

Aufgaben zu Riemannsche Flächen - WS 2025/26

3. Blatt

Aufgabe 8: Betrachte Gitter $\Gamma(\tau) := \mathbb{Z}1 \oplus \mathbb{Z}\tau \subset \mathbb{C}$ für $\tau \in \mathbb{H} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$. Seien nun $\tau \in \mathbb{H}$ gegeben und

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) = \{ A \in \operatorname{Mat}(2 \times 2, \mathbb{Z}) \mid \det(A) = 1 \}.$$

Zeigen Sie, dass für $\tau':=rac{a au+b}{c au+d}$ gilt, dass die beiden Tori $\mathbb{C}/\Gamma(au)$ und $\mathbb{C}/\Gamma(au')$ isomorph sind.

Aufgabe 9: Sei $\alpha: \mathcal{F} \to \mathcal{G}$ ein Morphismus von Garben auf dem topologischen Raum X. Begründen Sie, dass α zu jedem $x \in X$ einen Gruppenhomomorphismus

$$\alpha_x: \mathcal{F}_x \to \mathcal{G}_x$$

induziert. Zeigen Sie: Ist $U \subset X$ offen und α_x für alle $x \in U$ injektiv, so ist auch $\alpha(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ injektiv.

Aufgabe 10: Auf \mathbb{CP}^1 betrachte die beiden offenen Mengen

$$U_0 := \mathbb{C} \quad \text{und} \quad U_1 := \mathbb{CP}^1 \setminus \{0\}.$$

Sei $m \in \mathbb{Z}$. Zeigen Sie, dass durch

$$U \mapsto \{(f_0, f_1) \mid f_j : U \cap U_j \to \mathbb{C} \text{ holomorph und es gilt } f_0(z) = z^m f_1(z) \ \forall z \in U \cap U_0 \cap U_1\}(z^{-m}???)$$

eine Garbe auf \mathbb{CP}^1 definiert ist (was sind die Restriktionen?). Wir bezeichnen sie mit $\mathcal{O}_{\mathbb{CP}^1}(m)$. Bestimmen Sie die *globalen Schnitte* $\mathcal{O}_{\mathbb{CP}^1}(m)(\mathbb{CP}^1)$ in Abhängigkeit von m.

Aufgabe 11: Sei $\tau \in \mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ und $\Lambda = \mathbb{Z}1 \oplus \mathbb{Z}\tau \subset \mathbb{C}$. Zeige:

i) durch

$$\wp(z) := \frac{1}{z^2} + \sum_{\lambda \in \Lambda \setminus \{0\}} \left(\frac{1}{(z+\lambda)^2} - \frac{1}{\lambda^2} \right)$$

ist eine meromorphe Funktion auf dem Torus $T := \mathbb{C}/\Lambda$ definiert.

ii) \wp hat einen Pol der Ordnung 2 bei $z=0+\Lambda\in T$ und muss mindestens eine Nullstelle besitzen.

Zur Aufgabe 11 beachte, dass die Lokalisierung der Nullstellen nicht trivial ist, vgl.

Theorem. The zeros of $\wp(z,\tau)$ $(\tau \in \mathfrak{H}, z \in \mathbb{C})$ are given by

$$z = m + \frac{1}{2} + n\tau \pm \left(\frac{\log(5 + 2\sqrt{6})}{2\pi i} + 144\pi i \sqrt{6} \int_{\tau}^{i\infty} (t - \tau) \frac{\Delta(t)}{E_6(t)^{3/2}} dt \right)$$

(m, $n \in \mathbb{Z}$), where $E_6(t)$ and $\Delta(t)$ ($t \in \mathfrak{H}$) denote the normalized Eisenstein series of weight 6 and unique normalized cusp form of weight 12 on $SL_2(\mathbb{Z})$, respectively, and the integral is to be taken over the vertical line $t = \tau + i\mathbb{R}_+$ in \mathfrak{H} .

(aus M. Eichler, D. Zagier, On the Zeros of the Weierstraß p-function, Math. Ann. 258, 399–407 (1982))

 $^{^1}$ Betrachte dazu \wp als doppelt-periodische Funktion auf $\Bbb C$ und benutze ein geeignetes Pol-/Nullstellen zählendes Integral.