On Tree-based Methods for Similarity Learning

Stéphan Clémençon¹ and Robin Vogel^{1,2} ¹ Télécom Paris, ² IDEMIA

MOTIVATION

Biometric identification =

checks correspondance of two measurements (x, x').

Given a similarity s and a threshold t,

$$(x, x')$$
 is a match $\Leftrightarrow s(x, x') > t$. (1)

The ROC curve of s gives the **true positive rate** (TPR) given the **false positive rate** (FPR) associated to eq. (1) for all thresholds $t \in \mathbb{R}$.

An usual approach is to optimize the **Area under** the ROC_s curve (AUC) of the similarity function s.

Biometric systems are deployed for a fixed, **low FPR**, which is hard to optimize in practice (see [1]).

CONTRIBUTIONS

- Extension of TreeRank (see [2]) that learns a symmetric similarity function which optimizes the ROC curve for similarity ranking (see [1]).
- Statistical guarantees in $\|\cdot\|_{\infty}$ in the ROC space.
- · Empirical illustration on synthetic data.
- · Trials on real data.

PRELIMINARIES

Classification setting. Assume $(X, Y) \sim P$, with:

- $Y \in \{1, \dots, K\}$ the output label,
- $X \in \mathcal{X} \subset \mathbb{R}^d$ the input random variable.

Similarity learning. Select similarity function S s.t.

the larger S(X, X') the higher $\mathbb{P}\{Y = Y' \mid X, X'\}$,

with
$$(X,Y) \perp (X',Y') \sim P$$
.

Optimal similarities S^* are increasing transforms of:

$$\eta(x, x') = \mathbb{P}\{Y = Y' \mid (X, X') = (x, x')\}.$$

The accuracy of any $s \in \mathcal{S}$ can be measured by:

$$d_p(s, s^*) = \|ROC_s - ROC^*\|_p,$$

where $s^* \in \mathcal{S}^*$ and $p \in [1, +\infty]$.

With p = 1, d_p measures the AUC difference.

Given i.i.d. copies $\mathcal{D}_n = \{(X_i, Y_i)\}_{i=1}^n$ of (X, Y), one wants to rank the dependent pairs

$$\{((X_i, X_j), Z_{i,j}) : 1 \le i < j \le n\}.$$

TreeRank (see [2].) Recursive technique that builds a piecewise constant score s_{D_n} for bipartite ranking.

Bipartite ranking considers data $\{(X_i, Y_i)\}_{i=1}^n$, i.i.d. copies of $(X, Y) \in \mathcal{X} \times \{-1, +1\}$.

TreeRank splits the input space recursively for weighted classif. problems with a class $\mathcal{A} \subset \mathcal{P}(\mathcal{X})$.

Under assumptions on the distribution and \mathcal{A} , [2] (Corollary 16 therein), states that, given a tree of depth $D = D_n \sim \log(\sqrt{n}), \forall \delta > 0, \exists \lambda \text{ s. t.,}$ w.p. $\geq 1 - \delta, \forall n \in \mathbb{N}, \text{ for } i \in \{1, +\infty\},$

$$d_i(s_{D_n}, s^*) \le \exp(-\lambda \sqrt{\log n}). \tag{2}$$

SIMILARITY TREERANK

For $F_{\sigma}(\mathcal{C})$, $\sigma \in \{-, +\}$ and $\mathcal{C} \subset \mathcal{X} \times \mathcal{X}$, introduce:

$$\widehat{F}_{\sigma,n}(\mathcal{C}) = \frac{1}{n_{\sigma}} \sum_{i < j} \mathbb{I}\{(X_i, X_j) \in \mathcal{C}, \ Z_{i,j} = \sigma 1\},$$

with
$$n_{\sigma} = (2/(n(n-1))) \sum_{i < j} \mathbb{I}\{Z_{i,j} = \sigma 1\}.$$

The $\widehat{F}_{\sigma,n}$'s are not averages of i.i.d. observations, but ratios of **averages of pairs**, i.e. ratios of U-statistics, see [1].

Input. Maximal depth $D \ge 1$, class \mathcal{A} of measurable symmetric subsets of $\mathcal{X} \times \mathcal{X}$, training dataset \mathcal{D}_n .

1. (INITIALIZATION.) Set $C_{0,0} = \mathcal{X} \times \mathcal{X}$, $\alpha_{d,0} = \beta_{d,0} = 0$ and $\alpha_{d,2^d} = \beta_{d,2^d} = 1$ for $d \geq 0$.

2. (ITERATIONS.)

For $d = 0, \ldots, D-1$ and $k = 0, \ldots, 2^d-1$:

a) (OPTIMIZATION STEP.) Set the entropic measure:

 $\Lambda_{d,k+1}(\mathcal{C}) = (\alpha_{d,k+1} - \alpha_{d,k})\widehat{F}_{+,n}(\mathcal{C})$

$$\Lambda_{d,k+1}(\mathcal{C}) = (\alpha_{d,k+1} - \alpha_{d,k}) \widehat{F}_{+,n}(\mathcal{C})$$
$$- (\beta_{d,k+1} - \beta_{d,k}) \widehat{F}_{-,n}(\mathcal{C}).$$

Find the best subset $C_{d+1,2k}$ of the cell $C_{d,k}$ in the **AUC sense**:

$$C_{d+1,2k} = \operatorname{argmax}_{C \in \mathcal{A}, C \subset C_{d,k}} \widehat{\Lambda}_{d,k+1}(C)$$
.

Then, set $\mathcal{C}_{d+1,2k+1} = \mathcal{C}_{d,k} \setminus \mathcal{C}_{d+1,2k}$.

b) (UPDATE.) Set

$$\alpha_{d+1,2k+1} = \alpha_{d,k} + \widehat{F}_{-,n}(\mathcal{C}_{d+1,2k}),$$

$$\beta_{d+1,2k+1} = \beta_{d,k} + \widehat{F}_{+,n}(\mathcal{C}_{d+1,2k}),$$
and $\alpha_{d+1,2k+2} = \alpha_{d,k+1}, \ \beta_{d+1,2k+2} = \beta_{d,k+1}.$

3. (OUTPUT.) After D iterations,

get the piecewise constant similarity function:

$$s_D(x, x') = \sum_{k=0}^{2^D - 1} (2^D - k) \mathbb{I}\{(x, x') \in \mathcal{C}_{D, k}\}.$$

GUARANTEES

The theoretical guarantees of eq. (2) for bipartite ranking remain valid for similarity learning.

Assumption for Theorem 1 to hold:

- ullet the feature space $\mathcal X$ is bounded,
- $\alpha \mapsto ROC^*(\alpha)$ is twice differentiable with a bounded first order derivative,
- the class \mathcal{A} is intersection stable, i.e. $\forall (\mathcal{C}, \mathcal{C}') \in \mathcal{A}^2, \mathcal{C} \cap \mathcal{C}' \in \mathcal{A}$,
- the class \mathcal{A} has finite VC dimension $V < +\infty$,
- $\{(x,x') \in \mathcal{X}^2 : \eta(x,x') \ge q\} \in \mathcal{A}$ for all values of $q \in [0,1]$.

Theorem 1.

Choose $D = D_n$ so that $D_n \sim \sqrt{\log n}$. Then, for all $\delta > 0$, there exists a constant λ s.t., with probability at least $1 - \delta$, we have for all $n \geq 2$:

$$d_{\infty}(s_{D_n}, s^*) \le \exp(-\lambda \sqrt{\log n}).$$

SYNTHETIC EXPERIMENTS

We generate data with a random tree of depth D_{gt} and fix $\mathcal{X} = \mathbb{R}^3$, $\delta = 0.01$, $n_{\text{test}} = 100,000$ and $n_{\text{train}} = 150 \cdot (5/4)^{D_{gt}^2}$, TreeRank outputs s_D .

Results feature 95% CI's based on 400 runs.

	Class asymmetry	
p_+	$D_1(s_D, s^*)$	$D_{\infty}(s_D, s^*)$
0.5	$0.07(\pm 0.07)$	$0.30(\pm 0.07)$
10^{-1}	$0.08(\pm 0.08)$	$0.31(\pm 0.08)$
10^{-3}	$0.42(\pm 0.17)$	$0.75(\pm 0.17)$
$2 \cdot 10^{-4}$	$0.45(\pm 0.08)$	$0.81(\pm 0.08)$

Parameters: $D = D_{qt} = 3$.

$D_1(s_D,s^*)$ $D_{\infty}(s_D,s^*)$ $0.21(\pm 0.13)$ $0.65(\pm 0.13)$ $0.11(\pm 0.10)$ $0.43(\pm 0.10)$ $0.07(\pm 0.07)$ $0.30(\pm 0.07)$ $0.06(\pm 0.06)$ $0.28(\pm 0.06)$

This illustrate two factors impairing generalization:

Parameters: $D_{qt} = 3$, p = 0.5.

- · pronounced class asymmetry,
- · underspecified models.

REAL DATA EXPERIMENTS

We try validating our model by learning similarities on MNIST, reduced by PCA. We test three models:

- · A linear metric learning algorithm: LMNN [3],
- · A simple metric on a **neural network encoding**, trained for classification,
- · Similarity TreeRank with decision stumps as A.

Conclusions:

TreeRank with decision stumps is limited.

 $\rightarrow \mathcal{A}$ is not expressive enough?

Future work: Treerank with neural networks as A.

REFERENCES

- [1] Robin Vogel, Aurélien Bellet, and Stéphan Clémençon. A probabilistic theory of supervised similarity learning for pointwise ROC curve optimization. In *ICML*, 2018.
- [2] Stéphan Clémençon and Nicolas Vayatis. Tree-based ranking methods. *IEEE Transactions on Information Theory*, 2009.
- [3] Kilian Q. Weinberger and Lawrence K. Saul. Distance Metric Learning for Large Margin Nearest Neighbor Classification. *JMLR*, 2009.