Department of Commerce • National Oceanic & Atmospheric Administration • National Weather Service

NATIONAL WEATHER SERVICE INSTRUCTION 10-516

MAY 24, 2022

Operations and Services

Public Weather Services, NWSPD 10-5

NATIONAL NON-PRECIPITATION WEATHER PRODUCTS SPECIFICATION

NOTICE: This publication is available at: https://www.weather.gov/directives/.

OPR: W/AFS21 (K. McMahon) Certified by: W/AFS2 (S. Bieda)

Type of Issuance: Routine – Admin Update

SUMMARY OF REVISIONS: This directive supersedes NWSI 10-516, "National Non-Precipitation Weather Products Specification," dated May 24, 2022. This is an administrative update made only to fix broken links in Section 6. No content changes were made with this update, and the effective date was not affected.

ALLEN.ALLISON.LEIGH.1365831072 Digitally signed by ALLEN.ALLISON.LEIGH.1365831072 Date: 2024.09.17 11:01:42 -04'00'

May 10, 2022

Date

Allison Allen

Director

Analyze, Forecast and Support Office

National Non-Precipitation Weather Products Specification

Ta	ble of	f Contents:	Page
1.	Intr	oduction	4
2.	Day	3-7 Maximum Heat Index Probability Forecast Graphics	4
	2.1.		
	2.2.	Issuance Guidelines	4
		2.2.1. Creation Software	4
		2.2.2. Issuance Criteria.	
		2.2.3. Issuance Time	
		2.2.4. Valid Time	
		2.2.5. Product Expiration Time	
	2.3.	Technical Description	
		2.3.1. Universal Geographic Code Type	
		2.3.2. Mass News Disseminator Broadcast Instruction Line	
		2.3.3. Mass News Disseminator Product Type Line	
		2.3.4. Content	
		2.3.5. Format Examples	
2	Dar	•	
3.	Day 3.1.	3-7 Minimum Heat Index Probability Forecast Graphics Mission Connection	
	3.1.		
	<i>3.2.</i>		
		3.2.1. Creation Software	
		3.2.2. Issuance Criteria.	
		3.2.3. Issuance Time	
		3.2.4. Valid Time	
	2.2	3.2.5. Product Expiration Time	
	3.3.	1	
		3.3.1. Universal Geographic Code Type	
		3.3.2. Mass News Disseminator Broadcast Instruction Line	
		3.3.3. Mass News Disseminator Product Type Line	
		3.3.4. Content	
		3.3.5. Format Examples	9
4.	Day	3-7 Mean Heat Index Probability Forecast Graphics	10
	4.1.	Mission Connection	10
	4.2.	Issuance Guidelines	10
		4.2.1. Creation Software	10
		4.2.2. Issuance Criteria	10
		4.2.3. Issuance Time	11
		4.2.4. Valid Time	11
		4.2.5. Product Expiration Time	11
	4.3.	Technical Description	11
		4.3.1. Universal Geographic Code Type	11
		4.3.2. Mass News Disseminator Broadcast Instruction Line	
		2	

NWSI 10-516 MAY 24, 2022

		4.3.3. Mass News Disseminator Product Type Line	11
		4.3.4. Content	12
		4.3.5. Format Examples	12
	4.4.	Updates, Amendments, and Corrections	13
5.	Day	3-7 Heat Index Probability Forecast Text	
	5.1.	Mission Connection.	
	5.2.	Issuance Guidelines	
		5.2.1. Creation Software	13
		5.2.2. Issuance Criteria	
		5.2.3. Issuance Time	14
		5.2.4. Valid Time	
		5.2.5. Product Expiration Time	14
	5.3.	Technical Description	14
		5.3.1. Universal Geographic Code Type	14
		5.3.2. Mass News Disseminator Broadcast Instruction Line	
		5.3.3. Mass News Disseminator Product Type Line	15
		5.3.4. Content	15
		5.3.5. Format Examples	15
	5.4.	Updates, Amendments, and Corrections	16
6.	Air	Quality Forecast Guidance	
	6.1.	Mission Connection	16
	6.2.	Issuance Guidelines	16
		6.2.1. Creation Software	16
		6.2.2. Issuance Criteria	16
		6.2.3. Issuance Time	16
		6.2.4. Valid Time	16
		6.2.5. Product Expiration Time	19
	6.3.	Technical Description	20
		6.3.1. Universal Geographic Code Type	20
		6.3.2. Mass News Disseminator Broadcast Instruction Line	20
		6.3.3. Mass News Disseminator Product Type Line	20
		6.3.4. Content	20
		6.3.5. Format Examples	21
		6.3.5.1. Graphical Air Quality Ozone Forecast Guidance	20
		6.3.5.2. Graphical Air Quality Ozone Daily Maximum Forecast Guidance	22
		6.3.5.3. Graphical Air Quality Surface Smoke Forecast Guidance	23
		6.3.5.4. Graphical Air Quality Smoke Integration Forecast Guidance	
		6.3.5.5. Graphical Air Quality Surface Dust Forecast Guidance	
		6.3.5.6. Graphical Air Quality Dust Integration Forecast Guidance	
		6.3.5.7. Tabular Air Quality Forecast Guidance	
ΑI	PPEN	DIX A - National Non-Precipitation Product Examples	A-1

1. Introduction

This procedural directive describes national non-precipitation weather products issued at the National Weather Service (NWS), National Centers for Environmental Prediction (NCEP), guidelines associated with these products, and detailed content and format for each product type. Heat index products are issued by the Weather Prediction Center (WPC) for the contiguous United States (CONUS), while air quality products are issued by the Environmental Modeling Center (EMC) for differing domains.

2. Day 3-7 Maximum Heat Index Probability Forecast Graphics

2.1 Mission Connection

WPC issues probabilistic daily maximum Heat Index forecast graphics for days 3 through 7 as guidance to CONUS NWS field offices and the general meteorological community (private sector and the media). These products support the NWS excessive heat outlook services by providing early indications of significant heat related events and are issued in probabilistic form to better represent the forecast uncertainty associated with a particular event.

2.2 Issuance Guidelines

2.2.1 Creation Software

WPC uses NCEP Advanced Weather Interactive Processing System (NAWIPS) software to generate these products.

2.2.2 Issuance Criteria

These are routine, schedule-driven products issued for days 3 through 7.

2.2.3 Issuance Time

Refer to Table 1.

2.2.4 Valid Time

Refer to Table 1.

WPO	WPC Day 3-7 Max Heat Index Probability Forecast Graphics Product Schedule									
Issuance Time (UTC)	Valid Time	AWIPS ID	WMO Header	Max Heat Index Thresholds (%)	Product Description					
0430 1630	Day 3	RBG396 RBG300 RGB305 RGB310 RGB315	PTNK98 KWNH PTNK98 KWNH PTNK98 KWNH PTNK98 KWNH PTNK98 KWNH	Chance > 95F Chance > 100F Chance > 105F Chance > 110F Chance > 115F	Day 3 probabilities of daily maximum Heat Index exceeding predetermined thresholds					
0430 1630	Day 4	RBG496 RBG400 RGB405 RGB410 RGB415	PTNM98 KWNH PTNM98 KWNH PTNM98 KWNH PTNM98 KWNHPTNM98 KWNHPTNM98	Chance > 95F Chance > 100F Chance > 105F Chance > 110F Chance > 115F	Day 4 probabilities of daily maximum Heat index exceeding predetermined thresholds					

0430 1630	Day 5	RBG596 RBG500 RGB505 RGB510 RGB515	PTNO98 KWNH PTNO98 KWNH PTNO98 KWNH PTNO98 KWNH PYNO98KWNH	Chance > 95F Chance > 100F Chance > 105F Chance > 110F Chance > 115F	Day 5 probabilities of daily maximum Heat Index exceeding predetermined thresholds
0430 1630	Day 6	RBG696 RBG600 RGB605 RGB610 RGB615	PTNQ98 KWNH PTNQ98 KWNH PTNQ98 KWNH PTNQ98 KWNH PTNQ98 KWNH	Chance > 95F Chance > 100F Chance > 105F Chance > 110F Chance > 115F	Day 6 probabilities of daily maximum Heat Index exceeding predetermined thresholds
0430 1630	Day 7	RBG796 RBG700 RGB705 RGB710 RGB715	PTNS98 KWNH PTNS98 KWNH PTNS98 KWNH PTNS98 KWNH PTNS98-KWNH	Chance > 95F Chance > 100F Chance > 105F Chance > 110F Chance > 115F	Day 7 probabilities of daily maximum Heat Index exceeding predetermined thresholds

Table 1. Probabilistic maximum Heat Index forecast graphic issuance and valid times.

2.2.5 **Product Expiration Time**

Product expires after the next issuance at either 0430 or 1630 UTC.

2.3 **Technical Description**

Charts should follow the format and content described in this section.

2.3.1 Universal Geographic Code Type

Not applicable.

2.3.2 Mass News Disseminator Broadcast Instruction Line

Not applicable.

2.3.3 Mass News Disseminator Product Type Line

Not applicable.

2.3.4 Content

A graphical forecast product that shows the forecast maximum Heat Index and probabilities of daily maximum Heat Index (shaded contours) exceeding predetermined threshold values within the CONUS for days 3 through 7. The shaded contours indicate the probability (e.g., 10%, 40%, 70%) that a location within the shaded area will receive greater than or equal to a daily maximum heat index of 95 F, 100 F, 105 F, 110 F, and 115 F respectively.

2.3.5 Format Examples

Examples 1 and 2 below show graphical Day 5 forecasts of Probabilities of Maximum Heat Index exceeding 95 F and Graphical Day 5 forecasts of Maximum Heat Index, respectively.

Example 1: Probability of Maximum Heat Index >95 F (Day 5)

6

Example 2: Daily Maximum Heat Index Forecast (Day 5)

3. Day 3-7 Minimum Heat Index Probability Forecast Graphics

3.1 **Mission Connection**

WPC issues probabilistic daily minimum Heat Index forecast graphics for days 3 through 7 as guidance to CONUS NWS field offices and the general meteorological community (private sector and the media). These products support the NWS excessive heat outlook services by providing early indications of significant heat related events and are issued in probabilistic form to better represent the forecast uncertainty associated with a particular event.

3.2 Issuance Guidelines

3.2.1 Creation Software

WPC uses N-AWIPS software to generate these products.

3.2.2 Issuance Criteria

These are routine, schedule-driven products issued for days 3 through 7.

3.2.3 Issuance Time

Refer to Table 2.

3.2.4 Valid Time

Refer to Table 2.

WPC L	WPC Day 3-7 Minimum Heat Index Probability Forecast Graphics Product Schedule									
Issuance Time (UTC)	Valid Time	AWIPS ID	WMO Header	Min Heat Index Thresholds (%)	Product Description					
0430 1630	Day 3	RBG375 RBG380 RGB384	PTNK98 KWNH PTNK98 KWNH PTNK98 KWNH	Chance > 75F Chance > 80F Chance > 85F	Day 3 probabilities of daily minimum Heat Index exceeding predetermined thresholds					
0430 1630	Day 4	RBG475 RBG480 RGB484	PTNM98 KWNH PTNM98 KWNH PTNM98 KWNH	Chance > 75F Chance > 80F Chance > 85F	Day 4 probabilities of daily minimum Heat index exceeding predetermined thresholds					
0430 1630	Day 5	RBG575 RBG580 RGB584	PTNO98 KWNH PTNO98 KWNH PTNO98 KWNH	Chance > 75F Chance > 80F Chance > 85F	Day 5 probabilities of daily minimum Heat Index exceeding predetermined thresholds					
0430 1630	Day 6	RBG675 RBG680 RGB684	PTNQ98 KWNH PTNQ98 KWNH PTNQ98 KWNH	Chance > 75F Chance > 80F Chance > 85F	Day 6 probabilities of daily minimum Heat Index exceeding predetermined thresholds					
0430 1630	Day 7	RBG775 RBG780 RGB784	PTNS98 KWNH PTNS98 KWNH PTNS98 KWNH	Chance > 75F Chance > 80F Chance > 85F	Day 7 probabilities of daily minimum Heat Index exceeding predetermined thresholds					

Table 2. Probabilistic minimum Heat Index forecast graphic issuance and valid times.

3.2.5 **Product Expiration Time**

Product expires after the next issuance at 0430 or 1630 UTC.

3.3 **Technical Description**

Charts should follow the format and content described in this section.

3.3.1 Universal Geographic Code Type

Not applicable.

3.3.2 Mass News Disseminator Broadcast Instruction Line

Not applicable.

3.3.3 Mass News Disseminator Product Type Line

Not applicable.

3.3.4 Content

A graphical forecast product that shows the forecast minimum Heat Index and probabilities of daily minimum Heat Index (shaded contours) exceeding predetermined threshold values within the CONUS for days 3 through 7. The shaded contours indicate the probability (e.g., 10%, 40%, 70%) that a location within the shaded area will receive greater than or equal to a daily minimum heat index of 75 F, 80 F or 85 F respectively.

3.3.5 Format Examples

Examples 3 and 4 below show Graphical forecasts of Day 3 minimum Heat Index and probabilities of minimum Heat Index exceeding 75 F, respectively.

Example 3: Forecast Daily Minimum Heat Index (Day 3)

Example 4: Forecast Probability of Minimum Heat Index >75 F (Day 3)

4. Day 3-7 Mean Heat Index Probability Forecast Graphics

4.1 **Mission Connection**

WPC issues probabilistic daily mean Heat Index forecast graphics for days 3 through 7 as guidance to CONUS NWS field offices and the general meteorological community (private sector and the media). These products support the NWS excessive heat outlook services by providing early indications of significant heat related events and are issued in probabilistic form to better represent the forecast uncertainty associated with a particular event.

4.2 Issuance Guidelines

4.2.1 Creation Software

WPC uses N-AWIPS software to generate these products.

4.2.2 Issuance Criteria

These are routine, schedule-driven products issued for days 3 through 7.

4.2.3 Issuance Time

Refer to Table 3.

4.2.4 Valid Time

Refer to Table 3.

WPC	WPC Day 3-7 Mean Heat Index Probability Forecast Graphics Product Schedule								
Issuance Time (UTC)	Valid Time	AWIPS ID	WMO Header	Mean Heat Index Thresholds (%)	Product Description				
0430 1630	Day 3	RBG385 RBG390 RGB395	PTNK98 KWNH PTNK98 KWNH PTNK98 KWNH	Chance > 85F Chance > 90F Chance > 95F	Day 3 probabilities of daily mean Heat Index exceeding predetermined thresholds				
0430 1630	Day 4	RBG485 RBG490 RGB495	PTNM98 KWNH PTNM98 KWNH PTNM98 KWNH	Chance > 85F Chance > 90F Chance > 95F	Day 4 probabilities of daily mean Heat index exceeding predetermined thresholds				
0430 1630	Day 5	RBG585 RBG590 RGB595	PTNO98 KWNH PTNO98 KWNH PTNO98 KWNH	Chance > 85F Chance > 90F Chance > 95F	Day 5 probabilities of daily mean Heat Index exceeding predetermined thresholds				
0430 1630	Day 6	RBG685 RBG690 RGB695	PTNQ98 KWNH PTNQ98 KWNH PTNQ98 KWNH	Chance > 85F Chance > 90F Chance > 95F	Day 6 probabilities of daily mean Heat Index exceeding predetermined thresholds				
0430 1630	Day 7	RBG785 RBG790 RGB795	PTNS98 KWNH PTNS98 KWNH PTNS98 KWNH	Chance > 85F Chance > 90F Chance > 95F	Day 7 probabilities of daily mean Heat Index exceeding predetermined thresholds				

Table 3. Probabilistic mean Heat Index forecast graphic issuance and valid times.

4.2.5 **Product Expiration Time**

Product expires after the next issuance at either 0430 or 1630 UTC.

4.3 **Technical Description**

Charts should follow the format and content described in this section.

4.3.1 Universal Geographic Code Type

Not applicable.

4.3.2 Mass News Disseminator Broadcast Instruction Line

Not applicable.

4.3.3 Mass News Disseminator Product Type Line

Not applicable.

4.3.4 Content

A graphical product that depicts the probabilities of daily mean Heat Index (shaded contours) exceeding predetermined threshold values within the CONUS for days 3 through 7. The shaded contours indicate the probability (e.g., 10%, 40%, 70%) that a location within the shaded area will receive greater than or equal to a daily mean heat index of 85 F, 90 F or 95 F respectively.

4.3.5 Format Examples

Examples 5 and 6 below show Graphical forecasts of Day 3 mean Heat Index and probabilities of mean Heat Index exceeding 85 F, respectively.

Example 5: Forecast Daily Mean Heat Index (Day 3)

Example 6: Probabilistic Mean Heat Index >85 F (Day 3)

4.4 Updates, Amendments, and Corrections

Products are not updated or amended. Corrections are issued when necessary.

5. Day 3-7 Heat Index Probability Forecast Text

5.1 **Mission Connection**

WPC issues an alphanumeric text product displaying probabilistic daily maximum, minimum and mean Heat Index forecasts for days 3 through 7 as guidance to CONUS NWS field offices and the general meteorological community (private sector and the media). These products support the NWS excessive heat outlook services by providing early indications of significant heat related events and are issued in probabilistic form to better represent the forecast uncertainty associated with a particular event.

5.2 Issuance Guidelines

5.2.1 Creation Software

WPC uses N-AWIPS software to generate these products.

5.2.2 Issuance Criteria

These are routine, schedule-driven products issued for days 3 through 7.

5.2.3 Issuance Time

Refer to Table 4.

5.2.4 Valid Time

Refer to Table 4.

	WPC Day 3-7 Heat Index Probability Forecast Text Product Schedule									
Issuance Time (UTC)	Valid Time	AWIPS ID	WMO Header	Product Description						
0430 1630	Day 3-7	PRBEHH	FMUS23 KWNH	Day 3-7 probabilities of daily maximum heat index exceeding predetermined thresholds for eastern U.S. cities						
0430 1630	Day 3-7	PRBWHH	FMUS24 KWNH	Day 3-7 probabilities of daily maximum heat index exceeding predetermined thresholds for western U.S. cities						
0430 1630	Day 3-7	PRBEHL	FMUS23 KWNH	Day 3-7 probabilities of daily minimum heat index exceeding predetermined thresholds for eastern U.S. cities						
0430 1630	Day 3-7	PRBWHL	FMUS24 KWNH	Day 3-7 probabilities of daily minimum heat index exceeding predetermined thresholds for western U.S. cities						
0430 1630	Day 3-7	PRBEHI	FMUS23 KWNH	Day 3-7 probabilities of daily mean heat index exceeding predetermined thresholds for eastern U.S. cities						
0430 1630	Day 3-7	PRBWHI	FMUS24 KWNH	Day 3-7 probabilities of daily mean heat index exceeding predetermined thresholds for western U.S. cities						

Table 4. Probabilistic Heat Index forecast graphic issuance and valid times.

5.2.5 **Product Expiration Time**

Product expires after the next issuance at either 0430 or 1630 UTC.

5.3 Technical Description

The Heat Index alphanumeric products follow the format and content described in this section.

5.3.1 Universal Geographic Code Type

Not applicable.

5.3.2 Mass News Disseminator Broadcast Instruction Line

Not applicable.

5.3.3 Mass News Disseminator Product Type Line

The MND line is "DAYS 3-7 HEAT INDEX FORECAST TABLES."

5.3.4 Content

This tabular text forecast product provides 3 to 7 day forecasts of daily maximum, daily minimum and daily mean Heat Index values and the probability (%) of that Heat Index parameter exceeding 70, 75, 80, 85, 90, 95, and 100 degree F thresholds, except 80, 85, 90, 95, 100, 105, 110, and 115 degrees F for the maximum.

5.3.5 Format Examples

Figures 7, 8 and 9 below show product formats for the tabular daily maximum, daily minimum and daily mean Heat Index probability forecasts, respectively.

Product	Format					Description of Entry
		MI	EMPHIS	S_TN		(Name of City)
CHS	0831	0901	0902	0903	0904	(Location & Day 3 to 7 Date Label)
MAX	95	99	101	97	94	(Daily Max Heat Index forecast - MAX)
%>115	0	0	0	0	0	(% probability of MAX exceeding 115 F)
%>110	0	2	4	0	1	(% probability of MAX exceeding 110 F)
%>105	2	13	20	2	6	(% probability of MAX exceeding 105 F)
%>100	13	42	54	24	21	(% probability of MAX exceeding 100 F)
%>95	41	77	86	74	47	(% probability of MAX exceeding 95 F)
%>90	75	95	98	97	75	(% probability of MAX exceeding 90 F)
%>85	94	99	100	100	92	(% probability of MAX exceeding 85 F)
%>80	99	100	100	100	98	(% probability of MAX exceeding 80 F)

Figure 7. Product Format for a Tabular Maximum Heat Index Probability Forecast.

Product	Format				Description of Entry	
		M	IAMI_I	FL	(Name of City)	
CAK	0831	0901	0902	0903	0904	(Location & Day 3 to 7 Date Label)
MIN	80	81	82	82	81	(Daily Min Heat Index forecast - MIN)
%>100	0	0	0	0	0	(% probability of MIN exceeding 100 F)
%>95	0	0	0	0	0	(% probability of MIN exceeding 95 F)
%>90	0	2	3	2	1	(% probability of MIN exceeding 90 F)
%>85	6	16	21	16	14	(% probability of MIN exceeding 85 F)
%>80	44	61	69	66	62	(% probability of MIN exceeding 80 F)
%>75	96	98	98	98	99	(% probability of MIN exceeding 75 F)
%>70	100	100	100	100	100	(% probability of MIN exceeding 70 F)

Figure 8. Product Format for a Tabular Minimum Heat Index Probability Forecast.

Product	Format					Description of Entry
		AI	KRON-(CANTON	(Name of City)	
CAK	0527	0528	0529	0530	0531	(Location & Day 3 to 7 Date Label)
MHI	67	69	68	69	69	(Daily Mean Heat Index forecast - MHI)
%>100	0	0	0	0	0	(% probability of MHI exceeding 100 F)
%>95	0	0	0	0	0	(% probability of MHI exceeding 95 F)
%>90	0	0	0	0	0	(% probability of MHI exceeding 90 F)
%>85	0	0	0	0	0	(% probability of MHI exceeding 85 F)
%>80	0	0	0	0	0	(% probability of MHI exceeding 80 F)
%>75	1	6	5	6	11	(% probability of MHI exceeding 75 F)
%>70	19	41	33	36	42	(% probability of MHI exceeding 70 F)

Figure 9. Product Format for a Tabular Mean Heat Index Probability Forecast.

5.4 Updates, Amendments, and Corrections

Products are not updated or amended. Corrections are issued when necessary.

6. Air Quality Forecast Guidance

6.1 **Mission Connection**

NOAA/NWS Air Quality Forecast Guidance is issued to support the National Air Quality Forecast Capability, which provides the U.S. with ozone, smoke, particulate matter and dust forecasts guidance with enough accuracy and advance notice to take action to prevent or eliminate adverse effects to people at risk. The forecasts are web-based presentations of gridded forecast guidance originating from NCEP's EMC. Complete information on this guidance is online at https://vlab.noaa.gov/web/osti-modeling/air-quality.

6.2 Issuance Guidelines

6.2.1 Creation Software

Air Quality Forecast Guidance is produced from the NOAA/Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) model driven by NOAA's operational Global Forecast System Weather Prediction model (GFS).

6.2.2 Issuance Criteria

These are routine, schedule-driven products issued for a period of 24 to 72 hours.

6.2.3 **Issuance Time**

Refer to Table 5.

6.2.4 Valid Time

Refer to Table 5.

	Air Quality Forecast Guidance								
Issuance Time (UTC)	Valid Time	WMO Header	Product Description						
0600 & 1200	Days 1-3 (out to 72 hours)	LYUZ99 KWBP	Air Quality Ozone Forecast Guidance as 1-hour ozone concentration (in parts per billion or ppb) averages for the contiguous U.S. (CONUS)						
0600 & 1200	Days 1-3 (out to 72 hours)	LZUZ99 KWBP	Air Quality Ozone Forecast Guidance as 8-hour ozone concentration (in parts per billion or ppb) averages for the CONUS						
0600 & 1200	Days 1-3 (out to 72 hours)	LIOZ99 KWBP	Air Quality Ozone Daily Maximum Forecast Guidance as 1-hour ozone concentration (in parts per billion or ppb) averages for the 24-hour period for the CONUS						
0600 & 1200	Days 1-3 (out to 72 hours)	LJOZ99 KWBP	Air Quality Ozone Daily Maximum Forecast Guidance as the maximum 8-hour ozone concentration (in parts per billion or ppb) averages for the 24-hour period for the CONUS						
0600 & 1200	Days 1-3 (out to 72 hours)	LNSZ99 KWBP	Air Quality Ozone Forecast Guidance as 1-hour ozone concentration (in parts per billion or ppb) averages for Hawaii						
0600 & 1200	Days 1-3 (out to 72 hours)	LOSZ99 KWBP	Air Quality Ozone Forecast Guidance as 8-hour ozone concentration (in parts per billion or ppb) averages for Hawaii						
0600 & 1200	Days 1-3 (out to 72 hours)	LURZ99 KWBP	Air Quality Ozone Daily Maximum Forecast Guidance as 1-hour ozone concentration (in parts per billion or ppb) averages for the 24-hour period for Hawaii						
0600 & 1200	Days 1-3 (out to 72 hours)	LVRZ99 KWBP	Air Quality Ozone Daily Maximum Forecast Guidance as 8-hour ozone concentration (in parts per billion or ppb) averages for the 24-hour period for Hawaii						
0600 & 1200	Days 1-3 (out to 72 hours)	LNRZ99 WKBP	Air Quality Ozone Forecast Guidance as 1-hour ozone concentration (in parts per billion or ppb) averages for Alaska						
0600 & 1200	Days 1-3 (out to 72 hours)	LORZ99 WKBP	Air Quality Ozone Forecast Guidance as 8-hour ozone concentration (in parts per billion or ppb) averages for Alaska						
0600 & 1200	Days 1-3 (out to 72 hours)	LUSZ99 KWBP	Air Quality Ozone Daily Maximum Forecast Guidance as 1-hour ozone concentration (in parts per billion or ppb) averages for the 24-hour period for Alaska						
0600 & 1200	Days 1-3 (out to 72 hours)	LVSZ99 KWBP	Air Quality Ozone Daily Maximum Forecast Guidance as 8-hour ozone concentration (in parts per billion or ppb) averages for the 24-hour period for Alaska						
0600	Days 1-2 (out to 48 hours)	LXQZ99 KWBP	Air Quality Smoke Forecast Guidance as 1-hour average surface smoke, defined as the surface smoke concentration, in micrograms per cubic meter, backward averaged over 1 hour for the CONUS.						

0.600	D 10		
0600	Days 1-2 (out to 48 hours)	LWQZ99 KWBP	Air Quality Smoke Forecast Guidance as 1-hour average smoke integration, defined as the average column-integrated smoke concentration, in micrograms per cubic meter, backward averaged over 1 hour for the CONUS.
0600	Days 1-2 (out to 48 hours)	LXRZ99 KWBP	Air Quality Smoke Forecast Guidance as 1-hour average surface smoke, defined as the surface smoke concentration, in micrograms per cubic meter, backward averaged over 1 hour for Alaska.
0600	Days 1-2 (out to 48 hours)	LWRZ99 KWBP	Air Quality Smoke Forecast Guidance as 1-hour vertically integrated smoke, defined as the average column-integrated smoke concentration, in micrograms per cubic meter, backward averaged over 1 hour, for Alaska.
0600	Days 1-2 (out to 48 hours)	LXSZ99 KWBP	Air Quality Smoke Forecast Guidance as 1-hour average surface smoke, defined as the surface smoke concentration, in micrograms per cubic meter, backward averaged over 1 hour for Hawaii
0600	Days 1-2 (out to 48 hours)	LWSZ99 KWBP	Air Quality Smoke Forecast Guidance as 1-hour vertically integrated smoke, defined as the average column-integrated smoke concentration, in micrograms per cubic meter, backward averaged over 1 hour, for Hawaii
0600 & 1200	Days 1-2 (out to 48 hours)	LAPZ99 KWBP	Air Quality Dust Forecast Guidance as 1-hour average surface dust, defined as the surface dust concentration, in micrograms per cubic meter, backward averaged over 1 hour for CONUS
0600 & 1200	Days 1- 2 (out to 48 hours)	LDPZ99 KWBP	Air Quality Dust Forecast Guidance as 1-hour average vertically integrated dust, defined as the vertically integrated dust concentration, in micrograms per cubic meter, backward averaged over 1 hour for CONUS
0600 & 1200	Days 1- 3 (out to 72 hours)	LGPZ99 KWBP	Air Quality Forecast Guidance as 24-hour Mean PM25 Concentration, in micrograms per cubic meter, for Hawaii
0600 & 1200	Days 1- 3 (out to 72 hours)	LIPZ99 KWBP	Air Quality Forecast Guidance as 24-hour Mean Bias Corrected PM25 Concentration for the CONUS
0600 & 1200	Days 1- 3 (out to 72 hours	LKOZ99 KWBP	Air Quality Forecast Guidance as Daily Max 1-hour PM25 Concentration for Hawaii
0600 & 1200	Days 1- 3 (out to 72 hours	LNOZ99 KWBP	Air Quality Forecast Guidance as 1-hour PM25 Concentration for Hawaii

0600 &	Days 1-		Air Quality Forecast Guidance as Daily Max 1-hour Bias Corrected
1200	3		PM25 Concentration for the CONUS
1200	(out to	LNPZ99 KWBP	
	72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as 1-hour Bias Corrected PM25
1200	3	I ODZOO KWDD	Concentration for the CONUS
	(out to	LOPZ99 KWBP	
	72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as 24-hour Mean PM25
1200	3	LWPZ99 KWBP	Concentration for Alaska
	(out to	2 11 25 5 12 11 21	
0.600.0	72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as Daily Max 1-hour PM25 Concentration for Alaska
1200	3 (out to	LXPZ99 KWBP	Concentration for Alaska
	72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as 1-hour PM25 Concentration for
1200	3		Alaska
1200	(out to	LYPZ99 KWBP	
	72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as 24-hour Mean PM25
1200	3	LYQZ99 KWBP	Concentration for the CONUS
	(out to	LIQLIIKWDI	
	72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as Daily Max 1-hour PM25
1200	3	LZPZ99 KWBP	Concentration for the CONUS
	(out to 72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as 1-hour PM25 Concentration for
1200	3		the CONUS
1200	(out to	LZQZ99 KWBP	
	72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as 1-hour Bias Corrected Ozone
1200	3	YBPZ99 KWBP	Concentration for the CONUS
	(out to	I DI L99 KWDF	
	72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as Daily Max 8-hour Bias Corrected
1200	3	YCPZ99 KWBP	Ozone Concentration for the CONUS
	(out to 72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as Daily Max 1-hour Bias Corrected
1200	Days 1-		Ozone Concentration for the CONUS
1200	(out to	YFPZ99 KWBP	
	72 hours		
0600 &	Days 1-		Air Quality Forecast Guidance as 8-hour Bias Corrected Ozone
1200	3	VUDZOO VWDD	Concentration for the CONUS
	(out to	YHPZ99 KWBP	
	72 hours		

Table 5. Air Quality Forecast Guidance, Graphics and Valid Times.

6.2.5 **Product Expiration Time**

Product expires after the next issuance at either 0600 or 1200 UTC.

6.3 **Technical Description**

The Air Quality ozone, PM2.5 (particulate matter), smoke, and dust alphanumeric products follow the format and content described in this section.

6.3.1 Universal Geographic Code Type

Not applicable.

6.3.2 Mass News Disseminator Broadcast Instruction Line

Not applicable.

6.3.3 Mass News Disseminator Product Type Line

Not applicable.

6.3.4 Content

- a. Ozone. Graphical and tabular forecast products that provide ozone data displayed for domain covering CONUS, Alaska, and Hawaii for 1-hour and 8-hour averages as well as daily maximum of 1-hour and 8-hour averages extending out to 72 hours. It is intended for use by the general public, state and local agency forecasters, the media and private sector meteorologists. Data are posted as graphic images to NOAA and EPA web sites per interagency agreement.
- b. Smoke. Graphical and tabular forecast products that provide smoke data displayed for domains covering CONUS, Alaska, and Hawaii for 1-hour surface smoke concentration, and the 1-hour average vertical smoke integration, extending out to 48 hours. It is intended for use by the general public, state and local agency forecasters, the media and private sector meteorologists. Data are posted as graphic images to NOAA web.
- c. Dust. Graphical and tabular forecast products that provide dust data displayed for a domain covering the CONUS for 1-hr surface dust concentration, and the one-hour average vertical dust integration, extending out to 48 hours. It is intended for use by the general public, state and local agency forecasters, the media and private sector meteorologists. Data are posted as graphic images to NOAA web sites.
- d. PM 2.5. Graphical and tabular forecast products that provide PM 2.5 data displayed for domain covering CONUS, Alaska, and Hawaii for 1-hour and 8-hour averages as well as daily maximum of 1-hour and 8-hour averages extending out to 72 hours. It is intended for use by the general public, state and local agency forecasters, the media and private sector meteorologists. Data are posted as graphic images to NOAA and EPA web sites per interagency agreement.

6.3.5 Format Examples

Figures 10-17 show various graphical and tabular Ozone, Smoke and Dust products as shown below.

6.3.5.1 Graphical Air Quality Ozone Forecast Guidance

NWS National Air Quality Forecast Capability (NAQFC): https://airquality.weather.gov/

Figure 10. Graphical Air Quality Ozone Forecast Guidance (Average Ozone Concentration for the CONUS in Parts per Billion (PPB) backward averaged over 1 hour)

6.3.5.2 Graphical Air Quality Ozone Daily Maximum Forecast Guidance

Figure 11. Graphical Air Quality Daily Maximum Ozone Forecast Guidance (Average Ozone Concentration for the CONUS in Parts per Billion (PPB) backward averaged over 8 hours)

6.3.5.3 Graphical Air Quality Surface Smoke Forecast Guidance

Figure 12. Graphical 1-hour Average Surface Smoke (the surface smoke concentration for the CONUS, in micrograms per cubic meter, backward averaged over 1 hour).

Figure 13. Graphical 1-hour Average Surface Smoke (the surface smoke concentration for Alaska, in micrograms per cubic meter, backward averaged over 1 hour).

Figure 14. Graphical 1-hour Average Smoke Integration (the average column-integrated smoke concentration for the CONUS in micrograms per cubic meter, backward averaged over 1 hour)

6.3.5.5 Graphical Air Quality Surface Dust Forecast Guidance

Found at https://airquality.weather.gov/

Figure 15. Graphical 1-hour Average Surface Dust (the surface dust concentration for the CONUS in micrograms per cubic meter, backward averaged over 1 hour)

6.3.5.6 Graphical Air Quality Dust Integration Forecast Guidance

Found at https://airquality.weather.gov/

Figure 16. Graphical 1-hour Average Dust Integration (the average column-integrated dust concentration for the CONUS in micrograms per cubic meter, backward averaged over 1 hour)

6.3.5.7 Tabular Air Quality Forecast Guidance

Found at https://airquality.weather.gov/

		Daily Ma Endi		Averag Conce	m 1 Hour e Ozone ntration PB)	Maximun Average Concen (PP	Ozone tration		
	L	Tod			14	40			
	L	Tomor	row	3	39	37	7		
Ozone Ending Time (Local Time)	1 Hour A Ozo Concer (PF 12Z Mod	one ntration PB)	8 Hour A Ozo Concen (PP 12Z Moc	ne tration B)	Ending (Loca	oke g Time	1 Hour Sur Smoke (µg 06Z Model	/m³)	1 Hour Column- Integrated Smoke (µg/m²) 06Z Model Run
Wed, Dec 09 04 PM	4		39			: 09 04 PM : 09 05 PM	0	-	0
Wed, Dec 09 05 PM	4	0	40)			0		
Wed, Dec 09 06 PM	3		40)		09 06 PM	0		0
Wed, Dec 09 07 PM	3	2	40			09 07 PM			
Wed, Dec 09 08 PM	3		39			09 08 PM	0	-	0
Wed, Dec 09 09 PM	3		38			09 09 PM	0		0
Wed, Dec 09 10 PM	3	200	37			09 10 PM	0		0
Wed, Dec 09 11 PM	3	-	35			09 11 PM	0		0
Thu, Dec 10 12 AM	2	200	33			10 12 AM	1		0
Thu, Dec 10 01 AM	2	0.5	32			10 01 AM	2		0
Thu, Dec 10 02 AM	2		30			10 02 AM	3		0
Thu, Dec 10 03 AM	2		29			10 03 AM	2	7	0
Thu, Dec 10 04 AM	2		29		Thu, Dec	10 04 AM	2		0
	2		-			10 05 AM	1		0
Thu, Dec 10 05 AM	2		28		Thu, Dec	10 06 AM	0		0
Thu, Dec 10 06 AM			1000		Thu, Dec	10 07 AM	0		0
Thu, Dec 10 07 AM	2	2	27		Thu, Dec	10 08 AM	0		0
Thu, Dec 10 08 AM	3	100	27		Thu, Dec	10 09 AM	0		0
Thu, Dec 10 09 AM	3	-	28		Thu, Dec	10 10 AM	0		0
Thu, Dec 10 10 AM	3	1000	29		Thu, Dec	10 11 AM	0		0
Thu, Dec 10 11 AM	3		30		Thu, Dec	10 12 PM	0		0
Thu, Dec 10 12 PM	3		31		Thu, Dec	10 01 PM	0		0
Thu, Dec 10 01 PM	3	Anna .	33		Thu, Dec	10 02 PM	0		0
Thu, Dec 10 02 PM	3		34		Thu, Dec	10 03 PM	0		0
Thu, Dec 10 03 PM	3		36		Thu, Dec	10 04 PM	0		0
Thu, Dec 10 04 PM	3		37		Thu, Dec	10 05 PM	0		0
Thu, Dec 10 05 PM	3		37		Thu, Dec	10 06 PM	0		0
Thu, Dec 10 06 PM	3	2	37		Thu, Dec	10 07 PM	0		0
Thu, Dec 10 07 PM	3		36	6	Thu, Dec	10 08 PM	0		0
Thu, Dec 10 08 PM	2	9	35	5	Thu, Dec	10 09 PM	0		0
Thu, Dec 10 09 PM		8	34						
Thu, Dec 10 10 PM	2	8	33	3					
Thu, Dec 10 11 PM	2	8	32	2					
Fri, Dec 11 12 AM	2	9	30)					
Fri, Dec 11 01 AM	2	9	29	9					
Fri, Dec 11 02 AM	2	9	29	9					
Fri, Dec 11 03 AM	2	8	28	3					
Fri, Dec 11 04 AM	2	8	28	3					

Figure 17. National Air Quality Forecast Guidance values for Logandale, NV (latitude: 36.60 N, longitude: 114.53 W). Ozone concentrations are presented in parts per billion (PPB). Smoke concentrations are presented in micrograms per cubic meter.

NWSI 10-516 MAY 24, 2022

APPENDIX A National Non-Precipitation Product Examples

Ta	able of Contents:	Page
1.	Introduction	A-2
2.	Probabilistic Day 3-7 Maximum Heat Index Forecast - Eastern U.S. (PRBEHH)	A-2
3.	Probabilistic Day 3-7 Minimum Heat Index Forecast - Western U.S. (PRBWHL)	A-8
4.	Probabilistic Day 3-7 Mean Heat Index Forecast - Eastern U.S. (PRBEHI)	A-14

1. **Introduction**

This section contains examples of national non-precipitation weather products.

2. Probabilistic Day 3-7 Maximum Heat Index Forecast - Eastern U.S. (PRBEHH).

FMUS23 KWNH 161542 PRBEHH

DAYS 3--7 HEAT INDEX FORECAST TABLES

NWS WEATHER PREDICTION CENTER COLLEGE PARK MD

1538 UTC MON AUG 16 2021

MAXIMUM HEAT INDEX (DEG F) AND MAXIMUM HI PROB (%) FRCSTS AT EASTERN US CITIES - DAYS 3 TO 7 FROM MON AUG 16 2021

		AKRO	N-CAN	CON_O	H			AL	BANY_I	NΥ	
CAK	0819	0820	0821	0822	0823	ALB	0819	0820	0821	0822	0823
MAX	85	87	89	83	85	MAX	84	88	90	90	83
%>110	0	0	0	0	0	%>110	1	2	0	1	0
%>105	0	0	2	0	0	%>105	3	6	2	4	0
%>100	0	1	7	0	1	%>100	7	13	9	12	1
%>95	4	5	21	2	6	%>95	16	25	25	28	4
응>90	20	26	43	11	20	%>90	29	41	49	50	15
%>85	53	63	68	38	48	%>85	46	60	75	73	38
%>80	84	91	87	72	76	%>80	65	77	92	89	66
		AS	SHEVII	LLE_N	C			ATL	ANTA_C	GA	
AVL	0819	0820	0821	0822	0823	ATL	0819	0820	0821	0822	0823
MAX	81	80	82	85	84	MAX	95	93	96	99	98
%>110	0	0	0	0	0	%>110	0	0	0	1	0
%>105	1	1	1	0	0	%>105	0	1	1	7	5
%>100	2	3	2	2	1	%>100	10	8	15	37	35
%>95	6	8	8	8	5	%>95	56	33	58	79	80
%>90	15	17	19	23	17	%>90	94	71	92	97	98
%>85	33	32	38	48	43	%>85	100	94	100	100	100
%>80	54	51	60	73	71	%>80	100	99	100	100	100
		BA	ALTIMO	ORE_MI)		В	IRMINO	SHAM_A	AL	
BWI	0819	0820	0821	0822	0823	BHM	0819	0820	0821	0822	0823
MAX	91	92	93	94	88	MAX	93	93	97	100	102

%>110	0	0	0	0	0	%>110	0	0	0	2	16
%>105	1	2	2	3	0	%>105	2	3	1	18	36
%>100	8	10	11	15	3	%>100	12	13	19	54	62
%>95	27	30	35	44	14	%>95	40	37	68	87	83
%>90	59	59	68	76	39	%>90	74	69	95	98	95
%>85	86	84	91	94	70	%>85	93	90	100	100	99
%>80	97	96	99	99	91	%>80	99	98	100	100	100
			BOST	TON_MA	A			BUFI	FALO_N	1Y	
BOS	0819	0820	0821	0822	0823	BUF	0819	0820	0821	0822	0823
MAX	85	85	84	85	81	MAX	87	86	89	84	81
%>110	0	0	0	0	0	%>110	0	0	0	0	0
%>105	1	2	1	1	0	%>105	2	0	2	0	0
%>100	4	5	4	4	1	%>100	6	1	8	1	0
%>95	12	14	11	13	4	%>95	16	6	23	6	2
%>90	28	29	26	29	13	%>90	34	25	47	19	10
%>85	49	49	45	51	30	%>85	57	61	72	43	28
%>80	72	71	67	73	54	%>80	78	88	90	70	56
		CHZ	ARLEST	ron_sc			CI	HARLES	STON_V	IV	
CHS	0819	0820	0821	0822	0823	CRW	0819	0820	0821	0822	0823
MAX	101	104	104	106	104	MAX	89	88	91	90	90
%>110	1	13	8	28	19	%>110	0	0	0	0	0
%>105	18	42	40	55	43	%>105	0	0	2	1	1
%>100	63	76	81	80	69	%>100	3	2	10	6	4
%>95	93	94	97	94	88	%>95	16	12	28	21	19
%>90	100	99	100	99	97	%>90	42	38	56	47	48
%>85	100	100	100	100	100	%>85	73	71	82	74	78
%>80	100	100	100	100	100	%>80	92	92	95	92	94
		CI	HARLO	TTE_NC	2			CHIC	CAGO_I	L	
CLT	0819	0820	0821	0822	0823	ORD	0819	0820	0821	0822	0823
MAX	95	95	96	99	93	MAX	92	92	85	84	84
%>110	0	1	0	3	1	%>110	0	0	0	0	0
%>105	4	5	5	14	6	%>105	1	2	0	0	1
%>100	18	20	26	43	18	%>100	7	11	1	2	3
%>95	48	49	62	76	39	%>95	28	33	6	8	10
%>90	78	77	89	94	65	%>90	63	65	22	23	25
%>85	0.4	0.0	0.0	0.0	0.5	0 > 0 F	0.7	0.7		4 7	10
	94	92	98	99	85	%>85	87	87	50	47	46
%>80	99	98	100	100	95	%>85 %>80		97	77	72	68

		CII	NCINNA	ATI_OH	H		(CLEVEI	LAND_C	ЭH	
LUK	0819	0820	0821	0822	0823	CLE	0819	0820	0821	0822	0823
MAX	90	90	91	88	90	MAX	86	88	90	84	84
%>110	0	0	1	0	0	%>110	0	0	3	0	0
%>105	0	0	3	1	2	%>105	1	0	7	0	0
%>100	3	0	12	4	7	%>100	3	2	16	1	1
%>95	18	7	29	16	23	%>95	10	9	31	6	5
%>90	52	50	55	39	49	%>90	29	32	51	19	17
%>85	85	93	78	67	76	%>85	56	68	70	43	43
%>80	98	100	92	88	92	%>80	81	91	85	70	72
				BIA_SC					MBUS_C		
CAE					0823	TZR				0822	
MAX	99	99	100	103	99	MAX	88	90	90	86	87
%>110	1	0	1	12	3	%>110	0	0	0	0	0
%>105	11	5	12	36	16	%>105	0	0	2	0	1
%>100	45	43	53	67	45	%>100	2	2	8	1	3
%>95	84	88	89	90	77	%>95	13	14	24	7	13
%>90	98	99	99	98	94	%>90	39	46	50	25	33
%>85	100	100	100	100	99	%>85	72	82	76	54	61
%>80	100	100	100	100	100	%>80	93	97	92	81	84
			חאאי	TON OF	1			DETI	ROIT N	ИΤ	
MGY	0819	0820		0822		DET	0819		_	0822	0823
MAX	90	91	91	87	88	MAX	89	90	91	85	85
%>110	0	0	1	0	0	%>110	0	0	1	0	0
%>105	1	0	3	0		%>105	1	1	5	0	0
%>100	6	2	12	3	4	%>100	4	4	14	2	2
%>95	21	15	31	12	16	%>95	17	18	32	9	8
%>90	50	57	56	33	40	%>90		48	55	25	24
%>85	79	91	79	62	69	%>85			77	52	49
%>80	95	99	93	85	89	%>80		94	91	77	75
				LLE_IN				ND_RAI	_		
EVV						GRR					
MAX	91	92	92	90	94	MAX	90	91	88	82	84
%>110	0	0	0	0	1	응>110	0	0	0	0	0
%>105	1	0	2	2	6	%>105		1	1	0	0
%>100	5	6	11	8	20	%>100	5	5	6	0	2
%>95	25	29	31	24	43	%>95	19	24	18	2	7
%>90	60	68	60	50	69	%>90	47	59	40	10	20

0 > 0 =	0.0	0.0	0.5	7.5	0.0	0 > 0 F	7.6	0.0	65	2.1	4.0
%>85	88	93	85	75		%>85			65	31	43
%>80	98	99	96	91	97	%>80	93	98	85	61	67
		GRI	EENSBO	ORO NO	7		Н	JNTSVI	LLLE A	λL	
GSO	0819					HSV					0823
MAX	92	91	92	93	90	MAX		91		97	100
%>110	0	1	0	0	0			0			11
%>105	3	3					1	0	1	9	28
%>100	11		9			%>100					52
%>95	32	30	30	38	25	%>95	24	24	39	66	76
%>90	60	56	60	69	48	%>90	53	62	81	90	91
%>85	83	80	86	90	72	%>85	81	90	98	98	98
%>80	95	93	97	98	89	%>80	95	98	100	100	100
		INDI	ANAPOI	LIS_IN	1		I	KNOXVI	LLE_7	ΓN	
IND	0819	0820	0821	0822	0823	TYS	0819	0820	0821	0822	0823
MAX	90	90	87	86	86	MAX	89	87	90	92	93
%>110	0	0	0	0	0	%>110	0	0	0	0	0
%>105	1	0	1	0	2	%>105	0	0	0	1	1
%>100	4	1	4	2	6	%>100	2	2	3	6	8
%>95	19	11	14	10	16	%>95	14	10	16	30	33
%>90	49	49	35	27	33	%>90	42	34	49	67	69
%>85	79	88	62	54	55	%>85	75	67	81	91	92
%>80	95	99	85	79	75	%>80	93	89	95	98	99
		Т.1	EXTNG	ron ki	7		Т.(NITSVI	T.T.E. F	ζΥ	
LEX	0819					SDF					0823
						MAX					
%>110	0	0	0	0	0	%>110	0	0	0	0	1
%>105	0	0	1	1	1	%>105		0	2	1	3
%>100	0	1	5	3	5	%>100	2	2	9	6	13
%>95	3	7	17	14	21	%>95	13	16	25	21	33
%>90	20	31	41	36	48	%>90	45	54	51	46	60
%>85	59	70	69	65	77	%>85	81	87	76	73	83
%>80	90	93	89	87	93	%>80	97	98	92	91	95
				HIS_TN					IAMI_		
MEM						AIM					0823
MAX	96	98	101	102		MAX				105	105
%>110	0	0	4								
%>105	4	3	20	26	48	%>105	36	29	36	49	49

%>100	22	32	54	61	74	%>100	59	53	61	70	69	
%>95	58	82	86	88	91	%>95	79	75	82	86	84	
%>90	88	98	98	98	98	%>90	92	91	94	95	94	
%>85	98	100	100	100	100	%>85	98	97	98	98	98	
%>80	100	100	100	100	100	%>80	99	100	100	100	99	
		M	LWAUŁ	KEE_WI	-			MOI	BILE_A	ΑL		
MKE	0819	0820	0821	0822	0823	MOB	0819	0820	0821	0822	0823	
MAX	88	88	82	82	82	MAX	102	101	102	105	106	
%>110	2	2	0	0	0	%>110	1	1	2	15	26	
%>105	4	5	0	1	1	%>105	13	13	21	49	54	
%>100	11	11	1	3	3	%>100	70	62	72	84	80	
%>95	22	23	5	8	8	%>95	98	96	97	97	94	
%>90	40	41	14	18	18	%>90	100	100	100	100	99	
%>85	60	61	32	34	36	%>85	100	100	100	100	100	
%>80	78	79	57	56	59	%>80	100	100	100	100	100	
		NZ	ASHVII	LLE_TI	1		NEW_	YORK_C	CITY_N	1A		
BNA	0819	0820	0821	0822	0823	NYC	0819	0820	0821	0822	0823	
MAX	91	93	94	96	98	MAX	86	90	91	91	86	
%>110	0	0	0	2	4	%>110	0	0	0	0	0	
%>105	1	0	3	8	17	%>105	0	1	1	1	0	
%>100	7	4	15	25	41	%>100	2	6	8	7	2	
%>95	24	32	42	54	69	%>95	10	22	26	26	10	
%>90	54	80	74	81	89	%>90	27	51	57	57	27	
%>85	82	98	93	95	98	%>85	54	80	84	84	54	
%>80	95	100	99	99	100	%>80	80	95	96	96	79	
			NORFO	OLK_VA	A			ORLA	ANDO_E	FL		
ORF	0819	0820	0821	0822	0823	ORL	0819	0820	0821	0822	0823	
MAX	97	93	94	97	89	MAX	106	104	105	107	106	
%>110	3	0	0	4	0	%>110	29	21	23	35	33	
%>105	11	1	2	13	0	%>105	52	46	48	60	57	
%>100	31	10	14	33	3	%>100	75	72	74	82	79	
%>95	61	37	44	61	16	%>95	90	90	91	94	93	
%>90	86	75	79	84	43	%>90	97	97	98	99	98	
%>85	96	96	96	95	75	%>85	99	100	100	100	100	
%>80	99	100	100	99	94	%>80	100	100	100	100	100	
				HIA_PA			Pl		_			
PHL	0819	0820	0821	0822	0823	PIT	0819	0820	0821	0822	0823	

MAX	91	92	94	93	88	MAX	84	85	88	84	84
%>110	1	0	1	0	0	%>110	0	0	0	0	0
%>105	4	1	5	3	1	%>105	0	0	1	0	0
%>100	13	8	18	13	5	%>100	0	1	4	0	1
%>95	30	30	44	38	17	%>95	2	5	14	3	6
%>90	53	64	73	68	40	%>90	12	21	36	15	19
%>85	75	90	92	90	67	%>85	43	52	65	43	45
%>80	90	98	99	98	87	%>80	79	82	87	76	72
		1	PORTLA	AND_ME	Ξ		Pl	ROVIDI	ENCE_F	RI	
PWM	0819	0820	0821	0822	0823	PVD	0819	0820	0821	0822	0823
MAX	85	87	82	82	79	MAX	85	87	87	87	84
%>110	0	2	1	0	0	%>110	0	1	0	0	0
%>105	0	6	2	1	0	%>105	1	3	1	2	0
%>100	2	13	5	3	0	%>100	4	8	5	6	2
%>95	9	24	12	8	1	%>95	11	18	15	17	7
%>90	28	39	23	20	7	%>90	26	36	35	37	20
%>85	54	55	38	38	21	%>85	48	58	62	61	42
%>80	75	71	55	58	46	%>80	71	78	84	82	67
		ALEIG		_					UDMOM_		
RDU		0820			0823	RIC			0821		0823
MAX	98	98	99	101	94	MAX	96	94	95	98	90
%>110	0	1	0	10	0	%>110	0	3	0	4	2
%>105	2	10	6	28	4	%>105	2	9	4	15	5
%>100	28	37	37	54	17	%>100	18	24	20	39	14
%>95	78	73	81	78	44	%>95	58	47	53	68	29
%>90	97	94	98	93	75	%>90	90	70	84	89	50
응>85		99	100	98		%>85			97	98	70
%>80	100	100	100	100	99	%>80	100	96	100	100	86
			מוא בל לא ב	NAH G <i>i</i>	7		ר מידי	т.т.д н д с	SSEE I	7T.	
SAV	0819			_		TLH			_		0823
MAX	102	104								106	109
%>110	6	9	8	27		%>110					44
%>105	29	38	40	57	53	%>105				58	66
%>100	68	78	81	83	78	%>100		77	83	81	83
	93	96	97	96	93	%>95		97	97	94	93
	99	100	100	99	98	%>90		100	100		98
%>85	100	100	100	100	100			100		100	99
%>80	100	100	100	100		%>80		100	100	100	100

				TAI	MPA_FI	_		WA	ASHING	GTON_I)C	
Т	PA	0819	0820	0821	0822	0823	DCA	0819	0820	0821	0822	0823
М	AX	104	103	104	106	107	MAX	92	92	93	95	88
%	>110	25	19	22	34	36	%>110	0	1	0	1	0
%	>105	45	40	44	55	56	%>105	1	3	3	4	1
90	>100	68	65	68	75	75	%>100	8	13	13	18	6
%	>95	85	85	87	89	88	%>95	29	33	36	48	19
90	>90	94	95	96	96	96	%>90	62	60	66	79	42
양	>85	98	99	99	99	99	%>85	88	83	88	95	68
용	>80	100	100	100	100	100	%>80	98	95	97	99	87

URL IS WWW.WPC.NCEP.NOAA.GOV

\$\$

3. Probabilistic Day 3-7 Minimum Heat Index Forecast - Western U.S. (PRBWHL)

FMUS24 KWNH 161545 PRBWHL

DAYS 3--7 HEAT INDEX FORECAST TABLES

NWS WEATHER PREDICTION CENTER COLLEGE PARK MD

1542 UTC MON AUG 16 2021

MINIMUM HEAT INDEX (DEG F) AND MINIMUM HI PROB (%) FRCSTS AT WESTERN US CITIES - DAYS 3 TO 7 FROM MON AUG 16 2021

			ABILI	ENE_T	ζ	ALBUQUERQUE_NM						
ABI	0819	0820	0821	0822	0823	ABQ	0819	0820	0821	0822	0823	
MIN	74	75	74	73	72	MIN	62	60	59	61	62	
%>100	0	0	0	0	0	%>100	0	0	0	0	0	
%>95	0	0	0	0	0	%>95	0	0	0	0	0	
%>90	0	0	0	0	0	%>90	0	0	0	0	0	
%>85	0	0	0	0	0	%>85	0	0	0	0	0	
%>80	6	7	4	1	4	%>80	0	0	1	1	0	
%>75	37	47	39	26	27	%>75	0	1	4	4	2	
%>70	82	90	87	83	70	%>70	5	5	11	13	10	

		Ā	AMARII	LLO_T	X			AUS	STIN_	ГХ	
AMA	0819	0820	0821	0822	0823	AUS	0819	0820	0821	0822	0823
MIN	69	69	67	68	68	MIN	79	79	78	78	77

%>100 0 0 0 0 %>100 0 0 %>95 0 0 0 0 %>95 0 0 0 %>90 0 0 0 0 %>90 0 0 0		
	0	0
\$>90	0	0
	0	0
%>85 0 0 0 0 %>85 0 0 1	0	0
%>80 1 0 1 1 0 %>80 37 28 28	19	12
%>75 10 7 9 7 6 %>75 98 96 88	83	79
%>70 39 41 32 31 34 %>70 100 100 100	100	100
BATON ROUGE LA BISMARCK N	חו	
BTR 0819 0820 0821 0822 0823 BIS 0819 0820 0821	0822	0823
MIN 78 78 78 76 76 MIN 63 58 53	52	54
%>100 0 0 0 0 %>100 0 0	0	0
%>95	0	0
%>90 0 0 0 0 %>90 0 0 0	0	0
%>85 0 0 1 0 0 %>85 0 0 0	0	0
%>80 5 17 22 0 1 %>80 0 0 0	0	0
\$>75 98 89 80 75 73 \$>75 0 1 0	2	0
%>70 100 100 99 100 100 %>70 6 4 0	5	2
200 200 33 200 200 00 00 0		_
BROWNSVILLE_TX CORPUS_CHRISTI_T	.X	
BRO 0819 0820 0821 0822 0823 CRP 0819 0820 0821	0822	0823
MIN 89 85 84 84 83 MIN 87 84 83	82	81
%>100 1 0 0 1 0 %>100 1 0 0	0	0
%>95 9 2 3 4 2 %>95 9 4 2	2	2
%>90 42 17 15 16 12 %>90 33 19 13	14	10
%>85 82 55 46 41 37 %>85 66 47 37	35	29
%>80 97 87 79 71 68 %>80 88 75 67	63	55
%>75 100 98 95 90 89 %>75 97 91 87	85	
0/13 IUU JU JU OJ 6/13 JI JI 8/		79
\$>70 100 98 95 90 89 \$>75 97 91 87 \$>70 100 100 99 98 98 \$>70 99 98 97	96	93
%>70 100 100 99 98 98 %>70 99 98 97		
%>70 100 100 99 98 98 %>70 99 98 97 DALLAS_TX DENVER_C	0	93
%>70 100 100 99 98 98 %>70 99 98 97 DALLAS_TX	CO 0822	93
%>70 100 100 99 98 98 %>70 99 98 97 DALLAS_TX DENVER_C DFW 0819 0820 0821 0822 0823 DEN 0819 0820 0821 MIN 79 80 81 79 78 MIN 63 56 54	0822 56	93 0823 56
%>70 100 100 99 98 98 %>70 99 98 97 DALLAS_TX DENVER_C DFW 0819 0820 0821 0822 0823 DEN 0819 0820 0821 MIN 79 80 81 79 78 MIN 63 56 54 %>100 0 0 0 %>100 0 0 0	0822 56 0	93 0823 56 0
%>70 100 100 99 98 98 %>70 99 98 97 DALLAS_TX DENVER_C DFW 0819 0820 0821 0822 0823 DEN 0819 0820 0821 MIN 79 80 81 79 78 MIN 63 56 54 %>100 0 0 0 %>100 0 0 0 %>95 0 0 0 1 %>95 0 0 0	0822 56 0	93 0823 56 0
\$\gamma 70\$ 100 100 99 98 98 \$\gamma 8 \gamma 70\$ 99 98 97 \\ \begin{array}{c c c c c c c c c c c c c c c c c c c	0822 56 0	93 0823 56 0 0
%>70 100 100 99 98 98 %>70 99 98 97 DFW 0819 0820 0821 0822 0823 DEN 0819 0820 0821 MIN 79 80 81 79 78 MIN 63 56 54 %>100 0 0 0 %>100 0 0 0 %>95 0 0 0 1 %>95 0 0 0 %>90 1 1 1 4 %>90 0 0 0 %>85 7 10 12 9 14 %>85 0 0 0	0822 56 0 0	93 0823 56 0 0
%>70 100 100 99 98 98 %>70 99 98 97 DALLAS_TX DEN	56 0 0 0 0 0	93 0823 56 0 0 0
%>70 100 100 99 98 98 %>70 99 98 97 DALLAS_TX DENVER_C DFW 0819 0820 0821 0822 0823 DEN 0819 0820 0821 MIN 79 80 81 79 78 MIN 63 56 54 %>100 0 0 0 %>100 0	00 0822 56 0 0 0	93 0823 56 0 0 0 0
%>70 100 100 99 98 98 %>70 99 98 97 DALLAS_TX DEN	56 0 0 0 0 0	93 0823 56 0 0 0
%>70 100 100 99 98 98 %>70 99 98 97 DALLAS_TX DENVER_C DFW 0819 0820 0821 0822 0823 DEN 0819 0820 0821 MIN 79 80 81 79 78 MIN 63 56 54 %>100 0 0 0 %>100 0	00 0822 56 0 0 0 0 0	93 0823 56 0 0 0 0
\$>70 100 100 99 98 98 \$>70 99 98 97 DALLAS_TX	00 0822 56 0 0 0 0 0	93 0823 56 0 0 0 0 1 4
\$\(\) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00 0822 56 0 0 0 0 0	93 0823 56 0 0 0 0 1 4

%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	1	0	0
%>85	0	1	0	0	1	%>85	0	1	2	2	1
%>80	0	9	1	0	6	%>80	3	3	7	6	5
%>75	8	35	6	2	16	%>75	13	12	18	17	18
%>70	56	72	22	11	34	%>70	35	31	35	37	43
				2010 07				COODI		7.0	
	0010	0000		SNO_CA		CT D	0010		LAND_F		0000
FAT	0819	0820	0821	0822	0823	GLD	0819	0820	0821	0822	0823
MIN	63	64	66	66	67	MIN	65	62	56	60	59
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	0	0	0
%>85	0	0	0	1	1	%>85	0	0	0	1	1
%>80 	0	0	0	3	4	%>80 	2	0	0	3	4
%>75	1	0	3	10	13	%>75	9	2	1	8	9
응>70	8	6	17	27	32	%>70	26	10	5	17	18
		GRE <i>I</i>	AT FAI	LLS MI	1			HOUS	STON_7	ľΧ	
GTF	0819	0820	_ 0821	0822	0823	HOU	0819	0820	_	0822	0823
MIN	42	46	45	46	46	MIN	86	84	84	83	82
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	11	5	7	4	1
%>85	0	0	0	0	0	%>85	59	41	41	32	19
%>80	0	0	0	0	0	%>80	96	87	85	80	67
%>75	0	0	0	0	0	%>75	100	99	99	99	97
%>70	0	0	0	0	0	%>70	100	100	100	100	100
			JACKS	SON_MS	5		KAI	NSAS_C	CITY_N	O	
JAN	0819	0820	0821	0822	0823	MCI	0819	0820	0821	0822	0823
MIN	77	77	76	76	75	MIN	73	75	69	66	72
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	0	0	1
%>85	0	0	0	0	0	%>85	0	1	0	2	3
%>80	8	11	5	1	7	%>80	0	10	2	6	13
%>75	78	76	67	69	51	%>75	13	47	13	16	34
%>70	100	100	100	100	94	%>70	88	87	41	33	61
		T -	NO 1750	77. O. 77.	7					N.D.	
T 7. C	0010		_	GAS_NV				TTLE_F	_		0000
LAS				0822						0822	
MIN	75	75	76	76	77	MIN	75	76	77	76	76
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0

%>90	0	0	0	0	0	%>90	0	0	0	0	0
%>85	0	1	0	1	4	%>85	0	0	1	0	1
%>80	9	14	17	17	26	%>80	1	9	16	8	13
%>75	60	58	72	61	67	%>75	55	65	68	60	55
%>70	89	86	91	90	91	%>70	99	98	98	97	92
		T 0.0	ANCET	EC C				MIDI	. עוער.	337	
T 73.57	0010	_	_	LES_CA		M2 E	0010		LAND_I		0000
LAX	0819			0822						0822	
MIN	67	64	64	64	64	MIN	72	72	71	71	71
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	0	0	0
%>85	0	0	0	0	0	%>85	0	0	0	0	0
%>80	0	0	0	0	0	%>80	3	4	1	0	0
%>75	0	0	0	0	0	%>75	24	27	17	11	11
응>70	9	0	0	0	1	%>70	68	72	64	57	58
		MINI	NEAPOI	LIS MN	1		NE	W ORLE	EANS_I	LA	
MSP	0819			0822		MSY		0820	_	0822	0823
MIN	72	73	64	61	62	MIN	84	85	83	81	81
%>100	0	0	0	0	0	%>100	1	1	1	0	0
%>95	0	0	0	0	0	%>95	2	4	2	1	1
%>90	0	0	0	0	0	%>90	10	17	8	2	2
%>85	0	2	0	0	1	%>85	41	45	29	10	13
%>80	0	11	1	0	4	%>80	83	80	70	54	58
%>75	13	36	4	3	10	%>75	100	97	97	98	98
%>70	71	70	17	11	21	%>70	100	100	100	100	100
		NORTH	H_PLAT	TTE_NE	E		OKLA	_AMOH	CITY_C	ΣK	
LBF	0819	0820	0821		0823	OKC	0819	0820	0821	0822	
MIN	67	63	55	58	60	MIN	73	75	73	72	74
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	0	0	0
%>85	0	0	0	0	0	%>85	1	1	2	3	3
%>80	1	1	0	2	1	%>80	8	13	12	12	15
%>75	8	3	0	5	4	%>75	33	48	36	32	43
%>70	30	14	2	12	12	%>70	71	85	68	60	76
			ОМА	AHA NE	E		1	PENDI.F	ETON ()R	
OMA	0819	0820	0821	_	0823	PDT		0820	_	0822	0823
MIN	73	73	63	63	68	MIN	53	56	58	56	56
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	2	0	0	1	%>90	0	0	0	0	0
0/ 00	U	۷	U	U		0/ / 0	U	U	U	U	U

%>85	0	8	0	0	3	%>85	0	0	0	0	0
%>80	2	21	0	2	9	%>80	0	0	0	0	0
%>75	26	43	2	7	21	%>75	0	0	0	0	1
%>70	80	66	13	19	40	%>70	0	0	1	0	3
			DHOEN	TT 17 7 17	7			DODEL	7330 (ND	
	0010	0000		NIX_AZ			0010		LAND_C		0000
PHX	0819	0820	0821	0822	0823	PDX	0819	0820	0821	0822	0823
MIN	77	78	78	79	81	MIN	56	58	58	59	57
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	1	%>95	0	0	0	0	0
%>90	1	2	3	2	8	%>90	0	0	0	0	0
%>85	7	10	13	14	26	%>85	0	0	0	0	0
%>80	28	34	39	42	57	%>80	0	0	0	0	1
%>75	62	67	70	75	83	%>75	0	0	0	2	2
%>70	88	90	91	93	96	%>70	0	0	0	7	7
		RA]	PID C	ITY_SI)		SA	ACRAME	ENTO (CA	
RAP	0819	0820	0821	_	0823	SAC	0819	0820	0821	0822	0823
MIN	60	56	50	52	53	MIN	58	58	58	58	59
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	0	0	0
%>85	0	0	0	1	0	%>85	0	0	0	0	0
%>80	0	0	0	2	1	%>80	0	0	0	0	0
%>75	0	0	0	5	3	%>75	0	0	0	0	0
%>70	2	0	1	10	8	%>70	0	0	0	0	0
			_	JIS_M		:	_	_	_		
STL	0819		0821		0823	SLC		0820	0821		0823
MIN	73	75	75	69	72	MIN	56	53	56	58	60
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	0	0	0
%>85	0	0	3	0	2	%>85	0	0	0	0	0
%>80	0	2	17	2	10	%>80	0	0	0	0	0
%>75	23	47	50	13	31	%>75	0	0	0	0	0
%>70	92	97	84	41	63	%>70	3	0	1	2	2
		SAN	ANTO	VIO TX	ζ		S	SAN DI	EGO (CA	
SAT	0819	0820	0821	0822	0823	SAN		0820	_	0822	0823
MIN	79	79	78	77	77	MIN	68	67	66	66	65
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	0	0	0
%>85	0	0	1	0	0	%>85	0	0	0	0	0

					_		_				
%>80	28	26	23	15	7	%>80	0	0	0	0	0
%>75	98	96	86	83	78	%>75	0	0	0	0	0
%>70	100	100	100	100	100	응>70	6	5	1	1	1
	S	SAN_FI	RANCIS	SCO_CA	7			SEAT	TTLE_V	VΑ	
SFO	0819	0820	0821	0822	0823	SEA	0819	0820	0821	0822	0823
MIN	56	56	56	56	56	MIN	57	58	58	58	56
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	0	0	0
%>85	0	0	0	0	0	%>85	0	0	0	0	0
%>80	0	0	0	0	0	%>80	0	0	0	0	0
%>75	0	0	0	0	0	%>75	0	0	0	0	0
%>70	0	0	0	0	0	%>70	0	0	0	1	2
		0111		D			0.7)		7.D	
	0010			ORT_LA				OUX_FA	_		0000
SHV	0819	0820	0821		0823	FSD	0819	0820		0822	0823
MIN	77	77	78	77	76	MIN	71	70	58	58	60
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	1	0	0	0
%>90	0	0	0	0	0	%>90	0	3	0	0	0
%>85	0	1	4	1	0	%>85	0	7	0	0	0
%>80	12	22	30	15	5	%>80	2	16	0	1	2
%>75 %>70	100	76 99	76 97	69 98	58 98	%>75	19 62	31	1 4	3 10	5 1 /
응>70	100	99	97	90	90	%>70	02	49	4	10	14
		SPR	INGFIE	ELD_MC)			TUO	CSON_A	ΑZ	
SGF	0819	0820	0821	0822	0823	TUS	0819	0820	0821	0822	0823
MIN	71	73	73	68	72	MIN	67	66	67	68	70
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	0	1	1
%>85	0	0	0	0	0	%>85	0	1	2	3	4
%>80	0	0	6	1	1	%>80	2	4	6	8	12
%>75	9	17	30	7	19	%>75	10	13	17	21	28
응>70	69	98	72	35	70	응>70	31	32	36	42	50
			TUI	LSA OF	ζ			WICH	HITA F	ζS	
TUL	0819	0820		0822		ICT	0819	0820	_		0823
MIN	75	76	75	73	75	MIN	72	73	67	67	71
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	0	0	0	%>90	0	0	0	1	1
%>85	0	0	2	0	0	%>85	0	1	1	3	4
%>80	5	12	14	6	7	%>80	5	7	5	9	13

%>75	47	60	46	33	52	%>75	27	31	16	20	31
%>70	93	95	81	75	94	%>70	66	70	36	38	56

 YUMA_AZ

 YUM
 0819
 0820
 0821
 0822
 0823

 MIN
 81
 79
 79
 78
 81

 %>100
 0
 0
 0
 0
 0

 %>95
 0
 0
 0
 0
 0

 %>90
 0
 0
 1
 0
 1

 %>85
 10
 7
 8
 1
 13

 %>80
 70
 46
 39
 26
 58

 %>75
 93
 86
 81
 82
 93

 %>70
 99
 98
 97
 99
 100

URL IS WWW.WPC.NCEP.NOAA.GOV

\$\$

4. Probabilistic Day 3-7 Mean Heat Index Forecast - Eastern U.S. (PRBEHI)

FMUS23 KWNH 161538 PRBEHI

DAYS 3--7 HEAT INDEX FORECAST TABLES

NWS WEATHER PREDICTION CENTER COLLEGE PARK MD

1535 UTC MON AUG 16 2021

MEAN HEAT INDEX (DEG F) AND MEAN HI PROB (%) FRCSTS AT EASTERN US CITIES - DAYS 3 TO 7 FROM MON AUG 16 2021

AKRON-CANTON_OH CAK 0819 0820 0821 0822 0 MEAN 77 77 78 76 %>100 0 0 0 0 %>95 0 0 0 0 %>90 0 0 0 0 %>85 1 0 4 3 %>80 18 13 30 19 %>75 73 72 76 55					I			ALE	BANY_N	1A	
CAK	0819	0820	0821	0822	0823	ALB	0819	0820	0821	0822	0823
MEAN	77	77	78	76	74	MEAN	77	79	79	79	74
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	1	1	0	0	0
%>90	0	0	0	0	0	%>90	4	5	1	4	0
%>85	1	0	4	3	3	%>85	14	17	10	17	4
%>80	18	13	30	19	16	%>80	34	41	43	46	17
%>75	73	72	76	55	44	%>75	61	70	83	78	46
%>70	98	99	97	87	75	%>70	83	90	98	95	77
		AS	SHEVII	LE_NC				ATLA	ANTA_C	GΑ	
AVL	0819	0820	0821	0822	0823	ATL	0819	0820	0821	0822	0823
MEAN	74	73	74	75	74	MEAN	85	83	84	86	86
%>100	0	0	0	0	0	%>100	0	0	0	0	0

%>95	0	0	0	0	0	%>95	0	0	1	1	1
%>90	0	1	1	0	0	%>90	3	5	8	13	14
%>85	2	3	3	3	3	%>85	45	31	43	61	60
%>80	12	13	15	18	14	%>80	94	74	86	95	94
%>75	41	38	42	53	43	%>75	100	96	99	100	100
%>70	75	69	72	85	75	%>70	100	100	100	100	100
		D	N T III T N 1/2	ODE M			D.	EDMINI	~117\N 7	\ T	
DHT	0010			ORE_MI		DIM		IRMINO	_		0000
BWI	0819	0820	0821	0822	0823	BHM	0819	0820		0822	0823
MEAN	83	82	82	84	79	MEAN	84	83	85	87	88
%>100	0	0	0	0	0	%>100	0	0	0	0	1
%>95	0	0	0	1	1	%>95	1	2	1	3	10
%>90	3	5	5	8	4	%>90	9	11	13	24	37
%>85	30	29	28	40	16	%>85	42	38	52	68	73
%>80	79	71	71	81	42	%>80 	81	74	88	95	94
%>75	98	95	94	98	73	%>75	97	94	99	100	99
%>70	100	100	99	100	92	%>70	100	99	100	100	100
			BOST	TON MA	4			BUFI	FALO N	ΊΥ	
BOS	0819	0820	0821	_	0823	BUF	0819	0820	_	0822	0823
MEAN	79	79	78	78	75	MEAN	78	78	79	77	73
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	3	3	2	3	1	%>90	1	0	0	1	0
%>85	15	13	10	14	6	%>85	8	2	7	7	2
%>80	42	39	34	39	22	%>80	36	26	39	28	12
%>75	75	75	69	71	50	%>75	75	79	83	63	37
%>70	95	96	93	92	79	%>70	96	99	99	89	70
0270	93	50))	72	73	0270	50		99	0,5	70
		СНА	ARLEST	ron_so	C		CI	HARLES	STON_V	VV	
CHS	0819	0820	0821	0822	0823	CRW	0819	0820	0821	0822	0823
MEAN	90	91	91	92	91	MEAN	80	79	80	80	78
%>100	0	0	0	3	3	%>100	0	0	0	0	0
%>95	3	8	7	25	21	%>95	0	0	0	0	0
%>90	44	60	61	71	62	%>90	0	0	1	3	1
%>85	94	97	97	96	92	%>85	9	5	14	17	10
%>80	100	100	100	100	99	%>80	50	42	53	51	35
%>75	100	100	100	100	100	%>75	91	88	89	84	70
%>70	100	100	100	100	100	%>70	100	99	99	98	92
		CI	HARLOI	TTE_NC	2			CHIC	CAGO_1	ΙL	
CLT	0819	0820	0821	0822	0823	ORD	0819	0820	0821	0822	0823
MEAN	84	84	84	86	82	MEAN	81	82	79	76	76
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	1	1	1	2	3	%>95	0	0	0	0	1

%>90	8	10	11	19	12	%>90	0	1	2	1	3
%>85	39	40	43	59	33	%>85	6	20	13	5	11
%>80	80	77	80	90	61	%>80	69	75	43	22	29
%>75	97	95	96	99	84	%>75	98	98	78	53	56
%>70	100	99	100	100	96	%>70	100	100	96	82	80
		~		. ==	_			~			
			NCINNA	_				CLEVEI	_		
LUK	0819	0820				CLE				0822	
MEAN	81	80	81	78	78	MEAN	79	79	80	77	76
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	4	3	3	%>90	0	0	4	1	0
%>85	8	2	21	15	14	%>85	5	3	19	6	4
%>80	56	56	58	40	38	%>80	34	31	52	28	20
%>75	96	99	89	71	69	%>75	82	89	84	64	54
%>70	100	100	99	92	90	%>70	99	100	97	90	85
		,	COT TIME	מדא מכ	,			COLII	ADIIC (
03.E	0010		COLUME	_			0010		MBUS_C		0000
CAE	0819	0820			0823	TZR	0819			0822	0823
MEAN	87	87	87	89	87	MEAN	79	79	80	78	76
%>100	0	0	0	1	1	%>100	0	0	0	0	0
%>95	1	2	4	10	6	%>95	0	0	0	0	0
%>90	19	22	27	41	29	%>90	0	0	1	2	1
%>85	75	69	70	79	66	%>85	5	3	12	11	8
%>80	98	96	95	97	91	%>80	40	39	48	34	26
%>75	100	100	100	100	99	%>75	89	93	86	67	56
%>70	100	100	100	100	100	응>70	100	100	99	90	82
			DAYT	ON OF	I			DETI	ROIT N	4I	
MGY	0819	0820		_	0823	DET	0819	0820	0821	0822	0823
MEAN	80	80	81	78	77	MEAN	80	80	82	77	76
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	0	0	0	0	0
%>90	0	0	3	3	2	%>90	0	0	4	1	1
%>85	9	2	20	12	10	%>85	7	7	25	8	7
%>80	51	51	57	36	31	%>80	51	53	65	30	25
%>75	92	98	88	67	61	%>75	93	94	92	66	55
%>70	100	100	99	89	85	%>70	100	100	99	91	83
		EVA	ANSVII	LLE_IN	1		GRAI	ND_RAI	PIDS_N	ΊΙ	
EVV	0819	0820	0821	0822	0823	GRR	0819	0820	0821	0822	0823
MEAN	82	82	82	79	81	MEAN	79	79	79	73	73
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	1	1	2	%>95	0	0	0	0	0
%>90	0	1	7	5	10	%>90	0	0	3	0	1

%>85	15	20	31	19	29		2	2	15	2	5
%>80	70	71	68	45	57	%>80		37	43	12	17
%>75	98	97	92	73	82	%>75	88	93	75	37	40
%>70	100	100	99	91	95	%>70	100	100	94	69	67
					~						
			EENSBO	_				JNTSVI	_		
GSO		0820				HSV				0822	
MEAN	82	81	81	82	79	MEAN	82	82	84	85	87
%>100	0	0	0	0	0	%>100	0	0	0	0	1
%>95 °>00	0	1	1	1	1		0		0	1	6
%>90 %>05	4 24	7 25	5 23	7 30	6 20		2 22		2 34	15 54	27 62
%>85 %>00			55	67	44	%>85 %>00	72	76			
%>80 %>75	63	57				%>80			90	90	89
%>75	91	84 97	84	91 99	71 89	%>75 %>70	97 100	98	100	99	98
응>70	99	97	97	99	89	₹>10	100	100	100	100	100
		INDI	ANAPOI	LIS_IN	1		Ι	KNOXVI	LLE_7	ΓN	
IND	0819	0820	0821	0822	0823	TYS	0819	0820	0821	0822	0823
MEAN	80	80	80	76	76	MEAN	80	79	80	82	81
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	1	%>95	0	0	0	0	0
%>90	0	0	3	2	3	%>90	0	0	0	1	2
%>85	6	3	17	9	12	%>85	8	4	10	22	19
%>80	50	53	48	29	29	%>80	55	41	57	72	59
%>75	94	97	81	59	55	%>75	94	88	93	97	91
%>70	100	100	96	84	78	%>70	100	99	99	100	99
		тт	ZV T NICO	ת או על	7		т (NIIT CIII	בדד בי ד	/V	
TEV	0819		EXINGT	_	0823				_	0822	0022
LEX MEAN	78	79	79	79	78	SDF MEAN	81	81	81	80	0823
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>100	0	0	0	1	1
%>90	0	0	1	2	3	%>90	0	0	5	4	6
%>85	2	5	12	13	13	%>85	9	11	24	19	21
%>80	32	37	45	40	37	%>80	60	61	60	47	49
%>75	85	84	82	73	68	%>75	96	94	88	77	77
%>70	99	99	97	93	90	%>70	100	100	98	94	93
			MEMPI	HIS_TN	1			M	TAMI_E	FL	
MEM	0819	0820		0822		MIA	0819			0822	0823
MEAN	86	87	89	89	90	MEAN	94	92	92	95	97
%>100	0	0	0	1	4	%>100	9	3	2	10	25
%>95	1	1	6	9	19	%>95	38	14	15	42	61
%>90	15	20	38	39	52	%>90	86	72	82	94	90
%>85	63	74	84	79	84	%>85	99	99	100	100	98

%>80	95	98	99	97	97	%>80	100	100	100	100	100
%>75	100	100	100	100	100	%>75	100	100	100	100	100
%>70	100	100	100	100	100	응>70	100	100	100	100	100
		M ⁻	T.WAUI	KEE WI	-			MOT	BILE <i>P</i>	λT,	
MKE	0819	0820	0821	_	0823	MOB	0819	0820	0821		0823
MEAN	78	79	76	73	74	MEAN	90	90	90	91	91
%>100	0	0	0	0	0	%>100	0	0	0	0	1
%>95	0	0	0	0	0	%>95	1	2	2	6	16
%>90	1	2	1	0	0	%>90	44	42	45	62	60
%>85	7	11	7	2	3	%>85	100	96	97	98	94
%>80	33	41	25	11	15	%>80	100	100	100	100	100
%>75	76	79	57	35	43	%>75	100	100	100	100	100
%>70	96	96	85	69	75	%>70	100	100	100	100	100
		NZ	ASHVII	LLE_T1	1		NEW_	YORK_C	CITY_N	1X	
BNA	0819	0820	0821	0822	0823	NYC	0819	0820	0821	0822	0823
MEAN	82	83	84	85	85	MEAN	80	82	82	82	78
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	3	3	%>95	0	0	0	1	1
응>90	2	2	7	16	17	%>90	1	2	3	7	5
%>85	21	26	38	47	48	%>85	13	21	23	29	16
%>80	69	78	81	80	80	%>80	51	69	68	66	40
%>75	96	98	98	96	96	%>75	88	96	96	92	67
%>70	100	100	100	100	100	%>70	99	100	100	99	88
			NORFO	OLK VA	4			ORTA	ANDO_E	7T.	
ORF	0819	0820	0821	_	0823	ORL	0819		0821		0823
MEAN	87	85	85	87	83	MEAN	92	91	91	92	92
%>100	0	0	0	0	0	%>100	1	0	0	1	2
%>95	1	0	1	2	1	%>95	18	11	12	20	24
%>90	18	7	11	22	8	%>90	70	61	63	77	76
%>85	76	51	54	71	32	%>85	97	96	97	99	98
%>80	99	94	93	97	71	%>80	100	100	100	100	100
%>75	100	100	100	100	94	%>75	100	100	100	100	100
%>70	100	100	100	100	99	%>70	100	100	100	100	100
		PHILA	ADELPH	HIA_PA	A		P	ITTSBU	JRGH_E	PA	
PHL					0823	PIT				0822	0823
MEAN	82	82	83	83	78	MEAN	77	77	77	77	74
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	1	0	0	1	1	%>95	0	0	0	0	0
%>90	7	2	4	7	5	%>90	0	0	0	0	1
%>85	30	23	29	31	17	%>85	0	1	4	5	4
%>80	67	74	74	70	40	%>80	15	20	28	24	17

%>75	92	98	97	94	67	%>75	72	68	72	62	44
%>70	99	100	100	99	87	%>70	99	96	96	90	74
		,	סרס חיד	AND ME	7		ום		ENCE F	ЭТ	
PWM	0819	0820		_	0823	PVD	0819	0820	_	0822	0823
MEAN	77	78	75	75	73	MEAN	79	80	79	80	77
%>100	0	0	0	0	0	%>100	0	0	0	0	0
%>95	0	0	0	0	0	%>95	1	1	0	1	0
%>90	0	2	1	1	0	%>90	6	6	3	5	2
%>85	3	11	7	6	1	%>85	19	21	15	19	9
%>80	26	35	22	21	9	%>80	43	47	45	47	30
%>75	69	69	50	50	34	%>75	71	75	80	77	61
%>70	97	94	81	81	70	%>70	90	93	96	94	86
	R	ALEIGH	H-DURI	HAM_NC				RICH	UMON_	7A	
RDU	0819	0820	0821	0822	0823	RIC	0819	0820	0821	0822	0823
MEAN	86	86	86	87	83	MEAN	85	84	84	86	80
%>100	0	0	0	0	0	%>100	0	0	0	0	1
%>95	0	2	2	6	2	%>95	0	3	1	3	3
%>90	9	18	16	30	12	%>90	8	15	10	20	11
%>85	67	61	57	70	37	%>85	54	44	41	58	28
%>80	97	92	90	94	69	응>80	94	77	79	89	52
%>75	100	99	99	99	90	%>75	100	95	97	99	76
%>70	100	100	100	100	98	응>70	100	99	100	100	91
		:	SAVANI	NAH GA	Ą		TA]	LLAHAS	SSEE E	FL	
SAV	0819	0820	0821	_	0823	TLH	0819	0820	0821	0822	0823
MEAN	90	90	91	92	92	MEAN	91	89	90	91	92
%>100	0	0	0	2	3	%>100	0	0	0	1	5
%>95	4	6	8	21	22	%>95	2	1	4	12	28
%>90	48	53	56	66	65	%>90	60	39	51	61	70
%>85	95	96	96	95	94	%>85	99	96	97	96	95
%>80	100	100	100	100	100	%>80	100	100	100	100	100
%>75	100	100	100	100	100	%>75	100	100	100	100	100
%>70	100	100	100	100	100	%>70	100	100	100	100	100
			шли	ADA EI	-		T-7.	A CILTAI	CIII ON T).C	
шъл	0010	0000		MPA_FI		DOM			GTON_I		0000
TPA MEAN	0819 92	91	92	93	0823 94	DCA	83	83	82	84	79
%>100	92	1	92	2	5	MEAN %>100	0	0	0	0	0
%>95	19	12	16	27	39	%>95	0	1	1	1	1
%>90	74	68	73	85	86	%>90	4	8	9	12	6
%>85	98	98	98	99	99	%>85	32	32	31	43	20
%>80	100	100	100	100	100	%>80		68	65	80	44
%>75	100	100	100	100	100	%>75	98	92	89	97	70
0/10	100	±00	±00	±00	±00	0/10	70	12	U J	21	7 0

NWSI 10-516 MAY 24, 2022

URL IS WWW.WPC.NCEP.NOAA.GOV

\$\$