酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣をnーヘキサンー酢酸エチルで加熱還流下に懸濁洗浄して標題化合物の淡黄白色結晶(56mg,77.3%)を得た。

mp 284-286°C.

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 84 (2H, s), 6. 98 (1H, d, J=8. 8Hz), 7. 42 (1H, d, J=6. 8Hz), 7. 49 (2H, t, J=7. 6Hz), 7. 58-7. 61 (3H, m), 8. 07 (1H, d, J=2. 8Hz), 12. 25 (H, brs).

例204:化合物番号204の化合物の製造

原料として、5 ーブロモサリチル酸、及び2 ーアミノー4, 5 ージフェニルチア ゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:25.9%

mp 262-263°C.

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 02 (1H, d, J=8. 1Hz), 7. 34-7. 47 (10H, m), 7. 63 (1H, d, J=6. 9Hz), 8. 08 (1H, d, J=2. 4Hz), 11. 88 (1H, brs), 12. 08 (1H, brs).

[2-アミノー4, 5-ジフェニルチアゾール: 「日本化学雑誌 (Nihon Kagaku Zasshi)」, 1962年, 第83巻, p. 209参照]

例205:化合物番号205の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-ベンジル-5-フェ ニルチアゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:28.1%

mp 198-200°C.

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  4. 08 (2H, s), 6. 95 (1H, d, J=8. 8Hz), 7. 15-7. 22 (3H, m), 7. 30 (2H, t,

J = 7.6 Hz), 7. 38 - 7.43 (1H, m), 7. 47 (4H, d, J = 4.4 Hz), 7. 57 (1H, brd, J = 8.8 Hz), 8. 05 (1H, d, J = 2.4 Hz), 11. 98 (1H, brs).

[2-アミノー4-ベンジルー5-フェニルチアゾール:「ケミカル・アンド・ファーマシューティカル・ビュレティン (Chemical and Pharmaceutical Bulletin)」, 1962年, 第10巻, p. 376参照]

例206:化合物番号206の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-フェニル-4-(トリフルオロメチル)チアゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率: 33.2%

mp  $250^{\circ}$ C (dec.).  $^{1}$ H-NMR (DMSO- $_{d_{6}}$ ):  $\delta$  7. 02 (1 H, d, J=8.8Hz), 7. 51 (5H, s), 7. 63 (1H, dd, J=8.8, 2.4Hz), 8. 02 (1H, d, J=2.8Hz), 12. 38 (1 H, brs).

例207:化合物番号207の化合物の製造

原料として、1-フェニル-1, 3-ブタンジオンを用いて例195(1)~(3) と同様の操作を行い、標題化合物を得た。

収率: 8.9% (3工程)

(1)  $\alpha$  - ブロモー 1 - フェニルー 1 . 3 - ブタンジオン

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  2. 46 (3H, s), 5. 62 (1H, s), 7. 48-7. 54 (2H, m), 7. 64 (1H, tt, J=7. 5, 2. 1Hz), 7. 97-8. 01 (2H, m).

(2) 2-アミノー5-アセチルー4-フェニルチアゾール

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 18 (3H, s), 7. 50-7. 55 (2H, m), 7. 59-7. 68 (3H, m), 8. 69 (2H, brs).

(3) 5-ブロモ-N-(5-アセチル-4-フェニルチアゾール-2-イル)

-2-ヒドロキシベンズアミド(化合物番号207)

 $^{1}H-NMR (DMSO-d_{6}): \delta$  2. 44 (3H, s), 6. 99 (1H, d, J=9.0Hz), 7. 55-7. 71 (4H, m), 7. 76-7. 80 (2H, m). 8. 01 (1H, d, J=2.4Hz), 12. 36 (2H, br).

例208:化合物番号208の化合物の製造

原料として、1, 3-ジフェニル-1, 3-プロパンジオンを用いて例195(1) ~ (3) と同様の操作を行い、標題化合物を得た。

収率: 49.7%

(1) α -ブロモ-1, 3 -ジフェニル-1, 3 -プロパンジオン

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  6. 55 (1H, s), 7. 45-7. 50 (4 H, m), 7. 61 (2H, tt, J=7. 2, 2. 1Hz), 7. 98-8. 0 1 (4H, m).

(2) 2-アミノ-5-ベンゾイル-4-フェニルチアゾール

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 04-7. 18 (5H, m), 7. 22 -7. 32 (3H, m), 7. 35-7. 38 (2H, m), 8. 02 (2H, s).

(3) 5-ブロモーNー(5-ベンゾイルー4-フェニルチアゾールー2-イル) -2-ヒドロキシベンズアミド(化合物番号208)

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 0 3 (1H, d, J=8.7Hz), 7. 17-7. 30 (5H, m), 7. 39-7. 47 (3H, m), 7. 57-7. 60 (2H, m), 7. 64 (1H, dd, J=8.7, 2.7Hz), 8. 05 (1H, d, J=2.4Hz), 11. 82 (1H, brs), 12. 35 (1H, brs).

例209:化合物番号210の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノー4-フェニルチアゾール -5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、 標題化合物を得た。

収率:69.4%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 22 (3H, t, J=7.5Hz), 4. 21 (2H, q, J=7.5Hz), 7. 07 (1H, d, J=8.7Hz), 7. 43-7. 47 (3H, m), 7. 53 (1H, dd, J=8.7, 2.4Hz), 7. 70-7. 74 (2H, m), 7. 92 (1H, d, J=3.0Hz), 11. 88 (1H, br), 12. 29 (1H, brs).

例210:化合物番号209の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノー4-フェニルチアゾール -5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、 標題化合物を得た。

収率:28.6%

mp 197-199°C.

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  1. 21 (3H, t, J=6.8Hz), 4. 20 (2H, q, J=6.8Hz), 7. 01 (1H, d, J=8.8Hz), 7. 43-7. 48 (3H, m), 7. 63 (1H, dd, J=8.8, 2. 4Hz), 7. 70-7. 72 (2H, m), 8. 04 (1H, d, J=2.4Hz), 12. 33 (1H, brs).

例211:化合物番号211の化合物の製造

原料として、ペンタフルオロベンゾイル酢酸エチルエステルを用いて例195 (1)~(3)と同様の操作を行い、標題化合物を得た。

収率:40.0%(3工程)

- (1)  $\alpha$   $\overline{j}$   $\overline{j}$
- (2) 2-アミノ-4-(ペンタフルオロフェニル) チアゾール-5-カルボン 酸 エチルエステル

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  1. 23 (3H, t, J=7. 2Hz), 4. 2 1 (2H, q, J=7. 2Hz), 5. 41 (2H, s).

(3) 2-(5-ブロモ-2-ヒドロキシベンゾイル) アミノー4-(ペンタフ

ルオロフェニル)チアゾールー5ーカルボン酸 エチル(化合物番号211)  $^{1}$ H-NMR(DMSO-d<sub>6</sub>): $\delta$  1.20(3H, t, J=7.2Hz), 2.51(2H, q, J=7.2Hz), 7.02(1H, d, J=8.7Hz), 7.64(1H, dd, J=8.7, 2.7Hz), 7.90(1H, d, J=3.0Hz), 11.92(1H, br), 12.58(1H, br).

例212:化合物番号212の化合物の製造

(1)2-(5-ブロモー2-ヒドロキシベンゾイル)アミノー4-フェニルチ アゾール-5-カルボン酸

2-(5-) ロモー 2- ヒドロキシベンゾイル)アミノー 4- フェニルチアゾールー 5- カルボン酸エチルエステル(化合物番号 209)を用いて例 82 と同様の操作を行い、標題化合物を得た。

収率:67.0%

 $^{1}$ H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 00 (1H, d, J=8.8Hz), 7. 42-7. 44 (3H, m), 7. 62 (1H, dd, J=8.8, 2.4Hz), 7. 70-7. 72 (2H, m), 8. 04 (1H, d, J=2.4Hz), 12. 31 (1H, brs), 12. 99 (1H, brs).

(2) [2-(5-7)ロモー 2-ヒドロキシベンゾイル) アミノー4ーフェニルチアゾールー5ーイル] -Nーメチルカルボキサミド (化合物番号 2 1 2) 2-(5-7)ロモー 2-ヒドロキシベンゾイル) アミノー4ーフェニルチアゾールー5ーカルボン酸  $(0.20g,0.48\,\mathrm{mm\,o}\,1)$ 、メチルアミン 40%メタノール溶液  $(0.2\,\mathrm{m}\,1)$ 、1-ヒドロキシベンゾトリアゾール 水和物  $(96.7\,\mathrm{m}\,g,0.72\,\mathrm{mm\,o}\,1)$ 、WSC・HC1  $(137.2\,\mathrm{m}\,g,0.72\,\mathrm{mm\,o}\,1)$ 、テトラヒドロフラン  $(15\,\mathrm{m}\,L)$  の混合物を室温で  $18\,\mathrm{時間攪拌}$ した。反応混合物を 2規定塩酸にあけ、酢酸エチルで抽出した。 有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー (n-ヘキサン:酢酸エチル= 1:2)で精製し、結晶化  $(500\,\mathrm{mm}\,g)$ 0・7・9 mg、

42.6%)を得た。

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 70 (3H, d, J=4.5Hz), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 48 (3H, m), 7. 63 (1H, dd, J=9.0, 2.4Hz), 7. 68-7. 71 (2H, m), 8. 06 (1H, d, J=2.4Hz), 8. 16 (1H, t, J=4.5Hz), 1. 88 (1H, br), 12. 15 (1H, brs).

以下の実施例において例212(2)の方法が引用されている場合、脱水縮合剤 としては、WSC・HC1、及び1-ヒドロキシベンゾトリアゾール水和物を用 いた。また、反応溶媒としては、テトラヒドロフラン等の溶媒を用いた。

例213:化合物番号213の化合物の製造

原料として、2-(5-プロモー2-ヒドロキシベンゾイル) アミノー4-フェ ニルチアゾール-5-カルボン酸(例 2 1 2 (1) の化合物)、及びエチルアミンの 7 0 %水溶液を用いて例 2 1 2 (2) と同様の操作を行い、標題化合物を得た。

収率:62.5%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  1. 05 (3H, t, J=6.9Hz), 3. 15-3. 24 (2H, m), 7. 02 (1H, d, J=8.7Hz), 7. 40 -7. 47 (3H, m), 7. 63 (1H, dd, J=8.7, 3.0Hz), 7. 69-7. 72 (2H, m), 8. 06 (1H, d, J=2.4Hz), 8. 20 (1H, t, J=5.4Hz), 11. 84 (1H, br), 12. 14 (1H, brs).

例214:化合物番号214の化合物の製造

原料として、2-(5-)ロモー2-ヒドロキシベンゾイル)アミノー4-フェニルチアゾールー5-カルボン酸(例212(1)の化合物)、及びイソプロピルアミンを用いて例212(2)と同様の操作を行い、標題化合物を得た。

収率: 23. 9%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  1. 07 (6H, d, J=6.3Hz), 4. 02 (1H, m), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 52

(3H, m), 7. 64 (1H, dd, J=8.7, 2.7Hz), 7. 69-7. 73 (2H, m), 8. 06 (1H, d, J=2.7Hz), 11. 89 (1H, br), 12. 14 (1H, brs).

例215:化合物番号215の化合物の製造

原料として、2-(5-) ロモー2- ヒドロキシベンゾイル)アミノー4- フェニルチアゾールー5- カルボン酸(例212(1) の化合物)、及び2- フェネチルアミンを用いて例212(2) と同様の操作を行い、標題化合物を得た。

収率:62.2%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  2. 78 (2H, t, J=7.5Hz), 3. 43 (2H, q, J=7.5Hz), 7. 02 (1H, d, J=9.0Hz), 7. 19-7. 24 (3H, m), 7. 27-7. 33 (2H, m), 7. 39-7. 41 (3H, m), 7. 61-7. 65 (3H, m), 8. 06 (1H, d, J=2.4Hz), 8. 25 (1H, t, J=6.0Hz), 11. 85 (1H, brs).

例216:化合物番号216の化合物の製造

原料として、5 ーブロモサリチル酸、及び2 ーアミノー4 ー (トリフルオロメチル) チアゾールー5 ーカルボン酸 エチルエステルを用いて例195 (3) と同様の操作を行い、標題化合物を得た。

収率:88.7%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 32 (3H, t, J=7. 2Hz), 4. 33 (2H, q, J=7. 2Hz), 7. 01 (1H, d, J=8. 7Hz), 7. 63 (1H, dd, J=8. 7, 2. 7Hz), 7. 98 (1H, d, J=2. 4Hz), 12. 64 (1H, br).

例217:化合物番号217の化合物の製造

原料として、5-クロロ-N-  $\{4-[(1,1-$ ジメチル) エチル] - 5-[(2,2-ジメチル) プロピオニル] チアゾール-2-イル $\}$  -2-ヒドロキシベンズアミド (化合物番号195)、及びアセチルクロリドを用いて例96と同様の操作

を行い、標題化合物を得た。

収率:65.3%

 $^{1}$ H-NMR (CDCl<sub>3</sub>):  $\delta$  1. 32 (9H, s), 1. 33 (9H, s), 2. 46 (3H, s), 7. 22 (1H, d, J=8. 4Hz), 7. 56 (1H, d d, J=8. 7, 2. 4Hz), 8. 05 (1H, d, J=2. 7Hz), 9. 8 2 (1H, brs).

例218:化合物番号218の化合物の製造

原料として、4-ヒドロキシビフェニル-3-カルボン酸及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:61.7%

mp 207-208°C.

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 23 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7. 2Hz), 7. 16 (1H, d, J=8. 7Hz), 7. 36 (1H, t, J=7. 5Hz), 7. 45-7. 50 (5H, m), 7. 69 -7. 76 (4H, m), 7. 85 (1H, dd, J=8. 7, 2. 4Hz), 8. 31 (1H, d, J=2. 4Hz), 11. 73 (1H, brs), 12. 60 (1H, brs).

[4-ヒドロキシビフェニル-3-カルボン酸:「テトラヘドロン(Tetrahedron)」, 1997年, 第53巻, p. 11437参照]

例219:化合物番号219の化合物の製造

原料として、(4'-7)ルオロー4-ヒドロキシビフェニル)-3-カルボン酸及び2-アミノー4-フェニルチアゾールー5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:62.7%

mp 237-238°C.

 $^{1}H-NMR (DMSO-d_{6}): \delta$  1. 22 (3H, t, J=7. 2Hz),

4. 21 (2H, q, J=7. 2Hz), 7. 13 (1H, d, J=8. 4Hz),
7. 28 (2H, t, J=8. 8Hz), 7. 44-7. 45 (3H, m), 7.
71-7. 75 (4H, m), 7. 81 (1H, dd, J=8. 8, 2. 4Hz),
8. 27 (1H, d, J=2. 4Hz), 11. 67 (1H, brs), 12. 5
8 (1H, brs).

[(4'-フルオロー4-ヒドロキシビフェニル)-3-カルボン酸:「テトラヘドロン (Tetrahedron)」, 1997年, 第53巻, p. 11437参照]

例220:化合物番号220の化合物の製造

原料として、(2', 4'-ジフルオロ-4-ヒドロキシビフェニル)-3-カルボン酸及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:45.6%

mp 206-207°C.

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 22 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7, 2Hz), 7. 17 (1H, d, J=9. 0Hz), 7. 21 (1H, td, J=8. 7, 2. 4Hz), 7. 38 (1H, ddd, J=11. 7, 9. 3, 2. 4Hz), 7. 44-7. 46 (3H, m), 7. 6 0-7. 75 (4H, m), 8. 13-8. 14 (1H, m), 11. 86 (1H, brs), 12. 46 (1H, brs).

例221:化合物番号221の化合物の製造

(1) [4-ヒドロキシー4'-(トリフルオロメチル) ビフェニル] -3-カル ボン酸

5 ー ブロモサリチル酸(5 0 0 mg, 2.30 mmo1)、ジヒドロキシー4 ー (トリフルオロメチル)フェニルボラン(488mg, 2.57mmo1)、酢酸パラジウム(10mg, 0.040mmo1)及び1M 炭酸ナトリウム(7mL)の混合物を80℃で1時間攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウム

で乾燥した後、溶媒を減圧留去した。得られた残渣を、定法に従いトリメチルシリルジアゾメタン及びメタノールによりメチルエステル化し、次いでシリカゲルカラムクロマトグラフィー( $n-\alpha$ キサン:酢酸エチル=5:1)で精製して無色液体(563mg)を得た。これをメタノール(10mL)に溶解し、2規定水酸化ナトリウム(3mL)を添加し、次いで60℃で1時間攪拌した。反応混合物を室温まで冷却後、2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣を $n-\alpha$ キサンージクロルメタンで加熱還流下に懸濁洗浄して標題化合物の白色結晶(458mg, 70.4%)を得た。

mp 185°C (dec.).

 $^{1}$ H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 09 (1H, d, J=8.8Hz), 7. 77 (2H, d, J=8.0Hz), 7. 85 (2H, d, J=8.0Hz), 7. 90 (1H, dd, J=8.8, 2.0Hz), 8. 10 (1H, d, J=2.4Hz), 11.80 (1H, brs).

(2) $2-\{[4-ヒドロキシ-4'-(トリフルオロメチル) ビフェニル]-3$ -カルボニル $\}$  アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステル (化合物番号221)

原料として、[4-ヒドロキシ-4'-(トリフルオロメチル)ビフェニル]-3-カルボン酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。収率: <math>41.7%

mp 236-237°C.

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 22 (3H, t, J=7. 2Hz), 4. 21 (2H, q, J=7. 2Hz), 7. 18 (1H, d, J=8. 8Hz), 7. 44-7. 45 (3H, m), 7. 72-7. 74 (2H, m), 7. 81 (2H, d, J=8. 4Hz), 7. 91 (1H, dd, J=8. 8, 2. 4Hz), 7. 93 (2H, d, J=8.4Hz), 8. 36 (1H, d, J=2. 4Hz), 11.

78 (1H, brs), 12.62 (1H, brs).

例222:化合物番号222の化合物の製造

原料として、2-ビドロキシ-5-(1-ピロリル)安息香酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例 1 9 5 (3) と同様の操作を行い、標題化合物を得た。

収率:55.0%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 1. 22 (3H, t, J=7.2Hz), 4. 22 (2H, q, J=7.2Hz), 6. 26 (2H, t, J=2.1Hz), 7. 13 (1H, d, J=8.7Hz), 7. 32 (2H, t, J=2.1Hz), 7. 43-7. 47 (3H, m), 7. 70-7. 75 (3H, m), 8. 09 (1H, d, J=2.7Hz), 11. 58 (1H, brs), 12. 55 (1H, brs). 例 223: 化合物番号 223の化合物の製造

(1) 2-ヒドロキシ-5-(2-チエニル) 安息香酸

5ーブロモサリチル酸(500mg, 2.30mmo1)、を1,2ージメトキシエタン(5mL)に溶解し、アルゴン雰囲気下、テトラキス(トリフェニルホスフィン)パラジウム(80mg, 0.07mmo1)を添加、室温で10分間攪拌した。次いでジヒドロキシー2ーチエニルボラン(324mg, 2.53mmo1)及び1M炭酸ナトリウム(7mL)を添加し2時間加熱還流した。反応混合物を室温まで冷却後2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を定法に従いトリメチルシリルジアゾメタン及びメタノールによりメチルエステル化し、次いでシリカゲルカラムクロマトグラフィー(nーへキサン:酢酸エチル=5:1)で精製して黄色液体(277mg)を得た。これをメタノール(5mL)に溶解し、2規定水酸化ナトリウム(1.5mL)を添加し、次いで60℃で1時間攪拌した。反応混合物を室温まで冷却後、2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をnーへキサンージクロルメ

タンで晶析して標題化合物の白色結晶(58mg,11.5%)を得た。

<sup>1</sup>H-NMR(DMSO-d<sub>6</sub>): δ 6. 95(1H, d, J=8. 8Hz), 7. 0 9(1H, dd, J=4. 8, 3. 6Hz), 7. 37(1H, dd, J=4. 0, 1. 2Hz), 7. 45(1H, dd, J=5. 2, 1. 2Hz), 7. 74(1H, dd, J=8. 8, 2. 8Hz), 7. 96(1H, d, J=2. 8Hz).

収率:58.2%

mp 213-214°C.

 $^{1}H-NMR(DMSO-d_{6}): \delta \ 1. \ 2\ 2(3\,H,\ t,\ J=7.\ 2\,H\,z),\ 4. \ 2$   $1\ (2\,H,\ q,\ J=7.\ 2\,H\,z),\ 7. \ 1\ 0\ (1\,H,\ d,\ J=9.\ 2\,H\,z),\ 7. \ 1\ 2\ (1\,H,\ dd,\ J=4.\ 8,\ 3.\ 6\,H\,z),\ 7.\ 4\ 4-7.\ 4\ 6\ (4\,H,\ m),\ 7.\ 5\ 0$   $(1\,H,\ dd,\ J=4.\ 8,\ 1.\ 2\,H\,z),\ 7.\ 7\ 1-7.\ 7\ 4\ (2\,H,\ m),\ 7.\ 7$   $9\ (1\,H,\ dd,\ J=8.\ 8,\ 2.\ 4\,H\,z),\ 8.\ 2\ 1\ (1\,H,\ d,\ J=2.\ 4\,H\,z),\ 11.\ 7\ 8\ (1\,H,\ b\ r\ s),\ 1\ 2.\ 4\ 4\ (1\,H,\ b\ r\ s).$ 

例301:化合物番号301の化合物の製造

(1) 5-クロロー2-メトキシーβ-フェニルスチレン

2-プロモー4-クロロアニソール( $300\,\mathrm{mg}$ ,  $1.4\,\mathrm{mmo}$  1)、スチレン( $21\,\mathrm{mg}$ ,  $2\,\mathrm{mmo}$  1)、トリエチルアミン( $13\,\mu$  L,  $0.1\,\mathrm{mmo}$  1)、トリフェニルフォスフィン( $50\,\mathrm{mg}$ ,  $1.9\,\mathrm{mmo}$  1)のアセトニトリル( $6\,\mathrm{mL}$ )溶液に酢酸パラジウム( $21\,\mathrm{mg}$ ,  $7\,\mathrm{mo}$  1%)を加え、アルゴン雰囲気下、8時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧濃縮し、得られた残渣を酢酸エチル( $15\,\mathrm{mL}$ )で希釈し、 $2\,\mathrm{規定塩酸}$ 、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲ

ルカラムクロマトグラフィー  $(n-\alpha+ + \nu)$ : 酢酸エチル=10:1) で精製して、標題化合物の白色粉末 (118mg, 35.6%) を得た。

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  3. 85 (3H, s), 6. 80 (1H, d, J = 8. 8Hz), 7. 08 (1H, d, J=16. 8Hz), 7. 17 (1H, d d, J=8. 8, 2. 5Hz), 7. 20-7. 42 (4H, m), 7. 51-7. 55 (3H, m).

(2) 4-クロロー2-スチリルフェノール (化合物番号301)

5-クロロ-2-メトキシ-β-フェニルスチレン(80 mg, 0.3 mm o 1)のジクロロメタン(2 mL)溶液に、アルゴン雰囲気下、1 mo 1/Lボロントリブロミド/ジクロロメタン溶液(0.5 mL, 0.5 mm o 1)を室温で加え、12時間攪拌した。反応混合物を酢酸エチル(15 mL)で希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末(34.2 mg, 45.4%)を得た。

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  4. 95 (1H, brs), 6. 74 (1H, d, J=8. 7Hz), 7. 09 (1H, dd, =8. 7, 2. 4Hz), 7. 10 (1H, d, J=16. 2Hz), 7. 28-7. 39 (4H, m), 7. 49-7. 54 (3H, m).

例302:化合物番号302の化合物の製造

(1)(S)-2-アミノ-3-フェニル-N-[3, 5-ビス(トリフルオロメチル)フェニル]プロピオンアミド

3,5-ビス(トリフルオロメチル) アニリン(0.20g,0.87mmo1)、N-(tert-ブトキシカルボニル) -L-フェニルアラニン(254.8mg,0.96mmo1)、三塩化リン(40 $\mu$ L,0.46mmo1)、トルエン(4mL)の混合物を、アルゴン雰囲気下、80 $^{\circ}$ で1.5時間攪拌した。反応混合物を室温まで冷却した後、炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 3. 13 (1H, dd, J=13. 8, 8. 1Hz), 3. 29 (1H, dd, J=13. 8, 6. 0Hz), 4. 37 (1H, s), 7. 25-7. 38 (5H, m), 7. 86 (1H, s), 8. 30 (2H, s), 8. 48 (3H, s), 11. 95 (1H, s).

以下の実施例において例302(1)の方法が引用されている場合、酸ハロゲン 化剤としては、三塩化リンを用いた。また、反応溶媒としては、トルエン、モノ クロロベンゼン等の溶媒を用いた。

(2) (S) -2-rセトキシー $5-\rho$ ロローN- (2-フェニル-1- {[3, 5-ビス(トリフルオロメチル)フェニル] カルバモイル} エチル)ベンズアミド

2-アセトキシー5-クロロ安息香酸(104 mg,0.48 mm o 1)、(S)-2-アミノー3-フェニルーN-[3,5-ビス(トリフルオロメチル)フェニル]プロピオンアミド(0.20 g,0.48 mm o 1)、1-ヒドロキシベンゾトリアゾール(71.4 mg,0.53 mm o 1)のN,N-ジメチルホルムアミド(4 m L)溶液に、WSC・HC1(184 mg,0.96 mm o 1)を加え、室温で3 時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $3:1\rightarrow 2:1$ )で精製して、標題化合物の白色結晶(14.4 mg,51.4%)を得た。

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 05 (3H, s), 3. 04 (1H, d d, J=13. 8, 9. 9Hz), 3. 19 (1H, d d, J=13. 8, 4. 8 Hz), 4. 73-4. 81 (1H, m), 7. 22-7. 35 (6H, m), 7. 54 (1H, d, J=2. 4Hz), 7. 60 (1H, dd, J=8. 7, 2. 4 Hz), 7. 81 (1H, s), 8. 27 (2H, s), 8. 91 (1H, d, J=

7. 8 Hz), 10. 81 (1H, s).

以下の実施例において例302(2)の方法が引用されている場合、脱水縮合剤 としては、WSC・HC1、及び1-ヒドロキシベンブトリアブールを用いた。 また、反応溶媒としては、N, N-ジメチルホルムアミド等の溶媒を用いた。

(3)(S)-5-クロロ-2-ヒドロキシ-N-(2-フェニル-1-{[3, 5-ビス(トリフルオロメチル)フェニル]カルバモイル}エチル)ベンズアミド(化合物番号302)

以下の実施例において例302(3)の方法が引用されている場合、塩基としては、水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒としては、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

例303:化合物番号303の化合物の製造

(1)  $[1-({[3,5-ビス(トリフルオロメチル)フェニル]アミノ}カルボニル)メチル]カルバミン酸 1,1-ジメチルエチルエステル$ 

3, 5-ビス(トリフルオロメチル)アニリン(0. 20g, 0. 87mmo1)のテトラヒドロフラン(4mL)溶液に、アルゴン雰囲気下、N-(tert-ブトキシカルボニル)グリシン(183. 5mg, 1. 05mmo1)、トリエチルアミン(0. 25mL, 1. 79mmo1)を加え、氷浴で冷却後、オキシ塩化リン( $96\mu L$ , 1. 05mmo1)を加え、室温で5時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $2:1 \rightarrow 3:2$ )で精製して、標題化合物の白色結晶(101. 9mg, 30. 3%)を得た。 $^1$ H-NMR( $CDC1_3$ ): $\delta$  1. 49 (9H, s), 3. 99 (2H, d, J

H-NMR (CDC1<sub>3</sub>). 0 1. 49 (9H, s), 3. 99 (2H, d, J) = 6. 0Hz), 5. 37 (1H, t, J=6. 0Hz), 7. 57 (1H, s), 8. 00 (2H, s), 9. 06 (1H, brs).

(2) 2-アミノ-N-[3, 5-ビス(トリフルオロメチル)フェニル]アセトアミド塩酸塩

[1-({[3,5-ビス(トリフルオロメチル)フェニル] アミノ} カルボニル) メチル] カルバミン酸 1,1-ジメチルエチルエステル(101.9 mg,0.26 mmol)に4規定塩酸・酢酸エチル溶液(1 mL)を加え、室温で1時間 攪拌した。反応混合物にn-ヘキサン(15 mL)を加え、析出した白色固体を 濾取して、標題化合物の白色粉末(80.8 mg,96.4%)を得た。  $^1$ H-NMR(CD $_3$ OD): $\delta$ 3.89(2 H,s),7.71(1 H,s),

8. 22 (2H, s).

(3) 2-rセトキシー $5-\rho$ ロローN-({[3, 5-ビス(トリフルオロメチル)フェニル] カルバモイル} メチル)ベンズアミド

2-アセトキシ-5-クロロ安息香酸(59.1mg, 0.28mmo1)、2-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]アセトアミド塩酸

塩(80.8 mg, 0.25 mm o 1)、1-ヒドロキシベンゾトリアゾール(37.2 mg, 0.28 mm o 1)のN, Nジメチルホルムアミド(3 mL)溶液にWSC・HC1(95.9 mg, 0.5 mm o 1)を加え、室温で3時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:2 $\rightarrow$ 1:1)で精製して、標題化合物の白色結晶(83.7 mg, 69.3%)を得た。

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  2. 40 (3H, s), 4. 40 (2H, d, J = 5. 4Hz), 7. 17 (1H, d. J=8. 4Hz), 7. 40 (1H, t, J=5. 4Hz), 7. 53 (1H, dd, J=8. 4, 2. 4Hz), 7. 62 (1H, s), 7. 82 (1H, d, J=2. 4Hz), 8. 19 (2H, s), 9. 20 (1H, s).

(4) 5-クロロー2ーヒドロキシーNー({[3, 5ービス(トリフルオロメチル)フェニル]カルバモイル}メチル)ベンズアミド(化合物番号303)2ーアセトキシー5ークロローNー({[3, 5ービス(トリフルオロメチル)フェニル]カルバモイル}メチル)ベンズアミド(83.7mg,0.17mmo1)のメタノール/テトラヒドロフラン(2mL+1mL)溶液に、5規定水酸化ナトリウム水溶液(0.1mL)を加え、室温で20分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=2:1)で精製、nーヘキサンで懸濁洗浄して、標題化合物の白色結晶(47.7mg,63.7%)を得た。

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  4. 18 (2H, d, J=5.4Hz), 7. 00 (1H, d, J=9.0Hz), 7. 47 (1H, dd, J=9.0, 2.7 Hz), 7. 80 (1H, s), 7. 96 (1H, d, J=2.7Hz), 8. 27

(2H, s), 9. 25 (1H, t, J=5.4Hz), 10. 78 (1H, s), 12. 14 (1H, s).

例304:化合物番号304の化合物の製造

(1) 5-クロロサリチルヒドラジド

 $5-\rho$ ロロー2ーヒドロキシ安息香酸 メチルエステル (0.50g, 2.7mmol)、ヒドラジン一水和物 (0.3mL, 6.2mmol)、エタノール (5mL) の混合物を 6 時間加熱還流した。反応混合物を室温まで冷却後、n-ヘキサンを加え、析出した結晶を濾取して、標題化合物の白色結晶 (395.9mg, 79.2%) を得た。

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  6. 90 (1H, d, J=8.7Hz), 7. 38 (1H, dd, J=8.7, 2.7Hz), 7. 85 (1H, d, J=8.7Hz), 10. 23 (brs).

(2) 5-クロロサリチル酸 [3, 5-ビス (トリフルオロメチル) ベンジリデン] ヒドラジド (化合物番号 304)

5-クロロサリチルヒドラジド(213.9mg, 1.2mmo1)、3, 5-ビス(トリフルオロメチル)ベンズアルデヒド( $190\mu$ L, 1.2mmo1)、濃硫酸(3 滴)、エタノール(5mL)の混合物を、30分間加熱還流した。3, 5-ビス(トリフルオロメチル)ベンズアルデヒド( $100\mu$ L, 0.61mmo1)を追加し、さらに1時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $3:1\rightarrow 2:1$ )で精製、n-ヘキサンで懸濁洗浄して、標題化合物の白色粉末(362.6mg, 76.8%)を得た。

 $^{1}H-NMR (DMSO-d_{6}): \delta$  7.03 (1H, d, J=9.0Hz), 7.49 (1H, dd, J=9.0, 2.7Hz), 7.86 (1H, d, J=3.0Hz), 8.20 (1H, s), 8.40 (2H, s), 8.59 (1H, s), 1

1. 65 (1H, s), 12. 14 (1H, s).

例305:化合物番号305の化合物の製造

(1)(S)-2-アミノ-4-メチル-N-[3,5-ビス(トリフルオロメチル)フェニル]ペンタンアミド

原料として、N-(tert-ブトキシカルボニル)-L-ロイシン、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例302(1)と同様の操作を行い、標題化合物を得た。

収率: 25. 2%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0. 98 (3H, d, J=6. 3Hz), 1. 0 1 (3H, d, J=6. 3Hz), 1. 39-1. 48 (1H, m), 1. 74-1. 89 (2H, m), 3. 55 (1H, dd, J=9. 9, 3. 6Hz), 7. 58 (1H, s), 8. 12 (2H, s), 10. 01 (1H, s).

(2)(S)-5-クロロ-2-ヒドロキシ-N-(3-メチル-1-{[3, 5-ビス(トリフルオロメチル)フェニル]カルバモイル}ブチル)ベンズアミド(化合物番号305)

原料として、2-アセトキシ-5-クロロ安息香酸、及び(S)-2-アミノ-4-メチル-N-[3,5-ビス(トリフルオロメチル)フェニル]ペンタンアミドを用いて例302(2)~(3)と同様の操作を行い、標題化合物を得た。

収率:24.8%(2工程)

 $^{1}H-NMR (DMSO-d_{6}): \delta = 0.95 (3H, d, J=5.7Hz), 0.$  97 (3H, d, J=6.0Hz), 1.65-1.84 (3H, m), 4.65-4.72 (1H, m), 6.98 (1H, d, J=9.0Hz), 7.47 (1H, dd, J=8.7, 2.4Hz), 7.79 (1H, s), 8.06 (1H, d, J=2.7Hz), 8.32 (2H, s), 9.03 (1H, d, J=8.1Hz), 10.85 (1H, s), 12.20 (1H, s).

例306:化合物番号306の化合物の製造

原料として、5-クロロサリチルアルデヒド、及び3,5-ビス(トリフルオロ

メチル) ベンズヒドラジドを用いて例304(2) と同様の操作を行い、標題化 合物を得た。

収率:24.7%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  6. 97 (1H, d, J=8.7Hz), 7. 34 (1H, dd, J=9.0, 2.7Hz), 7. 73 (1H, d, J=2.4Hz), 8. 41 (1H, s), 8. 59 (2H, s), 8. 67 (1H, s), 1. 07 (1H, s), 12. 45 (1H, s).

例307:化合物番号307の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル)フェネチルアミンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:30.2%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  3. 10 (2H, t, J=6. 9Hz), 3. 7 1-3. 77 (2H, m), 6. 34 (1H, brs), 6. 95 (1H, d, J=8. 7Hz), 7. 23 (1H, d, J=2. 7Hz), 7. 36 (1H, dd, J=8. 7, 2. 4Hz), 7. 70 (2H, s), 7. 80 (1H, s), 12. 06 (1H, s).

例308:化合物番号308の化合物の製造

3-ヒドロキシ無水フタル酸(100 mg, 0.6 mm o 1)、3, 5-ビス(トリフルオロメチル)アニリン(168 mg, 0.7 mm o 1)、酢酸(5 m L)の混合物を、アルゴン雰囲気下、6 時間加熱還流した。反応混合物を室温まで冷却後、酢酸を減圧下留去し、得られた残渣を酢酸エチル(15 m L)で希釈、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末(100 mg, 43.7%)を得た。 $^1$ H-NMR( $DMSO-d_6$ ): $\delta$ 7.31(1H,d,J=8.1Hz),7.42(1H,d,J=7.5Hz),7.72(1H,dd,J=8.1Hz),8.21(1H,s),8.24(1H,s),11.28(1H,s).

例309:化合物番号309の化合物の製造

 $2-アミノ-4-クロロフェノール(143.6mg,1mmo1)のテトラヒドロフラン/トルエン(0.5mL+4.5mL)混合溶液に、3,5-ビス(トリフルオロメチル)フェニルイソシアネート(180<math>\mu$ L,1.04mmo1)を加え、100℃で1時間攪拌した。反応混合物を室温まで冷却後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=1:1)で精製、イソプロピルエーテル/n-ヘキサンで結晶化して、標題化合物の薄黄褐色粉末(288.5mg,72.4%)を得た。  $^1$ H-NMR(DMSO- $_6$ ): $\delta$ 6.84-6.91(2H,m),7.67(1H,s),8.06(2H,s),8.14(1H,d, $_5$ 1=2.1Hz),8.45(1H,s),10.10(1H,s),10.44(1H,s).例310:化合物番号310の化合物の製造

 $2-r \in J-4-0$ ロロアニソール( $131 \, \mathrm{mg}$ ,  $0.8 \, \mathrm{mmo} \, 1$ )の48%テトラフルオロホウ酸( $0.3 \, \mathrm{mL}$ )溶液に、氷冷、アルゴン雰囲気下、亜硝酸ナトリウム( $57 \, \mathrm{mg}$ ,  $0.8 \, \mathrm{mmo} \, 1$ )の水( $1 \, \mathrm{mL}$ )溶液を加えた。 $0 \, \mathrm{C} \, \mathrm{c} \, 1$ 時間攪拌した後、3,5-ビス(トリフルオロメチル)スチレン( $100 \, \mathrm{mg}$ ,  $0.4 \, \mathrm{mmo} \, 1$ )のメタノール( $3 \, \mathrm{mL}$ )溶液を加え、 $50 \, \mathrm{C} \, \mathrm{c} \, 1$ 時間攪拌した。反応混合物を室温まで冷却後、溶媒を減圧留去して得られた残渣を酢酸エチル( $15 \, \mathrm{mL}$ )で希釈し、 $2 \, \mathrm{規定塩酸}$ 、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の自色粉末( $52.8 \, \mathrm{mg}$ , 33.3%)を得た。

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  3. 85 (3H, s), 6. 80 (1H, d, J = 8. 8Hz), 7. 08 (1H, d, J=16. 8Hz), 7. 17 (1H, d d, J=8. 8, 2. 5Hz), 7. 20-7. 42 (4H, m), 7. 51-7.

55 (3H, m).

(2) 4-クロロー2-[3, 5-ビス(トリフルオロメチル)スチリル]フェ ノール(化合物番号310)

原料として、5-クロロー2-メトキシー $\beta-$ [3,5-ビス(トリフルオロメチル)フェニル]スチレンを用いて例 3 0 1 (2)と同様の操作を行い、標題化合物を得た。

収率:18.1%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 5. 16 (1H, brs), 6. 76 (1H, d, J=8. 4Hz), 7. 15 (1H, dd, J=8. 4, 2. 7Hz), 7. 19 (1H, d, J=16. 5Hz), 7. 45 (1H, d, J=15. 5Hz), 7. 53 (1H, d, J=2. 4Hz), 7. 76 (1H, s), 7. 93 (2H, s).

例311:化合物番号311の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノインダンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率: 45. 3%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 2. 98 (2H, dd, J=16. 2, 5. 7Hz), 3. 29 (2H, dd, J=16. 2, 7. 5Hz), 4. 69-4. 79 (1H, m), 6. 93 (1H, d, J=8. 7Hz), 7. 16-7. 20 (2H, m), 7. 23-7. 28 (2H, m), 7. 43 (1H, dd, J=8. 7, 2. 4Hz), 8. 02 (1H, d, J=2. 4Hz), 9. 03 (1H, d, J=6. 9Hz), 12. 66 (1H, s).

例312:化合物番号312の化合物の製造

(1) 4-クロロー 2- ({[3, 5-ビス(トリフルオロメチル)フェニル] イミノ} メチル)フェノール

原料として、5-クロロサリチルアルデヒド、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例14(1)と同様の操作を行い、標題化合物を得た。 収率:76.6%

 $^{1}$ H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 04 (1H, d, J=9. 0Hz), 7. 50 (1H, dd, J=9. 0, 2. 7Hz), 7. 80 (1H, d, J=2. 7Hz), 8. 01 (1H, s), 8. 12 (2H, s), 9. 03 (1H, s), 12. 09 (1H, brs).

(2) N-[(5-クロロー2-ヒドロキシフェニル) メチル] -3,5-ビス(トリフルオロメチル) アニリン(化合物番号312)

原料として、4-クロロ-2-( $\{[3,5-$ ビス(トリフルオロメチル)フェニル] イミノ $\}$ メチル)フェノールを用いて例 14 (2) と同様の操作を行い、標題化合物を得た。

収率:78.1%

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  4. 40 (3H, s), 6. 27 (1H, s), 6. 80 (1H, d, J=8. 4Hz), 7. 11 (2H, s), 7. 17-7. 20 (2H, m), 7. 30 (1H, s).

例313:化合物番号313の化合物の製造

N-[(5-クロロー2ーヒドロキシフェニル)メチル] -3,5ービス(トリフルオロメチル)アニリン(化合物番号312;88.8mg,0.24mmol)、酢酸(43mg,0.7mmol)のジクロルメタン(2mL)溶液に、アルゴン雰囲気下、WSC・HCl(138mg,0.7mmol)を加え、室温で12時間攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末(69mg,70.4%)を得た。

 $^{1}$ H-NMR (CDCl<sub>3</sub>):  $\delta$  1. 92 (3H, s), 4. 73 (2H, s), 6. 54 (1H, d, J=2. 4Hz), 6. 95 (1H, d, J=8. 4Hz), 7. 22 (1H, dd, J=8. 7, 2. 4Hz), 7. 53 (2H, s), 7. 99 (1H, s), 9. 21 (1H, s).

例314:化合物番号314の化合物の製造

5-クロロサリチルヒドラジド(例 3 0 4 (1) の化合物;0. 1 g, 0. 5 3 mm o 1 ) のピリジン(3 m L ) 溶液に、3, 5 - min m

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 04 (1H, d, J=9.0Hz), 7. 51 (1H, dd, J=8.7, 2.4Hz), 7. 92 (1H, d, J=2.4Hz), 8.43 (1H, s), 8.57 (2H, s), 10.79 (1H, s), 11.37 (1H, s), 11.81 (1H, s).

例315:化合物番号315の化合物の製造

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  4. 22 (2H, d, J=4.8Hz), 5. 1 3 (1H, q, J=4.8Hz), 6. 96 (1H, d, J=8.7Hz), 7. 23 (1H, d, J=2.4Hz), 7. 37 (1H, dd, J=9.0, 2.4Hz), 7. 69 (1H, d, J=4.8Hz), 7. 85 (1H, s), 7. 88 (2H, s), 11. 54 (1H, s).

例316:化合物番号316の化合物の製造

5-クロロサリチル酸(172.6mg, 1mmo1)、3, 5-ビストリフルオロメチルフェノール( $152\mu$ L, 1mmo1)、オキシ塩化リン( $40\mu$ L, 0.43mmo1)、キシレン(3mL)の混合物を140℃で2時間攪拌した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $10:1 \rightarrow 5:1$ )で精製して、標題化合物の白色結晶(53.6mg, 13.9%)を得た。

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 7.04 (1H, d, J=9.0Hz), 7.5 4 (1H, d d, J=9.0, 2.7Hz), 7.75 (2H, s), 7.86 (1H, s), 8.02 (1H, d, J=2.7Hz), 10.09 (1H, s). 例 317:化合物番号 317の化合物の製造

5-クロロサリチル酸( $35\,\mathrm{mg}$ ,  $0.2\,\mathrm{mmo}\,1$ )、3, 5-ビス (トリフルオロメチル)フェニルヒドラジン( $50\,\mathrm{mg}$ ,  $0.2\,\mathrm{mmo}\,1$ )、のジクロロメタン( $2\,\mathrm{mL}$ )溶液に、アルゴン雰囲気下、WSC・HC1( $30.9\,\mathrm{mg}$ ,  $0.2\,\mathrm{mmo}\,1$ )を加え、室温で1時間攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末( $56.3\,\mathrm{mg}$ , 69.6%)を得た。

<sup>1</sup>H-NMR (CDC1<sub>3</sub>): δ 6. 61 (1H, d, J=2. 7Hz), 6. 9 9 (1H, d, J=8. 7Hz), 7. 28 (2H, s), 7. 41-7. 45 (2 H, m), 7. 62 (1H, d, J=2. 4Hz), 8. 53 (1H, brs), 1 1. 11 (1H, s).

例318:化合物番号318の化合物の製造

(1) 2-ブロモー1-(5-クロロー2-ヒドロキシフェニル) エタノン 5'-クロロー2'-ヒドロキシアセトフェノン (0.20g, 1.17mmo

1)のテトラヒドロフラン(6 mL)溶液に、フェニルトリメチルアンモニウムトリブロミド(0.44g,1.17mmol)を加え、室温で8時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の黄色オイル(220.7mg,75.6%)を得た。

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  4. 41 (2H, s), 7. 00 (1H, d, J = 9. 3Hz), 7. 47 (1H, dd, J=8. 7, 2. 4Hz), 7. 71 (1H, d, J=2. 7Hz), 11. 63 (1H, s).

(2) 2-(2-r) + r + r + n - 4 - 4 - 4 - n - 4 - 4 - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n - 2 - n -

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 6.85 (1H, d, J=8.7Hz), 7. 14 (1H, dd, J=8.7, 3.0Hz), 7.25 (1H, s), 7.48 (2H, s), 7.79 (1H, d, J=3.0Hz), 11.95 (1H, s). (3) N-[4-(5-クロロ-2-ヒドロキシフェニル) チアゾールー2ーイル] - [3,5-ビス (トリフルオロメチル) フェニル] ベンズアミド (化合物番号318)

 $2-(2-r \le J \ne r \lor - \nu - 4 - 4 - 4 \nu) - 4 - 2 - \nu - \nu$  (98.6 mg, 0.41 mm o 1)、3,5 - ビストリフルオロメチル安息香酸(104.9 mg,0.41 mm o 1)、クロロベンゼン(3 mL)、N-メチルー2 - ピロリ

ジノン  $(3\,\mathrm{m\,L})$  の混合物に三塩化リン  $(36\,\mu\,\mathrm{L},\ 0.41\,\mathrm{mmo\,I})$  加え、 3時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、で抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー  $(n-\alpha+\psi)$ :酢酸エチル= $4:1\to2:1$ )で精製、イソプロピルエーテル $/n-\alpha+\psi$ ンで懸濁洗浄して、標題化合物の白色粉末  $(19.6\,\mathrm{m\,g},\ 10.3\%)$  を得た。

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  6. 98 (1H, d, J=8. 4Hz), 7. 21 (1H, dd, J=8. 7, 2. 7Hz), 7. 95 (1H, s), 8. 08 (1H, d, J=2. 7Hz), 8. 45 (1H, s), 8. 77 (2H, s), 10. 90 (1H, s), 13. 15 (1H, s).

例319:化合物番号319の化合物の製造

(1) 3 - [3, 5-ビス (トリフルオロメチル) ベンジル] チアゾリジン<math>- 2,4 -ジオン

2, 4-チアゾリジンジオン(198.7mg, 1.69mmo1)、3, 5-ビス(トリフルオロメチル)ベンジルブロミド(0.50g, 1.63mmo1)、エタノール(5mL)の混合物に5規定水酸化ナトリウム水溶液(0, 5mL)を加え、4時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $3:1\rightarrow 2:1$ )で精製して、標題化合物の白色結晶(405.6mg, 72.5%)を得た。

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 4. 01 (2H, s), 4. 87 (2H, s), 7. 84 (1H, s), 7. 86 (2H, s).

(2) 5-(5-クロロー2-ヒドロキシベンジリデン)-3-[3, 5-ビス(トリフルオロメチル)ベンジル]チアゾリジン-2,4-ジオン(化合物番号319)

3-[3, 5-ビス(トリフルオロメチル)ベンジル]チアゾリジン-2,4-

ジオン (0.20g, 0.58mmo1)、ピペリジン (3滴)、酢酸 (3滴)トルエン (5mL) の混合物を、室温で10分間攪拌し、5-クロロサリチルアルデヒド (92.3mg, 0.59mmo1) を加え、1時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、で抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル= $2:1\rightarrow 3:2$ )で精製して、標題化合物の薄黄色粉末 (173.2mg, 62.0%) を得た。 $^1$ H-NMR  $(DMSO-d_6):\delta$  5.03(2H,s),7.00(1H,d,J=9.0Hz),7.33(1H,d,J=2.4Hz),7.38(1H,d,d,J=8.7,2.7Hz),8.03(1H,s),8.05(2H,s),8.07(1H,s),10.95(1H,s).

例320:化合物番号320の化合物の製造

3-ヒドロキシ無水フタル酸(3.3.5mg, 0.2mmol)、3,5-ビストリフルオロメチルベンジルアミン(6.2mg, 0.2mmol)、クロロベンゼン(5mL)の混合物を、アルゴン雰囲気下、3時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧下留去し、得られた残渣をn-ヘキサン/酢酸エチルで晶析して、標題化合物の白色結晶(6.8.5mg, 8.5.2%)を得た。 $^1$ H-NMR(CDCl $_3$ ): $\delta$  4.90(2H, s), 7.19(1H, dd, J=8.4, 0.6 Hz), 7.41(1H, dd, J=7.2, 0.6 Hz), 7.61(1H, dd, J=8.4, 7.2 Hz), 7.75(1H, brs), 7.82(1H, brs), 7.86(2H, s).

例321:化合物番号321の化合物の製造

5-クロロサリチルアルデヒド( $150 \,\mathrm{mg}$ ,  $1 \,\mathrm{mmo}\,1$ )、3, 5-ビス(トリフルオロメチル)フェニルヒドラジン( $200 \,\mathrm{mg}$ , 0.  $9 \,\mathrm{mmo}\,1$ )、メタノール( $5 \,\mathrm{mL}$ )の混合物を,アルゴン雰囲気下、 $1 \,\mathrm{時間加熱環流した}$ 。反応混合物を室温まで冷却後、メタノールを減圧下留去し、得られた残渣をn-ヘキサン/酢酸エチルで晶析して、標題化合物の白色粉末( $224 \,\mathrm{mg}$ , 66.6%)を得

た。

<sup>1</sup>H-NMR (CDC 1<sub>3</sub>):  $\delta$  6. 97(1H, d, J=8. 7Hz), 7. 1 7(1H, d, J=2. 4Hz), 7. 24(1H, dd, J=9. 0, 2. 7Hz), 7. 35(2H, s), 7. 41(1H, s), 7. 82(1H, s), 7. 87(1H, s), 10. 29(1H, s).

例322:化合物番号322の化合物の製造

原料として、6-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:86.9%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  6. 36 (2H, d, J=8. 4Hz), 7. 13 (1H, t, J=8. 4Hz), 7. 79 (1H, s), 8. 38 (2H, s), 11. 40 (2H, brs), 11. 96 (1H, brs).

例323:化合物番号323の化合物の製造

原料として、4-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:42.9%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 32 (3H, s) 6. 82 (1H, d, J=6. 6Hz) 6. 84 (1H, s) 7. 83 (1H, s) 7. 84 (1H, d, J=8. 5Hz) 8. 47 (2H, s) 10. 76 (1H, s) 11. 44 (1H, s).

例324:化合物番号324の化合物の製造

原料として、5 ーブロモー4 ーヒドロキシサリチル酸、及び3,5 ービス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:82.4%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>): δ 5. 89 (1H, s) 6. 70 (1H, s) 7. 69 (2H, s) 7. 95 (1H, s) 8. 12 (2H, s) 11. 62 (1H,

s).

例325:化合物番号325の化合物の製造

原料として、4-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:29.9%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  6. 37 (1H, d, J=2.5Hz), 6. 42 (1H, dd, J=8.8, 2.5Hz), 7.81 (1H, s), 7.86 (1H, d, J=8.5Hz), 8.44 (2H, s), 10.31 (1H, s), 10.60 (1H, s), 11.77 (1H, s).

例326:化合物番号326の化合物の製造

原料として、3,5-ジクロロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:44.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 85 (1H, d, J=2.5Hz), 7. 91 (1H, s), 8. 01 (1H, d, J=2.5Hz), 8. 42 (2H, s), 11. 10 (1H, s).

例327:化合物番号327の化合物の製造

原料として、3-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:22.7%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  6. 81 (1H, t, J=8.0Hz), 7. 01 (1H, dd, J=8.0, 1.5Hz), 7. 35 (1H, dd, J=8.0, 1.5Hz), 7. 84 (1H, s), 8. 46 (2H, s), 9. 56 (1H, s), 10. 79 (1H, s), 10. 90 (1H, brs).

例328:化合物番号328の化合物の製造

原料として、3-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:54.9%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 22 (3H, s), 6. 94 (1H, t, J=7. 4Hz), 7. 42 (1H, d, J=7. 4Hz), 7. 84-7. 85 (2H, m), 8. 47 (2H, s), 10. 87 (1H, s), 11. 87 (1H, s).

例329:化合物番号329の化合物の製造

原料として、3-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率: 34. 6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 85 (3H, s), 6. 94 (1H, t, J=8. 0Hz), 7. 20 (1H, dd, J=8. 0, 1. 4Hz), 7. 44 (1H, dd, J=8. 0, 1. 4Hz), 7. 84 (1H, s), 8. 45 (2H, s), 10. 82 (1H, s), 10. 94 (1H, brs).

例330:化合物番号330の化合物の製造

原料として、5-[(1,1,3,3-F)トラメチル)ブチル] サリチル酸、及び 3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:64.2%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  0. 70 (9H, s), 1. 35 (6H, s), 1. 72 (2H, s), 6. 95 (1H, d, J=8. 4Hz), 7. 50 (1H, dd, J=8. 0, 2. 1Hz), 7. 83 (1H, s), 7. 84 (1H, d, J=2. 1Hz), 8. 46 (1H, s), 10. 77 (1H, s), 11. 20 (1H, s).

例331:化合物番号331の化合物の製造

原料として、3,5,6-トリクロロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率: 26. 2%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 7.88 (1H, s), 7.93 (1H, s), 8.33 (2H, s), 10.88 (1H, s), 11.36 (1H, s).

例332:化合物番号332の化合物の製造

原料として、3, 5-ビス[(1, 1-ジメチル) エチル] サリチル酸、及び<math>3, 5-ビス(トリフルオロメチル) アニリンを用いて例<math>16と同様な操作を行い、標題化合物を得た。

収率:65.0%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  1. 34 (9H, s), 1. 40 (9H, s), 7. 49 (1H, d, J=2. 2Hz), 7. 82 (1H, d, J=2. 2Hz), 7. 91 (1H, s), 8. 40 (2H, s), 10. 82 (1H, s), 12. 44 (1H, s).

例333:化合物番号333の化合物の製造

原料として、6-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:35.9%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  6. 73-6. 82 (2H, m), 7. 32 (1H, ddd, J=1. 4, 8. 5, 15. 3Hz), 7. 83 (1H, s), 8. 39 (2H, s), 10. 50 (1H, d, J=1. 4Hz), 11. 11 (1H, s).

例334:化合物番号334の化合物の製造

原料として、3-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:61.3%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 05 (1H, dd, J=7. 6, 8. 0Hz), 7. 69 (1H, dd, J=1. 4, 13. 3Hz), 7. 90 (1H, s), 7. 93 (1H, dd, J=1. 4, 8. 0Hz), 8. 44 (2H, s), 11. 01 (1H, s), 11. 92 (1H, br. s).

例335:化合物番号335の化合物の製造

原料として、4-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:14.2%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  3. 81 (3H, s), 6. 54 (1H, d, J=2. 5Hz), 6. 61 (1H, dd, J=2. 5, 8. 8Hz), 7. 83 (1H, s), 7. 95 (1H, d, J=8. 8Hz), 8. 45 (2H, s), 10. 69 (1H, s), 11. 89 (1H, s).

例336:化合物番号336の化合物の製造

原料として、6-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:63.1%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 24 (3H, s), 6. 03 (1H, d, J=8. 0Hz), 6. 05 (1H, d, J=8. 5Hz), 6. 71 (1H, dd, J=8. 2, 8. 5Hz), 7. 25 (1H, s), 7. 88 (2H, s), 9. 67 (1H, s), 10. 31 (1H, s)

例337:化合物番号337の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号88)、及びメタンスルホニルクロリドを用いて例91と同様な操作を行い、標題化合物を得た。

収率: 22.6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 93 (3H, s), 7. 02 (1H, d, J=8. 4Hz), 7. 31 (1H, dd, J=8. 4, 2. 7Hz), 7. 68 (1H, d, J=2. 7Hz), 7. 83 (1H, s), 8. 46 (2H, s), 9. 48 (1H, s), 10. 85 (1H, s), 11. 15 (1H, s).

例338:化合物番号338の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]

-2-ヒドロキシベンズアミド(化合物番号88)、及びベンゼンスルホニルクロリドを用いて例91と同様な操作を行い、標題化合物を得た。

収率: 45. 3%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 6.89 (1H, d, J=8.7Hz), 7.10 (1H, dd, J=8.7, 2.7Hz), 7.51-7.64 (4H, m), 7.68-7.71 (2H, m), 7.81 (1H, s), 8.42 (2H, s), 10.03 (1H, s), 10.87 (1H, s), 11.13 (1H, brs). 例 339: 化合物番号 339の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号88)、及びアセチルクロリドを用い て例91と同様な操作を行い、標題化合物を得た。

収率: 44. 8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 0 2 (3H, s), 6. 97 (1H, d, J=8. 7Hz), 7. 6 1 (1H, dd, J=8. 7, 2. 7Hz), 7. 8 2 (1H, s), 7. 9 9 (1H, d, J=2. 7Hz), 8. 4 6 (2H, s), 9. 9 0 (1H, s), 10. 8 5 (1H, s), 10. 9 4 (1H, s).

例340:化合物番号340の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-スルファモイルベンズアミド(例87(2)の化合物)を用いて例80(5)と同様な操作を行い、標題化合物を得た。

収率:59.9%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 7. 17 (1H, d, J=8.7Hz), 7. 31 (2H, s), 7. 85 (1H, s), 7. 86 (1H, dd, J=8.4, 2. 4Hz), 8. 26 (1H, d, J=2.7Hz), 8. 47 (2H, s), 1 0. 95 (1H, s), 11. 90 (1H, s).

例341:化合物番号341の化合物の製造

原料として、3-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ビス(ト

リフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を 得た。

収率: 46.9%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 36-7. 41 (2H, m), 7. 50 -7. 55 (1H, m), 7. 79 (1H, d, J=8. 2Hz), 7. 85 (1 H, d, J=0. 6Hz), 7. 96 (1H, d, J=8. 0Hz), 8. 51 (2 H, s), 10. 98 (1H, s), 11. 05 (1H, s).

例342:化合物番号342の化合物の製造

原料として、2-ヒドロキシナフタレン-1-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:30.2%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 27 (1H, d, J=8.8Hz), 7. 32-7. 38 (1H, m), 7. 45-7. 50 (1H, m), 7. 72 (1H, d, J=8.5Hz), 7. 82-7. 93 (3H, m), 8. 50 (1H, s), 10. 28 (1H, s), 11. 07 (1H, brs).

例343:化合物番号343の化合物の製造

(1) 4-ブロモー3-ヒドロキシチオフェン-2-カルボン酸

4-ブロモー3-ヒドロキシチオフェン-2-カルボン酸 メチルエステル(500mg, 2. 1mmol)、水酸化ナトリウム(261mg, 6. 3mmol)のメタノール/水(2.5mL+2.5mL)混合溶液を2時間加熱還流した。反応混合物を室温まで冷却後、2規定塩酸を加えpHを1とした後、酢酸エチル(50mL)で希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して、標題化合物の赤褐色粉末(326mg, 69.4%)を得た。

フェニル]チオフェン-2-カルボキサミド(化合物番号343)

原料として、4 ーブロモー3 ーヒドロキシチオフェンー2 ーカルボン酸、及び3,5 ービス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:82.4%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 7. 42 (1H, s), 7. 67 (1H, brs), 7. 78 (1H, brs), 8. 11 (2H, s), 9. 91 (1H, brs).

例344:化合物番号344の化合物の製造

原料として、3,5-ビス(トリフルオロメチル)フェニルイソシアネート、及 びオキシインドールを用いて例28と同様の操作を行い、標題化合物を得た。

収率:44.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 98 (2H, s), 7. 22 (1H, t d, J=7. 8, 1. 2Hz), 7. 33-7. 40 (2H, m), 7. 87 (1H, s), 8. 02 (1H, d, J=7. 8Hz), 8. 38 (2H, s), 11. 00 (1H, s).

例345:化合物番号345の化合物の製造

原料として、3,5-ビス(トリフルオロメチル)フェニルイソシアネート、及び5-クロロオキシインドールを用いて例28と同様の操作を行い、標題化合物を得た。

収率:31.1%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 99 (2H, s), 7. 41 (1H, d d, J=8. 7, 2. 4Hz), 7. 47 (1H, d, J=2. 1Hz), 7. 8 7 (1H, s), 8. 01 (1H, d, J=8. 4Hz), 8. 38 (2H, s), 10. 93 (1H, s).

例346:化合物番号346の化合物の製造

原料として、5-クロロサリチル酸、及び3-ブロモ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:37.1%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 0 3 (1H, d, J=9. 3Hz), 7. 48 (1H, dd, J=8. 7, 2. 4Hz), 7. 72 (1H, s), 7. 84 (1H, d, J=2. 7Hz), 8. 16 (1H, s), 8. 28 (1H, s), 1 0. 69 (1H, s), 11. 42 (1H, s).

例347:化合物番号347の化合物の製造

原料として、5-クロロサリチル酸、及び3-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.0%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 85 (3H, s), 7. 02 (1H, s), 7. 03 (1H, d, J=8. 7Hz), 7. 48 (1H, dd, J=8. 7, 2. 7Hz), 7. 61 (1H, s), 7. 77 (1H, s), 7. 88 (1H, d, J=2. 7Hz), 10. 57 (1H, s), 11. 53 (1H, s).

例348:化合物番号348の化合物の製造

原料として、5-クロロサリチル酸、及び2-モルホリノー5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 90 (4H, m), 3. 84 (4H, m), 7. 15 (1H, d, J=9. 0Hz), 7. 48 (2H, s), 7. 50 (1H, dd, J=9. 0, 2. 7Hz), 8. 00 (1H, d, J=2. 7Hz), 8. 91 (1H, s), 11. 24 (1H, s), 12. 05 (1H, s).

例349:化合物番号349の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:59.2%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 10 (1H, d, J=8. 7Hz), 7. 48 (1H, dd, J=8. 4, 2. 1Hz), 7. 53 (1H, dd, J=8.

7, 3. 0 Hz), 7. 97-7. 99 (2H, m), 8. 81 (1H, d, J= 2. 1 Hz), 11. 03 (1H, s), 12. 38 (1H, s).

例350:化合物番号350の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-5-トリフルオロメチル 安息香酸メチルエステルを用いて例 16と同様の操作を行い、標題化合物を得た。 収率: 67. 0%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 91 (3H, s), 7. 02 (1H, d, J=9. 3Hz), 7. 43 (1H, dd, J=9. 0, 2. 4Hz), 7. 57 (1H, d, J=2. 4Hz), 8. 13 (1H, s), 8. 23 (1H, s), 8. 29 (1H, s), 8. 36 (1H, s), 11. 52 (1H, s).

例351:化合物番号351の化合物の製造

5-クロロー 2-ヒドロキシーNー [3-メトキシカルボニルー 5-(トリフルオロメチル)フェニル ] ベンズアミド(化合物番号 350; 105 mg, 0.2 81 mm o1)、メタノール(2.5 mL)の混合物に 2 規定水酸化ナトリウム水溶液(0.6 mL)を加え、室温にて 3 時間攪拌した。反応液に水を加え、酢酸エチルにて洗浄した。水層に希塩酸を加え酸性とした後、酢酸エチルにて抽出した。酢酸エチル層を水、飽和食塩水にて順次洗浄、無水硫酸ナトリウムにて乾燥した。溶媒を減圧留去して得られた残渣をイソプロピルエーテルで結晶化して、標題化合物の白色固体(100 mg, 99.0%)を得た。

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 04 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=8.7, 2.7Hz), 7. 91 (1H, d, J=2.7Hz), 7. 93 (1H, s), 8. 43 (1H, s), 8. 59 (1H, s), 10. 78 (1H, s), 11. 48 (1H, s).

例352:化合物番号352の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2-ナフチルオキシ)-5-(トリフルオロメチル)アニリンを用いて例 16 と同様の操作を行い、標題化合物を得た。

収率:89.6%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  6. 94 (1H, d, J=9.6Hz), 6. 98 (1H, d, J=9.2Hz), 7. 25-7. 41 (4H, m), 7. 48-7. 57 (3H, m), 7. 81 (1H, d, J=6.9Hz), 7. 88 (1H, d, J=6.9Hz), 7. 95 (1H, d, J=8.9Hz), 8. 72 (1H, s), 8. 83 (1H, d, J=2.0Hz), 11. 70 (1H, s).

例353:化合物番号353の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2, 4-ジクロロフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 4. 7%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  6. 78 (1H, d, J=8. 9Hz), 7. 0 2 (1H, d, J=8. 6Hz), 7. 16 (1H, d, J=8. 6Hz), 7. 33-7. 38 (3H, m), 7. 42 (1H, dd, J=8. 6, 2. 6Hz), 7. 49 (1H, d, J=2. 6Hz) 7. 58 (1H, d, J=2. 3Hz), 8. 66 (1H, brs,), 8. 82 (1H, d, J=2. 0Hz), 11. 65 (1H, s).

例354:化合物番号354の化合物の製造

原料として、5-クロロサリチル酸、及び2-[(4-トリフルオロメチル) ピペリジノ] -5-(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:60.5%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 1. 85-2. 05 (2H, m), 2. 15 (2H, d, J=10. 9Hz), 2. 28 (1H, m), 2. 82 (2H, t, J=11. 0Hz), 3. 16 (2H, d, J=12. 2Hz), 7. 02 (1H, d, J=8. 9Hz), 7. 31 (1H, d, J=8. 3Hz), 7. 42 (2H, m), 7. 50 (1H, d, J=2. 6Hz), 8. 75 (1H, s), 9. 60 (1H,

s), 11. 94 (1H, s)

例355:化合物番号355の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2, 2, 2-トリフルオロエトキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 94. 5%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  4. 58 (2H, q, J=7. 9Hz), 6. 9 9-7. 05 (2H, m), 7. 41-7. 50 (3H, m), 8. 63 (1H, brs), 8. 79 (1H, d, J=2. 0Hz), 11. 59 (1H, s).

例356:化合物番号356の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2-メトキシフェノキシ)-5 - (トリフルオロメチル) アニリンを用いて例 16 と同様の操作を行い、標題化合物を得た。

収率:80.6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 74 (3H, s), 6. 70 (1H, d, J=8. 4Hz), 7. 02 (1H, d, J=8. 7Hz), 7. 07 (1H, d d, J=1. 5, 7. 8Hz), 7. 24-7. 39 (4H, m), 7. 49 (1H, d d, J=3. 0, 8. 7Hz), 8. 00 (1H, d, J=3. 0Hz), 8. 92 (1H, d, J=2. 1Hz), 11. 36 (1H, s), 12. 18 (1H, s).

例357:化合物番号357の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-クロロ-3,5-ジメチルフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:91.5%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 34 (6H, s), 7. 03 (1H, d, J=8.8Hz), 7. 05 (1H, d, J=8.1Hz), 7. 11 (2H, s),

7. 43-7. 47 (1H, m), 7. 48 (1H, dd, J=2. 9, 8. 8H z), 7. 97 (1H, d, J=2. 6Hz), 8. 94 (1H, d, J=2. 2Hz), 11. 25 (1H, s), 12. 12 (1H, s).

例358:化合物番号358の化合物の製造

原料として、5-クロロサリチル酸、及び2-ピペリジノ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.7%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 1. 68-1. 72 (2H, m), 1. 80-1. 88 (4H, m), 2. 89 (4H, t, J=5. 2Hz), 7. 01 (1H, d, J=8. 7Hz), 7. 31 (1H, d, J=8. 4Hz), 7. 39-7. 43 (2H, m), 7. 55 (1H, d, J=2. 4Hz), 8. 73 (1H, d, J=1. 8Hz), 9. 71 (1H, s), 12. 05 (1H, s)

例359:化合物番号359の化合物の製造

原料として、5-クロロサリチル酸、及び<math>2-(4-メチルフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.3%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 2. 33 (3H, s), 6. 93 (1H, d, J=8. 8Hz), 7. 03 (1H, dd, J=0. 5, 8. 8Hz), 7. 12 (2H, d, J=8. 2Hz), 7. 29 (2H, d, J=8. 5Hz), 7. 4 3 (1H, dd, J=2. 0, 8. 6Hz), 7. 48 (1H, ddd, J=0. 8, 2. 7, 8. 8Hz), 7. 98 (1H, dd, J=0. 8, 2. 7Hz), 8. 94 (1H, d, J=2. 2Hz), 11. 29 (1H, s), 12. 15 (1H, s).

例360:化合物番号360の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-クロロフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合

物を得た。

収率:74.5%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 01 (1H, d, J=8.8Hz), 7. 06 (1H, d, J=8.5Hz), 7. 22 (1H, d, J=8.5Hz), 7. 43-7. 48 (2H, m), 7. 50 (2H, d, J=8.2Hz), 7. 94 (1H, dd, J=0.5, 2.7Hz), 8. 92 (1H, d, J=2.2Hz), 11. 20 (1H, s), 12. 10 (1H, s).

例361:化合物番号361の化合物の製造

原料として、5-ブロモ-2-ヒドロキシ-N-[3,5-ビス(メトキシカルボニル)フェニル] ベンズアミド(化合物番号170)を用いて例351と同様の操作を行い、標題化合物を得た。

収率:89.0%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 6. 98 (1H, d, J=8. 7Hz), 7. 60 (1H, dd, J=8. 7, 2. 4Hz), 7. 24 (1H, dd, J=8. 7, 2. 7Hz), 8. 08 (1H, d, J=2. 7Hz), 8. 24 (1H, t, J=1. 5Hz), 8. 57 (2H, d, J=1. 2Hz), 10. 67 (1H, s), 11. 64 (1H, s).

例362:化合物番号362の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-5-[(1-メチル)エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:19.1%

 $^{1}$ H-NMR (CDC  $^{1}$ <sub>3</sub>):  $\delta$  1. 26 (6H, d, J=6. 9Hz), 2. 3 0 (3H, s), 2. 87-2. 96 (1H, m), 7. 00 (1H, d, J=8. 7Hz), 7. 08 (1H, dd, J=7. 8, 1. 8Hz), 7. 20 (1H, d, J=7. 8Hz), 7. 40 (1H, dd, J=8. 7, 2. 4Hz), 7. 49 (1H, d, J=2. 7Hz), 7. 50 (1H, s), 7. 71 (1H, s), 11. 99 (1H, s).

例363:化合物番号363の化合物の製造

原料として、5-クロロサリチル酸、及び2, 5-ジエトキシアニリンを用いて 例 1 6 と同様の操作を行い、標題化合物を得た。

収率:59.2%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 1. 32 (3H, t, J=6.9Hz), 1. 41 (3H, t, J=6.9Hz), 3. 97 (2H, q, J=6.9Hz), 4. 06 (2H, q, J=6.9Hz), 6. 61 (1H, dd, J=9.0, 3.0 Hz), 6. 98 (1H, d, J=8.7Hz), 7. 10 (1H, d, J=8.7Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 97 (1H, d, J=2.7Hz), 8. 16 (1H, d, J=3.0Hz), 10. 96 (1H, s), 11. 91 (1H, s).

例364:化合物番号364の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:90.5%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 2. 28 (3H, s), 2. 35 (3H, s), 6. 99 (1H, d, J=8. 8Hz), 7. 02 (1H, brs), 7. 15 (1 H, d, J=7. 7Hz), 7. 40 (1H, dd, J=8. 8, 2. 5Hz), 7. 45 (1H, brs), 7. 49 (1H, d, J=2. 5Hz) 7. 70 (1 H, br), 11. 96 (1H, brs).

例365:化合物番号365の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-シアノアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:90.0%

 $^{1}H-NMR (DMSO-d_{6}): \delta$  7. 09 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 82 (1H, dd, J=8.7, 2.4Hz), 7. 95 (1H, d, J=3.0Hz), 8. 07 (1H, d,

J = 2. 4 Hz), 8. 36 (1H, d, J = 9. 0 Hz), 11. 11 (1H, s), 12. 36 (1H, s).

例366:化合物番号366の化合物の製造

原料として、5-クロロサリチル酸、及び5-(N, N-ジエチルスルファモイル)-2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:44.8%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  1..17 (6H, t, J=7.3Hz), 3. 2 9 (4H, q, J=7.3Hz), 4. 05 (3H, s), 7. 00 (2H, dd, J=2.3, 8.9Hz), 7. 41 (1H, dd, J=2.3, 8.9Hz), 7. 48 (1H, d, J=2.6Hz), 7. 65 (1H, dd, J=2.3, 8. 6Hz), 8. 56 (1H, br. s), 8. 84 (1H, d, J=2.3Hz), 11. 82 (1H, s).

例367:化合物番号367の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.3%

 $^{1}H-NMR$  (CD<sub>3</sub>OD):  $\delta$  6. 98 (1H, d, J=8.6Hz), 7. 4 3 (1H, dd, J=2.6, 8.6Hz), 7. 74 (1H, d, J=8.9Hz), 7. 99 (1H, dd, J=3.0, 8.9Hz), 8. 08 (1H, d, J=2.6Hz), 9. 51 (1H, d, J=2.6Hz)

例368:化合物番号368の化合物の製造

原料として、5-クロロサリチル酸、及び5-(N-フェニルカルバモイル)-2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:40.3%

 $^{1}H-NMR$  (DMSO- $d_{6}$ ):  $\delta$  3. 99 (3H, s), 7. 09 (2H, d d, J=6. 6, 6. 9Hz), 7. 24 (1H, d, J=8. 6Hz), 7. 3

5 (2H, dd, 6. 9, 7. 3Hz), 7. 49 (1H, d, J=2. 3, 8. 9Hz), 7. 77 (3H, d, J=8. 6Hz), 8. 00 (1H, s), 8. 9 7 (1H, s), 10. 17 (1H, s), 10. 91 (1H, s), 12. 11 (1H, s).

例369:化合物番号369の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジメトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:73.9%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 3.82 (3H, s), 3.93 (3H, s), 6.66 (1H, dd, J=3.0, 8.9Hz), 6.86 (1H, d, J=8.9Hz), 6.98 (1H, d, J=8.9Hz), 7.39 (1H, dd, J=2.6, 8.9Hz), 7.47 (1H, d, J=2.6Hz), 8.08 (1H, d, J=3.0Hz), 8.60 (1H, br. s), 12.03 (1H, s). 例 370: 化合物番号 370 の化合物の製造

原料として、5-クロロサリチル酸、及び5-アセチルアミノ-2-メトキシア ニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.9%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  2. 01 (3H, s), 3. 85 (3H, s), 7. 03 (2H, t, J=9.6Hz), 7. 49 (2H, dd, J=8.9, 9. 2Hz), 7. 96 (1H, s), 8. 51 (1H, s), 9. 87 (1H, s), 10. 82 (1H, s), 12. 03 (1H, d, J=4.0Hz).

例371:化合物番号371の化合物の製造

原料として、5-クロロサリチル酸、及び5-メトキシ-2-メチルアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:100%

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  2. 29 (3H, s), 3. 82 (3H, s), 6. 75 (1H, dd, J=2.6, 8.2Hz), 7. 00 (1H, d, J=8.

9Hz), 7. 16 (1H, d, J=8. 6Hz), 7. 38 (1H, d, 2. 3Hz), 7. 41 (1H, dd, J=2. 3, 8. 9Hz), 7. 48 (1H, d, J=2. 3Hz), 7. 70 (1H, br. s), 11. 92 (1H, s).

例372:化合物番号372の化合物の製造

原料として、5-クロロサリチル酸、及び2, 5-ジブトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:73.9%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0. 98 (3H, t, J=7. 2Hz), 1. 0 5 (3H, t, J=7. 2Hz), 1. 44-1. 65 (4H, m), 1. 72-1. 79 (2H, m), 1. 81-1. 91 (2H, m), 3. 97 (2H, t, J=6. 3Hz), 4. 07 (2H, t, J=6. 3Hz), 6. 64 (1H, d, J=9. 0, 3. 0Hz), 6. 85 (1H, d, J=9. 3Hz), 6. 9 (1H, d, J=9. 0Hz), 7. 39 (1H, dd, J=8. 7, 2. 4Hz), 7. 44 (1H, d, J=2. 7Hz), 8. 08 (1H, d, J=3. 0Hz), 8. 76 (1H, s), 12. 08 (1H, s).

例373:化合物番号373の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジイソペンチルオキシシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:59.7%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  0. 97 (6H, d, J=6.6Hz), 1. 0 3 (6H, d, 6.6Hz), 1. 64-1. 98 (6H, m), 3. 99 (2H, t, J=6.6Hz), 4. 09 (2H, t, J=6.3Hz), 6. 63 (1H, dd, J=8.7, 3.0Hz), 6. 85 (1H, d, J=8.7Hz), 6. 98 (1H, d, J=8.7Hz), 7. 38 (1H, dd, J=9.0, 2.4Hz), 7. 43 (1H, d, J=2.7Hz), 8. 09 (1H, d, J=3.0Hz), 8. 75 (1H, s), 12. 08 (1H, s).

例374:化合物番号374の化合物の製造

原料として、5-クロロサリチル酸、及び5-カルバモイル-2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 31.2%

 $^{1}$ H-NMR(CD<sub>3</sub>OD):  $\delta$  4. 86(3H, s), 6. 93(1H, d, J=7. 6Hz), 7. 18(1H, d, J=8. 6Hz), 7. 35(1H, d d, J=3. 0, 7. 6Hz), 7. 47(1H, d d, J=2. 0, 8. 6Hz), 8. 00(1H, d, J=3. 0Hz), 8. 80(1H, d, J=2. 0Hz).例 375:化合物番号 375 の化合物の製造

原料として、5-クロロサリチル酸、及び5-[(1, 1-ジメチル)プロピル] -2-フェノキシアニリンを用いて例 1 6と同様の操作を行い、標題化合物を得た。

収率:65.2%

収率:33.0%

 $^{1}$ H-NMR (CDCl<sub>3</sub>):  $\delta$  0. 69 (3H, t, J=7.6Hz), 1. 2 9 (6H, s), 1. 64 (2H, q, J=7.6Hz), 6. 91 (1H, dd, J=1.7, 7.6Hz), 6. 96 (1H, d, J=8.9Hz), 7. 03 (2H, d, J=8.9Hz), 7. 10 (1H, dt, J=1.7, 7.6Hz), 7. 16 (1H, dt, J=1.7, 7.6Hz), 7. 6Hz), 7. 40-7. 31 (4H, m), 8. 42 (1H, dd, J=2.0, 7.9Hz), 8. 53 (1H, br. s) 11. 94 (1H, s).

例376:化合物番号376の化合物の製造

原料として、5-クロロサリチル酸、及び2-ヘキシルオキシ-5-(メチルスルホニル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  0. 92 (3H, t, J=6. 9Hz), 1. 4 0-1. 59 (6H, m), 1. 90-2. 01 (2H, m), 3. 09 (3H, s), 4. 22 (2H, t, J=6. 3Hz), 7. 01 (1H, d, J=8. 9Hz), 7. 06 (1H, d, J=8. 6Hz), 7. 40-7. 43 (2H, m),

7. 73 (1H, dd, J=8. 6, 2. 3Hz), 8. 74 (1H, brs), 8. 99 (1H, d, J=2. 3Hz), 11. 76 (1H, s).

例377:化合物番号377の化合物の製造

原料として、5-クロロサリチル酸、及び3'-アミノ-2,2,4'-トリメチルプロピオフェノンを用いて例16と同様の操作を行い、標題化合物を得た。

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  1. 38 (9H, s), 2. 38 (3H, s), 7. 01 (1H, d, J=8. 9Hz), 7. 31 (1H, d, J=7. 9Hz), 7. 42 (1H, dd, J=8. 9, 2. 6Hz), 7. 53 (1H, d, J=2. 6Hz), 7. 57 (1H, dd, J=7. 9, 2. 0Hz), 7. 83 (1H, brs), 8. 11 (1H, d, J=2. 0Hz), 11. 82 (1H, s).

例378:化合物番号378の化合物の製造

原料として、5-クロロサリチル酸、及び5-メトキシ-2-(1-ピロリル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:53.4%

収率:44.8%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>): δ 2. 46 (3H, s), 6. 51-6. 52 (2 H, m), 6. 82-6. 85 (3H, m), 6. 93 (1H, d, J=8. 9Hz), 7. 06 (1H, d, J=7. 9Hz), 7. 30 (1H, d, J=7. 9Hz), 7. 32 (1H, dd, J=2. 3, 8. 9Hz), 7. 61 (1H, s), 8. 29 (1H, s), 11. 86 (1H, br. s).

例379:化合物番号379の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-トシルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:8.0%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  2. 38 (3H, s), 7. 02 (1H, d, J = 8. 9Hz), 7. 25-7. 31 (3H, m), 7. 46 (1H, dd, J=2. 6, 8. 9Hz), 7. 68 (2H, d, J=8. 6Hz), 7. 74 (1H, d,

J = 2. 3 H z), 7. 96 (1H, d, J = 8. 6 H z), 8. 56 (1H, d, J = 2. 0 H z), 10. 75 (1H, s), 11. 70 (1H, s).

例380:化合物番号380の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-トシルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:43.5%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  2. 38 (3H, s), 7. 02 (1H, d, J=8. 9Hz), 7. 27 (1H, d, J=7. 9Hz), 7. 29 (1H, dd, J=2. 0, 6. 6Hz), 7. 46 (1H, dd, J=2. 3, 8. 9Hz), 7. 68 (2H, d, J=8. 6Hz), 7. 73 (2H, d, J=2. 3Hz), 7. 97 (1H, d, J=8. 6Hz), 8. 56 (1H, d, J=2. 0Hz), 10. 73 (1H, s), 11. 71 (1H, s).

例381:化合物番号381の化合物の製造

原料として、5-クロロサリチル酸、及び2-フルオロ-5-(メチルスルホニル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:28.8%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  3. 12 (3H, s), 7. 03 (1H, d, J=8. 9Hz), 7. 38 (1H, dd, J=8. 6, 10. 2Hz), 7. 45 (1H, dd, J=2. 3, 8. 9Hz), 7. 53 (1H, d, J=2. 3Hz), 7. 80 (1H, ddd, J=2. 3, 4. 6, 8. 6Hz), 8. 25 (1H, s), 8. 98 (1H, dd, J=2. 3, 7. 7Hz), 11. 33 (1H, br. s).

例382:化合物番号382の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-フェノキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.0%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  3. 98 (3H, s), 6. 80 (1H, d, J

 $= 8.8 \, \mathrm{Hz}$ ), 6. 90 (1H, d, J=8.8 Hz), 6. 95-7. 00 (3 H, m), 7. 04-7. 09 (1H, m), 7. 29-7. 35 (2H, m), 7. 38 (1H, dd, J=8.8, 2.6 Hz), 7. 47 (1H, d, J=2.6 Hz), 8. 19 (1H, d, J=2.9 Hz), 8. 61 (1H, brs), 11. 92 (1H, s).

例383:化合物番号383の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-メチルビフェニルを 用いて例16と同様の操作を行い、標題化合物を得た。

収率: 47. 7%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 33 (3H, s), 7. 06 (1H, d, J=8. 7Hz), 7. 43-7. 52 (4H, m), 7. 64-7. 67 (2H, m), 8. 04 (1H, d, J=2. 7Hz), 8. 19 (1H, d, J=1. 5Hz), 10. 40 (1H, s), 12. 22 (1H, s).

例384:化合物番号384の化合物の製造

原料として、5-クロロサリチル酸、及び5-( $\alpha$ ,  $\alpha-$ ジメチルベンジル)-2-メトキシアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。 収率: 89.0%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  1. 72 (6H, s), 3. 93 (3H, s), 6. 83 (1H, d, J=8. 8Hz), 6. 93 (1H, dd, J=2. 6, 8. 8Hz), 6. 96 (1H, d, J=9. 2Hz), 7. 15-7. 20 (1H, m), 7. 25-7. 28 (4H, m), 7. 36 (1H, dd, J=2. 6, 8. 8Hz), 7. 46 (1H, d, J=2. 6Hz), 8. 35 (1H, d, J=2. 6Hz), 8. 51 (1H, s), 12. 04 (1H, s).

例385:化合物番号385の化合物の製造

原料として、5-クロロサリチル酸、及び5-モルホリノー2-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 4. 1%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 46-3. 52 (4H, m), 3. 85-3. 94 (4H, m), 7. 03 (1H, d, J=8. 8Hz), 7. 47 (1H, dd, J=2. 9, 8. 8Hz), 7. 80 (1H, dd, J=2. 6, 8. 8Hz), 7. 82 (1H, d, J=2. 6Hz), 7. 88 (1H, d, J=8. 8Hz), 8. 20 (1H, d, J=2. 2Hz), 10. 70 (1H, s), 11. 43 (1H, s)

例386:化合物番号386の化合物の製造

原料として、5-クロロサリチル酸、及び5-フルオロ-2-(1-イミダゾリル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:33.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  6. 99 (1H, d, J=8.8Hz), 7. 12-7. 19 (2H, m), 7. 42-7. 51 (3H, m), 7. 8.9 (1H, d, J=2.8Hz), 7. 93 (1H, d, J=1.1Hz), 8. 34 (1H, dd, J=11.4, 2.8Hz), 10. 39 (1H, s), 11. 76 (1H, brs).

例387:化合物番号387の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブチル-5-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:15.3%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  0. 99 (3H, t, J=7. 3Hz), 1. 3 9-1. 51 (2H, m), 1. 59-1. 73 (2H, m), 2. 71-2. 79 (2 H, m), 7. 03 (1H, d, J=8. 9Hz), 7. 41-7. 49 (3H, m), 7. 92 (1H, s), 8. 07 (1H, dd, J=2. 3, 8. 4Hz), 8. 75 (1H, d, J=2. 4Hz), 11. 51 (1H, s).

例388:化合物番号388の化合物の製造

原料として、5-クロロサリチル酸、及び5-[(1, 1-ジメチル)プロピル] -2-ヒドロキシアニリンを用いて例 1.6 と同様の操作を行い、標題化合物を得

た。

収率:36.0%

 $^{1}$ H-NMR (CDC1<sub>3</sub>):  $\delta$  0. 70 (3H, t, J=7.4Hz), 1. 28 (6H, s), 1. 63 (2H, q, J=7.4Hz), 6. 97 (1H, d, J=6.3Hz), 7. 00 (1H, d, J=6.6Hz), 7. 08 (1H, s), 7. 14 (1H, dd, J=2.5, 8.6Hz), 7. 36 (1H, d, J=2.2Hz), 7. 42 (1H, dd, J=2.5, 8.8Hz), 7. 57 (1H, d, J=2.5Hz), 8. 28 (1H, s), 11. 44 (1H, s).

例389:化合物番号389の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトギシ-5-メチルアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:74.2%

 $^{1}$ H-NMR (DMSO- $d_{6}$ ):  $\delta$  2. 27 (3H, s), 3. 85 (3H, s), 6. 90 (1H, dd, J=9. 0, 2. 4Hz), 6. 98 (1H, d, J=9. 0Hz), 7. 05 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 97 (1H, d, J=3. 0Hz), 8. 24 (1H, d, J=2. 4Hz), 10. 79 (1H, s), 12. 03 (1H, s).

例390:化合物番号390の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:81.5%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  6. 98-7. 07 (1H, m), 7. 07 (1H, d, J=9. 0Hz), 7. 37-7. 49 (1H, m), 7. 52 (1H, dd, J=8. 7, 3. 0Hz), 7. 95 (1H, d, J=2. 7Hz), 8. 15-8. 22 (1H, m), 10. 83 (1H, s), 12. 25 (1H, s).

例391:化合物番号391の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:82.0%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 00 (1H, tt, J=9. 3, 2. 1), 7. 03 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=7. 5, 2. 7Hz), 7. 49 (1H, d, J=2. 7Hz), 7. 51 (1H, d, J=2. 1Hz), 7. 82 (1H, d, J=3. 0Hz), 10. 63 (1H, s), 11. 43 (1H, brs).

例392:化合物番号392の化合物の製造

原料として、2-(5-) ロモー 2- ヒドロキシベンゾイル) アミノー 4-[(1, 1-) ジメチル) エチル] チアゾールー 5- カルボン酸 エチルエステル (化合物番号 197) を用いて 082 と同様の操作を行い、標題化合物を得た。

収率:85.5%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  1. 44 (9H, s), 7. 00 (1H, d, J=9. 0Hz), 7. 62 (1H, dd, J=9. 0, 2. 7Hz), 8. 02 (1H, d, J=2. 4Hz), 11. 83 (1H, brs), 12. 04 (1H, brs), 12. 98 (1H, brs).

例393:化合物番号393の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノー4-フェニルチアゾール -5- 酢酸 メチルエステルを用いて例 195 (3) と同様の操作を行い、標題 化合物を得た。(本化合物は、例 203 (1) の化合物である。)

収率:32.1%

mp 288. 5-229. 5°C.

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  3. 66 (3H, s), 3. 95 (2H, s), 6. 99 (1H, d, J=8. 0Hz), 7. 42 (1H, d, J=6. 0Hz), 7. 48 (2H, brt, J=7. 6Hz), 7. 56-7. 61 (3H, m), 8. 07 (1H, d, J=2. 4Hz), 11. 85 (1H, brs), 11. 9

8 (1H, brs).

例394:化合物番号394の化合物の製造

2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステル(化合物番号209)を用いて例82と同様の操作を行い、標題化合物を得た。(本化合物は、例212(1)の化合物である。)

収率:67.0%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 00 (1H, d, J=8.8Hz), 7. 42-7. 44 (3H, m), 7. 62 (1H, dd, J=8.8, 2.4Hz), 7. 70-7. 72 (2H, m), 8. 04 (1H, d, J=2.4Hz), 12. 31 (1H, brs), 12. 99 (1H, brs).

例395:化合物番号395の化合物の製造

(1) 2-アミノー4-[3, 5-ビス(トリフルオロメチル)フェニル]チアゾ ール

3', 5'ービス(トリフルオロメチル)アセトフェノン(0.51g, 2.0 mmol)のテトラヒドロフラン(5mL)溶液に、フェニルトリメチルアンモニウムトリブロミド(753mg, 2mmol)を加え、室温で5時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣にエタノール(5mL)、チオウレア(152mg, 2mmol)を加え、30分間加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=2:1)で精製、nーヘキサンで懸濁洗浄して、標題化合物の薄黄白色結晶(520.1mg, 83.3%)を得た。

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 5. 03 (2H, s), 6. 93 (1H, s), 7. 77 (1H, s), 8. 23 (2H, s).

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 08 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=9.0, 3.0Hz), 7. 94 (1H, d, J=3.0 Hz), 8. 07 (1H, s), 8. 29 (1H, s), 8. 60 (2H, s), 1. 77 (1H, s), 12. 23 (1H, s).

例396:化合物番号396の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノピリジンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:23.2%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 02 (1H, d, J=9. 3Hz), 7. 42 (1H, ddd, J=9. 0, 4. 8, 0. 6Hz), 7. 47 (1H, dd, J=8. 7, 5. 7Hz), 7. 92 (1H, d, J=2. 7Hz), 8. 15 (1H, ddd, J=8. 4, 2. 4, 1. 5Hz), 8. 35 (1H, dd, J=7. 8, 1. 5Hz), 8. 86 (1H, d, J=2. 4Hz), 10. 70 (1H, s).

例397:化合物番号397の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-ブロモピリジンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.3%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 07 (1H, d, J=8.7Hz), 7. 42 (1H, d, J=7.8Hz), 7. 51 (1H, dd, J=8.7, 2.7 Hz), 7. 82 (1H, t, J=7.5Hz), 7. 94 (1H, d, J=3.0Hz), 8. 24 (1H, d, J=7.8Hz), 10. 95 (1H, s), 11. 97 (1H, s).

例398:化合物番号398の化合物の製造

(1) 2-アセトキシー5-クロロ-N-(ピリダジン-2-イル)ベンズアミド

原料として、2-アセトキシ-5-クロロ安息香酸、及び2-アミノピリダジンを用いて例198(3)と同様の操作を行い、標題化合物を得た。

収率:19.7%

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  2. 42 (3H, s), 7. 19 (1H, d, J=8. 7Hz), 7. 54 (1H, dd, J=8. 7, 2. 7Hz), 8. 01 (1H, d, J=2. 4Hz), 8. 28 (1H, dd, J=2. 4, 1. 8Hz), 8. 42 (1H, d, J=2. 4Hz), 9. 09 (1H, s), 9. 66 (1H, d, J=1. 8Hz).

(2) 5-クロロー2ーヒドロキシーN-(ピリダジンー2ーイル)ベンズアミド(化合物番号398)

原料として、2-アセトキシー5-クロロ-N-(ピリダジン-2-イル)ベンズアミドを用いて例 2 (2) と同様の操作を行い、標題化合物を得た。

収率:72.6%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 09 (1H, d, J=9.0Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 96 (1H, d, J=2.7 Hz), 8. 44-8. 47 (2H, m), 9. 49 (1H, s), 10. 99 (1H, s), 12. 04 (1H, s).

例399:化合物番号399の化合物の製造

原料として、5 ーブロモサリチル酸、及び2 ーアミノー5 ーブロモピリミジンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:10.3%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 6.98 (1H, d, J=8.8Hz), 7.59 (1H, dd, J=8.8, 2.4Hz), 8.00 (1H, d, J=2.8Hz), 8.86 (2H, s), 11.09 (1H, s), 11.79 (1H, s). 例 400: 化合物番号 400の化合物の製造

原料として、2-(5-)ロモー2-ヒドロキシベンゾイル)アミノー4-フェニルチアゾール-5-カルボン酸(化合物番号394)、及びプロピルアミンを用いて例212(2)と同様の操作を行い、標題化合物を得た。

収率: 23. 1%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  0. 82 (3H, t, J=7.5Hz), 1. 39-1. 51 (2H, m), 3. 13 (2H, q, J=6.6Hz), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 48 (3H, m), 7. 63 (1H, dd, J=8.7, 2.7Hz), 7. 68-7. 72 (2H, m), 8. 06 (1H, d, J=2.7Hz), 8. 18 (1H, t, J=5.7Hz), 11. 87 (1H, brs), 12. 14 (1H, brs).

例401:化合物番号401の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-3, 5-ビス(トリフルオロメチル)アニリンを用いて例 16と同様の操作を行い、標題化合物を得た。収率: 15.0%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 49 (3H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 52 (1H, dd, J=8. 7, 2. 8Hz), 7. 84 (1H, s), 7. 97 (1H, d, J=2. 8Hz), 8. 60 (1H, s), 10. 69 (1H, brs), 12. 07 (1H, brs).

例402:化合物番号402の化合物の製造

原料として、5-クロロサリチル酸、及び4-クロロ-3-(トリフルオロメチ

ル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:66.5%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 03 (1H, d, J=8.7Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 73 (1H, d, J=8.7 Hz), 7. 86 (1H, d, J=2.4Hz), 8. 00 (1H, dd, J=8.7, 2.4Hz), 8. 32 (1H, d, J=2.4Hz), 10. 69 (1H, s), 11. 49 (1H, s).

例403:化合物番号403の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピル-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:33.4%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 1. 24 (6H, d, J=6.6Hz), 2. 97-3.06 (1H, m), 7.06 (1H, d, J=8.7Hz), 7.51 (1H, dd, J=8.7, 2.7Hz), 7.61 (1H, s), 7.62 (1H, d, J=7.5Hz), 7.98 (1H, d, J=2.7Hz), 8.03 (1H, d, J=8.1Hz), 10.67 (1H, s), 12.21 (1H, s). 例404:化合物番号404の化合物の製造

原料として、5-クロロサリチル酸、及び3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.5%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 0 3 (1H, d, J=8.6Hz), 7. 46-7. 51 (2H, m), 7. 62 (1H, t, J=7.9Hz), 7. 90 (1H, d, J=3.0Hz), 7. 94 (1H, d, J=9.2Hz), 8. 21 (1H, s), 10.64 (1H, s), 11.58 (1H, brs).

例405:化合物番号405の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:18.7%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 08 (1H, d, J=9.0Hz), 7. 54 (1H, dd, J=8.7, 2.7Hz), 7. 94 (1H, d, J=2.7Hz), 8. 17 (1H, dd, J=9.0, 2.4Hz), 8. 46 (1H, d, J=1.8Hz), 8. 88 (1H, d, J=9.0Hz), 12. 19 (1H, s), 12. 25 (1H, s).

例406:化合物番号406の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジクロロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:22.1%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 7.07 (1H, d, J=8.7Hz), 7.55 (1H, dd, J=8.7, 2.7Hz), 7.99 (1H, d, J=2.4Hz), 8.10 (2H, s), 10.62 (1H, s), 11.88 (1H, s). 例 407: 化合物番号 407の化合物の製造

原料として、5-クロロサリチル酸、及び4-シアノ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:55.8%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 04 (1H, d, J=8.7Hz), 7. 49 (1H, dd, J=8.7, 2.7Hz), 7. 80 (1H, d, J=2.7 Hz), 8. 17 (2H, s), 8. 43 (1H, s), 10. 94 (1H, s), 11. 34 (1H, s).

例408:化合物番号408の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:81.2%

 $^{1}H-NMR (DMSO-d_{6}): \delta$  7.03 (1H, d, J=8.7Hz), 7.48 (1H, dd, J=9.0, 2.7Hz), 7.85-7.94 (3H, m),

8. 31 (1 H, d, J=1. 8 H z), 10. 67 (1 H, s), 11. 48 (1 H, s).

例409:化合物番号409の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモ-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 41.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 07 (1H, d, J=8.7Hz), 7. 52 (1H, dd, J=9.0, 2.7Hz), 7. 93-7. 97 (3H, m), 8. 21 (1H, d, J=9.3Hz), 10. 81 (1H, s), 12. 28 (1H, s).

例410:化合物番号410の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:17.6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 10 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 82 (1H, dd, J=9.0, 1.8Hz), 7. 98 (1H, d, J=3.0Hz), 8. 11 (1H, d, J=1.5Hz), 8. 67 (1H, d, J=8.7Hz), 11. 05 (1H, s), 12. 40 (1H, s).

例411:化合物番号411の化合物の製造

原料として、5-クロロサリチル酸、及び4-フルオロ-2-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 36.0%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 06 (1H, d, J=9.0Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 63 (1H, td, J=8.7, 3.3Hz), 7. 71 (1H, dd, J=8.7, 3.0Hz), 7. 97 (1H, d, J=2.7Hz), 8. 11 (1H, dd, J=8.7, 5.1Hz),

10.67 (1H, s), 12.20 (1H, s).

例412:化合物番号412の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピルオキシ-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:39.2%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 29 (6H, d, J=5.7Hz), 4. 67-4. 79 (1H, m), 7. 04 (1H, d, J=9.0Hz), 7. 22 (1H, d, J=2.7Hz), 7. 30 (1H, dd, J=8.7, 2.7Hz), 7. 51 (1H, dd, J=8.7, 2.4Hz), 7. 86 (1H, d, J=9.0Hz), 7. 99 (1H, d, J=3.0Hz), 10. 50 (1H, s), 12. 18 (1H, s).

例413:化合物番号413の化合物の製造

原料として、5-クロロサリチル酸、及び2, 4-ジメトキシ-5-(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率: 19.0%

 $^{1}$ H-NMR (CDC  $l_{3}$ ):  $\delta$  3. 93 (3H, s), 4. 03 (3H, s), 6. 70 (1H, s), 6. 98 (1H, d, J=8. 9Hz), 7. 39 (1H, d d, J=8. 9, 2. 6Hz), 7. 45 (1H, d, J=2. 6Hz), 8. 2 9 (1H, brs,), 8. 54 (1H, s), 11. 92 (1H, s).

例414:化合物番号414の化合物の製造

原料として、5-クロロサリチル酸、及び2, 4-ジフルオロ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率: 66. 0%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 06 (1H, d, J=8.8Hz), 7. 51 (1H, dd, J=8.8, 2.8Hz), 7. 82 (1H, t, J=10.7Hz), 7. 94 (1H, d, J=2.8Hz), 8. 64 (1H, d, J=8.

0Hz), 10. 78 (1H, s), 12. 37 (1H, brs).

例415:化合物番号415の化合物の製造

原料として、5-クロロサリチル酸、及び4-シアノ-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 24.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 06 (1H, d, J=8.8Hz), 7. 52 (1H, dd, J=2.8, 8.8Hz), 7. 94 (1H, d, J=2.8Hz), 8. 17 (1H, dd, J=1.8, 8.9Hz), 8. 31 (1H, d, J=2.1Hz), 8. 63 (1H, d, J=8.9Hz), 11. 16 (1H, s), 12. 45 (1H, br. s).

例416:化合物番号416の化合物の製造

原料として、5-クロロサリチル酸、及び4-クロロ-2-(4-クロロベンゼンスルホニル)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:8.5%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  6. 98 (1H, d, J=8. 9Hz), 7. 1 3 (1H, d, J=2. 6Hz), 7. 22 (2H, d, J=8. 6Hz), 7. 34 (2H, d, J=8. 6Hz), 7. 40 (1H, dd, J=2. 3, 8. 9 Hz), 7. 66 (1H, s), 8. 71 (1H, s), 8. 80 (1H, s), 1 1. 42 (1H, s).

例417:化合物番号417の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-ニトロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:22.8%

 $^{1}H-NMR (DMSO-d_{6}): \delta$  7. 08 (1H, d, J=8.8Hz), 7. 55 (1H, dd, J=8.8, 2.8Hz), 7. 93 (1H, d, J=2.8

Hz), 8. 52 (1 H, s), 9. 13 (1 H, s), 12. 38 (1 H, brs), 12. 45 (1 H, s).

例418:化合物番号418の化合物の製造

原料として、5-クロロサリチル酸、及び2,3-ジフルオロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:21.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 0 7 (1 H, d, J=8.8 Hz), 7. 5 3 (1 H, d d, J=2.9, 8.8 Hz), 7. 6 6 (1 H, d t, J=1.8, 7.7 Hz), 7. 9 3 (1 H, d, J=2.6 Hz), 8. 3 5 (1 H, t, J=7.7 Hz), 11. 02 (1 H, d, J=1.5 Hz), 12. 32 (1 H, s).

例419:化合物番号419の化合物の製造

原料として、5-クロロサリチル酸、及び4,4'-ジアミノ-2,2'-ビス (トリフルオロメチル) ビフェニルを用いて例16と同様の操作を行い、標題化 合物を得た。

収率:35.9%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 05 (2H, d, J=8.8Hz), 7. 39 (2H, d, J=8.5Hz), 7. 49-7.51 (2H, m), 7. 91 (2H, d, J=2.5Hz), 7. 99 (2H, dd, J=2.0, 8.5Hz), 8. 31 (2H, d, J=1.9Hz), 10. 71 (2H, s), 11. 54 (2H, s).

例420:化合物番号420の化合物の製造

原料として、5-クロロサリチル酸、及び2, 3, 5, 6-テトラフルオロ-4 - (トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:42.5%

 $^{1}H-NMR (DMSO-d_{6}): \delta$  7.08 (1H, d, J=8.8Hz), 7.

53 (1H, dd, J=2. 9, 8. 8Hz), 7. 89 (1H, d, J=2. 6 Hz), 10. 65 (1H, br. s), 11. 76 (1H, br. s).

例421:化合物番号421の化合物の製造

原料として、5 ークロロサリチル酸、及び3'ーアミノアセトアニリドを用いて 例16と同様の操作を行い、標題化合物を得た。

収率: 22.4%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 05 (3H, s), 7. 01 (1H, d, J=8. 7Hz), 7. 24-7. 39 (3H, m), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 97 (1H, d, J=3. 0Hz), 8. 03 (1H, s), 10. 01 (1H, s), 10. 41 (1H, s), 11. 87 (1H, s).

例422:化合物番号422の化合物の製造

(1) 2-アセトキシー5-クロロ-N-(3-カルバモイルフェニル) ベンズ アミド

原料として、2-アセトキシ-5-クロロ安息香酸、及び3-アミノベンズアミドを用いて例24と同様の操作を行い、標題化合物を得た。

収率:15.8%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 2. 33 (3H, s), 5. 89 (1H, brs), 6. 31 (1H, brs), 7. 14 (1H, d, J=9. 0Hz), 7. 42-7. 49 (2H, m), 7. 55-7. 58 (1H, m), 7. 80 (1H, d, J=2. 7Hz), 7. 93 (1H, d, J=8. 1Hz), 8. 07 (1H, s), 8. 71 (1H, s).

(2) 5-クロロ-2-ヒドロキシ-N-(3-カルバモイルフェニル) ベンズアミド (化合物番号 4 2 2)

原料として、2-アセトキシ-5-クロロ-N-(3-カルバモイルフェニル) ベンズアミドを用いて例2(2)と同様の操作を行い、標題化合物を得た。

収率:76.0%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 03 (1H, d, J=8.7Hz), 7. 40 (1H, brs), 7. 45 (1H, t, J=7.5Hz), 7. 48 (1H, dd, J=8.7, 2.4Hz), 7. 62-7. 65 (1H, m), 7. 86-7. 89 (1H, m), 7. 98-7. 99 (2H, m), 8. 15 (1H, t, J=1.8Hz), 10. 51 (1H, s), 11. 85 (1H, s).

例423:化合物番号423の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-N-メチルベンズアミドを用いて例16と同様の操作を行い、標題化合物を得た。

収率:19.3%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  2. 79 (3H, d, J=4.5Hz), 7. 03 (1H, d, J=9.0Hz), 7. 43-7. 51 (2H, m), 7. 59 (1H, dt, J=8.1, 1.5Hz), 7. 87 (1H, ddd, J=8.1, 2.1, 0.9Hz), 7. 99 (1H, d, J=2.4Hz), 8. 15 (1H, t, J=1.8Hz), 8. 46 (1H, d, J=4.2Hz), 10. 52 (1H, s), 11. 84 (1H, s).

例424:化合物番号424の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジイソプロピルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:52.5%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 14 (12H, s), 2. 96-3. 1 3 (2H, m), 7. 16 (1H, d, J=8. 7Hz), 7. 23 (1H, d, J=7. 5Hz), 7. 33 (1H, dd, J=8. 4, 6. 6Hz), 7. 52 (1H, dd, J=8. 7, 2. 4Hz), 8. 11 (1H, d, J=2. 4Hz), 10. 09 (1H, s), 12. 40 (1H, s).

例425:化合物番号425の化合物の製造

原料として、5-クロロサリチル酸、及び4-メチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:58.6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 29 (3H, s), 7. 01 (1H, d, J=8. 7Hz), 7. 18 (1H, d, J=8. 1Hz), 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 7. 58 (1H, d, J=8. 4Hz), 7. 9 8 (1H, d, J=2. 7Hz), 10. 35 (1H, s), 11. 94 (1H, s).

例426:化合物番号426の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:59.6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 19 (6H, s), 7. 01 (1H, d, J=9. 0Hz), 7. 15-7. 16 (2H, m), 7. 50 (1H, dd, J=9. 0, 2. 7Hz), 8. 07 (1H, d, J=2. 7Hz), 10. 03 (1H, s), 10. 10 (1H, s), 12. 29 (1H, s).

例427:化合物番号427の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:68.3%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  2. 20 (3H, s), 2. 23 (3H, s), 7. 01 (1H, d, J=9.0Hz), 7. 13 (1H, d, J=8.4Hz), 7. 40-7. 47 (2H, m), 7. 47 (1H, dd, J=9.0, 2.7Hz), 7. 99 (1H, d, J=2.7Hz), 10. 29 (1H, s), 11. 97 (1H, brs).

例428:化合物番号428の化合物の製造

原料として、5-クロロサリチル酸、及び2, 4, 6-トリメチルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:61.0%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  2. 14 (6H, s), 2. 26 (3H, s), 6. 95 (2H, s), 7. 00 (1H, d, J=9. 3Hz), 7. 48 (1H, dd, J=8. 7, 2. 7Hz), 8. 09 (1H, d, J=2. 4Hz), 10. 03 (1H, s), 12. 37 (1H, s).

例429:化合物番号429の化合物の製造

原料として、5-クロロサリチル酸、及び3-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 41. 4%

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  7. 00 (1H, d, J=9.0Hz), 7. 0 9 (1H, d, J=7.5Hz), 7. 40-7. 48 (3H, m), 7. 51 (1 H, d, J=2.4Hz), 7. 64 (1H, s), 7. 94 (1H, s), 11. 66 (1H, s).

例430:化合物番号430の化合物の製造

原料として、5-クロロサリチル酸、及び2-ベンジルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:93.3%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  4. 08 (2H, s), 6. 56 (1H, d, J = 2. 5Hz), 6. 92 (1H, d, J=8. 8Hz), 7. 20-7. 46 (9 H, m), 7. 53 (1H, brs), 7. 85 (1H, d, J=8. 0Hz), 1 2. 01 (1H, brs).

例431:化合物番号431の化合物の製造

原料として、5-クロロサリチル酸、及び4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:20.4%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 0 3 (1H, d, J=9. 3Hz), 7. 3 9 (2H, d, J=9. 0Hz), 7. 4 8 (1H, dd, J=9. 0, 2. 7 Hz), 7. 8 3 (2H, d, J=9. 3Hz), 7. 9 2 (1H, d, J=2.

7Hz), 10. 54 (1H, s), 11. 78 (1H, s).

例432:化合物番号432の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:60.0%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 08 (1H, d, J=8.7Hz), 7. 48-7. 54 (2H, m), 7. 75 (1H, d, J=2.1Hz), 7. 98 (1H, d, J=2.7Hz), 8. 44 (1H, d, J=8.7Hz), 10. 93 (1H, s), 12. 31 (1H, s).

例433:化合物番号433の化合物の製造

原料として、5-クロロサリチル酸、及び4-(tert-ブチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:69.0%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 29 (9H, s), 7. 01 (1H, d, J=8. 7Hz), 7. 39 (2H, d, J=8. 4Hz), 7. 47 (1H, d d, J=8. 7, 2. 7Hz), 7. 61 (2H, d, J=8. 4Hz), 7. 9 (1H, d, J=2. 4Hz), 10. 37 (1H, s), 11. 96 (1H, s).

例434:化合物番号434の化合物の製造

原料として、5-クロロサリチル酸、及び2,3-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:79.5%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  2. 14 (3H, s), 2. 29 (3H, s), 7. 03 (1H, d, J=9. 0Hz), 7. 06-7. 15 (2H, m), 7. 46-7. 51 (2H, m), 8. 05 (1H, d, J=3. 0Hz), 10. 3 2 (1H, s), 12. 28 (1H, s).

例435:化合物番号435の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノインダンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:80.7%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 98-2. 08 (2H, m), 2. 81 -2. 89 (4H, m), 7. 01 (1H, d, J=8. 8Hz), 7. 21 (1 H, d, J=8. 0, Hz), 7. 42 (1H, dd, J=8. 0, 1. 9Hz), 7. 48 (1H, dd, J=8. 8, 2. 8Hz), 7. 60 (1H, s), 7. 99 (1H, d, J=2. 8, Hz), 10. 34 (1H, s), 12. 00 (1 H, brs).

例436:化合物番号436の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:37.1%

 $^{1}$ H-NMR (DMSO-d<sub>6</sub>):  $\delta$  2. 23 (3H, s), 2. 28 (3H, s), 7. 03 (2H, d, J=8. 7Hz), 7. 10 (1H, s), 7. 49 (1H, dd, J=9. 0, 2. 7Hz), 7. 63 (1H, d, J=8. 1Hz), 8. 03 (1H, d, J=2. 4Hz), 10. 24 (1H, s), 12. 25 (1H, s).

例437:化合物番号437の化合物の製造

原料として、5-クロロサリチル酸、及び3-イソプロピルオキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:21.5%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  1. 36 (6H, d, J=6.0Hz), 4. 5 2-4.64 (1H, m), 6. 75 (1H, ddd, J=8.4, 2.4, 0. 9Hz), 6. 99 (1H, d, J=8.7Hz), 7. 03 (1H, ddd, J=8.1, 2.1, 0.9Hz), 7. 25-7. 31 (3H, m), 7. 39 (1H, dd, J=8.7, 2.4Hz), 7. 49 (1H, d, J=2.4Hz),

7.81 (1H, s).

例438:化合物番号438の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:10.3%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 0 5 (1H, d, J=8.7Hz), 7. 4 3 (1H, dd, J=8.7, 7.8Hz), 7. 5 4 (1H, dd, J=9.0, 2.7Hz), 7. 6 2 (1H, d, J=8.1Hz), 8. 0 5 (1H, d, J=2.4Hz), 10. 5 2 (1H, s), 12. 0 1 (1H, s).

例439:化合物番号439の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピルオキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:76.8%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 26 (6H, d, J=6. 3Hz), 4. 52-4. 64 (1H, m), 6. 93 (2H, dt, J=9. 0, 2. 1Hz), 7. 46 (1H, dd, J=9. 0, 2. 7Hz), 7. 58 (2H, dt, J=9. 0, 2. 1Hz), 7. 99 (1H, d, J=3. 0Hz), 10. 36 (1H, s), 11. 83 (IH, brs).

例440:化合物番号440の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモー2-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:59.2%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  7. 01 (1H, d, J=9. 3Hz), 7. 4 2-7. 52 (4H, m), 8. 23 (1H, s), 8. 31 (1H, d, J=9. 3Hz), 11. 35 (1H, s).

例441:化合物番号441の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブチルアニリンを用いて例16と

同様の操作を行い、標題化合物を得た。

収率:77.6%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  0. 89 (3H, t, J=6.9Hz), 1. 2 7-1. 36 (6H, m), 1. 56-1. 64 (2H, m), 2. 61 (2H, t, J=7.8Hz), 6. 99 (1H, d, J=9.0Hz), 7. 21 (2H, d, J=8.7Hz), 7. 39 (1H, dd, J=9.0, 2.7Hz), 7. 44-7. 49 (3H, m), 7. 80 (1H, s), 11. 96 (1H, s).

例442:化合物番号442の化合物の製造

原料として、5-クロロサリチル酸、及び3-メチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:88.3%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  2. 38 (3H, s), 6. 98 (1H, d, J = 8. 8Hz), 7. 03 (1H, d, J=7. 4Hz), 7. 25-7. 40 (4H, m), 7. 48 (1H, d, J=2. 2Hz), 7. 83 (1H, brs), 11. 92 (1H, brs).

例443:化合物番号443の化合物の製造

原料として、5-クロロサリチル酸、及び4-シクロヘキシルアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:90.6%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 1. 15-1. 47 (5H, m), 1. 56-1. 87 (5H, m), 2. 40-2. 53 (2H, m), 7. 01 (1H, d, J=8. 8Hz), 7. 21 (2H, d, J=8. 5Hz), 7. 47 (1H, dd, J=8. 8, 2. 7Hz), 7. 60 (2H, d, J=8. 5H), 8. 00 (1H, d, J=2. 7Hz), 10. 36 (1H, s), 11. 98 (1H, brs). 例 444: 化合物番号 444の化合物の製造

原料として、5-クロロサリチル酸、及び4-ベンジルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:90.3%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 93 (2H, s), 7. 01 (1H, d, J=9. 0Hz), 7. 16-7. 32 (7H, m), 7. 57 (1H, dd, J=9. 0, 2. 7Hz), 7. 61 (2H, d, J=8. 4Hz), 7. 96 (1H, d, J=2. 4Hz), 10. 37 (1H, s).

例445:化合物番号445の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-4,5-ジメトキシベン ゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:52.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 81 (3H, s), 3. 86 (3H, s), 7. 08 (1H, d, J=8. 7Hz), 7. 40 (1H, s), 7. 52 (1H, dd, J=8. 7, 2. 7Hz), 7. 89 (1H, s), 7. 99 (1H, d, J=3. 0Hz), 10. 93 (1H, s), 12. 31 (1H, s).

例446:化合物番号446の化合物の製造

原料として、5-クロロサリチル酸、及び6-アミノ-1, 4-ベンゾジオキサンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:79.7%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  4. 25 (4H, s), 6. 86 (1H, d, J=8. 8Hz), 7. 00 (1H, d, J=8. 8Hz), 7. 12 (1H, d d, J=8. 8, 2. 5Hz), 7. 33 (1H, d, J=2. 5Hz), 7. 4 6 (1H, dd, J=8. 8, 2. 5Hz), 7. 97 (1H, d, J=2. 5Hz), 10. 27 (1H, s), 11. 96 (1H, s).

例447:化合物番号447の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジクロロ-5-(イソプロピルオキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:76.1%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  1. 35 (6H, d, J=6.0Hz), 4.

58-4. 66 (1H, m), 7. 07 (1H, d, J=9. 0Hz), 7. 51 (1H, dd, J=8. 7, 3. 0Hz), 7. 68 (1H, s), 7. 98 (1H, d, J=3. 0Hz), 8. 35 (1H, s), 10. 94 (1H, s), 12. 34 (1H, s).

例448:化合物番号448の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-2-クロロベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:57.9%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 04 (1H, d, J=9.0Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 78 (1H, d, J=2.7Hz), 7. 82 (1H, dd, J=9.0, 2.1Hz), 7. 97 (1H, d, J=8.7Hz), 8. 19 (1H, d, J=2.1Hz), 10. 79 (1H, s). 11. 38 (1H, s).

例449:化合物番号449の化合物の製造

原料として、5-クロロサリチル酸、及び3-クロロ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:50.6%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 7. 03 (1H, d, J=8. 7Hz), 7. 48 (1H, dd, J=8. 7, 2. 7Hz), 7. 60 (1H, dd, J=9. 0, 1. 5Hz), 7. 76 (1H, dd, J=9. 0, 2. 4Hz), 7. 85 (1H, d, J=3. 0Hz), 8. 13 (1H, d, J=2. 4Hz), 10. 61 (1H, s), 11. 51 (1H, s).

例450:化合物番号450の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-3-メチルベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:80.6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 36 (3H, s), 7. 06 (1H, d,

J=8.7Hz), 7. 49 (1H, dd, J=8.7, 2. 4Hz), 7. 71 (1H, dd, J=8.4, 1. 8Hz), 7. 77 (1H, s), 7. 95 (1H, d, J=3.0Hz), 8. 40 (1H, d, J=8.4Hz), 10. 76 (1H, s), 12. 31 (1H, brs).

例451:化合物番号451の化合物の製造

原料として、5-クロロサリチル酸、及び2,3-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:37.1%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 7. 08 (1H, d, J=9.0Hz), 7. 40-7. 48 (2H, m), 7. 52 (1H, dd, J=9.0, 2.7Hz), 7. 98 (1H, d, J=2.7Hz), 8. 40 (1H, dd, J=7.2, 2. 4Hz), 11. 00 (1H, s), 12. 32 (1H, s).

例452:化合物番号452の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:67.3%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 08 (1H, d, J=8.7Hz), 7. 20 (1H, td, J=8.1, 1.8Hz), 7. 40 (1H, td, J=8. 4, 1.8Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 57 (1H, dd, J=8.4, 1.8Hz), 8. 00 (1H, d, J=2.7Hz), 8. 40 (1H, dd, J=8.4, 1.8Hz), 10.89 (1H, s), 1 2. 27 (1H, s).

例453:化合物番号453の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピル-3-メチルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:21.6%

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  1. 23 (6H, d, J=6. 9Hz), 2. 3

6 (3H, s), 3. 12 (1H, m), 6. 89 (1H, d, J=9. 0Hz), 7. 15-7. 40 (5H, m), 7. 48 (1H, d, J=2. 1Hz), 7. 83 (1H, brs).

例454:化合物番号454の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノー5-[(1,1-ジメチル)プロピル]フェノールを用いて例16と同様の操作を行い、標題化合物を得た。収率:24.9%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0. 69 (3H, t, J=7. 5Hz), 1. 2 8 (6H, s), 1. 63 (2H, q, J=7. 5Hz), 6. 98 (1H, d, J=8. 7Hz), 7. 01 (1H, d, J=9. 0Hz), 7. 06 (1H, s), 7. 15 (1H, dd, =8. 4, 2. 4Hz), 7. 35 (1H, d, J=2. 1Hz), 7. 42 (IH, dd, J=8. 7, 2. 4Hz), 7. 56 (1H, d, J=2. 4Hz), 8. 26 (1H, s), 11. 44 (1H, s).

例455:化合物番号455の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:64.7%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 2. 28 (3H, s), 7. 05 (1H, d, J=8. 7Hz), 7. 13 (1H, td, J=7. 5, 1. 5Hz), 7. 22 -7. 30 (2H, m), 7. 50 (1H, dd, J=9. 0, 2. 7Hz), 7. 83 (1H, d, J=7. 8Hz), 8. 03 (1H, d, J=3. 0Hz), 10. 32 (1H, s), 12. 22 (1H, s).

例456:化合物番号456の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:82.1%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  0. 90 (3H, t, J=7.2Hz), 1.

24-1.36 (2H, m), 1.50-1.60 (2H, m), 2.56 (2H, t, J=7.2Hz), 7.01 (1H, d, J=8.7Hz), 7.19 (2H, d, J=8.7Hz), 7.47 (1H, dd, J=8.7, 2.4Hz), 7.59 (2H, d, J=8.4Hz), 7.98 (1H, d, J=2.7Hz), 10.36 (1H, s), 11.94 (1H, s).

例457:化合物番号457の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-クロロベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.7%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 0 9 (1 H, d, J=8. 7 Hz), 7. 5 2 (1 H, d, J=8. 1 Hz), 7. 5 3 (1 H, d d, J=9. 0, 3. 0 Hz), 7. 76 (1 H, t, J=8. 7 Hz), 7. 9 5 (1 H, d, J=3. 0 Hz), 8. 3 4 (1 H, d, J=8. 4 Hz), 11. 17 (1 H, s), 12. 3 9 (1 H, s).

例458:化合物番号458の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-5-メチルベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:9.0%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  2. 48 (3H, s), 7. 01 (1H, d, J = 9. 0Hz), 7. 10 (1H, dd, J=8. 0, 0. 9Hz), 7. 44 (1H, d, J=9. 0, 2. 4Hz), 7. 56 (1H, d, J=8. 1Hz), 7. 62 (1H, d, J=2. 4Hz), 8. 22 (1H, s), 8. 54 (1H, brs), 11. 25 (1H, brs).

例459:化合物番号459の化合物の製造

原料として、5-クロロサリチル酸、及び4-ベンジルオキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:26.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  5. 11 (2H, s), 6. 99-7. 05 (3H, m), 7. 33-7. 49 (6H, m), 7. 60 (2H, d, J=9. 0Hz), 7. 99 (1H, d, J=2. 7Hz), 10. 33 (1H, s), 12. 02 (1H, s).

例460:化合物番号460の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-2,2-ジフルオロベン ゾ [1,3] ジオキソールを用いて例 16 と同様の操作を行い、標題化合物を得た。

収率:66.9%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 05 (1H, d, J=8.8Hz), 7. 31-7. 32 (2H, m), 7. 51 (1H, dd, J=8.8, 2.8Hz), 7. 70 (1H, dd, J=5.6, 3.8Hz), 7. 96 (1H, d, J=2.8Hz), 10.59 (1H, s), 12.05 (1H, brs).

例461:化合物番号461の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノ-2、2、3、3-テトラフルオロ-2、3-ジヒドロベンゾ [1, 4]ジオキシンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.9%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 6.99-7.03 (2H, m), 7.21-7.27 (2H, m), 7.45 (1H, dd, J=8.9, 2.5Hz), 7.52 (1H, d, J=2.5Hz), 8.13 (1H, s), 11.44 (1H, s). 例 462:化合物番号 462の化合物の製造

原料として、5-クロロサリチル酸、及び3-クロロ-4-(トリフルオロメチル)スルファニルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:52.3%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7.03 (1H, d, J=8.8Hz), 7.

47 (1H, dd, J=2. 9, 8.8Hz), 7.80 (1H, dd, J=2.6, 8.8Hz), 7.82 (1H, d, J=2.6Hz), 7.88 (1H, d, J=8.8Hz), 8.20 (1H, d, J=2.2Hz), 10.70 (1H, s), 11.43 (1H, s).

例463:化合物番号463の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.4%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 07 (1H, d, J=8.8Hz), 7. 52 (1H, dd, J=2.6, 8.8Hz), 7.85-7.89 (1H, m), 7.93 (1H, d, J=2.6Hz), 8.17 (1H, d, J=2.9Hz), 8.67 (1H, d, J=9.5Hz), 11.92 (1H, s), 12.14 (1H, s).

例464:化合物番号464の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノ-2,2-ジフルオロベン ゾ [1,3] ジオキソールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:75.8%

 $^{1}$ H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 02 (1H, d, J=8.8Hz), 7. 42-7. 43 (2H, m), 7. 48 (1H, dd, J=8.8, 2.5Hz), 7. 90 (1H, d, J=2.5Hz), 10. 54 (1H, s), 11. 69 (1H, s).

例465:化合物番号465の化合物の製造

原料として、5-クロロサリチル酸、及び3-ベンジルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:66.4%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  3. 99 (2H, s), 6. 97 (1H, d, J

=9.1Hz), 7.06 (1H, d, J=7.4Hz), 7.18-7.48 (8 H, m), 7.37 (1H, dd, J=9.1, 2.5Hz), 7.45 (1H, d, J=2.5Hz), 7.80 (1H, brs), 11.88 (1H, s).

原料として、5-クロロサリチル酸、及び2-ニトロ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:40.9%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 2. 33 (3H, s), 7. 05 (1H, d, J=8. 8Hz), 7. 25 (1H, dd, J=1. 8, 8. 8Hz), 7. 33 (1H, d, J=1. 8Hz), 7. 49 (1H, dd, J=2. 9, 8. 8Hz), 7. 97-8. 00 (2H, m), 10. 37 (1H, s), 12. 15 (1H, s). 例467:化合物番号467の化合物の製造

原料として、5-クロロサリチル酸、及び2,3,5-トリフルオロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:54.2%

 $^{1}$ H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 06 (1H, d, J=8.8Hz), 7. 28-7. 37 (1H, m), 7. 51 (1H, dd, J=2.6, 8.8Hz), 7. 92 (1H, d, J=2.6Hz), 7. 98-8. 04 (1H, m), 10. 93 (1H, s), 12. 27 (1H, br. s)

例468:化合物番号468の化合物の製造

例466:化合物番号466の化合物の製造

原料として、5-クロロサリチル酸、及び4'-アミノベンゾー15-クラウン-5を用いて例16と同様の操作を行い、標題化合物を得た。

収率: 45.1%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  3. 74-3. 77 (8H, m), 3. 90-3. 92 (4H, m), 4. 10-4. 15 (4H, m), 6. 83 (1H, d, J=8. 5Hz), 6. 96-6. 99 (2H, m), 7. 24 (1H, d, J=2. 5Hz), 7. 36 (1H, dd, J=2. 5, 8. 8Hz), 7. 53 (1H, s), 8.

06 (1H, br. s), 11. 92 (1H, s).

例469:化合物番号469の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモ-2-フルオロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率: 45.1%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 05 (1H, d, J=8.8Hz), 7. 43-7.53 (2H, m), 7. 64-7.71 (1H, m), 7. 94 (1H, d, J=1.5Hz), 8. 20 (1H, dd, J=8.4, 8.8Hz), 10. 70 (1H, s), 12. 16 (1H, s).

例470:化合物番号470の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ビス(メタンスルホニル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 7. 2%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  3. 13 (3H, s), 3. 21 (3H, s), 7. 04 (1H, d, J=8. 9Hz), 7. 48 (1H, dd, J=2. 2, 8. 9Hz), 7. 62 (1H, d, J=2. 2Hz), 8. 24 (1H, dd, J=2. 4, 9. 0Hz), 8. 56 (1H, d, J=2. 4Hz), 8. 91 (1H, d, J=8. 9Hz), 10. 96 (1H, s), 11. 57 (1H, s).

例471:化合物番号471の化合物の製造

5-クロロサリチル酸(87mg, 0.5mmol)、2,2-ビス(3-アミノー4-メチルフェニル)ー1,1,1,3,3,3-ヘキサフルオロプロパン(363mg,1mmol)、三塩化リン(44 $\mu$ L,0.5mmol)、トルエン(4mL)の混合物を4時間加熱還流した。反応混合物を室温まで冷却後、シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の白色(16mg,4.9%)を得た。(後述する例529、化合物番号529の化合物を副生成物として得た。)

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 34 (6H, s), 7. 04 (4H, d,

J=8.8Hz), 7. 39 (2H, d, J=8.4Hz), 7. 48 (2H, d d, J=2.9, 8. 8Hz), 7. 96 (2H, d, J=2.9Hz), 8. 19 (2H, s), 10. 44 (2H, s), 12. 17 (2H, s).

例472:化合物番号472の化合物の製造

原料として、5-クロロサリチル酸、及び6-アミノ-2、2、3、3-テトラフルオロ-2、3-ジヒドロベンゾ [1, 4]ジオキシンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:10.1%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 03 (1H, d, J=8.8Hz), 7. 48 (1H, dd, J=9.0, 2.7Hz), 7. 50 (1H, d, J=9.0 Hz), 7. 59 (1H, dd, J=8.8, 2.2Hz), 7. 86 (1H, d, J=2.7Hz), 7. 92 (1H, d, J=2.2Hz), 10. 59 (1H, s), 11. 55 (1H, s).

例473:化合物番号473の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-5-クロロベンゾフェノンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 27. 6%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  6. 96 (1H, d, J=8. 7Hz), 7. 43 (1H, dd, J=8. 7, 3. 0Hz), 7. 49-7. 56 (3H, m), 7. 64-7. 75 (5H, m), 8. 21 (1H, d, J=9. 3Hz), 11. 21 (1H, s), 11. 83 (1H, s).

例474:化合物番号474の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモ-4-フルオロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$  7. 07 (1H, d, J=9.0Hz), 7. 31-7. 38 (1H, m), 7. 51 (1H, dd, J=9.0, 3.0Hz),

7. 72 (1 H, d, J=8. 1, 3. 0 Hz), 8. 00 (1 H, d, J=3. 0 Hz), 8. 23 (1 H, d d, J=9. 3, 5. 4 Hz), 10. 70 (1 H, s), 12. 24 (1 H, s).

例475:化合物番号475の化合物の製造

原料として、5-クロロサリチル酸、及び4-ヘキシルオキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:74.8%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  0. 88 (3H, t, J=6.6Hz), 1. 28-1. 46 (6H, m), 2. 49-2. 52 (2H, m), 3. 95 (2H, t, J=6.6Hz), 6. 91-6. 96 (2H, m), 7. 00 (1H, d, J=8.8Hz), 7. 46 (1H, dd, J=8.8, 2.9Hz), 7. 55-7. 61 (2H, m), 8. 00 (1H, d, J=2.9Hz), 10. 31 (1H, s), 12. 03 (1H, s).

例476:化合物番号476の化合物の製造

原料として、5-クロロサリチル酸、及び2, 2-ビス(3-アミノフェニル) -1, 1, 1, 3, 3, 3-ヘキサフルオロプロパンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.5%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  6. 99 (2H, d, J=8.8Hz), 7. 11 (2H, d, J=8.0Hz), 7. 45 (2H, dd, J=8.8, 2.6 Hz), 7. 50 (2H, t, J=8.4Hz), 7. 86 (2H, d, J=2, 6Hz), 7. 88-7. 91 (4H, m), 10.53 (2H, s), 11.56 (2H, s).

例477:化合物番号477の化合物の製造

原料として、5-クロロサリチル酸、及び2,4,5-トリクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:38.9%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 7.02 (1H, d, J=8.6Hz), 7.4 6 (1H, d, J=8.6Hz), 7.49 (1H, s), 7.57 (1H, s), 8.41 (1H, br. s), 8.63 (1H, s), 11.42 (1H, s). 例478:化合物番号478の化合物の製造

原料として、5 ークロロサリチル酸、及び3 ーイソプロピルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:55.3%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 22 (6H, d, 6. 9Hz), 2. 7 6-2. 94 (1H, m), 7. 01 (1H, d, J=8. 6Hz), 7. 04 (1 H, d, J=7. 9Hz), 7. 29 (1H, t, J=7. 9Hz), 7. 47 (1 H, dd, J=8. 6, 2. 6Hz), 7. 54 (1H, d, J=7. 9Hz), 7. 57 (1H, s), 7. 98 (1H, d, J=2. 6Hz), 10. 37 (1 H, s), 11. 90 (1H, brs).

例479:化合物番号479の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノベンゾニトリルを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:45.6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7.03 (1H, d, J=8.6Hz), 7.47 (1H, dd, J=8.6, 2.6Hz), 7.83 (1H, d, J=2.6Hz), 7.84 (2H, d, J=8.9Hz), 7.92 (2H, d, J=8.9Hz), 10.71 (1H, s), 11.59 (1H, brs).

例480:化合物番号480の化合物の製造

原料として、5 - クロロサリチル酸、及び3 - アミノベンゾニトリルを用いて例 16と同様の操作を行い、標題化合物を得た。

収率: 97.1%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7.03 (1H, d, J=8.7Hz), 7.48 (1H, dd, J=9.0, 2.7Hz), 7.56-7.63 (2H, m),

7. 88 (1H, d, J=2.7Hz), 7. 95-8. 02 (1H, m), 8. 20-8. 21 (1H, m), 10. 62 (1H, s), 11. 57 (1H, s). 例481:化合物番号481の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジメトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:73.3%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 75 (3H, s), 3. 76 (3H, s), 6. 95 (1H, d, J=8. 7Hz), 7. 01 (1H, d, J=9. 0Hz), 7. 24 (1H, dd, J=8. 7, 2. 7Hz), 7. 38 (1H, d, J=2. 1Hz), 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 8. 00 (1H, d, J=2. 4Hz), 10. 30 (1H, s), 12. 01 (1H, s).

例482:化合物番号482の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノフェニル酢酸 エチルエス テルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:66.1%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  1. 19 (3H, t, J=7.5Hz), 3. 64 (2H, s), 4. 08 (2H, q, J=7.2Hz), 7. 01 (1H, d, J=8.7Hz), 7. 26 (2H, d, J=8.7Hz), 7. 47 (1H, d d, J=8.7, 3.0Hz), 7. 64 (1H, d, J=8.4Hz), 7. 9 6 (1H, d, J=2.4Hz), 10. 40 (1H, s), 11. 87 (1H, s).

例483:化合物番号483の化合物の製造

原料として、5-クロロサリチル酸、及び3-[(トリフルオロメチル)スルファニル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.1%

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  7. 01 (1H, d, J=8. 9Hz), 7. 4 2 (1H, dd, J=8. 9, 2. 3Hz), 7. 47-7. 53 (2H, m),

7. 51 (1H, d, J=2.3Hz), 7. 76 (1H, dt, J=7.6Hz, 2.0Hz), 7. 88 (1H, brs), 7. 92 (1H, s), 11. 64 (1H, s).

例484:化合物番号484の化合物の製造

原料として、5-クロロサリチル酸、及び4-[(トリフルオロメチル) スルファ ニル] アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:63.2%

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  7. 01 (1H, d, J=8. 9Hz), 7. 4 3 (1H, dd, J=8. 9, 2. 3Hz), 7. 50 (1H, d, J=2. 3Hz), 7. 70 (4H, s), 7. 90 (1H, brs), 11. 60 (1H, s).

例485:化合物番号485の化合物の製造

原料として、5-クロロサリチル酸、及び4-(トリフルオロメタンスルホニル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:38.7%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 04 (1H, d, J=8.6Hz), 7. 49 (1H, dd, J=8.6, 2.6Hz), 7. 80 (1H, d, J=2.6Hz), 8. 12 (2H, d, J=9.4Hz), 8. 17 (2H, d, J=9.4Hz), 8. 16 (1H, s), 10. 95 (1H, s), 11. 37 (1H, brs).

例486:化合物番号486の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:75.4%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 0 2 (1H, d, J=8. 9Hz), 7. 3 9-7. 5 1 (3H, m), 7. 8 5-7. 9 3 (2H, m), 1 0. 5 1, (1H, s), 11. 6 0 (1H, s).

例487:化合物番号487の化合物の製造

原料として、5-クロロサリチル酸、及び3-エチニルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:35.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  4. 22 (1H, s), 7. 02 (1H, d, J=8. 6Hz), 7. 25 (1H, d, J=7. 6Hz), 7. 39 (1H, t, J=7. 6Hz), 7. 47 (1H, dd, J=8. 6, 2. 6Hz), 7. 70 (1H, d, J=7. 6Hz), 7. 89 (1H, s), 7. 91 (1H, d, J=2. 6Hz), 10. 46 (1H, s), 11. 69 (1H, brs).

例488:化合物番号488の化合物の製造

原料として、5-クロロサリチル酸、及び4-(sec-ブチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:40.1%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  0. 77 (3H, t, 7. 4Hz), 1. 1 9 (3H, d, 6. 9Hz), 1. 50-1. 61 (2H, m), 2. 52-2. 62 (1H, m), 7. 01 (1H, d, J=8. 9Hz), 7. 20 (2H, d, J=8. 6Hz), 7. 47 (1H, dd, J=8. 9, 2. 6Hz), 7. 60 (2H, d, J=8. 6Hz), 7. 98 (1H, d, J=2. 6Hz), 10. 36 (1H, s), 11. 94 (1H, brs).

例489:化合物番号489の化合物の製造

原料として、5-クロロサリチル酸、及び3-クロロ-4-メトキシアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:75.7%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 6.98 (2H, t, J=9.2Hz), 7.3 8-7.44 (2H, m), 7.47 (1H, d, J=2.6Hz), 7.66 (1 H, d, J=2.6Hz), 7.73 (1H, br.s), 11.81 (1H, s). 例490: 化合物番号490の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノベンゾフェノンを用いて例

16と同様の操作を行い、標題化合物を得た。

収率:34.3%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 02 (1H, d, J=8.6Hz), 7. 48 (1H, dd, J=9.1, 2.6Hz), 7.52-7.62 (4H, m), 7.68-7.79 (3H, m), 7.93 (1H, d, J=2.6Hz), 8. 02 (1H, d, J=7.9Hz), 8.16 (1H, s), 10.60 (1H, s), 11.68 (1H, brs).

例491:化合物番号491の化合物の製造

原料として、5 - クロロサリチル酸、及び3 - メトキシアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:23.5%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 76 (3H, s), 6. 69-6. 75 (1H, m), 7. 01 (1H, d, J=8. 6Hz), 7. 25-7. 28 (2H, m), 7. 39 (1H, s), 7. 47 (1H, dd, J=8. 6, 2. 6Hz), 7. 94 (1H, d, J=2. 6Hz), 10. 39 (1H, s), 11. 81 (1H, brs).

例492:化合物番号492の化合物の製造

原料として、5 - クロロサリチル酸、及び4'-アミノアセトアニリドを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:36.2%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  2. 50 (3H, s), 7. 01 (1H, d, J=8. 6Hz), 7. 47 (1H, dd, J=8. 6, 2. 6Hz), 7. 57 (2H, d, J=9. 1Hz), 7. 61 (2H, d, J=9. 1Hz), 7. 9 8 (1H, d, J=2. 6Hz), 9. 95 (1H, s), 10. 38 (1H, s), 11. 99 (1H, brs).

例493:化合物番号493の化合物の製造

原料として、5-クロロサリチル酸、及びスルファニルアミドを用いて例16と

同様の操作を行い、標題化合物を得た。

収率: 25. 7%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 03 (1H, d, J=8.9Hz), 7. 31 (2H, s), 7. 47 (1H, dd, J=8.9, 2.3Hz), 7. 81 (2H, d, J=8.9Hz), 7. 89 (2H, d, J=8.9Hz), 7. 89 (1H, d, J=2.3Hz), 10. 70 (1H, s), 11. 55 (1H, brs).

例494:化合物番号494の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-アミノフェニル)-1, 1, 1, 3, 3, 3-ヘキサフルオロ-2-プロパノールを用いて例16と同様の操作を行い、標題化合物を得た。(後述する例498、化合物番号498の化合物との混合物を分離して得た。)

収率:11.7%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 02 (1H, d, J=8.6Hz), 7. 47 (1H, dd, J=8.6, 2.6Hz), 7. 68 (2H, d, J=8.7 Hz), 7. 85 (2H, d, J=8.7Hz), 7. 91 (1H, d, J=2.6Hz), 8. 69 (1H, s), 10. 62 (1H, s).

例495:化合物番号495の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-4-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:39.6%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  7. 04 (1H, d, J=8. 9Hz), 7. 4 7 (1H, dd, J=2. 3, 8. 9Hz), 7. 54 (1H, d, J=2. 3Hz), 8. 25 (1H, dd, J=2. 6, 8. 9Hz), 8. 39 (1H, d, J=2. 3Hz), 8. 73 (1H, d, J=9. 2Hz), 8. 76 (1H, br. s), 11. 22 (1H, s).

例496:化合物番号496の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:67.8%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 7.05 (1H, dd, J=1.7, 8.9 Hz), 7.15 (1H, dt, J=1.7, 9.2Hz), 7.41 (1H, dd, J=2.3, 8.9, 9.2Hz), 7.51 (1H, dt, J=2.3, 8.9Hz), 7.98 (1H, d, J=2.3Hz), 8.11 (1H, dd, J=8.9, 15.1Hz), 10.59 (1H, s), 12.13 (1H, s). 例497:化合物番号497の化合物の製造

原料として、5 - クロロサリチル酸、及び4 - (ジフルオロメトキシ) アニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:85.9%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 01 (1H, d, J=8.6Hz), 7. 19 (1H, t, J=74.2Hz), 7. 20 (2H, d, J=8.6Hz), 7. 47 (1H, dd, J=8.6, 2.6Hz), 7. 74 (2H, d, J=8.9Hz), 7. 94 (1H, d, J=2.6Hz), 10. 47 (1H, s), 11. 80 (1H, brs).

例498:化合物番号498の化合物の製造

前述した例494において、化合物番号494の化合物との混合物を分離して 得た。

収率:11.6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 0 2 (1H, d, J=8.6Hz), 7. 46 (1H, dd, J=8.6, 2.3Hz), 7. 83 (2H, d, J=8.1 Hz), 7. 88 (1H, d, J=2.3Hz), 7. 95 (2H, d, J=8.1 Hz), 10.71 (1H, s).

例499:化合物番号499の化合物の製造

原料として、5-クロロサリチル酸、及び3-(メチルスルファニル)アニリン

を用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.2%

 $^{1}H-NMR$  (DMSO- $d_{6}$ ):  $\delta$  2. 49 (3H, s), 7. 00-7. 05 (1H, m), 7. 01 (1H, d, J=8. 9Hz), 7. 31 (1H, t, J=7. 9Hz), 7. 46 (1H, dd, J=8. 9, 2. 6Hz), 7. 44-7. 49 (1H, m), 7. 68 (1H, d, J=1. 7Hz), 7. 93 (1H, d, J=2. 6Hz), 10. 47 (1H, s).

例500:化合物番号500の化合物の製造

原料として、5-クロロサリチル酸、及び4-メタンスルホニルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:28.6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 20 (3H, s), 7. 03 (1H, d, J=8. 3Hz), 7. 48 (1H, dd, J=8. 3, 2. 6Hz), 7. 87 (1H, d, J=2. 6Hz), 7. 92 (2H, d, J=8. 9Hz), 7. 98 (2H, d, J=8. 9Hz), 10. 75 (1H, s), 11. 45 (1H, brs).

例501:化合物番号501の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-4-メチルベンゾフェノンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:8.7%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  2. 50 (3H, s), 6. 98 (1H, d, J=8. 3Hz), 6. 99 (1H, d, J=7. 3Hz), 7. 39 (1H, dd, J=2. 0, 8. 6Hz), 7. 48-7. 64 (4H, m), 7. 72 (2H, d, J=7. 6Hz), 7. 83 (1H, d, J=2. 3Hz), 8. 57 (1H, s), 12. 18 (1H, s), 12. 34 (1H, br. s).

例502:化合物番号502の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-N-ブチルベンゼンスル

ホンアミドを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 46. 7%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 0. 80 (3H, t, J=7. 3Hz), 1. 17-1. 41 (4H, m), 2. 73-2. 80 (2H, m), 7. 03 (1H, d, J=8. 9Hz), 7. 48 (1H, dd, J=8. 9, 2. 0Hz), 7. 53-7. 64 (2H, m), 7. 87-7. 92 (1H, m), 7. 92 (1H, d, J=2. 0Hz), 8. 27 (1H, s), 10. 62 (1H, s), 11. 63 (1H, s).

例503:化合物番号503の化合物の製造

原料として、5-クロロサリチル酸、及び3-(ベンジルオキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.5%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  5. 11 (2H, s), 6. 79-6. 83 (1H, m), 7. 01 (1H, d, J=8. 9Hz), 7. 27-7. 49 (9 H, m), 7. 93 (1H, d, J=3. 0Hz), 10. 40 (1H, s), 11. 79 (1H, brs).

例504:化合物番号504の化合物の製造

原料として、5-クロロサリチル酸、及びN-(4-アミノフェニル)-4-メチルベンゼンスルホンアミドを用いて例16と同様の操作を行い、標題化合物を得た。

収率:40.6%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  2. 33 (3H, s), 6. 99 (1H, d, J=8. 6Hz), 7. 07 (2H, d, J=8. 6Hz), 7. 34 (2H, d, J=8. 3Hz), 7. 45 (1H, dd, J=8. 6, 2. 1Hz), 7. 53 (2H, d, J=8. 6Hz), 7. 63 (2H, d, J=8. 3Hz), 7. 9 0 (1H, d, J=2. 1Hz), 10. 14 (1H, s), 10. 33 (1H, s), 11. 81 (1H, brs).

例505:化合物番号505の化合物の製造

原料として、5-クロロサリチル酸、及び4-(モルホリノ)アニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:29.8%

<sup>1</sup>H-NMR (DMSO- $d_6$ ):  $\delta$  3. 09 (4H, t, J=4.6Hz), 3. 74 (4H, t, J=4.6Hz), 6. 94-7. 01 (3H, m), 7. 46 (1H, dd, J=8.9, 2.6Hz), 7. 55 (2H, d, J=8.9Hz), 8. 01 (1H, d, J=2.6Hz), 10. 29 (1H, s), 12. 10 (1H, brs).

例506:化合物番号506の化合物の製造

原料として、5-クロロサリチル酸、及び3-(tert-ブチル)アニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:76.1%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 1. 35 (9H, s), 6. 99 (1H, d, J = 8. 9Hz), 7. 24-7. 28 (1H, m), 7. 32-7. 35 (1H, m), 7. 40 (1H, dd, J=8. 9, 2. 3Hz), 7. 46-7. 50 (2H, m), 7. 51 (1H, d, J=2. 3Hz), 7. 81 (1H, brs), 11. 94 (1H, s).

例507:化合物番号507の化合物の製造

原料として、5-クロロサリチル酸、及び3-(5-メチルフラン-2-イル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:61.1%

<sup>1</sup>H-NMR (DMSO- $d_6$ ):  $\delta$  2. 36 (3H, s), 6. 22-6. 23 (1H, m), 6. 81 (1H, d, J=3. 0Hz), 7. 02 (1H, d, J=8. 9Hz), 7. 36-7. 51 (3H, m), 7. 58-7. 61 (1H, m), 7. 99-8. 01 (2H, m), 10. 49 (1H, s), 11. 85 (1H, brs).

例508:化合物番号508の化合物の製造

原料として、5-クロロサリチル酸、及び3-(1-ヒドロキシエチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 37.6%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 80 (3H, d, J=6.6Hz), 5. 33 (1H, q, J=6.6Hz), 7. 01 (1H, d, J=8.9Hz), 7. 25 (1H, d, J=7.9Hz), 7. 38 (1H, t, J=7.9Hz), 7. 47 (1H, dd, J=8.9, 2.3Hz), 7. 65 (1H, d, J=7.9Hz), 7. 85 (1H, s), 7. 96 (1H, d, J=2.3Hz), 10. 48 (1H, s), 11. 80 (1H, brs).

例509:化合物番号509の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノベンゼンスルホンアミドを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:18.7%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 03 (1H, d, J=8.9Hz), 7. 41 (2H, s), 7. 48 (1H, dd, J=8.9, 2.6Hz), 7. 54 -7. 62 (2H, m), 7. 84-7. 88 (1H, m), 7. 93 (1H, d, J=2.6Hz), 8. 30 (1H, s), 10. 64 (1H, s), 11. 68 (1H, brs).

例510:化合物番号510の化合物の製造

原料として、5-クロロサリチル酸、及び3-(トリフルオロメタンスルホニル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:62.6%

<sup>1</sup>H-NMR (DMSO- $d_6$ ):  $\delta$  7. 03 (1H, d, J=8.6Hz), 7. 48 (1H, dd, J=8.6, 2.6Hz), 7. 82-7. 88 (3H, m), 8. 23-8. 26 (1H, m), 8. 67 (1H, s), 10. 88 (1H, s), 11. 45 (1H, brs).

例511:化合物番号511の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:17.1%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  7. 02 (1H, d, J=8. 9Hz), 7. 2 6-7. 31 (1H, m), 7. 44 (1H, dd, J=8. 9, 2. 6Hz), 7. 53 (2H, d, J=2. 6Hz), 8. 41 (1H, brs,), 8. 42 (1H, d, J=8. 9Hz), 11. 57 (1H, s).

例512:化合物番号512の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-(ジヘキシルオキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:60.5%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  0. 91 (6H, t, J=6. 3Hz), 1. 3 4-1. 61 (12H, m), 1. 76-1. 89 (4H, m), 3. 97-4. 04 (4H, m), 6. 88 (1H, d, J=8. 9Hz), 6. 97-7. 00 (2H, m), 7. 22 (1H, d, J=2. 6Hz), 7. 38 (1H, dd, J=8. 9, 2. 6Hz), 7. 47 (1H, d, J=2. 6Hz), 7. 73 (1H, s), 11. 97 (1H, s).

例513:化合物番号513の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:16.4%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 03 (1H, d, J=8. 7Hz), 7 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 7. 61-7. 70 (2H, m), 7. 86 (1H, d, J=2. 7Hz), 8. 11 (1H, d, J=2. 1Hz), 10. 56 (1H, s), 11. 53 (1H, s).

例514:化合物番号514の化合物の製造

原料として、5-クロロサリチル酸、及び3-ヘキシルオキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:88.2%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  0. 89 (3H, t, J=7.0Hz), 1. 28-1. 47 (6H, m), 1. 67-1. 76 (2H, m), 3. 95 (2H, t, J=6.6Hz), 6. 69-6. 73 (1H, m), 7. 01 (1H, d, J=8.8Hz), 7. 21-7. 28 (2H, m), 7. 39-7. 40 (1H, m), 7. 67 (1H, dd, J=8.8, 2.6Hz), 7. 94 (1H, d, J=2.6Hz), 10. 34 (1H, s), 11. 80 (1H, s).

例515:化合物番号515の化合物の製造

原料として、5-クロロサリチル酸、及び5-エトキシ-4-フルオロ-2-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:20.2%

 $^{1}$ H-NMR (DMSO-d<sub>6</sub>):  $\delta$  1. 43 (3H, t, J=7.0Hz), 4. 27 (2H, q, J=7.0Hz), 7. 07 (1H, d, J=8.8Hz), 7. 52 (1H, dd, J=8.8, 2.9Hz), 7. 95 (1H, d, J=2.9Hz), 8. 15 (1H, d, J=11.4Hz), 8. 57 (1H, d, J=8.4Hz), 12. 16 (1H, s), 12. 26 (1H, s).

例516:化合物番号516の化合物の製造

原料として、5-クロロサリチル酸、及び4-ヒドロキシ-3-メチル-1-ナフチルアミンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:5.9%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  2. 38 (3H, s), 7. 03 (1H, d, J=9. 3Hz), 7. 43 (2H, s), 7. 46 (1H, d, J=2. 4Hz), 7. 50-7. 54 (2H, m), 7. 67 (1H, d, J=2. 1Hz), 7. 78 (1H, dd, J=6. 0, 2. 7Hz), 8. 03 (1H, brs), 8. 18 (1H, dd, J=6. 0, 3. 6Hz), 11. 98 (1H, brs).

例517:化合物番号517の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例518:化合物番号518の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例519:化合物番号519の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例520:化合物番号520の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例521:化合物番号521の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例522:化合物番号522の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例523:化合物番号523の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例524:化合物番号524の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノビフェニルを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:52.4%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7.03 (1H, d, J=8.7Hz), 7. 33-7.38 (1H, m), 7.44-7.51 (3H, m), 7.67-7.

72 (4H, m), 7.82 (2H, d, J=8.7Hz), 7.98 (1H, d, J=2.4Hz), 10.49 (1H, s), 11.84 (1H, s).

例525:化合物番号525の化合物の製造

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 15 (1H, d, J=8.8Hz), 7. 65 (2H, s), 7. 73 (1H, s), 7. 81 (1H, s), 7. 82 (1H, dd, J=8.7, 2.5Hz), 8. 23 (1H, d, J=2.5Hz), 8. 38 (2H, s), 10. 87 (1H, s), 11. 15 (1H, brs).

例526:化合物番号526の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 6.9%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 7. 03 (1H, dd, J=8. 7, 0. 6H z), 7. 43-7. 48 (2H, m), 7. 91 (1H, d, J=9. 0Hz), 7. 96 (1H, s), 8. 42 (1H, s), 8. 49 (1H, d, J=8. 7 Hz), 11. 26 (1H, s).

例527:化合物番号527の化合物の製造

原料として、3-フェニルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.6%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 12 (1H, t, J=8.1Hz), 7. 37 (1H, tt, J=7.5, 1.5Hz), 7. 43-7. 48 (2H, m),

7. 56-7. 60(3H, m), 7. 91(1H, s), 8. 07, (1H, dd, J=8.1, 1.5Hz), 8. 48(2H, s), 11. 00(1H, s), 12. 16(1H, s).

例528:化合物番号528の化合物の製造

原料として、4-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:65.7%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 6. 81-6. 90 (2H, m), 7. 84 (1H, s,), 7. 93-7. 98 (1H, m,), 8. 45 (2H, s,), 10. 78 (1H, s), 11. 81 (1H, s,).

例529:化合物番号529の化合物の製造

前述した例471において、化合物番号471の化合物との混合物を分離して得た。

収率: 9. 4%

<sup>1</sup>H-NMR (CD<sub>3</sub>OD):  $\delta$  2. 16 (3H, s), 2. 34 (3H, s), 6. 69 (1H, d, J=8. 2Hz), 6. 76 (1H, brs) 6. 95 (1H, d, J=8. 8Hz), 7. 02 (1H, d, J=8. 0Hz), 7. 15 (1H, d, J=8. 2Hz), 7. 29 (1H, d, J=8. 2Hz), 7. 37 (1H, dd, J=8. 8, 2. 6Hz), 7. 97 (1H, d, J=2. 6Hz), 7. 98 (1H, s).

例530:化合物番号530の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-3-(トリフルオロメトキシ)ベンゾニトリルを用いて例 16 と同様の操作を行い、標題化合物を得た。収率:75.2%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 7. 13 (1H, d, J=8.8Hz), 7. 54 (1H, dd, J=8.8, 2.6Hz), 7. 94 (1H, dd, J=8. 4, 1.6Hz), 7. 95 (1H, d, J=2.6Hz), 8. 15 (1H, t,

J=1.5Hz), 8. 75 (1H, d, J=8.8Hz), 11. 25 (1H, s), 12. 45 (1H, s).

例531:化合物番号531の化合物の製造

原料として、5-クロロサリチル酸、及び4-[2-アミノ-4-(トリフルオロメチル)フェノキシ]ベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:11.6%

<sup>1</sup>H-NMR (CD<sub>3</sub>OD):  $\delta$  6. 88 (1H, d, J=8. 6Hz), 7. 1 9 (2H, d, J=8. 9Hz), 7. 24 (1H, d, J=8. 6Hz), 7. 33 (1H, dd, J=8. 8, 2. 8Hz), 7. 46 (1H, dd, J=8. 9, 1. 9Hz), 7. 76 (2H, d, J=8. 9Hz), 7. 98 (1H, d, J=2. 7Hz), 8. 96 (1H, s).

例532:化合物番号532の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-(4-メトキシフェノキシ)ベンゾトリフルオライドを用いて例16と同様の操作を行い、標題化合物を得た。

収率:88.1%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>): δ 3. 85 (3H, s) 6. 81 (1H, d, J = 8. 5Hz), 6. 97-7. 02 (3H, m), 7. 08 (2H, d, J=8. 8Hz), 7. 30 (1H, m), 7. 40 (1H, dd, J=8. 8, 1. 9Hz), 7. 45 (1H, d, J=2. 2Hz), 8. 70 (1H, s), 8. 78 (1H, d, J=1. 6Hz), 11. 76 (1H, s).

例533:化合物番号533の化合物の製造

原料として、サリチル酸、及び2,5-ビス(トリフルオロメチル)アニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率: 47.8%

 $^{1}H-NMR (CD_{3}OD): \delta$  7. 00-7. 06 (2H, m), 7. 48 (1

H, dt, J=1.5, 7.5 Hz), 7.74 (1H, d, J=8.4Hz), 8.01-8.08 (2H, m), 8.79 (1H, s), 11.09 (1H, s), 12.03 (1H, s).

例534:化合物番号534の化合物の製造

(1) 2-アミノ-4-(2, 4-ジクロロフェニル) チアゾール 原料として、2', 4'-ジクロロアセトフェノン、及びチオウレアを用いて例 395(1) と同様の操作を行い、標題化合物を得た。

収率: 97.1%

 $^{1}$ H-NMR (CDC1<sub>3</sub>):  $\delta$  5. 01 (2H, s), 7. 09 (1H, s), 7. 28 (1H, dd, J=8. 4, 2. 1Hz), 7. 45 (1H, d, J=2. 1Hz), 7. 82 (1H, d, J=8. 4Hz).

(2) 5-クロロー 2-ヒドロキシ-N- [4-(2, 4-ジクロロフェニル) チアゾール-2-イル] ベンズアミド (化合物番号 5 3 4)

原料として、5-クロロサリチル酸、及び2-アミノー4-(2, 4-ジクロロフェニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。収率:8.0%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 08 (1H, d, J=8.7Hz), 7. 50-7. 55 (2H, m), 7. 72-7. 76 (2H, m), 7. 91 (1H, d, J=8.4Hz), 7. 95 (1H, d, J=2.4Hz), 11. 87 (1H, brs), 12. 09 (1H, brs).

例535:化合物番号535の化合物の製造

原料として、3-イソプロピルサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:99.2%

 $^{1}$ H-NMR (CDC1<sub>3</sub>):  $\delta$  1. 26 (6H, d, J=6. 9Hz), 3. 4 4 (1H, Hept, J=6. 9Hz), 6. 92 (1H, t, J=7. 8Hz), 7. 38 (1H, dd, J=8. 1, 1. 2Hz), 7. 44 (1H, d, J=7.

5 H z), 7. 6 9 (1 H, s), 8. 1 3 (3 H, s), 1 1. 8 8 (1 H, s). 例 5 3 6 : 化合物番号 5 3 6 の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー3ーイソプロピルベンズアミド(化合物番号535;100mg,0.26mmo1)の四塩化炭素(5mL)溶液に、アルゴン雰囲気下、臭素(14.4 $\mu$ L,0.28mmo1)及び鉄粉(1.7mg,0.03mmo1)を加え、室温で2時間攪拌した。反応混合物を酢酸エチルで希釈した。酢酸エチル層を水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルで晶析して、標題化合物の白色固体(110mg,91.5%)を得た。

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  1. 25 (6H, d, J=6.9Hz), 3. 3 9 (1H, Hept, J=6.9Hz), 7. 49-7. 51 (2H, m), 7. 71 (1H, brs), 8. 11-8. 14 (3H, m), 11. 81 (1H, brs).

例537:化合物番号537の化合物の製造

N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシー3-メチルベンズアミド (化合物番号328;150mg,0.41mmo1) のメタノール/水 (3:1) 混合溶液 (5mL) に、N-ブロモコハク酸イミド (88.2mg,0.50mmo1) を加え、室温で10分間攪拌した。反応混合物を酢酸エチルで希釈した。酢酸エチル層を10%チオ硫酸ナトリウム水溶液、水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=5:1) で精製して、標題化合物の白色粉末 (167mg,91.5%) を得た。 $^1$ H-NMR (CDC1 $_3$ ):  $\delta$ 2.28 (3H,s),7.47 (1H,s),7.50 (1H,d,J=2.4Hz),7.71 (1H,s),8.08 (1H,brs),8.13 (2H,s),11.71 (1H,s).

例538:化合物番号538の化合物の製造

4, 4, 4-トリフルオロー1-フェニルー1, 3-ブタンジオン(4 3 2. 3 mg, 2mmo 1)、3-ニトロフェニルヒドラジン塩酸塩(3 7 9. 2 mg, 2 mmo 1)、濃塩酸(0. 2 mL)、エタノール(8 mL)の混合物を2 時間加熱還流した。反応混合物を冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $4:1\rightarrow 3:1$ )で精製して、標題化合物の薄黄白色粉末(6 3 1. 5 mg, 9 4. 7%)を得た。

 $^{1}$ H-NMR (CDCl<sub>3</sub>):  $\delta$  6. 80 (1H, s), 7. 23-7. 26 (2 H, m), 7. 35-7. 45 (3H, m), 7. 54 (1H, t, J=8. 4H z), 7. 63 (1H, ddd, J=8. 1, 1. 8, 1. 2Hz), 8. 19-8. 25 (2H, m).

(2) 1 - (3-アミノフェニル) - 5 - フェニル - 3 - (トリフルオロメチル) ピラゾール

1-(3-ニトロフェニル)-5-フェニル-3-(トリフルオロメチル)ピラゾール(0.59g, 1.77mmol)、5%パラジウム炭素(0.06g)に酢酸(3mL)、エタノール(2mL)を加え、水素雰囲気下,室温で2時間水素添加した。不溶物を濾別後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の白色固体(491.1mg, 91.4%)を得た。

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  3. 78 (2H, s), 6. 54 (1H, ddd, J=7. 8, 1. 8, 0. 6Hz), 6. 65 (1H, ddd, J=8. 4, 2. 4, 0. 9Hz), 6. 73-6. 75 (2H, m), 7. 07 (1H, t, J=8. 1Hz), 7. 24-7. 36 (5H, m).

(3)  $5-クロロー2-ヒドロキシーNー<math>\{3-[5-フェニルー3-(トリフ$ 

ルオロメチル)ピラゾール-1-イル]フェニル $\}$ ベンズアミド (化合物番号 5 3 8)

原料として、5-クロロサリチル酸、及び1-(3-アミノフェニル)-5-フェニル-3-(トリフルオロメチル)ピラゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:74.4%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  6. 77 (1H, s), 6. 97-7. 03 (2 H, m), 7. 27-7. 45 (8H, m), 7. 65 (1H, ddd, J=8. 4, 2. 1, 0. 9Hz), 7. 74 (1H, t, J=2. 1Hz), 7. 93 (1 H, s), 11. 63 (1H, s).

例539:化合物番号539の化合物の製造

(1) 5 - (tert-ブチル) -1-(4-ニトロフェニル) -3-(トリフルオロメチル) ピラゾール

原料として、1, 1, 1-トリフルオロ-5, 5-ジメチル-2, 4-ヘキサンジオン、及び4-ニトロフェニルヒドラジン塩酸塩を用いて例538(1)と同様の操作を行い、標題化合物を得た。

収率:94.7%

 $^{1}$ H-NMR (CDCl $_{3}$ ):  $\delta$  1. 23 (9H, s), 6. 51 (1H, s), 7. 62 (2H, d, J=9. 0Hz), 8. 37 (2H, d, J=9. 0Hz). (2)  $1-(4-r \lesssim J = 2 L) -5-(t \text{ er } t-J = L) -3-(t \text{ J} = 2 L)$ 

(4) / (4 ) () / (トリラ ルオロメチル) ピラゾール

原料として、5-(tert-ブチル)-1-(4-ニトロフェニル)-3-(トリフルオロメチル)ピラゾールを用いて例 538(2)と同様の操作を行い、標題化合物を得た。

収率:98.9%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 1. 20 (9H, s), 4. 00 (2H, br), 6. 40 (1H, s), 6. 69 (2H, d, J=8. 7Hz), 7. 14 (2H,

d, J = 9. 0 H z).

(3) N- $\{4-[5-(tert-ブチル)-3-(トリフルオロメチル)$ ピラゾール-1-イル]フェニル $\}-5-$ クロロ-2-ヒドロキシベンズアミド(化合物番号539)

原料として、5-クロロサリチル酸、及び1-(5-アミノフェニル)-5-(t-ert-ブチル)-3-(トリフルオロメチル)ピラゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:57.6%

<sup>1</sup>H-NMR (CDC1<sub>3</sub>):  $\delta$  1. 23 (9H, s), 6. 47 (1H, s), 7. 00 (1H, d, J=9. 0Hz), 7. 40-7. 44 (3H, m), 7. 57 (1H, d, J=2. 4Hz), 7. 72 (2H, d, J=8. 7Hz), 8. 15 (1H, s), 11. 58 (1H, s).

例540:化合物番号540の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-3-フェニルベンズアミド(化合物番号 5 2 7)を用いて例 5 3 7 と同様の操作を行い、標題化合物を得た。

収率:67.5%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 36-7. 50 (3H, m), 7. 55 -7. 59 (2H, m), 7. 71 (1H, d, J=2. 1Hz), 7. 93 (1H, brs), 8. 28 (1H, d, J=2. 1Hz), 8. 45 (2H, s), 11. 06 (1H, brs), 12. 16 (1H, brs).

例541:化合物番号541の化合物の製造

(1) 2-アミノー4-(3, 4-ジクロロフェニル) チアゾール

原料として、3', 4'-ジクロロアセトフェノン、及びチオウレアを用いて例 395(1)と同様の操作を行い、標題化合物を得た。

収率:77.8%

 $^{1}H-NMR (DMSO-d_{6}): \delta$  7. 17 (2H, s), 7. 24 (1H, s),

7. 62 (1 H, d, J=8.4Hz), 7. 78 (1 H, d d, J=8.7, 2. 7 Hz), 8. 22 (1 H, d, J=2.4Hz).

(2) 5-クロロー 2-ヒドロキシ-N- [4-(3, 4-ジクロロフェニル) チアゾール-2-イル] ベンズアミド (化合物番号 541)

原料として、5-クロロサリチル酸、及び2-アミノー4-(3, 4-ジクロロフェニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。収率: 15.1%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 08 (1H, d, J=8.7Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 71 (1H, d, J=8.4 Hz), 7. 91 (1H, d, J=1.8Hz), 7. 94 (1H, s), 8. 18 (1H, d, J=1.5Hz), 12. 09 (2H, bs).

例542:化合物番号542の化合物の製造

(1) 2-アミノ-4-[4-(トリフルオロメチル) フェニル] チアゾール 原料として、<math>4'-(トリフルオロメチル) アセトフェノン、及びチオウレアを 用いて例 395(1) と同様の操作を行い、標題化合物を得た。

収率:77.5%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>):  $\delta$  7. 18 (2H, s), 7. 26 (1H, s), 7. 72 (2H, d, J=8. 4Hz), 8. 00 (2H, d, J=8. 1Hz).

(2) 5-クロロ-2-ヒドロキシ-N-  $\{4-$  [4-(トリフルオロメチル) フェニル] チアゾール-2-イル $\}$  ベンズアミド (化合物番号542)

原料として、5-クロロサリチル酸、及び2-アミノ-4-[4-(トリフルオロメチル)フェニル]チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.0%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 09 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 81 (2H, d, J=8.4 Hz), 7. 96 (1H, d, J=2.4Hz), 7. 98 (1H, s), 8. 16

(2H, d, J=8.1Hz), 11.91 (1H, bs), 12.13 (1H, bs).

例543:化合物番号543の化合物の製造

(1)  $2-reh+v-N-\{4-[3,5-rz,(hyz)n+rz,h) ピラ ゾール-1-イル] フェニル <math>-5-pr$ 

原料として、2-アセトキシ-5-クロロ安息香酸、及び<math>1-(4-アミノフェニル)-3, 5-ビス(トリフルオロメチル)ピラゾールを用いて例 <math>24と同様の操作を行い、標題化合物を得た。

収率:77.8%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  2. 36 (3H, s), 7. 78 (1H, s), 7. 14 (1H, d, J=8. 7Hz), 7. 48-7. 51 (3H, m), 7. 77 (2H, d, J=9. 0Hz), 7. 83 (1H, d, J=2. 7Hz), 8. 25 (1H, s).

[1-(4-r)]フェニル)-3, 5-r (トリフルオロメチル)ピラゾール:「ジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry)」,2000年,第43卷,第16号,p. 2975-2981参照](2)N $-\{4-[3,5-r]$  (トリフルオロメチル)ピラゾール-1-4ル]フェニル $\}-5-0$  ロロー2-r ドロキシベンズアミド(化合物番号543)原料として、2-r セトキシーN $-\{4-[3,5-r]$  (トリフルオロメチル)ピラゾール-1-4ル)フェニル $\}-5-0$  ロロベンズアミドを用いて例2(2) と同様の操作を行い、標題化合物を得た。

収率:73.1%

<sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): δ 7.04 (1H, d, J=8.7Hz), 7.48 (1H, dd, J=8.7, 2.7Hz), 7.63 (2H, d, J=8.7Hz), 7.84 (1H, s), 7.89 (1H, d, J=3.0Hz), 7.94 (2H, d, J=9.0Hz), 10.65 (1H, s), 11.58 (1H, s). 例 544: 化合物番号 544 の化合物の製造

(1) 3, 5 - ビス(トリフルオロメチル) - 1 - (3 - ニトロフェニル) ピラ ゾール

原料として、ヘキサフルオロアセチルアセトン、及び3-ニトロフェニルヒドラジン塩酸塩を用いて例538(1)と同様の操作を行い、標題化合物を得た。 収率:94.0%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  7. 16 (1H, s), 7. 77 (1H, dd, J=8. 7, 8. 1Hz), 7. 88-7. 91 (1H, m), 8. 42-8. 4 5 (2H, m).

(2) 1 - (3-アミノフェニル) -3, 5-ビス (トリフルオロメチル) ピラゾール

原料として、3, 5-ビス(トリフルオロメチル)-1-(3-ニトロフェニル)ピラゾールを用いて例538(2)と同様の操作を行い、標題化合物を得た。収率:73.1%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  3. 89 (2H, s), 6. 77-6. 87 (3 H, m), 7. 04 (1H, s), 7. 26 (1H, t, J=8. 7Hz).

(3)  $2-reh+v-N-\{3-[3,5-rz,(hyz)nxry+n) ピラ ゾール-1-イル] フェニル<math>\}-5-2$ 

原料として、2-アセトキシ-5-クロロ安息香酸、及び<math>1-(3-アミノフェニル)-3, 5-ビス(トリフルオロメチル)ピラゾールを用いて例 <math>24と同様の操作を行い、標題化合物を得た。

収率:84.4%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 2. 33 (3H, s), 7. 09 (1H, s), 7. 11 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=7. 8Hz), 7. 45-7. 52 (2H, m), 7. 67 (1H, d, J=8. 4Hz), 7. 78 (1H, d, J=2. 4Hz), 7. 95 (1H, s), 8. 29 (1H, s). (4) N-{3-[3, 5-ビス (トリフルオロメチル) ピラゾールー1ーイル] フェニル} -5-クロロー2ーヒドロキシベンズアミド (化合物番号544)

原料として、2-アセトキシ-N-{3-[3,5-ビス(トリフルオロメチル) ピラゾール-1-イル]フェニル}-5-クロロベンズアミドを用いて例 2(2)と同様の操作を行い、標題化合物を得た。

収率:69.9%

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  · 7. 01 (1H, d, J=8. 7Hz), 7. 1 0 (1H, s), 7. 34-7. 37 (1H, m), 7. 42 (1H, dd, J=8. 7, 2. 4Hz), 7. 50 (1H, d, J=2. 4Hz), 7. 56 (1H, t, J=8. 1Hz), 7. 69-7. 73 (1H, m), 7. 95-7. 98 (2H, m), 11. 57 (1H, s).

例545:化合物番号545の化合物の製造

(1) 2-メトキシー4-フェニル安息香酸メチル

4-クロロー2-メトキシ安息香酸メチル(904mg,4.5mmo1)、フェニルボロン酸(500mg,4.1mmo1)、炭酸セシウム(2.7g,8.2mmo1)のN,N-ジメチルホルムアミド(15mL)溶液に、アルゴン雰囲気下、ジクロロビス(トリフェニルホスフィン)パラジウム(29mg,0.04mmo1)を加え、120Cで8時間攪拌した。反応混合物を室温まで冷却後、酢酸エチルで希釈した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-个キサン:酢酸エチル=10:1)で精製して、標題化合物の無色油状物(410mg,41.2%)を得た。

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  3. 91 (3H, s), 3. 98 (3H, s), 7. 17 (1H, d, J=1. 5Hz), 7. 20 (1H, dd, J=8. 1, 1. 5Hz), 7. 31-7. 50 (3H, m), 7. 59-7. 63 (2H, m), 7. 89 (1H, d, J=8. 1Hz).

(2) 2-メトキシー4-フェニル安息香酸

2-メトキシー4-フェニル安息香酸メチル( $410\,\mathrm{mg}$ ,  $1.69\,\mathrm{mmol}$ )のメタノール( $5\,\mathrm{mL}$ )溶液に2規定水酸化ナトリウム水溶液( $5\,\mathrm{mL}$ )を加え、

1時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧留去した。得られた残渣に2規定塩酸を加え、析出した結晶を濾取して、標題化合物の粗生成物(371mg, 96.0%)を得た。

 $^{1}H-NMR$  (DMSO- $_{6}$ ):  $\delta$  3. 93 (3H, s), 7. 29 (1H, d d, J=8. 1, 1. 5Hz), 7. 34 (1H, d, J=1. 5Hz), 7. 4 0-7. 53 (3H, m), 7. 73-7. 77 (3H, m), 12. 60 (1H, s).

(3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシー 4-フェニルベンズアミド

原料として、2-メトキシ-4-フェニル安息香酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。収率:97.5%

 $^{1}$ H-NMR(CDC1 $_{3}$ ):  $\delta$  4. 19(3H, s), 7. 25(1H, m), 7. 38-7. 53(4H, m), 7. 62-7. 65(3H, m), 8. 12(2H, s), 8. 35(1H, d, J=8. 1Hz), 10. 15(1H, brs). (4)N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-4-フェニルベンズアミド(化合物番号545)

N-[3,5-ビス(トリフルオロメチル)フェニル] -2-メトキシー4-フェニルベンズアミド(<math>100mg, 0.24mmo1)のジクロロメタン(5mL)溶液に1M三臭化ホウ素-ジクロロメタン溶液(0.71mL, 0.71mmo1)を加え、室温で1時間攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の白色粉末(69.3mg, 71.6%)を得た。

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 20 (1H, dd, J=8. 4. 1. 8Hz), 7. 30 (1H, d, J=1. 8Hz), 7. 39-7. 51 (3H,

m), 7. 60-7. 64 (3H, m), 7. 70 (1H, brs), 8. 15 (2 H, s), 8. 19 (1H, brs), 11. 59 (1H, s).

例546:化合物番号546の化合物の製造

(1) 2-アミノ-4-(2,5-ジフルオロフェニル)チアゾール 原料として、2',5'-ジフルオロアセトフェノン、及びチオウレアを用いて 例 395(1) と同様の操作を行い、標題化合物を得た。

収率:77.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 45 (1H, d, J=2.7Hz), 7. 11-7. 17 (1H, m), 7. 19 (2H, s), 7. 28-7. 36 (1H, m), 7. 65-7. 71 (1H, m).

(2) 5-クロロ-2-ヒドロキシ-N-[4-(2,5-ジフルオロフェニル)チアゾール-2-イル] ベンズアミド(化合物番号546)

原料として、5-クロロサリチル酸、及び2-アミノー4-(2, 5-ジフルオロフェニル)チアゾールを用いて例 1 6 と同様の操作を行い、標題化合物を得た。収率:3 6. 5 %

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 0 9 (1H, d, J=8.7Hz), 7. 22-7. 30 (1H, m), 7. 37 (1H, m), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 72 (1H, d, J=2.4Hz), 7. 77-7. 84 (1H, m), 7. 94 (1H, d, J=3.0Hz), 11. 89 (1H, bs). 12. 12 (1H, bs).

例547:化合物番号547の化合物の製造

(1) 2-アセトキシー4-クロロ安息香酸

原料として、4 ークロロサリチル酸、濃硫酸、及び無水酢酸を用いて例 3 4 (1) と同様の操作を行い、標題化合物を得た。

収率:88.1%

 $^{1}H-NMR$  (DMSO- $d_{6}$ ):  $\delta$  2. 25 (3H, s), 7. 42 (1H, d, J=1. 8Hz), 7. 48 (1H, dd, J=8. 4, 2. 4Hz), 7. 94

(1 H, d, J=8.1 Hz), 13.31 (1 H, s).

(2) 2-rセトキシ $-N-\{4-[3,5-r$ ビス(トリフルオロメチル)ピラ ゾール-1-イル]フェニル $\}-4-$ クロロベンズアミド

原料として、2-アセトキシー4-クロロ安息香酸、及び1-(4-アミノフェニル)-3, 5-ビス(トリフルオロメチル)ピラゾールを用いて例 24 と同様の操作を行い、標題化合物を得た。

収率:74.0%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  2. 37 (3H, s), 7. 08 (1H, s), 7. 23 (1H, d, J=1.8Hz), 7. 37 (1H, dd, J=8.1, 2.1Hz), 7. 50 (2H, d, J=8.7Hz), 7. 77 (2H, d, J=8.7Hz), 7. 82 (1H, d, J=8.1Hz), 8. 23 (1H, s).

(3)  $N-\{4-[3,5-ビス(トリフルオロメチル)ピラゾールー1-イル]$  フェニル $\}-4-$ クロロー2ーヒドロキシベンズアミド(化合物番号547) 原料として、2-アセトキシー $N-\{4-[3,5-ビス(トリフルオロメチル) ピラゾールー1-イル]フェニル<math>\}-4-$ クロロベンズアミドを用いて例2(2) と同様の操作を行い、標題化合物を得た。

収率:56.6%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 03-7. 06 (2H, m), 7. 61 (2H, d, J=8. 7Hz), 7. 81 (1H, s), 7. 89-7. 95 (3H, m), 10. 62 (1H, s), 11. 82 (1H, s).

例548:化合物番号548の化合物の製造

原料として、4, 4, 4 ートリフルオロー1 ーフェニルー1, 3 ーブタンジオン、及び4 ーニトロフェニルヒドラジン塩酸塩を用いて例538(1)と同様の操作を行い、標題化合物を得た。

収率:95.2%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  6. 80 (1H, s), 7. 22-7. 26 (2 H, m), 7. 37-7. 45 (3H, m), 7. 51 (2H, d, J=9. 3H z), 8. 22 (2H, d, J=9. 0Hz).

(2)  $1 - (4 - \gamma \le 1) - 5 - \gamma = 2 - \gamma = 1$  (トリフルオロメチル) ピラゾール

原料として、1-(4-=トロフェニル)-5-フェニル-3-(トリフルオロメチル)ピラゾールを用いて例538(2)と同様の操作を行い、標題化合物を得た。

収率:73.0%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  3. 80 (2H, s), 6. 62 (2H, d, J = 8. 7Hz), 6. 72 (1H, s), 7. 08 (2H, d, J=8. 7Hz), 7. 22-7. 26 (2H, m), 7. 30-7. 33 (3H, m).

(3)  $5-クロロ-2-ヒドロキシ-N-\{4-[5-フェニル-3-(トリフルオロメチル) ピラゾール-<math>1-$ イル]フェニル $\}$ ベンズアミド(化合物番号  $\{4,8\}$ 

原料として、5-クロロサリチル酸、及び1-(4-アミノフェニル)-5-フェニル-3-(トリフルオロメチル)ピラゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.2%

 $^{1}H-NMR$  (CDC1<sub>3</sub>):  $\delta$  7. 02 (1H, d, J=8. 7Hz), 7. 2 1 (1H, s), 7. 30-7. 42 (7H, m), 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 7. 79 (2H, d, J=8. 7Hz), 7. 89 (1H, d, J=2. 7Hz), 10. 56 (1H, s), 11. 61 (1H, s).

例549:化合物番号549の化合物の製造

(1) 2-アミノー4-(4-メトキシフェニル) チアゾール

原料として、4'ーメトキシアセトフェノン、及びチオウレアを用いて例395

(1) と同様の操作を行い、標題化合物を得た。

収率:85.2%

 $^{1}H-NMR (DMSO-d_{6}): \delta$  3. 76 (3H, s), 6. 82 (1H, s), 6. 92 (2H, d, J=9. 0Hz), 7. 01 (2H, s), 7. 72 (2H, d, J=8. 7Hz).

(2) 5-クロロー 2-ヒドロキシ-N-[4-(4-メトキシフェニル) チア ゾール-2-イル] ベンズアミド(化合物番号549)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(4-メトキシフェニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.4%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  3. 80 (3H, s), 7. 01 (2H, d, J=9. 0Hz), 7. 07 (1H, d, J=8. 7Hz), 7. 50-7. 55 (2H, m), 7. 86 (2H, d, J=9. 0Hz), 7. 96 (1H, d, J=2. 7Hz), 11. 90 (1H, bs), 12. 04 (1H, bs).

例550:化合物番号550の化合物の製造

(1) 2-アミノー4-[3-(トリフルオロメチル)フェニル] チアゾール 原料として、3'-(トリフルオロメチル)アセトフェノン、及びチオウレアを 用いて例395(1)と同様の操作を行い、標題化合物を得た。

収率:94.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$  7. 19 (2H, s), 7. 27 (1H, s), 7. 61 (2H, dd, J=3. 9, 1. 5Hz), 8. 07-8. 13 (2H, m).

(2) 5-クロロー2-ヒドロキシ-N- {4-[3-(トリフルオロメチル) フェニル] チアゾール-2-イル} ベンズアミド(化合物番号550) 原料として、5-クロロサリチル酸、及び2-アミノ-4-[3-(トリフルオロメチル) フェニル] チアゾールを用いて例16と同様の操作を行い、標題化合

収率:31.0%

物を得た。

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 13 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=9.0, 2.7Hz), 7. 70 (1H, d, J=2.4 Hz), 7. 71 (1H, d, J=1.2Hz), 7. 95 (1H, d, J=2.7Hz), 8. 00 (1H, s), 8. 24-8. 27 (2H, m), 12. 16 (2H, bs).

例551:化合物番号551の化合物の製造

(1) 2-アミノー4-(2, 3, 4, 5, 6-ペンタフルオロフェニル) チアゾール

原料として、2', 3', 4', 5', 6' -ペンタフルオロアセトフェノン、及びチオウレアを用いて例 3 9 5 (1) と同様の操作を行い、標題化合物を得た。収率:8 6 . 7 %

収率:23.8%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 08 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 73 (1H, s), 7. 93 (1H, d, J=2.7Hz), 11. 85 (1H, bs), 12. 15 (1H, bs).

例552:化合物番号552の化合物の製造

曹水、水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の白色結晶(184.2 mg, 72.7%)を得た。

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  7. 92-7. 98 (1H, m), 8. 06 (1H, d, J=2. 1Hz), 8. 09 (1H, d, J=8. 4Hz), 8. 2 (1H, d, J=2. 1Hz), 8. 27-8. 32 (1H, m), 11. 31 (1H, s).

例553:化合物番号553の化合物の製造

原料として、2, 3-ジヒドロキシベンズアルデヒド、及び<math>3-[3,5-ビス(トリフルオロメチル)ベンジル]チアゾリジン<math>-2, 4-ジオン(例319(1)の化合物)を用いて例319(2)と同様の操作を行い、標題化合物を得た。

収率:88.5%

 $^{1}H-NMR$  (DMSO-d<sub>6</sub>):  $\delta$  5. 02 (2H, s), 6. 88 (1H, d, J=7.8Hz), 7. 00-7. 04 (2H, m), 7. 79 (1H, s), 8. 03 (2H, s), 8. 07 (1H, s), 9. 49 (1H, s), 9. 91 (1H, s).

例554:化合物番号554の化合物の製造

5-クロロサリチルアルデヒド (157mg, 1mmo1)、2-アミノー4-t ert-アミルフェニル フェニル エーテル (255mg, 1mmo1)、エタノール (2mL) の混合物を室温で18時間撹拌した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (<math>n-ヘキサン:酢酸エチル=100:1) で精製して、標題化合物の白色固体 (57mg, 14.4%) を得た。

 $^{1}H-NMR$  (CDCl<sub>3</sub>):  $\delta$  0. 66 (3H, t, J=7.5Hz), 1. 2 6 (6H, s), 1. 61 (2H, q, J=7.5Hz), 6. 88-6. 94 (3 H, m), 7. 04 (1H, dd, J=8.0, 1.6Hz), 7. 15-7. 3

2 (7H, m), 8. 61 (1H, s), 13. 20 (1H, s).

例555:化合物番号555の化合物の製造

 $4-\rho$ ロロー2ー( $\{[2-7\pi/+\nu-5-(\text{tert-}T\in\mathcal{N})]$  フェニル] イミノ $\}$ メチル)フェノール(化合物番号 $554;13\,\mathrm{mg}$ , 0.0 $3\,\mathrm{mmo}$ 1)、水素化ホウ素ナトリウム(1. $2\,\mathrm{mg}$ , 0.0 $3\,\mathrm{mmo}$ 1)、メタノール( $1\,\mathrm{mL}$ )の混合物を室温で5分間撹拌した。溶媒を減圧留去して得られた残渣を薄層シリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の無色油状物( $13\,\mathrm{mg}$ , 100%)を得た。

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0. 69 (3H, t, J=7.6Hz), 1. 2 8 (6H, s), 1. 63 (2H, q, J=7.6Hz), 4. 41 (2H, s), 6. 78 (1H, m), 6. 93-6. 83 (5H, m), 7. 03 (1H, m), 7. 15 (2H, m), 7. 28 (3H, m).

試験例1:TNFα刺激によるAP-1活性化阻害測定

AP-1 結合配列(TGACTAA)を 7 個連結(タンデムに)したオリゴヌクレオチドをホタルルシフェラーゼ遺伝子(Luc)の上流に組み込んだプラスミド(pAP-1-Luc Reporter Plasmid:STRATAGENE 社製)をトランスフェクション試薬(Effectene、QIAGEN 社製)を用いてヒト子宮ガン由来細胞株 HeLac QIAGEN 社のプロトコールに従いトランスフェクトして、  $6\sim24$  時間培養した。その後、被験化合物の存在下又は非存在下で、 $TNF-\alpha$ (40 ng/ml)を加えて 4 時間培養した後、細胞内のルシフェラーゼ活性をピッカジーンして(東洋インキ社製)及び化学発光測定装置、(SPECTRAFLUORPLUS、TECAN 社製)を用いて測定した。被験化合物非存在下におけるルシフェラーゼ活性値に対しての比率で阻害率を求めた。被験化合物  $10\mu g/ml$  及び  $1\mu g/ml$  存在下における AP-1 活性阻害率を下記の表に示す。

| 化合物番号 | AP-1活性化阻害率 (%) |            |
|-------|----------------|------------|
|       | 薬物濃度10μg/mL    | 薬物濃度1μg/mL |
| 24    | 56.7           | 33. 3      |
| 50    | 89.1           | 42.4       |
| 51    | 91.2           | 48. 4      |
| 52    | 82.4           | 25. 4      |
| 63    | 33.9           | NT         |
| 65    | 44.1           | NT         |
| 67    | 60.9           | 18. 1      |
| 73    | 51.5           | NT         |
| 146   | 67.7           | NT         |
| 147   | 74.8           | 22. 7      |
| 148   | 83.8           | 39.3       |
| 149   | 75.4           | NT         |
| 182   | 49.9           | NT         |
| 192   | 7. 0           | NT         |
| 204   | 29.7           | NT         |
| 209   | 55. 3          | 21. 7      |
| 218   | 33. 5          | NT         |
| 223   | 7.0            | NT         |

NT: not tested

試験例2:NFAT活性化阻害測定(1)

NFAT の結合配列を $\beta$  — ガラクトシザーゼ遺伝子 (Lac Z) の上流に組み込んだレポータープラスミド (NFAT-Lac Z) を「プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユナイテッド・ステイツ・オブ・

アメリカ (Proceedings of The National Academy of Sciences of The United States of America)」、(米国)、1991年、第88巻、第9号、p. 3972-3976に記載の方法に従いトランスフェクトした Jurkat cell をカルシウムイオのフォアである A 2 3 1 8 7 と PMA (Phorbol 12-myristate 13-acetate) 及び被験化合物の存在または非存在下で、Modified RPMI 1 6 4 0 培地中 4 時間培養した。その後、細胞内の $\beta$  ーガラクトシダーゼ活性を「プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユナイテッド・ステイツ・オブ・アメリカ(Proceedings of The National Academy of Sciences of The United States of America)」、(米国)、1991年、第88巻、第9号、p. 3972-3976に記載の方法で測定した。阻害率は、被験化合物非存在下における $\beta$  ーガラクトシダーゼ活性値に対しての比率で求めた。被験化合物  $10\mu$  M及び  $1\mu$  M存在下における NFAT活性阻害率を下記の表に示す。

|                | - 241-71. 70              |
|----------------|---------------------------|
| NFAT活性化阻害率 (%) |                           |
| 薬物濃度10μΜ       | 薬物濃度1μΜ                   |
| 1 0 0          | 7 0                       |
|                | N F A T 活性 / 薬物濃度 1 Ο μ Μ |

試験例3:MEKK-1強制発現によるAP-1活性化阻害測定

AP-1 結合配列(TGACTAA)を7個連結(タンデムに)したオリゴヌクレオチドをホタルルシフェラーゼ遺伝子(Luc)の上流に組み込んだプラスミド(pAP-1-Luc Reporter Plasmid:STRATAGENE 社製)とMEKK-1発現プラスミド(pFCMEKK:STRATAGENE 社製)をトランスフェクション試薬(Effectene、QIAGEN 社製)を用いてヒト肝臓ガン由来細胞株HepG2にQIAGEN 社のプロトコールに従いコトランスフェクトして、 $20\sim24$  時間培養した。その後、被験化合物の存在下又は非存在下で、24 時間培養した後、細胞内のルシフェラーゼ活性をピッカジーンLT(東洋インキ社製)及び化学発光測定装置、(Genios、TECAN 社製)を用いて測定した。被験化合物非存在下におけるルシフェラーゼ活性値に対しての比率で阻害率を求めた。被験化合物  $1\mu$  g/m1 及び/または  $1\mu$  M 存在下における AP-1 活性阻害率を下記の表に示す。

| 化合物番号 | AP-1活性化阻害率 (%) |         |
|-------|----------------|---------|
|       | 薬物濃度1μg/mL     | 薬物濃度1μΜ |
| 51    | >99. 9         | N. T.   |
| 50    | 99. 4          | 90. 7   |
| 67    | 94. 8          | N. T.   |
| 73    | 98. 7          | N. T.   |
| 63    | 94. 9          | N. T.   |
| 114   | 97. 1          | N. T.   |
| 163   | 90. 4          | N. T.   |
| 71    | 98. 0          | N. T.   |
| 56    | 96. 3          | 82. 6   |
| 98    | >99. 9         | N. T.   |
| 196   | 99.8           | N. T.   |
| 122   | 92. 8          | N. T.   |
| 195   | 95. 5          | 91. 2   |
| 199   | 70. 6          | N. T.   |
| 201   | 79. 1          | N. T.   |
| 532   | 83. 8          | N. T.   |
| 552   | 76. 3          | N. T.   |
| 101   | N. T.          | 85. 3   |

N. T. : 試験せず

試験例4:NFAT活性化阻害測定(2)

NFAT の結合配列をホタルルシフェラーゼ遺伝子 (Luc) の上流に組み込んだプラスミド (NFAT Luc) をトランスフェクション試薬 (Effectene、QIAGEN 社製) を用いてヒト肝臓ガン由来細胞株HepG2に QIAGEN 社のプロトコールに従いトランスフェクションして、 $20\sim24$  時間培養した。

その後、被験化合物の存在または非存在下で 4 時間培養した後、TPA (200nM) ionomycin (2  $\mu$  M) を加えて 20~24 時間培養した。

その後、細胞内のルシフェラーゼ活性をピッカジーンLT(東洋インキ社製)および、 化学発光測定装置(GENios: TECAN 社製)を用いて測定した。

阻害率は、被験化合物非存在下におけるルシフェラーゼ活性値に対しての比率で求めた。被験化合物  $1\mu$  g/ml 及び/または  $1\mu$  M 存在下におけるNFAT活性阻害率を下記の表に示す。

| 化合物番号 | NFAT活性化    | 阻害率(%)  |
|-------|------------|---------|
|       | 薬物濃度1μg/mL | 薬物濃度1μΜ |
| 51    | >99. 9     | N. T.   |
| 50    | 99.5       | 94.8    |
| 67    | >99. 9     | N. T.   |
| 73    | 97.8       | N. T.   |
| 63    | 92.7       | N. T.   |
| 114   | 77.9       | N. T.   |
| 163   | 84. 4      | N. T.   |
| 71    | >99. 9     | N. T.   |
| 56    | 99. 7      | 88.9    |
| 98    | 94. 2      | N. T.   |
| 196   | 90.0       | N. T.   |
| 122   | 88. 0      | N. T.   |
| 195   | 86.7       | 96.8    |
| 199   | >99. 9     | N. T.   |
| 201   | >99. 9     | N. T.   |
| 532   | 97.1       | N. T.   |
| 552   | 78.3       | N. T.   |

| 101 | N. T. | 96. 0 |
|-----|-------|-------|

N. T. : 試験せず

# 産業上の利用可能性

本発明の医薬はAP-1及びNFATの活性化を抑制する作用を有しており、その作用に基づいて、炎症性サイトカインの遊離抑制作用、抗炎症作用、免疫抑制作用、及び抗アレルギー作用を発揮できる。

## 請求の範囲

## 1. 下記一般式(I):



(式中、

Xは、主鎖の原子数が2ないし5である連結基(該連結基は置換基を有していてもよい)を表し、

Aは、水素原子又はアセチル基を表し、

Eは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表し、

環 Z は、式 – O – A(式中、A は上記定義と同義である)及び式 – X – E(式中、 X 及び E は上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン、又は式 – O – A(式中、A は上記定義と同義である)及び式 – X – E(式中、X 及び E は上記定義と同義である)で表される基の他に更に置換基を有していてもよいヘテロアレーンを表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含み、A P – 1 の活性化を阻害する医薬。

- 2. 請求の範囲第1項に記載の一般式(I)で表される化合物及び薬理学的に 許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる 物質を有効成分として含み、NFATの活性化を阻害する医薬。
- 3. Xが、下記連結基群 α より選択される基 (該基は置換基を有していてもよい) である請求の範囲第1項又は第2項に記載の医薬。

[連結基群α] 下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する)

# 4. Xが、下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する) で表される 基 (該基は置換基を有していてもよい) である請求の範囲第3項に記載の医薬。

- 5. Aが、水素原子である請求の範囲第1項ないし第4項のいずれか1項に記載の医薬。
- 6. 環Zが、 $C_6 \sim C_{10}$ のアレーン(該アレーンは、式-O-A(式中、Aは -般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)、又は5ないし13員のヘテロアレーン(該ヘテロアレーンは、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である請求の範囲第1項ないし第5項のいずれか

- 1項に記載の医薬。
- 7. 環Ζが、下記環群β:

[環群β]ベンゼン環、ナフタレン環、チオフェン環、ピリジン環、インドール環、キノキサリン環、及びカルバゾール環

より選択される環(該環は、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である請求の範囲第6項に記載の医薬。

- 8. 環 Z が、式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 X E (式中、X 及び E は一般式 (I) における定義と同義である) で表される基の他に更に置換基を有していてもよいベンゼン環である請求の範囲第7項に記載の医薬。
- 9. 環 Z が、式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 X E (式中、X 及び E は一般式 (I) における定義と同義である) で表される基の他にハロゲン原子を更に有するベンゼン環である請求の範囲第8項に記載の医薬。
- 10. 環Zが、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に置換基を更に有していてもよいナフタレン環である請求の範囲第7項に記載の医薬。
- 11. Eが、置換基を有していてもよい $C_6 \sim C_{10}$ のアリール基、又は置換基を有していてもよい5ないし13員のヘテロアリール基である請求の範囲第1項ないし第10項のいずれか1項に記載の医薬。
- 12. Eが、置換基を有していてもよいフェニル基である請求の範囲第11項 に記載の医薬。
- 13. Eが、3,5-ビス(トリフルオロメチル)フェニル基である請求の範囲第12項に記載の医薬。

14. Eが、置換基を有していてもよい5員のヘテロアリール基である請求の 範囲第11項に記載の医薬。

International application No.

PCT/JP03/07129

| Int.                                                                                                                                                                                                                                           | SIFICATION OF SUBJECT MATTER $1.05$ A61K31/055, 31/121, 31/15                                                                                                       | , 31/166, 31/167, 31/17                                                               | , 31/18,                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------|--|
| 31/1                                                                                                                                                                                                                                           | 185, 31/192, 31/216, 31/222, 3:                                                                                                                                     | 1/275, 31/357, 31/381, 3                                                              | 31/402,                                          |  |
| According                                                                                                                                                                                                                                      | 31/403, 31/4035, 31/404, 31/4164, 31/421, 31/426, 31/433, 31/437, ecording to International Patent Classification (IPC) or to both national classification and IPC  |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                | B. FIELDS SEARCHED                                                                                                                                                  |                                                                                       |                                                  |  |
| Minimum d                                                                                                                                                                                                                                      | ocumentation searched (classification system followed                                                                                                               | by classification symbols)                                                            | 0.1 / 1.2                                        |  |
| 31/1                                                                                                                                                                                                                                           | Cl <sup>7</sup> A61K31/055, 31/121, 31/15<br>.85, 31/192, 31/216, 31/222, 33                                                                                        | , 31/166, 31/167, 31/17,<br>1/275. 31/357. 31/381. 3                                  | , 31/18,<br>81/402.                              |  |
| 31/4                                                                                                                                                                                                                                           | 103, 31/4035, 31/404, 31/4164,                                                                                                                                      | 31/421, 31/426, 31/433,                                                               | 31/437,                                          |  |
| Documenta                                                                                                                                                                                                                                      | tion searched other than minimum documentation to the                                                                                                               | ne extent that such documents are included                                            | in the fields searched                           |  |
|                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                       |                                                  |  |
| Electronic d                                                                                                                                                                                                                                   | ata base consulted during the international search (name                                                                                                            | ne of data hace and where practicable see                                             | ach tarma usad)                                  |  |
|                                                                                                                                                                                                                                                | TN), REGISTRY (STN), WPIDS (STN)                                                                                                                                    |                                                                                       | ren terms useu)                                  |  |
|                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                       |                                                  |  |
| C DOCK                                                                                                                                                                                                                                         | CEVER CONGRESSED TO BE SELEVANT                                                                                                                                     |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                | MENTS CONSIDERED TO BE RELEVANT                                                                                                                                     |                                                                                       |                                                  |  |
| Category*                                                                                                                                                                                                                                      | Citation of document, with indication, where a                                                                                                                      |                                                                                       | Relevant to claim No.                            |  |
| Х                                                                                                                                                                                                                                              | WO 02/28819 A (THE RESEARCH UNIVERSITY OF NEW YORK),                                                                                                                | FOUNDATION OF STATE                                                                   | 1-14                                             |  |
| ·                                                                                                                                                                                                                                              | 11 April, 2002 (11.04.02),                                                                                                                                          | ·                                                                                     |                                                  |  |
|                                                                                                                                                                                                                                                | Full text<br>& AU 2002011842 A                                                                                                                                      |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                       |                                                  |  |
| X                                                                                                                                                                                                                                              | JP 62-81359 A (Warner-Lamber<br>14 April, 1987 (14.04.87),                                                                                                          | ct Co.),                                                                              | 1-14                                             |  |
|                                                                                                                                                                                                                                                | Full text                                                                                                                                                           |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                | & EP 221346 A                                                                                                                                                       |                                                                                       |                                                  |  |
| х                                                                                                                                                                                                                                              | JP 2002-506072 A (Novo Nordi                                                                                                                                        |                                                                                       | 1-14                                             |  |
|                                                                                                                                                                                                                                                | 26 February, 2002 (26.02.02), Full text                                                                                                                             | ,                                                                                     |                                                  |  |
|                                                                                                                                                                                                                                                | & EP 1080095 A                                                                                                                                                      |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                | ,                                                                                                                                                                   |                                                                                       | ·                                                |  |
| × Furthe                                                                                                                                                                                                                                       | er documents are listed in the continuation of Box C.                                                                                                               | See patent family annex.                                                              |                                                  |  |
|                                                                                                                                                                                                                                                | categories of cited documents:                                                                                                                                      | "T" later document published after the inter                                          |                                                  |  |
| conside                                                                                                                                                                                                                                        | ent defining the general state of the art which is not red to be of particular relevance                                                                            | priority date and not in conflict with th<br>understand the principle or theory under | e application but cited to erlying the invention |  |
| date                                                                                                                                                                                                                                           | document but published on or after the international filing                                                                                                         | "X" document of particular relevance; the considered novel or cannot be consider      | laimed invention cannot be                       |  |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "Y" step when the document is taken alone document of particular relevance; the claimed invention ca |                                                                                                                                                                     | laimed invention cannot be                                                            |                                                  |  |
| special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such                                                                                     |                                                                                                                                                                     | when the document is                                                                  |                                                  |  |
| means                                                                                                                                                                                                                                          | means combination being obvious to a person skilled in the art                                                                                                      |                                                                                       | skilled in the art                               |  |
| than the priority date claimed                                                                                                                                                                                                                 |                                                                                                                                                                     |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                | Date of the actual completion of the international search  18 July, 2003 (18.07.03)  Date of mailing of the international search report  05 August, 2003 (05.08.03) |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                | Name and mailing address of the ISA/  Japanese Patent Office  Authorized officer                                                                                    |                                                                                       |                                                  |  |
|                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                       |                                                  |  |
| Facsimile No.                                                                                                                                                                                                                                  |                                                                                                                                                                     | Telephone No.                                                                         |                                                  |  |

International application No.
PCT/JP03/07129

| C (Continua | tion). DOCUMENTS CONSIDERED TO BE RELEVANT                                                                          |                       |
|-------------|---------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category*   | Citation of document, with indication, where appropriate, of the relevant passages                                  | Relevant to claim No. |
| Х           | WO 00/03991 A (ACTIVE BIOTECH AB.),<br>27 January, 2000 (27.01.00),<br>Full text<br>& JP 2002-520395 A              | 1-14                  |
| Х           | WO 00/35442 A (SMITHKLINE BEECHAM CORP.),<br>22 June, 2000 (22.06.00),<br>Full text<br>& JP 2002-532419 A           | 1-14                  |
| Х           | JP 11-217361 A (Fuji Photo Film Co., Ltd.),<br>10 August, 1999 (10.08.99),<br>Full text<br>(Family: none)           | 1-14                  |
| X           | JP 11-512399 A (Signal Pharmaceuticals, Inc.), 26 October, 1999 (26.10.99), Full text & WO 97/09315 A               | 1-14                  |
| х           | JP 8-175990 A (Mitsubishi Chemical Corp.),<br>09 July, 1996 (09.07.96),<br>Full text<br>(Family: none)              | 1-14                  |
| х           | JP 6-9476 A (Hoechst AG.),<br>18 January, 1994 (18.01.94),<br>Full text<br>& EP 551849 A                            | 1-14                  |
| Х           | JP 4-217981 A (Kyowa Hakko Kogyo Co., Ltd.), 07 August, 1992 (07.08.92), Full text & EP 551849 A                    | 1-14                  |
| Х           | JP 2-138260 A (Hoechst-Roussel Pharmaceuticals, Inc.), 28 May, 1990 (28.05.90), Full text & EP 317991 A             | 1-14                  |
| Х           | JP 62-81359 A (Warner-Lambert Co.),<br>14 April, 1987 (14.04.87),<br>Full text<br>& EP 221346 A                     | 1-14                  |
| Х           | JP 58-109452 A (Merck & Co., Inc.),<br>29 June, 1983 (29.06.83),<br>Full text<br>& EP 81782 A                       | 1-14                  |
| P,X         | WO 02/49632 A (Institute of Medicinal Molecular Design Inc.), 27 June, 2002 (27.06.02), Full text & AU 2002022683 A | 1-14                  |
|             | ISA/210 (continuation of second short) (July 1000)                                                                  |                       |

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

International application No.

PCT/JP03/07129

| Box I   | Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)                                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This in | ternational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                                                   |
| 1.      | Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                                           |
| 2. X    | Claims Nos.: 1-14  because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:  (See extra sheet) |
| 3.      | Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                                                |
| Box II  | Observations where unity of invention is lacking (Continuation of item 3 of first sheet)                                                                                                                                                            |
| This In | ternational Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                            |
|         |                                                                                                                                                                                                                                                     |
| 1.      | As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                                                            |
| 2.      | As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                                                |
| 3.      | As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:                                                |
| 4.      | No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:                                    |
| Remar   | The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.                                                                                                              |

International application No.

PCT/JP03/07129

# Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl<sup>7</sup> 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496, A61K31/498, 31/506, 31/5375, 31/5377, 31/695, A61P1/04, 1/16, 3/10, 9/00, 9/10, 9/12, 17/00, 19/02, 25/28, 29/00, 31/04, 31/12, 31/18, 35/00, 37/00, 37/08, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

### Continuation of B. FIELDS SEARCHED

Minimum Documentation Searched (International Patent Classification (IPC))

Int.Cl<sup>7</sup> 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496, A61K31/498, 31/506, 31/5375, 31/5377, 31/695

Minimum documentation searched (classification system followed by classification symbols)

## Continuation of Box No.I-2 of continuation of first sheet(1)

Since the active ingredients of pharmaceutical compositions of claims 1-14 include extremely various compounds, it is difficult to make complete search on all of the active ingredients. Further, only a few of the active ingredients are supported by the description within the meaning of PCT Article 6 and disclosed in the description within the meaning of PCT Article 5.

Thus, claims 1-14 and the description do not comply with the prescribed requirements to such an extent that a meaningful search can not be carried out.

In this international search report, therefore, prior art search on the inventions of claims 1-14 has been made within a reasonable effort on the basis of compounds concretely disclosed in the description. A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl<sup>7</sup> A61K31/055, 31/121, 31/15, 31/166, 31/167, 31/17, 31/18, 31/185, 31/192, 31/216, 31/222, 31/275, 31/357, 31/381, 31/402, 31/403, 31/4035, 31/404, 31/4164, 31/421, 31/426, 31/433, 31/437, 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496

## B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl<sup>7</sup> A61K31/055, 31/121, 31/15, 31/166, 31/167, 31/17, 31/18, 31/185, 31/192, 31/216, 31/222, 31/275, 31/357, 31/381, 31/402, 31/403, 31/403, 31/404, 31/4164, 31/421, 31/426, 31/433, 31/437, 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CA (STN), REGISTRY (STN), WPIDS (STN)

### C. 関連すると認められる文献

| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                          | 関連する<br>請求の範囲の番号 |
|-----------------|------------------------------------------------------------------------------------------------------------|------------------|
| X               | WO 02/28819 A (THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK) 2002.04.11, 文献全体 & AU 2002011842 A | 1-14             |
| X               | JP 62-81359 A (ワーナーーランバート・コンパニー)1987.04.14, 文献全体 & EP 221346<br>A                                          | $1 - 1 \ 4$      |
| X               | JP 2002-506072 A (ノボ ノルディスク アクティーゼルスカブ)2002.02.26,文献全体 & EP 1                                              | $1 - 1 \ 4$      |

#### |X| C欄の続きにも文献が列挙されている。

- \* 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 18.07.03 国際調査報告の発送日 05.08.03 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 内藤 伸一 単便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3492

| C(続き).          | 関連すると認められる文献                                                     | · · · · · · · · · · · · · · · · · · · |
|-----------------|------------------------------------------------------------------|---------------------------------------|
| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                | 関連する 請求の範囲の番号                         |
| 77.7.7.4        | 080095 A                                                         | 請求の範囲の番号                              |
|                 |                                                                  |                                       |
| X               | WO 00/03991 A (ACTIVE BIOTECH AB) 2000. 0                        | 1 - 14                                |
|                 | 1.27, 文献全体 & JP 2002-520395 A                                    |                                       |
| X               | WO 00/35442 A (SMITHKLINE BEECHAM CORPORATION)                   | 1 - 14                                |
|                 | 2000.06.22, 文献全体 & JP 2002-5324                                  |                                       |
|                 | 1 9 A                                                            |                                       |
| X               | <br>  JP   11-217361   A (富士写真フイルム株式会社)19                        | 1 - 14                                |
|                 | 99.08.10, 文献全体 (ファミリーなし)                                         |                                       |
| X               | ID 11 510200 A (2) 8 - 1                                         |                                       |
|                 | JP 11-512399 A (シグナル ファーマシューティカ<br>ルズ,インコーポレイテッド)1999.10.26,文献全体 | $1 - 1 \ 4$                           |
|                 | & WO 97/09315 A                                                  |                                       |
| X               | <br>  JP − 8−175990 − A(三菱化学株式会社)1996.0                          | 1 1 4                                 |
| Δ.              | 7.09, 文献全体 (ファミリーなし)                                             | $1 - 1 \ 4$                           |
|                 |                                                                  |                                       |
| X               | JP 6-9476 A (ヘキスト・アクチェンゲゼルシャフト)                                  | 7 7 4                                 |
| Δ.              | 1994.01.18, 文献全体 & EP 551849 A                                   | $1 - 1 \ 4$                           |
|                 |                                                                  |                                       |
| X               | JP 4-217981 A (協和醗酵工業株式会社)1992.                                  | $1 - 1 \ 4$                           |
|                 | 08.07, 文献全体 & EP 551849 A                                        |                                       |
| X               | JP 2-138260 A (ヘキスト-ルセル・フアーマシュウ                                  | 1 - 14                                |
|                 | テイカルズ・インコーポレイテツド)1990.05.28, 文献                                  |                                       |
| :               | 全体 & EP 317991 A                                                 |                                       |
| X               | JP 62-81359 A (ワーナーーランバート・コンパニ                                   | $1 - 1 \ 4$                           |
| ,               | 一)1987.04.14, 文献全体 & EP 221346<br>A                              |                                       |
|                 |                                                                  |                                       |
| X               | JP 58-109452 A (メルク・エンド・カムパニー・イ                                  | $1 - 1 \ 4$                           |
|                 | ンコーポレーテッド)1983.06.29, 文献全体 & EP                                  | ,                                     |
|                 | 81782 A                                                          |                                       |
| Р, Х            | WO 02/49632 A (株式会社医薬分子設計研究所)20                                  | $1 - 1 \ 4$                           |
|                 | 02.06.27,文献全体 & AU 2002022683<br>A                               |                                       |
|                 | 11                                                               |                                       |
|                 | ·                                                                |                                       |
|                 |                                                                  |                                       |
|                 |                                                                  |                                       |

| 第I欄      | 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)                                  |
|----------|--------------------------------------------------------------------|
| 法第8条     | 条第3項(PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作            |
| 成しなが     | なった。                                                               |
| 1.       | 請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。<br>つまり、                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
| 2. X     |                                                                    |
|          | ない国際出願の部分に係るものである。つまり、                                             |
|          |                                                                    |
|          | 別紙参照                                                               |
|          |                                                                    |
| 3. 🗍     | 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に                        |
|          | 従って記載されていない。                                                       |
|          |                                                                    |
| 第Ⅱ欄      | 発明の単一性が欠如しているときの意見(第1ページの3の続き)                                     |
| W 1=34   |                                                                    |
| 火に辺      | でるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。                                |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
| ¬ □      |                                                                    |
| 1.       | 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求<br>の範囲について作成した。 |
|          | VARIBUILE DV CIPIX OTC.                                            |
| 2.       | 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追                 |
|          | 加調査手数料の納付を求めなかった。                                                  |
| з. П     | 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納                 |
|          | 付のあった次の請求の範囲のみについて作成した。                                            |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
| 4. 🗌     | 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載                 |
|          | されている発明に係る次の請求の範囲について作成した。                                         |
|          |                                                                    |
|          |                                                                    |
| à 十四号册·★ | 二本数型の田港の内土で12日本7公本                                                 |
| 地が通道 「   | 手数料の異議の申立てに関する注意<br>] 追加調査手数料の納付と共に出願人から異議申立てがあった。                 |
| <u> </u> | 追加調査手数料の納付と共に出願人から異議申立てがなかった。                                      |

- A. 発明の属する分野の分類(国際特許分類(IPC))の続き Int. C1<sup>7</sup> A61K31/498, 31/506, 31/5375, 31/5377, 31/695, A61P1/04, 1/16, 3/10, 9/00, 9/10, 9/12, 17/00, 19/02, 25/28, 29/00, 31/04, 31/12, 31/18, 35/00, 37/00, 37/08, 43/00
- B. 調査を行った分野 Int.C1<sup>7</sup> A61K31/498, 31/506, 31/5375, 31/5377, 31/695

## 第 I 欄の 2. について

請求の範囲1-14の発明の医薬組成物の有効成分は、極めて広範囲かつ多彩な化合物を包含し、そのすべてについて、完全な調査を行うことは困難である。一方、特許協力条約第6条の意味において明細書に裏付けられ、また、特許協力条約第5条の意味において明細書に開示されているものは、請求の範囲1-14の発明の医薬組成物の有効成分の中のごく僅かな部分に過ぎない。

したがって、請求の範囲1-14及び明細書は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない。

そこで、この国際調査報告では、請求の範囲1-14の発明については、明細書に具体的に記載された化合物に基づいて、合理的な負担の範囲内で、先行技術文献調査を行った。