

CICLO IME 2 - QUÍMICA

TURMA IME-ITA

2022

DADOS

Elementos

Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(g \mathrm{mol}^{-1})$
Н	1	1,01	CI	17	35,45
He	2	4,00	Ar	18	$39,\!95$
С	6	12,01	K	19	39,10
N	7	14,01	Ca	20	40,08
0	8	16,00	Cr	24	52,00
F	9	19,00	Fe	26	55,84
Ne	10	20,18	Cu	29	$63,\!55$
Na	11	22,99	Zn	30	$65,\!38$
Mg	12	24,31	Br	35	79,90
S	16	32,06	I	53	126,90

1ª QUESTÃO

Valor: 1,00

Para um processo industrial, é necessário preparar ácido sulfúrico $50\,\%$. Para isso, dispõe-se de:

- 1. Solução aquosa 20% em H_2SO_4 a 25 °C
- 2. Solução aquosa $80\,\%$ em $\rm H_2SO_4$ a $25\,^{\circ}C$
- **3.** Gelo a $0\,^{\circ}\mathrm{C}$

Os dados termodinâmicos para o sistema H_2SO_4 -água a $25\,^{\circ}C$, sendo o estado de referência para entalpia a água líquida a $25\,^{\circ}C$, são apresentados a seguir.

$m_{ m H_2SO_4}/m$	Entalpia	
20%	$4 \mathrm{kJ} \mathrm{mol}^{-1}$	
50%	$15\mathrm{kJ}\mathrm{mol}^{-1}$	
80%	$40\mathrm{kJ}\mathrm{mol}^{-1}$	

Determine o volume de cada solução que deve ser utilizado para preparar $1000\,\mathrm{kg}$ de ácido sulfúrico $50\,\%$ com temperatura final $25\,^\circ\mathrm{C}$.

Dados

- \bullet Entalpia de fusão do H2O $\Delta H_{\rm fus}^{\circ}({\rm H_2O}) = 6.0\,{\rm kJ\,mol^{-1}}$

2ª QUESTÃO Valor: 1,00

Os elementos do segundo e terceiro períodos da tabela periódica apresentam desvios da tendência em suas curvas de afinidade eletrônica em função do número atômico.

- a) **Esboçe** qualitativamente o gráfico da afinidade eletrônica em função do número atômico para o segundo e terceiro períodos da tabela periódica.
- b) **Explique** a ocorrência dos desvios.

3ª QUESTÃO Valor: 1,00

A um calorímetro, $1\,\mathrm{mol}$ de tolueno líquido e ar atmosférico em excesso são adicionados a $27\,^\circ\mathrm{C}$. A mistura é aquecida até $117\,^\circ\mathrm{C}$, entrando em combustão. A temperatura no interior do calorímetro é mantida constante em $117\,^\circ\mathrm{C}$ por uma jaqueta contendo $1\,\mathrm{L}$ de água líquida. Considere os dados termodinâmicos a $300\,\mathrm{K}$.

- a) Determine a variação de temperatura da água na jaqueta.
- b) **Determine** a variação de entropia do sistema.
- c) **Determine** a variação de entropia da água na jaqueta.

Considere: $\ln(1,30) = 0.26$ $\ln(1,24) = 0.22$ $\ln(1,05) = 0.05$

Dados

- Capacidade calorífica do CO_2 $C_P(CO_2, g) = 37.0 \, \mathrm{J \, K^{-1} \, mol}^{-1}$
- Capacidade calorífica do H_2O $C_P(H_2O, l) = 75,0 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- Capacidade calorífica do H_2O $C_P(H_2O, g) = 34.0 \, \mathrm{J \, K^{-1} \, mol^{-1}}$
- Capacidade calorífica do tolueno $C_P(\text{tolueno}, l) = 160,0 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- \bullet Entalpia de formação do CO2 $\Delta H_{\rm f}^{\circ}({\rm CO_2,g}) = -390.0\,{\rm kJ\,mol^{-1}}$
- Entalpia de formação do H_2O $\Delta H_f^{\circ}(H_2O, l) = -290.0 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$
- Entalpia de formação do H_2O $\Delta H_f^{\circ}(H_2O,g) = -240.0 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$
- Entalpia de formação do tolueno $\Delta H_{\rm f}^{\circ}({\rm tolueno}, {\rm l}) = 12.0\,{\rm kJ\,mol^{-1}}$
- Entropia do $CO_2 S^{\circ}(CO_2, g) = 210.0 \, \mathrm{J \, K^{-1} \, mol^{-1}}$
- Entropia do H_2O $S^{\circ}(H_2O, l) = 70.0 \, \mathrm{J \, K^{-1} \, mol^{-1}}$
- Entropia do tolueno $S^{\circ}(\text{tolueno}, l) = 220.0 \, \text{J K}^{-1} \, \text{mol}^{-1}$

4ª QUESTÃO Valor: 1,00

Considere desprezível a variação da entropia e da energia interna com a pressão.

a) **Esboçe** o diagrama de fases para o carbono, indicando as fases líquida, gasosa, grafite e diamante.

- b) **Determine** a pressão necessária para que a conversão de grafite em diamente seja termodinâmicamente viável 27 °C.
- c) **Explique** por que não se verifica a conversão de diamante em grafite a 27 $^{\circ}$ C.

Dados

- Densidade do C $\rho(C, diamante) = 2.40 \, g \, cm^{-3}$
- Densidade do C $\rho(C, grafite) = 4.00 g cm^{-3}$
- Entalpia de formação do C $\Delta H_{\rm f}^{\circ}({
 m C, diamante}) = 1.9 \,{
 m kJ \, mol}^{-1}$
- Entropia do C $S^{\circ}(C, diamante) = 2.4 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Entropia do C $S^{\circ}(C, grafite) = 5.7 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

5^a QUESTÃO Valor: 1,00

Apresente a estrutura de todos os compostos monocíclicos com fórmula molecular C_6H_{10} .

6^a QUESTÃO Valor: 1,00

Uma mistura gasosa, apresentando comportamento ideal, é formada por oxigênio, dióxido de enxofre e trióxido de enxofre. A mistura apresenta 25% em massa e 25% em volume de dióxido de enxofre.

- a) **Determine** a fração mássica de trióxido de enxofre na mistura.
- b) **Determine** a densidade da mistura.
- c) **Determine** a massa teórica de ácido sulfúrico puro que poderia ser obtida a partir de $1,00\,\mathrm{m}^3$ da mistura em CNTP admitindo 60% de conversão de dióxido em trióxido de enxofre quando a mistura passa por um leito catalítico contendo pentóxido de vanádio.

7ª QUESTÃO Valor: 1,00

O gás de síntese, composto por monóxido de carbono e hidrogênio, é porduzido pela reação entre metano e vapor d\'água. Em um reator, $10\,\mathrm{L}$ de metano com excesso de água em CNTP são convertidos em gás de síntese com rendimento de 80%.

- a) **Determine** a variação de entalpia da reação.
- b) Determine a variação de entropia da reação.
- c) **Determine** a temperatura mínima para que a reação de formação do gás de síntese seja espontânea em condições padrão.

Dados

- ullet Entalpia de formação do CH₄ $\Delta H_{
 m f}^{\circ}({
 m CH_4,g}) = -75.0\,{
 m kJ\,mol}^{-1}$
- Entalpia de formação do CO $\Delta H_{\rm f}^{\circ}({\rm CO,g}) = -110.0\,{\rm kJ\,mol}^{-1}$
- Entalpia de formação do $H_2O \Delta H_f^{\circ}(H_2O,g) = -240.0 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$
- Entropia do CH₄ $S^{\circ}(CH_4, g) = 190.0 \, \mathrm{J \, K^{-1} \, mol^{-1}}$
- Entropia do CO $S^{\circ}(CO, g) = 200.0 \, J \, K^{-1} \, mol^{-1}$
- \bullet Entropia do H₂O $S^{\circ}(\mathrm{H_2O,g}) = 190.0\,\mathrm{J\,K^{-1}\,mol^{-1}}$

8^a QUESTÃO Valor: 1,00

Um engenheiro químico foi encarregado da unidade de destilação de água em uma barragem, altamente contaminada com acetona de efluentes industriais. O objetivo é obter água a partir de uma mistura de acetona e água contendo 60% de massa em água. A mistura entra na unidade de destilação com uma vazão de $700\,\mathrm{kg/h}$. O produto de fundo da destilação sai com vazão de $270\,\mathrm{kg/h}$ e contém 80% de água, em massa.

- a) **Determine** a composição do produto de topo.
- b) **Determine** a vazão molar de água no produto de fundo.
- c) Proponha um processo para aumentar a pureza da água no produto de fundo.

9ª QUESTÃO	Valor: 1,00					
Considere o elemento X , de número atômico Z = 82.						
a) Determine a configuração eletrônica do estado fundamental de X .						
b) Determine os números quânticos do elétron mais energético de X .						
c) Apresente a fórmula molecular do cloreto mais estável de X.						

Estabeleça a relação entre as estruturas de cada par abaixo, identificando-as como enantiômeros, diastereoisômeros, isômeros constitucionais ou representações diferentes de um mesmo composto.

е

$$Cl$$
 Cl
 H

$$H_3C \xrightarrow{H} F$$
 $H \xrightarrow{C} CI$
 CH_3