

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 486 Control Systems

Lecture 04: Dynamic Response with Arbitrary IC

Liangjing Yang

Assistant Professor, ZJU-UIUC Institute

liangjingyang@intl.zju.edu.cn

Recap: Lecture 03

- The **dynamic response**, describing the behavior of a system overtime, consists of **transient and steady-state** response
- The **transfer function**, defined as the ratio of the Laplace transforms of the output and input, assuming zero ICs, maps the input to the output in the frequency domain

Dynamic Response (Review)

- System response describes the behavior of a dynamic system
- Free and Forced Response
 - Total Response $x(t)=x_h(t)+x_p(t)$
 - Free Response: x_h is the solution
 - Forced Response: x_p is determined by the forcing function f
- Transient and Steady-State
 - Total Response $x(t)=x_{tr}(t)+x_{ss}(t)$
 - $x_{tr.}$ Transient State: component that decays towards zero
 - x_{ss} , Steady State: component that remains after the x_t decays towards 0

Recap: Dynamic System (Overview)

• consists of <u>components</u> (or <u>subsystems</u>) with (<u>inputs &) outputs</u> of <u>time related function</u>

a system that evolves over time considering causality (for this course).

Recap: Dynamic System (Overview)

- consists of <u>components (or subsystems)</u> with (<u>inputs &) outputs</u> of <u>time related function</u>
- a system that evolves over time considering causality (for this course)

Transfer Functions (Review)

- A single-input-single-output (SISO) system with amplifiers, zero-initial-value integrators, splitting and summing junctions can be represented with a multiplication by a **transfer function** H(s)
- Such a dynamic system is called a convolution

Lecture Overview

 Continue to look at the methodology of characterizing the output of a given system with a given input

Dynamic Response (Recap)

Dynamic Response (Recap)

Dynamic Response (Recap)

We are interested in computing the response y of a given input u under a given set of ICs

The total response consists of:

- Transient response
 - dependent on the IC
- Steady-state response
 - dominating factor when the effect of IC fade away

Reminder: the two-sided Laplace transform of a function f(t) is

$$F(s) = \int_{-\infty}^{\infty} f(\tau)e^{-s\tau} d\tau, \qquad s \in \mathbb{C}$$

time domain frequency domain

- u(t) U(s)
- h(t) H(s)
- y(t) Y(s)

convolution in time domain \longleftrightarrow multiplication in frequency domain

$$y(t) = h(t) \star u(t) \longleftrightarrow Y(s) = H(s)U(s)$$

The Laplace transform of the impulse response

$$H(s) = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau,$$

is called the transfer function of the system.

Conservation of Mass

$$\dot{m}_{tank} = \dot{m}_{in} - \dot{m}_{out}$$

$$\frac{d}{dt}(\rho V) = \rho \dot{V} = \rho \dot{q}_{in} - \rho \dot{q}_{out}$$

$$A\dot{h} = \dot{q}_{in} - \dot{q}_{out}$$
 $=$ $\frac{gh}{R}$

$$A\dot{h} + \frac{g}{R}h = \dot{q}_{in}$$

$$-\frac{\dot{h} + \frac{g}{RA}h = \dot{q}_{in}}{A}$$

$$\dot{y} + \alpha y = f, \quad y(0) = c$$

This corresponds to an IVP in the form of

$$\dot{y} + \alpha y = f,$$
 $y(0) = c$

with y and f denoting the output and input, respectively

Solution:

$$y(t) = ce^{-\alpha t} + \int_0^t f(\tau)e^{-\alpha(t-\tau)} d\tau$$

If $\alpha = 0$,

$$y(t) = c + \int_0^t f(\tau) d\tau$$

If f(t) = 0, i.e. free response

$$y(t) = ce^{-\alpha t}$$

Output y(t) decays to a fraction 1/e of its original value after $1/\alpha$, the time constant of the system

This corresponds to an IVP in the form of

$$\dot{y} + \alpha y = f, \qquad y(0) = c$$

with y and f denoting the output and input, respectively

Solution: --(t)

$$y(t) = ce^{-\alpha t} + \int_0^t f(\tau)e^{-\alpha(t-\tau)} d\tau$$

If $\alpha = 0$,

$$y(t) = c + \int_0^t f(\tau) d\tau$$

If f(t) = 0, i.e. free response

$$y(t) = ce^{-\alpha t}$$

Recalling that

$$\frac{d}{dt} \int_0^t g(\tau, t) d\tau = \int_0^t \frac{\partial g(\tau, t)}{\partial t} d\tau + g(t)$$

Verifying solution by differentiating

$$\dot{y} = -\alpha c e^{-\alpha t} - \alpha \int_{t_0}^{t} f(\tau) e^{-\alpha(t-\tau)} d\tau + f(t)$$

$$\dot{y} = -\alpha \left(c e^{-\alpha t} + \int_{0}^{t_0} f(\tau) e^{-\alpha(t-\tau)} d\tau \right) + f(t)$$

$$\dot{y} = -\alpha y + f(t) \quad \text{(Verified)}$$

This corresponds to an IVP in the form of

$$\dot{y} + \alpha y = f, \qquad y(0) = c$$

with y and f denoting the output and input, respectively

Solution:
$$y(t) = ce^{-\alpha t} + \int_0^t f(\tau)e^{-\alpha(t-\tau)} d\tau$$

If $\alpha = 0$.

$$y(t) = c + \int_0^t f(\tau) d\tau$$

 $y(t) = c + \label{eq:yt}$ If f(t) = 0, i.e. free response

$$y(t) = ce^{-\alpha t}$$

Convolution of the function f and g

$$(f * g) = \int_0^{t-\Delta} f(\tau)g(t-\tau) \ d\tau$$

Convolution of input signal f with an exponentially decaying signal $e^{-\alpha t}$

$$(f(\#) * e^{-\alpha \#})(t) = \int_0^{t-\Delta} f(\tau)e^{-\alpha(t-\tau)} d\tau$$

Therefore solution of the IVP can be written as

$$y(t) = ce^{-\alpha t} + \left(f(\#) * e^{-\alpha \#}\right)(t)$$

This corresponds to an IVP in the form of

$$\dot{y} + \alpha y = f,$$
 $y(0) = c$

with y and f denoting the output and input, respectively

Solution:

$$y(t) = ce^{-\alpha t} + \int_0^t f(\tau)e^{-\alpha(t-\tau)} d\tau$$

If $\alpha = 0$,

$$y(t) = c + \int_0^t f(\tau) d\tau$$

If f(t) = 0, i.e. free response

$$y(t) = ce^{-\alpha t}$$

Solution of the IVP, $\dot{y} + \alpha y = f$, y(0) = c

can be written as
$$y(t) = ce^{-\alpha t} + (f(\#) * e^{-\alpha \#})(t)$$
 Homogenous Solution Particular Solution

We see in last lecture that we can use Laplace transform to simply our operation

Reminder: the two-sided Laplace transform of a function f(t) is

$$F(s) = \int_{-\infty}^{\infty} f(\tau)e^{-s\tau} d\tau, \qquad s \in \mathbb{C}$$

time domain frequency domain

$$u(t)$$
 $U(s)$

$$h(t)$$
 $H(s)$

$$y(t)$$
 $Y(s)$

convolution in time domain \longleftrightarrow multiplication in frequency domain

$$y(t) = h(t) \star u(t) \longleftrightarrow Y(s) = H(s)U(s)$$

The Laplace transform of the impulse response

$$H(s) = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau,$$

is called the transfer function of the system.

One-sided (or unilateral) Laplace transform:

$$\mathscr{L}\{f(t)\} \equiv F(s) = \int_0^\infty f(t) e^{-st} \mathrm{d}t \qquad \text{(really, from } 0^-)$$

— for simple functions f, can compute $\mathcal{L}f$ by hand.

Example: unit step

$$f(t) = 1(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$\mathcal{L}\{1(t)\} = \int_0^\infty e^{-st} dt = -\frac{1}{s} e^{-st} \Big|_0^\infty = \frac{1}{s} \quad \text{(pole at } s = 0\text{)}$$

— this is valid provided Re(s) > 0, so that $e^{-st} \xrightarrow{t \to +\infty} 0$.

Example: $f(t) = \cos t$

$$\mathcal{L}\{\cos t\} = \mathcal{L}\left\{\frac{1}{2}e^{jt} + \frac{1}{2}e^{-jt}\right\}$$
 (Euler's formula)
$$= \frac{1}{2}\mathcal{L}\{e^{jt}\} + \frac{1}{2}\mathcal{L}\{e^{-jt}\}$$
 (linearity)

$$\mathcal{L}\lbrace e^{jt}\rbrace = \int_0^\infty e^{jt} e^{-st} dt = \int_0^\infty e^{(j-s)t} dt = \frac{1}{j-s} e^{(j-s)t} \Big|_0^\infty$$
$$= -\frac{1}{j-s} \quad \text{(pole at } s = j\text{)}$$

$$\mathcal{L}\lbrace e^{-jt}\rbrace = \int_0^\infty e^{-jt} e^{-st} dt = \int_0^\infty e^{-(j+s)t} dt = -\frac{1}{j+s} e^{-(j+s)t} \Big|_0^\infty$$
$$= \frac{1}{j+s} \quad \text{(pole at } s = -j\text{)}$$

— in both cases, require Re(s) > 0, i.e., s must lie in the right half-plane (RHP)

CU = cosotisino Euler's Formula et = 1 Euler's Identity Impricosotisinos
reio=3+ju

XTSino
Ro for example $x = (6) x = \pm 2, \pm 2j$ x4-16=0 (x-2)(x+2)(x-2j)(x+2j)=0How whom $y^3 = -27$?

Im $43e^{\frac{1}{3}}$? = r coso tjr Sina -3 x 3 = 13 x e Polis Feetvrender 30

Example: $f(t) = \cos t$

$$\mathcal{L}\{\cos t\} = \frac{1}{2}\mathcal{L}\{e^{jt}\} + \frac{1}{2}\mathcal{L}\{e^{-jt}\}$$

$$= \frac{1}{2}\left(-\frac{1}{j-s} + \frac{1}{j+s}\right)$$

$$= \frac{1}{2}\left(\frac{-\cancel{f} - s + \cancel{f} - s}{(j-s)(j+s)}\right)$$

$$= \frac{1}{2}\left(\frac{-2s}{-1+\cancel{j}\cancel{s} - \cancel{j}\cancel{s} - s^2}\right)$$

$$= \frac{s}{s^2+1} \qquad \text{(poles at } s = \pm j\text{)}$$

for Re(s) > 0

Convolution: $\mathcal{L}\{f \star g\} = \mathcal{L}\{f\}\mathcal{L}\{g\}$ (useful because Y(s) = H(s)U(s))

Example:
$$\dot{y} = -y + u$$
 $y(0) = 0$

Compute the response for $u(t) = \cos t$

We already know

$$H(s) = \frac{1}{s+1}$$
 (from earlier example)
 $U(s) = \frac{s}{s^2+1}$ (just proved)

Convolution: $\mathcal{L}\{f \star g\} = \mathcal{L}\{f\}\mathcal{L}\{g\}$ (useful because Y(s) = H(s)U(s))

Example:
$$\dot{y} = -y + u$$
 $y(0) = 0$

Compute the response for $u(t) = \cos t$

We already know

$$H(s) = \frac{1}{s+1}$$
 (from earlier example)
 $U(s) = \frac{s}{s^2+1}$ (just proved)

$$\Longrightarrow Y(s) = H(s)U(s) = \frac{s}{(s+1)(s^2+1)}$$

$$y(t) = \mathcal{L}^{-1}\{Y\}$$

— can't find Y(s) in the tables. So how do we compute y?

Try Partial Fraction

Problem: compute
$$\mathcal{L}^{-1}\left\{\frac{s}{(s+1)(s^2+1)}\right\}$$

This Laplace transform is not in the tables, but let's look at the table anyway. What do we find?

$$\frac{1}{s+1} \qquad \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} = e^{-t} \tag{\#7}$$

$$\frac{1}{s^2 + 1} \qquad \mathcal{L}^{-1} \left\{ \frac{1}{s^2 + 1} \right\} = \sin t \tag{#17}$$

$$\frac{s}{s^2+1} \qquad \mathcal{L}^{-1}\left\{\frac{s}{s^2+1}\right\} = \cos t \tag{#18}$$

— so we see some things that are similar to Y(s), but not quite.

This brings us to the method of partial fractions:

- boring (i.e., character-building), but very useful
- ▶ allows us to break up complicated fractions into sums of simpler ones, for which we know L⁻¹ from tables

Table of Laplace Transforms

Number	F(s)	$f(t), t \ge 0$
1	1	$\delta(t)$
2	1	1(t)
3	$\frac{1}{s}$ $\frac{1}{s^2}$ $\frac{1}{s^3}$ $\frac{3!}{s^4}$	1
4	$\frac{2!}{s^3}$	t ²
5	3! s4	t ³
6	$\frac{m!}{s^{m+1}}$	t ^m
7	$\frac{1}{(s+a)}$	e^{-at}
8	$\frac{1}{(s+a)^2}$	te^{-at}
9	$\frac{1}{(s+a)^3}$	$\frac{1}{2!}t^2e^{-at}$
10	$\frac{1}{(s+a)^m}$	$\frac{1}{(m-1)!}t^{m-1}e^{-at}$
11	$\frac{a}{s(s+a)}$	$1 - e^{-at}$
12	$\frac{a}{s^2(s+a)}$	$\frac{1}{a}(at - 1 + e^{-at})$
13	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at} - e^{-bt}$
14	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$
15	$\frac{a^2}{s(s+a)^2}$	$1 - e^{-at}(1 + at)$
16	$\frac{(b-a)s}{(s+a)(s+b)}$	$be^{-bt} - ae^{-at}$
17	$\frac{a}{(s^2+a^2)}$	sin at
18	$\frac{s}{(s^2+a^2)}$	cos at
19	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$
20	$\frac{b}{(s+a)^2+b^2}$	$e^{-at}\sin bt$
21	$\frac{a^2 + b^2}{s[(s+a)^2 + b^2]}$	$1 - e^{-at} \left(\cos bt + \frac{a}{b} \sin bt \right)$

Problem: compute $\mathscr{L}^{-1}\{Y(s)\}$, where

$$Y(s) = \frac{s}{(s+1)(s^2+1)}$$

We seek a, b, c, such that

$$Y(s) = \frac{a}{s+1} + \frac{bs+c}{s^2+1} \quad \text{(need } bs+c \text{ so that deg(num)} = \deg(\text{den}) - 1)$$

Find a: multiply by s+1 to isolate a

$$(s+1)Y(s) = \frac{s}{s^2+1} = a + \frac{(s+1)(as+b)}{(s^2+1)}$$

— now let s = -1 to "kill" the second term on the RHS:

$$a = (s+1)Y(s)\Big|_{s=-1} = -\frac{1}{2}$$

Problem: compute $\mathcal{L}^{-1}\{Y(s)\}$, where

$$Y(s) = \frac{s}{(s+1)(s^2+1)}$$

We seek a, b, c, such that

$$Y(s) = \frac{a}{s+1} + \frac{bs+c}{s^2+1} \quad (\text{need } bs+c \text{ so that } \deg(\text{num}) = \deg(\text{den}) - 1)$$

Find b: multiply by $s^2 + 1$ to isolate bs + c

$$(s^2+1)Y(s) = \frac{s}{s+1} = \frac{a(s^2+1)}{s+1} + bs + c$$

— now let s = j to "kill" the first term on the RHS:

$$bj + c = (s^2 + 1)Y(s)\Big|_{s=j} = \frac{j}{1+j}$$

Match $Re(\cdot)$ and $Im(\cdot)$ parts:

$$c + bj = \frac{j}{1+j} = \frac{j(1-j)}{(1+j)(1-j)} = \frac{1}{2} + \frac{j}{2} \implies b = c = \frac{1}{2}$$

Problem: compute $\mathcal{L}^{-1}\{Y(s)\}\$, where

$$Y(s) = \frac{s}{(s+1)(s^2+1)}$$

We found that

$$Y(s) = -\frac{1}{2(s+1)} + \frac{s}{2(s^2+1)} + \frac{1}{2(s^2+1)}$$

Now we can use linearity and tables:

$$\begin{split} y(t) &= \mathscr{L}^{-1} \left\{ -\frac{1}{2(s+1)} + \frac{s}{2(s^2+1)} + \frac{1}{2(s^2+1)} \right\} \\ &= -\frac{1}{2} \mathscr{L}^{-1} \left\{ \frac{1}{s+1} \right\} + \frac{1}{2} \mathscr{L}^{-1} \left\{ \frac{s}{s^2+1} \right\} + \frac{1}{2} \mathscr{L}^{-1} \left\{ \frac{1}{s^2+1} \right\} \\ &= -\frac{1}{2} e^{-t} + \frac{1}{2} \cos t + \frac{1}{2} \sin t \quad \text{(from tables)} \\ &= -\frac{1}{2} e^{-t} + \frac{1}{\sqrt{2}} \cos(t - \pi/4) \quad \left(\cos(a-b) = \cos a \cos b + \sin a \sin b \right) \end{split}$$

Consider the system $\dot{y} = -y + u$ y(0) = 0

$$u(t) = \cos t \quad \longrightarrow \quad y(t) = \underbrace{-\frac{1}{2}e^{-t}}_{\substack{\text{transient} \\ \text{response}}} + \underbrace{\frac{1}{\sqrt{2}}\cos(t - \pi/4)}_{\substack{\text{steady-state} \\ \text{response}}}$$

— transient response vanishes as $t \to \infty$ (we will see later why)

Let's compare against the frequency response formula:

$$H(s) = \frac{1}{s+1}$$
 \Longrightarrow $H(j\omega) = \frac{1}{j\omega+1}$

 $u(t) = \cos t$ has A = 1 and $\omega = 1$, so

$$y(t) = M(1)\cos(t + \varphi(1))$$
$$= \frac{1}{\sqrt{2}}\cos(t - \pi/4)$$

— the freq. response formula gives only the steady-state part!!

Consider the system $\dot{y} = -y + u$ y(0) = 0

$$u(t) = \cos t \quad \longrightarrow \quad y(t) = \underbrace{-\frac{1}{2}e^{-t}}_{\substack{\text{transient} \\ \text{response}}} + \underbrace{\frac{1}{\sqrt{2}}\cos(t - \pi/4)}_{\substack{\text{steady-state} \\ \text{response}}}$$

— transient response vanishes as $t \to \infty$ (we will see later why)

Let's compare against the frequency response formula:

$$H(s) = \frac{1}{s+1}$$
 \Longrightarrow $H(j\omega) = \frac{1}{j\omega+1}$

 $u(t) = \cos t$ has A = 1 and $\omega = 1$, so

$$y(t) = M(1)\cos(t + \varphi(1))$$
$$= \frac{1}{\sqrt{2}}\cos(t - \pi/4)$$

$$u(t) = A\cos(\omega t) \quad \longrightarrow \quad y(t) = A \underbrace{M(\omega)}_{\text{amplitude magnification}} \cos\left(\omega t + \underbrace{\varphi(\omega)}_{\text{phase shift}}\right)$$

— the freq. response formula gives only the steady-state part!!

Consider the system $\dot{y} = -y + u$ y(0) = 0

We computed the response to $u(t) = \cos t$ in two ways:

$$y(t) = -\frac{1}{2}e^{-t} + \frac{1}{\sqrt{2}}\cos(t - \pi/4)$$

using the method of partial fractions;

$$y(t) = \frac{1}{\sqrt{2}}\cos\left(t - \pi/4\right)$$

— using the frequency response formula.

Q: Which answer is correct? And why?

A: At t=0, $\frac{1}{\sqrt{2}}\cos(t-\pi/4)=\frac{1}{2}\neq 0$, which is inconsistent

with the initial condition y(0) = 0. The term $-\frac{1}{2}e^{-t}\Big|_{t=0} = -\frac{1}{2}$ cancels the steady-state term, so indeed y(0) = 0.

Therefore, the first formula is correct.

- Frequency response formula limited to steady state part of the response
- Inverse Laplace transform provide both steady-state and transient response

Next, how do we deal with nonzero IC

Laplace Transforms and Differentiation

Given a differentiable function f, what is the Laplace transform $\mathcal{L}\{f'(t)\}\$ of its time derivative?

$$\begin{split} \mathscr{L}\{f'(t)\} &= \int_0^\infty f'(t)e^{-st}\mathrm{d}t \\ &= f(t)e^{-st}\Big|_0^\infty + s\int_0^\infty e^{-st}f(t)\mathrm{d}t \qquad \text{(integrate by parts)} \\ &= -f(0) + sF(s) \\ &- \text{provided } f(t)e^{-st} \to 0 \text{ as } t \to \infty \end{split}$$

$$\mathscr{L}\{f'(t)\} = sF(s) - f(0)$$
 — this is how we account for I.C.'s

Similarly:

$$\mathcal{L}\{f''(t)\} = \mathcal{L}\{(f'(t))'\} = s\mathcal{L}\{f'(t)\} - f'(0)$$
$$= s^2 F(s) - sf(0) - f'(0)$$

Laplace Transforms and Differentiation

Given a differentiable function f, what is the Laplace transform $\mathcal{L}\{f'(t)\}\$ of its time derivative?

$$\begin{split} \mathscr{L}\{f'(t)\} &= \int_0^\infty f'(t)e^{-st}\mathrm{d}t \\ &= f(t)e^{-st}\Big|_0^\infty + s\int_0^\infty e^{-st}f(t)\mathrm{d}t \qquad \text{(integrate by parts)} \\ &= -f(0) + sF(s) \\ &- \text{provided } f(t)e^{-st} \to 0 \text{ as } t \to \infty \end{split}$$

$$\mathscr{L}\{f'(t)\} = sF(s) - f(0)$$
 — this is how we account for I.C.'s

Similarly:

$$\mathcal{L}\{f''(t)\} = \mathcal{L}\{(f'(t))'\} = s\mathcal{L}\{f'(t)\} - f'(0)$$
$$= s^2 F(s) - sf(0) - f'(0)$$

Consider the system

$$\ddot{y} + 3\dot{y} + 2y = u,$$
 $y(0) = \dot{y}(0) = 0$

(need two I.C.'s for 2nd-order ODE's)

Let's compute the transfer function: $H(s) = \frac{Y(s)}{U(s)}$

— take Laplace transform of both sides (zero I.C.'s):

$$s^2Y(s) + 3sY(s) + 2Y(s) = U(s)$$
 $H(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^2 + 3s + 2}$

Consider the system

$$\ddot{y} + 3\dot{y} + 2y = u,$$
 $y(0) = \dot{y}(0) = 0$

(need two I.C.'s for 2nd-order ODE's)

Let's compute the transfer function: $H(s) = \frac{Y(s)}{U(s)}$

— take Laplace transform of both sides (zero I.C.'s):

$$s^{2}Y(s) + 3sY(s) + 2Y(s) = U(s)$$
 $H(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^{2} + 3s + 2}$

$$\ddot{y} + 3\dot{y} + 2y = u,$$
 $y(0) = \alpha, \, \dot{y}(0) = \beta$

Compute the *step response*, i.e., response to u(t) = 1(t)

Caution!! Y(s) = H(s)U(s) no longer holds if $\alpha \neq 0$ or $\beta \neq 0$

Again, take Laplace transforms of both sides, mind the I.C.'s:

$$s^2Y(s) - s\alpha - \beta + 3sY(s) - 3\alpha + 2Y(s) = U(s)$$

$$U(s) = \mathcal{L}\{1(t)\} = 1/s$$
, which gives

$$s^{2}Y(s) - s\alpha - \beta + 3sY(s) - 3\alpha + 2Y(s) = \frac{1}{s}$$

$$Y(s) = \frac{\alpha s + (3\alpha + \beta) + \frac{1}{s}}{s^2 + 3s + 2} = \frac{\alpha s^2 + (3\alpha + \beta)s + 1}{s(s+1)(s+2)}$$

Note: if
$$\alpha = \beta = 0$$
, then $Y(s) = \frac{1}{s(s+1)(s+2)} = H(s)U(s)$

Compute the step response of

$$\ddot{y} + 3\dot{y} + 2y = u,$$
 $y(0) = \alpha, \ \dot{y}(0) = \beta$

$$Y(s) = \frac{\alpha s^2 + (3\alpha + \beta)s + 1}{s(s+1)(s+2)} \qquad y(t) = \mathcal{L}^{-1}\{Y(s)\}\$$

Use the method of partial fractions:

$$\frac{\alpha s^2 + (3\alpha + \beta)s + 1}{s(s+1)(s+2)} = \frac{a}{s} + \frac{b}{s+1} + \frac{c}{s+2}$$

— this gives $a = 1/2, b = 2\alpha + \beta - 1, c = -\alpha - \beta + 1/2$

$$\begin{split} Y(s) &= \frac{1}{2s} + (2\alpha + \beta - 1)\frac{1}{s+1} + \frac{-\alpha - \beta + 1/2}{s+2} \\ y(t) &= \mathscr{L}^{-1}\{Y(s)\} = \frac{1}{2}\mathbf{1}(t) + (2\alpha + \beta - 1)e^{-t} + (1/2 - \alpha - \beta)e^{-2t} \end{split}$$

The step response of

$$\ddot{y} + 3\dot{y} + 2y = u,$$
 $y(0) = \alpha, \ \dot{y}(0) = \beta$

is given by

$$y(t) = \frac{1}{2}1(t) + (2\alpha + \beta - 1)e^{-t} + (1/2 - \alpha - \beta)e^{-2t}$$

What are the transient and the steady-state terms?

▶ The transient terms are e^{-t} , e^{-2t} (decay to zero at exponential rates -1 and -2)

Note the poles of
$$H(s) = \frac{1}{(s+1)(s+2)}$$
 at $s = -1$ and $s = -2$ —these are stable poles (both lie in LHP)

▶ the steady-state part is $\frac{1}{2}1(t)$ — converges to steady-state value of 1/2

DC Gain

Definition: the steady-state value of the step response is called the DC gain of the system.

DC gain =
$$y(\infty) = \lim_{t \to \infty} y(t)$$
 for $u(t) = 1(t)$

In our example above, the step response is

$$y(t) = \frac{1}{2}1(t) + (2\alpha + \beta - 1)e^{-t} + (1/2 - \alpha - \beta)e^{-2t}$$

therefore, DC gain = $y(\infty) = 1/2$

Steady-State Value

$$u(t) = 1(t)$$
 $U(s) = \frac{1}{s}$ \Longrightarrow $Y(s) = \frac{H(s)}{s}$

— can we compute $y(\infty)$ from Y(s)?

Let's look at some examples:

- Y(s) = $\frac{1}{s+a}$, a > 0 (pole at s = -a < 0) $y(t) = e^{-at} \implies y(\infty) = 0$
- Y(s) = $\frac{1}{s+a}$, a < 0 (pole at s = -a > 0) $y(t) = e^{-at} \implies y(\infty) = \infty$
- ► $Y(s) = \frac{1}{s^2 + \omega^2}$, $\omega \in \mathbb{R}$ (poles at $s = \pm j\omega$, purely imaginary) $y(t) = \sin(\omega t) \implies y(\infty)$ does not exist
- $Y(s) = \frac{c}{s} \qquad \text{(pole at the origin, } s = 0\text{)}$ $y(t) = c1(t) \implies y(\infty) = c$

The Final Value Theorem

We can now deduce the Final Value Theorem (FVT):

If all poles of sY(s) are strictly stable or lie in the open left half-plane (OLHP), i.e., have Re(s) < 0, then

$$y(\infty) = \lim_{s \to 0} sY(s).$$

In our examples, multiply Y(s) by s, check poles:

- ► $Y(s) = \frac{1}{s+a}$ $sY(s) = \frac{s}{s+a}$ if a > 0, then $y(\infty) = 0$; if a < 0, FVT does not give correct answer
- ► $Y(s) = \frac{1}{s^2 + \omega^2}$ $sY(s) = \frac{s}{s^2 + \omega^2}$ poles are purely imaginary (not in OLHP), FVT does not give correct answer
- ▶ $Y(s) = \frac{c}{s}$ sY(s) = c poles at infinity, so $y(\infty) = c$ FVT gives correct answer

Back to DC Gain

$$Y(s) = \frac{H(s)}{s}$$

— if all poles of sY(s) = H(s) are strictly stable, then

$$y(\infty) = \lim_{s \to 0} H(s)$$

by the FVT.

Example: compute DC gain of the system with transfer function

$$H(s) = \frac{s^2 + 5s + 3}{s^3 + 4s + 2s + 5}$$

All poles of H(s) are strictly stable (we will see this later using the Routh-Hurwitz criterion), so

$$y(\infty) = H(s)\Big|_{s=0} = \frac{3}{5}.$$