内积

向量内积

实内积

定义

实数域n维向量空间 R^n 中,对于任意两个向量 $\alpha=(x_1,x_2,\ldots,x_n)^T$, $\beta=(y_1,y_2,\ldots,y_n)^T$,称 $\alpha^T\beta=\sum_{i=1}^n x_iy_i$ 为向量 α 和向量 β 的内积,记为 $\langle \alpha,\beta\rangle$ 或 $\alpha\cdot\beta$

性质

- 1. 交換律: $\langle \alpha, \beta \rangle = \langle \beta, \alpha \rangle$.
- 2. 齐次性: $\langle \alpha, k\beta \rangle = k \langle \alpha, \beta \rangle$.
- 3. 分配律: $\langle \alpha, \beta + \gamma \rangle = \langle \alpha, \beta \rangle + \langle \alpha, \gamma \rangle$.
- 4. 非负性: $\langle \alpha, \alpha \rangle \geq 0, \langle \alpha, \alpha \rangle = 0$ 当且仅当 $\alpha = 0$.

复内积

定义

复数域n维向量空间 C^n 中,对于任意两个向量 $u=(x_1,x_2,\ldots,x_n)^T$, $v=(y_1,y_2,\ldots,y_n)^T$,称 $u^Hv=\sum_{i=1}^n \bar{x_i}y_i$ 为向量u和向量v的内积,记为 $\langle u,v\rangle$ 或 $u\cdot v$

性质

- 1. 交換律: $\langle u,v\rangle=\overline{\langle v,u\rangle}$.
- 2. 齐次性: $\langle u, kv \rangle = \bar{k} \langle u, v \rangle$.
- 3. 分配律: $\langle u, v + \delta \rangle = \langle u, v \rangle + \langle u, \delta \rangle, \delta \in C^n$.
- 4. 非负性: $\langle u,u\rangle \geq 0, \langle u,u\rangle = 0$ 当且仅当u=0.

矩阵内积

参考PPT