Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1)

Ralf Treinen

treinen@irif.fr

18 février 2022

© Ralf Treinen 2020-2021

Vue la semaine dernière

- ► Grammaires
- Dérivations (gauches, droites)
- Arbres de dérivation
- "dérivation = arbre de dérivation + stratégie"
- ► Une grammaire G est ambiguë quand il existe un mot w qui a deux arbres de dérivation différents
 - équivalent : qui a deux dérivations gauches différentes
 - équivalent : qui a deux dérivations droites différentes

Deux arbres de dérivation de i+v*i dans G_1

$$\mathsf{E} \to \mathsf{E} + \mathsf{E} \mid \mathsf{E} * \mathsf{E} \mid (\mathsf{E}) \mid \mathsf{I} \qquad \mathsf{I} \to \mathsf{i} \mid \mathsf{v}$$

Écartez les grammaires ambiguës

- Les grammaires ambiguës sont (en principe) interdites pour l'analyse grammaticale.
- Raison : Nous ne voulons pas seulement savoir si un mot est accepté par la grammaire ou non, mais aussi connaître son arbre de dérivation, qui va être utilisé dans la suite.
- C'est une différence avec le cours AAL3, où on s'est seulement intéressé à l'acceptation d'un mot (par un automate, une regexp)
- "En Principe": certains outils (voir plus tard) acceptent des grammaires ambiguës, mais seulement avec une spécification supplémentaire qui permet de désambiguïser.

Plusieurs techniques pour l'analyse grammaticale

- Analyse descendante: construction de l'arbre de dérivation, à partir de l'axiome jusqu'aux feuilles.
 Ordre de construction: parcours préfixe de l'arbre.
 C'est l'approche que nous étudions aujourd'hui et la semaine prochaine.
- Analyse ascendante: construction d'un arbre de dérivation à partir des feuilles jusqu'à l'axiome. Plus complexe à maîtriser, mais aussi plus puissante.

 C'est l'approche que nous commencerons à étudier dans deux
 - C'est l'approche que nous commencerons à étudier dans deux semaines.

Construction d'un arbre de dérivation

- Dans la construction d'un arbre de dérivation (ou, d'une dérivation), il y a à chaque moment deux choix à faire :
 - le non-terminal qu'on va remplacer à l'aide d'une règle de la grammaire,
 - une fois le non-terminal choisi, la règle parmi celles qui ont ce non-terminal sur le côté gauche.
- Nous avons vu la semaine dernière que le premier choix n'est pas essentiel : on peut imposer une stratégie pour choisir le non-terminal à remplacer (par ex., celui qui est le plus à gauche).

Exploration complète de l'espace de recherche?

- Une façon de réaliser une analyse grammaticale est maintenant d'essayer simplement toutes les possibilités de choisir des règles.
- Cela donne lieu à un algorithme non-déterministe :
 - soit par retour en arrière (angl. : backtracking)
 - soit par programmation dynamique
- ▶ Approche complète : on est sûr de trouver un arbre de dérivation si le mot est dans le langage ⑤
- ► Problème : efficacité ②
- On cherche des solutions efficaces, éventuellement en imposant des restrictions aux grammaires qu'on peut traiter.

Quelle efficacité cherche-t-on?

- ▶ Le temps d'exécution d'un analyseur grammaticale est au moins linéaire dans la longueur du texte à analyser (c-à-d la longueur du flot des tokens). Évidemment on ne peut pas faire mieux.
- Puisqu'on cherche aussi à construire l'arbre de dérivation, on ne peut même pas faire mieux que la taille de l'arbre de dérivation.
- ► La taille de l'arbre de dérivation est ≥ la taille de l'entrée (car chaque symbole de l'entrée est une feuille de l'arbre).
- ▶ On veut aussi que l'analyseur fasse un seul passage sur le texte.

Comment obtenir une solution efficace?

- ► Il faut maîtriser le choix de la règle de la grammaire par laquelle on va remplacer un non-terminal.
- On ne peut pas demander qu'il y ait une seule règle par non-terminal (car dans ce cas la grammaire est complètement triviale).
- Sur quoi baser le choix de la règle?
- Sur la suite du mot pour lequel on cherche à construire l'arbre de dérivation!

Exemple

- ightharpoonup Grammaire $G = (\Sigma, N, S, P)$ où
- $\Sigma = \{i, +, [,]\}$
- \triangleright $N = \{S\}$
- ► *S* = S
- P consiste en les règles suivantes :

$$S \rightarrow i$$
 (1)

$$S \rightarrow [S+S]$$
 (2)

 \triangleright $\mathcal{L}(G)$: expressions complètement parenthésées, construites avec la constante i et l'opérateur binaire +.

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1) 

└─ Un exemple
```

Construction d'un arbre de dérivation (1)

Productions : (1) S
$$\rightarrow$$
 i (2) S \rightarrow [S+S]

Choisir règle (2) : c'est la seule qui peut produire à partir de S un mot qui commence par [.

Construction d'un arbre de dérivation (2)

Productions : (1)
$$S \rightarrow i$$
 (2) $S \rightarrow [S+S]$

Le premier non-terminal du mot des feuilles est [.

Construction d'un arbre de dérivation (3)

i

Choisir règle (2): c'est la seule qui peut produire à partir de S un mot qui commence par [.

Construction d'un arbre de dérivation (4)

 $Productions: \qquad \textbf{(1) } S \rightarrow \textbf{i} \qquad \textbf{(2) } S \rightarrow \textbf{[S+S]}$

Le suivant non-terminal du mot des feuilles est [.

Construction d'un arbre de dérivation (5)

Choisir règle (1): c'est la seule qui peut produire à partir de S un mot qui commence par i.

Construction d'un arbre de dérivation (6)

 $Productions: \qquad \textbf{(1) } S \rightarrow \textbf{i} \qquad \textbf{(2) } S \rightarrow \textbf{[S+S]}$

Le suivant non-terminal du mot des feuilles est i.

Construction d'un arbre de dérivation (7)

 $Productions: \qquad \textbf{(1) } S \rightarrow \textbf{i} \qquad \textbf{(2) } S \rightarrow \textbf{[S+S]}$

Le suivant non-terminal du mot des feuilles est +.

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1) 

└─Un exemple
```

Construction d'un arbre de dérivation (8)

Productions : (1) $S \rightarrow i$ (2) $S \rightarrow [S+S]$

Choisir règle (1): c'est la seule qui peut produire à partir de S un mot qui commence par i.

Construction d'un arbre de dérivation (9)

 $Productions: \qquad \textbf{(1) } S \rightarrow \textbf{i} \qquad \textbf{(2) } S \rightarrow \textbf{[S+S]}$

[[i + i] + [i + i]]

Le suivant non-terminal du mot des feuilles est i.

Construction d'un arbre de dérivation (10)

 $Productions: \qquad \textbf{(1) } S \rightarrow \textbf{i} \qquad \textbf{(2) } S \rightarrow \textbf{[S+S]}$

Le suivant non-terminal du mot des feuilles est].

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1) 

└─Un exemple
```

Construction d'un arbre de dérivation (11)

Productions : (1) $S \rightarrow i$ (2) $S \rightarrow [S+S]$

Seule la règle (2) peut produire à partir de S un mot qui commence par +.

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1) 

└─Un exemple
```

Construction d'un arbre de dérivation (12)

Productions : (1) $S \rightarrow i$ (2) $S \rightarrow [S+S]$

Choisir règle (2) : c'est la seule qui peut produire à partir de S un mot qui commence par [.

Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1) \sqcup_{Un} exemple

etc. etc.

Construction terminée!

Ce qu'on a vu sur l'exemple :

- Il y a deux types d'actions :
 - consommer en parallèle un terminal du préfixe du mot des feuilles déjà construit, et le même symbole de l'entrée;
 - ▶ ajouter des fils à une feuille de l'arbre de dérivation partiel.
- Pour choisir la règle de la grammaire, on regarde en avant quel est le symbole suivant de l'entrée que nous aurions à consommer (lookahead).

Grammaires LL(1)

En fait, l'algorithme que nous avons vu sur l'exemple appartient à la classe LL(1):

- ▶ le premier L indique qu'on parcourt l'entrée de la gauche (angl. : left) à la droite;
- le deuxième L indique qu'on construit une dérivation gauche (angl. : left), c.-à-d. un arbre de dérivation dans un ordre préfixe;
- ▶ le nombre 1 indique que nous utilisons la connaissance de 1 caractère dans la partie de l'entrée qui reste à consommer, pour déterminer la règle à appliquer (lookahead=1).

Grammaires LL(k)

- ▶ Idée : on peut déterminer la règle de production à appliquer au non-terminal le plus à gauche de l'arbre de dérivation en regardant les k symboles suivants de l'entrée (lookahead=k)
- Définition précise à venir.
- Généralisation des LL(1).
- ► En pratique ce sont surtout les grammaires LL(1) qui nous intéressent.

Notation: w: k

Définition

Soit $w \in \Sigma^*$ un mot, et $k \in \mathbb{N}$. On définit

- ightharpoonup si |w| < k alors w : k = w
- ightharpoonup si |w| > k alors w : k = x tel que w = xy et |x| = k

Explication

- w: k est le préfixe de longueur k du mot w, ou le mot w entier si la longueur de w est inférieure à k.
- ightharpoonup abcdefg: 3 = abc
- ▶ abcd : 7 = abcd

Définition LL(k)

Définition

Soit $G=(\Sigma,N,S,P)$ une grammaire algébrique, $k\in\mathbb{N}$. G est dite LL(k) ssi

► S'il existe deux dérivations gauches

$$S \to^* uY\alpha \to u\beta\alpha \to^* ux$$

 $S \to^* uY\alpha \to u\gamma\alpha \to^* uy$

où
$$Y \in N$$
; $u, x, y \in \Sigma^*$; $\alpha \in (N \cup \Sigma)^*$; $Y \to \beta, Y \to \gamma \in P$.

- ightharpoonup si $\beta \neq \gamma$
- ightharpoonup alors $x: k \neq y: k$

Explication de la définition de LL(k)

- ightharpoonup On a déjà consommé u, partie initiale du mot d'entrée.
- ightharpoonup Le non-terminal le plus à gauche à réécrire est maintenant Y.
- Dans les deux cas considérés, le mot d'entrée continue une fois par le mot x, l'autre fois par le mot y.
- En regardant les k premiers caractères de la suite du mot d'entrée, on peut maintenant décider comment réécrire le non-terminal Y.

Conséquences

- Toute grammaire G qui est LL(k) est non-ambiguë: tout mot du langage $\mathcal{L}(G)$ a une seule dérivation gauche, et donc un seul arbre de dérivation.
- ► Il existe un algorithme efficace pour la construction de cet arbre de dérivation.
- Question : comment savoir si une grammaire est LL(k)?
- Notre définition parle de dérivations quelconques, ce n'est pas une méthode de décision efficace. Comment le décider efficacement en regardant la grammaire?

Un premier critère simple pour être LL(1)

Lemme

Soit G une grammaire où tous les côtés droits de règles commencent par un terminal.

G est LL(1) ssi pour tout non-terminal, les côtés droits de toutes les règles pour ce non-terminal commencent par des terminaux différents.

Exemple

La grammaire de l'exemple précédent :

$$\begin{array}{ccc} \mathsf{S} & \to & \mathsf{i} \\ \mathsf{S} & \to & [\mathsf{S}\text{+}\mathsf{S}] \end{array}$$

satisfait le critère, et est donc LL(1).

Exemple d'une grammaire qui n'est pas LL(1)

- ightharpoonup Grammaire $G_1 = (\Sigma, N, S, P)$ où
- $\Sigma = \{i, +, *, [,]\}$
- $ightharpoonup N = \{S\}$
- ► *S* = S
- P consiste en les règles suivantes :

$$\mathsf{S} \; o \; \mathtt{i}$$

$$S \rightarrow [S+S]$$

$$S \rightarrow [S*S]$$
 (5)

(3)

(4)

- Pourquoi n'est-elle pas LL(1)?
- Peut-on la transformer en une grammaire LL(1)?

Transformation en une grammaire LL(1)

- Si une grammaire n'est pas LL(1) c'est souvent qu'on a à choisir entre deux règles, mais on n'a pas encore suffisament d'informations pour faire ce choix.
- Solution : Retardez le choix!
- par exemple, avec un non-terminal supplémentaire O :

$$S \rightarrow i$$

$$S \rightarrow [S O S]$$

$$O \rightarrow +$$

$$O \rightarrow *$$

$$(6)$$

$$(7)$$

$$(8)$$

$$(9)$$

Vers le deuxième critère pour être LL(1)

Problème : Le premier critère est trop restrictif car il ne permet pas des règles où le côté droit commence par un non-terminal :

On a besoin d'un critère pour être LL(1) qui marche aussi en présence de règles de production où le côté droit commence par un non-terminal.

La fonction $\operatorname{First}_{\leq k}$

Définition

Soit $G = (\Sigma, N, S, P)$ une grammaire, et $k \in \mathbb{N}$. Nous définissons une fonction

$$\operatorname{First}_{\leq k} \colon (N \cup \Sigma)^* \to 2^{\Sigma^*}$$

par

$$\operatorname{First}_{\leq k}(\alpha) = \{ w : k \mid w \in \Sigma^*, \alpha \to^* w \}$$

Explication

 $\operatorname{First}_{\leq k}(\alpha)$ est l'ensemble des préfixes de longueur k des mots terminaux qu'on peut obtenir à partir de α .

La fonction $First_1$

- On pratique c'est le cas k = 1 qui nous intéresse : c'est suffisant, et plus simple à traiter que le cas d'un k général.
- ► First₁: $(N \cup \Sigma)^* \rightarrow 2^{\Sigma}$
- ► First₁(α) = { $c \in \Sigma \mid \exists w \in \Sigma^* : \alpha \to^* cw$ }
- On a donc que $\operatorname{First}_1(\alpha) = \operatorname{First}_{\leq 1}(\alpha) \{\epsilon\}$
- Cette semaine nous sommes sous l'hypothèse qu'il n'y a pas de productions de la forme $N \to \epsilon$, donc on a même $\operatorname{First}_{\leq 1}(N) = \operatorname{First}_{\leq 1}(N)$, mais ca changera dans le cas général.

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1)

Grammaires LL(k)
```

Un meilleur critère pour être LL(1)

Lemme

Soit G une grammaire sans productions de la forme $N \to \epsilon$. G est LL(1) si est seulement si pour toutes règles différentes :

$$\begin{array}{ccc} \mathsf{N} & \to & \alpha \\ \mathsf{N} & \to & \beta \end{array}$$

on a que $\operatorname{First}_1(\alpha) \cap \operatorname{First}_1(\beta) = \emptyset$.

Exemple

Toujours sur le même exemple :

$$First_1(i) = \{i\}$$

$$First_1([S+S]) = \{[\}$$

Calcul de $First_1$ pour les non-terminaux

- ► Grammaire $G = (\Sigma, N, S, P)$. Hypothèse : aucune production $N \to \epsilon$.
- ▶ On fait un graphe, avec N comme ensemble de nœuds.
- ▶ On fait une arête de A vers B quand il y a dans P une production de la forme B \rightarrow A α .
- On ajoute des symboles de Σ comme valeurs aux nœuds. Intialement, on ajoute à un nœud A la valeur a quand il y a dans P une production $A \to a\alpha$.
- Puis on propage les valeurs dans le sens des flèches, jusqu'à ce qu'on ne puisse plus rien propager.

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1) 

└─Grammaires LL(k)
```

Exemple

• Grammaire $G = (\{a, (,), +\}, \{F, S\}, S, P)$ où P est

From France
$$G = (\{a, (,), +\}, \{F, S\}, S, P)$$
 ou P est
$$F \rightarrow a$$

$$S \rightarrow (F+S)$$

$$S \rightarrow F$$

$$\{a\} \qquad \{(\}\}$$
 Initialisation :
$$F \longrightarrow S$$

$$\{a\} \qquad \{(,a\}\}$$
 Propagation :
$$F \longrightarrow S$$

• Résultat : $First_1(F) = \{a\}$, $First_1(S) = \{(, a\}$.

Calcul de ${\rm First}_1$ sur des séquences de symboles

- lacktriangle Toujours sous l'hypothèse qu'on n'a pas de règle N $ightarrow \epsilon$
- On étend la fonction First₁ à des séquences non vides de symboles :

$$\operatorname{First}_{1}(x\alpha) = \begin{cases} \{x\} & \operatorname{si} x \in \Sigma \\ \operatorname{First}_{1}(x) & \operatorname{si} x \in N \end{cases}$$

Nous allons utiliser cette généralisation pour calculer les First₁ des côtés droits des règles de la grammaire.

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1) 

└─Grammaires LL(k)
```

Exemple (2)

• Grammaire $G = (\{F, S\}, \{a, (,), +\}, S, P) \text{ où } P \text{ est}$

$$\begin{array}{ccc} \mathsf{F} & \to & \mathsf{a} \\ \mathsf{S} & \to & (\mathsf{F+S}) \\ \mathsf{S} & \to & \mathsf{F} \end{array}$$

On obtient donc :

$$First_1(a) = \{a\}$$

$$First_1((F+S)) = \{(\}$$

$$First_1(F) = \{a\}$$

Reconnaître la fin de l'entrée

- Avant de faire l'implémentation, il reste un petit problème : il faut s'assurer que l'entrée entière est un mot accepté par la grammaire.
- Solution :
 - l'analyse lexicale envoie un jeton qui signale la fin de l'entrée (par exemple, EOF pour *end of file*)
 - remplacer l'axiome par S', avec une règle

$$S' \rightarrow S$$
 EOF

où S est l'ancien axiome de la grammaire.

Le même exemple avec reconnaissance de la fin

►
$$G = (\{F, S, S'\}, \{a, (,), +, EOF\}, S', P)$$
 où P est

$$\begin{array}{ccc} \mathsf{F} & \to & \mathtt{a} \\ \mathsf{S} & \to & (\mathsf{F} + \mathsf{S}) \\ \mathsf{S} & \to & \mathsf{F} \\ \mathsf{S}' & \to & \mathsf{S} \ \mathsf{E} \mathsf{O} \mathsf{F} \end{array}$$

► On obtient pour les côtés droits des règles :

$$FIRST_1(a) = \{a\}$$
 $FIRST_1((F+S)) = \{(\}$
 $FIRST_1(F) = \{a\}$
 $FIRST_1(S EOF) = \{a, (\}$

Implémentation en OCaml

- L'analyseur grammatical (parser) consiste en plusieurs fonctions mutuellement récursives :
 - Une fonction par non-terminal
 - Distinction de cas, un cas par règle, plus un cas d'erreur
- Un module pour demander des jetons de l'entrée, avec
 - une fonction lookahead pour obtenir un jeton sans avancer dans l'entrée,
 - un fonction eat qui consomme un jeton, et qui avance d'un cran dans l'entrée.

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1)

Mise en œuvre d'une analyse LL(1)
```

type token = $Ch \ of \ char \mid EOF$

Fichier reader.mli |

```
(* module for a lookahead(1) reader from standard input*)
exception Error of string
(* a token is a character, or the end-of-file marker *)
```

```
(* return the next token, do not advance the read pointer *) val lookahead : unit —> token
```

```
(* [(eat t)] advances the read pointer if the next *) (* token is t and throws an Error otherwise. *) valeat: token <math>\rightarrow unit
```

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1)

Mise en œuvre d'une analyse LL(1)
```

Fichier tree.mli |

val print: t -> unit

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1)

— Mise en œuvre d'une analyse LL(1)
```

Fichier parser.ml |

```
open Tree
open Reader
exception Error of string
let rec parse F() =
  match lookahead () with
  | Ch 'a' \rightarrow begin (* F \rightarrow a *)
       eat (Ch 'a');
       Node("F",[Leaf 'a'])
    end
  —> raise (Error "parsing⊔F")
and parse S() =
  match lookahead () with
  | Ch 'a' \rightarrow begin (* S \rightarrow F *)
       let x = parse F () in
      Node ("S" .[x])
    end
    Ch '(' \rightarrow begin (* S \rightarrow (F+S) *)
```

```
Grammaires et Analyse Syntaxique - Cours 4 Introduction à l'analyse LL(1)

└─ Mise en œuvre d'une analyse LL(1)
```

Fichier parser.ml ||

```
eat (Ch '(');
      let x1 = parse F () in
      eat (Ch '+'):
      let x2 = parse S () in
      eat (Ch ')');
      Node("S", [Leaf '('; x1; Leaf '+'; x2; Leaf ')'])
    end
  —> raise (Error "parsing<sub>□</sub>S")
and parse Sprime() =
  match lookahead () with
  | Ch 'a' | Ch '(' -> begin (* S' -> S EOF *)
      let x = parse S () in
      eat EOF:
      Node ("Sprime", [x; Leaf' #'])
    end
  —> raise (Error "parsing⊔Sprime")
let parse () = parse Sprime ()
```