Revisit of Adaptivity analysis

1 Attempt 1: linear-type based

```
\tau ::= b \mid \tau \multimap \tau' \mid !_n \tau \mid \tau \times \tau \mid \forall i :: \mathbb{N}. \tau \mid Q
            Types
             Term
                                 t ::= c \mid \text{fix } f(x).t \mid tt \mid !t \mid (t_1, t_2) \mid \text{ let } !x = t_1 \text{ in } t_2 \mid \Lambda.t \mid t[] \mid \lambda x.t \mid M(t) \mid x \mid q \mid
                                     case t of \{c_i \Rightarrow t_i\}_{c_i \in b} \mid \text{let } (x_1, x_2) = t_1 \text{ in } t_2
Normal Form
                                 v := c \mid \text{fix } f(x).t \mid !t \mid (v_1, v_2) \mid \Lambda.t \mid \lambda x.t \mid x \mid q \mid \text{case } v \text{ of } \{c_i \Rightarrow v_i\}_{c_i \in b_i} \mid
                                nil \mid cons(v_1, v_2)
 Mechanisms
                                 M := gauss \mid thdt
                                 T_b ::= c \mid M(T_{query}) \mid \text{case } T_b \text{ of } \{c_i \Rightarrow T_{b_i}\}_{c_i \in b}
              Tree
                                 T_{query} ::= q \mid \mathsf{case} \ T_b \ \mathsf{of} \ \{c_i \Rightarrow T_{query_i}\}_{c_i \in b}
            Depth
                                 depth(c) = 0
                                 depth(!t) = depth(t)
                                 depth(t_1 t_2) = max(depth(t_1), depth(t_2))
                                 depth(M(t)) = 1 + depth(t)
                                 depth(\lambda x.t) = depth(t)
                                 depth(x) = 0
                                 depth(q) = 0
                                 depth((t_1, t_2)) = max(depth(t_1), depth(t_2))
                                 depth(let (x_1, x_2) = t in t') = max(depth(t), depth(t'))
                                 depth(let !x = t in t') = max(depth(t), depth(t'))
                                 depth(case \ t \ of \ \{c_i \Rightarrow t_i\}_{c_i \in b}) = max(depth(t), depth(t_i))
                                 depth(\Lambda.t) = depth(t)
                                 depth(t[]) = depth(t)
```

FAILURE: [[this semantics doesn't work in multi-Round case.

- 1. depth in the multi-round case is variable.
- 2. unable to count depth if output of δ doesn't explicitly affect input of next δ . In the multi-round case, the δ result will affect some arguments. These arguments will then affect Database d which will be used in next δ nested in recursion.

11

$$\Gamma := \emptyset \mid \Gamma, x : \tau \mid \Gamma, x : [\tau]_{p}$$

$$\Gamma := \emptyset \mid \Gamma, x : \tau \mid \Gamma, x : [\tau]_{p}$$

$$\Gamma := \emptyset \mid \Gamma, x : \tau \mid \Gamma, x : [\tau]_{p}$$

$$\Gamma \vdash_{n,m} c : b$$

$$\Gamma \vdash_{n,m} c : c$$

$$\Gamma \vdash_{n,$$

Figure 1: Typing judgment

$$\frac{t \Downarrow^m v}{c \Downarrow^0 c} \text{ E-const} \qquad \frac{q \Downarrow^0 q}{q} \text{ E-query} \qquad \frac{\lambda x.t \Downarrow^0 \lambda x.t}{\lambda x.t \Downarrow^0 \lambda x.t} \text{ E-abs}$$

$$\frac{t_1 \Downarrow^{m_1} v_1 \qquad t_2 \Downarrow^{m_2} v_2}{(t_1, t_2) \Downarrow^{\max(m_1, m_2)} (v_1, v_2)} \text{ E-pair}$$

$$\frac{t_1 \Downarrow^{m_1} \lambda x.t \qquad t_2 \Downarrow^{m_2} v \qquad t[v/x] \Downarrow^{m_3} v'}{t_1 t_2 \Downarrow^{\max(m_1, m_2) + m_3} v'} \text{ E-app}$$

$$\frac{t_1 \Downarrow^{m_1} !t_3 \qquad t_3 \Downarrow^{m_2} v' \qquad t_2[v'/x] \Downarrow^{m_3} v}{\text{let } !x = t_1 \text{ in } t_2 \Downarrow^{\max(m_1 + m_2, m_3)} v} \text{ E-LET-BANG}$$

$$\frac{t \Downarrow^{m_1} (v_1, v_2) \qquad t'[v_1/x_1] [v_2/x_2] \Downarrow^{m_2} v}{\text{let } (x_1, x_2) = t \text{ in } t' \Downarrow^{\max(m_1, m_2)} v} \text{ E-LET-P}$$

$$\frac{t \Downarrow^m v \qquad t_i \Downarrow^{m_i} v_i}{\text{case } t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b} \Downarrow^{m+\max(m_i)} \text{ case } v \text{ of } \{c_i \Rightarrow v_i\}_{c_i \in b}} \text{ E-CASE}$$

$$\frac{t \Downarrow^m v \qquad t_i \Downarrow^{m_i} v_i}{\text{A.t} \Downarrow^0 \Lambda.t} \text{ E-ILAM} \qquad \frac{t \Downarrow^m \Lambda.t'}{t[] \Downarrow^m t'} \text{ E-IAPP} \qquad \frac{t \Downarrow^m v \qquad M(v) \Downarrow^1 v'}{M(t) \Downarrow^{m+1} v'} \text{ E-MECH}$$

Figure 2: Evaluation Rules

Figure 3: denotations

2 Attempt 2: Trace-based effect system

Traces A trace T is a representation of the big-step derivation of an expression's evaluation.

The adaptivity of a trace T, adap(T), which means the maximum number of nested δs in T.

The depth of variable x in trace T, written $depth_x(T)$, which is the maximum number of δs in any path leading from the root of T to an occurrence of x (at a leaf),.

```
\begin{array}{lll} \text{Expr.} & e & ::= & x \mid e_1 \ e_2 \mid \text{fix} \ f(x \colon \tau).e \mid (e_1, e_2) \mid \text{fst}(e) \mid \text{snd}(e) \mid \\ & & & \text{if}(e_1, e_2, e_3) \mid c \mid \delta(e) \mid \text{let} \ x \colon q = e_1 \ \text{in} \ e_2 \mid \text{nil} \mid \text{cons}(e_1, e_2) \end{array} \text{Value} & v & ::= & c \mid (\text{fix} \ f(x \colon \tau).e, \theta) \mid (v_1, v_2) \mid \text{nil} \mid \text{cons}(v_1, v_2) \mid \\ \text{Environment} & \theta & ::= & x_1 \mapsto v_1, \dots, x_n \mapsto v_n \end{array} \text{Trace} & T & ::= & (x, \theta) \mid T_1 \ T_2 \triangleright \text{fix} \ f(x).T_3 \mid (\text{fix} \ f(x \colon \tau).e, \theta) \mid (T_1, T_2) \mid \text{fst}(T) \mid \\ & \text{snd}(T) \mid \text{true} \mid \text{false} \mid \text{if}^t(T_b, T_t) \mid \text{if}^t(T_b, T_f) \mid c \mid \delta(T) \end{array}
```

2.1 Challenge (Couterexample) in this setting

- 1 adaptivity is not precise. The definition of the max number of nested δs is not very accurate, especially the way it handles the application. Another way of understanding adaptivity is not only the occurence of δ , but the times the program accesses the database (δ). For instance, λx .(if (x < 10) then x else x) $\delta(v)$ and (if ($\delta(v) < 10$) then $\delta(v)$ else $\delta(v)$). should distinguish the two definition of adaptivity.
- 2 This operational semantics has trouble to give the reasonable trace to nested lambda. Consider $\lambda x.\lambda y.(xy)$, and its corresponding application, consider $(\lambda x.\lambda y.(xy)) \delta(v) \delta(v)$, its trace equals to 0
- 3 The typing system is not consistent for α renaming.

Figure 4: Big-step semantics with provenance

```
adap: Traces \rightarrow \mathbb{N}
       adap((x, \theta))
        adap(T_1 T_2 \triangleright fix f(x).T_3)
                                                               adap(T_1) + max(adap(T_3), adap(T_2) + depth_x(T_3))
        adap((fix f(x:\tau).e,\theta))
       adap((T_1, T_2))
                                                               \max(\text{adap}(T_1), \text{adap}(T_2))
                                                      =
        adap(fst(T))
                                                      =
                                                               adap(T)
        adap(snd(T))
                                                      =
                                                               adap(T)
        adap(true)
                                                      =
        adap(false)
                                                      =
        adap(if^t(T_b, T_t))
                                                               adap(T_b) + adap(T_t)
        adap(if^f(T_b, T_f))
                                                      =
                                                               adap(T_b) + adap(T_f)
        adap(c)
                                                      =
                                                               1 + adap(T)
        adap(\delta(T))
                                                               +\mathsf{MAX}_{v\in\tau} \Big| \max \Big( \mathsf{adap}(T_3(v)), \mathsf{depth}_x(T_3(v)) \Big) \Big|
                                                  where v_1 = (\text{fix } \hat{f}(x:\tau).e,\theta) = \text{extract}(T)
                                                               \land \theta[f \mapsto v_1, x \mapsto v], e \downarrow^{v'}, T_3(v)
depth_r: Traces \rightarrow \mathbb{N}_{\perp}
                                                             \int 0 \quad \text{if } x = y
 depth_x((y,\theta))
                                                             \perp if x \neq y
 depth_x(T_1 T_2 \triangleright fix f(y).T_3)
                                                            \max(\operatorname{depth}_{\kappa}(T_1),
                                                            adap(T_1) + max(depth_x(T_3), depth_x(T_2) + depth_y(T_3)))
 depth_x((fix f(y:\tau).e,\theta))
  depth_{x}((T_1, T_2))
                                                   =
                                                            \max(\operatorname{depth}_{x}(T_1), \operatorname{depth}_{x}(T_2))
  depth_x(fst(T))
                                                            depth_{r}(T)
  depth_{\chi}(snd(T))
                                                   =
                                                            depth_r(T)
                                                            \perp
  depth<sub>r</sub>(true)
  depth_x(false)
                                                   =
  depth_x(if^t(T_b, T_t))
                                                   =
                                                            \max(\operatorname{depth}_x(T_b), \operatorname{adap}(T_b) + \operatorname{depth}_x(T_t))
  depth_x(if^t(T_b, T_f))
                                                            \max(\operatorname{depth}_{r}(T_{h}), \operatorname{adap}(T_{h}) + \operatorname{depth}_{r}(T_{f}))
 depth_r(c)
  depth_{\kappa}(\delta(T))
                                                            1 + \max(\operatorname{depth}_{x}(T),
                                                            adap(T) + MAX_{v \in \tau} \left( max(depth_x(T_3(v)), \bot) \right)
                                                where v_1 = (\text{fix } f(x:\tau).e, \dot{\theta}) = \text{extract}(T)
                                                             \wedge \theta[f \mapsto v_1, x \mapsto v], e \downarrow^{v'}, T_3(v)
```

Figure 5: Adaptivity of a trace and depth of variable x in a trace

3 Attempt 3: Linear type based 2

Expr.
$$e := x \mid e_1 e_2 \mid \lambda x.e$$
 true | false | if e then e_2 else $e_3 \mid c \mid \delta(e)$

Environment $\theta := x_1 \mapsto (v_1, R_1), \dots, x_n \mapsto (v_n, R_n)$

Index Term $I, Z := i \mid n$

Linear type $\tau := A \multimap Z\tau \mid b \mid bool$

Nonlinear Type $A := !_I \tau$

Typing context $\Gamma := x_1 : A_1, \dots, x_n : A_n$

$$\frac{\theta(x) = (v, \theta_1, R)}{x, \theta \mid^R v, \theta_1} \text{ var } \frac{c, \theta \mid^0 c, \theta}{c, \theta \mid^0 c, \theta} \text{ const } \frac{\lambda x.e, \theta \mid^0 \lambda x.e, \theta}{\lambda x.e, \theta \mid^0 \lambda x.e, \theta} \text{ lambda}$$

$$\frac{e_1, \theta_1 \mid^{R_1} \lambda x.e, \theta_1' = e_2, \theta_2 \mid^{R_2} v_2, \theta_2' = \text{fresh } x' = e[x'/x], \theta_1'[x' \mapsto (v_2, \theta_2', R_2)] \mid^{R_3} v, \theta_3}{e_1 e_2, (\theta_1 \uplus \theta_2) \mid^{R_1 + R_3} v, \theta_3} \text{ app}$$

$$\frac{e_1, \theta \mid^R v, \theta_1 = \delta(v, \theta) = v' = FV(v') = \emptyset}{\delta(e), \theta \mid^{R+1} v, \theta_1} \text{ delta} \frac{e_1, \theta \mid^R \text{ false}, \theta' = e_2, \theta \mid^{R_2} v_2, \theta_2}{\text{ if } e \text{ then } e_1 \text{ else } e_2, \theta \mid^{R+R_2} v_2, \theta_2}} \text{ if } f$$

$$\frac{e_1, \theta \mid^R \text{ true}, \theta' = e_1, \theta \mid^{R_1} v_1, \theta_1}{\text{ if } e \text{ then } e_1 \text{ else } e_2, \theta \mid^{R+R_2} v_2, \theta_2}} \text{ if } f$$

$$\frac{e_1, \theta \mid^R \text{ true}, \theta' = e_1, \theta \mid^{R_1} v_1, \theta_1}{\text{ if } e \text{ then } e_1 \text{ else } e_2, \theta \mid^{R+R_2} v_2, \theta_2}} \text{ if } f$$

Figure 6: Big-step semantics

 $\emptyset \uplus \theta_2 \triangleq \theta_2$

Typable Approach By Weihao

$$F(e,\phi) \qquad where \quad \phi(x_i) = (I_i,R_i,Z_i)$$

$$F(x,\phi) \qquad = \sum_{x_i \in \mathsf{FV}(x)} I_i \times (R_i + Z_i)$$

$$F(\lambda x.e,\phi) \qquad = \sum_{x_i \in \mathsf{FV}(\lambda x.e)} I_i \times (R_i + Z_i)$$

$$F(\delta(e),\phi) \qquad = \sum_{x_i \in \mathsf{FV}(\delta(e))} I_i \times (R_i + Z_i)$$

$$F(c,\phi) \qquad = 0$$

$$F(e_1 e_2,\phi) \qquad = F(e_1,\phi) + F(e_2,\phi)$$

$$F(\text{if e then e_1 else e_2,ϕ)} \qquad = F(e,\phi) + \max(F(e_1,\phi),F(e_2,\phi))$$

Definition 1 (Typable). A closure $(e, [x_1 \to (v_1, \theta_1, R_1), ..., x_i \to (v_i, \theta_i, R_i)])$ is typable with type τ and adaptivity J if exists k_i

$$x_1 : !_{I_1} \tau_1, \dots, !_{I_i} \tau_i \vdash_Z e : \tau$$

and each closure (v_i, θ_i) is also typable with type $!_{I_i}\tau_i$ and adaptivity Z_i , $\phi = [x_1 \rightarrow (I_1, R_1, Z_1), ..., x_i \rightarrow (I_i, R_i, Z_i)], J = Z + F(e, \phi).$

$$\frac{\theta(x) = (v, \theta', R) \qquad \vdash_{Z} (v, \theta') : \tau}{\vdash_{R+Z} (x, \theta) : \tau} \mathbf{C-Ax} \qquad \frac{}{\vdash_{0} (c, \theta) : \mathbf{b}} \mathbf{C-const}$$

$$\frac{\vdash_{Z'} (v', \theta') : \tau_{1} \qquad \text{fresh } x' \quad \forall R' \qquad \vdash_{S+I \times (R'+Z')+Z} (e[x'/x], \theta[x' \to (v', \theta', R')]) : \tau_{2}}{\vdash_{S} (\lambda x. e, \theta) : !_{I} \tau_{1} \multimap Z \tau_{2}} \mathbf{C-lambda}$$

$$\frac{\vdash_{Z_{1}} (e_{1}, \theta_{1}) : !_{I} \tau_{1} \multimap Z \tau_{2} \qquad \vdash_{Z_{2}} (e_{2}, \theta_{2}) : \tau_{1}}{\vdash_{Z_{1}+I \times Z_{2}+Z} (e_{1} e_{2}, \theta_{1} \uplus \theta_{2}) : \tau_{2}} \mathbf{C-app} \qquad \frac{\vdash_{Z} (e, \theta) : \mathbf{b}}{\vdash_{1+Z} (\delta(e), \theta) : \mathbf{b}} \mathbf{C-delta}$$

$$\begin{array}{ll} \theta & \triangleq (x_i \to (v_i, \theta_i, R_i)) & i \in \mathbb{N} \\ (x_i :!_I \tau_i), \Gamma \vDash (x_i \to (v_i, \theta_i, R_i)) \uplus \theta & \triangleq \vdash_{-} (v_i, \theta_i) : \tau_i & \land \Gamma \vDash \theta \end{array}$$

Figure 7: Typing rules, configure

$$\begin{split} [[b]]_{V} &= \{(c,\theta,Z)\} \\ [[!]_{k}\tau]]_{V} &= \{(v,\theta,Z)|(v,\theta,Z) \in [[\tau]]_{V}\} \\ [[!]_{k}\tau_{1} \multimap Z\tau_{2}]]_{V} &= \{(\lambda x.e,\theta,Z_{1}) \mid \forall v',\theta',Z'.(v',\theta',Z') \in [[!]_{k}\tau_{1}]]_{V}. \\ &\Longrightarrow \text{fresh } x' \land \\ &\forall R.(e[x'/x],\theta[x' \mapsto (v',\theta',R)]) \in [[\tau_{2}]]_{E}^{Z_{1}+Z+I\times(R+Z')}\} \\ [[\tau]]_{E}^{Z} &= \{(e,\theta) \mid (e,\theta \downarrow^{R} v,\theta') \\ &\Longrightarrow R \leq Z \land (v,\theta',Z-R) \in [[\tau]]_{V})\} \end{split}$$

Figure 8: Logical relation without step-indexing

Definition 2 (ClosedClosure). A closure (e, θ) is closed if $FV(e) \subseteq dom(\theta)$.

Lemma 1 (programTypable). *If* $\vdash_Z e : \tau$, then (e, \emptyset) is typable with τ and adaptivity Z.

Lemma 2 (TypableMono). *If a closure is D is typable with* τ *and* Z, *and* $Z \leq Z'$, *then D is typable with* τ *and* Z'.

Lemma 3 (Typable Soundness). *If a closure D is typable with* τ *and J, and D* \downarrow ^R *E, then closure E is typable with* τ *and adaptivity J* – *R.*

Typable Approach By Marco

Definition 3 (Typable Closures). Let $\theta = [x_1 \to (v_1, \theta_1, R_1), \dots, x_n \to (v_n, \theta_n, R_n)]$. The closure (e, θ) is typable with type τ and adaptivity J if:

- 1. $x_1 : !_{k_1} \tau_1, \dots, !_{k_i} \tau_i \vdash_Z e : \tau$, for some types $!_{k_i} \tau_i$ for $(1 \le i \le n)$,
- 2. each closure (v_i, θ_i) for $(1 \le i \le n)$ is typable with type $!_{k_i} \tau_i$ and adaptivity Z_i ,
- 3. $J = Z + \sum_{(v_i, \theta_i, S_i) \in \theta} k_i \times (R_i + Z_i)$.

To justify why we chose Σ in the third clause above it is worth to consider the following configuration:

$$[x \mapsto (\lambda u.\lambda w.\delta(u) + \delta(w), [], 0), y \mapsto (v, [], 2)], xyy$$

Lemma 4 (Soundness). *If a closure* D *is typable with type* τ *and adaptivity* J, *and* $D \downarrow^R E$, *then the closure* E *is typable with type* τ *and adaptivity* I, *where* $I + R \leq J$.

FAILURE: [[Soundness is unable to be proven:

In the semantics app rule: $R_1 + R_3$ adaptivity is numerically added.

In the typing-configuration (typable closure): $J = Z + \sum_{(v_i,\theta_i,S_i)\in\theta} k_i \times (R_i + Z_i)$, adaptivity adding is by max.

The adpativity in typing rule cannot bound the adaptivity in semantics. We need to have a better understanding on the adptivity flow]]

4 Attemp4: Call by need style

Figure 9: Big-step semantics

4.1 Example

- 1. [], $\lambda x.(x,x) \delta(\lambda z.e) \downarrow^{0+1} [x' \rightarrow (v',0)], v'$ where $v' = \delta(\lambda z.e)$.
- 2. [], $\lambda x.\lambda y.(x,y) \delta(\lambda z.e) v$
- 3. $[x \to (v_x, 1), y \to (v_y, 2)], ((x, \delta(y)), (\delta(x), y))$

- 4. $[x \rightarrow (v_x, 1), y \rightarrow (v_y, 2)], \text{if}(\delta(x), \delta(y), y)$
- 5. $[x \rightarrow (v_x, 1), y \rightarrow (v_y, 2)], if(\delta(y), \delta(y), x)$
- 6. [], $\lambda x.\lambda y. \mathrm{if} \left(x < y, x + y, \delta(\lambda m.m + x) \right) \delta(\lambda z_1.e_1) \, \delta(\lambda z_2.e_2)$
- 7. $[x \rightarrow (v_x, 5), y \rightarrow (v_y, 6)], let z = \lambda m.x + y + m \text{ in } \delta(z)$