

TVM TensorRT Integration

NVIDIA GTC 2021

Trevor Morris – AWS SageMaker ML (Deep Learning Compilers)

Problem

- Fast inference
- Optimize inference fast
- Using TVM alone has limitations
- Using TensorRT alone has limitations

NVIDIA TensorRT 2. **TensorRT Optimizer Optimized Inference Trained Neural** Network **Engine** 6.

Differences

TVM Advantages

- Kernels generated automatically by tuning
- Many more ops, frameworks
- Open source, easily extendable

TVM Disadvantages

- Tuning can take hours (T4), days (Jetson)
- Tuning must be done for each model

TensorRT Advantages

- Catalog of kernels handwritten by experts
- Tends to be faster for compute intensive ops
- Automatic lower precision

TensorRT Disadvantages

- Limited operator support
- Difficult to import models
- Closed source

TVM – TRT Integration

Combine to get best of both worlds

Better than standalone TensorRT

- Greater model and framework coverage most models are not fully supported by TRT
- Easier to use

Better than standalone TVM

 Better performance for ops such as Convolution due to expert written kernels in TRT

Better than framework-integrated TRT (TF-TRT)

TRT performance is same, but TVM generated CUDA code is faster than framework

TVM "Bring Your Own Codegen" tvm.apache.org/docs/dev/relay_bring_your_own_codegen.html

- Interface for TVM developers to integrate proprietary accelerator libraries
- Must implement 4 things:
 - 1. Partitioning
 - 2. Optimizations
 - 3. Custom codegen
 - 4. Custom runtime

Standard Compilation vs BYOC

TVM Relay IR

- Supports traditional computational dataflow graph (DAG)
- Supports let-binding, scopes, functions, control flow (Expression)

```
Python Code
                                                    Text Form
                                                                              AST Structure
                                                                                         %x
                                                                                    var
                                           fn (%x) {
x = relay.var("x")
                                              %1 = log(%x)
v1 = relay.log(x)
                                                                                         %1
                                                                                    log
                                             2 = add(1, 1)
v2 = relay.add(v1, v1)
f = relay.Function([x], v2)
                                             %2
                                                                                         %2
                                                                          result <del>◄</del>
```


Graph Optimization

Relay Expression

Equivalent Relay Expression

Graph Partitioning

Relay Expression

Annotation Supported by TRT

Partitioning

Code Generation

Code Generation

Only serialize Relay IR to JSON.

Will defer TensorRT usage to runtime - TRT is platform specific

Subgraphs Modules

Runtime

TVM Runtime

Runtime

TVM Runtime

TensorRT Runtime Module

Initialization

- Convert Relay json to TRT INetwork
- Build TRT engine and cache it

Execution

- Map TVM inputs and outputs to TRT bindings
- Invoke cached TRT engine

Runtime

TVM

tvm.apache.org/docs/deploy/tensorrt.html

Install TVM dependencies Install CUDA, CUDNN, TensorRT Build TVM from source

```
import tvm
from tvm import relay
import mxnet
from mxnet.gluon.model zoo.vision import get model
block = get model('resnet18 v1', pretrained=True)
input shape = (1, 3, 224, 224)
mod, params = relay.frontend.from mxnet(
  block, shape={'data': input shape}, dtype="float32"
from tvm.relay.op.contrib.tensorrt import
   partition for tensorrt
mod, config = partition for tensorrt(mod, params)
with tvm.transform.PassContext(
  opt level=3,
  config={'relay.ext.tensorrt.options': config}
  lib = relay.build(mod, target="cuda", params=params)
lib.export library('compiled.so')
ctx = tvm.gpu(0)
lib = tvm.runtime.load module('compiled.so')
runtime = tvm.contrib.graph runtime.GraphModule(
  lib['default'](ctx)
input data = np.random.uniform(0, 1, input shape)
runtime.run(data=input data)
output = runtime.get_output(0)
```

AWS SageMaker Neo

aws.amazon.com/sagemaker/neo/

```
sm.create compilation job(
 CompilationJobName=compilation job name,
 RoleArn=role arn,
InputConfig={
  'S3Uri': 's3://bucket/model',
  'DataInputConfig': data shape,
  'Framework': 'MXNET'
 OutputConfig={
  'S3OutputLocation': 's3://bucket/',
  'TargetDevice': 'jetson xavier'
pip install dlr
import dlr
model = dlr.DLRModel('path/to/model/', 'gpu')
v = model.run(x)
```


MXNet GluonCV

Jetson AGX Xavier (JetPack 4.4)

TensorFlow Object Detection

Jetson AGX Xavier (JetPack 4.4)

SageMaker Edge Manager

Optimize, run, monitor and maintain ML models on fleets of devices

https://aws.amazon.com/sagemaker/edge-manager/

SageMaker Edge Manager

Summary

- Problem
 - Fast Inference
- Solution
 - TVM
 - TensorRT
 - Combining TVM and TensorRT
- Results
- How to use
 - With TVM
 - With SageMaker Neo
 - With SageMaker Edge Manager

