Formalisms Every Computer Scientist Should Know

Thomas A. Henzinger

November 20, 2024

1 Preliminaries

An alphabet is a recursive set. A preorder is a binary relation that is reflexive and transitive. Given a function $f: A \to B$ and two elements $a \in A$ and $b \in B$, we write $f[a \mapsto b]$ for the function from A to B that agrees with f except that a is mapped to b. We write "iff" for "if and only if." Let $\mathbb{B} = \{\mathbf{true}, \mathbf{false}\}$.

2 Logic

2.1 Propositional Logic

Syntax

Let P_0 be an alphabet of *propositions* not containing the special symbol \perp . The *propositional sentences* Φ are defined inductively:

$$P_0 \subseteq \Phi$$

$$\bot \in \Phi$$

$$\Phi \times \{\Rightarrow\} \times \Phi \subseteq \Phi$$

We write $(\varphi_1 \Rightarrow \varphi_2)$ for $(\varphi_1, \Rightarrow, \varphi_2)$ and use the following abbreviations in sentences:

```
\neg \varphi \text{ for } \varphi \Rightarrow \bot 

\varphi_1 \lor \varphi_2 \text{ for } (\neg \varphi_1) \Rightarrow \varphi_2 

\varphi_1 \land \varphi_2 \text{ for } \neg(\varphi_1 \Rightarrow \neg \varphi_2) 

\varphi_1 \Leftrightarrow \varphi_2 \text{ for } (\varphi_1 \Rightarrow \varphi_2) \land (\varphi_2 \Rightarrow \varphi_1)
```

When writing sentences, we omit parentheses whenever this can be done without ambiguity. We write $\varphi_1 \Rightarrow \varphi_2 \Rightarrow \varphi_3$ for $\varphi_1 \Rightarrow (\varphi_2 \Rightarrow \varphi_3)$.

Classical semantics

A boolean interpretation $\nu: P_0 \to \mathbb{B}$ is a function that maps each proposition to a boolean value. Given a boolean interpretation ν , the semantics of propositional sentences is defined inductively:

$$\begin{split} \llbracket p \rrbracket_{\nu} &= \nu(p) \text{ for } p \in P_0 \\ \llbracket \bot \rrbracket_{\nu} &= \mathbf{false} \\ \llbracket \varphi_1 \Rightarrow \varphi_2 \rrbracket_{\nu} &= \text{if } \llbracket \varphi_1 \rrbracket_{\nu} \text{ then } \llbracket \varphi_2 \rrbracket_{\nu} \text{ else } \mathbf{true} \end{split}$$

Therefore:

```
\begin{split} & \llbracket \neg \varphi \rrbracket_{\nu} = \mathrm{if} \ \llbracket \varphi \rrbracket_{\nu} \ \mathrm{then} \ \mathbf{false} \ \mathrm{else} \ \mathbf{true} \\ & \llbracket \varphi_{1} \vee \varphi_{2} \rrbracket_{\nu} = \mathrm{if} \ \llbracket \varphi_{1} \rrbracket_{\nu} \ \mathrm{then} \ \mathbf{true} \ \mathrm{else} \ \llbracket \varphi_{2} \rrbracket_{\nu} \\ & \llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket_{\nu} = \mathrm{if} \ \llbracket \varphi_{1} \rrbracket_{\nu} \ \mathrm{then} \ \llbracket \varphi_{2} \rrbracket_{\nu} \ \mathrm{else} \ \mathbf{false} \\ & \llbracket \varphi_{1} \Leftrightarrow \varphi_{2} \rrbracket_{\nu} = \mathrm{if} \ (\llbracket \varphi_{1} \rrbracket_{\nu} = \llbracket \varphi_{2} \rrbracket_{\nu}) \ \mathrm{then} \ \mathbf{true} \ \mathrm{else} \ \mathbf{false} \end{split}
```

An interpretation ν is a model of a sentence φ if $\llbracket \varphi \rrbracket_{\nu} = \mathbf{true}$. A sentence φ is valid if every interpretation is a model of φ , and φ is satisfiable if it has a model. A sentence φ_1 implies a sentence φ_2 if every model of φ_1 is a model of φ_2 , and φ_1 is equivalent to φ_2 if they have the same models. Note that φ is valid iff $\neg \varphi$ is not satisfiable (a.k.a. "unsatisfiable"); that $\varphi_1 \Rightarrow \varphi_2$ is valid iff φ_1 implies φ_2 ; and that $\varphi_1 \Leftrightarrow \varphi_2$ is valid iff φ_1 is equivalent to φ_2 .

Intuitionistic semantics

A Kripke interpretation $\nu = (W, w_0, \leq, [\cdot])$ consists of a set W of worlds, an initial world $w_0 \in W$, a preorder \leq on the worlds W, and a function $[\cdot]$ that maps each world $w \in W$ to a boolean interpretation $[w]: P_0 \to \mathbb{B}$ such that for all worlds $w, w' \in W$ and all propositions $p \in P_0$, if $[w](p) = \mathbf{true}$ and $w \leq w'$, then $[w'](p) = \mathbf{true}$. Given a Kripke interpretation ν , the semantics of propositional sentences is defined inductively for each world $w \in W$:

$$\begin{aligned}
& \llbracket p \rrbracket_{w}^{w} = [w](p) \\
& \llbracket \bot \rrbracket_{v}^{w} = \mathbf{false} \\
& \llbracket \varphi_{1} \Rightarrow \varphi_{2} \rrbracket_{v}^{w} = (\text{for all } w' \in W : \text{if } w \leq w' \text{ then if } \llbracket \varphi_{1} \rrbracket_{v}^{w'} \text{ then } \llbracket \varphi_{2} \rrbracket_{v}^{w'})
\end{aligned}$$

The truth value of a sentence φ for the Kripke interpretation ν is $[\![\varphi]\!]_{\nu} = [\![\varphi]\!]_{\nu}^{w_0}$. Note that the sentence $p \vee \neg p$ is false for the two-world interpretation

$$(\{w_0, w_1\}, w_0, \{(w_0, w_0), (w_0, w_1)\}, (w_1, w_1)\}, [\cdot])$$

with
$$[w_0](p) =$$
false and $[w_1](p) =$ true.

Decision problems

Validity and satisfiability are complementary questions: validity ("Is a given sentence true for all interpretations?") is universal; satisfiability ("Is a given sentence true for some interpretation?") is existential. The satisfiability problem for the boolean semantics of propositional sentences is NP-complete; the corresponding validity problem is coNP-complete. The satisfiability and validity problems for the Kripke semantics of propositional sentences are PSPACE-complete (note that PSPACE = coPSPACE).

The brute-force procedure for deciding boolean satisfiability evaluates a given sentence φ for all boolean interpretations. Let $n = |\varphi|$ be the size of φ .

While the computation of the truth value $[\![\varphi]\!]_{\nu}$ can be computed in O(n) time for each boolean interpretation ν , there may be $\Omega(2^n)$ many boolean interpretations to consider. In practice, the resolution procedure is often more efficient. In resolution, we assume that φ is given in *conjunctive normal form* (CNF), as a conjunction of disjunctions of propositions and negated propositions. A propositional sentence φ can be converted into an equivalent CNF sentence in $O(2^n)$ time. To avoid the duplication and reordering of expressions within a sentence, we write a CNF sentence as a set of *clauses*, each representing a disjunctive sentence, and we write a clause as a set of *literals*, each being a proposition or negated proposition.

```
Algorithm Propositional Resolution
Input: propositional sentence \varphi in CNF
Output: if \varphi satisfiable then YES else No
while \emptyset \notin \varphi and exist \gamma_1, \gamma_2 \in \varphi and \alpha \in \gamma_1 such that \neg \alpha \in \gamma_2 do
\varphi := \varphi \cup \{\gamma_1 \cup \gamma_2\} \setminus \{\alpha, \neg \alpha\}
od
return if \emptyset \in \varphi then No else YES
```

TODO DPLL

Proof systems

A proof system $\mathcal{P} = (\mathcal{J}, \mathcal{R})$ comprises a recursive set \mathcal{J} of judgments and a recursive set \mathcal{R} of rules; each rule in \mathcal{R} consists of a finite (possibly zero) number of premises in \mathcal{J} and a conclusion in \mathcal{J} . A proof in \mathcal{P} is a finite sequence J_0, J_1, \ldots, J_k of judgments $J_i \in \mathcal{J}$ such that for all $0 \leq i \leq k$, there is a rule $R_i \in \mathcal{R}$ whose conclusion is J_i and whose premises occur earlier in the sequence. Note that the first judgment of a proof must be the conclusion of a rule without premises. A judgment J is a theorem of \mathcal{P} if there is a proof in \mathcal{P} whose last judgment is J. Note that the set of theorems of \mathcal{P} is r.e.

A correctness criterion $\mathcal{C} \subseteq \mathcal{J}$ identifies a set of correct judgments. A proof system \mathcal{P} is sound w.r.t. \mathcal{C} if every theorem is correct, and \mathcal{P} is complete w.r.t. \mathcal{C} if every correct judgment is a theorem. Note that the set of correct judgments is r.e. if there is a sound and complete proof system.

We present four proof systems for propositional logic, each with a different set of judgments and correctness criterion.

Hilbert systems. A *Hilbert* system has judgments of the form $\vdash \varphi$ for sentences φ . A judgment $\vdash \varphi$ is correct if the sentence φ is valid. The Hilbert system HJ with the three rule schemata K, S, and MP ("modus ponens") is sound and complete for the Kripke semantics of propositional sentences:

$$\label{eq:controller} \begin{split} & \frac{}{\vdash \psi \Rightarrow \varphi \Rightarrow \psi} \text{ K} \\ & \frac{}{\vdash (\psi \Rightarrow \varphi \Rightarrow \chi) \Rightarrow ((\psi \Rightarrow \varphi) \Rightarrow \psi \Rightarrow \chi)} \text{ S} \\ & \frac{\vdash \varphi \quad \vdash \varphi \Rightarrow \psi}{\vdash \psi} \text{ MP} \end{split}$$

We write the premises of a rule schema above a line, and the conclusion below; the schemata K and S have no premises, the schema MP has two premises. Each rule schema represents infinitely many rules that are obtained from the schema by substituting sentences for metavariables such as φ , ψ , and χ . The Hilbert system HK = HJ+HX has in addition the rule schema HX ("excluded middle"):

$$\vdash ((\varphi \Rightarrow \bot) \Rightarrow \psi \Rightarrow \bot) \Rightarrow \psi \Rightarrow \varphi$$
 HX

The system HK is sound and complete for the boolean semantics of propositional sentences.

Natural deduction. A *Natural-Deduction* system has judgments of the form $\Gamma \vdash \varphi$, where Γ is a finite set of sentences and φ is a sentence. A judgment $\Gamma \vdash \varphi$ is correct if the conjunction of the sentences in Γ implies φ . The Natural-Deduction system NJ, with the following rule schemata, is sound and complete for the Kripke semantics of propositional sentences:

$$\begin{array}{lll} \overline{\Gamma, \varphi \vdash \varphi} & \text{axiom} \\ & \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \perp \text{ elimination} & \overline{\Gamma \vdash \bot} \perp \text{ introduction} \\ & \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \varphi \Rightarrow \psi}{\Gamma \vdash \psi} \Rightarrow \text{ elimination} & \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \Rightarrow \psi} \Rightarrow \text{ introduction} \\ & \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} & \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \land e & \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \land i \\ & \frac{\Gamma \vdash \varphi_1 \lor \varphi_2 \quad \Gamma, \varphi_1 \vdash \psi \quad \Gamma, \varphi_2 \vdash \psi}{\Gamma \vdash \psi} \lor e & \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} & \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \lor i \\ & \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} \neg e & \frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \neg i \\ & \end{array}$$

The Natural-Deduction system NK = NJ+NX, with the additional excluded-middle schema NX, is sound and complete for the boolean semantics of propositional sentences:

$$\frac{}{\Gamma \vdash \varphi \lor \neg \varphi}$$
 NX

Gentzen systems. A Gentzen system has judgments of the form $\Gamma \vdash \Delta$, where Γ and Δ are finite sets of sentences. The sentences in Γ and Δ are called assertions and goals, respectively; the judgment $\Gamma \vdash \Delta$, a sequent. A sequent $\Gamma \vdash \Delta$ is correct if the conjunction of the assertions implies the disjunction of the goals. Note that in natural deduction, all sequents have a single goal; moreover in Hilbert systems, there are no assertions. The Gentzen system LK, with the following rule schemata, is sound and complete for the boolean semantics of propositional sentences:

$$\overline{\Gamma, \varphi \vdash \varphi, \Delta}$$
 axiom

$$\begin{split} & \frac{\Gamma, \bot \vdash \Delta}{\Gamma, \bot \vdash \Delta} \stackrel{\bot e}{\longrightarrow} \frac{\Gamma \vdash \top, \Delta}{\Gamma \vdash \varphi, \Delta} \stackrel{\top i}{\longrightarrow} i \\ & \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \varphi \Rightarrow \psi \vdash \Delta} \Rightarrow e \qquad \frac{\Gamma, \varphi \vdash \psi, \Delta}{\Gamma \vdash \varphi \Rightarrow \psi, \Delta} \Rightarrow i \\ & \frac{\Gamma, \varphi, \psi \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta} \land e \qquad \frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta} \land i \\ & \frac{\Gamma, \varphi \vdash \Delta}{\Gamma, \varphi \lor \psi \vdash \Delta} \lor e \qquad \frac{\Gamma \vdash \varphi, \psi, \Delta}{\Gamma \vdash \varphi \lor \psi, \Delta} \lor i \\ & \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \neg \varphi \vdash \Delta} \neg e \qquad \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta} \neg i \end{split}$$

Note the internal symmetries of LK in all but the \Rightarrow rules.

Metatheorems

Deduction. TODO

Compactness. TODO

Cut elimination. TODO

Craig interpolation. TODO

2.2 First-order Logic

Syntax

Let X be an infinite alphabet of variables. A $signature \Sigma = (F_i, P_i)_{i \in \mathbb{N}}$ comprises, for each natural number i, two alphabets F_i and P_i of function and predicate symbols of arity i. The function symbols of arity 0 are disjoint from X and called constants; the predicate symbols of arity 0 are different from \bot and called propositions. The Σ - $terms\ T$ are defined inductively:

$$\begin{split} X \subseteq T \\ F_i \times T^i \subseteq T \text{ for all } i \in \mathbb{N} \end{split}$$

The Σ -atoms A are defined inductively:

$$\bot \in A$$

 $P_i \times T^i \subseteq T \text{ for all } i \in \mathbb{N}$

The Σ -formulas Φ are defined inductively:

$$A \subseteq \Phi$$

$$\Phi \times \{\Rightarrow\} \times \Phi \subseteq \Phi$$

$$\{\forall\} \times X \times \Phi \subseteq \Phi$$

We write $(\forall x : \varphi)$ for the universally quantified formula $(\forall x, x, \varphi)$ with the bound variable x. The existentially quantified formula $(\exists x : \varphi)$ is an abbreviation for $\neg(\forall x : \neg \varphi)$. The free variables of terms, atoms, and formulas are defined inductively:

```
free(x) = \{x\} \text{ for } x \in X
free(f_i, t_1, \dots, t_i) = free(t_1) \cup \dots \cup free(t_i) \text{ for } f_i \in F_i
free(\bot) = \emptyset
free(p_i, t_1, \dots, t_i) = free(t_1) \cup \dots \cup free(t_i) \text{ for } p_i \in P_i
free(\varphi_1 \Rightarrow \varphi_2) = free(\varphi_1) \cup free(\varphi_2)
free(\forall x : \varphi) = free(\varphi) \setminus \{x\}
```

A Σ -formula φ is a Σ -sentence if $free(\varphi) = \emptyset$. The universal closure of φ is the Σ -sentence that results from φ by adding outermost \forall -quantifiers.

Semantics

We give only the classical (so-called Tarski) semantics for first-order sentences. A Σ -interpretation ν is a function with the domain $\{\forall\} \cup X \cup \bigcup_{i \in \mathbb{N}} (F_i \cup P_i)$:

```
\nu(\forall) = \mathbf{U} for a nonempty set \mathbf{U} called universe \nu(x) \in \mathbf{U} for each variable x \in X \nu(f_i) : \mathbf{U}^i \to \mathbf{U} for each function symbol f_i \in F_i \nu(p_i) \subseteq \mathbf{U}^i for each predicate symbol p_i \in P_i
```

Given a Σ -interpretation ν , the semantics of terms, atoms, and formulas is defined inductively:

```
\begin{split} & \llbracket x \rrbracket_{\nu} = \nu(x) \text{ for } x \in X \\ & \llbracket f_i, t_1, \dots, t_i \rrbracket_{\nu} = \nu(f_i)(\llbracket t_1 \rrbracket_{\nu}, \dots, \llbracket t_i \rrbracket_{\nu}) \text{ for } f_i \in F_i; \\ & \llbracket \bot \rrbracket_{\nu} = \mathbf{false} \\ & \llbracket p_i, t_1, \dots, t_i \rrbracket_{\nu} = \text{ if } (\llbracket t_1 \rrbracket_{\nu}, \dots, \llbracket t_i \rrbracket_{\nu}) \in \nu(p_i) \text{ then } \mathbf{true} \text{ else } \mathbf{false} \\ & \text{ for } p_i \in P_i \\ & \llbracket \varphi_1 \Rightarrow \varphi_2 \rrbracket_{\nu} = \text{ if } \llbracket \varphi_1 \rrbracket_{\nu} \text{ then } \llbracket \varphi_2 \rrbracket_{\nu} \text{ else } \mathbf{true} \\ & \llbracket \forall x : \varphi \rrbracket_{\nu} = (\text{for all } \mathbf{u} \in \mathbf{U} : \llbracket \varphi \rrbracket_{\nu[x \mapsto \mathbf{u}]} = \mathbf{true}) \end{split}
```

It follows that

$$[\![\exists x:\varphi]\!]_{\nu}=(\text{for some }\mathbf{u}\in\mathbf{U}:[\![\varphi]\!]_{\nu[x\mapsto\mathbf{u}]}=\mathbf{true}).$$

Note that we can rename the bound variables in a formula φ to new (so-called "fresh") variables without changing the semantics of φ . The definitions of model, validity, satisfiability, implication, and equivalence for Σ -sentences and Σ -interpretations are the same as for propositional sentences and boolean interpretations.

Proof systems

First-order Hilbert judgments have the form $\vdash \varphi$ for Σ -formulas φ . A first-order judgment $\vdash \varphi$ is correct if the universal closure of φ is valid. The Hilbert system HK has three additional rule schemata for first-order quantification:

$$\vdash (\forall x : \phi) \Rightarrow \varphi[x \mapsto t]$$

$$\frac{}{\vdash \varphi \Rightarrow (\forall x : \varphi)} \text{ if } x \not\in \mathit{free}(\varphi) \\ \\ \frac{}{\vdash (\forall x : \varphi \Rightarrow \psi) \Rightarrow (\forall x : \varphi) \Rightarrow (\forall x : \psi)}$$

The formula $\varphi[x \mapsto t]$ is obtained as follows: first, all bound variables in φ are renamed to variables not in $free(\varphi) \cup \{x\} \cup free(t)$; second, all occurrences of the variable x in φ are replaced by the term t. The renaming of the bound variables in φ prevents the accidental "capturing" of free variables in t by quantifiers in t. The proof system HK is sound and complete for t-formulas; the latter is known as Gödel's completeness theorem. TODO NK, LK

Metatheorems

TODO Löwenhein-Skolem, Craig, resolution

Theories

We extend some definitions to sets of sentences and interpretations. An interpretation ν is a model of a set T of sentences if ν is a model of every sentence in T. A set T of sentences implies a sentence φ , written $T \vDash \varphi$, if every model of T is a model of φ . A set V of interpretations models a sentence φ , written $V \vDash \varphi$, if every interpretation in V is a model of φ .

A set T of Σ -sentences is a Σ -theory if T is closed under implication, that is, for every Σ -sentence φ , if $T \vDash \varphi$ then $\varphi \in T$. A theory T can be specified syntactically or semantically: a syntactically defined T is $T_A = \{\varphi : A \vDash \varphi\}$ for a specified recursive set A of Σ -sentences called axioms; a semantically defined T is $T_V = \{\varphi : V \vDash \varphi\}$ for a specified set V of Σ -interpretations. Note that both T_A and T_V are closed under implication.

Given a theory T, we can parametrize many definitions $modulo\ T$. A sentence φ is T-satisfiable if $[\![\varphi]\!]_{\nu} = \mathbf{true}$ for some model ν of T. A sentence φ_1 is T-equivalent to a Σ -sentence φ_2 if $[\![\varphi_1]\!]_{\nu} = [\![\varphi_2]\!]_{\nu}$ for every model ν of T. Note that $\varphi \in T$ (" φ is T-valid") iff $[\![\varphi]\!]_{\nu} = \mathbf{true}$ for every model ν of T; that $\neg \varphi \in T$ iff φ is not T-satisfiable; and that $(\varphi_1 \Leftrightarrow \varphi_2) \in T$ iff φ_1 is T-equivalent to φ_2 .

A Σ -theory T is consistent if T has a model, and complete if T contains φ or $\neg \varphi$ for every Σ -sentence φ . Note that there is only one inconsistent theory, namely, the theory T_{\perp} that contains all Σ -sentences. The inconsistent theory T_{\perp} can be defined syntactically by the single axiom \bot , or semantically by the empty set of interpretations. The inconsistent theory is trivially complete. While the inconsistent theory is the largest theory, the smallest theory T_{\emptyset} contains only the valid Σ -sentences. The theory T_{\emptyset} is first-order logic itself; it can be defined syntactically by the empty set of axioms, or semantically by the set of all Σ -interpretations. Note that T_{\emptyset} is incomplete. An important class of theories are the theories that are defined semantically by a single interpretation; these theories are consistent and complete.

Decision problems

The validity problem for Σ -sentences is r.e. but not recursive; the satisfiability problem is co-r.e. but not recursive. However, there are interesting Σ -theories with decidable validity and satisfiability problems.

Theories with equality. A theory with equality contains the binary predicate symbol = in P_2 and the following equality axioms:

```
[reflexivity] (\forall x: x = x)

[symmetry] (\forall x, y: x = y \Rightarrow y = x)

[function congruence] (\forall x_1, y_1, \dots, x_i, y_i: x_1 = y_1 \land \dots \land x_i = y_i \Rightarrow f_i(x_1, \dots, x_i) = f_i(y_1, \dots, y_i)) for each f_i \in F_i

[predicate congruence] (\forall x_1, x_1, \dots, x_i, y_i: x_1 = y_1 \land \dots \land x_i = y_i \Rightarrow p_i(x_1, \dots, x_i) \Rightarrow p_i(y_1, \dots, y_i)) for each p_i \in P_i
```

Note that the transitivity of = follows from the congruence axiom for the equality predicate. The theory of uninterpreted function and predicate symbols $T_{=}$ has no other axioms. While the first-order theory $T_{=}$ is undecidable, the satisfiability problem is NP-complete for existentially quantified sentences (where all variables are quantified by outermost \exists), and the validity problem is coNP-complete for universally quantified sentences (where all variables are quantified by outermost \forall). The critical subroutine checks the $T_{=}$ -satisfiability of a conjunction of the form

$$\varphi = (\bigwedge_{1 \le j < m} s_j = t_j \land \bigwedge_{m \le j < n} s_j \ne t_j).$$

This is done by computing the *congruence closure* on all subterms of the set $S = \{s_i, t_i : 1 \leq i < n\}$, which can be done in time $O(|\varphi| \cdot \log|\varphi|)$ using a union-find data structure.

Arithmetic theories. Consider the signature $\Sigma_{(0,S,+,\times)}$ with the constant 0, the unary function symbol S, the binary function symbols + and \times , and the equality predicate. Let $\nu_{\mathbb{N}}$ be the $\Sigma_{(0,S,+,\times)}$ -interpretation with the universe \mathbb{N} which interprets S as successor function (i.e., $\nu_{\mathbb{N}}(S)(\mathbf{n}) = \mathbf{n} + \mathbf{1}$ for all $n \in \mathbb{N}$), and $0, +, \times$ and = are interpreted as zero, addition, multiplication, and equality on \mathbb{N} . Arithmetic is the theory $T_{\mathbb{N}} = \{\varphi : \{\nu_{\mathbb{N}}\} \models \varphi\}$ of $\Sigma_{(0,S,+,\times)}$ -sentences that are true for the natural numbers. Peano arithmetic PA is an attempt to axiomatize arithmetic. The theory PA has, in addition to the equality axioms, the following axioms:

```
[zero] S0 \neq 0

[successor] (\forall x, y : S(x) = S(y) \Rightarrow x = y)

[induction] \varphi[x \mapsto 0] \Rightarrow (\forall x : \varphi \Rightarrow \varphi[x \mapsto S(x)]) \Rightarrow (\forall x : \varphi)

[zero-addition] (\forall x : x + 0 = x)

[successor-addition] (\forall x, y : x + S(y) = S(x + y))

[zero-multiplication] (\forall x : x \times 0 = 0)

[successor-multiplication] (\forall x, y : x \times S(y) = (x \times y) + x)
```

Gödel's celebrated incompleteness theorem shows that for any set A of axioms that are true for the natural numbers, such as PA, there exists a $\Sigma_{(0,S,+,\times)}$ -sentence φ_A such that neither φ_A nor $\neg \varphi_A$ are implied by A, that is, the $\Sigma_{(0,S,+,\times)}$ -theory T_A is not complete. (Roughly speaking, the Gödel sentence φ_A is self-reflexive and encodes the statement " $\not\vdash \varphi$ " that there is no proof of φ_A from the axioms in A.) It follows that, while $\nu_{\mathbb{N}}$ is a model of PA, there are also other (so-called "nonstandard") models of PA. TODO Presburger

Algebraic theories. TODO

Theories of data structures. Bitvectors, arrays, lists. TODO

Combination of theories. TODO