משפט החלוקה

a=bc בך שמתקיים c כך שמתקיים a ונסמן a ונסמן a אם קיים מספר טבעי באמר כי

משפט בעיים מספרים טבעיים מספרים אזי קיימים מספרים טבעיים משפט ב (משפט החלוקה): אם מa,b אזי קיימים מספרים טבעיים ייחודיים וודיים $a=bq+r,\ 0\leq r< b$

מחלק משותף מקסימלי

תהחלק משותף מקסימלי): יהיו $a,b\in\mathbb{Z}$. נאמר כי $d\in\mathbb{Z}$ הינו המחלק המשותף מקסימלי): יהיו a,b שם a,b שם מתקיים:

- ,וגם d|b וגם d|a
- $c \leq d$ אזי $c \mid b$ וגם $c \mid a$ אזי $c \leq c$ אזי

. או (a,b) או $\gcd(a,b)$ לציון מספר זה

: נקבל: a אזי נקבל. a אזי נקבל: $b(a)=\{m\in\mathbb{Z}:m|a\}$ נרשום המחלקים של a. אזי נקבל:

$$.(a,b) = \max\{D(a) \cap D(b)\}\$$

. אזי d=(a,b). כלומר, המספרים a,b הם זרים. d=(a,b) אזי היו d=(a,b). כלומר, המספרים ויהי a,b הם זרים. a,b מספרים שלמים. אזי אוסף הקומבינציות הליניאריות של a,b הוא הקבוצה <u>הגדרה:</u> יהיו

$$.L(a,b) \coloneqq \{ma+nb ; m,n \in \mathbb{Z}\}$$

 $(a,b) \in L(a,b)$ מתקיים (Bezout) למה (Bezout) מה

a|c אזי (a,b) = 1 אם a|bc אם (Euclid) למה (Euclid)

.(ca,cb)=c(a,b) אזי $c\in\mathbb{Z}^+$ ויהי a,b>0 יהיו:

טענה:

b שלמים עוקבים, לפחות אחד מהם כפולה של טל מבין כל $b \in \mathbb{N}$ יהי

LCM

נסתכל כעת על "בן דודו" של המחלק המשותף המקסימלי, אשר מכפלה משותפת מינימלית. תחילה נגדיר מה זו כפולה משותפת.

:גדרה:

bו (a שני מספרים שלמים. נאמר שמספר שלם ,c הוא משותפת שלמים. נאמר שלמים. אם bו וגם aונם aונם אם aונם

 $a,b\in\mathbb{Z}^+$ בעת עבור bו משותפות של aו כעת עבור -ab, 0, a לדוגמה, בשקול את הקבוצה a של a און החיוביות של a איז המכפלות החיוביות של a און a איז אינה ריקה, ולכן לפי עיקרון הסדר הטוב a (WOP), יש מכיוון שa a פוצר איז היקר המשותפת המינימלית, כפי שנגדיר כעת. לה איבר מינימלית.

הגדרה:

יהיו a ו-d שני מספרים חיוביים ושלמים. הכפולה המשותפת המינימלית שלהם, אותה נסמן בa ונסמן בa ונסמן בa מספר הנה מספר המלים את שני התנאים הבאים.

- .b|m געם a|m .1
- $m \leq \ell$ מתקיים b של a של $b \in \mathbb{Z}^+$ מתקיים .2

. $lcm(a,b) \le ab$ נשים לב כי בהכרח מתקיים

משפט:

יהיו $a,b \in \mathbb{Z}^+$ אזי

$$(a,b) \cdot \operatorname{lcm}(a,b) = ab$$

עיקרון האינדוקציה והסדר הטוב

הגדרה: קבוצת המספרים הטבעיים ₪ מוגדרת באופן הבא:

 \mathbb{N} האיבר 1 הינו איבר ב.

 \mathbb{N} ב x+1 אם x הינו איבר ב \mathbb{N} אזי גם x+1

עקרון הסדר הטוב (WOP): לכל תת קבוצה לא ריקה של \mathbb{Z} או \mathbb{Z} יש איבר מינימלי.

אינדוקציה חלשה

<u>משפט 1</u>

תהי אור $S \subseteq \mathbb{N}$ תת קבוצה המקיימת:

וגם $1 \in S$ (1.1)

 $k+1 \in S$ אזי $k \in S$ אם (1.2)

 $S = \mathbb{N}$ אזי.

:2 משפט

 $n\in\mathbb{N}$ טענה מתמטית התלויה ב S(n)

בסיס: S(1) נכונה.

. נכונה אזי S(k+1) צעד: אם אם S(k) נכונה אזי

 $n \in \mathbb{N}$ אזי הטענה S(n) נכונה לכל

<u>אינדוקציה חזקה/שלמה</u>

<u>:שפט 3</u>

. תהי אור $S \subseteq \mathbb{N}$ תת קבוצה המקיימת

וגם $1 \in S$ (S.1)

 $n+1\in S$ אזי $\{0,1,2,\ldots,n\}\in S$ אם (ו.2)

 $S = \mathbb{N}$ אזי

:4 משפט

קס תהי (אים הבאים: יהיו אח המקיימת המקיימת תהי המקיימת התלויה בnר ב $n_0,n_1\in~\mathbb{Z}^+$ יהיו טענה מתמטית התלויה ב $n_0\leq n_1$

.בסיס: $S(n_0), S(n_0+1), ... S(n_1)$ כולן נכונות

. נכונה אז גם S(k+1) נכונות אז גם $S(n_0), S(n_0+1), \dots, S(k-1), S(k)$ צעד: אם

 $n_0 \leq n$ אזי הטענה S(n) נכונה לכל

למה <u>5</u>: אינדוקציה חלשה גוררת אינדוקציה חזקה.

למה <u>6</u>: עיקרון האינדוקציה החזקה גורר את WOP.

:<u>7 משפט</u>

העקרונות של אינדוקציה חלשה, אינדוקציה חזקה, ו-WOP הינם שקולים.

אי-רציונאליות של שורש 2

משפט 1. $\sqrt{2}$ הינו אי-רציונאלי.

. אזי a^2 הינו אי-זוגי אם ורק אם a הינו אי-זוגי. $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי

אלגוריתם אוקלידס

(a + cb, b) = (a, b) מתקיים (a, b, c למה 1: לכל שלושה מספרים טבעיים

 $(a,b) = (b, a \ mod \ b)$ אזי $a > b \ge 1$: יהיו :

:Euclid אלגוריתם

 $a,b \in \mathbb{Z}^+$ קלט:

.(a, b) :פלט

:כל עוד א $k \in \mathbb{Z}$ עבור איזשהו $a \neq bk$ כל

a = bq + r ורשום a, b ורשום במשפט החלוקה על .1

 $a \leftarrow b$ בצע. 2

 $.b \leftarrow r$ בצע. 3

הוצא את b כפלט.

:אלגוריתם Euclid רקורסיבי

 $a \ge b > 0$, $a, b \in \mathbb{Z}^+$ קלט:

.(a, b) :פלט

יו יונם בייבים ו קוו סיבי.

Euclid(a, b)

1. If b = 0 return a

2. Return Euclid(b, a mod b)

(b-ו -a שמקבלת שני פרמטרים, שנקציה בשם Euclid שמקבלת שני פרמטרים, וואם Euclid הסבר קצר:

למה 3: האלגוריתם עוצר.

. היא תמיד אי-שלילית מדוע לא נעבור את ?? כי תוצאת הפעולה $a\ mod\ b$

(a,b) אזי האלגוריתם אכן מחזיר את . $a \ge b > 0$ למה ביהיו:

אלגוריתם Euclid המורחב

:הות מבוטא bו הוa וכול להיות מבוטא באופן ייחודי כקומבינציה לינארית של (a,b) ,Bezout לפי משפט

$$(a,b) = am + bn$$

. זה ייקרא **אלגוריתם m ו-n**, נציג שימוש חדש לאלגוריתם Euclid. זה ייקרא **אלגוריתם** Euclid **המורחב**.

הגדרה (בעיית אלגוריתם אוקלידס המורחב):

. קלט: $a \ge b > 0$ מספרים שלמים

פלט: שלשה (d,x,y) של מספרים שלמים כך ש:

$$d = (a, b) = ax + by$$

<u>משוואות דיאפנטיות</u>

מהצורה מהצורה פתרון למשוואה מהצורה בהינתן a,b,c

$$ax + by = c$$

. כאשר בפתרון הכוונה $x,y\in\mathbb{Z}$ הפותרים את כאשר

(a,b)|c אם ורק אם \mathbb{Z} - קיים פתרון ב-ax+by=c למשוואה

:הוא מהצורה ax + by = c ל-2 (x, y) אזי כל פתרון אחר (x_0, y_0 ל-2 פתרון למה (x_0, y_0) הוא מהצורה

$$y = y_0 - \left(\frac{a}{d}\right)t, x = x_0 + \left(\frac{b}{d}\right)t$$

. שרירותי $t \in \mathbb{Z}$, וd = (a,b) שרירותי

פירוק ייחודי לגורמים ראשוניים

הגדרה: מספר טבעי חיובי ייקרא **ראשוני** אם זה גדול מ-1 ומתחלק אך ורק בעצמו וב-1.

הגדרה: מספרים טבעיים שאינם ראשוניים נקראים **פריקים**. כלומר, n פריק אם קיימים n=ab ב כך ש 2 $2 \le a,b < n$

הגדרה: הראשוניים השונים המופיעים בפירוק של מספר נקראים *גורמים ראשוניים* של המספר.

.kb=aשלם כך שלם k אם קיים א b|a ונסמן שלם את הגדרה: נאמר כי b

b|n אזי b|a וגם a|n אזי a|n מספרים טבעיים. אם מa,b,n

למה 2: לכל מספר שלם גדול מ-1 יש מחלק ראשוני.

 $.\sqrt{n}$ אם n פריק, אז יש לו מחלק ראשוני שאינו גדול מ

משפט 4 (המשפט היסודי של האריתמטיקה): כל מספר שלם גדול מ-1 יכול להירשם בצורה יחידה

$$n = p_1^{a_1} \cdot p_2^{a_2} \cdot \dots \cdot p_k^{a_k}$$

 $.p_1 < p_2 < \dots < p_k$ באשוני וגם אוו הוא ק $a_i > 0$ מתקיים וו $i \in [k]$ כאשר לכל כאשר לכל

<u>תרגול משפט יסודי</u>

 $a\in\mathbb{Z}$ אם קיים (Perfect Square) אם אוא מספר ריבועי שהוא n אם אוא הארעל. $n\in\mathbb{Z}$ אם הגדרה: ריבועיn

לא מלבד 1 לא (Square Free) מאמר על n שהוא חופשי מריבועים. $n\in\mathbb{Z}$ הגדרה: יהי n נאמר על n שהוא חופשי מריבועי פרט ל-1) b^2 (כלומר n איננו מתחלק באף מספר ריבועי פרט ל-1)

(Prime Square Divisible) הגדרה: נאמר על מספר n שהוא מתחלק בריבוע ראשוני מאפר n פאם לכל p^2 ראשוני, המקיים $p \mid q$ מתקיים שגם $p \mid q$.

המקיים $a \in \mathbb{Z}$ אם קיים (*Perfect Cube*) המקיים שהוא מספר n שהוא מספר n אם המקיים $n=a^3$

<u>יש אינסוף ראשוניים בעולם</u>

משפט (Euclid): יש אינסוף ראשוניים בעולם.

מסקנה: יהיו p_1, p_2, \dots, p_n קבוצת ראשוניים. למספר מהצורה

$$N = \prod_{i=1}^{n} p_i + 1$$

. יש מחלק ראשוני שאינו מהקבוצה p_1, p_2, \dots, p_n או שהמספר

4n + 3 משפט **3**: יש אינסוף ראשוניים מהצורה

4n-1 משפט 4: יש אינסוף ראשוניים מהצורה

an+b אזי קיימים אינסוף ראשוניים מהצורה ((a,b)=1 אם (Dirichlet) משפט

<u>תפוצת הראשוניים</u>

 $\pi(x)$ את נגדיר את $x\in\mathbb{R}$ עבור n נגדיר את להיות הראשוני ה-n. עבור $x\in\mathbb{R}$ נגדיר את להיות הראשוניים עד x

לפי ההוכחה של Euclid לאינסוף ראשוניים, ניתן לרשום את המסקנה הבאה:

מסקנה 1: לכל $n \geq 1$ מתקיים

$$.p_{n+1} \leq p_1 \cdot p_2 \cdot \dots \cdot p_n + 1$$

מתקיים (Bonse) מתקיים משפט 2 $n \geq 5$

$$p_{n+1}^2 < p_1 \cdot p_2 \cdot \dots \cdot p_n$$

 $p_n \le 2^{2^n}$:3 משפט

 $n \geq 2^{2^n}$ מסקנה 4: עבור $n \geq 1$ קיימים לפחות n ראשוניים קטנים מ

 $\pi(x) = \Omega(\log\log x)$: מסקנה

מכיל לפחות ראשוני (n,2n) מכיל (Bertrand's postulate) משפט (Bertrand's postulate) אחד.

 $p_{n+1} < 2p_n$:7 מסקנה

 $p_n < 2^n$ מתקיים $n \geq 2$ עבור 18 משפט

 $\pi(x) = \Omega(\log x)$:9 מסקנה

תרגול ראשוניים

המסננת של ארסטותנס

n רעיון האלגוריתם: למצוא את כל הראשוניים עד

בהינתן מספר שלם n המסננת תעבוד בצורה הבאה . המסננת תאתחל רשימה המכילה את כל המספרים בין 2 ל-n. לאחר מכן, נבחר מספרים מתחילת הרשימה בצורה הבאה : עבור כל מספר x שלא נמחק עדיין, המקיים x במסננת תמחק כל כפולה של x מהרשימה.

. אמ"מ הינו מספר אשוני. A[k]=1 אמ"מ א הינו האלגוריתם בסיום האלגוריתם

של החיצונית איטרציה ה-k של הלולאה החיצונית אלנית במחילת האיטרציה ה-k של הלולאה החיצונית במחילת האיטרציה ה-k של הלולאה החיצונית מ-k.

 $\lfloor \sqrt{n} \rfloor \geq n$ יש גורם איי ח ושימוש בכך שלכל פריק ושימוש איי הצבת ושנני $k = \lfloor \sqrt{n} \rfloor + 1$ ושימוש הטענה נובעת מהלמה עייי הצבת ו

עוד הערה: כאשר אנחנו אומרים "תחילת האיטרציה ה- $k=\lfloor \sqrt{n} \rfloor+1$ (בעצם אין איטרציה כזו), נסכים כי כוונתנו $k-1=\lfloor \sqrt{n} \rfloor$ היא לסוף האיטרציה ה- $\lfloor \sqrt{n} \rfloor$

<u>שקילויות</u>

הגדרה: יהי b-ל מודולו m ונרשום $a,b\in\mathbb{Z}$ ויהיי וויהי $m\in\mathbb{Z}^+$ אם a=b אם $a\equiv b\pmod{m}$

עבור a=b+km אם ורק אם $a\equiv b\pmod m$. אזי $a,b\in\mathbb Z$ אויהיו $m\in\mathbb Z^+$ אם ורק אם $k\in\mathbb Z$

סחים את נגדיר את היחס $m \in \mathbb{Z}^+$ בהינתן

$$R_m := \{(a, b) \in \mathbb{Z}^2 : a \equiv b \pmod{m}\}$$

משפט 2: יהי " \mathbb{Z}^+ היחס R_m מגדיר מחלקות שקילות "מודולו m". כלומר, הוא מקיים את התכונות הבאות:

- $a \in \mathbb{Z}$ לכל $a \equiv a \pmod{m}$. 1.
- $b\equiv a\ (mod\ m)$ אם ורק אם $a\equiv b\ (mod\ m)$ אזי $a,b\in\mathbb{Z}$ סימטריות: אם 2.
- אזי $b\equiv c\ (mod\ m)$ וגם $a\equiv b\ (mod\ m)$ כך ש $a,b,c\in\mathbb{Z}$ אזי $a\equiv b\ (mod\ m)$. $a\equiv c\ (mod\ m)$

האברה: מערכת שאריות שלמה מודולו m היא קבוצת שלמים כך שכל $a\in\mathbb{Z}$ שקול לאיבר יחיד של אותה קבוצה מודולו m.

משפט ${\bf 3}$ (עיקרון שובך היונים): אם n יונים מתחלקים בין לכל היותר n-1 שבכים, אזי לאחר החלוקה קיים שובך המכיל לפחות שני יונים.

משפט 4: יהי \mathbb{Z}^+ מל קבוצה של m מספרים לא שקולים מודולו m מהווה מערכת שאריות שלמה מודולו m.

משפט 5: (אריתמטיקה מודולרית)

:יהיו $a\equiv b\ (mod\ m), c\equiv d\ (mod\ m)$ כך ש $m\in\mathbb{Z}^+$ יהיו $a,b,c,d\in\mathbb{Z}$

- $a+c \equiv b+d \pmod{m}$.1
- $a-c \equiv b-d \pmod{m}$.2
 - $.ac \equiv bd \pmod{m}$.3

אם ורק $ac\equiv bc\ (mod\ m)$ אזי d=(c,m) כך ש $m\in\mathbb{Z}^+$ אם ויהי $a,b,c\in\mathbb{Z}$ אם ורק $a\equiv b\ (mod\ m/_d)$ אם אם ורק

<u>שקילות ליניארית</u>

הגדרה: משוואה מהצורה

 $ax \equiv b \pmod{m}$

נקראת שקילות ליניארית.

אבר במחלקת אזי כל איבר במחלקת אבר $x=x_0\in\mathbb{Z}$ אזי כל איבר במחלקת אבר אבר אבר אבר מדולו של מדולו x הינו פתרון למשוואה.

למה $x_1=x_0+\left(\frac{m}{d}\right)t_1,\; x_2=x_0+\left(\frac{m}{d}\right)t_2$ שני פתרונות יהיו :1 אם $t_1\equiv t_2\ (mod\ d)$ אם ורק אם $x_1\equiv x_2\ (mod\ m)$ אזי $ax\equiv b\ (mod\ m)$

.d=(a,m) ויהי , $a,b\in\mathbb{Z}$ ויהי ווהי $m\in\mathbb{Z}^+$ משפט:

- . אין פתרון. $ax \equiv b \; (mod \; m)$ אזי ל $d \nmid b$ און מרון.
- m יש $ax\equiv b\ (mod\ m)$ אחרת ל- מודולו $ax\equiv b\ (mod\ m)$.2

מסקנה 3: אם במשוואה $ax\equiv b\ (mod\ m)$ אזי יש לה פתרון יחיד $ax\equiv b\ (mod\ m)$ אזי יש לה פתרון יחיד מודולו m. אמנם יש אינסוף פתרונות, אך כולם נמצאים באותה מחלקת שקילות מודולו

הופכיים

ורק אם ורק $ax\equiv b\ (mod\ m)$ לפי משפט 2 בהרצאת "שקילות ליניארית", ראינו שלמשוואה לפי משפט 2 בהרצאת הישוואה הזו: (1) $ax\equiv 1\ (mod\ m)$ בעת נחקור את המשוואה הזו:

a ער ש-1 ביהיו (1) נקרא ההופכי המודולרי של $a\in\mathbb{Z}, m\in\mathbb{Z}^+$ נקרא ההופכי המודולרי של $a\in\mathbb{Z}, m\in\mathbb{Z}^+$ מודולו מודולו

p יש הופכי מודולו $a \in [p-1]$ יש הופכי מודולו p יהי יש מסקנה

 $a\equiv 1\ (mod\ p)$ אם ורק אם ורק אם עצמו במודולו p אם ויק הינו אזי a הינו ההופכי של עצמו במודולו $a\equiv 1\ (mod\ p)$ או $a\equiv -1\ (mod\ p)$

<u>תרגול שקילויות</u>

טענה (כלל הצמצום):

יהיו
$$d=(c,m)$$
-ו $m\in Z^+$, $a,b,c\in Z$ יהיו

$$0^{a \equiv b \pmod{\frac{m}{d}}} \Leftrightarrow a \cdot c \equiv b \cdot c \pmod{m}$$

טענה (כלל ההרחבה):

$$m\in\mathbb{Z}^+$$
יהיו $c
eq 0$, $a,b,c\in\mathbb{Z}$ יהיו $a\cdot c\equiv b\cdot c\ (mod\ m\cdot c)$ \iff $a\equiv b\ (mod\ m)$ אזי

·anui

$$k \in \mathbb{Z}^+$$
 יהיו שלמים עבור m_1, m_2, \dots, m_k

 $a\equiv b\ (mod\ m_i)$ אם $a\equiv b\ (mod\ m_i)$ אם $a\equiv b\ (mod\ lcm(m_1,m_2,...,m_k))$

:טענה

:יהיו אזי , $k \in \mathbb{N}$ מספרים שלמים עבור m_1, m_2, \ldots, m_k

$$a \equiv b \pmod{m_i}, \forall i \in [1, k] \Leftrightarrow a \equiv b \pmod{lcm(m_1, m_2, ..., m_k)}$$
.1

 $m_1,m_2,...,m_k$ במידה $m_1,m_2,...,m_k$ מספרים שלמים מירה מפרים של מוב מפרים של מוב מפרים של מוב מוב מפרים של מוב מפרים של מוב מפרים של מוב מפרים מפרים

טענה

יהיו
$$m_1,m_2$$
 מספרים שלמים כלשהם

 $x \equiv r \pmod{lcm(m_1, m_2)}$ אם

אז

$$x \equiv (r \mod m_1) \pmod {m_1}$$

 $x \equiv (r \mod m_2) \pmod {m_2}$

משפט השאריות הסיני

הגדרה אלטרנטיבית ל-LCM: יהיו b ו-d שני מספרים חיוביים ושלמים. הכפולה המשותפת המינימלית שלהם, אותה נסמן ב(a,b), הינה מספר $m\in N$ המקיים את שני התנאים הבאים:

- .b|m וגם a|m .1
- $m|\ell$ מתקיים, bו של a של 2.

הוכחת שקילות ההגדרה האלטרנטיבית וההגדרה המקורית כבר נעשתה בתירגול LCM כחלק מהוכחת המשפט המרכזי בעמוד 2 שם.

למה 1: יהיו $m_1,m_2,\dots,m_k\in N$ אזי $a\equiv b\ (mod\ m_i)$ אם $a\equiv b\ (mod\ lcm(m_1,m_2,\dots,m_k))$

למה $\mathbf{2}$: יהיו $m_1,m_2\in\mathbb{Z}$ כך שמתקיים $m_1,m_2\in\mathbb{Z}$ אזי $x\equiv r\pmod{m_1}$. $x\equiv r\pmod{m_1}$

 $M_k,n_k=1$ אזי $M_k=M/n_k$ ויהי $M=\prod_i n_i$ זרים בזוגות. יהי בזוגות. יהי אזי $M=\prod_i n_i$ זרים בזוגות. יהי

משפט השאריות הסיני (משפט 4): יהיו $n_1, n_2, ..., n_r$ זרים בזוגות. אזי למערכת מהצורה (1) יש פתרון ייחודי מודולו $M = \prod_i n_i$

משפט וילסון

משפט 1 (וילסון): יהי p ראשוני. אזי

$$(p-1)! \equiv -1 \pmod{p}$$

משפט 2 (משפט וילסון ההפוך):

יהי n אזי n יהי n

 $n \cdot (n-1)! \equiv -1 \pmod{n} \Leftrightarrow n \cdot n$ ראשוני $n \cdot n$

 $(n-2)! \equiv 1 \pmod{n} \Leftrightarrow 1$ הינו ראשוני $1 < n \in \mathbb{Z}$ כל :4 מסקנה

משפט פרמה הקטן

משפט 1 (משפט פרמה הקטן): יהי $p \nmid a$ ראשוני ויהי $a \in \mathbb{Z}^+$ אזי משפט

$$a^{p-1} \equiv 1 \ (mod \ p)$$

אזי $a \in \mathbb{Z}^+$ אזי יהי p ראשוני ויהי

$$a^p \equiv a \pmod{p}$$

a במודולו a במודולו a^{p-2} אזי a^{p-2} אזי $a \in \mathbb{Z}^+$ ראשוני ו- $a \in \mathbb{Z}^+$

Pseudoprimes

רקע: ראינו אפיון של וילסון למספרים ראשוניים. אלא שחישוב עצרת למספר גדול לוקחת זמן רב. אולי נוכל להיעזר בפרמה לשם בדיקת ראשוניות?

 $.b^n\equiv b\ (mod\ n)$ פריק ומתקיים n אם שם $b\ b$ ביחס לבסיס מיקרא פסודו-ראשוני ביחס לבסיס מיקרא פריק ומתקיים ו

(ללא הוכחה) .b לכל לבסיס b. לכל ליש אינסוף פסודו-ראשוניים ביחס לבסיס ל $b \in \mathbb{Z}^+$

 2^d-1 אזי 2^n-1 אזי d d כך ש-d, $n\in\mathbb{Z}^+$ אם למה d:

משפט 6: יש אינסוף פסודו-ראשוניים ביחס לבסיס 2.

מספרי קרמייקל

רקע: מספרים פסודו-ראשוניים מקשים על השימוש במשפט הקטן של פרמה כדי לבדוק ראשוניות. מספרי קרמייקל הופכים את זה לבלתי אפשרי.

מתקיים (n,b)=1 מספר $b\in\mathbb{Z}^+$ אם לכל $b\in\mathbb{Z}^+$ אם מספר n ייקרא מספר n ייקרא $b^{n-1}\equiv 1\ (mod\ n)$

כלומר מספר קרמייקל הוא פסאודו-ראשוני ביחס לכל בסיס הזר לו.

x-ממות המספרי קרמייקל הקטנים מ- $\mathcal{C}(x)$ נסמן נסמן

 $\mathcal{C}(x)>x^{\frac{2}{7}}$ שינסוף מספרי קרמייקל. בנוסף עבור x מספיק גדול מתקיים: 3

משפט 5: יהי q_k יים אם מתקיים $n=q_1\cdot q_2\cdot ...\cdot q_k$ יהי י

$$\forall i \in [k]: (q_i - 1) | (n - 1)$$

. אזי n הינו מספר קרמייקל

 $n=\mathrm{q}_1\cdot q_2\cdot ...\cdot q_k$ מספר n הינו מספר קרמייקל אם ורק אם (Korselt משפט 6: מכפלת ראשוניים זרים עבורם מכפלת ראשוניים זרים עבורם

$$\forall i \in [k] \colon (q_i-1)|(n-1)$$

פונקציית Euler

רקע: משפט פרמה עוזר לחשב שקילויות בהן המודולו ראשוני. משפט Puler יסייע בחישוב שקילות בה המודולו פריק או ראשוני, ולכן זוהי הכללה של משפט פרמה¹.

לכל $f(mn)=f(m)\cdot f(n)$ אם (Multiplicative) הגדרה 1: פונקציה f תיקרא פונקציה-כפלית (multiplicative) אם $f(mn)=f(m)\cdot f(n)$ לכל $f(mn)=f(m)\cdot f(n)$ פונקציה $f(mn)=f(m)\cdot f(n)$ תיקרא פונקציה $f(mn)=f(m)\cdot f(n)$ מונקציה $f(mn)=f(m)\cdot f(n)$

אזי
$$n=p_1^{a_1}\cdot p_2^{a_2}\cdot ...\cdot p_k^{a_k}$$
 משפט 3: תהי f פונקציה-כפלית ויהי

$$f(n) = f\left(p_1^{a_1}\right) \cdot f\left(p_2^{a_2}\right) \cdot \dots \cdot f\left(p_k^{a_k}\right)$$

מלוו. כלומר מ-n יהי ($n \in \mathbb{Z}^+$ יהי יהי במספרים המספרים המספרים מ-n וזרים אליו. כלומר הגדרה ב-n

$$\varphi(n)\coloneqq |\{k\in [n] \colon (k,n)=1\}|$$

.Euler's totient function נקראת $\varphi(\cdot)$ הפונקציה

 $.\varphi(n) \le n-1$ מתקיים n>1 למה 6: לכל

 $.\varphi(n) \le n-2$ למה 7: לכל n פריק מתקיים 2

. אם ורק אם p אם ורק אם q(n)=n-1 מסקנה

למה p: יהי p ראשוני ויהי k>0. אזי

$$\varphi(p^k) = p^k - p^{k-1} = p^{k-1} \cdot (p-1)$$

 $(a,bc) = 1 \Leftrightarrow (a,b) = 1 \land (a,c) = 1$:10 למה

(qm+r,m)=(r,m):11 למה

. הינה פונקציה-כפלית משפט 12 $\varphi(\cdot)$

מסקנה 13: יהי $p_k^{a_k} \cdot ... \cdot p_k^{a_k}$ יהי :13 מסקנה

$$\begin{split} \varphi(n) &= \left(p_1^{a_1} - p_1^{a_1 - 1}\right) \cdot \left(p_2^{a_2} - p_2^{a_2 - 1}\right) \cdot \dots \cdot \left(p_k^{a_k} - p_k^{a_k - 1}\right) \\ &= n\left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \dots \cdot \left(1 - \frac{1}{p_k}\right) \end{split}$$

משפט Euler

הגדרה **1**: יהי $n \in \mathbb{Z}^+$. קבוצה של $\varphi(n)$ מספרים כך שמתקיים

- n-כל איבר בה זר ל (1)
- n כל שני איברים בה אינם שקולים מודולו (2)

n נקראת מערכת מצומצמת של שאריות מודולו

למה 3: יהי $n\geq 1$ ויהי $n\geq 2$ כך שמתקיים (a,n)=1 אם (a,n)=n ויהי $n\geq 2$ ויהי $n\geq 2$ מצומצמת מודולו $n\geq 1$ אזי גם $a\cdot r_1,a\cdot r_2,...,a\cdot r_{\varphi(n)}$ היא מערכת שאריות מצומצת מודולו n

מסקנה 5: תהי n בך ש-1 מערכת שאריות מצומצמת מודולו n ויהי $a\in\mathbb{Z}$ כך ש-1 מסקנה 5: מערכת שאריות מצומצמת מודולו

$$r_1 \cdot r_2 \cdot ... \cdot r_{\varphi(n)} \equiv a \cdot r_1 \ a \cdot r_2, ..., a \cdot r_{\varphi(n)} \ (mod \ n)$$

אזי (a,n)=1 אזי $a\in\mathbb{Z}$ ויהי $n\in\mathbb{Z}^+$ ויהי (Euler) משפט (Euler) משפט

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

 $a^{\varphi(n)-1}$ מסקנה a: יהי $a \in \mathbb{Z}$ ויהי $a \in \mathbb{Z}$ ויהי $a \in \mathbb{Z}$ טרך ש-1 מסקנה $a \in \mathbb{Z}$: יהי $a \in \mathbb{Z}$ ויהי $a \in \mathbb{Z}$ ויהי

הינו מערכת הינו מערכת כלומר, R_n כלומר, $R_n=\{l\in[n]:(l,n)=1\}$ יהי יהינו מערכת יהינו הגדרה מצומצמת הקנונית מודולו n

הצפנות- הקדמה

הגדרה: פרמוטציה הינה פונקציה מקבוצה לעצמה.

אלגוריתם RSA

.(עבור בוב) אליס (ואת S_B, P_B עבור בוב). נותר לתאר את שיפיק את שיפיק את שיפיק את האלגוריתם שיפיק את

- 2. השג שני מספרים ראשוניים גדולים p,q. (כיצד? זו שאלה שפותרים בקורס "אלגוריתמים 2 מתקדמים", בשנה ב' סמסטר ב')
 - $n \coloneqq p \cdot q$ בע.2
 - $(e, \varphi(n)) = 1$ עבורו מתקיים e עבורו מחקיים 2 מתקדמים מספר אי-זוגי e עבורו מתקיים 3.
 - $\varphi(n)$ מצא d שהוא ההופכי של e במודולו .4
 - .5 מפתח ציבורי:= (e,n) (זוג סדור, לא ה (e,n)). מפתח פרטי:= ((e,n)). (שוב, זוג סדור).

?האלגוריתם לא מפיק פונקציות אלא זוגות סדורים! אז מהן הפונקציות המובטחות

יהיו (n הינה נציגים מודולו $m \in \{[0]_n, [1]_n, ... [n-1]_n\}$ יהיו

$$P_A(m) := m^e \pmod{n}, \quad S_A(m) := m^d \pmod{n}$$

(המתרגלים הראו בתרגול שקילויות חלק 4 איך לחשב חזקות מודולריות)

נוכיח שהאלגוריתם עובד.

:משפט: יהיו P_A, S_A כפי שתיארנו. אזי

$$S_A\big(P_A(m)\big)=S_A((m)^e)(mod\,n)=(m^e)^d(mod\,n)=m^{de}(mod\,n)$$

$$P_A(S_A(m)) = P_A((m)^d) \pmod{n} = \left(m^d\right)^e \pmod{n} = m^{de} \pmod{n}$$

מורות

X (ממורה/פרמוטציה): תמורה היא העתקה חד-חד-ערכית ועל מ-X ל-X כאשר X קבוצה לא ריקה.

<u>סימון</u>: נסמן תמורה בצורת טבלה בעלת שתי שורות- השורה העליונה היא איברי הקבוצה המקורית לפי הסדר (התחום), והשורה השנייה היא האיברים אליהם מועתקים איברי הקבוצה בסדר כלשהו (הטווח).

.X את אוסף כל התמורות מעל X = [1 ... n] נסמן ב- S_n את אוסף כל התמורות מעל X = [1 ... n]

 $.\sigma au = au \sigma$ שתי תמורות $\sigma, au \in S_n$ נקראות **מתחלפות** אם $\underline{\sigma}, au \in S_n$

מתקיים σ מתורה לכל (תמורה הזהות): $1_{\mathcal{S}_n} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ מתקיים

$$1_{S_n}\sigma = \sigma = \sigma 1_{S_n}$$

אבחנה 9: תמורת הזהות מתחלפת עם כל תמורה.

קס $\sigma^{-1} \in \mathcal{S}_n$ (תמורה הופכית) לכל תמורה $\sigma \in \mathcal{S}_n$ קיימת תמורה הופכית) אמת היום עושמת היום

$$\sigma\sigma^{-1} = 1_{S_n} = \sigma^{-1}\sigma$$

 $\alpha, \beta, \gamma \in S_n$ חוק הצמצום לתמורות 12: יהיו

(צמצום משמאל) $eta=\gamma$ אזי $lphaeta=lpha\gamma$ אם .1

(צמצום מימין) $\beta=\gamma$ אזי $\beta=\gamma$ אם $\beta=\gamma$ אם 2.

מעגלים בפרמוטציות

הגדרה:

עבור פרמוטציה (תמורה) נסמן $\sigma \in S_X$

$$M_{\sigma} = \{ x \in X : \sigma(x) \neq x \}$$

.σ שבת שבת נקודות שאינן נקודות שבת של

:הגדרה:

וגם $M_{\sigma}=\{i_1,i_2,...,i_r\}$ אם $\sigma\in S_X$ יהי $\sigma\in S_X$

$$i_1 \xrightarrow{\sigma} i_2, \dots, i_{r-1} \xrightarrow{\sigma} i_r$$

 $.(i_1,...,i_r)$ -ס אותו כ-תוב אותן באורך מעגל באורך אזי אזי נאמר אזי אזי מעגל באורך אוי

מעגלים באורך 2 מחליפים זוגות של איברים ולכן נקרא להם *חילופים* (או טרנספוזיציות).

אבחנה:

 $\sigma=(i_1,\dots,i_r)$ שנ סקר, אם כן. יתרה מקר אוור σ^{-1} אווr אוור אוור שנ ס מעגל מעגל מעגל מעגל $\sigma^{-1}=(i_r,\dots,i_1)$ אוו

למה:

לכל , $\alpha^k(i)=\beta^k(i)$ עבורו $i\in M_{\alpha}\cap M_{\beta}$ אם קיים . S_n מעגלים או מיהיי היי

$$\alpha=\beta$$
 אזי, $k\geq 1$

משפט: $\alpha \in S_n$ כל פרמוטציה $\alpha \in S_n$ הינה מעגל או ניתנת לכתיבה כמכפלה של מעגלים זרים בזוגות.

 $M_{\sigma}\cap M_{\tau}=\emptyset$ אם זרות תיקראנה $\sigma, \tau\in S_X$ הגדרה: שתי פרמוטציות

טענה:

. $\sigma au = au \sigma$ כל שתי פרמוטציות $\sigma, au \in S_X$ זרות היגן מתחלפות, כלומר

טענה:

יהי $i\in M_{\beta}$ אם זרות. אם פרמוטציות איז $(\alpha=\beta\gamma\in S_n)$ אזי $(\alpha=\beta\gamma\in S_n)$ אזי $(\alpha=\beta^k(i)=\beta^k(i)$

משפט:

יהי $\alpha \in S_n$ ויהי β_t ויהי β_t פירוק כלשהו של α למעגלים זרים בזוגות. אזי פירוק זה יחיד עד כדי שינוי הסדר של ה- β_i במכפלה.

טענה:

יהי α_i הפירוק של β למעגלים זרים בזוגות, כאשר $\beta=\alpha_1\cdots\alpha_t$ הינו $\beta\in S_n$ יהי מעגל באורך β . אוי השלם $\ell\in\mathbb{Z}^+$ הקטן ביותר המקיים $\ell\in\mathbb{Z}^+$ הוא $\ell=\mathrm{lcm}(r_1,\dots,r_t)$

<u>חבורות</u>

 $(\forall a,b \in G: a*b \in G$, כלומר, *, סגורה תחת סגורה מגירות (*)

(a*b)*c=a*(b*c) מתקיים $a,b,c\in G$ ב. * אסוציאטיבית: לכל

.ea=ae=a מתקיים $a\in G$ כך שלכל $e\in G:e$ מתקיים איבר ניטרלי

 $.a*a^{-1}=a^{-1}*a=e$ ש כסמנו a^{-1} , כך ש $a\in G$ קיים איבר ב-a שנסמנו לכל לכל

. היא חבורה (S_n , מתקיים מתקיים לכל 13 לכל מתקיים לכל מתקיים מתקיים מענה 13 לכל

<u>הוכחה</u>:

א. סגירות: ראינו כי לכל $\sigma, \tau \in S_n$ מתקיים $\sigma, \tau \in S_n$ (הרכבת פונקציות חח"ע ועל היא פונקציה חח"ע ועל)

ב. אסוציאטיביות: לכל $\sigma, \tau, \alpha \in S_n$ מתקיים

$$(\sigma \circ \tau) \circ \alpha = \sigma \circ (\tau \circ \alpha)$$

 $1 \le i \le n$ כי לכל

$$(\sigma \circ \tau) \circ \alpha(i) = (\sigma \circ \tau)(\alpha(i)) = \sigma(\tau(\alpha(i)))$$

$$\sigma \circ (\tau \circ \alpha)(i) = \sigma((\tau \circ \alpha)(i)) = \sigma(\tau(\alpha(i)))$$

מקיימת $e=1_{S_n}\in S_n$ מקיים כי הפרמוטציה $\sigma\in S_n$ מקיים כי לכל ראינו ניטרלי: ראינו כי לכל $1_{S_n}\circ\sigma=\sigma\circ 1_{S_n}=\sigma$

 $\sigma \circ \sigma^{-1} = \sigma^{-1}\sigma = 1_{S_n}$ כך ש $\sigma^{-1} \in S_n$ קיימת $\sigma \in S_n$ קיימר כי לכל ראינו כי לכל ד. קיום הופכי:

ונסמן n נאמר כי השלמים מתחלקים למחלקות שקילות מודולו n

$$Z_n = \{[0]_n, [1]_n \dots [n-1]_n\}$$

כעת נראה שתי דוגמות חשובות במיוחד לחבורות הקשורות לחשבון המודולורי:

- $(Z_n, +)$ החבורה החיבורית.
 - (Z_n^*,\cdot) החבורה הכפלית.

1. קל לראות את קיום הגדרת החבורה (איבר ניטרלי n[0], לכל n[k] ההופכי הוא n[n]). מדוע זה ההופכי? כי n[n] (n0 n0 n1 n2 מדוע זה ההופכי? כי

 $[-k]_n$ יש לשים לב כי בחבורה חיבורית ההופכי הוא הנגדי, ולפעמים נסמנו

 $Z_n^* = \{[a]_n \in Z_n \mid (a,n) = 1\}$ כאשר ($Z_{n,\cdot}^*$) בחבורה הכפלית (2.

חבורה אבלית

מתקיים $a,b\in G$ אם לכל (או אבלית) מתקיים חבורה חבורה תיקרא חבורה (G,st) מתקיים

.a*b=b*a

. יש איבר ניטרלי יחיד. בחבורה (יחידות הניטרלי): בחבורה (יחידות הניטרלי): בחבורה (יחידות הניטרלי)

f שכן ef=e שכן e נייטרלי, וגם ef=f שכן שניהם ניטרליים. אזי שניהם ניטרלי, וגם ef=e שני e נייטרלי, ולכן e=f

. יחיד. $a^{-1} \in G$ אזי $a \in G$ יחיד. (G,*) יחיד. מענה (יחידות ההופכי): תהי

: נניח בשלילה כי יש לa-ט שני הופכיים b,b' אזי:

$$b' = b'e = b'(ab) = (b'a)b = eb = b$$

. a-טאשר השיוויון השני מימין והשני משמאל נובעים מכך שb,b' הפכיים ל-

אזי נסמן . $a \in G$ ויהי ויהי $e \in G$ אזי מון: תהי חבורה עם נייטרלי

$$a^0 = e$$
, $a^1 = a$, $\forall n \ge 1$: $a^{n+1} = a * a^n$

אזי $a=g_1*g_2*...g_r$ ויהי ויהי $G=\{g_1,g_2,...g_r\}$ חבורה אבלית סופית ויהי מים $a^2=e$

. מקומוטטיביות הטענה נובעת, g_i - הופכי ל- g_k הופכי ל יש $1 \leq i \leq r$ יש וובעת אוכר נובעת בובעת.

<u>תכונות נוספות בחבורות</u>

משפט "חוקי חזקות" בחבורה:

. אזי: $m,n\in Z$, $a\in G$, חבורה (G,*) אזי:

(לאימי) אינ מו בכפל רגיל) $a^ma^n=a^{m+n}=a^na^m$ (משמיטים את הסימן $a^m)^n=a^{mn}=(a^n)^m$

 $(ab)^n = a^n b^n$ אם ab = ba אם ab = ba

משפט "תכונות ההופכי" בחבורה:

:אזי: $a,b,a_1,a_2,...,a_n\in G$ ויהיוe, ויהיו הניטרלי עם הניטרלי (G,*) אזי

(אסדר משפיע!) (ab) $^{-1} = b^{-1}a^{-1}$ (3 .(a^{-1}) $^{-1} = a$ (2 . $e^{-1} = e$ (1

 $(a^n)^{-1} = (a^{-1})^n (5 \cdot (a_1 * a_2 * \dots * a_n)^{-1} = a_n^{-1} * \dots * a_1^{-1})$

:אזי: $g,h,f\in G$ חבורה ויהיו חוק הצמצום בחבורה: תהי

h=f אזי gh=gf אם (צמצום שמאלי).1

h=f אזי hg=fg אם (צמצום ימני) אם 2

הוכחה:

1. לפי הגדרת חבורה קיים g^{-1} . נכפול בו משמאל ונקבל

$$g^{-1}(gh) = g^{-1}(gf) \to (g^{-1}g)h = (g^{-1}gf) \to eh = ef \to h = f$$

הוכחת 2 זהה, רק שנכפיל מימין. השלימו בבית.

 $g^n=e$ טענה: אם G חבורה סופית ו-G אזי קיים g טבעי כך ש-

 $2+2+\cdots+$ אז נכון לחבורה אינסופית? לא. למשל (Z,+), אם ניקח g=2 אז אינסופית? לא. למשל לעולם לא ייתן 0.

קריים אמתקיים פחת כי $m,n\in \mathbb{N}$ נובע כי קיימים g^1,g^2,g^3 באוסף כך שמתקיים הוכחה:

$$g^m = g^{n+m} \rightarrow g^m \cdot e = g^m \cdot g^n \rightarrow e = g^n$$

כאשרה המעבר האחרון נובע מכלל הצמצום. <u>טענה- פתרון שקילות ליניארית בחבורות:</u> תהי G חבורה, ויהיו $g,h\in G$

 $x = g^{-1}h$,G-ב יש פתרון יחיד ב-gx = h .1

 $x = hg^{-1}$,G-ש יש פתרון יחיד בxg = h .2

הוכחת 1. x פתרון, שכן

$$.gx = g(g^{-1}h) = (gg^{-1})h = eh = h$$

קווק $x=y\leftarrow gx=gy$ אזי gx=h מחוק פתרון למשוואה א יהי יהי יהי יהי יהי אזי יהי מצמצום).

תת חבורה

אינטואיציה: תת חבורה היא תת קבוצה של חבורה, שהיא בעצמה חבורה. כדי שתת-החבורה תהיה אכן חבורה, נצטרך סגירות לפעולה ולהופכי.

:תת של G המקיימת מהי $S \subseteq G$ המקיימת. חבורה (G,*) המדרה:

 $s*t \in S$ גם $s,t \in S$ סגירות- לכל (1

 $s^{-1} \in S$ גם $s \in S$ סגירות להופכי- לכל (2

 $S \leq G$ נקראת תת-חבורה של G, ומסמנים S

* טענה: אם S תת חבורה של (G,*) אז S עצמה חבורה עם הפעולה

<u>הוכחה</u>: נראה את קיום האקסיומות:

.G אסוציאטיביות- תורשתית מ-G) אסוציאטיביות- תורשתית מ-G)

(3) קיום יחידה- $S \neq \emptyset$ ולכן יש S = S. מסגירות להופכי, גם S = S ומסגירות לפעולה נובע כי S = S וחסגירות לפעולה נובע פי S = S איום הופכי- מההגדרה.

(תת חבורות טריוויאליות) מה בורות שתמיד קיימות: לכל חבורה $\{e\} \leq G$ וגם הבורות טריוויאליות) תת חבורה ששונה מ-G נקראת "תת חבורה "proper".

מבחני תת-חבורה:

 \leftrightarrow חבורה אשון: תת-חבורה מבחן (G,*) מבחן ראשון (1

 $e \in S$. א

 $.st^{-1} \in S$ גם $s,t \in S$ ב. לכל

<u>הוכחה</u>: (←) ברור.

. מקיימת את תנאי החבורה S נראה (→)

 $.s^{-1} \in S$ ולכן $es^{-1} \in S$ נובע שגם $e \in S$ משום שגם $s \in S$ ולכן. 2

ולכן הקודמת, ולכן אזי $t^{-1} \in S$ אזי $s,t \in S$ יהיו לפעולה- יהיו לפעולה. 1.

 $.st=s(t^{-1})^{-1}\in S$

2) מבחן שני: מבחן לתת חבורה סופית:

. אזי: G תת קבוצה סופית לא ריקה של חבורה H

ולא הסגירות לפעולה, ולא (כלומר, כאן מספיק הנאי הסגירות לפעולה, ולא $H \leftrightarrow H \leq G$ דרוש גם סגירות להופכי)

<u>הוכחה</u>: (←) ברור.

 $h^{-1} \in H$ מתקיים כי לכל $h \in H$ מלינו להראות כי לכל (\rightarrow)

-ש כך ש $m,n\in N$ סופית. ולכן יש $h,h^2,h^3,...\in H$ כר ש $h,h^2,h^3,...\in H$ יהי

(ב- h^m ולכן h^{m-1} הוא ההופכי של $e=h^m$ ולכן $e=h^m$ ולכן ולכן $h^n=h^{n+m}$ הוא ההופכי של $h^{n-1}=h^{m-1}\in H$ ומתקיים ו

תת חבורה קטנה שמכילה קבוצה

הת-חבורה $X\subset H\leq G$ היא תת קבוצה. נאמר כי $X\subset H$ היא התת-חבורה תהי $X\subset H$ המכילה את $X\subset X$ אם לכל $X\subset X$ המכילה את X

S היא H אם כל תת-חבורה אחרת כלומר: התת-חבורה הכי קטנה שמכילה על מכילה את H כמכילה את H כתת-חבורה.

לאחר שהגדרנו את המושג, עלינו להוכיח שקיימת H כזו.

שמכילה את G שמכילה של G אחבורה קטנה ביותר של א יש תת-חבורה אז שמכילה את $X \subset G$ שמכילה את X

חבורות ציקליות (מעגליות)

הגדרה 1: תהי G חבורה, ויהי $a \in G$. נגדיר

a ידי על ידי הנוצרת הציקלית המוצרת א = < a >= $\{a^n | n \in Z\}$

 $a > = < a^{-1} > מתקיים <math>a \in G$ אבחנה: לכל

הוא כמות G (סדר של a ב-G הוא ייהי חבורה ויהי $a\in G$ הסדר של $a\in G$ הוא כמות האיברים ב-a>-2 (יכול להיות a>-2).

אם קיים $k\in Z$ כך ש- $k\in G$ היא החזקה הקטנה ביותר מהי מ- $a\in G$ אזי אזי $a^k=e$ אזי

$$< a >= \{e, a^1, a^2, ..., a^{k-1}\}$$

<u>הוכחה</u>: בהכלה דו כיוונית.

. ברור לפי הגדרה $\{e, a^1, a^2, \dots a^{k-1}\} \subseteq \langle a \rangle$ ברור ברור לפי הגדרה.

כיוון שני: $a^l \in < a>$ יהי י $a^l \in < a>$ יהי י $a^l \in < a>$ יהי יהי גרשום יהחלוקה נרשום יהיו יהי טלכן מתקיים $a^l \in < a>$ לכן מתקיים ו

 $a^{l} = a^{qk+r} = a^{qk} \cdot a^{r} = (a^{k})^{q} \cdot a^{r} = e^{q} \cdot a^{r} = e \cdot a^{r} = a^{r} \in \{e, a^{1}, \dots a^{k-1}\}$

הוא m האזי (| < a > | = m חבורה הויהי מסדר אזי מפר מסדר הויהי משפט 10. אזי וויהי משפט $a^m=e$ הטבעי הקטן ביותר כך שמתקיים

סיכום: אם $g>=\{e,g,g^2,\dots g^{n-1}\}$ אזי $g\in G$ איבר מסדר g איבר מסדר g

. אזי: $g \in G$ איבר מסדר $g \in G$ אזי:

 $g^k = e \leftrightarrow n|k$.

 $g^k = g^m \leftrightarrow k \equiv m \pmod{n}$.

 $g^n = e \; , \forall g \in G$ אזי n חבורה מסדר G = < a > מסקנה 13:

עבור k שלם כלשהו. ולכן מתקיים $g=a^k$ אזי $g\in G$ יהי

$$g^n = (a^k)^n = (a^n)^k = e^k = e$$

(איבר מסדר אינסופי) <u>טענה</u>

... אזי: $g \in G$ מסדר G. אזי:

$$k=0 \leftrightarrow g^k=e \ (1$$

$$k=m\leftrightarrow g^k=g^m\;(2$$

<u>הוכחה</u>:

, עבור k>1 אזי החל מ-k החזקות מחזוריות, עבור 10 אפי משפט 10 והוכחתו, אם $g^k=e$ בסתירה לכך שהסדר אינסופי.

$$g^{k-m}=e$$
 אם $g^k=g^m$ אזי לפי כלל הצמצום נובע (2