Davin Choo

DSO National Laboratories CFL1

10th November 2016

Methods

Outline

- Overview
- 2 Preliminaries
- Methods
 - Graph partitioning
 - Hierarchical clustering
 - Partitional clustering
 - Spectral clustering
- Touch-and-go
- Going further

What is community detection?

Goal Quantitatively define a community

- Hope The quantitative definition captures the qualitative objective you have in mind
- Difficulty Clustering is not a well-defined problem.
 - Metrics are usually problem specific.
 - Most clustering formulations are NP-hard

Partitions vs. Covers

- Partition: No overlap. Each vertex only belong to 1 group
- Cover: Overlaps allowed. Can have multiple membership
- Union of either gives us all the vertices
- For this talk, will focus on partition

Partitions vs. Covers

- Partition: No overlap. Each vertex only belong to 1 group
- Cover: Overlaps allowed. Can have multiple membership
- Union of either gives us all the vertices
- For this talk, will focus on partition

- A graph n vertices, m edges
 - Unweighted graph: Sparse
 - Weighted graph: Weights cannot be too homogeneous
- Some concept of measure (see examples below)
 - Local measure: "Goodness" of a cluster

- Global measure: "Goodness" of an overall partitioning
- For some algorithms,
 - Number of clusters k
 - A threshold value d

A possible classification of different approaches

- Local Form maximal groups that maintain a certain property (e.g. variants of cliques)
- Global Maximise global partition based on a criteria (e.g. modularity)
- Vertex similarity Group vertices based on how similar they are with respect to certain feature(s) (e.g. distance in point cloud representation)

Overview

- For a vertex v in cluster C, $deg(v) = int_v^C + ext_v^C$
- For a cluster C with n_c vertices,
 - $int^C = \sum_{v \in C} int_v^C$ and $ext^C = \sum_{v \in C} ext_v^C$

- Intra-cluster density $\delta_{int}(C) = \frac{int^C}{\binom{n}{2}}$
- Inter-cluster density $\delta_{\rm ext}(C) = \frac{{\rm ext}^C}{n_c \cdot (n-n_c)}$
- Intuitively, a cluster should be a set of vertices with high intra-cluster density and low inter-cluster density

• Evaluate 'goodness' of a partition: $Q(Partition) \rightarrow Value$

- Most popular: Modularity
 - $Q = \frac{1}{2m} \sum_{v_i, v_i \in V} (A_{i,j} \frac{\deg(v_i)\deg(v_j)}{2m}) \mathbb{1}\{v_i \text{ and } v_j \text{ same cluster}\}$ A = Adjacency matrix
 - Compare partitioning in actual graph against a null model (randomly distribute edges).
 - Higher modularity value ⇒ Better community structure (?)

Overview

The plan for today

- Graph partitioning (Kernighan-Lin, Spectral bisection)
- Hierarchical clustering (Agglomerative, Divisive)

Methods

- Partitional clustering (k-means)
- Spectral clustering

Due to time constraint,

- Details and examples only for some methods
- We can discuss in-depth after the talk :)

Graph partitioning

Overview

Goal Cut up the graph into 2 parts

Methods

Pros Can be efficient and fast

Cons Not natural to always cut into 2.

Need to know number of clusters k

Some methods can be extended to allow multiple cluster cuts, but those methods have poorer run time.

Overview

For now, consider only single element swaps¹

- Gain of moving element x (e.g. from A to B): $D(x) = \sum_{(u,x)\in A} w(u,x) - \sum_{(v,x)\in B} w(v,x) = 2 + 3 - 1 = 4$
- Gain of swapping 2 items (e.g. $a \in A, b \in B$): D(a, b) =D(a) + D(b) - 2 * w(a, b) = (5 - 4) + (5 - 6) - 2 * (5) = -10

 $^{^{1}}$ In general, works with any subset size. Larger subsets \Rightarrow slower run time

Kernighan-Lin (1970)

Algorithm 1 Kernighan-Lin(G = (V,E))

```
1: Initialise partitions A and B
 2: loop

    Store copy of originals A, B somewhere

         for i = 1, ..., n do \triangleright Modify working copies of A and B
 3:
             Compute D(x) for all x \in V
 4:
             a, b \leftarrow \operatorname{argmax}_{a \in A, b \in B} \{D(a, b)\}
 5:
                                                                \triangleright Swap a and b
             S[i] \leftarrow (a, b), g[i] \leftarrow D(a, b)
                                                              ▶ Record for later
 6:
         end for
 7:
         if \operatorname{argmax}_k \sum_{i=1}^k g[i] > 0 then \triangleright Best prefix changes
 8:
              Permanently apply changes S[1], ..., S[k] to originals
 9.
         else
10:
              return A, B
11:
         end if
12:
13: end loop
```

Kernighan-Lin (1970) tracing: 1/4

Methods

Cut size
$$= 2 + 3 + 5 = 10$$

$$D(a) = 4$$
 $D(d) = 2$
 $D(b) = -5$ $D(e) = -3$
 $D(c) = 1$ $D(f) = -1$

D(a, f) = 3 is the largest \rightarrow Swap a and f

Going further

Kernighan-Lin (1970) tracing: 2/4

Methods

Cut size
$$= 6 + 1 = 7$$

$$D(f) = -2$$

$$D(b) = -3$$

$$D(c) = -9$$

$$D(d) = -2$$

$$D(e) = 3$$

$$D(a) = -4$$

$$D(b, e) = 0$$
 is the largest \rightarrow Swap b and e

Kernighan-Lin (1970) tracing: 3/4

Cut size
$$= 3 + 4 = 7$$

$$D(f) = -11$$
 $D(d) = -2$
 $D(e) = -3$ $D(a) = 0$
 $D(c) = -1$ $D(b) = -3$

D(b,e) = -1 is the largest \rightarrow Swap a and c

Kernighan-Lin (1970) tracing: 4/4

- Since D(a, f) = 3, D(b, e) = 0, and D(b, e) = -1, the best prefix sum gives us either the 2^{nd} or 3^{rd} graph
- Both yield cut size of 7

Overview

- (Unnormalized) Laplacian matrix L = D A
 - D = diagonal degree matrix
 - A = adjacency matrix
- If G is connected, smallest eigenvector λ_1 of L is 0
- Fiedler vector (1973): Eigenvector V_2 corresponding to 2^{nd} smallest eigenvalue λ_2
- Bi-partition using Fielder vector by
 - Sign of values in V_2 (positive vs. negative)
 - Average of values in V_2 (above vs. below average)

Demo

See IPython notebook

Overview

Hierarchical clustering

- Goal Given a vertex/cluster similarity metric, iteratively join or split up vertices
- Pros Do not assume k
- Cons Hierarchy may not be natural. Similarity computation may be expensive

Dendrogram is a useful way of visualising outputs of hierarchical clustering methods.

Agglomerative (Bottom-up):

- Initialise every vertex as own cluster
- **2** Compute f(i,j) for clusters i and j (may set $-\infty$ if no edge)
- **3** Combine clusters $argmax_{(i,j)} f(i,j)$ with highest f score.
- Repeat previous 2 steps until only 1 cluster remain

Divisive (Top-down):

- **①** Compute $f(\cdot)$ for all edges
- 2 Remove $\operatorname{argmax}_{e} f(e)$. Handle ties randomly
- Repeat previous steps until no more edges

Quality of split depends on f, but f cannot be too expensive!

Agglomerative (Bottom-up)

Ways to combine clusters C_1 and C_2 :

Methods

Single-linkage (min):

$$f(C_1, C_2) = \min_{i \in C_1, j \in C_2} f(i, j)$$

0000**00000**0000000

Complete-linkage (max):

$$f(C_1, C_2) = \max_{i \in C_1, j \in C_2} f(i, j)$$

Average-linkage (avg):

$$f(C_1, C_2) = \frac{1}{|C_1| \cdot |C_2|} \sum_{i \in C_1, i \in C_2} f(i, j)$$

Overview

One popular algorithm: Girvan and Newman (2002)

- Lots of modifications and extensions
- Their metric *f* is the concept of *betweenness* Roughly: How frequent an edge is involved in "some process"

3 variants of edge betweenness

- **1** $f_1(e)$: Geodesic edge betweenness # shortest paths between all vertex pairs that include edge e
- $\circ f_2(e)$: Random-walk edge betweenness How likely is e involved in a random walk from s to t?
- Put voltage across 2 vertices \rightarrow Kirchoff's equations. $f_3(e) = \text{Average current of } e \text{ across all vertex pairs.}$

Equations of f_2 and f_3 shown to be equivalent.

Dendrogram example

Partitional clustering

Goal Given a distance metric, separate vertices into clusters based on some cost function involving distances between points in a cluster, or points to a cluster centroid

Pros Fast convergence

Cons. Need to know k. Sensitive to initialisation.

Iteratively improve from random initialisation of k centroids

Methods

- Assign vertex to closest centroid
- Update centroid to average coordinate of all assigned vertices

- Repeat previous steps until convergence
 - A special case of Expectation-Maximisation (EM) algorithms
 - Multiple ways to define convergence (can be a mixture):
 - Fixed number of iterations
 - Assignments to clusters did not change
 - Clusters did not change positions
 - Decrease in the sum of distances from vertices to assigned centroids is below a threshold

Demo

See IPython notebook

Spectral clustering

- Goal Using a similarity metric, partition sets into clusters using eigenvectors of matrices
- Pros Induced metric space tends to reveal clustering properties better
- Cons Computation of eigenvalues and eigenvectors may be expensive for large graphs
- Strongly related to perturbation theory, graph cuts, etc.
- Can view as a non-linear graph transformation / dimension-reduction preprocessing step before executing standard techniques like k-means
- Unnormalised Laplacian matrix L = D A (Fiedler)
- Symmetric normalised Laplacian matrices $L = I D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ (Andrew Ng, Michael Jordan, Yair Weiss, etc.)

- Compute eigenvectors and eigenvalues of Laplacian L = D A
- ② Pick $k = \operatorname{argmax}_{i=2,3,\dots,n} |\lambda_i \lambda_{i-1}|$
- Graph transformation: Form new matrix $M = (V_1, V_2, ..., V_k) \in \mathbb{R}^{n \times k}$
- \bullet Run k-means on M, treating each row as a point
- Oluster original points according to k-means results on M

Demo

See IPython notebook

Modularity

- Popularised by Newman and Girvan
- Recall modularity: $Q = \frac{1}{2m} \sum_{v_i, v_i \in V} (A_{i,j} \frac{deg(v_i)deg(v_j)}{2m}) \mathbb{1}\{v_i \text{ and } v_j \text{ same cluster}\}$
- Assumption: Higher $Q \Rightarrow$ Better partition

- Optimize Q to find best partition via methods like greedy agglomeration, simulated annealing, etc.
- Caveat:
 - The assumption doesn't always hold
 - "Modularity maximum of a graph reveals a significant community structure only if it is appreciably larger than the modularity maximum of random graphs of the same size and expected degree sequence."
 - See survey paper, Section IV. C. 'Limits of modularity'

Dynamic methods

- Spin models
 - Popular model in statistical mechanics: Potts model
 - Each vertex can hold a different state/spin
 - ullet Goal: Minimise energy ${\cal H}$ based on neighbour interactions
- Random walk
 - Community structures have high density of internal edges
 - Random walkers spend long time within the same community

Note: Not dynamic in the sense of a changing graph

Statistical inference methods

- Find best hypothesis that fits actual graph topology
- Bayes theorem: $P(\Theta|D) = \frac{1}{7}P(D|\Theta)P(\Theta)$
 - Θ: Parameters/hypothesis
 - D: Data/Actual graph
 - Z: Normalizing constant (usually hard to compute)
- Methods usually find Θ that maximise $P(D|\Theta)$.
- Example: Planted partition model (Hastings, 2006)

Planted partition model (Hastings, 2006)

Input Graph G, number of clusters k, p_{in} and p_{out} Solve $\operatorname{argmax}_{\operatorname{partition}} q_i P(G|q_i)$ via belief propagation Output Most likely partition q^*

- p_{in}: Probability that vertices in same group are linked
- p_{out}: Probability that vertices in different groups are linked
- Notice similarity to spin model approach.

Today:

- Graph partitioning: Kernighan-Lin, Spectral bisection via Fiedler vector
- Hierarchical clustering Agglomerative, Divisive (Girvan and Newman)

Methods

- Partitional clustering: k-means
- Spectral clustering with unnormalised Laplacian

Other interesting directions:

- Finding covers (e.g. clique percolation)
- Multiresolution and cluster hierarchy
- Detection of dynamic communities

No single best algorithm for all problem settings.

- Make good observations in your problem domain:
 Construct and study a few graphs, extract insights, etc.
- Formalise the observation quantitatively
- Find ways to optimise
- Test and check that your quantitative measure correctly reflects your qualitative goal

Further reading

- Community detection in graphs https://arxiv.org/pdf/0906.0612v2.pdf
- A Tutorial on Spectral Clustering https://arxiv.org/pdf/0711.0189v1.pdf
- On Spectral Clustering: Analysis and an Algorithm http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf