МЛиТА РК 2. Задача 2 "Нечеткая логика"

Выполнить нечеткий логический вывод в предметной области "Движение по автотрассе" при следующих исходных данных.

1). Правила вывода.

Пр.1 Если [(скорость движения невысокая или средняя) и (стиль езды спокойный или неуверенный) и (погода теплая)], то (расход топлива низкий).

Пр.2 – по аналогии добавить самостоятельно. В основании импликации наличие хотя бы одной конъюнкции и хотя бы одной дизъюнкции обязательно. Допускается отрицание.

 Π р.3 – так же.

 Π р.4 — так же.

[Пр.5 – так же. Необязательное. Допускается для обеспечения полноты.]

2). Нечеткие лингвистические переменные.

X, входная: **"Скорость движения"**; $T(X) = \{$ невысокая, средняя, завышенная $\}$, x – скорость в км/ч, $x \in U = [40, 150]$.

Y, входная: "Стиль езды"; $T(Y) = \{$ спокойный, неуверенный, спортивный, агрессивный $\}$, у — число перестроений из ряда в ряд в минуту, $y \in U = [1, 31]$.

S, входная: "Погодные условия по температуре воздуха"; $T(S) = \{\text{морозно}, \text{около нуля с гололедицей, тепло}\}$, s — температура воздуха в °C, $s \in U = [-11, 30]$. Z, выходная: "Расход топлива"; $T(Z) = \{\text{низкий, приемлемо большой, }\}$

значительный $\}$, z – объем в литрах на 100 км, $z \in U = [5, 20]$.

Значения входных и выходной лингвистических переменных заданы графически (см. ниже).

- 3). Записать правила вывода в формализованном виде.
- 4). Обеспечить и обосновать полноту системы правил вывода.
- 5). Реализовать этапы нечеткого логического вывода для заданных исходных данных. Дать оценку расхода топлива *z* для конкретных значений *x, y, s* (целых чисел), используя максиминную логику. Оценить степень истинности решения <u>по двум любым</u> исчислениям нечеткой импликации (формулы см. ниже). Итоговый результат оформить в виде таблицы.

Исходные данные определяются в 10-тичной системе счисления по своей дате рождения следующим образом.

- Скорость x: [два младших разряда от произведения ((день)+(месяц))*(год)] + 40.
- Число перестроений у: (день).
- Температура воздуха s: (день)-(месяц).

Графики значений лингвистических переменных

X: $\mu_{\widetilde{A}_i}(x)$, где \widetilde{A}_1 — невысокая, \widetilde{A}_2 — средняя, \widetilde{A}_3 — завышенная.

Y: $\mu_{\widetilde{B}_i}(y)$, где B_1 — спокойный, \widetilde{B}_2 — неуверенный, \widetilde{B}_3 — спортивный, \widetilde{B}_4 — агрессивный.

S: $\mu_{\widetilde{C}_i}(s)$, где \widetilde{C}_1 — морозно, \widetilde{C}_2 — около нуля с гололедицей, \widetilde{C}_3 — тепло.

 $m{Z}$: $m{\mu}_{\widetilde{m{D}}_i}(m{z})$, где $m{\widetilde{D}}_1$ — низкий, $m{\widetilde{D}}_2$ — приемлемо большой, $m{\widetilde{D}}_3$ — значительный.

Справочно. Нечеткая импликация:

- Лукасевича $\mu_{\tilde{Q} \to \tilde{P}} = min(1 \mu_{\tilde{Q}} + \mu_{\tilde{P}}, 1);$
- Гогена $\mu_{\tilde{Q} \to \tilde{P}} = min(\mu_{\tilde{P}}/\mu_{\tilde{Q}},1), \mu_{\tilde{Q}} > 0;$
- Гёделя $\mu_{\tilde{Q} \to \tilde{P}} = max(1 \mu_{\tilde{Q}}, \mu_{\tilde{P}}), \mu_{\tilde{Q}} \ge \mu_{\tilde{P}};$
- Заде $\mu_{\tilde{Q} o \tilde{P}} = max (min(\mu_{\tilde{Q}}, \mu_{\tilde{P}}), 1 \mu_{\tilde{Q}});$
- граничной суммы $\mu_{\tilde{Q} \to \tilde{P}} = min(\mu_{\tilde{Q}} + \mu_{\tilde{P}}, 1);$
- Вади (граничного произведения) $\mu_{\tilde{Q} \to \tilde{P}} = max(\mu_{\tilde{Q}} * \mu_{\tilde{P}}, 1 \mu_{\tilde{Q}}).$