9.316125e+01
##	21	CANARSIE	3.175682e+02
##	22	CARROLL GARDENS	3.974023e+02
##	23	CHELSEA	1.402312e+03
##	24	CHINATOWN	1.151165e+03
##	25	CITY ISLAND	NA
##	26	CIVIC CENTER	1.351097e+03
##	27	CLINTON	4.726897e+03
##	28	CLINTON HILL	1.530868e+03
##	29	COBBLE HILL	3.879921e+03
##	30	COBBLE HILL-WEST	1.500731e+02
##	31	COLLEGE POINT	6.554524e+02
##	32	CONEY ISLAND	5.252351e+02
##	33	CORONA	5.980170e+02
##	34	CROWN HEIGHTS	2.980943e+02
##	35	DOWNTOWN-FULTON FERRY	2.290867e+02
##	36	DOWNTOWN-FULTON MALL	7.916220e+02
##	37	DOWNTOWN-METROTECH	8.318775e+02
##		DYKER HEIGHTS	NA
##		EAST NEW YORK	2.959206e+02
##		EAST TREMONT	2.349293e+01
##		EAST VILLAGE	1.170189e+03
##		ELMHURST	7.810206e+02
##		FAR ROCKAWAY	1.150487e+03
##		FASHION	3.449067e+03
##		FINANCIAL	1.921830e+03
##		FLATBUSH-CENTRAL	6.878405e+02
##		FLATBUSH-LEFFERTS GARDEN	0.070400C102 NA
##		FLATBUSH-NORTH	2.764193e+02
##		FLATIRON	1.061538e+03
##		FLUSHING-NORTH	6.733447e+02
##		FLUSHING-SOUTH	6.894765e+02
	52	FLUSHING MEADOW PARK	0.094705e+02 NA
##		FOREST HILLS	6.333463e+02
##	υS	tovesi uiffs	0.333403e+02

##	54	FORT GREENE	3.321076e+02
##		GLENDALE	3.912623e+01
##		GOWANUS	2.689536e+02
##		GRAMERCY	1.562476e+03
##		GRANT CITY	2.784800e+02
##	59	GRAVESEND	1.678414e+02
##	60	GREAT KILLS	NA
##	61	GREENPOINT	7.792572e+01
##	62	GREENWICH VILLAGE-CENTRAL	1.450766e+03
##	63	GREENWICH VILLAGE-WEST	2.608190e+03
##	64	GRYMES HILL	NA
##	65	HAMMELS	1.267656e+04
##	66	HARLEM-CENTRAL	1.094418e+03
##	67	HARLEM-EAST	2.761448e+03
##	68	HARLEM-UPPER	3.118752e+02
##	69	HARLEM-WEST	4.500000e-04
##	70	HIGHBRIDGE/MORRIS HEIGHTS	NA
##	71	HILLCREST	NA
##	72	HOLLIS	NA
##	73	HOWARD BEACH	6.694700e+00
##	74	INWOOD	6.975113e+02
##	75	JACKSON HEIGHTS	4.740147e+01
##	76	JAMAICA	3.536060e+02
##	77	JAMAICA ESTATES	1.457460e+03
##	78	JAVITS CENTER	NA
##	79	KENSINGTON	9.112500e-01
##	80	KEW GARDENS	6.753258e+02
##	81	KINGSBRIDGE HTS/UNIV HTS	NA
##	82	KINGSBRIDGE/JEROME PARK	2.349991e+02
##	83	KIPS BAY	1.056490e+03
##	84	LITTLE ITALY	8.963593e+02
##	85	LITTLE NECK	NA
##	86	LONG ISLAND CITY	9.941855e+02
##	87	LOWER EAST SIDE	2.759558e+03
##	88	MADISON	4.268941e+02
##	89	MANHATTAN VALLEY	2.697503e+03
##	90	MASPETH	2.657642e+01
##	91	MIDDLE VILLAGE	1.217869e+03
##	92	MIDTOWN CBD	1.418938e+03
##	93	MIDTOWN EAST	1.922460e+03
##	94	MIDTOWN WEST	1.586680e+03
##	95	MIDWOOD	3.349567e+02
##	96	MORNINGSIDE HEIGHTS	NA
##	97	MORRIS PARK/VAN NEST	NA
##	98	MORRISANIA/LONGWOOD	1.801766e+02
##	99	MOTT HAVEN/PORT MORRIS	NA
##	100	MURRAY HILL	1.686214e+03
##	101	NEW BRIGHTON	1.425333e-01
##	102	NEW BRIGHTON-ST. GEORGE	5.325120e+01
##	103	NEW SPRINGVILLE	1.439005e+01
##	104	OAKLAND GARDENS	NA
##	105	OCEAN HILL	3.450968e+01
##	106	OCEAN PARKWAY-NORTH	6.847152e+02
##	107	OCEAN PARKWAY-SOUTH	NA

##	108	OZONE PARK	NA
##	109	PARK SLOPE	3.330491e+02
##	110	PARK SLOPE SOUTH	5.562082e+01
##	111	PARKCHESTER	1.185845e+01
##	112	PELHAM PARKWAY SOUTH	NA
##	113	PROSPECT HEIGHTS	7.666782e+02
##	114	REGO PARK	5.097297e+02
##	115	RIDGEWOOD	8.014532e+02
##	116	RIVERDALE	1.593113e+02
##	117	ROCKAWAY PARK	9.844819e+02
##	118	SCHUYLERVILLE/PELHAM BAY	NA
##	119	SHEEPSHEAD BAY	4.684936e+02
##	120	SILVER LAKE	5.00000e-05
##	121	SOHO	2.408419e+03
##	122	SOUNDVIEW	3.822607e+01
##	123	SOUTH OZONE PARK	NA
##	124	SOUTHBRIDGE	1.416071e+02
##	125	SUNNYSIDE	7.053084e+02
##	126	SUNSET PARK	2.718289e+02
##	127	THROGS NECK	2.675986e+02
##	128	TOMPKINSVILLE	NA
##	129	TRIBECA	2.375855e+03
##	130	UPPER EAST SIDE (59-79)	1.241306e+03
##	131	UPPER EAST SIDE (79-96)	9.892297e+02
##	132	UPPER EAST SIDE (96-110)	7.066487e+02
##	133	UPPER WEST SIDE (59-79)	2.063835e+03
##	134	UPPER WEST SIDE (79-96)	1.625411e+03
##	135	UPPER WEST SIDE (96-116)	2.660439e+03
##	136	WASHINGTON HEIGHTS LOWER	1.415999e+03
##	137	WASHINGTON HEIGHTS UPPER	8.103648e+02
##	138	WEST NEW BRIGHTON	NA
##	139	WHITESTONE	1.243010e+03
##	140	WILLIAMSBRIDGE	1.132880e+01
##	141	WILLIAMSBURG-CENTRAL	1.297635e+02
##	142	WILLIAMSBURG-EAST	1.151922e+02
##	143	WILLIAMSBURG-NORTH	2.640817e+02
##	144	WILLIAMSBURG-SOUTH	2.925146e+02
##	145	WINDSOR TERRACE	6.247337e+01
##	146	WOODHAVEN	2.566667e-02
##	147	WOODSIDE	3.862802e+02
##	148	WYCKOFF HEIGHTS	1.765279e+03

print(MVNsd)

##		Neighborhood	Market.Value.per.SqFt
##	1	ALPHABET CITY	3.784975e+01
##	2	ARROCHAR-SHORE ACRES	NA
##	3	ASTORIA	2.183071e+01
##	4	BATH BEACH	2.173829e+01
##	5	BAY RIDGE	1.657634e+01
##	6	BAYSIDE	2.230477e+01
##	7	BEDFORD PARK/NORWOOD	1.336432e+00
##	8	BEDFORD STUYVESANT	1.298688e+01
##	9	BELMONT	NA

##	10	BENSONHURST	2.276205e+01
##	11	BERGEN BEACH	NA
##	12	BOERUM HILL	2.391089e+01
##	13	BOROUGH PARK	2.159477e+01
##	14	BRIARWOOD	2.806695e+01
##	15	BRIGHTON BEACH	3.660968e+01
##	16	BRONX-UNKNOWN	2.580940e+00
##	17	BRONXDALE	3.539157e+00
##	18	BROOKLYN HEIGHTS	1.270879e+01
##	19	BUSH TERMINAL	NA
##	20	BUSHWICK	9.652008e+00
##	21	CANARSIE	1.782044e+01
##	22	CARROLL GARDENS	1.993495e+01
##	23	CHELSEA	3.744746e+01
##	24	CHINATOWN	3.392883e+01
##	25	CITY ISLAND	NA
##	26	CIVIC CENTER	3.675727e+01
##	27	CLINTON	6.875243e+01
##	28	CLINTON HILL	3.912631e+01
##	29	COBBLE HILL	6.228901e+01
##	30	COBBLE HILL-WEST	1.225043e+01
##	31	COLLEGE POINT	2.560180e+01
##	32	CONEY ISLAND	2.291801e+01
##	33	CORONA	2.445439e+01
##	34	CROWN HEIGHTS	1.726541e+01
##	35	DOWNTOWN-FULTON FERRY	1.513561e+01
##	36	DOWNTOWN-FULTON MALL	2.813578e+01
##	37	DOWNTOWN-METROTECH	2.884229e+01
##	38	DYKER HEIGHTS	NA
##	39	EAST NEW YORK	1.720234e+01
##	40	EAST TREMONT	4.846951e+00
##	41	EAST VILLAGE	3.420803e+01
##	42	ELMHURST	2.794675e+01
##	43	FAR ROCKAWAY	3.391882e+01
##	44	FASHION	5.872876e+01
##	45	FINANCIAL	4.383868e+01
##	46	FLATBUSH-CENTRAL	2.622671e+01
##	47	FLATBUSH-LEFFERTS GARDEN	NA
##	48	FLATBUSH-NORTH	1.662586e+01
##	49	FLATIRON	3.258126e+01
##	50	FLUSHING-NORTH	2.594889e+01
##	51	FLUSHING-SOUTH	2.625788e+01
##	52	FLUSHING MEADOW PARK	NA
##	53	FOREST HILLS	2.516637e+01
##	54	FORT GREENE	1.822382e+01
##	55	GLENDALE	6.255097e+00
		GOWANUS	1.639981e+01
	57	GRAMERCY	3.952817e+01
##	58	GRANT CITY	1.668772e+01
##	59	GRAVESEND	1.295536e+01
##		GREAT KILLS	NA
	61	GREENPOINT	8.827554e+00
##	62	GREENWICH VILLAGE-CENTRAL	3.808892e+01
##	63	GREENWICH VILLAGE-WEST	5.107044e+01

## 6	GRYMES HILL	NA
## 6	55 HAMMELS	1.125902e+02
## 6	66 HARLEM-CENTRAL	3.308199e+01
## 6	7 HARLEM-EAST	5.254948e+01
## 6	88 HARLEM-UPPER	1.765999e+01
	69 HARLEM-WEST	2.121320e-02
	O HIGHBRIDGE/MORRIS HEIGHTS	2.1210200 02 NA
	'1 HILLCREST	NA NA
	72 HOLLIS	NA
	73 HOWARD BEACH	2.587412e+00
	74 INWOOD	2.641044e+01
## 7	75 JACKSON HEIGHTS	6.884872e+00
## 7	76 JAMAICA	1.880442e+01
## 7	77 JAMAICA ESTATES	3.817670e+01
## 7	78 JAVITS CENTER	NA
## 7	79 KENSINGTON	9.545942e-01
## 8	80 KEW GARDENS	2.598703e+01
## 8	81 KINGSBRIDGE HTS/UNIV HTS	NA
	32 KINGSBRIDGE/JEROME PARK	1.532968e+01
	KIPS BAY	3.250369e+01
	4 LITTLE ITALY	2.993926e+01
	55 LITTLE TEACH	2.993920e101 NA
	LONG ISLAND CITY	3.153071e+01
	COMER EAST SIDE	5.253150e+01
	MADISON	2.066142e+01
## 8	MANHATTAN VALLEY	5.193749e+01
## 9	MASPETH	5.155233e+00
## 9	MIDDLE VILLAGE	3.489799e+01
## 9	MIDTOWN CBD	3.766879e+01
## 9	MIDTOWN EAST	4.384587e+01
## 9	94 MIDTOWN WEST	3.983315e+01
## 9	95 MIDWOOD	1.830182e+01
## 9	MORNINGSIDE HEIGHTS	NA
## 9	7 MORRIS PARK/VAN NEST	NA
	98 MORRISANIA/LONGWOOD	1.342299e+01
	99 MOTT HAVEN/PORT MORRIS	1.542255C.01 NA
	.00 MURRAY HILL	4.106353e+01
	.01 NEW BRIGHTON	3.775359e-01
	.02 NEW BRIGHTON-ST. GEORGE	7.297342e+00
	.03 NEW SPRINGVILLE	3.793422e+00
	.04 OAKLAND GARDENS	NA
## 1	.05 OCEAN HILL	5.874494e+00
## 1	.06 OCEAN PARKWAY-NORTH	2.616706e+01
## 1	.07 OCEAN PARKWAY-SOUTH	NA
## 1	.08 OZONE PARK	NA
## 1	.09 PARK SLOPE	1.824963e+01
## 1	.10 PARK SLOPE SOUTH	7.457937e+00
	.11 PARKCHESTER	3.443610e+00
	.12 PELHAM PARKWAY SOUTH	NA NA
	.13 PROSPECT HEIGHTS	2.768895e+01
	.14 REGO PARK	2.768693e+01 2.257719e+01
	.15 RIDGEWOOD	2.830995e+01
	.16 RIVERDALE	1.262186e+01
## 1	.17 ROCKAWAY PARK	3.137645e+01

```
SCHUYLERVILLE/PELHAM BAY
                                                      NA
## 119
                  SHEEPSHEAD BAY
                                           2.164471e+01
## 120
                      SILVER LAKE
                                           7.071068e-03
## 121
                                           4.907565e+01
                             SOHO
## 122
                        SOUNDVIEW
                                           6.182723e+00
## 123
                SOUTH OZONE PARK
                                                      NΑ
## 124
                      SOUTHBRIDGE
                                           1.189988e+01
## 125
                        SUNNYSIDE
                                           2.655764e+01
## 126
                      SUNSET PARK
                                           1.648724e+01
## 127
                                           1.635844e+01
                     THROGS NECK
## 128
                   TOMPKINSVILLE
                                                      NA
                                           4.874274e+01
## 129
                          TRIBECA
         UPPER EAST SIDE (59-79)
## 130
                                           3.523218e+01
## 131
         UPPER EAST SIDE (79-96)
                                           3.145202e+01
## 132
        UPPER EAST SIDE (96-110)
                                           2.658286e+01
## 133
         UPPER WEST SIDE (59-79)
                                           4.542946e+01
## 134
         UPPER WEST SIDE (79-96)
                                           4.031638e+01
        UPPER WEST SIDE (96-116)
## 135
                                           5.157945e+01
## 136
        WASHINGTON HEIGHTS LOWER
                                           3.762977e+01
        WASHINGTON HEIGHTS UPPER
## 137
                                           2.846691e+01
               WEST NEW BRIGHTON
## 138
## 139
                      WHITESTONE
                                           3.525634e+01
## 140
                  WILLIAMSBRIDGE
                                           3.365828e+00
## 141
            WILLIAMSBURG-CENTRAL
                                           1.139138e+01
## 142
               WILLIAMSBURG-EAST
                                           1.073276e+01
## 143
              WILLIAMSBURG-NORTH
                                           1.625059e+01
## 144
              WILLIAMSBURG-SOUTH
                                            1.710306e+01
                 WINDSOR TERRACE
                                           7.904010e+00
## 145
## 146
                        WOODHAVEN
                                           1.602082e-01
## 147
                         WOODSIDE
                                           1.965401e+01
## 148
                 WYCKOFF HEIGHTS
                                           4.201522e+01
```

b. Create multiple plots to demonstrates the correlations between different variables. Remember to label all axes and give title to each graph.

```
# Enter your code here!
plot(housingData$Year.Built, housingData$Market.Value.per.SqFt,
    main = "Market Value vs. Year Built",
    xlab = "Year Built",
    ylab = "Market Value by Sq. Ft")

fit <- lm(Market.Value.per.SqFt ~ Year.Built, data = housingData)
abline(fit, col = "red")</pre>
```

Market Value vs. Year Built


```
boxplot(Market.Value.per.SqFt ~ Neighborhood, data = housingData,
    main = "Market Value vs. Neighborhood",
    xlab = "Neighborhood",
    ylab = "Market Value by Sq. Ft")
```

Market Value vs. Neighborhood


```
barplot(tapply(housingData$Market.Value.per.SqFt, housingData$Boro, mean),
    main = "Average Market Value by Boro",
    xlab = "Boro",
    ylab = "Average Market Value by Sq. Ft",
    col = "skyblue",
    ylim = c(0, max(housingData$Market.Value.per.SqFt, na.rm = TRUE) + 10))
```

Average Market Value by Boro


```
boxplot(Year.Built ~ Boro, data = housingData,
    main = "Boro vs. Year Built",
    xlab = "Boro",
    ylab = "Year Built",
    col = "lightblue")
```

Boro vs. Year Built

c. Write a summary about your findings from this exercise.

=> Enter your answer here!

Most of the homes were all built from 1980's to current. There aren't many buildings existing pre 1900 although there are few examples. Generally, newer houses command more market value per sq. ft despite there being many lower priced recent constructions. Manhattan commmands the highest avg. market value by a decent margin followed by Brooklyn and Queens which are very similar. The Bronx is one of the cheapest boros followed by Staten Island. The surprising thing when compared to previous rankings by boro is that Manhattan is older with its median falling around 1950. Despite it's older age, it still is high priced which may speak to the neighborhood safety, location or other factors. Staten Island sticks out as well due to a limited window of development around the 1980's which is still fairly new but is the cheapest by sq. foot. This could be due to location and inconvenience associated with this location. The Bronx and Queens were both developed around same time and also are priced similarly by sq. ft. Brooklyn has been developed most recently although houses contained in dataset also reflect examples tracing back to the 1900's.