Lezione 9

indecidibilità

Dalla Lezione 8 sappiamo che:

- -le TM riconoscono i linguaggi RE
- -le TM che si fermano sempre riconoscono i linguaggi ricorsivi
- ---dimostreremo che RE ⊃ ricorsivi
- ---e che esistono linguaggi che non sono RE

visto il rapporto tra TM e computer reali tutto questo vale anche per i computer reali

Codifichiamo le TM in modo sistematico

--numeriamo le strighe di 0/1, per stringa w, 1 w è il suo numero (indice)

$$1=\epsilon$$
, $10=0$, $11=1$, $100=00$, $101=01$, $110=10$,...

$$w6=110=2$$

e w37 a quale stringa corrisponde?

codifica delle TM: ogni TM con input $\{0,1\}$ viene rappresentata da una stringa binaria w_i , allora sarà la TM Mi Rappresentazione:

--gli stati sono q1,q2,...qr, per r>0. q1 iniziale e q2 finale (unico e senza transizioni). Li rappresentiamo come interi

--simboli di nastro X1...Xs, dove X1=0, X2=1 e X3=B, gli altri, X4...Xs hanno indici qualsiasi.

--L/R D1/D2

visto che alcune cose sono arbitrarie abbiamo molte codifiche possibili per una TM

la regola di transizione $\delta(qi,Xj)=(qk,Xn,Dm)$

è rappresentata da 0ⁱ10^j10^k10ⁿ10^m

non ci sono mai due o più 1 consecutivi

il codice di una TM sarà: C₁11C₂11C₃11...C_{n-1}11C_n

esempio: M=($\{q1,q2,q3\},\{0,1\},\{0,1,B\},\delta,q1,B,\{q2\}$) con le seguenti transizioni:

$$\delta(q1,1)=(q3,0,R), \delta(q3,0)=(q1,1,R), \delta(q3,1)=(q2,0,R), \delta(q3,B)=(q3,1,L)$$

la prima transizione corrisponde a 0100100010100 dato che $\delta(q1,1)=(q3,0,R)$ potrebbe essere: $\delta(q1,X2)=(q3,X1,D2)$

codifica simile per le altre transizioni

Molti codici per la stessa TM, anche non c'è un ordine delle codifiche delle transizioni

TM → codifica → stringa di 0/1 che sono numerate wi → Mi

ovviamente molte stringhe binarie wi non corrispondono ad alcuna TM. In questo caso Mi è la TM senza mosse che accetta il linguaggio vuoto, $L(Mi)=\emptyset$

Possiamo costruire una tabella:

	1	2	3	4	
M1	0	1	1	0	
M2	1	1	0	0	
M3	0	0	1	1	
M4	0	1	0	1	

...... la riga i dice se Mi accetta wi = Mi

	1	2	3	4	
M1	0	1	1	0	
M2	1	1	0	0	
M3	0	0	1	1	
M4	0	1	0	1	

 L_d è l'insieme delle w_i t.c. w_i non è in $L(M_i)$

è il complemento della diagonale della tabella

Teorema nessuna TM accetta L_d

<u>Dimostrazione</u>: Suppponiamo che esista M che accetti L_d . L_d è un linguaggio su 0/1, quindi M sarà M_i per qualche riga i della tabella. Ma allora M_i accetta w_i sse M_i non accetta w_i .

Contraddizione!

L_d non è RE.

es. 9.1.3 (a)* (b)

Linguaggi ricorsivi sono quei linguaggi L per cui esiste una TM M tale che L=L(M) e precisamente:

- --se w è in L allora M accetta e si ferma
- --se w non è in L, allora M si ferma in uno stato non accettante.

Una tale TM corrisponde alla nozione di <u>algoritmo</u>

Se «vediamo» L come un problema, allora diremo che l'algoritmo M decide L e che L è decidibile

se non esiste algoritmo per L, allora L è indecidibile

la situazione è questa:

<u>Teorema</u>: se L è ricorsivo, allora anche il suo complemento comp(L) lo è

<u>dimostrazione</u>: sia L=L(M) per una TM M che si ferma sempre. E' facile usare M per costruire una TM M' che decide comp(L):

in dettaglio, M'è ottenuto da M come segue

- --gli stati finali di M diventano non finali;
- --si aggiunge un nuovo stato finale r, senza transizioni;
- --per ogni coppia (s,X) con s stato non finale di M e X simbolo del nastro, tale che $\delta(s,X)$ è indefinita, si aggiunge $\delta(s,X)=(r,X,R)$

Dato che M si ferma sempre, anche M' lo fa e M' accetta le stringhe che M rifiuta, cioè comp(L).

<u>Teorema</u>: se un linguaggio L e comp(L) sono entrambi RE, allora sono entrambi ricorsivi.

Dimostrazione: l'idea è semplice

K simula M e M' in parallelo su w, n passi una, e poi n passi l'altra.

ricordandosi stato e posizione sul nastro diviso in 2 tracks

per L e comp(L) ci sono solo 4 possibilità:

- -- L e comp(L) sono entrambe ricorsive
- -- L e comp(L) sono entrambe non RE
- -- L è RE ma non ricorsivo e comp(L) non RE
- -- comp(L) è RE ma non ricorsivo e L è non RE

comp(L_d) è RE

 $comp(L_d) = \{w_i \mid M_i \text{ accetta } w_i\}$

una TM M con w_i come input può simulare M_i su w_i

se M_i accetta allora M accetta, se M_i rifiuta fermandosi, rifiuta, e se continua a calcolare, anche M continua a calcolare

tra poco vedremo meglio come una TM ne può simulare un'altra

Linguaggio universale

 $L_u=\{(M,w) \mid M \text{ è una TM con input } 0/1, \text{ w è una stringa di } 0/1 \text{ e w } \text{è in } L(M)\}$

mostriamo che esiste una TM U detta TM universale tale che $L(U)=L_u$

visto che U ha input di 0/1 U = M_i per qualche j

come opera U:

- 1) esamina l'input per controllare che la prima parte rappresenti una TM, altrimenti stop con rifiuto
- 2) prepara input sul secondo nastro 0 = 10, 1 = 100, B=1000
- 3) scrive $q_1 = 0$ sul terzo nastro e posiziona la testina sul margine sinistro dell'input
- 4) per simulare una mossa di M, cerca sul primo nastro una transizione che inizia con lo stato corrente 0ⁱ e con simbolo letto 0^j, supponiamo che la transizione sia 0ⁱ10^j10^k10^x10^m allora cambia lo stato sul terzo nastro in 0^k, cambia 0^j sul nastro 2 con 0^x e sposta la testina del nastro 2 L/R a seconda di m

- 5) se non ci sono transizioni applicabili (M si blocca), allora U si blocca
- 6) se M entra nello stato finale q₂, U accetta

U simula M su w e accetta (M,w) sse M accetta w, quindi L_u è RE

Teorema: L₁₁ non è ricorsivo

<u>Dimostrazione</u>: se L_u fosse ricorsivo anche comp(L_u) sarebbe ricorsivo e con una TM che riconosce comp(L_u) potremmo decidere L_d che non è RE. Contraddizione!

algoritmo

dal fatto che un problema P è indecidibile, possiamo derivare che un altro problema P' è indecidibile

riduciamo P -> P'

ogni istanza I di P viene trasformata in un'istanza h(I) di P' tale che la I ha risposta si sse h(I) ha risposta si

Teorema: se esiste una riduzione P -> P' allora a)se P è indecidibile anche P' lo è b)se P non è RE anche P' non è RE

dimostrazione:

a) se fosse possibile decidere P' allora potrei decidere anche P

per ogni istanza I di P costruiamo h(I) di P', la decidiamo e usiamo la stessa risposta per I

quindi P non può essere indecidibile

b) se P' è RE allora esiste una TM M che da le risposte giuste per le istanze SI di P', ma allora ci sarebbe anche per P: per ogni istanza I \rightarrow h(I), con M decido le risposte SI e le uso per I quindi decido le risposte SI di P, quindi anche P sarebbe RE

esempi di riduzioni:

$$L_{e} = \{M \mid L(M) = \emptyset\}$$

$$L_{ne} = \{M \mid L(M) \neq \emptyset\}$$

visto che le TM sono rappresentate da sequenze binarie, si tratta di linguaggi sulle stringhe binarie. Sono uno il complemento dell'altro

Teorema 9.8: L_{ne} è RE

Teorema 9.9. L_{ne} non è ricorsivo <u>Dimostrazione.</u> Usiamo la riduzione $L_{u} \rightarrow L_{ne}$ $I=(M,w) \rightarrow h(I) = M'$

M accetta w sse M' accetta x e quindi (M,w) è in L_u sse M' è in L_{ne} L_{ne} è RE e non ricorsivo

Teorema 9.10. L_e non è RE

<u>Dimostrazione</u>. Se L_e fosse RE allora sia L_e che L_{ne} sarebbero ricorsivi => assurdo.

la situazione ora è questa:

Linguaggi RE = TM

Proprietà P dei linguaggi RE = insieme dei linguaggi RE che la soddisfano. Come facciamo a riconoscere insiemi di linguaggi? Per ogni linguaggio RE c'è (almeno) una TM che lo riconosce

 $P=>L_P=\{M \mid M \text{ riconosce } L \text{ che soddisfa } P\}$ L_P è insieme di stringhe binarie

Pè banale se Lpè oppure contiene tutti i linguaggi RE

Esempi di proprietà non banali dei linguaggi RE

contenere tutti i palindromi

essere CF

essere regolari

essere infiniti

essere finiti

Teorema di Rice

Tutte le proprietà non banali dei linguaggi RE sono indecidibili. <u>Dimostrazione</u>. Sia P una proprietà non banale. Supponiamo che \varnothing non sia in L_P . Sia L in L_P supponiamo di avere M_L che accetta L. $L_U \rightarrow L_P \quad I=(M,w) \rightarrow h(I)=M'$

(M,w) è in L_u sse M' è in L_P se L_P fosse decidibile => L_u sarebbe decidibile E se \emptyset è in L_p ?

Consideriamo comp(P). E' l'insieme dei linguaggi RE che non soddisfano P, quindi, per quanto dimostrato prima, comp(P) è indecidibile. Cioè $L_{comp(P)}$ è indecidibile, ma $L_{comp(P)} = comp(L_P)$. Per cui, se L_P fosse decidibile allora lo sarebbe anche $L_{comp(P)}$. Contraddizione.

conseguenze del Teorema di Rice:

- --Linguaggio vuoto?
- --Linguaggio finito?
- --Linguaggio regolare?
- --Linguaggio libero dal contesto?

sono tutti problemi indecidibili