

MVO32: Lista 03

Students

Matheus Ribeiro Sampaio Gabriel Fonseca Miranda

Professor:

Antonio Bernado

Aerospace Engineering Departament $$\operatorname{ITA}$$

17 de novembro de 2020

Sumário

1	Q1		2
2	Q2		4
3	Q3		7
	3.1	3a	. 7
	3.2	3b	. 7
	3.3	3c	. 8
	3.4	3d	. 9
4	$\mathbf{Q4}$		10
	4.1	4a	. 10
	4.2	4b	. 10
	4.3	4c	. 10
5	Ω5		11

Os resultados são apresentados nas tabelas 1, 2, 3 e 4.

Tabela 1: Variáveis de estado no equilíbrio.

Variáveis de estado - X				
V	$230,\!15$	m/s		
α	1,7686	deg		
q	0	deg/s		
θ	1,7686	deg		
h	11582,4	m		
β	0	deg		
ϕ	0	deg		
p	0	\deg/s		
r	0	deg/s		
ψ	0	deg		

Tabela 2: Variáveis de controle no equilíbrio.

Variáveis de controle - U				
$\mathrm{thorttle}_l$	42,08	%		
$throttle_r$	42,08	%		
i_t	-0,4495	deg		
δ_e	0	\deg		
δ_a	0	\deg		
δ_r	0	deg		

Tabela 3: Variáveis de saída no equilíbrio.

Variáveis de saída - Y				
γ	0	\deg		
Thrust_l	14808,02	N		
$Thrust_r$	14808,02	N		
Mach	0,78	-		
$^{\mathrm{CD}}$	0,029	-		
CL	0,5345	-		
Cm	-0,0121	-		
CY	0	-		
Cl	0	-		
Cn	0	-		

Tabela 4: autovalores da dinâmica linearizada.

Auto-valores	Modo
-0.5861 + 1.6377 i	Período curto
-0,5861 - 1,6377 i	Período curto
-0,0011 + 0,0660 i	Fugóide
-0,0011 - 0,0660 i	Fugóide
-0,0011	Altitude
-2,1760	Rolamento puro
-0,1118 + 1,6730 i	Dutch Roll
-0,1118 - 1,6730 i	Dutch Roll
-0,0087	Espiral

Para identificar os modos naturais correspondentes a cada autovalor, inicialmente trabalhamos com os pares complexos conjugados. A cada autovalor, observamos o seu respectivo autovetor.

- $-0,5861 \pm 1,637i$: O seu autovetor correspondente apresenta apenas contribuições de variáveis de estado longitudinais, eliminando a possibilidade de um Dutch Roll. Esse autovalor, por outro lado, está associado a uma frequência maior usando-se o comando damp(). Portanto, trata-se do Período curto.
- $-0,0011\pm0,0660i$: O seu autovetor também apresenta contribuições apenas das variáveis de estado longitudinais, em especial da velocidade e altitude, além de apresentar uma frequência menor com o comando damp(), caracterizando o Fugóide.
- $-0,1118 \pm 1,6730i$: Por eliminação, conclui-se que trata-se do Dutch Roll. Podemos constatar também que o seu autovetor apresenta contribuições das variáveis látero-direcionais, corroborando para a conclusão encontrada.
 - -2,1760: autovalor real de maior módulo. Trata-se do Rolamento puro.
- -0,0011: Esse autovalor não se trata da Espiral, pois seu autovetor não apresenta contribuições das variáveis látero-direcionais, restringindo-se a contribuições mais relevantes de x e h (e um pouco de V). Portanto, por eliminação, trata-se do autovalor relacionado à Altitude.
- -0,0087: Por eliminação, trata-se do Espiral. Podemos constatar também que seu autovetor apresenta apenas contribuições das variáveis látero-direcionais, corroborando para nossa conclusão.

Os resultados são apresentados nas figuras 2, 3, 4, 5 e 6. Nas curvas de throttle e Thrust, a linha azul corresponde ao motor esquerdo, enquanto que a linha vermelha ao direito.

Nos primeiros 30 segundos de simulação o avião apresenta uma resposta oscilatória sub amortecida nas variáveis látero-direcionais: ϕ , ψ , p, r e β . Na figura 1 nota-se mais claramente que se trata do modo de Dutch Roll que predomina a resposta da aeronave.

Figura 1: Variação de ϕ e ψ em resposta ao doublet.

Figura 2: Resposta das variáveis de estado longitudinais.

Figura 3: Resposta das variáveis de estado látero-direcionais.

Figura 4: Resposta das variáveis de controle.

Figura 5: Resposta das variáveis de saída.

Figura 6: Caminho.

3.1 3a

$$\dot{p} = \frac{1}{2I_{xx}}\rho V^2 Sb \left(C_{l_p} \frac{pb}{2V} + C_{l_{\delta_a}} \delta_a \right)$$

$$\dot{p} = \left(\frac{1}{4I_{xx}} \rho V Sb^2 C_{l_p} \right) p + \frac{1}{2I_{xx}} \rho V^2 Sb \delta_a C_{l_{\delta_a}} = A \ p + B(t)$$

$$\dot{p} - A \ p = B(t) \Longrightarrow -\frac{1}{A} \dot{p} + p = -\frac{1}{A} B(t) \Longrightarrow \tau_R \ \dot{p} + p = f(t)$$
Onde:
$$A = \frac{1}{4I_{xx}} \rho V Sb^2 C_{l_p}$$

$$B = \frac{1}{2I_{xx}} \rho V^2 Sb \delta_a C_{l_{\delta_a}}$$

$$f(t) = -\frac{1}{A} B(t)$$

$$\tau_R = -\frac{1}{A} = -\frac{4I_{xx}}{\rho V Sb^2 C_{l_p}}$$

Substituindo os valores, encontramos:

 $\tau_R = 0.5527 \ s$ (dinâmica de rolamento simplificada)

Para o autovetor do modo de rolamento encontrado na questão 1, obtemos com o comando damp():

$$\tau_R = 0.4596 \ s$$
 (dinâmica completa linearizada)

A dinâmica simplificada restringe-se ao rolamento puro da resposta (ϕ, p) . Entretanto, a dinâmica completa ainda prevê (pela análise dos autovetores) uma pequena participação de β, ψ e r, que vêm do acoplamento entre rolamento, guinada e derrapagem, que caracteriza-se por um movimento oscilatório amortecido. Logo, ainda há um pequeno acoplamento deste modo de Rolamento puro com o Dutch roll e por isso as constantes de tempo são diferentes entre si.

3.2 3b

Considerando a resposta a um degra
u $\bar{\delta_a},$ podemos definir Ae
 B constantes:

$$A = \frac{1}{4I_{xx}} \rho V S b^2 C_{l_p}$$

$$B = \frac{1}{2I_{xx}} \rho V^2 S b \bar{\delta}_a C_{l_{\delta_a}}$$

Dessa forma, resolvendo a equação diferencial de primeira ordem, encontramos:

$$\begin{split} p &= -\frac{B}{A} + cte \cdot e^{At} \quad , \quad cte \in \mathbb{R} \\ p &= -\frac{2V\bar{\delta_a}C_{l_{\delta_a}}}{bC_{l_p}} + cte \cdot exp\left(\left(\frac{1}{4I_{xx}}\rho VSb^2C_{l_p}\right)t\right) \end{split}$$

Partindo-se da condição de equilíbrio p=0 no tempo t=0, obtemos a constante real.

$$p(t) = -\frac{2V\bar{\delta_a}C_{l_{\delta_a}}}{bC_{l_p}} + \frac{2V\bar{\delta_a}C_{l_{\delta_a}}}{bC_{l_p}} \cdot exp\left(\left(\frac{1}{4I_{xx}}\rho VSb^2C_{l_p}\right)t\right)$$

Admitindo-se que $C_{l_p} < 0 \Longrightarrow A < 0$, podemos encontrar a rotação p_{ss} no regime estacionário no tempo $t \to \infty$, onde a exponencial tende a zero. Portanto:

$$p_{ss} = -\frac{2V\bar{\delta_a}C_{l_{\delta_a}}}{bC_{l_p}}$$

Podemos ainda encontrar a expressão para $\phi(t)$:

$$\begin{split} \dot{\phi} &= p \Longrightarrow \phi = \int_0^t \ p \ dt \\ \phi(t) &= -\frac{2V\bar{\delta_a}C_{l_{\delta_a}}}{bC_{l_p}}t + \frac{8I_{xx}\bar{\delta_a}C_{l_{\delta_a}}}{\rho Sb^3C_{l_p}^2} \cdot exp\left(\left(\frac{1}{4I_{xx}}\rho VSb^2C_{l_p}\right)t\right) + cte \ , \ cte \in \mathbb{R} \end{split}$$

Novamente aplicando a condição inicial, obtemos a expressão final:

$$\phi(t) = -\frac{2V\bar{\delta_a}C_{l_{\delta_a}}}{bC_{l_p}}t + \frac{8I_{xx}\bar{\delta_a}C_{l_{\delta_a}}}{\rho Sb^3C_{l_p}^2} \cdot exp\left(\left(\frac{1}{4I_{xx}}\rho VSb^2C_{l_p}\right)t\right) - \frac{8I_{xx}\bar{\delta_a}C_{l_{\delta_a}}}{\rho Sb^3C_{l_p}^2}$$

3.3 3c

Os resultados são apresentados nas figuras 7 e 8.

Figura 7: Variação dos parâmetros látero-direcionais, para a dinâmica não linear (curva azul) e linearizada (curva vermelha).

Figura 8: Variações Δp e $\Delta \phi$. Acrescentou-se a curva amarela que corresponde à dinâmica de rolamento simplificada com as equações deduzidas em (b).

O modelo simplificado considera apenas a resposta rápida de (ϕ, p) . Tendo em vista esse modelo simplificado de rolamento puro (curva amarela), a pertubação degrau positiva $\delta_a > 0$ no aileron induz um momento de rolamento comandado $\Delta C'_l = C_{l_{\delta_a}} \delta_a < 0$ (já que $C_{l_{\delta_a}} < 0$). Por outro lado, aparece uma aceleração de rolamento $\dot{p} < 0$ (como podemos verificar graficamente) que resulta em um momento amortecedor $\Delta C''_l = C_{l_p} \frac{pb}{2V} > 0$ (já que $C_{l_p} < 0$). Dessa forma, o resultado disso, como obtido em (b), é um decaimento exponencial da taxa de rolamento p, que se estabiliza quando $\Delta C'_l + \Delta C''_l = 0$ (ou $p = p_{ss}$), fazendo com que $\Delta \phi$ tenda a uma reta decrescente com essa inclinação, como observado na curva amarela.

Entretanto, a dinâmica completa ainda prevê um movimento oscilatório amortecido acoplando rolamento, guinada e derrapagem (Dutch roll), como podemos observar pelas oscilações amortecidas das variáveis de estado látero-direcionais. A pertubação induzida $\Delta\beta < 0$ ainda proporciona uma guinada negativa $\Delta C'_n = C_{n_\beta}\beta < 0$ (já que $C_{n_\beta} > 0$), que é amortecida pelo surgimento de uma aceleração de guinada $\dot{r} < 0$ com um momento amortecedor $\Delta C''_n = C_{n_r} \frac{rb}{2V} > 0$ (já que $C_{n_r} < 0$). Esse evento pode ser observado no gráfico de ψ e o desvio de trajetória em y.

A dinâmica linearizada é eficaz para pequenas pertubações, prevendo com boa acurácia a resposta até certo intervalo de tempo onde as pertubações não se tornaram grandes o suficiente. A pertubação degrau de 5° de aileron foi consideravelmente elevada e induz pertubações que fazem com que a dinâmica linearizada se distancie da não linear a partir de certo tempo transcorrido de simulação. Constante-se isso pelas curvas vermelhas e azul praticamente sobrepostas para tempos próximo de zero.

3.4 3d

4.1 4a

A comparação é expressa na tabela 5.

Tabela 5: Comparação do modo de Dutch Roll encontrado por diferentes métodos.

Dutch Roll	Par complexo	$\omega_n(rad/s)$	ζ_n
Dinâmica completa linearizada	$-0,1118 \pm 1,6730 i$	1,6767	0,0667
Dinâmica reduzida	-0,2242 ±1,4150 i	1,4326	0,1565

Com isso, observamos que o erro cometido ao se adotar a dinâmica reduzida é maior para a razão de amortecimento, onde obteve-se um erro relativo substancial de 135%. Para a frequência natural, o erro relativo é inferior, de 15%.

4.2 4b

O efeito da variação é apresentado na tabela 6.

Tabela 6: Variação quantitativa da frequência natural e do amortecimento do modo Dutch roll com a variação de cada derivada de estabilidade látero-direcional.

	Frequência Natural (rad/s)		Razão de amortecimento			
Derivada	-20%	Nominal	+20%	-20%	Nominal	+20%
$C_{l_{eta}}$	1,6548		1,6985	0,0843		0,0504
$\mathrm{C}_{n_{eta}}$	1,5404		1,8040	0,0648		0,0677
$\mathrm{C}_{Y_{eta}}$	1,6751		1,6784	0,0610		0,0723
C_{l_p}	1,6756		1,6739	0,0494		0,0808
C_{n_p}	1,6573	1,6767	1,6958	0,0746	0,0667	0,0592
C_{Y_p}	1,6768		1,6766	0,0667		0,0666
C_{l_r}	1,6729		1,6806	0,0650		0,0684
C_{n_r}	1,6766		1,6766	0,0476		0,0857
C_{Y_r}	1,6777		1,6758	0,0666		0,0668

4.3 4c

O Dutch roll contempla um movimento acoplado de rolamento, guinada e derrapagem. Observamos que variando-se as derivadas com relação ao momento de rolamento p (C_{l_p} , C_{n_p} e C_{Y_p}), há maiores variações para o amortecimento do que para frequência, desviando-se de seu valor nominal. Dessa forma, se nos restringir de forma simplificada apenas aos graus de liberdade Δr e $\Delta \beta$, suprimindo o efeito do rolamento (e por conseguinte de suas derivadas de estabilidade), há um maior erro na razão de amortecimento. Isso justifica o fato da dinâmica reduzida funcionar razoavelmente para a frequência natural (que apresenta dependência relevante das derivadas de estabilidade de β e r, como tabelado), mas não para o amortecimento (que também apresenta considerável dependência das derivadas de estabilidade de p).

Os resultados são apresentados nas tabelas 7, 8 e 9. Comparando com os resultados obtidos no exercício 1 notamos uma diferença significativa apenas nas variáveis: thottle, thrust, ϕ , δ_a e δ_t .

A diferença entres os equilíbrios de leme e aileron são consequências direta do desbalanceamento de empuxo gerado pela hipotética falha. A diferença de tração entre os motores gera um momento de guinada na aeronave e por isso é necessário a utilização do leme para o equilíbrio. Além disso, a diferença de tração dos motores junto com o ângulo de incidência dos motores geram um momento de rolamento sendo necessário um pequeno acionamento dos ailerons para o equilíbrio, vale ressaltar que o momento resultante do giro interno do motor não é analisado. Por fim, é interessante mostrar que o profundor manteve-se na mesma deflexão devido a sustentação gerado pelos motores assim como o momento de arfagem serem praticamente os mesmos nos dois casos.

Tabela 7: Variáveis de estado no equilíbrio com falha.

Variáveis de estado - X				
V	230,15	m/s		
α	1,7683	deg		
q	0	\deg/s		
θ	1,7682	deg		
h	11582,4	m		
β	0	deg		
ϕ	-0,6113	deg		
р	0	\deg/s		
r	0	\deg/s		
ψ	-0,0189	deg		

Tabela 8: Variáveis de controle no equilíbrio com falha.

Variáveis de controle - U				
$thorttle_l$	69,21	%		
$\operatorname{throttle}_r$	15	%		
\mathbf{i}_t	-0,4493	deg		
δ_e	0	\deg		
δ_a	0,2443	\deg		
δ_r	0,9198	\deg		

Tabela 9: Variáveis de saída no equilíbrio com falha.

Variáveis de saída - Y				
γ	0	deg		
Thrust_l	24354,02	N		
$Thrust_r$	5278,09	N		
Mach	0,78	-		
CD	0,029	-		
CL	0,5345	-		
Cm	-0,0121	-		
CY	-0,0052	-		
Cl	-0,0001	-		
Cn	-0,0030	-		