О численном методе решения семейства интегро-дифференциальных уравнений с переменными коэффициентами, возникающих в финансовой математике

### О. Е. Кудрявцев

Ростовский филиал Российской таможенной академии

В. В. Родоченко

Южный Федеральный Университет

### 1 Аннотация

Здесь представлен алгоритм вычисления и небольшое введение, позволяющее понять контекст и отладить основные шаги

# 2 Предварительные соображения

Система. Описывает поведение актива  $S_t$ . Процесс вариации  $V_t$ , подчиняется процессу CIR.

$$dS_t = (r - \lambda_J \zeta) S_t dt + \sqrt{V_t} S_t dZ_t^S + (J - 1) S_t dN_t,$$

$$dV_t = \kappa_V (\theta_V - V_t) dt + \sigma_V \sqrt{V_t} dZ_t^V,$$

$$\langle dZ_t^S, dZ_t^V \rangle = \rho dt,$$
(1)

где r — неотрицательный параметр,  $Z_t^S$  и  $Z_t^V$  — винеровские процессы, связанные коэффициентом корреляции  $\rho$ . В скачковой части,  $N_t$  представляет из себя пуассоновский процесс с интенсивностью  $\lambda_J$ , считающий к моменту t количество одинаково распределенных скачков размера J. Процесс  $N_t$  не зависит от процессов  $Z_t^S$  и  $Z_t^V$ , а также независим от J. Параметр  $\kappa_V$  определяет скорость "возврата" процесса вариации к "долговременному" среднему значению  $\theta_V$ ,  $\sigma_V > 0$  называется "волатильностью" вариации. Соотношение между  $\zeta$  и параметрами распределения J подбирается из соображения мартингальности процесса  $\exp(-rt)S_t$ .

Величина скачков J имеет логнормальное распределение  $J \sim \text{LogN}(\mu_J, \sigma_J^2)$ , тогда  $\zeta = e^{\mu_J + \frac{1}{2}\sigma_J^2} - 1$ 

Математическое ожидание:

$$f(S, V, t) = M[e^{-r(T-t)} \mathbf{1}_{\underline{S}_T > H} G(S_T) | S_t = S, V_t = V],$$
(2)

H – поглощающий барьер,  $\underline{S}_T (=\inf_{0 \le t \le T} S_T)$  – процесс инфимума процесса  $S_t$ .

Функция выплат (put)):  $G(S) = \max\{0, K - S\}$ 

Пусть  $\tau = T - t$ , тогда  $F(S, V, \tau)$  (=  $f(S, V, T - \tau)$ ) удовлетворяет следующему интегродифференциальному уравнению в частных производных с переменными коэффициентами

в области  $S(\tau) > H$ .

$$\frac{\partial F(S,V,\tau)}{\partial \tau} = \frac{1}{2} V S^2 \frac{\partial^2 F(S,V,\tau)}{\partial S^2} + \rho \sigma_V V S \frac{\partial^2 F(S,V,\tau)}{\partial S \partial V} + \frac{1}{2} \sigma_V^2 V \frac{\partial^2 F(S,V,\tau)}{\partial V^2} + (r - \lambda_J \zeta) S \frac{\partial F(S,V,\tau)}{\partial S} + \kappa_V (\theta_V - V) \frac{\partial F(S,V,\tau)}{\partial V} - (r + \lambda_J) F(S,V,\tau) + \lambda_J \int_0^\infty F(JS,V,\tau) f(J) dJ,$$

$$F(S,V,0) = G(S),$$

где f(J) – функция плотности вероятностей величины скачков  $J. F(S, V, \tau) = 0, S(\tau) \le H.$ 

#### 3 Замена процесса

Обозначим  $\hat{\rho}=\sqrt{1-\rho^2},\,W=Z^V,\,\rho W+\hat{\rho} Z=Z^S,$  где  $W_t\,Z_t$  – независимые броуновские

Введём замену для процесса  $S_t$ , положив  $Y_t = \ln(\frac{S_t}{H}) - \frac{\rho}{\sigma_V} V_t$ . При этом  $S_t = H \exp(Y_t + \frac{\rho}{\sigma_V} V_t)$  $\frac{\rho}{\sigma_V}V_t$ ) Тогда:

$$dY_t = \left(r - \frac{1}{2}V_t - \frac{\rho}{\sigma_V}\kappa_V(\theta_V - V_t) - \lambda_J\zeta\right)dt + \hat{\rho}\sqrt{V_t}dZ_t + \ln JdN_t,$$
  
$$dV_t = \kappa_V(\theta_V - V_t)dt + \sigma_V\sqrt{V_t}dW_t.$$

Для дальнейшего описания алгоритма введём обозначения:

$$\mu_Y(V_t) = r - \frac{1}{2}V_t - \frac{\rho}{\sigma_V}\kappa_V(\theta_V - V_t) - \lambda_J \zeta,$$
  
$$\mu_V(V_t) = \kappa_V(\theta_V - V_t).$$

#### Рандомизация Карра 4

Для того, чтобы иметь возможность свести рассматриваемую задачу к задаче на малых интервалах времени, мы используем процедуру, известную как "рандомизация Карра", впервые введённую в статье [19] и обобщённую на общий случай задач стохастического управления в статье [20]. Обозначим  $F_n(Y_{t_n}, V_{t_n}) = F_n(H \exp(Y_t + \frac{\rho}{\sigma_V} V_t), V_{t_n}, t_n)$  – приближение Карра значения функции  $F(S,V,\tau)$  в момент времени  $t_n$ , где  $t_i=i\Delta \tau$  и  $\Delta \tau=\frac{T}{N}$ . Пусть  $\{\tau_i\}_{i=1}^N$  — набор независимых экспоненциально распределённых случайных величин со средним  $\Delta \tau$ . Обозначим  $Z_{\tau}^n = Y_{t_n+\tau} + \frac{\rho}{\sigma_V} V_{t_n+\tau}$ . Полагая  $F_N(Y_T,V_T) = G(H \exp(Y_T + \frac{\rho}{\sigma_V} V_T))$ , получаем возможность записать:

$$F_n(Y_{t_n}, V_{t_n}) = M_{t_n}[e^{-r\Delta\tau}I_{\underline{Z}_{\tau_n}^n > 0}F_{n+1}(Y_{t_n+\tau_n}, V_{t_n+\tau_n})], n = N-1, ..., 0$$

#### 5 Аппроксимация

Построим биномиальное дерево со "склеенными" вершинами, определяемыми по формуле:

$$V(n,k) = (\sqrt{V_0} + \frac{\sigma_V}{2}(2k - n)\sqrt{\Delta\tau})^2 \mathbb{1}_{(\sqrt{V_0} + \frac{\sigma_V}{2}(2k - n)\sqrt{\Delta\tau}) > 0}, n = 0, 1, ..., N, \ k = 0, 1, ..., n.$$

Идея приближения состоит в том, что в каждый момент времени  $t_n$  вариация может находиться в одном из состояний V(n,k). В момент  $t_{n+1}$  из вершины (n,k) мы можем попасть либо "вверх" – в вершину  $(n+1,k_u)$ , либо "вниз" – в вершину  $(n+1,k_d)$ , при этом  $k_u$  и  $k_d$  подбираются так, чтобы согласовать движение по дереву со сносом  $\mu(V_{(n,k)})$ , по следующим правилам:

$$k_u^{\Delta \tau}(n,k) = \min\{k^* : k+1 \le k^* \le n+1, V(n,k) + \mu_V(V(n,k)) \Delta \tau \le V(n+1,k^*)\}$$
$$k_d^{\Delta \tau}(n,k) = \max\{k^* : 0 \le k^* \le k, V(n,k) + \mu_V(V(n,k)) \ge V(n+1,k^*)\}$$

Определим вероятности переходов как:

$$p_{k_u^{\Delta \tau}(n,k)}^{\Delta \tau} = \frac{\mu_V(V(n,k))\Delta \tau + V(n,k) - V(n+1, k_d^{\Delta \tau}(n,k))}{V(n+1, k_u^{\Delta \tau}(n,k)) - V(n+1, k_d^{\Delta \tau}(n,k))}$$

Чтобы обеспечить корректную работу схемы в случае различных значений параметров, необходимо ввести дополнительные правила, предотвращающие появление отрицательных вероятностей в некоторых вершинах:

$$p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau} := \begin{cases} 1, & p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau} > 1\\ p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau}, & p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau} \in [0,1] , & p_{k_{d}^{\Delta\tau}(n,k)}^{\Delta\tau} := 1 - p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau}, \\ 0, & p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau} < 0 \end{cases}$$

# 6 Приближённая факторизация

Зафиксировав таким образом вариацию в каждом из узлов, мы имеем возможность рассматривать семейство задач с интегро-дифференциальным оператором следующего вида:

$$L_{n,k}f(y) := L_Y^{V(n,k)}f(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iy\xi} \psi_{n,k}(\xi) \hat{f}(\xi) d\xi.$$

Этот оператор можно понимать как псевдодифференциальный оператор, символом которого является  $\psi_{n,k}(\xi)$  – характеристическая экспонента процесса  $Y_t$  при  $V_t = V(n,k)$ :

$$\psi_{n,k}(\xi) = \hat{\rho}^2 \frac{V(n,k)}{2} \xi^2 - i\mu_Y(V(n,k))\xi + \phi(\xi),$$

где  $\phi(\xi)$  — характеристическая экспонента обобщённого пуассоновского процесса. Например, для модели Мертона она имеет вид:  $\phi(\xi) = \lambda_J (1 - e^{\frac{\sigma_J^2}{2} + \mu_J})$ 

Для каждого из узлов (n,k), n=N-1,...0 возникает две задачи — одна в предположении, что переход был совершён в вершину  $(n+1,k_d)$ , другая — в предположении, что переход был совершён в вершину  $(n+1,k_u)$ . Решение каждой из этих задач может быть записано в терминах операторов  $\varepsilon_q^+$  и  $\varepsilon_q^-$  — факторов Винера-Хопфа (см статью [14]):

$$f_n^{k_d}(y) = (q\Delta\tau)^{-1} \,\,\varepsilon_q^- \mathbb{1}_{(-\frac{\rho}{\sigma_V}V(n,k),+\infty)}(y) \,\,\varepsilon_q^+ f_{n+1}^{k_d}(y);$$

$$f_n^{k_u}(y) = (q\Delta\tau)^{-1} \,\,\varepsilon_q^- \mathbb{1}_{(-\frac{\rho}{\sigma_V}V(n,k),+\infty)}(y) \,\,\varepsilon_q^+ f_{n+1}^{k_u}(y),$$

Далее последовательно вычисляя  $f_n^k = p_{k_d^{\Delta_\tau}(n,k)} f_n^{k_d}(y) + p_{k_u^{\Delta_\tau}(n,k)} f_n^{k_u}(y)$  для n = N - 1, ..., 0, k = 0, ..., n, где  $f_n^k = F(He^{y+\frac{\rho}{\sigma_V}V(n,k)}, V(n,k), n\Delta\tau)$ , мы, после возвращения к исходным обозначениям, получаем приближённые значения искомого функционала (2). В отличие от более простого случая модели Хестона [21], наличие скачков лишает возможности использовать явные формулы для факторов – их получить не удаётся. Аналитические формулы для факторов имеют вид:

$$\phi_q^+(\xi) = \exp\left[(2\pi i)^{-1} \int_{-\infty + i\omega_-}^{+\infty + i\omega_-} \frac{\xi \ln(q + \psi(\eta))}{\eta(\xi - \eta)} d\eta\right];$$
  
$$\phi_q^-(\xi) = \exp\left[-(2\pi i)^{-1} \int_{-\infty + i\omega_+}^{+\infty + i\omega_+} \frac{\xi \ln(q + \psi(\eta))}{\eta(\xi - \eta)} d\eta\right],$$

Константы  $\omega_+$  и  $\omega_-$ , такие, что  $\omega_- < 0 < \omega_+$ , имеют здесь смысл параметров и подбираются так, чтобы сохранить сходимость соответствующих интегралов и зависят от параметров процесса Леви. В работе [18] получено универсальное и удобное для численной реализации представление факторов Винера-Хопфа. Функция  $\phi_q^+(\xi)$  допускает аналитическое продолжение в полуплоскость  $\Im \xi > \omega_-$  и может быть представлена как:

$$\phi_{q}^{+}(\xi) = \exp\left[i\xi F^{+}(0) - \xi^{2}\hat{F}^{+}(\xi)\right],$$

$$F^{+}(x) = \mathbb{1}_{(-\infty,0]}(x)(2\pi)^{-1} \int_{-\infty+i\omega_{-}}^{+\infty+i\omega_{-}} e^{ix\eta} \frac{\ln(q+\psi(\eta))}{\eta^{2}} d\eta;$$

$$\hat{F}^{+}(\xi) = \int_{-\infty}^{+\infty} e^{-ix\xi} F^{+}(x) dx.$$

Аналогично,  $\phi_q^-(\xi)$  допускает аналитическое продолжение в полуплоскость  $\Im \xi < \omega_+$  и может быть представлена как:

$$\phi_{q}^{-}(\xi) = \exp\left[-i\xi F^{-}(0) - \xi^{2} \hat{F}^{-}(\xi)\right],$$

$$F^{-}(x) = \mathbb{1}_{[0,+\infty)}(x)(2\pi)^{-1} \int_{-\infty+i\omega_{+}}^{+\infty+i\omega_{+}} e^{ix\eta} \frac{\ln(q+\psi(\eta))}{\eta^{2}} d\eta;$$

$$\hat{F}^{-}(\xi) = \int_{-\infty}^{+\infty} e^{-ix\xi} F^{-}(x) dx.$$

Для вычисления интегралов используется алгоритм быстрого преобразования Фурье.