- Paralelismo a nivel de instrucciones
 - Procesadores segmentados (pipeline) 80'
 - Ejecución múltiple (multiple issue):
 Superescalares (planificación dinámica) 90',
 - Superescalares (planificación dinamica) 90VLIW (planificacióni estática)
 - Rendimiento
- Paralelismo a nivel de procesadores
- Arquitecturas multiprocesador (2004),
 - Arquitecturas multiprocesador (2004),
 Arquitecturas multicomputador (2010).
- Mix de unidades de procesamiento con arquitecturas diferentes
 - Arquitecturas específicas para ciertas aplicaciones o cálculo

- Paralelismo a nivel de instrucciones:
 - Procesadores segmentados (pipeline),

FIGURE 4.69 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction

¿Qué más hace falta para aprovechar esta microarquitectura?

FIGURE 4.69 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction

¿Qué más hace falta para aprovechar esta microarquitectura?

Suponga este programa:

```
Iw $t1, 0($t0)
Iw $t2, 4($t0)
Iw $t3, 8($t0)
Iw $t4, 12($t0)
Iw $t5, 16($t0)
add $s3, $t1, $t1
sub $s4, $t2, $t2
add $s5, $t3, $t3
and $s6, $t4, $t4
```


FIGURE 4.69 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction

¿Qué más hace falta para aprovechar esta microarquitectura?

Suponga este programa:

¿Qué más hace falta para aprovechar esta microarquitectura?

Suponga este programa:

El COMPILADOR debe encargarse (planificación estática)

FIGURE 4.69 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction

Ejecución múltiple con planificación estática:

- Tiene sus limitaciones:
 - No es posible sostener el mejor rendimiento de manera sostenida.
 - Si la microarquitectura cambia se debe volver a recompilar.
 - o TBC

FIGURE 4.69 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction

Procesadores de altas prestaciones

- Paralelismo a nivel de instrucciones
 Ejecución múltiple (multiple issue):
 - Superescalares,
 - VLIW

- Paralelismo a nivel de instrucciones
 Ejecución múltiple (multiple issue):
 - VLIW (planificacióni estática),

- Paralelismo a nivel de instrucciones
 Ejecución múltiple (multiple issue):
 - VLIW (planificacióni estática) vs superscalar

- Paralelismo a nivel de instrucciones
 Ejecución múltiple (multiple issue):
 - VLIW (planificacióni estática)

Instr.	load/store & saltos	ALU FX	ALU FP
1	ld f0, 0(r1)	nop	nop
2	ld f0, 0(r1-8)	nop	nop
3	ld f0, 0(r1-16)	nop	addd f4, f0, f2
4	ld f0, 0(r1-24)	nop	addd f8, f6, f2
5	ld f0, 0(r1-32)	nop	addd f12, f10, f2
6	sd f0, 0(r1)	nop	addd f16, f14, f2
7	sd f0, 0(r1-8)	nop	addd f20, f18, f2
8	sd f0, 0(r1-16)	nop	nop
9	sd f0, 0(r1-24)	nop	nop
10	sd f0, 0(r1-32)	subi r1, r1, #8	nop
11	nop	nop	nop
12	bnez r1, lazo	nop	nop
13	nop	nop	nop

- Paralelismo a nivel de instrucciones
 - Procesadores segmentados (pipeline)
 - Ejecución múltiple (multiple issue):
 - Superescalares (planificación dinámica),
 - VLIW (planificacióni estática)

¿Qué mejora la segmentación?

Tiempo de ejecución = Número de instrucciones × CPI × Tiempo de ciclo

o bien, dado que la frecuencia es el inverso del tiempo de ciclo:

Tiempo de ejecución =
$$\frac{\text{Número de instrucciones} \times \text{CPI}}{\text{Frecuencia de reloj}}$$

Estas fórmulas son especialmente útiles porque distinguen los tres factores claves que influyen en las prestaciones. Estas fórmulas se pueden utilizar para comparar dos realizaciones diferentes o para evaluar un diseño alternativo si se conoce el impacto en estos tres parámetros.

Componentes de las prestaciones	Unidades de medida
Tiempo de ejecución de CPU de un programa	Segundos por programa
Número de instrucciones	Número de instrucciones ejecutadas por el programa
Ciclos por instrucción (CPI)	Número medio de ciclos por instrucción
Tiempo de cíclo del reloj	Segundos por ciclo de reloj

- Paralelismo a nivel de instrucciones
 - Procesadores segmentados (pipeline)
 - Ejecución múltiple (multiple issue):
 - Superescalares (planificación dinámica),
 - VLIW (planificacióni estática)

¿Qué mejora la ejecución múltiple?

Tiempo de ejecución = Número de instrucciones × CPI × Tiempo de ciclo

o bien, dado que la frecuencia es el inverso del tiempo de ciclo:

Estas fórmulas son especialmente útiles porque distinguen los tres factores claves que influyen en las prestaciones. Estas fórmulas se pueden utilizar para comparar dos realizaciones diferentes o para evaluar un diseño alternativo si se conoce el impacto en estos tres parámetros.

Componentes de las prestaciones	Unidades de medida
Tiempo de ejecución de CPU de un programa	Segundos por programa
Número de instrucciones	Número de instrucciones ejecutadas por el programa
Ciclos por instrucción (CPI)	Número medio de ciclos por instrucción
Tiempo de cíclo del reloj	Segundos por ciclo de reloj

- Paralelismo a nivel de instrucciones
 - Procesadores segmentados (pipeline)
 - Ejecución múltiple (multiple issue):
 - Superescalares (planificación dinámica),
 - VLIW (planificacióni estática)

¿Qué mejora la ejecución múltiple?

Tiempo de ejecución = Número de instrucciones × CPI × Tiempo de ciclo

o bien, dado que la frecuencia es el inverso del tiempo de ciclo:

Tiempo de ejecución =
$$\frac{\text{Número de instrucciones} \times \text{CPI}}{\text{Frecuencia de reloj}}$$

Estas fórmulas son especialmente útiles porque distinguen los tres factores claves que influyen en las prestaciones. Estas fórmulas se pueden utilizar para comparar dos realizaciones diferentes o para evaluar un diseño alternativo si se conoce el impacto en estos tres parámetros.

Componentes de las prestaciones	Unidades de medida
Tiempo de ejecución de CPU de un programa	Segundos por programa
Número de instrucciones	Número de instrucciones ejecutadas por el programa
Ciclos por instrucción (CPI)	Número medio de ciclos por instrucción
Tiempo de ciclo del reloj	Segundos por ciclo de reloj