Climate change earth surface temperature data by Major City

David Jimeno 5/12/2019

Climate change earth surface temperature data by Major City

Introduction

Our analysis focuses on the Climate Change: Earth Surface Temperature Data specifically focused on major cities, which is a temperature reports database, in which each Major City is identified by its latitude and longitude, its temperature on a specific date and its average temperature uncertainty.

The total dimension of the database is composed of 239177 observations of 7 variables.

The objective of the project is to create two Machine learning algorithm:

- First maximize the accuracy predicting the continent and using for each city its Latitude, year, year average temperature, year average uncertainty, difference between land average estemperature for periods from 1961 to 1990 and the last five complete years 2008 to 2012 (diffs)
- Second using dimension reduction predicting continent Africa from the Others.

A study is carried out for each of the variables and their behavior over time, to observe how climate change is affecting land temperatures.

The document is structured as follows:

- Preprocessing, exploration and visualization of the database.
- -Application of methods and analysis.
- -Results.
- -Conclusions.

Preprocessing, exploration and database visualization.

Our analysis have started with a preprocessing in which two fundamental variables the year and the continent have been incorporated, this has allowed us to work with Global mean land preindustrial temperatures difference, continent temperature evolution, difference of the average temperatures in intervals of years(diffs).

Although the first records of the database are from 1743, we observed that

it won't be until year 1890 when all cities temperatures records were introduced so this factor will limit our study.

```
#Kaggle.com dataset.Download the dataset from the following link:
#https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data/download/eMOxChhsTA

# Note: this process could take a couple of minutes
if(!require(tidyverse)) install.packages("tidyverse", repos = "http://cran.us.r-project.org")
if(!require(caret)) install.packages("caret", repos = "http://cran.us.r-project.org")
if(!require(data.table)) install.packages("data.table", repos = "http://cran.us.r-project.org")
if(!require(countrycode)) install.packages("countrycode", repos = "http://cran.us.r-project.org")
```

```
if(!require(Rborist)) install.packages("Rborist", repos = "http://cran.us.r-project.org")
if(!require(randomForest)) install.packages("randomForest", repos = "http://cran.us.r-project.org")
if(!require(RColorBrewer)) install.packages("RColorBrewer", repos = "http://cran.us.r-project.org")
url <- "https://github.com/djinasarre/climate_change/raw/master/GlobalLandTemperaturesByMajorCity.csv"</pre>
tmp_filename <- tempfile()</pre>
download.file(url, tmp_filename)
cl_change <- read_csv(tmp_filename)</pre>
file.remove(tmp filename)
## [1] TRUE
# This is the structure of cl_change data
str(cl_change)
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 239177 obs. of 7 variables:
## $ dt
                                   : Date, format: "1849-01-01" "1849-02-01" ...
## $ AverageTemperature
                                  : num 26.7 27.4 28.1 26.1 25.4 ...
## $ AverageTemperatureUncertainty: num 1.44 1.36 1.61 1.39 1.2 ...
## $ City
                                  : chr "Abidjan" "Abidjan" "Abidjan" "Abidjan" ...
                                   : chr "Côte D'Ivoire" "Côte D'Ivoire" "Côte D'Ivoire" "Côte D'Ivoir
## $ Country
## $ Latitude
                                   : chr "5.63N" "5.63N" "5.63N" "5.63N" ...
                                   : chr "3.23W" "3.23W" "3.23W" "3.23W" ...
## $ Longitude
## - attr(*, "spec")=
##
    .. cols(
##
     .. dt = col_date(format = ""),
##
     .. AverageTemperature = col_double(),
     .. AverageTemperatureUncertainty = col_double(),
##
##
     .. City = col_character(),
     .. Country = col_character(),
##
     .. Latitude = col_character(),
##
       Longitude = col_character()
#We can see the number of unique countries, cities and dates are
#in our dataset:
distinct <- cl_change %>%
  summarize(n_City = n_distinct(City),
           n_Country = n_distinct(Country),
            n_dt=n_distinct(dt))
distinct
## # A tibble: 1 x 3
    n_City n_Country n_dt
##
      <int>
            <int> <int>
## 1
       100
                  49 3239
# 100 cities, 49 countries and 3239 dates.
```

As we see in these two plots below, European continent temperatures were the first to be taken and with a very high degree of uncertainty, it will not be until approximately 1890 when we see temperatures taking in all the cities under study with average Uncertainty lowest than 2.

If we plot the mean Average temperature for each year since 1753 we obseve a step up as we incorporate cities.

We reduce the period observed to the period from 1890 when they incorporate measurements of all the cities under study.

```
avg_ev <- cl_change %>%
  group_by(year) %>% filter( year>=1890 & year<=2013 )%>%
  summarize(average= mean(AverageTemperature, na.rm = TRUE))%>%
  qplot(year, average, data = .)+ xlim(1890, 2013)+ylim(17,21)+
  geom_point() +
  geom_line()+
  geom_smooth(method="lm")
avg_ev
```


We see that the evolution of mean land average temperatures has increased.

We want to plot the global mean land temperature difference from preindustrial years (1890-1900) in ${}^{\circ}$ C

```
avg_evo1 <- cl_change %>% filter(year >= 1890)%>%
  group_by(year) %>%
  summarize(average= mean(AverageTemperature, na.rm = TRUE))

preindustrial<- cl_change%>% filter(year >= 1890& year <= 1900)%>% group_by(year)%>%summarise(average18 preindustrial) <- mean(preindustrial) average1890_1900)

avg_evo2 <- avg_evo1 %>%
  group_by(year) %>%filter(year>=1890&year<=2012)%>%
  mutate (gmtd = average-preindustrial)%>%
  qplot(year, gmtd, data = .)+
  xlim(1890, 2012)+ylim(-1,1.5)+
  geom_lnine()+
  geom_smooth(method="lm")+
  ylab("Global mean land temperature peindustrial difference ")
  avg_evo2
```


We see from the graphic that difference evolution has increased since preindustrial period.

```
cl_change <- filter(cl_change, year >= 1900 & year<=2012)

uncertainty_evo <- cl_change %>%
   group_by(year) %>%
   summarize(averageuncertainty = mean(AverageTemperatureUncertainty))%>%
   qplot(year, averageuncertainty, data = .)+ xlim(1900, 2012)+ylim(0.25,0.85)+
   geom_point() +
   geom_line()+
   geom_smooth(method="lm")
uncertainty_evo
```


We also observe that the uncertainty taking temperatures has been reduced considerably over time.

Let's take a look at data that may be interesting:

We look for highest and lowest historical average land temperatures for each City since 1900

```
low_temperatures <- cl_change %>% filter(AverageTemperature <= -22.285)%>%
    select(dt, City, Country, AverageTemperature)
arrange(low_temperatures, AverageTemperature)
```

```
City Country AverageTemperature
##
              dt
## 1
      1922-01-01
                    Harbin
                              China
                                                -26.772
                              China
                                                -25.494
## 2
      1915-01-01
                    Harbin
## 3
     1977-01-01
                    Harbin
                              China
                                                -23.922
## 4
      2001-01-01
                    Harbin
                              China
                                                -23.495
                                                -23.272
## 5
      1922-01-01 Changchun
                              China
## 6
     1931-01-01
                    Harbin
                              China
                                                -22.929
                                                -22.752
## 7
      1919-01-01
                    Harbin
                              China
## 8
     1970-01-01
                    Harbin
                              China
                                                -22.492
## 9
     1908-01-01
                    Harbin
                              China
                                                -22.490
## 10 1936-01-01
                    Harbin
                              China
                                                -22.285
```

```
high_temperatures <- cl_change %>% filter(AverageTemperature >= 37.371)%>% select(dt, City, Country, AverageTemperature) arrange(high_temperatures, -AverageTemperature)
```

##		dt	City	(Country	AverageTemperature
##	1	2000-07-01	Baghdad		Iraq	38.283
##	2	2010-08-01	Baghdad		Iraq	37.899
##	3	2010-07-01	Baghdad		Iraq	37.870
##	4	2012-07-01	Riyadh	Saudi	Arabia	37.859
##	5	1998-08-01	Riyadh	Saudi	Arabia	37.755
##	6	2000-07-01	Riyadh	Saudi	Arabia	37.732
##	7	2010-07-01	Riyadh	Saudi	Arabia	37.603
##	8	2010-08-01	Riyadh	Saudi	Arabia	37.551
##	9	2000-08-01	Riyadh	Saudi	Arabia	37.456
##	10	2012-07-01	${\tt Baghdad}$		Iraq	37.371

Lets look to Average Temperature histograms and Average land temperature uncertity differences between the mean of period 1961-1990 and year 2012


```
qplot(AverageTemperatureUncertainty,na.rm = TRUE, geom = "histogram",
    binwidth = 0.1, data = cl_change, color = I("black"))+xlim(0,2.2)
```

```
30000 - 20000 - 10000 - 1.5 2.0 AverageTemperatureUncertainty
```

```
alpha <- cl_change%>%filter(year>=1961&year<=1990)%>%
  summarize(average = mean(AverageTemperature),
            standard_deviation = sd(AverageTemperature), median(AverageTemperature))
alpha
      average standard_deviation median(AverageTemperature)
##
## 1 19.04054
                        9.636613
                                                     21.371
omega <- cl_change%>%filter(year==2012)%>%
  summarize(average = mean(AverageTemperature),
            standard_deviation = sd(AverageTemperature), median(AverageTemperature))
omega
      average standard_deviation median(AverageTemperature)
## 1 19.66824
                        9.843163
                                                    22.1365
dif<-omega-alpha
dif[,1]
```

[1] 0.6277014

average year temperatures difference is 0.63 °C

```
high_temperatures_year <- cl_change %>%
  group_by(year) %>%
  summarize(average= mean(AverageTemperature ))
high_temperatures_year <- arrange(high_temperatures_year, -average) %>% print(n=10)
## # A tibble: 113 x 2
##
      year average
     <int>
             <dbl>
##
## 1 1998
              19.9
## 2 2010
              19.9
## 3 2002
              19.9
## 4 2007
             19.9
## 5 2009
            19.8
## 6 2006
              19.8
## 7 1999
              19.7
## 8 2001
            19.7
## 9 2004
            19.7
## 10 2012
              19.7
## # ... with 103 more rows
```

We see in the last 14 years until 2012 the 10 highest land average temperatures per year have been reached.

Let's see how the Mediterranean countries and no mediterranean have evolved over this period of time.

We observe the same trend of temperature increase, more evident in the Mediterranean countries.

Lets group by continent and look the evolution over years.

Now we will take the averages temperature for periods from 1900 to 1950 and the averages temperature for periods from 1961 to 1990 and the last five full years 2008 to 2012.

```
cl_average6190 <- cl_change%>% filter(year >= 1961& year <= 1990)%>%
    group_by(City)%>%
    summarise(average6190=mean(AverageTemperature))

cl_average0812 <- cl_change%>%
    filter(year >= 2008& year <= 2012) %>%
    group_by(City)%>%summarise(average0812=mean(AverageTemperature))

tab <- left_join(cl_average6190, cl_average0812, by = "City")

table <- left_join(tab, cl_change, by = "City")

table <- select(table, -dt, -AverageTemperature, -AverageTemperatureUncertainty, -month, -year)

cl_changeZ<- table %>%
    group_by(City,Country,Latitude,Longitude, continent) %>%
    summarise(Average6190=mean(average6190), Average0812=mean(average0812))

cl_changeZ$diffs<-cl_changeZ$Average0812-cl_changeZ$Average6190</pre>
```

Lets look at the most affected cities by climate change and which cities are affected less.

```
maxdiff <- cl changeZ %>% filter(diffs > 1.16)%>%
select(City, Country, Latitude, Longitude, continent, Average6190, Average0812, diffs)
arrange(maxdiff, -diffs)
## # A tibble: 8 x 8
## # Groups: City, Country, Latitude, Longitude [8]
    City
          Country Latitude Longitude continent Average6190 Average0812 diffs
    <chr> <chr> <chr> <chr>
##
                                   <chr>
                                                 <dbl>
                                                            <dbl> <dbl>
## 1 Moscow Russia 55.45N 36.85E
                                                  4.40
                                                             5.91 1.52
                                   Europe
## 2 Kiev Ukraine 50.63N 31.69E Europe
                                                  7.37
                                                             8.81 1.44
## 3 Montr~ Canada 45.81N 72.69W Americas
                                                  4.95
                                                              6.32 1.37
                 32.95N 45.00E
## 4 Baghd~ Iraq
                                   Asia
                                                  23.0
                                                             24.2 1.29
## 5 Mashh~ Iran
                  36.17N 59.67E Asia
                                                  12.9
                                                             14.1 1.22
## 6 Riyadh Saudi ~ 24.92N 46.11E Asia
                                                 25.5
                                                             26.7 1.22
                          31.38E
                                                             22.7 1.19
## 7 Cairo Egypt
                  29.74N
                                                 21.5
                                   Africa
## 8 Gizeh Egypt
                  29.74N
                          31.38E
                                   Africa
                                                  21.5
                                                             22.7 1.19
mindiff <- cl changeZ %>% filter(diffs < 0.386)%>%
 select(City, Country, Latitude, Longitude, Average6190, Average0812, diffs)
arrange(mindiff, diffs)
## # A tibble: 10 x 7
## # Groups: City, Country, Latitude, Longitude [10]
##
                          Latitude Longitude Average6190 Average0812 diffs
     City
              Country
##
     <chr>
              <chr>
                          <chr> <chr>
                                                <dbl>
                                                       <dbl> <dbl>
## 1 Guangzhou China
                          23.31N 112.72E
                                                 21.9
                                                            22.0 0.0783
## 2 Manila Philippines 15.27N 120.83E
                                                 26.8
                                                           27.1 0.250
```

```
3 Cape Town South Africa 32.95S
                                                                    16.7 0.325
                                      18.19E
                                                        16.4
##
  4 Lima
                Peru
                             12.05S
                                      77.26W
                                                        16.9
                                                                    17.3 0.336
##
  5 Surabaya
               Indonesia
                             7.23S
                                      112.70E
                                                        27.1
                                                                    27.4 0.337
  6 Harare
                Zimbabwe
                                                        20.4
                                                                    20.7 0.357
##
                             18.48S
                                      30.42E
##
   7 Dhaka
                Bangladesh
                             23.31N
                                      90.00E
                                                        25.9
                                                                    26.3 0.367
##
  8 Bogotá
                Colombia
                             4.02N
                                      74.73W
                                                        20.3
                                                                    20.7 0.384
## 9 Durban
                South Africa 29.74S
                                      31.38E
                                                        20.6
                                                                    21.0 0.386
## 10 Chongqing China
                             29.74N
                                      107.08E
                                                        17.0
                                                                    17.4 0.386
```

Let's see the difference between periods by continents and countries.

```
cl_changeZ%>% ggplot(aes(x = fct_reorder(continent,diffs) , y =diffs)) +
  geom_boxplot(col=(c("black","red","yellow","green","blue"))) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  xlab("")
```


Between periods we see that Europe is the continent and Russia and Ukraine the countries that have biggest differences.

```
cl_changeZ%>%ungroup(Country)%>%
  ggplot(aes(x = fct_reorder(Country,diffs) , y = diffs)) +
  geom_boxplot()+
```

```
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
xlab("")
```


We convert Latitude into a numerical variable

```
Latitude <- as.character(cl_changeavg$Latitude)

cl_changeavg$Latitude <-case_when(
    str_sub(Latitude, -1, -1) == "N" ~ as.numeric(str_sub(Latitude, 1, nchar(Latitude) - 1)),
    str_sub(Latitude, -1, -1) == "S" ~ -as.numeric(str_sub(Latitude, 1, nchar(Latitude) - 1)),
    TRUE ~ NA_real_
)

cl_changeZ<- cl_changeZ%>%ungroup(cl_changeZ)%>%select("City","diffs")

cl_changeavg<- as.data.frame (cl_changeavg)

cl_changeavg<- left_join(cl_changeavg, cl_changeZ, by = "City")

cl_changeZ1<- cl_changeZ1%>%ungroup(cl_changeZ1)%>%select("City","Average0050")

cl_changeavg<- as.data.frame (cl_changeavg)

cl_changeavg<- left_join(cl_changeavg, cl_changeZ1, by = "City")

cl_changeavg<- cl_changeavg%>%mutate(diffs0050=average-Average0050)
```

We tile the countries with colors representing difference between mean temperature 1900-1950 and each year temperature.

We clearly see that the rise in temperatures is a widespread occurrence in all countries.

```
cl_changes<-cl_changeavg%>%select("continent", "Latitude",
   "year", "average", "averageUncertainty", "diffs")
```

Application of methods and analysis.

Our algorithm is decided based on the accuracy on a test set.

We want to see how to differentiate Continents predicted with the year, difference between land averages temperature for periods from 1961 to 1990 and the last five complete years 2008 to 2012 (diffs), cities year mean temperature (average), Latitude and cities year mean average temperature Uncertainty (averageUncertainty). We will use knn method and Rborist. Afterwards we will apply dimension reduction and we will use an ensemble to achieve maximum accuracy to distinguish Class Africa the hardest to detect from others.

We create a partition of training and test sets.

```
y <- cl_changes$continent
set.seed(26, sample.kind="Rounding")
test_index <- createDataPartition(y, times = 1, p = 0.8, list = FALSE)
train_set <- cl_changes %>% slice(test_index)
test_set<- cl_changes %>% slice(-test_index)
```

We change vectors train_set_images and test_set_images classes as matrix:

Image Data is transformed to matrix because they are easier indexable.

```
train_set_images<- train_set[,2:6]
test_set_images <- test_set[,2:6]

train_set_images <- as.matrix(train_set[, 2:dim(train_set)[2]])
test_set_images <- as.matrix(test_set[, 2:dim(test_set)[2]])</pre>
```

The dataset includes two components, a train set and a test set:

Each of these components includes now a matrix with 5 features in the columns:

```
#and change vectors train_set$continent and test_set$continent classes:
class(train_set$continent)
## [1] "character"
train_set$continent <- type.convert(train_set$continent)</pre>
class(train set$continent)
## [1] "factor"
class(test_set$continent)
## [1] "character"
test_set$continent <- type.convert(test_set$continent)</pre>
class(test_set$continent)
## [1] "factor"
table(train_set$continent)
##
##
     Africa Americas
                          Asia
                                 Europe Oceania
       2361
                2496
                          8071
                                   1664
                                              273
```

We create simple machine learning algorithms using fewer features trying PCA and explore the variance of the PCs.

```
col_means <- colMeans(test_set_images)</pre>
```

Our predictors here have five dimensions, lets look to the correlation:

```
cor(train_set_images)
```

```
##
                       Latitude
                                               average averageUncertainty
                                       year
## Latitude
                       1.0000000 -0.2093357 -0.5286066
                                                                0.2134105
                      -0.2093357 1.0000000 0.1997151
                                                               -0.8537508
## year
## average
                     -0.5286066 0.1997151 1.0000000
                                                               -0.2201635
## averageUncertainty 0.2134105 -0.8537508 -0.2201635
                                                                1.0000000
## diffs
                       0.4618338 -0.1703160 -0.3600150
                                                                0.1963368
##
                           diffs
## Latitude
                       0.4618338
## year
                     -0.1703160
                     -0.3600150
## average
## averageUncertainty 0.1963368
## diffs
                       1.0000000
```

```
pca <- prcomp(train_set_images)
pc <- 1:ncol(test_set_images)
qplot(pc, pca$sdev)</pre>
```


summary(pca)\$importance[,1:5]

```
## PC1 PC2 PC3 PC4 PC5
## Standard deviation 60.81559 21.72836 6.255657 0.4405204 0.260376
## Proportion of Variance 0.87850 0.11214 0.009300 0.0000500 0.000020
## Cumulative Proportion 0.87850 0.99064 0.999940 0.9999800 1.0000000
```

First PCs explain a large percent of the variability.

We plot first two PCs and give us information about the class.

We try 2 dimensions since this explains about 99% of the data

```
library(caret)
k <- 2
x_train1 <- pca$x[,1:k]
y1 <- factor(train_set$continent)
fit <- knn3(x_train1, y1)</pre>
```

transform the test set

```
test_set_images <- as.matrix(test_set[, 2:dim(test_set)[2]])
x_test1 <- sweep(test_set_images, 2, col_means) %*% pca$rotation
x_test1 <- x_test1[,1:k]</pre>
```

And we predict:

```
y_hat1 <- predict(fit, x_test1, type = "class")
confusionMatrix(y_hat1, factor(test_set$continent))$overall["Accuracy"]</pre>
```

```
## Accuracy
## 0.7152086
```

```
# And give us an accuracy of 0.72.
```

We will sample 8000 random rows from the training set and 800 random rows from the test set:

```
set.seed(27, sample.kind="Rounding")
index <- sample(nrow(train_set_images ), 8000)
x <- train_set_images[index,]
y <- factor(train_set$continent[index])

index <- sample(nrow(test_set_images ), 800)
x_test <- test_set_images[index,]
y_test <- factor(test_set$continent[index])</pre>
```

Now we are ready to fit some models. Before we start, we need to add column names to the feature matrices as these are required by caret:

```
col_index <- 1:ncol(x)
colnames(x) <- 1:ncol(train_set_images)
colnames(x_test) <- colnames(train_set_images)</pre>
```

First.

We start with kNN. The first step is to optimize for k. To compute a distance between each observation in the test set and each observation in the training set we will therefore use k-fold cross validation to improve speed.

```
ggplot(train_knn, highlight = TRUE)
```


train_knn\$bestTune #the parameter k=9 maximized the accuracy

```
## k
## 1 9
```

train_knn\$finalModel #the best performing model

```
## 9-nearest neighbor model
## Training set outcome distribution:
##
## Africa Americas Asia Europe Oceania
## 1290 1349 4347 882 132
```

We see the standard deviation bars obtained from the cross validation samples:

Now that we optimize our algorithm, we can fit it to the entire dataset:

```
fit_knn <- knn3(x[, col_index], y, k = train_knn$bestTune)
y_hat_knn <- predict(fit_knn, x_test[, col_index], type="class")
cm <- confusionMatrix(y_hat_knn, factor(y_test))
cm$overall["Accuracy"]

## Accuracy
## 0.85125</pre>
cm$byClass[,1:2]
```

```
##
                   Sensitivity Specificity
## Class: Africa
                     0.6690141
                                 0.9696049
## Class: Americas
                     0.7163121
                                 0.9742033
## Class: Asia
                     0.9373550
                                 0.8130081
## Class: Europe
                     0.9459459
                                 0.9862259
## Class: Oceania
                     0.9166667
                                 0.9961929
```

We now achieve an accuracy of about 0.85125. From the specificity and sensitivity, we also see that Class Africa are the hardest to detect and the most commonly incorrectly predicted is Asia.

Now we try to increase accuracy with random forest algorithm, using Rborist method. This will take 15 minutes approximately.Be patient!

```
ggplot(fit)
```


The value that maximizes the Accuracy (Boostrap) is minNode 25

```
control <- trainControl(method="cv", number = 5, p = 0.8)
grid <- expand.grid(minNode = 25 , predFixed = c(1,2,3,4,5))</pre>
```

ggplot(train_rf)

train_rf\$bestTune

```
## predFixed minNode
## 3 3 25
```

We have optimized our tree, we are going to fit our final model:

```
y_hat_rf <- factor(levels(y)[predict(fit_rf, x_test[ ,col_index])$yPred])
cm <- confusionMatrix(y_hat_rf, y_test)
cm$overall["Accuracy"]</pre>
```

Accuracy ## 0.99875

Our final model give us an Accuracy of 0.99875.

Finally I want to computes the importance of each feature, we applied to an object using "randomForest".

We can see which features are most being used:

1520.29449

Second.

5

We want to see now how to differentiate Class Africa and Others we will use dimension reduction.

```
y1<-as.data.frame(y1)
y2<-train_set%>% mutate (continent = case_when(continent %in% c ("Americas","Asia","Europe","Oceania")
x_train1<-as.data.frame(x_train1)
x_train1<-x_train1%>%mutate(y=y2$continent)
y3<-test_set %>% mutate (continent = case_when(continent %in% c("Africa")~ "Africa",continent!= "Africatest1<-as.data.frame(x_test1)
x_test1<-x_test1%>%mutate(y=y3$continent)
```

We load the data and show a plot of the predictors with outcome represented with color.

```
x_test1%>% ggplot(aes(PC1, PC2, color = y)) + geom_point()
```


Because we want this example to run on a small laptop, we will consider a subset of the dataset. We will sample 1000 random rows from the training set and 100 random rows from the test set.

```
set.seed(6, sample.kind="Rounding")
index <- sample(nrow(x_train1[,1:2]), 1000)
x <- x_train1[,1:2][index,]
y <- factor(x_train1$y[index])
x_train<-x%>%mutate(y=y)
index <- sample(nrow(x_test1[,1:2]), 100)
x_test <- x_test1[,1:2][index,]
y_test <- factor(x_test1$y[index])
x_test<-x_test%>%mutate(y=y_test)

#We need to install some packages.
if(!require(gam)) install.packages("gam", repos = "http://cran.us.r-project.org")
if(!require(splines)) install.packages("splines", repos = "http://cran.us.r-project.org")
if(!require(foreach)) install.packages("foreach", repos = "http://cran.us.r-project.org")
if(!require(mgcv)) install.packages("mgcv", repos = "http://cran.us.r-project.org")
if(!require(nlme)) install.packages("nlme", repos = "http://cran.us.r-project.org")
```

We use the training set to build a model with several of the models available from the caret package. We will test out all of the following models. This process will take about 15 minutes. Keep in mind that probably get some warnings.Be patient!

```
#This process will take about 15 minutes. Be patient!
#Keep in mind that probably get some warnings.
models <- c("glm", "lda", "naive_bayes", "svmLinear", "gamboost",</pre>
            "gamLoess", "qda", "knn", "kknn", "loclda", "gam", "rf",
            "ranger", "wsrf", "Rborist", "avNNet", "mlp", "monmlp",
            "adaboost", "gbm", "svmRadial", "svmRadialCost", "svmRadialSigma")
fits <- lapply(models, function(model){</pre>
  print(model)
  train(y ~ ., method = model, data = x_train)
})
## [1] "glm"
## [1] "lda"
## [1] "naive bayes"
## [1] "svmLinear"
## [1] "gamboost"
## [1] "gamLoess"
## [1] "qda"
## [1] "knn"
## [1] "kknn"
## [1] "loclda"
## [1] "gam"
## [1] "rf"
## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
## [1] "ranger"
## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
##
## [1] "wsrf"
## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
## [1] "Rborist"
## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
## [1] "avNNet"
## Fitting Repeat 1
##
## # weights: 7
## initial value 487.097494
## final value 346.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 563.390331
## final value 346.000000
## converged
## Fitting Repeat 3
##
```

```
## # weights: 7
## initial value 634.535445
## final value 346.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 538.813324
## final value 346.000000
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 641.031113
## final value 346.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 513.810438
## final value 346.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 475.965139
## final value 346.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 448.797561
## final value 346.000000
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 709.397686
## final value 346.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 335.864052
## iter 10 value 261.479300
## iter 20 value 246.914149
## iter 30 value 243.671913
## iter 40 value 243.368443
## iter 50 value 243.105947
## iter 60 value 241.197026
## iter 70 value 239.941217
## iter 80 value 239.710832
## iter 90 value 239.585321
## iter 100 value 239.567580
```

```
## final value 239.567580
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 632.269941
## final value 346.000000
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 808.657899
## final value 346.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 678.582336
## final value 346.000000
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 464.617579
## final value 346.000000
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 705.463978
## final value 346.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 665.074672
## iter 10 value 312.018388
## iter 20 value 280.269575
## iter 30 value 268.826348
## iter 40 value 260.225061
## iter 50 value 256.133656
## final value 256.121085
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 565.194915
## iter 10 value 306.918036
## iter 20 value 258.031665
## final value 256.121100
## converged
## Fitting Repeat 3
##
## # weights: 7
```

```
## initial value 443.100577
## iter 10 value 280.376950
## iter 20 value 270.254694
## iter 30 value 259.211835
## iter 40 value 257.635126
## final value 257.634632
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 654.055298
## iter 10 value 300.838034
## iter 20 value 259.909686
## iter 30 value 256.124725
## final value 256.121085
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 564.621463
## iter 10 value 277.974994
## iter 20 value 258.698107
## iter 30 value 256.126869
## final value 256.121085
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 618.739010
## iter 10 value 322.190510
## iter 20 value 260.276354
## iter 30 value 253.621536
## iter 40 value 253.504312
## iter 40 value 253.504311
## final value 253.504311
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 562.758803
## iter 10 value 325.579490
## iter 20 value 256.864751
## iter 30 value 249.101056
## iter 40 value 248.016433
## final value 247.941379
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 453.746100
## iter 10 value 318.521858
## iter 20 value 272.083873
## iter 30 value 254.650709
## iter 40 value 252.887686
```

```
## iter 50 value 251.153209
## iter 60 value 249.172320
## iter 70 value 248.220617
## final value 248.217636
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 496.396209
## iter 10 value 313.934680
## iter 20 value 304.038687
## iter 30 value 283.990596
## iter 40 value 256.387520
## iter 50 value 252.440889
## iter 60 value 248.777287
## iter 70 value 248.239311
## final value 248.223324
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 704.787792
## iter 10 value 322.528435
## iter 20 value 283.259845
## iter 30 value 260.501572
## iter 40 value 254.296079
## iter 50 value 254.225195
## final value 254.224798
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 568.892470
## iter 10 value 301.897037
## iter 20 value 257.000579
## iter 30 value 247.667175
## iter 40 value 245.524271
## iter 50 value 244.776852
## iter 60 value 244.524522
## final value 244.524458
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 578.725417
## iter 10 value 328.154904
## iter 20 value 285.893013
## iter 30 value 260.215266
## iter 40 value 251.453394
## iter 50 value 249.088289
## iter 60 value 248.893881
## iter 70 value 248.874774
## iter 80 value 248.871088
## iter 90 value 248.865655
```

```
## final value 248.865639
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 529.296683
## iter 10 value 323.107007
## iter 20 value 298.371073
## iter 30 value 275.902473
## iter 40 value 253.284182
## iter 50 value 247.592106
## iter 60 value 246.162586
## iter 70 value 246.153314
## iter 70 value 246.153311
## iter 70 value 246.153311
## final value 246.153311
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 486.059797
## iter 10 value 320.513845
## iter 20 value 281.835764
## iter 30 value 260.368255
## iter 40 value 251.991445
## iter 50 value 246.877663
## iter 60 value 245.009458
## iter 70 value 244.589389
## iter 80 value 244.544644
## final value 244.544463
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 404.234148
## iter 10 value 313.845437
## iter 20 value 288.962240
## iter 30 value 269.077912
## iter 40 value 250.347883
## iter 50 value 246.869318
## iter 60 value 244.624055
## iter 70 value 244.382822
## final value 244.382325
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 525.510994
## iter 10 value 346.268882
## iter 20 value 346.031040
## iter 30 value 346.029333
## iter 40 value 346.027198
## iter 50 value 346.024415
## iter 60 value 346.020571
```

```
## iter 70 value 346.014801
## iter 80 value 346.004905
## iter 90 value 345.983127
## iter 100 value 345.887492
## final value 345.887492
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 753.249189
## iter 10 value 346.670230
## iter 20 value 345.985427
## iter 30 value 345.956494
## iter 40 value 345.835244
## iter 50 value 318.379449
## iter 60 value 316.229495
## iter 70 value 300.186924
## iter 80 value 284.900125
## iter 90 value 283.079449
## iter 100 value 278.749615
## final value 278.749615
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 7
## initial value 626.503877
## iter 10 value 346.348279
## iter 20 value 319.078103
## iter 30 value 310.629673
## iter 40 value 306.580903
## iter 50 value 303.859429
## iter 60 value 301.786076
## iter 70 value 300.909706
## iter 80 value 300.309393
## iter 90 value 300.063251
## iter 100 value 300.055144
## final value 300.055144
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 495.570976
## iter 10 value 346.241663
## iter 20 value 346.090261
## iter 30 value 346.089184
## iter 40 value 346.088025
## iter 50 value 346.086773
## iter
       60 value 346.085387
## iter 70 value 346.083805
## iter 80 value 346.081947
## iter 90 value 346.079718
## iter 100 value 346.076938
## final value 346.076938
## stopped after 100 iterations
```

```
## Fitting Repeat 5
##
## # weights: 7
## initial value 603.515656
## iter 10 value 346.383274
## iter 20 value 346.001697
## iter 30 value 345.986775
## iter 40 value 337.798525
## iter 50 value 302.879252
## iter 60 value 300.413605
## iter 70 value 300.332891
## iter 80 value 300.299892
## iter 90 value 296.372387
## iter 100 value 258.059442
## final value 258.059442
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 550.866628
## iter 10 value 346.390594
## iter 20 value 344.874369
## iter 30 value 313.060748
## iter 40 value 307.656429
## iter 50 value 297.727014
## iter 60 value 295.855998
## iter 70 value 295.254938
## iter 80 value 295.189532
## iter 90 value 295.170069
## iter 100 value 295.160008
## final value 295.160008
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 738.892175
## iter 10 value 346.530526
## iter 20 value 261.194604
## iter 30 value 252.017667
## iter 40 value 246.690956
## iter 50 value 245.810197
## iter 60 value 245.687086
## iter 70 value 245.320905
## iter 80 value 245.056971
## iter 90 value 244.846945
## iter 100 value 244.833393
## final value 244.833393
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 17
## initial value 436.667944
## iter 10 value 346.256544
## iter 20 value 304.723219
```

```
## iter 30 value 299.439584
## iter 40 value 298.757360
## iter 50 value 298.558844
## iter 60 value 298.511135
## iter 70 value 298.464566
## iter 80 value 298.076385
## iter 90 value 273.180500
## iter 100 value 254.601263
## final value 254.601263
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 17
## initial value 566.849610
## iter 10 value 346.435945
## iter 20 value 315.201038
## iter 30 value 269.939063
## iter 40 value 257.718887
## iter 50 value 253.771703
## iter 60 value 248.692963
## iter 70 value 247.966569
## iter 80 value 247.789857
## iter 90 value 247.675330
## iter 100 value 247.539254
## final value 247.539254
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 430.245897
## iter 10 value 346.352103
## iter 20 value 318.379722
## iter 30 value 318.221533
## iter 40 value 318.166127
## iter 50 value 318.107546
## iter 60 value 317.594409
## iter 70 value 316.910865
## iter 80 value 311.977802
## iter 90 value 311.715156
## iter 100 value 311.490275
## final value 311.490275
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 663.131040
## iter 10 value 346.707412
## iter 20 value 344.741606
## iter 30 value 310.177641
## iter 40 value 305.710388
## iter 50 value 303.199730
## iter 60 value 301.394361
## iter 70 value 280.125116
## iter 80 value 256.724041
```

```
## iter 90 value 253.554349
## iter 100 value 252.388258
## final value 252.388258
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 390.210648
## iter 10 value 345.730897
## iter 20 value 305.123487
## iter 30 value 297.000829
## iter 40 value 293.754695
## iter 50 value 293.212135
## iter 60 value 293.024372
## iter 70 value 292.998564
## iter 80 value 292.980568
## iter 90 value 292.940607
## iter 100 value 292.907207
## final value 292.907207
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 771.347034
## iter 10 value 347.017796
## iter 20 value 288.459144
## iter 30 value 256.774633
## iter 40 value 248.201820
## iter 50 value 239.819905
## iter 60 value 238.076496
## iter 70 value 236.366120
## iter 80 value 234.555491
## iter 90 value 234.435874
## iter 100 value 234.412668
## final value 234.412668
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 839.502619
## iter 10 value 346.389634
## iter 20 value 318.665392
## iter 30 value 313.425710
## iter 40 value 306.982202
## iter 50 value 278.056252
## iter 60 value 258.218835
## iter 70 value 255.680414
## iter 80 value 254.778118
## iter 90 value 253.837793
## iter 100 value 252.674965
## final value 252.674965
## stopped after 100 iterations
## Fitting Repeat 5
##
```

```
## # weights: 27
## initial value 891.840820
## iter 10 value 346.711591
## iter 20 value 284.729900
## iter 30 value 255.100641
## iter 40 value 240.630729
## iter 50 value 235.073600
## iter 60 value 233.765116
## iter 70 value 233.439743
## iter 80 value 233.167672
## iter 90 value 232.871233
## iter 100 value 232.800432
## final value 232.800432
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 760.952100
## final value 338.000000
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 731.330196
## final value 338.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 585.840007
## final value 338.000000
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 402.595078
## final value 338.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 575.465828
## final value 338.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 423.329249
## final value 338.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 475.709802
```

```
## final value 338.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 447.986090
## final value 338.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 810.877791
## final value 338.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 639.894303
## final value 338.000000
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 522.643713
## final value 338.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 693.762832
## final value 338.000000
## converged
## Fitting Repeat 3
## # weights: 27
## initial value 582.785465
## final value 338.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 651.563529
## final value 338.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 347.102639
## final value 338.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 574.180588
```

```
## iter 10 value 256.730993
## iter 20 value 246.783107
## iter 30 value 235.094592
## final value 235.081428
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 474.504980
## iter 10 value 253.463994
## iter 20 value 242.443545
## iter 30 value 235.081525
## final value 235.081428
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 430.269890
## iter 10 value 303.545301
## iter 20 value 257.436343
## iter 30 value 240.873532
## iter 40 value 235.081849
## final value 235.081428
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 336.800422
## iter 10 value 276.558111
## iter 20 value 268.578080
## iter 30 value 251.511909
## iter 40 value 236.534072
## final value 236.372131
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 422.470366
## iter 10 value 261.796424
## iter 20 value 251.231510
## iter 30 value 239.092643
## iter 40 value 235.116465
## final value 235.081428
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 343.037483
## iter 10 value 249.570104
## iter 20 value 235.989072
## iter 30 value 231.608692
## iter 40 value 231.586401
## iter 50 value 231.578410
## final value 231.578319
```

```
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 503.661360
## iter 10 value 297.747985
## iter 20 value 236.111814
## iter 30 value 226.862102
## iter 40 value 226.644373
## final value 226.643951
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 537.295475
## iter 10 value 279.120739
## iter 20 value 240.627853
## iter 30 value 232.544217
## iter 40 value 228.429007
## iter 50 value 228.332501
## iter 50 value 228.332501
## iter 50 value 228.332501
## final value 228.332501
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 353.885283
## iter 10 value 302.325005
## iter 20 value 284.223301
## iter 30 value 236.651678
## iter 40 value 230.556297
## iter 50 value 229.989988
## iter 60 value 229.977234
## iter 70 value 229.748844
## iter 80 value 229.670827
## final value 229.670824
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 507.329760
## iter 10 value 292.930341
## iter 20 value 241.468377
## iter 30 value 232.744885
## iter 40 value 229.102846
## iter 50 value 228.687203
## iter 60 value 228.328554
## iter 70 value 228.208451
## final value 228.205313
## converged
## Fitting Repeat 1
##
## # weights: 27
```

```
## initial value 527.995243
## iter 10 value 316.874143
## iter 20 value 285.238542
## iter 30 value 243.019728
## iter 40 value 225.454554
## iter 50 value 223.397142
## iter 60 value 223.121386
## final value 223.121141
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 744.666464
## iter 10 value 311.041085
## iter 20 value 273.434020
## iter 30 value 234.947502
## iter 40 value 230.088247
## iter 50 value 225.955832
## iter 60 value 224.462720
## iter 70 value 224.351784
## iter 80 value 224.309572
## final value 224.309530
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 774.018749
## iter 10 value 324.168077
## iter 20 value 260.374352
## iter 30 value 229.848454
## iter 40 value 226.246282
## iter 50 value 225.851185
## iter 60 value 225.230218
## iter 70 value 225.144966
## iter 80 value 225.128115
## final value 225.128093
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 684.696944
## iter 10 value 336.718618
## iter 20 value 292.395710
## iter 30 value 251.604965
## iter 40 value 238.468786
## iter 50 value 232.240687
## iter 60 value 229.012396
## iter 70 value 226.251486
## iter 80 value 225.959924
## iter 90 value 225.615025
## final value 225.567698
## converged
## Fitting Repeat 5
##
```

```
## # weights: 27
## initial value 767.308953
## iter 10 value 321.573207
## iter 20 value 256.214800
## iter 30 value 238.806874
## iter 40 value 229.971509
## iter 50 value 227.473091
## iter 60 value 227.220851
## iter 70 value 224.651887
## iter 80 value 222.639585
## iter 90 value 221.961652
## final value 221.946102
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 414.620545
## iter 10 value 338.160777
## iter 20 value 337.978125
## iter 30 value 296.580980
## iter 40 value 293.146971
## iter 50 value 289.472368
## iter 60 value 285.104142
## iter 70 value 241.875932
## iter 80 value 232.334125
## iter 90 value 232.221964
## final value 232.219278
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 407.301841
## iter 10 value 338.186173
## iter 20 value 338.043098
## iter 30 value 338.042630
## iter 40 value 338.042143
## iter 50 value 338.041633
## iter 60 value 338.041098
## iter 70 value 338.040533
## iter 80 value 338.039935
## iter 90 value 338.039297
## iter 100 value 338.038613
## final value 338.038613
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 390.057563
## iter 10 value 338.002493
## iter 20 value 328.289803
## iter 30 value 295.026145
## iter 40 value 294.044890
## iter 50 value 292.877552
## iter 60 value 292.705731
```

```
## iter 70 value 292.689628
## iter 80 value 254.271589
## iter 90 value 247.232244
## iter 100 value 247.174428
## final value 247.174428
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 382.277781
## iter 10 value 338.133725
## iter 20 value 337.884420
## iter 30 value 321.424711
## iter 40 value 299.284630
## iter 50 value 291.250371
## iter 60 value 290.998332
## iter 70 value 290.653005
## iter 80 value 290.622169
## iter 90 value 250.977892
## iter 100 value 247.238946
## final value 247.238946
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 7
## initial value 393.516938
## iter 10 value 338.150561
## iter 20 value 338.083546
## iter 30 value 338.082117
## iter 40 value 338.080500
## iter 50 value 338.078616
## iter 60 value 338.076351
## iter 70 value 338.073527
## iter 80 value 338.069833
## iter 90 value 338.064676
## iter 100 value 338.056765
## final value 338.056765
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 774.679212
## iter 10 value 338.733176
## iter 20 value 338.007630
## iter 30 value 318.817003
## iter 40 value 283.336456
## iter 50 value 231.226284
## iter 60 value 228.744199
## iter 70 value 224.530218
## iter 80 value 223.753825
## iter 90 value 222.709387
## iter 100 value 222.585672
## final value 222.585672
## stopped after 100 iterations
```

```
## Fitting Repeat 2
##
## # weights: 17
## initial value 624.762541
## iter 10 value 338.535259
## iter 20 value 337.940157
## iter 30 value 336.506405
## iter 40 value 320.579190
## iter 50 value 319.887067
## iter 60 value 297.632497
## iter 70 value 296.250807
## iter 80 value 295.931031
## iter 90 value 295.922301
## iter 100 value 295.902253
## final value 295.902253
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 472.220345
## iter 10 value 338.410161
## iter 20 value 338.024969
## iter 30 value 338.024488
## iter 40 value 337.974060
## iter 50 value 337.923412
## iter 60 value 331.486885
## iter 70 value 297.623316
## iter 80 value 285.233466
## iter 90 value 281.070619
## iter 100 value 279.942789
## final value 279.942789
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 405.263235
## iter 10 value 338.281628
## iter 20 value 337.677320
## iter 30 value 315.607742
## iter 40 value 301.277307
## iter 50 value 295.652796
## iter 60 value 288.104346
## iter 70 value 263.299384
## iter 80 value 236.091470
## iter 90 value 229.964655
## iter 100 value 229.383747
## final value 229.383747
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 467.722308
## iter 10 value 338.400370
## iter 20 value 296.457869
```

```
## iter 30 value 288.663249
## iter 40 value 252.764449
## iter 50 value 237.345692
## iter 60 value 234.789849
## iter 70 value 232.756461
## iter 80 value 232.738374
## iter 90 value 232.711655
## iter 100 value 232.628489
## final value 232.628489
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 499.162251
## iter 10 value 338.565949
## iter 20 value 307.834709
## iter 30 value 288.747249
## iter 40 value 285.997246
## iter 50 value 243.175738
## iter 60 value 232.294189
## iter 70 value 231.094662
## iter 80 value 229.692979
## iter 90 value 228.650590
## iter 100 value 228.425122
## final value 228.425122
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 701.457752
## iter 10 value 338.907137
## iter 20 value 338.004756
## iter 30 value 337.927918
## iter 40 value 287.311639
## iter 50 value 236.028788
## iter 60 value 228.220571
## iter 70 value 227.132135
## iter 80 value 225.451062
## iter 90 value 224.115596
## iter 100 value 223.691886
## final value 223.691886
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 598.051514
## iter 10 value 338.575966
## iter 20 value 338.039737
## iter 30 value 337.967845
## iter 40 value 311.788865
## iter 50 value 293.656902
## iter 60 value 288.716901
## iter 70 value 287.646114
## iter 80 value 286.783022
```

```
## iter 90 value 283.084993
## iter 100 value 281.070975
## final value 281.070975
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 566.675611
## iter 10 value 338.651035
## iter 20 value 338.025720
## iter 30 value 337.999190
## iter 40 value 337.980484
## iter 50 value 337.928617
## iter 60 value 337.133104
## iter 70 value 329.612276
## iter 80 value 321.871851
## iter 90 value 292.394062
## iter 100 value 282.201997
## final value 282.201997
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 27
## initial value 710.407862
## iter 10 value 338.663484
## iter 20 value 338.006180
## iter 30 value 307.631591
## iter 40 value 274.427927
## iter 50 value 261.767142
## iter 60 value 257.392273
## iter 70 value 252.089991
## iter 80 value 249.846938
## iter 90 value 248.239866
## iter 100 value 247.746507
## final value 247.746507
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 499.983076
## final value 348.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 418.129170
## final value 348.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 421.740090
## final value 348.000000
## converged
```

```
## Fitting Repeat 4
##
## # weights: 7
## initial value 498.148464
## final value 348.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 416.079495
## final value 348.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 474.825577
## final value 348.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 575.475827
## final value 348.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 498.933458
## final value 348.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 636.112157
## final value 348.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 747.748888
## final value 348.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 672.000127
## final value 348.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 461.523903
## final value 348.000000
## converged
```

```
## Fitting Repeat 3
##
## # weights: 27
## initial value 435.479189
## final value 348.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 338.074413
## iter 10 value 258.858078
## iter 20 value 241.501098
## iter 30 value 229.216056
## iter 40 value 217.621378
## iter 50 value 203.913800
## iter 60 value 185.631153
## iter 70 value 182.773892
## iter 80 value 180.900579
## iter 90 value 179.908170
## iter 100 value 179.818783
## final value 179.818783
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 649.466687
## final value 348.000000
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 520.277742
## iter 10 value 304.486548
## iter 20 value 261.376914
## iter 30 value 252.927838
## iter 40 value 252.856738
## final value 252.856468
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 450.792948
## iter 10 value 289.276801
## iter 20 value 255.742037
## iter 30 value 254.178507
## iter 30 value 254.178507
## iter 30 value 254.178507
## final value 254.178507
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 399.074614
## iter 10 value 272.696468
```

```
## iter 20 value 258.321801
## iter 30 value 252.949920
## iter 40 value 252.856630
## final value 252.856468
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 634.226074
## iter 10 value 286.823813
## iter 20 value 262.193265
## iter 30 value 253.302845
## iter 40 value 252.859941
## final value 252.856468
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 755.036129
## iter 10 value 277.181038
## iter 20 value 261.242839
## iter 30 value 253.603900
## iter 40 value 252.859250
## final value 252.856468
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 776.415340
## iter 10 value 285.003232
## iter 20 value 258.936164
## iter 30 value 249.423892
## iter 40 value 244.170787
## iter 50 value 242.095415
## iter 60 value 241.930976
## iter 70 value 241.859763
## final value 241.851686
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 501.898482
## iter 10 value 310.992323
## iter 20 value 265.091338
## iter 30 value 253.634724
## iter 40 value 247.266224
## iter 50 value 244.294552
## iter 60 value 244.155318
## final value 244.155271
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 745.170690
```

```
## iter 10 value 356.483355
## iter 20 value 307.539314
## iter 30 value 279.686297
## iter 40 value 247.922805
## iter 50 value 244.257183
## iter 60 value 244.112691
## iter 70 value 244.112098
## final value 244.112075
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 606.004825
## iter 10 value 294.794666
## iter 20 value 247.193660
## iter 30 value 242.090907
## iter 40 value 242.017829
## iter 50 value 241.964767
## iter 60 value 241.851688
## iter 60 value 241.851686
## iter 60 value 241.851686
## final value 241.851686
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 545.290055
## iter 10 value 304.689681
## iter 20 value 263.756145
## iter 30 value 254.742312
## iter 40 value 252.352630
## iter 50 value 252.310352
## iter 50 value 252.310352
## iter 50 value 252.310352
## final value 252.310352
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 400.653287
## iter 10 value 316.623364
## iter 20 value 266.074141
## iter 30 value 249.346967
## iter 40 value 242.634269
## iter 50 value 241.116632
## iter 60 value 240.126513
## iter 70 value 236.804628
## iter 80 value 234.291169
## iter 90 value 234.197455
## final value 234.197285
## converged
## Fitting Repeat 2
##
## # weights: 27
```

```
## initial value 469.427096
## iter 10 value 312.804611
## iter 20 value 270.573033
## iter 30 value 247.467603
## iter 40 value 243.387694
## iter 50 value 242.682042
## iter 60 value 242.103467
## iter 70 value 241.630595
## iter 80 value 239.799621
## iter 90 value 239.680891
## final value 239.680523
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 548.868483
## iter 10 value 305.397439
## iter 20 value 261.706486
## iter 30 value 246.233694
## iter 40 value 240.812126
## iter 50 value 237.538588
## iter 60 value 234.943028
## iter 70 value 234.774150
## iter 80 value 234.740782
## iter 90 value 234.720209
## iter 90 value 234.720207
## iter 90 value 234.720207
## final value 234.720207
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 480.088084
## iter 10 value 305.430521
## iter 20 value 253.107422
## iter 30 value 244.882683
## iter 40 value 242.473531
## iter 50 value 240.889581
## iter 60 value 239.220150
## iter 70 value 236.839913
## iter 80 value 235.475210
## iter 90 value 234.145125
## iter 100 value 234.067756
## final value 234.067756
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 560.459020
## iter 10 value 307.391737
## iter 20 value 279.605923
## iter 30 value 259.785574
## iter 40 value 251.550756
## iter 50 value 247.419933
```

```
## iter 60 value 242.431651
## iter 70 value 239.513329
## iter 80 value 239.422591
## final value 239.422086
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 721.135167
## iter 10 value 348.539174
## iter 20 value 348.027464
## iter 30 value 348.026749
## iter 40 value 348.025989
## iter 50 value 348.025141
## iter 60 value 348.024181
## iter 70 value 348.023108
## iter 80 value 342.117259
## iter 90 value 309.140871
## iter 100 value 273.754964
## final value 273.754964
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 523.669111
## iter 10 value 348.300173
## iter 20 value 307.424258
## iter 30 value 300.508863
## iter 40 value 299.895727
## iter 50 value 294.978315
## iter 60 value 256.687130
## iter 70 value 252.082039
## iter 80 value 251.723134
## final value 251.722249
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 734.530064
## iter 10 value 348.471560
## iter 20 value 348.026013
## iter 30 value 348.025595
## iter 40 value 348.025157
## iter 50 value 348.024697
## iter 60 value 348.024213
## iter 70 value 348.023699
## iter 80 value 348.023154
## iter 90 value 348.022569
## iter 100 value 348.021859
## final value 348.021859
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
```

```
## initial value 496.989910
## iter 10 value 348.294810
## iter 20 value 348.100634
## iter 30 value 348.097760
## iter 40 value 348.094051
## iter 50 value 348.088953
## iter 60 value 348.081275
## iter 70 value 348.067911
## iter 80 value 348.037403
## iter 90 value 347.888771
## iter 100 value 312.960653
## final value 312.960653
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 671.172170
## iter 10 value 348.439298
## iter 20 value 347.991884
## iter 30 value 347.983266
## iter 40 value 347.968725
## iter 50 value 347.936932
## iter 60 value 347.791379
## iter 70 value 315.235889
## iter 80 value 299.881108
## iter 90 value 299.769876
## iter 100 value 275.960133
## final value 275.960133
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 445.417166
## iter 10 value 348.367648
## iter 20 value 341.143388
## iter 30 value 304.822475
## iter 40 value 302.376697
## iter 50 value 301.599760
## iter 60 value 300.837379
## iter 70 value 299.251118
## iter 80 value 298.842260
## iter 90 value 298.748040
## iter 100 value 298.744679
## final value 298.744679
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 650.277502
## iter 10 value 348.578074
## iter 20 value 343.991484
## iter 30 value 296.787834
## iter 40 value 288.743521
## iter 50 value 245.229982
```

```
## iter 60 value 239.857828
## iter 70 value 239.632748
## iter 80 value 239.625320
## iter 90 value 239.621293
## iter 100 value 239.588294
## final value 239.588294
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 382.276038
## iter 10 value 348.410685
## iter 20 value 348.120555
## iter 30 value 348.077253
## iter 40 value 320.758071
## iter 50 value 309.140186
## iter 60 value 302.718554
## iter 70 value 277.924506
## iter 80 value 274.861077
## iter 90 value 267.977237
## iter 100 value 263.749639
## final value 263.749639
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 405.489321
## iter 10 value 348.220391
## iter 20 value 347.224991
## iter 30 value 293.788034
## iter 40 value 271.279635
## iter 50 value 268.947393
## iter 60 value 262.164758
## iter 70 value 258.300436
## iter 80 value 257.446474
## iter 90 value 252.615271
## iter 100 value 249.404995
## final value 249.404995
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 473.488138
## iter 10 value 348.240699
## iter 20 value 303.498675
## iter 30 value 290.585135
## iter 40 value 257.928362
## iter 50 value 256.193828
## iter 60 value 256.005261
## iter 70 value 255.957865
## iter 80 value 255.915357
## iter 90 value 255.501223
## iter 100 value 253.195889
## final value 253.195889
```

```
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 663.127427
## iter 10 value 348.564361
## iter 20 value 347.259345
## iter 30 value 307.117930
## iter 40 value 305.300814
## iter 50 value 263.124440
## iter 60 value 253.294058
## iter 70 value 243.155921
## iter 80 value 241.551115
## iter 90 value 239.002996
## iter 100 value 238.822660
## final value 238.822660
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 523.972600
## iter 10 value 348.544396
## iter 20 value 347.981241
## iter 30 value 310.547781
## iter 40 value 303.020054
## iter 50 value 298.677194
## iter 60 value 297.216418
## iter 70 value 294.061813
## iter 80 value 292.005945
## iter 90 value 290.589565
## iter 100 value 290.223145
## final value 290.223145
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 27
## initial value 581.478670
## iter 10 value 348.539555
## iter 20 value 328.058070
## iter 30 value 316.395112
## iter 40 value 297.786445
## iter 50 value 293.752121
## iter 60 value 292.573464
## iter 70 value 290.944639
## iter 80 value 290.796009
## iter 90 value 290.785410
## iter 100 value 290.773044
## final value 290.773044
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 530.807942
## iter 10 value 348.366471
```

```
## iter 20 value 347.626657
## iter 30 value 306.583552
## iter 40 value 299.366362
## iter 50 value 296.845293
## iter 60 value 296.373233
## iter 70 value 295.148095
## iter 80 value 273.182009
## iter 90 value 265.832502
## iter 100 value 255.541443
## final value 255.541443
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 27
## initial value 515.176429
## iter 10 value 348.439666
## iter 20 value 339.945996
## iter 30 value 271.175973
## iter 40 value 256.043838
## iter 50 value 243.512137
## iter 60 value 238.931208
## iter 70 value 234.494733
## iter 80 value 233.327229
## iter 90 value 233.313170
## iter 100 value 233.274476
## final value 233.274476
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 602.281007
## final value 352.000000
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 556.059160
## final value 352.000000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 693.204096
## final value 352.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 547.125616
## final value 352.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
```

```
## initial value 552.011670
## final value 352.000000
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 567.683978
## final value 352.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 662.834510
## final value 352.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 562.645634
## final value 352.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 965.101175
## final value 352.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 519.455712
## final value 352.000000
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 743.571513
## final value 352.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 694.567482
## final value 352.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 585.287486
## final value 352.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
```

```
## initial value 556.972162
## final value 352.000000
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 454.201679
## final value 352.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 474.271198
## iter 10 value 285.039747
## iter 20 value 282.485167
## final value 282.482614
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 506.282493
## iter 10 value 280.413314
## iter 20 value 263.542213
## iter 30 value 258.439003
## iter 40 value 257.649191
## iter 40 value 257.649191
## final value 257.649191
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 539.267012
## iter 10 value 286.092106
## iter 20 value 282.482690
## final value 282.482613
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 497.684973
## iter 10 value 313.433679
## iter 20 value 263.937961
## iter 30 value 257.721411
## iter 40 value 257.649205
## final value 257.649190
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 579.230108
## iter 10 value 288.785616
## iter 20 value 282.482813
## final value 282.482613
## converged
```

```
## Fitting Repeat 1
##
## # weights: 17
## initial value 944.497840
## iter 10 value 268.857000
## iter 20 value 255.845232
## iter 30 value 251.194798
## iter 40 value 248.373746
## iter 50 value 246.326500
## iter 60 value 245.585011
## iter 70 value 244.656037
## final value 244.654390
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 394.800199
## iter 10 value 308.111510
## iter 20 value 259.710568
## iter 30 value 249.690040
## iter 40 value 248.384757
## iter 50 value 247.903869
## iter 60 value 247.863069
## final value 247.863060
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 496.193352
## iter 10 value 318.436664
## iter 20 value 283.742892
## iter 30 value 274.958735
## iter 40 value 264.002101
## iter 50 value 248.033131
## iter 60 value 246.115443
## iter 70 value 245.144310
## final value 245.113308
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 469.504901
## iter 10 value 313.675578
## iter 20 value 256.691246
## iter 30 value 250.234008
## iter 40 value 248.949949
## final value 248.925966
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 450.918782
## iter 10 value 310.660016
## iter 20 value 264.148322
```

```
## iter 30 value 251.167753
## iter 40 value 249.169113
## iter 50 value 249.125583
## iter 60 value 248.828713
## iter 70 value 245.398274
## iter 80 value 245.341493
## final value 245.341073
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 671.889681
## iter 10 value 348.844634
## iter 20 value 256.931761
## iter 30 value 247.644387
## iter 40 value 243.906049
## iter 50 value 243.319843
## final value 243.319180
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 389.637634
## iter 10 value 310.898289
## iter 20 value 297.534755
## iter 30 value 251.420017
## iter 40 value 244.053977
## iter 50 value 242.574046
## iter 60 value 242.254802
## iter 70 value 241.339034
## iter 80 value 241.254391
## iter 90 value 241.126583
## iter 100 value 241.042963
## final value 241.042963
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 620.241811
## iter 10 value 311.441964
## iter 20 value 257.001768
## iter 30 value 247.858902
## iter 40 value 244.738987
## iter 50 value 242.825602
## iter 60 value 242.251693
## iter 70 value 242.198033
## iter 70 value 242.198033
## iter 70 value 242.198033
## final value 242.198033
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 641.754330
```

```
## iter 10 value 274.114895
## iter 20 value 254.136092
## iter 30 value 246.013410
## iter 40 value 245.074905
## iter 50 value 243.489326
## iter 60 value 239.772120
## iter 70 value 231.372440
## iter 80 value 220.369806
## iter 90 value 214.972475
## iter 100 value 214.656756
## final value 214.656756
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 572.530699
## iter 10 value 333.279741
## iter 20 value 271.372108
## iter 30 value 255.055253
## iter 40 value 248.385538
## iter 50 value 246.546561
## iter 60 value 246.245566
## iter 70 value 245.039814
## iter 80 value 243.673104
## iter 90 value 243.379131
## final value 243.379109
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 346.731279
## iter 10 value 280.524183
## iter 20 value 276.993460
## iter 30 value 270.167800
## iter 40 value 264.417262
## iter 50 value 260.479557
## iter 60 value 258.365764
## iter 70 value 258.289411
## final value 258.160694
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 550.773837
## iter 10 value 352.316751
## iter 20 value 332.358076
## iter 30 value 307.445268
## iter 40 value 305.451608
## iter 50 value 304.047573
## final value 304.001496
## converged
## Fitting Repeat 3
##
## # weights: 7
```

```
## initial value 418.184562
## iter 10 value 352.149811
## iter 20 value 352.035088
## iter 30 value 352.034739
## iter 40 value 352.034378
## iter 50 value 352.034004
## iter 60 value 352.033616
## iter 70 value 352.033212
## iter 80 value 352.032790
## iter 90 value 352.032348
## iter 100 value 352.031883
## final value 352.031883
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 782.137156
## iter 10 value 352.511255
## iter 20 value 352.033183
## iter 30 value 352.032964
## iter 40 value 352.032742
## iter 50 value 352.032519
## iter 60 value 352.032293
## iter 70 value 352.032065
## iter 80 value 352.031834
## iter 90 value 352.031601
## iter 100 value 352.031364
## final value 352.031364
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 795.468532
## iter 10 value 352.520105
## iter 20 value 352.012502
## iter 30 value 351.808841
## iter 40 value 316.223743
## iter 50 value 309.246204
## iter 60 value 304.832481
## iter 70 value 273.260914
## iter 80 value 262.591193
## iter 90 value 258.329169
## iter 100 value 255.986224
## final value 255.986224
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 759.745045
## iter 10 value 352.850444
## iter 20 value 352.033510
## iter 30 value 313.358145
## iter 40 value 310.615931
## iter 50 value 295.586042
```

```
## iter 60 value 281.223043
## iter 70 value 266.872728
## iter 80 value 266.548859
## iter 90 value 266.390245
## iter 100 value 266.373217
## final value 266.373217
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 460.229644
## iter 10 value 352.292731
## iter 20 value 352.039323
## iter 30 value 324.330163
## iter 40 value 310.616930
## iter 50 value 299.617169
## iter 60 value 298.195368
## iter 70 value 295.930089
## iter 80 value 294.982723
## iter 90 value 294.157873
## iter 100 value 294.111059
## final value 294.111059
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 465.477437
## iter 10 value 352.383618
## iter 20 value 351.861263
## iter 30 value 309.928658
## iter 40 value 296.683104
## iter 50 value 254.687467
## iter 60 value 251.608156
## iter 70 value 250.528646
## iter 80 value 249.695038
## iter 90 value 241.665172
## iter 100 value 241.329711
## final value 241.329711
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 777.665748
## iter 10 value 352.612307
## iter 20 value 352.028254
## iter 30 value 321.503688
## iter 40 value 320.354177
## iter 50 value 312.114962
## iter 60 value 310.890083
## iter 70 value 308.124877
## iter 80 value 296.561686
## iter 90 value 269.292926
## iter 100 value 268.914892
## final value 268.914892
```

```
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 548.906066
## iter 10 value 351.524500
## iter 20 value 321.521011
## iter 30 value 309.892111
## iter 40 value 306.390032
## iter 50 value 305.473996
## iter 60 value 304.216968
## iter 70 value 304.202977
## iter 80 value 303.997722
## iter 90 value 303.965461
## iter 100 value 303.920694
## final value 303.920694
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights:
## initial value 595.658910
## iter 10 value 352.482708
## iter 20 value 352.000265
## iter 30 value 333.542133
## iter 40 value 310.421694
## iter 50 value 308.790482
## iter 60 value 302.898442
## iter 70 value 263.338396
## iter 80 value 257.716227
## iter 90 value 252.341419
## iter 100 value 250.430214
## final value 250.430214
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 707.614662
## iter 10 value 352.798872
## iter 20 value 352.009586
## iter 30 value 330.591935
## iter 40 value 308.896230
## iter 50 value 300.109166
## iter 60 value 296.497626
## iter 70 value 295.768811
## iter 80 value 249.842955
## iter 90 value 247.449893
## iter 100 value 239.167106
## final value 239.167106
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 429.387478
## iter 10 value 352.494477
```

```
## iter 20 value 318.001028
## iter 30 value 289.097188
## iter 40 value 285.072395
## iter 50 value 268.525561
## iter 60 value 259.236821
## iter 70 value 255.055385
## iter 80 value 247.788467
## iter 90 value 245.580699
## iter 100 value 245.306367
## final value 245.306367
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 27
## initial value 384.806662
## iter 10 value 352.242432
## iter 20 value 351.495612
## iter 30 value 310.925363
## iter 40 value 310.330847
## iter 50 value 309.345804
## iter 60 value 308.919625
## iter 70 value 306.248797
## iter 80 value 305.340283
## iter 90 value 305.072885
## iter 100 value 304.900502
## final value 304.900502
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 509.595016
## iter 10 value 352.481717
## iter 20 value 320.279407
## iter 30 value 278.582237
## iter 40 value 266.904984
## iter 50 value 265.295331
## iter 60 value 264.400062
## iter 70 value 262.949049
## iter 80 value 262.399418
## iter 90 value 262.316562
## iter 100 value 261.983008
## final value 261.983008
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 7
## initial value 524.981980
## final value 318.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 512.436308
## final value 318.000000
```

```
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 628.059197
## final value 318.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 542.772832
## final value 318.000000
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 445.970756
## final value 318.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 351.921762
## final value 318.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 421.441261
## final value 318.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 631.862251
## final value 318.000000
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 415.487117
## final value 318.000000
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 589.819059
## final value 318.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 285.732854
## iter 10 value 235.256823
```

```
## iter 20 value 225.650225
## iter 30 value 218.891359
## iter 40 value 199.289706
## iter 50 value 197.739601
## iter 60 value 197.500011
## iter 70 value 197.478011
## iter 80 value 197.424360
## iter 90 value 197.400326
## iter 100 value 197.391173
## final value 197.391173
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 503.057475
## final value 318.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 471.641720
## final value 318.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 510.431631
## final value 318.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 479.946195
## final value 318.000000
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 399.980032
## iter 10 value 267.479663
## iter 20 value 251.291974
## iter 30 value 248.317524
## iter 40 value 248.291669
## iter 50 value 245.666490
## iter 60 value 239.177329
## final value 238.893782
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 416.488639
## iter 10 value 303.771628
## iter 20 value 284.540641
## iter 30 value 248.555290
```

```
## iter 40 value 245.148681
## final value 244.942277
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 557.239494
## iter 10 value 267.295857
## iter 20 value 248.419536
## iter 30 value 247.768637
## iter 40 value 243.639373
## iter 50 value 238.897896
## final value 238.893779
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 525.287409
## iter 10 value 292.489355
## iter 20 value 252.382345
## iter 30 value 243.776022
## final value 243.769341
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 508.708344
## iter 10 value 270.545179
## iter 20 value 253.525992
## iter 30 value 243.930324
## iter 40 value 243.769406
## final value 243.769343
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 603.004017
## iter 10 value 297.500506
## iter 20 value 292.408432
## iter 30 value 263.475890
## iter 40 value 245.524665
## iter 50 value 236.806857
## iter 60 value 231.159511
## iter 70 value 230.552561
## iter 80 value 230.544874
## iter 90 value 229.427838
## iter 100 value 228.063329
## final value 228.063329
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 392.018966
## iter 10 value 285.011968
```

```
## iter 20 value 235.029564
## iter 30 value 229.766703
## iter 40 value 225.439525
## iter 50 value 223.029272
## iter 60 value 220.303221
## iter 70 value 220.017856
## final value 220.017825
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 377.257810
## iter 10 value 269.617805
## iter 20 value 238.852019
## iter 30 value 234.914711
## iter 40 value 233.344940
## final value 233.268786
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 416.136238
## iter 10 value 285.829729
## iter 20 value 246.798837
## iter 30 value 234.995083
## iter 40 value 230.858158
## iter 50 value 230.377753
## iter 60 value 230.367452
## final value 230.367219
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 532.093515
## iter 10 value 283.027265
## iter 20 value 233.376944
## iter 30 value 229.634050
## iter 40 value 228.928374
## final value 228.921116
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 427.937239
## iter 10 value 282.552891
## iter 20 value 245.189926
## iter 30 value 236.173098
## iter 40 value 228.005059
## iter 50 value 226.325821
## iter 60 value 225.418716
## iter 70 value 224.534571
## iter 80 value 224.490209
## final value 224.490146
## converged
```

```
## Fitting Repeat 2
##
## # weights: 27
## initial value 704.919700
## iter 10 value 315.040850
## iter 20 value 258.576960
## iter 30 value 236.685520
## iter 40 value 231.544388
## iter 50 value 228.767500
## iter 60 value 228.726757
## iter 60 value 228.726755
## iter 60 value 228.726755
## final value 228.726755
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 302.469619
## iter 10 value 239.888468
## iter 20 value 231.504945
## iter 30 value 229.449393
## iter 40 value 228.573505
## iter 50 value 226.887701
## iter 60 value 221.607904
## iter 70 value 219.500403
## iter 80 value 216.273795
## iter 90 value 201.904990
## iter 100 value 201.699615
## final value 201.699615
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 646.220675
## iter 10 value 296.450326
## iter 20 value 268.697810
## iter 30 value 240.103699
## iter 40 value 232.431837
## iter 50 value 229.291993
## iter 60 value 227.893319
## iter 70 value 227.193814
## iter 80 value 224.368917
## iter 90 value 220.084982
## iter 100 value 218.841600
## final value 218.841600
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 530.875346
## iter 10 value 299.303953
## iter 20 value 258.334196
## iter 30 value 243.457206
## iter 40 value 240.605211
```

```
## iter 50 value 231.256683
## iter 60 value 227.923391
## iter 70 value 227.719350
## iter 80 value 227.079650
## iter 90 value 226.412549
## final value 226.411284
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 499.902265
## iter 10 value 318.267789
## iter 20 value 297.821132
## iter 30 value 288.218792
## iter 40 value 284.412606
## iter 50 value 282.295734
## iter 60 value 282.050350
## iter 70 value 282.045511
## iter 80 value 246.339465
## iter 90 value 245.960219
## final value 245.959904
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 721.038374
## iter 10 value 318.535480
## iter 20 value 318.034232
## iter 30 value 308.538382
## iter 40 value 250.519112
## iter 50 value 246.388855
## iter 60 value 246.173051
## iter 70 value 245.943061
## iter 70 value 245.943061
## iter 70 value 245.943061
## final value 245.943061
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 618.152755
## iter 10 value 318.306298
## iter 20 value 318.062566
## iter 30 value 318.059876
## iter 40 value 318.056423
## iter 50 value 318.051759
## iter 60 value 318.044836
## iter 70 value 318.033058
## iter 80 value 318.007660
## iter 90 value 317.908462
## iter 100 value 290.106730
## final value 290.106730
## stopped after 100 iterations
## Fitting Repeat 4
```

```
##
## # weights: 7
## initial value 603.828036
## iter 10 value 318.377599
## iter 20 value 317.977943
## iter 30 value 317.916059
## iter 40 value 313.956862
## iter 50 value 281.345590
## iter 60 value 277.180424
## iter 70 value 275.021319
## iter 80 value 274.968857
## iter 90 value 245.050130
## iter 100 value 231.991313
## final value 231.991313
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 502.345570
## iter 10 value 318.300593
## iter 20 value 318.019962
## iter 30 value 318.018939
## iter 40 value 318.017835
## iter 50 value 318.016590
## iter 60 value 318.015143
## iter 70 value 318.013420
## iter 80 value 318.011293
## iter 90 value 318.008316
## iter 100 value 318.003403
## final value 318.003403
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 395.681130
## iter 10 value 318.202495
## iter 20 value 302.206013
## iter 30 value 280.176505
## iter 40 value 272.309482
## iter 50 value 270.865169
## iter 60 value 270.537107
## iter 70 value 267.114999
## iter 80 value 233.604513
## iter 90 value 233.051784
## iter 100 value 223.993599
## final value 223.993599
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 611.135111
## iter 10 value 318.388537
## iter 20 value 299.560256
## iter 30 value 286.790907
```

```
## iter 40 value 286.104577
## iter 50 value 283.342680
## iter 60 value 282.848602
## iter 70 value 282.734102
## iter 80 value 282.705605
## iter 90 value 282.701920
## iter 100 value 261.423340
## final value 261.423340
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 569.786908
## iter 10 value 318.399602
## iter 20 value 310.144845
## iter 30 value 276.652817
## iter 40 value 270.257792
## iter 50 value 268.106110
## iter 60 value 268.038014
## iter 70 value 267.855358
## iter 80 value 267.838074
## iter 90 value 267.801156
## iter 100 value 267.760825
## final value 267.760825
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 641.904534
## iter 10 value 318.638261
## iter 20 value 318.008515
## iter 30 value 318.000246
## iter 40 value 316.694216
## iter 50 value 287.542154
## iter 60 value 284.232774
## iter 70 value 279.810161
## iter 80 value 276.871025
## iter 90 value 274.273247
## iter 100 value 272.451809
## final value 272.451809
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 692.971876
## iter 10 value 318.449976
## iter 20 value 317.934908
## iter 30 value 316.904360
## iter 40 value 284.258492
## iter 50 value 277.118936
## iter 60 value 271.306039
## iter 70 value 266.819941
## iter 80 value 265.485866
## iter 90 value 264.619567
```

```
## iter 100 value 263.174803
## final value 263.174803
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 360.410272
## iter 10 value 318.214762
## iter 20 value 255.758941
## iter 30 value 239.615488
## iter 40 value 226.210851
## iter 50 value 221.677413
## iter 60 value 219.811300
## iter 70 value 219.661907
## iter 80 value 219.646966
## iter 90 value 219.563393
## iter 100 value 219.396621
## final value 219.396621
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 570.948865
## iter 10 value 318.459848
## iter 20 value 317.663064
## iter 30 value 292.445935
## iter 40 value 276.972356
## iter 50 value 273.239570
## iter 60 value 271.840795
## iter 70 value 270.626960
## iter 80 value 270.313937
## iter 90 value 269.931066
## iter 100 value 267.768077
## final value 267.768077
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 560.109410
## iter 10 value 318.550912
## iter 20 value 317.896389
## iter 30 value 313.103006
## iter 40 value 311.362052
## iter 50 value 290.705446
## iter 60 value 275.191082
## iter 70 value 269.282130
## iter 80 value 266.873368
## iter 90 value 264.893151
## iter 100 value 264.826883
## final value 264.826883
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
```

```
## initial value 444.608475
## iter 10 value 318.439549
## iter 20 value 287.628683
## iter 30 value 249.291291
## iter 40 value 228.376837
## iter 50 value 215.594060
## iter 60 value 212.789260
## iter 70 value 210.275496
## iter 80 value 209.754368
## iter 90 value 209.706852
## iter 100 value 209.673421
## final value 209.673421
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 495.511564
## iter 10 value 318.574793
## iter 20 value 317.982218
## iter 30 value 308.701081
## iter 40 value 284.351976
## iter 50 value 264.212159
## iter 60 value 257.116972
## iter 70 value 250.234900
## iter 80 value 243.190652
## iter 90 value 238.537948
## iter 100 value 237.700344
## final value 237.700344
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 459.645156
## final value 326.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 490.706614
## final value 326.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 460.411442
## final value 326.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 630.813518
## final value 326.000000
## converged
## Fitting Repeat 5
```

```
##
## # weights: 7
## initial value 598.320446
## final value 326.000000
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 515.203984
## final value 326.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 391.338725
## final value 326.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 531.194633
## final value 326.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 1008.811449
## final value 326.000000
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 323.512699
## iter 10 value 276.109837
## iter 20 value 255.698713
## iter 30 value 254.646640
## iter 40 value 253.880921
## iter 50 value 252.257472
## iter 60 value 249.941575
## iter 70 value 249.392198
## iter 80 value 249.349059
## iter 90 value 249.283074
## iter 100 value 249.264512
## final value 249.264512
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 784.739369
## final value 326.000000
## converged
## Fitting Repeat 2
##
## # weights: 27
```

```
## initial value 754.096235
## final value 326.000000
## converged
## Fitting Repeat 3
## # weights: 27
## initial value 608.986585
## final value 326.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 372.775275
## iter 10 value 301.998386
## iter 20 value 301.903907
## iter 30 value 301.379018
## iter 40 value 301.284234
## iter 50 value 300.411169
## final value 300.332698
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 306.180512
## iter 10 value 278.645410
## iter 20 value 242.883450
## iter 30 value 229.906401
## iter 40 value 227.161801
## iter 50 value 224.728265
## iter 60 value 220.839356
## iter 70 value 219.505781
## iter 80 value 218.513438
## iter 90 value 218.390444
## final value 218.377688
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 499.478011
## iter 10 value 262.522249
## iter 20 value 258.338049
## iter 30 value 258.278123
## iter 30 value 258.278123
## iter 30 value 258.278123
## final value 258.278123
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 495.935490
## iter 10 value 262.397818
## iter 20 value 255.775603
## final value 255.774667
## converged
```

```
## Fitting Repeat 3
##
## # weights: 7
## initial value 740.986738
## iter 10 value 297.360324
## iter 20 value 254.626826
## iter 30 value 247.867568
## iter 40 value 243.971664
## iter 50 value 242.779452
## iter 60 value 242.059674
## iter 60 value 242.059672
## iter 60 value 242.059672
## final value 242.059672
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 441.676666
## iter 10 value 289.324394
## iter 20 value 261.032918
## iter 30 value 243.249833
## final value 243.241279
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 653.673946
## iter 10 value 267.760525
## iter 20 value 248.035326
## final value 247.880819
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 421.352270
## iter 10 value 288.172501
## iter 20 value 259.703235
## iter 30 value 239.069513
## iter 40 value 229.013716
## iter 50 value 228.397531
## iter 60 value 228.137013
## iter 70 value 228.132752
## final value 228.132121
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 641.217727
## iter 10 value 280.589214
## iter 20 value 259.179520
## iter 30 value 249.956358
## iter 40 value 233.181152
## iter 50 value 232.130642
## iter 60 value 231.842297
```

```
## iter 70 value 231.794196
## final value 231.794064
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 346.170081
## iter 10 value 260.932172
## iter 20 value 242.525094
## iter 30 value 237.136447
## iter 40 value 235.564892
## iter 50 value 233.857138
## iter 60 value 230.643743
## iter 70 value 230.099326
## final value 230.099289
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 542.943995
## iter 10 value 330.014694
## iter 20 value 293.269752
## iter 30 value 248.383619
## iter 40 value 232.700737
## iter 50 value 229.355461
## iter 60 value 229.110327
## iter 70 value 227.340828
## iter 80 value 226.566808
## final value 226.566018
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 300.633149
## iter 10 value 239.934317
## iter 20 value 231.382918
## iter 30 value 228.886128
## iter 40 value 228.673483
## iter 50 value 228.636577
## iter 60 value 228.636202
## iter 60 value 228.636201
## iter 60 value 228.636201
## final value 228.636201
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 483.228911
## iter 10 value 287.881390
## iter 20 value 239.373946
## iter 30 value 228.939808
## iter 40 value 217.679313
## iter 50 value 210.433131
## iter 60 value 205.816132
```

```
## iter 70 value 205.461745
## iter 80 value 205.366206
## iter 90 value 203.716747
## iter 100 value 202.956608
## final value 202.956608
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 298.681784
## iter 10 value 236.221003
## iter 20 value 227.676212
## iter 30 value 225.472193
## iter 40 value 225.242215
## iter 50 value 224.923301
## iter 60 value 224.227362
## iter 70 value 224.132266
## iter 80 value 224.056732
## final value 224.050687
## converged
## Fitting Repeat 3
## # weights: 27
## initial value 416.371523
## iter 10 value 315.147801
## iter 20 value 279.763568
## iter 30 value 237.264494
## iter 40 value 228.099597
## iter 50 value 227.370310
## iter 60 value 227.297799
## final value 227.297787
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 384.376350
## iter 10 value 291.713368
## iter 20 value 264.459184
## iter 30 value 236.349085
## iter 40 value 230.232148
## iter 50 value 228.632824
## iter 60 value 228.552258
## iter 70 value 228.355608
## iter 80 value 228.309710
## iter 90 value 227.346680
## iter 100 value 225.325412
## final value 225.325412
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 27
## initial value 564.703051
## iter 10 value 303.648131
## iter 20 value 265.334780
```

```
## iter 30 value 243.622630
## iter 40 value 232.317263
## iter 50 value 227.249858
## iter 60 value 227.011323
## iter 70 value 226.948407
## iter 80 value 226.923898
## iter 90 value 226.862191
## iter 100 value 226.303869
## final value 226.303869
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 625.114150
## iter 10 value 326.361773
## iter 20 value 294.289920
## iter 30 value 287.633186
## iter 40 value 281.628171
## iter 50 value 250.532587
## iter 60 value 250.090123
## iter 70 value 249.833875
## iter 80 value 249.806320
## iter 90 value 249.782265
## iter 100 value 249.767191
## final value 249.767191
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 7
## initial value 621.149639
## iter 10 value 326.439409
## iter 20 value 320.162541
## iter 30 value 289.862472
## iter 40 value 258.796171
## iter 50 value 255.445288
## iter 60 value 254.967714
## iter 70 value 252.224896
## iter 80 value 250.373855
## iter 90 value 250.357751
## final value 250.305721
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 610.189266
## iter 10 value 326.355367
## iter 20 value 325.996984
## iter 30 value 325.981216
## iter 40 value 325.940004
## iter 50 value 325.587169
## iter 60 value 297.779691
## iter 70 value 287.854468
## iter 80 value 287.452390
## iter 90 value 287.394086
```

```
## iter 100 value 283.403364
## final value 283.403364
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 7
## initial value 577.031993
## iter 10 value 326.313231
## iter 20 value 320.117395
## iter 30 value 296.328503
## iter 40 value 296.243178
## iter 50 value 296.218886
## iter 60 value 296.201652
## iter 70 value 296.178672
## iter 80 value 296.172145
## iter 90 value 296.169692
## iter 100 value 296.154173
## final value 296.154173
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 483.742763
## iter 10 value 326.281623
## iter 20 value 326.026390
## iter 30 value 295.744057
## iter 40 value 260.439772
## iter 50 value 258.466761
## iter 60 value 256.432409
## iter 70 value 256.187109
## iter 80 value 256.133254
## iter 90 value 256.086030
## final value 256.085454
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 367.276968
## iter 10 value 326.193510
## iter 20 value 286.956835
## iter 30 value 278.582239
## iter 40 value 277.723771
## iter 50 value 277.566685
## iter 60 value 237.784113
## iter 70 value 234.856696
## iter 80 value 234.121915
## iter 90 value 232.405177
## iter 100 value 231.488842
## final value 231.488842
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 428.141453
```

```
## iter 10 value 326.354149
## iter 20 value 325.901878
## iter 30 value 319.128659
## iter 40 value 294.246902
## iter 50 value 291.210517
## iter 60 value 284.017969
## iter 70 value 267.203813
## iter 80 value 234.051013
## iter 90 value 226.036040
## iter 100 value 221.692820
## final value 221.692820
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 511.969994
## iter 10 value 326.594801
## iter 20 value 295.991293
## iter 30 value 251.792754
## iter 40 value 227.521878
## iter 50 value 225.709962
## iter 60 value 224.609334
## iter 70 value 224.548447
## iter 80 value 224.360744
## iter 90 value 224.346820
## final value 224.333902
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 485.030322
## iter 10 value 326.128895
## iter 20 value 290.427324
## iter 30 value 282.725243
## iter 40 value 281.017499
## iter 50 value 280.466698
## iter 60 value 280.392793
## iter 70 value 279.966404
## iter 80 value 278.247774
## iter 90 value 278.232384
## iter 100 value 278.172824
## final value 278.172824
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 437.983530
## iter 10 value 326.338231
## iter 20 value 325.963019
## iter 30 value 325.569148
## iter 40 value 298.950756
## iter 50 value 280.893311
## iter 60 value 278.652022
## iter 70 value 278.294982
```

```
## iter 80 value 277.548326
## iter 90 value 277.496633
## iter 100 value 277.323200
## final value 277.323200
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 562.657773
## iter 10 value 326.659722
## iter 20 value 325.346038
## iter 30 value 285.855657
## iter 40 value 282.559229
## iter 50 value 275.896169
## iter 60 value 275.405357
## iter 70 value 274.963841
## iter 80 value 252.301519
## iter 90 value 238.609444
## iter 100 value 231.302698
## final value 231.302698
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 823.292641
## iter 10 value 326.964320
## iter 20 value 326.013632
## iter 30 value 325.606004
## iter 40 value 270.483436
## iter 50 value 253.780774
## iter 60 value 245.438778
## iter 70 value 241.897900
## iter 80 value 235.962413
## iter 90 value 234.819582
## iter 100 value 232.202802
## final value 232.202802
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 603.492922
## iter 10 value 325.883623
## iter 20 value 296.569047
## iter 30 value 289.567150
## iter 40 value 287.702801
## iter 50 value 286.486482
## iter 60 value 285.944659
## iter 70 value 285.867536
## iter 80 value 285.533814
## iter 90 value 285.032282
## iter 100 value 284.858184
## final value 284.858184
## stopped after 100 iterations
## Fitting Repeat 4
```

```
##
## # weights: 27
## initial value 685.830861
## iter 10 value 326.465229
## iter 20 value 326.031635
## iter 30 value 284.797024
## iter 40 value 278.316320
## iter 50 value 276.542584
## iter 60 value 275.866509
## iter 70 value 275.713350
## iter 80 value 275.482958
## iter 90 value 275.358393
## iter 100 value 275.351313
## final value 275.351313
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 298.396989
## iter 10 value 235.232380
## iter 20 value 223.195972
## iter 30 value 218.951534
## iter 40 value 217.398376
## iter 50 value 217.264125
## iter 60 value 217.205692
## iter 70 value 217.192472
## iter 80 value 217.172462
## iter 90 value 217.120609
## iter 100 value 217.093517
## final value 217.093517
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 455.228692
## final value 328.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 449.726513
## final value 328.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 560.210116
## final value 328.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 543.751958
## final value 328.000000
```

```
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 714.802042
## final value 328.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 500.598660
## final value 328.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 504.748314
## final value 328.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 726.534439
## final value 328.000000
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 535.609700
## final value 328.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 730.561762
## final value 328.000000
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 382.724972
## final value 313.714285
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 658.950189
## final value 328.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 470.108327
## final value 328.000000
```

```
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 537.745267
## final value 328.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 624.113801
## final value 328.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 475.052219
## iter 10 value 250.643781
## iter 20 value 243.379073
## iter 30 value 240.253351
## iter 40 value 237.782922
## final value 237.501378
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 453.284327
## iter 10 value 289.540541
## iter 20 value 250.686529
## iter 30 value 238.010497
## final value 237.501378
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 714.701544
## iter 10 value 288.190896
## iter 20 value 243.368021
## iter 30 value 240.237706
## iter 40 value 237.502450
## final value 237.501402
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 546.040804
## iter 10 value 256.301660
## iter 20 value 245.344733
## iter 30 value 244.018569
## iter 40 value 240.174396
## iter 50 value 237.503504
## final value 237.501378
## converged
## Fitting Repeat 5
```

```
##
## # weights: 7
## initial value 643.232838
## iter 10 value 316.337896
## iter 20 value 293.067068
## iter 30 value 242.481807
## iter 40 value 240.228945
## iter 50 value 237.522826
## final value 237.501378
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 636.815481
## iter 10 value 291.783455
## iter 20 value 241.797639
## iter 30 value 228.321856
## iter 40 value 227.265965
## iter 50 value 227.249509
## final value 227.246985
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 606.389950
## iter 10 value 292.131105
## iter 20 value 244.159462
## iter 30 value 235.111019
## iter 40 value 233.334809
## iter 50 value 233.207376
## final value 233.207368
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 602.584168
## iter 10 value 287.370883
## iter 20 value 248.594180
## iter 30 value 243.792054
## iter 40 value 240.077297
## iter 50 value 234.451983
## iter 60 value 226.638191
## iter 70 value 226.497202
## final value 226.483837
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 481.744640
## iter 10 value 243.559511
## iter 20 value 230.891759
## iter 30 value 227.934323
## iter 40 value 226.617304
## final value 226.595477
```

```
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 536.157789
## iter 10 value 263.840379
## iter 20 value 243.346497
## iter 30 value 238.373477
## iter 40 value 233.562053
## iter 50 value 228.714379
## iter 60 value 228.462066
## iter 70 value 227.267443
## iter 80 value 226.359899
## iter 90 value 226.298432
## final value 226.298390
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 530.160075
## iter 10 value 269.891387
## iter 20 value 237.668922
## iter 30 value 227.784360
## iter 40 value 225.275468
## iter 50 value 224.935772
## iter 60 value 223.368138
## iter 70 value 215.160643
## iter 80 value 215.036781
## iter 90 value 215.031873
## final value 215.031432
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 619.646916
## iter 10 value 298.538353
## iter 20 value 282.866179
## iter 30 value 247.801338
## iter 40 value 226.160919
## iter 50 value 220.888307
## iter 60 value 220.490124
## iter 70 value 220.456257
## final value 220.456091
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 330.046438
## iter 10 value 235.049145
## iter 20 value 225.758596
## iter 30 value 224.394303
## iter 40 value 224.383215
## iter 50 value 224.383089
## final value 224.383085
```

```
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 411.168429
## iter 10 value 269.055267
## iter 20 value 235.079150
## iter 30 value 226.478085
## iter 40 value 221.685673
## iter 50 value 221.133702
## iter 60 value 219.400003
## iter 70 value 218.907784
## iter 80 value 218.897759
## iter 90 value 218.897403
## final value 218.897370
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 435.478145
## iter 10 value 294.256604
## iter 20 value 240.665602
## iter 30 value 227.914274
## iter 40 value 225.531955
## iter 50 value 220.608912
## iter 60 value 215.491593
## iter 70 value 215.115511
## final value 215.115472
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 534.634276
## iter 10 value 328.293281
## iter 20 value 328.061780
## iter 30 value 328.060139
## iter 40 value 328.058216
## iter 50 value 328.055870
## iter 60 value 328.052888
## iter 70 value 328.048899
## iter 80 value 328.043170
## iter 90 value 328.034024
## iter 100 value 328.016580
## final value 328.016580
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 484.548751
## iter 10 value 328.285147
## iter 20 value 328.041768
## iter 30 value 328.041287
## iter 40 value 328.040779
## iter 50 value 328.040241
```

```
## iter 60 value 328.039668
## iter 70 value 328.039053
## iter 80 value 328.038389
## iter 90 value 328.037665
## iter 100 value 328.036866
## final value 328.036866
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 630.196486
## iter 10 value 328.411460
## iter 20 value 273.971019
## iter 30 value 246.251964
## iter 40 value 244.010903
## iter 50 value 243.563255
## final value 243.558245
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 524.554400
## iter 10 value 328.294003
## iter 20 value 292.552499
## iter 30 value 287.280273
## iter 40 value 247.037655
## iter 50 value 245.930907
## iter 60 value 245.905904
## iter 70 value 245.880707
## iter 80 value 245.835049
## iter 90 value 245.818837
## iter 100 value 245.788370
## final value 245.788370
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 808.297109
## iter 10 value 328.542066
## iter 20 value 328.036032
## iter 30 value 328.035840
## iter 40 value 328.035647
## iter 50 value 328.035454
## iter 60 value 328.035259
## iter 70 value 328.035064
## iter 80 value 328.034868
## iter 90 value 328.034671
## iter 100 value 328.034474
## final value 328.034474
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 641.296546
```

```
## iter 10 value 328.760643
## iter 20 value 327.912511
## iter 30 value 326.808381
## iter 40 value 304.908728
## iter 50 value 293.050278
## iter 60 value 292.278609
## iter 70 value 288.962272
## iter 80 value 288.711291
## iter 90 value 286.935934
## iter 100 value 286.320336
## final value 286.320336
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 569.121429
## iter 10 value 328.513130
## iter 20 value 327.989248
## iter 30 value 327.920788
## iter 40 value 287.007001
## iter 50 value 281.162951
## iter 60 value 279.752388
## iter 70 value 278.926197
## iter 80 value 227.626280
## iter 90 value 226.109732
## iter 100 value 225.831690
## final value 225.831690
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 313.731062
## iter 10 value 277.866799
## iter 20 value 251.135085
## iter 30 value 231.441758
## iter 40 value 228.567076
## iter 50 value 226.853072
## iter 60 value 224.048142
## iter 70 value 222.972683
## iter 80 value 220.395560
## iter 90 value 219.822295
## iter 100 value 219.699688
## final value 219.699688
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 670.752093
## iter 10 value 328.583017
## iter 20 value 320.409598
## iter 30 value 265.535956
## iter 40 value 245.449591
## iter 50 value 244.367662
## iter 60 value 241.720473
```

```
## iter 70 value 241.626386
## iter 80 value 241.548652
## iter 90 value 241.546716
## iter 100 value 241.545723
## final value 241.545723
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 551.908146
## iter 10 value 328.387008
## iter 20 value 327.848520
## iter 30 value 281.611203
## iter 40 value 276.941991
## iter 50 value 275.552124
## iter 60 value 275.321604
## iter 70 value 275.201220
## iter 80 value 275.171696
## iter 90 value 275.145478
## iter 100 value 275.100981
## final value 275.100981
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 751.885696
## iter 10 value 328.908923
## iter 20 value 328.009685
## iter 30 value 269.840553
## iter 40 value 241.489633
## iter 50 value 233.327062
## iter 60 value 227.604155
## iter 70 value 225.205484
## iter 80 value 224.654108
## iter 90 value 222.389120
## iter 100 value 221.344742
## final value 221.344742
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 574.980627
## iter 10 value 328.640142
## iter 20 value 314.027294
## iter 30 value 281.549173
## iter 40 value 252.124067
## iter 50 value 243.947301
## iter 60 value 241.165395
## iter 70 value 240.657511
## iter 80 value 240.246564
## iter 90 value 239.985420
## iter 100 value 239.921038
## final value 239.921038
## stopped after 100 iterations
```

```
## Fitting Repeat 3
##
## # weights: 27
## initial value 601.157078
## iter 10 value 328.671103
## iter 20 value 324.385286
## iter 30 value 282.668809
## iter 40 value 254.569000
## iter 50 value 229.809390
## iter 60 value 225.657129
## iter 70 value 224.118260
## iter 80 value 224.024452
## iter 90 value 223.922242
## iter 100 value 223.904821
## final value 223.904821
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 644.154160
## iter 10 value 328.701523
## iter 20 value 300.590063
## iter 30 value 281.394192
## iter 40 value 276.332457
## iter 50 value 275.367413
## iter 60 value 274.952308
## iter 70 value 274.606335
## iter 80 value 274.279252
## iter 90 value 274.151126
## iter 100 value 274.122242
## final value 274.122242
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 635.173915
## iter 10 value 328.921107
## iter 20 value 327.917496
## iter 30 value 276.511622
## iter 40 value 233.111642
## iter 50 value 225.232643
## iter 60 value 221.143279
## iter 70 value 220.971858
## iter 80 value 220.752222
## iter 90 value 220.728353
## iter 100 value 220.697700
## final value 220.697700
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 7
## initial value 396.950176
## final value 304.000000
## converged
```

```
## Fitting Repeat 2
##
## # weights: 7
## initial value 653.403822
## final value 304.000000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 604.268568
## final value 304.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 508.025557
## final value 304.000000
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 423.289516
## final value 304.000000
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 587.331585
## final value 304.000000
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 499.630711
## final value 304.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 748.816849
## final value 304.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 458.599673
## final value 304.000000
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 433.670863
## final value 304.000000
## converged
```

```
## Fitting Repeat 1
##
## # weights: 27
## initial value 697.727832
## final value 304.000000
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 305.484230
## final value 304.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 426.655251
## final value 304.000000
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 819.812183
## final value 304.000000
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 363.225550
## final value 304.000000
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 510.565642
## iter 10 value 250.546107
## iter 20 value 240.677457
## iter 30 value 238.746976
## iter 40 value 230.456315
## iter 50 value 229.042852
## iter 50 value 229.042851
## iter 50 value 229.042851
## final value 229.042851
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 476.937766
## iter 10 value 260.762788
## iter 20 value 231.719233
## iter 30 value 229.042938
## final value 229.042856
## converged
## Fitting Repeat 3
##
```

```
## # weights: 7
## initial value 416.293625
## iter 10 value 255.047394
## iter 20 value 248.266735
## final value 248.266189
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 622.984201
## iter 10 value 308.644604
## iter 20 value 248.318932
## iter 30 value 233.032630
## iter 40 value 229.414436
## iter 50 value 229.042870
## final value 229.042853
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 623.078568
## iter 10 value 261.380674
## iter 20 value 253.166440
## iter 30 value 244.133920
## iter 40 value 234.892106
## iter 50 value 230.761076
## final value 230.259936
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 496.625634
## iter 10 value 264.059297
## iter 20 value 228.867857
## iter 30 value 220.346752
## iter 40 value 218.065270
## iter 50 value 217.354684
## iter 60 value 217.296323
## final value 217.296234
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 473.466565
## iter 10 value 278.105393
## iter 20 value 247.541614
## iter 30 value 228.356312
## iter 40 value 221.863586
## iter 50 value 220.493515
## final value 220.489983
## converged
## Fitting Repeat 3
##
## # weights: 17
```

```
## initial value 747.881372
## iter 10 value 282.874511
## iter 20 value 244.046683
## iter 30 value 233.868123
## iter 40 value 228.868941
## iter 50 value 223.822611
## iter 60 value 221.245538
## iter 70 value 219.849699
## iter 80 value 217.415988
## iter 90 value 217.200872
## final value 217.200821
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 482.475325
## iter 10 value 281.541978
## iter 20 value 234.903776
## iter 30 value 223.181151
## iter 40 value 219.849803
## iter 50 value 219.810150
## final value 219.809662
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 533.061041
## iter 10 value 260.042869
## iter 20 value 231.227631
## iter 30 value 218.871965
## iter 40 value 217.438940
## final value 217.343288
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 443.404954
## iter 10 value 280.997099
## iter 20 value 230.428436
## iter 30 value 218.853346
## iter 40 value 213.459597
## iter 50 value 206.171961
## iter 60 value 200.176567
## iter 70 value 197.463496
## iter 80 value 197.172634
## iter 90 value 196.770117
## iter 100 value 196.574281
## final value 196.574281
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 528.597249
## iter 10 value 309.137025
```

```
## iter 20 value 274.337198
## iter 30 value 229.407021
## iter 40 value 223.558635
## iter 50 value 217.784673
## iter 60 value 216.606855
## iter 70 value 215.909522
## iter 80 value 215.023566
## iter 90 value 214.869237
## final value 214.869233
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 514.946005
## iter 10 value 305.727994
## iter 20 value 256.926148
## iter 30 value 237.498502
## iter 40 value 226.206474
## iter 50 value 223.045151
## iter 60 value 221.481571
## iter 70 value 221.126033
## iter 80 value 219.613749
## iter 90 value 217.553034
## iter 100 value 213.931861
## final value 213.931861
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 27
## initial value 939.752032
## iter 10 value 293.144701
## iter 20 value 244.686957
## iter 30 value 226.252349
## iter 40 value 217.338714
## iter 50 value 215.988383
## iter 60 value 215.967418
## iter 70 value 215.966111
## final value 215.966068
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 323.966824
## iter 10 value 268.779472
## iter 20 value 237.577097
## iter 30 value 221.360430
## iter 40 value 215.911220
## iter 50 value 215.237161
## iter 60 value 215.173867
## iter 70 value 215.166893
## iter 80 value 215.159026
## final value 215.158882
## converged
## Fitting Repeat 1
```

```
##
## # weights: 7
## initial value 565.473385
## iter 10 value 304.354728
## iter 20 value 291.173755
## iter 30 value 254.510006
## iter 40 value 246.495102
## iter 50 value 243.206680
## iter 60 value 242.993771
## iter 70 value 242.898454
## iter 80 value 242.882119
## final value 242.881876
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 380.749055
## iter 10 value 304.166683
## iter 20 value 304.005910
## iter 30 value 304.002603
## iter 40 value 303.998014
## iter 50 value 303.991090
## iter 60 value 303.979157
## iter
        70 value 303.952891
## iter 80 value 303.843645
## iter 90 value 284.476502
## iter 100 value 276.682157
## final value 276.682157
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 562.476456
## iter 10 value 304.394952
## iter 20 value 304.009639
## iter 30 value 304.000567
## iter 40 value 303.983113
## iter 50 value 303.934235
## iter 60 value 303.209237
## iter 70 value 273.004340
## iter 80 value 270.816497
## iter 90 value 270.796216
## iter 100 value 270.733974
## final value 270.733974
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 645.637139
## iter 10 value 304.457872
## iter 20 value 304.010074
## iter 30 value 304.006756
## iter 40 value 304.001486
## iter 50 value 275.657715
```

```
## iter 60 value 272.052789
## iter 70 value 267.685242
## iter 80 value 265.539544
## iter 90 value 223.487562
## iter 100 value 222.031766
## final value 222.031766
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 716.026163
## iter 10 value 304.524366
## iter 20 value 303.998985
## iter 30 value 303.994246
## iter 40 value 303.987807
## iter 50 value 303.978158
## iter 60 value 303.961450
## iter 70 value 303.922717
## iter 80 value 303.685079
## iter 90 value 289.914687
## iter 100 value 280.452147
## final value 280.452147
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 412.787505
## iter 10 value 304.298860
## iter 20 value 294.977851
## iter 30 value 271.328529
## iter 40 value 237.845146
## iter 50 value 225.324353
## iter 60 value 220.895405
## iter 70 value 218.332992
## iter 80 value 214.891372
## iter 90 value 214.329638
## iter 100 value 214.283836
## final value 214.283836
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 575.218875
## iter 10 value 304.378650
## iter 20 value 304.063407
## iter 30 value 304.052166
## iter 40 value 304.028675
## iter 50 value 303.944725
## iter 60 value 277.853025
## iter 70 value 268.738764
## iter 80 value 264.338717
## iter 90 value 259.141182
## iter 100 value 256.901123
## final value 256.901123
```

```
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 677.743922
## iter 10 value 305.174475
## iter 20 value 303.796895
## iter 30 value 269.678875
## iter 40 value 264.411795
## iter 50 value 263.924823
## iter 60 value 263.917580
        70 value 263.898374
## iter
## iter 80 value 261.598662
## iter 90 value 228.676445
## iter 100 value 226.859047
## final value 226.859047
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 567.730709
## iter 10 value 304.520514
## iter 20 value 247.379707
## iter 30 value 241.898523
## iter 40 value 237.891853
## iter 50 value 235.325716
## iter 60 value 234.056035
## iter 70 value 233.752979
## iter 80 value 233.518686
## iter 90 value 233.423924
## iter 100 value 233.394392
## final value 233.394392
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 316.737674
## iter 10 value 303.256571
## iter 20 value 273.484197
## iter 30 value 271.042134
## iter 40 value 270.546725
## iter 50 value 268.748058
## iter 60 value 237.688781
## iter 70 value 236.118367
## iter 80 value 234.126747
## iter 90 value 234.074368
## iter 100 value 233.842552
## final value 233.842552
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 554.853847
## iter 10 value 304.646433
```

```
## iter 20 value 283.245742
## iter 30 value 269.156689
## iter 40 value 265.821573
## iter 50 value 249.683176
## iter 60 value 233.690664
## iter 70 value 223.738791
## iter 80 value 221.235375
## iter 90 value 215.149103
## iter 100 value 213.411778
## final value 213.411778
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 458.592431
## iter 10 value 304.659349
## iter 20 value 304.017290
## iter 30 value 303.519623
## iter 40 value 275.949363
## iter 50 value 270.518320
## iter 60 value 267.480484
## iter 70 value 266.176488
## iter 80 value 227.852086
## iter 90 value 227.208321
## iter 100 value 226.949182
## final value 226.949182
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 723.174190
## iter 10 value 304.901253
## iter 20 value 304.013250
## iter 30 value 304.001353
## iter 40 value 269.305689
## iter 50 value 266.152907
## iter 60 value 232.377558
## iter 70 value 227.896181
## iter 80 value 219.729330
## iter 90 value 216.867315
## iter 100 value 214.707402
## final value 214.707402
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 27
## initial value 504.434943
## iter 10 value 304.622153
## iter 20 value 304.021586
## iter 30 value 281.312900
## iter 40 value 271.124969
## iter 50 value 266.227546
## iter 60 value 264.921025
## iter 70 value 234.384407
```

```
## iter 80 value 229.658428
## iter 90 value 224.370584
## iter 100 value 220.391441
## final value 220.391441
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 27
## initial value 704.038114
## iter 10 value 304.645567
## iter 20 value 302.211038
## iter 30 value 274.118368
## iter 40 value 246.274503
## iter 50 value 243.614467
## iter 60 value 241.076330
## iter 70 value 239.198353
## iter 80 value 237.346722
## iter 90 value 234.118019
## iter 100 value 233.829234
## final value 233.829234
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 566.785185
## final value 326.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 639.507161
## final value 326.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 741.052425
## final value 326.000000
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 553.465566
## final value 326.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 479.556285
## final value 326.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
```

```
## initial value 583.553663
## final value 326.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 629.822203
## final value 326.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 567.071046
## final value 326.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 676.606217
## final value 326.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 492.510275
## final value 326.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 415.891564
## final value 326.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 482.645351
## final value 326.000000
## converged
## Fitting Repeat 3
## # weights: 27
## initial value 599.018872
## final value 326.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 450.663506
## final value 326.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
```

```
## initial value 638.556095
## final value 326.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 746.655114
## iter 10 value 287.433720
## iter 20 value 257.807532
## iter 30 value 248.845759
## final value 248.409364
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 573.596178
## iter 10 value 289.961074
## iter 20 value 246.536613
## iter 30 value 246.522722
## iter 30 value 246.522722
## iter 30 value 246.522722
## final value 246.522722
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 337.673139
## iter 10 value 284.877377
## iter 20 value 245.739370
## iter 30 value 235.436861
## final value 235.421000
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 594.309122
## iter 10 value 299.604416
## iter 20 value 272.644537
## iter 30 value 268.876292
## iter 40 value 247.834379
## iter 50 value 247.747224
## final value 247.746774
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 740.715546
## iter 10 value 309.453749
## iter 20 value 249.650881
## iter 30 value 249.552877
## final value 249.552846
## converged
## Fitting Repeat 1
##
```

```
## # weights: 17
## initial value 533.960369
## iter 10 value 298.084613
## iter 20 value 247.000500
## iter 30 value 236.702864
## iter 40 value 236.523202
## final value 236.522344
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 596.965745
## iter 10 value 267.962726
## iter 20 value 237.676900
## iter 30 value 231.402996
## iter 40 value 229.552731
## final value 229.547692
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 540.385797
## iter 10 value 316.000784
## iter 20 value 280.800581
## iter 30 value 258.640765
## iter 40 value 253.830961
## iter 50 value 253.495082
## final value 252.896390
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 645.928634
## iter 10 value 293.689200
## iter 20 value 266.344972
## iter 30 value 235.604946
## iter 40 value 232.832742
## iter 50 value 232.719273
## iter 60 value 232.387694
## iter 70 value 231.699422
## iter 80 value 231.572589
## final value 231.571536
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 607.531719
## iter 10 value 292.722530
## iter 20 value 256.189851
## iter 30 value 241.339134
## iter 40 value 241.172021
## final value 241.172010
## converged
## Fitting Repeat 1
```

```
##
## # weights: 27
## initial value 601.008733
## iter 10 value 303.722388
## iter 20 value 256.405978
## iter 30 value 241.617449
## iter 40 value 236.552732
## iter 50 value 236.006535
## iter 60 value 235.633507
## iter 70 value 231.902959
## iter 80 value 229.483526
## iter 90 value 229.331053
## iter 100 value 229.223948
## final value 229.223948
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 586.634890
## iter 10 value 288.725905
## iter 20 value 254.983289
## iter 30 value 237.512137
## iter 40 value 231.300610
## iter 50 value 230.550247
## iter 60 value 225.330145
## iter 70 value 225.142158
## iter 80 value 225.087214
## iter 90 value 225.008986
## final value 225.008363
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 660.587823
## iter 10 value 304.667885
## iter 20 value 286.341747
## iter 30 value 260.627049
## iter 40 value 238.704361
## iter 50 value 233.947488
## iter 60 value 229.600296
## iter 70 value 226.659234
## iter 80 value 226.381369
## final value 226.381203
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 521.426638
## iter 10 value 264.511239
## iter 20 value 243.463579
## iter 30 value 233.624487
## iter 40 value 229.199600
## iter 50 value 227.782559
## iter 60 value 227.286255
```

```
## final value 227.284857
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 794.350088
## iter 10 value 296.370316
## iter 20 value 258.188368
## iter 30 value 249.266269
## iter 40 value 238.587021
## iter 50 value 227.924294
## iter 60 value 224.876939
## iter 70 value 224.685776
## iter 80 value 224.222335
## iter 90 value 223.861689
## final value 223.860693
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 655.845216
## iter 10 value 326.379847
## iter 20 value 290.460335
## iter 30 value 286.081021
## iter 40 value 285.933622
## iter 50 value 285.825473
## iter 60 value 248.023324
## iter 70 value 245.898858
## final value 245.812346
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 541.570576
## iter 10 value 326.327756
## iter 20 value 326.038428
## iter 30 value 326.036342
## iter 40 value 326.033704
## iter 50 value 326.030218
## iter 60 value 326.025315
## iter 70 value 326.017771
## iter 80 value 326.004362
## iter 90 value 325.972997
## iter 100 value 325.810863
## final value 325.810863
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 591.677960
## iter 10 value 326.432575
## iter 20 value 326.016578
## iter 30 value 294.191504
## iter 40 value 260.530549
```

```
## iter 50 value 257.412209
## iter 60 value 257.087402
## iter 70 value 257.028468
## iter 80 value 256.871511
## final value 256.869148
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 411.133761
## iter 10 value 326.193772
## iter 20 value 326.044785
## iter 30 value 326.044283
## iter 40 value 326.043755
## iter 50 value 326.043195
## iter 60 value 326.042600
## iter 70 value 326.041962
## iter 80 value 326.041274
## iter 90 value 326.040526
## iter 100 value 326.039653
## final value 326.039653
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 7
## initial value 499.871830
## iter 10 value 326.259630
## iter 20 value 325.808380
## iter 30 value 291.074579
## iter 40 value 288.390627
## iter 50 value 288.380013
## iter 60 value 271.972210
## iter 70 value 249.591779
## iter 80 value 248.851369
## iter 90 value 247.813749
## iter 100 value 245.693460
## final value 245.693460
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 512.272169
## iter 10 value 326.469075
## iter 20 value 325.597441
## iter 30 value 268.697853
## iter 40 value 243.363147
## iter 50 value 237.105975
## iter
       60 value 230.083966
## iter 70 value 227.896600
## iter 80 value 227.785069
## iter 90 value 227.762902
## iter 100 value 227.605908
## final value 227.605908
## stopped after 100 iterations
```

```
## Fitting Repeat 2
##
## # weights: 17
## initial value 591.332819
## iter 10 value 326.640614
## iter 20 value 326.007432
## iter 30 value 326.005300
## iter 40 value 326.002420
## iter 50 value 290.575402
## iter 60 value 237.032562
## iter 70 value 231.821169
## iter 80 value 228.959355
## iter 90 value 227.871765
## iter 100 value 227.682061
## final value 227.682061
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 511.423226
## iter 10 value 326.459894
## iter 20 value 326.004913
## iter 30 value 325.983965
## iter 40 value 325.955955
## iter 50 value 299.305708
## iter 60 value 283.841374
## iter 70 value 276.586885
## iter 80 value 238.892243
## iter 90 value 228.894720
## iter 100 value 226.801997
## final value 226.801997
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 746.742865
## iter 10 value 326.701383
## iter 20 value 319.320561
## iter 30 value 257.404022
## iter 40 value 233.910341
## iter 50 value 226.464055
## iter 60 value 223.464435
## iter 70 value 222.905172
## iter 80 value 222.503573
## iter 90 value 222.042120
## iter 100 value 221.928892
## final value 221.928892
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 777.536828
## iter 10 value 326.575028
## iter 20 value 326.032104
```

```
## iter 30 value 326.020567
## iter 40 value 325.943021
## iter 50 value 317.866114
## iter 60 value 293.706687
## iter 70 value 283.279543
## iter 80 value 277.769571
## iter 90 value 275.400901
## iter 100 value 242.436769
## final value 242.436769
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 633.312816
## iter 10 value 326.738453
## iter 20 value 300.557368
## iter 30 value 269.043985
## iter 40 value 239.335272
## iter 50 value 230.846152
## iter 60 value 222.063820
## iter 70 value 219.907858
## iter 80 value 217.681768
## iter 90 value 217.552827
## iter 100 value 217.462253
## final value 217.462253
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 732.323946
## iter 10 value 326.716146
## iter 20 value 325.954028
## iter 30 value 325.262774
## iter 40 value 271.652421
## iter 50 value 255.184055
## iter 60 value 231.624483
## iter 70 value 220.682063
## iter 80 value 217.395813
## iter 90 value 217.087242
## iter 100 value 216.730844
## final value 216.730844
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 716.017702
## iter 10 value 327.223284
## iter 20 value 322.994129
## iter 30 value 308.576854
## iter 40 value 277.477912
## iter 50 value 259.935375
## iter 60 value 238.939814
## iter 70 value 228.479359
## iter 80 value 226.707431
```

```
## iter 90 value 226.356165
## iter 100 value 226.266370
## final value 226.266370
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 524.307179
## iter 10 value 326.885137
## iter 20 value 326.020928
## iter 30 value 326.006248
## iter 40 value 325.991632
## iter 50 value 325.955488
## iter 60 value 325.699521
## iter 70 value 283.863495
## iter 80 value 256.771215
## iter 90 value 238.758800
## iter 100 value 232.398607
## final value 232.398607
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 27
## initial value 630.670223
## iter 10 value 327.064655
## iter 20 value 325.982538
## iter 30 value 307.034471
## iter 40 value 281.114414
## iter 50 value 249.300112
## iter 60 value 233.907727
## iter 70 value 227.875756
## iter 80 value 224.813240
## iter 90 value 223.255869
## iter 100 value 222.948683
## final value 222.948683
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 683.223631
## final value 324.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 668.450928
## final value 324.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 350.501652
## final value 324.000000
## converged
```

```
## Fitting Repeat 4
##
## # weights: 7
## initial value 550.809988
## final value 324.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 415.828829
## final value 324.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 575.212250
## final value 324.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 690.069770
## final value 324.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 499.081573
## final value 324.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 500.115918
## final value 324.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 721.982407
## final value 324.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 770.608339
## final value 324.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 550.566395
## final value 324.000000
## converged
```

```
## Fitting Repeat 3
##
## # weights: 27
## initial value 892.600326
## final value 324.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 539.817176
## final value 324.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 415.896088
## final value 324.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 416.437835
## iter 10 value 301.506479
## iter 20 value 247.919227
## iter 30 value 241.050378
## final value 240.797716
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 655.639385
## iter 10 value 289.064233
## iter 20 value 269.553240
## final value 269.491021
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 555.299627
## iter 10 value 308.710375
## iter 20 value 273.355935
## iter 30 value 251.661754
## iter 40 value 247.988540
## final value 247.988518
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 545.455960
## iter 10 value 305.237256
## iter 20 value 265.147869
## iter 30 value 247.206782
## iter 40 value 246.872867
## final value 246.872836
```

```
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 482.064786
## iter 10 value 283.785619
## iter 20 value 251.163627
## iter 30 value 240.943386
## final value 240.797716
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 575.142231
## iter 10 value 306.253266
## iter 20 value 257.816257
## iter 30 value 240.437719
## iter 40 value 237.195356
## iter 50 value 236.685623
## iter 60 value 236.540903
## final value 236.532577
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 412.576364
## iter 10 value 291.589452
## iter 20 value 255.092030
## iter 30 value 246.253914
## iter 40 value 238.055144
## iter 50 value 235.253541
## final value 235.228501
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 566.499809
## iter 10 value 304.547672
## iter 20 value 255.636989
## iter 30 value 246.828984
## iter 40 value 245.502914
## iter 50 value 245.176858
## final value 245.175946
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 652.678252
## iter 10 value 297.564253
## iter 20 value 258.108930
## iter 30 value 237.867780
## iter 40 value 232.688573
## iter 50 value 227.770221
## iter 60 value 227.258570
```

```
## iter 70 value 227.224762
## iter 80 value 227.201438
## final value 227.165979
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 495.580443
## iter 10 value 297.192545
## iter 20 value 267.094553
## iter 30 value 238.353299
## iter 40 value 235.155289
## iter 50 value 235.091501
## iter 60 value 235.090612
## final value 235.090606
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 630.721248
## iter 10 value 296.464853
## iter 20 value 258.975710
## iter 30 value 241.262700
## iter 40 value 233.746917
## iter 50 value 233.135093
## iter 60 value 229.061897
## iter 70 value 224.193207
## iter 80 value 223.771238
## iter 90 value 223.703427
## final value 223.702442
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 605.111200
## iter 10 value 309.975548
## iter 20 value 254.228597
## iter 30 value 242.293559
## iter 40 value 232.485116
## iter 50 value 229.158628
## iter 60 value 226.541352
## iter 70 value 224.169067
## final value 224.157360
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 473.154566
## iter 10 value 309.480543
## iter 20 value 245.626485
## iter 30 value 235.645603
## iter 40 value 233.459267
## iter 50 value 231.617339
## iter 60 value 228.287868
```

```
## iter 70 value 225.779941
## iter 80 value 225.249602
## iter 90 value 225.242628
## final value 225.242613
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 767.216188
## iter 10 value 335.150048
## iter 20 value 296.602331
## iter 30 value 244.075679
## iter 40 value 234.270483
## iter 50 value 232.284331
## iter 60 value 231.338583
## final value 231.337273
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 375.428034
## iter 10 value 296.704065
## iter 20 value 275.696357
## iter 30 value 250.935615
## iter 40 value 237.472777
## iter 50 value 231.041086
## iter 60 value 226.214690
## iter 70 value 224.675159
## iter 80 value 223.500001
## iter 90 value 223.494808
## iter 90 value 223.494806
## iter 90 value 223.494806
## final value 223.494806
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 639.224640
## iter 10 value 324.468185
## iter 20 value 323.981695
## iter 30 value 323.965520
## iter 40 value 323.929577
## iter 50 value 323.741506
## iter 60 value 288.316195
## iter 70 value 285.032576
## iter 80 value 250.045854
## iter 90 value 244.546937
## iter 100 value 244.457822
## final value 244.457822
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 376.597034
```

```
## iter 10 value 324.192782
## iter 20 value 323.838153
## iter 30 value 300.442714
## iter 40 value 296.296819
## iter 50 value 272.975350
## iter 60 value 270.718927
## iter 70 value 265.819332
## iter 80 value 265.441467
## iter 90 value 265.353461
## iter 100 value 265.336383
## final value 265.336383
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 537.839311
## iter 10 value 324.281621
## iter 20 value 323.983334
## iter 30 value 323.911189
## iter 40 value 297.612918
## iter 50 value 284.653092
## iter 60 value 284.559156
## iter 70 value 284.074396
## iter 80 value 282.831006
## iter 90 value 278.718126
## iter 100 value 278.649859
## final value 278.649859
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 437.837569
## iter 10 value 324.223644
## iter 20 value 324.024402
## iter 30 value 290.516008
## iter 40 value 290.166076
## iter 50 value 290.100322
## iter 60 value 256.097274
## iter 70 value 255.928681
## iter 80 value 255.910673
## iter 90 value 255.899682
## final value 255.899669
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 480.447230
## iter 10 value 324.262245
## iter 20 value 250.041780
## iter 30 value 245.133794
## iter 40 value 244.643232
## iter 50 value 244.460918
## final value 244.460852
## converged
```

```
## Fitting Repeat 1
##
## # weights: 17
## initial value 542.187322
## iter 10 value 324.382433
## iter 20 value 324.078248
## iter 30 value 288.886580
## iter 40 value 280.835607
## iter 50 value 279.489269
## iter 60 value 278.225656
## iter 70 value 278.005120
## iter 80 value 277.990491
## iter 90 value 277.987951
## iter 100 value 277.977497
## final value 277.977497
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 408.242280
## iter 10 value 324.138110
## iter 20 value 309.412157
## iter 30 value 282.284559
## iter 40 value 278.794089
## iter 50 value 278.219490
## iter 60 value 242.644541
## iter 70 value 233.302307
## iter 80 value 233.167668
## iter 90 value 232.190446
## iter 100 value 232.067581
## final value 232.067581
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 635.886358
## iter 10 value 324.563004
## iter 20 value 323.976590
## iter 30 value 297.129157
## iter 40 value 283.192765
## iter 50 value 279.409261
## iter 60 value 277.921343
## iter 70 value 241.460348
## iter 80 value 231.700407
## iter 90 value 230.051416
## iter 100 value 229.487202
## final value 229.487202
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 17
## initial value 579.969764
## iter 10 value 324.648429
## iter 20 value 323.034179
```

```
## iter 30 value 309.671210
## iter 40 value 298.509374
## iter 50 value 243.023202
## iter 60 value 236.526147
## iter 70 value 234.738161
## iter 80 value 233.185631
## iter 90 value 227.806741
## iter 100 value 224.543940
## final value 224.543940
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 477.101899
## iter 10 value 324.566993
## iter 20 value 324.084895
## iter 30 value 324.083888
## iter 40 value 324.082761
## iter 50 value 324.081544
## iter 60 value 324.080180
## iter 70 value 324.078623
## iter 80 value 324.076804
## iter 90 value 324.074618
## iter 100 value 324.071907
## final value 324.071907
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 442.541655
## iter 10 value 324.576155
## iter 20 value 285.542355
## iter 30 value 271.084816
## iter 40 value 268.934284
## iter 50 value 266.189196
## iter 60 value 263.798726
## iter 70 value 253.538365
## iter 80 value 252.728618
## iter 90 value 244.946147
## iter 100 value 240.330249
## final value 240.330249
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 561.240364
## iter 10 value 324.583605
## iter 20 value 323.924536
## iter 30 value 316.011682
## iter 40 value 309.647332
## iter 50 value 308.640026
## iter 60 value 282.865677
## iter 70 value 277.349367
## iter 80 value 271.073924
```

```
## iter 90 value 266.209160
## iter 100 value 265.872616
## final value 265.872616
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 450.128613
## iter 10 value 324.263265
## iter 20 value 306.271651
## iter 30 value 294.993489
## iter 40 value 288.344245
## iter 50 value 286.745363
## iter 60 value 285.689811
## iter 70 value 284.687040
## iter 80 value 284.239245
## iter 90 value 283.956738
## iter 100 value 283.892500
## final value 283.892500
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 27
## initial value 479.979396
## iter 10 value 324.447420
## iter 20 value 323.780979
## iter 30 value 316.183410
## iter 40 value 297.752129
## iter 50 value 294.573182
## iter 60 value 294.088369
## iter 70 value 291.662527
## iter 80 value 272.677257
## iter 90 value 271.946793
## iter 100 value 270.701143
## final value 270.701143
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 442.444715
## iter 10 value 324.281936
## iter 20 value 322.767417
## iter 30 value 303.486833
## iter 40 value 294.967985
## iter 50 value 285.083569
## iter 60 value 281.905785
## iter 70 value 281.511979
## iter 80 value 281.417442
## iter 90 value 281.284047
## iter 100 value 281.221947
## final value 281.221947
## stopped after 100 iterations
## Fitting Repeat 1
##
```

```
## # weights: 7
## initial value 590.936112
## final value 378.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 718.806484
## final value 378.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 527.966405
## final value 378.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 580.243126
## final value 378.000000
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 502.564839
## final value 378.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 616.421345
## final value 378.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 388.440604
## final value 378.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 632.713698
## final value 378.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 589.591502
## final value 378.000000
## converged
## Fitting Repeat 5
```

##

```
## # weights: 17
## initial value 468.656026
## final value 378.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 408.515246
## final value 378.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 586.148260
## final value 378.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 627.700024
## final value 378.000000
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 456.065990
## final value 378.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 352.161136
## iter 10 value 262.294574
## iter 20 value 250.702369
## iter 30 value 243.641157
## iter 40 value 242.938475
## iter 50 value 240.863370
## iter 60 value 240.653050
## iter 70 value 240.531952
## iter 80 value 240.523572
## iter 90 value 240.494440
## iter 100 value 240.412612
## final value 240.412612
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 448.303120
## iter 10 value 328.495161
## iter 20 value 280.159440
## iter 30 value 263.832790
## final value 263.811966
## converged
## Fitting Repeat 2
```

```
##
## # weights: 7
## initial value 498.711296
## iter 10 value 300.693624
## iter 20 value 269.814896
## iter 30 value 266.270542
## iter 40 value 262.735124
## final value 262.732272
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 449.145302
## iter 10 value 312.012230
## iter 20 value 284.693539
## iter 30 value 265.297946
## iter 40 value 263.816137
## final value 263.811965
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 351.424193
## iter 10 value 276.394866
## iter 20 value 275.595220
## iter 30 value 267.939127
## iter 40 value 267.124649
## iter 50 value 264.146250
## final value 263.811969
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 663.411589
## iter 10 value 345.262989
## iter 20 value 321.505250
## iter 30 value 268.844711
## iter 40 value 263.868301
## final value 263.811965
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 550.725305
## iter 10 value 325.176074
## iter 20 value 281.994087
## iter 30 value 252.877407
## iter 40 value 251.146377
## final value 251.144419
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 467.065482
```

```
## iter 10 value 334.662249
## iter 20 value 265.985115
## iter 30 value 252.691337
## iter 40 value 252.302275
## final value 252.287713
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 788.795140
## iter 10 value 367.790392
## iter 20 value 291.058767
## iter 30 value 273.828012
## iter 40 value 263.472306
## iter 50 value 256.112707
## iter 60 value 252.095899
## final value 252.087381
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 489.317051
## iter 10 value 341.255109
## iter 20 value 286.162844
## iter 30 value 262.473725
## iter 40 value 259.791511
## iter 50 value 259.279389
## final value 259.273059
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 730.550404
## iter 10 value 321.934311
## iter 20 value 296.314379
## iter 30 value 260.435961
## iter 40 value 254.585443
## iter 50 value 249.468782
## iter 60 value 248.077379
## iter 70 value 247.292136
## iter 80 value 247.166103
## final value 247.144064
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 461.149555
## iter 10 value 329.847296
## iter 20 value 283.811118
## iter 30 value 255.670670
## iter 40 value 247.421158
## iter 50 value 242.789129
## iter 60 value 232.434242
## iter 70 value 218.071937
```

```
## iter 80 value 216.207992
## iter 90 value 215.625853
## iter 100 value 215.531666
## final value 215.531666
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 476.399264
## iter 10 value 317.005581
## iter 20 value 270.257783
## iter 30 value 257.605433
## iter 40 value 252.015215
## iter 50 value 245.708753
## iter 60 value 235.628234
## iter 70 value 231.650104
## iter 80 value 224.963518
## iter 90 value 217.116848
## iter 100 value 215.229334
## final value 215.229334
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 610.260658
## iter 10 value 348.665340
## iter 20 value 294.874553
## iter 30 value 260.578691
## iter 40 value 249.153993
## iter 50 value 246.699671
## iter 60 value 244.688446
## iter 70 value 243.836654
## iter 80 value 240.981540
## iter 90 value 237.700768
## iter 100 value 237.628871
## final value 237.628871
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 513.916963
## iter 10 value 337.871570
## iter 20 value 282.786818
## iter 30 value 263.666354
## iter 40 value 255.003756
## iter 50 value 248.780385
## iter 60 value 243.360304
## iter 70 value 242.674209
## iter 80 value 241.334437
## iter 90 value 239.796126
## iter 100 value 229.505604
## final value 229.505604
## stopped after 100 iterations
## Fitting Repeat 5
```

```
##
## # weights: 27
## initial value 615.054059
## iter 10 value 385.647248
## iter 20 value 352.264550
## iter 30 value 303.574583
## iter 40 value 265.065243
## iter 50 value 254.550726
## iter 60 value 251.674656
## iter 70 value 244.604006
## iter 80 value 242.638734
## final value 242.469662
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 571.509055
## iter 10 value 378.315339
## iter 20 value 378.044857
## iter 30 value 375.382532
## iter 40 value 361.812958
## iter 50 value 338.545801
## iter 60 value 337.979672
## iter
        70 value 337.961344
## iter 80 value 337.914031
## iter 90 value 337.911253
## iter 100 value 337.908805
## final value 337.908805
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 637.216205
## iter 10 value 378.419903
## iter 20 value 378.041192
## iter 30 value 378.040801
## iter 40 value 378.040403
## iter 50 value 378.039993
## iter 60 value 378.039559
## iter 70 value 378.039097
## iter 80 value 378.038603
## iter 90 value 378.038087
## iter 100 value 378.037562
## final value 378.037562
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 562.838467
## iter 10 value 378.290771
## iter 20 value 357.467747
## iter 30 value 324.491941
## iter 40 value 321.704168
## iter 50 value 321.247049
```

```
## iter 60 value 321.103784
## iter 70 value 301.257635
## iter 80 value 267.180939
## final value 264.279062
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 730.651262
## iter 10 value 378.477950
## iter 20 value 378.028138
## iter 30 value 378.027825
## iter 40 value 378.027503
## iter 50 value 378.027173
## iter 60 value 378.026834
## iter 70 value 378.026483
## iter 80 value 378.026122
## iter 90 value 378.025749
## iter 100 value 378.025364
## final value 378.025364
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 614.313160
## iter 10 value 378.248159
## iter 20 value 335.876833
## iter 30 value 327.564321
## iter 40 value 327.337414
## iter 50 value 327.309213
## iter 60 value 327.304054
## iter 70 value 281.453609
## iter 80 value 276.548319
## final value 276.548207
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 458.151235
## iter 10 value 378.259287
## iter 20 value 377.954851
## iter 30 value 351.782889
## iter 40 value 350.949302
## iter 50 value 335.998920
## iter 60 value 332.487561
## iter 70 value 331.677834
## iter 80 value 331.508821
## iter 90 value 331.421475
## iter 100 value 331.381148
## final value 331.381148
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
```

```
## initial value 658.366656
## iter 10 value 378.650065
## iter 20 value 377.760900
## iter 30 value 360.523543
## iter 40 value 268.221079
## iter 50 value 260.978085
## iter 60 value 249.431501
## iter 70 value 235.887888
## iter 80 value 233.748275
## iter 90 value 231.916604
## iter 100 value 231.144463
## final value 231.144463
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 741.551925
## iter 10 value 378.673270
## iter 20 value 367.671930
## iter 30 value 324.043311
## iter 40 value 263.757450
## iter 50 value 252.861577
## iter 60 value 249.109799
## iter 70 value 248.414071
## iter 80 value 247.718470
## iter 90 value 247.702947
## iter 100 value 247.680665
## final value 247.680665
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 781.755175
## iter 10 value 378.633541
## iter 20 value 307.039431
## iter 30 value 261.017320
## iter 40 value 252.491081
## iter 50 value 250.128092
## iter 60 value 249.439082
## iter 70 value 248.919702
## iter 80 value 248.904385
## iter 90 value 248.901590
## final value 248.890192
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 803.012957
## iter 10 value 378.714478
## iter 20 value 378.014508
## iter 30 value 378.012945
## iter 40 value 378.002536
## iter 50 value 377.820008
## iter 60 value 374.399995
```

```
## iter 70 value 367.837696
## iter 80 value 367.772193
## iter 90 value 291.815193
## iter 100 value 274.565263
## final value 274.565263
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 538.793827
## iter 10 value 378.626458
## iter 20 value 377.670347
## iter 30 value 327.994135
## iter 40 value 318.694008
## iter 50 value 276.115484
## iter 60 value 268.649938
## iter 70 value 261.174344
## iter 80 value 246.539271
## iter 90 value 242.888749
## iter 100 value 241.003606
## final value 241.003606
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 647.706190
## iter 10 value 378.565029
## iter 20 value 351.894517
## iter 30 value 327.903985
## iter 40 value 324.156344
## iter 50 value 323.007363
## iter 60 value 321.515375
## iter 70 value 321.422904
## iter 80 value 321.388142
## iter 90 value 321.340259
## iter 100 value 321.301975
## final value 321.301975
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 391.885958
## iter 10 value 378.139962
## iter 20 value 335.580400
## iter 30 value 328.919821
## iter 40 value 326.683458
## iter 50 value 326.635618
## iter
        60 value 326.518744
## iter 70 value 321.917661
## iter 80 value 319.598303
## iter 90 value 265.970173
## iter 100 value 260.160981
## final value 260.160981
## stopped after 100 iterations
```

```
## Fitting Repeat 4
##
## # weights: 27
## initial value 617.297455
## iter 10 value 378.567411
## iter 20 value 377.761805
## iter 30 value 373.619907
## iter 40 value 373.452312
## iter 50 value 373.351686
## iter 60 value 372.269091
## iter 70 value 371.808572
## iter 80 value 371.754919
## iter 90 value 340.056443
## iter 100 value 328.432951
## final value 328.432951
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 570.773042
## iter 10 value 378.473742
## iter 20 value 361.085589
## iter 30 value 328.550139
## iter 40 value 327.511251
## iter 50 value 291.756410
## iter 60 value 273.780262
## iter 70 value 266.529863
## iter 80 value 260.168994
## iter 90 value 256.991613
## iter 100 value 254.383578
## final value 254.383578
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 445.976931
## final value 320.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 337.733990
## final value 320.000000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 431.387461
## final value 320.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 510.301515
```

```
## final value 320.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 448.094184
## final value 320.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 684.307515
## final value 320.000000
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 442.631302
## final value 320.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 498.453089
## final value 320.000000
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 674.192325
## final value 320.000000
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 533.288424
## final value 320.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 457.597693
## final value 320.000000
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 317.333618
## iter 10 value 282.233214
## iter 20 value 269.117478
## iter 30 value 265.505445
## iter 40 value 264.042958
## iter 50 value 263.620777
## iter 60 value 263.428178
```

```
## iter 70 value 263.023453
## iter 80 value 262.476914
## iter 90 value 262.097360
## iter 100 value 262.024806
## final value 262.024806
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 495.466216
## final value 320.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 449.683890
## final value 320.000000
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 762.676318
## final value 320.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 588.433111
## iter 10 value 264.235028
## iter 20 value 225.888535
## iter 30 value 219.001108
## final value 219.000398
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 491.287664
## iter 10 value 283.224779
## iter 20 value 226.823545
## iter 30 value 219.000908
## final value 219.000399
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 416.641205
## iter 10 value 267.178212
## iter 20 value 238.812126
## iter 30 value 219.316839
## final value 219.000398
## converged
## Fitting Repeat 4
##
## # weights: 7
```

```
## initial value 346.867429
## iter 10 value 263.254890
## iter 20 value 240.875519
## iter 30 value 221.948840
## iter 40 value 219.001530
## final value 219.000398
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 553.321028
## iter 10 value 287.049338
## iter 20 value 235.390223
## iter 30 value 220.911798
## final value 220.520786
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 548.430918
## iter 10 value 292.350843
## iter 20 value 239.438902
## iter 30 value 219.557572
## iter 40 value 214.178104
## iter 50 value 214.123465
## iter 50 value 214.123464
## iter 50 value 214.123464
## final value 214.123464
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 566.661484
## iter 10 value 281.304814
## iter 20 value 236.986267
## iter 30 value 216.112731
## iter 40 value 214.071943
## iter 50 value 213.258582
## iter 60 value 212.547225
## iter 70 value 210.257757
## iter 80 value 209.839972
## final value 209.839835
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 339.822255
## iter 10 value 293.659657
## iter 20 value 233.556459
## iter 30 value 217.427455
## iter 40 value 214.505551
## iter 50 value 214.473409
## final value 214.472662
## converged
```

```
## Fitting Repeat 4
##
## # weights: 17
## initial value 473.353060
## iter 10 value 270.970092
## iter 20 value 227.744988
## iter 30 value 218.547848
## iter 40 value 216.498790
## iter 50 value 216.421213
## final value 216.421162
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 378.487176
## iter 10 value 276.501128
## iter 20 value 236.792815
## iter 30 value 223.169975
## iter 40 value 216.931321
## iter 50 value 216.553889
## final value 216.553780
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 466.673666
## iter 10 value 299.271017
## iter 20 value 286.708514
## iter 30 value 237.226618
## iter 40 value 218.244334
## iter 50 value 213.920533
## iter 60 value 213.708919
## iter 70 value 213.701710
## iter 70 value 213.701709
## iter 70 value 213.701709
## final value 213.701709
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 565.013048
## iter 10 value 301.588035
## iter 20 value 283.389767
## iter 30 value 228.643662
## iter 40 value 217.355348
## iter 50 value 214.369320
## iter 60 value 209.511176
## iter 70 value 208.504973
## iter 80 value 208.464171
## iter 80 value 208.464171
## final value 208.464171
## converged
## Fitting Repeat 3
##
```

```
## # weights: 27
## initial value 570.921518
## iter 10 value 366.434499
## iter 20 value 266.488264
## iter 30 value 239.286303
## iter 40 value 218.266245
## iter 50 value 214.892929
## iter 60 value 212.385499
## iter 70 value 211.904032
## final value 211.903698
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 477.558988
## iter 10 value 280.698040
## iter 20 value 254.096311
## iter 30 value 227.268623
## iter 40 value 215.311569
## iter 50 value 212.567391
## iter 60 value 211.503747
## iter 70 value 211.493794
## final value 211.493781
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 376.540866
## iter 10 value 298.601249
## iter 20 value 241.103385
## iter 30 value 217.535370
## iter 40 value 212.110839
## iter 50 value 211.578287
## final value 211.564557
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 534.465824
## iter 10 value 320.331919
## iter 20 value 320.049269
## iter 30 value 320.048700
## iter 40 value 320.048097
## iter 50 value 320.047453
## iter 60 value 320.046763
        70 value 320.046016
## iter
## iter 80 value 320.045203
## iter 90 value 320.044289
## iter 100 value 320.043287
## final value 320.043287
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
```

```
## initial value 656.691307
## iter 10 value 320.487420
## iter 20 value 320.030939
## iter 30 value 320.030722
## iter 40 value 320.030504
## iter 50 value 320.030283
## iter 60 value 320.030059
## iter 70 value 320.029833
## iter 80 value 320.029604
## iter 90 value 320.029372
## iter 100 value 320.029137
## final value 320.029137
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 413.129140
## iter 10 value 320.173920
## iter 20 value 320.039898
## iter 30 value 320.034500
## iter 40 value 320.033406
## iter 50 value 320.032142
## iter 60 value 320.030653
## iter 70 value 320.028853
## iter 80 value 320.026612
## iter 90 value 320.023719
## iter 100 value 320.019805
## final value 320.019805
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 558.499442
## iter 10 value 320.385453
## iter 20 value 319.983966
## iter 30 value 319.908754
## iter 40 value 285.312880
## iter 50 value 269.544762
## iter 60 value 265.104669
## iter 70 value 213.534589
## iter 80 value 209.820775
## iter 80 value 209.820774
## final value 209.820774
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 760.060359
## iter 10 value 320.498212
## iter 20 value 319.980381
## iter 30 value 319.963676
## iter 40 value 319.921194
## iter 50 value 303.795393
## iter 60 value 277.651387
```

```
## iter 70 value 276.500219
## iter 80 value 235.274442
## iter 90 value 231.666497
## iter 100 value 230.335933
## final value 230.335933
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 337.029722
## iter 10 value 320.193116
## iter 20 value 320.069658
## iter 30 value 320.068795
## iter 40 value 320.067859
## iter 50 value 320.066834
## iter 60 value 320.065697
## iter 70 value 320.064415
## iter 80 value 320.062868
## iter 90 value 320.060995
## iter 100 value 320.058843
## final value 320.058843
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 17
## initial value 753.637715
## iter 10 value 320.662971
## iter 20 value 319.043486
## iter 30 value 261.072368
## iter 40 value 248.881100
## iter 50 value 247.769165
## iter 60 value 242.233876
## iter 70 value 241.637102
## iter 80 value 240.466068
## iter 90 value 232.861107
## iter 100 value 228.715362
## final value 228.715362
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 589.511459
## iter 10 value 320.468379
## iter 20 value 302.785002
## iter 30 value 277.831372
## iter 40 value 274.393612
## iter 50 value 271.418709
## iter
       60 value 266.658519
## iter 70 value 265.752574
## iter 80 value 263.750790
## iter 90 value 263.684509
## iter 100 value 263.447649
## final value 263.447649
## stopped after 100 iterations
```

```
## Fitting Repeat 4
##
## # weights: 17
## initial value 694.092564
## iter 10 value 320.625228
## iter 20 value 320.002089
## iter 30 value 319.845960
## iter 40 value 275.050233
## iter 50 value 269.750360
## iter 60 value 267.271869
## iter 70 value 265.407070
## iter 80 value 241.268757
## iter 90 value 208.462863
## iter 100 value 207.390727
## final value 207.390727
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 375.926968
## iter 10 value 319.938831
## iter 20 value 288.958044
## iter 30 value 270.256286
## iter 40 value 269.309933
## iter 50 value 267.635125
## iter 60 value 267.532095
## iter 70 value 267.317239
## iter 80 value 266.647275
## iter 90 value 264.576728
## iter 100 value 264.135038
## final value 264.135038
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 642.698537
## iter 10 value 320.752363
## iter 20 value 314.806075
## iter 30 value 294.920224
## iter 40 value 238.878285
## iter 50 value 224.996187
## iter 60 value 212.139003
## iter 70 value 208.289724
## iter 80 value 207.401665
## iter 90 value 207.303821
## iter 100 value 207.284303
## final value 207.284303
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 376.177138
## iter 10 value 320.314812
## iter 20 value 319.218852
```

```
## iter 30 value 305.461520
## iter 40 value 271.793870
## iter 50 value 260.321742
## iter 60 value 252.964634
## iter 70 value 251.773184
## iter 80 value 247.529016
## iter 90 value 232.201224
## iter 100 value 211.769450
## final value 211.769450
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 27
## initial value 626.722427
## iter 10 value 320.886066
## iter 20 value 319.265248
## iter 30 value 282.569233
## iter 40 value 277.596692
## iter 50 value 244.031109
## iter 60 value 220.141898
## iter 70 value 214.533660
## iter 80 value 211.641333
## iter 90 value 209.455408
## iter 100 value 208.818829
## final value 208.818829
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 27
## initial value 507.051489
## iter 10 value 320.625553
## iter 20 value 311.560303
## iter 30 value 282.205681
## iter 40 value 276.120204
## iter 50 value 273.280015
## iter 60 value 266.975369
## iter 70 value 264.658687
## iter 80 value 217.790634
## iter 90 value 207.697123
## iter 100 value 204.878246
## final value 204.878246
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 647.469349
## iter 10 value 320.678877
## iter 20 value 320.017806
## iter 30 value 320.017621
## iter 40 value 320.017415
## iter 50 value 320.017146
## iter 60 value 319.945445
## iter 70 value 283.834283
## iter 80 value 270.999794
```

```
## iter 90 value 265.748770
## iter 100 value 264.234136
## final value 264.234136
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 382.046204
## final value 352.000000
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 860.199574
## final value 352.000000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 405.337817
## final value 352.000000
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 563.208433
## final value 352.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 544.582966
## final value 352.000000
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 537.760036
## final value 352.000000
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 465.371506
## final value 352.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 437.784762
## final value 352.000000
## converged
## Fitting Repeat 4
```

##

```
## # weights: 17
## initial value 467.187799
## final value 352.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 497.303904
## final value 352.000000
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 461.828915
## final value 352.000000
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 676.601162
## final value 352.000000
## converged
## Fitting Repeat 3
## # weights: 27
## initial value 691.310650
## final value 352.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 491.071849
## final value 352.000000
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 515.182745
## final value 352.000000
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 471.137637
## iter 10 value 314.558918
## iter 20 value 280.287088
## iter 30 value 264.002778
## final value 263.621349
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 407.881318
## iter 10 value 289.379049
```

```
## iter 20 value 277.339341
## iter 30 value 269.196347
## iter 40 value 262.899572
## iter 50 value 260.059951
## final value 260.012091
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 388.556535
## iter 10 value 290.294602
## iter 20 value 265.094606
## iter 30 value 264.646626
## final value 264.646528
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 417.147648
## iter 10 value 269.196096
## iter 20 value 263.622724
## final value 263.621383
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 500.366903
## iter 10 value 298.539609
## iter 20 value 282.874311
## iter 30 value 268.286266
## iter 40 value 262.085283
## final value 262.013530
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 681.731699
## iter 10 value 320.504761
## iter 20 value 266.393208
## iter 30 value 254.599512
## iter 40 value 253.631166
## iter 50 value 253.531675
## iter 60 value 252.741198
## iter 70 value 252.230408
## final value 252.228934
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 565.067710
## iter 10 value 316.360427
## iter 20 value 260.634225
## iter 30 value 254.227185
## iter 40 value 252.916286
```

```
## iter 50 value 252.906909
## final value 252.906817
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 477.913533
## iter 10 value 303.497230
## iter 20 value 265.080436
## iter 30 value 257.891284
## iter 40 value 255.852192
## iter 50 value 255.851766
## iter 50 value 255.851765
## iter 50 value 255.851765
## final value 255.851765
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 707.602995
## iter 10 value 344.980704
## iter 20 value 283.515223
## iter 30 value 264.704460
## iter 40 value 258.918453
## iter 50 value 255.616448
## iter 60 value 253.997464
## iter 70 value 252.621716
## final value 252.591894
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 358.883008
## iter 10 value 316.171020
## iter 20 value 307.897284
## iter 30 value 260.577684
## iter 40 value 256.206967
## iter 50 value 254.932093
## final value 254.927647
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 333.593956
## iter 10 value 264.853817
## iter 20 value 256.665544
## iter 30 value 252.493978
## iter 40 value 250.597923
## iter 50 value 250.117082
## iter 60 value 249.823597
## iter 70 value 249.020062
## iter 80 value 248.138408
## iter 90 value 247.628765
## iter 100 value 247.189009
```

```
## final value 247.189009
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 522.765591
## iter 10 value 317.477812
## iter 20 value 281.828491
## iter 30 value 259.834294
## iter 40 value 250.879040
## iter 50 value 249.215408
## iter 60 value 248.841795
## iter 70 value 248.802131
## iter 80 value 248.797854
## final value 248.797184
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 452.844110
## iter 10 value 335.917344
## iter 20 value 278.641389
## iter 30 value 256.121816
## iter 40 value 249.580710
## iter 50 value 245.747006
## iter 60 value 243.320526
## iter 70 value 243.032701
## final value 243.032663
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 405.760495
## iter 10 value 324.292318
## iter 20 value 285.362033
## iter 30 value 261.806081
## iter 40 value 253.096281
## iter 50 value 250.677523
## iter 60 value 249.378418
## iter 70 value 248.232271
## iter 80 value 247.805175
## final value 247.772892
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 471.886945
## iter 10 value 325.783381
## iter 20 value 311.921099
## iter 30 value 271.533301
## iter 40 value 257.776124
## iter 50 value 252.958566
## iter 60 value 251.159478
## iter 70 value 250.198151
```

```
## iter 80 value 250.068446
## iter 90 value 250.043597
## iter 100 value 250.040455
## final value 250.040455
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 7
## initial value 643.608446
## iter 10 value 352.354345
## iter 20 value 352.053086
## iter 30 value 352.052470
## iter 40 value 352.051816
## iter 50 value 352.051095
## iter 60 value 352.050318
## iter 70 value 352.049492
## iter 80 value 352.048561
## iter 90 value 352.047561
## iter 100 value 352.046463
## final value 352.046463
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 526.042243
## iter 10 value 352.282431
## iter 20 value 352.064624
## iter 30 value 352.063641
## iter 40 value 352.062555
## iter 50 value 352.061375
## iter 60 value 352.060051
## iter 70 value 352.058515
## iter 80 value 352.056637
## iter 90 value 352.054405
## iter 100 value 352.051630
## final value 352.051630
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 582.081024
## iter 10 value 352.291073
## iter 20 value 308.985550
## iter 30 value 306.685764
## iter 40 value 306.429038
## iter 50 value 305.920289
## iter 60 value 260.860616
## final value 260.559756
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 343.061223
## iter 10 value 278.240824
```

```
## iter 20 value 276.772504
## iter 30 value 273.271769
## final value 273.199273
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 559.362565
## iter 10 value 352.335222
## iter 20 value 352.024988
## iter 30 value 352.024295
## iter 40 value 352.023552
## iter 50 value 352.022753
## iter 60 value 352.021886
## iter 70 value 352.020941
## iter 80 value 352.019903
## iter 90 value 352.018752
## iter 100 value 352.017463
## final value 352.017463
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 17
## initial value 545.144857
## iter 10 value 352.476763
## iter 20 value 352.028537
## iter 30 value 352.027848
## iter 40 value 352.026583
## iter 50 value 352.017680
## iter 60 value 334.833318
## iter 70 value 328.152620
## iter 80 value 327.019255
## iter 90 value 304.763333
## iter 100 value 303.635182
## final value 303.635182
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 677.219135
## iter 10 value 352.460868
## iter 20 value 351.856053
## iter 30 value 318.681512
## iter 40 value 306.839953
## iter 50 value 304.222477
## iter 60 value 299.257620
## iter 70 value 298.454141
## iter 80 value 281.175658
## iter 90 value 257.127409
## iter 100 value 243.492301
## final value 243.492301
## stopped after 100 iterations
## Fitting Repeat 3
##
```

```
## # weights: 17
## initial value 565.867117
## iter 10 value 352.503255
## iter 20 value 343.785357
## iter 30 value 327.265975
## iter 40 value 282.518650
## iter 50 value 273.831429
## iter 60 value 273.399518
## iter 70 value 272.293831
## iter 80 value 269.273403
## iter 90 value 267.708666
## iter 100 value 267.443168
## final value 267.443168
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 707.386435
## iter 10 value 352.567916
## iter 20 value 351.972187
## iter 30 value 343.721221
## iter 40 value 305.882959
## iter 50 value 303.320127
## iter 60 value 256.033373
## iter 70 value 249.819592
## iter 80 value 249.607619
## iter 90 value 249.429779
## iter 100 value 249.276388
## final value 249.276388
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 530.318181
## iter 10 value 352.675456
## iter 20 value 342.635175
## iter 30 value 310.013082
## iter 40 value 307.070478
## iter 50 value 306.102125
## iter 60 value 305.722889
## iter 70 value 305.699523
## iter 80 value 305.694233
## iter 90 value 305.631147
## iter 100 value 298.220937
## final value 298.220937
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 686.416737
## iter 10 value 352.826061
## iter 20 value 352.038190
## iter 30 value 297.671979
## iter 40 value 285.477257
```

```
## iter 50 value 277.757432
## iter 60 value 267.760218
## iter 70 value 266.551647
## iter 80 value 259.664717
## iter 90 value 258.617310
## iter 100 value 256.566534
## final value 256.566534
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 651.067564
## iter 10 value 352.738566
## iter 20 value 282.883585
## iter 30 value 257.099056
## iter 40 value 254.004507
## iter 50 value 248.743550
## iter 60 value 246.262178
## iter 70 value 245.858573
## iter 80 value 245.362246
## iter 90 value 245.047537
## iter 100 value 244.947493
## final value 244.947493
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 27
## initial value 767.389443
## iter 10 value 353.084758
## iter 20 value 352.025821
## iter 30 value 352.025097
## iter 40 value 352.023858
## iter 50 value 352.019555
## iter 60 value 348.795951
## iter 70 value 340.691748
## iter 80 value 335.799479
## iter 90 value 323.359382
## iter 100 value 300.132202
## final value 300.132202
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 616.596017
## iter 10 value 353.035634
## iter 20 value 352.130775
## iter 30 value 352.116228
## iter
        40 value 352.081635
## iter 50 value 351.860779
## iter 60 value 329.835095
## iter 70 value 316.297744
## iter 80 value 314.824866
## iter 90 value 310.483670
## iter 100 value 304.758987
```

```
## final value 304.758987
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 395.795856
## iter 10 value 352.258050
## iter 20 value 305.437624
## iter 30 value 301.108174
## iter 40 value 299.875558
## iter 50 value 297.387480
## iter 60 value 295.985659
## iter 70 value 295.745727
## iter 80 value 294.368294
## iter 90 value 293.955452
## iter 100 value 292.081652
## final value 292.081652
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 7
## initial value 494.971989
## final value 348.000000
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 517.265083
## final value 348.000000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 641.018169
## final value 348.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 648.925572
## final value 348.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 495.246124
## final value 348.000000
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 557.565507
## final value 348.000000
## converged
```

```
## Fitting Repeat 2
##
## # weights: 17
## initial value 515.488657
## final value 348.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 682.290199
## final value 348.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 676.271823
## final value 348.000000
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 692.414816
## final value 348.000000
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 719.028587
## final value 348.000000
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 443.156132
## final value 348.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 333.675279
## iter 10 value 243.596008
## iter 20 value 233.324749
## iter 30 value 225.061697
## iter 40 value 222.432771
## iter 50 value 211.693862
## iter 60 value 208.562472
## iter 70 value 200.658684
## iter 80 value 196.627959
## iter 90 value 193.578041
## iter 100 value 193.503528
## final value 193.503528
## stopped after 100 iterations
## Fitting Repeat 4
##
```

```
## # weights: 27
## initial value 624.433483
## final value 348.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 433.073311
## final value 348.000000
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 508.448024
## iter 10 value 313.869425
## iter 20 value 263.682708
## iter 30 value 248.497989
## iter 40 value 240.982469
## final value 240.421747
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 369.682869
## iter 10 value 284.514349
## iter 20 value 255.261511
## iter 30 value 240.615717
## final value 240.421749
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 512.541779
## iter 10 value 287.974060
## iter 20 value 277.320938
## iter 30 value 255.180085
## iter 40 value 247.307122
## iter 50 value 241.715998
## final value 241.710428
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 525.362922
## iter 10 value 299.991605
## iter 20 value 252.502429
## iter 30 value 246.858625
## iter 40 value 244.854933
## iter 50 value 240.872954
## final value 240.421747
## converged
## Fitting Repeat 5
##
## # weights: 7
```

```
## initial value 575.703348
## iter 10 value 276.807743
## iter 20 value 251.549027
## iter 30 value 247.391953
## iter 40 value 246.147799
## iter 50 value 242.802152
## final value 240.421747
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 731.357305
## iter 10 value 313.890939
## iter 20 value 260.244379
## iter 30 value 237.987675
## iter 40 value 228.889828
## iter 50 value 228.761059
## final value 228.761053
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 602.759137
## iter 10 value 321.298108
## iter 20 value 265.391113
## iter 30 value 234.639752
## iter 40 value 229.627293
## iter 50 value 228.737346
## iter 60 value 226.808720
## iter 70 value 222.562513
## iter 80 value 221.235048
## final value 221.227628
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 747.487664
## iter 10 value 309.814057
## iter 20 value 256.691319
## iter 30 value 235.933104
## iter 40 value 229.794045
## iter 50 value 229.607701
## final value 229.607660
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 543.107428
## iter 10 value 322.899014
## iter 20 value 254.941335
## iter 30 value 240.429115
## iter 40 value 230.305825
## iter 50 value 230.052211
## final value 230.051960
```

```
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 513.257126
## iter 10 value 285.015667
## iter 20 value 249.395037
## iter 30 value 240.201092
## iter 40 value 235.254185
## iter 50 value 230.376527
## iter 60 value 229.776908
## final value 229.768302
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 389.486575
## iter 10 value 307.830903
## iter 20 value 266.761602
## iter 30 value 240.656194
## iter 40 value 230.882929
## iter 50 value 228.328623
## iter 60 value 228.171237
## final value 228.170758
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 612.775329
## iter 10 value 319.718898
## iter 20 value 246.028409
## iter 30 value 228.279837
## iter 40 value 225.138245
## iter 50 value 223.192581
## iter 60 value 218.592339
## iter 70 value 218.204750
## iter 80 value 218.200012
## final value 218.199865
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 382.531539
## iter 10 value 307.564464
## iter 20 value 246.160575
## iter 30 value 232.331337
## iter 40 value 229.172126
## iter 50 value 228.547602
## iter 60 value 228.487587
## iter 70 value 228.379644
## iter 80 value 227.212058
## iter 90 value 225.022631
## iter 100 value 219.619918
## final value 219.619918
```

```
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 574.219455
## iter 10 value 304.230144
## iter 20 value 289.174141
## iter 30 value 244.916637
## iter 40 value 231.040612
## iter 50 value 228.533499
## iter 60 value 226.140013
        70 value 222.113025
## iter
## iter 80 value 220.229438
## iter 90 value 219.767551
## iter 100 value 219.410890
## final value 219.410890
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights:
## initial value 496.394433
## iter 10 value 308.049676
## iter 20 value 247.311205
## iter 30 value 232.620106
## iter 40 value 229.224131
## iter 50 value 227.558786
## iter 60 value 222.779744
## iter 70 value 220.091033
## iter 80 value 215.151544
## iter 90 value 208.551805
## iter 100 value 206.705589
## final value 206.705589
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 7
## initial value 518.129647
## iter 10 value 348.283389
## iter 20 value 347.817952
## iter 30 value 309.910889
## iter 40 value 297.148456
## iter 50 value 296.664035
## iter 60 value 245.602951
## iter 70 value 245.181110
## iter 80 value 244.819422
## final value 244.813751
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 508.405493
## iter 10 value 348.290264
## iter 20 value 347.989702
## iter 30 value 347.946228
```

```
## iter 40 value 347.505815
## iter 50 value 312.637190
## iter 60 value 312.499016
## iter 70 value 312.478573
## final value 312.477934
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 574.033117
## iter 10 value 348.267958
## iter 20 value 347.975562
## iter 30 value 306.885721
## iter 40 value 296.538572
## iter 50 value 292.960958
## iter 60 value 289.376681
## iter 70 value 289.338810
## iter 80 value 236.726504
## iter 90 value 230.203200
## iter 100 value 230.188114
## final value 230.188114
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 7
## initial value 601.766586
## iter 10 value 348.402029
## iter 20 value 347.864730
## iter 30 value 336.048949
## iter 40 value 301.851502
## iter 50 value 297.102324
## iter 60 value 290.086638
## iter 70 value 235.727325
## iter 80 value 232.752377
## iter 90 value 230.157245
## final value 230.156467
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 618.228456
## iter 10 value 348.294370
## iter 20 value 348.065196
## iter 30 value 348.063701
## iter 40 value 348.047771
## iter 50 value 348.040892
## iter 60 value 348.029207
## iter
       70 value 348.004105
## iter 80 value 347.907960
## iter 90 value 339.490910
## iter 100 value 306.756677
## final value 306.756677
## stopped after 100 iterations
## Fitting Repeat 1
```

```
##
## # weights: 17
## initial value 681.964575
## iter 10 value 348.512311
## iter 20 value 343.701380
## iter 30 value 319.993782
## iter 40 value 315.728402
## iter 50 value 310.960275
## iter 60 value 310.804062
## iter 70 value 310.287058
## iter 80 value 310.139915
## iter 90 value 283.365871
## iter 100 value 273.433987
## final value 273.433987
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 708.372678
## iter 10 value 348.458229
## iter 20 value 348.085598
## iter 30 value 348.041282
## iter 40 value 320.886118
## iter 50 value 320.354217
## iter 60 value 320.202103
## iter 70 value 320.164782
## iter 80 value 320.094607
## iter 90 value 320.056425
## iter 100 value 320.039234
## final value 320.039234
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 484.038161
## iter 10 value 348.356899
## iter 20 value 334.619960
## iter 30 value 293.315608
## iter 40 value 289.183715
## iter 50 value 286.823721
## iter 60 value 286.080514
## iter 70 value 285.935524
## iter 80 value 285.618697
## iter 90 value 226.690746
## iter 100 value 223.698355
## final value 223.698355
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 607.410086
## iter 10 value 348.501328
## iter 20 value 347.987112
## iter 30 value 297.304292
```

```
## iter 40 value 290.534108
## iter 50 value 260.207435
## iter 60 value 256.393768
## iter 70 value 248.512177
## iter 80 value 238.917489
## iter 90 value 225.842552
## iter 100 value 225.427809
## final value 225.427809
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 598.063485
## iter 10 value 348.467372
## iter 20 value 347.936877
## iter 30 value 347.860259
## iter 40 value 347.000037
## iter 50 value 293.713573
## iter 60 value 282.637962
## iter 70 value 233.999653
## iter 80 value 227.502768
## iter 90 value 224.536997
## iter 100 value 223.934277
## final value 223.934277
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 678.035283
## iter 10 value 348.772161
## iter 20 value 315.774005
## iter 30 value 233.634298
## iter 40 value 223.892133
## iter 50 value 222.144937
## iter 60 value 219.904596
## iter 70 value 219.715467
## iter 80 value 219.662245
## iter 90 value 219.641244
## iter 100 value 219.627524
## final value 219.627524
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 457.922338
## iter 10 value 348.647717
## iter 20 value 348.010276
## iter 30 value 347.976242
## iter 40 value 341.365387
## iter 50 value 293.969254
## iter 60 value 290.343061
## iter 70 value 289.805436
## iter 80 value 288.155460
## iter 90 value 287.391709
```

```
## iter 100 value 277.791486
## final value 277.791486
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 27
## initial value 444.363409
## iter 10 value 348.359688
## iter 20 value 305.503458
## iter 30 value 289.511176
## iter 40 value 286.989662
## iter 50 value 285.257008
## iter 60 value 284.384773
## iter 70 value 284.274209
## iter 80 value 284.226397
## iter 90 value 284.126239
## iter 100 value 284.123104
## final value 284.123104
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 395.021989
## iter 10 value 348.272799
## iter 20 value 301.367066
## iter 30 value 290.397294
## iter 40 value 235.834323
## iter 50 value 218.132387
## iter 60 value 213.723625
## iter 70 value 212.507124
## iter 80 value 211.318887
## iter 90 value 211.171901
## iter 100 value 211.044557
## final value 211.044557
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 503.404719
## iter 10 value 348.507574
## iter 20 value 347.935519
## iter 30 value 299.951539
## iter 40 value 260.205625
## iter 50 value 248.867775
## iter 60 value 241.168370
## iter 70 value 226.950141
## iter 80 value 224.956318
## iter 90 value 224.348624
## iter 100 value 224.119010
## final value 224.119010
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
```

```
## initial value 488.110668
## final value 308.000000
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 465.212330
## final value 308.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 506.727406
## final value 308.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 551.954194
## final value 308.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 429.224251
## final value 308.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 638.560384
## final value 308.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 761.219957
## final value 308.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 587.808802
## final value 308.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 568.294710
## final value 308.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
```

```
## initial value 471.263553
## final value 308.000000
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 455.767620
## final value 308.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 697.654146
## final value 308.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 421.023850
## final value 308.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 762.294027
## final value 308.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 584.014217
## final value 308.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 520.214447
## iter 10 value 268.361016
## iter 20 value 238.705167
## iter 30 value 235.130223
## final value 235.059884
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 526.154741
## iter 10 value 258.484401
## iter 20 value 245.059762
## iter 30 value 239.181788
## final value 239.179314
## converged
## Fitting Repeat 3
##
## # weights: 7
```

```
## initial value 464.935044
## iter 10 value 267.530043
## iter 20 value 236.635564
## iter 30 value 236.283238
## final value 236.283113
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 436.467979
## iter 10 value 260.947845
## iter 20 value 244.406273
## iter 30 value 243.705906
## final value 243.705661
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 437.544337
## iter 10 value 273.418717
## iter 20 value 238.537672
## iter 30 value 235.059886
## iter 30 value 235.059884
## iter 30 value 235.059884
## final value 235.059884
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 426.923531
## iter 10 value 282.323584
## iter 20 value 242.947895
## iter 30 value 233.579577
## iter 40 value 232.630996
## final value 232.624445
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 614.909376
## iter 10 value 311.390347
## iter 20 value 252.960814
## iter 30 value 239.418291
## iter 40 value 227.122025
## iter 50 value 226.475291
## final value 226.470521
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 685.344732
## iter 10 value 292.418983
## iter 20 value 241.761059
## iter 30 value 227.128898
```

```
## iter 40 value 225.877723
## iter 50 value 223.371903
## iter 60 value 222.755276
## iter 70 value 222.752459
## iter 70 value 222.752458
## final value 222.752458
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 486.643347
## iter 10 value 283.320453
## iter 20 value 237.186339
## iter 30 value 227.697119
## iter 40 value 227.071766
## iter 50 value 226.908640
## iter 60 value 226.891706
## final value 226.891687
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 485.464569
## iter 10 value 275.181407
## iter 20 value 231.901128
## iter 30 value 227.467900
## iter 40 value 227.286049
## final value 227.284628
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 813.928761
## iter 10 value 323.443323
## iter 20 value 256.347075
## iter 30 value 239.675722
## iter 40 value 236.260724
## iter 50 value 231.460828
## iter 60 value 230.680020
## iter 70 value 230.610673
## final value 230.606151
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 380.028997
## iter 10 value 276.738960
## iter 20 value 228.606107
## iter 30 value 224.776856
## iter 40 value 222.022943
## iter 50 value 221.769026
## final value 221.769012
## converged
## Fitting Repeat 3
```

```
##
## # weights: 27
## initial value 434.708527
## iter 10 value 254.269825
## iter 20 value 233.964981
## iter 30 value 226.480493
## iter 40 value 222.706507
## iter 50 value 221.073723
## iter 60 value 217.300911
## iter 70 value 212.238699
## iter 80 value 211.601172
## iter 90 value 211.463258
## iter 100 value 210.740403
## final value 210.740403
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 799.465905
## iter 10 value 319.530545
## iter 20 value 258.352970
## iter 30 value 234.814576
## iter 40 value 223.832220
## iter 50 value 220.618592
## iter 60 value 217.435441
## iter 70 value 212.150364
## iter 80 value 212.029983
## iter 80 value 212.029981
## iter 80 value 212.029981
## final value 212.029981
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 398.652424
## iter 10 value 284.836855
## iter 20 value 245.172628
## iter 30 value 226.440434
## iter 40 value 221.680228
## iter 50 value 220.705240
## iter 60 value 220.539291
## final value 220.539186
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 411.311058
## iter 10 value 308.193799
## iter 20 value 308.011124
## iter 30 value 308.008101
## iter 40 value 308.004041
## iter 50 value 307.998190
## iter 60 value 307.988815
## iter 70 value 307.970818
```

```
## iter 80 value 307.920129
## iter 90 value 307.082232
## iter 100 value 276.225734
## final value 276.225734
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 7
## initial value 525.482659
## iter 10 value 308.326918
## iter 20 value 287.527051
## iter 30 value 282.590722
## iter 40 value 272.812141
## iter 50 value 271.498203
## iter 60 value 270.527933
## iter 70 value 270.177920
## iter 80 value 270.171544
## iter 90 value 233.378800
## final value 232.197628
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 605.890630
## iter 10 value 308.393594
## iter 20 value 308.022517
## iter 30 value 308.019458
## iter 40 value 308.015250
## iter 50 value 308.008993
## iter 60 value 275.641233
## iter 70 value 271.063888
## iter 80 value 270.388183
## iter 90 value 270.172277
## iter 100 value 270.162984
## final value 270.162984
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 729.298078
## iter 10 value 308.561186
## iter 20 value 308.035736
## iter 30 value 308.035454
## iter 40 value 308.035167
## iter 50 value 308.034873
## iter 60 value 308.034571
## iter 70 value 308.034258
## iter 80 value 308.033937
## iter 90 value 308.033613
## iter 100 value 308.033281
## final value 308.033281
## stopped after 100 iterations
## Fitting Repeat 5
##
```

```
## # weights: 7
## initial value 605.905990
## iter 10 value 308.431412
## iter 20 value 308.028623
## iter 30 value 308.026426
## iter 40 value 308.023589
## iter 50 value 308.019659
## iter 60 value 308.013834
## iter 70 value 301.253256
## iter 80 value 283.333285
## iter 90 value 283.051068
## iter 100 value 259.825151
## final value 259.825151
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 410.877416
## iter 10 value 308.263101
## iter 20 value 307.699148
## iter 30 value 276.173633
## iter 40 value 267.905952
## iter 50 value 266.812209
## iter 60 value 266.217621
## iter 70 value 266.016695
## iter 80 value 265.975893
## iter 90 value 265.811615
## iter 100 value 265.801842
## final value 265.801842
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 431.441900
## iter 10 value 308.225237
## iter 20 value 308.010902
## iter 30 value 308.001204
## iter 40 value 307.396078
## iter 50 value 274.587073
## iter 60 value 273.773178
## iter 70 value 272.918751
## iter 80 value 268.651712
## iter 90 value 264.976460
## iter 100 value 264.036007
## final value 264.036007
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 617.904140
## iter 10 value 308.350508
## iter 20 value 307.652649
## iter 30 value 272.524594
## iter 40 value 270.622750
```

```
## iter 50 value 270.177406
## iter 60 value 269.932296
## iter 70 value 269.679971
## iter 80 value 269.581669
## iter 90 value 269.543099
## iter 100 value 269.515858
## final value 269.515858
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 513.704023
## iter 10 value 308.436397
## iter 20 value 307.461736
## iter 30 value 278.043049
## iter 40 value 274.126892
## iter 50 value 270.204245
## iter 60 value 265.911505
## iter 70 value 265.097201
## iter 80 value 264.967166
## iter 90 value 264.963347
## iter 100 value 264.841883
## final value 264.841883
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 609.672764
## iter 10 value 308.587394
## iter 20 value 308.052496
## iter 30 value 308.051558
## iter 40 value 308.050515
## iter 50 value 308.049339
## iter 60 value 308.047992
## iter 70 value 308.046416
## iter 80 value 308.044528
## iter 90 value 308.042195
## iter 100 value 308.039199
## final value 308.039199
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 648.162910
## iter 10 value 308.566757
## iter 20 value 308.003503
## iter 30 value 290.277464
## iter
        40 value 279.393439
## iter 50 value 276.161690
## iter 60 value 271.664207
## iter 70 value 268.436664
## iter 80 value 248.719115
## iter 90 value 241.800894
## iter 100 value 240.307625
```

```
## final value 240.307625
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 498.257600
## iter 10 value 308.547444
## iter 20 value 308.017021
## iter 30 value 308.004965
## iter 40 value 307.219224
## iter 50 value 293.854136
## iter 60 value 280.793218
## iter 70 value 279.488807
## iter 80 value 276.814136
## iter 90 value 270.299626
## iter 100 value 266.374258
## final value 266.374258
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 27
## initial value 598.518629
## iter 10 value 308.830503
## iter 20 value 308.013492
## iter 30 value 308.009356
## iter 40 value 308.002516
## iter 50 value 298.614451
## iter 60 value 286.850004
## iter 70 value 271.718276
## iter 80 value 271.100554
## iter 90 value 271.060425
## iter 100 value 268.179708
## final value 268.179708
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 379.337334
## iter 10 value 308.203711
## iter 20 value 278.288155
## iter 30 value 275.846178
## iter 40 value 274.165817
## iter 50 value 273.087382
## iter 60 value 273.016982
## iter 70 value 272.969286
## iter 80 value 272.953644
## iter 90 value 272.948648
## iter 100 value 272.928516
## final value 272.928516
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 673.271211
```

```
## iter 10 value 308.889064
## iter 20 value 308.018229
## iter 30 value 305.167899
## iter 40 value 294.280304
## iter 50 value 270.860695
## iter 60 value 237.715609
## iter 70 value 233.640828
## iter 80 value 230.969260
## iter 90 value 229.103953
## iter 100 value 228.955469
## final value 228.955469
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 579.203755
## final value 332.000000
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 569.937681
## final value 332.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 417.350168
## final value 332.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 496.875056
## final value 332.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 458.178195
## final value 332.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 577.259213
## final value 332.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 812.443681
## final value 332.000000
## converged
```

```
## Fitting Repeat 3
##
## # weights: 17
## initial value 437.467573
## final value 332.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 568.168625
## final value 332.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 394.120566
## final value 332.000000
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 817.156341
## final value 332.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 433.787207
## final value 332.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 551.974962
## final value 332.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 585.916873
## final value 332.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 455.541145
## final value 332.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 584.279654
## iter 10 value 292.939370
## iter 20 value 252.511306
```

```
## iter 30 value 248.601659
## final value 248.367304
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 564.586205
## iter 10 value 300.450501
## iter 20 value 248.437205
## final value 248.367304
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 631.797546
## iter 10 value 267.897956
## iter 20 value 243.030120
## iter 30 value 238.071876
## final value 238.068243
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 519.795041
## iter 10 value 302.434432
## iter 20 value 250.248934
## iter 30 value 248.459977
## final value 248.367304
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 416.162432
## iter 10 value 290.603746
## iter 20 value 249.878277
## iter 30 value 248.367609
## final value 248.367305
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 624.627635
## iter 10 value 300.029571
## iter 20 value 247.671728
## iter 30 value 231.067970
## iter 40 value 230.628920
## iter 50 value 230.453357
## final value 230.453196
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 499.930523
## iter 10 value 288.641544
```

```
## iter 20 value 252.169443
## iter 30 value 236.253292
## iter 40 value 228.894130
## iter 50 value 228.661111
## final value 228.661107
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 766.428954
## iter 10 value 308.327476
## iter 20 value 240.316110
## iter 30 value 230.897607
## iter 40 value 230.745080
## final value 230.745032
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 498.290411
## iter 10 value 292.962620
## iter 20 value 244.058931
## iter 30 value 233.383092
## iter 40 value 231.692674
## iter 50 value 231.615377
## iter 60 value 231.560571
## final value 231.551851
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 646.530720
## iter 10 value 285.901379
## iter 20 value 258.925053
## iter 30 value 248.158853
## iter 40 value 245.591352
## iter 50 value 244.655447
## final value 244.652319
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 506.288937
## iter 10 value 290.802867
## iter 20 value 250.176394
## iter 30 value 239.707003
## iter 40 value 231.226157
## iter 50 value 229.877168
## iter 60 value 217.396606
## iter 70 value 211.899972
## iter 80 value 206.067263
## iter 90 value 205.409018
## iter 100 value 204.340215
## final value 204.340215
```

```
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 771.231048
## iter 10 value 278.526318
## iter 20 value 245.854588
## iter 30 value 230.468959
## iter 40 value 228.333162
## iter 50 value 228.098309
## iter 60 value 227.035420
## iter 70 value 226.796409
## iter 80 value 226.609678
## final value 226.607126
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 474.482513
## iter 10 value 300.510597
## iter 20 value 282.666951
## iter 30 value 250.289027
## iter 40 value 234.226789
## iter 50 value 230.099707
## iter 60 value 228.986893
## iter 70 value 226.869382
## iter 80 value 226.589564
## iter 90 value 226.533079
## iter 100 value 226.521383
## final value 226.521383
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 356.737377
## iter 10 value 300.862086
## iter 20 value 270.566014
## iter 30 value 239.570102
## iter 40 value 230.583604
## iter 50 value 228.123092
## iter 60 value 227.929866
## iter 70 value 227.925877
## final value 227.925866
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 479.845004
## iter 10 value 302.589051
## iter 20 value 249.927266
## iter 30 value 236.040011
## iter 40 value 231.158076
## iter 50 value 228.370622
## iter 60 value 227.862378
```

```
## iter 70 value 227.819141
## iter 70 value 227.819140
## iter 70 value 227.819140
## final value 227.819140
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 503.722031
## iter 10 value 332.281469
## iter 20 value 332.052576
## iter 30 value 332.049174
## iter 40 value 332.044472
## iter 50 value 332.037395
## iter 60 value 332.025207
## iter 70 value 331.998359
## iter 80 value 331.886680
## iter 90 value 298.556723
## iter 100 value 292.139563
## final value 292.139563
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 507.828338
## iter 10 value 332.335303
## iter 20 value 305.063679
## iter 30 value 296.521189
## iter 40 value 292.188708
## iter 50 value 291.837782
## iter 60 value 261.926705
## iter 70 value 247.329298
## iter 80 value 245.338977
## iter 90 value 245.005269
## iter 100 value 244.713580
## final value 244.713580
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 387.747272
## iter 10 value 332.147893
## iter 20 value 332.028864
## iter 30 value 332.027979
## iter 40 value 332.027061
## iter 50 value 332.026017
## iter 60 value 332.024813
## iter 70 value 332.023398
## iter 80 value 332.021697
## iter 90 value 332.019593
## iter 100 value 332.016896
## final value 332.016896
## stopped after 100 iterations
## Fitting Repeat 4
```

```
##
## # weights: 7
## initial value 544.234860
## iter 10 value 332.307724
## iter 20 value 332.072867
## iter 30 value 332.072083
## iter 40 value 332.071246
## iter 50 value 332.070345
## iter 60 value 332.069367
## iter 70 value 332.068293
## iter 80 value 332.067098
## iter 90 value 332.065749
## iter 100 value 332.064196
## final value 332.064196
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 610.550260
## iter 10 value 332.404911
## iter 20 value 331.974272
## iter 30 value 293.123408
## iter 40 value 289.096761
## iter 50 value 288.658359
## iter 60 value 246.247265
## iter 70 value 245.021739
## iter 80 value 244.926396
## iter 90 value 244.706890
## iter 90 value 244.706888
## final value 244.706888
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 464.822626
## iter 10 value 332.319679
## iter 20 value 314.859630
## iter 30 value 293.372415
## iter 40 value 284.284570
## iter 50 value 281.311138
## iter 60 value 280.154367
## iter 70 value 279.720133
## iter 80 value 251.982311
## iter 90 value 231.194185
## iter 100 value 227.423305
## final value 227.423305
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 737.062709
## iter 10 value 332.749830
## iter 20 value 331.977974
## iter 30 value 297.447538
```

```
## iter 40 value 255.477479
## iter 50 value 229.653336
## iter 60 value 225.464737
## iter 70 value 224.557099
## iter 80 value 224.374654
## iter 90 value 224.354348
## iter 100 value 224.298640
## final value 224.298640
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 17
## initial value 346.674146
## iter 10 value 332.101212
## iter 20 value 322.422851
## iter 30 value 297.533393
## iter 40 value 284.542663
## iter 50 value 280.772866
## iter 60 value 280.535256
## iter 70 value 280.193647
## iter 80 value 280.172880
## iter 90 value 280.168013
## iter 100 value 280.150752
## final value 280.150752
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 567.937176
## iter 10 value 332.536241
## iter 20 value 331.518979
## iter 30 value 258.651667
## iter 40 value 254.239835
## iter 50 value 251.689632
## iter 60 value 251.226382
## iter 70 value 250.424261
## iter 80 value 250.186607
## iter 90 value 250.102439
## iter 100 value 250.086682
## final value 250.086682
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 528.626261
## iter 10 value 332.423464
## iter 20 value 294.649158
## iter 30 value 236.491474
## iter 40 value 230.468263
## iter 50 value 226.830850
## iter 60 value 226.340115
## iter 70 value 226.221569
## iter 80 value 225.903271
## iter 90 value 225.858141
```

```
## final value 225.857951
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 347.751548
## iter 10 value 332.183096
## iter 20 value 301.478317
## iter 30 value 267.914729
## iter 40 value 244.431703
## iter 50 value 243.471734
## iter 60 value 236.478222
## iter 70 value 226.613886
## iter 80 value 220.018103
## iter 90 value 216.580616
## iter 100 value 215.242532
## final value 215.242532
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 503.566958
## iter 10 value 332.431027
## iter 20 value 307.526828
## iter 30 value 291.790944
## iter 40 value 282.368412
## iter 50 value 280.547848
## iter 60 value 279.445367
## iter 70 value 278.979228
## iter 80 value 278.894574
## iter 90 value 278.768237
## iter 100 value 278.734687
## final value 278.734687
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 541.148940
## iter 10 value 332.351109
## iter 20 value 328.237541
## iter 30 value 295.662275
## iter 40 value 290.659841
## iter 50 value 279.711256
## iter 60 value 242.395699
## iter 70 value 237.919205
## iter 80 value 237.000019
## iter 90 value 236.676842
## iter 100 value 235.208028
## final value 235.208028
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 520.349733
```

```
## iter 10 value 332.747718
## iter 20 value 331.149985
## iter 30 value 288.036329
## iter 40 value 273.458528
## iter 50 value 248.551394
## iter 60 value 242.225065
## iter 70 value 237.735834
## iter 80 value 237.490436
## iter 90 value 237.407694
## iter 100 value 236.909929
## final value 236.909929
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 452.250399
## iter 10 value 332.420657
## iter 20 value 326.817441
## iter 30 value 295.286737
## iter 40 value 284.908846
## iter 50 value 283.942219
## iter 60 value 283.515379
## iter 70 value 283.325157
## iter 80 value 283.133996
## iter 90 value 282.957339
## iter 100 value 282.595650
## final value 282.595650
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 445.158521
## final value 336.000000
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 408.294205
## final value 336.000000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 403.394420
## final value 336.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 630.568149
## final value 336.000000
## converged
## Fitting Repeat 5
##
```

```
## # weights: 7
## initial value 498.001316
## final value 336.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 403.310035
## final value 336.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 794.252668
## final value 336.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 656.848434
## final value 336.000000
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 705.351419
## final value 336.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 486.885587
## final value 336.000000
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 486.267469
## final value 336.000000
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 470.627299
## final value 336.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 679.243903
## final value 336.000000
## converged
## Fitting Repeat 4
##
```

```
## # weights: 27
## initial value 429.600465
## final value 336.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 556.824591
## final value 336.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 381.818717
## iter 10 value 295.554579
## iter 20 value 248.166755
## iter 30 value 241.402292
## final value 241.400388
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 366.009039
## iter 10 value 266.811378
## iter 20 value 253.301485
## iter 30 value 242.527082
## final value 241.400389
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 547.667610
## iter 10 value 275.053245
## iter 20 value 249.654833
## iter 30 value 241.400412
## final value 241.400393
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 512.060471
## iter 10 value 295.116739
## iter 20 value 272.515497
## iter 30 value 249.412008
## iter 40 value 247.881240
## iter 50 value 241.439923
## final value 241.400388
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 400.591783
## iter 10 value 287.805558
## iter 20 value 263.677383
```

```
## iter 30 value 242.667306
## iter 40 value 241.400658
## final value 241.400389
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 639.935989
## iter 10 value 308.119442
## iter 20 value 256.347360
## iter 30 value 246.052318
## iter 40 value 236.246715
## iter 50 value 233.915752
## iter 60 value 232.518030
## iter 70 value 230.409562
## iter 80 value 229.700039
## iter 90 value 229.519143
## final value 229.501605
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 449.228896
## iter 10 value 285.387854
## iter 20 value 247.109364
## iter 30 value 234.680269
## iter 40 value 226.867039
## iter 50 value 223.377738
## iter 60 value 219.962709
## final value 219.308222
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 382.490951
## iter 10 value 297.095025
## iter 20 value 232.698497
## iter 30 value 230.223626
## final value 230.202627
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 471.662562
## iter 10 value 263.744320
## iter 20 value 233.715257
## iter 30 value 231.158608
## iter 40 value 230.650065
## final value 230.641396
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 509.243015
```

```
## iter 10 value 286.754899
## iter 20 value 239.255269
## iter 30 value 234.659175
## iter 40 value 233.699758
## final value 233.685378
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 596.619249
## iter 10 value 321.485751
## iter 20 value 284.185116
## iter 30 value 244.359906
## iter 40 value 238.877473
## iter 50 value 235.175519
## iter 60 value 234.529767
## iter 70 value 234.007882
## iter 80 value 231.132519
## iter 90 value 230.500940
## final value 230.500844
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 410.152982
## iter 10 value 295.972323
## iter 20 value 250.807303
## iter 30 value 232.891008
## iter 40 value 231.218624
## iter 50 value 230.122162
## final value 230.119952
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 681.800582
## iter 10 value 317.534605
## iter 20 value 281.753228
## iter 30 value 241.144217
## iter 40 value 230.524450
## iter 50 value 226.225396
## iter 60 value 225.250610
## iter 70 value 225.231960
## final value 225.231830
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 570.708719
## iter 10 value 306.400728
## iter 20 value 247.878798
## iter 30 value 234.780689
## iter 40 value 226.714094
## iter 50 value 225.665542
```

```
## iter 60 value 225.619034
## final value 225.618973
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 509.108458
## iter 10 value 282.164887
## iter 20 value 244.174451
## iter 30 value 235.652397
## iter 40 value 228.811169
## iter 50 value 226.990874
## iter 60 value 226.892942
## iter 70 value 226.841044
## final value 226.840485
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 715.751482
## iter 10 value 336.485635
## iter 20 value 336.010673
## iter 30 value 336.007020
## iter 40 value 335.345148
## iter 50 value 295.166598
## iter 60 value 288.618157
## iter 70 value 287.095350
## final value 287.094760
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 568.082694
## iter 10 value 336.298707
## iter 20 value 305.441787
## iter 30 value 300.465886
## iter 40 value 299.723273
## iter 50 value 299.640916
## iter 60 value 299.629364
## iter 70 value 299.597176
## iter 80 value 296.787200
## iter 90 value 263.207404
## final value 263.197740
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 729.574986
## iter 10 value 336.486482
## iter 20 value 336.020704
## iter 30 value 336.002322
## iter 40 value 335.997230
## iter 50 value 335.989912
## iter 60 value 335.978115
```

```
## iter 70 value 335.954703
## iter 80 value 335.878438
## iter 90 value 324.114577
## iter 100 value 306.255157
## final value 306.255157
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 523.041560
## iter 10 value 336.285329
## iter 20 value 335.115945
## iter 30 value 292.238830
## iter 40 value 291.214729
## iter 50 value 287.119137
## iter 60 value 287.108166
## final value 287.108125
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 480.758465
## iter 10 value 336.238962
## iter 20 value 336.052247
## iter 30 value 335.967312
## iter 40 value 319.818897
## iter 50 value 294.995974
## iter 60 value 290.219833
## iter 70 value 287.166730
## iter 80 value 287.154328
## iter 90 value 287.019111
## iter 100 value 286.877958
## final value 286.877958
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 552.990650
## iter 10 value 336.690070
## iter 20 value 336.005902
## iter 30 value 299.312907
## iter 40 value 285.690072
## iter 50 value 244.658058
## iter 60 value 228.767744
## iter 70 value 227.000895
## iter 80 value 226.063317
## iter 90 value 224.747935
## iter 100 value 223.371699
## final value 223.371699
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 513.172665
```

```
## iter 10 value 336.364194
## iter 20 value 336.132125
## iter 30 value 336.129413
## iter 40 value 336.125981
## iter 50 value 336.120952
## iter 60 value 336.113435
## iter 70 value 336.100616
## iter 80 value 336.070955
## iter 90 value 335.897006
## iter 100 value 299.065200
## final value 299.065200
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 572.810688
## iter 10 value 336.626242
## iter 20 value 335.113215
## iter 30 value 300.316912
## iter 40 value 294.154168
## iter 50 value 291.587861
## iter 60 value 289.912652
## iter 70 value 286.558049
## iter 80 value 280.255465
## iter 90 value 279.588669
## iter 100 value 279.515305
## final value 279.515305
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 406.285497
## iter 10 value 336.255630
## iter 20 value 328.664712
## iter 30 value 288.866016
## iter 40 value 264.264015
## iter 50 value 248.773757
## iter 60 value 241.671647
## iter 70 value 239.044786
## iter 80 value 238.724052
## iter 90 value 238.694530
## iter 100 value 238.660236
## final value 238.660236
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 530.231186
## iter 10 value 336.480471
## iter 20 value 310.715323
## iter 30 value 277.773410
## iter 40 value 250.613475
## iter 50 value 241.400047
## iter 60 value 240.501305
```

```
## iter 70 value 239.969611
## iter 80 value 239.923130
## iter 90 value 239.876075
## iter 100 value 239.820890
## final value 239.820890
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 693.406797
## iter 10 value 336.801547
## iter 20 value 335.996808
## iter 30 value 308.450871
## iter 40 value 281.212694
## iter 50 value 254.738428
## iter 60 value 233.094831
## iter 70 value 230.293013
## iter 80 value 228.929422
## iter 90 value 227.648073
## iter 100 value 226.861346
## final value 226.861346
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 410.044382
## iter 10 value 336.313051
## iter 20 value 335.836644
## iter 30 value 300.597023
## iter 40 value 299.168305
## iter 50 value 296.796103
## iter 60 value 288.846025
## iter 70 value 286.028285
## iter 80 value 284.253325
## iter 90 value 283.757346
## iter 100 value 282.499700
## final value 282.499700
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 453.153978
## iter 10 value 336.384555
## iter 20 value 305.305949
## iter 30 value 297.121523
## iter 40 value 294.449945
## iter 50 value 291.844509
## iter
       60 value 289.610244
## iter 70 value 282.512173
## iter 80 value 281.945425
## iter 90 value 280.888340
## iter 100 value 280.449797
## final value 280.449797
## stopped after 100 iterations
```

```
## Fitting Repeat 4
##
## # weights: 27
## initial value 610.366062
## iter 10 value 336.720558
## iter 20 value 332.448292
## iter 30 value 240.512871
## iter 40 value 228.232274
## iter 50 value 223.864683
## iter 60 value 219.996744
## iter 70 value 219.006880
## iter 80 value 218.776905
## iter 90 value 218.612220
## iter 100 value 218.544626
## final value 218.544626
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 465.582284
## iter 10 value 336.413560
## iter 20 value 333.880114
## iter 30 value 298.414888
## iter 40 value 292.375398
## iter 50 value 270.168906
## iter 60 value 244.140969
## iter 70 value 237.323750
## iter 80 value 234.266153
## iter 90 value 229.929489
## iter 100 value 227.315086
## final value 227.315086
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 452.515652
## final value 320.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 580.794492
## final value 320.000000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 334.223851
## final value 320.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 448.904177
```

```
## final value 320.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 590.879182
## final value 320.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 498.704243
## final value 320.000000
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 485.640791
## final value 320.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 403.844316
## final value 320.000000
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 607.313482
## final value 320.000000
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 544.787130
## final value 320.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 334.116440
## iter 10 value 310.690908
## iter 20 value 306.515376
## iter 30 value 306.085513
## iter 40 value 306.014861
## iter 50 value 305.983601
## final value 305.980657
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 316.447928
## iter 10 value 282.205058
```

```
## iter 20 value 276.100375
## iter 30 value 245.064862
## iter 40 value 239.777348
## iter 50 value 229.256363
## iter 60 value 224.218402
## iter 70 value 219.187919
## iter 80 value 218.629158
## iter 90 value 216.635355
## iter 100 value 215.683940
## final value 215.683940
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 27
## initial value 490.702130
## final value 320.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 492.667143
## final value 320.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 663.516200
## final value 320.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 548.681413
## iter 10 value 282.746008
## iter 20 value 256.083756
## iter 30 value 248.831802
## iter 40 value 237.639353
## final value 237.619107
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 707.720354
## iter 10 value 311.139523
## iter 20 value 273.421120
## iter 30 value 247.189142
## iter 40 value 238.913059
## final value 238.841223
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 484.907959
## iter 10 value 282.336202
```

```
## iter 20 value 250.004716
## iter 30 value 238.109465
## final value 237.619111
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 598.605553
## iter 10 value 252.819790
## iter 20 value 239.771746
## iter 30 value 237.619129
## final value 237.619107
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 792.401057
## iter 10 value 282.661260
## iter 20 value 261.388499
## iter 30 value 239.953137
## final value 238.841220
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 720.537135
## iter 10 value 296.396395
## iter 20 value 260.456647
## iter 30 value 241.272167
## iter 40 value 232.777214
## iter 50 value 231.518204
## final value 231.502841
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 611.782961
## iter 10 value 268.384752
## iter 20 value 240.701771
## iter 30 value 231.085703
## iter 40 value 228.515336
## iter 50 value 228.033649
## final value 228.033645
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 725.353094
## iter 10 value 310.175025
## iter 20 value 262.360096
## iter 30 value 236.841733
## iter 40 value 228.532132
## iter 50 value 228.225820
## iter 60 value 228.210832
```

```
## final value 228.210804
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 450.121771
## iter 10 value 283.914532
## iter 20 value 240.298496
## iter 30 value 235.439397
## iter 40 value 229.958188
## iter 50 value 228.057951
## final value 228.056269
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 474.924559
## iter 10 value 293.952429
## iter 20 value 274.598066
## iter 30 value 240.175169
## iter 40 value 230.746832
## iter 50 value 230.646000
## final value 230.645788
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 503.935367
## iter 10 value 276.919407
## iter 20 value 241.882156
## iter 30 value 223.245853
## iter 40 value 221.689611
## iter 50 value 220.361940
## iter 60 value 219.511155
## iter 70 value 219.232340
## iter 80 value 219.220236
## iter 90 value 219.179081
## iter 100 value 219.161360
## final value 219.161360
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 663.873781
## iter 10 value 298.155054
## iter 20 value 251.324416
## iter 30 value 237.913069
## iter
       40 value 233.639463
## iter 50 value 228.282882
## iter 60 value 227.480111
## iter 70 value 227.442682
## iter 80 value 227.442594
## final value 227.442589
## converged
```

```
## Fitting Repeat 3
##
## # weights: 27
## initial value 600.251528
## iter 10 value 291.027727
## iter 20 value 248.988925
## iter 30 value 236.865232
## iter 40 value 230.795542
## iter 50 value 228.913035
## iter 60 value 228.840065
## final value 228.834901
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 754.456930
## iter 10 value 294.657978
## iter 20 value 248.157525
## iter 30 value 237.186105
## iter 40 value 232.849045
## iter 50 value 227.752846
## iter 60 value 227.614540
## iter 70 value 227.605062
## iter 80 value 227.600584
## final value 227.600567
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 475.545618
## iter 10 value 302.364684
## iter 20 value 245.321751
## iter 30 value 235.969026
## iter 40 value 227.915502
## iter 50 value 223.140889
## iter 60 value 219.678151
## iter 70 value 217.505405
## iter 80 value 217.387432
## iter 90 value 217.386360
## final value 217.385298
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 375.767833
## iter 10 value 320.139202
## iter 20 value 319.488566
## iter 30 value 285.065251
## iter 40 value 284.871315
## iter 50 value 284.472559
## iter 60 value 284.436518
## iter 70 value 284.348869
## iter 80 value 269.916813
## iter 90 value 250.122459
```

```
## iter 100 value 248.422957
## final value 248.422957
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 7
## initial value 572.639930
## iter 10 value 320.407083
## iter 20 value 279.683893
## iter 30 value 268.799772
## iter 40 value 268.796291
## final value 268.795494
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 550.947280
## iter 10 value 320.456233
## iter 20 value 319.791826
## iter 30 value 294.490388
## iter 40 value 292.486729
## iter 50 value 291.329417
## iter 60 value 264.373022
## iter 70 value 261.280611
## iter 80 value 261.221092
## iter 90 value 261.202429
## iter 100 value 261.196255
## final value 261.196255
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 698.343132
## iter 10 value 320.525694
## iter 20 value 320.032453
## iter 30 value 320.032144
## iter 40 value 320.031827
## iter 50 value 320.031503
## iter 60 value 320.031171
## iter 70 value 320.030830
## iter 80 value 320.030481
## iter 90 value 320.030121
## iter 100 value 320.029751
## final value 320.029751
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 629.197058
## iter 10 value 320.358971
## iter 20 value 320.048125
## iter 30 value 320.046880
## iter 40 value 320.045336
## iter 50 value 320.039922
```

```
## iter 60 value 320.001478
## iter 70 value 319.952261
## iter 80 value 319.210732
## iter 90 value 286.256626
## iter 100 value 278.800867
## final value 278.800867
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 522.070338
## iter 10 value 320.474224
## iter 20 value 320.014955
## iter 30 value 320.003234
## iter 40 value 319.977228
## iter 50 value 319.871579
## iter 60 value 297.042408
## iter 70 value 287.549527
## iter 80 value 284.486705
## iter 90 value 283.158856
## iter 100 value 280.928217
## final value 280.928217
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 483.426970
## iter 10 value 320.358718
## iter 20 value 283.038074
## iter 30 value 273.428431
## iter 40 value 240.561659
## iter 50 value 233.719940
## iter 60 value 227.962271
## iter 70 value 227.005586
## iter 80 value 226.678175
## iter 90 value 226.470255
## iter 100 value 226.211056
## final value 226.211056
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 710.537968
## iter 10 value 320.648902
## iter 20 value 316.782313
## iter 30 value 272.340433
## iter 40 value 264.767251
## iter 50 value 252.518714
## iter 60 value 248.752959
## iter 70 value 242.410062
## iter 80 value 240.524028
## iter 90 value 239.598318
## iter 100 value 239.593032
## final value 239.593032
```

```
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 621.853745
## iter 10 value 320.465519
## iter 20 value 320.015644
## iter 30 value 296.957549
## iter 40 value 280.121765
## iter 50 value 276.751383
## iter 60 value 273.607667
## iter 70 value 273.100874
## iter 80 value 272.899541
## iter 90 value 272.763925
## iter 100 value 272.738938
## final value 272.738938
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 313.992750
## iter 10 value 261.404650
## iter 20 value 248.692356
## iter 30 value 229.684744
## iter 40 value 226.312348
## iter 50 value 225.962317
## iter 60 value 225.163810
## iter 70 value 224.839130
## iter 80 value 224.613199
## iter 90 value 224.428584
## iter 100 value 224.378125
## final value 224.378125
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 461.442961
## iter 10 value 320.349442
## iter 20 value 320.106587
## iter 30 value 290.166926
## iter 40 value 288.688062
## iter 50 value 286.991703
## iter 60 value 283.949014
## iter 70 value 282.626082
## iter 80 value 282.305683
## iter 90 value 281.923012
## iter 100 value 278.784214
## final value 278.784214
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 698.236604
## iter 10 value 320.766607
```

```
## iter 20 value 320.008345
## iter 30 value 309.740614
## iter 40 value 274.542361
## iter 50 value 246.076659
## iter 60 value 239.701274
## iter 70 value 234.769434
## iter 80 value 232.909856
## iter 90 value 226.118460
## iter 100 value 223.773606
## final value 223.773606
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 629.517985
## iter 10 value 320.714909
## iter 20 value 320.014531
## iter 30 value 308.600890
## iter 40 value 284.281578
## iter 50 value 281.986782
## iter 60 value 279.350415
## iter 70 value 274.162907
## iter 80 value 272.050917
## iter 90 value 248.811533
## iter 100 value 241.797551
## final value 241.797551
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 855.295615
## iter 10 value 320.710154
## iter 20 value 319.932013
## iter 30 value 313.725108
## iter 40 value 296.164365
## iter 50 value 280.482732
## iter 60 value 273.491378
## iter 70 value 262.605681
## iter 80 value 239.492286
## iter 90 value 233.419869
## iter 100 value 232.506571
## final value 232.506571
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 27
## initial value 639.126032
## iter 10 value 320.597041
## iter 20 value 319.712460
## iter 30 value 289.000676
## iter 40 value 284.534192
## iter 50 value 282.818491
## iter 60 value 282.784480
## iter 70 value 282.061687
```

```
## iter 80 value 278.745288
## iter 90 value 277.864827
## iter 100 value 277.749532
## final value 277.749532
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 7
## initial value 400.389618
## final value 360.000000
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 399.400588
## final value 360.000000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 638.729686
## final value 360.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 385.395849
## final value 360.000000
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 389.562658
## final value 360.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 452.648960
## final value 360.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 653.366856
## final value 360.000000
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 573.310539
## final value 360.000000
## converged
## Fitting Repeat 4
```

```
##
## # weights: 17
## initial value 594.393894
## final value 360.000000
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 635.267994
## final value 360.000000
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 531.925137
## final value 360.000000
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 541.969868
## final value 360.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 966.464523
## final value 360.000000
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 325.384834
## iter 10 value 263.093406
## iter 20 value 255.504324
## iter 30 value 248.317762
## iter 40 value 245.801509
## iter 50 value 243.738416
## iter 60 value 242.695480
## iter 70 value 241.098801
## iter 80 value 240.962171
## final value 240.960197
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 659.502723
## final value 360.000000
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 559.717642
## iter 10 value 306.580767
```

```
## iter 20 value 272.040020
## iter 30 value 267.634541
## iter 40 value 252.139521
## final value 251.062056
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 539.994544
## iter 10 value 298.452377
## iter 20 value 252.066622
## iter 30 value 251.073273
## final value 251.062056
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 476.581013
## iter 10 value 269.992663
## iter 20 value 251.916223
## final value 251.062056
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 534.092690
## iter 10 value 304.361910
## iter 20 value 284.895161
## iter 30 value 269.028118
## iter 40 value 252.586559
## final value 252.293295
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 462.461236
## iter 10 value 295.288849
## iter 20 value 271.271476
## iter 30 value 266.802007
## iter 40 value 256.778067
## iter 50 value 251.150381
## final value 251.062056
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 725.593507
## iter 10 value 356.117720
## iter 20 value 285.440527
## iter 30 value 264.158011
## iter 40 value 259.144029
## iter 50 value 251.431951
## iter 60 value 249.529527
## iter 70 value 249.415666
```

```
## final value 249.415656
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 573.408208
## iter 10 value 291.179627
## iter 20 value 267.007270
## iter 30 value 249.618319
## iter 40 value 249.123920
## iter 50 value 249.053828
## iter 60 value 249.019351
## final value 249.019237
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 493.401618
## iter 10 value 322.506332
## iter 20 value 306.442329
## iter 30 value 263.209191
## iter 40 value 253.532429
## final value 253.521851
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 478.066561
## iter 10 value 320.093728
## iter 20 value 261.681863
## iter 30 value 252.956255
## iter 40 value 251.106663
## iter 50 value 250.478857
## iter 60 value 249.978186
## iter 70 value 249.965523
## iter 80 value 249.949067
## iter 90 value 249.829427
## final value 249.819233
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 412.956329
## iter 10 value 341.034528
## iter 20 value 261.779981
## iter 30 value 252.716226
## iter 40 value 252.586739
## iter 50 value 251.847196
## iter 60 value 251.555174
## final value 251.555169
## converged
## Fitting Repeat 1
##
## # weights: 27
```

```
## initial value 430.620767
## iter 10 value 331.166129
## iter 20 value 273.934435
## iter 30 value 260.530141
## iter 40 value 255.345032
## iter 50 value 247.347122
## iter 60 value 246.744604
## iter 70 value 246.309967
## iter 80 value 246.294360
## iter 90 value 246.214395
## iter 100 value 245.702618
## final value 245.702618
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 823.972776
## iter 10 value 336.518806
## iter 20 value 286.951440
## iter 30 value 256.527206
## iter 40 value 249.406070
## iter 50 value 248.894635
## iter 60 value 248.771606
## iter 70 value 248.555070
## iter 80 value 248.501972
## final value 248.501948
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 651.125179
## iter 10 value 327.248212
## iter 20 value 280.952135
## iter 30 value 261.933845
## iter 40 value 248.156970
## iter 50 value 246.677876
## iter 60 value 244.763352
## iter 70 value 243.071425
## iter 80 value 242.839987
## final value 242.839960
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 660.505227
## iter 10 value 332.820987
## iter 20 value 289.018077
## iter 30 value 271.747338
## iter 40 value 249.893521
## iter 50 value 247.961555
## iter 60 value 247.829193
## iter 70 value 247.666348
## iter 80 value 246.066693
## final value 246.022671
```

```
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 552.758198
## iter 10 value 327.140774
## iter 20 value 275.222309
## iter 30 value 262.643684
## iter 40 value 258.991401
## iter 50 value 253.798822
## iter 60 value 248.016502
## iter 70 value 246.178017
## iter 80 value 245.732102
## final value 245.685912
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 603.278617
## iter 10 value 360.341642
## iter 20 value 287.464300
## iter 30 value 286.572566
## iter 40 value 286.350315
## final value 286.146235
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 551.286360
## iter 10 value 360.318640
## iter 20 value 359.967101
## iter 30 value 359.900641
## iter
       40 value 350.172974
## iter 50 value 313.220475
## iter 60 value 305.997019
## iter 70 value 301.376653
## iter 80 value 301.347663
## iter 90 value 301.148259
## iter 100 value 293.267677
## final value 293.267677
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 7
## initial value 518.198517
## iter 10 value 360.290413
## iter 20 value 314.496879
## iter 30 value 313.730561
## iter 40 value 313.643961
## iter 50 value 313.635099
## iter 60 value 313.579365
## iter 70 value 292.820756
## iter 80 value 266.037993
## iter 90 value 263.707360
```

```
## iter 100 value 263.621639
## final value 263.621639
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 7
## initial value 490.611034
## iter 10 value 360.168028
## iter 20 value 360.147295
## iter 30 value 360.083798
## iter 40 value 354.995196
## iter 50 value 323.413639
## iter 60 value 323.366898
## iter 70 value 323.314291
## iter 80 value 323.266816
## iter 90 value 323.253088
## iter 100 value 323.215310
## final value 323.215310
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 440.545078
## iter 10 value 360.189997
## iter 20 value 284.009177
## iter 30 value 268.563256
## iter 40 value 266.911190
## iter 50 value 266.209395
## iter 60 value 266.020124
## iter 70 value 265.993661
## final value 265.993654
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 601.934197
## iter 10 value 360.537115
## iter 20 value 351.788213
## iter 30 value 332.181595
## iter 40 value 307.406209
## iter 50 value 305.914892
## iter 60 value 305.760739
## iter 70 value 305.451151
## iter 80 value 291.006808
## iter 90 value 287.249243
## iter 100 value 263.955994
## final value 263.955994
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 17
## initial value 639.744622
## iter 10 value 360.610585
## iter 20 value 359.968549
```

```
## iter 30 value 359.815566
## iter 40 value 349.758406
## iter 50 value 316.395820
## iter 60 value 310.499075
## iter 70 value 261.906735
## iter 80 value 254.877167
## iter 90 value 250.157839
## iter 100 value 245.831631
## final value 245.831631
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 17
## initial value 590.948133
## iter 10 value 360.461825
## iter 20 value 359.968721
## iter 30 value 310.705924
## iter 40 value 304.621273
## iter 50 value 300.976398
## iter 60 value 298.647329
## iter 70 value 247.003530
## iter 80 value 245.876161
## iter 90 value 244.775638
## iter 100 value 244.726201
## final value 244.726201
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 17
## initial value 466.100930
## iter 10 value 360.268423
## iter 20 value 332.712342
## iter 30 value 331.927212
## iter 40 value 330.102608
## iter 50 value 326.614128
## iter 60 value 318.940693
## iter 70 value 318.733265
## iter 80 value 318.534671
## iter 90 value 318.495515
## iter 100 value 318.486399
## final value 318.486399
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 555.972019
## iter 10 value 360.404791
## iter 20 value 360.001332
## iter 30 value 326.773589
## iter 40 value 307.114479
## iter 50 value 305.337745
## iter 60 value 293.725778
## iter 70 value 251.118250
## iter 80 value 245.828524
```

```
## iter 90 value 242.507161
## iter 100 value 242.371647
## final value 242.371647
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 802.080793
## iter 10 value 360.690023
## iter 20 value 286.132015
## iter 30 value 253.193613
## iter 40 value 244.196790
## iter 50 value 238.770636
## iter 60 value 234.483654
## iter 70 value 232.535791
## iter 80 value 230.778636
## iter 90 value 230.600302
## iter 100 value 230.487703
## final value 230.487703
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 535.404155
## iter 10 value 360.492473
## iter 20 value 321.853412
## iter 30 value 309.799276
## iter 40 value 294.614820
## iter 50 value 277.138432
## iter 60 value 258.703871
## iter 70 value 255.939507
## iter 80 value 251.428400
## iter 90 value 250.796224
## iter 100 value 250.034523
## final value 250.034523
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 526.911734
## iter 10 value 360.480641
## iter 20 value 338.990675
## iter 30 value 310.501861
## iter 40 value 308.108801
## iter 50 value 303.988484
## iter 60 value 300.175668
## iter 70 value 296.954749
## iter 80 value 293.285186
## iter 90 value 283.705588
## iter 100 value 266.062520
## final value 266.062520
## stopped after 100 iterations
## Fitting Repeat 4
##
```

```
## # weights: 27
## initial value 660.564058
## iter 10 value 360.646041
## iter 20 value 359.953008
## iter 30 value 321.235120
## iter 40 value 307.908012
## iter 50 value 268.812372
## iter 60 value 264.228235
## iter 70 value 257.148413
## iter 80 value 251.519881
## iter 90 value 247.365037
## iter 100 value 246.187617
## final value 246.187617
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 696.499088
## iter 10 value 360.661830
## iter 20 value 360.020378
## iter 30 value 360.012861
## iter 40 value 360.006739
## iter 50 value 359.993535
## iter 60 value 359.426150
## iter 70 value 317.713067
## iter 80 value 311.486936
## iter 90 value 307.252075
## iter 100 value 304.504501
## final value 304.504501
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 461.745560
## final value 368.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 630.643093
## final value 368.000000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 413.503422
## final value 368.000000
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 547.957500
## final value 368.000000
## converged
```

```
## Fitting Repeat 5
##
## # weights: 7
## initial value 642.590507
## final value 368.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 486.253092
## final value 368.000000
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 364.007780
## iter 10 value 261.040453
## iter 20 value 249.609530
## iter 30 value 240.457351
## iter 40 value 239.530268
## iter 50 value 236.824786
## iter 60 value 236.707205
## final value 236.706927
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 414.695404
## final value 368.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 587.763943
## final value 368.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 558.107756
## final value 368.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 636.181320
## final value 368.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 688.775884
## final value 368.000000
## converged
```

```
## Fitting Repeat 3
##
## # weights: 27
## initial value 410.392013
## final value 368.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 454.882143
## final value 368.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 533.995552
## final value 368.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 518.338477
## iter 10 value 329.038110
## iter 20 value 293.943716
## iter 30 value 264.437012
## iter 40 value 261.216011
## iter 50 value 258.771024
## final value 256.707160
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 559.396383
## iter 10 value 271.352652
## iter 20 value 267.347916
## iter 30 value 258.920936
## final value 258.356930
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 551.496006
## iter 10 value 325.943106
## iter 20 value 291.003820
## iter 30 value 274.796127
## iter 40 value 264.776699
## iter 50 value 259.411754
## iter 60 value 258.357094
## final value 258.356908
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 445.608589
```

```
## iter 10 value 300.662690
## iter 20 value 265.444021
## iter 30 value 259.070507
## iter 40 value 258.357233
## final value 258.356908
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 377.973473
## iter 10 value 293.682754
## iter 20 value 280.859434
## iter 30 value 263.070911
## iter 40 value 259.429174
## iter 50 value 258.357793
## final value 258.356909
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 411.390242
## iter 10 value 317.794110
## iter 20 value 271.628208
## iter 30 value 252.765385
## iter 40 value 246.750038
## iter 50 value 246.294284
## iter 60 value 245.291742
## iter 70 value 245.222847
## iter 70 value 245.222846
## iter 70 value 245.222846
## final value 245.222846
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 549.774117
## iter 10 value 331.819096
## iter 20 value 318.198231
## iter 30 value 276.269491
## iter 40 value 252.981294
## iter 50 value 245.207213
## iter 60 value 244.925988
## iter 70 value 244.924400
## final value 244.924369
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 374.515591
## iter 10 value 320.845644
## iter 20 value 266.049037
## iter 30 value 247.774101
## iter 40 value 247.492947
## iter 50 value 247.460537
```

```
## final value 247.456571
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 406.699567
## iter 10 value 321.060325
## iter 20 value 310.841832
## iter 30 value 260.606314
## iter 40 value 251.594817
## iter 50 value 250.303157
## iter 60 value 249.633058
## iter 70 value 249.585128
## iter 80 value 249.530979
## final value 249.530835
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 557.095827
## iter 10 value 314.284400
## iter 20 value 281.701245
## iter 30 value 252.049049
## iter 40 value 246.539976
## iter 50 value 245.866632
## iter 60 value 245.717306
## iter 70 value 245.522506
## final value 245.521876
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 737.215840
## iter 10 value 367.248779
## iter 20 value 286.102470
## iter 30 value 260.554955
## iter 40 value 253.113509
## iter 50 value 240.603741
## iter 60 value 235.119636
## iter 70 value 233.882786
## iter 80 value 233.759420
## final value 233.759398
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 594.632130
## iter 10 value 338.430181
## iter 20 value 303.380027
## iter 30 value 275.134839
## iter 40 value 261.209645
## iter 50 value 246.902912
## iter 60 value 244.328779
## iter 70 value 244.011132
```

```
## iter 80 value 243.977712
## iter 90 value 243.868627
## iter 100 value 243.815388
## final value 243.815388
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 27
## initial value 838.467946
## iter 10 value 372.977901
## iter 20 value 282.019445
## iter 30 value 266.965227
## iter 40 value 252.697189
## iter 50 value 248.644768
## iter 60 value 248.386430
## iter 70 value 247.682530
## iter 80 value 246.764009
## iter 90 value 245.499570
## iter 100 value 244.218537
## final value 244.218537
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 482.545055
## iter 10 value 323.733351
## iter 20 value 266.305561
## iter 30 value 243.537176
## iter 40 value 235.954473
## iter 50 value 232.660964
## iter 60 value 232.608112
## final value 232.607880
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 766.268700
## iter 10 value 309.087838
## iter 20 value 274.346758
## iter 30 value 257.632454
## iter 40 value 242.086005
## iter 50 value 238.523095
## iter 60 value 238.425385
## final value 238.424086
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 568.386180
## iter 10 value 368.371698
## iter 20 value 368.031441
## iter 30 value 337.792300
## iter 40 value 335.905263
## iter 50 value 330.737420
```

```
## iter 60 value 330.677069
## iter 70 value 330.101901
## iter 80 value 300.189138
## iter 90 value 294.104395
## iter 100 value 293.242638
## final value 293.242638
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 578.494757
## iter 10 value 368.332469
## iter 20 value 340.445387
## iter 30 value 303.478044
## iter 40 value 261.715906
## iter 50 value 259.017998
## iter 60 value 250.999527
## iter 70 value 246.832595
## iter 80 value 246.727733
## iter 90 value 246.722622
## iter 100 value 246.720542
## final value 246.720542
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 572.502000
## iter 10 value 368.382725
## iter 20 value 367.941557
## iter 30 value 367.713181
## iter 40 value 337.878229
## iter 50 value 336.869898
## iter 60 value 312.188142
## iter 70 value 301.044251
## iter 80 value 294.554666
## iter 90 value 294.018448
## iter 100 value 293.618343
## final value 293.618343
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 677.831107
## iter 10 value 368.353487
## iter 20 value 368.001695
## iter 30 value 367.987317
## iter 40 value 331.234234
## iter 50 value 331.176647
## iter 60 value 330.977379
## iter 70 value 300.540737
## iter 80 value 294.086272
## iter 90 value 289.618892
## iter 100 value 288.815078
## final value 288.815078
```

```
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 382.054980
## iter 10 value 368.088236
## iter 20 value 368.027266
## iter 30 value 368.026531
## iter 40 value 368.025723
## iter 50 value 368.024825
## iter 60 value 368.023816
## iter
        70 value 368.022666
## iter 80 value 368.021335
## iter 90 value 368.019762
## iter 100 value 368.017859
## final value 368.017859
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 379.228779
## iter 10 value 356.736287
## iter 20 value 322.147018
## iter 30 value 321.480648
## iter 40 value 321.384523
## iter 50 value 321.372731
## iter 60 value 321.359984
## iter 70 value 321.328171
## iter 80 value 291.503506
## iter 90 value 284.073779
## iter 100 value 283.488393
## final value 283.488393
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 17
## initial value 398.433923
## iter 10 value 368.182268
## iter 20 value 367.673522
## iter 30 value 319.787103
## iter 40 value 313.879739
## iter 50 value 313.208302
## iter 60 value 311.822471
## iter 70 value 310.611133
## iter 80 value 309.716283
## iter 90 value 309.620435
## iter 100 value 309.512579
## final value 309.512579
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 670.695115
## iter 10 value 368.755929
```

```
## iter 20 value 367.809745
## iter 30 value 365.669201
## iter 40 value 318.635359
## iter 50 value 313.476155
## iter 60 value 313.332285
## iter 70 value 312.561913
## iter 80 value 308.021280
## iter 90 value 307.857639
## iter 100 value 254.897861
## final value 254.897861
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 17
## initial value 490.836099
## iter 10 value 368.366794
## iter 20 value 269.651337
## iter 30 value 254.638433
## iter 40 value 244.808718
## iter 50 value 242.760362
## iter 60 value 242.689497
## iter 70 value 241.979591
## iter 80 value 241.757268
## iter 90 value 241.731985
## iter 100 value 241.730947
## final value 241.730947
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 496.454553
## iter 10 value 368.370076
## iter 20 value 368.030414
## iter 30 value 368.016680
## iter 40 value 367.984140
## iter 50 value 367.807029
## iter 60 value 328.614433
## iter 70 value 310.088221
## iter 80 value 305.889987
## iter 90 value 304.040181
## iter 100 value 303.737336
## final value 303.737336
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 549.734924
## iter 10 value 368.542150
## iter 20 value 367.809483
## iter 30 value 314.358660
## iter 40 value 304.896950
## iter 50 value 300.790405
## iter 60 value 299.583001
## iter 70 value 299.452134
```

```
## iter 80 value 299.428254
## iter 90 value 299.422130
## iter 100 value 299.281396
## final value 299.281396
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 525.937334
## iter 10 value 368.592864
## iter 20 value 328.243839
## iter 30 value 308.158435
## iter 40 value 299.930960
## iter 50 value 297.269373
## iter 60 value 296.499696
## iter 70 value 296.255635
## iter 80 value 296.224070
## iter 90 value 296.208441
## iter 100 value 296.198351
## final value 296.198351
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 617.786294
## iter 10 value 368.303561
## iter 20 value 368.072509
## iter 30 value 368.071004
## iter 40 value 368.065788
## iter 50 value 367.940455
## iter 60 value 317.939585
## iter 70 value 309.287663
## iter 80 value 300.097850
## iter 90 value 295.068243
## iter 100 value 293.512394
## final value 293.512394
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 723.463494
## iter 10 value 368.956875
## iter 20 value 368.019771
## iter 30 value 367.801819
## iter 40 value 360.890404
## iter 50 value 360.559992
## iter 60 value 360.302255
## iter 70 value 360.225416
## iter 80 value 352.669704
## iter 90 value 352.517047
## iter 100 value 352.426222
## final value 352.426222
## stopped after 100 iterations
## Fitting Repeat 5
```

```
##
## # weights: 27
## initial value 553.380092
## iter 10 value 368.553002
## iter 20 value 338.848397
## iter 30 value 325.101645
## iter 40 value 279.005608
## iter 50 value 256.000349
## iter 60 value 237.376867
## iter 70 value 227.491450
## iter 80 value 222.164374
## iter 90 value 220.542956
## iter 100 value 217.513161
## final value 217.513161
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 618.564370
## final value 286.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 319.772877
## final value 286.000000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 627.266174
## final value 286.000000
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 516.085383
## final value 286.000000
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 594.976735
## final value 286.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 524.814709
## final value 286.000000
## converged
## Fitting Repeat 2
##
## # weights: 17
```

```
## initial value 518.154385
## final value 286.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 506.924915
## final value 286.000000
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 537.085636
## final value 286.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 374.971785
## final value 286.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 499.774094
## final value 286.000000
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 724.978842
## final value 286.000000
## converged
## Fitting Repeat 3
## # weights: 27
## initial value 776.367058
## final value 286.000000
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 404.102996
## final value 286.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 457.921368
## final value 286.000000
## converged
## Fitting Repeat 1
##
## # weights: 7
```

```
## initial value 580.779880
## iter 10 value 260.947003
## iter 20 value 222.845490
## iter 30 value 219.204748
## iter 40 value 218.809118
## iter 50 value 217.878058
## final value 217.877838
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 451.630240
## iter 10 value 266.437732
## iter 20 value 227.629497
## iter 30 value 220.141931
## final value 219.205576
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 456.175668
## iter 10 value 259.629006
## iter 20 value 227.894170
## iter 30 value 217.884160
## final value 217.877838
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 583.061600
## iter 10 value 258.387482
## iter 20 value 226.294085
## iter 30 value 219.373851
## iter 40 value 218.744991
## iter 50 value 217.878335
## final value 217.877838
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 517.911893
## iter 10 value 264.055704
## iter 20 value 222.771759
## iter 30 value 217.919529
## final value 217.877838
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 356.191663
## iter 10 value 261.335290
## iter 20 value 238.542387
## iter 30 value 209.800649
## iter 40 value 204.502458
```

```
## iter 50 value 204.273934
## final value 204.269590
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 337.648821
## iter 10 value 253.884629
## iter 20 value 229.431966
## iter 30 value 209.593191
## iter 40 value 207.631028
## iter 50 value 207.617873
## final value 207.617814
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 505.714133
## iter 10 value 263.432027
## iter 20 value 224.806346
## iter 30 value 215.033234
## iter 40 value 207.773409
## iter 50 value 207.528083
## iter 60 value 207.516036
## iter 60 value 207.516036
## iter 60 value 207.516036
## final value 207.516036
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 561.837606
## iter 10 value 284.388986
## iter 20 value 220.842967
## iter 30 value 208.169706
## iter 40 value 206.941588
## iter 50 value 206.654029
## iter 60 value 205.603506
## final value 205.584473
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 373.722099
## iter 10 value 264.291793
## iter 20 value 244.975855
## iter 30 value 216.179248
## iter
       40 value 209.885147
## iter 50 value 209.768888
## iter 60 value 209.106082
## iter 70 value 207.141585
## iter 80 value 206.776101
## final value 206.774523
## converged
```

```
## Fitting Repeat 1
##
## # weights: 27
## initial value 555.231301
## iter 10 value 253.720212
## iter 20 value 230.919044
## iter 30 value 224.233547
## iter 40 value 211.508645
## iter 50 value 203.485147
## iter 60 value 201.764380
## iter 70 value 201.753804
## iter 70 value 201.753802
## iter 70 value 201.753802
## final value 201.753802
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 431.386712
## iter 10 value 254.824680
## iter 20 value 223.868025
## iter 30 value 210.072477
## iter 40 value 207.290220
## iter 50 value 205.305807
## iter 60 value 204.859416
## iter 70 value 204.775309
## iter 80 value 204.484120
## final value 204.476005
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 494.859596
## iter 10 value 249.771423
## iter 20 value 218.973571
## iter 30 value 204.610774
## iter 40 value 203.135977
## iter 50 value 203.124256
## final value 203.124250
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 463.763698
## iter 10 value 264.992219
## iter 20 value 224.698331
## iter 30 value 214.925810
## iter
       40 value 202.738810
## iter 50 value 196.920908
## iter 60 value 196.513002
## iter 70 value 196.405673
## iter 80 value 196.298535
## iter 90 value 195.913675
## iter 100 value 195.862253
```

```
## final value 195.862253
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 646.547811
## iter 10 value 268.383756
## iter 20 value 229.769878
## iter 30 value 211.035462
## iter 40 value 204.072654
## iter 50 value 202.906909
## final value 202.905554
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 733.948196
## iter 10 value 286.563101
## iter 20 value 286.034074
## iter 30 value 286.033702
## iter 40 value 286.033320
## iter 50 value 286.032925
## iter 60 value 286.032516
## iter 70 value 286.032090
## iter 80 value 286.031647
## iter 90 value 286.031183
## iter 100 value 286.030695
## final value 286.030695
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 348.549069
## iter 10 value 286.156998
## iter 20 value 285.994342
## iter 30 value 285.694821
## iter 40 value 255.573101
## iter 50 value 251.992163
## final value 251.878473
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 699.535127
## iter 10 value 286.420949
## iter 20 value 285.997597
## iter 30 value 264.617811
## iter
       40 value 254.151365
## iter 50 value 251.971816
## iter 60 value 251.733802
## iter 70 value 247.797991
## iter 80 value 213.732842
## iter 90 value 211.457512
## iter 100 value 211.107093
```

```
## final value 211.107093
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 569.048831
## iter 10 value 286.312937
## iter 20 value 258.817217
## iter 30 value 253.535081
## iter 40 value 247.324130
## iter 50 value 221.022635
## iter 60 value 211.889690
## iter 70 value 211.076290
## final value 211.071545
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 636.250533
## iter 10 value 286.518528
## iter 20 value 286.033690
## iter 30 value 285.962084
## iter 40 value 285.933364
## iter 50 value 285.862161
## iter 60 value 285.367505
## iter 70 value 238.343733
## iter 80 value 230.555411
## iter 90 value 228.014192
## iter 100 value 227.728578
## final value 227.728578
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 584.088336
## iter 10 value 286.640132
## iter 20 value 286.051758
## iter 30 value 286.049409
## iter 40 value 286.046397
## iter 50 value 286.042287
## iter 60 value 286.036133
## iter 70 value 286.026036
## iter 80 value 286.006206
## iter 90 value 285.945632
## iter 100 value 282.260125
## final value 282.260125
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 525.904320
## iter 10 value 286.481568
## iter 20 value 235.679176
## iter 30 value 228.580794
```

```
## iter 40 value 227.185786
## iter 50 value 226.591741
## iter 60 value 224.718461
## iter 70 value 222.447455
## iter 80 value 221.808356
## iter 90 value 221.794464
## iter 100 value 221.789470
## final value 221.789470
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 17
## initial value 707.974367
## iter 10 value 286.605135
## iter 20 value 258.960240
## iter 30 value 242.662495
## iter 40 value 206.166791
## iter 50 value 202.187281
## iter 60 value 201.775317
## iter 70 value 201.731606
## iter 80 value 201.697197
## iter 90 value 201.516404
## iter 100 value 201.475120
## final value 201.475120
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 618.827083
## iter 10 value 286.686626
## iter 20 value 286.013611
## iter 30 value 286.009060
## iter 40 value 285.976738
## iter 50 value 258.391580
## iter 60 value 250.886581
## iter 70 value 244.341436
## iter 80 value 243.283437
## iter 90 value 217.867752
## iter 100 value 206.383265
## final value 206.383265
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 654.446402
## iter 10 value 286.719207
## iter 20 value 226.896416
## iter 30 value 218.721346
## iter 40 value 218.166100
## iter 50 value 211.724867
## iter 60 value 210.644015
## iter 70 value 210.068514
## iter 80 value 209.903388
## iter 90 value 209.821218
```

```
## iter 100 value 209.803280
## final value 209.803280
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 635.454478
## iter 10 value 286.817700
## iter 20 value 286.000603
## iter 30 value 285.970861
## iter 40 value 285.622037
## iter 50 value 263.876374
## iter 60 value 250.199063
## iter 70 value 228.667343
## iter 80 value 215.993075
## iter 90 value 210.781201
## iter 100 value 206.647963
## final value 206.647963
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 621.500988
## iter 10 value 286.738380
## iter 20 value 247.739801
## iter 30 value 221.486526
## iter 40 value 212.340668
## iter 50 value 207.583253
## iter 60 value 206.818261
## iter 70 value 206.642283
## iter 80 value 206.617489
## iter 90 value 206.607209
## iter 100 value 206.546428
## final value 206.546428
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 635.063511
## iter 10 value 286.766225
## iter 20 value 285.993176
## iter 30 value 275.854744
## iter 40 value 221.392528
## iter 50 value 209.220283
## iter 60 value 204.709548
## iter 70 value 203.763311
## iter 80 value 203.698471
## iter 90 value 203.679519
## iter 100 value 203.672490
## final value 203.672490
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
```

```
## initial value 432.415501
## iter 10 value 286.256299
## iter 20 value 257.801925
## iter 30 value 248.268963
## iter 40 value 245.334257
## iter 50 value 243.872407
## iter 60 value 241.023023
## iter 70 value 240.663144
## iter 80 value 240.619174
## iter 90 value 240.570608
## iter 100 value 240.545657
## final value 240.545657
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 634.916107
## iter 10 value 286.892151
## iter 20 value 285.025203
## iter 30 value 258.845765
## iter 40 value 243.256747
## iter 50 value 223.443776
## iter 60 value 221.333843
## iter 70 value 215.535231
## iter 80 value 213.326586
## iter 90 value 213.116769
## iter 100 value 212.937292
## final value 212.937292
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 626.557771
## final value 338.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 467.313275
## final value 338.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 640.572105
## final value 338.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 685.738298
## final value 338.000000
## converged
## Fitting Repeat 5
```

```
##
## # weights: 7
## initial value 684.438298
## final value 338.000000
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 455.027358
## final value 338.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 517.886781
## final value 338.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 593.542476
## final value 338.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 363.758617
## final value 338.000000
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 527.636022
## final value 338.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 636.076996
## final value 338.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 528.063771
## final value 338.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 432.262977
## final value 338.000000
## converged
## Fitting Repeat 4
```

```
##
## # weights: 27
## initial value 902.822423
## final value 338.000000
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 768.223146
## final value 338.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 527.706514
## iter 10 value 309.276120
## iter 20 value 265.603568
## iter 30 value 253.957002
## iter 40 value 238.685992
## final value 237.296573
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 776.625491
## iter 10 value 277.743236
## iter 20 value 254.685007
## iter 30 value 244.435632
## iter 40 value 237.296638
## final value 237.296584
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 570.933874
## iter 10 value 306.217762
## iter 20 value 256.751703
## iter 30 value 247.549798
## iter 40 value 240.947648
## final value 237.296573
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 386.248334
## iter 10 value 293.756411
## iter 20 value 253.912045
## iter 30 value 247.490797
## iter 40 value 238.675868
## final value 238.538622
## converged
## Fitting Repeat 5
##
## # weights: 7
```

```
## initial value 809.188163
## iter 10 value 266.177865
## iter 20 value 265.961044
## final value 265.960978
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 573.668981
## iter 10 value 307.323621
## iter 20 value 240.942617
## iter 30 value 234.988853
## iter 40 value 229.664738
## iter 50 value 222.010815
## iter 60 value 221.615042
## iter 70 value 220.478800
## iter 80 value 219.179879
## final value 219.169851
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 605.001408
## iter 10 value 280.302317
## iter 20 value 253.334119
## iter 30 value 238.647889
## iter 40 value 229.303915
## iter 50 value 228.287020
## iter 60 value 222.987993
## iter 70 value 219.902323
## iter 80 value 219.837824
## final value 219.837812
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 851.359494
## iter 10 value 320.885890
## iter 20 value 262.173609
## iter 30 value 252.014745
## iter 40 value 244.884501
## iter 50 value 230.927921
## iter 60 value 226.688443
## iter 70 value 225.236542
## iter 80 value 224.339118
## final value 224.339062
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 442.329153
## iter 10 value 315.794848
## iter 20 value 251.682646
## iter 30 value 248.615842
```

```
## iter 40 value 247.036359
## iter 50 value 240.245525
## iter 60 value 238.704693
## iter 70 value 230.262899
## iter 80 value 226.904395
## iter 90 value 226.598173
## final value 226.585227
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 660.689581
## iter 10 value 314.164485
## iter 20 value 253.055068
## iter 30 value 248.543381
## iter 40 value 248.347796
## final value 248.347769
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 551.190391
## iter 10 value 298.591209
## iter 20 value 245.871328
## iter 30 value 233.373158
## iter 40 value 226.739240
## iter 50 value 225.358870
## iter 60 value 222.282563
## iter 70 value 220.943525
## iter 80 value 220.896886
## iter 90 value 220.847050
## final value 220.846273
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 661.625288
## iter 10 value 302.448231
## iter 20 value 244.245070
## iter 30 value 227.460809
## iter 40 value 224.262460
## iter 50 value 220.597706
## iter 60 value 219.754626
## final value 219.752262
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 555.608190
## iter 10 value 313.201712
## iter 20 value 242.637340
## iter 30 value 232.626376
## iter 40 value 228.115658
## iter 50 value 225.657598
```

```
## iter 60 value 225.364057
## final value 225.362393
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 322.064216
## iter 10 value 237.004371
## iter 20 value 231.711343
## iter 30 value 224.976514
## iter 40 value 224.419190
## iter 50 value 220.905833
## iter 60 value 219.286981
## iter 70 value 218.624885
## iter 80 value 218.268283
## iter 90 value 218.048150
## final value 218.046684
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 465.684289
## iter 10 value 308.995936
## iter 20 value 296.446209
## iter 30 value 251.149237
## iter 40 value 232.256925
## iter 50 value 223.060362
## iter 60 value 222.175288
## iter 70 value 221.971991
## iter 80 value 221.879809
## iter 90 value 221.879311
## iter 100 value 221.878862
## final value 221.878862
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 410.456984
## iter 10 value 338.198932
## iter 20 value 305.170258
## iter 30 value 305.161376
## iter 40 value 304.957145
## iter 50 value 279.162761
## iter 60 value 272.280206
## iter 70 value 272.278281
## final value 272.278077
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 580.791262
## iter 10 value 338.402673
## iter 20 value 338.005884
## iter 30 value 338.003616
```

```
## iter 40 value 338.000673
## iter 50 value 331.245855
## iter 60 value 263.091767
## iter 70 value 261.460432
## iter 80 value 260.350590
## iter 90 value 259.731094
## iter 100 value 256.418667
## final value 256.418667
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 7
## initial value 510.034595
## iter 10 value 338.315777
## iter 20 value 338.019343
## iter 30 value 331.737059
## iter 40 value 307.227940
## iter 50 value 306.484322
## iter 60 value 306.456888
## iter 70 value 306.342064
## iter 80 value 299.981640
## iter 90 value 280.197073
## iter 100 value 274.858394
## final value 274.858394
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 498.923995
## iter 10 value 338.288794
## iter 20 value 322.187038
## iter 30 value 303.493737
## iter 40 value 298.204953
## iter 50 value 295.058631
## iter 60 value 292.969448
## iter 70 value 291.642998
## iter 80 value 291.474843
## iter 90 value 246.449618
## iter 100 value 233.975315
## final value 233.975315
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 7
## initial value 484.887995
## iter 10 value 338.233383
## iter 20 value 338.026681
## iter 30 value 338.016288
## iter 40 value 337.993988
## iter 50 value 337.906230
## iter 60 value 308.036653
## iter 70 value 306.501245
## iter 80 value 306.463633
## iter 90 value 306.458809
```

```
## iter 100 value 306.434055
## final value 306.434055
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 17
## initial value 420.127420
## iter 10 value 338.271674
## iter 20 value 335.642507
## iter 30 value 297.267391
## iter 40 value 290.287007
## iter 50 value 283.031739
## iter 60 value 282.599389
## iter 70 value 281.093419
## iter 80 value 270.893453
## iter 90 value 269.586119
## iter 100 value 265.805534
## final value 265.805534
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 560.836498
## iter 10 value 338.482055
## iter 20 value 338.006379
## iter 30 value 280.209772
## iter 40 value 247.286096
## iter 50 value 229.039078
## iter 60 value 221.755666
## iter 70 value 221.551968
## iter 80 value 221.189921
## iter 90 value 221.178721
## iter 100 value 221.175032
## final value 221.175032
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 458.766558
## iter 10 value 338.407816
## iter 20 value 337.976315
## iter 30 value 315.638988
## iter 40 value 286.527416
## iter 50 value 281.871618
## iter 60 value 279.615842
## iter 70 value 253.309394
## iter 80 value 227.057642
## iter 90 value 222.506490
## iter 100 value 221.004240
## final value 221.004240
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
```

```
## initial value 567.627016
## iter 10 value 338.480299
## iter 20 value 337.431870
## iter 30 value 312.399030
## iter
        40 value 294.094502
## iter 50 value 290.884874
## iter 60 value 288.531654
        70 value 261.144059
## iter
## iter 80 value 246.349365
## iter 90 value 241.272319
## iter 100 value 240.284554
## final value 240.284554
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 493.737929
## iter 10 value 338.474604
## iter 20 value 333.671709
## iter 30 value 311.310923
## iter 40 value 294.987640
## iter 50 value 292.321812
## iter 60 value 282.892453
## iter
        70 value 251.657522
## iter 80 value 249.556622
## iter 90 value 249.280213
## iter 100 value 248.958476
## final value 248.958476
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 703.182175
## iter 10 value 338.783379
## iter 20 value 334.168456
## iter 30 value 262.868293
## iter 40 value 234.374533
## iter 50 value 222.911906
## iter
        60 value 214.498009
## iter 70 value 213.087775
## iter 80 value 212.474810
## iter 90 value 212.237048
## iter 100 value 212.164728
## final value 212.164728
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 697.394088
## iter 10 value 338.939548
## iter 20 value 338.013997
## iter 30 value 324.966079
## iter 40 value 312.689297
## iter 50 value 312.045759
```

```
## iter 60 value 311.351791
## iter 70 value 308.014284
## iter 80 value 303.774804
## iter 90 value 302.612566
## iter 100 value 302.386556
## final value 302.386556
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 461.651479
## iter 10 value 337.314600
## iter 20 value 312.675593
## iter 30 value 297.633306
## iter 40 value 290.051271
## iter 50 value 289.389540
## iter 60 value 288.849460
## iter 70 value 288.825609
## iter 80 value 288.781587
## iter 90 value 288.714214
## iter 100 value 288.240764
## final value 288.240764
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 615.187883
## iter 10 value 338.616785
## iter 20 value 335.362772
## iter 30 value 312.408202
## iter 40 value 294.121486
## iter 50 value 290.639806
## iter 60 value 289.360256
## iter 70 value 287.576963
## iter 80 value 287.427580
## iter 90 value 287.374888
## iter 100 value 287.366350
## final value 287.366350
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 953.111128
## iter 10 value 338.873364
## iter 20 value 337.836671
## iter 30 value 308.321759
## iter 40 value 242.449438
## iter 50 value 234.180462
## iter 60 value 230.822794
## iter 70 value 230.436200
## iter 80 value 229.314416
## iter 90 value 226.637058
## iter 100 value 220.499567
## final value 220.499567
```

```
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 389.483182
## final value 340.000000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 415.080525
## final value 340.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 567.108197
## final value 340.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 486.335014
## final value 340.000000
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 541.779111
## final value 340.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 498.166546
## final value 340.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 555.061718
## final value 340.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 473.155178
## final value 340.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 520.202861
## final value 340.000000
```

```
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 438.036897
## final value 340.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 615.716359
## final value 340.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 573.787992
## final value 340.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 613.067383
## final value 340.000000
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 375.811508
## final value 340.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 500.063793
## final value 340.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 553.604781
## iter 10 value 324.466329
## iter 20 value 279.615587
## iter 30 value 252.831400
## iter 40 value 246.863604
## iter 50 value 245.163821
## iter 60 value 240.139176
## final value 240.029929
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 550.944452
## iter 10 value 300.541643
```

```
## iter 20 value 256.614372
## iter 30 value 246.402878
## iter 40 value 240.032651
## final value 240.029929
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 566.817295
## iter 10 value 264.599228
## iter 20 value 246.940259
## iter 30 value 238.778305
## iter 40 value 238.751803
## final value 238.751756
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 371.410088
## iter 10 value 284.767680
## iter 20 value 253.142183
## iter 30 value 241.930467
## final value 238.751756
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 564.316754
## iter 10 value 293.240231
## iter 20 value 249.871360
## iter 30 value 241.674752
## iter 40 value 240.029953
## final value 240.029929
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 349.340149
## iter 10 value 290.403418
## iter 20 value 246.030133
## iter 30 value 227.724703
## iter 40 value 226.244075
## iter 50 value 220.418675
## iter 60 value 218.323604
## iter 70 value 217.898431
## final value 217.765399
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 591.760586
## iter 10 value 264.811014
## iter 20 value 237.629579
## iter 30 value 226.139840
```

```
## iter 40 value 224.834689
## iter 50 value 224.776059
## final value 224.776056
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 592.253355
## iter 10 value 283.090433
## iter 20 value 233.504587
## iter 30 value 224.377118
## iter 40 value 223.786555
## iter 50 value 222.904080
## iter 60 value 221.125415
## iter 70 value 217.080571
## iter 80 value 216.995734
## final value 216.995723
## converged
## Fitting Repeat 4
## # weights: 17
## initial value 371.947026
## iter 10 value 315.325611
## iter 20 value 274.234666
## iter 30 value 231.150212
## iter 40 value 224.726533
## iter 50 value 218.486493
## final value 218.211633
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 650.909669
## iter 10 value 251.840005
## iter 20 value 234.195100
## iter 30 value 227.274503
## iter 40 value 226.777944
## iter 50 value 226.084054
## iter 60 value 226.059873
## final value 226.059643
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 550.900554
## iter 10 value 318.078154
## iter 20 value 277.644286
## iter 30 value 239.799984
## iter 40 value 226.987546
## iter 50 value 223.350835
## iter 60 value 218.364591
## iter 70 value 214.955642
## iter 80 value 214.816422
## final value 214.816290
```

```
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 702.348807
## iter 10 value 273.512933
## iter 20 value 257.748038
## iter 30 value 244.863777
## iter 40 value 237.474881
## iter 50 value 226.778192
## iter 60 value 224.558864
## iter 70 value 223.650545
## iter 80 value 222.814677
## final value 222.812791
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 668.608987
## iter 10 value 271.766672
## iter 20 value 246.856224
## iter 30 value 228.679921
## iter 40 value 225.713537
## iter 50 value 221.393330
## iter 60 value 221.076815
## final value 221.076704
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 615.160737
## iter 10 value 298.756478
## iter 20 value 262.475421
## iter 30 value 238.469368
## iter 40 value 224.278362
## iter 50 value 223.613292
## iter 60 value 223.561137
## iter 70 value 223.556404
## final value 223.556394
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 691.956953
## iter 10 value 299.369164
## iter 20 value 251.877903
## iter 30 value 233.424634
## iter
        40 value 225.197040
## iter 50 value 222.648215
## iter 60 value 221.217522
## iter 70 value 220.628320
## iter 80 value 220.397479
## iter 90 value 220.238948
## iter 100 value 220.214379
```

```
## final value 220.214379
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 439.604316
## iter 10 value 340.202858
## iter 20 value 339.988011
## iter 30 value 339.921664
## iter 40 value 328.741670
## iter 50 value 291.367244
## iter 60 value 288.351164
## iter 70 value 284.798477
## iter 80 value 284.727318
## iter 90 value 284.720731
## iter 100 value 284.710647
## final value 284.710647
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 7
## initial value 564.642061
## iter 10 value 340.289477
## iter 20 value 339.870441
## iter 30 value 309.452917
## iter 40 value 295.955478
## iter 50 value 292.256453
## iter 60 value 285.792024
## iter 70 value 285.066295
## iter 80 value 284.738939
## iter 90 value 284.710682
## iter 100 value 284.700569
## final value 284.700569
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 441.958753
## iter 10 value 340.197607
## iter 20 value 340.017533
## iter 30 value 340.015794
## iter 40 value 340.013446
## iter 50 value 301.490998
## iter 60 value 295.773991
## iter 70 value 291.698032
## iter 80 value 239.235418
## iter 90 value 229.567026
## iter 100 value 229.206039
## final value 229.206039
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 559.075056
```

```
## iter 10 value 340.277919
## iter 20 value 298.419197
## iter 30 value 296.219827
## iter 40 value 295.334095
## iter 50 value 286.858940
## iter 60 value 285.040326
## iter 70 value 284.783295
## iter 80 value 244.569338
## iter 90 value 237.800932
## iter 100 value 230.079730
## final value 230.079730
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 318.455161
## iter 10 value 245.106452
## iter 20 value 234.235734
## iter 30 value 229.402289
## iter 40 value 229.240843
## final value 229.171927
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 469.512277
## iter 10 value 339.792030
## iter 20 value 296.067981
## iter 30 value 283.168027
## iter 40 value 280.685355
## iter 50 value 279.850535
## iter 60 value 279.429104
## iter 70 value 279.274073
## iter 80 value 279.180685
## iter 90 value 278.985420
## iter 100 value 278.965283
## final value 278.965283
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 382.857633
## iter 10 value 340.186554
## iter 20 value 318.210845
## iter 30 value 286.431279
## iter 40 value 282.462926
## iter 50 value 282.246837
## iter
       60 value 282.151169
## iter 70 value 281.675929
## iter 80 value 246.359785
## iter 90 value 225.152202
## iter 100 value 222.919535
## final value 222.919535
## stopped after 100 iterations
```

```
## Fitting Repeat 3
##
## # weights: 17
## initial value 604.323596
## iter 10 value 340.443840
## iter 20 value 340.066905
## iter 30 value 340.066165
## iter 40 value 340.065374
## iter 50 value 340.064524
## iter 60 value 340.063600
## iter 70 value 340.062587
## iter 80 value 340.061461
## iter 90 value 340.060190
## iter 100 value 340.058732
## final value 340.058732
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 473.419004
## iter 10 value 340.324813
## iter 20 value 249.008631
## iter 30 value 244.088014
## iter 40 value 242.484342
## iter 50 value 240.908650
## iter 60 value 240.724179
## iter 70 value 240.712326
## iter 80 value 240.564989
## iter 90 value 240.546888
## iter 100 value 240.400118
## final value 240.400118
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 622.938522
## iter 10 value 340.679245
## iter 20 value 339.832785
## iter 30 value 316.965135
## iter 40 value 298.482498
## iter 50 value 254.792835
## iter 60 value 253.150617
## iter 70 value 252.445482
## iter 80 value 252.426283
## iter 90 value 252.357217
## iter 100 value 252.302668
## final value 252.302668
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 474.247820
## iter 10 value 340.282585
## iter 20 value 306.898379
```

```
## iter 30 value 287.832348
## iter 40 value 279.135360
## iter 50 value 278.048327
## iter 60 value 277.420374
## iter 70 value 277.399621
## iter 80 value 277.263322
## iter 90 value 277.239293
## iter 100 value 241.556355
## final value 241.556355
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 545.449779
## iter 10 value 340.573150
## iter 20 value 319.070531
## iter 30 value 295.756591
## iter 40 value 284.655841
## iter 50 value 280.174706
## iter 60 value 278.500296
## iter 70 value 276.569269
## iter 80 value 276.512261
## iter 90 value 227.675338
## iter 100 value 219.541954
## final value 219.541954
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 27
## initial value 463.600019
## iter 10 value 340.446545
## iter 20 value 331.155483
## iter 30 value 288.386328
## iter 40 value 256.899909
## iter 50 value 225.033403
## iter 60 value 221.819805
## iter 70 value 220.937158
## iter 80 value 220.463386
## iter 90 value 219.942539
## iter 100 value 219.830366
## final value 219.830366
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 747.770102
## iter 10 value 340.632826
## iter 20 value 296.658947
## iter 30 value 259.914178
## iter 40 value 243.406825
## iter 50 value 231.402931
## iter 60 value 228.305570
## iter 70 value 227.344641
## iter 80 value 227.036760
```

```
## iter 90 value 226.889599
## iter 100 value 226.717682
## final value 226.717682
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 474.667907
## iter 10 value 340.423681
## iter 20 value 339.916719
## iter 30 value 302.378961
## iter 40 value 285.611691
## iter 50 value 280.064109
## iter 60 value 277.618528
## iter 70 value 276.161933
## iter 80 value 275.791301
## iter 90 value 275.499155
## iter 100 value 258.933268
## final value 258.933268
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 7
## initial value 544.420702
## final value 370.000000
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 479.730999
## final value 370.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 557.775933
## final value 370.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 562.302275
## final value 370.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 440.750260
## final value 370.000000
## converged
## Fitting Repeat 1
## # weights: 17
## initial value 353.923032
```

```
## iter 10 value 261.950790
## iter 20 value 251.743325
## iter 30 value 247.133635
## iter 40 value 246.243813
## iter 50 value 246.150714
## iter 60 value 245.383861
## iter 70 value 245.343233
## iter 80 value 245.342087
## iter 90 value 245.284158
## final value 245.281734
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 621.631231
## final value 370.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 450.746464
## final value 370.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 556.543863
## final value 370.000000
## converged
## Fitting Repeat 5
## # weights: 17
## initial value 521.879675
## final value 370.000000
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 573.239654
## final value 370.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 453.013827
## final value 370.000000
## converged
## Fitting Repeat 3
## # weights: 27
## initial value 422.017932
## final value 370.000000
## converged
## Fitting Repeat 4
```

```
##
## # weights: 27
## initial value 356.024913
## iter 10 value 263.444617
## iter 20 value 258.838371
## iter 30 value 257.497118
## iter 40 value 254.905109
## iter 50 value 251.391377
## iter 60 value 249.496545
## iter 70 value 249.419621
## iter 80 value 249.284675
## iter 90 value 249.241235
## iter 100 value 248.737455
## final value 248.737455
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 423.882253
## final value 370.000000
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 566.579541
## iter 10 value 320.646263
## iter 20 value 264.020196
## iter 30 value 261.897577
## final value 261.896853
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 448.362867
## iter 10 value 286.356665
## iter 20 value 271.021127
## iter 30 value 270.474764
## final value 270.472408
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 584.247727
## iter 10 value 342.768311
## iter 20 value 269.490212
## iter 30 value 263.646399
## iter 40 value 263.389769
## final value 263.389626
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 466.084135
## iter 10 value 314.384867
```

```
## iter 20 value 263.183625
## iter 30 value 261.896854
## iter 30 value 261.896854
## final value 261.896854
## converged
## Fitting Repeat 5
## # weights: 7
## initial value 381.305197
## iter 10 value 289.876247
## iter 20 value 274.337119
## iter 30 value 270.744911
## final value 270.472408
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 543.084181
## iter 10 value 311.770998
## iter 20 value 289.798836
## iter 30 value 278.784984
## iter 40 value 277.518104
## iter 50 value 277.377241
## final value 277.377107
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 485.729140
## iter 10 value 337.294543
## iter 20 value 280.385757
## iter 30 value 265.317365
## iter 40 value 260.479440
## iter 50 value 258.685443
## iter 60 value 258.520200
## final value 258.520190
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 584.147236
## iter 10 value 348.377405
## iter 20 value 277.592386
## iter 30 value 251.931803
## iter 40 value 248.453926
## iter 50 value 248.137482
## iter 60 value 248.044888
## final value 248.043972
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 381.376971
## iter 10 value 307.015436
```

```
## iter 20 value 273.560893
## iter 30 value 252.032598
## iter 40 value 247.023323
## iter 50 value 246.940968
## final value 246.940159
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 450.513088
## iter 10 value 267.165134
## iter 20 value 251.125231
## iter 30 value 247.878947
## iter 40 value 247.052858
## iter 50 value 245.745493
## iter 60 value 245.520445
## final value 245.520380
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 449.561175
## iter 10 value 353.829604
## iter 20 value 319.613273
## iter 30 value 298.763599
## iter 40 value 256.291186
## iter 50 value 246.644711
## iter 60 value 244.750737
## iter 70 value 244.191384
## iter 80 value 242.896605
## iter 90 value 242.261740
## iter 100 value 242.192219
## final value 242.192219
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 783.777575
## iter 10 value 355.548513
## iter 20 value 299.158103
## iter 30 value 277.281194
## iter 40 value 259.889503
## iter 50 value 255.242174
## iter 60 value 254.025604
## iter 70 value 253.543842
## final value 253.543761
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 776.397469
## iter 10 value 343.588166
## iter 20 value 271.869047
## iter 30 value 264.324432
```

```
## iter 40 value 261.749776
## iter 50 value 261.163893
## iter 60 value 258.341321
## iter 70 value 254.229580
## iter 80 value 244.364462
## iter 90 value 243.401946
## final value 243.400675
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 669.746377
## iter 10 value 356.232103
## iter 20 value 318.076696
## iter 30 value 269.740677
## iter 40 value 254.035849
## iter 50 value 248.364494
## iter 60 value 247.656361
## iter 70 value 247.355175
## iter 80 value 247.340147
## final value 247.340140
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 355.390272
## iter 10 value 257.897237
## iter 20 value 254.377144
## iter 30 value 249.740910
## iter 40 value 248.401201
## iter 50 value 248.231798
## iter 60 value 247.638999
## iter 70 value 246.189295
## iter 80 value 244.422587
## iter 90 value 244.401644
## iter 100 value 244.313940
## final value 244.313940
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 737.983680
## iter 10 value 370.432358
## iter 20 value 353.203985
## iter 30 value 319.970964
## iter 40 value 284.639331
## iter 50 value 264.822354
## iter
       60 value 261.400955
## iter 70 value 261.165029
## iter 80 value 260.850086
## iter 90 value 260.769775
## iter 100 value 259.833386
## final value 259.833386
## stopped after 100 iterations
```

```
## Fitting Repeat 2
##
## # weights: 7
## initial value 470.507570
## iter 10 value 370.201788
## iter 20 value 323.386769
## iter 30 value 319.242620
## iter 40 value 317.920722
## iter 50 value 317.702247
## iter 60 value 317.690331
## iter 70 value 317.632759
## iter 80 value 269.981102
## iter 90 value 265.228706
## iter 100 value 264.298354
## final value 264.298354
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 554.853773
## iter 10 value 370.305599
## iter 20 value 363.399067
## iter 30 value 318.930866
## iter 40 value 315.666029
## iter 50 value 315.317734
## iter 60 value 315.178370
## final value 315.170695
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 635.930527
## iter 10 value 370.362652
## iter 20 value 345.507120
## iter 30 value 286.260489
## iter 40 value 282.809926
## iter 50 value 282.737548
## iter 60 value 282.730796
## final value 282.729578
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 436.260806
## iter 10 value 370.176441
## iter 20 value 369.671782
## iter 30 value 330.863976
## iter
       40 value 326.497369
## iter 50 value 326.419059
## iter 60 value 326.405633
## iter 70 value 326.395507
## iter 80 value 326.370421
## iter 90 value 324.713730
## iter 100 value 289.484774
```

```
## final value 289.484774
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 493.136255
## iter 10 value 370.288845
## iter 20 value 370.013276
## iter 30 value 370.009951
## iter 40 value 324.567821
## iter 50 value 279.443057
## iter 60 value 248.486994
## iter 70 value 245.681227
## iter 80 value 245.506901
## iter 90 value 245.477329
## iter 100 value 245.328705
## final value 245.328705
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 17
## initial value 404.134668
## iter 10 value 370.145360
## iter 20 value 369.795446
## iter 30 value 316.425073
## iter 40 value 311.088495
## iter 50 value 308.104649
## iter 60 value 307.545831
## iter 70 value 307.382560
## iter 80 value 307.320291
## iter 90 value 307.221526
## iter 100 value 307.198136
## final value 307.198136
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 342.784476
## iter 10 value 254.077472
## iter 20 value 244.707563
## iter 30 value 243.401781
## iter 40 value 242.449408
## iter 50 value 242.310488
## iter 60 value 242.137341
## iter 70 value 241.923327
## final value 241.921076
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 562.956128
## iter 10 value 370.534067
## iter 20 value 370.019846
## iter 30 value 370.007443
```

```
## iter 40 value 369.979769
## iter 50 value 369.860477
## iter 60 value 361.851464
## iter 70 value 361.596984
## iter 80 value 361.050915
## iter 90 value 360.941625
## iter 100 value 360.929873
## final value 360.929873
## stopped after 100 iterations
## Fitting Repeat 5
## # weights: 17
## initial value 503.931396
## iter 10 value 370.364225
## iter 20 value 369.995144
## iter 30 value 369.969024
## iter 40 value 369.922910
## iter 50 value 368.027478
## iter 60 value 314.798758
## iter 70 value 311.883516
## iter 80 value 260.983866
## iter 90 value 249.447244
## iter 100 value 248.984056
## final value 248.984056
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 683.825045
## iter 10 value 370.353542
## iter 20 value 353.923732
## iter 30 value 350.982862
## iter 40 value 348.404476
## iter 50 value 324.352119
## iter 60 value 315.664940
## iter 70 value 313.910857
## iter 80 value 313.465131
## iter 90 value 313.351420
## iter 100 value 309.362216
## final value 309.362216
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 609.687939
## iter 10 value 370.476389
## iter 20 value 369.056919
## iter 30 value 322.776974
## iter 40 value 309.322974
## iter 50 value 304.637374
## iter 60 value 303.764297
## iter 70 value 303.110769
## iter 80 value 302.983263
## iter 90 value 302.950267
```

```
## iter 100 value 302.944218
## final value 302.944218
## stopped after 100 iterations
## Fitting Repeat 3
## # weights: 27
## initial value 597.660499
## iter 10 value 370.565533
## iter 20 value 369.528921
## iter 30 value 336.307443
## iter 40 value 333.529036
## iter 50 value 320.101150
## iter 60 value 316.921323
## iter 70 value 281.335071
## iter 80 value 279.692953
## iter 90 value 278.217715
## iter 100 value 277.966734
## final value 277.966734
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 550.131199
## iter 10 value 371.053608
## iter 20 value 370.100262
## iter 30 value 345.171818
## iter 40 value 337.882974
## iter 50 value 337.467385
## iter 60 value 337.287411
## iter 70 value 337.256163
## iter 80 value 332.455505
## iter 90 value 298.696012
## iter 100 value 296.780098
## final value 296.780098
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 401.946062
## iter 10 value 370.326575
## iter 20 value 366.065938
## iter 30 value 339.251915
## iter 40 value 319.794181
## iter 50 value 319.232230
## iter 60 value 316.709361
## iter 70 value 316.431419
## iter 80 value 316.370803
## iter 90 value 316.131389
## iter 100 value 315.651676
## final value 315.651676
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
```

```
## initial value 374.625368
## final value 350.000000
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 407.213247
## final value 350.000000
## converged
## Fitting Repeat 3
## # weights: 7
## initial value 653.675126
## final value 350.000000
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 529.378235
## final value 350.000000
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 495.777680
## final value 350.000000
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 460.251256
## final value 350.000000
## converged
## Fitting Repeat 2
## # weights: 17
## initial value 475.451229
## final value 350.000000
## converged
## Fitting Repeat 3
## # weights: 17
## initial value 689.113030
## final value 350.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 361.538335
## final value 350.000000
## converged
## Fitting Repeat 5
##
## # weights: 17
```

```
## initial value 464.738590
## final value 350.000000
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 594.394681
## final value 350.000000
## converged
## Fitting Repeat 2
## # weights: 27
## initial value 434.806609
## final value 350.000000
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 695.047089
## final value 350.000000
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 496.287618
## final value 350.000000
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 538.037006
## final value 350.000000
## converged
## Fitting Repeat 1
## # weights: 7
## initial value 398.765643
## iter 10 value 294.936637
## iter 20 value 251.238888
## iter 30 value 249.936524
## final value 249.925553
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 488.004634
## iter 10 value 303.149996
## iter 20 value 265.110528
## iter 30 value 254.332428
## iter 40 value 251.190680
## final value 251.190641
## converged
## Fitting Repeat 3
##
```

```
## # weights: 7
## initial value 586.554900
## iter 10 value 323.629319
## iter 20 value 293.039018
## iter 30 value 262.007864
## iter 40 value 249.940228
## final value 249.925553
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 457.445136
## iter 10 value 303.977114
## iter 20 value 257.676274
## iter 30 value 251.190734
## final value 251.190681
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 496.270867
## iter 10 value 289.151077
## iter 20 value 255.437285
## iter 30 value 249.925564
## iter 30 value 249.925563
## final value 249.925563
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 735.080274
## iter 10 value 323.021859
## iter 20 value 264.246757
## iter 30 value 257.799054
## iter 40 value 246.383214
## iter 50 value 238.559432
## iter 60 value 238.377828
## iter 70 value 238.334194
## final value 238.334136
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 463.324331
## iter 10 value 302.988451
## iter 20 value 252.724342
## iter 30 value 249.371666
## iter
       40 value 245.985489
## iter 50 value 241.933076
## iter 60 value 241.890560
## iter 70 value 241.531013
## final value 241.529317
## converged
## Fitting Repeat 3
```

```
##
## # weights: 17
## initial value 568.572559
## iter 10 value 299.764583
## iter 20 value 246.221511
## iter 30 value 241.498427
## iter 40 value 240.560755
## iter 50 value 240.349509
## final value 240.328837
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 593.689911
## iter 10 value 322.238314
## iter 20 value 299.772608
## iter 30 value 261.534927
## iter 40 value 244.971405
## iter 50 value 239.144227
## final value 239.067216
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 524.329316
## iter 10 value 303.250465
## iter 20 value 257.455160
## iter 30 value 238.403146
## iter 40 value 237.605682
## iter 50 value 237.107526
## iter 60 value 236.843454
## final value 236.841534
## converged
## Fitting Repeat 1
## # weights: 27
## initial value 342.436225
## iter 10 value 251.569625
## iter 20 value 241.674209
## iter 30 value 238.795419
## iter 40 value 238.205221
## iter 50 value 238.186188
## final value 238.185520
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 573.950812
## iter 10 value 323.011496
## iter 20 value 260.503281
## iter 30 value 248.594614
## iter 40 value 241.782707
## iter 50 value 238.060685
## iter 60 value 237.500046
```

```
## iter 70 value 234.999245
## iter 80 value 233.996517
## final value 233.990902
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 484.053841
## iter 10 value 326.665282
## iter 20 value 282.564894
## iter 30 value 249.811999
## iter 40 value 239.629636
## iter 50 value 234.756473
## iter 60 value 231.761338
## iter 70 value 231.505605
## iter 80 value 231.501133
## final value 231.501129
## converged
## Fitting Repeat 4
## # weights: 27
## initial value 422.325720
## iter 10 value 307.917382
## iter 20 value 298.058340
## iter 30 value 267.150242
## iter 40 value 245.665544
## iter 50 value 238.152216
## iter 60 value 237.604799
## iter 70 value 237.070362
## iter 80 value 236.299529
## iter 90 value 236.284920
## final value 236.284843
## converged
## Fitting Repeat 5
## # weights: 27
## initial value 467.058447
## iter 10 value 325.370034
## iter 20 value 282.503909
## iter 30 value 248.529124
## iter 40 value 236.935336
## iter 50 value 232.968696
## iter 60 value 232.813784
## final value 232.810728
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 684.829207
## iter 10 value 350.400463
## iter 20 value 350.024845
## iter 30 value 307.557028
## iter 40 value 303.190696
## iter 50 value 302.354668
```

```
## iter 60 value 297.947149
## iter 70 value 296.018392
## iter 80 value 295.866803
## iter 90 value 256.089968
## iter 100 value 241.672337
## final value 241.672337
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 502.700062
## iter 10 value 350.253974
## iter 20 value 350.019498
## iter 30 value 350.014667
## iter 40 value 350.007231
## iter 50 value 349.994010
## iter 60 value 349.963251
## iter 70 value 349.808034
## iter 80 value 308.982475
## iter 90 value 303.557354
## iter 100 value 301.386745
## final value 301.386745
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 693.206234
## iter 10 value 350.442604
## iter 20 value 350.026950
## iter 30 value 349.919530
## iter 40 value 349.286945
## iter 50 value 316.689051
## iter 60 value 315.937589
## iter 70 value 284.662818
## iter 80 value 282.138098
## iter 90 value 282.074945
## iter 100 value 281.805896
## final value 281.805896
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 532.368841
## iter 10 value 350.320534
## iter 20 value 350.023409
## iter 30 value 350.019433
## iter 40 value 348.721460
## iter 50 value 303.822319
## iter 60 value 298.665476
## iter 70 value 296.111116
## iter 80 value 295.807978
## iter 90 value 294.545012
## iter 100 value 243.957409
## final value 243.957409
```

```
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 353.389489
## iter 10 value 350.049607
## iter 20 value 350.048703
## iter 30 value 350.047683
## iter 40 value 350.046509
## iter 50 value 350.045124
## iter 60 value 350.043431
## iter
        70 value 350.041270
## iter 80 value 350.038328
## iter 90 value 350.033927
## iter 100 value 350.026248
## final value 350.026248
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 538.813540
## iter 10 value 350.396180
## iter 20 value 350.048895
## iter 30 value 349.996461
## iter 40 value 349.804361
## iter 50 value 304.439796
## iter 60 value 299.650086
## iter 70 value 298.272871
## iter 80 value 296.806849
## iter 90 value 293.455828
## iter 100 value 293.167542
## final value 293.167542
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 17
## initial value 616.463127
## iter 10 value 350.544654
## iter 20 value 349.908190
## iter 30 value 319.683879
## iter 40 value 299.570726
## iter 50 value 294.634810
## iter 60 value 291.677268
## iter 70 value 290.252041
## iter 80 value 289.775120
## iter 90 value 289.742087
## iter 100 value 289.738768
## final value 289.738768
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 629.383333
## iter 10 value 350.456453
```

```
## iter 20 value 350.032506
## iter 30 value 350.030847
## iter 40 value 350.028848
## iter 50 value 350.026361
## iter 60 value 350.023138
## iter 70 value 350.018720
## iter 80 value 350.012168
## iter 90 value 350.001182
## iter 100 value 349.978300
## final value 349.978300
## stopped after 100 iterations
## Fitting Repeat 4
## # weights: 17
## initial value 636.918227
## iter 10 value 350.492730
## iter 20 value 348.851077
## iter 30 value 301.238357
## iter 40 value 295.291765
## iter 50 value 290.546815
## iter 60 value 253.072900
## iter 70 value 248.038938
## iter 80 value 247.382521
## iter 90 value 247.314820
## iter 100 value 247.005809
## final value 247.005809
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 459.563464
## iter 10 value 350.313168
## iter 20 value 349.897545
## iter 30 value 349.682364
## iter 40 value 341.256701
## iter 50 value 325.590510
## iter 60 value 304.759978
## iter 70 value 269.495788
## iter 80 value 261.745202
## iter 90 value 256.645591
## iter 100 value 252.833159
## final value 252.833159
## stopped after 100 iterations
## Fitting Repeat 1
## # weights: 27
## initial value 503.800081
## iter 10 value 350.276217
## iter 20 value 304.508335
## iter 30 value 293.364642
## iter 40 value 289.928112
## iter 50 value 288.971475
## iter 60 value 288.271323
## iter 70 value 288.148635
```

```
## iter 80 value 288.116316
## iter 90 value 288.109877
## iter 100 value 288.095711
## final value 288.095711
## stopped after 100 iterations
## Fitting Repeat 2
## # weights: 27
## initial value 387.804323
## iter 10 value 339.453440
## iter 20 value 305.150176
## iter 30 value 298.517260
## iter 40 value 294.560372
## iter 50 value 292.547259
## iter 60 value 264.883258
## iter 70 value 259.789519
## iter 80 value 241.352572
## iter 90 value 233.109421
## iter 100 value 231.504327
## final value 231.504327
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 361.711670
## iter 10 value 350.152834
## iter 20 value 259.279654
## iter 30 value 235.503904
## iter 40 value 224.110009
## iter 50 value 222.005381
## iter 60 value 221.033113
## iter 70 value 220.973241
## iter 80 value 220.911761
## iter 90 value 220.698988
## iter 100 value 220.681253
## final value 220.681253
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 843.200904
## iter 10 value 350.854084
## iter 20 value 350.027650
## iter 30 value 338.163272
## iter 40 value 337.119853
## iter 50 value 337.067514
## iter 60 value 337.012159
## iter 70 value 336.912404
## iter 80 value 336.898015
## iter 90 value 336.717772
## iter 100 value 279.234258
## final value 279.234258
## stopped after 100 iterations
## Fitting Repeat 5
```

```
##
## # weights: 27
## initial value 533.298872
## iter 10 value 350.651331
## iter 20 value 349.919460
## iter 30 value 306.997170
## iter 40 value 256.002461
## iter 50 value 238.673021
## iter 60 value 234.870795
## iter 70 value 231.347555
## iter 80 value 230.076546
## iter 90 value 227.820663
## iter 100 value 226.623920
## final value 226.623920
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 617.660602
## iter 10 value 309.526100
## iter 20 value 252.180019
## iter 30 value 246.133147
## iter 40 value 242.906339
## final value 242.735125
## converged
## Fitting Repeat 2
## # weights: 7
## initial value 533.158778
## iter 10 value 281.773359
## iter 20 value 251.928433
## iter 30 value 247.087787
## iter 40 value 243.033925
## iter 50 value 242.735128
## iter 50 value 242.735127
## iter 50 value 242.735126
## final value 242.735126
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 437.789641
## iter 10 value 282.687017
## iter 20 value 249.740637
## iter 30 value 245.006171
## iter 40 value 242.735331
## final value 242.735125
## converged
## Fitting Repeat 4
## # weights: 7
## initial value 490.795457
## iter 10 value 298.275190
## iter 20 value 261.917900
```

```
## iter 30 value 245.683166
## iter 40 value 242.735633
## final value 242.735125
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 513.600912
## iter 10 value 294.876734
## iter 20 value 248.052961
## iter 30 value 242.905721
## iter 40 value 242.735125
## iter 40 value 242.735125
## iter 40 value 242.735125
## final value 242.735125
## converged
## [1] "mlp"
## [1] "monmlp"
## ** Ensemble 1
## 0.8169067
## ** 0.8169067
## ** Ensemble 1
## 0.6966106
## ** 0.6966106
## ** Ensemble 1
## 0.6007596
## ** 0.6007596
##
## ** Ensemble 1
## 0.9015416
## ** 0.9015416
##
## ** Ensemble 1
## 0.7203453
## ** 0.7203453
##
## ** Ensemble 1
## 0.6693001
## ** 0.6693001
##
## ** Ensemble 1
## 0.8734338
## ** 0.8734338
##
## ** Ensemble 1
## 0.7972549
## ** 0.7972549
##
## ** Ensemble 1
## 0.6370972
## ** 0.6370972
##
```

```
## ** Ensemble 1
## 0.8455232
## ** 0.8455232
##
## ** Ensemble 1
## 0.7504654
## ** 0.7504654
##
## ** Ensemble 1
## 0.6813194
## ** 0.6813194
##
## ** Ensemble 1
## 0.9002499
## ** 0.9002499
##
## ** Ensemble 1
## 0.7008103
## ** 0.7008103
##
## ** Ensemble 1
## 0.8059766
## ** 0.8059766
## ** Ensemble 1
## 0.8615089
## ** 0.8615089
## ** Ensemble 1
## 0.7747495
## ** 0.7747495
##
## ** Ensemble 1
## 0.7227856
## ** 0.7227856
##
## ** Ensemble 1
## 0.8722996
## ** 0.8722996
##
## ** Ensemble 1
## 0.8131276
## ** 0.8131276
##
## ** Ensemble 1
## 0.7207405
## ** 0.7207405
##
## ** Ensemble 1
## 0.9003218
## ** 0.9003218
##
## ** Ensemble 1
```

0.7063208

```
## ** 0.7063208
##
## ** Ensemble 1
## 0.679107
## ** 0.679107
##
## ** Ensemble 1
## 0.9010765
## ** 0.9010765
##
## ** Ensemble 1
## 0.7492188
## ** 0.7492188
##
## ** Ensemble 1
## 0.7200722
## ** 0.7200722
##
## ** Ensemble 1
## 0.8315435
## ** 0.8315435
## ** Ensemble 1
## 0.7831783
## ** 0.7831783
## ** Ensemble 1
## 0.6485349
## ** 0.6485349
##
## ** Ensemble 1
## 0.8318136
## ** 0.8318136
##
## ** Ensemble 1
## 0.7549498
## ** 0.7549498
##
## ** Ensemble 1
## 0.6325275
## ** 0.6325275
##
## ** Ensemble 1
## 0.7830241
## ** 0.7830241
##
## ** Ensemble 1
## 0.7452407
## ** 0.7452407
##
## ** Ensemble 1
## 0.6117011
## ** 0.6117011
```

##

```
## ** Ensemble 1
## 0.8650326
## ** 0.8650326
##
## ** Ensemble 1
## 0.8474695
## ** 0.8474695
##
## ** Ensemble 1
## 0.5188715
## ** 0.5188715
##
## ** Ensemble 1
## 0.8608523
## ** 0.8608523
##
## ** Ensemble 1
## 0.8265402
## ** 0.8265402
##
## ** Ensemble 1
## 0.6600127
## ** 0.6600127
## ** Ensemble 1
## 0.903268
## ** 0.903268
## ** Ensemble 1
## 0.7737686
## ** 0.7737686
##
## ** Ensemble 1
## 0.8261256
## ** 0.8261256
##
## ** Ensemble 1
## 0.8384433
## ** 0.8384433
##
## ** Ensemble 1
## 0.6804523
## ** 0.6804523
##
## ** Ensemble 1
## 0.7118222
## ** 0.7118222
##
## ** Ensemble 1
## 0.9033698
## ** 0.9033698
##
## ** Ensemble 1
```

0.8193993

```
## ** 0.8193993
##
## ** Ensemble 1
## 0.7134993
## ** 0.7134993
##
## ** Ensemble 1
## 0.8264429
## ** 0.8264429
##
## ** Ensemble 1
## 0.768402
## ** 0.768402
##
## ** Ensemble 1
## 0.6906884
## ** 0.6906884
##
## ** Ensemble 1
## 0.7885203
## ** 0.7885203
##
## ** Ensemble 1
## 0.6649098
## ** 0.6649098
## ** Ensemble 1
## 0.6865735
## ** 0.6865735
##
## ** Ensemble 1
## 0.9074428
## ** 0.9074428
##
## ** Ensemble 1
## 0.8545605
## ** 0.8545605
##
## ** Ensemble 1
## 0.7087402
## ** 0.7087402
##
## ** Ensemble 1
## 0.8321507
## ** 0.8321507
##
## ** Ensemble 1
## 0.8295033
## ** 0.8295033
##
## ** Ensemble 1
## 0.6809626
## ** 0.6809626
```

##

```
## ** Ensemble 1
## 0.8964134
## ** 0.8964134
##
## ** Ensemble 1
## 0.811927
## ** 0.811927
##
## ** Ensemble 1
## 0.6116767
## ** 0.6116767
##
## ** Ensemble 1
## 0.8846199
## ** 0.8846199
##
## ** Ensemble 1
## 0.7878012
## ** 0.7878012
##
## ** Ensemble 1
## 0.6935414
## ** 0.6935414
## ** Ensemble 1
## 0.8761184
## ** 0.8761184
## ** Ensemble 1
## 0.818771
## ** 0.818771
##
## ** Ensemble 1
## 0.5963141
## ** 0.5963141
##
## ** Ensemble 1
## 0.8995469
## ** 0.8995469
##
## ** Ensemble 1
## 0.8372152
## ** 0.8372152
##
## ** Ensemble 1
## 0.7112181
## ** 0.7112181
##
## ** Ensemble 1
## 0.6392689
## ** 0.6392689
##
## [1] "adaboost"
## [1] "gbm"
```

##	Iter	TrainDeviance	ValidDeviance	C+onCiro	Tmnrosso
##	1	0.8798		StepSize 0.1000	Improve 0.0082
##	2	0.8663	nan	0.1000	0.0062
##	3	0.8540	nan	0.1000	0.0060
##	4	0.8452	nan	0.1000	
##	5	0.8380	nan	0.1000	0.0046
	6	0.8339	nan	0.1000	0.0037
##	7		nan		-0.0000
##		0.8268	nan	0.1000	0.0027 0.0019
##	8 9	0.8215	nan	0.1000	
##	10	0.8170	nan	0.1000	0.0010 0.0026
##		0.8110	nan	0.1000	
##	20	0.7786	nan	0.1000	-0.0003
##	40	0.7437	nan	0.1000	0.0000
##	60	0.7317	nan	0.1000	-0.0009
##	80	0.7184	nan	0.1000	0.0008
##	100	0.7080	nan	0.1000	-0.0005
##	120	0.7004	nan	0.1000	-0.0001
##	140	0.6933	nan	0.1000	-0.0002
##	150	0.6893	nan	0.1000	-0.0005
##	T+	T : D :	W-1:4D	Q+ Q:	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8684	nan	0.1000	0.0141
##	2	0.8438	nan	0.1000	0.0099
##	3	0.8275	nan	0.1000	0.0074
##	4	0.8166	nan	0.1000	0.0046
##	5	0.8064	nan	0.1000	0.0031
##	6	0.7975	nan	0.1000	0.0040
##	7	0.7892	nan	0.1000	0.0037
##	8	0.7805	nan	0.1000	0.0026
##	9	0.7718	nan	0.1000	0.0025
##	10	0.7658	nan	0.1000	0.0021
##	20	0.7216	nan	0.1000	0.0012
##	40	0.6764	nan	0.1000	-0.0005
##	60	0.6567	nan	0.1000	-0.0007
##	80	0.6307	nan	0.1000	-0.0004
##	100	0.6133	nan	0.1000	-0.0005
##	120	0.5962 0.5812	nan	0.1000	-0.0002
##	140		nan	0.1000	-0.0011
##	150	0.5740	nan	0.1000	-0.0014
##	T+om	TrainDarriance	ValidDarriance	C+onCino	Tmnmorro
##	Iter 1	TrainDeviance	ValidDeviance	StepSize	Improve 0.0160
##		0.8675	nan	0.1000 0.1000	
## ##	2	0.8414 0.8276	nan		0.0089 0.0046
			nan	0.1000	
##	4	0.8133	nan	0.1000	0.0062
##	5	0.8005	nan	0.1000	0.0055
##	6	0.7873	nan	0.1000	0.0047
##	7	0.7777	nan	0.1000	0.0033
##	8 9	0.7681	nan	0.1000	0.0038
##		0.7613	nan	0.1000	0.0032
##	10	0.7546	nan	0.1000	0.0025
##	20	0.6948	nan	0.1000	0.0002
##	40	0.6331	nan	0.1000	-0.0011
##	60	0.5995	nan	0.1000	-0.0014

##	80	0.5561	nan	0.1000	-0.0006
##	100	0.5380	nan	0.1000	-0.0006
##	120	0.5117	nan	0.1000	-0.0000
##	140	0.4839	nan	0.1000	-0.0007
##	150	0.4751	nan	0.1000	-0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9031	nan	0.1000	0.0089
##	2	0.8808	nan	0.1000	0.0074
##	3	0.8697	nan	0.1000	0.0059
##	4	0.8596	nan	0.1000	0.0049
##	5	0.8522	nan	0.1000	0.0038
##	6	0.8422	nan	0.1000	0.0024
##	7	0.8347		0.1000	0.0024
##	8	0.8284	nan	0.1000	0.0010
	9	0.8219	nan	0.1000	
##			nan		0.0033
##	10	0.8156	nan	0.1000	0.0023
##	20	0.7776	nan	0.1000	0.0010
##	40	0.7364	nan	0.1000	0.0001
##	60	0.7143	nan	0.1000	-0.0007
##	80	0.6958	nan	0.1000	0.0002
##	100	0.6842	nan	0.1000	0.0001
##	120	0.6754	nan	0.1000	-0.0009
##	140	0.6672	nan	0.1000	-0.0001
##	150	0.6657	nan	0.1000	0.0000
##					_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8880	nan	0.1000	0.0170
##	2	0.8638	nan	0.1000	0.0130
##	3	0.8473	nan	0.1000	0.0082
##	4	0.8301	nan	0.1000	0.0078
##	5	0.8157	nan	0.1000	0.0060
##	6	0.8034	nan	0.1000	0.0059
##	7	0.7939	nan	0.1000	0.0048
##	8	0.7857	nan	0.1000	0.0017
##	9	0.7780	nan	0.1000	0.0022
##	10	0.7712	nan	0.1000	0.0025
##	20	0.7243	nan	0.1000	0.0005
##	40	0.6687	nan	0.1000	0.0002
##	60	0.6334	nan	0.1000	-0.0014
##	80	0.6063	nan	0.1000	-0.0002
##	100	0.5758	nan	0.1000	0.0002
##	120	0.5504	nan	0.1000	-0.0011
##	140	0.5343	nan	0.1000	-0.0007
##	150	0.5265	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8899	nan	0.1000	0.0177
##	2	0.8605	nan	0.1000	0.0101
##	3	0.8437	nan	0.1000	0.0070
##	4	0.8187	nan	0.1000	0.0100
##	5	0.8035	nan	0.1000	0.0060
##	6	0.7865	nan	0.1000	0.0072
##	7	0.7718	nan	0.1000	0.0061

##	8	0.7591	nan	0.1000	0.0035
##	9	0.7502	nan	0.1000	0.0038
##	10	0.7421	nan	0.1000	0.0029
##	20	0.6792	nan	0.1000	0.0021
##	40	0.5836	nan	0.1000	0.0009
##	60	0.5323	nan	0.1000	0.0015
##	80	0.4970	nan	0.1000	-0.0013
##	100	0.4626	nan	0.1000	0.0008
##	120	0.4397	nan	0.1000	-0.0008
##	140	0.4220	nan	0.1000	-0.0016
##	150	0.4122	nan	0.1000	-0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.9115	nan	0.1000	0.0079
##	2	0.8928	nan	0.1000	0.0064
##	3	0.8812	nan	0.1000	0.0052
##	4	0.8718	nan	0.1000	0.0043
##	5	0.8628	nan	0.1000	0.0031
##	6	0.8571	nan	0.1000	0.0019
##	7	0.8501	nan	0.1000	0.0031
##	8	0.8438	nan	0.1000	0.0025
##	9	0.8395	nan	0.1000	0.0016
##	10	0.8351	nan	0.1000	0.0011
##	20	0.7991	nan	0.1000	0.0002
##	40	0.7661	nan	0.1000	-0.0002
##	60	0.7443	nan	0.1000	0.0009
##	80	0.7271	nan	0.1000	-0.0002
	100	0 7171		0.1000	-0.0010
##	100	0.7171	nan	0.1000	-0.0010
## ##	120	0.7171	nan nan	0.1000	-0.0010
##	120	0.7088	nan	0.1000	-0.0012
## ##	120 140	0.7088 0.6996 0.6960	nan nan	0.1000 0.1000	-0.0012 -0.0003
## ## ##	120 140	0.7088 0.6996 0.6960 TrainDeviance	nan nan	0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve
## ## ## ##	120 140 150 Iter 1	0.7088 0.6996 0.6960 TrainDeviance 0.9043	nan nan nan	0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002
## ## ## ##	120 140 150 Iter 1 2	0.7088 0.6996 0.6960 TrainDeviance	nan nan nan ValidDeviance	0.1000 0.1000 0.1000 StepSize	-0.0012 -0.0003 -0.0002 Improve
## ## ## ## ##	120 140 150 Iter 1 2 3	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663	nan nan nan ValidDeviance nan	0.1000 0.1000 0.1000 StepSize 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062
## ## ## ## ## ##	120 140 150 Iter 1 2	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547	nan nan nan ValidDeviance nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058
## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444	nan nan ValidDeviance nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040
## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327	nan nan ValidDeviance nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061
## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228	nan nan ValidDeviance nan nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047
## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061
## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038
## ## ## ## ## ## ## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7 8 9	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098 0.7995 0.7926 0.7448	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038 0.0013 0.0006
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098 0.7995 0.7926 0.7448 0.6842	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038 0.0013 0.0006 0.0004
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098 0.7995 0.7926 0.7448 0.6842 0.6496	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038 0.0013 0.0006 0.0004 -0.0001
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098 0.7995 0.7926 0.7448 0.6842 0.6496 0.6197	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038 0.0013 0.0006 0.0004 -0.0001 -0.0009
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098 0.7995 0.7926 0.7448 0.6842 0.6496 0.6197 0.5921	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038 0.0013 0.0006 0.0004 -0.0001 -0.0009 0.0005
############################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098 0.7995 0.7926 0.7448 0.6842 0.6496 0.6197 0.5921 0.5714	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038 0.0013 0.0006 0.0004 -0.0001 -0.0009 0.0005 -0.0015
########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098 0.7995 0.7926 0.7448 0.6842 0.6496 0.6197 0.5921 0.5714 0.5497	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038 0.0013 0.0006 0.0004 -0.0001 -0.0009 0.0005 -0.0015 -0.0012
##########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098 0.7995 0.7926 0.7448 0.6842 0.6496 0.6197 0.5921 0.5714	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038 0.0013 0.0006 0.0004 -0.0001 -0.0009 0.0005 -0.0015
########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098 0.7995 0.7926 0.7448 0.6842 0.6496 0.6197 0.5921 0.5714 0.5497 0.5407	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038 0.0013 0.0006 0.0004 -0.0001 -0.0009 0.0005 -0.0015 -0.0012 -0.0003
##########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.7088 0.6996 0.6960 TrainDeviance 0.9043 0.8828 0.8663 0.8547 0.8444 0.8327 0.8228 0.8098 0.7995 0.7926 0.7448 0.6842 0.6496 0.6197 0.5921 0.5714 0.5497	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0003 -0.0002 Improve 0.0122 0.0103 0.0062 0.0058 0.0040 0.0061 0.0047 0.0064 0.0038 0.0013 0.0006 0.0004 -0.0001 -0.0009 0.0005 -0.0015 -0.0012

##	2	0.8665	nan	0.1000	0.0116
##	3	0.8483	nan	0.1000	0.0071
##	4	0.8326	nan	0.1000	0.0054
##	5	0.8160	nan	0.1000	0.0068
##	6	0.8039	nan	0.1000	0.0048
##	7	0.7918	nan	0.1000	0.0040
##	8	0.7796	nan	0.1000	0.0034
##	9	0.7714	nan	0.1000	0.0024
##	10	0.7641	nan	0.1000	0.0022
##	20	0.6953	nan	0.1000	0.0017
##	40	0.6121	nan	0.1000	-0.0005
##	60	0.5659	nan	0.1000	-0.0006
##	80	0.5291	nan	0.1000	-0.0001
##	100	0.4947	nan	0.1000	-0.0008
##	120	0.4713	nan	0.1000	-0.0012
##	140	0.4467	nan	0.1000	-0.0012
##	150	0.4336		0.1000	-0.0009
##	130	0.4330	nan	0.1000	0.0009
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9180	nan	0.1000	0.0104
##	2	0.8988	nan	0.1000	0.0078
##	3	0.8843	nan	0.1000	0.0060
##	4	0.8730	nan	0.1000	0.0042
##	5	0.8639	nan	0.1000	0.0037
##	6	0.8585	nan	0.1000	0.0023
##	7	0.8523	nan	0.1000	0.0018
##	8	0.8452	nan	0.1000	0.0031
##	9	0.8384	nan	0.1000	0.0036
##	10	0.8341	nan	0.1000	0.0015
##	20	0.7890	nan	0.1000	0.0021
##	40	0.7480	nan	0.1000	-0.0000
##	60	0.7258	nan	0.1000	-0.0002
##	80	0.7148	nan	0.1000	-0.0000
##	100	0.7015	nan	0.1000	-0.0001
##	120	0.6941	nan	0.1000	-0.0002
##	140	0.6830	nan	0.1000	-0.0003
##	150	0.6776	nan	0.1000	-0.0004
##	200	0.0		0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9065	nan	0.1000	0.0161
##	2	0.8823	nan	0.1000	0.0120
##	3	0.8599	nan	0.1000	0.0097
##	4	0.8401	nan	0.1000	0.0077
##	5	0.8249	nan	0.1000	0.0061
##	6	0.8114		0.1000	0.0055
##	7	0.8018	nan	0.1000	0.0033
##	8	0.7919	nan	0.1000	0.0040
##	9	0.7846	nan	0.1000	0.0024
			nan		
##	10	0.7795	nan	0.1000	0.0020
##	20	0.7309	nan	0.1000	0.0008
##	40	0.6797	nan	0.1000	-0.0004
##	60	0.6497	nan	0.1000	-0.0008
##	80	0.6292	nan	0.1000	-0.0003
##	100	0.6113	nan	0.1000	-0.0014

##	120	0.5834	nan	0.1000	-0.0006
##	140	0.5607	nan	0.1000	-0.0004
##	150	0.5539	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.9004	nan	0.1000	0.0176
##	2	0.8702	nan	0.1000	0.0143
##	3	0.8430	nan	0.1000	0.0106
##	4	0.8246	nan	0.1000	0.0071
##	5	0.8081	nan	0.1000	0.0064
##	6	0.7949	nan	0.1000	0.0068
##	7	0.7847	nan	0.1000	0.0024
##	8	0.7752	nan	0.1000	0.0024
##	9	0.7672	nan	0.1000	0.0015
##	10	0.7577	nan	0.1000	0.0035
##	20	0.7001	nan	0.1000	0.0002
##	40	0.6385	nan	0.1000	-0.0001
##	60	0.5932	nan	0.1000	0.0008
##	80	0.5482	nan	0.1000	-0.0005
##	100	0.5043	nan	0.1000	-0.0006
##	120	0.4851	nan	0.1000	-0.0009
##	140	0.4616	nan	0.1000	-0.0007
##	150	0.4512	nan	0.1000	-0.0010
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8909	nan	0.1000	0.0076
##	2	0.8770	nan	0.1000	0.0061
##	3	0.8658	nan	0.1000	0.0046
##	4	0.8561	nan	0.1000	0.0040
##	5	0.8499	nan	0.1000	0.0015
##	6	0.8419	nan	0.1000	0.0037
##	7	0.8352	nan	0.1000	0.0024
##	8	0.8290	nan	0.1000	0.0030
##	9	0.8235	nan	0.1000	0.0013
##	10	0.8148	nan	0.1000	0.0029
##	20	0.7728	nan	0.1000	0.0003
##	40	0.7390	nan	0.1000	-0.0001
##	60 80	0.7174	nan	0.1000	-0.0002
##		0.7032	nan	0.1000	0.0001
##	100 120	0.6927 0.6851	nan	0.1000 0.1000	-0.0000 -0.0007
##	140	0.6765	nan	0.1000	-0.0007
##			nan		
##	150	0.6726	nan	0.1000	-0.0006
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8779	nan	0.1000	0.0143
##	2	0.8561		0.1000	0.0143
##	3	0.8405	nan nan	0.1000	0.0054
##	4	0.8253		0.1000	0.0063
##	5	0.8233	nan nan	0.1000	0.0003
##	6	0.8129	nan	0.1000	0.0029
##	7	0.7915	nan	0.1000	0.0035
##	8	0.7813	nan	0.1000	0.0033
##	9	0.7744	nan	0.1000	0.0045
π	3	0.11-1-1	nan	0.1000	0.0010

##	10	0.7662	nan	0.1000	0.0036
##	20	0.7166	nan	0.1000	0.0004
##	40	0.6653	nan	0.1000	-0.0005
##	60	0.6309	nan	0.1000	0.0010
##	80	0.5994	nan	0.1000	-0.0000
##	100	0.5778	nan	0.1000	-0.0012
##	120	0.5592	nan	0.1000	-0.0001
##	140	0.5370	nan	0.1000	-0.0005
##	150	0.5320	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8712	nan	0.1000	0.0179
##	2	0.8452	nan	0.1000	0.0106
##	3	0.8277	nan	0.1000	0.0058
##	4	0.8086	nan	0.1000	0.0093
##	5	0.7911	nan	0.1000	0.0066
##	6	0.7790	nan	0.1000	0.0053
##	7	0.7670	nan	0.1000	0.0047
##	8	0.7567	nan	0.1000	0.0027
##	9	0.7449	nan	0.1000	0.0053
##	10	0.7379	nan	0.1000	0.0018
##	20	0.6767	nan	0.1000	0.0010
##	40	0.6064	nan	0.1000	0.0007
##	60	0.5633	nan	0.1000	-0.0010
##	80	0.5240	nan	0.1000	0.0003
##	100	0.5009	nan	0.1000	-0.0008
##	120	0.4651	nan	0.1000	-0.0003
##	140	0.4379	nan	0.1000	0.0001
##	150	0 1001		0 4000	
	150	0.4291	nan	0.1000	-0.0003
##	150	0.4291	nan	0.1000	-0.0003
	Iter	0.4291 TrainDeviance	nan ValidDeviance	0.1000 StepSize	-0.0003
##					
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ## ##	Iter 1	TrainDeviance 0.9171	ValidDeviance nan	StepSize 0.1000	Improve 0.0087
## ## ## ##	Iter 1 2	TrainDeviance 0.9171 0.9049	ValidDeviance nan nan	StepSize 0.1000 0.1000	Improve 0.0087 0.0064
## ## ## ##	Iter	TrainDeviance 0.9171 0.9049 0.8941	ValidDeviance nan nan nan	StepSize 0.1000 0.1000 0.1000	Improve 0.0087 0.0064 0.0056
## ## ## ## ##	Iter	TrainDeviance 0.9171 0.9049 0.8941 0.8858	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0087 0.0064 0.0056 0.0032
## ## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0087 0.0064 0.0056 0.0032 0.0033
## ## ## ## ## ##	Iter 1 2 3 4 5 6	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711 0.8629	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038
## ## ## ## ## ## ##	Iter	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711 0.8629 0.8567	ValidDeviance nan nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711 0.8629 0.8567 0.8501	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711 0.8629 0.8567 0.8501 0.8450	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711 0.8629 0.8567 0.8501 0.8450 0.8051	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711 0.8629 0.8567 0.8501 0.8450 0.8051 0.7745	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017 0.0017
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711 0.8629 0.8567 0.8501 0.8450 0.8051 0.7745 0.7561	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017 0.0017 0.0004 0.0002
## # # # # # # # # # # # # # # # # # #	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711 0.8629 0.8567 0.8501 0.8450 0.8051 0.7745 0.7561 0.7403	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017 0.0017 0.0004 0.0002 0.0000
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017 0.0017 0.0004 0.0002 0.0000 -0.0005
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711 0.8629 0.8567 0.8501 0.8450 0.8051 0.7745 0.7561 0.7403 0.7319 0.7251	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017 0.0017 0.0004 0.0002 0.0000 -0.0005 0.0001
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 0.9171 0.9049 0.8941 0.8858 0.8772 0.8711 0.8629 0.8567 0.8501 0.8450 0.8051 0.7745 0.7561 0.7403 0.7319 0.7251 0.7160	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017 0.0004 0.0002 0.0000 -0.0005 0.0001
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017 0.0004 0.0002 0.0000 -0.0005 0.0001
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017 0.0004 0.0002 0.0000 -0.0005 0.0001 -0.0007 -0.0002
#########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017 0.0004 0.0002 0.0000 -0.0005 0.0001 -0.0007 -0.0002
########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0087 0.0064 0.0056 0.0032 0.0033 0.0014 0.0038 0.0017 0.0028 0.0017 0.0017 0.0004 0.0002 0.0000 -0.0005 0.0001 -0.0007 -0.0002 Improve 0.0144

##	4	0.8558	nan	0.1000	0.0072
##	5	0.8440	nan	0.1000	0.0047
##	6	0.8316	nan	0.1000	0.0043
##	7	0.8241	nan	0.1000	0.0032
##	8	0.8168	nan	0.1000	0.0029
##	9	0.8115	nan	0.1000	-0.0001
##	10	0.8053	nan	0.1000	0.0004
##	20	0.7616	nan	0.1000	0.0016
##	40	0.7159	nan	0.1000	0.0007
##	60	0.6790	nan	0.1000	-0.0003
##	80	0.6512	nan	0.1000	-0.0003
##	100	0.6311	nan	0.1000	-0.0010
##	120	0.6060	nan	0.1000	0.0010
##	140	0.5898	nan	0.1000	-0.0006
##	150	0.5786	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9054	nan	0.1000	0.0152
##	2	0.8819	nan	0.1000	0.0096
##	3	0.8629	nan	0.1000	0.0078
##	4	0.8510	nan	0.1000	0.0022
##	5	0.8369	nan	0.1000	0.0050
##	6	0.8272	nan	0.1000	0.0029
##	7	0.8177	nan	0.1000	0.0035
##	8	0.8039	nan	0.1000	0.0065
##	9	0.7915	nan	0.1000	0.0035
##	10	0.7808	nan	0.1000	0.0046
##	20	0.7179	nan	0.1000	0.0012
##	40	0.6447	nan	0.1000	-0.0006
##	60	0.6069	nan	0.1000	-0.0004
##	80	0.5628	nan	0.1000	0.0003
##	100	0.5278	nan	0.1000	-0.0018
##	120	0.4992	nan	0.1000	-0.0008
##	140	0.4763	nan	0.1000	-0.0004
##	150	0.4647	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9210	nan	0.1000	0.0159
##	2	0.8989	nan	0.1000	0.0077
##	3	0.8794	nan	0.1000	0.0098
##	4	0.8592	nan	0.1000	0.0067
##	5	0.8466	nan	0.1000	0.0056
##	6	0.8350	nan	0.1000	0.0042
##	7	0.8313	nan	0.1000	0.0007
##	8	0.8244	nan	0.1000	0.0038
##	9	0.8170	nan	0.1000	0.0023
##	10	0.8101	nan	0.1000	0.0028
##	20	0.7677	nan	0.1000	0.0007
##	40	0.7229	nan	0.1000	0.0004
##	60	0.6980	nan	0.1000	-0.0003
##	80	0.6801	nan	0.1000	-0.0002
##	100	0.6661	nan	0.1000	-0.0001
##	120	0.6547	nan	0.1000	0.0001
##	140	0.6448	nan	0.1000	-0.0006
	- 10	0.0110	11311	0.1000	5.0000

## ##	150	0.6387	nan	0.1000	-0.0004
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.9169	nan	0.1000	0.0231
##	2	0.8914	nan	0.1000	0.0137
##	3	0.8615	nan	0.1000	0.0133
##	4	0.8462	nan	0.1000	0.0082
##	5	0.8307	nan	0.1000	0.0067
##	6	0.8112	nan	0.1000	0.0095
##	7	0.7948	nan	0.1000	0.0075
##	8	0.7842	nan	0.1000	0.0060
##	9	0.7734	nan	0.1000	0.0046
##	10	0.7626	nan	0.1000	0.0039
##	20	0.7092	nan	0.1000	0.0027
##	40	0.6480	nan	0.1000	0.0005
##	60	0.6094	nan	0.1000	-0.0000
##	80	0.5773	nan	0.1000	0.0004
##	100	0.5507	nan	0.1000	-0.0005
##	120	0.5260	nan	0.1000	-0.0005
##	140	0.4958	nan	0.1000	-0.0007
##	150	0.4877	nan	0.1000	-0.0004
##	T	T i Di	V-1:4D	Q+ Q:	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9075	nan	0.1000	0.0257
## ##	2	0.8708	nan	0.1000	0.0171 0.0121
##	4	0.8405 0.8166	nan nan	0.1000 0.1000	0.0121
##	5	0.7959	nan	0.1000	0.0034
##	6	0.7814	nan	0.1000	0.0077
##	7	0.7673	nan	0.1000	0.0076
##	8	0.7539	nan	0.1000	0.0059
##	9	0.7431	nan	0.1000	0.0026
##	10	0.7338	nan	0.1000	0.0027
##	20	0.6643	nan	0.1000	0.0007
##	40	0.5847	nan	0.1000	-0.0002
##	60	0.5222	nan	0.1000	-0.0006
##	80	0.4838	nan	0.1000	-0.0005
##	100	0.4508	nan	0.1000	0.0005
##	120	0.4208	nan	0.1000	-0.0000
##	140	0.3970	nan	0.1000	-0.0001
##	150	0.3848	nan	0.1000	-0.0003
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8604	nan	0.1000	0.0074
##	2	0.8479	nan	0.1000	0.0054
##	3	0.8375	nan	0.1000	0.0040
##	4	0.8301	nan	0.1000	0.0033
##	5	0.8238	nan	0.1000	0.0025
##	6	0.8168	nan	0.1000	0.0033
##	7	0.8109	nan	0.1000	0.0031
##	8	0.8056	nan	0.1000	0.0014
##	9	0.8019	nan	0.1000	0.0004
##	10	0.7985	nan	0.1000	0.0016
##	20	0.7645	nan	0.1000	-0.0004

##	40	0.7387	nan	0.1000	-0.0010
##	60	0.7224	nan	0.1000	-0.0006
##	80	0.7112	nan	0.1000	-0.0001
##	100	0.6983	nan	0.1000	-0.0005
##	120	0.6907	nan	0.1000	-0.0005
##	140	0.6838	nan	0.1000	-0.0004
##	150	0.6791	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8538	nan	0.1000	0.0128
##	2	0.8297	nan	0.1000	0.0104
##	3	0.8124	nan	0.1000	0.0067
##	4	0.8003	nan	0.1000	0.0051
##	5	0.7907	nan	0.1000	0.0035
##	6	0.7800	nan	0.1000	0.0045
##	7	0.7709	nan	0.1000	0.0037
##	8	0.7644		0.1000	0.0023
##	9	0.7590	nan	0.1000	0.0023
##	10	0.7542	nan	0.1000	0.0014
##	20		nan		
##	40	0.7051	nan	0.1000	0.0009
		0.6561	nan	0.1000	0.0001
##	60	0.6206	nan	0.1000	-0.0002
##	80	0.5969	nan	0.1000	-0.0003
##	100	0.5719	nan	0.1000	-0.0006
##	120	0.5515	nan	0.1000	-0.0012
##	140	0.5340	nan	0.1000	-0.0006
##	150	0.5225	nan	0.1000	-0.0004
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	0.8443	ValidDeviance nan	0.1000	0.0165
## ## ##	1 2	0.8443 0.8194		0.1000 0.1000	0.0165 0.0108
## ##	1 2 3	0.8443 0.8194 0.8023	nan	0.1000 0.1000 0.1000	0.0165 0.0108 0.0073
## ## ##	1 2 3 4	0.8443 0.8194 0.8023 0.7871	nan nan	0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061
## ## ## ##	1 2 3	0.8443 0.8194 0.8023 0.7871 0.7715	nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049
## ## ## ##	1 2 3 4	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061
## ## ## ## ##	1 2 3 4 5	0.8443 0.8194 0.8023 0.7871 0.7715	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023
## ## ## ## ## ##	1 2 3 4 5	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044
## ## ## ## ## ##	1 2 3 4 5 6 7	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023
## ## ## ## ## ##	1 2 3 4 5 6 7	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021 0.0008
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0004
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0004
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413 0.5064 0.4787	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0004 -0.0007
## ###################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413 0.5064 0.4787 0.4530	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0004 -0.0007 -0.0003 0.0003
## ###################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413 0.5064 0.4787 0.4530 0.4308	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0004 -0.0007 -0.0003 0.0003
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413 0.5064 0.4787 0.4530 0.4308	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0004 -0.0007 -0.0003 0.0003 -0.0007 -0.0008
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413 0.5064 0.4787 0.4530 0.4308 0.4198	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0004 -0.0007 -0.0003 0.0003
######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413 0.5064 0.4787 0.4530 0.4308 0.4198 TrainDeviance 0.9163	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0007 -0.0003 0.0003 -0.0007 -0.0008 Improve 0.0102
#####################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413 0.5064 0.4787 0.4530 0.4308 0.4198 TrainDeviance 0.9163 0.9005	nan	0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0007 -0.0003 0.0003 -0.0007 -0.0008 Improve 0.0102 0.0079
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413 0.5064 0.4787 0.4530 0.4308 0.4198 TrainDeviance 0.9163 0.9005 0.8868	nan	0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0004 -0.0007 -0.0003 0.0003 -0.0007 -0.0008 Improve 0.0102 0.0079 0.0061
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	0.8443 0.8194 0.8023 0.7871 0.7715 0.7605 0.7512 0.7416 0.7270 0.7191 0.6574 0.5964 0.5413 0.5064 0.4787 0.4530 0.4308 0.4198 TrainDeviance 0.9163 0.9005	nan	0.1000 0.1000	0.0165 0.0108 0.0073 0.0061 0.0049 0.0044 0.0023 0.0036 0.0060 0.0021 0.0008 0.0004 -0.0007 -0.0003 0.0003 -0.0007 -0.0008 Improve 0.0102 0.0079

##	6	0.8599	nan	0.1000	0.0028
##	7	0.8530	nan	0.1000	0.0020
##	8	0.8477	nan	0.1000	0.0029
##	9	0.8399	nan	0.1000	0.0034
##	10	0.8339	nan	0.1000	0.0024
##	20	0.7894	nan	0.1000	0.0003
##	40	0.7497	nan	0.1000	0.0006
##	60	0.7281	nan	0.1000	0.0000
##	80	0.7156	nan	0.1000	0.0000
##	100	0.7067	nan	0.1000	-0.0003
##	120	0.7006	nan	0.1000	-0.0009
##	140	0.6935	nan	0.1000	-0.0006
##	150	0.6891	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.9012	nan	0.1000	0.0104
##	2	0.8810	nan	0.1000	0.0114
##	3	0.8602	nan	0.1000	0.0090
##	4	0.8450	nan	0.1000	0.0064
##	5	0.8338	nan	0.1000	0.0054
##	6	0.8242	nan	0.1000	0.0044
##	7	0.8149	nan	0.1000	0.0028
##	8	0.8007	nan	0.1000	0.0048
##	9	0.7939	nan	0.1000	0.0012
##	10	0.7849	nan	0.1000	0.0038
##	20	0.7343	nan	0.1000	0.0005
##	40	0.6869	nan	0.1000	0.0002
##	60	0.6607	nan	0.1000	-0.0001
##	80	0.6349	nan	0.1000	-0.0001
##	100	0.6164	nan	0.1000	-0.0003
##	120	0.6030	nan	0.1000	0.0001
##	140	0.5825	nan	0.1000	-0.0012
##	150	0.5727	nan	0.1000	-0.0003
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9000	nan	0.1000	0.0161
##	2	0.8719	nan	0.1000	0.0136
##	3	0.8482	nan	0.1000	0.0095
##	4	0.8281	nan	0.1000	0.0066
##	5	0.8160	nan	0.1000	0.0039
##	6	0.8022	nan	0.1000	0.0041
##	7	0.7883	nan	0.1000	0.0052
##	8	0.7746	nan	0.1000	0.0053
##	9	0.7657	nan	0.1000	0.0030
##	10	0.7569	nan	0.1000	0.0028
##	20	0.6948	nan	0.1000	0.0007
##	40	0.6317	nan	0.1000	-0.0005
##	60	0.5928	nan	0.1000	-0.0002
##	80	0.5613	nan	0.1000	-0.0006
##	100	0.5326	nan	0.1000	-0.0004
##	120	0.5142	nan	0.1000	-0.0011
##	140	0.4903	nan	0.1000	-0.0002
##	150	0.4805	nan	0.1000	-0.0013
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8981	nan	0.1000	0.0055
##	2	0.8775		0.1000	0.0033
##	3	0.8647	nan		0.0090
##	4	0.8536	nan	0.1000	0.0076
			nan	0.1000	
##	5	0.8409	nan	0.1000	0.0029
##	6	0.8297	nan	0.1000	0.0041
##	7	0.8223	nan	0.1000	0.0028
##	8	0.8164	nan	0.1000	0.0017
##	9	0.8100	nan	0.1000	0.0035
##	10	0.8028	nan	0.1000	0.0022
##	20	0.7569	nan	0.1000	0.0011
##	40	0.7205	nan	0.1000	-0.0002
##	60	0.6962	nan	0.1000	0.0013
##	80	0.6835	nan	0.1000	-0.0003
##	100	0.6704	nan	0.1000	-0.0005
##	120	0.6593	nan	0.1000	-0.0005
##	140	0.6527	nan	0.1000	-0.0000
##	150	0.6489	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.8764	nan	0.1000	0.0129
##	2	0.8504	nan	0.1000	0.0128
##	3	0.8295	nan	0.1000	0.0085
##	4	0.8168	nan	0.1000	0.0058
##	5	0.7976	nan	0.1000	0.0069
##	6	0.7862	nan	0.1000	0.0048
##	7	0.7772	nan	0.1000	0.0033
##	8	0.7690	nan	0.1000	0.0030
##	9	0.7616	nan	0.1000	0.0019
##	10	0.7563	nan	0.1000	0.0019
##	20	0.7083	nan	0.1000	-0.0002
##	40	0.6534	nan	0.1000	0.0010
##	60	0.6229	nan	0.1000	-0.0005
##	80	0.5937	nan	0.1000	-0.0001
##	100	0.5681	nan	0.1000	-0.0006
##	120	0.5455	nan	0.1000	-0.0006
##	140	0.5280	nan	0.1000	-0.0009
##	150	0.5193	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.8710	nan	0.1000	0.0180
##	2	0.8492	nan	0.1000	0.0132
##	3	0.8247	nan	0.1000	0.0089
##	4	0.8007	nan	0.1000	0.0086
##	5	0.7831	nan	0.1000	0.0055
##	6	0.7717	nan	0.1000	0.0039
##	7	0.7536	nan	0.1000	0.0058
##	8	0.7402	nan	0.1000	0.0044
##	9	0.7316	nan	0.1000	0.0028
##	10	0.7221	nan	0.1000	0.0030
##	20	0.6539	nan	0.1000	0.0026
##	40	0.5969	nan	0.1000	-0.0010
##	60	0.5568	nan	0.1000	-0.0004

##	80	0.5247	nan	0.1000	-0.0004
##	100	0.4842	nan	0.1000	-0.0010
##	120	0.4611	nan	0.1000	-0.0010
##	140	0.4403	nan	0.1000	-0.0009
##	150	0.4320	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9241	nan	0.1000	0.0077
##	2	0.9114	nan	0.1000	0.0049
##	3	0.9022	nan	0.1000	0.0043
##	4	0.8940		0.1000	0.0035
##	5	0.8880	nan	0.1000	0.0033
	6		nan	0.1000	
##		0.8812	nan		0.0029
##	7	0.8738	nan	0.1000	0.0032
##	8	0.8681	nan	0.1000	0.0019
##	9	0.8611	nan	0.1000	0.0028
##	10	0.8567	nan	0.1000	0.0006
##	20	0.8198	nan	0.1000	0.0001
##	40	0.7847	nan	0.1000	-0.0004
##	60	0.7668	nan	0.1000	-0.0012
##	80	0.7502	nan	0.1000	0.0002
##	100	0.7392	nan	0.1000	0.0000
##	120	0.7313	nan	0.1000	-0.0003
##	140	0.7232	nan	0.1000	-0.0006
##	150	0.7201	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.9191	nan	0.1000	0.0067
##	2	0.9079	nan	0.1000	0.0052
##	3	0.8909	nan	0.1000	0.0092
##	4	0.8725	nan	0.1000	0.0077
##	5	0.8624	nan	0.1000	0.0036
##	6	0.8492	nan	0.1000	0.0051
##	7	0.8372	nan	0.1000	0.0053
##	8	0.8282	nan	0.1000	0.0028
##	9	0.8208	nan	0.1000	0.0030
##	10	0.8126	nan	0.1000	0.0039
##	20	0.7670	nan	0.1000	0.0013
##	40	0.7093	nan	0.1000	-0.0003
##	60	0.6764	nan	0.1000	-0.0008
##	80	0.6400	nan	0.1000	0.0002
##	100	0.6160	nan	0.1000	-0.0001
##	120	0.5984	nan	0.1000	-0.0004
##	140	0.5828	nan	0.1000	-0.0007
##	150	0.5730	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9169	nan	0.1000	0.0096
##	2	0.8917	nan	0.1000	0.0100
##	3	0.8756	nan	0.1000	0.0042
##	4	0.8626	nan	0.1000	0.0045
##	5	0.8458	nan	0.1000	0.0063
##	6	0.8336	nan	0.1000	0.0022
##	7	0.8213	nan	0.1000	0.0056

##	8	0.8090	nan	0.1000	0.0041
##	9	0.7958	nan	0.1000	0.0058
##	10	0.7874	nan	0.1000	0.0011
##	20	0.7265	nan	0.1000	0.0014
##	40	0.6519	nan	0.1000	-0.0001
##	60	0.5917	nan	0.1000	0.0008
##	80	0.5511	nan	0.1000	-0.0004
##	100	0.5252	nan	0.1000	0.0001
##	120	0.4964	nan	0.1000	-0.0006
##	140	0.4727	nan	0.1000	-0.0009
##	150	0.4635	nan	0.1000	-0.0003
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8661	nan	0.1000	0.0123
##	2	0.8465	nan	0.1000	0.0099
##	3	0.8322	nan	0.1000	0.0076
##	4	0.8221	nan	0.1000	0.0052
##	5	0.8104	nan	0.1000	0.0044
##	6	0.8008	nan	0.1000	0.0042
##	7	0.7925	nan	0.1000	0.0026
##	8	0.7872	nan	0.1000	0.0021
##	9	0.7838	nan	0.1000	0.0008
##	10	0.7793	nan	0.1000	0.0018
##	20	0.7442	nan	0.1000	-0.0003
##	40	0.7101	nan	0.1000	-0.0004
##	60	0.6894	nan	0.1000	-0.0003
##	80	0.6773	nan	0.1000	0.0003
шш	100	0 6666		0.1000	0.0002
##	100	0.6666	nan	0.1000	
##	120	0.6582	nan nan	0.1000	-0.0007
##	120	0.6582	nan	0.1000	-0.0007
## ##	120 140	0.6582 0.6502 0.6473	nan nan	0.1000 0.1000 0.1000	-0.0007 -0.0007 -0.0004
## ## ##	120 140	0.6582 0.6502	nan nan	0.1000 0.1000 0.1000 StepSize	-0.0007 -0.0007 -0.0004 Improve
## ## ## ##	120 140 150 Iter 1	0.6582 0.6502 0.6473 TrainDeviance 0.8498	nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192
## ## ## ##	120 140 150 Iter 1 2	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236	nan nan nan ValidDeviance	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192 0.0115
## ## ## ## ##	120 140 150 Iter 1 2 3	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087	nan nan nan ValidDeviance nan	0.1000 0.1000 0.1000 StepSize 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192 0.0115 0.0069
## ## ## ## ## ##	120 140 150 Iter 1 2 3 4	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896	nan nan nan ValidDeviance nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083
## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748	nan nan ValidDeviance nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080
## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748	nan nan ValidDeviance nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043
## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539	nan nan ValidDeviance nan nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053
## ## ## ## ## ## ## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036
## ## ## ## ## ## ## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7 8	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027
## ## ## ## ## ## ## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7 8 9	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307 0.6785	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030 0.0005
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307 0.6785 0.6299	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030 0.0005 -0.0004
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307 0.6785 0.6299 0.5990	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030 0.0005 -0.0004 0.0005
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307 0.6785 0.6299 0.5990	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030 0.0005 -0.0004
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307 0.6785 0.6299 0.5990 0.5747	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030 0.0005 -0.0004 0.0005 -0.0007 -0.0003
############################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307 0.6785 0.6299 0.5990 0.5747 0.5544 0.5345	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030 0.0005 -0.0004 0.0005 -0.0004 0.0005
########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307 0.6785 0.6299 0.5990 0.5747 0.5544 0.5345 0.5109	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030 0.0005 -0.0004 0.0005 -0.0004 -0.0001
##########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307 0.6785 0.6299 0.5990 0.5747 0.5544 0.5345	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030 0.0005 -0.0004 0.0005 -0.0004 0.0005
########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307 0.6785 0.6299 0.5990 0.5747 0.5544 0.5345 0.5109 0.5021	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030 0.0005 -0.0004 0.0005 -0.0007 -0.0003 -0.0004 -0.0001 -0.0003
##########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.6582 0.6502 0.6473 TrainDeviance 0.8498 0.8236 0.8087 0.7896 0.7748 0.7663 0.7539 0.7441 0.7372 0.7307 0.6785 0.6299 0.5990 0.5747 0.5544 0.5345 0.5109	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 -0.0007 -0.0004 Improve 0.0192 0.0115 0.0069 0.0083 0.0080 0.0043 0.0053 0.0036 0.0027 0.0030 0.0005 -0.0004 0.0005 -0.0004 -0.0001

##	2	0.8094	nan	0.1000	0.0146
##	3	0.7814	nan	0.1000	0.0096
##	4	0.7627	nan	0.1000	0.0088
##	5	0.7454	nan	0.1000	0.0063
##	6	0.7365	nan	0.1000	0.0028
##	7	0.7252	nan	0.1000	0.0034
##	8	0.7116	nan	0.1000	0.0042
##	9	0.7036	nan	0.1000	0.0028
##	10	0.6956	nan	0.1000	0.0035
##	20	0.6418	nan	0.1000	0.0019
##	40	0.5790	nan	0.1000	0.0005
##	60	0.5339	nan	0.1000	-0.0008
##	80	0.4915	nan	0.1000	0.0001
##	100	0.4686	nan	0.1000	-0.0020
##	120	0.4455	nan	0.1000	-0.0001
##	140	0.4115	nan	0.1000	-0.0007
##	150	0.4017	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8633	nan	0.1000	0.0100
##	2	0.8470	nan	0.1000	0.0076
##	3	0.8357	nan	0.1000	0.0044
##	4	0.8244	nan	0.1000	0.0046
##	5	0.8168	nan	0.1000	0.0031
##	6	0.8089	nan	0.1000	0.0030
##	7	0.8035	nan	0.1000	0.0023
##	8	0.7988	nan	0.1000	0.0015
##	9	0.7936	nan	0.1000	0.0017
##	10	0.7882	nan	0.1000	0.0025
##	20	0.7513	nan	0.1000	-0.0003
##	40	0.7155	nan	0.1000	0.0002
##	60	0.6945	nan	0.1000	-0.0002
##	80	0.6816	nan	0.1000	-0.0003
##	100	0.6732	nan	0.1000	-0.0002
##	120	0.6628	nan	0.1000	-0.0004
##	140	0.6564	nan	0.1000	-0.0001
##	150	0.6531	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8511	nan	0.1000	0.0145
##	2	0.8260	nan	0.1000	0.0096
##	3	0.8102	nan	0.1000	0.0076
##	4	0.7949	nan	0.1000	0.0071
##	5	0.7803	nan	0.1000	0.0058
##	6	0.7685	nan	0.1000	0.0036
##	7	0.7595	nan	0.1000	0.0030
##	8	0.7489	nan	0.1000	0.0043
##	9	0.7403	nan	0.1000	0.0028
##	10	0.7336	nan	0.1000	0.0018
##	20	0.6896	nan	0.1000	0.0009
##	40	0.6435	nan	0.1000	-0.0005
##	60	0.6134	nan	0.1000	-0.0005
##	80	0.5907	nan	0.1000	-0.0006
##	100	0.5536	nan	0.1000	-0.0012
	100	0.0000	nan	0.1000	J. J. J. Z

##	120	0.5343	nan	0.1000	-0.0005
##	140	0.5216	nan	0.1000	-0.0004
##	150	0.5134	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8487	nan	0.1000	0.0151
##	2	0.8206	nan	0.1000	0.0125
##	3	0.8007	nan	0.1000	0.0078
##	4	0.7824	nan	0.1000	0.0079
##	5	0.7705	nan	0.1000	0.0038
##	6	0.7578	nan	0.1000	0.0042
##	7	0.7476	nan	0.1000	0.0032
##	8	0.7389	nan	0.1000	0.0029
##	9	0.7313	nan	0.1000	0.0036
##	10	0.7208	nan	0.1000	0.0050
##	20	0.6487	nan	0.1000	0.0002
##	40	0.5874	nan	0.1000	-0.0010
##	60	0.5486	nan	0.1000	0.0004
##	80	0.5207	nan	0.1000	-0.0001
##	100	0.4850	nan	0.1000	-0.0007
##	120	0.4592	nan	0.1000	0.0000
##	140	0.4397	nan	0.1000	-0.0010
##	150	0.4314	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8581	nan	0.1000	0.0134
##	2	0.8359	nan	0.1000	0.0069
##	3	0.8216	nan	0.1000	0.0075
##	4	0.8087	nan	0.1000	0.0060
##	5	0.7992	nan	0.1000	0.0051
##	6	0.7930	nan	0.1000	0.0029
##	7	0.7861	nan	0.1000	0.0034
##	8	0.7824	nan	0.1000	0.0006
##	9	0.7754	nan	0.1000	0.0024
##	10	0.7706	nan	0.1000	0.0021
##	20	0.7302	nan	0.1000	0.0001
##	40	0.6899	nan	0.1000	0.0004
##	60	0.6653	nan	0.1000	0.0006
##	80	0.6453	nan	0.1000	0.0003
##	100	0.6342	nan	0.1000	-0.0009
##	120	0.6236	nan	0.1000	-0.0011
##	140	0.6160	nan	0.1000	-0.0006
##	150	0.6125	nan	0.1000	-0.0003
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8407	nan	0.1000	0.0201
##	2	0.8126	nan	0.1000	0.0107
##	3	0.7897	nan	0.1000	0.0112
##	4	0.7731	nan	0.1000	0.0077
##	5	0.7602	nan	0.1000	0.0057
##	6	0.7437	nan	0.1000	0.0058
##	7	0.7326	nan	0.1000	0.0049
##	8	0.7224	nan	0.1000	0.0035
##	9	0.7148	nan	0.1000	0.0033

##	10	0.7118	nan	0.1000	0.0001
##	20	0.6578	nan	0.1000	0.0011
##	40	0.6039	nan	0.1000	-0.0001
##	60	0.5741	nan	0.1000	-0.0006
##	80	0.5470	nan	0.1000	-0.0001
##	100	0.5294	nan	0.1000	-0.0001
##	120	0.5077	nan	0.1000	0.0002
##	140	0.4862	nan	0.1000	-0.0007
##	150	0.4743	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8304	nan	0.1000	0.0262
##	2	0.7971	nan	0.1000	0.0138
##	3	0.7725	nan	0.1000	0.0130
##	4	0.7518	nan	0.1000	0.0095
##	5	0.7343	nan	0.1000	0.0061
##	6	0.7207	nan	0.1000	0.0039
##	7	0.7087	nan	0.1000	0.0059
##	8	0.6980	nan	0.1000	0.0043
##	9	0.6847	nan	0.1000	0.0056
##	10	0.6758	nan	0.1000	0.0031
##	20	0.6112	nan	0.1000	-0.0003
##	40	0.5410	nan	0.1000	-0.0005
##	60	0.5044	nan	0.1000	-0.0004
##	80	0.4765	nan	0.1000	-0.0005
##	100	0.4496	nan	0.1000	-0.0006
##	120	0.4258	nan	0.1000	-0.0006
##	140	0.4030	nan	0.1000	-0.0002
##	150	0.3904	nan	0.1000	-0.0012
## ##	150	0.3904	nan		-0.0012
	150 Iter	0.3904 TrainDeviance	nan ValidDeviance		-0.0012
##				0.1000	
## ##	Iter	TrainDeviance	ValidDeviance	0.1000 StepSize	Improve
## ## ##	Iter 1	TrainDeviance 0.8917	ValidDeviance nan	0.1000 StepSize 0.1000	Improve 0.0097
## ## ## ##	Iter 1 2	TrainDeviance 0.8917 0.8753	ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	Improve 0.0097 0.0072
## ## ## ##	Iter	TrainDeviance 0.8917 0.8753 0.8668	ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031
## ## ## ## ##	Iter	TrainDeviance 0.8917 0.8753 0.8668 0.8523	ValidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052
## ## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 0.8917 0.8753 0.8668 0.8523 0.8443	ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042
## ## ## ## ## ##	Iter 1 2 3 4 5 6	TrainDeviance 0.8917 0.8753 0.8668 0.8523 0.8443 0.8358	ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7	TrainDeviance 0.8917 0.8753 0.8668 0.8523 0.8443 0.8358 0.8291	ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020
## ## ## ## ## ## ##	Iter	TrainDeviance 0.8917 0.8753 0.8668 0.8523 0.8443 0.8358 0.8291 0.8227	ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 0.8917 0.8753 0.8668 0.8523 0.8443 0.8358 0.8291 0.8227 0.8164	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 0.8917 0.8753 0.8668 0.8523 0.8443 0.8358 0.8291 0.8227 0.8164 0.8115	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 0.8917 0.8753 0.8668 0.8523 0.8443 0.8358 0.8291 0.8227 0.8164 0.8115 0.7724 0.7321	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009 0.0002
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009 0.0002 0.0002
## # # # # # # # # # # # # # # # # # #	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009 0.0002 0.0002
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009 0.0002 -0.0003 -0.0013
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009 0.0002 -0.0003 -0.0013 -0.0009
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009 0.0002 -0.0003 -0.0013 -0.0009 -0.0000
#####################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009 0.0002 -0.0003 -0.0013 -0.0009 -0.0000
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009 0.0002 -0.0003 -0.0013 -0.0009 -0.0000
#########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009 0.0002 -0.0003 -0.0013 -0.0009 -0.0004 Improve
########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	Improve 0.0097 0.0072 0.0031 0.0052 0.0042 0.0035 0.0020 0.0028 0.0017 0.0012 0.0009 0.0002 -0.0003 -0.0013 -0.0009 -0.0004 Improve 0.0113

##	4	0.8181	nan	0.1000	0.0067
##	5	0.8053	nan	0.1000	0.0045
##	6	0.7907	nan	0.1000	0.0063
##	7	0.7804	nan	0.1000	0.0046
##	8	0.7683	nan	0.1000	0.0051
##	9	0.7579	nan	0.1000	0.0040
##	10	0.7478	nan	0.1000	0.0016
##	20	0.7030	nan	0.1000	0.0008
##	40	0.6454	nan	0.1000	0.0009
##	60	0.6107	nan	0.1000	-0.0004
##	80	0.5801	nan	0.1000	0.0006
##	100	0.5595	nan	0.1000	-0.0007
##	120	0.5388	nan	0.1000	-0.0011
##	140	0.5167	nan	0.1000	-0.0020
##	150	0.5109	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8735	nan	0.1000	0.0193
##	2	0.8439	nan	0.1000	0.0129
##	3	0.8194	nan	0.1000	0.0099
##	4	0.7993	nan	0.1000	0.0068
##	5	0.7862	nan	0.1000	0.0049
##	6	0.7740	nan	0.1000	0.0041
##	7	0.7605	nan	0.1000	0.0056
##	8	0.7456	nan	0.1000	0.0054
##	9	0.7374	nan	0.1000	0.0013
##	10	0.7279	nan	0.1000	0.0045
##	20	0.6409	nan	0.1000	0.0011
##	40	0.5774	nan	0.1000	0.0008
##	60	0.5370	nan	0.1000	-0.0004
##	80	0.5049	nan	0.1000	-0.0018
##	100	0.4761	nan	0.1000	-0.0004
##	120	0.4531	nan	0.1000	-0.0007
##	140	0.4307	nan	0.1000	-0.0008
##	150	0.4186	nan	0.1000	-0.0003
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8551	nan	0.1000	0.0122
##	2	0.8379	nan	0.1000	0.0096
##	3	0.8234	nan	0.1000	0.0070
##	4	0.8121	nan	0.1000	0.0055
##	5	0.8021	nan	0.1000	0.0046
##	6	0.7940	nan	0.1000	0.0035
##	7	0.7885	nan	0.1000	0.0024
##	8	0.7829	nan	0.1000	0.0015
##	9	0.7748	nan	0.1000	0.0031
##	10	0.7705	nan	0.1000	0.0016
##	20	0.7291	nan	0.1000	0.0011
##	40	0.6932	nan	0.1000	-0.0005
##	60	0.6754	nan	0.1000	-0.0002
##	80	0.6647	nan	0.1000	-0.0005
##	100	0.6555	nan	0.1000	-0.0003
##	120	0.6487	nan	0.1000	-0.0005
##	140	0.6392	nan	0.1000	-0.0001

## ##	150	0.6334	nan	0.1000	-0.0003
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8366	nan	0.1000	0.0166
##	2	0.8154	nan	0.1000	0.0078
##	3	0.7919	nan	0.1000	0.0101
##	4	0.7749	nan	0.1000	0.0075
##	5	0.7599	nan	0.1000	0.0061
##	6	0.7464	nan	0.1000	0.0047
##	7	0.7387	nan	0.1000	0.0035
##	8	0.7290	nan	0.1000	0.0032
##	9	0.7230	nan	0.1000	0.0019
##	10	0.7166	nan	0.1000	0.0026
##	20	0.6743	nan	0.1000	0.0014
##	40	0.6314	nan	0.1000	-0.0012
##	60	0.5977	nan	0.1000	-0.0003
##	80	0.5737	nan	0.1000	-0.0005
##	100	0.5491	nan	0.1000	-0.0003
##	120	0.5343	nan	0.1000	-0.0001
##	140	0.5185	nan	0.1000	-0.0010
##	150	0.5115	nan	0.1000	-0.0008
##	T+	Ti-Di	V-1: 4D:	C+ C :	T
## ##	Iter 1	TrainDeviance	ValidDeviance	StepSize 0.1000	Improve 0.0171
##	2	0.8334 0.8045	nan		
##	3	0.7807	nan	0.1000 0.1000	0.0136 0.0109
##	4	0.7637	nan nan	0.1000	0.0109
##	5	0.7486	nan	0.1000	0.0057
##	6	0.7335	nan	0.1000	0.0057
##	7	0.7217	nan	0.1000	0.0060
##	8	0.7143	nan	0.1000	0.0006
##	9	0.7058	nan	0.1000	0.0021
##	10	0.6973	nan	0.1000	0.0022
##	20	0.6460	nan	0.1000	0.0007
##	40	0.5810	nan	0.1000	0.0002
##	60	0.5351	nan	0.1000	-0.0009
##	80	0.5116	nan	0.1000	-0.0004
##	100	0.4832	nan	0.1000	-0.0004
##	120	0.4622	nan	0.1000	-0.0007
##	140	0.4404	nan	0.1000	-0.0011
##	150	0.4274	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8504	nan	0.1000	0.0075
##	2	0.8305	nan	0.1000	0.0084
##	3	0.8202	nan	0.1000	0.0060
##	4	0.8100	nan	0.1000	0.0045
##	5	0.7972	nan	0.1000	0.0015
##	6	0.7888	nan	0.1000	0.0035
##	7	0.7820	nan	0.1000	0.0033
##	8	0.7766	nan	0.1000	0.0011
##	9	0.7697	nan	0.1000	0.0018
##	10	0.7664	nan	0.1000	0.0013
##	20	0.7333	nan	0.1000	0.0009

##	40	0.6986	nan	0.1000	0.0011
##	60	0.6792	nan	0.1000	-0.0005
##	80	0.6592	nan	0.1000	-0.0002
##	100	0.6494	nan	0.1000	-0.0001
##	120	0.6413	nan	0.1000	-0.0011
##	140	0.6306	nan	0.1000	0.0003
	150	0.6269		0.1000	
##	150	0.6269	nan	0.1000	-0.0003
##	- .			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8334	nan	0.1000	0.0144
##	2	0.8121	nan	0.1000	0.0098
##	3	0.7960	nan	0.1000	0.0071
##	4	0.7829	nan	0.1000	0.0074
##	5	0.7710	nan	0.1000	0.0060
##	6	0.7598	nan	0.1000	0.0053
##	7	0.7496	nan	0.1000	0.0041
##	8	0.7420	nan	0.1000	0.0031
##	9	0.7341	nan	0.1000	0.0010
##	10	0.7258	nan	0.1000	0.0030
##	20	0.6783	nan	0.1000	0.0009
##	40	0.6321	nan	0.1000	0.0003
##	60	0.5999		0.1000	-0.0007
			nan		
##	80	0.5788	nan	0.1000	-0.0004
##	100	0.5610	nan	0.1000	-0.0008
##	120	0.5375	nan	0.1000	-0.0002
##	140	0.5239	nan	0.1000	-0.0006
##	150	0.5154	nan	0.1000	-0.0001
				0.2000	0.0002
##				0.1000	0.0001
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1				
##		TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	TrainDeviance 0.8364	ValidDeviance nan	StepSize 0.1000	Improve 0.0156
## ## ##	1 2	TrainDeviance 0.8364 0.8164	ValidDeviance nan nan	StepSize 0.1000 0.1000	Improve 0.0156 0.0075
## ## ## ##	1 2 3 4	TrainDeviance 0.8364 0.8164 0.7902 0.7730	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0156 0.0075 0.0099 0.0083
## ## ## ## ##	1 2 3 4 5	TrainDeviance 0.8364 0.8164 0.7902 0.7730 0.7535	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0156 0.0075 0.0099 0.0083 0.0068
## ## ## ## ##	1 2 3 4 5	TrainDeviance 0.8364 0.8164 0.7902 0.7730 0.7535 0.7419	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048
## ## ## ## ## ##	1 2 3 4 5 6 7	TrainDeviance 0.8364 0.8164 0.7902 0.7730 0.7535 0.7419 0.7306	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043
## ## ## ## ## ##	1 2 3 4 5 6 7 8	TrainDeviance 0.8364 0.8164 0.7902 0.7730 0.7535 0.7419 0.7306 0.7202	ValidDeviance nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	TrainDeviance 0.8364 0.8164 0.7902 0.7730 0.7535 0.7419 0.7306 0.7202 0.7133	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	TrainDeviance 0.8364 0.8164 0.7902 0.7730 0.7535 0.7419 0.7306 0.7202 0.7133 0.7080	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 0.8364 0.8164 0.7902 0.7730 0.7535 0.7419 0.7306 0.7202 0.7133 0.7080 0.6463	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 0.8364 0.8164 0.7902 0.7730 0.7535 0.7419 0.7306 0.7202 0.7133 0.7080 0.6463 0.5840 0.5456	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004 -0.0003
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004 -0.0003 -0.0007
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004 -0.0003 -0.0007 -0.0010
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004 -0.0003 -0.0007 -0.0010 -0.0008
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004 -0.0003 -0.0007 -0.0010
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004 -0.0003 -0.0007 -0.0010 -0.0008
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004 -0.0003 -0.0007 -0.0010 -0.0008 -0.0009
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004 -0.0003 -0.0007 -0.0010 -0.0008 -0.0009
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004 -0.0003 -0.0007 -0.0010 -0.0008 -0.0009 -0.0008
######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0003 -0.0007 -0.0010 -0.0008 -0.0009 -0.0008 Improve 0.0102
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0003 -0.0007 -0.0010 -0.0008 -0.0009 -0.0008 Improve 0.0102 0.0072
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0004 -0.0003 -0.0007 -0.0010 -0.0008 Improve 0.0102 0.0072 0.0063
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0156 0.0075 0.0099 0.0083 0.0068 0.0048 0.0043 0.0037 0.0022 0.0019 0.0016 -0.0003 -0.0007 -0.0010 -0.0008 -0.0009 -0.0008 Improve 0.0102 0.0072

##	6	0.7951	nan	0.1000	0.0035
##	7	0.7896	nan	0.1000	0.0029
##	8	0.7849	nan	0.1000	0.0013
##	9	0.7777	nan	0.1000	0.0029
##	10	0.7712	nan	0.1000	0.0020
##	20	0.7344	nan	0.1000	0.0015
##	40	0.7017	nan	0.1000	0.0000
##	60	0.6873	nan	0.1000	-0.0006
##	80	0.6765	nan	0.1000	-0.0002
##	100	0.6665	nan	0.1000	-0.0001
##	120	0.6594	nan	0.1000	-0.0011
##	140	0.6545	nan	0.1000	-0.0006
##	150	0.6508	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8345	nan	0.1000	0.0162
##	2	0.8136	nan	0.1000	0.0112
##	3	0.7936	nan	0.1000	0.0084
##	4	0.7792	nan	0.1000	0.0069
##	5	0.7686	nan	0.1000	0.0045
##	6	0.7552	nan	0.1000	0.0023
##	7	0.7475	nan	0.1000	0.0031
##	8	0.7388	nan	0.1000	0.0042
##	9	0.7315	nan	0.1000	0.0030
##	10	0.7259	nan	0.1000	0.0023
##	20	0.6835	nan	0.1000	0.0010
##	40	0.6371	nan	0.1000	-0.0006
##	60	0.6075	nan	0.1000	-0.0002
##	80	0.5873	nan	0.1000	-0.0004
##	100	0.5708	nan	0.1000	-0.0003
##	120	0.5549	nan	0.1000	0.0002
##	140	0.5375	nan	0.1000	-0.0003
##	150	0.5332	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8311	nan	0.1000	0.0133
##	2	0.8002	nan	0.1000	0.0106
##	3	0.7803	nan	0.1000	0.0074
##	4	0.7643	nan	0.1000	0.0059
##	5	0.7509	nan	0.1000	0.0028
##	6	0.7394	nan	0.1000	0.0050
##	7	0.7285	nan	0.1000	0.0039
##	8	0.7173	nan	0.1000	0.0019
##	9	0.7090	nan	0.1000	0.0027
##	10	0.7016	nan	0.1000	0.0024
##	20	0.6480	nan	0.1000	0.0002
##	40	0.5919	nan	0.1000	-0.0013
##	60	0.5579	nan	0.1000	-0.0007
##	80	0.5204	nan	0.1000	-0.0007
##	100	0.4965	nan	0.1000	-0.0010
##	120	0.4717	nan	0.1000	-0.0010
##	140	0.4526	nan	0.1000	-0.0006
##	150	0.4436	nan	0.1000	-0.0000
##					

##	Ttor	TrainDeviance	ValidDeviance	C+onCiro	Tmprozzo
##	Iter 1	0.8535		StepSize 0.1000	Improve 0.0079
##	2	0.8381	nan	0.1000	0.0079
##	3	0.8298	nan		
	4	0.8298	nan	0.1000 0.1000	0.0050
##	5		nan		0.0033
##		0.8152	nan	0.1000	0.0009
##	6	0.8080	nan	0.1000	0.0030
##	7	0.8020	nan	0.1000	0.0025
##	8	0.7949	nan	0.1000	0.0019
##	9	0.7909	nan	0.1000	0.0007
##	10	0.7841	nan	0.1000	0.0028
##	20	0.7474	nan	0.1000	-0.0010
##	40	0.7073	nan	0.1000	-0.0001
##	60	0.6822	nan	0.1000	-0.0006
##	80	0.6668	nan	0.1000	0.0002
##	100	0.6548	nan	0.1000	-0.0005
##	120	0.6447	nan	0.1000	-0.0004
##	140	0.6359	nan	0.1000	-0.0005
##	150	0.6331	nan	0.1000	-0.0002
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8435	nan	0.1000	0.0084
##	2	0.8223	nan	0.1000	0.0082
##	3	0.8063	nan	0.1000	0.0065
##	4	0.7931	nan	0.1000	0.0048
##	5	0.7802	nan	0.1000	0.0060
##	6	0.7686	nan	0.1000	0.0048
##	7	0.7611	nan	0.1000	0.0017
##	8	0.7538	nan	0.1000	0.0031
##	9	0.7450	nan	0.1000	0.0039
##	10	0.7380	nan	0.1000	0.0030
##	20	0.6933	nan	0.1000	0.0003
##	40	0.6472	nan	0.1000	0.0005
##	60	0.6136	nan	0.1000	0.0001
##	80	0.5891	nan	0.1000	-0.0010
##	100	0.5611	nan	0.1000	-0.0003
##	120	0.5435	nan	0.1000	-0.0008
##	140	0.5247	nan	0.1000	-0.0006
##	150	0.5178	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.8422	nan	0.1000	0.0137
##	2	0.8156	nan	0.1000	0.0107
##	3	0.7931	nan	0.1000	0.0081
##	4	0.7781	nan	0.1000	0.0056
##	5	0.7591	nan	0.1000	0.0070
##	6	0.7451	nan	0.1000	0.0035
##	7	0.7359	nan	0.1000	0.0032
##	8	0.7272	nan	0.1000	0.0014
##	9	0.7165	nan	0.1000	0.0013
##	10	0.7069	nan	0.1000	0.0037
##	20	0.6434	nan	0.1000	0.0005
##	40	0.5847	nan	0.1000	0.0001
##	60	0.5385	nan	0.1000	-0.0003

##	80	0.5065	nan	0.1000	-0.0005
##	100	0.4791	nan	0.1000	-0.0002
##	120	0.4474	nan	0.1000	-0.0009
##	140	0.4246	nan	0.1000	-0.0005
##	150	0.4156	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.9174	nan	0.1000	0.0095
##	2	0.8986	nan	0.1000	0.0077
##	3	0.8868	nan	0.1000	0.0065
##	4	0.8757	nan	0.1000	0.0053
##	5	0.8654	nan	0.1000	0.0034
##	6	0.8577	nan	0.1000	0.0027
##	7	0.8503	nan	0.1000	0.0036
##	8	0.8432	nan	0.1000	0.0035
##	9	0.8372	nan	0.1000	0.0011
##	10	0.8309	nan	0.1000	0.0029
##	20	0.7955	nan	0.1000	-0.0004
##	40	0.7647	nan	0.1000	0.0000
##	60	0.7478	nan	0.1000	0.0004
##	80	0.7354	nan	0.1000	-0.0008
##	100	0.7261	nan	0.1000	-0.0006
##	120	0.7194	nan	0.1000	-0.0007
##	140	0.7121	nan	0.1000	-0.0008
##	150	0.7081	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9107	nan	0.1000	0.0148
##	2	0.8848	nan	0.1000	0.0107
##	3	0.8644	nan	0.1000	0.0079
##	4	0.8518	nan	0.1000	0.0061
##	5	0.8392	nan	0.1000	0.0060
##	6	0.8278	nan	0.1000	0.0031
##	7	0.8146	nan	0.1000	0.0035
##	8	0.8074	nan	0.1000	0.0024
##	9	0.7974	nan	0.1000	0.0039
##	10	0.7893	nan	0.1000	0.0039
##	20	0.7462	nan	0.1000	-0.0002
##	40	0.7031	nan	0.1000	-0.0004
##	60	0.6682	nan	0.1000	-0.0001
##	80	0.6387	nan	0.1000	-0.0002
##	100	0.6172	nan	0.1000	-0.0009
##	120	0.5995	nan	0.1000	-0.0014
##	140	0.5838	nan	0.1000	-0.0007
##	150	0.5751	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9017	nan	0.1000	0.0149
##	2	0.8736	nan	0.1000	0.0127
##	3	0.8546	nan	0.1000	0.0072
##	4	0.8360	nan	0.1000	0.0072
##	5	0.8216	nan	0.1000	0.0054
##	6	0.8110	nan	0.1000	0.0023
##	7	0.7986	nan	0.1000	0.0044

##	8	0.7892	nan	0.1000	0.0018
##	9	0.7791	nan	0.1000	0.0037
##	10	0.7713	nan	0.1000	0.0006
##	20	0.7082	nan	0.1000	0.0018
##	40	0.6423	nan	0.1000	-0.0011
##	60	0.6005	nan	0.1000	-0.0003
##	80	0.5650	nan	0.1000	0.0002
##	100	0.5237	nan	0.1000	-0.0010
##	120	0.4994	nan	0.1000	-0.0010
##	140	0.4774	nan	0.1000	-0.0010
##	150	0.4714	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.8269	nan	0.1000	0.0121
##	2	0.8098	nan	0.1000	0.0092
##	3	0.7925	nan	0.1000	0.0060
##	4	0.7805	nan	0.1000	0.0044
##	5	0.7717	nan	0.1000	0.0045
##	6	0.7640	nan	0.1000	0.0035
##	7	0.7576	nan	0.1000	0.0020
##	8	0.7531	nan	0.1000	0.0014
##	9	0.7452	nan	0.1000	0.0023
##	10	0.7396	nan	0.1000	0.0027
##	20	0.6990	nan	0.1000	0.0018
##	40	0.6646	nan	0.1000	0.0001
##	60	0.6451	nan	0.1000	-0.0003
##	80	0.6355	nan	0.1000	-0.0006
##	100	0.6250	nan	0.1000	0.0006
##	120	0.6195	nan nan	0.1000	-0.0006
## ##	120 140	0.6195 0.6126		0.1000 0.1000	-0.0006 -0.0003
## ## ##	120	0.6195	nan	0.1000	-0.0006
## ## ## ##	120 140 150	0.6195 0.6126 0.6104	nan nan nan	0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001
## ## ## ##	120 140 150 Iter	0.6195 0.6126 0.6104 TrainDeviance	nan nan	0.1000 0.1000 0.1000 StepSize	-0.0006 -0.0003 -0.0001 Improve
## ## ## ## ##	120 140 150 Iter 1	0.6195 0.6126 0.6104 TrainDeviance 0.8149	nan nan nan ValidDeviance nan	0.1000 0.1000 0.1000 StepSize 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186
## ## ## ## ## ##	120 140 150 Iter 1 2	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812	nan nan nan ValidDeviance nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135
## ## ## ## ## ##	120 140 150 Iter 1 2 3	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643	nan nan ValidDeviance nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060
## ## ## ## ## ##	120 140 150 Iter 1 2 3 4	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495	nan nan ValidDeviance nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079
## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347	nan nan ValidDeviance nan nan nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069
## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230	nan nan ValidDeviance nan nan nan nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040
## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164	nan nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016
## ## ## ## ## ## ## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064	nan nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047
## ## ## ## ## ## ## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7 8	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7000	nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047 0.0015
## ## ## ## ## ## ## ## ## ## ## ## ##	120 140 150 Iter 1 2 3 4 5 6 7 8 9	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7000 0.6945	nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047 0.0015 0.0023
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7000 0.6945 0.6516	nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047 0.0015 0.0023 0.0011
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7000 0.6945 0.6516 0.6073	nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047 0.0015 0.0023 0.0011 -0.0010
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7000 0.6945 0.6516 0.6073 0.5827	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047 0.0015 0.0023 0.0011 -0.0010 -0.0013
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7000 0.6945 0.6516 0.6073 0.5827 0.5617	nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0015 0.0023 0.0011 -0.0010 -0.0013 -0.0004
######################################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7000 0.6945 0.6516 0.6073 0.5827 0.5617	nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0047 0.0015 0.0023 0.0011 -0.0010 -0.0013 -0.0004 -0.0006
###########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7000 0.6945 0.6516 0.6073 0.5827 0.5617 0.5422 0.5263	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047 0.0015 0.0023 0.0011 -0.0010 -0.0013 -0.0004 -0.0006 -0.0004
#########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7064 0.7000 0.6945 0.6516 0.6073 0.5827 0.5617 0.5422 0.5263 0.5107	nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047 0.0015 0.0023 0.0011 -0.0010 -0.0013 -0.0004 -0.0004 -0.0004
#########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7000 0.6945 0.6516 0.6073 0.5827 0.5617 0.5422 0.5263	nan	0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047 0.0015 0.0023 0.0011 -0.0010 -0.0013 -0.0004 -0.0006 -0.0004
########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7000 0.6945 0.6516 0.6073 0.5827 0.5617 0.5422 0.5263 0.5107 0.5052	nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047 0.0015 0.0023 0.0011 -0.0010 -0.0013 -0.0004 -0.0004 -0.0004 0.0004
#########################	120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.6195 0.6126 0.6104 TrainDeviance 0.8149 0.7812 0.7643 0.7495 0.7347 0.7230 0.7164 0.7064 0.7064 0.7000 0.6945 0.6516 0.6073 0.5827 0.5617 0.5422 0.5263 0.5107	nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0006 -0.0003 -0.0001 Improve 0.0186 0.0135 0.0060 0.0079 0.0069 0.0040 0.0016 0.0047 0.0015 0.0023 0.0011 -0.0010 -0.0013 -0.0004 -0.0004 -0.0004

##	2	0.7736	nan	0.1000	0.0116
##	3	0.7503	nan	0.1000	0.0117
##	4	0.7349	nan	0.1000	0.0065
##	5	0.7191	nan	0.1000	0.0057
##	6	0.7061	nan	0.1000	0.0055
##	7	0.6947	nan	0.1000	0.0053
##	8	0.6882	nan	0.1000	0.0011
##	9	0.6791	nan	0.1000	0.0023
##	10	0.6744	nan	0.1000	0.0013
##	20	0.6131	nan	0.1000	0.0017
##	40	0.5594	nan	0.1000	-0.0005
##	60	0.5321	nan	0.1000	-0.0007
##	80	0.5066	nan	0.1000	-0.0007
##	100	0.4799	nan	0.1000	-0.0006
##	120	0.4550	nan	0.1000	-0.0011
##	140	0.4294	nan	0.1000	-0.0008
##	150	0.4185	nan	0.1000	0.0004
##	200	0.1100		0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8653	nan	0.1000	0.0108
##	2	0.8519	nan	0.1000	0.0080
##	3	0.8336	nan	0.1000	0.0045
##	4	0.8249	nan	0.1000	0.0046
##	5	0.8149	nan	0.1000	0.0042
##	6	0.8078	nan	0.1000	0.0034
##	7	0.8005	nan	0.1000	0.0018
##	8	0.7957	nan	0.1000	0.0010
##	9	0.7906	nan	0.1000	0.0017
##	10	0.7847	nan	0.1000	0.0020
##	20	0.7513	nan	0.1000	0.0025
##	40	0.7249	nan	0.1000	0.0000
##	60	0.7101	nan	0.1000	-0.0003
##	80	0.6971	nan	0.1000	-0.0002
##	100	0.6907	nan	0.1000	-0.0002
##	120	0.6819	nan	0.1000	-0.0002
##	140	0.6723	nan	0.1000	0.0002
##	150	0.6697	nan	0.1000	-0.0003
##	100	0.0051	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8478	nan	0.1000	0.0155
##	2	0.8276	nan	0.1000	0.0100
##	3	0.8052		0.1000	0.00114
##	4	0.7924	nan	0.1000	0.0030
##	5	0.7790	nan	0.1000	0.0071
	6		nan		
##	7	0.7683 0.7602	nan	0.1000	0.0045
##			nan	0.1000	0.0020
##	8	0.7524	nan	0.1000	0.0027
##	9	0.7456	nan	0.1000	0.0035
##	10	0.7399	nan	0.1000	0.0014
##	20	0.7030	nan	0.1000	0.0009
##	40	0.6602	nan	0.1000	-0.0005
##	60	0.6293	nan	0.1000	-0.0011
##	80	0.6068	nan	0.1000	-0.0007
##	100	0.5868	nan	0.1000	-0.0009

##	120	0.5695	***	0.1000	-0.0005
##	140	0.5495	nan	0.1000	-0.0005
##	150	0.5432	nan	0.1000	-0.0003
##	150	0.5452	nan	0.1000	-0.0002
	Ttom	TrainDarriance	ValidDavianaa	C+onCiao	Tmmmorro
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8479	nan	0.1000	0.0184
##	2	0.8160	nan	0.1000	0.0110
##	3	0.7932	nan	0.1000	0.0091
##	4	0.7795	nan	0.1000	0.0063
##	5	0.7665	nan	0.1000	0.0053
##	6	0.7569	nan	0.1000	0.0028
##	7	0.7483	nan	0.1000	0.0035
##	8	0.7393	nan	0.1000	0.0026
##	9	0.7308	nan	0.1000	0.0023
##	10	0.7234	nan	0.1000	0.0009
##	20	0.6613	nan	0.1000	-0.0005
##	40	0.5924	nan	0.1000	0.0005
##	60	0.5417	nan	0.1000	0.0003
##	80	0.5137	nan	0.1000	-0.0021
##	100	0.4857	nan	0.1000	0.0001
##	120	0.4626	nan	0.1000	-0.0005
##	140	0.4401	nan	0.1000	-0.0005
##	150	0.4308	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8760	nan	0.1000	0.0113
##	2	0.8549	nan	0.1000	0.0097
##	3	0.8414	nan	0.1000	0.0070
##	4	0.8287	nan	0.1000	0.0051
##	5	0.8152	nan	0.1000	0.0054
##	6	0.8077	nan	0.1000	0.0029
##	7	0.8013	nan	0.1000	0.0026
##	8	0.7916	nan	0.1000	0.0035
##	9	0.7842	nan	0.1000	0.0032
##	10	0.7782	nan	0.1000	0.0011
##	20	0.7355	nan	0.1000	-0.0001
##	40	0.6898	nan	0.1000	0.0011
##	60	0.6639	nan	0.1000	-0.0001
##	80	0.6490	nan	0.1000	-0.0001
##	100	0.6307	nan	0.1000	0.0006
##	120	0.6209	nan	0.1000	-0.0007
##	140	0.6135	nan	0.1000	0.0001
##	150	0.6089	nan	0.1000	-0.0009
##	100	0.0003	nan	0.1000	0.0003
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8686	nan	0.1000	0.0147
##	2	0.8456		0.1000	0.0147
##	3	0.8430	nan nan	0.1000	0.0102
##	4	0.7941	nan	0.1000	0.0095
##	5	0.7798	nan	0.1000	0.0064
##	6 7	0.7639	nan	0.1000	0.0071
##		0.7530	nan	0.1000	0.0057
##	8	0.7423	nan	0.1000	0.0049
##	9	0.7337	nan	0.1000	0.0026

##	10	0.7272	nan	0.1000	0.0026
##	20	0.6698	nan	0.1000	0.0010
##	40	0.6126	nan	0.1000	-0.0009
##	60	0.5730	nan	0.1000	-0.0004
##	80	0.5467	nan	0.1000	-0.0006
##	100	0.5259	nan	0.1000	0.0000
##	120	0.5081	nan	0.1000	-0.0001
##	140	0.4944	nan	0.1000	-0.0003
##	150	0.4875	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8542	nan	0.1000	0.0209
##	2	0.8212	nan	0.1000	0.0153
##	3	0.7984	nan	0.1000	0.0108
##	4	0.7800	nan	0.1000	0.0090
##	5	0.7619	nan	0.1000	0.0052
##	6	0.7428	nan	0.1000	0.0075
##	7	0.7321	nan	0.1000	0.0036
##	8	0.7186	nan	0.1000	0.0046
##	9	0.7092	nan	0.1000	0.0031
##	10	0.7013	nan	0.1000	0.0027
##	20	0.6252	nan	0.1000	0.0019
##	40	0.5580	nan	0.1000	-0.0002
##	60	0.5139	nan	0.1000	-0.0003
##	80	0.4808	nan	0.1000	-0.0006
##	100	0.4603	nan	0.1000	-0.0008
##	120	0.4350	nan	0.1000	0.0003
##	140	0.4114	nan	0.1000	-0.0003
##	150	0.4025	nan	0.1000	-0.0002
## ##	150				
	150 Iter				
##		0.4025	nan	0.1000	-0.0002
## ##	Iter	0.4025 TrainDeviance	nan ValidDeviance	0.1000 StepSize	-0.0002 Improve
## ## ##	Iter 1	0.4025 TrainDeviance 0.8446	nan ValidDeviance nan	0.1000 StepSize 0.1000	-0.0002 Improve 0.0140
## ## ## ##	Iter 1 2	0.4025 TrainDeviance 0.8446 0.8258	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101
## ## ## ##	Iter	0.4025 TrainDeviance 0.8446 0.8258 0.8073	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076
## ## ## ## ##	Iter	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744	NalidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061
## ## ## ## ##	Iter 1 2 3 4 5	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049
## ## ## ## ## ##	Iter	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744	Nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0042
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641	nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0042 0.0039
## ## ## ## ## ## ##	Iter	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567	Nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0042 0.0039 0.0030
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0042 0.0039 0.0030 0.0023
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0042 0.0039 0.0030 0.0023 0.0011
######################################	Iter 1 2 3 4 5 6 7 8 9 10 20	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0042 0.0039 0.0030 0.0023 0.0011 0.0010
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110 0.6772	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0039 0.0030 0.0023 0.0011 0.0010 -0.0005
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110 0.6772 0.6641	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0039 0.0030 0.0023 0.0011 0.0010 -0.0005 0.0002
## # # # # # # # # # # # # # # # # # #	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110 0.6772 0.6641 0.6492	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0039 0.0030 0.0023 0.0011 0.0010 -0.0005 0.0002 -0.0010
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110 0.6772 0.6641 0.6492 0.6379	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0039 0.0030 0.0023 0.0011 0.0010 -0.0005 0.0002 -0.0010 -0.0002
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110 0.6772 0.6641 0.6492 0.6379 0.6295	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0042 0.0039 0.0030 0.0023 0.0011 0.0010 -0.0005 0.0002 -0.0010 -0.0002 -0.0001
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110 0.6772 0.6641 0.6492 0.6379 0.6295 0.6189	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0039 0.0030 0.0023 0.0011 0.0010 -0.0005 0.0002 -0.0010 -0.0001 -0.00001
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110 0.6772 0.6641 0.6492 0.6379 0.6295 0.6189	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0039 0.0030 0.0023 0.0011 0.0010 -0.0005 0.0002 -0.0010 -0.0001 -0.00001
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110 0.6772 0.6641 0.6492 0.6379 0.6295 0.6189 0.6127	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0042 0.0039 0.0030 0.0023 0.0011 0.0010 -0.0005 0.0002 -0.0010 -0.0002 -0.0011
#########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110 0.6772 0.6641 0.6492 0.6379 0.6295 0.6189 0.6127	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0039 0.0030 0.0023 0.0011 0.0010 -0.0005 0.0002 -0.0010 -0.0002 -0.0011 Improve
########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.4025 TrainDeviance 0.8446 0.8258 0.8073 0.7932 0.7825 0.7744 0.7641 0.7567 0.7516 0.7477 0.7110 0.6772 0.6641 0.6492 0.6379 0.6295 0.6189 0.6127 TrainDeviance 0.8337	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0002 Improve 0.0140 0.0101 0.0076 0.0061 0.0049 0.0039 0.0030 0.0023 0.0011 0.0010 -0.0005 0.0002 -0.0010 -0.0002 -0.0011 Improve 0.0179

##	4	0.7673	nan	0.1000	0.0076
##	5	0.7540	nan	0.1000	0.0053
##	6	0.7403	nan	0.1000	0.0054
##	7	0.7290	nan	0.1000	0.0030
##	8	0.7198	nan	0.1000	0.0036
##	9	0.7134	nan	0.1000	0.0015
##	10	0.7072	nan	0.1000	0.0020
##	20	0.6509	nan	0.1000	0.0012
##	40	0.6095	nan	0.1000	-0.0008
##	60	0.5832	nan	0.1000	-0.0006
##	80	0.5640	nan	0.1000	0.0004
##	100	0.5458	nan	0.1000	-0.0004
##	120	0.5290	nan	0.1000	-0.0012
##	140	0.5148	nan	0.1000	-0.0005
##	150	0.5093	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8304	nan	0.1000	0.0152
##	2	0.7977	nan	0.1000	0.0130
##	3	0.7676	nan	0.1000	0.0114
##	4	0.7501	nan	0.1000	0.0083
##	5	0.7338	nan	0.1000	0.0063
##	6	0.7175	nan	0.1000	0.0062
##	7	0.7079	nan	0.1000	0.0036
##	8	0.6995	nan	0.1000	0.0036
##	9	0.6913	nan	0.1000	0.0018
##	10	0.6850	nan	0.1000	0.0019
##	20	0.6115	nan	0.1000	-0.0002
##	40	0.5504	nan	0.1000	-0.0006
##	60	0.5243	nan	0.1000	-0.0003
##	80	0.5035	nan	0.1000	-0.0005
##	100	0.4787	nan	0.1000	-0.0003
##	120	0.4522	nan	0.1000	-0.0014
##	140	0.4345	nan	0.1000	-0.0006
##	150	0.4271	nan	0.1000	-0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8692	nan	0.1000	0.0062
##	2	0.8521	nan	0.1000	0.0074
##	3	0.8402	nan	0.1000	0.0052
##	4	0.8309	nan	0.1000	0.0040
##	5	0.8230	nan	0.1000	0.0041
##	6	0.8157	nan	0.1000	0.0006
##	7	0.8096	nan	0.1000	0.0024
##	8	0.8045	nan	0.1000	0.0016
##	9	0.8000	nan	0.1000	0.0020
##	10	0.7959	nan	0.1000	0.0013
##	20	0.7615	nan	0.1000	0.0016
##	40	0.7297	nan	0.1000	0.0002
##	60	0.7076	nan	0.1000	0.0005
##	80	0.6954	nan	0.1000	-0.0002
##	100	0.6852	nan	0.1000	0.0002
##	120	0.6739	nan	0.1000	-0.0002
##	140	0.6660	nan	0.1000	0.0002
ππ	140	0.0000	nan	0.1000	0.0000

## ##	150	0.6618	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.8573	nan	0.1000	0.0119
##	2	0.8351	nan	0.1000	0.0098
##	3	0.8185	nan	0.1000	0.0077
##	4	0.8044	nan	0.1000	0.0064
##	5	0.7915	nan	0.1000	0.0058
##	6	0.7818	nan	0.1000	0.0044
##	7	0.7738	nan	0.1000	0.0005
##	8	0.7643	nan	0.1000	0.0041
##	9	0.7561	nan	0.1000	0.0041
##	10	0.7495	nan	0.1000	0.0033
##	20	0.7010	nan	0.1000	0.0001
##	40	0.6478	nan	0.1000	0.0003
##	60	0.6057	nan	0.1000	-0.0010
##	80	0.5803	nan	0.1000	-0.0004
##	100	0.5570	nan	0.1000	-0.0002
##	120	0.5362	nan	0.1000	-0.0001
##	140	0.5165	nan	0.1000	-0.0010
## ##	150	0.5077	nan	0.1000	-0.0002
##	Iter	TrainDeviance	ValidDeviance	C+onCiro	Tmnmarra
##	1	0.8461	nan	StepSize 0.1000	Improve 0.0162
##	2	0.8203	nan	0.1000	0.0102
##	3	0.8048	nan	0.1000	0.0051
##	4	0.7879	nan	0.1000	0.0065
##	5	0.7723	nan	0.1000	0.0060
##	6	0.7631	nan	0.1000	0.0021
##	7	0.7486	nan	0.1000	0.0060
##	8	0.7371	nan	0.1000	0.0045
##	9	0.7250	nan	0.1000	0.0036
##	10	0.7158	nan	0.1000	0.0036
##	20	0.6471	nan	0.1000	0.0005
##	40	0.5617	nan	0.1000	0.0004
##	60	0.5212	nan	0.1000	-0.0004
##	80	0.4887	nan	0.1000	-0.0013
##	100	0.4612	nan	0.1000	-0.0005
##	120	0.4390	nan	0.1000	-0.0007
##	140	0.4145	nan	0.1000	0.0002
##	150	0.4078	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.8618	nan	0.1000	0.0168
##	2	0.8353	nan	0.1000	0.0108
##	3	0.8127	nan	0.1000	0.0080
##	4	0.7966	nan	0.1000	0.0080
##	5	0.7832	nan	0.1000	0.0035
##	6 7	0.7702	nan	0.1000	0.0025
## ##	8	0.7610 0.7505	nan	0.1000 0.1000	0.0019 0.0022
##	9	0.7410	nan nan	0.1000	0.0022
##	10	0.7366	nan	0.1000	0.0021
##	20	0.6888	nan	0.1000	0.0004
		0.0000			

```
##
       40
                 0.6461
                                             0.1000
                                                       0.0001
                                     nan
##
                 0.6284
                                             0.1000
                                                      -0.0006
                                     nan
##
## [1] "svmRadial"
## [1] "svmRadialCost"
## [1] "svmRadialSigma"
### Project continues from page 301
```

.

We see that we train all the models.

```
names(fits) <- models</pre>
names(fits)
##
    [1] "glm"
                           "lda"
                                              "naive_bayes"
                                                                "svmLinear"
    [5] "gamboost"
                           "gamLoess"
                                              "qda"
                                                                "knn"
##
    [9] "kknn"
                           "loclda"
                                                                "rf"
##
                                              "gam"
                                                                "avNNet"
## [13] "ranger"
                           "wsrf"
                                              "Rborist"
## [17] "mlp"
                           "monmlp"
                                              "adaboost"
                                                                "gbm"
## [21] "svmRadial"
                           "svmRadialCost"
                                              "svmRadialSigma"
```

We use sapply to create a matrix (rows:100 colums:23) of predictions for the test set

```
pred <- sapply(fits, function(object)
  predict(object, newdata = x_test))</pre>
```

Keep in mind that probably get some warnings.

```
dim(pred)
```

[1] 100 23

Compute accuracy for each model on the test set and look for the mean accuracy across all models.

```
acc <- colMeans(pred == x_test$y)</pre>
acc
##
               glm
                               lda
                                       naive_bayes
                                                          svmLinear
                                                                           gamboost
##
              0.87
                              0.86
                                               0.86
                                                               0.87
                                                                                0.87
##
         gamLoess
                               qda
                                               knn
                                                               kknn
                                                                             loclda
##
              0.87
                              0.83
                                               0.90
                                                               0.82
                                                                                0.87
##
                                                                            Rborist
               gam
                                rf
                                            ranger
                                                               wsrf
```

```
##
             0.87
                             0.84
                                             0.84
                                                             0.86
                                                                             0.85
##
           avNNet
                                                                              gbm
                              mlp
                                           monmlp
                                                         adaboost
##
             0.87
                             0.87
                                             0.85
                                                             0.83
                                                                             0.85
##
        svmRadial svmRadialCost svmRadialSigma
             0.87
                             0.87
which.max(acc)
## knn
##
mean(acc)
```

[1] 0.8586957

Our maximum accuracy is achieved with knn model. Being the average of the models 0.8586957.

We build an ensemble prediction by majority vote and compute the accuracy of the ensemble.

```
votes <- rowMeans(pred == "others")
y_hat <- ifelse(votes > 0.5, "others", "Africa")
mean(y_hat == x_test$y )
```

[1] 0.87

The accuracy of the ensemble is 0.87 the number of individual methods that do better than the ensemble prediction by majority vote is 1.

```
ind <- acc > mean(y_hat == x_test$y)
sum(ind)

## [1] 1

models[ind]
```

[1] "knn"

We use the accuracy estimates obtained from cross validation with the training data to remove the methods that do not perform well and re-do the ensemble only with methods with an estimated accuracy of greater than the mean.

```
acc_hat <- sapply(fits, function(fit) min(fit$results$Accuracy))
acc_hat</pre>
```

```
glm
##
                              lda
                                     naive_bayes
                                                                        gamboost
                                                       svmLinear
##
        0.8264872
                        0.8161430
                                       0.8143013
                                                       0.8360556
                                                                       0.8287467
         gamLoess
##
                              qda
                                             knn
                                                            kknn
                                                                          loclda
        0.8288868
                                       0.8052311
                                                       0.8412766
                                                                      0.8236201
##
                       0.8191147
              gam
##
                               rf
                                          ranger
                                                            wsrf
                                                                        Rborist
                       0.8278916
                                       0.8342199
                                                                       0.8201186
##
        0.8357701
                                                       0.8336040
##
           avNNet
                              mlp
                                          monmlp
                                                        adaboost
                                                                             gbm
##
        0.8321455
                        0.8194063
                                       0.8350780
                                                       0.8306396
                                                                       0.8308660
##
        svmRadial svmRadialCost svmRadialSigma
##
        0.8329050
                       0.8376359
                                       0.8341778
```

```
mean(acc_hat)
```

```
## [1] 0.828014
```

```
ind <- acc_hat >= mean(acc_hat)

votes <- rowMeans(pred[,ind] == "others")
y_hat <- ifelse(votes >= 0.5, "others", "Africa")
mean(y_hat == x_test$y)
```

```
## [1] 0.88
```

The mean accuracy of the new ensemble is 0.88

Results

The report finds Rborist as the best model predicting continents giving an Accuracy of 0.99875.

The best ensemble using Dimension reduction differentiating Class Africa from Others countries is the one that use the accuracy estimates obtained from cross validation with the training data to remove the methods that do not perform well and re-do the ensemble only with methods with an estimated accuracy of greater than the mean with an accuracy of 0.88.

Conclusions.

Combining both algorithms, we can predict the continent with great precision.

Our report shows that there is a global temperatures increase since preindustial period being European countries the most affected.

Finally in the last 14 years until 2012 the 10 highest land average temperatures per year have been reached, let us be aware that there is a global problem that urgently needs global solutions.