

STEGANOGRAFI

Oleh: Rusito, M.Kom

Steganografi

- Steganografi berasal dari bahasa Yunani yaitu kata Stegos, yang artinya tertutup atau tersembunyi, dan graphos, yang artinya tulisan.
- steganografi merupakan bagian dari bidang ilmu yang membahas tentang metode-metode atau teknik-teknik tentang penyembunyian informasi (information hiding) di dalam informasi lainnya

Steganografi Vs Kriptografi

- Pada kriptografi pesan yang di sandikan masih dapat dilihat karena metode yang di gunakan adalah menghilangkan informasi dengan melakukan enkripsi data (data dikacaukan) sehingga tidak dimengerti orang lain. Sedangkan, pada steganografi pesan di sembunyikan pada pesan (informasi) lain sehingga menjadi suatu pesan yang tidak terlihat
- Kriptografi menarik perhatian karena pesan di ubah. Sedangkan, steganografi tidak menarik perhatian karena pesan disembunyikan

Penggunaan Steganografi

- metode steganografi menghilangkan keberadaan suatu pesan informasi sehingga pesan informasi tersebut menjadi suatu pesan yang tak terlihat (invisible) sehingga pesan rahasia tidak akan menarik perhatian, baik terhadap pesan itu sendiri, terhadap pembawa pesan, atau penerima pesan.
- Contoh penggunaan Steganografi adalah pemberian tanda-air digital (digital watermark) pada suatu berkas. biasanya digunakan untuk melindungi hak kepemilikan intelektual pada berkas tersebut dan digunakan dalam bidang komunikasi rahasia (covert communications).

Media Pembawa (Carrier)

- Dalam steganografi berbasis komputer, media pembawa (carrier) dapat berupa citra digital, audio, video, grafik, dan sebagainya.
- Pada steganografi berkas pembawa berupa teks kurang cocok untuk di terapkan karena Berukuran kecil sehingga dapat mengubah total pesan pembawa

Kriteria Berkas Pembawa

- Berkas-berkas tersebut telah dikompresi dengan algoritma tertentu, sehingga pesan yang disisipkan juga ikut terkompresi.
- Berkas-berkas tersebut biasanya berukuran besar, sehingga pesan informasi rahasia dapat disisipkan tanpa mempengaruhi atau mengubah berkas pembawa secara signifikan.
- Berkas-berkas tersebut merupakan pengalih perhatian yang baik bagi pesan rahasia yang akan disembunyikan.

Cara Kerja Steganografi

- Steganografi bekerja dengan mengganti bit-bit data yang tidak berguna atau tidak terpakai dalam berkas-berkas komputer umumnya (seperti grafik, suara, teks, HTML, atau bahkan disket) dengan bit-bit yang berbeda,
 - yaitu informasi yang tak terlihat. Pesan rahasia yang disembunyikan terlebih dahulu dikonversi ke dalam suatu aliran bit informasi.
 - Kemudian bit-bit informasi ini disisipkan ke dalam berkas yang berperan sebagai pembawa.
 - Metode ini memanfaatkan bit-bit LSB berkas (file) pembawa dan menggantinya dengan bit-bit dari pesan informasi.
 - Informasi yang tersembunyi ini dapat berupa teks biasa (plain text), teks tersandi (chiper text), atau suatu citra.

Steganografi Berbasis Citra

- Steganografi berbasis citra digital dapat dikategorikan dalam dua kategori, yaitu:
 - <u>steganografi dalam kawasan citra</u>dan
 - dalam <u>kawasan alih ragam</u>.
- Dalam kawasan citra, steganografi dilakukan dengan metode penggantian atau penyisipan bit pada LSB atau sering disebut manipulasi derau (noise manipulation).
- Disebut demikian karena pesan rahasia pada citra yang disisipkan, akan mengubah piksel tertentu pada citra.
- Jika perubahan tersebut terlihat, akan nampak seperti derau pada citra tersebut.
- Pendekatan ini melibatkan citra berformat tak berugi, dan pesan disisipkan dan diambil secara langsung, tanpa melibatkan proses alih ragam.
- Sedangkan dalam kawasan alih ragam, proses dilakukan dengan melibatkan manipulasi dari algoritma alih ragam citra.

Steganografi Berbasis Citra

- Dalam metode penyisipan LSB, steganografi dilakukan dengan cara mengganti satu atau beberapa bit-bit RGB piksel citra awal (A, – A₃) dengan bit-bit dari pesan rahasia (P₀ – P₃) yang akan disembunyikan.
- Berkas citra pembawa yang telah disisipi pesan rahasia, atau disebut juga berkas atau citra stego, dapat dikirimkan ke penerima.
- Penerima dapat mengekstraksi pesan tersebut atau melakukan aksi desteganografi dari citra pembawa sehingga mendapatkan bit-bit pesan tersembunyi dari citra pembawa.

Steganografi Berbasis Citra

Gambar 2.2 Steganografi berbasis citra digital dengan metode penggantian atau penyisipan LSB.

CONTOH SOAL:

Suatu citra pembawa memiliki 9 piksel (ukuran citra 3X3), resolusi 8 bit, dengan nilai-nilai intensitasnya ditunjukkan dengan gambar

berikut:

215	103	72				
79	44	7				
33	10	59				

Informasi yang akan disisipkan adalah teks "Aku". Bagaimanakah pesan dalam desimal setelah dilakukan steganografi, jika diketahui 3-bit LSB pada citra pembawanya dapat disisipi oleh informasi teks tsb?

TABEL ASCII

,,,,	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	- 1.
	00 0000 0000 NUL	01 0000 0001 SOH	02 0000 0010 STX	03 0000 0011 ETX	04 0000 6100 EOT	05 0000	06 0000	07 0000	08 0000			11 0000					1
0	П		I	1	4	ENQ	ACK /	兄	BS	<u>нт</u>	LF	VT	FF ₩	_CR ←	SO ⊗	SI ①	8
	16 0001	17 0001	18 0001	19 0001	20 0001	21 0001	22 0001		24 0001			×				_	-
	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	28 0001 1100 FS	29 0001 GS	30 0001 1110 RS	31 0001 1111 US	
1		Ф	G	Ð	Ф	+	Л	\dashv	X	+	ς	Ф				<u></u>	9
	32 0010 0000	33 0010	34 0010	35 0010	36 0010	37 0010	38 0010	39 0010	40 0010	41 0010	42 0010	43 0010	44 0010	45 0010	46 0010	47 0010	1
2	SP	!	"	#	\$	%	&	′	()	*	+	,	_		/	A
	48 0000	49 0001	50 0011	51 0011	52 0011	53 0011	54 0011	55 0011	56 0011	57 0011	58 0011	59 0011	60 0011	61 0011	62 0011	63 0011	1
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?	В
	64 0100	65 0100	66 0100 0010	67 0100	68 0100	69 0100	70 0100	71 0100	72 0100	73 0100	74 0100	75 0100	76 0100	77 0100	78 0100	79 0100	1
4	@	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	Ø	С
	80 0101	81 0101	82 0101	83 0101	84 0101	85 0101 0101	86 0101	87 0101	88 6161	89 0101	90 0101	91 0101	92 0101	93 0101	94 0101	95 0101	1
5	Р	Q	R	S	T	U	٧	W	Х	Υ	Z	[\]	^	_	D
	96 0000	97 0110	98 0110	99 0110	$100_{\begin{array}{c}0110\\0100\end{array}}$	101 0110	102 0110	103 0110	104 0110	105 0110	106 6110	107 0110	108 0110	109 0110	110 0110	111 0110	1
6	`	а	b	С	d	е	f	g	h	i	j	k	1	m	n	0	E
	112 0111	113 0001	114 0111	115 0111	116 0111	117 0111	118 0111	119	120 1000	121 1001	122 0111	123 0111	124 0111	125 1101	126	127	1
7	р	q	r	s	t	u	V	w	x	у	z	{		}	~	DEL	

Konversi teks 'Aku':

```
ASCII ('A') = 01000001_{b}
```

$$ASCII('k') = 01101011_{b}$$

ASCII ('
$$\upsilon$$
') = 01110101_b

Sedangkan konversi piksel-per piksel adalah sbb.

```
215 = 11010111 7 = 00000111
```

$$103 = 01100111$$
 $33 = 00100001$

$$72 = 01001000 \quad 10 = 00001010$$

$$79 = 01001111$$
 $59 = 00111011$

JAWAB:

```
215 = 11010111 7 = 00000111

103 = 01100111 33 = 00100001

72 = 01001000 10 = 00001010

79 = 01001111 59 = 00111011

44 = 00101100
```

Konversi teks 'Aku':

```
ASCII ('A') = 010000001_{b}
ASCII ('k') = 01101011_{b}
ASCII ('u') = 01110101_{b}
```

```
Penyisipan teks 'Aku'
```

```
215 \square 11010110 = 2147 \square 00000110 = 6
```

$$103 \square 01100111 = 10333 \square 00100010 = 34$$

72
$$\Box$$
 01001000 = 72 10 \Box 00001001 = 9

Sehingga Hasilnya setelah di steganografi menjadi

214	103	72				
78	40	6				
34	9	58				

TERIMA KASIH