一、选择题

1、 f(x)与g(x)不表示同一函数的是()

A
$$f(x) = |x| = g(x) = \begin{cases} x, x \neq 0 \\ 0, x = 0 \end{cases}$$

$$B f(x) = |x| - g(x) = \sqrt{x^2}$$

C
$$f(x) = \frac{1+x}{1-x} = g(x) = \frac{1-x^2}{(1-x)^2}$$

$$D f(x) = \arcsin x = g(x) = \frac{\pi}{2} - \arccos x$$

2、 函数
$$f(x) = \arcsin \frac{x-1}{5}$$
 的定义域是 ()

$$A [-4, 6]$$

$$C \left[-1, 1\right]$$

A
$$\begin{bmatrix} -4 & 6 \end{bmatrix}$$
 B $\begin{bmatrix} -5 & 5 \end{bmatrix}$ C $\begin{bmatrix} -1 & 1 \end{bmatrix}$ D $\begin{bmatrix} 0 & +\infty \end{bmatrix}$

3、下列函数中,奇函数是()

$$A \quad y = x + \cos x$$

$$A \quad y = x + \cos x \qquad \qquad B \qquad y = \frac{e^x + e^{-x}}{2}$$

$$C \quad y = x \cos x$$

$$D \quad y = x^2 \ln(1+x)$$

4、 下列极限存在的有()

$$A \lim_{x \to 0} e^{\frac{1}{x}}$$

B
$$\lim_{x\to 0} \frac{1}{2^x - 1}$$

C
$$\limsup_{x\to 0} \frac{1}{x}$$

$$D \lim_{x\to\infty} \frac{x(x+1)}{x^2}$$

$$D - 1$$

6、函数 y = f(x) 在点 a 处连续是 f(x) 在 a 点有极限的()

A 必要条件 B 充分条件 C 必要充分条件 D 无关条件

7、
$$f(x) = \frac{|x|}{x}$$
在 $x \to 0$ 时的极限是()

C 0 D 不存在

8、极限
$$\lim_{x \to \infty} \frac{\sin x}{x} = ($$
)

$$9. \lim_{x \to +\infty} e^{\frac{1}{x}} = ()$$

- A. +∞ B. 不存在 C. 0 D. 1

$$10, \quad y = \sin\frac{1}{x} \, (\quad)$$

- A 当 $x \rightarrow 0$ 时为无穷小量
- B 当 $x \rightarrow 0$ 时为无穷大量
- C 在区间 $\begin{pmatrix} 0 & 1 \end{pmatrix}$ 内为无界变量 D 在区间 $\begin{pmatrix} 0 & 1 \end{pmatrix}$ 内为有界变量
- 11、 若 $\lim_{x \to \infty} f(x)$ 存在, $\lim_{x \to \infty} g(x)$ 不存在,则以下正确的是()
- A $\lim_{x\to\infty} (f(x)+g(x))$ 与 $\lim_{x\to\infty} f(x)g(x)$ 都存在;
- B $\lim_{x\to\infty} (f(x)+g(x))$ 与 $\lim_{x\to\infty} f(x)g(x)$ 都不存在;
- $\lim_{x\to\infty} (f(x)+g(x))$ 必不存在, $\lim_{x\to\infty} f(x)g(x)$ 可能存在;
- $D\lim_{x\to\infty} f(x)g(x)$ 必不存在, $\lim_{x\to\infty} (f(x)+g(x))$ 可能存在;
- 12、 若 $\lim_{x\to x_0} f(x) = 1$,则()
 - A $f(x_0) = 1$ B $f(x_0) > 1$

 - $f(x_0) < 1$ D $f(x_0)$ 可能不存在
- 13、当x → 0 时,下面四个无穷小量中,()是比其他三个更高阶的量。

- A x^2 B $1-\cos x$ C $\sqrt{1-x^2}-1$ D $x(e^{x^2}-1)$
- 14、设 $\alpha = 1 \cos x$, $\beta = 2x^2$,则当 $x \to 0$,则()

 - A α 与 β 是同阶无穷小 B α 与 β 是等价无穷小
 - C α 是 β 的高阶无穷小 β 是 α 的高阶无穷小
- 15、当x → 0 时,下列变量中与 $\ln(1+2x)$ 为等价无穷小的是()。
- A. y = x B. $y = x^2$ C. $y = \sin x^2$ D. $y = \tan 2x$
- 16、当x → 0时,下列变量中,哪一个与x 为等价无穷小()
- A $\sin^2 x$

B $\ln(1+2x)$

 $C x \sin \frac{1}{x}$

- D $\sqrt{1+x}-\sqrt{1-x}$
- 17、当x → 1时,下列变量中不是无穷小的是()

A
$$x^2 - 1$$

B
$$x(x-1)+1$$

$$C 3x^2 - 3$$

D
$$4x^2 - 2x + 1$$

18、
$$y = \frac{|x-1|}{x-1}$$
的间断点及其类型是()。

A.
$$x=1$$
, 跳跃间断点 B. $x=-1$, 跳跃间断点

B.
$$x = -1$$
, 跳跃间断点

C.
$$x=-1$$
, 可去间断点 D. $x=1$, 可去间断点

$$\mathbf{n}$$
 $x=1$ 可丰间縣占

19、函数
$$f(x) = \frac{\sqrt{2+x}}{x-1}$$
 的连续区间是()

A.
$$(1, 2]$$

B.
$$(-2, 1)$$

C.
$$[-2, +\infty)$$

A.
$$(1,2]$$
 B. $(-2,1)$ C. $[-2,+\infty)$ D. $[-2,1) \cup (1,+\infty)$

20、若分段函数

$$f(x) = \begin{cases} \frac{1}{x}\sin x, & x < 0\\ q, & x = 0\\ \frac{1}{x}\sin x + p, & x > 0 \end{cases}$$

在分段点 x=0 处连续,则常数 p,q 的值为()

A.
$$p = 0, a = 0$$

B.
$$p = 0, q =$$

A.
$$p = 0, q = 0$$
 B. $p = 0, q = 1$ C. $p = 1, q = 0$ D. $p = 1, q = 1$

D.
$$p = 1, q = 1$$

21. 函数 f(x) 在点 x_0 处可导是函数 f(x) 在点 x_0 处连续的 (A).

(A) 充分条件 (B) 必要条件 (C) 充要条件 (D) 无关条件

(A) 0 (B) 1 (C)
$$-1$$
 (D) -2 .

23. 极限
$$\lim_{n\to\infty} \frac{4n^3 - n + 1}{5n^3 + 4n^2 + n} =$$
 (B).

(A) 0 (B)
$$\frac{4}{5}$$
 (C) 1 (D) $\frac{1}{4}$

24. 设函数
$$\alpha(x) = 1 - \cos x$$
, $\beta(x) = \frac{x^2}{2}$, 则当 $x \to 0$ 时 (B).

(A) $\alpha(x)$ 与 $\beta(x)$ 是同阶(但不等价)无穷小量.

(B) $\alpha(x)$ 与 $\beta(x)$ 是等价无穷小量

- (C) $\alpha(x)$ 是 $\beta(x)$ 的高阶无穷小量
- (D) $\beta(x)$ 是 $\alpha(x)$ 的高阶无穷小量
- 25. 设 $f(x) = \sin \frac{1}{x}$, 则 $f'(\frac{1}{\pi}) = (C)$.
- (A) 1 (B) -1 (C) π^2 (D) $-\pi^2$
- 26. 在区间[-1,1]上,下列函数中不满足罗尔定理的是(C).
- (A) $y = \ln(1+x^2)$ (B) $y = x^2$ (C) y = |x| (D) $y = \frac{1}{1+x^2}$
- 27. 函数 $y = x^3 3x$ 的单调减少区的区间是(D).
- (A) $(-\infty,+\infty)$ (B) $(-\infty,-1)$ (C) $(1,+\infty)$ (D) (-1,1)
- 28. 不定积分 $\int \cos 2x dx = (D)$.
- (A) $\sin 2x + c$ (A) $2\sin 2x + c$ (A) $\frac{-1}{2}\sin 2x + c$ (D) $\frac{1}{2}\sin 2x + c$
- 29. 设 f(x) 在 x = 0 处可导,且 f'(0) = 1,则 $\lim_{\Delta x \to 0} \frac{f(2\Delta x) f(0)}{\Delta x} = (B)$
- (A) 1 (B) 2 (C) $\frac{1}{2}$ (D) $-\frac{1}{2}$
- 30. 设 $f(x-1) = x^2 1$, 则 f'(x) = (A)
- (A) 2x + 2 (B) 2x + 1 (C) 2x 1 (D) x(x 1)
- 31. 曲线 $y = \cos 2x 4$ 在 $x = \frac{\pi}{4}$ 处切线的斜率为(C)
- (A) -6 (B) 2 (C) -2
- 32. 己知 $f(x) = x^2 x + 1$, $g(x) = \frac{1}{x+1}$, 则 g(f(0)) = (A) 。
- (A) $\frac{1}{2}$ (A) 1 (A) -1 (D) $-\frac{1}{2}$
- 33. 下列函数是奇函数的是(B)
- (A) $y = \ln(1+x^2)$ (B) $y = x + \sin x$ (C) $y = e^{-x}$ (D) $y = x \cdot \sin x$
- 34. 当 $x \rightarrow +\infty$ 时,下列变量中是无穷大量的有(C)。
- (A) $\ln(1+\frac{1}{x})$ (B) $e^{-x}-1$ (C) $\frac{x^2}{x+1}$ (D) $\frac{\sin x}{x}$
- 35. 下列各函数中为偶函数的是(D)。

(A)
$$y = x^2 \sin x + 1$$
 (B) $y = \frac{1-x}{1+x}$ (C) $y = xe^{x^2}$ (D) $y = \frac{e^x + e^{-x}}{2}$

(B)
$$y = \frac{1-x}{1+x}$$

$$(C) y = xe^{x^2}$$

(D)
$$y = \frac{e^x + e^{-x}}{2}$$

36.
$$\lim_{x\to 0} \frac{x}{\sin 2x} =$$
 (B)

- (A) 0 (B) 2 (C) $\frac{1}{2}$
- (D) ∞

37、函数
$$f(x) = \frac{1}{\ln(x-1)}$$
 的定义域是(B)。

- (A) $(1, +\infty)$ (B) $(1, 2) \cup (2, +\infty)$ (C) $(0, +\infty)$ (D) $(2, +\infty)$

38、下列计算正确的是(A)。

(A)
$$\lim_{x \to 0} x \sin \frac{1}{x} = 0$$
 (B) $\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = e$

(B)
$$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = \epsilon$$

(C)
$$\lim_{x \to \infty} \frac{\sin x}{x} = 1$$

(C)
$$\lim_{x \to \infty} \frac{\sin x}{x} = 1$$
 (D) $\lim_{x \to 0} (1 + \frac{1}{x})^x = e$

39、当x → +∞ 时,下列变量中的无穷小量是(C)。

(A)
$$(\frac{1}{2})^x$$
 (B) $\frac{1+x}{x}$ (C) e^x

(B)
$$\frac{1+x}{x}$$

(C)
$$e^{-\frac{1}{2}}$$

(D)
$$\sin x$$

40、 若
$$\int_0^1 (2x+k)dx = 2$$
, 则 $k = (A)$ 。

(B)
$$-1$$
 (C) 0

(D)
$$\frac{1}{2}$$

41.
$$\lim_{t \to 0} \frac{t}{\sqrt{1 - \cos t}} = (D)$$

- (A) 0 (B).1 (C). $\sqrt{2}$ (D). 不存在

42. 函数
$$f(x) = \frac{1}{x} \cos \frac{1}{x}$$
, 在 $x = 0$ 点的任何邻域内都是(B)

43. 设
$$f(x+1) = \lim_{n \to \infty} \left(\frac{n+x}{n-2} \right)^n$$
, 则 $f(x) = (C)$

- (A). e^{x-1} (B). e^{x+2} (C). e^{x+1}
- (D). e^{-x}

44. 若
$$\lim_{x\to 2} \frac{x^2 + ax + b}{x^2 - x - 2} = 2$$
,则必有(D)

(A).
$$a = 2, b = 8$$
 (B). $a = 2, b = 5$ (C). $a = 0, b = -8$ (D). $a = 2, b = -8$

(c).
$$a = 0, b = -8$$

(D).
$$a = 2, b = -8$$

55. 下列函数中是奇函数	效的为(A).		
(A) $\frac{ x }{x}$;	(B) $\frac{10^x + 10^{-x}}{2}$;	(C) $x^3 + \cos x$;	(D) $\frac{\sin x}{x}$.
$56. 函数 \ y = \sin 2x + \cos x$	3x 的周期为(A).		
(A) π ;	(B) $\frac{2}{3}\pi$;	(C) 2π;	(D) 6π .
57.	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $g(x) = 5x - 4$, $[0]$	f[g(0)]= (C).	
(A) 0;	(B) -4 ;	(C) 16;	(D) -16 .
58. 设函数 <i>f</i> (<i>x</i>) 的定义	域是[0,1],则函数 g(.	f(x+a) + f(x-a)	$(0 < a < \frac{1}{2})$ 的定义域是
(C)			
		(C) $[a, 1-a]$. (D)	[-a,1+a].
59. 己知 $\lim_{x\to y} [f(x) + g(x)]$	$\int_{\mathbb{R}} f(x) \int_{\mathbb{R}^{n \to y}} f(x) = \int_{\mathbb{R}^{n \to $	$\lim_{x\to\gamma}g(x)$ (D).	
(A) 均存在; (B) 均不	存在;(C)至少有一	个存在;(D)都存在或者	都不存在.
60. " $f(x_0 - 0) = f(x_0)$	+0)存在且相等"是	" $\lim_{x \to x_0} f(x)$ 存在"的(()条件.
(A) 充分;	(B) 必要; (C) 充·	分且必要; (D) 非方	充分且非必要.
61. 当 $x \to \infty$ 时, $y = x$	$\cos x$ 是(B).		
(A) 无穷大; (B) 无界	函数但不是无穷大;	(C) 有界函数; (D)	无穷小.
62. 己知 $\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax \right)$	-b $=0$,则(D).		
(A) $a = b = 1$;	(B) $a = b = -1$; (((D) $a = -1, b = 1;$	a = 1, b = -1.
63. $x = 0 \not\equiv y = \arctan \frac{1}{x}$	的(B)间断点.		
(A) 可去;	(B) 跳跃;	(C) 无穷;	(D) 振荡.
64. $x = 0$ 是函数 $f(x) =$	$\frac{\ln(1+x)}{x}$ 的 (D).		
(A) 连续点;	(B) 跳跃间断点;	(C) 无穷间断点;	(D) 可去间断点.
65. 设对任意 x 总有 g(x	$f(x) \le f(x) \le h(x)$, $\coprod \lim_{x \to a} f(x)$	$ \operatorname{min}_{\infty}[h(x) - g(x)] = 0 $, $\operatorname{Min}_{x \to \infty}$	$ \underset{\infty}{\mathbf{m}} f(\mathbf{x}) (\mathbf{A} \qquad) $
(A) 存在且一定为	10.	(B) 存在且一定7	下为 0.
(C) 一定不存在.		(D) 不一定存在.	, , •
66. 当 $x \to 0$ 时,下列明	『一个函数是其他三个	的高阶无穷小?(B)
(A) x^2 .	(B) $1 - \cos x^2$. (6)	C) $\tan x - \sin x$.	(D) $\ln(1+x^2)$.
67、设函数 $f(x) = \lim_{n \to \infty}$	$\frac{1+x}{1+x^{2n}}, 讨论函数 f($	(x) 的间断点,其结论为	(B).

(A)不存在间断点	(B) 存在间断点 $x=1$
(C) 存在间断点 $x = 0$	(D) 存在间断点 $x = -1$
68、函数 $f(x) = \frac{ x \sin(x-2)}{x(x-1)(x-2)^2}$ 在下	列哪个区间内有界 (A)。
(A) $(-1,0)$ (B) $(0,1)$	C) $(1,2)$ (D) $(2,3)$
69、设 $f(x)$ 在 $(-\infty,+\infty)$ 内有定义,且	$\lim_{x \to \infty} f(x) = a, g(x) = \begin{cases} f(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}, \emptyset (D)$
(A) $x = 0$ 必是 $g(x)$ 的第一类间断点	(B) $x = 0$ 必是 $g(x)$ 的第二类间断点
(C) $x = 0$ 必是 $g(x)$ 的连续点	(D) $g(x)$ 在点 $x = 0$ 的连续性与 a 的取值有关
70. 当 $x \to 0$ 时, $x^2 - \sin x$ 是 x 的 A. 高阶无穷小 B. 同阶但非等价无穷 71、 当 $x \to 0$ 时,与 $\sqrt{1+x} - \sqrt{1-x}$	小 C. 低阶无穷小 D. 等价无穷小
A, x B, $2x$ C, x^2	$D_{x} 2x^{2}$
72、函数 $f(x) = xe^{\cos x}(-\infty < x < +\infty)$	是()
(A) 奇函数 (B) 有界函数 ((C) 单调函数 (D) 周期函数
73. 设数列的通项为 $x_n = \begin{cases} \frac{1}{n}, n = 2k + 1 \\ n, n = 2k \end{cases}$	-1 $(k \in N^*)$,则当 $n \to +\infty$ 时, x_n 为()
(A) 无穷小量 (B) 无穷大量	(C) 有界量 (D) 无界量
74. 当 $x \to 0$ 时, $\tan x - \sin x \in x^3$ 的] ()
(A) 低阶无穷小 (B) 高阶无穷小	(C) 等价无穷小 (D) 同阶无穷小
75. 已知 $f(x)$ 与 $g(x)$ 在 $(-\infty < x < +\infty)$	∞) 上连续,且 $f(x) < g(x)$,则有()
(A) f(-x) > g(-x)	(B) $\lim_{x \to \infty} f(x) < \lim_{x \to \infty} g(x)$
(C) $\lim_{x \to x_0} f(x) < \lim_{x \to x_0} g(x)$	(D) $\lim_{x \to \infty} f(x) \le \lim_{x \to \infty} g(x)$
76. 当 $x \to 1$ 时,函数 $f(x) = \frac{x^2 - 1}{x - 1}e$	$\frac{1}{x-1}$ 的极限()

(A) 为∞ (B) 不存在 (C) 等于 2 (D) 等于 0

(A)
$$\{x_n\}$$
 , $\{y_n\}$ 都收敛于 a (B) $\{x_n\}$ 收敛于 a , $\{y_n\}$ 发散;

(B)
$$\{x_n\}$$
收敛于 a , $\{y_n\}$ 发散

(C)
$$\{x_n\}$$
 发散, $\{y_n\}$ 收敛于 a (D) $\{x_n\}$, $\{y_n\}$ 都发散。

(D)
$$\{x_n\}$$
 , $\{y_n\}$ 都发散。

78. 当 $x \to 0$ 时,下列各无穷小量与x相比是高阶无穷小量的是(B)。

(A)
$$2x^2 + x$$

(B)
$$\sin x^2$$

(C)
$$x + \sin x$$

(A)
$$2x^2 + x$$
 (B) $\sin x^2$ (C) $x + \sin x$ (D) $x^2 + \sin x$

79. 下列极限中正确的是(C)。

(A)
$$\lim_{x \to \infty} \frac{\sin x}{x} = 1$$
 (B) $\lim_{x \to 0} x \sin \frac{1}{x} = 1$ (C) $\lim_{x \to 0} \frac{\sin 2x}{x} = 2$ (D) $\lim_{x \to 0} 2^{\frac{1}{x}} = \infty$

81. 设函数
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x < 0 \\ a+2, & x \ge 0 \end{cases}$$
 在 $(-\infty, +\infty)$ 内连续; 则 $a = (D)$.

(A)
$$\mathbf{2}$$
 (B) $\mathbf{0}$ (C) $-\mathbf{1}$ (D) $-\mathbf{2}$

82. 设
$$f(x) = \frac{\sqrt[3]{x} - 1}{x - 1}$$
, 则 $x = 1$ 是函数 $f(x)$ 的 (A).

(A) 可去间断点 (B) 连续点 (C) 无穷间断点 (D) 跳跃间断点.

83.
$$\[\exists f(x) = \frac{x^2 - 1}{x - 1} e^{\frac{1}{x - 1}}, \] \[\emptyset \] \[x = 1 \] \[\exists x \in \mathbb{Z} \] \[f(x) \in \mathbb{C} \] \]$$

(A) 可去间断点 (B) 连续点 (C) 无穷间断点 (D) 跳跃间断点.

84. . 已知
$$\lim_{x \to \infty} \left(\frac{x^2}{x+1} - ax - b \right) = 0$$
,其中 a, b 是常数,则(C)

(A)
$$a = 1$$
, $b = 1$

(A)
$$a = 1, b = 1$$
 (B) $a = -1, b = 1$

(C)
$$a = 1, b = -1$$
 (D) $a = -1, b = -1$

(D)
$$a = -1, b = -$$

85. 设
$$f(x) = 2^x + 3^x - 2$$
,则当 $x \to 0$ 时,有(B)。

(A)
$$f(x)$$
 与 x 是等价无穷小 (B) $f(x)$ 与 x 同阶但非等价无穷小

(C)
$$f(x)$$
 是比 x 高阶的无穷小 (D) $f(x)$ 是比 x 低阶的无穷小

- (A) 可去间断点
- (B) 跳跃间断点
- (C) 无穷间断点
- (D)振荡间断点
- 87. 下列断言正确的是(B)。
- - (A) 有界数列必有极限 (B) 无界数列必发散 (C) 发散数列必无界 (D) 单调数列必有极限
- 88. 下列极限运算,正确的是(A).

(A)
$$\lim_{x \to 0} \frac{e^{3x} - e^{2x} - e^{x} + 1}{\sqrt{1 + \sin^2 x} - 1} = \lim_{x \to 0} \frac{(e^{2x} - 1)(e^x - 1)}{\frac{1}{2}\sin^2 x} = \lim_{x \to 0} \frac{2x \cdot x}{\frac{1}{2}x^2} = 4$$

(B)
$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}\right) = \lim_{n\to\infty} \frac{1}{n^2} + \lim_{n\to\infty} \frac{2}{n^2} + \dots + \lim_{n\to\infty} \frac{n}{n^2} = 0$$

(C)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^2 \sin x} = \lim_{x \to 0} \frac{x - x}{x^2 \cdot x} = 0$$

(D)
$$\lim_{x\to 0} x^2 \sin \frac{1}{x} = \lim_{x\to 0} x^2 \cdot \lim_{x\to 0} \sin \frac{1}{x} = 0$$
.

89. 若
$$\lim_{x\to 1} \frac{x^2 + ax + b}{x^2 + x - 2} = 2$$
,则 (B)。

- (A) . a = 2, b = 4 (B) . a = 4, b = -5 (C) . a = 1, b = -2 (D) . a = -4, b = 5

90. 设
$$f(x) = \begin{cases} x \sin \frac{1}{x} + a, x < 0 \\ 1, x = 0, & \text{在 } x = 0 \text{ 连续,则 } (C). \end{cases}$$

- (A) . a = 1, b = 1 (B) . a = 0, b = 0 (C) . a = 1, b = 0 (D) . a = 0, b = 1
- 91. 下列极限存在的是 (B)。
- (A) $\lim_{r \to 1} \frac{1}{r^2}$;

(B) $\lim_{r\to\infty}\frac{x^2}{r^2-1}$;

(C) $\lim_{x \to \infty} \frac{x^2 + 1}{x}$;

(D) $\lim_{x \to 0} \frac{|x|}{x}$.

92. 当 $x \rightarrow 1$ 时,下列函数中与1-x 是等价无穷小的是 (D

- (A) $1-x^2$ (B) $1-x^3$ (C) x^2-1 (D) $\frac{1}{2}(1-x^2)$

93. 当 $x \to 0$ 时,与 $\sqrt{1+x} - \sqrt{1-x}$ 等价的无穷小是(A)。

- (A) x (B) 2x (C) x^2 (D) $2x^2$

94.
$$x = 1$$
 是函数 $f(x) = \frac{x^2 - 3x + 2}{x^2 - 1}$ 的(A)

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点

95. 设 $f(x) = x(1-\cos x)$, $g(x) = x^3 + x^4$, 当 $x \to 0$ 时, f(x) 是 g(x) 的 (B)。

(A)等价无穷小

(B) 同阶非等价无穷小

(C) 高阶无穷小

(D) 低阶无穷小

96. 设函数
$$f(x) = \frac{1}{e^{\frac{x}{x-1}} - 1}$$
, 则(D))。

- (A) x = 0, x = 1 都是 f(x) 的第一类间断点,
- (B) x = 0, x = 1 都是 f(x) 的第二类间断点,
- (C) x = 0 是 f(x) 的第一类间断点, x = 1 是 f(x) 的第二类间断点,
- (D) x = 0 是 f(x) 的第二类间断点, x = 1 是 f(x) 的第一类间断点。

97. 函数
$$f(x) = \begin{cases} \frac{\sin x}{x} & x < 0 \\ x + a & x \ge 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a = (D)$ 。

((A)
$$-1$$
 (B) 0 (C) $\frac{1}{2}$ (D) 1

- 98. 函数 $f(x) = \frac{x}{1+x^2}$ 在 $(-\infty, +\infty)$ 内是 ()
 - (A) 无界函数 (B) 有界函数 (C) 上无界下有界 (D) 上有界下无界
- 99. 已知函数 f(x) 的定义域为[-1,2],则函数 g(x) = f(x+2) + f(2x)的

定义域为是()

(A)
$$[-3,0]$$
 (B) $[-3,1]$ (C) $[-\frac{1}{2},1]$ (D) $[-\frac{1}{2},0]$

100. 当x → 1时,下列函数中与1-x 是等价无穷小的是())

(A)
$$\frac{1}{2}(1-x^2)$$
, (B) $1-x^3$, (C) x^2-1 , (D) $1-x^2$

- 101. 当 $x \rightarrow 0$ 时,无穷小量 $1 \cos x \neq 2x^2$ 的()
 - (A) 高阶无穷小

(B) 低阶无穷小

(C) 等价无穷小

(D) 同阶但不等价无穷小

102. 函数
$$\varphi(x) = \begin{cases} x^3 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 在 $x = 0$ 处 ()

- (A) 不连续 (B) 连续但不可导 (C) 可导 (D) 无界
- 103. x = 1 是函数 $f(x) = \frac{x^2 1}{x^2 3x + 2}$ 的 ()
 - (A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 以上都不对
- 104. x = 1 是函数 $f(x) = \frac{x-1}{x^2-1}$ 的 (
 - (A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 连续点
- 105. 若数列 $\{x_n\}$ 有界,则 $\{x_n\}$ 必()
 - (A) 收敛 (B) 发散 (C) 可能收敛也可能发散 (D) 收敛于零
- 106、 极限 $\lim_{n\to\infty} \frac{4n^3 n + 1}{5n^3 + 4n^2 + n} = ($)
- (A) 0 (B) $\frac{4}{5}$ (C) 1 (D) $\frac{1}{4}$
- (A) 0 (B) 1 (C) -1 (D) -2.
- 108. 函数 $f(x) = (x^2 x 2)|x^3 x|$ 不可导点的个数是 (B).
- (A) 3, (B) 2, (C) 1,
- 109. (1992 考研 数一) 当 $x \to 1$ 时,函数 $\frac{x^2 1}{r 1} e^{\frac{1}{x-1}}$ 的极限(D)
- (A) 等于 2.
- (B) 等干 0.
- (C)为∞. (D)不存在但不为∞.
- 110. (1998 考研 数三)设函数 $f(x) = \lim_{n \to \infty} \frac{1+x}{1+x^{2n}}$, 讨论函数 f(x) 的间断点,其结论为
- (B)
- (A) 不存在间断点.
- (B) 存在间断点 x=1.
- (C) 存在间断点 x = 0.
- (D) 存在间断点 x = -1.
- 111. 函数 $f(x) = \begin{cases} 2x^2 & x \le 1 \\ 3x 1 & x > 1 \end{cases}$ 在 x = 1 处 (B)
 - (A) 不连续, (B) 连续但不可导, (C) 可导, (D) 无界
 - 112. 已知函数 $f(x) = \begin{cases} 1-x & x \le 0 \\ e^{-x} & x > 0 \end{cases}$, 则 f(x) 在 x = 0 处(C) .
 - (A) 不连续

- (B) 连续但不可导
- (C) 可导且 f'(0) = -1 (D) 可导且 f'(0) = 1

```
113. 若曲线 y = x^2 + ax + b和2y = -1 + xy^3在点(1,-1)处相切,其中a,b为常数,则(D)
      A) a = 0, b = -2 B) a = 1, b = -3 C) a = -3, b = 1 D) a = -1, b = -1
114. 函数 f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} 在 x = 0 处(B)。
                                    (C) 可导 (D) 无界
 (A) 不连续
              (B) 连续但不可导
115. 设f(x) = x \ln x在x_0处可导,且f'(x_0) = 2,则f(x_0) = (C)
         (B) 1; (C) e; (D) e^2.
116. 己知 f(x) = \frac{1}{2}e^{-2x},则 f''(\frac{1}{2}) = (D)。
 (A) -2e (B) -\frac{2}{e} (C) \frac{e}{2} (D) \frac{2}{e}
117. 设 y = x^x (x > 0), 则 y' = (A)。
 (A) x^{x}(\ln x + 1) (B) x^{x} (C) x^{x} \ln x (D) \ln x + 1
118. 设 f(x) = \lim_{t \to \infty} x(1 + \frac{1}{t})^{2xt},则函数 f'(x) = (B)。
 (A) xe^{2x}, (B) (1+2x)e^{2x}, (C) e, (D) (1+x)e^{2x},
119. 设 f'(a) = 1, 则极限 \lim_{h \to 0} \frac{f(a-2h) - f(a)}{h} = ( D )。
                 (B) -1 (C) 2 (D) -2
   (A) 1
110. 设 y = x \sin x, 则 dy = (B)。
   A. \sin x dx
                                             B. (\sin x + x \cos x) dx
                                             D. (\sin x - x \cos x) dx
   C. x \cos x dx
111. 如果函数 f(x) 在 x_0 处满足: \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h^2} = 2013。则 f(x) 在 x_0
   处 (D )。
                                      (B) 可导,且f'(x_0) = 2013;
  (A) 不可导;
```

(D) 可导, 但 $f'(x_0) = 0$ 。

(C) 可导性不确定;

```
112. 函数 y = |x| 在 x = 0 处 (B)。
```

- (A) 不连续也不可导 (B) 连续但不可导
- (C) 不连续但可导
- (D) 连续且可导

113. 函数
$$\varphi(x) = \begin{cases} x^3 \sin \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$
 在 $x = 0$ 处 ()

- (A) 不连续 (B) 连续但不可导 (C) 可导
- (D) 无界

- (A) 1 (B) -1 (C) π^2 (D) $-\pi^2$

115. 设
$$f(x) = x \ln x$$
在 x_0 处可导,且 $f'(x_0) = 2$,则 $f(x_0) = ($

- (A) 0 (B) 1 (C) e (D) e^2

(A) 0 (B) 1 (C) -1 (D) -2.

117. 设
$$f(x)$$
 为可导函数,且 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{2\Delta x} = 1$,则 $f'(x_0) = (C)$.

- A. 1

- B. 0 C. 2 D. $\frac{1}{2}$

118. 设
$$f(x) = \ln \cos x$$
, 则 $f'(x) = (D)$.

- A. $\sec x$ B. $-\sec x$ C. $\tan x$ D. $-\tan x$

119. 设
$$y = e^{-\frac{1}{x}}$$
, 则 $dy = (D)$.

- A $e^{-\frac{1}{x}}dx$ B. $-e^{-\frac{1}{x}}dx$ C. $-\frac{1}{x^2}e^{-\frac{1}{x}}dx$ D. $\frac{1}{x^2}e^{-\frac{1}{x}}dx$

120. 函数
$$f(x) = |x|$$
 在点 $x = 0$ 处 (C)

- (A)连续且可导 (B)不连续但可导
- (C)连续但不可导 (D)不连续也不可导

121. 曲线
$$f(x) = x^3$$
 在(1,1)处的切线方程是(A)

(A)
$$y-1=3(x-1)$$
 (B) $y-1=-3(x-1)$

(B)
$$y-1=-3(x-1)$$

```
(C) y-3=(x-1) (D) y-3=3(x-1)
122. 下列等式中成立的是( C )
     (A) a dx = \frac{1}{a} d(ax + b) (B) xe^{x^2} dx = d(e^{x^2})
     (C) \frac{1}{\sqrt{x}} dx = \frac{1}{2} d\sqrt{x} (D) \ln x dx = d(\frac{1}{x})
123. 函数 f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}, 在 x = 0 处 _____.
  A. 连续但不可导
  C. 不连续
                         D. 导函数连续
A. 左、右导数都存在
                                B. 左导数存在,右导数不存在
C. 左导数不存在, 右导数存在 D. 左、右导数都不存在
125. 若曲线 y = x^2 + ax + b和2y = -1 + xy^3在点(1,-1)处相切,其中a,b为常数,则(D)
A. a = 0, b = -2 B. a = 1, b = -3 C. a = -3, b = 1 D. a = -1, b = -1
126、如果函数 f(x) 在 x_0 处满足: \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h^2} = 2022。则 f(x) 在 x_0
   处 (D )。
  (A) 不可导;
                                   (B) 可导,且 f'(x_0) = 2022;
                                  (D) 可导, 但 f'(x_0) = 0.
  (C) 可导性不确定;
127. 设f(x) = x \ln x在x_0处可导,且f'(x_0) = 2,则f(x_0) = ( )。
 (A) 0 (B) 1 (C) e (D) e^2
128. 函数 f(x) = \begin{cases} x \sin \frac{1}{x} + \frac{\sin x}{x}, & x \neq 0 \\ k, & x = 0 \end{cases} 在点 x = 0 处连续,则 k 等于
       B. 0 C. 2 D. -1
  A. 1
129. 函数 f(x) = \begin{cases} x \sin \frac{1}{x}, x \neq 0 \\ k, x = 0 \end{cases} 在点 x = 0 处连续,则 k 等于
```

A. 1 B. 0 C. 2 D. -1

130. 直线 $4x - y - 6 = 0$ 与曲线 y	$y = x^4 - 3$ 相切,则切点的坐标是 []
A. (-1,-2) B.(-2,-1) C.	(1,-2) D. (-2,1)
131. 设 $f(x)$ 在点 x_0 的某邻	区域内有定义,且 $\lim_{h\to 0} \frac{f(x_0-2h)-f(x_0)}{h} = 1$,则
$f'(x_0) = [$] A. 2 B. $-\frac{1}{2}$	
5.	x = 1为 $f(x)$ 的 []
A. 连续点; B. 无穷间数 132. 下列极限存在的是 ()。	所点; C. 跳跃间断点; D. 可去间断点。
$(A) \lim_{x \to 1} \frac{1}{x^2 - 1};$	(B) $\lim_{x \to \infty} \frac{x^2}{x^2 - 1};$
(C) $\lim_{x \to \infty} \frac{x^2 + 1}{x};$	(D) $\lim_{x\to 0} \frac{ x }{x}$ o
133. 如果函数 $f(x)$ 在 x_0 处满足: $\frac{1}{x_0}$	$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h^2} = 2013 \circ \text{ M} f(x) \stackrel{?}{=} x_0$
处()。	
(A) 不可导;	(B) 可导,且 $f'(x_0) = 2013$;
(C) 可导性不确定;	(D) 可导,且 $f'(x_0) = 0$ 。
134. 设 $f(x) = x(1-\cos x)$, $g(x) =$	$= x^3 + x^4$, $\exists x \to 0$ \forall , $f(x) \not= g(x)$ \forall $f(x) = g(x)$ $f(x) = g(x)$
(A)等价无穷小	(B) 同阶非等价无穷小
(C) 高阶无穷小	(D) 低阶无穷小
135. $x = 1$ 是函数 $f(x) = \frac{x-1}{\sin(\pi x)}$ 的] ()
(A)可去间断点 (B)跳跃间断点 (
136. 设当 $x \to 0$ 时, $(1+ax^2)^{\frac{1}{3}}-1$	与 $\cos x - 1$ 是等价无穷小,
则常数 a = ()。	
(A) $\frac{2}{3}$ (B) $\frac{3}{2}$	(C) $-\frac{2}{3}$ (D) $-\frac{3}{2}$.
137. 设函数 $f(x)$ 在 $x = 1$ 处可导,」	$\lim_{h\to 0} \frac{f(1+2h)-f(1)}{h} = \frac{1}{2},$

148. 设
$$\lim_{x\to 0} \frac{a \tan x + b(1-\cos x)}{c \ln(1-2x) + d(1-e^{-x^2})} = 2$$
,其中 $a^2 + c^2 \neq 0$,则必有(D).

(A)
$$b = 4d$$

(B)
$$b = -4d$$

(C)
$$a = 4c$$
;

(B)
$$b = -4d$$
; (C) $a = 4c$; (D) $a = -4c$.

149.
$$\lim_{x\to 0} \cot x \left(\frac{1}{\sin x} - \frac{1}{x} \right) = (B)$$
.

(A)
$$\frac{1}{3}$$

(B)
$$\frac{1}{6}$$

(A)
$$\frac{1}{3}$$
; (B) $\frac{1}{6}$; (C) $\frac{1}{12}$;

150. 曲线
$$y = \begin{cases} e^{x}, & x < 0 \\ \frac{1}{e^{x}}, & 0 < x \le 1 \end{cases}$$
 的垂直渐近线是(A).
$$\frac{\ln x}{x-2}, \quad x > 1, x \ne 2$$

(A)
$$x = 2, x = 0$$

(B)
$$x = 2$$

(A)
$$x = 2, x = 0;$$
 (B) $x = 2;$ (C) $x = 2, x = 1;$ (D) $x = 0, x = 1.$

(D)
$$x = 0, x = 1$$
.

二. 填空题

1.
$$\lim_{x \to 0} \frac{\ln(1 - 6x)}{\tan 3x} =$$

2. 设函数
$$y = y(x)$$
 由方程 $2^{xy} = x + y$,则 $dy|_{x=0} =$ _______.

3.
$$\lim_{x\to 0} (1-3x)^{\frac{1}{x}} =$$
_____.

4. 设函数
$$f(x) = (1 + x^2) \arctan x$$
,则 $dy|_{x=0} =$ _______

5. 设函数
$$f(x) = \ln(1+x^2)$$
,则 $f''(-1) =$ ______.

6. 函数
$$f(x) = \frac{1}{1 - e^{\frac{x}{1-x}}}$$
 的不连续点的是_______.

7. 设
$$f(x) = 2^x + 3^x - 2$$
,则当 $x \to 0$ 时, $f(x)$ 是 x 的_____(高阶,低阶,同阶,等价)无穷小;

8.
$$\lim_{n\to\infty} \left(\frac{\pi}{\sqrt{n^2+1}} + \frac{\pi}{\sqrt{n^2+2}} + \dots + \frac{\pi}{\sqrt{n^2+n}}\right) = \underline{\qquad};$$

9.
$$\exists \exists f'(3) = 2$$
, $\exists \lim_{h \to 0} \frac{f(3-h) - f(3)}{2h} = \underline{\qquad}$;

10.
$$d[\ln(x+\sqrt{1+x^2})] = d\sqrt{1+x^2}$$
;

12. 设
$$y = xe^{2x}$$
, 则微分 d $y = _____$ 。

`13. 椭圆
$$\frac{x^2}{16} + \frac{y^2}{4} = 1$$
 在点 $(2, \sqrt{3})$ 处的切线方程为_____。

- 14. 若当 $x \to 0$ 时, $2ax + 3x^2 x^3$ 与 $\sin 4x$ 为等价无穷小,则常数 a =_____。
- 15. 设函数 $f(x) = \begin{cases} e^{x-2}, x < 2 \\ ax + 4, x \ge 2 \end{cases}$ 在 x = 2 处连续,则 a =______。
- 17. 设参数 $\begin{cases} x = 1 + t^2 \\ y = t^3 \end{cases}$ 确定了函数 y = y(x),则 $\frac{dy}{dx} \Big|_{t=2} =$ ______。
- 18. $\lim_{n \to +\infty} \frac{1+2+3+...+(n-1)}{n^2} = \underline{\hspace{1cm}}$
- 19. $\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} \frac{1}{x}\right) = \underline{\hspace{1cm}}_{\circ}$
- 20. 当 $x \to k$ 时, $\sin(k^2 x^2)$ 与 $\tan(k x)$ 为等价无穷小,则常数 k =_____。
- 21. 由方程 $y = 1 + xe^y$ 所确定的曲线 y = y(x) 在点 (0,1) 处的切线方程为_____。
- 21. (1989 年考研 数三)设 $f(x) = x(x+1)(x+2)\cdots(x+n)$,则 $f'(0) = _____$ 。
- 22、(2004 考研 数一) 已知 $f'(e^x) = xe^{-x}$,且 f(0) = 0,则 $f(x) = _____$
- 23. (1990 考研 数一)设 a 是非零常数,则 $\lim_{x\to\infty} \left(\frac{x+a}{x-a}\right)^x = =$ ______。
- **24.** (1991 考研 数一)已知当 $x \to 0$ 时, $(1+ax^2)^{\frac{1}{3}}-1$ 与 $\cos x 1$ 是等价无穷小,则常数 a =______。
- 25. (1996 考研 数二) $\lim_{x \to \infty} x [\sin \ln \left(1 + \frac{3}{x}\right) \sin \ln \left(1 + \frac{1}{x}\right)] = \underline{\qquad}$
- 26. 设 f(x) 在 x = 0 处可导,且 f'(0) = 1,则 $\lim_{\Delta x \to 0} \frac{f(2\Delta x) f(0)}{\Delta x} = \underline{\hspace{1cm}}$
- 26. 设 $f(x) = (e^x 1) \varphi(x)$, 其中 $\varphi(x)$ 在 x = 0 处连续,则 f'(0) =______。

- 30. 设 $y = \ln(1 + e^{x^2})$,则 d y =_____。
- 31. 设 $y = xe^{2x}$,则 d $y = ____$ 。

32. 已知
$$y = \arctan \frac{3}{x} + \ln 3$$
,则函数的微分 $dy = -\frac{3}{x^2 + 9} dx$

33. 设
$$y = \sin x^2$$
 时,则微分 d $y = _____$ 。

34, 设
$$y = e^x(\sin x - \cos x)$$
 时,则 d $y =$ ______。

35. 设函数
$$f(u)$$
 可微, 且 $y = f(1-2x^2)$, 则 d $y =$ _____.

36. 已知
$$y = xe^{-x}$$
,则 d $y = ____$ 。.

37. 设
$$y = \frac{\ln x}{x}$$
,则 $dy =$ ______.

38. 设
$$y = \cos x^2 + \ln 3$$
 时,则微分 d $y =$ _____。

39. 设
$$y = \sin(2x+1)$$
 时,则微分 d $y = _____$ 。

40. 设
$$y = x \sin x^2 + \ln 3$$
 时,则微分 d $y = (\sin x^2 + 2x^2 \cos x^2) dx$ _______。

42. 设参数
$$\begin{cases} x = 1 + t^2 \\ y = t^3 \end{cases}$$
 确定了函数 $y = y(x)$,则 $\frac{dy}{dx}\Big|_{t=2} =$ ______。

44. 曲线
$$\begin{cases} x = t^2 \\ y = t - t^2 \end{cases}$$
 在 $t = 1$ 处的切线方程为______

46. 曲线
$$\begin{cases} x = e^t \cos t \\ y = e^t \sin t \end{cases}$$
 在 $t = 0$ 对应的点处的切线方程为 $\underline{y} = x - 1$.

47. 曲线
$$\begin{cases} x = \cos t + \cos^2 t \\ y = 1 + \sin t \end{cases}$$
 在 $t = \frac{\pi}{4}$ 对应的点处的切线方程为 $\frac{1}{\sqrt{2} + 1} = \frac{1}{\sqrt{2} + 1} = \frac{3 + \sqrt{2}}{2}$.

48. 设方程
$$1 - xe^y = y$$
 确定了隐函数 $y = y(x)$, 则 $y' \Big|_{x = 0} =$ _____.

25. 设方程
$$y^5 + 2y - x - 3x^7 = 0$$
 确定了隐函数 $y = y(x)$,则 $\frac{dy}{dx}\Big|_{x=0}$ =_______。

49. 设方程
$$y = 1 + xe^y$$
 确定了函数 $y = y(x)$,则 $\frac{dy}{dx} =$ ______。

50. 设方程
$$x - y + \frac{1}{2}\sin y = 0$$
 确定了隐函数 $y = y(x)$,则 $\frac{dy}{dx} =$ _______。

51. 设
$$f(x) = e^x \lim_{n \to \infty} (2^n \sin \frac{x}{2^n})$$
,则 $f^{(n)}(x) =$ _____。

52.. 设
$$y = xe^x$$
, 则 $y^{(n)} =$ _____.

53. 设
$$y = xe^{2x}$$
,则 $y^{(n)} =$ _____。

54. 设
$$y = \ln(1 + x^2)$$
,则 $\frac{d^2 y}{d x^2} =$ _____.

55. 设
$$y = xe^{x^2}$$
,则 $\frac{d^2 y}{dx^2} =$ _____.

56. 已知函数
$$y = x^2 \ln x$$
, 求 y'' .

57. 曲线
$$y = x + x^x$$
 在 (2,6) 处的切线方程为_____ ($y - 6 = (5 + 4 \ln 2)(x - 2)$

60. 设
$$f(x)$$
 在 $[0,+\infty)$ 上连续,且 $\int_0^x f(t)dt = x(1+2\cos x)$,则 $f(\frac{\pi}{2}) =$ ______.

62. 若
$$y = \sin 2x$$
,则它的一阶导数 $y' = 2\cos 2x$

63. 若
$$y = \ln \frac{1}{x}$$
,则它的一阶导数 $y' = \frac{1}{x}$

64. 若 y=
$$x + e^x$$
,则 $\frac{d^2 y}{dx^2} = \underline{e^x}$

65. 函数 f(x) 在点 x_0 处可微是函数 f(x) 在 x_0 可导的 <u>充要</u>条件

66. 曲线 $y = x^2 + 1$ 在点 (1, 2) 处的切线方程为 y = 2x.

67. 设函数
$$y = (3 + x^2)^{10}$$
,则 $y' = 20x(3 + x^2)^9$

68. 没
$$f(x) = e^x \lim_{n \to \infty} (2^n \sin \frac{x}{2^n})$$
,则 $f^{(n)}(x) =$ ______。

三、求极限

1. 求极限
$$\lim_{n\to\infty} n^2 \sin \frac{2}{n^2}$$

2. 求极限
$$\lim_{x\to 0} \frac{1}{x} (\frac{1}{\sin x} - \frac{1}{\tan x})$$

3. 求极限
$$\lim_{x\to 0} \left(\frac{a^x+b^x+c^x}{3}\right)^{\frac{1}{x}}, (a>0,b>0,c>0).$$

5. 求极限
$$\lim_{n\to+\infty} (\frac{n-2}{n})^{3n}$$
;

6. 求极限
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{1 - \cos 3x}$$

7. 己知
$$\lim_{x \to a} \frac{x^2 - bx + 3b}{x - a} = 8$$
, 求 a,b

8. 求极限
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{1}{1-x^3}\right)$$
;

6. 求极限
$$\lim_{x\to +\infty} x(\sqrt{x^2+1}-x)$$
;

7. 求极限
$$\lim_{x\to 0} (1-2x)^{\frac{3}{\sin x}}$$
;

8.
$$\lim_{x \to 0} \frac{\sin x - \tan x}{(\sqrt[3]{1 + x^2} - 1)(\sqrt{1 + \sin x} - 1)};$$

9. 求极限
$$\lim_{x\to 0} \frac{\sin x + x^2 \sin \frac{1}{x}}{(1+\cos x)\ln(1+x)}$$
...

10. 求极限
$$\lim_{x\to +\infty} (\cos\sqrt{x+1} - \cos\sqrt{x})$$
.

11.求极限
$$\lim_{x\to 0} \frac{1-\cos x^2}{x^3 \sin x};$$

四、求导数与微分

2. 求曲线
$$x^2 + y^2 - 2x + 3y + 2 = 0$$
 的切线, 使该切线平行于直线 $2x + y - 1 = 0$.

3. 求参数方程
$$\begin{cases} x = \ln(1+t^2), \\ y = t - \arctan t. \end{cases}$$
 所确定的函数的二阶导数。

4. 求曲线
$$\begin{cases} x = e^t \sin 2t, \\ y = e^t \cos t \end{cases}$$
 过点 (0,1) 的法线方程 (即 $t = 0$ 处)。

5. 设
$$f(x)$$
 是可微函数, $y = \frac{f(\tan x)}{\tan[f(x)]}$, 求 y' ;

6. 设函数
$$y = y(x)$$
 有方程 $e^y + xy = e$ 所确定, 求 $y''(0)$;

7. 设
$$y = \left(\frac{x}{1+x}\right)^x$$
, 求 y' ;

8. 设
$$\begin{cases} x = \ln \sqrt{1 + t^2} \\ y = \arctan(t) \end{cases}$$
, 求
$$\frac{d^2 y}{dx^2}$$
;

9. 已知函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = \frac{t^2}{2} & \text{确定, } \\ y = 1 - t \end{cases}$$

12、已知函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = \arctan(\sqrt{t}) \\ y = t - \ln(1+t) \end{cases}$$
 确定。

试求: 1)
$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=1}$$
; 2) $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\Big|_{t=1}$ 。

14. 求曲线
$$x^2 + y^2 - 2x + 3y + 2 = 0$$
 的切线, 使该切线平行于直线 $2x + y - 1 = 0$.

15. 已知曲线
$$y = y(x)$$
 由方程 $y^5 + 2y - x - 3x^7 = 0$ 确定,

(1)求dy; (2)求该曲线在(0,0)处的切线方程及法线方程。

16. 设
$$y = x^2 \ln(1+x)$$
, 求 dy。

18. 已知函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = 2 + 3\cos t \\ y = 3\sin t \end{cases}$$
 确定,求 $\frac{d^2 y}{dx^2}$ 。

19.设 f(x) 和 g(x) 在 $(-\infty, +\infty)$ 上有定义,且满足下列条件:

(1)
$$f(x+h) = f(x)g(h) + f(h)g(x)$$
,

(2)
$$f(x)$$
 和 $g(x)$ 在 $x = 0$ 处可微,且

$$f(0) = g'(0) = 0$$
, $g(0) = f'(0) = 1$,

求f'(x)。

20. 已知函数
$$y = (1 + x^2) \arctan x$$
, 求 y'' 。

21. 设
$$y = y(x)$$
 是由方程 $\ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}$ 确定的隐函数,求 d y

22. 设
$$y = \frac{1}{2} \ln \frac{1+x}{1-x} + \arctan e^x$$
, 求 $\frac{dy}{dx}$

23. 设方程
$$\arctan \frac{y}{x} = \frac{1}{2} \ln(x^2 + y^2)$$
 确定了隐函数 $y = y(x)$, 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

24.设
$$f(x)$$
在 $x = x_0$ 处可导,求 $\lim_{x \to x_0} \frac{xf(x_0) - x_0 f(x)}{x - x_0}$.

25. 设
$$f(x)$$
在 $x = x_0$ 处可导,求 $\lim_{x \to x_0} \frac{xf(x_0) - x_0f(x)}{x - x_0}$.

26. 设
$$y = x^{\sin x}$$
 ($x > 0$),求 y' .

27. 求摆线
$$\begin{cases} x = \ln(1+t^2) \\ y = \frac{\pi}{2} - \arctan t \end{cases}$$
 在 $t = 1$ 所对应的点处的切线方程。

1. 设
$$y = x^2 e^x + x^{\sin x}$$
. ($x > 0$), 求导数 $\frac{dy}{dx}$

五、解答题

1. 讨论
$$n$$
 的取值范围,使函数 $f(x) = \begin{cases} x^n \sin \frac{1}{x}, x \neq 0; \\ 0, x = 0 \end{cases}$

- (1) 在x = 0处是连续的;
- (2) 在x = 0处可微分;
- (3) 在x = 0处其导函数是连续的。

$$2.函数 f(x) = \begin{cases} \left[\frac{(1+x)}{e}\right]^{\frac{1}{x}}, x > 0\\ e^{-\frac{1}{2}}, x \le 0 \end{cases}$$
 在 $x = 0$ 是否连续 ;

3. 设
$$f(x) = \begin{cases} \sin(x-1) + 2, & x < 1, \\ ax + b, & x \ge 1, \end{cases}$$
 问 a, b 取何值时 $f(x)$ 在 $(-\infty, +\infty)$ 内可导。

5. 设
$$f(x)$$
在 $x = x_0$ 处可导,求 $\lim_{x \to x_0} \frac{xf(x_0) - x_0f(x)}{x - x_0}$.

7. 设
$$f''(x_0)$$
存在,证明

$$\lim_{h\to 0} \frac{f(x_0+h)+f(x_0-h)-2f(x_0)}{h^2} = f''(x_0).$$

9. 设函数
$$f(x) = \lim_{n \to \infty} \frac{\ln(e^n + x^n)}{n} (x > 0)$$
,

(1) 求 f(x) 的表达式; (2) 讨论 f(x) 的连续性和可导性.

10.设
$$f(x) = \lim_{n \to \infty} \frac{x^2 e^{n(x-1)} + ax + b}{e^{n(x-1)} + 1}$$
, 试确定常数 a 、 b 的值,使 $f(x)$ 处处可导,并求 $f(x)$