18.310A Problem Set 4

Rishad Rahman

1. We can do this easily using a chart.

a	b	b'
107	73	34 = 107 - 73
73	34	5 = 73 - 2(34) = 3(73) - 2(107)
34	5	4 = 34 - 6(5) = 13(107) - 19(73)
5	4	1 = 5 - 4 = 22(73) - 15(107)

so k = -15 and l = 22.

- 2. We have $w = 73m + 29 \equiv 18 \mod 107 \Rightarrow m \equiv -11 \cdot 73^{-1} \equiv -11 \cdot 22 \equiv -242 \equiv 79 \mod 107$. So $w \equiv 73(79) + 29 \equiv 5796 \mod (73 \cdot 107)$.
- 3. $p^{q-1}+q^{p-1}\equiv q^{p-1}\equiv 1 \bmod p$ and similarly $p^{q-1}+q^{p-1}\equiv 1 \bmod q$ by FLT and so the result follows by CRT.
- 4. Obviously 1 satisfies $x^3 \equiv 1 \mod p$. Also notice $m^{3a} \equiv 1 \mod p$ by FLT so m^a also satisfies it for any m not divisible by p. Suppose $m^a \neq 1 \mod p$. Then $m^{2a} \neq 1 \mod p$ but $m^{6a} \equiv 1 \mod p$ so 1, $m^a \mod p$, and $m^{2a} \mod p$ are three distinct solutions since $m^a \neq 1 \mod p$. Why does such m^a exist? Well by the Fundamental Theorem of Algebra there can't be more than a values of m such that $m^a \equiv 1 \mod p$ so there must exist an m^a which this doesn't hold and the aforementioned follows. We showed there are are at least three solutions but again the FTA forces it to be equal to 3.
- 5. Note the cube roots of 1 mod a prime p can be written as 1, x, x^2 . This also implies that the cube roots of n^3 can be written as n, nx, nx^2 . Note a residues must exist in order for n, nx, nx^2 to span all 3a = p-1 residues of p-1. If it wasn't spanned then we can cube the non-spanned value to get a new cubic residue. Therefore we have a+1 possible cubic residues where the extra 1 comes from the 0 case. Similarly there are b+1 possible cubic residues for q. By CRT $n^3 \mod pq \Leftrightarrow (n^3 \mod p, n^3 \mod q)$. We just got to show the reverse direction to complete the bijection which would then show there are a + b + b + b + c cubic resudues modulo a + b + b + c modulo a + b + c modulo a + b + c modulo a + c modul