Applied Linear Algebra in Data Analaysis Vectors Assignment

1. Is this set of vectors
$$\left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$
 independent? Explain your answer.

2. Consider a set of finite duration discrete-time real signals

$$X_N = \{x [n] | x [n] \in \mathbb{R}, \forall 0 \le n \le N - 1\}$$

Does this set form a vector space? Explain your answer. Would X_N still be a vector spaces if the signals were binary signals? i.e. $x[n] \in \mathbb{B}$, where $\mathbb{B} = \{0, 1\}$ with the binary addition and multiplication operations defined as the following,

a	b	a+b	$a \times b$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Table 1: Addition and Multiplication operation for binary numbers.

- 3. Prove the following for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,
 - (a) Triangle Inequality:

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$

(b) Backward Triangle Inequality:

$$||x - y|| \ge |||x|| - ||y|||$$

(c) Parallelogram Identity:

$$\frac{1}{2} (\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2) = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

- 4. Consider a set of vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. When is $\|\mathbf{x} \mathbf{y}\| = \|\mathbf{x} + \mathbf{y}\|$? What can you say about the geometry of the vectors $\mathbf{x}, \mathbf{y}, \mathbf{x} \mathbf{y}$ and $\mathbf{x} + \mathbf{y}$?
- 5. If $S_1, S_2 \subseteq V$ are subspaces of V, the is $S_1 \cap S_2$ a subspace? Demonstrate your answer.
- 6. Prove that the sum of two subspaces $S_1, S_2 \subseteq V$ is a subspace.
- 7. Consider a vector $\mathbf{v} = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}^{\mathsf{T}}$. Express the following in-terms of inner product between a constant vector \mathbf{u} and the given vector \mathbf{v} , and in each case specify the vector \mathbf{u} .

1

(a) $\sum_{i=1}^{n} v_i$

- (b) $\frac{1}{n} \sum_{i=1}^{n} v_i$
- (c) $\frac{1}{5} \sum_{i=3}^{5} v_i$
- 8. Which of the following are linear functions of $\{x_1, x_2, \dots, x_n\}$?
 - $(a) \min_{i} \left\{ x_i \right\}_{i=1}^n$
 - (b) $\left(\sum_{i=1}^{n} x_i^2\right)^{1/2}$
 - (c) x_6
- 9. Consider a linear function $f: \mathbb{R}^n \to \mathbb{R}$. Prove that every linear function of this form can be represented in the following form.

$$y = f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} = \sum_{i=1}^{n} w_i x_i, \quad \mathbf{x}, \mathbf{w} \in \mathbb{R}^n$$

10. An affine function f is defined as the sum of a linear function and a constant. It can in general be represented in the form,

$$y = f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + \beta, \quad \mathbf{x}, \mathbf{w} \in \mathbb{R}^n, \ \beta \in \mathbb{R}$$

Prove that affine functions are not linear. Prove that any affine function can be represented in the form $\mathbf{w}^{\top}\mathbf{x} + \beta$.

11. Consider a basis $B = \{\mathbf{b}_i\}_{i=1}^n$ of \mathbb{R}^n . Let the vector \mathbf{x} with the following representations in the standard and B basis.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n x_i \mathbf{e}_i \quad \text{and} \quad \mathbf{x}_b = \begin{bmatrix} x_{b1} \\ x_{b2} \\ \vdots \\ x_{bn} \end{bmatrix} = \sum_{i=1}^n x_{bi} \mathbf{b}_i$$

Evaluate the $\|\mathbf{x}\|_2^2$ and $\|\mathbf{x}_b\|_2^2$. Determined what happens to $\|\mathbf{x}_b\|_2^2$ under the following conditions on the basis vectors:

(a) $\|\mathbf{b}_i\| = 1, \forall i$

(b)
$$\|\mathbf{b}_i^{\mathsf{T}}\mathbf{b}_j\| = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

12. Consider a set of measurements made from adult male subjects, where their height, weight and BMI (body moass index) were recorded as stored as vectors of length three; the first element is the height in cm, second is the weight in Kg, and the alst the BMI. Consider the following four subjects,

$$\mathbf{s}_1 = \begin{bmatrix} 167 \\ 102 \\ 36.6 \end{bmatrix}; \ \mathbf{s}_2 = \begin{bmatrix} 180 \\ 87 \\ 26.9 \end{bmatrix}$$

$$\mathbf{s}_3 = \begin{bmatrix} 177 \\ 78 \\ 24.9 \end{bmatrix}; \ \mathbf{s}_4 = \begin{bmatrix} 152 \\ 76 \\ 32.9 \end{bmatrix}$$

You can use the distance between these vectors $\|\mathbf{s}_i - \mathbf{s}_j\|_2$ as a measure of the similarity between the four subjects. Generate a 4×4 table comparing the distance of each subject with respect to another subject; the diagonal elements of this table will be zero, and it will be symmetric about the main diagonal.

- (a) Based on this table, how do the different subjects compare to each other?
- (b) How do the similarities change if the height had been measured in m instead of cm? Can you explain this difference?
- (c) Is there a way to fix this problem? Consider the weighted norm presented in one of the earlier problems.

$$||x||_{\mathbf{w}} = (w_1 x_1^2 + w_2 x_2^2 + \ldots + w_n x_n^2)^{\frac{1}{2}}$$

- (d) What would be a good choice for \mathbf{w} to address the problems with comparing distance between vectors due to change in units?
- (e) Can the angle between two vectors be used as a measure of similarity between vectors? Does this suffer from the problem of $\|\mathbf{x}\|_2$?