Unit-6 Solving Partial Differential Equations:

-> A differential equation with one independent variable is called

an ordinary differential equation. E.g. $3\frac{dy}{dx} + 5y^2 = 3e^{-x}$, y(0) = 5.

where y -18 dependent variable and x 12 independent variable.

If there is more than one independent variable, then the differential equation is called a partial differential equation.

 $\frac{f \cdot g \cdot}{3 \frac{\partial^2 u}{\partial x^2}} + \frac{\partial^2 u}{\partial y^2} = x^2 + y^2$

where u is the dependent variable, and x by are independent variables.

A linear second oder PDE's with two independent variables and one dependent variable has the general form:

 $A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D = 0.$

where A, B. and C are functions of x and y, and D

48 a function of x, y, u and $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$.

Depending on the value of B2-4AC, a second order. PDE can be classified into three categories:

1) If B2-4AC<0, It is called elliptic

9 of B2-4AC=0, 9+ +8 called parabolic.

18th of B2-4AC>0, It is called hyperbolic.

These equations represent a set of four simultaneous linear equations, which is given below:

$$-4u_1+u_2+u_3=-125$$

$$-4u_1+u_2+u_4=-150$$

$$-4u_1+u_4-4u_3=-375$$

$$-42+u_3-4u_4=-400$$

$$4 = \frac{U_2 + U_3 + 125}{4}$$

$$U_2 = \frac{U_4 + U_4 + 150}{4}$$

$$U_3 = \frac{U_4 + U_4 + 375}{4}$$

$$U_4 = \frac{U_2 + U_3 + 400}{4}$$

Solving above system of equations by using Grauss-Serdal method with anitial guess un=0, u3=0, and U4=0, we get.

	F. F			
Iteration	Щ.	42	, ત ^{્ર}	U4
1	31.250	45.313	101.563	136.719
2.	67.969	88.672	144,922	158.398
委.	89.648	99.512	155,762	163.818
4.	95.068	102.222	158.472	165.173
5.	96.423	102.899	159.149	165,512
6.	96.762	103.069	159.319	165. 597
7.	96.847	103.111	159.361	165.618
8.	96.868	103.121	159.371	165.623
9.	96.873	103.124	159.374	165.625

Thus, $u_1 = 96.873$, $u_2 = 103.124$, $u_3 = 159.374$ and $u_4 = 165.625$

2 decimal place 80, we can stop w Example 2: - Solve the Laplace's Equation for square region shown below. Boundry values are also given in figure.

Solution:

For
$$u_{3}$$
 $u_{3}+u_{2}+2+4-4u_{1}=0$

$$\Rightarrow -4u_{1}+u_{2}+u_{3}=-6$$
For u_{2} $u_{4}+u_{1}+5+5-4u_{2}=0$.
$$\Rightarrow u_{4}-4u_{2}+u_{4}=-10$$

For
$$u_3$$

$$U_4 + u_1 + 1 + 1 - 4u_3 = 0$$

$$\Rightarrow u_4 + u_4 - 4u_3 = -2$$

For
$$u_4$$
 $u_2+u_3+2+4-4u_4=0$
 $\Rightarrow u_2+u_3-4u_4=-6$.

Now representing a set of 4 simultaneous equations and using Graves-Seidal method with initial guess 420, 43=0 and 4=0 we can get solution eaisly a same as we did in example 1.

Solving the system of equations by using Gauss-Seidal method, we got.

			J	(
Iteration	£1	f2	√ 3	f ₄
1	-0.500	-2.125	-2.125	
2.	-1.563	-4.656		-9.063
3.	-2.828	-5,289	-4.656	-10.328
4.	-3.145		-5.289	-10.645
5.		-5.447	-5.447	-10.724
to .	-3.224	-5.487	-5.487	-20.743
6.	-3.243	-5.497	-5.497	-10,748
7,	-3.248	-5.499	-5,499	-10.750
8.	-3.250	-5,500	-5.500	-10.750
٩.	-3,250	-5.500	-5.500	-10.750
Thurs C				

Thus, $f_1 = -3.25$, $f_2 = -5.5$, $f_3 = -5.5$ and $f_4 = -10.75$.

Example 2:- Find the Popson's equation $\nabla^2 f = f(x,y)$ with f(x,y) = xy and f = 2 on boundry by assuming square domain $0 \le x \le 3$ and $0 \le y \le 3$ and -h = 1.

hets divide the domain into greds of 3x3 as below;-

$$\frac{for f_1}{f_2 + f_3 + 2 + 2 - 4f_1 = f_2 + f_3 - 4f_1 + 4} = 1$$

$$\frac{\text{for } f_2}{\text{for } f_3} = f_1 + f_4 - 4f_2 + 4 = 2$$

$$\frac{\text{for } f_3}{\text{for } f_4} = f_1 + f_4 - 4f_3 + 4 = 2$$

$$\frac{\text{for } f_4}{\text{for } f_4} = f_2 + f_3 - 4f_4 + 4 = 4$$

Now we can solved/did sn Now as we solved/did sn way as we solved/did sn example 1.