

Distributed Algorithms 2015/16 **Self Stabilization**

Reinhardt Karnapke | Communication and Operating Systems Group

Overview

- Introduction (second to last lecture)
- Masking fault tolerance (last lecture)
 - Consensus and related problems
- Non-masking fault tolerance (this lecture)
 - Self-Stabilization

Self-Stabilizing Systems

"We call the system "**self-stabilizing**" if and only if, regardless of the initial state […], the system is guaranteed to find itself in a legitimate state after a finite number of moves."

Proof of Self-Stabilization

- Set of all states Z
- Set of the *legitimate* states $L \subseteq Z$
- To be proven: convergence and closure

- Convergence: Starting from a state $Z \setminus L$, after a limited number of steps a state in L is reached
 - Construct a function t (termination function) from Z to \mathbb{N} , that decreases with every step and indicates with t = 0 the stabilization in the end
- Closure: Starting in a state in L, each following state again is in L
 - Proven usually through an invariant

Recovery from Transient Errors

- Self-stabilizing systems recover from arbitrary transient faults if no new faults occur for a sufficient period of time
 - The state after the end of the last fault is regarded as "initial" state → recovery guaranteed
- The class of transient faults contains among others
 - Temporary network faults
 - Crash and following restart of processes
 - Arbitrary corruption of data structures
- Note: Non-self-stabilizing systems fail possibly permanently even after transient faults!
- Arbitrary large part of the resources can be affected by faults
 - Exception: program code and data in ROM cannot be corrupted

Self-Stabilizing Systems – Characteristics

- Do not need to be initialized because they reach a legal state from every starting state
- Tolerate arbitrary transient faults with one uniform mechanism
- Can not know for sure whether they are stabilized
- Must not terminate
- Adapt to dynamic changes of the typology if possible
- Do not necessarily need to detect faults to recover from them
- Offer efficient solutions for many problems
 - Information distribution, mutual exclusion, spanning tree construction, election, ...

Composition of Algorithms

- Conventional composition of algorithms A and B
 - Composition of A and B
 - B is started when A has terminated
 - The output of A serves as input for B

Composition of Algorithms

- Composition of self-stabilizing algorithms
 - Simultaneous execution of A and B
 - If A has stabilized, B is stabilized afterwards
 - Precondition: B writes no data that A reads
- Stabilizing time of the composition is the sum of the stabilizing times of the single algorithms plus possible delays

Self-Stabilizing Token Ring (Dijkstra, 1974)

n + 1 processes are arranged in a unidirectional ring Each process can take on one of k states (k > n) → Variable $s \in \{0, ..., k - 1\}$

Each process can access the state of its left neighbor through a common variable *left* Each process which can move anytime, will move at a time

```
ON bottom process (P<sub>0</sub>):

WHILE TRUE DO

IF (left == s) THEN

<token>
s := (s+1) mod k;

FI

END

END
```

```
ON other process (P<sub>i</sub>, i≠0):

WHILE TRUE DO

IF (left != s) THEN

<token>
s := left;

FI

END

END
```


Self-Stabilizing Token Ring

Example trace without fault for n = 3 and k = 4

Process executes
 step and accesses
 token. State after
 step in next row

 Process could execute step and access the token.

Example trace with recovery from a fault for n = 3 and k = 4

 Process executes step and accesses token. State after step in next row

 Process could execute step and access the token.

Self-Stabilizing Token Ring

Process	0	1	2	3
State	3	→20	0 •	10
	3	3	0 -	→10
	3	3 •	→0○	0
4	3 3 3 → 30	3	3	→0○
	-30	3 → 3 0	3 3	3
	0	→30	3	3
	0	0	→30	3
	0	0	0	30
	→30	0	0	0
	1	→00	0	0

R. Karnapke, TU Berlin, Distributed Algorithms 2015/16 Slide 11

Self-Stabilizing Token Ring

- Original Specification
 - Safety: There is at most one token in the system
 - Liveness: At least one token circulates in the ring
 - Fairness: If a process can exercise anytime, it will exercise after a finite time
- Self-stabilizing variant
 - Safety: After a finite number of steps, there is at most one token in the system
 - Liveness and Fairness as above

- Processes $\{P_1, ..., P_n\}$ are arranged in an arbitrary, connected topology
- Assumptions
 - Each process has a unique identity > 0, stored in its ROM
 - Each process has the same timeout-value ρ stored in its ROM
 - In the fault-free case, no messages get lost and messages have a limited message delay

Self-Stabilizing Span Tree Construction – Basic Idea in the Fault-free Case

- Root (node with smallest ID) sends with period ρ heartbeats to all its neighbors
- Nodes relay received heartbeats to all other neighbors
- Each node elects the neighbor as father that lies closest to the root
- In case of equality, the node with smaller ID is elected

Slide 14

Received heartbeat suppresses the desire of other nodes to become the root \rightarrow delivery in time must be ensured

Self-Stabilizing Span Tree Construction – Basic Idea in Case of a Fault

Slide 15

- If a connection fails, another spanning tree with the same root node forms
- If the root fails or if the root is no longer reachable, another spanning tree with a different root node forms
- In both cases, the trigger for the formation of a new spanning tree is the occurrence of timeouts
- If the fault is transient, the original spanning tree forms again, after, e.g., the node is available again

- Each process P has
 - a variable P_V that points at one of its neighbors (its father)
 - a variable P_W that points at the current root
 - a variable P_L that indicates its level in the tree and
 - a variable P_F that is read out in case of a timeout and possibly changed
- Aim: After finite time the P_V –references of all nodes shall form a spanning tree
- Remark for the next slide:

-
$$(v_1, v_2, v_3) < (w_1, w_2, w_3)$$

 $\Leftrightarrow v_1 < w_1 \lor (v_1 = w_1 \land v_2 < w_2) \lor (v_1 = w_1 \land v_2 = w_2 \land v_3 < w_3)$

- A node P receives a message (w, I, i)
 - If (P_W, P_L, P_v) < (w, I + 1, i) or P < w, the node ignores the message
 → Message is not eligible
 - If $(P_W, P_L, P_v) = (w, I + 1, i)$, it sets P_F to 2 und sends a message (P_W, P_L, P) to all other neighbors
 - → Eligible refresh message from current root
 - Otherwise, it sets (P_W, P_L, P_V) := (w, I + 1, i) and P_F := 2 and sends a message (P_W, P_L, P) to all other neighbors
 → New root

Faulty Case

- When the timeout (ρ) occurs at process P:
 - If $P_F \le 0$, it sets $(P_W, P_L, P_v) := (P, 1, P)$, leaves P_F unchanged and sends a message (P_W, P_L, P_v) to all neighbors
 - → Node declares itself to new root node

- If
$$P_F = 1$$
, $P_F := 0$

- If
$$P_E \ge 2$$
, $P_E := 1$

In every case, the timer is reset and restarted

Faulty Case

Nodes 5 and 7 ignore the message of node 9!

Characteristics of the Constructed Spanning Tree / Proof of Convergence

- Constructed tree is unique in the fault-free case because
 - the process with the smallest identity becomes the only root and
 - each process, except for the root, elects that process as its predecessors that has the smallest identity among the neighbors with the smallest level
- In the fault-free case, only the refreshment messages triggered by the root are on the way
- The system is in a legal state if
 - The state of the processes conforms to the spanning tree introduced above and
 - No faulty messages are on the way anymore
- To prove convergence it has to be shown that the system, starting from an arbitrary state, reaches
 a legal state

Ensuring Closure

- Each node except for the root node always has to receive a refreshment message in time,
 otherwise it would declare itself as root
- Let δ_{min} be the minimal and δ_{max} the maximal message delay on a link and d the length of the longest path in the topology
- The height of the resulting tree is always less than or equal to d
- The maximal time between two refreshment messages occurs
 - if the root and the considered node are maximally far away from each other (max d hops)
 and
 - the 1st message is minimally (\rightarrow d δ_{min}) and
 - the 2nd message is maximally ($\rightarrow d \delta_{max}$) delayed

Ensuring Closure

- The receipt of the first refreshment message sets P_F to 2
- The first timeout (which sets P_F to 1) can occur directly after the receipt
- The second refreshment message has to arrive before two further timeouts occur

$$a_0 = t_0 + d \delta_{min}$$

$$a_1 = t_1 + d \delta_{max}$$

$$t_1 = t_0 + \rho$$

$$2\rho > a_1 - a_0$$

$$\downarrow \downarrow$$

$$2\rho > \rho + d \left(\delta_{max} - \delta_{min} \right)$$

$$\rho > d \left(\delta_{max} - \delta_{min} \right)$$

Literature

- 1. E. W. Dijkstra. Self-Stabilizing Systems in Spite of Distributed Control. Communications of the ACM, 17(11):643--644, 1974.
- 2. S. Dolev. Self-Stabilization. MIT Press, 2000.
- 3. M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45--67, 1993.
- 4. F. C. Gärtner. A survey of self-stabilizing spanning-tree construction algorithms. Technical Report 200338, Swiss Federal Institute of Technology (EPFL), School of Computer and Communication Sciences, Lausanne, Switzerland, June 2003.

