DEMOGRAPHIC & ENVIROMENTAL NOISE IN PREDATOR-PREY MODELS

Guillermo Benito

APPROACHES:

- DETERMINISTIC
- DEMOGRAPHIC NOISE

MODELS:

- 1 PREY 1 PREDATOR
- 1 PREY 2 PREDATOR
- 2 PREY 1 PREDATOR (PHENOTYPES!)

ENVIROMENTAL NOISE

+ ECOEVOLUTION

DETERMINISTIC

- DIFFERENTIAL EQUATIONS
- EULER METHOD

CLASSIC LOKTA-VOLTERRA

$$egin{cases} \dot{x} = x(r-ay-sx)
ightarrow Prey \ \dot{y} = y(bx-d)
ightarrow Predator \end{cases}$$

$$egin{cases} \hat{x} = d/b \ \hat{y} = r/a - sd/ab \end{cases}$$

CLASSIC LOKTA-VOLTERRA

TWO PREYS

 ϵ !

$$egin{cases} \dot{x_1} = rrac{x_1+x_2}{2} - a(1+\epsilon)x_1y)
ightarrow Prey1 \ \dot{x_2} = rrac{x_1+x_2}{2} - a(1-\epsilon)x_2y)
ightarrow Prey2 \ \dot{y} = y(b[(1+\epsilon)x_1+(1-\epsilon)x_2]-d)
ightarrow Predator \end{cases}$$

- One prey dies more easily
- Predator takes different benefit from preys
- Same inheritance probability

$$egin{cases} \hat{x_1} = rac{d}{2b(1+\epsilon)} \ \hat{x_2} = rac{d}{2b(1-\epsilon)} \ \hat{y} = rac{r}{a} rac{1}{1-\epsilon^2} \end{cases}$$

TWO PREYS

TWO PREDATORS

δ !

$$\left\{egin{aligned} \dot{x} = x(r-a[y_1+y_2]) &
ightarrow Prey \ \dot{y_1} = -d(1+\delta)y_1 + brac{y_1+y_2}{2}x
ightarrow Predator1 \ \dot{y_2} = -d(1-\delta)y_2 + brac{y_1+y_2}{2}x
ightarrow Predator2 \end{aligned}
ight.$$

- One predator has a higher death rate
- The prey is attacked evenly by predators
- Same inheritance probability

$$egin{cases} \hat{x} = rac{d}{b}(1-\delta^2) \ \hat{y_1} = rac{r}{a}rac{1-\delta}{2} \ \hat{y_2} = rac{r}{a}rac{1+\delta}{2} \end{cases}$$

TWO PREDATORS

DEMOGRAPHIC NOISE

• SIMULATION (size = N):

$$prob = rate \cdot \Delta t$$

For each Δt:

generate $x \cdot N$ random numbers $(\vec{\mu})$

if $\mu_i < prob$ the reaction i is done

CLASSIC LOKTA-VOLTERRA

$$egin{cases} X
ightarrow X + X : r \ X + Y
ightarrow \emptyset + Y : a \ X + Y
ightarrow Y + Y : b \ Y
ightarrow \emptyset : d \ X + X
ightarrow X + \emptyset : s \end{cases}$$

CLASSIC LOKTA-VOLTERRA

TWO PREY

$$egin{cases} X_i
ightarrow X_i + X_j : r/2 \ X_1 + Y
ightarrow \emptyset + Y : a(1+\epsilon) \ X_2 + Y
ightarrow \emptyset + Y : a(1-\epsilon) \ X_1 + Y
ightarrow Y + Y : b(1+\epsilon) \ X_2 + Y
ightarrow Y + Y : b(1-\epsilon) \ Y
ightarrow \emptyset : d \end{cases}$$

TWO PREY

TWO PREDATOR

$$egin{cases} X o X + X : r \ X + Y_i o \emptyset + Y_i : a \ X + Y_i o Y_j + Y_i : b/2 \ Y_1 o \emptyset : d(1+\delta) \ Y_2 o \emptyset : d(1-\delta) \end{cases}$$

TWO PREDATOR

ECOEVOLUTION

- Model evolution of species
- Different inheriting ratios for the different phenotypes

TWO PRFY

DETERMINISTIC

$$\left\{egin{aligned} \dot{x_1} &= r([
ho x_1 + (1-
ho) x_2] - a(1+\epsilon) x_1 y) \ \dot{x_2} &= r([
ho x_2 + (1-
ho) x_1] - a(1-\epsilon) x_2 y) \ \dot{y} &= y(b[(1+\epsilon) x_1 + (1-\epsilon) x_2] - d) \end{aligned}
ight.$$

STOCHASTIC

$$\left\{egin{aligned} \dot{x_1} &= r([
ho x_1 + (1-
ho) x_2] - a(1+\epsilon) x_1 y) \ \dot{x_2} &= r([
ho x_2 + (1-
ho) x_1] - a(1-\epsilon) x_2 y) \ \dot{y} &= y(b[(1+\epsilon) x_1 + (1-\epsilon) x_2] - d) \end{aligned}
ight. \ \left\{egin{aligned} X_i &
ightarrow X_i + X_i : r
ho \ X_1 + Y &
ightarrow \emptyset + Y : a(1+\epsilon) \ X_2 + Y &
ightarrow \emptyset + Y : a(1-\epsilon) \ X_1 + Y &
ightarrow Y + Y : b(1+\epsilon) \ X_2 + Y &
ightarrow Y + Y : b(1-\epsilon) \ Y &
ightarrow \emptyset : d \end{aligned}
ight.$$

TWO PREY (deterministic)

TWO PREY (deterministic)

How fast is the damping???

TWO PREY (stochastic)

TWO PREY (stochastic)

How big are the sustained oscillations?

TWO PREDATOR

DETERMINISTIC

$$\left\{egin{aligned} \dot{x} &= x(r-a[y_1+y_2]) \ \dot{y_1} &= -d(1+\delta)y_1 + b[
ho y_1 + (1-
ho)y_2]x \ \dot{y_2} &= -d(1-\delta)y_2 + b[
ho y_2 + (1-
ho)y_1]x \end{aligned}
ight.$$

STOCHASTIC

$$\left\{ egin{aligned} \dot{x} &= x(r - a[y_1 + y_2]) \ \dot{y_1} &= -d(1 + \delta)y_1 + b[
ho y_1 + (1 -
ho)y_2]x \ \dot{y_2} &= -d(1 - \delta)y_2 + b[
ho y_2 + (1 -
ho)y_1]x \end{aligned}
ight. \left\{ egin{aligned} X &\to X + X : r \ X + Y_i & o \emptyset + Y_i : a \ X + Y_i & o Y_i + Y_i :
ho b \ X + Y_i & o Y_j + Y_i : (1 -
ho)b \ Y_1 & o \emptyset : d(1 + \delta) \ Y_2 & o \emptyset : d(1 - \delta) \end{aligned}
ight.$$

TWO PREDATOR (deterministic)

TWO PREDATOR (deterministic)

How fast is the damping???

TWO PREDATOR (stochastic)

TWO PREDATOR (stochastic)

How big are the sustained oscillations?

 $Wider \leftarrow$

$$\rho = 1/4 > \rho = 1/2 > \rho = 3/4$$

ENVIROMENTAL NOSIE

- Add environmental noise to our ecoevolutionary deterministic model
- Two different types:
 - \circ Swaping sign of ϵ and δ
 - \circ Gaussian noise for ϵ and δ

TWO PREY (swap)

TWO PREDATOR (swap)

Can we extend this idea to get sustained oscillations???

Less swaps

Swap every appropiate number of time steps

 $\varepsilon = 1/4, \rho = 3/4, Swap every 100$

 $\varepsilon = 1/4, \rho = 3/4, Swap every 20$

 $\varepsilon = 1/4, \rho = 3/4, Swap every 2$

TWO PREDATOR (Gaussian)

Changes every time step (not every $\Delta t!!$)

What happens for different P?? (variance=1/20)

$$Wider \leftarrow$$

$$\rho = 3/4 > \rho = 1/2 > \rho = 1/4$$

The results are contrary to the ones before!

ALL TOGETHER?

• Add environmental noise to our ecoevolutionary **stochastic** model

TWO PREY

TWO PREDATOR

CONCLUSIONS

- Both kind of noises induce sustained oscillations to a deterministically damped system.
- Environmental and demographic noises have contrary effects when changing the parameter,