Jordan University of Science and Technology Faculty of Computer Information Technology Software Engineering Department Software Engineering Lab 2 (SE325)

Task4: Reading & Writing Text Files

In Lab: PART 1:

Problem Description: The Complex class.

The value of $\sqrt{-1}$ was not naturally defined, so a complex number was invented. A complex number is an expression (or a number) of the form a+bi, where a and b are real numbers and $i=\sqrt{-1}$, therefore, it satisfies the property that $i^2=1$. The component a is known as the *real part*, and b is known as the *imaginary part* of the complex number. All primitive mathematical operations are allowed on complex numbers, using the following formulae:

$$\begin{array}{l} \mathbf{add} \ \ a+bi+c+di=(a+c)+(b+d)i \\ \\ \mathbf{sub} \ \ a+bi-(c+di)=(a-c)+(b-d)i \\ \\ \mathbf{mul} \ \ (a+bi)*(c+di)=(ac-bd)+(bc+ad)i \\ \\ \mathbf{div} \ \ (a+bi)/(c+di)=(ac+bd)/(c^2+d^2)+(bc-ad)i/(c^2+d^2) \\ \\ \mathbf{abs} \ \ |a+bi|=\sqrt{a^2+b^2} \end{array}$$

Design a class, name it Complex, that represents a complex number as defined above, along with methods add, subtract, multiply, divide, and abs for performing complex number operations.

	Data Member	
1	a	double
2	b	double
	Methods	
1	Add(Complex Num2)	Add Method to add to numbers.
		Suppose: Num1= a+bi Num2=c+di
		Sum=(a+c)+(b+d)i
2	Sub(Complex Num2)	Sub Method to subtract to numbers.
		Suppose: Num1= a+bi Num2=c+di
		Sub=(a-c)+(b-d)i
3 Mul(Complex Num2) Mul Method to multiplicate to numbers.		Mul Method to multiplicate to numbers.
		Suppose: Num1= a+bi Num2=c+di
		Mul=(a*c-b*d)+(b*c+a*d)i
4	Div(Complex Num2))	Div Method to divide to numbers.
		Suppose: Num1= a+bi Num2=c+di
		Div=(a*c+b*d)/(c*c+d*d)+(b*c-a*d)i/(c*c+d*d)
	ABS()	The method ABS() return the absolute value for the complex number
		$\sqrt{a^2+b^2}.$

PART 2: Test the Complex Class

Build a simple windows form that allow the user to perform the Following:

- 1. Read A text File (*.txt) that contains complex number
 - The input file is selected from the open file dialog.
 - The Path of the File has to be displayed on a Text Box.
- 2. The complex numbers in the text file are separated by ","
 - Split the Text you read based on the following delimiters:

Then each item generated after the split have to be represent a complex number.

```
Example 1:
3.5+2.9i
The real part (a) =3.5.
The imaginary part (b) =2.9.

Example 2:
3.5-2.9i
The real part (a) =3.5.
The imaginary part (b) =-2.9.
```

- 3. You have to add all results (Complex number) to a list of Complex objects.
- 4. Allow user to sort all result based on real part.
- 5. Allow user to sort all result based on Imaginary part.
 Hint: You have to re-implement the IComparable.CompareTo method.
- 6. Allow user to calculate the sum of all complex numbers.
- 7. Allow user to calculate the subtraction of all complex numbers.
- 8. Allow user to calculate the multiplication of all complex numbers.
- 9. Allow user to find the maximum complex number :
 - **Hint: Max Complex Have the Max Absolute Value**
- 10 Save Real Parts of All Complex numbers in a text file, the file is selected from the save file dialog.

