

Business Intelligence

Azure Machine Learning

Prof. Leandro Guerra

Dendogramas no R Um pouco mais...

distancia hclust (*, "ward.D")

Dendogramas no R Um pouco mais...

> grupos					
Mazda RX4	Mazda RX4 Wag	Datsun 710	Hornet 4 Drive	Hornet Sportabout	Valiant
1	1	2	3	4	3
Duster 360	Merc 240D	Merc 230	Merc 280	Merc 280C	Merc 450SE
4	3	3	3	3	4
Merc 450SL	Merc 450SLC	Cadillac Fleetwood	Lincoln Continental	Chrysler Imperial	Fiat 128
4	4	5	5	5	2
Honda Civic	Toyota Corolla	Toyota Corona	Dodge Challenger	AMC Javelin	Camaro Z28
2	2	3	4	4	4
Pontiac Firebird	Fiat X1-9	Porsche 914-2	Lotus Europa	Ford Pantera L	Ferrari Dino
4	2	2	2	1	1
Maserati Bora	Volvo 142E				

Dendogramas no R Um pouco mais...

#Exibe o dendrograma com menos níveis

```
#Primeiro convertemos em um objeto de dendograma dendo <- as.dendrogram(dendo)
```

```
\#Agora o plot plot(cut(dendo , h = 4)$upper, main = "Corte superior com h=4")
```

Corte superior com h=4

Cloud Computing Conceito

"São grupos de servidores remotos e redes de software que permitem armazenamento e processamento de dados centralizados, uqe podem ser acessados com um computador e conexão à internet. Os ambiente de Cloud computing podem ser privados, públicos ou híbridos"

Cloud Computing Alguns provedores

Windows Azure Machine Learning

Microsoft Azure Machine Learning

Home

Studio

Gallery PREVIEW

Welcome to Azure Machine Learning

Want a taste?

It's free and easy to try Machine Learning right now—just sign in with a Microsoft account and start experimenting. No credit card or Azure subscription needed.

Get started now

Pricing & FAQ ▶

By using this free version, you agree to be bound by the Microsoft Azure Website Terms of Use.

Windows Azure Machine Learning

Entrar

Conta da Microsoft O que é isto?

nome@example.com

Senha

Mantenha-me conectado

Entrar

Não consegue acessar sua conta? Entrar com um código de uso único

Não tem uma conta da Microsoft? Inscreva-se já

Windows Azure Machine Learning

Windows Azure Criando um novo Experimento

Windows Azure Criando um novo Experimento – Nosso Objetivo

Windows Azure Escolha do dataset e visualização

Windows Azure Visualização dos Dados

Windows Azure Visualização dos Dados

Windows Azure Classificação de Empresas

Windows Azure Criando a Estrutura

Windows Azure Criando a Estrutura

Windows Azure Criando a Estrutura

Windows Azure Visualização parcial

Windows Azure Excluindo algumas colunas

Select columns

Allow duplicates and preserve column order in selection

Windows Azure Eliminando missing values

Windows Azure Executando um script no R

Windows Azure Executando um script no R

■ Execute R Script

```
# Inserindo os dados
base <- maml.mapInputPort(1) # class: data.frame

Title_Category = base[,1:2]

# Análise de Componentes Principais (PCA)
pca = prcomp(base[,4:1028])
top_pca = data.frame(pca$x[,1:10])
dataframe = cbind(Title_Category,top_pca)

# Visualizando a PCA
plot(pca)

# Enviado o dataframe para a saida
maml_mapOutputPort("dataframe"):</pre>
```

Windows Azure Executando um script no R - Resultado

8 - FMU > Execute R Script > Result Dataset

columns 12

Title	Category	PC1	PC2	PC3	PC4
Apple Inc.	Information Technology	-1196.324169	-136.624916	19.972306	-79.8467
Adobe Systems	Information Technology	-266.248139	-47.893461	35.306568	56.53345
General Motors	Consumer Discretionary	-568.967279	20.830032	-48.233082	21.780172
General Electric	Energy	-394.76521	11.138154	-7.509128	0.695133
Harley-Davidson	Consumer Discretionary	-796.350029	-24.003269	-87.089201	-189.329:
Intel	Information Technology	-1031.574792	-42.587229	29.673068	-35.15889
Microsoft	Information Technology	-510.561424	-42.020697	18.699546	-6.18450€
Mattel	Consumer Discretionary	107.893397	1.399807	-8.120238	-10.58427

Windows Azure K-Means

Windows Azure K-Means

Windows Azure K-Means

Windows Azure K-Means - Resultados

Windows Azure K-Means - Resultados

Windows Azure K-Means – Resultados – Com Bigramas e 3 Clusters

Windows Azure K-Means – Resultados – Com Hash de 15 bitsize

Windows Azure Configuração de melhor resultado

▲ K-Means Clustering

Number of Centroids	
10	
Metric	=
Cosine	•
Initialization	=
K-Means++	•
Iterations	=
200	

Windows Azure K-Means – Resultados – Com Hash de 24 bitsize

2²⁴ = 16.777.216 de variáveis!

Execute R Script Error

Record start time: UTC 04/12/2015 00:26:39 Record end time: UTC 04/12/2015 01:20:27

Error message:

Unhandled Exception: OutOfMemoryException.

Business Intelligence