SET B

CSE 341: Microprocessors Department of Computer Science and Engineering Brac University

Examination: Final

Duration: 1 Hour 45 Minutes

Semester: Summer 23

Full Marks: 35

13:						
Name: N	1	ID· C	Section: 07 7			
		ID.	Section. Or.			

- 1. CO2 Suppose an 8086 wants to read 2 bytes of data from an odd memory location. Now the memory is working at a slower rate than the 8086. Hence when reading the 1st byte of data, the 8086 has to wait for an additional 2 clock pulses. But the 2nd byte was read without any delay. Now assuming the 8086 is working at a frequency of 10MHz calculate the following:
 - a. The value of the Instruction Cycle (in nanoseconds). [3]
 - b. The values of A_0 and BHE' pins while transferring the 2 bytes of data. [2]
 - c. The value of T_{ON} and T_{OFF} assuming the 8086 is running at a duty cycle of 40%. [2]
- 2. CO3 Assume you have a different version of the 8259A Programmable Interrupt Controller (PIC) known as PICx to control the numerous hardware interrupts. The PICx can take 14 interrupt requests using the pins IR₀ IR₁₃. The Interrupt Service Register (ISR) size is X bits and the Interrupt Mask Register (IMR) is Y bits. The IR₃ pin is masked by default. There are priority levels assigned to each request pin. Now suppose PICx is receiving multiple interrupt requests in the following order:

At T=0ns, an interrupt request occurred at IR_{12} that will take 35ns to be served.

At T= 10ns, IR₁₀ and IR₃ receive requests each of which takes 40ns to be served.

At T= 25ns, IR, and IR, receive requests each of which takes 50ns to be served.

- a. Deduce the values of X and Y [1]
- b. Explain the role of the Priority Resolver in PICx. [1]
- Explain in detail how the values of the ISR and IMR registers will change according to the above requests. [3]
- d. Calculate the value of T (time) when all the interrupt requests have been served. [2]

- Illustrate a block diagram showing how multiple 8237 DMAC can be connected in the first-level cascading scheme. Show only the pins relevant to the request and acknowledgment. [3]
- b. Analyze two differences between Programmed IO and Interrupt Driven IO. [2]
- Assume you have an 8237 DMAC in which the DREQ and DACK, pins are disabled. Then deduce the maximum number of peripheral devices accommodated in a first-level cascading scheme. Also, would this number change if only the DREQ2 and DACK2 pins were disabled? Justify your answer.

4-C03

			V						
Address	000D4h	000D5h	000D6h	000D7h	751EBh	751ECh	751EDh	751EEh	
Data	9Ch	A0h	15h	6Bh	F0h	89h	5Bh	6Eh	

7

- Explain if the interrupt caused by the INT 53 instruction is maskable or not. Provide your reasoning. [1]
- ◆6. If the Intel 8086 encounters the INT 53 instruction, then calculate the starting address of the corresponding ISR. Also, what will be the first 2-byte liex instruction that will be fetched to the instruction queue from the ISR?
- Explain in detail all the steps on how an 8086 responds to a signal received on the INTR pin. [3]

5 CO4

- Assess the differences between the Real Address Mode and the Protected Virtual Address Mode of the 80286. (provide 3 differences) [3]
- Assume the hex value of the access rights of an 80286 system descriptor is B2h. Now, based on this, evaluate with reasoning which of the statements are true/false: [4]
 - i. The corresponding segment is not mapped to the physical memory.
 - ii. The segment will allow to ignore the DPL.
 - iii. The Segment is a Stack Segment that is readable.
 - iv. A task with a privilege level of 10 should be able to access the segment.