Imię i nazwisko:				
------------------	--	--	--	--

Logika dla informatyków

Egzamin poprawkowy (część licencjacka) 25 lutego 2006

Za piewsze z poniższych zadań można otrzymać od -1 do 1, za pozostałe od -3 do 3 punktów (łącznie od -25 do 25 punktów). Za brak rozwiązania otrzymuje się 0 punktów, punkty ujemne otrzymuje się tylko za rozwiązania kompromitująco fałszywe. Aby zdać tę część egzaminu (być dopuszczonym do części zasadniczej) trzeba uzyskać co najmniej 13 punktów. Egzamin trwa 60 minut.

Zadanie 1. Wpisz słowo "TAK" w te spośród kratek poniższej tabelki, które odpowiadają zupełnym zbiorom spójników logicznych.

\wedge, \vee	\land, \lor, \lnot	\vee, \Rightarrow	\wedge, \neg	∨,¬	\vee,\Leftrightarrow	$\land, \lor, \lnot, \Rightarrow, \Leftrightarrow$

Zadanie 2. Wpisz słowo "TAK" w prostokąty obok formuł, które są tautologiami rachunku zdań. W pozostałe prostokąty wpisz odpowiednie kontrprzykłady.

(a)
$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \land q) \Rightarrow r)$$

(b)
$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q) \Rightarrow r$$

Zadanie 3. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej równości, które zachodzą dla dowolnych zbiorów A, B, C i D. W pozostałe prostokąty wpisz odpowiednie kontrprzykłady.

(a)
$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

(b)
$$(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$$

Zadanie 4. W pierwszej kolumnie poniższej tabeli podane są definicje czterech relacji w zbiorze $\mathbb{N} \times \mathbb{N}$. W kolumnie "porządek?" wpisz słowo "TAK" obok tych relacji, które są relacjami porządku. W kolumnie "równoważność?" wpisz słowo "TAK" obok tych relacji, które są relacjami równoważności. W ostatniej kolumnie podaj zbiór będący przechodnim domknięciem relacji z pierwszej kolumny.

	porządek?	równoważność?	przechodnie domknięcie
$\{\langle x, x \rangle \mid x \in \mathbb{N}\}$			
$\{\langle x, x+1\rangle \mid x \in \mathbb{N}\}$			
$\{\langle x, y \rangle \mid \exists k \in \mathbb{N} \ y = x \cdot k\}$			
$\{\langle x,y\rangle\mid x\neq y\}$			

Zadanie 5. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej równości, które zachodzą dla dowolnych relacji $R \subseteq A \times B$, $S \subseteq A \times B$ i $T \subseteq B \times C$. W pozostałe prostokąty wpisz odpowiednie kontrprzykłady.

(a) $(R \cap S)T = RT \cap ST$	
(b) $(R \cup S)T = RT \cup ST$	

Zadanie 6. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej równości, które zachodzą dla dowolnych funkcji $f:A\to B$ i dowolnych zbiorów $X,Y\subseteq A$. W pozostałe prostokąty wpisz odpowiednie kontrprzykłady.

(a) $f(X \cap Y) = f(X) \cap f(Y)$	
(b) $f(X \cup Y) = f(X) \cup f(Y)$	

Imię i nazwisko:

Zadanie 7. W prostokąty poniżej wpisz definicje jakich
kolwiek bijekcji φ i ψ o podanej dziedzinie i przeciw
dziedzinie.

(b)
$$\psi : \mathcal{P}(\mathbb{R})^{\mathbb{N}} \to \{0, 1\}^{\mathbb{N} \times \mathbb{R}}$$

Zadanie 8. Niech $A = \{a, b, c, d, e, f, g, h\}$. Rozważmy relację $R \subseteq A \times A$, której graf jest przedstawiony na rysunku niżej (strzałka od wierzchołka x do wierzchołka y oznacza, że $\langle x, y \rangle \in R$).

Niech f i g będą funkcjami z $\mathcal{P}(A)$ w $\mathcal{P}(A)$ danymi wzorami poniżej. Wpisz słowo "NIE" w prostokąty obok definicji tych funkcji, które nie mają najmniejszego punktu stałego. W pozostałe prostokąty wpisz najmniejsze punkty stałe tych funkcji.

(a)
$$f(X) = \{a\} \cup \{y \mid \exists x \in X \ \langle x, y \rangle \in R\}$$

(b)
$$g(X) = \{a\} \cup \{x \mid \exists y \in X \ \langle x, y \rangle \in R\}$$

Zadanie 9. Liczby Fibonacciego to wyrazy ciągu zdefiniowanego rekurencyjnie w następujący sposób: $F_0=0,\ F_1=1$ oraz $F_{n+2}=F_n+F_{n+1}$ dla wszystkich liczb naturalnych $n\geq 0$. Korzystając z zasady indukcji udowodnij, że dla wszystkich liczb naturalnych n zachodzi równość

$$\sum_{i=0}^{n} F_i^2 = F_n F_{n+1}.$$

Logika dla informatyków

Egzamin poprawkowy (część zasadnicza) 25 lutego 2006

Za każde z poniższych zadań można otrzymać od -25 do 25 punktów. Za brak rozwiązania otrzymuje się 0 punktów, za rozpoczęcie rozwiązywania -2 punkty, a za poprawne rozwiązanie 27 punktów (co razem z punktami za rozpoczęcie daje 25 punktów). Egzamin trwa 120 minut.

Zadanie 10. Niech T będzie zbiorem wszystkich termów zbudowanych z użyciem binarnego symbolu funkcyjnego f oraz jednej zmiennej x. Formalnie, T jest najmniejszym zbiorem termów spełniającym warunki

- $x \in T$ oraz
- jeśli $t_1, t_2 \in T$ to $f(t_1, t_2) \in T$.

Dla $t \in T$ niech $\mathsf{var}(t)$ oznacza liczbę wystąpień zmiennej x w termie t i niech $\mathsf{fun}(t)$ oznacza liczbę wystąpień symbolu f w t.

- (a) Podaj formalna definicję funkcji var i fun.
- (b) Sformułuj zasadę indukcji matematycznej.
- (c) Udowodnij indukcyjnie, że dla wszystkich $t \in T$ zachodzi warunek

$$var(t) = fun(t) + 1.$$

(d) Rozważmy podstawienie $\theta = \{x \leftarrow f(x, x)\}$. Udowodnij indukcyjnie, że dla wszystkich $t \in T$ zachodzi warunek

$$fun(\theta(t)) = 2var(t) - 1.$$

Zadanie 11.

- (a) Niech $\langle A, \leq \rangle$ będzie nieskończonym zbiorem liniowo uporządkowanym. Udowodnij, że jeśli dla wszystkich elementów $a \in A$ zbiór $\{x \in A \mid x \leq a\}$ jest skończony, to porządek $\langle A, \leq \rangle$ jest izomorficzny ze zwykłym porządkiem na liczbach naturalnych.
- (b) Rozważmy następujący porządek \preceq w zbiorze Fin wszystkich skończonych podzbiorów zbioru liczb naturalnych. Dla zbiorów $X,Y\in Fin$ zachodzi $X\preceq Y$ wtedy i tylko wtedy, gdy

$$X = Y$$
 lub $\max(X - Y) \in Y$,

gdzie $\dot{}$ oznacza różnicę symetryczną zbiorów, a $\max(A)$ jest największą w sensie naturalnego porządku liczbą w zbiorze A. Udowodnij, że $\langle Fin, \preceq \rangle$ jest izomorficzny ze zwykłym porządkiem na liczbach naturalnych. Nie trzeba dowodzić, że relacja \preceq jest porządkiem.

Zadanie 12. Rozważmy zbiór A i funkcję monotoniczną $f: \mathcal{P}(A) \to \mathcal{P}(A)$. Udowodnij, że f ma największy punkt stały.

Wskazówka: Rozważmy funkcję $g: \mathcal{P}(A) \to \mathcal{P}(A)$ daną wzorem $g(X) = \overline{f(\overline{X})}$, gdzie \overline{X} oznacza dopełnienie zbioru X, czyli zbiór $A \setminus X$. Udowodnij, że X = f(X) wtedy i tylko wtedy gdy $\overline{X} = g(\overline{X})$ i zastosuj twierdzenie Knastera-Tarskiego o punkcie stałym (każda funkcja monotoniczna z kraty zupełnej w siebie ma najmniejszy punkt stały) do fnkcji g. Nie musisz dowodzić, że $\mathcal{P}(A)$ jest kratą zupełną.