

Monosaccharides

Subject & topics	: Biology	Biochemistry	Carbohydrates	Stage & difficulty: A Level P1	
Part A					
Hexose for	mula				
What is the ch	nemical fo	rmula for a h	exose monosaco	charide?	

Part B Pentose vs hexose	
Vhich of the following are pentose monosaccharides?	
glucose	
fructose	
ribose	
deoxyribose	
galactose	
maltose	
Vhich of the following are hexose monosaccharides?	
glucose	
fructose	
ribose	
deoxyribose	
galactose	
maltose	

Identify the monosaccharides

All hexose monosaccharides have the same molecular formula but different arrangements of the atoms in space i.e. they are isomers.

Six monosaccharides are shown below. Some are hexose monosaccharides and others are pentose monosaccharides.

Image A is α -glucose.

A: alpha-glucose

С

Ε

F

Identify the other monosaccharides in the table below using the following information:

- β -glucose has the same structure as α -glucose except that the OH group and H atom bonded to the C1 have switched positions
- β -galactose has the same structure as β -glucose except that the OH group and H atom bonded to C4 have switched positions
- fructose has a five-membered ring whereas glucose has a six-membered ring
- ribose has an OH group bonded to the C2

Monosaccharide	Image
lpha-glucose	A
eta-glucose	

eta-galactose	
eta-fructose	
ribose	
deoxyribose	
Items:	
BCDEF	

Created for isaacphysics.org by Lewis Thomson

Disaccharides

Subject & topics: Biology | Biochemistry | Carbohydrates Stage & difficulty: A Level P1

Part A Name the disaccharide
Which disaccharide is formed by the condensation of two glucose molecules?
Which disaccharide is formed by the condensation of one glucose molecule and one fructose molecule?
Which disaccharide is formed by the condensation of one glucose molecule and one galactose molecule?

Part B $lpha$ and eta glycosidic bonds
is formed from two glucose molecules bonded by , which means that the $C1$ of one $\alpha-$ glucose connects (via oxygen) to the $C4$ of the next glucose (which may be $\alpha-$ or $\beta-$ glucose).
is formed from one galactose and one glucose molecule bonded by , which means that the $C1$ of the $\beta-$ galactose connects (via oxygen) to the $C4$ of the glucose (which may be $\alpha-$ or $\beta-$ glucose).
is formed from one glucose and one fructose molecule bonded by , which means that the $C1$ of the $lpha-$ glucose connects (via oxygen) to the $C2$ of the $eta-$ fructose.
$\boxed{ \text{an } \alpha-1,\beta-2 \text{ bond} } \boxed{ \text{a} \ \beta-1,4 \text{ bond} } \boxed{ \text{an } \alpha-1,4 \text{ bond} } \boxed{ \text{Maltose} } \boxed{ \text{Sucrose} } \boxed{ \text{Lactose} }$
Part C Disaccharide formula
A disaccharide is produced by a condensation reaction between two hexose monosaccharides. What is the chemical formula for a disaccharide?

Three hexose monosaccharides are shown below.

alpha-glucose

beta-galactose

beta-fructose

Identify the disaccharides below.

В

С

Image	Disaccharide
А	
В	
С	

Items:
sucrose maltose lactose

Created for isaacphysics.org by Lewis Thomson

Question deck:

Polysaccharides

Part A Starch	
Starch is the ramylose and a	main energy storage carbohydrate of plants. It is a mixture of two types of polysaccharides: amylopectin.
	s an unbranched, coiled chain of hundreds to thousands of glucose molecules bonded by bonds.
	s a branched molecule. Shorter chains of glucose molecules bonded by bonds anching points via bonds.
tems:	
$oxed{lpha-1,6}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Part B Glycogen
Glycogen is the main energy storage carbohydrate of animals. In humans it is mostly found in the liver and in skeletal muscles. It is similar in structure to, but is more highly branched (i.e. branching points occur more frequently). It consists of short chains of glucose molecules (bonded by bonds) connected to each other at branching points via bonds.
Items:
$egin{array}{c} eta-1,6 \end{array}$ (amylose) (amylopectin) $a=1,4$ ($a=1,4$) ($a=1,4$) ($a=1,4$)
Part C Cellulose
Cellulose is the main structural carbohydrate of plants, and forms the basis of their . It is an unbranched, straight chain of hundreds to thousands of glucose molecules bonded by bonds. The glucose molecules alternate in direction (top-bottom), which allows long, straight chains to form. These long chains are bonded by hydrogen bonds to form , which associate to form which associate to form cellulose fibres.
Items:
$\boxed{ \text{cell walls} \boxed{\beta-1,4} \boxed{ \text{cell membranes} \boxed{\beta-1,6} \boxed{ \text{macrofibrils} \boxed{\alpha-1,6} \boxed{ \text{microfibrils} \boxed{\alpha-1,4} }$

Identify the polysaccharide

Figure 1: Simplified structures of $\alpha-$ and $\beta-$ glucose. The numbers of the 6 carbons in each glucose molecule are shown. Projections from carbons 1 and 4 represent hydroxyl groups. The hydroxyl groups attached to carbons 2 and 3 are not shown.

Each image below represents a part of a different polysaccharide, using the simplified structures of $\alpha-$ and $\beta-$ glucose shown in Figure 1.

Α

В

D

Match the polysaccharide to the image above.

В	
В	
С	
D	

glycogen	cellulose	galactose	amylose	maltose	amylopectir
grycogen	centitiose	guidelose	uniytose	mattose	diffytopecti

Created for isaacphysics.org by Lewis Thomson

Question deck:

Carbohydrate Condensation

Subject & topics: Biology | Biochemistry | Carbohydrates Stage & difficulty: A Level P1 Part A Carbohydrate bonding What kind of bond is formed between saccharides during condensation reactions? Part B How much water? How many molecules of water would be released in a condensation reaction of $1\,000~\alpha$ —glucose molecules to form one amylose molecule?

Carbohydrate	Monomers	Bonds
Glycogen		
Amylose		
Amylopectin		
Cellulose		
ose β -glucose $\alpha - 1, 4$ only		

Question deck:

Carbohydrate Hydrolysis

rt A nzymes & products		
Carbohydrate	Hydrolysis catalysed by	Product(s) of hydrolysis
Maltose		
Lactose		
Starch		
Cellulose		
ns: lucose and galactose	amylase) (glucose only) (maltase) (maltos	se and/or glucose) (cellulase)(starchase

Part B Hydrolysis in humans
Which enzyme(s) do humans not have a gene for?
cellulase
lactase
amylase
maltase
Created for isaacphysics.org by Lewis Thomson

Question deck:

Carbohydrate Practicals

Part A Testing for reducing sugars
What is the name of the test used to determine if reducing sugars are present in a solution?
Fill in the blanks to explain how this test works.
The carbohydrate solution is added to : an alkaline solution containing copper(II) sulfate
solution. The mixture is then heated. If reducing sugars are present, the solution will change colour from
to (low concentration of reducing sugars), (medium concentration of reducing sugars), or (high concentration of reducing sugars). The colour change is due to
copper(II) ions being reduced to copper(I) oxide.
Items:
green Benedict's reagent the Biuret reagent red blue (iodine solution) (yellow/orange)

Part B Reducing sugar or not?
Which of the following are reducing sugars? Select all that apply.
maltose
glucose
starch
cellulose
galactose
lactose
sucrose
Part C
Testing for starch
To test for the presence of starch, a solution of and potassium iodide is added to the sample. starch is present, the solution will change colour from to This colour change is
due to a reaction between iodide ions and the molecules in starch.
Items:
[blue/black] (amylopectin) (yellow/brown) (Benedict's reagent) (iodine) (amylose)
(Jeneuloto reagent) (Jeneuloto reagent) (Jeneuloto reagent)
reated for isaacphysics.org by Lewis Thomson