GLASGOW COLLEGE UESTC

Exam paper

Linear Algebra and Space Analytic Geometry (UESTC1001)

Date: 21st, June, 2021 Time: 14:30-16:30

Attempt all PARTS. Total 100 marks

Q1 Fill in the blanks. [20]

(a) Suppose *A* is a 3-by-3 matrix,
$$|A| = -2, |B| = 3, |3adj(A)B^{-1}| = ____.$$
 [4]

(b) Let
$$\theta = \frac{\pi}{6}$$
, $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ and $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, then $A^6x = \underline{}$ [4]

(c) If the inverse of A is
$$A^{-1} = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$$
, then $A =$

(d) Suppose
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{bmatrix}$$
 is similar to $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{bmatrix}$, then $x = \underline{\hspace{1cm}}, y = \underline{\hspace{1cm}}$. [4]

(e) Let
$$A = \begin{bmatrix} 4 & 0 & 2 \\ -1 & 1 & 0 \\ 2 & -2 & 6 \end{bmatrix}$$
, then Rank $(2I-A) =$ [4]

Q2 Computations – Solve the following problems. [35]

(a) Let
$$A = \begin{bmatrix} 0 & x & y & z \\ x & 1 & 0 & 0 \\ y & 0 & 1 & 0 \\ z & 0 & 0 & 1 \end{bmatrix}$$
, calculate det A . [10]

(b) Let A be the matrix of the quadratic form

$$9x_1^2 + 7x_2^2 + 11x_3^2 - 8x_1x_2 + 8x_1x_3$$

where the eigenvalues of A are 3, 9, and 15. Find an **orthogonal** matrix P such that the change of variable x = Py transforms $x^T A x$ into a quadratic form with no cross-product term. Give P and the new quadratic form. [15]

(c) Let $A = \begin{bmatrix} 2 & -1 & 3 & -1 & 1 & -5 \\ -1 & 4 & 2 & 11 & -3 & 10 \\ 1 & 1 & 3 & 4 & 2 & -7 \end{bmatrix}$. Find a basis for the null space and a basis for the column space of A.

Q3 Discussions – Answer the following questions.

[25]

- (a) Let $A = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & a & 0 \end{bmatrix}$, $\alpha = \begin{bmatrix} b \\ c \\ 1 \end{bmatrix}$, if α is an eigenvector of A corresponds to eigenvalues -2, what are the values for a, b and c? [10]
- (b) Let $v_1 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$ and $b = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$. Is b in $span\{v_1, v_2\}$? If not, find the orthogonal projection of b onto $span\{v_1, v_2\}$. [15]

Q4 Proofs – Prove the following statements.

[20]

- (a) Suppose $v_1, ..., v_m$ is linearly independent in $V, w \in V$, and $v_1 + w, ..., v_m + w$ is linearly dependent. Prove that $w \in \text{span}\{v_1, ..., v_m\}$. [10]
- (b) If A is a real symmetric matrix, and $A^2=0$, prove that A=0. [10]