	AIC		Mean residence time		log(2)/r* estimates		Inter-division time	
Model	T1	T2	T1	T2	T1	T2	T1	T2
Time-dependent	7.8	9.1	18(7, 44)	17 (6, 54)	250(46, 1300)	520(110, 2800)	69(2, 2800)	56 (3.5, 900)
Age-structured	35	21	20(16, 26)	33(21, 39)	NA	NA	89(36, 210)	2000 (1300, 3300)
			$1/\lambda_1^\dagger$		1,	$/\lambda_2^\dagger$		
constant birth-death	34	21	40(35, 47)	34(30, 41)	_	-	-	_
Incumbent	34	21	39(34, 47)	34(29, 40)	_	_	_	-
Kinetic heterogeneity	34	21	41(37, 46)	17 (6, 54)	33(10,102)	26(14, 47)	_	

Table 1: Comparison of AIC values for different models fitted to cell counts and donor fractions in FM B cells (Spleen + LN).

Note: Age-structured model gives visually bad fits for FM cells.

When fitting FM cells with the incumbent model, size of the incumbent population is estimated to be \approx 0, making it equivalent to constant birth-death model. When fitting MZ model the counts of incumbent cells are estimated $\approx 10^5$.

	A	AIC Mean residence time		ence time	log(2)/r*	Inter-division time		
Model	T1	T2	T1	T2	T1	T2	T1	T2
Time-dependent	32	66	19(7, 55)	32(11, 90)	800(240, 2600)	810(200,3200)	28(7, 120)	64(9,460)
Age-structured	41	63	9(5, 16)	11(5, 23)	1100(590, 2100)	630(270, 1400)	11(5, 22)	15(6, 38)
			$1/\lambda_1^\dagger$		$1/\lambda_2^\dagger$			
constant birth-death	44	68	111 (142, 100)	90 (66, 125)	_	_	-	-
Incumbent	43	67	103(73, 171)	67(45, 125)	_	_	_	-
Kinetic heterogeneity	40	66	270(106, 710)	170(34, 840)	73(52, 102)	63(18, 210)	_	_

Table 2: Comparison of AIC values for different models fitted to cell counts and donor fractions in MZ B cells (Spleen).

 $^{^\}dagger$ For the incumbent and constant birth-death model we only have λ estimates.

^{*} r is the rate of change of residence-time with host-age or cell age, hence $\log(2)/r$ denotes the avearge time taken for men residence time to double. Changing ρ with time or cell age gives (visually) poor fits hence not included in this analysis.

NA - estimates for 'r' are close to zero therefore $\log(2)/r \sim \text{NA/Inf}$. This shows that in this case there is very little or no effect of cell age on $\delta(a)$.

[†] For the incumbent and the constant birth-death model we only have λ estimates. For the kinetic heterogenity model there are two subsets with different loss rates λ_1 and λ_2 .

^{*} r is the rate of change of residence-time with host-age or cell age, hence $\log(2)/r$ denotes the avearge time taken for men residence time to double. Changing ρ with time or cell age gives (visually) poor fits hence not included in this analysis.