Add WeChat edu_assist_pr

Assignment Project Exiden Help

https://eduassistpro.github.

Optimization II: Neural networks

Assignment Project Exam Help

https://eduassistpro.github.

Outline

- ► Architecture of (layered) feedforward neural networks

Assignment Project Exam Help

https://eduassistpro.github.

Parametric featurizations

- \blacktriangleright So far: data features (x or $\varphi(x)$) are fixed during training
 - \blacktriangleright Consider a (small) collection of feature transformations φ
- Assignment applied to be a construction of the second state of the
 - https://eduassistpro.github.
 - lacktriangle Varying parameters of φ allows

Figure 1: Neural networks as feature maps

Feedforward neural network

- Architecture of a feedforward neural network
- ightharpoonup Directed acyclic graph G = (V, E)Assign reported Prespective the small of the function with the function of the small of the function of the fu
 - Internal nodes are called hidden units

https://eduassistpro.github.

 $h_v := \sigma_v(z_v), \quad z_v :$

- $ightharpoonup \sigma_v \colon \mathbb{R} o \mathbb{R}$ is the activation func
- ▶ E.g., sigmoid function $\sigma_v(z) = 1/(1 + e^{-z})$
- Inspired by neurons in the brain

Figure 2: Computation DAG of a feedforward neural network

Standard layered architectures

- ► Standard feedforward architecture arranges nodes into <u>layers</u>
 - ► Initial layer (layer zero): source nodes (input)
- Assignmental layer (layer points nodes (output)

 Ledges only go from one layer to the next
 - ► https://eduassistpro.github. $f(x) = \sigma_L(W_L \sigma_{L-1}(\cdot \cdot \cdot$
 - Augrave Chat edu_assist_pr
 - Scalar-valued activation function applied coordinate-wise to input
 - ▶ Often also include "bias" parameters $b_{\ell} \in \mathbb{R}^{d_{\ell}}$ $f(x) = \sigma_L(b_L + W_L \sigma_{L-1}(\cdots \sigma_1(b_1 + W_1 x) \cdots))$
 - ▶ The tunable parameters: $\theta = (W_1, b_1, \dots, W_L, b_L)$

ct Exam Help Assignme https://eduassistpro.github.

Add We Chat edu_assist_prediction with the control of the control

Well-known activation functions

- \blacktriangleright *Heaviside*: $\sigma(z) = \mathbf{1}_{\{z>0\}}$
- Assignment is the 1940s; also called step function

 Assignment is Present a Called Step function

 Assignment is Present a Called Step function

 Help Popular since 1970s

 - https://eduassistpro.github.
 - ► Popular since 2012
 - Addr Wie Chat edu_assist_pr

Power of non-linear activations

- ▶ What happens if every activation function is linear/affine?
- Assignment Project of the small Help

 Herefore, use non-linear/non-affine activation functions

https://eduassistpro.github.

Necessity of multiple layers (1)

 \triangleright Suppose only have input and output layers, so function f is

Assignment $P(x) = \sigma(b + w^{T}x)$ If σ is monotone (e.g., Heaviside, sigmoid, hyperbolic tangent,

https://eduassistpro.github.

Add WeChat edu_assist_pr

O ×

Figure 4: XOR data set

Necessity of multiple layers (2)

- XOR problem
- Assign the proof of the same $x^{(1)} = (+1, +1), x^{(2)} = (+1, -1), x^{(3)} = (-1, +1),$ $x^{(2)} = (+1, -1), x^{(3)} = (-1, +1),$ $x^{(3)} = (-1, +1),$ $x^{(4)} = (+1, +1), x^{(2)} = (+1, -1), x^{(3)} = (-1, +1),$ $x^{(4)} = (+1, +1), x^{(2)} = (+1, -1), x^{(3)} = (-1, +1),$ $x^{(4)} = (+1, +1), x^{(4)} = (+1, +1),$ Suppose (w,b) \mathbb{R}^2 \mathbb{R} satisfies

https://eduassistpro.github. $b + w^{T}$ (3)

Add w etc. $hat edu_assist_problem Add <math>w$ et

▶ But $x^{(2)} + x^{(3)} - x^{(1)} = x^{(4)}$ so $b + w^{\mathsf{T}} x^{(4)} < 0$

In other words, cannot correctly label $x^{(4)}$.

Neural network approximation theorems

https://eduassistpro.github.

- This property of such families of neural netw
- hat edu_assist_predictions as a second of the second of th
 - "Width" (number of hidden units) may n
 - Does not tell us how to find the network
 - Does not justify deeper networks

Stone-Weierstrass theorem (polynomial version)

Theorem (Weierstrass, 1885): For any continuous function $f: [a,b] \to \mathbb{R}$, and any $\epsilon > 0$, there exists a polynomial p such that $\underset{x \in [a,b]}{\mathbf{Assignment}} \underset{x \in [a,b]}{\mathbf{Project}} \underbrace{\mathbf{Exam Help}}$

https://eduassistpro.github.

Stone-Weierstrass theorem (general version)

Theorem (Stone, 1937): Let $K \subset \mathbb{R}^d$ be any bounded set. Let A be a set of continuous functions on K such that the following hold.

Assignmente. Projecter Edwamip Help and scalar multiplication).

(2)

(3) https://eduassistpro.github.

For an Acontindou Wicking that edu_assist_properties of the continuous contin

$$\sup_{x \in K} |f(x) - h(x)| < \epsilon.$$

Two-layer neural networks with cosine activation functions

Let $K = [0, 1]^d$, and let

Assignment Project Exam Help

https://eduassistpro.github.

Two-layer neural networks with exp activation functions

Let $K = [0, 1]^d$, and let

Assignment Project Exam Help

https://eduassistpro.github.

Fitting neural networks to data

- ▶ Training data $(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$
- Fix architecture: G = (V, E) and activation functions

Assign find parameter property of the standing teleperate loss of the standing teleperate loss

https://eduassistpro.github.

Add Weethat¹edu_assist_pr

16/36

- (Could use other surrogate loss functions ...)
- ► Can also add regularization terms, but also common to use algorithmic regularization
- ightharpoonup Typically objective is not convex in parameters θ
- Nevertheless, local search (e.g., gradient descent, SGD) often works well!

Backpropagation

▶ Backpropagation (backprop): Algorithm for computing partial

Assignmentation of the outer with the part of the control of the c

- Use in combination with gradient descent, SGD, etc.
- https://eduassistpro.github.
- Goal: compute ∂J/∂P v for every edge
 Initia (16) of McHor (c: prat redu_assist_pr
 - ightharpoonup Compute z_n 's and h_n 's for every no
 - Running time: linear in size of network
- ▶ We'll see that rest of backprop also just requires time linear in size of network

Derivative of loss with respect to weights

- Let $\hat{y}_1, \hat{y}_2, \ldots$ denote the values at the output nodes.

Assignment Project Exam Help $\partial \hat{y}_i \quad w_{u,v}$

- https://eduassistpro.github.
- Assume for simplicity there is just a single out

Derivative of output with respect to weights

Chain rule, again:

Assignment Project Exam Help

- https://eduassistpro.github. Therefore Add WeChatedu_assist_pr

 - $ightharpoonup z_v$ and h_u were computed during forward propagation

Assignment, Project Exam Help

https://eduassistpro.github.

Figure 5: Derivative of a node's output with respect to an in

Derivative of output with respect to hidden units

lackbox Key trick: compute $\frac{\partial \hat{y}}{\partial h_v}$ for all vertices in decreasing order of layer number ______

Assignment Protect Externs Help

https://eduassistpro.github.

- $h_{v'} = \sigma_{v'}(z_{v'})$
- $\mathbf{A}_{\mathbf{u}}^{z_{v'}} = \mathbf{w}_{\mathbf{v}} \cdot \mathbf{h}_{v} + (\text{terms not invol} \\ \mathbf{e}_{\mathbf{h}_{v}}^{t_{v}} = \mathbf{h}_{\mathbf{h}} \mathbf{e}_{\mathbf{d}} \mathbf{u}_{\mathbf{u}} \mathbf{assist}_{\mathbf{p}_{v}}$
 - $= \sigma'(z_{v'}) \cdot w_{v,v'}.$
 - $ightharpoonup z_{v'}$'s were computed during forward propagation
 - $ightharpoonup w_{v,v'}$'s are the values of the weight parameters at which we want to compute the gradient

Assignment Project Exam Help https://eduassistpro.github.

Figure 6: Derivative of the network output with respec values Add WeChat edu_assist_pr

Example: chain graph (1)

- ▶ Function $f_{\theta} : \mathbb{R} \to \mathbb{R}$
- ► Architecture

Assignment Project Exam Help

https://eduassistpro.github.

```
Add^*WeChat edu_assist_pr
```

 $z_i := w_{i-,i} \mid_{i-}$ $h_i := \sigma(z_i)$

Example: chain graph (2)

- Backprop:

https://eduassistpro.github.

Figure 7: Neural network with a chain computation graph

Practical issues I: Initialization

Ensure inputs are *standardized*: every feature has zero mean and unit variance (wrt training data)

Assignmentiferoperzewamifelp

But this can be expensive

https://eduassistpro.github.

Heuristic: ensure h_v have similar s

E.g., using \tanh -activation, if vr a with the what edu_assist_printialization schemes for other a

dealing with bias parameters, ...

Practical issues II: Architecture choice

- ► Architecture can be regarded as a "hyperparameter"
 - ► Could use cross-validation to select, but . . .

Assignmentarchieros ectwo for xondano la lelp

- Unclear what to do for completely new problems
- https://eduassistpro.github.
 - ► Then add regularization term to objecti of weights), and optimize the regularize
- ► Emire Garcy of unite at the U_assist_problems

Multi-class

Vector-valued activation: $\sigma \colon \mathbb{R}^{d_\ell} \to \mathbb{R}^{d_\ell}$

Assignment is Project Exam Help

https://eduassistpro.github.

Convolutional nets

- ► Neural networks with *convolutional layers*
 - Useful when inputs have locality structure
- Assignation of the property of the structure (e.g., m) get the structure (e.g., m) get
 - https://eduassistpro.github. to $\max\{d_{\ell}, d_{\ell-1}\}$)
 - Add WeChat edu_assist_pr

Convolutions I

▶ Convolution of two continuous functions: h := f * g

Assignment Project Exam Help

https://eduassistpro.github.

Convolutions II

► For functions on discrete domain, replace integral with sum

Assignment Project Exam Help

https://eduassistpro.github.

$$\mathbf{A} \begin{bmatrix} h(2) \\ h(3) \\ h(5) \\ h(6) \\ h(7) \end{bmatrix} \mathbf{W} \underbrace{ \begin{bmatrix} f(1) & f(0) & 0 & 0 & 0 \\ f(2) & f(1) & f(0) & 0 & 0 \\ 0 & 12 & 1 \\ 0 & 0 & f(2) & 0 \\ 0 & 0 & 0 & 0 & f(2) \end{bmatrix} }_{\mathbf{f}(2)} \underbrace{ \begin{bmatrix} g(5) \end{bmatrix}}_{\mathbf{f}(3)}$$

(Here, we pretend g(i) = 0 for i < 1 and i > 5.)

Assignment Project Exam Help

https://eduassistpro.github.

Convolutions III

► Similar for 2D inputs (e.g., images), except now sum over two indices

Assignment Project Exam Help

- Lots of variations (e.g., padding, strides, multiple "channels")
- https://eduassistpro.github.

Assignment Project Exam Help https://eduassistpro.github. Add WeChat edu_assist_pro.github.

Figure 9: 2D convolution

Assignment Project Exam Help https://eduassistpro.github. Add WeChat edu_assist_pro.github.

Figure 10: 2D convolution

Assignment Project Exam Help https://eduassistpro.github.

Figure 11: 2D convolution

Assignment Project Exam Help https://eduassistpro.github.

Figure 12: 2D convolution