Implementing cutting-edge isogeny-based cryptography for beginners

<u>Lorenz Panny</u>¹ Krijn Reijnders²

¹ Technische Universität München

² Radboud University, Nijmegen

Summer School on Real-World Crypto and Privacy Vodice, 7 June 2024

SQIsign: What?

https://sqisign.org

SQIsign: What?

https://sqisign.org

- ► A new and very hot post-quantum signature scheme.
- ► Based on an old and super cool part of mathematics. ∵

SQIsign: Why?

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.
- + ...but performance is getting better by the \approx week!

SQIsign: Why?

- + It's extremely <u>small</u> compared to the competition.
- It's relatively <u>slow</u> compared to the competition.
- + ...but performance is getting better by the \approx week!

SQIsign: Size comparisons

 $Source: \verb|https://pqshield.github.io/nist-sigs-zoo| \\$

► Paths in an "isogeny graph" seem hard to recover.

- ► Paths in an "isogeny graph" seem hard to recover.
- → <u>Fiat-Shamir</u>: signature scheme from identification scheme
 by replacing the challenger by a hash function.

- ▶ Paths in an "isogeny graph" seem hard to recover.
- → <u>Fiat-Shamir</u>: signature scheme from identification scheme
 by replacing the challenger by a hash function.

$$E_0 \xrightarrow{secret} E_A$$

- ► Paths in an "isogeny graph" seem hard to recover.
- → <u>Fiat-Shamir</u>: signature scheme from identification scheme
 by replacing the challenger by a hash function.

- ▶ Paths in an "isogeny graph" seem hard to recover.
- → <u>Fiat-Shamir</u>: signature scheme from identification scheme
 by replacing the challenger by a hash function.

- ► Paths in an "isogeny graph" seem hard to recover.
- → <u>Fiat-Shamir</u>: signature scheme from identification scheme
 by replacing the challenger by a hash function.

- ► Paths in an "isogeny graph" seem hard to recover.
- → <u>Fiat-Shamir</u>: signature scheme from identification scheme
 by replacing the challenger by a hash function.

▶ Easy response: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.

- ► Paths in an "isogeny graph" seem hard to recover.
- → <u>Fiat-Shamir</u>: signature scheme from identification scheme by replacing the challenger by a hash function.

- ▶ Easy response: $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$. *Obviously broken*.
- ▶ <u>SQIsign's solution</u>: Construct new path $E_A \rightarrow E_2$ (using secret).

a priori

...is a strong connection between two very different worlds:

a priori

...is a strong connection between two very different worlds:

▶ Supersingular elliptic curves defined over \mathbb{F}_{p^2} .

a priori

...is a strong connection between two very different worlds:

- ▶ Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- ▶ Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

a priori

...is a strong connection between two very different worlds:

- ▶ Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- ▶ Quaternions: Maximal orders in a certain algebra $B_{p,\infty}$.

Isogenies become "connecting ideals" in quaternion land.

a priori

...is a strong connection between two very different worlds:

- ▶ Supersingular elliptic curves defined over \mathbb{F}_{p^2} .
- ▶ Quaternions: Maximal orders in a certain algebra $B_{\nu,\infty}$.

Isogenies become "connecting ideals" in quaternion land.

∴ One direction is easy, the other seems hard! ~ Cryptography!

The Deuring correspondence (examples)

Let p = 7799999 and let **i**, **j** satisfy $i^2 = -1$, $j^2 = -p$, ji = -ij.

The ring $\mathcal{O}_0 = \mathbb{Z} \oplus \mathbb{Z} \mathbf{i} \oplus \mathbb{Z} \frac{\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{1+\mathbf{i}\mathbf{j}}{2}$ corresponds to the curve $E_0 \colon y^2 = x^3 + x$.

The ring $\mathcal{O}_1 = \mathbb{Z} \oplus \mathbb{Z} 4947\mathbf{i} \oplus \mathbb{Z} \frac{4947\mathbf{i} + \mathbf{j}}{2} \oplus \mathbb{Z} \frac{4947 + 32631010\mathbf{i} + \mathbf{i}\mathbf{j}}{9894}$ corresponds to the curve $E_1 : y^2 = x^3 + 1$.

The ideal $I = \mathbb{Z} 4947 \oplus \mathbb{Z} 4947\mathbf{i} \oplus \mathbb{Z} \frac{598+4947\mathbf{i}+\mathbf{j}}{2} \oplus \mathbb{Z} \frac{4947+598\mathbf{i}+\mathbf{i}\mathbf{j}}{2}$ defines an isogeny $E_0 \to E_1$ of degree $4947 = 3 \cdot 17 \cdot 97$.

Main idea:

▶ Translate $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ to quaternion land.

Main idea:

- ▶ Translate $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ to quaternion land.
- Compute a random path $E_A \rightarrow E_2$ using quaternion magic.

Main idea:

- ▶ Translate $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ to quaternion land.
- \nearrow Compute a random path $E_A \rightarrow E_2$ using quaternion magic.
 - ► Project the response (signature) down to the curve world.

Main idea:

- ▶ Translate $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ to quaternion land.
- \nearrow Compute a random path $E_A \rightarrow E_2$ using quaternion magic.
 - ► Project the response (signature) down to the curve world.
 - ► The verifier can check on curves that everything is correct.

Main idea:

- ▶ Translate $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ to quaternion land.
- \nearrow Compute a random path $E_A \rightarrow E_2$ using quaternion magic.
 - ► Project the response (signature) down to the curve world.
 - ► The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.

▶ From End(E), End(E'), can randomize within Hom(E, E') and find elements in Hom(E, E') that are easy to compute.

Main idea:

- ▶ Translate $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ to quaternion land.
- \nearrow Compute a random path $E_A \rightarrow E_2$ using quaternion magic.
 - ► Project the response (signature) down to the curve world.
 - ► The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.

- ► From End(E), End(E'), can randomize within Hom(E, E') and find elements in Hom(E, E') that are easy to compute.
- ightharpoonup SQIsign takes the "broken" signature $E_A
 ightharpoonup E_0
 ightharpoonup E_1
 ightharpoonup E_2$ and rewrites it into a random path $E_A
 ightharpoonup E_2$.

Main idea:

- ▶ Translate $E_A \rightarrow E_0 \rightarrow E_1 \rightarrow E_2$ to quaternion land.
- \nearrow Compute a random path $E_A \rightarrow E_2$ using quaternion magic.
 - ► Project the response (signature) down to the curve world.
 - ► The verifier can check on curves that everything is correct.

Main technical tool: The KLPT algorithm.

- ► From End(E), End(E'), can randomize within Hom(E, E') and find elements in Hom(E, E') that are easy to compute.
- ightharpoonup SQIsign takes the "broken" signature $E_A
 ightharpoonup E_0
 ightharpoonup E_1
 ightharpoonup E_2$ and rewrites it into a random path $E_A
 ightharpoonup E_2$.

"If you have KLPT implemented very nicely as a black box, then anyone can implement SQIsign." — Yan Bo Ti SQIsign: Where?

SQIsign: Where?

TODO: insert picture of beach in Croatia or whatever, idk

SQIsign: When?

SQIsign: When?

isogeny club

Seminor Sessions

A seminar session for young isogenists.

► The "SIKE attacks" of Summer 2022 have sparked a revolution in isogeny-based cryptography.

- ► The "SIKE attacks" of Summer 2022 have sparked a revolution in isogeny-based cryptography.
- ► Computing isogenies of higher-dimensional abelian varieties is a very powerful tool: Also for SQIsign!

- ► The "SIKE attacks" of Summer 2022 have sparked a revolution in isogeny-based cryptography.
- ► Computing isogenies of higher-dimensional abelian varieties is a very powerful tool: Also for SQIsign!

► Recent preprints: Faster using 2-dimensional isogenies.

The HD situation

- ► The "SIKE attacks" of Summer 2022 have sparked a revolution in isogeny-based cryptography.
- ► Computing isogenies of higher-dimensional abelian varieties is a very powerful tool: Also for SQIsign!

- ► Recent preprints: Faster using 2-dimensional isogenies.
- ► <u>Here</u>, we only talk about the 1-dimensional approach: Easier for beginners, and still at the heart of everything.

- ► You'll get some prepared Python scripts.
- ► Some parts are missing. Fill them in.
- ► For the rest of this talk we explain the underlying math.

- ► You'll get some prepared Python scripts.
- ► Some parts are missing. Fill them in.
- ► For the rest of this talk we explain the underlying math.

• We're doing everything in Python for the moment, so secure implementations are out of scope.

- ► You'll get some prepared Python scripts.
- ► Some parts are missing. Fill them in.
- ► For the rest of this talk we explain the underlying math.

⚠ We're doing everything in Python for the moment, so secure implementations are out of scope.

► Optional **challenge**: Minimize the "cost" for your implementation: <u>Estimated</u> equivalent # multiplications.

- ► You'll get some prepared Python scripts.
- ► Some parts are missing. Fill them in.
- ► For the rest of this talk we explain the underlying math.

⚠ We're doing everything in Python for the moment, so secure implementations are out of scope.

- ► Optional **challenge**: Minimize the "cost" for your implementation: <u>Estimated</u> equivalent # multiplications.
- ► There will be *prizes!!*

Stand back!

We're going to do math.

Some of the coming bits are on the math-heavy side, but <u>don't worry</u>: Things will be very concrete at the end.

An elliptic curve for our purposes over a field *F* is an equation

$$E \colon \ y^2 = x^3 + Ax^2 + x$$

with $A \in F \setminus \{\pm 2\}$.

An elliptic curve for our purposes over a field *F* is an equation

$$E: y^2 = x^3 + Ax^2 + x$$

with $A \in F \setminus \{\pm 2\}$.

A point on *E* is a solution (x, y), <u>or</u> the "fake" point ∞ .

An elliptic curve for our purposes over a field *F* is an equation

$$E \colon \ y^2 = x^3 + Ax^2 + x$$

with $A \in F \setminus \{\pm 2\}$.

A point on *E* is a solution (x, y), <u>or</u> the "fake" point ∞ .

E is an abelian group: we can "add" points.

An elliptic curve for our purposes over a field *F* is an equation

$$E: y^2 = x^3 + Ax^2 + x$$

with $A \in F \setminus \{\pm 2\}$.

A point on *E* is a solution (x, y), or the "fake" point ∞ .

E is an abelian group: we can "add" points.

- ▶ The neutral element is ∞ .
- ▶ The inverse of (x, y) is (x, -y).
- ► The sum of (x_1, y_1) and (x_2, y_2) is

$$(\lambda^2 - A - x_1 - x_2, \lambda(2x_1 + x_2 + A - \lambda^2) - y_1)$$

where
$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + 2Ax + 1}{2y_1}$ otherwise.

Elliptic curves (picture over \mathbb{R})

An elliptic curve \mathbb{R} .

Elliptic curves (picture over \mathbb{R})

Addition law:

$$P + Q + R = \infty \iff \{P, Q, R\}$$
 on a straight line.

Elliptic curves (picture over \mathbb{R})

The *point at infinity* ∞ lies on every vertical line.

Elliptic curves (picture over \mathbb{F}_p)

The same curve as before over the finite field \mathbb{F}_{79} .

Elliptic curves (picture over \mathbb{F}_p)

The <u>addition law</u> over the finite field \mathbb{F}_{79} .

ECDH (not post-quantum)

Public parameters:

an elliptic curve *E* and a point $P \in E$ of large prime order ℓ .

ECDH (not post-quantum)

Public parameters:

an elliptic curve *E* and a point $P \in E$ of large prime order ℓ .

Define scalar multiplication
$$[n]P := \underbrace{P + \cdots + P}_{n \text{ times}}$$
. (Use $O(\log n)$ algorithm!)

ECDH (not post-quantum)

Public parameters:

an elliptic curve E and a point $P \in E$ of large prime order ℓ .

Define scalar multiplication
$$[n]P := \underbrace{P + \cdots + P}_{n \text{ times}}$$
. (Use $O(\log n)$ algorithm!)

Computationally, it usually makes sense to trade inversions for (a few) multiplications and additions.

Computationally, it usually makes sense to trade inversions for (a few) multiplications and additions.

Hence, instead of storing $u, v \in F$, store $u_1, u_2, v_1, v_2 \in F$ where $u = u_1/u_2$ and $v = v_1/v_2$.

Computationally, it usually makes sense to trade inversions for (a few) multiplications and additions.

Hence, instead of storing $u, v \in F$, store $u_1, u_2, v_1, v_2 \in F$ where $u = u_1/u_2$ and $v = v_1/v_2$.

- ▶ Inverting u_1/u_2 just means swapping u_1 and u_2 .
- $u_1/u_2 \cdot v_1/v_2$ means computing u_1v_1 and u_2v_2 .
- ▶ $u_1/u_2 + v_1/v_2$ means computing $u_1v_2 + u_2v_1$ and u_2v_2 .

Computationally, it usually makes sense to trade inversions for (a few) multiplications and additions.

Hence, instead of storing $u, v \in F$, store $u_1, u_2, v_1, v_2 \in F$ where $u = u_1/u_2$ and $v = v_1/v_2$.

- ▶ Inverting u_1/u_2 just means swapping u_1 and u_2 .
- $u_1/u_2 \cdot v_1/v_2$ means computing u_1v_1 and u_2v_2 .
- ▶ $u_1/u_2 + v_1/v_2$ means computing $u_1v_2 + u_2v_1$ and u_2v_2 .

For elliptic-curve points, we commonly work with (X:Y:Z) representing (x,y)=(X/Z,Y/Z). Then actually $\infty=(0:1:0)!$

Observation:

▶ For $n \in \mathbb{Z}$, we have [n](-P) = -[n]P. (This holds in any group.)

Observation:

- ▶ For $n \in \mathbb{Z}$, we have [n](-P) = -[n]P. (This holds in any group.)
- ► Recall that P = (x, y) has inverse -P = (x, -y).

Observation:

- ▶ For $n \in \mathbb{Z}$, we have [n](-P) = -[n]P. (This holds in any group.)
- ▶ Recall that P = (x, y) has inverse -P = (x, -y).
- \implies We get an induced map xMUL_n on x-coordinates such that

$$\forall P \in E$$
. $xMUL_n(x(P)) = x([n]P)$.

Observation:

- ▶ For $n \in \mathbb{Z}$, we have [n](-P) = -[n]P. (This holds in any group.)
- ▶ Recall that P = (x, y) has inverse -P = (x, -y).
- \implies We get an induced map $xMUL_n$ on x-coordinates such that $\forall P \in E. \quad xMUL_n(x(P)) = x([n]P)$.

Here again, we often use projective coordinates (X, Z) representing the *x*-coordinate X/Z.

Observation:

- ▶ For $n \in \mathbb{Z}$, we have [n](-P) = -[n]P. (This holds in any group.)
- ▶ Recall that P = (x, y) has inverse -P = (x, -y).
- \implies We get an induced map $xMUL_n$ on x-coordinates such that $\forall P \in E$. $xMUL_n(x(P)) = x([n]P)$.

Here again, we often use projective coordinates (X, Z) representing the *x*-coordinate X/Z.

"Correct" technical meaning: The *x*-coordinate projection is a map to the Kummer line K, which is basically just \mathbb{P}^1 .

Special case: $\infty \mapsto (1:0) \in \mathcal{K}$.

Observation:

- ▶ For $n \in \mathbb{Z}$, we have [n](-P) = -[n]P. (This holds in any group.)
- ▶ Recall that P = (x, y) has inverse -P = (x, -y).
- \implies We get an induced map $xMUL_n$ on x-coordinates such that $\forall P \in E$. $xMUL_n(x(P)) = x([n]P)$.

Here again, we often use projective coordinates (X, Z) representing the *x*-coordinate X/Z.

"Correct" technical meaning: The *x*-coordinate projection is a map to the Kummer line K, which is basically just \mathbb{P}^1 .

Special case: $\infty \mapsto (1:0) \in \mathcal{K}$.

For many fun facts about Kummer varieties, ask Krijn.

x-only arithmetic: Building blocks

There are algebraic formulas for the following operations:

- ▶ xDBL: maps x(P) to x([2]P).
- ▶ xADD: maps x(P), x(Q), x(P-Q) to x(P+Q).

x-only arithmetic: Building blocks

There are algebraic formulas for the following operations:

- ▶ xDBL: maps x(P) to x([2]P).
- ▶ xADD: maps x(P), x(Q), x(P-Q) to x(P+Q).

Fast formulas may be found here:

https://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html

x-only arithmetic: Building blocks

There are algebraic formulas for the following operations:

- ▶ xDBL: maps x(P) to x([2]P).
- ► xADD: maps x(P), x(Q), x(P-Q) to x(P+Q).

Fast formulas may be found here:

https://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html

In these formulas, the projectivized *x*-coordinates of the points P, Q, P-Q are (X2,Z2), (X3,Z3), (X1,Z1)!

x-only arithmetic: The Montgomery ladder

▶ Recall: Points on K are pairs (X : Z) of finite-field elements representing the x-coordinate X/Z, or ∞ if Z = 0.

x-only arithmetic: The Montgomery ladder

▶ Recall: Points on \mathcal{K} are pairs (X : Z) of finite-field elements representing the x-coordinate X/Z, or ∞ if Z = 0.

Input: Integer $n \in \mathbb{Z}$, Kummer line point $\pm P \in \mathcal{K}$. Output: The Kummer line point $\mathsf{xMUL}_n(\pm P) = \pm [n]P$.

- 1. If n < 0, set n := -n.
- 2. Binary expansion: $n = \sum_{i=0}^{\ell-1} b_i 2^i$ with each $b_i \in \{0,1\}$.
- 3. Initialize $\pm R_0 := (1:0) \in \mathcal{K}$ and $\pm R_1 := \pm P \in \mathcal{K}$.
- 4. For *k* ranging from $\ell 1$ down to 0:
 - Set $\pm R_{1-b_k} := \mathsf{xADD}(\pm R_0, \pm R_1, \pm P)$.
 - ► Set $\pm R_{b_k} := \mathsf{xDBL}(\pm R_{b_k})$.
- 5. Return $\pm R_0$.

x-only arithmetic: The Montgomery ladder

▶ Recall: Points on \mathcal{K} are pairs (X : Z) of finite-field elements representing the x-coordinate X/Z, or ∞ if Z = 0.

Input: Integer $n \in \mathbb{Z}$, Kummer line point $\pm P \in \mathcal{K}$. Output: The Kummer line point $\mathsf{xMUL}_n(\pm P) = \pm [n]P$.

- 1. If n < 0, set n := -n.
- 2. Binary expansion: $n = \sum_{i=0}^{\ell-1} b_i 2^i$ with each $b_i \in \{0,1\}$.
- 3. Initialize $\pm R_0 := (1:0) \in \mathcal{K}$ and $\pm R_1 := \pm P \in \mathcal{K}$.
- 4. For *k* ranging from $\ell 1$ down to 0:
 - Set $\pm R_{1-b_k} := \mathsf{xADD}(\pm R_0, \pm R_1, \pm P)$.
 - ► Set $\pm R_{b_k} := \mathsf{xDBL}(\pm R_{b_k})$.
- 5. Return $\pm R_0$.
- ► Loop invariant: $\pm (R_1 R_0) = \pm P$, and $\pm R_0 = \pm [n \gg k]P$.

Isogenies

Isogenies

...are just fancily-named

nice maps

between elliptic curves.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

► given by rational functions.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ► given by rational functions.
- ► a group homomorphism.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

Reminder:

A rational function is f(x,y)/g(x,y) where f,g are polynomials.

A group homomorphism φ satisfies $\varphi(P+Q)=\varphi(P)+\varphi(Q)$.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

Reminder:

A rational function is f(x,y)/g(x,y) where f,g are polynomials.

A group homomorphism φ satisfies $\varphi(P+Q)=\varphi(P)+\varphi(Q)$.

The kernel of an isogeny $\varphi \colon E \to E'$ is $\{P \in E : \varphi(P) = \infty\}$. The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ▶ a group homomorphism.

Example #1:
$$(x,y) \mapsto \left(\frac{x^3-4x^2+30x-12}{(x-2)^2}, \frac{x^3-6x^2-14x+35}{(x-2)^3} \cdot y\right)$$
 defines a degree-3 isogeny of the elliptic curves

$${y^2 = x^3 + x} \longrightarrow {y^2 = x^3 - 3x + 3}$$

over \mathbb{F}_{71} . Its kernel is $\{(2,9),(2,-9),\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

Example #2: For any a and b, the map $\iota : (x,y) \mapsto (-x,\sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an *isomorphism*; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ▶ a group homomorphism.

Example #3: For each $m \neq 0$, the multiplication-by-m map

$$[m]: E \rightarrow E$$

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ▶ a group homomorphism.

Example #3: For each $m \neq 0$, the multiplication-by-m map

$$[m]: E \to E$$

is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$$

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

Example #4: For E/\mathbb{F}_q , the map

$$\pi \colon (x,y) \mapsto (x^q,y^q)$$

is a degree-*q* isogeny, the *Frobenius endomorphism*.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ▶ a group homomorphism.

Example #4: For E/\mathbb{F}_q , the map

$$\pi \colon (x,y) \mapsto (x^q,y^q)$$

is a degree-*q* isogeny, the *Frobenius endomorphism*.

The kernel of π –1 is precisely the set of rational points $E(\mathbb{F}_q)$.

Isogenies between distinct curves are "rare".

We say *E* and *E'* are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Isogenies between distinct curves are "rare".

We say *E* and *E'* are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

Isogenies between distinct curves are "rare".

We say *E* and *E'* are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

Tate's theorem:

 $E, E'/\mathbb{F}_q$ are isogenous over \mathbb{F}_q if and only if $\#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$.

Isogenies between distinct curves are "rare".

We say *E* and *E'* are *isogenous* if there exists an isogeny $E \rightarrow E'$.

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = [\deg \varphi]$ and $\varphi \circ \widehat{\varphi} = [\deg \varphi]$.

Tate's theorem:

 $E, E'/\mathbb{F}_q$ are isogenous over \mathbb{F}_q if and only if $\#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$.

⇒ <u>Bottom line</u>: Being isogenous is an equivalence relation.

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

 $^{^{1}}$ (up to isomorphism of E')

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

 $^{^{1}}$ (up to isomorphism of E')

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

 $^{^{1}}$ (up to isomorphism of E')

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

→ To choose an isogeny, simply choose a finite subgroup.

 $^{^{1}}$ (up to isomorphism of E')

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

- → To choose an isogeny, simply choose a finite subgroup.
 - ► We have formulas to compute and evaluate isogenies. (...but they are only efficient for "small" degrees!)

 $^{^{1}}$ (up to isomorphism of E')

For any finite subgroup G of E, there exists a unique¹ separable* isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

- → To choose an isogeny, simply choose a finite subgroup.
 - ► We have formulas to compute and evaluate isogenies. (...but they are only efficient for "small" degrees!)
- → Decompose large-degree isogenies into prime steps. That is: Walk in an isogeny graph.

 $^{^{1}}$ (up to isomorphism of E')

▶ By the isogeny–subgroup correspondence, every step in the ℓ -isogeny graph comes from a subgroup of size ℓ .

▶ By the isogeny–subgroup correspondence, every step in the ℓ -isogeny graph comes from a subgroup of size ℓ .

 \rightsquigarrow For $\ell = 2$, these are exactly points of order 2.

- ▶ By the isogeny–subgroup correspondence, every step in the *ℓ*-isogeny graph comes from a subgroup of size *ℓ*.
- \rightsquigarrow For $\ell = 2$, these are exactly points of order 2.
 - ► Recall $\ker[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m$ for if $p \nmid m$. In other words: $\exists P, Q \in E[m]$ such that

$$\{0, ..., m-1\}^2 \to E, (i,j) \mapsto [a]P + [b]Q$$

is a bijection. We call (P, Q) an m-torsion basis.

- ▶ By the isogeny–subgroup correspondence, every step in the *ℓ*-isogeny graph comes from a subgroup of size *ℓ*.
- \rightarrow For $\ell = 2$, these are exactly points of order 2.
- ► Recall $\ker[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m$ for if $p \nmid m$. In other words: $\exists P, Q \in E[m]$ such that

$$\{0, ..., m-1\}^2 \to E, (i,j) \mapsto [a]P + [b]Q$$

is a bijection. We call (P, Q) an m-torsion basis.

 \rightarrow For m = 2 there are three outgoing 2-isogenies: They have kernels (α, 0) where α is a root of $x^3 + Ax^2 + x$.

- ▶ By the isogeny–subgroup correspondence, every step in the *ℓ*-isogeny graph comes from a subgroup of size *ℓ*.
- \rightarrow For $\ell = 2$, these are exactly points of order 2.
 - ► Recall $\ker[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m$ for if $p \nmid m$. In other words: $\exists P, Q \in E[m]$ such that

$$\{0, ..., m-1\}^2 \to E, (i,j) \mapsto [a]P + [b]Q$$

is a bijection. We call (P, Q) an m-torsion basis.

- \rightarrow For m=2 there are three outgoing 2-isogenies: They have kernels $(\alpha, 0)$ where α is a root of $x^3 + Ax^2 + x$.
- → For $m = 2^n$ there are $3 \cdot 2^{n-1}$ outgoing 2^n -isogenies: They are given by $\langle P + [s]Q \rangle$ and $\langle [r]P + Q \rangle$ with r even.

The (supersingular) 2-isogeny graph

Over \mathbb{F}_{p^2} :

Computing isogenies: Vélu's formulas (1971)

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{Q \in G \setminus \{\infty\}} (x(P+Q) - x(Q)), \right.$$
$$y(P) + \sum_{Q \in G \setminus \{\infty\}} (y(P+Q) - y(Q)) \right)$$

defines an isogeny of elliptic curves with kernel *G*.

Computing isogenies: Vélu's formulas (1971)

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{Q \in G \setminus \{\infty\}} (x(P+Q) - x(Q)), \right.$$
$$y(P) + \sum_{Q \in G \setminus \{\infty\}} (y(P+Q) - y(Q)) \right)$$

defines an isogeny of elliptic curves with kernel *G*.

This leads to formulas for

- ▶ computing the defining equation of E/G;
- ▶ evaluating the isogeny $E \rightarrow E/G$ at a point.

Computing isogenies: Vélu's formulas (1971)

Let *G* be a finite subgroup of an elliptic curve *E*. Then

$$P \mapsto \left(x(P) + \sum_{Q \in G \setminus \{\infty\}} (x(P+Q) - x(Q)), \right.$$
$$y(P) + \sum_{Q \in G \setminus \{\infty\}} (y(P+Q) - y(Q)) \right)$$

defines an isogeny of elliptic curves with kernel *G*.

This leads to formulas for

- ▶ computing the defining equation of E/G;
- evaluating the isogeny $E \rightarrow E/G$ at a point.

Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees. The $\sqrt{\text{élu}}$ algorithm reduces the cost to $\widetilde{\mathcal{O}}(\sqrt{\#G})$.

Some 2-isogeny formulas

Proposition 1. Let K be a field with $\operatorname{char}(K) \neq 2$. Let $a \in K$ such that $a^2 \neq 4$ and E/K: $y^2 = x^3 + ax^2 + x$ is a Montgomery curve. Let $G \subset E(\bar{K})$ be a finite subgroup such that $(0,0) \notin G$ and let ϕ be a separable isogeny such that $\ker(\phi) = G$. Then there exists a curve \tilde{E}/K : $y^2 = x^3 + Ax^2 + x$ such that, up to post-composition by an isomorphism,

$$\phi: E \to \widetilde{E}$$
$$(x, y) \mapsto (f(x), c_0 y f'(x))$$

where

$$f(x) = x \prod_{T \in G \setminus \{\mathcal{O}_E\}} \frac{xx_T - 1}{x - x_T} .$$

Moreover, writing

$$\pi = \prod_{T \in G \setminus \{\mathcal{O}_E\}} x_T, \qquad \sigma = \sum_{T \in G \setminus \{\mathcal{O}_E\}} \left(x_T - \frac{1}{x_T} \right) ,$$

we have that $A = \pi(a - 3\sigma)$ and $c_0^2 = \pi$.

Source: Joost Renes: "Computing isogenies between Montgomery curves using the action of (0,0)", 2017

Some 2-isogeny formulas

Simplified for your convenience:

$$\varphi_K \colon \left\{ y^2 = x^3 + Ax^2 + x \right\} \longrightarrow \left\{ y^2 = x^3 + \left(Ax_K - 3(x_K^2 - 1) \right) x^2 + x \right\}$$
$$(x, \dots) \longmapsto \left(\frac{x(x_K - 1)}{(x - x_K)}, \dots \right)$$

A specific 2-isogeny formula

Remark 6. In [FJP14, $\S4.3.2$] the authors describe a 2-isogeny with kernel (0,0) as

$$\varphi: E \to F: by^2 = x^3 + (a+6)x^2 + 4(2+a)x$$
$$(x,y) \mapsto \left(\frac{(x-1)^2}{x}, y\left(1 - \frac{1}{x^2}\right)\right) .$$

The coefficient of x can be removed by computing $2\sqrt{a+2}$ and composing with the isomorphism

$$(x,y) \mapsto \left(\frac{x}{2\sqrt{a+2}}, \frac{y}{2\sqrt{a+2}}\right) ,$$

putting F in the desired form. This requires computing a square root, which could be avoided by having knowledge of a point $P_8 = (2\sqrt{a+2}, -)$ of order 8 above (0,0).

Source: Joost Renes: "Computing isogenies between Montgomery curves using the action of (0,0)", 2017

A specific 2-isogeny formula

Simplified for your convenience:

$$\varphi_{(0,0)} : \{ y^2 = x^3 + Ax^2 + x \} \longrightarrow \{ y^2 = x^3 + \frac{A+6}{2\sqrt{A+2}}x^2 + x \}$$
$$(x, \dots) \longmapsto \left(\frac{(x-1)^2}{2\sqrt{A+2} \cdot x}, \dots \right)$$

SQIsign verification

Coming back to our diagram from earlier:

After Fiat–Shamir, the verification procedure is:

- 1. <u>Input</u>: Public key E_A , commitment curve E_1 , description of the response isogeny (later).
- 2. Compute the response isogeny; call the result $E_2^{(resp)}$.
- 3. Recompute the challenge isogeny from E_1 and the message using a hash function; call the result $E_2^{(chall)}$.
- 4. Check that $E_2^{(resp)} = E_2^{(chall)}$ and that $2 \nmid \widehat{challenge} \circ response$.

Main task in **SQIsign verification**:

Given *E* and $K \in E$ of order ℓ^n , compute $\psi : E \to E/\langle K \rangle$.

Main task in **SQIsign verification**:

Given *E* and $K \in E$ of order ℓ^n , compute $\psi : E \to E/\langle K \rangle$.

▶ Vélu's formulas take $\Theta(\ell^n)$ to compute ψ .

Main task in **SQIsign verification**:

Given *E* and $K \in E$ of order ℓ^n , compute $\psi : E \to E/\langle K \rangle$.

- ▶ Vélu's formulas take $\Theta(\ell^n)$ to compute ψ .
- **!!** Evaluate ψ as a chain of small-degree isogenies:

Main task in **SQIsign verification**:

Given *E* and $K \in E$ of order ℓ^n , compute $\psi : E \to E/\langle K \rangle$.

▶ Vélu's formulas take $\Theta(\ell^n)$ to compute ψ .

 ${\tt !!}$ Evaluate ψ as a chain of small-degree isogenies:

$$E \xrightarrow{\psi_1} E_1 \xrightarrow{\psi_2} \dots \xrightarrow{\psi_{n-1}} E_{n-1} \xrightarrow{\psi_n} E/G$$

 \rightarrow Complexity: $O(n^2 \cdot \ell)$.

Exponentially smaller than a ℓ^n -isogeny!

Main task in **SQIsign verification**:

Given *E* and $K \in E$ of order ℓ^n , compute $\psi : E \to E/\langle K \rangle$.

▶ Vélu's formulas take $\Theta(\ell^n)$ to compute ψ .

 ${\tt !!}$ Evaluate ψ as a chain of small-degree isogenies:

$$E \xrightarrow{\psi_1} E_1 \xrightarrow{\psi_2} \dots \xrightarrow{\psi_{n-1}} E_{n-1} \xrightarrow{\psi_n} E/G$$

 \sim Complexity: $O(n^2 \cdot \ell)$. Exponentially smaller than a ℓ^n -isogeny!

▶ Graph view: Each ψ_i is a step in the ℓ -isogeny graph.

Elliptic curves in general can be very annoying

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:

Let $p \ge 5$ be prime.

- ▶ E/\mathbb{F}_p is <u>supersingular</u> if and only if $\#E(\mathbb{F}_p) = p+1$.
- ▶ In that case, $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$ and $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:

Let $p \ge 5$ be prime.

- ▶ E/\mathbb{F}_p is <u>supersingular</u> if and only if $\#E(\mathbb{F}_p) = p+1$.
- ▶ In that case, $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$ and $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.
- \rightarrow Easy method to control the group structure by choosing p!
- → Cryptography works well using supersingular curves.

Elliptic curves in general can be very annoying *computationally*: Points in $E[\ell]$ have a tendency to live in large extension fields.

Solution:

Let $p \ge 5$ be prime.

- ▶ E/\mathbb{F}_p is <u>supersingular</u> if and only if $\#E(\mathbb{F}_p) = p+1$.
- ▶ In that case, $E(\mathbb{F}_p) \cong \mathbb{Z}/(p+1)$ and $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}/(p+1) \times \mathbb{Z}/(p+1)$.
- \rightarrow Easy method to control the group structure by choosing p!
- → Cryptography works well using supersingular curves.

(All "curves" are elliptic and have $E(\mathbb{F}_{p^2}) = E[p+1]$ for the rest of the day.)

Now: Your turn!

► First: Overview of the code structure.