Wiązka zadań Szyfr

Rozważamy szyfrowanie przestawieniowe, w którym kluczem jest n-elementowa tablica zawierająca różne liczby całkowite z przedziału [1, n]. Na przykład kluczem 5-elementowym może być tablica [3, 2, 5, 4, 1].

Szyfrowanie napisu A (o długości co najmniej n) kluczem n-elementowym P[1..n] odbywa się w następujący sposób:

- pierwsza litera słowa A zamieniana jest miejscami z literą na pozycji P[1],
- następnie druga litera słowa A zamieniana jest z literą na pozycji P[2]
- itd.

Uzyskane na końcu słowo jest szyfrem napisu *A* z kluczem *P*.

Jeśli napis A ma więcej niż n liter, to po n-tym kroku powyższego algorytmu kolejną literę zamieniamy znów z literą na pozycji P[1] itd. Oznacza to, że w i-tym kroku zamieniamy litery na pozycjach i oraz $P[1+(i-1) \bmod n]$.

Przykład

Poniższa tabelka ilustruje szyfrowanie słowa "INFORMATYKA" kluczem P równym [3, 2, 5, 4, 1]:

i	1	2	3	4	5	6	7	8	9	10	11
P[1+(i-1) mod n]	3	2	5	4	1	3	2	5	4	1	3
Słowo	ı	N	F	0	R	М	Α	Т	Υ	K	Α
Krok 1	F	Ν	I	0	R	\mathbb{N}	Α	Т	Υ	K	Α
Krok 2	F	N		0	R	\mathbb{N}	Α	Т	Υ	K	Α
Krok 3	F	Ν	R	0	I	M	А	Т	Υ	K	Α
Krok 4	F	Ν	R	0		M	А	Т	Υ	K	Α
Krok 5	ı	N	R	0	F	\mathbb{N}	Α	\vdash	Υ	K	Α
Krok 6		N	М	0	F	R	Α	\vdash	Υ	K	Α
Krok 7	_	Α	M	0	F	R	N	Τ	Υ	K	Α
Krok 8		Α	\mathbb{N}	0	T	R	Z	F	Υ	K	Α
Krok 9		Α	\mathbb{N}	Υ	Τ	R	Z	F	0	K	Α
Krok 10	K	Α	M	Υ	Τ	R	Ν	F	0	ı	Α
Krok 11	K	А	Α	Υ	Т	R	N	F	0		М

Napis "KAAYTRNFOIM" jest zatem szyfrem napisu "informatyka" z kluczem [3, 2, 5, 4, 1]. **Napisz program**(-y), który da odpowiedzi do poniższych zadań.

1.

W pliku szyfr1.txt dane sa:

- w wierszach o numerach od 1 do 6 napisy złożone z 50 liter alfabetu łacińskiego;
- w wierszu nr 7 klucz 50-elementowy; liczby oddzielone są pojedynczym odstępem.

Zaszyfruj wszystkie sześć napisów zgodnie z opisaną metodą. Wynik, czyli zaszyfrowane napisy, zapisz w osobnych wierszach w pliku wyniki szyfri.txt.

2.

W pliku szyfr2.txt dane są:

- w pierwszym wierszu napis złożony z 50 liter alfabetu łacińskiego;
- w drugim wierszu klucz 15-elementowy; liczby oddzielone są pojedynczym odstępem.

Zaszyfruj dany napis zgodnie z opisaną metodą. Wynik, czyli zaszyfrowany napis, zapisz w pliku wyniki szyfr2.txt.

3.

W pliku szyfr3.txt dany jest napis złożony z 50 liter alfabetu łacińskiego. Napis ten powstał po zaszyfrowaniu pewnego napisu A kluczem [6, 2, 4, 1, 5, 3].

Podaj napis A. Wynik zapisz w pliku wyniki szyfr3.txt.