$12n_{0563} \ (K12n_{0563})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -2.39160 \times 10^{54} u^{47} - 3.95222 \times 10^{54} u^{46} + \dots + 7.49953 \times 10^{54} b - 2.89856 \times 10^{55}, \\ &1.44654 \times 10^{55} u^{47} - 1.62245 \times 10^{55} u^{46} + \dots + 7.49953 \times 10^{54} a + 4.83415 \times 10^{55}, \ u^{48} - u^{47} + \dots + 3u + 1 \rangle \\ I_2^u &= \langle -u^3 + b - 2u, \ -u^{12} - u^{11} - 8u^{10} - 7u^9 - 25u^8 - 17u^7 - 39u^6 - 17u^5 - 32u^4 - 6u^3 - 14u^2 + a + u - 4, \\ u^{13} + 8u^{11} + 25u^9 - u^8 + 40u^7 - 5u^6 + 36u^5 - 8u^4 + 18u^3 - 5u^2 + 5u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 61 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -2.39 \times 10^{54} u^{47} - 3.95 \times 10^{54} u^{46} + \dots + 7.50 \times 10^{54} b - 2.90 \times 10^{55}, \ 1.45 \times 10^{55} u^{47} - 1.62 \times 10^{55} u^{46} + \dots + 7.50 \times 10^{54} a + 4.83 \times 10^{55}, \ u^{48} - u^{47} + \dots + 3u + 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.92884u^{47} + 2.16340u^{46} + \cdots - 4.69127u - 6.44593 \\ 0.318900u^{47} + 0.526995u^{46} + \cdots + 7.68737u + 3.86499 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 5.32722u^{47} - 7.71278u^{46} + \cdots + 5.69560u + 4.89101 \\ -1.65263u^{47} + 2.15021u^{46} + \cdots - 2.13909u + 0.429005 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 3.67459u^{47} - 5.56258u^{46} + \cdots + 3.55651u + 5.32002 \\ -1.65263u^{47} + 2.15021u^{46} + \cdots - 2.13909u + 0.429005 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.429005u^{47} - 1.22363u^{46} + \cdots - 12.6538u - 3.42610 \\ -0.741759u^{47} + 0.279846u^{46} + \cdots - 3.69494u + 0.760160 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.429005u^{47} + 2.69040u^{46} + \cdots + 2.99610u - 2.58094 \\ 0.318900u^{47} + 0.526995u^{46} + \cdots + 7.68737u + 3.86499 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.553995u^{47} + 0.491959u^{46} + \cdots - 1.55830u - 4.58260 \\ 0.553995u^{47} + 0.491959u^{46} + \cdots + 10.8786u + 5.49084 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.85623u^{47} - 3.48934u^{46} + \cdots - 4.22125u + 2.81550 \\ -0.399504u^{47} - 1.07854u^{46} + \cdots - 4.22125u + 2.81550 \\ -0.399504u^{47} - 1.07854u^{46} + \cdots - 11.0873u - 2.93213 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $7.73136u^{47} 12.6807u^{46} + \dots 1.90430u + 10.9470$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{48} + 14u^{47} + \dots + 1783u + 121$
c_2, c_6	$u^{48} - 2u^{47} + \dots - 21u - 11$
c_3, c_8	$u^{48} - u^{47} + \dots + 56u - 1$
c_4, c_5, c_{10}	$u^{48} - u^{47} + \dots + 3u + 1$
	$u^{48} - 8u^{47} + \dots - 28403u + 7979$
c_9	$u^{48} + 4u^{47} + \dots - 231u - 49$
c_{11}	$u^{48} - 2u^{47} + \dots + 2483u - 169$
c_{12}	$u^{48} + 5u^{47} + \dots + 2615u + 313$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{48} + 46y^{47} + \dots + 485517y + 14641$
c_2, c_6	$y^{48} - 14y^{47} + \dots - 1783y + 121$
c_{3}, c_{8}	$y^{48} + 55y^{47} + \dots - 3490y + 1$
c_4, c_5, c_{10}	$y^{48} + 35y^{47} + \dots - y + 1$
c ₇	$y^{48} + 46y^{47} + \dots + 1653354871y + 63664441$
<i>c</i> ₉	$y^{48} + 2y^{47} + \dots + 7105y + 2401$
c_{11}	$y^{48} + 58y^{47} + \dots - 2857283y + 28561$
c_{12}	$y^{48} - 69y^{47} + \dots - 5964955y + 97969$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.435520 + 0.942072I		
a = -1.076810 - 0.546005I	0.84017 + 1.53001I	-4.48166 - 1.67187I
b = -0.075623 - 0.253208I		
u = -0.435520 - 0.942072I		
a = -1.076810 + 0.546005I	0.84017 - 1.53001I	-4.48166 + 1.67187I
b = -0.075623 + 0.253208I		
u = -0.154361 + 1.095650I		
a = 0.750842 - 0.363346I	-4.71668 - 2.11923I	-10.82328 + 3.73003I
b = 0.920518 - 0.093530I		
u = -0.154361 - 1.095650I		
a = 0.750842 + 0.363346I	-4.71668 + 2.11923I	-10.82328 - 3.73003I
b = 0.920518 + 0.093530I		
u = 0.443963 + 1.034950I		
a = -0.551533 - 0.438377I	1.19625 + 2.65861I	-4.00000 - 4.52024I
b = -1.052700 + 0.633094I		
u = 0.443963 - 1.034950I		
a = -0.551533 + 0.438377I	1.19625 - 2.65861I	-4.00000 + 4.52024I
b = -1.052700 - 0.633094I		
u = -0.376782 + 0.764505I		
a = -1.67330 + 2.06393I	4.54023 - 1.72963I	4.64800 + 3.11123I
b = -0.050763 - 1.300670I		
u = -0.376782 - 0.764505I		
a = -1.67330 - 2.06393I	4.54023 + 1.72963I	4.64800 - 3.11123I
b = -0.050763 + 1.300670I		
u = 0.625304 + 0.996638I		
a = -0.815699 - 0.738147I	1.47522 + 0.81061I	0
b = -0.21810 + 1.41293I		
u = 0.625304 - 0.996638I		
a = -0.815699 + 0.738147I	1.47522 - 0.81061I	0
b = -0.21810 - 1.41293I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.179960 + 0.123958I		
a = -0.19080 + 1.69727I	11.96410 + 1.32500I	0
b = 0.16078 - 1.62361I		
u = -1.179960 - 0.123958I		
a = -0.19080 - 1.69727I	11.96410 - 1.32500I	0
b = 0.16078 + 1.62361I		
u = -0.269250 + 1.162830I		
a = 0.839939 - 0.658536I	1.26689 - 2.36269I	0
b = 0.20024 + 1.60053I		
u = -0.269250 - 1.162830I		
a = 0.839939 + 0.658536I	1.26689 + 2.36269I	0
b = 0.20024 - 1.60053I		
u = -0.427605 + 1.128960I		
a = 0.534297 - 0.374229I	0.10991 - 8.23975I	0
b = 1.308210 + 0.533677I		
u = -0.427605 - 1.128960I		
a = 0.534297 + 0.374229I	0.10991 + 8.23975I	0
b = 1.308210 - 0.533677I		
u = 0.352885 + 1.172480I		
a = 1.53487 + 0.77490I	-0.92113 + 6.80242I	0
b = 0.397307 - 1.278340I		
u = 0.352885 - 1.172480I		
a = 1.53487 - 0.77490I	-0.92113 - 6.80242I	0
b = 0.397307 + 1.278340I		
u = 1.226860 + 0.007840I		
a = 0.12427 + 1.63006I	11.45140 - 7.76917I	0
b = -0.18772 - 1.63918I		
u = 1.226860 - 0.007840I		
a = 0.12427 - 1.63006I	11.45140 + 7.76917I	0
b = -0.18772 + 1.63918I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.376298 + 1.187320I		
a = 0.913505 - 0.477894I	0.12397 + 4.49470I	0
b = 0.057189 - 0.405233I		
u = 0.376298 - 1.187320I		
a = 0.913505 + 0.477894I	0.12397 - 4.49470I	0
b = 0.057189 + 0.405233I		
u = 0.580032 + 0.452436I		
a = -0.92293 - 1.44096I	2.95847 + 4.00692I	-2.67836 - 6.96933I
b = -0.33652 + 1.50463I		
u = 0.580032 - 0.452436I		
a = -0.92293 + 1.44096I	2.95847 - 4.00692I	-2.67836 + 6.96933I
b = -0.33652 - 1.50463I		
u = -0.151969 + 0.640678I		
a = 1.79473 + 2.00434I	2.23261 - 4.69663I	-2.29866 + 7.37362I
b = -0.128016 - 1.103990I		
u = -0.151969 - 0.640678I		
a = 1.79473 - 2.00434I	2.23261 + 4.69663I	-2.29866 - 7.37362I
b = -0.128016 + 1.103990I		
u = -0.024639 + 0.631913I		
a = 1.292480 - 0.327555I	3.50058 + 0.55008I	-1.118536 - 0.349377I
b = 0.44857 + 1.55247I		
u = -0.024639 - 0.631913I		
a = 1.292480 + 0.327555I	3.50058 - 0.55008I	-1.118536 + 0.349377I
b = 0.44857 - 1.55247I		
u = 0.219879 + 0.581123I	0.054500 + 1.0010005	4.0501.0 .0 5000.0 5
a = -0.507645 - 0.541214I	-0.254703 + 1.031080I	-4.07316 - 6.58896I
b = -0.194376 + 0.350188I		
u = 0.219879 - 0.581123I	0.054509 1.0910007	4.07916 6.500061
a = -0.507645 + 0.541214I	-0.254703 - 1.031080I	-4.07316 + 6.58896I
b = -0.194376 - 0.350188I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.65049 + 1.32174I		
a = -0.96287 + 1.04566I	8.28567 - 7.72804I	0
b = -0.36043 - 1.58899I		
u = -0.65049 - 1.32174I		
a = -0.96287 - 1.04566I	8.28567 + 7.72804I	0
b = -0.36043 + 1.58899I		
u = -0.08747 + 1.49239I		
a = 0.207043 + 0.731169I	-7.65194 - 1.77181I	0
b = -0.048453 - 0.802768I		
u = -0.08747 - 1.49239I		
a = 0.207043 - 0.731169I	-7.65194 + 1.77181I	0
b = -0.048453 + 0.802768I		
u = 0.498135 + 0.056251I		
a = -1.178220 + 0.256245I	3.49281 + 1.01877I	0.423557 - 0.776578I
b = 0.343725 + 0.931868I		
u = 0.498135 - 0.056251I		
a = -1.178220 - 0.256245I	3.49281 - 1.01877I	0.423557 + 0.776578I
b = 0.343725 - 0.931868I		
u = 0.62518 + 1.40469I		
a = 0.905325 + 0.965225I	7.1315 + 14.2674I	0
b = 0.41416 - 1.62727I		
u = 0.62518 - 1.40469I		
a = 0.905325 - 0.965225I	7.1315 - 14.2674I	0
b = 0.41416 + 1.62727I		
u = -0.382314 + 0.212503I		
a = 0.083866 + 0.833170I	2.71637 + 4.57604I	-0.11105 - 6.10786I
b = -0.701403 + 1.054330I		
u = -0.382314 - 0.212503I		
a = 0.083866 - 0.833170I	2.71637 - 4.57604I	-0.11105 + 6.10786I
b = -0.701403 - 1.054330I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.426711		
a = 0.214040	-1.65788	-3.70660
b = -0.725860		
u = -0.404609		
a = -2.82616	-2.55057	7.13390
b = 0.0167904		
u = 0.66628 + 1.45057I		
a = -0.816215 - 0.730920I	6.99328 - 1.08384I	0
b = -0.03431 + 1.50514I		
u = 0.66628 - 1.45057I		
a = -0.816215 + 0.730920I	6.99328 + 1.08384I	0
b = -0.03431 - 1.50514I		
u = -0.57241 + 1.49585I		
a = 0.805241 - 0.729040I	6.90676 - 4.94555I	0
b = 0.03707 + 1.53975I		
u = -0.57241 - 1.49585I		
a = 0.805241 + 0.729040I	6.90676 + 4.94555I	0
b = 0.03707 - 1.53975I		
u = 0.01361 + 1.60580I		
a = 0.215681 + 0.206965I	-8.07717 + 1.45463I	0
b = -0.044827 - 0.676036I		
u = 0.01361 - 1.60580I		
a = 0.215681 - 0.206965I	-8.07717 - 1.45463I	0
b = -0.044827 + 0.676036I		

II.
$$I_2^u = \langle -u^3 + b - 2u, -u^{12} - u^{11} + \dots + a - 4, u^{13} + 8u^{11} + \dots + 5u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{12} + u^{11} + \cdots - u + 4\\u^{3} + 2u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{11} + 7u^{9} + 18u^{7} - u^{6} + 22u^{5} - 4u^{4} + 14u^{3} - 4u^{2} + 4u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{11} + 7u^{9} + 18u^{7} - u^{6} + 22u^{5} - 4u^{4} + 14u^{3} - 4u^{2} + 4u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{11} + 7u^{9} + 18u^{7} - u^{6} + 22u^{5} - 4u^{4} + 14u^{3} - 4u^{2} + 4u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{12} - 7u^{10} - 18u^{8} + u^{7} - 22u^{6} + 4u^{5} - 14u^{4} + 4u^{3} - 4u^{2} + u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{12} - 7u^{10} - 18u^{8} + u^{7} - 22u^{6} + 4u^{5} - 14u^{4} + 4u^{3} - 4u^{2} + u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{12} - 7u^{10} - 18u^{8} + u^{7} - 22u^{6} + 4u^{5} - 14u^{4} + 4u^{3} - 4u^{2} + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{12} + u^{11} + \cdots + u + 4 \\ u^{3} + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1\\-u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{12} + u^{11} + \cdots + 2u + 4\\-u^{9} - 5u^{7} - 8u^{5} - 4u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{12} + u^{11} + \cdots + 2u + 4\\-u^{9} - 5u^{7} - 8u^{5} - 4u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} + u^{11} + \cdots + 2u + 4\\-u^{9} - 5u^{7} - 8u^{5} - 4u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-2u^{11} - 5u^{10} - 15u^9 - 30u^8 - 42u^7 - 65u^6 - 51u^5 - 68u^4 - 23u^3 - 38u^2 - 2u - 16$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{13} - 5u^{12} + \dots + 5u - 1$
c_2	$u^{13} - u^{12} + \dots + u - 1$
c_3	$u^{13} + 8u^{11} + \dots + 2u - 3$
c_4,c_5	$u^{13} + 8u^{11} + \dots + 5u - 1$
<i>c</i> ₆	$u^{13} + u^{12} + \dots + u + 1$
C ₇	$u^{13} + 3u^{12} + \dots - 3u - 1$
<i>C</i> ₈	$u^{13} + 8u^{11} + \dots + 2u + 3$
<i>c</i> ₉	$u^{13} + 3u^{12} - 4u^{10} + 2u^9 + u^8 - 4u^7 + 3u^6 - u^5 - 2u^4 + 2u^3 - 2u^2 + u - 1$
c_{10}	$u^{13} + 8u^{11} + \dots + 5u + 1$
c_{11}	$u^{13} + u^{12} + \dots - 3u + 1$
c_{12}	$u^{13} - 2u^{11} + 3u^{10} + 3u^9 + u^8 + 10u^7 + 2u^6 - 4u^5 + 5u^4 - 2u^3 + 5u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{13} + 11y^{12} + \dots - 7y - 1$
c_2, c_6	$y^{13} - 5y^{12} + \dots + 5y - 1$
c_{3}, c_{8}	$y^{13} + 16y^{12} + \dots - 20y - 9$
c_4, c_5, c_{10}	$y^{13} + 16y^{12} + \dots + 15y - 1$
c ₇	$y^{13} - y^{12} + \dots + 3y - 1$
<i>c</i> ₉	$y^{13} - 9y^{12} + \dots - 3y - 1$
c_{11}	$y^{13} + 3y^{12} + \dots + 9y - 1$
c_{12}	$y^{13} - 4y^{12} + \dots + 25y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.406397 + 0.828070I		
a = 0.623860 - 1.154070I	3.19757 - 2.07962I	-2.23765 + 3.84644I
b = -0.04391 + 1.49862I		
u = -0.406397 - 0.828070I		
a = 0.623860 + 1.154070I	3.19757 + 2.07962I	-2.23765 - 3.84644I
b = -0.04391 - 1.49862I		
u = -0.405399 + 1.034180I		
a = 0.943206 - 0.498481I	2.52863 - 1.04333I	-0.891974 + 0.899946I
b = 0.42334 + 1.47217I		
u = -0.405399 - 1.034180I		
a = 0.943206 + 0.498481I	2.52863 + 1.04333I	-0.891974 - 0.899946I
b = 0.42334 - 1.47217I		
u = 0.276046 + 1.147950I		
a = -1.238510 + 0.159643I	0.33288 + 6.03810I	-3.21578 - 6.43497I
b = -0.518180 + 1.045570I		
u = 0.276046 - 1.147950I		
a = -1.238510 - 0.159643I	0.33288 - 6.03810I	-3.21578 + 6.43497I
b = -0.518180 - 1.045570I		
u = 0.351249 + 0.612687I		
a = -0.00263 - 1.64078I	2.13932 - 3.61205I	-3.50656 + 0.16807I
b = 0.350273 + 1.222150I		
u = 0.351249 - 0.612687I		
a = -0.00263 + 1.64078I	2.13932 + 3.61205I	-3.50656 - 0.16807I
b = 0.350273 - 1.222150I		
u = 0.05874 + 1.54134I		
a = -0.078914 + 0.461676I	-8.64883 + 1.03612I	-15.2263 + 1.7097I
b = -0.300983 - 0.563189I		
u = 0.05874 - 1.54134I		
a = -0.078914 - 0.461676I	-8.64883 - 1.03612I	-15.2263 - 1.7097I
b = -0.300983 + 0.563189I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.02035 + 1.65258I		
a = -0.017867 + 0.348906I	-6.33652 - 2.53081I	-3.17775 + 4.10072I
b = -0.126034 - 1.206020I		
u = 0.02035 - 1.65258I		
a = -0.017867 - 0.348906I	-6.33652 + 2.53081I	-3.17775 - 4.10072I
b = -0.126034 + 1.206020I		
u = 0.210812		
a = 4.54171	-2.87546	-18.4880
b = 0.430994		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ \left (u^{13} - 5u^{12} + \dots + 5u - 1)(u^{48} + 14u^{47} + \dots + 1783u + 121) \right $
c_2	$(u^{13} - u^{12} + \dots + u - 1)(u^{48} - 2u^{47} + \dots - 21u - 11)$
c_3	$(u^{13} + 8u^{11} + \dots + 2u - 3)(u^{48} - u^{47} + \dots + 56u - 1)$
c_4,c_5	$ (u^{13} + 8u^{11} + \dots + 5u - 1)(u^{48} - u^{47} + \dots + 3u + 1) $
c ₆	$(u^{13} + u^{12} + \dots + u + 1)(u^{48} - 2u^{47} + \dots - 21u - 11)$
c_7	$(u^{13} + 3u^{12} + \dots - 3u - 1)(u^{48} - 8u^{47} + \dots - 28403u + 7979)$
<i>C</i> ₈	$(u^{13} + 8u^{11} + \dots + 2u + 3)(u^{48} - u^{47} + \dots + 56u - 1)$
c_9	$(u^{13} + 3u^{12} - 4u^{10} + 2u^9 + u^8 - 4u^7 + 3u^6 - u^5 - 2u^4 + 2u^3 - 2u^2 + u - 1)$ $\cdot (u^{48} + 4u^{47} + \dots - 231u - 49)$
c_{10}	$ (u^{13} + 8u^{11} + \dots + 5u + 1)(u^{48} - u^{47} + \dots + 3u + 1) $
c_{11}	$(u^{13} + u^{12} + \dots - 3u + 1)(u^{48} - 2u^{47} + \dots + 2483u - 169)$
c_{12}	$(u^{13} - 2u^{11} + 3u^{10} + 3u^9 + u^8 + 10u^7 + 2u^6 - 4u^5 + 5u^4 - 2u^3 + 5u - 1)$ $\cdot (u^{48} + 5u^{47} + \dots + 2615u + 313)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$ (y^{13} + 11y^{12} + \dots - 7y - 1)(y^{48} + 46y^{47} + \dots + 485517y + 14641) $
c_2, c_6	$(y^{13} - 5y^{12} + \dots + 5y - 1)(y^{48} - 14y^{47} + \dots - 1783y + 121)$
c_{3}, c_{8}	$(y^{13} + 16y^{12} + \dots - 20y - 9)(y^{48} + 55y^{47} + \dots - 3490y + 1)$
c_4, c_5, c_{10}	$(y^{13} + 16y^{12} + \dots + 15y - 1)(y^{48} + 35y^{47} + \dots - y + 1)$
	$(y^{13} - y^{12} + \dots + 3y - 1)$ $\cdot (y^{48} + 46y^{47} + \dots + 1653354871y + 63664441)$
c_9	$(y^{13} - 9y^{12} + \dots - 3y - 1)(y^{48} + 2y^{47} + \dots + 7105y + 2401)$
c_{11}	$(y^{13} + 3y^{12} + \dots + 9y - 1)(y^{48} + 58y^{47} + \dots - 2857283y + 28561)$
c_{12}	$(y^{13} - 4y^{12} + \dots + 25y - 1)(y^{48} - 69y^{47} + \dots - 5964955y + 97969)$