Claims:

- A method for development of nucleotide probes for myctophid fishes, said method comprising the steps of:
 - (i) extracting the DNA from the muscle tissue of a myctophid fish,
 - (ii) selecting gene regions in the extracted DNA with the selected primers and the amplifying the same using polymerase chain reaction (PCR),
 - (iii) eluting the PCR amplified DNA,
 - (iv) reamplifying the gene regions from PCR amplified DNA and eluting the same,
 - (v) cycle sequencing of eluted DNA using a single primer,
 - (vi) purifying extension products,
 - (vii) sequencing the extension product on acrylamide gel,
 - (viii) confirming the sequences for the target gene by Blast -Email,
 - (ix) ligating the eluted PCR products in a vector,
 - (x) preparing the electro-competent cells for electro transformation,
 - (xi) electro transforming the host cells,
 - (xii) growing and harvesting of transformed host cells,
 - (xiv) confirming that the transformed bacteria has the plasmids with the gene inserts by PCR.
 - (xv) purifying recombinant plasmid DNA having the cloned gene probes from the transformed host cells,
 - (xvi) checking purity and specificity of the cloned DNA probe insert by cutting with restriction enzyme,
 - (xvii) confirming the molecular size of the DNA probe insert,
 - (xviii) PCR amplification of the gene insert from the probe using both primers,
 - (xix) eluting of the amplified gene region,
 - (xx) cycle sequencing of the gene region of the probe,
 - (xxi) sequencing of the cloned DNA insert on acrylamide gel,
 - (xxii) comparing the DNA sequence of the prepared DNA probes using "BLAST program "against the known sequences of similar genes in the genome data bases,

- (xxiii) confirming the sequences of the cloned probe by aligning with sequences of the claim 1(vii), and
- (xxiv) designing species specific primers from the sequences.
- 2. A method as claimed in claim 1 wherein the myctophid fishes are selected from the group comprising Stenobrachis leucopsarus, Diaphus theta, Protomyctophum crockeri, Tarletonbeania crenularis and Lampanyctus regalis.
- 3. A method as claimed in claim 1 wherein the gene regions are selected from mitochondrial and nuclear genes.
- A method claimed in claim 1 wherein the mitochondrial genes taken for probe preparation are selected from the group comprising: Cyt b and D-loop genes, 12 S RNA and 16 S RNA genes.
- A method claimed in claim 1 wherein the nuclear genes taken for probe preparation are selected from Rod and ITS-2 genes.
- 6. A method of claim 1 wherein the PCR amplified cleaned nuclear gene probe is Rod gene.
- 7. A method claimed in claim 1 wherein the nuclear gene taken for the cloned probe preparation is ITS-2 gene.
- 8. A method as claimed in claim 1 wherein the concentration of primers used for PCR amplification is 20 meu. L.
- 9. A method as claimed in claim 1 wherein the primer set (forward and backward primers) used for amplification and detection of Cyt b gene contains oligonucleotides with the sequences:
 - CYT 1: 5' TGA YTT GAA RAA CCA YCG TTG 3'
 - CYT 2: 5' CTC CAR TCT TCG RYT TAC AAG 3'
- 10. A method as claimed in claim 1 wherein the primer set (forward and backward primers) used for reamplification and detection of Cyt b gene contains oligonucleotides with the sequences:
 - CBI-L:5' CCA TCC AAC ATC TCA GCA TGA TGA AA 3'
 - CYT 2: 5' CTC CAR TCT TCG RYT TAC AAG 3'

A method as claimed in claim 1 wherein the primer set (forward and backward 11. primers) used for PCR amplification and detection of D-Loop gene contains oligonucleotides with the sequences:

PRO-L:

5' CTA CC 3'

D-LOOP H: 5' CCT GAA GTA GGA ACC AGA TG 3'

A method as claimed in claim 1 wherein the forward and backward primers used 12. for PCR amplification of ITS2 gene were

ITS1 F:

5' TTG TAC ACA CCGCCCGTC GC

3' 3'

ITS2 R:

5' ATA TGC TTA AAT TCA GCG GG

A method as claimed in claim 1 wherein the forward and backward primers used 13. for PCR reamplification of ITS2 gene from ITS1 F and ITS2 R PCR amplification were

ITS2 F:

5' CTA CGC CTG TCT GAG TGT C

3,

3,

ITS2 R:

5' ATA TGC TTA AAT TCA GCG GG

A method as claimed in claim 1 wherein the primer set (forward and backward 14. primers) used for PCR amplification of Rhodopsin gene Rod contains oligonucleotides with the sequences:

ROD-F:

5' CAT ATG AAT ACC CTC AGT ACT ACC 3'

ROD-R:

5' TCT TTC CGC AGC ACA ACG TGG

3, 15. A method as claimed in claim 1 wherein the primer set (forward and backward primers) used for PCR amplification of 12S RNA gene contains oligonucleotides with the sequences:

12 SA-L:

5' AAA CTG GGA TTA GAT ACC CCA CTA T

12 SB-H:

5 ' AGA GTG ACG GGC GGT GTG T

16. A method as claimed in claim 1 wherein the primer set (forward and backward primers) used for PCR amplification of 16S RNA gene contains oligonucleotides with the sequences:

16 SAR -L: 5' CGC CTG TTT ATC AAA AAC AT

16 SBR-H: 5 'CCG GTC TGA ACT CAG ATC ACG T3'

A method as claimed in claim 1 wherein the forward and backward primers used 17. for PCR amplification of Rhodopsin gene Rod were:

ROD-F: 5' CAT ATG AAT ACC CTC AGT ACT ACC 3'
ROD-R: 5' TCT TTC CGC AGC ACA ACG TGG 3'

- 18. A method as claimed in claim 1 wherein the primer set (forward and backward primers) used for PCR amplification of 12S RNA gene were:
 - 12 SA-L: 5' AAA CTG GGA TTA GAT ACC CCA CTA T 3'
 - 12 SB-H: 5 ' AGA GTG ACG GGC GGT GTG T 3'
- 19. A method as claimed in claim 1 wherein the primer set (forward and backward primers) used for PCR amplification of 16S RNA gene were:

 16 SAR -L: 5' CGC CTG TTT ATC AAA AAC AT 21

16 SAR -L: 5' CGC CTG TTT ATC AAA AAC AT 3' SBR-H: 5' CCG GTC TGA ACT CAG ATC ACG T3'

- 20. A method claimed in claim 1 wherein the 12S RNA gene and 16S RNA gene in the myctophid fish Stenobrachius leucopsarus were amplified by PCR.
- 21. A method claimed in claim 1 wherein the 12S RNA and 16S RNA gene in myctophid fish *Diaphus theta* were eluted by PCR amplification.
- 22. A method claimed in claim 1 wherein the elution of PCR amplification products of myctophid fish *Protomyctophum crockeri*, resulted in 12 S RNA.
- 23. A method claimed in claim 1 wherein the elution of PCR amplification products of myctophid fish *Protomyctophum crockeri*, resulted in 16 S RNA.
- 24. A method claimed in claim 1 wherein the elution of PCR amplification of myctophid fish *Tarletonbeania crenularis*, resulted in 12 S RNA.
- 25. A method claimed in claim 1 wherein the elution of PCR amplification of myctophid fish *Tarletonbeania crenularis*, resulted in 16 S RNA.
- A method claimed in claim 1 wherein the elution of PCR amplification of myctophid fish Lampanyctus regalis, resulted in 12 S RNA.
- A method claimed in claim 1 wherein the elution of PCR amplification of myctophid fish Lampanyctus regalis, resulted in 16 S RNA.
- 28. A method claimed in claim 1 wherein the cycle sequencing primer concentration used was $2\mu L$,
- 29. A method claimed in claim 1 wherein the cycle sequencing primer for CYT b gene consisted of oligonucleotides with the sequence:
 - CYT 1: 5' TGA YTT GAA RAA CCA YCG TTG 3'

- 30. A method claimed in claim 1 wherein the cycle sequencing primer for CYT b gene consisted of oligonucleotides with the sequence:
 - CYT 2: CTC CAR TCT TCG RYT TAC AAG
- A method claimed in claim 1 wherein the cycle sequencing primer for CYT b 31. gene consisted of oligonucleotides with the sequence:
 - CBI-L: CCA TCC AAC ATC TCA GCA TGA TGA AA 3' 5'
- A method claimed in claim 1 wherein the cycle sequencing forward primer for D-32. Loop region consisted of oligonucleotides with the sequence: PRO-L: 5' CTA CC 3'
- A method claimed in claim 1 wherein the backward cycle sequencing primer for 33. D-Loop region consisted of oligonucleotides with the sequence: D-LOOP H: 5' CCT GAA GTA GGA ACC AGA TG 3'
- 34. A method as claimed in claim 1 wherein the forward primer used for cycle sequencing of ITS2 gene consisted of oligonucleotides with the sequence: ITS 1 -F:
 - 5' TTG TAC ACA CCG CCC GTC GC 3'
- A method as claimed in claim 1 wherein the backward primer used for cycle 35. sequencing of ITS2 gene consisted of oligonucleotides with the sequence:
 - ITS2 -R: 5' ATA TGC TTA AAT TCA GCG GG
- A method as claimed in claim 1 wherein the forward primer used for cycle 36. sequencing of Rhodopsin gene Rod consisted of oligonucleotides with the sequence:
 - ROD-F: CAT ATG AAT ACC CTC AGT ACT ACC 3' 5'
- A method as claimed in claim 1 wherein the backward primer used for cycle 37. sequencing consisted of oligonucleotides with the sequence:
 - ROD-R: TCT TTC CGC AGC ACA ACG TGG 3,
- A method as claimed in claim 1 wherein the forward primer used for cycle 38. sequencing of 12S RNA gene consisted of oligonucleotides with the sequence:
 - 12 SA-L: AAA CTG GGA TTA GAT ACC CCA CTA T
- A method as claimed in claim 1 wherein the backward primer used for cycle 39. sequencing of 12S RNA gene consisted of oligonucleotides with the sequence:
 - 12 SB-H: 5 ' AGA GTG ACG GGC GGT GTG T

- 40. A method as claimed in claim 1 wherein the forward primer used for cycle sequencing of 16S RNA gene consisted of oligonucleotides with the sequence:

 16 SAR -L: 5' CGC CTG TTT ATC AAA AAC AT 3'
- 41. A method as claimed in claim 1 wherein the backward primer used for cycle sequencing of 16S RNA gene consisted of oligonucleotides with the sequence:

 16 SBR-H: 5 'CCG GTC TGA ACT CAG ATC ACG T3'
- 42. A method as claimed in claim 1 wherein the extension products of 12 S RNA gene region are purified by conventional methods.
- 43. A method as claimed in claim 1 wherein the extension products of 16 S gene region are purified by conventional method.
- 44. A method as claimed in claim 1 wherein the extension products of CYT b gene are purified by conventional method.
- 45. A method as claimed in claim 1 wherein the extension products of ROD gene are purified by conventional method.
- 46. A method as claimed in claim 1 wherein the extension products of D-Loop control region are purified by conventional method.
- 47. A method as claimed in claim 1 wherein the extension products of ITS2 region are purified by conventional method.
- 48. A method as claimed in claim 1 wherein the extension products of 12 S RNA gene region was sequenced in an automated sequencer.
- 49. A method as claimed in claim 1 wherein the extension products of 16 S gene region was sequenced in an automated sequencer.
- 50. A method as claimed in claim 1 wherein the extension products of CYT b gene was sequenced in an automated sequencer.
- 51. A method as claimed in claim 1 wherein the extension products of ROD gene was sequenced in an automated sequencer.
- 52. A method as claimed in claim 1 wherein the extension products of D-Loop control region was sequenced in an automated sequencer.
- 53. A method as claimed in claim 1 wherein the extension products of ITS2 region was sequenced in an automated sequencer.

- 54. A method as claimed in claim 1 wherein the identity of the gene 12S RNA is confirmed by Blast Email.
- 55. A method as claimed in claim 1 wherein the identity of the gene 16S RNA is confirmed by Blast Email.
- 56. A method as claimed in claim 1 wherein the identity of the gene CYT b is confirmed by Blast Email.
- 57. A method as claimed in claim 1 wherein the identity of the gene ROD is confirmed by Blast Email.
- 58. A method as claimed in claim 1 wherein the identity of the D-Loop is confirmed by Blast Email.
- 59. A method as claimed in claim 1 wherein the identity of the gene ITS2 is confirmed by Blast Email.
- 60. A method as claimed in claim 1 wherein the vector used for cloning was Bluescript KS phagemid.
- 61. A method as claimed in claim 1 wherein the vector used for cloning had ampicillin resistance gene for selection.
- 62. A method as claimed in claim 1 wherein the vector used for cloning had Lac Z gene for blue white colony selection.
- 63. A method as claimed in claim 1 wherein the CoI E 1 was the origin for replication of phagemid in the absence of helper phage.
- 64. A method as claimed in claim 1 wherein F 1 (-) origin for recovery of antisense strand of lac Z gene when a host strain containing the bluescript II phagemid.
- A method as claimed in claim 1 wherein the host cells used for transformation were E. coli blue bacteria (Bacteria Strain XL 1 blue) XL1-Blue:- F'::Tn10,pro A+B+laclq (lacZ)M15/recA1endA1gyrA96(Nal)thi hsdR17(r_k m_k+)supE44relA1 lac.
- 66. A method as claimed in claim 1 wherein probes are containing oligonucleotide sequences are cloned Cyt b, D-Loop, ITS2 and Rod genes.
- 67. A method as claimed in claim 1 wherein the probes of CYT b gene is an oligonucleotide sequence named as PSL CYTL.

- 68. A method as claimed in claim 1 wherein the probes of ITS 2 gene is an oligonucleotide sequence named as PSL ITS 2F.
- 69. A method as claimed in claim 1 wherein the probes of D-Loop control region gene is an oligonucleotide sequence named as PSL PROL.
- A method as claimed in claim 1 wherein the PCR amplified sequence of ROD gene probe is named as ROD SLMB.
- 71. A method as claimed in claim 1 wherein the PCR amplified sequence of D-Loop gene probe is named as D-Loop SLMB.
- 72. A method as claimed in claim 1 wherein the PCR amplified sequence of ITS 2 gene probe is named as ITS 2 SLMB.
- 73. A method as claimed in claim 1 wherein the PCR amplified sequence of Cyt b gene probe is named as Cyt L SLMB.
- 74. The nucleotide base sequences of PSL CYTL (748 bp) comprising:

5'				
CTTNCCCATT	TTGGGCGCTT	NGGCNCGCTN	CTCCNCGAGA	CTCTGCGTAN
TAATCCAANT	CNCTNCGGGC	CNCTCCCTAC	CANTINCINCTA	CACCNCAAAT
TNCAACCCNG	TTTCCTCATC	ANTCAACCAC		AACNTCAACT
ACGGCTGACT	AATCCGAAAA	CATGCACGCT	AACGGTGCCT	CTTTCTTCTT
CATCTGTATT	TATCTNCNCN .	TTGGANGAGG	ACTATNCTAC	GGATCCTACC
TCTACGAAGA	GACGTGAGGT	GTTGGTGTTA	TTCTTCTCCT	TCTAATAATG
ATGACTGCNT	TTGTTGGCTA	TGTGCTNCCC	NGAGGACAAA	TGTCCTTTTG
AGGTGCTACT	GTCATTACAA	NCCTACTCTC	TGCTGTNCCG	TNTGTTNGCG
	TCAATGAATT	TGAGGTGGCT	TCTCCGTAAA	CACGCAACGC
		CACTTCTTGT	TCCCATTTGT	TGTCGCNGCT
		TTNCCGACAT	CAAACAGGCT	CTAAANCCCC
		CAAAACCCTC	CACCCTATTC	NCTATAAAAC
		GGCTTACTTC	ATGNCTATTT	CCCNGNCGGA
			AAAATAAANA	ATGTGTCTNT
CCIACCANAA	AACAACNNAN	ACGGGGTNTG	CNCTTCCATC	ATCCACN 3'
GCNCTCTANT TCACTCGTTT ATAACCNNGG CCCGGNTTGA TCTAGGTTCG GGGACNAAAA CCTACCANAA	TCAATGAATT CTTCGCNTTC TTCACCNGAT CTCCATACAA TGCCCGTATT TTCCTGCACC AACAACNNAN	TGAGGTGGCT CACTTCTTGT TTNCCGACAT CAAAACCCTC	TCTCCGTAAA TCCCATTTGT CAAACAGGCT CACCCTATTC ATGNCTATTT AAAATAAANA	CACGCAACGC TGTCGCNGCT CTAAANCCCC NCTATAAAAC CCCNGNCGGA ATGTGTCTNT

75. The nucleotide base sequences of PSLITS2F comprises:(225BP)

5'			
TCTACGATCT	ACCGGCNTTT	NNTGTGGAAA	CACCATCATC
CATTTATGTG	TGTCTTTCTA		GACGATCATG
CGTCTTTGCG		TGGATTTGAA	CCGTGTGGTA
_	TACTGCTTGG	AAGGCTCAAC	TTGCTTCTGT
CCTTCTCTTG	CAGTCTCGCA	CTGTCTATGC	
ACTTCGACTT	CTGTCGAAAA		AACGTGTTCT
TCAGACAAGA		ATCTTACTTT	TGACCTCAGA
- OHOMOMOM	CTACCCGCTG	AATTT 3'	

76. The nucleotide base sequences of PSL PROL comprises:(749 BP)

5'			
CCTTTTCGGN	ATAGGCCCAN	CTCAAATGAA	ттссттстст
CCTGGTCCAA	GCCCAAACTG	TGGACGGCAG	
GTTACAAATC	GTGACAAATC		GTTGACAATG
CGATGTCGTC	AAACCAAGTC	GGCTACATAA	TTGCCGATAG
CGGCCAAACC		AAACAATGGC	CGATGTATAT
AGCAACGTCA	CATATATGGG	TCTGGCTGTA	GTTTGTGTTG
	CACCAGTGTC	TGGTCAGCAT	ATAAGATGTT
GACATCTTGC	AACATCTTAC	CCACAGACAG	ACAGTTACGG
CTGCTTACGA	ANGGCGCTAG	TGTTGTGGTG	AGAAACGAAG
ATACATACGT	CAAACAGACG	CCGGTGCACT	TGAAGACACT
GTTTGAAGGT	GCCGCACTAC	TTGACAGACA	
CGCTGGACAG	TGACCAAAGC	TACNGGAGGA	GCCCATGATG
ATCCTGTTGG	CGTTGCCGTG	GGACTCAAGT	CCANATGGAA
TGGATGGTTG	ATCACTANAN		TGTACACTTT
CGCTCCTGGT	TCACTAATCA	CCGCTGCCGG	GAGAAGCACT
ANGTAAACAT		GATTGAGGTT	AACCANATTG
ATTNAGCCCA	CTTCAACACA	GTGTCTTTAT	GCTGGATGAA
	CNGGACACCA	NAAAAGAATT	NCCNCTGGTT
CTNNCGGGGG	NCCCCNNNAA	CGNNTNTTCC	CCTTNTCTCN
NNNGCGGNGA	AGTTNCCCCC .	CCCCACTNAN	NTCTTCCTTC
AANANNTTTC	CNCCNNNAGA	GGTTTTCCCN	3'
			•

77. The nucleotide base sequences of ROD PSL SLMB comprises: (748 BP)

-			
CCTGGTAGGG	TTCCCCGTCA	ACTTCCTCAC	ACTGTACCTC
ACNTTCGAGC	ACAAGAAGCT	ACTAACCCCC	_
TCCTGCTCAA	CCTGGCGGTC		TTAAACTACA
AGGAGGGTTC	·	GGAGACCTCC	TGATGGTGTA
	ACCACCACCA	TCTACACCTC	CATGCACGGC
TACTTCGTCC	TAGGGAAACT	GGGCTGCGCC	
		000010000	ATCGAAGGTT

TCATGGCCAC .	CCATGGTGGT	CAGGTCGCCC	TTTGGTCCCT
GGTGGTTTTG	GCCGTGGAAA	GGTGGCTGGT	CGTCTGCAAN
CCCATCTCCA	GCTTCCGCTT	CCAGGAGTCC	CACTCCCTCA
TGGGCCTGGC	CGTGACCTGG	GTGATGGCGA	CGGCTTGTTC
TGTGCCCCCC	CTGGGTCGGC	TGGTCTCGCT	ACATCCCAGA
AGGCATGCAG	TGCTCATGCG	GAATGGACTA	CTACACTCCC
GCGCCGGGCG	TCAACAATGA	ATCCTACGTN	GTGTACATGT
TCNTCANAAA	AANAATNGGA	CCNCNGGGCG	ATCATNTTGN
TANGNNAAGG	CCAGNTGNTG	NGAGCAGTCA	AGGCGGCCGC
CGCCGCCCAG	CAAGAGTCCG	AGACCACCCA	GAGGGCCGAG
AGGGAAGTCA	CCCGNATGGT	NATNANGATG	GTNATNTCNT
TCNTGGTAAG	NAGGGNGCCA	NACGCCAGCG	TGGCCTGGTG
GATCTTNNGN	AACCAGGGNG	CAGAATTAGG	CCCNGTNTTC
ATGACCCTGC	CGGCNTTCTT	TGCCAAGA	3'
A 1 1 .	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

- 78. A method as claimed in claim 1 wherein FORWARD (L) primers of CYT b gene region for myctophid fish *Stenobrachius leucopsarus* is an oligonucleotide comprising:
 - 5' CAA CCT CAT CTG TCG TAA AC 3'

- i. is a 20-mer DNA oligonucleotide (sense),
- ii. has melting temperature of 56.4 degree celius,
- iii. has a molecular weight of 6101.0,
- iv. has no hairpin loops,
- v. has no single dimers,
- vi. has no other dimers,
- vii. has no single bulge loops or internal loops, and
- viii. has no palindromes.
- 79. A method as claimed in claim 1 wherein BACKWARD (H) primer of CYT b gene region for myctophid fish *Stenobrachius leucopsarus* (SLMB) is an oligonuleotide comprising:
 - 5' GCT CGG GCT GCT GGA ATC TT 3' and having the following characteristics:
 - i. is a 20-mer DNA

- ii. is an antisense oligonuleotide
- iii. has a melting point of 70.8 degree celcius.
- iv. has a molecular weight of 6220.1.
- v. has no hairpin loops, no single bulge loops, no other internal loops, no single internal loops, no other bulge loops or palindromes.
- vi. no single dimers or other dimers.
- 80. A method as claimed in claim 1 wherein forward primer of ITS2 F gene region for myctophid fish *Stenobrachius leucopsarus* (SLMB) is an oligonuleotide comprising:
 - 5' ACT TGA CTG ACC TTC TTA CT 3' and having the following characteristics:
 - i. is a 20-mer sense oligonucleotide,
 - ii. has a melting point of 51.3 degree celcius,
 - iii. has a molecular weight of 6098.0,
 - iv. has no palindromes, loops and dimers,
- 81. A method as claimed in claim 1 wherein forward primer of ITS2 H gene region for myctophid fish *Stenobrachius leucopsarus* (SLMB) is an oligonuleotide comprising:
 - 5' ATA CTC TGC GGA CAT ACT TGA CTG 3' and having the following characteristics:
 - i. is a 24-mer antisense oligonucleotide,
 - ii. has a melting point of 65.4 degree celcius.
 - iii. has a molecular weight of 7407.9.
 - iv. has no palindromes, loops and dimers.
- 82. A method as claimed in claim 1 wherein forward primer of pro-L for myctophid fish Stenobrachius leucopsarus (SLMB) is an oligonuleotide comprising:
 - 5' CAG TCT CGT CAA ACC AAG TCA AAC 3' and having the following characteristics:

- i. is a 24-mer sense oligonucleotide
- ii. has a melting point of 67.8 degree celcius.
- iii. has a molecular weight of 7354.9.
- iv. has no palindromes, loops and dimers.
- 83. A method as claimed in claim 1 wherein backward primer for Dloop for mitochondrial control region (dloop H) gene region for myctophid fish Stenobrachius leucopsarus is an oligonuleotide comprising:
 - 5' ATA ATC ATC CAG CAT AAA CAC AC and having the following characteristics:
 - i. is a 23-mer antisense oligonucleotide,
 - ii. has a melting point of 61.2 degree celcius.
 - iii. has a molecular weight of 7033.7.
 - iv. has no palindromes, loops and dimers.
- 84. A method as claimed in claim 1 wherein the FORWARD primer (ROD-L) for Rhodopsin gene region of myctophid fish Stenobrachius leucopsarus is an oligonucleotide comprising:
 - 5' CCT GGT AGA GTT CGC CGT CA 3' and having the following characteristics:
 - i. is a 20-mer sense oligonucleotide
 - ii. has a melting point of 67.4 degree celcius.
 - iii. has a molecular weight of 6189.0.
 - iv. has no palindromes, loops and dimers.
- 85. A method as claimed in claim 1 wherein the backward primer (ROD- H) for Rhodopsin gene region of myctophid fish Stenobrachius leucopsarus is an oligonucleotide comprising:
 - 5' CGT GTT CCT TAT CAT TGT GCC T 3' and having the following characteristics:
 - i. is a 22-mer antisense oligonucleotide

- ii. has a melting point of 66.4 degree celcius.
- iii. has a molecular weight of 6738.4.
- iv. has no palindromes, loops and dimers.
- 86. A method as claimed in claim 1 wherein the forward primer of 16S-L of the myctophid fish Lampanyctus regalis is an oligonucleotide comprising:
 - 5' CAC CAG CCA AGT ATG TTT CTC 3' and having the following characteristics:
 - i. is a 21-mer sense oligonucleotide
 - ii. has a melting point of 61.5 degree celcius.
 - iii. has a molecular weight of 6421.4.
 - iv. has no palindromes, loops and dimers.
- 87. A method as claimed in claim 1 wherein the backward primer of 16s rRNA of myctophid fish Lampanyctus regalis is an oligonucleotide comprising:
 - 5' TCG TAG TTC AGC AGT CAG 3' and having the following characteristics:
 - i. is a 18-mer antisense oligonucleotide
 - ii. has a melting point of 51.2 degree celcius.
 - iii. has a molecular weight of 5594.7.
 - iv. has no palindromes, hairpin loops and dimers.
- 88. A method as claimed in claim 1 wherein the forward primer 16S-L of myctophid fish *Lampanyctus regalis* is an oligonucleotide comprising:
 - 5' CTA TTC GCC TCG CTC AGA C 3' and having the following characteristics:
 - i. is a 19-mer sense oligonucleotide
 - ii. has a melting point of 62.1 degree celcius.
 - iii. has a molecular weight of 5779.8.
 - iv. has no palindromes, hairpin loops and dimers.

- 89. A method as claimed in claim 1 wherein a primer 12S-H for Lampanyctus regalis (LRMB) is an oligonucleotide comprising:
 - 5' GCC TCC ATC ATC CCT CAC CTT AC 3'

- i. is a 23-mer antisense oligonucleotide
- ii. has a melting point of 70.8 degree celcius.
- iii. has a molecular weight of 6895.5
- iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 90. A method as claimed in claim 1 wherein the primer 12S-L for Lampanyctus regalis (LRMB) is an oligonucleotide comprising:
 - 5' CTA TTC GCC TCG CTC AGA C 3'

and having the following characteristics:

- i. is a 19-mer sense oligonucleotide
- ii. has a melting point of 62.1 degree celcius.
- iii. has a molecular weight of 5779.8
- iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 91. A method as claimed in claim 1 wherein 16S-L forward primer for *Diaphus theta* (DTMB) is an oligonucleotide comprising:
 - 5' AAA TCC GCC CTT ATG TGT GTT C 3'

- i. is a 22-mer sense oligonucleotide
- ii. has a melting point of 67.9 degree celcius.
- iii. has a molecular weight of 6756.4
- iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.

- 92. A method as claimed in claim 1 wherein 16S-H backward primer for *Diaphus theta* (DTMB) is an oligonucleotide comprising:
 - 5' CTC CGT CCG TCT CGC CTC TG 3'

- i. is a 20-mer antisense oligonucleotide
- ii. has a melting point of 71.7 degree celcius.
- iii. has a molecular weight of 6052.0
- iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 93. A method as claimed in claim 1 wherein 12S-H forward primer for *Diaphus theta* (DTMB) is an oligonucleotide comprising:
 - 5' CAT CGG CTT GCT CTA TTC CTT G 3'

and having the following characteristics:

- i. is a 22-mer antisense oligonucleotide
- ii. has a melting point of 68.8 degree celcius.
- iii. has a molecular weight of 6723.4
- iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 94. A method as claimed in claim 1 wherein 12S-L forward primer for *Diaphus theta* (DTMB) is an oligonucleotide comprising:
 - 5' TCT ATC GGC GGC GTA TCA C 3'

- i. is a 19-mer sense oligonucleotide
- ii. has a melting point of 65.8 degree celcius.
- iii. has a molecular weight of 5859.8
- iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.

- 95. A method as claimed in claim 1 wherein 16S-H primer for *Tarletonbeania* crenularis (TCMB) is an oligonucleotide comprising:
 - 5' GGC GAT TCT ACG GCA CGG GCG 3'

- i. is a 21-mer antisense oligonucleotide
- ii. has a melting point of 80.4 degree celcius.
- iii. has a molecular weight of 6568.3
- iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 96. A method as claimed in claim 1 wherein 16S-L forward primer for Tarletonbeania crenularis (TCMB) is an oligonucleotide comprising:
 - 5' AAA CTG GTC CTC AAC TAT GTC A 3' and having the following characteristics:
 - i. is a 22-mer sense oligonucleotide
 - ii. has a melting point of 60.7 degree celcius.
 - iii. has a molecular weight of 6758.5
 - iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 97. A method as claimed in claim 1 wherein 16S-H backward primer for Tarletonbeania crenularis (TCMB) is an oligonucleotide comprising:
 - 5' GGC GAT TCT ACG GCA CGG GCG 3' and having the following characteristics:
 - i. is a 21-mer antisense oligonucleotide
 - ii. has a melting point of 80.4 degree celcius.
 - iii. has a molecular weight of 6568.3
 - iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.

- 98. A method as claimed in claim 1 wherein 12S-H backward primer for Tarletonbeania crenularis (TCMB) is an oligonucleotide comprising:
 - 5' CCG ATT CAG CCA .CGA TTC CCT C 3'

- i. is a 22-mer antisense oligonucleotide
- ii. has a melting point of 74.6 degree celcius.
- iii. has a molecular weight of 6671.4
- iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 99. A method as claimed in claim 1 wherein 12S-L forward primer for Tarletonbeania crenularis (TCMB) is an oligonucleotide comprising:
 - 5' CCT AAA GCC CAG ATA ACT ACA 3'
 - i. is a 21-mer sense oligonucleotide
 - ii. has a melting point of 59.2 degree celcius.
 - iii. has a molecular weight of 6432.3
 - iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 100. A method as claimed in claim 1 wherein 16S-H backward primer for Protomyctophum crockeri (PCMB) is an oligonucleotide comprising:
 - 5' CGT GTT CTG ATG ATG ATG TGC T 3'
 - i. is a 22-mer antisense oligonucleotide
 - ii. has a melting point of 64.7 degree celcius.
 - iii. has a molecular weight of 6867.5
 - iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 101. A method as claimed in claim 1 wherein 16S-L forward primer for Protomyctophum crockeri (PCMB) is an oligonucleotide comprising:
 - 5' ATT CCT TCC TCT TAG TAT G 3'

- i. is a 19-mer sense oligonucleotide
- ii. has a melting point of 49.5 degree celcius.
- iii. has a molecular weight of 5799.8
- iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 102. A method as claimed in claim 1 wherein 12S-H backward primer for Protomyctophum crockeri (PCMB) is an oligonucleotide comprising:
 - 5' GCT GAA CTT ACT ATG CCC TAC T 3'
 - i. is a 22-mer antisense oligonucleotide
 - ii. has a melting point of 60.3 degree celcius.
 - iii. has a molecular weight of 6725.4
 - iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 103. A method as claimed in claim 1 wherein 12S-L forward primer for Protomyctophum crockeri (PCMB) is an oligonucleotide comprising:
 - 5' CCG ATT GAC GCC GAA CTA TG 3'
 - i. is a 20-mer sense oligonucleotide
 - ii. has a melting point of 68.1 degree celcius.
 - iii. has a molecular weight of 6182.1
 - iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 104. A method as claimed in claim 1 wherein 16S-H backward primer for Stenobrachius leucopsarus (SLMB) is an oligonucleotide comprising:
 - 5' TAC GCA TAA CGG CTC TGG 3'
 - i. is a 18-mer DNA oligonucleotide (Antisense)
 - ii. has a melting point of 61.4 degree celcius.
 - iii. has a molecular weight of 5579.7

iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.

- 105. A method as claimed in claim 1 wherein 16S-L forward primer for Stenobrachius leucopsarus (SLMB) is an oligonucleotide comprising:
 - 5' CTA CTA CAC CTC AAC TAC ATC T 3'
 - i. is a 22-mer sense oligonucleotide
 - ii. has a melting point of 52.4 degree celcius.
 - iii. has a molecular weight of 6638.4
 - iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 106. A method as claimed in claim 1 wherein 12S-H forward primer for Stenobrachius leucopsarus (SLMB) is an oligonucleotide comprising:
 - 5' CCC ACT CAC TGC TAA CTC C 3'
 - i. is a 19-mer sense oligonucleotide
 - ii. has a melting point of 58.4 degree celcius.
 - iii. has a molecular weight of 5708.8
 - iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.
- 107. A method as claimed in claim 1 wherein 12S-L forward primer for Stenobrachius leucopsarus (SLMB) is an oligonucleotide comprising:
 - 5' GGC TAA CTA CAA TCA TCT GCT 3'
 - i. is a 21-mer sense oligonucleotide
 - ii. has a melting point of 58.5 degree celcius.
 - iii. has a molecular weight of 6445.2
 - iv. has no hairpin loops, dimers, palindromes or bulges and internal loops of either single or other kinds.