Computer Architecture

Assignment 3

174170P

Thambavita H.R.J.B

Х	Υ	Overflow?	Type of overflow	Justification
110000	011111	No		When the X, Y have
				opposite signs, their
				sum will never overflow.
111111	111111	No		Both X, Y have negative
				signs and their sum is
				also negative.
				111111+111111=111110
				Therefore their sum will
				never overflow.
000111<<2	000011	No		X=000111<<2= 011100
				Both X, Y have positive
				signs and their sum is
				also positive.
				011100+000011=011111
000111	111000>>3	No		111000>>3=111111
	(arithmetic)			When X, Y have opposite
				signs, their sum will
				never overflow.

• Fractional binary numbers

■ What is 1011.101₂?

$$1011.101 = 8 + 2 + 1 + \frac{1}{2} + \frac{1}{8}$$

$$= 11 + \frac{5}{8}$$

$$= 93/8$$

$$= 11.625_{10}$$

• Examples

Fractional value	Binary	Decimal
	representation	representation
1/8	0.001	0.125
3/4	0.11	0.75
25/16	1.001	1.5625
43/16	10.1011	2.6875
9/8	1.001	1.125
47/8	101.111	5.875
51/16	11.0011	3.1875

• IEEE floating point representation

Encode the following numbers in both single precision and double precisionIEEE Format

Single precision

Biased exponent = 127+13 = 140 $140 = 10001100_2$ Normalized mantissa = $110 \ 1101 \ 1011 \ 1000 \ 0000 \ 0000$

31	30 23	22	0
0	10001100	1101101 10111000 00000000	

Double precision

Biased exponent = 1023 + 13 = 1036 $1036 = 10000001100_2$ Normalized mantissa = $1101 \ 10110111 \ 00000000 \ 00000000$ $00000000 \ 00000000 \ 00000000$

63	62	52 51	32
0	10000001100	1101 10110111 00000000	
31			0
000	000000 0000000	0000000 00000000	

o **527.456**

 $\begin{array}{c} 527 = 10\ 00001111_2 \\ 0.456 = 0.0111\ 0100\ 1011\ 1100\ 0110\ 1010_2 \\ 527.456 = 10\ 0000\ 1111.0111\ 0100\ 1011\ 1100\ 0110\ 1010\ 0 \ ^*\ 2^9 \\ \text{Sign} = 0 \end{array}$

Single precision

Biased exponent = 127+9=136 $136=1000\ 1000\ _2$ Normalized mantissa = $000\ 0011\ 1101\ 1101\ 0010\ 1111$

31	30	23	22		0
0	10001000		00000111	10111010	0101111

Double precision

Biased exponent = 1023 + 9 = 1032 $1032 = 100\ 0000\ 1000_2$ Normalized mantissa = $0000\ 01111011\ 10100101\ 11100111$ $01010011\ 11110111\ 11001110$

63	62	52	51				32
0	100000	01000	0000	01111	011	10100	101
31							0
111	100011	0101001	1 11	110111	110	01110	

• <u>Tiny Floating Point Example</u>

- Assume 6-bit IEEE floating point format when k = 3 exponent bits and n=2 fraction bits
 - o Calculate the Bias

Bias=
$$2^{k-1} - 1 = 2^{3-1} - 1 = 3$$

o Convert the following from floating point into decimal values

0	010	01
S	k	f

 $0.101 = 0.625_{10}$

0	001	00
S	k	f

$$1.00 * 2^{-2} = 0.01$$

$$0.01 = 0.25_{10}$$