UNDERSTANDING THE INFLUENCE OF DNA FRAGMENT LENGTHS IN DETECTING CANCER

DETECTION OF CANCER USING BLOOD

AUTHOR

Monica-Alexandra Paun <m.a.paun@student.tudelft.nl>

RESPONSIBLE PROFESSOR

& SUPERVISORS —

Prof. Dr. Ir. Marcel Reinders Bram Pronk Daan Hazelaar Stavros Makrodimitris

INTRODUCTION

- An early detection of cancer could be a vital step in determining an effective treatment.
- An accessible method for detecting cancer would be the analysis of liquid biopsy.
- Study of the DNA fragments characteristics (fragmentomics) contribute in detection of cancer.

Healthy patients

--- Mean length over healthy samples

--- Mean length over cancer samples

OBJECTIVE

Understanding of the fragment length distribution in detection of cancer.

- Compare various tumour detection approaches based on the fragment length distribution of cell-free DNA molecules.
- Determine which features can be extracted 0.020 from the given distribution, and whether a simple binary rule could achieve good classification performance.
- Investigate what machine learning models can be used in detection, and for which type of cancer the optimal approach performs better.

METHODOLOGY

Figure 1: ctDNA features and their relevant clinical importance [1]

Mean Fragment Length Distribution

Figure 2: The mean fragment length distribution

over the cancer and healthy samples

RESULTS

Experimental setup:

human-readable format.

the classification task.

Feature importance:

 The features derived from the three approaches have a set of common lengths (Length 93 - 98) that was decided to be used as the third approach for the detection of cancer. A clear separation between the cancer and healthy patients data for this range can be noticed in Figure 3.

Processing of the initial data (104 control & 148 cancer samples)

The distribution was explored from four perspectives: the

150 bp, the set of important lengths and the amplitude of

spectrums obtained from the Fourier Transform.

that was in the form of a Binary Alignment Map (.bam) file into a

complete fragment length distribution, the size range from 90 to

Selecting the set of features that could provide more insights for

The four analysis of distribution were evaluated against a naive

model proposed in [2] was compared with the others as well.

model, the SVM model and the Random Forest model. An NMF

 The RFECV established a set of 136 frequencies to be informative in the classification, more than half of the feature set's size.

Figure 3: Comparison of cancer (label 1) data and healthy (label 0) data for the lengths selected through feature importance methods

Complete Distribution

Range 90 - 150 bp

Important Lengths

Amplitude Spectrums

DATA PROCESSING DISTRIBUTION ANALYSIS
MODEL EVALUATION
FEATURE SELECTION CANCER TYPES COMPARISON

Accuracy	AUC
0.75	0.795
0.702	0.767
0.857	0.910
0.666	0.683
	0.75 0.702 0.857

Table 1: Results obtained after performing the	Т
classification with the baseline model	

Table 2: Results obtained after performing the
classification with the SVM model

Accuracy

0.892

0.869

0.892

0.809

Figure 5: ROC curve for the NMF that is using the threshold from the curve

Figure 6: ROC curve of Random Forest model and amplitude of spectrums as data features. The classification of samples into healthy or cancerous was performed on each type of cancer

DISCUSSION

- Using the set of lengths resulting from the feature selection methods seemed to have a notable performance improvement over models that use the complete distribution with an accuracy and AUC score above 0.85.
- The Random Forest classifier with the amplitude of spectrums had the best performance with an accuracy of 0.94 and an AUC score of 0.99.
- An interesting finding was that the lengths resulting from the feature selection methods lie between 90 and 150 bp, size range specific for ctDNA [3]. This selection could be due to the altered genes representative for cancer patients.

CONCLUSION

- The amplitude of spectrums resulted after applying Fourier Transform to the distribution had an outstanding result when input into Random Forest.
- A broad dataset could give a more accurate interpretation of the models' behaviour.
- An in-depth analysis of the implication of the Fourier Transform in the prediction of blood samples would be recommended for future research.

[1] Keller, L., Belloum, Y., Wikman, H. et al. "Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond." Br J Cancer 124, 345–358 (2021). https://doi.org/10.1038/s41416-

020-01047-5. [2] G. Renaud, M. Nørgaard, J. Lindberg, H. Gronberg, "B. De Laere, J. B. Jensen, M. Borre, C. L. Andersen, K. D. Sørensen, L. Maretty, et al., "Unsupervised detection of fragment length signatures of circulating tumor dna using non-negative matrix factorization," Elife, vol. 11, p. e71569, 2022.

[3] F. Mouliere, D. Chandrananda, A. M. Piskorz, E. K. Moore, J. Morris, L. B. Ahlborn, R. Mair, T. Goranova, F. Marass, K. Heider, et al., "Enhanced detection of circulating tumor dna by fragment size analysis," Science translational medicine, vol. 10, no. 466, p. eaat4921, 2018.

AUC

0.965

0.962

0.968

0.872

[4] S. Cristiano, A. Leal, J. Phallen, J. Fiksel, V. Adleff, D. C. Bruhm, S. Ø. Jensen, J. E. Medina, C. Hruban, J. R. White, et al., "Genome-wide cell-free dna fragmentation in patients with cancer," Nature, vol. 570, no. 7761, pp. 385–389, 2019.