Stanislas Thème

Localisation des valeurs propres

 $\begin{array}{c} \textbf{PSI} \\ 2020\text{-}2021 \end{array}$

. . .

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$. Pour tout $i \in [1, n]$, on note

$$r_i = \sum_{j \neq i} |a_{i,j}|$$

Partie I: Matrices à diagonale dominante

La matrice A est à diagonale dominante si

$$\forall i \in [1, n], |a_{i,i}| > r_i$$

- **1.** Montrer que, si A est à diagonale dominante, alors $0 \notin \operatorname{Sp}(A)$.
- 2. Montrer que ce résultat est faux si l'inégalité est large.

Partie II : Disque de GERSCHGORIN

Pour tout $z_0 \in \mathbb{C}$ et r > 0, on note $\mathscr{B}(z_0, r) = \{z \in \mathbb{C} ; |z - z_0| < r\}$ le disque centré en z_0 et de rayon r.

On pose
$$E = \bigcup_{i=1}^{n} \overline{\mathscr{B}}(a_{i,i}, r_i)$$
 et $E' = \bigcup_{i=1}^{n} \overline{\mathscr{B}}\left(a_{i,i}, \sum_{k \neq i} |a_{k,i}|\right)$.

- **3.** Montrer que $\operatorname{Sp}(A) \subset E$.
- **4.** Montrer que $\operatorname{Sp}(A) \subset E \cap E'$.
- 5. Retrouver le résultat de la partie précédente.

Partie III : Ovales de CASSINI

Pour tout $(i,j) \in [1,n]^2$, on note $C_{i,j} = \{z \in \mathbb{C} ; |z-a_{i,i}| |z-a_{j,j}| \leq r_i r_j \}$, appelé ovale de Cassini.

6. Montrer que
$$\operatorname{Sp}(A) \subset \bigcup_{1 \leq i < j \leq n, i \neq j} C_{i,j}$$
.

Mathématiciens

Cassini Giovanni Domenico (8 juin 1625 à Perinaldo-14 sept. 1712 à Paris).

GERSCHGORIN Semion (24 août 1901 à Proujany-30 mai 1933 à Leningrad).