Christopher McDaniel COSC 2347

Design (Algorithm) for Homework 1

- Comment with my information at top of code.
- Create new function for how long it takes for the object to hit the ground:
 - o Define variables.
 - Calculate the discriminant formula (b*b)-(4*a*c).
 - \circ Calculate the formula for the first root ((-b+disc)/(2*a)).
 - \circ Calculate the formula for the first root ((-b-disc)/(2*a)).
 - Output for time it takes projectile to impact ground.
- Create new function for maximum height of the object:
 - Define variables.
 - \circ Calculate the vertex formula (-b/(2*a)).
 - Calculate the max (a*(vertex*vertex)+b*vertex+c).
 - Output for maximum height.
- Create main function:
 - Display my information (department and course number, name, SamID, and e-mail address.).
 - o Define floating variables.
 - User input for variables.

Christopher McDaniel COSC 2347

$$S(t) = -16t^{2} + V.t + 5.$$

$$S_{0} = initial height (in st)$$

$$V_{0} = initial velocity (in ft/s)$$

$$t = time$$

$$X = \frac{-6 \pm \sqrt{12-4ac}}{2a} = t$$

$$= \frac{-(a) \pm \sqrt{12a} - 4(-10)(4a)}{2(-16)}$$

$$= \frac{-(a) \pm \sqrt{12aa}}{2(-16)} \approx -1.075184$$

$$X_{1} = \frac{-(2a) \pm \sqrt{12aa}}{-32} \approx 2.325184$$

$$X_{2} = \frac{-(2a) - \sqrt{12aa}}{-32} \approx 2.325184$$

$$S(X_{1}) = -16(-1.075184)^{2} + 20(-1.075184) + 40 \approx \frac{36.9927}{36.9927}$$

$$S(X_{2}) = -16(2.325184)^{2} + 20(2.325184) + 40 \approx \frac{36.9927}{36.9927}$$

$$X = \frac{-(32) \pm \sqrt{(32)^{2} - 4(-16)(4a)}}{2(-16)}$$

$$X_{1} = \frac{-(32) \pm \sqrt{(3144)}}{2(-16)} \approx 1.44949 + 20 \approx 92.767$$

$$S(X_{1}) = -16(-1.44949)^{2} + 32(-1.44949) + 20 \approx 92.767$$

$$S(X_{2}) = -16(3.44949)^{2} + 32(3.44949) + 20 \approx -0.00002$$

$$S(X_{2}) = -16(3.44949)^{2} + 32(3.44949) + 20 \approx -0.00002$$