

Análise de Curto Circuito e Estabilidade

Bruno Zwierewicz

Gabriel de Abreu

Gabriel Dias de Jesus

Agenda

- 1. Objetivos
- 2. Análise de Curto-circuito
- 3. Análise da Estabilidade
- 4. Conclusões

1. Objetivos

- Objetivo principal
 - Utilizar o conhecimento construído durante todo o período de estudo;
 - Adquirir conhecimento sobre o uso de ferramentas computacionais:
 - Anafas Curto-circuito;
 - Anatem Estabilidade transitória

- Analisar a estabilidade em um sistema de 33 barras:
 - Identificar pontos críticos para a estabilidade;
 - Propor soluções para melhorar a estabilidade do sistema.

2. Análise de Curto-circuito

- Proteção;
- Tipos de curto;
- Ocorrências.

Gráfico 1:Principais locais de curto-circuito.

Gráfico 2: Principais tipos de curto-circuito.

2. Análise de Curto-circuito

Tabela 1: Curto-circuito trifásico e monofásico.

	Trifásico (kA)	Monofásico (kA)
GB. MUNHOZ (800) - GR	343	288
S. CAXIAS (810) - GR	393	324
S. SANTIAGO (925) - GR	461	310
CASCAVEL (939)	10	9
AREIA (934)	13	14
C. NOVOS (955)	10	8

- Conceito;
- Perturbações;
- Estabilidade angular.

transitória

• Barras críticas;

• Análise do tempo crítico.

• Tempo crítico

$$t_{cr} = \sqrt{\frac{4H(\delta_{cr} - \delta_0)}{\omega_s P_m}}$$

Tabela 2: Tempo crítico de acordo com o variação de carga.

Barra	T_c para carga leve – 70% (ms)	T_c para carga base (ms)	T_c para carga pesada – 130% (ms)
Itá (904)	918	488	346
S.Osório (919)	278	166	152

Tabela 3: $t_{cr} e \delta_{cr}$ para a variação da inércia da máquina de Itá em +10%

Barra	T_c para carga base (ms)	Varia çã o (%)
Itá (904)	520	-
$oldsymbol{\delta_c}(^\circ)$	95	-
Itá (904) – H+10%	577	+11%
$oldsymbol{\delta}_c(^\circ)$	95	0%

$$\int_{\delta_0}^{\delta_{cr}} (P_m - P_e^{durante}) d\delta + \int_{\delta_{cr}}^{\delta_{max}} (P_m - P_e^{p\delta s - falta}) d\delta = 0$$

Figura 1: Variação da Inércia da máquina de Itá.

• Análise do ponto crítico

Demanda:

Área A: 4210 MW

Área B: 875 MW

Geração:

Área A: 1719 MW

Área B: 3500 MW

Figura 2: Perda da estabilidade em Caxias e Osório.

 Falta monofásica próxima a barra de Santiago (com remoção da linha entre Caxias e Santiago)

Figura 3: Estabilidade das máquinas após contingências.

- Contingências:
 - Desligar 2 máquinas em Salto Caxias.

Figura 4: Fluxo na linha entre Osório e Areia.

Fluxo de potência de 165MVA;
 Capacidade de emergência
 319MVA;

Passam a atingir um fluxo de mais de 400 MVA.

• Prevenções

• Construir outra linha entre Caxias e Santiago;

• Construir outra linha entre Caxias e Santiago;

Figura 5: Curva de oscilação das máquinas

Figura 6: Fluxo na linha entre Osório e Areia.

• Despacho Atual

Tabela 4: Características do sistema.

Área	Geração máxima (MW)	Consumo (MW)	Geração atual (MW)
A	4266	4210	1719
В	4648	875	3500
Total		5085	5219
Perdas			134

- Novo despacho
 - Menor potência para o maior número de máquinas

Tabela 5: Características das máquinas da usina de S. Caxias.

Nome	Nº de máquinas	Geração máxima por máquina	
S. Caxias	4	310 MW	
$2 \times 310 = 620 MV$	A	rma a utilizar 3 máquinas <	
			P _m de cada gerador

• Resultado após um novo despacho. Tabela 6: Análises do tempo crítico e do delta crítico antes e após um realizado um novo despacho.

Despacho	Itá		S. Osorio	
	$t_{cr}\left(ms\right)$	δ_c (°)	$t_{cr}\left(ms\right)$	δ_c (°)
Antigo	488	95	166	54
Novo	337	80	297	81

Tabela 6: Análises das perdas elétricas antes e após realizado um novo despacho.

Despacho	Perdas (MW)	Variação
Antigo	134	210/
Novo	94	-31%

8. Conclusões

- Os objetivos desse trabalho foram atingidos.
 - A bagagem de conhecimento de cada um da equipe ajudou em cada ponto da realização do trabalho.
 - O conhecimento sobre a utilização dos softwares foram alcançadas, assim como a análise dos resultados das simulações.

- Ao se tratar da analisar de estabilidade do sistema exposto, conseguimos:
 - Identificar pontos críticos para a estabilidade;
 - Propor soluções para melhorar a estabilidade do sistema.
- Sobretudo, conseguimos validar o nosso conhecimento frente à análise e resolução de um problema.

OBRIGADO!

Principais Motivos de Curtos Trifásicos

Extra - Estabilidade

• Coeficiente de potência sincronizante

$$K_{S} = S_{p} = \frac{dP_{e}}{d\delta} \Big|_{\delta = \delta_{0}} = P_{\text{max}} \cos \delta_{0}$$

 Oscilação da máquina de Itá para diferentes carregamentos.

Tabela 2: $t_{cr} e \delta_{cr}$ para a variação da inércia da máquina de Itá em +10%

inercia da maquina de Ita em +10%				
Barra	T _c para carga leve – 70% (ms)	T _c para carga base (ms)	T _c para carga pesada – 130% (ms)	
Itá (904)	918	520	346	
$oldsymbol{\delta_c}(^\circ)$	113	95	88	
Itá(904) – H+10%	1641	574	385	
$oldsymbol{\delta_c}(^\circ)$	113	95	88	

DELTA - Ita X G.B.Munhoz

$$\int_{\delta_0}^{\delta_{cr}} (P_m - P_e^{durante}) d\delta + \int_{\delta_{cr}}^{\delta_{max}} (P_m - P_e^{p \acute{o}s - falta}) d\delta = 0$$

Figura X: Variação da Inércia da máquina de Itá.

Tabela 3: t_{cr} das outras máquinas em relação à variação da inércia da máquina de Itá

Nome (Barra)	Carga média – H normal (ms)	Carga média – H +10% (ms)	
S. Santiago (925)	342	342	
S. Segredo (810)	391	392	
S. Caxias (808)	322	317	
Machadinho (915)	577	572	
Itá (904)	488	546	
S. Osorio (919)	177	178	

$$\frac{d^2\delta_i}{dt^2} = \frac{\omega_s}{2H_i} (P_{mi} - P_{ei})$$

$$t_{cr} = \sqrt{\frac{4H(\delta_{cr} - \delta_0)}{\omega_s P_m}}$$

	Geração máxima (MW)	Geração atual (MW)	Novo Despacho (MW)
Área A			
Munhoz	1676	919	919
Itá	1450	400	985
Machadi nho	1140	400	800
Área B			
Segredo	1260	1000	675 ₹
Caxias	1240	1000	675 ▼
Osório	728	700	370 ₹
Santiago	1420	800	750 ↓

$$\int_{\delta_0}^{\delta_{cr}} (P_m - P_e^{durante}) d\delta + \int_{\delta_{cr}}^{\delta_{max}} (P_m - P_e^{p\delta s - falta}) d\delta = 0$$

$$\delta_{cr} = \frac{\omega_s}{4H} P_m t_{cr}^2 + \delta_0$$

Trafos sequência

Falta entre Cascavel Oeste e Caxias

Não entra em instabilidade, mas algumas linhas começam a operar em regime de emergência.

Que é o que acontece na linha (839-1047), a qual possui uma capacidade normal de 189MVA e está trabalhando em capacidade de emergência: 225MVA

Análise da influência da variação da P_ee H

P_e	Н	δ_{cr} (°)	$t_{cr}(s)$	$f_{osc}(H_z)$
	5	90,71	0,28	1,346
0,8	8	90,84	0,35	1,067
	11	90,83	0,42	0,945
	<u>5</u>	81,23	0,22	1,320
1	8	81,71	0,28	1,049
	11	81,36	0,33	0,941
	5	74,61	0,18	1,270
1, 2	8	74,86	0,22	1,030
	11	74,65	0,26	0,938

Analises do curto ao longo da linha

Falta a 1/3 da barra

Falta a 1/2 da barra

Falta a 2/3 da barra

$$Y_{bus\ durante\ a\ falta} = \begin{bmatrix} -j2.5 & j0.62 \\ j0.62 & -j5.78 \end{bmatrix}$$

$$Y_{bus\ durante\ a\ falta} = \begin{bmatrix} -j2,3 & j0,767 \\ j0,767 & -j6,92 \end{bmatrix}$$

$$Y_{bus\ durante\ a\ falta} = \begin{bmatrix} -j1,76 & j1,17 \\ j1,17 & -j9,11 \end{bmatrix}$$

$$P_e = |E_1'||V_{\infty}||Y_{12}|\operatorname{sen}(\delta)$$

Falta a $\frac{1}{3}$ da barra 1		Falta no meio da barra 1		Falta a $\frac{2}{3}$ da baı	rra 1
$\delta_{critico}$	$t_{cr}\left(s\right)$	$\delta_{critico}$	$t_{cr}\left(s\right)$	$\delta_{critico}$	$t_{cr}\left(s\right)$
96,36°	0,37	109,88°	0,40		

Analises do curto Mono e Tri

Agora temos:
$$I_{1\emptyset} = 3 \frac{1}{2(Z_{eq}) + (Z_{0eq})}$$

$$I_{3\emptyset} = \frac{1}{(Z_{eq})}$$

Caso 2:
$$Z_{0eq} > Z_{eq}$$

$$I_{1\emptyset} < I_{3\emptyset}$$
 Caso 3: $Z_{0eq} < Z_{eq}$
$$I_{1\emptyset} > I_{3\emptyset}$$

Extra - Controladores

Controladores

- **Regulador de tensão (AVR):** Controla a corrente de campo da máquina e atua, dentro dos seus limites para manter a tensão terminal da máquina num valor de referência;
- Estabilizador de sistema de potência (PSS): Atua no sistema de excitação para amortecimento das oscilações eletromecânicas;
- Regulador de velocidade (RV): é o controle mais lento em relação aos anteriores e atua no controle da rotação da turbina (frequência). Consequentemente, varia a potência ativa produzida pelo gerador, ajustando o balanço Carga vs Geração.

Regulador de velocidade (RV): é o controle mais lento em relação aos anteriores e atua no controle da rotação da turbina (frequência). Consequentemente, varia a potência ativa produzida pelo gerador, ajustando o balanço Carga vs Geração.

7. Utilização de reguladores

Nome (Barra)	Carga média Sem controlador (s)	Carga média Com controlador (s)
S. Santiago (925)	0,34	0,33
S. Segredo (810)	0,39	0,38
S. Caxias (808)	0,32	0,31
	Osorio	Caxias
	instável	instável
Machadinho (915)	0,58	0,48
Itá (904)	0,48	0,46
S. Osorio (919)	0,16	0,16
GB. Munhoz (800) ref. Itá.	0,47	0,46
Areia - 933	0,59	0,70
Linha 1060- 995	0,49	0,54

7. Utilização de reguladores

Barra	Sem controlador (s)	Com controlador (s)
Segredo	0,39	0,31
Itá	0,48	0,46
Osório	0,16	0,16

7. Maquina clássica x Polos salientes

$$P_G = \frac{|V||E|}{X_d} \operatorname{sen} \delta + \frac{|V|^2}{2} \left(\frac{1}{X_q} - \frac{1}{X_d} \right) \operatorname{sen} 2\delta$$

7. Atuação do Regulador de Velocidade.

Extra – Critério das áreas iguais

6. Critério das áreas iguais

• Sistema simplificado a um gerador e uma barra infinita.

	T_c (ms)	Varia çã o
Multimáquinas (Munhoz)	474	28%
Área iguais (Munhoz)	341	

6. Critério das áreas iguais

• Diagrama

