Rapport de TP 4MMAOD : Génération d'ABR optimal

NOM Prénom étudiant₁ (groupe étudiant₁) NOM Prénom étudiant₂ (groupe étudiant₂)

25 septembre 2020

Préambule

- Compléter ce patron de rapport en supprimant toutes les phrases en italique : elles ne doivent pas apparaître dans le rapport pdf.
- Il sera attribué 1 point pour la qualité globale du rapport : présentation, concision et clarté de l'argumentation.

1 Principe de notre programme (1 point)

Mettre ici une explication brève du principe de votre programme en précisant la méthode implantée (récursive, itérative) et les choix effectués (notamment pour l'ordonnancement des instructions).

2 Analyse du coût théorique (2 points)

Donner ici l'analyse du coût théorique de votre programme en fonction du nombre n d'éléments dans le dictionnaire. Pour chaque coût, donner la formule qui le caractérise (en justifiant brièvement pourquoi cette formule correspond à votre programme), puis l'ordre du coût en fonction de n en notation Θ de préférence, sinon O.

2.1 Nombre d'opérations en pire cas:

Justification : La justification peut être par exemple de la forme :

"Le programme itératif contient les boucles $k_1=...,\ k_2=...$ etc correspondant à la somme

$$T(n_1, n_2, c_1, c_2) = \sum_{k_1 = \dots}^{\dots} \dots \sum_{i = \dots} \dots + \sum_{i = \dots}^{\dots} \dots$$

 $somme \ que \ nous \ avons \ calcul\'ee \ (ou \ major\'ee) \ par \ la \ technique \ de \ \dots \ "$ $ou \ encore \ :$

"les appels récursifs du programme permettent de modéliser son coût par le système d'équations aux récurrences

$$T(k_1, k_2) = \dots$$
 avec les conditions initiales

Le coût indiqué est obtenu en résolvant ce système par la méthode de "

2.2 Place mémoire requise :

Justification:

2.3 Nombre de défauts de cache sur le modèle CO:

Justification:

3 Compte rendu d'expérimentation (2 points)

3.1 Conditions expérimentales

 $D\'{e}crire \ les \ conditions \ permettant \ la \ reproductibilit\'e \ des \ mesures : on \ demande \ la \ description \ de \ la \ machine \ et \ la \ m\'{e}thode \ utilis\'ee \ pour \ mesurer \ le \ temps.$

3.1.1 Description synthétique de la machine :

indiquer ici le processeur et sa fréquence, la mémoire, le système d'exploitation. Préciser aussi si la machine était monopolisée pour un test, ou notamment si d'autres processus ou utilisateurs étaient en cours d'exécution.

3.1.2 Méthode utilisée pour les mesures de temps :

préticulier, préciser comment les 5 exécutions pour chaque test ont été faites (par exemple si le même test est fait 5 fois de suite, ou si les tests sont alternés entre les mesures, ou exécutés en concurrence etc).

3.2 Mesures expérimentales

Compléter le tableau suivant par les temps d'exécution mesurés pour chacun des 6 benchmarks imposés (temps minimum, maximum et moyen sur 5 exécutions)

	coût	temps	temps	temps
	du patch	min	max	moyen
benchmark1				
benchmark2				
benchmark3				
benchmark4				
benchmark5				
benchmark6				

FIGURE 1 – Mesures des temps minimum, maximum et moyen de 5 exécutions pour les 6 benchmarks.

3.3 Analyse des résultats expérimentaux

Donner une réponse justifiée à la question : les temps mesurés correspondent ils à votre analyse théorique (nombre dopérations et défauts de cache)?