

# SAS WEB CALC UPDATES

BY: JACK CAMPBELL (UNIVERSITY OF MARYLAND)

MENTORS: JEFF KRZYWON AND ALAN MUNTER

### **INSTRUMENT BASICS**



## PROJECT GOALS



# EXISTING TOOL VS SASWEBCALC

| Existing Planning Tool        | SasWebCalc                    |
|-------------------------------|-------------------------------|
| Desktop Only :                | Access Anywhere(Website)      |
| Multistep installation        | No installation 🕢             |
| 3 SANS Instruments            | 4 SANS Instruments + ∞ more   |
| I-dimensional graph           | I- and 2-dimensional graph    |
| Complicated model application | Simple selection of any model |
| No averaging method           | Select an averaging method    |

8/8/2023

# Website

Parameter Changes



# Modularity





#### Front Carriage Right Panel:



#### **DOCUMENTATION**

#### SASCALC on t

Previou

calculate\_attenuation\_factor(index=0)

Calculates the attenuation factors from the sample aperture diameter and returns the calculated value

• Usually run by the calculate attenuator number function

Parameters: index - The index of the value to find in the

detectors array

**Returns:** Returns the float value of the calculated

attenuation factor

**Return type:** Float



Mod Index

8/8/2023

## MY CONTRIBUTION

Transferred original code from JavaScript to Python

Added all instruments

Created the modular interface

Documentation of files

Setup the server and docker container



#### **NIST CENTER FOR NEUTRON RESEARCH**

SASCALC on the Web ① ②





✓ Model: [adsorbed\_layer] ✓ Structure Factor: None ✓ Averaging Method: Circular ✓ Instrument: NG7 SANS

# Live Demo! Webcalc.ncnr.nist.gov

# NEXT STEPS

Q Range Optimization Connect to the instruments directly to give them configs

More instruments

Polydispersity and magnetism

Beta approximation

# **SPECIAL THANKS**

- Jeff Krzywon
- Alan Munter
- Julie Borchers
- Leland Harriger

#### SASCALC 2D Plot



