Wink Topology.

(1) GANSEST Topology:

Firstly, we will find the consesse topo Z on X. associated with $(Y_i, Y_i)_{i \in I}$. Where $X \xrightarrow{Y_i} Y_i$. S^{\pm} . Y_i^{\dagger} is lasti. $Y_i \in I$.

It's easy to see: (I.X) is generated by:

I Yi'(w) | W = Yi. for it Is. Denote (UX) XED.

Secondly, wasider Ofinite. Variety operates or $(U_{\lambda})_{\lambda \in \Delta}$. $T_1 = \int_{\lambda \in I} U_{\lambda} \mid I \subseteq \Delta, |I| \text{ is finite}.$

Z= { V Wa | Wa E Zi]. Claim: (ZiX) is a top.

Lemma Z is closed under Ofinise speration.

femore: feverse the order of operation Ofinite
Unshitting. I may not be closed.

prop. (Xn) in cz.x). Xn -> X () (icxn) -> (icx). Vitz.

Pf. (=) By wonti of li'

(=) Hux of x. has the form: Nx = n'y''(wi)

INI St. NxNi, Yexa) EWI. LU N= MAX Ni
1515N

Prop. Z top space. Z = X. Then Y is conti E) Z 4:04 Y; conti. VIEI.

Pf: (=) YW = X. W= Varbiumy Ofinise Vicwi)

: y'(w) = Un (yioy)'(wi) open

(2) Wenk Topo OLE, Ex):

For Branch space E. ftE^* . Punte $Y: E \to ik$. $\chi \mapsto < f_{ix}$.

Define $\sigma(E, E^*)$ is the coarsest topo on E.

Associated with UY: V' ftE^* .

prop. olE. E*) is Mansdorff

Pf. Apply Make-Branch Thm on IX.3. [x-].

prop. For $\chi_0 \in E$, $V_k^{\ell}(x_0) = \{\chi_0 \in E \mid 1 < f_1, \chi_0 > 1 < \xi_0, \forall 1 \le i \le k\}$ is basis of neighbour of χ_0 in $\sigma(E, E^{\star})$ Pf: Check for $\forall W = \bigcap_{\text{finite}} Y_i^{\ell}(w_i)$

femok: It forms - Govex basis.

O Gavergena of set:

7hm. (Xn) Isz = E

- 1) Xn -x = <f. xn> <f.x>. If Et. CReplan with:
- ii) $\chi_n \to \chi \implies \chi_n \longrightarrow \chi$ III/IIISCEN. Vn.

 VfeD = E*V)
- iii) Xn -x => | IXn || < C < co. fn. lim || Xn || > ||
- iv) $\forall n \rightarrow x$. $f_n \rightarrow f$. $\Rightarrow \langle f_n, x_n \rangle \rightarrow \langle f, x_n \rangle$.
- Pf. i) By Refinition. Note 1<f.xn>1=1<1.xn>1+112-f1111xn11
- i) 1< f. xn-x>1 = 11f1111xn-x11.
- iii) For & fixed f. <fi, xn> -> <fi, x>.

 : <f, xn> is bounded. Yn. By UMP V.

Besilves. $|< f, \times n>| \leq ||f|| || \times n|| ||. ||$ Take $|\underline{lim}|$ $||< \frac{f}{||f||} ||. \times || \leq |\underline{lim}| || \times n|| ||.$

iv) 1< fn, xn> - < f, x> 1 = 1< fn-f, xn>1+1< f. X-Xn>1.

O Firite Limersion:

7/m. lim E < 00. 1/2 GCE, E*) tivis = E. n.v.s.

moreover $\chi_n \rightarrow \chi \Leftrightarrow \chi_n \rightarrow \chi$.

Pf: Check strongly open set is weakly open.

Find V= [Pich= s. n.+ s.) = Boxo, r) = U. cstrongly open)

Let $n_i = \langle P_i, X_0 \rangle$. Suppose $(e_i)_i^k$. $(Y_i)_i^k$ besis of $E.E^k$. Then $\forall X \in E$. $X = \sum_{i=1}^k \langle Y_i, X_i \rangle e_i$. By equivalence of norm.

: 11x-x011 = 0 = 1 < 81. X-x0>1 = kcs. chow s = 1

prop. In infinite-timersional vector space E OCE, EX) & E. M.v.s.

Pf: S= I 11×11=13 isn't closed in GiE.E*). Actually 5 oct. Et) = BE (0.1). (closure in E)

- 1°) BE(011) is close in O(E, Et) Jinu BE (111) = (TXEE | | < f.x > 1 = 1 }.
- 2') [||x||-1] = BE(1) = 5 0(E.E*) i.e. + xo. 11x11-1. + Vkcx0 of xo. Vxcx0 15 = a. ヨカ。モモ·カキロ、St. くfi.カンコの、サノをiをk. Otherwise. E - R. Y= (<fi, x>) seisk surjection Since Kerl= 60). .: E = 12 k. boxtradius with limE= ... By bonti. find to EIX. 12. 11x0+togoll=1. Since Xo+thot Vx (xo) NS. We'll home.

Cor. E is Branch space . Spanlfish & E. Than I Xo E . 52. < fi. Xo> = 0. 4 1sisk. Xo + 0.

Penne: i) The infinite dimensional space equipped with weak topo can rever be metritable.

equivalence of sien

ii) In infinite Rimension, there also exists $\chi_n \to \chi \not \Rightarrow \chi_n \to \chi$. Note that two precie spaces (X. 1.) (Y, dz) With some Convergent Icqueuus has same topologies.

Pf: let (Xn) =: Xn = X. &n. X6X. : X = Y.

Denote: Bic X, \(\frac{1}{n} \) = Iq | Aic Xique <\(\frac{1}{n} \) i = 1.2.

If \(\frac{1}{n} \) \(\text{X} \) \(\text{X} \) \(\text{N} \

 $\frac{ff:}{\chi} (X, ||\cdot||_{L}) \xrightarrow{T} (X, ||\cdot||_{L}) \xrightarrow{T} T^{1} \text{ are some } i$

B) Convex sets and linear operators:

7/m. CEE, convex sot then C is weakly closed.

Pf. (=) Prove: C' is workly open.

YX0 E C'. Apply Mahn-Branch on IX.). C.

Obtain a reighbor V = If<1] of Xo.

CAT. If Cis about. Then $C = \bigcap_{i \in I} M_i$ the intersection of all closen half planes $\supseteq C$ Pf: $C \subseteq M_i :: C \subseteq DM_i$.

If $\exists X_0 \in DM_i :: X_0 \notin C$. Apply Maha-Banach Again.

 $\begin{array}{c} (Or\ (pnzpri)) \\ (\chi_n) \longrightarrow \chi \implies \exists\ (p_n) \in anv(\tilde{\mathcal{G}}_{IXp3})\ (finite\ sum) \\ 5t.\ p_n \longrightarrow \chi. \\ Pf:\ \chi \in anv(\tilde{\mathcal{G}}_{IXp3}) \xrightarrow{G(E_iE^n)} = anv(\tilde{\mathcal{G}}_{IXp3}) \end{array}$

For the latter, since Internal Conviluations

Fundle: Variant Form:

I am (Variant Form

Gr. Y: E -> l-oo. +on] Gavex, 1.5.c in strong topo.

Then Y is 1.5.c in GCE. E#)

If: EY=XI is convex, closed in strong topo.

Pent: Y convex. conti in strong topo => y 1.5.1 in 612.2t).

Note that U.S.C WON't shall it. Since [4:2]

hay not be convex.

Thm. E.f Branch space. T: $E \rightarrow F$, Ilman. Then.

T is conti in strong topo \iff T: $\sigma(E,E^*) \rightarrow \sigma(F,F^*)$ conti.

Pf: (\Rightarrow) $\forall f \in F^*$. $\forall f \in F^*$. $\forall f \in F^*$. $\forall f \in F^*$.

(E). GCT) is wroking closed in GCE. E*) X GCF. F*)

So Strongly close. by closed graph Thm. V.

Pennok: Denote S= Strong topo. W= want topo.

The Continuity equals:

S -> S. W -> W. S -> W (Git) closed in W)

But few LF Conti or W -> S.

(3) Wink Topo OLE*, E):

. We're going to the third tyo: $\sigma(E^*, E)$ Def: For every $x \notin E$. $Y_x : E^* \to i K$. $Y_x \in f_i = \langle f_i x \rangle$. $\sigma(E^*, E)$ is the compast topo or E^* associated with C^*R . $Y_x) \times c \in E$.

Pennol: i) Note that $E \subseteq E^{**}$. Then $G(E^{*}, E)$ is conserr than $G(E^{*}, E^{**})$.

ii) The motivation on week topo is:

Coarser topo => more upt sets. Which

plays important role in existence mechanism.

O Prop: i) OLE*, E) is Marshorff

ii) fot Ex. V's cfor = I f | | < f - fo, xxx < E. 18 isk)

forms its basis neighbourhood. Cit's convex)

 $\underbrace{Pf\cdot i)}_{f, +f_{i}} \in E^{*} \Rightarrow \exists X_{0}, \quad \langle f_{i}, X_{0} \rangle + \langle f_{i}, X_{0} \rangle}_{\sim} \times \underbrace{f_{i}, X_{0}$

@ Character of set.

prop. (fr) = E*. Then

i) for # f () < for, x> -> < for, x> + (for, x>) < for, x> + (for, x) + (for

ii) for for for to state.

ii) for # f => II foll & C < a. Vn. II fill & lim II foll.

iv) $f_n \stackrel{\star}{\longrightarrow} f_n \chi_n \to \chi \Rightarrow \langle f_n, \chi_n \rangle \to \langle f_n, \chi_n \rangle \to \langle f_n, \chi_n \rangle$

Funde: When lim E = ~ Then E = ~ (E. E*)
= $\sigma(E^*, E) (= \sigma(E^*, E^{**}))$

@ Conti LF in OLETE):

Prop. Y: E* -> IK. linear. conti on ole*, E). Thun
there exists some Xo EE. St. Pcf) = < f, Xo>, YfEE*.

Lemma. $X \neq_{i,v,s}$, $\forall_{i} \neq_{i} \neq_{i} \forall_{i} \neq_{i} \forall_{i} \forall_{i}$

 \Rightarrow Return to the Pf: By conti. $f \in V_{\delta}^{n}(0) \Rightarrow 14(f) | < \xi$.

In particularly, < f. Xx>=0. V/Eken => pcf1=0. Apply Lemma.

First: It Characterizes the conti linear functions in $64E^*$. E) $\rightarrow 1R'$.

Cor. M is hyperplane in E' closen in ouE*. E).

Then = Xo + o & E. & & IR. M = If & E* | < f, Xo > = a?.

Pf: H= If E E* | Y of) = +3. Y is merely linear.

Consider for EN°. Find convex neighbour of for VEM° Convex set V will be separated by E8=47.

Whoh. Support 4cfiet. 4fev.

Prove: Y is conti at 0. => Apply Lemma.

Remark: Convex set: (x) = (

Prop. For $T \in L(E,F)$. $T^* \in L(F^*, E^*)$. Then T^* is contiletween $C(F^*,F)$ and $C(E^*,E)$ $Pf: \langle T^*f, X \rangle = \langle f, T_X \rangle = \langle J(T_X), f \rangle$ $\therefore Y_X \circ T^* = Y_{T(X)} \cdot Conti$

Cor. Continuity equals: $W_{\#} \rightarrow W_{\#}$. $S \rightarrow S$. $S \rightarrow W_{\#} (W_{\#} is W_{\#})$

@ CI+ BNH in G(E*, E):

1km.

BE* = IfEE* | 11f11=13 is opt in GLE*.E)

Pf: $Y = IR^{E}$. I.e. map = $E \longrightarrow IR$, equipped with product to po.

Then $(E^{*}, \sigma(E^{*}, E)) \subseteq Y$.

1°) For $\phi: E^* \longrightarrow Y$. $\phi(f) = (Wx)_{x \in E}$. $Wx = \langle f, x \rangle$.

Prove $\phi: \phi^{1}$ is conti. $\varphi(f) = \langle f, x \rangle$ conti. inverse is some)

Chark by $\{Zx\}_{x \in E}$. $(\phi(f))_{x} = \langle f, x \rangle$ conti. inverse is some)

2') Characterize $\phi(g)_{E^{1}} = \langle f, x \rangle$ prove: $\langle f, x \rangle$ conti.

(4) Reflexive Space:

Pef: E is Banach space. $J: E \to E^{**}$, caronical injection. E is said to be reflexive. If $J(E) = E^{**}$.

I. L. J is also surjective.

Pemmik: i) E is finite finension $\Rightarrow E$ is reflexive.

ii) It's essential to use J. Since there

exists $E \xrightarrow{\varphi} E^{**}$ surjective isometry. But E

is not reflexive.

Lymma. X - Y. & is surjustive isometry. If Y is reflexive. Then X is reflexive.

() Prove: Y is surjective isometry > so hoes y

19)
$$Y^*$$
 is isometry:
 $11 Y^*(l_1-l_2)11 = \sup_{X \in X} 1 < Y^*(l_1-l_2), X > 1$
 $x \in X$
 $||X||=1$
 $= \sup_{Y \in X \in Y} 1 < A_1 - A_2, Y(X) > 1 = ||A_1 - A_2||.$

2) y* is srrjutive: ∀ f ∈ X*. lut 1 = fog! :: gil) = f.1€7*.

O Crituria:

7hm. (Knkutani) E is Branch space. Then E is reflexive

11: (=) J(BZ) = BZ* by reflexive. Opt in GLE** E*) : Jebes upt in oct, Ft). cherk J'is wat i. 11/2 1100 L - 1 12 11

(=) Introduce two lemmas following: Lemma (Melly) Ifis, k = Ex. This = 1k'. The following properties are equivalent:

i) 45>0. 7 XEE E. St. 11XE1151. 1 = fixx= - YI 1 = 1. Hi=1...K.

ii) 1= \$ix: 1 = 11 = \$ifin. \ I = is. \ = ik'.

Pf: i) → ii) is trivial. Consider ii) → i).

Y: E → 1/2 * Y(X) = (<fi, X>) |sisk.

i) (=) Y=(Yi) & Y(BE), By contrapiction:

Apply Mahn-Banash 7hm. (Noto: 18 = (18 k)*)

Lemma. Choldstime)

i) J(BE) is Hose in BEtt. W.r.t. F(Ett, Et)

ii) JUES is funce in Exx wirit & LExx, Ex)

Pf: For SEBETT. With neighborn $V_k^*(S)$.

Prove $\exists x \in BE$. $J(x) \in V_k^*(S)$.

It's from the Lemma, ii) is from i)

From to July is closed in BEXX equipper with

Strong topo. (By J is conti. isomery)

: July won't kense unless E is reflective.

=> feturn to the pf:

J is whi. BE is upt in oct. Et) => JIBE) is upt in oct. Et).

By Manshift. JIBE) is close in oct. Et). : J(BE) = PEt.

: JUE) = Exx (Since YROO, JUBE(R)) = BEXX (R))

1/m, i) & W = X*. Ls. limw < 00 => W is closed in o(x*.x).

ii) X is reflexive \$\implies W \subsetex X*. Strongly close is \subsetex (x)-close

& Segnemeint apt:

Thm. E is Bannoh space. Then E is reflective

Every bounded set (Xn) admits a weakly

Convergent subset in GCE. E*)

Pf: (=) m = CLS(IXn3), which is reflexive and separable

M* is separable as well.

Bm is upt and metrizable in GCM. M*)

Bm is upt sequentially in GCE. E*)

siace GCM.m*) = GCE. E*) Im.

(=) It's complicated.

3 Properties:

i) prop. E is reflexive Bonnuh space. MEE closed
linear subspace. Then m is reflexive.

Pf: By Mahn-Bannah Thm. BLF on M can correspond to BLF on Ec By extend and restrict)

Note that $B_m = B_E \cap M$. Lpt in $G(E, E^*)$ $G(m, M^*)$ is topo subspace of $G(E, E^*)$. $G(m, M^*) = g(E, E^*)|_{m}$: B_m lpt in $G(m, m^*)$

Pemmik: Cpt in subspace top. (a) cpt in initial topo.

Pf. (a) & [Ni]it] Covers k in M.

Then I winm]its open m. Covers k.

I I N: nm]; = [ui], avers k.

((a)] I N k], covers k, so [N k nm], avers k.

Gr. E is Branch space. E is reflexive \iff E^* is reflexive.

Pf: \implies Check $\forall \forall e \in E^{***}$ $\exists f \in E^*$. It. $\forall \forall g \in E^*$ $\forall g \in E^{***}$. It. $\forall g \in E^*$ $\forall g \in E^{***}$. It. $\forall g \in E^*$ $\forall g \in E^{***}$. It. $\forall g \in E^*$ $\forall g \in E^*$ $\forall g \in E^*$. It. $\forall g \in E^*$ $\forall g \in E^*$ $\forall g \in E^*$. It.

 $\therefore \langle \gamma, J \rangle = \langle f, \chi \rangle. \quad \forall f(x) = \langle \gamma, J \rangle \in E^*.$

such fe E* exists.

(€) E* reflexive. Then so E**.

Since E=J(E). J(E) close subspace of E V.

Gr. E is reflexive Bonnoh. $k \in E$. bounder closed convex set. Then k is upt in $G(E, E^k)$.

Pf: $\exists m \in \mathbb{Z}^t$. $k \leq mBE$. k is also closed in $G(E, E^k)$.

61. E is reflexive Branch. A # R & E. cloud convex

Subset. Y: A -> (-10, +007. convex. 1.5.c. 5t.

Y # too. lim Y(x) = +00. Then Y achieve minimum on A.

NATA

NATA

NATA

Pf: A = IXEA | YIX) < YIA) } is bommen . closed. Convex.

A is upt in sce. Eto. so y attain min on A.

Hemmk: 6.7. Let Y= 11x-111.

ii) 7hm E. F are reflexive Banach space. A: P(A) = E -> F

lipear. Leasely Lefined. cloud. Then D(A*) is Lease.

in F*. Besiles. A** = A.

Pt: 1) DIAZ) is know:

E) Prove: Y & F**, rt. < y, f>=0. YftDiA*). Then Y=0.

By reflective, suppose Y & F. < f. Y>=0. YftDIA*)

By untimelication. (0, y) & GeA). Separate by Mahn-Banach

I (f. V) & E*x F*. < f. u> + < v. Au> < x < < v. y>. YutDeA*)

But let Y=W. < w. y>>0. Introduct!

2') A = A*x.:

ICh(A*) = G(A) . ICh(A**) = G(A*) .

Check I'=-ih. ICG(A)) = G(A*) . ICh(A) = I(G(A))

: Since G(A*) is symmetry . G(A**) = I'(G(A**)) = G(A)

(5) Separable Space:

Def: Metric space E is separable if $\exists D$ countable News.

Subset of E.

Remark: Finite Limensional spaces is separable: $D = \chi \sum_{i=1}^{n} t_{i} t_{i} + 1 + 1 = 0.$

O Proporties:

i) prop. Any subset of separable metric space E is separable

Pf: IUn3 = E. Countable Marse. If F = E

Choose a point Amin from Bran. Im). Im to

Then (Amin) M = G F.

Permark: D= [nn] N F may be mull set. The ideal
is from . If tef. Uf neighbour. 3 Brum. 1)

St. Uf N Blum. r) + & . since Uf ND + &.

ii) Thr. E is Bonach space. E* separable => E separable. Female: Converse is false: L'separable \$ L'separable. Pf: (fn) En Et. 3 Xn & E. 11 Xn 11=1: 1< f, Xn>1? 11 full Claim: Lo= CLS ([Xn]nez*) = E If In EE. Atlo. By Maha-Bonach 7hm. extent f(lo) = los. $f(q) = h(q, lo) \neq 0.$ from I lotan latiks 18 E. Whoh. but 11f11=1. If n+ (fn). 11fn-f11 = 2. :. 11 fall > 11 f11 - 11 f - fall > 1-2 = 22. Burt. 11fall = 2 < fa. Xn> = 2 < fa-f. Xn > = 2 11fa-f11 = 21. Which is a contradiction. .. Lo = E. Let D= I I AxXnx | rezt. Axe 6. (Xnx) = (Xn) from!

Cor. E is Brown space. Then, we obtain:

E reflexive and separable & E* Nows so.

O Related to Metizability:

For Barash space E. Then.

- i) E is separable (BEX is metrizable in GLZ*E)
 - ii) Et is separable (BT is metrizable in GCE, Et)

Pf: 1) (=)). Suppose $(X_n) = D$. Define a more $E \cdot J$ on E^* . $EfJ = \sum_{i=1}^{n} |\langle f, X_n \rangle| \cdot EfJ = ||f|| \cdot ||f||_{L^{2}(f, T)} = [f \cdot T].$

Prove: (BE*. L) = (BEx. &(Ex. E))

- (=) For V*cfo) only consider Milit. By Hence of (Xn)
 (=). Consider the finish som = 1 /2 1<f-forxable of [f-fo].
- (=) Un = Ift BEx | Refin) < \frac{1}{n} ? AVn = Wn. with film:

 Vn = Ift BEx | 1 < f. x>1 < En. x & dn). In is finite set of E.

 Claim: D = Qdn is News. (Check by BLF)
- ii) (=) Analogously, let IX] = I = 1 (fn:x>1. (fn) = D.
 - (E) Annlogously. $W_n = I \times EBE \mid A(X,0) < \vec{h} \}$. $\exists V_n \in W_n$. St. $V_n = S \times EE \mid I < f. \times > I < sn$. $f \in \phi_n \}$. $D = \widehat{U} \phi_n$. φ_n finite. Prove: $F = CLS(D) = E^*$. By untradiction:
 - 1) By Mahn-Bannoh. ASEE* f, E E*/F. 52.

 -4, f.>>1. SCF) = [0]. 11311=1. (11f111>1. afterward)
 - 2') Let W= IXOBE | 1<fo.x>1<\frac{1}{2}\}

 Since Va = Un. (Un) neighbour basis.

I Ano. St. Uno SW.

3°) We can find XI & BE. St. { 1 < f.x.> - < 5.f>1 < \frac{1}{2}

Since JeBE) is large in BE** SeBET.

: X, E Vn., But 1 = fo.x. > 1 > \frac{1}{2} Continuity!

Gor. E is separable Banach space. If cfo) is bornant seq. Then I (fox) \(\lefta (fox) \) weakly convergent in \(\text{GLE} \).

3 Characterization:

i) 7hm. Every separable Banach space E.
exists an isometry. Y. st. E - 1.

Pf' B_{E^*} is opt and matrizable in $G(E^*, E)$.

Then $\forall n \in \exists (t_k)_{k=1}^{m}$. $B_{E^*} = \bigcup_{k=1}^{m} (t_k^n, \frac{1}{n})$ $D = \bigcup_{n \geq 1} (t_k^n)_{n=1}^{m}$ is hence in B_{E^*} .

Denote $D = \bigcup_{n \geq 1} (t_k^n)_{n=1}^{m}$ is $A_{E^*} = (x_1, x_2, x_3, \dots, x_{n-1}, x_{n-1})$ Chark $|| \forall (x_1)||_{A_{E^*}} = \sup_{n \geq 1} |(x_1, x_2)| = ||x||$.

ii) 1hm dim E = 00. Burnsh span. If the of assumptions holds in the following:

(n) Et is separable

Then IIXall=1. Xn -0 in ore.Et)

Pf: (a) BE is metrizable in $G(E, E^*)$. By seq Lemma: Let S = IIIXII = IS. $S = G(E, Z^*) = BE$. O + BE.

(b) suppose thisiez is Basis of E.

Choose suppose thisiez. M= Cls (Impskez+)

i. M is reflexive separable, so Mt hous.

Then reduce to cas.

Remak: l.g. Milbert space M. Tendaczi is
its ofthinormal basis. en -0.

(6) Uniformly convex.

Ptf: Brown space E is smil to be uniformly convex if $\forall 8>0. \exists 2>0. 5t$. $x, y \in E. ||x|| \cdot ||y|| \leq ||x-y|| > \delta \Rightarrow ||\frac{x+y}{2}|| < |-\epsilon|.$

Permark: i) It's related with norm

ii) It's a geometric property

of unit ball.

7hm. Every uniformly convex Bonnach space E is reflexive.

Pf: 4 9 6 E*1. WLOG. LOT 11511=1.

Prove: SE JIBE) . SHITT, AX. St. 11 JIX)- SII = S. XEBE.

since JuBE) is closed in Ext strong topo.

If t E*, ||f||=1. <9. f>> ||5||- == |- = . (<9. f>= ||5||)

V= IntExx | 1 < n-s, f > 1 < \frac{6}{2} 3. Vaj(BE) + &.

since V is neighbour of S. JeBE) is hence in ocE. E*,

Claim: 3 X + Bz. Jixx + V. which is what we need.

(The ideal is find x & BE. St. JIX) is in norm 11.11.

first. Let <5,f> = 1511, then consider <n,f>= <5,f>)

By Contradiction: SE (JX+ EBE") = W. neighbor of 5.

.. VNW + & in GIE**, E*, By Kirk of JIBE): VNWNJIBES + X.

Find mother neBE. Jug) & VNWNJIBED.

Apply uniform convex on Xing. Come into constadiction.

prop. E is uniformly bodyex Brown space. Then $(Xn) \longrightarrow X$ in $\delta(E, E^{*})$. $\lim \|X_{n}\| \leq \|X\|$ $(Xn) \longrightarrow X$ in E strong.

by. Under the assumption: $\chi_n \longrightarrow X . \|\chi_n\| \to \|\chi\| \iff \chi_n \to X.$

Pf: WLOG. Let $x \neq 0$. Denote $\lambda_n = \max_{x \in \mathbb{N}} \mathcal{E}[|\mathcal{X}_{n}\eta_{x}||\mathcal{X}_{n}]$. $\eta_n = \frac{\chi_n}{\lambda n}$, $\eta = \frac{\chi}{||\chi_n||}$, $\lambda_n \to ||\chi_n||$. $\lim_{x \to \infty} \frac{\eta_n + \eta_n}{2} || \geq ||\eta_n|| \geq \frac{||\eta_n| + ||\eta_n||}{2} = \frac{||\eta_n + \eta_n||}{2}$. $\lim_{x \to \infty} \frac{\eta_n + \eta_n}{2} || \geq ||\eta_n|| \geq ||\eta_n + \eta_n||$ $\lim_{x \to \infty} \frac{\eta_n + \eta_n}{2} || \geq ||\eta_n|| \geq ||\eta_n + \eta_n||$ $\lim_{x \to \infty} \frac{\eta_n + \eta_n}{2} || \geq ||\eta_n|| \geq ||\eta_n + \eta_n||$ $\lim_{x \to \infty} \frac{\eta_n + \eta_n}{2} || \geq ||\eta_n|| \geq ||\eta_n + \eta_n||$ $\lim_{x \to \infty} \frac{\eta_n + \eta_n}{2} || \geq ||\eta_n|| \geq ||\eta_n + \eta_n||$ $\lim_{x \to \infty} \frac{\eta_n + \eta_n}{2} || \geq ||\eta_n|| \geq ||\eta_n + \eta_n||$ $\lim_{x \to \infty} \frac{\eta_n + \eta_n}{2} || \geq ||\eta_n|| \geq ||\eta_n + \eta_n||$

: $11n-\eta 11 \rightarrow 0$. i.e. $\chi_n \rightarrow \chi$.

(7) Application of went Topo:

 $X = C E - 1.17. \quad f \in X. \quad \|f\|_{X} = \sup_{X \in E \cap I} |f|_{X} |f|_{X} = \sup_{X \in E \cap I} |$

for 4 gens & X

JEF - TE/AN (CORNELL)

i) ∫₁ f₁ d₂ → 1
ii) ∀ g₁ t₁ t C c₁,17,0 t Suppg₁ t₂
then ∫₁ f₁ g₁ t → 0
iii) ∃ (, < 00, ∫₁ | f₁ | d₂ t = Co.

 $\frac{pf_{2}}{(3)} (3) f_{3}=1. ii) f_{3}=0. iii) M_{n} \stackrel{*}{=} \delta_{n} :. ||M_{n}|| \leq C_{0}.$ $(E) For <math>f \in X$. $\forall \xi > 0$. $\exists \delta < 0$. $\exists t . |X_{1} - X_{2}| < \delta \Rightarrow |f_{2}(x_{1}) - f_{2}(x_{2})| < \xi$.

Let $f \in \{0, x \in I - \delta_{1} \}_{I \in S_{1}}$ If $g \in S_{1}=n$. $g \in S_{1}=n$. $||A_{1}||_{1} ||A_{2}|| < \xi$. $\int f g \in S_{1}=n$. $g \in S_{1}=n$. $||A_{1}||_{1} ||A_{2}|| < \xi$.

Let $\tilde{g}_{5} = \begin{cases} 25 - A. & \times & \in [74. - 8] \\ 25 - A2. & \times & \in [8.1] \end{cases}$ $\tilde{g}_{5} \in C_{[74.1]} = X$

Consider $\widetilde{g}(x) \phi_n \triangleq k_n ct$. Suppose $supp \phi_n = E \cdot \delta_n \cdot \delta_n J$.

Let n is big brough. St. $\delta > \delta_n$. $k_n ct > \delta_n$. It is $\delta = \delta_n f$.

Busides, $\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}$

Apply ii) on Knot).

MASS - TEAS HAVE TO ME - I

Note that Kr ~ 9s ~ 92 ~ 1 in G(X*,X)

By approximation!