# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT APPLICATION

### IN THE U.S. PATENT AND TRADEMARK OFFICE

April 6, 2004

Applicants: Motohide TAKEICHI et al

For: COG-ASSEMBLY AND CONNECTING MATERIAL TO BE USED THE

Serial No.: 09/659 448 Group: 2827

Confirmation No.: 5818

Filed: September 11, 2000 Examiner: Graybill

Atty. Docket No.: Yanagihara Case 52

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

#### RESPONSE

Sir:

In response to the Office Action dated October 8, 2003, please amend the above-identified application as follows:

(Please see following pages.)

### CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on April 6, 2004.

Terryence F. Chapman

2827

#### PATENT APPLICATION

Applicants : Motohide TAKEICHI et al

Title : COG-ASSEMBLY AND CONNECTING MATERIAL

TO BE USED THEREIN

Serial No. : 09/659 448

Group: 2827

Confirmation No.: 5818

Filed : Septem

September 11, 2000 Examiner: Graybill

Atty. Docket No.: Yanagihara Case 52

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

#### FIRST CLASS MAILING CERTIFICATE

Sir:

I hereby certify that this correspondence is being deposited with the United States Postal Service under 37 CFR 1.8 as first class mail in an envelope addressed to: Commissioner for Patents P.O. Box 1450, Alexandria, VA 22313-1450, on May 20, 2004.

Terryphoe F. Chapman

TFC/smd

Dale H. Thiel FLYNN, THIEL, BOUTELL Reg. No. 24 323 Reg. No. 25 072 & TANIS, P.C. David G. Boutell 2026 Rambling Road Ronald J. Tanis Reg. No. 22 724 Kalamazoo, MI 49008-1631 Terryence F. Chapman Reg. No. 32 549 Phone: (269) 381-1156 Mark L. Maki Reg. No. 36 589 (269) 381-5465 Fax: Liane L. Churney Reg. No. 40 694 Brian R. Tumm Reg. No. 36 328 Reg. No. 53 685 Steven R. Thiel Sidney B. Williams, Jr. Reg. No. 24 949

Correspondence: Letter to Patent Office

dated May 20, 2004

including enclosures listed thereon

190.05/03

#### PATENT APPLICATION



IN THE U.S. PATENT AND TRADEMARK OFFICE

May 20, 2004

Applicants: Motohide TAKEICHI et al

For: COG-ASSEMBLY AND CONNECTING MATERIAL

TO BE USED THEREIN

Serial No.: 09/659 448 Group: 2827

Confirmation No.: 5818

Filed: September 11, 2000 Examiner: Graybill

Atty. Docket No.: Yanagihara Case 52

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

#### LETTER TO PATENT OFFICE

#### Sir:

We have received a Notice from the Patent Office dated May 6, 2004 indicating that the present application has been abandoned due to Applicants' failure to timely file a proper reply to the Office Action dated October 8, 2003. This Notice clearly is in error as a Response was filed with the Patent Office on April 6, 2004. A copy of the Response is enclosed herewith as is a copy of a stamped postal card received from the Patent Office evidencing receipt of the Response. The Examiner is respectfully requested to withdraw the abandonment of the present application, enter the timely-filed Response and re-open prosecution in the present application. If there are any other matters left to be resolved, the Examiner is respectfully requested to contact the undersigned in order that they may be dealt with.

Respectfully submitted,

TFC/smd

Terryence F. Chapman

FLYNN, THIEL, BOUTELL
& TANIS, P.C.

2026 Rambling Road
Kalamazoo, MI 49008-1631
Phone: (269) 381-1156
Fax: (269) 381-5465

Boutell
Ronald J. Tanis
Terryence F. Chapman
Mark L. Maki
Liane L. Churney
Brian R. Tumm

Dale H. Thiel Reg. No. 24 323
David G. Boutell Reg. No. 25 072
Ronald J. Tanis Reg. No. 22 724
Terryence F. Chapman Reg. No. 32 549
Mark L. Maki Reg. No. 36 589
Liane L. Churney Reg. No. 40 694
Brian R. Tumm Reg. No. 36 328
Steven R. Thiel Reg. No. 53 685
Sidney B. Williams, Jr. Reg. No. 24 949

Encl: Copy of Response dated April 6, 2004

Copy of Stamped Postal Card

Postal Card



April 6, 2004

licants: Motohide TAKEICHI et al

Title : COG-ASSEMBLY AND CONNECTING MATERIAL TO BE USED THEREIN

Serial No.: 09/659 448 Group: 2827

Confirmation No.: 5818

Filed : September 11, 2000 Examiner: Graybill

Atty. Docket No.: Yanaqihara Case 52

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

MAILED TO PATENT OFFICE DATE APR - 6 2004

Sir:

Herewith is an amendment in the above-identified application.

- [] Applicant claims small entity status. See 37 CFR 1.27.
- [] The additional filing fee has been calculated as shown below:

|                              | No.      | No.     | (X)        | RATE | ()         |     |          |
|------------------------------|----------|---------|------------|------|------------|-----|----------|
| _For                         | Filed    | Extra   | LG Entity  |      | SM Entity  | Fee | <b>:</b> |
| Basic Fee                    |          |         | \$770.00   |      | \$385.00   |     | \$       |
| Total Claims                 | (13 - 2) | 20 = 0) | x \$ 18.00 |      | x \$ 9.00  |     | •        |
| Indep. Claims                | (2 -     |         | x \$ 86.00 |      | x \$ 43.00 |     |          |
| [ ] Multiple De              | p. Clair | n       | + \$290.00 |      | + \$145.00 |     |          |
| * * * TOTAL FILING FEE * * * |          |         |            |      |            | \$  | 0.00     |

- [X] Pursuant to 37 CFR 1.136(a), please extend the shortened period for response by three months. The extension fee is: \$950.00.
- [X] A Check for \$950.00 is enclosed to cover fees.
- [X] Please credit any overpayment, or charge any additional filing fee required under 37 CFR 1.16 or 1.17 by this communication, to Deposit Account No. 06-1382. A duplicate copy of this sheet is enclosed.

IN DUPLICATE

TFC/smd

Terryence F. Chapman Reg. No. 32 549

#### CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on April 6, 2004.

Terryence F. Chapman

130.10/03



Certificate of Mailing dated April 6, 2004 and

Three Month Time Extension (\$950)

Response including

Certificate of Mailing dated April 6, 2004

Check (\$950)

Applicants: Motohide TAKEICHI et al

Title: COG-ASSEMBLY AND CONNECTING MATERIAL

TO BE USED THEREIN

Serial No.: 09/659 448 Confirmation No.: 5818

Filing Date: September 11, 2000

Examiner: Graybill

Group: 2827

Our Ref: Yanagihara Case 52

Due: April 8, 2004



# This Page Is Inserted by IFW Operations and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

#### Amendments to the Claims

This listing of claims will replace all prior listings of claims in the application.

#### Listing of Claims

- 1. (Canceled)
- 2. (Canceled)
- 3. (Previously Presented) The connecting material as claimed in claim 8, wherein it comprises 2-40%, based on the volume of the adhesive component, of the electro-conductive particles.
  - 4. (Canceled)
  - 5. (Canceled)
- 6. (Previously Presented) The COG assembly as claimed in claim 9, wherein the connecting material comprises 2-40%, based on the volume of the adhesive component, of the electroconductive particles.
- 7. (Previously Presented) The COG assembly as claimed in claim 9, wherein the COG assembly is a liquid crystal display.
- 8. (Currently Amended) A connecting material for bonding and connecting a semiconductor chip with a substrate glass board and forming a COG assembly in which electrodes provided on the semiconductor chip are held in direct connection with corresponding electrodes provided on the substrate glass board, said connecting material having a

tensile elongation percentage at 25°C of at least 5%, after being cured, and comprising:

an adhesive component comprising a thermosetting resin 10-94% by weight of an epoxy resin,

0-50% by weight of a thermoplastic polymeric substance and

- 6-90 wt.% of a microparticulate elastomer product selected from the group consisting of natural or synthetic rubber, isoprene rubber, butadiene rubber, styrene/butadiene rubber, chloroprene rubber and acrylonitrile/butadiene rubber having an average particle size of 30-300 nm and electroconductive particles.
- (Currently Amended) A COG assembly comprising a semiconductor chip having electrodes provided thereon and a substrate glass board having electrodes provided thereon corresponding to the electrodes provided on the semiconductor chip, the electrodes provided on the semiconductor chip being held in direct connection with the corresponding electrodes provided on the substrate glass board by a connecting material, the connecting material having a tensile elongation percentage of at least 5% at 25°C, after being cured, and comprising an adhesive component comprising a thermosetting resin and 10-94% by weight of an epoxy resin, 0-50% by weight of a thermoplastic polymeric substance, 6-90 wt.% of a microparticulate elastomer product selected from the group consisting of natural or synthetic rubber, isoprene rubber, butadiene rubber, styrene/butadiene rubber, chloroprene rubber and acrylonitrile/butadiene rubber having an average particle size of 30-300 nm and electroconductive particles.
- 10. (Previously Presented) The connecting material of Claim 8, wherein the microparticulate elastomer has an average particle size of 50-200 nm.

- 11. (Previously Presented) The COG assembly of Claim 9, wherein the microparticulate elastomer has an average particle size of 50-200 nm.
- 12. (Previously Presented) The connecting material of Claim 8, wherein the electroconductive particles have an average particle size of from 1-20  $\mu m$ .
- 13. (Previously Presented) The COG assembly of Claim 9, wherein the electroconductive particles have an average particle size of from 1-20  $\mu m_{\star}$ 
  - 14. (Canceled)
  - 15. (Canceled)
  - 16. (Canceled)
  - 17. (Canceled)
- 18. (Previously Presented) The connecting material of Claim 8, wherein the cured connecting material has an elastic modulus of from 0.9-3 GPa at 30°C and a Tg of from 110-160°C.
- 19. (Previously Presented) The COG assembly of Claim 9, wherein the cured connecting material has an elastic modulus of from 0.9-3 GPa at  $30^{\circ}$ C and a Tg of from  $110-160^{\circ}$ C.
- 20. (New) The connecting material as claimed in claim 8, wherein the connecting material comprises 5-30% by weight of the thermoplastic polymeric substance.
- 21. (New) The COG assembly as claimed in claim 9, wherein the connecting material comprises 5-30% by weight of the thermoplastic polymeric substance.

#### REMARKS

In order to expedite the prosecution of the present application, the currently pending claims have been amended in order to more particularly point out and distinctly claim the subject matter which Applicants regard as the invention. Specifically speaking, the limitations of Claims 14-17 have been incorporated into Claims 8 and 9. Accordingly, Claims 14-17 have been canceled. No new matter has been added.

Claims 3, 6 and 8-19 have been rejected under 35 USC 102(b) as being anticipated by Tomita. Claim 7 has been rejected under 35 USC 103(a) as being unpatentable over Tomita and further in combination with Yamada. Applicants respectfully traverse these grounds of rejection and urge reconsideration in light of the following comments.

The presently claimed invention is directed to a connecting material for bonding and connecting a semiconductor chip with a substrate glass board and forming a COG assembly in which electrodes provided on the semiconductor chip are held in direct connection with corresponding electrodes provided on the substrate glass board. The connecting material has a tensile elongation percentage at 25°C of at least 5%, after being cured, and comprises an adhesive component comprising 10-94% by weight of an epoxy resin, 0-50% by weight of a thermoplastic polymeric substance and 6-90% by weight of a microparticulate elastomer product selected from the group consisting of natural rubber, isoprene rubber, butadiene rubber, styrene/butadiene rubber, chloroprene rubber and acrylonitrile/butadiene rubber having an average particle size of 30-300 nm and electroconductive particles. present invention is also directed to a COG which utilizes the above-described connecting material.

The present invention provides a connecting material for bonding and connecting a semiconductor chip with a substrate glass board and a COG assembly. By incorporating a microparticulate elastomer in the connecting material of the present invention, the reduction of stress concentration at

the interface between the connecting material and the glass substrate is achieved, even when a higher adhesion strength of the connecting material is required. This enables the deformation of the glass substrate, such as warping, to be reduced, even when a thin substrate glass board is used, together with providing superior adhesion strength and secured electrical connection.

As discussed previously, the present invention requires a tensile elongation at 25°C of at least 5%, after being cured, in order to achieve the reduction of stress concentration at the interface between the connecting material and the glass substrate. The present inventors have discovered that the tensile elongation percentage of the cured connecting material is improved by the inclusion of a microparticulate elastomer product selected from the group consisting of natural rubber, isoprene rubber, butadiene rubber, styrene/butadiene rubber, chloroprene rubber and acrylonitrile/butadiene rubber having an average particle size of from 30-300 nm. It is respectfully submitted that the prior art cited by the Examiner does not disclose the presently claimed invention.

EP 0 979 854 (referred to by the Examiner as Tomita) discloses a circuit-connecting material which is interposed between circuit electrodes facing each other, electrically connects the electrodes in the pressing direction and comprises, as essential components, a curing agent capable of generating free radicals upon heating, a hydroxyl group-containing resin having a molecular weight of 10,000 or more and a radical, polymerizable substance. The Examiner states that this reference teaches all of the essential elements of the presently claimed invention. Applicants beg to differ.

As discussed above, it is a critical part of the present invention that the connecting material contain from 6-90% by weight of a microparticulate elastomer product selected from the group consisting of natural rubber, isoprene rubber, butadiene rubber, styrene/butadiene rubber, chloroprene rubber and acrylonitrile/butadiene rubber having an average particle

size of from 30-300 nm. The Tomita reference does not show this. As discussed in paragraphs [0068] through [0072] of Tomita, the connecting material contains an adhesive which is modified through chemical action of an elastomer on a resin having a phenoxy resin skeleton. In contrast to this reference, the connecting material of the present invention contains, as a genuine mixture, a microparticulate elastomer and a resin, in which the microparticulate elastomer has its microparticulate identity preserved even after the curing of the adhesive component without being subjected to any chemical coupling with the resin.

Paragraph [0074] of Tomita discloses the use of an acrylic resin in the rubber as does Example 16 of this reference. However, nothing suggests that the acrylic rubber is present as a microparticulate product. The Tomita reference only discloses an elastomer of a microparticulate structure for an elastomer-modified phenoxy resin. Moreover, there is no suggestion in Tomita with respect to the combination of an epoxy resin with a microparticulate elastomer. As such, this aspect of the present invention clearly is not taught by Tomita.

The Examiner also states in the Office Action that Tomita teaches "a modulus of elasticity of from 100-2,000 MPa, and more preferably, from 1,000-1,800 MPa, at 40°C after curing,". While Applicants do not dispute this statement of the Examiner, the presently claimed invention requires that the connecting material have a tensile elongation percentage at 25°C of at least 5%, after being cured. "Tensile elongation percentage" and "modulus of elasticity" are two different properties and are not necessarily related to each other. Therefore, the Tomita reference does not disclose the claimed tensile elongation percentage and, since the compositions of the connecting materials of Tomita and that of the present invention are different, it is not inherent that both compositions would have the same tensile elongation percentage.

The Yamada reference was cited by the Examiner as disclosing a COG assembly which is a liquid crystal display. However, the Yamada reference does not overcome the deficiencies contained in the primary Tomita reference in that it does not show the presence of microparticulate rubber in a connecting material in an amount of from 60-90 wt.%.

The Satsu et al reference discloses a semiconductor device in which semiconductor elements are connected to metallic bumps on the front side of a substrate and a thermosetting resin composition containing a spherical filler is provided between the semiconductor elements and the substrate. This reference was cited by the Examiner as showing the particular claimed Tg. However, the resin composition disclosed there is different from that of the Tomita reference and different from that of the present invention. As such, the selection of the Satsu et al reference as disclosing a particular Tg and elastic modulus as a secondary reference does not appear to be proper because these properties are inherent to the resin compositions and there is no disclosure in Satsu et al which would teach one of ordinary skill in the art how to modify the primary Tomita reference in a manner that would yield the presently claimed properties or why such a modification would even be advantageous.

Although the Examiner has not made a showing of prima facie obviousness under 35 USC 103, Applicants respectfully submit that objective evidence is of record in the present application which establishes the unexpected advantages associated with the presently claimed invention. In Table 1, on page 21 of the originally filed specification, Examples of the present invention and Comparative Examples are given. Comparative Example 2 is different from the present invention only in the fact that 5 wt.% of a microparticulate rubber is used. Comparative Example 3 uses 10% of an acrylic resin, which corresponds to the acryl rubber of Tomita. As is evident from Table 1, none of the compositions of the

Comparative Examples had a tensile elongation percentage as required by the present claims. Additionally, other physical properties of the comparative compositions were inferior to that of the present invention. Comparative Example 2 is closer to the present invention than the Tomita reference in that it uses only 5 wt.% of a microparticulate rubber as compared to the lower limit of 6 wt.% required in the present claims. The superior properties of the presently claimed invention over the composition of Comparative Example 2 clearly establishes the patentability of the presently claimed invention. As such, the Examiner is respectfully requested to reconsider the present application and to pass it to issue.

Respectfully submitted,

Terryence F Chanman

TFC/smd

FLYNN, THIEL, BOUTELL & TANIS, P.C. 2026 Rambling Road Kalamazoo, MI 49008-1631 Phone: (269) 381-1156 Fax: (269) 381-5465

| Dale H. Thiel           | Reg. |     |    |     |
|-------------------------|------|-----|----|-----|
| David G. Boutell        | Reg. | No. | 25 | 072 |
| Ronald J. Tanis         | Reg. | No. | 22 | 724 |
| Terryence F. Chapman    | Reg. | No. | 32 | 549 |
| Mark L. Maki            | Reg. | No. | 36 | 589 |
| Liane L. Churney        | Reg. | No. | 40 | 694 |
| Brian R. Tumm           | Reg. | No. | 36 | 328 |
| Steven R. Thiel         | Reg. |     |    |     |
| Sidney B. Williams, Jr. | Rea. | No. | 24 | 949 |

Encl: Postal Card

136.0703