Sta 101 -Discussion Section

Feb 9, 2016

- 3.3 GRE scores, Part I. Sophia who took the Graduate Record Examination (GRE) scored 160 on the Verbal Reasoning section and 157 on the Quantitative Reasoning section. The mean score for Verbal Reasoning section for all test takers was 151 with a standard deviation of 7, and the mean score for the Quantitative Reasoning was 153 with a standard deviation of 7.67. Suppose that both distributions are nearly normal.
- (a) Write down the short-hand for these two normal distributions.
- (b) What is Sophia's Z-score on the Verbal Reasoning section? On the Quantitative Reasoning section? Draw a standard normal distribution curve and mark these two Z-scores.
- (c) What do these Z-scores tell you?

- 3.3 GRE scores, Part I. Sophia who took the Graduate Record Examination (GRE) scored 160 on the Verbal Reasoning section and 157 on the Quantitative Reasoning section. The mean score for Verbal Reasoning section for all test takers was 151 with a standard deviation of 7, and the mean score for the Quantitative Reasoning was 153 with a standard deviation of 7.67. Suppose that both distributions are nearly normal.
- (d) Relative to others, which section did she do better on?
- (e) Find her percentile scores for the two exams.
- (f) What percent of the test takers did better than her on the Verbal Reasoning section? On the Quantitative Reasoning section?

- 3.3 GRE scores, Part I. Sophia who took the Graduate Record Examination (GRE) scored 160 on the Verbal Reasoning section and 157 on the Quantitative Reasoning section. The mean score for Verbal Reasoning section for all test takers was 151 with a standard deviation of 7, and the mean score for the Quantitative Reasoning was 153 with a standard deviation of 7.67. Suppose that both distributions are nearly normal.
- (g) Explain why simply comparing her raw scores from the two sections would lead to the incorrect conclusion that she did better on the Quantitative Reasoning section.
- (h) If the distributions of the scores on these exams are not nearly normal, would your answers to parts (b) (f) change? Explain your reasoning.

- **3.5 GRE scores, Part II.** In Exercise 3.3 we saw two distributions for GRE scores: $N(\mu = 151, \sigma = 7)$ for the verbal part of the exam and $N(\mu = 153, \sigma = 7.67)$ for the quantitative part. Use this information to compute each of the following:
- (a) The score of a student who scored in the 80^{th} percentile on the Quantitative Reasoning section.
- (b) The score of a student who scored worse than 70% of the test takers in the Verbal Reasoning section.

- **3.11** Auto insurance premiums. Suppose a newspaper article states that the distribution of auto insurance premiums for residents of California is approximately normal with a mean of \$1,650. The article also states that 25% of California residents pay more than \$1,800.
- (a) What is the Z-score that corresponds to the top 25% (or the 75th percentile) of the standard normal distribution?
- (b) What is the mean insurance cost? What is the cutoff for the 75th percentile?
- (c) Identify the standard deviation of insurance premiums in LA.

- **3.25** Underage drinking, Part I. Data collected by the Substance Abuse and Mental Health Services Administration (SAMSHA) suggests that 69.7% of 18-20 year olds consumed alcoholic beverages in 2008.⁴⁹
- (a) Suppose a random sample of the ten 18-20 year olds is taken. Is the use of the binomial distribution appropriate for calculating the probability that exactly six consumed alcoholic beverages? Explain.
- (b) Calculate the probability that exactly 6 out of 10 randomly sampled 18- 20 year olds consumed an alcoholic drink.

- **3.25** Underage drinking, Part I. Data collected by the Substance Abuse and Mental Health Services Administration (SAMSHA) suggests that 69.7% of 18-20 year olds consumed alcoholic beverages in 2008.⁴⁹
- (c) What is the probability that exactly four out of the ten 18-20 year olds have *not* consumed an alcoholic beverage?
- (d) What is the probability that at most 2 out of 5 randomly sampled 18-20 year olds have consumed alcoholic beverages?
- (e) What is the probability that at least 1 out of 5 randomly sampled 18-20 year olds have consumed alcoholic beverages?

3.29 University admissions. Suppose a university announced that it admitted 2,500 students for the following year's freshman class. However, the university has dorm room spots for only 1,786 freshman students. If there is a 70% chance that an admitted student will decide to accept the offer and attend this university, what is the approximate probability that the university will not have enough dormitory room spots for the freshman class?