MATH 102: IDEAS OF MATH

WORKSHEET 6

Problem 1. (1) Prove that $\mathbb{Q} \subseteq \mathbb{R}$.

(2) Prove that $\mathbb{R} \not\subseteq \mathbb{Q}$.

Problem 2. Prove that,

$$\left\{x \in \mathbb{R} \mid x^2 \leqslant 1\right\} = [-1, 1].$$

Problem 3. Prove that for any two sets X and Y,

$$X \cap Y \subseteq X \cup Y$$
.

Problem 4. Prove that

$$\bigcap_{n \ge 1} \left[0, 1 + \frac{1}{n} \right) = [0, 1].$$

Problem 5. Prove that $A \setminus (B \setminus C) \subseteq (A \setminus B) \cup C$.

Here's a theorem that we will discuss more in depth later.

Theorem 0.1. For all natural numbers n and m, if m > 0, then there are natural numbers q and r such that n = mq + r and r < m. (The numbers q and r are called the quotient and remainder when n is divided by m.)

Problem 6. Prove that for every integer, the remainder when x^2 is divided by 4 is either 0 or 1.

Definition 1. Let X be a set. The *power set* of X, written $\mathcal{P}(X)$, is the set of all subsets of X.

For example,

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$$

Problem 7. Write out elements of

- $(1) \mathcal{P}(\{1,2,3\}),$
- $(2) \mathcal{P}(\emptyset),$
- $(3) \mathcal{P}(\mathcal{P}(\emptyset)),$
- $(4) \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))).$

Date: October 16, 2023.

The following problem is to help you clear some of the common confusion between the use of \in and \subseteq in power set.

Problem 8. True or false and prove your claim.

- $(1) \ \mathcal{P}(\emptyset) \in \mathcal{P}(\mathcal{P}(\emptyset))$
- $(2) \emptyset \in \{\{\emptyset\}\}\$
- $(3) \ \{\emptyset\} \in \{\{\emptyset\}\}\$
- $(4) \mathcal{P}(\mathcal{P}(\emptyset)) \in \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\}$

Problem 9. True or False and prove your claim.

$$(1) \ \mathcal{P}(X \cup Y) = \mathcal{P}(X) \cup \mathcal{P}(Y),$$

(2)
$$\mathcal{P}(X \cap Y) = \mathcal{P}(X) \cap \mathcal{P}(Y)$$
.