## **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: (11) International Publication Number: WO 95/29588 A01N 37/12, 37/44, 43/50, 43/58, 43/60, 47/10, A61K 31/27, 31/50, 31/195, **A1** (43) International Publication Date: 9 November 1995 (09.11.95) 31/415, 31/495 (21) International Application Number: PCT/US95/04895 (81) Designated States: AU, CA, FI, HU, JP, KR, NZ, PL, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, (22) International Filing Date: 21 April 1995 (21.04.95) IE, IT, LU, MC, NL, PT, SE). (30) Priority Data: **Published** 08/234,089 28 April 1994 (28.04.94) US With international search report. 08/413,742 30 March 1995 (30.03.95) US (71) Applicant: ISP CHEMICALS INC. [US/US]; 116 Summit Avenue, Chatham, NJ 07928-0837 (US). (72) Inventor: MERIANOS, John, J.; 32 Doherty Drive, Middletown, NJ 07748 (US). (74) Agents: MAUE, Marilyn, J. et al.; International Specialty Products, 1361 Alps Road, Wayne, NJ 07470 (US).

(54) Title: SYNERGISTIC WATER SOLUBLE PRESERVATIVE COMPOSITIONS OF BIOCIDAL MIXTURES

#### (57) Abstract

A water soluble preservative admixture of biocidal compounds for addition to commercial use compositions at predetermined use levels, and uniformly distributed therein, to provide long-time synergistic biocidal activity against a wide range of fungi and both gramnegative and gram-positive bacteria, which comprises powders of (a) one or more methylol compounds, or their equivalents, and (b) iodopropynyl alcohol, or its ester, carmabate or ether derivative thereof, in a weight ratio of (a):(b) of 100:1 to 2000:1.

SDOCID: <WO 9529588A1>



# SYNERGISTIC WATER SOLUBLE PRESERVATIVE COMPOSITIONS OF BIOCIDAL MIXTURES

#### BACKGROUND OF THE INVENTION

#### 1. Field of the Invention

This invention relates to a water soluble preservative admixture for addition to commercial use formulations to provide long time synergistic biocidal activity therein, and, more particularly, to admixtures of a methylol compound and an iodopropynyl compound, in predetermined weight ratios of 100:1 to 2000:1.

#### 2. Description of the Prior Art

Combinations of antimicrobial agents have been developed in the prior art in order to:

- (1) produce a biochemical synergism;
- (2) broaden the antimicrobial spectrum of activity of each agent;
- (3) increase water solubility for the admixture;
- (4) minimize the toxicity or irritation of a given agent to the host; and
- (5) minimize physical and chemical incompatibilities.

True biological synergism exists when two agents, when combined, require lesser amounts of the agents to bring about the same inhibitory or cidal effect than either single agent alone. While synergistic interaction for two or more antimicrobial agents does produce more than merely an additive effect in the resultant biological activity, in most cases the mechanism of such synergism remains a mystery.

|   |  | w last at |
|---|--|-----------|
|   |  |           |
|   |  |           |
|   |  |           |
|   |  |           |
|   |  |           |
|   |  |           |
|   |  |           |
| - |  |           |
|   |  |           |
|   |  |           |
| r |  |           |
|   |  |           |
|   |  |           |
|   |  |           |
|   |  |           |
|   |  | <b></b>   |
|   |  |           |
|   |  |           |
|   |  |           |
|   |  |           |
|   |  |           |
|   |  |           |
|   |  |           |
|   |  | -         |
|   |  |           |

M. Rosen et al., in U.S. Patent 4,844,891, for example, described a preservative admixture of (a) a formaldehyde donor and (b) a halopropynyl compound, in a weight ratio of (a):(b) of 50:1 to 1:1, preferably 30:1 to 2:1, and, most preferably, 20:1 to 10:1, as providing fungicidal activity for 1-3 days in commercial use formulations. However, Rosen observed that when the ratio of (a):(b) in the concentrate exceeded 50:1 (System No. 16 in Table 1, a ratio of 73.33), the preservative composition was ineffective in providing biocidal protection in the use formulations. Thus a relatively large amount of the halopropynyl compound was required by Rosen to provide significant biocidal activity in the use composition. In such admixtures, although the formaldehyde donor is water soluble, the halopropynyl compound is substantially insoluble in water. Therefore it was difficult for Rosen to uniformly distribute his admixture throughout the use composition.

For these and other reasons, it is desired to provide a new and improved water soluble preservative admixture of such biocidal compounds which requires relatively little of the water insoluble and expensive halopropynyl compound, and that also provides effective synergistic protection in use formulations against a wide range of fungi and bacteria at different use levels over a long period of time.

A feature of the present invention is the provision of an admixture concentrate which is water soluble and which therefore can be uniformly distributed in use compositions at a predetermined use level.

Another feature herein is the provision of a preservative admixture which exhibits a long term synergistic biocidal activity against wide range of fungi and both gram-negative and gram-positive bacteria in the use compositions.

# SYNERGISTIC WATER SOLUBLE PRESERVATIVE COMPOSITIONS OF BIOCIDAL MIXTURES

# BACKGROUND OF THE INVENTION

### 1. Field of the Invention

This invention relates to a water soluble preservative admixture for addition to commercial use formulations to provide long time synergistic biocidal activity therein, and, more particularly, to admixtures of a methylol compound and an iodopropynyl compound, in predetermined weight ratios of 100:1 to 2000:1.

# Description of the Prior Art

Combinations of antimicrobial agents have been developed in the prior art in order to:

- produce a biochemical synergism;
- (2) broaden the antimicrobial spectrum of activity of each agent;
- (3) increase water solubility for the admixture;
- (4) minimize the toxicity or irritation of a given agent to the host; and
- (5) minimize physical and chemical incompatibilities.

True biological synergism exists when two agents, when combined, require lesser amounts of the agents to bring about the same inhibitory or cidal effect than either single agent alone. While synergistic interaction for two or more antimicrobial agents does produce more than merely an additive effect in the resultant biological activity, in most cases the mechanism of such synergism remains a mystery.

Still another feature of this invention is the provision of a water soluble preservative admixture for personal care compositions in the form of a solution, lotion, gel, emulsion, emulsifiable concentrate, suspension, slurry or cream.

These and other objects and features of the invention will be made apparent from the following more particular description of the invention.

#### SUMMARY OF THE INVENTION

Mhat has been discovered is a water soluble preservative composition for addition to commercial use compositions at predetermined use levels, and uniformly distributed therein, which provides long term synergistic biocidal activity against a wide range of fungi and both gram-negative and gram-positive bacteria. The composition of the invention comprises an admixture of powders of

- (a) a methylol compound, or their equivalent, and
- (b) iodopropynyl alcohol, or its ester, carbamate or ether derivative thereof, in a weight ratio of (a):(b) of 100:1 to 2000:1, preferably 200:1 to 500:1.

Commercial use compositions containing about 0.01 to 2% by weight of the composition of the invention also are provided therein. Such use compositions contain an iodopropynyl compound in an amount of about 0.5 to 10 ppm, to provide the desired antifungal activity, and a methylol compound, or equivalent thereof, in an amount of at least 250 ppm, to provide the desired antibacterial activity.

In another embodiment of the invention the composition also includes propylene glycol or 1,3-butylene glycol.

#### PRINTIPLE DESCRIPTION OF THE INVENTION

The invention is based upon the discoveries that in a predetermined admixture of (a) a methylol compound, or its equivalent, and (b) an iodopropynyl compound:

- (1) Iodopropynyl compounds are substantially water insoluble at weight ratios of (a):(b) of less than 100; accordingly, at weight ratios below 100:1, it is difficult to uniformly distribute the iodopropynyl compound in aqueous use compositions, particularly in creams, gels and the like. In this invention, the admixtures are used at a weight ratio of (a):(b) of 100:1 to 2000:1, which are water soluble in all use compositions at conventional use levels.
- (2) Effective synergistic biocidal activity is achieved for admixtures having a weight ratio of (a):(b) of 100:1 to 2000:1. Such admixtures have a Synergistic Index (SI) value approaching zero (maximum synergism) for a wide range of organisms. In contrast, admixtures with (a):(b) ratios below 100:1, e.g. 10:1 to 50:1, are much less synergistic, and are active with only a narrower range of organisms.
- (3) Preservative activity for use compositions is achieved most effectively with an admixture wt. ratio of 100:1 to 2000:1 at use levels of 0.05 to 2% by weight of the finished product. In this amount, the iodopropynyl compound is present in an amount of only 0.5-10 ppm, which significantly reduces the cost and toxicity of the use composition. The methylol compound also is present in an amount of at least 250 ppm.

The experimental results upon which these discoveries are based are described below. In these examples, the (a) methylol compound may be selected from diazolidinyl urea (GERMALL® II) N-[1,3-bis(hydroxymethyl)-2,5-dioxo-4-imidazolidinyl]-N,N'-bis(hydroxymethyl) urea, imidurea (GERMALL® 115),

1,3-dimethylol-5,5-dimethyl hydantoin (DMDMH), sodium hydroxymethylglycinate (SUTTOCIDE A), glycine anhydrid dimethylol (GADM), dimethylhydroxymethyl pyrazole, (1-(3-chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride (a methylol equivalent), 1,3,5-(trishydroxy-ethyl)hexahydrotriazine, or hydroxymethyl pyrrolidone; and the (b) iodopropynyl compound is iodopropynyl alcohol (IPGA) or 3-iodo-2-propynylbutyl carbamate (IPBC).

## 1. WATER SOLUBILITY

The water solubility or insolubility of admixtures of several methylol compounds with IPBC as 1% aqueous solutions is shown in Tables A through C below.

TABLE A

|                                  | TABUE W          |            |  |  |
|----------------------------------|------------------|------------|--|--|
| Weight Ratio of Germall® II:IPBC | Amount<br>in ppm | Solubility |  |  |
| 2000:1                           | 5                | Soluble    |  |  |
| 1000:1                           | 10               | Soluble    |  |  |
| 500:1                            | 20°              | Soluble    |  |  |
| 200:1                            | 50               | Soluble    |  |  |
| 100:1                            | 100              | Soluble    |  |  |
| 50:1                             | 200              | Insoluble  |  |  |
| 20:1                             | 500              | Insoluble  |  |  |
|                                  | TABLE B          |            |  |  |
| Weight Ratio of                  | Amount           |            |  |  |
| GADM: IPBC                       | in ppm           | Solubility |  |  |
| 2000:1                           | 5                | Soluble    |  |  |
| 1000:1                           | 10               | Soluble    |  |  |
| 500:1                            | 20               | Soluble    |  |  |
| 200:1                            | 50               | Soluble    |  |  |
| 100:1                            | 100              | Soluble    |  |  |
| 50:1                             | 200              | Insoluble  |  |  |
| 20:1                             | 500              | Insoluble  |  |  |

soluble in water.

# 2. SYNERGISM

Tables 1 through 14 below demonstrate the very effective synergistic interaction between compounds "a" and "b" against a broad range of fungi and both gramnegative and gram-positive bacteria. The following organisms were tested:

# ATCC

| Organism              | Number | Inoculum Concentration                  |
|-----------------------|--------|-----------------------------------------|
| Ps. aeruginosa (PSA)* | 9027   | 2.1 x 10 <sup>6</sup> CFU/gm of Product |
| E. coli (ECOLI)*      | 8739   | $4.7 \times 10^5$ CFU/gm of Product     |
| Staph. aureus (SA) ** | 6538   | 1.6 x 10 <sup>6</sup> CFU/gm of Product |
| Ps. cepacia (PC)*     | 25416  | 1.6 x 10 <sup>6</sup> CFU/gm of Product |
| C. albicans (CAN) *** | 10231  | $8.0 \times 10^4$ CFU/gm of Product     |
| A. niger (AN)***      | 16404  | $2.7 \times 10^5$ CFU/gm of Product     |

Table D below lists the static (MIC) and cidal activities of several antimicrobial agents in ppm. These activities are used to calculate the Synergism Index (SI) of admixtures of the present invention.

gram-negative bacteria

<sup>\*\*</sup> gram-positive bacteria

<sup>\*\*\*</sup> fungi

TABLE D

Static (MIC) and Cidal Activities of Several Antimicrobial Compounds (Static/Cidal Concentrations in ppm)

| Organism       |           |             |            |            |          |
|----------------|-----------|-------------|------------|------------|----------|
| (ATCC #)       | IPBC      | Germall® II | GADM       | DMDMH      | IPGA     |
| (SA) (6538)    | 100/200   | 400/1600    | 400/800    | 450/1600   | 300/5000 |
| (ECOLI) (8739) | 50/100    | 400/1600    | 400/800    | 400/800    | 150/600  |
| (PSA) (9027)   | 800/1200  | 400/1600    | 400/400    | 600/1600   | 70/70    |
| (PC) (25416)   | 1200/1800 | 200/400     | 200/400    | 600/1600   | 70/300   |
| (CAN) (10231)  | 50/100    | 1500/15000  | 7500/15000 | 8000/16000 | 50/300   |
| (AN) (16404)   | 50/100    | 3200/3200   | 1600/3200  | 8000/16000 | 30/30    |

The Synergism Index was determined by the same mathematical treatment of such data described by Kull et al. in Applied Microbiology 9,538-541 (1961) using the following relationship:

Synergism Index (SI) = 
$$\frac{Q_A}{Q_a}$$
 +  $\frac{Q_B}{Q_b}$ 

#### where:

- 1.  $Q_a =$  The quantity of Compound a acting alone, producing an endpoint.
- 2.  $Q_b$  = The quantity of Compound b acting alone, producing and endpoint.
- 3.  $Q_A$  = The quantity of Compound  $\underline{A}$  in mixture, producing an endpoint.
- 4.  $Q_B$  = The quantity of Compound B in mixture, producing an endpoint.

When SI is equal to 1, a mere additive effect of the components in the mixture is indicated; when SI is less than 1, synergism has occurred; and when SI is greater than 1 it indicates antagonism of the two components.

According to this well known method of measuring synergism, the quantity of each component in the various mixtures is compared with the quantity of pure component that is required to reach the same endpoint or to produce the same microbiological effect as the mixture.

TABLE 1
2000:1 Wt. Ratio GERMALL II/IPBC

| Use Level | Organism | <u>Q</u> a_      | <u>Q</u> b     | Q <sub>A</sub> | O <sub>B</sub> | SI   |
|-----------|----------|------------------|----------------|----------------|----------------|------|
| 0.01%     | SA       | 200              | 1600           | 0.05           | 99.95          | 0.06 |
| **        | ECOLI    | 100              | 1600           | 0.05           | 99.95          | 0.06 |
| Ħ         | PSA      | 1200             | 1600           | 0.05           | 99.95          | 0.06 |
| 11        | PC       | 1800             | 1250           | 0.05           | 99.95          | 0.08 |
| 11        | CAN      | 100              | 15000          | 0.05           | 99.95          | 0.01 |
| 11        | AN       | 100              | 3200           | 0.05           | 99.95          | 0.03 |
|           |          |                  |                |                |                |      |
|           |          |                  |                |                |                | ·    |
| Use Level | Organism | Q <sub>a</sub> _ | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.025%    | SA       | 200              | 1600           | 0.125          | 249.9          | 0.16 |
| 11        | ECOLI    | 100              | 1600           | 0.125          | 249.9          | 0.16 |
| tt        | PSA      | 1200             | 1600           | 0.125          | 249.9          | 0.16 |
| 11        | PC       | 1800             | 1250           | 0.125          | 249.9          | 0.20 |
| 11        | CAN      | 100              | 15000          | 0.125          | 249.9          | 0.02 |
| **        | AN       | 100              | 3200           | 0.125          | 249.9          | 0.08 |
|           |          |                  |                |                |                |      |
|           |          |                  |                | _              |                |      |
|           | Organism | O <sub>a</sub> _ | <u>O</u> b     | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.05%     | SA       | 200              | 1600           | 0.25           | 499.8          | 0.31 |
| 11        | ECOLI    | 100              | 1600           | 0.25           | 499.8          | 0.31 |
| 11        | PSA      | 1200             | 1600           | 0.25           | 499.8          | 0.31 |
| 11        | PC       | 1800             | 1250           | 0.25           | 499.8          | 0.40 |
| **        | CAN      | 100              | 15000          | 0.25           | 499.8          | 0.04 |
| t t       | AN       | 100              | 3200           | 0.25           | 499.8          | 0.16 |
|           |          |                  |                |                |                |      |
| Use Level | Organism | <u> </u>         | Qh             | O <sub>A</sub> | O <sub>R</sub> | sı   |
| 0.10%     | SA       | 200              | 1600           | 0.5            | 999.5          | 0.63 |
| 11        | ECOLI    | 100              | 1600           | 0.5            | 999.5          | 0.63 |
| er        | PSA      | 1200             | 1600           | 0.5            | 999.5          | 0.63 |
| **        | PC       | 1800             | 1250           | 0.5            | 999.5          | 0.80 |
| 11        | CAN      | 100              | 15000          | 0.5            | 999.5          | 0.07 |
| 11        | AN       | 100              | 3200           | 0.5            | 999.5          | 0.32 |

## TABLE 1 (CONT)

| <u>Use Level</u> | Organism | O <sub>a</sub> . | O <sub>b</sub> | Q <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.20%            | SA       | 200              | 1600           | 1              | 1999           | 1.25 |
| **               | ECOLI    | 100              | 1600           | 1              | <b>19</b> 99   | 1.26 |
| 11               | PSA      | 1200             | 1600           | 1              | 1999           | 1.25 |
| 11               | PC       | 1800             | 1250           | 1              | 1999           | 1.60 |
| tī               | CAN      | 100              | 15000          | 1              | 1999           | 0.14 |
| <b>1</b> 1       | AN       | 100              | 3200           | 1              | 1999           | 0.63 |

| <u>Use Level</u> | Organism | O <sub>a</sub> . | O <sub>b</sub> | O <sub>A</sub> | Q <sub>R</sub> | sı   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.40%            | SA       | 200              | 1600           | 2              | 3998           | 2.51 |
| TF               | ECOLI    | 100              | 1600           | 2              | 3998           | 2.52 |
| 01               | PSA      | 1200             | 1600           | 2              | 3998           | 2.50 |
| <b>81</b> .      | PC       | 1800             | 1250           | 2              | 3998           | 3.20 |
| <b>81</b>        | CAN      | 100              | 15000          | 2 .            | 3998           | 0.29 |
| **               | AN       | 100              | 3200           | 2              | 3998           | 1.27 |

| <u>Use Level</u> | Organism | O <sub>a</sub> . | O <sub>b</sub> | O <sub>A</sub> | O <sub>R</sub> | sı   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.50%            | SA       | 200              | 1600           | 2.5            | 4997.5         | 3.14 |
| **               | ECOLI    | 100              | 1600           | 2.5            | 4997.5         | 3.15 |
| **               | PSA      | 1200             | 1600           | 2.5            | 4997.5         | 3.13 |
|                  | PC       | 1800             | 1250           | 2.5            | 4997.5         | 4.00 |
| 11               | CAN      | 100              | 15000          | 2.5            | 4997.5         | 0.36 |
| 11               | AN       | 100              | 3200           | 2.5            | 4997.5         | 1.59 |

TABLE 2
1000:1 Wt. Ratio GERMALL® II/IPBC

| <u>Use Level</u> | Organism | Q <sub>a</sub>   | Q <sub>b</sub> | Q <sub>A</sub>   | Q <sub>B</sub> | si   |
|------------------|----------|------------------|----------------|------------------|----------------|------|
| 0.01%            | SA       | 200              | 1600           | 0.1              | 99.9           | 0.06 |
| 11               | ECOLI    | 100              | 1600           | 0.1              | 99.9           | 0.06 |
| 11               | PSA      | 1200             | 1600           | 0.1              | 99.9           | 0.06 |
| 11               | PC       | 1800             | 1250           | 0.1              | 99.9           | 0.08 |
| **               | CAN      | 100              | 15000          | 0.1              | 99.9           | 0.01 |
| 11               | ИA       | 100              | 3200           | 0.1              | 99.9           | 0.03 |
|                  |          |                  |                |                  |                |      |
|                  |          |                  |                |                  |                |      |
| <u>Use Level</u> | Organism | Q <sub>a</sub> . | Q <sub>b</sub> | Q <sub>A</sub> _ | Q <sub>R</sub> | SI   |
| 0.025%           | SA       | 200              | 1600           | 0.25             | 249.8          | 0.16 |
| ***              | ECOLI    | 100              | 1600           | 0.25             | 249.8          | 0.16 |
| **               | PSA      | 1200             | 1600           | 0.25             | 249.8          | 0.16 |
| er               | PC       | 1800             | 1250           | 0.25             | 249.8          | 0.20 |
| 11               | CAN      | 100              | 15000          | 0.25             | 249.8          | 0.02 |
| 11               | AN       | 100              | 3200           | 0.25             | 249.8          | 0.08 |
|                  |          |                  |                |                  |                |      |
|                  |          |                  |                |                  |                |      |
| <u>Use Level</u> | Organism | Oa               | O <sub>b</sub> | O <sub>A</sub>   | O <sub>B</sub> | SI   |
| 0.05%            | SA       | 200              | 1600           | 0.5              | 499.5          | 0.31 |
| 11               | ECOLI    | 100              | 1600           | 0.5              | 499.5          | 0.32 |
| 11               | PSA      | 1200             | 1600           | 0.5              | 499.5          | 0.31 |
| 11               | PC       | 1800             | 1250           | 0.5              | 499.5          | 0.40 |
| 11               | CAN      | 100              | 15000          | 0.5              | 499.5          | 0.04 |
| 11               | AN       | 100              | 3200           | 0.5              | 499.5          | 0.16 |
|                  |          |                  |                |                  |                |      |
|                  |          |                  |                |                  |                |      |
| <u>Use Level</u> | Organism | Q <sub>a</sub> _ | o <sub>b</sub> | O <sub>A</sub>   | Q <sub>B</sub> | sı   |
| 0.10%            | SA       | 200              | 1600           | 1                | 999            | 0.63 |
| n                | ECOLI    | 100              | 1600           | 1                | 999            | 0.63 |
| **               | PSA      | 1200             | 1600           | 1                | 999            | 0.63 |
| 11               | PC       | 1800             | 1250           | 1                | 999            | 0.80 |
| 11               | CAN      | 100              | 15000          | 1                | 999            | 0.08 |
| H                | AN       | 100              | 3200           | 1                | 999            | 0.32 |

# TABLE 2 (CONT)

| <u>Use Level</u> | Organism | Q <sub>a</sub> . | O <sub>b</sub> | Q <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.20%            | SA       | 200              | 1600           | 2              | 1998           | 1.26 |
| **               | ECOLI    | 100              | 1600           | 2              | 1998           | 1.27 |
| **               | PSA      | 1200             | 1600           | 2              | 1998           | 1.25 |
| 11               | PC ,     | 1800             | 1250           | 2              | 1998           | 1.60 |
| 91               | CAN      | 100              | 15000          | 2              | 1998           | 0.15 |
| 11               | AN       | 100              | 3200           | 2              | 1998           | 0.64 |
|                  |          |                  |                |                |                |      |
| Use Level        | Organism | Q <sub>a</sub>   | Oh             | O <sub>A</sub> | Q <sub>B</sub> | SI   |
| 0.40%            | SA       | 200              | 1600           | 4              | 3996           | 2.52 |
| 11               | ECOLI    | 100              | 1600           | 4              | 3996           | 2.54 |
| 11               | PSA      | 1200             | 1600           | 4              | 3996           | 2.50 |
| **               | PC       | 1800             | 1250           | 4              | 3996           | 3.20 |
| 11               | CAN      | 100              | 15000          | 4              | 3996           | 0.31 |
| 11               | AN       | 100              | 3200           | 4              | 3996           | 1.29 |
|                  |          |                  |                |                |                |      |
| Hee Level        | Organism | O <sub>a</sub>   | 0              | 0              | 0              | SI   |
|                  |          | ~                | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> |      |
| 0.50%            | SA       | 200              | 1600           | 5              | 4995           | 3.15 |
| **               | ECOLI    | 100              | 1600           | 5              | 4995           | 3.17 |
| 11               | PSA      | 1200             | 1600           | 5              | 4995           | 3.13 |
| 81               | PC       | 1800             | 1250           | 5              | 4995           | 4.00 |
| tt               | CAN      | 100              | 15000          | 5              | 4995           | 0.38 |

100

3200

4995

1.61

AN

TABLE 10
500:1 Wt. Ratio GERMALL® II/IPBC

| Use Level                               | Organism                                     | Q <sub>a</sub>                           | <u> </u>                                                                | Q <sub>A</sub>                       | Q <sub>B</sub>                                        | sı                                                                         |
|-----------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|
| 0.01%                                   | SA                                           | 200                                      | 1600                                                                    | 0.2                                  | 99.8                                                  | 0.06                                                                       |
| 11                                      | ECOLI                                        | 100                                      | 1600                                                                    | 0.2                                  | 99.8                                                  | 0.06                                                                       |
| 11                                      | PSA                                          | 1200                                     | 1600                                                                    | 0.2                                  | 99.8                                                  | 0.06                                                                       |
| 11                                      | PC                                           | 1800                                     | 1250                                                                    | 0.2                                  | 99.8                                                  | 0.08                                                                       |
| 11                                      | CAN                                          | 100                                      | 15000                                                                   | 0.2                                  | 99.8                                                  | 0.01                                                                       |
| . 11                                    | AN                                           | 100                                      | 3200                                                                    | 0.2                                  | 99.8                                                  | 0.03                                                                       |
|                                         |                                              |                                          |                                                                         |                                      |                                                       |                                                                            |
|                                         |                                              |                                          |                                                                         |                                      |                                                       |                                                                            |
| <u>Use Level</u>                        | Organism                                     | O <sub>a</sub>                           | Q <sub>b</sub>                                                          | O <sub>A</sub>                       | O <sub>B</sub>                                        | SI                                                                         |
| 0.025%                                  | SA                                           | 200                                      | 1600                                                                    | 0.5                                  | 249.5                                                 | 0.16                                                                       |
| 11                                      | ECOLI                                        | 100                                      | 1600                                                                    | 0.5                                  | 249.5                                                 | 0.16                                                                       |
| **                                      | PSA                                          | 1200                                     | 1600                                                                    | 0.5                                  | 249.5                                                 | 0.16                                                                       |
| 11                                      | PC                                           | 1800                                     | 1250                                                                    | 0.5                                  | 249.5                                                 | 0.20                                                                       |
| **                                      | CAN                                          | 100                                      | 15000                                                                   | 0.5                                  | 249.5                                                 | 0.02                                                                       |
| 11                                      | AN                                           | 100                                      | 3200                                                                    | 0.5                                  | 249.5                                                 | 0.08                                                                       |
|                                         |                                              |                                          |                                                                         |                                      |                                                       |                                                                            |
|                                         |                                              |                                          |                                                                         |                                      |                                                       |                                                                            |
|                                         |                                              |                                          |                                                                         |                                      |                                                       |                                                                            |
| <u>Use Level</u>                        | Organism                                     | O <sub>a</sub> .                         | O <sub>b</sub>                                                          | O <sub>A</sub> _                     | Q <sub>B</sub>                                        | si                                                                         |
| Use Level                               | Organism<br>SA                               | O <sub>a</sub> .<br>200                  | 0 <sub>b</sub>                                                          | O <sub>A</sub>                       | O <sub>B</sub>                                        | SI<br>0.32                                                                 |
|                                         |                                              | _                                        |                                                                         |                                      |                                                       |                                                                            |
| 0.05%                                   | SA                                           | 200                                      | 1600                                                                    | 1                                    | 499                                                   | 0.32                                                                       |
| 0.05%                                   | SA<br>ECOLI                                  | 200<br>100                               | 1600<br>1600                                                            | 1                                    | 499<br>499                                            | 0.32                                                                       |
| 0.05%                                   | SA<br>ECOLI<br>PSA                           | 200<br>100<br>1200                       | 1600<br>1600<br>1600                                                    | 1<br>1<br>1                          | 499<br>499<br>499                                     | 0.32<br>0.32<br>0.31                                                       |
| 0.05%<br>"                              | SA<br>ECOLI<br>PSA<br>PC                     | 200<br>100<br>1200<br>1800               | 1600<br>1600<br>1600<br>1250                                            | 1 1 1                                | 499<br>499<br>499<br>499                              | 0.32<br>0.32<br>0.31<br>0.40                                               |
| 0.05%<br>"<br>"                         | SA<br>ECOLI<br>PSA<br>PC<br>CAN              | 200<br>100<br>1200<br>1800<br>100        | 1600<br>1600<br>1600<br>1250<br>15000                                   | 1<br>1<br>1<br>1                     | 499<br>499<br>499<br>499                              | 0.32<br>0.32<br>0.31<br>0.40<br>0.04                                       |
| 0.05%                                   | SA<br>ECOLI<br>PSA<br>PC<br>CAN<br>AN        | 200<br>100<br>1200<br>1800<br>100        | 1600<br>1600<br>1600<br>1250<br>15000                                   | 1<br>1<br>1<br>1<br>1                | 499<br>499<br>499<br>499<br>499                       | 0.32<br>0.32<br>0.31<br>0.40<br>0.04<br>0.17                               |
| 0.05%                                   | SA ECOLI PSA PC CAN AN Organism              | 200<br>100<br>1200<br>1800<br>100<br>100 | 1600<br>1600<br>1600<br>1250<br>15000<br>3200                           | 1<br>1<br>1<br>1<br>1                | 499<br>499<br>499<br>499<br>499                       | 0.32<br>0.32<br>0.31<br>0.40<br>0.04<br>0.17                               |
| 0.05%                                   | SA ECOLI PSA PC CAN AN Organism              | 200<br>100<br>1200<br>1800<br>100<br>100 | 1600<br>1600<br>1600<br>1250<br>15000<br>3200                           | 1<br>1<br>1<br>1<br>1<br>2           | 499<br>499<br>499<br>499<br>499<br>998                | 0.32<br>0.32<br>0.31<br>0.40<br>0.04<br>0.17                               |
| 0.05% " " " " " "                       | SA ECOLI PSA PC CAN AN Organism              | 200<br>100<br>1200<br>1800<br>100<br>100 | 1600<br>1600<br>1600<br>1250<br>15000<br>3200                           | 1<br>1<br>1<br>1<br>1                | 499<br>499<br>499<br>499<br>499<br>O <sub>B</sub> 998 | 0.32<br>0.32<br>0.31<br>0.40<br>0.04<br>0.17                               |
| 0.05% " " " " " " Use Level 0.10%       | SA ECOLI PSA PC CAN AN Organism              | 200<br>100<br>1200<br>1800<br>100<br>100 | 1600<br>1600<br>1600<br>1250<br>15000<br>3200                           | 1<br>1<br>1<br>1<br>1<br>2<br>2<br>2 | 499<br>499<br>499<br>499<br>499<br>998<br>998         | 0.32<br>0.32<br>0.31<br>0.40<br>0.04<br>0.17<br>SI<br>0.63<br>0.64<br>0.63 |
| 0.05% " " " " " " " Use Level 0.10% "   | SA ECOLI PSA PC CAN AN Organism SA ECOLI     | 200<br>100<br>1200<br>1800<br>100<br>100 | 1600<br>1600<br>1600<br>1250<br>15000<br>3200<br>200                    | 1<br>1<br>1<br>1<br>1<br>2<br>2      | 499<br>499<br>499<br>499<br>499<br>O <sub>B</sub> 998 | 0.32<br>0.32<br>0.31<br>0.40<br>0.04<br>0.17                               |
| 0.05% " " " " " " " " Use Level 0.10% " | SA ECOLI PSA PC CAN AN Organism SA ECOLI PSA | 200 100 1200 1800 100 100  200 100 1200  | 1600<br>1600<br>1250<br>15000<br>3200<br>Q <sub>b</sub><br>1600<br>1600 | 1<br>1<br>1<br>1<br>1<br>2<br>2<br>2 | 499<br>499<br>499<br>499<br>499<br>998<br>998         | 0.32<br>0.32<br>0.31<br>0.40<br>0.04<br>0.17<br>SI<br>0.63<br>0.64<br>0.63 |

# TABLE 3 (CONT)

| <u>Use Lev</u>  | el Organism | 0                | aO <sub>h</sub> | 0              | AQ <sub>R</sub> | SI   |   |
|-----------------|-------------|------------------|-----------------|----------------|-----------------|------|---|
| 0.20%           | SA          | 200              | 1600            | 4              | 1996            | 1.27 |   |
| 11              | ECOLI       | 100              | 1600            | 4              | 1996            | 1.29 |   |
| 11              | PSA         | 1200             | 1600            | 4              | 1996            |      |   |
| 11              | PC          | 1800             | 1250            | 4              | 1996            | 1.25 |   |
| 11.             | CAN         | 100              | 15000           | 4              | 1996            | 1.60 |   |
| 11              | AN          | 100              | 3200            | 4              |                 | 0.17 |   |
|                 |             | 200              | 3200            | 4              | 1996            | 0.66 |   |
|                 |             |                  |                 |                |                 |      |   |
| Use Lev         | el Organism | •                | •               |                |                 |      |   |
| 0.40%           | SA          | Q <sub>a</sub>   | ~               | Q <sub>A</sub> | Q <sub>B</sub>  | si   | _ |
| 11              |             | 200              | 1600            | 8              | 3992            | 2.54 |   |
| ŧı              | ECOLI       | 100              | 1600            | 8              | 3992            | 2.58 |   |
|                 | PSA         | 1200             | 1600            | 8              | 3992            | 2.50 |   |
| ŧī              | PC          | 1800             | 1250            | 8              | 3992            | 3.20 |   |
| **              | CAN         | 100              | 15000           | 8              | 3992            | 0.35 |   |
| 11              | AN          | 100              | 3200            | 8              | 3992            | 1.33 |   |
|                 |             |                  |                 |                |                 | 1.33 |   |
|                 |             |                  |                 |                |                 |      |   |
| <u>Use</u> Leve | l Organism  | Q <sub>a</sub> _ | Q <sub>b</sub>  | O <sub>A</sub> |                 | O.T. |   |
| 0.50%           | SA          | 200              | 1600            | 10             | O <sub>B</sub>  | SI   |   |
| **              | ECOLI       | 100              | 1600            | 10             |                 | 3.17 |   |
| TE              | PSA         | 1200             | 1600            |                | 4990            | 3.22 |   |
| 11              | PC          | 1800             |                 | 10             | 4990            | 3.13 |   |
| 11              | CAN         |                  | 1250            | 10             | 4990            | 4.00 |   |
| ti              |             | 100              | 15000           | 10             | 4990            | 0.43 |   |
| •••<br>•        | AN          | 100              | 3200            | 10             | 4990            | 1.66 |   |

1.66

TABLE 4
200:1 Wt. Ratio GERMALL® II/IPBC

| Use Level        | Organism | Q <sub>a</sub> .  | Q <sub>b</sub> | Q <sub>A</sub>   | O <sub>B</sub> | SI   |
|------------------|----------|-------------------|----------------|------------------|----------------|------|
| 0.01%            | SA       | 200               | 1600           | 0.5              | 99.5           | 0.06 |
| 11               | ECOLI    | 100               | 1600           | 0.5              | 99.5           | 0.07 |
|                  | PSA      | 1200              | 1600           | 0.5              | 99.5           | 0.06 |
| 11               | PC       | 1800              | 1250           | 0.5              | 99.5           | 0.08 |
| 11               | CAN      | 100               | 15000          | 0.5              | 99.5           | 0.01 |
| ••               | AN       | 100               | 3200           | 0.5              | 99.5           | 0.04 |
|                  |          |                   |                |                  |                |      |
| Hee Tevel        | Organism | 0                 | 0              | •                | •              | a.   |
| 0.025%           | SA       | <u>Q</u> a<br>200 | _              | O <sub>A</sub> _ | <u>O</u> B     | SI   |
| 11               |          |                   | 1600           | 1.25             | 248.75         | 0.16 |
| **               | ECOLI    | 100               | 1600           | 1.25             | 248.75         | 0.17 |
| 11               | PSA      | 1200              | 1600           | 1.25             | 248.75         | 0.16 |
| "                | PC       | 1800              | 1250           | 1.25             | 248.75         | 0.20 |
|                  | CAN      | 100               | 15000          | 1.25             | 248.75         | 0.03 |
| •                | AN       | 100               | 3200           | 1.25             | 248.75         | 0.09 |
|                  |          |                   |                |                  |                |      |
| Use Level        | Organism | O <sub>a</sub>    | O <sub>b</sub> | O <sub>2</sub>   | O <sub>R</sub> | SI   |
| 0.05%            | SA       | 200               | 1600           | 2.5              | 497.5          | 0.32 |
| 11               | ECOLI    | 100               | 1600           | 2.5              | 497.5          | 0.34 |
| 11               | PSA      | 1200              | 1600           | 2.5              | 497.5          | 0.31 |
| 11               | PC       | 1800              | 1250           | 2.5              | 497.5          | 0.40 |
| **               | CAN      | 100               | 15000          | 2.5              | 497.5          | 0.06 |
| 11               | AN       | 100               | 3200           | 2.5              | 497.5          | 0.18 |
|                  |          |                   |                |                  |                |      |
|                  |          |                   |                |                  |                |      |
| <u>Use Level</u> | Organism | O <sub>a</sub> _  | O <sub>b</sub> | O <sub>A</sub>   | O <sub>B</sub> | si   |
| 0.10%            | SA       | 200               | 1600           | 5                | 995            | 0.65 |
| 11               | ECOLI    | 100               | 1600           | 5                | 995            | 0.67 |
| 11               | PSA      | 1200              | 1600           | 5                | 995            | 0.63 |
| 11               | PC       | 1800              | 1250           | 5                | 995            | 0.80 |
| n                | CAN      | 100               | 15000          | 5                | 995            | 0.12 |
| tt               | AN       | 100               | 3200           | 5                | 995            | 0.36 |
|                  |          |                   |                |                  |                |      |

### TABLE 4 (CONT)

| <u>Use Level</u> | Organism | Q <sub>a</sub> . | O <sub>b</sub> | Q <sub>A</sub> | O <sub>R</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.20%            | SA       | 200              | 1600           | 10             | <b>19</b> 90   | 1.29 |
| 11               | ECOLI    | 100              | 1600           | 10             | 1990           | 1.34 |
| 11               | PSA      | 1200             | 1600           | 10             | 1990           | 1.25 |
| 11               | PC       | 1800             | 1250           | 10             | 1990           | 1.60 |
| **               | CAN      | 100              | 15000          | 10             | 1990           | 0.23 |
| 11               | AN       | 100              | 3200           | 10             | 1990           | 0.72 |

| <u>Use Level</u> | Organism | O <sub>a</sub> _ | O <sub>b</sub> | O <sub>A</sub> | Ò <sub>R</sub> | sı   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.40%            | SA       | 200              | 1600           | 20             | 3980           | 2.59 |
| II .             | ECOLI    | 100              | 1600           | 20             | 3980           | 2.69 |
| 11               | PSA      | 1200             | 1600           | 20             | 3980           | 2.50 |
| 11               | PC       | 1800             | 1250           | 20             | 3980           | 3.20 |
| 11               | CAN      | 100              | 15000          | 20             | 3980           | 0.47 |
| <b>11</b>        | AN       | 100              | 3200           | 20             | 3980           | 1.44 |

| <u>Use Level</u> | Organism | Q <sub>a</sub> . | Q <sub>b</sub> | O <sub>N</sub> | O <sub>B</sub> | SI   |  |
|------------------|----------|------------------|----------------|----------------|----------------|------|--|
| 0.50%            | SA       | 200              | 1600           | 25             | 4975           | 3.23 |  |
| **               | ECOLI    | 100              | 1600           | 25             | 4975           | 3.36 |  |
| 11               | PSA      | 1200             | 1600           | 25             | 4975           | 3.13 |  |
| tt ·             | PC       | 1800             | 1250           | 25             | 4975           | 3.99 |  |
|                  | CAN      | 100              | 15000          | 25             | 4975           | 0.58 |  |
| 11               | AN       | 100              | 3200           | 25             | 4975           | 1.80 |  |

TABLE 5

100:1 Wt. Ratio GERMALL® II/IPBC

| Use Level        | Organism | Q <sub>a</sub> . | Q <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.01%            | SA       | 200              | 1600           | 1              | 99             | 0.07 |
| 11               | ECOLI    | 100              | 1600           | 1              | 99             | 0.07 |
| Ħ                | PSA      | 1200             | 1600           | 1              | 99             | 0.06 |
| **               | PC       | 1800             | 1250           | 1              | 99             | 0.08 |
| 91               | CAN      | 100              | 15000          | 1              | 99             | 0.02 |
| <b>11</b>        | AN       | 100              | 3200           | 1              | 99             | 0.04 |
|                  |          |                  |                |                |                |      |
|                  |          |                  |                |                |                |      |
| Use Level        | Organism | Q <sub>a</sub> _ | Q <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.025%           | SA       | 200              | 1600           | 2.5            | 248            | 0.17 |
| 11               | ECOLI    | 100              | 1600           | 2.5            | 248            | 0.18 |
| **               | PSA      | 1200             | 1600           | 2.5            | 248            | 0.16 |
| **               | PC       | 1800             | 1250           | 2.5            | 248            | 0.20 |
| ••               | CAN      | 100              | 15000          | 2.5            | 248            | 0.04 |
| **               | AN       | 100              | 3200           | 2.5            | 248            | 0.10 |
|                  |          |                  |                |                |                |      |
|                  | •        | _                |                |                |                |      |
|                  | Organism | Q <sub>a</sub> _ | O <sub>b</sub> | O <sub>A</sub> | OB             | SI   |
| 0.05%            | SA       | 200              | 1600           | 5              | 495            | 0.33 |
|                  | ECOLI    | 100              | 1600           | 5              | 495            | 0.36 |
| **               | PSA      | 1200             | 1600           | 5              | 495            | 0.31 |
| ***              | PC       | 1800             | 1250           | 5              | 495            | 0.40 |
| 11               | CAN      | 100              | 15000          | 5              | 495            | 0.08 |
| <b>11</b>        | AN       | 100              | 3200           | 5              | 495            | 0.20 |
|                  |          |                  |                |                |                |      |
| <u>Use Level</u> | Organism | Q <sub>a</sub> _ | <b>Q</b> b     | O <sub>2</sub> | Q <sub>R</sub> | sı   |
| 0.10%            | SA       | 200              | 1600           | 10             | 990            | 0.67 |
| 19               | ECOLI    | 100              | 1600           | 10             | 990            | 0.72 |
| **               | PSA      | 1200             | 1600           | 10             | 990            | 0.63 |
| 11               | PC       | 1800             | 1250           | 10             | 990            | 0.80 |
| **               | CAN      | 100              | 15000          | 10             | 990            | 0.17 |
| 11               | AN       | 100              | 3200           | 10             | 990            | 0.41 |

#### TABLE 5 (CONT)

| <u>Use Level</u> | Organism | Q <sub>a</sub> _ | Q <sub>b</sub> | O <sub>A</sub> | Q <sub>B</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.20%            | SA       | 200              | 1600           | 20             | 1980           | 1.34 |
| 11               | ECOLI    | 100              | 1600           | 20             | 1980           | 1.44 |
| 11               | PSA      | 1200             | 1600           | 20             | 1980           | 1.25 |
| 11               | PC       | 1800             | 1250           | 20             | 1980           | 1.60 |
| 11               | CAN      | 100              | 15000          | 20             | 1980           | 0.33 |
| 11 .             | AN       | 100              | 3200           | 20             | 1980           | 0.82 |

| <u>Use Level</u> | Organism | O <sub>a</sub> | <u> </u> | Q <sub>A</sub> | Q <sub>B</sub> | si   |
|------------------|----------|----------------|----------|----------------|----------------|------|
| 0.40%            | SA       | 200            | 1600     | 40             | 3960           | 2.68 |
| ••               | ECOLI    | 100            | 1600     | 40             | 3960           | 2.88 |
| 68               | PSA      | 1200           | 1600     | 40             | 3960           | 2.51 |
| **               | PC       | 1800           | 1250     | 40             | 3960           | 3.19 |
| 47               | CAN      | 100            | 15000    | 40             | 3960           | 0.66 |
| 11               | AN       | 100            | 3200     | 40             | 3960           | 1.64 |

| <u>Use Level</u> | Organism | O <sub>a</sub> _ | O <sub>b</sub> | Q <sub>A</sub> | O <sub>R</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.50%            | SA       | 200              | 1600           | 50             | 4950           | 3.34 |
| 11               | ECOLI    | 100              | 1600           | 50             | 4950           | 3.59 |
| ***              | PSA      | 1200             | 1600           | 50             | 4950           | 3.14 |
| 11               | PC       | 1800             | 1250           | 50             | 4950           | 3.99 |
| **               | CAN      | 100              | 15000          | 50             | 4950           | 0.83 |
| 11               | AN       | 100              | 3200           | 50             | 4950           | 2.05 |

TABLE 6
50:1 Wt. Ratio GERMALL® II/IPBC

| Use Level        | Organism | O <sub>a</sub> | Q <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|----------------|----------------|----------------|----------------|------|
| 0.01%            | SA       | 200            | 1600           | 2              | 98             | 0.07 |
| 11               | ECOLI    | 100            | 1600           | 2              | 98             | 0.08 |
| 91               | PSA      | 1200           | 1600           | 2              | 98             | 0.06 |
| <b>61</b>        | PC       | 1800           | 1250           | 2              | 98             | 0.08 |
| 91               | CAN      | 100            | 15000          | 2              | 98             | 0.03 |
| **               | AN       | 100            | 3200           | 2              | 98             | 0.05 |
|                  |          |                |                |                |                |      |
| <u>Use Level</u> | Organism | Q <sub>a</sub> | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.025%           | SA       | 200            | 1600           | 5              | 245            | 0.18 |
| 11               | ECOLI    | 100            | 1600           | 5              | 245            | 0.20 |
| 11               | PSA      | 1200           | 1600           | 5              | 245            | 0.16 |
| 11               | PC       | 1800           | 1250           | 5              | 245            | 0.20 |
| **               | CAN      | 100            | 15000          | 5              | 245            | 0.07 |
| 11               | AN       | 100            | 3200           | 5              | 245            | 0.13 |
|                  |          |                |                |                |                |      |
| <u>Use Level</u> | Organism | O <sub>a</sub> | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | sı   |
| 0.05%            | SA       | 200            | 1600           | 10             | 490            | 0.36 |
| 11               | ECOLI    | 100            | 1600           | 10             | 490            | 0.41 |
| 11               | PSA      | 1200           | 1600           | 10             | 490            | 0.31 |
| **               | PC       | 1800           | 1250           | 10             | 490            | 0.40 |
| 11               | CAN      | 100            | 15000          | 10             | 490            | 0.13 |
| 11               | AN       | 100            | 3200           | 10             | 490            | 0.25 |
|                  |          |                |                |                |                |      |
| <u>Use Level</u> | Organism | Oa_            | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | sı   |
| 0.10%            | SA       | 200            | 1600           | 20             | 980            | 0.71 |
| 01               | ECOLI    | 100            | 1600           | 20             | 980            | 0.81 |
| **               | PSA      | 1200           | 1600           | 20             | 980            | 0.63 |
| **               | PC       | 1800           | 1250           | 20             | 980            | 0.80 |
| 70               | CAN      | 100            | 15000          | 20             | 980            | 0.27 |
| 11               | AN       | 100            | 3200           | 20             | 980            | 0.51 |

### TABLE 6 (CONT)

| <u>Use Level</u> | Organism | Qa   | O <sub>b</sub> | O <sub>A</sub> | Q <sub>B</sub> | SI   |
|------------------|----------|------|----------------|----------------|----------------|------|
| 0.20%            | SA       | 200  | 1600           | 40             | 1960           | 1.43 |
| 11               | ECOLI    | 100  | 1600           | 40             | 1960           | 1.63 |
| 11               | PSA      | 1200 | 1600           | 40             | 1960           | 1.26 |
| 11               | PC       | 1800 | 1250           | 40             | 1960           | 1.59 |
| <b>11</b>        | CAN      | 100  | 15000          | 40             | 1960           | 0.53 |
| 11               | AN       | 100  | 3200           | 40             | 1960           | 1.01 |

| <u>Use Level</u> | Organism | Q <sub>a</sub> . | Q <sub>b</sub> | Q <sub>A</sub> | O <sub>B</sub> | si   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.40%            | SA       | 200              | 1600           | 80             | 3920           | 2.85 |
| 11               | ECOLI    | 100              | 1600           | 80             | 3920           | 3.25 |
| 11               | PSA      | 1200             | 1600           | 80             | 3920           | 2.52 |
| •••              | PC       | 1800             | 1250           | 80             | 3920           | 3.18 |
| 91               | CAN      | 100              | 15000          | 80             | 3920           | 1.06 |
| 11               | AN       | 100              | 3200           | 80             | 3920           | 2.03 |

| <u>Use Level</u> | Organism | O <sub>a</sub> _ | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |  |
|------------------|----------|------------------|----------------|----------------|----------------|------|--|
| 0.50%            | SA       | 200              | 1600           | 100            | 4900           | 3.56 |  |
| 97               | ECOLI    | 100              | 1600           | 100            | 4900           | 4.06 |  |
| 11               | PSA      | 1200             | 1600           | 100            | 4900           | 3.15 |  |
| 11               | PC       | 1800             | 1250           | 100            | 4990           | 3.98 |  |
| tt               | CAN      | 100              | 15000          | 100            | 4900           | 1.33 |  |
| 11               | AN       | 100              | 3200           | 100            | 4900           | 2.53 |  |

TABLE 7
20:1 Wt. Ratio GERMALL® II/IPBC

| Use Level        | Organism | Q <sub>a</sub>   | O <sub>b</sub> | Q <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.01%            | SA       | 200              | 1600           | 5              | 95             | 0.08 |
| 10               | ECOLI    | 100              | 1600           | 5              | 95             | 0.11 |
| 11               | PSA      | 1200             | 1600           | 5              | 95             | 0.06 |
| 11               | PC       | 1800             | 1250           | 5              | 95             | 0.08 |
| 11               | CAN      | 100              | 15000          | 5              | 95             | 0.06 |
| 11               | AN       | 100              | 3200           | 5              | 95             | 0.08 |
|                  |          |                  |                |                |                |      |
| •                |          |                  |                |                |                |      |
| Use Level        | Organism | O <sub>a</sub> . | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.025%           | SA       | 200              | 1600           | 12.5           | 237.5          | 0.21 |
| 61               | ECOLI    | 100              | 1600           | 12.5           | 237.5          | 0.27 |
| <b>11</b><br>·   | PSA      | 1200             | 1600           | 12.5           | 237.5          | 0.16 |
| 11               | PC       | 1800             | 1250           | 12.5           | 237.5          | 0.20 |
| 10               | CAN      | 100              | 15000          | 12.5           | 237.5          | 0.14 |
| 91               | AN       | 100              | 3200           | 12.5           | 237.5          | 0.20 |
|                  |          |                  |                |                |                |      |
|                  |          |                  |                |                |                |      |
| Use Level        | Organism | Oa               | O <sub>b</sub> | O <sub>A</sub> | O_B            | sı   |
| 0.05%            | SA       | 200              | 1600           | 25             | 475            | 0.42 |
| 11               | ECOLI    | 100              | 1600           | 25             | 475            | 0.55 |
| **               | PSA      | 1200             | 1600           | 25             | 475            | 0.32 |
| 11               | PC       | 1800             | 1250           | 25             | 475            | 0.39 |
| <b>81</b>        | CAN      | 100              | 15000          | 25             | 475            | 0.28 |
| <b>\$1</b>       | AN       | 100              | 3200           | 25             | 475            | 0.40 |
|                  |          |                  |                |                |                |      |
|                  |          |                  |                |                |                |      |
| <u>Use Level</u> | Organism | O <sub>a</sub> . | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.10%            | SA       | 200              | 1600           | 50             | 950            | 0.84 |
| 11               | ECOLI    | 100              | 1600           | 50             | 950            | 1.09 |
| et               | PSA      | 1200             | 1600           | 50             | 950            | 0.64 |
| 17               | PC       | 1800             | 1250           | 50             | 950            | 0.79 |
| tt.              | CAN      | 100              | 15000          | 50             | 950            | 0.56 |
| 11               | AN       | 100              | 3200           | 50             | 950            | 0.80 |

# TABLE 7 (CONT)

| <u>Use Level</u> | Organism | Q <sub>a</sub> . | <b>O</b> b     | $Q_{\mathbf{A}}$ | O <sub>B</sub>   | SI   | _ |
|------------------|----------|------------------|----------------|------------------|------------------|------|---|
| 0.20%            | SA       | 200              | 1600           | 100              | 1900             | 1.69 |   |
| 11               | ECOLI    | 100              | 1600           | 100              | 1900             | 2.19 |   |
| 11               | PSA      | 1200             | 1600           | 100              | 1900             | 1.27 |   |
| . **             | PC       | 1800             | 1250           | 100              | 1900             | 1.58 |   |
| **               | CAN      | 100              | 15000          | 100              | 1900             | 1.13 |   |
| 11               | AN       | 100              | 3200           | 100              | 1900             | 1.59 |   |
|                  |          |                  |                |                  |                  |      |   |
| Use Level        | Organism | Oa_              | o <sub>b</sub> | O <sub>A</sub>   | O <sub>B</sub>   | SI   | _ |
| 0.40%            | SA       | 200              | 1600           | 200              | 4800             | 4.00 |   |
| 11               | ECOLI    | 100              | 1600           | 200              | 4800             | 5.00 |   |
| 11               | PSA      | 1200             | 1600           | 200              | 4800             | 3.17 |   |
| **               | PC       | 1800             | 1250           | 200              | 4800             | 3.95 |   |
| **               | CAN      | 100              | 15000          | 200              | 4800             | 2.32 |   |
| <b>88</b>        | AN       | 100              | 3200           | 200              | 4800             | 3.50 |   |
|                  |          |                  |                |                  |                  |      |   |
| <u>Use Level</u> | Organism | Q <sub>a</sub> _ | Q <sub>b</sub> | <u>O</u>         | Q <sub>B</sub> _ | SI   | _ |
| 0.50%            | SA       | 200              | 1600           | 250              | 4750             | 4.22 |   |
| **               | ECOLI    | 100              | 1600           | 250              | 4750             | 5.47 |   |
| **               | PSA      | 1200             | 1600           | 250              | 4750             | 3.18 |   |
| **               | PC       | 1800             | 1250           | 250              | 4750             | 3.94 |   |
|                  | CAN      | 100              | 15000          | 250              | 4750             | 2.82 |   |
|                  |          |                  |                |                  |                  |      |   |

3200

250

4750

3.98

100

AN

999.5 0.07

999.5

0.07

0.5

0.5

TABLE 8
2000:1 Wt. Ratio DMDMH/IPBC

| Use Level        | Organis  | sm                 | Q <sub>a</sub>        | o <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | sı   |
|------------------|----------|--------------------|-----------------------|----------------|----------------|----------------|------|
| 0.01%            | SA       |                    | 200                   | 1600           |                | 5 99.95        | 0.06 |
| ***              | ECOL1    |                    | 100                   | 800            | 0.0            | 5 99.95        | 0.13 |
| 11               | PSA      |                    | 1200                  | 1600           | 0.0            | 99.95          | 0.06 |
| m                | PC       |                    | 1800                  | 1600           | 0.09           | 5 99.95        | 0.06 |
| 11               | CAN      |                    | 100                   | 16000          | 0.0            | 5 99.95        | 0.01 |
| 11               | AN       |                    | 100                   | 16000          | 0.0            | 5 99.95        | 0.01 |
|                  |          |                    |                       |                |                |                |      |
| Use Level        | Organism | Q <sub>a</sub> _   | <u>Q</u> <sub>b</sub> | Q              | _              | O <sub>B</sub> | sı   |
| 0.025%           | SA       | <u>v</u> a-<br>200 | —— <u>≻</u> b<br>160  |                | 125            | 249.88         | 0.16 |
| 11               | ECOLI    | 100                | 80                    |                | 125            | 249.88         | 0.31 |
| 11               | PSA      | 1200               | 160                   |                | 125            | 249.88         | 0.16 |
| 9t               | PC       | 1800               | 160                   |                | 125            | 249.88         | 0.16 |
| •                | CAN      | 100                | 1600                  |                | 125            | 249.88         | 0.02 |
| 11               | AN       | 100                | 1600                  |                | 125            | 249.88         | 0.02 |
|                  |          |                    |                       |                |                |                |      |
| Use Level        | Organism | Q <sub>a</sub> .   | <u>O</u> ъ            | Q              | _              | O <sub>B</sub> | sı   |
| 0.05%            | SA       | 200                | 160                   | •              | 25             | 499.75         | 0.31 |
| 11               | ECOLI    | 100                | 80                    |                | 25             | 499.75         | 0.63 |
| 11               | PSA      | 1200               | 160                   |                | 25             | 499.75         | 0.31 |
| **               | PC       | 1800               | 160                   |                | 25             | 499.75         | 0.31 |
| 11               | CAN      | 100                | 1600                  | 0 0.           | 25             | 499.75         | 0.03 |
| **               | AN       | 100                | 1600                  | 0 0.           | 25             | 499.75         | 0.03 |
|                  |          |                    |                       |                |                |                |      |
|                  |          |                    |                       |                |                |                |      |
| <u>Use Level</u> | Organis  | n (                | Q <sub>a</sub>        | <u> </u>       | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.10%            | SA       |                    | 200                   | 1600           | 0.5            | 999.5          | 0.63 |
| 11               | ECOLI    |                    | 100                   | 800            | 0.5            | 999.5          | 1.25 |
| tī               | PSA      | 1:                 | 200                   | 1600           | 0.5            | 999.5          | 0.63 |
| 11               | PC       | 1                  | 800                   | 1600           | 0.5            | 999.5          | 0.62 |

100 16000

100 16000

CAN

AN

### TABLE 8 (CONT)

| Use Level        | Organism | <u> </u>       | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|----------------|----------------|----------------|----------------|------|
| 0.20%            | SA       | 200            | 1600           | 1              | 1999           | 1.25 |
| 11               | ECOLI    | 100            | 800            | 1              | 1999           | 2.51 |
| **               | PSA      | 1200           | 1600           | 1              | 1999           | 1.25 |
| 11               | PC       | 1800           | 1600           | · 1            | 1999           | 1.25 |
| 11               | CAN      | 100            | 16000          | 1              | 1999           | 0.13 |
| 11               | AN       | 100            | 16000          | 1              | 1999           | 0.13 |
| Hen Found        |          |                |                |                |                |      |
| Use Level        | Organism | Q <sub>a</sub> | Q <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | si   |
| 0.40%            | SA       | 200            | 1600           | 2              | 3998           | 2.51 |
| 11               | ECOLI    | 100            | 800            | 2              | 3998           | 5.02 |
| 11               | PSA      | 1200           | 1600           | 2              | 3998           | 2.50 |
| <b>81</b>        | PC       | 1800           | 1600           | 2              | 3998           | 2.50 |
| ••               | CAN      | 100            | 16000          | 2              | 3998           | 0.27 |
|                  | AN       | 100            | 16000          | 2              | 3998           | 0.27 |
|                  |          |                |                |                |                |      |
| <u>Use Level</u> | Organism | O <sub>a</sub> | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.50%            | SA       | 200            | 1600           | 2.5            | 4997.5         | 3.14 |
| ***              | ECOLI    | 100            | 800            | 2.5            | 4997.5         | 6.27 |
| 11               | PSA      | 1200           | 1600           | 2.5            | 4997.5         | 3.13 |
| tt               | PC       | 1800           | 1600           | 2.5            | 4997.5         | 3.12 |
| 11               | CAN      | 100            | 16000          | 2.5            | 4997.5         | 0.34 |
| 11               | AN       | 100            | 16000          | 2.5            | 4997.5         | 0.34 |

TABLE 9
1000:1 Wt. Ratio DMDMH/IPBC

| <u>Use Level</u>      | Organism                                  | ^                                        | . ^                                                  | ^                                      | ^                                                         | ~~                                           |
|-----------------------|-------------------------------------------|------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------------------------------------|----------------------------------------------|
|                       |                                           | Q <sub>a</sub>                           | O <sub>b</sub>                                       | O <sub>A</sub>                         | O <sub>B</sub>                                            | SI                                           |
| 0.01%                 | SA                                        | 200                                      | 1600                                                 | 0.1                                    | 99.9                                                      | 0.06                                         |
| 11                    | ECOLI                                     | 100                                      | 800                                                  | 0.1                                    | 99.9                                                      | 0.13                                         |
| "                     | PSA                                       | 1200                                     | 1600                                                 | 0.1                                    | 99.9                                                      | 0.06                                         |
| **                    | PC                                        | 1800                                     | 1600                                                 | 0.1                                    | 99.9                                                      | 0.06                                         |
| 11                    | CAN                                       | 100                                      | 16000                                                | 0.1                                    | 99.9                                                      | 0.01                                         |
| 11                    | AN                                        | 100                                      | 16000                                                | 0.1                                    | 99.9                                                      | 0.01                                         |
|                       |                                           |                                          |                                                      |                                        |                                                           |                                              |
| <u>Use Level</u>      | Organism                                  | Q <sub>a</sub>                           | O <sub>b</sub>                                       | Q <sub>A</sub>                         | <u>Q</u> <sub>B</sub>                                     | sı                                           |
| 0.025%                | SA                                        | 200                                      | 1600                                                 | 0.25                                   | 249.8                                                     | 0.16                                         |
| 11                    | ECOLI                                     | 100                                      | 800                                                  | 0.25                                   | 249.8                                                     | 0.31                                         |
| 91                    | PSA                                       | 1200                                     | 1600                                                 | 0.25                                   | 249.8                                                     | 0.16                                         |
| ti                    | PC                                        | 1800                                     | 1600                                                 | 0.25                                   | 249.8                                                     | 0.16                                         |
|                       | CAN                                       | 100                                      | 16000                                                | 0.25                                   | 249.8                                                     | 0.02                                         |
| ti                    | AN                                        | 100                                      | 16000                                                | 0.25                                   | 249.8                                                     | 0.02                                         |
|                       |                                           |                                          |                                                      |                                        |                                                           |                                              |
|                       |                                           |                                          |                                                      |                                        |                                                           |                                              |
| Use Level             | Organism                                  | Q <sub>a</sub>                           | Q <sub>b</sub>                                       | O <sub>A</sub>                         | O <sub>B</sub>                                            | si                                           |
|                       |                                           |                                          |                                                      |                                        |                                                           |                                              |
| 0.05%                 | SA                                        | 200                                      | 1600                                                 | 0.5                                    | _                                                         |                                              |
| 0.05%                 | SA<br>ECOLI                               | _                                        | 1600<br>800                                          |                                        | 499.5                                                     | 0.31                                         |
|                       |                                           | 200                                      |                                                      | 0.5                                    | _                                                         | 0.31                                         |
| 11                    | ECOLI                                     | 200<br>100                               | 800                                                  | 0.5                                    | 499.5<br>499.5<br>499.5                                   | 0.31<br>0.63<br>0.31                         |
| 11                    | ECOLI<br>PSA                              | 200<br>100<br>1200                       | 800<br>1600                                          | 0.5<br>0.5<br>0.5<br>0.5               | 499.5<br>499.5<br>499.5<br>499.5                          | 0.31<br>0.63<br>0.31                         |
| 11<br>11              | ECOLI<br>PSA<br>PC                        | 200<br>100<br>1200<br>1800<br>100        | 800<br>1600<br>1600                                  | 0.5<br>0.5<br>0.5<br>0.5               | 499.5<br>499.5<br>499.5<br>499.5                          | 0.31<br>0.63<br>0.31<br>0.31                 |
| 10<br>01<br>01        | ECOLI<br>PSA<br>PC<br>CAN                 | 200<br>100<br>1200<br>1800               | 800<br>1600<br>1600                                  | 0.5<br>0.5<br>0.5<br>0.5               | 499.5<br>499.5<br>499.5<br>499.5                          | 0.31<br>0.63<br>0.31                         |
| 10<br>01<br>01        | ECOLI<br>PSA<br>PC<br>CAN                 | 200<br>100<br>1200<br>1800<br>100        | 800<br>1600<br>1600                                  | 0.5<br>0.5<br>0.5<br>0.5               | 499.5<br>499.5<br>499.5<br>499.5                          | 0.31<br>0.63<br>0.31<br>0.31                 |
| 10<br>01<br>01        | ECOLI<br>PSA<br>PC<br>CAN                 | 200<br>100<br>1200<br>1800<br>100        | 800<br>1600<br>1600<br>16000                         | 0.5<br>0.5<br>0.5<br>0.5<br>0.5        | 499.5<br>499.5<br>499.5<br>499.5<br>499.5                 | 0.31<br>0.63<br>0.31<br>0.31<br>0.04         |
| 10<br>01<br>01<br>01  | ECOLI<br>PSA<br>PC<br>CAN<br>AN           | 200<br>100<br>1200<br>1800<br>100        | 800<br>1600<br>1600                                  | 0.5<br>0.5<br>0.5<br>0.5               | 499.5<br>499.5<br>499.5<br>499.5                          | 0.31<br>0.63<br>0.31<br>0.31                 |
| " " " " Use Level     | ECOLI PSA PC CAN AN Organism              | 200<br>100<br>1200<br>1800<br>100        | 800<br>1600<br>16000<br>16000                        | 0.5<br>0.5<br>0.5<br>0.5<br>0.5        | 499.5<br>499.5<br>499.5<br>499.5<br>499.5<br>499.5        | 0.31<br>0.63<br>0.31<br>0.04<br>0.04         |
| " " " Use Level 0.10% | ECOLI PSA PC CAN AN Organism SA           | 200<br>100<br>1200<br>1800<br>100<br>100 | 800<br>1600<br>16000<br>16000                        | 0.5<br>0.5<br>0.5<br>0.5<br>0.5        | 499.5<br>499.5<br>499.5<br>499.5<br>499.5<br>499.5        | 0.31<br>0.63<br>0.31<br>0.04<br>0.04<br>0.04 |
| Use Level             | ECOLI PSA PC CAN AN Organism SA ECOLI     | 200<br>100<br>1200<br>1800<br>100<br>100 | 800<br>1600<br>16000<br>16000<br>0<br>0<br>0<br>1600 | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 499.5<br>499.5<br>499.5<br>499.5<br>499.5<br>499.5<br>999 | 0.31<br>0.63<br>0.31<br>0.31<br>0.04<br>0.04 |
| " " " Use Level 0.10% | ECOLI PSA PC CAN AN Organism SA ECOLI PSA | 200 100 1200 1800 100 100  200 100 1200  | 800<br>1600<br>16000<br>16000<br>16000               | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 499.5<br>499.5<br>499.5<br>499.5<br>499.5<br>499.5        | 0.31<br>0.63<br>0.31<br>0.04<br>0.04<br>0.04 |

| <u> </u>  | 01 401110111 | ×a   | ¥b    | YA |      | 91   |  |
|-----------|--------------|------|-------|----|------|------|--|
| 0.20%     | SA           | 200  | 1600  | 2  | 1998 | 1.26 |  |
| H .       | ECOLI        | 100  | 800   | 2  | 1998 | 2.52 |  |
| ti        | PSA          | 1200 | 1600  | 2  | 1998 | 1.25 |  |
| ff .      | PC           | 1800 | 1600  | 2  | 1998 | 1.25 |  |
| 11        | CAN          | 100  | 16000 | 2  | 1998 | 0.14 |  |
| <b>11</b> | AN           | 100  | 16000 | 2  | 1998 | 0.14 |  |
|           |              |      |       |    |      |      |  |

| <u>Use Level</u> | Organism | O <sub>a</sub> | O <sub>b</sub> | O <sub>A</sub> | Q <sub>B</sub> | SI   |  |
|------------------|----------|----------------|----------------|----------------|----------------|------|--|
| 0.40%            | SA       | 200            | 1600           | 4              | 3996           | 2.52 |  |
| <b>t1</b>        | ECOLI    | 100            | 800            | 4              | 3996           | 5.04 |  |
| 11               | PSA      | 1200           | 1600           | 4              | 3996           | 2.50 |  |
| <b>61</b>        | PC       | 1800           | 1600           | 4              | 3996           | 2.50 |  |
| tt               | CAN      | 100            | 16000          | 4              | 3996           | 0.29 |  |
| 11               | AN       | 100            | 16000          | 4              | 3996           | 0.29 |  |

| <u>Use Level</u> | Organism | O <sub>a</sub> | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|----------------|----------------|----------------|----------------|------|
| 0.50%            | SA       | 200            | 1600           | 5              | 4995           | 3.15 |
| 11               | ECOLI    | 100            | 800            | 5              | 4995           | 6.29 |
| 11               | PSA      | 1200           | 1600           | 5              | 4995           | 3.13 |
| 11               | PC       | 1800           | 1600           | 5              | 4995           | 3.12 |
| tt               | CAN      | 100            | 16000          | 5              | 4995           | 0.36 |
| 11               | AN       | 100            | 16000          | 2.5            | 4997.5         | 0.36 |

TABLE 10
500:1 Wt. Ratio DMDMH/IPBC

| <u>Use Level</u>                              | Organism                                          | Q <sub>a</sub> _                         | O <sub>b</sub>                                      | Q <sub>A</sub>                            | O <sub>B</sub>                                             | SI                                                   |
|-----------------------------------------------|---------------------------------------------------|------------------------------------------|-----------------------------------------------------|-------------------------------------------|------------------------------------------------------------|------------------------------------------------------|
| 0.01%                                         | SA                                                | 200                                      | 1600                                                | 0.2                                       | 99.8                                                       | 0.06                                                 |
| **                                            | ECOLI                                             | 100                                      | 800                                                 | 0.2                                       | 99.8                                                       | 0.13                                                 |
| 11                                            | PSA                                               | 1200                                     | 1600                                                | 0.2                                       | 99.8                                                       | 0.06                                                 |
| 25                                            | PC                                                | 1800                                     | 1600                                                | 0.2                                       | 99.8                                                       | 0.06                                                 |
| 87                                            | CAN                                               | 100                                      | 16000                                               | 0.2 <sup>.</sup>                          | 99.8                                                       | 0.01                                                 |
| **                                            | AN                                                | 100                                      | 16000                                               | 0.2                                       | 99.8                                                       | 0.01                                                 |
|                                               |                                                   |                                          |                                                     |                                           |                                                            |                                                      |
| IIaa Tawal                                    | Organian                                          | 0                                        | 0                                                   | •                                         | •                                                          | CT                                                   |
|                                               | Organism                                          | O <sub>a</sub> _                         | O <sub>b</sub>                                      | Q <sub>A</sub> .                          | O <sub>B</sub>                                             | SI                                                   |
| 0.25%                                         | SA                                                | 200                                      | 1600                                                | 0.5                                       | 249.5                                                      | 0.16                                                 |
| •••                                           | ECOLI                                             | 100                                      | 800                                                 | 0.5                                       | 249.5                                                      | 0.32                                                 |
| 11                                            | PSA                                               | 1200                                     | 1600                                                | 0.5                                       | 249.5                                                      | 0.16                                                 |
| ••                                            | PC                                                | 1800                                     | 1600                                                | 0.5                                       | 249.5                                                      | 0.16                                                 |
| 11                                            | CAN                                               | 100                                      | 16000                                               | 0.5                                       | 249.5                                                      | 0.02                                                 |
|                                               |                                                   |                                          |                                                     | $\Lambda$                                 | 2/10 6                                                     | ח חים                                                |
|                                               | AN                                                | 100                                      | 16000                                               | 0.5                                       | 249.5                                                      | 0.02                                                 |
|                                               | AN                                                | 100                                      | 18000                                               | 0.5                                       | 249.3                                                      | 0.02                                                 |
|                                               |                                                   |                                          |                                                     |                                           |                                                            |                                                      |
| <u>Use Level</u>                              | Organism                                          | <u> </u>                                 | aO <sub>b</sub> _                                   |                                           | O <sub>A</sub> O                                           | <sub>B</sub> SI                                      |
|                                               | Organism<br>SA                                    | <u> </u>                                 | 2 <u>0</u> 5                                        | 1                                         | O <sub>A</sub> O                                           | B SI<br>0.32                                         |
| Use Level                                     | Organism                                          | <u>0</u><br>200<br>100                   | aO <sub>b</sub> _                                   | 1<br>1                                    | O <sub>A</sub> O<br>499<br>499                             | B SI<br>0.32<br>0.63                                 |
| Use Level 0.05%                               | Organism<br>SA<br>ECOLI                           | <u> </u>                                 | 0 <sub>b</sub><br>1600<br>800                       | 1<br>1<br>1                               | O <sub>A</sub> O                                           | B SI<br>0.32                                         |
| Use Level 0.05%                               | Organism<br>SA<br>ECOLI<br>PSA                    | 0,<br>200<br>100<br>1200                 | 1600<br>800<br>1600                                 | 1<br>1<br>1<br>1                          | O <sub>A</sub> O<br>499<br>499<br>499                      | B SI 0.32 0.63 0.31                                  |
| Use Level 0.05% " "                           | Organism SA ECOLI PSA PC                          | 200<br>100<br>1200<br>1800               | 0 <sub>b</sub><br>1600<br>800<br>1600               | 1<br>1<br>1<br>1                          | O <sub>A</sub> O<br>499<br>499<br>499<br>499               | B SI<br>0.32<br>0.63<br>0.31<br>0.31                 |
| Use Level 0.05% " " "                         | Organism SA ECOLI PSA PC CAN                      | 200<br>100<br>1200<br>1800<br>100        | 1600<br>800<br>1600<br>1600<br>16000                | 1<br>1<br>1<br>1                          | O <sub>A</sub> O<br>499<br>499<br>499<br>499<br>499        | B SI 0.32 0.63 0.31 0.31                             |
| Use Level 0.05% " " "                         | Organism SA ECOLI PSA PC CAN                      | 200<br>100<br>1200<br>1800<br>100        | 1600<br>800<br>1600<br>1600<br>16000                | 1<br>1<br>1<br>1                          | O <sub>A</sub> O<br>499<br>499<br>499<br>499<br>499        | B SI 0.32 0.63 0.31 0.31                             |
| Use Level 0.05% " " " " "                     | Organism SA ECOLI PSA PC CAN                      | 200<br>100<br>1200<br>1800<br>100        | 1600<br>800<br>1600<br>1600<br>16000                | 1<br>1<br>1<br>1                          | O <sub>A</sub> O<br>499<br>499<br>499<br>499<br>499        | B SI 0.32 0.63 0.31 0.31                             |
| Use Level 0.05% " " " " "                     | Organism SA ECOLI PSA PC CAN AN                   | 200<br>100<br>1200<br>1800<br>100        | 1600<br>800<br>1600<br>1600<br>16000                | 1<br>1<br>1<br>1<br>1                     | O <sub>A</sub> O<br>499<br>499<br>499<br>499<br>499        | B SI<br>0.32<br>0.63<br>0.31<br>0.31<br>0.04<br>0.04 |
| Use Level 0.05% " " " " " " " " " "           | Organism SA ECOLI PSA PC CAN AN                   | 0,<br>200<br>100<br>1200<br>1800<br>100  | 1600<br>800<br>1600<br>1600<br>16000                | 1<br>1<br>1<br>1<br>1                     | O <sub>A</sub> O<br>499<br>499<br>499<br>499<br>499        | B SI 0.32 0.63 0.31 0.31 0.04 0.04                   |
| Use Level 0.05% " " " " " Use Level 0.10%     | Organism SA ECOLI PSA PC CAN AN Organism          | 200<br>100<br>1200<br>1800<br>100        | Q <sub>b</sub> 1600 800 1600 16000 16000            | 1<br>1<br>1<br>1<br>1<br>1<br>2<br>2      | O <sub>A</sub> O<br>499<br>499<br>499<br>499<br>499<br>499 | B SI<br>0.32<br>0.63<br>0.31<br>0.31<br>0.04<br>0.04 |
| Use Level 0.05% " " " " " " Use Level 0.10% " | Organism SA ECOLI PSA PC CAN AN Organism SA ECOLI | 200<br>100<br>1200<br>1800<br>100<br>100 | 0<br>1600<br>800<br>1600<br>16000<br>16000<br>16000 | 1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2 | O <sub>A</sub> O<br>499<br>499<br>499<br>499<br>499<br>499 | B SI<br>0.32<br>0.63<br>0.31<br>0.04<br>0.04         |

100 16000 2 998 0.08

AN

#### TABLE 10 (CONT)

| <u>Use Level</u> | Organism | Q <sub>a</sub> _ | O <sub>b</sub> | Q <sub>A</sub> | Q <sub>B</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.20%            | SA       | 200              | 1600           | 4              | 1996           | 1.27 |
| 89               | ECOLI    | 100              | 800            | 4              | 1996           | 2.54 |
| 11               | PSA      | 1200             | 1600           | 4              | 1996           | 1.25 |
| 11               | PC       | 1800             | 1600           | 4              | 1996           | 1.25 |
| TT .             | CAN      | 100              | 16000          | 4              | 1996           | 0.16 |
| **               | AN       | 100              | 16000          | 4              | 1996           | 0.16 |

| <u>Use Level</u> | Organism | O <sub>a</sub> | Q <sub>b</sub> | Q <sub>A</sub> | O <sub>R</sub> | SI   |
|------------------|----------|----------------|----------------|----------------|----------------|------|
| 0.40%            | SA       | 200            | 1600           | 8              | 3992           | 2.54 |
| H                | ECOLI    | 100            | 800            | 8              | 3992           | 5.07 |
| 11               | PSA      | 1200           | 1600           | 8              | 3992           | 2.50 |
| 11               | PC       | 1800           | 1600           | 8              | 3992           | 2.50 |
| **               | CAN      | 100            | 16000          | 8              | 3992           | 0.33 |
| ***              | AN       | 100            | 16000          | 8              | 3992           | 0.33 |

| <u>Use Level</u> | Organism | Q <sub>a</sub> | <u> </u> | O <sub>A</sub> | O <sub>R</sub> | sı   |
|------------------|----------|----------------|----------|----------------|----------------|------|
| 0.50%            | SA       | 200            | 1600     | 10             | 4900           | 3.11 |
| **               | ECOLI    | 100            | 800      | 10             | 4900           | 6.23 |
| **               | PSA      | 1200           | 1600     | 10             | 4900           | 3.07 |
|                  | PC       | 1800           | 1600     | 10             | 4900           | 3.07 |
| 17               | CAN      | 100            | 16000    | 10             | 4900           | 0.41 |
| **               | AN       | 100            | 16000    | 10             | 4900           | 0.41 |

TABLE 11
200:1 Wt. Ratio DMDMH/IPBC

| <u>Use I</u>                | Level Organ                                   | nism O <sub>a</sub>                                            | Q <sub>b</sub>                                                         | O <sub>A</sub>                                     | Q <sub>B</sub>                                                   | sı                                                                 |  |
|-----------------------------|-----------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--|
| 0.018                       | s SA                                          | 200                                                            | 1600                                                                   | 0.5                                                | 99.5                                                             | 0.06                                                               |  |
| ***                         | ECOLI                                         | 100                                                            | 800                                                                    | 0.5                                                | 99.5                                                             | 0.13                                                               |  |
| 11                          | PSA                                           | 1200                                                           | 1600                                                                   | 0.5                                                | 99.5                                                             | 0.06                                                               |  |
| 51                          | PC                                            | 1800                                                           | 1600                                                                   | 0.5                                                | 99.5                                                             | 0.06                                                               |  |
| 11                          | CAN                                           | 100                                                            | 16000                                                                  | 0.5                                                | 99.5                                                             | 0.01                                                               |  |
| **                          | AN                                            | 100                                                            | 16000                                                                  | 0.5                                                | 99.5                                                             | 0.01                                                               |  |
|                             |                                               |                                                                |                                                                        |                                                    |                                                                  |                                                                    |  |
|                             |                                               |                                                                |                                                                        |                                                    |                                                                  |                                                                    |  |
| <u>Use I</u>                | evel Organ                                    | nism O <sub>a</sub>                                            | Q <sub>b</sub>                                                         | O <sub>A</sub>                                     | O <sub>B</sub>                                                   | SI                                                                 |  |
| 0.025                       | SA SA                                         | 200                                                            | 1600                                                                   | 1.25                                               | 248.75                                                           | 0.16                                                               |  |
| 11                          | ECOLI                                         | 100                                                            | 800                                                                    | 1.25                                               | 248.75                                                           | 0.32                                                               |  |
| **                          | PSA                                           | 1200                                                           | 1600                                                                   | 1.25                                               | 248.75                                                           | 0.16                                                               |  |
| 11                          | PC                                            | 1800                                                           | 1600                                                                   | 1.25                                               | 248.75                                                           | 0.16                                                               |  |
| **                          | CAN                                           | 100                                                            | 16000                                                                  | 1.25                                               | 248.75                                                           | 0.03                                                               |  |
| **                          | AN                                            | 100                                                            | 16000                                                                  | 1.25                                               | 248.75                                                           | 0.03                                                               |  |
|                             |                                               |                                                                |                                                                        |                                                    |                                                                  |                                                                    |  |
|                             |                                               |                                                                |                                                                        |                                                    |                                                                  |                                                                    |  |
|                             |                                               |                                                                |                                                                        |                                                    |                                                                  |                                                                    |  |
| <u>Use I</u>                | evel Organ                                    | nism <u>O</u> a-                                               | O <sub>b</sub>                                                         | O <sub>A</sub> _                                   | O <sub>B</sub> _                                                 | SI                                                                 |  |
| <u>Use I</u>                |                                               | nism <u>O</u> a<br>200                                         | <u>Q</u> b<br>1600                                                     | O <sub>A</sub> _<br>2.5                            | <u>O<sub>B</sub></u>                                             | SI<br>0.32                                                         |  |
|                             |                                               |                                                                | _                                                                      | ••                                                 | . –                                                              |                                                                    |  |
| 0.05%                       | SA                                            | 200                                                            | 1600                                                                   | 2.5                                                | 497.5                                                            | 0.32                                                               |  |
| 0.05%                       | SA<br>ECOLI                                   | 200<br>100                                                     | 1600<br>800                                                            | 2.5<br>2.5                                         | 497.5                                                            | 0.32                                                               |  |
| 0.05%<br>"                  | SA<br>ECOLI<br>PSA                            | 200<br>100<br>1200                                             | 1600<br>800<br>1600                                                    | 2.5<br>2.5<br>2.5                                  | 497.5<br>497.5<br>497.5                                          | 0.32<br>0.65<br>0.31                                               |  |
| 0.05%                       | SA<br>ECOLI<br>PSA<br>PC                      | 200<br>100<br>1200<br>1800                                     | 1600<br>800<br>1600<br>1600                                            | 2.5<br>2.5<br>2.5<br>2.5                           | 497.5<br>497.5<br>497.5<br>497.5                                 | 0.32<br>0.65<br>0.31<br>0.31                                       |  |
| 0.05%                       | SA<br>ECOLI<br>PSA<br>PC<br>CAN               | 200<br>100<br>1200<br>1800<br>100                              | 1600<br>800<br>1600<br>1600                                            | 2.5<br>2.5<br>2.5<br>2.5<br>2.5                    | 497.5<br>497.5<br>497.5<br>497.5<br>497.5                        | 0.32<br>0.65<br>0.31<br>0.31                                       |  |
| 0.05%                       | SA<br>ECOLI<br>PSA<br>PC<br>CAN               | 200<br>100<br>1200<br>1800<br>100                              | 1600<br>800<br>1600<br>1600                                            | 2.5<br>2.5<br>2.5<br>2.5<br>2.5                    | 497.5<br>497.5<br>497.5<br>497.5<br>497.5                        | 0.32<br>0.65<br>0.31<br>0.31                                       |  |
| 0.05%                       | SA ECOLI PSA PC CAN AN                        | 200<br>100<br>1200<br>1800<br>100                              | 1600<br>800<br>1600<br>1600<br>16000                                   | 2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5             | 497.5<br>497.5<br>497.5<br>497.5<br>497.5                        | 0.32<br>0.65<br>0.31<br>0.31<br>0.06                               |  |
| 0.05% " " " " " "           | SA ECOLI PSA PC CAN AN                        | 200<br>100<br>1200<br>1800<br>100<br>100                       | 1600<br>800<br>1600<br>16000<br>16000                                  | 2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5      | 497.5<br>497.5<br>497.5<br>497.5<br>497.5                        | 0.32<br>0.65<br>0.31<br>0.31<br>0.06<br>0.06                       |  |
| 0.05% " " " " " " " Use I   | SA ECOLI PSA PC CAN AN Level Organ            | 200<br>100<br>1200<br>1800<br>100<br>100                       | 1600<br>800<br>1600<br>16000<br>16000                                  | 2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5      | 497.5<br>497.5<br>497.5<br>497.5<br>497.5<br>497.5               | 0.32<br>0.65<br>0.31<br>0.31<br>0.06<br>0.06                       |  |
| 0.05% " " " " " " " Use I   | ECOLI PSA PC CAN AN  Level Organ SA ECOLI     | 200<br>100<br>1200<br>1800<br>100<br>100                       | 1600<br>800<br>1600<br>16000<br>16000<br>0 <sub>b</sub>                | 2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5      | 497.5<br>497.5<br>497.5<br>497.5<br>497.5<br>497.5               | 0.32<br>0.65<br>0.31<br>0.06<br>0.06<br>SI<br>0.65<br>1.29         |  |
| 0.05% " " " " Use I 0.10% " | ECOLI PSA PC CAN AN  Level Organ SA ECOLI PSA | 200<br>100<br>1200<br>1800<br>100<br>100<br>200<br>100<br>1200 | 1600<br>800<br>1600<br>16000<br>16000<br>0 <sub>b</sub><br>1600<br>800 | 2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>5 | 497.5<br>497.5<br>497.5<br>497.5<br>497.5<br>497.5<br>995<br>995 | 0.32<br>0.65<br>0.31<br>0.06<br>0.06<br>SI<br>0.65<br>1.29<br>0.63 |  |

# TABLE 11 (CONT)

| <u>Use Level</u> | Organism | O <sub>a</sub> _ | O <sub>b</sub> | O <sub>A</sub> | Q <sub>B</sub> | sı   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.20%            | SA       | 200              | 1600           | 10             | 1990           | 1.29 |
| 11               | ECOLI    | 100              | 800            | 10             | 1990           | 2.59 |
| 11               | PSA      | 1200             | 1600           | 10             | 1990           | 1.25 |
| 11               | PC       | 1800             | 1600           | 10             | 1990           | 1.25 |
| 11               | CAN      | 100              | 16000          | 10             | 1990           | 0.22 |
| **               | AN       | 100              | 16000          | 10             | 1990           | 0.22 |

| Use Level | Organism | Q <sub>a</sub> . | O <sub>b</sub> | O <sub>A</sub> | Q <sub>B</sub> | SI   |
|-----------|----------|------------------|----------------|----------------|----------------|------|
| 0.40%     | SA       | 200              | 1600           | 20             | 3980           | 2.59 |
| 91        | ECOLI    | 100              | 800            | 20             | 3980           | 5.18 |
| **        | PSA      | 1200             | 1600           | 20             | 3980           | 2.50 |
| 81        | PC       | 1800             | 1600           | 20             | 3980           | 2.50 |
| 91        | CAN      | 100              | 16000          | 20             | 3980           | 0.45 |
| 11        | AN       | 100              | 16000          | 20             | 3980           | 0.45 |

| <u>Use Level</u> | Organism | O <sub>a</sub> _ | Q <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |  |
|------------------|----------|------------------|----------------|----------------|----------------|------|--|
| 0.50%            | SA       | 200              | 1600           | 25             | 4975           | 3.23 |  |
| 10               | ECOLI    | 100              | 800            | 25             | 4975           | 6.47 |  |
| **               | PSA      | 1200             | 1600           | 25             | 4975           | 3.13 |  |
| **               | PC       | 1800             | 1600           | 25             | 4975           | 3.12 |  |
| 11               | CAN      | 100              | 16000          | 25             | 4975           | 0.56 |  |
| 11               | AN       | 100              | 16000          | 25             | 4975           | 0.56 |  |

TABLE 12
100:1 Wt. Ratio DMDMH/IPBC

| <u>Use Level</u> | Organism | Q <sub>a</sub> . | Q <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.01%            | SA       | 200              | 1600           | 1              | 99             | 0.07 |
| 11               | ECOLI    | 100              | 800            | 1              | 99             | 0.13 |
| 11               | PSA      | 1200             | 1600           | 1              | 99             | 0.06 |
| **               | PC       | 1800             | 1600           | 1              | 99             | 0.06 |
| 11               | CAN      | 100              | 16000          | 1              | 99             | 0.02 |
| 11               | AN       | 100              | 16000          | 1              | 99             | 0.02 |
|                  |          |                  |                |                |                |      |

| <u>Use Level</u> | Organism | O <sub>a</sub> | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|----------------|----------------|----------------|----------------|------|
| 0.025%           | SA       | 200            | 1600           | 2.5            | 248            | 0.17 |
| **               | ECOLI    | 100            | 800            | 2.5            | 248            | 0.33 |
| 11               | PSA      | 1200           | 1600           | 2.5            | 248            | 0.16 |
| 41               | PC       | 1800           | 1600           | 2.5            | 248            | 0.16 |
| 17               | CAN      | 100            | 16000          | 2.5            | 248            | 0.04 |
| 11               | AN       | 100            | 16000          | 2.5            | 248            | 0.04 |

| <u>Use Level</u> | Organism | Q <sub>a</sub> . | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.05%            | SA       | 200              | 1600           | 5              | 495            | 0.33 |
| 11               | ÉCOLI    | 100              | 800            | 5              | 495            | 0.67 |
| <b>H</b>         | PSA      | 1200             | 1600           | 5              | 495            | 0.31 |
| **               | PC       | 1800             | 1600           | 5 .            | 495            | 0.31 |
| 17               | CAN      | 100              | 16000          | 5              | 495            | 0.08 |
| 11               | AN       | 100              | 16000          | 5              | 495            | 0.08 |

# TABLE 12 (CONT)

| <u>Use Level</u> | Organism | Q <sub>a</sub>   | O <sub>b</sub> | Q <sub>A</sub> | Q <sub>B</sub> | si   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.10%            | SA       | 200              | 1600           | 10             | 990            | 0.67 |
| 11               | ECOLI    | 100              | 800            | 10             | 990            | 1.34 |
| 11               | PSA      | 1200             | 1600           | 10             | 990            | 0.63 |
| 87               | PC       | 1800             | 1600           | 10             | 990            | 0.62 |
| 11 -             | CAN      | 100              | 16000          | 10             | 990            | 0.16 |
| **               | AN       | 100              | 16000          | 10             | 990            | 0.16 |
|                  |          |                  |                |                | •              |      |
|                  |          | •                |                |                |                |      |
| <u>Use Level</u> | Organism | <u>O</u> a       | Q <sub>b</sub> | Q <sub>A</sub> | O <sub>B</sub> | si   |
| 0.20%            | SA       | 200              | 1600           | 20             | 1980           | 1.34 |
| 49               | ECOLI    | 100              | 800            | 20             | 1980           | 2.68 |
| **               | PSA      | 1200             | 1600           | 20             | 1980           | 1.25 |
| tt               | PC       | 1800             | 1600           | 20             | 1980           | 1.25 |
| 11               | CAN      | 100              | 16000          | 20             | 1980           | 0.32 |
| 11               | AN       | 100              | 16000          | 20             | 1980           | 0.32 |
|                  |          |                  |                |                |                |      |
|                  |          |                  |                |                |                |      |
| <u>Use Level</u> | Organism | O <sub>a</sub> . | o <sub>b</sub> | O <sub>A</sub> | <u>О</u> в     | SI   |
| 0.40%            | SA       | 200              | 1600           | 40             | 3960           | 2.68 |
| 11               | ECOLI    | 100              | 800            | 40             | 3960           | 5.35 |
| **               | PSA      | 1200             | 1600           | 40             | 3960           | 2.51 |
| ••               | PC       | 1800             | 1600           | 40             | 3960           | 2.50 |
| 11               | CAN      | 100              | 16000          | 40             | 3960           | 0.65 |
| **               | AN       | 100              | 16000          | 40             | 3960           | 0.65 |
|                  |          |                  |                |                |                |      |
| . *              |          |                  |                |                |                |      |
| Use Level        | Organism | O <sub>a</sub> _ | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.50%            | SA       | 200              | 1600           | 50             | 4950           | 3.34 |
| 11               | ECOLI    | 100              | 800            | 50             | 4950           | 6.69 |
| **               | PSA      | 1200             | 1600           | 50             | 4950           | 3.14 |
| 91               | PC       | 1800             | 1600           | 50             | 4950           | 3.12 |
| 17               | CAN      | 100              | 16000          | 50             | 4950           | 0.81 |
| **               | AN       | 100              | 16000          | 50             | 4950           | 0.81 |

0.13

.- 33 -

TABLE 13
50:1 Wt. Ratio DMDMH/IPBC

| <u>Use Level</u> | Organism | Q <sub>a</sub> . | <u>Q</u> <sub>b</sub> | Q <sub>h</sub> | O <sub>B</sub> | sı   |
|------------------|----------|------------------|-----------------------|----------------|----------------|------|
| 0.01%            | SA       | 200              | 1600                  | 2              | 98             | 0.07 |
| **               | ECOLI    | 100              | 800                   | 2              | 98             | 0.14 |
| 11               | PSA      | 1200             | 1600                  | 2              | 98             | 0.06 |
| **               | PC       | 1800             | 1600                  | 2              | 98             | 0.06 |
| 11               | CAN      | 100              | 16000                 | 2              | 98             | 0.03 |
| 11               | AN       | 100              | 16000                 | 2              | 98             | 0.03 |
|                  |          |                  |                       |                |                |      |
|                  |          |                  |                       |                |                |      |
| Use Level        | Organism | Q <sub>a</sub> _ | Q <sub>b</sub>        | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.025%           | SA       | 200              | 1600                  | 5              | 245            | 0.18 |
| 11               | ECOLI    | 100              | 800                   | 5              | 245            | 0.36 |
| **               | PSA      | 1200             | 1600                  | 5              | 245            | 0.16 |
| 11               | PC       | 1800             | 1600                  | 5              | 245            | 0.16 |
| <b>61</b>        | CAN      | 100              | 16000                 | 5              | 245            | 0.07 |
| 17               | AN       | 100              | 16000                 | 5              | 245            | 0.07 |
|                  |          |                  |                       |                |                |      |
|                  |          |                  |                       |                |                |      |
| <u>Use Level</u> | Organism | Q <sub>a</sub> _ | Q <sub>b</sub>        | O <sub>A</sub> | O <sub>B</sub> | si   |
| 0.05%            | SA       | 200              | 1600                  | 10             | 490            | 0.36 |
| 11               | ECOLI    | 100              | 800                   | 10             | 490            | 0.71 |
| 11               | PSA      | 1200             | 1600                  | 10             | 490            | 0.31 |
| 11               | PC       | 1800             | 1600                  | 10             | 490            | 0.31 |
| tt               | CAN      | 100              | 16000                 | 10             | 490            | 0.13 |

100 16000 10 490

AN

#### TABLE 13 (CONT)

| <u>Use Level</u> | <u>Organism</u> | O <sub>a</sub>   | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI        |
|------------------|-----------------|------------------|----------------|----------------|----------------|-----------|
| 0.10%            | SA              | 200              | 1600           | 20             | 980            | 0.71      |
| 11               | ECOLI           | 100              | 800            | 20             | 980            | 1.43      |
| 81               | PSA             | 1200             | 1600           | 20             | 980            | 0.63      |
| **               | PC              | 1800             | 1600           | 20             | 980            | 0.62      |
| **               | CAN             | 100              | 16000          | 20             | 980            | 0.26      |
| **               | AN              | 100              | 16000          | 20             | 980            | 0.26      |
| •                |                 |                  |                |                |                |           |
|                  |                 |                  |                |                |                |           |
| Use Level        | Organism        | Q <sub>a</sub> . | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | si        |
| 0.20%            | SA              | 200              | 1600           | 40             | 1960           | 1.43      |
| 81               | ECOLI           | 100              | 800            | 40             | 1960           | 2.85      |
| 66               | PSA             | 1200             | 1600           | 40             | 1960           | 1.26      |
| **               | PC              | 1800             | 1600           | 40             | 1960           | 1.25      |
| **               | CAN             | 100              | 16000          | 40             | 1960           | 0.52      |
| 11               | AN              | 100              | 16000          | 40             | 1960           | 0.52      |
|                  | •               |                  |                |                |                |           |
|                  |                 |                  |                |                |                |           |
| Use Level        | -               | O <sub>a</sub> _ | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI        |
| 0.40%            | SA              | 200              | 1600           | 80             | 3920           | 2.85      |
| ***              | ECOLI           | 100              | 800            | 80             | 3920           | 5.70      |
| 11               | PSA             | 1200             | 1600           | 80             | 3920           | 2.52      |
| **               | PC              | 1800             | 1600           | 80             | 3920           | 2.49      |
| <b>11</b>        | CAN             | 100              | 16000          | 80             | 3920           | 1.05      |
| 11               | AN              | 100              | 16000          | 80             | 3920           | 1.05      |
|                  |                 |                  |                |                |                |           |
| <u>Use Level</u> | Owanniam        | •                | _              |                | _              |           |
| 0.50%            | Organism<br>SA  | O <sub>a</sub> _ | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | <u>SI</u> |
| U.50%            |                 | 200              | 1600           | 100            | 4900           | 3.56      |
| **<br>\$1        | ECOLI           | 100              | 800            | 100            | 4900           | 7.13      |
| **               | PSA             | 1200             | 1600           | 100            | 4900           | 3.15      |
| **               | PC              | 1800             | 1600           | 100            | 4900           | 3.12      |
|                  | CAN             | 100              | 16000          | 100            | 4900           | 1.31      |
| 11               | AN              | 100              | 16000          | 100            | 4900           | 1.31      |

TABLE 14
20:1 Wt. Ratio DMDMH/IPBC

| <u>Use Level</u> | Organism | O <sub>a</sub>   | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | si   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.01%            | SA       | 200              | 1600           | 5              | 95             | 0.08 |
| II .             | ECOLI    | 100              | 800            | 5              | 95             | 0.17 |
| Ħ                | PSA      | 1200             | 1600           | 5              | 95             | 0.06 |
| <b>f1</b>        | PC       | 1800             | 1600           | 5              | 95             | 0.06 |
| **               | CAN      | 100              | 16000          | 5              | 95             | 0.06 |
| ***              | AN       | 100              | 16000          | 5              | 95             | 0.06 |
| <u>Use Level</u> | Organism | Q <sub>a</sub>   | Q <sub>b</sub> | O <sub>A</sub> | Q <sub>B</sub> | si   |
| 0.025%           | SA       | 200              | 1600           | 12.5           | 237.5          | 0.21 |
| 11               | ECOLI    | 100              | 800            | 12.5           | 237.5          | 0.42 |
| **               | PSA      | 1200             | 1600           | 12.5           | 237.5          | 0.16 |
| **               | PC       | 1800             | 1600           | 12.5           | 237.5          | 0.16 |
| **               | CAN      | 100              | 16000          | 12.5           | 237.5          | 0.14 |
| ti               | AN       | 100              | 16000          | 12.5           | 237.5          | 0.14 |
|                  | Organism | O <sub>a</sub> . | <u>o</u>       | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.05%            | SA       | 200              | 1600           | 25             | 475            | 0.42 |
| 11               | ECOLI    | 100              | 800            | 25             | 475            | 0.84 |
|                  | PSA      | 1200             | 1600           | 25             | 475            | 0.32 |
| 11               | PC       | 1800             | 1600           | 25             | 475            | 0.31 |
| 11               | CAN      | 100              | 16000          | 25             | 475            | 0.28 |
| 11               | AN       | 100              | 16000          | 25             | 475            | 0.28 |
| Use Level        | Organism | O <sub>a</sub>   | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
| 0.10%            | SA       | 200              | 1600           | 50             | 950            | 0.84 |
| ti               | ECOLI    | 100              | 800            | 50             | 950            | 1.69 |
| 11               | PSA      | 1200             | 1600           | 50             | 950            | 0.64 |
| 11               | PC       | 1800             | 1600           | 50             | 950            | 0.62 |
| 11               | CAN      | 100              | 16000          | 50             | 950            | 0.56 |
| 11               | AN       | 100              | 16000          | 50             | 950            | 0.56 |
|                  |          |                  |                |                |                |      |

TABLE 14 (CONT)

| <u>Use Level</u> | Organism | O <sub>a</sub>   | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | SI   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.20%            | SA       | 200              | 1600           | 100            | 1900           | 1.69 |
| <b>31</b>        | ECOLI    | 100              | 800            | 100            | 1900           | 3.38 |
| 11               | PSA      | 1200             | 1600           | 100            | 1900           | 1.27 |
| 11               | PC       | 1800             | 1600           | 100            | 1900           | 1.24 |
| 11               | CAN      | 100              | 16000          | 100            | 1900           | 1.12 |
| ti .             | AN       | 100              | 16000          | 100            | 1900           | 1.12 |
|                  |          |                  |                |                |                |      |
| Use Level        | Organism | O <sub>a</sub> _ | Q <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | si_  |
| 0.40%            | SA       | 200              | <b>160</b> 0   | 200            | 4800           | 4.00 |
| tt               | ECOLI    | 100              | 800            | 200            | 4800           | 8.00 |
| **               | PSA      | 1200             | 1600           | 200            | 4800           | 3.17 |

1600

16000

16000

200

200

200

4800

4800

4800

4750

3.11

2.30

2.30

2.80

| <u>Use Level</u> | Organism | Q <sub>a</sub> . | O <sub>b</sub> | O <sub>A</sub> | O <sub>B</sub> | sı   |
|------------------|----------|------------------|----------------|----------------|----------------|------|
| 0.50%            | SA       | 200              | 1600           | 250            | 4750           | 4.22 |
| 11               | ECOLI    | 100              | 800            | 250            | 4750           | 8.44 |
| 11               | PSA      | 1200             | 1600           | 250            | 4750           | 3.18 |
| Ħ                | PC       | 1800             | 1600           | 250            | 4750           | 3.11 |
| 11               | CAN      | 100              | 16000          | 250            | 4750           | 2.80 |
| 11               | AN       | 100              | 16000          | 250            | 4750           | 2.80 |

1800

100

100

PC

CAN

AN

Similar SI results also were found with GADM and SUTTOCIDE® A as the methylol compound in place of Germall® II or DMDMH in admixtures with IPBC over the same wt. ratios and use level ranges as shown in the Tables 1-14 above.

Tables 1 through 14 above illustrate the synergism of IPBC (compound B) with Germall® II or DMDMH (compound A) at weight ratios of A:B of 2000:1, 1000:1, 500:1, 200:1, 100:1, 50:1 and 20:1. Synergism is very effective for all ratios at low use levels, e.g. 0.01% to 0.1%, against all tested gram-positive, gram-negative organisms and fungi organisms. At slightly higher use concentrations, e.g. 0.20 to 0.50%, all tested ratios were synergistic against Candida albicans and A. niger also. However, at 50:1 and 20:1 ratios, the synergistic effect is negligible at the 0.01 to 0.1% use levels, and non-synergistic even against Candida albicans and A. niger at use levels of 0.20 to 0.50%.

The SI values were lower for Germall® II as the methylol compound in the admixtures as compared to DMDMH.

Similar results were obtained when iodopropynyl alcohol (IPGA) was substituted for IPBC in the admixtures described above.

#### 3. PRESERVATIVE ACTIVITY (CHALLENGE TEST)

A typical cosmetic emulsion was prepared for microbiological challenge testing and predetermined admixtures of a methylol compound and IPBC were added at various use levels. The emulsion thus prepared had the following composition:

| Phase A                   | ₹ wt. |
|---------------------------|-------|
| Stearic Acid              | 5.00  |
| Mineral Oil               | 2.50  |
| Cetyl Alcohol             | 1.00  |
| Lareth-5 and Ceteth-5 and |       |
| Oleth-5 and Steareth-5    | 0.50  |
| Glycerol Monostearate and |       |
| Polyoxyethylene Stearate  | 1.50  |

-----

To prepare the emulsion, Phases A and B were heated separately to 75-80°C. Phase A then was added to Phase B with mixing. The mixture then was cooled to 55-60°C. At this point the desired amount of the preservative admixture was added and the product was cooled to 50°C. While stirring. The citric acid solution then was added to adjust the pH and the mixture was stirred until a temperature of 30°C. was reached.

The challenge tests were carried out using the following microorganisms: SA, ECOLI, PSA, PC, AN and CAN, in this manner. 50 g. aliquots of the test emulsion containing various amounts of the preservative admixture were inoculated with approximately 107-108 of the challenge organisms. The test samples then were stirred to disperse the challenge inoculum. The samples were incubated and assayed at 48 hours, 7, 14, 21 and 28 days. The assays were performed on 1 g. of the test sample by serially diluting 101 to 106 of the original concentration. The plating medium for bacteria was Letheen agar and for fungi it was low pH Mycophil agar with Tween 20. Each plated sample was incubated for 48 hours at 37°C. for bacteria, 5 days at 25°C. for mold, and 3 days at 25°C. for fungi. After incubation, readings of the number of colonies per milliliter (cfu/ml) were made. At 21 days the test product was reinoculated with half of the original inoculum. data is presented in Tables 15-23 below.

|            |          |          | TABLE 15                |         |         |         |
|------------|----------|----------|-------------------------|---------|---------|---------|
|            |          | 2000     | 2000:1 GERMALL® II/IPBC | II/IPBC |         |         |
| Test Level | Organism | 48 Hours | 7 Days                  | 14 Days | 21 Days | 28 Days |
| 0.01%      | AN       | 000'69   | 260,000                 | 190,000 | 17,000  | 4,500   |
| =          | CAN      | 000'86   | 76,000                  | 1,400   | 3,100   | 19,000  |
| =          | ECOLI    | 110,000  | 290,000                 | 2,400   | 138,000 | 560,000 |
| =          | PC       | <10      | <10                     | <10     | <10     | <10     |
| =          | PSA      | <10      | <10                     | <10     | <10     | <10     |
| =          | SA       | 190,000  | 220                     | <10     | <10     | 3,700   |
|            |          |          |                         |         |         |         |
| Test Level | Organism | 48 Hours | 7 Days                  | 14 Days | 21 Days | 28 Days |
| 0.025%     | AN       | 2,800    | 10                      | 10      | <10     | 220     |
| =          | CAN      | 58,000   | 29,000                  | 18,000  | 26,000  | 110,000 |
| =          | ECOLI    | 39,000   | 10                      | <10     | <10     | <10     |
| 2          | PC       | <10      | <10                     | <10     | <10     | <10     |
| =          | PSA      | <10      | <10                     | <10     | <10     | <10     |
| =          | SA       | 37,000   | 170                     | <10     | <10     | <10     |
|            |          |          |                         |         |         |         |
| Test Level | Organism | 48 Hours | 7 Days                  | 14 Days | 21 Days | 28 Days |
| 0.05%      | AN       | 20       | <10                     | <10     | <10     | <10     |
| =          | CAN      | 19,000   | 6,600                   | 70      | <10     | 320     |
| =          | ECOLI    | 3,400    | <10                     | <10     | <10     | <10     |
| *          | PC       | <10      | <10                     | <10     | <10     | <10     |
| =          | PSA      | <10      | <10                     | <10     | <10     | <10     |
| =          | SA       | 31,000   | <10                     | <10     | <10     | <10     |

|                     |                 |           | TABLE 15 (CONT) | T         |         |         |
|---------------------|-----------------|-----------|-----------------|-----------|---------|---------|
| Test Level          | Organism        | 48 Hours  | 7 Days          | 14 Days   | 21 Days | 28 Days |
| 0.1%                | AN              | <10       | <10             | <10       | <10     | <10     |
| =                   | CAN             | 180       | <10             | <10       | <10     | <10     |
| =                   | ECOLI           | <10       | <10             | <10       | <10     | <10     |
| =                   | PC              | <10       | <10             | <10       | <10     | <10     |
| =                   | PSA             | <10       | <10             | <10       | <10     | <10     |
|                     | SA              | 750       | <10             | <10       | <10     | <10     |
|                     |                 |           |                 |           |         |         |
| Test Level          | <u>Organism</u> | 48 Hours  | 7 Days          | 14 Days   | 21 Days | 28 Days |
| 0.2%                | AN              | <10       | <10             | <10       | <10     | <10     |
| =                   | CAN             | <10       | <10             | <10       | <10     | <10     |
| <b>=</b> .          | ECOLI           | <10       | <10             | <10       | <10     | <10     |
| =                   | PC              | <10       | <10             | <10       | <10     | <10     |
| =                   | PSA             | <10       | <10             | <10       | <10     | <10     |
| =                   | SA              | <10       | <10             | <10       | <10     | <10     |
| Unpreserved control | ontrol          |           |                 |           |         |         |
| Organism            | 48 Hours        | 7 Days    | 14 Days         | 21 Days   | 28 Days | Ñ       |
| AN                  | 52,000          | 27,000    | 19,000          | 19,000    |         | 19,000  |
| CAN                 | 110,000         | 130,000   | 240,000         | П         | 2       | 000     |
| ECOLI               | 54,000          | 140,000   | 170,000         |           |         | 74,000  |
| PC                  | 6,400,000       | 6,400,000 | 2,000,000       | 6,700,000 |         | 29,000  |
| PSA                 | 110,000         | 200       | 110,000         | 290,000   |         | 85,000  |
| SA                  | 2,800,000       | 250,000   | 51,000          | 3,700     |         | 330     |

| CONT  |   |
|-------|---|
| _     | l |
| 15    |   |
| PABLE |   |
|       |   |

|                        |          |        |           |         |         |         |           |          |                         | 28 Days         | <10    | 6,400,000 | 000'009'6 | 33,000,000 | <10 | 2,000   |
|------------------------|----------|--------|-----------|---------|---------|---------|-----------|----------|-------------------------|-----------------|--------|-----------|-----------|------------|-----|---------|
|                        |          |        |           |         |         |         |           |          |                         | 21 Days         | 10     | 6,400     | 92,000    | 15,800     | <10 | <10     |
|                        |          |        |           |         |         |         |           |          | I/IPBC                  | 14 Days         | 80     | 950       | 93,000    | 1,600      | <10 | <10     |
|                        | 21 Days  | 53,000 | 1,900,000 | 170,000 | 87,000  | 390,000 | 200,000   | TABLE 16 | 1000:1 GERMALL® II/IPBC | 7 Days          | 3,500  | 24,000    | 63,000    | 25,000     | <10 | 1,400   |
|                        | 0 Hours  | 26,000 | 000,000   | 000,009 | 400,000 | 200,000 | 4,100,000 |          | 1000                    | 48 Hours        | 34,000 | 420,000   | 120,000   | 10         | <10 | 100,000 |
| entration              | O,       |        | 1,(       | 3,6     | 3,,     | 4,      | 4,4       |          |                         | <u>Organism</u> | AN     | CAN       | ECOLI     | PC         | PSA | SA      |
| Inoculum Concentration | Organism | AN     | CAN       | ECOLI   | PC      | PSA     | SA        |          |                         | Test Level      | 0.01%  |           | =         | =          | =   |         |

TABLE 16 (CONT)

| Test Level | Organism | 48 Hours | 7 Days | 14 Days | 21 Days | 28 Days |
|------------|----------|----------|--------|---------|---------|---------|
| 0.025%     | AN       | 530      | 10     | <10     | <10     | <10     |
| 2          | CAN      | 34,000   | 750    | 10      | 770     | 240,000 |
| =          | ECOLI    | 120,000  | <10    | <10     | <10     | <10     |
| =          | PC       | <10      | <10    | <10     | <10     | <1(     |
| =          | PSA      | <10      | <10    | <10     | <10     | <1(     |
| =          | SA       | 37,000   | 170    | <10     | <10     | <1(     |
|            | •        | ;        | 1      | . ,     |         | ,       |
| Test Level | Organism | 48 Hours | 7 Days | 14 Days | 21 Days | 28 Days |
| 0.05%      | AN       | <10.     | <10    | <10     | <10     | <10     |
| 2          | CAN      | 13,000   | <10    | <10     | <10     | <10     |
| <b>2</b>   | ECOLI    | 68,000   | <10    | <10     | <10     | <10     |
| =          | PC       | <10      | <10    | <10     | <10     | <1(     |
| =          | PSA      | <10      | <10    | <10     | <10     | <1(     |
| =          | SA       | 21,000   | <10    | <10     | <10     | <10     |
|            |          |          |        |         |         |         |
| Test Level | Organism | 48 Hours | 7 Days | 14 Days | 21 Days | 28 Days |
| 0.18       | AN       | <10      | <10    | <10     | <10     | <1(     |
| =          | CAN      | 10       | <10    | <10     | <10     | <1(     |
| =          | ECOLI    | <10      | <10    | <10     | <10     | <1(     |
| =          | PC       | <10      | <10    | <10     | <10     | <10     |
| 2          | PSA      | <10      | <10    | <10     | <10     | <1(     |
|            | SA       | 1,400    | <10    | <10     | <10     | <10     |

| NT |  |
|----|--|
| Ų  |  |
| ŭ  |  |
| _  |  |
| 50 |  |
| _  |  |
| ~  |  |
| 띡  |  |
| н  |  |
| Ф  |  |
| A. |  |
|    |  |

| Test Level             | Organism          | 48 Hours  | 7 Days    | 14 Days   | 21 Days | 28 Days | w) |
|------------------------|-------------------|-----------|-----------|-----------|---------|---------|----|
| 0.2%                   | AN                | <10       | <10       | <10       | <10     | <10     | 0  |
| =                      | CAN               | <10       | <10       | <10       | <10     | <10     | 0  |
| =                      | ECOLI             | <10       | <10       | <10       | <10     | <10     | 0  |
| =                      | PC                | <10       | <10       | <10       | <10     | <10     | 0  |
| =                      | PSA               | <10       | <10       | <10       | <10     | <10     | 0  |
| =                      | SA                | <10       | <10       | <10       | <10     | <10     | 0  |
| Unpreserved control    | control           |           |           |           |         |         |    |
| Organism               | 48 Hours          | 7 Days    | 14 Days   | 21 Days   | 28      | 28 Days |    |
| AN                     | 52,000            | 27,000    | 19,000    | 19,000    |         | 19,000  |    |
| CAN                    | 110,000           | 130,000   | 240,000   | 180,000   |         | 240,000 |    |
| ECOLI                  | 54,000            | 140,000   | 170,000   | 170,000   |         | 74,000  |    |
| PC                     | 6,400,000         | 6,400,000 | 2,000,000 | 6,700,000 |         | 29,000  |    |
| PSA                    | 110,000           | 700       | 110,000   | 290       | 290,000 | 85,000  |    |
| SA                     | 2,800,000         | 250,000   | 51,000    | e         | 3,700   | 330     |    |
| Inoculum Concentration | <u>sentration</u> |           |           |           |         |         |    |
| Organism               | 7                 | 0 Hours   | 21 Days   |           |         |         |    |
| AN                     |                   | 26,000    | 53,000    |           |         |         |    |
| CAN                    | 1,1               | 000,000,  | 1,900,000 |           |         |         |    |
| ECOLI                  | 3,(               | 000,009,  | 170,000   |           |         |         |    |
| PC                     | 3,                | ,400,000  | 87,000    |           |         |         |    |
| PSA                    | 4,                | ,500,000  | 390,000   |           |         |         |    |
| SA                     | 4,                | ,100,000  | 200,000   |           |         |         |    |

|                |                 |          | TABLE 17           |         |         |      |
|----------------|-----------------|----------|--------------------|---------|---------|------|
|                |                 | 500:1    | 1 GERMALL® II/IPBC | I/IPBC  |         |      |
| Test Level     | Organism        | 48 Hours | 7 Days             | 14 Days | 21 Days | 2    |
| 0.01%          | AN              | 23,000   | 40                 | <10     | <10     |      |
| =              | CAN             | 170,000  | 2,600              | 290     | 200     |      |
| =              | ECOLI           | 000'06   | 57,000             | 95,000  | 70,000  | 8    |
| =              | PC              | 10       | . <10              | <10     | >10,000 | 42,0 |
| =              | PSA             | <10      | <10                | <10     | <10     |      |
| =              | SA              | 380,000  | 440                | <10     | <10     |      |
|                |                 |          |                    |         |         |      |
| Test Level     | Organism        | 48 Hours | 7 Days             | 14 Days | 21 Days | 2    |
| 0.05%          | AN              | <10      | <10                | <10     | <10     |      |
| о.<br><b>8</b> | CAN             | 8,700    | <10                | <10     | <10     |      |
|                | ECOLI           | 60,000   | <10                | <10     | <10     |      |
| =              | PC              | <10      | <10                | <10     | <10     |      |
| =              | PSA             | <10      | <10                | <10     | <10     |      |
| =              | SA              | 31,000   | <10                | <10     | <10     |      |
|                |                 |          |                    |         |         |      |
| Test Level     | <u>Organism</u> | 48 Hours | 7 Days             | 14 Days | 21 Days | 7    |
| 0.1%           | AN              | <10      | <10                | <10     | <10     |      |
| =              | CAN             | <10      | <10                | <10     | <10     |      |
| =              | ECOLI           | <10      | <10                | <10     | <10     |      |
| =              | PC              | <10      | <10                | <10     | <10     |      |
| =              | PSA             | <10      | <10                | <10     | <10     |      |
| =              | SA              | 890      | <10                | <10     | <10     |      |
|                |                 |          |                    |         |         |      |

| _          |   |
|------------|---|
| (CONT)     |   |
| -          |   |
| ~          |   |
| O          | 1 |
| <i>-</i> \ | ı |
| v          | ı |
| •          |   |
|            |   |
| 17         |   |
| Н          | I |
| 臼          |   |
| TABLE      |   |
| Д          |   |
| 4          | ı |
| ы          | 1 |
|            |   |

| 28 Days         | <10  | <10 | <10   | <10 | <10 | <10 |                     |          |         |           |           |             |          |            |                        |          |           |            |           |           |          |           |
|-----------------|------|-----|-------|-----|-----|-----|---------------------|----------|---------|-----------|-----------|-------------|----------|------------|------------------------|----------|-----------|------------|-----------|-----------|----------|-----------|
| 21 Days 2       | <10  | <10 | <10   | <10 | <10 | <10 |                     | 28 Days  | 11,000  | 64,000    | 120,000   | 000'009'6   | >100,000 | <10        |                        |          |           |            |           |           |          |           |
| 21              |      |     |       |     |     |     |                     | 21 Days  | 2,000   | 12,000    | 350,000   | 2,720,000   | 4,100    | 220        |                        |          | -         |            |           |           |          |           |
| 14 Days         | <10  | <10 | <10   | <10 | <10 | <10 |                     | 21       |         |           |           | 7           |          |            |                        |          |           |            |           |           |          |           |
| 7 Days          | <10  | <10 | <10   | <10 | <10 | <10 |                     | 14 Days  | 18,000  | 95,000    | 610,000   | 3,600,000   | 130      | 1,000      |                        | 21 Days  | 4,700,000 | 16,000,000 | 1,480,000 | 1,380,000 | 730,000  | 360,000   |
| 48 Hours        | <10  | <10 | <10   | <10 | <10 | <10 |                     | 7 Days   | 520,000 | 710,000   | 6,200,000 | 160,000,000 | 006      | 000'009    |                        | 0 Hours  | 19,000    | 340,000    | 000,006,  | ,800,000  | ,200,000 | , 800,000 |
| <u>Organism</u> | AN   | CAN | ECOLI | PC  | PSA | SA  | control             | 48 Hours | 6,100   | 1,000,000 | 7,100,000 | 14,600,000  | 20       | 43,000,000 | <u>icentration</u>     |          |           |            | 3,        | 3,        | 6        | 4         |
| Test L vel      | 0.2% | =   | =     | =   | =   |     | Unpreserved control | Organism | AN      | CAN       | ECOLI     | PC          | PSA      | SA         | Inoculum Concentration | Organism | AN        | CAN        | ECOLI     | PC        | PSA      | SA        |

|            |          |          | TABLE 18               |           |           |            |
|------------|----------|----------|------------------------|-----------|-----------|------------|
|            |          | 200      | 200:1 GERMALL® II/IPBC | I/IPBC    |           |            |
| Test Level | Organism | 48 Hours | 7 Days                 | 14 Days   | 21 Days   | 28 Days    |
| 0.01%      | AN       | 47,000   | 320                    | 10        | <10       | <10        |
| =          | CAN      | 810,000  | 450,000                | 410,000   | 190,000   | 63,000     |
| =          | ECOLI    | 220,000  | 7,600                  | <10       | 850       | >1,000,000 |
| =          | PC       | 10,000   | 200,000                | 1,900,000 | 1,100,000 | 193,000    |
| =          | PSA      | <10      | <10                    | <10       | <10       | <10        |
|            | SA       | 190,000  | 23,000                 | 120       | <10       | <10        |
|            |          |          |                        |           |           |            |
| Test Level | Organism | 48 Hours | 7 Days                 | 14 Days   | 21 Days   | 28 Days    |
| 0.05%      | AN       | <10      | <10                    | <10       | <10       | <10        |
| =          | CAN      | 190      | <10                    | <10       | <10       | <10        |
| =          | ECOLI    | 37,000   | <10                    | <10       | <10       | <10        |
| =          | PC       | <10      | <10                    | <10       | <10       | <10        |
| =          | PSA      | <10      | <10                    | <10       | <10       | <10        |
| to 00      | SA       | 19,000   | <10                    | <10       | <10       | <10        |
|            |          |          |                        |           |           |            |
| Test Level | Organism | 48 Hours | 7 Days                 | 14 Days   | 21 Days   | 28 Days    |
| 0.18       | AN       | <10      | <10                    | <10       | <10       | <10        |
| = -        | CAN      | 10       | <10                    | <10       | <10       | <10        |
| =          | ECOLI    | <10      | <10                    | <10       | <10       | <10        |
| =          | PC       | <10      | <10                    | <10       | <10       | <10        |
| =          | PSA      | <10      | <10                    | <10       | <10       | <10        |
| =          | SA       | 45,000   | <10                    | <10       | <10       | <10        |

| CONT) |
|-------|
| 18    |
| 当     |
| TAB.  |

| 21 Days 28 Days | <10        | <10     | <10     | <10   | <10 | 7   | 017     | 28 Davs             |          |        | o            |         | 2,7        | ል<br>4  | 580       |                        |          |        |           |                |           |           |     |
|-----------------|------------|---------|---------|-------|-----|-----|---------|---------------------|----------|--------|--------------|---------|------------|---------|-----------|------------------------|----------|--------|-----------|----------------|-----------|-----------|-----|
| 7 Days 14 Days  | <10 <10    | <10 <10 | <10 <10 |       |     |     | <10 <10 |                     |          | 22,000 | 430,000      | 410,000 | 7,000,000  | 200,000 | 11,000    |                        | 21 Days  | 32,000 | 1,100,000 | 1,300,000      | 3,000,000 | 4,900,000 |     |
| 48 Hours        | <10        | <10     | ,       | 017   | 01> | <10 | <10     |                     | 7 Days   | 32,000 | 670,000      | 360,000 | 3,200,000  | 9,400   | 190,000   |                        | 0 Hours  | 41,000 | 640       | 5,800,000      | 000,006   | 1,800,000 |     |
| ms i depart     | NA NA      | ALL O   | CAN     | ECOLI | PC  | PSA | SA      | 1 control           | 48 Hours | 000'68 | 210,000      | 640,000 | 19,000,000 | 80      | 6,300,000 | Inoculum Concentration |          |        |           | υ,             |           |           |     |
| F 4             | Test Level | 0.2%    | =       | **    | =   | =   | =       | Unpreserved control | Organism | AN     | na C<br>Na C | ECOT.T  | ם ככו      | PSA     | SA        | Inoculum C             | Organism | NA NA  | NKC NKC   | CAUN<br>PCOT.T | ב כמונים  | DGA       | GOL |

| Test L | Test L<br>0.05%<br>" |
|--------|----------------------|
|--------|----------------------|

| TO:                                     |          |          |        |         |         |         |
|-----------------------------------------|----------|----------|--------|---------|---------|---------|
| Taxar hear                              | Organism | 48 Hours | 7 Days | 14 Days | 21 Days | 28 Days |
| 0.01%                                   | AN       | 4,100    | 40     | <10     | <10     | <10     |
| =                                       | CAN      | 310,000  | 7,700  | 560     | 5,600   | 5.200   |
| 2                                       | ECOLI    | 170,000  | 710    | 10      | <10     | 120     |
| 2                                       | PC       | 7,400    | 74,000 | 340,000 | 720,000 | 520.000 |
| =                                       | PSA      | <10      | <10    | <10     | <10     | 30      |
| =                                       | SA       | 110,000  | 11,000 | <10     | <10     | 9,200   |
|                                         |          |          |        |         |         |         |
| Test Level                              | Organism | 48 Hours | 7 Days | 14 Days | 21 Days | 28 Days |
| 0.05%                                   | AN       | <10      | 100    | <10     | <10     | <10     |
| =                                       | CAN      | 210      | <10    | <10     | <10     | <10     |
| =                                       | ECOLI    | 150,000  | <10    | <10     | <10     | <10     |
| =                                       | PC       | <10      | <10    | <10     | <10     | <10     |
| =                                       | PSA      | <10      | <10    | <10     | <10     | <10     |
| =                                       | SA       | 35,000   | <10    | <10     | <10     | <10     |
| + + + + + + + + + + + + + + + + + + + + |          | ;        |        |         |         |         |
| Texer rever                             | Organism | 48 Hours | 7 Days | 14 Days | 21 Days | 28 Days |
| 0.1%                                    | AN       | <10      | <10    | <10     | <10     | <10     |
| I                                       | CAN      | <10      | <10    | <10     | <10     | <10     |
| -                                       | ECOLI    | 510      | <10    | <10     | <10     | <10     |
| =                                       | PC       | <10      | <10    | <10     | <10     | <10     |
| =                                       | PSA      | <10      | <10    | <10     | <10     | 01>     |
| =                                       | SA       | 3,000    | <10    | <10     | <10     | (T)     |
|                                         |          |          |        |         |         |         |

50:1 GERMALL® II/IPBC TABLE 19

| _1            |
|---------------|
| NT            |
| $\mathbf{Q}$  |
| O             |
| $\overline{}$ |
| 19            |
| 띡             |
| $\vdash$      |
| Ø             |
| AE            |
|               |

| Test Level             | Organism   | 48 Hours  | 7 Days    | 14 Days | 21 Days | 28 Days   |
|------------------------|------------|-----------|-----------|---------|---------|-----------|
| 0.2%                   | AN         | <10       | <10       | <10     | <10     | <10       |
| =                      | CAN        | <10       | <10       | <10     | <10     | <10       |
| =                      | ECOLI      | <10       | <10       | <10     | <10     | <10       |
| Ξ                      | PC         | <10       | <10       | <10     | <10     | <10       |
| =                      | PSA        | <10       | <10       | <10     | <10     | <10       |
| =                      | SA         | <10       | <10       | <10     | <10     | <10       |
| Unpreserved control    | ontrol     |           |           |         |         |           |
| Organism               | 48 Hours   | 7 Days    | 14 Days   | 21 Days | 28 Days | ays       |
| AN                     | 89,000     | 32,000    | 22,000    | 16,000  |         | 16,000    |
| CAN                    | 210,000    | 670,000   | 430,000   | 290,000 |         | 640,000   |
| ECOLI                  | 640,000    | 360,000   | 410,000   | 000'066 |         | 000'89    |
| PC                     | 19,000,000 | 3,200,000 | 7,000,000 | >10,000 |         | 2,760,000 |
| PSA                    | 80         | 9,400     | 200,000   | >10,000 |         | 34,000    |
| SA                     | 6,300,000  | 190,000   | 11,000    |         | 580     | 120       |
| Inoculum Concentration | entration  |           |           |         |         |           |
| Organism               |            | 0 Hours   | 21 Days   |         |         |           |
| AN                     |            | 41,000    | 32,000    |         |         |           |
| CAN                    |            | 640       | 1,100,000 |         |         |           |
| ECOLI                  | 5,         | 2,800,000 | 1,300,000 |         |         |           |
| PC                     |            | 000,006   | 3,000,000 |         |         |           |
| PSA                    | 1,         | ,800,000  | 4,900,000 |         |         |           |
| SA                     | 7,         | ,200,000  | 2,000,000 |         |         |           |

|            |          |          | TABLE 20              |           |            |         |
|------------|----------|----------|-----------------------|-----------|------------|---------|
|            |          | 20       | 20:1 GERMALL® II/IPBC | I/IPBC    |            |         |
| Test Level | Organism | 48 Hours | 7 Days                | 14 Days   | 21 Days    | 28 Days |
| 0.01%      | AN       | 3,100    | <10                   | <10       | <10        | <10     |
| =          | CAN      | 75,000   | 220                   | <10       | <10        | 2,400   |
| =          | ECOLI    | 160,000  | 110                   | <10       | <10        | . 50    |
| =          | PC       | 12,000   | 1,000,000             | 2,100,000 | >1,000,000 | 730,000 |
| =          | PSA      | <10      | <10                   | <10       | <10        | 4,000   |
| =          | SA       | 140,000  | 4,100                 | <10       | <10        | 1,680   |
|            |          |          |                       |           |            |         |
| Test Level | Organism | 48 Hours | 7 Days                | 14 Days   | 21 Days    | 28 Days |
| 0.05%      | AN       | <10      | <10                   | <10       | <10        | <10     |
| z          | CAN      | <10      | <10                   | <10       | <10        | <10     |
| =          | ECOLI    | 16,000   | <10                   | <10       | <10        | <10     |
| =          | PC       | <10      | <10                   | <10       | <10        | <10     |
| =          | PSA      | <10      | <10                   |           | <10        | <10     |
|            | SA       | 31,000   | <10                   | <10       | <10        | <10     |
|            |          |          |                       |           |            |         |
| Test Level | Organism | 48 Hours | 7 Days                | 14 Days   | 21 Days    | 28 Days |
| 0.1%       | AN       | <10      | <10                   | <10       | <10        | <10     |
| =          | CAN      | <10      | <10                   | <10       | <10        | <10     |
| =          | ECOLI    | <10      | <10                   | <10       | <10        | <10     |
| =          | PC       | <10      | <10                   | <10       | <10        | <10     |
| =          | PSA      | <10      | <10                   | <10       | <10        | <10     |
| 2          | SA       | 008'9    | <10                   | <10       | <10        | <10     |

| (CONT)   |  |
|----------|--|
| 20 (     |  |
| LABLE    |  |
| <u> </u> |  |

| Toxol Toxol            | Organism   | 48 Hours  | 7 Davs    | 14 Davs | 21 Days   | 28 Days |
|------------------------|------------|-----------|-----------|---------|-----------|---------|
| 0.2%                   | AN         | <10       | <10       | <10     | <10       | <10     |
| =                      | CAN        | <10       | <10       | <10     | <10       | <10     |
| =                      | ECOLI      | <10       | <10       | <10     | <10       | <10     |
| =                      | PC         | <10       | <10       | <10     | <10       | <10     |
| =                      | PSA        | <10       | <10       | <10     | <10       | <10     |
| =                      | SA         | <10       | <10       | <10     | <10       | <10     |
| Unpreserved control    | control    |           |           |         |           |         |
| Organism               | 48 Hours   | 7 Days    | 14 Days   | 21 Days | 28 Days   | en!     |
| AN                     | 000'68     | 32,000    | 22,000    | 16,000  | 16,000    | 000     |
| CAN                    | 210,000    | 670,000   | 430,000   | 290,000 | 640,000   | 000     |
| ECOLI                  | 640,000    | 360,000   | 410,000   | 000'066 | 000'89    | 000     |
| PC                     | 19,000,000 | 3,200,000 | 7,000,000 | >10,000 | 2,760,000 | 000     |
| PSA                    | 80         | 9,400     | 200,000   | >10,000 | 34,000    | 000     |
| SA                     | 6,300,000  | 190,000   | 11,000    | 580     |           | 120     |
| Inoculum Concentration | centration |           |           |         |           |         |
| Organism               | ~1         | 0 Hours   | 21 Days   |         |           |         |
| AN                     |            | 41,000    | 32,000    |         |           |         |
| CAN                    |            | 640       | 1,100,000 |         |           |         |
| ECOLI                  | 5,         | 800,000   | 1,300,000 |         |           |         |
| PC                     |            | 000,006   | 3,000,000 |         |           |         |
| PSA                    | 1,         | 800,000   | 4,900,000 |         |           |         |
| SA                     | 7,         | 200,000   | 2,000,000 |         |           |         |

| _ | 52 | _ |
|---|----|---|
|---|----|---|

| TABLE 21 | 2000:1 DMDMH/IPBC | Hours 7 Days 14 Days 21 Days 28 Days | 4,100 38,000 270 80 100 | 1,900,000 550,000 220,000 210, | <10 <10 <10 | <10 <10 | <10 <10 <10 | 20 <10 <10 |            | nours / Days 14 Days 21 Days 28 Days | <10 <10 <10 <10 <10 | 0,000 130,000 670,000 160,000 64,000 | <10 <10 <10 | •   | <10 | <10 <10 <10 |   | Hours 7 Days 14 Days 21 Days 28 Days | <10 <10 <10 <10 <10 | 580 840 500 40,000 83,000 |       |     | <10 <10 |  |
|----------|-------------------|--------------------------------------|-------------------------|--------------------------------|-------------|---------|-------------|------------|------------|--------------------------------------|---------------------|--------------------------------------|-------------|-----|-----|-------------|---|--------------------------------------|---------------------|---------------------------|-------|-----|---------|--|
|          | IPBC              | 14 Days                              | 270                     | 550,000                        | <10         | <10     | <10         | <10        |            | 14 Days                              | <10                 | 670,000                              | <10         | <10 | <10 | <10         |   | 14 Days                              | <10                 | 200                       | <10   | <10 | <10     |  |
| TABLE 21 | 2000:1 DMDMH/     | 7 Days                               | 38,000                  | 1,900,000                      | <10         | <10     | <10         | 20         | 1          | / Days                               | <10                 | 130,000                              | <10         | <10 | <10 | <10         |   | 7 Days                               | <10                 | 840                       | <10   | <10 | <10     |  |
|          | 7                 | 48 Hours                             | 4,100                   | 270,000                        | 1,300,000   | <10     | <10         | 42,000     |            | 48 HOULS                             | <10                 | 770,000                              | 220,000     | <10 | <10 | 000'6       | • | 48 Hours                             | <10                 | 580                       | 340   | <10 | <10     |  |
|          |                   | Organism                             | AN                      | CAN                            | ECOLI       | PC      | PSA         | SA         | ,          | METHORITO                            | AN                  | CAN                                  | ECOLI       | PC  | PSA | SA          |   | <u>Organism</u>                      | AN                  | CAN                       | ECOLI | PC  | PSA     |  |
|          |                   | Test Level                           | 0.025%                  | =                              | =           |         | •           | =          | lest Tevel | 12427                                | 0.05%               | =                                    | =           | =   |     | =           |   | Leve]                                | . 1 %               | =                         |       |     | =       |  |

| (CONT) |  |
|--------|--|
| 21     |  |
| TABLE  |  |

| Test Level             | Organism       | 48 Hours   | 7 Days    | 14 Days   | 21 Days    | 28 Days |
|------------------------|----------------|------------|-----------|-----------|------------|---------|
| 0.2%                   | AN             | <10        | <10       | <10       | <10        | <10     |
| =                      | CAN            | <10        | 10        | 10        | <10        | 21      |
| =                      | ECOLI          | <10        | <10       | <10       | <10        | <10     |
| =                      | PC             | <10        | <10       | <10       | <10        | <10     |
| . =                    | PSA            | <10        | <10       | <10       | <10        | <10     |
|                        | SA             | <10        | <10       | <10       | <10        | <10     |
| Unpreserved control    | <u>control</u> |            |           |           |            |         |
| Organism               | 48 Hours       | 7 Days     | 14 Days   | 21 Days   | 28 Days    | mi      |
| AN                     | 37,000         | 36,000     | 24,000    | 5,200     | 9          | 000′9   |
| CAN                    | 120,000        | 1,900,000  | 3,300,000 | 480,000   | 790,000    | 000     |
| ECOLI                  | 150,000        | 2,500,000  | 7,300,000 | 240,000   | 140,000    | 000     |
| PC                     | 19,000,000     | 15,600,000 | 5,900,000 | 8,500,000 | 31,000,000 | 000     |
| PSA                    | <10            | <10        | 100       | 15,200    | 300,000    | 000     |
| SA                     | 7,000,000      | >1,000,000 | 12,000    | 3,000     | -          | 110     |
| Inoculum Concentration | centration     |            |           |           |            |         |
| Organism               |                | 0 Hours    | 21 Days   |           |            |         |
| AN                     |                | 50,000     | 41,000    |           |            |         |
| CAN                    | 1              | 1,400,000  | 640       |           |            |         |
| ECOLI                  | 4              | 4,800,000  | 5,800,000 |           |            |         |
| PC                     | O1             | 9,200,000  | 000'006   |           |            |         |
| PSA                    | v              | 000,006,9  | 000'000'6 |           |            |         |
| SA                     |                | 5,700,000  | 7,200,000 |           |            |         |

| _ | 54 | _ |
|---|----|---|
|---|----|---|

|          | 21 Days 28 Days |        | 120,      |         |     |     | <10 90 |   | 21 Days 28 Days | <10 <10 | 32,000 370,000 |        | <1.0 <10 |     | <10 <10 | 21 Days 28 Days | <10 <10 | 640 4,400 |        |     |      |          |
|----------|-----------------|--------|-----------|---------|-----|-----|--------|---|-----------------|---------|----------------|--------|----------|-----|---------|-----------------|---------|-----------|--------|-----|------|----------|
| Vaq      | Days            |        | 2,300,000 |         | <10 | <10 | <10    |   | 14 Days         | <10     | 56,000         | <10    | <10      | <10 | <10     | 14 Days         | <10     | 180       | <10    | <10 | <10  | <b>(</b> |
| TABLE 22 | 7 Days          | 006    | 900,000   | <10     | <10 | <10 | <10    |   | 7 Days          | <10     | 520,000        | <10    | <10      | <10 | <10     | 7 Days          | <10     | 4,800     | <10    | <10 | <10  | ,        |
|          | 48 Hours        | 650    | 000'16    | 160,000 | <10 | <10 | 23,000 |   | 48 Hours        | 20      | 65,000         | 26,000 | <10      | <10 | 12,000  | 48 Hours        | <10     | 3,100     | 45,000 | <10 | <10. | 9        |
|          | Organism        | AN     | CAN       | ECOLI   | PC  | PSA | SA     | • | Organism        | AN      | CAN            | ECOLI  | PC       | PSA | SA      | Organism        | AN      | CAN       | ECOLI  | PC  | PSA  | AS.      |
|          | Test Level      | 0.025% | =         |         | =   | =   | =      |   | Test Level      | 0.05%   | =              | =      | =        | =   | =       | <u>Level</u>    | 0.1%    | =         | =      | =   | =    | =        |

| (CONT) |
|--------|
| 22     |
| LABLE  |

| _ | 5 | 6 | _ |
|---|---|---|---|
|   | _ | v | _ |

|            |                 |           | TABLE 23         |           |           |         |
|------------|-----------------|-----------|------------------|-----------|-----------|---------|
|            |                 |           | 2000:1 GADM/IPBC | PBC       |           |         |
| Test Level | Organism        | 48 Hours  | 7 Days           | 14 Days   | 21 Days   | 28 Days |
| 0.025%     | AN              | 300       | 21               | 10        | <10       | 11      |
| =          | CAN             | 480,000   | 890,000          | 940,000   | 1,040,000 | 130,000 |
| =          | ECOLI           | 230,000   | <10              | <10       | <10       | <10     |
| =          | PC              | <10       | <10              | <10       | <10       | <10     |
|            | PSA             | <10       | <10              | <10       | <10       | <10     |
| =          | SA              | 78,000    | <10              | <10       | <10       | <10     |
|            | ,               |           |                  |           |           |         |
| Test Level | Organism        | 48 Hours  | 7 Days           | 14 Days   | 21 Days   | 28 Days |
| 0.05%      | AN              | <10       | <10 >            | <10       | <10       | <10     |
| =          | CAN             | 110,000   | 4,100,000        | 3,600,000 | 330,000   | 97,000  |
| 2          | ECOLI           | 120,000   | <10              | <10       | <10       | <10     |
| =          | PC              | <10       | <10              | <10       | <10       | <10     |
| =          | PSA             | <10       | <10              | <10       | <10       | <10     |
| =          | SA              | 26,000    | <10              | <10       | <10       | <10     |
|            |                 |           |                  |           |           |         |
| Test Level | <u>Organism</u> | 48 Hours  | 7 Days           | 14 Days   | 21 Days   | 28 Days |
| 0.1%       | AN              | <10       | <10              | <10       | <10       | <10     |
| =          | CAN             | 1,200,000 | 53,000           | 430,000   | 144,000   | 110,000 |
| =          | ECOLI           | <10       | <10              | <10       | <10       | <10     |
|            | PC              | <10       | <10              | <10       | <10       | <10     |
| =          | PSA             | <10       | <10              | <10       | <10       | <10     |
| =          | SA              | <10       | <10              | <10       | <10       | <10     |

| CONT     |
|----------|
| u        |
| <b>_</b> |
| 23       |
| $\sim$   |
| 回        |
| . 7      |
| -        |
| 哅        |
| ⊴        |
| 테        |

| Test Level             | Organism    | 48 Hours   | 7 Days     | 14 Days    | 21 Days 2 | 28 Days |
|------------------------|-------------|------------|------------|------------|-----------|---------|
| 0.2%                   | AN          | <10        | <10        | <10        | <10       | <10     |
|                        | CAN         | 000'06     | <10        | <10        | <10.      | 9       |
| =                      | ECOLI       | <10        | <10        | <10        | <10       | <10     |
| =                      | PC          | <10        | <10        | <10        | <10       | <10     |
| =                      | PSA         | <10        | <10        | <10        | <10       | <10     |
| =                      | SA          | <10        | <10        | <10        | <10       | <10     |
| Unpreserved control    | control     |            |            |            |           |         |
| Organism               | 48 Hours    | 7 Days     | 14 Days    | 21 Days    | 28 Days   |         |
| AN                     | 50,000      | 33,000     | 33,000     | 13,000     | 5,400     |         |
| CAN                    | 780,000     | 780,000    | 780,000    | 200,000    | 170,000   |         |
| ECOLI                  | 600,000     | 3,100,000  | 920,000    | 920,000    | 140,000   |         |
| PC                     | 11,000,000  | 30,000,000 | 10,000,000 | 10,000,000 | 1,400,000 |         |
| PSA                    | 3,800       | 009        | 12,800     | 12,800     | 100,000   |         |
| SA                     | 14,000,000  | 410,000    | 7,100      | 7,100      | 80        |         |
| Inoculum Concentration | ncentration |            |            |            |           |         |
| Organism               |             | 0 Hours    | 21 Days    |            |           |         |
| AN                     |             | 53,000     | 10,000     |            |           |         |
| CAN                    | 1,          | 1,900,000  | 310,000    |            |           |         |
| ECOLI                  |             | 170,000    | 3,500,000  |            |           |         |
| PC                     |             | 87,000     | 2,500,000  |            |           |         |
| PSA                    |             | 390,000    | 5,400,000  |            |           |         |
| SA                     |             | 200,000    | 4,100,000  |            |           |         |

#### Discussion of Challenge Testing Results

The 28-day challenge results reported in Tables 15-23 above demonstrate the effectiveness of the preservative admixture of the invention in a use emulsion composition against a wide range of bacteria and fungi organisms.

For example, admixture compositions of Germall® II and IPBC at a wt. ratio of 2000:1 (Table 15), when present at use levels of 0.05 to 0.2%, corresponding to 0.75 to 10 ppm IPBC and 500 to 2000 ppm methylol levels, provide substantially complete protection against all tested organisms after 28 days. At the low use level of 0.05% active, all the challenge tests passed within 21 days. Then, upon reinoculation after 21 days, all organisms died within 7 days except CAN which cleared within 14 days.

Table 21 shows the challenge test results for DMDMH and IPBC admixtures at the same 2000:1 wt. ratio. A use level of 0.2%, however, is needed for this blend to pass against all organisms after 21 days. Upon reinoculation, all organisms died within 7 days with the exception of CAN which cleared within 14 days. It is thus evident from these results that Germall® II blended with IPBC is 4 times more effective than a DMDMH/IPBC blend.

Germall® II also is superior to GADM as the methylol compound, as shown in Table 23.

Table 24 below is a study of the activity of solution of GII/IPBC in propylene glycol. The admixtures of the active GII and IPBC components were prepared at weight ratios of 99.5%/0.5% and 99%/1%, and added to 60% by weight propylene glycol. The resulting solutions were tested at 0.05%, 0.1% and 0.2% total active in a proteinaceous shampoo formulation.

| 21  |
|-----|
| N   |
| - 1 |
| 闰   |
| ᆿ   |
| -   |
| B   |
| A   |
| ~   |
| ы   |

| 99.5% GII/0. | 5% IPBC/propyl | 99.5% GII/0.5% IPBC/propylene glycol solution - 0.05% total active | tion - 0.05% | total active |         |                  |
|--------------|----------------|--------------------------------------------------------------------|--------------|--------------|---------|------------------|
| Test Level   | Organism       | 48 Hours                                                           | 7 Days       | 14 Days      | 21 Days | 28 Days          |
| 0.05%        | AN             | 310,000                                                            | 2,000        | <10          | <10     | <10              |
| =            | CAN            | 44,000                                                             | 2,400        | <10          | <10     | 1,800            |
| =            | ECOLI          | 3,000                                                              | <10          | <10          | <10     | <10              |
| =            | PC             | 400,000                                                            | 62,000       | 06           | <10     | >10,000          |
| =            | PSA            | 5,300,000                                                          | 3,000        | <10          | <10     | >10,000          |
| =            | SA             | 10                                                                 | 10           | <10          | <10     | <10              |
| 99.58 611/0. | rkdond/odar sc | 99.5% GII/0.3% IRDC/propyrene divocal solucion.                    | 0.1.0        | 11 5000      | , t     | ָ<br>נ<br>נ<br>נ |
| Test Level   | Organism       | 48 Hours                                                           | 7 Days       | 14 Days      | 21 Days | 28 Days          |
| 0.1%         | AN             | 210,000                                                            | <10          | <10          | <10     | <10              |
| =            | CAN            | 1,500                                                              | <10          | <10          | <10     | <10              |
| =            | ECOLI          | 580                                                                | <10          | <10          | <10     | 20               |
| •            | PC             | 34,000                                                             | <10          | <10          | <10     | <10              |
| =            | PSA            | 780                                                                | <10          | <10          | <10     | <10              |
| =            | AS.            | <10                                                                | <10          | <10          | <10     | <10              |

| 99.5% GII/0.5% | 99.5% GII/0.5% IPBC/propylene             | glycol     | solution - 0.2% t   | total active |         |         |
|----------------|-------------------------------------------|------------|---------------------|--------------|---------|---------|
| Test Level     | <u>Organism</u>                           | 48 Hours   | 7 Days              | 14 Days      | 21 Days | 28 Days |
| 0.2%           | AN                                        | <10        | <10                 | <10          | <10     | <10     |
| =              | CAN                                       | <10        | <10                 | <10          | <10     | <10     |
| =              | ECOLI                                     | <10        | <10                 | <10          | <10     | <10     |
| =              | PC                                        | <10        | <10                 | <10          | <10     | <10     |
| =              | PSA                                       | <10        | <10                 | <10          | <10     | <10     |
| =              | SA                                        | <10        | <10                 | <10          | <10     | <10     |
| 99% GII/1% IPE | 99% GII/1% IPBC/propylene glycol          | solution - | 0.05% total         | 1 active     |         |         |
| Test Level     | <u>Organism</u>                           | 48 Hours   | 7 Days              | 14 Days      | 21 Days | 28 Days |
| 0.05%          | AN                                        | 000'68     | <10                 | <10          | <10     | <10     |
|                | CAN                                       | 4,400      | <10                 | <10          | <10     | 20      |
| =              | ECOLI                                     | 3,300      | <10                 | <10          | <10     | 09      |
| =              | PC                                        | 260,000    | <10                 | <10          | <10     | 3,400   |
| **             | PSA                                       | 64,000     | <10                 | <10          | <10     | 280     |
| <b>35</b>      | SA                                        | <10        | <10                 | <10          | <10     | <10     |
| 99% CTT/11%    | ביינ" איים ביימטאמי ט                     |            | 6                   | •            |         |         |
| TIT OT/TID OCC | 228 GIT/IN TEDC/PLOPYIENE GIYCOL SOLUCION |            | - 0.1% total active | active       |         |         |
| Test Level     | Organism                                  | 48 Hours   | 7 Days              | 14 Days      | 21 Days | 28 Days |
| 0.1%           | AN                                        | 37,000     | <10                 | <10          | <10     | <10     |
| =              | CAN                                       | <10        | <10                 | <10          | <10     | <10     |
| =              | ECOLI                                     | 840        | <10                 | <10          | <10     | <10     |
| =              | PC                                        | 48,000     | <10                 | <10          | <10     | <10     |
| =              | PSA                                       | 440        | <10                 | <10          | <10     | <10     |
| =              | SA                                        | <10        | <10                 | <10          | <10     | <10     |

| 99% GII/1%          | IPBC/propylene         | 99% GII/1% IPBC/propylene qlycol solution - 0.2% total active | 1 - 0.2% total | active       |            |         |
|---------------------|------------------------|---------------------------------------------------------------|----------------|--------------|------------|---------|
| Test Level          | Organism               | 48 Hours                                                      | 7 Days         | 14 Days      | 21 Days    | 28 Days |
| 0.2%                | AN                     | <10                                                           | <10            | <10          | <10        | <10     |
| =                   | CAN                    | <10                                                           | <10            | <10          | <10        | <10     |
| =                   | ECOLI                  | <10                                                           | <10            | <10          | <10        | <10     |
| =                   | PC                     | <10                                                           | <10            | <10          | <10        | <10     |
| =                   | PSA                    | <10                                                           | <10            | <10          | <10        | <10     |
| =                   | SA                     | <10                                                           | <10            | <10          | <10        | <10     |
| Unpreserved control | control                |                                                               |                |              |            |         |
| Organism            | 48 Hours               | 7 Days                                                        | 14 Days        | 21 Days      | 28 Days    |         |
| AN                  | 4,000,000              |                                                               |                |              |            |         |
| CAN                 | 160,000                | >100,000,000                                                  | 2,600,000      | >100,000,000 | >1,000,000 | _       |
| ECOLI               |                        | >100,000,000                                                  | 800,000,008    | 48,000,000   | 000'009    |         |
| PC                  | >100,000,000           | 50,000,000                                                    | 48,000,000     |              | >1,000,000 |         |
| PSA                 | >100,000,000           | >100,000,000                                                  | 58,000,000     | 65,000,000   | >1,000,000 |         |
| SA                  |                        | >100,000,000                                                  |                |              |            |         |
| Inoculum Co         | Inoculum Concentration | ·                                                             |                |              |            |         |
| Organism            |                        | 0 Hours                                                       | 21 Days        |              |            |         |
| AN                  |                        | 380,000                                                       | 330,000        |              |            |         |
| CAN                 |                        | 860,000                                                       | 4,200,000      |              |            |         |
| ECOLI               | 2,                     | 200,000                                                       | 5,300,000      |              |            |         |
| PC                  | . 1,                   | 000,000                                                       | 000'000'09     |              |            |         |
| PSA                 | 3,                     | 200,000                                                       | 2,000,000      |              |            |         |
| SA                  | 2,                     | 400,000                                                       | 3,000,000      |              |            |         |

Table 25 shows a similar study as in Table 24 above in which the vehicle for the composition was the typical emulsion described above.

| വ      |
|--------|
| $\sim$ |
|        |
| 回      |
| П      |
| 8      |
| A.     |
|        |

| 99.5% GII/0.5% | 99.5% GII/0.5% IPBC/propylene glycol solution - 0.05% total active | glycol solution | on - 0.05% | total active |         |         |
|----------------|--------------------------------------------------------------------|-----------------|------------|--------------|---------|---------|
| Test Level     | <u>Organism</u>                                                    | 48 Hours        | 7 Days     | 14 Days      | 21 Days | 28 Days |
| 0.05%          | AN                                                                 | 40              | <10        | <10          | <10     | <10     |
| =              | CAN                                                                | 520,000         | <10        | <10          | <10     | <10     |
| =              | ECOLI                                                              | 320             | <10        | <10          | <10     | <10     |
| =              | PC                                                                 | <10             | <10        | <10          | <10     | <10     |
| =              | PSA                                                                | <10             | <10        | <10          | <10     | <10     |
| =              | SA                                                                 | 24,000          | <10        | <10          | <10     | <10     |
| Test Level     | Organism                                                           | 48 Hours        | 7 Days     | 14 Days      | 21 Days | 28 Days |
| 0.1%           | AN                                                                 | <10             | <10        | <10          | <10     | <10     |
| =              | CAN                                                                | <10             | <10        | <10          | <10     | <10     |
| =              | ECOLI                                                              | 10              | <10        | <10          | <10     | <10     |
| =              | PC                                                                 | <10             | <10        | <10          | <10     | <10     |
| =              | PSA                                                                | <10             | <10        | <10          | <10     | <10     |
| =              | SA                                                                 | 650             | <10        | <10          | <10     | <10     |

| 99.5% GII/O.   | 99.5% GII/0.5% IPBC/propylene glycol      | 1              | solution - 0.2%      | total active |         |         |
|----------------|-------------------------------------------|----------------|----------------------|--------------|---------|---------|
| Test Level     | Organism                                  | 48 Hours       | 7 Days               | 14 Days      | 21 Days | 28 Days |
| 0.2%           | AN                                        | <10            | <10                  | <10          | <10     | <10     |
| =              | CAN                                       | <10            | <10                  | <10          | <10     | <10     |
| = -            | ECOLI                                     | <10            | <10                  | <10          | <10     | <10     |
|                | PC                                        | <10            | <10                  | <10          | <10     | <10     |
| = .            | PSA                                       | <10            | <10                  | <10          | <10     | <10     |
| =              | SA                                        | <10            | <10                  | <10          | <10     | <10     |
| 1 \$1/II\$ 166 | 99% GII/1% IPBC/propylene qlycol solution | lycol solution | - 0.05% total active | 1 active     |         |         |
| Test Level     | Organism                                  | 48 Hours       | 7 Days               | 14 Days      | 21 Days | 28 Days |
| 0.05%          | AN                                        | <10            | <10                  | <10          | <10     | <10     |
| =              | CAN                                       | 6,700          | <10                  | <10          | <10     | <10     |
| =              | ECOLI                                     | 000'99         | <10                  | <10          | <10     | <10     |
| =              | PC                                        | <10            | <10                  | <10          | <10     | <10     |
| =              | PSA                                       | <10            | <10                  | <10          | <10     | <10     |
| =              | SA                                        | 20,000         | <10                  | <10          | <10     | <10     |
| 99% GII/18 I   | 99% GII/1% IPBC/propylene glycol          | lycol solution | - 0.1% total         | active       |         |         |
| Test Level     | Organism                                  | 48 Hours       | 7 Days               | 14 Days      | 21 Days | 28 Days |
| 0.18           | AN                                        | <10            | <10                  | <10          | <10     | <10     |
| =              | CAN                                       | <10            | <10                  | <10          | <10     | <10     |
| =              | ECOLI                                     | <10            | <10                  | <10          | <10     | <10     |
| =              | PC                                        | <10            | <10                  | <10          | <10     | <10     |
| =              | PSA                                       | <10            | <10                  | <10          | <10     | <10     |
| =              | SA                                        | 620            | <10                  | <10          | <10     | <10     |

| 99% GII/1%          | 99% GII/1% IPBC/propylene | e glycol solution | n - 0.2% total active | active     |            |         |
|---------------------|---------------------------|-------------------|-----------------------|------------|------------|---------|
| Test Level          | <u>Organism</u>           | 48 Hours          | 7 Days                | 14 Days    | 21 Days    | 28 Days |
| 0.2%                | AN                        | <10               | <10                   | <10        | <10        | <10     |
| =                   | CAN                       | <10               | <10                   | <10        | <10        | <10     |
| =                   | ECOLI                     | <10               | <10                   | <10        | <10        | <10     |
| =                   | PC                        | <10               | <10                   | <10        | <10        | <10     |
| =                   | PSA                       | <10               | <10                   | <10        | <10        | <10     |
| =                   | SA                        | <10               | <10                   | <10        | <10        | <10     |
| Unpreserved control | control                   |                   |                       |            |            |         |
| Organism            | 48 Hours                  | 7 Days            | 14 Days               | 21 Days    | 28 Days    | ŭĮ      |
| AN                  | 3,100,000                 | 650,000           | 370,000               | 1,400,000  | 260,000    | 0       |
| CAN                 | 000'000'9                 | 4,000,000         | 1,100,000             | 5,800,000  | >1,000,000 | 0       |
| ECOLI               | 11,000,000                | 7,300,000         | 000,000,9             | 730,000    | 220,000    | 0       |
| PC                  | 100,000,000               | 53,000,000        | 40,000,000            | 40,000,000 | 600,000    | 0       |
| PSA                 | 5,000,000                 | 200,000           | 2,700,000             | 72,000     | 20,000     | 0       |
| SA                  | 30,000,000                | 150,000           | 440,000               | 2,500      | 006'6      | 0       |
| Inoculum Co         | Inoculum Concentration    |                   |                       |            |            |         |
| Organism            |                           | 0 Hours           | 21 Days               |            |            |         |
| AN                  |                           | 380,000           | 330,000               |            |            |         |
| CAN                 |                           | 860,000           | 4,200,000             |            |            |         |
| ECOLI               | 2,                        | 2,500,000         | 5,300,000             |            |            |         |
| PC                  | 'τ                        | 1,900,000         | 000'000'09            |            |            |         |
| PSA                 | 'E                        | 3,200,000         | 2,000,000             |            |            |         |
| SA                  | 2,                        | 2,400,000         | 3,000,000             |            |            |         |

The results shown in Tables 24 and 25 demonstrate that the compositions of the invention are completely effective against the tested organisms in comparison to the unpreserved controls.

While the invention has been described with particular reference to certain embodiments thereof, it will be understood that changes and modifications may be made which are within the skill of the art. Accordingly, it is intended to be bound only by the following claims, in which:

#### WHAT IS CLAIMED IS:

- pl. A water soluble preservative antimicrobial composition for addition to commercial use products at predetermined use levels to provide synergistic biocidal activity against a wide range of fungi and gram-negative and gram-positive bacteria, comprising
  - (1) an admixture of
    - (a) one or more methylol compounds, and
- (b) 3-iodo-2-propynylbutyl carbamate, in a weight ratio of (a):(b) of 100:1 to 2000:1.
- 2. A water soluble preservative admixture according to claim 1 wherein said weight ratio is 200:1 to 500:1.
- 3. A water soluble preservative admixture according to claim 1 wherein
- (a) is N-[1,3-bis(hydroxymethyl)-2,5-dioxo-4-imidazolidinyl]-N,N'-bis(hydroxymethyl) urea, imidurea, 1,3-dimethylol-5,5-dimethyl hydantoin, sodium hydroxymethylglycinate, or glycine anhydride dimethylol.
- 4. A preservative admixture according to claim 3 wherein
- (a) is N-[1,3-bis(hydroxymethyl)-2,5-dioxo-4-imidazolidinyl]-N,N'-bis(hydroxymethyl) urea.
- $\varphi$  5. A composition according to claim 1 which also includes (2) propylene glycol or 1,3-butylene glycol.

- 6. A water soluble preservative antimicrobial composition according to claim 5 which comprises about 20 to 55 weight percent of (1) and 45 to 80 weight percent of (2).
  - 7. A composition according to claim 6 which comprises about 40 weight percent of (1) and about 60 weight percent of (2).
- 8. A commercial use product which is protected for an extended period of time against contamination by a wide range of fungi and gram-negative and gram-positive bacteria which includes 0.01 to 0.5% by weight of the water soluble preservative composition of claims 1-7.
- 9. A commercial use product according to claims 1-8 which includes about 0.1% by weight of the water soluble preservative composition of claim 2 or 5.
- 10. A commercial use product according to claims 1-9 in which said composition is water solubilized and uniformly distributed throughout said composition.
- 11. A commercial use product according to claims 1-10 in which (b) is present therein in an amount of 0.5 to 10 ppm, and (a) is present in an amount of at least 250 ppm.

- \$\rho\$ 12. A commercial use product according to claims 1-11 which is a personal care, household or industrial composition.
- 13. A commercial use product which is protected for an extended period of time against contamination by a wide range of fungi and gram-negative and gram-positive bacteria which includes 0.1 to 5% by weight of the composition of claims 1-12.
- 14. A product according to claim 13 which includes about 0.5 to 1% by weight of the composition of claim 1 or 5.

#### INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/04895

|                    | SSIFICATION OF SUBJECT MATTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| ( - ,              | :Please See Extra Sheet.<br>:514/252, 389, 390, 478, 479, 561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
|                    | o International Patent Classification (IPC) or to both national classification and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |
| B. FIEL            | DS-SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |
| Minimum de         | ocumentation searched (classification system followed by classification symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| U.S. : 5           | 514/252, 389, 390, 478, 479, 561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4.5.11                          |
| Documentat         | ion searched other than minimum documentation to the extent that such documents are included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in the fields searched            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Electronic d       | lata base consulted during the international search (name of data base and, where practicable,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | search terms used)                |
| Licettoine d       | and base consumed during the international source (name of data case and, where proceeding,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jean vermo doba,                  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| C. DOC             | UMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| Category*          | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Relevant to Claim No.             |
| Υ                  | US, A, 4,844,891 (Rosen et. al.) 04 July 1989, see entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-14                              |
|                    | document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , , ,                             |
|                    | document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
|                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |
| Υ                  | US, A, 3,987,184 (Foelsch) 19 October 1976, see entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-3 and 5-14                      |
|                    | document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Υ                  | US , A, 5,244,653 (Berke et. al.) 14 September 1993, see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-3 and 5-14                      |
|                    | entire document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0                               |
| Υ                  | US, A, 4,337,269 (Berke et. al.) 29 June 1982, see entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-3 and 5-14                      |
|                    | document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| V                  | LIC A 4 CEE 91E / lokubowaki) 07 April 1997 con optiro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 2 and 5-1/                      |
| Y                  | US, A, 4,655,815 (Jakubowski) 07 April 1987, see entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-5 and 5-14                      |
|                    | document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| - Eural            | her documents are listed in the continuation of Box C. See patent family annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| <u> </u>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | emotional filing date or priority |
| •                  | ecial categories of cited documents:  The later document published after the intermediate and not in conflict with the applic cument defining the general state of the art which is not considered  The later document determine the formation of the art which is not considered  The later document published after the intermediate th | ation but cited to understand the |
| to                 | be of particular relevance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |
| i                  | rlier document published on or after the international filing date considered novel or cannot be considered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
| cit                | led to establish the publication date of another citation or other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne claimed invention cannot be    |
| ! ·                | ecial reason (as specified)  1 accument of particular relevance, in considered to involve an inventive considered to involve an inventive combined with one or more other successful to an oral disclosure, use, exhibition or other combined with one or more other successful to an oral disclosure, use, exhibition or other combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with one or more other successful to the combined with the co | step when the document is         |
| me                 | eans being obvious to a person skilled in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | he art                            |
| the                | ocument published prior to the international filing date but later than "&" document purior of the same patent<br>e priority date claimed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| Date of the        | actual completion of the international search  Date of pailing of the international se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arch report                       |
| 12 JULY            | 1995 31.07.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                 |
| Name and           | mailing address of the ISA/US Authorized office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Commission Box PCT | oner of Patents and Trademarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ALLEN TO                          |
| Washingto          | on, D.C. 20231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -101                              |
| Facsimile N        | No. (703) 305-3230 Telephone No. (703) 308-1235 ISA/210 (second sheet)(July 1992)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                 |
| LUIN FUI/          | IDITION (ONCOME ORIGINALLY ****)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / 1                               |