

Relatório do trabalho Sistemas Digitais

Trabalho realizado por:

Grupo nº 25

- João Santos, EI, nº 51966
- Diogo de Matos, El, nº 54466
- Pedro Gomes, EI, nº 54554

Índice

Introdução	2
Moedeiro	3
Entradas e saídas	3
Modelo ASM	3
Tabela de transição de estados e das saídas	4
Escolha de Flip-Flop	6
Mapas de Karnaugh e equações	6
Logigrama	10
Módulo de servir café	11
Entradas e saídas	11
Modelo ASM	11
Tabela de transição de estados e das saídas	12
Escolha de Flip-Flop	13
Mapas de Karnaugh e equações	13
Logigrama	15
Circuito final	16
Conclusão	16

Introdução

Neste trabalho tinha se como objetivo a realização de um sistema de controlo para uma máquina de venda automática de café, esta estando dividida em dois módulos, o moedeiro, que é responsável por aceitar as moedas dos clientes e fazer a contagem das moedas por forma a garantir que a quantia inserida é suficiente para comprar o café, e ,ainda, o módulo de servir café, que é responsável por tirar o café ao cliente para a realização da mesma, foi seguido passos apresentados no enunciado do trabalho, sendo eles a verificação das entradas e as saídas, de seguida a elaboração do desenho do modelo ASM, as tabelas de transição de estados e das saídas, a escolha do tipo de flip-flop a utilizar, a elaboração de mapas de Karnaugh para retirar as equações simplificadas de entradas dos flip-flops e das saídas para cada um dos módulos. Por fim, foi elaborado o circuito simplificado no simulador Logisim e foi testado.

Moedeiro

Entradas e saídas

Foi escolhido como entradas do circuito do moedeiro, M1 e M2 sendo estes os sensores de entrada de moedas de 0.10€ e 0.20€, respectivamente. Para saídas do circuito foi escolhido D (display) e L (lâmpada).

Modelo ASM

Tabelas de transição de estados e das saídas

M1	M2	act	seg	Qn x1 x0	Qn+1 x1 x0	L	D1	D0
0	0	D0	D0	0 0	0 0	0	0	0
0	0	D1	D1	0 1	0 1	0	0	1
0	0	D2	D2	1 0	1 0	0	1	0
0	0	х	х	хх	хх	х	Х	х
0	1	D0	D2	0 0	1 0	0	1	0
0	1	D1	D3	0 1	1 1	0	1	1
0	1	D2	D3	1 0	1 1	0	1	1
0	1	D3	D0	1 1	0 0	1	0	0
1	0	D0	D1	0 0	0 1	0	0	1
1	0	D1	D2	0 1	1 0	0	1	0
1	0	D2	D3	1 0	1 1	0	1	1
1	0	D3	D0	1 1	0 0	1	0	0
1	1	D0	D3	0 0	1 1	0	1	1
1	1	D3	D0	1 1	0 0	1	0	0
1	1	х	х	хх	хх	х	х	х
1	1	х	х	хх	хх	х	х	х

M1	M2	act	seg	Qn x1 x0	Qn+1 x1 x0	а	b	С	d	е	f	g
0	0	D0	D0	0 0	0 0	1	1	1	1	1	1	0
0	0	D1	D1	0 1	0 1	0	1	1	0	0	0	0
0	0	D2	D2	1 0	1 0	1	1	0	1	1	0	1
0	0	Х	х	хх	хх	1	1	1	1	1	1	0
0	1	D0	D2	0 0	1 0	1	1	1	1	1	1	0
0	1	D1	D3	0 1	1 1	0	1	1	0	0	0	0
0	1	D2	D3	1 0	1 1	1	1	0	1	1	0	1
0	1	D3	D0	1 1	0 0	1	1	1	1	0	0	1
1	0	D0	D1	0 0	0 1	1	1	1	1	1	1	0
1	0	D1	D2	0 1	1 0	0	1	1	0	0	0	0
1	0	D2	D3	1 0	1 1	1	1	0	1	1	0	1
1	0	D3	D0	1 1	0 0	1	1	1	1	0	0	1
1	1	D0	D3	0 0	1 1	1	1	1	1	1	1	0
1	1	D3	D0	1 1	0 0	1	1	1	1	0	0	1
1	1	х	х	хх	хх	1	1	1	1	1	1	0
1	1	Х	х	хх	хх	1	1	1	1	1	1	0

Tabela de excitação flip-flop D

Q*	ď	D
0	0	0
0	1	1
1	0	0
1	1	1

Escolha de Flip-Flop

Foi escolhido o flip-flop D para armazenar e processar o valor da quantidade de dinheiro inserida e ainda ser usado para sincronizar os sinais dos sensores M1 e M2 e para acionar a lâmpada L quando a quantidade de dinheiro inserida for suficiente.

Mapas de Karnaugh e equações simplificadas

D1

M1M2\x1x0	00	01	11	10
00	0	0	-	1
01	1	1	0	1
11	1	-	0	-
10	0	1	0	1

 $D1 = M2 \overline{x1} + x1 \overline{x0} + M1 \overline{x1} x0$

D0

M1M2\x1x0	00	01	11	10
00	0	1	-	0
01	0	1	0	1
11	1	-	0	-
10	1	0	0	1

 $D0 = M1 \overline{x0} + \overline{M1} \overline{M2} x0 + M2 \overline{x1} x0 + M2 x1 \overline{x0}$

L

M1M2\x1x0	00	01	11	10
00	0	0	-	0
01	0	0	1	0
11	0	-	1	-
10	0	0	1	0

L=x1 x0

а

M1M2\x1x0	00	01	11	10
00	1	0	1	1
01	1	0	1	1
11	1	1	1	1
10	1	0	1	1

 $a=\overline{x1} \overline{x0} + x1 + M1 M2$

b

M1M2\x1x0	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

b=1

С

M1M2\x1x0	00	01	11	10
00	1	1	0	0
01	1	1	1	0
11	1	1	1	1
10	1	1	1	0

 $c = \overline{x1} + M1M2 + M1 x0 + M2 x0$

d

M1M2\x1x0	00	01	11	10
00	1	0	1	1
01	1	0	1	1
11	1	1	1	1
10	1	0	1	1

 $d = \overline{x1} \, \overline{x0} \, + \, x1 \, + \, M1M2$

е

M1M2\x1x0	00	01	11	10
00	1	0	1	1
01	1	0	0	1
11	1	1	0	1
10	1	0	0	1

 $e=\overline{x0} + M1M2\overline{x1} + \overline{M1}\overline{M2}x1$

f

M1M2\x1x0	00	01	11	10
00	1	0	1	0
01	1	0	0	0
11	1	1	0	1
10	1	0	0	0

 $f = \overline{x1} \overline{x0} + M1M2\overline{x1} + M1M2\overline{x0} + \overline{M1} \overline{M2} x1 x0$

g

M1M2\x1x0	00	01	11	10
00	0	0	0	1
01	0	0	1	1
11	0	0	1	0
10	0	0	1	1

 $g = \overline{M1} M2 x1 + M1 x1 x0 + \overline{M2} x1 \overline{x0}$

Logigrama

Módulo de servir café

Entradas e saídas

Foi escolhido como entradas do circuito do módulo de servir café o B (Botão) sendo este a entrada também dependente da saída do moedeiro L (Lâmpada). Para as saídas do circuito foi escolhido DC (Doseador de café), DA (Doseador de açúcar), BA (Bomba de água) e LP (lâmpada que indica quando o café está pronto).

Modelo ASM

Tabelas de transição de estados e das saídas

В	act	seg	Qn x2 x1 x0	Qn+1 x2 x1 x0	LP
0	х	х	ххх	ххх	0
1	DC	BA	0 0 0	0 0 1	0
х	BA	ВА	0 0 1	0 1 0	0
х	BA	DA	0 1 0	0 1 1	0
х	DA	LP	0 1 1	1 0 0	0
х	LP	DC	1 0 0	0 0 0	1

Tabela de excitação flip-flop JK

Q*	ď	J	K
0	0	0	-
0	1	1	-
1	0	1	1
1	1	1	0

J2	J1	10	K2	K1	КО
х	х	х	х	х	х
0	0	1	х	х	х
0	1	х	х	х	1
0	х	1	х	0	х
1	х	х	0	1	1
х	0	0	1	х	х

Escolha de Flip-Flop

Foi escolhido o flip-flop JK para armazenar e processar o estado do módulo de servir café e ainda ser usado para controlar o funcionamento do módulo e para servir o café com os ciclos de relógio.

Mapas de Karnaugh e equações simplificadas

	1
- 1	,
J	_

Bx2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	-	-	-	-
10	0	0	1	0

J2 = Bx1x0

Κ2

Bx2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	-	-	0	-

 $K2=B \ \overline{x1}$

J1

Bx2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	1	-	1
10	0	1	-	-

 $\mathsf{J1=}\,Bx0$

Κ1

Bx2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	-	-	-	-
10	-	-	1	0

K1 = Bx0

JO

Bx2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	-	-	-
10	1	-	-	1

 $JO=B \ \overline{x2}$

K0

Bx2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	-	-	-	-
10	-	1	1	-

K0= *B*

LP

Bx2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	-	-	<u>-</u>
10	0	0	0	0

LP=Bx2

Logigrama

Circuito final

Conclusão

Com a elaboração deste trabalho aperfeiçoamos o nosso conhecimento quanto ao Logisim e quanto aos conteúdos abordados em aula. O trabalho tem algumas imperfeições quanto aos dois circuitos integrados na main, pois por causa do clock, o B (entrada do circuito do modulo de servir café) não se mantem ativo pois o L (saída do moedeiro) não se mantém ativa também. Em suma, com este trabalho conseguimos aprimorar os conhecimentos adquiridos, esclarecendo na prática muitas das dúvidas relacionadas com a parte teórica.