

FMBA 2017 사전 교육

프로그래밍(엑셀 VBA)

KAIST 경영공학과 석박사통합과정 유승현 rambor12@business.kaist.ac.kr

목 차

- 1. 금융과 프로그래밍
- 2. 엑셀의 기초
- 3. 엑셀 해 찾기
- 4. 엑셀 VBA
- 5. 엑셀 VBA 응용: Black-Scholes Option Pricing

- □ 금융의 특성
 - ① 대부분의 자료가 수치화 되어 있음.
 - ② 이미 **데이터베이스**가 잘 구축 되어 있음.
 - ③ 데이터로부터 새로운 정보를 찾아내는 것이 중요.
 - → 통계, 프로그래밍 기법을 사용
- □ 왜 프로그래밍이 필요한가?
 - ① 방대한 자료를 빠르고 효율적으로 처리.
 - ② 실수없이 안정적으로 일을 처리.
 - ③ 어렵고 복잡한 문제를 쉽게 풀기.

ㅁ 프로그래밍(Programming)이란?

문제를 정의하고, 그 문제를 해결할 수 있는 프로그램을 만드는 모든 과정 # 참고

프로그램(Program) : 컴퓨터에 의해 실행되는 명령어 집합

코딩(Coding): 실제로 프로그램 만드는 것

- □ 프로그래밍 언어(Programming Language)의 종류는?
 - ① 접근성: **엑셀 VBA**
 - ② 수치 계산(공학): MATLAB
 - ③ 통계 분석 : SAS, EViews, R 등
 - ④ 다목적: C, C++, Java, Python 등

□ 금융 데이터베이스

해외: 블룸버그(Bloomberg), 로이터(Reuter), WRDS, Optionmetric 등

국내: DataGuide, KIS-Value, QuantWise 등

기타: 증권사 API, DDE 등

□ 참고 도서

엑셀 VBA 바이블

John Walkenbach 저 | 구미숙, 이현곤 역 | 프리렉 | 2010,11,05,

★★★★★ 10.0 | 네티즌리뷰[2건]

소개 - 독자대상 : 엑셀 중고급 이상 숙련자 - 구성 : 엑셀 매크로 기록, 사용자 지향 응용프 로그램, 유틸리티 개발 - 특징 : 1) WBA를 처음 접하는 독자에게도 이해가 편한 내용과 서술 방식 2) WBA를 이해하기에 적합한 예제들을 다양하게 수록 3) 엑셀 WBA 전 영역을 포괄하는 주제들로 구성 4) 엑셀 2007에...

R언어로 짜는 금융프로그래밍

장기천, 강병진 저 | 서울경제경영 | 2015.12.30.

★★★★★ 0.0 | 네티즌리뷰[0건] | 도서구매 25,000원 → 23,750원(-5%)

소개 ▶ 이 책은**R언어로 짜는 금융프로그래밍** 에 대해 다룬 이론서입니다. R언어 및 금융프 로그래밍의 기초적이고 전반적인 내용을 학습할 수 있도록 구성했습니다. 필요한 것만 인터넷 검색하는게 더 유용! – stackoverflow.com

프로그래밍 기본 구조 (Edsger W. Dijkstra's Structured Programming 참조)

1. 변수의 선언: (Declaration)

어떤 타입의 데이터를 사용할 것인가?

2. 조건문: (Selection)

조건에 따라 어떤 코드를 실행할 것인가?

3. 반복문: (Iteration)

이 코드를 언제까지 반복할 것인가?

위의 구조를 이용하여

- 데이터를 어떻게 구조화하고(Data Structure),
- 어떤 방법을 사용하여(Algorithm),

문제를 해결할까?

1. 변수의 선언: (Declaration)

어떤 타입의 데이터를 사용할 것인가?

□ 기초 데이터 타입(Primitive Type)

데이터형	설명	크기(비트)	최소값	최대값
byte	부호있는 정수	8비트	-128	127
int	부호있는 정수	32비트	-2147483648	2147483647
long	부호있는 정수	64비트	-9223372036854775808	9883372036854775807
float	실수	32비트	약 -3.4 X 10 ⁻³⁸ (유효숫자 7개)	약 3.4 X 10 ⁻³⁸ (유효숫자 7개)
double	실수	64비트	약 -1.7 X 10 ⁻³⁰⁸ (유효숫자 15개)	약 1.7 X 10 ⁻³⁰⁸ (유효숫자 15개)
char	문자(유니코드)	16비트	'₩u0000'(0)	'₩uFFFF'(65535)
boolean	True 또는 False	8비트	False	True

주소(16진수)	값
0xffffffff	
0x80000000	
0x508a0210	3

1. 변수의 선언: (Declaration)

어떤 타입의 데이터를 사용할 것인가?

□ 기초 데이터 타입(Primitive Type) 각 언어별 예

데이터형	값	С	🦺 python"	X Excel VBA	MATLAB	
int	3	int a=3;	a=3	Dim a As Integer = 3	a=3;	a=3
long	3	long a=3;	a=3	Dim a As Long = 3	a=3;	a=3
float	3.3	float a=3.3;	a=3.3	Dim a As Single = 3.3	a=3.3;	a=3.3
double	3.3	double a=3.3;	a=3.3	Dim a As Double = 3.3	a=3.3;	a=3.3
char	'A'	char a='A';	a='A'	Dim a As String = 'A'	a='A';	a='A'
boolean	True	사용자가 지정	a=True	Dim a as Boolean = True	a=true;	a=TRUE

1. 변수의 선언: (Declaration)

어떤 타입의 데이터를 사용할 것인가?

□ 참조 데이터 타입(Reference Type)

데이터 형	설명	크기(비트)	최소값	최대값
list or array	배열 혹은 리스트	제한 없음	제한 없음	제한 없음
class	클래스	제한 없음	제한 없음	제한 없음
function	함수	제한 없음	제한 없음	제한 없음

변수 할당!

(e.g.) int a[10] = [0,1,2,3,4,5,6,7,8,9]

주소(16진수)	값
0xffffffff	
데이터 시작	주소 값을 할당
0x01118708	0x508a01b0
참조	
0x508a01b0	0
0x508a01d0	1
0x508a01f0	2
0x508a0210	3
0x508a0230	4
0x508a0250	5
0x508a0270	6
0x508a0290	7
0x508a02b0	8
0x508a02d0	9 9

1. 변수의 선언: (Declaration)

어떤 타입의 데이터를 사용할 것인가?

□ 참조 데이터 타입(Reference Type) 각 언어별 예

데이터형	값	С	? python	X Excel VBA	MATLAB	R
list or array	[1,2,3]	int a[3]=[1,2,3];	a=[1,2,3]	Dim a(3) As Integer a(1) = 1 a(2) = 2 a(3) = 3	a=[1,2,3];	a=c(1,2,3)
class				생략		
function	add	<pre>int add(int a, int b){ return a+b; }</pre>	def add(a, b): return a+b	Function add(a, b) add = a+b End Function	<pre>function c = add(a, b) c = a+b; end</pre>	<pre>add <- function(a, b) { return(a+b) }</pre>

1. 변수의 선언: (Declaration)

어떤 타입의 데이터를 사용할 것인가?

□ 연산자(Operator): 데이터를 연산하는 함수 예)+,-,×,÷,

연산자	설명	
+	더하기	
_	ᄥᅢ기	
*	곱하기	
/	나누기	
^ or **	거듭제곱	
==	같은가?	
!= or \sim =	다른가?	
>, <	왼쪽(혹은 오른쪽)이 큰가?	
>=, <=	왼쪽(혹은 오른쪽)이 크거나 같은가?	

	연산자	설명	
Ķ	& or &&	and, 그리고	
논리 연산자	or	or, 또는	
뀌	\sim or ^	not, 역	
	= or <-	값 대입	
(기시) 단항 연산자	++	1씩 증가	
		1씩 감수	
10分割	sizeof or len	데이터 길이	
	·	·	

2. 조건문: (Selection)

조건에 따라 어떤 코드를 실행할 것인가?

□ 조건의 참, 거짓에 따라 다른 계산을 실행

주로 If ... else 형태의 문법을 사용

С	🤚 python"	X Excel VBA	MATLAB	
<pre>if(a==3){ printf("a is 3"); }else if(a==3.3{ printf("a is 3.3"); }else{ printf("a is ?"); }</pre>	<pre>if a==3: print('a is 3') elif a==3.3: print('a is 3.3') else: print('a is ?')</pre>	<pre>If a = 3 Then MsgBox "a is 3" Elself a = 3.3 Then MsgBox "a is 3.3" Else MsgBox "a is ?"</pre>	<pre>if a==3 disp('a is 3') elseif a==3.3 disp('a is 3.3') else disp('a is ?') end</pre>	<pre>if(a==3){ print('a is 3') } else if(a==3.3){ print('a is 3.3') } else { print('a is ?') }</pre>

3. 반복문: (Iteration)

이 코드를 언제까지 반복할 것인가?

□ 같은 명령을 반복해서 실행

반복 횟수가 정해질 경우 : for 루프

반복 횟수가 정해지지 않았을 경우: while 루프

Excel MATLAB python* С int a = 3; a = 3a = 3;a = 3a = 3for (i=0; i<=2; i++)for (i in 0:2){ For i=0 To 2 for i = 0:2for i in range(3): a = a + i; a = a + ia = a + ia = a + ia = a + iNext end

엑셀 VBA

2. 엑셀의 기초

□ 셀의 구조

- ① 내용
 - o 값(Value): 문자열(String), 숫자(Int), 논리값(Boolean) 등
 - 수식 (Formula) : "="로 시작함
- ② 서식: 글꼴, 정렬, 테두리, 색깔 등
- □ 상대 참조와 절대 참조 (\$ 표시로 구분)
 - ① 상대 참조 : 수식을 복사하면 셀 참조는 새로운 위치에 맞게 변경.
 - ② 절대 참조 : 수식 복사해도 셀 참조는 바뀌지 않음.

	상대 참조	절대 참조
	"=A3+A2"	"=A3+A <mark>\$</mark> 2"
-1		
1	0	0
2	3	1
3	5	2
4	7	3

2. 엑셀의 기초

- □ 예제1. 포트폴리오 평균 수익률과 분산 구하기
 - ① 평균수익률

$$E(R_p) = \sum_{i=1}^{N} w_i E(R_i) = \vec{w}^T E(\vec{R})$$

② 분산

$$Var(R_p) = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j Cov(R_i, R_j) = \overrightarrow{w}^T \Sigma \overrightarrow{w}$$

□ 해 찾기 추가

□ 해 찾기 추가

□ 해 찾기

- □ 예제2.
 - ① 아래 목적함수를 최소화하는 X, Y 찾기.

$$X^2 - XY + Y^2 - 3X$$

#Answer

X=2, Y=1일 때, 목적함수= -3

② 제약 조건이 있을 때 해 찾기

$$X^2 + Y^2 + Z^2$$

제약식:

$$2X + Y - 5 \le 0$$

$$X + Z - 2 \le 0$$

$$-X + 1 \le 0$$

$$-Y + 2 \le 0$$

$$-Z \leq 0$$

#Answer

X=1, Y=2, Z=0 일 때, 목적함수=5

□ 난수 생성하기

- ① rand(), norm.inv(), frequency()의 활용
 - 균등분포(Unifrom distribution)을 따르는 난수 생성하기
 - 정규분포(Normal distribution)을 따르는 난수 생성하기 분포를 그려보자.

□ 매크로 설정

□ 매크로 설정

□ 매크로 파일 저장

□ 매크로 코딩 및 실행

① 단축키

단축키	내용
Alt + F11	VBA 창
Alt + F8	매크로 선택창

② 매크로 보기 및 기록

□ 매크로 코딩 및 실행

③ VBA 편집기 - 새로운 모듈 생성

□ 엑셀 VBA 기초 문법

1. 변수의 선언: (Declaration)

어떤 타입의 데이터를 사용할 것인가?

□ 엑셀 VBA 기초 문법

2. 조건문: (Selection)

조건에 따라 어떤 코드를 실행할 것인가?

□ 엑셀 VBA 기초 문법

3. 반복문: (Iteration)

이 코드를 언제까지 반복할 것인가?

□ 엑셀 VBA 기초 문법 함수 만들기

```
# 함수(function)은 어떤 기능을 수행하는 명령문. 같은 기능을 여러번 쓸 때 유용

Function 함수이름(함수인자들)

[명령문]
함수이름 = 함수값

End Function
```

함수의 결과값

Example

```
Function add(x, y)

Z = x + y

add = Z

End Function

x = 3
y = 7
Z = add(x, y)

# 실행하면 z=12
```

- □ Black-Scholes(-Merton) Model
 - ✓ Fisher Black, Myron Scholes, (Robert C. Merton)이 1973년 제시
 - ✓ 1997년에 노벨 경제학상
 - ✓ 세상을 바꾼 10대 방정식 (출처: http://biz.heraldcorp.com/view.php?ud=20160308000285)
 - ✓ 파생상품(특히 European Option)의 가격 결정 편미분방정식
 - ✔ 옵션(Option) : 미래 특정 시점(T)에 특정 상품(S)을 정해진 가격(K)에 사고(call) 팔(put) 권리

옵션 가격

$$\frac{\partial V}{\partial t}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2}+rS\frac{\partial V}{\partial S}-rV=0$$
 기초 자산 변동성 무위험 이자율

출처: https://en.wikipedia.org/wiki/Black%E2%80%93Scholes model

□ Black-Scholes(-Merton) Model

옵션 가격

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$
 기초 자산 변동성 무위험 이자율 기초 자산 가격

방정식의 해(Solution)

표준정규분포 누적 함수

$$Call\ Price = SN(d_1) - Ke^{-r au}N(d_2)$$
 $Put\ Price = Ke^{-r au}\left\{1 - N(d_2)\right\} - S\left\{1 - N(d_1)\right\}$
만기까지 남은 기간 $where,\ d_1 = \frac{\ln S/K + \left(r + \frac{1}{2}\sigma^2\right) au}{\sigma\sqrt{\tau}}$

□ 예제3. 다음 조건에서의 옵션 가격을 Black-Scholes(-Merton) Model로 계산하여라.

변수 설명	코드 이름	값
기초 자산 가격	S	150
옵션 행사 가격	K	150
무위험 이자율	r	0.05
만기까지 남은 기간	tau	0.0833
기초자산의 변동성	sigma	0.25

□ 예제3. 샘플 코드

End

Question & Comment