Module 5: Metric spaces III Operational math bootcamp

Emma Kroell

University of Toronto

July 18, 2023

Last time

Finished our discussion of open and closed sets:

- Introduced a cluster points of a set: $x \in X$ is a *cluster point* of A if for every $\epsilon > 0$, $B_{\epsilon}(x)$ contains **infinitely** many points in A.
- Sequence characterization of a closed set: A set $F \subseteq X$, where (X, d) is a metric space, is closed if and only if every sequence in F which converges in X converges to a point in F.

Last time

Discussed sequences, which includes Cauchy sequences and subsequences:

- Convergent sequence: $x_n \to x \Leftrightarrow \forall \epsilon > 0 \; \exists \; n_{\epsilon} \in \mathbb{N} \; \text{s.t.} \; d(x_n, x) < \epsilon \; \text{for all} \; n \geq n_{\epsilon}$
- Cauchy sequence: $\forall \epsilon > 0 \; \exists \; n_{\epsilon} \in \mathbb{N} \; \text{s.t.} \; d(x_n, x_m) < \epsilon \; \text{for all} \; n, m \geq n_{\epsilon}$
- Proved that a convergent sequence is Cauchy
- Discussed complete metric spaces, where all Cauchy sequences converge (like $\mathbb R$ with the usual metric, absolute value)
- Proved that a sequence converges to x if and only if all subsequences converge to Х

Outline for today

Continuity

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f: X \to Y$. f is continuous at x_0 if for every sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to x_0 , we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.

We say that f is continuous if it is continuous at every point in X.

Theorem

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f: X \to Y$. The following are equivalent:

- (i) f is continuous at x_0
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$
- (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

- (i) f is continuous at x_0
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0))) < \epsilon$ for all $x \in X$ with
- $d_X(x,x_0)<\delta$
- (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

Proof. (i) \Rightarrow (ii)

$$(ii) \Rightarrow (iii)$$

$$(iii) \Rightarrow (i)$$

Corollary

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. The following are equivalent:

- (i) f is continuous
- (ii) if $U \subseteq Y$ is open, then $f^{-1}(U)$ is open
- (iii) if $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed

We need the following results about sets and functions:

Let X and Y be sets and $f: X \to Y$. Let $A, B \subseteq Y$. Then

2
$$f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$$

Proof.

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

$$(i) \Rightarrow (ii)$$
:

Proof continued

 $(ii) \Rightarrow (i)$

$$(ii) \Rightarrow (iii)$$

$$(iii) \Rightarrow (ii)$$

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

- f is uniformly continuous if for all $\epsilon > 0$, there exists $\delta > 0$ such that for every $x_1, x_2 \in X$ with $d_X(x_1, x_2) < \delta$, we have $d_Y(f(x_1), f(x_2)) < \epsilon$
- f is Lipschitz continuous if there exists a K > 0 such that for every $x_1, x_2 \in X$ we have $d_Y(f(x_1), f(x_2))) < Kd_X(x_1, x_2)$

Proposition

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

f is Lipschitz continuous \Rightarrow f is uniformly continuous \Rightarrow f is continuous

Proof is one of your exercises.

Contraction Mapping Theorem

Definition

Let (X, d) be a metric space and let $f: X \to X$. We say that $x^* \in X$ is a *fixed point* of f if $f(x^*) = x^*$.

Definition

Let (X, d) be a metric space and let $f: X \to X$. f is a contraction if there exists a constant $k \in [0, 1)$ such that for all $x, y \in X$, $d(f(x), f(y)) \le kd(x, y)$.

Observe that a function is a contraction if and only if it is Lipschitz continuous with constant K < 1.

Theorem (Contraction Mapping Theorem)

Suppose that $f: X \to X$ is a contraction and the metric space X is complete. Then f has a unique fixed point x^* .

Example

Let $f: \left[-\frac{1}{3}, \frac{1}{3}\right] \to \left[-\frac{1}{3}, \frac{1}{3}\right]$ be defined by the mapping $x \mapsto x^2$. Assume we use the standard Euclidean metric, d(x,y) = |x-y|. f has a unique fixed point because

Equivalent metrics

Definition (Equivalent metrics)

Two metrics d_1 and d_2 on a set X are *equivalent* if the identity maps from (X, d_1) to (X, d_2) and from (X, d_2) to (X, d_1) are continuous.

Proposition

Two metrics d_1 , d_2 on a set X are equivalent if and only if they have the same open sets or the same closed sets.

Definition

Two metrics d_1 and d_2 on a set X are strongly equivalent if for every $x, y \in X$, there exists constants $\alpha > 0$ and $\beta > 0$ such

$$\alpha d_1(x,y) \leq d_2(x,y) \leq \beta d_1(x,y).$$

If two metrics are strongly equivalent then they are equivalent. The proof of this is one of the exercises.

16 / 37

Example

We show that the Euclidean distance (induced by 2-norm) and the metric induced by the ∞ -norm are equivalent on \mathbb{R}^n .

Can you think of an example that we've seen of a metric that isn't equivalent to the

Right and left continuous

Recall: $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that $|x_0 - y| < \delta$ implies $|f(x_0) - f(y)| < \epsilon$.

Definition

Let $f: \mathbb{R} \to \mathbb{R}$

- f is left continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such $|f(x_0) - f(x)| < \epsilon$ whenever $x_0 - \delta < x < x_0$.
- f is right continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such $|f(x_0) - f(x)| < \epsilon$ whenever $x_0 < x < x_0 + \delta$.

We say that f is left continuous if it is left continuous at all points in the domain, and similar for right continuous.

Proposition

A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if it is left and right continuous.

Proof continued

Bounded sequences and monotone convergence

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . We call $(x_n)_{n\in\mathbb{N}}$ bounded if there exists an M>0such that $|x_n| < M$ for all $n \in \mathbb{N}$.

Theorem (Monotone convergence theorem)

- (i) Suppose $(x_n)_{n\in\mathbb{N}}$ is an increasing sequence, i.e. $x_n < x_{n+1}$ for all $n \in \mathbb{N}$, and that it is bounded (above). Then the sequence converges. Furthermore, $\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} x_n$, where $\sup_{n\in\mathbb{N}} x_n := \sup\{x_n : n\in\mathbb{N}\}$.
- (ii) Suppose $(x_n)_{n\in\mathbb{N}}$ is a decreasing sequence, i.e. $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$, which is bounded (below). Then the sequence converges and $\lim_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} x_n := \inf\{x_n : n\in\mathbb{N}\}.$

Convention: $\sup A = \infty$ if $A \subseteq \mathbb{R}$ is not bounded above and $\inf A = -\infty$ if A is not bounded below.

Lemma

If $A \subseteq B \subseteq \mathbb{R}$ is non-empty, then inf $A \le \sup A$, $\sup A \le \sup B$, and $\inf A \ge \inf B$.

The proof of this follows from the definition of greatest lower and least upper bound.

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . We define the *limit superior* of $(x_n)_{n\in\mathbb{N}}$ as

$$\limsup_{n\to\infty} x_n := \lim_{n\to\infty} \sup_{k>n} x_k.$$

Similarly we define the *limit inferior* of $(x_n)_{n\in\mathbb{N}}$ as

$$\liminf_{n\to\infty} x_n := \lim_{n\to\infty} \inf_{k\geq n} x_k.$$

If the sequence $(x_n)_{n\in\mathbb{N}}$ is not bounded above, then $\limsup_{n\to\infty}x_n=\infty$. Similarly, if the sequence $(x_n)_{n\in\mathbb{N}}$ is not bounded below, then $\liminf_{n\to\infty}x_n=-\infty$.

Proposition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} .

- The sequence of suprema, $s_n = \sup_{k \ge n} x_k$, is decreasing and the sequence of infima, $i_n = \inf_{k \ge n} x_k$, is increasing.
- The limit superior and the limit inferior of a bounded sequence always exist and are finite.

Proof.

The first part is true by the previous Lemma. The second follows by the Monotone Convergence Theorem.

Theorem

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Then the sequence converges to $x\in\mathbb{R}$ if and only if $\limsup_{n\to\infty} x_n = x = \liminf_{n\to\infty} x_n$.

Proof.

26 / 37

We can extend this easily to a sequence of functions $f_n: X \to \mathbb{R}$ as follows:

Define $f = \limsup_{n \to \infty} f_n$ to be the function defined pointwise by $f(x) = \limsup_{n \to \infty} (f_n(x))$ and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you will encounter in probability.

Topology

- Let X be a set. If X is not a metric space, can we still have open and closed sets?
- One can think of a topology on X as a specification of what subsets of X are open

Definition

Let $\mathcal{T} \subseteq \mathcal{P}(X)$. We call \mathcal{T} a topology on X if the following holds:

- (i) $\emptyset, X \in \mathcal{T}$
- (ii) Let A be an arbitrary index set. If $U_{\alpha} \in \mathcal{T}$ for $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$ (\mathcal{T} is closed under taking arbitrary unions)
- (iii) Let $n \in \mathbb{N}$. If $U_1, \ldots, U_n \in \mathcal{T}$, then $\bigcap_{i=1}^n U_i \in \mathcal{T}$ (\mathcal{T} is closed under taking finite intersections)

If $U \in \mathcal{T}$, we call U open. We call $U \subseteq X$ closed, if $U^c \in \mathcal{T}$. We call (X, \mathcal{T}) a topological space.

For a set X, the following $\mathcal{T} \subseteq \mathcal{P}(X)$ are examples of topologies on X.

- Trivial topology: $\mathcal{T} = \{\emptyset, X\}$,
- Discrete topology: $\mathcal{T} = \mathcal{P}(X)$,
- Let X be an infinite set. Then, $\mathcal{T} = \{ U \subseteq X : U^c \text{ is finite} \} \cup \emptyset$ defines a topology on X.
- Topology induced by a metric: i.e. if d is a metric on X we can define

$$\mathcal{T}_d = \{ U \subseteq X \mid \forall x \in U \ \exists \epsilon > 0 \ \text{such that} \ B_{\epsilon}(x) \subseteq U \}.$$

The discrete topology is also induced by a metric, can you guess which one?

Given a topological space (X, \mathcal{T}) and a subset $Y \subseteq X$, we can restrict the topology on X to Y which leads to the next definition.

Definition (Relative topology)

Given a topological space (X, \mathcal{T}) and an arbitrary non-empty subset $Y \subseteq X$, we define the relative topology on Y as follows

$$\mathcal{T}|_{Y} = \{U \cap Y : U \in \mathcal{T}\}.$$

Definition

Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$ be any subset.

- The *interior* of A is $\mathring{A} := \{ a \in A : \exists U \in \mathcal{T} \text{ s.t. } U \subseteq A \text{ and } a \in U \}.$
- The *closure* of A is $\overline{A} := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, U \cap A \neq \emptyset\}.$
- The boundary of A is

$$\partial A := \{x \in X \colon \forall U \in \mathcal{T} \text{ with } x \in U, \ U \cap A \neq \emptyset \text{ and } U \cap A^c \neq \emptyset\}.$$

- The *interior* of A is $\overset{\circ}{A} := \{ a \in A : \exists U \in \mathcal{T} \text{ s.t. } U \subseteq A \text{ and } a \in U \}.$
- The *closure* of A is $\overline{A} := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, U \cap A \neq \emptyset\}.$
- The boundary of A is $\partial A := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, \ U \cap A \neq \emptyset \text{ and } U \cap A^c \neq \emptyset\}.$

Example

Let $X=\{a,b,c\}$ and $\mathcal{T}=\{\emptyset,\{a\},\{b\},\{a,b\},X\}.$ Then

- $\{\stackrel{\circ}{a}\} =$
- $\{\stackrel{\circ}{c}\}=$
- $\overline{\{a\}} =$
- $\overline{\{c\}} =$

Proposition

Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Then,

$$\overline{A} = \bigcap \{F : F \text{ is closed and } A \subseteq F\}.$$

Proof.

Proof continued

Similarly, one can show $A = \bigcup \{U : U \text{ is open and } U \subseteq A\}$. Hence, we see that the interior of A is the largest open set contained in A and the closure is the smallest closed set that contains A.

35 / 37

Next time

- Finish topology
 - Dense subsets
 - Compactness
 - Continuity
- Start linear algebra
 - Vector spaces and subspaces

References

Jiří Lebl (2022). *Basic Analysis I*. Vol. 1. Introduction to Real Analysis. https://www.jirka.org/ra/realanal.pdf

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

37 / 37