IOE 511 Homework 10

Tianhang Gao

10

Problem 1

(a) First, (P_c) and (P_d) has the same feasible region. Then, for the objective function, we have

$$\frac{1}{2}||x-d||_{2}^{2} = \frac{1}{2}\sum_{i=1}^{n}(x_{i}-d_{i})^{2}$$

$$= \frac{1}{2}\sum_{i=1}^{n}\left(x_{i}-c_{i}-\frac{1-e^{T}c}{n}\right)^{2}$$

$$= \underbrace{\frac{1}{2}\sum_{i=1}^{n}(x_{i}-c_{i})^{2}}_{(a)} + \underbrace{\frac{(1-e^{T}c)^{2}}{2n}}_{(b)} - \underbrace{\sum_{i=1}^{n}(x_{i}-c_{i})\frac{1-e^{T}c}{n}}_{(c)}$$

$$(a) = \frac{1}{2}||x-c||_{2}^{2}$$

$$(c) = \frac{1-e^{T}c}{n}\left(\sum_{i=1}^{N}x_{i}-\sum_{i=1}^{N}c_{i}\right) = \frac{1-e^{T}c}{n}(1-e^{T}c) = \frac{(1-e^{T}c)^{2}}{n}$$

$$\Rightarrow \frac{1}{2}||x-d||_{2}^{2} = \frac{1}{2}||x-c||_{2}^{2} - \frac{(1-e^{T}c)^{2}}{2n}$$

which means that the objective functions of two problems only differs in a constant, which does not depend on x. Therefore, (P_c) and (P_d) have the same optimal solutions.

- (b) Without constraint, $\frac{1}{2}||x-d||_2^2 \ge 0$. Also, $e^Td = e^Tc + \frac{1-e^Tc}{n}e^Te = e^Tc + 1 e^Tc = 1$. If $d \ge 0$, then $x^* = d$ satisfies all constraints, and $\frac{1}{2}||x^* d||_2^2 = 0$. Therefore $x^* = d$ is an optimal solution of (P_d) .
- (c) $f(x) = \frac{1}{2}||x d||_2^2, g_i(x) = -x_i, h(x) = e^T x 1, \nabla f(x^*) = x^* d, \nabla g_i(x^*) = -e_i, \nabla h(x^*) = e.$ Since $\nabla g_i(x^*), i = 1, \ldots, n$ are linearly independent, and $\nabla h(x^*)$ has only one vector, KKT condition is necessary for a local opmimum. Also, $f(x), g_i(x), i = 1, \ldots, n$ are convex functions, and h(x) is linear, (P_d) is a convex problem, KKT is sufficient for a global optimum. According to KKT condition, x^* satisfies

$$\nabla f(x^*) + \sum_{i=1}^n u_i \nabla g_i(x^*) + v \nabla h(x) = 0,$$

$$u_i \ge 0, i = 1, \dots, n,$$

$$u_i g_i(x^*) = 0, i = 1, \dots, n$$

which implies

$$\begin{cases} x_1^* - d_1 - u_1 + v = 0 \\ \vdots \\ x_n^* - d_n - u_n + v = 0 \end{cases}$$

Summing all the equations, along with the fact that $e^T x^* = 1$, $e^T d = 1$, we have

$$v = \frac{1}{n} \sum_{i=1}^{n} u_i \ge 0$$

Suppose for some $d_j < 0$ and $x_j^* > 0$, then $u_j = 0$, and $x_j^* - d_j - u_j + v > 0$, which contradicts the KKT condition. Therefore, if $d_j < 0$ for some j, then $x_j^* = 0$ in any optimal solution.

(d) Given c, compute d. If $d \ge 0$, then $x^* = d$. Otherwise, find all $d_j < 0$, eliminate them, making the corresponding $x_j^* = 0$ and $d_j = 0$, which forms the new c. Then repeat this process. In every step, if $1 - e^T c < 0$, then at least one x_j^* can be computed (set 0); if $1 - e^T c \ge 0$, then $d \ge 0$, $x^* = d$. Thus, (P_c) can be solved in at most n steps.

Problem 2

- (1) First, if C = D, then for all y, if $S_C(y) = y^T x_1, x_1 \in C$, then we can find $x_2 = x_1, x_2 \in D$, such that $S_D(y) = y^T x_2 = S_C(y)$. Therefore, $\forall y \in \mathbb{R}^n, S_C(y) = S_D(y)$.
 - (2) Then, show that if the support functions are equal, then C = D. First show that $D \subseteq C$. Suppose there exists a point $x_0 \in D, x_0 \notin C$. Since C is closed and convex, x_0 can be strictly separated from C, i.e., there exists $y \in \mathbb{R}^n$ and $b \in \mathbb{R}$, such that $y^T x_0 > b$ and $y^T x < b, \forall x \in C$. This means that

$$\sup_{x \in C} y^T x \le b < y^T x_0 \le \sup_{x \in D} y^T x$$

which implies that $S_C(y) \neq S_D(y)$. We showed by contradiction that $D \subseteq C$. By reversing the roles of C and D, we can show that $C \subseteq D$. Therefore, C = D. So, C = D if and only if their support functions are equal.

Problem 3

According to weak duality,

$$f^* = z^* = \inf f(x) = \inf \sup \bar{L}(x, u)$$

 $\bar{v}^* = \sup \bar{L}^*(u) = \sup \inf \bar{L}(x, u)$

Therefore, $\bar{v}^* \leq f^*$. Similarly, $v^* \leq f^*$. For the first inequality,

$$L^{\star}(u) = \inf_{x \in X} L(x, u) = \inf_{x \in X} f(x) + \sum_{i=1}^{m} u_{i} g_{i}(x)$$

$$\leq \inf_{x \in X} f(x) + \sum_{i=1}^{r} u_{i} g_{i}(x)$$

$$\leq \inf_{x \in \bar{X}} f(x) + \sum_{i=1}^{r} u_{i} g_{i}(x)$$

$$= \inf_{x \in \bar{X}} \bar{L}(x, u) = \bar{L}^{\star}(u)$$

Let $L^{\star}(u) = \bar{L}^{\star}(u) + \xi(u)$, where $\xi(u) \leq 0$. Thus,

$$v^* = \sup_{u} L^*(u) = \sup_{u} (\bar{L}^*(u) + \xi(u))$$

$$\leq \sup_{u} \bar{L}^*(u) + \sup_{u} \xi(u)$$

$$\leq \sup_{u} \bar{L}^*(u)$$

$$= \bar{v}^*$$

Therefore, we have $v^* \leq \bar{v}^* \leq f^*$.

Problem 4

(a) Approach 1

(P₁)
$$\min_{x} f_1(x)$$

s.t. $f_j(x) \le b_j, j = 2, ..., s$
 $g_i(x) \le 0, i = 1, ..., m$

Approach 2

(P₂)
$$\min_{x} f(x) = \sum_{j=1}^{s} w_{j} f_{j}(x)$$

s.t. $w_{1} > 0$
 $w_{j} \ge 0, j = 2, \dots, s$
 $g_{i}(x) \le 0, i = 1, \dots, m$

(b) Let $b_j = f_j(x)$. Prove by contradiction that the optimal solution of (P_2) is same as (P_1) . Let \bar{x} be the optimal solution of (P_2) , assume that \bar{x} is not optimal of (P_1) . Then $\exists \hat{x} \in \mathcal{F}_1$, s.t. $f_1(\hat{x}) < f_1(\bar{x})$. Then $\hat{x} \in \mathcal{F}_2$. Also, since $\hat{x} \in \mathcal{F}_1$, we have $f_j(\hat{x}) \leq f_j(\bar{x}), j = 2, \ldots, s$. Therefore, $w_j f_j(\hat{x}) \leq w_j f_j(\bar{x}), j = 2, \ldots, s$ and $w_1 f_1(\hat{x}) < w_1 f_1(\bar{x})$. Sum these inequalities together, we have

$$\sum_{j=1}^{s} w_{j} f_{j}(\hat{x}) < \sum_{j=1}^{s} w_{j} f_{j}(\bar{x})$$

However, since \bar{x} is the optimal solution of (P_2) , and $\hat{x} \in \mathcal{F}_2$ we have

$$\sum_{j=1}^{s} w_{j} f_{j}(\hat{x}) \ge \sum_{j=1}^{s} w_{j} f_{j}(\bar{x})$$

which is a contradiction. Therefore, we can always find $b_j = f_j(x)$ such that the optimal solution of (P_2) is also the optimal solution of (P_1) .

(c) For (P_1) :

$$\nabla f_1(\bar{x}) + \sum_{j=2}^{s} u_j \nabla f_j(\bar{x}) + \sum_{i=1}^{m} u_i \nabla g_i(\bar{x}) = 0$$
$$u_i \ge 0, u_i g_i(\bar{x}) = 0, i = 1, \dots, m$$
$$u_j \ge 0, u_j (f_j(\bar{x}) - b_j) = 0, j = 2, \dots, s$$

For (P_2) :

$$\sum_{j=1}^{s} w_j \nabla f_j(\bar{x}) + \sum_{i=1}^{m} u_i \nabla g_i(\bar{x}) = 0$$

$$w_1 > 0$$

$$w_j \ge 0, j = 2, \dots, s$$

$$u_i \ge 0, u_i g_i(\bar{x}) = 0, i = 1, \dots, m$$

(d) Since all functions are convex and a constraint qualification is satisfied, for certain $b_j, j = 2, ..., s$, we can always find $u_j \geq 0, j = 2, ..., s$ that satisfy the KKT conditions of (P_1) . Let $w_1 = 1, w_j = u_j, j = 2, ..., s$. Then the KKT conditions in (P_2) can also be satisfied, which means that the optimal solution of (P_1) is also the optimal solution of (P_2) .

Problem 5

Its obvious that f(x) is convex, h(x) is linear, so this is a convex problem. The KKT condition is

$$\nabla f(\bar{x}) + u \nabla h(\bar{x}) = 0$$

which implies that for any x_{ij} ,

$$R_{ij}x_{ij} - t_{ij} + u_i(1) + u_j(-1) = 0$$

$$\Rightarrow v_i - v_j + u_i - u_j = 0$$

$$\Rightarrow u_i = v_j, u_j = v_i \text{ is a solution.}$$

 \bar{x} satisfies KKT conditions, which are sufficient for convex problem. So \bar{x} is a global optimum. If x' is also an global optimum, since all constraints are linear, x' must satisfies KKT condition, which is the same as \bar{x} , which leads to $x' = \bar{x}$. Therefore, \bar{x} is the unique solution.