

MECÂNICA QUÂNTICA I – POSTULADOS E PACOTE DE ONDAS

Sandro Dias Pinto Vitenti

Departamento de Física – CCE – UEL

1. Um dos postulados fundamentais da mecânica quântica estabelece a comutação não nula entre os operadores posição (\hat{x}) e momento linear (\hat{p}) , dada por

$$[\hat{x}, \hat{p}] = i\hbar.$$

- (a) Na mecânica clássica, posição e momento desempenham papéis fundamentais como observáveis e geradores de transformações. Descreva sucintamente como essas grandezas se manifestam nesses contextos, destacando sua relevância no formalismo clássico.
- (b) Para compreender a origem desse postulado na mecânica clássica, é crucial analisar o papel desses operadores em termos de uma estrutura específica. Explique como o comutador de \hat{x} e \hat{p} está intrinsecamente ligado à estrutura clássica.
- 2. Dado um estado quântico $|\psi\rangle$ e dois observáveis \widehat{A} e \widehat{B} com autovetores dados respectivamente por $|a\rangle$ e $|b\rangle$:
 - (a) Defina o que significa dizer que \widehat{A} e \widehat{B} são observáveis compatíveis.
 - (b) Se $[\widehat{A}, \widehat{B}] = 0$ e nenhum operador é degenerado, descreva em detalhes o que acontece com $|\psi\rangle$ ao fazermos medidas sequenciais de \widehat{A} e \widehat{B} .
 - (c) Agora, considere o caso em que \widehat{A} é degenerado. Explique como a degeneração afeta o procedimento de medidas sequenciais de \widehat{A} e \widehat{B} em $|\psi\rangle$.
- 3. Seja ρ a matriz densidade de um sistema quântico.
 - (a) Escreva a expressão geral para ρ em termos dos estados puros $|\psi_i\rangle$ com probabilidades r_i tal que $\sum_i r_i = 1$.
 - (b) Suponha que $r_1 \neq 0$ e $r_2 = 1 r_1$, e que todos os outros estados puros têm probabilidade zero. Considere os estados puros dados por:

$$|\psi_1\rangle = \alpha_1|E_1\rangle + \beta_1|E_2\rangle,\tag{1}$$

$$|\psi_2\rangle = \alpha_2 |E_1\rangle + \beta_2 |E_2\rangle,\tag{2}$$

onde $|\alpha_1|^2+|\beta_1|^2=1$ e $|\alpha_2|^2+|\beta_2|^2=1$. Calcule a probabilidade de encontrar o sistema no estado $|E_1\rangle$.

- (c) Explique o significado da probabilidade obtida no item anterior.
- 4. Considere um pacote de onda Gaussiano livre dado por

$$\psi(x,0) = \left(\frac{1}{2\pi\sigma^2}\right)^{1/4} \exp\left[-\frac{x^2}{4\sigma^2}\right]$$

onde $\sigma > 0$ é o desvio padrão.

- (a) Calcule a dispersão $(\Delta x \Delta p)$ inicial do pacote de onda, onde Δx é o desvio padrão da posição e Δp é o desvio padrão do momento.
- (b) Usando a representação do momento calcule a evolução temporal desse pacote.
- (c) Calcule a dispersão $(\Delta x \Delta p)$ para um instante t qualquer, discuta o resultado.