МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФН КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Дисциплина: Теория случайных процессов

Отчет по выполнению домашнего задания №2.2 "Моделирование двумерного винеровского процесса"

> *Группа: <u>ФН11-62Б</u>* Вариант 6

> > Студент: Ладыгина Л.В. Преподаватель: Облакова Т.В

Задание

- 1. На интервале [0, T] смоделируйте n траекторий двумерного винеровского процесса интенсивности σ с шагом h.
- 2. Выведите на печать 5-7 траекторий (мультимедийность приветствуется)
- 3. Для каждой траектории вычислите
- 1) вариации компонент $\left(\sum_{k}\left|W_{(k+1)h}^{(1)}-W_{kh}^{(1)}\right|,\sum_{k}\left|W_{(k+1)h}^{(2)}-W_{kh}^{(2)}\right|\right)$ Найдите среднее значение вариации $\left(Var^{(1)}(h),Var^{(2)}(h)\right)$ по всем траекториям
- 2) суммы квадратов приращений компонент $\left(\sum_{k}\left|W_{(k+1)h}^{(1)}-W_{kh}^{(1)}\right|^{2},\sum_{k}\left|W_{(k+1)h}^{(2)}-W_{kh}^{(2)}\right|^{2}\right)$ Найдите среднее значение этих сумм $\left(SqVar^{(1)}(h),SqVar^{(2)}(h)\right)$
- 4. Уменьшите значение h в два раза и вычислите $\left(Var^{(1)}\left(\frac{h}{2}\right), Var^{(2)}\left(\frac{h}{2}\right)\right)$ и $\left(SqVar^{(1)}\left(\frac{h}{2}\right), SqVar^{(2)}\left(\frac{h}{2}\right)\right)$. Сравните полученные значения для исходного и уменьшенного шага и объясните результат.

Замечание. Для более качественного изучения свойств винеровского процесса надо изначально смоделировать 2N пар $\left(\xi_k^{(1)},\xi_k^{(2)}\right)$ с независимыми компонентами, распределенными по закону $N\left(0,\sigma\sqrt{\frac{h}{2}}\right)$. Тогда при моделирования винеровского процесса с шагом h используем попарные суммы $\left(\xi_{2k-1}^{(1)}+\xi_{2k}^{(1)},\xi_{2k-1}^{(2)}+\xi_{2k}^{(2)}\right)$, компоненты которых по свойствам нормального закона распределены по закону $N(0,\sigma\sqrt{h})$.

5. Вычислите теоретическую вероятность $P(|\overline{W}_T| \ge z)$ и сравните ее с эмпирической вероятностью достижения указанного уровня z в момент T.

Bap	T	n	σ	h	Z	Bap	T	n	σ	h	Z
6	5	180	0.75	0.02	2	17	12	140	0.6	0.08	4

Пусть необходимо найти значения двумерного винеровского процесса $\overline{W}_t = \left(W_t^{(1)}, W_t^{(2)}\right)$ интенсивности σ в точках вида $t_k = k \cdot h$, причем $t_0 = 0$, $t_N = T$.

- 1) Полагаем $\overline{W}_0 = (0,0)$
- 2) Для каждого k моделируем пару $\left(\xi_k^{(1)}, \xi_k^{(2)}\right)$ независимых нормально распределенных случайных величин с нулевыми математическими ожиданиями и дисперсиями $\sigma^2 \cdot h$
- 3) Вычисляем $\left(W_{(k+1)h}^{(1)},W_{(k+1)h}^{(2)}\right)=\left(W_{kh}^{(1)},W_{kh}^{(2)}\right)+\left(\xi_k^{(1)},\xi_k^{(2)}\right)$
- 4) Результат последовательность точек $(W_{kh}^{(1)}, W_{kh}^{(2)})$. Соединив эти точки для наглядности отрезками прямых, получим смоделированную траекторию.
- 1. Моделируем 2N пар $(\xi_k^{(1)}, \xi_k^{(2)})$ с независимыми компонентами, распределенными по закону N (0, $\sigma\sqrt{\frac{h}{2}}$). Тогда при моделирования винеровского процесса с шагом \hbar используем попарные суммы $(\xi_{2k-1}^{(1)} + \xi_{2k}^{(1)}, \xi_{2k-1}^{(2)} + \xi_{2k}^{(2)})$, компоненты которых по свойствам нормального закона распределены по закону $N(0, \sigma\sqrt{h})$.

Векторы $\xi_{2k}^{(1)}$ и $\xi_{2k}^{(2)}$:

```
Xi = np.zeros((n, 2*N + 1, 2))
for i in range(0, n):
    for j in range(0, 2*N + 1):
        Xi[i][j][0] = sps.norm(0, sigma * np.sqrt(h/2)).rvs(size = 1)
        Xi[i][j][1] = sps.norm(0, sigma * np.sqrt(h/2)).rvs(size = 1)
```

Вектор Хі[і][і][0]:

Вектор Xi[i][j][1]:

```
-0.03030995299232452
-0.11636596813599766
-0.0232877922803923
-0.027274734714278742
0.09065624525371031
0.027047920796125696
-0.06272573113564106
-0.02636488430292922
-0.1681825110899047
0.07557779820023616
0.02527750249749181
-0.05828680272189722
```

0.06609677004093087
-0.03670236613700757
-0.044550808448288653
-0.0457759146726047
-0.0228167478099167
-0.03934258242719358
0.04234719530881779
0.13444697526276167
0.03260472922507754
0.004580896131341322
-0.029451149693912347
-0.05311378488624448
0.05346702937047315

Траектории двумерного Винеровского процесса W1 с шагом \hbar

```
W1 = np.zeros((n, N + 1, 2))
for i in range(0, n):
    for j in range(1, N+1):
        W1[i][j][0] = W1[i][j - 1][0] + Xi[i][2*j - 2][0] + Xi[i][2*j - 1][0]
        W1[i][j][1] = W1[i][j - 1][1] + Xi[i][2*j - 2][1] + Xi[i][2*j - 1][1]
        print(W1[i][j][0], W1[i][j][1])
```

W1[i][j][0],

0.0	-0.005	-0.0777	0.139	0.2831
0.0	-0.1351	-0.1692	-0.0632	-0.1219
0.0	-0.0472	-0.1467	-0.0471	-0.08
0.0	-0.1822	-0.1622	-0.0722	0.06
0.0	-0.0725	-0.1374	-0.1045	-0.2344
0.0	0.0108	0.0786	0.121	0.035
0.0	-0.0133	0.0893	0.1164	-0.0013
0.0	0.0228	0.0855	0.2041	0.2621
0.0	0.0424	0.0914	-0.0165	-0.3212
0.0	-0.0472	-0.0206	-0.0337	-0.0126
0.0	-0.092	0.0483	0.0899	-0.0305
0.0	0.0604	-0.0196	0.0843	-0.0772
0.0	0.1542	0.2091	-0.026	-0.0082
0.0	-0.0296	0.064	0.0002	0.0795
0.0	0.1028	0.0267	-0.0102	-0.1074
0.0	0.0778	0.0045	0.0749	-0.1132
0.0	0.1683	0.1123	0.1794	0.111
0.0	0.0345	0.026	0.12	0.0372
0.0	0.1765	0.2958	0.4205	0.3668
0.0	0.1484	0.0565	0.028	0.1059

...

W1[i][j][1]

0.0	0.1236	0.0283	0.0478	0.1061
0.0	0.0062	0.0314	-0.0593	-0.0857
0.0	0.1183	0.1943	0.1227	0.204
0.0	0.0809	0.0159	-0.085	-0.0005
0.0	-0.1049	-0.139	-0.1689	-0.2345
0.0	-0.0601	-0.1005	0.0009	0.0906
0.0	0.1159	-0.0585	-0.0707	0.0022
0.0	0.0483	0.0815	0.2834	0.2675
0.0	-0.0103	-0.0407	0.0861	0.0809
0.0	-0.0017	-0.0404	-0.192	-0.0749
0.0	0.0381	-0.0052	0.0768	0.0784
0.0	0.0449	-0.121	-0.2336	-0.1333
0.0	0.085	0.0141	0.0609	0.0198
0.0	0.2078	0.1123	0.1827	0.266
0.0	-0.2251	-0.3316	-0.2054	-0.3365
0.0	0.1289	0.0799	-0.0336	-0.1617
0.0	-0 .2 333	-0.1119	-0.0104	0.1749
0.0	0.221	0.2796	0.3706	0.4834
0.0	-0.0181	0.0408	-0.0548	-0.1415
0.0	-0.0484	-0.0304	-0.1792	-0.1148

. .

Траектории двумерного Винеровского процесса W2 с шагом $\hbar/2$:

W2[i][j][0]

0.0	-0.062	-0.005	0.0647	-0.0777
0.0	-0.0794	-0.1351	-0.1362	-0.1692
0.0	-0.0011	-0.0472	-0.1414	-0.1467
0.0	-0.0792	-0.1822	-0.2233	-0.1622
0.0	-0.0408	-0.0725	-0.1555	-0.1374
0.0	0.0287	0.0108	0.0703	0.0786
0.0	-0.0535	-0.0133	0.0639	0.0893
0.0	-0.0484	0.0228	0.0523	0.0855
0.0	0.0394	0.0424	0.0434	0.0914
0.0	0.0718	-0.0472	-0.0341	-0.0206
0.0	0.0159	-0.092	0.03	0.0483
0.0	-0.0506	0.0604	0.0929	-0.0196
0.0	0.0517	0.1542	0.2353	0.2091
0.0	0.0179	-0.0296	-0.0013	0.064
0.0	0.0584	0.1028	0.0562	0.0267
0.0	0.0632	0.0778	0.0186	0.0045
0.0	0.0461	0.1683	0.2097	0.1123
0.0	-0.1189	0.0345	0.121	0.026
0.0	0.2007	0.1765	0.2176	0.2958
0.0	0.0587	0.1484	0.1713	0.0565

W2[i][j][1]:

0.0	0.0681	0.1236	0.0385	0.0283
0.0	-0.0832	0.0062	0.0263	0.0314
0.0	0.1645	0.1183	0.2114	0.1943
0.0	0.0968	0.0809	0.1204	0.0159
0.0	-0.147	-0.1049	-0.0953	-0.139
0.0	-0.0259	-0.0601	-0.0264	-0.1005
0.0	0.0519	0.1159	0.0371	-0.0585
0.0	-0.0046	0.0483	0.0267	0.0815
0.0	-0.0727	-0.0103	0.0149	-0.0407
0.0	0.0409	-0.0017	-0.0362	-0.0404
0.0	-0.0922	0.0381	0.0152	-0.0052
0.0	-0.0137	0.0449	0.0253	-0.121
0.0	0.0524	0.085	0.0526	0.0141
0.0	0.1384	0.2078	0.1522	0.1123
0.0	-0.0984	-0.2251	-0.2905	-0.3316
0.0	0.085	0.1289	0.1461	0.0799
0.0	-0.0347	-0.2333	-0.1641	-0.1119
0.0	0.0809	0.221	0.1873	0.2796
0.0	0.0138	-0.0181	0.0712	0.0408
0.0	-0.0414	-0.0484	0.0301	-0.0304

Выводим на печать некоторые совмещенные траектории W1,W2(1,7,10, 49, 73,112)

```
trajectory = np.array([1, 7, 10, 49, 73, 112])

for i in range(0,6):
    fig, ax = plt.subplots(figsize = (30,30))
    ax.plot(W1[trajectory[i], :, 0], W1[trajectory[i], :, 1], color = 'black', marker = 'o' )
    ax.plot(W2[trajectory[i], :, 0], W2[trajectory[i], :, 1], color = 'grey', marker = 'o', linestyle = '--')
    fig.savefig('./Model' + str(trajectory[i]) + '.png')
```


траектория 7

траектория 10

траектория 49

траектория 73

3. Вычислим среднее значение вариации компонент и среднее значение суммы квадратов приращений по всем траекториям для модели с шагом \hbar и $\hbar/2$

среднее значение вариации компонент и среднее значение суммы квадратов приращений вектора W1:

```
sum_w1_0 = 0
sum_w1_1 = 0
sqSum_w1_0 = 0
sqSum_w1_1 = 0

for i in range(0, n):
    for j in range(1, N+1):
        sum_w1_0 += abs(W1[i, j, 0] - W1[i, j-1, 0])
        sum_w1_1 += abs(W1[i, j, 1] - W1[i, j-1, 1])
        sqSum_w1_0 += (W1[i, j, 0] - W1[i, j-1, 0]) ** 2
        sqSum_w1_1 += (W1[i, j, 0] - W1[i, j-1, 1]) ** 2

Var_w1_0 = sum_w1_0/n
Var_w1_1 = sum_w1_1/n
SqVar_w1_0 = sqSum_w1_0/n
SqVar_w1_0 = sqSum_w1_0/n
```

среднее значение вариации компонент и среднее значение суммы квадратов приращений вектора W2:

```
sum_w2_0 = 0
sum_w2_1 = 0
sqSum_w2_0 = 0
sqSum_w2_1 = 0

for i in range(0, n):
    for j in range(1, 2*N+1):
        sum_w2_0 += abs(W2[i, j, 0] - W2[i, j-1, 0])
        sum_w2_1 += abs(W2[i, j, 1] - W2[i, j-1, 1])
        sqSum_w2_0 += (W2[i, j, 0] - W2[i, j-1, 0]) ** 2
        sqSum_w2_1 += (W2[i, j, 0] - W2[i, j-1, 0]) ** 2
        var_w2_0 = sum_w2_0/n
Var_w2_1 = sum_w2_0/n
SqVar_w2_0 = sqSum_w2_0/n
SqVar_w2_0 = sqSum_w2_0/n
SqVar_w2_1 = sqSum_w2_1/n
```

Полученные значения:

```
Var_w1_0= 21.10983295942434 SqVar_w1_0= 2.806701499451129
Var_w1_1= 21.243421035390174 SqVar_w1_1= 2.8298040984596007
Var_w2_0= 29.86376932137231 SqVar_w2_0= 2.799039369508044
Var_w2_1= 29.9421577098412 SqVar_w2_1= 2.8245126390457242
```

Посчитаем $\sigma^2 T = 2.8125$

Вычислим эмпирическую вероятность достижения уровня z в момент времени Т. Для этого рассчитываем вероятность как среднее от суммы индикаторов :

$$P = \frac{\sum I(\left|\overline{W}_T\right| \ge z)}{n}$$

$$P_{emp} = 0.5167$$

Вычислим теоретическую вероятность достижения уровня z в момент времени T, используя χ^2 — распределение:

$$P(|\overline{W}_T| \ge z) = 1 - F_{\chi^2(2)} \left(\frac{z^2}{\sigma^2 T}\right)$$

0.4910982295021551

$$P_{th} = 0.4911$$

Выводы: По результатам, изложенным в 3-ем пункте, видим, что:

$$\sum_{k} \left| W_{(k+1)}^{(1)} \frac{1}{2} - W_{k}^{(1)} \right|^{2} \xrightarrow{h \to 0} \begin{pmatrix} \sigma^{2}T \\ \sigma^{2}T \end{pmatrix} = \begin{pmatrix} 2.8125 \\ 2.8125 \end{pmatrix}$$

$$\sum_{k} \left| W_{(k+1)}^{(2)} \frac{1}{2} - W_{k}^{(2)} \frac{1}{2} \right|^{2} \xrightarrow{h \to 0} \begin{pmatrix} \sigma^{2}T \\ \sigma^{2}T \end{pmatrix} = \begin{pmatrix} 2.8125 \\ 2.8125 \end{pmatrix}$$

Также получаем, что среднее значение вариации компонент для $\hbar/2$ больше приблизительно в $\sqrt{2}$, чем для \hbar . Полученные результаты согласуются с теорией, где сумма квадратов приращений стремится в среднеквадратичном к $\sigma^2 T$ Вычисленные эмпирические и теоретические вероятности достижения уровня z в момент T оказались близки, т.к $\Delta P = |P_{emp} - P_{th}| = 0.0256$