# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-009067

(43) Date of publication of application: 19.01.1993

(51)Int.CI.

CO4B 35/46 H01B 3/12 H01B 3/12

(21) Application number: 03-183578

(71)Applicant: MURATA MFG CO LTD

(22) Date of filing:

27.06.1991

(72)Inventor: NISHIYAMA TOSHIKI

HAMACHI YUKIO

SAKABE YUKIO

## (54) NONREDUCIBLE DIELECTRIC PORCELAIN COMPOSITION

## (57)Abstract:

PURPOSE: To obtain a nonreducible dielectric porcelain compsn. which can be fired without converting the structure into a semiconductor even under low partial pressure of oxygen, has ≥3,000 dielectric constant and ≥11.0 logIR insulation resistance and satisfies such temp. characteristics of dielectric constant that capacity at 25° C as a standard varies within ±15% range over a wide temp. range of -55 to +125° C.

CONSTITUTION: This nonreducible dielectric porcelain compsn. contains 100mol% base and 0.2-4.0mol% BaO, 0.2-3.0mol% MnO, 0.2-3.0mol% SiO2, and 0.5-5.0mol% MgO as secondary components. The base consists of 92.0-99.4mol% BaTiO3, contg. ≤0.04wt.% alkali metal oxides as impurities, 0.3-4.0mol% one or more kinds of oxides of rare earth elements (Re2O3) selected from Tb2O3, Dy2O3, Ho2O3 and Er2O3 and 0.3-4.0mol% Co2O3.

## LEGAL STATUS

[Date of request for examination]

02.02.1998

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2958818

[Date of registration]

30.07.1999

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

# (12) 公開特許公報 (A) (11) 特許出願公開番号

特開平5-9067

(43) 公開日 平成5年(1993) 1月19日

| (51) Int. Cl. <sup>5</sup> C 0 4 B H 0 1 B | 識別記号<br>35/46 D<br>3/12 3 0 3<br>3 4 1 | 庁内整理番号<br>7310-4G<br>9059-5G<br>9059-5G | FI       | 技術表示                                                            | 箇所 |
|--------------------------------------------|----------------------------------------|-----------------------------------------|----------|-----------------------------------------------------------------|----|
| <b>著</b>                                   | 審查請求 未請求 請求功                           | 頁の数 1                                   | T        | (全5頁)                                                           |    |
| (21) 出願番号                                  | 特願平3-183578                            |                                         | (71) 出願人 | 000006231<br>株式会社村田製作所                                          |    |
| (22) 出願日                                   | 平成3年 (1991) 6月2                        | 27日                                     | (72) 発明者 | 京都府長岡京市天神二丁目26番10号<br>西 山 俊 樹<br>京都府長岡京市天神二丁目26番10号<br>会社村田製作所内 | 株式 |
|                                            |                                        |                                         | (72) 発明者 | 浜 地 幸 生<br>京都府長岡京市天神二丁目26番10号<br>会社村田製作所内                       | 株式 |
|                                            | ,                                      |                                         | (72) 発明者 | 坂 部 行 雄<br>京都府長岡京市天神二丁目26番10号<br>会社村田製作所内                       | 株式 |
|                                            |                                        | ,                                       | (74) 代理人 | 弁理士 岡田 全啓                                                       |    |

### (54) 【発明の名称】非還元性誘電体磁器組成物

### (57) 【要約】

【目的】 低酸素分圧下でも組織が半導体化せず焼成可 能で、誘電率が3000以上、絶縁抵抗が1ogIRで 11. 0以上で、誘電率の温度特性が25℃の容量値を 基準とし、−55℃~125℃の広い範囲で±15%の 範囲内にあることを満足する非還元性誘電体磁器組成物 を得る。

【構成】 不純物としてのアルカリ金属酸化物含有量 が、0.04重量%以下のBaTiO3とTb2O3, Dy<sub>2</sub>O<sub>3</sub>, Ho<sub>2</sub>O<sub>3</sub>, Er<sub>2</sub>O<sub>3</sub>の中の1種類以上 の希土類酸化物(Re2 O3)とCo2 O3との配合比 が、BaTiO3 92. 0~99. 4モル%とRe2 O 3 0. 3~4. 0モル%とCo2 O3 0. 3~4. 0モ ル%との範囲内の主成分100モル%に、Ba〇0.2 ~4. 0モル%とMnOO. 2~3. 0モル%とSiO 2 0. 2~3. 0モル%とMgOO. 5~5. 0モル% とからなる副成分を含有する非還元性誘電体磁器組成物 である。

1

#### 【特許請求の範囲】

【請求項1】 不純物として含まれるアルカリ金属酸化 物の含有量が0.04重量%以下のBaTiO₃と、T b<sub>2</sub> O<sub>3</sub> , Dy<sub>2</sub> O<sub>3</sub> , Ho<sub>2</sub> O<sub>3</sub> , Er<sub>2</sub> O<sub>3</sub> の中か ら選ばれる少なくとも1種類の希土類酸化物 (Re2 O 3) と、Co<sub>2</sub>O<sub>3</sub>との配合比が、

BaTiO<sub>3</sub> 92.0~99.4モル%、

0.3~4.0モル%、および Re<sub>2</sub>O<sub>3</sub>

0.3~4.0モル%  $CO_2O_3$ 

の範囲内にある主成分100モル%に対し、 副成分として、

BaO 0. 2~4. 0モル%、

MnO 0.2~3.0モル%、

SiO<sub>2</sub> 0. 2~3. 0モル%、および

MgO 0.5~5.0モル%

を含有する、非還元性誘電体磁器組成物。

#### 【発明の詳細な説明】

#### [0001]

【産業上の利用分野】この発明は非還元性誘電体磁器組 成物に関し、特にたとえば、ニッケルなどの卑金属を内 20 部電極材料とする積層コンデンサなどの誘電体材料とし て用いられる、非還元性誘電体磁器組成物に関する。

#### [0002]

【従来の技術】従来の誘電体磁器材料は、中性または還 元性の低酸素分圧下で焼成すると、還元され、半導体化 を起こすという性質を有していた。そのため、内部電極 材料としては、誘電体磁器材料の焼結する温度で溶融せ ず、かつ誘電体磁器材料を半導体化させない高い酸素分 圧下で焼成しても酸化されない、たとえばPd,Ptな どの貴金属を用いなければならなかった。これは、製造 される積層コンデンサの低コスト化の大きな妨げとなっ ていた。

【0003】そこで、上述の問題点を解決するために、 たとえばNiなどの卑金属を内部電極の材料として使用 することが望まれていた。しかし、このような卑金属を 内部電極の材料として使用して、従来の条件で焼成する と、電極材料が酸化してしまい、電極としての機能を果 たさない。そのため、このような卑金属を内部電極の材 料として使用するためには、酸素分圧の低い中性または デンサ用の誘電体材料として、十分な比抵抗と優れた誘 電特性とを有する誘電体磁器材料が必要とされていた。 これらの条件をみたす誘電体磁器材料として、たとえば 特開昭62-256422号のBaTiO3 - CaZr O<sub>3</sub> - M n O - M g O 系 の 組成 や 、 特 公 昭 6 1 - 1 4 6 11号のBaTiO<sub>3</sub> - (Mg, Zn, Sr, Ca) O  $-B_2 O_3 - S i O_2$  系の組成が提案されてきた。

## [0004]

【発明が解決しようとする課題】しかしながら、特開昭 62-256422号に開示されている非還元性誘電体 50

磁器組成物では、CaZrO。や焼成過程で生成するC aTiO3が、Mnなどとともに二次相を生成しやすい ため、高温における信頼性の低下につながる危険性があ った。また、この組成物は、容量の経時変化(エージン グ率,%/dec)が、大きく実用的でないという問題

点もあった。

【0005】また、特公昭61-14611号に開示さ れている組成物は、得られる誘電体の誘電率が2000 ~2800であり、Pdなどの貴金属を使用している従 10 来からの磁器組成物の誘電率である3000~3500 と比較すると劣っていた。したがって、この組成物をコ ストダウンのために、そのまま従来の材料と置き換える のは、コンデンサの小型大容量化という点で不利であ り、問題が残されていた。

[0006] さらに、この組成物の誘電率の温度変化率 (TCC) は、20℃の容量値を基準として、-25℃ から+85℃の温度範囲では±10%であるが、+85 ℃を超える高温では、10%を大きく超えてしまい、E IAに規定されているX7R特性をも大きくはずれてし まうという欠点があった。

【0007】それゆえに、この発明の主たる目的は、低 酸素分圧下であっても、組織が半導体化せず焼成可能で あり、かつ誘電率が3000以上、絶縁抵抗が10gⅠ Rで11.0以上であり、さらに誘電率の温度特性が、 25℃の容量値を基準として、-55℃~125℃の広 い範囲にわたって±15%の範囲内にあることを満足す る、非環元性誘電体磁器組成物を提供することである。 [8000]

【課題を解決するための手段】この発明は、不純物とし て含まれるアルカリ金属酸化物の含有量が0.04重量 %以下のBaTiO3と、Tb2O3, Dy2O3, H  $O_2$   $O_3$  ,  $E_1 C_2$   $O_3$  の中から選ばれる少なくとも1種 類の希土類酸化物 (Re2Os) と、Co2Os との配 合比が、BaTiO<sub>3</sub> 92.0~99.4モル%と、 Re<sub>2</sub>O<sub>3</sub> 0.3~4.0モル%と、Co<sub>2</sub>O<sub>3</sub> 0. 3~4. 0モル%との範囲内にある主成分100モ ル%に対し、副成分として、BaO 0.2~4.0モ ル%と、MnO 0.2~3.0モル%と、SiO 2 0. 2~3. 0モル%と、MgO 0. 5~5. 0モ 還元性の雰囲気において焼成しても半導体化せず、コン 40 ル%とを含有する、非還元性誘電体磁器組成物である。

> 【発明の効果】この発明にかかる非還元性誘電体磁器組 成物は、中性または還元性の雰囲気において1260~ 1300℃の温度で焼成しても、組織が還元されて半導 体化することがない。さらに、この非還元性誘電体磁器 組成物は、10gIRで11.0以上の高い絶縁抵抗値 を示すとともに、3000以上の高誘電率を示し、容量 温度変化率もEIAに規定されているX7R特性を満足

> 【0010】したがって、この発明にかかる非還元性誘

電体磁器組成物を積層セラミックコンデンサの誘電体材料として用いれば、内部電極材料としてNiなどで代表される卑金属材料を用いることができる。そのため、従来のPdなどの貴金属を用いたものに比べて、特性を落とすことなく、大幅なコストダウンを行うことが可能となる

【0011】この発明の上述の目的,その他の目的,特 徴および利点は、図面を参照して行う以下の実施例の詳 細な説明から一層明らかとなろう。

#### [0012]

【実施例】出発原料として、不純物として含まれるアルカリ金属酸化物の含有量が異なるBaTiO3, Ba/\*

\*Ti モル比補正のためのBaCO<sub>3</sub> , 希土類酸化物、CO<sub>2</sub>O<sub>3</sub> , MnO , SiO<sub>2</sub> , MgOを準備した。これらの原料を表1に示す組成割合となるように秤量して、秤量物を得た。なお、試料番号 $1\sim2$ 9については、アルカリ金属酸化物の含有量が003重量%のBaTiO<sub>3</sub>を使用し、試料番号30については、アルカリ金属

ルカリ金属酸化物の含有量が0.03重量%のBaTiO<sub>3</sub>を使用し、試料番号30については、アルカリ金属酸化物の含有量が0.05重量%のBaTiO<sub>3</sub>を使用し、試料番号31については、アルカリ金属酸化物の含

有量が0.07重量%のBaTiO3を使用した。

10 [0013]

【表1】

\*印はこの発明の範囲外

|     | * t    |                                |     |                                |        | 印はこの発明の範囲外 |       |                  |  |
|-----|--------|--------------------------------|-----|--------------------------------|--------|------------|-------|------------------|--|
| 科陆  | BaTiO: | aTiOs RegOs                    |     | Co <sub>2</sub> O <sub>2</sub> | BaO    | OnM ·      | MgO   | SiO <sub>2</sub> |  |
| 番号  | (£fl%) | (ENX)                          |     | (fax)                          | (£1/6) | (ELX)      | (ENX) | (€ <b>1%</b> )   |  |
| 1   | 97.0   | Dy <sub>2</sub> O <sub>3</sub> | 1.5 | 1.5                            | 1.5    | 1.0        | 1.0   | 2.0              |  |
| 2   | 99.0   | Dy <sub>2</sub> O <sub>3</sub> | 0.5 | 0.5                            | 1.5    | 1.0        | 1.0   | 2.0              |  |
| 3*  | 99.6   | Dy <sub>2</sub> O <sub>3</sub> | 0.2 | 0.2                            | 1.5    | 1.0        | 1. 0  | 20               |  |
| 4*  | 90.0   | Dy <sub>2</sub> O <sub>8</sub> | 5.0 | 5.0                            | 1.5    | 1.0        | 1.0   | 2.0              |  |
| 5   | 93. 0  | Dy <sub>2</sub> C <sub>8</sub> | 3.0 | 4.0                            | 1.5    | 1.0        | 1.0   | 2.0              |  |
| 6   | 97.5   | Ho <sub>2</sub> O <sub>3</sub> | 1.5 | 1.0                            | 20     | 1.0        | 2.0   | 2.0              |  |
| 7   | 96.5   | Ho <sub>2</sub> O <sub>8</sub> | 1.5 | 2.0                            | 0.5    | 1.5        | 2.0   | 2.0              |  |
| 8   | 96.5   | Ho <sub>2</sub> O <sub>3</sub> | 1.5 | 2.0                            | 0.3    | 1.5        | 2.0   | 2.0              |  |
| 9*  | 96.5   | Ho <sub>2</sub> O <sub>3</sub> | 1.5 | 2.0                            | 0.1    | 1.5        | 2.0   | 2.0              |  |
| 10  | 96.5   | Ho2O3                          | 1.5 | 2.0                            | 3.0    | 1.5        | 2.0   | 2.0              |  |
| 11  | 96.5   | Ho <sub>2</sub> C <sub>2</sub> | 1.5 | 2.0                            | 4.0    | 1.5        | 2.0   | 2.0              |  |
| 12* | 96.5   | H0208                          | 1.5 | 2.0                            | 5.0    | 1.5        | 2.0   | 2.0              |  |
| 13  | 97.5   | Tb <sub>2</sub> O <sub>3</sub> | 1.0 | 1.5                            | 1.5    | 2.5        | 3.0   | 3.0              |  |
| 14  | 97.5   | Tb <sub>2</sub> O <sub>3</sub> | 1.0 | 1.5                            | 1.5    | 3.0        | 3.0   | 3.0              |  |
| 15* | 97.5   | Tb <sub>2</sub> O <sub>3</sub> | 1.0 | 1.5                            | 1.5    | 3.5        | 3.0   | 3.0              |  |
| 16  | 97.5   | Tb <sub>2</sub> O <sub>8</sub> | 1.0 | 1.5                            | 1.5    | 0.3        | 3.0   | 3.0              |  |
| 17* | 97.5   | Tb <sub>2</sub> O <sub>8</sub> | 1.0 | 1.5                            | 1.5    | 0.1        | 3.0   | 3.0              |  |
| 18  | 96.5   | Br <sub>2</sub> O <sub>8</sub> | 2.0 | 1.5                            | 1.5    | 1.5        | 2.0   | 3.0              |  |
| 19  | 96.5   | Er20s                          | 2.0 | 1.5                            | 1.5    | 1.5        | 2.0   | 5.0              |  |
| 20* | 96.5   | Br <sub>2</sub> C <sub>8</sub> | 2.0 | 1.5                            | 1.5    | 1.5        | 2.0   | 6.0              |  |
| 21  | 96.5   | Br <sub>2</sub> O <sub>3</sub> | 2.0 | 1.5                            | 1.5    | 1.5        | 2.0   | 0.5              |  |
| 22  | 96.5   | Er <sub>2</sub> O <sub>3</sub> | 2.0 | 1.5                            | 1.5    | 1.5        | 2.0   | 0.3              |  |
| 23* | 96.5   | Br <sub>2</sub> O <sub>s</sub> | 2.0 | 1.5                            | 1.5    | 1.5        | 2.0   | 0.1              |  |
| 24* | 96.0   | DygCs                          | 1.5 | 2.5                            | 1.5    | 1.0        | 0.4   | 1.0              |  |
| 25  | 96.0   | Dy <sub>2</sub> O <sub>2</sub> | 1.5 | 2.5                            | 1.5    | 1.0        | 0.6   | 1.0              |  |
| 26  | 96.0   | Dy <sub>2</sub> C <sub>2</sub> | 1.5 | 2.5                            | 1.5    | 1.0        | 3.0   | 1.0              |  |
| 27  | 96.0   | Dy <sub>2</sub> O <sub>3</sub> | 1.5 | 2.5                            | 1.5    | 1.0        | 4.0   | 1.0              |  |
| 28  | 96.0   | Dy RO3                         | 1.5 | 2.5                            | 1.5    | 1.0        | 5.0   | 1.0              |  |
| 29* | 96.0   | Dy 203                         | 1.5 | 2.5                            | 1.5    | 1.0        | 6.0   | 1.0              |  |
| 30* | 96.0   | Dy <sub>2</sub> O <sub>8</sub> | 1.5 | 2.5                            | 1.5    | 1.0        | 1.0   | 1.0              |  |
| 31* | 96.0   | Dy <sub>2</sub> O <sub>8</sub> | 1.5 | 2.5                            | 1.5    | 1.0        | 1.0   | 1.0              |  |

【0014】得られた秤量物に酢酸ビニル系パインダを $5重量%添加した後、PSZボールを用いたボールミルで十分に湿式混合した。次に、この混合物中の分散媒を蒸発、乾燥した後、整粒の工程を経て粉末を得た。得られた粉末を<math>2ton/cm^2$ の圧力で、直径10mm、厚さ1mmの円板状にプレス成形して、成形体を得た。【0015】次いで、このようにして得られた成形体

を、空気中において 400  $\mathbb{C}$ で 3 時間保持の条件で脱バインダを行った後、 $H_2/N_2$  の体積比率が 3/100 の還元雰囲気ガス気流中において、表 2 に示す温度で 2 時間焼成し、磁器を得た。

[0016]

【表2】

\*印はこの発明の範囲外

| 試料  | 焼成温度                | 誘軍率  | 誘電損失      |               | 3 (96)       | 絶縁抵抗  |              |  |  |
|-----|---------------------|------|-----------|---------------|--------------|-------|--------------|--|--|
| 番号  | (°C)                | ε    | tan 8 (%) | - 55°C +125°C |              | CMAX  | log IR       |  |  |
| 1   | 1280                | 3180 | 1. 8      | -10.8         | +1.9         | 10.8  | 11.8         |  |  |
| 2   | 1280                | 3390 | 1.7       | -8.9          | -1.8         | 8.9   | 11.7         |  |  |
| 3 * | 1300                | 3430 | 1. 8      | -14.6         | +20.7        | 32. 4 | 11.6         |  |  |
| 4 * | 1260                | 2940 | 1. 6      | -7.8          | -1.3         | 7.8   | 10.5         |  |  |
| 5   | 1260                | 3260 | 1. 7      | -8.9          | +3.5         | 8.9   | 11.8         |  |  |
| 6   | 1260                | 3260 | 1.5       | -9.6          | -0.8         | 9.6   | 11.6         |  |  |
| 7   | 1260                | 3130 | 1.6       | -10.7         | +3.2         | 10.7  | 11.6         |  |  |
| 8   | 1280                | 3190 | 1.7       | -9.9          | +3.4         | 9.9   | 11.7         |  |  |
| 9*  | 組織が半導体化したため測定不可能    |      |           |               |              |       |              |  |  |
| 10  | 1300                | 3280 | 1. 8      | -10.9         | -2.7         | 10.9  | 11.6         |  |  |
| 11  | 1300                | 3090 | 1.8       | -10.9         | -5.2         | 10.9  | 11.3         |  |  |
| 12* | 1360℃でも焼結不足のため測定不可能 |      |           |               |              |       |              |  |  |
| 13  | 1280                | 3190 | 1.8       | -7.2          | <b>∔9.</b> 1 | 9.6   | 11.6         |  |  |
| 14  | 1260                | 3210 | 1.7       | -6.9          | +7.6         | 8.4   | 11.5         |  |  |
| 15* | 1260                | 3010 | 1.8       | -3.4          | +8.8         | 9.2   | 9.5          |  |  |
| 16  | 1280                | 3110 | 1. 7      | -9.7          | +0.3         | 9.7   | 11.6         |  |  |
| 17* | 1280                | 2940 | 8.9       | -11.2         | -3.8         | 11.2  | 8.1          |  |  |
| 18  | 1260                | 3120 | 1.6       | -8.9          | +2.8         | 8.9   | 11.7         |  |  |
| 19  | 1260                | 3050 | 1. 7      | -8.6          | +2.9         | 8.6   | 11.3         |  |  |
| 20* | 1280                | 2680 | 1.6       | -9.6          | -6.8         | 10.2  | 11. <b>i</b> |  |  |
| 21  | 1280                | 3230 | 1.7       | -8.4          | †4. 1        | 8.4   | 11.4         |  |  |
| 22  | 1300                | 3290 | 1.6       | -11.2         | +1.8         | 11.2  | 11.2         |  |  |
| 23* | 1360                | 3010 | 1.8       | -12.9         | +3.6         | 12. 9 | 11.1         |  |  |
| 24* | 1280                | 3160 | 1.7       | -17.3         | -4.2         | 17.3  | 10.6         |  |  |
| 25  | 1280                | 3170 | 1.6       | -10.8         | -4.6         | 10.8  | 11.5         |  |  |
| 26  | 1300                | 3240 | 1.8       | -4. 1         |              | 9.2   | 11.5         |  |  |
| 27  | 1280                | 3160 | 1.7       | -7.6          | +4.8         | 7.6   | 11.4         |  |  |
| 28  | 1280                | 3040 | 1.6       | -9.3          | +2.8         | 9.3   | 11.2         |  |  |
| 29* | 1280                | 2820 | 1.6       | -7. 8         | +2.9         | 7.8   | 10.2         |  |  |
| 30× | 1280                | 2640 | 1.7       | -6.7          | +3.3         |       | 11.3         |  |  |
| 31* | 1280                | 2480 | 1.6       | -7.3          | +3.7         | 10.8  | 11.2         |  |  |

【0017】得られた磁器の両面に、銀ペーストを塗布 して、焼き付けることにより、銀電極を形成してコンデ ンサとした。そして、このコンデンサの室温における誘 電率ε、誘電損失tanδ,絶縁抵抗値(logIR) および容量の温度変化率(TCC)を測定した。その結 果を表2に示す。

【0018】なお、誘電率 $\epsilon$ , 誘電損失 $tan\delta$ につい ては、温度25℃、周波数1kHz、交流電圧1Vの条 件で測定した。また、絶縁抵抗値については、温度25 ℃において直流電圧500Vを2分間印加して測定し、 その結果を対数値(loglR)で示す。さらに、温度 変化率 (TCC) については、25℃の容量値を基準と した時の-55℃, 125℃における変化率 (ΔC-55 /C<sub>25</sub>, ΔC<sub>+125</sub>/C<sub>25</sub>) および−55℃~+125℃ の間において、容量温度変化率が最大である値の絶対 値、いわゆる最大変化率( | Δ C / C<sub>25</sub> | max ) につい

【0019】表2から明らかなように、この発明にかか る非還元性誘電体磁器組成物は、優れた特性を示す。

囲を上述のように限定する理由は次の通りである。

【0021】まず、主成分の範囲の限定理由について説 明する。

【0022】主成分であるBaTiO3の構成比率を9 2. 0~99. 4モル%とするのは、構成比率が92. 0モル%未満の場合には、希土類元素およびС○2○3 の構成比率が多くなるため、試料番号4に示すように、 絶縁抵抗値および誘電率の低下が生じ好ましくない。ま た、BaTiO3の構成比率が99.4モル%を超える 40 場合には、希土類元素およびСо2 О3 の添加の効果が なく、試料番号3に示すように、高温部(キュリー点付 近)の容量温度変化率が大きく(+)側にはずれ好まし くない。さらに、BaTiO3中のアルカリ金属酸化物 含有量を0.04%以下とするのは、0.04%を超え ると、試料番号30および31に示すように、誘電率の 低下が生じ、実用的でなくなり好ましくない。

【0023】次に、副成分の範囲の限定理由について説 明する。

【0024】BaO添加量を0.2~4.0モル%とす 【0020】この発明において主成分および副成分の範 50 るのは、添加量が0.2モル%未満の場合には、試料番 号9に示すように、雰囲気焼成中に組織が半導体化し、 絶縁抵抗値の著しい低下をまねくので好ましくない。ま た、添加量が4.0モル%を超える場合には、試料番号 12に示すように、焼結性が低下するので好ましくな い。

【0025】また、MnO添加量を0.2~3.0モル%とするのは、添加量が0.2モル%未満の場合には、試料番号17に示すように、組織の耐還元性向上に効果がなくなり、絶縁抵抗値の著しい低下をまねくので好ましくない。また、添加量が3.0モル%を超える場合には、試料番号15に示すように、絶縁抵抗値の低下が生じるので好ましくない。

【0026】SiO2添加量を0.2~5.0モル%とするのは、添加量が0.2モル%未満の場合には、試料番号23に示すように、焼結温度の低下に効果がなく好

ましくない。また、添加量が 5.0 モル%を超える場合には、試料番号 20に示すように、誘電率  $\epsilon$ の低下が生

じるので好ましくない。

【0027】最後に、MgO添加量を0.5~5.0モル%とするのは、添加量が0.5モル%未満の場合には、試料番号24に示すように、容量温度変化率をフラットにする効果がなく、特に低温側で(-)側にはずれる傾向があるとともに、絶縁抵抗値向上の効果もなくなるので好ましくない。また、添加量が5.0モル%を超える場合には、試料番号29に示すように、誘電率εおよび絶縁抵抗値の低下が生じるので好ましくない。

【0028】なお、表2に示す特性データは、単板コンデンサにおいて得られたデータであるが、同じ組成物をシート成形し、チップ加工を行った積層コンデンサにおいても、今回のデータとほぼ同等の結果が得られる。/