

On the influence of the magnetic field of the GSI experimental storage ring on the time-modulation of the EC -decay rates of the H-like mother ions

M. Faber^a, A. N. Ivanov^{a,b}, P. Kienle^{b,c}, M. Pitschmann^a, N. I. Troitskaya^e

^a Atominstitut der Österreichischen Universitäten, Technische Universität Wien,
Wiedner Hauptstrasse 8-10, A-1040 Wien, Österreich

^b Stefan Meyer Institut für subatomare Physik Österreichische Akademie der Wissenschaften,
Boltzmanngasse 3, A-1090, Wien, Österreich

^c Excellence Cluster Universe Technische Universität München, D-85748 Garching, Germany

^e State Polytechnic University of St. Petersburg, Polytechnicheskaya 29, 195251, Russia*

(Dated: June 19, 2009)

We investigate the influence of the magnetic field of the Experimental storage ring (ESR) at GSI on the periodic time-dependence of the orbital K-shell electron capture decay (EC) rates of the H-like heavy ions. We approximate the magnetic field of the ESR by a uniform magnetic field. Unlike the assertion by Lambiase *et al.*, arXiv: 0811.2302 [nucl-th], we show that a motion of the H-like heavy ion in a uniform magnetic field cannot be the origin of the periodic time-dependence of the EC -decay rates of the H-like heavy ions.

PACS: 23.40.Bw, 33.15.Pw, 13.15.+g, 14.60.Pq

INTRODUCTION

Recently Litvinov *et al.* [1] have observed that the K-shell electron capture (EC) decay rates of H-like $^{140}\text{Pr}^{58+}$ and $^{142}\text{Pm}^{60+}$ ions

have an unexpected periodic time modulation of exponential decay curves. The rates of the number N_d^{EC} of daughter ions $^{140}\text{Ce}^{58+}$ and $^{142}\text{Nd}^{60+}$

$$\frac{dN_d^{EC}(t)}{dt} = \lambda_{EC}(t) N_m(t), \quad (2)$$

where $N_m(t)$ is the number of the H-like mother ions $^{140}\text{Pr}^{58+}$ or $^{142}\text{Pm}^{60+}$ [1] and $\lambda_{EC}^{(H)}(t)$ is the EC -decay rate, are periodic functions, caused by a periodic time-dependence of the EC -decay rates

$$\lambda_{EC}(t) = \lambda_{EC} (1 + a_d^{EC} \cos(\omega_{EC} t + \phi_{EC})) \quad (3)$$

with periods $T_{EC} = 2\pi/\omega_{EC} = 7.06(8)\text{s}$ and $T_{EC} = 2\pi/\omega_{EC} = 7.11(22)\text{s}$ for the EC -decays of $^{140}\text{Pr}^{58+}$ or $^{142}\text{Pm}^{60+}$, respectively, amplitudes $a_d^{EC} \simeq 0.20$ and phases ϕ_{EC} . Below such a periodic time-dependence we call the “GSI oscillations”.

Recently [2]–[4] the decay rate of the EC -decay $^{122}\text{I}^{52+} \rightarrow ^{122}\text{Te}^{52+} + \nu_e$ with a period of the time-modulation $T_{EC} = 6.11(3)\text{s}$ has been observed. As has been pointed out in [2]–[4], the periods of the time-modulation of the H-like heavy ions obey the A -scaling: $T_{EC} = A/20\text{s}$, where A is a mass number of the mother H-like heavy ions.

In the articles [5] (see also [6, 7]) we have proposed an explanation of the periodic time-dependence of the EC -decay rates as an interference of two neutrino mass-eigenstates ν_1 and ν_2

with masses m_1 and m_2 , respectively. The period T_{EC} of the time-dependence has been related to the difference $\Delta m_{21}^2 = m_2^2 - m_1^2$ of the squared neutrino masses m_2 and m_1 as follows

$$\omega_{EC} = \frac{2\pi}{T_{EC}} = \frac{\Delta m_{21}^2}{2\gamma M_m}, \quad (4)$$

where γM_m is the energy of the H-like mother ion with mass M_m in the ESR and $\gamma = 1.43$ is a Lorentz factor [1]. In a subsequent analysis we also showed that the β^+ -branches of the decaying H-like heavy ions do not show time modulation, because of the broad continuous energy spectrum of the neutrinos [5]. This agrees well with the experimental data [2]–[4].

According to the atomic quantum beat experiments and theory [8, 9], the interpretation of the “GSI oscillations”, proposed in [5]–[7], bears similarity with quantum beats of atomic transitions, when an excited atomic eigenstate decays into a coherent state of two (or several) lower lying atomic eigenstates. In the case of the EC -decay one deals with a transition from the initial state $|m\rangle$ to the final state $|d\nu_e\rangle$, where the electron neutrino is a coherent superposition of two neutrino mass-eigenstates with the energy difference equal to $\omega_{21} = \Delta m_{21}^2/2M_m$ related to ω_{EC} as $\omega_{EC} = \omega_{21}/\gamma$.

As has been pointed out in [10], a motion of the H-like mother ion in the magnetic field of the ESR can be the origin of the “GSI oscillations” [1]. In this letter we investigate the influence of the magnetic field of the ESR at GSI making a consistent calculation of the EC -decay rate by using the weak interaction Hamilton operator and taking into account a motion of the mother H-like ion in the magnetic field. For simplicity we approximate the

magnetic field of the ESR at GSI by a constant magnetic field $\vec{B} = B_0 \vec{e}_z$ directed perpendicular the plane of the ESR. However, we neglect also a possible quantisation of the energy of the mother H-like in the constant magnetic field [11] and take into account only the interaction of a spin of the mother H-like ion with a constant magnetic field. We show that such a spin-rotation coupling of the H-like heavy ions cannot be responsible for the periodic time-dependence of the EC-decay rates, measured at GSI [1]–[4].

The Hamilton of the interaction of the H-like ions with a magnetic field $\vec{B} = B_0 \vec{e}_z$ we define as [12]

$$H_{\vec{B}} = 2 \left(a_e + \frac{1}{\gamma} \right) \mu_B \vec{s} \cdot \vec{B} - \left(g_I - \frac{2Zm_p}{M_I} \left(1 - \frac{1}{\gamma} \right) \right) \mu_N \vec{I} \cdot \vec{B}, \quad (5)$$

where $\vec{s} = \frac{1}{2} \vec{\sigma}$ and \vec{I} are operators of spins of the electron and the mother nucleus with eigenvalues $s = \frac{1}{2}$ and $I = 1$; $a_e = (g_e - 2)/2$ is the anomalous magnetic moment of the bound electron with g_e equal to [13]–[15]

$$\frac{1}{2} g_e = 1 + \frac{2}{3} (\sqrt{1 - (\alpha Z)^2} - 1) + \frac{\alpha}{\pi} \left(\frac{1}{2} + \frac{1}{12} (\alpha Z)^2 + \frac{7}{2} (\alpha Z)^4 + \dots \right), \quad (6)$$

where $Z = 59$ for the H-like heavy ion $^{140}\text{Pr}^{58+}$; $g_I = \mu_I/I$ and M_I are the anomalous magnetic moment of the nucleus with spin I and the mass. For the nucleus $^{140}\text{Pr}^{59+}$ they are equal to $g_I = 2.5$ [16] and $M_I = 130324.46$ MeV. Then, $\mu_B = e/2m_e = 5.788 \times 10^{-5}$ eV T $^{-1}$ and $\mu_N = e/2m_p = 3.152 \times 10^{-8}$ eV T $^{-1}$ are the Bohr and nuclear magnetons [17]; $\gamma = 1.43$ is a Lorentz factor of a motion of a H-like heavy ion in the ESR at GSI [1], the value of the magnetic field is $B_0 = 1.19703$ T [1]. The terms, proportional to $(1 - 1/\gamma)$, come from the Thomas precession [12]. The electric charges of the interacting particles are defined in terms of the electric charge of the proton e .

For the calculation of the amplitude of the EC-decays $m \rightarrow d + \nu_e$ of the mother H-like heavy ion m we have to use a standard weak interaction Hamilton operator

$$H_W(t) = \frac{G_F}{\sqrt{2}} V_{ud} \int d^3x [\bar{\psi}_n(x) \gamma^\mu (1 - g_A \gamma^5) \psi_p(x)] \times [\bar{\psi}_{\nu_e}(x) \gamma_\mu (1 - \gamma^5) \psi_e(x)] \quad (7)$$

with standard notations [18]. As has been shown in [6], the non-trivial contribution to the EC-decay rate of the H-like heavy ion in the ground

$(1s)_{F=\frac{1}{2}, M_F=\pm\frac{1}{2}}$ comes from the state with the wave function $|t, (1s)_{\frac{1}{2}, -\frac{1}{2}}\rangle$. This means that the evolution of the H-like heavy ion into the state $d + \nu_e$ is defined by the wave function $|t, (1s)_{\frac{1}{2}, -\frac{1}{2}}\rangle$ only.

In the laboratory frame the evolution of the mother H-like ion m in time is described by the wave function $|t, (1s)_{\frac{1}{2}, -\frac{1}{2}}\rangle$

$$|t, (1s)_{\frac{1}{2}, -\frac{1}{2}}\rangle = -e^{-iE_m^{(-+)t}} \sqrt{\frac{2}{3}} |1, -1\rangle \left| \frac{1}{2}, +\frac{1}{2} \right\rangle + e^{-iE_m^{(0-)t}} \sqrt{\frac{1}{3}} |1, 0\rangle \left| \frac{1}{2}, -\frac{1}{2} \right\rangle, \quad (8)$$

where $|I, I_z\rangle$ and $|s, s_z\rangle$ are spinorial wave functions of the nucleus and the electron of the H-like heavy ion with eigenvalues $I = 1, I_z = 0, \pm 1$ and $s = \frac{1}{2}, s_z = \pm \frac{1}{2}$, respectively. The energies $E_m^{(-+)}$ and $E_m^{(0-)}$ are defined by

$$E_m^{(-+)} = E_m + \left(a_e + \frac{1}{\gamma} \right) \mu_B B_0 \cos \theta_e + \left(g_I - \frac{2Zm_p}{M_I} \left(1 - \frac{1}{\gamma} \right) \right) \mu_N B_0 \cos \theta_I, \\ E_m^{(0-)} = E_m - \left(a_e + \frac{1}{\gamma} \right) \mu_B B_0 \cos \theta_e, \quad (9)$$

where $E_m = \gamma M_m - i \frac{1}{2} \lambda_m$ and λ_m is the weak decay rate of the H-like mother ion in the laboratory frame [17], θ_e and θ_I are the angles between the z-axis and the axes of quantisation of the spins of the electron and the nucleus, respectively. Since in the GSI experiments the H-like heavy ions are in the $(1s)_{F=\frac{1}{2}}$, the spins of the electron and the nucleus should be anti-parallel. This implies that $\cos \theta_e = -\cos \theta_I$.

Using the wave function $|t, (1s)_{\frac{1}{2}, -\frac{1}{2}}\rangle$ the probability of finding a mother H-like heavy ion at time t is

$$P_m(t; \theta_e) = e^{-\lambda_m t} |\langle (1s)_{\frac{1}{2}, -\frac{1}{2}}, t | 0, (1s)_{\frac{1}{2}, -\frac{1}{2}} \rangle|^2 = e^{-\lambda_m t} \frac{5}{9} \left(1 + \frac{4}{5} \cos(\omega_B \cos \theta_e t) \right), \quad (10)$$

where the frequency ω_B is equal to

$$\omega_B = \left[\left(2a_e + \frac{2}{\gamma} \right) - \left(g_I - \frac{2Zm_p}{M_I} \left(1 - \frac{1}{\gamma} \right) \right) \frac{m_e}{m_p} \right] \times \mu_B B_0 = 1.34 \times 10^{11} \text{ s}^{-1}. \quad (11)$$

Due to the factor m_e/m_p the dominant contribution comes from the electron anomalous magnetic moment. A period of the time modulation is equal to

$$T_B = \frac{2\pi}{\omega_B} = 4.70 \times 10^{-11} \text{ s}. \quad (12)$$

FIG. 1: Kinematical relations between the angles of the axis of quantisation of spins and momenta of interacting particles.

Practically, the period T_B is proportional to the electron mass. This disagrees with the experimental A -scaling of the period of the time modulation of the H-like ions, measured at GSI [2]–[4]. Such a period of the time modulation cannot be measured at the present level of the experimental time resolution at GSI [5]. The probability $P_m(t; \theta_e)$ should be averaged over the neutrino angular distribution, calculated in the laboratory frame and given by

$$\frac{dW_{\nu_e}}{d\Omega_m} = \frac{1}{8\pi\gamma^4} \frac{1}{(1 - v_m \cos \theta_m)^3}, \quad (13)$$

where $d\Omega_m = \sin \theta_m d\theta_m d\varphi_m$ is an element of the solid angle in the momentum space with axial axis directed along the momentum \vec{k}_m of the mother ion. This gives

$$\begin{aligned} P_m(t) &= \int P_m(t; \theta_e) \frac{dW_{\nu_e}}{d\Omega_m} d\Omega_m = \\ &= e^{-\lambda_m t} \frac{5}{9} \frac{1}{8\pi\gamma^4} \int_0^{2\pi} \int_0^\pi \frac{\sin \theta_m d\theta_m d\varphi_m}{(1 - v_m \cos \theta_m)^3} \\ &\times \left(1 + \frac{4}{5} \cos(\omega_B \sin \theta_m \cos \varphi_m t) \right). \end{aligned} \quad (14)$$

As it is shown in Fig. 1, the angle θ_e is related to angles θ_m and φ_m as follows $\cos \theta_e = \sin \theta_m \cos \varphi_m$. Integrating over the azimuthal angle φ_m and using the integral representation Bessel functions and the properties of infinite series of Bessel functions [19] we get

$$\begin{aligned} P_m(t) &= e^{-\lambda_m t} \left(1 - \frac{4}{9} \frac{1}{\gamma^4} \int_0^\pi \frac{d\theta_m \sin \theta_m}{(1 - v_m \cos \theta_m)^3} \right. \\ &\times \left. \sum_{n=1}^{\infty} J_{2n}(\omega_B \sin \theta_m t) \right), \end{aligned} \quad (15)$$

This shows that the interaction of the mother H-like heavy ion with the uniform magnetic field of the storage ring cannot provide a time-modulation of the EC -decay rate, observed at the experiment [1].

We are grateful to T. Ericson for fruitful discussions.

-
- * Electronic address: ivanov@kph.tuwien.ac.at
- [1] Yu. A. Litvinov *et al.* (the GSI Collaboration), Phys. Lett. B **664**, (2008) 162.
 - [2] P. Kienle, A talk at International Conference on Particles And Nuclei (PANIC08), 9 - 14 of November, 2008 in Eilat, Israel (to appear in Nucl. Phys. A).
 - [3] P. Kienle, *Two-Body Weak Decay Studies in an Ion Storage Ring*, A talk at DISCRETE'08: Symposium on properties in physics of discrete symmetries, 11–16 December 2008, IFIC, Valencia, Spain URL: <http://ific.uv.es/discrete08/>, (to be published in J. Phys.: Conf. Ser. in third quarter of 2009).
 - [4] N. Winckler *et al.*, GSI Annual report 2008.
 - [5] A. N. Ivanov *et al.*, Phys. Rev. Lett. **101**, (2008) 182501.
 - [6] A. N. Ivanov *et al.*, arXiv: 0801.2121 [nucl-th].
 - [7] A. N. Ivanov *et al.*, arXiv: 0804.1311 [nucl-th].
 - [8] H. J. Andreä, Physics Scripta **9**, (1974) 257; Phys. Rev. A **2**, (1970) 2200.
 - [9] W. W. Chow *et al.*, Phys. Rev. A **11**, (1975) 1380.
 - [10] G. Lambiase, G. Papini, and G. Scarpetta, arXiv: 0811.2302 [nucl-th].
 - [11] L. D. Landau and E. M. Lifschitz, in *Lehrbuch der Theoretischen Physik*, Band III *Quantenmechanik*, Verlag Harri Deutsch, pp.442, 2007.
 - [12] J. D. Jackson, Rev. Mod. Phys. **48**, 417 (1976); J. D. Jackson, in *Klassische Elektrodynamik*, Walter de Gruyter, Berlin, 1983.
 - [13] H. A. Bethe and E. E. Salpeter, in *Quantum mechanics of one- and two-electron atoms*, Springer-Verlag, Berlin, p. 213, 1957.
 - [14] S. A. Blundell, K. T. Cheng, and J. Sapirstein, Phys. Rev. A **55**, (1997) 1857.
 - [15] D. L. Moskovkin *et al.*, Phys. Rev. A **70**, (2004) 032105.
 - [16] Yu. A. Litvinov *et al.* (the GSI Collaboration), Phys. Rev. Lett. **99**, (2008) 262501.
 - [17] C. Amsler *et al.*, Phys. Lett. B **667**, (2008) 1.
 - [18] A. N. Ivanov *et al.*, Phys. Rev. C **78**, (2008) 025503; arXiv: 0711.3184 [nucl-th].
 - [19] *Handbook of mathematical functions with formulas, graphs, and mathematical tables*, Ed. by M. Abramowitz and I. A. Stegun, National Bureau of Standards, Applied Mathematics Series • 55, 1972.