Completude Lógica Epistêmica

Isaque

1 Lema da Verdade

Para Lógica Epistêmica e alguma fórmula ϕ , $M,w\models\phi\Leftrightarrow\phi\in w$

Prova: Por indução no comprimento de ϕ .

Caso base: Segue da definição de V, isto é, $w \in V(p)ssep \in w$.

Hipótese de indução: Se ϕ tem tamanho n, então $M, w \models \phi \Leftrightarrow \phi \in w$, ou seja, o lema vale para toda fórmula de tamanho \leq n.

Queremos mostrar que vale para fórmulas de tamanho $\geq n+1$.

Os operadores booleanos segue da proposição 1 do apêndice A da apostila do professor Mario Benevides.

Precisamos provar penas para os operadores $k \in B$

1.1 Operador K

- \Rightarrow Suponha $M, w \models K_a \phi \in K_a \phi \notin w$, onde 'a' é o identificador do agente.
- (1) Se $M, w \models K_a \phi$, então para todos estado v tal que $wR_a v$ então $M, w \models \phi$ (pela definição do operador K_i).

Pela H.I se $M, v \models \phi$ então $\phi \in v$.

Como $K_a \phi \notin w$, então $\neg K_a \phi \in w$, logo existe um z e um x tal que wR_az e $M, z \models \neg \phi$ e wR_ax e $M, x \models \phi$. O que é uma contradição de 1.

 \Leftarrow Suponha $K_a\phi \in w$, logo, por construção do operador K, em todo estado v, tal que wR_av , $\phi \in v$.

Pela H.I se
$$\phi \in v$$
 então $M, v \models \phi$.
Logo $M, w \models K_a \phi$

1.2 Operador B

Para $B_a\phi \in w$ tem que existir um estado v tal que wR_av , $\phi \in v$ e esse ser um dos estados que o agente a considera mais provável.

Rightarrow Suponha $M, w \models B_a \phi \in B_a \phi \notin w$.

(1) Se $M, w \models B_a \phi$, então existe um estado v tal que $wR_a v \in M, v \models \phi$.

Pela H.I se $M, v \models \phi$ então $\phi \in v$

Como $B_a \phi \notin w$, então $\neg B_a \phi \in w$, logo pela construção do operador B não existe um estado z talq ue wR_az e $M, z \models \phi$, o que contradiz 1.

 \Leftarrow Suponha que $B_a\phi \in w$, logo, por construção de B_a , existe um estado v em W tal que wR_av e $\phi \in v$. Pela H.I, existe v, wR_av e M, $v \models \phi$. Logo M, $v \models B_a\phi$.

2 Transitivo, Reflexivo e Simétrico

Temos que mostrar que mesmo com a adição dos operadores K e B a lógica modal epistêmica continua transitiva, reflexiva e simétrica.

Iremos mostrar que os seguintes axiomas são verdadeiros :

Axioma Transitivo $K_a \varphi \to K_a K_a \varphi$ Axioma Reflexivo $K_a \varphi \to \varphi$ Axioma Simétrico $\varphi \to K_a B_a \varphi$

Construímos o modelo maximal canônico $M_c = \langle W, R_a, V \rangle$.

Pelo lema da existência dado se existe subconjunto $\Gamma \in W$ tal que $K_a \varphi \to K_a K_a \varphi$ então para todo $\Gamma \in W$ temos que $K_a \varphi \to K_a K_a \varphi$ é verdadeiro.

Se $K_a\varphi \to K_aK_a\varphi \in \Gamma$ então $M_c, \Gamma \models K_a\varphi \to K_aK_a\varphi$. Um frame F modela o axioma $K_a\varphi \to K_aK_a\varphi$ sse R_a é transitivo.

A prova para reflexivo e simétrico é análoga.

Logo R_a é transitivo, reflexivo e simétrico.