

Teoria dos Circuitos e Fundamentos de Electrónica

Mestrado em Engenharia Física Tecnológica (MEFT) Mestrado em Engenharia Biomédica (MEBiom)

Colectânea de Problemas

- 1 Teoria dos Circuitos
- 2 Circuitos com Amplificadores Operacionais
- 3 Circuitos com Díodos
- 4 Circuitos com Transístores de Junção Bipolar

Fernando Gonçalves Teresa Mendes de Almeida

DEEC - Área Científica de Electrónica

Dezembro de 2007

Parte 1 Teoria dos Circuitos

- 1.1 A figura representa 4 resistências iguais, de valor 1 k Ω , cujos terminais estão numerados de 1 a 8. Indique quais as ligações que se devem estabelecer entre todas as resistências para que se obtenham as seguintes resistências equivalentes:
 - a) $4 \text{ k}\Omega$ entre os terminais 1 e 8
 - **b)** 1 k Ω entre os terminais 1 e 5
 - c) 750 Ω entre os terminais 1 e 2
 - d) 250Ω entre os terminais 1 e 4

1.2 Para o circuito da figura, calcule a corrente fornecida pela fonte de tensão.

- **1.3** Considere o circuito da figura.
 - a) Indique o número de ramos e de nós.
 - **b)** Determine os valores da corrente I₄ e da tensão V₂.
 - c) Determine os valores das resistências R₁ e R₂.

- 1.4 Considere o circuito da figura.
 - a) Utilizando as leis de Kirchhoff obtenha os valores das resistências R_1 e R_2 , sabendo que a fonte de corrente I_1 fornece ao circuito 125 W.
 - b) Qual a potência fornecida ao circuito pela fonte de tensão V₁ ?

- **1.5** Use a lei de Ohm e as leis de Kirchhoff para calcular as seguintes grandezas indicadas no circuito da figura.
 - a) Tensão de entrada V_{IN} e a tensão da fonte contínua independente V_S.
 - b) Potência em jogo na fonte dependente 4l_x.

1.6 Quanto tem de valer a resistência R_4 para ser percorrida por uma corrente de 5 A com o sentido indicado na figura ?

- 1.7 O circuito da figura tem 3 secções em escada.
 - a) Para se ter $I_0 = 1$ A, qual deve ser o valor de V_S ?
 - **b)** Quanto deve valer V_S para se ter $I_0 = 0.4$ A?
 - c) Para $V_S = 100 \text{ V}$, obtenha I_0 .

- 1.8 No circuito da figura, o sub-circuito à esquerda dos terminais a-b representa uma fonte de tensão real e o sub-circuito à direita a sua carga R_L .
 - a) Calcule o valor da carga R_L.
 - **b)** Determine a corrente fornecida pela fonte de tensão.

1.9 Para o circuito da figura, use o Teorema da Sobreposição para calcular a corrente I_X.

- 1.10 Considere o circuito da figura.
 - a) Calcule a tensão em vazio, V_{OC} (open circuit), a corrente em curto-circuito, I_{SC} (short circuit) e a resistência equivalente de Thévenin, R_{TH} aos terminais a-b. Use métodos distintos para cada um dos cálculos: para V_{OC} o método dos nós, para I_{SC} o teorema da Sobreposição e para R_{TH} a sua definição.
 - **b)** Desenhe os circuitos equivalentes de Thévenin e de Norton, vistos dos terminais a-b.

1.11 Obtenha o circuito equivalente de Thévenin aos terminais a-b do circuito da figura.

- 1.12 Considere o circuito da figura.
 - **a)** Determine os equivalentes de Thévenin e de Norton do circuito da figura, vistos dos terminais a-b.
 - b) Substitua a fonte l₂ por uma fonte de tensão dependente de valor 5l_X (com o terminal + à direita) e repita os cálculos para obter os equivalentes de Thévenin e de Norton.

- **1.13** Considere o circuito da figura.
 - a) Calcule os equivalentes de Thévenin e de Norton, vistos dos terminais a-b, em função do parâmetro α .
 - **b)** Comente os valores obtidos para a resistência equivalente de Thévenin R_{TH} quando $\alpha > R_1 + R_2$.

- **1.14** Considere o circuito da figura.
 - a) Considere que I_S = 2 mA e R = 1 k Ω . Determine o valor das tensões V_S , V_1 , V_2 e V_3 .
 - b) Determine o circuito equivalente de Thévenin visto dos terminais A-B.
 - c) Considere que se liga uma resistência R_X ao circuito equivalente de Thévenin, como se ilustra na figura (b). Determine o valor que esta resistência deve ter de forma que a tensão aos seus terminais seja 250 mV.

- **1.15** Determine o equivalente de Thévenin visto aos terminais a-b, nas duas situações seguintes:
 - a) Com uma resistência de carga, R_L, infinita (circuito aberto).
 - b) Com uma resistência de carga finita e não nula.

- **1.16** No circuito da figura considere que $V_1 = V_2 = 2 V$.
 - a) Determine o circuito equivalente de Thévenin aos terminais A-B.
 - b) Qual o valor da corrente que percorre uma resistência de 1 $k\Omega$ colocada entre os terminais A e B.

- **1.17** O circuito da figura representa uma rede resistiva ligada a duas fontes independentes I_1 e V_2 . Considere que I_1 = 1 mA e V_2 = 2 V.
 - a) Determine a tensão entre os terminais A e B, V_{AB}, em circuito aberto.
 - **b)** Determine a corrente I_{CC} que percorre um curto-circuito colocado entre os terminais A e B.

c) Com base nos resultados anteriores, desenhe o equivalente de Norton do circuito, indicando o valor dos elementos utilizados.

- **1.18** Considere o circuito da figura.
 - a) Determine o circuito equivalente de Thévenin à esquerda dos terminais a-b.
 - **b)** A partir do resultado anterior, determine o circuito equivalente de Norton à esquerda dos terminais a-b.
 - c) Considere que se liga a resistência R₅ aos terminais a-b do circuito. Determine o valor desta resistência de forma que o valor da corrente que a percorre seja 0,25 mA.

1.19 Calcular as correntes nos ramos e as tensões nos nós do circuito da figura, usando o método dos nós

- 1.20 Considere o circuito da figura.
 - a) Resolva o circuito pelo método dos nós, calculando os valores de V_X e I_Y .
 - **b)** Obtenha os equivalentes de Thévenin e de Norton à direita dos terminais a-b.
 - c) Substitua o sub-circuito à direita dos terminais a-b pelo equivalente de Norton calculado na alínea anterior. Usando o Teorema da Sobreposição, do modo que considerar mais conveniente, confirme o valor de l_Y calculado na alínea a).

1.21 Determine as tensões V_X e V_Y do circuito da figura.

- 1.22 Utilizando o método dos nós, calcule as seguintes grandezas do circuito da figura:
 - a) tensão no nó c, V_c
 - b) potência fornecida pela fonte de corrente I₁.

- **1.23** Pretende-se estudar o circuito da figura usando o método dos nós.
 - a) calcule as tensões nodais V₁ a V₄
 - b) calcule a potência fornecida pela fonte V_G.

- **1.24** Considere o circuito da figura, em que o interruptor fecha sendo $v_C = 10 \text{ V}$.
 - a) calcular os valores v_C e i nos instantes 1 s e 2 s após o fecho do interruptor. Representar graficamente $v_C(t)$ e i(t).
 - **b)** calcular o tempo necessário para que $v_C = 5 \text{ V}$.
 - c) determinar o valor que deveria ter R para que $v_C = 2 V$ ao fim de 1 s.

- **1.25** Considere o circuito representado na figura, em que o condensador está inicialmente descarregado.
 - a) calcular v_C , v_R e i nos seguintes instantes após o fecho do interruptor: 0.5τ , τ , 2τ , 3τ , 4τ e 5τ . Representar graficamente $v_C(t)$, $v_R(t)$ e i(t).
 - **b)** calcular o tempo de subida de v_{C} entre 10% e 90% do valor final.

1.26 Considere o circuito representado na figura, em que $v_1(t)$ tem a forma indicada. Determinar as expressões de $v_C(t)$ e $v_R(t)$ e representá-las graficamente.

1.27 Considere o circuito representado na figura, em que $i_1(t)$ é periódica com frequência 1 kHz e tem a forma indicada. Se o valor médio de $v_C(t)$ for 2 V, calcule os seus valores máximo e mínimo e represente graficamente $v_C(t)$, $v_R(t)$ e $v_1(t)$.

- 1.28 No circuito da figura o condensador está inicialmente (isto é, para t < 0) carregado e dispõe de uma tensão de 1 V aos seus terminais. O interruptor S fecha-se no instante t = 0.</p>
 - a) Qual a constante de tempo do circuito ?
 - **b)** Determine a tensão aos terminais do condensador para t > 0.
 - c) Qual o valor da tensão no condensador ao fim de 1 s ? E ao fim de 4 s ?
 - d) Esboce graficamente a tensão aos terminais da resistência em função do tempo.
 - e) Admitindo que o valor da capacidade é constante, discuta a variação da curva esboçada em c) para valores R >> 1 Ω e R << 1 Ω .

1.29 Considere o circuito representado em que V_S tem a forma de onda da figura (b). O condensador encontra-se inicialmente descarregado. Determine e esboce a evolução temporal das tensões aos terminais do condensador e da resistência e da corrente que percorre o circuito.

- **1.30** A figura representa dois circuitos reactivos. Determine a função da impedância equivalente aos terminais a-b, com base nas seguintes metodologias:
 - a) Leis de Kirchhoff dos nós e das malhas.
 - **b)** Regras de equivalência de associações de elementos.

1.31 Considere o circuito representado e analise o seu comportamento como filtro, determinando $|V_{\text{OUT}}/V_{\text{IN}}|$.

- **1.32** Considere agora que no circuito da figura o gerador de tensão V_S representa um sinal alternado sinusoidal com frequência *f*.
 - a) Utilizando a definição de impedância generalizada do condensador, determine a função complexa da tensão aos terminais do condensador, V_{O} , em função da tensão de entrada, V_{S} .
 - **b)** Obtenha a expressão do módulo de $V_{\text{O}}/V_{\text{S}}$ e determine a frequência para a qual esta expressão toma o valor 0,707.

- **1.33** Considere que no circuito da figura o gerador de corrente I_S representa um sinal alternado sinusoidal com frequência f.
 - a) Utilizando a definição de impedância generalizada da bobine, determine a função complexa da tensão aos terminais da bobine, V_{O} , em função da corrente de entrada I_{S} .
 - **b)** Obtenha a expressão do módulo de V_O/I_S e determine a frequência para a qual esta expressão toma o valor 0,707 Ω .

- **1.34** Para o circuito da figura determine a tensão e a impedância equivalente aos terminais a-b, utilizando as seguintes metodologias de análise:
 - a) Leis de Kirchhoff das malhas e dos nós.
 - b) Teorema de Thévenin.

- **1.35** A figura representa dois circuitos reactivos. Determine a função da impedância equivalente aos terminais a-b, com base nas seguintes metodologias:
 - a) Leis de Kirchhoff dos nós e das malhas.
 - b) Regras de equivalência de associações de elementos.

- **1.36** Para o circuito da figura determine a tensão e a impedância equivalente aos terminais a-b, utilizando as seguintes metodologias de análise:
 - a) Leis de Kirchhoff das malhas e dos nós.
 - **b)** Teorema de Norton.

Parte 2

Circuitos com Amplificadores Operacionais

2.1 Considerando que o amplificador operacional da figura é ideal, qual o valor da tensão de entrada V_S por forma a ter-se uma tensão nula em V_{out} ? Considere $I_S=1$ mA e R=1 k Ω .

- 2.2 Usando um amplificador operacional ideal, projecte um amplificador com um ganho de tensão igual a -100 e uma resistência de entrada de 1 k Ω . Desenhe o seu esquema eléctrico, indicando o valor dos componentes.
- **2.3** Calcule o ganho de tensão V_{out} / V_{in} do circuito da figura, onde se considera o amplificador operacional ideal.

2.4 Os dois amplificadores operacionais ideais da figura estão polarizados com uma fonte dupla de ± 12 V. A tensão de entrada, V_{in} , tem uma amplitude de 1 V. Calcule a amplitude da tensão de saída de cada um dos amplificadores operacionais.

- 2.5 Considere o circuito da figura, na qual o amplificador operacional se considera ideal.
 - a) Determine a expressão de V_{out} em função de V_1 , quando $V_2 = 0$.
 - **b)** Determine a expressão de V_{out} em função de V_2 , quando $V_1 = 0$.
 - c) Utilizando os resultados anteriores, determine a expressão de V_{out} em função de V_1 e V_2 .
 - d) Dimensione as resistências de forma a realizar a expressão $V_{out} = 2 (V_1 V_2)$

- 2.6 Considere o circuito da figura, na qual o amplificador operacional se considera ideal.
 - a) Determine a expressão de V_{out} em função de V_1 e V_2 , quando $V_3 = 0$.
 - **b)** Determine a expressão de V_{out} em função de V_3 , quando $V_1 = V_2 = 0$.
 - c) Utilizando os resultados anteriores, determine a expressão de V_{out} em função de $V_1,\ V_2$ e V_3 .
 - **d)** Dimensione as resistências de forma a realizar a expressão $V_{out} = 3V_3 (V_1 + V_2)$

- 2.7 O circuito da figura representa um operador aritmético de 3 entradas realizado com um amplificador operacional. Para análise do circuito considere que o ganho e a resistência de entrada do amplificador operacional são infinitos.
 - a) Determine a expressão da tensão de saída, V_{out} , em função das tensões de entrada V_1 , V_2 e V_3 .
 - **b)** Considerando que $R_1=10~k\Omega$ e $R_3=20~k\Omega$, determine o valor das restantes resistências do circuito, R_2 e R_4 , de forma a implementar a expressão $V_{out}=V_1+2(V_2-V_3)$
 - c) Determine as relações que se deveriam verificar entre as resistências do circuito de forma a obter-se a expressão $V_{out} = 2(V_1 + V_2) 3V_3$

- 2.8 O circuito da figura representa um amplificador de diferença, com duas entradas inversoras, V1 e V2, e uma entrada não inversora. Para análise do circuito considere que o amplificador operacional pode ser representado pelo seu modelo ideal.
 - a) Determine a expressão da tensão de saída, V_{out} , em função das tensões de entrada V_1 , V_2 e V_3 .
 - b) Determine as relações entre as resistências do circuito de forma a realizar a expressão $V_{out}=\frac{1}{3}V_3-(V_1+V_2)$

- 2.9 O circuito da figura realiza operações aritméticas entre 3 variáveis independentes que correspondem aos sinais de entrada V₁, V₂ e V₃. Para a análise do circuito considere que o amplificador operacional tem um ganho infinito e que as tensões de saturação do sinal de saída são +12 V e −12 V.
 - a) Indique quais são as operações aritméticas que afectam cada uma das variáveis independentes à entrada do circuito, consideradas individualmente. Enuncie o principio da teoria dos circuitos em que baseou a resposta e indique em que condições a sua aplicação é válida.
 - **b)** Determine a expressão de V_{out} em função de V₁, V₂ e V₃.
 - c) Supondo que $R_1=4$ k Ω e R=2 k Ω , determine o valor das restantes resistências, R_2 e R_3 , de forma a realizar a expressão $V_{out}=2(V_2-V_3)+V_1$
 - d) Nas condições da alínea anterior considere que $V_1 = V_2 = V_3 = V$ sin $(2\pi ft)$. Determine o valor máximo da amplitude V de forma que nunca se verifique a saturação da saída do amplificador operacional.

2.10 Considere o circuito de diferença representado na figura, em que as resistências têm os seguintes valores: $R_1 = R_2 = 10 \text{ k}\Omega$ e $R_3 = R_4 = 20 \text{ k}\Omega$.

- a) Calcule o ganho de tensão de modo comum (G_c) e o ganho de tensão de modo diferencial (G_d) . A partir destes ganhos, obtenha a Relação de Rejeição de Modo Comum $(RRMC = G_d / G_c)$.
- **b)** Repita a alínea anterior supondo que R_1 sofre um desvio de +1% e que R_2 sobre um desvio de -1%.
- c) Sugira uma solução para compensar os erros das resistências definidos na alínea anterior de forma a eliminar a componente de modo comum da saída.

NOTA 1: As tensões V_1 e V_2 podem ser expressas em função das tensões de entrada de modo diferencial, V_d , e de modo comum, V_c , da seguinte forma:

$$V_1 = -\frac{1}{2}V_d + V_c$$
 e $V_2 = \frac{1}{2}V_d + V_c$

NOTA 2: O desvio relativo é definido como $\Delta(\%) = 100x \frac{R_{real} - R_{ideal}}{R_{ideal}}$

Parte 3 Circuitos com Díodos

- 3.1 Considere que no circuito da figura o díodo pode ser representado por um modelo com $V_{ON}=0.6~V~e~R_D=0~\Omega.$
 - a) Determine o valor da resistência R_2 para que o valor da tensão de saída seja $V_0 = -1$ V quando $V_1 = V_2 = -5$ V.
 - **b)** Considerando o valor de R_2 obtido na alínea anterior, determine a tensão de saída quando $V_1 = 0$ V e $V_2 = -5$ V.
 - c) Repita a alínea anterior para o caso em que $V_2 = 0$ V e $V_1 = -5$ V.
 - d) Considere agora que as tensões de entrada do circuito, V_1 e V_2 , variam no tempo segundo as formas de onda indicadas. Esboce graficamente a forma de onda da tensão de saída V_0 .

- 3.2 Considere que no circuito da figura os díodos podem ser descritos por um modelo em que $V_{ON} = 0.6$ V e $R_D = 0$ Ω .
 - a) Para $R_2 = 10 \text{ k}\Omega$, determine o valor da tensão V_0 quando $V_1 = V_2 = -5 \text{ V}$.
 - b) Nas condições da alínea anterior determine o circuito equivalente de Thévenin nos terminais de saída (tensão V_{O}).
 - c) Considere que $V_1 = V_2$. Determine o valor de R_2 para o qual os díodos estão sempre em condução, qualquer que seja o valor das tensões de entrada no intervalo entre -2.5 V e 0 V.

- 3.3 Assumindo para os díodos do circuito que $R_D = 0$ e $V_{ON} = 0.6$ V, calcular a tensão de saída V_O nas seguintes condições de entrada:
 - a) $V_1 = V_2 = 5 \text{ V}$
 - **b)** $V_1 = 5 V, V_2 = 0 V$
 - **c)** $V_1 = V_2 = 0 V$

Justificar o estado dos díodos em cada situação.

- **3.4** Considere o circuito da figura em que os díodos D₁, D₂ e D₃ têm a característica apresentada na figura (b).
 - a) Admita que a fonte l_G fornece 5 mA ao circuito. Determine o valor da corrente l_{R3}.
 - b) Nas condições da alínea a), determine a tensão V_{D2}.

- 3.5 Considere o circuito da figura que inclui um díodo Zener caracterizado na zona inversa por: $V_z = 5,3 \text{ V e R}_z = 2 \Omega$.
 - a) Admita $R_1=40~\Omega.$ Se a potência máxima dissipada no díodo Zener é $P_{Zmax}=800~mW,$ quais os valores de R_L que garantem um funcionamento seguro ?
 - **b)** Admita agora que a carga $R_L \in [30, 60] \Omega$. Determine um valor de R_1 que garanta que P_{Zmax} não é excedida em qualquer das condições de carga.

- **3.6** No circuito da figura os díodos são ideais e $R_1 = R_2 = 1 \text{ k}\Omega$.
 - a) Calcular e esboçar a curva de transferência V_{out}(V_{in}).
 - **b)** Repita a alínea anterior para a corrente em R_1 , $I_{R1}(V_{in})$, para 0 V < V_{in} < 15 V.
 - c) Repita a alínea a) supondo agora que os díodos têm uma resistência directa $R_D = 0 \Omega$ e uma tensão de condução $V_{ON} = 0.7 V$.

- 3.7 No circuito da figura os díodos são caracterizados por $V_{ON} = 0.7 \text{ V}, V_Z = 10 \text{ V}, P_{Zmax} = 2 \text{ W}.$
 - a) Calcule a relação saída-entrada $V_{out}(V_{in})$ para $V_{in} \in [-3 \text{ V}, +3 \text{ V}]$.
 - **b)** Quais os limites de V_{in} para não se exceder a potência máxima no Zener (P_{Zmax}), se $R = 20 \ \Omega$?

- 3.8 O circuito da figura representa um circuito rectificador positivo de meia-onda. Suponha que $v_S(t)=5 \sin(\omega t)$ [V], com f = 1 kHz. Determine o valor máximo da corrente na malha e esboce a variação no tempo da tensão de saída v_O para cada uma das seguintes características do díodo:
 - a) $V_{ON} = 0 \text{ V e } R_D = 0 \Omega.$
 - **b)** $V_{ON} = 0.5 \text{ V e R}_{D} = 0 \Omega.$
 - **c)** $V_{ON} = 0.5 \text{ V e R}_{D} = 500 \Omega.$

3.9 Atente no circuito da figura que inclui um díodo de Zener. Suponha que $v_S(t) = 10 \sin(\omega t)$ [V] e f = 1 kHz. Esboce a variação no tempo das tensões v_O e v_{DZ} .

- **3.10** Na figura, o díodo D tem $V_{ON}=0.7$ V, os componentes valem $R_1=15$ k Ω , $C_1=22~\mu F$ e $R_L=2.2$ k Ω e o sinal de entrada é caracterizado por $V_{in}=20$ V e f = 50 Hz.
 - a) Analise o circuito para S_1 e S_2 abertos.
 - **b)** Repita a alínea anterior para S₁ fechado e S₂ aberto.
 - c) Comente qualitativamente o funcionamento do circuito para S_1 e S_2 fechados.

3.11 Obtenha a característica de transferência $V_{out}(V_{in})$ do circuito da figura onde $V_B = 5 \text{ V}$, $R_1 = 15 \text{ k}\Omega$ e $-10 \text{ V} < V_{in} < 10 \text{ V}$. Assuma que os díodos são ideais.

- **3.12** A figura representa um circuito limitador com um díodo. O gerador de sinal gera uma tensão em forma de onda triangular simétrica, com amplitude entre 0 V e 10 V, tal como se ilustra na figura. Considere que o díodo tem as seguintes características: $V_{ON} = 0$ V e $R_D = 0$ Ω .
 - a) Esboce a forma de onda da tensão Vo de saída do circuito.
 - **b)** Esboce a forma de onda da corrente através da resistência R₁. Comente, justificando, a função desta resistência no circuito.
 - c) Supondo que se ligava uma resistência de 1 k Ω à saída do circuito, discuta a alteração dos resultados obtidos nas alíneas anteriores e esboce as formas de onda relevantes.

- **3.13** Na figura representa-se um circuito limitador de tensão.
 - a) Determine as tensões V_{in1} e V_{in2} para as quais os díodos D_1 e D_2 , respectivamente, entram em condução.

- **b)** Supondo que $V_{in} \in [-10 \text{ V}, +10 \text{ V}]$, determine a característica de transferência $V_{out}(V_{in})$ e esboce-a graficamente.
- c) Determine o valor da corrente máxima em cada um dos díodos quando $V_{in} \in [-10 \ V, +10 \ V].$

- **3.14** Considere o circuito da figura na qual se utilizam díodos iguais com as seguintes características: $V_{ON} = 0.7 \text{ V e R}_D = 0 \Omega$.
 - a) Determine a característica de transferência V_{out}(V_{in}) do circuito.
 - **b)** Esboce a forma de onda da tensão de saída quando o sinal de entrada tem a forma indicada.
 - c) Calcule a corrente máxima fornecida pelo gerador de tensão do sinal de entrada considerado.

- 3.15 O circuito da figura representa um limitador de sinal. Considere que o sinal de entrada V_S é descrito por uma função triangular do tipo descrito no gráfico (amplitude entre -3 e 3 V, frequência: 100 Hz). Considere ainda que $R_1 = 2$ k Ω e que a característica V-I dos díodos também pode ser aproximada por um modelo em que $V_{ON} = 0,7$ V e $R_D = 0$ Ω .
 - a) Esboce a evolução no tempo de Vo.
 - b) Determine o valor da corrente máxima na resistência.

3.16 É dado o circuito da figura onde $V_{ON}=0.7~V,~V_Z=6~V~e~R=1~k\Omega.$ Considere as restantes características dos díodos como ideais.

- a) Determine a curva $V_{out}(V_{in})$ para $-10~V < V_{in} < 40~V$. Indique as coordenadas dos pontos de quebra e as inclinações dos vários troços, bem como o estado dos díodos em cada um deles.
- **b)** Determine a potência máxima dissipada no díodo Zener, nas condições referidas na alínea anterior.

3.17 Para o circuito da figura trace graficamente a característica de transferência $V_2(V_1)$. Considere que os díodos são caracterizados por $V_{ON} = 0.7 \text{ V}$ e $R_D = 0 \Omega$.

- 3.18 Dado o circuito da figura
 - a) Determine e esboce a característica de transferência V_{out}(V_{in}).
 - **b)** Como se modificaria a característica se o terminal de cátodo de D_1 fosse transferido de A para B ?

- **3.19** Para o circuito da figura
 - a) Determine e esboce a curva de transferência do bloco A, $V_A(V_{in})$ para $-10~V \le V_{in} \le 10~V$, supondo S aberto.
 - **b)** Determine e esboce a curva de transferência do bloco B, $V_{out}(V_A)$ para $-10~V \le V_A \le 10~V$.

Supondo S fechado,

- c) Determine V_{out} para $V_{in} = 0 \text{ V}$.
- **d)** Determine e esboce a curva de transferência $V_{out}(V_{in})$ para $-10~V \le V_{in} \le 10~V$.
- e) Determine a potência máxima dissipada no díodo Zener para $-10~V \le V_{in} \le 10~V$.

- **3.20** Considere o circuito da figura e admita $V_Z=5$ V, $R_Z=0$ Ω , $V_{ON}=0.7$ V e $R_D=10$ Ω .
 - a) Trace a característica $V_{out}(V_{in})$, indicando as regiões de funcionamento dos díodos para $-20~V \le V_{in} \le 20~V$.
 - **b)** Desenhe $V_{out}(t)$ quando $V_{in}(t)$ corresponde ao sinal representado na figura (b).
 - c) Diga qual a função de R₁ e R₂.

- **3.21** Pretende-se com o circuito da figura obter uma aproximação por segmentos da relação $I_{in} = 0.1 V_{in}^2$ entre a corrente e a tensão de entrada do circuito, sendo a corrente dada em mA e a tensão em V. Admitindo os díodos ideais:
 - a) Dimensione as resistências R₁, R₂ e R₃ por forma que a corrente I_{in} seja determinada com exactidão pela relação quadrática para V_{in} = 2; 4; 8 V.
 - **b)** Calcule o erro na determinação da corrente para V_{in} = 3; 7 V.
 - c) Trace o gráfico de l_{in}(V_{in}) desejado e o gráfico linear por troços da aproximação obtida com o circuito, para Vin ∈ [0V, 12V].
 - **d)** Verifique se existem outros valores de V_{in} para os quais a corrente é determinada com exactidão pela função quadrática dada.

Parte 4

Circuitos com Transístores de Junção Bipolar

- **4.1** No circuito da figura considere que o transístor possui um ganho de corrente $\beta = 100$. Determine:
 - a) A corrente de colector, I_C.
 - **b)** A tensão colector-emissor, V_{CE}.

- **4.2** O transístor da figura tem β = 100 e V_{BEON} = 0,7 V. Pretende-se um funcionamento com I_C = 2 mA e V_{CE} = 6 V.
 - a) Dimensione R_C e R_B para V_{CC} = 12 V.
 - **b)** Considerando o dimensionamento efectuado na alínea anterior, mas assumindo que β é 40, calcule os novos valores de I_C e V_{CE}.

4.3 No circuito da figura calcule os valores de V_S para os quais se dá a passagem do transístor do corte para a zona activa e da zona activa para a saturação. Esboce a característica $V_O(V_S)$ por troços lineares.

4.4 Suponha β = 30 e V_{BEON} = 0,7 V para o transístor da figura e que V_{ON} = 0,7 V para o díodo. Calcule as correntes de base e colector do transístor e a tensão na saída para os valores indicados.

4.5 Calcule o ponto de funcionamento em repouso do transístor. Que acontece se R₂ se desligar?

4.6 O circuito da figura é constituído por um transístor bipolar do tipo PNP. Determine o ponto de funcionamento em repouso desse circuito.

- **4.7** No circuito da figura:
 - a) Calcule R_1 para se ter $V_{CE} = 4 \text{ V}$.
 - **b)** Determine $I_C(\beta, \text{ elementos do circuito})$.
 - c) Mostre que para $V_{\text{CC}} > 0.7 \text{ V}$ o circuito exterior garante o transístor a funcionar na região activa.

4.8 No circuito da figura com transístores idênticos e com β muito grande, calcule V_2 - V_1 , determinando ainda os limites de validade do cálculo.

- **4.9** No circuito da figura $T_1 = T_2$ com $\beta = 500$ e $V_{BEON} = 0.6$ V.
 - a) Retirando T_2 do circuito, determine o ponto de funcionamento em repouso de T_1 para $I_{in} = 1$ mA.
 - **b)** Determine $I_{C1}(I_{in})$ do circuito completo para $0 \le I_{in} \le 0,22$ mA.
 - c) Dimensione R_1 por forma a $I_{C1max} = 30$ mA.

- **4.10** No circuito da figura considere que o transístor possui um ganho de corrente β = 100 e V_{BEON} = 600 mV. Determine:
 - a) A corrente de colector, I_C.
 - **b)** A tensão colector-emissor, V_{CE} .

- **4.11** No circuito da figura considere que o transístor possui um ganho de corrente β = 100 e V_{BEON} = 600 mV. Determine:
 - a) A corrente de colector, I_C.
 - **b)** A tensão colector-emissor, V_{CE}.
 - c) A tensão de emissor, V_E.
 - d) A tensão base-colector, V_{BC}.
 - e) Indique o papel do condensador de acoplamento no circuito.

- 4.12 Considere o circuito da figura.
 - a) Calcule os valores de I_C e V_{CE} supondo que o transístor apresenta um ganho de corrente de β = 100. Considere que V_{BEON} = V_{ON} = 0,7 V.
 - b) Repita o cálculo anterior supondo que o transístor apresenta agora um ganho de corrente de β = 50.
 - c) Comente os resultados obtidos nas alíneas anteriores do ponto de vista da estabilidade da polarização do transístor face a variações dos seus parâmetros.

- **4.13** O circuito da figura representa um transístor bipolar em configuração de seguidor de emissor. Suponha que o transístor possui um ganho de corrente β = 100 e que V_{BEON} = 0,7 V.
 - a) Para uma corrente de colector $I_C = 1$ mA, dimensione a resistência de emissor para que a corrente de saída em repouso seja nula, isto é, a corrente estática que percorre a resistência R_L .
 - b) Nas condições da alínea anterior, determine o valor da resistência de entrada do transístor ("vista" do terminal da base), com e sem efeito da resistência de carga, R_L .

- **4.14** O circuito da figura junta representa um seguidor de emissor. V_{BB} e V_{CC} são tensões contínuas de alimentação do circuito. Considere que o transístor tem as seguintes características: $V_{BEON} = 0.7 \text{ V e } \beta = 250$.
 - a) Determine os valores contínuos da corrente de colector, I_{C} , e da tensão colectoremissor, V_{CE} .
 - b) Supondo variações incrementais dos sinais, determine a resistência equivalente de entrada do circuito: $R_{in} = \Delta V_{in} / \Delta I_{in}$.
 - c) Determine o ganho incremental: $G = \Delta V_{out} / \Delta V_{in}$.

- **4.15** Considere o amplificador da figura em que o transístor tem as seguintes características: $V_{BEON} = 0.7 \ V \ e \ \beta = 99.$
 - a) Para uma corrente I_E = 2,5 mA, dimensione R_E por forma que a tensão V_{o1} estática seja nula.
 - **b)** Sabendo que $R_2 = 30 \text{ k}\Omega$, dimensione R_1 para garantir o ponto de funcionamento anterior. **Nota**: não despreze I_B .
 - c) Dimensione R_C para que o ganho $G = \frac{\Delta(V_{o1} V_{o2})}{\Delta V_B}$ seja 1,5.
 - d) Dimensione a capacidade do condensador de modo que a malha de acoplamento de entrada tenha uma constante de tempo de 1 ms. Nota: entre em consideração com a resistência equivalente de base, R_B.

- **4.16** O circuito da figura junta representa um seguidor de emissor. Considere $V_i = 0.5$ sin $(2\pi ft)$ com f = 1 kHz. Para o transístor considere $V_{BEON} = 0.6$ V e $\beta = 150$.
 - a) Calcule o valor da corrente de emissor que garante uma corrente estática nula na resistência de carga R_{L} .
 - b) Calcule o valor de R₂ que impõe a correcta polarização do transístor para o ponto de funcionamento considerado na alínea anterior. Para este efeito, considere desprezável a corrente de base.
 - c) Calcule a resistência vista da base do transístor, $R_B = \Delta V_B / \Delta I_B$.

d) Dimensione o condensador de acoplamento de modo que a constante de tempo associada à malha de entrada seja cerca de 10 vezes inferior ao período do sinal de entrada.

- **4.17** O circuito da figura representa um amplificador com um transístor de junção bipolar com β = 100 e V_{BEON} = 0,7 V.
 - a) Determine o valor da corrente de colector, I_C, e da tensão colector-emissor, V_{CE}.
 - **b)** Supondo variações incrementais, determine $R_B = \Delta V_B / \Delta I_B$.
 - c) Com base no resultado anterior determine $R_{in} = \Delta V_{in} / \Delta I_{in}$.
 - **d)** Determine o ganho incremental: $G = \Delta V_{out} / \Delta V_{in}$.

- **4.18** Considere o circuito da figura em que o transístor tem as seguintes características: $V_{BEON} = 700$ mV e $\beta = 75$. O ponto de funcionamento em repouso do transístor deve ser: $I_C = 2$ mA e $V_{CE} = 5$ V.
 - a) Determine o valor das resistências de polarização, R_1 e R_2 , e da resistência de colector, R_C por forma que se obtenha o ponto de funcionamento em repouso indicado. Considere que $R_1 + R_2 = 100 \text{ k}\Omega$.
 - b) Supondo variações incrementais das tensões e correntes na base e emissor do transístor, respectivamente, ΔV_B e ΔI_B , e ΔV_E e ΔI_E , determine as resistências equivalentes indicadas no circuito.
 - c) Determine o ganho de tensão do circuito quando considera o terminal de saída no colector do transístor.

d) Redimensione as resistências de polarização e de colector de forma que o circuito funcione como um desfasador de 180° quando se consideram simultaneamente os terminais de saída do emissor e do colector.

- **4.19** A figura representa um circuito com um transístor bipolar em que se considera $V_{BEON} = 700 \text{ mV}$ e $\beta = 100$.
 - a) Determine os valores de R_2 e R_C de forma que I_C = 2 mA e V_{CE} = 4 V.
 - **b)** Determine e esboce graficamente o valor instantâneo das tensões $v_C(t)$ e $v_E(t)$. Indique o valor da diferença de fase entre os dois sinais.

4.20 Considere o circuito da figura. Calcule o valor da corrente I_{C2} no espelho de corrente da figura. Considere $V_{BEON} = 700$ mV e $\beta = 20$.

4.21 A figura seguinte representa um espelho de corrente. Admita que os transístores são todos iguais e que $V_{BEON} = 0,65 \text{ V}$. Determine o valor das resistências R_1 e R_2 de forma que as tensões de saída V_{O1} e V_{O2} sejam iguais a 1 V.

- **4.22** O circuito da figura representa um espelho de corrente múltiplo em que se utilizam transístores PNP com $V_{EBON} = 0.6 \text{ V e } \beta = 250.$
 - a) Determine os valores das correntes I_{C2} e I_{C3}.
 - **b)** Determine a potência dissipada nas resistências R_{C1} , R_{C2} e R_{C3} .

- **4.23** O circuito da figura representa um par diferencial com saída pelo colector do transístor T_1 . A fonte de corrente de polarização é representada por uma fonte de corrente ideal, de valor $I_{EE}=2$ mA, em paralelo com uma resistência de valor $R_{EE}=1$ M Ω . Suponha que para $V_T=25$ mV (tensão térmica à temperatura ambiente) e com $V_{BE}=0,6$ V, a corrente de colector dos transístores é $I_C=1$ mA.
 - a) Determine a expressão da característica de transferência do circuito, $V_{out}(V_{in})$. Esboce graficamente esta característica para uma variação da tensão de entrada entre $-1 \ V \ e \ +1 \ V$.
 - b) Determine o ganho de modo diferencial.
 - c) Determine o ganho de modo comum.
 - d) Determine a relação de rejeição de modo comum (RRMC).

- **4.24** Considere o amplificador diferencial da figura em que os transístores são iguais e têm as seguintes características: $V_{BEON} = 0.7 \text{ V}$, $\beta = 100$, $r_E = V_T/I_C$ ($V_T = 25 \text{ mV}$ para a temperatura ambiente).
 - a) Calcule as correntes de colector, I_{C1} e I_{C2} , e a resistência intrínseca de emissor r_E quando a entrada diferencial é nula ($V_{in} = 0 \text{ V}$).
 - **b)** Determine, justificando, o ganho de modo comum (G_c) do amplificador.
 - c) Determine, justificando, o ganho de modo diferencial (G_d) do amplificador.
 - d) Determine e esboce a característica de transferência do circuito $V_{out}(V_{in})$ quando V_{in} varia entre -1 V e +1 V. Em que gama de V_{in} se aplica o resultado obtido na alínea c) ?

4.25 O circuito da figura representa um par diferencial. Suponha que para $V_T=25~\text{mV}$ (tensão térmica à temperatura ambiente) e com $V_{\text{BEON}}=0.6~\text{V}$, a corrente de colector dos transístores é $I_C=1~\text{mA}$. Note ainda que a fonte de corrente de polarização é

representada por uma fonte de corrente ideal, de valor I_{EE} = 2 mA, em paralelo com uma resistência de valor R_{EE} = 1M Ω .

- a) Determine a expressão da característica de transferência do circuito, $V_{\text{out}}(V_{\text{in}})$. Esboce graficamente esta característica para uma variação da tensão de entrada entre -1 V e +1 V.
- **b)** Determine o ganho de modo diferencial.
- c) Determine o ganho de modo comum.
- **d)** Suponha agora que $R_{E1} = R_{E2} = 0$. Discuta qualitativamente a alteração resultante na característica de transferência obtida na alínea a).

- **4.26** Considere o par diferencial representado na figura. Para efeitos de determinação da resistência intrínseca da junção base-emissor, considere ainda $V_T = 25 \text{ mV}$. Nestas condições, calcule:
 - a) O ganho de modo comum.
 - **b)** O ganho de modo diferencial.
 - c) A relação de rejeição de modo comum.

- **4.27** O circuito da figura representa um par diferencial. Suponha que os transístores são idênticos, caracterizados por uma corrente de saturação $I_S = 2 \times 10^{-15}$ A e por um ganho de corrente, β , muito grande. Assuma que $V_T = 25$ mV (tensão térmica para a temperatura ambiente). Note ainda que a fonte de corrente de polarização é representada por uma fonte de corrente ideal, de valor $I_{EE} = 1$ mA.
 - a) Considerando que $V_1 = V_2 = 0$ V, determine o valor da tensão V_X .

Nas alíneas seguintes admita que $V_2 = 0 V$.

- b) Determine a expressão da característica de transferência do circuito, $V_{012}(V_1)$. Esboce graficamente essa característica para uma variação da tensão de entrada, V_1 , entre -10~V~e~+10~V.
- c) Determine o ganho de modo diferencial.
- d) Considerando que o ganho de modo comum é nulo, $G_{\mathbb{C}}=0$, esboce $V_{\mathbb{O}^2}$ (t) quando V_1 é uma onda sinusoidal com 2 V de amplitude (ou 4 V, pico a pico). Justifique a forma de onda obtida.

