Chapter 1

Roundoff and Truncation Errors

CHAPTER OBJECTIVES

The primary objective of this chapter is to acquaint you with the major sources of errors involved in numerical methods. Specific objectives and topics covered are

- Understanding the distinction between accuracy and precision.
- Learning how to quantify error.
- Learning how error estimates can be used to decide when to terminate an iterative calculation.
- Understanding how roundoff errors occur because digital computers have a limited ability to represent numbers.
- Understanding why floating-point numbers have limits on their range and precision.
- Recognizing that truncation errors occur when exact mathematical formulations are represented by approximations.
- Knowing how to use the Taylor series to estimate truncation errors.
- Understanding how to write forward, backward, and centered finite-difference approximations of first and second derivatives.
- Recognizing that efforts to minimize truncation errors can sometimes increase roundoff errors.

YOU'VE GOT A PROBLEM

In Chap. 1 you developed a numerical model for the velocity of a bungee jumper. To solve the problem with a computer, you had to approximate the derivative of velocity with a finite difference.

$$\frac{dv}{dt} \cong \frac{|\Delta v|}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i}$$

Thus, the resulting solution is not exact — that is, it has error.

In addition, the computer you use to obtain the solution is also an imperfect tool. Because it is a digital device, the computer is limited in its ability to represent the magnitudes and precision of numbers. Consequently, the machine itself yields results that contain error.

So both your mathematical approximation and your digital computer cause your resulting model prediction to be uncertain. Your problem is: How do you deal with such uncertainty? In particular, is it possible to understand, quantify and control such errors in order to obtain acceptable results? This chapter introduces you to some approaches and concepts that engineers and scientists use to deal with this dilemma.

1.1. ERRORS

Engineers and scientists constantly find themselves having to accomplish objectives based on uncertain information. Although perfection is a laudable goal, it is rarely if ever attained. For example, despite the fact that the model developed from Newton's second law is an excellent approximation, it would never in practice exactly predict the jumper's fall. A variety of factors such as winds and slight variations in air resistance would result in deviations from the prediction. If these deviations are systematically high or low, then we might need to develop a new model. However, if they are randomly distributed and tightly grouped around the prediction, then the deviations might be considered negligible and the model deemed adequate. Numerical approximations also introduce similar discrepancies into the analysis.

.

This chapter covers basic topics related to the identification, quantification, and minimization of these errors. General information concerned with the quantification of error is reviewed in this section. This is followed by Sections 4.2 and 4.3, dealing with the two major forms of numerical error: roundoff error (due to computer approximations) and truncation error (due to mathematical approximations). We also describe how strategies to reduce truncation error sometimes increase roundoff. Finally, we briefly discuss errors not directly connected with the numerical methods themselves. These include blunders, model errors, and data uncertainty.

1.1.1. Accuracy and Precision

The errors associated with both calculations and measurements can be characterized with regard to their accuracy and precision. Accuracy refers to how closely a computed or measured value agrees with the true value. Precision refers to how closely individual computed or measured values agree with each other.

These concepts can be illustrated graphically using an analogy from target practice. The bullet holes on each target in Fig. 4.1 can be thought of as the predictions of a numerical technique, whereas the bull's-eye represents the truth. Inaccuracy (also called bias) is defined as systematic deviation from the truth. Thus, although the shots in Fig. 4.1c are more tightly grouped than in Fig. 4.1a, the two cases are equally biased because they are both centered on the upper left quadrant of the target. Imprecision (also called uncertainty), on the other hand, refers to the magnitude of the scatter. Therefore, although Fig. 4.1b and d are equally accurate (i.e., centered on the bull's-eye), the latter is more precise because the shots are tightly grouped.

Figure 1.1: An example from marksmanship illustrating the concepts of accuracy and precision: (a) inaccurate and imprecise, (b) accurate and imprecise, (c) inaccurate and precise, and (d) accurate and precise.

Numerical methods should be sufficiently accurate or unbiased to meet the requirements of a particular problem. They also should be precise enough for adequate design. In this book, we will use the collective term *error* to represent both the inaccuracy and imprecision of our predictions.

1.1.2. Error Definitions

Numerical errors arise from the use of approximations to represent exact mathematical operations and quantities. For such errors, the relationship between the exact, or true, result and the approximation can be formulated as

True value = approximation + error
$$(4.1)$$

By rearranging Eq. (4.1), we find that the numerical error is equal to the discrepancy between the truth and the approximation, as in

1.1. ERRORS 3

$$E_t$$
 = true value - approximation (4.2)

where E_t is used to designate the exact value of the error. The subscript t is included to designate that this is the "true" error. This is in contrast to other cases, as described shortly, where an "approximate" estimate of the error must be employed. Note that the true error is commonly expressed as an absolute value and referred to as the *absolute error*.

A shortcoming of this definition is that it takes no account of the order of magnitude of the value under examination. For example, an error of a centimeter is much more significant if we are measuring a rivet than a bridge. One way to account for the magnitudes of the quantities being evaluated is to normalize the error to the true value, as in

$$True\ fractional\ relative\ error = \frac{true\ value - approximation}{true\ value}$$

The relative error can also be multiplied by 100% to express it as

$$\varepsilon_t = \frac{\text{true value - approximation}}{\text{truevalue}} 100\% \tag{4.3}$$

where ε_t designates the true percent relative error.

For example, suppose that you have the task of measuring the lengths of a bridge and a rivet and come up with 9999 and 9 cm, respectively. If the true values are 10,000 and 10 cm, respectively, the error in both cases is 1 cm. However, their percent relative errors can be computed using Eq. (4.3) as 0.01% and 10%, respectively. Thus, although both measurements have an absolute error of 1 cm, the relative error for the rivet is much greater. We would probably conclude that we have done an adequate job of measuring the bridge, whereas our estimate for the rivet leaves something to be desired.

Notice that for Eqs. (4.2) and (4.3), E and ε are subscripted with a t to signify that the error is based on the true value. For the example of the rivet and the bridge, we were provided with this value. However, in actual situations such information is rarely available. For numerical methods, the true value will only be known when we deal with functions that can be solved analytically. Such will typically be the case when we investigate the theoretical behavior of a particular technique for simple systems. However, in real-world applications, we will obviously not know the true answer a priori. For these situations, an alternative is to normalize the error using the best available estimate of the true value — that is, to the approximation itself, as in

$$\varepsilon_a = \frac{\text{approximate error}}{\text{approximation}} 100\% \tag{4.4}$$

where the subscript a signifies that the error is normalized to an approximate value. Note also that for real-world applications, Eq. (4.2) cannot be used to calculate the error term in the numerator of Eq. (4.4). One of the challenges of numerical methods is to determine error estimates in the absence of knowledge regarding the true value. For example, certain numerical methods use *iteration* to compute answers. In such cases, a present approximation is made on the basis of a previous approximation. This process is performed repeatedly, or iteratively, to successively compute (hopefully) better and better approximations. For such cases, the error is often estimated as the difference between the previous and present approximations. Thus, percent relative error is determined according to

$$\varepsilon_a = \frac{\text{present approximation - previous approximation}}{\text{present approximation}} 100\%$$
 (4.5)

This and other approaches for expressing errors is elaborated on in subsequent chapters.

The signs of Eqs. (4.2) through (4.5) may be either positive or negative. If the approximation is greater than the true value (or the previous approximation is greater than the current approximation), the error is negative; if the approximation is less than the true value, the error is positive. Also, for Eqs. (4.3) to (4.5), the denominator may be less than zero, which can also lead to a negative error. Often, when performing computations, we may not be concerned with the sign of the error but are interested in whether the absolute value of the percent relative error is lower than a prespecified tolerance ε_s . Therefore, it is often useful to employ the absolute value of Eq. (4.5). For such cases, the computation is repeated until

$$|\varepsilon_a| < \varepsilon_s$$
 (4.6)

This relationship is referred to as a *stopping criterion*. If it is satisfied, our result is assumed to be within the prespecified acceptable level ε_s . Note that for the remainder of this text, we almost always employ absolute values when using relative errors

It is also convenient to relate these errors to the number of significant figures in the approximation. It can be shown (Scarborough, 1966) that if the following criterion is met, we can be assured that the result is correct to at least n significant figures.

$$\varepsilon_s = (0.5 \times 10^{2-n})\% \tag{4.7}$$

Example 1.1. Error Estimates for Iterative Methods

Problem Statement. In mathematics, functions can often be represented by infinite series. For example, the exponential function can be computed using

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!}$$
 (E4.11)

Thus, as more terms are added in sequence, the approximation becomes a better and better estimate of the true value of e^x . Equation (E4.1.1) is called a *Maclaurin series expansion*.

Starting with the simplest version, $e^x = 1$, add terms one at a time in order to estimate $e^{0.5}$. After each new term is added, compute the true and approximate percent relative errors with Eqs. (4.3) and (4.5), respectively. Note that the true value is $e^{0.5} = 1.648721...$ Add terms until the absolute value of the approximate error estimate ε_a falls below a prespecified error criterion ε_s conforming to three significant figures.

Solution. First, Eq. (4.7) can be employed to determine the error criterion that ensures a result that is correct to at least three significant figures:

$$\varepsilon_s = (0.5 \times 10^{2-3})\% = 0.05\%$$

Thus, we will add terms to the series until ε_a falls below this level.

The first estimate is simply equal to Eq. (E4.1.1) with a single term. Thus, the first estimate is equal to 1. The second estimate is then generated by adding the second term as in

$$e^x = 1 + x$$

or for x = 0.5

$$e^{0.5} = 1 + 0.5 = 1.5$$

This represents a true percent relative error of [Eq. (4.3)]

$$\varepsilon_t = \left| \frac{1.648721 - 1.5}{1.648721} \right| \times 100\% = 9.02\%$$

Equation (4.5) can be used to determine an approximate estimate of the error, as in

$$\varepsilon_a = \left| \frac{1.5 - 1}{1.5} \times 100\% = 33.3\% \right|$$

Because ε_a is not less than the required value of ε_s , we would continue the computation by adding another term, $x^2/2!$, and repeating the error calculations. The process is continued until $|\varepsilon_a| < \varepsilon_s$. The entire computation can be summarized as

Terms	Result	$\varepsilon_{t\prime}$ %	ε_a , %
1	1	39.3	
2	1.5	9.02	33.3
3	1.625	1.44	7.69
4	1.645833333	0.175	1.27
5	1.648437500	0.0172	0.158
6	1.648697917	0.00142	0.0158

Thus, after six terms are included, the approximate error falls below $\varepsilon_s = 0.05\%$, and the computation is terminated. However, notice that, rather than three significant figures, the result is accurate to five! This is because, for this case, both Eqs. (4.5) and (4.7) are conservative. That is, they ensure that the result is at least as good as they specify. Although, this is not always the case for Eq. (4.5), it is true most of the time.

1.1. ERRORS 5

1.1.3. Computer Algorithm for Iterative Calculations

Many of the numerical methods described in the remainder of this text involve iterative calculations of the sort illustrated in Example 4.1. These all entail solving a mathematical problem by computing successive approximations to the solution starting from an initial guess.

The computer implementation of such iterative solutions involves loops. As we saw in Sec. 3.3.2, these come in two basic flavors: count-controlled and decision loops. Most iterative solutions use decision loops. Thus, rather than employing a pre-specified number of iterations, the process typically is repeated until an approximate error estimate falls below a stopping criterion as in Example 4.1.

To do this for the same problem as Example 4.1, the series expansion can be expressed as

$$e^{x} \cong \sum_{i=0}^{n} \frac{x^{n}}{n!}$$

An M-file to implement this formula is shown in Fig. 4.2. The function is passed the value to be evaluated (x) along with a stopping error criterion (es) and a maximum allowable number of iterations (maxit). If the user omits either of the latter two parameters, the function assigns default values.

```
function [fx,ea,iter] = IterMeth(x,es,maxit)
% Maclaurin series of exponential function
    [fx,ea,iter] = IterMeth(x,es,maxit)
% input:
જ
   x = value at which series evaluated
è
   es = stopping criterion (default = 0.0001)
કૃ
   maxit = maximum iterations (default = 50)
% output:
   fx = estimated value
જ
    ea = approximate relative error (%)
    iter = number of iterations
% defaults:
if nargin<2 | isempty(es), es=0.0001; end
if nargin<3 | isempty(maxit), maxit=50; end
% initialization
iter = 1; sol = 1; ea = 100;
% iterative calculation
while (1)
  solold = sol;
  sol = sol + x ^ iter / factorial(iter);
  iter = iter + 1;
  if sol~=0
   ea=abs((sol - solold)/sol)*100;
  end
  if ea<=es | iter>=maxit,break,end
end
fx = sol;
end
```

Figure 1.2: An M-file to solve an iterative calculation. This example is set up to evaluate the Maclaurin series expansion for ex as described in Example 4.1.

The function then initializes three variables: (a) iter, which keeps track of the number of iterations, (b) sol, which holds the current estimate of the solution, and (c) a variable, ea, which holds the approximate percent relative error. Note that ea is initially set to a value of 100 to ensure that the loop executes at least once.

These initializations are followed by a decision loop that actually implements the iterative calculation. Prior to generating a new solution, the previous value, sol, is first assigned to solold. Then a new value of sol is computed and the iteration counter is incremented. If the new value of sol is nonzero, the percent relative error, ea, is determined. The stopping criteria are then tested. If both are false, the loop repeats. If either is true, the loop terminates and the final solution is sent back to the function call.

When the M-file is implemented, it generates an estimate for the exponential function which is returned along with the approximate error and the number of iterations. For example, e^1 can be evaluated as

```
» format long
» [approxval, ea, iter] = IterMeth(1,1e-6,100)
approxval = 2.718281826198493
ea = 9.216155641522974e-007
iter =12
```

We can see that after 12 iterations, we obtain a result of 2.7182818 with an approximate error estimate of $= 9.2162 \times 10^{-7}\%$. The result can be verified by using the built-in exp function to directly calculate the exact value and the true percent relative error,

```
» trueval=exp(1)
trueval =2.718281828459046
» et=abs((trueval- approxval)/trueval)*100
et =8.316108397236229e-008
```

As was the case with Example 4.1, we obtain the desirable outcome that the true error is less than the approximate error.

1.2. ROUNDOFF ERRORS

Roundoff errors arise because digital computers cannot represent some quantities exactly. They are important to engineering and scientific problem solving because they can lead to erroneous results. In certain cases, they can actually lead to a calculation going unstable and yielding obviously erroneous results. Such calculations are said to be *ill-conditioned*. Worse still, they can lead to subtler discrepancies that are difficult to detect.

There are two major facets of roundoff errors involved in numerical calculations:

- 1. Digital computers have magnitude and precision limits on their ability to represent numbers.
- 2. Certain numerical manipulations are highly sensitive to roundoff errors. This can result from both mathematical considerations as well as from the way in which computers perform arithmetic operations.

1.2.1. Computer Number Representation

Numerical roundoff errors are directly related to the manner in which numbers are stored in a computer. The fundamental unit whereby information is represented is called a *word*. This is an entity that consists of a string of binary *digits*, or *bits*. Numbers are typically stored in one or more words. To understand how this is accomplished, we must first review some material related to number systems.

A *number system* is merely a convention for representing quantities. Because we have 10 fingers and 10 toes, the number system that we are most familiar with is the *decimal*, or *base-10*, number system. A base is the number used as the reference for constructing the system. The base-10 system uses the 10 digits—0, 1, 2, 3, 4, 5, 6, 7, 8, and 9—to represent numbers. By themselves, these digits are satisfactory for counting from 0 to 9.

For larger quantities, combinations of these basic digits are used, with the position or *place value* specifying the magnitude. The rightmost digit in a whole number represents a number from 0 to 9. The second digit from the right represents a multiple of 10. The third digit from the right represents a multiple of 100 and so on. For example, if we have the number 8642.9, then we have eight groups of 1000, six groups of 100, four groups of 10, two groups of 1, and nine groups of 0.1, or

$$(8 \times 10^3) + (6 \times 10^2) + (4 \times 10^1) + (2 \times 10^0) + (9 \times 10^1) = 8642.9$$

This type of representation is called *positional notation*.

Now, because the decimal system is so familiar, it is not commonly realized that there are alternatives. For example, if human beings happened to have eight fingers and toes we would undoubtedly have developed an *octal*, or *base-8*, representation. In the same sense, our friend the computer is like a two-fingered animal who is limited to two states—either 0 or 1. This relates to the fact that the primary logic units of digital computers are on/off electronic components. Hence, numbers on the computer are represented with a *binary*, or *base-2*, system. Just as with the decimal system, quantities can be represented using positional notation. For example, the binary number 101.1 is equivalent to $(1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) + (1 \times 2^1) = 4 + 0 + 1 + 0.5 = 5.5$ in the decimal system.

Integer Representation. Now that we have reviewed how base-10 numbers can be represented in binary form, it is simple to conceive of how integers are represented on a computer. The most straightforward approach, called the *signed magnitude method*, employs the first bit of a word to indicate the sign, with a 0 for positive and a 1 for negative. The remaining bits are used to store the number. For example, the integer value of 173 is represented in binary as 10101101:

$$(10101101)_2 = 2^7 + 2^5 + 2^3 + 2^2 + 2^0 = 128 + 32 + 8 + 4 + 1 = (173)_{10}$$

Therefore, the binary equivalent of –173 would be stored on a 16-bit computer, as depicted in Fig. 4.3.

If such a scheme is employed, there clearly is a limited range of integers that can be represented. Again assuming a 16-bit word size, if one bit is used for the sign, the 15 remaining bits can represent binary integers from 0 to 11111111111111. The upper limit can be converted to a decimal integer, as in

$$(1 \times 2^{14}) + (1 \times 2^{13}) + \dots + (1 \times 2^{1}) + (1 \times 2^{0}) = 32,767.$$

Figure 1.3: The binary representation of the decimal integer âĂŞ173 on a 16-bit computer using the signed magnitude method.

Note that this value can be simply evaluated as $2^{15} - 1$. Thus, a 16-bit computer word can store decimal integers ranging from -32,767 to 32,767.

In addition, because zero is already defined as 00000000000000000, it is redundant to use the number 10000000000000000 to define a "minus zero". Therefore, it is conventionally employed to represent an additional negative number: -32,768, and the range is from -32,768 to 32,767. For an n-bit word, the range would be from -2^{n-1} to $2^{n-1} - 1$. Thus, 32-bit integers would range from -2,147,483,648 to +2,147,483,647.

Note that, although it provides a nice way to illustrate our point, the signed magnitude method is not actually used to represent integers for conventional computers. A preferred approach called the 2s *complement* technique directly incorporates the sign into the number's magnitude rather than providing a separate bit to represent plus or minus. Regardless, the range of numbers is still the same as for the signed magnitude method described above.

The foregoing serves to illustrate how all digital computers are limited in their capability to represent integers. That is, numbers above or below the range cannot be represented. A more serious limitation is encountered in the storage and manipulation of fractional quantities as described next.

Floating-Point Representation. Fractional quantities are typically represented in computers using *floating-point for- mat*. In this approach, which is very much like scientific notation, the number is expressed as

$$\pm s \times b^e$$

where s = the significand (or mantissa), b = the base of the number system being used, and <math>e = the exponent.

Prior to being expressed in this form, the number is *normalize*d by moving the decimal place over so that only one significant digit is to the left of the decimal point. This is done so computer memory is not wasted on storing useless nonsignificant zeros. For example, a value like 0.005678 could be represented in a wasteful manner as 0.005678 $\mathring{\text{AU}}$ 100. However, normalization would yield 5.678×10^{-3} which eliminates the useless zeroes.

Before describing the base-2 implementation used on computers, we will first explore the fundamental implications of such floating-point representation. In particular, what are the ramifications of the fact that in order to be stored in the computer, both the mantissa and the exponent must be limited to a finite number of bits? As in the next example, a nice way to do this is within the context of our more familiar base-10 decimal world.

Example 1.2. Implications of Floating-Point Representation

Problem Statement. Suppose that we had a hypothetical base-10 computer with a 5-digit word size. Assume that one digit is used for the sign, two for the exponent, and two for the mantissa. For simplicity, assume that one of the exponent digits is used for its sign, leaving a single digit for its magnitude.

Solution. A general representation of the number following normalization would be

$$s_1d_1d_2 \times 10^{s_0d_0}$$

where s_0 and s_1 = the signs, d_0 = the magnitude of the exponent, and d_1 and d_2 = the magnitude of the significand digits.

Now, let's play with this system. First, what is the largest possible positive quantity that can be represented? Clearly, it would correspond to both signs being positive and all magnitude digits set to the largest possible value in base-10, that is, 9:

Largest value =
$$+9.9 \times 10^{+9}$$

So the largest possible number would be a little less than 10 billion. Although this might seem like a big number, it's really not that big. For example, this computer would be incapable of representing a commonly used constant like Avogadro's number (6.022×1023) . In the same sense, the smallest possible positive number would be

Smallest value =
$$+1.0 \times 10^{-9}$$

Again, although this value might seem pretty small, you could not use it to represent a quantity like Planck's constant $(6.626 \times 10^{-34} J \cdot s)$.

Similar negative values could also be developed. The resulting ranges are displayed in Fig. 4.4. Large positive and negative numbers that fall outside the range would cause an overflow error. In a similar sense, for very small quantities there is a "hole" at zero, and very small quantities would usually be converted to zero.

Recognize that the exponent overwhelmingly determines these range limitations. For example, if we increase the mantissa by one digit, the maximum value increases slightly to 9.99×10^9 . In contrast, a one-digit increase in the exponent raises the maximum by 90 orders of magnitude to 9.9×10^{99} !

When it comes to precision, however, the situation is reversed. Whereas the significand plays a minor role in defining the range, it has a profound effect on specifying the precision. This is dramatically illustrated for this example where we have limited the significand to only 2 digits. As in Fig. 4.5, just as there is a "hole" at zero, there are also "holes" between values.

For example, a simple rational number with a finite number of digits like $2^{-5} = 0.03125$ would have to be stored as 3.1×102 or 0.031. Thus, a *roundoff error* is introduced. For this case, it represents a relative error of

$$\frac{0.03125 - 0.031}{0.03125} = 0.008$$

Figure 1.4: The number line showing the possible ranges corresponding to the hypothetical base-10 floating-point scheme described in Example 4.2.

Figure 1.5: A small portion of the number line corresponding to the hypothetical base-10 floating-point scheme described in Example 4.2. The numbers indicate values that can be represented exactly. All other quantities falling in the "holes" between these values would exhibit some roundoff error.

While we could store a number like 0.03125 exactly by expanding the digits of the significand, quantities with infinite digits must always be approximated. For example, a commonly used constant such as π (= 3.14159...) would have to be represented as 3.1 × 10⁰ or 3.1. For this case, the relative error is

$$\frac{3.14159 - 3.1}{3.14159} = 0.0132$$

1.2. ROUNDOFF ERRORS 9

Although adding significand digits can improve the approximation, such quantities will always have some roundoff error when stored in a computer.

Another more subtle effect of floating-point representation is illustrated by Fig. 4.5. Notice how the interval between numbers increases as we move between orders of magnitude. For numbers with an exponent of -1 (i.e., between 0.1 and 1), the spacing is 0.01. Once we cross over into the range from 1 to 10, the spacing increases to 0.1. This means that the roundoff error of a number will be proportional to its magnitude. In addition, it means that the relative error will have an upper bound. For this example, the maximum relative error would be 0.05. This value is called the *machine epsilon* (or machine precision).

As illustrated in Example 4.2, the fact that both the exponent and significand are finite means that there are both range and precision limits on floating-point representation. Now, let us examine how floating-point quantities are actually represented in a real computer using base-2 or binary numbers.

First, let's look at normalization. Since binary numbers consist exclusively of 0s and 1s, a bonus occurs when they are normalized. That is, the bit to the left of the binary point will always be one! This means that this leading bit does not have to be stored. Hence, nonzero binary floating-point numbers can be expressed as

$$\pm (1+f) \times 2^e$$

where f = the *mantissa* (i.e., the fractional part of the significand). For example, if we normalized the binary number 1101.1, the result would be $1.1011 \times (2)^{-3}$ or $(1+0.1011) \times 2^{-3}$.

Figure 1.6: The manner in which a floating-point number is stored in an 8-byte word in IEEE doubleprecision format.

Thus, although the original number has five significant bits, we only have to store the four fractional bits: 0.1011.

By default, MATLAB has adopted the *IEEE double-precision format* in which eight bytes (64 bits) are used to represent floating-point numbers. As in Fig. 4.6, one bit is reserved for the number's sign. In a similar spirit to the way in which integers are stored, the exponent and its sign are stored in 11 bits. Finally, 52 bits are set aside for the mantissa. However, because of normalization, 53 bits can be stored.

Now, just as in Example 4.2, this means that the numbers will have a limited range and precision. However, because the IEEE format uses many more bits, the resulting number system can be used for practical purposes.

Range In a fashion similar to the way in which integers are stored, the 11 bits used for the exponent translates into a range from -1022 to 1023. The largest positive number can be represented in binary as

```
Largest value = +1.1111...1111 \times 2^{+1023}
```

where the 52 bits in the mantissa are all 1. Since the significant is approximately 2 (it is actually $2-2^{-52}$), the largest value is therefore $2^{1024} = 1.7977 \times 10^{308}$. In a similar fashion, the smallest positive number can be represented as

```
Smallest value = +1.0000...0000 \times 2^{-1022}
```

This value can be translated into a base-10 value of $2^{-1022} = 2.2251 \times 10^{-308}$

Precision. The 52 bits used for the mantissa correspond to about 15 to 16 base-10 digits. Thus, π would be expressed as

Note that the machine epsilon is $2^{-52} = 2.2204 \times 10^{-16}$

MATLAB has a number of built-in functions related to its internal number representation. For example, the realmax function displays the largest positive real number:

```
» format long
» realmax
ans = 1.797693134862316e+308
```

Numbers occurring in computations that exceed this value create an overflow. InMATLAB they are set to infinity, inf. The realmin function displays the smallest positive real number:

```
» realmin
ans = 2.225073858507201e-308
```

Numbers that are smaller than this value create an *underflow* and, in MATLAB, are set to zero. Finally, the eps function displays the machine epsilon:

1.2.2. Arithmetic Manipulations of Computer Numbers

Aside from the limitations of a computer's number system, the actual arithmetic manipulations involving these numbers can also result in roundoff error. To understand how this occurs, let's look at how the computer performs simple addition and subtraction.

Because of their familiarity, normalized base-10 numbers will be employed to illustrate the effect of roundoff errors on simple addition and subtraction. Other number bases would behave in a similar fashion. To simplify the discussion, we will employ a hypothetical decimal computer with a 4-digit mantissa and a 1-digit exponent.

When two floating-point numbers are added, the numbers are first expressed so that they have the same exponents. For example, if we want to add 1.557 + 0.04341, the computer would express the numbers as

 $0.1557 \times 10^1 + 0.004341 \times 10^1$. Then the mantissas are added to give 0.160041×101 . Now, because this hypothetical computer only carries a 4-digit mantissa, the excess number of digits get chopped off and the result is 0.1600×101 . Notice how the last two digits of the second number (41) that were shifted to the right have essentially been lost from the computation.

Subtraction is performed identically to addition except that the sign of the subtrahend is reversed. For example, suppose that we are subtracting 26.86 from 36.41. That is,

```
\begin{array}{r}
0.3641 \times 10^{2} \\
- 0.2686 \times 10^{2} \\
\hline
0.0955 \times 10^{2}
\end{array}
```

For this case the result must be normalized because the leading zero is unnecessary. So we must shift the decimal one place to the right to give $0.9550 \times 10^1 = 9.550$. Notice that the zero added to the end of the mantissa is not significant but is merely appended to fill the empty space created by the shift. Even more dramatic results would be obtained when the numbers are very close as in

```
0.7642 \times 10^{3}
- 0.7641 \times 10^{3}
0.0001 \times 10^{3}
```

which would be converted to $0.1000 \times 100 = 0.1000$. Thus, for this case, three nonsignificant zeros are appended. The subtracting of two nearly equal numbers is called *subtractive cancellation*. It is the classic example of how the manner in which computers handle mathematics can lead to numerical problems. Other calculations that can cause problems include:

Large Computations. Certain methods require extremely large numbers of arithmetic manipulations to arrive at their final results. In addition, these computations are often interdependent. That is, the later calculations are dependent on the results of earlier ones. Consequently, even though an individual roundoff error could be small, the cumulative effect over the course of a large computation can be significant. Avery simple case involves summing a round base-10 number that is not round in base-2. Suppose that the following M-file is constructed:

```
function sout = sumdemo()
s = 0;
for i = 1:10000
    s = s + 0.0001;
end
sout = s;
```

11

When this function is executed, the result is

The format long command lets us see the 15 significant-digit representation used by MATLAB. You would expect that sum would be equal to 1. However, although 0.0001 is a nice round number in base-10, it cannot be expressed exactly in base-2. Thus, the sum comes out to be slightly different than 1. We should note that MATLAB has features that are designed to minimize such errors. For example, suppose that you form a vector as in

```
» format long
s = [0:0.0001:1];
```

For this case, rather than being equal to 0.999999999991, the last entry will be exactly one as verified by

```
» s(10001)
ans =
```

Adding a Large and a Small Number. Suppose we add a small number, 0.0010, to a large number, 4000, using a hypothetical computer with the 4-digit mantissa and the 1-digit exponent. After modifying the smaller number so that its exponent matches the larger,

$$\begin{array}{ccc}
0.4000 & \times 10^4 \\
0.0000001 & \times 10^4 \\
\hline
0.4000001 & \times 10^4
\end{array}$$

which is chopped to 0.4000×10^4 . Thus, we might as well have not performed the addition! This type of error can occur in the computation of an infinite series. The initial terms in such series are often relatively large in comparison with the later terms. Thus, after a few terms have been added, we are in the situation of adding a small quantity to a large quantity. One way to mitigate this type of error is to sum the series in reverse order. In this way, each new term will be of comparable magnitude to the accumulated sum.

Smearing. Smearing occurs whenever the individual terms in a summation are larger than the summation itself. One case where this occurs is in a series of mixed signs.

Inner Products. As should be clear from the last sections, some infinite series are particularly prone to roundoff error. Fortunately, the calculation of series is not one of the more common operations in numerical methods. A far more ubiquitous manipulation is the calculation of inner products as in

$$\sum_{i=1}^{n} x_i y_i = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

This operation is very common, particularly in the solution of simultaneous linear algebraic equations. Such summations are prone to roundoff error. Consequently, it is often desirable to compute such summations in double precision as is done automatically inMATLAB.

1.3. TRUNCATION ERRORS

Truncation errors are those that result from using an approximation in place of an exact mathematical procedure. For example, in Chap. 1 we approximated the derivative of velocity of a bungee jumper by a finite-difference equation of the form [Eq. (1.11)]

$$\frac{dv}{dt} \cong \frac{\Delta v}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i}$$

A truncation error was introduced into the numerical solution because the difference equation only approximates the true value of the derivative (recall Fig. 1.3). To gain insight into the properties of such errors, we now turn to a mathematical formulation that is used widely in numerical methods to express functions in an approximate fashion—the Taylor series.

1.3.1. The Taylor Series

Taylor's theorem and its associated formula, the Taylor series, is of great value in the study of numerical methods. In essence, the *Taylor theorem* states that any smooth function can be approximated as a polynomial. The *Taylor series* then provides a means to express this idea mathematically in a form that can be used to generate practical results.

Figure 1.7: The approximation of $f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x = 1.2$ at x = 1 by zero-order, first-order, and second-order Taylor series expansions.