

BLG354E / CRN: 21560 3rd Week Lecture

1

Block diagram of a 2nd order moving average FIR filter is given below.

- a) Find its step response
- b) Write the transfer function in terms of unit delays (z⁻¹)
- c) Find the output if the input signal x[n] is discretized from $x(t)=10\sin(100\pi t)$ by samping at 200Hz

n	X	Α	В	Υ
0	1	0	0	0.3333
1	1	1	0	0.6667
2	1	1	1	1
3	1	1	1	1
4	1	1	1	1

$$Y=B/3+A/3+X/3$$

$$z^{-1} \rightarrow B=A, A=X$$

b)
$$y[n]=(x[n]+x[n-1]+x[n-2])/3$$

 $y[n]=(x[n]+z^{-1}x[n]+z^{-2}x[n])/3$

$$T(z) = \frac{Y(z)}{X(z)} = \frac{1 + z^{-1} + z^{-2}}{3}$$

$$T(z) = \frac{z^2 + z + 1}{3z^2}$$

Why is that called FIR Filter?

What should be the ideal coefficients for a desired frequency response?

c)
$$T_s=1/200$$
 $t=n T_s = n/200$, $n=0,1,2,...$

$$x[n] = 10 \sin\left(\frac{100\pi}{200}n\right) = 10 \sin(\frac{\pi}{2}n)$$

n	Х	Α	В	Υ
0	0.000	0	0	0
1	10.000	0.000	0.000	3.333
2	0.000	10.000	0.000	3.333
3	-10.000	0.000	10.000	0.000
4	0.000	-10.000	0.000	-3.333
5	10.000	0.000	-10.000	0.000
6	0.000	10.000	0.000	3.333
7	-10.000	0.000	10.000	0.000
8	0.000	10.000	0.000	-3.333
9	10.000	0.000	-10.000	0.000
10	0.000	10.000	0.000	3.333

Y=B/3+A/3+X/3 $z^{-1} \rightarrow B=A$, A=X

17 5.000 8.660 10.000 7.887 BLG354E - İTÜ Faculty of Computer Engineering and Informatics - Üstundağ

Input signal x[n]

$$x[n] = 10\sin\left(\frac{\pi}{12}n\right) + 4\sin\left(\frac{\pi}{12}n\right)$$

Output signal y[n]

	n	Х	Α	В	Y	
	0 0.000		0	0	0	
	1	6.588	0.000	0.000	2.196	
	2 5.000		6.588	0.000	3.863	
	3 3.071		5.000	6.588	4.886	
	4 8.660		3.071	5.000	5.577	
	5 13.659		8.660	3.071	8.464	
	6 10.000		13.659	8.660	10.773	
	7	7 5.659		13.659	9.773	
	8			10.000	8.107	
	9	11.071	5.659 8.660	5.659	8.464	
	10	5.000	11.071 8.660		8.244	
	11	-1.412	5.000 11.071		4.886	
	12	0.000	-1.412 5.000		1.196	
	13	1.412	0.000 -1.412		0.000	
	14	-5.000	1.412 0.000		-1.196	
			-5.000 1.412			
	15 -11.071				-4.886	
	16 -8.660		-11.071 -5.000		-8.244	
	17 -5.659		-8.660	-11.071	-8.464	
	18	-10.000	-5.659	-8.660	-8.106	
	19 -13.659		-10.000	-5.659	-9.773	
	20 -8.660		-13.659 -10.00		-10.773	
	21 -3.071		-8.660	-13.659	-8.464	
	-5.000		-3.071	-8.660	-5.577	
	23 -6.588		-5.000	-3.071	-4.886	
	24 0.000		-6.588	-5.000	-3.863	
	25 6.588		0.000	-6.588	0.000	
	26 5.000		6.588	0.000	3.863	
	27	3.071	5.000 6.588		4.886	
28		8.660	3.071	5.000	5.577	
	29	13.659	8.660	3.071	8.463	
	30	10.000	13.659	8.660	10.773	
	31	5.659	10.000	13.659	9.773	
	32	8.660	5.659	10.000	8.107	
	33	11.071	8.660	5.659	8.464	
	34	5.000	11.071	8.660	8.244	
	35	-1.412	5.000	11.071	4.887	
	36 0.000 37 1.412 38 -5.000		-1.412	5.000	1.196	
			0.000	-1.412	0.000	
			1.412	0.000	-1.196	
	39	-11.071	-5.000	1.412	-4.886	
	40 -8.660		-11.071 -5.000		-8.244	
					-8.464	
	41 -5.659		-8.660 -11.071 -5.659 -8.660		-8.106	
	42 -10.000		-5.659 -8.660			
	43 -13.659		-10.000	-5.659	-9.773 10.772	
	44 -8.661		-13.659 -10.000		-10.773	
	45 -3.071		-8.661 -13.659		-8.464	
	46 -5.000		-3.071	-8.661	-5.577	
	47 -6.588		-5.000	-3.071	-4.886	
	48	0.000	-6.588	-5.000	-3.863	
	49	6.588	0.000	-6.588	0.000	
	50	5.000	6.588	0.000	3.863	
	51	3.071	5.000	6.588	4.886	
	52	8.660	3.071	5.000	5.577	
	53	13.659	8.660	3.071	8.463	
	54	10.000	13.659	8.660	10.773	
	55	5.659	10.000	13.659	9.773	
	56	8.660	5.659	10.000	8.107	
	57	11.071	8.660	5.659	8.463	
	58	5.000	11.071	8.660	8.244	
	59	-1.412	5.000	11.071	4.887	
	60	0.000	-1.412	5.000	1.196	
	61	1.412	0.000	-1.412	0.000	
	62	-5.000	1.412	0.000	-1.196	
	63	-11.071	-5.000	1.412	-4.886	

n	Х	Α	В	Υ	С	D	Z
0	0.000	0	0	0	0	0	0
1	6.588	0.000	0.000	2.196	0.000	0.000	0.732
2	5.000	6.588	0.000	3.863	2.196	0.000	2.020
3	3.071	5.000	6.588	4.886	3.863	2.196	3.648
4	8.660	3.071	5.000	5.577	4.886	3.863	4.775
5	13.659	8.660	3.071	8.464	5.577	4.886	6.309
6	10.000	13.659	8.660	10.773	8.464	5.577	8.271
7	5.659	10.000	13.659	9.773	10.773	8.464	9.670
8	8.660	5.659	10.000	8.107	9.773	10.773	9.551
9	11.071	8.660	5.659	8.464	8.107	9.773	8.781
10	5.000	11.071	8.660	8.244	8.464	8.107	8.271
12	-1.412	5.000 -1.412	11.071 5.000	4.886 1.196	8.244	8.464 8.244	7.198 4.775
13	0.000 1.412	0.000	-1.412	0.000	4.886 1.196	4.886	2.028
14	-5.000	1.412	0.000	-1.196	0.000	1.196	0.000
15	-11.071	-5.000	1.412	-4.886	-1.196	0.000	-2.027
16	-8.660	-11.071	-5.000	-8.244	-4.886	-1.196	-4.775
17	-5.659	-8.660	-11.071	-8.464	-8.244	-4.886	-7.198
18	-10.000	-5.659	-8.660	-8.106	-8.464	-8.244	-8.271
19	-13.659	-10.000	-5.659	-9.773	-8.106	-8.464	-8.781
20	-8.660	-13.659	-10.000	-10.773	-9.773	-8.106	-9.551
21	-3.071	-8.660	-13.659	-8.464	-10.773	-9.773	-9.670
22	-5.000	-3.071	-8.660	-5.577	-8.464	-10.773	-8.271
23	-6.588	-5.000	-3.071	-4.886	-5.577	-8.464	-6.309
24	0.000	-6.588	-5.000	-3.863	-4.886	-5.577	-4.775
25	6.588	0.000	-6.588	0.000	-3.863	-4.886	-2.916
26	5.000	6.588	0.000	3.863	0.000	-3.863	0.000
27	3.071	5.000	6.588	4.886	3.863	0.000	2.916
28	8.660	3.071	5.000	5.577	4.886	3.863	4.775
29	13.659	8.660	3.071	8.463	5.577	4.886	6.309
30	10.000	13.659	8.660	10.773	8.463	5.577	8.271
31	5.659	10.000	13.659	9.773	10.773	8.463	9.670
32	8.660 11.071	5.659 8.660	10.000 5.659	8.107 8.464	9.773 8.107	10.773 9.773	9.551 8.781
34	5.000	11.071	8.660	8.244	8.464	8.107	8.271
35	-1.412	5.000	11.071	4.887	8.244	8.464	7.198
36	0.000	-1.412	5.000	1.196	4.887	8.244	4.776
37	1.412	0.000	-1.412	0.000	1.196	4.887	2.028
38	-5.000	1.412	0.000	-1.196	0.000	1.196	0.000
39	-11.071	-5.000	1.412	-4.886	-1.196	0.000	-2.027
40	-8.660	-11.071	-5.000	-8.244	-4.886	-1.196	-4.775
41	-5.659	-8.660	-11.071	-8.464	-8.244	-4.886	-7.198
42	-10.000	-5.659	-8.660	-8.106	-8.464	-8.244	-8.271
43	-13.659	-10.000	-5.659	-9.773	-8.106	-8.464	-8.781
44	-8.661	-13.659	-10.000	-10.773	-9.773	-8.106	-9.551
45	-3.071	-8.661	-13.659	-8.464	-10.773	-9.773	-9.670
46	-5.000	-3.071	-8.661	-5.577	-8.464	-10.773	-8.271
47	-6.588	-5.000	-3.071	-4.886	-5.577	-8.464	-6.309
48	0.000 6.588	-6.588 0.000	-5.000 -6.588	-3.863 0.000	-4.886 -3.863	-5.577 -4.886	-4.775 -2.916
50		6.588	0.000	3.863		-3.863	0.000
51	5.000 3.071	5.000	6.588	4.886	0.000 3.863	0.000	2.916
52	8.660	3.000	5.000	5.577	4.886	3.863	4.775
53	13.659	8.660	3.071	8.463	5.577	4.886	6.309
54	10.000	13.659	8.660	10.773	8.463	5.577	8.271
55	5.659	10.000	13.659	9.773	10.773	8.463	9.670
56	8.660	5.659	10.000	8.107	9.773	10.773	9.551
57	11.071	8.660	5.659	8.463	8.107	9.773	8.781
58	5.000	11.071	8.660	8.244	8.463	8.107	8.271
59	-1.412	5.000	11.071	4.887	8.244	8.463	7.198
60	0.000	-1.412	5.000	1.196	4.887	8.244	4.776
61	1.412	0.000	-1.412	0.000	1.196	4.887	2.028
62	-5.000	1.412	0.000	-1.196	0.000	1.196	0.000
63	-11.071	-5.000	1.412	-4.886	-1.196	0.000	-2.027

Input signal:

$$x[n] = 10\sin\left(\frac{\pi}{12}n\right) + 4\sin(\frac{\pi}{12}n)$$

CID.

15

10

Output of the first stage MOV FIR:

Output of the second stage MOV FIR:

1/3

Questions:

How is the dependency between phase response of the system and the applied signal properties?

How is the dependency between frequency response of the system and the applied signal properties?

How can we determine the system transfer function which performs the desired frequency response?

How can we define the discrete time system that performs the equivalent transfer function designed for CT signals?

How can we implement software that performs the desired frequency response on an embedded digital device?

Answers: Chapter 7+

Linear Time-Invariant (LTI) Systems

Linearity and time-invariance are two most important properties in classification of the systems.

Input-output relationship of an LTI systems can be described in terms of convolution operation.

Impulse Response:

Response of the continuous-time LTI system when the impulse $\delta(t)$ signal is applied to its input, called the impulse response and denoted by "h(t)":

$$h(t) = \mathbf{T}\{\delta(t)\}\$$

Both the system and integration operator are linear

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \, \delta(t - \tau) \, d\tau$$

linear
$$x(t) = \int_{-\infty}^{\infty} x(\tau) \, \delta(t - \tau) \, d\tau$$

$$y(t) = \mathbf{T} \left\{ \int_{-\infty}^{\infty} x(\tau) \, \delta(t - \tau) \, d\tau \right\} = \int_{-\infty}^{\infty} x(\tau) \mathbf{T} \left\{ \delta(t - \tau) \right\} \, d\tau$$
The system is time invariant $\Rightarrow h(t - \tau) = \mathbf{T} \left\{ \delta(t - \tau) \right\}$

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

Continuous-time LTI systems can be characterized by their impulse response h(t)

Convolution Integral:

Convolution of two continuous-time signals x(t) and h(t) is stated as $y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$

If the impulse response of an LTI system is known then its output can be found for any other input signal through the convolution

Convolution Algorithm:

By applying the commutative property of convolution to $y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$

we get
$$\Rightarrow y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau) d\tau$$

Step 1: Impulse response $h(\tau)$ is reflected about the origin (time-reversed) to obtain $h(-\tau)$ and then shifted by t to form $h(t-\tau) = h[-(\tau-t)]$ which is a function of T.

Step 2: $h(t-\tau)$ and the signal $x(\tau)$ and are multiplied together for all values of τ with fixed t.

Step 3: " $x(\tau)h(t-\tau)$ " is integrated over all T and that yields a single output value y(t)

Step 4: Steps 1 to 3 are repeated as t varies over $-\infty$ to $+\infty$ to calculate the total convolution as y(t).

Find y(t)=x(t)*h(t) for x(t) and h(t) shown below

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau = \int_{-\infty}^{\infty} [u(\tau) - u(\tau-3)][u(t-\tau) - u(t-\tau-2)] d\tau$$

$$= \int_{-\infty}^{\infty} u(\tau)u(t-\tau) d\tau - \int_{-\infty}^{\infty} u(\tau)u(t-2-\tau) d\tau - \int_{-\infty}^{\infty} u(\tau-3)u(t-\tau) d\tau + \int_{-\infty}^{\infty} u(\tau-3)u(t-2-\tau) d\tau$$

$$u(\tau)u(t-\tau) = \begin{cases} 1 & 0 < \tau < t, t > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$u(\tau-3)u(t-\tau) = \begin{cases} 1 & 3 < \tau < t, t > 3 \\ 0 & \text{otherwise} \end{cases}$$

$$u(\tau)u(t-2-\tau) = \begin{cases} 1 & 0 < \tau < t - 2, t > 2 \\ 0 & \text{otherwise} \end{cases}$$

$$u(\tau-3)u(t-2-\tau) = \begin{cases} 1 & 3 < \tau < t - 2, t > 5 \\ 0 & \text{otherwise} \end{cases}$$

$$y(t) = \left(\int_0^t d\tau\right) u(t) - \left(\int_0^{t-2} d\tau\right) u(t-2) - \left(\int_3^t d\tau\right) u(t-3) + \left(\int_3^{t-2} d\tau\right) u(t-5)$$

$$= tu(t) - (t-2)u(t-2) - (t-3)u(t-3) + (t-5)u(t-5)$$

Kernel in convolution

Convolution is linear and shift invariant

$$g(x) = \int_{-\infty}^{\infty} f(\tau)h(x-\tau)d\tau \qquad g = f * h$$

$$f(\tau)$$

$$h(\tau)$$

$$h(-\tau)$$

$$h(-\tau)$$

$$h(-\tau)$$

Output has a duration longer than the input indicates that convolution often acts like a low pass filter and smooths the signal.

Graphical Convolution:

Suppose that f(t) = g(t) where f(t) is the rectangular pulse depicted in figure, of height 1.

$$f(t) = g(t) = \begin{cases} 1, & 0 \le t \le T \\ 0, & \text{otherwise} \end{cases}$$

For t<0:

Example: Find the convolution between a(x) and b(x)

$$c = a * b$$

X →

Find convolution of x[n] and h[n] by graphical shifting the h[n] over x[n]

Impulse response h(t) of a continuous time LTI system is given by $h(t) = e^{-\alpha t}u(t)$ $\alpha > 0$ Find output of the system y(t) for x(t)=u(t)

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

$$y(t) = \int_0^t e^{-\alpha \tau} d\tau = \frac{1}{\alpha} (1 - e^{-\alpha t})$$

$$y(t) = \frac{1}{\alpha} (1 - e^{-\alpha t}) u(t)$$

Ref: http://fourier.eng.hmc.edu/e161/lectures/convolution/index.html

Convolution properties:

Commutativity:
$$x[n] * h[n] = h[n] * x[n]$$

Associativity:
$$\{x[n] * h_1[n]\} * h_2[n] = x[n] * \{h_1[n] * h_2[n]\}$$

Distributivity:
$$x[n] * \{h_1[n]\} + h_2[n]\} = x[n] * h_1[n] + x[n] * h_2[n]$$

Time-Frequency Domain Transformation:
$$x_1(t)*x_2(t) \leftrightarrow X_1(\omega) \cdot X_2(\omega)$$
 This will be proven after introduction of the Fourier Transform

Proof: Prove the commutativity property of convolution for DT signals

$$x[n] * h[n] = h[n] * x[n]$$
$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Variable change: n - k = m

$$x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[n-m]h[m] = \sum_{m=-\infty}^{\infty} h[m]x[n-m] = h[n] * x[n]$$

Implications of the Convolution Properties

• Commutative:

$$x[n] * h[n] = h[n] * x[n]$$

• Distributive:

$$x[n]*(h_1[n] + h_2[n]) =$$

 $(x[n]*h_1[n]) + (x[n]*h_2[n])$

• Associative:

$$x[n] * h_1[n] * h_2[n] =$$
 $(x[n] * h_1[n]) * h_2[n] =$
 $(x[n] * h_2[n]) * h_1[n]$

• Implications:

$$x[n] \qquad h[n] \qquad = \qquad h[n] \qquad x[n] \qquad x[n]$$

Convolution of discrete time signals:

Output of any discrete-time LTI system is the convolution of the input x[n] with the impulse response h[n] of the system

Example:

 $x[n]=\{1, 0, 2, 1\}$ and $y[n]=\{2, 0, 1\}$ are two DT signals. Find their convolution c[n]=x[n]*y[n]

Convolution in Python:

```
import numpy as np
import matplotlib.pyplot as plt
x,y=[1,0, 2, 1], [2,0, 1]
c=np.convolve(x, y)
n=np.arange(0,(len(c)))
print("convolution: x[n]*y[n]=",c)
plt.subplot(3,1,1);
plt.xlabel('n');
plt.ylabel('x[n]');
# zero padding for plot of x[n]
xp=np.pad(x, (0,(len(c)-len(x))), 'constant')
plt.stem(n, xp); •
plt.subplot(3,1,2);
plt.xlabel('n');
plt.ylabel('y[n]');
# zero padding for the plot of y[n]
yp=np.pad(y, (0,(len(c)-len(y))), 'constant')
plt.stem(n, yp);
plt.subplot(3,1,3);
plt.xlabel('n');
plt.ylabel('c[n]');
plt.stem(n, c);
plt.tight layout(pad=0.5)
plt.show()
```

c=np.convolve (x, y, mode)
mode is optional: {'full', 'same', 'valid'}

Size of c: len(c)=(len(x)+len(y)-1)

Graphical Convolution Example (1/2)

Graphical Convolution Example (2/2)

Examples of Discrete Time Convolution

Example: unit step

$$h[n] = u[n]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]$$

$$= \sum_{k=-\infty}^{\infty} x[k] u[n-k] = \sum_{k=-\infty}^{n} x[k]$$

• Example: unit-pulse

$$h[n] = \delta[n]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]$$

$$= \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] = x[n]$$

Example: delayed unit-pulse

$$h[n] = \delta[n - n_0]$$

$$y[n] = \sum_{k = -\infty}^{\infty} x[k] h[n - k]$$

$$= \sum_{k = -\infty}^{\infty} x[k] \delta[n - n_0 - k] = x[n - n_0]$$

• Example: integration

$$x[n] = u[n]$$

$$h[n] = a^{n}u[n] \quad |a| < 1$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]$$

$$= \sum_{k=-\infty}^{\infty} u[n]a^{n}u[n]$$

$$= (1)\delta[n] + (1+a)\delta[n-1] + \dots$$

$$= \begin{cases} 1 & n=0\\ \frac{1-a^{n+1}}{1-a} & n > 0 \end{cases}$$