V 1.0

# FIRMWARE MANUAL



# **TMCM-KR-842**

2-axes bipolar stepper
controller / driver
0.5A RMS / +24V
RS232\_TTL\_3V3 interface



TRINAMIC Motion Control GmbH & Co. KG Hamburg, Germany

www.trinamic.com



# **Table of contents**

| 1 | Life sup | pport policy               | 3  |
|---|----------|----------------------------|----|
| 2 | Feature  | 25                         | 4  |
| 3 | Overvie  | ew                         | 5  |
| 4 | TMCL™    | communication structure    | 6  |
|   | 4.1 Bir  | nary command format        | 6  |
|   | 4.2 Re   | ply format                 | 7  |
|   | 4.2.1    | Status codes               | 7  |
| 5 | TMCL™    | command overview           | 8  |
|   | 5.1.1    | Motion commands            | 8  |
|   | 5.1.2    | Parameter commands         | 8  |
|   | 5.1.3    | TMCL™ control command      | 8  |
|   | 5.2 Co   | mmands                     | 9  |
|   | 5.2.1    | ROR (rotate right)         | 10 |
|   | 5.2.2    | ROL (rotate left)          | 11 |
|   | 5.2.3    | MST (motor stop)           | 12 |
|   | 5.2.4    | MVP (move to position)     | 13 |
|   | 5.2.5    | SAP (set axis parameter)   | 14 |
|   | 5.2.6    | GAP (get axis parameter)   | 19 |
|   | 5.2.7    | TMCL™ control functions    | 25 |
| 6 | Axis pa  | rameters                   | 26 |
|   | 6.1 co   | olStep™ related parameters | 31 |
| 7 | stallGu  | ard2 <sup>TM</sup>         | 33 |
| 8 | Revisio  | on history                 | 34 |
|   | 8.1 Fir  | mware revision             | 34 |
|   | 8.2 Do   | ocument revision           | 34 |
| 9 | Referen  | nces                       | 34 |
|   |          |                            |    |

# 1 Life support policy

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.

Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

#### © TRINAMIC Motion Control GmbH & Co. KG 2011

Information given in this data sheet is believed to be accurate and reliable. However neither responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use.

Specifications are subject to change without notice.



### 2 Features

The TMCM-KR-842 is the gripper board for the KUKA youBot arm placed inside the gripper at the upper end of the arm. The main purpose of this board is controlling the two linear stepper motors (connected separately to the board) inside the gripper. These motors move the two gripper fingers.

Board version 2.0 has been designed as dual axes stepper motor controller / driver for stepper motors with up to 750mA peak / 530mA RMS current.

#### **Applications**

KUKA youBot

#### **Electrical data**

• Supply voltage: +24VDC nom. (+9V... +28.5V DC)

#### **Architecture**

- AT91SAM7S64 processor for motion control
- TMC429 stepper motor controller for up to 3 axes
- 2x TMC260 advanced single axis stepper motor driver with integrated MOSFETs

#### **Interfaces**

- 1x 5pin power supply and serial communication interface connector
- 2x 4pin stepper motor connector

#### Software

Custom software for control of two stepper motors

Please refer to separate Hardware Manual for further information.

# 3 Overview

As with most TRINAMIC modules the software running on the microprocessor of the TMCM-KR-842 consists of two parts, a boot loader and the firmware itself. Whereas the boot loader is installed during production and testing at TRINAMIC and remains normally untouched throughout the whole lifetime, the firmware can be updated by the user. New versions can be downloaded free of charge from the TRINAMIC website (http://www.trinamic.com).

The firmware shipped with this module is related to the standard TMCL™ firmware shipped with most of TRINAMIC modules with regard to protocol and commands. Corresponding, this module is based on the TMC429 stepper motor controller and the TMC260 power driver and supports the standard TMCL™ with a special range of values.

The TMC260 is a new energy efficient high current high precision micro stepping driver IC for bipolar stepper motors and offers TRINAMICs patented coolStep™ feature with its special commands.

All commands and parameters available with this unit are explained on the following pages.

# 4 TMCL™ communication structure

The main purpose of the TMCM-KR-842 is controlling the two linear stepper motors (connected separately to the board) inside the gripper. The TMCM-KR-842 supports TMCL<sup>TM</sup> direct mode.

The module is associated with the TMCM-KR-841, which is an EtherCAT<sup>TM</sup> slave device inside the KUKA youBot arm. This module forwards mailbox commands not addressing the TMCM-KR-841 (module address not zero). The reply from TMCM-KR-842 is send to the connected TMCM-KR-841, wrapped into the mailbox answer command, and send to the EtherCAT<sup>TM</sup> master. The whole communication follows a strict master-slave-relationship.

# 4.1 Binary command format

Every command has a mnemonic and a binary representation. When commands are sent from a host to a module, the binary format has to be used. Every command consists of a one-byte command field, a one-byte type field, a one-byte motor/bank field and a four-byte value field. So the binary representation of a command always has seven bytes. When a command is to be sent via RS232 interface, it has to be enclosed by an address byte at the beginning and a checksum byte at the end. In this case it consists of nine bytes.

#### The binary command format for RS232 is as follows:

| Bytes | Meaning              |  |
|-------|----------------------|--|
| 1     | Module address       |  |
| 1     | Command number       |  |
| 1     | Type number          |  |
| 1     | Motor or Bank number |  |
| 4     | Value (MSB first!)   |  |
| 1     | Checksum             |  |

#### **Checksum calculation**

The checksum is calculated by adding up all bytes (including the module address byte) using 8-bit addition. Here are two examples to show how to do this:

```
in C:
```

```
unsigned char i, Checksum;
unsigned char Command[9];

//Set the "Command" array to the desired command
Checksum = Command[0];
for(i=1; i<8; i++)
    Checksum+=Command[i];

Command[8]=Checksum; //insert checksum as last byte of the command
//Now, send it to the module</pre>
```

#### in Delphi:

```
i, Checksum: byte;
Command: array[0..8] of byte;

//Set the "Command" array to the desired command

//Calculate the Checksum:
Checksum:=Command[0];
for i:=1 to 7 do Checksum:=Checksum+Command[i];
Command[8]:=Checksum;
//Now, send the "Command" array (9 bytes) to the module
```

# 4.2 Reply format

Every time a command has been sent to a module, the module sends a reply.

The reply format for RS232 is as follows:

| Bytes | Meaning                            |  |  |  |
|-------|------------------------------------|--|--|--|
| 1     | Reply address                      |  |  |  |
| 1     | Module address                     |  |  |  |
| 1     | Status (e.g. 100 means "no error") |  |  |  |
| 1     | Command number                     |  |  |  |
| 4     | Value (MSB first!)                 |  |  |  |
| 1     | Checksum                           |  |  |  |

Do not send the next command before you have received the reply!

## 4.2.1 Status codes

The reply contains a status code.

The status code can have one of the following values:

| Code | Meaning                         |
|------|---------------------------------|
| 100  | Successfully executed, no error |
| 1    | Wrong checksum                  |
| 2    | Invalid command                 |
| 3    | Wrong type                      |
| 4    | Invalid value                   |
| 6    | Command not available           |

# 5 TMCL™ command overview

In this section a short overview of the TMCL™ commands is given.

#### 5.1.1 Motion commands

These commands control the motion of the motor.

| Mnemonic | Command number | Meaning          |
|----------|----------------|------------------|
| ROL      | 2              | Rotate left      |
| ROR      | 1              | Rotate right     |
| MVP      | 4              | Move to position |
| MST      | 3              | Motor stop       |

### 5.1.2 Parameter commands

These commands are used to set, read and store axis parameters or global parameters. Axis parameters can be set independently for the axis, whereas global parameters control the behavior of the module itself.

| Mnemonic | Command number | Meaning            |
|----------|----------------|--------------------|
| SAP      | 5              | Set axis parameter |
| GAP      | 6              | Get axis parameter |

# 5.1.3 TMCL™ control command

| Instruction                   | Description                                              | Type | Mot/Bank     | Value        |
|-------------------------------|----------------------------------------------------------|------|--------------|--------------|
| 136 – get firmware<br>version | return the module type and firmware revision either as a | -    | (don't care) | (don't care) |
|                               | string or in binary format                               | -    |              |              |

# 5.2 Commands

The module specific commands are explained in more detail on the following pages. They are listed according to their command number.

### 5.2.1 ROR (rotate right)

With this command the motor will be instructed to rotate with a specified velocity in *right* direction (increasing the position counter).

**Internal function**: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #0 (target velocity).

The module is based on the TMC429 stepper motor controller and the TMC260 power driver. This makes possible choosing a velocity between 0 and 2047.

Related commands: ROL, MST, SAP, GAP

Mnemonic: ROR <motor>, <velocity>

Binary representation:

| INSTRUCTION NO. | TYPE         | MOT/BANK        | VALUE                 |
|-----------------|--------------|-----------------|-----------------------|
| 1               | (don't care) | <motor></motor> | <velocity></velocity> |
|                 |              | 0, 1            | 0 2047                |

Reply in direct mode:

| STATUS   | VALUE        |  |  |
|----------|--------------|--|--|
| 100 - OK | (don't care) |  |  |

#### Example:

Rotate right motor #0, velocity = 350

Mnemonic: ROR o, 350

| Byte Index  | 0       | 1           | 2    | 3      | 4       | 5       | 6       | 7       | 8        |
|-------------|---------|-------------|------|--------|---------|---------|---------|---------|----------|
| Function    | Target- | Instruction | Type | Motor/ | Operand | Operand | Operand | Operand | Checksum |
|             | address | Number      |      | Bank   | Byte3   | Byte2   | Byte1   | Byteo   |          |
| Value (hex) | \$01    | \$01        | \$00 | \$02   | \$00    | \$00    | \$01    | \$5e    | \$62     |

#### 5.2.2 ROL (rotate left)

With this command the motor will be instructed to rotate with a specified velocity (opposite direction compared to ROR, decreasing the position counter).

**Internal function**: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #0 (target velocity).

The module is based on the TMC429 stepper motor controller and the TMC260 power driver. This makes possible choosing a velocity between 0 and 2047.

Related commands: ROR, MST, SAP, GAP

Mnemonic: ROL <motor>, <velocity>

Binary representation:

| INSTRUCTION NO. | TYPE         | MOT/BANK        | VALUE                 |
|-----------------|--------------|-----------------|-----------------------|
| 2               | (don't care) | <motor></motor> | <velocity></velocity> |
|                 |              | 0, 1            | 0 2047                |

Reply in direct mode:

| STATUS   | VALUE        |  |  |
|----------|--------------|--|--|
| 100 - OK | (don't care) |  |  |

#### Example:

Rotate left motor #0, velocity = 1200

Mnemonic: ROL o, 1200

| Byte Index  | 0       | 1           | 2    | 3      | 4       | 5       | 6       | 7       | 8        |
|-------------|---------|-------------|------|--------|---------|---------|---------|---------|----------|
| Function    | Target- | Instruction | Type | Motor/ | Operand | Operand | Operand | Operand | Checksum |
|             | address | Number      |      | Bank   | Byte3   | Byte2   | Byte1   | Byteo   |          |
| Value (hex) | \$01    | \$02        | \$00 | \$00   | \$00    | \$00    | \$04    | \$bo    | \$b8     |

## 5.2.3 MST (motor stop)

With this command the motor will be instructed to stop. Please note: depending on motor speed a hard stop might lead to step losses.

**Internal function:** The axis parameter target velocity is set to zero.

Related commands: ROL, ROR, SAP, GAP

Mnemonic: MST <motor>

Binary representation:

| INSTRUCTION NO. | TYPE         | MOT/BANK        | VALUE        |
|-----------------|--------------|-----------------|--------------|
| 3               | (don't care) | <motor></motor> | (don't care) |
|                 |              | 0, 1            |              |

#### Reply in direct mode:

| STATUS   | VALUE        |  |  |
|----------|--------------|--|--|
| 100 - OK | (don't care) |  |  |

#### Example:

Stop motor #1

Mnemonic: MST 1

| Byte Index  | 0       | 1           | 2    | 3      | 4       | 5       | 6       | 7       | 8        |
|-------------|---------|-------------|------|--------|---------|---------|---------|---------|----------|
| Function    | Target- | Instruction | Type | Motor/ | Operand | Operand | Operand | Operand | Checksum |
|             | address | Number      |      | Bank   | Byte3   | Byte2   | Byte1   | Byteo   |          |
| Value (hex) | \$01    | \$03        | \$00 | \$01   | \$00    | \$00    | \$00    | \$00    | \$05     |

### 5.2.4 MVP (move to position)

With this command the motor will be instructed to move to a specified relative or absolute position or a pre-programmed coordinate. It will use the acceleration/deceleration ramp and the positioning speed programmed into the unit. This command is non-blocking – that is, a reply will be sent immediately after command interpretation and initialization of the motion controller. Further commands may follow without waiting for the motor reaching its end position. The maximum velocity and acceleration are defined by axis parameters #4 and #5.

#### Two operation types are available:

- Moving to an absolute position in the range from 8388608 to +8388607 (-2<sup>23</sup> to+2<sup>23</sup>-1).
- Starting a relative movement by means of an offset to the actual position. In this case, the new resulting position value must not exceed the above mentioned limits, too.

Please note, that the distance between the actual position and the new one should not be more than 8388607 microsteps. Otherwise the motor will run in the wrong direction for taking a shorter way. If the value is exactly 8388608 the motor maybe stops.

Internal function: A new position value is transferred to the axis parameter #2 target position".

Related commands: SAP, GAP, MST

Mnemonic: MVP <ABS|REL>, <motor>, <position|offset|coordinate number>

Binary representation:

| INSTRUCTION NO. | INSTRUCTION NO. TYPE |                      | VALUE                 |  |
|-----------------|----------------------|----------------------|-----------------------|--|
| 4               | o ABS – absolute     | <motor> 0, 1</motor> | <position></position> |  |
|                 | 1 REL – relative     | <motor> 0, 1</motor> | <offset></offset>     |  |

#### Reply in direct mode:

| STATUS   | VALUE        |  |  |
|----------|--------------|--|--|
| 100 - OK | (don't care) |  |  |

#### Example:

Move motor #0 to (absolute) position 90000 *Mnemonic:* MVP ABS, 0, 9000

Binary:

| Byte Index  | 0       | 1           | 2    | 3      | 4       | 5       | 6       | 7       | 8        |
|-------------|---------|-------------|------|--------|---------|---------|---------|---------|----------|
| Function    | Target- | Instruction | Type | Motor/ | Operand | Operand | Operand | Operand | Checksum |
|             | address | Number      |      | Bank   | Byte3   | Byte2   | Byte1   | Byteo   |          |
| Value (hex) | \$01    | \$04        | \$00 | \$00   | \$00    | \$01    | \$5f    | \$90    | \$f6     |

#### Example:

Move motor #o from current position 1000 steps backward (move relative -1000) *Mnemonic:* MVP REL, 0, -1000

| Byte Index  | 0       | 1           | 2    | 3      | 4       | 5       | 6       | 7           | 8        |
|-------------|---------|-------------|------|--------|---------|---------|---------|-------------|----------|
| Function    | Target- | Instruction | Type | Motor/ | Operand | Operand | Operand | Operand     | Checksum |
|             | address | Number      |      | Bank   | Byte3   | Byte2   | Byte1   | Byteo       |          |
| Value (hex) | \$01    | \$04        | \$01 | \$00   | \$ff    | \$ff    | \$fc    | <b>\$18</b> | \$18     |

## 5.2.5 SAP (set axis parameter)

With this command most of the motion control parameters of the module can be specified.

**Internal function:** The parameter format is converted ignoring leading zeros (or ones for negative values). The parameter is transferred to the correct position in the appropriate device.

Related commands: GAP

Mnemonic: SAP <parameter number>, <motor>, <value>

Binary representation:

| INSTRUCTION NO. TYPE |                                                                                 | MOT/BANK        | VALUE           |
|----------------------|---------------------------------------------------------------------------------|-----------------|-----------------|
| 5                    | <parameter< th=""><th><motor></motor></th><th><value></value></th></parameter<> | <motor></motor> | <value></value> |
|                      | number>                                                                         | 0, 1            |                 |

Reply in direct mode:

| STATUS   | VALUE        |  |  |
|----------|--------------|--|--|
| 100 - OK | (don't care) |  |  |

#### List of parameters, which can be used for SAP:

| Number | Axis Parameter  | Description                                                         | Range [Unit]                                                                                                        |
|--------|-----------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 0      | target (next)   | The desired position in position mode (see                          | ± 2 <sup>23</sup>                                                                                                   |
|        | position        | ramp mode, no. 138).                                                | [µsteps]                                                                                                            |
| 1      | actual position | The current position of the motor.                                  | ± 2 <sup>23</sup>                                                                                                   |
|        |                 |                                                                     | [µsteps]                                                                                                            |
| 2      | target (next)   | The desired speed in velocity mode (see ramp                        | ±2047                                                                                                               |
|        | speed           | mode, no. 138). In position mode, this                              |                                                                                                                     |
|        |                 | parameter is set by hardware: to the                                | $\left[\frac{16\text{MHz}}{65526} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{100000000000000000000000000000000000$ |
|        |                 | maximum speed during acceleration, and to                           | [165536                                                                                                             |
|        |                 | zero during deceleration and rest.                                  |                                                                                                                     |
| 3      | actual speed    | The current rotation speed.                                         | ±2047                                                                                                               |
|        |                 |                                                                     | $\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\text{µsteps}}{\text{sec}}$                                   |
| 4      | maximum         | Should not exceed the physically highest                            | 0 2047                                                                                                              |
| •      | positioning     | possible value. Adjust the pulse divisor (no.                       |                                                                                                                     |
|        | speed           | 154), if the speed value is very low (<50) or                       | $[16MHz \cdot 2^{PD}]$ usteps                                                                                       |
|        |                 | above the upper limit.                                              | 65536 sec                                                                                                           |
| 5      | maximum         | The limit for acceleration (and deceleration).                      | 0 2047                                                                                                              |
|        | acceleration    | Changing this parameter requires re-                                |                                                                                                                     |
|        |                 | calculation of the acceleration factor (no. 146)                    | $\left[\frac{16\text{MHz}}{65526} \cdot 2^{\text{PD}} \frac{\text{µsteps}}{1}\right]$                               |
|        |                 | and the acceleration divisor (no. 137), which is                    | [65536 2 sec ]                                                                                                      |
|        |                 | done automatically                                                  |                                                                                                                     |
| 6      | absolute max.   | The most important motor setting, since too                         | 0 255                                                                                                               |
|        | current         | high values might cause motor damage!                               | [max. module current]                                                                                               |
|        | (CS / Current   | The maximum value is 255. This value means                          | 255                                                                                                                 |
|        | Scale)          | 100% of the maximum current of the module.                          | 200                                                                                                                 |
|        |                 | The current adjustment is within the range o                        |                                                                                                                     |
|        |                 | 255 and can be adjusted in 32 steps (o 255                          |                                                                                                                     |
|        |                 | divided by eight; e.g. step $0 = 0 7$ , step $1 = 8 15$ and so on). |                                                                                                                     |
| 7      | standby current | The current limit two seconds after the motor                       | O 255                                                                                                               |
| /      | Standby Current | has stopped.                                                        | [max. module current]                                                                                               |
|        |                 | • • • • • • • • • • • • • • • • • • • •                             | 255                                                                                                                 |
| 130    | minimum speed   | Should always be set 1 to ensure exact                              | 0 2047                                                                                                              |
|        |                 | reaching of the target position. Do not                             | $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\text{µsteps}}{\text{sec}}\right]$                      |
|        |                 | change!                                                             | 103330 300 1                                                                                                        |

| Number | Axis Parameter        | Description                                                                                        | Range [Unit] |
|--------|-----------------------|----------------------------------------------------------------------------------------------------|--------------|
| 138    | ramp mode             | Automatically set when using ROR, ROL, MST                                                         | 0/1/2        |
|        |                       | and MVP.                                                                                           |              |
|        |                       | o: position mode. Steps are generated, when                                                        |              |
|        |                       | the parameters actual position and target                                                          |              |
|        |                       | position differ. Trapezoidal speed ramps are                                                       |              |
|        |                       | provided.                                                                                          |              |
|        |                       | 2: velocity mode. The motor will run                                                               |              |
|        |                       | continuously and the speed will be changed                                                         |              |
|        |                       | with constant (maximum) acceleration, if the parameter target speed is changed.                    |              |
|        |                       | For special purposes, the soft mode (value 1)                                                      |              |
|        |                       | with exponential decrease of speed can be                                                          |              |
|        |                       | selected.                                                                                          |              |
| 140    | microstep             | o full step                                                                                        | o 8          |
|        | resolution            | 1 half step                                                                                        |              |
|        |                       | 2 4 microsteps                                                                                     |              |
|        |                       | 3 8 microsteps                                                                                     |              |
|        |                       | 4 16 microsteps                                                                                    |              |
|        |                       | 5 32 microsteps                                                                                    |              |
|        |                       | 6 64 microsteps                                                                                    |              |
|        |                       | 7 128 microsteps                                                                                   |              |
|        | 1                     | 8 256 microsteps                                                                                   |              |
| 153    | ramp divisor          | The exponent of the scaling factor for the                                                         | 0 13         |
|        |                       | ramp generator- should be de/incremented carefully (in steps of one).                              |              |
| 154    | pulse divisor         | The exponent of the scaling factor for the                                                         | 0 12         |
| 104    | puise divisor         | pulse (step) generator – should be                                                                 | O 15         |
|        |                       | de/incremented carefully (in steps of one).                                                        |              |
| 160    | step interpolation    | Step interpolation is supported with a 16                                                          | 0/1          |
|        | enable                | microstep setting only. In this setting, each                                                      |              |
|        |                       | step impulse at the input causes the                                                               |              |
|        |                       | execution of 16 times 1/256 microsteps. This                                                       |              |
|        |                       | way, a smooth motor movement like in 256                                                           |              |
|        |                       | microstep resolution is achieved.                                                                  |              |
|        |                       | o – step interpolation off<br>1 – step interpolation on                                            |              |
| 161    | double step           | Every edge of the cycle releases a                                                                 | 0/1          |
|        | enable                | step/microstep. It does not make sense to                                                          | 0.1          |
|        |                       | activate this parameter for internal use.                                                          |              |
|        |                       | Double step enable can be used with Step/Dir                                                       |              |
|        |                       | interface.                                                                                         |              |
|        |                       | o – double step off                                                                                |              |
| 165    | ahamman lala d        | 1 – double step on                                                                                 |              |
| 162    | chopper blank<br>time | Selects the comparator <i>blank time</i> . This time needs to safely cover the switching event and | U 3          |
|        | time                  | the duration of the ringing on the sense                                                           |              |
|        |                       | resistor. For low current drivers, a setting of 1                                                  |              |
|        |                       | or 2 is good.                                                                                      |              |
| 163    | chopper mode          | Selection of the chopper mode:                                                                     | 0/1          |
|        |                       | o – spread cycle                                                                                   |              |
|        |                       | 1 – classic const. off time                                                                        |              |
| 164    | chopper               | Hysteresis decrement setting. This setting                                                         | 0 3          |
|        | hysteresis            | determines the slope of the hysteresis during                                                      |              |
|        | decrement             | on time and during fast decay time.                                                                |              |
|        |                       | o – fast decrement                                                                                 |              |
|        |                       | 3 – very slow decrement                                                                            |              |

| Number | Axis Parameter                  | Description                                                                                            | Range [Unit] |
|--------|---------------------------------|--------------------------------------------------------------------------------------------------------|--------------|
| 165    | chopper                         | Hysteresis end setting. Sets the hysteresis end                                                        | -3 12        |
|        | hysteresis end                  | value after a number of decrements.                                                                    |              |
|        |                                 | Decrement interval time is controlled by axis                                                          |              |
|        |                                 | parameter 164.                                                                                         |              |
|        |                                 | -31 negative hysteresis end setting                                                                    |              |
|        |                                 | o zero hysteresis end setting                                                                          |              |
|        |                                 | 1 12 positive hysteresis end setting                                                                   |              |
| 166    | chopper                         | Hysteresis start setting. Please remark, that                                                          | 0 8          |
|        | hysteresis start                | this value is an offset to the hysteresis end                                                          |              |
|        |                                 | value.                                                                                                 | ,            |
| 167    | chopper off time                | The off time setting controls the minimum                                                              | 0 / 2 15     |
|        |                                 | chopper frequency. An off time within the                                                              |              |
|        |                                 | range of 5µs to 20µs will fit.                                                                         |              |
|        |                                 | Off time setting for constant t <sub>OFF</sub> chopper:                                                |              |
|        |                                 | N <sub>CLK</sub> = 12 + 32*t <sub>OFF</sub> (Minimum is 64 clocks)                                     |              |
|        |                                 | Setting this parameter to zero completely disables all driver transistors and the motor                |              |
|        |                                 |                                                                                                        |              |
| 168    | smartEnergy                     | Can free-wheel.  Sets the lower motor current limit for                                                | 0/1          |
| 100    | current minimum                 | coolStep™ operation by scaling the CS                                                                  | 0/1          |
|        | (SEIMIN)                        | (Current Scale, see axis parameter 6) value.                                                           |              |
|        | (SLII IIIV)                     | minimum motor current:                                                                                 |              |
|        |                                 | 0 - 1/2 of CS                                                                                          |              |
|        |                                 | 1 - 1/4 of CS                                                                                          |              |
| 169    | smartEnergy                     | Sets the number of stallGuard2™ readings                                                               | 0 3          |
|        | current down                    | above the upper threshold necessary for each                                                           |              |
|        | step                            | current decrement of the motor current.                                                                |              |
|        |                                 | Number of stallGuard2™ measurements per                                                                |              |
|        |                                 | decrement:                                                                                             |              |
|        |                                 | Scaling: 0 3: 32, 8, 2, 1                                                                              |              |
|        |                                 | o: slow decrement                                                                                      |              |
|        |                                 | 3: fast decrement                                                                                      |              |
| 170    | smartEnergy                     | Sets the distance between the lower and the                                                            | 0 15         |
| -      | hysteresis                      | upper threshold for stallGuard2™ reading.                                                              |              |
|        | ,                               | Above the upper threshold the motor current                                                            |              |
|        |                                 | becomes decreased.                                                                                     |              |
|        |                                 | Hysteresis:                                                                                            |              |
|        |                                 | (smartEnergy hysteresis value + 1) * 32                                                                |              |
|        |                                 | <u> </u>                                                                                               |              |
|        |                                 | Upper stallGuard2™ threshold:                                                                          |              |
|        |                                 | (smartEnergy hysteresis start + smartEnergy                                                            |              |
| 171    | smartEners:                     | hysteresis + 1) * 32                                                                                   | 1 2          |
| 171    | smartEnergy<br>current up step  | Sets the current increment step. The current becomes incremented for each measured                     | 1 3          |
|        | carrent up step                 | stallGuard2 <sup>TM</sup> value below the lower threshold                                              |              |
|        |                                 | (see smartEnergy hysteresis start).                                                                    |              |
|        |                                 |                                                                                                        |              |
|        |                                 | current increment step size:                                                                           |              |
|        |                                 | Scaling: 0 3: 1, 2, 4, 8                                                                               |              |
|        |                                 | o: slow increment                                                                                      |              |
| 172    | smartEnergy                     | 3: fast increment / fast reaction to rising load The lower threshold for the stallGuard2 <sup>TM</sup> | 0 15         |
| 172    | smartEnergy<br>hysteresis start | value (see smart Energy current up step).                                                              | 0 15         |
|        | inysteresis stall               | value (see silian ellergy current up step).                                                            |              |

| Number | Axis Parameter    | Description                                        | Range [Unit]                                                                               |
|--------|-------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|
| 173    | stallGuard2™      | Enables the stallGuard2™ filter for more           | 0/1                                                                                        |
|        | filter enable     | precision of the measurement. If set, reduces      |                                                                                            |
|        |                   | the measurement frequency to one                   |                                                                                            |
|        |                   | measurement per four fullsteps.                    |                                                                                            |
|        |                   | In most cases it is expedient to set the           |                                                                                            |
|        |                   | filtered mode before using coolStep™.              |                                                                                            |
|        |                   | Use the standard mode for step loss                |                                                                                            |
|        |                   | detection.                                         |                                                                                            |
|        |                   | o – standard mode                                  |                                                                                            |
|        |                   | 1 - filtered mode                                  |                                                                                            |
| 174    | stallGuard2™      | This signed value controls stallGuard2™            | -64 63                                                                                     |
|        | threshold         | threshold level for stall output and sets the      |                                                                                            |
|        |                   | optimum measurement range for readout. A           |                                                                                            |
|        |                   | lower value gives a higher sensitivity. Zero is    |                                                                                            |
|        |                   | the starting value. A higher value makes           |                                                                                            |
|        |                   | stallGuard2™ less sensitive and requires more      |                                                                                            |
|        |                   | torque to indicate a stall.                        |                                                                                            |
|        |                   | o Indifferent value                                |                                                                                            |
|        |                   | 1 63 less sensitivity                              |                                                                                            |
|        | -1                | -164 higher sensitivity                            |                                                                                            |
| 175    | slope control     | Determines the slope of the motor driver           | 0 3                                                                                        |
|        | high side         | outputs. Set to 2 or 3 for this module or          |                                                                                            |
|        |                   | rather use the default value.                      |                                                                                            |
|        |                   | o: lowest slope                                    |                                                                                            |
| (      | -1                | 3: fastest slope                                   |                                                                                            |
| 176    | slope control low | Determines the slope of the motor driver           | 0 3                                                                                        |
|        | side              | outputs. Set identical to slope control high side. |                                                                                            |
| 177    | short protection  | o: Short to GND protection is on                   | 0/1                                                                                        |
| 1//    | disable           | 1: Short to GND protection is disabled             | 0/1                                                                                        |
|        | disable           | Use default value!                                 |                                                                                            |
| 178    | short detection   | 0: 3.2μs                                           | 03                                                                                         |
| _/-    | timer             | 1: 1.6µs                                           |                                                                                            |
|        |                   | 2: 1.2µs                                           |                                                                                            |
|        |                   | 3: 0.8µs                                           |                                                                                            |
|        |                   | Use default value!                                 |                                                                                            |
| 179    | Vsense            | sense resistor voltage based current scaling       | 0/1                                                                                        |
|        |                   | o: Full scale sense resistor voltage is 1/18 VDD   |                                                                                            |
|        |                   | 1: Full scale sense resistor voltage is 1/36 VDD   |                                                                                            |
|        |                   | (refers to a current setting of 31 and DAC         |                                                                                            |
|        |                   | value 255)                                         |                                                                                            |
|        |                   | Use default value. Do not change!                  |                                                                                            |
| 181    | stop on stall     | Motor stop in case of stall.                       | 0/1                                                                                        |
| 182    | smartEnergy       | Above this speed coolStep™ becomes                 | 0 2047                                                                                     |
|        | threshold speed   | enabled.                                           | $\left[\frac{16\text{MHz}}{65526} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{322}\right]$ |
| 183    | smartEnergy slow  | Sets the motor current which is used below         | 0 255                                                                                      |
| 100    | run current       | the threshold speed.                               | [max. module current]                                                                      |
|        |                   | ·                                                  | 255                                                                                        |
| 204    | freewheeling      | Time after which the power to the motor will       |                                                                                            |
|        |                   | be cut when its velocity has reached zero.         | o = never                                                                                  |
|        |                   |                                                    | [msec]                                                                                     |
| 214    | power down        | Standstill period before the current is changed    | 1 65535                                                                                    |
|        | delay             | down to standby current. The standard value        | [10msec]                                                                                   |
|        |                   | is 200 (value equates 2000msec).                   |                                                                                            |

# Example:

Set the absolute maximum current of motor #0 to 200mA *Mnemonic:* SAP 6, 0, 200

| Byte Index  | 0       | 1           | 2    | 3      | 4       | 5       | 6       | 7       | 8        |
|-------------|---------|-------------|------|--------|---------|---------|---------|---------|----------|
| Function    | Target- | Instruction | Type | Motor/ | Operand | Operand | Operand | Operand | Checksum |
|             | address | Number      |      | Bank   | Byte3   | Byte2   | Byte1   | Byteo   |          |
| Value (hex) | \$01    | \$05        | \$06 | \$00   | \$00    | \$00    | \$00    | \$c8    | \$d5     |

## 5.2.6 GAP (get axis parameter)

Most parameters of the TMCM-KR-842 can be adjusted individually for each axis. With this parameter they can be read out in the *value* field of the reply.

**Internal function**: The parameter is read out of the correct position in the appropriate device. The parameter format is converted adding leading zeros (or ones for negative values).

Related commands: SAP

Mnemonic: GAP <parameter number>, <motor>

Binary representation:

| INSTRUCTION NO. TYPE |                                              | MOT/BANK        | VALUE        |
|----------------------|----------------------------------------------|-----------------|--------------|
| 6                    | <pre><parameter number=""></parameter></pre> | <motor></motor> | (don't care) |
|                      |                                              | 0, 1            |              |

Reply in direct mode:

| STATUS   | VALUE        |  |  |
|----------|--------------|--|--|
| 100 - OK | (don't care) |  |  |

#### List of parameters, which can be used for GAP:

| Number | Axis Parameter  | Description                                                                         | Range [Unit]                                                                                     |
|--------|-----------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 0      | target (next)   | The desired position in position mode (see                                          | ± 2 <sup>23</sup>                                                                                |
|        | position        | ramp mode, no. 138).                                                                | [µsteps]                                                                                         |
| 1      | actual position | The current position of the motor. Should                                           | ± 2 <sup>23</sup>                                                                                |
|        |                 | only be overwritten for reference point                                             | [µsteps]                                                                                         |
|        | t t ( t)        | setting.                                                                            | 1                                                                                                |
| 2      | target (next)   | The desired speed in velocity mode (see ramp mode, no. 138). In position mode, this | ±2047                                                                                            |
|        | speed           | parameter is set by hardware: to the                                                | [16MHz . 2PD µsteps]                                                                             |
|        |                 | maximum speed during acceleration, and to                                           | $\left[\frac{1}{65536} \cdot 2^{\text{PD}} \cdot \frac{1}{\text{sec}}\right]$                    |
|        |                 | zero during deceleration and rest.                                                  |                                                                                                  |
| 3      | actual speed    | The current rotation speed.                                                         | ±2047                                                                                            |
|        |                 |                                                                                     | $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\text{µsteps}}{\text{sec}}\right]$   |
| 4      | maximum         | Should not exceed the physically highest                                            | [ [65536 sec ]<br>O 2047                                                                         |
|        | positioning     | possible value. Adjust the pulse divisor (no.                                       |                                                                                                  |
|        | speed           | 154), if the speed value is very low (<50) or                                       | $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\text{µsteps}}{\text{sec}}\right]$   |
|        |                 | above the upper limit.                                                              | 165536 sec J                                                                                     |
| 5      | maximum         | The limit for acceleration (and deceleration).                                      | 0 2047                                                                                           |
|        | acceleration    | Changing this parameter requires re-                                                | r16MUg ugtong                                                                                    |
|        |                 | calculation of the acceleration factor (no. 146)                                    | $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\mu\text{steps}}{\text{sec}}\right]$ |
|        |                 | and the acceleration divisor (no. 137), which is                                    | 1                                                                                                |
| 6      | absolute max.   | done automatically.  The most important motor setting, since too                    | 0 255                                                                                            |
| В      | current         | high values might cause motor damage!                                               | 0 255                                                                                            |
|        | (CS / Current   | The maximum value is 255. This value means                                          | [max. module current]                                                                            |
|        | Scale)          | 100% of the maximum current of the module.                                          | 255                                                                                              |
|        |                 | The current adjustment is within the range o                                        |                                                                                                  |
|        |                 | 255 and can be adjusted in 32 steps (0 255                                          |                                                                                                  |
|        |                 | divided by eight; e.g. step 0 = 0 7, step 1 =                                       |                                                                                                  |
|        |                 | 8 15 and so on).                                                                    |                                                                                                  |
| 7      | standby current | The current limit two seconds after the motor                                       | 0 255                                                                                            |
|        |                 | has stopped.                                                                        | [max. module current]                                                                            |

| Number | Axis Parameter               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Range [Unit] |
|--------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 8      | target pos.                  | Indicates that the actual position equals the                                                                                                                                                                                                                                                                                                                                                                                                                         | 0/1          |
|        | reached                      | target position.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| 130    | minimum speed                | Should always be set 1 to ensure exact reaching of the target position. <i>Do not change!</i>                                                                                                                                                                                                                                                                                                                                                                         | 4 63 677     |
| 135    | actual acceleration          | The current acceleration (read only).                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 2047       |
| 138    | ramp mode                    | Automatically set when using ROR, ROL, MST and MVP.  o: position mode. Steps are generated, when the parameters actual position and target position differ. Trapezoidal speed ramps are provided.  2: velocity mode. The motor will run continuously and the speed will be changed with constant (maximum) acceleration, if the parameter target speed is changed.  For special purposes, the soft mode (value 1) with exponential decrease of speed can be selected. | 0/1/2        |
| 140    | microstep<br>resolution      | o full step  1 half step  2 4 microsteps  3 8 microsteps  4 16 microsteps  5 32 microsteps  6 64 microsteps  7 128 microsteps  8 256 microsteps                                                                                                                                                                                                                                                                                                                       | O 8          |
| 153    | ramp divisor                 | The exponent of the scaling factor for the ramp generator- should be de/incremented carefully (in steps of one).                                                                                                                                                                                                                                                                                                                                                      | 0 13         |
| 154    | pulse divisor                | The exponent of the scaling factor for the pulse (step) generator – should be de/incremented carefully (in steps of one).                                                                                                                                                                                                                                                                                                                                             | 0 13         |
| 160    | step interpolation<br>enable | Step interpolation is supported with a 16 microstep setting only. In this setting, each step impulse at the input causes the execution of 16 times 1/256 microsteps. This way, a smooth motor movement like in 256 microstep resolution is achieved.  o – step interpolation off 1 – step interpolation on                                                                                                                                                            | 0/1          |
| 161    | double step<br>enable        | Every edge of the cycle releases a step/microstep. It does not make sense to activate this parameter for internal use.  Double step enable can be used with Step/Dir interface.  o - double step off 1 - double step on                                                                                                                                                                                                                                               | 0/1          |
| 162    | chopper blank<br>time        | Selects the comparator blank time. This time needs to safely cover the switching event and the duration of the ringing on the sense resistor. For low current drivers, a setting of 1 or 2 is good.                                                                                                                                                                                                                                                                   | 0 3          |

| Number | Axis Parameter        | Description                                                                              | Range [Unit] |
|--------|-----------------------|------------------------------------------------------------------------------------------|--------------|
| 163    | chopper mode          | Selection of the chopper mode:                                                           | 0/1          |
|        |                       | o – spread cycle                                                                         |              |
|        |                       | 1 – classic const. off time                                                              |              |
| 164    | chopper<br>hysteresis | Hysteresis decrement setting. This setting determines the slope of the hysteresis during | 0 3          |
|        | decrement             | on time and during fast decay time.                                                      |              |
|        | decrement             | o – fast decrement                                                                       |              |
|        |                       | 3 - very slow decrement                                                                  |              |
| 165    | chopper               | Hysteresis end setting. Sets the hysteresis end                                          | -3 12        |
|        | hysteresis end        | value after a number of decrements.                                                      |              |
|        |                       | Decrement interval time is controlled by axis                                            |              |
|        |                       | parameter 164.                                                                           |              |
|        |                       | -31 negative hysteresis end setting                                                      |              |
|        |                       | o zero hysteresis end setting  1 12 positive hysteresis end setting                      |              |
| 166    | chopper               | Hysteresis start setting. Please remark, that                                            | 0 8          |
| 100    | hysteresis start      | this value is an offset to the hysteresis end                                            | <b>5</b> 5   |
|        | ,                     | value.                                                                                   |              |
| 167    | chopper off time      | The off time setting controls the minimum                                                | 0 / 2 15     |
|        |                       | chopper frequency. An off time within the                                                |              |
|        |                       | range of 5µs to 20µs will fit.                                                           |              |
|        |                       | Off time setting for constant t <sub>OFF</sub> chopper:                                  |              |
|        |                       | N <sub>CLK</sub> = 12 + 32*t <sub>OFF</sub> (Minimum is 64 clocks)                       |              |
|        |                       | Setting this parameter to zero completely disables all driver transistors and the motor  |              |
|        |                       | can free-wheel.                                                                          |              |
| 168    | smartEnergy           | Sets the lower motor current limit for                                                   | 0/1          |
|        | current minimum       | coolStep™ operation by scaling the CS                                                    |              |
|        | (SEIMIN)              | (Current Scale, see axis parameter 6) value.                                             |              |
|        |                       | minimum motor current:                                                                   |              |
|        |                       | 0 - 1/2 of CS                                                                            |              |
| 169    | smartEnergy           | 1 - 1/4 of CS  Sets the number of stallGuard2™ readings                                  | 0 2          |
| 109    | current down          | above the upper threshold necessary for each                                             | O 5          |
|        | step                  | current decrement of the motor current.                                                  |              |
|        | '                     | Number of stallGuard2™ measurements per                                                  |              |
|        |                       | decrement:                                                                               |              |
|        |                       | Scaling: 0 3: 32, 8, 2, 1                                                                |              |
|        |                       | o: slow decrement                                                                        |              |
|        |                       | 3: fast decrement                                                                        |              |
| 170    | smartEnergy           | Sets the distance between the lower and the                                              | 0 15         |
|        | hysteresis            | upper threshold for stallGuard2™ reading.                                                |              |
|        |                       | Above the upper threshold the motor current becomes decreased.                           |              |
|        |                       | Hysteresis:                                                                              |              |
|        |                       |                                                                                          |              |
|        |                       | (smartEnergy hysteresis value + 1) * 32                                                  |              |
|        |                       | Upper stallGuard2™ threshold:                                                            |              |
|        |                       | (smartEnergy hysteresis start + smartEnergy                                              |              |
|        |                       | hysteresis + 1) * 32                                                                     |              |

| Number | Axis Parameter    | Description                                                                            | Range [Unit] |
|--------|-------------------|----------------------------------------------------------------------------------------|--------------|
| 171    | smartEnergy       | Sets the current increment step. The current                                           | 1 3          |
|        | current up step   | becomes incremented for each measured                                                  |              |
|        |                   | stallGuard2™ value below the lower threshold                                           |              |
|        |                   | (see smartEnergy hysteresis start).                                                    |              |
|        |                   | current increment step size:                                                           |              |
|        |                   | Scaling: 0 3: 1, 2, 4, 8                                                               |              |
|        |                   | o: slow increment                                                                      |              |
|        |                   | 3: fast increment / fast reaction to rising load                                       |              |
| 172    | smartEnergy       | The lower threshold for the stallGuard2™                                               | 0 15         |
|        | hysteresis start  | value (see smart Energy current up step).                                              | ,            |
| 173    | stallGuard2™      | Enables the stallGuard2™ filter for more                                               | 0/1          |
|        | filter enable     | precision of the measurement. If set, reduces the measurement frequency to one         |              |
|        |                   | the measurement frequency to one measurement per four fullsteps.                       |              |
|        |                   | In most cases it is expedient to set the                                               |              |
|        |                   | filtered mode before using coolStep™.                                                  |              |
|        |                   | Use the standard mode for step loss                                                    |              |
|        |                   | detection.                                                                             |              |
|        |                   | o – standard mode                                                                      |              |
|        |                   | 1 – filtered mode                                                                      |              |
| 174    | stallGuard2™      | This signed value controls stallGuard2™                                                | -64 63       |
|        | threshold         | threshold level for stall output and sets the                                          |              |
|        |                   | optimum measurement range for readout. A                                               |              |
|        |                   | lower value gives a higher sensitivity. Zero is                                        |              |
|        |                   | the starting value. A higher value makes stallGuard2™ less sensitive and requires more |              |
|        |                   | torque to indicate a stall.                                                            |              |
|        |                   | o Indifferent value                                                                    |              |
|        |                   | 1 63 less sensitivity                                                                  |              |
|        |                   | -164 higher sensitivity                                                                |              |
| 175    | slope control     | Determines the slope of the motor driver                                               | 0 3          |
|        | high side         | outputs. Set to 2 or 3 for this module or                                              |              |
|        |                   | rather use the default value.                                                          |              |
|        |                   | o: lowest slope                                                                        |              |
|        |                   | 3: fastest slope                                                                       |              |
| 176    | slope control low | Determines the slope of the motor driver                                               | 0 3          |
|        | side              | outputs. Set identical to slope control high side.                                     |              |
| 177    | short protection  | o: Short to GND protection is on                                                       | 0/1          |
| 1//    | disable           | 1: Short to GND protection is disabled                                                 | 0/1          |
|        | 4.54.516          | Use default value!                                                                     |              |
| 178    | short detection   | 0: 3.2μs                                                                               | 03           |
|        | timer             | 1: 1.6µs                                                                               |              |
|        |                   | 2: 1.2µs                                                                               |              |
|        |                   | 3: 0.8µs                                                                               |              |
|        |                   | Use default value!                                                                     |              |
| 179    | Vsense            | sense resistor voltage based current scaling                                           | 0/1          |
|        |                   | o: Full scale sense resistor voltage is 1/18 VDD                                       |              |
|        |                   | 1: Full scale sense resistor voltage is 1/36 VDD                                       |              |
|        |                   | (refers to a current setting of 31 and DAC value 255)                                  |              |
|        |                   | Use default value. Do not change!                                                      |              |
|        | <u> </u>          | ose acjaalt value. Do not change:                                                      | <u> </u>     |

| Number | Axis Parameter                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Range [Unit]                                                                                                          |
|--------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 180    | smartEnergy<br>actual current   | This status value provides the actual motor current setting as controlled by coolStep™. The value goes up to the CS value and down to the portion of CS as specified by SEIMIN.  actual motor current scaling factor:  0 31: 1/32, 2/32, 32/32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 31                                                                                                                  |
| 181    | stop on stall                   | Motor stop in case of stall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0/1                                                                                                                   |
| 182    | smartEnergy<br>threshold speed  | Above this speed coolStep™ becomes enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O 2047 \[ \begin{pmatrix} \frac{16MHz}{65536} \cdot 2^{PD} \frac{\text{\text{\musteps}}}{\text{sec}} \end{pmatrix} \] |
| 183    | smartEnergy slow<br>run current | Sets the motor current which is used below the threshold speed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 255 [max. module current] 255                                                                                       |
| 204    | freewheeling                    | Time after which the power to the motor will be cut when its velocity has reached zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o 65535<br>o = never<br>[msec]                                                                                        |
| 206    | actual load value               | Readout of the actual load value with used for stall detection (stallGuard2 <sup>TM</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1023                                                                                                                |
| 208    | TMC260 driver error flags       | Bit 0 stallGuard™ status (1: threshold reached)  Bit 1 Overtemperature (1: driver is shut down due to overtemperature)  Bit 2 Pre-warning overtemperature (1: Threshold is exceeded)  Bit 3 Short to ground A (1: Short condition detected, driver c□rrently shut down)  Bit 4 Short to ground B (1: Short condition detected, driver currently shut down)  Bit 5 Open load A (1: no chopper event has happened during the last period with constant coil polarity)  Bit 6 Open load B (1: no chopper event has happened during the last period with constant coil polarity)  Bit 7 Stand still (1: No step impulse occurred on the step input during the last 2^20 clock cycles)  Please refer to the TMC260 Datasheet for more information. | 0/1                                                                                                                   |
| 214    | power down<br>delay             | Standstill period before the current is changed down to standby current. The standard value is 200 (value equates 2000msec).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 65535<br>[10msec]                                                                                                   |

#### Example:

Get the actual position of motor #0 *Mnemonic:* GAP 0, 1

| Dillary.    |         |             |      |        |         |         |         |         |          |
|-------------|---------|-------------|------|--------|---------|---------|---------|---------|----------|
| Byte Index  | 0       | 1           | 2    | 3      | 4       | 5       | 6       | 7       | 8        |
| Function    | Target- | Instruction | Type | Motor/ | Operand | Operand | Operand | Operand | Checksum |
|             | address | Number      |      | Bank   | Byte3   | Byte2   | Byte1   | Byteo   |          |
| Value (hex) | \$01    | \$06        | \$01 | \$00   | \$00    | \$00    | \$00    | \$00    | \$oa     |
|             | 1       |             |      |        | l       | l       | l       |         |          |

Reply:

| Byte Index  | 0                | 1                  | 2      | 3           | 4                | 5                | 6                | 7                | 8        |
|-------------|------------------|--------------------|--------|-------------|------------------|------------------|------------------|------------------|----------|
| Function    | Host-<br>address | Target-<br>address | Status | Instruction | Operand<br>Byte3 | Operand<br>Byte2 | Operand<br>Byte1 | Operand<br>Byteo | Checksum |
| Value (hex) | \$02             | \$01               | \$64   | \$06        | \$00             | \$00             | \$02             | \$c7             | \$36     |

⇒ status=no error, position=711

### 5.2.7 TMCL™ control functions

This function is mentioned here only for reasons of completeness. It has no mnemonic, as it cannot be used in the  $TMCL^{TM}$  program.

| Instruction                   | Description                                              | Туре | Mot/Bank     | Value        |
|-------------------------------|----------------------------------------------------------|------|--------------|--------------|
| 136 – get firmware<br>version | return the module type and firmware revision either as a | _    | (don't care) | (don't care) |
| 2515.611                      | string or in binary format                               | ,    |              |              |

#### Reply format of command 136:

☐ Type set to 0 - reply as a string:

| Byte index | Contents                                     |
|------------|----------------------------------------------|
| 1          | Host Address                                 |
| 2 9        | Version string (8 characters, e.g. KR842V20) |

There is no checksum in this reply format!

☐ Type set to 1 - version number in binary format:

Please use the normal reply format.

The version number is output in the value field of the reply in the following way:

| Byte index in value field | Contents                  |  |
|---------------------------|---------------------------|--|
| 1                         | Version number, low byte  |  |
| 2                         | Version number, high byte |  |
| 3                         | Type number, low byte     |  |
|                           | (currently not used)      |  |
| 4                         | Type number, high byte    |  |
|                           | (currently not used)      |  |

# 6 Axis parameters

The following sections describe all axis parameters that can be used with the SAP and GAP commands.

#### Meaning of the letters in column Access:

R = readable (GAP)

W = writable (SAP)

E = automatically restored from EEPROM after reset or power-on

| Number | Axis Parameter  | Description                                                                              | Range [Unit]                                                                                      | Acc.  |
|--------|-----------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|
| 0      | target (next)   | The desired position in position mode (see                                               | ± 2 <sup>23</sup>                                                                                 | RW    |
|        | position        | ramp mode, no. 138).                                                                     | [µsteps]                                                                                          |       |
| 1      | actual position | The current position of the motor. Should                                                | ± 2 <sup>23</sup>                                                                                 | RW    |
|        |                 | only be overwritten for reference point                                                  | [µsteps]                                                                                          |       |
|        |                 | setting.                                                                                 |                                                                                                   |       |
| 2      | target (next)   | The desired speed in velocity mode (see ramp                                             | ±2047                                                                                             | RW    |
|        | speed           | mode, no. 138). In position mode, this                                                   | =16MH                                                                                             |       |
|        |                 | parameter is set by hardware: to the                                                     | $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\text{µsteps}}{\text{sec}}\right]$    |       |
|        |                 | maximum speed during acceleration, and to                                                | 103330 Sec 1                                                                                      |       |
|        |                 | zero during deceleration and rest.                                                       |                                                                                                   |       |
| 3      | actual speed    | The current rotation speed.                                                              | ±2047                                                                                             | RW    |
|        |                 |                                                                                          | $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\text{µsteps}}{\text{sec}}\right]$    |       |
| 4      | maximum         | Should not exceed the physically highest                                                 |                                                                                                   | RWE   |
|        | positioning     | possible value. Adjust the pulse divisor (no.                                            |                                                                                                   |       |
|        | speed           | 154), if the speed value is very low (<50) or                                            | $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\text{µsteps}}{\text{sec}}\right]$    |       |
|        |                 | above the upper limit.                                                                   | [65536 sec ]                                                                                      |       |
| 5      | maximum         | The limit for acceleration (and deceleration).                                           | 0 2047                                                                                            | RWE   |
|        | acceleration    | Changing this parameter requires re-                                                     |                                                                                                   |       |
|        |                 | calculation of the acceleration factor (no. 146)                                         | $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\text{µsteps}}{\text{sec}}\right]$    |       |
|        |                 | and the acceleration divisor (no. 137), which is                                         | 105536 Sec 1                                                                                      |       |
|        |                 | done automatically.                                                                      |                                                                                                   |       |
| 6      | absolute max.   | The most important motor setting, since too                                              | 0 255                                                                                             | RWE   |
|        | current         | high values might cause motor damage!                                                    | [max. module current]                                                                             |       |
|        | (CS / Current   | The maximum value is 255. This value means                                               | 255                                                                                               |       |
|        | Scale)          | 100% of the maximum current of the module.                                               | 200                                                                                               |       |
|        |                 | The current adjustment is within the range o                                             |                                                                                                   |       |
|        |                 | 255 and can be adjusted in 32 steps (o 255 divided by eight; e.g. step o = o 7, step 1 = |                                                                                                   |       |
|        |                 | 8 15 and so on).                                                                         |                                                                                                   |       |
| 7      | standby current | The current limit two seconds after the motor                                            | 0 255                                                                                             | RWE   |
| '      | Standby current | has stopped.                                                                             | [max. module current]                                                                             | IXVVL |
|        |                 |                                                                                          | 255                                                                                               |       |
| 8      | target pos.     | Indicates that the actual position equals the                                            | 0/1                                                                                               | R     |
|        | reached         | target position.                                                                         |                                                                                                   |       |
| 130    | minimum speed   | Should always be set 1 to ensure exact                                                   | 0 2047                                                                                            | RWE   |
|        |                 | reaching of the target position. Do not                                                  | $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{\text{sec}}\right]$ |       |
|        |                 | change!                                                                                  | 100000 300 1                                                                                      |       |
| 135    | actual          | The current acceleration (read only).                                                    | 0 2047*                                                                                           | R     |
|        | acceleration    |                                                                                          |                                                                                                   |       |

| Number | Axis Parameter | Description                                             | Range [Unit] | Acc.  |
|--------|----------------|---------------------------------------------------------|--------------|-------|
| 138    | ramp mode      | Automatically set when using ROR, ROL, MST              | 0/1/2        | RWE   |
|        |                | and MVP.                                                |              |       |
|        |                | o: position mode. Steps are generated, when             |              |       |
|        |                | the parameters actual position and target               |              |       |
|        |                | position differ. Trapezoidal speed ramps are            |              |       |
|        |                | provided.                                               |              |       |
|        |                | 2: velocity mode. The motor will run                    |              |       |
|        |                | continuously and the speed will be changed              |              |       |
|        |                | with constant (maximum) acceleration, if the            |              |       |
|        |                | parameter target speed is changed.                      |              |       |
|        |                | For special purposes, the soft mode (value 1)           |              |       |
|        |                | with exponential decrease of speed can be               |              |       |
|        |                | selected.                                               |              |       |
| 140    | microstep      | o full step                                             | 0 8          | RWE   |
|        | resolution     | 1 half step                                             |              |       |
|        |                | 2 4 microsteps                                          |              |       |
|        |                | 3 8 microsteps                                          |              |       |
|        |                | 4 16 microsteps                                         |              |       |
|        |                | 5 32 microsteps                                         |              |       |
|        |                | 6 64 microsteps                                         |              |       |
|        |                | 7 128 microsteps                                        |              |       |
|        |                | 8 256 microsteps                                        |              |       |
| 153    | ramp divisor   | The exponent of the scaling factor for the              | 0 12         | RWE   |
| 100    | Tamp divisor   | ramp generator- should be de/incremented                | 0 15         | IXVVL |
|        |                | carefully (in steps of one).                            |              |       |
| 154    | pulse divisor  | The exponent of the scaling factor for the              | 0 12         | RWE   |
| 154    | puise divisor  | pulse (step) generator – should be                      | 0 13         | KVVL  |
|        |                | de/incremented carefully (in steps of one).             |              |       |
| 160    | step           | Step interpolation is supported with a 16               | 0/1          | RW    |
| 100    | interpolation  | microstep setting only. In this setting, each           | 0/1          | IVV   |
|        | enable         | step impulse at the input causes the                    |              |       |
|        | enable         | execution of 16 times 1/256 microsteps. This            |              |       |
|        |                | way, a smooth motor movement like in 256                |              |       |
|        |                | microstep resolution is achieved.                       |              |       |
|        |                | o – step interpolation off                              |              |       |
|        |                | 1 – step interpolation on                               |              |       |
| 161    | double step    | Every edge of the cycle releases a                      | 0/1          | RW    |
| 101    | enable         | step/microstep. It does not make sense to               | 0/1          | IX V  |
|        | Chabic         | activate this parameter for internal use.               |              |       |
|        |                | Double step enable can be used with Step/Dir            |              |       |
|        |                | interface.                                              |              |       |
|        |                | o – double step off                                     |              |       |
|        |                | 1 – double step on                                      |              |       |
| 162    | chopper blank  | Selects the comparator blank time. This time            | 0 3          | RW    |
| 102    | time           | needs to safely cover the switching event and           | J J          |       |
|        |                | the duration of the ringing on the sense                |              |       |
|        |                | resistor. For low current drivers, a setting of 1       |              |       |
|        |                | or 2 is good.                                           |              |       |
| 163    | chopper mode   | Selection of the chopper mode:                          | 0/1          | RW    |
|        | JSppci mode    | o – spread cycle                                        |              |       |
|        |                | 1 - classic const. off time                             |              |       |
| 164    | chopper        | Hysteresis decrement setting. This setting              | 0 3          | RW    |
| 104    | hysteresis     | determines the slope of the hysteresis during           | J J          | 1.00  |
|        | 11731616313    | ·                                                       |              | 1     |
|        | decrement      | I on time and during fast decay time                    |              |       |
|        | decrement      | on time and during fast decay time.  o – fast decrement |              |       |

| Number | Axis Parameter              | Description                                                        | Range [Unit] | Acc.   |
|--------|-----------------------------|--------------------------------------------------------------------|--------------|--------|
| 165    | chopper                     | Hysteresis end setting. Sets the hysteresis end                    | -3 12        | RW     |
|        | hysteresis end              | value after a number of decrements.                                |              |        |
|        |                             | Decrement interval time is controlled by axis                      |              |        |
|        |                             | parameter 164.                                                     |              |        |
|        |                             | -31 negative hysteresis end setting                                |              |        |
|        |                             | o zero hysteresis end setting                                      |              |        |
|        | <u> </u>                    | 1 12 positive hysteresis end setting                               |              |        |
| 166    | chopper                     | Hysteresis start setting. Please remark, that                      | 0 8          | RW     |
|        | hysteresis start            | this value is an offset to the hysteresis end                      |              |        |
| _      |                             | value.                                                             | ,            | D) A / |
| 167    | chopper off time            | The off time setting controls the minimum                          | 0 / 2 15     | RW     |
|        |                             | chopper frequency. An off time within the                          |              |        |
|        |                             | range of 5µs to 20µs will fit.                                     |              |        |
|        |                             | Off time setting for constant $t_{OFF}$ chopper:                   |              |        |
|        |                             | N <sub>CLK</sub> = 12 + 32*t <sub>OFF</sub> (Minimum is 64 clocks) |              |        |
|        |                             | Setting this parameter to zero completely                          |              |        |
|        |                             | disables all driver transistors and the motor                      |              |        |
|        |                             | can free-wheel.                                                    | ,            | D) A / |
| 168    | smartEnergy                 | Sets the lower motor current limit for                             | 0/1          | RW     |
|        | current minimum             | coolStep™ operation by scaling the CS                              |              |        |
|        | (SEIMIN)                    | (Current Scale, see axis parameter 6) value.                       |              |        |
|        |                             | minimum motor current:                                             |              |        |
|        |                             | 0 - 1/2 of CS                                                      |              |        |
| 160    | amartEn aray                | 1 - 1/4 of CS  Sets the number of stallGuard2™ readings            | 0 3          | RW     |
| 169    | smartEnergy<br>current down | above the upper threshold necessary for each                       | 0 3          | KVV    |
|        |                             | current decrement of the motor current.                            |              |        |
|        | step                        |                                                                    |              |        |
|        |                             | Number of stallGuard2™ measurements per                            |              |        |
|        |                             | decrement:                                                         |              |        |
|        |                             | Scaling: 0 3: 32, 8, 2, 1                                          |              |        |
|        |                             | o: slow decrement                                                  |              |        |
|        |                             | 3: fast decrement                                                  |              | D) A / |
| 170    | smartEnergy                 | Sets the distance between the lower and the                        | 0 15         | RW     |
|        | hysteresis                  | upper threshold for stallGuard2™ reading.                          |              |        |
|        |                             | Above the upper threshold the motor current                        |              |        |
|        |                             | becomes decreased.                                                 |              |        |
|        |                             | Hysteresis:                                                        |              |        |
|        |                             | (smartEnergy hysteresis value + 1) * 32                            |              |        |
|        |                             | Upper stallGuard2™ threshold:                                      |              |        |
|        |                             | (smartEnergy hysteresis start + smartEnergy                        |              |        |
|        |                             | hysteresis + 1) * 32                                               |              |        |
| 171    | smartEnergy                 | Sets the current increment step. The current                       | 1 3          | RW     |
|        | current up step             | becomes incremented for each measured                              | _            |        |
|        |                             | stallGuard2™ value below the lower threshold                       |              |        |
|        |                             | (see smartEnergy hysteresis start).                                |              |        |
|        |                             | current increment step size:                                       |              |        |
|        |                             | Scaling: 0 3: 1, 2, 4, 8                                           |              |        |
|        |                             | o: slow increment                                                  |              |        |
|        |                             | 3: fast increment / fast reaction to rising load                   |              |        |
| 172    | smartEnergy                 | The lower threshold for the stallGuard2 <sup>TM</sup>              | 0 15         | RW     |
| 1/2    | hysteresis start            | value (see smart Energy current up step).                          | V 1)         | 1,,,,  |
|        | inysteresis start           | value (see smart Energy current up step).                          | I            | L      |

| Number | Axis Parameter   | Description                                      | Range [Unit]          | Acc. |
|--------|------------------|--------------------------------------------------|-----------------------|------|
| 173    | stallGuard2™     | Enables the stallGuard2™ filter for more         | 0/1                   | RW   |
|        | filter enable    | precision of the measurement. If set, reduces    |                       |      |
|        |                  | the measurement frequency to one                 |                       |      |
|        |                  | measurement per four fullsteps.                  |                       |      |
|        |                  | In most cases it is expedient to set the         |                       |      |
|        |                  | filtered mode before using coolStep™.            |                       |      |
|        |                  | Use the standard mode for step loss              |                       |      |
|        |                  | detection.                                       |                       |      |
|        |                  | o – standard mode                                |                       |      |
|        |                  | 1 - filtered mode                                |                       |      |
| 174    | stallGuard2™     | This signed value controls stallGuard2™          | -64 63                | RW   |
|        | threshold        | threshold level for stall output and sets the    |                       |      |
|        |                  | optimum measurement range for readout. A         |                       |      |
|        |                  | lower value gives a higher sensitivity. Zero is  |                       |      |
|        |                  | the starting value. A higher value makes         |                       |      |
|        |                  | stallGuard2™ less sensitive and requires more    |                       |      |
|        |                  | torque to indicate a stall.                      |                       |      |
|        |                  | o Indifferent value                              |                       |      |
|        |                  | 1 63 less sensitivity                            |                       |      |
|        |                  | -164 higher sensitivity                          |                       |      |
| 175    | slope control    | Determines the slope of the motor driver         | 0 3                   | RW   |
|        | high side        | outputs. Set to 2 or 3 for this module or        |                       |      |
|        |                  | rather use the default value.                    |                       |      |
|        |                  | o: lowest slope                                  |                       |      |
|        |                  | 3: fastest slope                                 |                       |      |
| 176    | slope control    | Determines the slope of the motor driver         | 0 3                   | RW   |
|        | low side         | outputs. Set identical to slope control high     |                       |      |
|        |                  | side.                                            |                       |      |
| 177    | short protection | o: Short to GND protection is on                 | 0/1                   | RW   |
|        | disable          | 1: Short to GND protection is disabled           |                       |      |
|        |                  | Use default value!                               |                       |      |
| 178    | short detection  | 0: 3.2µs                                         | 03                    | RW   |
|        | timer            | 1: 1.6µs                                         |                       |      |
|        |                  | 2: 1.2µs                                         |                       |      |
|        |                  | 3: 0.8µs                                         |                       |      |
|        |                  | Use default value!                               |                       |      |
| 179    | Vsense           | sense resistor voltage based current scaling     | 0/1                   | RW   |
|        |                  | o: Full scale sense resistor voltage is 1/18 VDD |                       |      |
|        |                  | 1: Full scale sense resistor voltage is 1/36 VDD |                       |      |
|        |                  | (refers to a current setting of 31 and DAC       |                       |      |
|        |                  | value 255)                                       |                       |      |
|        |                  | Use default value. Do not change!                |                       |      |
| 180    | smartEnergy      | This status value provides the actual motor      | 0 31                  | RW   |
|        | actual current   | current setting as controlled by coolStep™.      |                       |      |
|        |                  | The value goes up to the CS value and down       |                       |      |
|        |                  | to the portion of CS as specified by SEIMIN.     |                       |      |
|        |                  | actual motor current scaling factor:             |                       |      |
|        |                  | 0 31: 1/32, 2/32, 32/32                          |                       |      |
| 181    | stop on stall    | Motor stop in case of stall.                     | 0/1                   | RW   |
| 182    | smartEnergy      | Above this speed coolStep™ becomes               | 0 2047                | RW   |
| 102    | threshold speed  | enabled.                                         | 16MHz   µsteps        | 1.00 |
|        | •                |                                                  | 65536 · 2 FB sec      |      |
| 183    | smartEnergy      | Sets the motor current which is used below       | 0 255                 | RW   |
|        | slow run current | the threshold speed.                             | [max. module current] |      |
|        |                  | <u>l</u>                                         | L 255 J               | 1    |

| Number | Axis Parameter    | Descrip   | tion                                                                                  | Range [Unit] | Acc. |
|--------|-------------------|-----------|---------------------------------------------------------------------------------------|--------------|------|
| 204    | freewheeling      | Time af   | ter which the power to the motor will                                                 | 0 65535      | RWE  |
|        |                   |           | when its velocity has reached zero.                                                   | o = never    |      |
|        |                   |           |                                                                                       | [msec]       |      |
| 206    | actual load value | Readou    | t of the actual load value with used                                                  | 0 1023       | R    |
|        |                   | for stall | detection (stallGuard2™).                                                             |              |      |
| 208    | TMC260 driver     | Bit o     | stallGuard™ status                                                                    | 0/1          | R    |
|        | error flags       |           | (1: threshold reached)                                                                |              |      |
|        |                   | Bit 1     | Overtemperature (1: driver is shut down due to                                        |              |      |
|        |                   |           | overtemperature)                                                                      |              |      |
|        |                   | Bit 2     | Pre-warning overtemperature                                                           |              |      |
|        |                   |           | (1: Threshold is exceeded)                                                            |              |      |
|        |                   | Bit 3     | Short to ground A                                                                     |              |      |
|        |                   |           | (1: Short condition □etected, driver                                                  |              |      |
|        |                   | Bit 4     | currently shut down) Short to ground B                                                |              |      |
|        |                   | DIL 4     | (1: Short condition detected, driver currently                                        |              |      |
|        |                   |           | shut down)                                                                            |              |      |
|        |                   | Bit 5     | Open load A                                                                           |              |      |
|        |                   |           | (1: no chopper event has happened during the last period with constant coil polarity) |              |      |
|        |                   | Bit 6     | Open load B                                                                           |              |      |
|        |                   |           | (1: no chopper event has happened during                                              |              |      |
|        |                   |           | the last period with constant coil polarity)                                          |              |      |
|        |                   | Bit 7     | Stand still                                                                           |              |      |
|        |                   |           | (1: No step impulse occurred on the step input during the last 2^20 clock cycles)     |              |      |
|        |                   | Plage     | refer to the TMC260 Datasheet for more                                                |              |      |
|        |                   | informa   | -                                                                                     |              |      |
|        |                   |           |                                                                                       |              | DWE  |
| 214    | power down        |           | ill period before the current is changed                                              | _            | RWE  |
|        | delay             |           | o standby current. The standard value                                                 | [10msec]     |      |
|        |                   | IS 200 (  | value equates 2000msec).                                                              |              |      |

# 6.1 coolStep™ related parameters

The figure below gives an overview of the coolStep<sup>TM</sup> related parameters. Please have in mind that the figure shows only one example for a drive. There are parameters which concern the configuration of the current. Other parameters are for velocity regulation and for time adjustment.

It is necessary to identify and configure the thresholds for current (I6, I7 and I183) and velocity (V182). Furthermore the stallGuard2™ feature has to be adjusted and enabled (SG170 and SG181).

The reduction or increasing of the current in the coolStep™ area (depending on the load) has to be configured with parameters I169 and I171.

In this chapter only basic axis parameters are mentioned which concern coolStep™ and stallGuard2™. The complete list of axis parameters in chapter 6 contains further parameters which offer more configuration possibilities.

coolStep™ adjustment points and thresholds

# Velocity 1 Current **I**6 The current depends on the load of the motor. I183 **SG**170 **SG181** I6/2\* V<sub>182</sub> $I_7$ Time T214 coolStep™ area area without coolStep™ - I123 Current and parameter V<sub>123</sub> Velocity and parameter T<sub>123</sub> Time parameter SG123 stallGuard2™ parameter

\* The lower threshold of the coolStep™ current can be adjusted up to I6/4. Refer to parameter 168.

| Number | Axis parameter                                | Description                                                                                                                                                                                                                                                                                                                     |
|--------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I6     | absolute max. current<br>(CS / Current Scale) | The maximum value is 255. This value means 100% of the maximum current of the module. The current adjustment is within the range 0 255 and can be adjusted in 32 steps (0 255 divided by eight; e.g. step 0 = 0 7, step 1 = 8 15 and so on).  The most important motor setting, since too high values might cause motor damage! |
| $I_7$  | standby current                               | The current limit two seconds after the motor has stopped.                                                                                                                                                                                                                                                                      |
| I168   | smartEnergy current minimum<br>(SEIMIN)       | Sets the lower motor current limit for coolStep <sup>™</sup> operation by scaling the CS (Current Scale, see axis parameter 6) value.  Minimum motor current:  0 – 1/2 of CS  1 – 1/4 of CS                                                                                                                                     |
| I169   | smartEnergy current down<br>step              | Sets the number of stallGuard2 <sup>™</sup> readings above the upper threshold necessary for each current decrement of the motor current. Number of stallGuard2 <sup>™</sup> measurements per decrement: Scaling: 0 3: 32, 8, 2, 1 0: slow decrement 3: fast decrement                                                          |
| I171   | smartEnergy current up step                   | Sets the current increment step. The current becomes incremented for each measured stallGuard2™ value below the lower threshold (see smartEnergy hysteresis start). current increment step size:  Scaling: 0 3: 1, 2, 4, 8  o: slow increment 3: fast increment / fast reaction to rising load                                  |
| I183   | smartEnergy slow run current                  | Sets the motor current which is used below the threshold speed. Please adjust the threshold speed with axis parameter 182.                                                                                                                                                                                                      |
| SG170  | smartEnergy hysteresis                        | Sets the distance between the lower and the upper threshold for stallGuard2™ reading. Above the upper threshold the motor current becomes decreased.                                                                                                                                                                            |
| SG181  | stop on stall                                 | Motor stop in case of stall.                                                                                                                                                                                                                                                                                                    |
| V182   | smartEnergy threshold speed                   | Above this speed coolStep™ becomes enabled.                                                                                                                                                                                                                                                                                     |
| T214   | power down delay                              | Standstill period before the current is changed down to standby current. The standard value is 200 (value equates 2000msec).                                                                                                                                                                                                    |

For further information about the coolStep  $^{\text{TM}}$  feature please refer to the TMC260 Datasheet.

# 7 stallGuard2™

The module is equipped with TMC260 motor driver chip. The TMC260 features load measurement that can be used for stall detection. stallGuard2<sup>TM</sup> delivers a sensorless load measurement of the motor as well as a stall detection signal. The measured value changes linear with the load on the motor in a wide range of load, velocity and current settings. At maximum motor load the stallGuard<sup>TM</sup> value goes to zero. This corresponds to a load angle of 90° between the magnetic field of the stator and magnets in the rotor. This also is the most energy efficient point of operation for the motor.



Figure 7.1: Principle function of stallGuard2

Stall detection means that the motor will be stopped when the load gets too high. It is configured by axis parameter #174.

Stall detection can also be used for finding the reference point.

Mixed decay should be switched off when stallGuard2™ operational in order to get usable results.

For further information refer to the TMC260 Datasheet please.

# 8 Revision history

# 8.1 Firmware revision

| Version | Date        | Description                           |
|---------|-------------|---------------------------------------|
| 2.00    | 2010-NOV-26 | Version supporting all TMCL™ features |
|         |             |                                       |

## 8.2 Document revision

| Version | Date        | Author | Description     |
|---------|-------------|--------|-----------------|
| 1.00    | 2011-APR-21 | SD     | Initial version |
|         |             |        |                 |

# 9 References

[TMCM-KR-841] TMCM-KR-841 Firmware Manual and TMCM-KR-841 Hardware Manual

[TMC260] TMC260 Datasheet (please refer to <u>www.trinamic.com</u>)
[TMC429] TMC429 Datasheet (please refer to <u>www.trinamic.com</u>)