Computer / Network

Network Security

School of Electric and Computer Engineering

Pusan National University, KOREA

Younghwan Yoo

Computer Networking

A Top-Down Approach

7th edition

Jim Kurose, Keith Ross

Pearson

April 2016

Contents

Computer Network introduction

01. Network Security

02. Cryptography Principles

03. Message Integrity

04. End-Point Authentication

Contents

Computer Network introduction

05. Securing E-mail

06. IPsec and VPNs

07. Wi-Fi Security

08. Firewall and IDS/IPS

01. Network Security

- Confidentiality: only sender, intended receiver should "understand" message contents
 - sender encrypts message
 - receiver decrypts message
- Message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
- End—point authentication: sender, receiver want to confirm identity of each other
- Operational security: access to the system and the availability must be controlled to protect the system against network attacks and intrusion

- Well-known in network security world
- Bob, Alice want to communicate "securely"
- Trudy (intruder) may intercept, delete, or add messages

Who Might Bob, Alice Be?

- well, real-life Bobs and Alices!
- Web browser/server for electronic
 transactions (e.g., on-line purchases)
- On-line banking client/server
- DNS client/server
- Routers exchanging routing table updates

What can a "bad guy" do?

- Eavesdrop: intercept messages
- Actively insert messages into connection
- Impersonation: can fake (spoof) source
 address in packet (or any field in packet)
- Hijacking: "take over" ongoing connection by removing sender or receiver, inserting himself in place
- Denial of Service: prevent service from being used by others (e.G., By overloading resources)

02. Cryptography Principles

m plaintext message $K_A(m)$ ciphertext, encrypted with key $K_A(m) = K_B(K_A(m))$

- Substitution cipher: substituting one thing for another
- Mono-alphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz
ciphertext: mnbvcxzasdfghjklpoiuytrewq

e.g.: Plaintext: bob. i love you. alice

ciphertext: nkn. s gktc wky. mgsbc

Encryption key: mapping from set of 26 letters to set of 26 letters

Symmetric key cryptosystem

- the same key is used for encryption and decryption
- the key must be kept secret
- secret key system

Asymmetric key cryptosystem

- different keys are used for encryption and decryption
- one of the two keys is exposed to other users
- public key system

- Bob and Alice share same (symmetric) key: K_S
- E.g., key is a known substitution pattern in mono alphabetic substitution cipher
- Q: How do Bob and Alice agree on key value?

DES: Data Encryption Standard

- US encryption standard[1993]
- 56-bit symmetric key,64-bit plaintext input

DES Operation

- 1 initial permutation
- 2 16 identical "rounds" of function application, each using different 48 bits of key
- ③ final permutation

Symmetric Key Crypto: DES

- DES challenge: 56-bit-key-encrypted phrase can be decrypted in less than a day with the brute force attack
 - No known good analytic attack
- Making DES more secure:
 - 3DES: encrypt 3 times with 3 different keys
- AES (Advanced Encryption Standard)
 - symmetric—key NIST standard, replaced DES (Nov 2001)
 - processes data in 128 bit blocks
 - 128, 192, or 256 bit keys
 - brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES

Required time for brute force attack

축처 -

https://www.google.co.kr/url?sa=i&source=images&cd=&cad=rja&uact= 8&ved=2ahUKEwiR-_7j3-

HcAhUHZt4KHSnKCy0QjRx6BAgBEAQ&url=http%3A%2F%2Fpaper.ijcsns.org%2F07_book%2F201001%2F20100139.pdf&psig=AOvVaw0H_dHHm9kZJIZvJJ6t-NbH&ust=1533965084737293

- Challenge of symmetric key cryptography
 - "How to agree on key in first place?" (particularly, if never meet each other?)
- Asymmetric key cryptography
 - sender, receiver do not share a secret key
 - public encryption key known to all
 - private decryption key known only to receiver

- Public key encryption requirements
 - need $K_B^+(.)$ and $K_B^-(.)$ such that

$$K_B^-(K_B^+(m))=m$$

- given public key K_B^+ , it should be impossible to compute private key K_B^-
- RSA (Rivest, Shamir, Adleman) algorithm

출처 -

Creating public/private key pair

- 1. Choose two large prime numbers *p*, *q*. (e.g., 1024 bits each)
- 2. Compute p = pq, z = (p-1)(q-1)
- 3. Choose e (with $e \langle n \rangle$) that has no common factors with $z \langle e, z \rangle$ are "relatively prime")
- 4. Choose d such that ed-1 is exactly divisible by z (i.e, $ed \mod z = 1$)
- 5. Public key (n,e) and private key (n,d)

Encryption and decryption

- Message bit pattern represented by an integer number
- Given (n,e) and (n,d),
 - to encrypt message $m(\langle n \rangle)$

$$c = m^e \mod n$$

■ to decrypt received bit pattern c

$$m = c^d \mod n$$

Magic happens!

$$m = (m^e \mod n)^d \mod n$$

How secure is RSA?

- Suppose you know Bob's public key (n,e). How hard is it to determine d?
- Essentially need to find factors of n without knowing the two factors p, q
 - factoring a big number is very hard, since there is no easy factoring method yet

RSA in practice: used for exchanging session keys

- Exponentiation in RSA is computationally intensive
 - DES is at least 100 times faster than RSA
- RSA is used to establish a secure connection on which a session key is exchanged
 - the session key is a symmetric key to encode data using DES or AES

03. Message Integrity

- Two things for guaranteeing message integrity (or message authentication)
 - the message indeed originated from Alice
 - the message was not tampered with on its way to Bob

Two methods

- use of shared secret key: MAC (message authentication code)
- use of public key mechanism: digital signature

- Computationally expensive to encrypt long messages
- Goal of "message integrity": not to scramble message contents but rather to guarantee message not to be changed during transmission
- Message digest: fixed—length, easy to—compute digital "fingerprint"
 - apply hash function H to m, get fixed size message digest, H(m)

Requirements for hash function

- many—to—one mapping
- fixed—size message digest (fingerprint)
- given message digest x, computationally infeasible to find m such that x = H(m)
- e.g., MD5 (128-bit), SHA-1 (160-bit)

Ver. 1

- 1) sender calculates the hash H(m) based on message m
- 2) sender creates an extended message (m, H(m)) and sends it
- 3) receiver calculates H(m) using m, then checks if it equals the hash received
- Trudy can create a bogus message m', calculate H(m'), and send (m', H(m'))

- Ver. 2: using shared key s called authentication key
 - 1) sender creates m + s with a secret shared key s and calculates H(m + s), which is called message authentication code (MAC)
 - 2) sender creates an extended message (m, H(m + s)) and sends it
 - 3) receiver (already knows s) calculates H(m+s) using m and s, then checks ifit equals the hash received

- Requirements of digital signature
 - given that sender (Bob) digitally signs document to mean he approves it, and sends it
 - recipient (Alice) can prove to someone, in a way that is verifiable and non-forgeable, that no one else (including Alice) but Bob must have signed document

Property of RSA

$$K_B^-(K_B^+(m)) = m = K_B^+(K_B^-(m))$$
use public key first,
followed by private key
use private key followed by public key

result is the same!

Bob sends digitally signed message with his private key:

 Alice verifies signature and integrity of signed message with Bob's public key:

04. End-Point Authentication

- End—point authentication: the process of one entity proving its identity to another entity over a computer network, e.g., a user proving its identity to an e-mail server
- Simple try: Alice says "I am Alice" and sends her secret password to "prove" it

- Playback attack: Trudy records Alice's packet and later plays it back to Bob
- Although the password is encrypted, the playback attack still works!

- Nonce: number (R) used only once—in—a—lifetime
- Authentication using nonce and secret key
 - to prove Alice "live", Bob sends Alice nonce, R, then
 - Alice returns R, encrypted with shared secret key

- The previous method requires shared symmetric key
- Authentication using public key techniques:

 Man-(or Woman)-in-the-middle-attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

- Certification Authority (CA): binds public key to particular entity, E.
- E (person, router) registers its public key with CA
 - E provides "proof of identity" to CA
 - CA creates certificate binding E to its public key
 - certificate containing E's public key digitally signed by CA, saying "this is E's public key"

- When Alice wants Bob's public key:
 - gets Bob's certificate (Bob or elsewhere)
 - apply CA's public key to Bob's certificate, get Bob's public key

05. Securing E-mail

Assuming Alice wants to send confidential e-mail, m, to Bob

Alice:

- lacktriangle generates random symmetric private key, K_S
- \blacksquare encrypts message with K_S (for efficiency)
- also encrypts K_S with Bob's public key K_B^+
- sends both K_S (m) and $K_B^+(K_S)$ to Bob

Assuming Alice wants to send confidential e-mail, m, to Bob

- uses his private key K_B^- to decrypt and recover K_S
 - uses K_S to decrypt K_S (m) to recover m

06. IPsec and VPNs

- IPsec: IP security protocol
 - secures IP datagrams between any two network-layer entities, including host and routers
 - is used to create Virtual Private Networks (VPNs) that run over the public Internet

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjWjeT3qlXdAhWEZt4KHdkMCj8QjRx6BAgBEAU&url=https%3A%2F%2Fcampus.barracuda.com%2Fproduct%2Fcloudgenfirewall%2Fdoc%2F53248601%2Fhow—to—configure—bgp—routing—over—a—ikev1—ipsec—vpn—tunnel%2F&psig=AOvVaw0bx81PDLRmKyTnZlGA28Mg&ust=1535186165878916

- With network—layer confidentiality, the sending entity encrypts the payloads of all the datagrams it sends to the receiving entity
 - "blanket coverage": all data sent from one entity to the other would be hidden from any third party that might be sniffing the network

- Private networks for security are very costly
- VPN: institution's inter-office traffic is sent over public
 Internet instead
 - encrypted before entering public Internet
 - logically separate from other traffic

Protocols and Packets

Two IPsec protocols

- Authentication Header (AH) protocol
 - source authentication & data integrity but not confidentiality
- Encapsulation Security Protocol (ESP)
 - source authentication, data integrity, and confidentiality
 - more widely used than AH
- Two packet forms
 - transport mode (host mode)
 - protects upper level protocols
 - tunnel mode
 - more appropriate for VPNs

출처 -

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiLt_PcklrdAhVGQd4KHai0ChUQjRx6BAgBEAU&url=http%3A%2F%2Fwww.ciscopress.com%2Farticles%2Farticle.asp%3Fp%3D25477&psig=AOvVaw10oO8plNA0ADf_RUfNNHeq&ust=1535352703547512

- Before sending data, "security association (SA)" established from sending to receiving entity
 - network—layer logical connection
 - SAs are simplex for only one direction, thus two SAs are needed for a pair of entities
- Sending and receiving entitles maintain state information about SA
 - 32-bit SA identifier: Security Parameter Index (SPI)
 - origin SA interface (200.168.1.100) and destination SA interface (193.68.2.23)
 - type of encryption used (e.g., 3DES) and encryption key
 - type of integrity check used (e.g., HMAC with MD5) and authentication key

- Endpoint holds SA state in security association database (SAD), where it can locate them during processing
- When sending IPsec datagram, R1 accesses SAD to determine how to process datagram
- When IPsec datagram arrives to R2, R2 examines SPI in IPsec datagram, indexes SAD with SPI, and processes datagram accordingly

- SPI: so receiving entity knows what to do
- Sequence number: to thwart replay attacks

Through IKE protocol

- the two entities exchange certificates,
- negotiate authentication and encryption algorithms, and
- securely exchange key material for creating session keys in the IPsec SAs

IKE has two phases:

- phase 1: establish bi-directional IKE SA
 - Diffie—Hellman algorithm (see Homework Problem P9): a kind of public—key algorithm
- phase 2: securely negotiate the IPsec encryption and authentication for a pair of SAs

07. Wi-Fi Security

- For confidentiality, RC4 produces a stream of key values $(k_1^{IV}, k_2^{IV}, \cdots)$ using a 64-bit key and encrypts data and 4-byte CRC by XOR operation: $c_i = d_i \oplus k_i^{IV}$
- The 64—bit key is composed of 40—bit shared secret and 24—bit initialization vector (IV) which sender creates

 - sent in plaintext \Rightarrow the same key stream can be generated by receiver $\vec{a}_i = c_i \oplus k_i^{IV}$

Short and static key

- actual keyspace is 40 bits
- keys manually shared between AP and hosts

■ IV is 24—bit long

- only 2^{24} unique keys \Rightarrow same IV value with more than 99% chance after 12,000 frames
 - only a few seconds with 1 Kbyte frame sizes and 11 Mbps data transmission rate
- Note that IV is sent in plaintext, thus sending a request to transmit a file with known content d_1 , d_2 , d_3 ,..., an attacker can get to know the key stream k_i^{IV} s for a specific IV by XOR-ing of original data and encrypted data

$$d_i \oplus c_i = k_i^{IV}$$

pairs of an IV and the corresponding key stream can be stored into a table

- Developed as an intermediate measure until the availability of the full IEEE 802.11i standard (2004)
- PSK (Pre-Shared Key)
- TKIP (Temporal Key Integrity Protocol):
 dynamically generates a new 128-bit key
 for each packet
- MIC (Message Integrity Check)
- Encryption algorithm
 - WPA: RC4
 - WPA2: AES

Features

- extensible set of authentication mechanisms
- a key distribution mechanism (not a PSK method)
- Authentication server separated from access point

- EAP: end-end client (mobile) to authentication server protocol
- EAP sent over separate "links"
 - mobile—to—AP (EAP over LAN)
 - AP to authentication server (RADIUS over UDP)

08. Firewall and IDS/IPS

Firewall

- a device or application that enforces policy based on packet header information such as protocol type, src IP, dest IP, src port, and/or dest port number
- IDS (Intrusion Detection System) / IPS (Intrusion Protection System)
 - a device or application that analyzes whole packets, both header and payload, looking for suspicious events; if an event detected,
 - IDS: a log message is generated
 - IPS: the packet is rejected

축처 🗕

https://www.google.co,kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjj 6MfUzo7dAhVMA4gKHQflA-sQjRx6BAgBEAU&url=https%3A%2F%2Fipwithease.com%2Ffirewall-vs-ips-vs-ids%2F&psig=AOvVaw1mRPf-1qOscthEU7tspSvc&ust=1535506626466447

Goal

 isolates organization's internal net from larger Internet, allowing some packets to pass, blocking others

- Three categories
 - stateless packet filters
 - stateful packet filters
 - application gateways

- Internal network connected to Internet via router firewall
- Router filters packet—by—packet, decision to forward/drop packet based on:
 - source IP address, destination IP address
 - TCP/UDP source and destination port numbers
 - ICMP message type
 - TCP SYN and ACK bits

Access control lists for a router interface

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222,22/16	TCP > 1023		80	any
allow	outside of 222,22/16	222,22/16	TCP	80	> 1023	ACK
allow	222.22/16	outside of 222,22/16	UDP	> 1023	53	
allow	outside of 222,22/16	222,22/16	UDP	53	> 1023	
deny	all	all	all	all	all	all

- Example of the security hole of stateless packet filter
 - may admit packets that "make no sense," e.g., dest port = 80, ACK bit set, even though no TCP connection established:

action	source address	dest address	protocol	source port	dest port	flag bit
allow	outside of 222,22/16	222,22/16	TCP	80	> 1023	ACK

- Stateful packet filter: track status of every TCP connection
 - track connection setup (SYN), teardown (FIN): determine whether incoming, outgoing packets "makes sense"
 - timeout inactive connections at firewall: no longer admit packets

Connection table

source address	dest address	source port	dest port	
222,22,1,7	37.96.87.123	12699	80	
222,22,93,2	199.1.205.23	37654	80	
222.22.65.143	203.77.240.43	48712	80	

ACL augmented to indicate need to check connection state table before admitting packet

action	source address	dest address	proto	source port	dest port	flag bit	check conxion
allow	222,22/16	outside of 222,22/16	TCP	> 1023	80	any	
allow	outside of 222,22/16	222.22/16	TCP	80	〉 1023	ACK	X

Application gateway

- an application—specific server through which all application data must pass
- filters packets on application data as well as on IP/TCP/UDP fields

- Example: allow selected internal users to telnet outside
- 1) Router is set up to filter blocks all Telnet connections not originating from gateway
- 2) All Telnet users must telnet through gateway
- 3) For only authorized users, gateway sets up telnet connection to destination host. Gateway relays data between the two connections

- Firewall packet filtering
 - operates on TCP/IP headers only
 - cannot handle IP spoofing
 (cannot know if data "really" comes from claimed source or not)
 - no correlation check among sessions

IDS/IPS

- deep packet inspection: look at packet contents (e.g., check character strings in packet against database of known virus, attack strings)
- examine correlation among multiple packets

- Multiple IDSs
 - distribution of a significant amount of processing
 - different types of checking at different locations

Signature—based system

- maintains an extensive database of attack signatures
- signature is a set of rules pertaining to an intrusion activity
 - may simply be a list of characteristics about a single packet or may relate to a series of packets
- sniffs every packet passing by it, comparing each sniffed packet with the signatures in its database
- requires previous knowledge of the attack to generate an accurate signature \Box completely blind to new attacks

Anomaly—based system

- creates a traffic profile as it observes in normal operation
- looks for packet streams that are statistically unusual, e.g., an inordinate percentage of ICMP packets
- extremely challenging to distinguish between normal traffic and statistically unusual traffic

https://www.google.co,kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja& uact=8&ved=2ahUKEwjf2qHvi4_dAhUFdt4KHdueBwcQjRx6BAgBEAU&url=https%3A% 2F%2Fwww.researchgate.net%2Ffigure%2FSIGNATURE-AND-ANOMALY-BASED-

5_fig1_297171228&psig=AOvVaw0WE_4u6k4flv3TmN619byL&ust=153552313992925

Summary

01

Network Security

- security properties: confidentiality, integrity, authentication
- examples of network security attacks

02

Cryptography Principles

- types of cryptosystem: symmetric vs. asymmetric cryptography
- DES vs. RSA

03

Message Integrity

- shared secret key method: MAC (message authentication code)
- public key mechanism: digital signature

04

End-Point Authentication

- nonce with secret key
- nonce with public key + certificate authority

05

Securing E-mail

- encrypt messages with a symmetric key the sender generates
- encrypt the symmetric key with receiver's public key

06

IPsec and VPNs

- IPsec: IP security protocol
- VPNs using security association (SA) between routers

07

Wi-Fi Security

- operation and weakness of Wired Equivalent Privacy (WEP)
- IEEE 802.11i

80

Firewall and IDS/IPS

- firewall: stateless/stateful packet filter, application gateway
- IDS/IPS: signature—based system, anomaly—based system