Lecture 7

Multiple Linear Regression

Reading: Chapter 12

STAT 8020 Statistical Methods II September 4, 2019 Multiple Linear Regression

Species Diversity on the Galapagos Islands

Multiple Linear Regression in Matrix Form

Louination

Inference

Determination R^2

Whitney Huang Clemson University

Agenda

- Multiple Linear Regression
- CLEMS#N UNIVERSITY
 - the Galapagos Islands

 Multiple Linear
 - Regression in Matrix Form
 - sumation
 - ference
 - oefficient of etermination \mathbb{R}^2

- Species Diversity on the Galapagos Islands
- Multiple Linear Regression in Matrix Form
- 3 Estimation
- 4 Inference
- **5** Coefficient of Determination R^2

Goal: To model the relationship between two or more explanatory variables (X's) and a response variable (Y) by fitting a **linear equation** to observed data:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$$

Example: Species diversity on the Galapagos Islands. We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

Multiple Linear Regression

Species Diversity on the Galapagos Islands

Multiple Linear Regression in Matrix

Lotinatio

Data: Species Diversity on the Galapagos Islands

	Species	Endemics	Area	Elevation	Negrest	SCRUZ	Adjacent	
Baltra	58	23	25.09	346	0.6	0.6	1.84	
Bartolome	31	21	1.24	109	0.6	26.3	572.33	
Caldwell	31	3	0.21	114	2.8	58.7	0.78	
Champion	25	9	0.10	46	1.9	47.4	0.18	
Coamano	2	1	0.05	77	1.9	1.9	903.82	
Daphne.Major	18	11	0.34	119	8.0	8.0	1.84	
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34	
Darwin	10	7	2.33	168		290.2	2.85	
Eden	8	4	0.03	71	0.4	0.4	17.95	
Enderby	2	2	0.18	112	2.6	50.2	0.10	
Espanola	97	26	58.27	198	1.1	88.3	0.57	
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32	
Gardner1	58	17	0.57	49	1.1	93.1	58.27	
Gardner2	5	4	0.78	227	4.6	62.2	0.21	
Genovesa	40	19	17.35	76	47.4	92.2	129.49	
Isabela	347	89	4669.32	1707	0.7	28.1	634.49	
Marchena	51	23	129.49	343	29.1	85.9	59.56	
Onslow	2	2	0.01	25	3.3	45.9	0.10	
Pinta	104	37	59.56	777	29.1	119.6	129.49	
Pinzon	108	33	17.95	458	10.7	10.7	0.03	
Las.Plazas	12	9	0.23	94	0.5	0.6	25.09	
Rabida	70	30	4.89	367	4.4	24.4	572.33	
SanCristobal	280	65	551.62	716	45.2	66.6	0.57	
SanSalvador	237	81	572.33	906	0.2	19.8	4.89	
SantaCruz	444	95	903.82	864	0.6	0.0	0.52	
SantaFe	62	28	24.08	259	16.5	16.5	0.52	
SantaMaria	285	73	170.92	640	2.6	49.2	0.10	
Seymour	44	16	1.84	147	0.6	9.6	25.09	
Tortuga	16	8	1.24	186	6.8	50.9	17.95	
Wolf	21	12	2.85	253	34.1	254.7	2.33	

Multiple Linear Regression

Species Diversity on the Galapagos Islands

Multiple Linear
Regression in Matrix
Form

. .

merence

Determination \mathbb{R}^2

Let's Take a Look at the Correlation Matrix

> round(co	or(gala[,	-2]),	3)			
	Species	Area	Elevation	Nearest	Scruz	Adjacent
Species	1.000	0.618	0.738	-0.014	-0.171	0.026
Area	0.618	1.000	0.754	-0.111	-0.101	0.180
Elevation	0.738	0.754	1.000	-0.011	-0.015	0.536
Nearest	-0.014	-0.111	-0.011	1.000	0.615	-0.116
Scruz	-0.171	-0.101	-0.015	0.615	1.000	0.052
Adjacent	0.026	0.180	0.536	-0.116	0.052	1.000

Multiple Linear Regression

Species Diversity on the Galapagos Islands

Multiple Linear Regression in Matrix Form

_0(111101101

Inference

```
Multiple Linear
Regression
```

```
CLEMS#N
```

Species Diversity on the Galapagos Islands

Multiple Linear Regression in Matrix Form

ESUITIALION

Inference

Determination R^2

```
Call:
lm(formula = Species ~ Elevation, data = gala)
Residuals:
    Min
              10 Median
                                30
                                       Max
-218.319 -30.721 -14.690
                             4.634 259.180
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.33511 19.20529
                                0.590
                                          0.56
Elevation
            0.20079 0.03465 5.795 3.18e-06 ***
Sianif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 78.66 on 28 degrees of freedom
Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291
```

F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Model 2: Species \sim Elevation + Area

```
Call:
lm(formula = Species ~ Elevation + Area, data = gala)
Residuals:
    Min
             10 Median
                           30
                                     Max
-192.619 -33.534 -19.199
                           7.541 261.514
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.10519
                     20.94211 0.817 0.42120
Elevation
           0.17174 0.05317 3.230 0.00325 **
                    0.02594 0.725 0.47478
Area
           0.01880
Signif. codes:
0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
Residual standard error: 79.34 on 27 degrees of freedom
Multiple R-squared: 0.554, Adjusted R-squared: 0.521
F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05
```

Multiple Linear Regression

Species Diversity on the Galapagos Islands

Multiple Linear Regression in Matrix Form

merence

Coefficient of Determination R^2

Model 3: Species \sim Elevation + Area + Adjacent

```
Call:
lm(formula = Species ~ Elevation + Area + Adjacent, data = gala)
Residuals:
              1Q Median
    Min
                               30
                                       Max
-124.064 -34.283 -8.733 27.9<mark>72 195.973</mark>
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                     16.90706 -0.338 0.73789
(Intercept) -5.71893
Elevation 0.31498
                     0.05211 6.044 2.2e-06 ***
           -0.02031 0.02181 -0.931 0.36034
Area
Adjacent -0.07528 0.01698 -4.434 0.00015 ***
               0 '***, 0.001 '**, 0.01 '*, 0.05 ', 0.1 ', 1
Signif. codes:
Residual standard error: 61.01 on 26 degrees of freedom
Multiple R-sauared: 0.746. Adjusted R-sauared: 0.7167
F-statistic: 25.46 on 3 and 26 DF, p-value: 6.683e-08
```

Multiple Linear Regression

Species Diversity on the Galapagos Islands

Multiple Linear Regression in Matrix Form

interence

Louinado

interence

Doefficient of Determination R

```
lm(formula = Species ~ Area + Elevation + Nearest + Scruz + Adjacent,
    data = gala)
```

Residuals: Min

Min 1Q Median 3Q Max -111.679 -34.898 -7.862 33.460 182.584

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.068221 19.154198 0.369 0.715351
Area -0.023938 0.022422 -1.068 0.296318
Elevation 0.319465 0.053663 5.953 3.82e-06
Nearest 0.009144 1.054136 0.009 0.993151
Scruz -0.240524 0.215402 -1.117 0.275208

Scruz -0.240524 0.215402 -1.117 0.275208 Adjacent -0.074805 0.017700 -4.226 0.000297

(Intercept)

Area

Elevation *** Nearest Scruz

Adjacent ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.98 on 24 degrees of freedom Multiple R-squared: 0.7658, Adjusted R-squared: 0.7171 F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & X_{1,1} & X_{2,1} & \cdots & X_{p-1,1} \\ 1 & X_{1,2} & X_{2,2} & \cdots & X_{p-1,2} \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & X_{1,n} & X_{2,n} & \cdots & X_{p-1,n} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

We can express MLR as

$$Y = X\beta + \varepsilon$$

Error Sum of Squares (SSE) = $\sum_{i=1}^{n} (Y_i - \beta_0 - \sum_{j=1}^{p-1} \beta_j X_j)^2$ can be expressed in matrix notation as:

$$(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$$

Again, we are going to find $\hat{\beta}$ to minimize SSE as our estimate for β

Multiple Linear Regression

Species Diversity on the Galapagos Islands

Multiple Linear Regression in Matrix Form

Louination

Inference

Determination R^2

Estimation of Regression Coefficients

• The resulting least squares estimate is

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Fitted values:

$$\hat{Y} = X\hat{\boldsymbol{\beta}} = X(X^TX)^{-1}X^TY = HY$$

Residuals:

$$e = Y - \hat{Y} = (I - H)Y$$

Multiple Linear Regression

Species Diversity on the Galapagos Islands

Multiple Linear Regression in Matrix Form

nterence

Species Diversity on the Galapagos Islands

Multiple Linear Regression in Matrix Form

Louination

nference

Coefficient of Determination R^2

Similar approach as we did in SLR

$$\hat{\sigma}^2 = \frac{e^T e}{n - p}$$

$$= \frac{(Y - X\hat{\beta})^T (Y - X\hat{\beta})^T}{n - p}$$

$$= \frac{SSE}{n - p}$$

$$= MSE$$

ANOVA Table

Multiple Linear Regression in Matrix

-- ----

lilerence

Determination \mathbb{R}^2

Source	df	SS	MS	F Value
Model	p-1	SSR	MSR = SSR/(p-1)	MSR/MSE
Error	n-p	SSE	MSE = SSE/(n-p)	
Total	n-1	SST		

- ullet F Test: Tests if the predictors $\{X_1,\cdots,X_{p-1}\}$ collectively help explain the variation in Y
 - $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$
 - H_a : at least one $\beta_k \neq 0$, $1 \leq k \leq p-1$
 - $\bullet \ F^* = \frac{\text{MSR}}{\text{MSE}} = \frac{\text{SSR}/(p-1)}{\text{SSE}/(n-p)} \overset{H_0}{\sim} F(p-1,n-p)$
 - Reject H_0 if $F^* > F(1 \alpha, p 1, n p)$

Testing Individual Predictor

• We can show that $\hat{\boldsymbol{\beta}} \sim \mathrm{N}_p\left(\boldsymbol{\beta}, \sigma^2\left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\right) \Rightarrow \hat{\beta}_k \sim \mathrm{N}(\beta_k, \sigma_{\hat{\alpha}_*}^2)$

Perform t test:

- $H_0: \beta_k = 0 \text{ vs. } H_a: \beta_k \neq 0$
- $\bullet \quad \frac{\hat{\beta}_k \beta_k}{\hat{\sigma}_{\hat{\beta}_k}} \sim t_{n-p} \Rightarrow t^* = \frac{\hat{\beta}_k}{\hat{\sigma}_{\hat{\beta}_k}} \stackrel{H_0}{\sim} t_{n-p}$
- Reject H_0 if $|t^*| > t_{1-\alpha/2,n-p}$
- Confidence interval for β_k : $\hat{\beta}_k \pm t_{1-\alpha/2,n-p} \hat{\sigma}_{\hat{\beta}_k}$

Species Diversity on the Galapagos Islands

Multiple Linear Regression in Matrix Form

Inference

Determination \mathbb{R}^2

Multiple Linear Regression in Matrix

Estimation

Inference

Determination R^2

ullet Coefficient of Determination R^2 describes proportional reduction in total variation associated with the full set of predictor variables

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SSR}}, \quad 0 \le R^2 \le 1$$

- \mathbb{R}^2 usually increases with the increasing p, the number of the predictors
 - Adjusted R^2 , denoted by $R^2_{\rm adj} = \frac{{\rm SSR}/(n-p)}{{\rm SST}/(n-1)}$ attempts to account for p