V.2. Supplémentaire d'un espace vectoriel

Proposition 15.35

Soit E un espace vectoriel de dimension finie et F un sous-espace vectoriel de E.

- 1) Il existe un supplémentaire G de F dans E, autrement dit, il existe un sous-espace vectoriel G de E tel que $F \oplus G = E$.
- 2) Si F est non trivial (c'est-à-dire $F \neq E$ et $F \neq \{0_E\}$), alors la réunion de toute base de F avec toute base d'un supplémentaire G de F dans E est une base de E adaptée à la somme directe $F \oplus G$.
- 3) $\dim E = \dim F + \dim G$.

Démonstration

1) Soit \mathcal{B} une base de E et \mathcal{F} une base de F. D'après le théorème de la base incomplète, on peut compléter \mathcal{F} par une famille \mathcal{G} extraite de \mathcal{B} pour obtenir une nouvelle base \mathcal{B}' de E.

Soit $G = \text{Vect}(\mathcal{G})$. Alors $E = F \oplus G$. En effet:

- si $u \in F \cap G$, alors u est combinaison linéaire de vecteurs de \mathcal{F} et combinaison linéaire de vecteur \mathcal{G} . La différence de ces deux combinaisons linéaires est donc une combinaison linéaire nulle de vecteurs de la base \mathcal{B}' de E. Tous ses coefficients sont donc nuls, et $u = 0_E$.
- $F + G = \text{Vect}(\mathcal{F}) + \text{Vect}(\mathcal{G}) = \text{Vect}(\mathcal{B}')$ d'après la propriété 15.16 de génération de la somme.

Donc F + G = E.

- 2) La démonstration est similaire à la démonstration précédente.
- 3) C'est une conséquence directe du point précédent : $\dim E$ est le nombre de vecteurs de \mathcal{B}' qui est lui-même égal à la somme du nombre de vecteurs de \mathcal{F} et du nombre de vecteurs de \mathcal{G} . Donc $\dim E = \dim F + \dim G$.

Proposition 15.36

F et G sont deux sous-espaces vectoriels supplémentaires d'un espace vectoriel E de dimension finie si et seulement si $\begin{cases} F \cap G &= \{0_E\} \\ \dim F + \dim G &= \dim E \end{cases}$

Démonstration

L'implication découle de la proposition précédente.

Démontrons la réciproque : $F \cap G = \{0_E\}$ donc F et G sont en somme directe. Soient \mathcal{F} et \mathcal{G} deux bases de F et G respectivement (de dimensions finies puisque E est de dimension finie). Soit \mathcal{B} la famille formée des p vecteurs de \mathcal{F} puis de ceux de \mathcal{G} . \mathcal{B} comporte par hypothèse $n = \dim E$ vecteurs.

Montrons que c'est une famille libre : $\sum_{i=1}^{n} \lambda_i b_i = 0_E \Rightarrow \sum_{i=1}^{p} \lambda_i b_i = \sum_{i=p+1}^{n} (-\lambda_i) b_i$. Ce dernier vecteur appartient à F et G donc est nul. \mathcal{F} et \mathcal{G} étant libres, les coefficients λ_i sont tous nuls ce qui garantit la liberté de \mathcal{B} . Donc \mathcal{B} est une base de E d'après 15.28. Donc $F + G = \text{Vect}(\mathcal{F}) + \text{Vect}(\mathcal{G}) = \text{Vect}(\mathcal{B}) = E$ ce qui achève la démonstration.

V.3. Formule de Grassmann

Proposition 15.37

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie. Alors $\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$.

Démonstration

 $F\cap G$ est un sous-espace vectoriel de F donc il existe un supplémentaire F' de $F\cap G$ dans F. Montrons que $F+G=F'\oplus G$.

- Soit $u \in F' \cap G$. $u \in F'$, donc en particulier $u \in F$. Or $u \in G$, donc $u \in F \cap G$. Ainsi $u \in F' \cap (F \cap G)$. Or F' et $F \cap G$ sont supplémentaires dans F. Donc $u = 0_F = 0_E$.
- Soit $u \in F + G$. Il existe donc $v \in F$ et $w \in G$ tels que u = v + w. Or $F = F' \oplus (F \cap G)$ donc il existe $v' \in F'$ et $w' \in F \cap G$ tels que v = v' + w'.

Donc u = (v' + w') + w = v' + (w' + w) est somme d'un vecteur de F' et d'un vecteur de G.

Donc $F+G \subset F'+G$ et l'inclusion réciproque est évidente puisque F' est un sous-espace vectoriel de F.

On a donc $\dim(F+G) = \dim F' + \dim G$ d'une part, et par définition de F', $\dim F = \dim(F \cap G) + \dim F'$. Donc $\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$.

VI. Applications linéaires en dimension finie

Dans tout ce paragraphe, E et F sont des \mathbb{K} -espaces vectoriels de dimensions finies $n \in \mathbb{N}^*$ et $p \in \mathbb{N}$.

VI.1. Définition à l'aide d'une base de l'espace de départ

Théorème 15.38

Étant donnée $\mathcal{B} = (u_1; u_2; ...; u_n)$ une base E et $\mathcal{F} = (v_1; v_2; ...; v_n)$ une famille quelconque de vecteurs de F, il existe une unique application linéaire ϕ telle que $\forall k \in [1; n], \phi(u_k) = v_k$.

Démonstration

Analyse : soit ϕ une application linéaire répondant aux hypothèses de l'énoncé. \mathcal{B} étant une base de E, quel que soit le vecteur $u \in E$, il existe un unique n-uplet $(x_1; ...; x_n)$ de coordonnées

de u dans \mathcal{B} . D'où : $\phi(u) = \phi\left(\sum_{i=1}^{n} x_i u_i\right) = \sum_{i=1}^{n} x_i \phi(u_i)$ car ϕ est linéaire.

D'où $\phi(u) = \sum_{i=1}^{n} x_i v_i$ et ϕ est donc unique si elle existe.

Synthèse: on définit ϕ comme l'application qui à tout vecteur de $u \in E$ de coordonnées

 $(x_1; ...; x_n)$ dans \mathcal{B} associe $\phi(u) = \sum_{i=1}^n x_i v_i$. On vérifie qu'elle est bien linéaire.

Remarque

Le théorème précédent signifie qu'en dimension finie, il suffit de donner les images des vecteurs d'une base de l'espace de départ pour définir entièrement une application linéaire.

Soit $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire telle que $\phi(1;0) = \left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$ et $\phi(0;1) = \left(\frac{-\sqrt{3}}{2}; \frac{1}{2}\right)$.

Quelle est l'image par ϕ du vecteur (-1;2)?

Quelle est l'image par ϕ du vecteur (x;y)?......

Corollaire 15.39

Si $E=E_1\oplus E_2$, une application linéaire est entièrement déterminée par ses restrictions à E_1 et à E_2 .

VI.2. Image d'une famille par une application linéaire

Définition 15.40 (Image d'une famille par une application linéaire)

Étant données une famille $\mathcal{E} = (e_1, e_2, ..., e_n)$ de vecteurs de E et une application linéaire $f: E \to F$, on appelle image de la famille \mathcal{E} par f la famille des images par f des

Autrement dit, l'image de la famille \mathcal{E} est la famille de vecteurs de F définie par

$$(f(e_1), f(e_2), ..., f(e_n)) = (f(e_i))_{i \in [1:n]}$$

Notation

On note $f(\mathcal{E})$ l'image de la famille \mathcal{E} par f.

Proposition 15.41 (Image d'une famille génératrice par une application linéaire)

Etant donnée une application linéaire $f: E \to F$, si $\mathcal{E} = (e_1, e_2, ..., e_n)$ est **une famille** génératrice de E, alors $f(\mathcal{E})$ est une famille génératrice de $\operatorname{Im} f$.

Démonstration

Il s'agit de montrer que tout vecteur de Im f peut s'écrire comme combinaison linéaire de vecteurs de $f(\mathcal{E})$.

Soit $y \in \text{Im } f$. Par définition, il existe $x \in E$ tel que y = f(x).

Or \mathcal{E} est une famille génératrice de E, donc $\exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}, x = \sum_{i=1}^n \lambda_i e_i$.

On en déduit que

$$y = f\left(\sum_{i=1}^{n} \lambda_i e_i\right) = \sum_{i=1}^{n} \lambda_i f\left(e_i\right)$$
 par linéarité de f .

Donc y est combinaison linéaire des vecteurs de $f(\mathcal{E})$.

Corollaire 15.42

Étant donnée $\mathcal{B} = (u_1; u_2; ...; u_n)$ une base E et $\phi \in \mathcal{L}(E, F)$, Im ϕ est le sous-espace vectoriel de F engendré par $(\phi(u_1); \phi(u_2); ...; \phi(u_n))$:

$$\operatorname{Im} \phi = \operatorname{Vect} \left(\phi \left(u_{1} \right) ; \phi \left(u_{2} \right) ; ...; \phi \left(u_{n} \right) \right)$$

Corollaire 15.43

Soient E et F deux espaces vectoriels de dimension finie et $\phi \in \mathcal{L}(E, F)$.

$$\dim \operatorname{Im} \phi \leqslant \min(\dim E, \dim F)$$

Démonstration

Il s'agit de montrer que dim $\operatorname{Im} \phi \leqslant \dim E$ et que dim $\operatorname{Im} \phi \leqslant \dim F$.

Soit $\mathcal{B} = (u_1; u_2; ...; u_n)$ une base E.

- d'après le corollaire précédent, $\operatorname{Im} \phi = \operatorname{Vect} (\phi(u_1); \phi(u_2); ...; \phi(u_n))$. Or, on peut extraire de toute famille génératrice d'un espace vectoriel une base de cet espace vectoriel. Donc dim $\operatorname{Im} \phi \leqslant n = \dim E$.
- Im ϕ est un sous-espace vectoriel de F, donc dim Im $\phi \leq \dim F$.

Proposition 15.44 (Image d'une famille libre par une injection linéaire)

Étant donnée une application linéaire *injective* $f: E \to F$, si $\mathcal{E} = (e_1, e_2, ..., e_n)$ est *une* famille libre de E, alors $f(\mathcal{E})$ est *une* famille libre de F.

Démonstration

Soit
$$\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$$
 tel que $\sum_{i=1}^n \lambda_i f(e_i) = 0_F$.

Par linéarité, $f\left(\sum_{i=1}^{n} \lambda_{i} e_{i}\right) = 0_{F}$ donc $\sum_{i=1}^{n} \lambda_{i} e_{i} \in \text{Ker } f$. Or f est injective, donc $\sum_{i=1}^{n} \lambda_{i} e_{i} = 0_{E}$, et la famille \mathcal{E} est libre, donc tous les λ_{i} sont nuls.

Donc $f(\mathcal{E})$ est une famille libre.

Proposition 15.45 (Image d'une base par un isomorphisme)

Soit $\mathcal{E} = (e_1, e_2, ..., e_n)$ une base de E et $f : E \to F$ une application linéaire.

f est un **bijective** si et seulement si $f(\mathcal{E})$ est **une base de** F.

Démonstration

 \Rightarrow : supposons que f est un isomorphisme.

D'après les propositions précédentes,

- \mathcal{E} est une famille génératrice de E, donc $f(\mathcal{E})$ est génératrice de $\operatorname{Im} f = F$ (f est surjective);
- \mathcal{E} est une famille libre, f est injective, donc $f(\mathcal{E})$ est libre.
- \Leftarrow : réciproquement, si $f(\mathcal{E})$ est une base de F, alors
 - f est surjective. En effet, quel que soit $y \in F$, il existe $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}, y = \sum_{i=1}^n \lambda_i f(e_i)$ ($f(\mathcal{E})$ génératrice de F), donc $y = f\left(\sum_{i=1}^n \lambda_i e_i\right)$ appartient à Im f.
 - f est injective. En effet, soit $x \in E$ tel que $f(x) = 0_F$. En décomposant x dans \mathcal{E} et en utilisant la linéarité de f on a $\sum_{i=1}^{n} \lambda_i f(e_i) = 0_F$. On en déduit que les λ_i sont nuls $(f(\mathcal{E})$ est libre) donc que x est le vecteur nul.

Corollaire 15.46

Soient E et F deux espaces vectoriels de dimension finie.

Les deux propriétés suivantes sont équivalentes :

- il existe un isomorphisme $\phi \in \mathcal{L}(E, F)$;
- $\dim E = \dim F$.

E et F sont alors dits isomorphes.

Démonstration

Supposons qu'il existe un isomorphisme ϕ de E vers F, soit \mathcal{E} une base de E.

D'après le théorème précédent, $\phi(\mathcal{E})$ est une base de F. Donc dim $E = \dim F$.

Réciproquement, si dim $E = \dim F$, alors étant données deux bases (e_i) et (f_i) de E et F, l'application définie par $\forall i, \phi(e_i) = f_i$ est un isomorphisme puisque l'image d'une base de E est une base de F.

VI.3. Rang d'une application linéaire

🔁 Définition 15.47

On appelle rang d'une application linéaire entre deux espaces vectoriels de dimension finie la dimension de son image.

Notation

On note : $\operatorname{rg} \phi = \dim \operatorname{Im} \phi$.

\right Remarque

Le rang d'une application linéaire ϕ est d'après le corollaire 15.42 le rang de la famille des images par ϕ des vecteurs d'une base de son espace de départ.

Propriété 15.48

Soient E, F, G trois espaces vectoriels de dimension finie, $u \in \mathcal{L}(E, F), v \in \mathcal{L}(F, G)$. Alors $rg(v \circ u) \leq min(rg u, rg v)$.

Démonstration

Il s'agit de montrer que $rg(v \circ u) \leqslant rg u$ et que $rg(v \circ u) \leqslant rg v$.

Nous avons vu (théorème 12.20) dans le premier chapitre sur les espaces vectoriels que quelle que soit l'application linéaire $f \in \mathcal{L}(A, B)$, quel que soit le sous-espace vectoriel A' de A, f(A')est un sous-espace vectoriel de B.

Soit $U = \operatorname{Im} u = u(E)$, $V = \operatorname{Im} v = v(F)$. $\operatorname{rg} v \circ u = \dim v \circ u(E) = \dim v(U)$.

- D'après le corollaire 15.43, on a donc $\operatorname{rg} v \circ u \leqslant \dim U = \operatorname{rg} u$.
- De plus, U est un sous-espace vectoriel de F, donc v(U) est un sous-espace vectoriel de v(F) = V. Donc $\operatorname{rg} v \circ u \leqslant \dim V = \operatorname{rg} v$.

Propriété 15.49

Soient E, F, G trois espaces vectoriels de dimension finie, $u \in \mathcal{L}(E, F), v \in \mathcal{L}(F, G)$.

Si u est bijective, alors $\operatorname{rg}(v \circ u) = \operatorname{rg} v$.

Si v est bijective, alors $\operatorname{rg}(v \circ u) = \operatorname{rg} u$.

Démonstration

- Supposons u bijective : alors $v \circ u(E) = v(F)$ donc $\operatorname{rg} v \circ u = \dim v \circ u(E) = \dim v(F) = \operatorname{rg} v$.
- Supposons v bijective. Alors sa restriction à Im u (que l'on continuera à noter v) est aussi bijective de $\operatorname{Im} u \operatorname{sur} v(\operatorname{Im} u) = \operatorname{Im} v \circ u$. Donc $\operatorname{rg} v \circ u = \dim v \circ u(E) = \dim v(u(E)) = \dim u(E) = \operatorname{rg} u \text{ d'après le corollaire } 15.46.$

Théorème 15.50 (Formule du rang)

Soient E un \mathbb{K} -espace vectoriel de dimension finie, F un \mathbb{K} -espace vectoriel quelconque et

 $\phi \in \mathcal{L}(E, F)$. On a

 $\dim E = \dim \operatorname{Ker} \phi + \dim \operatorname{Im} \phi = \dim \operatorname{Ker} \phi + \operatorname{rg} \phi$

Démonstration

Ker ϕ est un sous-espace vectoriel de E de dimension finie, donc Ker ϕ est de dimension finie p et possède une base $(e_1; ...; e_p)$. D'après le théorème 15.20 de la base incomplète on peut compléter cette base en une base $\mathcal{B} = (e_1; ...; e_n)$ de E.

Soit $V = \text{Vect}(e_{p+1}; ...; e_n)$.

- La restriction de ϕ à V est injective. En effet : $u \in \operatorname{Ker} \phi_{|V} \Leftrightarrow (\phi(u) = 0_F \operatorname{et} u \in V) \Leftrightarrow u \in V \cap \operatorname{Ker} \phi$. Donc $u = 0_E$.
- Im $\phi = \phi(E) = \phi(\text{Vect}(e_1; ...; e_n)) = \text{Vect}(\phi(e_{p+1}); ...; \phi(e_n)) = \phi(V) \text{ car } \phi(e_1) = ... = \phi(e_p) = 0_F.$

Donc $(\phi(e_{p+1}); ...; \phi(e_n))$ est l'image par l'isomorphisme $\phi_{|V}: V \to \operatorname{Im} \phi$ d'une base de V: c'est une base de $\operatorname{Im} \phi$.

D'où dim Im $\phi = n - p = \dim E - \dim \operatorname{Ker} \phi$.

Corollaire 15.51

Si $\phi \in \mathcal{L}(E, \mathbb{K})$ est une **forme linéaire** non identiquement nulle alors dim Ker $\phi = \dim E - 1$

Démonstration

C'est la formule du rang où rg $\phi = 1$ puisque dim Im $\phi \leq \dim \mathbb{K} = 1$ d'une part, et que dim Im $\phi > 0$, ϕ n'étant pas identiquement nulle d'autre part.

VI.4. Caractérisation des isomorphismes

Théorème 15.52

Soient E et F des espaces vectoriels de **même** dimension finie et $\phi \in \mathcal{L}(E, F)$. On a alors :

 ϕ injective $\Leftrightarrow \phi$ surjective $\Leftrightarrow \phi$ bijective

Démonstration

- Supposons ϕ injective. Alors d'après le théorème du rang, dim $E=\operatorname{rg}\phi=\dim F.$ Donc d'après 15.34, $\operatorname{Im}\phi=F.$
- Supposons ϕ surjective. Alors d'après le théorème du rang, dim Ker $\phi = \dim E \operatorname{rg} \phi = 0$. Donc Ker $\phi = \{0_E\}$, donc ϕ est injective donc bijective.
- Si ϕ est bijective, elle est évidemment injective.

Ex. 15.17 (Cor.) Soient
$$n \in \mathbb{N}$$
 et $\phi : \begin{cases} \mathbb{R}_n[X] \to \mathbb{R}_n[X] \\ P \mapsto \int_X^{X+1} P(t) dt \end{cases}$.

1) Montrer que deg $\phi(P) = \deg P$.

- 2) Montrer que ϕ est un automorphisme de $\mathbb{R}_n[X]$.
- 3) On note B_i l'image réciproque par ϕ de X^i . Calculer B_0, B_1, B_2, B_3 .
- 4) Montrer que pour tout $i \in [0, n]$, $B_i(X+1) B_i(X) = iX^{i-1}$.
- 5) Déduire des questions précédentes une expression simplifiée pour $p \in \mathbb{N}$ de $\sum_{k=1}^{p} k^2$.