Optimization

Lusine Poghosyan

YSU

December 4, 2020

Newton's Method

Let $f \in \mathbb{C}^2(\mathbb{R}^n)$ and our aim is to find the minimizer of f.

Let $x^{(0)} \in \mathbb{R}^n$ be the starting point. Then we construct a quadratic function that matches its value, first and second derivatives at $x^{(0)}$ with that of the function f. This quadratic function has the form

$$q(x) = f\left(x^{(0)}\right) + \nabla f\left(x^{(0)}\right)^{T} \left(x - x^{(0)}\right) + \frac{1}{2} \left(x - x^{(0)}\right)^{T} \nabla^{2} f\left(x^{(0)}\right) \left(x - x^{0}\right).$$

Then, instead of minimizing f, we minimize its approximation q.

The FONC for q yields

$$\nabla q(x) = \nabla f\left(x^{(0)}\right) + \nabla^2 f\left(x^{(0)}\right)\left(x - x^{(0)}\right) = 0.$$

The solution of this system

$$x^{(1)} = x^{(0)} - \left[\nabla^2 f(x^{(0)})\right]^{-1} \nabla f(x^{(0)})$$

will be our next approximation. Reapplying this procedure we get the sequence defined by Newton's Method

$$x^{(k+1)} = x^{(k)} - \left[\nabla^2 f(x^{(k)})\right]^{-1} \nabla f(x^{(k)}), \quad k = 0, 1, \dots$$

The *k*-th iteration can be written in two steps:

- **1.** Solve $\nabla^{2} f(x^{(k)}) d^{(k)} = -\nabla f(x^{(k)})$.
- **2.** Set $x^{(k+1)} = x^{(k)} + d^{(k)}$.

- The convergence is local.
- Suppose that $f \in C^3$ and $x^* \in \mathbb{R}^n$ is a point such that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is invertible. Then, for all $x^{(0)}$ sufficiently close to x^* , Newton's method is well-defined for all k and converges to x^* with an order of convergence at least 2.
- The direction of search is

$$d^{(k)} = -\left[\nabla^2 f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right).$$

If $\nabla^2 f(x^{(k)})$ is positive definite, then $d^{(k)}$ is a descent direction.

Modification of Newton's method

The step size is usually $\alpha_k = 1$ but sometimes one takes other step size and gets

$$x^{(k+1)} = x^{(k)} - \alpha_k \left[\nabla^2 f\left(x^{(k)}\right) \right]^{-1} \nabla f\left(x^{(k)}\right), \quad k = 0, 1, \dots$$

For example we can take

$$\alpha_k = \operatorname{arg\,min}_{\alpha \ge 0} f\left(x^{(k)} - \alpha \left[\nabla^2 f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)\right)$$

to ensure that $f(x^{(k+1)}) < f(x^{(k)})$.

Stopping conditions

- $||\nabla f(\mathbf{x}^{(k)})|| < \varepsilon$
- $||x^{(k+1)} x^{(k)}|| < \varepsilon$ or $\frac{||x^{(k+1)} x^{(k)}||}{||x^{(k)}||} < \varepsilon$ if $||x^{(k)}|| \neq 0$
- $|f(x^{(k+1)}) f(x^{(k)})| < \varepsilon \text{ or } \frac{|f(x^{(k+1)}) f(x^{(k)})|}{|f(x^{(k)})|} < \varepsilon \text{ if } f(x^{(k)}) \neq 0.$

Assume we want to use the Newton's Method to minimize

$$f(x_1, x_2) = 2x_1^2 + x_2^2 - 2x_1x_2.$$

We start with $x^{(0)} = (1,1)^T$. Calculate $x^{(2)}$ by using the Newton's Method. Explain why after one iteration we have that $\nabla f(x^{(1)}) = 0$.

Nonlinear Constrained Optimization

minimize
$$f(x)$$
 subject to $x \in \Omega$, (1)

where $f: \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$. Here, we are going to consider minimization problems, for which the constraint set Ω is given by

$$\Omega = \left\{ x \in \mathbb{R}^n : \, h_i(x) = 0, \, \text{for} \, i = 1, \dots m, \, g_j(x) \leq 0, \, \text{for} \, j = 1, \dots p \right\},$$

where $h_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, ..., m, m \le n$ and $g_j : \mathbb{R}^n \to \mathbb{R}$ for j = 1, ..., p are given functions.

minimize
$$f(x)$$

subject to $h_i(x) = 0, \quad i = 1, \dots m,$
 $g_j(x) \le 0, \quad j = 1, \dots p$

or

minimize
$$f(x)$$

subject to $h(x) = 0$,
 $g(x) \le 0$,

where $h: \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$ and $g: \mathbb{R}^n \to \mathbb{R}^p$.

Consider the following optimization problem:

minimize
$$(x_1 - 1)^2 + x_2 - 2$$

subject to $x_2 - x_1 = 1$,
 $x_1 + x_2 \le 2$.

Problems with equality constraints

minimize
$$f(x)$$

subject to $h_i(x) = 0$, $i = 1, ... m$.

We will assume that f, h_i for i = 1, ..., m are continuously differentiable functions on \mathbb{R}^n .

Definition

A point x^* satisfying the constraints $h_i(x^*) = 0$, i = 1, ..., m is said to be a regular point of the constraints, if the gradient vectors $\nabla h_1(x^*), ..., \nabla h_1(x^*)$ are linearly independent. When m = 1, this means $\nabla h_1(x^*) \neq 0$

Consider following constraints $h_1(x) = x_1$ and $h_2(x) = x_2 - x_3^2$ on \mathbb{R}^3 . Show that all feasible points are regular points.

Theorem (Lagrange's Theorem, First Order Necessary Condition)

Let x^* be a local minimizer (maximizer) of $f: \mathbb{R}^n \to \mathbb{R}$ subject to $h_i(x) = 0$, $h_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \ldots m$, $m \le n$. Assume f, h_i for $i = 1, \ldots m$ are continuously differentiable functions and x^* is a regular point. Then, there exists $\lambda^* \in \mathbb{R}^m$ such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0.$$

We refer to the vector λ^* as the Lagrange multiplier vector, and its components as Lagrange multipliers.

It's convenient to introduce the Lagrangian function $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, given by

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x).$$

The necessary condition for x^* to be a local minimizer will be

$$\nabla \mathcal{L}(\mathbf{x}^*, \lambda^*) = \mathbf{0}$$

for some $\lambda^* \in \mathbb{R}^m$.

Consider the following optimization problem:

minimize
$$f(x)$$

subject to $h(x) = 0$,
where $f(x) = x$ and $h(x) = \begin{cases} x^2 & \text{if } x < 0, \\ 0 & \text{if } 0 \le x \le 1, \\ (x-1)^2 & \text{if } x > 1. \end{cases}$

Assume we want to find the extremum points of $f(x_1, x_2) = x_1^2 + x_2^2$ subject to $x_1^2 + 2x_2^2 = 2$. Use Lagrange's theorem to find all possible local extremum points.