CS 240 Module 3

Graham Cooper

May 4th, 2015

Selection

Given an array A[a...n-1] and $0 \le k \le n-1$ return the kth largest element in A.

1) Selection-sort Idea:

Scan A k times, deleting max each time.

Cost: $\Theta(kn)$

0.1 2)

Sort A, return A[n-k]

Cost: $\Theta(nlogn)$

3)

Scan the array once, and keep k largest seen so far in the min-heap.

Cost: $\Theta(nlogk)$

Eg: [6,5,3,8,7,4], k = 3

We put in 6, 5 then 3 into the min heap. After we look at the rest of the elements and keep the min heap the size of k and add new elements if an element in the array is larger than the root of the min-heap. Continue through the array and at the end pick the root of the min heap.

4)

Heapify(A) then call $deleteMax\ k$ times.

Cost: $\Theta(n + klogn)$ For median selection (k = n/2) then it is the same as sorting so $\Theta(n)$

Partition Algorithm

Given an array A[0...n-1] and $0 \le k \le n-1$, find the element at position k of the sorted A.

Observation:

$$\overline{\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 7, 3, 2, 4, 6, 1 \end{bmatrix}}
\text{Sorted}(\mathbf{A}) = \begin{bmatrix} 1, 2, 3, 4, 6, 7 \end{bmatrix}$$

What is the position of A[3](4) in the sorted A. the answer is the number of elements < A[3] in A[0..2] and A[4,5]

<u>Idea:</u> choose one element (pivot) and partition the data into: (items < pivot), pivot, (items > pivot). If position(pivot) == k, done, otherwise, continue either on the left or on the right, depending on the position of the pivot.

WHAT WE WANT TO DO:

Implicit
$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 9 & 4 & 5 & 8 & 6 & 3 & 2 \end{bmatrix}$$

Lets pick A[2] as the pivot, swap A[2] and A[0]
$$A = [5,4,9,8,6,3,2]$$

<u>Idea:</u> Find the outermost wrongly positioned pair and swap.

```
advance i, backup j. 

A = [5, 4, 9, 8, 6, 3, 2] i < j so we should swap i 

A = [5, 4, 2, 8, 6, 3, 9] Advance i, backup j 

A = [5, 4, 2, 8, 6, 3, 9] i < j swap i 

A = [5, 4, 2, 3, 6, 8, 9] advance i, backup j 

A = [5, 4, 2, 3, 6, 8, 9] j < i stop, swap, A[0] wiht A[j] A = [3, 4, 2, 5, 6, 8, 9] Return 3.
```

Quick Select(A,K)

```
\begin{split} P &= \operatorname{choosePivot}(A) \\ i &= \operatorname{partition}(P) \\ \text{if } i &= k \\ \text{return } A[i] \\ \text{if } i &> k: \\ \text{return QuickSelect}(A[0...i-1], k) \\ \text{if } i &< k: \\ \text{return QuickSelect}(A[i+1...n-1], k-i-1) \end{split}
```

0.1.1 Cost of Quick Select

Let
$$T(n)$$
 e cost of QuickSelect $T(n) = \Theta(n) + \Theta(1)$, if $n = k$ $T(i)$ if $i > k$ $T(n-i-1)$, if $i < k$

Best Case: $T(n) = \Theta(n)$ if i = k

(first chosen pivot if the element at position k, no recursive calls)

Worst Case: i = 0 or i = n-1

Recursive call has size n - 1

(if we pick the first element as the pivot, then an array sorted in ascending or descending order will give the worst case runtime.)

$$\begin{split} &\mathbf{T}(\mathbf{n}) = \\ &\mathbf{d} \text{ if } \mathbf{n} = 1 \\ &\mathbf{T}(\mathbf{n}\text{-}1) + \mathbf{c} \mathbf{n} \text{ if } \mathbf{n} \geq 2 \\ &\mathbf{T}(\mathbf{n}) = \mathbf{c} \mathbf{n} + \mathbf{c}(\mathbf{n}\text{-}1) + \mathbf{c}(\mathbf{n}\text{-}2) + \dots + \mathbf{c}(2) + \mathbf{d} \\ &= c) \frac{n(n+1)}{2} - c + d \in \Theta(n^2) \end{split}$$

What if hte partition is balanced

A[p] is always close to median

$$T(n) = T(\frac{n}{2}) + cn \text{ if } n \ge 2$$
d if $n = 1$

Assume n is a power of 2:
$$2^x$$

 $T(2^x) = c \cdot 2^x + c \cdot 2^{x-1} + \dots + c \cdot 2 + d$
 $= c(2^{x+1} - 2) + d$
 $= 2c(n-1) + d \in \Theta(n)$

Average-Case analysis: Average cost over all inputs of size n as function of n.

Observation: behaviour of QuickSelect depends on relative ordering, and not on actual values. [1,3,5,7] will yield the same worst case behaviour as [4,5,6,7].

Assume all keys are unique, $x_1, x_2, ...x_n$ then there are n! possible orderings on these keys. and each ordering is equally likely

After we pick the pivot, what iwll the split look like?

L(num of items)	R(num of items)
0	n-1
1	n-2
k - 1	n - k
k	n - k - 1
k+1	n - k - 2
•••	
n - 1	0

For each choce of pivot (n possible pivots) there are (n-1)! permutations of non-pivot elements, each of the splits is equally likely

After Partiction:

$$A = [0...x...]$$

Define T(n,k) an average cost for selecting kth item from a size n array.

$$T(n,k) = cn + \frac{1}{n}T(n-1,k-1)x + \frac{1}{n}(n-2,k-2) + \dots + \frac{1}{n}T(n-1,k)$$

$$cn + \frac{1}{n} \left(\sum_{i=1}^{k-1} T(n-i-1, k=i=1) + \sum_{i=k+1}^{n-1} T(o, k) \right)$$

Put in summation notation.

Define $T(n) = \max T(n,k) \ 0 \le k \le n-1$

Observation: $\begin{bmatrix} & n/2 & 3n/4 \\ - & | & - \end{bmatrix}$ pivot ends up in between the two divisions. At least 1/2 of all the n1 problem instances will have the pivot at position $n/4 \le i < 3n/4$

For these instances, recursive call has length at most floor($\frac{3n}{4}$), no matter what k is.

$$T(n) \leq:$$
 if $n \geq 2$ cn + 1.2(T(n) + T(floor($\frac{3n}{4}$)) if $n = 1$ d

$$T(n) \le 2cn + T(floor(\frac{3n}{4})) \le 2cn + T(\frac{3n}{4})$$

$$\le 2cn + 2c(\frac{3n}{4}) + 2c(\frac{9n}{16}) + \dots + d$$

$$= d + 2cn \sum_{i=0}^{\infty} (\frac{3}{4})^i \le d2cn \times 4 \in O(n)$$

 $T(n) \in \Omega(n)$ Since we have to parition at least once $T(n) \in \Omega(n)$

Worst case runtime is $\Theta(n^2)$

Your enemy could make your algorith mrun slowly by a "Bad" order input. Another approach: Randomized quickSelect.

- Pick Pivot at random
- No ordering of the input on its own is guaranteed of be bad

The expected runtime: with prob at least 1/2 the pivot will randomly fall between roof(n/4) and floor(3n/4), so the analysis is the same as for the

average case: $\Theta(n)$

Finding a Pivot

<u>Idea:</u> generate a good pivot deterministically (median of medians), assume all keys are distinct

- 1. Divide the array into x = n/5 groups of 5 elements each
- 2. find the median of each group
- 3. Recursively select the median among the medians of these groups
- 4. Partition with the median found in Step 3 as a pivot
- 5. Recurse in appropriate part of the array, $k \neq i$

```
Step 1 + Step 2: \Theta(n)
Step 3: T(\frac{n}{5})
Step 4: \Theta(n)
Step 5: T(?)
```

The recurrence relation is $T(n) \le$

QuickSort A[0...n-1]

```
if n <= 1 return
p = choose_pivot(A)
i = partition(A,p)
QuickSort(A[0...i-1])
QuickSort(A[i+1 ... n-1])</pre>
```

Worst-Case:

Pivot ends up at one end or the other after positioning. $T(n) = cn + T(n-1) \in \Theta(n^2)$

Best Case

$$T(n) = T(floor(\tfrac{n-1}{2})) + T(roof(\tfrac{n-1}{2}) + cn < 2T(n/2) + cn \; \Theta(nlogn)$$

What if our partition always splits n/10 and 9n/10

$$T(n) =$$

if
$$n \leq 1$$

d

if n > 1

$$T(n/10) + T(9n/10) + cn$$

RECURSION TREE NO ON THIS PAGE

$$T(n) \leq cn \cdot \log_{\frac{10}{9}}(n) + cn \in \Theta(nlogn)$$

Average Case

$$\begin{bmatrix} n/2 & 3n/4 \\ -- & -X -- & -- \end{bmatrix}$$

i, n-i-1 average sizes of two subproblems, taking average cost over all n possibilitys of i.

$$T(n) = cn + \frac{1}{n} \sum_{i=0}^{n-1} (T(i) + T(n-i-1))$$
$$= cn + \frac{1}{n} \cdot 2 \sum_{i=0}^{n} n - 1T(i), n \ge 2$$

NEW STUFF

$$nT(n) = cn^{2} + 2(T(0) + T(1) + \dots + T(n-1))$$

$$(n-1)T(n-1) = c(n-1)^{2} + 2(T(0) + T(1) + \dots + T(n-2))$$

$$nT(n) - (n-1)T(n-1) = 2cn - c + 2T(n-1)$$

$$nT(n) = (n+1)T(n-1) + 2cn - c$$

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2cn-c}{n(n+1)}$$

$$< \frac{T(n-1)}{n} + \frac{2c}{n+1}$$

$$\frac{T(n-1)}{n} \le \frac{T(n-2)}{n-1} + \frac{2c}{n}$$

$$\frac{T(n-2)}{n-1} \le \frac{T(n-3)}{n-2} + \frac{2c}{n-1}$$

$$\frac{T(n)}{n+1} \le \frac{T(n-1)}{n} + \frac{2c}{n+1} \le \frac{T(n-2)}{n-1} + \frac{2c}{n} + \frac{2c}{n+1}$$

$$\frac{T(n-3)}{n-2} + \frac{2c}{n-1} + \frac{2c}{n} + \frac{2c}{n+1} \dots$$

$$\frac{T(1)}{2} + \frac{2c}{3} + \frac{2c}{4} + \dots + \frac{2c}{n+1} =$$

$$= \frac{d}{2} + 2c \sum_{i=3}^{n+1} \frac{1}{i} = \frac{d}{2} + 2c(H_{n+1} - H_2)$$

$$\in O(\log n)$$

$$\frac{T(n)}{n+1} \in O(\log n) \ implies T(n) \in O(\log n)$$

QuickSort

Avg. Case Analysis of Quick Sort

Assume pivot is at index i

$$T(n) = cn + T(i) + T(n - i - 1)$$

How many sequences do we have? - > n!

$$T(n) = \frac{1}{n!} \left(\sum_{i=1}^{n} (cn + T(i) + T(n-i-1)) \cdot (n-1)! \right)$$
$$= cn + frac \ln(\sum_{i=1}^{n} T(i) + T(n-i-1))$$

$$= cn + \frac{1}{n} \sum_{i=1}^{n} T(i) + \frac{1}{n} \sum_{j=1}^{n} T(j)$$

$$T(n) = cn + \frac{2}{n} \sum_{i=1}^{n} T(i)$$

$$nT(n) = cn^{2} + 2 \sum_{i=1}^{n} T(i)$$

$$(n-1)T(n-1) = c(n-1)^{2} + 2 \sum_{i=0}^{n-2} T(i)$$

$$nT(n) - (n-1)T(n-1) = 2cn - c + 2T(n-1)$$

$$nT(n) = 2cn - c + (n+1)T(n-1)$$

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2c}{n+1}$$

$$\frac{T(n)}{n+1} \le \frac{T(n-2)}{n-1} + \frac{2c}{n+1} = \frac{2c}{n}$$

$$\frac{T(n)}{n+1} = \frac{T(n-3)}{n-1} + \frac{2c}{n+1} + \frac{2c}{n} + \frac{2c}{n-1}$$
...
$$\frac{T(n)}{n+1} \le \frac{2c}{n+1} + \frac{2c}{n} + \frac{2c}{n-1} + \dots + \frac{2c}{n} + 2c$$

$$\frac{T(n)}{n+1} \le 2cln(n)$$

$$T(n) < (n+1)(n(n)2c) \in \Theta(nlogn)$$

More Notes on Quicksort

```
Q-sort(A,L,R){
if(n < 2) break

piv <- partition(A,L,R)
Q-sort(A,L,piv=1)
Q-sort(A,piv+1, R)</pre>
```

M(n) = memory

$$M(n) = 2M(\frac{n}{2}) + C$$

Two recursive calls each require its own stream on the stack space

$$M(n) \in \Theta(n)$$

```
Tail_Rec_Q-sort(A,L,R){
if(R-L) < 2 Break;
piv <- partition(A,L,R)
if(a < (R-L)/2){
Tail_Rec_Q-sort(A,L,piv-1)
L=Piv+1
} else {
Tail_Rec_Q-sort(A, piv+1, R)
R=Piv-1
}</pre>
```

$$M(n) \le M(\frac{n}{2} + c) \in \Theta(log n)$$

Comparison Based Model

Sort objects (POTATOES) by mutual comparison

Assume $P_1, P_2, P_3...P_n$

Assume the cost for comparison is 1, everything else is free.

Each comparison divides the number of possibilities by 2. Starts with n! permuations, then $\frac{n!}{2}$...

- Binary tree
- Each node is a comparison
- each leaf is a permutation
- A binary tree with n! leaves

A binary tree with n! leaves

- Even if it is full, the height is at least $\Omega(log n)$
- ot am ne for wordst (eg, O(n!))

Counting Sort

n integers all smaller than m size m

C:

- 1. count the number of occurances in array c
- 2. In new array L find left boundaries L[i] = L[i-1] + C[i-1]

L: 0 1 3 6 8 8

1. Count how many times each number appears

Eg.

$$A = \begin{bmatrix} 2 & 3 & 1 & 2 & 0 & 5 & 3 & 2 & 1 & 5 \\ L & I & F & E & I & S & G & O & O & D \end{bmatrix}$$

- 2. Create $L \to L[i] \to number$ of keys smaller than i
- $L[i] = L[i-1] + c[i-1] \rightarrow Left Boundary$

Radix Sort

A set of n positive integers that have m digits in bas R.

Most Significant Digits

- 1. Partition by most significant dgiit using counting sort
- 2. Recurse on each "bin" including numbers with the same MSD

Lease Significant Digits

- 1. For d from LSD to MSD
- 2. Sort by d'th digit \rightarrow use d'th aas the key for counting sort

LSD for n numbers \leq n of R = 10, m = $\log_{10}^n \in \Theta(logn)$ m(n + R) $\in \Theta(nlogn)$

Binary Search Trees (review)

Given n (positive) integers of value at most n^5 how can we sort in O(n)?

Radix sort
$$->$$
 Base $R=n->m(n+R)\in\Theta(n)$

Height of a BST

Worst Case

 $h\in\Theta(n)$

Best Case

Average Case

$$\begin{split} H(n) &= 1 + \frac{1}{n} \sum_{i=0}^{n-1} \max\{H(i), H(n-i-1)\} \\ &= 1 + \frac{1}{n} (\sum_{i=1}^{floor(fracn2-1)} H(n-i-1) + \sum_{i=floor(\frac{n}{2})}^{n-1} H(i)) \\ &= 1 + \frac{1}{n} (\sum_{j=n-floor(\frac{n}{2})}^{n-1} H(j) + \sum_{i=floor(\frac{n}{2})}^{n-1} H(i) \\ &\quad H(n) \leq 1 + \frac{2}{n} \sum_{i=floor(\frac{n}{2})}^{n-1} H(i) \\ &= 1 + \frac{2}{n} (\sum_{i=floor(\frac{n}{2})}^{\frac{3n}{4}} H(i) + \sum_{i=\frac{3n}{4}+1}^{n-1} H(i)) \\ &\quad H(n) \leq 1 + \frac{2}{n} \times \frac{n}{4} \times H(\frac{3n}{4}) + \frac{2}{n} \times \frac{n}{4} \times H(n) \\ &\quad H(n) \leq 1 + \frac{1}{2} H(\frac{3n}{4}) + \frac{1}{2} H(n) \\ &\quad H(n) \leq 2 + H(\frac{3n}{4}) \end{split}$$

$$H(n) \le 2 + 2 + H(\frac{9n}{16})$$

 $\le 2 + 2 + \dots + 2 = 2 \times \log_{\frac{4}{3}}^n \in O(\log n)$

Balanced BSTs

- The goal is to have height $\Theta(logn)$ ALWAYS
- \bullet For that, we consider balance-factor -> BF
- BF(x) = height(x > right) height(x > left)
- height(null) = -1

We call a node x

- left heavy if bf(x) < 0
- right heavy if bf(x) > 0
- balanced if BF = 0

AVL Tree

An AVL tree is a BST such that the BF of all nodes is either -1, 0 and 1