SISTEMI E ARCHITETTURE PER BIG DATA PROGETTO #2

Stream processing distribuito di Big Data

Con Apache Flink e Apache Kafka

Lo scopo del progetto

Cosa

Analisi quantitativa sul traffico marittimo nel Mar Mediterraneo

Come

Tramite un'architettura di stream-processing sviluppata ad-hoc con Apache Flink e Apache Kafka

Architettura

JAVA APP

Coordinator

Kafka
Producer/Consumer
inglobato in un
singolo e Topology
submitter

KAFKA

Messaging layer

Trasporto eventi di input e dati di output tramite patter
Publish/Subscribe

FLINK

Stream processing

Framework di stream-processing per lo sviluppo di applicativi con programmazione Funzionale in Session Mode

GRAFANA

Monitoring

Tool per la
visualizzazione in
real-time di
metriche

As a whole

ARCHITETTURA

- Architettura decentralizzata
- 2 Broker
- 2 Partizioni per Topic
- Grado di replicazione 2
- Topics:
 - INPUT_TOPIC
 - OUTPUT_TOPIC
- ZooKeeper per sincronizzazione e coordinazione

IMPIEGATO PER

- Disaccoppiamento layer di produzione dati e layer di processamento
- Gestione flusso dati in entrata e in uscita
- Evento: Timestamp + Messaggio

PUNTI CHIAVE

- Architettura Master-Worker
- Event time e Processing Time
- State Exactly Once
- In-Memory
- Lateness
- Parallelismo

USO

- Processamento delle 3 query
- Produzione di metriche

Topologia

Applicativo Java

PRODUCER & CONSUMER

- Ordina il dataset
- Replay accelerato
- Produce messaggi per Kafka
- Legge messaggi da Kafka e li esporta in CSV

TOPOLOGY SUBMITTER

- Estrae grafo di esecuzione
- Comunica al JobManager il grafo e il .jar per le dipendenze grazie a PackagedProgram

UTILIZZATO PER

- Dashboard relativo a metriche
- Monitorning in tempo reale del cluster
- Alarm in situazioni di failure
- Si appogiano a ROCKSDB

Deployment

DOCKER COMPOSE

- Simulazione di nodi della rete distinti
- Set-up e Clean-up automatico dei container
- Latenza pari a 0
- Risorse computazionali non ottimali

Queries overview

Preprocessing

AddSource

(per associare la source di Flink al topic di Kafka)

Map

(per filtrare le tuple non appartenenti al mar Mediterraneo)

(per associare ad ogni tupla la label 'occidentale' o orientale) (per associare ad ogni tupla la cella del mare corrispondente)

(per associare ad ogni tupla il timeslot mattutino o pomeridiano)

(per definire quale campo delle tuple rappresentasse l'event time, definire una lateness di 5 minuti ed iniettare tuple di controllo [watermarks] nel flusso dei dati)

Details

 Divisione longitudinale (12.275) coincidente con il confine della cella ad ovest di Trapani (esclusione dell'Adriatico dal Mediterraneo occidentale)

 Lateness concessa 5 minuti così da coincidere con il tempo di emissione massimo di ogni segnale navale

Query 1

Filter

(per considerare solo il mediterraneo occidentale)

KeyBy

(per partizionare il flusso dei dati in base alla cella marittima)

Aggregate

(aggregatore e process window function per stato della finestra)

Windows

(implementata come Tumbling)

Map

(per il calcolo della media giornaliera e la costruzione della stringa di output)

Aggregator

HashMap: (key, value) = (day + shipld, shipType)

CreateAccumulator ---> ritorna nuova HashMap

Add = HashMap.put(day + shipld, shipType)

GetResult ---> array contente il conto degli shipType

ProcessWindowFunction

Permette di accedere informazioni sullo stato della finestra (la key ---> cella marittima ed il tempo di inizio della finestra) che poi vengono aggiunti all'output prodotto dalla funzione getResult dell'aggragatore

Query 1 risultato

Timestamp	Cell	SHIP_TYPE=35	Value	SHIP_TYPE=60-69	Value	SHIP_TYPE=70-79	Value	SHIP_TYPE=others	Value
2015/03/10	D1	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	0.42857143
2015/03/10	C1	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	0.14285715
2015/03/17	D1	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	1.0
2015/03/24	D1	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	1.0
2015/03/31	D1	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	1.1428572
2015/03/31	D2	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	0.2857143
2015/04/07	D1	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	1.4285715
2015/04/07	D2	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	0.71428573
2015/04/07	D3	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	0.42857143
2015/04/07	D5	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	0.2857143
2015/04/07	H8	SHIP_TYPE=35	0.0	SHIP_TYPE=60-69	0.0	SHIP_TYPE=70-79	0.0	SHIP_TYPE=others	0.14285715

Query 2

KeyBy

(basandosi sulla zona del mare 'occidentale' o 'orientele')

(implementata come Tumbling)

Aggregate

(aggregatore e process window function per stato della finestra)

(per la formattazione dell'output)

Accumulator

 Custom class avente come attributi 2 HashMap, una per fascia oraria aventi struttura : (key , value) = (cella , Array<shipld + day >)

Aggregator

- CreateAccumulator ---> ritorna nuovo accumulator
- Add ---> in base alla fascia oraria accede all'HashMap corrispondente, quindi all'array associato a quella cella : se questo non contiene il valore (shipld + day), viene aggiunto all'array
- GetResult ---> ritorna un oggetto contenente 2 array ,uno per fascia oraria, contenenti la coppie : (cella , #navi)

ProcessWindowFunction

- Permette di accedere informazioni sullo stato della finestra (la key ---> area marittima ed il tempo di inizio della finestra).
- Computa per ogni coppia di array generate dal getResult, le 3 celle più frequentate di ogni array. Quindi produce il nuovo output unendo a queste informazioni quelle estratte dalla finestra.

Query 2 risultato

Timestamp	Sea	Time slot	Leaderboard	Time slot	Leaderboard
2015/04/28	WESTERN_MEDITERANEAN_SEA	BEFORE_NOON	F9;J14;F8;	AFTER_NOON	J14;H8;F9;
2015/04/28	EASTERN_MEDITERANEAN_SEA	BEFORE_NOON	C20;D20;G33;	AFTER_NOON	C20;D20;G33;
2015/05/05	EASTERN_MEDITERANEAN_SEA	BEFORE_NOON	C20;D20;G33;	AFTER_NOON	C20;D20;G33;
2015/05/05	WESTERN_MEDITERANEAN_SEA	BEFORE_NOON	F9;F8;H8;	AFTER_NOON	H8;F8;G8;
2015/05/12	WESTERN_MEDITERANEAN_SEA	BEFORE_NOON	F9;F8;H8;	AFTER_NOON	F8;H8;F7;
2015/05/12	EASTERN_MEDITERANEAN_SEA	BEFORE_NOON	G33;C20;D20;	AFTER_NOON	G33;C20;D20;

Query 3

KeyBy
(basandosi sul campo tripld)

->

Windows

(implementata come Tumbling)

KeyBy
(basandosi timeStamp)

Aggregate

(aggregatore e process window function per stato della finestra)

Aggregatore)

Мар

(per la formattazione dell'output)

Aggregator

- Tuple5 contenente < Tripld, OldTs, CurrentTs, Lon, Lat>
- CreateAccumulator ---> ritorna nuova Tuple5
- Add ---> confronto Ts con OldTs:
 - Se precedente ripopola solo il campo OldTs dell'accumulator ed inserisce i suoi valori di Lat e Lon in un HashMap globale <TripId, Tuple3<Ts, Lon, Lat>>
 - Se successivo si confronta con il CurrentTs dell'accumulator e se successivo anche a questo ripopola tutti i campi dell'accumulator eccetto OldTs con i suoi valori
- GetResult ---> ritorna la distanza euclidea tra Lon e Lat riportati nell'accumulator (che corrispondono all'ultima posizione vista per quel viaggio) ed i valori di Lon e Lat iniziali mantenuti nell'HashTable globale

ProcessWindowFunction

Permette di accedere informazioni sullo stato della finestra (la key ---> il tripld ed il tempo di inizio della finestra) che poi vengono aggiunti all'output prodotto dalla funzione getResult dell'aggragatore

Aggregator

- Accumulatore custom contenente un campo Ts per il valore della finestra e due array, uno per gli score ed uno per i tripld corrispondenti
- CreateAccumulator ---> ritorna nuova accumulatore custom
- Add ---> per ogni tupla emessa dalla finestra precedente ne confronta lo score di navigazione con il minimo dell'array mantenuto nell'accumulatore e se risulta maggiore lo sostituisce a quest'ultimo
- GetResult ---> ritorna gli array ordinati contenenti i 5 score più grandi e relativi tripld e li concatena insieme al campo Ts a formare l'output

Details

 Offset: parametro delle finestre che ne ha permesso l'allineamento con il timestamp della prima tupla vista

- Query 3:
 - HashMap globale
 - Parallelismo 1 dell'ultimo operatore

Query 3 risultato

Timestamp	TripID 1	Score	TripID 2	Score	TripID 3	Score	TripID 4	Score	TripID 5	Score
2015/04/11 07:15	0xccfc6_09-04-15 13:	8.679045	0x4a019_09-04-15 6:x	7.362404	0xbc56a_10-04-15 12	3.2201712	0x6d679_11-04-1	7.8436814E-4	0xc49c8_10-04-1	9.620773E-5
2015/04/11 09:15	0xccfc6_09-04-15 13:	8.720733	0xbc56a_10-04-15 12	3.5111074	0x6d679_11-04-15 2:	0.0027859646	0xccfc6_11-04-15	1.19158016E-	0xc49c8_10-04-1	9.620773E-5
2015/04/11 11:15	0x4a019_09-04-15 6:>	8.294712	0xbc56a_10-04-15 12	3.8169024	0x6d679_11-04-15 2:	0.0031363505	0xc49c8_10-04-1	8.9564186E-5	0xccfc6_11-04-15	5.521488E-5
2015/04/11 13:15	0x4a019_09-04-15 6:>	8.763398	0xbc56a_10-04-15 12	4.099406	0xec4e1_11-04-15 14	0.30265495	0x6d679_11-04-1	0.0036652423	0xc49c8_10-04-1	8.538981E-5
2015/04/11 15:15	0x4a019_09-04-15 6:>	8.880867	0xbc56a_10-04-15 12	4.3926606	0xec4e1_11-04-15 14	0.8389703	0x6d679_11-04-1	0.0028012453	0xc49c8_10-04-1	9.421607E-5
2015/04/11 17:15	0xbc56a_10-04-15 12	4.732138	0xec4e1_11-04-15 14	1.3847756	0xc49c8_11-04-15 18	0.19521758	0x6d679_11-04-1	0.003011305	0xc49c8_10-04-1	9.993123E-5
2015/04/11 19:15	0xbc56a_10-04-15 12	5.058954	0xec4e1_11-04-15 14	1.8488048	0xc49c8_11-04-15 18	0.31091502	0x6d679_11-04-1	0.0023217907	0xccfc6_11-04-15	6.1161685E-5
2015/04/11 21:15	0xbc56a_10-04-15 12	5.3790507	0xec4e1_11-04-15 14	2.402895	0xe4728_09-04-15 0:	2.0017064	0xc49c8_11-04-1	0.28971836	0x6d679_11-04-1	0.0038236296
2015/04/11 23:15	0xbc56a_10-04-15 12	5.7072253	0xec4e1_11-04-15 14	2.8007953	0xc49c8_11-04-15 18	0.49367702	0x0e26c_11-04-1	0.10576931	0x6d679_11-04-1	0.0038311537
2015/04/12 01:15	0xbc56a_10-04-15 12	6.049285	0xc49c8_11-04-15 18	0.50137395	0x0e26c_11-04-15 5:	0.38032144	0x6d679_11-04-1	0.0038792088	0xccfc6_11-04-15	7.0470334E-5
2015/04/12 03:15	0xbc56a_10-04-15 12	6.435879	0x0e26c_11-04-15 5:x	0.47318697	0x6d679_11-04-15 2:	0.0032768033	0xccfc6_11-04-15	5.867229E-5		
2015/04/12 05:15	0x4a019_09-04-15 6:x	11.611907	0xbc56a_10-04-15 12	6.7986064	0x6d679_11-04-15 2:	0.003948462	0xccfc6_11-04-15	5.059195E-5		
2015/04/12 07:15	0x4a019_09-04-15 6:>	11.974395	0xbc56a_10-04-15 12	7.1048846	0xec4e1_11-04-15 14	4.7966957	0x6d679_11-04-1	0.0039810184	0xccfc6_11-04-15	9.191245E-5
2015/04/12 09:15	0x4a019_09-04-15 6:>	12.332581	0xbc56a_10-04-15 12	7.36404	0xec4e1_11-04-15 14	5.110301	0xc49c8_11-04-1	1.9438314	0x6d679_11-04-1	0.0038875628

METRICHE

Perchè

Misurare l'andamento di prestazioni di Flink e healthy monitoring

Come

Metriche Built-In di Flink Prometheus w/ Oshi-Core e JNA RocksDB

- Window_SlidingEventTimeWindows_7200000__7200000__EventTimeTrigger_Query3Aggregator__Query3ProcessWindowFunction_
- Window_SlidingEventTimeWindows_604800000__604800000__EventTimeTrigger_Query2Aggregator_ProcessWindowFunction_1___Map___Si Window_SlidingEventTimeWindows_3600000__3600000__EventTimeTrigger_Query3AggregatorTop5__PassThroughWindowFunction____Map___Map___
- Window_SlidingEventTimeWindows_7200000__7200000__EventTimeTrigger_Query3AggregatorTop5__PassThroughWindowFunction____Map___Map___ Window_SlidingEventTimeWindows_604800000__604800000__EventTimeTrigger_Query1Aggregator_Query1ProcessWindowFunction___Map__Map_
- Window_SlidingEventTimeWindows_2419200000_2419200000_EventTimeTrigger_Query2Aggregator_ProcessWindowFunction_1___Map___Map___
- Source:_Custom_Source___Map___Map___Map___Map___Map___Map___Timestamps_Watermarks____Filter_Filter_

= flink_taskmanager_job_latency_operator_id_operator_subtask_index_latency{host="172_18_0_6", instance="cluster_taskmanager_3:92" flink_taskmanager_job_latency_operator_id_operator_subtask_index_latency{host="172_18_0_6", instance="cluster_taskmanager_3:92 flink_taskmanager_job_latency_operator_id_operator_subtask_index_latency{host="172_18_0_6", instance="cluster_taskmanager_3:92 flink_taskmanager_job_latency_operator_id_operator_subtask_index_latency{host="172_18_0_6", instance="cluster_taskmanager_3:92 — flink tackmanager ich latency operator id operator cultack index latency/hoct-"172 18 0 6" inctance-"cluster tackmanager 3:02

- Window_SlidingEventTimeWindows_3600000__3600000__EventTimeTrigger_Query3Aggregator_Query3ProcessWindowFunction_
- Window_SlidingEventTimeWindows_2419200000__2419200000__EventTimeTrigger_Query1Aggregator_Query1ProcessWindowFunction____Map___Ma
- Window_SlidingEventTimeWindows_7200000__7200000__EventTimeTrigger_Query3Aggregator__Query3ProcessWindowFunction_
- Window_SlidingEventTimeWindows_604800000_604800000_EventTimeTrigger_Query2Aggregator_ProcessWindowFunction_1___Map___Map___Si
- Window_SlidingEventTimeWindows_3600000__3600000__EventTimeTrigger_Query3AggregatorTop5_PassThroughWindowFunction____Map___Map___
- Window_SlidingEventTimeWindows_7200000__7200000__EventTimeTrigger_Query3AggregatorTop5_PassThroughWindowFunction____Map___Map___
- Window_SlidingEventTimeWindows_604800000_604800000_EventTimeTrigger_Query1Aggregator_Query1ProcessWindowFunction___Map__Map_ Window_SlidingEventTimeWindows_2419200000_2419200000_EventTimeTrigger_Query2Aggregator_ProcessWindowFunction_1___Map___Map___
- Source:_Custom_Source__Map__Map__Filter__Map__Map__Map__Timestamps_Watermarks___Filter_Filter_

SVILUPPI FUTURI

MAPE

per gestire carico variabile

Process Window

Rimozione ridurre consumo memoria

Occidentale e Orientale

Suddivisione a grana fine del Mare

Memoria

Reset HashMap 3° Query

CREDITS

Andrea Paci

andrea.paci1998@gmail.com

Alessandro Amici

a.amici@outlook.it

Repository GitHub

https://github.com/andreapaci/SABD2

