Lab7(Ex1~8 Final) Result:

Exercise 1

(Already exist)

Exercise 2

(Already exist)

Exercise 3

Exercise 4.1 (Part a)

(Exercise 4.1 Part b)

(Exercise 4.1 part c)

Top 10 most discriminative variables based on mean difference:

```
MET 0.770480
1_1_pT 0.536629
MET_rel 0.505259
M_TR_2 0.496727
M_Delta_R 0.343099
M_R 0.339773
S_R 0.324697
1_2_pT 0.257438
axial_MET 0.159264
MT2 0.137493
dtype: float64
```

Exercise 4.2 (part a~c no need)

(part d)

Low-Level Features Covariance Matrix

	1_1_pT	1_1_eta	1_1_phi	1_2_pT	1_2_eta	1_2_phi	MET	MET_phi
1_1_pT	0.467	-0	0	0.305	-0	0.001	0.228	-0.001
1_1_eta	-0	1.004	-0.001	-0	0.408	-0.001	-0.002	-0.001
1_1_phi	0	-0.001	1.004	0.001	0	-0.267	0.001	-0.185
1_2_pT	0.305	-0	0.001	0.425	-0.001	0	0.079	-0.002
1_2_eta	-0	0.408	0	-0.001	1.006	0	0	-0
1_2_phi	0.001	-0.001	-0.267	0	0	1.004	-0	-0.035
MET	0.228	-0.002	0.001	0.079	0	-0	0.762	-0.003
MET_phi	-0.001	-0.001	-0.185	-0.002	-0	-0.035	-0.003	1.003

Low-Level Features Correlation Matrix

	1_1_pT	1_1_eta	1_1_phi	1_2_pT	1_2_eta	1_2_phi	MET	MET_phi
1_1_pT	1	-0.001	0	0.684	-0.001	0.001	0.383	-0.001
1_1_eta	-0.001	1	-0.001	-0	0.406	-0.001	-0.002	-0.001
1_1_phi	0	-0.001	1	0.002	0	-0.266	0.001	-0.184
1_2_pT	0.684	-0	0.002	1	-0.001	0	0.14	-0.002
1_2_eta	-0.001	0.406	0	-0.001	1	0	0	-0
1_2_phi	0.001	-0.001	-0.266	0	0	1	-0	-0.035
MET	0.383	-0.002	0.001	0.14	0	-0	1	-0.003
MET_phi	-0.001	-0.001	-0.184	-0.002	-0	-0.035	-0.003	1

High-Level Features Covariance Matrix

	cos_theta_r1	MET_rel	M_Delta_R	axial_MET	dPhi_r_b	M_R	MT2	S_R	M_TR_2	R
cos_theta_r1	0.039	0.055	0.039	-0.054	0.009	-0.014	0.045	-0.01	0.052	0.058
MET_rel	0.055	0.79	0.415	-0.12	0.146	0.044	0.409	0.082	0.302	0.249
M_Delta_R	0.039	0.415	0.389	-0.233	0.042	0.074	0.433	0.096	0.242	0.165
axial_MET	-0.054	-0.12	-0.233	1.005	-0.025	0.017	-0.461	-0.041	-0.185	-0.181
dPhi_r_b	0.009	0.146	0.042	-0.025	0.19	-0.029	0.021	-0.003	0.058	0.087
M_R	-0.014	0.044	0.074	0.017	-0.029	0.392	-0.037	0.38	0.21	-0.113
MT2	0.045	0.409	0.433	-0.461	0.021	-0.037	0.738	-0.011	0.189	0.232
S_R	-0.01	0.082	0.096	-0.041	-0.003	0.38	-0.011	0.382	0.228	-0.083
M_TR_2	0.052	0.302	0.242	-0.185	0.058	0.21	0.189	0.228	0.338	0.104
R	0.058	0.249	0.165	-0.181	0.087	-0.113	0.232	-0.083	0.104	0.222

High-Level Features Correlation Matrix

	cos_theta_r1	MET_rel I	M_Delta_R	axial_MET	dPhi_r_b	M_R	MT2	S_R	M_TR_2	R
cos_theta_r1	1	0.316	0.319	-0.272	0.106	-0.116	0.264	-0.085	0.451	0.627
MET_rel	0.316	1	0.748	-0.134	0.378	0.078	0.535	0.15	0.584	0.595
M_Delta_R	0.319	0.748	1	-0.373	0.155	0.189	0.809	0.249	0.668	0.564
axial_MET	-0.272	-0.134	-0.373	1	-0.057	0.027	-0.535	-0.067	-0.317 -	0.383
dPhi_r_b	0.106	0.378	0.155	-0.057	1	-0.106	0.056	-0.013	0.229	0.424
M_R	-0.116	0.078	0.189	0.027	-0.106	1	-0.068	0.981	0.577 -	0.383
MT2	0.264	0.535	0.809	-0.535	0.056	-0.068	1	-0.021	0.379	0.574
S_R	-0.085	0.15	0.249	-0.067	-0.013	0.981	-0.021	1	0.635 -	0.287
M_TR_2	0.451	0.584	0.668	-0.317	0.229	0.577	0.379	0.635	1	0.38
R	0.627	0.595	0.564	-0.383	0.424	-0.383	0.574	-0.287	0.38	1

All Features Covariance Matrix

	1_1_pT	1_1_eta	1_1_phi	1_2_pT	1_2_eta	1_2_phi	MET	MET_phi I	MET_rel	axial_MET	M_R	M_TR_2	R	MT2	S_R I	M_Delta_R o	lPhi_r_b c	cos_theta_r1
1_1_pT	0.467	-0	0	0.305	-0	0.001	0.228	-0.001	0.098	-0.01	0.364	0.287	-0.06	-0.012	0.343	0.098	-0.047	0.022
1_1_eta	-0	1.004	-0.001	-0	0.408	-0.001	-0.002	-0.001	-0.001	-0.001	-0.001	-0.001	0	0	-0.001	-0.001	-0.001	0
1_1_phi	0	-0.001	1.004	0.001	0	-0.267	0.001	-0.185	0.001	-0.002	0.001	0.001	0	0.001	0.001	0.001	0.001	0
1_2_pT	0.305	-0	0.001	0.425	-0.001	0	0.079	-0.002	-0.001	0.051	0.325	0.163	-0.099	-0.069	0.322	0.006	-0.004	-0.028
1_2_eta	-0	0.408	0	-0.001	1.006	0	0	-0	0.001	-0.001	-0.001	0	0	0.001	-0.001	0.001	-0	0
1_2_phi	0.001	-0.001	-0.267	0	0	1.004	-0	-0.035	0.001	-0.002	0.001	0.001	0.001	0.002	0.001	0.001	-0	0
MET	0.228	-0.002	0.001	0.079	0	-0	0.762	-0.003	0.546	0.154	0.145	0.365	0.188	0.155	0.166	0.315	0.146	0.073
MET_phi	-0.001	-0.001	-0.185	-0.002	-0	-0.035	-0.003	1.003	-0.005	-0	-0.001	-0.001	-0	0	-0.002	-0.001	-0.002	0
MET_rel	0.098	-0.001	0.001	-0.001	0.001	0.001	0.546	-0.005	0.79	-0.12	0.044	0.302	0.249	0.409	0.082	0.415	0.146	0.055
axial_MET	-0.01	-0.001	-0.002	0.051	-0.001	-0.002	0.154	-0	-0.12	1.005	0.017	-0.185	-0.181	-0.461	-0.041	-0.233	-0.025	-0.054
M_R	0.364	-0.001	0.001	0.325	-0.001	0.001	0.145	-0.001	0.044	0.017	0.392	0.21	-0.113	-0.037	0.38	0.074	-0.029	-0.014
M_TR_2	0.287	-0.001	0.001	0.163	0	0.001	0.365	-0.001	0.302	-0.185	0.21	0.338	0.104	0.189	0.228	0.242	0.058	0.052
R	-0.06	0	0	-0.099	0	0.001	0.188	-0	0.249	-0.181	-0.113	0.104	0.222	0.232	-0.083	0.165	0.087	0.058
MT2	-0.012	0	0.001	-0.069	0.001	0.002	0.155	0	0.409	-0.461	-0.037	0.189	0.232	0.738	-0.011	0.433	0.021	0.045
S_R	0.343	-0.001	0.001	0.322	-0.001	0.001	0.166	-0.002	0.082	-0.041	0.38	0.228	-0.083	-0.011	0.382	0.096	-0.003	-0.01
M_Delta_R	0.098	-0.001	0.001	0.006	0.001	0.001	0.315	-0.001	0.415	-0.233	0.074	0.242	0.165	0.433	0.096	0.389	0.042	0.039
dPhi_r_b	-0.047	-0.001	0.001	-0.004	-0	-0	0.146	-0.002	0.146	-0.025	-0.029	0.058	0.087	0.021	-0.003	0.042	0.19	0.009
cos_theta_r1	0.022	0	0	-0.028	0	0	0.073	0	0.055	-0.054	-0.014	0.052	0.058	0.045	-0.01	0.039	0.009	0.039

All Features Correlation Matrix

	1_1_pT	1_1_eta	1_1_phi	1_2_pT	1_2_eta	1_2_phi	MET	MET_phi I	MET_rel	axial_MET	M_R	M_TR_2	R	MT2	S_R	M_Delta_R d	lPhi_r_b c	os_theta_r1
1_1_pT	1	-0.001	0	0.684	-0.001	0.001	0.383	-0.001	0.16	-0.014	0.851	0.723	-0.186	-0.021	0.811	0.229	-0.157	0.165
1_1_eta	-0.001	1	-0.001	-0	0.406	-0.001	-0.002	-0.001	-0.002	-0.001	-0.001	-0.001	0.001	0	-0.001	-0.002	-0.002	0.002
1_1_phi	0	-0.001	1	0.002	0	-0.266	0.001	-0.184	0.001	-0.002	0.002	0.001	0	0.001	0.002	0.001	0.002	0.001
1_2_pT	0.684	-0	0.002	1	-0.001	0	0.14	-0.002	-0.001	0.078	0.797	0.43	-0.324	-0.123	0.799	0.014	-0.013	-0.217
1_2_eta	-0.001	0.406	0	-0.001	1	0	0	-0	0.001	-0.001	-0.001	0	0.001	0.002	-0.001	0.001	-0.001	0.001
1_2_phi	0.001	-0.001	-0.266	0	0	1	-0	-0.035	0.002	-0.002	0.001	0.001	0.001	0.003	0.001	0.002	-0.001	0
MET	0.383	-0.002	0.001	0.14	0	-0	1	-0.003	0.704	0.176	0.264	0.72	0.457	0.206	0.307	0.579	0.383	0.425
MET_phi	-0.001	-0.001	-0.184	-0.002	-0	-0.035	-0.003	1	-0.005	-0	-0.002	-0.002	-0	0	-0.003	-0.001	-0.004	0.001
MET_rel	0.16	-0.002	0.001	-0.001	0.001	0.002	0.704	-0.005	1	-0.134	0.078	0.584	0.595	0.535	0.15	0.748	0.378	0.316
axial_MET	-0.014	-0.001	-0.002	0.078	-0.001	-0.002	0.176	-0	-0.134	1	0.027	-0.317	-0.383	-0.535	-0.067	-0.373	-0.057	-0.272
M_R	0.851	-0.001	0.002	0.797	-0.001	0.001	0.264	-0.002	0.078	0.027	1	0.577	-0.383	-0.068	0.981	0.189	-0.106	-0.116
M_TR_2	0.723	-0.001	0.001	0.43	0	0.001	0.72	-0.002	0.584	-0.317	0.577	1	0.38	0.379	0.635	0.668	0.229	0.451
R	-0.186	0.001	0	-0.324	0.001	0.001	0.457	-0	0.595	-0.383	-0.383	0.38	1	0.574	-0.287	0.564	0.424	0.627
MT2	-0.021	0	0.001	-0.123	0.002	0.003	0.206	0	0.535	-0.535	-0.068	0.379	0.574	1	-0.021	0.809	0.056	0.264
S_R	0.811	-0.001	0.002	0.799	-0.001	0.001	0.307	-0.003	0.15	-0.067	0.981	0.635	-0.287	-0.021	1	0.249	-0.013	-0.085
M_Delta_R	0.229	-0.002	0.001	0.014	0.001	0.002	0.579	-0.001	0.748	-0.373	0.189	0.668	0.564	0.809	0.249	1	0.155	0.319
dPhi_r_b	-0.157	-0.002	0.002	-0.013	-0.001	-0.001	0.383	-0.004	0.378	-0.057	-0.106	0.229	0.424	0.056	-0.013	0.155	1	0.106
cos_theta_r1	0.165	0.002	0.001	-0.217	0.001	0	0.425	0.001	0.316	-0.272	-0.116	0.451	0.627	0.264	-0.085	0.319	0.106	1

Exercise 5.1

Exercise 5.2

Exercise 5.3

10

0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Exercise 6.1

Optimal thresholds: {'MET': np.float64(0.3452432534405773), '1_1_pT': np.float64(0.5863523684968852), 'M TR 2': np.float64(0.5424982333612262)}

Exercise 6.2

cut	epsilon_s	epsilon_b	N'_s	N'_b	sigma_s'
MET > 0.345	0.931	0.7963	930	7963	9.8718
1_1_pT > 0.586	0.8196	0.4725	819	4725	11.0072
$M_TR_2 > 0.542$	0.7935	0.4555	793	4554	10.8501

Exercise 6.3

Cut order: ('MET', '1_1_pT', 'M_TR_2')

Scenario: N_S=10, N_B=100

cut	epsilon_s	epsilon_b	N'_s	N'_b	sigma_s'
MET > 0.345	0.931	0.7963	9	79	0.9872
$1_1_pT > 0.586$	0.8196	0.4725	8	47	1.1007
$M_TR_2 > 0.542$	0.7935	0.4555	7	45	1.085

Scenario: N_S=10	0, N_B=1000 epsilon_s	epsilon_b	N'_s	N'_b	sigma_s'
MET > 0.345					
1 1 pT > 0.586					
M_TR_2 > 0.542					
Scenario: N_S=10	00, N_B=10000	1			
cut	epsilon_s	epsilon_b	N'_s	N'_b	sigma_s'
MET > 0.345					
$1_1_pT > 0.586$					
$M_TR_2 > 0.542$	0.7935	0.4555	793	4554	10.8501
Scenario: N_S=10	000, N_B=1000	00			
cut	epsilon_s	epsilon_b	N'_s	и'_ь	sigma_s'
MET > 0.345	0.931	0.7963	9309	79631	31.2172
1_1_pT > 0.586					
$M_{TR}_2 > 0.542$	0.7935	0.4555	7935	45548	34.3112
Cut order: ('ME Scenario: N S=10		'1_1_pT')			
—	epsilon_s	epsilon b	N's	N' b	sigma s'
MET > 0.345	0.931	0.7963	9	79	0.9872
$M_TR_2 > 0.542$					
$1_{pT} > 0.586$	0.7935	0.4555	7	45	1.085
Scenario: N_S=10	· _				
cut	epsilon_s	epsilon_b		м'_ь	sigma_s'
MET > 0.345	0 931	0 7963	93	796	3 1217
$M_{TR}_{2} > 0.542$					
1 1 pT > 0.586					
1_1_p1 > 0.300	0.7333	0.4333	, ,	100	3.1311
Scenario: N_S=10	00, N_B=10000)			
	epsilon_s			N'_b	sigma_s'
	0.931				
$M_{TR}_2 > 0.542$					
1_1_pT > 0.586	0.7935	0.4555	793	4554	10.8501

Scenario: N_S=10000, N_B=100000

cut	epsilon_s	epsilon_b	N'_s	N'_b	sigma_s'
MET > 0.345					21 0170
MET > 0.345	0.931	0.7963	9309	79031	31.21/2
M_TR_2 > 0.542	0.8873	0.7124	8873	71236	31.3497
1_1_pT > 0.586	0.7935	0.4555	7935	45548	34.3112
Cut order: ('1_	1_pT', 'MET',	'M_TR_2')			
Scenario: N_S=10					
cut	epsilon_s	epsilon_b	N'_s	N'_b	sigma_s'
$1_1_pT > 0.586$					
MET > 0.345					
M_TR_2 > 0.542	0.7935	0.4555	7	45	1.085
Scenario: N_S=10	—				
cut	epsilon_s	epsilon_b	N'_s	N'_b	sigma_s'
1 1 pT > 0.586					
MET > 0.345					
M_TR_2 > 0.542					
M_TR_2 > 0.542	0.7935	0.4555	19	433	3.4311
Scenario: N S=10	00, N B=10000)			
cut	epsilon_s	epsilon b	N's	N' b	sigma s'
$1_1_pT > 0.586$					
	0 0100	0 4705	819	4725	11 0070
MET > 0.345	0.8196	0.4/25	019	4123	11.0072
MET > 0.345 M_TR_2 > 0.542					
M_TR_2 > 0.542	0.7935	0.4555			
<pre>M_TR_2 > 0.542 Scenario: N_S=10</pre>	0.7935 000, N_B=1000	0.4555	793	4554	10.8501
M_TR_2 > 0.542 Scenario: N_S=10 cut	0.7935 000, N_B=1000 epsilon_s	0.4555	793	4554	10.8501
M_TR_2 > 0.542 Scenario: N_S=10 cut	0.7935 000, N_B=1000 epsilon_s	0.4555 000 epsilon_b	793 N'_s	4554 N'_b	10.8501 sigma_s'
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586	0.7935 000, N_B=1000 epsilon_s 0.8766	0.4555 000 epsilon_b 0.5876	793 N'_s 8765	N'_b 58756	10.8501 sigma_s' 33.733
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586 MET > 0.345	0.7935 000, N_B=1000 epsilon_s 0.8766 0.8196	0.4555 000 epsilon_b 0.5876 0.4725	793 N'_s 8765 8196	N'_b 58756 47250	sigma_s' 33.733 34.8078
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586	0.7935 000, N_B=1000 epsilon_s 0.8766 0.8196	0.4555 000 epsilon_b 0.5876 0.4725	793 N'_s 8765 8196	N'_b 58756 47250	sigma_s' 33.733 34.8078
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586 MET > 0.345	0.7935 000, N_B=1000 epsilon_s 0.8766 0.8196	0.4555 000 epsilon_b 0.5876 0.4725	793 N'_s 8765 8196	N'_b 58756 47250	sigma_s' 33.733 34.8078
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586 MET > 0.345	0.7935 000, N_B=1000 epsilon_s 0.8766 0.8196 0.7935	0.4555 000 epsilon_b 0.5876 0.4725 0.4555	793 N'_s 8765 8196	N'_b 58756 47250	sigma_s' 33.733 34.8078
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586 MET > 0.345 M_TR_2 > 0.542 Cut order: ('1_	0.7935 000, N_B=1000 epsilon_s 0.8766 0.8196 0.7935 1_pT', 'M_TR_	0.4555 000 epsilon_b 0.5876 0.4725 0.4555	793 N'_s 8765 8196	N'_b 58756 47250	sigma_s' 33.733 34.8078
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586 MET > 0.345 M_TR_2 > 0.542 Cut order: ('1_ Scenario: N_S=10	0.7935 000, N_B=1000 epsilon_s 0.8766 0.8196 0.7935 1_pT', 'M_TR_	0.4555 000 epsilon_b 0.5876 0.4725 0.4555	N'_s 8765 8196 7935	N'_b 58756 47250 45548	sigma_s' 33.733 34.8078 34.3112
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586 MET > 0.345 M_TR_2 > 0.542 Cut order: ('1_ Scenario: N_S=10	0.7935 000, N_B=1000 epsilon_s 0.8766 0.8196 0.7935 1_pT', 'M_TR_	0.4555 000 epsilon_b 0.5876 0.4725 0.4555	N'_s 8765 8196 7935	N'_b 58756 47250 45548	sigma_s' 33.733 34.8078 34.3112
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586 MET > 0.345 M_TR_2 > 0.542 Cut order: ('1_ Scenario: N_S=10 cut	0.7935 000, N_B=1000 epsilon_s 0.8766 0.8196 0.7935 1_pT', 'M_TR_ , N_B=100 epsilon_s	0.4555 000 epsilon_b 0.5876 0.4725 0.4555 2', 'MET') epsilon_b	N'_s 8765 8196 7935	N'_b 58756 47250 45548	sigma_s' 33.733 34.8078 34.3112
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586 MET > 0.345 M_TR_2 > 0.542 Cut order: ('1_ Scenario: N_S=10 cut	0.7935 000, N_B=1000 epsilon_s 0.8766 0.8196 0.7935 1_pT', 'M_TR_ , N_B=100 epsilon_s 0.8766	0.4555 000 epsilon_b 0.5876 0.4725 0.4555 2', 'MET') epsilon_b 0.5876	N'_s 8765 8196 7935	N'_b 58756 47250 45548 N'_b 58	sigma_s' 33.733 34.8078 34.3112 sigma_s' 1.0667
M_TR_2 > 0.542 Scenario: N_S=10 cut 1_1_pT > 0.586 MET > 0.345 M_TR_2 > 0.542 Cut order: ('1_ Scenario: N_S=10 cut	0.7935 000, N_B=1000 epsilon_s 0.8766 0.8196 0.7935 1_pT', 'M_TR_ , N_B=100 epsilon_s 0.8766 0.8175	0.4555 000 epsilon_b 0.5876 0.4725 0.4555 2', 'MET') epsilon_b 0.5876 0.4891	N'_s 8765 8196 7935 N'_s 8	N'_b 58756 47250 45548 N'_b 58 48	sigma_s' 33.733 34.8078 34.3112 sigma_s' 1.0667 1.082

Scenario: N S=1	00, N B=1000											
cut	_	epsilon_b	N'_s	N'_b	sigma_s'							
1_1_pT > 0.586 M_TR_2 > 0.542	0.8766	0.5876	87	587	3.3733							
M TR 2 > 0.542	0.8175	0.4891	81	489	3.4216							
MET > 0.345	0.7935	0.4555	79	455	3.4311							
Scenario: N S=1	000, N B=10000											
cut	_		N's	N' b	sigma s'							
	<u>-</u> -											
1_1_pT > 0.586	0.8766	0.5876	876	5875	10.6673							
M_TR_2 > 0.542	0.8175	0 4891	817	4891	10 82							
MET > 0.345	0.0175	0.4051	702	4554	10.02							
MET / 0.345	0.7935	0.4555	193	4554	10.6501							
Scenario: N S=10000, N B=100000												
			MII -	ATI L	ai							
cut	epsiion_s	epsiion_b	м'_s	а_'и	sigma_s'							
1_1_pT > 0.586	0.8766	0.5876	8765	58756	33.733							
M_TR_2 > 0.542	0.8175	0.4891	8175	48911	34.2159							
MET > 0.345	0.7935	0.4555	7935	45548	34.3112							
Cut order: ('M	_TR_2', 'MET',	'1_1_pT')										
	0 100											
Scenario: N_S=1	0, N_B=100											
cut	epsilon_s	epsilon_b	N'_s	м'_ь	sigma_s'							
M_TR_2 > 0.542	0.9117	0.7478	9	74	0.9953							
MET > 0.345 1_1_pT > 0.586	0.8873	0.7124	8	71	0.9914							
$1_1_pT > 0.586$	0.7935	0.4555	7	45	1.085							
Scenario: N_S=1												
cut	epsilon_s	epsilon_b	N'_s	N'_b	sigma_s'							
$M_{TR_2} > 0.542$	0.9117	0.7478	91	747	3.1476							
MET > 0.345	0.8873	0.7124	88	712	3.135							
MET > 0.345 1_1_pT > 0.586	0.7935	0.4555	79	455	3.4311							
Scenario: N_S=1	000, N B=10000											
_	epsilon_s		N's	N' b	sioma s'							
M TR 2 > 0.542												
/ 0.044	(), 9117		~	, , , ,	J.JJ7							
— — — — — — — — — — — — — — — — — — —	0.9117	0.7124	ΩΩ7	7122	0 0127							
MET > 0.345	0.9117	0.7124	887	7123	9.9137							
MET > 0.345 1_1_pT > 0.586	0.9117 0.8873 0.7935	0.7124 0.4555	887 793	7123 4554	9.9137 10.8501							
MET > 0.345 1_1_pT > 0.586	0.8873 0.7935	0.7124 0.4555	887 793	7123 4554	9.9137 10.8501							
MET > 0.345 1_1_pT > 0.586 Scenario: N_S=1	0.8873 0.7935 0000, N_B=1000	0.7124 0.4555	887 793		9.9137 10.8501							
MET > 0.345 1_1_pT > 0.586 Scenario: N_S=1	0.8873 0.7935	0.7124 0.4555	887 793		9.9137 10.8501							

$M_TR_2 > 0.542$	0.9117	0.7478	9117	74783	31.4755
MET > 0.345	0.8873	0.7124	8873	71236	31.3497
MET > 0.345 1_1_pT > 0.586	0.7935	0.4555	7935	45548	34.3112
*					
	0				
Cut order: ('M_	_TR_2', '1_1_	pT', 'MET')			
Scenario: N S=1(), N B=100				
cut	ensilon s	ensilon h	N' e	N' b	sicma s'
Scenario: N_S=10 cut	epsiion_s	epsiion_b			319ma_3
M_TR_2 > 0.542	0.9117	0.7478	9	74	0.9953
1 1 pT > 0.586					
MET > 0.345					
			-		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Scenario: N_S=10					
cut	epsilon s	epsilon b	N's	N' b	sigma s'
M_TR_2 > 0.542	0.9117	0.7478	91	747	3.1476
$1_1_pT > 0.586$	0.8175	0.4891	81	489	3.4216
MET > 0.345					
Scenario: N_S=10					
cut	epsilon_s	epsilon b	N'_s	N'b	sigma_s'
M_TR_2 > 0.542	0.9117	0.7478	911	7478	9.9534
$1_1_pT > 0.586$	0.8175	0.4891	817	4891	10.82
MET > 0.345					
Scenario: N_S=10	—				
cut	epsilon_s	epsilon_b	N'_s	N'_b	sigma_s'
M_TR_2 > 0.542	0.9117	0.7478	9117	74783	31.4755
$1_1_{pT} > 0.586$	0.8175	0.4891	8175	48911	34.2159
MET > 0.345					
			_		

Exercise 7.1 & 7.2

Exercise 7.3

Exercise 7.4

(Cut Order: ('MET', '1_1_pT', 'M_TR_2'))

(Cut Order: ('MET', 'M_TR_2', '1_1_pT'))

(Cut Order: ('1_1_pT', 'MET', 'M_TR_2'))

Cut Order: ('1_1_pT', 'M_TR_2', 'MET')

Cut Order: ('M_TR_2', '1_1_pT', 'MET')

Exercise 8.1-a (No needed) **Exercise 8.1-b**

Exercise 8.1-c

Exercise 8.1-d

```
Scenario N_S=10, N_B=100 → max σ_s' = nan
Scenario N_S=100, N_B=1000 → max σ_s' = nan
Scenario N_S=1000, N_B=10000 → max σ_s' = nan
Scenario N_S=10000, N_B=100000 → max σ_s' = nan
<ipython-input-75-984adde85638>:13: RuntimeWarning: invalid value encountered in divide sigma_s = N_s_prime / np.sqrt(N_s_prime + N_b_prime)
```

The Rest of FeatureNames

Scenario N_S=10, N_B=100 \rightarrow max σ_s' = nan

Scenario N_S=100, N_B=1000 \rightarrow max σ_s' = nan

Scenario N_S=1000, N_B=10000 \rightarrow max σ_s' = nan

Scenario N_S=10000, N_B=100000 \rightarrow max σ_s' = nan

<ipython-input-85-adcaeb850e3c>:63: RuntimeWarning: invalid value encountered in divide
sigma_s = N_s_prime / np.sqrt(N_s_prime + N_b_prime)

The Rest of RawNames

0.6

Signal Efficiency

0.8

1.0

0.2

0.0

```
Scenario N_S=10, N_B=100 → max σ_s' = nan
Scenario N_S=100, N_B=1000 → max σ_s' = nan
Scenario N_S=1000, N_B=10000 → max σ_s' = nan
Scenario N_S=10000, N_B=100000 → max σ_s' = nan
Scenario N_S=10000, N_B=100000 → max σ_s' = nan
<ipython-input-86-ce6485e5efd3>:64: RuntimeWarning: invalid value encountered in divide
sigma_s_raw = N_s_prime_raw / np.sqrt(N_s_prime_raw + N_b_prime_raw)
```