Cartesian Plane (12, xy plane) (-Z,-4) t Distance formula for R2: The distance between (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midjoint of (x, y,) and (x2, yz) is (x1+x2 y1+y2) a) Find distance between (1, -2) and (4,2) Exampleb) Find midpoint of (4,3) and (-2,5) $D = \sqrt{(4-1)^2 + (2+2)^2} = \sqrt{25} = 5$ $M = \left(\frac{4-2}{2}, \frac{3+5}{2}\right) = \left(1, 4\right)$ By distance formular $\gamma = \sqrt{(x-h)^2 + (y-K)^2}$ $=) r^2 = (x-h)^2 + (y-k)^2$ Equation of a cyrcle centered at (h, k) with radius r.

Example - Show that $x^2 - 6x + y^2 + 4y - 3 = 0$ is the equation of a circle. Find center/radius Recall - to complete the square of an expression x2 + bx, add and subtract $\frac{b^2}{4}$ ie $\chi^2 + b\chi = \chi^2 + b\chi + \frac{b^2}{4} - \frac{b^2}{4}$ $=(x+\frac{b}{2})^2-\frac{b^2}{4}$ $x^2 - 6x + y^2 + 4y - 3 = 0$ $x^{2} - 6x + 9 - 9 + y^{2} + 4y + 4 - 4 - 3 = 0$ $(x-3)^2 - 9 + (y+2)^2 - 4 - 3 = 0$ $(x-3)^2 + (y+2)^2 = 16$ Center 15 (3, -2), r = 4Cartesian coordinates in three dimensions (IR3) 1: (2, 2, 3) Distance formula in R3: distance from (X_1, Y_1, Z_1) to (X_2, Y_2, Z_2) is $\sqrt{(X_2-X_1)^2 + (Y_2-Y_1)^2 + (Z_2-Z_1)^2}$ Idpodat formula between (X1, Y1, Z1) and (X2, Y2, Z2) is $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$

Equation of sphere with radius r, center (h, k, l)is $(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$

Examples - 1) Show that $x^2 - 10x + y^2 + 2y + z^2 - 8z - 7 = 6$ is equation of a sphere.

Find radius/center

2) Find equation of the sphere that has (7, 2, -4) and (3, 10, 4) as endpoints of a diameter of the sphere.

1)
$$(x^2 - 10x + 25) - 25 + (y^2 + 2y + 1) - 1 + (z^2 - 8x + 16 - 16) - 7 = 0$$

 $(x - 5)^2 + (25 + (2 - 4)^2 - 16 - 7 = 0)$
 $(x - 5)^2 + (4 + 1)^2 + (z - 4)^2 = 49$
 $(x - 5)^2 + (4 + 1)^2 + (z - 4)^2 = 49$
Center is $(5, -1, 4)$, $r = 7$
1) Center is midpoint = $(\frac{2+3}{2}, \frac{2+10}{2}, \frac{-4+4}{2}) = (5, 6, 0)$

Radius is
$$\frac{distance}{2}$$

Distance = $\sqrt{(3-7)^2 + (10-2)^2 + (4+4)^2} = \sqrt{144}$

= 12

So radius = 6

 $(x-5)^2 + (y-6)^2 + (z-0)^2 = 36$
 $(x-5)^2 + (y-6)^2 + (z-0)^2 = 36$

Planes

Planes

It is represented as a directed line segment between two points P and Q, denoted \overline{PQ}

between two points P and Q, denoted PQ

The magnitude of PQ is the distance between P and Q,

The direction of PQ is from P to Q

PO PQ

If $P = (X_1, Y_1, Z_1)$ and $Q = (X_2, Y_2, Z_2)$, Then $\vec{PQ} = \langle x_2 - x_1, Y_2 - Y_1, Z_2 - Z_1 \rangle$ Example - Find \overrightarrow{pa} for $\overrightarrow{p} = (3, 1, 0)$ and Q = (1, 2, 3) $\vec{P}\vec{Q} = (1-3, 2-1, 3-07 = (-2, 1, 0))$ 2 (2, 1, 3) 1 Q 1 Q A vector that begins at the origin O = (0,0,0)is a position vector $E_{Xample} = (-2, 1, 3)$ Find the position vector defined by P $\overrightarrow{OP} = (-2-0, 1-0, 3-0) = (-2, 1, 37)$ Two vectors with the same magnitude and direction are said to be equivalent.

Equivalent vectors have identical representations Example - $P_1 = (3, 1, 0), Q_1 = (1, 2, 3)$ $P_2 = (-1, 4, 1).$ Find Qz so that P,Q, is equivalent to PzQz. P, Q, = (-2, 1, 3) If $Q_2 = (x, y, z)$ is such that $P_2 Q_2 = (-31)^{37}$ then (x+1, y-4, z-17 = (-2, 1, 37)= > x = -3, y = 5, z = 4The sum of two vectors PQ = <a, 92, 93 7 and R3 = (b1, b2, b3) is PQ+ R3 = (a1+b1, az+bz, a3+b3) Triangular law of vector addition - if P,Q,R are all points in R3, then PQ + QR = PR Example - Venty this law for P = (3,1,0), Q = (1,2,3) and R = (4, 5, 6)PQ = (-2, 1, 37 QR = (3, 3, 37, PR = <1, 4, 67 PQ+ BR = <1,4,67 = PR

re product of a scalar BEIN and a vegor = (a1, a2, a37 15 BPQ = (Ba1, Baz, Ba37 ϕ $-\overrightarrow{PQ} = \overrightarrow{QP}$ P = (3, 1, 0) Q = (1, 2, 3) $\vec{Q}\vec{p} = (2, -1, -37)$ PQ = <-2,1,37 -pa = (-1)pa = (2, -1, -37 = apPQ - RQ = ? PQ + (-RQ) = PQ+QR = PR triangle law

Fact - Let P, Q, R be points and
$$\beta \in \mathbb{R}$$
 a scalar such that $\overrightarrow{PR} = \overrightarrow{pPQ}$

Then $J(P,R) = |P|J(P,Q)$

where $J(P,R) = |P|J(P,Q)$
 $J(P,Q) = |P|J(P,Q)$

Then $J(P,Q) = |P|J(P,Q)$
 $J(P,Q) = |J(P,Q)|^2 + |J(P,Q)|^2 + |J(P,Q)|^2 = |J(P,Q)|^2 = |J(P,Q)|^2 + |J(P,Q)|^2 = |J(P,Q)|^2 = |J(P,Q)|^2 + |J(P,Q)|^2 = |J(P,Q)|^2 = |J(P,Q)|^2 + |J(P,Q)|^2 + |J(P,Q)|^2 = |J(P,Q)|^2 = |J(P,Q)|^2 + |J(P,Q)|^2 + |J(P,Q)|^2 = |J(P,Q)|^2 = |J(P,Q)|^2 + |J(P,Q)|^2 + |J(P,Q)|^2 + |J(P,Q)|^2 = |J(P,Q)|^2 + |J(P,Q)|^$

Let
$$P = (x, y, z)$$
, What is \overrightarrow{PP} ??

 $\overrightarrow{PP} = \angle x - x$, $y - y$, $z - z = 20$, 0 , $0 > 20$

The zero vector is $\overrightarrow{O} = \langle 0, 0, 0 > 20$

Properties: For vector, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and scalars \overrightarrow{b} , $\cancel{b} \in \mathbb{R}$

1) $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$

2) $\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$

7) $(\cancel{F}\cancel{B}})\overrightarrow{a} = \cancel{F}\cancel{B}$

3. $\overrightarrow{a} + \overrightarrow{O} = \overrightarrow{a}$

4. $\overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{O}$

5. $\cancel{F}(\overrightarrow{a} + \overrightarrow{b}) = \cancel{F}\overrightarrow{a} + \cancel{F}\overrightarrow{b}$

The magnitude of $\overrightarrow{a} = \angle a_1$, a_2 , $a_3 = 7$ is

1 $||\overrightarrow{a}|| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

Example - 1) Find $||\overrightarrow{a}||$ for $\overrightarrow{a} = \langle 1, z, z \rangle$

2) for points $\cancel{F}\cancel{Q}$ what is $||\overrightarrow{F}\overrightarrow{Q}||$?

3) If $||\overrightarrow{a}|| = 0$, what is \overrightarrow{a} ?

1) $||z|| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3$ 2) $P = (X_1, Y_1, Z_1)$ $Q = (X_2, Y_2, Z_2)$

Then Pa = (x2-x1, y2-y1, Z2-Z1) So ||Pa|| = \(\langle(\chi_2-\chi_1)^2 + (\chi_2-\chi_1)^2 + (\chi_2-\chi_1)^2 = d(P,Q) Fact- $\|\vec{a}\| = 0$ if and only if $\vec{a} = \vec{0}$ A unit vector is a vector with magnifule 1. Two vectors a, b are parallel if there exists BER such that $\vec{b} = \beta \vec{a}$ It \$ >0, a and b have same direction If BKO, a and B have opposite direction. Ex- <1,2,37 and <2,4,67 are parallel be cause <24,67 = 2<1,2,37 Fact - For vectors a, & and scalar BEIK, || Ball = | | B| || a|| Claim - Every nonzero Vector is parallel to a unit vector. Proof - Consider a. Want to find B such that Ba is a unit vector le 1/ pall = 1. This mean | B | || and so | B = 1 Thus, $\beta = \frac{1}{\|\vec{a}\|}$ or $\beta = \frac{-1}{\|\vec{a}\|}$

-act- If a is nonzero, then \frac{1}{||a||} and \frac{-1}{||a||} a are both unit vectors parallel to a Example - Find two unit vectors parallel to \$\vec{a} \zero_1, \zero_7 \zero 5_0 $\frac{1}{\|\vec{a}\|}\vec{a} = \frac{1}{3}\langle 1, 2, 27 = \langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle$ and $\frac{-1}{\|\vec{a}\|}\vec{a} = -\frac{1}{3}\langle 1, 2, 2 \rangle = \langle -\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3} \rangle$ The unit vector ITall a is called the direction of a Observe $\vec{a} = |\vec{a}| = (|\vec{a}|| |\vec{a}||)\vec{a} = ||\vec{a}|| (|\vec{a}|| |\vec{a}||)$ Magnitude direction Three special unit vectors are $\vec{i} = \langle 1, 0, 0 \rangle$ $\vec{j} = \langle 0, 1, 0 \rangle$ $\vec{k} = \langle 0, 0, 1 \rangle$ Observe $\vec{a} = \angle a_1, a_2, a_37 = \angle a_1, 0, 07 + \angle a_2, 07$ $+ (0, 0, 0, 0) = a_1(1,0,07 + a_2(0,1,07 + 0)(0,0))$ $= a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$ So every vector in IR3 can be Written as Imear combination of i, j, R F_{X} = $(4, 5, 67 = 4\vec{i} + 5\vec{j} + 6\vec{k})$

$$\frac{\partial}{\partial g} = \frac{7}{3} \rightarrow \vec{b}$$

36=? 5pecial case: <math>6=8a

1870 B $\beta < C$

For Monzero Vectors à, B, If B= Ba then the angle between them is 0 of \$70 and THE BEO

For $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, the dot product of a and b is $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Example - 1) Compute à . 6 for à = <1, 2, 37, 1= <4, 5, 67 2) What is 1 a. a for a= (a, 92, 937?

1) (1, 2, 37) (4, 5, 67 = 1(4) + 2(5) + 3(6) = 32

2) $\angle a_1, a_2, a_3 7 \cdot \angle a_1, a_2, a_3 7 = a_1^2 + a_2^2 + a_3^2$ $= \left(\sqrt{a_1^2 + a_2^2 + a_3^2} \right)^2$ = || a||2

The angle between nonzero vectors a, b is the value Θ ∈ [0, π] such that cos(Θ) = \(\vec{a} \cdot \vec{b} \) = \(\vec{a} \cdot \vec{b} \)

Example. 1) Find angle between
3
CI, $\sqrt{11}$, 27 and 2 B = 24 , 0 , 37

2) Find 2 B if $||\vec{a}|| = 5$, $||\vec{b}|| = 6$, and the angle between \vec{a} , \vec{b} is $\frac{1}{6}$ B = $\frac{1}{6}$

Two vectors a, b are orthogonal if and only if a. b = 0

Example - Check for orthogonality 1) 2 = <1,2,-17, 6=<-1,4,77 2) a= <1,2,37,6=<0,-4,37 i) Yes b/c <1,2,-17. <-1,4,77 = -1+8-7=0 2) No b/c <1,2,37-20,-4,37=0-8+9=1+0 Dashed line is segment of minimal distance. The resulting Vector is the vector projection of a onto b The Vector projection (or orthogonal projection) of a onto \vec{b} is $\text{proj}_{\vec{b}}(\vec{a}) = \frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b}$ The scalar projection of \vec{a} onto \vec{b} is $S_{\vec{b}}(\vec{a}) = \frac{\vec{a} \cdot \vec{b}}{11\vec{b} \cdot 1}$ Observe $proj_{\vec{b}}(\vec{a}) = \frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|^2} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|} (\frac{1}{\|\vec{b}\|} \vec{b})$ scalar direction of B Example - $\vec{a} = (2, 4, 27)$

1) Find scalar and vector projections of a onto B
2) Find scalar and vector projections of B onto a