Application des méthodes de simulation du modèle 3/2 à la tarification d'options.

Iro R. Kouarfate, Michael A. Kouritzin et Anne Mackay

Université du Québec à Montréal Département de Mathématique

kouarfate.iro rene@courrier.uqam.ca

27 juin 2024

Sommaire

- Introduction et motivation
- 2 Définition du modèle 3/2
- 3 Évaluation neutre au risque et méthodes de simulation
- 4 Solution faible explicite du modèle 3/2
- 5 Application des algorithmes à la tarification
- 6 Résultats et interprétations
- Conclusion et Perspectives

Introduction et motivation

- Tarifier, c'est déterminer le prix à payer aujourd'hui pour acheter ou vendre un produit financier dans le futur à un prix fixé K.
- La valeur future d'un produit finacier (actif, produit dérivés) est incertaine.
- L'évolution des actifs financiers est souvent modélisée par les équations différentielles stochastique (EDS).
- L'évaluation des produits financiers est basée sur les solutions (analytiques ou numériques) des modèles financiers.
- La motivation du modèle 3/2 est liée au limites des modèles de Black-Scholes et de Heston.
- Nous présentons une méthode de simulation basée sur la solution explicite faible du modèle 3/2.

Définition du modèle

Definition (Modèle 3/2)

Sur l'espace de probabilité filtré $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{Q})$, la dynamique du modèle 3/2 est donnée par

$$\begin{cases}
dS_t = rS_t dt + \sqrt{V_t} S_t dZ_t \\
dV_t = \kappa V_t (\bar{V} - V_t) dt + \eta V_t^{\frac{3}{2}} dW_t
\end{cases} \tag{1}$$

avec $S_0>0$, $V_0>0$ des valeurs initiales des deux processus. r est le taux de rendement moyen sans risque, Z et W sont deux mouvements browniens standards corrélés de coefficient de corrélation $\rho\in[-1,1]$. $\kappa,\ \bar{V}$ et η sont des nombres réels strictement positifs.

Définition du modèle

En posant $X = \log(S)$ et en appliquant le lemme d'Itô au processus $U_t = \frac{1}{V_t}$ avec $V_t > 0$, le modèle 3/2 est défini par le système des EDS suivant :

$$\begin{cases}
dX_t = \left(r - \frac{1}{2U_t}\right) dt + U_t^{-\frac{1}{2}} \left(\rho \ dW_t + \sqrt{1 - \rho^2} \ dB_t\right) \\
dU_t = \kappa \bar{V} \left(\frac{\kappa + \eta^2}{\kappa \bar{V}} - U_t\right) dt - \eta \sqrt{U_t} \ dW_t.
\end{cases} (2)$$

où U est le processus inverse de la variance et

$$\rho \ dW_t + \sqrt{1 - \rho^2} \ dB_t = dZ_t$$

est la décomposition de Cholesky.

Évaluation neutre au risque

Theorem (Théorème fondamental de l'évaluation neutre au risque)

Sous la mesure neutre au risque, la valeur au temps t=0 de l'option d'achat européenne de maturité T et de prix d'exercice K est

$$C_0 = e^{-rT} \mathbb{E}^{\mathbb{Q}} \left[\max \left(S_T - K, 0 \right) \right]. \tag{3}$$

Lemma (Formule analytique du modèle 3/2 pour le prix d'une option européenne)

Le prix de cette option au temps t=0 est donné par :

$$C(S_0, K, T) = S_0 e^{-\delta T} - \frac{\sqrt{S_0 K} e^{-\frac{1}{2}(r+\delta)T}}{\pi} \int_0^{+\infty} \frac{\Re\left[e^{iuk} \phi_T \left(u - \frac{i}{2}\right)\right]}{u^2 + \frac{1}{4}} du,$$
(4)

Méthodes de simulation

La méthode de Milstein

- ullet Elle est basée sur les approximations d'ordre 1 de X et d'ordre 2 de U.
- Pour 0 < s < t, l'approximation de Milstein du modèle 3/2 est :

$$X_{t} - X_{s} \approx \left[r - \frac{1}{2} f\left(\frac{1}{U_{s}}\right) \right] (t - s)$$

$$+ \sqrt{(t - s) f\left(U_{s}^{-1}\right)} X_{s} \left(\rho Z_{v} + \sqrt{1 - \rho^{2}} Z_{x}\right),$$

$$egin{aligned} U_t - U_s &pprox \left[\kappa + \eta^2 - \kappa ar{V} \ f\left(U_s
ight)
ight] (t-s) - \eta \sqrt{(t-s) \ f\left(U_s
ight)} \ Z_v \ &+ rac{1}{4} \eta^2 \left(Z_v^2 - 1
ight) (t-s). \end{aligned}$$

avec $f(x) = \max(0, x)$ où Z_v et Z_x sont des réalisations de lois normales centrées réduites indépendantes.

Méthodes de simulation

La méthode exponentielle quadratique de Andersen (QE)

Elle est basée sur deux étapes :

- Une variable aléatoire khi carré peut être bien représentée par le carré d'une variable aléatoire gaussienne (Andersen 2008).
 - **1** Pour 0 < s < t, $U(t) \mid U(s) = a_1 (b_1 + Z_v)^2$, où $Z_v \sim N(0, 1)$
 - a₁ et b₁ sont déterminées par la technique d'appariement des moments c'est-à-dire que :

$$\begin{split} a_1 &= \frac{m}{1+b_1^2}, b_1^2 = 2\psi^{-1} - 1 + \sqrt{2\psi^{-1}}\sqrt{2\psi^{-1} - 1}, \\ \psi &= \frac{s^2}{m^2}, m = \mathbb{E}[U(t) \mid U(s)] \text{ et } s^2 = \mathbb{V}ar[U(t) \mid U(s)]. \end{split}$$

• La deuxième étape est basée sur la la simulation exacte du processus du log-rendement de l'actif sous-jacent X = log(S)

Méthodes de simulation

La méthode QE (suite)

1 La dérivation de $X = \log(S)$ donne

$$X_{t} = X_{s} + \left(r - \frac{\rho \kappa \bar{V}}{\eta}\right)(t - s) + \left[\frac{\kappa + \frac{\eta^{2}}{2}}{\eta}\rho - \frac{1}{2}\right] \int_{s}^{t} \frac{1}{U_{u}} du$$
$$-\frac{\rho}{\eta} \log\left(\frac{U_{t}}{U_{s}}\right) + \sqrt{1 - \rho^{2}} \int_{s}^{t} \left(\sqrt{U_{u}}\right)^{-1} dZ_{u}. \tag{5}$$

On approxime les intégrales réelle et stochastique comme suit :

$$\int_{s}^{t} (U_{u})^{-1} du \cong (t-s) \frac{(U_{t})^{-1} + (U_{s})^{-1}}{2}$$

$$\int_{s}^{t} (\sqrt{U_{u}})^{-1} dZ_{u} \cong \sqrt{\frac{t-s}{2} \left((U_{t})^{-1} + (U_{s})^{-1}\right)} Z.$$

Nous adaptons les résultats de (Kouritzin 2018) sur le modèle de Heston au modèle 3/2.

- Condition d'existence d'une solution explicite faible du modèle
 - **1** S'il existe un entier naturel non nul n tel que $\kappa + \eta^2 = \frac{n\eta^2}{4}$, alors le processus U admet une solution faible explicite.
 - ② On a alors la **Condition** (C'): Il existe un nombre entier naturel n supérieur ou égal 5 tel que $\kappa = \frac{\eta^2(n-4)}{4}$.
- L'approche proposée est basée sur le fait que :
 - Le processus S, admet une solution exacte. (Baldeau 2012).
 - Si Condition (C') est vérifiée, alors le processus U est égal en distribution à la somme des carrés de n processus Ornstein-Uhlenbeck.

Dérivation de la solution explicite faible si (C') est vérifiée

Considérons la dynamique du modèle 3/2 suivante :

$$\begin{cases}
dX_t = \left(r - \frac{1}{2U_t}\right) dt + U_t^{-\frac{1}{2}} \left(\rho \ dW_t + \sqrt{1 - \rho^2} \ dB_t\right) \\
dU_t = \kappa \theta \left(\frac{\kappa + \eta^2}{\kappa \theta} - U_t\right) dt - \eta \sqrt{U_t} \ dW_t.
\end{cases} (6)$$

On a

$$X_{t} = X_{0} + \left(r - \frac{\rho \kappa \theta}{\eta}\right) t + \left[\frac{\kappa + \frac{\eta^{2}}{2}}{\eta} \rho - \frac{1}{2}\right] \int_{0}^{t} (U_{s})^{-1} ds$$
$$- \frac{\rho}{\eta} \log\left(\frac{U_{t}}{U_{0}}\right) + \sqrt{1 - \rho^{2}} \int_{0}^{t} \left(\sqrt{U_{s}}\right)^{-1} dB_{s}. \tag{7}$$

Theorem (Solution explicite faible du modèle 3/2.)

Supposons qu'il existe un entier naturel $n \geq 5$ tel que la condition (\mathbf{C}') soit vérifiée avec ce n. Soient $W^{(1)}, W^{(2)}, ..., W^{(n)}, B$ des MBS indépendants sur $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{Q})$ et $\epsilon > 0$ un nombre réel. Soient $S_0 > 0$ et $U_0 > 0$ des constantes réelles. Le modèle 3/2 défini par le système (6) a une solution explicite faible définie par :

$$S_{t} = S_{0} \exp\left(\sqrt{1 - \rho^{2}} \int_{0}^{t} \sqrt{U_{s}^{-1}} dB_{s} + \left(r - \frac{\rho \kappa \theta}{\eta}\right) t + \left[\frac{\kappa + \frac{\eta^{2}}{2}}{\eta} \rho - \frac{1}{2}\right] \int_{0}^{t} \left(\hat{U}_{s}\right)^{-1} ds - \frac{\rho}{\eta} \log\left(\frac{U_{t}}{U_{0}}\right) \right)$$
(8)

$$U_t = \sum_{i=1}^n \left(Y_t^{(i)}\right)^2 \tag{9}$$

マロケス倒り (重) (重) (重)

Theorem (suite)

avec $\tau_{\epsilon} = \inf\{t : U_t < \epsilon\}$ où pour $i \in \{1, 2, ..., n\}$,

$$Y_t^{(i)} = -\frac{\eta}{2} \int_0^t e^{-\frac{\kappa \theta}{2}(t-u)} dW_u^{(i)} + e^{-\frac{\kappa \theta}{2}t} Y_0^{(i)}, \quad Y_0^{(i)} = \sqrt{U_0/n}$$
 (10)

sont des processus d'Ornstein-Uhlenbeck et sous la mesure \mathbb{Q} ,

$$W_{t} = \sum_{i=1}^{n} \int_{0}^{t} Y_{u}^{(i)} \left(\sum_{j=1}^{n} \left(Y_{u}^{(j)} \right)^{2} \right)^{-\frac{1}{2}} dW_{u}^{(i)}$$
(11)

est un mouvement brownien tel que

$$dU_t = \left(\kappa + \eta^2 - \kappa\theta U_t\right)dt - \eta\sqrt{U_t}dW_t$$

Dérivation du modèle avec arrêt Si (C') n'est pas vérifiée

• Nous définissons de nouveaux paramètres pour obtenir une calibration qui vérifie (\mathbf{C}') comme suit. Soit $n \geq 5$ un entier naturel, κ_{η} et θ_{η} des réels positifs tel que :

$$egin{array}{lll} n & = & \left(\left\lfloor \left. rac{4\kappa}{\eta^2} + rac{1}{2} \,
ight
floor \lor 1
ight) + 4, \; \kappa_\eta = rac{(n-4)\eta^2}{4}, \ heta_\eta & = & rac{\kappa heta}{\kappa_\eta} \; ext{c'est-\`a-dire} \; \kappa_\eta heta_\eta = \kappa heta \end{array}$$

- U peut prendre des valeurs proches de zéro. On arrêtera le processus
 U lorsqu'il approchera zéro.
- Nous considérons les MBS indépendants $W^{(1)}, W^{(2)}, ..., W^{(n)}$ et B définis sur $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{Q})$ et définissons les processus \hat{U} et \hat{S} par

$$\hat{S}_{t} = S_{0} \exp\left(\sqrt{1 - \rho^{2}} \int_{0}^{t} \sqrt{\hat{U}_{s}^{-1}} dB_{s} + \left(r - \frac{\rho \kappa \theta}{\eta}\right) t + \left[\frac{\kappa + \frac{\eta^{2}}{2}}{\eta} \rho - \frac{1}{2}\right] \int_{0}^{t} \left(\hat{U}_{s}\right)^{-1} ds - \frac{\rho}{\eta} \log\left(\frac{\hat{U}_{t}}{U_{0}}\right)\right)$$
(12)

$$\hat{U}_t = \sum_{i=1}^n \left(Y_t^{(i)} \right)^2, \tag{13}$$

où pour $i \in \{1, 2, ..., n\}$

$$Y_t^{(i)} = -\frac{\eta}{2} \int_0^{t \wedge \tau_\epsilon} e^{-\frac{\kappa \theta}{2}(t-u)} dW_u^{(i)} + e^{-\frac{\kappa \theta}{2}(t \wedge \tau_\epsilon)} Y_0^{(i)}$$
(14)

avec
$$Y_0^{(i)} = \sqrt{U_0/n}$$
, $U_0 > \epsilon$ et $\tau_{\epsilon} = \inf \left\{ t \in [0, T], \hat{U}_t < \epsilon \right\}$.

• Nous construisons une mesure de probabilité artificielle sous laquelle les processus \hat{S} et \hat{U} satisfont (6)

Lemma (Dynamique de \hat{U} sous \mathbb{Q})

Soient $(W^{(1)}, W^{(2)}, ..., W^{(n)})$ des MBS et indépendants sur $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{Q})$ et $\left\{Y_t^{(i)}\right\}_{i=1}^n$ des processus de Ornstein-Ulhenbeck dont la dynamique est définie par (14). Sous la mesure \mathbb{Q} , le processus W_t défini par

$$W_{t} = \sum_{i=1}^{n} \int_{0}^{t} Y_{u}^{(i)} \left(\sum_{j=1}^{n} \left(Y_{u}^{(j)} \right)^{2} \right)^{-\frac{1}{2}} dW_{u}^{(i)},$$

est un mouvement brownien standard pour $t \in [0, T]$ et le processus

Lemma (suite)

$$\hat{U}_{t} = \sum_{i=1}^{n} \left(Y_{t}^{(i)} \right)^{2} \text{ satisfait}$$

$$\begin{cases}
d\hat{U}_{t} = \left(\kappa_{\eta} + \eta^{2} - \kappa \theta \hat{U}_{t} \right) dt - \eta \sqrt{\hat{U}_{t}} dW_{t}, \text{ si } t \leq \tau_{\epsilon} \\
d\hat{U}_{t} = 0, \text{ si } t > \tau_{\epsilon}
\end{cases} \tag{15}$$

avec $\hat{U}_0 = U_0$.

On a que

$$\begin{split} d\hat{U}_t &= \left(\kappa_{\eta} + \eta^2 - \kappa\theta \hat{U}_t\right) dt - \eta\sqrt{\hat{U}_t} dW_t \\ &= \left(\kappa + \eta^2 - \kappa\theta \hat{U}_t\right) dt - \eta\sqrt{\hat{U}_t} \left(dW_t - \frac{\kappa_{\eta} - \kappa}{\eta\sqrt{\hat{U}_t}} dt\right). \end{split}$$

- 4 個 ト 4 恵 ト 4 恵 ト 9 Q

Notons \hat{W}_t le processus défini par $\hat{W}_0=0$ et

$$\begin{cases}
d\hat{W}_t = dW_t + \frac{\kappa - \kappa_{\eta}}{\eta \sqrt{\hat{U}_t}} dt, \text{ si } t \leq \tau_{\epsilon} \\
d\hat{W}_t = dW_t, \text{ si } t > \tau_{\epsilon}.
\end{cases}$$
(16)

• on cherche la mesure sous laquelle \hat{U}_t a la même distribution que celle de U_t sous $\mathbb Q$ pour $t \leq \tau_\epsilon$.

Remarque

S'il existe une mesure de probabilité sous laquelle \hat{W} est un mouvement brownien standard sur [0,T], alors sous cette mesure de probabilité, \hat{U}_t aura la même distribution que celle de U_t sous la mesure $\mathbb Q$ jusqu'à τ_ϵ .

• Nous définissons une mesure de probabilité sous laquelle \hat{W}_t est un mouvement brownien.

Lemma (Définition de la mesure artificielle $\hat{\mathbb{P}}$)

Soient $(W^{(1)}, W^{(2)}, ..., W^{(n)})$ des MBS et indépendants sur $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{Q})$ et W le MBS défini par (11). Soient $\epsilon \in (0,1)$, $T \in \mathbb{R}_+^*$ fixé, $\tau_\epsilon = \inf \left\{ t \in [0,T], \hat{U}_t < \epsilon \right\}$ un temps d'arrêt et \hat{U}_0 une constante réelle telle que $\hat{U}_0 > \epsilon$. On définit le processus \hat{L} par

$$\hat{L}_{t} = \exp\left(\int_{0}^{t} \frac{\kappa_{\eta} - \kappa}{\eta \sqrt{\hat{U}_{s}}} dW_{s} - \frac{1}{2} \int_{0}^{t} \frac{\left|\kappa_{\eta} - \kappa\right|^{2}}{\eta^{2} \hat{U}_{s}} ds\right), \tag{17}$$

◆ロト ◆御ト ◆恵ト ◆恵ト 恵 めへで

Lemma (suite)

et, on définit la mesure $\hat{\mathbb{P}}$ telle que pour tout $A \in \mathcal{F}_T$, $\hat{\mathbb{P}}(A) = \mathbb{E}\left[\mathbb{I}_A L_T\right]$ où \mathbb{I}_A est la fonction indicatrice de A.

Alors le processus \hat{L} est une martingale sur [0,T] sous la mesure \mathbb{Q} . De plus, $\hat{\mathbb{P}}$ définit une mesure de probabilité et enfin le processus

$$\hat{W}_{t} = \sum_{i=1}^{n} \int_{0}^{t} Y_{u}^{(i)} \left(\sum_{j=1}^{n} \left(Y_{u}^{(j)} \right)^{2} \right)^{-\frac{1}{2}} dW_{u}^{(i)} + \int_{0}^{t \wedge \tau_{\epsilon}} \frac{(\kappa - \kappa_{\eta})}{\eta \sqrt{\hat{U}_{s}}} ds$$
 (18)

est un mouvement brownien standard sur [0, T] sous la mesure $\hat{\mathbb{P}}$ satisfaisant (16).

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ 夕へで

Remarque

$$\begin{split} \hat{L}_t &= \exp\left(\int_0^t \frac{\kappa_{\eta} - \kappa}{\eta \sqrt{\hat{U}_s}} dW_s - \frac{1}{2} \int_0^t \frac{\left|\kappa_{\eta} - \kappa\right|^2}{\eta^2 \hat{U}_s} ds\right) \\ &= \frac{d\hat{\mathbb{P}}}{d\mathbb{Q}} \bigg| \mathcal{F}_t \end{split}$$

est la dérivée de Radon-Nikodym de $\hat{\mathbb{P}}$ par rapport à \mathbb{Q} . $\hat{\mathbb{L}}_t$ peut être interprétée comme étant le facteur d'ajustement appliqué à une probabilité quelconque \mathbb{Q} afin d'obtenir $\hat{\mathbb{P}}$.

Nous pouvons aussi voir \hat{L}_t comme étant le poids qui est donné à chaque simulation en fonction de sa vraisemblance au vrai modèle. On fait donc de l'échantillonnage préférentiel.

Lemma (Dynamique du processus \hat{U} du modèle avec arrêt sous la mesure de probabilité artificielle $\hat{\mathbb{P}}$.)

Sous la mesure de probabilité artificielle $\hat{\mathbb{P}}$ le processus \hat{U} défini par (13) du modèle avec arrêt a pour dynamique

$$\begin{cases}
d\hat{U}_t = \left((\kappa + \eta^2) - \kappa \theta \hat{U}_t \right) dt - \eta \sqrt{\hat{U}_t} d\hat{W}_t \text{ si } t \leq \tau_\epsilon \\
d\hat{U}_t = 0 \text{ si } t > \tau_\epsilon
\end{cases}$$
(19)

où W défini par (18) est un mouvement brownien standard sous $\hat{\mathbb{P}}$. De plus, pour t $< \tau_{\epsilon}$, le processus \hat{L} peut être exprimé par

$$\hat{L}_{t} = \exp\left(\frac{\kappa - \kappa_{\eta}}{\eta^{2}} \left[\log\left(\frac{\hat{U}_{t}}{U_{0}}\right) + \int_{0}^{t} \left(\kappa\theta - \frac{\eta^{2} + 3\kappa_{\eta} - \kappa}{2\hat{U}_{s}}\right) ds \right] \right). \quad (20)$$

Lemma (Dynamique de l'actif sous-jacent du modèle avec arrêt sous la mesure de probabilité artificielle. $\hat{\mathbb{P}}$.)

Sous la mesure de probabilité artificielle $\hat{\mathbb{P}}$ le processus \hat{S} défini par (12) de l'actif sous-jacent du modèle avec arrêt a pour dynamique

$$\begin{cases}
d\hat{S}_t = r\hat{S}_t dt + \hat{U}_t^{-\frac{1}{2}} \hat{S}_t \left(\rho d\hat{W}_t + \sqrt{1 - \rho^2} dB_t \right), \text{ si } t \leq \tau_{\epsilon}, \\
d\hat{S}_t = \hat{S}_t \left(r_{\epsilon} dt + \sigma_{\epsilon} dB_t \right), \text{ si } t > \tau_{\epsilon},
\end{cases} (21)$$

avec

$$\left\{ \begin{array}{ll} d\,\hat{U}_t &=& \left((\kappa+\eta^2)-\kappa\theta\,\hat{U}_t\right)dt-\eta\sqrt{\hat{U}_t}d\,\hat{W}_t, \text{ si } t\leq \tau_\epsilon, \\ d\,\hat{U}_t &=& 0 \text{ si } t\geq \tau_\epsilon, \end{array} \right.$$

où
$$r_{\epsilon}=r-
horac{2\kappa\theta\epsilon+\eta
ho-\eta^2-2\kappa}{2\eta\epsilon}$$
, $\sigma_{\epsilon}=\sqrt{rac{1-
ho^2}{\epsilon}}$ et $\left(B,\hat{W}
ight)$ sont des

MBS et indépendants sous la mesure artificielle $\hat{\mathbb{P}}$ car (B, W) sont des MBS indépendants sous la mesure \mathbb{Q} .

Remarque

Comme on arrête le processus \hat{U} à ϵ après τ_{ϵ} , on obtient le modèle de Black-Scholes pour $t > \tau_{\epsilon}$.

En résumé,

 \bullet La dynamique du modèle avec arrêt sous $\hat{\mathbb{P}}$ est donnée par :

$$\begin{cases}
d\hat{S}_{t} = r\hat{S}_{t}dt + \hat{U}_{t}^{-\frac{1}{2}}\hat{S}\left(\rho d\hat{W}_{t} + \sqrt{1 - \rho^{2}}dB_{t}\right) \\
d\hat{U}_{t} = \left((\kappa + \eta^{2}) - \kappa\theta\hat{U}_{t}\right)dt - \eta\sqrt{\hat{U}_{t}}d\hat{W}_{t}
\end{cases} \text{ si } t \leq \tau_{\epsilon} \qquad (22)$$

et

$$\begin{cases}
d\hat{S}_t = \hat{S}_t (r_{\epsilon} dt + \sigma_{\epsilon} dB_t) \\
d\hat{U}_t = 0
\end{cases} \text{ si } t > \tau_{\epsilon} \tag{23}$$

où $\tau_{\epsilon}=\inf\left\{t\in[0,T]:\hat{U}_{t}\leq\epsilon\right\}$ et B, \hat{W} deux MBS indépendants sous $\hat{\mathbb{P}}.$

• Une solution explicite faible du modèle avec arrêt sous la mesure $\hat{\mathbb{P}}$ est donnée par l'ensemble des processus suivants :

4□▶ 4□▶ 4□▶ 4□▶ € 900

$$\hat{S}_{t} = S_{0} \exp\left(\sqrt{1 - \rho^{2}} \int_{0}^{t} \sqrt{\hat{U}_{s}}^{-1} dB_{s} + \left(r - \frac{\rho \kappa \theta}{\eta}\right) t + \left[\frac{\kappa + \frac{\eta^{2}}{2}}{\eta} \rho - \frac{1}{2}\right] \int_{0}^{t} \left(\hat{U}_{s}\right)^{-1} ds - \frac{\rho}{\eta} \log\left(\frac{\hat{U}_{t}}{U_{0}}\right)\right)$$
(24)

$$\hat{U}_t = \sum_{i=1}^n \left(Y_t^{(i)} \right)^2, \tag{25}$$

$$\hat{L}_{t} = \exp\left(\frac{\kappa - \kappa_{\eta}}{\eta^{2}} \left[\log\left(\frac{\hat{U}_{t}}{U_{0}}\right) + \int_{0}^{t} \left(\kappa\theta - \frac{\eta^{2} + 3\kappa_{\eta} - \kappa}{2\hat{U}_{s}}\right) ds \right] \right)$$
 (26)

si $t \leq \tau_{\epsilon}$ et

$$Y_t^{(i)} = -\frac{\eta}{2} \int_0^{t \wedge \tau_\epsilon} e^{-\frac{\kappa \theta}{2}(t-u)} dW_u^{(i)} + e^{-\frac{\kappa \theta}{2}t \wedge \tau_\epsilon} Y_0^{(i)} \text{ où } Y_0^{(i)} = \sqrt{U_0/n},$$

(=)

Méthode de simulation explicite pondérée du modèle 3/2

Soit $\mathcal{P} = \{0, h, ..., Mh\}$ de l'intervalle [0, T] de pas uniforme $h = \frac{T}{M}$.

• Simuler le Ornstein-Uhlenbeck Y

$$\begin{split} Y_t &= -\frac{\eta}{2} \int_0^{t \wedge \tau_\epsilon} e^{-\frac{\kappa \theta}{2}(t-u)} dW_u + e^{-\frac{\kappa \theta}{2}t} Y_0. \\ Y_{t+h} &\stackrel{\mathcal{D}}{=} \alpha_h Y_t - \sigma_h Z, \end{split}$$

avec $\alpha_h=e^{-\frac{\kappa\theta}{2}h}$ et $\sigma_h=\eta\sqrt{\frac{1-e^{-\kappa\theta h}}{4\kappa\theta}}$, on obtient où Z suit la loi normale centrée réduite

• Simuler le processus de variance VSimuler $U_t = \sum_{i=1}^n \left(Y_t^{(i)}\right)^2$ avec $U_t > 0$ et poser $V_t = \frac{1}{U_t}$ où $Y^{(i)}$ $i=1,2,\dots,n$ sont des processus construit à l'aide des mouvement

i=1,2,...,n sont des processus construit à l'aide des mouvements browniens indépendants $\boldsymbol{W}^{(i)}$

Méthode de simulation explicite pondérée du modèle 3/2

- Simuler les processus \hat{S} et \hat{L}
 - Définir les constantes suivantes.

$$egin{aligned} a_1 &= \sqrt{1-
ho^2}, \quad b_1 &= r - rac{\kappa heta}{\eta}
ho, \quad c_1 &= rac{\kappa + rac{\eta^2}{2}}{\eta}
ho - rac{1}{2}, \ d_1 &= rac{
ho}{\eta}, \quad e_1 &= rac{\kappa_{\eta} - \kappa}{\eta^2}, \quad f_1 &= -e_1 \; rac{\eta^2 + 3\kappa_{\eta} - \kappa}{2}. \end{aligned}$$

② Conditionnellement à \hat{S}_t , \hat{V}_t , \hat{V}_{t+h} et \hat{L}_t , de (24) et (26) on a :

$$\hat{S}_{t+h} = \hat{S}_t \exp\left(a_1 \int_t^{t+h} \sqrt{\hat{V}_s} dB_s + b_1 h + c_1 \int_t^{t+h} \hat{V}_s ds + d_1 \log\left(\frac{\hat{V}_t}{\hat{V}_{t+h}}\right)\right)$$
(28)

$$\hat{L}_{t+h} = \hat{L}_t \exp\left\{e_1\left(\log(\frac{\hat{V}_t}{\hat{V}_{t+h}}) + \kappa\theta h\right) + f_1 \int_t^{t+h} \hat{V}_s ds\right\}, \text{ si } t \leq \tau_\epsilon.$$
(29)

avec
$$\hat{V}_t = rac{1}{\hat{U}_t}$$
, où $\hat{V}_t \geq \epsilon > 0$

() → 4回 > 4 回 > 4 回 > 1 回 → 9 へ

- La valeur d'une option d'achat européenne de maturité T et prix d'exercice K est $C(T, S_T) = \max(S_T K, 0)$
- L'estimateur Monte Carlo \hat{C} du prix C est donné par :

$$\hat{C} = \mathbb{E}^{\mathbb{Q}} \left[e^{-rT} \left(S_T - K \right)^+ \right] \approx \frac{e^{-rT}}{N} \sum_{i=1}^N \left(S_T^{(i)} - K \right)^+ \tag{30}$$

où $(x - K)^+ = \max(x - K, 0)$ ou par

$$\mathbb{E}\left[C\left(T,S_{T}\right)\right] \approx \frac{\sum\limits_{k=1}^{N} \hat{L}_{T}^{(k)} C\left(\hat{S}_{T}^{(k)}, T\right) \mathbb{I}_{\left\{\hat{\tau}_{\epsilon}^{(k)} > T\right\}}}{\sum\limits_{k=1}^{N} \hat{L}_{T}^{(k)} \mathbb{I}_{\left\{\hat{\tau}_{\epsilon}^{(k)} > T\right\}}}.$$
(31)

Les critères de performances des algorithmes :

- La précision des algorithmes est donnée par l'erreur quadratique moyenne relative (RMSE).
- L'approximation du RMSE d'un estimateur \hat{C} de C est donnée par :

$$RMSE = \frac{\mathbb{E}\left[\left(C - \hat{C}\right)^{2}\right]}{C} \approx \frac{1}{J} \sum_{j=1}^{J} \frac{\left(C - \hat{C}^{(j)}\right)^{2}}{C}$$
(32)

L'éfficacité d'un algorithme est donnée par la formule suivante :

$$\mathcal{E}\left(\hat{\mathcal{C}}\right) = \frac{1}{RMSE \times \hat{\mathbb{E}}\left(\tau_{\hat{\mathcal{C}}}\right)} \tag{33}$$

Table – Ensembles de paramètres

	PS2	PS3	PS4	PS5
$\overline{S_0}$	100	100	100	100
V_0	0.2450^2	0.2450^2	0.2450^2	0.2450^2
κ	22.84	18.3184	19.76	20.48
θ	0.4669^2	0.4669^2	0.4669^2	0.4669^2
η	8.56	8.56	3.2	3.2
ho	-0.99	-0.99	-0.99	-0.99
r	0.00	0.00	0.00	0.00
ϵ	0.00001	0.00001	0.00001	0.00001

- PS2 ne vérifie (C'), n = 5 processus de Ornstein-Uhlenbeck et PS3 vérifie (C'), n = 5.
- (PS4) ne vérifie pas (\mathbf{C}'), n = 12 et (PS5) vérifie (\mathbf{C}'), n = 12.

Table – Prix exacts des options d'achat européennes avec PS2, PS3, PS4 et PS5

	Prix exact					
K/S_0	PS2	PS3	PS4	<i>PS</i> 5		
0.95	10.364	10.055	11.657	11.724		
1	7.3864	7.0422	8.9263	8.9987		
1.05	4.9376	4.5860	6.6360	6.7101		

Figure – RMSE en fonction de N avec PS3 (en bas) et PS5 (en haut)

Figure – RMSE en fonction N avec PS2 (en bas) et PS4 (en haut)

Figure – Distribution RMSE pour 100000 simulations *PS*3(en bas) *PS*5(en haut).

Figure – Distribution RMSE pour 100000 simulations *PS*2(en bas) *PS*4(en haut)

Table – Efficacité avec PS3

Nombre de simulations	М		Milstein	QE	Simulations pondérée
		$\hat{\mathbb{E}}\left[\left(C-\hat{C}\right)^2\right]$	0.00597	0.00570	0.00649
10000	2	$\hat{\mathbb{E}}\left(au_{\hat{\mathcal{C}}}\right)$	0.08165	0.44335	0.24975
		$\mathcal{E}\left(\hat{\mathcal{C}}\right)$	2075.65	395.71	616.60
		$\hat{\mathbb{E}}\left[\left(C-\hat{C}\right)^2\right]$	0.00160	0.00133	0.00131
50000	2	$\hat{\mathbb{E}}\left(au_{\hat{\mathcal{C}}} ight)$	0.4067	2.2157	1.3242
		$\mathcal{E}\left(\hat{\mathcal{C}}\right)$	1536.24	339.147	578.00

Table – Efficacité avec PS2

Nombre de simulations	М		Milstein	QE	Simulation pondérée
		$\hat{\mathbb{E}}\left[\left(C-\hat{C}\right)^2\right]$	0.00978	0.00736	0.01012
10000	2	$\hat{\mathbb{E}}\left(au_{\hat{\mathcal{C}}} ight)$	0.0813	0.4437	0.4752
		$\mathcal{E}\left(\hat{\mathcal{C}}\right)$	1257.68	306.14	207.85
		$\hat{\mathbb{E}}\left[\left(C-\hat{C}\right)^2\right]$	0.00222	0.00163	0.00309
50000	2	$\hat{\mathbb{E}}\left(au_{\hat{\mathcal{C}}} ight)$	0.4062	2.2151	2.1046
		$\mathcal{E}\left(\hat{\mathcal{C}}\right)$	1107.95	276.42	153.85

Conclusion et Perspectives

- RMSE décroit en fonction du nombre de simulations dans tous les schémas considérés.
- Lorsque (C') est vérifiée, l'algorithme est plus précis.
- Si le nombre de processus à simuler est élévé, cela améliore la précision de la simulation pondérée.
- L'algorithme est plus efficace que la méthode si (C') est vérifié et moins efficace dans le cas contraire.

Merci pour votre attention!

Références

Andersen, Leif (2008). "Simple and efficient simulation of the Heston stochastic volatility model". In : *Journal of Computational Finance* 11.3, p. 1-43.

Kouritzin, Michael A (2018). "Explicit Heston solutions and stochastic approximation for path-dependent option pricing". In: *International Journal of Theoretical and Applied Finance* 21.01, p. 1850006.