FINAL EXAMINATION

January, 2015

Duration: 120 minutes

SUBJECT:	ANALYSIS II
Vice Chair of Department of Mathematics	Lecturers:
Signature:	Signature:
Assoc. Prof. Dr. Pham Huu Anh Ngoc	Dr. Nguyen Ngoc Hai

INSTRUCTIONS:

• Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1. (a) (10 marks) Find the volume of the solid generated when the region $\{(x,y): 0 \le x \le 2, \ 0 \le y \le x^2\}$ is rotated about the line y=-1.

(b) (10 marks) Find the length of the curve

$$y = \int_{-2}^{x} \sqrt{3t^4 - 1} \, dt, \quad -2 \le x \le -1.$$

Question 2. (20 marks) Find the following limits:

(a)
$$\lim_{n \to \infty} \frac{\ln(n+1)}{\sqrt{n}}.$$
 (b)
$$\lim_{n \to \infty} (\sqrt{n^2 + 3n} - n).$$

Question 3. (20 marks) Determine whether the series is convergent or divergent. If it is convergent, find its sum.

(a)
$$\sum_{k=1}^{\infty} \frac{(-2)^k}{3^{k+1}}$$
 (b) $\sum_{k=1}^{\infty} \frac{k}{\sqrt{k^2+4}}$.

----continued on next page-----

Question 4. (a) (15 marks) Find the radius and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{\sqrt{n}}.$$

(b) (5 marks) Evaluate

$$\sum_{n=0}^{\infty} \frac{n+1}{3^n}.$$

Question 5. (a) (10 marks) Find a vector orthogonal to the two vectors $\mathbf{u} = -\mathbf{i} + 6\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}$.

(b) (10 marks) Find an equation of the line through (1, -3, 4) that is parallel to the line

$$\mathbf{r}(t) = \langle 3 + 4t, 5 - t, 7 \rangle.$$

SOLUTIONS OF FINAL EXAMINATION SUBJECT: ANALYSIS II

January, 2015

Duration: 120 minutes

Question 1. (a) (10 marks) Find the volume of the solid generated when the region $\{(x,y): 0 \le x \le 2, 0 \le y \le x^2\}$ is rotated about the line y=-1.

(b) (10 marks) Find the length of the curve $y = \int_{-2}^{x} \sqrt{3t^4 - 1} \ dt$, $-2 \le x \le -1$.

Solution (a) At each x in the interval $0 \le x \le 2$, the cross section of the solid is a washer with outer radius $x^2 + 1$ and inner radius 1. Hence the volume of the solid is

$$V = \pi \int_0^2 \left[(x^2 + 1)^2 - 1 \right] dx$$
 [5 marks]
= $\pi \int_0^2 (x^4 + 2x^2) dx = \pi \left(\frac{1}{5} x^5 + \frac{2}{3} x^3 \Big|_0^2 \right) = \frac{176}{15} \pi.$ [5 marks]

(b) By the FTC, $y'(x) = \sqrt{3x^4 - 1}$, $-2 \le x \le -1$. Thus the length of the curve is

$$L = \int_{-2}^{-1} \sqrt{1 + y'(x)^2} \, dx = \int_{-2}^{-1} \sqrt{1 + 3x^4 - 1} \, dx \qquad [5 \ marks]$$
$$= \int_{-2}^{-1} \sqrt{3}x^2 dx = \frac{\sqrt{3}}{3}x^3 \Big|_{-2}^{-1} = \frac{7\sqrt{3}}{3}. \qquad [5 \ marks]$$

Question 2. (20 marks) Find the following limits:

(a)
$$\lim_{n \to \infty} \frac{\ln(n+1)}{\sqrt{n}}.$$
 (b)
$$\lim_{n \to \infty} (\sqrt{n^2 + 3n} - n).$$

Solution Consider the function $f(x) = \ln(x+1)/\sqrt{x}$ on the interval $[1, \infty)$. Applying L'Hôspital's Rule we get

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\frac{1}{x+1}}{\frac{1}{2\sqrt{x}}}$$

$$= \lim_{x \to \infty} \frac{2\sqrt{x}}{x+1} = \lim_{x \to \infty} \frac{2/\sqrt{x}}{1+1/x} = 0.$$
[4 marks]

Thus, [2 marks]

$$\lim_{n \to \infty} \frac{\ln(n+1)}{\sqrt{n}} = \lim_{n \to \infty} f(n) = 0.$$

(b)

$$\lim_{n \to \infty} \left(\sqrt{n^2 + 3n} - n \right) = \lim_{n \to \infty} \frac{(n^2 + 3n) - n^2}{\sqrt{n^2 + 3n} + n}$$

$$= \lim_{n \to \infty} \frac{3}{\sqrt{1 + 3/n} + 1} = \frac{3}{2}.$$
 [5 marks]

Question 3. (20 marks) Determine whether the series is convergent or divergent. If it is convergent, find its sum.

(a)
$$\sum_{k=1}^{\infty} \frac{(-2)^k}{3^{k+1}}$$
 (b) $\sum_{k=1}^{\infty} \frac{k}{\sqrt{k^2+4}}$.

Solution (a) The series is geometric with the common ratio -2/3, so it converges [4 marks]. Since

$$\left| \frac{-2}{3} \right| = \frac{2}{3} < 1,$$

we have

$$\sum_{k=1}^{\infty} \frac{(-2)^k}{3^{k+1}} = \sum_{k=1}^{\infty} \frac{1}{3} \cdot \frac{(-2)^k}{3^k} = \frac{1}{3} \sum_{k=1}^{\infty} \frac{(-2)^k}{3^k} = \frac{1}{3} \sum_{k=1}^{\infty} \left(\frac{-2}{3}\right)^k \quad [4 \ marks]$$
$$= \frac{1}{3} \cdot \frac{-2/3}{1 - (-2/3)} = \frac{1}{3} \cdot \left(-\frac{2}{5}\right) = -\frac{2}{15}. \quad [2 \ marks]$$

Thus the series converges and its sum is $-\frac{2}{15}$.

OR

$$\sum_{k=1}^{\infty} \frac{(-2)^k}{3^{k+1}} = \frac{-2/3^2}{1 - (-2/3)} = \frac{-2/3^2}{\frac{5}{3}} = -\frac{2}{15}.$$

(b) [10 marks] Since

$$\lim_{k \to \infty} \frac{k}{\sqrt{k^2 + 4}} = \frac{1}{\sqrt{1 + \frac{4}{k^2}}} = 1 \neq 0,$$
 [7 marks]

the series $\sum_{k=1}^{\infty} \frac{k}{\sqrt{k^2+4}}$ diverges by the Divergence Test [3 marks].

Question 4. (a) (15 marks) Find the radius and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{\sqrt{n}}.$$

(b) (5 marks) Evaluate

$$\sum_{n=0}^{\infty} \frac{n+1}{3^n}.$$

Solution (a) Let $a_n = \frac{(x-2)^n}{\sqrt{n}}$. Using the Ratio Test we get

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(x-2)^{n+1}}{\sqrt{n+1}}}{\frac{(x-2)^n}{\sqrt{n}}} \right|$$

$$= \lim_{n \to \infty} |x-2| \frac{\sqrt{n}}{\sqrt{n+1}} = |x-2|.$$
 [4 marks]

The series converges if |x-2| < 1 and diverges if |x-2| > 1. Hence radius of convergence of the series is r = 1 [3 marks].

If x-2=-1, i.e., if x=1, then the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$, which is an alternating harmonic series and hence, converges [2 marks].

If x-2=1, i.e., if x=3 then the series becomes $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, which is a p-series with p=1/2 and so it diverges. Therefore, the interval of convergence of the series is [1,3) /2 marks/.

(b) We have

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots, \qquad -1 < x < 1.$$

Differentiating both sides of this equation gives [3 marks]

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots + nx^{n-1} + \dots = \sum_{n=0}^{\infty} (n+1)x^n, \quad -1 < x < 1.$$

Putting $x = \frac{1}{3}$ gives [2 marks]

$$\sum_{n=0}^{\infty} \frac{n+1}{3^n} = \sum_{n=0}^{\infty} (n+1) \left(\frac{1}{3}\right)^n = \frac{1}{(1-1/3)^2} = \frac{9}{4}.$$

Question 5. (a) (10 marks) Find a vector orthogonal to the two vectors $\mathbf{u} = -\mathbf{i} + 6\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}$.

(b) (10 marks) Find an equation of the line through (1, -3, 4) that is parallel to the line

$$\mathbf{r}(t) = \langle 3 + 4t, 5 - t, 7 \rangle.$$

Solution (a) A vector orthogonal to the two vectors \mathbf{u} and \mathbf{v} is

$$\mathbf{n} = \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 0 & 6 \\ 2 & -5 & -3 \end{vmatrix}$$

$$= (0+30)\mathbf{i} - (3-12)\mathbf{j} + (5-0)\mathbf{k} = 30\mathbf{i} + 9\mathbf{j} + 5\mathbf{k}.$$
 [5 marks]

(b) Let L be the line through (1, -3, 4) and parallel to the line $\mathbf{r}(t) = \langle 3 + 4t, 5 - t, 7 \rangle$. Then L is parallel to the vector $\mathbf{v} = \langle 4, -1, 0 \rangle$ [5 marks]. Hence L has a vector equation

$$\mathbf{r}_1(t) = \langle 1, -3, 4 \rangle + t\mathbf{v} = \langle 1, -3, 4 \rangle + \langle 4t, -t, 0 \rangle = \langle 1 + 4t, -3 - t, 4 \rangle.$$

Parametric equations of the line are

$$x = 1 + 4t, \quad y = -3 - t, \quad z = 4.$$
 [5 marks]