Минимизация булевой функции методом Квайна-Мак-Класки

Нахождение простых импликант (максимальных кубов).

Получение кубов различной размерности кубического комплекса K(f) и выделение из них простых импликант:

$K^0(f)$ $N(f)$	K ¹ (f)	K ² (f)	$K^3(f)$	Z(f)
1. 00100	1. 0010x	1. 001xx	1. X01xx	1. 01x11
2. 00101	2. 001x0	2. x010x		2. 1x010
3. 00110	3. X0100	3. X01x0		3. 110x0
4. 00111	4. 001x1	4. X01x1		4. 0x11x
5. 01011	5. X010	5. 0x11x		5. 10xx1
6. 01110	6. 0011x	6. X011x		6. 1xx01
7. 01111	7. 0x110	7. 10xx1		7. 10x1x
8. 10001	8. X0110	8. 1xx01		8. 1x10x
9. 10010	9. 0x111	9. 10x1x		9. 11x0x
10.10011	10.X0111	10.101xx		10.X01xx
11.10100	11.01x11	11.1x10x		
12.10101	12.0111x	12.11x0x		
13.10110	13.100x1			
14.10111	14.10x01			
15.11000	15.1x001			
16.11001	16.1001x			
17.11010	17.10x10			
18.11100	18.1x010			
19.11101	19.10x11			
	20.1010x			
	21.101x0			
	22.1x100			
	23.101x1			
	24.1x101			
	25.1011x			
	26.1100x			
	27.110x0			
	28.11x00			
	29.11x01			
	30.1110x			

Составление импликантной таблицы:

Простые								\ 1	куб	Kri					
1 -					_	_		/ — <u>]</u>	K y u	ь					
импликанты	0	0	0	1	1	1	1	l	1	1	1	1	1	1	1
(максимальн	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1
ые кубы)	0	1	1	0	0	0	1	1	1	1	0	0	0	1	1
	1	1	1	0	1	1	0	0	1	1	0	0	1	0	0
	1	0	1	1	0	1	0	1	0	1	0	1	0	0	1
	1	2	3	4	5	6	7	8	9	1	1	1	13	1	1
										0	1	2		4	5
1) 01x11	(*)		*												
2) 1x010					*								*		
3) 110x0											*		*		
4) 0x11x		(*)	*												
5) 10xx1				*		*		*		*					
6) 1xx01				*				*				*			*
7) 10x1x					*	*			*	*					
8) 1x10x							*	*						*	*
9) 11x0x											*	*		*	*
10) X0							*	*	*	*					
1xx															

Упрощенная импликантная таблица:

Простые импликанты (максимальные кубы)		1 0 0 0 1	1 0 0 1 0	1 0 0 1 1	1 0 1 0 0	1 0 1 0 1	1 0 1 1 0	1 0 1 1	1 1 0 0 0	1 1 0 0 1	1 1 0 1 0	1 1 1 0 0	1 1 1 0 1
		a	b	c	d	e	f	g	h	i	j	k	1
1x010	A		*								*		
110x0	В								*		*		
10xx1	С	*		*		*		*					
1xx01	D	*				*				*			*
10x1x	Е		*	*			*	*					
1x10x	F				*	*						*	*
11x0x	G								*	*		*	*
X01xx	Н				*	*	*	*					

Множество существенных импликант (максимальных кубов) образует ядро покрытия как его обязательную часть:

$$T = \left\{ \begin{matrix} 01X11 \\ 0X11X \end{matrix} \right\}$$

Определение минимального покрытия методом Петрика:

Выпишем булево выражение Y, определяющее условие покрытия всех 0-кубов, не покрываемых существенными импликантами.

$$Y = (C \lor D)(A \lor E)(C \lor E)(F \lor H)(C \lor D \lor F \lor H)(E \lor H)(C \lor E \lor H)$$

$$(B \lor G)(D \lor G)(A \lor B)(F \lor G)(D \lor F \lor G)$$

$Y = ACGH \lor BDEF \lor BDEGH \lor BCEFG \lor BCEGH \lor ADEFG \lor ACEFG \lor ADEGH \lor ABCDFH$

Возможные варианты покрытия:

$$C_1 \begin{Bmatrix} T \\ A \\ C \\ G \\ H \end{Bmatrix};$$
 $C_2 \begin{Bmatrix} T \\ B \\ D \\ E \\ F \\ G \end{Bmatrix};$ $C_3 \begin{Bmatrix} T \\ B \\ D \\ E \\ G \\ H \end{Bmatrix};$... (9 вариантов) $S_1^a = 12$ $S_2^a = 13$ $S_3^a = 15$ $S_1^b = 16$ $S_2^a = 17$ $S_3^a = 20$

Одно из минимальных покрытий функции — C_1 :

$$C_{1} \begin{cases} 01X11\\ 0X11X\\ 1X010\\ 10XX1\\ 11X0X\\ X01XX \end{cases}; \qquad S_{1}^{a} = 12\\ S_{1}^{b} = 16$$

(От руки 1)

Число букв в МДНФ совпадает с ценой покрытия S^a , а суммарное число букв и число термов совпадает с ценой покрытия S^b .