

CSS 422 Hardware and Computer Organization

Course Overview

Professor: Yang Peng

Course Objectives

- This is an introductory course into
 - The fundamentals of digital hardware (digital logic and digital circuit design)
 - The architecture of modern microprocessors
 - Assembly language programming
 - The computer memory system and transition to operating systems

Course Information

- Prerequisites: CSS 342
- Meeting time: TTH 8PM 10PM, UW1-020
- Textbooks
 - Hardware and Computer Organization: The Software Perspective,
 Arnold S. Berger (available online)
 - Essentials of Computer Organization & Architecture, Null
- Class website: https://canvas.uw.edu/courses/1232689
- Office Hours:
 - Monday 10:30 AM 12:30 PM, UW1-260T
 - Appointments via emails

Grading

Course Work		%
Midterm exam		25
Final exam		25
Project		25
Participation	Lab, Exercise	5
Homework		20
Total		100

Achievements	Estimated Grade
97(or 98) – 100	4.0
90 – 96 (or 97)	3.5 - 3.9
80 - 89	2.5 - 3.4
70 - 79	1.5 - 2.4
60 - 69	0.7 - 1.4

This is just for your reference.

The final decimal grade will be curved!

It may be tuned up or down! Don't be surprised!

Exams

- Midterm exam
 - Covers all the contents by the time of exam
- Final exam
 - Covers the contents after the midterm
- The exams are to test your understanding of the concepts
- You should expect challenging questions that apply basic concepts to comprehensive problems
- No cheating
- If I see any suspicious actions during exam, then you will be asked to leave the exam room, and you will be reported as cheating. (See "Academic Integrity" for details)

Project

- Group of 2 or 3 students NO INDIVIDUAL PROJECT
- The project is the capstone element of the course, designed for you to
 - Solidify your command of assembly language coding methods
 - Work as a team
 - Manage version control issues
- Begins the 2nd week and is due at the last week
- Once a group decides to change the team members, the group has to tell me in person
- The grade is given only based on the final product
 - Individuals who have significantly less contribution will have some points taken off!
 - Individuals who have more contribution will not have extra points!

Participation

- Lab + Exercise
 - Lab
 - Use your own laptop
 - Install needed software
 - Done at home in this quarter
 - Exercise
 - **15** exercises in total (almost every class)
 - 3 attempts: correct answers will be given at the last attempt
 - Due at 11:59pm the next day (some exercises may have extended deadlines)
 - You will learn how much these exercises will help your grade
 - If sick or any emergency, then notify me at least 24 hours before
 - Late exercises will not be graded

Homework

- 5 assignments in total
- Assignments are posted in the Assignment section on Canvas
- You are required to submit them online! No hard copy!
- Read and follow the description carefully! Not following any description will result in losing points. (Pay attention to "attach image, attach file, screenshot, etc.")
- Late submission is not accepted! No grade!
- You need to check your submission on Canvas after submission!
 - Don't trust Canvas that much!
 - Don't trust Google doc that much!
- Homework is an individual work. Copy is NOT allowed!
- You are supposed to SOLVE the problems, not GOOGLE the solution

Software

- Simulator for Assembly Language Programming
 - Easy68khttp://easy68k.com
- References
 - 68000 Programmer's Reference Manual
 https://www.nxp.com/files/archives/doc/ref_manual/M68000PRM.pdf
 - 68000 Family Assembly Language, Alan Clements
 http://www.amazon.com/68000-Family-Assembly-Language-Programming/dp/0534932754
- Digital Logic and Circuit:
 - Logisimhttp://www.cburch.com/logisim/index.html

Academic Integrity

- If you are ever in doubt, consult the University Policies (Policy on Academic and Behavioral Conduct) in your Student Handbook
- I will catch students cheating and will follow the university guidelines and will send a letter

How to Succeed

- Do not skip a class! Important information will be announced in class!
- Start your homework and project Early! Early!
- Be prepared, don't fall behind!
- Form a study group if needed!
- Discussion
- Work harder
- Warning:
 - You are in this program since you passed CALCULUS class. I expect that you can all do calculation without calculus.
 - THIS CLASS ABSOLUTELY, POSITIVELY WILL REQUIRE A SUBSTANTIAL TIME COMMITMENT ON YOUR PART

Topics

- 3 major topic areas
- Part 1: Assembly language programming
 - Introduction to microprocessors
 - Programming model of a microprocessor (68000)
 - Addressing modes
 - Writing in assembly language
 - Assembling, linking, loading, and debugging

Topics – cont'd

- Part 2: Special topics in computer architecture
 - Memory hierarchy
 - Caches and virtual memory
 - Pipeline and performance
 - RISC vs. CISC
 - I/O processes

Topics – cont'd

- Part 3: Hardware architecture
 - Concepts of gates, flip-flops, and registers
 - Algorithmic State Machines
 - Data path and control flow (heart of a processor)