EXPT NO: 6 A python program to implement face recognition

DATE: 24/10/2024 using Support Vector Machine.

AIM:

To write a python program to implement face recognition using SVM.

PROCEDURE:

Implementing face recognition using svm involves the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
from sklearn.datasets import fetch_lfw_people import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.pipeline import make_pipeline from sklearn.decomposition import PCA as RandomizedPCA from sklearn.metrics import accuracy score
```

Step 2: Load the Dataset

The dataset can be loaded and display the first few faces of the dataset.

OUTPUT:

Step 4: Split the Data

Split the data into training and testing sets. Fit the dataset to the model.

```
X = faces.data y
= faces.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random state=42)
```

Step 5: Dimensionality Reduction

Reduce the dimension using Principal Component Analysis (PCA) Fit the model with SVC.

```
pca = RandomizedPCA(n_components=150, whiten=True, random_state=42)
svc = SVC(kernel='rbf', class_weight='balanced') model =
make_pipeline(pca, svc) model.fit(X_train, y_train)
```

Step 6: Make Predictions

Use the model to make predictions on the test data.

```
predictions = model.predict(X_test)
```

Step 7: Evaluate the Model

Evaluate the model performance using metrics like Accuracy Score and confusion matrix

OUTPUT:

```
predictions = model.predict(X_test) accuracy =
accuracy_score(predictions, y_test)
print(accuracy) matrix =
confusion_matrix(predictions, y_test)
print(matrix)
```

0.8074074074074075

]]	15	1	1	0	0	0	0	0]
]	4	101	4	20	3	8	1	9]
]	2	0	39	1	0	0	0	0]
]	2	4	5	183	5	7	4	10]
[0	0	0	1	28	5	0	0]
]	0	0	0	0	0	13	0	0]
]	0	0	0	0	0	0	16	0]
]	0	2	1	0	3	1	0	41]]

RESULT: This step-by-step process will help us to implement face recognition using SVM and analyzed their performance.