

王石嵘

August 14, 2019

Contents

1	Mathematical Review			
	1.1	Linear	Algebra	2
		1.1.1	3-D Vector Algebra	2
		1.1.2	Matrices	2
		1.1.3	Determinants	4
		1.1.4	N-D Complex Vector Spaces	5
		1.1.5	Change of Basis	5

1 Mathematical Review

1.1 Linear Algebra

1.1.1 3-D Vector Algebra

Ex 1.1

a)

$$\mathcal{O}\mathbf{e}_j = \sum_{i=1}^3 \mathbf{e}_i O_{ij} \tag{1.1}$$

$$\mathbf{e}_{i} \cdot \mathcal{O}\mathbf{e}_{j} = \mathbf{e}_{i} \cdot \sum_{i=1}^{3} \mathbf{e}_{i} O_{ij} = O_{ij}$$

$$\tag{1.2}$$

b)

$$\mathbf{b} = \mathcal{O}\mathbf{a} = \sum_{i=1}^{3} a_{i} \sum_{j=1}^{3} \mathbf{e}_{j} O_{ji}$$

$$= \sum_{i=1}^{3} a_{j} \sum_{i=1}^{3} \mathbf{e}_{i} O_{ij} = \sum_{i=1}^{3} \mathbf{e}_{i} \sum_{j=1}^{3} a_{j} O_{ij}$$
(1.3)

thus

$$\mathbf{b}_{i} = \sum_{j=1}^{3} a_{j} O_{ij} \tag{1.4}$$

Ex 1.2

$$[\mathbf{A}, \mathbf{B}] = \begin{bmatrix} 0 & -2 & 4 \\ 2 & 0 & 3 \\ -4 & -3 & 0 \end{bmatrix}$$
 (1.5)

$$\{\mathbf{A}, \mathbf{B}\} = \begin{bmatrix} 0 & 0 & -2 \\ 0 & -2 & 3 \\ -2 & 3 & -2 \end{bmatrix}$$
 (1.6)

1.1.2 Matrices

Ex 1.3

$$(AB)_{nk} = \sum_{m}^{M} A_{nm} B_{mk} \tag{1.7}$$

$$(AB)_{kn}^{\dagger} = (AB)_{nk}^{*} = \sum_{m}^{M} A_{nm}^{*} B_{mk}^{*} = \sum_{m}^{M} B_{km}^{\dagger} A_{mn}^{\dagger} = (B^{\dagger} A^{\dagger})_{kn}$$
(1.8)

thus

$$(\mathbf{A}\mathbf{B})^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger} \tag{1.9}$$

Ex 1.4

a. suppose **A** is $N \times M$ and **B** is $M \times N$

$$\operatorname{tr} \mathbf{AB} = \sum_{n=1}^{N} (AB)_{nn} = \sum_{n=1}^{N} \sum_{m=1}^{M} A_{nm} B_{mn} = \sum_{m=1}^{M} \sum_{n=1}^{N} B_{mn} A_{nm} = \sum_{m=1}^{M} (BA)_{mm} = \operatorname{tr} \mathbf{BA}$$
 (1.10)

b.

$$\mathbf{AB}(\mathbf{AB})^{-1} = \mathbf{1} \tag{1.11}$$

$$\mathbf{B}^{-1}\mathbf{A}^{-1}\mathbf{A}\mathbf{B}(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}\mathbf{1}$$
(1.12)

$$\mathbf{B}^{-1}(\mathbf{A}^{-1}\mathbf{A})\mathbf{B}(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
(1.13)

$$\mathbf{B}^{-1}\mathbf{1}\mathbf{B}(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \tag{1.14}$$

thus

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \tag{1.15}$$

C.

$$\mathbf{B} = \mathbf{U}^{\dagger} \mathbf{A} \mathbf{U} \tag{1.16}$$

huhhj

$$\mathbf{U}\mathbf{B}\mathbf{U}^{\dagger} = \mathbf{U}\mathbf{U}^{\dagger}\mathbf{A}\mathbf{U}\mathbf{U}^{\dagger} = \mathbf{1}\mathbf{A}\mathbf{1} = \mathbf{A} \tag{1.17}$$

d. \mathbf{C} is Hermitian, \mathbf{C}

$$\mathbf{C} = \mathbf{C}^{\dagger} \tag{1.18}$$

$$\mathbf{A}\mathbf{B} = (\mathbf{A}\mathbf{B})^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger} \tag{1.19}$$

Since **A**, **B** are Hermitian,

$$\mathbf{A}\mathbf{B} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger} = \mathbf{B}\mathbf{A} \tag{1.20}$$

: .

$$[\mathbf{A}, \mathbf{B}] = \mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A} = 0 \tag{1.21}$$

i.e. A, B commute

e. Since **A** is Hermitian,

$$\mathbf{A} = \mathbf{A}^{\dagger} \tag{1.22}$$

thus

$$(\mathbf{A}^{1-})^{\dagger} \mathbf{A} = (\mathbf{A}^{1-})^{\dagger} \mathbf{A}^{\dagger} = (\mathbf{A}\mathbf{A}^{-1})^{\dagger} = \mathbf{1}^{\dagger} = \mathbf{1}$$

$$(1.23)$$

thus

$$(\mathbf{A}^{1-})^{\dagger} \mathbf{A} \mathbf{A}^{-1} = \mathbf{A}^{-1} \tag{1.24}$$

$$(\mathbf{A}^{1-})^{\dagger} = \mathbf{A}^{-1} \tag{1.25}$$

i.e. \mathbf{A}^{-1} , if it exists, is Hermitian.

f. Suppose

$$\mathbf{A}^{-1} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \tag{1.26}$$

thus

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (1.27)

the solution is

$$x = \frac{A_{22}}{A_{11}A_{22} - A_{12}A_{21}}$$

$$y = \frac{-A_{12}}{A_{11}A_{22} - A_{12}A_{21}}$$

$$z = \frac{-A_{21}}{A_{11}A_{22} - A_{12}A_{21}}$$

$$w = \frac{A_{11}}{A_{11}A_{22} - A_{12}A_{21}}$$

$$(1.28)$$

thus

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}$$
 (1.29)

1.1.3 Determinants

Ex 1.5 Suppose

$$\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \tag{1.30}$$

1.

$$\begin{vmatrix} 0 & 0 \\ A_{21} & A_{22} \end{vmatrix} = 0 \cdot A_{22} - 0 \cdot A_{21} = 0 \tag{1.31}$$

$$\begin{vmatrix} 0 & A_{12} \\ 0 & A_{22} \end{vmatrix} = 0 \cdot A_{22} - 0 \cdot A_{12} = 0 \tag{1.32}$$

2.

$$\det(\mathbf{A}) = A_{11}A_{22} - 0 \cdot 0 = A_{11}A_{22} \tag{1.33}$$

3.

$$\det(\mathbf{A}) = A_{11}A_{22} - A_{12}A_{21} \tag{1.34}$$

$$\begin{vmatrix} A_{21} & A_{22} \\ A_{11} & A_{12} \end{vmatrix} = A_{21}A_{12} - A_{22}A_{11} = -\det(\mathbf{A})$$
 (1.35)

4.

$$\det(\mathbf{A}^{\dagger})^* = \begin{vmatrix} A_{11}^* & A_{21}^* \\ A_{12}^* & A_{22}^* \end{vmatrix}^* = (A_{11}^* A_{22}^* - A_{21}^* A_{12}^*)^* = A_{11} A_{22} - A_{12} A_{21} = \det(\mathbf{A})$$
 (1.36)

5. Suppose $\mathbf{B} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$

$$\det(\mathbf{AB}) = \begin{vmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{vmatrix}$$

$$= (A_{11}B_{11} + A_{12}B_{21})(A_{21}B_{12} + A_{22}B_{22}) - (A_{11}B_{12} + A_{12}B_{22})(A_{21}B_{11} + A_{22}B_{21})$$

$$= A_{11}B_{11}A_{21}B_{12} + A_{11}B_{11}A_{22}B_{22} + A_{12}B_{21}A_{21}B_{12} + A_{12}B_{21}A_{22}B_{22}$$

$$- (A_{11}B_{12}A_{21}B_{11} + A_{11}B_{12}A_{22}B_{21} + A_{12}B_{22}A_{21}B_{11} + A_{12}B_{22}A_{22}B_{21})$$

$$= A_{11}B_{11}A_{22}B_{22} + A_{12}B_{21}A_{21}B_{12} - A_{11}B_{12}A_{22}B_{21} - A_{12}B_{22}A_{21}B_{11}$$

$$(1.37)$$

$$\det(\mathbf{A})\det(\mathbf{B}) = (A_{11}A_{22} - A_{12}A_{21})(B_{11}B_{22} - B_{12}B_{21})$$

$$= A_{11}A_{22}B_{11}B_{22} - A_{11}A_{22}B_{12}B_{21} - A_{12}A_{21}B_{11}B_{22} + A_{12}A_{21}B_{12}B_{21}$$

$$= A_{11}B_{11}A_{22}B_{22} + A_{12}B_{21}A_{21}B_{12} - A_{11}B_{12}A_{22}B_{21} - A_{12}B_{22}A_{21}B_{11}$$

$$(1.38)$$

∴.

$$\det(\mathbf{A})\det(\mathbf{B}) = \det(\mathbf{A}\mathbf{B}) \tag{1.39}$$

Ex 1.6

6. If two rows (e.g. ith and jth) are equal

i.e.

$$\det(\mathbf{A}) = -\det(\mathbf{A}) \tag{1.41}$$

thus

$$\det(\mathbf{A}) = 0 \tag{1.42}$$

7. From Ex 1.5.5, we have

$$\det(\mathbf{A})\det(\mathbf{A}^{-1}) = \det(\mathbf{1}) = 1 \tag{1.43}$$

thus

$$\det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1} \tag{1.44}$$

8.

$$\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{1} \Rightarrow \det(\mathbf{A}) \det(\mathbf{A}^{\dagger}) = \det(\mathbf{1}) = 1 \tag{1.45}$$

From Ex 1.5.4, we have

$$\det(\mathbf{A})\det(\mathbf{A})^* = 1\tag{1.46}$$

9. From Ex 1.5.5, we get

$$\det(\mathbf{U}^{\dagger})\det(\mathbf{O})\det(\mathbf{U}) = \det(\mathbf{\Omega}) \tag{1.47}$$

and

$$\det(\mathbf{U}^{\dagger})\det(\mathbf{U}) = \det(\mathbf{1}) = 1 \tag{1.48}$$

٠.

$$\det(\mathbf{O}) = \det(\mathbf{\Omega}) \tag{1.49}$$

Ex 1.7 If $det(\mathbf{A}) \neq 0$, thus \mathbf{A}^{-1} exists, we have

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{c} = \mathbf{0} \Rightarrow \mathbf{c} = \mathbf{0} \tag{1.50}$$

1.1.4 N-D Complex Vector Spaces

1.1.5 Change of Basis

Ex 1.8

$$\Omega_{\alpha\beta} = \sum_{ij} U_{\alpha i}^{\dagger} O_{ij} U_{j\beta} \tag{1.51}$$

gives

$$\operatorname{tr} \mathbf{\Omega} = \sum_{\alpha} \Omega_{\alpha\alpha} = \sum_{\alpha} \sum_{ij} U_{\alpha i}^{\dagger} O_{ij} U_{j\alpha}$$

$$= \sum_{ij} O_{ij} \sum_{\alpha} U_{j\alpha} U_{\alpha i}^{\dagger} = \sum_{ij} O_{ij} \delta_{ji} = \operatorname{tr} \mathbf{O}$$
(1.52)

1.1.6 The Eigenvalue Problem