

Master Calcul Haute Performance et Simulation

Présentation du stage

Analyse numérique d'équations aux dérivées partielles par différences finies et implémentation optimisée pour le calcul haute performance

par Jean-Baptiste Gaillot

Organisation – Partie mathématiques

Approche:

- concevoir un ou plusieurs schémas numériques pour obtenir une solution approchée du problème,
- s'assurer de l'existence et de l'unicité de la solution approchée,
- s'assurer des bonnes propriétés du schéma (consistance, convergence et erreur locale),
- concevoir un ou plusieurs schémas de résolution de l'éventuel système linéaire associé à ce schéma.

Organisation – Partie informatique

Approche:

- implémenter des fonctions de résolutions du problème et un programme principal,
- implémenter le calcul d'une solution exacte connue dans le but de calculer l'erreur entre la solution approchée et la solution exacte,
- implémenter la résolution du problème en différentes versions dans le but de comparer les performances (différents schémas en versions naïves, séquentielles, parallèles et utilisation d'une bibliothèque),
- structurer toutes ces étapes à travers un projet.

Les différents résultats (erreurs et temps d'exécutions) seront présentés sous forme de tableaux et de graphiques. Le langage de programmation utilisé est C.

Problèmes étudiés

Équation de Poisson en dimension 1

Équation de Poisson en dimension 2

Équation des ondes en dimension 1

Équation de la chaleur en dimension 2

Équation de Poisson en

dimension 1

Équation de Poisson en dimension 1 – Analyse numérique Présentation du problème

Problème

Soient $D:=]0,1[\,,f:D o\mathbb{R}$ continue et bornée et le problème suivant :

Trouver u de classe C^4 telle que :

$$\begin{cases} -u''(x) = f(x) & \forall x \in D \\ u(x) = 0 & \forall x \in \partial D \end{cases}.$$

Discrétisation

$$-u''(x) = \frac{1}{h^2} \left(-u(x+h) + 2u(x) - u(x-h) \right) + E_h$$

avec

$$E_h := \frac{1}{12} h^2 u^{(4)} (x + \theta h).$$

Schéma

$$\boxed{\frac{1}{h^2}(-u_{i+1}+2u_i-u_{i-1})=f_i}.$$

Équation de Poisson en dimension 1 – Analyse numérique Schéma numérique

Schéma sous forme matricielle

$$Au = f$$

$$\Leftrightarrow \underbrace{\frac{1}{h^2} \begin{pmatrix} 2 & -1 & \cdot & \cdot \\ -1 & \cdot & \cdot & \cdot \\ & \cdot & \cdot & -1 \\ \cdot & \cdot & -1 & 2 \end{pmatrix}}_{=:A} \underbrace{\begin{pmatrix} u_1 \\ \vdots \\ \vdots \\ u_{N-1} \end{pmatrix}}_{=y} = \underbrace{\begin{pmatrix} f_1 \\ \vdots \\ \vdots \\ f_{N-1} \end{pmatrix}}_{=f}.$$

Équation de Poisson en dimension 1 – Analyse numérique Existence et unicité de la solution approchée

Proposition A est définie-positive et Au = f admet une unique solution.

Équation de Poisson en dimension 1 – Analyse numérique Consistance du schéma et majoration de l'erreur de troncature

Proposition Le schéma est consistant : $\lim_{h \to 0} |E_h| = 0$ et

$$|E_h| \leq \frac{1}{12} h^2 \sup_{x \in [0,1]} |f''(x)|.$$

Remarque Le schéma est d'ordre 2 pour x.

Équation de Poisson en dimension 1 – Analyse numérique Convergence du schéma et majoration de l'erreur locale

Proposition Soient
$$h > 0$$
, $e_h := (u_i - u(x_i))_{0 \le i \le N}$. Alors, le schéma est convergent :

$$\lim_{h \to 0} \|e_h\|_{\infty} = 0 \quad \text{et} \quad \|e_h\|_{\infty} \le \frac{1}{96} h^2 \sup_{x \in [0,1]} |f''(x)|.$$

Équation de Poisson en dimension 1 – Analyse numérique Méthode de résolution itérative

Méthode de Jacobi

$$Du^{(k+1)} = (E + F) u^{(k)} + f.$$

Schéma

$$u_i^{(k+1)} = \frac{1}{2} \left(u_{i-1}^{(k)} + u_{i+1}^{(k)} + h^2 f_i \right).$$

Équation de Poisson en dimension 1 – Analyse numérique Méthode de résolution directe

Factorisation de Cholesky

$$\ell_{i,i} = \sqrt{a_{i,i} - \sum_{k=1}^{i-1} \ell_{i,k}^2} \quad \text{et} \quad \ell_{i,j} = \frac{1}{\ell_{j,j}} \left(a_{i,j} - \sum_{k=1}^{j-1} \ell_{i,k} \ell_{j,k} \right).$$

On calcule d'abord en colonnes puis en lignes.

Proposition Soit A une matrice tridiagonale, symétrique et définie-positive. Alors, la matrice L de la décomposition de Cholesky de A est bidiagonale inférieure.

Schéma

avec

$$d:=i-j, \quad lpha:=rac{2}{h^2} \quad ext{et} \quad eta:=-rac{1}{h^2}.$$

Équation de Poisson en dimension 1 – Analyse numérique Méthode de résolution directe

Schéma

$$y_1 = \frac{f_1}{\ell_{1,1}}$$
 et pour i de 2 à $N-1: y_i = \frac{f_i - \ell_{i,j-1}y_{i-1}}{\ell_{i,i}}$

et

$$u_{N-1} = \frac{y_{N-1}}{\ell_{N-1,N-1}} \quad \text{et} \quad \text{pour } i \text{ de } N-2 \text{ à } 1: u_i = \frac{y_i - \ell_{i,j+1}u_{i+1}}{\ell_{i,i}}.$$

Pour la suite, la fonction à approcher sera avec $f(x) := \pi^2 \sin(\pi x)$.

Version de base

Commentaires

- Pour calculer u, on résout le système linéaire avec la méthode de Gauss.
- On note ces résultats :

N	5	10	50	100	300	500	1500
$\ e_h\ _{\infty}$	0.031916	0.008265	0.000329	0.000082	0.000009	0.000003	<0.000001
Tps d'ex. (s)	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.05	1.00

- A est de taille O(N) et la méthode de Gauss est $O(N^3)$ donc la complexité algorithmique est $O(N^3)$.

Version de base

Commentaire On vérifie la proposition énoncée avec $f(x) = \pi^2 \sin(\pi x)$, d'après la proposition : $\|e_h\|_{\infty} \leq \frac{1}{96} \pi^4 h^2$.

Version avec méthode de résolution itérative en séquentiel

Rappel du schéma :
$$\boxed{u_i^{(k+1)} = \frac{1}{2} \left(u_{i-1}^{(k)} + u_{i+1}^{(k)} + h^2 f_i \right)}.$$

Fontion qui applique le schéma à un point

```
static inline __attribute__((always_inline))
double schema(double *f, double *u_anc, int i){
   double res = 0.5 * ((u_anc[i - 1] + u_anc[i + 1]) + h_carre * f[i]);
   return res;
}
```

Version avec méthode de résolution itérative en séquentiel

Commentaire On note ces résultats :

N	10	50	100	300	500	1500
Nb. d'itérations	400	8506	31227	241002	617699	4557543
$\ e_h\ _{\infty}$	0.008265	0.000329	0.000082	0.000007	0.000002	0.000045
Tps d'ex. (s)	< 0.01	<0.01	0.01	0.04	0.20	4.67

Version avec méthode de résolution itérative en parallèle avec OpenMP

Commentaire On ajoute une directive for dans la boucle de la fonction calculer_u_jacobi et une directive for dans la boucle du calcul de la norme relative.

Équation de Poisson en dimension 1 – Implémentation Version avec méthode de résolution itérative en parallèle avec MPI

Illustration Schéma des dépendances pour 4 processus et N=15:

Version avec méthode de résolution itérative en parallèle avec MPI

Fonctions pour MPI

void creer_topologie(){

nb pt div = i fin - i debut + 1:

MPI_Barrier(comm_1D);

}

```
int tore = 0;
dims = 0;
MPI_Dims_create(nb_cpu, 1, &dims);
MPI_Cart_create(MPI_COMM_WORLD, 1, &dims, &tore, 0, &comm_1D);
MPI_Barrier(comm_1D);
}

void infos_processus(){
   i_debut = (coords * nb_pt) / dims;
   i_fin = ((coords + 1) * nb_pt) / dims - 1;
```

// Envoi droite, reception gauche

voisins[0], etiquette, comm_1D, &statut);

MPI_Sendrecv

Version avec méthode de résolution itérative en parallèle avec MPI

void infos bornes boucles(int *i boucle debut, int *i boucle fin) {

Fonction pour obtenir les indices de départ et d'arrivé de la boucle principale :

```
*i_boucle_debut = 1;
    *i boucle fin = nb pt div + 1:
    if (i_debut == 0){
        (*i_boucle_debut) ++;
    if (i fin == nb pt - 1) {
        (*i boucle fin) --:
    }
}
Fonction pour échanger les halos :
void echanger_halos(double *u_div){
    // Envoi gauche, reception droite
    MPI Sendrecv
    (\&(u_div[1]), 1, MPI_DOUBLE, voisins[0], etiquette, &(u_div[nb_pt_div + 1]),
    1, MPI_DOUBLE, voisins[1], etiquette, comm_1D, &statut);
```

(&(u_div[nb_pt_div]), 1, MPI_DOUBLE, voisins[1], etiquette, &(u_div[0]), 1, MPI_DOUBLE,

Version avec méthode de résolution directe

}

```
Structure mat_2bandes :
struct mat_2bandes{
  int N;
  double *diag; // taille N - 1
    double *sous_diag; // taille N - 2
};
```

```
Fonction pour allouer la structure :

void init_mat_2bandes(struct mat_2bandes *A){
    A -> N = N;
    A -> diag = (double *)malloc(idx_max * sizeof(double));
    A -> sous_diag = (double *)malloc((idx_max - 1) * sizeof(double));
```

```
Fonction pour libérer la structure :

void liberer_mat_2bandes(struct mat_2bandes *A){
    free(A -> diag);
    free(A -> sous_diag);
}
```

Version avec méthode de résolution directe

Rappel du schéma :
$$\boxed{ \text{Pour j de 1 à $N-1$}: \left\{ \begin{array}{l} \ell_{i,i} = \sqrt{\alpha - \ell_{i,i-1}^2} & \text{si $d=0$} \\ \ell_{i,j} = \frac{\beta}{\ell_{j,j}} & \text{si $d=1$} \end{array} \right. }$$

Fonction pour obtenir la décomposition de Cholesky en utilisant la structure :

```
void calculer_cholesky(struct mat_2bandes *L){
    h_{carre} = 1.0 / pow(N, 2);
    double alpha = 2.0 / h_carre;
    double beta = -1.0 / h_carre;
    (L -> diag)[0] = sqrt(alpha);
    (L -> sous diag)[0] = beta / (L -> diag)[0]:
    for (int i = 1; i < idx_max - 1; i ++){
         (L -> diag)[i] = sqrt(alpha - pow((L -> sous_diag[i - 1]), 2));
(L -> sous_diag)[i] = beta / (L -> diag[i]);
    (L -> diag)[idx max - 1]
    = sqrt(alpha - pow((L -> sous_diag[idx_max - 2]), 2));
```

Version avec méthode de résolution directe

Test pour avoir un aperçu de la compression

```
Illustration de la structure mat 2bandes (exemple pour N petit) :
Structure mat2_bandes :
N = 7
diag
             9.899495
                         8.573214
                                   8.082904
                                               7.826238
                                                          7.668116
                                                                       7.560864
sous_diag = -4.949747
                        -5.715476
                                   -6.062178
                                               -6.260990
                                                          -6.390097
Matrice reelle correspondante :
  9.899495
             0.000000
                         0.000000
                                    0.000000
                                                0.000000
                                                           0.000000
 -4.949747
             8.573214
                                    0.000000
                                                0.000000
                                                           0.000000
                         0.000000
  0.000000
            -5.715476
                         8.082904
                                    0.000000
                                                0.000000
                                                           0.000000
  0.000000
           0.000000
                        -6.062178
                                    7.826238
                                                0.000000
                                                           0.000000
  0.000000 0.000000
                                   -6.260990
                                                7.668116
                                                           0.000000
                       0.000000
                                               -6.390097
                                                           7.560864
  0.000000
             0.000000
                         0.000000
                                    0.000000
```

Version avec méthode de résolution directe

```
Fonction pour résoudre Ly = f:
```

```
void resoudre_cholesky_descente(struct mat_2bandes *L, double *f, double *y){
    y[0] = f[0] / (L -> diag)[0];
    for (int i = 1; i < idx_max; i ++){
        y[i] = (f[i] - (L -> sous_diag)[i - 1] * y[i - 1]) / (L -> diag)[i];
}
```

```
Rappel du schéma : u_{N-1} = \frac{y_{N-1}}{\ell_{N-1,N-1}} et pour i de N-2 à 1: u_i = \frac{y_i - \ell_{i,j+1}u_{i+1}}{\ell_{i,i}}
```

Fonction pour résoudre $L^T u = y$:

```
void resoudre_cholesky_remontee(struct mat_2bandes *L, double *y, double *u){
    u[idx_max - 1] = y[idx_max - 1] / (L -> diag)[idx_max - 1];
    for (int i = idx_max - 2; i >= 0; i --){
        u[i] = (y[i] - (L -> sous_diag)[i] * u[i + 1]) / (L -> diag)[i];
}
```

Version avec méthode de résolution directe

Commentaires

- Le temps d'exécution est < 0.01 s pour N = 1000000.
- A possède O(N) colonne. Pour chaque colonne, il y a O(1) lignes à calculer. Pour chaque case, il y a O(1) opérations. Donc la complexité algorithmique est O(N).

Équation de Poisson en dimension 1 – Implémentation Comparaison des performances des méthodes

dimension 2

Équation de Poisson en

Équation de Poisson en dimension 2 – Analyse numérique Présentation du problème

Problème

Soient D:=]0,1[\times]0,1[$,f:D \to \mathbb{R}$ continue et bornée et le problème suivant :

Trouver u de classe C^4 telle que :

$$\begin{cases} -\Delta u(x,y) = f(x,y) & \forall (x,y) \in D \\ u(x,y) = 0 & \forall (x,y) \in \partial D \end{cases}.$$

Discrétisation

Schéma numérique

$$-\Delta u(x,y) = \frac{1}{h_x^2} \delta_x^2 + \frac{1}{h_y^2} \delta_y^2 + E_h$$

avec

$$\delta_x^2 := -u(x - h_x, y) + 2u(x, y) - u(x + h_x, y),$$

$$\delta_y^2 := -u(x, y - h_y) + 2u(x, y) - u(x, y + h_y)$$

et

$$E_{h_x,h_y} := \frac{1}{12} \left(h_x^2 \frac{\partial^4 u}{\partial x^4} \left(x + \theta_x h_x, y \right) + h_y^2 \frac{\partial^4 u}{\partial y^4} \left(x, y + \theta_y h_y \right) \right).$$

Schéma

$$\frac{1}{h^2} \left(-u_{i-1,j} - u_{i,j-1} + 2u_{i,j} - u_{i+1,j} - u_{i,j+1} \right) = f_{i,j}.$$

Schéma sous forme matricielle par blocs

$$\boxed{Au = f} \Leftrightarrow \underbrace{\frac{1}{h^2} \begin{pmatrix} \boxed{M} & \boxed{-I} & \cdot & \cdot \\ \boxed{-I} & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \boxed{-I} & \boxed{M} \end{pmatrix}}_{=:A} \underbrace{\begin{pmatrix} u_1 \\ \vdots \\ \vdots \\ u_{N-1} \end{pmatrix}}_{=u} = \underbrace{\begin{pmatrix} f_1 \\ \vdots \\ \vdots \\ f_{N-1} \end{pmatrix}}_{=f}$$

avec

$$M:=egin{pmatrix} 4&-1&\cdot&\cdot\ -1&\cdot&\cdot&\cdot&\cdot\ \cdot&\cdot&\cdot&\cdot&-1\ \cdot&\cdot&\cdot&-1&4 \end{pmatrix}.$$

Équation de Poisson en dimension 2 – Analyse numérique

Existence et unicité de la solution approchée

Proposition A est définie-positive et Au = f admet une unique solution.

Équation de Poisson en dimension 2 – Analyse numérique Consistance du schéma et majoration de l'erreur de troncature

Notation Soit
$$d \in \{1, ..., 4\}$$
. Alors,
$$C_{u,d} := \max \left. \left\{ \sup_{(x,y) \in [0,1]^2} \left| \frac{\partial^d u}{\partial x^d}(x,y) \right|, \sup_{(x,y) \in [0,1]^2} \left| \frac{\partial^d u}{\partial y^d}(x,y) \right| \right\}.$$

Proposition Le schéma est consistant :
$$\lim_{h\to 0} |E_h| = 0$$
 et $|E_h| \le \frac{1}{6}h^2 |C_{u,4}|$.

Remarque Le schéma est d'ordre 2 pour x et pour y.

Équation de Poisson en dimension 2 – Analyse numérique Convergence du schéma et majoration de l'erreur locale

Proposition (admise) Soient h > 0, $e := e_h, e_j := (\|u_j - u(x_j)\|_{\infty})_{0 \le j \le N}$. Alors, le schéma utilisé est convergent :

$$\forall j \in \{1,\ldots,N-1\}: \lim_{h \to 0} \left\| e_j \right\|_{\infty} = 0$$

et

$$\exists \ C > 0, \ \forall \ j \in \{1, \dots, N-1\} : \|e_j\|_{\infty} \le Ch^2 \left(C_{u,4} + hC_{u,3}\right).$$

Équation de Poisson en dimension 2 – Analyse numérique Méthode de résolution itérative

Méthode de Jacobi

$$Du^{(k+1)} = (E + F) u^{(k)} + f.$$

Schéma

$$u_{i,j}^{(k+1)} = \frac{1}{4} \left(u_{i-1,j}^{(k)} + u_{i,j-1}^{(k)} + u_{i+1,j}^{(k)} + u_{i,j+1}^{(k)} + h^2 f_{i,j} \right).$$

Factorisation de Cholesky

$$\ell_{i,i} = \sqrt{a_{i,i} - \sum_{k=1}^{i-1} \ell_{i,k}^2}$$
 et $\ell_{i,j} = \frac{1}{\ell_{j,j}} \left(a_{i,j} - \sum_{k=1}^{j-1} \ell_{i,k} \ell_{j,k} \right).$

On calcule d'abord en colonnes puis en lignes.

Proposition Soit A une matrice avec N diagonales inférieures, symétrique et définie-positive. Alors, la matrice L de la décomposition de Cholesky de A possède N diagonales inférieures.

Schéma

$$\text{Pour } j \text{ de 1 à } (N-1)^2 : \begin{cases} \ell_{i,i} = \sqrt{\alpha - \sum_{k=\max\{1,j-N+d+1\}}^{i-1} \ell_{i,k}^2} & \text{si } d = 0 \\ \ell_{i,j} = \left(a_{i,j} - \sum_{k=\max\{1,j-N+d+1\}}^{j-1} \ell_{i,k} \ell_{j,k}\right) / \ell_{j,j} & \text{si } d > 0. \end{cases} .$$

avec

$$d := i - j$$
, et $\alpha := \frac{4}{h^2}$.

Équation de Poisson en dimension 2 – Analyse numérique

Méthode de résolution directe

Schéma

$$y_1 = \frac{f_1}{\ell_{1,1}}$$
 et pour i de 2 à $(N-1)^2$: $y_i = \left(f_i - \sum_{k=\max\{1,i-N+1\}}^{i-1} \ell_{i,k} y_k\right) / \ell_{i,i}$

et

$$\boxed{u_{(N-1)^2} = \frac{y_{(N-1)^2}}{\ell_{(N-1)^2,(N-1)^2}} \quad \text{et} \quad \text{pour } i \text{ de } (N-1)^2 - 1 \text{ à } 1 : u_i = \left(y_i - \sum_{k=i+1}^{\min\{i+N-1,(N-1)^2\}} \ell_{k,i} u_k\right) / \ell_{i,i}}.$$

Pour la suite, la fonction à approcher sera avec $f(x,y) := \sin(2\pi x)\sin(2\pi y)$.

Version de base

Commentaires

- Tout les tableaux utilisés sont linéarisés pour garantir la contiguité.
- Pour calculer u, on résout le système linéaire avec la méthode de Gauss.
- Les numéros du type de bord de la fonction connaître_bord sont les suivants :

Version de base

Commentaires (suite)

- On note ces résultats :

N	10	50	100
$\ e_h\ _{\infty}$	0.00038444	0.00001661	0.00000417
Tps d'ex. (s)	< 0.1	4.1	278.9

- A est de taille $O(N^2)$ et la méthode de Gauss est $O(N^3)$ donc la complexité algorithmique est $O(N^6)$.

Version avec méthode de résolution itérative en séquentiel

```
Rappel du schéma : u_{i,j}^{(k+1)} = \frac{1}{4} \left( u_{i-1,j}^{(k)} + u_{i,j-1}^{(k)} + u_{i+1,j}^{(k)} + u_{i,j+1}^{(k)} + h^2 f_{i,j} \right).
```

Fonction qui applique le schéma à un point :

```
static inline __attribute__((always_inline))
double schema(double *f, double *u_anc, int i, int j){

    double res
    = 0.25
    * (u_anc[IDX(i - 1, j)]
    + u_anc[IDX(i, j - 1)]
    + u_anc[IDX(i, j + 1)]
    + u_anc[IDX(i, j + 1)]
    + u_anc[IDX(i, j + 1)]
    return res;
}
```

Version avec méthode de résolution itérative en séquentiel

Commentaire On note ces résultats :

N	N 10 d'itérations 102		100	300	500	700
Nb. d'itérations			8506	66569	171980	320379
$\ e_h\ _{\infty}$	0.00038444	0.00001661	0.00000417	0.00000046	0.00000015	0.00000005
Tps d'ex. (s)	<0.1	< 0.1	0.1	4.8	34.6	128.4

Version avec méthode de résolution itérative en parallèle avec OpenMP

Commentaires

- On ajoute des directives for.
- On note ces résultats :

Version avec méthode de résolution itérative en parallèle avec MPI

Illustration Schéma de la structure d'un sous-tableau :

Version avec méthode de résolution itérative en parallèle avec MPI

Fonctions MPI

```
void creer_types() {
    int taille_send[2] = {nb_pt_div_j + 2, nb_pt_div_i + 2};
    int sous_taille_send[2] = {nb_pt_div_j, nb_pt_div_i};
    int debut_send[2] = {1, 1};

    MPI_Type_contiguous(nb_pt_div_i, MPI_DOUBLE, &ligne);
    MPI_Type_vector(nb_pt_div_j, 1, nb_pt_div_i + 2, MPI_DOUBLE, &colonne);

    MPI_Type_create_subarray
    (2, taille_send, sous_taille_send, debut_send, MPI_ORDER_C, MPI_DOUBLE, &bloc_send);

    MPI_Type_commit(&ligne);
    MPI_Type_commit(&colonne);
    MPI_Type_commit(&colonne);
    MPI_Type_commit(&bloc_send);

    MPI_Barrier(comm_2D);
}
```

Version avec méthode de résolution itérative en parallèle avec MPI

```
void echanger halos(double *u div){
    // Envoi haut, reception bas
    MPI_Sendrecv
    (\&(u_div[IDX(1, nb_pt_div_j)]), 1, ligne, voisins[1], etiquette.
    &(u div[IDX(1, 0)]), 1, ligne, voisins[3], etiquette, comm 2D, &statut);
    // Envoi bas, reception haut
   MPI Sendrecv
    (&(u div[IDX(1, 1)]), 1, ligne, voisins[3], etiquette.
    &(u div[IDX(1, nb pt div i + 1)]), 1, ligne, voisins[1], etiquette,
    comm 2D. &statut):
    // Envoi gauche, reception droite
    MPI Sendrecv
    (\&(u_div[IDX(1, 1)]), 1, colonne, voisins[0], etiquette,
    &(u_div[IDX(nb_pt_div_i + 1, 1)]), 1, colonne, voisins[2], etiquette,
    comm 2D. &statut):
    // Envoi droite, reception gauche
   MPI_Sendrecv
    (&(u_div[IDX(nb_pt_div_i, 1)]), 1, colonne, voisins[2], etiquette,
    &(u div[IDX(0. 1)]). 1. colonne, voisins[0], etiquette, comm 2D.
    &statut):
```

Équation de Poisson en dimension 2 – Implémentation Version avec méthode de résolution itérative en parallèle avec MPI

Commentaires

- Pour regrouper les résultats sur le rang 0, on utilise un type dérivé bloc_recv crée dynamiquement par le rang 0 (voir la fonction regrouper_u).
- On note ces résultats :

Équation de Poisson en dimension 2 – Implémentation

Version avec méthode de résolution itérative en parallèle avec MPI

Version avec un mode de communication non bloquant

Commentaires

- Dès que la communication est lancée, on fait les calculs sur l'intérieur du sous-domaine (en excluant les bords locaux), ensuite on vérifie / attend que la communication soit terminée, enfin on fait les calculs sur les bords locaux avec la fonction test_fin_echange_halos.
- Pour calculer sur les bords du sous-domaine (2 lignes (sauf 2 coins), 2 colonnes (sauf 2 coins) et 4 coins), on utilise la fonction calculer_u_jacobi_bords.

Version avec méthode de résolution directe en séquentiel

Structure mat Nbandes:

}

```
struct mat_Nbandes{
   int N;
   double **diags;
};
```

Fonction pour allouer la structure :

void init_mat_Nbandes(struct mat_Nbandes *A){

A -> N = N;
A -> diags = (double **) malloc(N * sizeof(double *));
for (int i = 0; i < N; i ++){
 (A -> diags)[i] = (double *) malloc((idx_max - i) * sizeof(double));

```
Fonction pour libérer la structure :

void liberer_mat_Nbandes(struct mat_Nbandes *A){
   int N = A -> N;
   for (int i = 0; i < N; i ++) {
        free((A -> diags)[i]);
    }
   free(A -> diags);
}
```

Équation de Poisson en dimension 2 – Implémentation Version avec méthode de résolution directe en séguentiel

$$\text{Rappel du schéma}: \begin{bmatrix} \left\{ \ell_{i,i} = \sqrt{\alpha - \sum\limits_{k=\max\{1,j-N+d+1\}}^{i-1} \ell_{i,k}^2} & \text{si } d = 0 \\ \ell_{i,j} = \left(a_{i,j} - \sum\limits_{k=\max\{1,j-N+d+1\}}^{j-1} \ell_{i,k} \ell_{j,k} \right) / \ell_{j,j} & \text{si } d > 0. \end{bmatrix} \right.$$

Version avec méthode de résolution directe en séquentiel

Fonction pour obtenir la décomposition de Cholesky en utilisant la structure :

```
void calculer cholesky(struct mat Nbandes *L){
   h_{carre} = 1.0 / pow(N, 2);
   double alpha = 4.0 / h_carre;
   for (int j = 0; j < idx_max; j ++){
       for (int d = 0; d < N && j + d < idx_max; d ++) {
           int i = d + i:
           if (d == 0) {
               (L -> diags)[0][j] = alpha;
               for (int k = max(0, j - N + d + 1); k < i; k + +) {
                    int d 1 = i - k:
                    (L \rightarrow diags)[0][j] -= pow((L \rightarrow diags)[d_1][k], 2);
               (L -> diags)[0][j] = sqrt((L -> diags)[0][j]);
           else{
               (L -> diags)[d][j] = valeur_a(i, j);
               int d_1 = i - k;
                   int d_2 = j - k;
                    (L \rightarrow diags)[d][j] = (L \rightarrow diags)[d_1][k] * (L \rightarrow diags)[d_2][k];
               (L -> diags)[d][j] /= (L -> diags)[0][j];
       }
   }
```

Version avec méthode de résolution directe en séquentiel

Test pour avoir un aperçu de la compression

```
Illustration de la structure mat Nbandes (exemple pour N petit) :
Structure mat Nbandes :
N = 4
         8.0000 7.7460
                          7.7287
                                                                             7.3139
diag[0] =
                                  7.7275
                                          7.3829 7.3668 7.6995
                                                                    7.3261
diag[1] = -2.0000 - 2.0656 - 0.1380
                                  -2.2184 -2.3331 -0.2074 -2.2717
                                                                   -2.4056
diag[2] = 0.0000 - 0.5164 - 0.5521
                                  -0.0370 -0.6222 -0.6863
                                                           -0.0585
diag[3] = -2.0000 -2.0656 -2.0702 -2.0705 -2.1672 -2.1719
Matrice reelle correspondante :
                 0.0000
                                  0.0000
                                          0.0000
                                                  0.0000
                                                          0.0000
 8.0000
         0.0000
                         0.0000
                                                                   0.0000
-2.0000
         7.7460
                 0.0000
                         0.0000 0.0000 0.0000
                                                  0.0000
                                                          0.0000
                                                                  0.0000
        -2.0656
                7.7287
                         0.0000
                                  0.0000
                                          0.0000
                                                  0.0000
                                                          0.0000
                                                                  0.0000
 0.0000
-2.0000 -0.5164
                -0.1380
                        7.7275
                                  0.0000 0.0000
                                                  0.0000
                                                          0.0000
                                                                  0.0000
 0.0000 -2.0656
                -0.5521
                        -2.2184
                                  7.3829
                                          0.0000
                                                  0.0000
                                                          0.0000
                                                                  0.0000
 0.0000
         0.0000 -2.0702
                        -0.0370
                                 -2.3331
                                                  0.0000
                                         7.3668
                                                          0.0000
                                                                   0.0000
 0.0000
         0.0000
                0.0000
                        -2.0705
                                 -0.6222
                                         -0.2074
                                                  7.6995
                                                          0.0000
                                                                   0.0000
                0.0000 0.0000 -2.1672
                                         -0.6863
                                                -2.2717
                                                          7.3261
                                                                   0.0000
 0.0000
         0.0000
         0.0000
                0.0000 0.0000
                                 0.0000 -2.1719 -0.0585 -2.4056
 0.0000
                                                                   7.3139
```

Version avec méthode de résolution directe en séquentiel

Fonction pour résoudre Ly = f:

```
void resoudre_cholesky_descente(struct mat_Nbandes *L, double *f, double *y){
    y[0] = f[0] / (L -> diags)[0][0];
    for (int i = 1; i < idx_max; i ++){
        y[i] = f[i];
        for (int k = max(0, i - N + 1); k < i; k ++){
            int d = i - k;
            y[i] -= (L -> diags)[d][k] * y[k];
        }
        y[i] /= (L -> diags)[0][i];
}
```

Version avec méthode de résolution directe en séquentiel

Rappel du schéma :

```
\boxed{u_{(N-1)^2} = \frac{y_{(N-1)^2}}{\ell_{(N-1)^2,(N-1)^2}} \quad \text{et} \quad \text{pour } i \text{ de } (N-1)^2 - 1 \text{ à } 1 : u_i = \left(y_i - \sum_{k=i+1}^{\min\{i+N-1,(N-1)^2\}} \ell_{k,i} u_k\right) / \ell_{i,i}}.
```

Fonction pour résoudre $L^T u = y$:

```
void resoudre_cholesky_remontee(struct mat_Nbandes *L, double *y, double *u){
    u[idx_max - 1] = y[idx_max - 1] / (L -> diags)[0][idx_max - 1];

    for (int i = idx_max - 2; i >= 0; i --){
        u[i] = y[i];
        for (int k = i + 1; k < min(i + N, idx_max); k ++){
            int d = k - i;
            u[i] -= (L -> diags)[d][i] * u[k];
        }
        u[i] /= (L -> diags)[0][i];
}
```

Équation de Poisson en dimension 2 – Implémentation Version avec méthode de résolution directe en séguentiel

Commentaires

- On note ces résultats :

N	10	50	100	300	500	700
$\ e_h\ _{\infty}$	0.00038444	0.00001661	0.00000417	0.00000046	0.00000017	0.00000009
Tps d'ex. (s)	<0.1	<0.1	<0.1	4.6	35.8	383.5

– A possède $O(N^2)$ colonne. Pour chaque colonne, il y a O(N) lignes à calculer. Pour chaque case, il y a O(N) opérations. Donc la complexité algorithmique est $O(N^4)$.

Équation de Poisson en dimension 2 – Implémentation Version avec méthode de résolution directe en séquentiel

Bibliothèque Cholmod

Étapes :

- créer une fonction pour définir la structure de matrice creuse en créant des tableaux :
 - lignes qui contient les indices des lignes où se trouve une valeur non nulle,
 - valeurs qui contient les valeurs aux indices stockés,
 - offsets qui contient le nombre de valeurs non nulles d'une colonne,
 - (voir les fonctions construire_matrice_creuse et connaitre_bord).
- créer une fonction qui fait le travail

Version avec méthode de résolution directe en séquentiel

Fonction principale :

```
void resoudre(cholmod_sparse *A, double *f, double *u){
    h carre = 1.0 / pow(N. 2):
    double *f_int = (double *) malloc(idx_max * sizeof(double));
    double *u_int = (double *) malloc(idx_max * sizeof(double));
    extraire_interieur(f, f_int, nb_pt);
    extraire_interieur(u, u_int, nb_pt);
    cholmod dense *f dense =
    cholmod allocate dense(A -> nrow, 1, A -> nrow, CHOLMOD REAL, &c):
    memcpy(f_dense -> x, f_int, A -> nrow * sizeof(double));
    cholmod_factor *L = cholmod_analyze(A, &c);
    cholmod factorize (A. L. &c):
    cholmod_dense *u_dense = cholmod_solve(CHOLMOD_A, L, f_dense, &c);
    memcpy(u_int, u_dense -> x, A -> nrow * sizeof(double));
    inserer interieur (u int. u. nb pt):
    cholmod_free_factor(&L, &c);
    cholmod free dense (&f dense, &c):
    cholmod free dense (&u dense, &c):
    free(f_int);
    free(u int);
}
```

Équation de Poisson en dimension 2 – Implémentation Version avec méthode de résolution directe en séquentiel

Commentaire On note ces résultats :

N	1000	2000	3000	4000	5000
$\left\ e_{h}\right\ _{\infty}$	0.00000004	0.00000001	<0.0000001	<0.0000001	<0.00000001
Tps d'ex. (s)	0.7	15.7	39.3	79.3	174.5

Comparaison des performances des méthodes

- O- Base (Gauss) △- Schéma itératif (Jacobi) MPI bloquant 4 processus □- Schéma itératif (Jacobi) *- Schéma direct (Cholesky)
- - Schéma itératif (Jacobi) OpenMP 4 threads - Schéma direct (Cholesky) Cholmod

Équation des ondes en

dimension 1

Équation des ondes en dimension 1 – Analyse numérique Présentation du problème

Problème

Soient L, T, c > 0, D :=]0, L[et le problème suivant :

Trouver u de classe C^2 telle que :

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x,t) - c^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0 & \forall \ x \in D, \ \forall \ t \in]0,T] \\ u(x,t) = 0 & \forall \ x \in \partial D, \ \forall \ t \in [0,T] \\ u(x,0) =: u_0(x) & \forall \ x \in D \\ \frac{\partial u}{\partial t}(x,0) =: u_1(x) & \forall \ x \in D \end{cases}.$$

Équation des ondes en dimension 1 – Analyse numérique Schéma numérique

Discrétisation

$$\frac{\partial^2 u}{\partial t^2}(x,t) = \frac{1}{h_t^2} \left(u(x,t+h_t) - 2u(x,t) + u(x,t-h_t) \right) + E_{h_t}$$

$$\mathsf{E}_{h_t} := -rac{1}{12} h_t^2 rac{\partial^4 u}{\partial t^4} \left(\mathsf{x}, \mathsf{t} + \theta h_t
ight).$$

Schéma

avec

$$\begin{cases} u_i^1 = h_t u_1(x_i) + u_0(x_i) \\ u_i^{k+1} = -u_i^{k-1} + 2\left(1 - \frac{c^2 h_t^2}{h^2}\right) u_i^k + \frac{c^2 h_t^2}{h^2} \left(u_{i-1}^k + u_{i+1}^k\right) & \text{si } k > 0 \end{cases}.$$

Remarques

- Le schéma est explicite.
- Pour k > 0, le schéma dépend de valeurs en k 1 et en k 2.

Équation des ondes en dimension 1 – Analyse numérique Existence et unicité de la solution approchée, consistance du schéma

Proposition Le schéma admet une unique solution.

Proposition Les schémas sont consistants en espace et en temps :
$$\lim_{h\to 0}|E_h|=0$$
 et $\lim_{h_t\to 0}|E_{h_t}|=0$.

Remarque Le schéma est d'ordre 2 pour x et pour y et d'ordre 2 pour t.

Équation des ondes en dimension $\mathbf{1}$ – Analyse numérique Stabilité et convergence du schéma

Proposition (admise) Le schéma est convergent si $c\frac{h_t}{h} \leq 1$.

Remarques

- On vérifiera cette proposition avec un exemple.
- Cette proposition s'appelle la condition de Courant-Friedrich-Levy (CFL).

Équation des ondes en dimension 1 - Implémentation

Pour la suite, la fonction à approcher sera avec L=1, T=1, c=1, $u_0\left(x\right)=\sin\left(\pi x\right)$ et $u_1\left(x\right)=0$.

Équation des ondes en dimension 1 – Implémentation

Rappel du schéma : $\begin{cases} u_i^1 = h_t u_1(x_i) + u_0(x_i) \\ u_i^{k+1} = -u_i^{k-1} + 2\left(1 - \frac{c^2 h_t^2}{h^2}\right) u_i^k + \frac{c^2 h_t^2}{h^2} (u_{i-1}^k + u_{i+1}^k), & \text{si } k > 0 \end{cases}$

Fonctions qui appliquent le schéma à un point (pour k > 0 puis pour k = 0)

```
static inline __attribute__((always_inline))
double schema(double *u_anc_0, double *u_anc_1, int i, int k){

    double res = // const_1 = pow(c, 2) * pow(h_t, 2) / pow(h, 2)
    -u_anc_1[i]
    + 2 * (1 - const_1) * u_anc_0[i]
    + const_1 * (u_anc_0[i - 1] + u_anc_0[i + 1]);
    return res;
}
```

Équation des ondes en dimension 1 - Implémentation

Commentaires

 $-\|e_{h,h_t}\|_{\infty}^{\infty}$ en fonction de h et de h_t :

$\downarrow h h_t \rightarrow$	1/100	1/200	1/500	1/1000
1/100	0.01570926	0.00780545	0.00307972	0.00150733
1/200	∞_f	0.00785414	0.00312801	0.00155531
1/500	∞_f	∞_f	0.00314160	0.00156886
1/1000	∞_f	∞_f	∞_f	0.00157080

où ∞_f est ou bien l'infini des flottants double précision (inf), ou bien une valeur très élevée. On vérifie la proposition énoncée, les valeurs ∞_f sont bien atteintes lorsque $c\frac{h_t}{h}>1$.

- Lorsque h/h_t est fixé, le schéma semble bien converger.
- On ne s'intéresse pas ici aux temps d'exécutions.
- La complexité algorithmique est $O(N \cdot N_t)$.

dimension 2

Équation de la chaleur en

Équation de la chaleur en dimension 2 – Analyse numérique Présentation du problème

Problème

Soient $L, T, a > 0, D :=]0, L[\times]0, L[, f : D \times]0, T] \to \mathbb{R}$ continue et bornée et le problème suivant :

Trouver u de classe C^2 telle que :

$$\begin{cases} \frac{\partial u}{\partial t}(x,y,t) - a\Delta u(x,y,t) = f(x,y,t) & \forall (x,y) \in D, \ \forall \ t \in]0,T] \\ u(x,y,t) = 0 & \forall (x,y) \in \partial D, \ \forall \ t \in [0,T] \\ u(x,y,0) =: u_0(x,y) & \forall (x,y) \in D \end{cases}$$

Schémas numériques - Méthode explicite

Discrétisation

$$\frac{\partial u}{\partial t}(x,y,t) = \frac{1}{h_t}(-u(x,y,t) + u(x,y,t+h_t)) + E_{h_t}$$

avec

$$E_{h_t} := -\frac{1}{2}h_t \frac{\partial^2 u}{\partial t^2} (x, y, t + \theta_t h_t).$$

Schéma

$$u_{i,j}^{k+1} = \alpha u_{i,j}^k + \beta \left(u_{i-1,j}^k + u_{i,j-1}^k + u_{i+1,j}^k + u_{i,j+1}^k \right) + h_t f_{i,j}^k$$

$$\alpha := 1 - \frac{4ah_t}{h^2}$$
 et $\beta := \frac{ah_t}{h^2}$.

Schémas numériques - Méthode implicite

Discrétisation

$$\frac{\partial u}{\partial t}(x,y,t+h_t) = \frac{1}{h_t}(u(x,y,t+h_t) - u(x,y,t)) + E_{h_t}$$

avec

$$E_{h_t} := \frac{1}{2} h_t \frac{\partial^2 u}{\partial t^2} (x, y, t + (\theta_t + 1) h_t).$$

Schéma

$$\alpha u_{i,j}^{k+1} + \beta \left(u_{i-1,j}^{k+1} + u_{i,j-1}^{k+1} + u_{i+1,j}^{k+1} + u_{i,j+1}^{k+1} \right) = u_{i,j}^{k} + h_t f_{i,j}^{k+1}$$

$$\alpha := 1 + \frac{4ah_t}{h^2}$$
 et $\beta := -\frac{ah_t}{h^2}$.

Schémas numériques - Méthode implicite

Schéma sous forme matricielle par blocs

Schémas numériques - Méthode semi-implicite

Discrétisation

$$\frac{1}{2}\left(\frac{\partial u}{\partial t}(x,y,t) + \frac{\partial u}{\partial t}(x,y,t+h_t)\right) = \frac{1}{h_t}\left(-u(x,y,t) + u(x,y,t+h_t)\right) + E_{h_t}$$

$$E_{h_t} = O\left(h_t^2\right).$$

Schéma

avec

$$\alpha u_{i,j}^{k+1} - \gamma \left(u_{i-1,j}^{k+1} + u_{i,j-1}^{k+1} + u_{i+1,j}^{k+1} + u_{i,j+1}^{k+1} \right)$$

$$= \beta u_{i,j}^{k} + \gamma \left(u_{i-1,j}^{k} + u_{i,j-1}^{k} + u_{i+1,j}^{k} + u_{i,j+1}^{k} \right) + \frac{1}{2} h_{t} \left(f_{i,j}^{k} + f_{i,j}^{k+1} \right)$$

$$\alpha := 1 + 4\gamma, \quad \beta := 1 - 4\gamma \quad \text{et} \quad \gamma := \frac{ah_t}{2h^2}.$$

Schémas numériques - Méthode semi-implicite

Schéma sous forme matricielle par blocs

$$\boxed{Au^{k+1} = b^k} \Leftrightarrow \underbrace{\begin{pmatrix} \boxed{M} & \boxed{-\gamma I} & \cdot & \cdot \\ \boxed{-\gamma I} & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdots \\ \boxed{\cdot} & \cdot & \cdots & \cdots \\ \boxed{-\gamma I} & \boxed{M} \end{pmatrix}}_{=u^{k+1}} \underbrace{\begin{pmatrix} u_1^{k+1} \\ \vdots \\ \vdots \\ u_{N-1}^{k+1} \end{pmatrix}}_{=b^{k+1}} = \underbrace{\begin{pmatrix} b_1^{k+1} \\ \vdots \\ \vdots \\ b_{N-1}^{k+1} \end{pmatrix}}_{=b^{k+1}}$$

avec

$$M := \begin{pmatrix} \alpha & -\gamma & \cdot & \cdot \\ -\gamma & \cdot \cdot & \cdot & \cdot \\ \cdot & \cdot \cdot & \cdot & -\gamma \\ \cdot & \cdot & -\gamma & \alpha \end{pmatrix}$$

et

$$\forall i,j \in \{1,\ldots,N-1\}: b_{i,j}^k := \beta u_{i,j}^k + \gamma \left(u_{i-1,j}^k + u_{i,j-1}^k + u_{i+1,j}^k + u_{i,j+1}^k\right) + \frac{1}{2}h_t\left(f_{i,j}^k + f_{i,j}^{k+1}\right).$$

Équation de la chaleur en dimension 2 – Analyse numérique Existence et unicité des solutions approchées, consistance des schémas

Proposition Les schémas admettent une unique solution.

Proposition Les schémas sont consistants en espace et en temps : $\lim_{h\to 0} |E_h| = 0$ et $\lim_{h_t\to 0} |E_{h_t}| = 0$.

Remarque

- Les schémas explicite et implicite sont d'ordre 2 pour x et pour y et d'ordre 1 pour t.
- Le schéma semi-implicite est d'ordre 2 pour x et pour y et d'ordre 2 pour t.

Équation de la chaleur en dimension 2 – Analyse numérique Stabilité et convergence des schémas

Proposition (admise) Le schéma explicite est convergent $\Leftrightarrow \beta \leq \frac{1}{4}$.

Remarques

- On vérifiera cette proposition avec un exemple.
- ${\mathord{\hspace{1pt}\text{--}\hspace{1pt}}}$ Cette proposition s'appelle la condition de Courant-Friedrich-Levy (CFL).

 $\textbf{Proposition} \ (\textit{admise}) \ \mathsf{Les} \ \mathsf{sch\'ema} \ \mathsf{implicite} \ \mathsf{et} \ \mathsf{semi-implicite} \ \mathsf{sont} \ \mathsf{convergents}.$

Équation de la chaleur en dimension 2 – Implémentation

Pour la suite, la fonction à approcher sera avec $L=1, T=1, a=1, \lambda=2a\pi^2, f(x,y,t)=\left(-\lambda+2a\pi^2\right)\sin\left(\pi x\right)\sin\left(\pi y\right)e^{-\lambda t}$ et $u_0\left(x,y\right)=\sin\left(\pi x\right)\sin\left(\pi y\right)$.

Équation de la chaleur en dimension 2 – Implémentation

Version avec schéma explicite en séquentiel

Commentaires

 $-\|e_{h,h_t}\|_{\infty}^{\infty}$ en fonction de h et de h_t :

$\downarrow h h_t \rightarrow$	1/10000	1/20000	1/50000	1/100000
1/10	0.00266777	0.00284805	0.00295614	0.00299216
1/20	0.00039394	0.00057533	0.00068410	0.00072034
1/50	0.00024223	0.00006052	0.00004843	0.00008473
1/100	∞_f	∞_f	0.00004237	0.00000605

On vérifie la proposition énoncée, les valeurs ∞_f sont bien atteintes lorsque $\beta > 1/4$.

- La condition sur β est très contraignante.
- La complexité algorithmique est $O(N^2 \cdot N_t)$.

Équation de la chaleur en dimension 2 – Implémentation Version avec schéma explicite en parallèle avec OpenMP

Commentaire On note ces résultats :

Équation de la chaleur en dimension 2 – Implémentation Version avec schéma explicite en parallèle avec MPI

Commentaire On note ces résultats :

Équation de la chaleur en dimension 2 – Implémentation Version avec schéma implicite

Commentaires

 $-\|e_{h,h_t}\|_{\infty}^{\infty}$ en fonction de h et de h_t :

$\downarrow h h_t \rightarrow$	1/10000	1/20000	1/50000	1/100000
1/10	0.00338798	0.00320815	0.00310018	0.00306418
1/20	0.00111862	0.00093767	0.00082903	0.00079281
1/50	0.00048370	0.00030244	0.00019361	0.00015732
1/100	0.00039301	0.00021171	0.00010286	0.00006656

– Les valeurs ∞_f obtenues pour le schéma explicite deviennent proches de 0.

Équation de la chaleur en dimension 2 – Implémentation Version avec schéma implicite

Commentaires

On note ces résultats :

 La stabilité du schéma implicite est inconditionnelle, ce qui permet d'exécuter sur des pas de temps plus grands.

Équation de la chaleur en dimension 2 – Implémentation Version avec schéma semi-implicite

Commentaires

- $\|e_{h,h_t}\|_{\infty}^{\infty}$ en fonction de h et de h_t (avec $L=1,\,T=1,\,a=1$ et $\lambda=2a\pi^2$) :

$\downarrow h h_t \rightarrow$	1/10000	1/20000	1/50000	1/100000
1/10	0.00302805	0.00302814	0.00302817	0.00302817
1/20	0.00075646	0.00075655	0.00075657	0.00075658
1/50	0.00012091	0.00012100	0.00012103	0.00012103
1/100	0.00003014	0.00003023	0.00003025	0.00003026

 Les temps d'exécutions sont environ les mêmes que pour /Probleme-Chaleur/sequentiel-2.

Équation de la chaleur en dimension 2 – Implémentation Comparaison des performances des méthodes

 $\|e_{h,h_t}\|_\infty^\infty$ en fonction de h (pour h=1/100) et du schéma (implicite et semi-implicite) :

Équation de la chaleur en dimension 2 – Visualisation

On peut visualiser la simulation avec Python et matplotlib.

Diffusion de la chaleur

Bibliographie et supports

- Rappels de calcul scientifique. (2008) par Patrick Ciarlet
- Finite-Difference Approximations to the Heat Equation (2004)
 par Gerald W. Recktenwald
- Numerical Methods for Ordinary Differential Equations par Habib Ammari et Konstantinos Alexopoulos
- Lecture 6: Finite difference methods par Habib Ammari
- SUITESPARSE : A SUITE OF SPARSE MATRIX SOFTWARE
- Direct Methods for Sparse Linear Systems par Timothy A. Davis
- Cours de calcul numérique (M1 CHPS) par Serge Dumont
- Cours d'analyse et calcul numérique (L3 Maths) par Francesco Bonaldi
- Cours d'algorithmique et programmation parallèle (M1 CHPS) par David Defour
- Forums d'aides

Conclusion

Des remerciements sont adressés à Francesco Bonaldi du LAMPS pour la confiance accordée en vue de la réalisation autonome de ce projet.

Lien vers le GitHub du projet

https://github.com/gaillot18/Stage-M1-CHPS.git (contient le rapport écrit, la présentation et le projet)

Merci pour votre attention. Des guestions?