Winnerless Competition in Neuroscience

M. Ivanchenko, UoL M. Rabinovich, UCSD

The Team

NONLINEAR DYNAMICS

Mikhail Rabinovich Valentin Afraimovich

OLFACTORY SYSTEM

Ramon Huerta

Alex Volkovskii

Valentin Zhigulin

Henry Abarbanel

Gilles Laurent

SONGBIRD

Ramon Huerta Marta Garcia-Sanches

CLIONE

Rafael Levi Pablo Varona YuriArshavsky Allen Selverston

Vision:

Rabinovich MI, Huerta R, Laurent G. Transient Dynamics for Neural Processing, Science 321: 48, 2008.

• Maths:

Afraimovich VS, Rabinovich MI, Varona P. Heteroclinic Contours in Neural Ensembles and the Winnerless Competition Principle. International Journal of Bifurcation and Chaos, Vol. 14(4): 1195-1208, 2004.

Neuroscience:

Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI. Dynamical Principles in Neuroscience. Reviews of Modern Physics 78(4): 1213, 2006.

- Transient dynamics and winnerless competition in neuroscience
- Heteroclinic sequencies in asymmetric networks
- Beyond the rate model

Single neurons: modelling

Rabinovich, Varona, Selverston, Abarbanel, Reviews of Modern Physics **78**, 1213, 2006

Single neurons: diversity

Rabinovich, Varona, Selverston, Abarbanel, Reviews of Modern Physics **78**, 1213, 2006

Small scale: mini-circuits

Invertebrate CPGs

Rev. Mod. Phys., Vol. 78, No. 4, October-December 2006

Large scale: the brain

fMRI: activation patterns

Familiar objects

Novel objects

De Beeck, Haushofer, Kanwisher, Nature Reviews Neurosciense, **9**, 123, 2008

Synapses

Electrical

Coding

Models: neurons

Rate models

$$\dot{a}_i(t) = F_i(a_i(t))[G_i(a_i(t)) - \Sigma_i \rho_{ii} Q_i(a_i(t))]$$

Hodgkin-Huxley
$$C\dot{v}(t) = g_L[v_L - v(t)]$$

 $+ gN_a m(t)^3 h(t)[vN_a - v(t)]$
 $+ gKn(t)^4(v_K) - v(t) + I,$
 $m\dot{(}t) = \frac{m_\infty(v(t)) - m(t)}{\tau_m(v(t))}$
 $h\dot{(}t) = \frac{h_\infty(v(t)) - h(t)}{\tau_h(v(t))}$
 $n\dot{(}t) = \frac{n_\infty(v(t)) - n(t)}{\tau_h(v(t))}$

 $a_i(t) > 0$ is the spiking rate of the *i*th neuron or cluster; ρ_{ij} is the connection matrix; and F, G, Q are polynomial functions.

v(t) is the membrane potential, m(t), and h(t), and n(t)represent empirical variables describing the activation and inactivation of the ionic conductances; I is an external current. The steady-state values of the conductance variables $m_{\infty}, h_{\infty}, n_{\infty}$ have a nonlinear voltage dependence, typically through sigmoidal or exponential functions.

Types

Izhikevich, IEEE Trans. Neural Networks, 2004

Models: synapses

Electrical: diffusive $I_{syn}(t) = g_{syn}(V_{post} - V_{pre})$

Chemical: integrators $I_{syn}(t) = g_{syn}r(t)(V_{post}-E_{syn})$; dr/dt = a[T](1-r)-br

Excitatory

-20 I_{syn} -50 -60 V_{syn} -7010 15 20 25 0 5 10 15 t (msec) t (msec)

Inhibitory

Destexhe, Mainen, Sejnowsky, Neural Comp., 1994

Dynamical systems

$$x'' + \sin(x) = 0 \qquad \begin{aligned} x' &= y \\ y' &= -\sin(x). \end{aligned}$$

- 1. Equilibria: centre (stable), saddle (unstable)
- 2. Periodic orbits
- 3. Heteroclinic/Homoclinic trajectories

Stability

Lyapunov

Stability

Equilibria in 2D

Equilibria in 3D

Limit cycles

Heteroclinic sequences

Lottka-Volterra model: competition between three species

$$\begin{split} \dot{a}_1 &= a_1 [1 - (a_1 + \rho_{12} a_2 + \rho_{13} a_3)] \\ \dot{a}_2 &= a_2 [1 - (a_2 + \rho_{21} a_1 + \rho_{23} a_3)] \\ \dot{a}_3 &= a_3 [1 - (a_3 + \rho_{31} a_1 + \rho_{32} a_3)] \end{split}$$

May and Leonard, 1975

Chaotic attractors

Rossler attractor

Hodgkin-Huxley model

Attractors	Dynamics	Trajectories in State Space	Time Series	Topological Structure	Dimension	Lyapunov Spectrum	Poincare Section
Equilibrium Point	Static			Point	0	λ _i ≪0	
Limit Cycle	Peziodic			R/Z	1	λ _f =0 λ _i <0 (i≠1)	•
Torus	Quasi-Periodic			R ^k /Z ^k	k	$\lambda_i=0$ $(i=1,2,,k)$ $\lambda_i<0$ $(otherwise)$	
Strange Attractor	Chaotic			Fractal	Real Number	$\begin{array}{c} \lambda_i > 0 \\ (i=1,2,\ldots,n) \\ \lambda_i = 0 \\ (i=n+1,\ldots,m) \\ \lambda_i < 0 \\ (otherwise) \end{array}$	

Computing with attractors

Associative memory: multi-stable system with convergence to one of the limiting sets from some initial condition/under some stimulus

Hopfield network

Transient dynamics

- Computation by attractors ignores dynamics, hence, is slow
- Equilibria or limit cycles cannot be realistically reached on often short timescales of neural computation
- No need for a classical attractor state
- No need for "resetting"

Transient dynamics

Small systems - periodic

Large systems - sequential

- Stability
- Robustness
- Variability

Decision-making

Pyloric rhythm of lobster stomatogastric ganglion

HVC Songbird patterns

Odor sensing (locust antennal lobe)

Clione's hunting

Clione (Sea angel)

Sea-butterfly

Winner-take-all

Winnerless competition

Summary

- Neurons exchange electrical signals and can be described by dynamical equations
- Neural networks: attractor computation or transient dynamics?
- Transient dynamics: robustness, reproducibility, variability
- Image: stable heteroclinic sequences
- Mathematics to follow...