

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA

Inteligência Artificial

Resolução de Problemas Por Meio de Busca Busca Informada Parte 1/2

Docentes: Eng Roxan Cadir

Eng Ruben Manhiça

Maputo, 30 de setembro de 2024

Conteúdo da Aula

- 1. Resolução de Problemas Por meio de Buscas
- 2. Algoritmos de busca Informada

Busca com informação e exploração

Capítulo 4 – Russell & Norvig Secção 4.1

Busca com informação (ou heurística)

- Utiliza conhecimento específico sobre o problema para encontrar soluções de forma mais eficiente do que a busca cega.
 - Conhecimento específico além da definição do problema.
- Abordagem geral: busca pela melhor escolha.
 - Utiliza uma função de avaliação para cada nó.
 - Expande o nó que tem a função de avaliação mais baixa.
 - Dependendo da função de avaliação, a estratégia de busca muda.

Busca pela melhor escolha

- Idéia: usar uma função de avaliação f(n) para cada nó.
 - estimativa do quanto aquele nó é desejável
 - → Expandir nó mais desejável que ainda não foi expandido
- <u>Implementação</u>:

Ordenar nós na borda em ordem decrescente de acordo com a função de avaliação

- Casos especiais:
 - Busca gulosa pela melhor escolha
 - Busca A*

Busca gulosa pela melhor escolha

- Função de avaliação f(n) = h(n) (heurística)
 = estimativa do custo de n até o objetivo
 ex., h_{DLR}(n) = distância em linha reta de n até Bucareste.
- Busca gulosa pela melhor escolha expande o nó que parece mais próximo ao objetivo de acordo com a função heurística.

Romênia com custos em km

Distância em linha reta para Bucareste

Arad	7.64
Bucharest	366
	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu V ilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Busca gulosa pela melhor escolha

- Não é ótima, pois segue o melhor passo considerando somente o estado atual.
 - Pode haver um caminho melhor seguindo algumas opções piores em alguns pontos da árvore de busca.
- Minimizar h(n) é suscetível a falsos inícios.
 - Ex. Ir de lasi a Fagaras
 - Heurística sugerirá ir a Neamt, que é um beco sem saída.
 - Se repetições não forem detectadas a busca entrará em loop.

Propriedades da busca gulosa pela melhor escolha

- Completa? Não pode ficar presa em loops, ex., lasi →
 Neamt → lasi → Neamt
- <u>Tempo?</u> O(b^m) no pior caso, mas uma boa função heurística pode levar a uma redução substancial
- Espaço? $O(b^m)$ mantém todos os nós na memória
- Ótima? Não

Busca A*

- Idéia: evitar expandir caminhos que já são caros
- Função de avaliação f(n) = g(n) + h(n)
 - -g(n) = custo até o momento para alcançar n
 - -h(n) = custo estimado de n até o objetivo
 - -f(n) = custo total estimado do caminho através de n até o objetivo.

Heurística Admissível

- Uma heurística h(n) é admissível se para cada nó n, $h(n) \le h^*(n)$, onde $h^*(n)$ é o custo verdadeiro de alcançar o estado objetivo a partir de n.
- Uma heurística admissível nunca superestima o custo de alcançar o objetivo, isto é, ela é otimista.
- Exemplo: $h_{DLR}(n)$ (distância em linha reta nunca é maior que distância pela estrada).
- Teorema: Se h(n) é admissível, A* usando algoritmo BUSCA-EM-ARVORE é ótima.

Consistência (ou monotonicidade)

• Uma heurística é consistente (ou monotônica) se para cada nó *n*, cada sucessor *n'* de *n* gerado por qualquer acção *a*,

$$h(n) \le c(n,a,n') + h(n')$$

• Se *h* é consistente, temos

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n,a,n') + h(n')$
 $\ge g(n) + h(n)$
= $f(n)$

- Isto é, f(n) não-decrescente ao longo de qualquer caminho.
- Teorema: Se *h(n)* is consistente, A* usando BUSCA-EM-GRAFOS é óptima.

A* é ótima com heurística consistente

- A* expande nós em ordem crescente de valores de f.
- Gradualmente adiciona "contornos" de nós.
- Contorno *i* tem todos os nós com $f=f_i$, onde $f_i < f_{i+1}$

Se h(n)=0 temos uma busca de custo uniforme ⇒ círculos concêntricos.

Quanto melhor a heurística mais direcionados ao objetivo serão os círculos

Propriedades da Busca A*

- Completa? Sim (a não ser que exista uma quantidade infinita de nós com $f \le f(G)$)
- <u>Tempo?</u> Exponencial no pior caso
- Espaço? Mantém todos os nós na memória
- Óptima? Sim
- Optimamente eficiente
 - Nenhum outro algoritmo de busca ótimo tem garantia de expandir um número de nós menor que A*. Isso porque qualquer algoritmo que não expande todos os nós com f(n) < C* corre o risco de omitir uma solução ótima.

TPC

- Ler o Capitulo 4.1
- TPC: Investigar sobre Distancia de Manhattan para resolução do Quebra-Cabeça de 8 peças e comparar com a heuristica de numero de peças fora da posição certa

FIM!!!

Duvidas e Questões?

