

Al and SDR: Software Meets Hardware Again...

Manuel Uhm
Director, Silicon Marketing
Chair of the Board, Wireless Innovation Forum (SDR Forum v2.0)

Jason Vidmar Sr. System Architect – MILCOM / SATCOM / Machine Learning

SDR Evolution

Key semiconductor technology drivers:

- Moore's Law
- FPGAs
- RFICs
- Analog/Digital Integration

Source: Manuel Uhm, Software-Defined Radio: To Infinity and Beyond, Military Embedded Systems, October 2016

AI Evolution

Key semiconductor technology drivers:

- Moore's Law
- GPUs
- FPGAs
- ASICs

Source: Verhaert, 2019 Perspective on Artificial Intelligence Evolution

SDR & Al Payload Convergence

End of the Line for Processor Performance?

DENNARD SCALING

Power Density Rises

MOORE'S LAW

End of "PPA" Improvement

AMDAHL'S LAW

Multicore Hits Limit

Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

Moving Forward: Domain-Specific Architectures (DSAs)

Evolving Processor Landscape

The Adaptive Compute Acceleration Platform

Hardware Adaptable: Accelerating the Whole Application

Delivering Deterministic Performance & Low Latency

Versal ACAP: A Platform for Software *and* Hardware Developers

Fully Software Programmable

with Hardware Design Path

Possible Platform Example: Multi-Mission Situationally Aware UAV Payload with Versal ACAP

UAV Platform

Multi-Mission Applications: Comms, Radar, SIGINT, EW Frameworks **TensorFlow** PYTÖRCH Xilinx Runtime (XRT) **VxWorks** INTEGRITY SECURITY SERVICES xfopenCV **DSPlib** ML Overlay **Scalar Engines** Adaptable Engines Al Engines Versal ACAP Eval Board **VERSAL ACAP**

Versal ACAP Roadmap

Al Core Al Inference Throughout

Prime Broadest Application

Premium 112G SerDes 600G Cores

Al Edge Lowest power Al

AI RF AI with Integrated RF

Advanced SDR: Technologies and Challenges

Trends in SDR Pushing the Compute Boundary [AUTONOMY]

[CAPACITY]

5G 100X Complexity¹ vs. 4G

Rise of Deep Learning
(Dawn of Next Wave of AI)

[RESILIENCY]

Operations in Contested Spectrum

Enabling Technologies

- Direct-RF / High-IF Sampling Data Converters
- > Array Antennas
- > Compute Optimizations for Deep Learning

Advanced SDR: Compute Comparisons

Space Time Adaptive Processing

Application Example: Beamforming/Nulling (Comms / Anti-Jam)

Array Elements $x_0(n)$ $x_1(n)$ $x_2(n)$ \rightarrow $s(t,\theta)$ Direction of Arrival $x_{M-1}(n)$ References: "Implementing a Real-Time Beamformer on an FPGA Platform." Xilinx. Adaptive Steering Vector See also: Xilinx WP452 "Adaptive Algorithm Beamforming for Radar: Floating-Point QRD+WBS in an FPGA"

Deep Learning Inference (Conv. Nets)
Application: Modulation Recognition, Waveform Classification

Complex-valued

Higher Precision Desirable (e.g., SPFP32)

Typical FLOPS: up to **MFLOPS** per Decomposition

Real-valued
Lower Precision Desirable (e.g., INT8)
Typical OPS: 7.6 GOPS (Resnet-50 unpruned)

XILINX.

Al Engine: Multi-Precision Math Support

Real Data Types

Optimized For:

$$F(x) = \sum_{n=0}^{N-1} f(n)e^{-j2\pi(x\frac{n}{N})}$$

$$f(n) = \frac{1}{N} \sum_{n=0}^{N-1} F(x)e^{j2\pi(x\frac{n}{N})}$$

Linear Algebra

Matrix-Matrix Mult
Matrix-Vector Mult

Convolution

FIR Filters
2-D Filters

Transforms

FFTs/IFFTs DCT, etc

Complex Data Types

Al Engine: Scalar Unit, Vector Unit, Load Units and

Memory

32-bit Scalar RISC Processor

Local, Shareable Memory
• 32KB Local, 128KB Addressable

Vector Processor 512-bit SIMD Datapath

Instruction Parallelism: VLIW

7+ operations / clock cycle

- 2 Vector Loads / 1 Mult / 1 Store
- 2 Scalar Ops / Stream Access

Highly Parallel Data Parallelism: SIMD

Multiple vector lanes

- Vector Datapath
- 8 / 16 / 32-bit & SPFP operands

Up to 128 MACs / Clock Cycle per Core (INT 8) 8 FLOPs / Clock Cycle (32SPFP)

Al Inference Mapping on Versal™ ACAP

A = Activations W = Weights

Program Directly From High-level ML Frameworks

$$\begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} \times \begin{bmatrix} W_{00} & W_{01} \\ W_{10} & W_{11} \end{bmatrix} = \begin{bmatrix} A_{00} \times \mathbf{W_{00}} + A_{01} \times W_{10} & \dots \\ A_{10} \times \mathbf{W_{00}} + A_{11} \times W_{10} & \dots \end{bmatrix}$$

- > Custom memory hierarchy
 - > Buffer on-chip vs off-chip; Reduce latency and power
- > Stream Multi-cast on AI interconnect
 - > Weights and Activations
 - > Read once: reduce memory bandwidth
- > Al-optimized vector instructions (128 INT8 mults/cycle)

© Copyright 2019 Xilinx

Al Engine Delivers High Compute Efficiency

> Adaptable, non-blocking interconnect

- >> Flexible data movement architecture
- Avoids interconnect "bottlenecks"

> Adaptable memory hierarchy

- >> Local, distributed, shareable = extreme bandwidth
- >> No cache misses or data replication
- >> Extend to PL memory (BRAM, URAM)

> Transfer data while AI Engine Computes

Overlap Compute and Communication

Vector Processor Efficiency

Summary

- > The evolution of processing for AI is following a similar track to SDR where hardware and software need to be tightly coupled
- > The drive for more Capacity, Autonomy and Resiliency in advanced SDRs carry high compute demands and mixed precision processing capabilities
- > Moore's Law is running out of steam which means the goal of a SWaP-friendly multi-mission situationally aware payload requires advancements in processing beyond just process technology
- > ACAPs are a response to this new reality

Visit https://www.xilinx.com/products/silicondevices/acap/versal.html for datasheets, whitepapers, and product tables.

First shipment June 2019.

Adaptable. Intelligent.

Contact Info: manuelu@xilinx.com jasonv@xilinx.com

THANK YOU!

