

FIG._ 1A

SEQ ID NO: 1

Nucleotide Sequence Tankyrase Homologue isotype1

CTTGAAAGACACTGGATTCATACTTTGCCTGGGTTATCTCTGTGTCACTACATAGACAAATA
TTAGCTGTGAGCAGATCTTTTGTGCTTAGTCCCCCAGTTAGCAGAACATTCTGTGAGA
TAGATGTGGAAAGGAATTCTAGCAAGAGTTGTCACTGTATCATAAGGTTGTGATTACATATTAA
GTTTATACTTGAACATCTGAAAATGTATACATACTAAATATGCAGAACTCTATTGTAGAGTGAGAAA
CATTTGAACCTTGAGCTTCAGTCACTTATTGTATTCTTCTTGAGGTTAGCAGTAGTACCAACCCA
AGGCAC TGCTTAGGTACCTGCTGCTTAGTGGAGAGTCCCTGCGTTATCATTAAAGGTTGGCG
GAAAGACGTAGTTGAATATTGCTTCAGAATGGTGCAGTGTCCAAGCACGTGATGATGGGGCCTTAT
TCCTCTCATATGCATGCTCTTGGTCACTGCTGAAGTAGTCAATCTCCTTGCACATGGTGCAGA
CCCCAATGCTCGAGATAATTGGAATTATACTCCTCTCCATGAAGCTGCAATTAAAGGAAAGATTGATGT
TTGCATTGTGCTGTTACAGCATGGAGCTGAGCCAACCATCGAAATACAGATGGAAGGACAGCATTGGA
TTTAGCAGATCCATCTGCCAAGCAGTGCTTACTGGTGAATATAAGAAAGATGAACTCTTAGAAAGTGC
CAGGAGTGGCAATGAAGAAAAATGATGGCTACTCACACCATTAAATGTCAACTGCCACGCAAGTGA
TGGCAGAAAGTCAACTCCATTACATTGGCAGCAGGATATAACAGAGTAAAGATTGTACAGCTGTTACT
GCAACATGGAGCTGATGTCCATGCTAAAGATAAAGGTGATCTGGTACCATACACAATGCCTGTTCTTA
TGGTCATTATGAAGTAACTGAACTTTGGTCAAGCATGGCCTGTGTAATGCAATGGACTTGTGGCA
ATTCACTCCTCTCATGAGGCAGCTCTAAGAACAGGGTTGAAGTATGTTCTCTCTTAAGTTATGG
TGCAGACCCAACACTGCTCAATTGTCACAATAAAAGTGCATAGACTGGCTCCCACACCACAGTTAA
AGAAAGATTAGCATATGAATTAAAGGCCACTCGTTGCTGCAAGCTGCAAGGAGCTGATGTTACTCG
AATCAAAAAACATCTCTCTGGAAATGGTAATTCAAGCATCCTCAAACACATGAAACAGCATTGCA
TTGTGCTGCTGCATCTCCATATCCAAAAGAAAGCAAATATGTGAACTGTTGCTAAGAAAAGGAGCAAA
CATCAATGAAAAGACTAAAGAATTCTTGACTCCTCTGCACGTGGCATCTGAGAAAGCTCATAATGATGT
TGTGAAGTAGTGGTGAACATGAAGCAAAGGTTAATGCTCTGGATAATCTGGTCAGACTCTACA

CAGAGCTGCATATTGTGGTCATCTACAAACCTGCCGCCTACTCCTGAGCTATGGGTGTGATCCTAACAT
TATATCCCTTCAGGGCTTACTGCTTACAGATGGAAATGAAAATGTACAGCAACTCCTCCAAGAGGG
TATCTCATTAGGTAAATTAGGAGGCAGACAGACAATTGCTGGAAGCTGCAAAGGCTGGAGATGTCGAAAC
TGTAAAAAAACTGTGTACTGTCAGAGTGTCAACTGCAGAGACATTGAAGGGCGTCAGTCTACACCCT
TCATTTGCAGCTGGGTATAACAGAGTGTCCGTGGAATATCTGCTACAGCATGGAGCTGATGTGCA
TGCTAAAGATAAAGGAGGCCTGTACCTTGACAAATGCATGTTCTATGGACATTATGAAGTTGCAGA
ACTTCTGTTAACATGGAGCAGTAGTTAATGTAGCTGATTATGAAATTACACCTTACATGAAGC
AGCAGCAAAGGAAAATATGAAATTGCAAACCTCTGCTCCAGCATGGTCAGACCCCTACCAAAAAAA
CAGGGATGGAATACTCCTTGGATCTGTTAAAGATGGAGATACAGATATTCAAGATCTGCTTAGGG
AGATGCAGCTTGCTAGATGCTGCCAAGAAGGGTTGTTAGCCAGAGTGAAGAAGTTGTCTTCTCCTGA
TAATGTAATTGCCGCGATAACCAAGGCAGACATTCAACACCTTACATTAGCAGCTGGTTATAATAA
TTTAGAAGTTGCAGAGTATTGTTACAACACGGAGCTGATGTGAATGCCAAGACAAAGGAGGACTTAT
TCCTTACATAATGCAGCATCTACGGGCATGTAGATGTAGCAGCTCTACTAATAAGTATAATGCATG
TGTCAATGCCACGGACAAATGGGCTTACACCTTGCACGAAGCAGCCAAAGGGACGAACACAGCT
TTGTGCTTGTGCTAGCCATGGAGCTGACCCGACTCTAAAAATCAGGAAGGACAAACACCTTCTAGA
TTTAGTTTCAGCGGATGATGTCAGCGCTCTGACAGCAGCCATGCCCATCTGCTCTGCCCTTTG
TTACAAGCCTCAAGTGCCTAATGGTGTGAGAAGCCCAGGAGCCACTGCAGATGCTCTTCAGGTCC
ATCTAGCCCATCAAGCCTTCTGCAGCCAGCAGCTTGACAACCTATCTGGAGTTTCAGAACTGTC
TTCAGTAGTTAGTTCAAGTGGAACAGAGGGTGCTCCAGTTGGAGAAAAGGAGGTTCCAGGAGTAGA
TTTAGCATAACTCAATTGTAAGGAATCTGGACTTGAGCACCTAATGGATATATTGAGAGAGAAC
GATCACTTGGATGTATTAGTTGAGATGGGGCACAAGGAGCTGAAGGAGATTGAATCAATGCTTATGG
ACATAGGCACAAACTAATTAAAGGAGTCGAGAGACTTATCTCCGGACAACAAGGTCTAACCCATATTT
AACTTTGAACACCTCTGGTAGTGGAAACAATTCTTATAGATCTGTCCTGATGATAAAGAGTTTCAGTC
TGTGGAGGAAGAGATGCAAAGTACAGTTGAGAGCACAGAGATGGAGGTATGCAGGTGGAATCTCAA
CAGATACAATATTCTCAAGATTGAGGTTGTAACAAGAAACTATGGAAAGATAACACTCACCGGAG
AAAAGAAGTTCTGAAGAAAACCACAACCATGCCAATGAACGAATGCTATTCTATGGGTCTCTTGT
GAATGCAATTATCCACAAAGGCTTGATGAAAGGCATGCGTACATAGGTGTATTTGGAGGAGGTACTGGGTGTC
TTATTTGCTGAAAACCTCTCCAAAAGCAATCAATATGTATATGGAATTGGAGGAGGTACTGGGTGTC
AGTTCACAAAGACAGATCTGTTACATTGCCACAGGCAGCTGCTCTTGCCTGGTAACCTTGGAAA
GTCTTCTGCAGTTGCAATGAAAATGGCACATTCTCCTCCAGGTATCACTCAGTCAGTCACTGGTAG
GCCCAAGTGTAAATGGCCTAGCATTAGCTGAATATGTTATTTACAGAGGAGAACAGGCTTATCCTGAGTA
TTAATTACTTACCAAGATTATGAGGCCTGAAGGTATGGTCATGGATAAATAGTTATTTAAGAAACTA
ATTCCACTGAACCTAAATCATCAAAGCAGCAGTGGCCTACGTTACTCCTTGCTGAAAAAA
AA

FIG._ 1B

FIG._2A

SEQ ID NO: 2

Nucleotide Sequence Tankyrase Homologue isotype2

CGCGCTGCTCCGCCGCCGGGGCAGCCGGGGCAGGGAGCCCAGCGAGGGCGCGGTGGCGCG
CCCATGGGACTGCGCCGGATCCGGTGACAGCAGGGAGCCAAGCGGCCGGGCCCTGAGCGCGTCTCTC
CGGGGGGCCTCGCCCTCCTGCTCGCGGGCCGGGCTCTGCTCCGGTTGCTGGCGCTTGTGGCTG
TGGCGCGGCCAGGATCATGTCGGGTCGCCGCTGCCGGGGAGCGGCGTGCAGCGAGCGCCGG
CCGAGGCCGTGGAGGCCGGCCCGAGAGCTGTTGAGGGCGTGCAGCAACGGGACGTGGAACGAGTCA
AGAGGCCTGGTACGCCCTGAGAAGGTGAACAGCCGACACGGGGCAGGAATCCACCCGCTGCACT
TCGCCGCAGGTTTGGCGAAAGACGTAGTTGAATATTGCTTCAGAATGGTCAAATGTCCAAGCAC
GTGATGATGGGGCCTATTCTCTTCAATGCATGCTCTTGGTATGCTGAAGTAGTCAATCTCC
TTTGCGACATGGCAGACCCCAATGCTGAGATAATTGAATTACTCCTCTCCATGAAGCTGCAA
TTAAAGGAAAGATTGATGTTGCATTGTGCTGTTACAGCATGGAGCTGAGCAAACCATCCGAAATACAG
ATGGAAGGACAGCATTGGATTAGCAGATCCATGCCAACAGCAGTGTACTGGTGAATATAAGGAAAG
ATGAACCTTAGAAAGTCCAGGAGTGGCAATGAAGAAAAATGATGGCTCTACTCACACCATTAAATG
TCAACTGCCACGCAAGTGTGGCAGAAAGTCAAACCTCATTACATTGGCAGCAGGATATAACAGAGTAA
AGATTGTACAGCTGTTACTGCAACATGGAGCTGATGTCCATGCTAAAGATAAAGGTGATCTGGTACCAT
TACACAATGCCCTTTATGGTCAATTGAAGTAATGAACTTTGGTCAAGCATGGCCTGTGAA
ATGCAATGGACTTGTGGCAATTCACTCCTTCACTGAGGGCAGCTCTAAGAACAGGGTTGAAGTATGTT
CTCTCTCTTAAGTTATGGCAGACCCAACACTGCTCAATTGTACAATAAAAGTGTATAGACTTGG
CTCCCCACACCAGTTAAAGAAAGATTAGCATATGAATTAAAGGCCACTCGTTGCTGCAAGCTGCAC
GAGAAGCTGATGTTACTCGAATAAAAACATCTCTGGAAATGGTGAATTCAAGCATCCTCAAA
CACATGAAACAGCATTGCATTGTGCTGCATCTCCATATCCAAAAGAAAGCAAATATGTGAACGT
TGCTAAGAAAAGGAGCAAACATCAATGAAAAGACTAAAGAATTCTGACTCCTCTGCACGTGGCATCTG
AGAAAGCTCATAATGATGTTGAAGTAGTGGTAAACATGAAGCAAAGGTTAATGCTCTGGATAATC

TTGGTCAGACTTCTACACAGAGCTGCATATGTGGTCATCTACAAACCTGCCGCCTACTCCTGAGCT
ATGGGGTGTGATCCTAACATTATATCCCTCAGGGCTTACTGCTTACAGATGGAAATGAAAATGTAC
AGCAACTCCTCCAAGAGGGTATCTCATTAGTAATTAGGAGCAGACAGACAATTGCTGGAAGCTGAA
AGGCTGGAGATGTCGAAACTGTAAAAAAACTGTGTACTGTTAGAGTGTCAACTGCAGAGACATTGAAG
GGCGTCAGTCTACACCACTCATTTGCAGCTGGTATAACAGAGTGTCCGTGGTGGAAATATCTGCTAC
AGCATGGAGCTGATGTGCATGCTAAAGATAAAGGAGGCCTGTACCTTGACAATGCATGTTCTTATG
GACATTATGAAGTTGCAGAACTTCTTAAACATGGAGCAGTAGTTAATGTAGCTGATTATGGAAAT
TTACACCTTACATGAAGCAGCAGCAAAAGAAAATATGAAATTGCAAACCTCTGCTCCAGCATGGTG
CAGACCCCTACCAAAAAAAACAGGGATGAAATACTCCTTGGATCTGTTAAAGATGGAGATAAGATA
TTCAAGATCTGCTTAGGGGAGATGCAGCTTGCTAGATGCTGCCAAGAAGGGTTGTTAGCCAGAGTGA
AGAAGTTGTCTTCCTGATAATGTAATTGCGCGATAACCAAGGCAGACATTCAACACCTTACATT
TAGCAGCTGGTTATAATAATTAGAAGTTGCAGAGTATTGTTACAACACGGAGCTGATGTGAATGCC
AAGACAAAGGAGGACTTATCCTTACATAATGCAGCATCTACGGGATGCTAGATGTAGCAGCTCTAC
TAATAAAGTATAATGCATGTGCAATGCCACGGACAAATGGCTTACACCTTGACAGCAGCCC
AAAAGGGACGAACACAGCTTGTGCTTGTCTAGCCCATGGAGCTGACCCACTCTAAAAATCAGG
AAGGACAAACACCTTGTAGATTAGTTAGCTCAGCGGATGTCAGCGCTCTGACAGCAGCCATGCC
CATCTGCTCTGCCCTTGTACAAGCCTCAAGTGTCAATGGTGAGAAGGCCAGGAGCCACTGCAG
ATGCTCTCTTCAAGGTCCATCTAGCCCATCAAGCCTTCTGCAGCCAGCAGTCTGACAACCTATCTG
GGAGTTTCAGAACTGTCTCAGTAGTTAGTTCAAGTGGAACAGAGGGTGTCCAGTTGGAGAAAA
AGGAGGTTCCAGGAGTAGATTAGCTAACTCAATTGTAAGGAATCTGGACTTGAGCACCTAATGG
ATATATTGAGAGAGAACAGATCACTTGGATGTATTAGTTGAGATGGGCACAAGGAGCTGAAGGAGA
TTGGAATCAATGCTTATGGACATAGGCACAAACTAATTAAAGGAGTCAGAGAGACTTATCTCCGGACAAC
AAGGTCTTAACCCATATTTAACCTTGAACACCTCTGGTAGTGGAACAACTTATAGATCTGCTCCTG
ATGATAAAGAGTTCAAGTGTGGAGGAAGAGATGCAAAGTACAGTTGAGAGCACAGAGATGGAGGTC
ATGCAGGTGGAATCTCAACAGATAAACTTCAAGATTGAGAAGGTTGTAACAAGAAACTATGGG
AAAGATAACACTCACCGGAGAAAAGAAGTTCTGAAGAAAACCACAACCATGCCAATGAACGAATGCTAT
TTCATGGGTCTCTTGTGAATGCAATTATCCACAAAGGCTTGTAAAGGCATGCGTACATAGGTG
GTATGTTGGAGCTGGCATTATTTGCTGAAAACCTTCCAAAGCAATCAATATGTATATGGAATTG
GAGGAGGTACTGGGTGTCCAGTCACAAAGACAGATCTGTTACATTGCCACAGGAGCTGCTCTT
GCCGGGTAACCTGGGAAAGTCTTCCGTCAAGTGCAGTTCAAGTGGAACATTCCTCCAGGTC
ATCACTCAGTCAGTGTAGGCCAGTGTAAATGCCCTAGCATTAGCTGAATATGTTATTACAGAGGAG
AACAGGCTTATCCTGAGTATTAATTACTTACAGATTAGGAGCCTGAAGGTATGGTCATGGATAAA
TAGTTATTTAAGAAACTAATTCCACTGAACCTAAATCATCAAAGCAGCAGTGGCCTACGTTTAC
TCCTTGCTGAAAAAAAAAA

FIG._2B

SEQ ID NO: 3

Amino Acid Sequence Tankyrase Homologue isotype1

GFGRKDVEYLLQNGASVQARDDGGIPLHNACSGHAEVVNLLRHGADPNARDNWNYTPLHEAAIKG
KIDVCIVLLQHGAEPITIRNTDGRTALDLADPSAKAVLTGEYKKDELLESARGNEEKMALLTPLNVNC
HASDGRKSTPLHLAAGYNRVKIVQLLQHGADVHAKDKGDLVPLHNACSYGHYEVTELLVKHGACVNAM
DLWQFTPPLHEAASKNRVEVCSLLLSYGADPTLLNCHNKSAILDAPTPQLKERLAYEFKGHSLLQAAREA
DVTRIKKHLSEMVNFHPQTETALHCAAASPYPKRKQICELLRKGANINEKTKEFLTPLHVASEKA
HNDVVEVVVKHEAKVNALDNLGQTSLHRAAYCGLQTCRLLLSYCDPNIISLQGFTALQMGNENVQQL
LQEGISLGNSEADRQLLEAAKAGDVETVKKLCTVQSVNCRDIEGRQSTPLHFAAGYNRVSVVEYLLQHG
ADVHAKDKGGLVPLHNACSYGHYEVAAELLVKHGAVVNADLWKFTPLHEAAAKGKYEICKLLLQHGADP
TKKNRDGNTPLDLVKDGTDIQDLLRGDAALLDAAKKGCLARVKKLSSPDNVNCRDTQGRHSTPLHAA
GYNNEVAEYLLQHGADVNAQDKGGIPLHNAASYGHVDVAALLIKYNACVNATDKWAFTPLHEAAQKG
RTQLCALLLAHGADPTLKNQEGQTPLDVSADDVSALLTAAMPPSALPSCYKPQVLNGVRSPGATADAL
SSGPSSPSSLASAASSLDNLGSFSELSSVSSSGTEGASSLEKKEVPGVDFSITQFVRNLGLEHLMDF
EREQITLDVLVEMGHKELKEIGINAYGHRHKLIKGVVERLISGQQGLNPYLTLNNTSGSGTILIDLSPDDK
EFQSVEEEMQSTVREHRDGGHAGGI FNRYNILKIQKVCKNLWERYTHRRKEVSEENHNHANERMLFHG
SPFVNAAIHKGDERHAYIGGMFGAGIYFAENSSKSQNQYVYGGGTGCPVHKDRSCYICHRLQLLFCRV
TLGKSFLQFSAMKMAHSPPGHHSVTGRPSVNGLALAELYRGEQAYPEYLITYQIMRPEGMVDG

FIG._3

SEQ ID NO: 4

Amino Acid Sequence Tankyrase Homologue isotype2

RCSARRGAAGGQGAQRGARVGAAHGTAPDPVTAGSQAARALSASSPGGLALLLAGPGLLLRLLLALLLAV
AAARIMSGRRCAAGGAACASAAAEEAVEPAARELFECRNGDVERVKRLVTPEKVNSRDTAGRKSTPLHF
AAGFGRKDVEYLLQNGANVQARDGGLIPLHNACSFHAEVNLLRHGADPNARDNWNYTPLHEAAI
KGKIDVCIVLQLQHGAEPITRNTDGRTALDLADPSAKAVLTGEYKKDELLESARSGNEEKMMALLTPLNV
NCHASDGRKSTPLHLAAGYNRVKIVQLLLQHGADVHAKDKGDLVPLHNACSYGHYEVTELLVKHGACVN
AMDLWQFTPPLHEAASKNRVEVCSLLSYGADPTLLNCHNKSAILAPTPQLKERLAYEFKGHSLLQAAR
EADVTRIKKHLSLEMVNFHKPQTHTETALHCAAASPYPKRQICELLRKGANINEKTKEFLTPLHVASE
KAHNDVVEVVVKHEAKVNALDNLGQTSLHRAAYCGHLQTCRLLSYGCDPNIISLQGFTALQMGNEVQ
QLLQEGLSLGNSEADRQLLEAAKAGDVETVKKLCVQSVNCRDIEGRQSTPLHFAAGYNRVSVEYLLQ
HGADVHAKDKGGLVPLHNACSYGHYEVAEELLVKHGAVNVADLWKFPLHEAAAKGKYEICKLLLQHGA
DPTKKNRDGNTPLDLVKDGTDIQDLLRGDAALLDAAKKGCLARVKKLSSPDNVNCRDTQGRHSTPLHL
AAGYNNLEVAEYLLQHGADVNAQDKGGLIPLHNAAASYGHVDVAALLIKYNACVNATDKWAFTPPLHEAAQ
KGRTQLCALLLAHGADPTLKNQEGQTPLDLSADDVSALLTAAMPPSALPSCYKPQVLNGVRSPGATAD
ALSSGPSSPSSLASAASSLDNLGSFSSELSSVSSSGTEGASSLEKKEVPGVDFSITQFVRNLGLEHLM
IFEREQITLDVLVEMGHKELKEIGINAYGHRHKLIKGVVERLISGQQGLNPYLTNTSGSGTILIDLSPD
DKEFQSVEEEMQSTVREHRDGGHAGGI FNRYNILKIQKVCNKKLWERYTHRKEVSEENHNHANERMLF
HGSPFVNAAIHKGFDERHAYIGGMFGAGIYFAENSSKSNSQYVYGGGTGCPVHKDRSCYICHRQLLFC
RVTLGKSFLQFSAMKMAHSPPGHHSVTGRPSVNGLALAELYIYRGEQAYPEYLITYQIMRPEGMVDG

FIG._4

Schematic Presentation of Dominant Negative Mutants for Tankyrase Homologue

Dominant Negative Mutants

Truncation: 429 Δ C- of the C-terminal catalytic domain – truncation of the catalytic domain of PARP acts as a dominant negative when overexpressed *in vivo* (Oncogene 1999 Nov 25; 18(50):7010-5)

Point mutant: E945A Δ C- conserved residue in PARP domain, thought to be important in NAD⁺ binding

FIG._5

**Cell Cycle Analysis of A549 Cells
Infected With GFP-fused Wild Type
and Mutant Tankyrase Homologue**

FIG._6A

FIG._6B

Kinetics of GFP Positive cells in A549 Cells and Human Mammary Epithelial Cells (HMEC) After Retrovirus Infection Encoding GFP-fused Wild Type and Mutant Tankyrase Homologue

FIG._7

The Binding Site of Antisense Oligos Against Tankyrase Homologue

T11

Tankyrase Homologue	GTGGAACAGAGGGTGCCTCC	2838
Tankyrase	GTGGAACAGAGGGTGCCTCCAGTTGGAGAAAAGGAGGTCCAGGAGTAGATTAGCAT	
	ATGCCAGGGGATGGCGCGGGAAACAGAAAGGAAGGAGAAGTGTGGCTTGACAT	3091
	*** *	

FIG.-8

**Anti-Proliferative Phenotype of Antisense Oligonucleotides Against
Tankyrase Homologue in A549 and HeLa Cells**

FIG._9

Cell Cycle Analysis of A549 Cells Transfected with Antisense Oligonucleotides Against Tankyrase Homologue at 48 Hours, Antisense Oligonucleotides (T11) and Control Oligonucleotides (T11S) were transfected with FITC-labeled random 20mer Oligonucleotides (FITC), After 48 Hours, entire population (R1) and Top 5% (R2) of FITC transfected cells were analyzed for cell cycle

FIG. 10A

Cell Cycle Analysis of A549 Cells Transfected with Antisense Oligonucleotides Against Tankyrase Homologue at 48 Hours, Antisense Oligonucleotides (T11) and Control Oligonucleotides (T11S) were transfected with FITC-labeled random 20mer Oligonucleotides (FITC), After 48 Hours, entire population (R1) and Top 5% (R2) of FITC transfected cells were analyzed for cell cycle

FIG. - 10B

FIG.- 11

mRNA Expression of Tankyrase Homologue in Several Tumors and Normal Tissues by a Taqman Analysis, mRNA Expression was Normalized by 90kDa Highly Basic Protein (HBP) and Ribosomal Protein S9 (S9)

**Procedure for Nonisotopic Detection of Poly-ADP Ribosylation
Using Anti-GFP mAb-Coated Plates**

Protein lysates from 293T cells normalized by GFP fluorescence and total protein →
Immobilization of GFP-tankyrase homologue in anti-GFP Coated plates →
Auto PARP reaction with Biotinylated-NAD in 96 wells →
Detection of poly ADP ribose chains with Streptavidin-HRP and chemiluminescent substrate

FIG._12

Non-Isotopic Plate-Based Detection of TaHo PARP Activity in the Presence of Biotinylated NAD

FIG._ 13

Comparison of IC₅₀ Values of the PARP Inhibitors

	<u>Approximate IC₅₀ (nM)</u>		<u>hPARP assay IC₅₀ (nM)</u>		
	<u>TaHo</u>		Rigel	Decker*	Rankin*
3AB	>50 000		5 000	2 000	5 400
6(5H)Phenanthridinone	1 000-2 000		300		
Niacinamide	>50 000		30 000	>>5 000	31 000

* Decker P et al., Clinical Cancer Research. 1999 May; 5:1169-1172
 * Rawkin PW et al., J Biol Chem. 1989 Mar 15;264(8):4312-4317

FIG._ 14

**Inhibition of Tankyrase Homologue PARP Activity
by hPARP Inhibitors**

FIG._ 15

TH-1: Tankyrase Homologue isoform-1, TH-2: Tankyrase Homologue isoform-2
M (Red): the first methionine in the sequence, Z: stop codon
In this figure, the first methionine in TH-1 sequence is position 1 (iii)

Taho C terminus deletion mutant ends at position 429 (K) and adds 28 amino acids because of frame shift.

Taho F/L mutant has the mutation at position 871

Taho E/A dc mutant has the mutation at position 948, ends at position 957 (A) and adds 2 amino acids.

TH-1 TH-2	RCSARRGAAGGQGAQRGARVGAAGTAPDPVTAGSQ -231	AARALSASSPGLALLLAGPGLLLRLLLAVAAARIMSGRRCAAGGGAACASAAAEEAVE -171	--*GFGRKDVVEYLLQNGA -111	PAARELFEACRNGDVERVKRLVTPEKVNSRDTAGRKSTPLHFAAGFGRKDVVEYLLQNGA -111	Ankyrin repeat Ankyrin repeat
TH-1 TH-2	SVQARDGGGLIPLHNACSEGHAEVVNLILRHGADPNARDNWNNTPLHEAAIKGKIDVCIV -51	NVQARDGGGLIPLHNACSEGHAEVVNLILRHGADPNARDNWNNTPLHEAAIKGKIDVCIV -51	Ankyrin repeat	Ankyrin repeat	*TH1 start •TH1 start
TH-1 TH-2	LLQHGAEPPTIRNTDGRTALDLADPSAKAVLTGEYKKDELLESARSNEEKMMALLTPINV 10	LLQHGAEPPTIRNTDGRTALDLADPSAKAVLTGEYKKDELLESARSNEEKMMALLTPINV 10			

FIG.- 16B

	Ankyrin repeat	Ankyrin repeat	
TH-1 TH-2	NCHASDGRKSTPLHLAAGYNRVKIVQVLLLQHGA DVHAKDKGDLVPLHNACSYGHYEVTTEL 70 NCHASDGRKSTPLHLAAGYNRVKIVQVLLLQHGA DVHAKDKGDLVPLHNACSYGHYEVTTEL 70	Ankyrin repeat	Ankyrin repeat
TH-1 TH-2	LVKHGACVNAMDLWQFTPPLHEAASKNRVECS LLLSSYGA DPTLLNCHNKSAILDAPTPQL 130 LV	Ankyrin repeat	Ankyrin repeat
TH-1	KERLAYEFKGHSLLQAAREADVTRIKKHL SLEMVNFKHPOTHETALHCAASPYPKRKQI 190	Ankyrin repeat	Ankyrin repeat
TH-1	CELLLRKGANINEKTKF FLTPLHVA SEKAHNDVV VEVVVKHEAV YNALDNLGQTSLHRAAY 250	Ankyrin repeat	Ankyrin repeat
TH-1	CGHQQTCRLLLSYGC DPNIISLQGFTALQMGN ENVQQLLQEGISLGN SEADRLQLEAKA 310	Ankyrin repeat	Ankyrin repeat
TH-1	GDVETVKKLCTVQS VNCRDIEGRQSTPL HFAAGYNRVS VVEYLQHGA DVHAKDKGGLVP 370	Ankyrin repeat	Ankyrin repeat
TH-1	LHNACSYGHYEVA ELLVKGAVVN VADLWKFTPL HEAAAKGKYEICK LLLQHGADPTKKN 430	T Ankyrin repeat	Ankyrin repeat Deletion--•
TH-1	GMEILLWILLK MEOIQIFKICL GEMQLCZ RDGNTPLDLYKD GDTDIQDLRGA LLDAAKKGCLAR VKKLSSPDNVNC RDTQGRHSTP 490	Ankyrin repeat	Ankyrin repeat

FIG.-16C

TH-1	LHLAAGGYNLEVAEYLLQHGADVNAQDKGLIPLHNAASYGHVDVAALLIKYNACVNATD Ankyrin repeat	550
TH-1	KWAFTELHEAAQKGRTQLCALLAHGADPTLKNQEQQTPLDLVSADDVSALLTAAMPPSA Ankyrin repeat	610
TH-1	LPSCYKPKQVNLNGVRSPGATA DALSSGPSSPSSLSAASSLDNLSGFSELSVVSSSGTEG Ankyrin repeat	670
TH-1	ASSLEKKE--VPGVDESITQFVRNLGLEHLMDIFEREQITLDVLVEMGHKELKEIGINAY SAM domain	730
TH-1	GHRHKLIKGVVERLISGQQGLNPYLTLNTSGSGTILIDLSPDDKEFQSVEEEQMSTVREHR	790
TH-1	DGGHAGGIFNRYNILKIQKVCNKKILMERYTHRKEVSEENHNHANERMLFHGSPFVNALL PARP domain	850
TH-1	HKGFDERHAYIGGMFGAGIYFAENSSKSNSNQYYGIGGGTGCPVHKDRSCYICHROLLFCR • F→L mutation	910
TH-1	VTLGKSFQFSAMKMAHSPPGHHSVTGRPSVNGLALAEEYVIYRGEOAQAPEYLITYQIMRP • E→A • Deletion.	970
TH-1	EGMVVDG 976	