

AGENDA

Image Segmentation

- Fully Convolution Neural Network

Defect Inspection

- Problem Define
- Data Preparation
- Deal with Imbalance data

Speed up with TensorRT

CNN STRUCTURE

LeNet

Source: Design of Deep Convolutional Neural Network Architectures for Automated Feature Extraction in Industrial Inspection, D. Weimer et al, 2016

FULLY CONVOLUTION NEURAL NETWORK IMAGE SEGMENTATION

convnets perform classification

lots of pixels, little time?

a classification network

end-to-end, pixels-to-pixels network

MRI image -> Left ventricle 2nd Data Science BOWL competition

DATA SCIENCE BOWL 2017

Predicting Lung Cancer

DATA SCIENCE BOWL 2018

Predicting nuclei in divergent images

DEFECT INSPECTION

INDUSTRIAL DEFECT INSPECTION

(c) Crack

(d) Connection

(e) Connection

(f) Projection

DATASET

INDUSTRIAL OPTICAL INSPECTION

German Association for Pattern Recognition

INDUSTRIAL OPTICAL INSPECTION

German Association for Pattern Recognition

DATA DETAILS

- Original images are 512 x 512 grayscale format
- Output is a tensor of size 512 x 512 x 1
 - Each pixel belongs to one of two classes

Training set consist of 100 images

Test set consist of 50 images

MODEL SET UP

Deconvolution layer

- Deconvolution (transpose convolution) layer
 - Up-sampling method to bring a smaller image data set back up to it's original size for final pixel classification
- Long et al (CVPR2015) has nice paper re: FCN for segmentation
 - Created FCNs from AlexNet and other canonical networks
- Zeiler et al (CVPR2010) describes deconvolution

U-Net structure

IMBALANCE DATA

Dice Metric

Metric to compare the similarity of two samples:

$$\frac{2A_{nl}}{A_n + A_l}$$

- Where:
 - A_n is the area of the contour predicted by the network
 A_l is the area of the contour from the label
 A_{nl} is the intersection of the two

 - - The area of the contour that is predicted correctly by the network
 - 1.0 means perfect score.
- More accurately compute how well we're predicting the contour against the label
- We can just count pixels to give us the respective areas

APPLICATION: INDUSTRIAL INSPECTION

NVIDIA

FINAL DECISION

Plus Human Logic

Size, Position, ... etc

PRODUCTION

NVIDIA DEEP LEARNING SOFTWARE PLATFORM

CHALLENGES DURING PRODUCTION

Requirement	Challenges
High Throughput	Unable to processing high-volume, high-velocity data ➤ Impact: Increased cost (\$, time) per inference
Low Response Time	 Applications don't deliver real-time results ➤ Impact: Negatively affects user experience (voice recognition, personalized recommendations, real-time object detection)
Power and Memory Efficiency	 Inefficient applications Impact: Increased cost (running and cooling), makes deployment infeasible
Deployment-Grade Solution	Research frameworks not designed for production Impact: Framework overhead and dependencies increases time to solution and affects productivity

NVIDIA TENSORRT

Programmable Inference Accelerator

TENSORRT

Workflow

TENSORRT

Optimizations

- Fuse network layers
- Eliminate concatenation layers
- Kernel specialization
- Auto-tuning for target platform
- Tuned for given batch size

OPTIMIZE
D
INFEREN
CE
RUNTIME

CHALLENGES ADDRESSED BY TENSORRT

Requirement	TensorRT Delivers
High Throughput	 Maximizes inference performance on NVIDIA GPUs ► INT8, FP16 Precision Calibration, Layer & Tensor Fusion, Kernel Auto-Tuning ► Up to 40x Faster than CPU-Only inference and 18x faster inference of TensorFlow models ► Under 7ms real-time latency
Low Response Time	
Power and Memory Efficiency	Performs target specific optimizations ➤ Platform specific kernels for Embedded (Jetson), Datacenter (Tesla GPUs) and Automotive (DrivePX) ➤ Dynamic Tensor Memory management improves memory re-use
Deployment-Grade Solution	Designed for production environments ➤ No framework overhead, minimal dependencies ➤ Multiple frameworks, Network Definition API ➤ C++, Python API, Customer Layer API

THANKS!