Geometria różniczkowa Lista 5

- 1. Sprawdź, że przesunięcie równoległe wzdłuż krzywej nie zależy od parametryzacji tej krzywej.
- 2. Rozważmy na $E \otimes F$ koneksję indukowaną z koneksji na E i koneksji na F. Sprawdź, że jeśli $s \in \Gamma_{\gamma}(E)$ i $c \in \Gamma_{\gamma}(F)$ są cięciami równoległymi, to $s \otimes c \in \Gamma_{\gamma}(E \otimes F)$ też jest cięciem równoległym.
- 3. Niech ∇ będzie koneksją na wiązce E (dim(E)=d) nad M, zaś $\gamma\colon [0,1]\to M$ krzywą gładką. Pokaż, że $(\Gamma_{\gamma}(E), \nabla_{t})$ jest izomorficzna z $(C^{\infty}([0,1])^{d}, \partial_{t})$, tzn. istenieje izomorfizm $C^{\infty}([0,1])$ -modułów $F\colon C^{\infty}([0,1])^{d}\to \Gamma_{\gamma}(E)$ taki, że $F^{-1}\circ \nabla_{t}\circ F$ jest standardowym różniczkowaniem po t każdej współrzędnej z osobna). Przedyskutuj dlaczego nie powinno Cię to niepokoić, np. nie wynika z tego, że przesunięcie równoległe jest niezależne od krzywej.
- 4. Załóżmy, że ∇ jest zgodna z metryką Riemanna. Niech $s_1, s_2 \in \Gamma_{\gamma}(E)$. Pokaż, że $\frac{d}{dt}\langle s_1, s_2 \rangle = \langle \nabla_t s_1, s_2 \rangle + \langle s_1, \nabla_t s_2 \rangle$.
- 5. Niech ∇ będzie koneksją na wiązce $\pi \colon E \to M$. Niech $e \in E$ i niech $p = \pi(e)$. Określmy podprzestrzeń H_e przestrzeni $T_e E$ następująco: H_e to zbiór wektorów $v \in T_e E$, takich że istnieją: krzywa $\gamma \colon (a,b) \to M$ i cięcie równoległe $s \in \Gamma_{\gamma}(E)$, spełniające warunek s'(0) = v. Udowodnij, że
 - $T_eE = H_e \oplus T_eE_p$;
 - $H_{te}=DM_t(H_e)$, gdzie $M_t\colon E\to E$ mnoży przez $t\in \mathbf{R}$ na każdym włóknie z osobna;
 - $\{H_e : e \in E\}$ jest gładką dystrybucją na E (z definicji dystrybucja to podwiązka wiązki stycznej, gładkość oznacza, że lokalnie jest rozpinana przez $\dim(H_e)$ gładkich cięć).
- 6. Niech $\mathcal{H} = \{H_e : e \in E\}$ będzie dystrybucją na E spełniającą warunki z zadania 5. Cięcie $s \in \Gamma_{\gamma}(E)$ nazywamy równoległym (wzdłuż krzywej γ), jeśli jest ono styczne do dystrybucji \mathcal{H} w każdym swym punkcie. Udowodnij dla tego pojęcia równoległości twierdzenie o jednoznaczności; zdefiniuj odpowiadające mu przesunięcie równoległe wzdłuż krzywej i wykaż, że jest ono liniowe.
- 7. Niech $\{H_e: e \in E\}$ będzie dystrybucją na E spełniającą warunki zadania 5. Udowodnij, że pochodzi ona (w sposób opisany w tym zadaniu) od pewnej koneksji na E.
- 8. Udowodnij, że każda wiązka nad \mathbb{R}^n jest izomorficzna z trywialną. Wsk. weź dowolną koneksję i przesuwaj równolegle wzdłuż półprostych. Przedyskutuj kwestię gładkości w zerze.
- 9. Pokaż, że jeśli ∇ jest zgodna z metryką Riemanna, to F też: $\langle F_{X,Y}s,s'\rangle + \langle s,F_{X,Y}s'\rangle = 0$ dla dowlonych pól X,Y i cięć s,s'.
- 10. Niech ∇ będzie koneksją na wiązce E. Pokaż, że $F(\nabla) \equiv 0$ wtedy i tylko wtedy, gdy można znaleźć lokalną trywializację E taką, że ∇ jest standardowym różniczkowaniem w tej trywializacji. Wsk.: niech $e_i(\bar{0})$ to dowolna trywializacja $E_{\bar{0}}$. Zdefiniuj $e_i(x_0,0,\ldots,0)$ jako przesunięcie równoległe $e_i(\bar{0})$ wzdłóż 0-wej współrzędnej, potem $e_i(x_0,x_1,\ldots,0)$ jako przesunięcie $e_i(x_0,0,\ldots,0)$ wzdłóż 1-wszej współrzędnej itd.
- 11. Niech Σ będzie 2-wymiarową rozmaitością riemannowską. Pokaż, że krzywizna Gaussa κ_p^{Σ} jest niezależna od wyboru bazy $T_p(\Sigma)$.
- 12. Uzasadnij, że dowolne (kawałkami) gładkie pole wektorowe W wzdłuż krzywej znikające na jej końcach pochodzi od pewnej wariacji krzywej.
- 13. Niech $U\colon M\to \mathbf{R}$ będzie funkcją ("energii potencjalnej") na rozmaitości riemannowskiej M. Dla $p\in M$ i $v\in T_pM$ określmy $L(p,v)=\frac{1}{2}\|v\|^2-U(p)$; dla krzywej $\gamma\colon [0,1]\to M$ zdefiniujmy $L(\gamma)=\int_0^1 L(\gamma(t),\gamma'(t))dt$. Wyprowadź równanie, jakie musi spełniać krzywa γ aby dla dowolnej jej wariacji α zachodził warunek $\frac{dL(\overline{\alpha}(u))}{du}|_{u=0}=0$. (Jeśli $U\equiv 0$, to wyjdzie równanie geodezyjnej.)