CHAP.3 – LA PHOTOSYNTHESE LES EVENEMENTS THERMOCHIMIQUES

- 1. LES PLANTES EN C3
- 2. LES PLANTES EN C4
- 3. LES PLANTES CAM
- 4. LA PHOTORESPIRATION
- 5. EFFETS DE L'AUGMENTATION DES GES

- 1. LES PLANTES EN C3
- 1.1. Le cycle de Calvin
- 1.1.1. L'incorporation du CO₂
- 1.1.2. La réduction de l'acide phosphoglycérique
- 1.1.3. La régénération du ribulose 1,5-diphosphate
- 1.2. La voie de synthèse des hexoses
- 1.3. Bilan chimique et énergétique

- Réactions thermochimiques
- Réactions de carboxylation (ajout de CO₂)
 - Réduction du carbone minéral en carbone organique

2 catégories de plantes

- 1. LES PLANTES EN C3
- 1.1. Le cycle de Calvin
- 1.1.1. L'incorporation du CO₂
- 1.1.2. La réduction de l'acide phosphoglycérique
- 1.1.3. La régénération du ribulose 1,5-diphosphate
- 1.2. La voie de synthèse des hexoses
- 1.3. Bilan chimique et énergétique

Plantes en C3 : Les 3 étapes du cycle de Calvin

- 1. LES PLANTES EN C3
- 1.1. Le cycle de Calvin
- 1.1.1. L'incorporation du CO₂
- 1.1.2. La réduction de l'acide phosphoglycérique
- 1.1.3. La régénération du ribulose 1,5-diphosphate
- 1.2. La voie de synthèse des hexoses
- 1.3. Bilan chimique et énergétique

Plantes en C3 : L'incorporation du CO₂

RubisCO = Ribulose bis Phosphate Carboxylase Oxygénase

L'incorporation du CO₂

$$C5 + C1 \longrightarrow 2 C3$$
Rubisco

- 1. LES PLANTES EN C3
- 1.1. Le cycle de Calvin
- 1.1.1. L'incorporation du CO₂
- 1.1.2. La réduction de l'acide phosphoglycérique
- 1.1.3. La régénération du ribulose 1,5-diphosphate
- 1.2. La voie de synthèse des hexoses
- 1.3. Bilan chimique et énergétique

Plantes en C3 : La réduction de l'APG

x 2!

- 1. LES PLANTES EN C3
- 1.1. Le cycle de Calvin
- 1.1.1. L'incorporation du CO₂
- 1.1.2. La réduction de l'acide phosphoglycérique
- 1.1.3. La régénération du ribulose 1,5-diphosphate
- 1.2. La voie de synthèse des hexoses
- 1.3. Bilan chimique et énergétique

Plantes en C3 La régénération du ribulose 1,5-diphosphate

Plantes en C3 : Le cycle de Calvin

Plantes en C3 : Le cycle de Calvin

- 1. LES PLANTES EN C3
- 1.1. Le cycle de Calvin
- 1.1.1. L'incorporation du CO₂
- 1.1.2. La réduction de l'acide phosphoglycérique
- 1.1.3. La régénération du ribulose 1,5-diphosphate
- 1.2. La voie de synthèse des hexoses
- 1.3. Bilan chimique et énergétique

Plantes en C3 La voie des hexoses

Plantes en C3 La voie des hexoses


```
(2) UDPG + fructose 6-P - UDP + saccharose-P

OU

(3) UDPG + fructose - UDP + saccharose
```

Plantes en C3 La voie des hexoses

Mise en réserve Amidon

Photosynthèse des plantes en C3

Métabolisme général à l'échelle cellulaire

Métabolisme général en période nocturne

- 1. LES PLANTES EN C3
- 1.1. Le cycle de Calvin
- 1.1.1. L'incorporation du CO₂
- 1.1.2. La réduction du CO₂
- 1.1.3. La régénération du ribulose 1,5-diphosphate
- 1.2. La voie de synthèse des hexoses
- 1.3. Bilan chimique et énergétique

Bilan chimique et énergétique des C3

2. LES PLANTES EN C4

- 2.1. Particularités morpho-anatomiques
- 2.2. La fixation du CO₂
- 2.3. Transport et incorporation du CO₂
- 2.4. Bilan chimique et énergétique

Coupe transversale d'une feuille de maïs (plante en C₄)

Comparaison mésophylle / gaine périvasculaire chez les C4

mésophylle

- Chloroplastes avec nombreux granas
- peu de Rubisco => pas de cycle de Calvin
- => présence de la
 PEPcase : très grande

affinité pour le CO₂

gaine périvasculaire

- Chloroplastes agranaires
 = qques thylacoïdes longs, simples, non réunis en granas
- présence de Rubisco
 -> cyclo de Calvin
 - => cycle de Calvin

Ultrastructure générale d'un chloroplaste

- 2. LES PLANTES EN C4
- 2.1. Particularités morpho-anatomiques
- 2.2. La fixation du CO₂
- 2.3. Transport et incorporation du CO₂
- 2.4. Bilan chimique et énergétique

L'incorporation du CO₂

$$C3 + C1 \longrightarrow C4$$
PEPcase

phospho énol pyruvate carboxylase

Plantes en C4 La fixation du CO₂

- 2. LES PLANTES EN C4
- 2.1. Particularités morpho-anatomiques
- 2.2. La fixation du CO₂
- 2.3. Transport et incorporation du CO₂
- 2.4. Bilan chimique et énergétique

Plantes en C4 La fixation du CO₂

Plantes en C4 : Régénération du substrat

ac. pyruvique

ac. phospho-énol-pyruvique

- 2. LES PLANTES EN C4
- 2.1. Particularités morpho-anatomiques
- 2.2. La fixation du CO₂
- 2.3. Transport et incorporation du CO₂
- 2.4. Bilan chimique et énergétique

Plantes en C4 : Bilan chimique et énergétique

Chez les plantes C₄ la photosynthèse se déroule à deux endroits différents de la feuille.

Le métabolisme C4 est une adaptation à l'aridité :

- → objectif = emmagasiner un maximum de CO₂ pendant que les stomates sont ouverts
- → adaptation = « répartition spatiale des taches » Un premier parenchyme fixe le CO₂ Un second parenchyme incorpore le CO₂

Métabolisme des plantes en C4

Carboxylation primaire

Décarboxylation
Carboxylation secondaire

Comparaison photosynthèse des plantes en C3 et des plantes en C4

Comparaison photosynthèse des plantes en C3 et des plantes en C4

3. LES PLANTES CAM

CAM = Crassulacean Acid Metabolism

 métabolisme découvert chez des plantes appartenant à la famille des Crassulaceae (= plantes grasses ou pl. succulentes).

Ce type de métabolisme est aussi présent dans de nombreuses autres familles de plantes (~ 20 familles).

Ex.: Cactus, Ananas, Orchidées, Euphorbes ...

Plus répandu que le métabolisme C₄

Plantes très adaptées à la sécheresse = plantes xérophytes

La nuit:

- Ouverture des stomates
- Absorption de CO₂
- CO₂ réagit avec un composé à 3 C (acide phosphoénol pyruvique) pour former un composé acide à 4C l'acide malique.

$$CO_2 + C3 \longrightarrow C4$$
 (acide malique)

 L'acide malique s'accumule dans les cellules foliaires (vacuole) au cours de la nuit.

Le jour :

- Les stomates se ferment (limitation des pertes en eau).
- L'acide malique est converti en un composé à 3C et en CO₂ → Cycle de Calvin dans le chloroplaste.

Métabolisme des plantes CAM

Principe de carboxylation secondaire

Chez les plantes CAM, la photosynthèse se déroule à deux moments différents.

Le métabolisme CAM est également une adaptation à l'aridité (limitation de la transpiration).

- → objectif = emmagasiner un maximum de CO₂ pendant que les stomates sont ouverts
- → adaptation = « répartition temporelle des taches »