Теортест-1 (Вариант 118)

Тема – определенный интеграл

Задача 1

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ – интегральная сумма для f, построенная по разбиению τ с оснащением $\xi; s_{\tau}, S_{\tau}$ – нижняя и верхняя суммы Дарбу. Выберите все утверждения, равносильные интегрируемости функции f на отрезке [a,b]:

- 1. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \ \exists \tau: |\tau| < \delta \ \exists \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$
- 2. $\forall \varepsilon > 0 \ \forall \tau \colon S_{\tau} s_{\tau} < \varepsilon$;
- 3. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \forall \tau: |\tau| < \delta, \ \forall \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$
- 4. $\forall \tau, \ \forall \xi \colon s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u' = v + C;
- 2. vdt = du;
- 3. v = u' + C:
- 4. v = u';

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\int_a^b |f(x)| dx = 0$, то $f(x) \equiv 0$ на [a, b];
- 2. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 3. Если $f \ge 0$ на [a,b] и $\exists c \in [a,b]$: f(c) > 0, то $\int_a^b f(x) dx > 0$;
- 4. Если $f \ge 0$ на [a,b], то $\int_a^b f(x) dx \ge 0$;

Задача 4

Выберите все верные утверждения (тела А и В имеют объем):

- 1. $V(A) = V(A \cap B) + V(A \setminus B)$;
- 2. объем $A \cup B$ равен сумме объемов A и B;
- 3. любое множество имеет неотрицательный объем;
- 4. объем A всегда неотрицателен;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна на [a,b] и f((a+b)/2) = 1;
- 2. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 3. f(a) > 0, f(b) > 0;
- 4. f непрерывна на [a, b] и f(a + b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 2. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 3. первообразная дробно-рациональной функции выражается через элементарные функции;
- 4. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;

Задача 7

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F дифференцируема на [a, b];
- 2. F первообразная для f на [a, b];
- 3. F имеет разрывы в точках разрыва функции f;
- 4. F непрерывна на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [-1, 20];
- 2. [-2, 10];
- 3. [-1, 10];
- 4. [-10, 20];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $2 \int f'(x) \sqrt{x} dx = 2\sqrt{x} f(x) \int \frac{f(x)}{\sqrt{x}} dx;$
- 2. $\int f'(x)e^x dx = e^x f(x) \int f(x)e^x dx;$
- 3. $\int \frac{f'(x)}{x} dx = \frac{f(x)}{x} + \int \frac{f(x)}{x^2} dx;$
- 4. $2 \int x f(x) dx = x^2 f'(x) \int x f'(x) dx$;

Задача 10

Выберите все верные утверждения:

- 1. Длина замкнутой кривой равна нулю;
- 2. Длина спрямляемой кривой конечна;
- 3. Кусочно-гладкая кривая спрямляема;
- 4. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 5. Гладкая кривая это кривая, все параметризации которой гладкие;