REAL AMALYSIS QUALIFYING PARAS SEPTEMBER 10, 1934

Complete solutions to half of the problems will be regarded more highly than half-solutions to all of the problems. Five complete solutions will be sufficient to pass this exam.

- 1. Prove that if $f \in L_1(\mathbb{R})$ and $\int_a^b f(x) dx = 0$ whenever a < b in \mathbb{R} , then f = 0 a.e.
- 2. Let (Ω,A,μ) be any measure space. Suppose that $\{A_n\}_{n=1}^\infty\subset A$ satisfies $\sum\limits_{n=1}^\infty \mu(A_n)<\infty$. Define $A=\{\omega\in\Omega:\{n\in\mathbb{N}:\omega\in A_n\}\}$ is infinite). Give a detailed proof that $A\in A$ and $\mu(A)=0$. [Hint: Consider $B_k=\bigcup_{n=k}^\infty A_n$.]
- 3. State (a) Lebesgue's Dominated Convergence Theorem and (b) Fatou's Lemma. Use one of (a) and (1) to prove the other one.
- 4. Suppose that $\phi: \mathbb{Z} \to \mathbb{C}$ satisfies $\int_{\mathbb{R}} |\phi(n)|^2 < \infty$. From that there exists $f \in L_2(\{0,2\pi\})$ such that $\frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx = \phi(n)$ for all $n \in \mathbb{Z}$ and $\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx = \int_{\mathbb{R}} |\phi(n)|^2$. [Hint: Consider $f_N(x) = \int_{\mathbb{R}} |\phi(n)|^2 dx$.]
- 5. Let $g: \mathbb{R} \twoheadrightarrow \mathbb{R}$ be monotone nondecreasing. Define an outer measure μ on \mathbb{R} by

$$\mu(E) = \inf\{\sum_{j=1}^{\infty} (g(b_j) - g(x_j)) :$$

$$a_j \leq b_j$$
 in IR, ECU^{*}_{j=1} $\{a_j,b_j\}$.

Prove that every Borel set A C IR is μ -measurable. [Hint: Begin with A =]c, ∞ [where c is a point of continuity of g.]

Lat fel, (III) . Define g on It by

where Ton is the restriction of the tengent function tan to 1-1/2, 1/21.

- Freve that g is odd and continuous on IR. (38)
- Frove that q is differentiable at every x of 0. (D)
- (c) Frave that if $f(y) = y^{-2}$ for $y \ge 1$ and f(y) = 0 for Y & L. Chen g (0) w w.
- 80 Let X be a (nonvoid) compact Hausdorff space and let g # P 5 C(%). Suppose that

for every we M(X). Provo that

WEIGE C

Let . F = 10,-1 denote the positive half-line. Define a Borel 3. mossure a on P by

Lot 1.9 6 Ly (b) .

- Frove that the set A of all n c P for which the function 121 $t \rightarrow f(z/t)g(t)$ is in $E_{\gamma}(\mu)$ satisfies $\mu(P \setminus A) \rightarrow 0$.
- (b) Frave that the function h defined on P by

for x c A and h(x) = C otherwise is in 1, (y).

- (B_n)_{am} C A satisfied Seppose that (E, A, p) is o-finite and that **®**€ w(B_B) > 0 and B_{n+1} C B_B for all n, but (B_B = F.
 - Prove that exists a bounded linear functional & on $L_{\alpha}(X_{\alpha}A_{\alpha}B)$ such that $\phi(\xi_{B_{\alpha}}) = 1$ for all B_{α}

[Hint: Consider the linear subspace S of L consisting of all f for which there exists a constant c(f) ϵ ϵ such that $f[B_n = c(f)]$ μ -a.e. for some n. (depending on f).]

- (b) Use (a) to prove that the Banach space $L_{\chi}(x,A,\mu)$ is not rollexive.
- 10. Let $\mu \in \mathbb{R}(\mathcal{R})$. For $n \in \mathbb{R}$, define $\hat{\mu}(n) = \int e^{-int} d\mu(t)$.

Suppose that $\lim_{n\to\infty} \mu(n) = 0$. Prove that $\lim_{n\to\infty} \mu(-n) = 0$.

[Sint: Approximate $d\bar{\nu}/d\mu$ by a trigonometric polynomial where $\bar{\nu}$ is the complex conjugate of μ .]