K-Means Clustering

K-Means Clustering Algorithm

- Dividing the data into *K* groups or partitions
- Given: Training data, $\mathcal{D} = \{\mathbf{x}_n\}_{n=1}^N, \mathbf{x}_n \in \mathbb{R}^d$ and K
- Target: Partition the set $\mathcal D$ into K clusters (disjoint subsets), $\{\mathcal D_k\}_{k=1}^K$
 - Each of the clusters is associated with centers, $\mathbf{\mu}_{\mathit{k\prime}}$ $\mathit{k}{=}1,\,2,\,\ldots,\,\mathit{K}$
 - Come up with the centers of clusters
 - Cluster center acts as a cluster representative
- Euclidean distance with center of a cluster can be used as a measure of dissimilarity

2

K-Means Clustering Algorithm

- 1. Initialize the cluster center, μ_k , $k=1,\ 2,\ ...,\ K$ using randomly selected K data points in $\mathcal D$
- 2. Assign each data point \mathbf{x}_n to cluster center k^*

$$k^* = \arg\min_{k} \|\mathbf{x}_n - \mathbf{\mu}_k\|^2$$

- 3. Update μ_k , k=1, 2, ..., K: Re-compute μ_k after assigning all the data points. $\widehat{\mu}_k = \frac{\sum_k \mathbf{X}_n}{N_k} \quad \text{Number of examples in cluster } k$
- 4. Repeat the steps 2 and 3 until the convergence

3

K-Means Clustering Algorithm

- Convergence criteria:
 - No change in the cluster assignment OR
 - The difference between the distortion measure (J) in the successive iteration falls below the threshold
 - Distortion measure (J): Sum of the squares of the distance of each example to its assigned cluster center

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\| \mathbf{x}_{n} - \boldsymbol{\mu}_{k} \right\|^{2}$$

 $\boldsymbol{z}_{n\boldsymbol{k}}$ is 1 if \mathbf{X}_n belongs to cluster $\boldsymbol{k},$ otherwise 0

4