COMP 9602: Convex Optimization

Convex Programs (III)

Dr. C Wu

Department of Computer Science
The University of Hong Kong

Where we are

Theory	convex set convex function standard forms of optimization problems, quasi-convex optimization linear program, integer linear program quadratic program geometric program semidefinite program vector optimization Duality
Algorithm	unconstrained optimization equality constrained optimization interior-point method localization methods subgradient method decomposition methods

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$
 subject to $Gx \leq h$ $Ax = b$

- $P \in \mathbf{S}^n_+$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

Least squares

minimize
$$||Ax - b||_2^2$$

- analytical solution $x^* = (A^T A)^{-1} A^T b$
- Linear program with random cost

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} \, c^T x + \gamma \, \mathbf{var}(c^T x)$$
 subject to $Gx \preceq h, \quad Ax = b$

- ullet c is random vector with mean $ar{c}$ and covariance matrix \sum
- ullet hence, c^Tx is random variable with mean $ar{c}^Tx$ and variance $x^T\Sigma x$
- $\gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic programming (QCQP)

minimize
$$(1/2)x^TP_0x+q_0^Tx+r_0$$
 subject to
$$(1/2)x^TP_ix+q_i^Tx+r_i\leq 0,\quad i=1,\ldots,m$$

$$Ax=b$$

- $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set
- example

box constraints:

$$x \in [0,1]^n \iff x_i(x_i - 1) \le 0, i = 1, \dots, n$$

Second-order cone programming (SOCP)

minimize
$$f^Tx$$
 subject to $\|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \quad i=1,\ldots,m$ $Fx=g$

$$(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$$

- Second-order cone
 - **norm cone:** $\{(x,t) \mid ||x|| \le t\}$
 - when the norm is Euclidean norm: second-order cone/ quadratic cone/ice-cream cone
- ☐ The inequality constraints are called second-order cone (SOC) constraints

 $(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$

Boundary of second-order cone in ${\bf R}^3, \{(x_1,x_2,t)|(x_1^2+x_2^2)^{1/2} \le t\}$

Second-order cone programming (SOCP)

minimize
$$f^Tx$$
 subject to $\|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \quad i=1,\ldots,m$ $Fx=g$ $(A_i\in \mathbf{R}^{n_i imes n},\,F\in \mathbf{R}^{p imes n})$

- □ More general than QCQP and LP
 - if ni=0, reduces to LP
 - if ci=0, reduces to QCQP

Robust linear programming

- □ The parameters in an LP can be uncertain
 - e.g., minimize c^Tx subject to $a_i^Tx \leq b_i, \quad i=1,\ldots,m,$

there can be uncertainty in c, a_i , b_i

- Two common approaches to handle uncertainty in ai (for simplicity)
 - lacktriangledown convert to deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^Tx$$
 subject to $a_i^Tx \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i=1,\ldots,m,$

convert to stochastic model: constraints must hold with probability η
 (ai as the random variable)

minimize
$$c^T x$$
 subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

Robust linear programming

Deterministic approach via SOCP

assume all ai lie in given ellipsoids

$$a_i\in\mathcal{E}_i=\{\bar{a}_i+P_iu\mid \|u\|_2\leq 1\}$$
 $(\bar{a}_i\in\mathbf{R}^n,\ P_i\in\mathbf{R}^{n imes n})$ center is \bar{a}_i , semi-axes determined by $\sqrt{\lambda_i}$, λ_i : eigenvalues of P_i^2 robust LP

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

is equivalent to the SOCP

minimize
$$c^Tx$$
 subject to $\bar{a}_i^Tx + \|P_i^Tx\|_2 \leq b_i, \quad i=1,\ldots,m$

(follows from
$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$$
)

Robust linear programming

Stochastic approach via SOCP

- assume a_i is Gaussian with mean \bar{a}_i , covariance Σ_i ($a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$)
- ullet a_i^Tx is Gaussian r.v. with mean \bar{a}_i^Tx , variance $x^T\Sigma_i x$; hence

$$\mathbf{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

where
$$\Phi(x)=(1/\sqrt{2\pi})\int_{-\infty}^x e^{-t^2/2}\,dt$$
 is CDF of $\mathcal{N}(0,1)$

robust LP

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m,$

with $\eta \geq 1/2$, is equivalent to the SOCP

minimize
$$c^Tx$$
 subject to $\bar{a}_i^Tx+\Phi^{-1}(\eta)\|\Sigma_i^{1/2}x\|_2\leq b_i,\quad i=1,\ldots,m$

Geometric programming

monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

with c > 0; exponent α_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \mathbf{dom} \, f = \mathbf{R}_{++}^n$$

geometric program (GP)

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 1, \quad i=1,\ldots,m$ GP by itself is $h_i(x)=1, \quad i=1,\ldots,p$ not convex

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of objective, constraints

ullet monomial $f(x)=cx_1^{a_1}\cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

ullet posynomial $f(x) = \sum_{k=1}^K c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right) \qquad (b_k = \log c_k)$$

geometric program transforms to convex problem

minimize
$$\log\left(\sum_{k=1}^K \exp(a_{0k}^T y + b_{0k})\right)$$
 subject to
$$\log\left(\sum_{k=1}^K \exp(a_{ik}^T y + b_{ik})\right) \leq 0, \quad i=1,\dots,m$$

$$Gy + d = 0 \qquad \qquad \text{(Slide 19, Convex Function notes)}$$

Example

Maximize the volume of a box-shaped structure

- optimization variables: height h, width w, depth d
- constraints: a limit on the total wall area, a; a limit on the floor area, b; lower and upper bounds on the aspect ratio h/w, c and e; lower and upper bounds on the aspect ratio d/w, f and g

 $\max hwd$

subject to:

$$2(hw+hd) \leq a$$

$$wd \leq b$$
 ===>
$$c \leq h/w \leq e$$

$$f \leq d/w \leq g$$
 not a GP

$$\min h^{-1}w^{-1}d^{-1}$$

subject to:

$$(2/a)hw + (2/a)hd \le 1$$

 $(1/b)wd \le 1$
 $ch^{-1}w \le 1$
 $(1/e)hw^{-1} \le 1$
 $fwd^{-1} \le 1$
 $(1/g)w^{-1}d \le 1$ GP

Semidefinite programming (SDP)

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G\preceq 0$ $Ax=b$ with $F_i,\ G\in \mathbf{S}^k$

inequality constraint is called linear matrix inequality (LMI)

Example

Minimize maximum eigenvalue

$$\text{minimize} \quad \lambda_{\max}(A(x))$$
 where $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$ (with given $A_i \in \mathbf{S}^k$)
$$\text{minimize} \quad t$$
 subject to:
$$\lambda_{\max}(A(x)) \leq t$$

$$\text{minimize} \quad t$$
 subject to $A(x) \leq tI$

• variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$

Vector optimization

general vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

vector-valued objective function:

 $f_0: \mathbf{R}^n \to \mathbf{R}^q$, minimized w.r.t. proper cone $K \in \mathbf{R}^q$

i.e., find x^* such that $f_0(x^*) \leq \kappa f_0(x)$, for all feasible x

$$f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$$

$$h_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, p$$

Convex vector optimization

convex vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

with f_0 K-convex, f_1 , . . . , f_m convex

K-convexity for vector-valued functions

 $f: \mathbf{R}^n \to \mathbf{R}^m$ is K-convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) \leq_K \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{dom} f$, $0 \le \theta \le 1$

Multicriterion optimization

Or multi-objective optimization

vector optimization problem with $K={\bf R}_+^q$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

• q different objectives F_i ; roughly speaking we want all F_i 's to be small

Optimal and Pareto optimal points

set of achievable objective values

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

• feasible x^* is **optimal** if $f_0(x^*)$ is a minimum value of \mathcal{O}

i.e.,
$$y$$
 feasible \Longrightarrow $f_0(x^*) \preceq_{\kappa} f_0(y)$

Optimal and Pareto optimal points (cont'd)

• feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of \mathcal{O}

i.e.,
$$y$$
 feasible, $f_0(y) \leq_{\mathsf{K}} f_0(x) \implies f_0(x) = f_0(y)$

if there are multiple Pareto optimal values, there is a trade-off between the objectives

Example

□ Risk return trade-off in portfolio optimization

minimize (w.r.t.
$$\mathbf{R}_+^2$$
) $(-\bar{p}^Tx, x^T\Sigma x)$ subject to $\mathbf{1}^Tx=1, \quad x\succeq 0$

- $x \in \mathbb{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- $p \in \mathbf{R}^n$ is vector of asset return, modeled as a random variable with mean \bar{p} , covariance Σ
- $\bar{p}^T x = \mathbf{E} p^T x$ is expected return; $x^T \Sigma x = \mathbf{Var} p^T x$ is return variance

Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^*} 0$ and solve scalar problem

minimize
$$\lambda^T f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

if x is optimal for scalar problem, then it is Pareto-optimal for vector optimization problem

dual cone of a cone K: (Chapter 2.6)

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^*} 0$ and solve scalar problem

minimize
$$\lambda^T f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

for convex vector optimization problems, can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^*} 0$

Example

□ Risk-return trade-off

$$\begin{array}{ll} \text{minimize} & -\bar{p}^Tx + \gamma x^T \Sigma x \\ \text{subject to} & \mathbf{1}^Tx = 1, \quad x \succeq 0 \end{array}$$

for fixed $\gamma > 0$, a quadratic program

- Reference
 - Chapter 4.4, 4.5, 4.7, Convex Optimization.
- Acknowledgement
 - Some materials are extracted from the slides created by Prof. Stephen Boyd for the textbook
 - Some materials are extracted from the lecture notes Convex Optimization by Prof. Wei Yu at the University of Toronto