

Nancy Davoust

Vice President, Security Architecture and Technology Solutions Comcast

CONTEXT FOR AGILE AND CONTINUOUS THREAT MODELING

The Landscape is Chaotic

Exploding
Number of
Attack
Surfaces and
Attacks

Innovative but Insecure Technologies

Evolving Business Models

Revolutionary
Security
Principles and
Practices

Embracing Agile and Continuous Methodology

While we are Developing and Operating at the Speed of Light

Build Security In – Don't Bolt It On

COMCAST

AGILE AND CONTINUOUS THREAT MODEL WORKSHOP

Threat Model Workshop In a Day with Each DevSecOps Team

Threat Modeling Workshop Success Objectives

Team trained to use agile and continuous threat modeling as a practice

Reviewed architecture for real-world threats

Protect customers and products earlier in the product lifecycle

Team buy-in as the security findings were generated by the team

Everyone is Responsible for Security

- Transparent
- One Team

- Be Honest
- No Blaming
- We are here to help one another

- Build security in by design
- Teamwork to identify attack surfaces
- We are all in this together

Threat Modeling Fundamentals

What is threat modeling?

Why do we need it?

Reduce security design flaws

Reduce cost to recover from attacks

Create effective security requirements

Know your enemies and their tactics

Security Breaches Can Happen Anywhere

Common Weaknesses and Countermeasures

Weaknesses	Countermeasures		
Insufficient API security	API security gateway, OAuth, Tokens, Certificates, Signing Keys		
Exposed infrastructure & admin ports	Jump boxes, network ACLs, security groups, iptables, MFA (deprecate telnet!)		
Lack of privileged account management & monitoring	Limit shared credentials, local accounts, monitor credential use for abuse. Forward logs to a centralized location, use correlation rules in a SIEM and defined alerts		
Hard-coded credentials and API secrets	Key management solutions such as SafeNet, HashiCorp Vault, Ansible Vault, Puppet, Chef Data Bags, SALT, or your company recommended vault		
Secure SDLC Practices not integrated into your CI/CD pipeline	Secure the pipeline (e.g. Jenkins, Ansible, Salt, GitHub, other tools), automate static code analysis, use scanning tools web app scanners, Nessus, Qualys)		

COMCAST

RSAConference2018

Attacker Profile Exercise

ATTACKER	A ATTACK GOALS	TTACKER RISK TOLERANCE	ATTACKER LEVEL OF EFFORT	ATTACKER METHODS
Cyber Criminals	Financial	Low	Low → medium	Known proven
Industrial spies	Information & Disruption	Low	High → extreme	Sophisticated & unique
Hacktivists	Information, disruption, media attention	Medium → high	Low → medium	System administration errors and social engineering
Internal Attack/Insider	Information & Disruption	High	High → extreme	Known proven

The Process

Threat Model Example Identifying the Attack Surfaces

Attack Surface Exercise

1 HTTP

Unauthorized

3 SSH

4 Logs

Unencrypted

Unauthorized Access

Update API

Root Access

No Audit Trail

Code Update Management

Stolen Data

Update Code

Unencrypted Sensitive Data

Self-signed TLS Certificates

Redirection Attacks Configuration Changes

No Pruning of Data

Threat Impacts

Risk

Generalized Risk Equation Risk = (Threat Impact * Likelihood) / Level of Effort

Summary

Today you learned about Threats, Impacts and Risk

How to Perform an Agile and Continuous Threat Model

Examples of attacks, vulnerabilities and effective countermeasures

Everyone is responsible for security

Build security in by design, don't bolt it on

