Math 381 - Fall 2022

Jay Newby

University of Alberta

Week 12

Last Time

 $\textbf{ 0} \ \, \mathsf{Motivating} \,\, \mathsf{examples} \,\, \mathsf{of} \,\, \mathsf{optimization} \,\,$

Today

- ① Continuous optimization problems
- Convex sets
- Convex functions
- Oritical points and classification of critical points

Continuous optimization problems

Continuous optimization problem

$$\min_{x} f(x)$$
 subject to $g(x) = 0$, $h(x) \le 0$.

where $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^m$, and $h: \mathbb{R}^n \to \mathbb{R}^p$.

We can say something about uniqueness for convex problems

Definition: convex set

The set $S \subseteq \mathbb{R}^n$ is convex if

$$\{\alpha x + (1 - \alpha)y : 0 \le \alpha \le 1\} \subseteq S$$

for all $x, y \in S$.

Examples:

We can say something about uniqueness for convex problems

Definition: Convex function

A function $f:S\subseteq\mathbb{R}^n\to\mathbb{R}$, with S a convex set, is a convex function if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y),$$

for all $\alpha \in [0,1]$ and all $x,y \in S$.

Definition: Strictly convex function

A convex function is strictly convex if

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y),$$

for all $\alpha \in (0,1)$ and all $x, y \in S$.

Examples:

Uniqueness of the global minimum for strictly convex function on convex sets

- Sublevel sets of a convex function are convex
- Any local minimum of a convex function f on a convex set S is a global minimum on S
- Any local minimum of a strictly convex function f on a convex set S is a unique global minimum on S

Unconstrained optimality conditions

How can we know if a given point $x \in S$ is a local minimum of f?

Gradient

Definition: gradient

 $f: \mathbb{R}^n \to \mathbb{R}$ differentiable

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

Critical points

Definition: Critical point

A point \hat{x} such that $\nabla f(\hat{x}) = 0$ is a critical point.

Example: 1D problem

Suppose we have a smooth function f(x). Wlog let $\hat{x} = 0$ so that f'(0) = 0. Expand around \hat{x} with

$$f(x) \sim f(0) + x f(0) + \frac{1}{2}x^2 f''(0) + \cdots$$
$$f(x) \sim f(0) + \frac{1}{2}x^2 f''(0)$$

We want to show that $f(x) \ge f(\hat{x})$ for all $x \in (-\delta, \delta)$ for some $\delta > 0$.

Example: 12D problem

Suppose we have a smooth function f(x). Wlog let $\hat{x} = 0$ so that f'(0) = 0. Expand around \hat{x} with

$$f(x) \sim f(0) + \frac{1}{2}x^T H(0)x$$

Definition: Hessian matrix

Given smooth $f: \mathbb{R}^n \to \mathbb{R}$. The $n \times n$ symmetric matrix with elements

$$H_{ij}(x) = \frac{\partial^2}{\partial x_i \partial x_j} f(x).$$

A sufficient condition for local minimum is $x^T H(\hat{x})x > 0$ for all x in some neighborhood of \hat{x} .

Classifying critical points

- $H(\hat{x})$ positive definite (all eigenvalues have positive real part) implies that \hat{x} is a local min
- $H(\hat{x})$ negative definite (all eigenvalues have negative real part) implies that \hat{x} is a local max
- $H(\hat{x})$ has eigenvalues with mixed sign (but all nonzero) implies that \hat{x} is a saddle point
- $H(\hat{x})$ has some zero eigenvalues: various abnormal situations can occur

Examples:

$$f(x,y) = x^{4} - 4xy + y^{4}$$

$$\nabla f(x,y) = \begin{bmatrix} 4x^{3} - 4y \\ -4x + 4y^{3} \end{bmatrix}$$

$$H(x,y) = \begin{bmatrix} 12x^{2} - 4 \\ -4 & 12y^{2} \end{bmatrix}$$

Critical point (1, 1) or (-1,-1)

$$H(1,1) = \begin{bmatrix} 12 & -4 \\ -4 & 12 \end{bmatrix}$$

 $\lambda^2 - Tr(H)\lambda + |H| = 0$
 $\lambda^2 - 24\lambda + 12^2 - 16 \lambda = 8,16$

critical (0,0)

$$H(0,0) = \begin{bmatrix} 0 & -4 \\ -4 & 0 \end{bmatrix}$$

 $\lambda^2 - 16 = 0$ $\lambda = \pm 4$