(Discrete) Fourier Decomposition

- Any signal can be expressed as the sum of sines and cosines at different frequencies when they are appropriately scaled and shifted.
- Fourier Transform consists of finding this amplitude and phase information.

different frequencies are orthogonal to each other. They capture independent information.

Discrete Fourier Decomposition

- Any signal can be expressed as the sum of sines and cosines at different frequencies when they are appropriately scaled and shifted.
- Fourier Transform consists of finding this amplitude and phase information.

sine and cosine pairs can be represented as a complex number.

DFT Basis Functions

 For each frequency k, a pair of unit amplitude cosines and sines forms the DFT basis.

$$c_k[i] = \cos(2\pi ki/N)$$

$$s_k[i] = \sin(2\pi ki/N)$$

Synthesis Equation:

$$x[i] = \sum_{k=0}^{N/2} Re\bar{X}[k] \cos(2\pi ki/N) + \sum_{k=0}^{N/2} Im\bar{X}[k] \sin(2\pi ki/N)$$

How many basis functions?

 N data points in the time domain are transformed into N/2+1 frequency points.

 However you can increase the frequency resolution by using more basis functions.

Two ways of thinking: Polar Notation

- · Real vs. Imag.
 - Matlab: real(), imag()

$$A\cos(x) + B\sin(x) = M\cos(x + \theta)$$

- Magnitude vs. Phase
 - Matlab: abs(), phase()

N/2+1 cosine and sine pairs with different amplitudes
 N/2+1 cosine functions with different phases and amplitudes

N/2+1 cosine functions with different phases and amplitudes.

Fourier transform of an Impulse

- An Impulse contains all the frequencies.
 - Basically the impulse "tests" for all the frequencies equally.
 - Now it should make more sense why a linear system is characterized by an impulse.
 - White noise because all frequencies are equally present.
- an impulse in the frequency domain?

Linearity of DFT

Another view on convolution

- Convolution in the time domain is equivalent to multiplication in the Fourier domain.
- y = conv(h,x) is equal to y =
 F-¹[F(h)*F(x)]
- thanks to fft (fast fourier transform) convolution can be realized much faster.

Another view on convolution

 This is important because this means that the IRF decides which frequencies will be present in the output.

