Implicit Differentiation & Directional Derivative

Devika S

Department of Mathematics BITS Pilani, K K Birla Goa Campus

October 18, 2024

If w=f(x,y) is differentiable and if $x=x(t),\ y=y(t)$ are differentiable functions of t, then the composition w=f(x(t),y(t)) is a differentiable function of t and

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

If w=f(x,y) is differentiable and if $x=x(t),\ y=y(t)$ are differentiable functions of t, then the composition w=f(x(t),y(t)) is a differentiable function of t and

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot \left(\frac{dx}{dt}, \frac{dy}{dt}\right).$$

If w=f(x,y) is differentiable and if $x=x(t),\ y=y(t)$ are differentiable functions of t, then the composition w=f(x(t),y(t)) is a differentiable function of t and

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot \left(\frac{dx}{dt}, \frac{dy}{dt}\right).$$

i.e, $\frac{dw}{dt}$ can be written as a dot product between total derivative of w=f(x,y) and (x'(t),y'(t)).

If w=f(x,y) is differentiable and if $x=x(t),\ y=y(t)$ are differentiable functions of t, then the composition w=f(x(t),y(t)) is a differentiable function of t and

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot \left(\frac{dx}{dt}, \frac{dy}{dt}\right).$$

i.e, $\frac{dw}{dt}$ can be written as a dot product between total derivative of w=f(x,y) and (x'(t),y'(t)).

Similar arguments hold for other forms. Check!

1 Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t,\ y=\sin t$ at $t=\pi.$

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t$, $y=\sin t$ at $t=\pi$. (Ans: 0)
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1.

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t,\ y=\sin t$ at $t=\pi.$ (Ans: 0)
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t,\ y=\sin t$ at $t=\pi.$ (Ans: 0)
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\begin{split} \frac{dw}{dt} &= \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt} \\ &= \frac{4yte^x}{1+t^2} + \frac{2e^x}{1+t^2} - \frac{e^t}{z} \end{split}$$

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t,\ y=\sin t$ at $t=\pi.$ (Ans: 0)
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$
$$= \frac{4yte^x}{1+t^2} + \frac{2e^x}{1+t^2} - \frac{e^t}{z}$$
$$= 4t \tan^{-1}(t) + 1$$

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t,\ y=\sin t$ at $t=\pi.$ (Ans: 0)
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\begin{split} \frac{dw}{dt} &= \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt} \\ &= \frac{4yte^x}{1+t^2} + \frac{2e^x}{1+t^2} - \frac{e^t}{z} \\ &= 4t \tan^{-1}(t) + 1 \implies \frac{dw}{dt}_{|t=\pi} = \pi + 1. \end{split}$$

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t,\ y=\sin t$ at $t=\pi.$ (Ans: 0)
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\begin{split} \frac{dw}{dt} &= \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt} \\ &= \frac{4yte^x}{1+t^2} + \frac{2e^x}{1+t^2} - \frac{e^t}{z} \\ &= 4t \tan^{-1}(t) + 1 \implies \frac{dw}{dt}_{|t=\pi} = \pi + 1. \end{split}$$

- 3 Find $\partial w/\partial u$ and $\partial w/\partial v$ where w=xy+yz+xz with x=u+v, y=u-v and z=uv at (u,v)=(1/2,1). (Ans: -3/2)
- 4 Find $\partial w/\partial v$ when u=v=0 if $w=x^2+(y/x)$, x=u-2v+1, y=2u+v-2. (Ans: -7)

Polar coordinates

- **5** Let w = f(x, y) and let (r, θ) denotes standard polar coordinates. Then,
 - Show that

$$\frac{\partial w}{\partial r} = f_x \cos \theta + f_y \sin \theta \text{ and } \frac{1}{r} \frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta.$$

Polar coordinates

- **6** Let w = f(x,y) and let (r,θ) denotes standard polar coordinates. Then,
 - Show that

$$\frac{\partial w}{\partial r} = f_x \cos \theta + f_y \sin \theta \text{ and } \frac{1}{r} \frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta.$$

• Express f_x and f_y in terms of $\partial w/\partial r$ and $\partial w/\partial \theta$.

Polar coordinates

- **6** Let w = f(x,y) and let (r,θ) denotes standard polar coordinates. Then.
 - Show that

$$\frac{\partial w}{\partial r} = f_x \cos \theta + f_y \sin \theta \text{ and } \frac{1}{r} \frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta.$$

• Express f_x and f_y in terms of $\partial w/\partial r$ and $\partial w/\partial \theta$. Solution:

$$f_x = \cos \theta w_r - \frac{\sin \theta}{r} w_\theta, f_y = \sin \theta w_r + \frac{\cos \theta}{r} w_\theta.$$

Show that

$$(f_x)^2 + (f_y)^2 = \left(\frac{\partial w}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial w}{\partial \theta}\right)^2.$$

$$w_x = \frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} = x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v}$$

$$w_{x} = \frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} = x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v}$$
$$w_{xx} = \frac{\partial (w_{x})}{\partial x} = \frac{\partial}{\partial x} \left(x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v} \right)$$

$$\begin{split} w_x &= \frac{\partial w}{\partial x} &= \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} = x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v} \\ w_{xx} &= \frac{\partial (w_x)}{\partial x} = \frac{\partial}{\partial x} \left(x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v} \right) \\ &= \frac{\partial w}{\partial u} + x \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial u} \right) + y \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial v} \right) = \frac{\partial w}{\partial u} + x \frac{\partial w_u}{\partial x} + y \frac{\partial w_v}{\partial x} \end{split}$$

$$\begin{split} w_x &= \frac{\partial w}{\partial x} &= \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} = x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v} \\ w_{xx} &= \frac{\partial (w_x)}{\partial x} = \frac{\partial}{\partial x} \left(x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v} \right) \\ &= \frac{\partial w}{\partial u} + x \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial u} \right) + y \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial v} \right) = \frac{\partial w}{\partial u} + x \frac{\partial w_u}{\partial x} + y \frac{\partial w_v}{\partial x} \\ &= \frac{\partial w}{\partial u} + x \left(\frac{\partial w_u}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w_u}{\partial v} \frac{\partial v}{\partial x} \right) + y \left(\frac{\partial w_v}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w_v}{\partial v} \frac{\partial v}{\partial x} \right) \end{split}$$

$$\begin{split} w_x &= \frac{\partial w}{\partial x} &= \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} = x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v} \\ w_{xx} &= \frac{\partial (w_x)}{\partial x} = \frac{\partial}{\partial x} \left(x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v} \right) \\ &= \frac{\partial w}{\partial u} + x \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial u} \right) + y \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial v} \right) = \frac{\partial w}{\partial u} + x \frac{\partial w_u}{\partial x} + y \frac{\partial w_v}{\partial x} \\ &= \frac{\partial w}{\partial u} + x \left(\frac{\partial w_u}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w_u}{\partial v} \frac{\partial v}{\partial x} \right) + y \left(\frac{\partial w_v}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w_v}{\partial v} \frac{\partial v}{\partial x} \right) \\ &= w_u + x^2 w_{uu} + xy w_{uv} + xy w_{vu} + y^2 w_{vv}. \end{split}$$

Show that if w=f(u,v) satisfies the Laplace equation $w_{uu}+w_{vv}=0$ and if $u=(x^2-y^2)/2$ and v=xy, then w satisfies the Laplace equation $w_{xx}+w_{yy}=0$. Solution:

$$\begin{split} w_x &= \frac{\partial w}{\partial x} &= \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} = x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v} \\ w_{xx} &= \frac{\partial (w_x)}{\partial x} = \frac{\partial}{\partial x} \left(x \frac{\partial w}{\partial u} + y \frac{\partial w}{\partial v} \right) \\ &= \frac{\partial w}{\partial u} + x \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial u} \right) + y \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial v} \right) = \frac{\partial w}{\partial u} + x \frac{\partial w_u}{\partial x} + y \frac{\partial w_v}{\partial x} \\ &= \frac{\partial w}{\partial u} + x \left(\frac{\partial w_u}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w_u}{\partial v} \frac{\partial v}{\partial x} \right) + y \left(\frac{\partial w_v}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w_v}{\partial v} \frac{\partial v}{\partial x} \right) \\ &= w_u + x^2 w_{uu} + xy w_{uv} + xy w_{vu} + y^2 w_{vv}. \end{split}$$

Similarly, compute w_{yy} and hence,

$$w_{xx} + w_{yy} = (x^2 + y^2)(w_{uu} + w_{vv}) = 0.$$

A Formula for Implicit Differentiation

Theorem

Suppose that F(x,y) is differentiable and that the equation F(x,y)=0 defines y as a differentiable function of x. Then at any point where $F_y\neq 0$,

$$\frac{dy}{dx} = -\frac{F_x}{F_y}.$$

Here, x acts as both an intermediate variable and an independent variable. Since F(x,y(x))=0, the derivative dF/dx must be zero. Computing the derivative from chain rule, we have

$$0 = \frac{dF}{dx} = \frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx}$$

Simplifying this would give us desired expression.

Extension to Three Variables

Suppose that the equation F(x,y,z)=0 defines the variable z implicitly as a function z=f(x,y). Then for all (x,y) in the domain of f, we have F(x,y,f(x,y))=0. Assume that F and f are differentiable functions.

Extension to Three Variables

Suppose that the equation F(x,y,z)=0 defines the variable z implicitly as a function z=f(x,y). Then for all (x,y) in the domain of f, we have F(x,y,f(x,y))=0. Assume that F and f are differentiable functions. Since F(x,y,f(x,y))=0, $\partial F/\partial x=0$. Using chain rule for F(x,y,z)=0 with respect to the independent variable x, we get

$$0 = \frac{\partial F}{\partial x}\frac{\partial x}{\partial x} + \frac{\partial F}{\partial y}\frac{\partial y}{\partial x} + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x} = \frac{\partial F}{\partial x} \cdot 1 + \frac{\partial F}{\partial y} \cdot 0 + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x}.$$

Hence, we obtain

$$F_x + F_z \frac{\partial z}{\partial x} = 0.$$

Similarly, $F_y+F_z\frac{\partial z}{\partial y}=0.$ Using these, we conclude that whenever $F_z\neq 0,$ we have

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \text{ and } \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}.$$

Implicit Function Theorem

Theorem

If the partial derivatives F_x, F_y , and F_z are continuous throughout an open region R in space containing the point (x_0,y_0,z_0) , and if for some constant $c,\ F(x_0,y_0,z_0)=c$ and $F_z(x_0,y_0,z_0)\neq 0$, then the equation F(x,y,z)=c defines z implicitly as a differentiable function of x and y near (x_0,y_0,z_0) , and the partial derivatives of z are given by

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$.

Examples (Using Implicit Differentiation)

- **1** Assuming y as a differentiable function of x, find the value of dy/dx at
 - (1,1) where $x^3 2y^2 + xy = 0$.

Examples (Using Implicit Differentiation)

- **1** Assuming y as a differentiable function of x, find the value of dy/dx at
 - (1,1) where $x^3 2y^2 + xy = 0$. (4/3)

Examples (Using Implicit Differentiation)

- **1** Assuming y as a differentiable function of x, find the value of dy/dx at
 - (1,1) where $x^3 2y^2 + xy = 0$. (4/3)
 - $(0, \ln 2)$ where $xe^y + \sin(xy) + y \ln 2 = 0$. $(-(2 + \ln 2))$
- 2 Find $\partial z/\partial x$ and $\partial z/\partial y$ at (π,π,π) where $\sin(x+y)+\sin(y+z)+\sin(x+z)=0.$ (-1, -1)
- 3 Find $\partial z/\partial x$ and $\partial z/\partial y$ at (2,3,6) where $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1=0$. (-9,-4)

Directional derivative

Definition

The derivative of f(x,y) at $P_0(x_0,y_0)$ in the direction of the unit vector $\boldsymbol{u}=u_1\boldsymbol{i}+u_2\boldsymbol{j}$ is the number

$$\left(\frac{df}{ds}\right)_{u,P_0} := \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}$$

provided the limit exists.

Directional derivative

Definition

The derivative of f(x,y) at $P_0(x_0,y_0)$ in the direction of the unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is the number

$$\left(\frac{df}{ds}\right)_{u,P_0} := \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}$$

provided the limit exists.

Notations: $(D_{\boldsymbol{u}}f)_{P_0}$ or $D_{\boldsymbol{u}}f|_{P_0}$ - the derivative of f in the direction of \boldsymbol{u} , evaluated at P_0 .

Directional derivative

Definition

The derivative of f(x,y) at $P_0(x_0,y_0)$ in the direction of the unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is the number

$$\left(\frac{df}{ds}\right)_{u,P_0} := \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}$$

provided the limit exists.

Notations: $(D_{\boldsymbol{u}}f)_{P_0}$ or $D_{\boldsymbol{u}}f|_{P_0}$ - the derivative of f in the direction of \boldsymbol{u} , evaluated at P_0 .

- ullet $f_x(x_0,y_0)$ directional derivative of f at P_0 in the direction of $oldsymbol{i}$
- $f_y(x_0, y_0)$ directional derivative of f at P_0 in the direction of \boldsymbol{j}

Interpretation

FIGURE 14.26 The rate of change of f in the direction of \mathbf{u} at a point P_0 is the rate at which f changes along this line at P_0 .

FIGURE 14.27 The slope of curve C at P_0 is $\lim_{Q \to P}$ slope (PQ); this is the directional derivative

$$\left(\frac{df}{ds}\right)_{\mathbf{u}, P_0} = (D_{\mathbf{u}}f)_{P_0}.$$

Find the derivative of the function at P_0 in the direction of ${m u}.$

1
$$f(x,y) = 2xy - 3y^2$$
, $P_0(5,5)$, $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$.

Find the derivative of the function at P_0 in the direction of \boldsymbol{u} .

1
$$f(x,y) = 2xy - 3y^2$$
, $P_0(5,5)$, $u = 4i + 3j$.

Solution:

Let v be the unit vector in the direction of u.

Find the derivative of the function at P_0 in the direction of \boldsymbol{u} .

1
$$f(x,y) = 2xy - 3y^2$$
, $P_0(5,5)$, $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$.

Solution:

Let v be the unit vector in the direction of u.

$$v = \frac{u}{|u|} = \frac{4i + 3j}{\sqrt{4^2 + 3^2}} = \frac{4}{5}i + \frac{3}{5}j.$$

Find the derivative of the function at P_0 in the direction of \boldsymbol{u} .

1
$$f(x,y) = 2xy - 3y^2$$
, $P_0(5,5)$, $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$.

Solution:

Let v be the unit vector in the direction of u.

$$v = \frac{u}{|u|} = \frac{4i + 3j}{\sqrt{4^2 + 3^2}} = \frac{4}{5}i + \frac{3}{5}j.$$

The directional derivative of f at (5,5) in the direction of ${m v}$ is

$$\left(\frac{df}{ds}\right)_{v,P_0} := \lim_{s \to 0} \frac{f(5 + (4/5)s, 5 + (3/5)s) - f(5,5)}{s} = -4.$$

Find the derivative of the function at P_0 in the direction of \boldsymbol{u} .

1
$$f(x,y) = 2xy - 3y^2$$
, $P_0(5,5)$, $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$.

Solution:

Let v be the unit vector in the direction of u.

$$v = \frac{u}{|u|} = \frac{4i + 3j}{\sqrt{4^2 + 3^2}} = \frac{4}{5}i + \frac{3}{5}j.$$

The directional derivative of f at (5,5) in the direction of ${m v}$ is

$$\left(\frac{df}{ds}\right)_{v,P_0} := \lim_{s \to 0} \frac{f(5 + (4/5)s, 5 + (3/5)s) - f(5,5)}{s} = -4.$$

② f(x,y,z) = xy + yz + zx, $P_0(1,-1,2)$, $\mathbf{u} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$. (Ans: 3)