Classification

- response is categorical (discrete)(categories = groups = classes)
- k-class problems $(Y \in 1...k)$

Logistic Regression (two-class)

- Model: P(Y=1|X=x) = $\frac{e^{x^T \beta}}{1+e^{x^T \beta}}$.
- β is estimated via MLE. (Optimizing: Newton-Raphson) (Iterated reweighted least Squares) (No analytical solution for the β estimate).
- Linear decision boundaries.
- Does not have any normality assumptions.

Multinomial (k-class) Logistic Regression

- Model:

$$log \frac{P(Y = k|X = x)}{P(Y = K|X = x)} = x^T \beta_k$$

Linear Discriminant Analysis (parametric)

- Model:

likelihood:

$$X|Y = k \sim N(\mu_k, \Sigma)$$

prior probabilities:

$$\pi_k = P(Y = k)$$

(Use Bayes rule)

posterior probabilities:

$$P(Y = k|X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^k \pi_l f_l(x)}$$

f(x): MVN density function (μ_k, Σ_k) at x

- Estimation:

$$\hat{\mu_k} = \text{obs } k^{th} \text{ group mean } = \frac{1}{n} \sum_{i,y_i=k} X_i$$

- Estimation. $\hat{\pi_k} = \text{obs prop for class } \mathbf{k} = \frac{n_k}{n}$ $\hat{\mu_k} = \text{obs } k^{th} \text{ group mean} = \frac{1}{n} \Sigma_{i,y_i=k} X_i$ $\hat{\Sigma} = \text{pooled within-group cov matrix} = \frac{n_1-1}{n-K} \hat{\Sigma}_1 + \dots + \frac{n_K-1}{n-K} \hat{\Sigma}_K$ linear decision boundaries (discriminant function/ score, check the slides) (To find Decision boundary, $\Delta_k(x) = \Delta_l(x)$ for all k!= 1)
- require normality assumption
- Assume common within group covariance matrix

Quadratic Discriminant Analysis (parametric)

- Model:

$$X|Y = k \sim N(\mu_k, \Sigma_k)$$
$$\pi_k = P(Y = k)$$

- quadratic decision boundaries
- require normality assumption
- diff cov matrix for each group

KNN (Non-parametric)

- Idea: Find the k nearest observations in the training data and do a majority vote. (k is a hyper-parameter, tuned via cross validation)
- Model-free! (No distributional assumption on the data)
- Standardization of predictors are highly recommended! (Why? Most distance measures (eg, Euclidean distance) are affected by the scale of predictors. give large weights to large scale (magnitude) predictors)

Decision Tree (Non-parametric)

Check the slides!

Performance Metric

- Accuracy = number of correct predictions / number of predictions. (error/misclassification rate = 1 accuracy)
- Issues:
- 1. class imbalance (e.g, 99% of data belong to class 1) (The trivial classifier that predicts all obs to be 1 regardless of the predictors achieves 99% accuracy).
- 2. Different types of errors might carry a different cost. (Confusion matrix deals with it)

Confusion matrix (K x K): k class, ij-th entry = number of observations s.t. actual class = i and predicted class = j.

Roc Curve

A more comprehensive view of the classifier's performance (without restricting to a particular threshold).

Real Line: generated by changing the thresholds in the classification rules.

Dash Line: theoretical performance of a random classifier.

Perfect classifier is the horizontal line at 1.

TPR = TP / P = sensitivity.

FPR = FP / N = 1 - specificity = 1 - TN / N.

AUC = area under roc curve = prob that a randomly chosen +.instance has higher ranking/score than a randomly chosen -.instance