Biostat 602 Winter 2017

Lecture Set 4

Principles of Data Reduction

Ancillary Statistics, Completeness

Ancillary Statistic

Reading: CB 6.2

- Sufficient statistics contain all information about θ .
- At the other extreme is a statistic which does not contain any information on θ .

Definition 6.2.11

A statistic $S(\mathbf{X})$ is an *ancillary statistic* if its distribution does not depend on θ .

Question: Why then bother about an ancillary statistic when making an inference on θ ?

Examples

- 1. X_1, \dots, X_n iid $\mathcal{N}(\mu, \sigma^2)$ where σ^2 is known.
 - $X_1 X_2 \sim \mathcal{N}(0, 2\sigma^2)$ is ancillary.
 - $(X_1 + X_2)/2 X_3 \sim \mathcal{N}(0, 1.5\sigma^2)$ is ancillary.
 - $s_{\mathbf{X}}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ is ancillary.
 - $\frac{(n-1)s_{\mathbf{X}}^2}{\sigma^2} \sim \chi_{n-1}^2$ is ancillary.

- 2. X_1, \dots, X_n iid $\mathcal{N}(0, \sigma^2)$ where σ^2 is unknown.
 - X_1/X_2 is ancillary.
 - $\overline{X}/S_{\mathbf{X}}$ is ancillary.
 - Is \overline{X}/σ ancillary?
- 3. Let X_1, \dots, X_n iid $Uniform(\theta, \theta + 1)$. Show that the range statistic $R = X_{(n)} X_{(1)}$

is ancillary. What is its distribution?

Location-Scale Family of Distributions

Let f(x) be any pdf free of any parameter and let $-\infty < \mu < \infty$ and $\sigma > 0$ be unknown constants. Then

$$g(x|\mu,\sigma) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$$

is a pdf.

Proof: Because f(x) is a pdf, then $f(x) \ge 0$, and $g(x|\mu, \sigma) \ge 0$ for all x. Let $y = (x - \mu)/\sigma$, then $x = \sigma y + \mu$, and $dx/dy = \sigma$.

$$\int_{-\infty}^{\infty} \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right) dx = \int_{-\infty}^{\infty} \frac{1}{\sigma} f(y) \sigma dy = \int_{-\infty}^{\infty} f(y) dy = 1$$

Therefore, $g(x|\mu,\sigma)$ is also a pdf.

- The pdf g corresponds to a **location-scale** family of distribution with location = μ and scale = σ .
- When $\mu = 0$, g is the pdf of a scale family with scale parameter σ .
- When $\sigma = 1$, g is the pdf of a **location** family with location parameter μ .

How do you show a pdf belongs to a location-scale family?

Use the transformation $Y = (X - \mu)/\sigma$. If Y has a **parameter-free** pdf, then the original pdf belongs to a location-scale family.

Examples

$$1.~X~\sim~N(\mu,\sigma^2)$$

$$2. \ X \ \sim \ Exp(\theta)$$

$$3. \ X \ \sim \ Cauchy(\theta,1)$$

 $4. \ X \ \sim \ Uniform(0,\theta)$

5. $X \sim Uniform(\theta, 2\theta)$

Ancillary Statistic for Location Family

Let X_1, \dots, X_n be iid from a location family with pdf $f(x - \mu)$ where $-\infty < \mu < \infty$. Show that the range $R = X_{(n)} - X_{(1)}$ is an ancillary statistic.

Solution: Since the original population distribution belongs to a location family, $Z_1 = X_1 - \mu$, \cdots , $Z_n = X_n - \mu$ are iid observations from pdf f(x) and cdf F(x), which are free of the parameter μ . Then the cdf of the range statistic R becomes

$$F_R(r|\mu) = \Pr(R \le r|\mu) = \Pr(X_{(n)} - X_{(1)} \le r|\mu)$$

= $\Pr(Z_{(n)} + \mu - Z_{(1)} - \mu \le r|\mu) = \Pr(Z_{(n)} - Z_{(1)} \le r|\mu)$

which does not depend on μ because Z_1, \dots, Z_n does not depend on μ . Therefore, R is an ancillary statistic.

Ancillary Statistic for Scale Family

Let X_1, \dots, X_n be iid from a scale family with pdf $f(x/\sigma)/\sigma$ where $\sigma > 0$. Show that the statistic

$$\mathbf{T}(\mathbf{X}) = (X_1/X_n, \cdots, X_{n-1}/X_n)$$
 is ancillary.

Solution: Let $Z_1 = X_1/\sigma, \dots, Z_n = X_n/\sigma$ be iid observations from pdf f(x). Then the joint cdf of $\mathbf{T}(\mathbf{X})$ is

$$F_{\mathbf{T}}(t_1, \dots, t_{n-1}|\sigma) = \Pr(X_1/X_n \le t_1, \dots, X_{n-1}/X_n \le t_{n-1}|\sigma)$$

$$= \Pr(\sigma Z_1/\sigma Z_n \le t_1, \dots, \sigma Z_{n-1}/\sigma Z_n \le t_{n-1}|\sigma)$$

$$= \Pr(Z_1/Z_n \le t_1, \dots, Z_{n-1}/Z_n \le t_{n-1}|\sigma)$$

Because Z_1, \dots, Z_n does not depend on σ , $\mathbf{T}(\mathbf{X})$ is an ancillary statistic.

Ancillary vs Minimal Sufficient Statistic

- Ancillary statistic is free of θ .
- Minimal sufficient statistic contains minimal information related to θ .
- Are ancillary statistics independent of minimal sufficient statistics?

Example: For
$$X_1, \dots, X_n \sim \text{Uniform}(\theta, \theta + 1)$$
, $R = X_{(n)} - X_{(1)}$ and $M = (X_{(n)} + X_{(1)})/2$ are jointly minimal sufficient statistic (why?)

But R is ancillary statistic, so ancillary statistics are not always independent of minimal sufficient statistic.

However, how does R give any information about θ ?

- If M = 1, then $0 < \theta < 1$ (why?).
- Suppose now R = 0.8. By itself, it does not provide any information about θ .
- In combination with the fact that M=1, it yields that $X_{(1)}=0.6$ and $X_{(n)}=1.4$, and so the possible range of θ is narrowed down to $0.4 < \theta < 0.6$.
- Combination of ancillary statistic and another statistic can be more informative jointly than the other statistic alone.
- Thus, an ancillary statistic can provide additional precision about the parameter when combined with another statistic.

Completeness

In statistical inference, the ulterior objective is to identify a statistic that is a good estimator for the parameter. **Sufficiency** helps us identify statistics that contain information on the parameter. While somewhat counter-intuitive, **Ancillary** statistics enhance that information, while working in conjunction with a sufficient statistics. The final piece of the puzzle is the concept of **completeness**. Together, these three principles provide enough structure for us to pursue our quest for an efficient estimator in a systematic way.

Definition: Let $\{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$. This family of probability distributions is called *complete* if

$$E[g(T)|\theta] = 0$$
 for all θ implies $Pr[g(T) = 0|\theta] = 1$ for all θ .

Remarks

- In other words, g(T) = 0 almost surely, i.e. only the zero function of T can have a mean of zero for all parameter values.
- Loosely $T(\mathbf{X})$ is called a *complete statistic*. However, as we shall see soon, completeness is the property of the family of distributions induced by T, and not that of T itself.
- Completeness implies 'no unnecessary part' conceptually. There is no non-trivial g(T) whose expectation (or distribution) does not depend on θ .
- If an ancillary statistic could be made out of $T(\mathbf{X})$, it is NOT complete.
- This is a more stringent requirement than that is needed for minimal sufficient statistics.

Example 1: Let X_1, \dots, X_n be a random sample from a Bern(p) population. Show that $T = \sum_{i=1}^n X_i$ is complete.

Example 2: Let X_1, \dots, X_n be a random sample from a $Uniform(0, \theta)$ population. Show that $T = \max_i X_i$ is complete.

Example 3: Let X_1, \dots, X_n be a random sample from a $Uniform(\theta, \theta + 1)$ population. We know $\mathbf{T} = (X_{(1)}, X_{(n)})$ is minimal sufficient. Is \mathbf{T} complete?

Example 4: Let X_1, \dots, X_n be a random sample from a $Pois(\lambda)$. Show that $T = \sum_{i=1}^n X_i$ is complete.

Example 5: Let $T \sim Pois(\lambda)$, where the parameter space of λ is given by $\Omega = \{\lambda : \lambda = \{1, 2\}\}.$

Show that the family of distributions induced by T is NOT complete.

Proof: We need to find a counter example which is a function g such that $E[g(T)|\lambda] = 0$ for $\lambda = 1, 2$ but $g(T) \neq 0$. The function g must satisfy

$$E[g(T)|\lambda] = \sum_{t=0}^{\infty} g(t) \frac{\lambda^t e^{-\lambda}}{t!} = 0$$

for $\lambda \in \{1, 2\}$. Thus,

$$\begin{cases} E[g(T)|\lambda = 1] = \sum_{t=0}^{\infty} g(t) \frac{1^t e^{-1}}{t!} = 0 \\ E[g(T)|\lambda = 2] = \sum_{t=0}^{\infty} g(t) \frac{2^t e^{-2}}{t!} = 0 \end{cases}$$

The above equation can be rewritten as

$$\begin{cases} \sum_{t=0}^{\infty} g(t)/t! = 0 \\ \sum_{t=0}^{\infty} 2^{t} g(t)/t! = 0 \end{cases}$$

Define g(t) as

$$g(t) = \begin{cases} 2 & t = 0 \text{ and } t = 2 \\ -3 & t = 1 \\ 0 & \text{otherwise} \end{cases}$$

Then

$$\sum_{t=0}^{\infty} g(t)/t! = g(0)/0! + g(1)/1! + g(2)/2! = 2 - 3 + 2/2 = 0$$

$$\sum_{t=0}^{\infty} 2^t g(t)/t! = g(0)/0! + 2g(1)/1! + 2^2 g(2)/2! = 2 - 6 + 8/2 = 0$$

There exists a non-zero function g that satisfies $E[g(T)|\lambda] = 0$ for all $\lambda \in \Omega$. Therefore this family is NOT complete. Question: Why is a complete statistic called 'complete'?

Note that requiring g(T) to satisfy the definition of completeness puts a restriction on g. The larger the family of pdfs/pmfs, the greater is the restriction on g. When the family of pdfs/pmfs is augmented to the point that E[g(T)] = 0 for all θ rules out all g except for the trivial g(T) = 0, then the family is said to be complete. A common verbalization of this definition is that the family of distributions is complete if there is no unbiased estimator of zero except for the trivial estimator $g \equiv 0$.

As the Poisson example shows, 'completeness' is a property of the family of distributions rather than the random variable or its parametric form.

Ancillary and Complete Statistics

Fact 1: For a statistic $T(\mathbf{X})$, if a non-constant function of T, say r(T) is ancillary, then $T(\mathbf{X})$ cannot be complete.

Proof: Define g(T) = r(T) - E[r(T)], which does not depend on the parameter θ because r(T) is ancillary. Then $E[g(T)|\theta] = 0$ for a non-zero function g(T), and $T(\mathbf{X})$ is not a complete statistic.

Arbitrary Functions of Complete Statistics

Fact 2: If $T(\mathbf{X})$ is a complete statistic, then a non-constant function of T, say $T^* = r(T)$ is also complete.

Proof: We can write

$$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$$

Now assume that $E[g(T^*)|\theta] = 0$ for all θ . Then

$$E[g \circ r(T)|\theta] = 0$$

holds for all θ too. Since $T(\mathbf{X})$ is a complete statistic,

$$\Pr[g \circ r(T) = 0] = 1, \ \forall \theta \in \Omega.$$

Therefore $\Pr[g(T^*) = 0] = 1$, and T^* is a complete statistic.

Completeness and sufficiency

Theorem 6.2.28: If a minimal sufficient statistic exists, then any complete sufficient statistic is also a minimal sufficient statistic.

Proof: Known as *Bahadur's Theorem*, beyond the scope of the course. Book statement is inaccurate.

Remarks:

- With the exception of very unusual cases, under a mild assumption, minimal sufficient statistics always exist.
- The converse is NOT true. A minimal sufficient statistic is not necessarily complete. Recall the example of $Uniform(\theta, \theta + 1)$.

Basu's Theorem

If $T(\mathbf{X})$ is a complete sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

Proof – for discrete case

Suppose that $S(\mathbf{X})$ is an ancillary statistic. We want to show that

$$\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) = \Pr(S(\mathbf{X}) = s), \ \forall t \in \mathcal{T} \quad (*)$$

Now we have, using law of total probability,

$$\Pr(S(\mathbf{X}) = s | \theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t | \theta)$$
 (1)

Since, $\sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t | \theta) = 1$, we can write

$$\Pr(S(\mathbf{X}) = s | \theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t | \theta)$$
$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t | \theta)$$
(2)

Define $g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$. Using (1) and (2),

$$\sum_{t \in \mathcal{T}} \left[\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s) \right] \Pr(T(\mathbf{X}) = t | \theta) = 0$$

This implies

$$\sum_{t \in \mathcal{T}} g(t) \Pr(T(\mathbf{X}) = t | \theta) = E[g(T(\mathbf{X})) | \theta] = 0$$

 $T(\mathbf{X})$ is complete, so g(t) = 0 almost surely for all possible $t \in \mathcal{T}$.

Therefore, (*) is established and $S(\mathbf{X})$ is independent of $T(\mathbf{X})$.

Example 6: Let X_1, X_2, \ldots, X_n be a random sample from a $Uniform(0, \theta)$ distribution. Let $X_{(1)} < X_{(2)} < \ldots < X_{(n)}$ be the corresponding order statistics.

- (a) Show that $X_{(n)}$ and $X_{(1)}/X_{(n)}$ are independent random variables.
- (b) Establish that

$$E\left[\frac{X_{(1)}}{X_{(n)}}\right] = \frac{E(X_{(1)})}{E(X_{(n)})} = \frac{1}{n}.$$

Example 7: Let X_1, X_2, \ldots, X_n be a random sample from a $\mathcal{N}(\mu, \sigma^2)$ distribution. Conclude that \overline{X} and S^2 are independent.

Example 8: Exercise 6.19 CB The random variable X takes the values 0, 1, 2, according to one of the following distributions:

In each case, determine whether the family of distribution of X is complete.

Solution - Distribution 1

Suppose that there exist $g(\cdot)$ such that E[g(X)|p] = 0 for all 0 .

$$f_X(x|p) = p^{I(x=0)}(3p)^{I(x=1)}(1-4p)^{I(x=2)}$$

$$E[g(X)|p] = \sum_{x \in \{0,1,2\}} g(x)f_X(x|p)$$

$$= g(0) \cdot p + g(1) \cdot (3p) + g(2) \cdot (1-4p)$$

$$= p[g(0) + 3g(1) - 4g(2)] + g(2) = 0$$

Therefore, g(2) = 0, g(0) + 3g(1) = 0 must hold, and it is possible that g is a nonzero function that makes $\Pr[g(X) = 0] < 1$. For example, g(0) = 3, g(1) = -1, g(2) = 0. Therefore the family of distributions of X is not complete.

Solution - Distribution 2

Suppose that there exist $g(\cdot)$ such that E[g(X)|p] = 0 for all 0 .

$$f_X(x|p) = p^{I(x=0)}(p^2)^{I(x=1)}(1-p-p^2)^{I(x=2)}$$

$$E[g(X)|p] = \sum_{x \in \{0,1,2\}} g(x)f_X(x|p)$$

$$= g(0) \cdot p + g(1) \cdot p^2 + g(2) \cdot (1-p-p^2)$$

$$= p^2[g(1) - g(2)] + p[g(0) - g(2)] + g(2) = 0$$

g(0) = g(1) = g(2) = 0 must hold in order to E[g(X)|p] = 0 for all p. Therefore the family of distributions of X is complete.

Example 9: Let X_1, \dots, X_n *i.i.d.* $Pois(\lambda)$, where $\lambda > 0$ is unknown. Let \overline{X} , S^2 denote the sample mean and variance, respectively. Show that

$$E[S^2|\overline{X}] = \overline{X}$$
 almost surely.