

Departamento de Matemáticas 4º Académicas

Examen de final de trimestre

Nombre:	Fecha:			
Tiempo: 50 minutos	Tipo: B			

Esta prueba tiene 5 ejercicios. La puntuación máxima es de 11. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	Total
Puntos:	3	2	3	1	2	11

1. Resuelve las siguientes inecuaciones de manera justificada:

$$(a) x^3 + x < 2x^2$$
 (1 punto)

(b)
$$\frac{x-1}{x^2+x} \geqslant 0$$
 (2 puntos)

- 2. Calcula el perímetro y el área de un triángulo rectángulo sabiendo que la altura y la proyección de un cateto sobre la hipotenusa son de 2 cm y 2,5 cm, respectivamente.
- 3. Si $\operatorname{tg} \alpha = \sqrt{3}$, calcula usando radicales:
 - (a) El resto de las razones trigonométricas principales usando las relaciones trigonométricas fundamenteles y sabiendo que $\alpha \in I$ (primer cuadrante)
 - (b) El resto de las razones trigonométricas principales usando el apartado anterior y sabiendo que $\alpha \in IV$ (cuarto cuadrante)
- 4. Calcula la altura de una torre sabiendo que su sombra mide 13 m cuando (1 punto) los rayos del sol forman un ángulo de 50° con el suelo.
- 5. Desde el lugar donde me encuentro la visual de la torre forma un ángulo de 32° con la horizontal. Si me acerco 15 m, el ángulo es de 50°. ¿Cuál es la altura de la torre?