世도체(Semiconductor) Memory-RAM(1)

○ 제조기술에 따른 분류

종류	DRAM(Dynamic RAM)	SRAM(Static RAM)
저장방식	RC회로에서 Capacitor에 주기적으로 Charge를 재충전하여 Data를 저장	기억 소자로서 Flip-Flop을 이용
밀도	집적 밀도가 높음	집적 밀도가 낮음
Refresh 여부	Data의 저장 상태를 유지하기 위하여 주기적인 Refresh 필요	전력이 공급되는 동안에는 재충전 없이도 Data 유지 가능
가격	 낮음	높음
속도	느림	빠름
용도	높은 용량이 필요한 Main Memory로 사용	높은 속도가 필요한 Cache 로 사용

世도체(Semiconductor) Memory-RAM(2)

○ RAM칩 외부

● 1K(Addressable Unit의 개수) × 8Bits(Unit of Transfer) RAM Chip과 Control Signal들

CS	RD	WR	RAM 동작
0	X	Х	선택되지 않음
1	1	0	읽기
1	0	1	쓰기

世도체(Semiconductor) Memory-RAM(3)

○ RAM칩 내부1: 64-Bits RAM(8x8조직)

世도체(Semiconductor) Memory-RAM(4)

○ RAM칩 내부2: 64-Bits RAM(16x4조직)

世도체(Semiconductor) Memory-RAM(5)

○ RAM칩 내부3: 64-Bits RAM(64x1조직)

世도체(Semiconductor) Memory-RAM(6)

○ 실제 DRAM의 구성 및 동작타이밍(1): 64MBits(16Mx4조직)

世도체(Semiconductor) Memory-RAM(7)

○ 실제 DRAM의 구성 및 동작타이밍(2): 16Mx4조직(64MBits)

재충전회로: MM Access가 수행되지

않는 동안 동시선택 재충전

기억 소자들이 4096×4096 ×4Bits 형태의 Array

전체 24Bits의 Address Line들이 필요

 RAS(Row Address Strobe)신호와 CAS(Column Address Strobe)신호를 이용하므로 실제로는 Address Line을 12개만 사용

世도체(Semiconductor) Memory-RAM(8)

○ 실제 DRAM의 구성 및 동작타이밍(3): 16Mx4조직(64MBits)

世도체(Semiconductor) Memory-ROM(1)

○ ROM의 특징

- Non-Volatile Semiconductor Memory로서 Read만 가능하고,
 Write는 불가
- System 초기화 및 진단 Program(예: PC의 BIOS Program)
- Control Memory[□] u-Program

世도체(Semiconductor) Memory-ROM(2)

- ROM의 종류
 - PROM(Programmable ROM): 사용자가 한 번은 쓰는 것이 가능한 ROM
 - EPROM(Erasable Programmable ROM): 자외선으로 내용삭제가 가능한 PROM. 여러 번 Write 가능
 - EEPROM(Electrically Erasable PROM): 전기적으로 지울 수 있는 EPROM
 - Flash Memory: Block 단위로 지우는 것이 가능한 EEPROM, EEPROM 에 비하여 삭제 시간이 더 빠르고, 집적 밀도도 더 높음