Using the Transformer

XLNet > Yang et al., 2019

Learning goals

- Understand the improvements over BERT
- Permutation language modeling

CONCEPTUAL DIFFERENCES

Autoregressive (AR) language modeling

Factorizes likelihood to

$$\rho(\mathbf{x}) = \prod_{t=1}^{T} \rho(x_t | \mathbf{x} < t)$$

Only uni-directional (backward factorization also possible)

vs. (Denoising) Autoencoding (AE)

• Reconstruct masked tokens $\bar{\mathbf{x}}$ from corrupted sequence $\hat{\mathbf{x}}$:

$$\rho(\bar{\mathbf{x}}|\hat{\mathbf{x}}) = \prod_{t=1}^{T} m_t \cdot \rho(x_t|\hat{\mathbf{x}}),$$

with m_t as masking indicator

- Flexibility: Also other "corruptions" possible
- → Replacing words with predictions (cf. ELECTRA)
- → Shuffling tokens or dropping them

CONCEPTUAL DIFFERENCES

Drawbacks / Advantages

- No corruption (needed) of input sequences when using AR approach
- "Causal" structure in AR approach (sometimes needed)
- AE approach induces independence assumption between corrupted tokens
- \rightarrow Why?
 - AR approach only conditions on left side context
- → No (deep) bidirectionality possible (just e.g. biLSTMs)

ALTERNATIVE OBJECTIVE FUNCTION

Permutation language modeling (PLM)

- Solves the pretrain-finetune discrepancy
- → No artificial [MASK] token is introduced
 - Allows for bidirectionality while keeping an AR objective
- → Best of both worlds
 - Consists of two "streams" of the Attention mechanism
 - Content-stream attention
 - Query-stream attention

ALTERNATIVE OBJECTIVE FUNCTION

Manipulating the factorization order

- ullet Consider permutations **z** of the index sequence $[1, 2, \dots, T]$
- → Used to permute the factorization order, *not* the sequence order.
 - Original order of the sequence is retained by using positional encodings
 - PLM objective (with \mathcal{Z}_T as set of all possible permutations):

$$\max_{\theta} \quad \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_{\mathcal{T}}} \left[\sum_{t=1}^{\mathcal{T}} \log p_{\theta}(x_{z_t} | \mathbf{x}_{\mathbf{z}_{< t}}) \right]$$

Content-stream

- "Normal" Self-Attention (despite with special attention masks)
 - → Attentions masks depend on the factorization order
- Info about the position in the sequence is lost, see ► Example in A.1
- Sets of queries (Q), keys (K) and values (V) from content stream*
- Yields a *content embedding* denoted as $h_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}})$

^{*}For a nice visual disentanglement, see Figures in A.7

Content-stream

A.1 A Concrete Example of How Standard LM Parameterization Fails

In this section, we provide a concrete example to show how the standard language model parameterization fails under the permutation objective, as discussed in Section 2.3. Specifically, let's consider two different permutations $\mathbf{z}^{(1)}$ and $\mathbf{z}^{(2)}$ satisfying the following relationship

$$\mathbf{z}_{< t}^{(1)} = \mathbf{z}_{< t}^{(2)} = \mathbf{z}_{< t}$$
 but $z_t^{(1)} = i \neq j = z_t^{(2)}$.

Then, substituting the two permutations respectively into the naive parameterization, we have

$$\underbrace{p_{\theta}(X_i = x \mid \mathbf{x}_{\mathbf{z}_{< t}})}_{z_t^{(1)} = i, \ \mathbf{z}_{< t}^{(2)} = \mathbf{z}_{< t}} = \underbrace{p_{\theta}(X_j = x \mid \mathbf{x}_{\mathbf{z}_{< t}})}_{z_t^{(1)} = j, \ \mathbf{z}_{< t}^{(2)} = z_{< t}} = \underbrace{\sum_{x'} \exp\left(e(x')^\top h(\mathbf{x}_{\mathbf{z}_{< t}})\right)}_{\sum_{x'} \exp\left(e(x')^\top h(\mathbf{x}_{\mathbf{z}_{< t}})\right)}.$$

Effectively, two different target positions i and j share exactly the same model prediction. However, the ground-truth distribution of two positions should certainly be different.

Query-stream

- Access to context through content-stream, but no access to the content of the current position (only location information)
- Q from the query stream, K and V from the content stream*
- Yields a *query embedding* denoted as $g_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}, z_t)$

*For a nice visual disentanglement, see Figures in A.7

Content-stream

Query-stream

XLNET – GRAPHICAL REPRESENTATION

(a) content-stream; (b) query-stream; (c) whole model

XLNET – MODEL INPUT

Generation of samples:

Randomly sample two sentences and use concatenation* as input

[CLS]	The	fox	is	quick		[SEP]	
lt	jumps	over	the	lazy	dog		[SEP]

^{*}Nevertheless: XLNet does not use the NSP objective

Additional encodings:

- Relative segment encodings:
 - BERT adds absolute segment embeddings ($E_A \& E_B$)
 - XLNet uses relative encodings ($\vec{s}_+ \& \vec{s}_-$)
- Relative Positional encodings:
 - BERT encodes information about the absolute position $(E_0, E_1, E_2, ...)$
 - XLNet uses relative encodings (R_{i-i})

XLNET – SPECIAL REMARKS

 Partial Prediction: Only predict the last tokens in a factorization order (reduces optimization difficulty)

$$\max_{\theta} \quad \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_{T}} \left[\sum_{t=c+1}^{|\mathbf{z}|} \log p_{\theta}(x_{z_{t}}|\mathbf{x}_{\mathbf{z}_{< t}}) \right], \quad \text{with } c \text{ as cutting point}$$

- Segment recurrence mechanism: Allow for learning extended contexts in Transformer-based architectures, see Dai et al. (2019)
- No independence assumption:

$$\begin{split} \mathcal{J}_{\text{BERT}} &= \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{is a city}), \\ \mathcal{J}_{\text{XLNet}} &= \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{New}, \text{is a city}) \\ & \text{Prediction of [New, York] given the factorization order [is, a, city, New, York]} \\ & \text{Source: Yang et al. (2019)} \end{split}$$

XLNET – SOTA PERFORMANCE

Performance differences to BERT:

Model	SQuAD1.1	SQuAD2.0	RACE	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B
BERT-Large (Best of 3)	86.7/92.8	82.8/85.5	75.1	87.3	93.0	91.4	74.0	94.0	88.7	63.7	90.2
XLNet-Large- wikibooks	88.2/94.0	85.1/87.8	77.4	88.4	93.9	91.8	81.2	94.4	90.0	65.2	91.1

Table 1: Fair comparison with BERT. All models are trained using the same data and hyperparameters as in BERT. We use the best of 3 BERT variants for comparison; i.e., the original BERT, BERT with whole word masking, and BERT without next sentence prediction.

Source: Yang et al. (2019)

SOTA performance:

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI		
Single-task single models on dev											
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-		
RoBERTa [21]	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	-		
XLNet	90.8/90.8	94.9	92.3	85.9	97.0	90.8	69.0	92.5	-		
Multi-task ensembles on test (from leaderboard as of Oct 28, 2019)											
MT-DNN* [20]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0		
RoBERTa* [21]	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0		
XLNet*	90.9/90.9 [†]	99.0 [†]	90.4^{\dagger}	88.5	97.1 [†]	92.9	70.2	93.0	92.5		

Table 5: Results on GLUE. * indicates using ensembles, and † denotes single-task results in a multi-task row. All dev results are the median of 10 runs. The upper section shows direct comparison on dev data and the lower section shows comparison with state-of-the-art results on the public leaderboard.