Day 1 overview

- SSH keys and logging into the AWS
- Basic Bash/Intro to Git
- Vim and Vimtutor
- Review library prep and sequencing (non-DS2)

Logging into the supercomputer

Open and follow the worksheet SSH_AWS

(https://github.com/Dowell-Lab/srworkshop/tree/main/day01/worksheets/SSH_AWS.md)

- You MUST
 - 1. Be logged into your GitHub account
 - 2. Have a terminal application open (see worksheet for details)
- After finishing the worksheet, try to log into the AWS:

```
ssh <github username>@3.20.14.225
```

**replace <github_username>, including brackets, with your username

If you need help, flag us with a red sticky note If you are successfully logged in, put up a green sticky note

Basic Bash and Git/GitHub

Open and follow the worksheet Git_github_bash

(https://github.com/Dowell-Lab/srworkshop/tree/main/day01/worksheets/Git_github_bash.md)

 This worksheet orients you to the class GitHub repository and gets you started with some basic Bash navigation

• Main commands: pwd Print working (current) directory

cd Change directory

ls List contents

If you need help, flag us with a red sticky note If you are done, put up a green sticky note

Break

If you do not have a working terminal, please log into Google Shell now

(.../srworkshop/day01/worksheets/Google_shell.md)

Vim and Vimtutor

- What is Vim?
 - Text editor read, write, and save text files
 - Entirely keyboard-based
 - You CANNOT use your mouse to move the cursor!!!
- Vimtutor is on every Unix/Linux system and teaches you how to use Vim
- Open and follow the worksheet Vimtutor_crashes_colors

(.../srworkshop/day01/worksheets/Vimtutor_crashes_colors.md)

If you need help, flag us with a red sticky note If you are done, put up a green sticky note

Day 1 overview

- SSH keys and logging into the AWS
- Basic Bash/Intro to Git
- Vim and Vimtutor
- Review library prep and sequencing (non-DS2)

Homework for day 2

- Videos for day 1 (if not already done)
- Videos for day 2
- Vimtutor
 - Lessons 1 and 2
 - Advanced students should do lessons 3-5
- Day1_homework (library QC challenge)

Short Read Workshop Week 2

- Day 6: Introduction to R
- Beginning of Day 7: Differential Expression Demo
- Days 7-9: Mini-projects
 - Project A (Room A104) Single Cell RNA-seq
 - Project B (Room A108) Multi-omics: RNA-seq/ChIP-seq(/ATAC-seq)
- End of Day 9: Reconvene and discuss
- Day 10: Potpourri

Library prep and sequencing

Anatomy of a library

P5/P7 Ends that attach to flow cell

Index 1/2 ID sequences for multiplexing samples

R1/R2 primers Sequencing primers

Insert Fragment of sample DNA/cDNA

Anatomy of a library

P5/P7 Ends that attach to flow cell

Index 1/2 ID sequences for multiplexing samples

R1/R2 primers Sequencing primers

Insert Fragment of sample DNA/cDNA

Read Sequenced portion of fragment

Creating libraries

Illumina sequencing technology

Imaging a slide (flow cell) with millions/billions of DNA clusters by cycling in fluorescent nucleotides

Sequencing:

Single/paired end sequencing

Designing a sequencing experiment

Library QC

Base diversity
Complexity

Per base sequence content

Base diversity
Complexity

Per base sequence content

Base diversity
Complexity

Per base sequence content

Complexity
Duplication

Sequence Duplication Levels

Complexity
Duplication

Sequence Duplication Levels

Adapter Content

Adapter Contamination

Adapter Content

Adapter Contamination

