

Magnetars!

Kristen E. Gardner

UTU - Department of Physics and Astronomy

What is a Magnetar?

Figure: Artistic depiction of a magnetar [1]

What is a Magnetar?

Definition:

neutron star

Figure: Artistic depiction of a magnetar [1]

What is a Magnetar?

- neutron star
- massive magnetic field (≥ 10¹³ G)

Figure: Artistic depiction of a magnetar [1]

Figure: Artistic depiction of a magnetar [1]

Definition:

proposed in 1992 by Duncan & Thompson [2]

Figure: Artistic depiction of a magnetar [1]

- proposed in 1992 by Duncan & Thompson [2]
- SGR 0525-66 found in 1979 (only known outside MW)

Figure: Artistic depiction of a magnetar [1]

- proposed in 1992 by Duncan & Thompson [2]
- SGR 0525-66 found in 1979 (only known outside MW)
- short X-Ray bursts

Figure: Artistic depiction of a magnetar [1]

- proposed in 1992 by Duncan & Thompson [2]
- SGR 0525-66 found in 1979 (only known outside MW)
- short X-Ray bursts
- selection bias

Figure: Artistic depiction of a magnetar [1]

Cases:

Description:

young neutron star

Cases:

Description:

- young neutron star
- spinning down, timescale \sim 1 kyr

Cases:

Description:

- young neutron star
- spinning down, timescale \sim 1 kyr
- high-B field (≥ 10¹³ G)

Cases:

Description:

- young neutron star
- spinning down, timescale \sim 1 kyr
- high-B field (≥ 10¹³ G)
- rotational period range of 2-12s

Cases:

Description:

- young neutron star
- spinning down, timescale \sim 1 kyr
- high-B field (≥ 10¹³ G)
- rotational period range of 2-12s

Cases:

 bi-modal population of transients (XTE J1810-197) and persistents

Figure: Artistic depiction of a magnetar [1]

Description:

- young neutron star
- spinning down, timescale ∼1 kyr
- high-B field (≥ 10¹³ G)
- rotational period range of 2-12s

Cases:

- bi-modal population of transients (XTE J1810-197) and persistents
- cross-species magnetar/pulsar

Figure: Artistic depiction of a magnetar [1]

Neutron Star

- radius on order of 10 km
- 1.1 2.16 solar masses
- $10^9 10^{13}$ G (for non-magnetars)

Magnetars

Radio Pulsars

Neutron Star

- radius on order of 10 km
- 1.1 2.16 solar masses
- 10⁹ 10¹³ G (for non-magnetars)

Magnetars

2-12s rotational period

Radio Pulsars

Neutron Star

- radius on order of 10 km
- 1.1 2.16 solar masses
- 10⁹ 10¹³ G (for non-magnetars)

Magnetars

2-12s rotational period

Radio Pulsars

Neutron Star

- radius on order of 10 km
- 1.1 2.16 solar masses
- 10⁹ 10¹³ G (for non-magnetars)

Magnetars

- 2-12s rotational period
- spin-down → quiescent X-ray emission and gamma-ray bursts

Radio Pulsars

~100 ms rotational period

Neutron Star

- radius on order of 10 km
- 1.1 2.16 solar masses
- 10⁹ 10¹³ G (for non-magnetars)

Magnetars

- 2-12s rotational period
- spin-down → quiescent X-ray emission and gamma-ray bursts

Radio Pulsars

- ~100 ms rotational period
- spin-down → radio emission, and non-thermal X/gamma-ray radiation

Neutron Star Types

Figure: Neutron star types, courtesy of JPL [3]

Observations:

Figure: Top down view of the Milky Way with known Magnetars (and distance uncertainties) in red. [4]

Observations:

 generally within the galactic plane

Figure: Top down view of the Milky Way with known Magnetars (and distance uncertainties) in red. [4]

Observations:

- generally within the galactic plane
- mean speed of 200 km s⁻1, σ = 100 km s⁻1

Figure: Top down view of the Milky Way with known Magnetars (and distance uncertainties) in red. [4]

Observations:

- generally within the galactic plane
- mean speed of 200 km s⁻1, σ = 100 km s⁻1
- selection bias

Figure: Top down view of the Milky Way with known Magnetars (and distance uncertainties) in red. [4]

The Magnetars

Name	P	В	Age	E	D	L	Band
	(s)	(10^{14} G)	(kyr)	$(10^{33} \text{ erg s}^{-1})$	(kpc)	$(10^{33} \text{ erg s}^{-1})$	
CXOU J010043.1-721134	8.02	3.9	6.8	1.4	62.4	65	
4U 0142+61	8.69	1.3	68	0.12	3.6	105	OIR/H
SGR 0418+5729	9.08	0.06	36000	0.00021	2	0.00096	
SGR 0501+4516	5.76	1.9	15	1.2	2	0.81	OIR/H
SGR 0526-66	8.05	5.6	3.4	2.9	53.6	189	
1E 1048.1-5937	6.46	3.9	4.5	3.3	9.0	49	OIR
(PSR J1119-6127)	0.41	4.1	1.6	2300	8.4	0.2	R/H
1E 1547.0-5408	2.07	3.2	0.69	210	4.5	1.3	O?/R/H
PSR J1622-4950	4.33	2.7	4.0	8.3	9	0.4	R
SGR 1627-41	2.59	2.2	2.2	43	11	3.6	
CXOU J164710.2-455216	10.6	< 0.66	>420	< 0.013	3.9	0.45	
1RXS J170849.0-400910	11.01	4.7	9.0	0.58	3.8	42	O?/H
CXOU J171405.7-381031	3.82	5.0	0.95	45	13	56	
SGR J1745-2900	3.76	2.3	4.3	10	8.3	< 0.11	R/H
SGR 1806-20	7.55	20	0.24	45	8.7	163	OIR/H
XTE J1810-197	5.54	2.1	11	1.8	3.5	0.043	OIR/R
Swift J1822.3-1606	8.44	0.14	6300	0.0014	1.6	>0.0004	
SGR 1833-0832	7.56	1.6	34	0.32			
Swift J1834.9-0846	2.48	1.4	4.9	21	4.2	< 0.0084	
1E 1841-045	11.79	7.0	4.6	0.99	8.5	184	
(PSR J1846-0258)	0.327	0.49	0.73	8100	6.0	19	
3XMM J185246.6+003317	11.56	< 0.41	>1300	< 0.0036	7	< 0.006	
SGR 1900+14	5.20	7.0	0.9	26	12.5	90	H
SGR 1935+2154	3.24	2.2	3.6	17			
1E 2259+586	6.98	0.59	230	0.056	3.2	17	OIR/H
SGR 0755-2933							
SGR 1801-23							
SGR 1808-20							
AX J1818.8-1559							
AX J1845.0-0258	6.97					2.9	
SGR 2013+34							

Figure: So far... [4]

Basics:

Consequences:

Figure: Artist's depiction of supernova remnant and magnetar [5]

Basics:

 8 out of 23 confirmed magnetars (as of 2017)

Figure: Artist's depiction of supernova remnant and magnetar [5]

Basics:

- 8 out of 23 confirmed magnetars (as of 2017)
- 2 other possible associations

Figure: Artist's depiction of supernova remnant and magnetar [5]

Basics:

- 8 out of 23 confirmed magnetars (as of 2017)
- 2 other possible associations
- provides additional evidence to youth requirement

Figure: Artist's depiction of supernova remnant and magnetar [5]

Basics:

- 8 out of 23 confirmed magnetars (as of 2017)
- 2 other possible associations
- provides additional evidence to youth requirement

Consequences:

unexpected characteristics

Figure: Artist's depiction of supernova remnant and magnetar [5]

Basics:

- 8 out of 23 confirmed magnetars (as of 2017)
- 2 other possible associations
- provides additional evidence to youth requirement

- unexpected characteristics
- challenges dynamo model and fossil field theory

Figure: Artist's depiction of supernova remnant and magnetar [5]

Basics:

- 8 out of 23 confirmed magnetars (as of 2017)
- 2 other possible associations
- provides additional evidence to youth requirement

- unexpected characteristics
- challenges dynamo model and fossil field theory
- no conclusive theory of formation as of yet

Figure: Artist's depiction of supernova remnant and magnetar [5]

Formation

No complete theory yet.

Proposed/Observed Conditions

Formation

No complete theory yet.

Theories

 \bullet Neutron stars with ${\sim}1$ ms period at birth coupled with fossil fields from progenitor star [1]

Proposed/Observed Conditions

Formation

No complete theory yet.

Theories

• Neutron stars with \sim 1 ms period at birth coupled with fossil fields from progenitor star [1]

Proposed/Observed Conditions

 parasitic binary star systems ending in supernova (see CXOU J164710.2-455216)

Formation

No complete theory yet.

Theories

- Neutron stars with \sim 1 ms period at birth coupled with fossil fields from progenitor star [1]
- B-Field is created via convective mass-flows. leading to a dynamo effect post supernova [6]

Proposed/Observed Conditions

 parasitic binary star systems ending in supernova (see CXOU J164710.2-455216)

Star Quakes

magnetically driven disturbance of star crust

Star Quakes

- magnetically driven disturbance of star crust
- source of gamma-rays

Star Quakes

- magnetically driven disturbance of star crust
- source of gamma-rays
- power on the order of 10³⁷ kW observed

Star Quakes

- magnetically driven disturbance of star crust
- source of gamma-rays
- power on the order of 10³⁷ kW observed

Magnetic Braking

 rotational energy dumped by magnetic mass ejection

Star Quakes

- magnetically driven disturbance of star crust
- source of gamma-rays
- power on the order of 10³⁷ kW observed

- rotational energy dumped by magnetic mass ejection
- cause of quiescent x-ray radiation

Star Quakes

- magnetically driven disturbance of star crust
- source of gamma-rays
- power on the order of 10³⁷ kW observed

- rotational energy dumped by magnetic mass ejection
- cause of quiescent x-ray radiation
- linked to star quakes

Summary and Conclusions

What we know

- Magnetars exist, are a class of neutron star
- Strong magnetic fields (> 10¹³ G)
- Lifetime of 1-10 kyr
- Supernovae remnants are common
- Generally confined to galactic plane
- There are different kinds of Magnetars

What we don't know

- A definitive model for the formation of magnetars
- Cause of increased magnetic field
- True abundance in MW
- Any in other galaxies

January 23, 2023

Questions?

References

- Magnetar Image 1 http://www.eso.org/public/images/eso1415a/
- Ouncan RC, Thompson C. 1992. ApJ 392:L9-L13
- Neutron Star Types https://photojournal.jpl.nasa.gov/figures/PIA23863.jpg
- Kaspi, V. M., & Beloborodov, A. M. (2017). Magnetars. Annual Review of Astronomy and Astrophysics, 55(1), 261-301. https://doi.org/10.1146/annurev-astro-081915-023329
- Magnetar Remnant http://www.eso.org/public/images/eso1527a/
- R. Raynaud, J. Guilet, H.-T. Janka, T. Gastine "Magnetar formation through a convective dynamo in protoneutron stars." Science Advances 6, eaay2732 (2020).