

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen X

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2015-16.

Grupo B.

Profesor Rafael Ortega Ríos.

Descripción Parcial B.

Fecha 28 de abril de 2016.

Ejercicio 1. Dada la ecuación diferencial

$$P(x,y) + Q(x,y)y' = 0$$

con $P,Q\in C^1(\mathbb{R}^2)$, ¿bajo qué condiciones existe un factor integrante del tipo $\mu(x,y)=m(x+2y)$?

Un factor integrante $\mu: \mathbb{R}^2 \to \mathbb{R}$ para dicha ecuación diferencial es una función de clase $C^1(\mathbb{R}^2)$ que cumple:

- $\mu(x,y) \neq 0$ para todo $(x,y) \in \mathbb{R}^2$.
- Al multiplicar por μ la ecuación diferencial, se obtiene una ecuación diferencial exacta. Es decir:

 $\frac{\partial (\mu P)}{\partial y} = \frac{\partial (\mu Q)}{\partial x}.$

Desarrollando dichas derivadas parciales, se tiene:

$$\frac{\partial(\mu P)}{\partial y} = \frac{\partial \mu}{\partial y} \cdot P + \mu \cdot \frac{\partial P}{\partial y}$$
$$\frac{\partial(\mu Q)}{\partial x} = \frac{\partial \mu}{\partial x} \cdot Q + \mu \cdot \frac{\partial Q}{\partial x}$$

Por tanto, la condición de exactitud queda:

$$\frac{\partial \mu}{\partial y} \cdot P + \mu \cdot \frac{\partial P}{\partial y} = \frac{\partial \mu}{\partial x} \cdot Q + \mu \cdot \frac{\partial Q}{\partial x}.$$

Empleando que $\mu(x,y) = m(x+2y)$, se tiene que sus derivadas parciales son:

$$\frac{\partial \mu}{\partial x}(x,y) = m'(x+2y)$$
$$\frac{\partial \mu}{\partial y}(x,y) = 2m'(x+2y)$$

Sustituyendo en la condición de exactitud, se obtiene:

$$2m'(x+2y)P(x,y) + m(x+2y)\frac{\partial P}{\partial y}(x,y) = m'(x+2y)Q(x,y) + m(x+2y)\frac{\partial Q}{\partial x}(x,y)$$
$$m'(x+2y)(2P(x,y) - Q(x,y)) = m(x+2y)\left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y)\right)$$

Imponemos entonces $2P(x,y)-Q(x,y)\neq 0$ para todo $(x,y)\in\mathbb{R}^2$. Como $m(x+2y)\neq 0$ para todo $(x,y)\in\mathbb{R}^2$ (por ser un factor integrante), se tiene que la condición de exactitud queda:

$$\frac{m'(x+2y)}{m(x+2y)} = \frac{\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y)}{2P(x,y) - Q(x,y)}.$$

EL término izquierdo de la igualdad es función de x+2y. Por tanto, hemos de imponer que el término derecho también lo sea. Es decir, que exista una función $f: \mathbb{R} \to \mathbb{R}$ tal que:

$$f(x+2y) = \frac{\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y)}{2P(x,y) - Q(x,y)} \qquad \forall (x,y) \in \mathbb{R}^2.$$

Por tanto, hemos de imponer, en primer lugar, que $2P(x,y) - Q(x,y) \neq 0$ para todo $(x,y) \in \mathbb{R}^2$ y, en segundo lugar, que exista una función $f : \mathbb{R} \to \mathbb{R}$ tal que:

$$\frac{m'(x+2y)}{m(x+2y)} = f(x+2y) \qquad \forall (x,y) \in \mathbb{R}^2.$$

Calculemos cómo será entonces la función m. Dados $x,y \in \mathbb{R}$, notamos por $\xi = x + 2y$, quedándonos entonces:

$$\frac{m'(\xi)}{m(\xi)} = f(\xi)$$

Esta es una ecuación diferencial de variables separables. Integrando ambos lados de la ecuación, y notando por $F(\xi)$ a una primitiva de $f(\xi)$, se tiene:

$$\int \frac{d\xi}{m(\xi)} = \int f(\xi) d\xi$$
$$\ln |m(\xi)| = F(\xi)$$

Ejercicio 2. Comprueba que la ecuación diferencial

$$\frac{e^x}{y + e^x} + 2x + \frac{1}{y + e^x}y' = 0$$

es exacta. Encuentra la solución que cumple y(0) = 0.

Ejercicio 3. Demuestra que las funciones $f_1(t) = 1$, $f_2(t) = t^2$ y $f_3(t) = |t|^3 t$ son linealmente independientes en]-1,1[.

Ejercicio 4. En el intervalo I =]-1,1[se dan dos funciones $A \in C^1(I), \beta \in C(I)$ y se define

$$x(t) = 3e^{A(t)} - 2e^{A(t)} \int_0^t e^{-A(s)} \beta(s) \, ds.$$

Encuentra una ecuación lineal de primer orden para la que la función x(t) sea solución.

Ejercicio 5. Sea una función $f: \mathbb{R} \to \mathbb{R}$ de clase C^1 y con inversa $g = f^{-1}: \mathbb{R} \to \mathbb{R}$ también de clase C^1 . Para cada $\lambda \in \mathbb{R}$ se define el cambio de variable en el plano $\varphi_{\lambda}: \mathbb{R}^2 \to \mathbb{R}^2$, $(t, x) \mapsto (s, y)$ por las fórmulas

$$s = t$$
, $y = f(g(x) + \lambda)$.

Demuestra que $\mathcal{G} = \{\varphi_{\lambda} \mid \lambda \in \mathbb{R}\}$ es un grupo de difeomorfismos del plano.