* Cauchy's Integral theorem for simple connected and multiply connected regions

-> * closed curve: closed curve is one in which end points coincide.

i.e. $\phi(a) = \phi(b)$, for some a = b

* simple closed curve; - A closed curve does not intersect itself is called simple closed curve

* multiple closed curve: A closed curve intersect itself is called multiple closed curve

* simply connected domain:
A domain D is said to be simply connected if every simple closed curve in D contains only points of D

for example! Interior of circle, rectangle

* multiply connected domain:

A domain which is not simply connected is called multiply connected domain.

for ex. Annulus region, regions with holes.

Analytic function; A function f(z) is said to be analytic at z. if f(z) is differential at every point in the neighbourhood of z.

for ex: ① $f(z) = \frac{1}{z}$ is not analytic at z=0② $f(z) = z^2$ is analytic everywhere

(3) $f(z) = \frac{\sin z}{z}$ is not analytic at z = 0

(4) $f(z) = \frac{\sin \pi z}{(z-1)}$ is not analytic at z=1

Imp

Cauchy Integral Theorem for simply connected region (Domain)

Statement: let f(z) be analytic on and inside a simple closed contour C and let f'(z) also continuous on and inside C, then $\int f(z) dz = 0$

Examples:

Example (1) Evaluate
$$\int \frac{1}{z-2} dz$$
, where C is the circle $|z|=1$

Solution: given:
$$C: |z|=1$$

let $f(z) = \frac{1}{z-2}$

clearly, f(z) is not analytic at 2=2

But Z=2 lies outside the circle |Z|=1
Hence, f(z) is analytic everywhere on and
inside a

By cauchy integral—theorem, $\int_{C} f(z) dz = 0$

$$\Rightarrow \int_{C} \frac{1}{z-2} dz = 0$$

Example ② Evaluate $\int \frac{z+3}{z^2-2z+5} dz$, where

¿ is the circle 12-11=1

solution: given: C: |Z-1|=1

let $f(z) = \frac{z+3}{z^2-2z+5}$

Note that $z^2 - 2z + 5 = 0$ gives $z = \frac{2 + \sqrt{4 - 26}}{2}$

$$f(z) = \frac{z+3}{z^2-2z+5} = \frac{z+3}{[z-(1+2i)][z-(1-2i)]}$$

clearly, f(z) is not analytic at z=1+2i and z=1-2iBut Both z=1+2i and z=1-2i lies Outside -the circle |z-1|=1

Hence, f(z) is analytic everwhere on and inside

the circle |z-1|=1

... By cauchy's Integral theorem, $\int_{C} f(z) dz = 0$

 $\Rightarrow \int_{C} \frac{z+3}{z^2-ez+5} dz = 0$

Example 3. Evaluate $\int_{C} tanz dz$, where C is $|z| = \frac{1}{2}$

solution: Given: $C: |z| = \frac{1}{2}$.

let $f(z) = \tan z = \frac{\sin z}{\cos z}$

Note that $\cos z = 0 \Rightarrow z = \pm \frac{\pi}{2}$

: f(z) is not analytic at $z = \frac{\pi}{2}$ and $z = -\frac{\pi}{2}$

But Both $Z=\frac{\pi}{2}$ and $Z=-\frac{\pi}{2}$ lies outside the given circle C i.e. $|Z|=\frac{1}{2}$

Hence, f(z) is Analytic everywhere on and inside c
.: By cauchy integral—theorem,

$$\Rightarrow$$
 $\int_{c} \tan z \, dz = 0$

* Cauchy Integral Theorem for Multiply connected region:
Statement: let C_1 and C_2 be simple closed curves such that C_2 is interior to C_1 .

if f(z) is analytic on C_1 and C_2 and f(z) is analytic on each point that is interior to C_1 and exterior to C_2 , then

$$\oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz.$$

Practice Example. Evaluate $\int_{C} \frac{z^2+z+2}{z^2-7z+2} dz$, where

c is the ellipse 25 x2+ 16 y2=1

