FitchLearning

Reinforcement learning

Author:

(c) Steve Phelps 2019 sphelps@sphelps.net

October 2021

Contents

1	Reinforcement learning				
	1.1	Overview	4		
	1.2	Loss functions	4		
	1.3	Control problems	4		
	1.4	Learning agents	4		
	1.5	Markov Decision Processes	5		
		1.5.1 MDP example	5		
	1.6	Multi-armed bandits	5		
	1.7	Multi-armed bandits as simple MDPs	7		
	1.8	The Dark Pool Problem	7		
	1.9	A multi-armed bandit in Python	7		
	1.10	Value functions	8		
		The greedy action	8		
		Learning as sampling	8		
	1.13	Value estimation	8		
	1.14	Value estimation in Python	8		
	1.15	Optimising the Python code	9		
	1.16	Further code optimisation	9		
	1.17	Incremental update of estimates	9		
			10		
	1 19		10		
	1.20		10		
	1.21	Exponential moving-average of rewards	11		
	1 22		11		
	1 23	Non-stationary environments	11		
			11		
	1.21		11		
	1.26		12		
	1.20		12		
	1.28		12		
	1.20		12		
	1.20	The time series of actions a_t	13		
	1.30		13		
	1.31		14		
	1.32		14		
	1.33	The exploration/exploitation trade-off			
	1.35	Standard error of the mean	15		
			15		
			15		
		Time series of actions	15		
		Time series of rewards	16		
		Softmax exploration	17		
		The Boltzmann distribution in Python	17		
		Example Q values	17		
		Softmax probabilities for $\tau = 2$	18		
		au = 10	18		
		au = 10	19		
	1.40	Summary	20		
2	Rein	forcement-learning case-study	21		
_	2.1		21		
	2.2	Training an agent in a simulation	21		
	2.3		21		
	2.0	2.3.1 The fundamental price	21		
		2011 The fandamental price	-1		

	2.3.2	The market-maker	22
	2.3.3	Informed traders	22
		Uninformed traders	
	2.3.5	The overall process	22
	2.3.6	The market-maker as an agent	23
			23
	2.3.8		23
	2.3.9	Setting up the parameters in Python	23
		Representing events	24
		Simulating the Poisson process	
		Simulating the price process	
	2.3.13		25
			26
			26
			26
	2.3.17		 27
			- <i>.</i> 27
			- <i>.</i> 28
			-0 28
			-0 29
2.4		·	<u>3</u> 0
2.5	Monte-		30
2.0			30
			31
			31
			31
			32
			32
			32 33
			33
			33
	2.5.7		34
2.6	Policy i		34
2.7			34
2.7			34
2.8			35
2.6 2.9			35 35
	Initialia	ing the O table	36
2.10	Function		36
		1 ~	
			36 37
		0 0	37 37
			37 38
			38
			39
			39
			39 40
2.20	Conciu	sion	40
Bibli	ogranhy		41
			41
			41
~·-		, , , , , , , , , , , , , , , , , , ,	

1 Reinforcement learning

Steve Phelps

Certificate in Quantitative Finance, Fitch Learning

1 1 Overview

- recap of multi-armed bandits
- the exploitation-exploration trade-off
- exploration strategies: softmax versus epsilon-greedy
- risk-sensitivity in reinforcement-learning

1.2 Loss functions

- Nearly all machine-learning problem can be posed as optimisation problems.
- We define a loss function $L: (\mathbf{x}, F_{\mathbf{w}}) \to \mathbb{R}$
- where **x** is some data, and *F*_{**w**} is an arbitrary stochastic continuous function parameterised by numeric weights **w**.
- *F* is often non-linear.
- We minimise the expected loss by choosing appropriate weights:

$$\underset{\mathbf{w}}{\operatorname{argmin}} E[L(\mathbf{x}, F_{\mathbf{w}})] \tag{1.1}$$

1.3 Control problems

- Reinforcement learning is technique for solving stochastic control problems.
- The function *F* defines a (stochastic) mapping between states of the world, and corresponding *actions* to take.
- The weights **w** typically specify propensities or probabilities for each action in each state.
- In the context of reinforcement-learning, we refer to the function *F* as a control *policy*.
- The loss function is the negative of the stochastic *return* obtained by taking the resulting actions.
- In contrast to traditional stochastic control,
- we do not have to obtain a closed-form solution for the dynamics of the environment.

1.4 Learning agents

- The entity taking the actions is called the agent.
- The agent repeatedly takes *actions* $a_t \in \mathbb{A}$ in discrete time periods $t \in \mathbb{N}$.
- When the agent chooses action a_t at time t, it obtains an immediate observable reward r_{t+1} .
- The *return* G_t at time t is some function f of the future rewards $G_t = f(r_{t+1}, r_{t+2}, ...)$
- Often we use $G_t = \sum_{i=t}^{\infty} \gamma^i r_{i+1}$ where $\gamma \in [0,1]$ is the *time discounting* of the agent.

Figure 1.1: MDP

1.5 Markov Decision Processes

- The reward is a function of the action chosen in the previous state $s_t \in S$.
- The s state and action a at time t determines the probability of the subsequent state s' and reward r.
- The probabilities are specified by the function p(s', r|s, a).
- This specifies a finite Markov Decision-Process.
- The goal of the agent is to maximise the expected return E[G].
- The agent follows a *policy* which specifies an action to take in each state: $\pi(s) \in \mathbb{A}$
- The optimal policy is denoted π *.

1.5.1 MDP example

Image by Waldo Alvarez under CC-by-sa 4.0.

1.6 Multi-armed bandits

Figure 1.2: picture of bandit

1.7 Multi-armed bandits as simple MDPs

- We can consider a multi-armed bandit as an MDP with a single state.
- The observed reward r_t is a realisation of an iid. random variable R_a whose distribution $F_a(r)$ depends on the action.
- At the beginning of the problem, the reward distributions F_a are *unknown*.
- We often assume that the reward distributions are *stationary*.
- The return for the agent over time period *T* is $G_T = \sum_{t=1}^{T} r_t$.
- Since the reward distribution depends on the actions, then similarly for the expected return E[G].
- Therefore, we can solve a multi-armed bandit by finding the action with the highest expected reward.

1.8 The Dark Pool Problem

- As an example, consider a simple order-routing problem.
- We can submit orders to one of several dark-pools.
- A dark-pool does not display an order-book, and only accepts large market-orders (volume but no price).
- Each dark-pool reports the filled quantity, and the price obtained.
- Our reward function is the proportion of the order that is filled.
- For a constant volume of shares per unit time, this is a multi-armed bandit problem.
- This is called The Dark Pool Problem.

1.9 A multi-armed bandit in Python

• Consider an *n*-armed bandit where $R_a \sim N(a, 1)$.

```
import numpy as np

def play_bandit(a, variance=1.0):
    """ Return the reward from taking action a """
    return np.random.normal(a, scale=np.sqrt(variance))
```

At t = 1, suppose we choose action a = 1, we then obtain realised reward r_2 :

```
r_2 = play_bandit(a=1)
r_2
```

0.43537167258403053

1.10 Value functions

• We use the function v(a) to denote the expected return for action a over the entire episode:

$$v(a) = E[G|a_t = a \forall_t]$$

$$= E[R_a]$$
(1.2)

- Typically, the function *v* is unknown to the agent.
- In this scenario, the agent performs sequential decision making under uncertainty.

1.11 The greedy action

- If we can compute v(a), then the agent's optimal policy is simple.
- The agent simply chooses the action with the highest expectation:

$$a* = \underset{a}{\operatorname{argmax}} v(a) \tag{1.4}$$

- We break ties arbitrarily.
- We call *a** the *greedy* action.

1.12 Learning as sampling

- The random variates r_t are directly observable.
- Therefore they are *samples* from the distribution $F_a(r)$.
- How can we estimate v(a) given the observed rewards r_1, r_2, \ldots, r_t ?

1 13 Value estimation

- We can use experience to "learn" the expectations V(a).
- That is, we can use *sampling* to *estimate V*.

$$Q_t(a) = \frac{r_1 + r_2 + \ldots + r_{k_a}}{k_a} \tag{1.5}$$

• By the law of large numbers:

$$\lim_{k_a \to \infty} Q(a) = v(a) \tag{1.6}$$

1.14 Value estimation in Python

• We can translating the equation from the previous slide into code.

```
def sample_from_bandit(a, k):
    rewards = []
for t in range(k):
    r = play_bandit(a)
```

```
rewards.append(r)
return np.mean(rewards)
```

• To sample k = 20 times using action a = 2:

```
q_2 = sample_from_bandit(a=2, k=20)
```

```
1.65751781843102
```

1.15 Optimising the Python code

• We can make our code more scalable by using map instead of a for loop.

```
def sample_from_bandit(a, k):
      return np.mean(map(lambda i: play_bandit(a), range(k)))
```

• or equivalently a comprehension:

```
def sample_from_bandit(a, k):
       return np.mean([play_bandit(a) for t in range(k)])
```

- The code is simpler, and closer to mathematical notation.
- For large sample sizes, comprehensions can be faster to compute than for loops.
- Code in this form is more easily translated into TensorFlow.

1.16 Further code optimisation

- Our code is still not optimal though.
- For large sample sizes we need to allocate memory to hold all the previous samples.

1.17 Incremental update of estimates

• We can rewrite the previous update equation thus:

$$Q_{k+1} = \frac{1}{k} \sum_{i=1}^{k} r_i \tag{1.7}$$

$$= \frac{1}{k} \left[r_k + \sum_{i=1}^{k-1} r_i \right] \tag{1.8}$$

$$= \frac{1}{k} \left[r_k + (k-1) \frac{1}{k-1} \sum_{i=1}^{k-1} r_i \right]$$
 (1.9)

$$= \frac{1}{k} [r_k + (k-1)Q_k] \tag{1.10}$$

$$= \frac{1}{k} [r_k + (k-1)Q_k]$$

$$= \frac{1}{k} [r_k + kQ_k - Q_k]$$
(1.10)

$$= Q_k + \frac{1}{k} [r_k - Q_k] \tag{1.12}$$

(1.13)

1.18 Temporal difference learning

- We are adjusting an old estimate towards a new estimate based on more recent information.
- We can think of the coefficient $(k)^{-1}$ as a *step size* parameter.

$$Q_{k+1} = \frac{1}{k} \left[r_k - Q_k \right] \tag{1.14}$$

```
new_estimate = old_estimate + step_size * (target - old_estimate)
```

1.19 Incremental updates in Python

```
def update_q(old_estimate, target_estimate, k):
    step_size = 1./(k+1)
    error = target_estimate - old_estimate
    return old_estimate + step_size * error

def sample_from_bandit(a, k):
    current_estimate = 0.
    for t in range(k):
        current_estimate = update_q(current_estimate, play_bandit(a \lor ), t)
    return current_estimate
```

```
q_2 = sample_from_bandit(a=2, k=100000)
q_2
```

```
1.9991323149375104
```

1.20 Using a constant step size

• Recall that with our previous update rule, the step_size parameter varies with each update.

$$Q_{k+1} = \frac{1}{k} \left[r_k - Q_k \right] \tag{1.15}$$

• Alternatively, we can use a *constant* step size $\alpha \in [0,1]$:

$$Q_{k+1} = Q_k + \alpha \left[r_k - Q_k \right]. \tag{1.16}$$

1.21 Exponential moving-average of rewards

$$Q_{k+1} = Q_k + \alpha [r_k - Q_k] \tag{1.17}$$

$$= \alpha r_k + (1 - \alpha)Q_k \tag{1.18}$$

$$= \alpha r_k + (1 - \alpha) \left[\alpha r_{k-1} + (1 - \alpha) Q_{k-1} \right]$$
 (1.19)

$$= \alpha r_k + (1 - \alpha)\alpha r_{k-1} + (1 - \alpha)^2 Q_{k-1}$$
 (1.20)

$$= \alpha r_k + (1 - \alpha)\alpha r_{k-1} + (1 - \alpha)^2 \alpha r_{k-2} + \dots$$
 (1.21)

$$+(1-\alpha)^{k-1}\alpha r_1 + (1-\alpha)^k Q_0 \tag{1.22}$$

$$= (1-\alpha)^k Q_0 + \sum_{k=1}^k \alpha (1-\alpha)^{k-i} r_i$$
 (1.23)

(1.24)

1.22 Recency

- Thus we see that if we use constant step-size parameter, we are calculating an exponential (i.e. time-weighted) *moving* average.
- The moving average is an estimate of the expected reward.
- The parameter α is sometimes called the *recency*.
- This parameter is *not* learned, but instead is chosen by the scientist.
- Parameters that are chosen but not learned are called *hyper-parameters*.

1.23 Non-stationary environments

- If the first moment of the reward distribution is non-stationary,
- then we should choose a larger values of α .

1.24 Recency in Python

```
def update_q(old_estimate, target_estimate, recency=0.2):
    error = target_estimate - old_estimate
    return old_estimate + recency * error
```

1.25 Action selection

• As discussed, if we have accurate estimates Q(a) = v(a), then the optimal policy $\pi*$ is straightforward:

$$a_t * = \underset{a}{\operatorname{argmax}} Q_t(a). \tag{1.25}$$

• However, is this the optimal policy if estimates are inaccurate?

1.26 Exploration

- Value forecasting and policy selection are not independent.
- If estimates Q(a) are based on small sample sizes k_a , and we always choose the greedy action, then our policy will be suboptimal.
- Taking the greedy action is called exploitation.
- In order to learn, our agent must also *explore* the environment by sampling from alternative actions.
- This is true even when current information suggests that the alternative are suboptimal;
- current information may be inaccurate.

1.27 ϵ -greedy exploration

- There are many different strategies for exploration.
- With ϵ -greedy exploration with probability ϵ we choose an action randomly, otherwise we exploit.
- We introduce a new hyper-parameter $\epsilon \in [0, 1]$.
- Each time we choose action we draw a random variate $\eta_t \sim U(0,1)$.

$$\eta_t \le \epsilon \implies a_t = a_t *$$
(1.26)

$$\eta_t > \epsilon \implies a_t \sim U(1, n)$$
(1.27)

(1.28)

1.28 ϵ -greedy exploration

1.29 Complete example

```
def simulate_agent(n = 20, T = 5000, epsilon=0.99, variance=1.0):
    q = np.zeros(n)
    actions = np.zeros(T); rewards = np.zeros(T)
    for t in range(T):
        a = act(q, epsilon)
        reward = play_bandit(a, variance)
        q[a] = update_q(q[a], reward)
        actions[t] = a
```

```
rewards[t] = reward
return q, actions, rewards
```

1.30 The time series of actions a_t

```
import matplotlib.pyplot as plt

q, actions, rewards = simulate_agent()

plt.plot(actions)

plt.xlabel('$t$'); plt.ylabel('$a_t$');

plt.show()
```


1.31 The time series of rewards r_t

```
plt.plot(rewards)
plt.xlabel('$t$'); plt.ylabel('$r_t$'); plt.show()
```


1.32 The expected reward

• From this single realisation of the model we can calculate a crude estimate of the expected reward from following our epsilon-greedy policy

```
np.mean(rewards)
```

14.829066119838421

• Although the policy improves over time, it is still below the value of the optimal policy $V_{a*=20}=20$:

```
np.mean(rewards[4500:])
```

14.960628226935565

```
np.var(rewards[4500:])
```

1.2791383883771532

1.33 Tuning the exploration rate hyper-parameter

• What factors determine the optimal choice of ϵ ?

1.34 The exploration/exploitation trade-off

- Exploration can be costly since there is an opportunity-cost from not taking the greedy action;
- provided that our value estimates are accurate.
- If estimates are inaccurate, we must explore in order to increase accuracy through sampling.

1.35 Standard error of the mean

• Our *Q* values are sample means, therefore their standard error is:

$$SE_Q = \frac{\sigma_r}{\sqrt{k_a}} \tag{1.29}$$

1.36 Uncertainty in rewards

- If we are certain about the rewards then there is no need to explore.
- Uncertainty can arise from:
 - variance in the reward distributions, and
 - non-stationarity in the underlying data-generation process for each reward distribution.
- Note that variance in reward distributions can be a modelling artifact;
- since sometimes we lack *knowledge* of, or the ability to *control*, extraneous variables which affect the reward.
- This latter uncertaintity relates to the concept of *states*, which we discuss later.

1.37 Increasing the exploration rate

• Let's rerun the simulation with a higher exploration of $1 - \epsilon$ by setting $\epsilon = 0.97$.

```
q, actions, rewards = simulate_agent(epsilon=0.97)

np.mean(rewards[4500:])

18.82358252216539

np.var(rewards[4500:])

4.154283642220208
```

1.38 Time series of actions

```
plt.plot(actions)
plt.xlabel('$t$'); plt.ylabel('$a_t$'); plt.show()
```


1.39 Time series of rewards

```
plt.plot(rewards)
plt.xlabel('$t$'); plt.ylabel('$r_t$'); plt.show()
```


1.40 Softmax exploration

$$Pr\{A_t = a\} = \frac{e^{Q_t(a)/\tau}}{\sum_{b=1}^k e^{Q_t(b)/\tau}}$$
 (1.30)

where τ is a hyper-parameter denoting a positive *temperature*.

- Higher temperatures cause all actions to be nearly equiprobable.
- In the limit as $\tau \to 0$ softmax action selection is the same as greedy action selection.
- Exploration is biased towards those actions with higher currently-estimated return.

1.41 The Boltzmann distribution in Python

```
def boltzmann(propensity, tau):
    return np.exp(propensity / tau)

def boltzmann_distribution(propensities, tau):
    x = np.array([boltzmann(p, tau) for p in propensities])
    total = np.sum(x)
    return x / total
```

1.42 Example Q values

```
Q = np.array([10., 8., 0.9, 1.1, 1.])
plt.bar(range(len(Q)), Q); plt.xlabel('$a$'); plt.ylabel('$Q(a)$')
plt.show()
```


1.43 Softmax probabilities for $\tau = 2$

- We can compute Pr(a) for a given temperature τ .
- Below we show the action selection probabilities for $\tau = 2$.
- As we increase the temperature, we reduce the skew of the distribution.

```
plt.bar(range(len(Q)), boltzmann_distribution(Q, tau=2.))
plt.xlabel('$a$'); plt.ylabel('$Pr(a)$')
plt.show()
```


1.44 $\tau = 10$

```
plt.bar(range(len(Q)), boltzmann_distribution(Q, tau=10.))
plt.xlabel('$a$'); plt.ylabel('$Pr(a)$')
plt.show()
```


1.45 $\tau = 100$

```
1.43 t = 100
1 Q = np.array([10., 8., 1., 1., 1.])
2 plt.bar(range(len(Q)), boltzmann_distribution(Q, tau=100.))
3 plt.xlabel('$a$'); plt.ylabel('$Pr(a)$')
4 plt.show()
```


1.46 Summary

- Reinforcement-learning is an example of machine-learning.
- It can be used to solve stochastic control problems.
- We do not require a model of the environment; we can learn directly from *experience*; e.g. a realised profit/loss.
- Successful application of this technique requires careful selection of hyper-parameters.
- We should consider uncertainty and risk when selecting exploration parameters.
- So far, we have considered problems with a single state.
- We will next extend this framework to multiple states using a case-study of a simple algorithmic trading strategy.

2 Reinforcement-learning case-study

Steve Phelps

2.1 Overview

- We will implement a simplified algorithmic trading strategy in Python using reinforcement-learning.
- Our agent will attempt to earn profit from market-making in a high-frequency market.
- We will consider a simplified environment, but the problem can be scaled up to more realistic scenarios.
- It is based on the work of Chan and Shelton 2001; "An Electronic Market-Maker".
- A more structured, and fully commented, version of the code used in these notes is available on github.

2.2 Training an agent in a simulation

- Allowing an agent to learn in the real-world can be risky.
- We can train our agent in a simulation environment.
- The simulation environment is sometimes called a "gym".
- If the simulation is a good model of the real-world then the learned policy will still perform well in real-world.
- The agent can still adapt its policy online in the real-world even if the simulation is not a good model.

2.3 The market model

- We consider three types of agent:
 - informed traders,
 - uninformed traders, and
 - a single market-maker.
- Prices evolve intra-day in discrete time periods $t \in \mathbb{N}$.
- A single asset is traded.
- All trades and orders involve a single share of the asset.
- There is no order crossing between traders.
- The arrival of traders at the market follow a Poisson process.

2.3.1 The fundamental price

- The true price of the asset $p_t^* \in \mathbb{Z}$ follows a Poisson process.
- The parameter $\lambda_p \in [0,1]$ is the probability of a discrete change in the price.

$$p_t^*(t) = p_0 + \sum_{i=1}^t \eta_t \tag{2.1}$$

where η_t is chosen i.i.d. from (-1, +1, 0) with probabilities $(\lambda_p, \lambda_p, 1-2\lambda_p)$ respectively.

2.3.2 The market-maker

- In the simplest form of the model, the market-maker posts a single price p_t^m .
- The market-maker can adjust its price:

$$p_{t+1}^m = p_t + \Delta p_t \tag{2.2}$$

where the price changes are discrete and finite; $\Delta p_t \in \{-1, 0, +1\}$.

- The reward at time *t* is the change in the profit:
 - for a sell order: $r_t = p_t^* p_t^m$.
 - for a buy order: $r_t = p_t^m p_t^*$.
- More advanced versions of the model consider separate bid and ask prices, and corresponding spread.

2.3.3 Informed traders

- Informed traders have information about the fundamental price p_t^* .
- They can submit market orders for immediate execution at the market-maker's price p_t^m .
- They submit

 - a buy order iff. $p_t^* > p_t^m$. a sell order iff. $p_t^* < p_t^m$. no order iff. $p_t^* = p_t^m$.
- They arrive at the market with probability λ_i .

2.3.4 Uninformed traders

- Uninformed traders arrive at the market with probability $2\lambda_u$.
- They submit a buy order for +1 shares with probability λ_u , or a sell order for -1 shares with equal probability λ_u .

2.3.5 The overall process

• All Poisson processes are combined:

$$2\lambda_n + 2\lambda_u + \lambda_i = 1 \tag{2.3}$$

- There is an event at every discrete time period t.
- Trade occurs a finite period of time $t \in \{1, 2, ..., T\}$ where T is the duration of a single trading day.
- The market maker operates over many days.
- The initial conditions for every day are the same; they are independent *episodes*.

2.3.6 The market-maker as an agent

- We can consider the market-maker as an adaptive agent.
- The environment consists of the observable variables in the market.
- Initially the observable state is the total order-imbalance IMB_t.
- The variables are discrete, therefore there is a discrete state space.
- The market-maker chooses actions in discrete time periods t.
- The set of actions \mathbb{A} available to the agent is $\Delta p \in \mathbb{A} = \{-1, 0, +1\}$.
- It can choose actions conditional on observations in order to maximise expected return E[G] where $G = \sum_t \gamma^t r_t$.

2.3.7 Importing the required modules

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

2.3.8 Parameterising the model

• In the following examples we use the parameterisation of the model:

```
\lambda_p = 0.2
\lambda_u = 0.1
\lambda_i = 0.4
T = 150
p_0^* = 200
```

2.3.9 Setting up the parameters in Python

```
INITIAL_PRICE = 200

MAX_T = 150

PROB_PRICE = 0.2

PROB_PRICE_UP = PROB_PRICE
PROB_PRICE_DOWN = PROB_PRICE

PROB_UNINFORMED = 0.1

PROB_UNINFORMED_BUY = PROB_UNINFORMED
PROB_UNINFORMED_SELL = PROB_UNINFORMED

PROB_UNINFORMED = 0.4

ALL_PROB = [PROB_PRICE_DOWN, PROB_PRICE_UP, PROB_UNINFORMED_BUY, 
PROB_UNINFORMED_SELL, PROB_INFORMED]
```

```
np.sum(ALL_PROB)
1.0
```

2.3.10 Representing events

```
EVENT_PRICE_CHANGE_UP = 0

EVENT_PRICE_CHANGE_DOWN = 1

EVENT_UNINFORMED_BUY = 2

EVENT_UNINFORMED_SELL = 3

EVENT_INFORMED_ARRIVAL = 4

ALL_EVENT = \

[EVENT_PRICE_CHANGE_DOWN, EVENT_PRICE_CHANGE_UP,

EVENT_UNINFORMED_SELL,

EVENT_UNINFORMED_BUY, EVENT_INFORMED_ARRIVAL]
```

2.3.11 Simulating the Poisson process

```
events = simulate_events()
```

The first ten events:

```
array([2, 1, 0, 0, 1, 3, 0, 4, 0, 2])
```

2.3.12 Simulating the price process

```
fundamental_price_changes = np.zeros(MAX_T)

fundamental_price_changes[events == EVENT_PRICE_CHANGE_DOWN] = -1
fundamental_price_changes[events == EVENT_PRICE_CHANGE_UP] = +1

fundamental_price_changes[:10]

array([ 0., -1.,  1., -1.,  0.,  1.,  0.,  1.,  0.])

fundamental_price = \
INITIAL_PRICE + np.cumsum(fundamental_price_changes)

fundamental_price[:10]
```

```
array([200., 199., 200., 201., 200., 200., 201., 201., 202., 202.])
```

2.3.12.1 As a function

```
def simulate_fundamental_price(events):
    price_changes = np.zeros(MAX_T)
    price_changes[events == EVENT_PRICE_CHANGE_DOWN] = -1
    price_changes[events == EVENT_PRICE_CHANGE_UP] = +1
    return INITIAL_PRICE + np.cumsum(price_changes)

fundamental_price = simulate_fundamental_price(events)
```

2.3.12.2 A single realisation of the price process.

```
plt.plot(fundamental_price)
plt.xlabel('$t$'); plt.ylabel('$p_t^*$')
plt.show()
```


2.3.13 Uninformed traders

```
def simulate_uninformed_orders(events):
    orders = np.zeros(MAX_T)
    orders[events == EVENT_UNINFORMED_BUY] = +1
    orders[events == EVENT_UNINFORMED_SELL] = -1
    return orders

uninformed_orders = simulate_uninformed_orders(events)
uninformed_orders[:10]
```

```
array([ 1., 0., 0., 0., -1., 0., 0., 1.])
```

2.3.14 Uninformed order-imbalance

```
plt.plot(np.cumsum(uninformed_orders))
plt.xlabel('$t$'); plt.ylabel('$IMB_t$')
plt.show()
```


2.3.15 Informed traders

```
def informed_strategy(current_price, mm_price):
    if current_price > mm_price:
        return 1
    elif current_price < mm_price:
        return -1
    else:
        return 0</pre>
```

2.3.16 A simple market-making strategy

- Initially we consider a very simple policy for our market-making agent.
- The policy π_h is parameterised by a single threshold parameter h.
 - Increase the price by a single tick if the order-imbalance is +h.
 - Decrease the price by a single tick if the order-imbalance is -h.

```
def mm_threshold_strategy(order_imbalance, threshold=2):
    if order_imbalance == -threshold:
```

```
return -1
elif order_imbalance == +threshold:
return +1
else:
return 0
```

2.3.17 The reward function

2.3.18 The market simulation

```
def simulate_market(events, uninformed_orders, fundamental_price,
                            mm_strategy=mm_threshold_strategy,
      \hookrightarrow threshold=1):
       mm_prices = np.zeros(MAX_T); order_imbalances = np.zeros(MAX_T)
       informed_orders = np.zeros(MAX_T); rewards = np.zeros(MAX_T);
       actions = np.zeros(MAX_T)
       t_mm = 0; mm_current_price = INITIAL_PRICE
       for t in range(MAX_T):
10
           if events[t] == EVENT_INFORMED_ARRIVAL:
               order = informed_strategy(fundamental_price[t],
12
      → mm_current_price)
               informed_orders[t] = order
           else:
14
               order = uninformed_orders[t]
15
16
           imbalance = np.sum(informed_orders[t_mm:t] +
      → uninformed_orders[t_mm:t])
           mm_price_delta = mm_strategy(imbalance, threshold)
19
           if mm_price_delta != 0:
20
               t_mm = t
21
               mm_current_price += mm_price_delta
23
           order_imbalances[t] = imbalance; mm_prices[t] =
24
      → mm_current_price
           actions[t] = mm_price_delta;
25
           rewards[t] = mm_reward(fundamental_price[t],
      → mm_current_price, order)
       return mm_prices, order_imbalances, rewards, actions
```

2.3.19 Order-imbalance time series

```
mm_prices, order_imbalances, rewards, actions = \
simulate_market(events, uninformed_orders, fundamental_price,
threshold=2)
```

```
plt.plot(order_imbalances); plt.xlabel('$t$'); plt.ylabel('$IMB_t$')

plt.show()
```


2.3.20 Price time series

```
plt.plot(mm_prices); plt.plot(fundamental_price)
plt.xlabel('$t$'); plt.legend(['$p^m_t$','$p^*_t$'])
plt.show()
```


2.3.21 Reward time series r_t

```
plt.plot(rewards)
plt.xlabel('$t$'); plt.ylabel('$r_t$')
plt.show()
```


2.4 Policy evaluation

- Each value of the threshold parameter h defines a policy π_h .
- In the experiments above we set h = 2.
- We can estimate the expected reward, and hence the expected return, across the episode.
- With no time-discounting, i.e. $\gamma = 1$, the return *G* is approximately:

```
np.mean(rewards)*MAX_T
```

```
_
165.0
```

- We could use this as an estimate of the expected return to the policy E(G).
- However, we have only used a single sample.

2.5 Monte-carlo policy evaluation

- We will attempt to obtain more accurate value estimates using Monte-Carlo estimation.
- First we restructure our code so that we can easily rerun an entire simulation with given parameters.

```
-
0.36
```

2.5.1 Using the sample-mean to estimate expected value

- We realise the model many times.
- Each realisation is a single episode or trajectory.
- We can consider each episode as a sample.
- We use the sample mean as the best estimator for the expectation.

2.5.2 Comparing policies

2.5.3 The value of states

- We can also estimate the value of a given state s assumming a fixed policy π
- For a threshold h = 2, i.e. $\pi = \pi_2$ the states are $s \in \{-2, -1, 0, +1, +2\}$.
- We first simulate a single episode.

2.5.4 The value of states

0.54

• Now we estimate $v_{\pi_2}(s) \approx \bar{r}$ for those rewards obtained in the given state:

• It's more elegant to represent this as a Python dictionary:

```
value_dict = dict(value_fn)
```

To compute $v_{\pi_2}(1)$ we can use the following

```
value_dict[1]
-
0.4878048780487805
```

2.5.5 The value of states

- Note that in the previous slide our estimate was based on a single episode.
- Below we extend the code on the previous slide to average over many episodes (samples).

2.5.6 Policy comparision

```
v_{\pi_1}(s) \approx \\ = \exp(\operatorname{cted_reward_by\_state(mm\_threshold\_strategy, threshold=1)} \\ = -0.4366842105263162, 0: -0.4183260869565217, 1: -0.4551463414634147\} \\ v_{\pi_2}(s) \approx \\ = \exp(\operatorname{cted_reward_by\_state(mm\_threshold\_strategy, threshold=2)} \\ = -0.5339999999999994, \\ = -1: -0.5252894736842114, \\ = 0: -0.5089347826086954, \\ = 0.5504634146341455, \\ = 0.5504634146341455, \\ = 0.5315384615384616\} \\
```

2.5.7 The value of state action pairs

• Ideally we would like to compute $v_{\pi}(s, a)$.

```
def expected_reward_by_state_action(mm_strategy, threshold,
                                             probabilities = ALL_PROB,
 2
      \hookrightarrow samples=1000):
       all_states = range(-threshold, threshold+1)
       all_actions = [-1, 0, +1]
 5
       result = np.zeros((samples, len(all_states), len(all_actions)))
 6
      for i in range(samples):
            _, states, rewards, actions = simulate_all(mm_strategy,
10

→ threshold)

           result[i, :, :] = \
12
               np.reshape(
                    [np.nanmean(rewards[(states == state) &
                                         (actions == action)]) \
15
                        for state in all_states for action in
      → all_actions],
                    (len(all_states), len(all_actions)))
18
       return np.nanmean(result, axis=0)
```

2.5.8 The value function obtained from π_2

```
\theta = 1 $\Delta p=0$ $\Delta p=1$-
        -0.38593
2
                            {\tt NaN}
                                           NaN-
                      -0.567512
1
             NaN
                                           NaN
0
                      -0.564312
                                           NaN
              NaN
              NaN
                       -0.567192
                                            NaN
1
                             NaN
                                   -0.386951
 2
              {\tt NaN}
```

2.5.9 Exploration of the state-space

```
return -1
elif order_imbalance == -threshold:
return +1
else:
return 0
```

2.5.10 Results from Monte-Carlo policy evaluation

```
Q = expected_reward_by_state_action(mm_exploration_strategy, \hookrightarrow threshold=2, samples=50000)
```

```
q_table(Q, [-1, 0, +1], range(-2, 3))
```

```
$\Delta p=-1$ $\Delta p=0$ $\Delta p=1$-
2    -5.393120    -6.398448    -5.971927-
1    -5.820319    -6.092052    -6.168338
0    -5.823990    -5.799513    -5.802399
1    -6.240433    -6.094727    -5.838191
2    -5.945665    -5.921463    -5.777265
```

The greedy policy:

```
dict(\{(s, np.where(Q[s+2, :] == np.max(Q[s+2, :]))[0][0] - 1) \text{ for } s \\ \hookrightarrow in \ range(-2, 3)\})
```

```
{-2: -1, -1: -1, 0: 0, 1: 1, 2: 1}
```

2.6 Policy improvement

- We have estimated $Q_{\pi}(s, a) = \hat{v}_{\pi}(s, a) \ \forall s \in \mathbb{S} \ \forall a \in \mathbb{A} \ \text{for a given policy } \pi$.
- If our estimates are accurate, we can use the function *Q* to find a better policy.
- To improve the policy we can simply take the greedy action for a given state: $\pi'(s) = \operatorname{argmax}_a Q_\pi(s,a)$
- For the corresponding proof, see the *policy improvement theorem*.

2.7 Policy iteration

- Note, however, that if we change the policy from π to π' , that our value estimates are outdated.
- Value estimates $Q_{\pi}(s, a)$ are obtained from following a given policy π .
- Value estimates and policies are not independent of each other.
- Therefore we should re-estimate $Q'_{\pi'}(s,a)$ for the new policy as $\hat{v}_{\pi'}(s,a)$
- We iterate until the policy and value estimates converge:

$$\pi(s,a) \to Q_{\pi}(s,a) \to \pi'(s,a) \to Q'_{\pi'}(s,a) \to \pi''(s,a) \dots \tag{2.4}$$

2.7.1 Policy iteration figure

Figure 2.1: gpi

2.8 Generalised Policy Iteration

- Many reinforcement-learning interleaving policy improvement and value estimation;
 - improve policy based on incomplete samples, while
 - improving value estimates by following a (sub-optimal) policy.
- These techniques are called Generalised Policy Iteration (GPI) methods.

2.9 Temporal-difference (TD) learning

Recall that:

$$v_{\pi}(s) = E_{\pi}[G_t|s_t = s] \tag{2.5}$$

$$= E_{\pi}[r_{t+1} + \gamma G_{t+1}|s_t = s]$$
 (2.6)

$$= E_{\pi}[r_{t+1} + \gamma v_{\pi}(s_{t+1})|s_t = s] \tag{2.7}$$

(2.8)

- When we use Monte-Carlo methods, G_t is unknown, so we estimate G_t from sampled returns.
- When we use dynamic-programming $v_{\pi}(s_{t+1})$ is unknown, so we use our existing estimate $\hat{v}_{\pi}(s_{t+1}) = V(s_{t+1})$ instead.
- Temporal difference learning combines both estimates:

$$V(s) \leftarrow V(s) + \alpha [r_t + \gamma V(s_{t+1}) - V(s_t)]$$
(2.9)

• We can generalise this to *Q*:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$
 (2.10)

2.10 Initialising the Q table

• We first define our action space $\Delta p_t \in \mathbb{A}$ and state space $\mathrm{IMB}_t \in \mathbb{S}$

```
all_actions = [-1, 0, +1]
all_states = range(-2, +3)
```

• We will use a matrix to represent our current estimates Q

```
def initialise_learner():
       return np.zeros((len(all_states), len(all_actions)))
1 Q = initialise_learner()
q_table(Q, all_actions, all_states)
    \Phi = 1 $\Delta p=0$ $\Delta p=1$-
2
             0.0
                           0.0
                                         0.0-
1
             0.0
                           0.0
                                         0.0
0
              0.0
                            0.0
                                          0.0
1
              0.0
                                          0.0
                            0.0
                                          0.0
              0.0
                            0.0
```

2.11 Functions to manipulate Q

• We define the following functions to map from the state and action space into indices of the matrix.

```
def state(imbalance, all_states=range(-2, +3)):
    s = int(imbalance) - all_states[0]
    ms = len(all_states)-1
    if s > ms:
        return ms
    elif s < 0:
        return 0
    else:
        return s

def action(price_delta):
    return int(price_delta) + 1</pre>
```

• We then define functions to obtain Q values from specified actions and states

```
def q_values(Q, imbalance):
    return Q[state(imbalance), :]

def q_value(Q, imbalance, price_delta):
    return Q[state(imbalance), action(price_delta)]
```

2.12 Temporal-difference learning in Python

We can translate the following equation

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$
 (2.11)

into Python:

```
def update_learner(s, a, r, s_, a_, Q, alpha=0.01, gamma=0.0):

\mathbb{Q}[\text{state(s), action(a)}] += \text{alpha} * (r + \text{gamma} * q_value(Q, s_n a_n) - q_value(Q, s_n a_n))
```

• Now we must modify our simulation code to provide feedback to the agent.

2.13 The market-maker as a reinforcement-learning agent

```
def simulate_learning_mm(Q, events, uninformed_orders,
      \hookrightarrow fundamental_price,
                                  mm_policy):
       mm_prices = np.zeros(MAX_T, dtype=int); order_imbalances = np.

    zeros(MAX_T, dtype=int)

       informed_orders = np.zeros(MAX_T, dtype=int); rewards = np.
      \hookrightarrow zeros(MAX_T);
       actions = np.zeros(MAX_T, dtype=int); mm_t_last_change = 0
       mm_current_price = INITIAL_PRICE
 6
       for t in range(MAX_T):
           if events[t] == EVENT_INFORMED_ARRIVAL:
 8
               order = informed_strategy(fundamental_price[t],
      → mm_current_price)
               informed_orders[t] = order
10
           else:
                order = uninformed_orders[t]
           imbalance = np.sum(informed_orders[mm_t_last_change:t] +
                                 uninformed_orders[mm_t_last_change:t])
14
           mm_price_delta = mm_policy(imbalance)
15
           if mm_price_delta != 0:
               mm_t_last_change = t
                mm_current_price += mm_price_delta
18
           order_imbalances[t] = imbalance; mm_prices[t] =
      → mm_current_price
           actions[t] = mm_price_delta;
           rewards[t] = mm_reward(fundamental_price[t],
      → mm_current_price, order)
           if t>0:
                update_learner(order_imbalances[t-1], actions[t-1],
23
      \hookrightarrow rewards[t-1],
                                    imbalance, mm_price_delta, Q)
       return fundamental_price, mm_prices, order_imbalances, rewards,
      \hookrightarrow actions, Q
```

2.14 On-policy control

- Now we can combine policy improvement and policy estimation in a single step.
- This algorithm is called SARSA, which is named after the arguments to the function update_learner.
- We use TD learning to bootstrap Q values, and then form an ϵ -greedy policy using our value estimates.

```
def mm_learning_strategy(Q, s, epsilon=0.1):
    if np.random.random() <= epsilon:
        action = np.random.choice([-1, 0, +1])</pre>
```

```
else:
    values = q_values(Q, s)
    max_value = np.max(values)
    action = np.random.choice(np.where(values == max_value)[0])

→ 1
return action
```

```
def simulate_learning(Q, probabilities=ALL_PROB):
2
       events = simulate_events(probabilities)
 3
       fundamental_price = simulate_fundamental_price(events)
      uninformed_orders = simulate_uninformed_orders(events)
5
6
      def sarsa(s):
           return mm_learning_strategy(Q, s)
      return simulate_learning_mm(Q, events, uninformed_orders,
      → fundamental_price, mm_policy=sarsa)
```

2.15 Learning over a single episode

```
Q = initialise_learner()
fundamental_price, mm_prices, order_imbalances, rewards, actions,
        → = simulate_learning(Q)
q_table(Q, all_actions, all_states)
     \rho=-1 $\Delta p=0$ $\Delta p=1$-
        0.000000 0.000000
-0.401995 -0.266438
2
                                              0.000000-
                                             -0.260303
1

    -0.629396
    -0.570168
    -0.329424

    -0.764471
    -0.882239
    -0.889121

    -0.377703
    -0.503057
    -0.215830

 0
```

2.16 Learning over many episodes

1 2

- We simply iterate over many trading days (i.e. episodes) in order to gradually learn the optimal policy.
- Each episode is independent, but notice that we re-use the Q-values from the previous episode.
- This ensures that we learn across episodes.

```
1 EPISODES = 5000
3 for i in range(EPISODES):
      fundamental_price, mm_prices, order_imbalances, rewards,
      → actions, Q = simulate_learning(Q)
```

2.17 The results

The learned *Q* values:

```
q_table(Q, all_actions, all_states)
    \theta = 1 $\Delta p=0$ $\Delta p=1$-
                     -1.945495
2
       -0.908272
                                   -1.884303-
       -0.404848
                     -0.941013
                                   -1.036575
1
0
        -0.945292
                      -0.496658
                                   -0.874284
1
        -1.331283
                      -1.248187
                                    -0.343388
```

-1.399997

-2.306827

The greedy policy:

2

-2.161748

2.18 The prices from the final trading day

```
plt.plot(mm_prices); plt.plot(fundamental_price)
plt.xlabel('$t$'); plt.legend(['$p^m_t$','$p^*_t$'])
plt.show()
```


2.19 The rewards in the final day

```
plt.plot(rewards)
plt.xlabel('$t$'); plt.ylabel('$r_t$')
plt.show()
```


2.20 Conclusion

- We have implemented a very simple market-making strategy in a simplified model of a financial market.
- The framework is very flexible, and can be extended to more realistic applications, e.g. separate bid and ask qutes.
- We can use a simulation model to initially train our agent.
- However, the agent can learn directly from the environment in the absence of a model.
- Reinforcement-learning can be very useful in reducing model-risk.

3 Bibliography

Chan, N. T., & Shelton, C. (2001). An electronic market-maker.

Ganchev, K., Nevmyvaka, Y., Kearns, M., & Vaughan, J. W. (2010). Censored exploration and the dark pool problem. Communications of the ACM, 53(5), 99-107.

Mani, M., Phelps, S., & Parsons, S. (2019). Applications of Reinforcement Learning in Automated Market-Making.

Sutton, R. S., & Barto, A. G. (2011). Reinforcement learning: An introduction.

3.1 Further reading on agent-based modeling

Farmer, J. D., & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460(7256), 685-686.

Lo, A. W. (2004). The adaptive markets hypothesis. The Journal of Portfolio Management, 30(5), 15-29.

Phelps, S. (2012). Applying dependency injection to agent-based modeling: the JABM toolkit. WP056-12, Centre for Computational Finance and Economic Agents (CCFEA), Tech. Rep.

Tesfatsion, L., & Judd, K. L. (Eds.). (2006). Handbook of computational economics: agent-based computational economics. Elsevier.

3.2 Links to software toolkits

- JABM
- JASA

3 Bibliography 41