SegNet:

A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

分享人: 王嘉恒

目录

- 1.写作背景
- 2.网络结构
- 3.训练
- 4.基准测试

1.写作背景

SegNet的设计动机是需要设计一种用于理解道路和室内场景的有效架构。 SegNet是用于端到端训练的语义分割网络,它是编码器-解码器结构,作者的 创新在于使用了一种池化索引的上采样方法。

2.网络结构

- 编码器网络
- 相应的解码器网络
- 按像素分类层

图1. SegNet网络结构

编码器结构是在VGG16的基础上进行的改进,去掉了后3层的全连接层,只取前13层以减少参数量。进行最大池化操作时把滑动窗口最大特征的位置记录下来。

2.网络结构

解码器: 前面编码器部分通过池化缩

小尺寸,解码器部分使用上采样来恢

复尺寸, SegNet中用了池化索引,将

最大值的位置记录了下来。

直接将数据放回原位,后面再接卷积 核进行学习。

图2. SegNet和FCN的上采样方式

最后是一个Sofmax分类层,但是此处的softmax是对每个像素都进行计算。

2.网络结构

SegNet相较于FCN的优势:

- 可以使特征图边界清晰
- 减小可训练的参数
- 可以广泛使用于编码-解码的语义分割网络,提高其性能

图2. SegNet和FCN的上采样方式

2.网络结构-解码器变体

网络名称	备注
Bilinear-Interpolation	双线性插值上采样固定权值
SegNet-Basic	只有4个编码器和4个译码器
SegNetBasic-SingleChannelDecoder	译码器采用单通道
SegNet-Basic-encoderAddtion	保留编码器的特征图和译码器上采样 后的特征图相加
FCN-Basic	相同的编码器,采用FNC的解码方式
FCN-Basic-NoAddition	去掉特征图相加的步骤
FCN-Basic-NoDimReduction	不对编码器的输出进行降维

3.训练过程

- 输入: 大小360*480的RGB图像 并进行局部对比度归一
- Lr=0.1 动量=0.9 SGD
- 交叉熵损失
- 对损失进行加权 , 中值频率权衡

3.训练

Median frequency balancing Natural frequency balancing																	
		Storage	Infer		Γ	est			Trair	1		7	Test			Trai	n
Variant	Params (M)	multiplier	time (ms)	G	C	mIoU	BF	G	C	mIoU	G	C	mIoU	BF	G	C	mIoU
Fixed upsampling																	
Bilinear-Interpolation	0.625	0	24.2	77.9	61.1	43.3	20.83	89.1	90.2	82.7	82.7	52.5	43.8	23.08	93.5	74.1	59.9
Upsampling using max-pooling indices																	
SegNet-Basic	1.425	1	52.6	82.7	62.0	47.7	35.78	94.7	96. 2	92.7	84.0	54.6	46.3	36.67	96.1	83.9	73.3
SegNet-Basic-EncoderAddition	1.425	64	53.0	83.4	63.6	48.5	35.92	94.3	95.8	92.0	84.2	56.5	47.7	36.27	95.3	80.9	68.9
SegNet-Basic-SingleChannelDecoder	0.625	1	33.1	81.2	60.7	46.1	31.62	93.2	94.8	90.3	83.5	53.9	45.2	32.45	92.6	68.4	52.8
Learning to upsample (bilinear initialisation)																	
FCN-Basic	0.65	11	24.2	81.7	62.4	47.3	38.11	92.8	93.6	88.1	83.9	55.6	45.0	37.33	92.0	66.8	50.7
FCN-Basic-NoAddition	0.65	n/a	23.8	80.5	58.6	44.1	31.96	92.5	93.0	87.2	82.3	53.9	44.2	29.43	93.1	72.8	57.6
FCN-Basic-NoDimReduction	1.625	64	44.8	84.1	63.4	50.1	37.37	95.1	96.5	93.2	83.5	57.3	47.0	37.13	97.2	91.7	84.8
FCN-Basic-NoAddition-NoDimReduction	1.625	0	43.9	80.5	61.6	45.9	30.47	92.5	94.6	89.9	83.7	54.8	45.5	33.17	95.0	80.2	67.8

Bilinear-Interpolation表现最差,说明了在进行分割时,decoder学习的重要性。 encoder特征图全部存储时,性能最好。

当限制存储时,可以使用适当的decoder(例如SegNet类型)来存储和使用encoder特征图(维数降低,max-pooling indices)的压缩形式来提高性能。

更大的decoder提高了网络的性能。

4.基准测试(和其他深度学习网络比较)

(1) 基于Camvid数据集

SegNet和DeconvNet的 性能的性能最好

对于FCN,学习反卷积层 而不是用双线性插值权值 来固定,可以提高性能。

mIoU 50.02 50.18	35.78				42.08				46.84	140K
										140K
50.18	26.25	87.76	62.57	53 34	22.04	00.00	CO 50			
		07.70	02.57	33.34	32.04	88.20	62.53	53.88	32.77	140K
not computed 89.71 60.67 54.74							40.79	140K		
46.59	22.86	82.71	56.22	47.95	24.76	83.27	59.56	49.83	27.99	200K
48.68	27.40	83.71	59.64	50.80	31.01	83.14	64.21	51.96	33.18	160K
39.69	27.36	85.19	54.08	43.74	29.33	89.58	70.24	59.77	52.23	260K
5	5 48.68	8 46.59 22.86 5 48.68 27.40 0 39.69 27.36	8 46.59 22.86 82.71 5 48.68 27.40 83.71 0 39.69 27.36 85.19	8 46.59 22.86 82.71 56.22 5 48.68 27.40 83.71 59.64 0 39.69 27.36 85.19 54.08	8 46.59 22.86 82.71 56.22 47.95 5 48.68 27.40 83.71 59.64 50.80 0 39.69 27.36 85.19 54.08 43.74	8 46.59 22.86 82.71 56.22 47.95 24.76 5 48.68 27.40 83.71 59.64 50.80 31.01 0 39.69 27.36 85.19 54.08 43.74 29.33	8 46.59 22.86 82.71 56.22 47.95 24.76 83.27 5 48.68 27.40 83.71 59.64 50.80 31.01 83.14 0 39.69 27.36 85.19 54.08 43.74 29.33 89.58	8 46.59 22.86 82.71 56.22 47.95 24.76 83.27 59.56 5 48.68 27.40 83.71 59.64 50.80 31.01 83.14 64.21 0 39.69 27.36 85.19 54.08 43.74 29.33 89.58 70.24	8 46.59 22.86 82.71 56.22 47.95 24.76 83.27 59.56 49.83 5 48.68 27.40 83.71 59.64 50.80 31.01 83.14 64.21 51.96 0 39.69 27.36 85.19 54.08 43.74 29.33 89.58 70.24 59.77	8 46.59 22.86 82.71 56.22 47.95 24.76 83.27 59.56 49.83 27.99 5 48.68 27.40 83.71 59.64 50.80 31.01 83.14 64.21 51.96 33.18 0 39.69 27.36 85.19 54.08 43.74 29.33 89.58 70.24 59.77 52.23

图3. 在Camvid上的结果

global accuracy (G):数据集中正确分类的像素的百分比 class average accuracy (C): 所有类别预测准确率的平均值

boundary F1-measure (BF): 涉及计算边界像素的F1指标。 mean intersection over union (mIoU): 比类平均准确率更严格, 因为它惩罚FP预测;

4.基准测试

图4. 在Camvid上的结果(定性分析)

4.基准测试

(2) 在SUNRGB-D上的结果

在室内环境数据集上各个网络的结果都很差,在较小的类别识别精度很低。

作者推测原因可能是深层架 构在室内场景中缺乏可变性。

Network/Iterations	80K				140K				>140K				Max iter
	G	G C mIoU BF G C mIoU BF						G	С	mIoU	BF		
SegNet	70.73	30.82	22.52	9.16	71.66	37.60	27.46	11.33	72.63	44.76	31.84	12.66	240K
DeepLab-LargeFOV [3]	70.70	41.75	30.67	7.28	71.16	42.71	31.29	7.57	71.90	42.21	32.08	8.26	240K
DeepLab-LargeFOV-denseCRF [3]		not computed							66.96	33.06	24.13	9.41	240K
FCN (learnt deconv) [2]	67.31	34.32	24.05	7.88	68.04	37.2	26.33	9.0	68.18	38.41	27.39	9.68	200K
DeconvNet [4]	59.62	12.93	8.35	6.50	63.28	22.53	15.14	7.86	66.13	32.28	22.57	10.47	380K

图5. 在SUNRGB-D上的结果

4.基准测试

图6. 在SUNRGB-D上的结果(定性分析)

5.评价

Network	Forward pass(ms)	Backward pass(ms)	GPU training memory (MB)	GPU inference memory (MB)	Model size (MB)
SegNet	422.50	488.71	6803	1052	117
DeepLab-LargeFOV [3]	110.06	160.73	5618	1993	83
FCN (learnt deconv) [2]	317.09	484.11	9735	1806	539
DeconvNet [4]	474.65	602.15	9731	1872	877

图7. 训练时间、内存比较

- 资源消耗和结果准确性上取得较好平衡 (网络设计定位)
- 使用maxpooling index改善了边界划分清晰度
- 减少了训练量