Aufgabe 1. Es gilt

$$\lim \left(\sin(n) \cdot \frac{1}{n} \right) = \lim \sin(n) \cdot \lim \frac{1}{n} = 0$$

weil $\sin(n)$ beschränkt ist und $\lim \frac{1}{n} = 0$.

Aufgabe 2.

$$a_{n+1} = \sqrt{2a_n} = \sqrt{2\sqrt{2a_{n-1}}} = \sqrt{2\sqrt{2\sqrt{2a_{n-2}}}} = \sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdot \sqrt[8]{a_{n-2}}$$

Aufgabe 3. Weil T eine obere Schranke ist, gilt $a_n \leq T$ für alle n.

$$T_n = \max\{a_1, a_2, \dots, a_n\}$$
 und $a_1 \le T, a_2 \le T, \dots, a_n \le T$ somit $\max\{a_1, a_2, \dots, a_n\} \le T$
Also gilt $T_n \le T$.

Aufgabe 4. T_n ist nach oben durch T beschränkt und monoton wachsend (wegen max), also gibt es ein eindeutiges $\lim T_n = T_0$. T_0 ist $\geq a_n$ für alle n aber auch $\in (a_n)$, also das Maximum und somit auch das Supremum.

Aufgabe 5.

a) Wir interessieren uns nur für gerade n, andernfalls ist a_n negativ und für das sup irrelevant.

$$A_k = \sup_{n \ge k} a_n = \sup_{n \ge 1} a_{n+k-1} = 2 + \frac{1}{k}$$

Nachdem $\lim A_k = 2$ ist $\limsup \cdots = 2$.

- b) $(b)_n$ ist nicht nach oben beschränkt $(\lim b_n = \infty)$, es gilt somit $\limsup_{k \to \infty} = \infty$.
- c) Wir sind wieder nur an geraden n interessiert und haben

$$C_k = \frac{1}{n}$$
 somit $\limsup_{n \to \infty} c_n = 0$

Aufgabe 6. Sei $k \in \mathbb{N}$, und

$$\begin{array}{ccc} A_k = \sup\{a_k, a_{k+1}, \ldots\} & \Longrightarrow & \limsup_{n \to \infty} a_n = \lim_{k \to \infty} A_k \\ B_k = \sup\{a_k, a_{k+1}, \ldots\} & \Longrightarrow & \limsup_{n \to \infty} b_n = \lim_{k \to \infty} B_k \\ C_k = \sup\{a_k + b_k, a_{k+1} + b_{k+1}, \ldots\} & \Longrightarrow & \limsup_{n \to \infty} (a_n + b_n) = \lim_{k \to \infty} C_k \end{array}$$

Wähle ein k, dann gilt für $n \ge k$

$$a_n + b_n \le A_k + B_k$$

weil A_k und B_k jeweils das Supremum, also die (kleinste) obere Schranke sind. Klarerweise gilt somit

$$C_k \le A_k + B_k$$
 bzw. $\sup_{n \ge k} (a_n + b_n) \le \sup_{n \ge k} a_n + \sup_{n \ge k} b_n$.

was für (a) zu zeigen war, mit K = 1.

Für (b) reicht es, den Limes auf beiden Seiten anzuwenden

$$\lim_{k \to \infty} \sup_{n \ge k} (a_n + b_n) \le \lim_{k \to \infty} \sup_{n \ge k} a_n + \lim_{k \to \infty} \sup_{n \ge k} b_n$$
$$\lim_{k \to \infty} \sup_{n \to \infty} (a_n + b_n) \le \lim_{k \to \infty} \sup_{n \to \infty} a_n + \lim_{k \to \infty} \sup_{n \to \infty} b_n$$

Aufgabe 7. Sei (a_n) eine konvergente Folge mit $\lim a_n = a$, sie ist also beschränkt — es gibt ein sup a_n für alle n. Sei $A_k = \sup_{n \geq k} a_n$. Klarerweise ist $A_k \geq A_{k+1} \geq A_{k+2} \geq \cdots$, die Folge ist monoton fallend. Weiters ist (A_k) wie (a_n) beschränkt, somit gibt es ein $\lim_{k \to \infty} \sup_{n \geq k} a_n$ bzw. ein $\limsup_{n \to \infty} a_n = A$.

Sei $\epsilon > 0$, dann gilt für alle $n \geq N_1$

$$|a-a_n|<\epsilon$$

Klarerweise gilt dann für alle $n \geq N_2$

$$|a - \sup_{k > n} a_k| < \epsilon.$$

Aufgabe 8.

- a) ?
- b) ?
- c) Sei (a_n) eine auf a konvergierende Folge mit Häufungspunkten a, b und $a \neq b$. Sei $\epsilon = \frac{|a-b|}{2}$, dann gibt es für alle n > N

$$|a_n - a| < \epsilon$$

aber wegen

$$|a_n - b| = |a_n - a + a - b| \ge ||a_n - a| - |a - b|| = ||a_n - a| - 2\epsilon| = 2\epsilon - |a_n - a| \ge \epsilon$$

kann es nicht unendliche viele Punkte die willkürlich nahe an b kommen geben. Also kann b kein Häufungspunkt sein.

d) k für k > 0.