Zadanie: MON

Montażysta

XXIX OI, etap I. Plik źródłowy mon.* Dostępna pamięć: 256 MB.

18.10 - 22.11.2021

Bajtazar podjął się zmontowania n filmów z omówieniami zadań z Olimpiady Informatycznej. Wiadomo, że zmontowanie i-tego filmu zajmie t_i kolejnych dni oraz że należy go opublikować do końca d_i -tego dnia. Bajtazar ma dostęp do światłowodu, więc zmontowany film właściwie natychmiast jest publikowany na serwerze Olimpiady. Jednak montaż jest bardzo wymagający sprzętowo, a Bajtazar ma tylko jeden komputer, więc jednocześnie montowany może być tylko jeden film.

Filmów jest sporo i Bajtazar martwi się, że nie dotrzyma wszystkich terminów. Pomóż mu i wyznacz, ile maksymalnie filmów Bajtazar jest w stanie opublikować na czas, zakładając, że pierwszy montaż może najwcześniej ruszyć dnia numer 1. Aby Bajtazar czuł się pewniej, zaplanuj również, jak ten wynik osiągnąć.

Wejście

W pierwszym wierszu wejścia znajduje się liczba całkowita $n~(1 \le n \le 500\,000)$ oznaczająca liczbę filmów do zmontowania.

W kolejnych n wierszach znajdują się opisy filmów; i-ty z tych wierszy zawiera dwie liczby całkowite t_i i d_i $(1 \le t_i, d_i \le 10^9)$ oznaczające czas montowania i termin publikacji i-tego filmu.

Wyjście

Twój program powinien wypisać w pierwszym wierszu wyjścia jedną liczbę całkowitą m oznaczającą maksymalną liczbę filmów, które Bajtazar może zmontować w terminie.

W kolejnych m wierszach należy zapisać plan pracy; w i-tym z tych wierszy należy wypisać dwie liczby całkowite f_i i k_i ($1 \le f_i \le n$, $1 \le k_i$) oznaczające, że film o numerze f_i należy rozpocząć montować dnia k_i . Jeśli istnieje więcej niż jedno rozwiązanie o maksymalnym m, Twój program może wypisać dowolne z nich.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
5	3
4 5	2 3
2 4	4 7
5 3	5 8
1 9	

Testy "ocen":

3 10

```
1ocen: n = 1000; t_i = 500 \cdot 10^6, d_i = i \cdot 10^6; odpowiedź to 2; 2ocen: n = 1000; t_i = 2, d_i = 1999; odpowiedź to 999; 3ocen: n = 500\,000; t_i \in \{1, 2, 3\}, d_i = 10^9; odpowiedź to 500\,000.
```

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów. Jeśli Twój program poprawnie wypisze pierwszy wiersz wyjścia (liczbę m), a pozostałe wiersze nie będą poprawne, uzyska 50% punktów przewidzianych za test.

Podzadanie	Warunki	Liczba punktów
1	$n \le 10$	20
2	$n \le 1000$	30
3	$t_i, d_i \le 10^6$	20
4	brak dodatkowych ograniczeń	30