"Kinetics: Simbiology (I)"

The purpose of this lab is to become familiar with SimBiology by modeling a simple ligand binding reaction. Consider a binding reaction where ligand (L) binds to a protein receptor (R) to form a loosely bound encounter complex ($L \cdot R$), and finally a tightly bound product (P).

$$L + R \leftrightarrow L.R \rightarrow P$$

The SimBiology model of this receptor-ligand reaction looks like this (in MATLAB):

Fig.1. Simbiology Model for receptor-ligand reaction

Let's walk through the steps of how to build this model in SimBiology.

Procedure:

Part A— Receptor-Ligand Reaction:

- 1. Open Matlab and type simbiology at command window.
- 2. Go to Model tab in SimBiology window.
- 3. Home > add model > create new blank model
- 4. Rename window's name to Receptor-Ligand reaction by double clicking on window.
- 5. Drag and drop three species and one reaction to the window.
- 6. Double click on the name of the species and rename species to Ligand, Receptor and ligand-receptor respectively.
- 7. Rename reaction to binding/unbinding
- 8. Hold down control key and draw an arrow from Ligand and Receptor to binding/unbinding
- 9. Draw an arrow from binding/unbinding to ligand-receptor
- 10. Double click on Ligand and set initial amount to 10.0
- 11. Double click on Receptor and set initial amount to 5.0
- 12. Double click on binding/unbinding
 - a. and check "reversible"
 - b. select "MassAction" for KineticLaw

i.set "Forward Rate Parameter" (Name "k_f") value to 0.02

ii.set "Reverse Rate Parameter" (Name "k_r") value to 0.01

- 13. Add another "species" and "reaction". Name the species product and reaction as k-prod.
- 14. Connect ligand-receptor to k-prod and k-prod to product.
- 15. Select MassAction for kinetic law of k-prod and set value to 0.05.
- 16. Go to "Add Task" > Simulate model > Run simulation.
 - a. Does the reaction reach a steady state?
 - b. If not, increase simulation time to 100 by going to "simulation setting".
- 17. Repeat simulation for following values:
 - a. "Forward Rate Parameter": 0.01 , "Reverse Rate Parameter": 0.02 , "k-prod": 0.05
 - b. "Forward Rate Parameter": 0.02, "Reverse Rate Parameter": 0.01, "k-prod": 0.5
- 18. Complete Table.1.

Part B—Enzyme-Substrate Reaction:

This same reaction can be used to describe Michaelis-Menten enzyme kinetics, in which substrate (S) binds a protein enzyme (E) to form an encounter complex (E·S), and then chemically converts to product (E + P).

$$E + S \stackrel{k_1}{\rightleftharpoons} E \cdot S \longrightarrow E + P$$

$$\stackrel{k_{-1}}{\longmapsto} E + P$$

Suppose initial amounts for E and S are 10.0 and 5.0, respectively. Repeat the simulation for different values of k_1 , k_{-1} , and k_{cat} as specified in Table.2 and then complete this table.

Name:	TUID:
Section:	

Part A:

Table.1

Case#	\mathbf{K}_{f}	$\mathbf{K}_{\mathbf{r}}$	\mathbf{K}_{prod}	Δt(s) to reach steady state
#1	0.02	0.01	0.05	
#2	0.01	0.02	0.05	
#3	0.02	0.01	0.5	

Part B:

Table.2

Case#	\mathbf{K}_{1}	K. ₁	K _{cat}	Δt(s) to reach steady state
#1	1000	100	1	
#2	100	1000	1	
#3	100	1	1000	