Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 8 (27.11.2023 - 1.12.2023)

Aufgabe 1:

Bestimmen Sie folgende Grenzwerte.

(a)
$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} (2k-1)$$

(b)
$$\lim_{n \to \infty} \frac{3n}{\sqrt{2n^2 - 1}}$$

(a)
$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} (2k-1)$$
 (b) $\lim_{n \to \infty} \frac{3n}{\sqrt{2n^2 - 1}}$ (c)^(*) $\lim_{n \to \infty} \frac{5n^2 - 2n\sqrt{n+1}}{n^2 - n\sqrt{4n^2 + 6}}$

(d)
$$\lim_{n \to \infty} \left(\frac{5n-2}{2n+3} - \sum_{k=1}^{n} \frac{5}{2^k} \right)$$
 (e)^(*) $\sum_{k=0}^{\infty} (\frac{4}{5})^k$

$$(e)^{(*)} \sum_{k=0}^{\infty} (\frac{4}{5})^k$$

(f)
$$\lim_{n \to \infty} n \cdot (\sqrt{n^2 + 1} - n)$$

Aufgabe 2:

Berechnen Sie im Falle der Konvergenz den Wert der Reihe.

(a)
$$\sum_{k=0}^{\infty} \frac{3^k + 5}{6^k}$$

(b)^(*)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^{k+1}}$$

Aufgabe 3:

Ein Tischtennisball fällt aus einer Höhe h senkrecht auf eine Platte. Der Ball prallt zurück und erreicht eine Höhe von $\frac{3}{4}h$. Der Vorgang wiederholt sich jeweils mit $\frac{3}{4}$ Rückprallhöhe. Welche Gesamtlänge l legt der Ball zurück, falls man ihn ungestört springen lässt?

Aufgabe 4:

Berechnen Sie die Grenzwerte der Folgen (a_n) , falls diese existieren.

(a)
$$a_n = \left(1 + \frac{1}{2n}\right)^{3n}$$

(a)
$$a_n = \left(1 + \frac{1}{2n}\right)^{3n}$$
 (b) $a_n = \left(1 - \frac{1}{n-2}\right)^{n+5}$ (c) $a_n = \left(\frac{n-1}{n+1}\right)^{3n}$

(c)
$$a_n = \left(\frac{n-1}{n+1}\right)^{3n}$$

$$(\mathbf{d})^{(*)} \ a_n = \left(\frac{n}{n+1}\right)^r$$

$$(d)^{(*)} a_n = \left(\frac{n}{n+1}\right)^n \qquad (e)^{(*)} a_n = \left(1 - \frac{4}{3n}\right)^{n+1} \qquad (f) a_n = \left(\frac{3n+1}{1-3n}\right)^n$$

$$(f) a_n = \left(\frac{3n+1}{1-3n}\right)^n$$

Aufgabe 5:

Berechnen Sie

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

Hinweis: Es ist hilfreich, wenn Sie $\frac{1}{k(k+1)}$ in der Form $\frac{A}{k} + \frac{B}{k+1}$ (mit noch zu ermittelnden reellen Zahlen A und B) darstellen. Dieses Vorgehen heißt Partialbruchzerlegung und wird später noch ein eigenes Thema sein.

Aufgabe 6:

Untersuchen Sie folgende Reihen auf Konvergenz:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2},$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}},$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n+2}$$
,

$$(d)^{(*)} \sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{k}},$$

$$(f)^{(*)} \sum_{n=1}^{\infty} \frac{1}{n^3}$$

$$(g) \sum_{k=1}^{\infty} 1,$$

$$(h)^{(*)} \sum_{n=1}^{\infty} n,$$

(i)
$$\sum_{n=1}^{\infty} \frac{\cos^2(n)}{n^2 + n + 1}$$
,

$$(j)^{(*)} \sum_{n=1}^{\infty} (\frac{1}{n^2} + \frac{1}{n^3}),$$

$$(k)^{(*)} \sum_{k=1}^{\infty} \ln\left(1 + \frac{1}{k}\right).$$