2018 - GEMA Aula 04

A. O número mínimo de açaís

2 seconds, 64 megabytes

Sanchos é um garoto muito legal e divertido, todos querem sua amizade, inclusive você.

Apesar de gente boa, ele também é muito excêntrico e estranho. Um exemplo disso é sua obsessão por strings formadas apenas por caracteres 'a' e 'b'. Durante a graduação Sanchos adquiriu muitas strings, há boatos de que ele possua mais de 10^9 , agora ele está em busca da string S, a mais perfeita de todas segundo Sanchos.

Andando pelo campus você acabou achando uma string T formada pelas letras 'a' e 'b' do mesmo tamanho que S (que sorte!).

Você quer presentear Sanchos com a string S (Sanchos ficaria muito feliz com tal regalo, você com certeza se tornaria seu mais novo amigo).

Para fazer com que T se torne igual a S, você pode mudar cada caractere de T (de 'a' para 'b' e vice-versa) pagando 1 açaí para seus veteranos especialistas em strings. O preço do açaí na cantina está absurdamente inflado, logo você quer fazer isso gastando o mínimo possível.

Dado S e T, responda qual o menor número de açaís que você terá que pagar ao seus veteranos para que a string T fique igual a string S para que você possa presentar Sanchos e quem sabe conquistar sua amizade.

Input

Duas strings S e T (o tamanho das duas é menor do que 10^5) contendo apenas letras 'a' e 'b'

Output

Um número inteiro não negativo representando a reposta do problema.

input	
abab baba	
output	
4	
input	
aaaaa aaaaa	
output	
0	
input	
ab aa	
output	

B. Da pra terminar?

1 second, 64 megabytes

Sr. Fuvão esta com um grande problema em mãos! Ele tem um robô que limpa a casa dele e funciona da seguinte maneira:

 O robô possuí uma matriz em sua memória interna que representa a sala de Fuvão, cada célula representa uma parte da sala e as letras "R", "L", "U", "D", representam as respectivas direções que o robô ira seguir quando estiver naquela célula.

- O robô quando estiver na célula (i, j) e essa célula possuir a letra "R", deve seguir para a célula (i, j + 1)
- O robô quando estiver na célula (i, j) e essa célula possuir a letra "L", deve seguir para a célula (i, j - 1)
- O robô quando estiver na célula (i, j) e essa célula possuir a letra
 "U", deve seguir para a célula (i 1, j)
- O robô quando estiver na célula (i,j) e essa célula possuir a letra "D", deve seguir para a célula (i+1,j)
- O robô deve continuar o processo acima até que ele saia da sala (ou seja, até que ele saia da matriz).

O problema é que o robô ficou louco! Certa manhã Fuvão acordou e o robô estava andando em círculos! Seu trabalho é, dada a matriz da memória interna do robô, dizer se ele sai da sala ou se fica andando em loop!

Ajude o menino Fuvão!

Input

A primeira linha da entrada contém dois inteiros N e M ($1 \le N, M \le 10^3$), que representam as dimensões da matriz da memória interna do robô.

As próximas N linhas possuem M caracteres que representam as direções que o robô irá assim que estiver naquela determinada célula, assim como descrito no enunciado.

A ultima linha possuí dois inteiros i e j, a linha e coluna em que o robô se encontra agora. A célula superior esquerda é a (0,0)

Output

input 2 1

Imprima uma única linha. A saída deve conter "AE MLK" (sem aspas) se o robô sai da sala, ou "EOQ"(Sem aspas) se ele fica em loop. Veja os casos para esclarecimento.

1 0	
output	
EOQ	
input	
1 3 LLL	

input	
1 3	
LLL	
0 0	
output	
AE MLK	

input		
3 3		
LLL		
LRD		
LLL LRD LUL		
1 1		
output		
E00		

C. O Melhor Lugar de Todos

2 seconds, 64 megabytes

Bob é um sapo preguiçoso que gosta de poças. Ele vive em uma floresta que tem ${\bf N}$ poças alinhadas e gostaria de saber em qual lugar ele deve ficar para que a soma das distâncias para as poças seja a menor possível.

Bob na poça.

Ele sabe que esse lugar vai estar na mesma linha que as poças e não liga se tiver que ficar dentro de uma poça.

Input

Na primeira linha do caso de teste será dado um inteiro \mathbf{N} $(1 \le \mathbb{N} \le 10^6)$, o número de poças. Na segunda linha serão dados \mathbf{N} inteiros $x_1 < x_2 < \ldots < x_{N-1} < x_N$ sendo que x_i $(0 \le x_i \le 10^6)$ indica a coordenada da poça i.

Output

Imprima um inteiro indicando a coordenada em que Bob deve ficar para que a soma das distâncias para todas as poças seja a menor possível. Caso existam múltiplas soluções, imprima a de **menor** coordenada.

input	
3 1 3 5	
output	
3	

input	
4 1 5 6 8	
output	
5	

input	
6 1 2 11 13 15 25	
output	
11	

D. Heads or Tails

0.5 seconds, 32 megabytes

Alice e Bob estão jogando um jogo de cara ou coroa, a cada rodada eles lançam uma moeda, que tem probabilidade p de sair cara e 1 – p de sair coroa. Se sair cara Bob ganha aquela rodada, se sair coroa Alice ganha.

Se a rodada n teve como vencedor Alice, ela ganha o jogo se o número de rodadas que Bob ganhou é maior que zero. Se a rodada n teve como vencedor Bob, ele vence o jogo se o número de rodadas que ele ganhou é maior do que o número de rodadas que Alice ganhou. Repare que o jogo pode não ter vencedor.

Dado N, o número máximo de rodadas jogadas e p, a probabilidade da moeda lançada sair cara, responda qual é a probabilidade de Bob ganhar o jogo.

Input

Um inteiro $0 \le N \le 10^9$ e um número ponto flutuante $0 \le p \le 1$.

Output

Apenas um número, que representa a probabilidade de Bob vencer o jogo. Imprima-o com quatro casas decimais.

input	
3 0.5	
output	
0.6250	

input	
5 0.81	
output	
0.9538	

input	
2 0.5	
output	
0.5000	

input	
1 0.777	
output	
0.7770	

No primeiro caso Bob só ganha se acontecer:

B (probabilidade 0.5)

ABB (probabilidade 0.5^3)

E. Como proceder?

1 second, 1024 megabytes

Você conhece alguém rico? Tem certeza disso? É porque você ainda não conhece o embrazado Piero (quase Pedro, em italiano), o garoto na sua tenra idade, já possui mansões, jet ski, volta para casa de helicóptero nas férias, sua casa é tão grande que tem fuso horário. Ele ganha tanto dinheiro por dia que até perdeu a conta.

Piero ganha x_i dilmas no dia i e te contratou para descobrir quanto dinheiro ele ganhou dentro de um intervalo [L, R]. Se você conseguir ajudar Piero você se tornará a segunda pessoa mais rica do mundo, porque obviamente o Piero é o primeiro.

Input

A primeira linha terá um inteiro N ($1 \le N \le 10^6$), indicando a quantidade de dias.

Na segunda linha serão dados N inteiros x_i ($0 \le x_i \le 10^8$). Na terceira linha terá um inteiro M indicando o número de consultas que Piero fará a você ($1 \le M \le 10^4$). Seguem M linhas com inteiros l_i , r_i ($1 \le l_i \le r_i \le 10^6$) cada, indicando os dias do intervalo da consula de Piero.

Output

Na saída imprima M linhas, a i-ésima linha deve indicar quanto dinheiro Piero ganhou na consulta i.

input 5 1 2 3 4 5 3 1 5 1 3 1 1

```
output

15
6
1
```

input
5
5 4 3 2 1
3
2 4
3 3
1 5
output
9
3
15

<u>Codeforces</u> (c) Copyright 2010-2018 Mike Mirzayanov The only programming contests Web 2.0 platform