

A comparison of voice amplifiers in Parkinson's disease

Thea Knowles^{1,2}, Scott Adams^{1,2,3}, Allyson Page^{1,2}, Daryn Cushnie-Sparrow^{1,2}, Mandar Jog³

¹Health and Rehabilitation Sciences Program, ²School of Communication Sciences and Disorders, ³Clinical Neurological Sciences, Western University.

Background

- Parkinson's disease (PD): neurodegenerative movement disorder that affects approximately 3% of individuals over 60
- 70 90% of people with PD will eventually develop a speech disorder (Logemann et al., 1978).
- **Hypophonia**, or reduced vocal loudness, is one of the most prevalent speech symptoms associated with PD (Adams & Dykstra, 2009).
- While behavioral interventions are a promising solution for many individuals with PD and hypophonia, many others have great difficulty transferring increased loudness in their day-to-day lives due to cognitive and sensorimotor deficits associated with PD (Adams & Dykstra, 2009; Sapir 2014).
- Voice amplification devices, which increase the loudness of a person's natural voice, offer an alternative solution for many individuals. However, despite their availability, little research has been done on device options and efficacy (Bertrand, 2009;

Purpose: To compare the performance of three devices used to amplify vocal loudness of people with hypophonia

Methods

15 individuals with hypophonia and their primary communication partner participated Hypophonia secondary to PD or parkinsonism in 14 individuals; secondary to MSA-C in 1 Participant with PD read aloud sentences in four device conditions (No Device, Devices A, B, C) and two noise conditions (No Noise, 65dB Multitalker Noise) Phase 1 In Lab

- Communication partner, seated 2 meters away from person with PD, repeated sentences back aloud
- At end of visit, couple took home one device to trial for a week
- One-week trial periods with each device, each followed by a visit with the first author
- At end of trial week, participant dyads completed questionnaires related to device impressions and communication
- At final visit, participant dyads elected whether or not to continue using a device

Outcome measures

- Partner speech intelligibility: % words correctly repeated
- **Speech-to-noise ratio:** How loud was the individual relative to the background noise levels?
- **Final device decision:** Did they want to continue using a device at the end?

Results

Devices

Device A: Wired belt pack amplifier

Chattervox

Phase 2

- Headset microphone
- Amplifier worn around waist

Device B: Stationary wireless amplifier

Nady WA120 BT

- Headset microphone
- Pocket-sized transmitter worn on belt/pocket
- Large stereo amplifier to be placed in one location

Device C: Personal communication system

Nady 351VR

- Headset microphone
- Pocket-sized transmitter worn on belt/pocket
- Pocket-sized receiver connected to headphones worn by listener
- One-on-one communication

Final decision

- Majority of participants (7/15) chose to continue using a device after the study was completed, however, there was considerable individual variability
 - 6-month followups are currently being completed.

Some participants (3/15) chose slightly different devices than A, B, and C; of these, 2 were similar in function to Device A, and one was similar to Device C.

Discussion

Clear device hierarchy for speech intelligibility and speech-to-noise ratio:

- Majority of individuals elected to continue using a device, however...
- Individual preferences did not necessarily align with hierarchy observed in laboratory speech tasks
- Discrepancy exists between device performance measures and final preferences
- Results indicate the promise of speech amplification and communication device use for hypophonia, but highlight a need to explore factors that influence preference and long-term use

For references, please take handout

References

- Adams, S. G. & Dykstra, A. D. (2009). Hypokinetic dysarthria. In M. R. McNeil (Ed.), *Clinical management of sensorimotor speech disorders*. New York: Thieme Publishing Group.
- Bertrand, A. N. (2009). Speech-language pathologists decision making pertaining to speech amplification devices: a survey (Master's thesis, Texas A&M University-Kingsville).
- Logemann, J. A., Fisher, H. B., Boshes, B., & Blonsky, E. R. (1978, February). Frequency and cooccurrence of vocal tract dysfunctions in the speech of a large sample of Parkinson patients. *The Journal of Speech and Hearing Disorders*, 43(1), 47–57. posterior tongue involvement. doi:10.1044/jshd.4301.47
- Nussbaum, R. L. & Ellis, C. E. (2003). Alzheimer's disease and Parkinson's disease. New England Journal of Medicine, 348(14), 1356–1364. General PD. doi:10.1056/nejm2003ra020003
- Sapir, S. (2014). Multiple factors are involved in the dysarthria associated with Parkinson's disease: a review with implications for clinical practice and research. *Journal of Speech, Language, and Hearing Research*, 57(4), 1330–1343.