Project 2 -Ames housing project

Chris Lee

EDA (Exploratory Data Analysis)

The data has 2051 cases (row) and 82 categories (column)

- 23 nominal (Sale Condition variable missing) object type dummy
- 23 ordinal (qualitative quality / condition) object type numerize
- 14 discrete (quantitative year / # of rooms) numeric
- 20 continuous variables (area or size (square feet)) numeric
- 2 additional observation identifiers (ID, PID)

EDA (Exploratory Data Analysis)

Minimum sale price: \$12,789

Average sale price: \$181,470

Maximum sale price: \$611,657

Data Cleaning

- 23 nominal object type (get dummy)
- 23 ordinal *object type (numeritize data)* *
- 14 discrete numeric
- 20 continuous variables numeric
- 2 additional observation identifiers(ID, PID)

→ ex) Ex -> 5

Gd -> 4

TA -> 3

Fa -> 2

Po -> 1

 $NA \rightarrow 0$

Data Cleaning

max	75%	50%	25%	min	std	mean	count	
2930.0	2.198000e+03	1486.0	753.5	1.0	8.439808e+02	1.474034e+03	2051.0	ld
924152030.0	9.071801e+08	535453200.0	528458140.0	526301100.0	1.886918e+08	7.135900e+08	2051.0	PID
190.0	7.000000e+01	50.0	20.0	20.0	4.282422e+01	5.700878e+01	2051.0	MS SubClass
313.0	8.000000e+01	68.0	58.0	21.0	2.326065e+01	6.905520e+01	1721.0	Lot Frontage
159000.0	1.151350e+04	9430.0	7500.0	1300.0	6.742489e+03	1.006521e+04	2051.0	Lot Area
				•••				-
2207.0	2.002000e+03	1980.0	1961.0	1895.0	2.544109e+01	1.978708e+03	1937.0	Garage Yr Blt

- Year built = 2006
- Year Remod/Add = 2007
- Garage Year built = 2207? -> adjusted to 2007

Data Cleaning

	number_of_null_values	null_val_percentage	datatype
Pool QC	2042	99.561190	object
Misc Feature	1986	96.830814	object
Alley	1911	93.174061	object
Fence	1651	80.497318	object
Fireplace Qu	1000	48.756704	object
Lot Frontage	330	16.089712	float64
Garage Yr Blt	114	5.558264	float64
Garage Cond	114	5.558264	object
	•		
	•		

- Pool QC
- Misc Feature
- Alley

more than 90% of null values

Remove three column since it won't significantly impact our result

Rest of the columns are filled with 0 or 'NA' according to the data description.

Regression model selection

Linear regression

- Linear regression
- Ridge regression reduce variance by shrinking parameters
- Lasso regression vanish useless parameters
- Elastic net regression combination of Ridge and Lasso regression *

Cross Validation Score

Regression	CV score
Linear	0.81663
Ridge	0.82572
Lasso	0.84714
Elastic Net	0.86875

*

Train score = 0.91069

Test score = 0.92245

Business recommendations

- Top 3 features from direct correlation was overall quality, above grade (ground) living area square feet, and garage area.
- There is almost no feature that has negative effect on the sale price.
- To generalize the sale price prediction to other city, we recommend to use elastic net regression model.

Next step...

We might need some more feature for the better prediction such as temperature, altitude, population, population density etc.