Quadratic regression Calculator

Home / Mathematics / Regression

Analyzes the data table by quadratic regression and draws the chart.

Quadratic regression: y=A+Bx+Cx²

(input by clicking each cell in the table below)

data	No.	x	y
	1	302.20398553634334	0.43460552002626957
	2	401.9088595421428	0.36869450645195767
	3	505.31795273644065	0.3232390409347363
	4	598.0471976105778	0.2944744498230481
	5	701.7038286703822	0.2697443649870472
	6	809.2217409292141	0.25118864315095807
	7	905.4157189380937	0.2377882968026018
	8	999.99999999999	0.22758459260747893
	9	1987.519712084896	0.1665054953069651
	10	3009.0126602227697	0.1412537544622755
	11	4001.763393264597	0.12451970847350334
	12	4966.609758663147	0.11343887340720292
	13	5954.691781536963	0.1033441063880557
	14	6986.789735577608	0.09729605646212959
	15	7953.583627213136	0.0911011395688753
	16	8937.571151054222	0.0862410996895277
	17	9956.892709017235	0.08208914159638261
	V	a of the row)	×

(Inc/Dec of the row)

Execute Clear Store/Read Print 10dgt •

function	value
mean of x	3,469.309048
mean of y	0.2007711053
correlation coefficient r	0.9276025204
Α	0.347227125
В	-7.76835389E-5
С	5.44660788E-9

Guidelines for interpreting correlation coefficient r:

 $\begin{array}{ll} 0.7 < |r| \leq 1 & \text{strong correlation} \\ 0.4 < |r| < 0.7 & \text{moderate correlation} \\ 0.2 < |r| < 0.4 & \text{weak correlation} \\ 0 \leq |r| < 0.2 & \text{no correlation} \end{array}$

Quadratic regression

(1) mean:
$$\bar{x} = \frac{\sum x_i}{n}$$
, $\bar{y} = \frac{\sum y_i}{n}$ $\bar{x}^2 = \frac{\sum x_i^2}{n}$

(2) trend line:
$$y = A + Bx + Cx^2$$

$$B = \frac{SxySx^2x^2 - Sx^2ySxx^2}{SxxSx^2x^2 - (Sxx^2)^2}$$

$$C = \frac{Sx^{2}ySxx - SxySxx^{2}}{SxxSx^{2}x^{2} - (Sxx^{2})^{2}}$$

$$A = \overline{y} - B\overline{x} - C\overline{x^2}$$

$$(3) \ correlation \ coefficient:$$

$$r = \sqrt{1 - \frac{\sum (y_i - (A + Bx_i + Cx_i^2))^2}{\sum (y_i - \overline{y})^2}}$$

$$S_{xx} = \frac{\sum (x_i - \overline{x})^2}{n} = \frac{\sum x_i^2}{n} - \overline{x}^2$$

$$S_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n} = \frac{\sum x_i y_i}{n} - \overline{x}\overline{y}$$

$$S_{xx^2} = \frac{\sum (x_i - \overline{x})(x_i^2 - \overline{x^2})}{n} = \frac{\sum x_i^3}{n} - \overline{x}\overline{x^2}$$

$$S_{x^2x^2} = \frac{\sum (x_i^2 - \overline{x^2})^2}{n} = \frac{\sum x_i^4}{n} - \overline{x^2}\overline{x^2}$$

$$S_{x^2y} = \frac{\sum (x_i^2 - \overline{x^2})(y_i - \overline{y})}{n} = \frac{\sum x_i^2 y_i}{n} - \overline{x^2}\overline{y}$$