Cyber Physical Systems - Discrete Models Exercise Sheet 6 Solution

Alper Ari aa508@uni-freiburg.edu Onur Sahin os141@uni-freiburg.de

November 25, 2023

Exercise 1: Linear Time Properties

Part A

- $\bullet \; T_1: \{A_0A_1A_2... \mid \forall i \in N_{>0} \; . \; a \not \in A_i\}$
- $T_2: \{A_0A_1A_2... \mid \forall i \in N : a \in A_i \to b \in A_{i+1}\}$
- $\bullet \ T_3: \{A_0A_1A_2... \mid \forall i \in N \ . \ a \in A_i \rightarrow b \not \in A_i\}$
- $\bullet \; T_4: \left\{A_0A_1A_2... \mid \overset{\infty}{\exists} i \in N \; . \; a \in A_i \right\}$
- $\bullet \ T_5: \left\{A_0A_1A_2... \mid \overset{\infty}{\exists} i \in N \ . \ a \not\in A_i\right\}$

Part B

- $\bullet T_1 : \{A_0 A_1 A_2 \dots \mid \forall i \in N : a \in A_i\}$
- $\bullet \; T_2: \left\{A_0A_1A_2... \; | \; \forall i \in N \; . \; a \in A_i \rightarrow a \in A_{i+1}\right\}$
- $\bullet \ T_3: \{A_0A_1A_2... \ | \ \forall i \in N \ . \ a \in A_i \wedge b \in A_i\}$
- $\bullet \ T_4: \left\{A_0A_1A_2... \mid \overset{\infty}{\exists} i \in N \ . \ b \in A_i \right\}$
- $T_5: \{A_0A_1A_2... \mid \forall i \in N : a \notin A_i\}$

Exercise 2: Starvation Freedom

Part A

We can prove that LIVE' \subseteq LIVE if we can show that all worlds in LIVE' is also in LIVE.

Let $w \in LIVE'$, we have the following cases:

Case 1: w doesn't have infinitely many wait₁s

In this case $w \in \text{LIVE}$ since w doesn't satisfy the predicate

 $\stackrel{\infty}{\exists} \in N$. wait $_1 \in A_i$, therefore doesn't need to satisfy $\stackrel{\infty}{\exists} \in N$. crit $_1 \in A_i$.

Case 2: w has infinitely many wait₁s

In this case, it follows that w also has infinitely many $\operatorname{crit}_1 s$ as well, because for all $\operatorname{wait}_1 \in A_i$ there must be a $\operatorname{crit}_1 \in A_j$ such that j comes after i. There can't be a "last" j that comes after all $\operatorname{wait}_1 s$, since there are infinitely many $\operatorname{wait}_1 s$. Which would mean that $\operatorname{crit}_1 s$ can be finitely many in this case. Since this is not possible, we can conclude that $w \in \operatorname{LIVE}$.

Same reasoning can be trivially applied to wait_2 and crit_2 as well.

Part B

Consider a language LIVE" s.t.:

$$\begin{split} \text{LIVE''} \coloneqq \begin{cases} \text{set of all infinite traces } A_0 A_1 A_2 ... s.t. \\ \forall i \in N \text{ . } \left(\text{wait}_1 \in A_i \to \exists j \in N \text{ . } j < i \land \text{crit}_1 \in A_j \right) \\ \forall i \in N \text{ . } \left(\text{wait}_2 \in A_i \to \exists j \in N \text{ . } j < i \land \text{crit}_2 \in A_j \right) \end{cases} \end{split}$$

We can follow a similar proof to the Part A to conclude LIVE" \subseteq LIVE. But LIVE" \nsubseteq LIVE' since ordering is reversed. Which means there is not necessarily a crit_1 after each wait₁ (And same for crit₂ and wait₂). Therefore, LIVE' is a *strictly stronger* property than LIVE.

Part C

No, because that system only enters crit_i after a wait_i is received. Therefore, ordering is always as described in LIVE'.

Part D

No, because of Part A, this is not a possible trace for any transition system.

Exercise 3: Trace Inclusion

Part A

 au_{P_1}

 τ_{P_2}

 $\tau_{P_{3a} \parallel P_{3b}}$

Part B

•
$$\left(\tau_{P_1},\tau_{P_2}\right)=$$
 true and $\left(\tau_{P_2},\tau_{P_1}\right)=$ true

Their transition systems are identical from Part A. Therefore, their traces are equivalent as well. Therefore, they are subset of each other in both directions.

$$\bullet \ \left(\tau_{P_1},\tau_{P_{3a} \ \| \ P_{3b}}\right) = \text{false and} \ \left(\tau_{P_2},\tau_{P_{3a} \ \| \ P_{3b}}\right) = \text{false}$$

Both au_{P_1} and au_{P_2} has the trace $\{x=0\}^\omega$ but $au_{P_{3a} \parallel \mid P_{3b}}$ doesn't.

-
$$\left(au_{P_1}, au_4 \right) = \mathrm{false}$$
 and $\left(au_{P_2}, au_4 \right) = \mathrm{false}$

Both τ_{P_1} and τ_{P_2} has the trace $\left\{x=0\right\}^\omega$ but τ_4 doesn't.

$$\bullet \ \left(\tau_{P_{3a} \ \| \ P_{3b}}, \tau_4\right) = \text{true and } \left(\tau_4, \tau_{P_{3a} \ \| \ P_{3b}}\right) = \text{true}$$

Both has the same set of traces:

•
$$\{x > 0\}^{\omega}$$

•
$$\{x>0\}^n \{x=0\}^\omega$$
 where $n \in N_{>0}$

Therefore, they are subset of each other.

$$\bullet \ \left(\tau_{P_{3a} \ \| \ P_{3b}}, \tau_{P_1}\right) = \text{true and } \left(\tau_{P_{3a} \ \| \ P_{3b}}, \tau_{P_2}\right) = \text{true}$$

Both au_{P_1} and au_{P_2} has all the traces $au_{P_{3a} \parallel P_{3b}}$ have so it satisfies the subset relation.

- $\{x > 0\}^{\omega}$: path q_1^{ω}
- $\{x > 0\}^n \{x = 0\}^{\omega}$: path $q_1^n q_2^{\omega}$ where $n \in N_{>0}$.
- $\left(\tau_4, \tau_{P_1}\right) = {\rm true} \; {\rm and} \; \left(\tau_4, \tau_{P_2}\right) = {\rm true}$

Both au_{P_1} and au_{P_2} has all the traces au_4 have so it satisfies the subset relation.

- $\{x>0\}^{\omega}$: path q_1^{ω}
- $\{x > 0\}^n \{x = 0\}^\omega$: path $q_1^n q_2^\omega$ where $n \in N_{>0}$.

Part C

This is not possible, because $au_{P_{3a} \parallel P_{3b}}$ and au_4 are subsets of au_{P_1} and au_{P_2} . So each E that satisfies the latter must necesarily satisfy the former ones due to transitivity.