

《计算机系统结构》课程直播 2020. 4.16

听不到声音请及时调试声音设备,可以下课后补签到 请将ZOOM名称改为"姓名";

本次内容

● 解决数据冲突的具体实现

◉ 接下来内容预告

● 作业点评

流水线中的相关性和"冒险"

- 流水线中的相关性: 相邻或相近的指令之间因存在某种依赖性, 或称为相关性, 使得指令的执行可能受到影响。
- 这些相关性,可能会影响指令的执行,也可能不影响, 因此又称为冒险(hazard)
 - 结构冒险 (structural hazards)
 - 资源相关性: 所需的硬件部件正在为之前的指令工作
 - ◉ 数据冒险(data hazards)
 - 数据依赖性需要等待之前的指令完成数据的读写
 - ◉ 控制冒险(control hazards)
 - 转移指令引起: 需要根据指令的结果决定下一步

Register Usage Can Cause Data Hazards

Dependencies backward in time cause hazards

Read before write data hazard

Loads Can Cause Data Hazards

Load-use data hazard

Resolving Data Hazards with Stalls

Stalled Stages and Pipeline Bubbles

		t0	t1	t2	t3	t4	t5	t6	t7	t8	t9	t1 0	
11	add \$1,	IF1	ID1	EX1	MA1	WB1						U	
12	sub \$4,\$1,\$5		IF2	ID2	ID2	ID2	EX2	MA2	WB2				
13	and \$6,\$1,\$7			IF3	IF3	IF3	ID3	EX3	MA3	WB3			
14	or \$8,\$1,\$9			stal	l stage		IF4	ID4	EX4	MA4	WB4		
15								IF5	ID5	EX5	MA5	WB5	5

Stall Control Logic

Compare the source registers of the instruction in the decode stage with the destination register of the uncommitted instructions.

Source & Destination Registers

```
func
      R-type:
                                              rd
      I-type:
                                               immediate16
                          op
                                rs
      J-type:
                                       immediate26
                          ОD
                                                source(s) destination
ALU rd \leftarrow (rs) func (rt)
                                                  rs, rt
                                                                   rd
ALUI rt \leftarrow (rs) op immediate
                                                                    rt
                                                  rs
LW rt \leftarrow M [(rs) + immediate]
                                                                    rt
                                                  rs
        M[(rs) + immediate] \leftarrow (rt)
SW
                                                  rs, rt
        cond (rs)
ΒZ
         true: PC \leftarrow (PC) + immediate
                                                  rs
         false: PC \leftarrow (PC) + 4
                                                  rs
        PC \leftarrow (PC) + immediate
JAL r31 \leftarrow (PC), PC \leftarrow (PC) + immediate
                                                                   31
JR PC \leftarrow (rs)
                                                  rs
JALR r31 \leftarrow (PC), PC \leftarrow (rs)
                                                                   31
                                                  rs
```

Deriving the Stall Signal

```
C_{dest}
Ws = Case \text{ opcode}
ALU \Rightarrow rd
ALUi, LW \Rightarrow rt
JAL, JALR \Rightarrow R31
We = Case \text{ opcode}
ALU, ALUi, LW \Rightarrow (ws \neq 0)
ALU, ALUi, LW \Rightarrow 0
```

```
C_{re}

re1 = Case \text{ opcode}

ALU, ALUi,

LW, SW, BZ,

JR, JALR \Rightarrow on

J, JAL \Rightarrow off

re2 = Case \text{ opcode}

ALU, SW \Rightarrow on

\Rightarrow off
```

```
\begin{aligned} & \text{Stall} = ((\text{rs}_{\text{D}} = \text{ws}_{\text{E}}).\text{we}_{\text{E}} + \\ & (\text{rs}_{\text{D}} = \text{ws}_{\text{M}}).\text{we}_{\text{M}} + \\ & (\text{rs}_{\text{D}} = \text{ws}_{\text{W}}).\text{we}_{\text{W}}) \cdot \text{re1}_{\text{D}} + \\ & ((\text{rt}_{\text{D}} = \text{ws}_{\text{E}}).\text{we}_{\text{E}} + \\ & (\text{rt}_{\text{D}} = \text{ws}_{\text{M}}).\text{we}_{\text{M}} + \\ & (\text{rt}_{\text{D}} = \text{ws}_{\text{W}}).\text{we}_{\text{W}}) \cdot \text{re2}_{\text{D}} \end{aligned}
```

This is not story.

Another Way to "Fix" a Data Hazard

Fully Bypassed Datapath

a need for the stall signal?

$$stall = (rs_D = ws_E). (opcode_E = LW_E).(ws_E \neq 0).re1_D + (rt_D = ws_E). (opcode_E = LW_E).(ws_E \neq 0).re2_D$$

Forwarding with Load-use Data Hazards

Will still need one stall cycle even with forwarding

Datapath with Forwarding Hardware

Corrected Data Forwarding Control Conditions

1. EX Forward Unit:

```
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
         ForwardA = 10
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
         ForwardB = 10
```

Forwards the result from the previous instr. to either input of the ALU

2. MEM Forward Unit:

ForwardB = 01

Forwards the result from the previous or second previous instr. to either input of the ALU

Pipelining Summary

- All modern day processors use pipelining
- Pipelining doesn't help latency of single task, it helps throughput of entire workload
- Potential speedup: a really fast clock cycle and able to complete one instruction every clock cycle (CPI)
- Pipeline rate limited by slowest pipeline stage
 - Unbalanced pipe stages makes for inefficiencies
 - The time to "fill" pipeline and time to "drain" it can impact speedup for deep pipelines and short code runs
- Must detect and resolve hazards
 - Stalling negatively affects CPI (makes CPI greater than the ideal of 1)

流水线处理器的性能

□ CPU执行时间 =指令数目 x 平均每条指令所花的时钟周期 (CPI) x 一个时钟周期长度

- □ CPI _{ideal} =1
- □ CPI = CPI ideal + CPI stall
- □ CPI stall 发生的原因
 - 数据冒险
 - 结构冒险
 - 控制冒险
 - 访存延迟

接下来…

现代处理器的微结构

处理器	年份	时钟频率	流水级数	发射宽度	乱序执行?	核数	功耗
Intel 486	1989	25 MHz	5	1	No	1	5 W
Intel Pentium	1993	66 MHz	5	2	No	1	10 W
Intel Pentium Pro	1997	200 MHz	10	3	Yes	1	29 W
Intel Pentium 4 Willamette	2001	2000 MHz	22	3	Yes	1	75 W
Intel Pentium 4 Prescott	2004	3600 MHz	31	3	Yes	1	103 W
Intel Core	2006	2930 MHz	14	4	Yes	2	75 W
Sun USPARC III	2003	1950 MHz	14	4	No	1	90 W
Sun T1 (Niagara)	2005	1200 MHz	6	1	No	8	70 W

接下来...

多发射处理器的实现和主要特点

常用名	发射结构	冲突检测	调度方式	特点	处理器举例	
静态超标量 superscalar (static)	动态	硬件	静态	按序执行	大部分嵌入式处理 器,例如ARM cortex-A8	
动态超标量 superscalar (dynamic)	动态	硬件	动态	乱序执行	目前无	
推测执行超标量 superscalar (speculative)	动态	硬件	带推测的动 态	乱序、 推测执行	大部分通用处理器, 如Intel Core i3,i5,i7、arm A76	
<mark>超长指令字</mark> (VLIW)	静态	主要由软件完成	静态	编译器(隐式) 完成冲突检测、 指令调度	某些特定领域,如信号处理器 TI C6x	
显式并发指令 运算(EPIC)			主要为静态	编译器(显式) 完成冲突检测、 指令调度	Intel 安腾 Itanium处理器	

ARM Cortex-A系列

	麒麟990 5G	麒麟990		
	CPU ISPU CPU Tamilf-EM Tamilf-E	CPU BFU GFU TOTI Marine stocker Evillation Sent of All LONG 48 HTS SOCIAL MINI Andre Stocker Heldely legiple		
工艺	7nm+EUV	7nm		
CPU	2X Cortex-A76 Based@2.86GHz 2X Cortex-A76 Based@2.36GHz 4X Cortex-A55@1.95GHz	2X Cortex-A76 Based@2.86GHz 2X Cortex-A76 Based@2.09GHz 4X Cortex-A55@1.86GHz		
GPU	16 Core Mali-G76	16 Core Mali-G76		
NPU	2 Big Core +1 Tiny Core	1 Big Core +1 Tiny Core		
存储	UFS 3.0, UFS2.1	UFS 3.0, UFS2.1		
Modem	2G/3G/4G/ <mark>5G</mark>	2G/3G/4G		

华为MATE30手机中的处理器

CPU:

2大核+2中核+4小核能效架构

 $2\times$ A76(2.86Ghz)

 $2\times$ A76(2.36Ghz)

 $4 \times A55(1.95Ghz)$

麒麟990对标骁龙855+的性能

Cortex-A76: Microarchitecture overview

The foundation of a new family of high-performance products

Time. Corresponding UK and Japan times are: Thursday, May 31" 8pm BST/Friday, June 1" at 4am JST

作业讲解

习题:

```
考虑以下结构体:
typedef struct
      char a[3];
      short b[3];
      double c;
      long double d;
      int* e;
      int f; } foo;
```

□ x86-64 Linux 系统如何为foo分配内存? 用变量的名字标记分配给该变量的字节,用X标记用于内存对齐的空白字节。例如: aXXXbbbb, 表示分配给char a一个字节,分配给int b四个字节,a和b之间有三个空白字节是用于内存对齐。注意: long double 长度为16 bytes.

习题

```
Cache Friendly Code: 下面考虑访问数组A时,不同高
速缓存的性能问题。假设其他变量都放置在寄存器中
,运行代码之前cache为空.考虑以下代码:
#define N 128
int myst(int[]A) {
    int i, result;
    for (i = 0; i < N; i++) result += A[i]*A[N-i-1];
    return result;
假设有一个大小为64-byte, 一共有4个组(sets)的直
接映射高速缓存。当代码执行到返回result的结果时,
```

接映射高速缓存。当代码执行到返回result的结果时,cache中的内容是什么?补充填写图中的内容。图中一个方块格子代表4个字节。

```
#define N 128
int myst(int[]A) {
    int i, result;
    for (i = 0; i < N; i++) result += A[i]*A[N-i-1];
    return result;
}
假设有一个大小为64-byte, 一共有4个组(sets)的直接映射高速缓存。当代码执行到返回result的结果时,cache中的内容是什么?补充填写图中的内容。图中一个方块格子代表4个字节。
```

```
#define N 128
int myst(int[ ] A) {
        int i, result;
        for (i = 0; i < N; i++) result += A[i]*A[N-i-1];
        return result;
}</pre>
```

□ 假设有一个大小为64-byte, 一共有4个组(sets)的2路组相联映射高速缓存(two-way set associative cache with 4 sets当代码执行到返回result的结果时,cache中的内容是什么?补充填写图中的内容。图中一个方块格子代表4个字节。

再见

