Claims

5

10

1. A method of treating vascular proliferative disorders in a warm-blooded animal which comprises administering to said warm-blooded animal a prophylactically or therapeutically effective amount of a compound of formula (I),

$$R^{2}$$
 R^{17}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{19}
 R^{19}

a stereoisomeric form thereof, a pharmaceutically acceptable acid or base addition salt thereof, wherein

the dotted line represents an optional bond;

X is oxygen or sulfur;

 R^1 is hydrogen, C_{1-12} alkyl, Ar^1 , Ar^2C_{1-6} alkyl, quinolinyl C_{1-6} alkyl, pyridyl C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyl, mono- or

di(C_{1-6} alkyl)amino C_{1-6} alkyl, amino C_{1-6} alkyl, or a radical of formula -Alk¹-C(=O)-R⁹, -Alk¹-S(O)-R⁹ or -Alk¹-S(O)₂-R⁹, wherein Alk¹ is C_{1-6} alkanediyl,

 R^9 is hydroxy, C_{1-6} alkyl, C_{1-6} alkyloxy, amino, C_{1-8} alkylamino or C_{1-8} alkylamino substituted with C_{1-6} alkyloxycarbonyl;

R², R³ and R¹⁶ each independently are hydrogen, hydroxy, halo, cyano, C₁₋₆alkyl, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyloxy, aminoC₁₋₆alkyloxy, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy, Ar¹, Ar²C₁₋₆alkyl, Ar²oxy, Ar²C₁₋₆alkyloxy, hydroxycarbonyl, C₁₋₆alkyloxycarbonyl, trihalomethyl, trihalomethoxy, C₂₋₆alkenyl, 4,4-dimethyloxazolyl; or

when on adjacent positions R² and R³ taken together may form a bivalent radical of formula

 R^4 and R^5 each independently are hydrogen, halo, Ar^1 , $C_{1\text{-}6}$ alkyl, hydroxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyloxy, $C_{1\text{-}6}$ alkyloxy, $C_{1\text{-}6}$ alkyloxycarbonyl, $C_{1\text{-}6}$ alkyloxycarbonyl, $C_{1\text{-}6}$ alkyl $S(O)C_{1\text{-}6}$ alkyl;

R⁶ and R⁷ each independently are hydrogen, halo, cyano, C₁₋₆alkyl, C₁₋₆alkyloxy, Ar²oxy, trihalomethyl, C₁₋₆alkylthio, di(C₁₋₆alkyl)amino, or when on adjacent positions R⁶ and R⁷ taken together may form a bivalent radical of formula

-O-CH₂-O-

(c-1), or

-CH=CH-CH=CH-

(c-2);

10

15

20

25

35

 R^8 is hydrogen, $C_{1\text{-}6}$ alkyl, cyano, hydroxycarbonyl, $C_{1\text{-}6}$ alkyloxycarbonyl $C_{1\text{-}6}$ alkyl, cyano $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxycarbonyl $C_{1\text{-}6}$ alkyl, carboxy $C_{1\text{-}6}$ alkyl, hydroxy $C_{1\text{-}6}$ alkyl, amino $C_{1\text{-}6}$ alkyl, mono- or di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl, imidazolyl, halo $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyl, carbonyl $C_{1\text{-}6}$ alkyl, or a radical of formula

-O-R¹⁰ (b-1), -S-R¹⁰ (b-2), -N-R¹¹R¹² (b-3),

wherein R^{10} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl, Ar^1 , $Ar^2C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxycarbonyl $C_{1\text{-}6}$ alkyl, a radical or formula -Alk 2 -OR 13 or -Alk 2 -NR 14 R 15 ;

 R^{11} is hydrogen, C_{1-12} alkyl, Ar^1 or Ar^2C_{1-6} alkyl;

R¹² is hydrogen, C₁₋₆alkyl, C₁₋₁₆alkylcarbonyl, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyl, Ar¹, Ar²C₁₋₆alkyl, C₁₋₆alkylcarbonylC₁₋₆alkyl, a

natural amino acid, Ar^1 carbonyl, Ar^2C_{1-6} alkylcarbonyl,

aminocarbonylcarbonyl, C_{1-6} alkyloxy C_{1-6} alkylcarbonyl, hydroxy,

 C_{1-6} alkyloxy, aminocarbonyl, di(C_{1-6} alkyl)amino C_{1-6} alkylcarbonyl, amino, C_{1-6} alkylamino, C_{1-6} alkylcarbonylamino, or a radical of formula -Alk²-OR¹³ or -Alk²-NR¹⁴R¹⁵;

wherein Alk² is C₁₋₆alkanediyl;

 R^{13} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl, hydroxy $C_{1\text{-}6}$ alkyl, Ar^1 or $Ar^2C_{1\text{-}6}$ alkyl;

 R^{14} is hydrogen, C_{1-6} alkyl, Ar^1 or Ar^2C_{1-6} alkyl;

 R^{15} is hydrogen, C_{1-6} alkyl, C_{1-6} alkylcarbonyl, Ar^1 or Ar^2C_{1-6} alkyl;

R¹⁷ is hydrogen, halo, cyano, C₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, Ar¹;

 R^{18} is hydrogen, C_{1-6} alkyl, C_{1-6} alkyloxy or halo;

R¹⁹ is hydrogen or C₁₋₆alkyl;

Ar¹ is phenyl or phenyl substituted with C_{1-6} alkyl, hydroxy, amino, C_{1-6} alkyloxy or halo; and

 Ar^2 is phenyl or phenyl substituted with C_{1-6} alkyl, hydroxy, amino, C_{1-6} alkyloxy or halo.

5

- 2. A method according to claim 1 wherein X is oxygen, the dotted line represents a bond and R¹ is hydrogen, C₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl or mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyl.
- A method according to claim 1 wherein R³ is hydrogen and R² is halo, C₁₋₆alkyl,
 C₂₋₆alkenyl, C₁₋₆alkyloxy, trihalomethoxy or hydroxyC₁₋₆alkyloxy.
- 4. A method according to claim 1 wherein R⁸ is hydrogen, hydroxy, haloC₁₋₆alkyl, hydroxyC₁₋₆alkyl, cyanoC₁₋₆alkyl, C₁₋₆alkyloxycarbonylC₁₋₆alkyl, imidazolyl, or a radical of formula -NR¹¹R¹² wherein R¹¹ is hydrogen or C₁₋₁₂alkyl and R¹² is hydrogen, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkylcarbonyl, hydroxy, or a radical of formula -Alk²-OR¹³ wherein R¹³ is hydrogen or C₁₋₆alkyl.
- A method according to claim 1 wherein the compound is
 (+)-6-[amino(4-chlorophenyl)(1-methyl-1*H*-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1*H*)-quinolinone; or a pharmaceutically acceptable acid addition salt thereof.
- 6. A method according to any of claims 1 to 5 wherein the vascular proliferative disorder is atherosclerosis.
 - 7. A method according to any of claims 1 to 5 wherein the vascular proliferative disorder is restenosis.
- 30 8. A method according to any of claims 1 to 5 wherein the vascular proliferative disorder is percutaneous transluminal coronary angioplasty restenosis or coronary artery stent restenosis.
- A method of inhibiting proliferation of smooth muscle cells in a warm-blooded
 animal which comprises administering to said warm-blooded animal a
 prophylactically or therapeutically effective amount of a compound as defined in any of claims 1 to 5.

- 10. A stent covered with a coating material which comprises an amount of a compound as defined in any one of claims 1 to 5 effective in preventing, treating or reducing smooth muscle cell proliferation.
- 5 11. Use of a compound of formula (I),

$$R^{2}$$
 R^{17}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{19}
 R^{19}

a stereoisomeric form thereof, a pharmaceutically acceptable acid or base addition salt thereof, wherein

the dotted line represents an optional bond;

X is oxygen or sulfur;

10

 R^1 is hydrogen, C_{1-12} alkyl, Ar^1 , Ar^2C_{1-6} alkyl, quinolinyl C_{1-6} alkyl, pyridyl C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyl, mono- or

di(C_{1-6} alkyl)amino C_{1-6} alkyl, amino C_{1-6} alkyl, or a radical of formula -Alk¹-C(=O)-R⁹, -Alk¹-S(O)-R⁹ or -Alk¹-S(O)₂-R⁹, wherein Alk¹ is C_{1-6} alkanediyl,

 R^9 is hydroxy, C_{1-6} alkyl, C_{1-6} alkyloxy, amino, C_{1-8} alkylamino or C_{1-8} alkylamino substituted with C_{1-6} alkyloxycarbonyl;

- R², R³ and R¹⁶ each independently are hydrogen, hydroxy, halo, cyano, C₁₋₆alkyl, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyloxy, aminoC₁₋₆alkyloxy, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy, Ar¹, Ar²C₁₋₆alkyl, Ar²oxy, Ar²C₁₋₆alkyloxy, hydroxycarbonyl, C₁₋₆alkyloxycarbonyl, trihalomethyl, trihalomethoxy, C₂₋₆alkenyl, 4,4-dimethyloxazolyl; or
- when on adjacent positions R² and R³ taken together may form a bivalent radical of formula

 R^4 and R^5 each independently are hydrogen, halo, $Ar^1,\,C_{1\text{-}6}$ alkyl, $\label{eq:control} P_{1\text{-}6} = P_{1\text{$

R⁶ and R⁷ each independently are hydrogen, halo, cyano, C₁₋₆alkyl, C₁₋₆alkyloxy, Ar²oxy, trihalomethyl, C₁₋₆alkylthio, di(C₁₋₆alkyl)amino, or when on adjacent positions R⁶ and R⁷ taken together may form a bivalent radical of formula

-O-CH₂-O-

(c-1), or

10 -CH=CH-CH=CH-

(c-2);

 R^8 is hydrogen, C_{1-6} alkyl, cyano, hydroxycarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkylcarbonyl C_{1-6} alkyl, cyano C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl C_{1-6} alkyl, carboxy C_{1-6} alkyl, hydroxy C_{1-6} alkyl, amino C_{1-6} alkyl, mono- or di(C_{1-6} alkyl)amino C_{1-6} alkyl, imidazolyl, halo C_{1-6} alkyl, C_{1-6} alkyl, carbonyl C_{1-6} alkyl, or a radical of formula

-O-R¹⁰ (b-1), -S-R¹⁰ (b-2), -N-R¹¹R¹² (b-3),

wherein R^{10} is hydrogen, C_{1-6} alkyl, C_{1-6} alkylcarbonyl, Ar^1 , Ar^2C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl C_{1-6} alkyl, a radical or formula -Alk²-OR¹³ or -Alk²-NR¹⁴R¹⁵;

 R^{11} is hydrogen, C_{1-12} alkyl, Ar^1 or Ar^2C_{1-6} alkyl;

 R^{12} is hydrogen, C_{1-6} alkyl, C_{1-16} alkylcarbonyl, C_{1-6} alkylcarbonyl, C_{1-6} alkylaminocarbonyl, Ar^1 , Ar^2C_{1-6} alkyl, C_{1-6} alkylcarbonyl C_{1-6} alkyl, a natural amino acid, Ar^1 carbonyl, Ar^2C_{1-6} alkylcarbonyl, aminocarbonylcarbonyl, C_{1-6} alkylcarbonyl, hydroxy,

 C_{1-6} alkyloxy, aminocarbonyl, di(C_{1-6} alkyl)amino C_{1-6} alkylcarbonyl, amino, C_{1-6} alkylamino, C_{1-6} alkylcarbonylamino, or a radical of formula -Alk²-OR¹³ or -Alk²-NR¹⁴R¹⁵;

30 wherein Alk^2 is C_{1-6} alkanediyl;

 R^{13} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl, hydroxy $C_{1\text{-}6}$ alkyl, Ar^1 or $Ar^2C_{1\text{-}6}$ alkyl;

R¹⁴ is hydrogen, C₁₋₆alkyl, Ar¹ or Ar²C₁₋₆alkyl;

 R^{15} is hydrogen, C_{1-6} alkyl, C_{1-6} alkylcarbonyl, Ar^1 or Ar^2C_{1-6} alkyl;

 R^{17} is hydrogen, halo, cyano, C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, Ar^1 ;

 R^{18} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy or halo;

R¹⁹ is hydrogen or C₁₋₆alkyl;

15

20

25

50

35

 Ar^1 is phenyl or phenyl substituted with $C_{1\text{-}6}$ alkyl, hydroxy, amino, $C_{1\text{-}6}$ alkyloxy or halo; and

 Ar^2 is phenyl or phenyl substituted with C_{1-6} alkyl, hydroxy, amino, C_{1-6} alkyloxy or halo; for the manufacture of a medicament to prevent or to treat vascular proliferative disorders.

12. Use according to claim 11 of a compound wherein X is oxygen, the dotted line represents a bond and R¹ is hydrogen, C₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl or monoor di(C₁₋₆alkyl)aminoC₁₋₆alkyl.

5

10

25

- 13. Use according to any of claims 11 to 12 of a compound wherein R^3 is hydrogen and R^2 is halo, C_{1-6} alkyl, C_{2-6} alkenyl, C_{1-6} alkyloxy, trihalomethoxy or hydroxy C_{1-6} alkyloxy.
- 14. Use according to any of claims 11 to 13 of a compound wherein R⁸ is hydrogen, hydroxy, haloC₁₋₆alkyl, hydroxyC₁₋₆alkyl, cyanoC₁₋₆alkyl,
 C₁₋₆alkyloxycarbonylC₁₋₆alkyl, imidazolyl, or a radical of formula -NR¹¹R¹² wherein R¹¹ is hydrogen or C₁₋₁₂alkyl and R¹² is hydrogen, C₁₋₆alkyl,
 C₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkylcarbonyl, hydroxy, or a radical of formula -Alk²-OR¹³ wherein R¹³ is hydrogen or C₁₋₆alkyl.
 - 15. Use according to claim 11 of wherein the compound is (+)-6-[amino(4-chlorophenyl)(1-methyl-1*H*-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1*H*)-quinolinone; or a pharmaceutically acceptable acid addition salt thereof.
 - 16. Use according to any of claims 11 to 15 wherein the vascular proliferative disorder is atherosclerosis.
- 30 17. Use according to any of claims 11 to 15 wherein the vascular proliferative disorder is restenosis.
- Use according to any of claims 11 to 15 wherein the vascular proliferative disorder is percutaneous transluminal coronary angioplasty restenosis or coronary artery stent restenosis.
 - 19. Use of a compound of formula (I) as defined in any of claims 11 to 15, for the manufacture of a medicament for the inhibition of smooth muscle cell proliferation.