## 研究背景•目的



### 従来型医療用WPT方式





# 既存技術との比較

|                    | 手術時<br>精神的<br>リスク | 手術時<br>感染症<br>リスク | 医療費<br>経済的<br>リスク | 給電効率               | 人体影響                               |
|--------------------|-------------------|-------------------|-------------------|--------------------|------------------------------------|
| 取換え手術既存            | ×                 | ×                 | ×                 |                    | ×<br>侵襲性高い<br>リード線の接触不良<br>感染症のリスク |
| 磁界共鳴<br>IWPT<br>既存 |                   | 0                 | 0                 | 短い距離で大電力<br>が伝送可能  | △<br>高周波誘導電流<br>による発熱              |
| 電界結合<br>CWPT<br>既存 | 0                 | 0                 | 0                 | ▲ 誘電体損失が<br>発生     | △<br>金属プレート<br>加熱が発生               |
| 超音波<br>UWPT<br>提案  |                   |                   | 0                 | <b>米</b><br>音波減衰 大 |                                    |

### 研究背景•目的



## 〗 超音波振動方式UWPTシステム



原理

高周波インバータから出力される電圧 $v_p$ に応じて送電側PT(Tx-PT)が超音波振動を発生



圧電逆効果

体細胞(Tissue)から伝わる振動エネルギーを受けて受電側PT(Rx-PT)が高周波電流を生成



圧電効果

高周波整流回路を通じてインプラント機器内蔵のバッテリーを充電



## 回路構成

### 設計が容易な工業用周波数領域にて駆動するUWPTシステムを構築



- ①直列共振タンク
- ◆受電側の共振タンクも一括して送電側に設置
- ◆送電側・受電側の電力補償および波形改善
- ②整合トランス(M.T.)
  - ◆負荷直列共振の鋭さQを調整
  - ◆ Tx-PT(PT1)の電圧を昇圧
- ③全波倍電圧整流回路(Voltage doubler)
  - ◆Rx-PT(PT2)で発電する微小電圧*v<sub>PT2</sub>*を昇圧





## M.T.方式UWPTシステム 》 試作器仕様





試作器概観

| Item                         | Symbol      | Value[Unit]     |  |
|------------------------------|-------------|-----------------|--|
| Input voltage                | $V_{in}$    | 30 [V]          |  |
| Operating frequency          | $f_{ m s}$  | 39.3 [kHz]      |  |
| Load resistor                | $R_{ m o}$  | $200  [\Omega]$ |  |
| Dead time interval           | $T_{ m d}$  | 500[ns]         |  |
| Series resonant inductor     | $L_{ m s}$  | 570 [μH]        |  |
| Series resonant capacitor    | $C_{ m s}$  | 33 [nF]         |  |
| Quality factor               | Q           | 5               |  |
| Windings turns ratio of M.T. | $w_1/w_2$   | 5/14            |  |
| Magnetizing inductance       | $L_{m}$     | 570 [μH]        |  |
| Leakage inductance           | $L_{\rm r}$ | 11 [μH]         |  |

### M.T.方式UWPTシステム

## 実証評価

## 各種動作波形



 $[v_{\mathrm{ab}}: 25\mathrm{V/div}, i_{\mathrm{ab}}: 400\mathrm{mA/div}, 4\mu\mathrm{s/div}]$ 



 $[v_{\mathrm{PT1}}:50\mathrm{V/div},i_{\mathrm{PT1}}:20\mathrm{0mA/div},4\mu\mathrm{s/div}]$ 

### 実測効率



直列共振タンクの効果で  $i_{ab}$  と $i_{PT1}$  が共振波形



UWPTモジュール等価回路のモデリング手法 + 共振回路設計の有用性を実証

インバータ効率:
$$\eta_1 = \frac{P_2}{P_1} = 95[\%]$$

PT間電力伝送効率:  $\eta_2 = \frac{P_3}{P_2} = 10[\%]$ 

総合効率:
$$\eta_3 = \frac{P_3}{P_1} = 9.6[\%]$$

- ≫目標値10%に近い総合効率9.6%を達成
- ⇒提案システムの有用性を実証