ОГЛАВЛЕНИЕ

Введение	3
Постановка задачи	4
1. Общая информация о криптосистеме Эль-Гамаля	5
1.1 Алгоритм создания открытого и закрытого ключей	6
1.2. Шифрование и расшифрование	6
1.3. Дешифрование	7
2. Алгоритмы решения задачи дискретного логарифмирования	8
2.1. В произвольной мультипликативной группе	8
2.2. В кольце вычетов по простому модулю	8
2.3. Алгоритмы с экспоненциальной сложностью	9
2.4. Субэкспоненциальные алгоритмы	11
3. Американский стандарт кодирования - ASCII	13
4. Анализ DES, ГОСТ 28147-89, Crypto03, El-Gamal	14
Список используемых источников	15

ВВЕДЕНИЕ

В настоящее время в вузах Российской Федерации базовые стандарты обучения для ряда специальностей включают в себя разделы, связанные с изучением методов и средств защиты информации. Для успешного освоения данных тем необходимо понимание принципов и знание основных элементов криптографического преобразования информации.

В Интернете можно найти десятки описаний лабораторных работ, посвященных криптографической системе Эль Гамаля [1-3]. К сожалению, подавляющее большинство из них содержат задания и примеры реализации схемы Эль Гамаля без учета особенностей длинной арифметики, не требуя обоснований алгоритмов и использования обучающих программ, не затрагивая вопросы криптоанализа.

обучающих Известно компьютерных несколько программ, позволяющих быстро и достаточно полно ознакомиться с алгоритмами шифрования и расшифрования данных, используемыми в традиционных симметричных современных асимметричных криптосистемах. И Интернет, сожалению, эти программы, представленные в сети сопровождаются исходными текстами, ограничиваются краткой справочной информацией и содержат большое число ошибок и недочетов. В связи с этим и было принято решение: разработать алгоритм и реализовать свою электронную обучающую программу для изучения криптосистемы Эль Гамаля, а также разработать сценарий лабораторной работы с использованием этой программы. Предлагаемый вариант лабораторной работы призван преодолеть указанные недостатки.

постановка задачи

- 1. Провести анализ криптографического алгоритма Эль Гамаля.
- 2. Разработать сценарий выполнения лабораторной работы по изучению алгоритма Эль Гамаля.
- 3. Разработать и реализовать обучающую компьютерную программу "El-Gamal_Tutor".

1. ОБЩАЯ ИНФОРМАЦИЯ О КРИПТОСИСТЕМЕ ЭЛЬ-ГАМАЛЯ

Схема Эль-Гамаля (Elgamal) — криптосистема с открытым ключом, основанная на трудности вычисления дискретных логарифмов в конечном поле. Криптосистема включает в себя алгоритм шифрования и алгоритм цифровой подписи. Схема Эль-Гамаля лежит в основе бывших стандартов электронной цифровой подписи в США (DSA) и России (ГОСТ Р 34.10-94, ГОСТ Р 34.10-2001). Схема была предложена Тахером Эль-Гамалем в 1985 году. Эль-Гамаль разработал один из вариантов алгоритма Диффи-Хеллмана. Он усовершенствовал систему Диффи-Хеллмана и получил два алгоритма, которые использовались для шифрования и для обеспечения аутентификации. В отличие от RSA алгоритм Эль-Гамаля не был запатентован и, поэтому, стал более дешевой альтернативой, так как не требовалась оплата взносов за лицензию. Считается, что алгоритм попадает под действие патента Диффи-Хеллмана.

Криптографические системы с открытым ключом используют так называемые односторонние функции, которые обладают следующим свойством:

- ullet Если известно x, то f(x) вычислить относительно просто
- Если известно y = f(x), то для вычисления x нет простого (эффективного) пути.

Под односторонностью понимается не теоретическая однонаправленность, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства, за обозримый интервал времени.

В основу криптографической системы Эль-Гамаля положена сложность задачи дискретного логарифмирования в конечном поле. Для шифрования используется операция возведения в степень по модулю большого числа. Для дешифрования за разумное время необходимо уметь вычислять дискретный логарифм в конечном поле по простому модулю, что является вычислительно трудной задачей.

В криптографической системе с открытым ключом каждый участник

располагает как открытым ключом (англ. public key), так и закрытым ключом (англ. private key). В криптографической системе Эль-Гамаля открытый ключ состоит из тройки чисел, а закрытый ключ состоит из одного числа. Каждый участник создаёт свой открытый и закрытый ключ самостоятельно. Закрытый ключ каждый из них держит в секрете, а открытые ключи можно сообщать кому угодно или даже публиковать их.

1.1. Алгоритм создания открытого и закрытого ключей

Ключи в схеме Эль-Гамаля генерируются следующим образом:

- 1. Генерируется случайное простое число p.
- 2. Выбирается целое число g первообразный корень p.
- 3. Выбирается случайное целое число x, такое, что 1 < x < p.
- 4. Вычисляется $y = g^x \mod p$.
- 5. Открытым ключом является тройка (p, g, y), закрытым ключом число x.

1.2. Шифрование и расшифрование

Предположим, пользователь A хочет послать пользователю Б сообщение . Сообщениями являются целые числа в интервале от 0 до p-1. Алгоритм для шифрования:

- 1. Взять открытый ключ пользователя Б
- 2. Взять открытый текст М
- 3. Выбрать сессионный ключ случайное целое число k такое, что 1 < k < p-1
- 4. Зашифровать сообщение с использованием открытого ключа пользователя Б, то есть вычислить числа: $a=g^k \mod p$, и $b=y^k M \mod p$.

Алгоритм для расшифрования:

- 1. принять зашифрованное сообщение (a, b) от пользователя A
- 2. Взять свой закрытый ключ M
- 3. Применить закрытый ключ для расшифрования сообщения: $M = b(a^x)^{-1} \bmod p$
- 4. При этом нетрудно проверить, что

$$(a^x)^{-1} \equiv g^{-kx} \pmod{p}$$
, и поэтому
$$b(a^x)^{-1} \equiv (y^k M) g^{-xk} \equiv (g^{xk} M) g^{-xk} \equiv M \pmod{p}.$$

1.3. Дешифрование

Дешифрование - получение открытых данных по зашифрованным в условиях, когда алгоритм расшифрования и его секретные параметры не являются полностью известными и расшифрование не может быть выполнено обычным путем. Алгоритм для дешифрования криптосистемы Эль-Гамаля:

- 1. Перехватить зашифрованное сообщение (a, b).
- 2. Взять открытый ключ (p, g, y)
- 3. Решить относительно x уравнение $y \equiv g^x \pmod{p}$
- 4. Расшифровать сообщение по формуле $M = b(a^x)^{-1} mod p$

Собственно, самый главный вопрос из этого алгоритма — как по данным (p, g, y) найти x. Эта задача называется задачей дискретного логарифмирования [2].

2. АЛГОРИТМЫ РЕШЕНИЯ ЗАДАЧИ ДИСКРЕТНОГО ЛОГАРИФМИРОВАНИЯ

2.1. В произвольной мультипликативной группе

Разрешимости и решению задачи дискретного логарифмирования в произвольной конечной абелевой группе посвящена статья J. Buchmann, M. J. Jacobson и E. Teske [8]. В алгоритме используется таблица, состоящая из $O(\sqrt{|g|})$ пар элементов, и выполняется $O(\sqrt{|g|})$ умножений. Данный алгоритм медленный и не пригоден для практического использования. Для конкретных групп существуют свои, более эффективные, алгоритмы.

2.2. В кольце вычетов по простому модулю

Рассмотрим сравнение

$$a^x \equiv b \pmod{p} \tag{1}$$

где p — простое, b не делится на p. Если a является образующим элементом группы $\mathbb{Z}/p\mathbb{Z}$, то сравнение (1) имеет решение при любых b. Такие числа a называются ещё первообразными корнями, и их количество равно $\phi(p)=p-1$, где ϕ — функция Эйлера. Решение сравнения (1) можно находить по формуле:

$$x \equiv \sum_{i=1}^{p=2} (1 - a^i)^{-1} b^i \pmod{p}$$
 (2)

Однако, сложность вычисления по этой формуле хуже, чем сложность полного перебора.

Следующий алгоритм [3] имеет сложность $O(\sqrt{p} \cdot \log p)$. Алгоритм

- 1. Присвоить $H := [\sqrt{p}] + 1$
- 2. Вычислить $c = a^H mod p$
- 3. Составить таблицу значений $c^u \mod p$ для $1 \le u \le H$ и отсортировать её.

- 4. Составить таблицу значений $b \cdot a^v \mod p$ для $0 \le v \le H$ и отсортировать её.
- 5. Найти общие элементы в таблицах. Для них $c^u \equiv b \cdot a^v \pmod{p}$ откуда $a^{H \cdot u v} \equiv b \pmod{p}$
- 6. Выдать $H \cdot u v$.

Существует также множество других алгоритмов для решения задачи дискретного логарифмирования в поле вычетов [3]. Их принято разделять на экспоненциальные и субэкспоненциальные. Полиномиального алгоритма для решения этой задачи пока не найдено.

2.3. Алгоритмы с экспоненциальной сложностью

Алгоритм Гельфонда-Шенкса (алгоритм больших и малых шагов, baby-step giant-step) был предложен независимо советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году. Относится к методам встречи посередине. Идея алгоритма состоит в выборе оптимального соотношения времени и памяти, а именно в усовершенствованном поиске показателя степени.

Пусть задана циклическая группа G порядка n, генератор группы α и некоторый элемент группы β . Задача сводится к нахождению целого числа x, для которого выполняется $\alpha^x = \beta \mod m$.

Алгоритм Гельфонда — Шенкса основан на представлении x в виде $x=i\cdot m-j$, где $m=\lfloor \sqrt{n}\rfloor+1$, и переборе $1\leq i\leq m$ и $0\leq j\leq m$. Ограничение на i и j следует из того, что порядок группы не превосходит m, а значит указанные диапазоны достаточны для получения всех возможных из полуинтервала [0;m). Такое представление равносильно равенству

$$\alpha^{im} = \beta \alpha^j \tag{3}$$

Алгоритм предварительно вычисляет α^{im} для разных значений i и сохраняет их в структуре данных, позволяющей эффективный поиск, а затем перебирает всевозможные значения j и проверяет, если $\beta \alpha^j$ соответствует какому-то значению i. Таким образом находятся индексы

i и j, которые удовлетворяют соотношению (3) и позволяют вычислить значение $x=i\cdot m-j$.

Алгоритму Гельфонда — Шенкса требуется O(n) памяти. Возможно выбрать меньшее m на первом шаге алгоритма, но это увеличивает время работы программы до O(n/m).

Рис. 1: Мартин Хеллман

Другим методом дискретного логарифмирования является алгоритм Сильвера-Полига-Хеллмана. Он работает, если известно разложение числа $p-1=\prod_{i=1}^s q_i^{\alpha_i}$ на простые множители. Сложность оценивается как $O(\sum_{i=1}^s \alpha_i (\log p + q_i))$. Если множители, на которые раскладывается p-1, достаточно маленькие, то алгоритм чрезвычайно эффективен. Это необходимо учитывать в выборе параметров при разработке криптографических схем, основанных на вычислительной сложности дискретного логарифмирования, иначе схема будет ненадёжной.

Для применения алгоритма Сильвера-Полига-Хеллмана необходимо знать разложение p-1 на множители. В общем случае задача факторизации — достаточно трудоёмкая, однако если делители числа — небольшие, то это число можно быстро разложить на множители даже методом последовательного деления. Таким образом, в тех случаях, когда эффективен алгоритм Сильвера-Полига-Хеллмана, необходимость факторизации не усложняет задачу.

Ещё одним методом дискретного логарифмирования является ρ -метод Полларда, который был предложен Джоном Поллардом в 1978 году, основные идеи алгоритма похожи на ρ -алгоритм Полларда для

факторизации чисел. Условием работы ρ -метода Полларда является простота порядка группы, порождённой основанием a дискретного логарифма по модулю p.

Алгоритм имеет эвристическую оценку сложности $O(p^{\frac{1}{2}})$. По сравнению с другими методами дискретного логарифмирования ρ -метод Полларда является менее затратным как по отношению к вычислительным операциям, так и по отношению к затрачиваемой памяти. Например, при достаточно больших значениях числа p данный алгоритм является вычислительно менее сложным, чем алгоритм COS и алгоритм Адлемана. С другой стороны, условие работы алгоритма накладывает серьёзные ограничения на его использование.

2.4. Субэкспоненциальные алгоритмы

Данные алгоритмы имеют сложность, оцениваемую как $O(\exp(c(\log p \log p \log p)^d))$ арифметических операций, где c и $0 \le d \le 1$ — некоторые константы. Эффективность алгоритма во многом зависит от близости c к 1 и d — к 0.

Алгоритм Адлемана [9] появился в 1979 году. Это был первый субэкспоненциальный алгоритм дискретного логарифмирования. На практике он всё же недостаточно эффективен. В этом алгоритме $d=\frac{1}{2}$.

Алгоритм COS [3] был предложен в 1986 году математиками Копперсмитом (Don Coppersmith), Одлыжко (Andrew Odlyzko) и Шреппелем (Richard Schroeppel). В этом алгоритме константа $c=1, d=\frac{1}{2}$. В 1991 году с помощью этого метода было проведено логарифмирование по модулю $p\approx 10^{58}$. В 1997 году Вебер [3] провел дискретное логарифмирование по модулю $p\approx 10^{85}$ с помощью некоторой версии данного алгоритма. Экспериментально показано, что при $p\leq 10^{90}$ алгоритм COS лучше решета числового поля.

Дискретное логарифмирование при помощи решета числового поля [3] было применено к дискретному логарифмированию позднее, чем к факторизации чисел. Первые идеи появились в 1990-х годах. Алгоритм, предложенный Д. Гордоном в 1993 году [3], имел эвристическую сложность $O(\exp 3^{3/2}(\log p \log p \log p)^{\frac{1}{3}})$, но оказался достаточно непрактичным.

Позднее было предложено множество различных улучшений данного алгоритма. Было показано, что при $p \ge 10^{100}$ решето числового поля быстрее, чем COS [3]. Современные рекорды в дискретном логарифмировании получены именно с помощью этого метода.

Наилучшими параметрами в оценке сложности на данный момент является $c=(92+26\sqrt{13})^{1/3}/3\approx 1,902,\ d=\frac{1}{3}.$ Для чисел специального вида результат можно улучшить. В некоторых случаях можно построить алгоритм, для которого константы будут $c\approx 1,00475,\ d=\frac{2}{5}.$ За счёт того, что константа c достаточно близка к 1, подобные алгоритмы могут обогнать алгоритм с $d=\frac{1}{3}.$

Другая возможность эффективного решения задачи вычисления дискретного логарифма связана с квантовыми вычислениями. Теоретически доказано, что с их помощью дискретный логарифм можно вычислить за полиномиальное время. В любом случае, если полиномиальный алгоритм вычисления дискретного логарифма будет реализован, это будет означать практическую непригодность криптосистем на его основе [3].

3. АМЕРИКАНСКИЙ СТАНДАРТ КОДИРОВАНИЯ - ASCII

ASCII (англ. American Standard Code for Information Interchange) — американская стандартная кодировочная таблица для печатных символов и некоторых специальных кодов. ASCII представляет собой кодировку для представления десятичных цифр, латинского и национального алфавитов, знаков препинания и управляющих символов. В криптографических программах ASCII используется для преобразования символов текста в цифры, чтобы текст было возможно представить в виде чисел и совершать над ним криптографические преобразования. Например: большим буквам английского алфавита соответствуют значения с 97 по 122.

Dec Hex	Oct Chr	Dec Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr
0 0	000 NULL	32 20	040		Space	64	40	100	@	@	96	60	140	`	`
11	001 Start of Header	33 21	041	!	1	65	41	101	A	Α	97	61	141	a	a
2 2	002 Start of Text	34 22	042	"	n	66	42	102	B	В	98	62	142	b	b
3 3	003 End of Text	35 23	043	#	#	67	43	103	C	C	99	63	143	c	C
4 4	004 End of Transmission	36 24	044	\$	\$	68	44	104	D	D	100	64	144	d	d
5 5	005 Enquiry	37 25		%	%	69			E	E	101		145	e	е
6 6	006 Acknowledgment	38 26	046	&	&	70	46	106	F	F	102	66	146	f	f
7 7	007 Bell	39 27	047	'	1	71		107	G	G	103	67	147	g	g
8 8	010 Backspace	40 28	050	((72	48	110	H	H	104	68	150	h	h
9 9	011 Horizontal Tab	41 29	051))	73	49	111	I	I	105	69	151	i	i
10 A	012 Line feed	42 2A	052	*	*	74	4A	112	J	J	106	6A		j	j
11 B	013 Vertical Tab	43 2B		+	+	75	4B	113	K	K	107	6B		k	k
12 C	014 Form feed	44 2C	054	,	,		4C	114	L	L	108		154	l	1
13 D	015 Carriage return	45 2D	055	-	-	77	4D	115	M	M	109	6D	155	m	m
14 E	016 Shift Out	46 2E	056	.		78	4E	116	N	N	110	6E	156	n	n
15 F	017 Shift In	47 2F	057	/	/	79	4F	117	O	0	111	6F	157	o	0
16 10	020 Data Link Escape	48 30	060	0	0				P	P	112		160	p	р
17 11	021 Device Control 1	49 31		1	1			121	Q	Q	113		161	q	q
18 12	022 Device Control 2	50 32	062	2	2	82		122	R	R	114		162	r	r
19 13	023 Device Control 3	51 33	063	3	3	83	53	123	S	S	115	73	163	s	S
20 14	024 Device Control 4	52 34	064	4	4	84	54	124	T	T	116	74	164	t	t
21 15	025 Negative Ack.	53 35	065	5	5	85	55	125	U	U	117	75	165	u	u
22 16	026 Synchronous idle	54 36	066	6	6	86	56	126	V	V	118	76	166	v	V
23 17	027 End of Trans. Block	55 37		7	7	87		127	W	W	119		167	w	W
24 18	030 Cancel	56 38	070	8	8		58	130	X	X	120		170	x	X
25 19	031 End of Medium	57 39	071	9	9	89	59	131	Y	Y	121		171	y	У
26 1A	032 Substitute	58 3A	072	:	:	90	5A	132	Z	Z	122	7A	172	z	Z
27 1B	033 Escape	59 3B	073	;	;	91	5B	133	[[123	7B	173	{	{
28 1C	034 File Separator	60 3C	074	<	<	92	5C	134	\	\	124	7C	174		
29 1D	035 Group Separator	61 3D	075	=	=	93	5D	135]]	125	7D	175	}	}
30 1E	036 Record Separator	62 3E	076	>	>	94	5E	136	^	^	126	7E	176	~	~
31 1F	037 Unit Separator	63 3F	077	?	?	95	5F	137	_	_	127	7F	177		Del

Рис. 2: ASCII коды

4. АНАЛИЗ DES, ГОСТ 28147-89, CRYPTO03, EL-GAMAL

Список используемых источников. Шрифт поправлю, Борис Николаевич!

- 1. **Гилбарг, Д.** Эллиптические дифференциальные уравнения с частными производными второго порядка / Д. Гилбарг, П. Трудингер. М. : Наука, 1989. 464 с.
- 2. **Ильин, В. А.** О рядах Фурье по фундаментальным системам функций оператора Бельтрами/В. А. Ильин // Дифференц. уравнения. 1969. Т. 5, \mathbb{N} 11. С. 1940–1978.
- 3. **Ильин, В. А.** Некоторые свойства регулярного решения уравнения Гельмгольца в плоской области / В. А. Ильин // Мат. заметки. 1974. Т. 15, \mathbb{N} 6. С. 885–890.
- 4. **Ильин, В. А.** Об одном обобщении формулы среднего значения для регулярного решения уравнения Шредингера / В. А. Ильин, Е. И. Моисеев // ИПМ АН СССР, 1977. С. 157–166.
- 5. **Ильин, В. А.** Формула среднего значения для присоединенных функций опера- тора Лапласа / В. А. Ильин, Е. И. Моисеев // Дифференц. уравнения. 1981. Т. 17, № 10. С. 1908–1910.
- 6. Моисеев, Е. И. Формула среднего для собственных функций эллипти-

- ческого са- мосопряженного оператора второго порядка / Е. И. Моисеев // Докл. АН СССР. 1971. Т. 197, № 3. С. 524–525.
- 7. **Моисеев, Е. И.** Асимптотическая формула среднего значения для регулярного решения дифференциального уравнения / Е. И. Моисеев // Дифференц. уравнения. 1980. T. 16, № 5. C. 827–844.
- 8. **Хелгасон, С.** Дифференциальная геометрия и симметрические пространства / С. Хелгасон. М.: Мир, 1964. 534 с.
- 9. **Иванов,** Л. А. О некоторых свойствах оператора Бельтрами в римановой метри- ке / Л. А. Иванов, И. П. Половинкин // Докл. РАН. 1999. Т. 365, № 3. С. 306–309.
- 10. **Йон, Ф.** Плоские волны и сферические средние / Ф. Йон. М.: Иностр. лит., 1958. 158 с.
- 11. **Бицадзе, А. В.** К теории уравнений смешанного типа в многомерных областях / А. В. Бицадзе, А. М. Нахушев // Дифференц. уравнения. 1974. Т. 10, № 12. С. 2184–2191.
- 12. **Гельфанд, И. М.** Обобщенные функции и действия над ними / И. М. Гельфанд, Г. Е. Шилов. М. : Физматлит, 1958. 440 с.
- 13. **Хермандер, Л.** Анализ линейных дифференциальных операторов с частными производными. Т. 1 / Л. Хермандер. М. : Мир, 1986. 464 с.
- 14. **Мешков, В. 3.** К свойствам решений линейных уравнений в частных производных / В. 3. Мешков, И. П. Половинкин // Черноземный альманах научных исследований. Сер. Фундамент. математика. 2007. Вып. 1(5). С. 3–11.
- 15. **Мешков, В. 3.** Разностная формула среднего значения для двумерного линейного гиперболического уравнения третьего порядка / В. 3. Мешков, И. П. Половинкин, М. В. Половинкина, Ю. Д. Ермакова, С.

А. Рабееах // ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. — 2015. — № 3

- 16. **Половинкин, И.П.** К свойствам решений линейных уравнений в частных производных / Половинкин И.П. // Вестник Челябинского государственного университета. Математика. Механика. Информатика. Выпуск 12. 2010. № 23(204) С. 59–66.
- 17. **Половинкин, И.П.** О получении новых формул среднего значения для линейных дифференциальных уравнений с постоянными коэффициентами / Половинкин И.П., Мешков В.З. // Дифференциальные уравнения. 2011 - Т. 47, № 12 С. 1724–1791.
- 18. Половинкин, И.П. Дополнения к свойствам средних значений решений линейных дифференциальных уравнений с постоянными коэффициентами / Половинкин И.П., Мешков В.З. // Дифференциальные уравнения. 2011 T. 47, № 11 C. 1669 1671.