(1) n を正の整数とする $.-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ の範囲において

$$f_n(x) = \begin{cases} \frac{\sin nx}{\sin x} & -\frac{\pi}{2} \le x \le \frac{\pi}{2}, x \ne 0\\ c_n & x = 0 \end{cases}$$

とおくことにより定義される関数 $f_n(x)$ が,連続関数となるように定数 c_n の値を定めよ.

(2) $f_3(x)$ は $\cos x$, $\cos 2x$ 等を用いて表せることを示し, 定積分

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f_3(x) dx$$

の値を求めよ.

(3) 任意の正の整数 n に対して, 定積分

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f_{2n+1}(x) dx$$

の値を求めよ.