## Handout for Finite Approximations of AR1

Suppose  $y_t$  follows an autoregressive AR1 process

$$y_t = \mu(1 - \rho) + \rho y_{t-1} + \varepsilon_t$$

where  $\varepsilon_t$  is distributed  $N(0, \sigma_{\varepsilon}^2)$ . The unconditional mean of  $y_t$  is  $\mu$  and the unconditional variance is  $\sigma_y^2 = \frac{\sigma_{\varepsilon}^2}{1-\rho^2}$ , both of which we can get from the data by running the AR1 regression. We can also always work with the standard normal through by appropriate normalization  $x = (y - \mu)/\sigma_y$ .

Since most of the problems we study are discretized anyway, here is a cookbook method to turn the continuous state variable  $y_t$  into a discrete variable  $z_t$ . The approximation we will use is based on Adda and Cooper (2003, p.56) who consider equal areas rather than Tauchen (1986) who considers equal interval lengths based on  $\sigma_y^2$ .



$$\begin{array}{lcl} \pi_{jk} & = & \Pr[z^k - w/2 \leq \rho z^j + \varepsilon_t \leq z^k + w/2] \\ & = & F\left(\frac{z^k + w/2 - \rho z^j}{\sigma_\varepsilon}\right) - F\left(\frac{z^k - w/2 - \rho z^j}{\sigma_\varepsilon}\right). \end{array}$$

<sup>&</sup>lt;sup>1</sup>In particular, the equally spaced intervals in Tauchen are constructed as follows: let  $z^1 < z^2 < ... < z^N$  denote the discrete values that  $y_t = \rho y_{t-1} + \varepsilon_t$  can take on where  $\varepsilon_t \sim N(0, \sigma_\varepsilon^2)$ . Let  $z^N$  be a multiple m of the unconditional standard deviation  $\sigma_y = \sqrt{\sigma_\varepsilon^2/(1-\rho^2)}$ . Then let  $z^1 = -z^N$  and let the remaining be equispaced over the interval  $[z^1, z^N]$ .

The transition probabilities  $\pi_{jk}$  (from,to) in Tauchen are given as follows: Let  $w = z^k - z^{k-1}$ . For each j, if k is between 2 and N-1, set

- We will use the following cookbook recipe to approximate  $y_t$  into finite state markov process  $z^i, \pi_{ij}$ :
  - Find interval endpoints (denoted  $y^i$ , i = 1, ..., N + 1)
  - Find conditional means of each interval (denoted  $z^i$ , i = 1, ..., N)
  - Find transition probabilities (denoted  $\pi_{ii}$ )
- Specifically:
  - 1. Discretize  $y_t$  into N intervals.
    - Denote the limits of each of the N intervals of  $y_t$  as  $y^1, y^2, ..., y^N, y^{N+1}$ . Since  $y_t$  is unbounded,  $y^1 = -\infty$  and  $y^{N+1} = \infty$ .
    - The intervals are constructed so that  $y_t$  has an equal probability  $\frac{1}{N}$  of falling into them.
    - Given the normality assumption, the cutoff points are defined as

$$F\left(\frac{y^{i+1}-\mu}{\sigma_y}\right) - F\left(\frac{y^i-\mu}{\sigma_y}\right) = \frac{1}{N}, i = 1, ..., N$$
 (1)

where F is the cumulative distribution function of the normal density.<sup>2</sup>

- Working recursively, we have for  $i = 2, ..., N^3$ 

$$y^{i} = \sigma_{y} F^{-1} \left( \frac{i-1}{N} \right) + \mu \tag{2}$$

- Notice that all we need to calculate  $\{y^i\}$  is  $(\mu, \sigma_y)$  from our initial regression, the normal distribution F, and our choice of N.
- 2. Compute the conditional mean of  $y_t$  within each interval. Call it  $z_i, i = 1, ..., N$ . These will be the support of the finite state Markov process.
  - That is,

$$z_{i} = E\left[y_{t}|y_{t} \in [y^{i}, y^{i+1}]\right]$$

$$= \frac{\left[\frac{1}{\sqrt{2\pi\sigma_{y}^{2}}} \int_{y^{i}}^{y^{i+1}} y e^{-(y-\mu)^{2}/(2\sigma_{y}^{2})} dy\right]}{\frac{1}{N}}$$

$$F\left(\frac{y^2-\mu}{\sigma_y}\right) = \frac{1}{N}$$
 since  $F\left(\frac{-\infty}{\sigma_y}\right) = 0$ 

Then for i=2, we have from (1)  $F\left(\frac{y^3-\mu}{\sigma_y}\right)=F\left(\frac{y^i-\mu}{\sigma_y}\right)+\frac{1}{N}=2\cdot\frac{1}{N}.$  By induction, for

any 
$$i$$
, (1) implies 
$$F\left(\frac{y^{i+1}-\mu}{\sigma_y}\right) = F\left(\frac{y^i-\mu}{\sigma_y}\right) + \frac{1}{N} = i \cdot \frac{1}{N} \iff F\left(\frac{y^i-\mu}{\sigma_y}\right) = (i-1)\frac{1}{N}$$
 from which (2) follows..

The normalization  $\left(\frac{y-\mu}{\sigma_y^2}\right)$  turns  $N(\mu, \sigma_y^2)$  into N(0, 1).

<sup>3</sup> Equation (1) implies that for i=1, we have  $F\left(\frac{y^2-\mu}{\sigma_y}\right)=\frac{1}{N}$  since  $F\left(\frac{-\infty}{\sigma_y}\right)=0$ .

– Use the change of variable  $x = \frac{y-\mu}{\sigma_y}$  which implies  $y = \sigma_y x + \mu$  and  $dy = \sigma_y dx$ . In this case we can rewrite  $z_i$  as

$$z_{i} = \frac{N}{\sqrt{2\pi\sigma_{y}^{2}}} \left[ \int_{\frac{y^{i+1}-\mu}{\sigma_{y}}}^{\frac{y^{i+1}-\mu}{\sigma_{y}}} \sigma_{y}^{2} x e^{-x^{2}/2} dx + \int_{\frac{y^{i}-\mu}{\sigma_{y}}}^{\frac{y^{i+1}-\mu}{\sigma_{y}}} \mu \sigma_{y} e^{-x^{2}/2} dx \right]$$

$$= N\sigma_{y} \left[ -f \left( \frac{y^{i+1}-\mu}{\sigma_{y}} \right) - \left( -f \left( \frac{y^{i}-\mu}{\sigma_{y}} \right) \right) \right]$$

$$+ N\mu \left[ F \left( \frac{y^{i+1}-\mu}{\sigma_{y}} \right) - F \left( \frac{y^{i}-\mu}{\sigma_{y}} \right) \right]$$

where f is the normal density function.

- From (1) we know this expression reduces to

$$z_i = N\sigma_y \left[ f\left(\frac{y^i - \mu}{\sigma_y}\right) - f\left(\frac{y^{i+1} - \mu}{\sigma_y}\right) \right] + \mu.$$

- Notice that all we need to calculate  $\{z_i\}$  is  $(\mu, \sigma_y)$  from our initial regression, the normal distribution F, our choice of N, and a matlab function that numerically integrates functions.
- 3. Compute the transition probabilities between any of these intervals.

$$\pi_{j,i} = \Pr(y_t \in [y^j, y^{j+1}] | y_{t-1} \in [y^i, y^{i+1}])$$

$$= \frac{\Pr(y_t \in [y^j, y^{j+1}], y_{t-1} \in [y^i, y^{i+1}])}{\Pr(y_{t-1} \in [y^i, y^{i+1}])}$$

But the numerator can be manipulated to yield:

$$\begin{aligned} \Pr(y_{t} &\in [y^{j}, y^{j+1}], y_{t-1} \in [y^{i}, y^{i+1}]) \\ &= \Pr(\varepsilon_{t} \in [y^{j} - \mu(1 - \rho) - \rho y_{t-1}, y^{j+1} - \mu(1 - \rho) - \rho y_{t-1}], y_{t-1} \in [y^{i}, y^{i+1}]) \\ &= \int_{y^{i}}^{y^{i+1}} \int_{y^{j} - \mu(1 - \rho) - \rho y_{t-1}}^{y^{j+1} - \mu(1 - \rho) - \rho y_{t-1}} f(\varepsilon_{t}) f(y_{t-1}) d\varepsilon_{t} dy_{t-1} \text{by independence in } f(\varepsilon_{t}, y_{t-1}) \\ &= \frac{1}{\sqrt{2\pi\sigma_{y}^{2}}} \int_{y^{i}}^{y^{i+1}} e^{-(y_{t-1} - \mu)^{2}/(2\sigma_{y}^{2})} \begin{bmatrix} F\left(\frac{y^{j+1} - \mu(1 - \rho) - \rho y_{t-1}}{\sigma_{\varepsilon}}\right) \\ -F\left(\frac{y^{j} - \mu(1 - \rho) - \rho y_{t-1}}{\sigma_{\varepsilon}}\right) \end{bmatrix} dy_{t-1}. \end{aligned}$$

Hence, since  $\Pr(y_{t-1} \in [y^i, y^{i+1}]) = 1/N$ , we have the following result (analogous to page 58 of A-C):

$$\pi_{j,i} = \frac{N}{\sqrt{2\pi\sigma_y^2}} \left[ \int_{y^i}^{y^{i+1}} e^{-(y_{t-1}-\mu)^2/(2\sigma_y^2)} \begin{bmatrix} F\left(\frac{y^{j+1}-\mu(1-\rho)-\rho y_{t-1}}{\sigma_\varepsilon}\right) \\ -F\left(\frac{y^j-\mu(1-\rho)-\rho y_{t-1}}{\sigma_\varepsilon}\right) \end{bmatrix} dy_{t-1} \right].$$

You just need to numerically integrate (using a matlab function) this integral to get  $\pi_{j,i}$ . Notice that all we need to calculate  $\{\pi_{j,i}\}$  is

 $(\mu, \sigma_y)$  from our initial regression, the normal distribution F, our choice of N, and a matlab function that numerically integrates functions.

 $\bullet$  While many of the calculations above are specific to the Normal distribution, it seems possible to generalize it since the basic idea is based on chopping up distribution F (so there's probably a paper about the generalization).