Why and when I develop R packages?

Alejandro Reyes CBDS workshop (2019)

@areyesq www.alejandroreyes.org

An R package is simply a very well organized directory

```
DESCRIPTION

PackageHow.Rproj

NAMESPACE

R
hello.R

hello.Rd
```

Forces you to organize your code into functions

```
d <- dist( t( assay(rld) ) )
mdsResult <- cmdscale( d )
mdsResult <- as.data.frame( mdsResult )
colnames( mdsResult ) <- sprintf( "coord%d", seq_len(ncol(mdsResult)))
mdsResult$condition <- colData(rld)$condition
pl <- ggplot( mdsResult, aes(coord1, coord2, col=condition)) +
    geom_point() + labs(x="Coordinate 1", y="Coordinate 2")
pl</pre>
```

```
plotMDS <- function( rld ){
   stopifnot( is( rld, "DESeqTransform" ) )
   d <- dist( t( assay(rld) ) )
   mdsResult <- cmdscale( d )
   mdsResult <- as.data.frame( mdsResult )
   colnames( mdsResult ) <- sprintf( "coord%d", seq_len(ncol(mdsResult)))
   mdsResult$condition <- colData(rld)$condition
   pl <- ggplot( mdsResult, aes(coord1, coord2, col=condition)) +
        geom_point() + labs(x="Coordinate 1", y="Coordinate 2")
   pl
}
plotMDS(rld)</pre>
```

Case A: translational methods

No matter how awesome your method is, if you don't provide a good software implementation, no one will use it

Korthauer*, Kimes*, et al. Genome Biology, 2019

High-throughput RNA sequencing allows an unbiased characterisation of isoform expression

DEXSeq: inference of differential exon usage

		sam	ples					
		treated1fb	treated2fb	treated3fb	untreated1fb	untreated2fb	untreated3fb	untreated4fb
exons	E001	1997	494	562	1150	2514	570	547
	E002	122	112	180	69	203	156	142
	E003	276	293	305	190	398	312	259
	E004	420	200	182	230	446	183	185
	E005	416	217	279	146	170	237	231
	E006	486	357	471	190	337	418	364
	E007	574	465	536	469	805	480	496
	E008	536	417	447	541	832	475	472
	E009	191	237	216	217	427	286	222
	E010	188	130	96	617	1177	520	508
	E011	165	212	210	118	275	294	269
	E012	536	437	414	441	792	619	504
	E013	72	41	49	40	76	34	38
	E014	3	0	33	5	0	2	42

Anders*, Reyes* and Huber. Genome Research, 2012

DEXSeq: inference of differential exon usage

Case B: reproducible research

Full transparency and reproducibility of published results

Most published science is not reproducible

Analysis | Published: 28 January 2009

Repeatability of published microarray gene expression analyses

John P A Ioannidis [™], David B Allison, Catherine A Ball, Issa Coulibaly, Xiangqin Cui, Aedín C Culhane, Mario Falchi, Cesare Furlanello, Laurence Game, Giuseppe Jurman, Jon Mangion, Tapan Mehta, Michael Nitzberg, Grier P Page, Enrico Petretto & Vera van Noort

Nature Genetics 41, 149–155 (2009) | Download Citation ±

"... Here we evaluated the replication of data analyses in 18 articles ... We reproduced two analyses in principle and six partially or with some discrepancies; ten could not be reproduced ..."

Publication of R packages containing data and code to support publications

Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues 3

Alejandro Reyes ™, Wolfgang Huber ™

Nucleic Acids Research, Volume 46, Issue 2, 25 January 2018, Pages 582–592, https://doi.org/10.1093/nar/gkx1165

Published: 30 November 2017 Article history ▼

Case C: organize code into functions, avoid copy/pasting, and make code available to everyone

Reuse: Copy/paste ——— Wrote a function

Share:

Share code by e-mail

Wrote a well-documented package

areyesq89 / GenomeMatrix

Enhance the impact of your work!

Case A: translational methods

 Detecting differential usage of exons from RNA-seq data S Anders*, A Reyes*, W Huber Genome Research 788

2012

Case B: reproducible research

~2 monthly with questions about the package

Case C: sharing code

Discussion