Kholle 23 filière MPSI/MP2I Jeudi 04 mai 2023

Planche 1

- 1. Démontrer que $\forall z \in \mathbb{C}$, $e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$.
- 2. On note $u : \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (x + 2y, 4x y, -2x + 2y + 3z)$.
 - (a) Montrer que $\frac{1}{3}u$ est une symétrie vectorielle, donner ses sous-espaces invariants et anti-invariants.
 - (b) Démontrer que u est inversible et donner sa réciproque u^{-1} .
- 3. Soit $\alpha > 1$, on pose pour tout entier n, $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$. Déterminer un équivalent de R_n quand n tend vers $+\infty$.

Planche 2

- 1. Formule de stirling.
- 2. Soit E un espace vectoriel de dimension finie et u un endomorphisme de E de rang 1. Démontrer qu'il existe un vecteur v non nul et une forme linéaire non nulle φ tels que $\forall x \in E, u(x) = \varphi(x)v$.
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle positive. On suppose qu'il existe un réel α tel que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)$$

Démontrer que $\sum u_n$ est convergente lorsque $\alpha > 1$ et divergente lorsque $\alpha < 1$. Indication : étudier la suite v définie par $\forall n \in \mathbb{N}^*, v_n = u_n n^{\alpha}$.

Planche 3

- 1. Comparaison série-intégrale.
- 2. On considère une forme linéaire φ sur $\mathcal{M}_n(\mathbb{K})$. On sait qu'il existe une matrice A telle que $\forall M \in \mathcal{M}_n(\mathbb{K}), \varphi(M) = \operatorname{Tr}(AM)$ avec Tr la forme linéaire trace. On suppose de plus que $\forall (M,N) \in \mathcal{M}_n(\mathbb{K})^2, \varphi(MN) = \varphi(NM)$. Montrer qu'alors, il existe un scalaire λ dans \mathbb{K} tel que $\varphi = \lambda \operatorname{Tr}$.
- 3. Soit $\theta \in]0, 2\pi[$. Démontrer que la série $\sum \frac{e^{in\theta}}{\sqrt{n}}$ est convergente.

Indication : Commencer par démontrer que la suite $(\sum_{k=0}^{n} e^{ik\theta})_{n\in\mathbb{N}}$ est bornée.

Bonus

- 1. Soit $u \in \mathcal{L}(E)$. Montrer que l'application $u^T : E^* \to E^*, \varphi \to \varphi \circ u$ est linéaire, puis que $\mathcal{L}(E) \to \mathcal{L}(E^*), u \mapsto u^T$ est linéaire.
- 2. On suppose E de dimension finie. Démontrer que l'application $E \to E^{**}, x \mapsto \widehat{\widehat{x}} : E^* \to \mathbb{K}, \varphi \mapsto \varphi(x)$ est un isomorphisme.
