

FIG. 1A

gatattata aatcggatgg gatcgatggg ggcggccact ctgcctctgg gggatggcggc cccgttccggc tggggccggc tggggccggc tggggccggc 120
 AGCTCTGGG GGGCTCTGGT ATTTCCTGGG CTGGCTCTGGG GATCTGGGGT CCAGGGGGCC AGCTGGGGT GATCTGGGT GGGCTCTGGT GGGCTCTGGG
 S L C G U L U F L L L A G L P L Q A A K R f R D U L G H E D Y P D H H R E H H
GGATTTGGCT GCTGGCTGC AGGTGCTGAAAT GAAAGGGGATG AAGGGGTTA TCTCTGGG AGGGGGGGG AGGGGGGGG GGGGGGGG
 Q L R G H S S D E H E U O E Q L Y P U R A G E G A U K D S H E G G A U Q A A L
 AGGGGGGGT GGGGGGGT 160
 AGGGGGGGT GGGGGGGT
 T S O S P A L U G S H I T F U Y H L U F P R C D K E D A H G H I U Y E A H C A S
 GATTTGGGG TGGCTCTGG CCGCTATGG TACATCTGG CCGCTATGG AGCTGGGGG AGCTGGGGG AGCTGGGGG AGCTGGGGG
 D L E L A S O P Y U Y H W I T G A D D E D U E O H I S Q G Q H L A F P O G K P F
 GCTGGGGGG AGGGGGGG AGGGGGGG AGGGGGGG AGGGGGGG AGGGGGGG AGGGGGGG AGGGGGGG AGGGGGGG AGGGGGGG
 P R P H G A K K U H F U Y U F H I L G Q Y F Q K L G O C S A R U S I H I U H L T
 GTGGGGGGT AGGTGCTGG AGGTGCTGG AGGTGCTGG AGGTGCTGG AGGTGCTGG AGGTGCTGG AGGTGCTGG AGGTGCTGG 200
 U G P Q U H E U I U F A R H G A A Y I P I S K U K D U Y U I T O O I P I F U T H
 TACCGGAGGA ATGCGGAGGA CTCCTCTAT GAACTCTCC TCTCTCTAT GGGGGGGT GGGGGGGT GGGGGGGT GGGGGGGT
 V Q K H D R H S S D E I F L R O L P I F F O U L I H D P S H F L H V S A I S V K 240
 360
 400
 440
 480
 520
 560
 600
 640
 680
 720
 760
 800
 840
 880
 920
 960

FIG. 1A-1

3/18

EXON	BAC Start	BAC Stop	cDNA Start	cDNA Stop	Exon Length	
1	83294	83455	1	162	162	poly A signal is position 111614-111619
2	89834	89986	163	314	152	
3	90696	90839	315	458	144	
4	93419	93594	459	634	176	translation start (ATG) is:
5	96509	96665	635	791	157	cDNA: 92
6	96983	97300	792	1109	318	Gene: 83385
7	103044	103142	1110	1208	99	
8	104413	104515	1209	1311	103	
9	106494	106702	1312	1520	209	
10	110048	110141	1521	1614	94	
11	110592	111633	1615	2656	1042	

K-D

FIG. 1B

FIG. 1C

4/18

FIG. 2A-1

FIG. 2A-2

FIG. 2A-3

FIG. 2A-4

FIG. 2A-5

FIG. 2A

rat	ATGAAAAGTC	TCTGGGGGT	CCTGGTATT	CTGGGTCTGG	CTGAGGACT	GCCGGTCCAG	GCGGCCAAGC	GGTTC	75
mouse	ATGAAAAGTC	TCTGGGGGT	CCTGGGATT	CTGGGTCTGG	CTGAGGACT	GCCTCTCCAG	GCTGCCAAGC	GATT	75
human	ATGAAAAGTC	TCTACTATT	CCTGGGATT	CTGGGTCTGG	CTGCAAGATT	GCCACTGTAT	GCCCCAAAC	GATT	75
rat	CGTGATGTGC	TGGGCCATGA	GCAGTATCCG	GATCACATGA	GGGAGAACAA	CCAATTACGT	GGCTGGTCTT	CAGAT	150
mouse	CGTGATGTGC	TGGGCCATGA	ACAGTATCCC	GATCACATGA	GAGAGCACAA	CCAATTACGT	GGCTGGTCTT	CGGAT	150
human	CGTGATGTGC	TGGGCCATGA	AAGACCTCT	GCTTACATGA	GGGAGCACAA	TCAATTAAAT	GGCTGGTCTT	CTGAT	150
rat	GAATATGAAT	GGGATGAACA	GCTGTATCCA	GTGTGGAGGA	GGGGAGAGGG	CAGATGGAAG	GACTCTGGG	AGGAA	225
mouse	GAATATGAAT	GGGATGAACA	CCTGTATCCA	GTGTGGAGGA	GGGGAGAGGG	CAGGTGGAAG	GACTCTGGG	AGGAA	225
human	GAATATGAAT	GGAAATGAAA	ACTTACCCA	GTGTGGAAAGC	GGGGAGACAT	GAGGTGAAA	AACCTCTGGA	AGGGA	225
rat	GGCCGTGTGC	AGGAGGCCCT	AACCAAGTGA	TCACCGGGCCT	TGGGGGTCT	CAATATCACC	TTCGTAGTGA	ACCTG	300
mouse	GGCCGTGTGC	AGGCAGTCCCT	GACCAAGTGA	TCACCGGGCCT	TGGGGGTCT	CAATATCACT	TTCGTAGTGA	ACCTG	300
human	GGCCGTGTGC	AGGGGGTCT	GACCAAGTGA	TCACCAAGCCC	TGGGGGTCT	AAATATAACA	TTCGTAGTGA	ACCTG	300

FIG. 2A-1

rat	GTGTTCCCCA	GATGCCAGAA	GGAAAGATGCC	AACGGCAATA	TCGTCATGAA	GAGGAAGTGC	AGAAAGTGTGATT	TGGAG	375
mouse	GTGTTCCCCA	GATGCCAGAA	GGAAAGATGCC	AATGGCAATA	TCGTCATGAA	GAAGAACTGC	AGGAATGTGATT	TGGGA	375
human	ATATTCCCTA	GATGCCAAA	GGAAAGATGCC	AATGGCAACA	TAGTCATGAA	GAAGAACTGC	AGAAATGAGG	CTGGT	375
rat	CTGGCTCTG	ACCCGTATGT	CTACAACTGG	ACACAGGGG	CAGACGATGA	GGACTGGAA	GACAAACACCA	GCCAA	450
mouse	CTGACATCTG	ACCTGCATGT	CTACAACTGG	ACTGCAGGGG	CAGATGATGG	TGACTGGAA	GATGGCACCA	GCCGA	450
human	TTATCTGGCTG	ATCCCATATGT	TTACAACTGG	ACAGGATGGT	CAGAGGACAG	TGACGGGAA	ATATGGCACCG	GCCAA	450
rat	GGCCAGCACC	TCAAGTTCCC	CGACGGGAG	CCCTTCCCTC	GCCCCCAGG	ACGGAAAGAA	TGGAAACTTCG	TCTAC	525
mouse	AGCCAGCCTC	TCAAGTTCCC	GGACAGGAGG	CCCTTCCCTC	GCCCCCATGG	ATGGAAGAAA	TGGAGCTTTG	TCTAC	525
human	AGCCATCATTA	ACGTCTTCCC	TGATGGAAA	CCTTTTCCCTC	ACCAACCCGG	ATGGAGAAAGA	TGGAAATTCA	TCTAC	525
rat	GTCTTCCACA	CACTTGGTCA	GTATTTCAA	AAAGCTGGGTCA	AGTGTTCAGC	ACGGAGTTCT	ATAAAACACAG	TCAAC	600
mouse	GTCTTCCACA	CACTTGGCCA	GTATTTCAA	AAACTGGGTCA	GGTGTTCAGC	ACGGGTTCT	ATAAAACACAG	TCAAC	600
human	GTCTTCCACA	CACTTGGTCA	GTATTTCCAG	AAATTGGGAC	GATGTTCACT	GAGAGTTCT	GTGAAACACAG	CCAAT	600
rat	TTGACAGTTG	GCCCTCAAGGT	CATGGAAGTG	ATGTCCTTTC	GAAGACACGG	CCGGGCATAC	ATTCCCATCT	CCAAA	675
mouse	TTGACAGGTG	GCCCTCAAGGT	CATGGAAGTG	ACTGTCCTTTC	GAAGATAGG	CCGGGCATAC	ATTCCCATCT	CGAAG	675
human	GTGACACTTG	GGCCCTCAACT	CATGGAAGTG	ACTGTCCTACA	GAAGACATGG	ACGGGCATAT	GTTCGCATCG	CACAA	675

FIG. 2A-2

rat	GTGAAAGACG	TGTATGTGAT	AACAGATCAG	ATCCCTATAT	TGTTGACCAT	GTACCAAGAG	AATGACCGGA	ACTCG	750	
mouse	GTGAAAGATG	TGTATGTGAT	AACAGATCAG	ATCCCTGTAT	TGTTGACCAT	GTCCCCAGAG	AATGACCGGA	ACTTG	750	
human	GTGAAAGATG	TGTACGTGGT	AACAGATCAG	ATCCCTGTGT	TGTTGACTAT	GTTCAGAAG	AACGATCGAA	ATTCA	750	
rat	TCTGATGAAA	CCTTCCCTAG	AGACCTCCCC	ATTTCTTCG	ATGTCCTCAT	TCACGATCCC	AGTCATTTCC	TCAAAC	825	
mouse	TCTGATGAGA	CCTTCCCTAG	AGACCTCCCC	ATGCTCTCG	ATGTCCTCAT	TCATGATCCC	AGCCACTTCC	TCAAAC	825	
human	TCCGACGAAA	CCTTCCCTCAA	AGATCTCCCC	ATTATGTTG	ATGTCCTGAT	TCATGATCCC	AGCCACTTCC	TCAAAT	825	
rat	TACTCTGCCA	TTTCCTACAA	GTGGAACCTT	GGGGAAACAA	CTGGGAAACAA	TGTTCTGTT	TGTTCTCAAAC	AATCACACTT	TGAAT	900
mouse	GAATCTGCCA	TTTCCTACAA	GTGGAACCTT	GGGGAAACAA	CTGGGAAACAA	TGTTCTGTT	TGTTCTCAAAC	AATCACACTT	TGAAT	900
human	TATTCCTACCA	TAACTACAA	GTGGACCTTC	GGGGATAATA	CTGGGATAATA	TGTTCTGTT	TGTTCTCACC	AATCATACTG	TGAAT	900
rat	CACACGTATG	TGCTCAATGG	AACCTTCAAC	TTTAACCTCA	CGTGGAAAC	TGCAGTGGCG	GG-----	-ACCA	966	
mouse	CACACGTATG	TGCTCAATGG	AACCTTCAAC	TTTAACCTCA	CGTGGAAAC	TGCAGTGGCG	GG-----	-GCCA	966	
human	CACACGTATG	TGCTCAATGG	AACCTTCAAC	TTTAACCTCA	CGTGGAAAC	TGCAGTGGCG	GG-----	-GCCA	975	
rat	-TGCCTCC-T	CACCCACACC	TTCGGCTTCT	TCTTCGACTT	TCCTTTC	-----	-----	-----	-----	1029
mouse	-TGCCTCC-T	--CCC--	TTCGGCTTCTG	ACTCCGCTT	CACCTTCAAC	TCCTTGCCTT	-----	-----	-----	1032
human	CCGGCACACC	CACCCAGACC	TTC-----	-----	-----	-----	-----	-----	-----	1004

FIG. 2A-3

rat	---CCACAT TATCAAACACC TAGTCCCTCT TTAATGGCTA CTGGCTACAA ATCCATGGAG CTGAGTGACA TTTC	1101
mouse	TTGCCACAT TATCAAACACC TAGCCCTCT TTAATGGCTA CTGGCTACAA ATCCATGGAG CTGAGTGACA TTTC	1107
human	-----CACC -----CCCTCT TTAGGACTG CTGGACTG CTGGTACAA CCCCTGGAG CTGAGTAGGA TTCC	1059
rat	AATGAAACT GCGGAATAAA CAGATAAGGT TACCTCAGAG CCACCATCAC AATTGTAGAT GGAATCCTAG AGTC	1176
mouse	AATGAAACT GCGGAATAAA CAGATAAGGC TACCTCAGAG CCACCATCAC AATTGTAGAG GGGATCCTGG AAGTC	1182
human	GATGAAACT GCGAGATTA CAGATAGGGC TACCTCAGAG CCACCATCAC AATTGTAGAG GGAATCCTAG AGTT	1134
rat	AAACATCATCC AGGTAGCAGA TGTCCTAACAT CCCACACTGC AGCCCTGACA CTCACATGATG GACTTCATTG TGACC	1251
mouse	AGCATCATGC AGATAGCAGA TGTCCTCATG CCCACACCGC AGCCCTGCCAA CTCCCTGATG GACTTCATG TGACC	1257
human	AAACATCATCC AGATGACAGA CGTCCGTATG CGGCTGCCAT GGCTGAAAG CTCCCTAATA GACTTCATG TGACC	1209
rat	TGCAAAGGGG CCACTCCAC GGAAGCTGT ACCATCATCT CTGACCCCCAC CTGCCCCAC GCCCAGAAC GGGTG	1326
mouse	TGCAAAGGGG CCACCCCCAT GGAAGCTGT ACCATCATCT CGGACCCCCAC CTGCCCCAC GCCCAGAAC GGGTC	1332
human	TGCCAAGGGG GCATCCCCAC GGAGGTCTGT ACCATCATTT CTGACCCCCAC CTGCGGAGATC ACCCAGAAC CAGTC	1284
rat	TGCAGCCCCGG TGGCTGTGGA TGAGCTGTGCG CTCCCTGTCCG TGAGGAGAGC CTTCATGGG TCCGGCACGT ACTGT	1401
mouse	TGCAGCCCCGT TGGCTGTGGA TGGCTGTGCG CTGCTGTCTG TGAGAAGAGC CTTCATGGG TCTGGCACCT ACTGT	1407
human	TGCAGCCCCGT TGGATGTGGA TGAGATGTGT CTGGCTGACTG TGAGACGAACT CGTCAATGGG TCTGGGACGT ACTGT	1359

FIG. 2A-4

rat	GTGAATTCA	CTCTGGAGA	CGATGCAAGC	CTGGCCCTCA	CGAGGCCCT	GATCTCATC	CCTGGCAAAG	ACCTA	1476
mouse	GTGAATTCA	CTCTGGAGA	TGATGCAAGC	CTGGCCCTCA	CGAGGCCCT	GATCTCATC	CCTGGCAAAG	ACCCA	1482
human	GTGAACCTCA	CCCTGGGGGA	TGACACAAAGC	CTGGCTCTCA	CGAGCCCT	GATTTCTGTT	CCTGACAGAG	ACCCA	1434
rat	GGCTCCCCCTC	TGAGAACAGT	GAATGGTGT	CTGATCTCCA	TGGCTGCC	GGCCATGTT	GTCAACCATGG	TTACC	1551
mouse	GACTCCCCCTC	TGAGAGGAGT	GAATGGTGT	CTGATCTCCA	TGGCTGCC	GGCTGTGCTT	GTCAACCATGG	TTACC	1557
human	GCCTCGCCCT	TAAGGATGGC	AAACAGTGGC	CTGATCTGCC	TGGCTGCT	GGCCATATT	GTCACTGTGA	TTCTCC	1509
rat	ATCTTGTGT	ACAAAAAAC	CAAGACGTAC	AAGCCAAATAG	GAAACTGCC	CAGGAACGTG	GTCAAGGGCA	AAGGC	1626
mouse	ATCTTGTGT	ACAAAAAAC	CAAGGCATAC	AAGCCAAATAG	GAAACTGCC	CAGGAACACG	GTCAAGGGCA	AAGGC	1632
human	CTCTTGGGT	ACAAAAAAC	CAAGGAAATAC	AACCCAAATAG	AAAATAGTC	TGGGAATGTG	GTCAAGAACCA	AAGGC	1584
rat	CTGAGTGT	TTCTCAGCCA	TGCCAAAGCC	CCGTTCTCCC	GAGGAGACCG	GGAGAAGGAT	CCACTGCTCC	AGGAC	1701
mouse	CTGAGTGT	TCCTCAGTC	CGCGAAAGCC	CCGTTCTCCC	GAGGAGACCA	GGAGAAGGAT	CCATTTGCTCC	AGGAC	1707
human	CTGAGTGT	TTCTCAACCG	TGCCAAAGCC	GTGTTCTCCC	CGGGAAACCA	GGAAAAGGAT	CCGGCTRACTC-	--AA	1655
rat	AAGCCATGGA	TGCTCTAA	-----	-----	-----	-----	-----	-----	1719
mouse	AAGCCAAGGA	CACCTCTAA	-----	-----	-----	-----	-----	-----	1725
human	AAACCAAGAA	---TTTAAAG	GAGTTCTTA	A					1683

FIG. 2A-5

10/18

rat	MESLCGVILVF	LILLAAGLPLQ	AAKRFRDVLG	HEQYPDHMRE	NNQLRGWSSD	50	FIG. 2B-1
mouse	MESLCGVILGF	LILLAAGLPLQ	AAKRFRDVLG	HEQYPDHMRE	HNQLRGWSSD	50	
human	MECLYYFLGF	LILLAARLPLD	AAKRFHDVLG	NERPSAYMRE	HNQLNGWSSD	50	
rat	ENEDEQLYP	VWRRGEGRWK	DSWEGGRVQA	ALTSDSPALV	GSNITFVVNL	100	FIG. 2B
mouse	ENEDEHLYP	VWRRGGDGRWK	DSWEGGRVQA	VLTSDSPALV	GSNITFVVNL	100	
human	ENDWNEKLYP	VWKRGDMRWK	NSWKGGGRVQA	VLTSDSPALV	GSNITFVN	100	
rat	VFPRCQKEDA	GNIVYERN	RSDELELASDP	YVYNWTTGAD	DEDWEDNTSQ	150	
mouse	VFPRCQKEDA	GNIVYEKNC	RNDLGLTSDL	HVYNWTTAGAD	DGDWEDGTSR	150	
human	IFPRCQKEDA	GNIVYEKNC	RNEAGLSADP	YVYNWTTAWSE	DSDGENGTGQ	150	
rat	GQHLRFPDGK	PFPRPHGRKK	WNFVYVFHTL	GQYFQKLGQC	SARVSINTVN	200	
mouse	SQHLRFPDRR	PFPRPHGWKK	WSFVYVFHTL	GQYFQKLGRC	SARVSINTVN	200	
human	SHHNVPFDGK	PFPHHPGWRR	WNFVYVFHTL	GQYFQKLGRC	SVRVSVNTAN	200	
rat	LTVGPQVMEV	IVERRHGRAY	IPISKVKDYY	VITDQIPIFV	TMYQKNDRNS	250	
mouse	LTAGPQVMEV	TVFRRYGRAY	IPISKVKDYY	VITDQIPIFV	TMSQKNDRNL	250	
human	VTLGQPQLMEV	TVYRRHGRAY	VPIAQVKDYY	VVTDQIPIFV	TMFQKNDRNS	250	
rat	SDETFLRDLP	IFFDVLIHDP	SHFLNYSAILS	YKWNFGDNTG	LFVSNHHTLN	300	
mouse	SDEIFLRDLP	IVEDVLIHDP	SHFLNDSAIS	YKWNEGDNTG	LFVSNHHTLN	300	
human	SDETFLKDL	IMFDVLIHDP	SHFLNYSTIN	YKWSFGDNTG	LFVSTNHTVN	300	

FIG. 2B-1

11/18

rat	HTYVLNGTFN	FNLTVQTAVP	GPCPSPTPS-	-PSSSTSPSP	ASSPSPTLST	348
mouse	HTYVLNGTFN	LNLTVQTAVP	GPCPPPSPT	PPSPSTPLP	SPSPLPTLST	350
human	HTYVLNGTFS	LNLTVRAAAP	GPCPPPPP--	-----PPRP	-----SK	334

rat	PSPSLMPTGY	KSMELSDISN	ENCRINRYGY	FRATITIVGY	ILEVNIQVA	398
mouse	PSPSLMPTGY	KSMELSDISN	ENCRINRYGY	FRATITIVGY	ILEVSIMQIA	400
human	PTPSLGPGAD	NPLELSRIPD	ENQINRYGH	FQATITIVEG	ILEVNIQMT	384

rat	DVPIPTLQPD	NSLMDFTIVTC	KGATPTEACT	IISDPTCQIA	QNRVCSPVAV	448
mouse	DVPMPTQPQA	NSLMDFTVTC	KGATPMEACT	IISDPTCQIA	QNRVCSPVAV	450
human	DVLMPVPWPE	SSLIDFWVTC	QGSIPTEVCT	IISDPTCEIT	QNTVCSVPDV	434

rat	DELCLLSVRR	AFNGSGTYCV	NFTLGGDASL	ALTSALISIP	GKDLGSPLRT	498
mouse	DGLCLLSVRR	AFNGSGTYCV	NFTLGGDASL	ALTSTLISIP	GKDPSPLRA	500
human	DEMCLITVRR	TFNGSGTYCV	NLTGDDTSL	ALTSTLISVP	DRDPASPLRM	484

rat	VNGVLISIGC	LAMEVTMVTI	LLYKKHKTYK	PIGNCTRNVV	KGKGGLSVFLS	548
mouse	VNGVLISIGC	LAVLVTMVTI	LLYKKHKAYK	PIGNCPRNTV	KGKGGLSVLLS	550
human	ANSALISVGC	LAI FVTVISL	LVYKKHKKEYN	PIENSPGNVV	RSKGGLSVFLN	534

rat	HAKAPFSGD	REKDPLLQDK	PW--ML	572
mouse	HAKAPFFRGD	QEKDPLLQDK	PR--TL	574
human	RAKAVFFPGN	QEKDPLLKNQ	EFKGVS	560

FIG. 2B-2

12/18

FIG. 3

FIG. 4A

FIG. 4B

13/18

FIG. 5

FIG. 5A

FIG. 5B

FIG. 5C

14/18

FIG. 6

15/18

FIG. 7A

FIG. 7B

09943075 .041002

16/18

FIG. 8

17/18

FIG. 9

18/18

FIG. 10