

Systems Engineering: Design and Development

ENGR 387

Agenda

- Course Introduction
- Course Objectives
- Lesson Plan
- Required Text
- Software Tools
- **Assessment**

Course Introduction

The Introduction to Design and Development course using Model Based Systems Engineering provides an overview of what Model Based Systems Engineering (MBSE) is and how MBSE techniques can be applied to the Systems Engineering process to manage complexity, reduce risk, and potentially streamline the engineering design and development effort.

Course Objectives

At the end of this course, you should have an awareness of:

- model-based systems engineering approach
- SysML language and modeling abstract systems
- How SysML is used as part of an MBSE.

This course is not intended to make you a systems modeler! You must use the language.

Lesson Plan

This lectures are based on:

- OMG SysML available specification (formal/2007-09-01) http://www.omgsysml.org/and
- SysML Distilled: A Brief Guide to the Systems Modeling Language 1st Edition

Lesson Plan

Week 1 MBSE, Architecture Languages, Frameworks and OOSM

What is MBSE? - Lecture 1

UML/MODAF, NAF, DoDAF, UPDM and UAF - Lecture 2

OOSM and Modeling SysML Overview - Lecture 3

Week 2 Modeling SysML Overview and Package Diagrams

Modeling SysML Overview - Lecture 4

Package Diagrams - Lecture 5

Lab 1 Exercise - Package Diagrams (pkg)

Week 3 Block Definition Diagrams and Internal Block Diagrams

Block Definition Diagram Blocks and Properties - Lecture 6

Internal Block Diagrams-Lecture 7

Lab 2 Exercise - Blocks and Block Definition Diagrams (bdd)

Week 4 Parametric Diagrams and Use Cases Diagrams

Parametric Diagrams - Lecture 8

Use Case Diagrams - Lecture 9

Lab 3 Exercise - Internal Block Diagrams (ibd)

Week 5 Analyze Stakeholder Needs activity in the OOSEM method

First Test - Structural Diagrams

Analyze Stakeholder Needs activity in the OOSEM method - Lecture 10 Lab 4 Exercise - Requirements Diagram

Week 6 Activity Diagrams and Sequence Diagrams

Activity Diagrams - Lecture 11

Sequence Diagrams - Lecture 12

Lab 5 Exercise - Activity Diagrams

Week 7 State Machine Diagrams

State Machine Diagrams - Lecture 13

Lab 6 Exercise - Sequence Diagrams

Week 8 Requirements Diagram and Traceability activity in the

OOSEM method

Requirements Diagram - Lecture 14

Manage Requirements Traceability activity in the OOSEM method -

Lecture 15

Lab 7 Exercise - State Machine Diagrams

Week 9 Optimize and Evaluate Alternatives

Optimize and Evaluate Alternatives activity in the OOSEM method - Lecture 16

Second Test - Behavioral Diagrams

Week 10 Using OOSEM to Integrate and Verify System

Integrate and verify System activity in the OOSEM method - Lecture 17 Final Test

Required Text

SysML Distilled: A Brief Guide to the Systems Modeling Language 1st Edition

Software Tools

https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/

Assessments

Three Tests

First Test - Structural Diagrams

Second Test-Behavioral Diagrams

Final Comprehensive Test - All the material in the lecture series

