1

VOXEL-GETRIEBENE SPIRALREKONSTRUKTION FÜR KEGELSTRAHL-CT

5

10

15

Die Erfindung betrifft ein Verfahren zur Erzeugung von Bildern in der Computertomographie mit einem 3D - Bildrekonstruktionsverfahren, wobei zur Abtastung eines Untersuchungsobjekts mit einem von einem Fokus ausgehenden konusförmigen Strahlenbündel und mit einem flächigen, vorzugsweise vielzeiligen, Detektor zum Detektieren des Strahlenbündels der Fokus auf einer spiralförmigen Fokusbahn um das Untersuchungsobjekt bewegt wird, wobei der Detektor Ausgangsdaten liefert, die der detektierten Strahlung entsprechen, und aus den, gegebenenfalls vorbehandelten, Ausgangsdaten Bildvoxel aus dem abgetasteten Untersuchungsobjekt rekonstruiert werden, welche den Schwächungskoeffizienten des jeweiligen Voxels wiedergeben.

Im Stand der Technik der Computertomographie mit Mehrzeilendetektoren werden Strahlenbündel mit Kegelstrahl-Geometrie verwandt. Zur Rekonstruktion eines Bildvolumens muss die Kegelstrahl-Geometrie in der 3D-Bildrekonstruktion berücksichtigt werden, wobei die Kegelstrahlgeometrie das Rekonstruktion onsproblem erheblich verkompliziert. Grundsätzlich sind zwei unterschiedliche Gruppen von Bilderzeugungsverfahren bekannt, nämlich approximative Verfahren und exakte Verfahren:

Approximative Verfahren:

30

35

Approximative Verfahren zeichnen sich durch ein hohes Maß an Praktikabilität und Flexibilität aus. Der Neigungswinkel der Messstrahlen zur Rotationsachse (Kegelwinkel) wird näherungsweise berücksichtigt, weswegen der Fehler durch die Approximation mit dem Kegelwinkel wächst. Jedes approximative Verfahren wird ab einer gewissen Anzahl von Detektorzeilen Bild-

2

artefakte verursachen. Bei den approximativen Verfahren unterscheidet man 2D- und 3D-Verfahren.

Als Beispiele des 2D-Verfahrens oder 2D-Rebinnings können genannt werden: ASSR [1], AMPR [2] und SMPR [3]. Dabei werden aus den Kegelstrahldaten synthetische Projektionsdaten approximiert, wobei die Geometrie der synthetischen Projektionsdaten so gewählt wird, dass alle synthetischen Messstrahlen in einer planaren Ebene liegen. Aus den synthetischen Projektionsdaten kann mit den herkömmlichen Algorithmen der 2D-CT die Objektverteilung in der planaren Ebene rekonstruiert werden. Die Näherung im Rebinning-Schritt führt bei wachsenden Kegelwinkeln allerdings relativ schnell zu Bildartefakten.

Beim 3D-Verfahren wird eine Filterung der Projektionsdaten und eine anschließende 3D-Rückprojektion vorgenommen. Hier wird in der Rückprojektion die kegelstrahlartige Aufnahmegeometrie exakt berücksichtigt. Im Filterschritt bedient man sich unterschiedlicher praktikabler Näherungen. Diese unten aufgeführten Näherungsverfahren haben gemeinsam, dass die Filterung aus einem 1D-Rampenfilter besteht, der in Richtung der Projektion der Spiraltangente gerichtet ist. Die einzelnen Näherungsverfahren unterscheiden sich in der Behandlung redundanter Daten.

25

30

5

10

Einerseits ist eine Mittelung in axialer Richtung möglich, wie es aus [4] bekannt ist. Hier werden nach dem Filterschritt die gefilterten Projektionsdaten so in das Rekonstruktionsvolumen rückprojiziert, dass die Messdaten dabei gewichtet akkumuliert werden. Die Gewichte ergeben sich aus dem axialen Abstand der Messstrahlen zu dem zu rekonstruierenden Voxel.

Andererseits ist eine Rekonstruktion axialer Schichten aus [5] bekannt. Hierzu werden alle Messdaten, die die Bildschicht schneiden, zur Rekonstruktion verwendet. Datenredundanzen werden approximativ unter Vernachlässigung des Kegel-

3

winkels berücksichtigt. Dazu können herkömmliche Verfahren verwendet werden, wie z.B. die aus [6] bekannte Parker-Gewichtung. Der Filterschritt besteht dabei aus einer Gewichtung der Projektionsdaten gemäß der vorliegenden Datenredundanz und einer anschließenden Faltung mit einem 1D-Rampenfilter. Dieses Verfahren erfordert eine relativ große Detektorfläche, da für jede Fokusposition die Projektion der gesamten Rekonstruktionsschicht auf dem Detektor enthalten sein muss.

10

25

30

35

5

Exakte Verfahren:

Eine Vergleichstudie zu den wichtigsten exakten Algorithmen findet man in [7]. Exakte Verfahren berücksichtigen die ke15 gelstrahlartige Aufnahmegeometrie sowohl im Filterschritt als auch in der 3D Rückprojektion fehlerfrei. Diese Verfahren erzielen gute Bildergebnisse unabhängig von dem auftretenden Kegelwinkel. Sie sind jedoch extrem aufwendig und sehr unflexibel in der Anwendung. Zum Beispiel ist ein reduzierter
20 Pitch mit Ausnutzung von Datenredundanzen nur eingeschränkt realisierbar, die Möglichkeit der Selektion von Messdaten für die Herzbildgebung mit hoher Zeitauflösung fehlt gänzlich.

Das Problem besteht nun darin, dass die erreichte Bildqualität und der benötigte Rechenaufwand in Abhängigkeit des verwendeten Verfahrens gegenläufig orientiert sind. Algorithmen mit exzellenter Bildqualität bei großen Kegelwinkeln, d.h. bei Detektoren mit vielen Detektorzeilen, sind jedoch essentiell für zukünftige Scanner-Generationen. Eine Vermeidung exakter Verfahren wäre wünschenswert, da diese aufwendig und unflexibel sind.

Es ist daher Aufgabe der Erfindung in der Computertomographie mit Mehrzeilendetektoren und Strahlenbündeln mit Kegelstrahl-Geometrie einen Lösungsvorschlag zur Bilderzeugung zu finden, der einerseits einen optimalen Kompromiss zwischen Bildquali-

4

tät und Rechenaufwand darstellt und andererseits auch ausreichend flexibel anzuwenden ist.

Diese Aufgabe wird durch die Merkmale der unabhängigen Pa-5 tentansprüche gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand untergeordneter Ansprüche.

Die Erfinder haben folgendes erkannt:

20

25

30

Ausgehend von einem Rekonstruktionsverfahren, wie es in [5] beschrieben ist, können anstatt der Rekonstruktion gesamter Bildschichten auch die Bildvoxel separat rekonstruiert werden. Hierbei müssen dann zur Behandlung von Datenredundanzen Verfahren eingesetzt werden, die jeden beliebigen Projektinonswinkelbereich erlauben, der größer ist als der erforderliche Halbumlauf π.

Das Neuartige an der Erfindung ist die separate Rekonstruktion einzelner Voxel. Die Projektionsdaten werden zur approximativen Berücksichtigung von Datenredundanzen für jedes einzelne Voxel separat gewichtet. Dies führt dazu, dass im Gegensatz zur herkömmlichen Rückprojektion ein gefilterter Messwert nicht entlang einer Linie über alle von der Linie geschnittenen Voxel verschmiert wird, sondern dass der für das Voxel V gefilterte Messwert nur auf das Voxel V akkumuliert wird.

Die vorliegende Erfindung bietet folgende Vorteile: gute Bildqualität auch für große Kegelwinkel erwartet, flexibel im Pitch bis hin zum theoretischen Maximalwert, Nutzung aller Datenredundanzen und Möglichkeit der Datenselektion z.B. zur Herzbildgebung mit hoher Zeitauflösung.

Entsprechend diesem Grundgedanken schlagen die Erfinder fol-35 gendes Verfahren zur Erzeugung von Bildern in der Computertomographie mit einem 3D-Bildrekonstruktionsverfahren vor, welches zumindest die folgenden Verfahrensschritte aufweist:

5

- zur Abtastung eines Untersuchungsobjekts mit einem von einem Fokus ausgehenden konusförmigen Strahlenbündel und mit einem flächigen, vorzugsweise vielzeiligen, Detektor zum Detektieren des Strahlenbündels wird der Fokus auf einer spiralförmigen Fokusbahn um das Untersuchungsobjekt bewegt, wobei der Detektor Ausgangsdaten liefert, die der detektierten Strahlung entsprechen, und
- aus den, gegebenenfalls vorbehandelten, Ausgangsdaten Bildvoxel aus dem abgetasteten Untersuchungsobjekt rekonstruiert werden, welche den Schwächungskoeffizienten des jeweiligen Voxels wiedergeben, wobei
 - jedes Bildvoxel separat aus Projektionsdaten rekonstruiert wird, die einen Projektionswinkelbereich von mindestens 180° umfassen, und
- 15 je betrachtetem Voxel eine approximative Gewichtung zur Normierung der verwendeten Projektionsdaten über das Voxel stattfindet.

Vorteilhaft ist dabei, wenn - wie in Figur 4 dargestellt
20 zur Rekonstruktion eines Bildvoxels V alle Detektordaten entlang einer Geraden verwendet werden, die durch die Kegelstrahlprojektion des Voxels V verläuft und in Richtung der
Projektion t der Spiraltangente St gerichtet ist. Hierdurch
wird eine optimale Detektorausnutzung erreicht.

25

5

10

Weiterhin können die Bilddaten des Detektorbildes einer Kosinus-Gewichtung unterzogen werden, um hierdurch eine Kompensation der Schrägeinstrahlung des Fokus auf den Detektor zu erreichen.

30

35

Wenn der Scannvorgang eine nicht genügend hohe Auflösung aufweist, um alle benötigten Detektordaten für ein betrachtetes Voxel direkt zu erhalten, so können nicht direkt vorhandene Daten aus den vorhandenen Daten durch Interpolation aus benachbarten Detektordaten (Detektorpixelwerten) gewonnen werden.

6

Weiterhin können bei der Gewichtung zur Kompensation der Datenredundanzen (Normierung) zwei Messstrahlen (Sa, Sb) genau dann als redundant angesehen werden, wenn für deren Parallelkoordinaten θ,p gilt: $(\theta_a=2k\cdot\pi+\theta_b$ und $p_a=p_b)$ oder $(\theta_a=(2k+1)\cdot\pi+\theta_b$ und $p_a=-p_b)$, wobei k eine beliebige natürliche Zahl und θ den Projektionswinkel darstellt und der Projektionswinkel θ die Summe aus Fokuswinkel α und Fächerwinkel θ ist und θ den Abstand zur z-Achse darstellt.

5

20

Zur Normierung können die redundant vorhandenen Daten mit verallgemeinerten Parker-Gewichten multipliziert werden. Die normierten Daten werden mit einem, durch ein vorteilhaftes Glättungsfenster modifizierten, Rampen-Filter verarbeitet. Vorteilhaft ist es außerdem, wenn zur 3D-Rückprojektion in das betrachtete Voxel eine Abstandsgewichtung erfolgt.

Schließlich ist darauf hinzuweisen, dass das erfindungsgemäße Verfahren auch für die Cardio-Computertomographie eingesetzt werden kann, indem die Messdaten entsprechend den Bewegungsphasen eines untersuchten Herzens in an sich bekannter Weise selektiert, gewichtet oder sortiert werden, um so Schnittbilder des Herzens in bestimmten Bewegungsphasen zu erhalten.

Entsprechend dem Grundgedanken der Erfindung schlagen die Er-25 finder auch ein CT-Gerät zur Abtastung eines Untersuchungsobjekts vor, welches mit einem von mindestens einem Fokus ausgehenden Strahlenbündel und mit einem flächig ausgebildeten Detektorarray mit einer Vielzahl von verteilten Detektorelementen zum Detektieren der Strahlen des Strahlenbündels, wo-30 bei sich der mindestens eine Fokus relativ zu dem Untersuchungsobjekt auf mindestens einer das Untersuchungsobjekt umlaufenden Fokusbahn mit gegenüberliegendem Detektorarray bewegt, wobei zumindest Mittel zur Sammlung von Detektordaten, Filterung und 3D-Rückprojektion vorgesehen sind und die Mit-35 tel zur Bearbeitung der Messdaten derart gestaltet sind, dass das erfindungsgemäße oben geschilderte Verfahren durchgeführt werden kann. Vorzugsweise sind die genannten funktionalen

7

Mittel zumindest teilweise durch Programme oder Programm-Module verwirklicht.

Im folgenden wird die Erfindung anhand eines bevorzugten Ausführungsbeispieles eines zur Durchführung des erfindungsgemäßen Verfahrens geeigneten Mehrzeilen-CT-Gerätes der dritten Generation mit Hilfe der Figuren näher beschrieben. Es zeigen im einzelnen:

- 10 Figur 1: Mehrzeilen-CT in perspektivischer Darstellung der Abtasteinheit in schematischer Darstellung der Peripheriegeräte;
 - Figur 2: Längsschnitt durch das Mehrzeilen-CT aus Figur 1;
 - Figur 3: Darstellungen der Aufnahmegeometrie eines Spiral-CT-Gerätes;
 - Figur 4: Schematische Darstellung des Sammelns von Messdaten und der approximativen Redundanz von Messstrahlen;
 - Figur 5: Veranschaulichung des Winkelintervalls A(V).

20

15

5

Die Figuren 1 und 2 zeigen eine teils perspektivische Darstellung eines zur Durchführung des erfindungsgemäßen Verfahrens geeigneten Mehrzeilen-CT-Gerätes der dritten Generation. Die mit 1 bezeichnete Messanordnung (=Gantry) weist eine 25 Röntgenstrahlenquelle 2 mit einer dieser vorgelagerten quellennahen Strahlenblende 3 auf. Das flächig ausgebildete Array mit mehreren Zeilen und Spalten von Detektorelementen bildet das Detektorsystem 5 und ist mit einer diesem vorgelagerten detektornahen Strahlenblende 6 in der Figur 2 im Schnitt dar-30 gestellt. In der Figur 1 sind zur besseren Übersichtlichkeit nur acht Zeilen L1 bis LQ von Detektorelementen 4 dargestellt. Das Detektorsystem 5 kann jedoch auch eine andere, vorzugsweise größere Zeilenzahl, aufweisen, ohne den Rahmen der Erfindung zu verlassen. Ebenso ist auch eine andere flä-35 chige Anordnung der Detektoren möglich.

8

Die Röntgenstrahlenquelle 2 mit der Strahlenblende 3 einerseits und das Detektorsystem 5 mit der Strahlenblende 6 andererseits sind an einem Drehrahmen 7 einander derart gegenüberliegend angebracht, dass ein im Betrieb des CT-Geräts von 5 der Röntgenstrahlenquelle 2 ausgehendes, durch die einstellbare Strahlenblende 3 eingeblendetes, pyramidenförmiges Röntgenstrahlenbündel, dessen Randstrahlen mit 8 bezeichnet sind, auf das Detektorsystem 5 auftrifft. Dabei kann die Strahlenblende 6 dem mittels der Strahlenblende 3 eingestellten Quer-10 schnitt des Röntgenstrahlenbündels entsprechend so eingestellt werden, dass entsprechend unterschiedlicher Betriebsmodi nur derjenige Bereich des Detektorsystems 5 freigegeben ist, der von dem Röntgenstrahlenbündel unmittelbar getroffen wird. In den Figuren 1 und 2 werden nur acht Zeilen von De-15 tektorelementen 4 verwendet, die weiteren punktiert angedeuteten Zeilen sind von der Strahlenblende 6 abgedeckt und daher nicht aktiv.

Das Röntgenstrahlenbündel weist einen Konuswinkel φ auf, bei dem es sich um den Öffnungswinkel des Röntgenstrahlenbündels in einer die Systemachse Z und den Fokus F enthaltenden Ebene handelt. Der Öffnungswinkel des Röntgenstrahlenbündels in einer rechtwinklig zu der Systemachse Z liegenden und den Fokus F enthaltenden Ebene (Fächeröffnungswinkel) beträgt $2\beta_{\text{max}}$.

Der Drehrahmen 7 kann mittels einer Antriebseinrichtung 22 um eine mit Z bezeichnete Systemachse in Rotation versetzt werden. Die Systemachse Z verläuft parallel zu der z-Achse eines in der Figur 1 dargestellten und räumlich rechtwinkligen Koordinatensystems.

Die Spalten des Detektorsystems 5 verlaufen ebenfalls in Richtung der z-Achse, während die Zeilen quer zu der System35 achse Z verlaufen.

30

9

Um ein Untersuchungsobjekt, z.B. einen Patienten, in den Strahlengang des Röntgenstrahlenbündels bringen zu können, ist eine Lagerungsvorrichtung 9 vorgesehen, die parallel zu der Systemachse Z, also in Richtung der z-Achse, verschiebbar ist, und zwar derart, dass eine Synchronisation zwischen der Rotationsbewegung des Drehrahmens 7 und der Translationsbewegung der Lagerungsvorrichtung in dem Sinne vorliegt, dass sich relativ zum Untersuchungsobjekt eine Spiralbewegung des Fokus und eines mitrotierenden Detektors ergibt. Das Verhältnis von Translations- zu Rotationsgeschwindigkeit ist einstellbar, indem ein gewünschter Wert für den Vorschub h der Lagerungsvorrichtung 9 pro Umdrehung des Drehrahmens gewählt wird.

Es kann also ein Volumen eines auf der Lagerungsvorrichtung 9 befindlichen Untersuchungsobjekts im Zuge einer Volumenabtastung untersucht werden, wobei die Volumenabtastung in Form einer Spiralabtastung derart vorgenommen werden kann, dass unter gleichzeitiger Rotation der Messeinheit 1 und Translation der Lagerungsvorrichtung 9 mittels der Messeinheit pro Umlauf der Messeinheit 1 eine Vielzahl von Projektionen aus verschiedenen Projektionsrichtungen aufgenommen wird. Bei der Spiralabtastung bewegt sich der Fokus F der Röntgenstrahlenquelle relativ zu der Lagerungsvorrichtung 9 auf einer Spiralbahn S um das Untersuchungsobjekt.

Während der Spiralabtastung werden aus den Detektorelementen jeder aktiven Zeile des Detektorsystems 5 Messdaten parallel ausgelesenen, die einzelnen Projektionen in Kegelstrahlgeometrie entsprechen, in einer Datenaufbereitungseinheit 10 einer Digital/Analog-Wandlung unterzogen, serialisiert und an einen Bildrechner 11 übertragen.

30

Nach einer Vorverarbeitung der Messdaten in einer Vorverar35 beitungseinheit 12 des Bildrechners 11 gelangt der resultierende Datenstrom zu einer Volumenbildrekonstruktionseinheit
13, die aus den Messdaten Bilder des gewünschten Volumens des

5

Untersuchungsobjekts durch die später beschriebene Rechenoperation rekonstruiert. Sowohl in der Vorverarbeitungseinheit 12 des Bildrechners 11 als auch in der Volumenbildrekonstruktionseinheit 13 sind Programme oder Programm-Module hinterlegt, durch die das erfindungsgemäße Verfahren zur Erzeugung von CT-Bildern mit einem 3D-Bildrekonstruktionsverfahren durchgeführt wird.

Die CT-Bilder setzen sich aus gitterartig zusammengesetzten 10 Voxeln (Voxel= volume element) zusammen, wobei die Voxel dem jeweiligen Bildvolumen zugeordnet sind, jedem Voxel eine CT-Zahl in Hounsfield Units (HU) zugeordnet ist und die einzelnen Voxel entsprechend einer CT-Zahl/Grauwertskala in einem ihrer jeweiligen CT-Zahl entsprechenden Grauwert dargestellt 15 werden können. Das Bildvolumen kann auf unterschiedliche Weise visualisiert werden. In einer einfachen Form können beliebige Ebenen in beliebiger Orientierung als Schnittbilder dargestellt werden. Es gibt jedoch auch komplexere Verfahren, die das gesamte Volumen visualisieren. Beispielhaft sei hier das Shaded Surface Display (SSD) und das Volume Rendering 20 (VR) genannt. Das SSD berechnet zu einem einstellbaren Schwellenwert eine Isofläche, bei der das Bildvolumen den Schwellenwert besitzt. Die Isofläche kann mit Methoden der Computergraphik auf einem Bildschirm dargestellt werden. Bei 25 dem VR werden jedem Voxel gemäß seinem Wert einstellbare optische Eigenschaften wie Opazität und Farbe zugeordnet. Mit Methoden der Computergraphik werden künstliche Ansichten auf das solchermaßen definierte Objekt berechnet.

- Aus den von der Bildrekonstruktionseinheit 13 rekonstruierten Volumendaten werden von einer Visualisierungseinheit 15 Bilder berechnet und auf einer an den Bildrechner 11 angeschlossenen Anzeigeeinheit 16, z.B. einem Monitor, dargestellt.
- Die Röntgenstrahlenquelle 2, beispielsweise eine Röntgenröhre, wird von einer Generatoreinheit 17 mit den notwendigen Spannungen und Strömen, beispielsweise der Röhrenspannung U,

11

versorgt. Um diese auf die jeweils notwendigen Werte einstellen zu können, ist der Generatoreinheit 17 eine Steuereinheit 18 mit Tastatur 19 zugeordnet, die die notwendigen Einstellungen gestattet. Anzumerken ist hierbei, dass neben der Tastatur 19 auch andere bekannte Eingabevorrichtungen wie Maus, Joystick oder auch Spracheingabe vorgesehen werden können.

Auch die sonstige Bedienung und Steuerung des CT-Gerätes erfolgt mittels der Steuereinheit 18 und der Tastatur 19, was dadurch veranschaulicht ist, dass die Steuereinheit 18 mit dem Bildrechner 11 verbunden ist.

Unter anderem kann die Anzahl der aktiven Zeilen von Detektorelementen 4 und damit die Position der Strahlenblenden 3 und 6 eingestellt werden, wozu die Steuereinheit 18 mit den Strahlenblenden 3 und 6 zugeordneten Verstelleinheiten 20 und 21 verbunden ist. Weiter kann die Rotationszeit τ eingestellt werden, die der Drehrahmen 7 für eine vollständige Umdrehung benötigt, was dadurch veranschaulicht ist, dass die dem Drehrahmen 7 zugeordnete Antriebseinheit 22 mit der Steuereinheit 18 verbunden ist.

In den Figuren 3 und 4 ist die Aufnahmegeometrie des Spiral-CT-Gerätes aus den Figuren 1 und 2 schematisch dargestellt, wobei hier der Einfachheit halber der Detektor nur planar widergegeben ist. Die Strahlenquelle bewegt sich mit ihrem Fokus F entlang einer Spiralbahn S mit der Steigung h, die dem Liegenvorschub entspricht, rotierend um ein lang gestrecktes Untersuchungsobjekt P und in Richtung Systemachse \boldsymbol{Z} fort. Hierbei wird auf dem gegenüberliegenden Detektor D die Strahlenintensität der das Untersuchungsobjekt P durchdringenden Strahlen gemessen und gesammelt. Innerhalb des Untersuchungsobjektes P ist ein zu rekonstruierendes Volumen V_R eingebettet.

35

10

15

20

25

30

Zur Rekonstruktion eines Volumenbildes aus den gemessenen Daten müssen diese gefiltert und die gefilterten Daten an-

12

schließend zur Erzeugung eines Volumenbildes des Untersuchungsobjekts dreidimensional rückprojiziert werden, wobei dann das Volumenbild aus den Daten gewonnene Absorptionswerte der zu dem Volumen des Untersuchungsobjekts gehörigen Voxel V für die Strahlung des Strahlenbündels repräsentiert.

Betrachtet man also das Rekonstruktionsverfahren, so tragen zur Rekonstruktion eines Bildvoxels V die Kegelstrahlen von allen Fokuspositionen bei, die das Voxel V schneiden und die auf der Detektorfläche gemessen werden. Der Fokuswinkelbereich A(V) mit verwertbaren Projektionsdaten ist somit ein zusammenhängendes Winkelintervall und gegeben durch

$$A(V) = [\alpha_0(V), \alpha_1(V)].$$

15

35

10

5

Die Figur 5 veranschaulicht dieses Winkelintervall A(V). In dieser Illustration wird ohne Beschränkung der Allgemeinheit angenommen, dass die Spiralbahn von Fokus und Detektor entgegen dem Uhrzeigersinn durchlaufen wird. Die Quellposition $F(\alpha_0)$ zeichnet sich dadurch aus, dass die Kegelprojektion des Voxels V zum erstenmal auf die zur Quellposition $F(\alpha_0)$ korrespondierende Detektorfläche $D(\alpha_0)$ trifft, und zwar auf die obere Kante des Detektors. Im weiteren Verlauf der Datenaufnahme wandert die Kegelprojektion des Voxels V über die Detektorfläche bis sie bei der Fokusposition $F(\alpha_0)$ den Detektor an der unteren Kante verlässt. Alle Projektionen in dem Winkelintervall A(V) zwischen α_0 und α_1 tragen zur Rekonstruktion des Bildvoxels V bei.

30 Beispielsweise können die zugehörigen Detektorbilder nun wie folgt verarbeitet werden:

Zunächst wird eine an sich bekannte Kosinus-Gewichtung des Detektorbildes vorgenommen, um die durch die Kegelstrahlgeometrie vorhandene Schrägeinstrahlung zu berücksichtigen.

13

Anschließend werden je betrachteten Voxel V alle Detektordaten entlang einer Geraden gesammelt, die durch die Kegelstrahlprojektion des Voxels V verläuft und in Richtung der Projektion \vec{t} der Spiraltangente S_t gerichtet ist. Falls diese Daten nicht originär vorhanden sind, werden die benötigten Daten mittels eines Interpolationsverfahrens aus benachbarten originären Daten gewonnen.

Nun folgt die approximative Gewichtung zur Kompensation von 10 Datenredundanzen. Hierfür kann unter Vernachlässigung des Kegelwinkels aus dem Fokuswinkel lpha und dem Fächerwinkel $oldsymbol{eta}$ der Projektionswinkel $\theta = \alpha + \beta$ und die Parallelkoordinate $p = R_F \cdot \sin \beta$ (mit R_F Radius der Fokusbahn) bestimmt werden. Zwei Messstrahlen S_a und S_b gelten dabei als redundant, wenn 15 $(\theta_a = 2k \cdot \pi + \theta_b \text{ und } p_a = p_b) \text{ oder } (\theta_a = (2k+1) \cdot \pi + \theta_b \text{ und } p_a = -p_b)$ gilt und k eine beliebige natürliche Zahl darstellt. Liegen redundante Daten vor, so können sie mit den verallgemeinerten Parker-Gewichten multipliziert werden, wie es unter [8] beschrieben ist. Zu bemerken ist hierbei, dass die aufgrund der 20 unterschiedlichen Neigung bezüglich der z-Achse (Kegelwinkel) als approximativ redundant definierten Messstrahlen unterschiedlich und damit nicht redundant sind. Wegen der in der Regel relativ kleinen Kegelwinkel kann diese Approximation der Datenredundanz jedoch relativ weit tragen.

25

5

Zur Filterung der Werte kann eine Rampen-Filterung mit geeignetem Glättungsfenster eingesetzt werden und die 3D-Rückprojektion in das Voxel V mit einer an sich bekannten Abstandsgewichtung erfolgen.

30

35

Ergänzend ist darauf hinzuweisen, dass sich das erfindungsgemäße Verfahren sowohl für CT-Geräte eignet, die mit simultan umlaufenden Fokus/Detektor-Paaren betrieben werden, als auch für CT-Geräte, die in Rotationsrichtung feststehende ringförmig angeordnete Detektoren aufweisen, bei denen nur der Fokus rotiert und Fokus und Detektor in z-Richtung beweglich sind.

5

10

25

Zitierte Literatur:

- [1] M. Kachelrieß, S. Schaller, and W. A. Kalender, "Advanced single-slice rebinning in cone-beam spiral CT", Med. Phys. 27 (2000) 754-772
- [2] S. Schaller, K. Stierstorfer, H. Bruder, M. Kachelrieß, and T. Flohr, "Novel approximate approach for high-quality image reconstruction in helical cone beam CT at arbitrary pitch", Proceedings SPIE 4322 (2001) 113-127
- [3] K. Stierstorfer, T. Flohr, H. Bruder, "Segmented Multiple Plane Reconstruction - A Novel Approximate Reconstruction Scheme for Multislice Spiral CT", Proceedings of Intern.
- Meeting on Fully 3-D Image Reconstruction in Radiology and Nuclear Medicine, Pacific Grove, CA, USA, 10/30-11/2/2001, pp. 95-97
- [4] K. Stierstorfer, Med CTC CF, "Spiralrekonstruktion mit 20 3D-Rückprojektion für die Mehrzeilen-CT", Erfindungsmeldung, Forchheim, 12. Dezember 2000
 - [5] K. Sourbelle, IMP, Universität Erlangen, Dissertation, Prüfungsdatum 25. März 2002
 - [6] Avinash C. Kak, and Malcolm Slaney, Principles of Computerized Tomographic Imaging", IEEE Press, New York, 1987, pp.93-99
- 30 [7] K. Sourbelle, H. Kudo, G. Lauritsch, K. C. Tam, M. Defrise, and F. Noo, "Performance Evaluation of Exact Cone-Beam Algorithms for the Long-Object Problem in Spiral Computed Tomography", Proceedings of Intern. Meeting on Fully 3-D Image Reconstruction in Radiology and Nuclear Medicine, Pacific
- 35 Grove, CA, USA, 10/30-11/2/2001, pp. 153-156

15

[8] N. Strobel, Med GT 4, "Generalized Short-Scan Feldkamp Algorithm for 3-D Image Reconstruction", internal report, Erlangen, August 7, 2000

16

Patentansprüche

5

10

15

30

35

- 1. Verfahren zur Erzeugung von Bildern in der Computertomographie mit einem 3D-Bildrekonstruktionsverfahren beinhaltend zumindest die folgenden Verfahrensschritte:
- 1.1. zur Abtastung eines Untersuchungsobjekts mit einem von einem Fokus ausgehenden konusförmigen Strahlenbündel und mit einem flächigen, vorzugsweise vielzeiligen, Detektor zum Detektieren des Strahlenbündels wird der Fokus auf einer spiralförmigen Fokusbahn um das Untersuchungsobjekt bewegt, wobei der Detektor Ausgangsdaten liefert, die der detektierten Strahlung entsprechen, und
- 1.2. aus den, gegebenenfalls vorbehandelten, Ausgangsdaten Bildvoxel aus dem abgetasteten Untersuchungsobjekt rekonstruiert werden, welche den Schwächungskoeffizienten des jeweiligen Voxels wiedergeben, wobei
- 1.3. jedes Bildvoxel separat aus Projektionsdaten rekonstruiert wird, die einen Projektionswinkelbereich von mindestens 180° umfassen, und
- 20 1.4. je betrachtetem Voxel eine approximative Gewichtung zur Normierung der verwendeten Projektionsdaten über das Voxel stattfindet.
- Verfahren gemäß dem voranstehenden Patentanspruch 1,
 dadurch gekennzeichnet, dass zur Rekonstruktion eines Bildvoxels (V) alle Detektordaten entlang einer Geraden verwendet werden, die durch die Kegelstrahlprojektion des Bildvoxels (V) verläuft und in Richtung der Projektion (t) der Spiraltangente (St) gerichtet ist.
 - 3. Verfahren gemäß einem der voranstehenden Patentansprüche 1 bis 2, dadurch gekennzeichnet, dass die Bilddaten des Detektorbildes zur Kompensation von Schrägeinstrahlung einer Kosinus-Gewichtung unterzogen werden.
 - 4. Verfahren gemäß einem der voranstehenden Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass nicht

17

direkt vorhandene Daten aus den vorhandenen Daten durch Interpolation aus benachbarten Detektordaten (Detektorpixelwerten) gewonnen werden.

- 5. Verfahren gemäß einem der voranstehenden Patentansprüche 1 bis 4, da durch gekennzeich net, dass bei der Gewichtung zur Kompensation der Datenredundanzen (Normierung) zwei Messstrahlen (Sa, Sb) genau dann als redundant angesehen werden, wenn gilt: $(\theta_a = 2k \cdot \pi + \theta_b \text{ und } p_a = p_b)$ oder
- 10 $(\theta_a = (2k+1) \cdot \pi + \theta_b \text{ und } p_a = -p_b)$, wobei k eine beliebige natürliche Zahl, θ den Projektionswinkel und p den Abstand zur z-Achse darstellt.

35

- 6. Verfahren gemäß dem voranstehenden Patentanspruch 5, dadurch gekennzeichnet, dass die redundanten Daten mit verallgemeinerten Parker-Gewichten multipliziert werden.
- 7. Verfahren gemäß einem der voranstehenden Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Rampen-Filter verwendet wird, das mit einem Glättungsfenster manipuliert wird.
- 8. Verfahren gemäß einem der voranstehenden Patentansprüche 1 bis 7, dadurch gekennzeichnet, dass zur 3D-Rückprojektion in das betrachtete Voxel eine Abstandsgewichtung erfolgt.
- 9. Verfahren gemäß einem der voranstehenden Patentansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass es für die Cardio-Computertomographie eingesetzt wird, indem die Messdaten entsprechend den Bewegungsphasen eines untersuchten Herzens selektiert, gewichtet oder sortiert werden.
 - 10. CT-Gerät zur Abtastung eines Untersuchungsobjekts mit einem von mindestens einem Fokus ausgehenden Strahlenbündel

18

und mit einem flächig ausgebildeten Detektorarray mit einer Vielzahl von verteilten Detektorelementen zum Detektieren der Strahlen des Strahlenbündels, wobei der mindestens eine Fokus relativ zu dem Untersuchungsobjekt auf mindestens einer das Untersuchungsobjekt umlaufenden Fokusbahn mit gegenüberliegendem Detektorarray bewegbar ist, wobei zumindest Mittel zur Sammlung von Detektordaten, Filterung und 3D-Rückprojektion vorgesehen sind und die Mittel zur Bearbeitung der Messdaten derart gestaltet sind, dass das Verfahren gemäß einem der Ansprüche 1 bis 9 durchführbar ist.

5

10

11. CT-Gerät gemäß Anspruch 10, dadurch gekennzeichnet, dass die genannten funktionalen Mittel zumindest teilweise durch Programme oder Programm-Module verwirklicht sind.

FIG 1

FIG 2

FIG 3

FIG 4

FIG 5

INTERNATIONAL SEARCH REPORT

ernational Application No PCT/EP2004/000754

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G06T11/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC \ 7 \ G06T$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, BIOSIS

		- 1 1 11
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	TURBELL, HENRIK: "Cone-Beam Reconstruction Using Filtered Backprojection" LINKÖPING STUDIES IN SCIENCE AND TECHNOLOGY - DISSERTATION NO. 672, February 2001 (2001-02), XP002279048	1-8,10, 11
Y	Linköping page 23, line 2 -page 24, line 2 page 24, line 1 - line 2 page 77, line 1 - line 11 page 89, line 6 - line 9 page 99, line 30 - line 33 page 102, line 7 -page 103, line 18 page 105, line 12 -page 107, line 22 page 111, line 12 -page 112, line 8 figures 4.1,4.17	9

X Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.		
Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international filling date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but tater than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family		
Date of the actual completion of the international search 5 May 2004	Date of mailing of the International search report 26/05/2004		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer Eckert, L		

INTERNATIONAL SEARCH REPORT

PCT/EP2004/000754

0 (0 No.	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	FC1/E12004/000/34
Category °		Relevant to claim No.
Category	Oracion of accounting than indication, this is appropriately to the institute of	
Y	US 2003/007593 A1 (WANG GE ET AL) 9 January 2003 (2003-01-09) abstract	9
X	EP 1 096 426 A (GE MED SYS GLOBAL TECH CO LLC) 2 May 2001 (2001-05-02) Titel abstract page 2, line 3 -page 3, line 48 page 4, line 28 -page 8, line 15 page 8, line 53 -page 9, line 5 page 9, line 36 -page 10, line 27 page 10, line 55 -page 11, line 39 page 12, line 19 - line 38 page 13, line 40 - line 46 page 14, line 38 -page 15, line 57 figures 3,4	1,3,4,8
X	US 6 483 892 B1 (WANG YING ET AL) 19 November 2002 (2002-11-19) abstract column 2, line 19 - line 53 column 2, line 66 -column 3, line 38 column 4, line 4 - line 37 column 6, line 6 -column 7, line 30 figures 2-5,7	10,11

INTERNATIONAL SEARCH REPORT

Information on patent family members

ernational Application No PCT/EP2004/000754

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 2003007593	A1	09-01-2003	EP WO	1404226 A2 03002002 A2	07-04-2004 09-01-2003
EP 1096426	A	02-05-2001	US EP JP	6459754 B1 1096426 A1 2001161678 A	01-10-2002 02-05-2001 19-06-2001
US 6483892	B1	19-11-2002	NON	E	

INTERNATIONALER RECHERCHENBERICHT

rnationales Aktenzeichen PCT/EP2004/000754

A. KLASSIF	IZIERUNG	i DES ANMELDUNGSGEGENSTANDE	£S
TPK 7	GOST	11/00	

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 G06T

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, BIOSIS

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.	
X	TURBELL, HENRIK: "Cone-Beam Reconstruction Using Filtered Backprojection" LINKÖPING STUDIES IN SCIENCE AND TECHNOLOGY - DISSERTATION NO. 672,	1-8,10, 11	
Y	Februar 2001 (2001-02), XP002279048 Linköping Seite 23, Zeile 2 -Seite 24, Zeile 2 Seite 24, Zeile 1 - Zeile 2 Seite 77, Zeile 1 - Zeile 11 Seite 89, Zeile 6 - Zeile 9 Seite 99, Zeile 30 - Zeile 33 Seite 102, Zeile 7 -Seite 103, Zeile 18 Seite 105, Zeile 12 -Seite 107, Zeile 22 Seite 111, Zeile 12 -Seite 112, Zeile 8	9	
	Abbildungen 4.1,4.17		

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden "Y soll oder die aus einem anderen besonderen Grund angegeben ist (wie
- son ouer die aus einem ausgeführt)
 Veröffentlichung, die sich auf eine mündliche Offenbarung,
 eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 Veröffentlichung, die vor dem internationalen Anmeidedatum, aber nach
 dem beanspruchten Prioritätsdatum veröffentlich worden ist
- Spätere Veröffentlichung, die nach dem Internationalen Anmetdedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist
- Veröffentilchung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

5. Mai 2004

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

26/05/2004 Bevollmächtigter Bediensteter

Eckert, L

Formblatt PCT/ISA/210 (Blatt 2) (Januar 2004)

INTERNATIONALER RECHERCHENBERICHT

ternationales Aktenzeichen
PCT/EP2004/000754

PCT/EP2004/000754					
(Fortsetz ategorie°	ortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN gorle® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr.				
negono					
,	US 2003/007593 A1 (WANG GE ET AL) 9. Januar 2003 (2003-01-09) Zusammenfassung	9			
(EP 1 096 426 A (GE MED SYS GLOBAL TECH CO LLC) 2. Mai 2001 (2001-05-02) Titel Zusammenfassung Seite 2, Zeile 3 -Seite 3, Zeile 48 Seite 4, Zeile 28 -Seite 8, Zeile 15 Seite 8, Zeile 53 -Seite 9, Zeile 5 Seite 9, Zeile 36 -Seite 10, Zeile 27 Seite 10, Zeile 55 -Seite 11, Zeile 39 Seite 12, Zeile 19 - Zeile 38 Seite 13, Zeile 40 - Zeile 46 Seite 14, Zeile 38 -Seite 15, Zeile 57 Abbildungen 3,4	1,3,4,8			
	US 6 483 892 B1 (WANG YING ET AL) 19. November 2002 (2002-11-19) Zusammenfassung Spalte 2, Zeile 19 - Zeile 53 Spalte 2, Zeile 66 -Spalte 3, Zeile 38 Spalte 4, Zeile 4 - Zeile 37 Spalte 6, Zeile 6 -Spalte 7, Zeile 30 Abbildungen 2-5,7	10,11			

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veroπermicnungen, die zur selben Patentfamilie gehören

emationales Aktenzeichen
PCT/EP2004/000754

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 2003007593	A1	09-01-2003	EP WO	1404226 A2 03002002 A2	07-04-2004 09-01-2003
EP 1096426	Α	02-05-2001	US EP JP	6459754 B1 1096426 A1 2001161678 A	01-10-2002 02-05-2001 19-06-2001
US 6483892	B1 19-11-20		KEI	NE	