Module PRB1: Contrôle Continu nº 1.

Exercice 1. Soit X une variable aléatoire de loi géométrique de paramètre $p \in]0,1[$: pour tout $k \in \mathbb{N}^*$, $\mathbb{P}(X=k)=p(1-p)^{k-1}$.

- 1. Exprimer $\mathbb{E}[f(X)]$ sous forme d'une série.
- 2. Calculer $\mathbb{E}[X^{-1}]$.

Solution. 1. Si f est, par exemple, une fonction positive on a

$$\mathbb{E}[f(X)] = \sum_{k \ge 1} f(k) \, \mathbb{P}(X = k) = \sum_{k \ge 1} f(k) \, p(1 - p)^{k - 1}.$$

2. Rappelons que, pour |x| < 1, $-\ln(1-x) = \sum_{k>1} k^{-1}x^k$. On a,

$$\mathbb{E}\left[X^{-1}\right] = \sum_{k>1} k^{-1} p(1-p)^{k-1} = -\frac{p}{1-p} \ln p.$$

Exercice 2. Soit X une variable aléatoire suivant la loi de Cauchy $\mathcal{C}(1)$ c'est à dire de densité $p(x) = \pi^{-1}(1+x^2)^{-1}$. Déterminer la loi de la variable aléatoire $Y = X^{-1}$.

Solution. Puisque X possède une densité, $\mathbb{P}(X=0)=0$; la définition de X^{-1} ne pose aucune difficulté. Soit $f:\mathbb{R}\longrightarrow\mathbb{R}$ une fonction borélienne et positive. On a

$$\mathbb{E}[f(Y)] = \int_{\mathbb{R}^*} f(x^{-1}) \frac{1}{\pi} \frac{1}{1+x^2} dx.$$

Le changement de variable $y = x^{-1} - \mathcal{C}^1$ -difféomorphisme de \mathbb{R}^* dans lui-même – donne

$$\mathbb{E}[f(Y)] = \int_{\mathbb{R}^*} f(y) \, \frac{1}{\pi} \frac{1}{1 + y^2} \, dy \; ;$$

Y suit la loi de Cauchy $\mathcal{C}(1)$.

Exercice 3. On considère la fonction réelle $u(x) = (1 + |x|)^{-1}$.

- 1. Soit X une variable réelle. On considère, pour $s \geq 0, \, \theta(s) = \mathbb{E}[u(sX)]$.
- Montrer que θ est continue sur $[0, +\infty[$, de classe \mathcal{C}^1 sur $]0, +\infty[$. Exprimer $\theta'(s)$ comme une espérance. Déterminer $\lim_{s\to+\infty}\theta(s)$.
- 2. Soient U une variable aléatoire de loi uniforme sur [0,1] et $c \in]0,1[$. On considère la variable aléatoire $X=(U-c)^+$. Calculer, pour la variable X, $\theta(s)$ puis $\lim_{s\to+\infty}\theta(s)$. Est-ce cohérent avec la question précédente?

Solution. 1. Pour tout $s \geq 0$, $\omega \mapsto u[sX(\omega)]$ est mesurable. On a d'autre part,

$$\sup_{s \ge 0} |u(sX)| = \sup_{s \ge 0} \frac{1}{1 + s|X|} \le 1. \tag{1}$$

La fonction constante égale à un est intégrable puisque nous travaillons sur un espace probabilisé.

Remarquons, que pour ω fixé, la fonction $s \longmapsto u[sX(\omega)]$ est continue sur \mathbb{R}^+ et vérifie $\lim_{s\to+\infty}u[sX(\omega)]=\mathbf{1}_{\{0\}}(X(\omega))$. La majoration (1) permet d'appliquer les résultats de continuité et passage à la limite pour les intégrales à paramètres : la fonction θ est définie et continue sur \mathbb{R}^+ et on a $\lim_{s\to+\infty}\theta(s)=\mathbb{E}\left[\lim_{s\to+\infty}u(sX)\right]=\mathbb{P}(X=0)$.

L'application – à ω fixé – $s \longmapsto u[sX(\omega)]$ est en fait de classe \mathcal{C}^1 sur $]0, +\infty[$ et on a

$$\forall s > 0, \qquad \frac{\partial}{\partial s} u[sX(\omega)] = -\frac{|X(\omega)|}{(1+s|X(\omega)|)^2}.$$

Remarquons, que pour tout a > 0,

$$\sup_{s \ge a} \left| \frac{\partial}{\partial s} u[sX(\omega)] \right| = \sup_{s \ge a} \frac{1}{s} \frac{s|X(\omega)|}{(1 + s|X(\omega)|)^2} \le \frac{1}{a}.$$

Le majorant précédent est intégrable : u est de classe \mathcal{C}^1 sur $[a, +\infty[$, pour tout a > 0 donc sur $]0, +\infty[$ et

$$\forall s > 0, \qquad \theta'(s) = \mathbb{E}\left[\frac{\partial}{\partial s}u(sX)\right] = -\mathbb{E}\left[\frac{|X|}{(1+s|X|)^2}\right].$$

2. On a, pour tout $s \geq 0$,

$$\theta(s) = \int_0^1 \frac{1}{1 + s(u - c)^+} du = c + \int_c^1 \frac{1}{1 + s(u - c)} du = c + \frac{1}{s} \ln\left[1 + s(1 - c)\right].$$

Par conséquent, $\theta(s) \longrightarrow c$ si $s \to +\infty$. Or $\mathbb{P}((U-c)^+ = 0) = \mathbb{P}(U \le c) = c$.