

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT FOR PCS LICENSED TRANSMITTER

Test Report No. : E125R-039

AGR No. : A125A-115

Applicant : SOLiD, Inc.

Address : 10,9th Floor, SOLiD Space, Pangyoyeok-ro 220, Bundang-gu, Seongnam-si,

Gyeonggi-do, 463-400, Korea

Manufacturer : SOLiD, Inc.

Address : 10,9th Floor, SOLiD Space, Pangyoyeok-ro 220, Bundang-gu, Seongnam-si,

Gyeonggi-do, 463-400, Korea

Type of Equipment : RDU MODULE (700LTE MIMO)

FCC ID. : W6UH700LM

Model Name : 700LTE MIMO RDU44.5

Serial number : N/A

Total page of Report : 65 pages (including this page)

Date of Incoming : May 10, 2012

Date of issue : May 17, 2012

SUMMARY

The equipment complies with the regulation; FCC Part 27 Subpart C.

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

Ki-Hong, Nam / Senior Engineer

ONETECH Corp.

Reviewed by:

Y. K. Kwon / Exe. Managing Director ONETECH Corp.

Report No.: E125R-039

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

CONTENTS

	PAGE
1. VERIFICATION OF COMPLIANCE	6
2. TEST SUMMARY	7
2.1 TEST ITEMS AND RESULTS	7
2.2 Additions, deviations, exclusions from standards	7
2.3 RELATED SUBMITTAL(S) / GRANT(S)	7
2.4 PURPOSE OF THE TEST	7
2.5 TEST METHODOLOGY	7
2.6 TEST FACILITY	7
3. GENERAL INFORMATION	8
3.1 PRODUCT DESCRIPTION	8
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT.	8
3.3 PERIPHERAL EQUIPMENT	9
3.4 MODE OF OPERATION DURING THE TEST.	9
4. EUT MODIFICATIONS	9
5. RF POWER OUTPUT AT ANTENNA TERMINAL	10
5.1 OPERATING ENVIRONMENT	10
5.2 TEST SET-UP	10
5.3 TEST EQUIPMENT USED	10
5.4 TEST DATA	11
6. OCCUPIED BANDWIDTH	12
6.1 OPERATING ENVIRONMENT	12
6.2 TEST SET-UP	12
6.3 TEST EQUIPMENT USED	12
6.4 TEST DATA	13
7. SPURIOUS EMISSION AT ANTENNA TERMINAL	26
7.1 OPERATING ENVIRONMENT	26
7.2 TEST SET-UP FOR CONDUCTED MEASUREMENT	26
7.3 TEST EQUIPMENT USED	26
7.4 TEST DATA	27
It should not be reproduced except in full, without the written approval of ONETECH	EMC-003 (Rev 2)

EMC-003 (Rev.2)

12.1 OPERATING ENVIRONMENT	
12. FREQUENCY STABILITY WITH VOLTAGE VARIATION	63
11.4 TEST DATA	62
11.3 TEST EQUIPMENT USED	61
11.2 TEST SET-UP	61
11.1 OPERATING ENVIRONMENT	61
11. FREQUENCY STABILITY WITH TEMPERATURE VARIATION	61
10.4 TEST DATA	60
10.3 TEST EQUIPMENT USED	59
10.2 TEST SET-UP	59
10.1 OPERATING ENVIRONMENT	59
10. FIELD STRENGTH OF SPURIOUS RADIATION	59
9.3.2 Test Result for Spurious emission	55
9.3.1 Test Result for peak power	51
9.4 TEST DATA	51
9.3 TEST EQUIPMENT USED	50
9.2 TEST SET-UP	50
9.1 OPERATING ENVIRONMENT	50
9. INTERMODULATION TEST	50
8.4 TEST DATA FOR §27.53 (C)(5)	45
8.3 TEST EQUIPMENT USED	44
8.2 TEST SET-UP FOR CONDUCTED MEASUREMENT	44
8.1 OPERATING ENVIRONMENT	44
8. BAND EDGE MEASUREMENT	44
7.3.3 Test Result for §27.53 (f)	39
7.3.2 Test Result for §27.53 (c)(3)	34
7.3.1 Test Result for §27.53 (c)(1)	27

Page 4 of 65	Report No : E125R-039

13.1 RF Exposure Calculation	65
13.2 CALCULATED MPE SAFE DISTANCE AND DENSITY	65

Page 5 of 65 Report No. : E125R-039

Revision History

Issued Report No.	Issued Date	Revisions	Effect Section
E125R-039	May 16, 2012	Initial Issue	All

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 6 of 65 Report No. : E125R-039

1. VERIFICATION OF COMPLIANCE

APPLICANT : SOLiD, Inc.

ADDRESS : 10,9th Floor, SOLiD Space, Pangyoyeok-ro 220, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-

400, Korea

CONTACT PERSON : Mr. Yong Chul, Kim / Researcher

TELEPHONE NO : +82-31-627-6292 FCC ID : W6UH700LM

MODEL NAME : 700LTE MIMO RDU44.5

SERIAL NUMBER : N/A

DATE : May 17, 2012

EQUIPMENT CLASS	PCB - PCS Licensed Transmitter
EQUIPMENT DESCRIPTION	RDU MODULE (700LTE MIMO)
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.4: 2009, EIA/TIA-603-C
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED UNDER FCC RULES PART(S)	PART 27 Subpart C
MODIFICATIONS ON THE EQUIPMENT TO ACHIEVE COMPLIANCE	No
FINAL TEST WAS CONDUCTED ON	3 m open area test site

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

2. TEST SUMMARY

2.1 Test items and results

SECTION TEST ITEMS		RESULTS
2.1046(a), 27.50(b)	RF Power Output at Antenna Terminals	Met the Limit / PASS
2.1047	Modulation Characteristics	PASS (See Note 1)
2.1049	Occupied Bandwidth, Bandwidth Limitation	Met the Limit / PASS
2.1049	Band Edge	Met the Limit / PASS
2.1051, 27.53(c)	Spurious Emissions at Antenna Terminals	Met the Limit / PASS
2.1053, 27.53(c)	Field strength of Spurious Radiation	Met the Limit / PASS
2.1055, 27.54	Frequency Stability with Temperature variation	Met the requirement / PASS
2.1055, 27.54	Frequency stability with primary voltage variation	Met the requirement / PASS
1.1307(b), 27.52	RF Safety	PASS (See Note 2)

Note 1: The Equipment under Test (EUT) is a repeater which reproduces the modulated input signal, so the EUT meets the requirement

Note2: End users and/or installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance, because the applicant does not provide an antenna for sale with the EUT.

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original Grant

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in section 2.1.

2.5 Test Methodology

Radiated testing was performed according to the procedures in ANSI C63.4: 2009 & EIA/TIA-603-C: 2004 and was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The open area test site and conducted measurement facilities are located on at 301-14, Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do, 464-862, Korea. The Onetech Corp. has been accredited as a Conformity Assessment Body (CAB) with designation number KR0013.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

3. GENERAL INFORMATION

3.1 Product Description

The SOLiD, Inc., Model 700LTE MIMO RDU44.5 (referred to as the EUT in this report) is a RDU MODULE (700LTE MIMO) that shall be plugged in RDU (Remote Drive Unit).

RDU devices are varied for each frequency band, including the following:

Na	Huit namina	Description -	Frequence	
No	Unit naming		TX	RX
1	1900PCS RDU44.5	Single band	1 930-1995 MHz	1 850-1 915 MHz
2	850CEL RDU44.5	Single band	869-894 MHz	824-849 MHz
3	700LTE RDU44.5	Single band	728-756 MHz	698-716 MHz 777-787 MHz
4	AWS-1 RDU44.5	Single band	2 110-2155 MHz	1 710-1 755 MHz
5	700PS RDU44.5	Single band	758-775 MHz	788-805 MHz
6	800I/PS RDU44.5	Single band	851-869 MHz	806-824 MHz
7	900I RDU44.5	Single band	929-941 MHz	896-902 MHz
8	700LTE MIMO RDU44.5	Single band	728-756 MHz	698-716 MHz 777-787 MHz

When receiving TX signals from each band through Remote Optic, RDU filters the signals and amplifies them with High Power Amplifier. The unit also filters RX signals given through cavity filter and amplifies them to send the signals to Remote Optic. In the unit, there is ATT to adjust gain. RDU consist of RFU, PAU and cavity duplexer and all modules are merged with one package. The product specification described herein was obtained from product data sheet or user's manual.

manuar.	
DEVICE TYPE	RDU MODULE (700LTE MIMO)
LIST OF EACH OSC. or CRY. FREQ.(FREQ. >= 1 MHz)	14.745 6 MHz, 8 MHz
EMISSION DESIGNATOR	D7W(LTE)
OPERATING FREQUENCY	728 MHz ~ 756 MHz
CHANNEL SEPARATION	5 MHz, 10 MHz
RF OUTPUT POWER	44.5 dBm
DC VOLTAGE & CURRENT INTO FINAL AMPLIFIER	28 V, 10 A
ELECTRICAL RATING	AC 120 V
OPERATING TEMPERATURE	-10 °C ~ 50 °C

3.2 Alternative type(s)/model(s); also covered by this test report.

-. None

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Report No. : E125R-039

3.3 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	FCC ID	Description	Connected to
700LTE MIMO	SOLiD Technologies	W6UH700LM	RDU MODULE (700LTE MIMO)	Signal Generator
RDU44.5		W OCITY OUDIN	(EUT)	2-8
SMJ100A	Rohde & Schwarz	N/A	Vector Signal Generator	EUT

3.4 Mode of operation during the test

The EUT was received signal form signal generator and then each modulation was configured for maximum signal gain and bandwidth. The EUT was operated in a manner representative of the typical usage of the equipment. During all testing, system components were manipulated within the confines of typical usage to maximize each emission. The applicant does not supply antenna(s) with the system, so the dummy loads were connected to the RF output ports on the EUT for radiated spurious emission testing.

For the above testing, following frequencies per channel were selected for each modulation.

Modulation	Channel	Frequency (MHz)
	Low	730.50
LTE 5MHz	Middle	742.00
	High	753.00
LTE 10 MHz	Low	733.00
	Middle	742.00
	High	751.00

4. EUT MODIFICATIONS

-. None

Page 10 of 65 Report No. : E125R-039

5. RF POWER OUTPUT at ANTENNA TERMINAL

5.1 Operating environment

Temperature : 23 °C Relative humidity : 52 %R.H.

5.2 Test set-up

The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the spectrum analyzer. The test was performed at three frequencies (low, middle, and high channels) at each band using all applicable modulation.

RF output power was measured by channel power measurement function of the spectrum analyzer with rms detector mode.

5.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■ -	SMJ100A	R/S	Signal Generator	101038	Feb. 02, 2012 (1Y)
■-	FSP	R/S	Spectrum Analyzer	100017	Mar. 12, 2012 (1Y)
□-	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
■-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
= -	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 11 of 65 Report No. : E125R-039

5.4 Test data

ONETECH

Test Date : May 11, 2012
 Measurement Function : Channel Power
 Detector Mode : RMS detector

-. Test Result : Pass

Modulation	Channel	Frequency (MHz)	Input Power (dBm)	Output Power (dBm)	Output Power (W)	Limit (W)
	Low	730.50	-9.80	44.50		
LTE 5MHz	Middle	742.00	-9.80	44.50	28.183 829	100.00
	High	753.50	-9.70	44.50		
	Low	733.00	-9.70	44.50		
LTE 10MHz	Middle	742.00	-9.90	44.50	28.183 829	100.00
	High	751.00	-9.80	44.50		

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 12 of 65 Report No. : E125R-039

6. OCCUPIED BANDWIDTH

6.1 Operating environment

Temperature : 23 °C Relative humidity : 52 %R.H.

6.2 Test set-up

The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the spectrum analyzer. The test was performed at three frequencies (low, middle, and high channels) at each band using all applicable modulation.

For the testing, the RBW was set to 1 % to 3 % of the - 26 dB bandwidth. The VBW is set to 3 times the RBW and sweep time is coupled.

6.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■-	SMJ100A	R/S	Signal Generator	101038	Feb. 02, 2012 (1Y)
-	FSP	R/S	Spectrum Analyzer	100017	Mar. 12, 2012 (1Y)
□-	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
■ -	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)

All test equipment used is calibrated on a regular basis.

Page 13 of 65 Report No. : E125R-039

6.4 Test data

-. Test Date : May 11, 2012

-. Test Result : Pass

Modulation	odulation Channel 26 dB Bandwidth (MHz)		99 % Occupied Bandwidth (MHz)
	Low	5.000	4.520
LTE 5 MHz	Middle	5.000	4.540
	High	5.000	4.520
LTE 10 MHz	Low	9.840	9.000
	Middle	9.880	9.000
	High	9.880	8.960

Remark: According to above result, the carrier frequency shall be within the frequency block edges.

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) EMC Testing Dept : 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

LTE 5 MHz – 26 dB Bandwidth (Middle Channel)

Test data for 10 MHz

Report No. : E125R-039

HEAD OFFICE : 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

EMC Testing Dept : 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

LTE 10 MHz – 26 dB Bandwidth (Middle Channel)

LTE 10 MHz – 99 % Occupied Bandwidth (Middle Channel)

Page 26 of 65 Report No. : E125R-039

7. SPURIOUS EMISSION AT ANTENNA TERMINAL

7.1 Operating environment

Temperature : 24 °C

Relative humidity : 53 % R.H.

7.2 Test set-up for conducted measurement

The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the spectrum analyzer. The test was performed at three frequencies (low, middle, and high channels) at each band using all applicable modulation.

The resolution bandwidth and video bandwidth of the spectrum analyzer was set at 1 MHz and sufficient scans were taken to show any out of band emissions up to 10 GHz.

7.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■ -	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
■ -	FSP	R/S	Spectrum Analyzer	100017	Mar. 12, 2012 (1Y)
■ -	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
□-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
	WRCT 700/1000	Wainwright	Tunable Band Reject Filter	10	Oct. 21, 2011(2Y)
_	-0.2/40-5SSK	Instruments GmbH	Tuliable Ballu Reject Filter	19	Oct. 21, 2011(21)
■ -	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)

All test equipment used is calibrated on a regular basis.

7.4 Test data

7.3.1 Test Result for §27.53 (c)(1)

-. Test Date : May 14, 2012 -. Frequency range : $30 \text{ MHz} \sim 10 \text{ GHz}$

-. Result : PASSED BY -24.33 dB at high channel (5 MHz)

LTE 5 MHz

Channel	Measured Frequency (MHz)	Measured Value (dBm)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)	
_	497.200	-56.83	0.50	-56.33		-43.33	
Low	7630.000	-41.67	3.50	-38.17	-13.00	-25.17	
	505.300	-58.00	0.50	-57.50	12.00	-44.50	
Middle	7300.000	-42.67	3.50	-39.17	-13.00	-26.17	
***	510.200	-56.50	0.50	-56.00	12.00	-43.00	
High	7345.000	-40.83	3.50	-37.33	-13.00	-24.33	
	Other frequencies up to 10 GHz have margin more than 20 dB.						

LTE 10 MHz

Channel	Measured Frequency (MHz)	Measured Value (dBm)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)	
_	534.400	-56.17	0.50	-55.67	12.00	-42.67	
Low	7525.000	-42.50	3.50	-39.00	-13.00	-26.00	
	566.700	-56.33	0.50	-55.83		-42.83	
Middle	7330.000	-42.50	3.50	-39.00	-13.00	-26.00	
	549.000	-55.30	0.50	-54.80		-41.80	
High	7690.000	-43.33	3.50	-39.83	-13.00	-26.83	
	Other frequencies up to 10 GHz have margin more than 20 dB.						

From CFR 27.53(c)(1): On any frequency outside the 746 MHz \sim 758 MHz band, the power of any emission shall be attenuated out side the band below the transmitter power (P) by at least 43 + 10log(P) dB, resulting in a limit of -13 dBm.

Report No. : E125R-039

Tested by: Ki-Hong, Nam / Senior Engineer

Test Data for LTE 5 MHz

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Low channel 2

Test Data for LTE 10 MHz

Middle channel 2

Page 34 of 65 Report No. : E125R-039

7.3.2 Test Result for §27.53 (c)(3)

-. Test Date : May 14, 2012

Frequency range : 763 MHz ~ 775 MHz and 793 MHz ~ 805 MHz
 Result : PASSED BY -27.79 dB at low channel (5 MHz)

LTE 5 MHz

Channel	Measured Frequency (MHz)	Measured Value (dBm)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)
Low	763.000	-74.29	0.5	-73.79	-46	-27.79
Middle	763.000	-74.33	0.5	-73.83	-46	-27.83
High	763.000	-74.35	0.5	-73.85	-46	-27.85

LTE 10 MHz

Channel	Measured Frequency (MHz)	Measured Value (dBm)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)
Low	763.000	-74.49	0.5	-73.99	-46	-27.99
Middle	763.000	-74.38	0.5	-73.88	-46	-27.88
High	763.000	-74.44	0.5	-73.94	-46	-27.94

From CFR 27.53(c)(3)&(c)(6): On all frequency between the 763 MHz \sim 775 MHz and 793 MHz \sim 805 MHz, by a factor not less than 76 + 10log(P) dB in a 6.25 kHz band segment, for base and fixed stations, resulting in a limit of -46 dBm (per 6.25 kHz measurement bandwidth)

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

Test Data for LTE 5 MHz *RBW 10 kHz Marker 1 [T1] *VBW 100 kHz *SWT 120 s -74.29 dBm 763.000000000 MHz *Att 0 dB Ref 20 dBm 20 Offset 30 dB 1 RM VIEW LVL 1234 Start 763 MHz 4.2 MHz/ Stop 805 MHz Low Channel *RBW 10 kHz Marker 1 [T1] -74.33 dBm * VBW 100 kHz *SWT 120 s 763.000000000 MHz Ref 20 dBm *Att 0 dB 20 Offset 30 dB A LVL 1234 Start 763 MHz 4.2 MHz/ Stop 805 MHz

Report No. : E125R-039

Middle Channel

Test Data for LTE 10 MHz *RBW 10 kHz Marker 1 [T1] *VBW 100 kHz *SWT 120 s -74.49 dBm 763.000000000 MHz Ref 20 dBm *Att 0 dB 20 Offset 30 dB 1 RM VIEW LVL 1234 Start 763 MHz 4.2 MHz/ Stop 805 MHz Low Channel *RBW 10 kHz Marker 1 [T1] * VBW 100 kHz -74.38 dBm *SWT 120 s 763.000000000 MHz Ref 20 dBm *Att 0 dB 20 Offset 30 dB Α LVL Start 763 MHz 4.2 MHz/ Stop 805 MHz

Report No. : E125R-039

Middle Channel

Page 39 of 65 Report No. : E125R-039

7.3.3 Test Result for §27.53 (f)

-. Test Date : May 14, 2012

-. Frequency range : $1.559 \text{ MHz} \sim 1.610 \text{ MHz}$

-. Result : <u>PASSED BY -22.95 dB at low channel (5 MHz)</u>

LTE 5 MHz

Channel	Measured Frequency (MHz)	Measured Value (dBm)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)
Low	1603.370	-64.15	1.2	-62.95		-22.95
Middle	1607.450	-64.17	1.2	-62.97	-40.00	-22.97
High	1601.942	-64.22	1.2	-63.02		-23.02

LTE 10 MHz

Channel	Measured Frequency (MHz)	Measured Value (dBm)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)
Low	1606.328	-64.19	1.2	-62.99		-22.99
Middle	1601.330	-64.22	1.2	-63.02	-40.00	-23.02
High	1602.350	-64.19	1.2	-62.99		-22.99

From CFR 27.53(f): For operations in the 746 MHz \sim 763 MHz, 775 MHz \sim 793 MHz, and 805 MHz \sim 806 MHz bands, emissions in the band 1 559 MHz \sim 1 610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

Test Data for LTE 10 MHz *RBW 1 MHz Marker 1 [T1] *VBW 10 MHz *SWT 10 s -64.19 dBm 1.606328000 GHz Ref 20 dBm *Att 0 dB 20 Offset 30 dB 1 RM VIEW LVL Start 1.559 GHz 5.1 MHz/ Stop 1.61 GHz Low Channel *RBW 1 MHz Marker 1 [T1] *VBW 10 MHz -64.22 dBm *SWT 10 s 1.601330000 GHz Ref 20 dBm *Att 0 dB 20 Offset 30 dB Α LVL Start 1.559 GHz 5.1 MHz/ Stop 1.61 GHz Middle Channel

Page 44 of 65 Report No. : E125R-039

8. BAND EDGE MEASUREMENT

8.1 Operating environment

Temperature : 24 °C

Relative humidity : 53 % R.H.

8.2 Test set-up for conducted measurement

The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the spectrum analyzer. The test was performed at three frequencies (low, middle, and high channels) at each band using all applicable modulation.

The resolution bandwidth and video bandwidth of the spectrum analyzer was set according to the regulation and sufficient scans were taken to show any out of band emissions.

8.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■ -	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
■ -	FSP	R/S	Spectrum Analyzer	100017	Mar. 12, 2012 (1Y)
□-	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
□-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
■-	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 45 of 65 Report No. : E125R-039

8.4 Test data for §27.53 (c)(5)

-. Test Date : May 14, 2012 -. Result : <u>PASSED</u>

LTE 5 MHz

Channel	Measured Frequency (MHz)	Measured Value (dBm)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)
Low	728.000	-26.05	0.67	-25.38	-13.00	-12.38
	727.900	-28.80	0.67	-28.13	-18.22	-9.91
	723.000	-34.19	0.67	-33.52	-13.00	-20.52
	756.000	-19.59	0.67	-18.92	-13.00	-5.92
High	756.100	-28.51	0.67	-27.84	-18.22	-9.62
	762.000	-34.13	0.67	-33.46	-13.00	-20.46

LTE 10 MHz

Channel	Measured Frequency (MHz)	Measured Value (dBm)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)
	728.000	-28.89	0.67	-28.22	-13.00	-15.22
Low	727.900	-30.51	0.67	-29.84	-18.22	-11.62
	723.000	-33.92	0.67	-33.25	-13.00	-20.25
	756.000	-27.00	0.67	-26.33	-13.00	-13.33
High	756.100	-32.06	0.67	-31.39	-18.22	-13.17
	762.000	-34.07	0.67	-33.40	-13.00	-20.40

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Test Data for LTE 5 MHz * RBW 30 kHz Marker 2 [T1] *VBW 300 kHz *SWT 10 s -28.80 dBm 727.900000000 MHz *Att 30 dB Ref 50 dBm 50 Offset 30 dB 1 [T1 Marker .05 dBm 1 RM VIEW LVL Start 723 MHz 700 kHz/ Stop 730 MHz Low Channel 1 *RBW 100 kHz Marker 1 [T1] *VBW 1 MHz -34.19 dBm Ref 50 dBm *SWT 10 s 723.000000000 MHz *Att 30 dB 50 Offset 30 dB LVL D1 -13 Start 713 MHz 1 MHz/ Stop 723 MHz

Report No. : E125R-039

Low Channel 2

Test Data for LTE 10 MHz *RBW 30 kHz Marker 2 [T1] *VBW 300 kHz *SWT 10 s -30.51 dBm 727.900000000 MHz Ref 50 dBm *Att 30 dB 50 Offset 30 dB Marker 1 [T1 .89 dBm 1 RM VIEW LVL Start 723 MHz 700 kHz/ Stop 730 MHz Low Channel 1 *RBW 100 kHz Marker 1 [T1] *VBW 1 MHz -33.92 dBm *SWT 10 s 723.000000000 MHz Ref 50 dBm *Att 30 dB 50 Offset 30 dB Α LVL D1 -13 Stop 723 MHz Start 713 MHz 1 MHz/

Report No. : E125R-039

Low Channel 2

Page 50 of 65 Report No. : E125R-039

9. INTERMODULATION TEST

9.1 Operating environment

Temperature : 24 °C Relative humidity : 52 %R.H.

9.2 Test set-up

The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the spectrum analyzer. The test was performed at three frequencies (low, middle, and high channels) at each band using all applicable modulation.

Three input signals are equal in level and were sent to the input of the EUT.

9.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■-	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
■ -	83650L	HP	Swept CW Generator	3844A00415	Jun. 10, 2012 (1Y)
□-	FSP	R/S	Spectrum Analyzer	100017	Mar. 12, 2012 (1Y)
■ -	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
□-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
■ -	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)

All test equipment used is calibrated on a regular basis.

9.4 Test data

9.3.1 Test Result for peak power

-. Test Date : May 16, 2012

-. Test Result : Pass

-. Modulation : No-Modulation

Frequency (MHz)	Number of Input Channel	Input Power (dBm)	Output Power (dBm)
728.030	1	-9.90	44.50
728.030 & 728.060	2	-9.90	44.50
728.030 & 728.06 & 728.09	3	-9.80	44.67
755.970	1	-9.90	44.50
755.970 & 755.940	2	-9.80	44.50
755.970 & 755.940 & 755.910	3	-9.70	44.67

Tested by: Ki-Hong, Nam / Senior Engineer

Report No. : E125R-039

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

High Channel – 2 input signals

Page 55 of 65 Report No. : E125R-039

9.3.2 Test Result for Spurious emission

-. Test Date : May 16, 2012

-. Test Result : Pass

-. Modulation : No-Modulation

Frequency (MHz)	Number of Input Channel	Measured Value	Result
728.030	1		
728.030 & 728.060	2	< -13 dBm	Pass
728.030 & 728.06 & 728.09	3		
755.970	1		
755.970 & 755.940	2	< -13 dBm	Pass
755.970 & 755.940 & 755.910	3		

Remark: Intermodulation products must be attenuated below the rated power of the EUT at least 43 + 10log (Pw), equivalent to -13 dBm. Please refer to test data hereinafter.

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

DISPLAY LINE

DISPLAY LINE

THRESHLD

ON OFF

SCREEN

TITLE

START 30MHz

*RBW 100kHz

*VBW 100kHz

SWP 2.50sec

Low Channel – 2 input signals

High Channel – 3 input signals

10. FIELD STRENGTH OF SPURIOUS RADIATION

10.1 Operating environment

Temperature : 27 °C Relative humidity : 50 % R.H.

10.2 Test set-up

The radiated emissions measurements were on the 3 m, open-field test site. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from 30 MHz to up to 10th harmonic of the fundamental frequency was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. The test was performed by placing the EUT on 3-orthogonal axis. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

The maximum radiated emission was recorded and used as reference for the effective radiated power measurement. The EUT was then replaced by a tuned dipole antenna or Horn antenna and was oriented for vertical polarization and then the length was adjusted to correspond to the frequency of the transmitter. The substitution antenna was connected to a signal generator with a coaxial cable. The receiving antenna height was raised and lowered again through the specified range of height until maximum signal level is detected by the measuring receiver. The signal to the substitution antenna was adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the EUT radiated power measured, corrected for the change of input attenuation setting of the measuring receiver. The signal generator level was recorded and corrected by the power loss in the cable between the signal generator and substitution antenna and further corrected for the gain of the dipole antenna or horn antenna used relative to an ideal tuned dipole antenna. The measurement was repeated with the test antenna and the substitution antenna oriented for horizontal polarization. The measure of the effective radiated power is the larger of the two levels recorded.

10.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□ -	ESVD	Rohde & Schwarz	EMI Test Receiver	838453/018	Oct. 20, 2011 (1Y)
□-	8564E	Hewlett-Packard	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
■ -	83051A	Agilent	Preamplifier	3950M00201	Jun. 11, 2011 (1Y)
□ -	E4432B	Hewlett-Packard	Signal Generator	US38440950	Jun. 10, 2011 (1Y)
□ -	83650L	Hewlett-Packard	Signal Generator	3844A00415	Jun. 10, 2011 (1Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D294	Aug. 23, 2011 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Aug. 23, 2011 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Aug. 23, 2011 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170179	Aug. 23, 2011 (2Y)
■ -	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
□-	FSP	R/S	Spectrum Analyzer	100017	Mar. 16, 2011 (1Y)
-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Report No.: E125R-039

10.4 Test data

-. Test Date : May 16, 2012

-. Resolution bandwidth : 120 kHz (below 1 GHz), 1 MHz (above 1 GHz)
 -. Video bandwidth : 300 kHz (below 1 GHz), 3 MHz (above 1 GHz)

-. Frequency range : $1 \text{ GHz} \sim 10 \text{ GHz}$

-. Measurement distance : 3 m

-. Result : <u>PASSED BY -48.42 dB at 136.80 MHz</u>

Channel	Frequency (MHz)	Spectrum Reading (dBµV)	Generator Reading (dBm)	Ant. Gain (dBi)	Ant. Pol. (H/V)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)
		76.00	6.59		Н		4.33	-	-
Low	730.500	78.50	9.33	1.07	V	3.33	7.07	-	-
		76.40	6.80		Н		4.50	-	-
Middle	742.000	78.50	9.37	1.03	V	3.33	7.07	-	-
		76.30	6.90		Н		4.55	-	-
High	753.500	78.20	9.05	0.98	V	3.33	6.70	-	-
38	3.000	29.33	-64.67	1.22	V	2.21	-65.66	-13.00	-52.66
42	.830	28.50	-64.50	1.53	V	0.85	-62.12	-13.00	-49.12
130	6.800	35.00	-65.34	2.57	Н	1.35	-61.42	-13.00	-48.42
163	3.860	32.83	-65.67	2.92	Н	1.22	-61.53	-13.00	-48.53

Other frequencies have margin more than 20 dB.

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Report No. : E125R-039

Tested by: Ki-Hong, Nam / Senior Engineer

11. FREQUENCY STABILITY WITH TEMPERATURE VARIATION

11.1 Operating environment

Temperature : 24 °C Relative humidity : 53 % R.H.

11.2 Test set-up

The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the CW Microwave Frequency Counter. The test was performed at Middle channel at each band using all applicable unmodulation.

Turn EUT off and set chamber temperature to -30 °C and then allow sufficient time (approximately 20 min to 30 min after chamber reach the assigned temperature) for EUT to stabilize. Turn on the EUT and measure the EUT operating frequency and then turn off the EUT after the measurement. The temperature in the chamber was raised 10 °C step from -30 °C to +50 °C. Repeat above method for frequency measurements every 10 °C step and then record all measured frequencies on each temperature step.

11.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■-	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
□-	FSP	R/S	Spectrum Analyzer	100017	Mar. 12, 2012 (1Y)
□-	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
□-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
■-	53152A	R/S	CW Microwave Frequer	ncy US39270295	Dec. 30, 2011 (1Y)
			Counter		
■-	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)
-	SSE-43CI-A	Samkun Tech	Chamber	060712	Jun. 11, 2011(1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Report No.: E125R-039

Page 62 of 65 Report No. : E125R-039

11.4 Test data

-. Test Date : May 14, 2012 -. Result : <u>PASSED</u>

Temperature (°C)	Input Freq. (Hz)	Measured Freq. (Hz)	Result (PPM)	Limit
-30		742000001	0.0013	
-20		742000002	0.0027	
-10		742000000	0.0000	
0		742000001	0.0013	Within the
10	742000000	742000002	0.0027	Authorized
20		742000002	0.0027	Frequency block
30		742000001	0.0013	
40		742000000	0.0000	
50		742000001	0.0013	

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 63 of 65 Report No. : E125R-039

12. FREQUENCY STABILITY WITH VOLTAGE VARIATION

12.1 Operating environment

Temperature : 24 °C Relative humidity : 53 % R.H.

12.2 Test set-up

The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the CW Microwave Frequency Counter. The test was performed at Middle channel at each band using all applicable unmodulation.

The RF output port of the EUT was connected to the input of the spectrum analyzer. The signal generator was set to center frequency for each band with an un-modulated signal. The voltage of EUT set to 115 % of the nominal value and then was reduced to 85 % of nominal voltage. The output frequency was recorded at each step.

12.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■ -	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
□-	FSP	R/S	Spectrum Analyzer	100017	Mar. 12, 2012 (1Y)
□-	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
□-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
■ -	53152A	R/S	CW Microwave Frequency Counter	r US39270295	Dec. 30, 2011 (1Y)
■ -	DH-60	Dea Kwang Elec.	Slidaes	N/A	Sep 03, 2011 (1Y)
■ -	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 64 of 65 Report No. : E125R-039

12.3 Test data

-. Test Date : May 14, 2012 -. Result : <u>PASSED</u>

Voltage (Vac)	Input Freq. (Hz)	Measured Freq. (Hz)	Result (PPM)	Limit
115%	742000000	742000002	0.0027	Within the
100%		742000002	0.0027	Authorized
85%		742000000	0.0000	Frequency block

Tested by: Ki-Hong, Nam / Senior Engineer

Report No.: E125R-039

13. MAXIMUM PERMISSIBLE EXPOSURE

13.1 RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment is f/1500 mW/cm² for the frequency range between 300 MHz and 1500 MHz.

The electric field generated for a 1mW/cm²exposure is calculated as follows:

$$E = \sqrt{(30 * P * G)} / d$$
, and $S = E^2 / Z = E^2 / 377$, because $1 \text{mW} / \text{cm}^2 = 10 \text{W} / \text{m}^2$

Where

S = Power density in mW/cm², Z = Impedance of free space, 377Ω

E = Electric filed strength in Volts/m, G = Numeric antenna gain, and d = distance in meter

Combing equations and rearranging the terms to express the distance as a function of the remaining variable

$$d = \sqrt{(30*P*G)/(3770 *S)}$$

Changing to units of mW and cm, using P(mW) = P(W) / 1000, d(cm) = 100 * d(m)

$$d = 0.282 * \sqrt{(P*G)/S}$$

Where

d = distance in cm, P = Power in mW, G = Numeric antenna gain, and S = Power density in mW/cm²

13.2 Calculated MPE Safe Distance and Density

According to above equation, the following result was obtained.

Peak Output Power		Antenna Gain		Safe Distance	Power Density (mW/cm²)	FCC Limit
(dBm)	(mW)	Log	Linear	(cm)	@ 100 cm Separation	(mW/cm²)
44.50	28 183.8	2.0	1.58	85.45	0.35	0.485

According to above table, safe distance, D = $0.282 * \sqrt{(28\ 183.8 * 1.58) / 0.485} = 85.42 \text{ cm}$.

For getting power density at 20 cm separation in above table, following formula was used.

$$S = P * G / (4\pi * R^2) = 1000 * 1.58 / (4 * 3.14 * 100^2) = 0.35$$

Where:

S = Power Density,

P = Power input to the external antenna (Output power from the EUT antenna port (dBm) – cable loss (dB)),

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna

Note: End users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance, because the applicant does not provide an antenna for sale with the EUT.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)