APELLIDOS, NOMBRE: SERRANO ARRESE, JULIA

Adjuntar código utilizado, resultados y gráficas pedidos

EJERCICIO 5

```
n = [0:10]; %11 sumandos
m = (-1).^{\Lambda}n; %pares +, impares -
vex = exp(-1); %valor exacto
vaprox = sum((1 ./ factorial(n)) .* m); %valor aproximado
er_abs = abs(vex - vaprox); %error absoluto
                          %error relativo
er rel = er abs ./ vex;
ncif = floor(-log10(er_rel)); %cifras signif.
b) función auxiliar:
function [Valor,Erel,Ncif] = inversoe(n)
  x = [0:n+1];
  m = (-1).^x;
  Valor = sum((1 ./ factorial(x)) .* m);
  vex = exp(-1);
  er abs = abs(vex - Valor);
  Erel = er abs ./ vex;
  Ncif = floor(-log10(Erel));
end
c)
n = 5;
Erel = inversoe(5):
while(Erel > 1e-15)
  [Valor, Erel, Ncif] = inversoe(n);
  fprintf('n: %2d n cifras: %2d \n',[n;Ncif])
  n = n+5:
end
  n: 5 n_cifras: 3
  n: 10 n_cifras: 8
  n: 15 n_cifras:14
  n: 20 n cifras:15
```

EJERCICIO 7

```
n = [0:20];
x = 10 .^-n;
v_exact = sinh(x);
v_aprox = (exp(x) - exp(-x)) ./ 2;
```

%Observamos que el valor exacto y el valor aproximado son idénticos hold on plot(v_exact,'bo') plot(v_aprox,'r*')

hold off

Estudio del error

eabs=abs(v_exact-v_aprox);
erel = eabs ./ v_exact;
ncif = floor(-log10(erel));
whos eabs
whos erel
whos ncif

Name	Size	Bytes	Class	Attributes
eabs	1x21	168	double	
Name	Size	Bytes	Class	Attributes
erel	1x21	168	double	
Name	Size	Bytes	Class	Attributes
ncif	1x21	168	double	

Gráficas

subplot(1,2,1),loglog(x,erel,'bo-'),title('Error relativo respecto de x') subplot(1,2,2),semilogx(x,ncif,'r*'),title('Cifras significativas respecto de x')

El error relativo decrece según va aumentando la x y todo lo contrario ocurre con las cifras significativas que aumentan con la x.

<u>Imprimir resultados</u>

a = [x;erel;ncif];

```
fprintf('n: %2d error rel: %0.2e no cifras: %2d \n', a)
    1 error rel: 1.89e-16 no cifras: 15
n: 1.000000e-01 error rel: 6.93e-16 no cifras: 15
n: 1.000000e-02 error rel: 8.15e-15 no cifras: 14
n: 1.000000e-03 error rel: 6.29e-15 no cifras: 14
n: 1.000000e-04 error rel: 2.23e-13 no cifras: 12
n: 1.000000e-05 error rel: 4.56e-12 no cifras: 11
n: 1.000000e-06 error rel: 2.69e-11 no cifras: 10
n: 1.000000e-07 error rel: 5.26e-10 no cifras:
n: 1.000000e-08 error rel: 6.08e-09 no cifras:
n: 1.000000e-09 error rel: 2.72e-08 no cifras:
n: 1.000000e-10 error rel: 8.27e-08 no cifras:
n: 1.000000e-11 error rel: 8.27e-08 no cifras:
                                                 7
n: 1.000000e-12 error rel: 3.34e-05 no cifras:
n: 1.000000e-13 error rel: 2.44e-04 no cifras:
n: 1.000000e-14 error rel: 7.99e-04 no cifras:
n: 1.000000e-15 error rel: 5.47e-02 no cifras:
n: 1.000000e-16 error rel: 4.45e-01 no cifras:
n: 1.000000e-17 error rel: 1.00e+00 no cifras:
   1.000000e-18 error rel: 1.00e+00 no cifras:
   1.000000e-19 error rel: 1.00e+00 no cifras:
n: 1.000000e-20 error rel: 1.00e+00 no cifras:
```

Opcional

```
cota = eps(1) ./ sinh(x);
loglog(x,erel,'bo-',x,cota,'ro-')
legend('sinh(x) azul','(exp(x) - exp(-x)) ./ 2')
title('Gráfica error relativo con cota')
```


Se verifica que el error relativo nunca supera a la cota