Algoritmos e Lógica de Programação

Douglas Baptista de Godoy

Ementa

- Projeto e representação de algoritmos.
- Estruturas de controle de fluxo de execução: sequência, seleção e repetição.
- Tipos de dados básicos e estruturados (vetores e registros).
- Rotinas. Arquivos.
- Implementação de algoritmos usando uma linguagem de programação.

Objetivo

 Analisar problemas computacionais e projetar soluções por meio da construção de algoritmos.

- Definição de Vetor
- As variáveis compostas homogêneas unidimensionais (ou, simplesmente, vetores) são capazes de armazenar diversos valores. Cada um desses valores é identificado pelo mesmo nome (o nome dado ao vetor), sendo diferenciado entre si apenas por índice.
- Os índices utilizados na linguagem C/C++ para identificar as posições de um vetor começam sempre em 0 (zero) e vão até o tamanho do vetor menos uma unidade. O índice de um vetor em C/C++ deve sempre ser representado por um dos tipos inteiros disponíveis na linguagem.

Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3ª edição

- Declaração de Vetor
- Os vetores em C/C++ são identificados pela existência pela existência de colchetes logo após o nome da variável no momento da declaração. Dentro dos colchetes, deve-se colocar o numero de elementos que o vetor poderá armazenar.
- Em C/C++, a indicação do tamanho do vetor (ou seja, a quantidade de elementos que o vetor poderá armazenar) deve ser feita por um inteiro fixo(representado por um literal ou uma constante). Se houver necessidade de definir o tamanho do vetor em tempo de execução, deve-se fazê-lo através de ponteiros.

Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3ª edição

• Exemplo de Vetor

<u>Declaração de Vetor</u>	Atribuindo valores ao Vetor	Mostrando elementos do Vetor
Exemplo 1:	Exemplo 1:	Exemplo 1:
int vet[10];	vet[0] = 1;	printf("%d", vet[5]);
Exemplo 2:	Exemplo 2:	Exemplo 2:
char x[5];	x[3] = 'b';	printf("%c", x[3]);
Exemplo 3:	Exemplo 3:	Exemplo 3:
#define tam 5;	for (i = 0; i < 10; i++)	for (i = 0; i < 10; i++)
char z[tam];	scanf("%d%*c",	printf("%d", vet[i]);

Faculdade de Tecnologia

Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3ª edição Escola Técnica Estadual

- Vetor é uma variável composta homogênea unidimensional

```
#include <stdio.h>
int main(){
    //Criando variáveis para armazenar 10 números flutuantes (não é o ideal)
    float n1, n2, n3, n4, n5, n6, n7, n8, n9, n10;
    //Criando um vetor para armazenar 10 números flutuantes
    float n[10];
    return 0;
```


-Como poderíamos armazenar 10 números flutuantes na memória usando um vetor?

Memória RAM

- Compostà porque através de uma única variável podemos armazenar vários valores

-Como poderíamos armazenar 10 números flutuantes na memória usando um vetor?

Memória RAM

- Homogênea porque todos os dados armazenados em um vetor são do **mesmo tipo** (na linguagem C)

-Como poderíamos armazenar 10 números flutuantes na memória usando um vetor?

Memória RAM

n									
8.00	8.00	7.50	10.00	9.25	9.00	10.00	9.50	8.75	9.00
0	1	2	3	4	5	6	7	8	9
		<u>Y</u>							

-Unidimensional porque são alocadas sequencialmente na memória do computador

-Como poderíamos armazenar 10 números flutuantes na memória usando um vetor?

Memória RAM

8.00 8.	3.00 7	7 50	40.00						
	7	7.50	10.00	9.25	9.00	10.00	9.50	8.75	9.00
0	1	2	3	4	5	6	7	8	9

-Como a variável tem o rhesmo nome, podemos acessar cada posição do array através do índice (que começa em 0)

Referencias Bibliográficas

• ASCENCIO, Ana Fernanda Gomes; CAMPOS, Edilene Aparecida Veneruchi de, **Fundamentos da Programação de Computadores**, Pearson Editora, 3ª edição.

