JAVA Starter

Машинная математика. Системы счисления.

JAVA Starter

Машинная математика. Системы счисления.

Бит

Bit

Состояния бита

State of bit

Не горит

Горит в пол накала

Горит в полный накал

Один бит

Одним битом можно представить 2 команды или 2 числа

0 – Съесть яблоко

1 — Съесть грушу

Два бита

Двумя битами можно представить 4 команды или 4 числа

0 – Съесть яблоко

1 – Съесть грушу

2 - Съесть сливу

3 – Съесть ананас

Три бита

Тремя битами можно представить 8 команд или 8 чисел

0 – Съесть яблоко

• • •

7 – Съесть клубнику

Четыре бита

Четырьмя битами можно представить 16 команд или 16 чисел

0 – Съесть яблоко

15 – Съесть банан

Пять бит

Пятью битами можно представить 32 команды или 32 числа

0 – Съесть яблоко

1 – Съесть грушу

31 – Съесть персик

Шесть бит

Шестью битами можно представить 64 команды или 64 числа

0 – Съесть яблоко

1 – Съесть грушу

63 — Съесть апельсин

Семь бит

Семью битами можно представить 128 команд или 128 чисел

Восемь бит

Восемью битами можно представить 256 команд или 256 чисел

Байт

1 байт = 8 бит

Байт (byte) — единица хранения и обработки цифровой информации.

Единицы измерения количества информации

Units of data measurement

1 Килобайт = 1024 Байта

1 Мегабайт = 1024 Килобайта

1 Гигабайт = 1024 Мегабайта

1 Терабайт = 1024 Гигабайта

Единицы измерения количества информации

Units of data measurement

О3У

O3Y

Если размер ОЗУ = 1 Гигабайт, то в нем имеется 1 073 741 824 Байта

 $1 \text{ GB} = 1024 \text{ MB} = 1024^3 \text{ B} = 2^{30} \text{ B} = 1073741824 \text{ B}$

О3У

Каждый байт в памяти имеет свой адрес

 $1 \text{ GB} = 1024 \text{ MB} = 1024^3 \text{ B} = 2^{30} \text{ B} = 1073741824 \text{ B}$

CPU взаимодействует с RAM

Процессор взаимодействует с памятью

CPU

CPU имеет регистры подобные ячейкам памяти

О3У

Варианты хранения информации в ОЗУ

1 байт = 8 бит

2 байта = 16 бит (Машинное слово)

4 байта = 32 бита (Двойное машинное слово)

8 байт = 64 бита (Учетверённое машинное слово)

Система счисления

Символический метод записи чисел

Система счисления

Позиционная

значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда)

N2	N10	N16
0000 0000	0	00
0000 0001	1	01
0000 0010	2	02
0000 0011	3	03
0000 0100	4	04
0000 0101	5	05
0000 0110	6	06

Непозиционная

значение каждого символа не зависит от того места, на котором он стоит

Десятичная система счисления

это позиционная система счисления с основанием 10

Для записи числа используются цифры - 0123456789

Основание системы счисления - это число цифр в ней

Пятеричная система счисления

это позиционная система счисления с основанием 5

Для записи числа используются цифры - 01234

$$10_{5} = 5_{10}$$

Двенадцатеричная система счисления

это позиционная система счисления с основанием 12

Для записи числа используются цифры – 0123456789АВ

Двоичная система счисления

это позиционная система счисления с основанием 2

Двоичная	Десятичная
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8

A

Внутреннее представление любой информации в компьютере является двоичным.

Для записи числа используются цифры – 01

$$10_{2} = 2_{10}$$

Шестнадцатеричная система счисления

это позиционная система счисления с основанием

16

Двоичная	Десятичная	16-ричная
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	А
1011	11	В
1100	12	С
1101	13	D
1110	14	Е
1111	15	F

Для записи числа используются цифры — 0123456789ABCDEF

$$10_{16} = 16_{10}$$

Связь между шестнадцатеричной и двоичной системами

Число в шестнадцатеричном формате можно представить в двоичном формате и наоборот

Двоичная	Десятичная	16-ричная
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	А
1011	11	В
1100	12	С
1101	13	D
1110	14	Е
1111	15	F

Представьте каждый символ шестнадцатеричного числа в виде тетрады двоичных символов.

Связь между шестнадцатеричной и двоичной системами

Число в шестнадцатеричном формате можно представить в двоичном формате и наоборот

Двоичная	Десятичная	16-ричная
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	Α
1011	11	В
1100	12	С
1101	13 D	
1110	14	Е
1111	15	F

Представьте каждый символ шестнадцатеричного числа в виде тетрады двоичных символов.

Связь между двоичной и шестнадцатеричной системами

Число в двоичном формате можно представить в шестнадцатеричном формате и наоборот

Двоичная	Десятичная	16-ричная
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	Α
1011	11	В
1100	12	С
1101	13	D
1110	14 E	
1111	15	F

Разделите двоичное число на тетрады и запишите значение каждой тетрады в 16-ричном представлении

Перевод десятичного числа в двоичное

Пример

Двоичная	Десятичная	16-ричная
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	А
1011	11	В
1100	12	С
1101	13	D
1110	14	Е
1111	15	F

Разделите двоичное число на тетрады и запишите значение каждой тетрады в 16-ричном представлении

Перевод двоичного числа в десятичное

Пример

10 1001 =
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

Чтобы преобразовать число, записанное в двоичном формате в десятичный, необходимо:

- 1) Заменить 1 в числе на 2, возведенную в степень соответственно с разрядом этой 1.
- 2) Выполнить сложение полученных значений.

Перевод десятичного числа в шестнадцатеричное

Пример

$$1225_{10} = 4C9_{16}$$

Чтобы преобразовать число, записанное в десятичном формате в шестнадцатеричный, необходимо:

- последовательно делить заданное число и получаемые целые части на 16 до тех пор, пока целая часть не станет меньше 16-ти.
- полученные остатки от деления, представленные цифрами из нового счисления, записать в виде числа, начиная с последней целой части.

Перевод шестнадцатеричного числа в десятичное

Пример

Чтобы преобразовать число, записанное в шестнадцатеричном формате в десятичный, необходимо:

- 1) Число умножить на 16 в степени соответственно с разрядом .
- 2) Выполнить сложение полученных значений.

Использование калькулятора

Переменная

Variable

Переменная – это область памяти, которая хранит в себе некоторое значение, которое можно изменить.

Переменная

Создание переменной

При создании переменной необходимо указать:

- Имя переменной (идентификатор)
- Тип переменной
- Начальное значение (необязательно)

Инициализация переменной – это первое присвоение ей значения.

Переменная

Variable

Переменная – это область памяти, которая хранит в себе некоторое значение, которое можно изменить.

Примитивные типы данных

Primitive Data Types

Арифметические операторы

Arithmetics operators

+	Сложение	/	Деление (или деление нацело для целочисленных значений)
+=	Сложение (с присваиванием)	/=	Деление (с присваиванием)
_	Бинарное вычитание и унарное изменение знака	%	Остаток от деления (деление по мо- дулю)
-=	Вычитание (с присваиванием)	%=	Остаток от деления (с присваиванием)
*	Умножение	++	Инкремент (увеличение значения на единицу)
*=	Умножение (с присваиванием)		Декремент (уменьшение значения на единицу)

Приоритет операторов

Operators priority

Задача

Task

Дано число от 0 до 255 в десятичной системе исчисления. Написать программу, которая переводит данное число в двоичную систему исчисления и выводит в консоль. Запрещается использовать циклы (for, while и т.д.) или условия(if)!

```
Пример:
```

```
byte b = 103;
...
< Ваш код >
...
Вывод в консоль в следующем виде:
0110 0111
```

Важно чтобы вывод включал в себя все разряды! То есть, даже если число 3 в двоичной системе равно 11, вывод в консольдолжен быть в виде 00000011.

Проверка знаний

TestProvider.com

TestProvider — это online сервис проверки знаний по информационным технологиям. С его помощью Вы можете оценить Ваш уровень и выявить слабые места. Он будет полезен как в процессе изучения технологии, так и общей оценки знаний IT специалиста.

После каждого урока проходите тестирование для проверки знаний на <u>TestProvider.com</u>

Успешное прохождение финального тестирования позволит Вам получить соответствующий Сертификат.

JAVA Starter

Q&A