

BEST AVAILABLE COPY

WO 2005/072951

PCT/EP2004/014449

1

Verfahren zur Herstellung einer Dämmstoffbahn aus Mineralfasern sowie Dämmstoffbahn

Die Erfindung betrifft ein Verfahren zur Herstellung einer Dämmstoffbahn aus Mineralfasern, insbesondere aus Steinwolle und/oder Glaswolle, bei dem die Mineralfasern aus einer Schmelze hergestellt und auf einer Fördereinrichtung als Primärvlies abgelegt werden, das Primärvlies rechtwinklig zu seiner Längserstreckung aufgependelt und als Sekundärvlies auf einer zweiten Fördereinrichtung abgelegt wird, das Sekundärvlies anschließend derart bewegt wird, dass die Mineralfasern im Wesentlichen einen Verlauf rechtwinklig zu den großen Oberflächen des Sekundärvlieses einnehmen und das Sekundärvlies anschließend durch einen Trennschnitt parallel zu den großen Oberflächen des Sekundärvlieses in zumindest zwei Dämmstoffbahnen unterteilt wird, die jeweils eine große Oberfläche und eine im Wesentlichen flächengleiche, der großen Oberfläche gegenüberliegend angeordnete Trennfläche aufweisen. Die Erfindung betrifft ferner eine Dämmstoffbahn aus mit einem Bindemittel gebundenen Mineralfasern, insbesondere aus Mineralwolle und/oder Glaswolle, mit einer großen Oberfläche und einer beim Aufteilen eines Sekundärvlieses in zwei Dämmstoffbahnen entstehenden Trennfläche, wobei die Mineralfasern im Bereich der Trennfläche rechtwinklig zur Trennfläche und im Bereich der Oberfläche und einem Winkel abweichend von 90° zur großen Oberfläche, insbesondere parallel zur großen Oberfläche verlaufend angeordnet sind, und mit einer Kaschierung.

Dämmstoffe aus glasig erstarrten Mineralfasern werden nach der chemischen Zusammensetzung handelsüblich in Glaswolle- und Steinwolle-Dämmstoffe unterschieden. Beide Varietäten unterscheiden sich durch die chemische Zusammensetzung der Mineralfasern. Die Glaswolle-Fasern werden aus silikatischen Schmelzen hergestellt, die große Anteile an Alkalien und Boroxiden aufweisen, die als Flussmittel wirken. Diese Schmelzen weisen einen breiten Verarbeitungsreich auf und lassen sich mit Hilfe von rotierenden Schüsseln, deren Wandungen Löcher aufweisen, zu relativ glatten und langen Mineralfasern ausziehen, die zu meist mit Gemischen aus duroplastisch aushärtenden Phenol-Formaldehyd- und Harnstoffharzen zumindest teilweise gebunden werden. Der Anteil dieser Binde-

mittel in den Glaswolle-Dämmstoffen beträgt beispielsweise ca. 5 bis ca. 10 Masse-% und wird nach oben auch dadurch begrenzt, dass der Charakter eines nicht-brennbaren Dämmstoffs erhalten bleiben soll. Die Bindung kann auch mit thermoplastischen Bindemitteln wie Polyacrylaten erfolgen. Der Fasermasse werden weitere Stoffe, wie beispielsweise Öle in Mengen unter ca. 0,4 Masse-% zur Hydrophobierung und zur Staubbindung hinzugefügt. Die mit Bindemitteln und sonstigen Zusätzen imprägnierten Mineralfasern werden als Faserbahn auf einer langsam laufenden Fördereinrichtung aufgesammelt. Zumeist werden die Mineralfasern mehrerer Zerfaserungsvorrichtungen nacheinander auf dieser Fördereinrichtung abgelegt. Dabei sind die Mineralfasern in einer Ebene weitgehend richtungslos orientiert. Sie lagern aber ausgesprochen flach übereinander. Durch leichten vertikalen Druck wird die Faserbahn auf die gewünschte Dicke und über die Fördergeschwindigkeit der Fördereinrichtung gleichzeitig auf die erforderliche Rohdichte verdichtet und die Bindemittel in einem Härteofen mittels Heißluft ausgehärtet, so dass die Struktur der Faserbahn fixiert wird.

Bei der Herstellung von Steinwolle-Dämmstoffen werden imprägnierte Mineralfasern als möglichst dünnes und leichtes Mineralfaservlies, einem sogenannten Primärvlies aufgesammelt und mit hoher Geschwindigkeit aus dem Bereich der Zerfaserungsvorrichtung weggeführt, um erforderliche Kühlmittel gering zu halten, die andernfalls im Verlauf des weiteren Herstellungsverfahren mit weiterem Energieaufwand wieder aus der Faserbahn zu entfernen wären. Aus dem Primärvlies wird eine endlose Faserbahn aufgebaut, die eine gleichmäßige Verteilung der Mineralfasern aufweist.

Das Primärvlies besteht aus relativ groben Faserflocken, in deren Kembereichen auch höhere Bindemittel-Konzentrationen vorliegen, während in den Randbereichen schwächer oder gar nicht gebundene Mineralfasern vorherrschen. Die Mineralfasern sind in den Faserflocken etwa in Transportrichtung ausgerichtet. Steinwolle-Dämmstoffe weisen Gehalte an Bindemitteln von ca. 2 bis ca. 4,5 Masse-% auf. Bei dieser geringen Menge an Bindemitteln ist auch nur ein Teil der Mineralfasern in Kontakt mit den Bindemitteln. Als Bindemittel werden vorwiegend Gemische aus Phenol-, Formaldehyd- und Harnstoffharzen verwendet. Ein Teil der

Harze wird auch schon durch Polysaccharide substituiert. Anorganische Bindemittel werden wie auch bei den Glaswolle-Dämmstoffen nur für spezielle Anwendungen der Dämmstoffe eingesetzt, da diese deutlich spröder sind, als die weitgehend elastisch bis plastisch reagierenden organischen Bindemittel, was dem angestrebten Charakter der Dämmstoffe aus Mineralfasern als elastisch-federnde Baustoffe entgegen kommt. Als Zusatzmittel werden zumeist hochsiedende Mineralöle in Anteilen von 0,2 Masse-%, in Ausnahmefällen auch ca. 0,4 Masse-% verwendet.

Üblicherweise werden die Primärvliese mit Hilfe einer pendelnd aufgehängten Fördereinrichtung quer über eine weitere Fördereinrichtung abgelegt, was die Herstellung einer aus einer Vielzahl von schräg aufeinander liegenden Einzellagen bestehenden endlosen Faserbahn ermöglicht. Durch eine horizontal in Förderrichtung gerichtete und eine gleichzeitige vertikale Stauchung kann die Faserbahn mehr oder weniger intensiv aufgefaltet werden. Die Achsen der Hauptfaltungen sind horizontal ausgerichtet und verlaufen somit quer zu der Förderrichtung.

Die auf die Faserbahn einwirkenden Kräfte führen dazu, dass bindemittelreiche Kernzonen zu schmalen Lamellen verdichtet und aufgefaltet werden, wobei sich Hauptfalten mit Faltungen in Flanken ergeben. Gleichzeitig werden die weniger gebundenen oder bindemittelfreien Mineralfasern in den Zwickeln der Faltungen und zwischen den Lamellen leicht gerollt und dabei leicht komprimiert. Die Feinstruktur besteht somit aus relativ steifen Lamellen, die durch ihre zahlreichen Faltungen eine gewisse Flexibilität aufweisen, aber parallel zu den Faltungsachsen relativ steif sind und Zwischenräume ausbilden, die leicht kompressibel sind.

Durch die Auf- und Verfaltungen steigen die Druckfestigkeit und die Querzugfestigkeit der Faserbahn gegenüber einer normalen, insbesondere ausgesprochen flachen Anordnung der Mineralfasern deutlich an. Die Biegefestigkeit der Faserbahn bzw. der von ihr abgetrennten Abschnitte in Form von Platten oder Dämmfilzen ist deshalb in Querrichtung deutlich höher als in Produktionsrichtung. Bei Dachdämmplatten mit Rohdichten von ca. 130 bis 150 kg/m³ ist die Biegefestigkeit in Querrichtung großenteilsmäßig drei- bis viermal so hoch, wie die Biegefestigkeit in Produktionsrichtung.

Diese Abhangigkeit der mechanischen Eigenschaften von der Orientierung der Mineralfasern in dem Dammstoff wird zur Herstellung von Lamellen fur Lamellenplatten und handelsublichen Lamellenbahnen genannten Produkten genutzt.

- 5 Bei Lamellen handelt es sich um zumeist 200 mm breite Dammstoffelemente, die in Produktionsrichtung von einer zumindest entsprechend dicken Faserbahn abgeschnitten werden. Die Mineralfasern in der Faserbahn bzw. in den besonders festen Lamellen sind hierbei rechtwinklig zu den Schnittflachen, die nunmehr die groen Oberflachen der Lamellen sind, orientiert. Lamellen mit Rohdichten von
10 10 ca. 75 kg/m³ sind deshalb als zug- und druckfeste Dammschicht auf Auenwanden von Gebuden verwendbar und konnen auf der Auenwand verklebt und anschlieend mit einer bewehrten Putzschicht verputzt werden. Eine derartige Dammung wird als Warmedamm-Verbundsystem bezeichnet. Die druckfeste Lamelle ist in Langsrichtung ausreichend biegksam, um auch auf gekrummte Bauteile
15 aufgeklebt werden zu konnen. Gleichzeitig ist sie rechtwinklig zu den Seitenflachen noch so kompressibel, dass mit geringem Anpressdruck Abweichungen von der jeweiligen Lange und Breite (Matoleranzen) zwischen den einzelnen Lamellen ausgeglichen werden konnen. Damit lassen sich fugendichte Dammschichten herstellen. Mehrere Lamellen werden ferner auch zu Lamellenplatten zusammen-
20 gesetzt.

Lamellenplatten im Rohdichte-Bereich von ca. 30 bis ca. 100 kg/m³, vorzugsweise < 60 kg/m³ werden in gewunschter Materialstarke in Produktionsrichtung als Lamellen von einer zwischen ca. 75 bis 250 mm dicken Faserbahn abgetrennt, die
25 flach liegend quer auf ein geschlossenes Tragermaterial, wie beispielsweise Aluminium-, Aluminiumverbund-, mit Gittergelegen bewehrte Aluminium-Polyethylen-Verbundfolien und ahnlichen Folien oder beispielsweise auf Papierbahnen aufgeklebt werden. Die einzelnen Lamellen werden dabei nur unter leichtem Druck aneinander gedrukt und bilden zumeist keine geschlossene Dammschicht. Um aus
30 Brandschutzgrunden wenig brennbare Substanz in der Lamellenplatte zu haben, sind die spezifischen Mengen an beispielsweise Dispersionsklebern sehr gering. Verfahrenstechnisch noch einfacher lassen sich beispielsweise Aluminium-

Polyethylen-Verbundfolien mit der Oberfläche der Lamellen durch Erwärmen der vielfach nur ca. 0,03 bis ca. 0,06 mm dicken Polyethylenfolie verbinden.

Auf die gleiche Art lassen sich Lamellenplatten auch aus Glaswolle-Faserbahnen

- 5 mit rechtwinklig zu den großen Oberflächen verlaufenden Mineralfasern herstellen. Die glatten Mineralfasern sind in diesen Lamellenplatten ausgesprochen parallel zueinander gerichtet und gegenüber Seitenkräften sehr leicht zu komprimieren, zumal die Rohdichten generell niedriger sind, als die der Lamellenplatten aus Steinwolle-Dämmstoffen.

10

Aus Lamellen lassen sich ferner Lamellenbahnen herstellen, die Breiten von beispielsweise 500 mm oder 1000 mm, Dicken von ca. 20 mm bis ca. 100 mm sowie Längen von mehreren Metern aufweisen. Aufgrund der Orientierung der Mineralfasern rechtwinklig zu den großen Oberflächen lassen sich ebene Flächen, bei-

- 15 spielsweise von großen Lüftungskanälen mit einer ebenen und relativ festen Dämmschicht versehen. Gleichzeitig können die Lamellenbahnen aufgrund der hohen Kompressibilität in Richtung der Breite der Lamellen, d.h. in Längsrichtung der Lamellenbahnen ohne Weiteres um Rohrleitungen mit geringen Durchmessern geführt werden und ergeben dort eine gleichmäßige Ummantelung. Begünstigt 20 wird dieses Verhalten durch die Fugen zwischen den einzelnen Lamellen, da hier die Queraussteifung des Dämmstoffs unterbrochen ist.

Lamellenbahnen und Lamellenplatten mit einer geringen Breite ermöglichen bei

- 25 konstanter Krafteinwirkung größere Verformungen als Lamellenbahnen und Lamellenplatten mit größerer Breite. Der mögliche Biegeradius dieser Dämmelemente nimmt mit zunehmender Dämmdicke und Rohdichte ab. Die mit kleiner werdendem Biegeradius ansteigende Kompression der inneren Zonen der Faserbahn führt naturgemäß zu einer erheblichen Verdichtung, aber auch zur Erhöhung der Druckfestigkeit in diesen Zonen. Lamellenbahnen eignen sich deshalb wie feste, 30 aber wesentlich aufwendiger herzustellende Rohrschalen als tragende Schicht für die Ummantelung von Rohrleitungen, beispielsweise mit glatten oder profilierten Blechen aus beispielsweise Stahl, Aluminium, Kunststoff-Folien, Gips- oder Mörtelschichten. Die rechtwinklig oder bei Rohrleitung radial zu den gedämmten Ober-

flächen ausgerichteten Mineralfasern führen zu einer Erhöhung der Wärmeleitfähigkeit der Dämmstoffe gegenüber solchen Dämmstoffen, die eine laminare Faserstruktur aufweisen oder gegenüber Rohrschalen, in denen die Mineralfasern konzentrisch um die Mittelachse der Rohrleitung angeordnet sind.

5

Die Herstellung von Lamellen ist verfahrenstechnisch aufwendig und führt zu einer geringen Durchlaufgeschwindigkeit der Produktionsanlagen. Die Verklebungstechnik ist zudem für die teilweise ein hohes Gewicht aufweisenden Lamellen im Wesentlichen ungeeignet. Eine Klebeverbindung zwischen benachbarten Lamellen kann ferner dadurch geschwächt sein, dass im Bereich der Klebeflächen lose Mineralfasern oder Mineralfaserbruchstücke (Staub) vorhanden sind.

10

Lamellenbahnen werden zur Lagerung und zum Transport fest aufgerollt und mit einer Umhüllung umwickelt. Hierbei werden die Lamellen am Anfang und am Ende einer Rolle stark auf Scherung beansprucht. Nach dem Entrollen fallen diese Lamellen leicht ab. Die Lamellen werden sogar abgeschleudert, wenn der Lamellenbahn erlaubt wird, sich nach dem Entfernen der Umhüllungen durch Einwirkung der großen Rückstellkräfte selbstständig zu entrollen. Bei diesem unkontrollierten Entrollvorgang wird das Ende der Rolle peitschenartig durch die Luft geschleudert, so dass bereits teilweise abgelöste Lamellen durch die Beschleunigung oder den starken Aufprall des Endes auf den Boden vollständig abgelöst werden.

15

Weiterhin besteht die Gefahr, dass sich einzelne Lamellen von der Lamellenbahn lösen, wenn die Lamellen versehentlich nach außen geklappt werden. Wegen der von vornherein ungenügenden Festigkeit der Verbindung der Lamellen und den negativen Einwirkungen bei der Handhabung der Lamellenbahnen scheiden Trägerschichten, die nur partiell mit den Lamellen verklebt sind, weitgehend aus. Hierzu gehören beispielsweise Gittergewebe aus Glasfasern oder ähnliche flächige Gebilde.

20

Die als einzelne Elemente aufgeklebten Lamellenplatten haben verarbeitungs-technisch den Vorteil, dass notwendige Trennschnitte entweder entlang der Querfugen zwischen benachbarten Lamellen ausgeführt werden können oder diese

zumindest als Hilfslinie für die Führung eines Schneidwerkzeugs dienen. Die Querfugen können ferner als Knickstelle auf der Trägerschicht markiert werden, um durch Abklappen der Lamellen die Lamellenplatten hinsichtlich ihrer Größe an die Einbaubedingungen anzupassen.

5

Eine wesentlich wirtschaftlichere Methode zur Herstellung von Dämmstoffen mit der für Lamellen, Lamellenplatten oder Lamellenbahnen charakteristischen Orientierung der Mineralfasern ist in der EP 0 741 827 B1 beschrieben. Bei diesem Verfahren wird ein dünnes Primärvlies durch eine sich auf und ab bewegende För-

- 10 dereinrichtung aufgefaltet und endlos sowie schlaufenförmig auf eine zweite För-
dereinrichtung aufgelegt. Hierbei entstehen einzelne Lagen, die in horizontaler
Richtung aneinander gedrückt und in Abhängigkeit von der je nach der angestreb-
ten Rohdichte unterschiedlich gestaucht werden. Zu diesem Zweck wird das Pri-
märvlies zwischen zwei drucksteifen Bändern geführt, welche zunächst nur die
15 Höhe des Primärvlieses begrenzen. Bereits hierdurch werden die Mineralfasern in
den bogenförmig umgelenkten Bahnen des Primärvlieses parallel zu Begren-
zungsfächern ausgerichtet. Um weitgehend ebene Oberflächen zu erhalten, kann
das Primärvlies auch aktiv in vertikaler Richtung gestaucht werden.

- 20 Diese Ausrichtung der Mineralfasern im Primärvlies kann in einer separaten Vor-
richtung erfolgen, wird aber zweckmäßig in Verbindung mit einem Härteofen vor-
genommen. Im Härteofen wird die endlose Faserbahn zwischen zwei Druckbän-
dern, von denen mindestens eines in vertikaler Richtung verfahrbar ist, mit Heiß-
luft in vertikaler Richtung durchströmt. Die Druckbänder weisen drucksteife Ele-
25 mente mit Löchern auf, in die sich Oberflächenbereiche der Faserbahn eindrü-
cken, wodurch die Oberflächen eine Profilierung erhalten. In den beiden Oberflä-
chen der Faserbahn kann es zu einer weiteren Ausrichtung der Mineralfasern, ei-
ner weiteren Verdichtung gegenüber den darunter liegenden Bereichen und unter
Umständen zu einer leichten Bindemittelanreicherung kommen.

30

Mit Hilfe der durch die Heißluft übertragenen Wärmeenergie wird die Faserbahn
mit den darin enthaltenen Binde- und/oder Imprägniernmitteln erwärmt, so dass in
der Faserbahn vorhandene Feuchtigkeit ausgetrieben wird und die Bindemittel

aushärten, in dem sie verbindende Filme oder Festkörper bilden. Nach der Fixierung der Faserbahn durch Verfestigung der Bindemittel zeigt sich im Längsschnitt eine Struktur, in der die Mineralfasern im Kern des Primärvlieses überwiegend rechtwinklig zu den großen Oberflächen der endlosen Faserbahn orientiert sind.

- 5 In den oberflächennahen Bereichen sind die Mineralfasern parallel zu den großen Oberflächen ausgerichtet. Wegen der relativ großen Steifigkeit des Kerns des Primärvlieses können die Mineralfasern bei entsprechend großen vertikalen Drücken auch pilzartig gestaucht und/oder nach unten hin zwischen die Zonen mit rechtwinklig zu den großen Oberflächen verlaufenden Mineralfasern gedrückt sein.
- 10 Zwischen den bogenförmig umgelenkten Bahnen des Primärvlieses verbleiben generell kleine Zwickel, die als unterschiedlich breite und unterschiedlich tiefe Querfurchen in den beiden großen Oberflächen der endlosen Faserbahn auftreten.
- 15 Im Horizontalschnitt unterscheiden sich die höher verdichteten Zonen mit den rechtwinklig zu den großen Oberflächen verlaufenden Mineralfasern deutlich von den Zwischenzonen mit einer flachen Anordnung der Mineralfasern. Im Querschnitt ist die Struktur weniger gleichmäßig als bei Dämmplatten, die zur Herstellung von Lamellen verwendet werden. So ist beispielsweise die Biegezugfestigkeit 20 wegen der Inhomogenität der Struktur bei vergleichbarer Rohdichte niedriger.

Die in den oberflächennahen Zonen flach liegenden Mineralfasern verringern deutlich die Wärmeleitfähigkeit rechtwinklig zu den großen Oberflächen. Aus der EP 1 321 595 A2 ist es bekannt, dass die Querzugfestigkeit zwischen diesen Mineralfasern schwach ausgebildet ist, so dass diese flach liegenden Mineralfasern entfernt werden, um festere Verbindungen der daraus hergestellten Dämmplatten, beispielsweise mit Bekleidungen für die Herstellung von Sandwichelementen oder bei der Verwendung als Putzträger in Wärmedämm-Verbundsystemen zu erreichen.

30 Da sich die oberflächennahen Zonen aber je nach Verdichtung im Bereich beider großen Oberflächen bis hin zu Tiefen von ca. 15 mm bis ca. 35 mm in die Faserbahn erstrecken, ist deren Entfernung mit erheblichen Materialverlusten verbun-

den, sofern die abgetrennten Zonen nicht selbst als Dämmstoffe verwendet werden. Derartige Koppelproduktionen gelten aber als schwierig und werden nach Möglichkeit vermieden.

5 Aus der EP 0 741 827 B1 ist ferner die Herstellung von kaschierten Dämmfilzen bekannt, bei der die endlose schlaufenförmig aufgefaltete Faserbahn auf beiden großen Oberflächen mit Trägerschichten aus Aluminiumfolien verklebt werden und die Faserbahn anschließend mittig und parallel zu ihren großen Oberflächen aufgeschnitten wird, so dass letztlich zwei gleich dicke und kaschierte Faserbahnen
10 entstehen, die anschließend aufgerollt werden. Bei den auf diese Weise hergestellten, als Dämmfilze bezeichneten Faserbahnen ist nur eine partielle Verklebung mit der Trägerschicht möglich. Diese partielle Verklebung und die geringe Querzugfestigkeit der Mineralfasern führt zu einem nur geringen Festigkeit aufweisenden Verbund, dessen Verbindung im Vergleich zu einer Lamellenplatte bzw.
15 einer Lamellenmatte aus Lamellen wesentlich weniger fest ist. Dieser Unterschied spielt aber bei einer kontinuierlich verklebten Faserbahn insbesondere beim Ablösen der Trägerschichten an den beiden Enden keine bedeutende Rolle. Jedoch führen die außenliegenden, unkaschierten kompressiblen Zonen zu Unebenheiten.

20 Die EP 0 867 572 A2 beschreibt ferner ein Dämmelement aus Mineralfasern, bestehend aus einem Mineralfaservlies und/oder mehreren miteinander verbundenen Lamellen und zumindest einer auf einer Hauptfläche aufgebrachten Kaschierung in Form einer Folie. Dieses Dämmelement besteht somit aus einer dünnen gleichförmigen Faserbahn aus flach übereinanderliegenden und miteinander verbundenen einzelnen Mineralfasern mit einer Materialstärke von weniger als 15 mm sowie einer Kaschierung und mehreren, miteinander verbundenen Lamellen. Die Kaschierung kann sowohl auf der dünnen Faserbahn als auch auf den Lamellen aufgebracht sein.
25

30 Aus der DD 248 934 A3 und der in dieser als Stand der Technik genannten EP 1 152 094 A1 sowie der DE 197 58 700 C2 sind Verfahren bekannt, bei denen eine mit Binde- und sonstigen Zusatzmitteln imprägnierte Faserbahn in Lamellen unter-

teilt wird, die um 90° gedreht und anschließend horizontal aneinander gedrückt und vertikal gestaucht werden, so dass Lamellenbahnen entstehen. Es ist auch vorgesehen, dass die einzelnen Lamellen unterschiedlich verdichtet und aus verschiedenen Materialien ausgebildet werden. Nach dem Zusammenfügen der einzelnen Lamellen sind die Mineralfasern je nach der Orientierung in der ursprünglichen Faserbahn mehr oder weniger rechtwinklig zu den großen Oberflächen orientiert. Durch den unabdingbaren vertikalen Druck werden auch hier die in den beiden oberflächennahen Zonen vorhandenen Mineralfasern umgebogen und in einer flachen Lagerung fixiert.

10

Festigkeitssteigernd kann sich bei dem in der EP 0 741 827 B1 wie auch in der DD 248 934 A3 beschriebenen Verfahren auswirken, dass bei dem Passieren des Härteofens die jeweils oberste, wenige Mikrometer bis Millimeter dicke Zone der Faserbahn stärker verdichtet und mit Bindemitteln angereichert wird, als die unmittelbar darunter liegenden Zonen. Damit kann ein festerer Kontakt mit der Kaschierung hergestellt werden, wenngleich die für den Gebrauch entscheidende Querzugfestigkeit der Faserbahn vornehmlich durch die tiefer angeordneten Zonen beeinflusst wird.

20

Ausgehend von dem voranstehend beschriebenen Stand der Technik liegt der Erfindung daher die Aufgabe zugrunde, ein gattungsgemäßes Verfahren zur Herstellung einer Dämmstoffbahn aus Mineralfasern dahingehend zu verbessern, dass die herzustellende Dämmstoffbahn hinsichtlich ihrer Festigkeitseigenschaften und ihrer Verarbeitbarkeit, insbesondere im Bereich von Gebäudeaußenflächen und Rohrleitungsmantelflächen verbessert bzw. vereinfacht ist. Darüber hinaus liegt er Erfindung die Aufgabe zugrunde, eine gattungsgemäße Dämmstoffbahn aus mit einem Bindemittel gebundenen Mineralfasern zu schaffen, die verbesserte Verarbeitungseigenschaften und insbesondere auch verbesserte Festigkeitseigenschaften sowie weitere Eigenschaften von Lamellen bzw. Lamellenbahnen oder -platten in zumindest gleicher Güte aufweist.

Die Lösung dieser Aufgabenstellung sieht bei einem gattungsgemäßen Verfahren vor, dass auf zumindest eine der Trennflächen der beiden Dämmstoffbah-

nen eine Kaschierung aufgebracht wird. Die Lösung der Aufgabenstellung bei einer erfindungsgemäßen Dämmstoffbahn sieht vor, dass die Kaschierung auf der Trennfläche angeordnet ist. Die mit dem erfindungsgemäßen Verfahren hergestellten erfindungsgemäßen Dämmstoffbahnen sollen möglichst mit der Grundcharakteristik von Lamellenplatten übereinstimmende Eigenschaften aufweisen.

Erfindungsgemäß wird daher die Kaschierung nicht auf die kompressiblen, schwach gebundenen Bereiche der Dämmstoffbahn aufgebracht, sondern auf die querzugfesten und gleichzeitig drucksteifen Trennflächen, nämlich in Bereiche mit rechtwinklig zur Kaschierung orientierten Mineralfasern. Die den Trennflächen gegenüberliegend angeordneten Oberflächen sind demgegenüber in Richtung ihrer Flächennormalen kompressibel und können sich demzufolge Unebenheiten der zu dämmenden Fläche, beispielsweise einer Gebäudefassade anpassen, während die dann außenliegend angeordneten Trennflächen mit der Kaschierung ausgesprochen glatt bleiben. Mit derartigen Dämmstoffbahnen können beispielsweise auch Flansche von Lüftungskanälen, Muffen oder Schellen bei Rohrleitungen bis zu einer gewissen Höhe gedämmmt werden, ohne dass dies Auswirkung auf die Ausbildung der außenliegenden Flächen der Wärmedämmung hat. Flansche von Lüftungskanälen, Muffen oder Schellen bei Rohrleitungen können daher mit einer entsprechenden Dämmstoffbahn aus Mineralfasern derart überlappt werden, dass die Außenfläche keine Unebenheiten aufweist.

Die durch die primäre Auffaltung des Primärvlieses bedingten Faltungen können hierbei als Knick- oder Biegebereich wirken, wodurch sich die innenliegend angeordnete Oberfläche der Dämmstoffbahn entsprechend einem Polygonzug leichter der außenliegend angeordneten runden Oberfläche der zu dämmenden Fläche anpasst.

Bei Dämmstoffbahnen für Außenwandflächen einer belüfteten Bekleidung, die beispielsweise in Form aufrollbarer Dämmfilze oder Dämmplatten eingesetzt werden und auch bei der Kerndämmung hinter einer äußeren Mauerwerksschale Verwendung finden, ergeben sich aus der Kompressibilität der Dämmstoffbahn wesentli-

che wirtschaftliche Vorteile hinsichtlich der Verarbeitung und der Montage der erfindungsgemäßen Dämmstoffbahn.

Ergänzend kann bei dem erfindungsgemäßen Verfahren vorgesehen sein, dass

- 5 die in den großen Oberflächen im Wesentlichen parallel zu den großen Oberflächen verlaufenden Mineralfasern entfernt werden. Demzufolge werden auch die großen Oberflächen derart bearbeitet, dass in den großen Oberflächen ein Faserverlauf im Wesentlichen rechtwinklig zu diesen großen Oberflächen vorherrscht. Durch diese Weiterbildung des erfindungsgemäßen Verfahrens kann zum einen
10 eine exakte Dicke der Dämmstoffbahn eingestellt werden und zum anderen die Festigkeitseigenschaften dahingehend verändert werden, dass auch die großen Oberflächen der Dämmstoffbahnen ausreichend druckfest sind. Eine derart ausgebildete Dämmstoffbahn gleicht in ihren Eigenschaften der Grundcharakteristik einer Lamellenmatte. Das Entfernen der im Wesentlichen parallel zu den großen
15 Oberflächen verlaufenden Mineralfasern hat darüber hinaus die Wirkung, dass eine optisch ansprechende, insbesondere ebene große Oberfläche geschaffen wird:

Die Faserbahn, welche gemäß dieser Erfindung abschließend in zumindest zwei

- 20 Dämmstoffbahnen unterteilt wird, weist mit Bindemitteln gebundene Mineralfasern auf, die gegebenenfalls durch hydrophobierende und/oder staubbindende Mittel oder andere Zusätze imprägniert und endlos ausgebildet ist. Die Mineralfasern sind im Inneren der Faserbahn bis in oberflächennahen Bereichen überwiegend rechtwinklig zu den außenliegenden großen Oberflächen der Faserbahn orientiert.
25 Unterhalb der beiden großen außenliegenden Oberflächen der Faserbahn sind die Mineralfasern in kleiner werdenden Winkeln bis parallel zu den großen Oberflächen ausgerichtet. In den Bereichen der großen Oberflächen können die Mineralfasern in einer höheren Dichte und mit zusätzlichen Bindemitteln gebunden sein.

- 30 Die Faserbahn kann zur Bildung der Dämmstoffbahnen vor einem Härteofen durch den parallel zu den großen Oberflächen der Faserbahn bzw. des Sekundärvlieses geführten Trennschnitt aufgetrennt werden. Der Trennschnitt kann hierbei mittig aber auch außermittig durchgeführt werden, so dass entweder zwei eine gleiche

Materialstärke aufweisende Dämmstoffbahnen oder Dämmstoffbahnen unterschiedlicher Materialstärke hergestellt werden können. Durch den Trennschnitt werden die Trennflächen ausgebildet, auf die luftdurchlässige und/oder wärmefeste Vliese, Gewebe und/oder Gelege aufgebracht werden. Diese voranstehend genannten Kaschierungen können beispielsweise aus Glas-, Natur- und/oder organischen Chemiefasern bestehen. Die Chemiefasern können beispielsweise aus Kohlenstoff, Aramid-, Terephthalat-, Polyamid- oder Polypropylenfasern bzw. aus Mischungen dieser voranstehend genannten Chemiefasern ausgebildet sein.

- 5 Vorzugsweise handelt es sich bei den Kaschierungen um zugfeste, bahnenförmig ausgebildete Kaschierungen, wobei die Kaschierungen ein- oder mehrlagig ausgebildet sind. Weist die Kaschierung mehrere Lagen auf, so können diese Lagen aus unterschiedlichen Fasern ausgebildet sein. Insbesondere können beispielsweise Glasfaser-Wirvlieste mit Wirvliesten aus thermoplastischen Fasern oder mit 10 gelochten Folien aus Thermoplasten verbunden werden.
- 15

Nach einem weiteren Merkmal der Erfindung ist vorgesehen, dass die zugfesten, bahnenförmigen Kaschierungen mit der Dämmstoffbahn verklebt werden, wobei sich hierzu insbesondere Heißschmelzkleber als geeignet erwiesen haben, die 20 linienförmig und/oder punktförmig auf die Kaschierung und/oder die Trennfläche der Dämmstoffbahn aufgetragen werden.

Neben den voranstehenden Wirkungen können die Kaschierungen auch als äußere Verstärkungs-, Schutz-, Filter- und/oder Dekorationsschichten dienen.

- 25 Für die Durchführung des erfindungsgemäßen Verfahrens hat es sich als vorteilhaft erwiesen, die Kaschierungen rollenförmig in den Bereich zwischen den, nach dem Trennschnitt entstehenden beiden Dämmstoffbahnen anzuordnen und den Trennflächen der Dämmstoffbahnen zuzuführen, bevor die derart miteinander ver- 30 bundenen Kaschierungen und Dämmstoffbahnen aufgewickelt werden, wobei die Kaschierung im Wickel innenliegend angeordnet ist.

Bei der Trennung der Faserbahn in die zu kaschierenden Teilbahnen, nämlich Dämmstoffbahnen kann es zu einer Beeinträchtigung, nämlich Verringerung der Klebefähigkeit der in der Faserbahn enthaltenen Bindemittel kommen. Um dieser Beeinträchtigung entgegenzuwirken, können die in der Faserbahn vorhandenen 5 Bindemittel beispielsweise durch Lösungsmittel, wie insbesondere Wasser aktiviert werden. Zu diesem Zweck laufen die Dämmstoffbahnen über Kontaktwalzen, durch welche sie mit dem Lösungsmittel benetzt werden. Alternativ oder ergänzend können weitere Bindemittel, vorzugsweise in geringen Mengen auf die Oberflächen und die Trennflächen der Dämmstoffbahnen gesprüht werden.

10

Alternativ kann vorgesehen sein, dass die Kaschierung zumindest einseitig, nämlich zumindest auf der der Trennfläche zugewandten Oberfläche eine dünne Schicht eines beispielsweise hochviskosen Dispersionsklebers oder eines bei- spielsweise mit Pigmenten gefüllten Wasser-Silikat-Kunststoff-Klebers aufweist, 15 die als Imprägnierung angeordnet ist. Voraussetzung ist, dass die Kaschierung eine ausreichende Materialstärke aufweist, um diese dünne Schicht tragen zu können. Es sind selbstverständlich auch weitere Kleber verwendbar, soweit diese eine Viskosität aufweisen, die es ermöglicht, dass die Kleber nicht von den häufig kapillar saugend wirkenden Dämmstoffbahnen aufgesogen werden, so dass sich 20 die Dämmstoffbahnen nachfolgend bis zur Sprödbrüchigkeit mit diesen Klebern sättigen. Diese negativen Auswirkungen zeigen sich beispielsweise bei der Imprägnierung von Glasfaser-Wirrvliesen oder Glasfaser-Geweben mit duroplasti- schen Harzen, die dann anschließend auf die Trennfläche der Dämmstoffbahn 25 aufgebracht und gemeinsam mit der Dämmstoffbahn einem Härteofen zur Aushärtung des Bindemittels zugeführt werden. Bei der Verwendung eines hochviskosen Dispersionsklebers oder eines mit Pigmenten gefüllten Wasser-Silikat-Kunststoff- Klebers sowie eines vergleichbaren Klebers ist eine vollflächige Verklebung der Kaschierung auf der Trennfläche möglich, da die Kaschierung das Eindringen der einzelnen Mineralfasern in eine Lochung eines Druckbandes des Härteofens und 30 somit die Bildung einer Oberflächenprägung verhindern. Darüber hinaus werden keine zusätzlichen Vorrichtungen zur Aushärtung des Klebers benötigt und der Energieverbrauch für die Aushärtung des Klebers reduziert.

Die beiden aus dem Sekundärvlies gebildeten Dämmstoffbahnen können gemeinsam mit den auf den jeweiligen Trennflächen aufgebrachten Kaschierungen vor dem Härteofen zusammengeführt und gemeinsam durch den Härteofen geführt werden, in dem die Bindemittel des Sekundärvlieses und der Kleber zwischen der 5 Kaschierung und der Trennfläche mittels Heißluft verfestigt bzw. ausgehärtet werden. Anschließend können die derart ausgebildeten Dämmstoffbahnen in Längsrichtung besäumt und auf die entsprechende Länge abgelängt werden, wobei das Ablängen in Längen erfolgt, die zu einer aufwickelbaren Dämmstoffbahn oder in 10 kürzeren Abschnitten zu Dämmstoffplatten führen. Die aus den Dämmstoffbahnen hergestellten Dämmstoffe aus beispielsweise Steinwolle weisen Rohdichten zwischen 23 kg/m³ und 70 kg/m³ auf, während entsprechende Dämmstoffbahnen aus Glaswolle Rohdichten im Bereich zwischen 12 kg/m³ und 55 kg/m³ haben.

Nach dem voranstehend beschriebenen Ausführungsbeispiel wird das Sekundärvlies vor dem Härteofen in die Dämmstoffbahnen unterteilt, welche vor dem Härteofen mit den Kaschierungen auf den entsprechenden Trennflächen versehen werden. Alternativ kann vorgesehen sein, dass das Sekundärvlies erst nach dem Durchlaufen des Härteofens in die Dämmstoffbahnen unterteilt wird, welche auch 15 demzufolge erst nach dem Durchlaufen des Härteofens mit der Kaschierung verbunden werden können. In diesem Fall erhält das Sekundärvlies vor dem Aufteilen in die Dämmstoffbahnen seine endgültige Struktur, indem das Bindemittel im Härteofen ausgehärtet wird. Der Trennschnitt wird mit einer Bandsäge durchgeführt, wobei entstehender Sägestaub unmittelbar im Bereich der Bandsäge abgesaugt 20 wird, so dass dieser nicht an den Trennflächen anhaftet und das Verkleben der Kaschierung mit den Dämmstoffbahnen nachteilig beeinflusst.

Der Kleber zum Verkleben der Dämmstoffbahnen mit den Kaschierungen wird entweder auf die Trennflächen der Dämmstoffbahnen oder auf die Kaschierung direkt aufgebracht, wenn die Kaschierungen nicht bereits werksseitig mit einer 25 entsprechenden Kleberschicht ausgebildet sind.

Neben den bereits voranstehend genannten luftdurchlässigen und hitzebeständigen Kaschierungen können auch Folien als Kaschierungen verwendet werden.

Beispielsweise eignet sich eine Aluminium-Polyethylen-Verbundfolie als Kaschierung für die voranstehend dargestellten Zwecke. Diese Aluminium-Polyethylen-Verbundfolie kann darüber hinaus durch Glasfaser-Gittergelege bewehrt sein. Die Polyethylenschicht wird beim Aufbringen der Kaschierung auf die Trennfläche der 5 Dämmstoffbahn mittels einer mitlaufenden Heizwalze erhitzt, so dass diese Polyethylenschicht erweicht und mit den Spitzen der Mineralfasern der Dämmstoffbahn verschweißt.

Bei dem erfindungsgemäßen Verfahren kann vorgesehen sein, dass die beiden 10 aus dem Sekundärvlies ausgebildeten Dämmstoffbahnen identisch ausgebildet sind, so dass beide Dämmstoffbahnen auch identische Kaschierungen tragen. Es besteht aber ohne Weiteres auch die Möglichkeit, dass die beiden Dämmstoffbahnen insbesondere hinsichtlich der Kaschierung unterschiedlich ausgebildet werden. Es wurde bereits voranstehend darauf hingewiesen, dass die beiden Dämmstoffbahnen unterschiedliche Materialstärke aufweisen können, wenn der Trennschnitt nicht mittig durchgeführt wird. Darüber hinaus können die aus einem Sekundärvlies hergestellten beiden Dämmstoffbahnen auch hinsichtlich der Art und 15 der Materialstärke der Kaschierung unterschiedlich ausgebildet werden. Weiterhin besteht auch die Möglichkeit, lediglich eine Dämmstoffbahn mit einer Kaschierung auszubilden, während die zweite Dämmstoffbahn ohne Kaschierung weiter verarbeitet, beispielsweise aufgewickelt wird. Es besteht ferner die Möglichkeit, eine Dämmstoffbahn mit Kaschierung aufzuwickeln, während die zweite Dämmstoffbahn mit oder ohne Kaschierung in Dämmstoffplatten unterteilt wird. Selbstverständlich 20 besteht auch die Möglichkeit, die aufzuwickelnde Dämmstoffbahn ohne Kaschierung aufzuwickeln, während die zweite Dämmstoffbahn vor ihrer Aufteilung in Dämmstoffplatten mit zumindest einer Kaschierung verklebt wird. 25

Nach einem weiteren Merkmal der Erfindung ist vorgesehen, dass die Kaschierungen gemeinsam mit den Dämmstoffbahnen randseitig beschnitten werden, so 30 dass die Kaschierungen bündig mit den Dämmstoffbahnen abschließen.

Bei der Verwendung erfindungsgemäßer Dämmstoffbahnen für die Dämmung von Rohrleitungen werden diese mit ihren in Längsachsenrichtung verlaufenden

Schmalseiten aneinander anliegend an der Rohrleitung angeordnet, so dass sich eine vollständige Dämmung der Rohrleitung ausbildet. Der Übergangsbereich der Stoßstellen benachbarter Dämmstoffbahnen kann hierbei in einfacher Weise mit selbstklebenden Folienbändern abgedeckt werden, da die entsprechenden

- 5 Dämmstoffbahnen eine ausreichende Steifigkeit aufweisen, die ansonsten nur bei aus dem Stand der Technik bekannten Lamellenmatten gegeben ist. Die selbstklebenden Folienbänder können aber auch bereits Bestandteil der Kaschierung sein, soweit diese über einen Längskantenbereich der Dämmstoffbahn hinausragt. Derart ausgebildet ist die erfindungsgemäße Dämmstoffbahn insbesondere für die
10 Dämmung von Rohrleitungen geeignet, die der Führung von Medien dienen, deren Temperatur unter den Umgebungstemperaturen liegen. Durch diese Ausgestaltung kann das Eindringen von Wasserdampf zuverlässig verhindert werden, so weit die Kaschierung aus dampfbremsenden Verbundfolien ausgebildet ist, von denen ein Randbereich über eine in Längsachsenrichtung der Dämmstoffbahn
15 verlaufende Seitenfläche übersteht, so dass dieser Randbereich auf die Kaschierung einer benachbart angeordneten Dämmstoffbahn aufgeklebt werden kann.

Neben einer Ausführungsform einer erfindungsgemäßen Dämmstoffbahn mit einem einseitig überstehenden Randbereich der Kaschierung ist selbstverständlich
20 auch eine Ausführungsform denkbar, bei der die Kaschierung über zwei, insbesondere parallel verlaufende Randbereiche der Dämmstoffbahn hervorsteht. Um das Aufwickeln einer derartigen Dämmstoffbahn zu erleichtern, kann vorgesehen sein, dass zumindest im Bereich eines überstehenden Randbereichs der Kaschierung ein dünner Papierstreifen mit aufgerollt wird.

- 25 Es ist nach einem weiteren Merkmal der Erfindung vorgesehen, dass die aufgeklebten Kaschierungen, insbesondere die aufgeklebten Folien Markierungen aufweisen. Ist die Kaschierung als Aluminium-Folie ausgebildet, so können diesbezüglich regelmäßig wiederkehrende Prägungen oder mit Hilfe von Farben aufgebrachte Markierungen in Form von beispielsweise Balken oder Pfeilen vorgesehen sein. Hierbei hat es sich als ausreichend erwiesen, wenn die Markierungen in beiden in Längsachsenrichtung der Dämmstoffbahn verlaufenden Randbereiche angeordnet sind und eine Länge zwischen 2 und 10 cm aufweisen. Hilfsweise sind
30

die Markierungen in Abständen von ca. 10 cm angeordnet, so dass die Markierungen insbesondere als Hilfsmittel beim Zuschneiden der Dämmstoffbahnen dienen. Sind die Markierungen als Pfeile ausgebildet, so können diese darüber hinaus auch die Förderrichtung eines Mediums in einer Rohrleitung bzw. einem Lüftungs-
5 kanal anzeigen.

Bei entsprechend widerstandsfähigen Kaschierungen, die sich in der Wärme ver-farbende Substanzen, beispielsweise Bindemittel enthalten, können die Markie-
rungen auch mit Hilfe eines Laserstrahls aufgebracht werden.

10

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnung, in der eine Ausführungsform einer An-lage zur Durchführung eines Verfahrens zur Herstellung einer Dämmstoffbahn aus Mineralfasern dargestellt ist. In dieser Zeichnung zeigen:

15

Figur 1 einen ersten Abschnitt einer schematisch dargestellten Anlage zur Herstellung einer Dämmstoffbahn aus Mineralfasern und

20 Figur 2 einen zweiten Abschnitt der Anlage zur Durchführung des Verfahrens zur Herstellung einer Dämmstoffbahn aus Mineralfasern gemäß Figur 1.

Figur 1 zeigt den ersten Abschnitt einer Anlage 1 zur Herstellung einer Dämm-stoffbahn 2 (Figur 2) aus Mineralfasern 3. Die Mineralfasern 3 werden aus einem
25 silikatischen Material, beispielsweise natürlichen und/oder künstlichen Steinen hergestellt, indem in einem Kupolofen 4 das silikatische Material geschmolzen und die Schmelze 5 einem Zerfaserungsaggregat 6 zugeführt wird. Das Zerfaserungs-aggregat 6 weist mehrere rotierend angetriebene Spinnräder 7 auf, von denen in Figur 1 lediglich ein Spinnrad 7 dargestellt ist.

30

Der Kupolofen 4 weist ausgangsseitig eine Ausgußrinne 8 auf, über die die Schmelze 5 aus dem Kupolofen 4 auf die Spinnräder 7 fließt.

Durch die rotatorische Bewegung der Spinnräder 7 werden die Minerafasern 3 aus der Schmelze 5 gebildet und auf einem ersten Förderband 9 gesammelt. Auf diesem ersten Förderband 9 bildet sich ein Primärvlies 10, in dem die mit im Zerfaserungsaggregat 6 mit Bindmitteln versetzten Minerafasern 3 in im Wesentlichen gleicher Richtung ausgerichtet und laminar angeordnet sind. Das Primärvlies 10 wird sodann über ein zweites Förderband 11, welches im Unterschied zum ersten Förderband 9 kein Sammelförderband, sondern ein Transportförderband ist, einer nachgeschalteten Bearbeitungsstation 12 übergeben.

- 10 In der Bearbeitungsstation 12 wird die allgemeine Transportrichtung des Primärvlieses 10 geändert. Diese Änderung erfolgt von der ursprünglichen Längsrichtung in einen Transport in die ursprüngliche Querrichtung des Primärvlieses 10. Die Förderrichtung ist in Figur 1 durch einen Pfeil 13 dargestellt.
- 15 Das Primärvlies 10 wird über eine Walze 14 transportiert, deren Zweck es ist, die Transportrichtung des Primärvlieses 10 aus einer im Wesentlichen horizontalen Richtung in eine im Wesentlichen vertikale Richtung zu ändern, um das Primärvlies 10 einer weiteren Bearbeitungsstation 15 zuzuführen. Diese weitere Bearbeitungsstation 15 weist zwei parallel zueinander verlaufende Förderbänder 16, 17 auf, zwischen denen das Primärvlies 10 geführt ist. Die Förderbänder 16, 17 sind pendelnd angeordnet und pendeln das Primärvlies 10 rechtwinklig zu seiner Längserstreckung als Sekundärvlies 18 auf einer nicht näher dargestellten weiteren Fördereinrichtung auf, welche parallel zu den Förderbändern 9 und 11 verläuft.
- 20 25 Das derart aufgependelte Sekundärvlies 18 wird sodann einer Verdichtungsstation 19 zugeführt, in welcher das Sekundärvlies 18 komprimiert wird. Die Verdichtungsstation 19 weist ein oberes Förderband 20 und ein unteres Förderband 21 auf, zwischen denen das Sekundärvlies 18 läuft. Die beiden Förderbänder 20 und 21 der Verdichtungsstation 19 sind pendelnd angeordnet und haben neben der Funktion der Verdichtung des Sekundärvlieses 18 auch die Funktion, das verdichtete Sekundärvlies 18 in Längsrichtung mäandrierend aufzupendeln. Dieses Aufpendeln des Sekundärvlieses 18 führt dazu, dass das Sekundärvlies 18 in seinem mittleren Bereich eine Orientierung der Minerafasern 3 aufweist, die rechtwinklig

zu den großen Oberflächen 22, 23 ausgerichtet ist. In Zonen unmittelbar unterhalb der großen Oberflächen 22, 23 weist das Sekundärvlies 18 eine Orientierung der Minerafasern 3 auf, die unter einem Winkel abweichend von der Orthogonalen zu den großen Oberflächen 22, 23 bis hin zu einer parallelen Ausrichtung relativ zu diesen großen Oberflächen 22, 23 variiert. Diese Anordnung und Orientierung der Minerafasern 3 in dem Sekundärvlies 18 resultiert aus dem Aufpendeln des Sekundärvlieses 18 im Anschluss an die Verdichtungsstation 19.

Das aufgependelte Sekundärvlies 18 wird unmittelbar nach dem Aufpendeln einer Bearbeitungsstation 24 zugeführt, die ein oberes Förderband 25 und ein unteres Förderband 26 aufweist und deren Fördergeschwindigkeiten im Vergleich zur Fördergeschwindigkeit der Verdichtungsstation 19 geringer ist, so dass das aufgependelte Sekundärvlies 18 in seiner Längsrichtung komprimiert und die einzelnen Mäander des aufgependelten Sekundärvlieses 18 zusammengeschoben werden.

Der Bearbeitungsstation 24 ist eine weitere Bearbeitungsstation 27 nachgeschaltet, die ebenfalls ein oberes Förderband 28 und ein unteres Förderband 29 aufweist, zwischen denen das aufgependelte Sekundärvlies 18 gefördert wird. Die Bearbeitungsstation 27 weist eine weitergehend reduzierte Fördergeschwindigkeit des Sekundärvlieses 18 auf, um die Verdichtung und die Homogenisierung des aufgependelten Sekundärvlieses 18 fortzusetzen.

Das derart vorbereitete Sekundärvlies 18 bildet ein Endprodukt, das zur Bildung von bestimmten Dämmstoffbahnen 2 aus Minerafasern 3, wie zum Beispiel Dämmstoffplatten oder Dämmstoffbahnen 2 weiterverarbeitet werden kann, wie dies nachfolgend in Bezug zu Figur 2 beschrieben wird.

Das mäandrierend aufgefaltete und komprimierte Sekundärvlies 18 wird einem Härteofen 30 zugeführt, indem zwei parallel zueinander verlaufende Förderbänder 31 und 32 angeordnet sind. In dem Härteofen 30 wird Heißluft durch die Förderbänder 31, 32 und somit auch durch das Sekundärvlies 18 gefördert, welche Heißluft das in dem Sekundärvlies 18 zur Verbindung der einzelnen Minerafasern 3 enthaltene Bindemittel aushärtet. Durch die Aushärtung des Bindemittels wird das

Sekundärvlies 18 in seiner geometrischen Form, die es vor dem Härteofen durch die Bearbeitungsstationen 12, 15, 19 und 24 sowie 27 erhalten hat, fixiert.

Der Abstand der beiden Förderbänder 31, 32 im Härteofen 30 ist auf die Materialstärke des Sekundärvlieses 18 eingestellt und durch die Fördergeschwindigkeit der Förderbänder 31, 32 im Verhältnis zur erforderlichen Heißluftmenge, um das Bindemittel auszuhärten, begrenzt.

Im Anschluss an den Härteofen 30 läuft das Sekundärvlies 18 durch eine erste Sägestation 33, die eine Bandsäge 34 mit einem bandförmigen Sägeblatt 35 aufweist, mit welchem Sägeblatt 35 das Sekundärvlies 18 durch einen Trennschnitt parallel zu den großen Oberflächen 22, 23 in zwei Dämmstoffbahnen 2 unterteilt wird, die jeweils eine große Oberfläche 22, 23 und eine im Wesentlichen flächen gleiche, der jeweiligen großen Oberfläche 22, 23 gegenüberliegende Trennfläche 36 aufweisen.

Das eine Breite von 2.400 mm aufweisende Sekundärvlies 18 wird anschließend durch eine Kreissäge mit einem Kreissägeblatt 37 in Längsrichtung in vier Teilbahnen unterteilt, wobei jede Teilbahn letztendlich eine Dämmstoffbahn 2 darstellt und eine Breite von 1.200 m aufweist.

Die in Längsrichtung durch den Trennschnitt parallel zu den großen Oberflächen 22, 23 des Sekundärvlieses 18 getrennten Dämmstoffbahnen 22 werden voneinander abgehoben und einer Kaschierungsstation 38 zugeführt, in der auf die Trennflächen 36 der Dämmstoffbahnen 2 eine Kaschierung 39 aufgebracht wird. Die Kaschierung 39 ist hierbei für jede Dämmstoffbahn 2 als Kaschierungsrolle 40 be vorratet, wobei die Kaschierung 39 mit der Förderung der Dämmstoffbahn 2 von der Kaschierungsrolle 40 abgezogen und flächengleich mit der Dämmstoffbahn 2 verklebt wird. Im Anschluss an die Kaschierungsstation 38 werden die Dämm stoffbahnen 2 aufgewickelt und verpackt. Zu diesem Zweck werden die Dämm stoffbahnen 2 in einem vorbestimmten Längenmaß von dem Sekundärvlies 18 durch einen Schnitt rechtwinklig zur Längsrichtung der Dämmstoffbahn 2 abge längt.

Die Kaschierung 39 ist als ein luftdurchlässiges und wärmefestes Vlies aus Glasfasern ausgebildet und bildet eine äußere Verstärkungs-, Schutz-, Filter- und Dekorationsschicht. Die Verbindung der Kaschierung 39 mit der Dämmstoffbahn 2 in
5 der Kaschierungsstation 38 erfolgt durch einen auf die Dämmstoffbahn 2 aufgesprühten hochviskosen Dispersionskleber, der in Abhängigkeit der erforderlichen Verbindung zwischen der Kaschierung 39 und der Dämmstoffbahn 2 sowie seiner Klebewirkung vollflächig, punktuell oder streifenförmig aufgesprührt wird. Die Kaschierung 39 ist auf der Trennfläche 36 der Dämmstoffbahn 2 angeordnet, so dass
10 die Kaschierung 39 mit den Faserspitzen der rechtwinklig zu der Trennfläche 36 der Dämmstoffbahn 2 verbunden ist. Es kann ergänzend vorgesehen sein, dass vor dem Wickeln der Dämmstoffbahn 2 die im Bereich der großen Oberflächen 22, 23 vorhandenen Mineralfasern 3, die von einer rechtwinkligen Orientierung zu den großen Oberflächen 22, 23 abweichen, durch Schneiden oder Schleifen entfernt
15 werden.

Ansprüche

1. Verfahren zur Herstellung einer Dämmstoffbahn aus Mineralfasern, insbesondere aus Steinwolle und/oder Glaswolle, bei dem die Mineralfasern aus einer Schmelze hergestellt und auf einer Fördereinrichtung als Primärvlies abgelegt werden, das Primärvlies rechtwinklig zu seiner Längserstreckung aufgedehnt und als Sekundärvlies auf einer zweiten Fördereinrichtung abgelegt wird, das Sekundärvlies anschließend derart bewegt wird, dass die Mineralfasern im wesentlichen einen Verlauf rechtwinklig zu den großen Oberflächen des Sekundärvlieses einnehmen und das Sekundärvlies anschließend durch einen Trennschnitt parallel zu den großen Oberflächen des Sekundärvlieses in zumindest zwei Dämmstoffbahnen unterteilt wird, die jeweils eine große Oberfläche und eine im wesentlichen flächengleiche, der großen Oberfläche gegenüberliegend angeordnete Trennfläche aufweisen,
dadurch gekennzeichnet,
dass auf zumindest eine der Trennflächen (36) der beiden Dämmstoffbahnen (2) eine Kaschierung (39) aufgebracht wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die in den großen Oberflächen (22, 23) im wesentlichen parallel zu den großen Oberflächen (22, 23) verlaufenden Mineralfasern (3) entfernt werden.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die Dämmstoffbahnen (2) vor und/oder nach dem Aufbringen der Kaschierung (39) einem Härteofen (30) zugeführt werden, in dem ein im Primärvlies (10) bereits enthaltenes Bindemittel ausgehärtet wird.
4. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass der Trennschnitt zur Ausbildung der Dämmstoffbahnen (2) mittig zwischen den großen Oberflächen (22, 23) des Sekundärvlieses (18) ausgeführt

wird.

5. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

5 dass die Kaschierung (39) als ein luftdurchlässiges und/oder wärmefestes Vlies, Gewebe oder Gelege, insbesondere aus Glas- und/oder Naturfasern oder organischen Chemiefasern, wie beispielsweise aus Kohlenstoff, Aramid, Terephthalat, Polyamid, Polypropylen bzw. Mischungen daraus oder als Folie, beispielsweise Aluminium-Polyethylen-Verbundfolie und zumindest einlagig und insbesondere in Form von zugfesten Bahnen aufgebracht wird.

10 10. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

dass die Kaschierung (39) mehrlagig aufgebracht wird, wobei die Lagen der 15 Kaschierung (39) vorzugsweise unterschiedlich ausgebildet werden.

15 15. Verfahren nach Anspruch 6,

dadurch gekennzeichnet,

dass die Lagen der Kaschierung (39) aus Glasfaser-Wirrvlies mit Lagen aus 20 Wirrvliesen aus thermoplastischen Fasern und/oder aus gelochten Folien aus Thermoplasten miteinander verbunden werden.

25 25. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

dass die Kaschierung (39) mit der Dämmstoffbahn (2) verklebt wird, wobei die Verklebung vorzugsweise teilflächig, insbesondere linienförmig und/oder punktförmig erfolgt und wobei beispielsweise Heißkleber verwendet werden.

30 30. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

dass die Kaschierung (39) als äußere Verstärkungs-, Schutz-, Filter- und/oder Dekorationsschicht ausgebildet wird.

10. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die Kaschierung (39) von einem Wickel (40) abgezogen und gemeinsam mit der Dämmstoffbahn (2) einer Verarbeitungsstation (38) zugeführt wird, in der die Kaschierung (39) mit der Dämmstoffbahn (2) verbunden wird.

5

11. Verfahren nach Anspruch 10,
dadurch gekennzeichnet,
dass mehrere Lagen der Kaschierung (39) von einem Wickel (40) abgezogen
10 werden.

10

12. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass in der Dämmstoffbahn (2) vorhandene Bindemittel vor der Verbindung
15 mit der Kaschierung (39) durch Lösungsmittel, beispielsweise Wasser aktiviert werden.

15

13. Verfahren nach Anspruch 12,
dadurch gekennzeichnet,
20 dass die Aktivierung der Bindemittel durch Kontaktwalzen erfolgt.

20

14. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass das Bindemittel auf die Trennfläche (36) der Dämmstoffbahn (2) aufgesprührt wird, bevor die Kaschierung (39) aufgebracht wird.

25

15. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass zwischen der Dämmstoffbahn (2) und der Kaschierung (39) eine Schicht
30 einer Imprägnierung, insbesondere aus einem hochviskosen Dispersionskleber oder aus einem mit Pigmenten gefüllten Wasser-Silikat-Kunststoff-Kleber angeordnet wird.

16. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die Imprägnierung mit einer hohen Viskosität aufgetragen wird, so dass
die Imprägnierung nicht von der Kaschierung (39) aufgesaugt wird.

5

17. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die beiden Dämmstoffbahnen (2) nach dem Aufbringen der Kaschierun-
gen (39) zusammengeführt und gemeinsam einem Härteofen (30) zugeführt
10 werden.

10

18. Verfahren nach Anspruch 17,
dadurch gekennzeichnet,
dass die Dämmstoffbahnen (2) nach dem Verlassen des Härteofens (30) in
15 Längsrichtung besäumt, abgelängt und aufgewickelt oder in einzelne Dämm-
platten unterteilt und einer Verpackungsvorrichtung zugeführt werden.

15

20

19. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass beim Auftrennen des Sekundärvlieses (18) in Dämmstoffbahnen (2)
entstehender Mineralfaserstaub vor dem Aufbringen der Kaschierung (39)
entfernt, insbesondere abgesaugt wird.

20

25

20. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass die Folie mit einem Glasfaser-Gittergelege bewehrt wird.

25

30

21. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass die Aluminium-Polyethylen-Verbundfolie derart erwärmt wird, dass die
Polyethylenschicht erweicht und mit Mineralfaserspitzen der Dämmstoffbahn
(2) verschweißt.

22. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die Kaschierung (39) aus unterschiedlichen Lagen ausgebildet wird.

5 23. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die Kaschierung (39) flächenmäßig größer ausgebildet wird, als die
Trennfläche (36), so dass die Kaschierung (39) insbesondere über zumindest
eine Längsseite der Dämmstoffbahn (2) hervorsteht.

10 24. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass auf der Kaschierung (39) Markierungen angeordnet werden, die dem
Ablängen der Dämmstoffbahn (2) dienen.

15 25. Dämmstoffbahn aus mit einem Bindemittel gebundenen Mineralfasern,
insbesondere aus Mineralwolle und/oder Glaswolle, mit einer großen
Oberfläche und einer beim Aufteilen eines Sekundärvlieses in zwei
Dämmstoffbahnen entstehenden Trennfläche, wobei die Mineralfasern im
Bereich der Trennfläche rechtwinklig zur Trennfläche und im Bereich der
Oberfläche unter einem Winkel abweichend von 90° zur großen Oberfläche,
insbesondere parallel zur großen Oberfläche verlaufend angeordnet sind,
und mit einer Kaschierung,
dadurch gekennzeichnet,
dass die Kaschierung (39) auf der Trennfläche (36) angeordnet ist.

20 26. Dämmstoffbahn nach Anspruch 25,
dadurch gekennzeichnet,
dass die Kaschierung (39) als ein luftdurchlässiges und/oder wärmefestes
Vlies, Gewebe oder Gelege, insbesondere aus Glas- und/oder Naturfasern
oder organischen Chemiefasern, wie beispielsweise aus Kohlenstoff, Aramid,
30 Terephthalat, Polyamid, Polypropylen bzw. Mischungen daraus oder als Fo-
lie, beispielsweise Aluminium-Polyethylen-Verbundfolie und zumindest einla-

gig und insbesondere in Form von zugfesten Bahnen ausgebildet ist.

27. Dämmstoffbahn nach Anspruch 25,

dadurch gekennzeichnet,

5 dass die Kaschierung (39) mehrlagig ausgebildet ist, wobei die Lagen der Kaschierung vorzugsweise unterschiedlich ausgebildet sind.

28. Dämmstoffbahn nach Anspruch 25,

dadurch gekennzeichnet,

10 dass die Lagen der Kaschierung (39) aus Glasfaser-Wirrvlies mit Lagen aus Wirrvliesen aus thermoplastischen Fasern und/oder aus gelochten Folien aus Thermoplasten verbunden sind.

29. Dämmstoffbahn nach Anspruch 25,

15 dadurch gekennzeichnet,

dass die Kaschierung (39) mit der Dämmstoffbahn (2) verklebt ist, wobei die Verklebung vorzugsweise teilflächig, insbesondere linienförmig und/oder punktförmig ausgebildet und beispielsweise mit einem Heißkleber ausgeführt ist.

20

30. Dämmstoffbahn nach Anspruch 25,

dadurch gekennzeichnet,

dass die Kaschierung (39) als äußere Verstärkungs-, Schutz-, Filter- und/oder Dekorationsschicht ausgebildet ist.

25

31. Dämmstoffbahn nach Anspruch 25,

dadurch gekennzeichnet,

30 dass zwischen der Dämmstoffbahn (2) und der Kaschierung (39) eine Schicht einer Imprägnierung, insbesondere aus einem hochviskosen Dispersionskleber oder aus einem mit Pigmenten gefüllten Wasser-Silikat-Kunststoff-Kleber angeordnet ist.

32. Dämmstoffbahn nach Anspruch 25,
dadurch gekennzeichnet,
dass die Imprägnierung eine hohe Viskosität aufweist, so dass die Imprägnierung nicht von der Kaschierung (39) aufgesaugt wird.

5

33. Dämmstoffbahn nach Anspruch 26,
dadurch gekennzeichnet,
dass die Folie mit einem Glasfaser-Gittergelege bewehrt ist.

10 34. Dämmstoffbahn nach Anspruch 25,
dadurch gekennzeichnet,
dass die Kaschierung (39) aus unterschiedlichen Lagen ausgebildet ist.

15 35. Dämmstoffbahn nach Anspruch 25,
dadurch gekennzeichnet,
dass die Kaschierung (39) flächenmäßig größer ausgebildet ist, als die Trennfläche (36), so dass die Kaschierung (39) insbesondere über zumindest eine Längsseite der Dämmstoffbahn (2) hervorsteht.

20 36. Dämmstoffbahn nach Anspruch 25,
dadurch gekennzeichnet,
dass auf der Kaschierung (39) Markierungen angeordnet sind, die dem Ablängen der Dämmstoffbahn (2) dienen.

WO 2005/072951

PCT/EP2004/014449

1/2

Fig. 1

WO 2005/072951

PCT/EP2004/014449

2/2

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/014449

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 B32B17/02 D04H1/74 D04H13/00 E04B1/76

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestpriorität (Klassifikationssystem und Klassifikationssymbole)
JFK 7 B32B D04H E04B

Recherchierte aber nicht zum Mindestpriorität gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konstituierte elektronische Datenbank (Name der Datenbank und EVL verwendete Suchbegriffe)

EPO-Internal, WPI Data

C. ALS WESENTLICH ANGEGEHENE UNTEILLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Bet. Anspruch Nr.
X	WO 95/20708 A (ROCKWOOL INTERNATIONAL A/S; NOERGAARD, LUIS, JOERGEN; BRANDT, KIM; CRI) 3. August 1995 (1995-08-03) siehe insbesondere Referenzzeichen 184, 186, 188, 200, 208, 210 und 220 in Fig. / Seite 8, Zeile 13 – Seite 21, Zeile 11; Abbildungen 1,3,7	1-36
A	WO 97/01006 A (ROCKWOOL INTERNATIONAL A/S; CRIDLAND, IAN) 9. Januar 1997 (1997-01-09) siehe insbesondere Referenzzeichen 172 und 188, Abbildungen 11,16	1,25
A	EP 0 831 162 A (SHINIH ENTERPRISE CO., LTD) 25. März 1998 (1998-03-25) Seite 5, Zeile 31 – Seite 7, Zeile 17; Abbildungen 5-10	1-36

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen:

- * Besondere Kriterien von angegebenen Veröffentlichungen:
 - "A" Veröffentlichung, die den allgemeinen Stand der Technik darstellt, aber nicht als Besonderes bedeutsam anzusehen ist;
 - "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht wurde;
 - "L" Veröffentlichung, die geeignet ist, einen Prinzipanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Beispiel)
 - "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benützung, eine Ausstellung oder andere Maßnahmen bezieht
 - "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

Siehe Anhang Patentfamilie

- T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht konsistent, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist;
- *X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfundenen Tätigkeit beruhend betrachtet werden;
- *Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfundenen/Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann rechselführend ist;
- *Z Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Abschlußdatum des Internationalen Recherchenberichts

6. April 2005

14/04/2005

Name und Postanschrift der internationalen Recherchebehörde
Europäisches Patentamt, P.O. Box 5818 Patentsteenweg
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2010, TX 31 651 epo nl.
Fax: (+31-70) 340-3018

Bevollmächtigter Bediensteter

Schweissguth, M

INTERNATIONALES RECHERCHENBERICHT

Internationales Altonenzeichen:

PCT/EP2004/014449

C (Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		Betr. Anspruch Nr.
Kategorie*	Anzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Aussicht kommenden Teile	
A	DE 43 19 340 C1 (DEUTSCHE ROCKWOOL MINERALWOLL-GMBH, 45966 GLADBECK, DE) 9. März 1995 (1995-03-09) Spalte 7, Zeilen 8-16; Abbildung 2	25
A	WO 92/10602 A (ROCKWOOL INTERNATIONAL A/S) 25. Juni 1992 (1992-06-25) gesamte Beschreibung, Abbildung 1	1,25
A	WO 98/57000 A (ROCKWOOL LIMITED; OSMOND, CHRISTOPHER; FRANCIS, KENNETH, IAN) 17. Dezember 1998 (1998-12-17) Abbildung 1	25

INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen:

PCT/EP2004/014449

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9520708	A	03-08-1995	AT 236308 T AU 1574795 A BG 100755 A CA 2182185 A1 CZ 9602078 A3 DE 69530181 D1 DE 69530181 T2 WO 9520708 A1 EP 1266991 A2 EP 0741827 A1 ES 2197913 T3 HU 75137 A2 PL 315658 A1 RO 114484 B1 RU 2152489 C1 SK 90396 A3 US 5981024 A	15-04-2003 15-08-1995 30-04-1997 03-08-1995 12-03-1997 08-05-2003 04-03-2004 03-08-1995 18-12-2002 13-11-1996 16-01-2004 28-04-1997 25-11-1996 30-04-1999 10-07-2000 04-12-1996 09-11-1999
WO 9701006	A	09-01-1997	AT 3521 U1 AT 247201 T AU 6188396 A BG 102119 A CA 2225051 A1 CZ 9704048 A3 DE 29680532 U1 DE 69629472 D1 DE 69629472 T2 WO 9701006 A1 EP 0833992 A1 HU 9802815 A2 PL 324173 A1 RU 2166034 C2 SK 165697 A3	25-04-2000 15-08-2003 22-01-1997 30-11-1998 09-01-1997 15-04-1998 13-08-1998 18-09-2003 17-06-2004 09-01-1997 08-04-1998 29-03-1999 11-05-1998 27-04-2001 06-05-1998
EP 0831162	A	25-03-1998	CA 2184836 A1 DE 29616418 U1 FR 2753728 A3 EP 0831162 A1 DK 831162 T3 ES 2194943 T3 CA 2296876 A1 CA 2296878 A1 CA 2296880 A1	05-03-1998 21-11-1996 27-03-1998 25-03-1998 23-06-2003 01-12-2003 05-03-1998 05-03-1998 05-03-1998
DE 4319340	C1	09-03-1995	KEINE	
WO 9210602	A	25-06-1992	DK 291590 A AT 113087 T AU 9080591 A CA 2095532 A1 CZ 282594 B6 CZ 9301067 A3 DE 69104730 D1 DE 69104730 T2 WO 9210602 A1 EP 0560878 A1 ES 2062884 T3 FJ 932566 A	17-06-1992 15-11-1994 08-07-1992 08-06-1992 13-08-1997 17-11-1993 24-11-1994 04-05-1995 25-06-1992 22-09-1993 16-12-1994 04-06-1993

INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen:

PCT/EP2004/014449

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9210602	A	PL SK	168628 B1 56293 A3
			29-03-1996 11-05-1994
WO 9857000	A	AT AU DE EP WO	222628 T 7926398 A 69807331 D1 0988429 A1 9857000 A1
	17-12-1998		15-09-2002 30-12-1998 26-09-2002 29-03-2000 17-12-1998

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.