Review: Basic Steps

1. Compute Gini index or Entropy as measure of impurity for each node

Choose node with lowest score

3. If the parent node has the lowest score, it is a leaf

Review: Basic Steps

- 1. Compute Gini index or Entropy as measure of impurity for each node
- 2. Choose node with lowest score
- 3. If the parent node has the lowest score, it is a leaf

Variable Importance Measure: Gini Importance

1. How much does this feature reduce node impurity?

weighted parent node impurity

$$\frac{\text{node-impo}_{j} = w_{j}C_{j} - \left(w_{\text{left}_{j}}C_{\text{left}_{j}} + w_{\text{right}_{j}}C_{\text{right}_{j}}\right)}{\text{importance of node j}}$$

weighted child node impurity

feature importance (fi):

$$fi_{j} = \frac{\sum_{j \in S_{i}} node-impo_{j}}{\sum_{k \in S_{all}} nodeimpo_{k}}$$

where S_i is set of all nodes that split on feature i