

Espressioni ed operatori booleani

Prof. Daniele Gorla

Espressione Duale e Complementare

Espressione duale: si ottiene scambiando 0 e 1, + e ·

Espressione complementare: come la duale, ma in più complementa le variabili (si ottiene applicando De Morgan)

Esempio: $E = (x+0) \cdot y + 1 \cdot z$

Duale:

$$(x \cdot 1 + y) \cdot (0 + z)$$

Complementare:

$$\frac{(x+0)\cdot y+1\cdot z}{(x+0)\cdot y} = \frac{(x+0)\cdot y}{1\cdot z} = \frac{(x+0+\overline{y})\cdot (\overline{1}+\overline{z})}{(x+0)\cdot y} = \frac{(x+0+\overline{y})\cdot (0+\overline{z})}{(x+0)\cdot y} = \frac{(x+0+\overline{y})\cdot (x+0+\overline{z})}{(x+0)\cdot y} = \frac{(x+0+\overline{y})\cdot (x+0+\overline{z})}{(x+0)\cdot y} = \frac{(x+0+\overline{z})\cdot (x+0+\overline{z})}{(x+0)\cdot y} = \frac{(x+$$

Espressioni Booleane

Un'espressione booleana è una sequenza composta da operatori booleani, parentesi, costanti e variabili booleane, induttivamente definita come segue:

Sia V un insieme numerabile di variabili; allora

- $0.1 \in EB$:
- se $x \in V$, allora $x \in EB$;
- se $E \in EB$, allora \overline{E} , $(E) \in EB$;
- se $E_1, E_2 \in EB$, allora $E_1+E_2, E_1 \cdot E_2 \in EB$.

Equivalenza di Espressioni Booleane

Def.: E₁ ed E₂ sono *equivalenti* se hanno lo stesso valore a fronte dello stesso assegnamento di valori booleani alle loro variabili.

Verifica: 1. tramite dimostrazioni formali

- 2. tramite induzione perfetta
 - Considera tutti i possibili assegnamenti alle variabili
 - Calcola incrementalmente il valore dell'espressione per ogni assegnamento

Esempio: x + xy = x + xz

• x + xy = x(1 + y) = x = x(1 + z) = x + xz

x + xy - x (1 + y) - x - x (1 + 2) - x + x2									
•	x y z	xy	l	x+xy	-	xz		(+X	
	0 0 0	0		0		0		0	
	0 0 1	0		0	Ш	0		0	
	0 1 0	0		0	Ш	0		0	
	0 1 1	0		0	Ш	0		0	
	1 0 0	0		1	П	0		1	
	1 0 1	0		1	П	1		1	
	1 1 0	1	'	1 /	'	0		1 /	
	1 1 1	1		\1/		1		\ 1/	

Funzioni Booleane

Quindi, una EB identifica una *funzione booleana*, cioè una legge che, in base ai valori delle variabili, restituisce in maniera univoca un valore booleano:

$$f: \{0,1\}_{1}^{n} \rightarrow \{0,1\}$$
numero di variabili

Graficamente:

N.B.: due EB sono equivalenti se identificano la stessa FB

FB costanti e unarie

$$f: \{0,1\}^n \to \{0,1\}$$

Se n = 0, fè una costante, che può essere o 0 o 1

Se n = 1, sia hanno quattro possibili funzioni booleane:

Tavole di verità

Una *funzione booleana* può essere rappresentata mediante una **tavola di verità** che descrive completamente l'associazione tra gli elementi del dominio e quelli del codominio.

Date *n* variabili, una tavola di verità è composta da 2 parti:

- nella parte sinistra elenca ordinatamente tutte le 2ⁿ combinazioni possibili di valori binari assegnabili alle variabili
- nella parte destra, contiene una colonna di 0 e 1 tale che il valore nella riga i sia il valore assunto dalla funzione in corrispondenza dell'i-esima npla di valori booleani assegnati alle variabili.

Esempio (funzione associata all'EB $x \cdot y$):

f
0
0
0
1

FB binarie

Se n = 2, abbiamo 16 possibili funzioni:

Funzioni a Codominio $\{0,1\}^n$

In generale, una funzione booleana può restituire una m-pla di bit:

$$f: \{0,1\}^n \to \{0,1\}^m$$

ES.:

x y	f
0 0	000
0 1	100
1 0	011
1 1	100

D'ora in poi, vedremo una tale funzione come una m-pla di funzioni a codominio $\{0,1\}$.

ES.:

x y	$f_1 f_2 f_3$
0 0	0 0 0
0 1	1 0 0
1 0	0 1 1
1 1	1 0 0

Porte a più ingressi

$$x_1 \cdot \ldots \cdot x_n = (\ldots(x_1 \cdot x_2) \cdot \ldots \cdot x_n)$$

(propr. Associativa)

$$x_1$$
 x_n
 x_n
 x_n
 x_n
 x_n
 x_n

Simile per la porta OR, che modella un operatore associativo (+).

Cosa succede per NAND, NOR, XOR e XNOR?

- per XOR e XNOR la situazione è simile (sono operatori associativi)
- per NAND e NOR la situazione è diversa: non essendo associativi, la scrittura x NAND y NAND z non ha senso. Pertanto, quando scriveremo

intenderemo una porta specifica a 3 ingressi, non realizzabile con due porte NAND a 2 ingressi messe in cascata.

Universalità delle porte NAND

Per idempotenza del prodotto, $x = x \cdot x \Rightarrow \overline{x} = \overline{x \cdot x} = NAND(x, x)$

Per involuzione, $x \cdot y = \overline{x \cdot y} = \overline{NAND(x, y)} = NAND(NAND(x, y), NAND(x, y))$

Per involuzione e De Morgan,

$$x + y = \overline{\overline{x} + y} = \overline{\overline{x} \cdot \overline{y}} = NAND(\overline{x}, \overline{y}) = NAND(NAND(x, x), NAND(y, y))$$

Porte a più Ingressi (cont.)

Lo XOR è associativo:

$$(x \oplus y) \oplus z = (\overline{x \oplus y}) \cdot z + (x \oplus y) \cdot \overline{z} = (x \cdot y + \overline{x} \cdot \overline{y}) \cdot z + (x \cdot \overline{y} + \overline{x} \cdot y) \cdot \overline{z}$$

$$= x \cdot y \cdot z + \overline{x} \cdot \overline{y} \cdot z + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} =$$

$$= \overline{x} \cdot (y \cdot \overline{z} + \overline{y} \cdot z) + x \cdot (y \cdot z + \overline{y} \cdot \overline{z}) = \overline{x} \cdot (y \oplus z) + x \cdot (\overline{y \oplus z}) = x \oplus (y \oplus z)$$

Similmente si dimostra che lo XNOR è associativo.

Invece, NOR e NAND non lo sono!

Es. (NAND):
$$\overline{x \cdot (\overline{y \cdot z})} = \overline{x} + y \cdot z$$
 $\overline{(\overline{x \cdot y}) \cdot z} = x \cdot y + \overline{z}$

Queste due EB non sono equivalenti:

basta considerare l'assegnamento x = y = 0 e z = 1, che rende 1 la prima EB e 0 la seconda.

Universalità delle porte NOR

Per dualità, si ha che

$$\overline{x} = \overline{x+x}$$
 $x+y = \overline{\overline{x+y}}$ $x \cdot y = \overline{\overline{x+j}}$

da cui

Esempio di realizzazione di un circuito con un solo tipo di porta

Vogliamo realizzare lo XOR usando solo porte NAND:

$$x \oplus y = x \cdot \overline{y} + \overline{x} \cdot y = \overline{(x \cdot \overline{y}) \cdot (\overline{x} \cdot y)} = \overline{(x \cdot \overline{y} \cdot y) \cdot (x \cdot x \cdot y)}$$

Dalle forme SOP a espressioni ALL-NAND

Data una forma SOP (somma di prodotti di variabili e variabili negate), è molto facile costruire l'espressione ALL-NAND equivalente (assumendo di poter usare porte NAND e NOR a più ingressi):

- 1. Applicare De Morgan alla disgiunzione (operatore più esterno)
 - · Ciò trasforma l'OR in un AND negato
 - Ciò trasforma anche le congiunzioni tra le variabili in un NAND
- 2. Quindi, resta solo da sostituire le negazioni sulle variabili con NAND

ES. (di prima):

$$x \cdot \overline{y} + \overline{x} \cdot y = \overline{(x \cdot \overline{y}) \cdot (\overline{x} \cdot y)} = \overline{(x \cdot \overline{y}) \cdot (\overline{x} \cdot x \cdot y)}$$

Dalle forme POS a espressioni ALL-NOR

Dualmente, data una forma POS (prodotto di somme di variabili negate), è molto facile costruire l'espressione ALL-NOR equivalente (assumendo di poter usare porte NAND e NOR a più ingressi):

- 1. Applicare De Morgan alla congiunzione (operatore più esterno)
 - · Ciò trasforma l'AND in un OR negato
 - Ciò trasforma anche le disgiunzioni tra le variabili in un NOR
- 2. Quindi, resta solo da sostituire le negazioni sulle variabili con NOR

ES.:

$$(x+\overline{y}+z)\cdot(\overline{x}+y) = \overline{(x+\overline{y}+z)+(\overline{x}+y)} = \overline{(x+\overline{y}+z)+(\overline{x}+y)}$$

N.B.: qui sto usando un NOR a 3 ingressi!!