

Digital Signal Processing Systems Problems about Phase Locked Loops (PLLs)

I — Check only one answer. The penalty for a wrong answer is $\frac{1}{4}$ point. The minimum score in this group is zero.

1) An analog multiplier used as a phase detector:
\square can have positive or negative gain.
\square allows a phase excursion of 2π radians.
\square only works with square wave signals.
\square does not generate undesirable signal components at the output.
2) In an applica DII in which the least filter has a role at the origin the hold repose.
2) In an analog PLL in which the loop filter has a pole at the origin, the hold range:
□ is always limited by the VCO.
does not depend on the saturation limits of the VCO.
□ is not limited by the phase detector.
does not depend on the characteristics of the loop filter.
3) An analog PLL (with positive return gain):
\square has a lock range which may be higher than the hold range.
\square is always stable if its order is less or equal to 2.
\square is always unstable it its order is greater or equal to 3.
\Box has a lock range which is always less than the hold range.
1) A YOP phase detector
4) A XOR phase detector:
□ has a linear characteristic when operation is with sinewaves.
\Box allow operation with a $3\pi/2$ rad phase excursion.
an not operate with rectangular waves.
does not generate undesirable signal components at the output.
5) An analog phase locked loop (PLL) in which the loop filter has a pole at a finite frequency:
\square responds with a nonzero but finite phase error to a phase step.
\square responds with a finite nonzero phase error to a frequency step.
\square responds with a finite nonzero phase error to a frequency ramp.
\square responds with an infinite phase error to a phase ramp.
6) An analog PLL with return gain $\lambda > 0$:
\square is stable only if it is of first order.
\square is stable regardless of the order.
\Box if it is of third order it cannot be made stable.
\square can be designed to be stable no matter the order.
7) A type D flip-flop phase detector:
7) A type D flip-flop phase detector: ☐ has a linear, periodic, phase characteristic.
, , , , , , , , , , , , , , , , , , , ,
\square has a linear, periodic, phase characteristic.

II — Consider an analog PLL in which the phase detector characteristic is shown in the box at right. The loop has a lowpass filter with -6V and +8V saturation voltages, DC gain F(0) and a pole at f_p . The voltage-controlled oscillator (VCO) generates a wave with the characteristics in the box at right.

- a) Determine the maximum filter gain F(0) such that 1) the loop is stable and 2) the hold range is as large as possible.
- $\omega_o = \begin{cases} \omega_{o1} = 10\pi \times 10^6 \text{ rad/s}, & v_E \leq -8V \\ \omega_{ol} + k_o v_E & -8V \leq v_E \leq 8V \\ \omega_{o2} = 2\pi \times 10^6 \text{ rad/s}, & v_E \geq 8V \end{cases}$
- b) Determine the static characteristics of all PLL $\omega_{o2} = 2\pi \times 10^{\circ} \text{ rad/s}, \quad v_E \geq 80$ components and sketch them interconnected. Determine k_o , ω_{ol} and the phase detector gain k_D . If you did not answer a) consider F(0) = 2 from now on.
- c) Determine the PLL hold range $\Delta\omega_L$ stating which components are responsible for its limitation. Determine the filter pole frequency f_p such that the lock range is approximately $\Delta\omega_C\approx 0.8\Delta\omega_L$. Justify.
- d) Determine the input frequency for which the phase shift between the input and VCO signals is $\Delta \phi = 3\pi/2$.
- e) Explain how could the PLL be modified such that the phase shift between the input and VCO signals is always $\Delta \phi = 3\pi/2$, independently of the input frequency. With this modification would the hold range be different? If yes recompute it.
- f) Determine the detection characteristic of a logic AND gate when operation is with rectangular waves both with duty-cycle $\delta = 0.25$ and amplitude levels 0V e 1V. Comment on its usefulness and shortcomings as a phase detector.

$$\Delta\omega_{C} = \sqrt{2\omega_{p}^{\ 2} \left(\sqrt{1 + \left(\frac{\Delta\omega_{L}}{\omega_{p}}\right)^{2}} - 1\right)} \quad \overset{\Delta\omega_{L}\gg\omega_{p}}{\approx} \sqrt{2\omega_{p}\cdot\Delta\omega_{L}}$$

Grades: I - 7 II - a) 2 b) 3 c) 3 d) 1 e) 2 f) 2