

Recap from Week 04

Forecast for Week 05

Learning Outcomes for this week:

- Understand the bias-variance tradeoff
- Understand why overfitting occurs: the role of model complexity and the sampled dataset
- Apply bias and variance decomposition in simple scenarios

Bias

The difference between the average prediction and the true value.

Variance

The variability of the model prediction, for given data. Tells us spread of our data.

NUS CS3244: Machine Learning

CC BY 4.0 Drawn by Min-Yen Kan

Regressing the sine function

$$f:[-1,1]\to\mathbb{R}$$

Only two training examples! m=2

Two models used for learning:

$$\overset{\vee}{\bullet} \mathcal{H}_1: h(x) = \theta_1 x + \theta_0$$

$$\overset{\mathbf{V}}{\diamond} \mathcal{H}_0: h(x) = \theta_0$$

Your turn Q1: Which is better, \mathcal{H}_0 or \mathcal{H}_1 ?

$$f(x) = \sin(\pi x)$$

Approximation – \mathcal{H}_0 versus \mathcal{H}_1

Use the full power of the model

where — and — are the $\overline{h}(x)$ of each \mathcal{H} .

Learning – \mathcal{H}_0 versus \mathcal{H}_1

Bias & variance - \mathcal{H}_0 versus \mathcal{H}_1

And the winner is ...

$$Bias = 0.50$$

$$Var =$$
?

$$Bias = 0.21$$

$$Var =$$
?

Lesson learned

Match the 'model complexity' to the

data resources, not to the target complexity.

Learning Curves

Plot expected L_{test} and L_{train} ...

 \dots as we vary size m

Expected test cost $\mathbb{E}_{\mathcal{D}}[L_{test}(f_{\mathcal{D}})]$

Expected training cost $\mathbb{E}_{\mathcal{D}}[L_{train}(f_{\mathcal{D}})]$

Simple versus Complex Models

Simple Model

Complex Model

Bias-Variance on a Curve

Overfitting, Illustrated

Simple target function

5 data points – slightly noisy

4th-order polynomial fit

$$L_{train} = 0$$

Overfitting, Illustrated

Simple target function

5 data points – slightly noisy

4th-order polynomial fit

 $L_{train} = 0$ but L_{test} is huge

The culprit

Overfitting:

"Fitting the data more than is warranted"

Culprit: Fitting the noise.

Not just useless, but harmful

In-Lecture Activity

2nd versus 0 10th order polynomials

In Zoom breakout or physical subgroups, discuss and react 🔭 🤼: (5 mins): Pick your model of choice for each scenario. In each scenario, you are given 15 data points. Justify your choice.

Q2: 10th-order target + noise

Q3: 50th order target, noiseless

NUS CS3244: Machine Learning

Two fits for each function

Noisy low-order target

	2 nd Order	
L_{train}	0.050	
L_{test}	0.127	

Noiseless high-order target

	2 nd Order	
L_{train}	0.029	
L_{test}	0.120	

Approximation—generalization tradeoff

Small L_{test} : good approximation of f on unseen test data

More complex $\mathcal{H} \to \mathrm{better}$ chance of approximating f

Less complex $\mathcal{H} \to \mathsf{better}$ chance of **generalizing** on test data

$$\mathsf{Ideal}\ \mathcal{H} = \{f\} \qquad \qquad \mathsf{Good}\ \mathsf{luck}$$
 with that!

Occam's Razor

CORE PRINCIPLES IN RESEARCH

OCCAM'S RAZOR

"WHEN FACED WITH TWO POSSIBLE EXPLANATIONS, THE SIMPLER OF THE TWO IS THE ONE MOST LIKELY TO BE TRUE."

OCCAM'S PROFESSOR

"WHEN FACED WITH TWO POSSIBLE WAYS OF DOING SOMETHING, THE MORE COMPLICATED ONE IS THE ONE YOUR PROFESSOR WILL MOST LIKELY ASK YOU TO DO."

WWW.PHDCOMICS.COM

"Simpler is better"

Formalized as Minimum

Description Length (MDL)

The shortest description of the data is the best model (related to Entropy)

Last Week's Assigned Task

Post a 1-2 sentence answer to the topic in your tutorial group: $\#tg-\underline{xx}$

Describe kNN or decision trees with respect to variance.

Pre-Lecture Activity from last week

The variance of kNN models are greatly affected by the chosen k-value. A small k-value leads to underfitting where the variance is extremely high. This can be observed by viewing the extremely rough decision surface of a kNN model with small k, where the surface constantly varies to adjust to the training points. To reduce this variance, we can choose a bigger k-value so that the decision surface would not be overly affected by a single training point and can remain relatively smooth. However this may also lead to overfitting, which would still cause high test error rate despite the low variance.

For kNN, the variance of the model will depend on the value chosen for k.

If k is small, for example k = 1, then the prediction will only depend on one data point, so the variance will be high and bias will be low due to overfitting.

If k is too large, then the model may generalise too much, so the variance will be low but the bias may be high and this may be an underfit.

The key to find a good model is to find a k value such that both bias and variance are low to increase model accuracy.

For kNN, for small values of k the bias will be lesser and the variance larger because the test data will have a higher probability of being mis-labeled. As k becomes larger, the bias increases while the variance decreases.

ln k NN

Model free: Data completely dictates the model

Higher k lowers the dependence of the model on a particular data point, makes model more robust and lowers variance

27

Pre-Lecture Activity from last week

Variance of Decision Tree model can be related to its depth, where the increase in depth would result in an overfitting of the data. As the deeper the model goes, the variance of the model will increase, being affected more by the noise of the data used to train the model

Decision trees are susceptible to high variance. For test data that is very close to decision boundaries, small fluctuations in its feature values can lead to a different classification.

DT tend to have larger variance as each decision is made using hard boundaries where even the smallest change could result in a different outcome. This variance is amplified when the tree is not pruned resulting in overfitting. (edited)

For a decision tree, the complexity of the model is dependent on the depth and number of splits/conditions the tree has. Shallow trees underfit the data (high bias, low variance) while deep trees overfit the data (low bias, high variance). Larger trees account for noise in the data to a greater extent, trying to "over-split" the data into finer bins/buckets to classify said data.

...In Decision Trees

Pruning discards detailed tests that may use criteria nonessential for classification in test data.

Before After

...In Linear Models

We just did this!

Each additional parameter θ_i adds a degree of freedom in the model.

NUS CS3244: Machine Learning

...In SVM

The SVM determines its separating hyperplane by virtue of its support vectors.

of support vectors

complexity
of the model

... in Ensembles

We have T reports $h_1, h_2, ..., h_T$ predicting whether a stock will go up as h(x).

We can:

- 1. Select the most trustworthy of them based on their usual performance Training performance: $h(x) = h_{t^*}(x)$ with $t^* = argmin_{t \in \{1,2,...,T\}} L_{train}(h_t^-)$
- 2. Let each report have a vote Uniform Vote: $h(x) = \text{sign}(\sum_{t=1}^{T} 1 \cdot h_t(x))$
- 3. Weight the reports non-uniformly Weighted Vote: $h(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t \cdot h_t(x))$ where $\alpha_t \ge 0$.
- 4. Combine the predictions conditionally This is decision trees, let's finish it up now!

Key: component hypotheses are **Diverse**.

Ensembling diverse h generalizes better.

fact: Decision trees have a native version: Random forests.

Quantifying the tradeoff

Decomposing L_{test} into

- 1. How well can ${\mathcal H}$ approximate f overall
- 2. How well we can zoom in on a good $h_{\theta} \in \mathcal{H}$

Applies to real-valued targets and uses squared error

There is an equivalent binary version through the lens of VC analyses (related to SVM)

Recap: Expected Value

We'll need to reason about values of data, irrespective of particular samples, so we'll need to work with expected values of random variable.

Expected Value: Average over all possible outcome of a random variable X.

$$\mathbb{E}[X] = \sum_{x \in X} x \Pr[X = x]$$
Not conditional test notation (not Iverson brackets)

Example

Let X be the outcome of a fair dice roll.

Then the expected value is

$$\mathbb{E}[X] = \frac{1}{6}(1+2+3+4+5+6) = 3.5.$$

Variance

Intuition

Quantify how much deviation from expected value.

$$Var[x] = \mathbb{E}[(x - \mathbb{E}[x])^2]$$

Example

Let x be the outcome of a fair dice roll. Then the variance is

$$Var[x] = \frac{1}{6} ((1 - 3.5)^2 + \dots + (6 - 3.5)^2) = \frac{35}{12}.$$

Some Terminology

- $\mathbb{E}_{x}[z(x)] \equiv$ Expected value of z(), given the distribution of values of x.
- $h_{\mathcal{D}} \equiv \text{Hypothesis}$ of learner when learning from Dataset \mathcal{D} .
- $\mathbb{E}_{\mathcal{D}}[z()] \equiv$ Expected value of z(), given distribution of possible Datasets \mathcal{D} .

Start with L_{test}

$$L_{test}(h_{\mathcal{D}}) = \mathbb{E}_{x}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^{2}]$$

h(x) depends on the specific dataset \mathcal{D} .

Start with L_{test}

$$L_{test}(h_{\mathcal{D}}) = \mathbb{E}_{x}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^{2}]$$

$$\mathbb{E}_{\mathcal{D}}[L_{test}(h_{\mathcal{D}})]$$

$$= \mathbb{E}_{\mathcal{D}} \big[\mathbb{E}_{\mathbf{x}} [(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2] \big]$$

$$= \mathbb{E}_{\mathbf{x}} \big[\mathbb{E}_{\mathcal{D}} \big[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2 \big] \big]$$

h(x) depends on the specific dataset \mathcal{D} .

Generalizing over all $\mathcal D$ with same m

Swap ok, as integrand is strictly non-negative

Focus on $\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2]$, we'll deal with the outer term $\mathbb{E}_{\mathbf{x}}[...]$ later.

The average hypothesis

To evaluate $\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2]$, we define the 'average' hypothesis $\overline{h}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})]$

Imagine many, many data sets $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$ drawn:

$$\overline{h}(\mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} h_{\mathcal{D}}(\mathbf{x})$$

Using $\bar{h}(x)$

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2] =$$

Using the average hypothesis h(x)

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2] =$$

$$= \mathbb{E}_{\mathcal{D}} \left[\left(h_{\mathcal{D}}(\mathbf{x}) - \bar{h}(\mathbf{x}) + \bar{h}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right]$$

Add $-\bar{h}(x) + \bar{h}(x)$. Associate first two and second two terms.

$$= \mathbb{E}_{\mathcal{D}} \left[\left(h_{\mathcal{D}}(\mathbf{x}) - \bar{h}(\mathbf{x}) \right)^{2} + \left(\bar{h}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} + 2 \left(\underbrace{h_{\mathcal{D}}(\mathbf{x}) - \bar{h}(\mathbf{x})}_{0} \right) \left(\underbrace{\bar{h}(\mathbf{x}) - f(\mathbf{x})}_{\text{const w.r.t. } \mathcal{D}} \right) \right]$$

Expand out, cross terms drop as the first part of term is 0 when the expectation $\mathbb{E}_{\mathcal{D}}$ is applied.

$$= \mathbb{E}_{\mathcal{D}} \left[\left(h_{\mathcal{D}}(\mathbf{x}) - \bar{h}(\mathbf{x}) \right)^{2} \right] + \left(\bar{h}(\mathbf{x}) - f(\mathbf{x}) \right)^{2}$$

 $2^{
m nd}$ term is constant with respect to ${\cal D}$

Bias and Variance

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^{2}] = \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x}) - \overline{h}(\mathbf{x})\right)^{2}\right] + \left(\overline{h}(\mathbf{x}) - f(\mathbf{x})\right)^{2}$$
Q4
Q5

Bias and Variance

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^{2}] = \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x}) - \bar{h}(\mathbf{x})\right)^{2}\right] + \left(\bar{h}(\mathbf{x}) - f(\mathbf{x})\right)^{2}$$

Therefore,

$$\mathbb{E}_{\mathcal{D}}[L_{test}(h_{\mathcal{D}})] = \mathbb{E}_{x}[\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(x) - f(x))^{2}]]$$

$$= \mathbb{E}_{x}[bias(x) + var(x)]$$

$$\equiv bias + var$$

In-Lecture Activity

The tradeoff

$$Bias[h(x)] = |\bar{h}(x) - f(x)|.$$

$$Var[h(x)] = \mathbb{E}\left[\left(h(x) - \overline{h}(x)\right)^2\right]$$

 \mathcal{H}_{big} : powerful model, contains the target function f. But you must find it.

Goldilocks, Data Science Style

Underfit

Overfit

(Well) Fit

10th order polynomial with noise

Two learners Overfitting and Restrained:

Both <u>know</u> the target is 10th order, you get 15 data points.

O chooses \mathcal{H}_{10}

R chooses \mathcal{H}_2

NUS CS3244: Machine Learning

48

When is \mathcal{H}_2 better than \mathcal{H}_{10} ?

Number of Data Points, m

Overfitting (grey region): $L_{test}(\mathcal{H}_{10}) > L_{test}(\mathcal{H}_{2})$

Without noise, with complex f

The two learners \mathcal{H}_{10} and \mathcal{H}_{2}

A detailed experiment

Impact of noise level and target complexity

$$y = f(x) + \epsilon(x) = \sum_{q=0}^{Q_f} \alpha_q x^q + \epsilon(x)$$

Noise level: σ^2

Target complexity: Q_f

Data set size: m

The overfit measure

We fit the data set $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ using our 2 models:

 \mathcal{H}_2 : 2nd order polynomials

 \mathcal{H}_{10} : 10th order polynomials

Compare out-of-sample errors of $h_2 \in \mathcal{H}_2$ and $h_{10} \in \mathcal{H}_{10}$

Overfit measure

$$L_{test}(h_{10}) - L_{test}(h_2)$$

Overfit measure: $L_{test}(h_{10}) - L_{test}(h_2)$

Noise

That part of *y* that we **cannot** model

It has two sources ...

Stochastic Noise: Data Error

We would like to learn f

$$y_j = f(\mathbf{x}_j)$$

Unfortunately, we actually observe $oldsymbol{\mathcal{D}}$

$$y_j = f(\mathbf{x}_j) + \text{stochastic_noise}$$

Stochastic Noise Fluctuations that we cannot model

Deterministic Noise: Model Error

We would like to learn from O

$$y_j = \bar{h}(\mathbf{x}_j)$$

Unfortunately, we only observe ${\mathcal D}$

$$y_j = f(\mathbf{x}_j)$$

$$= \bar{h}(\mathbf{x}_i) + \text{deterministic_noise}$$

Deterministic Noise

The part of f we lack the capacity to model

NUS CS3244: Machine Learning

Both sources of noise hurt learning

Stochastic Noise

Source: random measurement errors Re-measure y: Stochastic noise changes

Change \mathcal{H} : Stochastic noise still the same

Deterministic Noise

Source: learner's \mathcal{H} cannot model f

Re-measure y: Deterministic noise the same

Change \mathcal{H} : Deterministic noise changes

We have a single $\mathcal D$ and fixed $\mathcal H$ so we cannot distinguish between either; with finite $m, \mathcal H$ will try to fit the noise.

Noise and Bias-Variance

Recall the decomposition:

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(x) - f(x))^{2}] = \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(x) - \bar{h}(x)\right)^{2}\right] + \underbrace{\left(\bar{h}(x) - f(x)\right)^{2}}_{\text{bias}}$$

What if f is a noisy target?

$$y = f(x) + \epsilon(x)$$

$$\mathbb{E}[\boldsymbol{\epsilon}(x)] = 0$$

A noise term

$$\mathbb{E}_{\mathcal{D},\boldsymbol{\epsilon}}[(h_{\mathcal{D}}(x)-y)^2] =$$

A noise term

$$\mathbb{E}_{\mathcal{D},\epsilon}[(h_{\mathcal{D}}(x) - y)^{2}] =$$

$$= \mathbb{E}_{\mathcal{D},\epsilon}[(h_{\mathcal{D}}(x) - f(x) - \epsilon(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D}, \epsilon} \left[\left(\underbrace{h_{\mathcal{D}}(x) - \bar{h}(x)}_{\text{(1)}} + \underbrace{\bar{h}(x) - f(x)}_{\text{(2)}} - \underbrace{\epsilon(x)}_{\text{(3)}} \right)^{2} \right]$$

Expand observed y

Associate terms

$$= \mathbb{E}_{\mathcal{D},\epsilon} \left[\left(h_{\mathcal{D}}(x) - \bar{h}(x) \right)^2 + \left(\bar{h}(x) - f(x) \right)^2 + (\epsilon(x))^2 + \text{cross terms} \right]$$

Additional cross terms disappear as

$$\mathbb{E}(\boldsymbol{\epsilon}(x))=0$$

Actually, two noise terms

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(x) - f(x))^2] =$$

$$\underbrace{\mathbb{E}_{\mathcal{D},x}\left[\left(h_{\mathcal{D}}(x) - \bar{h}(x)\right)^{2}\right]}_{\text{variance}} + \underbrace{\mathbb{E}_{x}\left(\bar{h}(x) - f(x)\right)^{2}}_{\text{bias}} + \underbrace{\mathbb{E}_{\epsilon,x}\left(\epsilon(x)\right)^{2}}_{\sigma^{2}}$$

NUS CS3244: Machine Learning

Deterministic Noise

Stochastic Noise

Summary

Bias-Variance Tradeoff

 $\underline{\mathit{Bias}}\!\!: \mathsf{How} \ \mathsf{well} \ \mathcal{H} \ \mathsf{can} \ \mathsf{approximate} \\ \overline{f} \ \mathsf{overall}$

Match the 'model complexity' to the data resources, not to the target complexity

Overfitting: Fitting the data more than is warranted

Two causes: stochastic + deterministic noise

Bias ≡ deterministic noise

Noise causes overfitting

Overfitting is the disease

Noise is the cause

Learning is led astray by fitting the noise more than the signal

Two Cures:

- 1. Regularization: Restrain the model
- 2. Validation: Reality check by peeking at (the bottom line)

Assigned Task (due before next Mon)

Read the post https://www.kaggle.com/alexisbcook/cross-validation (10 mins)

Post a 1-2 sentence answer to the topic in your tutorial group: #tg-xx

How does cross validation relate to variance?

[There's an optional exercise with this course page, using random forest and MAE, you're welcomed to do it if you'd like]