Теория вероятностей:

9 марта 2022

математическое ожидание и независимость.

Домашнее задание.

 $|\mathbf{1}|$ График функции плотности случайной величины X изображен на рисунке ниже. Найдите математическое ожидание случайной величины X.

2 График функции распределения случайной величины Y изображен на рисунке выше. Найдите математическое ожидание случайной величины Y.

3 Считается, что число запросов на сервере за некоторый промежуток времени хорошо моделирует распределение Пуассона с параметром λ равным частоте запросов.

А время между двумя последовательными запросами имеет показательное распределение (это одно из названий экспоненциального распределения) с тем же параметром.

Пусть X — число запросов за час, а частота запросов равняется 10 в час (т.е. $\lambda = 10$).

- а) Чему в этих предположениях равняется среднее число запросов за час?
- б) Чему равняется среднее время между двумя последовательными запросами? Ответ укажите в минутах.
- в) Пусть $Y = e^X$ параметр, определяющий нагрузку на сервер в зависимости от количества запросов X. Найдите $\mathbb{E}Y$

4 Случайные величины $X \sim N(\mu_1, \sigma_1^2)$ и $Y \sim N(\mu_2, \sigma_2^2)$ независимы и имеют нормальное распределение с параметрами $\mu_1=1,\sigma_1^2=4$ и $\mu_2=0,\sigma_2^2=1$. а) Найдите дисперсию случайной величины $\frac{X-2}{2}$.

- **б)** Найдите дисперсию случайной величины $2\bar{X} 3Y$.
- в) Найдите математическое ожидание случайной величины $(X-Y)^2$.

5 Докажите, что $\min_{a \in \mathbb{R}} \mathbb{E}(X - a)^2$ равен $\mathbf{Var}(X)$ и достигается только при $a = \mathbb{E}X$.

6 В мешке имеется 10 шаров, из которых 6 белых и 4 чёрных, и мы дважды вытаскиваем из него шар, не возвращая обратно.

Найдите а) распределение, б) математическое ожидание и в) дисперсию количества чёрных шаров среди вынутых.

г) Изменится ли ответ, если вынимать шары следующим образом: вытащили первый шар и положили обратно, а затем вытащили второй шар?