CS 771A: Introduction to Machine Learning				Quiz 4 (01 Nov 2019)	
Name	SAMPLE SOLUTIONS				30 marks
Roll No		Dept.			Page 1 of 2

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in block letters neatly with ink.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ. We will entertain no requests for leniency.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

Q1. Write T or F for True/False (write only in the box on the right hand side) (8x2=16 marks)

1	The Adagrad method is a technique for choosing an appropriate batch size when training a deep network.	F
2	The largest value the Gaussian kernel can take on any two points depends on the value of the bandwidth parameter used within the kernel.	F
3	k-means++ initialization is one of the algorithms that cannot be kernelized easily since it involves probabilities and sampling.	F
4	Suppose G is the Gram matrix of n data points $\mathbf{x}^1,, \mathbf{x}^n \in \mathbb{R}^2$ with respect to the homogeneous polynomial kernel of degree $p=2$. Then G must be pos. semi def.	Т
5	If for some \mathbf{w}^* we have $y^i = \langle \mathbf{w}^*, \mathbf{x}^i \rangle, i \in [n]$ then kernel regression with $K(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle + 1)^2$ cannot get zero training error w.r.t least squares loss on this data	F
6	Kernel k-means clustering with the quadratic kernel results in a larger model size than what is possible if we had done linear k-means (i.e. with the linear kernel).	Т
7	A NN with a single hidden layer and a single output node with all nodes except input layer nodes using ReLU activation will always learn a differentiable function.	F
8	Dropout is a technique that takes a training set and randomly drops training points to reduce the training set size so that training can be done faster	F

Q2. Suppose we have n distinct data points data points $\mathbf{x}^1, ..., \mathbf{x}^n \in \mathbb{R}^2$. Consider the Gram matrix G w.r.t the Gaussian kernel $K(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \cdot ||\mathbf{x} - \mathbf{y}||_2^2)$. Answer in the boxes only. (6 marks)

2.1	Write down the value of $\operatorname{trace}(G)$ as $\gamma \to 0$	n
2.2	Write down the value of $\operatorname{trace}(G)$ as $\gamma \to \infty$	n
2.3	Write down the value of $\operatorname{rank}(G)$ as $\gamma \to 0$	1
2.4	Write down the value of $\operatorname{rank}(G)$ as $\gamma \to \infty$	n
2.5	If instead of being distinct, had all the points been the same i.e. $\mathbf{x}^1 = \mathbf{x}^2 = \dots = \mathbf{x}^n$, write down the value of $\mathrm{rank}(G)$ as $\gamma \to 0$	1
2.6	If instead of being distinct, had all the points been the same i.e. $\mathbf{x}^1 = \mathbf{x}^2 = \dots = \mathbf{x}^n$, write down the value of $\mathrm{rank}(G)$ as $\gamma \to \infty$	1

Q3 Let $\mathbf{x} = [1, -1]^\mathsf{T}$, $\mathbf{y} = [-1, 1]^\mathsf{T} \in \mathbb{R}^2$. Define the function $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ as $f(\mathbf{z}) = z_1 \cdot \mathbf{x} + z_2 \cdot \mathbf{y}$ for any $\mathbf{z} = [z_1, z_2] \in \mathbb{R}^2$. Define another function $g \colon \mathbb{R} \to \mathbb{R}^2$ as $g(r) = [r, r^2]$ where $r \in \mathbb{R}$. Let $h \colon \mathbb{R} \to \mathbb{R}^2$ be defined as h(r) = f(g(r)). Derive a general expression for $\frac{dh}{dr}$ using the chain rule giving major steps of derivation and then evaluate $\frac{dh}{dr}$ at r = 3. (6 + 2 = 8 marks)

Let $A = [\mathbf{x}^{\mathsf{T}}, \mathbf{y}^{\mathsf{T}}] = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \in \mathbb{R}^2$ so that we have $f(\mathbf{z}) = A\mathbf{z}$ which gives us $J^f = \nabla f = A$ (to see that the answer is indeed A and not A^{T} , think of a hypothetical example where we have $\mathbf{z} = [z_1, z_2, z_3] \in \mathbb{R}^3$ and $f(\mathbf{z}) = z_1 \cdot \mathbf{x} + z_2 \cdot \mathbf{y} + z_3 \cdot \mathbf{p}$ for $\mathbf{p} = [1, 1]^{\mathsf{T}}$). Next, we calculate $J^g = [1, 2r]^{\mathsf{T}}$ (notice that this is a column vector since this is not a gradient of a real valued function but rather the Jacobian of a vector-valued function). Thus, we have $\frac{dh}{dr} = J^h = J^h = J^h \cdot J^h = J^h \cdot J^h \cdot J^h = J^h \cdot J$

----- END OF QUIZ -----

ROUGH WORK
ROUGH will get graded
Nothing written here will get graded