1. Import necessary Libraries

```
In [ ]:
```

```
### For computational and random seed purpose
import numpy as np
np.random.seed(42)
#to read csv file
import pandas as pd
#To split into train and cv data
from sklearn.model_selection import train_test_split
#To compute AUROC
from sklearn.metrics import auc, roc auc score
#for AUROC graph
import matplotlib.pyplot as plt
#for oversampling technique
from imblearn.over sampling import SMOTE # (https://imbalanced-learn.org/stable/references/generated/imblearn.ove
r_sampling.SMOTE.html)
#Data is imbalanced, we need calibrated model
from sklearn.calibration import CalibratedClassifierCV
#for hyperparameter tuning and Cross-validation fold
from sklearn.model_selection import GridSearchCV,StratifiedKFold,RepeatedStratifiedKFold
#to ignore the error message
import warnings
warnings.filterwarnings("ignore")
#for heatmap and other plotting technique
import seaborn as sns
#to strandize the real value data
from sklearn.preprocessing import StandardScaler,MinMaxScaler
from sklearn.preprocessing import LabelEncoder
#To create Knn model on datasets
from sklearn.neighbors import KNeighborsClassifier
#for roc curve
from sklearn.metrics import roc_curve,roc_auc_score,accuracy_score
import eli5
from eli5.sklearn import PermutationImportance
import joblib
import sys
sys.modules['sklearn.externals.joblib'] = joblib
from mlxtend.feature selection import SequentialFeatureSelector
from sklearn.linear_model import LogisticRegression
from sklearn.feature selection import RFE
from scipy.stats import kurtosis
from scipy.stats import skew
import warnings
warnings.filterwarnings('ignore')
from catboost import CatBoostClassifier
from sklearn.preprocessing import RobustScaler
In [5]:
```

```
#locate parent directory
data dir = "./
#Read the training data
df train = pd.read csv('train.csv')
print(df_train)
                                              295
      id
         target
                                                     296
                                                            297
                                                                   298
                                       . . .
                                       ... -2.097 1.051 -0.414 1.038 -1.065
0
             1.0 -0.098 2.165 0.681
      0
             0.0 1.081 -0.973 -0.383
                                      ... -1.624 -0.458 -1.099 -0.936 0.973
             1.0 -0.523 -0.089 -0.348
                                      ... -1.165 -1.544 0.004 0.800 -1.211
2
       2
             1.0 0.067 -0.021 0.392
                                           0.467 -0.562 -0.254 -0.533 0.238
                                       . . .
```

0.007

... 0.478 -0.910 -0.805 2.029 -0.423

... 0.812 0.269 -1.454 -0.625 1.474

1.478 0.428 0.253

0.281 -0.255 -1.136

0.112 -0.558

0.168 -0.719

... 1.378 1.246

... -0.243 0.525

... 1.004 -0.979

... -0.727 0.461 0.760

. . .

```
[250 rows x 302 columns]
```

1.0

4

245

246

247

248

249

4

245

246

247

248

249

1.0 2.347 -0.831 0.511

0.0 -1.199 0.466 -0.908

0.0 1.411 -1.465 0.119

0.0 0.489 0.403 0.139

0.620 1.040 0.184

0.0 0.237

0.233 -0.380

In [6]:

```
#Read test data
df_test = pd.read_csv('test.csv')
df_test
```

Out[6]:

	id	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
0	250	0.500	-1.033	-1.595	0.309	-0.714	0.502	0.535	-0.129	-0.687	1.291	0.507	-0.317	1.848	-0.232	-0.340	-0.0
1	251	0.776	0.914	-0.494	1.347	-0.867	0.480	0.578	-0.313	0.203	1.356	-1.086	0.322	0.876	-0.563	-1.394	0.3
2	252	1.750	0.509	-0.057	0.835	-0.476	1.428	-0.701	-2.009	-1.378	0.167	-0.132	0.459	-0.341	0.014	0.184	-0.4
3	253	-0.556	-1.855	-0.682	0.578	1.592	0.512	-1.419	0.722	0.511	0.567	0.356	-0.060	0.767	-0.196	0.359	0.0
4	254	0.754	-0.245	1.173	-1.623	0.009	0.370	0.781	-1.763	-1.432	-0.930	-0.098	0.896	0.293	-0.259	0.030	-0.€
19745	19995	1.069	0.517	-0.690	0.241	0.913	-0.859	0.093	-0.359	-0.047	0.713	2.191	0.774	-0.110	-0.721	0.375	0.5
19746	19996	-0.529	0.438	0.672	1.436	-0.720	0.698	-0.350	2.150	-1.241	-0.167	-0.188	0.541	-0.392	1.727	-0.965	0.5
19747	19997	-0.554	-0.936	-1.427	0.027	-0.539	0.994	-1.832	-1.156	0.474	1.483	1.524	0.143	-0.607	-1.142	2.786	-0.3
19748	19998	-0.746	1.205	0.750	-0.236	1.139	-1.727	-0.677	-1.254	-0.099	-0.724	0.014	-0.575	-0.142	1.171	-0.198	0.3
19749	19999	0.736	-0.216	-0.110	-1.404	-0.265	-1.770	0.715	0.469	1.077	0.333	-0.994	-0.331	1.009	0.607	-1.729	1.4

19750 rows × 301 columns

In [7]:

```
df_train.dropna(inplace=True)
df_test.dropna(inplace=True)
```

In [8]:

```
def feature_engg(df,test=False):
 perform feature Engieering in basic statistics, trignometory, hyperbolic and exponential function
 parameters:
 if test:
   data = df.drop(['id'],axis=1)
  else:
   data = df.drop(['id','target'],axis=1)
 df['mean'] = np.mean(data,axis=1) # taking mean value along with column
  df['std'] = np.std(data,axis=1) # taking std along with column
  df['median'] = np.median(data,axis=1)
  df['min'] = np.min(data,axis=1)
 df['max'] = np.max(data,axis=1)
  # applying trignometric function
  df['sin_mean'] = np.sin(df['mean'])
  df['cos_mean'] = np.cos(df['mean'])
  df['tan_mean'] = np.tan(df['mean'])
  df['sin std'] = np.sin(df['std'])
  df['cos std'] = np.cos(df['std'])
  df['tan std'] = np.tan(df['std'])
  df['sin median'] = np.sin(df['median'])
 df['cos_median'] = np.cos(df['median'])
  df['tan_median'] = np.tan(df['median'])
  sin_data = np.sin(data) #calculated the sin_data
  cos_data = np.cos(data) #calculated the cos_data
  tan_data = np.tan(data) #calculated the tan_data
  df['mean_sin'] = np.mean(sin_data,axis=1) #calculating the mean of sin_data
  df['mean_cos'] = np.mean(cos_data,axis=1) #calculating the mean of cos_data
 df['mean tan'] = np.mean(tan data,axis=1) #calculating the mean of tan data
 #hyperbolic function
  sinh data = np.sinh(data)
  cosh_data = np.cosh(data)
  tanh data = nn tanh(data)
```

```
arcsinh data = np.arcsinh(data)
 arccosh data = np.arccosh(data)
 df['mean sinh'] = np.mean(sinh data,axis=1)
 df['mean_cosh'] = np.mean(cosh_data,axis=1)
 df['mean tanh'] = np.mean(tanh_data,axis=1)
  df['mean_arsinh'] = np.mean(arcsinh_data,axis=1)
  df['mean_arcosh'] = np.mean(arccosh_data,axis=1)
 df['sinh mean'] = np.sinh(df['mean'])
 df['tanh mean'] = np.tanh(df['mean'])
 df['arsinh mean'] = np.arcsinh(df['mean'])
 df['sinh_std'] = np.sinh(df['std'])
 df['cosh std'] = np.cosh(df['std'])
 df['tanh_std'] = np.tanh(df['std'])
 df['sinh median'] = np.sinh(df['median'])
 df['cosh_median'] = np.cosh(df['median'])
 df['tanh_median'] = np.tanh(df['median'])
#exponential function
 exp_data = np.exp(data)
  expm1_data = np.expm1(data)
 exp2_data = np.exp2(data)
 df['mean_exp'] = np.mean(exp_data,axis=1)
 df['mean expm1'] = np.mean(expm1 data,axis=1)
 df['mean exp2'] = np.mean(exp2 data,axis=1)
  df['exp1 mean'] = np.exp(df['mean'])
 df['expm1_mean'] = np.expm1(df['mean'])
  df['exp2 mean'] = np.exp2(df['mean'])
 df['exp1_median'] = np.exp(df['median'])
  df['expm1_median'] = np.expm1(df['median'])
 df['exp2_median'] = np.exp2(df['median'])
 df['exp1_std'] = np.exp(df['std'])
  df['expm1_std'] = np.expm1(df['std'])
 df['exp2_std'] = np.exp2(df['std'])
  # Polynomial FE
 # X**2
 df['mean x2'] = np.mean(np.power(data,2), axis=1)
 # X**3
 df['mean_x3'] = np.mean(np.power(data,3), axis=1)
 df['mean x4'] = np.mean(np.power(data,4), axis=1)
 # X**5
 df['mean_x5'] = np.mean(np.power(data,5), axis=1)
  df['mean_x6'] = np.mean(np.power(data,6), axis=1)
 df['mean x7'] = np.mean(np.power(data,7), axis=1)
 #logithm FE
  df['x2_mean'] = np.power(df['mean'],2)
 # X**3
 df['x3 mean'] = np.power(df['mean'],3)
 # X**4
 df['x4 mean'] = np.power(df['mean'],4)
 df['x5 mean'] = np.power(df['mean'],5)
 # X**6
 df['x6 mean'] = np.power(df['mean'],6)
  # X**7
 df['x7_mean'] = np.power(df['mean'],7)
 #skewness and kurtosis
  skew_data = skew(data)
  kurtosis data = kurtosis(data)
 df['skewness'] = np.mean(skew_data)
 df['kurtosis'] = np.mean(kurtosis data)
 data['mean skewness'] = skew(df['mean'])
 data['mean kurtosis'] = kurtosis(df['mean'])
 df['x2 median'] = np.power(df['median'],2)
 # X**3
 df['x3 median'] = np.power(df['median'],3)
 # X**4
  df['x4 median'] = np.power(df['median'],4)
  # X**5
 df['x5 median'] = np.power(df['median'],5)
  df['x6 median'] = np.power(df['median'],6)
 df['x7_median'] = np.power(df['median'],7)
```

return df

```
In [9]:
```

```
df_train = feature_engg(df_train)
df_train.head(5)
```

Out[9]:

	id	target	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
0	0	1.0	-0.098	2.165	0.681	-0.614	1.309	-0.455	-0.236	0.276	-2.246	1.825	-0.912	-0.107	0.305	0.102	0.826	0.4
1	1	0.0	1.081	-0.973	-0.383	0.326	-0.428	0.317	1.172	0.352	0.004	-0.291	2.907	1.085	2.144	1.540	0.584	1.1
2	2	1.0	-0.523	-0.089	-0.348	0.148	-0.022	0.404	-0.023	-0.172	0.137	0.183	0.459	0.478	-0.425	0.352	1.095	0.3
3	3	1.0	0.067	-0.021	0.392	-1.637	-0.446	-0.725	-1.035	0.834	0.503	0.274	0.335	-1.148	0.067	-1.010	1.048	-1.
4	4	1.0	2.347	-0.831	0.511	-0.021	1.225	1.594	0.585	1.509	-0.012	2.198	0.190	0.453	0.494	1.478	-1.412	0.2

5 rows x 365 columns

In [10]:

```
df_test = feature_engg(df_test,True)
df_test.head(5)
```

Out[10]:

	id	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	250	0.500	-1.033	-1.595	0.309	-0.714	0.502	0.535	-0.129	-0.687	1.291	0.507	-0.317	1.848	-0.232	-0.340	-0.051	0.
1	251	0.776	0.914	-0.494	1.347	-0.867	0.480	0.578	-0.313	0.203	1.356	-1.086	0.322	0.876	-0.563	-1.394	0.385	1.
2	252	1.750	0.509	-0.057	0.835	-0.476	1.428	-0.701	-2.009	-1.378	0.167	-0.132	0.459	-0.341	0.014	0.184	-0.460	- C
3	253	-0.556	-1.855	-0.682	0.578	1.592	0.512	-1.419	0.722	0.511	0.567	0.356	-0.060	0.767	-0.196	0.359	0.080	-C
4	254	0.754	-0.245	1.173	-1.623	0.009	0.370	0.781	-1.763	-1.432	-0.930	-0.098	0.896	0.293	-0.259	0.030	-0.661	0.

5 rows x 364 columns

In [11]:

```
X_train = (df_train.drop(['id','target'],axis = 1))
X_test = (df_test.drop(['id'],axis = 1))

y_train = df_train['target']

#n_fold = 20
#folds = StratifiedKFold(n_splits=n_fold, shuffle=True, random_state=42)
```

 $\#repeated_folds = RepeatedStratifiedKFold(n_splits=20, n_repeats=20, random_state=42)$

In [12]:

```
X_train.shape
```

Out[12]:

(250, 363)

Normalization

```
In [15]:
stand = MinMaxScaler()
X_train = stand.fit_transform(X train)
X_test = stand.transform(X_test)
In [16]:
X_train.shape
Out[16]:
(250, 363)
In [17]:
X_train.shape
Out[17]:
(250, 363)
Used Grid Search for hyper-parameter tuning
In [18]:
def hyperparameter_model(models, params):
  Hyperparameter tuning with StratifiedKFold follow by GridSearchCV follow by,
  ,→CalibratedClassifier
  Parameters:
  models: Instance of the model
  params: list of parameters with value fr tuning (dict)
  grid\_clf: \ return \ gridsearch \ model
  # Perform KCrossValidation with stratified target
  str cv = StratifiedKFold(n splits=11, random state=42,shuffle=True)
  # Perform Hyperparamter using GridSearchCV
  grid clf = GridSearchCV(models, params, cv=str cv, return train score=True, scoring='roc auc')
  # Fit the train model to evaluate score
  grid_clf.fit(X_train, y_train)
  return grid clf
In [19]:
#kNN (See Docs: https://scikit-learn.org/stable/modules/generated/sklearn.→neighbors.KNeighborsClassifier.html)
# List of params
# List of params
params = {'n_neighbors':np.arange(3,51,2).tolist(), 'algorithm': ['kd_tree','brute']}
# Instance of knn model
knn model = KNeighborsClassifier()
# Call hyperparameter for find the best params as possible
knn_clf = hyperparameter_model(knn_model, params)
In [20]:
print(knn_clf.best_params_)
{'algorithm': 'kd tree', 'n neighbors': 45}
In [21]:
knn_model = KNeighborsClassifier(**knn_clf.best_params_)
knn_model.fit(X_train,y_train)
Out[21]:
```

KNeighborsClassifier(algorithm='kd tree', n neighbors=45)

```
In [22]:
y_pred = knn_model.predict(X_train)
print(y_pred)

    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    <
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
In [23]:
train auc = roc auc score(y train,y pred)
print(train_auc)
0.5375
In [24]:
y predict = knn model.predict proba(X test)[:,1]
```

In [25]:

```
y_pred_lr_test = pd.DataFrame({"ID": df_test['id'],"Target": y_predict})

y_pred_lr_test.to_csv('submission_knn1.csv', index=False)
y_pred_lr_test.head(20)
```

Out[25]:

	ID	Target
0	250	0.533333
1	251	0.711111
2	252	0.600000
3	253	0.600000
4	254	0.577778
5	255	0.555556
6	256	0.622222
7	257	0.733333
8	258	0.688889
9	259	0.600000
10	260	0.666667
11	261	0.577778
12	262	0.377778
13	263	0.622222
14	264	0.666667
15	265	0.600000
16	266	0.688889
17	267	0.666667
18	268	0.511111
19	269	0.511111

Name Submitted Wait time Execution time Score submission_knn1.csv just now 1 seconds 0 seconds 0.625

Complete

Jump to your position on the leaderboard -

y pred lr test = model.predict proba(X test)[:,1]

[5.82938872e-07 2.58333864e-02 9.75004007e-01 ... 9.98808911e-01

print(y_pred_lr_test)

9.99999484e-01 1.90449945e-02]

test auc = 0.63

```
Logistic Regresstion Applied
In [33]:
#ref= https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
params = {'penalty':['l1','l2','elasticnet'],'C':[10**i for i in range(-4,5)], 'solver':['liblinear','sag','saga'
#the instance of Logistic Regression
log_model = LogisticRegression(class_weight='balanced',random_state=42)
#Call Hyper-parameter function to get best hyperparameter tuning
log clf = hyperparameter model(log model,params)
In [34]:
print(log clf.best params )
{'C': 10000, 'penalty': 'l1', 'solver': 'liblinear'}
In [28]:
from sklearn import linear model
model = LogisticRegression(penalty='l1', C=10000, solver='liblinear')
model.fit(X train,y train)
Out[28]:
LogisticRegression(C=10000, penalty='l1', solver='liblinear')
In [29]:
y_pred = model.predict(X_train)
print(y_pred)
[1. 0. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1.
1. 1. 1. 1. 0. 1. 0. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 0. 1. 1. 0. 1. 1. 1.
1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 1. 0.
0. 1. 1. 0. 0. 0. 0. 0. 1. 0.]
In [30]:
train_auc_lr = roc_auc_score(y_train,y_pred)
print(train_auc_lr)
1.0
In [31]:
```

```
In [32]:
```

```
y_pred_lr_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_lr_test})

y_pred_lr_test.to_csv('submission_logs1.csv', index=False)
y_pred_lr_test.head(20)
```

Out[32]:

	ID	Target
0	250	5.829389e-07
1	251	2.583339e-02
2	252	9.750040e-01
3	253	1.000000e+00
4	254	2.125819e-01
5	255	7.975479e-01
6	256	4.434680e-05
7	257	9.975409e-01
8	258	9.999624e-01
9	259	3.107310e-03
10	260	9.800100e-01
11	261	1.593746e-03
12	262	6.503353e-04
13	263	9.930242e-01
14	264	2.692324e-01
15	265	9.591362e-01
16	266	9.992945e-01
17	267	1.062056e-01
18	268	6.084120e-03
19	269	6.981383e-01

Name Submitted Walt time Execution time Score submission_logs1 (1).csv just now 1 seconds 0 seconds 0.726

Complete

Jump to your position on the leaderboard •

logistic_test_auc = 0.73

Support Vector Machine

In [35]:

```
from sklearn.svm import SVC
```

```
In [36]:
```

```
#ref = https://scikit-learn.org/stable/modules/svm.html

params = {'C':[10**i for i in range(-4,5)], 'kernel':['linear', 'poly', 'sigmoid', 'rdf']}

#The instance of SVC

svc_model = SVC(class_weight='balanced', random_state=42)
#call the hyper-parameter function to get best parameters

svc_clf = hyperparameter_model(svc_model,params)
```

```
print(svc_clf.best_params_)
{'C': 0.1, 'kernel': 'poly'}
In [38]:
svc_clf = SVC(C = 0.1, kernel = 'poly',probability=True)
svc_clf.fit(X_train,y_train)
Out[38]:
SVC(C=0.1, kernel='poly', probability=True)
In [39]:
y_pred = svc_clf.predict(X_train)
train_svm_auc = roc_auc_score(y_train,y_pred)
print(train_svm_auc)
1.0
In [40]:
y_pred_svc_test = svc_clf.predict_proba(X_test)[:,1]
In [41]:
y_pred_svc_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_svc_test})
y_pred_svc_test.to_csv('submission_svm1.csv', index=False)
y_pred_svc_test.head(10)
Out[41]:
```

	ID	Target
0	250	0.201923
1	251	0.455340
2	252	0.684746
3	253	0.933575
4	254	0.588955
5	255	0.645255
6	256	0.309197
7	257	0.649187
8	258	0.825740
9	259	0.447801

In [37]:

Name Submitted Wait time Execution time Score submission_svm1 (2).csv just now 1 seconds 0 seconds 0.732

Complete

Jump to your position on the leaderboard ▼

Test SVM auc = 0.73

Ensemble Model : Random Forest

In [43]:

from sklearn.ensemble import RandomForestClassifier

```
In [49]:
#https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
params = {'n_estimators': [10,20,30,40,50,60,100,200,300,400,500],'max_depth':[2,3,5,7,9]}
#The instance of model
rdf_model = RandomForestClassifier(class_weight='balanced',random_state=42)
# Call the hyperparameter function to get best parameter
rdf clf = hyperparameter model(rdf model,params)
In [50]:
print(rdf_clf.best_params_)
{'max_depth': 9, 'n_estimators': 200}
In [51]:
rdf clf = RandomForestClassifier(**rdf clf.best params ,bootstrap=True)
rdf_clf.fit(X_train,y_train)
Out[51]:
RandomForestClassifier(max depth=9, n estimators=200)
In [52]:
y_pred = rdf_clf.predict(X_train)
train_rdf_auc = roc_auc_score(y_train,y_pred)
print(train_rdf_auc)
1.0
In [53]:
y_pred_rdf_test = rdf_clf.predict_proba(X_test)[:,1]
In [54]:
y_pred_rdf_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_rdf_test})
y pred rdf test.to csv('submission rdf1.csv', index=False)
y_pred_rdf_test.head(20)
```

Out[54]:

	ID	Target
0	250	0.464459
1	251	0.656186
2	252	0.664916
3	253	0.750082
4	254	0.510925
5	255	0.611556
6	256	0.548641
7	257	0.710989
8	258	0.761312
9	259	0.588592
10	260	0.606752
11	261	0.578772
12	262	0.561799
13	263	0.590617
14	264	0.560631
15	265	0.755405
16	266	0.588609
17	267	0.619911
18	268	0.548629
19	269	0.546993

Test_rdf_auc: 0.704

Decision Tree Classifier

In [70]:

```
from sklearn.tree import DecisionTreeClassifier
```

```
In [71]:
```

```
#ref =https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
params = {'max_depth':[2,3,5,7,9]}
#The instance of Decision Tree Classifier
tree_model = DecisionTreeClassifier(class_weight='balanced',random_state=42)
#Call Hyperparameter function to get best parameter
tree_clf = hyperparameter_model(tree_model,params)
```

```
In [72]:
```

```
print(tree_clf.best_params_)
```

{'max_depth': 2}

```
In [74]:
y_pred = tree_clf.predict(X_train)
train_tree_auc = roc_auc_score(y_train,y_pred)
print(train_tree_auc)
0.662152777777778
In [75]:
y_pred_tree_test = tree_clf.predict_proba(X_test)[:,1]
In [76]:
y_pred_tree_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_tree_test})
y pred tree test.to csv('submission tree1.csv', index=False)
y_pred_tree_test.head(20)
Out[76]:
    ID
          Target
0
   250
       0.846774
1
   251
        0.846774
2
   252
        0.561798
3
   253
        0.846774
4
   254
        0.846774
5
   255
        0.561798
6
   256
        0.846774
   257
        0.846774
8
   258
        0.846774
9
   259
        0.561798
10
   260
       0.142857
 11
   261
        0.561798
12
   262
        0.846774
 13
   263
        0.561798
   264
        0.561798
 15
   265
       0.846774
```

Name Submitted Wait time Execution time Score submission_tree1 (2).csv just now 1 seconds 0 seconds 0.614

Complete

0.846774

0.561798

0.133333

0.133333

16 266

17 267

18 268

19 269

In [73]:

Out[73]:

tree_clf.fit(X_train,y_train)

DecisionTreeClassifier(max depth=2)

tree_clf = DecisionTreeClassifier(**tree_clf.best_params_)

Jump to your position on the leaderboard ▼

XGBoost Classifier

```
In [77]:
```

```
from xgboost import XGBClassifier
```

```
In [78]:
```

```
#list of hyper-parameter

params = {'max_depth':[2,3,5,7,9],'n_estimators':[10,20,30,40,50,100,200,400,500]}

# The instance of XGBClassifier

xg_model = XGBClassifier(scale_pos_weight=0.5)
# call hyparameter function to get best parameter

xg_clf = hyperparameter_model(xg_model,params)
```

In [79]:

```
print(xg_clf.best_params_)
```

{'max_depth': 2, 'n_estimators': 500}

In [80]:

```
xg_clf = XGBClassifier(**xg_clf.best_params_)
xg_clf.fit(X_train,y_train)
```

Out[80]:

XGBClassifier(max_depth=2, n_estimators=500)

In [81]:

```
y_pred = xg_clf.predict(X_train)
```

In [82]:

```
train_xgboost_auc = roc_auc_score(y_train,y_pred)
print(train_xgboost_auc)
```

1.0

In [83]:

```
y_pred_xg_test = xg_clf.predict_proba(X_test)[:,1]
print(y_pred_xg_test)
```

[0.6067806 0.8061706 0.5926346 ... 0.23538436 0.98913246 0.20229056]

In [84]:

```
y_pred_xg_test = pd.DataFrame({"ID": df_test['id'], "Target": y_pred_xg_test})

y_pred_xg_test.to_csv('submission_xgboost1.csv', index=False)
y_pred_xg_test.head(10)
```

Out[84]:

	ID	Target
0	250	0.606781
1	251	0.806171
2	252	0.592635
3	253	0.998114
4	254	0.786182
5	255	0.507155
6	256	0.293211
7	257	0.383449
8	258	0.996120
9	259	0.372154

NameSubmittedWait timeExecution timeScoresubmission_xgboost1 (1).csvjust now1 seconds0 seconds0.795

Complete

Jump to your position on the leaderboard ▼

```
xgboost_test_auc = 0.795
```

Stacking Classifier

```
In [86]:
```

```
import six
import sys
sys.modules['sklearn.externals.six'] = six
```

In [87]:

```
from mlxtend.classifier import StackingClassifier
```

```
In [89]:
```

```
#classifier 1
knn model = KNeighborsClassifier(algorithm = 'kd tree', n neighbors = 45)
knn model.fit(X train,y train)
#Classifier 2
model = LogisticRegression(C= 10000, penalty = 'l1', solver = 'liblinear')
model.fit(X_train,y_train)
#Classifier 3
svc_clf = SVC(C = 0.1, kernel = 'poly',probability=True)
svc_clf.fit(X_train,y_train)
#classifier 3
rdf_clf = RandomForestClassifier(max_depth=9, n_estimators=200)
rdf clf.fit(X_train,y_train)
#classifier 4
tree_clf = DecisionTreeClassifier(max_depth = 2)
tree_clf.fit(X_train,y_train)
#classifier 5
xg clf = XGBClassifier(max depth = 2, n estimators = 500)
xg_clf.fit(X_train,y_train)
#Stacking Classifer
sclf = StackingClassifier(classifiers=[knn_model,model,svc_clf,rdf_clf,tree_clf,xg_clf],meta_classifier=model,use
_probas=True)
#fit the model
sclf.fit(X_train,y_train)
#predict in probabilities
y_pred = sclf.predict(X_train)
```

In [90]:

```
train_auc = roc_auc_score(y_train,y_pred)
print(train_auc)
```

1.0

```
In [91]:
```

```
y_pred_stack_test = sclf.predict_proba(X_test)[:,1]
```

In [92]:

```
y_pred_stack_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_stack_test})

y_pred_stack_test.to_csv('submission_stack1.csv', index=False)
y_pred_stack_test.head(20)
```

Out[92]:

	ID	Target
0	250	0.001383
1	251	0.105695
2	252	0.998640
3	253	0.999989
4	254	0.286169
5	255	0.988268
6	256	0.000815
7	257	0.994528
8	258	0.999980
9	259	0.005618
10	260	0.999522
11	261	0.011635
12	262	0.000444
13	263	0.999879
14	264	0.073121
15	265	0.999924
16	266	0.997855
17	267	0.496824
18	268	0.015918
19	269	0.997534

Name	Submitted	Wait time	Execution time	Score
submission_stack1 (1).csv	just now	1 seconds	0 seconds	0.772

Complete

Jump to your position on the leaderboard ▼

Test_auc = 0.772

Summary of All Models

+ Model	+ Hyper-parameter	+ Train AUC	+ Test AUC
+======	+=====================================	+======= 0.540 	-=====+ 0.630
logistic Regresstion	{'C': 10000, 'penalty': 'l1', 'solver': 'liblinear'}	1	0.730
Support Vector Machine	{'C': 0.1, 'kernel': 'poly'}	1	0.730
XGBoost Classifier	{'max_depth': 2, 'n_estimators': 500}	1	0.800
Random forest	{'max_depth': 9, 'n_estimators': 200}	1	0.700
DecisionTree	{'max_depth': 2}	0.660	0.610
Calibrated Model		+ 1 +	+ 0.770 +

Observation

- 1.We have read the training and test dataset. After reading both of dataset, we got it know that test dataset is having more features compare to training dataset.
- 1. Applied Feature Engineering and came up with new Features.
- 2. Dropped the labled data from both train and test datasets.
- 3. Standardized the Features using StandScaler()
- 4. Used GridSerach Validation for hyper-parameter tuning.
- 5. We have applied following machine learning algorithm: 1.KNN: The KNN algorithm trained the model along with parameter(algorithm = 'kd_tree', and n_neighbors=45) and Class_weight, and gave train_AUC=0.54 and Test Auc = 0.63. Model is less accurate but it is not overfitted.
 - 2.Logistic Regression: The Logistic regression algorithm trained the model with parameter (C=1000, penalty=I1, solver=liblinear) and class_weight, and gave train AUC = 1.00 and Test auc=0.73. Model is not overfitted.
 - 3.Support Vector Machine: The SVM algorithm trained the model with parameter(C=0.1,kernel=Poly) and class_weight, and got the train AUC=0.1 and Test AUC = 0.73.Model is not overfitted.
 - 4.XGBoost Classifier: The XGBoost classifier trained the model with parameter(max_depth=2,n_estimators=500) and class_weight, and got the train_AUC= 1.0 and Test_AUC=0.80. Model is accurate and not overfitted
 - 5.Random Forest: The Random Forest classifier trained the model with parameter(max_depth=9,n_estimators=200) and class_weight, and got the train_AUC = 1.00 and test_AUC = 0.70. Model is not overfitted
 - 6.DecisionTree : The Decision Tree classifier trained the model with parameter(max_depth=2) and got the train_AUC = 0.66 and test_AUC=0.61 .Model is comparable less accurate but it is not overfitted.
 - 7.Calibrated model gave train_AUC = 1.0 and Test_AUC = 0.77. Model is not overfitted.

XGBoost is giving good accuracy from above applied model