Problems

3-1 Asymptotic behavior of polynomials

Let

$$p(n) = \sum_{i=0}^d a_i n^i ,$$

where $a_d > 0$, be a degree-d polynomial in n, and let k be a constant. Use the definitions of the asymptotic notations to prove the following properties.

- **a.** If $k \ge d$, then $p(n) = O(n^k)$.
- **b.** If $k \leq d$, then $p(n) = \Omega(n^k)$.
- c. If k = d, then $p(n) = \Theta(n^k)$.
- **d.** If k > d, then $p(n) = o(n^k)$.
- e. If k < d, then $p(n) = \omega(n^k)$.

3-2 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω, ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	B	0	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}					
b.	n^k	c^n					
c.	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$					
e.	$n^{\lg c}$	$C^{\lg n}$					
f.	lg(n!)	$\lg(n^n)$			·		

3-3 Ordering by asymptotic growth rates

a. Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \ldots, g_{30} of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{29} = \Omega(g_{30})$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.