ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ КАФЕДРА МАТЕМАТИКИ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН

Разработка программы для расчётов и анализа параметров качества изображения, получаемого при съёмке

Автор: студент группы ПМИ-РКС-21 Молодов Алексей Алексеевич

Руководитель ВКР: к.т.н. доцент Раев Олег Николаевич

Королёв

2025 г.

Цель и задачи

Цель: разработать программу для расчета и анализа параметров пограничной кривой цифрового изображения.

Задачи:

- 1. Провести анализ математических моделей преобразования оптического изображения, формируемого светочувствительной матрицей.
- 2. Исследовать параметры качества изображения, связанные с пограничной кривой.
- 3. Разработать требования к программе.
- 4. Разработать программу для моделирования задач пограничной кривой.
- 5. Провести тестирование разработанной программы.

Связь объекта и его изображения

Формулы

Формула Ньютона

$$x \cdot x' = f \cdot f'$$

если $f = f' \Rightarrow x \cdot x' = {f'}^2$

Формула Гаусса

$$\frac{1}{a} + \frac{1}{a'} = \frac{1}{f'}$$

Размер изображения

$$\frac{d'}{dl} = \frac{a'}{a} \Rightarrow l = \frac{a' \cdot l}{a}$$

Дискретизация

Частота дискретизации

$$f_{\rm II} = \frac{1}{l_{\rm III}}$$

 $l_{
m III}$ – шаг между центрами пикселей.

Теорема Котельникова

$$f_{\rm Д} \geq 2 f_{\rm Makc}$$

 $f_{\text{макс}}$ — максимальная частота в изображении (линий/мм).

Параметры качества изображения

Разрешающая способность

Резкость

Пространственная частотная характеристика

Формула для апертурной характеристики пикселя

$$y(x) \begin{cases} 1 \text{ при } x < \frac{l_x^{\text{an}}}{2} \\ \frac{1}{2} \text{ при } x = \frac{l_x^{\text{an}}}{2} \\ 0 \text{ при } x > \frac{l_x^{\text{an}}}{2} \end{cases}$$

x – горизонтальная пространственная координата в плоскости светочувствительного слоя матрицы;

$$l_{x}^{\mathrm{an}}$$
 – ширина апертуры.

Фрагмент функциональной

(Задача 3 – в разработке)

Заключение

- 1. Проанализированы математические модели, исследованы параметры качества изображения.
- 2. Разработана программа для моделирования пограничной кривой.
 - Статический край.
 - Размытый край.
 - Динамический край.
- 3. Результаты представлены в графическом и табличном виде.

Спасибо за внимание!

Задача 1

Параметры

l_ap (мкм): 5.0

l_sh (мкм): 7.0

а (мкм): 70.0

E1 (%): 20

E2 (%):

num_pixels (): 20

Вычислить

Справка

l_ap - ширина апертуры фотодиода (1-10 мкм)

l_sh - шаг дискретизации (1-10 мкм)

а - положение границы перехода освещенности

E1, E2 - уровни освещенности (0-100%)

num_pixels - размер матрицы

Условие: l_ap ≤ l_sh

Результаты

График

Таблица

	Табличное представление (%)																			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
2	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
3	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
4	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
5	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
6	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
7	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
8	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
9	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
10	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
11	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
12	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
13	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
14	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
15	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
16	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
17	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
18	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
19	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
20	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	50.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0

Задача 2

Параметры

l_ap (мкм): 8.0

l_sh (мкм): 10.0

а (мкм): 30.0

b (мкм): 70.0

E1 (%): 20

2 (%):

num_pixels (): 10

Вычислить

Справка

l_ap - ширина апертуры фотодиода (1-10 мкм)

l_sh - шаг дискретизации (1-10 мкм)

а - начало области размытия

b - конец области размытия

E1, E2 - уровни освещенности (0-100%)

num_pixels - размер матрицы

Условия: l_ap ≤ l_sh, a < b

Результаты

Справка

Программа "Дискретизация освещенности" предназначена для моделирования процесса дискретизации изображений.

ЗАДАЧА 1 - Статический край

Моделирует случай, когда граница между областями с разной освещенностью проходит четко в одной точке.

ЗАДАЧА 2 - Размытый край

Моделирует случай, когда переход освещенности происходит плавно в определенной области.

ЗАДАЧА 3 - Динамический край В разработке.

ПАРАМЕТРЫ:

- l_ap ширина апертуры фотодиода (1-10 мкм)
- l_sh шаг дискретизации (1-10 мкм)
- a, b границы области перехода (мкм)
- E1, E2 уровни освещенности (0-100%)
- num_pixels размер матрицы (5-50 пикселей)

РЕЗУЛЬТАТЫ:

- График наглядное представление освещенности
- Таблица числовые значения освещенности

Для получения подробной информации используйте раздел "Теория".

Выход пердназначен для завершения работы программы.