Similarity of Triangles

Quick Notes (Grade 10)

Clean, colorful, exam-ready

Definition

Use for: precise meanings and notation.

Theorem/Rule

Use for: key rules and criteria.

Property

Use for: consequences and facts.

Example

Use for: worked examples with steps.

Shortcut

Use for: quick tricks and checks.

Warning

Use for: common mistakes and alerts.

Sides in RoyalBlue, angle marks in ForestGreen, parallels in Fuchsia.

1

Overview: What is Similarity?

Definition

Two figures are **similar** if they have the same shape. For triangles, this means:

- Corresponding angles are equal.
- Corresponding side lengths are in proportion.

We write: $\triangle ABC \sim \triangle A'B'C'$.

Property

Scale factor k: If $\triangle ABC \sim \triangle A'B'C'$, and AB matches A'B', then $\frac{A'B'}{AB} = k$. Every corresponding side scales by k.

- Perimeters scale by k.
- Areas scale by k^2 .

Example

Matching corresponding parts: Keep vertex order consistent. If $\triangle ABC \sim \triangle DEF$, then $A \leftrightarrow D$, $B \leftrightarrow E$, $C \leftrightarrow F$. So $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$.

Shortcut

Quick check: If two angles of one triangle match two of another, triangles are similar (AAA). You do not need the third angle.

Warning

Keep order: $\triangle ABC \sim \triangle DEF$ means $A \leftrightarrow D$, $B \leftrightarrow E$, $C \leftrightarrow F$. Mixing order gives wrong ratios.

Core Definitions and Similarity Criteria

Definition

Similar triangles: $\triangle ABC \sim \triangle A'B'C'$ if $\angle A = \angle A'$, $\angle B = \angle B'$, $\angle C = \angle C'$ (AAA), or if certain side-angle conditions hold (SAS, SSS).

Theorem/Rule

AAA Similarity

- If three angles of a triangle match the three angles of another, the triangles are similar.
- Ratios of corresponding sides are equal.

Theorem/Rule

SAS Similarity

- Two sides in proportion and the included angle equal imply similarity.
- $\frac{AB}{A'B'} = \frac{AC}{A'C'}$ and $\angle A = \angle A'$.

Theorem/Rule

SSS Similarity

- All three side pairs are in the same ratio *k*.
- $\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'} = k$.

Warning

Common mistakes

- Using a non-included angle for SAS.
- Mismatching corresponding sides when writing ratios.
- Forgetting that areas scale by k^2 , not by k.

Consequences of Similarity

Property

If $\triangle ABC \sim \triangle A'B'C'$ with scale factor k (so A'B' = k AB), then:

- Corresponding angles are equal.
- $\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'} = \frac{1}{k}$.
- Perimeter ratio is $\frac{P_{A'B'C'}}{P_{ABC}} = k$.
- Area ratio is $\frac{[A'B'C']}{[ABC]} = k^2$.
- Altitudes, medians, and angle bisectors scale by k.

Example

A quick proof (altitudes scale by k): In similar triangles, $\frac{AB}{A'B'} = \frac{h_{AB}}{h'_{A'B'}}$ because both pairs are opposite equal angles and form similar right triangles when dropping perpendiculars. Hence $h'_{A'B'} = k \ h_{AB}$.

Shortcut

Area shortcut: If sides scale by k, areas scale by k^2 . If perimeters scale by 3, areas scale by 9.

Key Theorems from Similarity

Theorem/Rule

Basic Proportionality Theorem (Thales): If a line through a triangle is parallel to one side, it divides the other two sides proportionally.

If $DE \parallel BC$ in $\triangle ABC$, then $\frac{AD}{DB} = \frac{AE}{EC}$ and $\frac{AD}{AB} = \frac{AE}{AC}$.

Example

Proof idea: Since $DE \parallel BC$, $\angle ADE = \angle ABC$ and $\angle AED = \angle ACB$ (alternate interior angles). Thus $\triangle ADE \sim \triangle ABC$ (AAA), so $\frac{AD}{AB} = \frac{AE}{AC}$ and $\frac{DE}{BC} = \frac{AD}{AB} = \frac{AE}{AC}$. From the first, $\frac{AD}{DB} = \frac{AE}{EC}$.

Theorem/Rule

Converse of BPT: If a line through a triangle cuts two sides proportionally, it is parallel to the third side.

Theorem/Rule

Angle Bisector Theorem (internal): In $\triangle ABC$, if AD bisects $\angle A$ with D on BC, then $\frac{BD}{DC} = \frac{AB}{AC}$. External bisector at A meets the extension of BC at E and gives $\frac{BE}{EC} = \frac{AB}{AC}$.

Example

Right-triangle similarity facts:

- In right $\triangle ABC$ with right angle at C, altitude from C to hypotenuse AB meets AB at H. Then $\triangle ACH \sim \triangle ABC \sim \triangle HCB$.
- Mean proportionals: $CH^2 = AH \cdot HB$, $AC^2 = AH \cdot AB$, $BC^2 = HB \cdot AB$.
- Pythagoras by similarity: From $AC^2 = AH \cdot AB$ and $BC^2 = HB \cdot AB$, add to get $AC^2 + BC^2 =$

 $(AH + HB) \cdot AB = AB^2.$

Worked Examples

Example

Type A: Find an unknown side using similarity

In $\triangle ABC$, $DE \parallel BC$ with D on AB and E on AC. If AD = 6, AB = 9, and AE = 8, find AC.

Steps

- 1. $DE \parallel BC \Rightarrow \triangle ADE \sim \triangle ABC$.
- $2. \ \frac{AD}{AB} = \frac{AE}{AC} \Rightarrow \frac{6}{9} = \frac{8}{AC}.$
- 3. Cross-multiply: $6AC = 9 \cdot 8 = 72$.
- 4. AC = 12.

Shortcut

Use BPT: a single proportion solves it.

Example

Type B: Perimeter and area comparisons

Two similar triangles have side ratio $k = \frac{5}{3}$. If the smaller has perimeter 24 and area 54, find the larger's perimeter and area.

Steps

- 1. Perimeter scales by k: $P_{\text{large}} = k \cdot 24 = \frac{5}{3} \cdot 24 = 40$.
- 2. Area scales by k^2 : $A_{\text{large}} = k^2 \cdot 54 = \left(\frac{5}{3}\right)^2 54 = \frac{25}{9} \cdot 54 = 150.$

Shortcut

Perimeter $\times k$, area $\times k^2$. Keep which triangle is larger consistent.

Example

Type C: Angle-bisector splits a side

In $\triangle ABC$, AD bisects $\angle A$. If AB = 7, AC = 9, and BC = 12, find BD and DC.

Steps

- 1. Angle Bisector Theorem: $\frac{BD}{DC} = \frac{AB}{AC} = \frac{7}{9}$.
- 2. Let BD = 7x, DC = 9x, then $7x + 9x = 12 \Rightarrow x = \frac{12}{16} = \frac{3}{4}$.
- 3. BD = 7x = 5.25, DC = 9x = 6.75.

Shortcut

Split in the ratio of the adjacent sides.

Example

Type D: Parallel line cuts triangle

In $\triangle ABC$, $DE \parallel BC$ with AD = 5, DB = 7, AE = 6. Find EC.

Steps

- 1. BPT: $\frac{AD}{DB} = \frac{AE}{EC}$, so $\frac{5}{7} = \frac{6}{EC}$.
- 2. Cross-multiply: $5EC = 42 \Rightarrow EC = 8.4$.

Shortcut

Set up the proportion once; check order carefully.

Example

Type E: Shadow / scale-model problem

At the same time, a tree casts a 9 m shadow and a 1.5 m stick casts a 1.2 m shadow. How tall is the tree?

Steps

- 1. Similar right triangles from equal sun elevation: $\frac{\text{Tree height}}{9} = \frac{1.5}{1.2}$.
- 2. Tree height = $9 \cdot \frac{1.5}{1.2} = 9 \cdot 1.25 = 11.25$ m.

Shortcut

Equal sun angle gives AAA. Compare heights to shadows directly.

Example

Type F: Coordinate check for similarity

Points: A(0,0), B(4,2), C(1,3) and A'(0,0), B'(6,3), C'(1.5,4.5). Show $\triangle ABC \sim \triangle A'B'C'$. **Steps**

- 1. Slopes show equal angles: $m_{AB} = \frac{2}{4} = \frac{1}{2}$ and $m_{A'B'} = \frac{3}{6} = \frac{1}{2}$; similarly for other sides.
- 2. Side ratios: $\overline{AB} = \sqrt{(4)^2 + (2)^2} = \sqrt{20}$, $\overline{A'B'} = \sqrt{(6)^2 + (3)^2} = \sqrt{45}$, ratio = $\sqrt{45/20} = \frac{3}{2}$.
- 3. Likewise $\frac{AC'}{AC} = \frac{\sqrt{(1.5)^2 + (4.5)^2}}{\sqrt{(1)^2 + (3)^2}} = \frac{3}{2}$ and for BC.
- 4. Hence $k = \frac{3}{2}$ and triangles are similar (SSS).

Shortcut

Check any two: either AAA via slopes/angles or SSS via distances.

Formula and Fact Sheet

Property	
Topic	Key Facts / Formulas
Similarity notation	$\triangle ABC \sim \triangle A'B'C'$; keep vertex order.
Scale factor	$k = \frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{C'A'}{CA}.$
Angle equality	$\angle A = \angle A', \angle B = \angle B', \angle C = \angle C'.$
AAA	Three equal angles \Rightarrow triangles similar.
SAS	Two side ratios equal and included angle equal \Rightarrow similar.
SSS	Three side ratios equal (same k) \Rightarrow similar.
Perimeter	$P_2 = k P_1.$
Area	$[\Delta_2] = k^2 [\Delta_1].$
Medians/altitudes/bisectors	Scale by k in similar triangles.
BPT	If $DE \parallel BC$ in $\triangle ABC$, then $\frac{AD}{DB} = \frac{AE}{EC}$ and $\frac{AD}{AB} = \frac{AE}{AC}$.
Converse BPT	If a line cuts two sides proportionally, it is parallel to the third.
Angle Bisector Thm	Internal: $\frac{BD}{DC} = \frac{AB}{AC}$. External: $\frac{BE}{EC} = \frac{AB}{AC}$.
Right-triangle similarity	With altitude to hypotenuse: $CH^2 = AH \cdot HB$, $AC^2 = AH \cdot AB$
	$BC^2 = HB \cdot AB.$
Pythagoras (via similarity)	$AC^2 + BC^2 = AB^2.$
Word problems	Heights/shadows or scale models: use height/shadow ratios.

Pitfalls and Checks

Warning

- Wrong order: Always match letters correctly when writing ratios.
- SAS uses included angle: The equal angle must be between the two compared sides.
- k vs k^2 : Perimeter uses k, area uses k^2 .
- Rounding: Keep sufficient precision; round only at the end.
- Not to scale: Diagrams may mislead; rely on given measures.

Practice Problems

- 1. In $\triangle ABC$, $DE \parallel BC$, AD = 3, AB = 9, AE = 5. Find AC.
- 2. Two similar triangles have $k = \frac{4}{3}$. If the smaller area is 27, find the larger area.
- 3. In $\triangle ABC$, AD bisects $\angle A$. If AB = 8, AC = 10, BC = 18, find BD and DC.
- 4. In right $\triangle ABC$ with right angle at C, altitude to hypotenuse meets at H, AH = 5, HB = 9. Find CH, AC, BC.
- 5. $\triangle ABC \sim \triangle DEF$ with AB = 7, BC = 9, DE = 14. Find EF.
- 6. A model uses scale 1:50. A real building is 45 m tall. How tall is the model?
- 7. If $\triangle ABC \sim \triangle PQR$ and $\angle A = 40^{\circ}$, $\angle C = 65^{\circ}$, find $\angle Q$.
- 8. In $\triangle ABC$, $DE \parallel BC$ with AD = 4, DB = 8, AE = 6. Find EC.
- 9. $\triangle ABC \sim \triangle A'B'C'$ and k = 2.5. If $P_{ABC} = 28$, find $P_{A'B'C'}$.
- 10. If $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD} = \frac{3}{5}$, what is the area ratio $\frac{[DEF]}{[ABC]}$?
- 11. Sides AB = 6, AC = 10. If AD bisects $\angle A$ meeting BC at D and BD = 7.2, find BC.
- 12. Points A(0,0), B(3,1), C(0,2). Points D(0,0), E(6,2), F(0,4). Are $\triangle ABC$ and $\triangle DEF$ similar? State k.
- 13. In $\triangle ABC$, a line through A meets BC at D with $\frac{BD}{DC} = \frac{2}{3}$. Prove the line is parallel to AB or AC? Which?
- 14. $\triangle ABC \sim \triangle PQR$ with AB = 12, BC = 15, CA = 9 and PQ = 16. Find k and QR, RP.
- 15. In right $\triangle ABC$ with $\angle C = 90^{\circ}$, AC = 9, BC = 12. Find AB using similarity (not directly by Pythagoras).
- 16. A 2 m stick casts 1.6 m shadow. A building casts 24 m shadow at the same time. Find the building height.
- 17. If $\triangle ABC \sim \triangle DEF$ and $\frac{AB}{DE} = \frac{BC}{EF} = k$, express $\frac{[DEF]}{[ABC]}$ in terms of k.
- 18. In $\triangle ABC$, $DE \parallel BC$ with AD = 7, AE = 10, AC = 15. Find AB.
- 19. In $\triangle ABC$, AD bisects $\angle A$ and meets BC at D. If AB : AC = 5 : 7 and BC = 18, find BD and DC.
- 20. Coordinates: A(1, 1), B(5, 3), C(2, 6) and A'(2, 2), B'(10, 6), C'(4, 12). Check similarity and find k.

Answers are listed at the end.

Answer Key (Condensed)

- 1. AC = 15.
- 2. $k^2 = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$, so area = $27 \cdot \frac{16}{9} = 48$.
- 3. BD : DC = 8 : 10 = 4 : 5, so BD = 8, DC = 10 (since BC = 18).
- 4. $CH = \sqrt{5 \cdot 9} = \sqrt{45} = 3\sqrt{5}$, $AC = \sqrt{5 \cdot 14} = \sqrt{70}$, $BC = \sqrt{9 \cdot 14} = \sqrt{126} = 3\sqrt{14}$.
- 5. $k = \frac{DE}{AB} = \frac{14}{7} = 2$, so $EF = 2 \cdot 9 = 18$.
- 6. Model height = $\frac{45}{50}$ = 0.9 m.
- 7. $\angle Q = \angle B = 180^{\circ} 40^{\circ} 65^{\circ} = 75^{\circ}$.
- 8. $\frac{AD}{DB} = \frac{AE}{EC} \Rightarrow \frac{4}{8} = \frac{6}{EC} \Rightarrow EC = 12.$ 9. $P = 2.5 \cdot 28 = 70.$
- 10. $\left(\frac{5}{3}\right)^2 = \frac{25}{9}$.
- 11. BD/DC = 6/10 = 3/5 with $BD = 7.2 \Rightarrow 7.2/DC = 3/5 \Rightarrow DC = 12$, so BC = 19.2.
- 12. Yes, k = 2 (every coordinate doubled).
- 13. Line is parallel to AB if it passes through A and cuts BC in ratio of BA : AC only if ratio matches; given BD:DC=2:3, it is not generally parallel to AB or AC unless sides match that ratio. Insufficient data; typical answer: parallel to a side only when the side ratios match.
- 14. $k = \frac{PQ}{AB} = \frac{16}{12} = \frac{4}{3}$; $QR = \frac{4}{3} \cdot 15 = 20$, $RP = \frac{4}{3} \cdot 9 = 12$.
- 15. $k = \frac{AB}{\sqrt{AC^2 + BC^2}}$, or compute: similar to a scaled 3-4-5, so AB = 15.
- 16. Height = $24 \cdot \frac{2}{1.6} = 30$ m.
- 17. $\frac{[DEF]}{[ABC]} = k^2.$
- 18. $\frac{AD}{AB} = \frac{AE}{AC} \Rightarrow \frac{7}{AB} = \frac{10}{15} \Rightarrow AB = 10.5.$
- 19. BD : DC = 5 : 7; with BC = 18, get $BD = \frac{5}{12} \cdot 18 = 7.5$, DC = 10.5.
- 20. Yes, each coordinate multiplied by 2; k = 2.