Chemicals required for various hardness constituents

Key Points:

- 1. Substances such as NaCl, Na₂SO₄, NaNO₃, KCl, K₂SO₄, KNO₃, SiO₂, Fe₂O₃, etc. do not consume any L & S and should therefore be excluded from the calculation of L & S requirements.
- 2. All substances must be converted into their respective CaCO₃ equivalents.
- 3. Ca-hardness is precipitated as CaCO₃, while Mg-hardness is precipitated as Mg(OH)₂.

Chemicals requirement for Temporary hardness constituents:

- A. $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$ ------ needs 1 mole of L (1L) B. (i) $Mg(HCO_3)_2 + Ca(OH)_2 \rightarrow Ca(HCO_3)_2 + Mg(OH)_2$ ----- 1L (ii) $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$ ----- 1L Or by combining eq. (i) and (ii) we get $Mg(HCO_3)_2 + 2Ca(OH)_2 \rightarrow 2CaCO_3 + Mg(OH)_2 + 2H_2O$ ---- 2L
- ✓ 1 mole of $Ca(HCO_3)_2$ needs 1 mole of Lime whereas 1 mole of $Mg(HCO_3)_2$ needs 2 moles of Lime.

Chemicals requirement for Permanent hardness constituents:

- A. Calcium permanent hardness (CaCl₂, Ca(NO₃)₂, CaSO₄)
- (i) $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2 NaCl$ ----- needs 1 mole of Soda (1S)
- (ii) $Ca(NO_3)_2 + Na_2CO_3 \rightarrow CaCO_3 + 2 NaNO_3$ ---- needs 1 mole of Soda (1S)
- (iii) $CaSO_4 + Na_2CO_3 \rightarrow CaCO_3 + Na_2SO_4 ---- needs 1 mole of Soda (1S)$
- ✓ *** All Calcium permanent hardness constituents [CaCl₂, CaSO₄, Ca(NO₃)₂] need only 1- mole of Soda (1S)
- B. Magnesium permanent hardness (MgCl₂, Mg(NO₃)₂, MgSO₄)
- (i) $MgCl_2 + Ca(OH)_2 + \rightarrow Mg(OH)_2 + CaCl_2$ ----- needs 1 mole of Lime (1L) but releasing 1 mole of CaCl2. For its removal we need 1 mole of Soda $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2 NaCl$ ----- needs 1 mole of Soda (1S)
- ✓ So, 1 mole of Magnesium permanent hardness needs 1 mole of lime and 1 mole of Soda (1L + 1S).

Chemicals requirement for coagulants (FeSO₄, Al₂(SO₄)₃):

- (i) FeSO₄ + Ca(OH)₂ + \rightarrow Fe(OH)₂ + CaSO₄ ----- needs 1 mole of Lime (1L) but releasing 1 mole of CaSO₄. Its removal needed 1 mole of Soda CaSO₄ + Na₂CO₃ \rightarrow CaCO₃ + Na₂SO₄ ----- needs 1 mole of Soda (1S)
- ✓ So, FeSO₄ needs 1 mole of lime and 1 mole of Soda (1L + 1S).
 - (ii) $Al_2(SO_4)_3 + 3Ca(OH)_2 + \rightarrow 2Al(OH)_3 + 3CaSO_4 3$ moles of Lime (3L) $3CaSO_4 + 3Na_2CO_3 \rightarrow 3CaCO_3 + 3Na_2SO_4 \dots$ needs 3 mole of Soda (3S)
- ✓ So, $Al_2(SO_4)_3$ needs 3 mole of lime and 3 mole of Soda (3L + 3S).

Q.1 Give reason that 1 mole of $Ca(HCO_3)_2$ needs 1 mole of Lime whereas 1 mole of $Mg(HCO_3)_2$ needs 2 moles of Lime. (write chemical reactions)

Ans.

A.
$$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$$
 ----- needs 1 mole of L (1L)
B. (i) $Mg(HCO_3)_2 + Ca(OH)_2 \rightarrow Ca(HCO_3)_2 + Mg(OH)_2$ ----- 1L
(ii) $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$ ----- 1L }

Q. 2. Give reason that Calcium permanent hardness constituents need only 1- mole of Soda (1S).

Ans.

- (i) $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2 NaCl$ ----- needs 1 mole of Soda (1S)
- (ii) $Ca(NO_3)_2 + Na_2CO_3 \rightarrow CaCO_3 + 2 NaNO_3$ ---- needs 1 mole of Soda (1S)
- (iii) $CaSO_4 + Na_2CO_3 \rightarrow CaCO_3 + Na_2SO_4 ---- needs 1 mole of Soda (1S)$

Q.3. Give reason that 1 mole of Magnesium permanent hardness needs 1 mole of lime and 1 mole of Soda (1L + 1S).

Ans. (i) $MgCl_2 + Ca(OH)_2 + \rightarrow Mg(OH)_2 + CaCl_2$ ----- needs 1 mole of Lime (1L) but releasing 1 mole of CaCl₂. For removal of CaCl₂ we need 1 mole of Soda as per the following reaction

$$CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2 NaCl$$
 ----- needs 1 mole of Soda (1S)

Q.4. Give reason that lime is not consumed by CaCl₂ or any calcium-permanent hadness constituents.

Ans.
$$CaCl_2 + Ca(OH)_2 \rightarrow CaCl_2 + Ca(OH)_2$$

See the above reaction, there is no change in reactant and product side. It means there is no reaction between these two constituents.

Solved Numerical

Note:

- (A) Lime required for softening of 1L of hard water (mg) = 74/100 (Lime consuming substances as CaCO₃ eq.) x Vol. of water x (100/% purity of lime)
- (B) Soda required for softening of 1L of hard water (mg) = 106/100 (Soda consuming substances as CaCO₃ eq.) x Vol. of water x (100/% purity of soda)

Solved numerical on Lime-soda Process

Example-1 A sample of water on analysis has been found to contain 100 mg/L of KHCO₃ and 200 mg/L of K_2SO_4 . Calculate the amount of lime and soda required for softening of 10,000 litres of hard water. (At. mass: K = 39, Ca = 40, H = 1, C = 12, O = 16, S = 32 g/mol)

Ans. The amount of lime and soda required = 0, as both are non hardness constituents.

Example-2 A sample of water on analysis has been found to contain 100 mg/L of $Mg(HCO_3)_2$ and 200 mg/L of K_2SO_4 . Calculate the amount of lime and soda required for softening of 10,000 litres of hard water. (At. mass: Na = 23, Mg= 24, H =1, C = 12, O =16, K=39 g/mol, S = 32 g/mol)

Solution: Na₂SO₄ does not consume chemicals like lime and soda.

N.B: if purity of lime and soda is not mention then take % purity = 100

 $Mg(HCO_3)_2$ as $CaCO_3$ eq. = 100 x (100/146) = 68.493 mg/L

 $Mg(HCO_3)_2$ require only 2L (**no soda requirement**, that is soda amount = 0)

So, lime required for softening of 10,000 L of hard water = $74/100(Ca(HCO_3)_2 CaCO_3 eq.) x V x (100/\% purity of lime)$

= (74/100) x 2 x 68.493 x 10,000 L x 100/100 (here purity of lime 100%)

= 1013696.4 mg = 1.013 Kg (Ans.)

Example-3 A sample of water on analysis has been found to contain 150 mg/L of $Ca(HCO_3)_2$ and 100 mg/L of Na_2SO_4 . Calculate the amount of lime and soda required for softening of 15,000 litres of hard water after boiling the water for 20 min. (At. mass: Na = 23, Ca = 40, H = 1, C = 12, O = 16, S = 32 g/mol)

Solution: As boiling removes Ca(HCO₃)₂, lime and soda required will be zero.

Example-4 Calculate the amount of lime and soda required for softening of 100 L of hard water having 95 mg/L of MgCl₂.

Solution: $MgCl_2$ needs 1L + 1S.

 $CaCl_2$ as $CaCO_3$ eq. = 95 x (100/95) = 100 mg/L

- (A) Lime required = 74/100 (MgCl₂ as CaCO₃ eq.) x Vol. of water x (100/% purity of lime) = (74/100) x 100 x 100 x (100/100) = 7400 mg
- (B) Soda required = $106/100 (MgCl_2 \text{ as as } CaCO_3 \text{ eq.}) \times Vol. \text{ of water } \times (100\% \text{ purity of soda}) = (106/100) \times 100 \times 100 \times (100/100) = 10600 \text{ mg}$

Example-6 Calculate the amount of lime required for softening of 100 L of hard water having 250 mg/L of CaCl₂ and 220 mg/L of KCl

Ans. KCl is a non hardness mass.

 $CaCl_2$ do not consume any lime. So, lime required = 0

Example-7 A sample of water on analysis has been found to contain 150 mg/L of $Ca(HCO_3)_2$, 100 mg/L of $Mg(HCO_3)_2$ and 100 mg/L og KCl. Calculate the amount of soda required for softening of 15,000 litres of hard water.

Ans. Soda required = 0

Example-8 A sample of water on analysis has been found to contain 150 mg/L of $Ca(HCO_3)_2$ and 100 mg/L of $CaSO_4$. Calculate the amount of lime and soda required for softening of 15,000 litres of hard water after boiling the water for 20 min. (At. mass: Ca = 40, H = 1, C = 12, O = 16, S = 32 g/mol)

Solution: Boiling will remove the Ca(HCO₃)_{2.} So only CaSO₄ will be remain in the hard water after boiling.

CaSO₄ consumes only soda (Mol .mass = 136 g)

 $CaSO_4$ as $CaCO_3$ eq. = 100 x (100/136) = 73.529 mg/L

Soda required = 106/100 (CaSO₄ as CaCO₃ eq.) x V x (100/% purity of soda)

= 106/100 x 73.529 x 15,000 x 100/100 (purity of soda is 100%)

= 1169111.1 mg = 1.169 Kg (take $1 \text{ mg} = 10^{-6} \text{ Kg}$).

Here, lime required = 0

Example-9 A sample of water on analysis has been found to contain 150 mg/L of $Ca(HCO_3)_2$ and 200 mg/L of $Ca(NO_3)_2$. Calculate the amount of lime required for softening of 15,000 litres of hard water after boiling the water for 20 min. (At. mass: Ca = 40, H = 1, C = 12, O = 16, N = 14 g/mol)

Solution: Lime required = 0

Example-10 Calculate the amount of Lime and soda needed for the softening of 10 litres of hard water having 146 mg/l of Mg(HCO₃)₂.

Solution: We know that Mg(HCO₃)₂ consumes 2 moles of lime and no soda.

 $Mg(HCO_3)_2$ as $CaCO_3$ eq. = 146 x 100/146 = 100 mg/L or ppm

- (i) **Lime reqd.** = 74/100 (2 x Mg(HCO₃)₂ as CaCO₃ eq.) x Vol. of hard water x (100/% purity) = (74/100) x 100 mg/L x 10 L x (100/100) = 1480 mg
- (ii) **Soda Reqd.** = 0 mg.

Example-11 Calculate the amount of Lime and soda needed for the softening of 50,000 litres of hard water having $Mg(HCO_3)_2 = 144$ ppm, $Ca(HCO_3)_2 = 25$ ppm, $MgCl_2 = 95$ ppm, $CaCl_2 = 111$ ppm, $Fe_2O_3 = 25$ ppm, and $Na_2SO_4 = 15$ ppm. Also find the cost of chemicals for softening. (Given that cost of lime = Rs.10 per Kg and cost of soda = Rs. 100 per Kg)

Solution:

As Fe₂O₃ and Na₂SO₄ are non-hardness constituents, they do not consume Lime (L) and Soda (S)

Constituents	Strength (ppm or	Mol. Mass	Chemical Need	CaCO ₃ eq.
	mg/L)			(mg/L)
$Mg(HCO_3)_2$	144	146	2L	144 x (100/146)
				=98.63
Ca(HCO ₃) ₂	25	162	1L	25 x (100/162)
			. (=15.43
MgCl ₂	95	95	L+S	95 x (100/95)
				=100
CaCl ₂	111	111	S	111 x (100/111)
			4 1 7	=100

^{**}n-factor = 2 for all the salts

Remember that Lime is read. by $Mg(HCO_3)_2$, $Ca(HCO_3)_2$, and $MgCl_2$

(i) **Lime reqd.** = $74/100 [(2 \text{ x Mg}(HCO_3)_2 + Ca(HCO_3)_2 + MgCl_2); all as CaCO_3 eq.] x Vol. of hard water x <math>(100/\% \text{ purity})$ = (74/100) x [2 x 98.63 + 15.43 + 100] mg/L x 50,000 L x (100/100) = $11569530 \text{ mg} = 11569530 \text{ x } 10^{-6} \text{ Kg} = 11.5695 \text{ Kg}$

Soda is read. by only CaCl₂ and MgCl₂

Cost of lime = $11.5695 \times 10 = Rs. 115.695$

- (ii) Soda reqd. = 106/100 [(CaCl₂ + MgCl₂); all as CaCO₃ eq.] x Vol. of hard water x (100/% purity)
 - $= (106/100) \times [100 + 100] \text{ mg/L} \times 50,000 \text{ L} \times (100/100)$
 - $= 10600000 \text{ mg} = 10600000 \text{ x } 10^{-6} \text{ Kg} = 10.6 \text{ Kg}$

Cost of soda = $10.6 \times 100 = \text{Rs.} 1060$

Total cost of chemicals for softening of 50,000L of hard water = 115.695 = 1060 = Rs. 1175.695

Example-12 20,000 L of hard water to be softens by a chemist using a lime-soda softener. The budget allocated for the said purpose is Rs.500. Do you think the allocated amount is sufficient to get the job done? The sample contains $Mg(HCO_3)_2 = 73$ ppm, $Ca(HCO_3)_2 = 81$ ppm, $MgCl_2 = 95$ ppm, $CaSO_4 = 68$ ppm, and $Na_2SO_4 = 30$ ppm. The purity of lime is 95% and that of soda is 90%. The costs per 1 Kg of lime and soda are Rs. 100 and Rs. 100, respectively.

Solution: As Na₂SO₄ is a non-hardness constituent, it does not consume Lime (L) and Soda (S)

Constituents	Strength (ppm or	Mol. Mass	Chemical Need	CaCO ₃ eq.
	mg/L)			(mg/L)
$Mg(HCO_3)_2$	73	146	2L	73 x (100/146)
				=50
Ca(HCO ₃) ₂	81	162	1L	81 x (100/162)
				=50
MgCl ₂	95	95	L + S	95 x (100/95)
				=100
CaSO ₄	68	136	S	68 x (100/136)
				=50

Lime is read. by $Mg(HCO_3)_2$, $Ca(HCO_3)_2$, and $MgCl_2$

(i) Lime reqd. =
$$74/100 [(2 \text{ x Mg(HCO}_3)_2 + \text{Ca(HCO}_3)_2 + \text{MgCl}_2); \text{ all as CaCO}_3 \text{ eq.}]$$
 x Vol. of hard water x ($100/\%$ purity)

=
$$(74/100)$$
 x $[2 \times 50 + 50 + 100]$ mg/L x $20,000$ L x $(100/95)$

$$= 3894736.842 \text{ mg} = 3894736.842 \text{ x } 10^{-6} \text{ Kg} = 3.894 \text{ Kg}$$

 $(1 \text{ mg} = 10^{-6} \text{ Kg})$

Cost of lime = $3.894 \times 100 = \text{Rs. } 389.4$

Soda is reqd. by only MgCl₂ and CaSO₄

(i) **Soda reqd.** = 106/100 [(CaSO₄ + MgCl₂); all as CaCO₃ eq.] x Vol. of hard water x (100/% purity)

=
$$(106/100)$$
 x $[50 + 100]$ mg/L x $50,000$ L x $(100/90)$

$$= 3533333.333 \text{ mg} = 35333333.333 \text{ x } 10^{-6} \text{ Kg} = 3.533 \text{ Kg}$$

Cost of soda = $3.533 \times 100 = \text{Rs.} 353.3$

Now, total cost of chemicals = Rs. 389.4 + Rs. 353.3 = Rs. 742.7

No, the allocated amount is not sufficient to get the job done.

Prepared by: Dr.Manoranjan Behera (M.Tech, IIT BHU, Ph.D., IIT KGP)