Programare logică

Semantica termenilor

Mulţime de variabile

 (S,Σ) signatură multisortată

$$|\Sigma| := \bigcup_{w,s} \Sigma_{w,s}$$

 $|X| := \bigcup_{s \in S} X_s$ dacă X mulţime S-sortată

O mulţime de variabile este o mulţime S-sortată X a.î.:

$$\blacksquare X_s \cap X_{s'} = \emptyset$$
 or. $s \neq s'$

$$|X| \cap |\Sigma| = \emptyset$$

simbolurile de variabile sunt distincte între ele şi sunt distincte de simbolurile de operaţii din Σ

Termeni cu variabile din X

 (S,Σ) signatură, X mulţime de variabile

Mulţimea S-sortată termenilor cu variabile din X, $T_{\Sigma}(X)$, este $cea\ mai\ mică\ mulţime\ de\ şiruri\ finite\ peste\ alfabetul$

$$L = \bigcup_{s \in S} X_s \cup \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$$

care verifică următoarele proprietăți:

$$\blacksquare$$
(T1) $X_s \subseteq T_{\Sigma}(X)_s$

$$\blacksquare$$
(T2) dc. $\sigma : \to s$, at. $\sigma \in T_{\Sigma}(X)_s$,

T3) dc.
$$\sigma: s_1 \cdots s_n \to s$$
 şi $t_i \in T_{\Sigma}(X)_{s_i}$ or. $i = 1, \ldots, n$ at. $\sigma(t_1, \ldots, t_n) \in T_{\Sigma}(X)_s$.

Algebra de termeni $T_{\Sigma}(X)$

 (S,Σ) signatură, X mulţime de variabile Mulţimea termenilor $T_\Sigma(X)=\{T_\Sigma(X)_s\}_{s\in S}$ este (S,Σ) -algebră astfel:

- ■pt. $\sigma : \to s$, operaţia corespunzătoare este $T_{\sigma} := \sigma$
- •pt. $\sigma: s_1 \cdots s_n \to s$, operaţia corespunzătoare este $T_\sigma: T_\Sigma(X)_{s_1} \times \cdots \times T_\Sigma(X)_{s_n} \to T_\Sigma(X)_s$ $T_\sigma(t_1, \ldots, t_n) := \boldsymbol{\sigma(t_1, \ldots, t_n)}$ or. $t_1 \in T_\Sigma(X)_{s_1}, \ldots, t_n \in T_\Sigma(X)_{s_n}$
- $T_{\Sigma}(X)$ algebra termenilor cu variabile din X
- vom nota $\sigma(t_1,\ldots,t_n):=\sigma(t_1,\ldots,t_n)$

Semantica termenilor Evaluarea termenilor în algebre

 (S,Σ) signatură, X mulţime de variabile

Teoremă. Fie A o (S, Σ) -algebră. Orice funcție $\boldsymbol{a}: X \to A$ se extinde la un unic (S, Σ) -morfism $\tilde{\boldsymbol{a}}: T_{\Sigma}(X) \to A$.

 $\blacksquare a: X \rightarrow A$ atribuire, interpretare

Semantica termenilor Evaluarea termenilor în algebre

 (S,Σ) signatură, X mulţime de variabile

Teoremă. Fie A o (S,Σ) -algebră. Orice funcție ${\boldsymbol a}:X\to A$ se extinde la un unic (S,Σ) -morfism $\tilde{{\boldsymbol a}}:T_\Sigma(X)\to A$.

- $\blacksquare a: X \to A$ atribuire, interpretare
- Definim $\tilde{\boldsymbol{a}}(t)$ prin inducţie pe termeni:
 - lacksquare or. $x\in X_s$, $\tilde{m{a}}_s(x):=m{a}_s(x)$,
 - \bullet or. $\sigma:\to s$, $\tilde{\boldsymbol{a}}_s(\sigma):=A_\sigma$
- Dacă $f: T_{\Sigma}(X) \to A$ morfism şi $f|_{X} = a$ atunci se demonstrează prin inducție pe termeni că $f = \tilde{a}$.

 $extbf{NATEXP} = (S = \{nat\}, \Sigma), X = \{x, y\}$

- $extbf{NATEXP} = (S = \{nat\}, \Sigma), X = \{x, y\}$
- $$\begin{split} \blacksquare \Sigma &= \{0 : \rightarrow nat, s : nat \rightarrow nat, \\ &+ : nat \ nat \rightarrow nat, * : nat \ nat \rightarrow nat \} \end{split}$$

- $\blacksquare NATEXP = (S = \{nat\}, \Sigma), X = \{x, y\}$
- $T_{NATEXP}(X) = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots + (0, 0), +(0, x), +(x, y), *(0, +(s(0), x)), *(s(y), s(s(x))), \dots \}$

- $\blacksquare NATEXP = (S = \{nat\}, \Sigma), X = \{x, y\}$
- $\Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat,$ $+: nat \ nat \rightarrow nat, *: nat \ nat \rightarrow nat \}$
- $T_{NATEXP}(X) = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots + (0, 0), +(0, x), +(x, y), *(0, +(s(0), x)), *(s(y), s(s(x))), \dots \}$
- $\blacksquare A = (\mathbb{Z}_4, 0, s, +, *)$ cu operațiile obișnuite

- $\blacksquare NATEXP = (S = \{nat\}, \Sigma), X = \{x, y\}$
- $\Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat,$ $+: nat \ nat \rightarrow nat, *: nat \ nat \rightarrow nat \}$
- $T_{NATEXP}(X) = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots + (0, 0), +(0, x), +(x, y), *(0, +(s(0), x)), *(s(y), s(s(x))), \dots \}$
- $\blacksquare A = (\mathbb{Z}_4, 0, s, +, *)$ cu operaţiile obişnuite
- $\mathbf{a}: \{x,y\} \to \mathbb{Z}_4, \, \mathbf{a}(x) := 1, \, \mathbf{a}(y) := 3$

- $\blacksquare NATEXP = (S = \{nat\}, \Sigma), X = \{x, y\}$
- $\Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat,$ $+: nat \ nat \rightarrow nat, *: nat \ nat \rightarrow nat \}$
- $T_{NATEXP}(X) = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots + (0, 0), +(0, x), +(x, y), *(0, +(s(0), x)), *(s(y), s(s(x))), \dots \}$
- $\blacksquare A = (\mathbb{Z}_4, 0, s, +, *)$ cu operaţiile obişnuite
- $lackbox{\textbf{a}}: \{x,y\} \to \mathbb{Z}_4, \ {m a}(x) := 1, \ {m a}(y) := 3$
- $\tilde{\boldsymbol{a}}(+(x,y)) = A_{+}(\boldsymbol{a}(x), \boldsymbol{a}(y)) = 1 + 3 = 0 \pmod{4}$ $\tilde{\boldsymbol{a}}(*(s(x), s(s(0)))) = A_{*}(A_{s}(\boldsymbol{a}(x)), A_{s}(A_{s}(A_{0}))) = (1+1)*(0+1+1) = 2*2 = 0 \pmod{4}$

Semantica termenilor

 (S,Σ) signatură, X mulţime de variabile

Teoremă. Fie A o (S, Σ) -algebră. Orice funcție $\boldsymbol{a}: X \to A$ se extinde la un unic (S, Σ) -morfism $\tilde{\boldsymbol{a}}: T_{\Sigma}(X) \to A$.

- $ullet X = \emptyset$ Corolar. T_Σ este (S, Σ) -algebră iniţială.
- $lacksquare A = T_\Sigma(Y)$ Corolar. Orice substituţie $\nu: X \to T_\Sigma(Y)$ se extinde la un unic morfism de (S, Σ) -algebre $\tilde{\nu}: T_\Sigma(X) \to T_\Sigma(Y)$.

Proprietăți

 (S,Σ) signatură, X și Y mulţimi de variabile

■ Propoziţie. Fie A o (S,Σ) -algebră. Dacă $f:T_\Sigma(X)\to A$ şi $g:T_\Sigma(X)\to A$ sunt morfisme, atunci

$$f = g \Leftrightarrow f|_X = g|_X$$

Proprietăți

 (S,Σ) signatură, X și Y mulțimi de variabile

Propoziţie. Fie A o (S,Σ) -algebră. Dacă $f:T_\Sigma(X)\to A$ şi $g:T_\Sigma(X)\to A$ sunt morfisme, atunci

$$f = g \Leftrightarrow f|_X = g|_X$$

■ Propoziţie. $X \simeq Y \Leftrightarrow T_{\Sigma}(X) \simeq T_{\Sigma}(Y)$

Proprietăți

 (S,Σ) signatură, X și Y mulțimi de variabile

Propoziţie. Fie A o (S,Σ) -algebră. Dacă $f:T_\Sigma(X)\to A$ şi $g:T_\Sigma(X)\to A$ sunt morfisme, atunci

$$f = g \Leftrightarrow f|_X = g|_X$$

- Propoziţie. $X \simeq Y \Leftrightarrow T_{\Sigma}(X) \simeq T_{\Sigma}(Y)$
- Propoziţie. Fie $h:A\to B$ este un morfism *surjectiv*. Oricare ar fi $f:T_\Sigma(X)\to B$ un morfism, există $g:T_\Sigma(X)\to A$ astfel încât g;h=f.

Ecuațiile și semantica lor

 (S, Σ) signatură multisortată

 $lackboxlim O(S,\Sigma)$ -ecuație este formată dintr-o mulțime de variabile X și din doi termeni de același sort din $T_\Sigma(X)$. Vom nota o ecuație prin

$$(\forall X)t \doteq_s t'$$
.

Ecuațiile și semantica lor

 (S,Σ) signatură multisortată

 $lackboxlime{O}(S,\Sigma)$ -ecuație este formată dintr-o mulțime de variabile X și din doi termeni de același sort din $T_{\Sigma}(X)$. Vom nota o ecuație prin

$$(\forall X)t \stackrel{\cdot}{=}_s t'$$

Spunem că o (S, Σ) -algebră A satisface o ecuaţie $(\forall X)t \doteq_s t'$ dacă $\tilde{\boldsymbol{a}}_s(t) = \tilde{\boldsymbol{a}}_s(t')$ pentru orice atribuire $\boldsymbol{a}: X \to A$. În acest caz, vom nota

$$A \models (\forall X)t \stackrel{\cdot}{=}_s t'$$
.

Ecuațiile și semantica lor

 (S,Σ) signatură multisortată

 $lackboxlime{O}(S,\Sigma)$ -ecuație este formată dintr-o mulțime de variabile X și din doi termeni de același sort din $T_{\Sigma}(X)$. Vom nota o ecuație prin

$$(\forall X)t \stackrel{\cdot}{=}_s t'$$
.

Spunem că o (S, Σ) -algebră A satisface o ecuaţie $(\forall X)t \doteq_s t'$ dacă $\tilde{\boldsymbol{a}}_s(t) = \tilde{\boldsymbol{a}}_s(t')$ pentru orice atribuire $\boldsymbol{a}: X \to A$. În acest caz, vom nota

$$A \models (\forall X)t \stackrel{\cdot}{=}_s t'$$
.

egalitate formală, = egalitate efectivă

Definirea operațiilor derivate

 $(S = \{s\}, \Sigma)$ signatură, $X = \{x_1, \dots, x_n\}$ mulţime de variabile

lacksquare A o Σ -algebră, $t \in T_{\Sigma}(X)$

Definim funcția termen $A_t:A^n\to A$ prin

$$A_t(a_1,\ldots,a_n):=\tilde{\boldsymbol{a}}(t)$$
, unde $\boldsymbol{a}(x_i):=a_i$ or. $i=1,\ldots,n$

• A_t este operație derivată pe A

Definirea operațiilor derivate

$$(S = \{s\}, \Sigma)$$
 signatură, $X = \{x_1, \dots, x_n\}$ mulţime de variabile

lacksquare A o Σ -algebră, $t \in T_{\Sigma}(X)$

Definim funcția termen $A_t:A^n\to A$ prin

$$A_t(a_1,\ldots,a_n):=\tilde{\boldsymbol{a}}(t)$$
, unde $\boldsymbol{a}(x_i):=a_i$ or. $i=1,\ldots,n$

- A_t este operație derivată pe A
- $\mathbf{L} \Sigma = \{0, 1, \vee, \wedge, ^-\}$ signatura algebrelor Boole,

$$X = \{x, y\}, t = \overline{x} \lor y \in T_{\Sigma}(X)$$

Dacă B este o algebră Boole, atunci

$$t_B(b_1, b_2) = b_1 \to b_2 \text{ oricare } b_1, b_2 \in B.$$

lacksquare X este mulţimea variabilelor, $x \in X$, $e \in T_{\Sigma}(X)$

- X este mulţimea variabilelor, $x \in X$, $e \in T_{\Sigma}(X)$
- $lue{}$ D este Σ -algebra datelor

- X este mulţimea variabilelor, $x \in X$, $e \in T_{\Sigma}(X)$
- $lue{D}$ este Σ -algebra datelor
- lacktriangleo stare a memoriei este o funcție $\boldsymbol{a}:X\to D$

- X este mulţimea variabilelor, $x \in X$, $e \in T_{\Sigma}(X)$
- $\blacksquare D$ este Σ -algebra datelor
- lacktriangleo stare a memoriei este o funcție $\boldsymbol{a}:X\to D$
- semantica unei instrucţiuni descrie modul în care instrucţiunea modifică starile memoriei

- X este mulţimea variabilelor, $x \in X$, $e \in T_{\Sigma}(X)$
- $\blacksquare D$ este Σ -algebra datelor
- lacktriangleo stare a memoriei este o funcție $a:X\to D$
- semantica unei instrucţiuni descrie modul în care instrucţiunea modifică starile memoriei
- $$\begin{split} & \blacksquare Mem := \{ \boldsymbol{a} : X \to D | \ \boldsymbol{a} \ \text{func} \} \\ & Sem(x := e) : Mem \to Mem \\ & Sem(x := e)(\boldsymbol{a})(y) := \left\{ \begin{array}{ll} \tilde{\boldsymbol{a}}(e) & \mathsf{dac} \check{\boldsymbol{a}} \ y = x, \\ & \boldsymbol{a}(y) & \mathsf{dac} \check{\boldsymbol{a}} \ y \neq x. \end{array} \right. \end{split}$$