Mapa wykładu

- □ 7.1 Co to jest ochrona informacji?
- □ 7.2 Zasady działania kryptografii
- □ 7.3 Uwierzytelnienie
- □ 7.4 Integralność
- □ 7.5 Dystrybucja kluczy i certyfikacja
- □ 7.6 Kontrola dostępu: ściany ogniowe
- □ 7.7 Ataki i środki zaradcze
- 7.8 Wykrywanie włamań i cyfrowa kryminalistyka
- □ 7.9 Ochrona informacji w wielu warstwach

Podpisy cyfrowe

- Technika kryptograficzna analogiczna do podpisów odręcznych.
- nadawca (Bob) podpisuje dokument cyfrowo, twierdząc że jest właścicielem/twórcą dokumentu.
- weryfikacja, zabezpieczenie przed fałszerstwem: odbiorca (Alicja) może udowodnić komuś, że Bob, i nikt inny (również sama Alicja), podpisał dokument

Podpisy cyfrowe

Prosty podpis cyfrowy dla wiadomości m:

Bob podpisuje m przez zaszyfrowanie wiadomości z pomocą swojego klucza prywatnego K_B, tworząc "podpisaną" wiadomość, K_B(m)

Podpisy cyfrowe (cd)

- □ Załóżmy, że Alicja otrzymuje wiadomość m, podpis cyfrowy K̄_B(m)
- Alicja sprawdza m podpisaną przez Boba przez użycie klucza publicznego Boba K_B do K_B (m) i sprawdzenie, czy K_B (K_B (m)) = m.
- Jeśli $K_B(K_B(m)) = m$, to osoba, która podpisywała m, musiała użyć klucza prywatnego Boba.

Alicja sprawdza, że:

- Bob podpisał m.
- Nikt inny nie podpisał m.
- Bob podpisał m, a nie m'.

Niezaprzeczalność:

✓ Alicja może wziąć m, oraz podpis $K_B(m)$ do sądu i udowodnić, że Bob podpisał m.

Skróty wiadomości

Szyfrowanie długich
wiadomości w
kryptografii klucza
publicznego jest drogie
obliczeniowo

<u>Cel:</u> prostu do obliczenia, cyfrowy skrót wiadomości

zastosuj funkcję haszującą H do m, uzyskując skrót wiadomości o ustalonej długości, H(m).

Własności funkcji haszujących:

- □ nie są różnowartościowe
- tworzą skróty ustalonej długości
- mając dany skrót x,
 znalezienie m takiego,
 że x = H(m), jest bardzo
 trudne obliczeniowo

<u>Internetowa suma kontrolna: słaba</u> <u>funkcja haszująca</u>

Internetowa suma kontrolna ma niektóre własności funkcji haszującej:

- tworzy skróty ustalonej długości (16-bitowe)
- nie jest różnowartościowa

Jednak znając wiadomość i jej skrót, łatwo jest znaleźć inną wiadomość o tym samym skrócie:

<u>wiadomość</u>	<u>format ASCII</u>	<u>wiadomoś</u>	<u>ść format ASCII</u>
I O U 1	49 4F 55 31	ΙΟυ	9 49 4F 55 <u>39</u>
0 0 . 9	30 30 2E 39	0 0 .	<u>1</u> 30 30 2E <u>31</u>
9 B O B	39 42 D2 42	9 B O 1	B 39 42 D2 42
		różne wiadomości	
	lecz identyczne skróty!		

Podpis cyfrowy = podpisany skrót wiadomości

Bob wysyła wiadomość podpisaną cyfrowo:

Alicja sprawdza podpis o integralność podpisanej wiadomości:

Algorytmy funkcji haszujących

- □ Szeroko używana funkcja MD5 (RFC 1321)
 - oblicza 128-bitowy skrót wiadomości w czterostopniowym procesie.
 - mając dowolny 128-bitowy ciąg x, trudno jest skonstruować wiadomość m której hasz MD5 jest równy x.
- ☐ SHA-1 także jest używany.
 - Standard amerykański [NIST, FIPS PUB 180-1]
 - skrót 160-bitowy

Mapa wykładu

- □ 7.1 Co to jest ochrona informacji?
- □ 7.2 Zasady działania kryptografii
- □ 7.3 Uwierzytelnienie
- □ 7.4 Integralność
- □ 7.5 Dystrybucja kluczy i certyfikacja
- □ 7.6 Kontrola dostępu: ściany ogniowe
- □ 7.7 Ataki i środki zaradcze
- 7.8 Wykrywanie włamań i cyfrowa kryminalistyka
- □ 7.9 Ochrona informacji w wielu warstwach

Zaufani pośrednicy

<u>Dystrybucja kluczy</u> <u>symetrycznych:</u>

Jak dwie jednostki mają uzgodnić tajny klucz w sieci?

Rozwiązanie:

 zaufane centrum dystrybucji kluczy (CDK) działające jako pośrednik pomiędzy jednostkami

<u>Dystrybucja kluczy</u> <u>publicznych:</u>

Gdy Alicja otrzymuje klucz publiczny Boba (ze strony WWW, przez e-mail, dyskietkę), to skąd wie, że jest to klucz Boba, a nie klucz Trudy?

Rozwiązanie:

zaufane centrum certyfikatów (ang. Certificate Authority, CC)

Centrum Dystrybucji Kluczy (CDK)

 Alicja i Bob potrzebują wspólnego symetrycznego klucza.

 CDK: serwer ma wspólny klucz symetryczne z każdym zarejestrowanym użytkownikiem (wielu użytkowników)

 \Box Alicja, Bob znają swoje klucze symetryczne, K_{A-CDK} i

K_{B-CDK}, dla komunikacji z CDK.

Centrum Dystrybucji Kluczy (CDK)

P: W jaki sposób CDK pozwala Bobowi i Alicji ustalić klucz symetryczny dla komunikacji między sobą?

Alicja i Bob komunikują się: używają R1 jako klucza sesji dla szyfru z kluczem symetrycznym

Centra Certyfikatów

- □ Centrum Certyfikatów (CC): wiąże klucz publiczny z tożsamością jednostki E.
- □ E (osoba, ruter) rejestruje swój klucz publiczny u CC.
 - O E udostępnia "dowód tożsamości" dla CC.
 - CC tworzy certyfikat wiążący tożsamość E z kluczem publicznym.
 - certyfikat, zawierający klucz publiczny E, zostaje cyfrowo podpisany przez CC - CC stwierdza "to jest klucz publiczny E"

Centra Certyfikatów

- □ Kiedy Alicja potrzebuje klucza publicznego Boba:
 - o bierze certyfikat Boba (od Boba lub skądinąd).
 - używa klucza publicznego CC, uzyskuje klucz publiczny Boba

Certyfikat zawiera:

Numer seryjny (niepowtarzalny u nadawcy)

□ informacja o właścicielu certyfikatu, oraz o algorytmach szyfrowania i skrótu, a także wartość klucza (nie pókazana)

informacja o wydawcy certyfikatu (CC)

- daty ważności
- podpis cyfrowy wydawcy

Mapa wykładu

- □ 7.1 Co to jest ochrona informacji?
- □ 7.2 Zasady działania kryptografii
- □ 7.3 Uwierzytelnienie
- □ 7.4 Integralność
- □ 7.5 Dystrybucja kluczy i certyfikacja
- □ 7.6 Kontrola dostępu: ściany ogniowe
- □ 7.7 Ataki i środki zaradcze
- 7.8 Wykrywanie włamań i cyfrowa kryminalistyka
- □ 7.9 Ochrona informacji w wielu warstwach

Ściany ogniowe

ściana ogniowa

(ang. firewall) izoluje wewnętrzną sieć organizacji od Internetu, pozwalając na niektóre rodzaje komunikacji, a blokując inne.

Strefy zdemilitaryzowane

strefa zdemilitaryzowana

(ang. Demilitarized Zone) część sieci pomiędzy wewnętrzną siecią a publicznym Internetem, chroniona ścianą ogniową, w której mogą się znajdować serwery proxy.

Sciany ogniowe: Dlaczego

zapobiegają atakom DoS:

 zalew SYN (ang. SYN flooding): napastnik otwiera wiele fałszywych połączeń TCP, nie starcza zasobów dla "prawdziwych" połączeń.

zapobieganie nielegalnym modyfikacjom/dostępowi do danych.

 n.p., napastnik zastępuje stronę domową banku przez inną stronę

pozwolić tylko na uprawniony dostęp do wewnętrznej sieci (zbiorowi uwierzytelnionych użytkowników/hostów)

dwa rodzaje ścian ogniowych:

- w warstwie aplikacji
- o w warstwie sieci (filtry pakietów)

- wewnętrzna sieć jest połączona przez ścianę ogniową zintegrowaną z ruterem
- ruter filtruje pakiety, decyduje o przekazaniu/zatrzymaniu pakietu w oparciu o (m.in):
 - o adres IP źródła, adres IP celu
 - o numery portów TCP/UDP źródła i celu
 - typ komunikatu ICMP
 - o bity SYN, ACK segmentu TCP

Filtrowanie pakietów

- □ Przykład 1: blokuj pakiety z polem protokołu w pakiecie IP = 17 i z portem celu lub źródła = 23.
 - wszystkie przychodzące lub wychodzące pakiety UDP oraz wszystkie połączenia telnet zostaną zablokowane.
- Przykład 2: Blokuj przychodzące segmenty TCP z ACK=0.
 - Uniemożliwia zewnętrznym hostom otwieranie połączeń TCP do wewnętrznych hostów, ale pozwala wewnętrznym hostom tworzyć połączenia TCP na zewnątrz.

Bramy w wstie aplikacji

- Analizuje dane aplikacji oprócz nagłówków IP/TCP/UDP.
- Przykład: pozwól wybranym użytkownikom wewnętrznym na telnet na zewnątrz.

- 1. Wszyscy użytkownicy telnet muszą przejść przez bramę.
- 2. Dla uprawnionych użytkowników, brama otwiera sesję telnet do celu. Brama przekazuje dane między dwoma połączeniami
- 3. Filtrujący ruter blokuje wszystkie sesje telnet nie nawiązane przez bramę.

Ograniczenia ścian ogniowych

- IP spoofing: ruter nie może wiedzieć, czy dane "rzeczywiście" pochodzą z podanego źródła
- □ jeśli wiele aplikacji potrzebuje specjalnego traktowania, każda musi mieć własną bramę.
- oprogramowanie klienta musi wiedzieć, jak współpracować z bramą.
 - n.p., adres IP pośrednika musi być podany w przeglądarce WWW

- filtry często używają polityki "wszystko albo nic" dla UDP.
- wymiana: stopień swobody komunikacji ze światem, poziom bezpieczeństwa
- wiele bardzo chronionych hostów nadal podlega atakom.

Mapa wykładu

- □ 7.1 Co to jest ochrona informacji?
- □ 7.2 Zasady działania kryptografii
- □ 7.3 Uwierzytelnienie
- □ 7.4 Integralność
- □ 7.5 Dystrybucja kluczy i certyfikacja
- □ 7.6 Kontrola dostępu: ściany ogniowe
- □ 7.7 Ataki i środki zaradcze
- 7.8 Wykrywanie włamań i cyfrowa kryminalistyka
- □ 7.9 Ochrona informacji w wielu warstwach

Mapowanie:

- przed atakiem: sprawdzenie, jakie usługi są udostępniane w sieci
- Używa się ping do stwierdzenia, jakie adresy mają hosty w sieci
- Skanowanie portów: próba nawiązania połączenia
 TCP na każdy port (sprawdzenie reakcji)
- o program mapujący nmap (http://www.insecure.org/nmap/): "network exploration and security auditing"

Środki zaradcze?

Mapowanie: środki zaradcze

- prowadzenie dzienników informacji wysyłanych do sieci
- poszukiwanie podejrzanej aktywności (wzorców skanowania adresów IP, portów)
- modyfikacja reguł filtrów w celu blokowania skanowania za pomocą reguł stanowych filtrów

Podsłuch pakietów:

- o media rozgłaszające
- karta NIC w trybie odbierania (promiscuous)
 czyta wszystkie ramki
- może przeczytać wszystkie niezaszyfrowane informacje (n.p. hasła)
- on.p.: C podsłuchuje ramki B

Środki zaradcze?

<u>Podsłuch: środki zaradcze w w. łącza</u>

- na wszystkich hostach w organizacji działa oprogramowanie, które sprawdza, czy karta jest w trybie odbierania.
- po jednym hoście w każdym segmencie z medium rozgłaszającym (przełącznik Ethernet w centrum gwiazdy)
- kontrola dostępu do sieci przy pomocy adresów fizycznych

Podszywanie się (spoofing):

- aplikacja może tworzyć "surowe" pakiety IP, umieszczając dowolną wartość w adresie IP nadawcy
- odbiorca nie może sprawdzić, czy adres został zmieniony
- o n.p.: C podszywa się pod B

Podszywanie się: filtrowany dostęp

- rutery nie powinny przekazywać pakietów z niewłaściwymi adresami nadawcy (n.p., adres nadawcy pakietu nie jest w podsieci rutera)
- świetnie, ale filtrowany dostęp nie może być wymuszony we wszystkich sieciach

Zablokowanie usług (ang. Denial of service, DOS):

- zalew złośliwie wygenerowanych pakietów "zatapia" odbiorcę
- Distributed DOS (DDOS): wiele skoordynowanych źródeł zalewa odbiorcę
- o n.p., C i zdalny host atakują A segmentami SYN

Denial of service (DOS): środki zaradcze

- odfiltrowanie zalewających pakietów poprzez reguły stanowe: może wyrzucać dobre pakiety razem ze złymi
- traceback do nadawcy pakietów (najprawdopodobniej niewinny host, na który było włamanie)
- O łamigłówki, CAPTCHA

Wykrywanie włamań

Czasami nie da się zapobiegać: trzeba umieć wykryć chorobę i ją wyleczyć!

- ściana ogniowa zapobiega atakom
- jednak wiele ataków przeprowadza się od wewnątrz
 - · połączenia modemowe
 - złośliwi pracownicy
 - · konie trojańskie, wirusy
- Systemy wykrywania włamań (Intrusion Detection Systems, IDS): wykrywają zdarzenia, które świadczą o wystąpieniu włamania do sieci
 - modyfikacje systemu plików
 - · niedozwolony ruch w sieci

Cyfrowa kryminalistyka

Metody gromadzenia dowodów przestępstwa

- wykrycie włamania
- odtworzenie przebiegu
- o próba identyfikacji napastnika
- Rola regulacji prawnych
 - gromadzenie obowiązkowych informacji przez operatorów sieci
 - udostępnianie informacji na żądanie prokuratury

Mapa wykładu

- 7.1 Co to jest ochrona informacji?
- 7.2 Zasady działania kryptografii
- 7.3 Uwierzytelnienie
- 7.4 Integralność
- 7.5 Dystrybucja kluczy i certyfikacja
- 7.6 Kontrola dostępu: ściany ogniowe
- 7.7 Ataki i środki zaradcze
- 7.8 Wykrywanie włamań i cyfrowa kryminalistyka

7.9 Ochrona informacji w wielu warstwach

- 7.8.1. Bezpieczna poczta
- 7.8.2. Bezpieczne gniazda
- 7.8.3. IPsec
- 7.8.4. 802.11 WEP
- 7.8.5. TEMPEST i poufność w warstwie fizycznej

Bezpieczna poczta

Alicja chce wysłać poufny list, m, do Boba.

Alicja:

- \square generuje losowy *symetryczny* klucz prywatny, K_s .
- szyfruje wiadomość kluczem K_s (dla wydajności)
- □ szyfruje także K_s kluczem publicznym Boba.
- \square wysyła zarówno $K_s(m)$ jak i $K_g(K_s)$ do Boba.

Bezpieczna poczta

Alicja chce wysłać poufny list, m, do Boba.

Bob:

- lue używa swojego prywatnego klucza do odszyfrowania K $_{\mathcal{S}}$
- używa K_s do odszyfrowania K_s(m) i odzyskania m

Bezpieczna poczta (cd)

· Alicja chce zapewnić integralność listu i uwierzytelnić się Bobowi.

- · Alicja podpisuje list cyfrowo.
- wysyła list (otwartym tekstem) i podpis cyfrowy.

Bezpieczna poczta (cd)

 Alicja chce zapewnić poufność, uwierzytelnienie nadawcy, integralność listu.

Alicja używa trzech kluczy: swojego prywatnego, publicznego Boba, nowego klucza symetrycznego

Pretty good privacy (PGP)

- Mechanizm szyfrowania poczty elektronicznej, standard de-facto.
- używa kryptografii symetrycznej, kryptografii z kluczem publicznym, funkcji haszujących, i podpisów cyfrowych.
- zapewnia poufność, uwierzytelnienie nadawcy, integralność.
- wynalazca, Phil Zimmerman,
 był obiektem śledztwa w
 USA przez 3 lata.

Wiadomość podpisana przez PGP:

```
---BEGIN PGP SIGNED MESSAGE---
Hash: SHA1

Kochany Bobie: Mój mąż wyjechał
dziś w delegację. Ubóstwiam
Cię, Alicja

---BEGIN PGP SIGNATURE---
Version: PGP 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJh
FEvZP9t6n7G6m5Gw2
---END PGP SIGNATURE---
```

Secure sockets layer (SSL)

- usługa SSL: ochrona informacji w warstwie transportu dla aplikacji używających TCP.
- używane pomiędzy
 przeglądarkami i serwerami
 WWW w celu handlu
 elektronicznego (https).
- usługi ochrony informacji:
 - uwierzytelnienie serwera
 - o poufność
 - uwierzytelnienie klienta (opcjonalne)

uwierzytelnienie serwera:

- przeglądarka używająca SSL zawiera klucze publiczne zaufanych CC.
- Przeglądarka żąda certyfikatu serwera, wydanego przez zaufane CC.
- Przeglądarka używa klucza publicznego CC w celu uzyskania klucza publicznego serwera z certyfikatu.
- sprawdźcie w swoich przeglądarkach, jakie mają zaufane CC.

SSL (cd)

Szyfrowana sesja SSL:

- Przeglądarka generuje symetryczny klucz sesji, zaszyfrowuje go kluczem publicznym serwera, wysyła serwerowi.
- Używając prywatnego klucza, serwer odszyfrowuje klucz sesji.
- Przeglądarka i serwer znają klucz sesji
 - Wszystkie dane wysyłane do gniazda TCP (przez klienta lub serwera) są szyfrowane kluczem sesji.

- SSL: podstawa standardu IETF Transport Layer Security (TLS).
- SSL może być używane dla aplikacji innych niż WWW, n.p., IMAP.
- Uwierzytelnienie klienta można osiągnąć przy użyciu certyfikatów klienta.

IPsec: Bezpieczeństwo w w. sieci

- □ Poufność w warstwie sieci:
 - nadawca szyfruje dane w pakiecie IP
 - segmenty TCP i UDP; komunikaty ICMP i SNMP.
- Uwierzytelnienie w w. sieci
 - odbiorca może uwierzytelnić adres IP nadawcy
- Dwa główne protokoły:
 - authentication header, AH
 - encapsulation security payload , ESP

- Zarówno w AH jak i ESP, źródło i cel wymagają wstępnej komunikacji:
 - tworzą kanał logiczny w w. sieci, zwany związkiem bezpieczeństwa (security association, SA)
- Każdy SA jest jednokierunkowy.
- Jednoznacznie określony przez:
 - protokół (AH or ESP)
 - adres IP nadawcy
 - 32-bitowy identyfikator połączenia

Protokół Authentication Header (AH)

- umożliwia uwierzytelnienie Nagłówek AH zawiera: źródła, integralność, ale nie poufność
- Nagłówek AH jest dodawany między nagłówkiem IP a polem danych pakietu.
- 🗖 pole protokołu: 51
- pośrednie rutery obsługują pakiety jak zwykle

- identyfikator połączenia
- dane uwierzytelniające: skrót oryginalnego pakietu IP podpisany przez źródło.
- pole next header: określa rodzaj danych (n.p., TCP, UDP, ICMP)

Nagłówek IP Nagłówek AH

dane (n.p., segment TCP, UDP)

Protokół ESP

- udostępnia poufność, uwierzytelnienie, integralność.
- dane, stopka ESP są szyfrowane.
- pole next header jest w stopce ESP.

- Uwierzytelnienie ESP jest podobne do uwierzytelnienia AH.
- □ Protokół = 50.

Ochrona informacji w IEEE 802.11

- War-driving: jeżdżąc wokół Los Angeles w Kalifornii, jakie sieci 802.11 są dostępne?
 - Ponad 9000 jest dostępne z dróg publicznych
 - 85% nie używa szyfrowania/uwierzytelnienia
 - o podstuch i inne ataki są proste!
- Wired Equivalent Privacy (WEP): uwierzytelnienie jak w protokole uwierz4.0
 - host wymaga uwierzytelnienia od punktu dostępowego
 - punkt dostępowy wysyła jednorazowy identyfikator długości 128 bitów
 - host szyfruje identyfikator używając wspólnego klucza symetrycznego
 - punkt dostępowy odszyfrowuje identyfikator,
 uwierzytelnia hosta

 Ochrona informacji

Ochrona informacji w IEEE 802.11

- □ Wired Equivalent Privacy (WEP): szyfrowanie
 - Host/punkt dostępowy mają wspólny, 40 bitowy klucz symetryczny (rzadko zmienny)
 - Host dołącza 24-bitowy wektor inicjujący (IV) żeby stworzyć 64-bitowy klucz
 - o 64 bitowy klucz służy do generacji ciągu kluczy, ki^{IV}
 - o k_i^{IV} szyfruje i-ty bajt, d_i, w ramce:

$$c_i = d_i XOR k_i^{IV}$$

○ IV oraz zaszyfrowane bajty, c; są wysyłane w ramce

Szyfrowanie 802.11 WEP

Szyfrowanie WEP u nadawcy

<u>Łamanie szyfru 802.11 WEP</u>

Luka w bezpieczeństwie:

- 24-bitowy IV, jeden IV dla każdej ramki, -> w końcu IV się będą powtarzać
- □ IV wysyłany otwartym tekstem -> wykryje się powtarzanie

☐ Atak:

- \circ Trudy powoduje, że Alicja szyfruje znaną wiadomość $d_1 d_2 d_3 d_4 ...$
- Trudy widzi: c_i = d_i XOR k_i^{IV}
- Trudy zna c_i d_i, więc może obliczyć k_i^{IV}
- \circ Trudy zna ciąg kluczy, $k_1^{IV} k_2^{IV} k_3^{IV} ...$
- Następnym razem, gdy użyty jest IV, Trudy może odszyfrować wiadomość!
 Ochrona informacji

Ochrona informacji w w. fizycznej

- □ TEMPEST (Transient Electromagnetic Pulse Emanation Standard)
 - tajny standard rządu USA o ochronie informacji przed podsłuchem promieniowania elektromagnetycznego
 - problem: nawet promieniowanie monitora komputerowego jest dość silne, żeby je można było podsłuchać
 - o podsłuchujący widzi na monitorze to, co piszący
 - o inne źródło podsłuchu: okablowanie elektryczne
 - o istnieje wiele rozwiązań i firm ekranujących urządzenia elektroniczne!

Ochrona informacji w sieciach (podsumowanie)

Podstawowe techniki.....

- kryptografia (symetryczna i z kluczem publicznym)
- o uwierzytelnienie
- integralność
- o dystrybucja kluczy

.... używane w wielu różnych scenariuszach

- bezpieczna poczta
- bezpieczny transport (SSL)
- IP sec
- 0 802.11 WEP

Plan całości wykładu

- □ Wprowadzenie (2 wykłady)
- □ Warstwa aplikacji (2 wykłady)
- □ Warstwa transportu (3 wykłady)
- Warstwa sieci (3 wykłady)
- □ Warstwa łącza i sieci lokalne (2 wykłady)
- Podstawy ochrony informacji (3 wykłady)
 - studium przypadku z ochrony informacji w sieciach komputerowych