Подчеркнем, что при расчетах в (10) следует брать знак «+» в случае выстрела на восток

$$\Delta S = 3.4 M$$

и знак «-» в случае выстрела на запад

$$\Delta S = 1.3 M$$
.

Таким образом, для земного наблюдателя при выстреле из суперкатапульты вдоль параллели снаряд отклонится на юг в любом случае, но величины смещений в этом случае будут разными: $\Delta S = 3.4 \, m$ при выстреле на восток и $\Delta S = 1.3 \, m$ при выстреле на запад.

Решения 11 класс.

Задача 1. «Хорошо ли Вы знаете силу трения?»

1.0 Для вывода данного соотношения (уравнения динамики вращательного движения) достаточно рассмотреть уравнение второго закона для небольшого участка цилиндра и затем просуммировать его по всем участкам с учетом третьего закона Ньютона. Так для i-того участка можно записать

$$\Delta m_i \vec{a}_i = \vec{F}_i + \vec{T}_{i,i+1} + \vec{T}_{i,i-1}$$
,

где $\vec{T}_{i,i+1}, \vec{T}_{i,i-1}$ - силы, действующие на i-тый участок со стороны соседей. В проекции на тангенциальное направление для всех участков $\left|\vec{a}_i\right| = R \frac{\Delta \omega}{\Delta t}$, при

суммировании все внутренние силы «исчезнут», останутся только тангенциальные составляющие внешних сил.

1.1 Сила трения, действующая на трубку, сообщает ей линейное ускорение, приводящее к увеличению скорости центра трубки

$$ma = F_{mp}. (1)$$

Скорость будет изменяться по закону

$$V = \frac{F_{mp}}{m}t. (2)$$

Эта же сила будет тормозить вращение трубки, согласно уравнению динамики вращательного движения

$$mR\frac{\Delta\omega}{\Delta t} = -F_{mp} \,. \tag{3}$$

Поэтому угловая скорость будет уменьшаться по закону

$$\omega = \omega_0 - \frac{F_{mp}}{Rm}t. \tag{4}$$

Проскальзывание (следовательно, и изменение скоростей) прекратится при выполнении условия $V = \omega R$. Из записанных уравнений следует, что скорость установившегося движения

$$V_{ycm} = \frac{\omega_0 R}{2} \,. \tag{5}$$

1.2 Если приложенная сила F превышает максимальную силу трения покоя $F_{\max} = \mu mg$, то ускорение бруска находится из уравнения второго закона Ньютона

$$a = \frac{F}{m} - \mu g \,, \tag{6}$$

в противном случае ускорение бруска равно нулю.

1.3 На рисунке изображены силы, действующие на тела (все обозначении традиционны). В проекции на горизонтальное направление уравнения второго закона Ньютона имеют вид

$$m_1 a = F_1 - T m_2 a = -F_2 + T$$
 (1)

Выразим действующие силы трения (все они являются силами скольжения):

- между цилиндром и бруском

$$F_0 = \mu T \,, \tag{2}$$

- между цилиндром и горизонтальной поверхностью

$$F_1 = \mu N_1 = \mu (m_1 g - F_0) = \mu (m_1 g - \mu T), \tag{3}$$

- между бруском и поверхностью

$$F_2 = \mu N_2 = \mu (m_2 g + F_0) = \mu (m_2 g + \mu T). \tag{4}$$

Решая эту систему уравнений, получим ускорение тел (если они движутся)

$$a = \mu g \frac{\frac{m_1}{1 + \mu^2} - \frac{m_2}{1 - \mu^2}}{\frac{m_1}{1 + \mu^2} + \frac{m_2}{1 - \mu^2}}.$$
 (5)

Таким образом, брусок начнет двигаться при

$$m_2 < m_1 \frac{1 - \mu^2}{1 + \mu^2} \approx 0.92 \kappa \varepsilon$$
.

При заданном значении масс ускорение системы равно $a \approx 1.6 \frac{M}{c^2}$.

1.4 Распределение сил в данном случае аналогично рассмотренному ранее. Поэтому если предположить, что все силы являются силами трения скольжения, надо признать справедливой формулу (5) для ускорений. Однако, при $m_1 = m_2$ из нее следует, что ускорение должно быть отрицательным. Следовательно, сила трения F_2 является трением покоя. Поэтому система уравнений для ускорений имеет вид

$$ma = -T + F_1 = -T + \mu (mg - \mu T)$$
,
 $ma = T - F_2$, (6)

к которым необходимо добавить уравнение динамики вращательного движения для второго цилиндра (с учетом $\frac{\Delta \omega}{\Delta t} = \frac{a}{R}$)

$$mR\frac{a}{R} = F_2 - F_0 = F_2 - \mu T. (7)$$

Из этой системы находим

$$F_2 = ma + \mu T$$

$$T = ma + F_2 = 2ma + \mu T \implies T = \frac{2ma}{1 - \mu}$$

$$ma = \mu mg - T(1 + \mu^2) \implies a = \frac{\mu g}{1 + 2\frac{1 + \mu^2}{1 - \mu}} \approx 0.54 \frac{M}{c^2}$$

Задача 2. «Хорошо ли Вы знаете закон преломления света?»