Internship Defense M2 Astrophysics

Modeling non-linear redshift-space distortions induced by galaxy peculiar velocities

Rocher Antoine Advisor : de la Torre Sylvain

June, 21st 2019

Introduction

Current cosmological model

- Expanding Universe, today dominated by Dark Energy
- Two types of matter: Dark and baryonic matter
- Ruled by General Relativy (GR)
- Homogeneous and Isotropic on large scales

 Evidence of an acceleration of the expansion by Supernovae 1a and BAO

- Can be explained by Dark Energy
- Or deviation from GR ??

Seek probes to test gravitation and the dynamics of the Universe on large scales

Large Scales Structures (LSS)

Growth under gravity

Initial density fluctuations

Formation of stars, galaxies, clusters, ...

Galaxy redshift surveys

Simulation

Galaxy Redshift Surveys

Estimation of distances with spectroscopic redshift

Sensitive to galaxies peculiar motions

$$\mathbf{s} = \mathbf{x} + \frac{\mathbf{v}(\mathbf{x}) \cdot \mathbf{x}}{aH}$$

= $\mathbf{x} + f[\mathbf{u}(\mathbf{x}) \cdot \hat{\mathbf{x}}], \quad \mathbf{u} \equiv \frac{\mathbf{v}}{aHf}$

Galaxy Bias

Galaxy field ≠ True matter field

collapse and create structures (dense peaks)

If $\delta > 1.68$

Observed LSS with redshift surveys

Galaxies peculiar velocities

$$z = (1 + z_{cosmo}) \left(1 + \frac{v \cdot \hat{l}}{c} \right)$$

$$\mathbf{s} = \mathbf{x} + \frac{\mathbf{v}(\mathbf{x}) \cdot \hat{l}}{aH}$$
$$= \mathbf{x} + f[\mathbf{u}(\mathbf{x}) \cdot \hat{l}], \quad \mathbf{u} \equiv \frac{\mathbf{v}}{aHf}$$

Affects the apparent distances along the line of sight (los)

Observed LSS with redshift surveys

Galaxies peculiar velocities

$$z = (1 + z_{cosmo}) \left(1 + \frac{v \cdot \hat{l}}{c} \right)$$

$$\mathbf{s} = \mathbf{x} + \frac{\mathbf{v}(\mathbf{x}) \cdot \hat{l}}{aH}$$
$$= \mathbf{x} + f[\mathbf{u}(\mathbf{x}) \cdot \hat{l}], \quad \mathbf{u} \equiv \frac{\mathbf{v}}{aHf}$$

Affects the apparent distances along the line of sight (los)

RSD EFFECT

Small scales: Fingers of God ~Mpc (haloes)

Non linear effect:

- Random motions
- Elongation alongLOS

Large scales: Kaiser effect > ~10 Mpc

Linear effect:

- Coherent motions ដ
- Squashingeffect along LOS

- => Anisotropies between parallel and perpendicular component
- => Characterize in redshift spectroscopic surveys

Two-points correlation function

$$dP(\mathbf{r}) = \bar{n}^2 (1 + \xi(\mathbf{r}) dV_1 dV_2$$

Growth rate

In linear theory:

Growth Factor

$$\nabla \boldsymbol{u} = -aHf\delta$$

$$f(a) = \frac{d \ln D}{d \ln a}$$

Growth rate

f(a) describes a which speed structure growth

Predicted by GR:
$$f(z) \approx \Omega_M(z)^{0.55}$$

Test RG a large scale

Kaiser linear model

Number of galaxies is conserved

$$n^{s}(s) d^{3}s = n(r) d^{3}r$$

Small perturbation
Small velocity variation
Characteristic scale perburbations is
small regarding the distance from us

$$\delta^s(\mathbf{k}) = \left(1 + f\mu^2\right)\delta(\mathbf{k})$$

$$P(k) = \langle \delta(\mathbf{k}_1) \delta(\mathbf{k}_2) \rangle$$

$$P^s(k,\mu) = \left(1 + f\mu^2\right)^2 P(k)$$

Assuming a linear bias

$$P_g^s(\mathbf{k}) = (1 + \beta \mu^2)^2 P(k)$$

$$\beta = f/b$$

Streaming model

$$1 + \underbrace{\xi_s(s_{\parallel}, s_{\perp})} = \int_{-\infty}^{\infty} dr_{\parallel} \underbrace{\left[1 + \xi(r)\right]} \mathcal{P}(r_{\parallel} - s_{\parallel}, \boldsymbol{r})$$

2PCF in real space

Gaussian streaming model

This model assumes P is Gaussian:

$$1 + \xi_s(s_{\parallel}, s_{\perp}) = \int_{-\infty}^{\infty} dr_{\parallel} \ [1 + \xi(r)] \ \mathcal{P}(r_{\parallel} - s_{\parallel}, \mathbf{r})$$

$$\mathcal{P}(v_{12} = s_{\parallel} - r_{\parallel}, \mathbf{r}) = \frac{1}{\sqrt{2\pi\sigma_{12}(\mathbf{r}, \mu_r)}} \exp \left[-\frac{s_{\parallel} - r_{\parallel} - \mu_r v_{12}(\mathbf{r})}{2\sigma_{12}^2(\mathbf{r}, \mu_r)} \right]$$

pairwise velocity probability distribution function

But need to evaluate its moments!

$$\mu_r v_{12}(\boldsymbol{r})$$

$$\sigma_{12}^2(m{r},\mu_r)$$

Fisher 1995 linear prediction

Velocity/density coupling

$$\langle (\vec{v}' - \vec{v}) (1 + \delta) (1 + \delta') \rangle$$

Velocity/Velocity coupling

$$\langle \vec{v}_i \vec{v}_j' \rangle$$

$$egin{aligned} m{v}_{12}(m{r}) &= -\hat{r} rac{fb}{\pi^2} \int_0^\infty dk \; k \; P_m^r(k) j_1(kr) \ &\Psi_{\parallel}(m{r}) &= rac{f^2}{2\pi^2} \int_0^\infty dk P_m^r(k) \left[j_o(kr) - rac{2j_1(kr)}{kr}
ight] \ &\Psi_{\perp}(m{r}) &= rac{f^2}{2\pi^2} \int_0^\infty dk P_m^r(k) rac{j_1(kr)}{kr} \ &\sigma_{12}^2(m{r}, \mu_r^2) &= 2 \left[\sigma_v^2 - \mu_r^2 \Psi_{\parallel}(r) - (1 - \mu_r^2) \Psi_{\perp}(r)
ight] \end{aligned}$$

Convolution Lagrangian Perturbation Theory

Eulerian (x) – Lagrangian (q) mappping

$$x(q,t) = q + \Psi(q,t)$$
 Displacement field

Conservation equation

$$[1 + \delta_m(\mathbf{x}, t)]d^3x = [1 + \delta_m(\mathbf{q}, t_0)]d^3q$$

$$1 + \delta_m(\mathbf{x}, t) = \left[1 + \delta_m(\mathbf{q}, t_0)\right] \left| \frac{d^3 \mathbf{x}}{d^3 \mathbf{q}} \right|^{-1}$$
$$1 + \delta(\mathbf{x}, t) = \int d^3 q \, \delta_D^3[\mathbf{x} - \mathbf{q} - \Psi(\mathbf{q}, t)]$$

$$1 + \xi(\mathbf{r}) = \int d^3q \, M_0(\mathbf{r}, \mathbf{q})$$

$$v_{12,n}(\mathbf{r}) = [1 + \xi(r)]^{-1} \int d^3q \, M_{1,n}(\mathbf{r}, \mathbf{q})$$

$$\sigma_{12,nm}^2(\mathbf{r}) = [1 + \xi(r)]^{-1} \int d^3q \, M_{2,nm}(\mathbf{r}, \mathbf{q})$$

M1 et M2 are 1st and 2nd derivative of M_0

$$1 + \xi_X(\mathbf{r}) = \int d^3q \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k}\cdot(\mathbf{q}-\mathbf{r})} \int \frac{d\lambda_1}{2\pi} \frac{d\lambda_2}{2\pi} \tilde{F}_1 \tilde{F}_2 K(\mathbf{q}, \mathbf{k}, \lambda_1, \lambda_2)$$

$$K(\boldsymbol{q}, \boldsymbol{k}, \lambda_1, \lambda_2) = \left\langle e^{i(\lambda_1 \delta_1 + \lambda_2 \delta_2 + \boldsymbol{k} \cdot \vec{\Delta})} \right\rangle \quad \text{and} \quad \Delta \equiv \vec{\Psi}_2 - \vec{\Psi}_1$$

CLPT Predictions

Cumulant expansion

$$\left\langle e^{iX} \right\rangle = \exp \left[\sum_{N=1}^{\infty} \frac{i^N}{N!} \langle X^N \rangle_c \right]$$

$$M_{0} = \frac{1}{(2\pi)^{3/2}|A|^{1/2}} e^{-\frac{1}{2}(r-q)^{T}\mathbf{A}^{-1}(r-q)} \times \left\{ 1 + \langle F' \rangle^{2} \xi_{R} - 2 \langle F' \rangle U_{i}g_{i} + \frac{1}{2} \langle F'' \rangle^{2} \xi_{R} - 2 \langle F' \rangle \langle F'' \rangle \xi_{R}U_{i}g_{i} - [\langle F'' \rangle + \langle F' \rangle^{2}]U_{i}U_{j}G_{ij} + \frac{1}{6}W_{ijk}\Gamma_{ijk} - \langle F' \rangle A_{ij}^{10}G_{ij} - \langle F'' \rangle U_{i}^{20}g_{i} - \langle F' \rangle^{2} U_{i}^{11}g_{i} + O(P_{L}^{3}) \right\}$$

$$(76)$$

$$M_{1,n} = \frac{f^{2}}{(2\pi)^{3/2}|A|^{1/2}} e^{-\frac{1}{2}(r-q)^{T}\mathbf{A}^{-1}(r-q)} \times \left\{ 2 \langle F' \rangle \dot{U}_{n} - g_{i}\dot{A}_{in} + \langle F'' \rangle \dot{U}_{n}^{20} + \langle F' \rangle^{2} \dot{U}^{11_{n}} + 2 \langle F' \rangle \langle F'' \rangle \xi_{L}\dot{U}_{n} - 2 \langle F' \rangle g_{i}\dot{A}_{in}^{10} - \frac{1}{2}G_{ij}\dot{W}_{ijn} - 2[\langle F'' \rangle + \langle F' \rangle^{2}]g_{i}U_{i}\dot{U}_{n} - \langle F' \rangle^{2} \xi_{L}g_{i}\dot{A}_{in} - 2 \langle F' \rangle G_{ij}U_{i}\dot{A}_{in} + O(P_{L}^{3}) \right\} (77)$$

$$M_{2,nm} = \frac{f^2}{(2\pi)^{3/2}|A|^{1/2}} e^{-\frac{1}{2}(\mathbf{r}-\mathbf{q})^T \mathbf{A}^{-1}(\mathbf{r}-\mathbf{q})} \times \left\{ 2[\langle F' \rangle^2 + \langle F'' \rangle] \dot{U}_n \dot{U}_m - 2 \langle F' \rangle (\dot{A}_{in} g_i \dot{U}_m + \dot{A}_{im} g_i \dot{U}_n) - \dot{A}_{im} \dot{A}_{jn} G_{ij} + [1 + \langle F' \rangle^2 \xi_L - 2 \langle F' \rangle U_i g_i] \ddot{A}_{nm} + 2 \langle F' \rangle \ddot{A}_{nm}^{10} - \ddot{W}_{inm} g_i + O(P_L^3) \right\}$$
(78)

Cumulants

 $\langle \delta_1^m \delta_2^n \Delta_{i_1} \dots \Delta_{i_r} \rangle$

Quasi linear regime Cut at order 2

Lagrangian bias

My work

I Wrote a C code of the GSM with linear and CLPT predictions

Cosmo Ω_m , h, σ_8

My work

$$M_{0} = \frac{1}{(2\pi)^{3/2}|A|^{1/2}} e^{-\frac{1}{2}(r-q)^{T}\mathbf{A}^{-1}(r-q)} \times \left\{ 1 + \langle F' \rangle^{2} \xi_{R} - 2 \langle F' \rangle U_{i}g_{i} + \frac{1}{2} \langle F'' \rangle^{2} \xi_{R} - 2 \langle F' \rangle \langle F'' \rangle \xi_{R}U_{i}g_{i} - \langle F'' \rangle (F'')^{2} U_{i}^{11}g_{i} + O(P_{L}^{3}) \right\}$$

$$(76)$$

$$M_{1,n} = \frac{f^{2}}{(2\pi)^{3/2}|A|^{1/2}} e^{-\frac{1}{2}(r-q)^{T}\mathbf{A}^{-1}(r-q)} \times \left\{ 2 \langle F' \rangle \dot{U}_{n} - g_{i}\dot{A}_{in} + \langle F'' \rangle \dot{U}_{n}^{20} + \langle F' \rangle^{2} \dot{U}^{11_{n}} + 2 \langle F' \rangle \langle F'' \rangle \xi_{L}\dot{U}_{n} - 2 \langle F' \rangle g_{i}\dot{A}_{in}^{10} - \frac{1}{2}G_{ij}\dot{W}_{ijn} - 2[\langle F'' \rangle + \langle F' \rangle^{2}]g_{i}U_{i}\dot{U}_{n} - \langle F' \rangle^{2} \xi_{L}g_{i}\dot{A}_{in} - 2 \langle F' \rangle G_{ij}U_{i}\dot{A}_{in} + O(P_{L}^{3}) \right\}$$

$$M_{2,nm} = \frac{f^{2}}{(2\pi)^{3/2}|A|^{1/2}} e^{-\frac{1}{2}(r-q)^{T}\mathbf{A}^{-1}(r-q)} \times \left\{ 2[\langle F' \rangle^{2} + \langle F'' \rangle]\dot{U}_{n}\dot{U}_{m} - 2 \langle F' \rangle (\dot{A}_{in}g_{i}\dot{U}_{m} + \dot{A}_{im}g_{i}\dot{U}_{n}) - \dot{A}_{im}\dot{A}_{jn}G_{ij} + [1 + \langle F' \rangle^{2}\xi_{L} - 2 \langle F' \rangle U_{i}g_{i}]\ddot{A}_{nm} + 2 \langle F' \rangle \ddot{A}_{nm}^{10} - \ddot{W}_{inm}g_{i} + O(P_{L}^{3}) \right\}$$

$$(78)$$

My work

Finaly...

$$\begin{split} U_i &= U_i^{(1)} + U_i^{(3)} + \cdots, \quad U_i^{20} = U_i^{20(2)} + \cdots, \quad U_i^{11} = U_i^{11(2)} + \cdots, \\ A_{ij} &= A_{ij}^{(11)} + A_{ij}^{(22)} + A_{ij}^{(13)} + A_{ij}^{(31)} + \cdots, \quad A_{ij}^{10} = A_{ij}^{10(12)} + A_{ij}^{10(21)} + \cdots \\ W_{ijk} &= W_{ijk}^{(112)} + W_{ijk}^{(121)} + W_{ijk}^{(211)} + \cdots. \end{split}$$

$$\dot{U}_n = \frac{\langle \delta_1 \dot{\Delta}_n \rangle}{f} = U_n^{(1)} + 3U_n^{(3)} + \cdots , \quad \dot{U}_n^{20} = \frac{\langle \delta_1^2 \dot{\Delta}_n \rangle}{f} = U_n^{20(2)} + \cdots , \quad \dot{U}_n^{11} = \frac{\langle \delta_1 \delta_2 \dot{\Delta}_n \rangle}{f} = U_n^{11(2)} + \cdots$$

$$\dot{A}_{in} = \frac{\langle \Delta_i \dot{\Delta}_n \rangle}{f} = A_{in}^{(11)} + 3A_{in}^{(13)} + A_{in}^{(31)} + 2A_{in}^{(22)} + \cdots , \quad \dot{A}_{in}^{10} = \frac{\langle \delta_1 \Delta_i \dot{\Delta}_n \rangle}{f} = 2A_{in}^{10(12)} + A_{in}^{10(21)} + \cdots$$

$$\dot{W}_{ijn} = \frac{\langle \delta_1 \Delta_i \dot{\Delta}_j \dot{\Delta}_n \rangle}{f} = 2W_{ijn}^{(112)} + W_{ijn}^{(121)} + W_{ijn}^{(211)} + \cdots$$

$$\begin{split} U_i^{mn(p)} &= \langle \delta_1^m \delta_2^n \Delta_i^{(p)} \rangle_c \;, \quad A_{ij}^{mn(pq)} = \langle \delta_1^m \delta_2^n \Delta_i^{(p)} \Delta_j^{(q)} \rangle_c \\ W_{ijk}^{mn(pqr)} &= \langle \delta_1^m \delta_2^n \Delta_i^{(p)} \Delta_j^{(q)} \Delta_j^{(r)} \rangle_c \;, \end{split}$$

$$R_n(k) = \frac{k^3}{4\pi^2} P_L(k) \int_0^\infty dr \ P_L(kr) \widetilde{R}_n(r)$$

$$Q_n(k) = \frac{k^3}{4\pi^2} \int_0^\infty dr \, P_L(kr) \int_{-1}^1 dx \, P_L(k\sqrt{y}) Q_n(r,x) \ ,$$

$$\begin{split} \ddot{A}_{nm} &= \frac{\langle \dot{\Delta}_n \dot{\Delta}_m \rangle}{f^2} = A_{nm}^{(11)} + 3A_{nm}^{(13)} + 3A_{nm}^{(31)} + 4A_{nm}^{(22)} \;, \\ \ddot{A}_{10,nm} &= \frac{\langle \delta_1 \dot{\Delta}_n \dot{\Delta}_m \rangle}{f^2} = 2A_{nm}^{10(12)} + 2A_{nm}^{10(21)} \;, \\ \ddot{W}_{inm} &= \frac{\langle \delta_1 \dot{\Delta}_i \dot{\Delta}_n \dot{\Delta}_m \rangle}{f^2} = 2W_{inm}^{(112)} + 2W_{inm}^{(121)} + W_{inm}^{(211)} \;. \end{split}$$

$$Q_{1} = \frac{r^{2}(1-x^{2})^{2}}{y^{2}}, \quad Q_{2} = \frac{(1-x^{2})rx(1-rx)}{y^{2}},$$

$$Q_{5} = \frac{rx(1-x^{2})}{y}, \quad Q_{8} = \frac{r^{2}(1-x^{2})}{y},$$

$$\widetilde{R}_{1}(r) = \int_{-1}^{+1} dx \, \frac{r^{2}(1-x^{2})^{2}}{1+r^{2}-2rx}$$

$$\widetilde{R}_{2}(r) = \int_{-1}^{+1} dx \, \frac{(1-x^{2})rx(1-rx)}{1+r^{2}-2rx}$$

$$\begin{split} \xi_L(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ k^2 P_L(k) j_0(kq) \\ V_1^{(112)}(q) &= \frac{1}{2\pi^2} \int_0^\infty \frac{dk}{k} \left(-\frac{3}{7} \right) R_1(k) j_1(kq) \\ V_3^{(112)}(q) &= \frac{1}{2\pi^2} \int_0^\infty \frac{dk}{k} \left(-\frac{3}{7} \right) R_1(k) j_1(kq) \\ S^{(112)}(q) &= \frac{1}{2\pi^2} \int_0^\infty \frac{dk}{k} \left(-\frac{3}{7} \right) Q_1(k) j_1(kq) \\ S^{(112)}(q) &= \frac{1}{2\pi^2} \int_0^\infty \frac{dk}{k} \left(-\frac{3}{7} \right) \times \\ &= [2R_1 + 4R_2 + Q_1 + 2Q_2] j_3(kq) \\ U^{(1)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ k \left(-1 \right) P_L(k) j_1(kq) \\ U^{(3)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ k \left(-\frac{5}{21} \right) R_1(k) j_1(kq) \\ U^{(2)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ k \left(-\frac{3}{7} \right) Q_8(k) j_1(kq) \\ U^{(2)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ k \left(-\frac{6}{7} \right) \left[R_1(k) + R_2(k) \right] j_1(kq) \\ X^{(12)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ k \left(-\frac{6}{7} \right) \left[R_1(k) + R_2(k) \right] j_1(kq) \\ X^{(12)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \left(-\frac{3}{14} \right) \left[3R_1(k) + 4R_2(k) + 2Q_5(k) \right] \times \\ \left[j_0(kq) - 3 \frac{j_1(kq)}{kq} \right] \\ X^{(11)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \left(-\frac{3}{14} \right) \left[3R_1(k) + 4R_2(k) + 2Q_5(k) \right] \times \\ \left[j_0(kq) - 3 \frac{j_1(kq)}{kq} \right] \\ X^{(11)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{98} Q_1(k) \left[\frac{2}{3} - 2 \frac{j_1(kq)}{kq} \right] \\ X^{(13)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{28} Q_1(k) \left[\frac{2}{3} - 2 \frac{j_1(kq)}{kq} \right] \\ Y^{(11)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{98} Q_1(k) \left[-2j_0(kq) + 6 \frac{j_1(kq)}{kq} \right] \\ Y^{(12)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{28} Q_1(k) \left[-2j_0(kq) + 6 \frac{j_1(kq)}{kq} \right] \\ Y^{(13)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{28} Q_1(k) \left[-2j_0(kq) + 6 \frac{j_1(kq)}{kq} \right] \\ Y^{(13)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{28} Q_1(k) \left[-2j_0(kq) + 6 \frac{j_1(kq)}{kq} \right] \\ Y^{(13)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{28} Q_1(k) \left[-2j_0(kq) + 6 \frac{j_1(kq)}{kq} \right] \\ Y^{(13)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{28} Q_1(k) \left[-2j_0(kq) + 6 \frac{j_1(kq)}{kq} \right] \\ Y^{(13)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{28} Q_1(k) \left[-2j_0(kq) + 6 \frac{j_1(kq)}{kq} \right] \\ Y^{(13)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{28} Q_1(k) \left[-2j_0(kq) + 6 \frac{j_1(kq)}{kq} \right] \\ Y^{(13)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{28} Q_1(k) \left[-2j_0(kq) + 6 \frac{j_1(kq)}{kq} \right] \\ Y^{(13)}(q) &= \frac{1}{2\pi^2} \int_0^\infty dk \ \frac{9}{28} Q_$$

Code comparison results

CLPT moments comparison with code from Reid et al. 2011

Perfect agreement when taking same inputs

Code predictions

CLPT two-point correlation function contours

Linear GSM

CLPT GSM

Code predictions

Multipole moments comparison for different predictions

2PCF comparison from linear GSM (dasehd line) and CLPT GSM (solid line)

Compare with simulation

Simulation UNITS (Feng et al. 216)

 $\Omega_{\rm m} = 0.3089$, $h \equiv H_0/100 = 0.6774$ and $\sigma_8 = 0.8147$

Bias fitting F' = 0.48

F''=0.05

Landy-Szalay estimator

$$\xi(r) = \frac{DD(r) - 2DR(r) + RR(r)}{RR(r)}$$

Box size 1Gpc at z=0

Expected results from CLPT

The GS/CLPT model allows reproducing RSD signal down to 20 Mpc/h (quasilinear regime) within 1%

Conclusion

- RSD is crucial to test gravity (on large scales) and cosmic acceleration
- Need reduce systematics from RSD non-linear modelling for precision cosmology: statistical errors under 1% for future redshift surveys such as EUCLID or DESI
- GS/CLPT is a robust RSD model that seems to meet the precision requirements for scales above 20 Mpc/h

- Still need to optimise the model with more detailed comparisons to

with simulations

Thanks!