Wydział	Imię i nazwisko	Rok	Grupa	Zespół
WI	1. Dominik Marek	4		
	2. Maciej Nowakov			
PRACOWNIA	Temat:	Nr ćwiczenia		
FIZYCZNA WFiIS AGH	Model	31		

1. Cel ćwiczenia.

Wyznaczenie linii ekwipotencjalnych i wektorów natężenia pola elektrycznego na płaszczyźnie dla różnych konfiguracji elektrod.

2. Wstęp Teoretyczny.

Ładunki elektryczne, które nieruchomo zawieszone są w przestrzeni wytwarzają pole elektrostatyczne. Ponieważ jest to pole zachowawcze można określić na nim potencjał. Wyznaczyć go można za pomocą wzorów Gaussa, Poissona lub Laplace'a, albo doświadczalnie.

2.1 Sposób analityczny

Kondensator Płaski:

Wewnątrz kondensatora pole jest jednorodne, a potencjał V rośnie od zera dla elektrody uziemionej do wartości równej napięciu zasilania.

$$E = \frac{U}{d}$$
$$V(x) = \frac{Ux}{d}$$

gdzie:

U – napięcie generatora

d – odległość między okładkami

Kondensator Cylindryczny:

Przy założeniu, że potencjał elektrody zewnętrznej jest równy zero, wartość potencjału oraz natężenia pola elektrycznego w punkcie odległym o r od osi kondensatora jest dana wzorem:

$$V(x) = \frac{\ln\left(\frac{r}{r_z}\right)}{\ln\left(\frac{r_z}{r_w}\right)}U$$

$$E(r) = \frac{-U}{r \ln\left(\frac{r_z}{r_w}\right)}$$

gdzie:

 r_z – promień zewnętrzny

 r_w – promień wewnętrzny

2.2 Sposób doświadczalny:

Pole elektrostatyczne jest trudne do wyznaczenia w sposób analityczny oraz doświadczalny. Dzieje się tak, ponieważ wprowadzenie odpowiedniej sondy silnie je zaburza. Do modelowania można użyć pola elektrycznego stacjonarnego przepływu prądu w obszarze o stałej oporności właściwej, gdyż zachowuje się bardzo podobnie do pola elektrostatycznego, a jest znacznie łatwiejsze w badaniu. Przybliżoną wartość natężenia elektrycznego uzyskujemy obliczając numerycznie gradient potencjału:

$$E_x = \frac{-\partial V}{\partial x} \approx \frac{V(x+h,y) - V(x,y)}{h}$$

$$E_{y} = \frac{-\partial V}{\partial y} \approx \frac{V(x, y + k) - V(x, y)}{k}$$

gdzie: h, k – kroki siatki

3.Układ pomiarowy.

Układ doświadczalny składał się z następujących elementów:

- 1.cyfrowy woltomierz
- 2. zasilacz
- 3. sonda pomiarowa
- 4. płyty będące modelami kondensatora płaskiego i cylindrycznego.

Rys. 1. Obwód elektryczny do badania pola w kondensatorze płaskim

Rys. 1w. Schemat połączeń układu pomiarowego do modelowania pola elektrycznego

5.Przebieg doświadczenia

Po podłączeniu układu zgodnie ze schematem, za pomocą sondy zmierzyliśmy wartości napięcia w odpowiednich punktach na zewnątrz oraz pomiędzy okładami kondensatora płaskiego. Analogiczne pomiary zostały wykonane dla kondensatora cylindrycznego.

6.Niepewności pomiarowe.

Pomiar napięcia wykonywany był elektronicznym woltomierzem o podziałce elementarnej 0,01V. Zatem: u(V) = 0,01V.

Pomiar odległości został wykonany linijką o podziałce 1 mm. Zmierzony został rozmiar całego kondensatora i odległości między poszczególnymi punktami pomiarowymi wyznaczone przez podzielenie tej odległości przez ich liczbę. to jest $u(x)=0,001\,\mathrm{m}$.

Natężenie pola możliwe jest do policzenia korzystając z dwóch sąsiednich zmierzonych wartości potencjału. Uzyskaną wartość przypisuje się punktowi znajdującemu się w połowie odległości między tymi punktami. To znaczy:

$$x^* = \frac{x_n + x_{n+1}}{2}$$

$$E_{dośw} = \frac{v_{n+1} - v_n}{x_{n+1} - x_n}$$

Niepewność wyznaczenia natężenia pozwala wyznaczyć wzór przenoszenia niepewności:

$$u(E_{d_{05}}) = \sqrt{2\left(\frac{u(v)}{x_{n+1} - x_n}\right)^2 + 2 \cdot \left(\frac{V_{n+1} - V_n}{(x_{n+1} - x_n)^2}u(x)\right)^2}$$

7.Opracowanie wyników.

7.1 Kondensator płaski

Lp.	x [mm]	$V_a[V]$	$V_b[V]$	$V_c[V]$	$V_{do\pm}[V]$	$V_{teor}[V]$	ΔV
1	10	2,14	2,42	2,26	2,27	1,43	0,84
2	20	3,13	3,43	3,37	3,31	2,86	0,45
3	30	4,24	4,6	4,56	4,47	4,29	0,18
4	40	5,25	5,56	5,65	5,49	5,71	-0,23
5	50	6,33	6,69	6,74	6,59	7,14	-0,56
6	60	7,43	7,86	7,71	7,67	8,57	-0,90

Wzór na V teoretyczne:

$$V_x = U \frac{x}{d}$$

Wyliczenie V teoretycznego oraz ΔV dla x=10mm.

$$V_{10mm} = 10V * \frac{10mm}{70mm} \approx 1,43V$$

$$\Delta V = 2,27V - 1,43V = 0,84V$$

Analogicznie wyliczane są wszystkie pozostałe punkty.

Wykres zależności potencjału od położenia dla wnętrza kondensatora płaskiego.

Wewnątrz kondensatora płaskiego pole teoretyczne jest jednorodne i wynosi:

$$E_{teor.} = \frac{U}{d} = \frac{10V}{70mm} = 142,86\frac{V}{m}$$

A obliczyć można $E_{dośw}$ dla x^* ze wzoru:

$$E_{dośw} = \frac{V_{n+1} - V_n}{x_{n+1} - x_n}$$
$$x^* = \frac{x_{n+1} + x_n}{2}$$

Policzę teraz $E_{dośw}$ dla n=1:

$$E_{dośw\ n=1} = \frac{V_2 - V_1}{x_2 - x_1} = \frac{3,31V - 2,27V}{20mm - 20mm} = 103,67\frac{E}{m}$$

Analogicznie postępujemy dla każdego x^* .

x*[mm]	$E_{do\acute{5}} \frac{V}{m}$	$E_{teor} = \frac{V}{m}$	$\Delta E = \frac{V}{m}$	$u(E_{do\pm})\left[\frac{v}{m}\right]$
15	103,67	142,86	39,19	10,50
25	115,67	142,86	27,19	11,69
35	102,00	142,86	40,86	10,30
45	110,00	142,86	32,86	11,09
55	108,00	142,86	34,86	10,89

$$u(E_{do\pm}) = \sqrt{2 \cdot \left(\frac{0.01}{0.02 - 0.01}\right)^2 + 2\left(\frac{(3.31 - 2.27) \cdot 0.001}{(0.02 - 0.01)^2}\right)^2} = 10.50 \frac{V}{m}$$

Analogicznie wyliczamy kolejne niepewności.

Wykres zależności natężenia pola od położenia dla wnętrza kondensatora płaskiego.

Rysunek przedstawiający pomiary wartości dla zewnętrza i wnętrza kondensatora płaskiego. Odległości między kolejnymi punktami pomiarowymi to 10mm.

8,05	8,23	8,45															
7,97	8,18	8,43															
7,86	8,06	8,41															
7,71	8,00	8,34															
7,52	7,83	8,29															
7,27	7,64	8,11															
6,91	7,24	7,74	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00
6,49	6,79	7,17	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00
6,00	6,22	6,41	6,67	-	-	7,43	-	-	-	-	7,86	-	-	-	7,71	-	-
5,48	5,58	5,63	5,84	-	-	6,33	-	-	-	-	6,69	-	-	-	6,74	-	-
4,90	4,68	5,04	5,13	-	-	5,25	-	-	-	-	5,56	-	-	-	5,65	-	-
4,42	4,39	4,26	4,23	-	-	4,24	-	-	-	-	4,60	-	-	-	4,56	-	-
3,93	3,73	3,49	3,25	-	-	3,13	-	-	-	-	3,43	-	-	-	3,37	-	-
3,41	3,13	2,76	2,42	-	-	2,14	-	-	-	-	2,42	-	-	-	2,26	-	-
2,96	2,61	2,09	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2,57	2,14	1,67	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2,18	1,91	1,50															
2,03	1,73	1,40															
1,84	1,60	1,35															
1,69	1,49	1,32															
1,60	1,44	1,28															
1,53	1,41	1,26															

Dla każdego punktu obliczmy wartość składowych wektora E:

$$E_x = \frac{V(x+h,y) - V(x,y)}{h}$$

$$E_y = \frac{V(x, y + k) - V(x, y)}{k}$$

Obliczenia pokazane na przykładzie punktu najbardziej po lewej u góry oraz punktów z nim sąsiadujących, gdzie odległości h=k=10mm

Obliczenia powtórzono dla kolejnych punktów.

Wizualizacja

Rysunek przestawiający pole wektorowe na podstawie danych z powyżej został wygenerowany za pomocą skryptu w Pythonie [1]. Wektory natężenia uzyskiwane są dzięki liczeniu pochodnych napięcia w dwóch osiach. Jak widać większość punktów wektorów została wyznaczona w sposób poprawny. Najwięcej niepoprawnych wektorów pojawia się zaraz przy wyjściu z kondensatora płaskiego, co świadczy o tym, że w wyniku niedoskonałości wykorzystywanych urządzeń wyniki uzyskane w tamtej części płyty nie były poprawne.

7.2 Kondensator cylindryczny

Lp.	x[mm]	$V_a[V]$	$V_b[V]$	$V_c[V]$	$V_{do\pm}[V]$	$V_{teor}[V]$	ΔV
1	7	7,58	7,17	7,13	7,29	8,14	0,85
2	13	6,37	5,56	6,31	6,08	6,89	0,81
3	20	5,26	4,58	5,36	5,07	5,69	0,62
4	27	4,43	3,77	4,69	4,30	4,69	0,39
5	34	3,79	3,27	4,07	3,71	3,83	0,12
6	42	3,07	2,7	3,44	3,07	2,97	-0,10
7	49	2,52	2,21	2,79	2,51	2,31	-0,20
8	<i>57</i>	2,01	1,69	2,19	1,96	1,62	-0,34
9	63	1,68	1,25	1,75	1,56	1,16	-0,40

Obliczamy V_{teor} dla pierwszego punktu:

$$r_w = 20 \, mm$$
,

$$r_z = 100 \, mm$$

$$U = 10 V$$
,

$$x_1 = 7mm \Rightarrow r = r_w + x_i = 27mm$$

$$x_{1} = 7mm \Rightarrow r = r_{w} + x_{i} = 27mm$$

$$V_{\text{teor}} = \frac{\ln(\frac{r}{r_{z}})}{\ln(\frac{r_{z}}{r_{w}})}U = \frac{\ln(\frac{27}{100})}{\ln(\frac{100}{20})}10 = 8,14V$$

Analogiczne obliczenia powtarzamy dla wszystkich odległości x_i .

Lp.	x [mm]	x*[mm]	$E_{do\pm}$	E _{teor}	ΔΕ	$u(E_{do\pm})\left[\frac{v}{m}\right]$
1	30,00	15,00	202,22	207,11	4,89	33,79
2	36,50	18,25	144,76	170,23	25,47	20,78
3	43,50	21,75	110,00	142,84	32,84	15,84
4	50,50	25,25	83,81	123,04	39,23	12,14
5	58,00	29,00	80,00	107,13	27,13	10,16
6	65,50	32,75	80,48	94,86	14,38	11,67
7	73,00	36,50	67,92	85,11	17,19	8,67
8	80,00	40,00	67,22	77,67	10,45	11,45

$$E_{doś} = \frac{V_{n+1} - V_n}{x_{n+1} - x_n}$$

$$x^* = \frac{x_{n+1} - x_n}{2}$$

$$u(E_{do\pm}) = \sqrt{2 \cdot \left(\frac{0.01}{0.033 - 0.027}\right)^2 + 2\left(\frac{(7.28 - 6.09) \cdot 0.001}{(0.033 - 0.027)^2}\right)^2} = 33.79 \frac{V}{m}$$

Analogicznie wyliczamy kolejne niepewności.

Wykres zależności potencjału od położenia dla kondensatora cylindrycznego

Wykres zależności natężenia pola od położenia dla kondensatora cylindrycznego

7. Wnioski

Wartości potencjału oraz natężenia pola elektrycznego wewnątrz kondensatorów nie odbiegają w stopniu znaczącym od wyników teoretycznych. Oznacza to, że pomiary wykonane w ten sposób w tamtych obszarach były poprawne.

Natomiast w przypadku mierzonych wartości natężenia pola na zewnątrz kondensatora płaskiego wygenerowana wizualizacja odbiega od teoretycznego modelu. Świadczy to o tym, że na zewnątrz kondensatora płaskiego niektóre wyniki zmierzone odbiegały od wartości rzeczywistych. Wynikało to najprawdopodobniej ze zużycia sprzętu badawczego, które mogło generować w niektórych miejscach zaniżone wyniki. Dodatkowo przemawia za tym fakt, że na zewnątrz kondensatora płaskiego do paru punktów pomiarowych należało przyłożyć sondę z o wiele większą siłą niż do pozostałych, aby urządzenie zaczynało pokazywać wyniki różne od zera.

Bibliografia:

[1] github.com/Nepommuck/Vector Field Modelling – skrypt do modelowania pola wektorowego