

CRIOT: Communications et Réseaux pour l'IoT

Présentation du cours

Georgios Z. **PAPADOPOULOS**

e-mail: georgios.papadopoulos@imt-atlantique.fr

web: www.georgiospapadopoulos.com

twitter: @gzpapadopoulos

youtube: www.youtube.com/c/gzpapadopoulos

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

What is Internet of Things (IoT)

An object

Monitors, controls

What is Internet of Things (IoT)

An object

Monitors, controls

that you connect

What is Internet of Things (IoT)

An object

Monitors, controls

that you connect

The 7 Layers of OSI Model

	Layer	Protocol data unit (PDU)			
Host layers	7. Application	Data			
	6. Presentation	Data			
	5. Session	Data			
	4. Transport	Segments, Datagram			
Media layers	3. Network	Packets			
	2. Data Link	Frames			
	1. Physical	Bits			

The 7 Layers of OSI Model vs **G3-PLC** Protocol Stack

The 7 Layers of OSI Model vs Wi-SUN Protocol Stack

Protocol data unit (PDU) Layer 7. Application **Data** Host layers 6. Presentation **Data** 5. Session Data 4. Transport Segments, Datagram 3. Network **Packets** Media layers 2. Data Link **Frames** 1. Physical **Bits**

The 7 Layers of OSI Model vs **ZigBee** Protocol Stack

Protocol data unit (PDU) Layer 7. Application **Data** Host layers 6. Presentation **Data** 5. Session Data 4. Transport Segments, Datagram 3. Network **Packets** Media layers 2. Data Link **Frames** 1. Physical **Bits**

The 7 Layers of OSI Model vs **Thread** Protocol Stack

Protocol data unit (PDU) Layer Application Security/Commissioning 7. Application **Data** UDP Host layers 6. Presentation **Data** THREAD **IP Routing** 5. Session **Data** 4. Transport Segments, Datagram **6LoWPAN** 3. Network **Packets** Media layers IEEE 802.15.4 MAC 2. Data Link **Frames** IEEE 802.15.4 PHY 1. Physical **Bits**

The 7 Layers of OSI Model vs 6TiSCH Protocol Stack

	Layer	Protocol data unit ((PDU)					
Host layers	7. Application	Data		Applications	СоЈР			
	6. Presentation	Data	<u> </u>	CoAP / OSCORE	6LoWPAN ND		RPL	
			- -	UDP			IPv6	
	5. Session	Data	ш	IPv6				
	4. Transport	Segments, Datagra	6LoWPAN HC / 6	6LoWPAN HC / 6LoRH HC Sch		eduling Function (MSF)		
Media layers	3. Network	Packets		6top inc. 6top Protocol (6p)				
	2 Data Link		AIEEE	IEEE Std 802.15.4 TSCH				
	2. Data Link	Frames	IEEE	IEEE Std 802.15.4 PHY				
Z	1. Physical	Bits						

Présentation du cours

Équipe Pédagogique

Les intervenants

- Georgios Z. PAPADOPOULOS, Professeur, IMT Atlantique
 - georgios.papadopoulos@imt-atlantique.fr
- ► Remous-Aris KOUTSIAMANIS, Maître de conférences, IMT Atlantique
 - remous-aris.koutsiamanis@imt-atlantique.fr
- Guillaume LE GALL, Maître de conférences, ESIR
 - guillaume.le-gall@inria.fr
- Pascal THUBERT, Research Scientist, Cisco Systems
 - pthubert@cisco.com

- ► Introduction à l'IoT :
 - Qu'est-ce qu'un objet et pourquoi nous connectons des objets ?
 - Applications, et Topologies.

- ► Introduction à l'IoT :
 - Qu'est-ce qu'un objet et pourquoi nous connectons des objets ?
 - Applications, et Topologies.
- Protocoles de couche MAC :
 - Principes de base des protocoles MAC.
 - Méthodes d'accès aléatoire vs méthodes de partitionnement de canal.

- Introduction à l'IoT :
 - Qu'est-ce qu'un objet et pourquoi nous connectons des objets ?
 - Applications, et Topologies.
- Protocoles de couche MAC :
 - Principes de base des protocoles MAC.
 - Méthodes d'accès aléatoire vs méthodes de partitionnement de canal.
- Protocoles de routage pour l'IoT :
 - Quels sont les objectifs d'un protocole de routage et pourquoi nous en avons besoin.
 - Protocoles proactifs vs réactifs (AODV vs RPL), comment ils construisent et entretiennent les chemins.

- Introduction à l'IoT :
 - Qu'est-ce qu'un objet et pourquoi nous connectons des objets ?
 - Applications, et Topologies.
- Protocoles de couche MAC :
 - Principes de base des protocoles MAC.
 - Méthodes d'accès aléatoire vs méthodes de partitionnement de canal.
- Protocoles de routage pour l'IoT :
 - Quels sont les objectifs d'un protocole de routage et pourquoi nous en avons besoin.
 - Protocoles proactifs vs réactifs (AODV vs RPL), comment ils construisent et entretiennent les chemins.
- Protocoles de compression :
 - Compression, Fragmentation et Réassemblage.
 - Fragment Forwarding (FF): Mesh-Under, Route-Over, Minimal Fragment Forwarding.

- Introduction à l'IoT :
 - Qu'est-ce qu'un objet et pourquoi nous connectons des objets ?
 - Applications, et Topologies.
- Protocoles de couche MAC :
 - Principes de base des protocoles MAC.
 - Méthodes d'accès aléatoire vs méthodes de partitionnement de canal.
- Protocoles de routage pour l'IoT :
 - Quels sont les objectifs d'un protocole de routage et pourquoi nous en avons besoin.
 - Protocoles proactifs vs réactifs (AODV vs RPL), comment ils construisent et entretiennent les chemins.
- Protocoles de compression :
 - Compression, Fragmentation et Réassemblage.
 - Fragment Forwarding (FF): Mesh-Under, Route-Over, Minimal Fragment Forwarding.
- Protocole d'application constraint :
 - CoAP.

Travaux Pratiques

► Introduction à Cooja / Contiki-NG et mise en œuvre, analyse et évaluation de protocoles de MAC et routage.

► Travailler sur du matériel réel : montage d'un mini-réseau IoT.

Aspects Pratiques

En pratique

- Nature : Unité d'enseignement
- ECTS: 3
- Type d'enseignement : en présentiel (à distance si necessaire)
- Langue d'enseignement : Français / Anglais

L'organisation

- Volume horaire de CM / TD : 15 × 1h15min
- Volume horaire de TD : 4h × 1h15min
- Volume horaire de TP: 12h × 1h15min

Les modalités d'évaluation

1 contrôle à la fin du module

- IEEE 802.15.4-2020 IEEE Standard for Low-Rate Wireless Networks
- RFC 4944: Transmission of IPv6 Packets over IEEE 802.15.4 Networks
- RFC 6282 : Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks
- RFC 8138 : IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing Header
- RFC 8930 : On Forwarding 6LoWPAN Fragments over a Multi-Hop IPv6 Network
- draft-ietf-lwig-6lowpan-virtual-reassembly-02 : Virtual reassembly buffers in 6LoWPAN
- RFC 8931 : IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Selective Fragment Recovery
- RFC 7554: Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement
- RFC 8480 : 6TiSCH Operation Sublayer (6top) Protocol (6P)
- draft-ietf-6tisch-msf-18: 6TiSCH Minimal Scheduling Function (MSF)
- draft-ietf-6tisch-enrollment-enhanced-beacon-14 : IEEE 802.15.4 Information Element encapsulation of 6TiSCH Join and Enrollment Information
- RFC 6550 : RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks
- RFC 6551: Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks
- RFC 6552 : Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL)
- RFC 7252 : The Constrained Application Protocol (CoAP)

Multimedia support

MOOC on Coursera platform

IoT Communications and Networks

MOOC on Coursera platform

IoT Communications and Networks

Outline of the MOOC:

- Week 1: Welcome & MAC Methods
- Week 2: 6TiSCH
- Week 3: IPv6 & 6LoWPAN
- Week 4: RPL

Educational Team:

- Georgios Z. Papadopoulos
- Nicolas Montavont
- Géraldine Texier
- Remous-Aris Koutsiamanis

Interviews from the industrial community:

- Pascal Thubert, Cisco Systems
- Thomas Watteyne, Analog Devices, Falco
- Rémi Dubaele, ENEDIS

YouTube Channel

https://www.youtube.com/c/gzpapadopoulos

CRIOT: Communications et Réseaux pour l'IoT

Présentation du cours

Georgios Z. **PAPADOPOULOS**

e-mail: georgios.papadopoulos@imt-atlantique.fr

web: www.georgiospapadopoulos.com

twitter: @gzpapadopoulos

youtube: www.youtube.com/c/gzpapadopoulos