A Strongly Polynomial Algorithm for the Minimum Cost Generalized Flow Problem

Zhuan Khye (Cedric) Koh

Joint work with

Daniel Dadush, Bento Natura, Neil Olver, László A. Végh

Talk Overview

Strongly Polynomial Landscape of Linear Programming

2 LPs with \leq 2 variables per Inequality

Minimum Cost Generalized Flow

A Strongly Polynomial Interior Point Method

Some Proof Ideas

Linear Program (LP)

Primal:

$$\min \ c^{\top} x$$
s. t. $Ax = b$

$$x \ge \mathbf{0}$$

Dual:

$$\max b^{\top} y$$

s.t. $A^{\top} y \le c$

• Introduced by [Kantorovich '39] [Hitchcock '41] [Koopmans '42] [Dantzig '47].

LP Algorithms

Input: $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n$, $c \in \mathbb{R}^m$. Total bit length L.

Def: A polynomial algorithm runs in poly(m, n, L) time.

- Polynomial algorithms for LP:
 - ► Ellipsoid method [Khachiyan '79]
 - Interior point method [Karmarkar '84] [Renegar '88]

- Simplex method [Dantzig '47]
 - ▶ Not known to be polynomial, but efficient in practice.

Strongly Polynomial

Input: $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n$, $c \in \mathbb{R}^m$. Total bit length L.

Def: An algorithm is strongly polynomial if it uses

- 1 poly(m, n) elementary arithmetic operations $(+, -, \times, \div, <?)$, and
- 2 poly(m, n, L) space.

Smale's 9th Problem [Megiddo '83]

Is there a strongly polynomial algorithm for linear programming?

The Zoo of LP Subclasses

2-Variables-per-Inequality LP

• [Hochbaum '04] Every 2-variables-per-inequality LP can be reduced to

$$\begin{aligned} &\min \ c^\top x \\ &\text{s.t.} \ \sum_{e \in \delta^{\text{in}}(v)} \gamma_e x_e - \sum_{e \in \delta^{\text{out}}(v)} x_e = b_v \quad \forall v \in V \\ &\quad x \geq \mathbf{0} \end{aligned}$$

Interpretation: Given directed graph G = (V, E), node demands $b \in \mathbb{R}^V$, arc costs $c \in \mathbb{R}^E$ and gain factors $\gamma \in \mathbb{R}^E_{>0}$,

Find a minimum cost generalized flow satisfying all node demands.

Models leaky pipes, currency exchange etc.

Example: Production with Different Machines

• Variant of a problem proposed by Kantorovich in his 1939 paper introducing Linear Programming.

- Machine i can produce γ_{ij} units of part j in one day at cost c_{ij} .
- Daily demand d_j for part j.

$$\begin{aligned} &\min \sum_{i \in M, j \in P} c_{ij} x_{ij} \\ &\text{s. t. } \sum_{j \in P} x_{ij} \leq 1 \qquad \forall i \in M \\ &\sum_{i \in M} \gamma_{ij} x_{ij} \geq d_j \quad \forall j \in P \\ &\qquad x > \mathbf{0} \end{aligned}$$

M: machines P: parts

Previous Algorithms for Generalized Flow

- Algorithms for primal feasibility:
 - Polynomial [Goldberg, Plotkin, Tardos '91]
 - Strongly polynomial [Végh '13] [Olver, Végh '20]
- Algorithms for **dual** feasibility:
 - Polynomial [Aspvall, Shiloach '80]
 - Strongly polynomial [Megiddo '83] [Cohen, Megiddo '94] [Hochbaum, Naor '94] [Dadush, K, Natura, Végh '21] [Karczmarz '22]
- Algorithms for optimization:
 - Polynomial [Wayne '02]

Main Result

Theorem [Dadush, K, Natura, Olver, Végh '24]

There is a strongly polynomial algorithm for the minimum cost generalized flow problem, and consequently, for LPs with at most 2 variables per inequality.

- The algorithm is the interior point method by [Allamigeon, Dadush, Loho, Natura, Végh '22].
- What we'll need for this talk:
 - 1 Interior point method
 - Straight line complexity

Central Path

• For each $\mu > 0$, there exists a unique optimal solution $x^{\rm cp}(\mu)$ to

$$\min \ c^{\top} x - \mu \sum_{i=1}^{n} \log(x_i)$$

s. t.
$$Ax = b$$
.

Def: The central path is the curve

$${x^{cp}(\mu) : \mu > 0}.$$

- As $\mu \to 0$, $x^{\rm cp}(\mu)$ converges to an optimal solution x^* of the LP.
- Interior Point Method (IPM): Walk down the central path with geometrically decreasing μ .

Max Central Path

• Let us reparameterize x^{cp} by the optimality gap:

$$c^{\top}x^{\text{cp}}(g) = c^{\top}x^* + g \qquad \forall g \ge 0.$$

• For every $g \ge 0$ and $i \in [m]$, define

$$x_i^{ ext{mcp}}(g) := ext{max } x_i$$
 s. t. x feasible optimality $ext{gap} \leq g$.

Def: The max central path is the curve $\{x^{\text{mcp}}(g) : g \ge 0\}$,

Theorem: $\frac{1}{2m} x^{\text{mcp}} \le x^{\text{cp}} \le x^{\text{mcp}}$.

Straight Line Complexity

ullet IPM generates a piecewise-affine curve $x^{
m alg}$ near the central path

$$\theta x^{\text{mcp}} \le x^{\text{alg}} \le x^{\text{mcp}}.$$

Def: The straight line complexity of x_i^{mcp} , $SLC_{\theta}(x_i^{\text{mcp}})$, is the minimum number of pieces of a continuous piecewise-affine function h such that

$$\theta x_i^{\text{mcp}} \le h \le x_i^{\text{mcp}}.$$

Straight Line Complexity

• # iterations required by any IPM is at least

$$\max_{i \in [m]} \mathsf{SLC}_{\theta}(x_i^{\mathrm{mcp}}).$$

Theorem [Allamigeon, Dadush, Loho, Natura, Végh '22]

There is an interior point method which solves LP in

$$O\left(\min_{\theta \in (0,1]} \sqrt{m} \log\left(\frac{m}{\theta}\right) \sum_{i=1}^{m} \mathsf{SLC}_{\theta}(x_i^{\text{mcp}})\right)$$

iterations.

Main Result

Theorem [Dadush, K, Natura, Olver, Végh '24]

For the minimum-cost generalized flow problem on G = (V, E) with n nodes and m arcs,

$$\mathsf{SLC}_{\frac{1}{m}}(x_{\mathsf{e}}^{\mathrm{mcp}}) = O(mn\log(mn)) \qquad \forall e \in E.$$

Key ingredient: Circuits

Theorem [Dadush, K, Natura, Olver, Végh '24]

There is a strongly polynomial algorithm for the minimum cost generalized flow problem.

Circuits

Def: Let $W = \ker(A)$. A circuit is any vector $f \in W \setminus \{0\}$ such that $\nexists h \in W \setminus \{0\}$ with $\operatorname{supp}(h) \subsetneq \operatorname{supp}(f)$.

Example: Network flow

$$Ax = b$$
 \iff $\sum_{e \in \delta^{in}(v)} x_e - \sum_{e \in \delta^{out}(v)} x_e = b_v \quad \forall v \in V$

• ker(A) = set of circulations. Circuits correspond to directed cycles.

Circuits of Generalized Flow

• For generalized flow,

$$Ax = b$$
 \iff $\sum_{e \in \delta^{\mathrm{in}}(v)} \gamma_e x_e - \sum_{e \in \delta^{\mathrm{out}}(v)} x_e = b_v \quad \forall v \in V$

• ker(A) = set of generalized circulations. 2 types of circuits:

Upper Bounding the SLC

• Every $f \in \ker(A)$ with $c^{\top}f > 0$ induces a line segment in the feasible region:

$$x^f(g) := x^* + \frac{g}{c^\top f} f.$$

Fact: $\max_{\text{circuit } C} x_e^{f^C} \ge \frac{x_e^{\text{mcp}}}{m}$.

Strategy: Find $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \max_{\text{circuit } C} x_e^{f^c}$.

$$\implies \mathsf{SLC}_{\frac{1}{m}}(x_{\mathsf{e}}^{\mathrm{mcp}}) \leq 2|S|.$$

Dominating Circuits of Generalized Flow

Goal: Find a small $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \max_{\text{circuit } C} x_e^{f^C}$.

- Consider the residual graph G_{x^*} with capacities $u \in \mathbb{R}_{>0}^{E \cup \mathsf{supp}(x^*)}$.
- Let C be a conservative cycle or bicycle in G_{x^*} containing e.

- Given $f \in \ker(A)$, what does $x_e^f \ge x_e^{f^c}$ mean?
 - For any bound g on the cost of the flow, f can send more flow on e than f^C .

Dominating Paths

• We reduce dominating circuits to dominating paths.

Def: Given s-t walks W and W', W' dominates W if for any bound g on the ℓ_{∞} -cost of the flow, W' can send more flow to t than W.

Core Problem

Find a small set \mathcal{W} of s-t walks such that every s-t path is dominated by some walk in \mathcal{W} .

Dominating Paths

Theorem [Dadush, K, Natura, Olver, Végh '24]

For every $s, t \in V$, there exists a set W of $O(m^2)$ s-t walks such that every s-t path is dominated by some walk in W.

• For every walk W, assign a signature (e_c, e_f) where

$$e_c := \underset{e \in E(W)}{\operatorname{arg max}} c_e f_e^W \qquad \qquad e_f := \underset{e \in E(W)}{\operatorname{arg min}} \frac{u_e}{f_e^W}.$$

We call e_c the cost bottleneck, and e_f the flow bottleneck of W.

Path Patching

• Let P be an s-t path with signature (e_c, e_f) .

Def: Let patch(P) be the walk obtained from P by replacing the e_c - e_f subpath with a max gain e_c - e_f path of signature (e_c, e_f) .

Patching Lemma:

- \bullet patch(P) dominates P.
- 2 The signature of patch(P) is either (e_c , e_f) or (e'_c , e_f), where e'_c comes after e_f .

Dominating Paths

• For an s-t path P, let W_1, W_2, \ldots, W_k be the sequence of walks obtained by repeatedly patching until the signature stops changing, i.e.

$$W_1 = \mathsf{patch}(P)$$
 $W_i = \mathsf{patch}(W_{i-1}) \quad \forall i \geq 2.$

• By patching lemma, W_k dominates P and $k \leq n$.

The Dominating Set of Walks ${\cal W}$

- For every signature (e_c, e_f) ,
 - 1 Start with a max gain e_c - e_f path with signature (e_c, e_f) .
 - 2 Append a max gain n-recurrent s- e_c walk which preserves signature.
 - 3 Append a max gain e_f -t path which preserves signature.

- Analogous construction for the case where e_c comes after e_f .
- $|\mathcal{W}| = O(m^2)$.

Conclusion

- SLC of minimum cost generalized flow is poly(m, n).
- Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.
- [Allamigeon, Benchimol, Gaubert, Joswig '18] There exist LPs with

$$\mathsf{SLC}_{\theta}(x_i^{\mathrm{mcp}}) = 2^{\Omega(m)}.$$

- Future directions:
 - Develop a theory of SLC for LPs.
 - Undiscounted MDP: strongly polynomial solvability/straight line complexity open.
 - Faster strongly polynomial algorithm for minimum cost generalized flow.

Thank you!