Digital Fundamentals

Thomas L. Floyd

Shift Registers
Chapter 8

Register: Storage and Movement

Basic Shift Register Operations

A **shift register** is a flip-flop circuit with important applications in the storage and movement of data. Some types of data movements are illustrated here.

Serial-in/Serial out Shift Register

Shift registers are available in IC form or can be constructed from discrete flip-flops as is shown here with a five-bit serial-in serial-out register.

The data input is on the left. Each clock pulse will move the input bit to the next flip-flop. (Shifting occurs from left to right.)

Serial-in/Serial out Shift Register

Serial-in/Serial out Shift Register

Shift registers are commonly presented as shown below. The "SRG 8" label indicates that the circuit is an 8-bit shift register.

Serial-in/Parallel-out Shift Register

A **serial-in/parallel-out** shift register has a single data input and some number of parallel data outputs, as shown below.

Parallel in/Serial out Shift Register

Shift registers can be used to convert parallel data to serial form, as shown.

Parallel in/Parallel-out Shift Register

Four-Bit Bidirectional Shift Register

Shift Register Counters

Shift registers can form useful counters by recirculating a pattern of 0's and 1's. A *Johnson counter* is an example of such a register.

A 4-bit Johnson counter can be constructed using a series of D flip-flops as shown.

Shift Register Counter Timing Diagram

The timing diagram for the 4-bit Johnson Counter (on the previous slide) is shown below.

4-bit Johnson Counter

TABLE 8-3

Four-bit Johnson sequence.

Clock Pulse	Q_0	Q_1	Q_2	Q_3	
0	0	0	0	0 ←	
1	1	0	0	0	
2	1	1	0	0	
3	1	1	1	0	
4	1	1	1	1	
5	0	1	1	1	
6	0	0	1	1	
7	0	0	0	1 —	

5-bit Johnson Counter

TABLE 8–4

Five-bit Johnson sequence.

Clock Pulse	Q_0	Q_1	Q_2	Q_3	Q_4
0	0	0	0	0	0 ←
1	1	0	0	0	0
2	1	1	0	0	0
3	1	1	1	0	0
4	1	1	1	1	0
5	1	1	1	1	1
6	0	1	1	1	1
7	0	0	1	1	1
8	0	0	0	1	1
9	0	0	0	0	1 —

Ring Counter

A **ring counter** shifts a single "1" output from each flip-flop to the next.

Initial state is required. No decoding is needed!

Ring Counter Output Sequence

TABLE 7-5 • Ten-bit ring counter sequence.										
CLOCK PULSE	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q_8	Q_9
0	1	0	0	0	0	0	0	0	0	0 <
1	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0	0
3	0	0	0	1	0	0	0	0	0	0
4	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	0	1	0	0	0	0
6	0	0	0	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	1	0	0
8	0	0	0	0	0	0	0	0	1	0
9	0	0	0	0	0	0	0	0	0	1 —

Serial-in/Serial-out Shift Register Application: Time Delay Circuit

Serial-to-Parallel Data Converter

Serial-to-Parallel Data Converter

