MACS205: Méthode de Monte-Carlo

1 Introduction

But du cours : étudier des méthodes aléatoires d'approximation d'intégrales.

Soit (S, S, μ) un espace mesuré où μ est une mesure positive. Soit $\varphi \colon S \to \mathbf{R}$ une fonction intégrable. On cherche à approcher $I(\varphi) = \int \varphi \, \mathrm{d}\mu$.

Plusieurs cas de figure en pratique :

- φ est une fonction continue avec une expression analytique et on arrive à calculer son intégrale,
- l'intégrale de φ est incalculable. Exemples : Gaussienne ou indicatrice d'ensemble S où l'on ne connaît pas de forme analytique.

Les méthodes considérées sont de la forme suivante :

- 1. choisir/tirer des points $X_1, ..., X_n$ sur S,
- 2. évaluer $\varphi(X_1), \ldots, \varphi(X_n)$,
- 3. trouver une transformation de $(X_1, \varphi(X_1)), \dots, (X_n, \varphi(X_n))$ qui approche $I(\varphi)$.

2 La méthode de Monte-Carlo

$$I(\varphi) = \int \varphi \, dN = \mathbf{E}_{\mu}(\varphi)$$

D'après la LFGN, si X_1, \ldots, X_n sont i.i.d. de loi μ tel que $\mathbf{E}_{\mu} | vf | < \infty$ alors $\frac{1}{n} \sum_i \varphi(X_i) \stackrel{\mathrm{p.s.}}{\longrightarrow} \mathbf{E}_{\mu} (\varphi(X_1))$.

Algorithme 1 : Monte-Carlo

Générer $X_1,...,X_n$ de façon indépendante sous μ ;

Calculer $\varphi(X_1), \ldots, \varphi(X_n)$;

Sorties: $\hat{I}_n(\varphi) = \frac{1}{n} \sum_i \varphi(X_i)$

Prop. Si $\int |\varphi| d\mu < \infty$, $\hat{I}_n(\varphi)$ est non-biaisée et consistante. Si $\int |\varphi|^2 d\mu < \infty$, $Var(\hat{I}_n(\varphi)) = \frac{1}{n} Var(\varphi(X_1)) = \frac{1}{n} \sigma^2$ et $\sqrt{n} (\hat{I}_n(\varphi) - I(\varphi)) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$.

On estime σ^2 par $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (\varphi(X_i) - \hat{I}_n(\varphi))^2$.

Prop. Si $\int |\varphi|^2 d\mu < \infty$ alors $\hat{\sigma}^2$ est sans biais et fortement consistant (par la LFGN).

Th (Inégalité de Hoeffding). Soit (X_1, \dots, X_n) des v.a i.i.d telles que $\forall i \in [[1;n]], a \leqslant X_1 \leqslant b$ p.s. Alors

$$\mathbf{P}\left(\left|\sum_{i=1}^{n} (X_i - \mathbf{E}(X_i))\right| > \varepsilon\right) \leqslant 2e^{-\frac{3\varepsilon^2}{n(b-a)^2}}.$$

•••

Concentration

...

Déterministe vs aléatoire

On se place dans le cadre de l'approximation de $\int_{[0;1]^d} \varphi(x) dx$ où $\varphi \colon [0;1]^d \longrightarrow \mathbf{R}$.

Méthode déterministe des sommes de Riemann On se donne n^d points équidistants $\left(\frac{i_1}{n}, \dots, \frac{i_d}{n}\right)$ où $(i_1, \dots, i_d) \in [1; n]^d$. La méthode des sommes de Riemann est

$$I_n(\varphi) = \frac{1}{n^d} \sum_{(i_1,\dots,i_d) \in [[1;n]]^d} \varphi\left(\frac{i_1}{n},\dots,\frac{i_d}{n}\right).$$

Prop. Si $\varphi : [0;1]^d \longrightarrow \mathbb{R}$ est *L*-lipschitzienne alors $|I_n(\varphi) - I(\varphi)| \leq L \frac{\sqrt{d}}{n}$.

...

Méthode des variables de contrôle 3

Présentation

Le contexte est maintenant comme Monte-Carlo avec une variable observée en plus :

- on observe $((X_1, \varphi(X_1), Y_1), \dots, (X_n, \varphi(X_n), Y_n))$ i.i.d,
- on cherche $\mathbf{E}[\varphi(X_1)]$,
- on connaît $\mathbf{E}[Y_1]$.

On peut calculer $\frac{1}{n}\sum_{i=1}^{n} [\varphi(X_i) - (Y_i - \mathbf{E}[Y_i])]$. C'est un estimateur sans biais de variance

$$\frac{1}{n} \text{Var}(\varphi(X_1) - (Y_1 - \mathbf{E}Y_1)) = \frac{1}{n} \mathbf{E} \Big[(\varphi(X_1) - (Y_1 - \mathbf{E}Y_1))^2 \Big] - \frac{1}{n} \mathbf{E} [\varphi(X_1)]^2.$$

Pour un tel estimateur, le but est de réduire ce risque L^2 au maximum en choisissant bien Y_1 . Pour un tel estimateur, on obtient facilement les mêmes résultats que pour Monte-Carlo : forte consistance, normalité asymptotique et estimation consistante de la variance.

Pour faciliter la notation on supposera maintenant $\mathbf{E}Y_1 = 0$.

Rem.

• $Y = 0 \rightarrow \text{Monte-Carlo}$, • $Y = \frac{-\varphi \circ L(X) - \varphi(X)}{2} \rightarrow \text{variables antith\'etiques}$.

Rem. La méthode des variables de contrôle (VC) est plus performante que MC si $Var(\varphi(X_1) - Y_1) \leqslant Var(\varphi(X_1))$ $(\frac{1}{n} \sum \varphi(X_i) + \frac{\varphi \circ L(X_i) - \varphi(X_i)}{2} = \frac{1}{2n} \sum \frac{\varphi(X_i) + \varphi \circ L(X_i)}{2})$.

Afin de prévenir d'une mauvaise variable de contrôle, on définit l'esimateur $\forall \beta \in \mathbf{R}, \hat{\mu}_n(\beta) = \frac{1}{n} \sum_{i=1}^n (\varphi(X_i) - \varphi(X_i))$ βY_i), à utiliser si $Var(\varphi(X_1) - \beta Y_1) \leq Var(\varphi(X_1))$.

 $\rightarrow \beta^* = \arg\min_{\beta} \operatorname{Var}(\varphi(X_1) - \beta Y_1), \min_{\beta} \operatorname{Var}(\varphi - \beta Y) \leqslant \operatorname{Var}(\varphi).$

Soit f_1, \dots, f_m une collection de fonctions dont on connaît les intégrales. Supposons $\forall L \in [[1;m]], \int f_L d\lambda = 0$. Alors VC donne $\frac{1}{n}\sum_{i=1}^{n} \left[\varphi(u_i) - \sum_{j=1}^{m} \beta_j f_j(u_i) \right]$.

Ex. (f_L) polynômes, (f_L) base de Fourier ou (f_L) indicatrices.

Propriétés asymptotiques

Notons

Soient $((X_i, Y_i))_i$ une suite de v.a i.i.d à valeurs dans $S \times \mathbf{R}^m$. On définit l'estimateur de $\mathbf{E}[\varphi(X_1)]$ par $\forall \beta \in$ \mathbf{R}^m , $\hat{\mu}_n(\beta) = \frac{1}{n} \sum_{i=1}^n \left(\varphi(X_i) - \beta^\mathsf{T} Y_i \right)$.

$$\mathcal{E}_{i}\hat{\mu}_{n}(\beta) = \frac{1}{n} \sum_{i=1}^{n} \left(\varphi(X_{i}) - \beta^{\mathsf{T}} Y_{i} \right).$$
Comme dans l'intro, on suppose $\mathbf{E} Y_{1} = \begin{pmatrix} \mathbf{E}[Y_{1,1}] \\ \vdots \\ \mathbf{E}[Y_{1,m}] \end{pmatrix} = 0.$

$$\mathcal{E}_{i}(y_{1}, y_{2}) \in \mathbf{P}_{i}^{m} \text{ set upo collection d'estimateurs cans bis.}$$

 $\{\mu_n(\beta), \beta \in \mathbf{R}^m\}$ est une collection d'estimateurs sans biais. Trouvons l'élément de variance minimale :

$$\beta^* = \arg\min_{\beta} \frac{1}{n} \operatorname{Var} (\varphi - \beta^{\mathsf{T}} T)$$

$$= \arg\min_{\beta} \operatorname{Var} (\varphi - \beta^{\mathsf{T}} T)$$

$$= \arg\min_{\beta} \operatorname{E} [(\varphi - \beta^{\mathsf{T}} Y)^2] - \operatorname{E}[\varphi]^2$$

$$= \arg\min_{\beta} \operatorname{E} [(\varphi - \beta^{\mathsf{T}} Y)^2]$$

Si $\mathbf{E}[Y_1Y_1^\mathsf{T}]$ est inversible, les équations normales / du premier ordre admettent une unique solution :

$$\beta^* = \mathbf{E}[Y_1 Y_1^{\mathsf{T}}]^{-1} \mathbf{E}[Y_1 \varphi(X_1)]$$

Il faut utiliser $\hat{\mu}_n(\beta^*)$, mais β^* est inconnue.

Idée : estimer β^* sur les données $\to \hat{\beta}$, et utiliser $\hat{\mu}_n(\hat{\beta})$, qui a la même variance asymptotique que $\hat{\mu}_n(\beta^*)$. Si $\frac{1}{n} \sum_{i=1}^{n} Y_i Y_i^{\mathsf{T}}$ est inversible :

$$\hat{\beta} = \arg\min_{\beta \in \mathbf{R}^m} \frac{1}{n} \sum_{i=1}^n \left(\left[\varphi(X_i) - \beta^{\mathsf{T}} Y_i \right] - \hat{\mu}_n(\beta) \right)^2$$

estimateur classique de la covariance

Ce choix ne va pas entrainer de changement à l'asymptotique mais pratique il procure de meilleurs performance. Donc $\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left((\varphi(X_i) - \bar{\varphi}) - \beta^{\mathsf{T}} (Y_i - \bar{Y}) \right)^2$.

$$Z_{n,m} = \begin{pmatrix} Y_{11} - \bar{Y}_1 & \cdots & Y_{1m} - \bar{Y}_m \\ \vdots & & \vdots \\ Y_{m1} - \bar{Y}_1 & \cdots & Y_{nm} - \bar{Y}_m \end{pmatrix} \in \mathbf{R}^{n \times m}, \qquad Y_i = \begin{pmatrix} Y_{i1} \\ \vdots \\ Y_{im} \end{pmatrix} \in \mathbf{R}^m$$

2 Che Bedara - BDE Télécom ParisTech

 $(Y_i \text{ est la covariable du problème de régression}). On a <math>\bar{Y}_k = \frac{1}{n} \sum_{i=1}^n Y_{ik}$.

Notons également
$$\Psi_n = \begin{pmatrix} \varphi(X_1) - \bar{\varphi} \\ \vdots \\ \varphi(X_n) - \bar{\varphi} \end{pmatrix}$$
. Alors $\hat{\beta} = \arg\min_{\beta} \|\Psi_n - Z_{n,m}\beta\|^2$.

Le théorème de projection nous donne une unique solution qui, si $Z_{n,m}^{\mathsf{T}} Z_{n,m}$ est inversible, vérifie :

$$(Z_{n,m}^{\mathsf{T}}Z_{n,m})\beta=Z_{n,m}^{\mathsf{T}}\Psi_{n}$$

$$\hat{\beta} = (Z_{n,m}^{\mathsf{T}} Z_{n,m})^{-1} Z_{n,m}^{\mathsf{T}} \Psi_n$$

Prop (asymptotique de $\hat{\mu}_n(\beta)$). Supposons que $\mathbf{E}[\varphi(X_1)] < \infty$, $\forall k \in [[1;m]], \mathbf{E}[\varphi(X_1)Y_{1k}] < \infty$ et $\mathbf{E}[Y_1Y_1^\mathsf{T}]$ existe et est inversible. Alors $\hat{\mu}_n(\hat{\beta}) \xrightarrow{\mathrm{p.s.}} \mathbf{E}[\varphi(X_1)]$. Si de plus $\mathbf{E}[\varphi(X_1)]^2 < \infty$, alors $\sqrt{n} \left(\hat{\mu}_n(\hat{\beta} - \mathbf{E}[\varphi(X_1)] \right) \longrightarrow \mathcal{N}(0, \sigma_m^2)$ avec $\sigma_m^2 = \mathrm{Var} \left(\varphi(X_1) - \beta^{*\mathsf{T}} Y_1 \right)$.

Rem. $\hat{\beta}$ n'a pas d'effet en l'asymptotique (c'est comme si on connnaissait β^*).

Rem. D'autres estimateurs de β^* peuvent être légitimes sous condition d'inversibilité :

$$\hat{\beta} = \begin{cases} \left(\frac{1}{n} \sum Y_i Y_i^{\mathsf{T}}\right)^{-1} \frac{1}{n} \sum Y_i \varphi(X_i) \\ \left(\frac{1}{n} \sum (Y_i - \bar{Y})(Y_i - \bar{Y})^{\mathsf{T}}\right)^{-1} \frac{1}{n} \sum Y_i \varphi(X_i) \end{cases}$$

Lorsque $\mathbf{E}[Y_1 Y_1^{\mathsf{T}}]$ est connu, $\hat{\beta} = \mathbf{E}[Y_1 Y_1^{\mathsf{T}}]^{-1} \frac{1}{n} \sum_{i=1}^{n} (Y_i(\varphi(X_i) - \bar{\varphi}))$.

Temps de calcul

Soit *F* une c.d.f sur **R** et φ : **R** \rightarrow **R**. On veut calculer $\mathbf{E}_F[\varphi]$.

Le nombre d'échantillons n'est pas fixé par le problème initial. Il est donc à déterminer par rapport à la précision souhaitée et le temps de calcul dont on dispose.

Données massives → la problématique du temps de calcul est redevenue essentielle aujourd'hui.

Mesure du temps \rightarrow par simulation, en terme d'opérations élémentaires.

Règles du temps de calcul (peuvent changer selon le problème) :

- générer $X_1 \rightarrow 1$ opération élémentaire,
- générer $Y_{1,k}$ pour chaque $k \to 1$ opération élémentaire,
- évaluer $\varphi(X_1) \to 1$ opération élémentaire.

MC	nombre d'opérations élémentaires	
X_1,\ldots,X_n	n	
$\varphi(X_1),\ldots,\varphi(X_n)$	n	
$\frac{1}{n}\sum_{i=1}^{n}\varphi(X_i)$	~ n	
<i>n</i> =	O(n)	
VC	nombre d'opérations élémentaire	es
X_1,\ldots,X_n	n	
$\varphi(X_1),\ldots,\varphi(X_n)$) n	
Y_1, \ldots, Y_n	mn	
$\frac{1}{n}\sum_{i=1}^{n}(\varphi(X_i)-\beta^{T}$	(Y_i) mn	
n — i=i (i (i) i	O(mn)	
\hat{eta} nombre d'opérations élémentaires		
O	$(m^3 + m^2 n)$	