Задача А. Кино

Имя входного файла: gcd.in
Имя выходного файла: gcd.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Global Cinema Distribution является крупнейшей киностудией, занимающейся съемкой короткометражных фильмов в Байтландии. Совсем недавно студия отсняла 2 фильма, после монтажа их продолжительность составит a и b секунд ($l \le a, b \le r$). Несмотря на то, что фильмы можно хранить в цифровом виде, в мире есть немало коллекционеров, которые до сих пор используют кинопленки. Для этого студия закупит $\frac{a+b}{gcd(a,b)}$ пленок и запишет фильмы на них. Помогите студии подобрать такие числа a и b, чтобы для записи фильмов потребовалось как можно больше пленок.

Формат входных данных

В единственной строке входного файла даны два разделенных пробелом числа — l и r $(1\leqslant l\leqslant r\leqslant 10^9).$

Формат выходных данных

В выходном файле должны содержаться числа a и b. Если ответов несколько, выведите любой.

Пример

gcd.in	gcd.out
49 51	50 51

Замечание

qcd(a,b) — наибольший общий делитель чисел a и b.

Задача В. Автобус

Имя входного файла: bus.in
Имя выходного файла: bus.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

В байтсбургском управлении общественного транспорта решили провести масштабную реформу в области оплаты проезда. Для этого в оборот введут транспортную карту, которую можно будет приобрести за k байтбаксов (бб.). С ней поездка будет стоить c бб., однако будет еще одна очень удобная опция — записать на нее x поездок за y бб. и можно будет ездить бесплатно, пока записанные поездки не кончатся. Такой опцией можно воспользоваться несколько раз, так же является возможным неиспользование части записанных поездок. Инновации требуют жертв, и поэтому сто-имость поездки без транспортной карты будет повышена до b бб. После анонса реформы к вам обратилось n человек, i-тый из которых планирует совершить a_i поездок. Помогите им рассчитать минимальную сумму, которую каждому из них придется потратить на поездки.

Формат входных данных

В первой строке дано число n ($1 \le n \le 10^5$) — количество человек, которым требуется помощь с расчетами стоимости поездок. Во второй строке дано n чисел a_i ($0 \le a_i \le 10^9$) — количество поездок, которое планирует совершить i-й человек. В третьей строке даны числа b — стоимость поездки без карты и k, c, x, y — параметры транспортной карты ($1 \le b$, k, c, x, $y \le 10^9$).

Формат выходных данных

В единственной строке выведите n чисел — минимальная суммарная стоимость оплаты проезда каждым человеком. Выводите ответы для людей в таком же порядке, в каком они идут во входном файле.

Пример

bus.in	bus.out
7	55 110 225 400 750 1750 3150
1 2 5 10 20 50 100	
55 50 35 60 1700	

Замечание

В примере при совершении:

- 1 или 2 поездок не выгодно покупать транспортную карту;
- 5, 10 или 20 поездок выгоднее всего будет купить карту, но не записывать на нее 60 поездок;
- 50 поездок выгодно записать на карту 60 поездок и не воспользоваться оставшимися;
- 100 поездок не выгодно записывать два раза по 60 поездок, нужно сделать это лишь один раз и пользоваться в течение остальных 40 поездок билетами по 35 бб.

Если куплена транспортная карта, то ей не обязательно пользоваться при совершении поездок.

Задача С. Выборы

Имя входного файла: election.in Имя выходного файла: election.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В Берляндии совсем недавно прошли выборы. В той стране живет 2n+1 жителей, среди которых n точно голосуют за Клэнтон, а остальные точно за Трапа. Кандидат объявляется победившим, если за него было отдано голосов *строго больше*, чем за другого. Но, к сожалению, не все смогут прийти в избирательный участок в день голосования. Вам интересно, сколько существует различных наборов людей, все-таки принявших участие в выборах, чтобы Трап победил. Ваша задача — узнать это число.

Формат входных данных

В единственной строке находится целое число $n\ (1\leqslant n\leqslant 10^6).$

Формат выходных данных

Выведите ответ на задачу по модулю $10^9 + 7$.

Пример

election.in	election.out
1	4

Задача D. Язык

Имя входного файла:
 еasylang.in
 имя выходного файла:
 ограничение по времени:
 Ограничение по памяти:
 256 мегабайт

В Байтландии решили обучать детей программированию с детского сада. Специально для этого был придуман язык EasyLang. Опишем его синтаксис:

- Переменные могут быть только целыми числами, имя переменной состоит из одной строчной латинской буквы (ASCII-код от 97 до 122).
- Пусть a переменная, а x целое неотрицательное число, не превосходящее 10^4 1. Выражением является конструкция x или a + x.
- Есть 2 типа команд:
 - 1. Объявить новую переменную или изменить значение переменной. Чтобы объявить переменную а нужно написать "int a = [выражение]". Для изменения значения переменной а "a = [выражение]".
 - 2. Вывести значение переменной. Для вывода переменной а нужно написать "print a".
- Переменная может быть объявлена не более одного раза, в выражении не должна использоваться переменная, не объявленная до текущей строки (это также относится к команде print). Если это условие нарушается хотя бы в одной команде, значит произойдет ошибка компиляции.
- \bullet Программа состоит из n команд, каждая команда занимает отдельную строку.

Со временем дети стали писать слишком сложный код, и вас попросили помочь разработать исполнитель программ на этом языке.

Формат входных данных

В первой строке дано число n ($1 \le n \le 10^5$) — количество команд в программе. В следующих n строках, согласно условию задачи, даны команды.

Формат выходных данных

При ошибке компиляции программы в выводе должна содержаться одна строка — "error at line i", если впервые ошибка была замечена в i-й строке. Иначе для каждой команды print выведите в отдельной строке значение соответствующей переменной.

Примеры

easylang.in	easylang.out
5	5
int a = 2	7
int b = a + 3	
print b	
b = b + 2	
print b	
3	error at line 2
int a = 0	
int a = a + 2	
b = a	

Задача Е. Делимость

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Сегодня в школе на уроке математики проходят делимость. Чтобы продемонстрировать свойства делимости, учитель выписал на доске все целые числа от 1 до N в несколько групп, при этом если одно число делится на другое, то они обязательно оказались в разных группах. Например, если взять N=10, то получится 4 группы.

Первая группа: 1. Вторая группа: 2, 7, 9. Третья группа: 3, 4, 10. Четвёртая группа: 5, 6, 8.

Вы уже догадались, что, поскольку любое число делится на 1, одна группа всегда будет состоять только из числа 1, но в остальном подобное разбиение можно выполнить различными способами. От вас требуется определить минимальное число групп, на которое можно разбить все числа от 1 до N в соответствии с приведённым выше условием.

Формат входных данных

Программа получает на вход одно натуральное число N, не превосходящее 10^9 .

Формат выходных данных

Программа должна вывести одно число – искомое минимальное количество групп.

Пример

стандартный ввод	стандартный вывод
10	4

Задача F. Спутник

Имя входного файла: satellite.in Имя выходного файла: satellite.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Компания «РосПрог» занимается написанием программного обеспечения для спутников. Спутники летают быстро, поэтому и программы на нём должны работать быстро (иначе он может не успеть, например, рассчитать и подкорректировать свою траекторию). У разработчиков есть несколько различных реализаций функции расчёта траектории, и они хотят выбрать самую быструю из них.

Для этого они взяли k реализаций, запустили каждую по n раз на тестовом стенде и измерили, сколько времени эти реализации каждый раз работали. После этого для каждой пары реализаций a и b было посчитано доминирование a над b. Доминированием реализации a над реализацией b называется количество пар запусков реализаций a и b таких, что запуск реализации a отработал строго быстрее запуска реализации b.

После этого была посчитана производительность каждой реализации. Производительность реализации a определяется как сумма доминирований a над всеми реализациями, кроме a. Из посчитанных данных должен быть составлен отчёт для начальства, но в последний день перед сдачей данные были потеряны. Помогите разработчикам всё-таки сдать отчёт начальству и восстановите значения всех производительностей.

Формат входных данных

В первой строке задано два числа n и k ($1 \le n, k \le 1000$) — количество запусков и количество различных реализаций, соответственно. Далее, в k строках задано по n целых чисел $a_{i,j}$ ($1 \le a_{i,j} \le 10^9$) — время работы j-го запуска i-й реализации.

Все $a_{i,j}$ различны.

Формат выходных данных

В первой и единственной строке выведите k чисел. i-е число должно равняться производительности i-й реализации.

Примеры

satellite.in	satellite.out
3 3	6 9 12
1 4 7	
2 5 8	
3 6 9	
1 3	0 1 2
2	
3	
9	

Задача G. Cow Lineup

Имя входного файла: lineup.in
Имя выходного файла: lineup.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Фермер Джон нанял профессионального фотографа, чтобы сфотографировать некоторых из своих коров. Поскольку у него есть коровы разных пород, он хочет иметь фото как минимум одной коровы каждой породы.

n коров Φ Д выстроены в ряд (позиция каждой указывается х-координатой) и целочисленным номером породы. Φ Д планирует сделать фотографию непрерывного участка коров. Стоимость фотографии равна ее размеру — то есть разностью между максимальной и минимальной х-координатами коров, представленных на фотографии.

Помогите Φ Д вычислить минимальную стоимость фотографии, в которой находится по крайней мере одна корова каждой породы.

Формат входных данных

Первая строка содержит целое число n — количество коров ($1 \le n \le 50\,000$).

Каждая из следующих n строк содержит два целых числа — х-координата и номер породы коровы. Оба числа не превосходят 10^9 .

Формат выходных данных

Выведите минимальную стоимость фотографии, содержащей не менее одной коровы каждой породы.

Примеры

lineup.in	lineup.out
6	4
25 7	
26 1	
15 1	
22 3	
20 1	
30 1	

Замечание

Имеется 6 коров, на позициях 25, 26, 15, 22, 20, 30, C соответствующими номерами пород 7, 1, 1, 3, 1, 1.

Диапазон от x = 22 до x = 26 (длиной 4) содержит коровы всех пород (1, 3, 7).