Number Theory Homework.

We have proven the following in class.

Theorem 1. If p is an odd prime, and $p \nmid a$ then the congruence

$$ax^2 + bx + c \equiv 0 \mod p$$

has a solution if and only if the discriminant

$$D = b^2 - 4ac$$

is a perfect square modulo p.

Proposition 2. If the discriminant, D, of $ax^2 + bx + c$ is zero, then for some integer r

$$ax^2 + bx + c \equiv a(x - r)^2 \mod p$$

Problem 1. Prove this. *Hint:* Complete the square. See class notes. \Box

Definition 3. If p is an odd prime and gcd(a, p) = 1, then a is a **quadratic residue** modulo p iff $x^2 \equiv a \mod p$ has a solution. Otherwise a is a **quadratic non-residue**.

Definition 4. If p is an odd prime and a is an integer, then the **Legendre** symbol is defined by

To be a little more explict about the if $p \nmid a$, then $\left(\frac{a}{p}\right) = 1$ means that a has a square root modulo p, and $\left(\frac{a}{p}\right) = -1$ means that a does not have a square modulo p. We start with some results that follow directly from the definition.

Proposition 5. If p is a odd prime, then

$$a \equiv b \mod p \qquad \Longrightarrow \qquad \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right).$$

Problem 2. Prove this.

Proposition 6. If p is an odd prime and $p \nmid a$, then

$$\left(\frac{a^2}{p}\right) = 1$$

Problem 3. Prove this.

The following gives a direct method for determining if a is a quadratic residue modulo p.

Theorem 7 (Euler's Criterion). If p is an odd prime and $p \nmid a$, then

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \mod p.$$

We give some applications before giving the proof.

Proposition 8. Let p be an odd prime.

- (a) If $p \equiv 1 \mod 4$, then -1 is a quadratic residue of p.
- (b) If $p \equiv 3 \mod 4$, then -1 is a quadratic non-residue of p.

In terms of the Legendre symbol

$$\left(\frac{-1}{p}\right) = \begin{cases} +1, & p \equiv 1 \mod p \\ -1, & p \equiv 3 \mod p. \end{cases}$$

Problem 4. Prove this. *Hint*: If p = 4k + 1, then (p - 1)/2 = 2k and therefore $(-1)^{(p-1)/2} = (-1)^{2k} = 1$. If p = 4k + 3, then (p - 1)/2 = 2k + 1 so that $(-1)^{(p-1)/2} = (-1)^{2k+1} = -1$ and use Theorem 7.

As anther application

Proposition 9. If p is an odd prime then for any integers, the Legendre symbol satisfies

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

Problem 5. Prove this. *Hint*: If either a or b is divisible by p then both sides of the equation are zero. If p does not divide either a or b then $(ab)^{(p-1)/2} = a^{(p-1)/2}b^{(p-1)/2}$ and we can again use Theorem 7.

We now use Gauss' Theorem on the existence on primitive roots to prove Euler's Criterion. Let p be an odd prime. Recall that g is a **primitive element** modulo p is $\operatorname{ord}_p(g) = \phi(p)$ where $\operatorname{ord}_p(a)$ is the smallest positive k such that $g^k \equiv 1 \mod p$. As $\phi(p) = p - 1$ we can summarize that g is a primitive element modulo p if and only if $g^{p-1} \equiv 1 \mod p$, and if k is any positive integer with $g^k \equiv \mod p$, then $(p-1) \leq k$. We have also shown that if $g^m \equiv 1 \mod p$, then $(p-1) \mid m$.

Proposition 10. Let p be an odd prime and g a primitive element modulo p. Then if $p \nmid a$, there is a $j \geq 0$ such that $a \equiv g^j \mod p$. That is every nonzero element of \mathbb{Z}_p is a power of g in \mathbb{Z}_p .

Proof. No two of the elements of $1=g^0,g,g^2,g^3,\ldots,g^{p-2}$ are congruent modulo (for it $g^i\equiv g^j\mod p$ with $0\leq i< j\leq (p-2)$ then we can cancel to get $1\equiv g^{j-i}\mod p$ which would contradict that $g^k\not\equiv 1\mod p$ when 1< k<(p-1)). Thus the set $\{g^0,g,g^2,g^3,\ldots,g^{p-2}\}$ is a complete set of nonzero residues modulo p. As $a\not\equiv 0\mod p$ this implies is congruent to one of the elements of $\{g^0,g,g^2,g^3,\ldots,g^{p-2}\}$ as required. \square

Lemma 11. If g is a primitive element modulo p where p is an odd prime, then if $g^i \equiv g^j \mod p$, then i and j are either both even or both odd. (Or what is the same thing $i \equiv j \mod 2$.)

Problem 6. Prove this. *Hint*: If i = j there is nothing to prove, so assume that i < j. Then $g^i \equiv g^j \mod p$ implies $g^{j-i} \equiv 1 \mod p$. This implies $(p-1) \mid (j-i)$. But p is odd, so that (p-1) is even. Thus $(p-1) \mid (j-i)$ implies $2 \mid (j-i)$.

Proposition 12. Let g be a primitive element for the odd prime p. Then the element g^j is a quadratic residue if and only if j is even. In terms of the Legendre symbol this can be stated as

$$\left(\frac{g^j}{p}\right) = (-1)^j.$$

Proof. If j is even, say j = 2k, then $g^j = g^{2k} = (g^k)^2$ and so g^k is a square root of g^j modulo p and therefore g^j is a quadratic residue modulo p.

Conversely if g^j is a quadratic residue modulo p, then $g^j \equiv a^2$ for some integer a. By Proposition 10 $a \equiv g^i$ for some integer i. Therefore

$$g^j \equiv a^2 \equiv (g^i)^2 \equiv g^{2i} \mod p.$$

As 2i is even, Lemma 11 implies j is even.

Lemma 13. If g is a primitive root for the odd prime p, then

$$g^{(p-1)/2} \equiv -1 \mod p.$$

Problem 7. Prove this. *Hint:* Let $b = g^{(p-1)/2}$. Then

$$b^2 \equiv (g^{(p-1)/2})^2 \equiv g^{(p-1)} \equiv 1 \mod p.$$

Thus b is a solution to the congruence $x^2 \equiv 1 \mod p$. But we have seen this only has the two solutions $x \equiv 1 \mod p$ and $x \equiv -1 \mod p$. So to complete the proof, it is enough to show $b = g^{(p-1)/2} \not\equiv 1 \mod p$, which follows from the definition of g being a primitive root.

Problem 8 (Proof of Euler's Criterion.). Prove Theorem 7. *Hint:* Let p be an odd prime and $p \nmid a$. By Gauss' theorem on the existence of primitive roots we know there is a primitive root g for p. By Proposition 10 we have that $a \equiv g^j \mod p$ for some j.

(a) Show

$$\left(\frac{a}{p}\right) = \left(\frac{g^j}{p}\right) = (-1)^j.$$

Hint: Propositions 5 and 12.

(b) Show

$$a^{(p-1)/2} \equiv (-1)^j \mod p$$

Hint:

$$a^{(p-1)/2} = (g^j)^{(p-1)/2} = (g^{(p-1)/2})^j$$

and by Proposition 13 $g^{(p-1)/2} \equiv -1 \mod p$.

(c) Combine the last two steps to conclude

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \mod p$$

which is the statement of Euler's Criterion.

We now give two more basic results about quadratic residues which we will not prove.

Theorem 14 (Euler). If p is an odd prime, then

That is if $p \equiv \pm 1 \mod 8$, then 2 is a quadratic residue of p and if $p \equiv \pm 2 \mod 8$, then 2 a not a quadratic residue of p. Sometimes this is written

Finally here is the deepest result we have seen in this course. It is due to Gauss

Theorem 15 (Quadratic Reciprocity). Let p and q be odd primes. Then

$$\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$$

unless p and q are both of the form 4k + 3 in which case

$$\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right).$$

With the rules above we can compute Legendre symbol without two much trouble, as we have seen in class.