

A. N. Kolmogorov, On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition, *Dokl. Akad. Nauk SSSR*, 1957, Volume 114, Number 5, 953–956

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 205.208.121.214 July 20, 2018, 19:05:12

MATEMATHKA

Академик А. Н. КОЛМОГОРОВ

ПРЕДСТАВЛЕНИИ НЕПРЕРЫВНЫХ ФУНКЦИЙ **НЕСКОЛЬКИХ** ПЕРЕМЕННЫХ В ВИДЕ СУПЕРПОЗИЦИЙ НЕПРЕРЫВНЫХ ФУНКЦИЙ одного переменного и сложения

Целью заметки является краткое изложение доказательства следующей

Tеорема. При любом целом n > 2 существуют такие определенные на единичном отрезке $E^1 = [0;1]$ непрерывные действительные функции $\psi^{pq}(x)$, что каждая определенная на n-мерном единичном кубе E^n непрерывная действительная функция $f(x_1,\ldots,x_n)$ представима в виде

$$f(x_1,\ldots,x_n) = \sum_{q=1}^{q=2n+1} \chi_q \left[\sum_{p=1}^n \psi^{pq}(x_p) \right], \tag{1}$$
 где функции $\chi_q(y)$ действительны и непрерывны.

При n=3, положив

$$\varphi_q(x_1, x_2) = \psi^{1q}(x_1) + \psi^{2q}(x_2), \quad h_q(y, x_3) = \chi_q[y + \psi^{3q}(x_3)],$$

получаем из (1)

$$f(x_1, x_2, x_3) = \sum_{q=1}^{7} h_q \left[\varphi_q(x_1, x_2), x_3 \right], \tag{2}$$

что является небольшим усилением результата В. И. Арнольда (2), который показал, что любая непрерывная функция трех переменных представима в виде суммы девяти слагаемых того же вида, как слагаемые, входящие в формулу (2) в числе семи. Результаты моей заметки (1) не вытекают из сообщаемой сейчас новсй тесремы в их точных формулировках, но принципиальное их содержание (в смысле возможности представления функций нескольких переменных суперпозициями функций меньшего числа переменных и их приближения суперпозициями фиксированного вида из многочленов от одного переменного и сложения) очевидным образом содержится в новой тесреме. Метод доказательства новой теоремы элементарнее методов работ (1,2), сводясь к прямым конструкциям и подсчетам. Исчезла, в частности, необходимость употребления деревьев из компонент линий уровня. Фактически, однако, конструкции, употребленные в этой заметке, были найдены путем анализа конструкций, употреблявшихся в (1,2), и отбрасывания в них деталей, излишних для получения конечного результата.

§ 1. Построение функций ψ^{pq} . Индексы p,q,k,i всюду далее пробегают целые значения

$$1 \leqslant p \leqslant n$$
, $1 \leqslant q \leqslant 2n+1$, $k=1,2,\ldots$, $1 \leqslant i \leqslant m_k = (9n)^k + 1$.

При суммировании и перемножении в этих пределах пределы не обозначаются.

Рассмотрим сегменты

$$A_{k,i}^{q} = \left[\frac{1}{(9\,n)^k} \left(i - 1 - \frac{q}{3\,n} \right), \quad \frac{1}{(9\,n)^k} \left(i - \frac{1}{3\,n} - \frac{q}{3\,n} \right) \right].$$

Сегменты $A_{k,i}^q$ имеют длину $\frac{1}{(9\,n)^k} \Big(1-\frac{1}{3\,n}\Big)$, а при фиксированных k и q получаются один из другого при переходе от i к i'=i+1 с помощью сдвига вправо на расстояние $\frac{1}{(9\,n)^k}$, т. е. расположены не только без перекрытий, но с промежутками длины $\frac{1}{3\,n\,(9\,n)^k}$, с точностью же до наличия этих промежутков покрывают весь единичный отрезок E^1 . В соответствии с этим кубики

$$S_{k,i_1...i_n}^q = \prod_{n} A_{k,i_p}^q$$

с ребрами длины $\frac{1}{(9\,n)^k}$ при фиксированных k и q покрывают единичный куб E^n с точностью до разделяющих их щелей ширины $\frac{1}{3\,n\,(9\,n)^k}$. Легко проверяется следующая лемма.

 Π емма 1. Система всех кубиков $S^q_{h,i_1...i_n}$ с постоянным k и переменными q и i_1,\ldots,i_n покрывает единичный куб E^n так, что каждая точка из E^n оказывается покрытой не менее n+1 раз.

При помощи индукции по k может быть доказана следующая лемма. Лемма 2. Можно подобрать константы $\lambda_{k,i}^{pq}$ и ϵ_k так, что будут выполнены условия:

- 1) $\lambda_{k,i}^{pq} < \lambda_{k,i+1}^{pq} \leqslant \lambda_{k,i}^{pq} + \frac{1}{2^k}$;
- 2) $\lambda_{k,i}^{pq} \leqslant \lambda_{k+1,i'}^{pq} \leqslant \lambda_{k,i}^{pq} + \varepsilon_k \varepsilon_{k+1}$, если сегменты $A_{k,i}^q$ и $A_{k+1,i'}^q$ пересекаются:
- 3) сегменты $\Delta_{k,i_1...i_n}^q = \left[\sum_p \lambda_{k,i_p}^{pq}; \sum_p \lambda_{k,i_p}^{pq} + n z_k\right]$ при фиксированных k и q попарно не пересекаются.

Легко заметить, что из 1) и 3) вытекает

4) $\varepsilon_n \leqslant \frac{1}{2^k}$.

На основе указанных ранее свойств сегментов $A_{k,i}^q$ и свойств 1), 2) и 4) констант $\lambda_{k,i}^{pq}$ и ϵ_k без большого труда доказывается следующая лемма. Лемма 3. При фиксированных р и q требования

5) $\lambda_{k,i}^{pq} \leqslant \psi^{pq}(x) \leqslant \lambda_{k,i}^{pq} + \varepsilon_k$ при $x \in A_{k,i}^q$ однозначно определяют на E^1 непрерывную функцию ψ^{pq} .

Замечание. Легко видеть, что по построению функции ψ^{pq} оказываются монотонно возрастающими. Это их свойство могло бы быть включено в формулировку нашей теоремы.

Из 5) и 3) вытекает

6) $\sum_{p} \psi^{pq}(x_p) \in \Delta^q_{k,i_1...i_n} npu(x_1,\ldots,x_n) \in S^q_{k,i_1...i_n}$

§ 2. Построение функций χ^q . Установив существование функций ψ^{pq} и констант $\lambda_{\kappa,i}^{pq}$ и ϵ_k , обладающих свойствами 1)—6), переходим к доказательству основной теоремы. Искомые функции $\chi^q(y)$ будут построены в виде

$$\chi^q = \lim_{r \to \infty} \chi^q_r,$$

где $\chi_0^r \equiv 0$, а χ_r^q для r > 0 будут определены с помощью индукции по r одновременно с натуральными k_r .

Мы будем при этом употреблять обозначения

$$f_r(x_1,\ldots,x_n) = \sum_q \chi_r^q \left[\sum_p \psi^{pq}(x_p) \right], \qquad (3)$$

$$M_r = \sup_{F^n} |f - f_r|. \tag{4}$$

Очевидно, что

$$f_0 \equiv 0$$
, $M_0 = \sup_{F^n} |f|$.

Допустим, что непрерывные функции χ_{r-1}^q и номер k_{r-1} уже определены. Тем самым определена на E^n и непрерывная функция f_{r-1} . Так как диаметры кубиков $S^q_{k,i,...i_n}$ при $k \to \infty$ стремятся к нулю, то можно выбрать k_r столь большим, чтобы колебание разности $f - f_{r-1}$ на любом $S^q_{k_r,i_1...i_n}$ не превосходило $\frac{1}{2n+2} M_{r-1}$.

Пусть $\xi_{h,i}^q$ — произвольные точки из соответствующих сегментов $A_{h,i}^q$. На сегменте $\Delta_{h,i,\dots,i}^q$ положим

$$\chi_r^q(y) = \chi_{r-1}^q(y) + \frac{1}{n+1} [f(\xi_{k,i_1}^q, \dots, \xi_{k,i_n}^q) - f_{r-1}(\xi_{k,i_1}^q, \dots, \xi_{k,i_n}^q)].$$
 (5)

Очевидно, что фиксированные таким образом значения функции χ^q_r подчинены неравенству

$$|\chi_r^q(y) - \chi_{r-1}^q(y)| \le \frac{1}{n+1} M_{r-1}.$$
 (6)

Вне сегментов $\Delta^q_{k,i_1...i_n}$ доопределим функцию χ^q_r произвольно, но с соблюдением этого же неравенства (6) и непрерывности.

Оценим теперь $f-f_r$ в произвольной точке (x_1,\ldots,x_n) из E^n . Очевидно, что

$$f(x_{1},...,x_{n}) - f_{r}(x_{1},...,x_{n}) = f(x_{1},...,x_{n}) - f_{r-1}(x_{1},...,x_{n}) - \sum_{q} \left\{ \chi_{r}^{q} \left[\sum_{p} \psi^{pq}(x_{p}) \right] - \chi_{r-1}^{q} \left[\sum_{p} \psi^{pq}(x_{p}) \right] \right\}.$$
 (7)

Сумму \sum_{q} в (7) представим в виде $\sum' + \sum''$, где сумма \sum' распространена на некоторые n+1 значений q, для которых точка (x_1,\ldots,x_n) входит в какой-либо из кубиков $S^q_{h,i_1\ldots i_n}$ (такие существуют по лемме 1), а сумма \sum'' распространена на остающиеся n значения q.

Для каждого слагаемого из \sum' получаем в силу (5)

$$\chi_r^q \left[\sum_{p} \psi^{pq} (x_p) \right] - \chi_{r-1}^q \left[\sum_{p} \psi^{pq} (x_p) \right] =$$

$$= \frac{1}{n+1} \left[f \left(\xi_{k,i_1}^q, \dots, \xi_{k,i_n}^q \right) - f_{r-1} \left(\xi_{k,i_1}^q, \dots, \xi_{k,i_n}^q \right) \right] =$$

$$= \frac{1}{n+1} \left[f \left(x_1, \dots, x_n \right) - f_{r-1} \left(x_1, \dots, x_n \right) \right] + \frac{\omega^q}{n+1} , \qquad (8)$$

где

$$|\omega^q| \leqslant \frac{1}{2n+2} M_{r-1}. \tag{9}$$

Слагаемые из $\sum_{k=0}^{\infty}$ оцениваются при помощи (6). Из (5) вместе c (8), (9) и (6) получаем

$$|f - f_r| = \left| \frac{1}{n+1} \sum_{r=1}^{r} \omega^q + \sum_{r=1}^{r} (\chi_r^q - \chi_{r-1}^q) \right| \leqslant \frac{1}{2n+2} M_{r-1} + \frac{n}{n+1} M_{r-1} = \frac{2n+1}{2n+2} M_{r-1}.$$
 (10)

Так как неравенство (10) справедливо в любой точке $(x_1, \ldots, x_n) \in E^n$, то

$$M_r \leqslant \frac{2n+1}{2n+2} M_{r-1},$$
 $M_r \leqslant \left(\frac{2n+1}{2n+2}\right)^r M_0.$ (11)

Из (6) и (11) вытекает, что разности $\chi^q_r - \chi^q_{r-1}$ не превосходят по абсолютной величине соответствующих членов абсолютно сходящегося ряда

$$\sum_{r} \frac{1}{n+1} M_{r-1}.$$

Поэтому функции χ^q_r при $r \to \infty$ равномерно сходятся к непрерывным

предельным функциям χ^q . Из соотношений (3) и (4) и оценки (11) предельным переходом при $r \to \infty$ получаем равенство (1), чем и заканчивается доказательство теоремы.

> Поступило 20 VI 1957

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

² В. И. Арнольд, ДАН, 114, ¹ А. Н. Колмогоров, ДАН, 108, № 2 (1956). № 4 (1957).