

An introduction to MetricGraph Statistical modeling

David Bolin and Alexandre Simas Glasgow 2025

Whittle-Matern fields on metric graphs

We define the Whittle–Matérn fields through the fractional-order equation

$$(\kappa^2 - \Delta_{\Gamma})^{\alpha/2}(\tau u) = \mathcal{W}$$
 on Γ ,

- \bullet \mathcal{W} is Gaussian white noise,
- $\kappa > 0, \tau > 0, \alpha = \nu + 1/2 > 1/2$,
- Δ_{Γ} is the Kirchhoff Laplacian, which acts as the second derivative on the edges and the following vertex conditions:

 $\{u \text{ is continuous on } \Gamma \text{ and } \forall v \in \mathcal{V} : \sum_{e \in \mathcal{E}_v} \partial_e u(v) = 0\}.$

Properties

- α controls the sample path regularity, and $\alpha > 3/2$ results in differentiable sample paths.
- These fields are in general not isotropic.
- The fields are invariant to addition or removal of vertices of degree 2.
- If $\alpha \in \mathbb{N}$, these are Markov random fields and we can do exact and computationally efficient inference without FEM.

Meshes on graphs

To illustrate these fields, consider the following graph

```
edge1 <- rbind(c(0,0),c(1,0))
edge2 <- rbind(c(0,0),c(0,1))
edge3 <- rbind(c(0,1),c(-1,1))
theta <- seq(from=pi,to=3*pi/2,length.out = 20)
edge4 <- cbind(sin(theta),1+ cos(theta))
edges = list(edge1, edge2, edge3, edge4)
graph <- metric_graph$new(edges = edges)</pre>
```

metric_graph objects has built-in functionality for generating meshes.

The primary usage of meshes is to plot functions on metric graphs.

We can either specify the mesh width ${\tt h}$ (the maximal distance between nodes) or the number of mesh nodes per edge.

Meshes on graphs


```
graph$build_mesh(h = 0.1)
graph$plot(mesh=TRUE)
```


The plot_function() method

Let us plot a covariance of a Whittle-Mat'ern field on a finer mesh:

Comments

- By default spde_covariance computes the covariance function $r(s_0, s)$ for a specified location s_0 and all location on the mesh.
- The mesh is only used for plotting, there is no FEM approximation
- ullet range is the practical correlation range, $\sqrt{8lpha-4}/\kappa$
- sigma is $\sqrt{\Gamma(\alpha-0.5)/(\Gamma(\alpha)\sqrt{4\pi}\kappa^{2\alpha-1})}$
- If X has the same size as the mesh, plot_function() assumes that X is the function we want to plot evaluated at the mesh.

Example with $\alpha = 2$

Simulation

sample_spde can be used to simulate the Whittle-Matérn fields.

General smoothness and FEM

- ullet For models with general lpha, we need to use FEM and rational approximations.
- rSPDE has a complete replacement for INLA SPDE models, allowing for general α and estimation of α :

 ${\tt inla.spde2.matern} \longrightarrow {\tt rspde.matern}$

- Available on CRAN. Homepage: https://davidbolin.github.io/rSPDE/
- rSPDE also has full support for metric graph models.

simulation with rSPDE


```
library(rSPDE)
```


Bolin and Simas MetricGraph INLA Workshop - 2025 11 / 37

Inference with MetricGraph

Three ways of fitting statistical models on metric graphs:

- Likelihood-based inference through graph_lme().
- Bayesian inference through the INLA interface.
- Bayesian inference through the inlabru interface.

Overview of graph_lme()

graph_lme() allows fitting mixed effect models

$$y_{ij} = \sum_{k=1}^{K} x_{kij} \beta_k + u_j(s_{ij}) + \varepsilon_{ij}$$

where \mathbf{x}_k are fixed effects, $u_j(s)$ are independent copies of a Gaussian process and ε_{ij} Gaussian measurement noise.

- Data and replicates are extracted from the graph, where group is used for replicates.
- Confidence intervals are computed based on numerical approximation of the Hessian.
- Once the model has been fitted, prediction at new locations can be obtained through predict() or augment().

Model implemented in graph_lme()

- 'lm' for linear models without random effects.
- 'WM1' and 'WM2' for exact Whittle-Matérn fields with $\alpha = 1, 2$.
- 'WM' Whittle–Matérn fields with general smoothness (α estimated).
- 'isoExp' for a model with isotropic exponential covariance.
- 'GL1' and 'GL2' for a SPDE model based on the graph Laplacian with $\alpha=1,2.$
- 'WMD1' is the directional Whittle-Matérn field with $\alpha = 1$.
- list("WhittleMatern", fem = TRUE, B.kappa, B.tau) for generalized Whittle-Matérn fields with log-linear models for κ and τ and general smoothness which is estimated.
- list("isoCov", cov_function()) models with a general isotropic covariance function.

Exact Whittle–Matérn models with integer α :

spde <- graph_spde(graph)</pre>

Exact Whittle–Matérn models with integer α :

By directional = TRUE we obtain a directional model

$$(\kappa + \nabla)^{\alpha}(\tau u) = \mathcal{W}.$$

15 / 37

Exact Whittle–Matérn models with integer α :

By directional = TRUE we obtain a directional model

$$(\kappa + \nabla)^{\alpha}(\tau u) = \mathcal{W}.$$

Generalized Whittle-Matérn fields:

Exact Whittle–Matérn models with integer α :

By directional = TRUE we obtain a directional model

$$(\kappa + \nabla)^{\alpha}(\tau u) = \mathcal{W}.$$

Generalized Whittle-Matérn fields:

Spatio-temporal models

$$du + \gamma (\kappa^2 + \rho \nabla - \Delta)^{\alpha} u = dW_Q, \text{ on } T \times \Gamma$$

All models can be used as any other random effects in INLA and inlabru.

Example data

Let us simulate some data on a graph.

```
graph <- metric_graph$new()</pre>
graph$build mesh(h = 0.1)
op <- matern.operators(nu = 0.8,
                         range = 1,
                         sigma = 1,
                         parameterization = "matern",
                         graph = graph)
rep <- 20
u <- simulate(op, nsim = rep)</pre>
graph$plot_function(X = u[,10], edge_width = 2)
```

Example data

17 / 37

Example data

We now generate 10 random observation locations per edge and construct the corresponding observation matrix.

```
loc <- NULL
for(i in 1:graph$nE) {
  loc <- rbind(loc, cbind(rep(i,10), runif(10)))
}
A <- graph$fem_basis(loc)</pre>
```

Then we simulate data

$$Y_{ij} = u_i(s_i) + \varepsilon_{ij}$$

where ε_{ij} are iid $N(0, 0.1^2)$.

```
Y <- A%*%u + 0.1*matrix(rnorm(10 * graph$nE * rep),
ncol = rep)
```

Adding the data to the graph

Then create a dataframe and add the data to the graph.

Adding the data to the graph

20 / 37

Step 1: Create the model

rspde <- rspde.metric_graph(graph)</pre>

Step 1: Create the model

```
rspde <- rspde.metric_graph(graph)</pre>
```

Step 2: Extract the required data and give the model a name, using graph_data_spde for exact models, or graph_data_rspde for rSPDE models:

Step 1: Create the model

```
rspde <- rspde.metric_graph(graph)</pre>
```

Step 2: Extract the required data and give the model a name, using graph_data_spde for exact models, or graph_data_rspde for rSPDE models:

Step 3: Create the stack

Step 4: Define the formula and fit the model

Step 4: Define the formula and fit the model

Step 5: Extract results using spde_metric_graph_result() for exact models and rspde.results() for rSPDE models.

```
result <- rspde.result(fit, "field", rspde)
summary(result, digits = 3)</pre>
```

```
## mean sd 0.025quant 0.5quant 0.975quant mode

## std.dev 1.010 0.0140 0.980 1.010 1.030 1.010

## range 1.110 0.0438 1.010 1.110 1.180 1.130

## nu 0.728 0.0204 0.695 0.726 0.774 0.717
```

Plotting posterior densities

We can use the gg_df function to extract a dataframe for plotting.

```
df_plot <- gg_df(result)
ggplot(df_plot) + geom_line(aes(x = x, y = y)) +
  facet_wrap(~parameter, scales = "free") +
  labs(y = "Density")</pre>
```


Overview of the inlabru interface

The inlabru interface is similar. We do not need to define the stack.

Let us fit an exact model without FEM to the data:

```
graph$clear observations()
graph$add observations(data = df, group = "repl",
                         normalized = TRUE)
spde <- graph spde(graph)</pre>
data_spde <- graph_data_spde(spde, repl = ".all",</pre>
                                repl_col = "repl",
                                loc name = "loc")
repl <- data_spde[["repl"]]</pre>
f.s \leftarrow v \sim -1 + Intercept(1) + field(loc,
                                         model = spde,
                                         replicate = repl)
fit <- bru(f.s, data=data_spde[["data"]])</pre>
result <- spde metric graph result(fit, "field", spde)
```

Prediction

We can use predict to do prediction, note that for exact models, this is not the inlabru predict method.

Plot of prediction

Let us process the predictions and plot them

plot(y_pred)

Log-Gaussian Cox Processes (LGCP)

We will consider LGCPs on metric graphs driven by a Gaussian Whittle–Matérn fields. Therefore, the LGCPs we will consider are point process models with intensity $\lambda = \exp(\beta + u)$

- ullet eta is an intercept or linear predictor
- u is a Gaussian Whittle–Matérn field: $(\kappa^2 \Delta)^{\alpha/2} \tau u = \mathcal{W}$
- Used to model spatially correlated point patterns
- MetricGraph provides interfaces for:
 - Simulation via graph_lgcp_sim()
 - Parameter estimation through INLA via lgcp_graph()

LGCP: Simulating Data


```
graph <- metric_graph$new(remove_deg2 = TRUE)
graph$build_mesh(h = 0.1)
graph$compute_fem()</pre>
```

Let us simulate a LGCP with covariates.

LGCP: Simulated Intensity

graph\$plot_function(X = exp(lgcp_sample\$u), vertex_size = 0)

LGCP: Simulated Point Pattern

Let us add the point pattern to the graph.

```
graph$add observations(
  data = data.frame(
    y = rep(1, length(lgcp_sample$edge_loc)),
    edge_number = lgcp_sample$edge_number,
    distance_on_edge = lgcp_sample$edge_loc,
    Intercept = 1,
    cov_lgcp =
    lgcp_sample$edge_number/max(lgcp_sample$edge_number)
 ),
  normalized = TRUE
```

LGCP: Simulated Point Pattern

LGCP: Estimation Interface

- Key components for LGCP inference:
 - Integration points (mesh vertices by default)
 - Covariates (interpolated from data or manually specified)
 - SPDE model (exact or FEM-based via rSPDE)

LGCP: Model Fitting with rSPDE


```
rspde_model <- rspde.metric_graph(graph, nu = 0.5)

inla_fit <- lgcp_graph(
    y ~ -1 + Intercept + cov_lgcp +
    f(field, model = rspde_model),
    graph = graph
)</pre>
```

Let us extract the results in original scale.

Let us compare the estimated parameters with the true values.

```
## parameter true mean
## 1 std.dev 0.5 0.5261923
## 2 range 2.0 2.7675832
```

LGCP: Parameter Posteriors

We can also plot the posterior densities.

```
posterior_df_fit <- gg_df(spde_result)
ggplot(posterior_df_fit) +
  geom_line(aes(x = x, y = y)) +
  facet_wrap(~parameter, scales = "free") +
  labs(y = "Density")</pre>
```


LGCP: Estimated vs. True Field

Estimated field (left) vs. True field (right)

LGCP: Exact Model

We can also use exact model with graph_spde():

```
spde_model <- graph_spde(graph, alpha = 1)</pre>
```

Let us fit the LGCP model with exact SPDE.

```
inla_fit_spde <- lgcp_graph(
  y ~ -1 + Intercept + cov_lgcp +
  f(field, model = spde_model),
  graph = graph, verbose = TRUE
)</pre>
```

LGCP: Exact Model (2)

Let us extract the results in original scale.

```
## parameter true mean
## 1 std.dev 0.5 0.8727829
## 2 range 2.0 1.4611006
```