

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/974,759	10/09/2001	Stephen D. Rank	IMMR-0142	7035
60140	7590	12/11/2007	EXAMINER	
IMMERSION -THELEN REID BROWN RAYSMAN & STEINER LLP P.O. BOX 640640 SAN JOSE, CA 95164-0640			KUMAR, SRILAKSHMI K	
		ART UNIT	PAPER NUMBER	
		2629		
		MAIL DATE	DELIVERY MODE	
		12/11/2007	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)
	09/974,759	RANK, STEPHEN D.
	Examiner	Art Unit
	Srilakshmi K. Kumar	2629

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 07 February 2007.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 2,4-7, 10, 22-25, 27 and 28 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 2, 4-7, 10, 22-25, 27 and 28 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
- 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
- 3) Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date _____
- 4) Interview Summary (PTO-413)
Paper No(s)/Mail Date. _____
- 5) Notice of Informal Patent Application
- 6) Other: _____

DETAILED ACTION

The following office action is in response to the Request for Continued Examination, filed on September 27, 2007. Claims 2, 4-7, 10, 22-25, 27 and 28 are pending. Claims 2, 22 and 28 have been amended.

Claim Rejections - 35 USC § 101

1. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

2. Claims 22-25 and 27 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter.

Claim 22 is directed to “a computer readable medium having code stored thereon capable of being read by a *machine*” which represents unacceptable statutory language. Applicant is directed to the USPTO Interim Guidelines for Patent Subject Matter Eligibility pages 53-55 for guidance on proper statutory language.

With respect to dependent claims 23, 24, 25 and 27, these claims are rejected under 35 USC 101 as they depend upon a rejected base claim, and they do not contain limitations to overcome the non-statutory rejection.

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Art Unit: 2629

4. Claims 2, 4,10, 22, 24, 27 and 28 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chang et al (US 6,285,351) in view of Thorner et al (6,422,941).

With regard to claim 2, Chang et al. teaches a method (SEE Chang et al. title "DESIGNING FORCE SENSATIONS FOR COMPUTER APPLICATIONS INCLUDING SOUNDS" abstract and figure 1), comprising: storing at least a portion of sound data in a memory buffer of a computer (SEE Chang et al. figure 1, shows a "HOST COMPUTER SYSTEM" that has an audio output for games, and column 3, lines 15-23, see "list" of sounds, wherein it is inherent that the computer stores sound data in a memory), wherein the sound data is to be analyzed by a processor (item 16) to output a haptic effect therefrom (col. 3, lines 5-35); analyzing the portion of sound data using to identify at least one sound feature from the portion of sound data (SEE Chang et al. column 3, lines 15-22 and figure 8, item 512, column 15, lines 65-67), and executing at least one haptic effect based on the one or more sound features the haptic effect being associated with the portion of sound data (SEE Chang et al. column 2, lines 29-67, column 3, lines 1-40 and column 15, lines 1-39).

Chang et al teach wherein the sound is associated with a periodic haptic effect in col. 3, lines 9-35. Chang et al. does not illustrate, dividing at least a portion of sound data into a plurality of frequency ranges and analyzing at least one of the frequency ranges to determine one or more sound features corresponding to at least one of the frequency ranges. However Thorner et al. shows a "Universal Tactile Feedback System for Computer Video Games and Simulations" which teaches, the analyzing including identifying at least one frequency component of a sound feature, the at least one frequency component being from a first frequency range" (SEE Thorner et al. figure 1, items 100, 102, 103, 112, figure 3, items 310,330, figure 4, items 430, 440, 450,

Art Unit: 2629

340, figure 11, items 1110, 1120, and 1130, column 2, lines 52-65), column 8, lines 57-66, Col. 9, lines 53-67, column 11, lines 17-40). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the Chang et al. apparatus to have the above features as taught by Thorner et al. because Chang et al. indirectly suggest it in column 15, line 32-39, where he states; "In alternate embodiments, different methods can be used to assign sounds. For example, a sound might be assigned directly to a force sensation (or vice-versa). Whenever the force sensation is output, the associated sound is also output." This vice-versa language is clearly suggestive of the feature whenever the sound is output, the associated force sensation is also output. Since Chang et al. lacks the details as to how to automatically recognize a specific sound from a game as taught by Thorner et al. Chang et al. would have been motivated to use the well known Thorner et al. method of analyzing the frequency of the sound. The modifications provided by Thorner et al. al. would give the Chang et al. apparatus more utility because Thorner et al. provides a Host independent section that facilitates the playing of old games that had sound but no force feedback whereby because of its ability to recognize the game sounds it enhances the game with force feedback.

With regard to claim 10 the combination of Chang et al. and Thorner et al. teaches the method of claim 2, wherein the at least one haptic effect was previously mapped to the at least one sound feature (SEE Chang et al. column 15, lines 20-24 and 32-38).

With regard to claim 4 the combination of Chang et al. and Thorner et al. was shown in claim 1 above to read on most of the limitations of claim 4 in addition the combination of Chang et al. and Thorner et al. teaches wherein the portion of sound is divided into a plurality of frequency ranges by applying a plurality of filters to the portion of sound data (SEE Thorner et

Art Unit: 2629

al. figure 4, item 430 =BASS AUDIO FILTER", item 440 "MIDRANGE AUDIO FILTER" 450 "TREBBLE AUDIO FILTER"), and identifying a sound feature associated with at least one frequency component from the plurality of frequency components (SEE Thorner et al. figure 4, item 340 and figure 12 BASS AUDIO ANALYSIS").

With regard to claim 5 the combination of Chang et al. and Thorner et al. teaches the method of claim 4, the plurality of filters having at least: a low-pass filter; and a high-pass filter (see Thorner et al. figure 4, item s 430 and 450).

With regard to claim 8 the combination of Chang et al. and Thorner et al. teaches the method of claim 4, wherein the at least one frequency component is each associated with a haptic effect related to the frequency range associated with the at least one frequency component (SEE Thorner et al. figure 12).

With regard to claim 9 the combination of Chang et al. and Thorner et al. teaches the method of claim 4, wherein the at least one frequency component is each uniquely associated with a periodic haptic effect having a frequency corresponding to the plurality of frequency ranges associated with the at least one frequency component (SEE Thorner et al. figure 11 and also SEE Chang et al. lines 15-22 "periodic").

With regard to claim 12 the combination of Chang et al. and Thorner et al. was shown in claims 1 and 4 above to read on most of the limitations of claim 12 in addition the combination of Chang et al. and Thorner et al. teaches the sound feature and haptic effect are characterized as being high-level (this recitation as to the relative level of importance of a sound or haptic effect such as being high is best directed towards an obvious intended use of the combination of Chang et al. and Thorner et al. because it is obvious that there would be a level of importance assigned

Art Unit: 2629

to sounds in order for the program to know what to do when it hears two or more sounds at the same time).

With regard to claim 13 the combination of Chang et al. and Thorner et al. teaches the method of claim 12, wherein the at least one high level haptic effect is associated with the at least one frequency component (SEE Thorner et al. figure 12).

With regard to claim 19 the combination of Chang et al. and Thorner et al. teaches the method of claim 12, wherein the least one high-level haptic effect is executed as a haptic sensation output by a haptic feedback device (SEE Chang et al. column 15, lines 32-38 and also SEE Thorner et al. figure 1, item 120).

With regard to claim 20 the combination of Chang et al. and Thorner et al. teaches the method of claim 12 wherein the at least one high-level haptic effect is stored in memory of the computer as a created haptic effect (SEE Chang et al. figure 8, items 510 and 511).

With regard to claim 14 the combination of Chang et al. and Thorner et al. was shown in claims 1,4, and 12 above to read on most of the limitations of claim 14, in addition the combination of Chang et al. and Thorner et al. teaches, "the analyzing including separating the portion of sound data into a plurality of frequency components associated with a plurality of frequency ranges by applying a plurality of filters to the portion of sound data(SEE Thorner et al. figure 4, item 430 "BASS AUDIO FILTER", item 440 "MIDRANGE AUDIO FILTER" 450 "TREBBLE AUDIO FILTER"), and identifying a sound feature associated with at least one frequency component from the plurality of frequency components (SEE Thorner et al. figure 4, item 340 and figure 12 "BASS AUDIO ANALYSIS").

With regard to claim 17 the combination of Chang et al. and Thorner et al. teaches the method of claim 14, wherein the at least one frequency component is each associated with a haptic effect related to the frequency range associated with the plurality of frequency components (SEE Thorner et al. figure 12).

With regard to claim 18 the combination of Chang et al. and Thorner et al. teaches the method of claim 1.4, wherein the at least one frequency component is each uniquely associated with a periodic haptic effect having a frequency corresponding to the plurality of frequency ranges associated with the at least one frequency component (SEE Thorner et al. figure 11 and also SEE Chang et al. lines 15-22 "periodic").

With regard to claim 22 the combination of Chang et al. and Thorner et al. was shown in claims 2 and 4, above to read on most of the limitations of claim 22, in addition the combination of Chang et al. and Thorner et al. teaches, teaches a computer readable medium having code stored thereon (SEE Thorner et al. figure 2, item 102 and also figure 3, items 342 and 344).

With regard to claim 23 the combination of Chang et al. and Thorner et al. teaches the computer readable medium of claim 22, wherein at least one haptic effect is associated with the at least one frequency component (SEE Thorner et al. figure 12).

With regard to claim 27 the combination of Chang et al. Thorner et al. teaches the computer readable medium of claim 22 wherein the at least one haptic effect was previously mapped to the at least one sound feature (SEE Chang et al. column 15, lines 20-24 and 32-38).

With regard to claim 24 the combination of Chang et al. and Thorner et al. was shown in claims 1,4, 12, 14 and 22 above to read on most of the limitations of claim 24, in addition the combination of Chang et al. and Thorner et al. teaches, the code to analyze including code to

Art Unit: 2629

separate the portion of sound data into a plurality of frequency components associated with a plurality of frequency ranges by applying a plurality of filters to the portion of sound data (SEE Thorner et al. figure 4, item 430 "BASS AUDIO FILTER", item 440 "MIDRANGE AUDIO FILTER" 450 =TREBBLE AUDIO FILTER"), and code to identify a sound feature associated with at least one frequency component from the plurality of frequency components (SEE Thorner et al. figure 4, item 340 and figure 12 =BASS AUDIO ANALYSIS").

With regard to claim 28 the combination of Chang et al. and Thorner et al. was shown in claims 2, 4 and 22 above to read on most of the limitations of claim 24, in addition the combination of Chang et al. and Thorner et al. teaches, an apparatus, comprising: the means for analyzing being configured to identify at least one frequency component of a sound feature, the at least one frequency component being from a first frequency range ((SEE Thorner et al. figure 1, items 100, 102, 103, 112, figure 3, items 310, 330, figure 4, items 430, 440, 450, 340, figure 11, items 1110, 1120, and 1130, column 2, lines 52-65), column 8, lines 57-66, column 9, lines 53-67, column 11, lines 17-40).

5. Claims 6, 7 and 25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chang et al in view of Thorner et al as applied to claims 2 and 24, above and further in view of Fineberg (US 5,842,163).

With regard to claims 6, 7, and 25 the combination of Chang et al. and Thorner et al. does not illustrate, the analyzing including: separating the portion of sound data into a plurality of frequency components associated with a plurality of frequency ranges using a fast Fourier transform (FFT), wherein a number of outputs from the fast Fourier transform are grouped to provide sound features associated with each frequency range from. the plurality of frequency

Art Unit: 2629

ranges". Thorner et al. instead performs separating the portion of sound data into a plurality of frequency components associated with a plurality of frequency ranges using a treble, midrange and bass audio filters. Note in column 8, lines 53-56 Thorner et al. states this section serves to filter and separate the audio signal into one or more filtered audio signals that are more amenable to manipulation by the micro controller 320. and then states in column 8, lines 57-64; =The analog audio signals leaving pre-processing section 310 are then sampled by analog-to-digital converters (ADCs) 330 to produce digital signals that are processed and analyzed by the processor 340 to generate the control signals for the tactile sensation generators. The processing of the audio signals are generally performed under the control of the micro controller 320 using the appropriate software application residing in the ROM 344." Therefore there is a clear suggestion to use an "appropriate software application" to perform the processing of the sound data, but there was little detail given therefore it is essential we use a processing method well known in the art for proper implementation of the combination of Chang et al. and Thorner et al. It is obvious that the well known text book mathematical process of using a fast Fourier transform (FFT) to convert the input sound time function into a frequency (power) spectrum would have been used. Fineberg teaches =method for recognizing a sampled sound signal in noise" (title), where 'and a minimum and maximum feature value for each frequency band" (figure 2, item 220) and determine power spectrum values for each pre-emphasized sampled sound signal" (figure 3) and see figure 4 "a representation of a power spectrum of a sampled sound signal with frequency filters imposed thereon" and further Fineberg states in column 3, lines 34-54; "The pre-emphasized sound signal samples for each analysis frame are band pass filtered by a series of filters covering different frequency bands. The filters may be applied in

any computational manner desired in either the time domain or the frequency domain. In the preferred embodiment, the filters are applied in the frequency domain. First, however, a power spectrum of the pre-emphasized sound signal samples in the analysis frames must be computed (320 of FIG. 3). The power spectrum is found by:

- a. The pre-emphasized sound signal samples in the analysis frame are multiplied by samples of a window function, or weighting function. Any window function may be applied. For purposes of explaining the present invention, a simple rectangular window is assumed (the window has a value of 1.0 for all samples).
- b. The Fourier Transform of the pre-emphasized sound signal samples in each windowed analysis frame is computed.
- c. Values for the power spectrum are obtained by squaring the Fourier Transform values."

It would have been obvious to one of ordinary skill in the art at the time the invention was made to further modify the combination Chang et al. and Thorner et al. apparatus to the use the processing method taught by Fineberg because as stated above Thorner et al. indirectly suggested it and Fineberg gave the motivation needed for using his processor for example he stated in column 1, line 13-15 "to sound recognition in a high or variable noise environment".

Response to Arguments

6. Applicant's arguments filed September 27, 2007 have been fully considered but they are not persuasive.

With respect to claim 22, applicant is directed to the 35 USC 101 rejection above. Claim 22 is directed to unacceptable statutory claim language. For information in regards to acceptable

statutory claim language applicant is requested to review the USPTO Interim Guidelines for Patent Subject Matter Eligibility pages 53-55.

Applicant's argue where the prior art does not teach a system that outputs haptic effects based on sound signals. Examiner, respectfully disagrees. Chang et al teaches in col. 3, lines 5-9 where other programs process the sound data and output haptic effects based on the sound.

Applicant argues where Chang et al and Thorner teach away from one another based on where Thorner states that its system operates without the direct support of the developer. Examiner, respectfully, disagrees. Thorner teaches where sound data is divided into a plurality of frequency ranges and further analyzes each range (SEE Thorner et al. figure 1, items 100, 102, 103, 112, figure 3, items 310,330, figure 4, items 430, 440, 450, 340, figure 11, items 1110, 1120, and 1130, column 2, lines 52-65), column 8, lines 57-66, Col. 9, lines 53-67, column 11, lines 17-40). This is combinable with Chang et al as Chang et al suggests different methods used to associated sounds and haptic effects in col. 15, lines 32-39.

Applicant argues where the combination of Chang et al and Thorner is inappropriate. Examiner, respectfully, disagrees. It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the Chang et al. apparatus to have the above features as taught by Thorner et al. because Chang et al. indirectly suggest it in column 15, line 32-39, where he states; "In alternate embodiments, different methods can be used to assign sounds. For example, a sound might be assigned directly to a force sensation (or vice-versa). Whenever the force sensation is output, the associated sound is also output." This vice-versa language is clearly suggestive of the feature whenever the sound is output, the associated force sensation is also output. Since Chang et al. lacks the details as to how to automatically recognize

a specific sound from a game as taught by Thorner et al. Chang et al. would have been motivated to use the well known Thorner et al. method of analyzing the frequency of the sound. The modifications provided by Thorner et al. al. would give the Chang et al. apparatus more utility because Thorner et al. provides a Host independent section that facilitates the playing of old games that had sound but no force feedback whereby because of its ability to recognize the game sounds it enhances the game with force feedback.

Applicant argues where Chang and Thorner fail to teach or suggest the analyzing of each frequency range is performed by a processor to determine one or more sound features corresponding to at least one of the frequency ranges. Examiner, respectfully, disagrees. Chang et al teach the feature of where a haptic effect is associated based on sound features, but does not teach the frequency range. Thorner teaches where sound data is divided into a plurality of frequency ranges. Therefore, the combination of Chang and Thorner teach the claimed limitation. Therefore, the limitations set forth by the instant application are taught by the combination of Chang in view of Thorner in view Fineberg.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Srilakshmi K. Kumar whose telephone number is 571 272 7769. The examiner can normally be reached on 9:00 am to 5:30 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Sue Lefkowitz can be reached on 571 272 3638. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2629

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Srilakshmi K Kumar
Examiner
Art Unit 2629

SKK
December 10, 2007

