Planning serré : Application de la théorie des graphes pour l'optimisation d'un emploi du temps

Mehdi I ATIF

Travaux Encadrés de Recherche - Université de Nantes Master 1 - Optimisation en Recherche Opérationnelle Professeur référent : Irena RUSU

mehdi.latif@etu.univ-nantes.fr

28 mai 2019

Plan de la présentation

- Introduction
 - Présentation de la problématique
 - Exemple d'affectation pour notre problème
 - Apport de la théorie des graphes pour la résolution de ce problème
- 2 Éléments de théorie des graphes
 - Définitions relatives à notre problème
 - Algorithme de construction d'un graphe biparti pour notre problème
 - Exemple de construction d'un graphe biparti
- Modélisations
 - Formulation du problème comme la recherche d'un couplage maximum
 - Formulation du problème comme la recherche d'un flot maximum de coût minimum
- 4 Conclusion

Présentation de la problématique

Objectif:

Mise en place d'une solution automatisée pour l'affectation des créneaux de travaux pratiques aux enseignants du département informatique de l'Université de Nantes.

Information complémentaire :

Un créneau de travaux pratiques peut avoir lieu une semaine sur deux, en semaine paire ou impaire.

Contrainte :

Chaque créneau est fixé à l'avance et ne peut être modifié.

Présentation de la problématique

Modélisation d'un créneau :

Un créneau horaire pour notre problème est défini par le triplet suivant :

$$c(g) = (j(g), h(g), p(g))$$

Où:

- g est un groupe d'étudiants
- ullet j(g) le jour durant lequel le créneau à lieu
- h(g) l'heure de début du créneau
- ullet p(g) la parité de la semaine

Notation:

Deux groupes ont des créneaux complémentaires si le jour et l'heure sont les mêmes mais que leurs parités sont différentes.

Et les professeurs?

Une équipe enseignante est composée pour assurer les TP. Chaque professeur indique :

- l'ensemble des créneaux qu'il peut prendre en charge
- le nombre de créneaux qu'il souhaite obtenir

Remarque

En général, un professeur peut donner x disponibilités et ne demander que y créneaux avec $y \le x$.

Hypothèses:

Un professeur

- est indifférent au groupe associé au créneau.
- a n'a pas de préférence dans les disponibilités qu'il propose.
- souhaite obtenir des créneaux complémentaires dès lors qu'il veut deux créneaux.

Exemple d'affectation pour notre problème

	Lundi		M	lardi
Parité	Pair	Impair	Pair	Impair
8h	1	3	2	8
10h	9			4
12h	5		6	7

Table – Exemple d'une instance pour notre problème.

Les triplets définissant les groupes sont :

$$\begin{array}{lll} c(g_1)=(1,8,0) & c(g_2)=(2,8,1) & c(g_3)=(1,8,1) & c(g_4)=(2,10,1) \\ c(g_5)=(1,12,0) & c(g_6)=(2,12,0) & c(g_7)=(2,12,1) & c(g_8)=(2,8,1) \\ c(g_9)=(1,10,0) & \end{array}$$

Exemple d'affectation pour notre problème

On suppose que quatre professeurs ont indiqué les disponibilités suivantes :

- p₁: Lundi 8h, Mardi 8h, Mardi 12h et souhaite obtenir 4 créneaux.
- p_2 : Lundi 9h, Mardi 8h, Mardi 12h et souhaite obtenir 2 créneaux.
- p_3 : Lundi 8h, Lundi 12h, Mardi 10h et souhaite obtenir 2 créneaux.
- p_4 : Lundi 10h, Mardi 12h et souhaite obtenir 1 créneaux.

Exemple d'affectation pour notre problème

	Lundi		Mardi	
Parité	Pair	Impair	Pair	Impair
8h	1 - p ₁	3 - p ₁	2 - p ₂	8 - p ₁
10h	9 - p ₄			4 - p_3
12h	5 - p ₃		6 - p_1	7 - p_2

Table – Solution admissible non optimale.

Échanger les enseignants p_1 et p_2 pour les créneaux du Mardi 8h et Mardi 12h permettrait à chacun d'obtenir des affectations complémentaires.

Apport de la théorie des graphes pour la résolution de ce problème

Notre objectif:

Proposer un algorithme efficace permettant :

- 1 d'affecter les professeurs à leurs disponibilités
- de maximiser le nombre de créneaux complémentaires affectés à chaque enseignant

Notre solution:

Modéliser et résoudre ce problème comme

- 1 la recherche d'un couplage maximum dans un graphe biparti.
- 2 la recherche d'un flot maximum de coût minimum.

Pour ce problème, on considère un graphe biparti G=(V,E) avec $V=P\cup C$ où

- P la partition des sommets représentant des professeurs
- C la partition des sommets représentant des créneaux

Définition formelle : un créneau

Un créneau $c \in C$ est un triplet c(g) = (j(g), h(g), p(g)) avec g le groupe concerné, j(g)et h(g) sont le jour et l'heure de début de ce créneau et p(g) parité de la semaine sur laquelle le créneau a lieu.

Notation

Un semaine paire a pour valeur p(g) = 0

Un semaine impaire a pour valeur p(g) = 1

Définition formelle : un professeur

Un professeur $\lambda \in P$ est un triplet $\lambda = (i, n, d)$ avec i le numéro du professeur, n le nombre de créneau(x) qu'il souhaite prendre en charge et d un ensemble de disponibilités.

Disponibilités d'un professeur

Le disponibilités d'un professeur $\lambda \in P$ sont des couples (j(g),h(g)) avec j(g) le jour et h(g) l'heure de la disponibilité de λ , indépendamment du groupe g par hypothèse.

Définition de la disponibilité d'un professeur sur un créneau

Un professeur $\lambda=(i,n,d)$ peut être affecté à un créneau c(g)=(j(g),h(g),p(g)) si il existe une disponibilité de p dont le jour et l'heure coïncident avec ceux du créneaux c(q).

Représentation des disponibilités dans G

Une disponibilité est représentée dans le graphe G par une arête sortante du sommet représentant $\lambda \in P$ vers le sommet représentant $c \in C$

Demande sur les sommets de G

Nous introduisons une demande entière d(v) sur chaque sommet de $\forall v \in V$ telle que :

$$d(v) = \left\{ \begin{array}{ll} d < 0 & \text{ si } v \in P \text{ où } d \text{ est \'egal au nombre de cours} \\ & \text{ souhait\'es par } v \\ d \geq 0 & \text{ si } v \in C \text{ où } d \text{ est \'egal au nombre de groupes} \\ & \text{ pr\'esents sur le cr\'eneau } v \end{array} \right.$$

Algorithme de construction du graphe biparti

On pose X un ensemble de créneaux et Y un ensemble de professeurs.

Algorithme 1 : Construction du graphe biparti

```
Entrées : X un ensemble de professeurs, Y un ensemble de créneaux
Sorties : G = (P \cup C, E) un graphe biparti
P \leftarrow \emptyset //  L'ensemble des sommets professeurs
C \leftarrow \emptyset // L'ensemble des sommets créneaux
E \longleftarrow \emptyset // L'ensemble des arêtes
\forall x \in X \text{ faire}
     C \longleftarrow C \cup \{\text{sommet}(x)\}
\forall y \in Y \text{ faire}
    P \longleftarrow P \cup \{ sommet(y) \}
    \forall x' \in C faire
         Si Le professeur y est disponible sur le créneau x' alors
          E \longleftarrow E \cup \{ arête(y, x') \}
retourner G = (P \cup C, E)
```

Exemple de construction d'un graphe biparti

	p_1	p_2	p_3
Disponibilités	Lu 14h, Ma 14h	Ma14, Me14	Lu14, Ma14, Me14
Nb cours voulus	2	2	3

Table – Ensemble de professeurs

Semaine	Paire	Impaire
Lu 14	1,3	2
Ma 14	5	4,6
Me 14	7,8,9	

Table - Ensemble de créneaux

Exemple de construction d'un graphe biparti

Le graphe biparti obtenu pour cette instance est le suivant :

Formulation du problème comme la recherche d'un couplage maximum

Définition formelle : Conflit horaire

On dit qu'il existe un conflit horaire entre le professeur λ et le créneau c(g) si il existe un créneau c(g') tel que $(\lambda, c(g')) \in M$ et

$$j(g) = j(g') \land h(g) = h(g') \land p(g) = p(g')$$

Définition formelle : Complémentarité de créneaux

Soient c(g)=(j(g),h(g),p(g)) et c(g')=(j(g'),h(g'),p(g')); c(g) et c(g') sont complémentaires si et seulement si

$$j(g) = j(g') \land h(g) = h(g') \land p(g) \neq p(g')$$

Formulation du problème comme la recherche d'un couplage maximum - Transformation du graphe biparti

Figure – Graphe biparti représentant l'instance illustrative

Formulation du problème comme la recherche d'un couplage maximum - Transformation du graphe biparti

Transformation du graphe

mutliplication des sommets en fonction des demandes $|d(v)| \ \forall v \in V = P \cup C$.

Ainsi, le professeur p_1 ayant formulé une demande de deux créneaux se verra représenté par deux sommets dans le nouveau graphe biparti à savoir $p_{1,1}$ et $p_{1,2}$.

Formulation du problème comme la recherche d'un couplage maximum - Transformation du graphe biparti

Formulation du problème comme la recherche d'un couplage maximum - Recherche du couplage

```
M \leftarrow \emptyset:
Etape 1 Étiquetage
      Etape 1.0:
             Donner une étiquette \star à tous les sommets exposés de P;
      Etape 1.1:
             S'il n'existe pas d'étiquette non encore vérifée → Aller en étape 3:
             Choisir un sommet étiqueté v \in V mais non encore examiné.;
                Si v \in P \rightarrow Aller en étape 1.2:
               Si v \in C \rightarrow Aller en étape 1.3:
      Etane 1.2:
             Enregistrer le sommet v \in P:
             \forall (u, v) \in E \setminus M, donner à v une étiquette égale à u si v n'a pas encore d'étiquette.;
             Aller en étape 1.1;
      Etape 1.3:
             Enregistrer le sommet v \in C. Si v est exposé, aller en étape 2.;
             Sinon, trouver l'arête (u,v) \in M et donner à u \in P une étiquette égale à v:
             Aller en étape 1.1:
Etape 2 Augmentation
      Un chemin augmentant \mathcal{P} a été trouvé. Utiliser les étiquettes pour construire le chemin à reculons à partir de u \in C:
      Appliquer l'opération de transfert M \leftarrow M\Delta P;
      Effacer les étiquettes;
      Aller à l'étape 1.
Etape 3 Terminaison
      Le couplage M est maximum i.e. il n'existe plus de chemin augmentant dans G;
retourner M le couplage maximum dans G
```

Formulation du problème comme la recherche d'un couplage maximum - Recherche du couplage

Complexité de cette algorithme

La complexité de cet algorithme est en $O(|V| \times |E|)$

Le couplage obtenu par l'application de l'algorithme est :

$$\begin{array}{ll} M=&\left\{(p_{1,1},Lu.14.0.3),\,(p_{1,2},Ma.14.1.1),\,(p_{2,1},Ma.14.0.5)\right.\\ &\left.(p_{2,2},Me.14.0.8),\,(p_{3,1},Lu.14.1.2),\,(p_{3,2},Me.14.0.9),\\ &\left.(p_{3,3},Ma.14.1.6)\,\right\} \end{array}$$

Formulation du problème comme la recherche d'un couplage maximum - Recherche du couplage

Formulation du problème comme la recherche d'un couplage maximum - Affectations trouvées

```
Prof n° 1 nbVoulu : 2 Dsp : [(1, 14h), (2, 14h)]
Nb créneaux cplt : 0
1/14/3/0 2/14/4/1
Prof n° 2 nbVoulu : 2 Dsp : [(2, 14h), (3, 14h)]
Nb créneaux cplt : 0
2/14/5/0 3/14/8/0
Prof n° 3 nbVoulu : 3 Dsp : [(1, 14h), (2, 14h), (3, 14h)]
Nb créneaux cplt : 0
1/14/2/1 3/14/9/0 2/14/6/1
```

Table – Couplage obtenu - Affichage console avant échange

Sommet fixé

Nous appelons sommets fixés, des sommets pour lesquels nous avons réussi à générer deux affectations de créneaux complémentaires.

(p,c(g)) et (p',c(g')) sont des arêtes de M telles que c(g) et c(g') sont complémentaires, p et p' sont des sommets représentant le même professeur à un ordre de multiplicité près.

Sommet fixé

Nous appelons sommets fixés, des sommets pour lesquels nous avons réussi à générer deux affectations de créneaux complémentaires.

Hypothèse : Fixation irrévocable

Dès lors qu'un sommet est fixé, celui-ci ne peut être échangé pour tenter d'obtenir une nouvelle affectation complémentaire.

Supposons le couplage M défini de la manière suivante :

$$M = \left\{(p_{1,1}, c(g_1)), (p_{1,2}, c(g_2)), (p_{2,1}, c(g_3)), (p_{3,1}, c(g_4))\right\}$$

Supposons que p_1 peut obtenir un créneau complémentaire si on affecte le créneau $c(g_4)$ à $p_{1,2}$

Supposons le couplage M défini de la manière suivante :

$$M = \left\{ (p_{1,1}, c(g_1)), (p_{1,2}, c(g_2)), (p_{2,1}, c(g_3)), (p_{3,1}, c(g_4)) \right\}$$

Supposons que p_1 peut obtenir un créneau complémentaire si on affecte le créneau $c(g_4)$ à $p_{1,2}$

Notre objectif

Trouver un chemin alternant d'arêtes de $E\setminus M$ et de M au départ de $p_{1,2}$ et arrivant en $c(g_4)$

```
Entrées : u le sommet de départ, d le sommet d'arrivée, Q le chemin alternant
Sorties : Q le chemin alternant contenant des arêtes de u vers d
visite[u] \leftarrow Vrai
PtoC ← Faux
Si u = d alors
     retourner Q
fin
Si u est un sommet prof alors
     PtoC ← Vrai
fin
\forall e \in \mathcal{N}(u) faire
     v \leftarrow \mathbf{sommetOppose}(e,u)
     Si v n'est pas fixé \wedge v n'est pas visité \wedge e = PtoC alors
           Q \leftarrow Q \cup \{v\}
           DFS_Alternant(v,d,Q)
           Q \leftarrow Q \setminus \{v\}
     fin
fin
```

 $visite[u] \leftarrow Faux$

Variable booléenne d'alternance

Nous définissons une variable booléenne PtoC telle que

$$PtoC = \begin{cases} Vrai & \text{si } e \in M \\ Faux & \text{si } e \in E \setminus M \end{cases}$$

Ainsi, si le sommet de départ u

- $u \in P$, alors nous devons continuer le chemin vers la partition C en suivant une arête de M
- $u \in C$, alors nous devons continuer le chemin vers la partition P en suivant une arête de $E \setminus M$

Chemin alternant trouvé dans le graphe :

$$\mathcal{P} = \left\{ (p_{1,2}, c(g_2)), (c(g_2), p_{2,1})), (p_{2,1}, c(g_3)), (c(g_3), p_{3,1}), (p_{3,1}, c(g_4)) \right\}$$

Nous appliquons l'opération de transfert : $M \leftarrow M\Delta \mathcal{P}$ puis nous ajoutons l'arête $(p_{1,2},c(g_4))$ à M.

Anciennes affectations:

$$\begin{array}{ll} M = & \{(p_{1,1}, Lu.14.0.3), \ (p_{1,2}, Ma.14.1.1), \ (p_{2,1}, Ma.14.0.5) \\ & (p_{2,2}, Me.14.0.8), \ (p_{3,1}, Lu.14.1.2), \ (p_{3,2}, Me.14.0.9), \\ & (p_{3,3}, Ma.14.1.6) \ \} \end{array}$$

Nouvelles affectations obtenues :

$$\begin{array}{lll} M = & \{(p_{1,1}, Lu.14.0.3), \, (p_{1,2}, Lu.14.1.2), \, (p_{2,1}, Ma.14.1.4), \\ & (p_{2,2}, Me.14.0.8), \, (p_{3,1}, Ma.14.0.5), \, (p_{3,2}, Me.14.0.9), \\ & (p_{3,3}, Ma.14.1.6) \, \} \end{array}$$

Formulation du problème comme la recherche d'un couplage maximum - Affectations trouvées

```
Prof n° 1 nbVoulu : 2 Dsp : [(1, 14h), (2, 14h)]
Nb créneaux cplt : 2
1/14/3/0 1/14/2/1
Prof n° 2 nbVoulu : 2 Dsp : [(2, 14h), (3, 14h)]
Nb créneaux cplt : 0
2/14/4/1 3/14/8/0
Prof n° 3 nbVoulu : 3 Dsp : [(1, 14h), (2, 14h), (3, 14h)]
Nb créneaux cplt : 2
2/14/5/0 3/14/9/0 2/14/6/1
```

Table – Couplage obtenu - Affichage console avant échange

Figure – Graphe biparti représentant l'instance illustrative

On pose G=(V,E) le graphe biparti et $G'=(V',E',c_{\min},c_{\max},w)$ le réseau correspondant.

Protocole de construction

On pose G=(V,E) le graphe biparti et $G'=(V',E',c_{\min},c_{\max},w)$ le réseau correspondant.

Protocole de construction

- Étape 1 : Ajout de s la source et t le puits tels que $V' = V \cup \{s, t\}$.
- Étape 2 : Orientation des arêtes initialement présentes dans E de la partition P vers C
- Étape 3 : Ajout de nouveaux arcs : $E' = \{(s, u) : u \in P\} \cup \{(u, v) : (u, v) \in E\} \cup \{(v, t) : v \in C\}$
- Étape 4 : Définition des capacités des arcs de E' telles que $\forall e \in E \subseteq E'$, $c_{\max}(e) = 1$ et $c_{\min}(e) = 0$

On pose G=(V,E) le graphe biparti et $G'=(V',E',c_{\min},c_{\max},w)$ le réseau correspondant.

Protocole de construction

- Étape 1 : Ajout de s la source et t le puits tels que $V' = V \cup \{s, t\}$.
- Étape 2 : Orientation des arêtes initialement présentes dans E de la partition P vers C
- Étape 3 : Ajout de nouveaux arcs : $E' = \{(s, u) : u \in P\} \cup \{(u, v) : (u, v) \in E\} \cup \{(v, t) : v \in C\}$
- Étape 4 : Définition des capacités des arcs de E' telles que $\forall e \in E \subseteq E'$, $c_{\max}(e) = 1$ et $c_{\min}(e) = 0$

On pose G=(V,E) le graphe biparti et $G'=(V',E',c_{\min},c_{\max},w)$ le réseau correspondant.

Protocole de construction

Étape 5 : Pour les sommets $v \in V$ ayant une demande $d(v) \neq 0$, si

 $\begin{array}{ll} d(v) < 0: & c_{\max}((s,v)) = |d(v)| \text{ et } c_{\min}((s,v)) = 0 \\ & \forall (s,v) \in E' \end{array}$

d(v) > 0: $c_{\max}((v, t)) = |d(v)|$ et $c_{\min}((v, t)) = 0$ $\forall (v, t) \in E'$

Étape 6 : Nous considérons dans un premier temps que le coût de l'arc $e \in E$ est fixé à une valeur arbitraire c.

Figure – Instance illustrative - Réseau correspondant

Formulation du problème comme la recherche d'un flot maximum de coût minimum - Contrôle du flot

Idée générale

Le contrôle de l'écoulement du flot dans le réseau peut se faire par l'ajout de noeuds de *contrôles*.

L'objectif est de définir des arcs *transverses* possédant une pondération agissant sur la valeur du flot ainsi que des bornes inférieures.

Figure - Instance illustrative - Modélisation 1

Avantages

Permet de réduire la valeur du flot si l'arc (x_2, x_4) est emprunté par deux unités de flot.

Inconvénients

Modélisation trop restrictive car elle oblige un professeur à prendre obligatoirement un créneau complémentaire à celui qu'on tente d'affecter.

Cette modélisation fonctionne sur le même principe que la précédente mais cette fois ci, on ajoute :

- 4 noeuds de contrôles supplémentaires
- 2 unités dites de *remplissage* aux demandes de chaque noeud professeurs.

Remarque:

Les deux nouvelles unités de remplissage viendront saturer l'arc transverse lorsque celui ci n'est pas emprunté par des unités dites *utiles*.

Figure – Instance illustrative - Modélisation 2

Avantages

- Permet de réduire la valeur du flot si l'arc (x_4, x_5) est emprunté par deux unités de flot.
- Autorise toutes les combinaisons possibles d'affectations.

Inconvénients

Retourne les mêmes valeurs de flot pour des affectations composées de créneaux complémentaires et d'autres non complémentaires et générées par des combinaisons d'unités utiles et de remplissage.

Conclusion générale

Notre objectif était d'obtenir des affectations optimales maximisant les créneaux complémentaires. Nos résultats aujourd'hui nous permettent d'affirmer que :

- La formulation à l'aide d'un couplage maximum nous permet de tendre vers une solution proche de l'optimalité.
- La formulation à l'aide de l'outil *plus générique* que constitue les flots ne permet pas d'obtenir une affectation maximisant notre critère de complémentarité.
- L'utilisation de plus grandes instances de tests pour ce problème est à envisager pour la suite de la résolution de ce problème.
- Des solutions algorithmiques pour la recherche d'un couplage maximum doivent être mises en place.
- . . .

Merci pour votre attention