SEQUENCE LISTING

<110>	Bro	ckhaus, et a	al.											
<120>	Human TNF Receptor													
<130>	01017/40451C													
<140><141>	US 08/444,791 1995-05-19													
<150> <151>	US 08/095,640 1993-07-21													
<150> <151>	US 07/580,013 1990-09-10													
<150> <151>	EP 90116707.2 1990-08-31													
<150> <151>	CH 1347/90 1990-04-20													
<150> <151>	CH 746/90 1990-03-08													
<150> <151>	CH 3319/89 1989-09-12													
<160>	29													
<170>	Pate	entIn versio	on 3.3											
<210><211><211><212><213>	1 2111 DNA Homo	l o sapiens												
<400>	1						60							
		gggttcaaga					120							
	_	tcaccccaag					120							
		cgctgccaca					180							
		gcctctccac					240							
		tatacccctc					300							
		gtgtgtgtcc					360							
		gccacaaagg					420							
		gggagtgtga					480							
tgcctca	agct	gctccaaatg	ccgaaaggaa	atgggtcagg	tggagatctc	ttcttgcaca	540							
gtggaco	cggg	acaccgtgtg	tggctgcagg	aagaaccagt	accggcatta	ttggagtgaa	600							
aaccttt	ttcc	agtgcttcaa	ttgcagcctc	tgcctcaatg	ggaccgtgca	cctctcctgc	660							
caggaga	aaac	agaacaccgt	atacacctac	catgcaggtt	tctttctaag	agaaaacgag	720							

```
tgtgtctcct gtagtaactg taagaaaagc ctggagtgca cgaagttgtg cctaccccag
                                                                   780
attgagaatg ttaagggcac tgaggactca ggcaccacag tgctgttgcc cctggtcatt
                                                                   840
ttctttggtc tttgcctttt atccctcctc ttcattggtt taatgtatcg ctaccaacgg
                                                                   900
tggaagtcca agctctactc cattgtttgt gggaaatcga cacctgaaaa agaggggag
                                                                   960
cttgaaggaa ctactactaa geeeetggee eeaaaeeeaa getteagtee eacteeagge
                                                                  1020
ttcacccca ccttgggctt cagtcccgtg cccagttcca ccttcacctc cagctccacc
                                                                  1080
tatacccccg gtgactgtcc caactttgcg gctccccgca gagaggtggc accaccctat
                                                                  1140
cagggggetg accepatect tgcgacagee ctcgcctccg accepatece caaccecett
                                                                  1200
cagaagtggg aggacagcgc ccacaagcca cagagcctag acactgatga ccccgcgacg
                                                                  1260
ctgtacgccg tggtggagaa cgtgcccccg ttgcgctgga aggaattcgt gcggcgccta
                                                                  1320
gggctgagcg accacgagat cgatcggctg gagctgcaga acgggcgctg cctgcgcgag
                                                                  1380
gcgcaataca gcatgctggc gacctggagg cggcgcacgc cgcggcgcga ggccacgctg
                                                                  1440
gagetgetgg gaegegtget eegegaeatg gaeetgetgg getgeetgga ggaeategag
                                                                  1500
                                                                  1560
gaggegettt geggeeeege egeetteeeg eeegegeeea gtetteteag atgaggetge
gcccctgcgg gcagctctaa ggaccgtcct gcgagatcgc cttccaaccc cacttttttc
                                                                  1620
tggaaaggag gggtcctgca ggggcaagca ggagctagca gccgcctact tggtgctaac
                                                                  1680
ccctcgatgt acatagcttt tctcagctgc ctgcgcgccg ccgacagtca gcgctgtgcg
                                                                  1740
                                                                  1800
cgcggagaga ggtgcgccgt gggctcaaga gcctgagtgg gtggtttgcg aggatgaggg
acgetatgcc teatgcccgt tttgggtgtc ctcaccagca aggetgctcg ggggcccctg
                                                                  1860
1920
qttttqtttt taaatcaatc atqttacact aataqaaact tqqcactcct qtqccctctq
                                                                  1980
cctggacaag cacatagcaa gctgaactgt cctaaggcag gggcgagcac ggaacaatgg
                                                                  2040
qqccttcaqc tqqaqctqtq qacttttqta catacactaa aattctqaaq ttaaaaaaaa
                                                                  2100
                                                                  2111
aacccgaatt c
```

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu 1 5 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30

<210> 2

<211> 455

<212> PRT

<213> Homo sapiens

<400> 2

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val 105 Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg 115 120 Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe 130 135 Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu 145 Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu 165 170 Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Ser Leu Glu Cys Thr Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser 195 200 205 Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu 215 Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys 230 235 Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu Gly Glu Leu Glu Gly Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser 260 265 270 Phe Ser Pro Thr Pro Gly Phe Thr Pro Thr Leu Gly Phe Ser Pro Val 275 280 285

Pro Asn Phe Ala Ala Pro Arg Glu Val Ala Pro Pro Tyr Gln Gly Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn 330 Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Val Glu Asn Val Pro Pro 360 Leu Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu Ser Asp His Glu 370 Ile Asp Arg Leu Glu Leu Gln Asn Gly Arg Cys Leu Arg Glu Ala Gln 385 390 395 400 Tyr Ser Met Leu Ala Thr Trp Arg Arg Thr Pro Arg Arg Glu Ala 405 410 Thr Leu Glu Leu Gly Arg Val Leu Arg Asp Met Asp Leu Leu Gly 430 420 425 Cys Leu Glu Asp Ile Glu Glu Ala Leu Cys Gly Pro Ala Ala Leu Pro Pro Ala Pro Ser Leu Leu Arq 450 455 <210> 3 <211> 2339 <212> DNA <213> Homo sapiens <400> 3 teggacaceg tgtgtgacte etgtgaggae ageacataca eccagetetg gaactgggtt 60 cccgagtgct tgagctgtgg ctcccgctgt agctctgacc aggtggaaac tcaagcctgc 120 actogggaac agaaccgcat ctgcacctgc aggcccggct ggtactgcgc gctgagcaag 180 caqqaqqqqt qeeqqetqtq eqeqeeqetq eeqaaqtqee qeeeqqqett eqqeqtqqee 240 agaccaggaa ctgaaacatc agacgtggtg tgcaagccct gtgccccggg gacgttctcc 300 aacacgactt catccacgga tatttgcagg ccccaccaga tctgtaacgt ggtggccatc 360 420 cctgggaatg caagcaggga tgcagtctgc acgtccacgt cccccacccg gagtatggcc

Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys

ccaggggcag	tacacttacc	ccagccagtg	tccacacgat	cccaacacac	gcagccaagt	480
ccagaaccca	gcactgctcc	aagcacctcc	ttcctgctcc	caatgggccc	cagcccccca	540
gctgaaggga	gcactggcga	cttcgctctt	ccagttggac	tgattgtggg	tgtgacagcc	600
ttgggtctac	taataatagg	agtggtgaac	tgtgtcatca	tgacccaggt	gaaaaagaag	660
cccttgtgcc	tgcagagaga	agccaaggtg	cctcacttgc	ctgccgataa	ggcccggggt	720
acacagggcc	ccgagcagca	gcacctgctg	atcacagcgc	cgagctccag	cagcagctcc	780
ctggagagct	cggccagtgc	gttggacaga	agggcgccca	ctcggaacca	gccacaggca	840
ccaggcgtgg	aggccagtgg	ggccggggag	gcccgggcca	gcaccgggag	ctcagcagat	900
tetteeeetg	gtggccatgg	gacccaggtc	aatgtcacct	gcatcgtgaa	cgtctgtagc	960
agctctgacc	acagctcaca	gtgctcctcc	caagccagct	ccacaatggg	agacacagat	1020
tccagcccct	eggagteece	gaaggacgag	caggtcccct	tctccaagga	ggaatgtgcc	1080
tttcggtcac	agctggagac	gccagagacc	ctgctgggga	gcaccgaaga	gaagcccctg	1140
ccccttggag	tgcctgatgc	tgggatgaag	cccagttaac	caggccggtg	tgggctgtgt	1200
cgtagccaag	gtggctgagc	cctggcagga	tgaccctgcg	aaggggccct	ggtccttcca	1260
ggcccccacc	actaggactc	tgaggctctt	tctgggccaa	gttcctctag	tgccctccac	1320
agccgcagcc	tccctctgac	ctgcaggcca	agagcagagg	cagcgagttg	tggaaagcct	1380
ctgctgccat	ggcgtgtccc	tctcggaagg	ctggctgggc	atggacgttc	ggggcatgct	1440
ggggcaagtc	cctgagtctc	tgtgacctgc	cccgcccagc	tgcacctgcc	agcctggctt	1500
ctggagccct	tgggttttt	gtttgtttgt	ttgtttgttt	gtttgtttct	ccccctgggc	1560
tetgeeeage	tctggcttcc	agaaaacccc	agcatccttt	tctgcagagg	ggctttctgg	1620
agaggaggga	tgctgcctga	gtcacccatg	aagacaggac	agtgcttcag	cctgaggctg	1680
agactgcggg	atggtcctgg	ggctctgtgc	agggaggagg	tggcagccct	gtagggaacg	1740
gggtccttca	agttagctca	ggaggcttgg	aaagcatcac	ctcaggccag	gtgcagtggc	1800
tcacgcctat	gatcccagca	ctttgggagg	ctgaggcggg	tggatcacct	gaggttagga	1860
gttcgagacc	agcctggcca	acatggtaaa	accccatctc	tactaaaaat	acagaaatta	1920
gccgggcgtg	gtggcgggca	cctatagtcc	cagctactca	gaagcctgag	gctgggaaat	1980
cgtttgaacc	cgggaagcgg	aggttgcagg	gagccgagat	cacgccactg	cactccagcc	2040
tgggcgacag	agcgagagtc	tgtctcaaaa	gaaaaaaaaa	aagcaccgcc	tccaaatgct	2100
aacttgtcct	tttgtaccat	ggtgtgaaag	tcagatgccc	agagggccca	ggcaggccac	2160
catattcagt	gctgtggcct	gggcaagata	acgcacttct	aactagaaat	ctgccaattt	2220
tttaaaaaag	taagtaccac	tcaggccaac	aagccaacga	caaagccaaa	ctctgccagc	2280
cacatccaac	ccccacctg	ccatttgcac	cctccgcctt	cactccggtg	tgcctgcag	2339

- <210> 4
- <211> 392 <212> PRT
- <213> Homo sapiens
- <400> 4
- Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu
- Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser
- Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys
- Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys 55 60
- Arg Leu Cys Ala Pro Leu Pro Lys Cys Arg Pro Gly Phe Gly Val Ala 70
- Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro
- Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His 100 105
- Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Arg Asp Ala
- Val Cys Thr Ser Thr Ser Pro Thr Arq Ser Met Ala Pro Gly Ala Val 130 135 140
- His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Ser 150
- Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly 165 170
- Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val
- Gly Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Ile Gly Val 195 200 205
- Val Asn Cys Val Ile Met Thr Gln Val Lys Lys Lys Pro Leu Cys Leu 210 215

Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser 250 Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Ala 265 Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Ala Asp Ser Ser Pro Gly 295 Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser 305 310 315 Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met 325 330 335 Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val 340 345 Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu Thr Pro 355 360 365 Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 385 390 <210> 5 <211> 28 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide <220> <221> misc_feature <222> (25)..(25) <223> Xaa = unknown amino acid <400> 5 Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro 5

10

```
Gln Gly Lys Tyr Ile His Pro Gln Xaa Asn Ser Ile
<210> 6
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 6
Ser Thr Pro Glu Lys Glu Gly Glu Leu Glu Gly Thr Thr Lys
<210> 7
<211> 18
<212> PRT
<213> Artificial sequence
<223> Synthetic peptide
<400> 7
Ser Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys
                                    10
Pro Leu
<210> 8
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 8
Val Phe Cys Thr
<210> 9
<211> 16
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 9
Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala
```

```
<210> 10
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (8)..(8)
<223> Xaa = unknown amino acid
<400> 10
Leu Pro Ala Gln Val Ala Phe Xaa Pro Tyr Ala Pro Glu Pro Gly Ser
                           10
Thr Cys
<210> 11
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa = unknown amino acid
<400> 11
Ile Xaa Pro Gly Phe Gly Val Ala Tyr Pro Ala Leu Glu
                                   10
<210> 12
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 12
Leu Cys Ala Pro
<210> 13
<211> 7
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Synthetic peptide
<400> 13
Val Pro His Leu Pro Ala Asp
<210> 14
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (9)..(10)
<223> Xaa = unknown amino acid
<220>
<221> misc_feature
<222> (13)..(13)
<223> Xaa = unknown amino acid
<400> 14
Gly Ser Gln Gly Pro Glu Gln Gln Xaa Xaa Leu Ile Xaa Ala Pro
<210> 15
<211> 9
<212> PRT
<213> Artificial sequence
<223> Synthetic peptide
<400> 15
Leu Val Pro His Leu Gly Asp Arg Glu
<210> 16
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic primer
<400> 16
                                                                      27
agggagaaga gagatagtgt gtgtccc
<210> 17
<211> 41
<212> DNA
```

```
<213> Artificial sequence
<220>
<223> Synthetic primer
aagettggcc aggatccagc tgactgactg atcgcgagat c
                                                                        41
<210> 18
<211> 41
<212> DNA
<213> Artificial sequence
<220>
<223> Antisense primer
<400> 18
gatetegega teagteagte agetggatee tggeeaaget t
                                                                        41
<210> 19
<211> 38
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<400> 19
                                                                        38
cacagggatc catagctgtc tggcatgggc ctctccac
<210> 20
<211> 44
<212> DNA
<213> Artificial sequence
<220>
<223> Antisense primer
<400> 20
cccggtacca gatctctatt atgtggtgcc tgagtcctca gtgc
                                                                        44
<210> 21
<211> 19
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<400> 21
                                                                        19
gatccagaat tcataatag
<210> 22
<211> 19
<212> DNA
<213> Artificial sequence
<220>
```

<223>	Antisense primer	
	22 atta tgaattetg	19
<211> <212>	23 31 DNA Artificial sequence	
<220> <223>	Synthetic primer	
<400> gcacca	23 cata atagagatet ggtaceggga a	31
<211> <212>	24 25 DNA Artificial sequence	
<220> <223>	Antisense primer	
	24 acca gatctctatt atgtg	25
<210><211><211><212><213>	29	
<220> <223>	Synthetic primer	
<400> tacgage	25 ctcg gccatagctg tctggcatg	29
<211> <212>	26 29 DNA Artificial sequence	
<220> <223>	Synthetic primer	
<400> atagage	26 ctct gtggtgcctg agtcctcag	29
<210><211><211><212><213>	27 461 PRT Homo sapiens	
<400>	27	
Met Ala	a Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 5 10	

Trp	Ala	Ala	Ala 20	His	Ala	Leu	Pro	Ala 25	Gln	Val	Ala	Phe	Thr 30	Pro	Tyr
Ala	Pro	Glu 35	Pro	Gly	Ser	Thr	Cys 40	Arg	Leu	Arg	Glu	Tyr 45	Tyr	Asp	Gln
Thr	Ala 50	Gln	Met	Cys	Cys	Ser 55	Lys	Cys	Ser	Pro	Gly 60	Gln	His	Ala	Lys
Val 65	Phe	Cys	Thr	Lys	Thr 70	Ser	Asp	Thr	Val	Cys 75	Asp	Ser	Cys	Glu	Asp 80
Ser	Thr	Tyr	Thr	Gln 85	Leu	Trp	Asn	Trp	Val 90	Pro	Glu	Cys	Leu	Ser 95	Cys
Gly	Ser	Arg	Cys 100	Ser	Ser	Asp	Gln	Val 105	Glu	Thr	Gln	Ala	Cys 110	Thr	Arg
Glu	Gln	Asn 115	Arg	Ile	Cys	Thr	Cys 120	Arg	Pro	Gly	Trp	Tyr 125	Cys	Ala	Leu
Ser	Lys 130	Gln	Glu	Gly	Cys	Arg 135	Leu	Cys	Ala	Pro	Leu 140	Arg	Lys	Cys	Arg
Pro 145	Gly	Phe	Gly	Val	Ala 150	Arg	Pro	Gly	Thr	Glu 155	Thr	Ser	Asp	Val	Val 160
Cys	Lys	Pro	Cys	Ala 165	Pro	Gly	Thr	Phe	Ser 170	Asn	Thr	Thr	Ser	Ser 175	Thr
Asp	Ile	Cys	Arg 180	Pro	His	Gln	Ile	Cys 185	Asn	Val	Val	Ala	Ile 190	Pro	Gly
Asn	Ala	Ser 195	Met	Asp	Ala	Val	Cys 200	Thr	Ser	Thr	Ser	Pro 205	Thr	Arg	Ser
Met	Ala 210	Pro	Gly	Ala	Val	His 215	Leu	Pro	Gln	Pro	Val 220	Ser	Thr	Arg	Ser
Gln 225	His	Thr	Gln	Pro	Thr 230	Pro	Glu	Pro	Ser	Thr 235	Ala	Pro	Ser	Thr	Ser 240
Phe	Leu	Leu	Pro	Met 245	Gly	Pro	Ser	Pro	Pro 250	Ala	Glu	Gly	Ser	Thr 255	Gly
Asp	Phe	Ala	Leu	Pro	Val	Gly	Leu	Ile	Val	Gly	Val	Thr	Ala	Leu	Gly

Leu I	Leu	Ile 275	Ile	Gly	Val	Val	Asn 280	Cys	Val	Ile	Met	Thr 285	Gln	Val	Lys	
Lys I 2	Lys 290	Pro	Leu	Cys	Leu	Gln 295	Arg	Glu	Ala	Lys	Val 300	Pro	His	Leu	Pro	
Ala <i>P</i> 305	Asp	Lys	Ala	Arg	Gly 310	Thr	Gln	Gly	Pro	Glu 315	Gln	Gln	His	Leu	Leu 320	
Ile T	Thr	Ala	Pro	Ser 325	Ser	Ser	Ser	Ser	Ser 330	Leu	Glu	Ser	Ser	Ala 335	Ser	
Ala I	Leu	Asp	Arg 340	Arg	Ala	Pro	Thr	Arg 345	Asn	Gln	Pro	Gln	Ala 350	Pro	Gly	
Val G	Glu	Ala 355	Ser	Gly	Ala	Gly	Glu 360	Ala	Arg	Ala	Ser	Thr 365	Gly	Ser	Ser	
Asp S	Ser 370	Ser	Pro	Gly	Gly	His 375	Gly	Thr	Gln	Val	Asn 380	Val	Thr	Cys	Ile	
Val <i>P</i> 385	Asn	Val	Cys	Ser	Ser 390	Ser	Asp	His	Ser	Ser 395	Gln	Cys	Ser	Ser	Gln 400	
Ala S	Ser	Ser	Thr	Met 405	Gly	Asp	Thr	Asp	Ser 410	Ser	Pro	Ser	Glu	Ser 415	Pro	
Lys A	Asp	Glu	Gln 420	Val	Pro	Phe	Ser	Lys 425	Glu	Glu	Cys	Ala	Phe 430	Arg	Ser	
Gln I	Leu	Glu 435	Thr	Pro	Glu	Thr	Leu 440	Leu	Gly	Ser	Thr	Glu 445	Glu	Lys	Pro	
Leu F 4	Pro 150	Leu	Gly	Val	Pro	Asp 455	Ala	Gly	Met	Lys	Pro 460	Ser				
<210> <211> <212> <213>	> 2 > D	8 339 NA Iomo	sapi	ens												
<400> tcgga		:8 :cg t	gtgt	gact	c ct	tgtga	aggad	c ago	cacat	aca	ccca	agcto	ctg (gaact	gggtt	60
cccga	agtg	rct t	gago	ctgtg	gg ct	caaq	gctgt	ago	ctctc	gacc	aggt	ggaa	aac t	caaç	gcctgc	120
actc <u>c</u>	ggga	ac a	ıgaac	ccgca	at ct	gcad	cctgo	c ago	gadag	ggct	ggtá	actgo	ege (gctga	agcaag	180

caggaggggt	gccggctgtg	cgcgccgctg	ccgaagtgcc	gcccgggctt	cggcgtggcc	240
agaccaggaa	ctgaaacatc	agacgtggtg	tgcaagccct	gtgccccggg	gacgttctcc	300
aacacgactt	catccacgga	tatttgcagg	ccccaccaga	tctgtaacgt	ggtggccatc	360
cctgggaatg	caagcaggga	tgcagtctgc	acgtccacgt	ccccacccg	gagtatggcc	420
ccaggggcag	tacacttacc	ccagccagtg	tccacacgat	cccaacacac	gcagccaagt	480
ccagaaccca	gcactgctcc	aagcacctcc	ttcctgctcc	caatgggccc	cagcccccca	540
gctgaaggga	gcactggcga	cttcgctctt	ccagttggac	tgattgtggg	tgtgacagcc	600
ttgggtctac	taataatagg	agtggtgaac	tgtgtcatca	tgacccaggt	gaaaaagaag	660
cccttgtgcc	tgcagagaga	agccaaggtg	cctcacttgc	ctgccgataa	ggcccggggt	720
acacagggcc	ccgagcagca	gcacctgctg	atcacagcgc	cgagctccag	cagcagetee	780
ctggagagct	cggccagtgc	gttggacaga	agggcgccca	ctcggaacca	gccacaggca	840
ccaggcgtgg	aggccagtgg	ggccggggag	gcccgggcca	gcaccgggag	ctcagcagat	900
tcttcccctg	gtggccatgg	gacccaggtc	aatgtcacct	gcatcgtgaa	cgtctgtagc	960
agctctgacc	acagctcaca	gtgctcctcc	caagccagct	ccacaatggg	agacacagat	1020
tccagcccct	cggagtcccc	gaaggacgag	caggtcccct	tctccaagga	ggaatgtgcc	1080
tttcggtcac	agctggagac	gccagagacc	ctgctgggga	gcaccgaaga	gaagcccctg	1140
ccccttggag	tgcctgatgc	tgggatgaag	cccagttaac	caggccggtg	tgggctgtgt	1200
cgtagccaag	gtggctgagc	cctggcagga	tgaccctgcg	aaggggccct	ggtccttcca	1260
ggcccccacc	actaggactc	tgaggctctt	tctgggccaa	gttcctctag	tgccctccac	1320
agccgcagcc	tccctctgac	ctgcaggcca	agagcagagg	cagcgagttg	tggaaagcct	1380
ctgctgccat	ggcgtgtccc	tctcggaagg	ctggctgggc	atggacgttc	ggggcatgct	1440
ggggcaagtc	cctgagtctc	tgtgacctgc	cccgcccagc	tgcacctgcc	agcctggctt	1500
ctggagccct	tgggttttt	gtttgtttgt	ttgtttgttt	gtttgtttct	ccccctgggc	1560
tctgcccagc	tctggcttcc	agaaaacccc	agcatccttt	tctgcagagg	ggctttctgg	1620
agaggaggga	tgctgcctga	gtcacccatg	aagacaggac	agtgcttcag	cctgaggctg	1680
agactgcggg	atggtcctgg	ggctctgtgc	agggaggagg	tggcagccct	gtagggaacg	1740
gggtccttca	agttagctca	ggaggcttgg	aaagcatcac	ctcaggccag	gtgcagtggc	1800
tcacgcctat	gatcccagca	ctttgggagg	ctgaggcggg	tggatcacct	gaggttagga	1860
gttcgagacc	agcctggcca	acatggtaaa	accccatctc	tactaaaaat	acagaaatta	1920
geegggegtg	gtggcgggca	cctatagtcc	cagctactca	gaagcctgag	gctgggaaat	1980
cgtttgaacc	cgggaagcgg	aggttgcagg	gagccgagat	cacgccactg	cactccagcc	2040
tgggcgacag	agcgagagtc	tgtctcaaaa	gaaaaaaaaa	aagcaccgcc	tccaaatgct	2100

aacttgteet tttgtaceat ggtgtgaaag teagatgeee agagggeeea ggeaggeeae	2160
catattcagt gctgtggcct gggcaagata acgcacttct aactagaaat ctgccaattt	2220
tttaaaaaag taagtaccac tcaggccaac aagccaacga caaagccaaa ctctgccagc	2280
cacatccaac eccecacety ceatttycae ecteegeett caeteeggty tyeetgeag	2339
<210> 29 <211> 392 <212> PRT <213> Homo sapiens	
<400> 29	
Ser Asp Ser Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu 1 10 15	
Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser 20 25 30	
Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys 35 40 45	
Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys 50 60	
Arg Leu Cys Ala Pro Leu Pro Lys Cys Arg Pro Gly Phe Gly Val Ala 65 70 75 80	
Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro 85 90 95	
Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His 100 105 110	
Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Arg Asp Ala 115 120 125	
Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val 130 135 140	
His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Ser 145 150 155 160	

Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val 180 185 185 185

Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly 165 170 175

Gly	Leu	Ile 195	Val	Gly	Val	Thr	Ala 200	Leu	Gly	Leu	Leu	Ile 205	Ile	Gly	Val
Val	Asn 210	Cys	Val	Ile	Met	Thr 215	Gln	Val	Lys	Lys	Lys 220	Pro	Leu	Cys	Leu
Gln 225	Arg	Glu	Ala	Lys	Val 230	Pro	His	Leu	Pro	Ala 235	Asp	Lys	Ala	Arg	Gly 240
Thr	Gln	Gly	Pro	Glu 245	Gln	Gln	His	Leu	Leu 250	Ile	Thr	Ala	Pro	Ser 255	Ser
Ser	Ser	Ser	Ser 260	Leu	Glu	Ser	Ser	Ala 265	Ser	Ala	Leu	Asp	Arg 270	Arg	Ala
Pro	Thr	Arg 275	Asn	Gln	Pro	Gln	Ala 280	Pro	Gly	Val	Glu	Ala 285	Ser	Gly	Ala
Gly	Glu 290	Ala	Arg	Ala	Ser	Thr 295	Gly	Ser	Ser	Ala	Asp 300	Ser	Ser	Pro	Gly
Gly 305	His	Gly	Thr	Gln	Val 310	Asn	Val	Thr	Cys	Ile 315	Val	Asn	Val	Cys	Ser 320
Ser	Ser	Asp	His	Ser 325	Ser	Gln	Cys	Ser	Ser 330	Gln	Ala	Ser	Ser	Thr 335	Met
Gly	Asp	Thr	Asp 340	Ser	Ser	Pro	Ser	Glu 345	Ser	Pro	Lys	Asp	Glu 350	Gln	Val
Pro	Phe	Ser 355	Lys	Glu	Glu	Cys	Ala 360	Phe	Arg	Ser	Gln	Leu 365	Glu	Thr	Pro
Glu	Thr 370	Leu	Leu	Gly	Ser	Thr 375	Glu	Glu	Lys	Pro	Leu 380	Pro	Leu	Gly	Val
Pro 385	Asp	Ala	Gly	Met	Lys 390	Pro	Ser								