Product of Array Except Itself

Given nums[n], return an array answer, Such that answer(i) is equal to the product of all elements of nums except nums[i]

$$nums() = \{1, 2, 3, 4\} \rightarrow ans() = \{24, 12, 8, 6\}$$

* We have to multiple every index Value Other than current index for each index

//Algo

D'Initialize a Variable "Suffix = 1"

② for (η-1 →)

prefixproduct [i] = prefixproduct[i-1] * Suffix

Syfix = Suffix * arrli]

So, what is going there?

O Create a prefix product at Starting itself

@ Create Suffix Product

orv: 1 2 3 4

$$pp: 1 2 6 24$$
 $sp: 24 24 12 4$

for index: 2 2 4

 $ans = 2 \times 4$

At every index in between (1 to n-2)

See
$$\rightarrow pp[i-1] \times Sp[i+1]$$

(index = =0) $\rightarrow Sp[i+1]$

But... Rut... Rut...

Do we really need to maintain 2 arrays for profix product

Suffix product

We can do the same logic with prefix product and a <u>Variable</u>

* Create a Suppis Variable
13 Initializes to 1

* On every iteration update Suffix >> By Suffix # arr[i]

* Make and for every index as > prejapooduct [i] = prejapooduct [i-1] # Suffix

* At last pregaposduct will be our answer

prefisproduct[i]

i
$$\rightarrow$$
 traverse from $n-1$ to $\otimes 1$ (Edge ase for $i==0$)

i \rightarrow traverse from $n-1$ to $\otimes 1$ (Edge ase for $i==0$)

i \rightarrow traverse from $n-1$ to $\otimes 1$ (Edge ase for $i==0$)

i \rightarrow traverse from $n-1$ to $\otimes 1$ (Edge ase for $i==0$)

i \rightarrow traverse from $n-1$ to $\otimes 1$ (Edge ase for $i==0$)

i \rightarrow traverse from $n-1$ to \rightarrow 1

i \rightarrow traverse from $n-1$ to \rightarrow 1

Edge ase for $i==0$)

i \rightarrow traverse from $n-1$ to \rightarrow 1

i \rightarrow traverse from $n-1$ to \rightarrow 1

Edge ase for $i==0$)

i \rightarrow 1 × arr $[3] = 4$

i \rightarrow 1 × arr $[2] = 12$

i \rightarrow 1 × \rightarrow 1

i \rightarrow 1 × \rightarrow 2

i \rightarrow 2

i \rightarrow 1 × \rightarrow 2

i \rightarrow 3

i \rightarrow 1 × \rightarrow 2

i \rightarrow 3

i \rightarrow 1 × \rightarrow 2

i \rightarrow 3

i \rightarrow 1 × \rightarrow 3