Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao February 15, 2023

What we have seen last time

- Primality testing
- Modular exponential
- Primitive roots

Today's topics

- Discrete logarithm
- Some cryptography
- Primitive root theorem

Definition 15.1

Let m be a modulus. Then a **primitive root modulo** m is an element a in $\Phi(m)$ such that the dynamic of a m m consists of only one circle. Namely, any element of $\Phi(m)$ can be expressed as a power of a modulo m. $\Phi(m) = \{a^i \mid m \mid i \in P\}$

When a primitive root g modulo m exists, we have an isomorphism (two-way translation):

$$\exp_{g \pmod{m}} : \mathbb{Z}/\varphi(m) \longrightarrow \Phi(m)$$

$$\overline{x} \longmapsto g^{x} \pmod{m}.$$

$$CAN \quad go \quad back \quad i' \quad \text{"discrete logarithm"}$$

Question (Discrete logarithm)

Fix the modulus m and a primitive root $g \in \Phi(m)$. For a given $a \in \Phi(m)$, find an integer x such that f(m) = f(m) and f(m) = f(m) and f(m) = f(m) and f(m) = f(m) and f(m) = f(m).

Unlike the modular exponential problems, for which we have effective algorithm, there is no way to compute discrete logarithm effectively in general.

trial Exp Method: O(Q(m)logm)

But in special cases, discrete logarithm can be not that difficult.

Question (Pohlig-Hellman algorithm)

```
Fix the modulus m and a primitive root g \in \Phi(m). Suppose \varphi(m) = p^e. For a given a \in \Phi(m), find an integer x such that p is small e m a \equiv g^x \pmod{m}. p rime
```

$$\mathcal{C}(m) = \mathcal{C}$$

First compute $\gamma \equiv q^{p^{e-1}} \pmod{m}$. Starting with $x_0 = 0$, repeat the following steps for $k = 0, \dots, e-1$:

- 1. compute $a_k \equiv (q^{-x_k}a)^{p^{e-1-k}} \pmod{m}$.
- 1. compute $a_k \equiv (y \wedge u)$ 2. Solve the discrete logarithm $\gamma^{d_k} \equiv a_k \pmod{m}$.

 Smoll

Then x_e is an answer to our discrete logarithm problem.

Example 15.2 $3^{0} \quad 3^{1} \quad 3^{2} \quad 3^{2^{1}} \quad 3^{2^{3}} \quad 3^{2^{4}}$ $1 \rightarrow 3 \rightarrow 9 \rightarrow -4 \rightarrow -1 \rightarrow 1$ Solving $3^X \equiv 2 \pmod{17}$. First, $\varphi(17) = 2^4$. We then have $\gamma \equiv 3^{2^{4-1}} \equiv - \pmod{17}$. 1. $x_0 = 0$. Then $a_0 \equiv (3^{-0}2)^{2^{4-1-0}} \equiv 1 \equiv \gamma^0 \pmod{17}$. Hence, $x_1 = x_0 + 2^0 d_0 = 0.1 / 0 = 0$ $x_1 = x_0 + 2^{-1}u_0 = 0.7$ for v = v2. $a_1 \equiv (3^{-x_1}2)^{2^{4-1-1}} \equiv (3^{-0}2)^{2^{4-1-1}} \equiv -1 \equiv \gamma$ (mod 17). Hence, $x_2 = x_1 + 2^1 d_1 = 0. + 2 \cdot 1 = 2$ 3. $a_2 \equiv (3^{-x_2}2)^{2^{4-1-2}} \equiv (3^{-2}2)^{2^{4-1-2}} \equiv -1 \equiv \gamma$ (mod 17). Hence, $3^6 = 3^2 \cdot 3^4 = 9 \cdot (-4) = -2$ $X_3 = X_2 + 2^2 d_2 = 2. + 4 \cdot 1 = 6$ $X_3 = X_2 + 2^2 d_2 = 2. + 4 \cdot 7 = 6$ 4. $a_3 \equiv (3^{-X_3}2)^{2^{4-1-3}} \equiv (3^{-6}2)^{2^{4-1-3}} \equiv -1 \equiv \gamma$ (mod 17). Hence, $3^{-6} \cdot 2 = (-v^{-1}) = -1$ $X_4 = X_3 + 2^3 d_3 = 6 + 8 \cdot 1 = 19$ $3^{4} = 3^{8} \cdot 3^{4} \cdot 3^{2} = (-1) \cdot (-4) \cdot 9 = 2 \mod 17$

Discrete Logarithm is Hard!

We may use the difficulty of discrete logarithms to encrypt communication.

Question (Public key system, Diffie-Helman key exchange)

Alice wants to encrypt a message so that **only** Bob can decrypt it, not Eve.

- 1. Alice chooses a large ($\sim 2^{2048}$) prime p such that $\varphi(\varphi(p))$ also has a large prime factor, and finds a primitive root g modulo p. Publishes (p,g), which is the **public key**. #" = $\varphi(\varphi(p))$
- 2. Alice chooses a **private key a** and computes $A := g^a \pmod{p}$. Bob chooses a **private key b** and computes $B := g^b \pmod{p}$.

Then they exchange A and B (through any channel, probably intercepted by Eve).

$$A = 3^{\alpha}$$
 $B = 3^{6}$
 $A^{b} = 3^{\alpha b}$
 $B^{\alpha} = 3^{6\alpha}$

- 3. Alice computes $B^a \pmod p$ and Bob computes $A^b \pmod p$, both are $\equiv g^{ab} \pmod p$. This is their common secret key S.
- 4. Now Alice and Bob can encrypt their communication using the secret key S.
- 5. Eve may know (p, g, A, B). Can Eve find out what S is? This is very hard since finding a (resp. b) from A (resp. B) is difficult.

 **Cliscrete log!*

Some remarks:

$$\mathcal{C}(2q) = q - 1$$

- A **Sophie Germain prime** is a prime q such that p := 2q + 1 is also a prime. Note that $\varphi(p) = 2q$. Hence, when q is large, p would be a safe prime for the public key system.
- The primality testing is fast, so generating a public key wouldn't cost too much time.
- Alice needs to compute $g^a \pmod{p}$ and $B^a \pmod{p}$, while Bob needs to compute $g^b \pmod{p}$ and $A^b \pmod{p}$. These are modular exponential problems, and we can solve them effectively using binary exponentiation algorithms.

Primitive root theorem

Primitive root theorem

Theorem 15.3 (Gauss)

If p is prime, then $\Phi(p)$ contains exactly $\varphi(\varphi(p))$ primitive roots.

Example 15.4
$$e(7) = 7 - 1 = 6$$
 $\mathbf{E}(6) = \{1, 5\}$

For the prime 7, we have $\varphi(\varphi(7)) = \varphi(6) = 2$. Indeed, we have exactly two primitive roots 3 and 5.

3:
$$1 \rightarrow 3 \rightarrow 2 \rightarrow 6 \rightarrow 4 \rightarrow 5 \rightarrow 1$$
 pr $1 \rightarrow 2 \rightarrow 4 \rightarrow 1$ X
5: $1 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 2 \rightarrow 3 \rightarrow 1$ pr $1 \rightarrow 6 \rightarrow 1$ X

Proof of the theorem

Proof. For $a \in \Phi(p)$, theorem 13.11 tells us the dynamic of $a \pmod{p}$ consists of cycles of the same length $\ell(a)$. Let c(a) be the number of cycles. Then we have

$$c(\mathbf{a}) \cdot \ell(\mathbf{a}) = \varphi(\mathbf{p}) = \mathbf{p} - 1.$$

In particular, $\ell(a) \mid p-1$.

Conversly, for each divisor ℓ of p-1, define

$$\Phi_{\ell}(p) := \{ \mathbf{a} \in \Phi(p) \mid \ell(\mathbf{a}) = \ell \}.$$

In particular, $\Phi_{p-1}(p) = \{\text{primitive roots}\}.$

$$\# \underline{\sigma}_{p-1}(p) = \varrho(p-1)$$
 WTs: $\# \underline{\sigma}_{\varrho}(p) = \varrho(\varrho)$

Proof of the theorem

Proof. We want to show: each $\Phi_{\ell}(p)$ is nonempty.

1. For distinct divisors $\ell_1 \neq \ell_2$ of p-1, we necessarily have $\Phi_{\ell_1}(p) \cap \Phi_{\ell_1}(p) = \emptyset$. Therefore,

$$|p-1| = |\Phi(p)| = \sum_{\ell \mid p-1} |\Phi_{\ell}(p)|.$$

2. We will show that

$$\sum_{\ell \mid p-1} \varphi(\ell) = p - 1.$$

3. But for each divisor ℓ of p-1, we will see that

$$|\Phi_{\ell}(\mathbf{p})| \leq \varphi(\ell).$$

4. Hence, combining 1–3, we must have $|\Phi_{\ell}(p)| = \varphi(\ell) > 0$.

After Class Work

After Class Work

Exercise 15.1

Alice wants to encrypt communication with Bob using Diffie-Helman key exchange. Suppose the public key is (467, 2).

If the private keys of Alice and Bob are a = 22 and b = 33 respectively. What are A, B and the secret key S?

Exercise 15.2

Is there any primitive root modulo 8?