5 et Theory, An Introduction!

Introduction

 $a \in A \Rightarrow a$ is an element in the set A. $a \notin A \Rightarrow a$ is not an element of the set A. ex $A = \{1, 2, \pi, 3\}$ ie A has A elements. $a \notin A \Rightarrow a$ is an element of the set A.

Certain Common Sots.

(i)
$$N = \{0,1,2,3,\ldots\}$$
 = set of Natural ross.

(ii)
$$Z = \{..., -3, -2, -1, 0, 1, 2, 3...\} = Set of Integers$$

Basic definitions:

Net A, B be 2 sets:

- 1. A = B, beth A and B have equal no. of elements
- 2. $A \subseteq B$, A is a problect of B in every element of A is also an element of B
- 3. $A \subseteq B$, A is a proper subset of B i.e., $A \subseteq B$ & $A \neq B$
- 4. \$\phi\$ empty set (no elements)
- 5 A, B are disjoint when they do not have elements in Common

Thus, $A \subseteq A$, $\Phi \subseteq A$ for any set A.

Question Why \$ SA?

Invot: Let us suppose, $\Phi \not\subseteq A$ is there must exist $x \in \Phi$ such that $x \not\in A$. As there is no such x st $x \in \Phi$ (: Φ is an empty set), we arrive at a contradiction.

Thus, $\Phi \subseteq A$

Venn Diagrams: (for Visualization)

A S B

A, B au disjoint

Def Property: A property is a statement that asserts something:
about one or more variables

eg {x ∈ R and x ≠ N} is a property of variable x

Q. How to construct a subset?

One way is by the melhod of Separation.

Let A be a set Given a property P(x) about variable x, We can construct a set of objects $x \in A$ that satisfy the property P(x) is, We fam the truth set: $\{x \in A; P(x)\} \subseteq A$

eg:
$$A = \{ x \in \mathbb{N}; 3 < x < 11 \}$$

Here $A = \{ 4, 5, 6, 7, 8, 9, 10 \} \subseteq \mathbb{N}$

Def: Interval: An interval is a set too.

1.
$$(a,b)$$
: Open interval \Rightarrow $(a,b) = \{x \in \mathbb{R}; a < x < b\}$

2.
$$[a,b]$$
: closed interval =) $[a,b] = \{x \in \mathbb{R} : a \leq x \leq b\}$

3.
$$(a,b)$$
: right dosed interval =) (a,b) : $\{x \in \mathbb{R} : a < x \le b\}$

4 [a, b): left clusted interval =) [a, b) =
$$\{x \in \mathbb{R}: a \leq x \leq b\}$$

Def: Power Set:

Let A be a set

$$\mathcal{P}(A)$$
 is the power set of A ; $\mathcal{P}(A) = \{X : X \subseteq A\}$

ite, Power set of A is the set whose elements are out the subsets of A.

Let us say A has a element in $A = \{a_1, a_2, \dots a_n\}$ Then P(A), the power set of A, with have 2^n elements

$$P(A) = \left\{ \Phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\} \right\}$$
= i.e., $2 = 8$ elements

Det: Let A, B be 2 sets.

$$A \cup B = \{ x : x \in A \text{ or } x \in B \} \Rightarrow Union$$

$$A \setminus B = \{ x : x \in A \text{ and } x \notin B \} \Rightarrow \text{ set difference}$$

Use Venn diagrams to understand the below results: