STAT 4010 Bayesian Learning

Tutorial 6

Spring 2023

Cheuk Hin (Andy) CHENG (Email | Homepage)

Di SU (Email | Homepage)

1 Decision Theoretic Testing

Definition 1. (Decision Theory) Consider testing $H_0: \theta \in \Theta_0$ against $H_1: \theta_1 \in \Theta_1 = \Theta \setminus \Theta_0$. Then, the parameter of interest is $\psi = \mathbb{1}(\theta \in \Theta_1)$ and the decision space is $\mathfrak{D} = \{0, 1\}$.

Definition 2. (<u>P-value</u>) The p-value is defined as the probability that more or equally extreme result is observed under H_0 . Note that the probability is a function of the data and thus is a statistic. Smaller p-value indicates stronger evidence against the null.

Definition 3. (Type-I and II error) Let the test be $\hat{\psi}(x)$. Then,

- <u>Type-I error</u> is $\alpha_0 = \Pr(\hat{\psi}(x) = 1 \mid \theta \in \Theta_0)$, i.e. probability of rejecting the Null wrongly. This is also known as <u>size</u>.
- Type-II error is $\alpha_1 = \Pr(\hat{\psi}(x) = 0 \mid \theta \in \Theta_1)$, i.e. probability of failing to reject the Null.
- <u>Power</u> is $\Pr(\hat{\psi}(x) = 1 \mid \theta \in \Theta_1)$, i.e. probability of rejecting the Null correctly. <u>Power = 1-Type-II error</u>.

Theorem 1.1. Consider the weighted 0-1 loss defined as

$$L(\theta, \hat{\psi}) = a_0 \mathbb{1}(\psi < \hat{\psi}) + a_1 \mathbb{1}(\psi > \hat{\psi}),$$

where $a_0, a_1 \geq 0$ defined in above. Then the Bayes estimator is,

$$\hat{\psi}_{\pi} = \mathbb{1}(\hat{p}_0 < \frac{a_1}{a_1 + a_0}) = \mathbb{1}(\hat{p}_1 > \frac{a_0}{a_1 + a_0}),$$

where $\hat{p}_j = \Pr(\theta \in \Theta_j \mid x)$.

Proof of Theorem 1.1. The posterior loss is

$$L(\pi, \widehat{\psi} \mid x) = \mathrm{E}\{L(\theta, \widehat{\psi}) \mid x\}$$

$$= a_0 \mathrm{P}(\psi = 0 \mid x) \mathbb{1}(\widehat{\psi} = 1) + a_1 \mathrm{P}(\psi = 1 \mid x) \mathbb{1}(\widehat{\psi} = 0)$$

$$= \begin{cases} a_0 \mathrm{P}(\psi = 0 \mid x) & \text{if } \widehat{\psi} = 1; \\ a_1 \mathrm{P}(\psi = 1 \mid x) & \text{if } \widehat{\psi} = 0. \end{cases}$$

Hence, the minimizer satisfies

$$\widehat{\psi} = 1 \quad \Leftrightarrow \quad a_0 P(\psi = 0 \mid x) < a_1 P(\psi = 1 \mid x) \quad \Leftrightarrow \quad P(\psi = 0 \mid x) < \frac{a_1}{a_0 + a_1}.$$

Thus, the result follows.

Remark 1.1.

- \hat{p}_0 acts as p-value. $\alpha = a_1/(a_1 + a_0)$ acts as p-value. Just 'act as', they may not be the same.
- The procedure of constructing the test is as followed.
 - 1. Specify the loss.
 - 2. Specify the model (prior and sampling distribution).
 - 3. Derive the posterior loss and bayes estimator that minimizes the posterior loss.

2 Bayes Factor

Definition 4. Consider $H_0: \theta \in \Theta_0$ and $H_1: \theta \in \Theta_1$. The **Bayes factor** is defined as

$$B_{10} = \frac{\Pr(\theta \in \Theta_1 \mid x)}{\Pr(\theta \in \Theta_0 \mid x)} / \frac{\Pr(\theta \in \Theta_1)}{\Pr(\theta \in \Theta_0)}$$
$$= Posterior \ odd / Prior \ odd$$
$$= \frac{\hat{p}_1}{\hat{p}_0} / \frac{\varrho_1}{\varrho_0},$$

where $\varrho_j = Pr(\theta \in \Theta_j), j = 0, 1.$

Theorem 2.1. Let $\theta \sim \pi(\theta)$ and $\varrho_j = \Pr(\theta \in \Theta_j) > 0$ for j = 0, 1. Then,

$$B_{10} = \frac{\kappa_1(x)}{\kappa_0(x)},$$

where

$$\kappa_j(x) = \int_{\Theta_j} f(x \mid \theta) \pi_j(\theta) d\theta, \quad \pi_j(\theta) = \frac{1}{\varrho_j} \pi(\theta) \mathbb{1}(\theta \in \Theta_j).$$

Remark 2.1. We reject the null based on the magnitude of B_{10} , which serves as evidence against H_0 . When $B_{10} \geq 3.2, 10, 100$, the strength of evidence is substantial, strong, and conclusive, respectively.

Example 2.1. Consider $x_{1:n} \mid \theta \stackrel{\text{IID}}{\sim} \text{Laplace}(\theta)$, where $\theta > 0$. The Laplace distribution has density $(2\theta)^{-1} \exp\{-|x|/\theta\}$. We are interested in testing $H_0: \theta \in [3, 5]$ against $H_0: \theta \in [0, 3) \cup (5, \infty)$. In addition, we collected n = 30 observations and obtain $A_n = \sum_{i=1}^n |x_i| = 240$.

- 1. Find the conjugate prior for θ . Compute the posterior.
- 2. Consider the 0-1 loss with $\alpha = 5\%$. Derive and compute the bayes estimator.
- 3. Compute the Bayes factor B_{10} . We reject the null if $B_{10} > 10$. Compare and comment the conclusion to that of the bayes estimator you derived in the last part.

- 4. Consider a grid of θ from [0.5, 10]. Using simulation, plot the power curve for the bayes estimator and the test constructed by the Bayes factor. Comment.
- 5. Find a weakly informative prior for θ . Compute the Bayes factor and compare the result to part 3.

SOLUTION:

1. Let $\eta = 1/\theta$. We can rewrite the density of the sampling distribution as

$$f(x \mid \eta) = 0.5 \exp{\{\eta(-|x|) + \log \eta\}}.$$

By theorem 2.3 in the lecture note, the conjugate prior for η is $Ga(\alpha)/\beta$ since

$$f(\eta) \propto \exp\{\beta\eta - \alpha\eta\} = \eta^{\alpha} \exp\{\beta\eta\}.$$

Therefore, the conjugate prior for θ is $\beta/Ga(\alpha)$. The posterior can be computed as a result

$$f(\theta \mid x_{1:n}) \propto f(\theta) f(x_{1:n} \mid \theta) = \theta^{-\alpha - n - 1} \exp\{-1/\theta(\beta + A_n)\} \mathbb{1}(\theta > 0).$$

Therefore, $\theta \mid x_{1:n} \sim \beta_n/Ga(\alpha_n)$, where $\alpha_n = \alpha + n$ and $\beta_n = \beta + A_n$.

2. We continue by setting $\alpha = 2$ and $\beta = 4$ (as a result $\mathsf{E}[\theta] = 4$). By theorem 1.1, the bayes estimator is $\hat{\psi}_{\pi} = \mathbb{1}(\hat{p}_0 < \alpha)$, where

$$\hat{p}_0 = \Pr(\theta \in \Theta_0 \mid x_{1:n}) = \text{pinvgamma}(5, \alpha_n, \beta_n) - \text{pinvgamma}(3, \alpha_n, \beta_n) = 0.0043.$$

Thus, $\hat{\psi}_{\pi} = \mathbb{1}(\hat{p}_0 < \alpha) = 1$ and we reject the null. Note also the Bayesian p-value in this case is $\hat{p}_0 = 0.0043$.

3. Let $\varrho_0 = \Pr(\theta \in \Theta_0) = \text{pinvgamma}(5, \alpha, \beta) - \text{pinvgamma}(3, \alpha, \beta) = 0.1937$. Since $\Theta_1 = \Theta \setminus \Theta_0$, we have

$$B_{10} = \frac{\Pr(\theta \in \Theta_1 \mid x)}{\Pr(\theta \in \Theta_0 \mid x)} / \frac{\Pr(\theta \in \Theta_1)}{\Pr(\theta \in \Theta_0)} = \frac{1 - \hat{p}_0}{\hat{p}_0} / \frac{1 - \varrho_0}{\rho_0} = 55.1068.$$

Therefore, we have strong evidence against the null and decide to reject the null. The conclusion is in line with the last part.

- 4. Let ψ_1 and ψ_2 be the Bayes estimator and the test based on B_{10} respectively. The test ψ_2 rejects the null when $B_{10} > 10$. The power curve is a curve that takes power on the y-axis and θ on the x-axis. The following procedure is used to obtain the power curve.
 - (a) Create a grid of θ .
 - (b) Fix a θ from the grid. Simulate $x_{1:n} \mid \theta$. Compute $\psi_1^{(j)}$ and $\psi_2^{(j)}$ where j denotes the j-th iteration.
 - (c) Repeat step 2 for $j = 1, \ldots, nRep$. Estimate the power by Monte Carlo

$$\widehat{\Pr}(\psi_p = 1 \mid \theta \in \Theta_1) = \frac{\sum_j \mathbb{1}(\psi_p^{(j)} = 1)}{\text{nRep}}.$$

- (d) Repeat step (b) and (c) for all the θ in the grid.
- (e) Plot the powers vs θ .


```
1 library(invgamma)
  a = 2
_{3} b = 4
| n = 30 
5 | An = 240
an = a+n
7 \text{ bn} = b + An
  p0 = pinvgamma(5,an,bn) -pinvgamma(3,an,bn)
10 [1] 0.004341378
11
12 ##Bayes factor
q0 = pinvgamma(5,a,b) - pinvgamma(3,a,b)
14 q0
15 [1] 0.1937321
16 BF = ((1-p0)/p0)/((1-q0)/q0)
17
  [1] 55.1068
18
19
20 ##Power curve
  get_psi1 <- function(An,n,cri = 0.05,a = 2, b = 4) {</pre>
^{21}
    an = a+n
22
    bn = b+ An
23
    p0 = pinvgamma(5,an,bn) -pinvgamma(3,an,bn)
    return(list(p0 = p0, psi =p0< cri))</pre>
25
26 }
27
28 get_psi2 <- function(An,n,cri = 10,a = 2, b = 4) {
    an = a+n
29
    bn = b + An
30
    p0 = pinvgamma(5,an,bn) -pinvgamma(3,an,bn)
```

```
q0 = pinvgamma(5,a,b) - pinvgamma(3,a,b)
    BF = ((1-p0)/p0)/((1-q0)/q0)
    return(list(BF = BF, psi =BF>cri))
35 }
37 theta_grid = seq(0.5, 10, by = 0.25)
mgrid = length(theta_grid)
_{39} nRep = 2^10
40 power = array (NA, c (mgrid, 2))
41 for (i in 1:mgrid) {
   theta = theta_grid[i]
  out = array(NA,c(nRep,2))
43
   for (j in 1:nRep) {
45
      set.seed(j)
      ##By representation if L~Laplace(theta), E1, E2~iid Exp(1)
46
      ##L = theta(E1 - E2)
47
      x = theta*(rexp(n,1) - rexp(n,1))
      An_sim = sum(abs(x))
      out[j,1] = get_psi1(An_sim,n)$psi
      out[j,2] = get_psi2(An_sim,n)$psi
    power[i,] = apply(out,2,mean)
53
54 }
matplot(theta_grid, power, type = 'b', pch=c('1', '2'), main = "Power Plot",
     col = 1:2, lty = 1:2, xlab = expression(theta))
56 legend('right',c('psi1','psi2'),col = 1:2,lty = 1:2)
57 abline(h = 0.05,col = 'grey')
abline (v = c(3,5), col = "green")
```

5. It is easy to see that θ is a scale parameter. Therefore, an invariant prior is $f(\theta) \propto 1/\theta$. Since it is improposer, we regularize it by considering $f(\theta) \propto 1/\theta \mathbb{1}(\theta \in [l, u])$ where l = 0.001 and u = 999. It can be shown that $f(\theta) = c/\theta$ where $c = 1/\ln(u/l)$. As a result, we have

$$\begin{split} \varrho_0 &= \Pr(\theta \in \Theta_0) = \int_3^5 c/\theta \mathrm{d}\theta = \frac{\ln(5/3)}{\ln(u/l)}; \\ \pi_0(\theta) &= \frac{1}{\varrho_0} \pi(\theta) \mathbb{1}(\theta \in \Theta_0); \\ \kappa_0(x) &= \int_{\Theta_0} f(x_{1:n} \mid \theta) \pi_0(\theta) \mathrm{d}\theta \\ &= \int_3^5 \frac{1}{2^n \theta^n} \exp\{-A_n/\theta\} \left(\frac{1}{\varrho_0}\right) \left(\frac{c}{\theta}\right) \mathrm{d}\theta \\ &= \frac{c}{2^n \varrho_0} \frac{\Gamma(n)}{A_n^n} \int_3^5 \frac{A_n^n}{\Gamma(n)} \theta^{-n-1} exp\{-A_n/\theta\} \mathrm{d}\theta \\ &= \frac{c\Gamma(n)}{2^n \varrho_0 A_n^n} \left[\text{pinvgamma}(5, n, A_n) - \text{pinvgamma}(3, n, A_n) \right] \end{split}$$

Similarly, we also have

$$\begin{split} \kappa_1(x) &= \frac{c\Gamma(n)}{2^n(1-\varrho_0)A_n^n}[\{\text{pinvgamma}(3,n,A_n) - \text{pinvgamma}(l,n,A_n)\} \\ &\quad + \{\text{pinvgamma}(u,n,A_n) - \text{pinvgamma}(5,n,A_n)\}] \end{split}$$

By theorem 2.1, we have

$$BF_{10} = \frac{\kappa_1(x)}{\kappa_0(x)} = 17.58956.$$

Therefore, we have strong evidence to reject the null.

As a remark, note that $\varrho_0/(1-\varrho_0) \to 0$ as $l \to 0$ and $u \to \infty$. Therefore, $BF_{10} \to 0$. If we consider the invariant prior, we always do not reject the null.

```
####part 5
##note Gamma(n), A_n and 2^n can be ignored as they cancel out each other
1 = 0.001
u = 999
q0 = log(5/3)/log(u/1)
kappa1 = (pinvgamma(3,n,An) - pinvgamma(1,n,An) + pinvgamma(u,n,An) -
pinvgamma(5,n,An))/(1-q0)
kappa0 = (pinvgamma(5,n,An) -pinvgamma(3,n,An))/q0
BF = kappa1/kappa0
BF
10 [1] 17.58956
```

2.1 Well-defined Bayes Factor

When testing simple hypotheses, if the underlying random variable is continuous, $\varrho_j = 0$ and definition 4 is not well-defined. This motivated the following modification.

Definition 5. (Modification of prior and BF). Let the prior of θ be defined in two steps.

- (1) Let the prior probabilities of H_j be $\varrho_j = P(\theta \in \Theta_j)$ for j = 0, 1 such that $\varrho_1 + \varrho_0 = 1$ and $\varrho_0, \varrho_1 > 0$.
- (2) Let the prior of θ under $H_j: \theta \in \Theta_j$ be $\theta \sim \pi_j(\theta)$.

So, the (overall) implied prior of θ is

$$\pi(\theta) = \varrho_0 \pi_0(\theta) + \varrho_1 \pi_1(\theta). \tag{2.1}$$

Then the Bayes factor is given by

$$B_{10} = \frac{\pi_1(x)}{\pi_0(x)} \quad \text{where} \quad \pi_j(x) = \int_{\Theta_j} f(x \mid \theta) \pi_j(\theta) d\theta, \quad j = 0, 1.$$
 (2.2)

Remark 2.2. In equation 2.2, the "between-group" prior belief ϱ_0 , ϱ_1 are eliminated. However, it still depends on the "within-group" prior belief which is reflected by $\pi_j(\theta)$, j=0,1.

2.2 Relationship with Decision Theoretic Testing

Example 2.2. Let $H_0: \theta \in \Theta_0$, and $H_1: \theta \in \Theta_1$. The Bayes factor is a one-to-one transformation of the posterior probability \hat{p}_0 . And the conclusion derived from Bayes factor is equivalent to that from posterior probability.

(1)
$$\widehat{p}_0 = \left(1 + \frac{\varrho_1}{\varrho_0} B_{10}\right)^{-1}$$
,

(2) If $\Theta_1 = \Theta \backslash \Theta_0$, then

Reject
$$H_0 \Leftrightarrow \widehat{p}_0 < \frac{a_1}{a_0 + a_1} \Leftrightarrow \underbrace{B_{01} < \frac{a_1 \varrho_1}{a_0 \varrho_0}}_{\text{The Bayes test in (4.4)}}.$$
 (2.3)

Example 2.3. Assume $\varrho_0 = 0.99, \varrho_1 = 0.01$ and $\hat{p}_0 = 0.9, \hat{p}_1 = 0.1$. Then we have $\hat{p}_0 > 1/2 > \hat{p}_1$. However,

$$B_{10} = \frac{0.1/0.9}{0.01/0.99} = 11,$$

suggesting a strong evidence against H_0 .

Takeaway: The probability \hat{p}_0 represents the "exact" posterior belief on H_0 . Bayes factor represents the "change" in the belief on H_0 after collecting data. Therefore, BF alleviates the prior preference.

3 Continuous Decision Space $\mathcal{D} = [0, 1]$

Theorem 3.1. Consider D = [0, 1]. The Bayes estimators $\widehat{\psi}_0, \widehat{\psi}_1, \widehat{\psi}_2$ under L^0, L^1, L^2 losses are given by

$$\widehat{\psi}_0 = \widehat{\psi}_1 = \mathbb{1} \left\{ P \left(\theta \in \Theta_0 \mid x \right) < 1/2 \right\} \quad and \quad \widehat{\psi}_2 = P \left(\theta \in \Theta_1 \mid x \right).$$