

ICT Academy of Kerala

Building the Nation's Future

Unsupervised learning & K-Means Clustering

A GOVT. OF INDIA SUPPORTED, GOVT. OF KERALA PARTNERED SOCIAL ENTERPRISE.

Types of Machine Learning

Supervised Learning

- Well defined goals
- Reverse Engineering
- Example Fraud / Non-Fraud transactions, Inventory management

Unsupervised Learning

- Outcome is based only on inputs
- Outcome Typically clustering or segmentation

Re-inforcement Learning

- Start state and end state are defined
- The agent discovers the path and the relationships on its own

Supervised vs Unsupervised

Supervised Learning

- Known number of classes
- Based on training set
- Used to classify future observations

Unsupervised Learning

- Unknown number of classes
- No prior knowledge
- Used to understand data

UNSUPERVISED LEARNING

Raw Data

EXAMPLES

CLUSTERING

Identifies similarities in groups:

Are there patterns in the data that indicate which groups to target?

ANOMALY DETECTION

Identifies abnormalities in dataset:

Is the user behaving as it should? Is a hacker intruding the network?

What K-Means does for you?

How K-Means works?

- **Step 1: Choose the Number of K-Clusters**
- Step 2: Select at Random K-Points, the centroids (Not necessarily from your dataset.)
- Step 3: Assign each data point to the closest centroid (That forms K-Clusters.)
- Step 4: Compute and place the new Centroid of each other
- Step 5: Reassign each data point to the new closest Centroid.

 (If any reassignment took place, go to Step 4, otherwise FINISH)

Model is READY!

STEP 1: Choose the number K of clusters: K = 2

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid - That forms K clusters

STEP 4: Compute and place the new centroid of each cluster

STEP 4: Compute and place the new centroid of each cluster

STEP 4: Compute and place the new centroid of each cluster

FIN: Your Model Is Ready

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

FIN: Your Model Is Ready

If we choose K = 3 clusters...

...this correct random initialisation would lead us to...

...the following three clusters

But what would happen if we had a bad random initialization?

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid
That forms K clusters

Solution

K-Means++

$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2 + \sum_{P_i \text{ in Cluster 2}} distance(P_i, C_2)^2 + \sum_{P_i \text{ in Cluster 3}} distance(P_i, C_3)^2$$

* within-cluster sums of squares

© 2023 ICT Academy of Kerala

"All rights reserved. Permission granted to reproduce for personal and educational use only. Commercial copying, hiring, lending is prohibited. Any unauthorized broadcasting, public performance, copying or re-recording will constitute an infringement of copyright"

