EXAMEN FINAL - CHARPENTE METALLIQUE

EXERCICE 1:

La figure 1 représente une panne bi-appuyée de section IPE80 utilisée dans une charpente métallique pour recevoir directement la couverture.

Hypothèses de calcul:

- Charges permanentes : Poids des pannes et de la couverture : G=24 daN/m
- Charges d'exploitation : Surcharge de poussière : Q = 40 daN/m
- Surcharge du vent : W= -75 daN/m (Soulèvement)
- Flèche admissible 1/200
- Matériau S275

Figure 1 : Panne bi-appuyée

Questions:

1. Calculez les résultantes des charges (F_s et F_u) appliquées sur la panne pour les deux combinaisons d'actions suivantes :

ELS
$$\rightarrow$$
 F_S = G + Q
ELU \rightarrow F_U = G + 1.75 W

- 2. Vérifiez la flèche de la panne.
- 3. Vérifiez la résistante de la section de la panne à la flexion.
- 4. Vérifiez la stabilité de la panne au déversement.

EXERCICE 2:

La figure 2 représente un assemblage poutre-poteau par deux goussets, sollicité par un effort pondéré F=350 kN.

L'assemblage utilise des boulons ordinaires de diamètre M20 et de classe 6.8.

Les éléments de l'attache sont en acier S235.

La section cisaillée des boulons se situe dans la partie filetée.

Questions:

- 1. Vérifier le diamètre des boulons. m = 2
- 2. Vérifier la pression diamétrale des boulons sur les goussets.
- 3. Vérifier l'assemblage par soudure des goussets avec le poteau.

Figure 2: Assemblage poutre-poteau par goussets

UNIVERSITE INTERNATIONALE DE CASABLANCA - Ecole d'Ingénierie

Filière : 2èmé année Génie Civil - Date : 2 JUILLET 2019

Annexe

Caractéristiques de la section IPE :

Profils	Dimensions				Poids	Section	Caractéristiques rapportées à l'axe							Moment	
	h b	b	a mm	e mm	r	au mètre	A cm2	lx cm4	lx/Vx cm3	ix cm	Moment statique S cm3	ly cm4	ly/Vy cm3	iy cm	d'inertie de torsion J cm4
		mm			mm	kg									
80	80	46	3,8	5,2	5	6,0	7,64	80,1	20,0	3,24	11,6	8,49	3,69	1,05	0,70
100	100	55	4,1	5,7	7	8,1	10,3	171	34,2	4,07	19,7	15,9	5,79	1,24	1,10
120	120	64	4,4	6,3	7	10.4	13,2	318	53,0	4,90	30,4	27,7	8,65	1,45	1,71

Diagramme MNT

Calcul de D, coefficient caractéristique des dimensions de la pièce

la longueur de flambement de la membrure comprimée supposée isolée du reste de la pièce;

UNIVERSITE INTERNATIONALE DE CASABLANCA - Ecole d'Ingénierie

Filière : 2^{èmé} année Génie Civil - Date : 2 JUILLET 2019

Calcul de C, coefficient caractéristique de la répartition longitudinale des charges

Encastrement par rapport à l'axe		Mement	Charge concentrée	Charge uniformément	2 charges symétriques à c des appuis		
Gy	Gx	constant	au milieu	répartie	a c des appuis		
sans	sans	1 .	1,365	1,132	$1+2.92\left(\frac{c}{7}\right)^{3}$		
(/0 = /)	avec		0,938	0,576	$0,1+1,2\frac{c}{7}+1,9\left(\frac{c}{7}\right)^{a}$		
avec	sans	1	1,070	0,972	$1 + \left(\frac{c}{7}\right)^3 \left(\frac{c}{7} - 0.93\right)$		
(/0 = 2/)	avec	-53	0,633	0,425	$0,181 + 0,307 \cdot \frac{c}{7} + \left(\frac{c}{7} - 0,474\right)^{\frac{1}{2}}$		

Calcul du coefficient ß

Encastrement par rapport à l'axe		Moment constant	Charge concentrés	Charge	2 charges symétriques à c des appuis		
Gy Gx			au milleu	rópartie			
sans	sans	0	1 1		$6\frac{c}{7}-8\frac{c^a}{l^a}$		
(/0 = /)	avec	-	2	3	$5-2\frac{c}{l}-8\frac{c^3}{l^3}$		
avec	sans	0	1	0,75	$5\left(\frac{c}{l}\right)^3\left(1,2-\frac{c}{l}\right)$		
(/0 = 2/)	avec	-	2	2,25	$\frac{c^2}{I^2}\left(13-11\frac{c}{I}\right)$		

Calcul de B, coefficient caractéristique du niveau d'application des charges

On suppose dans cet exercice que les charges sont appliquées sur la membrure supérieure :

$$B = \sqrt{1 + \left(0,405 \frac{\beta C}{D}\right)^{3}} - 0,405 \frac{\beta C}{D}$$