$ au_{1}^{\#2}$	0	0	0	$-\frac{4i}{3kr_3+6k^3r_3}$	$\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$	0	$\frac{2(9k^2r_3-4t_3)}{3(1+2k^2)^2r_3t_3}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	$\frac{9k^2r_{3}-4t_{3}}{3(k+2k^3)^2r_{3}t_{3}}$	0	$-\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$-\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	0	4i 3kr3+6k ³ r3
$\tau_{1}^{\#1}{}_{\!$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
,	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

Lagrangian density	$\frac{2}{3}t_{3} \omega_{i}^{\alpha i} \omega_{\kappa \alpha}^{\ \ \kappa} + \frac{2}{3}t_{2} \omega_{i}^{\ \kappa \lambda} \omega_{\kappa \lambda}^{\ \ \prime} + \frac{1}{3}t_{2} \omega_{\kappa \lambda}^{\ \prime} \omega_{\kappa \lambda}^{\ \prime} + f^{\alpha \beta} \tau_{\alpha \beta} + \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi}$	$\frac{3}{2} r_3 \partial_{l} \omega^{\kappa \lambda}_{ \kappa} \partial^{l} \omega_{\lambda}^{ \alpha} + \frac{2}{3} r_2 \partial^{\beta} \omega^{\theta \alpha}_{ \kappa} \partial_{\theta} \omega_{\alpha \beta}^{ \kappa} - \frac{1}{3} r_2 \partial_{\theta} \omega_{\alpha \beta}^{ \kappa} \partial_{\kappa} \omega^{\alpha \beta \theta} -$	$\frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{ + \frac{5}{2}} r_3 \partial_\alpha \omega_{\lambda}^{ + \frac{5}{2} r_3 \partial_\theta \omega_{\lambda}^{ \alpha$	$rac{3}{2} r_3 \partial_{lpha} \omega_{\lambda}^{\ \ lpha} \partial_{\kappa} \omega^{\kappa \lambda heta} - 3 r_3 \partial_{ heta} \omega_{\lambda}^{\ \ lpha} \partial_{\kappa} \omega^{\kappa \lambda heta} + rac{1}{6} t_2 \partial^{lpha} f_{ eta \kappa} \partial^{\kappa} f_{ lpha}^{\ \ \ eta} -$	$\frac{1}{6}t_2\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\ \theta} + \frac{1}{6}t_2\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\alpha\lambda}^{\ -\frac{2}{3}}t_3\omega_{\kappa\alpha}^{\ \alpha}\partial^\kappa f'_{\ -\frac{2}{3}}t_3\omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f'_{\ -}$	$\frac{4}{3}t_{3}\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{1}+\frac{2}{3}t_{3}\partial_{\kappa}f^{\lambda}_{1}\partial^{\kappa}f'_{1}+\frac{1}{3}t_{2}\omega_{1\theta\kappa}\partial^{\kappa}f^{1\theta}-\frac{2}{3}t_{2}\omega_{1\kappa\theta}\partial^{\kappa}f^{1\theta}-$	$\frac{1}{3}t_{2} \omega_{\theta l K} \partial^{\kappa} f^{l \theta} + \frac{2}{3}t_{2} \omega_{\theta K l} \partial^{\kappa} f^{l \theta} + \frac{2}{3}t_{3} \omega_{l \alpha}^{\ \alpha} \partial^{\kappa} f^{l}_{\ K} + \frac{2}{3}t_{3} \omega_{l \lambda}^{\ \lambda} \partial^{\kappa} f^{l}_{\ K} -$	$\frac{1}{6}t_2\partial^\alpha f^\lambda_{}\partial^\kappa f_{\lambda\alpha} - \frac{1}{6}t_2\partial_\kappa f_{}^{}\partial^\kappa f_{\lambda}^{} + \frac{1}{6}t_2\partial_\kappa f^\lambda_{}\partial^\kappa f_{\lambda}^{} + \frac{2}{3}t_3\partial^\alpha f^\lambda_{}\partial^\kappa f_{\lambda\kappa} +$	$\frac{1}{3} r_2 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \partial^{\beta} \omega_{\mu}^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \mu} +$	$\frac{2}{2} r_2 \partial^{\beta} \omega_{\lambda}^{\lambda \alpha} \partial_{\lambda} \omega_{\omega}^{\beta} - 4 r_3 \partial^{\beta} \omega_{\lambda}^{\lambda \alpha} \partial_{\lambda} \omega_{\omega}^{\beta} - \frac{5}{2} r_3 \partial_{\alpha} \omega_{\omega}^{\alpha} \partial_{\alpha} \partial_{\alpha} \omega_{\omega}^{\beta} + \frac{5}{2} r_3 \partial_{\theta} \omega_{\omega}^{\beta} \partial_{\alpha} \partial_$
--------------------	--	---	---	--	---	---	---	--	---	--

								1
$f_{1^-}^{\#2} lpha$	0	0	0	$-\frac{2}{3}Ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	2 k ² t ₃	
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0	
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>3</u> ع	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6} \left(-9 k^2 r_3 + 4 t_3 \right)$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i k t 3</u> 3	
$f_{1}^{\#1}\alpha eta$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0	
$\omega_1^{\#2}{}_+ \alpha eta$	$\frac{\sqrt{2} t_2}{3}$	2 2 3	$\left -\frac{1}{3} ikt_2 \right $	0	0	0	0	
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0	
	$_{1}^{\#1}+^{\alpha\beta}$	$_{1}^{#2} + ^{\alpha\beta}$	$_{1}^{*1}$ $+^{\alpha\beta}$	$_{1}^{\#_{1}}+^{\alpha}$	$_{1}^{\#2} + ^{\alpha}$	$\frac{1}{1}$	$_{1}^{#2}$ $+^{\alpha}$	

	$\sigma_{0^+}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$ au_{0^{+}}^{\#1}$ †	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0^{+}}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
				× 12±12

ω_{2}^{*1} ω_{2}^{*1} α_{β}^{*1} α_{2}^{*1} $\alpha_{\beta\chi}^{*1}$	0	0	0	
$f_{2}^{\#1}$	0	0	0	
$\omega_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0	0	
	$\omega_2^{#1} + ^{\alpha\beta}$	$f_2^{#1} + \alpha^{\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$	

Source constraints	
SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\overline{\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0}$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\frac{\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#1\alpha\beta} == 0}$	3
$ \overline{\sigma_{1+}^{\#1\alpha\beta}} = \sigma_{1+}^{\#2\alpha\beta} $	3
$\sigma_{2^{-}}^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5
Total #:	24

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 + t_2$	
$f_{0}^{\#2}$	0	0	0	0	
$f_0^{\#1}$	$-i \sqrt{2} k t_3$	$2 k^2 t_3$	0	0	
$\omega_{0}^{\#1}$	£3	$i\sqrt{2}kt_3$	0	0	
	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ \dagger	$f_0^{\#2} \uparrow$	$\omega_{0}^{\#1} \dagger$	

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2^- \alpha \beta \chi}^{\# 1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$^{#1}_{2}$ † $^{\alpha\beta\chi}$	0	0	0

	Massive partic	le
? /	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No massless particles)