



# **HC32F460 Series**

32-bit ARM® Cortex® -M4 Microcontrollers

HC32F460PETB-LQFP100

HC32F460KETA-LQFP64

HC32F460KEUA-QFN60TR

HC32F460JETA-LQFP48

HC32F460JEUA-QFN48TR

# **Data Sheet**



### **Product Features**

ARM Cortex-M4 32bit MCU+FPU, 210DMIPS, 512KB Flash, 192KB SRAM, USB FS (Device/Host) 14 Timers, 2 ADCs, 1 PGA, 3 CMPs, 20 communication interfaces

- ARMv7-M architecture 32bit Cortex-M4 CPU with integrated FPU, MPU, DSP with SIMD instruction support, and CoreSight standard debug unit. Maximum operating main frequency of 168MHz, Flash acceleration unit for 0-wait program execution, up to 210DMPIS or 485Coremarks computing performance
- Built-in memory
  - Up to 512KByte Flash memory with security protection and data encryption\*1
  - Up to 192KByte of SRAM, including 32KByte of 168MHz single-cycle access highspeed RAM, 4KByte of Retention RAM
- Power, clock, reset management
  - System power supply (Vcc) 1.8-3.6V
  - 6 independent clock sources:
     external master clock crystal (424MHz)external sub crystal (32.768kHz)rternahigh
     speed RC16/20MHz)nternal medium speed RC
     (8MHz)nternal low speed RC (32kHz)
     internal WDT dedicated RC
     (10kHz)
  - Includes Power-On Reset (POR) Low
     Voltage Detect Reset
     ( 14 reset sources, including LVDR, Port
     Reset (PDR), each with individual flag bits
- Low power operation
  - Peripheral functions can be turned off or on independently
  - Three low-power modes: Sleep, Stop, Power down
     Mode
  - Run mode and Sleep mode support highspeed mode, ultra-low speed mode between the switch
  - Standby power consumption: Stop mode typ.90uA@25°CPower down mode as low as 1.8uA@25°C

- Power down mode, supports 16 port wake-up, ultra-low power RTC operation, 4KByte SRAM for data retention
- Standby fast wake-up, Stop mode wake-up as fast as 2us, Power down mode wake-up as fast as 20us
- Peripheral operation support system significantly reduces CPU processing load
  - 8-channel dual host DMAC



- DMAC for USBFS
- Data Computing Unit (DCU)
- Support peripheral event inter-triggering (AOS)
- High Performance Simulation
  - 2 independent 12bit 2MSPS ADCs
  - 1 programmable gain amplifier (PGA)
  - 3 independent voltage comparators (CMP) supporting 2 internal reference voltages
  - 1 on-chip temperature sensor (OTS)
- Timer
  - 3 multifunctional 16bit PWM timers (Timer6)
  - 3 x 16bit Motor PWM Timer (Timer4)
  - 6 x 16bit Universal Timer (TimerA)
  - 2 x 16bit base Timer (Timer0)
- Maximum 83 GPIOs
  - CPU single-cycle access, 100MHz maximum output
  - Maximum 81 5V-tolerant IO
- Up to 20 communication interfaces
  - 3 I2C, SMBus protocol support
  - 4 USARTs, supports ISO7816-3 protocol
  - 4 SPI
  - 4 I2S, built-in audio PLL supports audiolevel sampling accuracy
  - 2 SDIOs supporting SD/MMC/eMMC formats
  - 1 QSPI with 168Mbps high-speed access (XIP)
  - 1 CAN, supports ISO 11898-1 standard protocol
  - 1 USB 2.0 F S built-in PHY Device/Host support
- Data encryption function
  - AES/HASH/TRNG
- Package form:

LQFP100 (14×14mm) LQFP64 (10×10mm) QFN60 (7×7mm) QFN48 (5×5mm) LQFP48 (7×7mm)

<sup>\*</sup>I: For specific specifications of Flash security protection and data encryption, please consult the sales window.



# **Preface Introduction**

- ("HDSC") reserves the right to make changes, corrections, enhancements, or modifications to HDSC products and/or this document at any time and without notice. HDSC products are sold under the terms and conditions of sale set forth in the basic purchase and sale contract.
- The user is solely responsible for the selection and use of HDSC products and HDSC does not provide service support and assumes no responsibility for HDSC products used by the user on its own or designated third party products.
- > HDSC hereby acknowledges that no license to any intellectual property is granted, express or implied.
- Resale of HDSC products on terms different from those set forth herein shall void any warranty commitment by HDSC with respect to such products.
- ➤ Any graphics or words bearing the "®" or "™" logo are trademarks of HDSC. All other product or service names displayed on HDSC products are the property of their respective owners.
- > The information in this notice supersedes and replaces the information in the previous version.

©2019 UW Semiconductors Limited - All Rights Reserved



# **Table of Contents** Table of Contents

| Pro | oduct F  | eatures    |                                              | 2                 |
|-----|----------|------------|----------------------------------------------|-------------------|
| Pre | eface    |            |                                              | Introduction      |
| 3   |          |            |                                              |                   |
| Tal | ole of C | Contents   |                                              | Γable of Contents |
| 4   |          |            |                                              |                   |
| 1   | Intro    | duction (C | Overview)                                    | 10                |
|     | 1.1      | Mode       | el naming rules                              | 11                |
|     | 1.2      |            | el Function Comparison Table                 |                   |
|     | 1.3      | Funct      | tional Block Diagram                         | 14                |
|     | 1.4      | Funct      | tion Profile                                 |                   |
|     |          | 1.4.1      | CPU                                          |                   |
|     |          | 1.4.2      | Bus Architecture (BUS)                       |                   |
|     |          | 1.4.3      | Reset Control (RMU)                          |                   |
|     |          | 1.4.4      | Clock Control (CMU)                          |                   |
|     |          | 1.4.5      | Power Control (PWC)                          |                   |
|     |          | 1.4.6      | Initialization Configuration (ICG)           |                   |
|     |          | 1.4.7      | Embedded FLASH Interface (EFM)               |                   |
|     |          | 1.4.8      | Internal SRAM (SRAM)                         |                   |
|     |          | 1.4.9      | General Purpose IO (GPIO)                    |                   |
|     |          | 1.4.10     | Interrupt Control (INTC)                     | 19                |
|     |          | 1.4.11     | Keyboard scanning (KEYSCAN)                  | 20                |
|     |          | 1.4.12     | Storage Protection Unit (MPU)                |                   |
|     |          | 1.4.13     | DMA Controller (DMA)                         | 20                |
|     |          | 1.4.14     | Voltage Comparator (CMP)                     | 21                |
|     |          | 1.4.15     | Analog to Digital Converters (ADC)           | 21                |
|     |          | 1.4.16     | Temperature Sensor (OTS)                     | 22                |
|     |          | 1.4.17     | Advanced Control Timer (Timer6)              | 22                |
|     |          | 1.4.18     | Universal control timer (Timer4)             | 23                |
|     |          | 1.4.19     | Emergency Brake Module (EMB)                 | 23                |
|     |          | 1.4.20     | General purpose timer (TimerA)               | 23                |
|     |          | 1.4.21     | General purpose timer (Timer0)               | 23                |
|     |          | 1.4.22     | Real Time Clock (RTC)                        | 24                |
|     |          | 1.4.23     | Watchdog Counter (WDT)                       | 24                |
|     |          | 1.4.24     | Serial communication interface (USART)       | 24                |
|     | <b>(</b> | 1.4.25     | Integrated Circuit Bus (I2C)                 | 24                |
|     |          | 1.4.26     | Serial Peripheral Interface (SPI)            | 24                |
|     |          | 1.4.27     | Quad Wire Serial Peripheral Interface (QSPI) | 25                |
|     |          | 1.4.28     | Integrated circuit built-in audio bus (I2S)  | 25                |
|     |          | 1.4.29     | CAN communication interface (CAN)            | 25                |
|     |          | 1.4.30     | USB 2.0 Full Speed Module (USB FS)           | 26                |
|     |          | 1.4.31     | Cryptographic Coprocessing Module (CPM)      | 26                |
|     |          | 1.4.32     | Data Computing Unit (DCU)                    | 26                |



|   |       | 1.4.33     | CRC Calculation Unit (CRC)                                            | 26         |
|---|-------|------------|-----------------------------------------------------------------------|------------|
|   |       | 1.4.34     | SDIO Controller (SDIOC)                                               | 27         |
| 2 | Pin C | Configurat | ion and Function (Pinouts)                                            | 28         |
|   | 2.1   | Pin C      | onfiguration Diagram                                                  | 28         |
|   | 2.2   | Pin Li     | st                                                                    | 32         |
|   | 2.3   | Pin F      | unction Description                                                   | 40         |
|   | 2.4   | Pin U      | sage Instructions                                                     | 43         |
| 3 | Elect | rical Char | acteristics                                                           | 44         |
|   | 3.1   | Parar      | meter Conditions                                                      |            |
|   |       | 3.1.1      | Minimum and maximum values                                            | 44         |
|   |       | 3.1.2      | Typical value                                                         | 44         |
|   |       | 3.1.3      | Typical Curve                                                         | 44         |
|   |       | 3.1.4      | Load capacitance                                                      | 44         |
|   |       | 3.1.5      | Pin input voltage                                                     | 45         |
|   |       | 3.1.6      | Power Solutions                                                       |            |
|   |       | 3.1.7      | Current consumption measurement                                       | 49         |
|   | 3.2   | Abso       | lute maximum rating                                                   | 50         |
|   | 3.3   | Work       | ing conditions                                                        | 52         |
|   |       | 3.3.1      | General working conditions                                            | 52         |
|   |       | 3.3.2      | Operating conditions at power-up / power-down                         | 53         |
|   |       | 3.3.3      | Reset and power control module features                               | 54         |
|   |       | 3.3.4      | Supply current characteristics                                        | 56         |
|   |       | 3.3.5      | Electrical sensitivity                                                | 64         |
|   |       |            | .5.1 Electrostatic Discharge (ESD)                                    |            |
|   |       | 3.3        | .5.2 Static Latch-up                                                  | 64         |
|   |       | 3.3.6      | Low Power Mode Wake-Up Timing                                         | 65         |
|   |       | 3.3.7      | I/O Port Characteristics                                              | 66         |
|   |       | 3.3.8      | USART Interface Features                                              | 70         |
|   |       | 3.3.9      | I2S Interface Features                                                | 71         |
|   |       | 3.3.10     | I2C Interface Features                                                | 73         |
|   |       | 3.3.11     | SPI Interface Features                                                | 74         |
|   |       | 3.3.12     | USB Interface Features                                                | 76         |
| 1 |       | 3.3.13     | PLL Features                                                          | 78         |
|   |       | 3.3.14     | JTAG interface features                                               | 79         |
|   | R     | 3.3.15     | External Clock Source Characteristics                                 | 80         |
|   |       | 3.3        | .15.1 High-speed external user clock generated by external source     | 80         |
|   |       | 3.3        | .15.2 Crystal / Ceramic Resonator Generates High Speed External Clock | 81         |
|   |       | 3.3        | .15.3 Low-speed external clock generated by crystal/ceramic resonator | 82         |
|   |       | 3.3.16     | Internal Clock Source Characteristics                                 | 83         |
|   |       | 3.3        | .16.1 Internal High Speed (HRC)                                       | Oscillator |
|   |       |            | 83                                                                    |            |
|   |       | 3.3        | .16.2 Internal medium speed (MRC) oscillator                          | 83         |
|   |       | 3.3        | .16.3 Internal low speed (LRC) oscillator                             | 84         |



|     | 3.3              | 3.16.4 SWDT Dedicated Internal Low Speed (SWDTLRC) | Oscillator |
|-----|------------------|----------------------------------------------------|------------|
|     |                  | 84                                                 |            |
|     | 3.3.17           | 12-bit ADC Features                                | 84         |
|     | 3.3.18           | DAC Characteristics                                | 92         |
|     | 3.3.19           | Comparator Features                                | 92         |
|     | 3.3.20           | Gain Adjustable Amplifier Characteristics          | 93         |
|     | 3.3.21           | Temperature sensor                                 | 94         |
|     | 3.3.22           | Memory Features                                    | 95         |
|     | 3.3              | 3.22.1 Flash Memory                                | 95         |
| 4   | Package Size     | Diagram                                            | 96         |
| 5   |                  | mation                                             |            |
| Re  | vised content    |                                                    | 102        |
| ۸/۵ | reion Informatio | on & Contact                                       | 103        |



# **Table of Contents**

| Table 1-1                                             | Model Function Comparison Table                |
|-------------------------------------------------------|------------------------------------------------|
| 13                                                    |                                                |
| Table 2-1                                             | Pin Function Table                             |
| 36                                                    |                                                |
| Table 2-2                                             | Func32~63 Table                                |
| 37                                                    |                                                |
| Table 2-3                                             | Port Configuration                             |
| 38                                                    |                                                |
| Table 2-4                                             | General Function Specifications                |
| 39                                                    |                                                |
| Table 2-5                                             |                                                |
| 42                                                    |                                                |
| Table 2-6                                             | Pin Usage Description                          |
| 43                                                    |                                                |
| Table 3-1                                             |                                                |
| 49                                                    |                                                |
| Table 3-2                                             | Voltage Characteristics                        |
| 50                                                    |                                                |
| Table 3-3                                             |                                                |
| 51                                                    |                                                |
| Table 3-4                                             | Thermal Characteristics                        |
| 51                                                    |                                                |
| Table 3-5                                             |                                                |
| 52                                                    |                                                |
| Table 3-6 Operating conditions at power-up/power-down | 53                                             |
| Table 3-7                                             | Reset and Power Control Module Characteristics |
| 55                                                    |                                                |
| Table 3-8                                             | High-speed mode current consumption 1          |
| 57                                                    |                                                |
| Table 3-9                                             | High-speed mode current consumption 2          |
| 58                                                    |                                                |
| Table 3-10                                            | High-speed mode current consumption 3          |
| 59                                                    |                                                |
| Table 3-11                                            | Ultra-low speed mode current consumption 1     |
| 60                                                    |                                                |
| Table 3-12                                            | Ultra-low speed mode current consumption 2     |
| 61                                                    |                                                |
| Table 3-13                                            | Low Power Mode Current Consumption             |
| 63                                                    |                                                |
| Table 3-14                                            | Analog Module Current Consumption              |
| 63                                                    |                                                |
| Table 3-15                                            | ESD Characteristics                            |
|                                                       |                                                |



| 64                                                 |                                                |
|----------------------------------------------------|------------------------------------------------|
| Table 3-16                                         | Static Latch-up Characteristics                |
| 64                                                 |                                                |
| Table 3-17                                         | Low Power Mode Wake-up Time                    |
| 65                                                 |                                                |
| Table 3-18I/O Static Characteristics               | 66                                             |
| Table 3-19                                         | Output Voltage Characteristics                 |
| 67                                                 |                                                |
| Table 3-20                                         | I/O AC Characteristics                         |
| 68                                                 |                                                |
| Table 3-21                                         | USART AC Timing                                |
| 70                                                 |                                                |
| Table 3-22                                         | I2S Electrical Characteristics                 |
| 71                                                 |                                                |
| Table 3-23                                         |                                                |
| 73                                                 |                                                |
| Table 3-24                                         | SPI Electrical Characteristics                 |
| 74                                                 |                                                |
| Table 3-25                                         |                                                |
| 76                                                 |                                                |
| Table 3-26                                         | USB Low-Speed Electrical Characteristics       |
| 77                                                 |                                                |
| Table 3-27                                         | PLL Key Performance Indicators                 |
| 78                                                 |                                                |
| Table 3-28                                         | JTAG Interface Features                        |
| 79                                                 |                                                |
| Table 3-29                                         | High-Speed External User Clock Characteristics |
| 80                                                 |                                                |
| Table 3-30XTAL 4-24 MHz Oscillator Characteristics | 81                                             |
| Table 3-31                                         | XTAL32 Oscillator Characteristics              |
| 82                                                 |                                                |
| Table 3-32HRC Oscillator Characteristics           | 83                                             |
| Table 3-33                                         | MRC Oscillator Characteristics                 |
| 83                                                 |                                                |

HC32F460 Series Data Sheet Page 8 of 134



| Table 3-34                  | LRC Oscillator Characteristics                                        |
|-----------------------------|-----------------------------------------------------------------------|
| 84                          |                                                                       |
|                             |                                                                       |
| 84                          |                                                                       |
|                             | stics                                                                 |
| Table 3-37ADC Character     | istics (continued)85                                                  |
| Table 3-38                  | ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Accuracy @ fADC=60MHz         |
| 86                          |                                                                       |
| Table 3-39                  | ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Accuracy @ fADC=30MHz         |
| 86                          |                                                                       |
| Table 3-40                  | ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Accuracy @ fADC=30MHz         |
| 86                          |                                                                       |
|                             | ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Accuracy @ fADC=8MHz          |
| 87                          |                                                                       |
| Table 3-42                  | ADC1_IN12~15, ADC12_IN8~11 Input Channel Accuracy @ fADC=60MHz        |
| 87                          |                                                                       |
| Table 3-43                  | ADC1_IN12~15, ADC12_IN8~11 Input Channel Accuracy @ fADC=30MHz        |
| 87                          |                                                                       |
| Table 3-44                  | ADC1_IN12~15, ADC12_IN8~11 Input Channel Accuracy @ fADC=30MHz        |
| 88                          |                                                                       |
| Table 3-45                  | ADC1_IN12~15, ADC12_IN8~11 Input Channel Accuracy @ fADC=8MHz         |
| 88                          |                                                                       |
| Table 3-46 ADC1_IN0~3, ADC  | c12_IN4~IN7 Input Channel Input Channel Dynamic Accuracy @ fADC=60MHz |
| 88                          |                                                                       |
| Table 3-47 ADC1_IN0~3, ADC  | c12_IN4~IN7 Input Channel Input Channel Dynamic Accuracy @ fADC=30MHz |
| 89                          |                                                                       |
| Table 3-48 . ADC1_IN0~3, AD | C12_IN4~IN7 Input Channel Input Channel Dynamic Accuracy @ fADC=8MHz  |
| 89                          |                                                                       |
| Table 3-49DAC Characteris   | stics                                                                 |
| Table 3-50                  |                                                                       |
| 92                          |                                                                       |
|                             |                                                                       |
| 94                          |                                                                       |
| Table 3-52                  |                                                                       |
| 94                          | Tomporatare contact characteristics                                   |
|                             | Flash Memory Characteristics                                          |
| 95                          | Tradit Wellioty Characteristics                                       |
|                             | Flash Programmed Erase Time                                           |
| 95                          | Tidairi Togrammed Erase Time                                          |
|                             | Flash memory rewritable times and data retention period               |
| 95                          | riasii memory rewitable times and data retention penod                |
|                             | LQFP100L 14 x 14 mm 100-pin package mechanical data                   |
| 96                          | LQI F 100L 14 X 14 IIIII 100-piii package mechanicai data             |
| Table 4-2                   | LQFP64L 10 x 10 mm 64-pin package mechanical data                     |
|                             | • • •                                                                 |

HC32F460 Series Data Sheet Page 9 of 134



| 97        |                                                 |
|-----------|-------------------------------------------------|
| Table 4-3 | LQFP48L 7 x 7 mm 48-pin package mechanical data |
| 98        |                                                 |
| Table 4-4 | QFN60L 7 x 7 mm 60-pin package mechanical data  |
| 99        |                                                 |
| Table 4-5 | QFN48L 5 x 5 mm 48-pin package mechanical data  |
| 100       |                                                 |

HC32F460 Series Data Sheet Page 10 of



# **Figure Catalog**

| Figure 1-1       | Function Block Diagram                                    |
|------------------|-----------------------------------------------------------|
| 14               |                                                           |
| Figure 2-1       | Package diagram                                           |
| 31               |                                                           |
| Figure 3-1Pin lo | ad condition (left) and input voltage measurement (right) |
| 45               |                                                           |
| Figure 3-2       |                                                           |
| 46               |                                                           |
| Figure 3-3       |                                                           |
| 47               | A 1/3                                                     |
| Figure 3-4       | Power supply scheme (HC32F460ZEUA-QFN60TR,                |
| 48               |                                                           |
| Figure 3-5       | Current consumption measurement scheme                    |
| 49               |                                                           |
| Figure 3-6       |                                                           |
| 69               |                                                           |
| Figure 3-7       |                                                           |
| 70               |                                                           |
| Figure 3-8       |                                                           |
| 70               |                                                           |
| Figure 3-9       |                                                           |
| 72               |                                                           |
| Figure 3-10      |                                                           |
| 72               |                                                           |
| Figure 3-11      |                                                           |
| 73               |                                                           |
| Figure 3-12      |                                                           |
| 74               |                                                           |
| _                |                                                           |
| 75               |                                                           |
|                  | USB Rise/Fall Time and Cross Over Voltage Definition      |
| 77               |                                                           |
|                  |                                                           |
| 79               |                                                           |
|                  |                                                           |
| 80               |                                                           |
|                  | with 8 MHz Crystal                                        |
| 81               |                                                           |
|                  | ADC Accuracy Characteristics                              |
| 90               |                                                           |
|                  | Using ADC                                                 |
| 91               |                                                           |



| Figure 3-20 | Example of decoupling power supply and reference power supply |
|-------------|---------------------------------------------------------------|
| 91          |                                                               |
| Figure 4-1  | LQFP100L 14 x 14 mm 100-pin package outline                   |
| 96          |                                                               |
| Figure 4-2  | LQFP64L 10 x 10 mm 64-pin package outline                     |
| 97          |                                                               |
| Figure 4-3  | LQFP48L 7 x 7 mm 48-pin package outline                       |
| 98          |                                                               |
| Figure 4-4  |                                                               |
| 99          |                                                               |
| Figure 4-5  | QFN48L 5 x 5 mm 48-pin package outline                        |
| 100         |                                                               |

HC32F460 Series Data Sheet Page 12 of



#### 1 Overview

The HC32F460 series is a high-performance MCU based on the ARM® Cortex®-M4 32bit RISC CPU operating at up to 168 MHz. The Cortex-M4 core integrates a floating-point unit (FPU) and DSP for single-precision floating-point arithmetic operations, supports all ARM single-precision data processing instructions and data types, and supports the full DSP instruction set. The core integrates the MPU unit and overlays the DMAC dedicated MPU unit to ensure the security of system operation. The HC32F460 series integrates high-speed on-chip memory, including up to 512KB of Flash and p to 192KB of SRAM, and an integrated Flash access acceleration unit for single-cycle program execution on Flash by the CPU. The polled bus matrix supports multiple bus hosts to access memory and peripherals simultaneously to improve operational performance. Bus hosts include CPU, DMA, USB dedicated DMA, etc. In addition to the bus matrix, it supports data transfer between peripherals, basic arithmetic operations and event triggering, which can significantly reduce the CPU's transaction processing load. The HC32F460 series integrates a rich set of peripheral functions. It includes two independent 12bit 2MSPS ADCs, one gain adjustable PGA, three voltage comparators (CMP) three multi-function 16bit PWM timers (Timer6) supporting 6 complementary PWM outputs, three motor PWM timers (Timer4) supporting 18 complementary PWM outputs, six 16bit general-purpose timers (TimerA) supports 3 3-phase quadrature coded inputs and 48 Duty independent configurable PWM outputs, 11 serial communication interfaces (I2C/UART/SPI) 1 QSPI interface, 1 CAN, 4 I2S supporting audio PLL, 2 SDIO, 1 USB FS Controller with on-chip FS PHY supporting Device/ Host. The HC32F460 series supports wide voltage range (1.8-3.6V) wide temperature range (-40-105°C) and various low power modes witch between high speed mode (8-168MHz) and ultra low speed mode (<8MHz)n Run mode and Sleep mode. Supports fast wake-up in low-power mode, up to 2us for STOP mode and up to 20us for Power Down mode.

# **Typical Applications**

HC32F460 Series Data Sheet Page 13 of



The HC32F460 series is available in 48pin, 64pin, 100pin LQFP packages and 48pin, 60pin QFN packages for high performance motor inverter control, smart hardware, IoT connectivity modules, etc.

HC32F460 Series Data Sheet Page 14 of



# 1.1 Model naming rules

A: -40-85°C

| HC32 F 4 6 0 J E U A               |
|------------------------------------|
| <u>UW Semiconductors</u>           |
| CPU bit width 32: 32bit            |
| Product Type                       |
| F: Universal                       |
| CPU Type                           |
| 4: Cortex-M4                       |
| Performance Identifier             |
| 6: High Performance                |
| Function Configuration Identifier  |
| 0: Configuration 1                 |
| Number of pins<br>K: 60Pin / 64Pin |
| P: 100Pin                          |
| FLASH Capacity                     |
| E: 512KB                           |
| Package Type                       |
|                                    |
| T: LQFP<br>U: QFN                  |
| Ambient temperature range          |
| B: -40-105°C                       |

HC32F460 Series Data Sheet Page 15 of



# 1.2 Model Function Comparison Table

| Functi on  Number |                    | Product Model |              |              |              |  |  |
|-------------------|--------------------|---------------|--------------|--------------|--------------|--|--|
|                   |                    | HC32F460PETB  | HC32F460KETA | HC32F460KEUA | HC32F460JExx |  |  |
|                   |                    | 400           | 04           | 00           | 40           |  |  |
|                   | pins               | 100           | 64           | 60           | 48           |  |  |
|                   | mber               | 83            | 52           | 50           | 38_          |  |  |
|                   | SPIOs              |               | 3_           |              |              |  |  |
| Number of         | 5V Tolerant GPIOs  | 81            | 50           | 48           | 36           |  |  |
| Pad               | kage               | LQFP          | LQFP         | QFN          | LQFP/QFN     |  |  |
| Ten               | nperat             | -40-105°C     |              | -40-85°C     |              |  |  |
| ure               | range              |               |              |              |              |  |  |
| Power range       | supply voltage     |               | 1.8 ~ 3      | 3.6 V        |              |  |  |
|                   | Flash              |               | 512          | КВ           |              |  |  |
| Memory            | OTP                | 960Byte       |              |              |              |  |  |
|                   | SRAM               |               | 192KB        |              |              |  |  |
| D                 | MA                 |               | 2unit *      | * 4ch        |              |  |  |
| Extern            | al port interrupts |               | EIRQ * 16ve  | ec + NMI *   |              |  |  |
|                   |                    |               | 10           | h            |              |  |  |
|                   | UART               |               | 4ch          | (2)          |              |  |  |
| Communcation      | SPI                | 4ch (3)       |              |              |              |  |  |
| Interfaces        | I2C                |               | 3ch          | (2)          |              |  |  |
| (The              | I2S                |               | 4ch          | (3)          |              |  |  |
| minimum           | CAN                |               | 1ch          | (2)          |              |  |  |
| number of         | QSPI               |               | 1ch          | (6)          |              |  |  |
| IOs required      | SDIO               |               | 2ch          | (3)          |              |  |  |
| per ch is in      | USB-FS             |               | 1ch          | (2)          |              |  |  |
| parentheses)      |                    |               |              |              |              |  |  |
| _                 | Timer0             |               | 2ur          | nit          |              |  |  |
|                   | TimerA             | 6unit         |              |              |              |  |  |
|                   | Timer4             | 3unit         |              |              |              |  |  |
| Timers            | Timer6             | 3unit         |              |              |              |  |  |
|                   | WDT                | 1ch           |              |              |              |  |  |
|                   | SWDT               | 1ch           |              |              |              |  |  |
|                   | RTC                | 1ch           |              |              |              |  |  |
|                   | 12bit ADC          | 2unit , 16ch  | 2unit, 16ch  | 2unit, 15ch  | 2unit, 10ch  |  |  |
| Analog            | Analog PGA 1ch     | h             |              |              |              |  |  |
|                   | CMP                |               | 30           | h            |              |  |  |
|                   | OTS                |               | $\sqrt{}$    |              |              |  |  |
| AES128            |                    | √             |              |              |              |  |  |
| HASH (SHA256)     |                    | $\checkmark$  |              |              |              |  |  |

HC32F460 Series Data Sheet Page 16 of



| TRNG                     | √            |
|--------------------------|--------------|
| Frequency Monitoring     | √            |
| Module (FCM)             |              |
| Programmable voltage     | $\checkmark$ |
| detection function (PVD) |              |
| Debuggin                 | SWD          |
| g                        |              |
| Interface                |              |

HC32F460 Series Data Sheet Page 17 of



JTAG

Table 1-1 Model Function Comparison Table



HC32F460 Series Data Sheet Page 18 of



# 1.3 Functional Block Diagram



Figure 1-1 Functional Block Diagram

HC32F460 Series Data Sheet Page 19 of



### 1.4 Function Introduction

#### 1.4.1 CPU

The HC32F460 series integrates the latest generation of embedded ARM® Cortex®-M4 with FPU 32bit lean instruction CPU, which provides excellent computing performance and fast interrupt response with low pin count and low power consumption. The CPU supports DSP instructions for efficient signal processing operations and complex algorithms. The single point precision FPU unit avoids instruction saturation and accelerates software development.

### 1.4.2 Bus Architecture (BUS)

The master system consists of a 32-bit multi-layer AHB bus matrix that interconnects the following host and slave buses Host Bus

- Cortex-M4F Core CPUI Bus, CPUD Bus, CPUS Bus
- System DMA\_1 bus, System DMA\_2 bus
- USB DMA Bus

#### Slave Bus

- Flash ICODE Bus
- Flash DCODE Bus
- Flash MCODE bus (bus for hosts other than the CPU to access Flash)
- SRAMH bus (SRAMH 32kB)
- SRAMA bus (SRAM1 64KB)
- SRAMB bus (SRAM2 64KB, SRAM3 28KB, Ret\_SRAM 4KB)
- APB1 Peripheral Bus (EMB/Timers/SPI/USART/I2S)
- APB2 Peripheral Bus (Timers/SPI/USART/I2S)
- APB3 Peripheral Bus (ADC/PGA/TRNG)
- APB4 Peripheral Bus (FCM/WDT/CMP/OTS/RTC/WKTM/I2C)
- AHB1 Peripheral bus (KEYSCAN/INTC/DCU/GPIO/SYSC)
- AHB2 Peripheral Bus (CAN/SDIOC)
- AHB3 Peripheral Bus (AES/HASH/CRC/USB FS)

HC32F460 Series Data Sheet Page 20 of



- AHB4 Peripheral Bus (SDIOC)
- AHB5 Peripheral Bus (QSPI)

With the help of the bus matrix, efficient concurrent access from the host bus to the slave bus is possible.

#### 1.4.3 Reset control (RMU)

The chip is configured with 14 reset methods.

- Power-On Reset (POR)
- NRST Pin Reset (NRST)
- Undervoltage Reset (BOR)
- Programmable Voltage Detect 1 Reset (PVD1R)
- Programmable voltage detection 2 reset (PVD2R)
- Watchdog Reset (WDTR)
- Dedicated watchdog reset (SWDTR)
- Power-down wake-up reset (PDRST)
- Software Reset (SRST)
- MPU Error Reset (MPUR)
- RAM Parity Reset (RAMPR)
- RAMECC reset (RAMECCR)
- Clock abnormal reset (CKFER)
- External high-speed oscillator abnormal stop reset (XTALER)

## 1.4.4 Clock Control (CMU)

The clock control unit provides clock functions for a range of frequencies, including: an external high-speed oscillator, an external low-speed oscillator, two PLL clocks, an internal high-speed oscillator, an internal medium-speed oscillator, an internal low-speed oscillator, a SWDT dedicated internal low-speed oscillator, clock prescaler, clock multiplexing, and clock gating circuitry.

The Clock Control Unit also provides a clock frequency measurement function (FCM)

The clock frequency measurement circuit uses the measurement reference clock to

monitor and measure the measurement object clock. An interrupt or reset occurs when

HC32F460 Series Data Sheet



the set range is exceeded.

The AHB, APB and Cortex-M4 clocks are all derived from the system clock, which can be sourced from a choice of six clock sources:

HC32F460 Series Data Sheet Page 22 of



- 1) External high-speed oscillator (XTAL)
- 2) External low-speed oscillator (XTAL32)
- 3) MPLL Clock (MPLL)
- 4) Internal high-speed oscillator (HRC)
- 5) Internal medium speed oscillator (MRC)
- 6) Internal low speed oscillator (LRC)

The system clock can run at a maximum frequency of 168MHz.SWDT has a separate clock source: SWDT dedicated internal low-speed oscillator (SWDTLRC) The Real Time Clock (RTC) uses an external low-speed oscillator or an internal low-speed oscillator as clock source. 48MHz clock for USB-FS, optional system clock, MPLL, UPLL as clock source for I2S communication clock.

For each clock source, it can be turned on and off individually when not in use to reduce power consumption.

### 1.4.5 Power Control (PWC)

The power controller is used to control the power supply, switching, and detection of multiple power domains of the chip in multiple operation modes and low power modes. The power controller consists of a power consumption control logic (PWC), and a power supply voltage detection unit (PVD).

The chip operates from 1.8 V to 3.6 V. The voltage regulator (LDO) supplies power to the VDD and VDDR domains, and the VDDR voltage regulator (RLDO) supplies power to the VDDR domain in power-down mode. The chip provides two operating modes, high speed and ultra-low speed, and three low power modes, sleep, stop and power down, through the power control logic (PWC).

The power supply voltage detection unit (PVD) provides power-on reset (POR), power-down reset (PDR), under-voltage reset (BOR), programmable voltage detection 1 (PVD1), programmable voltage detection 2 (PVD2), etc. Among them, POR, PDR, BOR control the chip reset action by detecting the VCC voltage. PVD2 generates reset or interrupt by detecting VCC voltage or external input detection voltage, and generates reset or interrupt by register selection.

HC32F460 Series Data Sheet Page 23 of



The VDDR area can maintain power through RLDO after the chip enters power-down mode, ensuring that the real-time clock module (RTC) and wake-up timer (WKTM) can continue to operate and maintain data in the 4KB low-power SRAM (Ret-SRAM). The analog module is equipped with dedicated power supply pins to improve analog performance.

# 1.4.6 Initialization Configuration (ICG)

After the chip reset is released, the hardware circuit will read the FLASH address 0x00000400H~0x0000041FH (where

HC32F460 Series Data Sheet Page 24 of



0x00000408~0x0000041F is the reserved function address, the 24byte address needs to be set by the user to ensure the chip action is normal) to load the data into the initialization configuration register, the user needs to program or erase the FLASH sector 0 to modify the initialization configuration register.

#### 1.4.7 Embedded FLASH Interface (EFM)

The FLASH interface provides access to FLASH via AHB I-CODE and D-CODE to perform programming, erase and full erase operations on FLASH; accelerates code execution through instruction prefetch and cache mechanisms.

#### Main features:

- 512KByte FLASH space
- I-CODE Bus 16Byte Prefetch
- Shared 64 caches (1Kbyte) on the I-CODE and D-CODE buses
- Provides 960Bbyte One Time Programming Area (OTP)
- Supports low-power read operations
- Support guide exchange function
- Support security protection and data encryption\*1
  - \*1: For specific specifications of Flash security protection and data encryption, please consult the sales window.

# 1.4.8 Internal SRAM (SRAM)

This product has 4KB power-down mode retention SRAM (Ret\_SRAM) and 188KB system SRAM

(SRAMH/SRAM1/ SRAM2/SRAM3)

SRAM can be accessed by byte, half-word (16-bit), or full-word (32-bit). Read and write operations are performed at CPU speed, with the possibility of inserting wait cycles.

Ret\_SRAM provides 4KB of data retention space in power down mode.

SRAM3 with ECC checking (Error Checking and Correcting) ECC checking is to correct one error and check two errors; SRAMH/SRAM1/SRAM2/Ret\_SRAM with parity checking

HC32F460 Series Data Sheet Page 25 of



(Even-parity check) with one check bit per byte of data.

# 1.4.9 General Purpose IO (GPIO)

GPIO Key Features:

HC32F460 Series Data Sheet Page 26 of



- 16 I/O pins per port group, may be less than 16 depending on actual configuration
- Support pull-up
- Support push-pull, open-drain output mode
- Supports high, medium and low drive modes
- Inputs supporting external interrupts
- Support I/O pin peripheral function multiplexing, up to 16 selectable multiplexed functions per I/O pin, up to 64 selectable functions for some I/Os
- Each I/O pin can be programmed independently
- Each I/O pin can be selected to have 2 functions active at the same time (2 output functions active at the same time are not supported)

## 1.4.10 Interrupt Control (INTC)

The functions of the interrupt controller (INTC) are to select interrupt event requests as interrupt inputs to the NVIC to wake up the WFI, and as event inputs to wake up the WFE. select interrupt event requests as wake-up conditions for low-power modes (sleep mode and stop mode); interrupt control functions for the external pins NMI and EIRQ; and interrupt/event selection functions for software interrupts.

#### Main specifications:

- 1) NVIC interrupt vectors: Please refer to 12.3.1 Interrupt Vector Table for the actual number of interrupt vectors used (excluding the 16 interrupt lines of the Cortex™-M4F), each interrupt vector can select the corresponding peripheral interrupt event request according to the Interrupt Select Register. For more information on exceptions and NVIC programming, please refer to Chapter 5: Exceptions and Chapter 8: Nested Vector Interrupt Controllers in the ARM Cortex™-M4F Technical Reference Manual.
- 2) Programmable priority: 16 programmable priority levels (4-bit interrupt priority used)
- Non-maskable interrupts: In addition to the NMI pin as the source of non-maskable interrupts, multiple system interrupt event requests can be independently selected as non-maskable interrupts, and each interrupt event request is equipped with independent enable selection, hang, and clear hang register.

HC32F460 Series Data Sheet Page 27 of



- 4) Equipped with 16 external pin interrupts.
- 5) Configure multiple peripheral interrupt event requests, please refer to the interrupt event request sequence number list for details.
- 6) Equipped with 32 software interrupt event requests.
- 7) The interrupt can wake up the system in sleep mode and stop mode.

HC32F460 Series Data Sheet Page 28 of



### 1.4.11 Keyboard scanning (KEYSCAN)

KEYSCAN module supports keypad row scan, and the combination with external interrupt IRQ can realize key recognition function, which can support 16\*8 keypad array at maximum.

## 1.4.12 Storage Protection Unit (MPU)

The MPU provides protection for memory and can improve system security by blocking unauthorized access. Four host-specific MPU units and one IP-specific MPU unit are built into this product.

The ARM MPU provides CPU access control to the full 4G address space.

The DMA MPU (DMPU) provides DMA\_1/DMA\_2/USB FS DMA control of read and write access to the full 4G address space. The MPU action can be set to ignore/bus error/non-maskable interrupt/reset when an access to the prohibited space occurs.

The IP MPU provides access control to the system IP and security-related IPs when in unprivileged mode.

## 1.4.13 DMA Controller (DMA)

DMA is used to transfer data between memory and peripheral function modules, enabling data exchange between memory, between memory and peripheral function modules, and between peripheral function modules without CPU involvement.

- The DMA bus is independent of the CPU bus and is transmitted according to the AMBA AHB-Lite bus protocol
- 8 independent channels (4 channels each for DMA\_1 and DMA\_2) allowing independent operation of different DMAs

Transfer function

- The start request source for each channel is configured via a separate trigger source selection register
- One block of data is transferred per request
- Data blocks can be as small as 1 data, up to 1024 data
- Each data can be configured as 8bit, 16bit or 32bit

HC32F460 Series Data Sheet Page 29 of



- Up to 65535 transmissions can be configured
- Source and destination addresses can be independently configured as fixed, incremental, decremental, cyclic or jump with specified offsets
- Three types of interrupts can be generated, block transfer completion interrupt, transfer completion interrupt, and transfer error interrupt. Each of these interrupts can be configured to be masked or not. The block transfer completion and transfer completion can be used as event output and as trigger source input for other peripheral modules with hardware trigger function.

HC32F460 Series Data Sheet Page 30 of



- Support chain transfer function, which can transfer multiple data blocks in one request
- Support external events to trigger channel reset
- Can be set to enter module stop state when not in use to reduce power consumption

### 1.4.14 Voltage Comparator (CMP)

The CMP is a peripheral module that compares two analog voltages, INP and INM, and outputs the result of the comparison. The CMP has 3 independent comparison channels, each with 4 input sources for the analog voltages INP and INM. It is possible to select an INP for a single comparison with an INM or to scan multiple INPs with the same INM. The comparison results can be read from registers, output to external pins, and generate interrupts and events.

# 1.4.15 Analog-to-digital converters (ADCs)

The 12-bit ADC is an analog-to-digital converter that uses successive approximation. It has a maximum of 16 analog input channels and can convert both external ports and internal analog signals. These channels can be combined in any sequence for successive scan conversion, and the sequence can be converted in a single, or continuous scan. The ADC module is equipped with an analog watchdog function that monitors the conversion results of any given channel and detects if the user-set threshold value is exceeded.

**ADC Key Features** 

- High Performance
  - Configurable for 12-, 10-, and 8-bit resolution
  - The frequency ratio between the peripheral clock PCLK4 and the A/D converter clock ADCLK can be selected as follows:
    - PCLK4: ADCLK = 1:1, 2:1, 4:1, 8:1, 1:2, 1:4
    - ADCLK can be selected as a PLL asynchronous to the system clock
       HCLK, where the clock source of PCLK4 and ADCLK are fixed as PLL at the same time, and the frequency ratio is 1:1, and the original dividing

HC32F460 Series Data Sheet Page 31 of



#### frequency setting is invalid

- 2MSPS (PCLK4=ADCLK=60MHz, 12-bit, sampling 17 cycles)
- Independent programming of sampling time for each channel
- Independent data register for each channel
- Data register configurable data alignment
- Continuous multiple conversion averaging function

HC32F460 Series Data Sheet Page 32 of



- Analog watchdog to monitor conversion results
- The ADC module can be set to stop when not in use
- Analog input channels
  - Up to 16 external analog input channels
  - 1 internal reference voltage
- Conversion start conditions
  - Software Settings Conversion Start
  - Peripheral peripheral synchronization triggers the start of the transition
  - External pins trigger the start of conversion
- Conversion Mode
  - 2 scan sequences A and B, single or multiple channels can be specified at will
  - Sequence A Single Scan
  - Sequence A Continuous Scan
  - Double sequence scanning, sequence A, B independent selection of trigger source, sequence B priority than A
  - Synchronous mode (for devices with two or three ADCs)
- Interrupt and event signal output
  - Sequence A End of Scan Interrupt EOCA\_INT and Event EOCA\_EVENT
  - Sequence B End of Scan Interrupt EOCB\_INT and Event EOCB\_EVENT
  - Analog watchdog channel comparison interrupt CHCMP\_INT and event
     CHCMP\_EVENT, sequence comparison interrupt SEQCMP\_INT and event
     SEQCMP\_EVENT
  - Each of the above 4 events can initiate DMA

## 1.4.16 Temperature Sensor (OTS)

The OTS can acquire the temperature inside the chip to support reliable operation of the system. After temperature measurement is initiated using software or hardware triggers, the OTS provides a set of temperature-dependent digital quantities that can be calculated using a formula to obtain the temperature value.

HC32F460 Series Data Sheet Page 33 of



# 1.4.17 Advanced Control Timer (Timer6)

The Advanced Control Timer 6 (Timer6) is a 16-bit count width high performance timer that can be used to count different forms of clock waveforms for output for external use. The timer supports both triangle waveform and sawtooth waveform modes.

HC32F460 Series Data Sheet Page 34 of



The Timer6 can generate various PWM waveforms, software synchronous counting and hardware synchronous counting between units, cache function for each reference register, 2-phase quadrature encoding and 3-phase quadrature encoding, and EMB control. Timer6 with 3 units is included in this series.

#### 1.4.18 Universal control timer (Timer4)

The Universal Control Timer 4 (Timer4) is a timer module for three-phase motor control, providing a variety of three-phase motor control solutions for different applications. The timer supports both triangle waveform and sawtooth waveform modes, generates various PWM waveforms, supports cache function, and supports EMB control. This series is equipped with 3 units of Timer4.

## 1.4.19 Emergency Brake Module (EMB)

The emergency brake module is to notify the timer when certain conditions are met so that the timer stops outputting PWM to the external motor.

Function module for signals, the following events are used to generate notifications:

- External port input level change
- PWM output port level occurs in phase (same high or same low)
- Voltage comparator comparison results
- External oscillator stops oscillating
- Write register software control

## 1.4.20 General purpose timer (TimerA)

Universal Timer A (TimerA) is a timer with 16-bit count width and 8 PWM outputs. The timer supports two waveform modes, triangle waveform and sawtooth waveform, and can generate various PWM waveforms; it supports software synchronous start counting; the comparison reference value register supports cache function; and it supports 2-phase quadrature coding counting and 3-phase quadrature coding counting. This series is equipped with 6 units of TimerA, which can achieve a maximum of 48 PWM outputs.

HC32F460 Series Data Sheet Page 35 of



## 1.4.21 General purpose timer (Timer0)

The general-purpose Timer0 is a basic timer that allows both synchronous counting and asynchronous counting. The timer contains 2 channels and can generate a compare match event during counting. This event can trigger an interrupt or be used as an event output to control other modules, etc. Timer0 of 2 units is installed in this series.

HC32F460 Series Data Sheet Page 36 of



### 1.4.22 Real Time Clock (RTC)

The Real Time Clock (RTC) is a counter that stores time information in BCD code format. It records the specific calendar time from 00 to 99 years. Supports both 12/24 hour time systems and automatically calculates the number of days based on the month and year 28, 29 (leap year) 30 and 31.

## 1.4.23 Watchdog counter (WDT)

There are two watchdog counters, a dedicated watchdog counter (SWDT) to source is a dedicated internal RC (WDTCLK:10KHz) and a general purpose watchdog counter (WDT) to source is PCLK4 To general purpose watchdog are 16-bit decrementing counters used to monitor for software faults resulting from deviations from normal operation of the application due to external disturbances or unforeseen logic conditions.

Both watchdogs support the window function. The window interval can be preset before the count starts, and when the count value is in the window interval, the counter can be refreshed and the count starts again.

## 1.4.24 Serial communication interface (USART)

This product is equipped with four units of the serial communication interface module (USART). The serial communication interface module (USART) enables flexible full-duplex data exchange with external devices; the USART supports a universal asynchronous serial communication interface (UART), clock synchronous communication interface, smart card interface (ISO/IEC7816-3). Supports modem operation (CTS/RTS operation), multi-processor operation.

## 1.4.25 Integrated Circuit Bus (I2C)

This product is equipped with 3 units of Integrated Circuit Bus (I2C), which is used

HC32F460 Series Data Sheet Page 37 of



as an interface between the microcontroller and the I2C serial bus. It provides multimaster mode function and can control all I2C bus protocols and arbitration. Standard mode and fast mode are supported.

# 1.4.26 Serial Peripheral Interface (SPI)

This product is equipped with a 4-channel serial peripheral interface SPI, which supports high-speed full-duplex serial synchronous transmission for easy data exchange with peripheral devices. The user can set the 3-wire/4-wire, master/slave and baud rate range as required.

HC32F460 Series Data Sheet Page 38 of



### 1.4.27 Four-wire serial peripheral interface (QSPI)

The Quad Wire Serial Peripheral Interface (QSPI) is a memory control module used to communicate with serial ROMs with SPI-compatible interfaces. The targets include serial Flash, serial EEPROM and serial FeRAM.

# 1.4.28 Integrated circuitry with built-in audio bus (I2S)

I2S (Inter\_IC Sound Bus) the integrated circuit's built-in audio bus, is dedicated to data transfer between audio devices. This product is equipped with 4 I2S and has the

| Fun                     | Main                                                                                                                                                                                                                                                                                                        |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ctio                    | Feature                                                                                                                                                                                                                                                                                                     |
| n                       | s                                                                                                                                                                                                                                                                                                           |
| Communication method    | <ul> <li>Supports full-duplex and half-duplex communications</li> <li>Supports master mode or slave mode operation</li> </ul>                                                                                                                                                                               |
| Data Format             | <ul> <li>Selectable channel length: 16/32 bit</li> <li>Optional transmission data length: 16/24/32 bits</li> <li>Data shift order: MSB start</li> </ul>                                                                                                                                                     |
| Baud rate               | <ul> <li>8-bit programmable linear prescaler for accurate audio sampling frequency</li> <li>Support sampling frequency 192k, 96k, 48k, 44.1k, 32k, 22.05k, 16k, 8k</li> <li>Output drive clock to drive external audio components at a fixed rate of 256*Fs (Fs is the audio sampling frequency)</li> </ul> |
| I2S protocol<br>support | <ul> <li>I2S Philips Standard</li> <li>MSB Alignment Standards</li> <li>LSB Alignment Standards</li> <li>PCM Standards</li> </ul>                                                                                                                                                                           |
| Data buffering          | Input and output FIFO buffers with 2 words deep and 32 bits wide                                                                                                                                                                                                                                            |
| Clock source            | Internal I2SCLKs (UPLLR/UPLLQ/UPLLP/MPLLR/MPLLQ/MPLLP) can be used; they can also be used by The external clock on the I2S_EXCK pin provides                                                                                                                                                                |
|                         | Congrete an interrupt when the affective appear in the transmit huffer reaches the                                                                                                                                                                                                                          |

## 1.4.29 CAN communication interface (CAN)

This product is equipped with one unit of CAN communication interface module (CAN) and 512Byte of RAM for CAN to store transmit/receive messages. The CAN2.0B protocol according to ISO11898-1 and the TTCAN protocol according to ISO11898-

HC32F460 Series Data Sheet Page 39 of



4 are supported.

HC32F460 Series Data Sheet Page 40 of



## 1.4.30 USB 2.0 Full Speed Module (USB FS)

The USB FS is a dual role (DRD) controller that supports both slave and host functions.

The USB FS supports both full-speed and low-speed transceivers in master mode, while only full-speed transceivers are supported in slave mode.

The USB FS module equipped with this product successfully sends SOF tokens in host mode or successfully receives SOF tokens in slave mode.

SOF events can be generated when a token is generated.

## 1.4.31 Cryptographic Coprocessing Module (CPM)

The Cryptographic Co-Processing Module (CPM) consists of three sub-modules: AES Encryption and Decryption Algorithm Processor, HASH Secure Hash Algorithm, and TRNG True Random Number Generator.

The AES encryption and decryption algorithm processor follows standard data encryption and decryption standards and can perform encryption and decryption operations with 128-bit key length.

The HASH secure hash algorithm is the SHA-2 version of the SHA-256 (Secure Hash Algorithm) which complies with the national standard "FIPS PUB 180-3" published by the National Bureau of Standards and Technology, and can produce 256-bit message digest output for messages up to 2^64 bits in length. message digest output for messages up to 2^64 bits in length.

TRNG True Random Number Generator is a random number generator based on continuous analog noise, providing 64bit random numbers.

## 1.4.32 Data Computing Unit (DCU)

The Data Computing Unit (DCU) is a module that simply processes data without the help of a CPU. Each DCU unit has 3 data registers, and is capable of adding, subtracting, and comparing the size of 2 data, as well as window comparison functions. The product is equipped with 4 DCU units, each of which can perform its own functions independently.



## 1.4.33 CRC Calculation Unit (CRC)

The CRC algorithm of this module follows the definition of ISO/IEC13239 and uses 32-bit and 16-bit CRC respectively.

The generating polynomial is  $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$ . CRC16

The generating polynomial is  $X^{16} + X^{12} + X^5 + 1$ .



### 1.4.34 SDIO Controller (SDIOC)

The SDIO controller is the host in the SD/SDIO/MMC communication protocol. The product has 2 SDIO controllers, each providing a host interface for communication with SD cards supporting SD2.0 protocol, SDIO devices and MMC devices supporting eMMC4.51 protocol. SDIOC features are as follows:

- Support SDSC, SDHC, SDXC format SD cards and SDIO devices
- Supports one-wire (1bit) and four-wire (4bit) SD buses
- Supports one-wire (1bit), four-wire (4bit) and eight-wire (8bit) MMC buses
- With card recognition and hardware write protection

HC32F460 Series Data Sheet Page 43 of



# 2 Pin Configuration and Function (Pinouts)

# 2.1 Pin Configuration Diagram

#### HC32F460PETB-LQFP100



HC32F460 Series Data Sheet Page 44 of



#### HC32F460KETA-LQFP64



HC32F460 Series Data Sheet Page 45 of



#### HC32F460ZEUA-QFN60TR







#### HC32F460JETA-LQFP48 / HC32F460JEUA-QFN48TR



Figure 2-1 Package diagram

HC32F460 Series Data Sheet Page 47 of



# 2.2 Pin List

|             |            |           | LQF  |             |                            |                  |                    | Func0 | Func1   | Func2          | Func3 | Func4                           | Func5           | Func6           | Func7      | Func8 | Func9    | Func10    | Func11 | Func12 | Func13 | Func14   | Func15   | Func16~31 | Func32~63   |
|-------------|------------|-----------|------|-------------|----------------------------|------------------|--------------------|-------|---------|----------------|-------|---------------------------------|-----------------|-----------------|------------|-------|----------|-----------|--------|--------|--------|----------|----------|-----------|-------------|
| LQF<br>P100 | LQF<br>P64 | QFN<br>60 | P/QF | Pin<br>Name | Analog                     | EIRQ/W<br>K UP   | TRACE/JTA<br>G/SWD | GPO   | other   | TIM4           | TIM6  | TIMA                            | TIMA            | EMB,TIMA        | USART/SPI/ | K EY  | SDIO     | USBFS/I2S |        |        | 7      | EVNTPT   | EVENTOUT | -         | Communicati |
|             |            |           | N48  |             |                            |                  | 0,5112             | 0.0   | ou.c.   |                |       | TIMA_3_PW                       |                 | 2.11.2,1.11.11  | QSPI       |       | 35.0     | 035.37.23 |        |        |        |          |          |           | on Funcs    |
| 1           | -          | -         | -    | PE2         |                            | EIRQ2            | TRACECLK           | GPO   |         |                |       | M5                              |                 |                 | USART3_CK  |       |          |           |        |        |        |          | EVENTOUT |           | Func_Grp2   |
| 2           | -          | -         | -    | PE3         |                            | EIRQ3            | TRACEDAT           | GPO   |         |                |       | TIMA_3_PW                       |                 |                 | USART4_CK  |       |          |           |        |        |        |          | EVENTOUT |           | Func_Grp2   |
|             |            |           |      |             |                            |                  | A0<br>TRACEDAT     |       |         |                |       | M6<br>TIMA_3_PW                 |                 |                 |            |       |          |           |        |        |        |          |          |           |             |
| 3           | -          | -         | -    | PE4         |                            | EIRQ4            | A1                 | GPO   |         |                |       | M7                              |                 |                 |            |       |          |           |        |        |        |          | EVENTOUT |           | Func_Grp2   |
| 4           | -          | -         | -    | PE5         |                            | EIRQ5            | TRACEDAT<br>A2     | GPO   |         |                |       | TIMA_3_PW<br>M8                 |                 |                 |            |       |          |           |        |        |        |          | EVENTOUT |           | Func_Grp2   |
| 5           | -          | -         | -    | PE6         |                            | EIRQ6            | TRACEDAT<br>A3     | GPO   |         |                |       |                                 |                 |                 |            |       |          |           |        |        |        |          | EVENTOUT |           | Func_Grp2   |
| 6           | 1          | 1         | 1    | PH2         |                            | EIRQ2            |                    | GPO   | FCMREF  | TIM4_2_CLK     |       | TIMA_4_PW<br>M7                 |                 | EMB_IN4         |            |       | SDIO2_D4 | I2S3_EXCK |        |        |        |          | EVENTOUT |           | Func_Grp2   |
| 7           | 2          | 2         | 2    | PC13        |                            | EIRQ13           |                    | GPO   | RTC_OUT |                |       | TIMA_4_PW<br>M8                 |                 |                 |            |       | SDIO2_CK | I2S3_MCK  |        |        |        | EVNTP313 |          |           | Func_Grp2   |
| 8           | 3          | 3         | 3    | PC14        | XTAL32_<br>OUT             | EIRQ14           |                    | GPO   |         |                |       | TIMA_4_PW<br>M5                 |                 |                 |            |       |          |           |        |        |        | EVNTP314 |          |           |             |
| 9           | 4          | 4         | 4    | PC15        | XTAL32_I                   | EIRQ15           |                    | GPO   |         |                |       | TIMA_4_PW                       |                 |                 |            |       |          |           |        |        |        | EVNTP315 |          |           |             |
| 10          |            | -         |      | VSS         | I IN                       |                  |                    |       |         |                |       | Nio                             |                 |                 |            |       |          |           |        |        |        |          |          |           |             |
| 11          |            |           |      | vcc         |                            |                  |                    |       |         |                |       |                                 |                 |                 |            |       |          |           |        |        |        |          |          |           |             |
| 12          | 5          | 5         | 5    | PH0         | XTAL_IN                    | EIRQ0            |                    | GPO   |         |                |       |                                 | TIMA_5_PW<br>M3 |                 |            |       |          |           |        |        |        |          |          |           |             |
| 13          | 6          | 6         | 6    | PH1         | XTAL_O                     | EIRQ1            |                    | GPO   |         |                |       |                                 | TIMA_5_PW       |                 |            |       |          |           |        |        |        |          |          |           |             |
|             |            |           |      |             | υτ                         | LiitQi           |                    | 0.0   |         |                |       |                                 | M4              |                 |            |       |          |           |        |        |        |          |          |           |             |
| 14          | 7          | 7         | 7    | NRST        | ADC12_I                    |                  |                    |       |         |                |       |                                 |                 |                 |            |       |          |           |        |        |        |          |          |           |             |
| 15          | 8          | 8         | -    | PC0         | N10/CMP<br>3_INP3          | EIRQ0            |                    | GPO   |         |                |       | TIMA_2_PW<br>M5                 |                 |                 |            |       | SDIO2_D5 |           |        |        |        | EVNTP300 | EVENTOUT |           | Func_Grp1   |
| 16          | 9          | 9         | -    | PC1         | ADC12_I<br>N11             | EIRQ1            |                    | GPO   |         |                |       | TIMA_2_PW<br>M6                 |                 |                 |            |       | SDIO2_D6 |           |        |        |        | EVNTP301 | EVENTOUT |           | Func_Grp1   |
| 17          | 10         | 10        | -    | PC2         | ADC1_IN                    | EIRQ2            |                    | GPO   |         |                |       | TIMA_2_PW                       |                 | EMB_IN3         |            |       | SDIO2_D7 |           |        |        |        | EVNTP302 | EVENTOUT |           | Func_Grp1   |
|             |            |           |      |             | ADC1_IN                    | =:===            |                    |       |         |                |       | TIMA_2_PW                       |                 |                 |            |       |          |           |        |        |        |          |          |           |             |
| 18          | 11         | -         | -    | PC3         | 13/CMP1_<br>INM2           | EIRQ3            |                    | GPO   |         |                |       | M8                              |                 |                 |            |       | SDIO1_WP |           |        |        |        | EVNTP303 | EVENTOUT |           | Func_Grp1   |
| 19          | -          | -         | -    | vcc         |                            |                  |                    |       |         |                |       |                                 |                 |                 |            |       |          |           |        |        |        |          |          |           |             |
| 20          | 12         | 11        | 8    | AVSS        |                            |                  |                    |       |         |                |       |                                 |                 |                 |            |       |          |           |        |        |        |          |          |           |             |
| 21          | -          | -         | -    | VREFH       |                            |                  |                    |       |         |                |       |                                 |                 |                 |            |       |          |           |        |        |        |          |          |           |             |
| 22          | 13         | 12        | 9    | AVCC        |                            |                  |                    |       |         |                |       |                                 |                 |                 |            |       |          |           |        |        |        |          |          |           |             |
| 23          | 14         | 13        | 10   | PA0         | ADC1_IN<br>0/CMP1_I<br>NP1 | EIRQ0W<br>KUP0_0 |                    | GPO   |         | TIM4_2_OU<br>H |       | TIMA_2_PW<br>M1/TIMA_2_<br>CLKA |                 | TIMA_2_TRI<br>G | SPI1_SS1   |       | SDIO2_D4 |           |        |        |        | EVNTP100 | EVENTOUT |           | Func_Grp1   |
| 24          | 15         | 14        | 11   | PA1         | ADC1_IN<br>1/CMP1_I<br>NP2 | EIRQ1            |                    | GPO   |         | TIM4_2_OUL     |       | TIMA_2_PW<br>M2/TIMA_2_<br>CLKB | TIMA_3_TRI<br>G |                 | SPI1_SS2   |       | SDIO2_D5 |           |        |        |        | EVNTP101 | EVENTOUT |           | Func_Grp1   |

HC32F460 Series Data Sheet Page 48 of



|      |     |     |             | HUA  | DA SEMICOND                                                 | UCTOR             |           |       |          |                |                 |                                 |                                 |                 |                     |         |           |           |        |        |        |          |          |           |                         |
|------|-----|-----|-------------|------|-------------------------------------------------------------|-------------------|-----------|-------|----------|----------------|-----------------|---------------------------------|---------------------------------|-----------------|---------------------|---------|-----------|-----------|--------|--------|--------|----------|----------|-----------|-------------------------|
| LQF  | LQF | QFN | LQF         | Pin  | Analog                                                      | EIRQ/W            | TRACE/JTA | Func0 | Func1    | Func2          | Func3           | Func4                           | Func5                           | Func6           | Func7<br>USART/SPI/ | Func8   | Func9     | Func10    | Func11 | Func12 | Func13 | Func14   | Func15   | Func16~31 | Func32~63               |
| P100 | P64 | 60  | P/QF<br>N48 | Name | Allalog                                                     | KUP               | G/SWD     | GPO   | other    | TIM4           | TIM6            | TIMA                            | TIMA                            | EMB,TIMA        | QSPI                | K EY    | SDIO      | USBFS/I2S | -      | •      |        | EVNTPT   | EVENTOUT | -         | Communicati<br>on Funcs |
| 25   | 16  | 15  | 12          | PA2  | ADC1_IN<br>2/CMP1_I<br>NP3                                  | EIRQ2             |           | GPO   |          | TIM4_2_OV<br>H |                 | TIMA_2_PW<br>M3                 | TIMA_5_PW<br>M1/TIMA_5_<br>CLKA |                 | SPI1_SS3            |         | SDIO2_D6  |           |        | 1      |        | EVNTP102 | EVENTOUT |           | Func_Grp1               |
| 26   | 17  | 16  | 13          | PA3  | ADC1_IN<br>3/PGAVS<br>S/CMP1_I<br>NP4                       | EIRQ3             |           | GPO   |          | TIM4_2_OVL     |                 | TIMA_2_PW<br>M4                 | TIMA_5_PW<br>M2/TIMA_5_<br>CLKB |                 |                     |         | SDIO2_D7  |           |        |        |        | EVNTP103 | EVENTOUT |           | Func_Grp1               |
| 27   | 18  | -   | -           | AVSS |                                                             |                   |           |       |          |                |                 |                                 |                                 |                 |                     |         |           |           |        |        |        |          |          |           |                         |
| 28   | 19  | -   | -           | AVCC |                                                             |                   |           | ļ     |          |                |                 |                                 |                                 |                 |                     |         |           |           |        |        |        |          |          |           |                         |
| 29   | 20  | 17  | 14          | PA4  | ADC12_I<br>N4/CMP2<br>_INP1/CM<br>P3_INP4                   | EIRQ4             |           | GPO   |          | TIM4_2_OW<br>H |                 |                                 | TIMA_3_PW<br>M5                 |                 | USART2_CK           | KEYOUT0 |           | I2S1_EXCK |        |        |        | EVNTP104 | EVENTOUT |           | Func_Grp1               |
| 30   | 21  | 18  | 15          | PA5  | ADC12_I<br>N5/CMP2<br>_INP2                                 | EIRQ5             |           | GPO   |          | TIM4_2_OW<br>L |                 | TIMA_2_PW<br>M1/TIMA_2_<br>CLKA | TIMA_3_PW<br>M6                 | TIMA_2_TRI<br>G |                     | KEYOUT1 |           | I2S1_MCK  |        |        |        | EVNTP105 | EVENTOUT |           | Func_Grp1               |
| 31   | 22  | 19  | 16          | PA6  | ADC12_I<br>N6/CMP2<br>_INP3                                 | EIRQ6             |           | GPO   |          |                |                 |                                 | TIMA_3_PW<br>M1/TIMA_3_<br>CLKA | EMB_IN2         |                     | KEYOUT2 | SDIO1_CMD |           |        |        |        | EVNTP106 | EVENTOUT |           | Func_Grp1               |
| 32   | 23  | 20  | 17          | PA7  | ADC12_I<br>N7/CMP1<br>_INM1/C<br>MP2_INM<br>1/CMP3_I<br>NM1 | EIRQ7             |           | GPO   |          | TIM4_1_OUL     | TIM6_1_PW<br>MB | TIMA_1_PW<br>M5                 | TIMA_3_PW<br>M2/TIMA_3_<br>CLKB | EMB_IN3         |                     | KEYOUT3 | SDIO2_WP  |           |        |        |        | EVNTP107 | EVENTOUT |           | Func_Grp1               |
| 33   | 24  | 21  | -           | PC4  | ADC1_IN<br>14/CMP2_<br>INM2                                 | EIRQ4             |           | GPO   |          | TIM4_2_OU<br>H |                 |                                 | TIMA_3_PW<br>M7                 |                 | USART1_CK           |         | SDIO2_CD  |           |        |        |        | EVNTP304 | EVENTOUT |           | Func_Grp1               |
| 34   | 25  | 22  | -           | PC5  | ADC1_IN<br>15/CMP3_<br>INM2                                 | EIRQ5             |           | GPO   |          | TIM4_2_OUL     |                 |                                 | TIMA_3_PW<br>M8                 |                 |                     |         | SDIO2_CMD |           |        |        |        | EVNTP305 | EVENTOUT |           | Func_Grp1               |
| 35   | 26  | 23  | 18          | PB0  | ADC12_I<br>N8/CMP3<br>_INP1                                 | EIRQ0             |           | GPO   |          | TIM4_1_OVL     | TIM6_2_PW<br>MB | TIMA_1_PW<br>M6                 | TIMA_3_PW<br>M3                 |                 | USART4_CK           | KEYOUT4 | SDIO2_CMD |           |        |        |        | EVNTP200 | EVENTOUT |           | Func_Grp1               |
| 36   | 27  | 24  | 19          | PB1  | ADC12_I<br>N9/CMP3<br>_INP2                                 | EIRQ1/W<br>KUP0_1 |           | GPO   |          | TIM4_1_OW<br>L | TIM6_3_PW<br>MB | TIMA_1_PW<br>M7                 | TIMA_3_PW<br>M4                 |                 | QSPI_QSSN           | KEYOUT5 | SDIO2_D3  | I2S2_EXCK |        |        |        | EVNTP201 | EVENTOUT |           | Func_Grp1               |
| 37   | 28  | 25  | 20          | PB2  | PVD2EXI<br>NP                                               | EIRQ2/W<br>KUP0_2 |           | GPO   | VCOUT123 |                | TIM6_TRIGB      | TIMA_1_PW<br>M8                 |                                 | EMB_IN1         | QSPI_QSIO3          |         | SDIO2_D2  | I2S2_MCK  |        |        |        | EVNTP202 | EVENTOUT |           | Func_Grp1               |
| 38   | -   | -   | -           | PE7  |                                                             | EIRQ7             |           | GPO   | ADTRG1   |                | TIM6_TRIGA      | TIMA_1_TRI<br>G                 |                                 |                 | USART1_CK           |         |           |           |        |        |        |          | EVENTOUT |           |                         |
| 39   | -   | -   | -           | PE8  |                                                             | EIRQ8             |           | GPO   |          | TIM4_1_OUL     | TIM6_1_PW<br>MB | TIMA_1_PW<br>M5                 |                                 |                 |                     |         |           |           |        |        |        |          | EVENTOUT |           |                         |
| 40   | -   | -   | -           | PE9  |                                                             | EIRQ9             |           | GPO   |          | TIM4_1_OU<br>H | TIM6_1_PW<br>MA | TIMA_1_PW<br>M1/TIMA_1_<br>CLKA |                                 |                 |                     |         |           |           |        |        |        |          | EVENTOUT |           |                         |
| 41   | -   | -   | -           | PE10 |                                                             | EIRQ10            |           | GPO   |          | TIM4_1_OVL     | TIM6_2_PW<br>MB | TIMA_1_PW<br>M6                 |                                 |                 |                     |         |           |           |        |        |        |          | EVENTOUT |           |                         |
| 42   | -   | -   | -           | PE11 |                                                             | EIRQ11            |           | GPO   |          | TIM4_1_OV      | TIM6_2_PW<br>MA | TIMA_1_PW M2/TIMA_1_ CLKB       |                                 |                 |                     |         |           |           |        |        |        |          | EVENTOUT |           |                         |
| 43   | -   | -   | -           | PE12 |                                                             | EIRQ12            |           | GPO   |          | TIM4_1_OW<br>L | TIM6_3_PW<br>MB | TIMA_1_PW<br>M7                 |                                 |                 | SPI1_SS1            |         |           |           |        |        |        |          | EVENTOUT |           | Func_Grp2               |

HC32F460 Series Data Sheet Page 49 of



|      |     |     | J           | HUA   | 大牛<br>DA SEMICONI | <b>一</b> OUCTOR   |           |       |         |                |                 |                                 |                                 |          |                    |         |          |           |        |        |        |          |          |           |                         |
|------|-----|-----|-------------|-------|-------------------|-------------------|-----------|-------|---------|----------------|-----------------|---------------------------------|---------------------------------|----------|--------------------|---------|----------|-----------|--------|--------|--------|----------|----------|-----------|-------------------------|
| LQF  | LQF | QFN | LQF         | Pin   |                   | EIRQ/W            | TRACE/JTA | Func0 | Func1   | Func2          | Func3           | Func4                           | Func5                           | Func6    | Func7              | Func8   | Func9    | Func10    | Func11 | Func12 | Func13 | Func14   | Func15   | Func16~31 | Func32~63               |
| P100 | P64 | 60  | P/QF<br>N48 | Name  | Analog            | K UP              | G/SWD     | GPO   | other   | TIM4           | TIM6            | TIMA                            | TIMA                            | EMB,TIMA | USART/SPI/<br>QSPI | K EY    | SDIO     | USBFS/I2S |        | 4      | -      | EVNTPT   | EVENTOUT | -         | Communicati<br>on Funcs |
| 44   | -   | -   | -           | PE13  |                   | EIRQ13            |           | GPO   |         | TIM4_1_OW<br>H | TIM6_3_PW<br>MA | TIMA_1_PW<br>M3                 |                                 |          | SPI1_SS2           |         |          |           |        |        |        |          | EVENTOUT |           | Func_Grp2               |
| 45   | -   | -   | -           | PE14  |                   | EIRQ14            |           | GPO   |         | TIM4_1_CLK     |                 | TIMA_1_PW<br>M4                 |                                 |          | SPI1_SS3           |         | SDIO1_CD |           | _      |        |        |          | EVENTOUT |           | Func_Grp2               |
| 46   | -   | 26  | -           | PE15  |                   | EIRQ15            |           | GPO   |         |                |                 | TIMA_1_PW<br>M8                 | TIMA_5_TRI                      | EMB_IN2  | USART4_CK          |         | SDIO1_WP |           |        |        |        |          | EVENTOUT |           | Func_Grp2               |
| 47   | 29  | 27  | 21          | PB10  |                   | EIRQ10            |           | GPO   | ADTRG2  | TIM4_2_OV      |                 | TIMA_2_PW<br>M3                 | TIMA_5_PW<br>M8                 |          | QSPI_QSIO2         |         | SDIO1_D7 | I2S3_EXCK |        |        |        | EVNTP210 | EVENTOUT |           | Func_Grp2               |
| 48   | 30  | 28  | 22          | VCAP_ |                   |                   |           |       |         |                |                 |                                 |                                 |          |                    |         |          |           |        |        |        |          |          |           |                         |
| 49   | 31  | 29  | 23          | VSS   |                   |                   |           |       |         |                |                 |                                 |                                 |          |                    |         |          |           |        |        |        |          |          |           |                         |
| 50   | 32  | 30  | 24          | VCC   |                   |                   |           |       |         |                |                 |                                 |                                 |          |                    |         |          |           |        |        |        |          |          |           |                         |
| 51   | 33  | 31  | 25          | PB12  |                   | EIRQ12            |           | GPO   | VCOUT1  | TIM4_2_OVL     | TIM6_TRIGB      | TIMA_1_PW<br>M8                 |                                 | EMB_IN2  | QSPI_QSIO1         |         | SDIO2_D1 | I2S3_MCK  |        |        |        | EVNTP212 | EVENTOUT |           | Func_Grp2               |
| 52   | 34  | 32  | 26          | PB13  |                   | EIRQ13            |           | GPO   | VCOUT2  | TIM4_1_OUL     | TIM6_1_PW<br>MB | TIMA_1_PW<br>M5                 |                                 |          | QSPI_QSI00         |         | SDIO2_D0 |           |        |        |        | EVNTP213 | EVENTOUT |           | Func_Grp2               |
| 53   | 35  | 33  | 27          | PB14  |                   | EIRQ14            |           | GPO   | VCOUT3  | TIM4_1_OVL     | TIM6_2_PW<br>MB | TIMA_1_PW<br>M6                 |                                 |          | QSPI_QSCK          |         | SDIO1_D6 |           |        |        |        | EVNTP214 | EVENTOUT |           | Func_Grp2               |
| 54   | 36  | 34  | 28          | PB15  |                   | EIRQ15            |           | GPO   | RTC_OUT | TIM4_1_OW      | TIM6_3_PW<br>MB | TIMA_1_PW<br>M7                 | TIMA_6_TRI<br>G                 | EMB_IN4  | USART3_CK          |         | SDIO1_CK |           |        |        |        | EVNTP215 | EVENTOUT |           | Func_Grp2               |
| 55   | -   | -   | -           | PD8   |                   | EIRQ8             |           | GPO   |         | TIM4_3_OUL     |                 |                                 | TIMA_6_PW<br>M1/TIMA_6_<br>CLKA |          | QSPI_QSIO0         | KEYOUT7 |          |           |        |        |        | EVNTP408 | EVENTOUT |           | Func_Grp2               |
| 56   | -   | -   | -           | PD9   |                   | EIRQ9             |           | GPO   |         | TIM4_3_OVL     |                 |                                 | TIMA_6_PW<br>M2/TIMA_6_<br>CLKB |          | QSPI_QSIO1         | KEYOUT6 |          |           |        |        |        | EVNTP409 | EVENTOUT |           | Func_Grp2               |
| 57   | -   | -   | -           | PD10  |                   | EIRQ10            |           | GPO   |         | TIM4_3_OW<br>L |                 |                                 | TIMA_6_PW<br>M3                 |          | QSPI_QSIO2         | KEYOUT5 |          |           |        |        |        | EVNTP410 | EVENTOUT |           | Func_Grp2               |
| 58   | -   | -   | -           | PD11  |                   | EIRQ11            |           | GPO   |         | TIM4_3_CLK     |                 |                                 | TIMA_6_PW<br>M4                 |          | QSPI_QSIO3         | KEYOUT4 |          |           |        |        |        | EVNTP411 | EVENTOUT |           | Func_Grp2               |
| 59   | -   | -   | -           | PD12  |                   | EIRQ12            |           | GPO   |         |                |                 | TIMA_4_PW<br>M1/TIMA_4_<br>CLKA | TIMA_5_PW<br>M5                 |          |                    |         |          |           |        |        |        | EVNTP412 | EVENTOUT |           |                         |
| 60   | -   | -   | -           | PD13  |                   | EIRQ13            |           | GPO   |         |                |                 | TIMA_4_PW<br>M2/TIMA_4_<br>CLKB | TIMA_5_PW<br>M6                 |          |                    |         |          |           |        |        |        | EVNTP413 | EVENTOUT |           |                         |
| 61   | -   | -   | -           | PD14  |                   | EIRQ14            |           | GPO   |         |                |                 | TIMA_4_PW<br>M3                 | TIMA_5_PW<br>M7                 |          |                    |         |          |           |        |        |        | EVNTP414 | EVENTOUT |           |                         |
| 62   | -   | -   | -           | PD15  |                   | EIRQ15            |           | GPO   |         |                |                 | TIMA_4_PW<br>M4                 | TIMA_5_PW<br>M8                 |          |                    |         |          |           |        |        |        | EVNTP415 | EVENTOUT |           |                         |
| 63   | 37  | -   | -           | PC6   |                   | EIRQ6             |           | GPO   |         |                |                 | TIMA_3_PW<br>M1/TIMA_3_<br>CLKA | TIMA_5_PW<br>M8                 |          | QSPI_QSCK          | KEYOUT3 | SDIO1_D6 |           |        |        |        | EVNTP306 | EVENTOUT |           | Func_Grp2               |
| 64   | 38  | 35  | -           | PC7   |                   | EIRQ7             |           | GPO   |         | TIM4_2_CLK     |                 | TIMA_3_PW<br>M2/TIMA_3_<br>CLKB | TIMA_5_PW<br>M7                 |          | QSPI_QSSN          | KEYOUT2 | SDIO1_D7 | I2S2_EXCK |        |        |        | EVNTP307 | EVENTOUT |           | Func_Grp2               |
| 65   | 39  | 36  | -           | PC8   |                   | EIRQ8             |           | GPO   |         | TIM4_2_OW<br>H |                 | TIMA_3_PW<br>M3                 | TIMA_5_PW<br>M6                 |          | USART3_CK          | KEYOUT1 | SDIO1_D0 | I2S2_MCK  |        |        |        | EVNTP308 | EVENTOUT |           | Func_Grp2               |
| 66   | 40  | 37  | -           | PC9   |                   | EIRQ9             |           | GPO   | MCO_2   | TIM4_2_OW<br>L |                 | TIMA_3_PW<br>M4                 | TIMA_5_PW<br>M5                 |          |                    | KEYOUT0 | SDIO1_D1 |           |        |        |        | EVNTP309 | EVENTOUT |           | Func_Grp1               |
| 67   | 41  | 38  | 29          | PA8   |                   | EIRQ8/W<br>KUP2_0 |           | GPO   | MCO_1   | TIM4_1_OU<br>H | TIM6_1_PW<br>MA | TIMA_1_PW<br>M1/TIMA_1_<br>CLKA |                                 |          | USART1_CK          |         | SDIO1_D1 | USBFS_SOF |        |        |        | EVNTP108 | EVENTOUT |           | Func_Grp1               |

HC32F460 Series Data Sheet Page 50 of



|      |     |          |             | HUA        | DA SEMICOND | UCTOR              |                  |       |          |                |                 |                                 |                                 |                 |                    |       |           |                |        |        |        |          |          |           |                         |
|------|-----|----------|-------------|------------|-------------|--------------------|------------------|-------|----------|----------------|-----------------|---------------------------------|---------------------------------|-----------------|--------------------|-------|-----------|----------------|--------|--------|--------|----------|----------|-----------|-------------------------|
| LQF  | LQF | QFN      | LQF         | Pin        |             | EIRQ/W             | TRACE/JTA        | Func0 | Func1    | Func2          | Func3           | Func4                           | Func5                           | Func6           | Func7              | Func8 | Func9     | Func10         | Func11 | Func12 | Func13 | Func14   | Func15   | Func16~31 | Func32~63               |
| P100 | P64 | 60<br>60 | P/QF<br>N48 | Name       | Analog      | K UP               | G/SWD            | GPO   | other    | TIM4           | тім6            | TIMA                            | TIMA                            | ЕМВ,ТІМА        | USART/SPI/<br>QSPI | K EY  | SDIO      | USBFS/I2S      | -      | 1      |        | EVNTPT   | EVENTOUT | -         | Communicati<br>on Funcs |
| 68   | 42  | 39       | 30          | PA9        |             | EIRQ9/W<br>KUP2_1  |                  | GPO   |          | TIM4_1_OV<br>H | TIM6_2_PW<br>MA | TIMA_1_PW<br>M2/TIMA_1_<br>CLKB |                                 |                 |                    |       | SDIO1_D2  | USBFS_VBU<br>S |        | IK     |        | EVNTP109 | EVENTOUT |           | Func_Grp1               |
| 69   | 43  | 40       | 31          | PA10       |             | EIRQ10/<br>WKUP2_3 |                  | GPO   |          | TIM4_1_OW<br>H | TIM6_3_PW<br>MA | TIMA_1_PW<br>M3                 | TIMA_5_TRI<br>G                 |                 |                    |       | SDIO1_CD  | USBFS_ID       |        |        |        | EVNTP110 | EVENTOUT |           | Func_Grp1               |
| 70   | 44  | 41       | 32          | PA11       |             | EIRQ11/<br>WKUP2_4 |                  | GPO   |          | TIM4_1_CLK     |                 | TIMA_1_PW<br>M4                 |                                 | EMB_IN1         |                    |       | SDIO2_CD  | USBFS_DM       |        |        |        | EVNTP111 | EVENTOUT |           | Func_Grp1               |
| 71   | 45  | 42       | 33          | PA12       |             | EIRQ12/<br>WKUP3_0 |                  | GPO   |          | TIM4_3_OW<br>L | TIM6_TRIGA      | TIMA_1_TRI<br>G                 | TIMA_6_PW M1/TIMA_6_ CLKA       |                 |                    |       | SDIO2_WP  | USBFS_DP       | 4      |        |        | EVNTP112 | EVENTOUT |           | Func_Grp1               |
| 72   | 46  | 43       | 34          | PA13       |             | EIRQ13/<br>WKUP3_1 | TMS_SWDIO        | GPO   |          |                |                 | TIMA_2_PW<br>M5                 | TIMA_6_PW<br>M2/TIMA_6_<br>CLKB |                 | SPI2_SS1           |       | SDIO2_D3  |                |        |        |        | EVNTP113 | EVENTOUT |           | Func_Grp1               |
| 73   | -   | -        | -           | VCAP_<br>2 |             |                    |                  |       |          |                |                 |                                 |                                 |                 |                    |       |           |                |        |        |        |          |          |           |                         |
| 74   | 47  | 44       | 35          | VSS        |             |                    |                  |       |          |                |                 |                                 |                                 |                 |                    |       |           |                |        |        |        |          |          |           |                         |
| 75   | 48  | 45       | 36          | vcc        |             |                    |                  |       |          |                |                 |                                 |                                 |                 |                    |       |           |                |        |        |        |          |          |           |                         |
| 76   | 49  | 46       | 37          | PA14       |             | EIRQ14/<br>WKUP3_2 | TCK_SWCL<br>K    | GPO   |          |                |                 | TIMA_2_PW<br>M6                 | TIMA_6_PW<br>M3                 | TIMA_4_TRI<br>G | SPI2_SS2           |       | SDIO2_D2  | I2S1_EXCK      |        |        |        | EVNTP114 | EVENTOUT |           | Func_Grp1               |
| 77   | 50  | 47       | 38          | PA15       |             | EIRQ15/<br>WKUP3_3 | TDI              | GPO   |          |                |                 | TIMA_2_PW<br>M1/TIMA_2_<br>CLKA | TIMA_6_PW<br>M4                 | TIMA_2_TRI      | SPI2_SS3           |       | SDIO2_D1  | I2S1_MCK       |        |        |        | EVNTP115 | EVENTOUT |           | Func_Grp1               |
| 78   | 51  | 48       | -           | PC10       |             | EIRQ10             |                  | GPO   |          | TIM4_3_OU<br>H |                 | TIMA_2_PW<br>M7                 | TIMA_5_PW<br>M1/TIMA_5_<br>CLKA |                 |                    |       | SDIO1_D2  |                |        |        |        | EVNTP310 | EVENTOUT |           | Func_Grp1               |
| 79   | 52  | 49       | -           | PC11       |             | EIRQ11             |                  | GPO   |          | TIM4_3_OV<br>H |                 | TIMA_2_PW<br>M8                 | TIMA_5_PW<br>M2/TIMA_5_<br>CLKB |                 |                    |       | SDIO1_D3  |                |        |        |        | EVNTP311 | EVENTOUT |           | Func_Grp1               |
| 80   | 53  | 50       | -           | PC12       |             | EIRQ12             |                  | GPO   |          | TIM4_3_OW<br>H |                 | TIMA_4_TRI<br>G                 | TIMA_5_PW<br>M3                 |                 |                    |       | SDIO1_CK  |                |        |        |        | EVNTP312 | EVENTOUT |           | Func_Grp1               |
| 81   | -   | -        | -           | PD0        |             | EIRQ0              |                  | GPO   | VCOUT123 |                |                 |                                 | TIMA_5_PW<br>M4                 |                 |                    |       |           |                |        |        |        | EVNTP400 | EVENTOUT |           | Func_Grp1               |
| 82   | -   | -        | -           | PD1        |             | EIRQ1              |                  | GPO   |          |                |                 | TIMA_3_TRI<br>G                 | TIMA_6_PW<br>M5                 |                 |                    |       |           |                |        |        |        | EVNTP401 | EVENTOUT |           | Func_Grp1               |
| 83   | 54  | -        | -           | PD2        |             | EIRQ2              |                  | GPO   |          |                |                 | TIMA_2_PW<br>M4                 | TIMA_6_PW<br>M6                 |                 |                    |       | SDIO1_CMD |                |        |        |        | EVNTP402 | EVENTOUT |           | Func_Grp1               |
| 84   | -   | -        | -           | PD3        |             | EIRQ3              |                  | GPO   | VCOUT1   |                |                 |                                 | TIMA_6_PW<br>M7                 |                 |                    |       |           |                |        |        |        | EVNTP403 | EVENTOUT |           |                         |
| 85   | -   | -        | -           | PD4        |             | EIRQ4              |                  | GPO   | VCOUT2   |                |                 |                                 | TIMA_6_PW<br>M8                 |                 |                    |       |           |                |        |        |        | EVNTP404 | EVENTOUT |           |                         |
| 86   | -   | -        | -           | PD5        |             | EIRQ5              |                  | GPO   | VCOUT3   |                |                 |                                 |                                 |                 |                    |       |           |                |        |        |        | EVNTP405 | EVENTOUT |           |                         |
| 87   | -   | -        | -           | PD6        |             | EIRQ6              |                  | GPO   |          |                |                 |                                 |                                 |                 | USART2_CK          |       |           |                |        |        |        | EVNTP406 | EVENTOUT |           |                         |
| 88   | -   | -        | -           | PD7        |             | EIRQ7              |                  | GPO   |          |                |                 |                                 |                                 |                 | USART2_CK          |       |           |                |        |        |        | EVNTP407 | EVENTOUT |           |                         |
| 89   | 55  | 51       | 39          | PB3        |             | EIRQ3/W<br>KUP0_3  | TDO_TRACE<br>SWO | GPO   | FCMREF   | TIM4_3_CLK     |                 | TIMA_2_PW<br>M2/TIMA_2_<br>CLKB | TIMA_6_PW<br>M5                 |                 |                    |       | SDIO2_D0  |                |        |        |        | EVNTP203 | EVENTOUT |           | Func_Grp2               |
| 90   | 56  | 52       | 40          | PB4        |             | EIRQ4/W<br>KUP1_0  | nTRST            | GPO   |          | TIM4_3_OW<br>L |                 | TIMA_3_PW<br>M1/TIMA_3_<br>CLKA | TIMA_6_PW<br>M6                 |                 |                    |       | SDIO1_D0  |                |        |        |        | EVNTP204 | EVENTOUT |           | Func_Grp2               |
| 91   | 57  | 53       | 41          | PB5        |             | EIRQ5/W<br>KUP1_1  |                  | GPO   |          | TIM4_3_OW<br>H |                 | TIMA_3_PW<br>M2/TIMA_3_<br>CLKB | TIMA_6_PW<br>M7                 |                 |                    |       | SDIO1_D3  | I2S4_EXCK      |        |        |        | EVNTP205 | EVENTOUT |           | Func_Grp2               |

HC32F460 Series Data Sheet Page 51 of



|             |            |           | LOF         |             |                                         | , de lok          |                    | Func0 | Func1  | Func2          | Func3 | Func4                           | Func5           | Func6    | Func7              | Func8   | Func9    | Func10            | Func11 | Func12 | Func13 | Func14   | Func15   | Func16~31 | Func32~63               |
|-------------|------------|-----------|-------------|-------------|-----------------------------------------|-------------------|--------------------|-------|--------|----------------|-------|---------------------------------|-----------------|----------|--------------------|---------|----------|-------------------|--------|--------|--------|----------|----------|-----------|-------------------------|
| LQF<br>P100 | LQF<br>P64 | QFN<br>60 | P/QF<br>N48 | Pin<br>Name | Analog                                  | EIRQ/W<br>K UP    | TRACE/JTA<br>G/SWD | GPO   | other  | TIM4           | тім6  | TIMA                            | TIMA            | EMB,TIMA | USART/SPI/<br>QSPI | K EY    | SDIO     | USBFS/I2S         |        |        |        | EVNTPT   | EVENTOUT | -         | Communicati<br>on Funcs |
| 92          | 58         | 54        | 42          | PB6         |                                         | EIRQ6/W<br>KUP1_2 |                    | GPO   | ADTRG2 | TIM4_3_OVL     |       | TIMA_4_PW<br>M1/TIMA_4_<br>CLKA | TIMA_6_PW<br>M8 |          |                    |         | SDIO2_CK | I2S4_MCK          |        |        |        | EVNTP206 | EVENTOUT |           | Func_Grp2               |
| 93          | 59         | 55        | 43          | PB7         |                                         | EIRQ7/W<br>KUP1_3 |                    | GPO   | ADTRG1 | TIM4_3_OV<br>H |       | TIMA_4_PW<br>M2/TIMA_4_<br>CLKB |                 |          |                    |         | SDIO1_D0 |                   |        |        |        | EVNTP207 | EVENTOUT |           | Func_Grp2               |
| 94          | 60         | 56        | 44          | PB11/M<br>D |                                         | NMI               |                    |       |        |                |       |                                 |                 |          |                    |         |          |                   | -/     |        |        | EVNTP211 |          |           |                         |
| 95          | 61         | 57        | 45          | PB8         |                                         | EIRQ8             |                    | GPO   |        | TIM4_3_OUL     |       | TIMA_4_PW<br>M3                 |                 |          |                    | KEYOUT7 | SDIO1_D4 | USBFS_DRV<br>VBUS |        |        |        | EVNTP208 | EVENTOUT |           | Func_Grp2               |
| 96          | 62         | 58        | 46          | PB9         |                                         | EIRQ9             |                    | GPO   |        | TIM4_3_OU<br>H |       | TIMA_4_PW<br>M4                 | TIMA_6_TRI<br>G |          | SPI2_SS1           | KEYOUT6 | SDIO1_D5 |                   |        |        |        | EVNTP209 | EVENTOUT |           | Func_Grp2               |
| 97          | -          | -         | -           | PE0         | *************************************** | EIRQ0             |                    | GPO   | MCO_1  |                |       | TIMA_4_TRI<br>G                 |                 |          | SPI2_SS2           |         |          |                   |        |        |        |          | EVENTOUT |           | Func_Grp2               |
| 98          | -          | -         | -           | PE1         |                                         | EIRQ1             |                    | GPO   | MCO_2  | TIM4_3_CLK     |       |                                 |                 |          | SPI2_SS3           |         |          |                   |        |        |        |          | EVENTOUT |           | Func_Grp2               |
| 99          | 63         | 59        | 47          | VSS         |                                         |                   |                    |       |        |                |       |                                 |                 |          |                    |         |          |                   |        |        |        |          |          |           |                         |
| 100         | 64         | 60        | 48          | VCC         |                                         |                   |                    |       |        |                |       |                                 |                 |          |                    |         |          |                   |        |        |        |          |          |           |                         |

Table 2-1 Pin Function Table

#### Notes:

- In the above table, there are 64 pins support Func32~63 function selection, Func32~63 mainly for serial communication function (including USART, SPI, I2C, I2S, CAN)divided into two groups Func\_Grp1, Func\_Grp2. Please refer to Table 2-2 for details.

HC32F460 Series Data Sheet Page 52 of



|          | Func32  | Func33  | Func34   | Func35   | Func36  | Func37  | Func38   | Func39   | Func40  | Func41   | Func42   | Func43  | Func44  | Func45   | Func46   | Func47  |
|----------|---------|---------|----------|----------|---------|---------|----------|----------|---------|----------|----------|---------|---------|----------|----------|---------|
| Func_Grp | USART1_ | USART1_ | USART1_R | USART1_C | USART2_ | USART2_ | USART2_R | USART2_C | SPI1_MO | SPI1_MIS | CDIA CCO | SPI1_SC | SPI2_MO | SPI2_MIS | CDIO CCO | SPI2_SC |
| 1        | TX      | RX      | TS       | TS       | TX      | RX      | TS       | TS       | SI      | 0        | SPI1_SS0 | К       | SI      | 0        | SPI2_SS0 | к       |
| Func_Grp | USART3_ | USART3_ | USART3_R | USART3_C | USART4_ | USART4_ | USART4_R | USART4_C | SPI3_MO | SPI3_MIS | ODIO 000 | SPI3_SC | SPI4_MO | SPI4_MIS | 0014 000 | SPI4_SC |
| 2        | TX      | RX      | TS       | TS       | TX      | RX      | TS       | TS       | SI      | 0        | SPI3_SS0 | K       | SI      | О        | SPI4_SS0 | К       |

|          | Func48   | Func49   | Func50   | Func51   | Func52  | Func53    | Func54  | Func55  | Func56  | Func57        | Func58  | Func59  | Func60 | Func61 | Func62 | Func63 |
|----------|----------|----------|----------|----------|---------|-----------|---------|---------|---------|---------------|---------|---------|--------|--------|--------|--------|
| Func_Grp | I2C1_SDA | I2C1_SCL | I2C2_SDA | I2C2_SCL | I2S1_SD | I2S1_SDIN | I2S1_WS | I2S1_CK | I2S2_SD | I2S2_SDI      | I2S2_WS | 12S2_CK |        |        |        |        |
| Func_Grp | I2C3_SDA | I2C3_SCL | CAN_TxD  | CAN_RxD  | 12S3_SD | I2S3_SDIN | 12S3_WS | I2S3_CK | I2S4_SD | I2S4_SDI<br>N | I2S4_WS | 12S4_CK |        |        |        |        |

Table 2-2 Func32~63 Table

HC32F460 Series Data Sheet Page 53 of



| Daalaasa | Port  |    |    |    |          |          |          |   | В | its |          |    |   |          |   |   |   | Pin | Count |
|----------|-------|----|----|----|----------|----------|----------|---|---|-----|----------|----|---|----------|---|---|---|-----|-------|
| Package  | Group | 15 | 14 | 13 | 12       | 11       | 10       | 9 | 8 | 7   | 6        | 5  | 4 | 3        | 2 | 1 | 0 |     | Total |
| LQFP100  | PortA | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  | 83    |
|          | PortB | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  |       |
|          | PortC | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  |       |
|          | PortD | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  |       |
|          | PortE | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  |       |
|          | PortH | -  | -  | -  | -        | -        | -        | - | - | -   | -        | -  | - | -        | 0 | 0 | 0 | 3   |       |
| LQFP64   | PortA | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  | 52    |
|          | PortB | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  | V     |
|          | PortC | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  | Ť     |
|          | PortD | -  | -  | -  | -        | -        | -        | - | - | -   | - <      | (- | - | <u> </u> | 0 | - | - | 1   |       |
|          | PortH | -  | -  | -  | -        | -        | -        | - | - | -   | -        | -  | - | -        | 0 | 0 | 0 | 3   |       |
| QFN60    | PortA | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  | 50    |
|          | PortB | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  |       |
|          | PortC | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   |          | 0  | 0 | <u>-</u> | 0 | 0 | 0 | 14  |       |
|          | PortE | -  | _  | -  | -        | -        | -        | - | - | -   | 7        | -  | - | -        | - | - | 0 | 1   |       |
|          | PortH | -  | -  |    | -        | -        | -        | - | - | _   | <u>-</u> | -  | - | -        | 0 | 0 | 0 | 3   |       |
| LQFP48   | PortA | 0  | 0  | 0  | 0        | 0        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  | 38    |
| QFN48    | PortB | 0  | 0  | 0  | 0        | o        | 0        | 0 | 0 | 0   | 0        | 0  | 0 | 0        | 0 | 0 | 0 | 16  |       |
|          | PortC | 0  | 0  | 0  | -        | -        | <u> </u> | - | - | -   | -        | -  | - | -        | - | - | - | 3   |       |
|          | PortH | 4  | \- | -  | <u>-</u> | <u> </u> | -        | - | - | -   | -        | -  | - | -        | 0 | 0 | 0 | 3   |       |
|          |       | 15 | 14 | 13 | 12       | 11       | 10       | 9 | 8 | 7   | 6        | 5  | 4 | 3        | 2 | 1 | 0 |     |       |

Table 2-3

Port Configuration

HC32F460 Series Data Sheet Page 54 of



|       | Port                   | Pull<br>up | Open<br>Drain<br>Output | Drive<br>Capability | 5V<br>withstan<br>d voltage | Remarks          |
|-------|------------------------|------------|-------------------------|---------------------|-----------------------------|------------------|
| PortA | PA0~PA10<br>PA13~PA15  | Support    | Support                 | Low,Medium,<br>High | Support *                   |                  |
|       | PA11, PA12             | Support    | Support                 | Low,Medium,<br>High | Not supported               |                  |
| PortB | PB0~PB10.<br>PB12~PB15 | Support    | Support                 | Low,Medium,<br>High | Support *                   |                  |
|       | PB11                   | Support    | -                       | -                   | Support                     | Input dedicate d |
| PortC | PC0~PC15               | Support    | Support                 | Low,Medium,<br>High | Support *                   |                  |
| PortD | PD0~PD15               | Support    | Support                 | Low,Medium,<br>High | Support                     |                  |
| PortE | PE0~PE15               | Support    | Support                 | Low,Medium,<br>High | Support                     |                  |
| PortH | PH0~PH2                | Support    | Support                 | Low,Medium,<br>High | Support                     |                  |

Table 2-4 General Function Specifications

#### Notes:

- When used for analog functions, the input voltage must not be higher than VREFH/AVCC.

HC32F460 Series Data Sheet Page 55 of



# 2.3 Pin Function Description

| Cate<br>gory | Functi<br>on<br>Name      | I/O | Des<br>crip<br>tion                                                  |
|--------------|---------------------------|-----|----------------------------------------------------------------------|
| Power        | VCC                       | ı   | Power supply                                                         |
|              | VSS                       | 1   | Power Ground                                                         |
|              | VCAP_1~2                  | Ю   | Kernel Voltage                                                       |
|              | AVCC                      | I   | Analog Power                                                         |
|              | AVSS                      | ı   | Analog power ground                                                  |
|              | VREFH                     | 1   | Analog Reference Voltage                                             |
|              | VREFL                     | ı   | Analog Reference Voltage                                             |
| System       | NRST                      | I   | Reset Pin, Low Active                                                |
|              | MD                        | 1   | Mode Pins                                                            |
| PVD          | PVD2EXINP                 | I   | PVD2 External input comparison voltage                               |
| Clock        | XTAL_IN                   | I   | External master clock oscillator interface                           |
|              | XTAL_OUT                  | 0   |                                                                      |
|              | XTAL32_IN                 | Y   | External sub-clock (32K) oscillator interface                        |
|              | XTAL32_OUT                | 0   |                                                                      |
|              | MCO_1~2                   | 0   | Internal clock output                                                |
| GPIO         | GPIOxy (x= A~E,H, y=0~15) | Ю   | General purpose inputs and outputs                                   |
| EVENTOUT     | EVENTOUT                  | 0   | Cortex-M4 CPU Event Output                                           |
| EIRQ         | EIRQx (x=0~15)            | 1   | Maskable external interrupts                                         |
|              | WKUPx_y (x,y=0~3)         | 1   | PowerDown mode external wake-up input                                |
|              | NMI                       | I   | Non-maskable external interrupts                                     |
| Event Port   | EVNTPxy (x=1~4, y=0~15)   | Ю   | Event port input and output function                                 |
| Key          | KEYOUTx(x=0~7)            | 0   | KEYSCAN scan output signal                                           |
| JTAG/SWD     | TCK_SWCLK                 | ı   | Online debugging interface                                           |
|              | TMS_SWDIO                 | Ю   |                                                                      |
|              | TDO_TRACESWO              | 0   |                                                                      |
|              | TDI                       | I   |                                                                      |
|              | nTRST                     | 1   |                                                                      |
| TRACE        | TRACECLK                  | 0   | Track and debug synchronized clock output                            |
|              | TRACEDATA0~3              | 0   | Trace debug data output                                              |
| FCM          | FCMREF                    | I   | External reference clock input for clock frequency meter measurement |
| RTC          | RTCOUT                    | 0   | 1Hz clock output                                                     |

HC32F460 Series Data Sheet Page 56 of



Timer4

TIM4\_x\_CLK I Counting clock port input

HC32F460 Series Data Sheet Page 57 of



| Cate<br>gory | Functi<br>on<br>Name    | 1/0 | Des<br>crip<br>tion                                                        |
|--------------|-------------------------|-----|----------------------------------------------------------------------------|
| (x=1~3)      | TIM4_x_OUH              | Ю   | PWM Port U Phase Output                                                    |
|              | TIM4_x_OUL              | Ю   | PWM Port U Phase Output                                                    |
|              | TIM4_x_OVH              | Ю   | PWM Port V Phase Output                                                    |
|              | TIM4_x_OVL              | Ю   | PWM Port V Phase Output                                                    |
|              | TIM4_x_OWH              | Ю   | PWM Port W Phase Output                                                    |
|              | TIM4_x_OWL              | Ю   | PWM Port W Phase Output                                                    |
| Timer6       | TIM6_TRIGA              | I   | External event triggers A input                                            |
| (x=1~3)      | TIM6_TRIGB              | ı   | External event triggers B input                                            |
|              | TIM6_x_PWMA             | Ю   | External event trigger input or PWM port output                            |
|              | TIM6_x_PWMB             | Ю   | External event trigger input or PWM port output                            |
| TimerA       | TIMA_x_TRIG             | ı   | External event triggered input                                             |
| (x=1~6)      | TIMA_x_PWM1/TIMA_x_CLKA | Ю   | External event trigger input or PWM port output or count clock port output |
|              | TIMA_x_PWM2/TIMA_x_CLKB | Ю   | External event trigger input or PWM port output or count clock port output |
|              | TIMA_x_PWMy (y=3~8)     | Ю   | External event trigger input or PWM port output                            |
| EMB          | EMB_INx (x=1~4)         | 1   | Groupx (x=1~4) port input control signal                                   |
| USARTx       | USARTx_TX               | Ю   | Sending data                                                               |
| (x=1~4)      | USARTx_RX               | Ю   | Receiving data                                                             |
|              | USARTx_CK               | Ю   | Communication Clock                                                        |
|              | USARTx_RTS              | 0   | Request to send a signal                                                   |
|              | USARTx_CTS              | . 1 | Clear send signal                                                          |
| SPIx         | SPIx_MISO               | Ю   | Master input/slave output data transfer pins                               |
| (x=1~4)      | SPIx_MOSI               | Ю   | Master output/slave input data transfer pins                               |
|              | SPIx_SCK                | Ю   | Transmission Clock                                                         |
| 1 X          | SPIx_SS0                | Ю   | Slave select input and output pins                                         |
|              | SPIx_SS1~3              | 0   | Slave select output pins                                                   |
| QSPI         | QSPI_QSIO0~3            | Ю   | Data Cable                                                                 |
|              | QSPI_QSCK               | 0   | Clock Output                                                               |
|              | QSPI_QSSN               | 0   | Slave Selection                                                            |
| I2Cx         | I2Cx_SCL                | Ю   | Clock Lines                                                                |
| (x=1~3)      | I2Cx_SDA                | Ю   | Data Cable                                                                 |
| I2Sx         | I2Sx_SD                 | Ю   | Serial Data                                                                |
| (x=1~4)      | I2Sx_SDIN               | ı   | Full duplex serial data input                                              |

HC32F460 Series Data Sheet Page 58 of



| I2Sx_WS | Ю | Word selection |
|---------|---|----------------|
| I2Sx_CK | Ю | Serial Clock   |

HC32F460 Series Data Sheet Page 59 of



| Cate<br>gory   | Functi<br>on<br>Name   | 1/0 | Des<br>crip<br>tion                                  |
|----------------|------------------------|-----|------------------------------------------------------|
|                | I2Sx_EXCK              | I   | External clock source                                |
|                | I2Sx_MCK               | 0   | Master Clock                                         |
| CAN            | CAN_TxD                | 0   | Sending data                                         |
|                | CAN_RxD                | I   | Receiving data                                       |
| SDIOx          | SDIOx_Dy (y=0~7)       | Ю   | SD data signal                                       |
|                | SDIOx_CK               | 0   | SD clock output signal                               |
|                | SDIOx_CMD              | Ю   | SD command and reply signals                         |
|                | SDIOx_CD               | I   | SD card recognition status signal                    |
|                | SDIOx_WP               | I   | SD card write protect status signal                  |
| USBFS          | USBFS_DM               | Ю   | USBFS on-chip full-speed PHY D-signal                |
|                | USBFS_DP               | Ю   | USBFS on-chip full-speed PHY D+ signal               |
|                | USBFS_VBUS             | Į   | USBFS VBUS signal                                    |
|                | USBFS_ID               | I   | USBFS ID signal                                      |
|                | USBFS_SOF              | 0   | USBFS SOF pulse output signal                        |
|                | USBFS_DRVVBUS          | O   | USBFS VBUS driver license signal                     |
| CMPx           | VCOUT1                 | 0   | Analog comparison channel 1 result output            |
| (x=1~3) VCOUT2 |                        | 0   | Analog comparison channel 2 result output            |
|                | VCOUT3                 | 0   | Analog comparison channel 3 result output            |
|                | VCOUT123               | 0   | Analog comparison channel 1~3 Result OR output       |
|                | CMPx_INPy              |     | Analog comparator channel x positive voltage y input |
|                | CMPx_INMy              | I   | Analog comparator channel x negative voltage y input |
| ADC            | ADTRG1                 | ı   | ADC1 AD conversion external start source             |
|                | ADTRG2                 | I   | ADC2 AD conversion external start-up source          |
|                | ADC1_INx (x=0~3,12~15) | I   | ADC1 external analog input port                      |
| 1 7            | ADC12_INx (x=4~11)     | I   | ADC1 and ADC2 share an external analog input port    |
|                | PGAVSS                 | ı   | PGA Ground input                                     |

Table 2-5 Pin Function Description

HC32F460 Series Data Sheet Page 60 of



# 2.4 Pin Usage Instructions

| Pin Name      | Instruct ions for use                                                                                                              |
|---------------|------------------------------------------------------------------------------------------------------------------------------------|
| VCC           | Power supply, connect 1.8V~3.6V voltage and connect decoupling capacitor with VSS pin nearby (refer to electrical characteristics) |
| VSS           | Power ground, connected to 0V                                                                                                      |
| VCAP_1~2      | Kernel voltage, connect capacitor to VSS pin nearby to stabilize kernel voltage (refer to electrical characteristics)              |
| AVCC          | Analog power supply for analog module, connected to the same                                                                       |
|               | voltage as VCC (refer to electrical characteristics) When not using                                                                |
|               | the analog module, please short the connection with VCC                                                                            |
| AVSS/VREFL    | Analog power ground/reference voltage, connected to the same                                                                       |
|               | voltage as AVSS (reference electrical characteristics) Shorted                                                                     |
|               | to VSS when not using analog module                                                                                                |
| VREFH         | ADC1, ADC2 analog reference voltage, connected to a                                                                                |
|               | voltage not higher than AVCC when not using the ADC,                                                                               |
|               | please short with AVCC                                                                                                             |
| PB11/MD       | Mode input, fixed to the input state. This pin must be fixed high when the reset                                                   |
|               | pin (NRST) is released (changed from low to high). Recommended connection                                                          |
|               | resistor (4.7KΩ) to VCC (pull-up)                                                                                                  |
| NRST          | Reset pin, active low. Connect resistor to VCC (pull-up) when not in use                                                           |
| Pxy, x=A~E,H, | General purpose pins. When used as input function, the input voltage should not                                                    |
| y=0~15        | exceed 5V. when used as analog input, the analog voltage should not exceed                                                         |
| , V )         | VREFH/AVCC                                                                                                                         |
|               | Suspend when not in use, or connect resistor to VCC (pull-up)/VSS (pull-down)                                                      |

Table 2-6 Pin Usage Description

HC32F460 Series Data Sheet Page 61 of



### 3 Electrical Characteristics

#### 3.1 Parameter Conditions

All voltages are referenced to VSS if not otherwise specified.

#### 3.1.1 Minimum and maximum values

Unless otherwise noted, all device minimum and maximum values are guaranteed by design or characterization testing under worst-case ambient temperature, supply voltage, and clock frequency conditions.

## 3.1.2 Typical values

Unless otherwise noted, typical data is obtained by design or characterization testing at TA = 25 °C and VCC = 3.3 V.

## 3.1.3 Typical Curve

Unless otherwise noted, all typical curves are untested and are for design reference only.

## 3.1.4 Load capacitance

The load conditions used to measure the pin parameters are shown in Figure 3-1 (left).

Page 62 of

HC32F460 Series Data Sheet



# 3.1.5 Pin Input Voltage

The measurement of the input voltage on the device pins is shown in Figure 3-1 (right).



Figure 3-1 Pin load condition (left) and input voltage measurement (right)



HC32F460 Series Data Sheet Page 63 of





Figure 3-2 Power supply scheme (HC32F460PETB-LQFP100)

HC32F460 Series Data Sheet Page 64 of





Figure 3-3 Power supply scheme (HC32F460KETA-LQFP64)

HC32F460 Series Data Sheet Page 65 of





Figure 3-4 Power supply scheme (HC32F460ZEUA-QFN60TR, (HC32F460JETA-LQFP48/HC32F460JEUA-QFN48TR)

- 1. The 4.7µF ceramic capacitor must be connected to one of the VCC pins.
- 2. AVSS = VSS.
- 3. Each power pair (e.g. VCC/VSS, AVCC/AVSS ...) must be decoupled using the filtering ceramic capacitors described above. These capacitors must be as close or as low as possible to the appropriate pins below the PCB to ensure proper device operation. It is not recommended to remove

HC32F460 Series Data Sheet Page 66 of



the filtering capacitors to drop

HC32F460 Series Data Sheet Page 67 of



Low PCB size or cost. This may cause the device to operate improperly.

- 4. The capacitors used for the VCAP\_1/VCAP\_2 pins are as follows: 1) For chips with both VCAP\_1 and VCAP\_2 pins, each pin can use 0.047uF or 0.1uF capacitance (total capacity is 0.094uF or 0.2uF) 2) For chips with only VCAP\_1 pin, 0.1uF or 0.22uF capacitance can be used. capacitor. When waking up from power-down mode, VCAP\_1/VCAP\_2 needs to be charged during the core voltage build-up. On the one hand, a smaller total VCAP\_1/VCAP\_2 capacity reduces the charge time and brings fast response time to the application; on the other hand, a larger total VCAP\_1/VCAP\_2 capacity extends the charge time, but also provides better electromagnetic compatibility (EMC). The user can choose a larger or smaller capacitance value depending on the EMC and system response speed requirements. The total capacity of VCAP\_1/VCAP\_2 must match the value assigned to the PWR\_PWRC3.PDTS bit. If the total capacity of VCAP\_1/VCAP\_2 is 0.094uF or 0.1uF, you need to make sure the PWR\_PWRC3.PDTS bit is cleared before entering the power-down mode.
- 5. The stability of the main regulator is achieved by connecting an external capacitor to the VCAP\_1 (or VCAP\_1/VCAP\_2) pin, with the capacitance value CEXT determined

| Syngccording to | the stability require the system.       | The capacitance <b>Call</b> e CEXT and ESR |
|-----------------|-----------------------------------------|--------------------------------------------|
| bols            | ame<br>s are as follows:                | diti                                       |
| requiremen      | ters                                    | ons                                        |
| CEXT            | Capacitance value of external capacitor | 0.047µF / 0.1µF / 0.22uF                   |

Table 3-1 VCAP\_1/VCAP\_2 Operating Conditions

## 3.1.7 Current consumption measurement



HC32F460 Series Data Sheet Page 68 of

Figure 3-5 Current consumption measurement scheme

HC32F460 Series Data Sheet Page 69 of



# 3.2 Absolute maximum rating

If the loads applied to the device exceed the absolute maximum ratings listed in Table 3-2 Voltage Table 3-3 Current Characteristics, and Table 3-4 Thermal Characteristics, the device may be permanently damaged. These values are rated stresses only and do not imply that the device functions properly under these

| Symbol  | nditions. Prolonged <b>roj</b> eration at maximu            | n r <b>Médico</b> nd | ditions m <b>Maxi</b> fect the i | el <b>labit</b> ity |
|---------|-------------------------------------------------------------|----------------------|----------------------------------|---------------------|
| s of    | the device. ects                                            | m value              | mum                              |                     |
|         |                                                             |                      | value                            |                     |
| vcc-vss | External mains voltage (including AVCC, VCC) <sup>(1)</sup> | -0.3                 | 4.0                              |                     |
| VIN     | The input voltage on the 5V withstand voltage pin (2)       | VSS-0.3              | VCC+4.0 (max. 5.8V)              | V                   |
|         |                                                             |                      |                                  |                     |

#### Table 3-2 Voltage Characteristics

- All mains (VCC, AVCC) and ground (VSS, AVSS) pins must always be connected to an external power supply, within the allowed limits.
- 2. The maximum value of VIN must always be followed. See Table 3-3 for information on the maximum allowable injection current values.

HC32F460 Series Data Sheet Page 70 of



| Sym                                                   | Proj                                                                          | Maximu  | Unit |
|-------------------------------------------------------|-------------------------------------------------------------------------------|---------|------|
| bols                                                  | ects                                                                          | m value |      |
| ΣΙVCC                                                 | Total current flowing into all VCCX power lines (pull current)(1)             | 240     |      |
| ΣΙVSS                                                 | Total current flowing out of all vssx grounding lines (potting current) (1)   | -240    |      |
| IVCC                                                  | Maximum current flowing into each vccx power line (pull current) (1)          | 100     | mA   |
| IVSS                                                  | Maximum current flowing out of each vssx grounding line (potting current) (1) | -100    |      |
| IIO                                                   | Output supply current for any I/O and control pins                            | 40      |      |
| IIO                                                   | Output pull current for arbitrary I/O and control pins                        | -40     |      |
| ΣΙΙΟ                                                  | Total output supply current on all I/O and control pins                       | 120     |      |
| Total output pull current on all I/O and control pins |                                                                               | -120    |      |

Table 3-3 Current Characteristics

 All mains (VCC, AVCC) and ground (VSS, AVSS) pins must always be connected to an external power supply, within the allowed limits.

| Symbol | Proj                         | Nu          | Unit |
|--------|------------------------------|-------------|------|
| S      | ects                         | mer         |      |
|        |                              | ical        |      |
|        |                              | valu        |      |
|        |                              | e           |      |
| TSTG   | Storage temperature range    | -55 to +125 | °C   |
| TJ     | Maximum junction temperature | 125         | °C   |

Table 3-4 Thermal Properties

HC32F460 Series Data Sheet Page 71 of



# 3.3 Working conditions

# 3.3.1 General working conditions

| Symbo                | Par                                                  | Con                                               | Min. | Тур. | Max.   | Unit    |
|----------------------|------------------------------------------------------|---------------------------------------------------|------|------|--------|---------|
| ls                   | ame<br>ters                                          | ditio<br>ns                                       |      |      |        |         |
| fHCLK                | Internal AHB clock                                   | High-speed mode [1] PWRC2.DVS=11 PWRC2.DDAS=1111  | 0    | -    | 168    | MHz     |
|                      | frequency                                            | Ultra low speed mode PWRC2.DVS=10 PWRC2.DDAS=1000 | 0    |      | 8      | IVII 12 |
| VCC                  | Standard operating voltage                           | -                                                 | 1.8  |      | 3.6    |         |
| VAVCC <sup>(2)</sup> | Analog operating voltage                             | -                                                 | 1.8  | -    | 3.6    |         |
|                      | Input <sub>voltage</sub> on 5V                       | 2 V ≤ VCC ≤ 3.6 V                                 | -0.3 | -    | 5.5    | V       |
|                      | withstand voltage pins(3)                            | VCC ≤ 2 V                                         | -0.3 | -    | 5.2    |         |
| VIN                  | pa11/usbfs_dm pa12/usbfs_dp Input voltage of the pin |                                                   | -0.3 | -    | VCC+0. |         |
| TJ                   | Junction temperature range                           |                                                   | -40  | -    | 125    | °C      |

Table 3-5 General working conditions

- Mass production test guarantee.
- 2. If the VREFH pin is present, the following condition must be considered: VAVCC VREFH < 1.2 V.
- 3. To keep the voltage above VCC+0.3, the internal pull-up/down resistors must be disabled.

HC32F460 Series Data Sheet Page 72 of



# 3.3.2 Operating conditions at power-up / power-down

TA obeys general working conditions.

| Sym<br>bols | Par<br>ame<br>ters | Minimu<br>m value | Maximu<br>m value | Unit  |
|-------------|--------------------|-------------------|-------------------|-------|
| tVCC        | VCC Rise Time Rate | 20                | 20000             | µs/V  |
|             | VCC down time rate | 20                | 20000             | μ5/ ν |

Table 3-6 Operating conditions at power-up/power-down





# 3.3.3 Reset and power control module features

| Symbol<br>s         | Par<br>ame<br>ters                  | Con<br>diti<br>ons              | Mini<br>mum<br>value | Typic<br>al<br>values | Maxi<br>mum<br>value | Unit   |
|---------------------|-------------------------------------|---------------------------------|----------------------|-----------------------|----------------------|--------|
|                     |                                     | ICG1.BOR_LEV[1:0]=00            | 1.80                 | 1.90                  | 2.00                 | V      |
| VBOR                | Monitoring voltage of the           | ICG1.BOR_LEV [1:0]=01           | 1.90                 | 2.00                  | 2.10                 | V      |
|                     | BOR                                 | ICG1.BOR_LEV [1:0]=10           | 2.00                 | 2.10                  | 2.20                 | V      |
|                     |                                     | ICG1.BOR_LEV [1:0]=11           | 2.20                 | 2.30                  | 2.40                 | v      |
|                     |                                     | PVD1LVL[2:0]=000                | 1.90                 | 2.00                  | 2.10                 | V      |
|                     |                                     | PVD1LVL[2:0]=001                | 2.00                 | 2.10                  | 2.20                 | V      |
|                     |                                     | PVD1LVL[2:0]=010                | 2.20                 | 2.30                  | 2.40                 | V      |
| VPVD1               | PVD1 monitoring voltage             | PVD1LVL[2:0]=011                | 2.43                 | 2.55                  | 2.67                 | V      |
|                     | (3)                                 | PVD1LVL[2:0]=100                | 2.53                 | 2.65                  | 2.77                 | V      |
|                     |                                     | PVD1LVL[2:0]=101                | 2.63                 | 2.75                  | 2.87                 | \<br>\ |
|                     |                                     | PVD1LVL[2:0]=110                | 2.73                 | 2.85                  | 2.97                 | \ \    |
|                     |                                     | PVD1LVL[2:0]=111                | 2.83                 | 2.95                  | 3.07                 | V      |
|                     |                                     | PVD2LVL[2:0]=000                | 2.00                 | 2.10                  | 2.20                 | V      |
|                     |                                     | PVD2LVL[2:0]=001                | 2.20                 | 2.30                  | 2.40                 | V      |
|                     |                                     | PVD2LVL[2:0]=010                | 2.43                 | 2.55                  | 2.67                 | V      |
|                     |                                     | PVD2LVL[2:0]=011                | 2.53                 | 2.65                  | 2.77                 | V      |
| VPVD2               | PVD2 monitoring voltage             | PVD2LVL[2:0]=100                | 2.63                 | 2.75                  | 2.87                 | \<br>\ |
| . \                 | (3)                                 | PVD2LVL[2:0]=101                | 2.73                 | 2.85                  | 2.97                 | V      |
| K                   |                                     | PVD2LVL[2:0]=110 <sup>(1)</sup> | 2.83                 | 2.95                  | 3.07                 | <      |
|                     |                                     | PVD2LVL[2:0]=111 <sup>(2)</sup> | 1.00                 | 1.10                  | 1.20                 | V      |
| Vpvdhy<br>st        | The hysteresis of PVD1,2            |                                 | -                    | 100                   | -                    | mV     |
| (1)                 |                                     | Rise along VPOR                 | 1.60                 | 1.68                  | 1.76                 | V      |
| VPOR <sup>(1)</sup> | Power-up/power-down reset threshold | Descent along the VPDR          | 1.56                 | 1.64                  | 1.72                 | V      |

HC32F460 Series Data Sheet Page 74 of



| VPORhy | POR Hysteresis | - | 40 | - | mV |
|--------|----------------|---|----|---|----|
| st     |                |   |    |   | ·  |

HC32F460 Series Data Sheet Page 75 of



| Symbol s | Par<br>ame                           | Con<br>diti | Mini<br>mum | Typic<br>al | Maxi<br>mum | Unit |
|----------|--------------------------------------|-------------|-------------|-------------|-------------|------|
|          | ters                                 | ons         | value       | values      | value       |      |
| IRUSH    | Inrush current at regulator power-up |             | -           | 100         | 150         | mA   |
|          | (POR or wake up from standby)        |             |             |             |             |      |
| TNRST    | NRST reset minimum width             |             | 500         | -           | S           | ns   |
| TRIPT    | Internal reset time                  |             | 140         | 160         | 200         | us   |
| TRSTTAO  | Power-on reset release time          |             | -           | 2500        | 3000        | us   |

Table 3-7 Reset and Power Control Module Characteristics

- Mass production test guarantee.
- 2. When PVD2LVDL[2:0] = 111, the comparison voltage is the external input comparison voltage of the PVD2EXINP pin
- 3. PVD1 monitoring voltage is the monitoring voltage when the VCC voltage drops; PVD2 monitoring voltage is the monitoring voltage when the PVDEXINP voltage drops when PVD2LVL[2:0] is set to 111, and PVD2 monitoring voltage is the monitoring voltage when the VCC voltage drops when PVD2LVD[2:0] is set to a value other than 111.
- 4. The hysteresis of PVD1,2 is the difference between the monitored voltage when VCC is rising and the monitored voltage when VCC is falling.

PVD1 monitoring voltage when VCC rises =

Vpvd1+Vpvdhyst; PVD2 monitoring voltage when

VCC rises = Vpvd2+Vpvdhyst.

HC32F460 Series Data Sheet Page 76 of



#### 3.3.4 Supply current characteristics

Current consumption is affected by several parameters and factors, including operating voltage, ambient temperature, I/O pin load, device software configuration, operating frequency, I/O pin switching rate, location of the program in memory, and the code being run. The measurement of current consumption is presented in Figure 3-5. The current consumption measurements for the various modes of operation described in this section are derived from a set of test codes running in FLASH

The specific conditions are as follows:

under laboratory conditions.

- 1) All I/O pins are in input mode with static values (no loadon VCC or VSS.
- Clock frequency selection High-speed mode fHCLK=168MHz/120MHz/24MHz and Ultra-low-speed mode fHCLK=8MHz/1MHz.
- 3) The power consumption modes are: normal operation mode ICC\_RUN, sleep mode ICC\_SLEEP, stop mode ICC\_STP.
  Power down mode ICC\_PD and Dhrystone operating mode ICC\_DHRYSTONE.
- 4) Peripheral Clock ON/OFF Please refer to the specific current test item.
- 5) High speed mode fHCLK=168MHz/120MHz PLL is on.

HC32F460 Series Data Sheet



| Mode          | Parameter | Symbol        | Con                               | Ta   |     | Produc<br>Specifi  | ct<br>cations      | Unit |
|---------------|-----------|---------------|-----------------------------------|------|-----|--------------------|--------------------|------|
|               |           |               | ditio<br>ns                       | (°C) | Min | Typ <sup>(1)</sup> | Max <sup>(2)</sup> |      |
| High<br>Speed | fHCLK=    | ICC_RUN       | while(1),Full module clock<br>OFF | -40  | -   | 13                 | -                  | mA   |
| Mode          | 168MHz    |               | while(1),full module clock<br>ON  | -40  | -   | 23                 | -                  | mA   |
|               |           | IOO DUDVOTONE | CACHE OFF                         | -40  | -   | 14                 | -                  | mA   |
|               |           | ICC_DHRYSTONE | CACHE ON                          | -40  | -   | 15                 | -                  | mA   |
|               |           | ICC CLEED     | Full module clock OFF             | -40  | -   | 9                  | -                  | mA   |
|               |           | ICC_SLEEP     | Full modular clock ON             | -40  | -   | 19                 | -                  | mA   |
|               |           | ICC_RUN       | while(1),Full module clock<br>OFF | 25   | -   | 13                 | -                  | mA   |
|               |           |               | while(1),full module clock<br>ON  | 25   | -   | 23                 | -                  | mA   |
|               |           |               | CACHE OFF                         | 25   | -   | 14                 | -                  | mA   |
|               |           | ICC_DHRYSTONE | CACHE ON                          | 25   | -   | 15                 | -                  | mA   |
|               |           |               | Full module clock OFF             | 25   | -   | 9                  | -                  | mA   |
|               |           | ICC_SLEEP     | Full modular clock ON             | 25   | -   | 19                 | -                  | mA   |
|               |           | ICC_RUN       | while(1),Full module clock<br>OFF | 85   | -   | -                  | 18                 | mA   |
|               |           |               | while(1),full module clock<br>ON  | 85   | -   | -                  | 28                 | mA   |
|               |           |               | CACHE OFF                         | 85   | -   | -                  | 18                 | mA   |
|               |           | ICC_DHRYSTONE | CACHE ON                          | 85   | -   | -                  | 20                 | mA   |
|               |           |               | Full module clock OFF             | 85   | -   | -                  | 14                 | mA   |
|               |           | ICC_SLEEP     | Full modular clock ON             | 85   | -   | -                  | 24                 | mA   |
|               |           | ICC_RUN       | while(1),Full module clock<br>OFF | 105  | -   | -                  | 20                 | mA   |
|               |           |               | while(1),full module clock<br>ON  | 105  | -   | -                  | 31                 | mA   |
|               |           | 100 00000     | CACHE OFF                         | 105  | -   | -                  | 19                 | mA   |
|               |           | ICC_DHRYSTONE | CACHE ON                          | 105  | -   | -                  | 23                 | mA   |
|               |           | 100 01 555    | Full module clock OFF             | 105  | -   | -                  | 17                 | mA   |
|               |           | ICC_SLEEP     | Full modular clock ON             | 105  | -   | -                  | 27                 | mA   |

HC32F460 Series Data Sheet Page 78 of



Table 3-8 High-speed mode current consumption 1

- 1. Typ Voltage condition VCC=3.3V
- 2. Max Voltage Condition VCC=1.8~3.6V



HC32F460 Series Data Sheet Page 79 of



| Mode          | Parameter   | Symbol        | Con<br>ditio                      | Та   |     | Produc<br>Specific<br>ations | e<br>              | Unit |
|---------------|-------------|---------------|-----------------------------------|------|-----|------------------------------|--------------------|------|
|               |             |               | ns                                | (°C) | Min | Typ <sup>(1)</sup>           | Max <sup>(2)</sup> |      |
| High<br>Speed | fHCLK=      | ICC_RUN       | while(1),Full module clock<br>OFF | -40  | -   | 9.5                          | -                  | mA   |
| Mode          | lode 120MHz |               | while(1),full module clock ON     | -40  | -   | 16.5                         | -                  | mA   |
|               |             |               | CACHE OFF                         | -40  | -   | 10                           | -                  | mA   |
|               |             | ICC_DHRYSTONE | CACHE ON                          | -40  | -   | 11.5                         | -                  | mA   |
|               |             |               | Full module clock OFF             | -40  | -   | 7                            | -                  | mA   |
|               |             | ICC_SLEEP     | Full modular clock ON             | -40  | -   | 14.5                         | -                  | mA   |
|               |             | ICC_RUN       | while(1),Full module clock OFF    | 25   | -   | 9.5                          | -                  | mA   |
|               |             |               | while(1),full module clock ON     | 25   | ı   | 16.5                         | -                  | mA   |
|               |             |               | CACHE OFF                         | 25   | -   | 10                           | -                  | mA   |
|               |             | ICC_DHRYSTONE | CACHE ON                          | 25   | -   | 11.5                         | -                  | mA   |
|               |             |               | Full module clock OFF             | 25   | -   | 7                            | -                  | mA   |
|               |             | ICC_SLEEP     | Full modular clock ON             | 25   | -   | 14.5                         | -                  | mA   |
|               |             | ICC_RUN       | while(1),Full module clock OFF    | 85   | -   | -                            | 14                 | mA   |
|               |             | _             | while(1),full module clock ON     | 85   | -   | ı                            | 22                 | mA   |
|               |             |               | CACHE OFF                         | 85   | -   | -                            | 14                 | mA   |
|               |             | ICC_DHRYSTONE | CACHE ON                          | 85   | -   | -                            | 17                 | mA   |
|               |             | 100 01 555    | Full module clock OFF             | 85   | -   | -                            | 12                 | mA   |
|               |             | ICC_SLEEP     | Full modular clock ON             | 85   | -   | -                            | 20                 | mA   |
|               |             | ICC_RUN       | while(1),Full module clock OFF    | 105  | -   | -                            | 16                 | mA   |
|               |             |               | while(1),full module clock<br>ON  | 105  | -   | -                            | 25                 | mA   |
|               |             |               | CACHE OFF                         | 105  | -   | -                            | 15                 | mA   |
|               |             | ICC_DHRYSTONE | CACHE ON                          | 105  | -   | -                            | 19                 | mA   |
|               |             |               | Full module clock OFF             | 105  | -   | -                            | 15                 | mA   |
|               |             | ICC_SLEEP     | Full modular clock ON             | 105  | -   | -                            | 22                 | mA   |

HC32F460 Series Data Sheet Page 80 of



Table 3-9 High-speed mode current consumption 2

- 1. Typ Voltage condition VCC=3.3V
- 2. Max Voltage Condition VCC=1.8~3.6V



HC32F460 Series Data Sheet Page 81 of



| Mode          | Parameter | Symbol        | Con                              | Та   |     | Produc<br>Specific |                    | Unit |
|---------------|-----------|---------------|----------------------------------|------|-----|--------------------|--------------------|------|
|               |           |               | ditio<br>ns                      | (°C) | Min | Typ <sup>(1)</sup> | Max <sup>(2)</sup> |      |
| High<br>Speed | fHCLK=    | ICC_RUN       | while(1),Full module clock OFF   | -40  | -   | 3                  | -                  | mA   |
| Mode          | 24MHz     |               | while(1),full module clock<br>ON | -40  | -   | 6                  | -                  | mA   |
|               |           | ICC_DHRYSTONE | CACHE OFF                        | -40  | -   | 3.5                |                    | mA   |
|               |           |               | Full module clock OFF            | -40  | -   | 2                  |                    | mA   |
|               |           | ICC_SLEEP     | Full modular clock ON            | -40  |     | 5.5                |                    | mA   |
|               |           | ICC_RUN       | while(1),Full module clock OFF   | 25   | -   | 3                  | 1                  | mA   |
|               |           |               | while(1),full module clock ON    | 25   | ŀ   | 6                  | 1                  | mA   |
|               |           | ICC_DHRYSTONE | CACHE OFF                        | 25   | -   | 3.5                | -                  | mA   |
|               |           |               | Full module clock OFF            | 25   | -   | 2                  | -                  | mA   |
|               |           | ICC_SLEEP     | Full modular clock ON            | 25   | -   | 5.5                | -                  | mA   |
|               |           | ICC_RUN       | while(1),Full module clock OFF   | 85   | -   | -                  | 8                  | mA   |
|               |           |               | while(1),full module clock<br>ON | 85   | -   | -                  | 12                 | mA   |
|               |           | ICC_DHRYSTONE | CACHE OFF                        | 85   | -   | -                  | 7                  | mA   |
|               | •         |               | Full module clock OFF            | 85   | -   | -                  | 8                  | mA   |
|               |           | ICC_SLEEP     | Full modular clock ON            | 85   | -   | -                  | 11                 | mA   |
|               |           | ICC_RUN       | while(1),Full module clock OFF   | 105  | -   | -                  | 10                 | mA   |
|               |           |               | while(1),full module clock<br>ON | 105  | -   | -                  | 14                 | mA   |
|               |           | ICC_DHRYSTONE | CACHE OFF                        | 105  | -   | -                  | 8                  | mA   |
|               |           | 100 0:        | Full module clock OFF            | 105  | -   | -                  | 10                 | mA   |
|               |           | ICC_SLEEP     | Full modular clock ON            | 105  | -   | -                  | 14                 | mA   |

Table 3-10 High-speed mode current consumption 3

- 1. Typ Voltage condition VCC=3.3V
- Max Voltage Condition VCC=1.8~3.6V

HC32F460 Series Data Sheet Page 82 of



| Mode                  | Parameter | Symbol        | Con                               | Та   |     | Produc<br>Specifi  | et<br>cations      | Unit |
|-----------------------|-----------|---------------|-----------------------------------|------|-----|--------------------|--------------------|------|
|                       |           |               | ditio<br>ns                       | (°C) | Min | Typ <sup>(1)</sup> | Max <sup>(2)</sup> |      |
| Ultra<br>Low<br>Speed | fHCLK=    | ICC_RUN       | while(1),Full module clock<br>OFF | -40  | -   | 1                  | -                  | mA   |
| Mode                  | 8MHz      |               | while(1),full module clock<br>ON  | -40  | -   | 3.5                |                    | mA   |
|                       |           | ICC_DHRYSTONE | CACHE OFF                         | -40  | -   | 1.5                |                    | mA   |
|                       |           |               | Full module clock OFF             | -40  | -   | 1.2                | - '                | mA   |
|                       |           | ICC_SLEEP     | Full modular clock ON             | -40  | -   | 3.2                |                    | mA   |
|                       |           | ICC_RUN       | while(1),Full module clock<br>OFF | 25   | -   | 1                  |                    | mA   |
|                       |           |               | while(1),full module clock        | 25   |     | 3.5                | -                  | mA   |
|                       |           | ICC_DHRYSTONE | CACHE OFF                         | 25   | -   | 1.5                | -                  | mA   |
|                       |           | ICC CLEED     | Full module clock OFF             | 25   | -   | 1.2                | -                  | mA   |
|                       |           | ICC_SLEEP     | Full modular clock ON             | 25   | -   | 3.2                | -                  | mA   |
|                       |           | ICC_RUN       | while(1),Full module clock<br>OFF | 85   | -   | -                  | 4                  | mA   |
|                       |           |               | while(1),full module clock<br>ON  | 85   | -   | -                  | 6                  | mA   |
|                       |           | ICC_DHRYSTONE | CACHE OFF                         | 85   | -   | -                  | 4                  | mA   |
|                       |           | 100 CLEED     | Full module clock OFF             | 85   | -   | -                  | 3.5                | mA   |
|                       |           | ICC_SLEEP     | Full modular clock ON             | 85   | -   | -                  | 6                  | mA   |
|                       |           | ICC_RUN       | while(1),Full module clock<br>OFF | 105  | -   | -                  | 6                  | mA   |
|                       |           |               | while(1),full module clock<br>ON  | 105  | -   | -                  | 7                  | mA   |
|                       |           | ICC_DHRYSTONE | CACHE OFF                         | 105  | -   | -                  | 4.5                | mA   |
|                       |           | 100 01 555    | Full module clock OFF             | 105  | -   | -                  | 4                  | mA   |
|                       |           | ICC_SLEEP     | Full modular clock ON             | 105  | -   | -                  | 6.5                | mA   |

Table 3-11 Ultra-low speed mode current consumption 1

- 1. Typ Voltage condition VCC=3.3V
- 2. Max Voltage Condition VCC=1.8~3.6V

HC32F460 Series Data Sheet Page 83 of



| Mode                  | Parameter | Symbol        | Con                               | Та   |     | Produc<br>Specifi  | et<br>cations      | Unit |
|-----------------------|-----------|---------------|-----------------------------------|------|-----|--------------------|--------------------|------|
|                       |           |               | ditio<br>ns                       | (°C) | Min | Typ <sup>(1)</sup> | Max <sup>(2)</sup> |      |
| Ultra<br>Low<br>Speed | fHCLK=    | ICC_RUN       | while(1),Full module clock OFF    | -40  | -   | 0.7                | -                  | mA   |
| Mode                  | 1MHz      |               | while(1),full module clock ON     | -40  | -   | 2.5                |                    | mA   |
|                       |           | ICC_DHRYSTONE | CACHE OFF                         | -40  | -   | 0.9                |                    | mA   |
|                       |           |               | Full module clock OFF             | -40  |     | 0.9                |                    | mA   |
|                       |           | ICC_SLEEP     | Full modular clock ON             | -40  | -   | 2.4                | -4                 | mA   |
|                       |           | ICC_RUN       | while(1),Full module clock OFF    | 25   | -   | 0.7                |                    | mA   |
|                       |           |               | while(1),full module clock ON     | 25   |     | 2.5                | -                  | mA   |
|                       |           | ICC_DHRYSTONE | CACHE OFF                         | 25   | -   | 0.9                | -                  | mA   |
|                       |           | 100 01 550    | Full module clock OFF             | 25   | -   | 0.9                | -                  | mA   |
|                       |           | ICC_SLEEP     | Full modular clock ON             | 25   | -   | 2.4                | -                  | mA   |
|                       |           | ICC_RUN       | while(1),Full module clock OFF    | 85   | -   | -                  | 4                  | mA   |
|                       |           |               | while(1),full module clock<br>ON  | 85   | -   | -                  | 5                  | mA   |
|                       |           | ICC_DHRYSTONE | CACHE OFF                         | 85   | -   | -                  | 3.5                | mA   |
|                       |           | (00 01550     | Full module clock OFF             | 85   | -   | -                  | 3.5                | mA   |
|                       |           | ICC_SLEEP     | Full modular clock ON             | 85   | -   | -                  | 5                  | mA   |
|                       |           | ICC_RUN       | while(1),Full module clock<br>OFF | 105  | -   | -                  | 5                  | mA   |
|                       |           |               | while(1),full module clock ON     | 105  | -   | -                  | 5.5                | mA   |
|                       |           | ICC_DHRYSTONE | CACHE OFF                         | 105  | -   | -                  | 4                  | mA   |
|                       |           | 100 0/ 555    | Full module clock OFF             | 105  | -   | -                  | 5                  | mA   |
|                       |           | ICC_SLEEP     | Full modular clock ON             | 105  | -   | -                  | 5.5                | mA   |

Table 3-12 Ultra-low speed mode current consumption 2

- 1. Typ Voltage condition VCC=3.3V
- 2. Max Voltage Condition VCC=1.8~3.6V

HC32F460 Series Data Sheet Page 84 of



| Mode      | Parameter | Symbol  | Conditions (VCC=3.3V)           | Ta   |     | Produc                      |                    | Unit |
|-----------|-----------|---------|---------------------------------|------|-----|-----------------------------|--------------------|------|
|           |           |         |                                 | (°C) | Min | Specific Typ <sup>(1)</sup> | Max <sup>(2)</sup> |      |
| Stop Mode | -         | ICC_STP | PWR_PWRC1.STPDAS=00             | -40  | -   | 160                         | -                  | uA   |
| ·         |           | _       | PWR_PWRC1.STPDAS=11             | -40  | -   | 30                          | -                  | uA   |
|           |           |         | PWR_PWRC1.STPDAS=00             | 25   | _   | 220                         | -                  | uA   |
|           |           |         | PWR_PWRC1.STPDAS=11             | 25   | _   | 80                          | -                  | uA   |
|           |           |         | PWR_PWRC1.STPDAS=00             | 85   | -   | -                           | 3600               | uA   |
|           |           |         | PWR_PWRC1.STPDAS=11             | 85   | -   | -                           | 3400               | uA   |
|           |           |         | PWR_PWRC1.STPDAS=00             | 105  | -   | -                           | 4800               | uA   |
|           |           |         | PWR_PWRC1.STPDAS=11(3)          | 105  | -   | -                           | 4600               | uA   |
| Power     | -         | ICC_PD  | Power down mode 1               | -40  | -   | 10                          | -                  | uA   |
| down      |           |         | Power down mode 2               | -40  | -   | 4                           | -                  | uA   |
| mode      |           |         | Power down mode 3               | -40  | -   | 1.8                         | -                  | uA   |
|           |           |         | Power down mode 4               | -40  | -   | 1.8                         | -                  | uA   |
|           |           |         | Power down mode<br>2+XTAL32+RTC | -40  | -   | 6                           | -                  | uA   |
|           |           |         | Power down mode<br>2+LRC+RTC    | -40  | -   | 9                           | -                  | uA   |
|           |           |         | Power down mode 1               | 25   | -   | 10                          | -                  | uA   |
|           |           |         | Power down mode 2               | 25   | -   | 4                           | -                  | uA   |
|           |           |         | Power down mode 3               | 25   | -   | 1.8                         | -                  | uA   |
|           |           |         | Power down mode 4               | 25   | -   | 1.8                         | -                  | uA   |
|           |           |         | Power down mode<br>2+XTAL32+RTC | 25   | -   | 6                           | -                  | uA   |
|           |           |         | Power down mode<br>2+LRC+RTC    | 25   | -   | 9                           | 1                  | uA   |
|           |           |         | Power down mode 1               | 85   | -   | -                           | 21                 | uA   |
|           |           |         | Power down mode 2               | 85   | -   | -                           | 19                 | uA   |
|           |           |         | Power down mode 3               | 85   | -   | -                           | 19                 | uA   |
|           |           |         | Power down mode 4               | 85   | -   | -                           | 19                 | uA   |
|           |           |         | Power down mode<br>2+XTAL32+RTC | 85   | -   | -                           | 21                 | uA   |
|           |           |         | Power down mode                 | 85   | -   | _                           | 21                 | uA   |

HC32F460 Series Data Sheet Page 85 of



| 2+LRC+RTC         |     |   |   |    |    |
|-------------------|-----|---|---|----|----|
| Power down mode 1 | 105 | ı | ı | 25 | uA |
| Power down mode 2 | 105 | 1 | - | 23 | uA |



HC32F460 Series Data Sheet Page 86 of



| Mode | Parameter | Symbol | Conditions (VCC=3.3V)            | Та   |     | Product<br>Specifications |                    | Unit |
|------|-----------|--------|----------------------------------|------|-----|---------------------------|--------------------|------|
|      |           |        |                                  | (°C) | Min | Typ <sup>(1)</sup>        | Max <sup>(2)</sup> |      |
|      |           |        | Power down mode 3                | 105  | ı   | -                         | 20.5               | uA   |
|      |           |        | Power down mode 4 <sup>[3]</sup> | 105  | 1   | -                         | 20.5               | uA   |
|      |           |        | Power down mode<br>2+XTAL32+RTC  | 105  | -   | -                         | 25                 | uA   |
|      |           |        | Power down mode<br>2+LRC+RTC     | 105  | -   | -                         | 25                 | ųА   |

Table 3-13 Low Power Mode Current Consumption

- 1. Typ Voltage condition VCC=3.3V
- 2. Max Voltage Condition VCC=1.8~3.6V
- 3. Mass production test guarantee.

| Item        | Parameter | Symbol                                      | Condition<br>(VCC=AVCC=3.3V)            | Ta   |     | Product<br>Specific |     | Unit |
|-------------|-----------|---------------------------------------------|-----------------------------------------|------|-----|---------------------|-----|------|
|             |           |                                             | (, 00 22 , 00 011 , )                   | (°C) | Min | Тур                 | Max |      |
| Module<br>s | -         | ICC_MODULE                                  | XTAL oscillation mode large drive 24MHz | 25   | -   | 1.8                 | -   | mA   |
| Current     | urrent    |                                             | Drive 16MHz in oscillation mode         | 25   | -   | 1                   | -   | mA   |
|             |           | Oscillation mode small drive 10MHz          | 25                                      | -    | 0.8 | -                   | mA  |      |
|             |           | Oscillation mode ultra-<br>small drive 8MHz | 25                                      | -    | 0.6 | -                   | mA  |      |
|             |           |                                             | XTAL 32K                                | 25   | -   | 0.5                 | -   | mA   |
|             |           |                                             | HRC                                     | 25   | -   | 0.35                | -   | mA   |
|             |           |                                             | PLL (@480MHz)                           | 25   | -   | 2.3                 | -   | mA   |
|             |           |                                             | PLL (@240MHz)                           | 25   | -   | 1.4                 | -   | mA   |
| h           |           |                                             | ADC                                     | 25   | -   | 1.2                 | -   | mA   |
|             |           |                                             | DAC                                     | 25   | -   | 70                  | -   | uA   |
|             |           |                                             | СМР                                     | 25   | -   | 0.11                | -   | mA   |
|             |           |                                             | PGA                                     | 25   | -   | 1                   | -   | mA   |
|             |           |                                             | USBFS <sup>(1)</sup>                    | 25   | -   | 6                   | -   | mA   |

Table 3-14 Analog Module Current Consumption

1. Contains the current when the control section is communicating with the USBPHY.

HC32F460 Series Data Sheet Page 87 of



### 3.3.5 Electrical sensitivity

Different tests (ESD, LU) patients in the chip using specific measurement methods to determine its performance in terms of electrical sensitivity.

#### 3.3.5.1 Electrostatic Discharge (ESD)

Electrostatic discharge is applied to the pins of each sample for each pin combination. This test complies with the JESD22-A114/C101 standard.

| Symbols   | Par                             | Conditions                       | Maxim | Unit |
|-----------|---------------------------------|----------------------------------|-------|------|
|           | ame                             |                                  | um    |      |
|           | ters                            |                                  | value |      |
| VESD(HBM) | Electrostatic discharge voltage | TA = +25 °C according to JESD22- | 4000  |      |
|           | (human model)                   | A114                             |       | V    |

Table 3-15 ESD Characteristics

#### 3.3.5.2 Static Latch-

up

To evaluate static Latch-up performance, two complementary static Latch-up tests are performed on the chip:

- Over-voltage applied to each power and analog input pin
- Applying current injection to other inputs, outputs,

and configurable I/O pins these tests comply with the

| SymEIA/JE | Farancher Latch- | p standard. Con | Maxi  | Unit |
|-----------|------------------|-----------------|-------|------|
| bols      |                  | diti            | mum   |      |
|           |                  | ons             | value |      |

Table 3-16 Static Latch-up Characteristics

HC32F460 Series Data Sheet Page 88 of



### 3.3.6 Low-power mode wake-up timings

The wake-up time is measured from the wake-up event trigger to the first instruction executed by the CPU:

- For stop or sleep mode: the wakeup event is WFE.
- The WKUP pin is used to wake up from standby, stop, or sleep mode. All timings are tested at ambient temperature and VCC=3.3 V.

| Symb                | Parameters                   | Con                                              | Typica | Maxim | Unit |
|---------------------|------------------------------|--------------------------------------------------|--------|-------|------|
| ols                 |                              | diti                                             | 1      | um    |      |
|                     |                              | ons                                              | values | value |      |
|                     |                              | PWR_PWRC1.VHRCSD=1 and                           |        |       |      |
| TSTOP1              | Wake up from                 | PWR_PWRC1.VPLLSD=1,system clock is               | 2      | 5     |      |
|                     | stop mode                    | MRC,program                                      |        |       |      |
|                     |                              | Sequence execution on RAM                        |        |       |      |
| TSTOP2              | Wake up from                 | The system clock is MRC and the program is       | 8      | 15    |      |
|                     | stop mode                    | executed on Flash                                |        |       | us   |
| (1)                 |                              | VCAP_1/VCAP_2 total capacity is 0.094uF or 0.1uF | 15     | 25    |      |
| TPD1 <sup>(1)</sup> | Wake up from power down mode | VCAP_1/VCAP_2 total capacity is 0.2uF or 0.22uF  | 20     | 30    |      |
|                     | 1                            |                                                  |        |       |      |
| (1)                 |                              | VCAP_1/VCAP_2 total capacity is 0.094uF or 0.1uF | 40     | 50    |      |
| TPD2 <sup>(1)</sup> | Wake up from                 |                                                  |        |       |      |

Table 3-17 Low Power Mode Wake-up Time

The total VCAP\_1/VCAP\_2 capacity of the chip must match the value assigned to the PWR\_PWRC3.PDTS bit. If the total capacity of VCAP\_1/VCAP\_2 is 0.2uF or 0.22uF, you need to ensure that the PWR\_PWRC3.PDTS bit is cleared before entering power-down mode.

HC32F460 Series Data Sheet Page 89 of



#### 3.3.7 I/O Port Features

# General input/output characteristics

| Symb<br>ols         |                            | Par<br>ame<br>ters                                                     | Con<br>diti<br>ons                   | Minim<br>um<br>value | Typic<br>al<br>values | Maxim<br>um<br>value. | Unit |
|---------------------|----------------------------|------------------------------------------------------------------------|--------------------------------------|----------------------|-----------------------|-----------------------|------|
| (1)<br>VIL          | Input low                  | level                                                                  | 1.8≤VCC≤3.6                          | -                    | -                     | 0. <sub>2</sub> VCC   | V    |
| (1)<br>VIH          | Input high                 | n level                                                                | 1.8≤VCC≤3.6                          | 0.8VCC               | -                     |                       | V    |
| VHYS                | Input hys                  | teresis                                                                | 1.8≤VCC≤3.6                          | -                    | 0.2                   |                       | V    |
| (1)                 |                            |                                                                        | VSS≤VIN≤VCC                          | -                    | <u> </u>              | ±1                    | uA   |
| ILKG <sup>(1)</sup> | I/O input                  | leakage current                                                        | <sub>VIN</sub> = 5.5V <sup>(2)</sup> |                      |                       | 5                     | uA   |
|                     | Weak                       | USBFS_DP,<br>USBFS_DM                                                  | -                                    | -                    | 1.5                   | 1                     | ΚΩ   |
| RPU <sup>(1)</sup>  |                            | In addition to the USBFS_DP and Other inputs for USBFS_DM Pins         | VIN = VSS                            |                      | 30                    | -                     | ΚΩ   |
|                     | Ce                         | pa11/usbfs_dm<br>pa12/usbfs_dp                                         |                                      | -                    | 10                    | -                     | pF   |
| CIO                 | I/O pin<br>capacita<br>nce | In addition to the PA11/USBFS_DM and Other input pins of PA12/USBFS_DP | -                                    | -                    | 5                     | -                     | pF   |

Table 3-18I/O Static Characteristics

Mass production test guarantee.

2. To keep the voltage above VCC+0.3 V, the internal pull-up/down resistors must be disabled.

HC32F460 Series Data Sheet Page 90 of



# Output Voltage

| Driver<br>settings | Symbo<br>ls             | Parameter<br>s    | Con<br>ditio<br>ns      | Minim<br>um<br>value | Typica<br>l<br>values | Maxim<br>um<br>value | Unit |
|--------------------|-------------------------|-------------------|-------------------------|----------------------|-----------------------|----------------------|------|
|                    | V (1)(2) OL             | Low level output  | IIO=±1.5mA, 1.8≤VCC<2.7 | -                    | -                     | 0.4                  |      |
| Low drive          | V <sup>(д</sup> Из)     | High level output |                         | VCC-0.4              | -                     | -                    |      |
|                    | V (1)(2) OL             | Low level output  | IIO=±3mA, 2.7≤VCC≤3.6   | -                    | -                     | 0.4                  |      |
|                    | V <sup>(Д)(3)</sup>     | High level output |                         | VCC-0.4              | -                     | -                    |      |
|                    | V (1)(2) OL             | Low level output  | IIO=±6mA, 2.7≤VCC≤3.6   | -                    | -                     | 1.3                  |      |
|                    | V <sup>(Д)(3)</sup>     | High level output |                         | VCC-1.3              | -                     | -                    | V    |
|                    | V (1)(2) OL             | Low level output  | IIO=±3mA, 1.8≤VCC<2.7   | -                    | -                     | 0.4                  |      |
| Medium             | V <sup>(д)(3)</sup>     | High level output |                         | VCC-0.4              | -                     | -                    |      |
| drive              | <b>V</b> (1)(2) OL      | Low level output  | IIO=±5mA, 2.7≤VCC≤3.6   | -                    | -                     | 0.4                  |      |
|                    | V <sup>(科3)</sup>       | High level output |                         | VCC-0.4              | -                     | -                    |      |
|                    | V (1)(2) OL             | Low level output  | IIO=±12mA, 2.7≤VCC≤3.6  | -                    | -                     | 1.3                  |      |
|                    | V <sup>(4)</sup> (43)   | High level output |                         | VCC-1.3              | -                     | -                    |      |
|                    | V (1)(2) OL             | Low level output  | IIO=±6mA, 1.8≤VCC<2.7   | -                    | -                     | 0.4                  |      |
| High               | <b>N<sup>码M3)</sup></b> | High level output |                         | VCC-0.4              | -                     | -                    |      |
| drive              | V (1)(2) OL             | Low level output  | IIO=±8mA, 2.7≤VCC≤3.6   | -                    | -                     | 0.4                  |      |
|                    | Л <sup>(Д)(3)</sup>     | High level output |                         | VCC-0.4              | -                     | -                    |      |
|                    | V (1)(2) OL             | Low level output  | IIO=±20mA, 2.7 ≤VCC≤3.6 | -                    | -                     | 1.3                  |      |

HC32F460 Series Data Sheet Page 91 of



| V <sup>(Д)(3)</sup> | High level | VCC-1.3 | - | - |  |
|---------------------|------------|---------|---|---|--|
|                     | output     |         |   |   |  |

Table 3-19 Output Voltage Characteristics

- Mass production test guarantee.
- The IIO supply current of the device must always take into account the absolute maximum rating specified in Table 3-3. The sum of IIO (I/O ports and control pins) must not exceed IVSS.
- 3. The IIO pull current of the device must always follow the absolute maximum ratings listed in Table 3-3, and the sum of the IIOs (I/O ports and control pins) must not exceed IVCC.

HC32F460 Series Data Sheet Page 92 of



# Input/output AC characteristics

| Driver<br>settings | Sym<br>bols                                    | Par<br>ame<br>ters                                                                               | Cond<br>itions                                                                                                                                             | Mini<br>mum<br>value | Typic<br>al<br>values | Maxi<br>mum<br>value                    | Unit |  |
|--------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------------------------|------|--|
| Low drive          | fmax(IO)out  f(IO)out  tr(IO)out               | Maximum frequency (1)  Output high to low level fall time and output low to high level rise time | CL=30 pF, VCC≥2.7V  CL=30 pF, VCC≥1.8V  CL=10pF, VCC≥2.7V  CL=10pF, VCC≥1.8V  CL=30 pF, VCC≥2.7V  CL=30 pF, VCC≥2.7V  CL=10pF, VCC≥1.8V  CL=10pF, VCC≥1.8V | -                    | -                     | 20<br>10<br>40<br>20<br>15<br>25<br>7.5 | MHz  |  |
| Medium<br>drive    | fmax(IO)out                                    | Maximum frequency (1)  Output high to low                                                        | CL=30 pF, VCC≥ 2.7V  CL=30 pF, VCC≥1.8V  CL=10pF, VCC≥2.7V  CL=10pF, VCC≥1.8V  CL=30 pF, VCC≥2.7V  CL=30 pF, VCC≥1.8V                                      | -                    | -                     | 45<br>22.5<br>90<br>45<br>7.5           | MHz  |  |
|                    | <sub>tr</sub> (IO)out                          | level fall time and output low to high level rise time                                           | CL=10pF, VCC≥2.7V  CL=10pF, VCC≥1.8V  CL=30 pF, VCC≥2.7V                                                                                                   | -                    | -                     | 7.5<br>100                              |      |  |
| High drive         | <sub>fmax</sub> (IO)out                        | Maximum frequency (1)                                                                            | CL=30 pF, VCC≥1.8V<br>CL=10pF, VCC≥2.7V<br>CL=10pF, VCC≥1.8V                                                                                               | -                    | -                     | 50<br>180<br>100                        | MHz  |  |
| . nga unvo         | <sub>tf</sub> (IO)out<br><sub>tr</sub> (IO)out | Output high to low level fall time and output low to high level rise time                        | CL=30 pF, VCC≥2.7V  CL=30 pF, VCC≥1.8V  CL=10pF, VCC≥2.7V  CL=10pF, VCC≥1.8V                                                                               |                      |                       | 4<br>6<br>2.5<br>4                      | ns   |  |

Table 3-20 I/O AC Characteristics

HC32F460 Series Data Sheet Page 93 of



- 1. The maximum frequency is defined in Figure 3-6.
- 2. Load capacitance <sub>CL</sub> must take into account the capacitance of the PCB and MCU pins (pin to board capacitance can be roughly estimated)

HC32F460 Series Data Sheet Page 94 of



(or 10pF)



Maximum frequency condition:  $(t_r + t_f) \le (2/3)T$  and Duty cycle= 50%±5% (load capacitance C)<sub>L</sub>

(indicated in the "Conditions" column of the "Input/output AC characteristics" table)

Figure 3-6 I/O AC Characteristics Definition

HC32F460 Series Data Sheet Page 95 of



### 3.3.8 USART Interface Features

| 符号               | 参        | 数    | 最小值 | 最大值 | 单位                 |  |
|------------------|----------|------|-----|-----|--------------------|--|
|                  | 输入时钟周期数  | UART | 4   | -   | +                  |  |
| t <sub>cyc</sub> |          | CSI  | 6   | -   | t <sub>PCLK1</sub> |  |
| $t_{CKw}$        | 输入时钟宽度   |      | 0.4 | 0.6 | t <sub>Seyc</sub>  |  |
| t <sub>CKr</sub> | 输入时钟上升时间 |      | -   | 5   | ns                 |  |
| $t_{CKf}$        | 输入时钟下降时间 |      | -   | 5   | ns                 |  |
| $t_{TD}$         | 发送延迟时间   | CSI  | -   | 28  | ns                 |  |
| $t_{RDS}$        | 接收数据建立时间 | CSI  | 15  | -   | ns                 |  |
| t <sub>RDH</sub> | 接收数据保持时间 | CSI  | 5   |     | ns                 |  |

Table 3-21 USART AC Timing



Figure 3-7 USART Clock Timing



Figure 3-8 USART (CSI) Input and Output Timing

HC32F460 Series Data Sheet Page 96 of



# 3.3.9 I2S Interface Features

| Sym<br>bols | Performance<br>Indicators      | Con<br>diti<br>ons                    | Min     | Max    | Unit |
|-------------|--------------------------------|---------------------------------------|---------|--------|------|
| fMCK        | I2S main clock output          | -                                     | 256 *8K | 256*Fs | MHz  |
| fCK         | 100 1 1 1                      | Master data: 32 bits                  | 20      | 64*Fs  |      |
| ion         | I2S clock frequency            | Slave data: 32 bits                   | -       | 64*Fs  | MHz  |
| DCK         | I2S clock frequency duty cycle | Slave receiver                        | 30      | 70     | %    |
| tv(WS)      | WS valid time                  | Master mode                           | 0       |        |      |
| th(WS)      | WS hold time                   | Master mode                           | 0       | -      |      |
| tsu(WS)     | WS setup time                  | Slave mode                            | 1       | -      |      |
| th(WS)      | WS hold time                   | Slave mode                            | 0       | -      |      |
| tsu(SD_MR)  |                                | Master receiver                       | 7.5     | -      |      |
| tsu(SD_SR)  | Data input setup time          | Slave receiver                        | 2       | -      |      |
| th(SD_MR)   |                                | Master receiver                       | 0       | -      | ns   |
| th(SD_SR)   | Data input hold time           | Slave receiver                        | 0       | -      |      |
| tv(SD_ST)   |                                | Slave transmitter(after enable        |         | 07     |      |
| th(SD_ST)   | Data output valid time         | edge)                                 | -       | 27     |      |
| t√(SD_MT)   | Data output valid tille        | Master transmitter(after enable edge) | -       | 20     |      |
| th(SD_MT)   | Data output hold time          | Master transmitter(after enable edge) | 2.5     | -      |      |

Table 3-22 I2S Electrical Characteristics

1. Fs: I2S sampling frequency

HC32F460 Series Data Sheet Page 97 of





Figure 3-9 I2S Slave Mode Timing (Philips Protocol)



Figure 3-10 I2S Master Mode Timing (Philips Protocol)

HC32F460 Series Data Sheet Page 98 of



# 3.3.10 I2C Interface Features

| Symbol  | Par                                                              | Standard<br>(SM)                   | Mode | Fast Mo                     | de (FM) | Unit |
|---------|------------------------------------------------------------------|------------------------------------|------|-----------------------------|---------|------|
| S       | ame<br>ters                                                      | Min                                | Max  | Min                         | Max     |      |
| fSCL    | SCL Frequency                                                    | 0                                  | 100  | 0                           | 400     | KHz  |
| tHD;STA | Start condition/restart condition Hold                           | 4.0                                | -    | 0.6                         | -       | us   |
| tLOW    | SCL low                                                          | 4.7                                | -    | 1.3                         | -11     | us   |
| tHIGH   | SCL high level                                                   | 4                                  | -    | 0.6                         | -       | us   |
| tSU;STA | Restart conditionSetup                                           | 4.7                                | -    | 0.6                         |         | us   |
| tHD;DAT | Data Hold                                                        | 0                                  | -    | 0                           |         | us   |
| tSU;DAT | DataSetup                                                        | 50+<br>tl2C reference clock period | -    | 50+<br>tl2C reference clock | -       | ns   |
| tR      | Rise time of SCL/SDA                                             | -                                  | 1000 | 6.5                         | 300     | ns   |
| tF      | SCL/SDA drop time                                                | - (                                | 300  | 6.5                         | 300     | ns   |
| tSU;STO | Stop conditionSetup                                              | 4                                  | -    | 0.6                         | -       | us   |
| tBUF    | Between the stop condition and the start condition BUS free time | 4.7                                | -    | 1.3                         | -       | us   |
| Cb      | Load capacitance                                                 | -                                  | 400  | -                           | 400     | pF   |

Table 3-23 I2C Electrical Characteristics



Figure 3-11 I2C Bus Timing Definition

HC32F460 Series Data Sheet Page 99 of



# 3.3.11 SPI Interface Features

| Item                    |        | Symbol | Min                                | Max  | Unit  | Test conditions |
|-------------------------|--------|--------|------------------------------------|------|-------|-----------------|
| SCK clock cycle         | Master | tspcyc | 2 (pclk ≤60MHz) 4<br>(pclk ≤60MHz) | 4096 | tpcyc | Figure<br>3-12  |
|                         | Slave  |        | 6                                  | 4096 |       | C=30pF          |
| SCK clock rise and fall | Master | tsckr  | -                                  | 5    | ns    | <b>Y</b> 15     |
| time                    | Slave  | tsckf  | -                                  | 1    | us    |                 |
| Data input setup time   | Master | tsu    | 4                                  | -    | ns    | Figure          |
|                         | Slave  |        | 5                                  | -    |       | 3-13            |
| Data input hold time    | Master | th     | tpcyc                              | -    | ns    | C=30pF          |
|                         | Slave  |        | 20                                 | -    |       |                 |
| Data output delay       | Master | tod    | -                                  | 8    | ns    |                 |
|                         | Slave  |        | -                                  | 20   |       |                 |
| Data output hold time   | Master | toh    | 0                                  | -    | ns    |                 |
|                         | Slave  |        | 0                                  | -    |       |                 |
| MOSI/MISO rise and      | Master | tdr    | -                                  | 5    | ns    |                 |
| fall time               | Slave  | tdf    |                                    | 1    | us    |                 |
| SS rise and fall time   | Master | tssr   |                                    | 5    | ns    |                 |
|                         | Slave  | tssf   | _                                  | 1    | us    |                 |

Table 3-24 SPI Electrical Characteristics



Figure 3-12 SCK Clock Definition

HC32F460 Series Data Sheet Page 100 of





Figure 3-13 SPI Interface Timing Requirements





### 3.3.12 USB Interface Features

| Sy                 | mbol    | Parameter                        | Conditions                              | Min. <sup>(1)</sup> | Тур. | Max. <sup>(1)</sup> | Unit |
|--------------------|---------|----------------------------------|-----------------------------------------|---------------------|------|---------------------|------|
|                    | VCC     | Operating Voltage                | -                                       | 3.0(2)              | -    | 3.6                 | V    |
|                    | VIL     | Input low level                  | -                                       | -                   | -    | 0.8                 | V    |
| Input              | VIH     | Input high level                 | -                                       | 2.0                 | -    | -                   | V    |
|                    | VDI     | Differential input sensitivity   | -                                       | 0.2                 | -    |                     | V    |
|                    | VCM     | Differential common mode voltage | -                                       | 0.8                 | -    | 2.5                 | ٧    |
|                    | VOL (3) | Static output low level          | RL=1.5k $\Omega$ to 3.6V <sup>(4)</sup> | -                   | -    | 0.3                 | ٧    |
|                    | VOH (3) | Static output high level         | RL=15k $\Omega$ to VSS <sup>(4)</sup>   | 2.8                 |      | 3.6                 | V    |
| Outp               | VCRS    | Cross-over voltage               | CL=50pF                                 | 1.3                 | -    | 2.0                 | V    |
| ut                 | tR      | Rise time                        | CL=50pF.<br>10%~90% of  VOH-VOL         | 4                   | -    | 20                  | ns   |
|                    | tF      | Descent time                     | CL=50pF.<br>10%~90% of  VOH-VOL         | 4                   | -    | 20                  | ns   |
|                    | tRFMA   | Rise and fall time ratio         | CL=50pF                                 | 90                  | -    | 111.1               | %    |
| RPD <sup>(3)</sup> |         | Pull Down<br>Resistors           | VIN= <sub>VCC</sub> , in host mode      | 14.25               | -    | 24.80               | kΩ   |
|                    |         |                                  | VIN= <sub>VSS</sub> , idle state        | 0.900               | 1.2  | 1.575               | kΩ   |
| RPU <sup>(3)</sup> |         | Pull-up resistors                | VIN= <sub>VSS</sub> . in device mode    | 1.425               | 2.3  | 3.090               | kΩ   |

Table 3-25 USB Full-Speed Electrical Characteristics

- 1. All voltages were measured based on local ground potential.
- Operating voltage drops to 2.7V still guarantees USB full-speed transceiver functionality, but not full USB full-speed electrical characteristics, which degrade over the vcc voltage range of 2.7 to 3.0V.
- 3. Mass production test guarantee.
- 4. RL is the load connected to the USB full-speed drive.

HC32F460 Series Data Sheet Page 102 of



| Sy                 | mbol              | Parameter                        | Conditions                              | Min. <sup>(1)</sup> | Тур. | Max.(1) | Unit |
|--------------------|-------------------|----------------------------------|-----------------------------------------|---------------------|------|---------|------|
| Input              | VCC               | Operating Voltage                | -                                       | 3.0(2)              | -    | 3.6     | V    |
|                    | VIL               | Input low level                  | -                                       | -                   | -    | 0.8     | V    |
|                    | VIH               | Input high level                 | -                                       | 2.0                 | -    | -       | V    |
|                    | VDI               | Differential input sensitivity   | •                                       | 0.2                 | -    | -       | V    |
|                    | VCM               | Differential common mode voltage | •                                       | 0.8                 | 1    | 2.5     | ٧    |
| Outp               | VOL (3)           | Static output low level          | RL=1.5k $\Omega$ to 3.6V <sup>(4)</sup> | -                   | -    | 0.3     | >    |
|                    | VOH (3)           | Static output high level         | RL=15k $\Omega$ to VSS <sup>(4)</sup>   | 2.8                 |      | 3.6     | V    |
|                    | VCRS (3)          | Cross-over voltage               | CL=200pF~600pF                          | 1.3                 | - \  | 2.0     | V    |
|                    | tR <sup>(3)</sup> | Rise time                        | CL=200pF~600pF,<br>10%~90% of  VOH-VOL  | 75                  |      | 300     | ns   |
|                    | (3)<br>tF         | Descent time                     | CL=200pF~600pF,<br>10%~90% of  VOH-VOL  | 75                  | -    | 300     | ns   |
|                    | (3)<br>tRFMA      | Rise and fall time ratio         | CL=200pF~600pF                          | 80                  | -    | 125     | %    |
| RPD <sup>(3)</sup> |                   | Pull Down Resistors              | VIN= <sub>VCC</sub> , in host mode      | 14.25               | -    | 24.80   | kΩ   |

Table 3-26 USB Low-Speed Electrical Characteristics

- 1. All voltages were measured based on local ground potential.
- Operating voltage drops to 2.7V still guarantees USB low-speed transceiver functionality, but not full USB low-speed electrical characteristics, which deteriorate over the vcc voltage range of 2.7 to 3.0V.
- 3. Mass production test guarantee.
- 4. RL is the load connected to the USB low-speed drive.



Figure 3-14 USB Rise/Fall Time and Cross Over Voltage Definition

HC32F460 Series Data Sheet Page 103 of



### 3.3.13 PLL Features

| Sym<br>bols | Par<br>ame                     | Con<br>diti            | Min | Тур | Max  | Unit |
|-------------|--------------------------------|------------------------|-----|-----|------|------|
|             | ters                           | ons                    |     |     |      |      |
| fPLL_IN     | PLL input clock <sup>(1)</sup> | -                      | 1   | -   | 24   | MHz  |
| fPLL_OUT    | PLL multiplier output          | -                      | 15  | -   | 240  | MHz  |
| fVCO_OUT    | PLL VCO output                 | -                      | 240 | -   | 480  | MHz  |
| tLOCK       | PLL lock time                  | -                      | -   | 80  | 120  | μs   |
| JitterPLL   | Period Jitter                  | PLL input clock = 4MHz | -   |     | ±200 | ps   |
|             |                                | System clock = 120MHz  |     |     |      |      |

Table 3-27 PLL Key Performance Indicators

1. A higher input clock is recommended to obtain good Jitter characteristics.





# 3.3.14 JTAG interface features

| Synbol  | Item                       | Min | Тур | Max | Unit |
|---------|----------------------------|-----|-----|-----|------|
| tTCKcyc | TCK clock cycle time       | 50  | -   | -   | ns   |
| tTCKH   | TCK clock high pulse width | 20  | -   | -   | ns   |
| tTCKL   | TCK clock low pulse width  | 20  | -   | -   | ns   |
| tTCKr   | TCK clock rise time        | -   | -   | 5   | ns   |
| tTCKf   | TCK clock fall time        | -   | -   | 5   | ns   |
| tTMSs   | TMS setup time             | 8   | -   |     | ns   |
| tTMSh   | TMS hold time              | 8   | -   | 4   | ns   |
| tTDls   | TDI setup time             | 8   | -   |     | ns   |
| tTDlh   | TDI hold time              | 8   | -   | -   | ns   |
| tTDOd   | TDO data delay time        | -   |     | 20  | ns   |

Table 3-28 JTAG interface features



HC32F460 Series Data Sheet Page 105 of





#### 3.3.15 External clock source characteristics

### 3.3.15.1 High-speed external user clock generated by external sources

In bypass mode, the XTAL oscillator is off and the input pins are standard I/O. The external clock signal must be considered I/O

Static properties.

| Symbol                 | Par                                  | Con  | Minim   | Typic  | Maxim   | Unit |
|------------------------|--------------------------------------|------|---------|--------|---------|------|
| S                      | ame                                  | diti | um      | al     | um      |      |
|                        | ters                                 | ons  | value   | values | value   |      |
| fXTAL_EXT              | User external clock source frequency | -    | 1       | -      | 24      | MHz  |
| VIH_XTAL               | XTAL_IN input pin high level voltage |      | 0.8*VCC | -      | VCC     | v    |
| VIL_XTAL               | XTAL_IN input pin low level voltage  |      | VSS     | -      | 0.2*VCC |      |
| tr(XTAL)               | XTAL_IN rise or fall time            |      | -       | -      | 5       | ns   |
| Duty <sub>(XTAL)</sub> | Duty Cycle                           | -    | 40      | -      | 60      | %    |

Table 3-29 High-speed external user clock characteristics

HC32F460 Series Data Sheet Page 106 of



#### 3.3.15.2 Crystal / Ceramic Resonator Generates High Speed External Clock

A high-speed external (XTAL) clock can be generated using a 4 to 24 MHz crystal/ceramic resonator oscillator. The resonator and load capacitor must be placed as close to the oscillator pins as possible in the application to minimize output distortion and stabilization time. For more information on resonator characteristics (frequency,

| Sym pac         | kage, a <b>Roca</b> racy, e | tc.), please <b>@n</b> sult the cr | yst <b>Minė</b> so | na <b>llo/pi/c</b> ar | ufa <b>Maxi</b> er. | Unit |
|-----------------|-----------------------------|------------------------------------|--------------------|-----------------------|---------------------|------|
| bols            | meter                       | diti                               | mum                | al                    | mum                 |      |
|                 | s                           | ons                                | value              | values                | value               |      |
| fXTAL_IN        | Oscillator frequency        |                                    | 4                  | -                     | 24                  | MHz  |
| (1)<br>RF       | Feedback Resistor           |                                    | -                  | 300                   | -                   | kΩ   |
| Gmmax           | -                           | Vibration                          | 4                  | <b>X</b> -4           | -                   | mA/V |
| +SI I/YTAI \(2) | Start-un time               | VCC stable crystal = 8MHz          |                    |                       | 2 0                 | me   |

Table 3-30XTAL 4-24 MHz Oscillator Characteristics

- Mass production test guarantee.
- tsu(XTAL) is the start-up time, which is the time measured from the time the software enables
   XTAL until a stable 8MHz oscillation frequency is obtained. This value is based on a standard crystal resonator and may vary significantly depending on the crystal manufacturer.

For <sub>CL1</sub> and <sub>CL2</sub>, it is recommended to use high quality external ceramic capacitors designed for high frequency applications that meet the requirements of the crystal or resonator and are between 5 pF and 25 pF (typical) in size (see figure below) c<sub>L1</sub> and <sub>CL2 are</sub> typically the same size. The load capacitance specified by the crystal manufacturer is usually a series combination of <sub>CL1</sub> and <sub>CL2</sub>. The capacitance of the PCB and MCU pins must be taken into account when sizing <sub>CL1</sub> and <sub>CL2</sub> (pinto-board capacitance can be roughly estimated at 10 pF)

Resonators with integrated capacitors

HC32F460 Series Data Sheet Page 107 of





Figure 3-17 Typical Application with 8 MHz Crystal

1. The value of  $_{\mbox{\scriptsize REXT}}$  depends on the crystal characteristics.



#### 3.3.15.3 Low-speed external clock generated by crystal/ceramic resonator

A low-speed external clock can be generated using an oscillator consisting of a 32.768 kHz crystal/ceramic resonator. In applications, the resonator and load capacitor must be placed as close to the oscillator pins as possible to minimize output distortion and start-up stability time. For more information on resonator characteristics (frequency,

| Sym pac<br>bols | :ка <b>р<sub>бта</sub>нсция</b> су | etc.), please <b>con</b> sult the crysta<br><b>diti</b><br><b>ons</b> | al resonat | or Spe<br>cific<br>atio<br>n | acturer. | Unit |
|-----------------|------------------------------------|-----------------------------------------------------------------------|------------|------------------------------|----------|------|
|                 |                                    | Olis                                                                  | Min        | Тур                          | Max      |      |
| FXTAL32         | Frequency                          | -                                                                     | -          | 32.768                       | -        | KHz  |
| (1)<br>RF       | Feedback                           | -                                                                     | -          | 15                           |          | ΜΩ   |
|                 | Resistor                           | •                                                                     |            |                              |          |      |

Table 3-31 XTAL32 Oscillator Characteristics

- Mass production test guarantee.
- 2. TSUXTAL32 is the start-up time, which is the time measured from the time XTAL32 is enabled by software until a stable 32.768 kHz oscillation frequency is obtained. This value is based on a standard crystal resonator and may vary significantly depending on the crystal manufacturer.

HC32F460 Series Data Sheet Page 109 of



### 3.3.16 Internal clock source characteristics

### 3.3.16.1 Internal High Speed (HRC) Oscillator

| Sym      | Par                      | Con                | Minim | Typical | Maxim | Unit   |
|----------|--------------------------|--------------------|-------|---------|-------|--------|
| bols     | ame                      | diti               | um    | values  | um    |        |
|          | ters                     | ons                | value |         | value |        |
|          | Frequency <sup>(1)</sup> | Mode 1             | _     | 16      |       | MHz    |
|          | Frequency                | Mode 2             | -     | 20      |       | IVITIZ |
| fHRC     | User adjustable          | -                  | -     |         | 0.2   | %      |
|          | scale                    |                    |       |         |       |        |
|          |                          | TA = -40 to 105 °C | -2    | -       | 2     | %      |
|          | Frequency                | TA = -20 to 105 °C | -1.5  |         | 1.5   | %      |
|          | accuracy (1)             | TA = 25 °C         | -0.5  | -       | 0.5   | %      |
| tst(HRC) | HRC oscillator           | -                  | -     | -       | 15    | μs     |
|          | oscillation              |                    |       |         |       |        |

Table

3-32HRC Oscillator Characteristics

1. Mass production test guarantee.

#### 3.3.16.2 Internal medium

speed (MRC)

oscillator

| Sym                 | Par                               | Minim | Typica | Maxim | Unit |
|---------------------|-----------------------------------|-------|--------|-------|------|
| bols                | ame                               | um    | 1      | um    |      |
|                     | ters                              | value | values | value |      |
| fMRC <sup>(1)</sup> | Frequency                         | 7.2   | 8      | 8.8   | MHz  |
| tst(MRC)            | MRC oscillator stabilization time | _     | _      | 3     | μs   |

Table 3-33 MRC Oscillator Characteristics

1. Mass production test guarantee.

HC32F460 Series Data Sheet Page 110 of



### 3.3.16.3 Internal low speed (LRC) oscillator

| Sym                 | Par                               | Minim  | Typica | Maxim  | Unit |
|---------------------|-----------------------------------|--------|--------|--------|------|
| bols                | ame                               | um     | 1      | um     |      |
|                     | ters                              | value  | values | value  |      |
| fLRC <sup>(1)</sup> | Frequency                         | 27.853 | 32.768 | 37.683 | KHz  |
| tst(LRC)            | LRC oscillator stabilization time | -      | -      | 36     | μs   |

Table 3-34 LRC oscillator characteristics

1. Mass production test guarantee.

### 3.3.16.4 SWDT Dedicated Internal Low Speed (SWDTLRC) Oscillator

| Sym<br>bols             | Par<br>ame<br>ters                    | Minim<br>um<br>value | Typica  l  values | Maxim<br>um<br>value | Unit |
|-------------------------|---------------------------------------|----------------------|-------------------|----------------------|------|
| fSWDTLRC <sup>(1)</sup> | Frequency                             | 9                    | 10                | 11                   | KHz  |
| tst(SWDTLRC)            | SWDTLRC oscillator stabilization time | -                    | -                 | 57.1                 | μs   |

Table 3-35 SWDTLRC Oscillator Characteristics

### 3.3.17 12-bit ADC Features

| Symb<br>ols          | Par<br>ame<br>ters         | Con<br>diti<br>ons                        | Minimu<br>m value | Typical<br>values | Maximu<br>m value | Unit |
|----------------------|----------------------------|-------------------------------------------|-------------------|-------------------|-------------------|------|
| VAVCC                | Power supply               | -                                         | 1.8               | -                 | 3.6               | V    |
| VREFH <sup>(1)</sup> | Positive reference voltage | -                                         | 1.8               | -                 | VAVCC             | V    |
| fADC                 | ADC conversion             | In high speed action mode VAVCC=2.4 ~3.6V | 1                 | -                 | 60                | MHz  |
|                      | clock frequency            | In high speed action mode VAVCC=1.8 ~2.4V | 1                 | -                 | 30                |      |

HC32F460 Series Data Sheet Page 111 of

<sup>1.</sup> Mass production test guarantee.



|      |                                     | Ultra low speed action mode | 1     | - | 8     |    |
|------|-------------------------------------|-----------------------------|-------|---|-------|----|
| VAIN | Conversion voltage range            | -                           | VAVSS | - | VREFH | V  |
| RAIN | External Input Impedance            | See Equation 1 for details  | -     | - | 50    | kΩ |
| RADC | Sampling switch resistance          | -                           | -     | - | 6     | kΩ |
| CADC | Internal sample and hold capacitors | -                           | -     | 4 | 7     | pF |
| tD   | Trigger transition delay            | <sub>fADC</sub> = 60 MHz    | -     | - | 0.3   | μs |

Table 3-36ADC Characteristics

HC32F460 Series Data Sheet Page 112 of



| Symbol<br>s | Par<br>ame<br>ters                       | Con<br>diti<br>ons                            | Minimu<br>m value | <b>J</b> I | Maxim<br>um<br>value | Unit                     |
|-------------|------------------------------------------|-----------------------------------------------|-------------------|------------|----------------------|--------------------------|
| tS          | Sampling time                            | fADC=60MHz                                    | 0.183             | -          | 4.266<br>255         | μs<br>1/ <sub>fADC</sub> |
|             |                                          | <sub>fADC</sub> = 60 MHz<br>12-bit resolution | 0.4               | -          | -                    | μs                       |
| tCONV       | Total conversion time for a              | fADC = 60 MHz<br>10-bit resolution            | 0.36              | -          |                      | μs                       |
|             | single channel (including sampling time) | <sub>fADC</sub> = 60 MHz<br>8-bit resolution  | 0.33              |            |                      | μs                       |
|             |                                          | 20 to 268 (sampling t resolution + 1)         | ime tS+ cor       | nverges to | n-bit                | 1/fADC                   |
| fS          | Sampling rate                            | 12-bit resolution single ADC                  | _                 |            | 2.5                  |                          |
|             | fADC = 60 MHz                            | 12-bit resolution time-interpolated dual      |                   | -          | 4.6                  | Msps                     |
| tST         | Power-up time                            | ADC<br>-                                      | -                 | 1          | 2                    | μs                       |

Table 3-37ADC Characteristics (continued)

 VAVCC-VREFH<1.2V</li>

Formula 1: RAIN

maximum value 
$$\times C \xrightarrow{k-1} \ln(2^{N+2}) -_{RADC}$$

formula

The above equation (Equation 1) is used to determine the maximum external impedance to bring the error below 1/4 LSB. Where N = 12 (12-bit resolution) and k is the number of sampling periods defined in the ADC\_SSTR register.

HC32F460 Series Data Sheet



| Symb<br>ols | Par<br>ame<br>ters        | Con<br>diti<br>ons                             | Typica<br>l<br>values | Maxim<br>um<br>value | Unit |
|-------------|---------------------------|------------------------------------------------|-----------------------|----------------------|------|
| ET          | Absolute error            |                                                | ±4.5                  | ±6                   | LSB  |
| EO          | Offset Error              | In high speed action mode                      | ±3.5                  | ±6                   | LSB  |
| EG          | Gain error                | fADC=60MHz                                     | ±3.5                  | ±6                   | LSB  |
| ED          | Differential linear error | Input source impedance<br><1kΩ VAVCC=2.4 ~3.6V | ±1                    | ±2                   | LSB  |
| EL          | Integral linearity error  | C   K(12 VA V C C - 2.4 ~ 3.0 V                | ±1.5                  | ±3                   | LSB  |

Table 3-38 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Accuracy @ fADC=60MHz

| Symb<br>ols       | Par<br>ame<br>ters        | Con<br>diti<br>ons                          | Typica<br>l<br>values | Maxim<br>um<br>value | Unit |
|-------------------|---------------------------|---------------------------------------------|-----------------------|----------------------|------|
| ET                | Absolute error            |                                             | ±4.5                  | ±6                   | LSB  |
| EO                | Offset Error              | In high speed action mode                   | ±3.5                  | ±6                   | LSB  |
| EG                | Gain error                |                                             | ±3.5                  | ±6                   | LSB  |
| ED <sup>(1)</sup> | Differential linear error | Input source impedance <1kΩ VAVCC=2.4 ~3.6V | ±1                    | ±2                   | LSB  |
| (1)<br>EL         | Integral linearity error  | 1K12 VAVOO-2.4 * 3.0V                       | ±1.5                  | ±3                   | LSB  |

Table 3-39 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Accuracy @ fADC=30MHz

<sup>1.</sup> Mass production test guarantee.

| Symb | Par<br>ame                | Con<br>diti               | Typica<br>1 | Maxim<br>um | Unit |
|------|---------------------------|---------------------------|-------------|-------------|------|
|      | ters                      | ons                       | values      | value       |      |
| ET   | Absolute error            |                           | ±4.5        | ±6          | LSB  |
| EO   | Offset Error              | In high speed action mode | ±3.5        | ±6          | LSB  |
| EG   | Gain error                | fADC=30MHz                | ±3.5        | ±6          | LSB  |
| ED   | Differential linear error | Input source impedance    | ±1          | ±2          | LSB  |
| EL   | Integral linearity error  | <1kΩ VAVCC=1.8 ~2.4V      | ±2          | ±3          | LSB  |

Table 3-40 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Accuracy @ fADC=30MHz

HC32F460 Series Data Sheet Page 114 of



| Symb<br>ols | Par<br>ame<br>ters        | Con<br>diti<br>ons        | Typic<br>al<br>values | Maximu<br>m value | Unit |
|-------------|---------------------------|---------------------------|-----------------------|-------------------|------|
| ET          | Absolute error            |                           | ±4.5                  | ±6                | LSB  |
| EO          | Offset Error              | In ultra-low speed action | ±3.5                  | ±6                | LSB  |
| EG          | Gain error                | mode<br> <br> fADC=8MHz   | ±3.5                  | ±6                | LSB  |
| ED          | Differential linear error | Input source impedance    | ±1                    | ±2                | LSB  |
| EL          | Integral linearity error  | <1kΩ VAVCC=1.8 ~3.6V      | ±2                    | ±3                | LSB  |

Table 3-41 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Accuracy @ fADC=8MHz

| Symb | Par                       |                                                | Туріс  | Maximu  | Unit |
|------|---------------------------|------------------------------------------------|--------|---------|------|
| ols  | ame                       | diti                                           | al     | m value |      |
|      | ters                      | ons                                            | values |         |      |
| ET   | Absolute error            |                                                | ±5.5   | ±7      | LSB  |
| EO   | Offset Error              | In high speed action mode                      | ±4.5   | ±7      | LSB  |
| EG   | Gain error                | fADC=60MHz                                     | ±4.5   | ±7      | LSB  |
| ED   | Differential linear error | Input source impedance<br><1kΩ VAVCC=2.4 ~3.6V | ±1.5   | ±2      | LSB  |
| EL   | Integral linearity error  | C1K(2 VA VOO-2.4 *3.0V                         | ±2.0   | ±3      | LSB  |

Table 3-42 ADC1\_IN12~15, ADC12\_IN8~11 Input Channel Accuracy @ fADC=60MHz

| Symb              | Par                       | Con                                            | Typic  | Maximu  | Unit |
|-------------------|---------------------------|------------------------------------------------|--------|---------|------|
| ols               | ame                       | diti                                           | al     | m value |      |
|                   | ters                      | ons                                            | values |         |      |
| ET                | Absolute error            |                                                | ±5.5   | ±7      | LSB  |
| EO                | Offset Error              | In high speed action mode                      | ±4.5   | ±7      | LSB  |
| EG                | Gain error                | fADC=30MHz                                     | ±4.5   | ±7      | LSB  |
| ED <sup>(1)</sup> | Differential linear error | Input source impedance<br><1kΩ VAVCC=2.4 ~3.6V | ±1.5   | ±2      | LSB  |
| (1)<br>EL         | Integral linearity error  | < K(1 VAVOO-2.4 ~3.6V                          | ±2.0   | ±3      | LSB  |

Table 3-43 ADC1\_IN12~15, ADC12\_IN8~11 Input Channel Accuracy @ fADC=30MHz

1. Mass production test guarantee.

HC32F460 Series Data Sheet Page 115 of



| Symb<br>ols | Par<br>ame<br>ters        | Con<br>diti<br>ons        | Typic<br>al<br>values | Maximu<br>m value | Unit |
|-------------|---------------------------|---------------------------|-----------------------|-------------------|------|
| FT          | Absolute error            |                           | ±5.5                  | ±7                | LSB  |
| ET          | Absolute error            |                           | ±3.5                  | Ι1                | LOD  |
| EO          | Offset Error              | In high speed action mode | ±4.5                  | ±7                | LSB  |
| F0          | Gain error                | fADC=30MHz                | ±4.5                  | ±7                | LSB  |
| EG          | Gain endi                 | Input source impedance    | 14.5                  | Σ/                | LOD  |
| ED          | Differential linear error | <1kO VAVCC=1.8 ~2.4V      | ±1.5                  | ±2                | LSB  |
| EL          | Integral linearity error  | <1K() VAVOC=1.8 ~2.4V     | ±2.5                  | ±3                | LSB  |

Table 3-44 ADC1\_IN12~15, ADC12\_IN8~11 Input Channel Accuracy @ fADC=30MHz

| Symb<br>ols | Par<br>ame                | Con<br>diti                    | Typic<br>al | Maximu<br>m value | Unit |
|-------------|---------------------------|--------------------------------|-------------|-------------------|------|
|             | ters                      | ons                            | values      |                   |      |
| ET          | Absolute error            |                                | ±5.5        | ±7                | LSB  |
| EO          | Offset Error              | In ultra-low speed action mode | ±4.5        | ±7                | LSB  |
| EG          | Gain error                | fADC=8MHz                      | ±4.5        | ±7                | LSB  |
| ED          | Differential linear error | Input source impedance         | ±1.5        | ±2                | LSB  |
| EL          | Integral linearity error  | <1kΩ VAVCC=1.8 ~3.6V           | ±2.5        | ±3                | LSB  |

Table 3-45 ADC1\_IN12~15, ADC12\_IN8~11 Input Channel Accuracy @ fADC=8MHz

| Symbo<br>ls | Par<br>ame<br>ters             | diti                                                      | Mini<br>mum<br>value | Maximu<br>m value | Unit |
|-------------|--------------------------------|-----------------------------------------------------------|----------------------|-------------------|------|
| ENOB        | Valid digits                   | In high speed action mode                                 | 10.6                 | -                 | Bits |
| SINAD       | Signal-to-noise harmonic ratio | fADC=60MHz                                                | 64                   | -                 | dB   |
| SNR         | Signal-to-noise ratio          | Input signal frequency = 2kHz Input source impedance <1kΩ | 66                   | -                 | dB   |
| THD         | Total Harmonic Distortion      | VAVCC=2.4 ~3.6V                                           | -                    | -70               | dB   |

Table 3-46 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Input Channel Dynamic Accuracy @ fADC=60MHz

HC32F460 Series Data Sheet Page 116 of



| Symbo<br>ls | Par<br>ame<br>ters             | Con<br>diti<br>ons                                        | Mini<br>mum<br>value | Maximu<br>m value | Unit |
|-------------|--------------------------------|-----------------------------------------------------------|----------------------|-------------------|------|
| ENOB        | Valid digits                   | In high speed action mode                                 | 10.4                 | -                 | Bits |
| SINAD       | Signal-to-noise harmonic ratio | fADC=30MHz                                                | 62                   | -                 | dB   |
| SNR         | Signal-to-noise ratio          | Input signal frequency = 2kHz Input source impedance <1kΩ | 64                   |                   | dB   |
| THD         | Total Harmonic Distortion      | VAVCC=1.8~2.4V                                            |                      | -67               | dB   |

Table 3-47 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Input Channel Dynamic Accuracy @ fADC=30MHz

| Symbo<br>ls | Par<br>ame                     | Con<br>diti                                      | Mini<br>mum | Maximu<br>m value | Unit |
|-------------|--------------------------------|--------------------------------------------------|-------------|-------------------|------|
|             | ters                           | ons                                              | value       |                   |      |
| ENOB        | Valid digits                   | In ultra-low speed action mode                   | 10.4        | -                 | Bits |
|             |                                | fADC=8MHz                                        |             |                   |      |
| SINAD       | Signal-to-noise harmonic ratio | Input signal frequency = 2kHz                    | 62          | -                 | dB   |
| SNR         | Signal-to-noise ratio          | Input source impedance<br><1kΩ<br>VAVCC=1.8~3.6V | 64          | -                 | dB   |
| THD         | Total Harmonic Distortion      | VAVOO-1.0°-3.0V                                  | -           | -67               | dB   |

Table 3-48 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Input Channel Dynamic Accuracy @ fADC=8MHz

HC32F460 Series Data Sheet Page 117 of





Figure 3-18 ADC Accuracy Characteristics

- 1. Please also see the table above.
- 2. Example of actual transmission curve.
- 3. Ideal transmission curve.
- 4. Endpoint correlation line.
- 5. <sub>ET</sub> = Total unadjusted error: the maximum deviation between the actual and ideal transmission curves.
  - EO = Offset error: the deviation between the first actual conversion and the first ideal conversion.
  - EG = Gain error: the deviation between the last ideal conversion and the last actual conversion.
  - ED = Differential linearity error: the maximum deviation between the actual step and the ideal value.
  - EL = Integral linearity error: the maximum deviation between any actual conversion and the endpoint correlation line.

HC32F460 Series Data Sheet Page 118 of





Figure 3-19 Typical Connection Using ADC

- 1. See Table 3-36 for information on RAIN, RADC, and CADC values.
- 2. Cparasitic indicates PCB capacitance (depending on soldering and PCB wiring quality) and pad capacitance (approx. 5 pF).cparasitic

Higher values result in lower conversion accuracy. To solve this problem, the fADC should be reduced.

#### General PCB Design Guidelines

The power supply should be decoupled as shown in the diagram below, depending on whether VREFH is connected to AVCC and the number of AVCC pins. 0.1µF capacitors



should be (high quality) ceramic capacitors. These capacitors should be as close to the chip as possible.

Figure 3-20 Example of decoupling power supply and reference power supply

HC32F460 Series Data Sheet Page 119 of



### 3.3.18 DAC Characteristics

| Symbol    | Par                                 | Con  | Mini  | Typic  | Maxi  | Unit |
|-----------|-------------------------------------|------|-------|--------|-------|------|
| s         | ame                                 | diti | mum   | al     | mum   |      |
|           | ters                                | ons  | value | values | value |      |
| VAVCC     | Analog supply voltage               | -    | 1.8   | 3.3    | 3.6   | V    |
| DAII      | Differential nonlinear error        |      |       |        |       | 100  |
| DNL       | (deviation between two              | -    | -     | -      | ±2    | LSB  |
|           | consecutive codes - 1LSB)           |      |       |        |       |      |
|           | Offset error (difference between    |      |       |        |       |      |
| Offset    | the measured value at code          | -    | -     |        | ±2    | LSB  |
|           | (0x80) and the ideal value          |      |       |        |       |      |
|           | VAVCC/2)                            |      |       |        |       |      |
|           | Build-up time (full scale: applies  |      |       |        |       |      |
| TSETTLING | to the ratio of the lowest input    |      |       |        |       |      |
| 1021120   | code to the highest input code      | 1    | -     | -      | 8     | μs   |
|           | by the time DA0/DA1 reaches its     |      |       |        |       |      |
|           | final value of ±4LSB)               |      |       |        |       |      |
|           | (Inter 8-bit input code conversion) |      |       |        |       |      |

Table 3-49 DAC Characteristics

# 3.3.19 Comparator Features

| Symbo<br>ls | Par ame ters                           | Con<br>diti<br>ons                    | Minim<br>um<br>value | Typical<br>values | Maxim<br>um<br>value | Unit |
|-------------|----------------------------------------|---------------------------------------|----------------------|-------------------|----------------------|------|
| VAVCC       | Analog supply voltage                  | -                                     | 1.8                  | 3.3               | 3.6                  | V    |
| VI          | Input Voltage Range                    | -                                     | 0                    | -                 | VAVCC                | V    |
| Tcmp        | Compare times                          | Comparator resolution voltage = 100mV | -                    | 50                | 100                  | nS   |
| Tset        | Input channel switching stability time | -                                     | -                    | 100               | 200                  | nS   |

HC32F460 Series Data Sheet Page 120 of

Table 3-50

Comparator Characteristics

HC32F460 Series Data Sheet Page 121 of



# 3.3.20 Gain Adjustable Amplifier Features

| Sym      | I           | Par          | Con                    | Minimum      | Typic | Maximum      | Unit |
|----------|-------------|--------------|------------------------|--------------|-------|--------------|------|
| VAVCC    | Analog sup  | oply voltage | -                      | 1.8          | 3.3   | 3.6          | V    |
| V (1) OS | Input derat | ing voltage  | -                      | -8           | -     | 8            | mV   |
| VI       | Input Volta | ge Range     | -                      | 0.1*VAVCC/Ga | -     | 0.9*VAVCC/Ga | V    |
|          |             |              | Gain=2 <sup>(1)</sup>  | -1           | -     | 1            | %    |
|          |             |              | Gain=2.133             | -1           | -     | 1            | %    |
|          |             |              | Gain=2.286             | -1           | -     | 1            | %    |
|          |             |              | Gain=2.667             | -1           |       | 1            | %    |
|          |             |              | Gain=2.909             | -1           |       | 1            | %    |
|          |             |              | Gain=3.2               | -1.5         |       | 1.5          | %    |
|          |             | Using the    | Gain=3.556             | -1.5         | -     | 1.5          | %    |
|          |             | Mouth        | Gain=4.0               | -1.5         |       | 1.5          | %    |
|          |             | As a PGA     | Gain=4.571             | -2           | _     | 2            | %    |
|          |             | Phase input  | Gain=5.333             | -2           | -     | 2            | %    |
| GE       |             |              | Gain=6.4               | -3.0         | 1     | 3.0          | %    |
| GL       | Gain error  |              | Gain=8                 | -3.0         | -     | 3.0          | %    |
|          |             |              | Gain=10.667            | -4.0         | -     | 4.0          | %    |
|          |             |              | Gain=16                | -4.0         | -     | 4.0          | %    |
|          |             |              | Gain=32 <sup>(1)</sup> | -7.0         | -     | 7.0          | %    |
|          |             |              | Gain=2 <sup>(1)</sup>  | -2           | -     | 2            | %    |
| 1 %      |             | Use the      | Gain=2.133             | -2           | -     | 2            | %    |
|          |             | Simulated    | Gain=2.286             | -2           | -     | 2            | %    |
|          |             | AVSS as      | Gain=2.667             | -2           | -     | 2            | %    |
|          |             | PGA          | Gain=2.909             | -2           | -     | 2            | %    |
|          |             | Enter        | Gain=3.2               | -2.5         | -     | 2.5          | %    |
|          |             |              | Gain=3.556             | -2.5         | -     | 2.5          | %    |

HC32F460 Series Data Sheet Page 122 of



| Gain=4.0               | -2.5 | _ | 2.5 | %  |
|------------------------|------|---|-----|----|
| Gairi-4.0              | 2.0  |   | 2.0 | 70 |
| Gain=4.571             | -3.0 | - | 3.0 | %  |
| Gain=5.333             | -3.0 | - | 3.0 | %  |
| Gain=6.4               | -4.0 | - | 4.0 | %  |
| Gain=8                 | -4.0 | - | 4.0 | %  |
| Gain=10.667            | -5.0 | - | 5.0 | %  |
| Gain=16                | -5.0 | - | 5.0 | %  |
| Gain=32 <sup>(1)</sup> | -8.0 | - | 8.0 | %  |

Table 3-51 Gain Adjustable Amplifier Characteristics

1. Mass production test guarantee.

# 3.3.21 Temperature Sensor

| Sym<br>bols | Paramet<br>ers | Conditions                       | Minim<br>um<br>value | Typica<br>1<br>values | Maxi<br>mum<br>value | Unit |
|-------------|----------------|----------------------------------|----------------------|-----------------------|----------------------|------|
| TL          | Relative       | Each chip is individually        | 3                    | -                     | ±5                   | °C   |
|             | Accuracy       | calibrated according to the user |                      |                       |                      |      |
|             |                | manual                           |                      |                       |                      |      |

Table 3-52 Temperature Sensor Characteristics



HC32F460 Series Data Sheet Page 123 of



### 3.3.22 Memory Features

### 3.3.22.1 Flash Memory

The flash memory is erased when the device is delivered to the customer.

| Sym<br>bols | Par<br>ame<br>ters | Con<br>diti<br>ons                                                  | mum | Typic<br>al<br>values | mum      | Unit |
|-------------|--------------------|---------------------------------------------------------------------|-----|-----------------------|----------|------|
| IVCC        | Supply current     | Read mode, VCC=1.8 V~3.6V  Programming mode, VCC=1.8 V~3.6          | -   | -                     | 5        | mA   |
|             |                    | Block erase mode, VCC=1.8 V~3.6V<br>Full erase mode, VCC=1.8 V~3.6V |     |                       | 10<br>10 |      |

Table 3-53 Flash Memory Characteristics

| Symbo                 | Para            | Con         | Minimum                    | Typical                    | Maximum                    | Unit |
|-----------------------|-----------------|-------------|----------------------------|----------------------------|----------------------------|------|
| ls                    | met             | diti        | value                      | values                     | value                      |      |
|                       | ers             | ons         |                            | )                          |                            |      |
|                       | Word            | Single      | 43+2* Thclk (2)            | 48+4* Thclk                | 53+6* Thclk                | μs   |
| Tpr <sup>(1) og</sup> | programming     | Programming |                            |                            |                            |      |
|                       | time            | Mode        |                            |                            |                            |      |
|                       | Word            | Continuous  | 12+2* Thc (2)              | 14+4* Thc (2)              | 16+6* Thc (2)              | μs   |
|                       | programming     | programming |                            |                            |                            |      |
|                       | time            | mode        |                            |                            |                            |      |
| Terase <sup>(1)</sup> | Block Erase     |             | 16+2* <sub>Thclk</sub> (2) | 18+4* <sub>Thclk</sub> (2) | 20+6* <sub>Thclk</sub> (2) | ms   |
|                       | Time            |             |                            |                            |                            |      |
| Tmas <sup>(1)</sup>   | Full Erase Time | -           | 16+2* <sub>Thclk</sub> (2) | 18+4* <sub>Thclk</sub> (2) | 20+6* <sub>Thclk</sub> (2) | ms   |

Table 3-54 Flash Programmed Erase Time

- 1. Mass production test guarantee.
- 2. Tholk is 1 cycle of the CPU clock.

| Sym<br>bols | Par<br>ame<br>ters | Con<br>diti<br>ons | Nu<br>mer<br>ical<br>valu | Unit |
|-------------|--------------------|--------------------|---------------------------|------|
|             |                    |                    | e                         |      |

HC32F460 Series Data Sheet Page 124 of



|      |                                |           | Minimum<br>value |                       |
|------|--------------------------------|-----------|------------------|-----------------------|
| Nend | Programming, block erase times | TA = 85°C | 10               | thousa<br>nd<br>times |
| Nend | Number of full erasures        | TA = 85°C | 10               | thousa<br>nd<br>times |
| Tret | Data retention period          | TA = 85°C | 10               | Year                  |

Table 3-55 Flash memory rewritable times and data retention period

HC32F460 Series Data Sheet Page 125 of



# 4 Package Size Diagram



Figure 4-1 LQFP100L 14 x 14 mm 100-pin package outline

| SYMBOL   | MILLMETER |       |       |  |  |
|----------|-----------|-------|-------|--|--|
| STIVIDUL | MIN       | NOM   | MAX   |  |  |
| A        | _         | _     | 1.60  |  |  |
| A1       | 0.05      | _     | 0.15  |  |  |
| A2       | 1.35      | 1.40  | 1.45  |  |  |
| A3       | 0.59      | 0.64  | 0.69  |  |  |
| b        | 0.18      |       | 0.26  |  |  |
| b1       | 0.17      | 0.20  | 0.23  |  |  |
| С        | 0.13      |       | 0.17  |  |  |
| c1       | 0.12      | 0.13  | 0.14  |  |  |
| D        | 15.80     | 16.00 | 16.20 |  |  |
| D1       | 13.90     | 14.00 | 14.10 |  |  |
| E        | 15.80     | 16.00 | 16.20 |  |  |
| E1       | 13.90     | 14.00 | 14.10 |  |  |
| eВ       | 15.05     | _     | 15.35 |  |  |
| е        | 0.50BSC   |       |       |  |  |
| L        | 0.45      |       | 0.75  |  |  |
| L1       | 1.00REF   |       |       |  |  |
| θ        | 0         | _     | 7°    |  |  |

Table 4-1 LQFP100L 14 x 14 mm 100-pin package mechanical data

HC32F460 Series Data Sheet Page 126 of





Figure 4-2 LQFP64L 10 x 10 mm 64-pin package outline



Table 4-2 LQFP64L 10 x 10 mm 64-pin package mechanical data

HC32F460 Series Data Sheet Page 127 of





Figure 4-3 LQFP48L 7 x 7 mm 48-pin package outline

| SYMBOL   |         | MILLMETER |      |  |  |
|----------|---------|-----------|------|--|--|
| STIVIDUL | MIN     | NOM       | MAX  |  |  |
| A        |         | _         | 1.60 |  |  |
| A1       | 0.05    | _         | 0.15 |  |  |
| A2       | 1.35    | 1.40      | 1.45 |  |  |
| A3       | 0.59    | 0.64      | 0.69 |  |  |
| b        | 0.18    | _         | 0.26 |  |  |
| b1       | 0.17    | 0.20      | 0.23 |  |  |
| С        | 0.13    | _         | 0.17 |  |  |
| c1       | 0.12    | 0.13      | 0.14 |  |  |
| D        | 8.80    | 9.00      | 9.20 |  |  |
| D1       | 6.90    | 7.00      | 7.10 |  |  |
| E        | 8.80    | 9.00      | 9.20 |  |  |
| еВ       | 8.10    | _         | 8.25 |  |  |
| E1       | 6.90    | 7.00      | 7.10 |  |  |
| е        |         | 0.50BSC   |      |  |  |
| L        | 0.40    |           | 0.65 |  |  |
| L1       | 1.00REF |           |      |  |  |
| θ        | 0       | _         | 7°   |  |  |

Table 4-3 LQFP48L 7 x 7 mm 48-pin package mechanical data

HC32F460 Series Data Sheet Page 128 of





Figure 4-4 QFN60L 7 x 7 mm 60-pin package outline

| SYMBOL   |         | MILLMETER |      |  |  |
|----------|---------|-----------|------|--|--|
| STIVIDUL | MIN     | NOM       | MAX  |  |  |
| Α        | 0.80    | 0.85      | 0.90 |  |  |
| A        | 0.70    | 0.75      | 0.80 |  |  |
| A1       | 0       | 0.02      | 0.05 |  |  |
| b        | 0.15    | 0.20      | 0.25 |  |  |
| b1       |         | 0.14REF   |      |  |  |
| С        | 0.20REF |           |      |  |  |
| D        | 6.90    | 7.00      | 7.10 |  |  |
| D2       | 5.50    | 5.60      | 5.70 |  |  |
| Nd       | 5.60BSC |           |      |  |  |
| е        | 0.40BSC |           |      |  |  |
| E        | 6.90    | 7.00      | 7.10 |  |  |
| E2       | 5.50    | 5.60      | 5.70 |  |  |
| Ne       | 5.60BSC |           |      |  |  |
| L        | 0.35    | 0.40      | 0.45 |  |  |
| K        | 0.25    | 0.30      | 0.35 |  |  |
| h        | 0.30    | 0.35      | 0.40 |  |  |

Table 4-4 QFN60L 7 x 7 mm 60-pin package mechanical data

HC32F460 Series Data Sheet Page 129 of





Figure 4-5 QFN48L 5 x 5 mm 48-pin package outline

| MILLMETER |                                                                  |                                                                                                                                          |  |  |
|-----------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| MIN       | NOM                                                              | MAX                                                                                                                                      |  |  |
| 0.50      | 0.55                                                             | 0.60                                                                                                                                     |  |  |
| 0         | 0.02                                                             | 0.05                                                                                                                                     |  |  |
| 0.13      | 0.18                                                             | 0.23                                                                                                                                     |  |  |
|           | 0.12REF                                                          |                                                                                                                                          |  |  |
| 0.10      | 0.15                                                             | 0.20                                                                                                                                     |  |  |
| 4.90      | 5.00                                                             | 5.10                                                                                                                                     |  |  |
| 3.60      | 3.70                                                             | 3.80                                                                                                                                     |  |  |
| 0.35BSC   |                                                                  |                                                                                                                                          |  |  |
| 3.85BSC   |                                                                  |                                                                                                                                          |  |  |
| 3.85BSC   |                                                                  |                                                                                                                                          |  |  |
| 4.90      | 5.00                                                             | 5.10                                                                                                                                     |  |  |
| 3.60      | 3.70                                                             | 3.80                                                                                                                                     |  |  |
| 0.30      | 0.35                                                             | 0.40                                                                                                                                     |  |  |
| 0.13      | 0.18                                                             | 0.23                                                                                                                                     |  |  |
|           |                                                                  |                                                                                                                                          |  |  |
| 0.25      | 0.30                                                             | 0.35                                                                                                                                     |  |  |
| 154 × 154 |                                                                  |                                                                                                                                          |  |  |
|           | MIN<br>0.50<br>0<br>0.13<br>0.10<br>4.90<br>3.60<br>0.30<br>0.13 | MIN NOM 0.50 0.55 0 0.02 0.13 0.18 0.12REF 0.10 0.15 4.90 5.00 3.60 3.70 0.35BSC 3.85BSC 3.85BSC 4.90 5.00 3.60 3.70 0.30 0.35 0.13 0.18 |  |  |

Table 4-5 QFN48L 5 x 5 mm 48-pin package mechanical data

HC32F460 Series Data Sheet Page 130 of



# 5 Ordering Information

| Product Model                 | HC32F460JEUA-QFN48TR | HC32F460JETA-LQFP48 | HC32F460KEUA-QFN60TR | HC32F460KETA-LQFP64  | HC32F460PETB-LQFP100  |
|-------------------------------|----------------------|---------------------|----------------------|----------------------|-----------------------|
| Main Frequency<br>(MHz)       | 168                  | 168                 | 168                  | 168                  | 168                   |
| Kernel                        | ARM Cortex-M4        | ARM Cortex-M4       | ARM Cortex-M4        | ARM Cortex-M4        | ARM Cortex-M4         |
| Flash (KB)                    | 512                  | 512                 | 512                  | 512                  | 512                   |
| RAM (KB)                      | 192                  | 192                 | 192                  | 192                  | 192                   |
| OTP (B)                       | 960                  | 960                 | 960                  | 960                  | 960                   |
| Package (mm*mm)               | QFN48 (5*5) e=0.35   | LQFP48 (7*7) e=0.5  | QFN60 (7*7) e=0.4    | LQFP64 (10*10) e=0.5 | LQFP100 (14*14) e=0.5 |
| General IO                    | 38                   | 38                  | 50                   | 52                   | 83                    |
| Minimum                       | 1.8                  | 1.8                 | 1.8                  | 1.8                  | 1.8                   |
| operating voltage             |                      |                     |                      |                      |                       |
| Maximum                       | 3.6                  | 3.6                 | 3.6                  | 3.6                  | 3.6                   |
| working voltage               |                      |                     | 4                    |                      |                       |
| 16-bit timer                  | 11                   | 11                  | 11                   | 11                   | 11                    |
| Motor control                 | 3                    | 3                   | 3                    | 3                    | 3                     |
| timer                         |                      |                     |                      |                      |                       |
| 12-bit ADC<br>conversion unit | 2                    | 2                   | 2                    | 2                    | 2                     |
| Number of 12-bit              | 40                   | 10                  | 45                   | 10                   | 40                    |
| ADC channels                  | 10                   | 10                  | 15                   | 16                   | 16                    |
| Comparator                    | 3                    | 3                   | 3                    | 3                    | 3                     |
| Amplifier PGA                 | 1                    | 1                   | 1                    | 1                    | 1                     |
| SPI                           | 4                    | 4                   | 4                    | 4                    | 4                     |
| QUADSPI                       | 1                    | 1                   | 1                    | 1                    | 1                     |
| I S²                          | 4                    | 4                   | 4                    | 4                    | 4                     |
| I C <sup>2</sup>              | 3                    | 3                   | 3                    | 3                    | 3                     |
| U(S)ART                       | 4                    | 4                   | 4                    | 4                    | 4                     |
| CAN                           | 1                    | 1                   | 1                    | 1                    | 1                     |
| SDIO                          | 2                    | 2                   | 2                    | 2                    | 2                     |
| Full-speed USB<br>OTG         | 1                    | 1                   | 1                    | 1                    | 1                     |
| DMA                           | 8                    | 8                   | 8                    | 8                    | 8                     |
| DCU                           | 4                    | 4                   | 4                    | 4                    | 4                     |
| LVD                           | ~                    | ~                   | ~                    | ~                    | √                     |
| AES128/192/256                | ~                    | √                   | √                    | √                    | √                     |
| SHA256                        | ~                    | √                   | ~                    | ~                    | √                     |
| TRNG                          | ~                    | ~                   | ~                    | ~                    | √                     |
| CRC                           | ~                    | ~                   | ~                    | ~                    | √                     |
| KEYSCAN                       | ~                    | ~                   | ~                    | ~                    | √                     |
| RTC                           | ~                    | ~                   | ~                    | ~                    | ~                     |
| FLASH Physical                | √                    | ~                   | √                    | √                    | √                     |
| Encryption                    |                      |                     |                      |                      |                       |
| Shipping method               | Tape and Reel        | Tray loading        | Tape and Reel        | Tray loading         | Tray loading          |

HC32F460 Series Data Sheet Page 131 of



### **Revised content**

v1.1

Product Features External master clock crystal modified to 4~24MHz.

- 1. Introduction Standardize the case of the TIMER module designation.
- 2.1/2.2 100pin pins 27, 28, 64pin pins 18, 19 changed to AVSS, AVCC, original pin name VSSA changed to

AVSS, VCCA changed to AVCC.

- 2.2 Delete the pin function name suffixes "\_A", "\_B", etc., and related usage restrictions.
- 2.2/2.3 Change the function names of JTAG, QSPI, etc. to be consistent with other sections.
- 3 Electrical characteristics update T.B.D value.
- 3.1.6 Power supply scheme update, add VCAP\_1/VCAP\_2 capacitor selection instructions.
- 3.3.6 External capacitor capacity update, low-power mode wake-up timing update.
- 3.3.10 I2C electrical characteristics update.
- 3.3.17 Increase the accuracy and dynamic characteristics of the 12-bit ADC in high-speed action mode with VCCA=1.8 ~2.4V and ultra-low-speed action mode.

HC32F460 Series Data Sheet Page 132 of



### **Version Information & Contact information**

| Versions | Date       | Summary of Revisions                        |  |
|----------|------------|---------------------------------------------|--|
| v1.0     | 2018/12/28 | Initial release.                            |  |
| v1.1     | 2019/4/12  | Content updated, see revisions for details. |  |
|          |            |                                             |  |



If you have any comments or suggestions in the process of purchase and use, please feel free to contact us.

Email: mcu@hdsc.com.cn

Website: http://www.hdsc.com.cn/mcu.htm

Address: 39, Lane 572, Bibo Road, Zhangjiang Hi-

Tech Park, Shanghai, 201203, P.R. China

