1

Funciones Continuas

Definición 1.1 La función f es continua en a si

$$\lim_{x \to a} f(x) = f(a)$$

Para todo $\epsilon > 0$ existe un $\delta > 0$ tal que, para todo x, si $0 < |x - a| < \delta$. Pero en este caso, en que el límite es f(a), la frase

$$0 < |x - a| < \delta$$

puede cambiarse por la condición más sencilla

$$|x - a| < \delta$$

puesto que si x = a se cumple ciertamente que $|f(x) - f(a)| < \epsilon$.

TEOREMA 1.1 Si f y g son continuas en a, entonces

- (1) f + g es continua en a.
- (2) $f \cdot g$ es continua en a.

Además, si $g(a) \neq 0$, entonces (3) 1/g es continua en a

 $Demostraci\'on.\hbox{--} Puesto que f y g son continuas en a,$

$$\lim_{x\to a} f(x) = f(a) \qquad y \qquad \lim_{x\to a} g(x) = g(a).$$

Por el teorema 2(1) del capítulo 5 esto implica que

$$\lim_{x \to a} (f+g)(x) = f(a) + g(a) = (f+g)(a),$$

lo cual es precisamente la afirmación de que f+g es continua en a.

Para $f \cdot g$ se tiene que

$$\lim_{x \to a} (f \cdot g)(x) = f(a) \cdot fg(a) = (f \cdot g)(a)$$

Por último para 1/g tenemos que

$$\lim_{x \to a} 1/g = 1/g(a), \qquad para \ g(a) \neq 0$$