Implementierung und Validierung des Palladio-Vorhersageverfahrens

Ausarbeitung zur Studienarbeit

Universität Oldenburg Fachbereich II - Department für Informatik Abteilung Software Engineering

> Betreut durch Jun.-Prof. Dr. Ralf Reussner Dipl. Math. Viktoria Firus

vorgelegt von Helge Hartmann, Mat.-Nr. 7092910

Oldenburg, 14. Oktober 2005

Zusammenfassung

Das Palladio-Performanz-Vorhersageverfahren basiert auf Kontrollfl"ussen einer Anwendung und der Performanz eingesetzter Komponenten. In dieser Arbeit wird dieses Verfahren validiert. Hierzu wurden zwei Verfahren implementiert, die auf dem gleichen Modell aufbauen, jedoch unterschiedliche Berechnungen verwenden. Beide Verfahren werden im Rahmen von Fallstudien auf Performanz und Genauigkeit untersucht.

Inhaltsverzeichnis

Inhaltsverzeichnis

1	1 Einleitung					
	1.1	Motivation	1			
	1.2	Zielstellung	1			
	1.3	Gliederung der Arbeit	2			
2	Pall	dio-Performanz-Vorhersageverfahren	3			
_	2.1	Voraussetzungen	3			
	2.1	2.1.1 Komponente	3			
		2.1.2 Design-by-Contract und Parametrisierte Verträge	4			
		2.1.3 Service-Effektspezifikation	5			
		2.1.4 Quality of Service Modelling Language	5			
	2.2	Palladio-Performanz-Vorhersagemodell	6			
	2.2	2.2.1 Service-Effektautomat	7			
			7			
			9			
	2.2		9			
	2.3	Verfahren	9			
3	lmp	ementierung	12			
	3.1	Gemeinsamkeiten	12			
		3.1.1 Idee der Implementierung	12			
		3.1.2 Datenstruktur	14			
		3.1.3 Anpassung der Abtastrate	15			
		3.1.4 Approximation der Schleifenberechnung	16			
		3.1.5 Regulärer Ausdruck als Abstrakter Syntaxbaum	17			
		3.1.6 Berechnung der Transitionswahrscheinlichkeiten	18			
	3.2	Unterschiede	19			
		3.2.1 Berechnung im Zeitbereich	19			
		3.2.2 Berechnung im Frequenzbereich	19			
		3.2.3 Komplexität	20			
4	Vali	ierungsmethode	22			
	4.1	Präzision der gemessenen Funktionen				
	4.2	Validität der Untersuchung				
	4.3	Fallstudie	23			
	4.4	Vergleich von Funktionen	24			
		4.4.1 Schätzfunktion	24			
		4.4.2 χ^2 Anpassungstest	24			
	4.5	Goal-Question-Metric-Plan	25			
		4.5.1 Ziele der Fallstudie	25			
		4.5.2 Fragestellungen und Metriken	25			
	4.6	Variablen	26			
		4.6.1 Störvariablen	27			
		4.6.2 Unabhängige Variablen	27			
		4.6.3 Abhängige Variablen	28			

Inhaltsverzeichnis

5	Verg	gleich der implementierten Ansätze	29
	5.1	Anwendung	29
	5.2	Durchführung der Fallstudie	30
		5.2.1 Vergleich der Berechnungen	31
		5.2.2 Vergleich von Messung und Berechnung	36
6	Wel	server	47
	6.1	Beschreibung der Anwendung	47
	6.2	Service-Effektautomaten	47
		6.2.1 Schnittstelle IRequestParser	52
		6.2.2 Schnittstelle IRequestProcessor	52
	6.3	Erzeugung der Attribute	53
	6.4	Anwendungsszenarien	54
	6.5	Ergebnisse	55
		6.5.1 Probleme	55
		6.5.2 HTTPRequestParser	56
		6.5.3 DynamicFileProvider	61
		6.5.4 StaticFileProvider	64
		6.5.5 BibTexProvider	67
	6.6	Bewertung des Verfahrens	70
7	Zus	mmenfassung der Ergebnisse und Ausblick	72
A			75
	A. 1	Funktionen für Abschnitt 5.2.1	75
		A.1.1 Vorgegebene Funktionen	75
		A.1.2 Sequenz	76
		A.1.3 Alternative	78
		A.1.4 Schleife	82
	A.2	Funktionen für Abschnitt 5.2.2	84
		A.2.1 Sequenz	84
		A.2.2 Alternative	86
		A.2.3 Schleife	91
	Α 3	Webserver	30

1 Einleitung

1.1 Motivation

Performanz ist ein entscheidender Faktor für den Erfolg der meisten Softwareprodukte. Dabei findet heute eine Betrachtung des Kriteriums Performanz nur bei sicherheitskritischen Eingang in den Entwurfsprozess. Da sich mangelnde Performanz jedoch meist auf Entscheidungen im Entwurfsprozess zurückführen lässt, kann eine zu späte Berücksichtigung dazu führen, dass Änderungen am Design vorgenommen werden müssen, die sehr kostspielig sein können. Aus diesem Grund sollte die Performanz schon frühzeitig berücksichtigt und der Einfluss von Design-Alternativen analysiert werden. Dafür benötigt man Modelle, die es ermöglichen, den Einfluss von Design-Entscheidungen auf die Performanz vorherzusagen.

Betrachtet man das Kriterium Performanz in der komponentenbasierten Softwareentwicklung, so ist man zum einen an dem Einfluss einer Komponente auf die Performanz des fertigen Produktes interessiert. So kann man schon bei der Auswahl bestehender Komponenten den Einfluss auf das Gesamtsystem bestimmen. Zum anderen ist man aber auch an der Performanz alternativer Architekturen interessiert. Dabei erhofft man sich von vorgefertigten Komponenten, dass diese bereits Informationen beinhalten, die für die Berechnung der Performanz benötigt werden. Zum einen werden Informationen über die Performanz der eingesetzten Komponenten selbst benötigt, welche zum Beispiel durch Messungen auf einem Referenzsystem ermittelt werden können, dass nötig ist, um vergleichbare Werte zu ermitteln. Zum anderen werden Informationen über die Aufrufreihenfolgen benötigt, die in Form von Graphen dargestellt werden können (1). Entsprechend der Häufigkeit von Aufrufen eines Dienstes fällt die Performanz einiger Komponenten mehr ins Gewicht als die Performanz anderer Komponenten.

Von der Palladio-Gruppe der Universität Oldenburg wird ein Verfahren entwickelt, dass die Vorhersage der Performanz von Software-Architekturen aus den Kontrollflüssen und den Performanzinformationen der Komponenten ermöglicht.

1.2 Zielstellung

Das Ziel dieser Arbeit ist die Implementierung und die Validierung des in Kapitel 2 vorgestellten Verfahrens zur Performanzvorhersage. Dies beinhaltet die beiden Teilziele Implementierung und Validierung.

Implementierung Für die Berechnung der Performanz existieren zwei unterschiedliche Algorithmen, die beide implementiert werden müssen und in Bezug auf Komplexität und Genauigkeit der Berechnung miteinander verglichen werden sollen. Als Eingabe dienen sogenannte Service-Effektautomaten, die endlichen Automaten entsprechen und den Dienst einer Komponente spezifizieren.

Validierung Im weiteren soll das Verfahren validiert werden. In einem ersten Schritt werden für sehr kleine Service-Effektautomaten feste Verteilungsfunktionen angegeben, die die Ausführungszeiten vorgeben. Basierend auf diesen Automaten wird ein Programm entwickelt, dass die Ausführungszeiten simuliert. Die Ausführungszeiten des Programms werden mit den Berechnungen basierend auf den Service-Effektautomaten verglichen, wobei der Grad der Übereinstimmung der Funktionen einen ersten Hinweis auf die Validität des Verfahrens gibt.

1 Einleitung

Um genauer zu untersuchen wie die Vorhersagen für echte Programme und die Verteilungsfunktionen realer Dienste aussehen, müssen die Dienste einer realen Anwendung gemessen werden. Dazu soll das Verfahren an einem Webserver validiert werden, der zu Studienzwecken von der Palladio-Gruppe entwickelt wurde. Da sich reale Programme je nach Voraussetzungen unterschiedlich verhalten, werden hier verschiedene Testfälle zu identifizieren sein.

1.3 Gliederung der Arbeit

Die Arbeit gliedert sich entsprechend der Aufgabenstellung in zwei Teile. Kapitel 2 enthält eine Beschreibung des Palladio-Performanz-Vorhersageverfahrens, dessen Implementierung in Kapitel 3 vorgestellt wird. Die Validierung wird in den Abschnitten 4 bis 6 beschrieben. Dazu wird in Abschnitt 4 zunächst die Validierungsmethode erläutert, Abschnitt 5 enthält einen Vergleich der beiden implementierten Ansätze anhand einer kleineren Anwendung und Abschnitt 6 beschreibt die Validierung anhand des Palladio-Webservers. Der abschließende Abschnitt 7 enthält eine Zusammenfassung der Ergebnisse und einen Ausblick auf offene Fragestellungen.

2 Palladio-Performanz-Vorhersageverfahren

In diesem Abschnitt wird das Palladio-Performanz-Vorhersageverfahren beschrieben. Dieses Verfahren ermöglicht die Vorhersage der Performanzeigenschaften verschiedener Architekturen aus ihren verwendeten Komponenten und deren Beziehungen. Dazu werden zunächst in dem Abschnitt 2.1 einige Grundlagen erläutert, die dann zu dem eigentlichen Modell in Abschnitt 2.2 führen. Das abschließende Kapitel 2.3 erläutert ein Verfahren zur Realisierung des Modells.

2.1 Voraussetzungen

In diesem Abschnitt werden einige Grundlagen vorgestellt, auf denen das Vorhersagemodell aufbaut. Abschnitt 2.1.1 beschreibt den Grundbaustein der komponentenbasierten Softwareentwicklung, die Komponente. Um die Abhängigkeiten der verschiedenen Schnittstellen von Komponente zu beschreiben, wird in Abschnitt 2.1.2 das Konzept des "Design-by-Contract" und "Parametrisierte Verträge" vorgestellt. "Parametrisierte Verträge" werden dabei als Service-Effektspezifikationen angegeben, die in Abschnitt 2.1.3 vorgestellt werden. Abschnitt 2.1.4 enthält schließlich einen kurzen Einblick in die "Quality of Service Modelling Language" zur Spezifikation von Qualitätseigenschaften, mit der bestimmte Arten von Service-Effektspezifikationen angereichert werden können.

2.1.1 Komponente

Die komponentenbasierte Softwareentwicklung ist ein auf Wiederverwendung basierender Ansatz für die Entwicklung von Softwaresystemen. Eine Komponente kann als abstrakter Dienstanbieter angesehen werden (2) und wird in einer Umgebung zusammen mit anderen Komponenten, die die Umgebung der Komponente repräsentieren, eingesetzt. Abbildung 1 zeigt eine schematische Darstellung einer Komponente. Die Details der Implementierung sind für den Verwender in der Regel nicht sichtbar. Alle Interaktionen mit der Umgebung finden über die Schnittstellen statt, wobei eine Komponente zwei Schnittstellen besitzt. Die Angebotsschnittstelle definiert die Menge der verfügbaren Dienste, die die Komponente der Umgebung zur Verfügung stellt. Eine Bedarfsschnittstelle hingegen spezifiziert die Menge der Dienste, die die Komponente aus der Umgebung benötigt.

Abbildung 1: Komponente

2.1.2 Design-by-Contract und Parametrisierte Verträge

Komponenten werden in einer Umgebung zusammen mit anderen Komponenten eingesetzt. Dabei kann eine Komponente die Dienste der Angebotsschnittstelle nur anbieten, wenn die Umgebung die Dienste der Bedarfsschnittstelle bereitstellt, wodurch die Einsatzmöglichkeiten einer Komponente eingeschränkt ist

Die Abhängigkeiten zwischen Komponenten können durch Verträge spezifiziert werden. Bertrand Meyer (3) definierte Abhängigkeiten zuerst zwischen Methoden durch das Konzept des "Design-by-Contract", dessen Definition auf Komponenten ausgeweitet werden kann.

Design-by-Contract für Methoden Ein Vertrag wird geschlossen, indem für eine Methode Vor- und Nachbedingungen definiert werden. Vorbedingungen definieren die Erwartungen, die eine Methode an den Aufrufer stellt. Eine Methode erwartet zum Beispiel eine Liste von Parametern, die der Aufrufer übergeben muss. Die Parameter können dabei zusätzlich in ihrem Wertebereich eingeschränkt werden. Nachbedingungen spezifizieren den Zustand, der erreicht wird, wenn die Vorbedingungen erfüllt sind und die Methode ausgeführt wurde. Dieser Zustand oder ein Teil davon wird an den Aufrufer zurück gegeben.

Design-by-Contract für Komponenten Das Konzept des "Design-by-Contract" lässt sich auch auf Komponenten übertragen. Eine Komponente C ruft einen Dienst einer anderen Komponente C' auf. Die Bedarfsschnittstelle R_C von C entspricht hier der Vorbedingung und die Angebotsschnittstellen $P_{C'}$ von C' entspricht der Nachbedingung. Somit ist die Komponente C nur nutzbar, wenn die Bedarfsschnittstelle R_C eine Teilmenge der Angebotsschnittstelle $P_{C'}$ ist, also $P_C \subseteq P_{C'}$ gilt.

Die Definition solcher Verträge hat den Vorteil, dass klar gestellt wird, von welchen Voraussetzungen ausgegangen wird. Dies führt zu weniger Fehlern, da Missverständnisse vermieden werden können. Zudem reduziert sich der Umfang der Fehlerbehandlung, da ein definierter Zustand vorausgesetzt werden kann.

Um solche Verträge definieren zu können, müssen die Voraussetzungen schon während des Designs bekannt sein, was jedoch nicht immer der Fall ist. Aus diesem Grunde wird eine flexiblere Anpassung benötigt. Dies führt zu den parametrischen Verträgen (4).

Parametrisierte Verträge Ein parametrischer Vertrag verknüpft die Bedarfsschnittstelle mit der Angebotsschnittstelle der selben Komponente durch eine bijektive Abbildung:

$$p: \{Angebotsschnittstelle\} \rightarrow \{Bedarfsschnittstelle\}$$

Die Bedarfsschnittstelle entspricht der Vorbedingung und die Angebotsschnittstelle entspricht der Nachbedingung. Durch die Definition einer solchen Abbildung lassen sich zur Einsatzzeit die angebotenen Dienste einer Komponente in Abhängigkeit von den Diensten der Umgebung berechnen. Ist zum Beispiel nur eine Teilmenge der in der Bedarfsschnittstelle angegebenen Dienste verfügbar, so kann man aufgrund der parametrisierten Verträge bestimmen, welche Dienste angeboten werden können. Damit lässt sich eine Komponente flexibel in unterschiedlichen Umgebungen einsetzen, auch wenn nicht alle Voraussetzungen erfüllt sind.

2 Palladio-Performanz-Vorhersageverfahren

Parametrische Verträge lassen sich in Form von Service-Effektspezifikationen angeben, die für einen Dienst der Angebotsschnittstelle die benötigten Dienste der Umgebung auflistet.

2.1.3 Service-Effektspezifikation

Eine Service-Effektspezifikation gibt für einen Dienst der Angebotsschnittstelle die von ihm aufgerufenen externen Dienste an. Als Teil der Schnittstellenmodelle (4) lassen sich drei Arten von Service-Effektspezifikationen mit unterschiedlichem Informationsgehalt festhalten.

- Service-Effektspezifikationen für Signaturlisten-basierte Schnittstellen,
- Service-Effektspezifikationen für Protokoll-basierte Schnittstellen und
- Service-Effektspezifikationen für Quality-of-Service-basierte Schnittstellen.

Signaturlisten-basierte Service-Effektspezifikationen Bei Signaturlisten-basierten Service-Effektspezifikationen werden werden die benötigten externen Dienste in einer Liste angegeben, die keinerlei Informationen über die Häufigkeit und Reihenfolge selbiger enthält. In Abbildung 2 ist ein Beispiel einer Spezifikation zu sehen.

Abbildung 2: Service-Effektspezifikation

Protokoll-basierte Service-Effektspezifikation Protokoll-basierte Service-Effektspezifikationen enthalten zusätzlich Informationen über die Aufrufreihenfolgen der externen Dienste, die zum Beispiel durch endliche Automaten modelliert werden können.

Quality-of-Service-basierte Service-Effektspezifikationen Quality-of-Service-basierte Service-Effektspezifikationen enthalten zusätzlich Informationen über Qualitätseigenschaften. Diese können zum Beispiel in der "Quality of Service Modelling Language" (QML) (5) angegeben werden (siehe nächsten Abschnitt).

2.1.4 Quality of Service Modelling Language

Mit der "Quality of Service Modelling Language" lassen sich Qualitätseigenschaften von Software spezifizieren. Es handelt sich hier um nicht funktionale Eigenschaften der Software wie die Performanz,

2 Palladio-Performanz-Vorhersageverfahren

Zuverlässigkeit, Verfügbarkeit und Sicherheit. Eine Beschreibung der QML ist in (5) zu finden. Ich werde hier nur kurz auf die Spezifikation der Performanz eingehen, da die anderen Möglichkeiten der QML für diese Arbeit irrelevant sind.

In der QML werden Qualitätseigenschaften in Form von Verträgen spezifiziert. Die Performanz eines Dienstes kann durch Angabe der Aspekte in Form von Quantilen angegeben werden. Abbildung 3 zeigt ein Beispiel eines solchen Vertrages, der die Performanz für einen Dienst "transfer" folgendermaßen definiert.

- 1. 100% aller Ausführungen benötigen weniger als 30 Millisekunden,
- 2. 50% aller Ausführungen benötigen höchstens 10 Millisekunden und
- 3. 30% aller Ausführungen benötigen höchstens 5 Millisekunden.

```
from latest require Performance contract {
    transfer {
        percentile 30 < 5 msec;
        percentile 50 < 10 msec;
        percentile 100 < 30 msec;
    };
};</pre>
```

Abbildung 3: Performanzvertrag

Mit Hilfe der Service-Effektspezifikation lassen sich die Sequenzen von externen Aufrufen für einen Dienst der Angebotsschnittstelle einer Komponente beschreiben. Die *QML* bietet darüber hinaus die Möglichkeit Performanzeigenschaften von Diensten zu spezifizieren. Dies sind die Informationen, die das Palladio-Performanz-Vorhersagemodell benötigt, das in dem nächsten Abschnitt beschrieben wird.

2.2 Palladio-Performanz-Vorhersagemodell

Dieser Abschnitt beschreibt das Palladio-Performanz-Vorhersagemodell. Ziel des Modells ist die Vorhersage der Performanz von Anwendungen basierend auf den verwendeten Komponenten, wobei man insbesondere an dem Vergleich verschiedener Architekturen interessiert ist.

Das Modell besteht aus

- den Service-Effektautomaten, die im Abschnitt 2.2.1 beschrieben werden,
- Zufallsvariablen, die im Abschnitt 2.2.2 beschrieben werden und
- den Transitionswahrscheinlichkeiten (Abschnitt 2.2.3).

2.2.1 Service-Effektautomat

Bei einem Service-Effektautomaten handelt es sich um einen endlichen Automaten, der die möglichen Aufrufreihenfolgen externer Dienste für einen Dienst der Angebotsschnittstelle einer Komponente beschreibt.

Abbildung 4: Beispiel eines Dienstes

Abbildung 4 enthält ein Beispiel eines Dienstes, der von einer Komponente angeboten werden könnte. Es handelt sich hier um einen leicht veränderten Algorithmus aus (6), der entscheidet, ob eine Folge von Symbolen von einem nichtdeterministischen Automaten akzeptiert wird. Abbildung 5 enthält den zugehörigen Service-Effektautomaten. Man kann erkennen, dass externe Methodenaufrufe mit den Transitionen korrespondieren und die Zustände interne Berechnungen darstellen.

Die erste Aktion des Dienstes ist die Bestimmung aller von dem Startzustand s_0 durch Epsilonübergänge erreichbaren Zustände mit Hilfe der externen Methode *EpsilonClosure*. Danach wird eine Schleife betreten, in der zuerst die externe Methode *Move()* aufgerufen wird, die die Menge der von S über *input* erreichbaren Zustände liefert. Als zweites wird in der Schleife wieder *EpsilonClosure()* aufgerufen, um die Epsilonübergänge zu berücksichtigen. Nachdem alle Symbole der Eingabe des Automaten abgearbeitet wurden, wird die Methode *IsFinalState()* aufgerufen, die überprüft, ob in S ein Endzustand enthalten ist.

Wie man sieht, bildet der Service-Effektautomat die möglichen Abläufe eines Dienstes nach. Für die Berechnung der Performanz werden allerdings noch weitere Informationen benötigt, da noch keine Aussage darüber gemacht wurde, wann welcher Pfad betreten wird und wie die externen Dienste die Performanz beeinflussen.

2.2.2 Zufallsvariablen

Um das Zeitverhalten eines Dienstes anzugeben, werden in dem Modell Zufallsvariablen verwendet. Eine diskrete Zufallsvariable ist eine Abbildung, die einem Ereignis eines Zufallsexperiments eine reelle Zahl zuordnet (7). Zufallsvariablen können durch ihre

- Dichtefunktion oder ihre
- Verteilungsfunktion

angegeben werden. Die Verteilungsfunktion F einer diskreten Zufallsvariable X mit einer endlichen Anzahl m von Ereignissen X_i , $i \in [0, m-1]$ ist eine monoton steigende Treppenfunktion und wie folgt defi-

Abbildung 5: Service-Effektautomat. Die Zustände symbolisieren interne Berechnungen, die Transitionen stellen den Aufruf eines externen Dienstes dar. Transitionswahrscheinlichkeiten und Zufallsvariablen sind hier nicht dargestellt.

niert:

$$F: x_i \to P(X < x_i)$$
 $i = 0, ..., m-1,$ (1)

Die Dichtefunktion der Zufallsvariablen ist eine Abbildung,

$$p: x_i \to P(X = x_i)$$
 $i = 0, ..., m-1,$ (2)

die jedem Ereignis eine Wahrscheinlichkeit zuordnet. In dem Modell werden die Zufallsvariablen als Dichtefunktionen angegeben. Da die Funktionswerte Wahrscheinlichkeiten für eine bestimmte Ausführungszeit angeben, sollte die Summe der Funktionswerte stets eins ergeben.

Da für die Berechnung der Performanz die Fouriertransformation verwendet wird, ist es notwendig, dass die Funktionswerte der Dichtefunktionen den gleichen Abstand haben.

Bei der Wahrscheinlichkeitsfunktion konzentrieren sich die Werte eines Intervalls $]x_{i-1},x_i]$ auf den einzelnen Punkt x_i . Es fehlt allerdings die Information der Verteilung innerhalb dieses Intervalls. Daher wird für dieses Modell angenommen, dass die Wahrscheinlichkeiten in diesem Intervall gleich verteilt sind. Auf dieser Annahme kann man jede Wahrscheinlichkeitsfunktion mit ungleichen Abständen in eine Wahrscheinlichkeitsfunktion mit gleichen Abständen transformieren. Der gemeinsame Abstand α , der auch als Abtastrate bezeichnet wird, wird durch den größten gemeinsamen Teiler der Intervalllängen bestimmt. Jedes Intervall $]x_{i-1},x_i]$ wird in $\frac{x_{i-1},x_i}{\alpha}$ Teilintervalle aufgeteilt, so dass jedes Intervall anschließend eine Länge von α besitzt. Die Wahrscheinlichkeit wird zu gleichen Teilen auf die Teilintervalle verteilt, so dass die neue Wahrscheinlichkeit für die aufgeteilten Intervalle $\frac{p_i\alpha}{x_i-x_{i-1}}$ beträgt.

Da in einem Service-Effektautomaten sowohl die Transitionen (externe Berechnungen) als auch die Zustände (interne Berechnungen) Zeit verbrauchen, wird jeder Transition und jedem Zustand eine Zufallsvariable zugewiesen.

2 Palladio-Performanz-Vorhersageverfahren

Um die Zufallsvariablen für einen Dienst zu ermitteln gibt es unter anderem folgende für diese Arbeit relevanten Möglichkeiten: Die Zufallsvariablen für einen Dienst kann durch

- Messungen der Ausführungszeiten oder durch
- Berechnungen eines Performanz-Vorhersageverfahrens

ermittelt werden.

Die Zufallsvariable eines Dienstes kann aus den Aspekten eines *QML*-Vertrages, die die Punkte der Verteilungsfunktion angeben, gewonnen werden. Abbildungen 6 und 7 zeigen die Dichte-und Verteilungsfunktion des Beispiels in Abbildung 3 auf Seite 6

Abbildung 6: Verteilungsfunktion

Abbildung 7: Dichtefunktion

Der Grund, für das Zeitverhalten eines Dienstes Zufallsvariablen zu verwenden, liegt in den Eigenschaften derselben. Zum einen erhält man eine sehr differenzierte Repräsentation des Zeitverhaltens. Zum anderen sind auf einer Zufallsvariablen verschieden Operationen wie z.B. die Addition definiert, die ebenfalls eine differenzierte Berechnung ermöglichen. Die QML bietet auch die Möglichkeit, das Zeitverhalten durch Mittelwerte und die Varianz anzugeben. Mit diesen Werten lassen sich die Ausführungszeiten allerdings nicht so detailliert angeben wie mit Zufallsvariablen.

2.2.3 Transitionswahrscheinlichkeiten

In einem Service-Effektautomaten kann es mehrere Pfade von dem Startzustand zum Endzustand geben. Um die Wahrscheinlichkeiten der einzelnen Pfade und die Gewichtung der Zufallsvariablen zu bestimmen, wird für jede Transition eine Aufrufwahrscheinlichkeit benötigt. Dabei sollte die Summe der Wahrscheinlichkeiten für alle ausgehenden Transitionen eines Zustands eins ergeben.

2.3 Verfahren

In diesem Abschnitt wird das Verfahren vorgestellt, um mit den Informationen des Modells die Performanz von Diensten zu berechnen. Ausgangspunkt der Berechnungen sind die Service-Effektautomaten, bei denen es sich um endliche Automaten bestehend aus den drei Basiskonstrukten

- Sequenz,
- Alternative und
- Schleife

handelt (1). Jedes dieser Konstrukte besteht aus einer Kombination von Zufallsvariablen, aus denen das Vorhersageverfahren ein Ergebnis berechnet, das wieder eine Zufallsvariable ist. Die Berechnungen, die entweder im Zeit- oder im Frequenzbereich durchgeführt werden können, werden auf den Dichtefunktionen der Zufallsvariablen durchgeführt. Für eine Berechnung im Frequenzbereich müssen die Dichtefunktionen mit Hilfe der Laplace- oder Fouriertransformation transformiert werden. Das Ergebnis der Berechnung wird anschließend durch eine inverse Transformation in den Zeitbereich zurück transformiert.

Abbildung 8: Service-Effektautomaten

Sequenz (Abbildung 8 a) Um das Zeitverhalten $x_{seq}[n]$ der Sequenz zu berechnen, muss man die Summe der einzelnen Ausführungszeiten berechnen bzw. die Summe der Zufallsvariablen X_i bestimmen. Die Dichtefunktion der Summe der Zufallsvariablen X_i entspricht der Faltung der zugehörigen Dichtefunktionen x_i .

$$x_{seq}[n] = \bigotimes_{i=1}^{n} x_i[n] \tag{3}$$

Im Frequenzbereich wird die Addition von Zufallsvariablen durch punktweise Multiplikation der fouriertransformierten Dichtefunktionen berechnet.

$$\mathscr{F}(x_{seq}[n]) = \prod_{i=1}^{n} \mathscr{F}(x_i[n])$$
(4)

Alternative (Abbildung 8 b) Die Ausführungszeit für die Alternativen $x_{alt}[n]$ wird durch die gewichtete Summe der alternativen Aufrufe berechnet. Die einzelnen Summanden x_i sind dabei mit der Wahr-

scheinlichkeit p_i ihres Aufrufs gewichtet.

$$x_{alt}[n] = x_1[n] \circledast \sum_{i=2}^{n} p_i x_i[n]$$
 (5)

Die Berechnung im Frequenzbereich entspricht der im Zeitbereich.

$$\mathscr{F}(x_{alt}[n]) = \mathscr{F}(x_1[n]) * \sum_{i=2}^{n} p_i \mathscr{F}(x_i[n])$$
(6)

Schleife (Abbildung 8 c) Die Schleife wird durch die gewichtete Summe der Selbstfaltung beschrieben. Dabei ist die Wahrscheinlichkeit für eine Schleifeniteration p und für das Verlassen der Schleife 1-p.

$$x_{loop}[n] = (1 - p) \sum_{k=0}^{\infty} p^k \otimes_{i=1}^k (x_1[n] \otimes x_2[n])$$
 (7)

Der erste Summand (für k=0) entspricht dem Fall, dass die Schleife nicht durchlaufen wird, also eine Ausführungszeit von null hat. Dies wird durch den Dirac-Impuls angegeben, bei dem es sich laut Heinz Unbehauen (8, Seite 43) eigentlich nicht um eine Funktion der klassischen Analysis handelt. Es ist eine Funktion, die an der Stelle null einen unendlichen Wert und für alle anderen Stellen den Wert null besitzt. Definiert wird der Dirac-Impuls als Integral:

$$\int_{\infty}^{-\infty} \delta(t)dt = 1 \tag{8}$$

Der Dirac-Impuls wird näherungsweise als Rechteckfunktion angegeben. Für diese Arbeit ist diese Definition zweckhaft.

$$\delta(t) = \begin{cases} 1 & \text{für } 0 \\ 0 & \text{sonst} \end{cases} \tag{9}$$

Hier steht der Dirac-Impuls also für eine Zufallsvariable, die keine Zeit verbraucht. Dann lässt sich die Formel (7) auch so schreiben:

$$x_{loop}[n] = (1 - p) \left(\delta(t) + \sum_{k=1}^{\infty} p^k \otimes_{i=1}^k (x_1[n] \otimes x_2[n]) \right)$$
 (10)

Die Summe konvergiert und kann approximiert werden. Im Frequenzbereich lässt sich der Grenzwert der Reihe direkt berechnen (9):

$$\sum_{k=0}^{\infty} p_a^k[n] = \mathscr{F}^{-1}\left\{\frac{1}{\alpha} + \frac{p\mathscr{F}\left\{x_{\alpha}[n]\right\}}{1 - p\alpha\mathscr{F}\left\{x_{\alpha}[n]\right\}}\right\}$$
(11)

Der nächste Abschnitt beschreibt die Implementierung des Verfahrens.

In dem vorigen Kapitel wurde das Palladio-Performanz-Vorhersageverfahren für Dienste der Angebotsschnittstelle einer Komponente beschrieben. In diesem Abschnitt geht es darum, wie dieses Verfahren implementiert wurde. Die Implementierung beinhaltet die beiden Ansätze

- Berechnung im Zeitbereich und
- Berechnung im Frequenzbereich.

Abschnitt 3.1 beschreibt die Gemeinsamkeiten in der Implementierung beider Ansätze, wohingegen in Abschnitt 3.2 auf Seite 19 die Unterschiede in den Berechnungen aufgezeigt werden.

3.1 Gemeinsamkeiten

In diesem Abschnitt werden die Gemeinsamkeiten der beiden implementierten Ansätze beschrieben. Beide Implementierungen erhalten die gleiche Eingabe in Form eines Service-Effektautomaten, der für die algorithmische Auswertung vorverarbeitet wird. Dies ist in Abschnitt 3.1.1 beschrieben. Abschnitt 3.1.2 beschreibt die Datenstrukturen für die Qualitätseigenschaften der Dienste. Bei der Berechnung kann es nötig sein, die Abtastrate auf einen anderen Wert anzupassen. Dies wird in Abschnitt 3.1.3 beschrieben. Abschnitt 3.1.4 beschäftigt sich mit dem Problem der Schleifenberechnung, da die Anzahl der Schleifeniterationen unbekannt ist. In dem Abschnitt 3.1.5 wird die Datenstruktur des regulären Ausdrucks für die Berechnung betrachtet. Schließlich geht es im Abschnitt 3.1.6 um die Bestimmung der Gewichtung der Zufallsvariablen.

3.1.1 Idee der Implementierung

Eingabe der Berechnung sind die Service-Effektautomaten der Anwendung. Für eine algorithmische Auswertung ist es jedoch vorteilhaft, den Automaten in einen regulären Ausdruck zu transformieren, da sich diese aufgrund ihrer rekursiven Struktur komfortabler auswerten lassen.

Ein endlicher Automat lässt sich in einen regulären Ausdruck transformieren, der die gleiche Sprache akzeptiert (10). Die Service-Effektautomaten enthalten allerdings zusätzliche Informationen in Form von Zufallsvariablen und Transitionswahrscheinlichkeiten, die für die Berechnung der Performanz notwendig sind. Damit diese Informationen bei der Transformation in den regulären Ausdruck erhalten bleiben, müssen sie mit den Eingabesymbolen assoziiert werden. Das ist bei den Transitionen kein Problem, da zu jeder Transition ein Eingabesymbol gehört. Allerdings enthalten auch die Knoten des Automaten Zufallsvariablen. Die Lösung besteht in der Einführung eines Zustands und einer Transition mit einem neuen Eingabesymbol für jeden Knoten.

Der reguläre Ausdruck wird als abstrakter Syntaxbaum (6) repräsentiert, der die rekursive Struktur von regulären Ausdrücken nachbildet. Für die Berechnung wird dieser Baum in einem Tiefendurchlauf durchlaufen und schrittweise ausgewertet.

Einführung eines Zwischenzustands Für jeden Zustand des Automaten wird ein Zwischenzustand mit einer neuen Transition und einem neuen Eingabesymbol definiert. Des weiteren werden die eingehenden Transitionen zu dem neuen Zustand umgeleitet.

Gegeben sei ein Service-Effektautomat mit Zuständen States und Eingabesymbolen Inputs. Für jeden Zustand $S \in States$ des Service-Effektautomaten wird ein neuer Zustand S' und eine Transition $S' \stackrel{s}{\to} S$ mit einem neuen Eingabesymbol s := Name(S) definiert, wobei Name(S) den Namen des Zustandes liefert. Die Zufallsvariable von S wird nun mit dem neuen Eingabesymbol s assoziiert. Die Transitionswahrscheinlichkeit für die neue Transition beträgt 100%. Für alle Transitionen $t := X \stackrel{a}{\to} S$ mit $a \in Inputs$ und $X \in States$ wird t durch eine neue Transition $t' := X \stackrel{a}{\to} S'$ ersetzt. Alle Zufallsvariablen und Transitionswahrscheinlichkeiten werden mit den Eingabesymbolen assoziiert.

Der Effekt der Transformation ist in Abbildung 9 dargestellt. Das Ergebnis ist ein Automat, bei dem alle für die Berechnung benötigten Informationen in den Eingabesymbolen enthalten sind. Jeder Zustand mit einer Zufallsvariable hat eine eingehende Transition, dessen Eingabesymbol mit der Zufallsvariable assoziiert ist.

Abbildung 9: Bei der Umwandlung des Service-Effektautomaten werden Transitionen erzeugt, die das Zeitverhalten der internen Berechnungen enthalten.

Umwandlung des Automaten in einen regulären Ausdruck Zu jedem endlichen Automat existiert ein regulärer Ausdruck, der die gleiche Sprache akzeptiert. Reguläre Ausdrücke sind induktiv definiert (10):

R ist ein regulärer Ausdruck, wenn *R* folgende Form hat:

- 1. a für $a \in \Sigma$, für ein Eingabealphabet Σ
- 2. ε , die leere Zeichenfolge
- 3. Ø, ein leeres Eingabealphabet
- 4. $(R_1 \cup R_2)$, die Vereinigung zweier regulärer Ausdrücke R_1 und R_2
- 5. $(R_1 \circ R_2)$, die Komposition zweier regulärer Ausdrücke R_1 und R_2
- 6. (R_1^*) , die Iteration eines regulären Ausdruckes R_1

Die letzten drei Teile der Definition entsprechen den drei Basiskonstrukten der Service-Effektautomaten, die in Kapitel 2.3 vorgestellt wurden. Aufgrund der rekursiven Definition ist ein regulärer Ausdruck allerdings einfacher auszuwerten. Für die Transformation des obigen Automaten in einen regulären Ausdruck wird der in (10) beschriebene GNFA-Algorithmus verwendet.

3.1.2 Datenstruktur

Für die Erzeugung der Service-Effektautomaten wird die Palladio.FiniteStateMachine-Bibliothek verwendet, die es ermöglicht, den Transitionen und Zuständen Informationen in Form von Attributen hinzuzufügen. Für die Berechnung werden folgende Attribute definiert:

- 1. Ein Attribut *RandomVariable*, dass die Dichtefunktion einer Zufallsvariablen enthält.
- 2. Ein Attribut *QMLAttribut*, das Aspekte eines QML-Vertrages enthält.
- 3. Ein Attribut *ProbabilityAttribute*, dass die Wahrscheinlichkeit für eine Transition enthält.
- 4. Ein Attribut MeasureAttribute, dass die Ergebnisse von einer oder mehreren Messungen enthält.

Einige dieser Attribute sind nur unterschiedliche Repräsentationen der gleichen Daten. Aus diesem Grund existiert eine Klasse AttributeTransformer, die Methoden für die Transformation eines Attributes in ein anderes bereitstellt. Der Berechnungsalgorithmus erwartet für jede Transition und für jeden Zustand des Automaten ein Attribut RandomVariable. Existiert dieses Attribut für einen Zustand oder eine Transition nicht, so wird es aus dem QMLAttribut oder dem MeasureAttribute erzeugt. Fehlen auch diese Attribute, so wird ein Fehler gemeldet, da für die Berechnung der Performanz nicht alle Informationen vorliegen.

RandomVariable Das Attribut enthält eine diskrete Funktion, die der Dichtefunktion der Zufallsvariable entspricht. Es werden folgende Werte definiert:

- Die Abtastrate α , welche die Länge der Intervalle der diskreten Dichtefunktion wiedergibt.
- Die kürzeste Ausführungszeit xMin.
- Vektor v, der die Wahrscheinlichkeiten für die Ausführungszeiten enthält.

Aus diesen Werten lassen sich die Ausführungszeiten für die einzelnen Wahrscheinlichkeiten des Vektors berechnen. Sei n die Länge des Vektors v, so gilt für einen Index $i \in [0, n-1]$:

$$Ausführungszeit(v[i)] = P(X = xMin + \alpha * i)$$
(12)

Die Summe der Wahrscheinlichkeiten sollte eins ergeben. Ist der Wert höher, so liegt ein Fehler vor. Bei einem geringeren Wert werden nicht alle möglichen Ereignisse angegeben. Es können sich bei der Berechnungen allerdings geringe Abweichungen ergeben, auch wenn alle Dichtefunktionen der Zufallsvariablen mit einer Summe von eins angegeben werden. Bei diesen Abweichungen handelt es sich um Rundungsfehler, die durch die Verwendung von Gleitkommazahlen entstehen. Die Abweichungen sind allerdings im Bereich von 10^{-8} und somit zu vernachlässigen.

Um eine Zufallsvariable zu beschreiben kann man einerseits die Dichtefunktion angeben. Andererseits kann eine Zufallsvariable auch als Verteilungsfunktion mit Hilfe des *QMLAttribute* (siehe unten) beschrieben werden. Da die Datenstruktur der Zufallsvariable allerdings eine Dichtefunktion erwartet, muss die Verteilungsfunktion in eine Dichtefunktion transformiert werden. Der *AttributeTransformer* stellt eine Funktion für die Transformation bereit.

QMLAttribute Wie in Abschnitt 2.1.4 beschrieben, kann die Verteilungsfunktion einer Zufallsvariablen in Form eines QML-Vertrages angegeben werden. Die Aspekte des Vertrages werden in einem Vektor gehalten und entsprechen den Punkten der Verteilungsfunktion einer Zufallsvariablen.

ProbabilityAttribute Das Attribut enthält die Transitionswahrscheinlichkeit in einem double.

MeasureAttribute Das *MeasureAttribute* enthält die Ergebnisse von Messungen in einer Liste von Ausführungszeiten. Jedes Messergebnis kann als Ereignis eines Zufallsexperiments angesehen werden und aus der Menge der Ereignisse lässt sich eine Zufallsvariable generieren.

Seien a_1, \ldots, a_n die einzelnen Messwerte. Dann wird zunächst eine Abbildung definiert, die jedem Vorkommen eines Messwertes eine absolute Häufigkeit H_a zuordnet.

$$a_i \to H_a(a_i)$$
 (13)

Sind die absoluten Häufigkeiten bekannt, dann lässt sich die Funktion in eine Dichtefunktion transformieren:

$$a_i := \frac{H_a(a_i)}{\sum_{i=1}^n H_a(a_i)} \tag{14}$$

Für die Berechnung müssen die Stützstellen der Funktion noch auf eine feste Abtastrate α (siehe Abschnitt 3.1.3) angepasst werden.

3.1.3 Anpassung der Abtastrate

Die Abtastrate α beschreibt den zeitlichen Abstand zwischen zwei Werten einer Dichtefunktion. Ein Funktionswert gibt also die Wahrscheinlichkeit für ein Intervall der Länge α an.

Seien zwei Dichtefunktionen f und g mit Abtastraten α_f und α_g gegeben. Dann werden die Funktionen auf den größten gemeinsamen Teiler (GGT) der Abtastraten angepasst: $\alpha_{fg} = GGT(\alpha_f, \alpha_g)$. Jedes Intervall von f wird in $n = \frac{\alpha_f}{\alpha_{fg}}$ und jedes Intervall von g in $m = \frac{\alpha_g}{\alpha_{fg}}$ Teilintervalle unterteilt. Da keine Informationen darüber vorliegen, wie die Wahrscheinlichkeiten in den Intervallen verteilt sind, wird der Einfachheit halber eine Gleichverteilung angenommen. Die Wahrscheinlichkeit p wird also zu gleichen Teilen auf die Teilintervalle verteilt, so dass jedes Teilintervall eine Wahrscheinlichkeit von $\frac{p}{n}$ bzw. $\frac{p}{m}$ erhält.

Manchmal kann es auch sinnvoll sein die Abtastrate zu erhöhen. Auf Grund einer sehr kleinen Abtastrate kann das Ergebnis der Berechnung möglicherweise sehr viele Funktionswerte haben. Dann gibt es die Möglichkeit, die Abtastrate auf ein Vielfaches der Abtastrate zu setzen und somit mehrere Funktionswerte zu einem zusammenzufassen. Sei α die Abtastrate der berechneten Funktion und sei α_{ν} ein Vielfaches der Abtastrate, dann werden jeweils $\frac{\alpha_{\nu}}{\alpha}$ Funktionswerte zusammengefasst. Die Wahrscheinlichkeiten der Werte werden dabei zu einem neuen Wert addiert.

Bei der Anpassung von Abtastraten muss man beachten, dass bei der Verringerung der Abtastrate kein Informationsgewinn stattfindet, da über die Intervalle die nicht bewiesene Annahme der Gleichverteilung gemacht wird. Will man die Funktionen mit einem größeren Informationsgehalt darstellen, so muss man die Verteilung innerhalb dieser Intervalle untersuchen.

Andererseits findet bei der Erhöhung der Abtastrate ein Informationsverlust statt, da bei einer weiteren Verarbeitung wieder eine Gleichverteilung für die Intervalle angenommen wird.

3.1.4 Approximation der Schleifenberechnung

Bei der Berechnung der Schleife steht man vor dem Problem, dass die Anzahl der Schleifeniterationen nicht bestimmt werden kann, da die Menge der möglichen Iterationen nicht endlich ist. Das hat zur Folge, dass die Dichtefunktion, die die Performanz der Schleife beschreibt, ebenfalls nicht endlich ist. Da sich eine solche Funktion aber nicht berechnen lässt, wird eine geeignete Approximation benötigt.

Man kann eine Schleife daher als eine unendliche Menge von alternativen Pfaden auffassen (1). Sei p die Wahrscheinlichkeit einer Schleifeniteration, dann ist 1-p die Wahrscheinlichkeit, dass die Schleife verlassen wird. Die Zufallsvariable, die das Zeitverhalten des Schleifenkonstrukts (Abbildung 8 c) beschreibt, hat folgende Gestalt:

$$X_{loop} = \begin{cases} X_1 & \text{mit Wahrscheinlichkeit} & 1-p \\ X_1 + (X_2 + X_1) & \text{mit Wahrscheinlichkeit} & (1-p)p \\ \vdots & & \\ X_1 + \underbrace{(X_2 + X_1) ... + (X_2 + X_1)}_{n} & \text{mit Wahrscheinlichkeit} & (1-p)p^n \\ \vdots & & \\ \vdots & & \\ \end{cases}$$

Durch die unendliche Reihe (7) lässt sich die Dichtefunktion der Zufalllsvariablen berechnen. Gilt p < 1, dann existiert für diese Reihe ein Grenzwert.

Die Idee der Approximation ist folgende: Mit jedem Glied der Reihe erhöht sich die Summe der Wahrscheinlichkeiten von X_{loop} . Das n-te Glied der Reihe beschreibt die n-te Schleifeniteration. Es existiert ein n, ab dem die Wahrscheinlichkeit $(1-p)p^n$ monoton fällt und gegen null konvergiert. Daraus kann man schließen, dass ab einem bestimmten n die Summanden nicht mehr allzu sehr ins Gewicht fallen und man die Berechnung abbrechen kann.

Da man bei der Zufallsvariable daran interessiert ist, für möglichst alle Fälle eine Aussage zu machen, muss man darauf achten, dass die Summe der Funktionswerte der Dichtefunktion ungefähr eins ergibt. Dazu definiert man für die Berechnung eine Approximationskonstante $\varepsilon \in]0,1]$, die den Teil der Summe beschreibt, der nicht mehr berechnet wird. Somit erhält man für X_{loop} eine Dichtefunktion dessen Summe von Funktionswerten größer als $1-\varepsilon$ ist. Tabelle 1 gibt für ausgewählte Wahrscheinlichkeiten p und Approximationskonstanten ε die nötige Anzahl der zu berechnenden Iterationen an. Es handelt sich um das kleinste n, für das folgende Gleichung erfüllt ist:

$$(1-p)\cdot\sum_{i=1}^{n}p^{n}>1-\varepsilon\tag{15}$$

Die Angabe einer Approximationskonstante ist auch für die Berechnung im Frequenzbereich nötig. Zwar lässt sich der Grenzwert mit Hilfe der Formel 11 auf Seite 11 direkt berechnen, allerdings hängen die Werte der Funktion von der Vektorgröße, also der Anzahl der Funktionswerte, ab. Der Vektor muss daher groß genug gewählt werden, um die Funktion möglichst genau darzustellen. Mit Hilfe der Approximati-

p ε	0.01	0.05	0.1	0.15	0.2
0.1	2	2	1	1	1
0.15	2	2	2	1	1
0.2	3	2	2	2	1
0.25	4	3	2	2	2
0.3	4	3	2	2	2
0.35	5	3	3	2	2
0.4	6	4	3	3	2
0.45	6	4	3	3	2
0.5	7	5	4	3	3

p	0.01	0.05	0.1	0.15	0.2
0.55	8	6	4	4	3
0.6	10	6	5	4	4
0.65	11	7	6	5	4
0.7	13	9	7	6	5
0.75	17	11	9	7	6
0.8	21	14	11	9	8
0.85	29	19	15	12	10
0.9	44	29	22	19	16
0.95	90	59	45	37	32

Tabelle 1: Anzahl der benötigten Schleifeniterationen. Die obere Zeile gibt die Werte für die Approximationskonstante ε an. In der linken Spalte stehen die Werte für die Iterationswahrscheinlichkeit p einer Schleife.

onskonstante lässt sich die maximale Ausführungszeit *xMaxLoop* der Schleife bestimmen. Sei *xMax* die maximale Ausführungszeit für eine Schleifeniteration, dann gilt:

$$xMaxLoop = n \cdot xMax \tag{16}$$

3.1.5 Regulärer Ausdruck als Abstrakter Syntaxbaum

Reguläre Ausdrücke sind wie in Abschnitt 3.1.1 beschrieben induktiv definiert. Als Datenstruktur bietet sich daher ebenfalls eine rekursive Struktur an, so dass die regulären Ausdrücke auch als abstrakte Syntaxbäume (6) dargestellt werden können:

- Ein Symbol ist ein regulärer Ausdruck und besitzt ein Attribut *RandomVariable* für das Zeitverhalten und ein Attribut *ProbabilityAttribute*, das die Aufrufwahrscheinlichkeit definiert.
- Die Sequenz ist ein regulärer Ausdruck und besteht aus einem Vorgänger v und einem Nachfolger n. Sie besitzt ein Attribut ProbabilityAttribute und ein Attribut RandomVariable.
- Die Alternative ist ein regulärer Ausdruck und besteht aus einer Alternative a_1 und einer Alternative a_2 . Sie besitzt ein Attribut *ProbabilityAttribute* und ein Attribut *RandomVariable*.
- Die Schleife ist ein regulärer Ausdruck und besteht aus einem regulären Ausdruck r für das innere der Schleife und einer Schleifeniterationswahrscheinlichkeit p. Zusätzlich besitzt sie ein Attribut ProbabilityAttribute und ein Attribut RandomVariable.

Alle Unterausdrücke sind der Definition aus Abschnitt 3.1.1 zufolge reguläre Ausdrücke. Am Anfang enthalten nur die Symbole Attribute. Die Berechnung erfolgt ähnlich der Attributauswertung (6) eines Compilers mit Hilfe eines Visitors. Ein Visitor (11) ist ein Entwurfsmuster, dass es ermöglicht eine Folge von Objekten zu besuchen und in Abhängigkeit von der Art des Objekts seine Operationen ausführt. Den Sequenzen, Alternativen und Schleifen werden die Zwischenergebnisse der Berechnung als Attribute hinzugefügt. So wird die Berechnung im Baum von unten nach oben durchgeführt. Abbildung 10 zeigt ein Beispiel eines abstrakten Syntaxbaums für den regulären Ausdruck $a(b|c)^*$. Die oberste Struktur des Ausdrucks ist eine Sequenz aus einem $Symbol\ a$ und einer Schleife $(b|c)^*$, wobei die Schleife wiederum aus einer Alternative mit den beiden Alternativen $Symbol\ b$ und $Symbol\ c$ besteht.

Da der reguläre Ausdruck durch den GNFA-Algorithmus erzeugt wird, ist die Schleife immer Teil einer Sequenz. Dies ist wichtig, wenn die Wahrscheinlichkeit für die Schleife definiert wird.

Abbildung 10: Abstrakter Syntaxbaum für den regulären Ausdruck $a(b|c)^*$.

3.1.6 Berechnung der Transitionswahrscheinlichkeiten

Im vorigen Abschnitt wurde beschrieben, dass Sequenzen, Alternativen und Schleifen nicht nur eine Zufallsvariable besitzen, sondern auch eine Aufrufwahrscheinlichkeit, die in dem *ProbabilityAttribute* enthalten ist. Im Folgenden wird angegeben, wie diese Aufrufwahrscheinlichkeiten berechnet werden.

Sequenz Die Aufrufwahrscheinlichkeit für eine Sequenz S berechnet sich aus der Multiplikation der Aufrufwahrscheinlichkeiten des Vorgängers S_V und des Nachfolgers S_N :

$$p(S) = p(S_V) \cdot p(S_N) \tag{17}$$

Alternative Für die Alternative A berechnet sich die Aufrufwahrscheinlichkeit aus der Summe der ersten Alternative A_{A_1} und der zweiten Alternative A_{A_2} :

$$p(A) = p(A_{A_1}) + p(A_{A_2})$$
(18)

Schleife Die Aufrufwahrscheinlichkeit der Schleife ist der Kehrwert der Wahrscheinlichkeit des Verlassens der Schleife. Sei p_{it} die Wahrscheinlichkeit einer Schleifeniteration, dann berechnet sich die Aufrufwahrscheinlichkeit der Schleife L durch:

$$p(L) = \frac{1}{1 - p_{it}} \tag{19}$$

Es handelt sich dabei nicht wirklich um die Aufrufwahrscheinlichkeit der Schleife, sondern um ein Zwischenergebnis. Da der reguläre Ausdruck durch den GNFA-Algorithmus (10) erzeugt wird, ist die Schleife immer Teil einer Sequenz bestehend aus der Schleife selbst und dem Ausdruck *E*, der abgearbeitet

wird, wenn die Schleife verlassen wird. Die anschließende Multiplikation für die Schleife S_L ergibt dann

$$p(S_L) = \frac{1}{1 - p_{it}} \cdot 1 - p_{it} = 1.$$
(20)

3.2 Unterschiede

Die Berechnungen im Zeit- und Frequenzbereich unterscheiden sich in einigen wenigen Punkten. In dem Abschnitt 3.2.1 wird die Berechnung im Zeitbereich beschrieben, Abschnitt 3.2.2 enthält eine Beschreibung der Berechnung im Frequenzbereich. In dem Abschnitt 3.2.3 wird die Komplexität der beiden Ansätze untersucht und verglichen.

3.2.1 Berechnung im Zeitbereich

Der reguläre Ausdruck wird mit Hilfe eines Visitors rekursiv durchlaufen, der schrittweise die Performanz berechnet. Parallel werden die Aufrufwahrscheinlichkeiten, wie in Abschnitt 3.1.6 beschrieben, von dem gleichen Visitor ausgewertet.

Symbol Handelt es sich bei dem regulären Ausdruck um ein Symbol, dann muss nichts weiter gemacht werden. Das Symbol enthält eine Zufallsvariable und eine Aufrufwahrscheinlichkeit des Service-Effektautomaten.

Sequenz Die Sequenz ruft zunächst den Visitor für den Vorgänger und den Nachfolger auf. Sollten die Zufallsvariablen der beiden Ausdrücke nicht die gleiche Abtastrate haben, so muss die Abtastrate der Funktionen angepasst werden. Anschließend wird die Faltung der beiden Dichtefunktionen berechnet.

Alternative Die Alternative ruft den Visitor für die erste Alternative und anschließend für die zweite Alternative auf. Die Dichtefunktionen der beiden Alternativen werden mit der Wahrscheinlichkeit ihres Aufrufs skaliert und anschließend punktweise addiert. Dafür müssen die Funktionen die gleiche Abtastrate haben.

Schleife Die Schleife ruft zunächst den Visitor für das innere der Schleife auf. Anschließend wird in Abhängigkeit von der Schleifenapproximationskonstante ε und der Wahrscheinlichkeit der Schleifeniteration p die Anzahl der Schleifeniterationen bestimmt und der Grenzwert der Dichtefunktion für die Schleife berechnet.

3.2.2 Berechnung im Frequenzbereich

Die Berechnung im Frequenzbereich erfordert ein wenig mehr Vorarbeit. Es ist nicht möglich die Größe des Vektors im Frequenzbereich zu verändern, da die Funktionswerte der Fourierfunktion bei der diskreten Fouriertransformation in Abhängigkeit von der Anzahl der Funktionswerte berechnet werden.

Eine Änderung der Größe des Vektors würde somit die Funktion verfälschen, da die Anzahl der Werte verändert würde. Da die Anpassung der Vektorgröße nur im Zeitbereich stattfinden kann, müsste die Funktion also zweimal transformiert werden, was zu ineffizient ist. Aus diesem Grund muss vor der eigentlich Berechnung die Größe des Ergebnisvektors bestimmt werden und die Abtastrate der Funktionen auf einen einheitlichen Wert gebracht werden, da eine Anpassung der Abtastrate immer eine Größenänderung des Vektors beinhaltet.

Die Berechnung erfolgt in drei Schritten:

- 1. Bestimmung der Abtastrate α und Bestimmung des maximalen Ausführungszeit *max* des Ergebnisses. In diesem Schritt werden auch schon die Wahrscheinlichkeiten berechnet, die für die Bestimmung der maximalen Ausführungszeiten der Schleifen benötigt werden.
- 2. Die minimale Ausführungszeit wird auf null, die maximale Ausführungszeit auf max gesetzt. Für alle Dichtefunktionen werden die Stützpunkte auf eine Abtastrate von α angepasst. Zuletzt werden die Funktionen in den Frequenzbereich transformiert.
- 3. Die Berechnung wird im Frequenzbereich durchgeführt und das Ergebnis in den Zeitbereich transformiert.

In jedem Berechnungsschritt wird der reguläre Ausdruck mit Hilfe eines Visitors durchlaufen. Die Zwischenergebnisse werden in den Attributen gespeichert und sind so in dem nächsten Durchlauf verfügbar.

Die Berechnung im Frequenzbereich erscheint aufwendiger, weil der reguläre Ausdruck drei mal durchlaufen werden muss. Allerdings lässt sich die Addition zweier Zufallsvariablen im Frequenzbereich effizienter berechnen. Der folgende Abschnitt enthält daher einen Vergleich der beiden Ansätze.

3.2.3 Komplexität

Ein praktischer Vergleich der beiden Ansätze ist in dem Abschnitt 5 auf Seite 29 beschrieben. Dort werden die Berechnungen in Bezug auf Performanz und Genauigkeit verglichen. In diesem Abschnitt soll die Komplexität der beiden Ansätze betrachtet werden. Die beiden Ansätze unterscheiden sich in den folgenden Punkten:

- Berechnung der Faltung
- Berechnung des Grenzwertes der Schleife
- Verwendung der Fouriertransformation

Berechnung der Faltung Die Dichtefunktion der Summe zweier Zufallsvariable X und Y berechnet sich aus der Faltung der Dichtefunktionen f_n und g_n der Zufallsvariablen X und Y (1):

$$f_n \otimes g_n = \sum_{\nu=0}^n f_{\nu} \cdot g_{n-\nu} \tag{21}$$

Für große n ist die Berechnung der Faltung recht unperformant. Sie hat im Zeitbereich eine Komplexität von $O(n^2)$, wobei n die Anzahl der Funktionswerte angibt. Es ergibt sich also ein exponentieller Aufwand.

Soll die Addition zweier Zufallsvariablen im Frequenzbereich durchgeführt werden, so besteht die notwendige Voraussetzung, dass die beiden Funktionen die gleichen Stützstellen haben, was sich durch eine Anpassung der Abtastrate erreichen lässt. Dann lässt sich die Addition der beiden Zufallsvariablen durch punktweise Multiplikation der fouriertransformierten Dichtefunktionen berechnen (siehe Formel 4 auf Seite 10). Die punktweise Multiplikation hat eine Komplexität von O(n). Für Funktionen mit sehr vielen Funktionswerten ist die Berechnung der Faltung im Frequenzbereich deutlich performanter. Man muss allerdings noch die Komplexität der Fouriertransformation mit einbeziehen.

Fouriertransformation Die Fouriertransformierte der Dichtefunktion lässt sich effizient mit der schnellen Fouriertransformation mit einem Aufwand von $O(n \cdot ln(n))$ berechnen. Bei der Transformation und anschließenden Rücktransformation entstehen allerdings Rundungsfehler. Dies kann auch zu negativen Wahrscheinlichkeiten führen. Die Abweichungen sind allerdings so klein (kleiner als 10^{-17}), dass sie vernachlässigt bzw. gerundet werden können. Somit ergibt sich für die Addition der Dichtefunktionen zweier Zufallsvariablen eine Komplexität von

$$O(2 \cdot n \cdot lg(n) + n \cdot lg(n)) = O(n \cdot lg(n)), \tag{22}$$

da zwei Transformationen der Komplexität $O(n \cdot lg(n))$ und eine Multiplikation der Komplexität O(n) benötigt werden.

Berechnung des Grenzwertes der Schleife Der Grenzwert der Schleife wird im Zeitbereich durch eine Summe von Selbstfaltungen berechnet. Die Anzahl der Summanden wird durch die Schleifeniterationswahrscheinlichkeit und eine Approximationskonstante bestimmt und ist konstant, wodurch die Anzahl der Summanden bei der Komplexität unberücksichtigt bleibt. Es bleibt aber die Faltung im Zeitbereich mit einer Komplexität von $O(n^2)$. Im Frequenzbereich wird der Grenzwert mit Formel 11 auf Seite 11 mit einer Komplexität von O(n) berechnet.

Es muss noch erwähnt werden, dass die Funktionen bei der Berechnung im Frequenzbereich deutlich mehr Funktionswerte besitzen als bei der Berechnung im Zeitbereich. Das liegt daran, dass der Vektor während der Berechnung nicht wächst und schon zu Beginn die Größe des Ergebnisvektors haben muss. Außerdem erfordert die Verwendung der schnellen Fouriertransformation eine Vektorgröße, die eine Potenz von zwei ist. Auch wenn der Performanzvorteil dadurch verringert wird, ist er immer noch signifikant, wie die Ergebnisse in Abschnitt 5 auf Seite 29 zeigen werden.

Für die Validierung des Vorhersageverfahrens wird eine Fallstudie durchgeführt. In Abschnitt 4.3 wird erläutert, worum es sich bei einer Fallstudie handelt und aus welchen Gründen diese für die Validierung gewählt wurde.

Für die Durchführung der Fallstudie ist es notwendig, die Performanz von Anwendungen zu messen. Abschnitt 4.1 beschreibt, wie man aus Messungen präzise Funktionen erhält. Abschnitt 4.2 definiert den Begriff der Validität in Bezug auf die Durchführung einer Fallstudie.

In Abschnitt 4.4 wird beschrieben, wie Funktionen auf Übereinstimmung überprüft werden können.

Da bei einer Fallstudie eine große Anzahl von Daten anfallen, wird der Goal-Question-Metric-Ansatz (12) (GQM) von Basili und Rombach für eine zielgerichtete Vorgehensweise verwendet. Dieser Ansatz wird in Abschnitt 4.5 erläutert und auf die Validierung angewandt.

Abschnitt 4.6 enthält eine Beschreibung der bei der Untersuchung des Webservers beteiligten Variablen.

4.1 Präzision der gemessenen Funktionen

Für die Validierung des Vorhersageverfahrens wird die berechnete Funktion mit der gemessenen Funktion verglichen. Damit ein Vergleich der Funktionen auch aussagekräftig ist, muss die gemessene Funktion präzise ermittelt werden. Eine Funktion ist präzise, wenn bei Wiederholungen der Messung unter gleichen Voraussetzungen die gleiche Funktion gemessen wird (13).

Es liegt auf der Hand, dass die Präzision der Funktionen von der Anzahl der Messwerte abhängt. Man muss also untersuchen, wie viele Messwerte benötigt werden, um eine präzise Funktion zu erhalten. Es handelt sich in diesem Fall um eine Schätzfunktion (siehe Abschnitt 4.4.1), da die Menge aller Ausführungszeiten unbekannt und nicht endlich ist.

4.2 Validität der Untersuchung

Bei allen Untersuchungen muss die Validität gewährleistet sein. Prechelt (14) unterscheidet dabei unter anderem zwei Arten der Validität:

Interne Validität Der Grad, in dem die Änderungen in den Werten der abhängigen Variablen tatsächlich wie gewünscht nur auf Änderungen in den unabhängigen Variablen zurückzuführen sind, d.h. wie gut letztlich alle relevanten Störvariablen kontrolliert wurden.

Externe Validität Der Grad, in dem sich die Resultate eines Experimentes korrekt auf andere Anwendungsfälle übertragen lassen.

Beide Arten der Validität sind in gleichem Maße wichtig. Ein Experiment sollte sowohl intern als auch extern valide sein. Dabei muss berücksichtigt werden, dass in dieser Arbeit kein kontrolliertes

Experiment, sondern eine Fallstudie durchgeführt wird. Dabei sollte besonders die interne Validität berücksichtigt werden, indem die Störvariablen kontrolliert werden. Die Externe Validität ist bei einer Fallstudie meist gering, da nur eine Anwendung untersucht wird.

4.3 Fallstudie

Um die Validität eines Verfahrens zu untersuchen, sollten alle beteiligten Variablen berücksichtigt werden. Das vertrauenswürdigste Vorgehen wäre die Durchführung eines kontrollierten Experiments (14). In einem Experiment werden zunächst die beteiligten Variablen identifiziert:

Unabhängige Variable Unabhängige Variablen (UV) sind Variablen, die in einem Experiment variiert werden, um einen Einfluss auf beobachtete Variablen zu erkennen. In einem Experiment wird immer nur eine UV zur Zeit variiert, da ansonsten nicht mehr nachvollzogen werden kann, wodurch Veränderungen in den Ergebnissen hervorgerufen wurden.

Abhängige Variable Die abhängige Variable (AV) ist die Variable, die während der Variation der UV beobachtet wird.

Störvariablen Störvariablen (SV) sind Variablen, die neben der UV einen (unerwünschten) Effekt auf die AV haben. Störvariablen verfälschen das Ergebnis. Es ist daher wichtig die Störvariablen in einem Experiment zu identifizieren.

Ziel eines Experiments ist es, den Zusammenhang zwischen der unabhängigen und der abhängigen Variable zu erkennen.

Dabei werden alle Variablen, die für das Ergebnis relevant sind, konstant gehalten und nur eine oder wenige Variablen (unabhängige Variable) variiert, um die Auswirkungen auf die beobachteten Faktoren (abhängige Variablen) zu untersuchen. Es handelt sich bei einem kontrollierten Experiment also um einen Vergleich von mehreren Fällen, die sich nur in einem Merkmal unterscheiden.

In dieser Arbeit soll nur die Richtigkeit der Performanz-Vorhersagen validiert werden. Zu diesem Zweck ist ein kontrolliertes Experiment zu aufwendig und auch unnötig, da man nicht an den Auswirkungen aller Variablen interessiert ist. Für die Überprüfung der Korrektheit der Vorhersagen wird daher eine Fallstudie durchgeführt. Eine Fallstudie ist ein Experiment mit abgeschwächten Anforderungen. Prechelt definiert eine Fallstudie folgendermaßen.

Fallstudie Eine Fallstudie ist die Beschreibung und Bewertung eines Werkzeugs oder einer Methode anhand eines konkreten Anwendungsbeispiels, das eigens zu diesem Zweck unter künstlichen oder unter typischen Bedingungen ausgeführt wird. Fallstudien können auch mehrere Werkzeuge oder Methoden im Vergleich betrachten, sorgen jedoch im Gegensatz zu kontrollierten Experimenten nicht dafür, dass alle übrigen Faktoren konstant gehalten werden.

Auf dieser Definition soll die Validierung des Vorhersageverfahrens zunächst an einer Applikation untersucht werden, die basierend auf einer Verteilungsfunktion Zeit verbraucht. Anschließend wird die Fallstudie auf den Palladio-Webserver ausgeweitet. Dies stellt einen Schritt von einer eher künstlichen zu einer eher typischen Bedingung dar. Der Nachteil einer Fallstudie ist die geringere externe Validität

der Untersuchungen. Andere Anwendungen als der hier untersuchte Webserver können ein anderes zeitliches Verhalten haben. Es ist daher unklar, ob sich die Ergebnisse der Fallstudie auf andere Anwendungen übertragen lassen. Ein weiterer Nachteil ist die Menge an Daten, die bei der Studie anfallen. Daher sollte schon im Vorfeld definiert werden, welche Daten für die Fragestellung relevant sind. Dazu soll der Goal-Question-Metric-Ansatz verwendet werden.

4.4 Vergleich von Funktionen

4.4.1 Schätzfunktion

In Kapitel 2.2.2 wurde beschrieben, dass die Performanz eines Dienstes als Zufallsvariable angegeben wird. Die Menge aller Realisationen einer Zufallsvariablen wird Grundgesamtheit (15) genannt. In den meisten Fällen kann die Grundgesamtheit nicht vollständig betrachtet werden, weil sie zu groß oder wie in unserem Fall nicht endlich ist. Daher muss die Zufallsvariable durch eine Schätzfunktion, die durch Messungen ermittelt wird, angegeben werden. Durch endlich viele Performanzmessungen eines Dienstes entnimmt man der Grundgesamtheit eine ebenfalls endliche Anzahl von Elementen und generiert aus der Verteilung der Ergebnisse die Zufallsvariable. Je höher die Anzahl der Messungen ausfällt, desto zuverlässiger wird die Schätzfunktion werden.

4.4.2 χ^2 Anpassungstest

Bei dem χ^2 -Anpassungstest (16) handelt es sich um ein statistisches Testverfahren zur Überprüfung der Hypothese, dass die Ergebnisse eines Zufallsversuchs bestimmte Wahrscheinlichkeiten besitzen.

In dieser Arbeit wird durch das Vorhersageverfahren die Dichtefunktion f_v mit Funktionswerten x_i einer Zufallsvariablen X berechnet, deren Übereinstimmung mit einer gemessenen Dichtefunktion f_m mit Funktionswerten y_i bestimmt werden soll.

Für den Anpassungstest wird eine Prüfgröße berechnet, die näherungsweise χ^2 -verteilt ist. Dazu werden die absoluten Häufigkeiten beider Funktionen benötigt. Sei n die Anzahl der Messungen, die zur Bestimmung von f_m durchgeführt wurden und sei k die Anzahl der Funktionswerte von f_m . Dann berechnet sich die Prüfgröße durch

$$T = \sum_{j=1}^{k} \frac{(nx_j - ny_j)^2}{ny_j}$$
 (23)

Um die Übereinstimmung zweier Funktionen mit Hilfe dieses Tests beurteilen zu können, wird vorausgesetzt, dass die absoluten Häufigkeiten der Ausprägungen der Funktionen größer gleich fünf sind. Aus diesem Grund werden bei der Berechnung der Prüfgröße nur Funktionswerte berücksichtigt, die eine absolute Häufigkeit von wenigstens fünf haben.

Geprüft wird die Hypothese, dass die berechnete Dichtefunktion mit der gemessenen Dichtefunktion übereinstimmt. Um zu entscheiden, ob die Hypothese abgelehnt werden muss, wird eine Fehlertoleranz α definiert. Die Hypothese wird dann auf dem Signifikanzniveau $1-\alpha$ abgelehnt, wenn der Wert von T größer als $\chi^2_{k-1,1-\alpha}$ ist.

Der χ^2 -Test kann in Excel für zwei Funktionen direkt berechnet werden. Die Excel-Funktion liefert das Signifikanzniveau $1-\alpha$ für die Hypothese, dass die Funktionen übereinstimmen.

In den Fallstudien wird kein festes α definiert, sondern das Signifikanzniveau des Tests angegeben.

4.5 Goal-Question-Metric-Plan

Bei dem Goal-Question-Metric-Ansatz handelt es sich um eine systematische Vorgehensweise zur Definition von zielgerichteten Metriken. Die Metriken werden in einem Top-Down-Ansatz definiert. Zuerst werden die übergeordneten Ziele (*Goal*) der Studie formuliert. Für jedes Ziel wird anschließend eine Menge von Fragen (*Question*) entwickelt, die für die Zielerreichung relevant sind. Danach werden für jede Frage Metriken (*Metric*) definiert, die für die Beantwortung der Fragen hilfreich sind. Die Ziele, Fragen und Metriken bilden zusammen den GQM-Plan. In einem anschließenden Bottom-Up-Ansatz werden zunächst die gemessenen Daten anhand der Fragen interpretiert. Die beantworteten Fragestellungen können am Ende die Zielstellung erfüllen. Der Plan für die Validierung ist der Tabelle 2 zu entnehmen.

4.5.1 Ziele der Fallstudie

Ziele werden in vier Teilaspekten definiert:

Zweck (Purpose) Beschreibt den Inhalt des Ziels.

Sachverhalt (issue) Beschreibt die Qualitätseigenschaften, die betrachtet werden sollen.

Objekt (Object) Beschreibt den Gegenstand der Betrachtung.

Standpunkt (Viewpoint) Beschreibt den Blickwinkel, aus dem das Ziel betrachtet wird.

Das GQM-Ziel ist die

Validierung (Zweck) der Genauigkeit (Sachverhalt) des Palladio-Performanz-Vorhersageverfahrens (Objekt) aus der Sicht eines Entwicklers (Standpunkt).

4.5.2 Fragestellungen und Metriken

Im folgenden werden die Fragen entwickelt, deren Beantwortung der Zielerreichung dienen sollen.

1. Wie gut sind die Performanzvorhersagen?

Die Metrik, um diese Fragestellung zu beantworten, liegt in dem Vergleich der berechneten Funktion mit der gemessenen Funktion. Für die Beurteilung der Übereinstimmung der beiden Funktionen wird der χ^2 -Anpassungstest verwendet. Metrik:

• Signifikanzniveau des Vergleiches der berechneten und gemessenen Funktion.

- Berechnungszeit.
- 2. Welchen Einfluss hat die Abtastrate α auf die Vorhersage?

Die Abtastrate gibt den Abstand zwischen zwei Funktionswerten an. Sie ist aber auch ein Maß für die Genauigkeit der Funktion. Ein Funktionswert der Dichtefunktion gibt die Wahrscheinlichkeit dafür an, dass die Ausführungszeit des Dienstes in einem bestimmten Bereich der Länge α liegt. Wird das α klein gewählt, so erhält man eine differenziertere Funktion mit mehr Funktionswerten. Das hat eventuell auch einen Einfluss auf die Genauigkeit der Berechnungen. Zumindest aber wird die Berechnungszeit variieren, da der Wert für α die Vektorgröße der Funktionen beeinflusst.

Metrik:

- Signifikanzniveau des Vergleiches der berechneten und gemessenen Funktion.
- Berechnungszeit.

Ziel	Zweck	Validierung		
	Sachverhalt	der Genauigkeit		
	Objekt	des Palladio-Performanz-Vorhersageverfahrens		
	Standpunkt	aus Sicht des Entwicklers		
Frage	F1	Wie gut sind die Performanzvorhersagen?		
Metrik	M1a	Signifikanzniveau des Vergleiches der gemessenen und be-		
		rechneten Funktion.		
	M1b	Berechnungszeit.		
Frage	F2	Welchen Einfluss hat die Abtastrate auf die Vorhersage?		
Metrik	M2a	Signifikanzniveau des Vergleiches der gemessenen und be-		
		rechneten Funktion.		
	M2b	Berechnungszeit.		

Tabelle 2: GQM-Modell zur Validierung des Vorhersageverfahrens.

4.6 Variablen

Auch wenn in dieser Arbeit kein kontrolliertes Experiment durchgeführt wird, so macht es trotzdem Sinn, die beteiligten Variablen zu identifizieren. Das Vorhandensein von Störvariablen kann zum Beispiel Hinweise darauf geben, warum die gemessene und die berechnete Funktion voneinander abweichen. Bei einer großen Abweichung sollten zunächst die Einflüsse untersucht werden, die eine Verfälschung des Messergebnisses verursachen können.

Um unterschiedliche Aspekte des Verfahrens zu untersuchen, müssen die Variierungsmöglichkeiten bekannt sein, die man durch Identifikation der unabhängigen Variablen erhält. Die Ergebnisse der Messungen und Berechnungen bilden schließlich die untersuchte Größe, die abhängigen Variablen.

Es soll hier angemerkt werden, dass die Liste der Variablen keinen Anspruch auf Vollständigkeit erhebt. Auch können in einer Fallstudie nicht alle Variablen berücksichtigt werden. Die Auflistung gibt daher einen Hinweis auf weitere Möglichkeiten der Untersuchung.

Bei der Messung der Performanz von Diensten gibt es einige Faktoren, die die Messergebnisse verfälschen können (Störvariablen). Soweit möglich, sollte man diese Faktoren konstant halten.

4.6.1 Störvariablen

Bei der Messung der Performanz von Diensten gibt es einige Faktoren, die die Messergebnisse verfälschen können (Störvariablen). Soweit möglich, sollte man diese Faktoren konstant halten.

Betriebssystem Das Betriebssystem verwaltetet die Ressourcen wie Speicher und Prozessorzeit. Da unter einem Betriebssystem zu jeder Zeit mehrere Prozesse laufen können, muss es die Ressourcen entsprechend auf die Prozesse verteilen. Programme, die im Hintergrund laufen, können zum Teil sehr viel Prozessorzeit in Anspruch nehmen. Daher sollten alle nicht benötigten Programme während des Messvorgangs beendet werden. Trotz allem gibt es jedoch auch Programme, die das Betriebssystem selbst verwaltet, und die von dem Benutzer nicht beendet werden können. Besonders zeitintensiv können Grafikausgaben oder auch Ausgaben in der Konsole sein.

Messvorgang Für die Auswertung der Messungen müssen Informationen gesammelt werden. Diese beinhalten neben der Start- und Endzeit der Dienste auch Informationen über die Aufrufreihenfolge und die Namen der Dienste. Die Ausführungszeiten für das Sammeln der Daten liegen jedoch im Bereich von Mikrosekunden und werden die Messergebnisse nur geringfügig verfälschen. Für die Validierung ist dieser Faktor zu vernachlässigen, da die Ausführungszeiten annähernd konstant verlängert werden.

Caching Die erste Anfrage einer Datei an den Webserver dauert immer am längsten. Danach wird die Datei im Cache bereitgehalten. Dies erklärt zeitliche Ausreißer bei den Messungen. Da man für die Messungen die Voraussetzungen konstant halten möchte, kann man zum Beispiel die erste Messung unberücksichtigt lassen. Führt man sehr viele Messungen durch, dann fallen diese Ausreißer kaum ins Gewicht und können somit vernachlässigt werden.

Ausgaben Ausgaben auf der Konsole oder in Dateien sind sehr zeitintensiv. Die Messdaten sollten daher zunächst in den Hauptspeicher abgelegt werden. Erst nachdem alle Messungen abgeschlossen wurden, können die Ergebnisse in eine Datei geschrieben werden.

4.6.2 Unabhängige Variablen

Als Eingabe der Berechnung dienen die Service-Effektautomaten, Zufallsvariablen und Transitionswahrscheinlichkeiten. Die Service-Effektautomaten werden durch die Anwendung bestimmt, das Zeitverhalten der einzelnen Dienste und die Wahrscheinlichkeit eines Dienstaufrufs lässt sich aber noch weiter beeinflussen. Als Variationsquellen (unabhängige Variablen) kommen in Frage:

Hardware Jedes Programm und somit auch der Webserver laufen auf unterschiedlicher Hardware unterschiedlich schnell. Dadurch ergeben sich andere Verteilungen für die Zufallsvariablen.

Framework Der Webserver ist für Windows in Verbindung mit dem .NET Framework entworfen worden. Eine Alternative zu .NET ist das freie Mono Framework (17), dass auch für Unix-Systeme verfügbar ist. Ein alternatives Framework besitzt ein ganz anderes Zeitverhalten und beeinflusst somit auch das Zeitverhalten der Dienste.

Deployment .NET bietet die Möglichkeit die einzelnen Komponenten auf unterschiedliche Hardware-Ressourcen zu verteilen. Am naheliegensten ist dies bei der Datenbank, die in der Regel ohnehin auf einem anderen Rechner läuft. Die Verteilung der Komponenten beeinflusst das Antwortverhalten der Dienste, dass von der Verbindungsgeschwindigkeit der Komponenten abhängig ist.

Auslastung Der Webserver unterstützt Multithreading. Wenn mehrere Clients ihre Anfragen senden, dann wird der Webserver für jede Anfrage einen Thread starten und versuchen diese parallel abzuarbeiten. Da die Threads auf einer Einprozessormaschine aber nur pseudoparallel laufen können, wird sich diese Parallelität vermutlich negativ auf das Laufzeitverhalten des Webservers auswirken.

Anwendungsprofil Nicht jeder Anwender wird die gleichen Dokumente von dem Webserver anfordern wollen. Ein reales Anwendungsszenario wären Anfragen aller Art, die der Webserver unterstützt. Dabei dürfen auch Fehleingaben nicht unberücksichtigt bleiben. Für eine kontrollierte Validierung wird jedoch zunächst bei den Versuchen eine hohe Anzahl von Anfragen eines einzelnen Dokumentes an den Webserver geschickt. So lassen sich die besuchten Pfade in den Service-Effektautomaten kontrollieren. Dabei soll insgesamt eine komplette Pfadüberdeckung der Automaten erreicht werden. In einem abschließenden Versuch soll dann versucht werden ein der Realität näheres Szenario mit mehreren Clients zu simulieren.

In der Fallstudie wird nur das Anwendungsprofil variiert. Es ergeben sich dadurch ausreichend Daten, mit denen die Validität des Verfahrens beurteilt werden kann.

4.6.3 Abhängige Variablen

Die unabhängigen Variablen beeinflussen direkt das Zeitverhalten der Dienste. Man variiert damit also die Zufallsvariablen des Service-Effektautomaten. Unterschiedliche Anwendungsprofile führen darüber hinaus zu unterschiedlichen Transitionwahrscheinlichkeiten, wodurch sich auch die berechnete Funktion ändert. Für die Validierung des Performanz-Vorhersageverfahrens ist nur folgendes interessant:

Übereinstimmung der gemessenen Zeit und der berechneten Funktion Die Übereinstimmung ist das eigentlich Interessante an der Validierung. Der Grad der Übereinstimmung zeigt die Tauglichkeit des Vorhersagemodells. Eine Metrik für die Überprüfung der Ähnlichkeit zweier Funktionen wurde in Abschnitt 4.4 auf Seite 24 vorgestellt.

5 Vergleich der implementierten Ansätze

Abbildung 11: Komponentendiagramm der Anwendung.

5 Vergleich der implementierten Ansätze

In diesem Abschnitt sollen die beiden implementierten Ansätze anhand von minimalen Service-Effektautomaten einer Anwendung (Abschnitt 5.1) verglichen werden. In Abschnitt 5.2 werden die Ergebnisse des Vergleichs vorgestellt.

5.1 Anwendung

Es wurde eine Applikation implementiert, die aus einer zusammengesetzten Komponente *Composite-Component* mit zwei Unterkomponenten besteht. Abbildung 11 zeigt das Komponentendiagramm der Anwendung. Die Komponente bietet drei Dienste an, deren Service-Effektautomaten den drei Basiskonstrukten entsprechen, die in Abschnitt 2.3 vorgestellt wurden, und ebenso benannt sind.

Alle Dienste der Angebotsschnittstelle werden von der ersten Komponente *ComponentD* realisiert und an die zusammengesetzte Komponente delegiert. Für die Bereitstellung der Dienste greift die Komponente auf die angebotenen Dienste der Komponente *ComponentE* zurück.

Abbildung 12: Service-Effektautomaten

Die Dienste sind reine "Zeitverbraucher". Ein Hauptprogramm generiert eine Folge von Zufallszahlen

Ausführungszeit (ms)	X1	Y1	Ausführungszeit (ms)	Y2
1	0,272761789	0,452309527	6	0,593503584
2	0,202066903	0,248232732	7	0,24130055
3	0,149694844	0,136233012	8	0,098105483
4	0,110896668	0,074766262	9	0,039886713
5	0,082154272	0,041032595	10	0,016216727
6	0,060861382	0,022519165	11	0,006593229
7	0,04508722	0,01235878	12	0,002680607
8	0,033401434	0,006782642	13	0,001089853
9	0,024744391	0,003722393	14	0,000443101
10	0,018331096	0,002042893	15	0,000180152

Tabelle 3: Werte der Dichtefunktion für X_1 , Y_1 und Y_2 .

zwischen null und eins und ermittelt mit Hilfe der in (18) beschriebenen Inversionsmethode und fest vorgegebenen Zufallsvariablen die Ausführungszeit, die in lokalen Variablen gehalten werden. Danach führt das Hauptprogramm einen Dienst mehrfach in einer Schleife aus und misst die Performanz.

Der folgende Abschnitt vergleicht die Berechnungen im Zeitbereich und im Frequenzbereich.

5.2 Durchführung der Fallstudie

Untersucht werden sollen die Service-Effektautomaten der *CompositeComponent*, die in Abbildung 12 angegeben sind. Die Performanz der Dienste wird durch fest vorgegebene Wahrscheinlichkeitsfunktionen vorgegeben, die Exponentialverteilungen entsprechen.

Exponentialfunktionen sind folgendermaßen definiert:

$$f_{\lambda}(x) = \lambda e^{-\lambda x} \tag{24}$$

Es werden drei Zufallsvariablen mit unterschiedlichem λ definiert:

 X_1 mit $\lambda = 0.9$

 Y_1 mit $\lambda = 0.6$

 Y_2 mit $\lambda = 0.3$

Die Funktionen werden für einen Datenbereich von 0...n berechnet und anschließend mit einem Faktor s skaliert, so dass die Funktionswerte in der Summe eins ergeben. Sei Summe() eine Funktion, die die Summe der Funktionswerte liefert, dann ist $s=\frac{1}{Summe()}$. Die Funktionen entsprechen dann den Dichtefunktionen der Zufallsvariablen.

Anzahl der Funktionswerte	Zeitbereich	Frequenzbereich
10	74	31
100	77	35
1.000	146	83
10.000	6689	1059
20.000	27576	2206

Tabelle 4: Mittlere Ausführungszeiten in Millisekunden bei der Berechnung der Sequenz. Die linke Spalte gibt die Anzahl der Funktionswerte die beiden Funktionen wieder. Die anderen beiden Spalten enthalten die benötigten Zeiten für die Berechnung.

5.2.1 Vergleich der Berechnungen

Die Berechnung wird mit Hilfe der vorgegebenen Dichtefunktion durchgeführt. In Tabelle 3 auf der vorherigen Seite sind die Funktionswerte für n = 10 angegeben. Um den χ^2 -Test durchzuführen, werden die absoluten Häufigkeiten H_a für die Ausführungszeiten benötigt, die man erhält, indem die Wahrscheinlichkeiten $p(x_i)$ mit der Anzahl m der Messungen multipliziert werden:

$$H_a(x_i) = m \cdot p(x_i) \tag{25}$$

Da in diesen Abschnitt nur die Berechnungen miteinander verglichen und keine Messungen durchgeführt werden, wird für m ein fester Wert gewählt. Somit ergeben sich hypothetische absolute Häufigkeiten, mit denen sich der χ^2 -Test durchführen lässt.

Sequenz Tabelle 5 zeigt die Ergebnisse der Berechnung für die Sequenz. Zunächst fällt auf, dass die berechnete Funktion im Fourierbereich mehr Werte enthält. Dies liegt an der Verwendung der schnelen Fouriertransformation, die als Datenlänge eine Potenz von zwei erwartet. Bei dem Vergleich der Funktionswerte erkennt man eine minimale Abweichung der beiden Funktionen, wobei bei der im Frequenzbereich berechnete Funktion sogar negative Werte auftauchen können. Die Abweichungen liegen allerdings in einem Bereich von 10^{-8} und können somit vernachlässigt werden. Tabelle 6 zeigt die absoluten Häufigkeiten der beiden Funktion für m=1.000.000 Messwerte. Wie man erkennen kann, stimmen die Häufigkeiten bei den Vorkommastellen überein. Der χ^2 -Test bestätigt mit einem Signifikanzniveau von eins, dass die beiden Funktionen identisch sind. Die Berechnungen wurden für n=100 Funktionswerte wiederholt. Tabelle 22 auf Seite 76 zeigt die Funktionswerte. Auch hier bestätigt der χ^2 -Test die Gleichheit der Funktionen mit einem Signifikanzniveau von eins.

Die Unterschiede in der Berechnungszeit sind dafür umso deutlicher. Tabelle 4 zeigt die Ausführungszeiten für die Berechnung der Sequenz. In der linken Spalte steht die Anzahl der Funktionswerte der beteiligten Funktionen. Bei bis zu hundert Werten benötigt die Berechnung im Zeitbereich etwa doppelt so lange wie die Berechnung im Frequenzbereich. Mit zunehmender Anzahl von Funktionswerten vergrößert sich der Abstand.

Alternative Bei der Berechnung der Alternative gibt es in dem Service-Effektautomaten alternative Pfade. Daher muss für jede Transition eine Transitionswahrscheinlichkeit angegeben werden. Die Alternative wird für zwei unterschiedliche Verteilungen der Transitionswahrscheinlichkeiten $p \in \{0.2, 0.6\}$ von Y_1 und 1-p für Y_2 berechnet. In Tabelle 9 auf Seite 34 ist der Vergleich der Berechnungen für n=10 und p=0.2 enthalten. Man kann der Tabellen entnehmen, dass die berechneten Funktionen genau wie

Ausführungszeit	Frequenzbereich	Zeitbereich	Ausführungszeit	Frequenzbereich	Zeitbereich
0	-5,20417E-12	0	16	1237,327067	1237,327067
1	8,67362E-13	0	17	610,8239492	610,8239492
2	123372,7559	123372,7559	18	284,6771574	284,6771574
3	159105,1895	159105,1895	19	118,7856765	118,7856765
4	155027,1834	155027,1834	20	37,44845998	37,44845998
5	135240,3415	135240,3415	21	2,77556E-11	0
6	111380,6331	111380,6331	22	6,93889E-12	0
7	88655,17024	88655,17024	23	2,08167E-11	0
8	69048,36841	69048,36841	24	1,38778E-11	0
9	53002,33507	53002,33507	25	2,08167E-11	0
10	40280,42213	40280,42213	26	6,93889E-12	0
11	30397,69369	30397,69369	27	1,73472E-11	0
12	16376,79752	16376,79752	28	1,38778E-11	0
13	8761,22706	8761,22706	29	2,60209E-12	0
14	4640,431003	4640,431003	30	5,63785E-12	0
15	2422,389265	2422,389265	31	7,37257E-12	0

Tabelle 5: Die Berechneten Funktionen für die Sequenz im Zeitbereich und im Frequenzbereich.

Ausführungszeit	Frequenzbereich	Zeitbereich	Ausführungszeit	Frequenzbereich	Zeitbereich
(ms)			(ms)		
0	-5,20417E-12	0	16	1237,327067	1237327067
1	8,67362E-13	0	17	610,8239492	610823949,2
2	123372,7559	1,23373E+11	18	284,6771574	284677157,4
3	159105,1895	1,59105E+11	19	118,7856765	118785676,5
4	155027,1834	1,55027E+11	20	37,44845998	37448459,98
5	135240,3415	1,3524E+11	21	2,77556E-11	0
6	111380,6331	1,11381E+11	22	6,93889E-12	0
7	88655,17024	88655170241	23	2,08167E-11	0
8	69048,36841	69048368411	24	1,38778E-11	0
9	53002,33507	53002335066	25	2,08167E-11	0
10	40280,42213	40280422129	26	6,93889E-12	0
11	30397,69369	30397693688	27	1,73472E-11	0
12	16376,79752	16376797519	28	1,38778E-11	0
13	8761,22706	8761227060	29	2,60209E-12	0
14	4640,431003	4640431003	30	5,63785E-12	0
15	2422,389265	2422389265	31	7,37257E-12	0

Tabelle 6: Absolute Häufigkeiten für 1.000.000 Messwerte für die Sequenz im Zeitbereich und im Frequenzbereich.

Anzahl der Funktionswerte	Zeitbereich	Frequenzbereich
10	84	32
100	84	39
1.000	159	100
10.000	6697	1341
20.000	27822	2844

Tabelle 7: Die mittleren Ausführungszeiten in Millisekunden für die Berechnung der Alternative.

Anzahl der Funktionswerte	Zeitbereich	Frequenzbereich
10	10	1
100	7	4
1.000	13	17
10.000	8	282
20.000	246	638

Tabelle 8: Die mittleren Ausführungszeiten in Millisekunden für die Berechnung der Alternative abzüglich der Berechnungszeiten für die Sequenz.

bei der Sequenz nahezu identisch sind. Die Absoluten Häufigkeiten für die beiden Funktionen sind in Tabelle 23 auf Seite 78 zu finden. Der χ^2 -Test ergibt wieder eine Übereinstimmung der beiden Funktionen mit einem Signifikanzniveau von eins. Für p=0.6 ergibt sich ein ähnliches Bild. Die berechneten Funktionen sind in Tabelle 24 auf Seite 78 zu finden. Für n=100 und p=0.2 sind die Ergebnisse in Tabelle 25 auf Seite 79 und für n=100 und p=0.6 in Tabelle 26 auf Seite 81 zu sehen. Auch hier ergibt sich eine Übereinstimmung der berechneten Funktionen.

Bei den Berechnungszeiten in Tabelle 7 zeigt sich ein ähnliches Bild wie bei der Sequenz. Das liegt daran, dass in dem Service-Effektautomaten der Alternative auch eine Sequenz enthalten ist (der reguläre Ausdruck ergibt $X_1(Y_1|Y_2)$). Um die reine Berechnungszeit für die Alternative zu erhalten, kann man daher die mittleren Berechnungszeiten der Sequenz subtrahieren. Das Ergebnis ist in Tabelle 8 angegeben. Hier kann man erkennen, dass die Ausführungszeiten bis 1000 Funktionswerte nur wenig differieren. Für eine höhere Anzahl von Funktionswerten liegt die Zeit für die Berechnung im Frequenzbereich höher. Dies mag zum einen daran liegen, dass die Anzahl der Werte aufgrund der Verwendung der schnellen Fouriertransformation, auf eine Potenz von zwei angepasst werden muss, wodurch mehr Additionen als im Zeitbereich durchgeführt werden müssen. Zum anderen werden für die Fourierfunktion komplexe Zahlen verwendet, deren Datenstruktur komplexer ist als für die Funktionswerte im Zeitbereich.

Schleife Der Service-Effektautomat der Schleife bietet ähnlich wie für die Alternative alternative Pfade. Die Transitionswahrscheinlichkeit für Y_1 gibt die Wahrscheinlichkeit p für eine Schleifeniteration wieder, Y_2 erhält die Wahrscheinlichkeit 1-p und steht für das Verlassen der Schleife. Die Performanz wird jeweils für eine Schleifenapproximationskonstante $\varepsilon = 0.05$ und $\varepsilon = 0.01$ und eine Schleifeniterationswahrscheinlichkeit von p = 0.4 bzw. p = 0.8 berechnet. Für n = 10, p = 0.4 und $\varepsilon = 0.05$ sind die Ergebnisse in Tabelle 27 auf Seite 82 zu finden. Die Summe der Wahrscheinlichkeiten ist im Frequenzbereich immer eins, im Zeitbereich immer größer als $1 - \varepsilon$.

Abbildung 13 veranschaulicht einen Ausschnitt der beiden Funktionen. Man kann in der Abbildung erkennen, dass sie bei einer Ausführungszeit von 20 Millisekunden auseinander gehen. Der χ^2 -Test kann die Gleichheit der beiden Funktionen nicht bestätigen. Daher wurde die Berechnung mit $\varepsilon=0.01$ wiederholt. Tabelle 28 auf Seite 83 enthält die berechneten Funktionen, der χ^2 -Test bestätigt die Gleichheit

Ausführungszeit	Frequenzbereich	Zeitbereich	Ausführungszeit	Frequenzbereich	Zeitbereich
(ms)			(ms)		
0	-1,04083E-17	0	16	0,019490166	0,019490166
1	-8,67362E-19	0	17	0,007929681	0,007929681
2	0,024674551	0,024674551	18	0,003219394	0,003219394
3	0,031821038	0,031821038	19	0,001300746	0,001300746
4	0,031005437	0,031005437	20	0,000520176	0,000520176
5	0,027048068	0,027048068	21	0,000203629	0,000203629
6	0,022276127	0,022276127	22	7,92232E-05	7,92232E-05
7	0,147239114	0,147239114	23	2,95678E-05	2,95678E-05
8	0,162405675	0,162405675	24	1,00642E-05	1,00642E-05
9	0,142090634	0,142090634	25	2,6419E-06	2,6419E-06
10	0,114170053	0,114170053	26	1,38778E-17	0
11	0,088229343	0,088229343	27	2,08167E-17	0
12	0,065572136	0,065572136	28	0	0
13	0,048487766	0,048487766	29	1,04083E-17	0
14	0,035788428	0,035788428	30	3,46945E-18	0
15	0,026406343	0,026406343	31	-5,20417E-18	0

Tabelle 9: Die berechneten Funktionen für die Alternative mit p = 0.2 im Zeitbereich und im Frequenzbereich.

Abbildung 13: Vergleich der berechneten Dichtefunktionen für die Schleife mit p=0.4 und $\varepsilon=0.05$

Epsilon	р	Anzahl Funktionswerte	Zeitbereich	Frequenzbereich
0.05	0.4	10	172 ms	42 ms
		100	186 ms	71 ms
		1000	3 s 656 ms	400 ms
	0.8	10	170 ms	55 ms
		100	489 ms	235 ms
		1000	28 s 554 ms	1 s 710 ms
0.01	0.4	10	167 ms	40 ms
		100	222 ms	121 ms
		1000	6 s 456 ms	829 ms
	0.8	10	171 ms	55 ms
		100	815 ms	414 ms
		1000	1 min 797 ms	3 s 501 ms

Tabelle 10: Vergleich der Berechnungszeiten für die Schleife.

der beiden Funktionen mit einem Signifikanzniveau von eins.

Untersucht man die berechneten Funktionen für die beiden unterschiedlichen Schleifenapproximationskonstanten, so fällt auf, dass sich die Summe der Wahrscheinlichkeiten der Funktion für den Zeitbereich von 0.9744 auf 0.9949 erhöht hat, wohingegen die Funktion für den Frequenzbereich gleich geblieben ist. Das liegt daran, dass die benötigte Vektorgröße (entspricht der Anzahl der Funktionswerte) im Frequenzbereich von dem Ergebnis der Berechnung im Zeitbereich abhängt. Für $\varepsilon=0.05$ ergab sich eine Vektorgröße von 85 und für $\varepsilon=0.01$ eine Vektorgröße von 125. In beiden Fällen ist die nächste Zweierpotenz 128. Da die Berechnung des Schleifengrenzwerts im Frequenzbereich von der Vektorgröße abhängig ist, erklärt sich die unveränderte Dichtefunktion.

Für p=0.8 sind die Funktionen in Abbildung 14 und 15 angegeben. Man kann erkennen, dass die Funktionen 71 bzw. 109 Millisekunden auseinander gehen. Obwohl die Funktionen sehr ähnlich erscheinen, kann die Gleichheit der beiden Funktionen mit dem χ^2 -Test nicht bestätigt werden. Die berechnete Funktion im Fourierbereich hat mehr Werte. Es scheint, dass hier mehr Schleifeniterationen berücksichtigt werden, wodurch sich eine höhere Genauigkeit ergeben würde. Dies wird im nächsten Abschnitt zu prüfen sein.

In Tabelle 10 sind die Berechnungszeiten für die Schleife angegeben. Sie unterscheiden sich schon bei Funktionen mit 10 oder 100 Funktionswerten deutlich. Bei Funktionen mit 1000 Funktionswerten ist der Unterschied überdeutlich. Dies lässt sich auf die Komplexität der Berechnung zurückführen (siehe Abschnitt 3.2.3 auf Seite 20).

Betrachtet man die geringen Abweichungen der berechneten Funktionen und den Performanzvorteil im Frequenzbereich, so fällt die Wahl des Verfahrens nicht schwer. Die geringen Abweichungen der berechneten Funktion im Frequenzbereich kommen wahrscheinlich von der begrenzten Genauigkeit der Fließkommazahlen und der Fouriertransformation. Sie sind aber so gering, dass man sie vernachlässigen kann. Die Berechnung im Zeitbereich kommt aufgrund der Komplexität der Faltung nur in Frage, wenn Funktionen mit wenigen Funktionswerten beteiligt sind. Man sollte dabei auch beachten, dass bei jeder Faltung die Anzahl der Funktionswerte wächst. So kann sich selbst wenn die Funktionen wenige Funktionswerte haben bei einem großen Service-Effektautomaten eine lange Berechnungszeit ergeben. Für die Fallstudie im Zusammenhang mit dem Webserver wird daher der Fourier-Ansatz für die Berechnung verwendet.

Abbildung 14: Berechnete Dichtefunktionen für p = 0.8 und $\varepsilon = 0.05$.

Anzahl der Messungen	Signifikanzniveau
1000	0.8
10000	0.67

Tabelle 11: Signifikanzniveau für die Sequenz.

5.2.2 Vergleich von Messung und Berechnung

Im folgenden soll die Performanz der drei Dienste durch Messungen ermittelt werden. Dazu werden die Dichtefunktionen der Zufallsvariablen mittels der Inversionsmethode basierend auf den vorgegebenen Funktionen ermittelt. Die Zufallszahlen, die dazu benötigt werden, werden von einem Webservice (19) bezogen, da diese eine bessere Verteilung ergeben als die unter .NET erzeugten Zufallszahlen. Um die Einflüsse von Störvariablen zu minimieren, wird der Zeitverbrauch einer Zeiteinheit auf 10 Millisekunden festgelegt. Der Vergleich der gemessenen und berechneten Funktion wird einmal mit 1.000 und einmal mit 10.000 Messwerten durchgeführt, um den Einfluss der Anzahl der Messungen zu untersuchen. Für die Berechnung wird der Fourier-Ansatz verwendet, da dieser für die Sequenz und die Alternative die gleiche Funktion berechnet. Bei der Schleife wird der χ^2 -Test für beide Ansätze durchgeführt, um die Genauigkeit der Schleifenberechnung zu untersuchen.

Sequenz Die Ergebnisse der Messungen und Berechnungen sind in den Tabellen 29 bis 30 auf Seiten 84–85 zu finden. In Abbildung 16 auf Seite 38 ist die gemessene Funktion der berechneten Funktion für 1000 Messungen gegenübergestellt. Der χ^2 -Test liefert ein Signifikanzniveau von 0.8. Abbildung 17 auf Seite 38 zeigt den Vergleich der Funktionen für 10000 Messwerte. Hier liefert der χ^2 -Test ein Signifikanzniveau von 0.67. Es zeigt sich also, dass die Anzahl der Messungen nicht unbedingt einen Einfluss auf das Ergebnis des Tests hat. Betrachtet man die Grafiken, so scheinen die Funktionen bei 10000 Messungen ähnlicher.

Abbildung 15: Berechnete Dichtefunktionen für p = 0.8 und $\varepsilon = 0.01$.

Abbildung 16: Vergleich der Messung und Berechnung für die Sequenz bei 1000 Messungen.

Abbildung 17: Vergleich der Messung und Berechnung für die Sequenz bei 10000 Messungen.

Anzahl der Messungen	p	χ^2 -Signifikanzniveau
1000	0.4	0.83
	0.8	0.79
10000	0.4	0.2
	0.8	0.82

Tabelle 12: Ergebnisse des χ^2 -Tests für die Alternative.

Alternative Die Tabellen 31 bis 32 auf Seiten 86–87 zeigen die Messergebnisse für die Alternative für p=0.4. In den Abbildungen 18 bis 19 auf Seiten 39–40 ist der Vergleich der berechneten und gemessenen Funktion zu sehen. Die Ergebnisse des χ^2 -Tests sind in Tabelle 12 zu finden. Bei 10000 Messwerten ergibt sich ein geringeres Signifikanzniveau als bei 1000 Messwerten. Eine Wiederholung der Messung brachte auch kein besseres Ergebnis. Betrachtet man die beiden Abbildungen 20 und 21, so scheinen die Funktionen bei 10000 Messwerten näher beieinander zu liegen.

In den Tabellen 33 bis 34 auf Seiten 89-90 sind die Ergebnisse für p=0.8 zu finden. Abbildung 21 auf Seite 41 enthält den Vergleich der Messung und Berechnung. Die Signifikanzniveaus der beiden Vergleiche liegen auf etwa gleicher Höhe, wobei der Vergleich der Abbildungen 20 und 21 wieder eine hohe Ähnlichkeit aufweist.

Abbildung 18: Vergleich der Messung und Berechnung für die Alternative mit p=0.4 bei 1000 Messwerten.

Schleife Die Tabellen 35 bis 38 auf Seiten 91–102 enthalten die Messdaten für die Schleife bei 1000 Messungen. In den Abbildungen 22 bis 25 auf Seiten 42–43 sind die Vergleiche der Berechnungen und Messungen zu finden. Tabelle 13 auf Seite 41 enthält die Ergebnisse des χ^2 -Tests. Man kann den Abbildungen entnehmen, dass die Funktionen ähnlich sind, obwohl die Ergebnisse des χ^2 -Tests ein Signifikanzniveau von weniger als 0.5 ergeben. Auffallend ist auch, dass das Signifikanzniveau geringer wird, wenn man die Anzahl der Messungen erhöht. Vergleicht man das Signifikanzniveau für die Berechnung im Zeit- und Frequenzbereich, so lässt sich erkennen, dass die Werte meist gleich sind. In einigen Fällen ergibt sich für die Berechnung im Frequenzbereich ein höheres Signifikanzniveau.

Abbildung 19: Vergleich der Messung und Berechnung für die Alternative mit p=0.4 bei 10000 Messwerten.

Abbildung 20: Vergleich der Messung und Berechnung für die Alternative mit p=0.8 bei 1000 Messwerten.

Abbildung 21: Vergleich der Messung und Berechnung für die Alternative mit p=0.8 bei 10000 Messwerten.

Anzahl der	p	ϵ	χ^2 -Signifikanzniveau	χ ² -Signifikanzniveau
Messungen			(Zeitbereich)	(Frequenzbereich)
1000	0.4	0.05	0.455	0.454
		0.01	0.454	0.454
	0.8	0.05	0.372	0.372
		0.01	0.372	0.372
10000	0.4	0.05	0	0.81
		0.01	0.66	0.81
	0.8	0.05	0	0.008
		0.01	0.003	0.008
30000	0.8	0.01	0	0

Tabelle 13: Ergebnisse des χ^2 -Tests für die Schleife.

Abbildung 22: Vergleich der Messung und Berechnung für die Schleife mit p=0.4 und $\varepsilon=0.05$ bei 1000 Messwerten.

Abbildung 23: Vergleich der Messung und Berechnung für die Schleife mit p=0.4 und $\varepsilon=0.01$ bei 1000 Messwerten.

Abbildung 24: Vergleich der Messung und Berechnung für die Schleife mit p=0.8 und $\varepsilon=0.05$ bei 1000 Messwerten.

Abbildung 25: Vergleich der Messung und Berechnung für die Schleife mit p=0.8 und $\varepsilon=0.01$ bei 1000 Messwerten.

Abbildung 26: Vergleich der Messung und Berechnung für die Schleife mit p=0.4 und $\varepsilon=0.05$ bei 10000 Messwerten.

Abbildung 27: Vergleich der Messung und Berechnung für die Schleife mit p=0.4 und $\varepsilon=0.01$ bei 10000 Messwerten.

Abbildung 28: Vergleich der Messung und Berechnung für die Schleife mit p=0.8 und $\varepsilon=0.05$ bei 10000 Messwerten.

Abbildung 29: Vergleich der Messung und Berechnung für die Schleife mit p=0.8 und $\varepsilon=0.01$ bei 10000 Messwerten.

Abbildung 30: Vergleich der Messung und Berechnung für die Schleife mit p=0.8 und $\varepsilon=0.01$ bei 30000 Messwerten.

Die Funktionsverläufe zeigen, dass die berechnete Funktion der gemessenen Funktion ähnlich ist, obwohl der χ^2 -Test die Übereinstimmung nicht immer bestätigen kann. Es scheint, dass der χ^2 -Test nur bei einer sehr hohen Übereinstimmung ein positives Ergebnis liefert. Bei der Schleifenberechnung fällt auf, dass die Berechnung im Frequenzbereich ein mindestens so gutes Ergebnis liefert wie die Berechnung im Zeitbereich. Aus diesem Grund, und wegen des Performanzvorteils, wird in dem nächsten Abschnitt die Berechnung im Frequenzbereich verwendet.

Eine Beschreibung des Webservers ist in (9) enthalten. Daher soll hier nur ein kurzer Überblick über die Teile der Anwendung gegeben werden, die für das Verständnis der Studie nötig sind.

6.1 Beschreibung der Anwendung

Abbildung 31 (die Abbildung wurde aus (9) übernommen) gibt das Komponentenmodell des Webservers wieder. Der Webserver besteht aus zwei zusammengesetzten Komponenten, deren interne Komponenten in einer Zuständigkeitskette (*Chain of Responsability*) organisiert sind. Eine Zuständigkeitskette ist ein Entwurfsmuster von Gamma et al. (11), dass die enge Kopplung zwischen dem Sender einer Anfrage und dessen Empfänger vermeidet und mehr als einem Objekt die Möglichkeit gibt, die Anfrage zu bearbeiten. Dazu werden die Objekte, die als Empfänger in Frage kommen, sequentiell verkettet. Der Reihe nach prüfen die Objekte, ob sie die Anfrage bearbeiten können. Falls sie dies nicht können, wird die Anfrage an den Nachfolger der Kette weitergereicht. Am Ende jeder Zuständigkeitskette befindet sich ein "Default-Objekt", dass die Anfrage bearbeitet, wenn es kein anderes Objekt konnte.

Beim Start des Webservers befindet sich die *DefaultDispatcher*-Komponente in einer Wartestellung und überwacht eine Menge von Ports auf Anfragen (*Request*). Sobald eine Anfrage am Webserver eintrifft, wird diese an die *RequestParser*-Komponente weitergeleitet. Handelt es sich um eine Http-Anfrage, dann wird der Http-Kopf von der *HttpRequestParser*-Komponente untergliedert und an die *HttpRequestProcessor*-Komponente weitergeleitet. Die *HttpRequestProcessor*-Komponente ist dafür zuständig, eine Antwort an den Client zu schicken. Ihre Subkomponenten sind in einer Zuständigkeitskette organisiert, wobei die zuständige Komponente anhand der Dateiendung ausgewählt wird. Der *DynamicFileProvider* ist zur Zeit noch nicht implementiert und reicht die Anfrage an den *TemplateFileProvider* weiter. Dieser implementiert einen einfachen Ersetzungsalgorithmus und ersetzt Zeichenketten einer Seite durch die Variablen des HTTP-Kopfs. Ist die Komponente für die angefragte Datei nicht zuständig, dann wird die Anfrage an den *BibTexProvider* weitergeleitet, der auf eine Datenbank zugreift, die BibTex-Dateien enthält, und aus den Informationen eine Webseite generiert. Ist die *BibTexProvider*-Komponente nicht zuständig, gibt sie die Anfrage an den *StaticFileProvider* weiter. Dieser bearbeitet Anfragen von statischen Dateien und sendet diese an den Klienten zurück.

Die *Request*-Komponente speichert Daten des Klienten, der die Anfrage an den Webserver richtet. Im Moment werden nur Anfragen bearbeitet, die dem HTTP in der Version 1.1 entsprechen. Der *Webserver-Monitor* wird von den meisten anderen Komponenten benutzt, um Status- und Debug-Informationen zu loggen. Diese werden zur Zeit auf der Konsole ausgegeben. Die *ConfigReader*-Komponente liest beim Starten des Webservers die Konfigurationsdatei ein, wodurch die Konfiguration über den *ConfigReader* im weiteren Verlauf für die anderen Komponenten zugreifbar ist.

6.2 Service-Effektautomaten

Nicht alle Dienste des Webservers sind für die Validierung gleichermaßen interessant. Ich habe mich daher entschieden, mich auf den Dienst der beiden Schnittstellen *IRequestParser* und *IHTTPRequest-Processor* zu beschränken. Die Signaturliste der beiden Schnittstellen sieht folgendermaßen aus:

Abbildung 31: Webserver

• Signaturliste des IRequestParser

public interface IHTTPRequestProcessor
{
 void HandleRequest(IHTTPRequest httpRequest);
}

Die Schnittstellen enthalten jeweils einen Dienst, der von den Subkomponenten implementiert wird. Abbildungen 32 bis 34 auf Seiten 49–51 zeigen die Service-Effektautomaten.

(a) DefaultRequestParser

 $(b)\ HTTPR equest Parser$

Abbildung 32: Service-Effektautomaten für den Dienst *HandleRequest* der *IRequestParser*-Schnittstelle.

Die Service-Effektautomaten unterscheiden sich hinsichtlich ihrer Größe und der verwendeten Konstrukte. Es folgt eine Beschreibung der Automaten.

Abbildung 33: Service-Effektautomaten für den Dienst *HandleRequest* der Schnittstelle *IHttpRequest-Processor*.

(a) TemplateFileProvider

Abbildung 34: Service-Effektautomaten für den Dienst *HandleRequest* der Schnittstelle *IHttpRequest-Processor*.

6.2.1 Schnittstelle IRequestParser

DefaultRequestParser Die *DefaultRequestParser*-Komponente wird nur aufgerufen, wenn die Anfrage nicht von dem *HttpRequestParser* bearbeitet werden kann, oder wenn ein Fehler auftritt. Der Service-Effektautomat enthält nur einen Dienstaufruf: Das Schreiben einer Log-Nachricht. Für die Validierung des Performanz-Vorhersageverfahrens ist dieser Service-Effektautomat daher uninteressant.

HttpRequestParser In dem Service-Effektautomaten existieren sechs Pfade, wovon vier Pfade aber nur ausgelöst werden, wenn eine *WebException* auftritt, die dazu führt, dass der Nachfolger in der Zuständigkeitskette aufgerufen wird, um die Fehlerbehandlung zu übernehmen. Die beiden anderen Pfade unterscheiden sich in der Schleife, die nur betreten wird, wenn der HTTP-Kopf Variablen enthält.

6.2.2 Schnittstelle IRequestProcessor

DynamicFileProvider Der *DynamicFileProvider* ist bisher noch nicht implementiert. Es wird eine Log-Nachricht geschrieben und dann der Nachfolger in der Zuständigkeitskette aufgerufen. Der Service-Effektautomat enthält nur einen Pfad mit Sequenzen.

TempalteFileProvider In dem Service-Effektautomaten existieren drei alternative Pfade. Im Zustand 1 wird geprüft, ob die angefragte Ressource eine Dateiendung besitzt, die von dem *TemplateFileProvider* bearbeitet wird. Handelt es sich um eine andere Dateiendung, so wird gleich der Nachfolger in der Zuständigkeitskette aufgerufen. Andernfalls wird der Pfad zu der angefragten Ressource bestimmt. Im Zustand 2 wird dann geprüft, ob der Pfad existiert und im negativen Falle der Nachfolger der Zuständigkeitskette aufgerufen, um die Fehlerbehandlung zu übernehmen. Existiert der Pfad, so wird die Anfrage bearbeitet.

BibTexProvider Der Service-Effektautomat enthält fünf Pfade. Zuerst wird wieder geprüft, ob die angefragte Ressource eine unterstützte Dateiendung besitzt. Im negativen Fall wird der Nachfolger der Zuständigkeitskette aufgerufen. Ansonsten wird die Anfrage bearbeitet. Die Transition *State*3 → *State*7 wird nur durchlaufen, wenn bei der Verbindung zur Datenbank eine Ausnahme auftritt. Andernfalls wird in den Zustand *State*4 gewechselt.Vom Zustand *State*2 gibt es zwei alternative Aufrufe. Hier gibt es die Möglichkeit alle Einträge oder ein Auswahl an Werken abzufragen.

StaticFileProvider Der *StaticFileProvider* behandelt alle Anfragen von statischen Seiten, die nicht von Vorgängern der Zuständigkeitskette bearbeitet wurden. Zunächst wird der Pfad zu der Datei aufgebaut und überprüft, ob dieser existiert. Im negativen Falle wird eine Fehlernachricht generiert und an

den Client zurückgeschickt. Als nächstes wird überprüft, ob die angefragte Ressource eine Datei oder ein Verzeichnis ist. Handelt es sich um eine Datei, dann wird direkt von Zustand 2 in den Zustand 4 gewechselt. Existiert die Datei nicht, so wird ein Fehler an den Client gesendet. Andernfalls wird die Anfrage weiter bearbeitet. Wird ein Verzeichnis angefragt, so werden die Default-Dateinamen ausgelesen und der Automat geht in Zustand 3. Jetzt wird die Liste der Default-Dateinamen durchsucht, bis eine Datei gefunden wurde, die existiert, oder die Liste keine Elemente mehr hat. Während der Iteration durch die Liste werden Log-Nachrichten geschrieben und die Schleife betreten. Wird keine Datei gefunden, so wird ein Fehler an den Client geschickt. Andernfalls wird die Anfrage bearbeitet.

6.3 Erzeugung der Attribute

Um die Service-Effektautomaten mit den Attributen zu versehen, müssen neben den reinen Ausführungszeiten der einzelnen Dienste auch Informationen über die Aufrufreihenfolgen ermittelt werden. Dazu werden *Interceptoren* (20) benutzt, die vor und nach jedem Methodenaufruf die erforderlichen Informationen auf einem Stack sichern, um die Messungen nicht durch Dateizugriffe zu verfälschen. ein *Interceptor* ist ein Entwurfsmuster, mit dem vorhandenen Methoden Funktionalitäten hinzugefügt werden, ohne die Methoden selbst zu verändern. Nach Beendigung der Messungen werden die Informationen in einer XML-Datei gesichert.

In Abbildung 35 auf der nächsten Seite ist ein Ausschnitt aus einer XML-Datei mit Messdaten zu sehen. Der Ausschnitt enthält die Informationen für einen Aufruf des Dienstes *HandleRequest* des *StaticFileProviders*. Jeder Dienstaufruf erhält neben den geloggten Zeiten eine ID (Attribut *CallNumber*) und Referenzen (Attribut *Calls*) auf die von ihm aufgerufenen Dienste, so dass die Informationen über *GetElementsByID* leicht abgerufen werden können. Die Einzelnen XML-Elemente haben folgende Bedeutung:

ClassName Bezeichnet die Klasse zu der der Dienst gehört.

MethodName Bezeichnet den Namen des Dienstes.

CallTime Zeitpunkt des Dienstaufrufs in Mikrosekunden ab Start des Webservers.

ReturnTime Zeitpunkt des Beendens des Diensts in Mikrosekunden ab Start des Webservers.

ExecutionTime Ausführungszeit in Mikrosekunden.

Für die Erzeugung der Service-Effektautomaten wurde ein WebserverAnalyser implementiert, der aus den Informationen der XML-Datei Attribute generiert. Da jede Messung einen möglichen Pfad in dem Automaten entspricht, kann der Automat für jede Messung eines Diensts durchlaufen werden, wobei die Reihenfolge durch die aufgerufenen Dienste bestimmt wird. Das Durchlaufen des Automaten funktioniert, solange es sich um deterministische Automaten handelt. Andernfalls ist ein Lookahead erforderlich. Aus den Messdaten werden zunächst für jeden Zustand und jede Transition Attribute MeasureAttribute erzeugt, die am Ende der Durchläufe in Attribute RandomVariable konvertiert werden. Anschließend wird die Berechnung durchgeführt.

Die Ausführungszeiten für die Transitionen können direkt aus den Messungen entnommen werden, wohingegen sie für die Zustände berechnet werden müssen, da in den Messungen nur die Ausführungszeiten von Diensten enthalten sind. Für den Startzustand S eines Service-Effektautomaten für den Dienst Service

Abbildung 35: Auszug aus einer XML-Datei mit Messergebnissen.

mit ausgehender Transition für einen externen Dienstaufruf E berechnet sich die Ausführungszeit für einen Aufruf durch

$$ExecutionTime(S) = CallTime(E) - CallTime(Service).$$
 (26)

Bei dem Endzustand F mit eingehender Transition für einen externen Dienstaufruf E wird die Ausführungszeit durch

$$ExecutionTime(F) = ReturnTime(Service) - ReturnTime(E)$$
 (27)

berechnet. Für alle anderen Zustände S' zwischen zwei externen Dienstaufrufen E_1 und E_2 (also $\stackrel{E_1}{\rightarrow} S' \stackrel{E_2}{\rightarrow}$) berechnet sich die Ausführungszeit durch

$$ExecutionTime(S') = CallTime(E_2) - ReturnTime(E_1).$$
 (28)

Die Ergebnisse der Berechnung werden wieder in einer XML-Datei gespeichert, die außerdem auch die Dichtefunktionen des Service-Effektautomaten enthält. Für die Auswertung in Excel wurde eine VBA-Applikation implementiert, die die Funktionen ausliest und Grafiken erstellt. Da die Auflistung der Messergebnisse den Umfang der Arbeit nur unnötig erhöhen würde, wurde darauf verzichtet. Die Messdaten und Ergebnisse liegen der Arbeit als CD bei.

6.4 Anwendungsszenarien

Die Anfragen wurden mit Hilfe des Programms WAPT (Web Application Testing) (21), einem Performanz-Testwerkzeug für Webseiten, erzeugt. So lassen sich Anwendungsszenarien aufzeichnen und später in einer erhöhten Frequenz an den Webserver schicken. Die Datenbank lief auf einem separaten Rechner im Netzwerk. Folgende Anwendungsszenarien wurden aufgezeichnet:

- 1 Aufruf einer statischen Seite mit einer Größe von 15 kb.
- 2 Aufruf einer statischen Seite mit einer Größe von 58 kb.
- 3 Absenden eines Posts mit 3 Variablen.
- 4 Aufruf eines Verzeichnis mit einer Default-Datei.
- **6** BibTeX-Anfragen:
 - Anfragen "SearchAll".
 - Anfragen "Search".
- **7** Zusammengesetztes Szenario bestehend aus:

- Aufruf mehrerer statischer Seiten.
- Aufruf von Verzeichnissen.
- Absenden von Formularen (mit 4 Variablen)

8 Zusammengesetztes Szenario, bestehend aus:

- Aufruf mehrerer statischer Seiten.
- Aufruf von Verzeichnissen.
- Absenden von Formularen (mit 2-5 Variablen).

9 Zusammengesetztes Szenario aus:

- Aufruf mehrerer statischer Seiten.
- Aufruf von Verzeichnissen.
- Absenden von Formularen (mit 4 Variablen).
- BibTeX-Anfragen.

10 BibTex-Anfragen:

- Anfragen "SearchAll".
- Anfragen "Search".
- Es wurde zeitweise die Datenbank gestoppt, um Fehler zu produzieren.

Die Anwendungsszenarien wurden in einer Schleife mehrfach ausgeführt. Der Webserver lief auf einem AMD Athlon mit 1.2 Mhz und 1 GB Speicher, wobei die Anfragen von einem anderen Rechner im Netzwerk gestellt wurden.

6.5 Ergebnisse

Entsprechend des GQM-Plans werden wird bei dem Vergleich der berechneten und gemessenen Funktion das Signifikanzniveau des χ^2 -Tests und die Berechnungszeit angegeben. Die Berechnung der Schleifen erfolgt für $\varepsilon=0.05$.

6.5.1 Probleme

Bei einigen Anwendungsszenarien führten die Berechnungen mit einer Abtastrate von eins zu einer *OutOfMemoryException*, die ausgelöst wird, wenn der Hauptspeicher nicht mehr ausreicht. Hier scheinen die erzeugten Funktionen zu viele Werte zu haben. Bei der Berechnung für die BibTex-Komponente ergab sich für die Funktionen eine Vektorgröße größer als 33 Millionen. Die Ausnahme wurde bei der Fouriertransformation ausgelöst. Eine Erhöhung der Abtastrate auf 100 für die Berechnung behob das Problem.

Das verwendete Programm zur Erzeugung der Anfragen erzeugte teilweise Http-Köpfe, die der Webserver nicht verarbeiten kann. Hier blieb der Webserver bei dem *HTTPRequestParser* hängen. Der Parser erwartet eine fest vorgegebene Reihenfolge, die offenbar nicht von allen Programmen eingehalten wird.

So tauchte das Problem auch bei *ApacheBench* (in dem Webserver von *Apache* (22) enthalten) und bei dem *WebPerformanceTrainer* (23) auf. Letzterer verwendet den *InternetExplorer*, um eine Anwendungssenario aufzuzeichnen. Nur mit dem *Opera-Browser* war es möglich, eine BibTex-Anfrage zu senden, die der Webserver korrekt bearbeitete. Um die BibTex-Komponente bei den Messungen mit einzubeziehen, wurde eine Methode implementiert, die eine Socket-Verbindung aufbaut und den HTTP-Kopf, der in einer Konfigurationsdatei angegeben werden muss, direkt sendet. Eine Anpassung der *RequestParser*-Komponente wäre jedoch wünschenswert.

Die Messungen liefern Ergebnisse im Mikrosekundenbereich. Differenzierte Werte sind für die Richtigkeit der Berechnungen von Vorteil, jedoch lassen sich die Funktionen nicht immer gut vergleichen. Für den Vergleich der Funktionen wurde daher die Abtastrate auf einen höheren Wert gesetzt.

6.5.2 HTTPRequestParser

Die Szenarien wurden jeweils mit 10000 Messungen durchgeführt. Bei den Anwendungsszenarien eins und zwei wird die Schleife nicht durchlaufen. Da auch keine Fehler auftraten, wurde auch der Nachfolger der Zuständigkeitskette nicht aufgerufen. Es handelt sich also um eine Sequenz, die berechnet wird. Abbildungen 36 bis 39 auf Seiten 57–59 zeigen den Vergleich der Berechnungen mit den Messungen, wobei die Funktion mit einer Abtastrate von eins berechnet wurde. Der optische Eindruck zeigt eine hohe Ähnlichkeit, der χ^2 -Test liefert allerdings in allen Fällen ein Signifikanzniveau von null.

In dem Anwendungsszenario drei wird die Schleife durchlaufen, wobei die Häufigkeit der Schleifeniteration von der Anzahl der Variablen im HTTP-Kopf abhängig ist. Die Iterationswahrscheinlichkeit für die Schleife beträgt 0.67. Da die Anzahl der Variablen in diesem Szenario konstant ist, ergibt sich eine geringe Übereinstimmung der gemessenen und berechneten Funktion (Siehe Abbildung 40 auf Seite 59). In dem Szenario 8 wurden Anfragen mit drei bis fünf Variablen in dem HTTP-Kopf an den Webserver geschickt. Es sollte sich daher eine bessere Verteilung ergeben. Die Iterationswahrscheinlichkeit beträgt 0.672. In Abbildung 41 auf Seite 60 ist der Vergleich der berechneten und gemessenen Funktion zu finden. Die Berechnung wurde bei einer Abtastrate von zehn durchgeführt, da es bei der Berechnung mit einer Abtastrate von eins zu einer *OutOfMemoryException* kam. Man kann eine tendenziell höhere Ähnlichkeit erkennen, allerdings keine Gleichheit bestätigen.

Bei dem Palladio-Webserver wird sich die Anzahl der übermittelten Variablen immer in konstanten Werten widerspiegeln, da die Anzahl der Variablen in den Html-Seiten festgelegt wird. Es stellt sich somit die Frage, ob der Webserver die richtige Anwendung ist, um diesen Teil des Vorhersageverfahrens (die Berechnung der Schleife) zu untersuchen.

Schließlich wurde die Performanz für das Szenario eins bei einer Abtastrate von zehn und hundert berechnet. Der Vergleich der Funktionen ist in den Abbildungen 42 bis 43 auf Seiten 60–61 zu sehen. Wie man sieht ergibt sich eine Verschiebung der Funktionen, der χ^2 -Test ergibt ein Signifikanzniveau von null. Die Verschiebung lässt sich durch die Zusammenfassung von Funktionswerten erklären. Als Beispiel dienen zwei Zufallsvariablen X_1 und X_2 , deren Dichtefunktionen nur einen Wert haben. Sei also für X_1 die Dichtefunktion P(44) = 1 und für X_2 P(54) = 1. Dann ergibt sich bei der Faltung der beiden Zufallsvariable die Zufallsvariable X_3 mit einer Dichtefunktion P(98) = 1. Wird die Abtastrate vor der Berechnung allerdings auf zehn festgelegt, dann ergibt sich für die Dichtefunktionen von X_1 P(50) = 1 und X_2 P(60) = 1 und für X_3 P(110) = 1. Es kommt also zu Fehlern in der Berechnung, die sich umso stärker bemerkbar machen, je höher die Abtastrate gewählt wird.

Anwendungsszenario	Anzahl der	Abtastrate bei	Erstellung des	Berechnung
	Messungen	Berechnung	Service-Effektautomaten	(Frequenzbereich)
1	10000	1	2 Min 27 s	3 Min 53 s
		10	2 Min 21 s	24 s
		100	2 Min 20 s	1 s
2	10000	1	2 Min 22 s	3 Min 22 s
3	10000	1	5 Min 11 s	3 Min 37 s
8	10000	10	3 Min 31 s	1 Min 41 s

Tabelle 14: Zeiten des Erstellens des Service-Effektautomaten und der Berechnung für den *HTTPRequestParser*.

Abbildung 36: Vergleich der Messung und Berechnung für den HTTPRequestParser im Anwendungsszenario 1 bei 10000 Messungen. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf zehn gesetzt.

In Tabelle 14 sind die Zeiten für die Berechnung und für die Erstellung des Service-Effektautomaten angegeben. Es zeigt sich, dass die Berechnungszeit durch eine Erhöhung der Abtastrate erheblich verringert wird.

Abbildung 37: Vergleich der Messung und Berechnung für den HTTPRequestParser im Anwendungsszenario 1 bei 10000 Messungen. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf 100 gesetzt.

Abbildung 38: Vergleich der Messung und Berechnung für den HTTPRequestParser im Anwendungsszenario 2 bei 10000 Messungen. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf zehn gesetzt.

Abbildung 39: Vergleich der Messung und Berechnung für den HTTPRequestParser im Anwendungsszenario 2 bei 10000 Messungen. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf 100 gesetzt.

Abbildung 40: Vergleich der Messung und Berechnung für den HTTPRequestParser im Anwendungsszenario 3 bei 10000 Messungen. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf zehn gesetzt.

Abbildung 41: Vergleich der Messung und Berechnung für den HTTPRequestParser im Anwendungsszenario 8 bei 10000 Messungen. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf 100 gesetzt.

Abbildung 42: Vergleich der Messung und Berechnung für den HTTPRequestParser im Anwendungsszenario 1 bei 10000 Messungen. Die Berechnung wurde mit einer Abtastrate von 10 durchgeführt.

Abbildung 43: Vergleich der Messung und Berechnung für den HTTPRequestParser im Anwendungsszenario 1 bei 10000 Messungen. Die Berechnung wurde mit einer Abtastrate von 100 durchgeführt.

6.5.3 DynamicFileProvider

Da es in dem Service-Effektautomaten nur einen möglichen Pfad gibt, unterscheiden sich in den Anwendungsszenarien nur die beteiligten Funktionen. In den Abbildungen 44 bis 47 auf Seiten 62–63 sind die Ergebnisse für den *DynamicFileProvider* bei 10000 Messwerten zu sehen. Die Funktionen wurden bei einer Abtastrate von eins berechnet und die berechnete und die gemessene Funktion anschließend auf eine Abtastrate von zehn bzw. 100 angepasst. Wird die Funktion mit einer Abtastrate von eins dargestellt, dann fällt auf, dass sich die Werte um die berechnete Funktion gruppieren. Eine Erhöhung der Abtastrate führt zu einer Glättung der gemessenen Funktion und einer besseren Übereinstimmung. Tabelle 16 auf der nächsten Seite zeigt das Signifikanzniveau des χ^2 -Tests für die Anwendungsszenarien eins und zwei. Wird die Abtastrate nach der Berechnung auf 100 gesetzt, so ergibt sich eine recht hohe Übereinstimmung der verglichenen Funktionen. Tabelle 15 gibt die Zeiten für das Erstellen des Service-Effektautomaten und die Berechnung der Performanz an.

Anwendungsszenario	Anzahl der	Abtastrate bei	Erstellung des	Berechnung
	Messungen	Berechnung	Service-Effektautomaten	(Frequenzbereich)
1	10000	1	1 Min 53 s	15 s
2	10000	1	1 Min 54 s	15 s

Tabelle 15: Zeiten des Erstellens des Service-Effektautomaten und der Berechnung für den *DynamicFileProvider*.

6 Webserver

Anwendungsszenario	Abtastrate	Abtastrate	Signifikanzniveau
	Berechnung	Ergebnis	
1	1	10	0,0168
		100	0,7759
2	1	10	0
		100	0,99

Tabelle 16: Signifikanzniveau für die *DynamicFileProvider*-Komponente.

Abbildung 44: Vergleich der Messung und Berechnung für den DynamicFileProvider im Anwendungsszenario 1 bei 10000 Messwerten. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf zehn gesetzt.

Abbildung 45: Vergleich der Berechnung und Messung für den DynamicFileProvider im Anwendungsszenario 1 bei 10000 Messwerten. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf 100 gesetzt.

Abbildung 46: Vergleich der Messung und Berechnung für den DynamicFileProvider im Anwendungsszenario 2 bei 10000 Messwerten. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf zehn gesetzt.

Abbildung 47: Vergleich der Messung und Berechnung für den DynamicFileProvider im Anwendungsszenario 2 bei 10000 Messwerten. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf 100 gesetzt.

6.5.4 StaticFileProvider

Im Anwendungsszenario eins ließ sich die Performanz noch bei einer Abtastrate von eins berechnen. Bei den Anwendungsszenarien vier und sieben war die Berechnung nur bei einer Abtastrate von 100 möglich. Da bei den Anfragen an den Webserver keine nicht existierenden Daten angefragt wurden, ist die Wahrscheinlichkeit für SendHTTPError in allen Fällen null, die übrigen Wahrscheinlichkeiten sind in Tabelle 18 auf der nächsten Seite zu finden. Im Anwendungsszenario eins wird wieder eine reine Sequenz berechnet. Der Vergleich der Funktionen ist in Abbildung 48 auf der nächsten Seite zu sehen und lässt eine Ähnlichkeit vermuten, der χ^2 -Test liefert allerdings ein Signifikanzniveau von null. In dem Anwendungsszenario vier wird auch die Schleife berechnet, wobei aber die Anzahl der Schleifeniterationen konstant ist. Abbildung 49 auf Seite 66 enthält den Vergleich der berechneten und gemessenen Funktion. Die beiden Funktionen scheinen überhaupt keine Ähnlichkeit aufzuweisen. Dies liegt, wie schon bei der HTTPRequestParser-Komponente entdeckt, daran, dass die Schleife mit einer konstanten Anzahl von Iterationen durchlaufen wird, wodurch sich eine Dichtefunktion ergibt, die nicht mit der Berechnung übereinstimmt. In dem Szenario sieben ist die Anzahl der Iterationen nicht konstant. Hier wurde die Schleife zwei bis fünf mal durchlaufen. Abbildung 50 auf Seite 66 enthält den Vergleich der berechneten und gemessenen Funktion. Es ergibt sich eine größere Ähnlichkeit der berechneten und gemessenen Funktion, der χ^2 -Test liefert jedoch wieder ein Signifikanzniveau von null. In der Tabelle 17 sind die Zeiten für das Erstellen des Service-Effektautomaten und die Zeiten für die Berechnung enthalten. Im Szenario vier und sieben dauert die Erstellung des Service-Effektautomaten länger als im Szenario eins, da hier die Abtastrate von eins auf hundert angepasst werden muss.

Anwendungsszenario	Anzahl der	Abtastrate bei	Erstellung des	Berechnung
	Messungen	Berechnung	Service-Effektautomaten	(Frequenzbereich)
1	10000	1	3 Min 24 s	12 Min 58 s
4	10000	100	7 Min 4 s	3 Min 20 s
7	12000	100	6 Min 13 s	1 Min 1 s

Tabelle 17: Zeiten des Erstellens des Service-Effektautomaten und der Berechnung für den *StaticFile-Provider*.

Anwendungsszenario	externer Dienst	Aufrufwahrscheinlichkeit
1	IWebserverMonitor.WrietLogEntry1	1
	IWebserverMonitor.WrietLogEntry3	0
	IWebserverConfiguration.DefaultFilenames	0
4	IWebserverMonitor.WrietLogEntry1	1
	IWebserverMonitor.WrietLogEntry3	0.66
	IWebserverConfiguration.DefaultFilenames	0
7	IWebserverMonitor.WrietLogEntry1	0.2857
	IWebserverMonitor.WrietLogEntry3	0.1427
	IWebserverConfiguration.DefaultFilenames	0.5716

Tabelle 18: Aufrufwahrscheinlichkeiten für den StaticFileProvider.

Abbildung 48: *StaticFileProvider* im Anwendungsszenario 1 mit 10000 Messwerten. Die Funktion wurde bei einer Abtastrate von eins berechnet. Für den Vergleich wurde die Abtastrate beider Funktionen auf 100 gesetzt.

Abbildung 49: *StaticFileProvider* im Anwendungsszenario 4 bei 10000 Messwerten. Die Funktion wurde bei einer Abtastrate von 100 berechnet.

Abbildung 50: *StaticFileProvider* bei Anwendungsszenario 7 mit 12000 Messwerten. Die Funktion wurde bei einer Abtastrate von 100 berechnet.

6.5.5 BibTexProvider

Wie in Abschnitt 6.5.1 beschrieben, ließ sich die Performanz für diese Komponente nicht mit einer Abtastrate von eins berechnen. Auch bei einer Abtastrate von zehn wurde eine OutOfMemoryException ausgelöst. Erst mit einer Abtastrate von 100 ließ sich die Performanz für den Dienst berechnen. Ein Vergleich der Berechnungen und Messungen ist in den Abbildungen 51 bis 54 auf Seiten 68–70 zu sehen. Eine grobe Ähnlichkeit ist zu erkennen, jedoch sind die Funktionen durch die hohe Abtastrate leicht zueinander verschoben. Aus diesem Grund ergibt auch der χ^2 -Test in allen Fällen ein Signifikanzniveau von null. In Tabelle 20 sind die Transitionwahrscheinlichkeiten für die Anwendungsszenarien enthalten. Das Anwendungsszenario zehn taucht zwei mal auf, da er einmal mit 15000 Messungen (10.1) und einmal mit 7000 Messungen (10.2) durchgeführt wurde. Tabelle 19 enthält die Zeiten für das Erstellen des Service-Effektautomaten und die Zeiten für die Berechnung.

Anwendungsszenario	Anzahl der	Abtastrate bei	Erstellung des	Berechnung
	Messungen	Berechnung	Service-Effektautomaten	(Frequenzbereich)
6	10000	100	2 Min 57 s	10 s
9	12000	100	2 Min 26 s	20 s
10.1	15000	100	4 Min 48 s	21 s
10.2	7000	100	1 Min 54 s	1 Min 22 s

Tabelle 19: Zeiten des Erstellens des Service-Effektautomaten und der Berechnung für den *BibTexPro-vider*.

6 Webserver

Anwendungsszenario	externer Dienst	Aufrufwahrscheinlichkeit
6	IBibTexDB-set_ConnectionString	1
	IHTTPRequestProcessor.HandleRequest	0
	IBibTexDB.AllEntries	0.5
	IBibTexDB.Search	0.5
	IWebserverMonitor.WriteDebugMessage	0
	IR equest Procession g Tools. Get File Mime Type For 1	1
9	IBibTexDB-set_ConnectionString	0.3
	IHTTPR equest Processor. Handle Request	0.7
	IBibTexDB.AllEntries	0.66
	IBibTexDB.Search	0.33
	IWebserverMonitor.WriteDebugMessage	0
	IRequestProcessiongTools.GetFileMimeTypeFor1	1
10.1	IBibTexDB-set_ConnectionString	1
	IHTTPRequestProcessor.HandleRequest	0
	IBibTexDB.AllEntries	0.5
	IBibTesDB.Search	0.5
	IWebserverMonitor.WriteDebugMessage	0.262
	IRequestProcessiongTools.GetFileMimeTypeFor1	0.738
10.2	IBibTexDB-set_ConnectionString	1
	IHTTPRequestProcessor.HandleRequest	0
	IBibTexDB.AllEntries	0.715
	IBibTexDB.Search	0.345
	IWebserverMonitor.WriteDebugMessage	0.345
	IR equest Procession g Tools. Get File Mime Type For 1	0.655

Tabelle 20: Wahrscheinlichkeiten für den BibTexProvider.

Abbildung 51: *BibTexFileProvider* im Anwendungsszenario 6 bei 10.000 Messwerten. Die Funktion wurde bei einer Abtastrate von 100 berechnet.

Abbildung 52: *BibTexFileProvider* im Anwendungsszenario 10.1 bei 15.000 Messwerten. Die Funktion wurde bei einer Abtastrate von 100 berechnet.

Abbildung 53: *BibTexFileProvider* im Anwendungsszenario 9 bei 12.000 Messwerten. Die Funktion wurde bei einer Abtastrate von 100 berechnet.

Abbildung 54: *BibTexFileProvider* im Anwendungsszenario 10.2 bei 7.000 Messwerten. Die Funktion wurde bei einer Abtastrate von 100 berechnet.

6.6 Bewertung des Verfahrens

Die Fragen des GQM-Planes lauten:

- Wie gut sind die Performanzvorhersagen?
- Welchen Einfluss hat die Abtastrate auf die Vorhersage?

Als Metriken dienten das Signifikanzniveau des χ^2 -Tests und die Berechnungszeit. Zieht man das Signifikanzniveau für die Beurteilung des Verfahrens heran, so muss man die Brauchbarkeit des Verfahrens verneinen, da die Ergebnisse für den Webserver fast ausschließlich ein Signifikanzniveau von null ergaben. Nur für den *DynamicFileProvider* ergab der Test eine Übereinstimmung. Aber auch bei den kleinen Service-Effektautomaten in Abschnitt 5 ergab sich höchstens ein Signifikanzniveau von 0.83. Betrachtet man allerdings die Vergleiche in den Abbildungen, so entsteht der Eindruck, dass die Funktionen doch zum Teil sehr ähnlich sind. Dieser Eindruck stimmt zumindest für die untersuchten Service-Effektautomaten in Abschnitt 5. Bei den untersuchten Service-Effektautomaten in Abschnitt 6 sind die Ergebnisse nicht eindeutig. Werden nur Sequenzen berechnet, so ergab sich eine relativ gute Übereinstimmung. Enthielt der Service-Effektautomat auch alternative Pfade, so ergab sich eine geringere Ähnlichkeit. So kann man zum Beispiel bei den Ergebnissen für den *BibTexProvider* eine tendenzielle Ähnlichkeit erkennen, jedoch weichen die Funktionen am Anfang recht stark voneinander ab.

Eine Schwachstelle des Verfahrens ist die Schleifenberechnung. In Abschnitt 5 konnte eine Ähnlichkeit der Funktionen festgestellt werden. Hier wurde während der ausführung des Diensts anhand einer Zufallszahl entschieden, ob die Schleife betreten wird. Es ergab sich somit eine relativ gleichmäßige Verteilung der Ausführungszeiten. Bei den Service-Effektautomaten des Webservers liegt die Sache anders.

6 Webserver

Hier wird die Anzahl der Schleifeniterationen durch die Anwendungsszenarien und die Konfiguration des Webservers bestimmt. Bei dem *HTTPRequestParser* hängt die Anzahl der Schleifeniterationen von der Anzahl der Variablen in dem HTTP-Kopf ab. Für jede angefragte Datei ist die Anzahl der Schleifeniterationen somit konstant, was bei der Messung zu einer anderen Funktion führt als bei der Berechnung, weil für die Berechnung keine Iterationsanzahl angegeben wird. Wird die Schleife zum Beispiel immer zwei mal durchlaufen, so ergibt sich eine Schleifeniterationswahrscheinlichkeit von 0.66 und für das Verlassen der Schleife eine Wahrscheinlichkeit von 0.33 (wenn man davon ausgeht, dass die Wahrscheinlichkeit für das Aufrufen des Nachfolgers der Zuständigkeitskette null ist). Bei der Berechnung wird nun auch die Möglichkeit berücksichtigt, dass die Schleife gar nicht, nur einmal oder mehrfach durchlaufen wird. Dies entspricht aber nicht den Tatsachen, so dass sich bei dem Vergleich der Funktionen keine Ähnlichkeit herausstellen kann. Werden die angefragten Dateien variiert, ergibt sich eine bessere Verteilung bei der gemessenen Funktion, da die Schleife für jede angefragte Datei unterschiedlich oft durchlaufen wird. Will man allerdings eine Verteilung erreichen, die der Berechnung entspricht, so müssten auch Anfragen mit 20 oder mehr Variablen in die Messung eingehen. Dies ist allerdings kein realistische Anwendungsszenario mehr.

Für die Schleife bei dem *StaticFileProvider* ergibt sich das gleiche Problem. Die Schleife wird bei einem Aufruf eines Verzeichnis durchlaufen, wobei die Anzahl der Schleifeniteration von der Konfiguration des Webservers abhängig ist. In der Konfigurationsdatei wird eine Liste von Default-Dateien angegeben nach denen gesucht wird. Wird die erste Default-Datei nicht gefunden, so wird nach der zweiten Datei gesucht, wobei für jede gesuchte Datei die Schleife einmal durchlaufen wird. Nun wird man in der Konfigurationsdatei nur eine begrenzte Anzahl (in der Regel nicht mehr als zwei) von Default-Dateien angeben. In den Anwendungsszenarien sieben bis neun werden in der Konfigurationsdatei sechs Default-Dateien angegeben und Verzeichnisse mit unterschiedlichen Dateien aufgerufen, so dass sich eine bessere Verteilung ergibt. Trotzdem entsprechen die Ausführungszeiten nicht denen der berechneten Funktion.

Die Abtastrate bestimmt die Genauigkeit und Performanz der Berechnung. Am genausten sind die Berechnungen bei einer Abtastrate von eins. Wird die Abtastrate erhöht, so ergeben sich Fehler in der Berechnung, die zu einer Verschiebung der berechneten Funktion führen können. Allerdings hat die Erhöhung der Abtastrate auch einen positiven Effekt auf die Berechnungszeit, da die Anzahl der Werte für die Funktion abnimmt.

Die Berechnungszeiten liegen in einem vertretbaren Rahmen.

7 Zusammenfassung der Ergebnisse und Ausblick

Die Ergebnisse der beiden Fallstudien sind nicht unbedingt homogen. In der ersten Studie konnte die Korrektheit der Berechnungen im Vergleich mit den gemessenen Funktionen bestätigt werden. Dabei stehen sich die beiden implementierten Verfahren in puncto Präzision in nichts nach. Bei der Berechnungszeit fällt allerdings die Berechnung im Zeitbereich wegen des exponentiellen Aufwands der Faltung extrem ab. Bei der Untersuchung des Webservers konnte man erkennen, dass selbst für eine kleine Applikation Zufallsvariablen benötigt werden, deren Dichtefunktionen sehr viele Funktionswerte haben. Dies disqualifiziert die Berechnung im Zeitbereich.

Bei der Berechnung im Frequenzbereich ergeben sich geringe Abweichungen, die wahrscheinlich durch die beschränkte Genauigkeit der Fließkommazahlen zustande kommen. Dadurch entstehen zum Teil sogar negative Werte. Die Abweichungen sind jedoch so gering (10^{-17}) , dass sie vernachlässigt werden können.

Wichtig zu bemerken ist es, dass die Berechnung der Schleife immer eine Approximation darstellt. Im Zeitbereich ist dies klar ersichtlich, da nicht unendlich viele Faltungen berechnet werden können. Die Summe der Wahrscheinlichkeiten der Dichtefunktion des Ergebnisses ist dabei immer kleiner als eins. Im Frequenzbereich kann der Grenzwert zwar theoretisch direkt berechnet werden, allerdings hängt die Richtigkeit des Ergebnisses von der Vektorgröße der Funktion ab.

In der Fallstudie mit dem Webserver viel auf, dass sich dieser weniger gut für die Überprüfung der Korrektheit der Schleifenberechnung eignet. Die Anzahl der Schleifeniterationen hängt von der Konfiguration des Webservers und den Anfragen ab. Dadurch ergibt sich eine durch das Anwendungsszenario fest vorgegebene Häufigkeit der Schleifeniteration. Eine Anwendung, in der die Anzahl der Schleifeniterationen mehr oder weniger zufällig erfolgt, ist hierfür sinnvoller. Zudem sind die Ausführungszeiten für die Schleifen sehr gering, weil es sich lediglich um das schreiben einer Log-Nachricht handelt. So kann aus den Untersuchungen des Webservers nicht auf die Korrektheit der Schleifenberechnung geschlossen werden. Dazu sollte eine weitere Fallstudie an einer geeigneteren Anwendung durchgeführt werden.

Zu der Abtastrate ist zu bemerken, dass eine hohe Abtastrate die Berechnung verfälscht und sich eine Verschiebung der berechneten Funktion ergibt. Obwohl der χ^2 -Test in diesem Fall keine Übereinstimmung ergibt, so erkennt man im Funktionsverlauf die Ähnlichkeit. Eine Berechnung bei kleinster Abtastrate war leider nicht immer möglich, da die Berechnung die Speicherkapazität des verwendeten Rechners überforderte. Für die Anwendbarkeit des Verfahrens bedeutet das, dass entweder ein leistungsstarker Rechner mit viel Speicher benötigt wird, oder dass man sich mit einer geringeren Präzision der Berechnung zufrieden geben muss.

Bei der Durchführung der Messungen erwies sich die *HTTPRequestParser*-Komponente als schwierig. Bei einigen Anfragen, die vom Internet-Explorer gestellt wurden, geriet ein Dienst der Komponente in eine Endlosschleife. Das Problem bestand auch mit den verwendeten Load-Tools.

Die Verwendung von XML-Dateien für die Datenspeicherung erwies sich als praktisch, da sich diese aufgrund der Referenzierung mittels einer ID gut auswerten ließen. Da die Datei für die Auswertung in den Hauptspeicher geladen werden muss, sind die Anzahl der Messungen allerdings begrenzt, da es ansonsten zu Auslagerungen von Daten auf das Dateisystem kommt, die sehr zeitintensiv sind. Für Messungen mit mehr Messwerten könnte daher die Verwendung einer Datenbank sinnvoll sein.

Der GNFA-Algorithmus erzeugt einen regulären Ausdruck, der gemeinsame Teilausdrücke enthält. Das

7 Zusammenfassung der Ergebnisse und Ausblick

führt dazu, dass eine Reihe von Berechnungen mehrfach ausgeführt werden. Hier besteht noch Optimierungsbedarf.

Literatur

Literatur

- [1] V. Firus, S. Becker, and J. Happe, "Parametric Performance Contracts for QML-specified Software Components," ETAPS2005 2nd International Workshop on Formal Foundations of Embedded Software and Component-Based Software Architectures, 2005.
- [2] I. Sommerville, Software Engineering. Pearson Studium, 2001.
- [3] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice Hall, 1997.
- [4] R. H. Reussner, *Parametrisierte Verträge zur Protokolladaption bei Software-Komponenten*. Logos Verlag, Berlin, 2001.
- [5] S. Frølund and J. Koistinen, "Quality-of-Service Specification in Distributed Object System," *Distributed System Engineering*, vol. 5, pp. 179–202, 1998.
- [6] A. V. Aho, R. Sethi, and J. D. Ullman, Compilerbau, 2 Tle., Tl.1. Oldenbourg, 1999.
- [7] P. Hartmann, Mathematik für Informatiker. Vieweg, 2003.
- [8] H. Unbehauen, Regelungstechnik I. Vieweg Verlag, 2002.
- [9] J. Happe, "Reliability Prediction of component-based software architektures," Master's thesis, Department of Computing Science, Universität Oldenburg, 2004.
- [10] M. Sipser, Introduction to the Theory of Computation. PWS Publishing Company, 2001.
- [11] E. Gamma, R. Helm, and R. Johnson, *Design Patterns. Elements of Reusable Object-Oriented Software*, ser. Addison-Wesley Professional Computing Series. Addison-Wesley, 1995.
- [12] V. R. Basili, G. Caldiera, and H. D. Rombach, "The Goal Question Metric Approach," in *Encyclopedia of Software Engineering*, 1994.
- [13] "Präzision, Richtigkeit und Genauigkeit." [Online]. Available: http://www.kowoma.de/gps/zusatzerklaerungen/Praezision.htm
- [14] L. Prechelt, Kontrollierte Experimente in der Softwaretechnik. Potenzial und Methodik. Springer, 2001.
- [15] "Schätzen und Testen," zuletzt besucht am 7.10.2005. [Online]. Available: http://de.wikipedia.org/wiki/ Schaetzen_und_Testen
- [16] H. Scheid, Schüler Duden Die Mathematik. Dudenverlag, 1991, vol. II.
- [17] "Mono Project," zuletzt besucht am 7.10.2005. [Online]. Available: http://www.mono-project.com/Main_Page
- [18] "Inversionsmethode." [Online]. Available: http://de.wikipedia.org/wiki/Inversionsmethode
- [19] "random.org True Random Number Service -," zuletzt besucht am 7.10.2005. [Online]. Available: http://www.random.org/
- [20] D. C. Schmidt, M. Stal, and H. Rohnert, *Pattern-Oriented Software Architecture, Vol.2: Patterns for Concurrent and Networked Objects.* John Wiley & Sons, 2000.
- [21] "Web Application Tester," zuletzt besucht am 7.10.2005. [Online]. Available: http://www.loadtestingtool.com
- [22] "The Apache Software Foundation," zuletzt besucht am 9.10.2005. [Online]. Available: http://www.apache.org/
- [23] "Web Performance Trainer," zuletzt besucht am 9.10.2005. [Online]. Available: http://www.webperformanceinc.com/

A.1 Funktionen für Abschnitt 5.2.1

A.1.1 Vorgegebene Funktionen

Tabelle 21: Vorgegebene Dichtefunktionen für n = 100.

Ausführungszeit (ms) X1 Y1 1 0,259181779 0,451188364 2 0,192006585 0,247617424 3 0,142241976 0,135895324	<u>Y2</u>
	_
3 0.142241976 0.135895324	0
	0
4 0,105375448 0,074580935	0
5 0,078064052 0,040930885	0
	343034
7 0,04284246 0,012328146 0,241	270772
	093375
	988179
	214726
	592416
	680276
13 0,007081811 0,000336851 0,001	089719
14 0,005246335 0,000184868 0,000	443047
	180129
16 0,002879249 5,56811E-05 7,323	51E-05
17 0,002133 3,05584E-05 2,977	52E-05
18 0,001580166 1,67708E-05 1,210	57E-05
19 0,001170615 9,20402E-06 4,92	18E-06
20 0,000867213 5,05127E-06 2,001	06E-06
21 0,000642447 2,7722E-06 8,135	69E-07
22 0,000475937 1,52141E-06 3,307	72E-07
23 0,000352583 8,3497E-07 1,344	82E-07
24 0,0002612 4,58241E-07 5,467	63E-08
25 0,000193501 2,51488E-07 2,222	97E-08
	93E-09
	55E-09
	96E-09
	99E-10
	95E-10
	02E-10
	06E-11
	64E-11
	59E-12
	37E-12
	37E-12
	75E-13 69E-13
	59E-14
, , , , , , , , , , , , , , , , , , , ,	76E-14
	06E-14
	66E-15
,	16E-15
	19E-16
	58E-16
	48E-16
	33E-17
	53E-17
	67E-18
	04E-18
	13E-18
	96E-19
	63E-19
	66E-19
	14E-20
	71E-20
	42E-21
	94E-21
	62E-21
	15E-22
	09E-22 34E-23
	34E-23
	23E-23
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	24E-24
	37E-24
	32E-25

Ausführungszeit (ms) X₁ 4,83376E-10 Y₁ 1,56935E-18 Y₂ 3,46527E-25 8,61277E-19 4,72679E-19 2,59412E-19 1,40888E-25 69 3,58094E-10 2,65283E-10 5,72806E-26 70 71 72 73 74 75 76 77 78 79 80 81 1,96526E-10 1,4559E-10 1,07856E-10 2.32886E-26 9,46842E-27 3,84957E-27 1,42368E-19 7.81333E-20 7,99016E-11 4,28805E-20 1,56512E-27 2,35333E-20 1,29154E-20 6,3633E-28 2,58712E-28 5.91925E-11 4,38509E-11 3,24856E-11 2,40659E-11 7.08809E-21 1.05185E-28 3,89003E-21 1.78285E-11 2.13489E-21 1.73869E-29 1,17165E-21 6,43017E-22 1,32076E-11 9,78446E-12 7,06899E-30 2,87404E-30 7,24851E-12 5,36983E-12 3,52895E-22 1,93673E-22 1,1685E-30 4,75075E-31 1,0629E-22 5,83332E-23 3,97806E-12 2,94702E-12 1,93151E-31 7,85294E-32 84 85 2,18321E-12 1,61736E-12 3,2014E-23 1,75696E-23 3,19277E-32 1,29808E-32 1,19817E-12 8,87626E-13 9,64242E-24 5,29187E-24 5,27761E-33 2,14571E-33 6,5757E-13 4,8714E-13 2,90424E-24 1,59388E-24 8,72382E-34 3,54684E-34 3,60882E-13 2,67348E-13 8,7474E-25 4,80068E-25 1,44204E-34 5,86289E-35 1,98056E-13 1,46724E-13 2,63467E-25 1,44594E-25 2,38367E-35 9,69129E-36 94 95 96 97 98 3,94019E-36 1,60196E-36 6,51308E-37 1.08696E-13 7.93547E-26 8,05236E-14 4,35508E-26 5,96534E-14 2,39012E-26 4,41923E-14 1,31172E-26 2,64802E-37 100 101 1,07661E-37 4,37715E-38 3,27385E-14 7,19889E-27 102 103 1,77962E-38 7,23538E-39 104 2,94169E-39 1,196E-39

Ausführungszeit (ms)

Frequenzbereich 7,63365E-11

Zeitbereich

A.1.2 Sequenz

Tabelle 22: Vergleich der Dichtefunktionen für die

A 1 2 C			Austum ungszen (ms)	rrequenzacien	Zeitbereich
A.1.2 Seque	IIZ		77	7,63365E-11	7,63365E-11
			78 79	5,65514E-11	5,65514E-11
TD 1 11 00 X7	1 . 1 . 5	. 1 . C 1	80	4,18943E-11 3,10361E-11	4,18943E-11 3,10361E-11
Tabelle 22: Ve	ergleich der L	ichtefunktionen für die	81	2,29921E-11	2,29921E-11
Se	quenz für n =	- 100	82	1,7033E-11	1,7033E-11
50	quenz rui n -	– 100.	83	1,26183E-11	1,26183E-11
			84 85	9,34788E-12 6,92508E-12	9,34789E-12 6,92509E-12
Ausführungszeit (ms)	Frequenzbereich	Zeitbereich	86	5,13022E-12	5,13023E-12
0	-2,76472E-17	0	87	3,80056E-12	3,80057E-12
1	-1,62551E-17	0	88	2,81552E-12	2,81553E-12
2 3	0,116939803	0,116939803	89	2,08579E-12	2,0858E-12
4	0,150809061 0,146943692	0,150809061 0,146943692	90 91	1,54519E-12 1,14471E-12	1,5452E-12 1,14471E-12
5	0,128188584	0,128188584	92	8,48012E-13	8,48022E-13
6	0,105572978	0,105572978	93	6,28223E-13	6,2823E-13
7	0,084032476	0,084032476	94	4,65395E-13	4,65404E-13
8 9	0,06544802	0,06544802	95 96	3,44774E-13	3,4478E-13
10	0,050238666 0,038180104	0,050238666 0,038180104	97	2,55408E-13 1,89213E-13	2,55419E-13 1,89219E-13
11	0,028812685	0,028812685	98	1,40165E-13	1,40177E-13
12	0,021634827	0,021634827	99	1,0383E-13	1,03846E-13
13	0,016186555	0,016186555	100	7,69158E-14	7,69308E-14
14 15	0,0120786	0,0120786	101	5,69785E-14	5,69917E-14
16	0,008995962 0,006690668	0,008995962 0,006690668	102 103	3,12647E-14 1,71501E-14	3,12777E-14 1,71656E-14
17	0,004971	0,004971	104	9,40482E-15	9,42067E-15
18	0,003690528	0,003690528	105	5,16048E-15	5,17017E-15
19	0,002738357	0,002738357	106	2,82148E-15	2,83745E-15
20	0,00203101	0,00203101	107	1,55121E-15	1,55723E-15
21 22	0,001505919 0,00111633	0,001505919 0,00111633	108 109	8,42634E-16 4,59531E-16	8,54624E-16 4,69027E-16
23	0,000827392	0,000827392	110	2,4357E-16	2,57408E-16
24	0,000613164	0,000613164	111	1,31308E-16	1,41268E-16
25	0,000454362	0,000454362	112	6,41544E-17	7,75297E-17
26 27	0,000336665	0,000336665	113	3,49565E-17	4,25492E-17
28	0,000249443 0,000184812	0,000249443 0,000184812	114 115	1,31049E-17 6,46993E-18	2,33515E-17 1,28156E-17
29	0,000136923	0,000136923	116	-5,05305E-18	7,03334E-18
30	0,000101441	0,000101441	117	-2,35076E-18	3,85998E-18
31	7,51523E-05	7,51523E-05	118	-7,48429E-18	2,1184E-18
32 33	5,5676E-05	5,5676E-05	119 120	-4,663E-18	1,1626E-18
34	4,12468E-05 3,05569E-05	4,12468E-05 3,05569E-05	120	-5,86446E-18 -2,70598E-18	6,3805E-19 3,50169E-19
35	2,26374E-05	2,26374E-05	122	-3,128E-18	1,92177E-19
36	1,67704E-05	1,67704E-05	123	-4,46659E-18	1,05469E-19
37	1,24239E-05	1,24239E-05	124	-5,76654E-18	5,78826E-20
38 39	9,20388E-06	9,20388E-06	125 126	-5,07926E-18	3,17666E-20
40	6,81843E-06 5,05123E-06	6,81843E-06 5,05123E-06	127	-1,01578E-17 -1,19838E-17	1,74339E-20 9,56793E-21
41	3,74205E-06	3,74205E-06	128	-1,4203E-17	5,25099E-21
42	2,77218E-06	2,77218E-06	129	-1,13146E-17	2,8818E-21
43	2,05369E-06	2,05369E-06	130	-1,38778E-17	1,58157E-21
44 45	1,52141E-06 1,12709E-06	1,52141E-06 1,12709E-06	131 132	-1,38778E-17	8,67983E-22 4,76359E-22
46	8,34969E-07	8,34969E-07	133	-4,16334E-17 -4,16334E-17	2,61431E-22
47	6,1856E-07	6,1856E-07	134	-3,46945E-17	1,43477E-22
48	4,58241E-07	4,58241E-07	135	-3,46945E-17	7,87416E-23
49	3,39473E-07	3,39473E-07	136	-1,38778E-17	4,32143E-23
50 51	2,51488E-07 1,86307E-07	2,51488E-07 1,86307E-07	137 138	-2,42861E-17 -1,73472E-17	2,37165E-23 1,30159E-23
52	1,3802E-07	1,3802E-07	139	-1,21431E-17	7,14328E-24
53	1,02247E-07	1,02247E-07	140	-1,21431E-17	3,92031E-24
54	7,57467E-08	7,57467E-08	141	-1,21431E-17	2,15151E-24
55	5,61146E-08	5,61146E-08	142	-1,38778E-17	1,18078E-24
56 57	4,15707E-08 3,07963E-08	4,15707E-08 3,07963E-08	143 144	-1,04083E-17 -1,47451E-17	6,48024E-25 3,55643E-25
58	2,28145E-08	2,28145E-08	145	-9,97466E-18	1,95181E-25
59	1,69014E-08	1,69014E-08	146	-1,12757E-17	1,07118E-25
60	1,25209E-08	1,25209E-08	147	-9,75782E-18	5,87874E-26
61	9,27568E-09	9,27568E-09	148	-1,45283E-17	3,22632E-26
62 63	6,87159E-09 5,0906E-09	6,87159E-09 5,0906E-09	149 150	-8,89046E-18 -7,80626E-18	1,77064E-26 9,71749E-27
64	3,77121E-09	3,77121E-09	151	-5,3668E-18	5,33307E-27
65	2,79378E-09	2,79378E-09	152	-1,02999E-17	2,92685E-27
66	2,06968E-09	2,06968E-09	153	-8,34836E-18	1,60629E-27
67	1,53326E-09	1,53326E-09	154	-1,2631E-17	8,8155E-28
68 69	1,13587E-09 8,4147E-10	1,13587E-09 8,4147E-10	155 156	-8,61941E-18 -1,21973E-17	4,83805E-28 2,65518E-28
70	6,23377E-10	6,23377E-10	157	-1,21973E-17 -9,02598E-18	1,45719E-28
71	4,61809E-10	4,61809E-10	158	-1,37355E-17	7,99723E-29
72	3,42116E-10	3,42116E-10	159	-9,89334E-18	4,38897E-29
73	2,53446E-10	2,53446E-10		Fortsetzung auf de	r nächsten Seite
74 75	1,87757E-10 1,39094E-10	1,87757E-10 1,39094E-10			
75 76	1,03043E-10	1,03043E-10 1,03043E-10			

1,03043E-10 1,03043E-10 Fortsetzung auf der nächsten Seite

Ausführungszait (ms)	Frequenzbereich	Zeitbereich
Ausführungszeit (ms)	-1,22718E-17	2,40871E-29
161	-9,8764E-18	1,32193E-29
162	-1,01237E-17	7,25488E-30
163 164	-1,64951E-17 -1,1191E-17	3,98155E-30 2,18511E-30
165	-1,15688E-17	1,19921E-30
166	-1,4159E-17	6,58135E-31
167	-1,041E-17	3,61189E-31
168	-1,59814E-17	1,98222E-31
169 170	-8,72613E-18 -6,71485E-18	1,08785E-31 5,97009E-32
171	-3,00633E-18	3,27635E-32
172	-9,15134E-18	1,79802E-32
173	-1,31989E-17	9,86717E-33
174 175	-1,43953E-17	5,41479E-33
176	-8,41125E-18 -1,43648E-17	2,97138E-33 1,6305E-33
177	-1,00885E-17	8,94662E-34
178	-1,03755E-17	4,90873E-34
179	-1,346E-18	2,69302E-34
180 181	-8,06005E-18 -5,53124E-18	1,47725E-34
182	-1,29616E-17	8,10212E-35 4,44267E-35
183	-1,21181E-17	2,43533E-35
184	-1,57493E-17	1,33441E-35
185	-9,2535E-18	7,3077E-36
186 187	-1,21375E-17 -4,75912E-18	3,99891E-36 2,18602E-36
188	-4,75912E-18 -1,00997E-17	1,19332E-36
189	-6,2475E-18	6,50177E-37
190	-9,10885E-18	3,53318E-37
191	-4,69148E-18	1,91307E-37
192 193	-1,21431E-17 -7,351E-18	1,03067E-37 5,51385E-38
194	-1,35115E-17	2,92044E-38
195	-1,4707E-17	1,52452E-38
196	-2,38839E-17	7,78708E-39
197	-1,98961E-17	3,8442E-39
198 199	-1,56764E-17 -1,59689E-17	1,79161E-39 7,47574E-40
200	-1,61346E-17	2,35681E-40
201	-1,2042E-17	0
202	-1,32096E-17	0
203 204	-7,40393E-18 -1,65681E-17	0
205	-8,14994E-18	0
206	-1,13889E-17	0
207	-7,78259E-18	0
208	-1,13511E-17	0
209 210	-6,34824E-18 -7,51768E-18	0
211	-6,67161E-18	0
212	-2,00471E-17	0
213	-9,14113E-18	0
214	-1,41485E-17	0
215 216	-7,16852E-18 -1,57094E-17	0
217	-4,66687E-18	0
218	-1,1841E-17	0
219	-8,45803E-18	0
220 221	-1,25822E-17 -1,27593E-17	0
221	-1,27393E-17 -1,42901E-17	0
223	-1,09043E-17	0
224	-1,49373E-17	0
225	-9,36323E-18	0
226 227	-1,90982E-17 -1,72865E-17	0
228	-1,72803E-17 -1,33591E-17	0
229	-2,24507E-17	0
230	-2,39655E-17	0
231 232	-1,51955E-17 -2,25466E-17	0
232 233	-2,25466E-17 -1,04953E-17	0
234	-1,25828E-17	0
235	-7,40149E-18	0
236	-9,94861E-18	0
237 238	-8,5065E-18 -1,23701E-17	0
238	-1,23701E-17 -3,41363E-18	0
240	-9,42534E-18	0
241	-6,00315E-18	0
242	-6,24438E-18	0
	Fortsetzung auf de	r nacnsten Seite

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
243	1,00339E-18	0
244	-8,13926E-18	0
245	-7,0058E-18	0
246	-1,33022E-17	0
247	-1,14889E-17	0
248	-1,91183E-17	0
249	-1,08758E-17	0
250	-1,37355E-17	0
251	-1,29945E-17	0
252	-1,78965E-17	0
253	-1,51598E-17	0
254	-2,40537E-17	0
255	-1,41161E-17	0

77

A.1.3 Alternative

Tabelle 23: Vergleich der absoluten Häufigkeiten für die Alternative für n = 10.

 Ausführungszeit (ms)
 Frequenzbereich
 Zeitbereich

 0
 0
 0

 1
 0
 0

 2
 246745
 246745

 3
 318210
 318210

 4
 310054
 310054

 5
 270480
 270480

 270480
 22761
 222761

 7
 1472391
 1472391

 8
 1624056
 1624056

 9
 1420906
 1420906

 10
 1141700
 1141700

 11
 882293
 882293

 122
 655721
 655721

 13
 484877
 484877

 14
 357884
 357884

 15
 264063
 264063

 16
 194901
 194901

 17
 79296
 79296

 18
 32193
 32193

 19
 13007
 13007

 20
 5201
 5201

 21
 2036
 2036

 22
 7

Tabelle 24: Vergleich der Dichtefunktionen für die Alternative für n = 10 und p = 0.6.

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
0	-5,20417E-18	0
1	6,07153E-18	0
2	0,074023654	0,074023654
3	0,095463114	0,095463114
4	0,09301631	0,09301631
5	0,081144205	0,081144205
6	0,06682838	0,06682838
7	0,117947142	0,117947142
8	0,115727022	0,115727022
9	0,097546484	0,097546484
10	0,077225237	0,077225237
11	0.059313518	0.059313518
12	0,040974467	0,040974467
13	0.028624497	0,028624497
14	0.020214429	0.020214429
15	0.014414366	0.014414366
16	0.010363747	0.010363747
17	0,004270252	0,004270252
18	0,001752036	0,001752036
19	0.000709766	0.000709766
20	0,000278812	0,000278812
21	0.000101815	0.000101815
22	3,96116E-05	3,96116E-05
23	1,47839E-05	1,47839E-05
24	5,03211E-06	5,03211E-06
25	1,32095E-06	1,32095E-06
26	1.38778E-17	0
27	2,08167E-17	0
28	1,73472E-17	0
29	8.67362E-18	0
30	3,46945E-18	0
31	7,80626E-18	0

Tabelle 25: Vergleich der berechneten Dichtefunktionen für die Alternative für n=100und p=0.2.

Ausführungszeit (ms) Frequenzbereich Zeitbereich 79 1,21866E-10 1,21866E-10 9,02803E-11 9,02803E-11 9,02803E-11 0,02803E-11 0,02803E-11 0,02803E-11 0,02803E-11 0,02803E-11 0,02803E-11 0,02803E-11 0,02803E-11 0,02803E-11 0,03803E-11 0,03803E

un	und $p = 0.2$.			
Ausführungszeit (ms)	Frequenzbereich	Zeitbereich -1,99493E-17		
1	0	-1,39477E-17		
2	0,023387961	0,023387961		
3	0,030161812	0,030161812		
4	0,029388738	0,029388738		
5	0,025637717	0,025637717		
6 7	0,021114596 0,13985156	0,021114596 0,13985156		
8	0,154270021	0,154270021		
9	0,134975971	0,134975971		
10	0,108454442	0,108454442		
11	0,08381271	0,08381271		
12	0,063514863	0,063514863		
13 14	0,047640527 0,03553638	0,047640527 0,03553638		
15	0,026427444	0,026427444		
16	0,01962054	0,01962054		
17	0,014553325	0,014553325		
18	0,010789126	0,010789126		
19	0,007996161	0,007996161		
20 21	0,005925199 0,004390172	0,005925199 0,004390172		
22	0,004390172	0,003252632		
23	0,002409756	0,002409756		
24	0,001785263	0,001785263		
25	0,00132259	0,00132259		
26	0,000979817	0,000979817		
27	0,000725875 0,000537746	0,000725875		
28 29	0,000337740	0,000537746 0,000398375		
30	0,000396373	0,000396373		
31	0,000218634	0,000218634		
32	0,000161969	0,000161969		
33	0,00011999	0,00011999		
34	8,88905E-05	8,88905E-05		
35 36	6,58518E-05 4,87842E-05	6,58518E-05 4,87842E-05		
37	3,61403E-05	3,61403E-05		
38	2,67734E-05	2,67734E-05		
39	1,98342E-05	1,98342E-05		
40	1,46935E-05	1,46935E-05		
41	1,08853E-05	1,08853E-05		
42 43	8,06399E-06 5,97395E-06	8,06399E-06 5,97395E-06		
44	4,42561E-06	4,42561E-06		
45	3,27858E-06	3,27858E-06		
46	2,42883E-06	2,42883E-06		
47	1,79932E-06	1,79932E-06		
48 49	1,33297E-06	1,33297E-06		
50	9,87488E-07 7,31549E-07	9,87488E-07 7,31549E-07		
51	5,41945E-07	5,41945E-07		
52	4,01483E-07	4,01483E-07		
53	2,97426E-07	2,97426E-07		
54	2,20338E-07	2,20338E-07		
55 56	1,63231E-07 1,20924E-07	1,63231E-07 1,20924E-07		
57	8,95829E-08	8,95829E-08		
58	6,63646E-08	6,63646E-08		
59	4,91641E-08	4,91641E-08		
60	3,64217E-08	3,64217E-08		
61	2,69818E-08	2,69818E-08		
62 63	1,99886E-08 1,4808E-08	1,99886E-08 1,4808E-08		
64	1,097E-08	1,097E-08		
65	8,12678E-09	8,12678E-09		
66	6,02046E-09	6,02046E-09		
67	4,46007E-09	4,46007E-09		
68	3,3041E-09	3,3041E-09		
69 70	2,44774E-09 1,81333E-09	2,44774E-09 1,81333E-09		
70	1,34335E-09	1,34335E-09		
72	9,95176E-10	9,95176E-10		
73	7,37245E-10	7,37245E-10		
74	5,46164E-10	5,46164E-10		
75 76	4,04608E-10 2,99741E-10	4,04608E-10		
76 77	2,22054E-10	2,99741E-10 2,22054E-10		
78	1.64501E-10	1.64501E-10		

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
79 80	1,21866E-10 9,02803E-11	1,21866E-10 9,02803E-11
81	6,68813E-11	6,68813E-11
82	4,95469E-11	4,95469E-11
83	3,67052E-11	3,67052E-11
84 85	2,71919E-11 2,01443E-11	2,71919E-11 2,01443E-11
86	1,49232E-11	1,49232E-11
87	1,10554E-11	1,10554E-11
88 89	8,19005E-12 6,06734E-12	8,19004E-12 6,06733E-12
90	4,49479E-12	4,49479E-12
91	3,32982E-12	3,32982E-12
92 93	2,46679E-12 1,82745E-12	2,46678E-12 1,82744E-12
94	1,35381E-12	1,3538E-12
95	1,00292E-12	1,00292E-12
96 97	7,42984E-13 5,50416E-13	7,42976E-13 5,50406E-13
98	4,07758E-13	4,0775E-13
99	3,02075E-13	3,02069E-13
100	2,23783E-13	2,23775E-13
101 102	1,65782E-13 1,20626E-13	1,65774E-13 1,20621E-13
103	8,81608E-14	8,81503E-14
104	6,46519E-14	6,46421E-14
105 106	4,75336E-14 3,50152E-14	4,7519E-14 3,50085E-14
107	1,43168E-14	1,42966E-14
108	5,86509E-15	5,8505E-15
109 110	2,40888E-15 9,92721E-16	2,39144E-15 9,83254E-16
111	4,10933E-16	3,97301E-16
112	1,71092E-16	1,58732E-16
113 114	7,17663E-17 3,03885E-17	5,76882E-17 2,07874E-17
115	1,30193E-17	1,55035E-18
116	5,65785E-18	-7,85892E-18
117	2,5004E-18 1,1264E-18	-1,0693E-17 -7,13686E-18
118 119	5,18224E-19	-3,98112E-18
120	2,43768E-19	-8,11731E-18
121	1,1726E-19	-7,67238E-18
122 123	5,76362E-20 2,89003E-20	-8,67128E-18 -3,14654E-18
124	1,47504E-20	-5,39976E-18
125	7,64373E-21	-5,92807E-18
126 127	4,01142E-21 2,12689E-21	-9,09323E-18 -1,58178E-17
128	1,13692E-21	-1,43115E-17
129	6,11619E-22	-1,85949E-17
130 131	3,30649E-22 1,79425E-22	-1,73472E-17 -1,73472E-17
132	9,76414E-23	-1,73472E-17
133	5,32497E-23	-1,56125E-17
134 135	2,9087E-23 1,59076E-23	-1,73472E-17 -2,77556E-17
136	8,70761E-24	-4,16334E-17
137	4,76963E-24	-4,16334E-17
138 139	2,61388E-24 1,43301E-24	-2,77556E-17 -2,08167E-17
140	7,85832E-25	-2,08167E-17
141	4,31022E-25	-1,38778E-17
142 143	2,36448E-25 1,29724E-25	-1,04083E-17 -2,60209E-17
144	7,11769E-26	-1,73472E-17
145	3,90558E-26	-2,1684E-17
146 147	2,14315E-26 1,17607E-26	-1,47451E-17 -1,04083E-17
148	6,45396E-27	-1,34441E-17
149	3,54182E-27	-9,54098E-18
150	1,94372E-27	-6,50521E-18
151 152	1,0667E-27 5,85406E-28	-1,73472E-18 -2,27682E-18
153	3,21272E-28	-9,97466E-18
154	1,76316E-28	-7,80626E-18
155 156	9,67634E-29 5,31045E-29	-2,81893E-18 -6,28837E-18
157	2,91442E-29	-3,38813E-18
158	1,59946E-29	-4,49944E-18
159 160	8,778E-30 4,81745E-30	-8,68717E-18 -1,14925E-17
161	2,64387E-30	-9,70361E-18
	Fortsetzung auf de	r nächsten Seite

1,64501E-10 1,64501E-10 Fortsetzung auf der nächsten Seite

15098E-30 16312E-31 17023E-31 19842E-31 13162TE-31 122378E-32 17569E-32 1756	9,20894E.18 -1,48197E.17 -1,22431E-17 -1,22431E-17 -1,2902E.17 -8,83117E.17 -1,67653E.17 -1,67653E.17 -1,41217E-17 -1,80443E.17 -1,41217E-17 -1,80443E.17 -1,4299E.17 -1,23198E.17 -1,23198E.17 -1,25457E.17 -1,25457E.17 -1,23198E.17 -1,12398E.17 -1,12398E.17 -1,65138E.18 -1,14159E.17 -1,09516E.17 -8,86752E.18 -3,97103E.18 -4,37926E.18 -3,97103E.18 -4,09191E.18 -6,86625E.18 -3,97103E.18 -4,09191E.18 -6,86625E.18 -3,97103E.18 -6,55387E.18 -6,35539E.18 -6,35539E.18 -6,35539E.18 -6,59176E.18 -8,12928E.18 -7,62174E.18 -6,59176E.18 -8,12928E.18 -1,14159E.17 -2,04802E.17 -2,04802E.17 -2,04802E.17 -2,04802E.17 -2,04802E.17 -2,04802E.17 -2,04802E.17 -2,04802E.17 -2,04802E.17
37023E-31 39842E-31 31627E-31 22378E-32 36444E-32 17569E-32 19402E-32 195604E-33 37343E-33 38296E-33 34277E-34 26099E-34 41745E-35 58451E-35 52042E-35 58451E-35 52042E-35 38296E-37 37205	-1,22481E-17 -1,2902E-17 -8,83117E-18 -1,56786E-17 -1,07421E-17 -1,67653E-17 -1,41217E-17 -1,80443E-17 -1,44999E-17 -1,29287E-17 -5,35642E-18 -1,24734E-17 -9,62791E-18 -1,52056E-17 -1,23198E-17 -1,23198E-17 -1,23198E-17 -1,12739E-17 -1,58398E-17 -7,65138E-18 -1,14159E-17 -8,86752E-18 -5,93079E-18 -4,37926E-18 -4,931918-18 -4,01156E-18 -4,09191E-18 -4,01156E-18 -4,09191E-18 -6,8563978E-18 -6,355398-18 -7,62174E-18 -6,355398-18 -7,62174E-18 -6,355398-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -1,402E-17 -2,04802E-17 -1,34022E-17 -1,34022E-17 -1,3402E-17
39842E-31 31627E-31 22378E-32 26444E-32 217569E-32 206444E-32 217569E-32 206444E-32 217569E-32 206444E-32 215527E-33 308296E-33 30829E-34 31745E-35 366883E-36 46154E-36 30035E-37 37205E-37 37205E-37 38665E-37 306635E-38 3021E-30 36888E-39 36888E-39 36888E-39 36888E-39 409515E-40 409515E-40 409515E-40	-1,2902E-17 -8,83117E-18 -1,56766E-17 -1,07421E-17 -1,67653E-17 -1,41217E-17 -1,44999E-17 -1,29287E-17 -1,29287E-17 -1,25457E-17 -1,23198E-17 -1,23198E-17 -1,25457E-17 -1,23198E-17 -1,65138E-18 -1,52056E-17 -1,25457E-17 -1,23198E-17 -1,65138E-18 -1,52056E-17 -2,5457E-17 -1,23198E-17 -1,65138E-18 -1,52056E-18 -3,97103E-18 -4,07904E-18 -4,07904E-18 -4,07904E-18 -4,07904E-18 -4,07904E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -8,12928E-18 -1,34022E-17 -2,04802E-17 -2,04802E-17
31627E-31 22378E-32 22378E-32 26444E-32 217569E-32 19402E-32 5527E-33 39604E-33 39604E-33 3926E-33 38296E-33 34277E-34 26099E-34 8873E-35 8863E-35 52042E-35 88535E-36 66883E-36 66883E-36 66883E-36 6685E-37 37205E-37	-8,83117E-18 -1,56786E-17 -1,07421E-17 -1,67653E-17 -1,41217E-17 -1,67653E-17 -1,44999E-17 -1,29287E-17 -2,35642E-18 -1,24734E-17 -9,62791E-18 -1,25457E-17 -1,23198E-17 -1,23198E-17 -1,65138E-18 -1,14159E-17 -1,65138E-18 -1,14159E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -4,0156E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -6,36539E-18 -6,35539B-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -6,59176E-18 -8,12928E-18 -1,34022E-17 -2,04802E-17 -1,34022E-17 -2,04802E-17
22378E-32 206444E-32 17569E-32 19402E-32 19402E-32 19402E-32 19402E-32 19402E-32 19402E-32 19402E-32 19402E-32 19402E-32 19402E-35 1950451E-35 1950451	-1,56786E-17 -1,07421E-17 -1,67653E-17 -1,67653E-17 -1,67653E-17 -1,44999E-17 -1,29287E-17 -1,29287E-17 -5,35642E-18 -1,52056E-17 -1,25457E-17 -1,25457E-17 -1,25457E-17 -1,25457E-17 -1,58398E-17 -1,65138E-18 -1,14159E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -8,86425E-18 -3,97103E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -1,24022E-17 -1,34022E-17 -2,04802E-17
06444E-32 17569E-32 17569E-32 17559E-33 19604E-33 19604E-33 19604E-33 19604E-33 19604E-33 19604E-33 19604E-33 19609E-34 18745E-35 18603E-35 18503E-35 18503E-35 18503E-35 18503E-35 18503E-36 18503E-37 18503E-37 18503E-38	-1,07421E-17 -1,67653E-17 -1,41217E-17 -1,80443E-17 -1,44999E-17 -1,29287E-17 -5,35642E-18 -1,24734E-17 -9,62791E-18 -1,52056E-17 -1,25457E-17 -1,23198E-17 -1,23198E-17 -1,65138E-18 -1,14159E-17 -1,09516E-17 -8,86752E-18 -5,93079E-18 -5,93079E-18 -4,37926E-18 -4,05904E-18 -4,05904E-18 -4,05904E-18 -4,05904E-18 -6,86623E-18 -6,35539E-18 -7,62174E-18 -8,12928E-18 -7,62152E-17 -1,34022E-17 -2,04802E-17 -2,04802E-17
17569E-32 19402E-32 5527E-33 59604E-33 379604E-33 379604E-33 38296E-33 38296E-33 34277E-34 26099E-34 88793E-34 88705E-36 562042E-35 88535E-36 66883E-36 66883E-36 66154E-36 99782E-37 37205E-37 3720	-1,67653E-17 -1,41217E-17 -1,80443E-17 -1,44999E-17 -1,29287E-17 -5,35642E-18 -1,24734E-17 -9,62791E-18 -1,52056E-17 -1,23198E-17 -1,65138E-18 -1,14159E-17 -1,65138E-18 -1,14159E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -4,37926E-18 -4,05904E-18 -4,01156E-18 -4,0904E-18 -6,86623E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -1,34022E-17 -1,34022E-17 -2,04802E-17
19402E-32 ,5527E-33 97604E-33)72343E-33)8296E-33)4227E-34 26099E-34 26099E-34 18932E-34 18932E-34 18932E-35)5451E-35 52042E-35 58451E-35 52042E-35 687065E-36 67065E-36 69782E-37 37005E-37 38063E-37 36035E-37 36035E-37 36035E-37 36035E-37 36035E-37 36035E-37 36035E-37 36035E-37 36035E-37 16635E-38 16134E-38 16134E-38 16134E-38 16134E-38 16134E-38 16134E-38 16134E-38 16134E-38 16134E-38 16134E-38 1614E-36 16134E-38 1614E-38 1614E-38 16154E-38 1	-1,41217E-17 -1,80443E-17 -1,44999E-17 -1,29287E-17 -5,35642E-18 -1,24734E-17 -9,62791E-18 -1,52056E-17 -1,25457E-17 -1,23198E-17 -1,12739E-17 -1,12739E-17 -1,58398E-17 -7,65138E-18 -1,14159E-17 -8,86752E-18 -5,93079E-18 -5,93079E-18 -4,37926E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -1,24022E-17 -1,34022E-17 -2,04802E-17 -1,34022E-17 -2,04802E-17
,5527E-33 59604E-33 59604E-33 59604E-33 59604E-33 59604E-33 59609E-34 78932E-34 78932E-34 78932E-34 78932E-34 78932E-35 78045E-35 78045E-35 78045E-36 78065E-36 78065E-36 78065E-36 78065E-37 78025E-37 78025E	-1,80443E-17 -1,44999E-17 -1,29287E-17 -5,35642E-18 -1,24734E-17 -9,62791E-18 -1,52056E-17 -1,25457E-17 -1,23198E-17 -1,65138E-18 -1,14159E-17 -1,09516E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -8,64525E-18 -3,97103E-18 -4,05904E-18 -4,05904E-18 -6,86623E-18 -6,95539E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -1,34022E-17 -2,04802E-17 -2,04802E-17
99604E-33 77343E-33 18296E-33 18296E-33 18296E-33 14277E-34 16099E-34 181745E-35 18603E-35 18603E-35 18603E-35 18603E-36 16154E-36 16154E-36 16134E-38 10277E-38 10277	-1,44999E-17 -1,29287E-17 -5,35642E-18 -1,24734E-17 -9,62791E-18 -1,52056E-17 -1,25457E-17 -1,23198E-17 -1,65138E-18 -1,14159E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -4,05904E-18 -4,05904E-18 -4,01156E-18 -4,01156E-18 -4,09191E-18 -6,86623E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -1,4415928E-18 -3,97103E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17
07343E-33 08296E-33 08296E-33 04277E-34 26099E-34 26099E-34 26099E-34 26099E-34 2609E-35 26042E-35 26042E-35 26042E-35 26042E-36 2	-1,29287E-17 -5,35642E-18 -1,24734E-17 -9,62791E-18 -1,52056E-17 -1,23198E-17 -1,12739E-17 -1,12739E-17 -7,65138E-18 -1,14159E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -6,553887E-18 -6,553887E-18 -6,553887E-18 -6,553887E-18 -6,553887E-18 -6,35539E-18 -6,35539E-18 -1,4012E-17 -1,34022E-17 -1,4402E-17 -2,04802E-17
38296E-33 34277E-34 26099E-34 78932E-34 1745E-35 38603E-35 25451E-35 252042E-35 38525E-36 37065E-36 66883E-36 46154E-36 39782E-37 37205E-37 37205E-37 36035E-37 36035E-37 36035E-37 36035E-37 36035E-37 40495E-39 55742E-39 6884E-40 88321E-40 19515E-40 71361E-41 11437E-51	-5,35642E-18 -1,24734E-17 -9,62791E-18 -1,52056E-17 -1,25457E-17 -1,23198E-17 -1,12739E-17 -1,58398E-17 -7,65138E-18 -1,14159E-17 -1,09516E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -8,86425E-18 -3,97103E-18 -4,05904E-18 -4,0191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -2,04802E-17 -9,01252E-18
94277E-34 26099E-34 81745E-35 88603E-35 55451E-35 52042E-35 88535E-36 66883E-36 66154E-36 99782E-37 7065E-36 80035E-37 70665E-38 82614E-38 10277E-38 84088E-39 94995E-39 55742E-39 6884E-40 94915E-40 171361E-41	-1,24734E-17 -9,62791E-18 -1,52056E-17 -1,25457E-17 -1,23198E-17 -1,58398E-17 -7,65138E-18 -1,14159E-17 -8,86752E-18 -5,93079E-18 -5,93079E-18 -4,37926E-18 -4,05904E-18 -4,05904E-18 -4,01156E-18 -4,09191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -1,34022E-17 -2,04802E-17 -2,04802E-17
26099E-34 78932E-34 81745E-35 58603E-35 55451E-35 52042E-35 588535E-36 66883E-36 6687065E-36 66883E-37 77205E-37 780035E-37 78	9,62791E-18 -1,52056E-17 -1,23198E-17 -1,12739E-17 -1,58398E-17 -7,65138E-18 -1,14159E-17 -1,09516E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -6,553887E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -1,24022E-17 -1,34022E-17 -2,04802E-17 -2,04802E-17
78932E-34 \$1745E-35 \$8603E-35 \$5451E-35 \$2042E-35 \$88535E-36 \$7065E-36 \$6883E-36 \$6154E-36 \$9782E-37 \$7205E-37 \$3265E-37 \$3263E-38 \$10277E-38 \$4088E-39 \$4088E-39 \$4088E-30	-1,52056E-17 -1,25457E-17 -1,23198E-17 -1,12739E-17 -1,58398E-17 -7,65138E-18 -1,14159E-17 -1,09516E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -3,97103E-18 -4,05904E-18 -4,01916E-18 -4,09191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -2,04802E-17
81745E-35 88603E-35 52042E-35 52042E-35 52042E-35 58535E-36 66883E-36 66154E-36 90782E-37 70665E-37 70665E-37 706635E-38 82614E-38 10277E-38 84088E-39 404905E-39 55742E-39 6688E-40 70615E-40 19515E-40 19515E-40 19515E-41 19515E-41 19515E-41	-1,25457E-17 -1,23198E-17 -1,12739E-17 -1,58398E-17 -7,65138E-18 -1,14159E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -3,97103E-18 -4,05904E-18 -4,01156E-18 -4,09191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -1,34022E-17 -1,34022E-17 -2,04802E-17 -2,04802E-17 -2,04802E-17
88603E-35 95451E-35 52042E-35 88535E-36 87065E-36 66883E-36 46154E-36 99782E-37 737205E-37 88665E-37 90035E-37 90035E-37 90035E-38 90134E-38 10277E-38 9104905E-39 9104905E	-1,23198E-17 -1,12739E-17 -1,58398E-17 -7,65138E-18 -1,14159E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -4,01136E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -1,24623E-17 -1,34022E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
95451E-35 52042E-35 52042E-35 52042E-36 67065E-36 66883E-36 6154E-36 99782E-37 77205E-37 38665E-37 30035E-37 36635E-38 810277E-38 84088E-39 94995E-39 6884E-40 955742E-39 6884E-40 9515E-40 9715E-40 9715E-40	-1,12739E-17 -1,58398E-17 -7,65138E-18 -1,14159E-17 -1,09516E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -3,97103E-18 -4,05904E-18 -4,09191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
\$2042E-35 \$88355E-36 \$7065E-36 66883E-36 46154E-36 99782E-37 37205E-37 38665E-37 30035E-37 36635E-38 \$2614E-38 40277E-38 \$4088E-39 94995E-39 55742E-39 6884E-40 49515E-40 491515E-40	-1,58398E-17 -7,65138E-18 -1,14159E-17 -1,09516E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -3,97103E-18 -4,05904E-18 -4,05904E-18 -6,35539E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -6,35539E-18 -7,62174E-18 -1,34022E-17 -2,04802E-17 -2,04802E-17 -2,04802E-17 -2,04802E-17 -9,01252E-18
88535E-36 \$7065E-36 \$6883E-36 \$6154E-36 99782E-37 \$7205E-37 \$8665E-37 \$30035E-37 \$6635E-38 \$06134E-38 \$10277E-38 \$4088E-39 \$4905E-39 \$6884E-40 \$8321E-40 \$9515E-40 \$71361E-41 \$1437E-51 \$9324E-55	-7,65138E-18 -1,14159E-17 -1,09516E-17 -8,86752E-18 -5,93079E-18 -4,37926E-18 -4,37926E-18 -4,07103E-18 -4,07103E-18 -4,07103E-18 -4,07103E-18 -4,07103E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -6,35539E-18 -6,35539E-18 -1,34022E-17 -1,34022E-17 -2,04802E-17 -2,04802E-17 -9,01252E-18
87065E-36 66883E-36 46154E-36 99782E-37 37205E-37 380635E-37 30035E-37 30035E-37 36635E-38 10277E-38 34905E-39 34905E-39 45905E-39 4688E-40 49515E-40 49515E-40 49515E-40 49515E-41	-1,14159E-17 -1,09516E1-18 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -3,97103E-18 -4,05904E-18 -4,09191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,559176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
56883E-36 66154E-36 99782E-37 37205E-37 38665E-37 30035E-37 30035E-37 30635E-38 32614E-38	-1,09516E-17 -8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -8,86425E-18 -3,97103E-18 -4,05904E-18 -4,01596E-18 -4,0191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,19176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
46154E-36 99782E-37 87205E-37 88665E-37 80035E-37 90035E-38 90134E-38 90134E-38 90134E-38 90134E-38 90134E-39 90135E-39 90135E-40 90136E-41 90136E-41 90136E-41 90136E-41	-8,86752E-18 -5,93079E-18 -5,76707E-18 -4,37926E-18 -8,86425E-18 -4,01156E-18 -4,01156E-18 -4,01156E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -6,35539E-18 -6,255389E-18 -1,34022E-17 -1,34022E-17 -2,04802E-17 -2,04802E-17 -9,01252E-18
99782E-37 37205E-37 38665E-37 38035E-37 38035E-37 38063E-38 32614E-38 3808E-39 3808E-39 3808E-39 3808E-39 3808E-39 3808E-40 49515E-40 49515E-40 49443E-51 49443E-51	-5,93079E-18 -5,76707E-18 -4,37926E-18 -8,86425E-18 -3,97103E-18 -4,05904E-18 -4,01156E-18 -4,09191E-18 -6,86623E-18 -6,35539E-18 -6,5374E-18 -6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
37205E-37 38665E-37 30035E-37 30035E-37 30035E-37 30035E-38 32614E-38 36134E-38 34088E-39 34088E-39 355742E-39 36884E-40 368321E-40 49515E-40 71361E-41 41437E-51 39324E-52	-5,76707E-18 -4,37926E-18 -8,86425E-18 -3,97103E-18 -4,05904E-18 -4,09191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
38665E-37 30035E-37 30635E-38 32614E-38 36134E-38 10277E-38 34088E-39 34905E-39 55742E-39 56884E-40 58321E-40 49515E-40 71361E-41 41437E-51	-4,37926E-18 -8,86425E1-8 -3,97103E-18 -4,05904E-18 -4,01156E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -6,35539E-18 -6,25539E-18 -1,34022E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
30035E-37 26635E-38 32614E-38 32614E-38 36134E-38 34088E-39 34905E-39 55742E-39 6884E-40 49515E-40 49515E-41 41437E-51 39324E-52	-8,86425E-18 -3,97103E-18 -4,05904E-18 -4,05904E-18 -4,09191E-18 -6,86623E-18 -6,35539E-18 -6,59176E-18 -6,59176E-18 -2,4623E-17 -1,34022E-17 -9,01252E-18
06635E-38 32614E-38 06134E-38 10277E-38 34088E-39 04905E-39 55742E-39 ,6884E-40 49515E-40 71361E-41 41437E-51 39324E-52	-3,97103E-18 -4,05904E-18 -4,09191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
32614E-38 06134E-38 10277E-38 84088E-39 04905E-39 55742E-39 ,6884E-40 49515E-40 71361E-41 41437E-51 39324E-52	-4,05904E-18 -4,01156E-18 -4,09191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -6,559176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
06134E-38 10277E-38 34088E-39 04905E-39 55742E-39 ,6884E-40 58321E-40 49515E-40 71361E-41 41437E-51 39324E-52	-4,01156E-18 -4,09191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
10277E-38 34088E-39 04905E-39 55742E-39 ,6884E-40 58321E-40 49515E-40 71361E-41 41437E-51 39324E-52	-4,09191E-18 -6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
34088E-39 04905E-39 055742E-39 ,6884E-40 058321E-40 49515E-40 71361E-41 41437E-51 39324E-52	-6,86623E-18 -5,53887E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
04905E-39 55742E-39 ,6884E-40 58321E-40 49515E-40 71361E-41 41437E-51 39324E-52	-5,53887E-18 -6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
55742E-39 ,6884E-40 58321E-40 49515E-40 71361E-41 41437E-51 39324E-52	-6,35539E-18 -7,62174E-18 -6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
,6884E-40 58321E-40 49515E-40 71361E-41 41437E-51 39324E-52	-7,62174E-18 -6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
58321E-40 49515E-40 71361E-41 41437E-51 39324E-52	-6,59176E-18 -8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
49515E-40 71361E-41 41437E-51 39324E-52	-8,12928E-18 -2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
71361E-41 41437E-51 39324E-52	-2,4623E-17 -1,34022E-17 -2,04802E-17 -9,01252E-18
41437E-51 39324E-52	-1,34022E-17 -2,04802E-17 -9,01252E-18
39324E-52	-2,04802E-17 -9,01252E-18
	-9,01252E-18
003//E-32	
	-1,163333E-17
19328E-52 13242E-53	-1,14347E-17
0	-8,74728E-18
0	-9,92195E-18
0	-1,04178E-17
0	-1,49905E-17
0	-1,37126E-17
0	-1,181E-17
0	-1,11459E-17
0	-1,00148E-17
0	-7,60169E-18
0	-6,31473E-18
0	-1,14436E-17
0	-9,05382E-18
0	-7,50741E-18
0	-4,14224E-18
0	-6,19148E-18
0	-7,40055E-18
0	-4,0313E-18
0	-1,32679E-17
0	-1,43884E-17
0	-9,7643E-18
0	-9,72956E-18
0	-9,68793E-18
0	-1,37726E-17
0	-1,40559E-17
0	-1,23515E-17
0	-1,94218E-17
0	-3,32519E-17
0	-3,09761E-17
0	-1,45648E-17
^	-1,54986E-17
	-1,44495E-17
0	-1,39676E-17
0	-8,13043E-18
0 0 0	-1,16942E-17
0 0 0	
0 0 0 0	-1,36262E-17
0 0 0 0 0	-9,71268E-18
0 0 0 0 0 0	-9,71268E-18 -9,10042E-18
0 0 0 0 0	-9,71268E-18
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
245	0	-5,75084E-18
246	0	-5,67285E-18
247	0	-2,73126E-18
248	0	-1,20552E-17
249	0	-5,45514E-18
250	0	-6,4566E-18
251	0	-8,704E-18
252	0	-1,64189E-17
253	0	-1,82076E-17
254	0	-1,05558E-17
255	0	-2,07001E-17

Tabelle 26: Vergleich der Dichtefunktion für die Alternative für n=100 und $p(X_1)=0.6$.

0.0	•	
Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
0	-2,53703E-17	0
1	-1,83373E-17	0
2 3	0,070163882	0,070163882
4	0,090485437 0,088166215	0,090485437 0,088166215
5	0,07691315	0,07691315
6	0,063343787	0,063343787
7	0,111942018	0,111942018
8	0,10985902	0,10985902
9	0,092607318	0,092607318
10	0,073317273	0,073317273
11	0,056312697	0,056312697
12 13	0,042574845 0,031913541	0,042574845 0,031913541
13	0,02380749	0,02380749
15	0,017711703	0,017711703
16	0,013155604	0,013155604
17	0,009762163	0,009762163
18	0,007239827	0,007239827
19	0,005367259	0,005367259
20	0,003978105	0,003978105
21	0,002948045	0,002948045
22	0,002184481	0,002184481
23 24	0,001618574 0,001199213	0,001618574 0,001199213
25	0,001199213	0,0001199213
26	0.000658241	0,000658241
27	0,000487659	0,000487659
28	0,000361279	0,000361279
29	0,000267649	0,000267649
30	0,000198283	0,000198283
31	0,000146893	0,000146893
32 33	0,000108822	0,000108822
33	8,06181E-05 5,97237E-05	8,06181E-05 5,97237E-05
35	4,42446E-05	4,42446E-05
36	3,27773E-05	3,27773E-05
37	2,42821E-05	2,42821E-05
38	1,79886E-05	1,79886E-05
39	1,33263E-05	1,33263E-05
40	9,87239E-06	9,87239E-06
41	7,31365E-06	7,31365E-06
42 43	5,41809E-06 4,01382E-06	5,41809E-06 4,01382E-06
43	2,97351E-06	2,97351E-06
45	2,20283E-06	2,20283E-06
46	1,6319E-06	1,6319E-06
47	1,20894E-06	1,20894E-06
48	8,95605E-07	8,95605E-07
49	6,63481E-07	6,63481E-07
50	4,91519E-07	4,91519E-07
51 52	3,64126E-07 2,69751E-07	3,64126E-07 2,69751E-07
53	1,99837E-07	1,99837E-07
54	1,48043E-07	1,48043E-07
55	1,09673E-07	1,09673E-07
56	8,12475E-08	8,12475E-08
57	6,01896E-08	6,01896E-08
58	4,45896E-08	4,45896E-08
59	3,30328E-08	3,30328E-08
60	2,44713E-08	2,44713E-08
61 62	1,81288E-08 1,34301E-08	1,81288E-08 1,34301E-08
63	9,94928E-09	9.94928E-09
64	7,3706E-09	7,3706E-09
65	5,46028E-09	5,46028E-09
66	4,04507E-09	4,04507E-09
67	2,99666E-09	2,99666E-09
68	2,21998E-09	2,21998E-09
69	1,6446E-09	1,6446E-09
70	1,21835E-09	1,21835E-09
71	9,02578E-10	9,02578E-10
72 73	6,68646E-10 4,95345E-10	6,68646E-10 4,95345E-10
74	4,95345E-10 3,66961E-10	4,95345E-10 3,66961E-10
75	2,71851E-10	2,71851E-10
76	2,01392E-10	2,01392E-10
77	1,49195E-10	1,49195E-10
78	1,10526E-10	1,10526E-10

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
79	8,188E-11	8,188E-11
80	6,06582E-11	6,06582E-11
81	4,49367E-11	4,49367E-11
82	3,32899E-11	3,32899E-11
83 84	2,46618E-11	2,46618E-11
85 85	1,82699E-11 1,35347E-11	1,82699E-11 1,35347E-11
86	1,00267E-11	1,00267E-11
87	7,42798E-12	7,42799E-12
88	5,50278E-12	5,50279E-12
89	4,07656E-12	4,07657E-12
90	3,01999E-12	3,01999E-12
91	2,23726E-12	2,23727E-12
92	1,6574E-12	1,65741E-12
93 94	1,22783E-12 9,09595E-13	1,22784E-12
95	6,73842E-13	9,09605E-13 6,73852E-13
96	4,99189E-13	4,99202E-13
97	3,69808E-13	3,69818E-13
98	2,73959E-13	2,73968E-13
99	2,02949E-13	2,0296E-13
100	1,50347E-13	1,50357E-13
101	1,11375E-13	1,11387E-13
102	7,59414E-14	7,59518E-14
103 104	5,2648E-14 3,70232E-14	5,26632E-14 3,70363E-14
105	2,63374E-14	2,63519E-14
106	1,89109E-14	1,89263E-14
107	7,92301E-15	7,93703E-15
108	3,34805E-15	3,35986E-15
109	1,42611E-15	1,43895E-15
110	6,13591E-16	6,25064E-16
111	2,66576E-16	2,76101E-16
112	1,14571E-16	1,24311E-16
113 114	5,00311E-17 1.81631E-17	5,71578E-17 2,687E-17
115	8,4648E-18	1,29175E-17
116	-3,75396E-18	6,34559E-18
117	-5,44088E-18	3,18019E-18
118	-3,75504E-18	1,6224E-18
119	-4,24423E-18	8,40413E-19
120	-6,11523E-19	4,40909E-19
121	-3,83239E-18	2,33715E-19
122	-7,20385E-18	1,24907E-19
123 124	-4,03112E-18 -4,51428E-18	6,71846E-20 3,63165E-20
125	-3,08361E-18	1,97052E-20
126	-8,12076E-18	1,07227E-20
127	-1,16484E-17	5,84741E-21
128	-1,36609E-17	3,19395E-21
129	-1,19796E-17	1,74671E-21
130	-1,38778E-17	9,56108E-22
131	-2,08167E-17	5,23704E-22
132 133	-2,08167E-17 -2,08167E-17	2,87E-22 1,57341E-22
134	-2,08167E-17	8,62818E-23
135	-4,16334E-17	4,73246E-23
136	-3,46945E-17	2,5961E-23
137	-2,77556E-17	1,42431E-23
138	-2,08167E-17	7,81489E-24
139	-2,08167E-17	4,28814E-24
140	-1,73472E-17	2,35307E-24 1,29127E-24
141 142	-1,38778E-17 -1,21431E-17	7,08612E-25
143	-1,73472E-17	3,88874E-25
144	-1,38778E-17	2,1341E-25
145	-1,47451E-17	1,17118E-25
146	-1,12757E-17	6,42745E-26
147	-8,67362E-18	3,5274E-26
148	-6,93889E-18	1,93586E-26
149	-6,72205E-18	1,06241E-26
150 151	-4,77049E-18 -3,25261E-18	5,8306E-27 3,19989E-27
151	-3,25261E-18 -4,22839E-18	1,75613E-27
153	-5,25838E-18	9,63781E-28
154	-7,69784E-18	5,28933E-28
155	-4,58075E-18	2,90284E-28
156	-7,18284E-18	1,59311E-28
157	-7,12863E-18	8,74316E-29
158	-7,67073E-18	4,79834E-29
159 160	-7,27771E-18	2,63338E-29
160 161	-9,73071E-18 -1,08624E-17	1,44523E-29 7,93157E-30
	Fortsetzung auf de	

1,10526E-10 1,10526E-10

Fortsetzung auf der nächsten Seite

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
162	-1,23802E-17	4,35293E-30
163	-1,57616E-17	2,38893E-30
164	-1,50467E-17	1,31107E-30
165	-1,26801E-17	7,19525E-31
166	-1,07353E-17	3,94881E-31
167	-1,44487E-17	2,16713E-31
168 169	-1,63638E-17	1,18933E-31
170	-1,06027E-17 -1,1839E-17	6,52708E-32
170	-7,85665E-18	3,58205E-32 1,96581E-32
172	-1,13096E-17	1,07881E-32
173	-1,09394E-17	5,9203E-33
173	-1,23491E-17	3,24887E-33
175	-1,0519E-17	1,78283E-33
176	-1,44401E-17	9,78298E-34
177	-1,01838E-17	5,36797E-34
178	-1,47639E-17	2,94524E-34
179	-8,95102E-18	1,61581E-34
180	-1,22366E-17	8,86352E-35
181	-7,54209E-18	4,86127E-35
182	-1,28079E-17	2,6656E-35
183	-7,77687E-18	1,4612E-35
184	-1,25841E-17	8,00649E-36
185	-7,16415E-18	4,38462E-36
186	-9,3399E-18	2,39935E-36
187	-5,23629E-18	1,31161E-36
188	-8,21776E-18	7,15995E-37
189	-6,92879E-18	3,90106E-37
190	-8,61122E-18	2,11991E-37
191	-5,7799E-18	1,14784E-37
192	-8,45678E-18	6,18401E-38
193	-4,25335E-18	3,30831E-38
194	-1,7559E-17	1,75226E-38
195	-1,31874E-17	9,14714E-39
196	-1,28203E-17	4,67225E-39
197	-1,23188E-17	2,30652E-39
198	-9,54195E-18	1,07496E-39
199	-8,23529E-18	4,48544E-40
200	-1,66912E-17	1,41408E-40
201	-1,35899E-17	1,20718E-51
202	-1,02474E-17	4,69662E-52
203	-1,16747E-17	1,75288E-52
204	-1,09547E-17	5,96641E-53
205	-1,2938E-17	1,56621E-53
206	-9,69941E-18	0
207	-1,13512E-17	0
208	-1,17665E-17	0
209	-9,87807E-18	0
210	-1,046E-17	0
211	-9,89077E-18	0
212	-1,2513E-17	0
213	-8,51761E-18	0
214	-7,68556E-18	0
215	-9,13522E-18	0
216	-1,18699E-17	0
217	-1,05639E-17	0
218	-1,112E-17	0
219	-7,91533E-18	0
220	-7,85875E-18	0
221	-9,7585E-18	0
222	-1,04397E-17	0
223	-1,51298E-17	0
224	-1,41054E-17	0
225	-9,9169E-18	0
226	-1,60217E-17	0
227	-1,11303E-17	0
228	-1,64743E-17	0
229	-1,41204E-17	0
230	-2,05757E-17	0
231	-2,26268E-17	0
	-2,79066E-17	0
232	1 CEO12E 17	0
232 233	-1,65012E-17	
	-1,3688E-17	0
233		0
233 234	-1,3688E-17	0
233 234 235	-1,3688E-17 -9,0186E-18	0
233 234 235 236	-1,3688E-17 -9,0186E-18 -1,31864E-17	0 0 0
233 234 235 236 237	-1,3688E-17 -9,0186E-18 -1,31864E-17 -1,11567E-17	0 0 0
233 234 235 236 237 238	-1,3688E-17 -9,0186E-18 -1,31864E-17 -1,11567E-17 -1,04738E-17	0 0 0 0
233 234 235 236 237 238 239	-1,3688E-17 -9,0186E-18 -1,31864E-17 -1,11567E-17 -1,04738E-17 -1,19715E-17	0 0 0 0 0
233 234 235 236 237 238 239 240	-1,3688E-17 -9,0186E-18 -1,31864E-17 -1,11567E-17 -1,04738E-17 -1,19715E-17 -1,07888E-17	0 0 0 0 0 0
233 234 235 236 237 238 239 240	-1,3688E-17 -9,0186E-18 -1,31864E-17 -1,11567E-17 -1,04738E-17 -1,19715E-17 -1,07888E-17 -8,79284E-18	0 0 0 0 0 0 0

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
245	-4,79723E-18	0
246	-9,04537E-18	0
247	-6,11604E-18	0
248	-1,1422E-17	0
249	-1,04509E-17	0
250	-7,51055E-18	0
251	-8,88348E-18	0
252	-1,52585E-17	0
253	-1,53316E-17	0
254	-1,58839E-17	0
255	-1,73684E-17	0

A.1.4 Schleife

Tabelle 27: Vergleich der berechneten Dichtefunktionen für die Schleife für n=10p=0.4 und $\varepsilon=0.05$.

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
0	2,44656E-09	0
1	2,10996E-09	0
2	1,81966E-09	0
3	1,56931E-09	0
4	1,3534E-09	0
5	1,1672E-09	0
6	1,00661E-09	0
7	0,097131061	0,09713106
8	0,111447002	0,111447001
9	0,103410956	0,103410956
10	0,091266908	0,091266908
11	0,079831492	0,079831491
12	0,069973151	0,069973151
13	0,061568532	0,061568532
14	0,054342368	0,054342367
15	0,048062624	0,048062047
16	0,042560469	0,042556836
17	0,032866243	0,032853576
18	0,027869677	0,027837383
19	0,024230208	0,024162966
20	0,021118629	0,020997388
21	0,018359189	0,018163033
22	0,015915943	0,015624358
23	0,01376913	0,013364227
24	0,011894206	0,011362522
25	0,010262968	0.00959679
26	0,008846925	0,008045127
27	0,007619955	0,006688271
28	0,006556842	0,005507531
29	0,005649716	0,003507531
30	0,003049710	0,003645786
31	0,004872399	0,003043780
32	0,003626823	0,002323633
33	0,003020823	0,002319220
34	0,003128712	0,001408096
35	0,002327518	0,001408090
36	0,002327318	0,000812711
37	0,002007200	0,000605295
38	0.001731014	0.000444732
39	0,001492772	0,00032226
40	0,001287313	0,00032220
41	0,0001110109	0,000230203
42	0,000937427	0,000102207
43	0,00071212	7,70477E-05
43	0,00071212	5,19247E-05
45	0,000529659	3,44631E-05
45	0,000329639	2,25213E-05
47	0,000436788	1,44871E-05
48	0,000333942	9,17083E-06
49	0,000339741	5,71167E-06
50	0,000292998	3,49892E-06
51	0,000232686	2,1078E-06
52	0,000217921	1,24845E-06
53	0,000167939	7,2691E-07
54		4,15966E-07
55	0,000139782	
55 56	0,000120551	2,33881E-07
57	0,000103965	1,2917E-07
	8,96614E-05	7,00532E-08
58 59	7,73256E-05	3,72958E-08
60	6,66869E-05	1,94863E-08 9,98859E-09
	5,7512E-05 4,95993E-05	
61	4,7377311-03	5,02131E-09

4,95993E-05 5,02131E-09 Fortsetzung auf der nächsten Seite

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
62	4,27753E-05	2,47429E-09
63	3,68902E-05	1,19438E-09
64	3,18148E-05	5,64419E-10
65	2,74376E-05	2,60925E-10
66	2,36627E-05	1,17917E-10
67	2,04071E-05	5,20548E-11
68	1,75994E-05	2,24293E-11
69	1,51781E-05	9,42265E-12
70	1,30898E-05	3,85377E-12
71	1,12889E-05	1,53173E-12
72	9,73575E-06	5,90503E-13
73	8,39628E-06	2,20381E-13
74	7,2411E-06	7,94847E-14
75	6,24486E-06	2,76617E-14
76	5,38567E-06	9,27299E-15
77	4,6447E-06	2,98531E-15
78	4,00567E-06	9,1712E-16
79	3,45456E-06	2,65811E-16
80	2,97927E-06	7,15552E-17
81	2,56938E-06	1,74952E-17
82	2,21588E-06	3,75529E-18
83	1,91101E-06	6,68857E-19
84	1,64809E-06	8,87441E-20
85	1,42134E-06	6,65978E-21
86	1,22579E-06	0
87	1,05714E-06	0
88	9,11699E-07	0
89	7,86265E-07	0
90	6,78089E-07	0
91	5,84796E-07	0
92	5,04338E-07	0
93	4,3495E-07	0
94	3,75109E-07	0
95	3,235E-07	0
96	2,78992E-07	0
97	2,40608E-07	0
98	2,07504E-07	0
99	1,78956E-07	0
100	1,54334E-07	0
101	1,33101E-07	0
102	1,14788E-07	0
103	9,89955E-08	0
104	8,53755E-08	0
105	7,36293E-08	0
106	6,34992E-08	0
107	5,47628E-08	0
108	4,72284E-08	0
109	4,07306E-08	0
110	3,51268E-08	0
111	3,0294E-08	0
112	2,61261E-08	0
113	2,25316E-08	0
114	1,94316E-08	0
115	1,67582E-08	0
116	1,44526E-08	0
117	1,24641E-08	0
118	1,07493E-08	0
119	9,27038E-09	0
120	7,99494E-09	0
121	6,89497E-09	0
122	5,94635E-09	0
123	5,12823E-09	0
124	4,42268E-09	0
125	3,8142E-09	0
126	3,28943E-09	0
127	2,83686E-09	0
Summe:	1	0.9744

Tabelle 28: Vergleich der berechneten Dichtefunktionen für die Schleife für n=10p=0.4 und $\varepsilon=0.01$.

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
0	2,44656E-09	0
1 2	2,10996E-09 1,81966E-09	0
3	1,56931E-09	0
4	1,3534E-09	0
5	1,1672E-09	0
6	1,00661E-09	0
7	0,097131061	0,09713106
8	0,111447002	0,111447001
9	0,103410956	0,103410956
10	0,091266908	0,091266908 0,079831491
11 12	0,079831492 0,069973151	0,069973151
13	0,061568532	0,061568532
14	0,054342368	0,054342367
15	0,048062624	0,048062624
16	0,042560469	0,042560469
17	0,032866243	0,032866243
18	0,027869677	0,027869677
19 20	0,024230208 0,021118629	0,024230206 0,021118616
20 21	0,018359189	0,018359129
22	0,015915943	0,01591574
23	0,01376913	0,013768578
24	0,011894206	0,011892928
25	0,010262968	0,010260359
26	0,008846925	0,008842105
27	0,007619955	0,007611747
28 29	0,006556842 0,005649716	0,00654379 0,00563013
30	0,003049710	0,00303013
31	0,004203788	0,004165578
32	0,003626823	0,003576578
33	0,003128712	0,003064871
34	0,00269868	0,002620034
35	0,002327518	0,00223332
36	0,002007266	0,0018973
37 38	0,001731014 0,001492772	0,001605639 0,001352915
39	0,001492772	0,001332913
40	0,001110169	0,000946165
41	0,000957427	0,000784561
42	0,000825713	0,000646478
43	0,00071212	0,000529124
44	0,000614152	0,000429996
45 46	0,000529659	0,000346831
47	0,000456788 0,000393942	0,000277573 0,000220352
48	0,000339741	0,000173469
49	0,000292998	0,000135392
50	0,000252686	0,000104747
51	0,000217921	8,03124E-05
52	0,000187939	6,10167E-05
53 54	0,000162082	4,59276E-05
55	0,000139782 0,000120551	3,42452E-05 2,52914E-05
56	0,000120351	1,8499E-05
57	8,96614E-05	1,33993E-05
58	7,73256E-05	9,61021E-06
59	6,66869E-05	6,8244E-06
60	5,7512E-05	4,7978E-06
61	4,95993E-05	3,33913E-06
62 63	4,27753E-05 3,68902E-05	2,30041E-06 1,56866E-06
64	3,18148E-05	1,05869E-06
65	2,74376E-05	7,07136E-07
66	2,36627E-05	4,67408E-07
67	2,04071E-05	3,05717E-07
68	1,75994E-05	1,97853E-07
69	1,51781E-05	1,26688E-07
70	1,30898E-05	8,02539E-08
71 72	1,12889E-05 9,73575E-06	5,02926E-08 3,11757E-08
73	8,39628E-06	1,91148E-08
74	7,2411E-06	1,15912E-08
75	6,24486E-06	6,95119E-09
76	5,38567E-06	4,12214E-09
77	4,6447E-06	2,41702E-09
78	4,00567E-06	1,40117E-09

Ausführungszeit (ms)	Frequenzbereich	Zeitbereich
79	3,45456E-06	8,0299E-10
80	2,97927E-06	4,54877E-10
81	2,56938E-06	2,54678E-10
82	2,21588E-06	1,40914E-10
83	1,91101E-06	7,70407E-11
84	1,64809E-06	4,16136E-11
85	1,42134E-06	2,2204E-11
86	1,22579E-06	1,17015E-11
87	1,05714E-06	6,08959E-12
88	9,11699E-07	3,1289E-12
89	7,86265E-07	1,58696E-12
90	6,78089E-07	7,94352E-13
91	5,84796E-07	3,92313E-13
92	5,04338E-07	1,91122E-13
93	4,3495E-07	9,18175E-14
94	3,75109E-07	4,34856E-14
95	3,235E-07	2,02967E-14
96	2,78992E-07	9,33273E-15
97	2,40608E-07	4,22595E-15
98	2,07504E-07	1,88358E-15
99	1,78956E-07	8,26001E-16
100	1,54334E-07	3,56195E-16
101 102	1,33101E-07	1,50958E-16
	1,14788E-07	6,28368E-17
103	9,89955E-08	2,56719E-17
104	8,53755E-08	1,02862E-17
105	7,36293E-08	4,03865E-18
106	6,34992E-08	1,55233E-18
107	5,47628E-08	5,83485E-19
108	4,72284E-08	2,1421E-19
109	4,07306E-08	7,67033E-20
110	3,51268E-08	2,67467E-20
111	3,0294E-08	9,06639E-21
112	2,61261E-08	2,98127E-21
113	2,25316E-08	9,48597E-22
114	1,94316E-08	2,91141E-22
115	1,67582E-08	8,58374E-23
116	1,44526E-08	2,4178E-23
117	1,24641E-08	6,4586E-24
118	1,07493E-08	1,6202E-24
119	9,27038E-09	3,76744E-25
120	7,99494E-09	7,97861E-26
121	6,89497E-09	1,50125E-26
122	5,94635E-09	2,41862E-27
123	5,12823E-09	3,14158E-28
124	4,42268E-09	2,93926E-29
125	3,8142E-09	1,49433E-30
126	3,28943E-09	0
127	2,83686E-09	0
Summe:	1	0,995904

A.2 Funktionen für Abschnitt 5.2.2

A.2.1 Sequenz

Tabelle 29: Vergleich der Berechnung mit der Messung für die Sequenz bei 10.000 Messwerten.

Ausführungszeit	X1	Y1	Messung	Berechnung
(10 ms)	(gemessen)	(gemessen)		(Zeitbereich
1	0,2582	0,4408		
2	0,2045	0,2544	0,1154	0,11381450
3	0,1519	0,1355	0,1497	0,1558296
4	0,1138	0,078	0,1575	0,1539684
5	0,0848	0,0414	0,1389	0,1366557
6	0,0624	0,0235	0,1188	0,1135534
7	0,0462	0,012	0,0862	0,09088114
8	0,0351	0,0082	0,0699	0,0707991
9	0,0269	0,0036	0,0537	0,0551471
10	0,0157	0,0026	0,0417	0,042528
11	0,0004	0	0,0325	0,0307184
12	0,0001	0	0,0161	0,0169615
13			0,0094	0,0091590
14			0,0049	0,0049099
15			0,0025	0,0025720
16			0,0013	0,0013324
17			0,0011	0,00066
18			0,0004	0,0003239
19				0,0001309
20				4,31E-0
22				1,40E-0
23				2,60E-0

Tabelle 30: Vergleich der Berechnung mit der Messung für die Sequenz bei 1.000 Messwerten.

Ausführungszeit	X1	Y1	Messung	Berechnung
(10 ms)	(gemessen)	(gemessen)		(Zeitbereich)
1	0,243	0,44		
2	0,2	0,243	0,106	0,10692
3	0,159	0,133	0,135	0,147049
4	0,123	0,085	0,173	0,150879
5	0,079	0,05	0,138	0,140012
6	0,071	0,028	0,111	0,114946
7	0,038	0,009	0,096	0,097115
8	0,038	0,007	0,069	0,070672
9	0,025	0,003	0,055	0,056215
10	0,023	0,002	0,052	0,042277
11	0,001		0,029	0,033547
12			0,016	0,018921
13			0,008	0,01027
14			0,004	0,005724
15			0,002	0,002914
16			0,003	0,001441
17			0,001	0,0006
18			0,001	0,000321
19			0,001	0,000126
20			.,	4,90E-05
21				2,00E-06

A.2.2 Alternative

Tabelle 31: Vergleich der Berechnung mit der Messung für die Alternative bei 1000 Messwerten für p=0.4.

Ausführungszeit	X_1	Y_1	Y_2	Messung	Berechnung
(10 ms)	(gemessen)	(gemessen)	(gemessen)		(Zeitbereich)
1	0,252	0,43627451	0,252		
2	0,212	0,25	0,212	0,051	0,043976471
3	0,144	0,139705882	0,144	0,066	0,062196078
4	0,11	0,075980392	0,11	0,061	0,060411765
5	0,089	0,044117647	0,089	0,052	0,053101961
6	0,061	0,034313725	0,061	0,044	0,045468627
7	0,057	0,004901961	0,057	0,134	0,132534844
8	0,041	0,009803922	0,041	0,136	0,144422337
9	0,016	0,004901961	0,016	0,132	0,120841547
10	0,017		0,017	0,086	0,093089202
11	0,001		0,001	0,074	0,074284652
12				0,043	0,052962295
13				0,044	0,042165998
14				0,022	0,031909691
15				0,023	0,018266097
16				0,017	0,013956591
17				0,007	0,005799993
18				0,003	0,002468581
19				0,004	0,001000093
20				0,001	0,000535069
21					0,000268581
22					0,000151014
23					0,000117568
24					3,45E-05
25					3,45E-05
26					2,03E-06

Tabelle 32: Dichtefunktionen für die Alternative bei 10000 Messungen und p=0.4

Ausführungszeit (10 ms)	(gemessen)	(gemessen)	(gemessen)	Messung	Berechnung (Zeitbereich)
1	0,2627	0,432064532		0.01=1	0.01=1
2	0,2047	0,258633728		0,0454	0,045401341
3	0,1493	0,131837661		0,0611	0,062554676
4	0,1101	0,077640534		0,0622	0,060833325
5	0,0825	0,047138896		0,0511	0,053427063
6	0,0631	0,024955886	0,550638157	0,044	0,044832266
7	0,046				
		0,012099824	0,266699818	0,1274	0,123156729
8	0,0376	0,008066549	0,109066799	0,1477	0,138044411
9	0,0236	0,003781195	0,043262059	0,1177	0,121824907
10	0,0185	0,003781195	0,018564562	0,0953	0,097269736
11	0,0012		0,007458976	0,0702	0,075669652
12	0,0003		0,00198906	0,0542	0,055905699
13	0,0001		0.00099453	0,0405	0,040460814
14	0,0001		0,000497265	0,0295	0,030573665
15	0				
			0,00066302	0,0243	0,02145079
16	0		0	0,017	0,015623718
17	0,0002		0	0,0072	0,00727499
18	0		0	0,0026	0,003153342
19	0		0,000165755	0,0014	0,001322583
20	0			0,0004	0,000570358
21	0			0,0004	0,000229081
22	0			0,0001	9,62E-05
23	0			0,0002	0,000116101
24	0			0	5,76E-05
25	0			0	2,80E-05
26	0			0	1,07E-05
27	0			0	6,42E-06
28	0			0	3,28E-06
29	0			0	2,08E-06
30	0			0	2,39E-07
31	0			0	8,95E-08
32	0			0	8,95E-08
33	0			0	(
34	0			0	(
35	0			0	(
36	0			0	1,99E-08
37	0			0	1,5512-00
38	0			0	(
39	0			0	(
40	0			0	(
41	0			0	(
42	0			0	(
43	0			0	Č
44	0			0	(
45	0			0	(
46	0			0	(
47	0			0	(
48	0			0	(
49	0			0	(
50	0			0	(
51	0			0	(
52	0			0	Ċ
53	0			0	(
54	0			0	(
55	0			0	(
56	0			0	(
57	0			0	(
58	0			0	(
59	0			0	(
60	0			0	Ć
61	0			0	(
62	0			0	(
63	0			0	(
64	0			0	(
65	0			0	Č
66	0,0001			0	(
	0,0001				
67				0	1,73E-05
68				0	1,03E-05
69				0	5,27E-06
70				0	3,11E-06
71				0	1,89E-06
72				0,0001	3,40E-05
73				0,0001	
					1,65E-05
74					6,87E-06
75					2,75E-06
76					1,27E-06
77					4,48E-07
					1,19E-07
78 79					
79					5,97E-08
					5,97E-08 2,98E-08 3,98E-08

Ausführungszeit (10 ms)	X ₁ (gemessen)	Y ₁ (gemessen)	Y ₂ (gemessen)	Messung	Berechnung (Zeitbereich)
83					0
84					0
85					9,95E-09

Tabelle 33: Dichtefunktionen für die Alternative bei 10000 Messungen und p=0.8

Ausführungszeit	X_1	Y_1	Y ₂	Messung	Berechnung
(10 ms)	(gemessen)	(gemessen)	(gemessen)		(Zeitbereich)
1	0,277	0,465408805			
2	0,21	0,250314465		0,105	0,103134591
3	0,159	0,120754717		0,127	0,133658365
4	0,113	0,075471698		0,138	0,128012075
5	0,074	0,037735849		0,097	0,110924277
6	0,055	0,023899371	0,629268293	0,087	0,086582138
7	0,043	0,012578616	0,229268293	0,101	0,102310017
8	0,037	0,00754717	0,03902439	0,096	0,091728468
9	0,017	0,005031447	0,073170732	0,081	0,074206983
10	0,015	0,001257862	0,014634146	0,054	0,056795821
11			0,004878049	0,05	0,041075613
12			0,004878049	0,019	0,025916705
13			0	0,015	0,017135051
14			0,004878049	0,016	0,012133861
15				0,005	0,007434441
16				0,004	0,005043344
17				0,003	0,002214567
18				0	0,000876226
19				0,001	0,000496996
20				0,001	0,000165338
21					7,32E-05
22					5,07E-05
23					1,66E-05
24					1.46E-05

Tabelle 34: Dichtefunktionen für die Alternative bei 10000 Messungen und p=0.8

Ausführungszeit (10 ms)	X ₁ (gemessen)	Y ₁ (gemessen)	(gemessen)	Messung	Berechnung (Zeitbereich)
1	0,264	0,455470107			, , , , ,
2	0,1998	0,246092781		0,0998	0,096195287
3	0,1577	0,137931034		0,1247	0,124777137
4	0,1054	0,074547259		0,1282	0,125928613
5	0,0818	0,043041429		0,1098	0,107243582
6	0,06	0,021458695	0,58875129	0,0861	0,08896387
7	0,0494	0,010419251	0,234262126	0,0964	0,10149999
8	0,0364	0,006077896	0,106811146	0,0911	0,092080816
9	0,0257	0,003349045	0,043859649	0,0776	0,077343444
10	0,0195	0,001612503	0,013415893	0,0598	0,059562788
11	0,0003		0,005159959	0,0474	0,045519148
12			0,004643963	0,0291	0,028901636
13			0,000515996	0,0179	0,019403109
14			0,002063983	0,0116	0,013022751
15			0,000515996	0,0093	0,008857956
16				0,0067	0,006126502
17				0,0026	0,002638195
18				0,0009	0,001141787
19				0,0004	0,000467559
20				0,0003	0,00017955
21				0,0002	7,55E-05
22				0,0001	4,12E-05
23					1,67E-05
24					1,07E-05
25					2,14E-06
26					3.10E-08

A.2.3 Schleife

Tabelle 35: Dichtefunktionen für die Schleife bei 1000 Messungen, p=0.4 und $\varepsilon=0.01$.

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
0	0.274700754	0.420007204				2,17E-0
1 2	0,274799754	0,439807384				1,87E-0
	0,21133703	0,277688604				1,61E-0
3	0,139864449	0,123595506				1,38E-0
4	0,109673444	0,078651685				1,19E-0
5	0,085027726	0,030497592				1,03E-0
6	0,060998152	0,030497592	0,578			8,85E-1
7	0,043746149	0,006420546	0,25	0,085	0,095300555	0,09530055
8	0,033887862	0,008025682	0,098	0,111	0,114511645	0,11451164
9	0,019716574	0,001605136	0,05	0,114	0,100970941	0,10097094
10	0,02094886	0,003210273	0,012	0,105	0,091673021	0,09167302
11			0,01	0,074	0,080992097	0,08099209
12			0	0,084	0,071191565	0,07119156
13			0,001	0,059	0,06160751	0,0616075
14			0,001	0,057	0,054737119	0,05473711
15				0,057	0,046767596	0,04676759
16				0,039	0,043033126	0,04303312
17				0,03	0,033176211	0,03317621
18				0,019	0,027884549	0,02788454
19				0,025	0,024303171	0,02430317
20				0,02	0,020992841	0,02099285
21				0,016	0,018306085	0,01830614
22						
				0,019	0,015806193	0,015806
23				0,014	0,013690534	0,01369110
24				0,007	0,011805877	0,0118072
25				0,011	0,010167693	0,01017045
26				0,005	0,008751323	0,00875644
27				0,01	0,007532258	0,00754098
28				0,003	0,0064698	0,00648367
29				0,004	0,005557558	0,0055783
30				0,004	0,004776445	0,00480608
31				0,004	0,004100575	0,00414097
32				0,001	0,003516048	0,00356902
33				0.004	0,00300802	0,00307511
34				0,003	0,002567359	0.00264972
35				0,002	0,002184456	0,00228274
36				0,002	0,002184430	0,00228274
37				0,003		
38					0,001564175	0,00169397
				0	0,00131502	0,00145923
39				0	0,001100021	0,00125703
40				0	0,0009151	0,00108285
41				0,002	0,000756741	0,00093284
42				0,001	0,000621767	0,00080362
43				0,002	0,000507376	0,00069230
44				0,001	0,000411037	0,00059640
45				0,001	0,000330471	0,00051378
46				0,001	0,000263603	0,00044261
47				0	0,00020855	0,00038129
48				0	0,00016361	0,00032847
49				0	0,000127248	0,00028296
50				0,001	9,81E-05	0,00024376
51				0	7,49E-05	0,00020999
52				0	5,67E-05	0,00018090
53				0	4,26E-05	0,00015584
54				0	3,16E-05	0,00013384
55				0	2,33E-05	0,00013423
56				0	2,33E-03 1,70E-05	
						9,96E-0
57				0,001	1,22E-05	8,58E-0
58					8,75E-06	7,39E-0
59					6,19E-06	6,37E-0
60					4,34E-06	5,49E-0
61					3,01E-06	4,73E-0
62					2,07E-06	4,07E-0
63					1,41E-06	3,51E-0
64					9,47E-07	3,02E-0
65					6,31E-07	2,60E-0
66					4,16E-07	2,24E-0
67					2,72E-07	1,93E-0
68					1,75E-07	1,66E-0
69					1,12E-07	1,43E-0
70					7,09E-08	1,43E-0
70						
					4,44E-08	1,06E-0
72					2,75E-08	9,17E-0
73					1,69E-08	7,90E-0
74					1,02E-08	6,80E-0
					6,13E-09	5,86E-0
75						
76 77					3,64E-09 2,14E-09	5,05E-0 4,35E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnung (Frequenzbereich
78	(gemessen)	(gemessen)	(gemessen)	(genressen)	1,24E-09	3,75E-06
79					7,13E-10	3,23E-06
80					4,05E-10	2,78E-0
81					2,27E-10	2,40E-0
82					1,26E-10	2,06E-06
83					6,93E-11	1,78E-0
84					3,76E-11	1,53E-0
85					2,02E-11	1,32E-0
86					1,07E-11	1,14E-0
87					5,61E-12	9,79E-0
88					2,91E-12	8,43E-0
89					1,49E-12	7,27E-0
90					7,52E-13	6,26E-0
91					3,75E-13	5,39E-0
92					1,85E-13	4,65E-0
93						
93					8,99E-14	4,00E-03
94 95					4,32E-14	3,45E-03
					2,04E-14	2,97E-0
96					9,55E-15	2,56E-0°
97					4,40E-15	2,20E-0
98					2,00E-15	1,90E-07
99					8,93E-16	1,64E-0
100					3,93E-16	1,41E-0
101					1,71E-16	1,21E-0
102					7,27E-17	1,05E-07
103					3,05E-17	9,01E-0
104					1,26E-17	7,76E-0
105					5,09E-18	6,69E-08
106					2,02E-18	5,76E-0
107					7,85E-19	4,96E-08
108					2,99E-19	4,27E-0
109					1,11E-19	3,68E-08
110					4,05E-20	3,17E-08
111					1,44E-20	2,73E-0
112					4,96E-21	2,35E-08
113					1,66E-21	2,03E-0
114					5,41E-22	1,75E-08
115					1,70E-22	1,50E-08
116					5,13E-23	1,30E-08
117					1,49E-23	1,12E-08
118					4,10E-24	9,62E-09
119					1,06E-24	8,29E-09
120					2,56E-25	7,14E-09
121					5,58E-26	6,15E-09
122					1,07E-26	5,30E-09
123					1,62E-27	4,57E-09
124					1,77E-28	3,93E-09
125						3,39E-09
126						2,92E-09
127						2,51E-09

Tabelle 36: Dichtefunktionen für die Schleife bei 1000 Messungen, p=0.4 und $\varepsilon=0.05$.

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
0						2,17E-0
1	0,274799754	0,439807384				1,87E-0
2	0,21133703	0,277688604				1,61E-0
3	0,139864449	0,123595506				1,38E-0
4	0,109673444	0,078651685				1,19E-0
5	0,085027726	0,030497592				1,03E-0
6	0,060998152	0,030497592	0,578			8,85E-1
7				0,085	0,095300555	
	0,043746149	0,006420546	0,25			0,09530055
8	0,033887862	0,008025682	0,098	0,111	0,114511645	0,11451164
9	0,019716574	0,001605136	0,05	0,114	0,100970941	0,10097094
10	0,02094886	0,003210273	0,012	0,105	0,091673021	0,09167302
11			0,01	0,074	0,080992097	0,08099209
12			0	0,084	0,071191565	0,07119156
13			0,001	0,059	0,06160751	0,0616075
14			0,001	0,057	0,054737119	0,05473711
15				0,057	0,046767075	0,04676759
16				0,039	0,043029585	0,04303312
17				0,03	0,033163374	0,03317621
18				0,019	0,027851207	0,02788454
19				0,025	0,024233185	0,02430317
20						
				0,02	0,020866304	0,02099285
21				0,016	0,018101343	0,01830614
22				0,019	0,015502289	0,015806
23				0,014	0,013269618	0,01369110
24				0,007	0,011255176	0,0118072
25				0,011	0,009480863	0,01017045
26				0,005	0,007929241	0,00875644
27				0,01	0,006583198	0,00754098
28				0,003	0,005408936	0,00648367
29				0,004	0,004405824	0,0055783
30				0.004	0,003558926	0,00480608
31				0,004	0,002844658	0,00414097
32				0,001	0,002249553	0,00356902
33				0,004	0,002249333	0.00307511
34				0,004		.,
					0,001356694	0,00264972
35				0,002	0,001033887	0,00228274
36				0,003	0,000777712	0,00196650
37				0,001	0,000577221	0,00169397
38				0	0,00042267	0,00145923
39				0	0,000305264	0,00125703
40				0	0,000217393	0,00108285
41				0,002	0,000152653	0,00093284
42				0,001	0,00010566	0,00080362
43				0,002	7,21E-05	0,00069230
44				0,001	4,84E-05	0,00059640
45				0,001	3,21E-05	0,00051378
46				0,001	2,09E-05	0,00044261
47				0,001	1,34E-05	0,00038129
48				0		
					8,48E-06	0,00032847
49				0	5,28E-06	0,00028296
50				0,001	3,23E-06	0,00024376
51				0	1,95E-06	0,00020999
52				0	1,15E-06	0,00018090
53				0	6,72E-07	0,00015584
54				0	3,85E-07	0,00013425
55				0	2,17E-07	0,00011565
56				0	1,20E-07	9,96E-0
57				0.001	6,54E-08	8,58E-0
58				0,001	3,50E-08	7,39E-0
59					1,84E-08	6,37E-0
60					9,50E-09	5,49E-0
61					4,81E-09	4,73E-0
62					2,39E-09	4,07E-0
63					1,17E-09	3,51E-0
64					5,59E-10	3,02E-0
65					2,62E-10	2,60E-0
66					1,20E-10	2,24E-0
67					5,40E-11	1,93E-0
68					2,37E-11	1,66E-0
69					1,02E-11	1,43E-0
70					4,25E-12	1,24E-0
71					1,73E-12	1,06E-0
72					6,88E-13	9,17E-0
73					2,65E-13	7,90E-0
74					9,86E-14	6,80E-0
75					3,55E-14	5,86E-0
76					1,23E-14	5,05E-0
77					4,10E-15	4,35E-0
78						
					1,31E-15	3,75E-0
70						
79 80					4,04E-16 1,16E-16	3,23E-0 2,78E-0

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnung (Frequenzbereich)
82					7,57E-18	2,06E-06
83					1,53E-18	1,78E-06
84					2,45E-19	1,53E-06
85					,	1,32E-06
86						1,14E-06
87						9,79E-07
88						8,43E-07
89						7,27E-07
90						6,26E-07
91						5,39E-07
92						4,65E-07
93						4,00E-07
94						3,45E-07
95						2,97E-07
96						2,56E-07
97						2,20E-07
98						1,90E-07
99						1,64E-07
100						1,41E-07
100						
						1,21E-07
102						1,05E-07
103						9,01E-08
104						7,76E-08
105						6,69E-08
106						5,76E-08
107						4,96E-08
108						4,27E-08
109						3,68E-08
110						3,17E-08
111						2,73E-08
112						2,35E-08
113						2,03E-08
114						1,75E-08
115						1,50E-08
116						1,30E-08
117						1,12E-08
118						9,62E-09
119						8,29E-09
120						7,14E-09
121						6,15E-09
122						5,30E-09
123						4,57E-09
124						3,93E-09
125						3,39E-09
126						2,92E-09
127						2,51E-09

Tabelle 37: Dichtefunktionen für die Schleife bei 1000 Messungen, p=0.8 und $\varepsilon=0.05$.

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
0						1,21E-1
1	0,25852889	0,441660526				1,16E-1
2	0,207059752	0,254482928				1,12E-1
3	0,149083021	0,134610661				1,08E-1
4	0,10826267	0,087447802				1,04E-1
5	0,089331493	0,037337264				9,97E-1
6	0,063103924	0,019405551	0,587			9,60E-1
7	0,046933544	0,012527634	0,252	0,031	0,030351292	0,03035129
8	0,03293236	0,006632277	0,091	0,045	0,037338671	0,03733867
9	0,023663972	0,003193319	0,046	0,027	0,035415841	0,03541584
10	0,021100375	0,002702039	0,013	0,03	0,03359948	0,0335994
11			0,008	0,044	0,032889623	0,03288962
12			0,002	0,028	0,031617153	0,03161715
13			0	0,036	0,030567709	0,03056770
14			0,001	0,031	0,029450642	0,02945064
15				0,024	0,028552573	0,02855257
16				0,033	0,028191069	0,02819106
17				0,019	0,025664738	0,02566473
18				0,03	0,024629629	0,02462962
19				0,021	0,023884142	0,02388414
20				0,018	0,023033513	0,02303351
21				0,02	0,022217642	0,02221764
22				0,023	0,02138696	0,0213869
23				0,027	0,020580078	0,02058007
24				0,026	0,01980375	0,0198037
25				0,011	0,019047185	0,01904718
26				0,023	0,018321599	0,01832159
27				0,012	0,017623721	0,01762372
28				0,022	0,016945513	0,01694551
29				0,011	0,016299666	0,01629966
30				0,014	0,015681514	0,01568151
31				0,02	0,015086421	0,01508642
32				0,009	0,014513847	0,01451384
33				0,013	0,013962527	0,01396252
34				0,013	0,013431812	0,01343181
35				0,013	0,012921209	0,01292120
36				0,014	0,012429962	0,01242996
37				0,01	0,011957378	0,0119573
38				0,006	0,011502808	0,01150280
39				0,009	0,011065503	0,01106550
40				0,007	0,01064486	0,0106448
41				0,006	0,010240234	0,01024023
42				0,005	0,009850989	0,00985098
43				0,014	0,009476536	0,00947653
44				0,01	0,009116312	0,0091163
45				0,009	0,008769776	0,0087697
46				0,011	0,008436411	0,0084364
47				0,007	0,008115718	0,0081157
48				0,009	0,007807216	0,0078072
49				0,008	0,007510441	0,0075104
50				0,009	0,007224948	0,00722494
51				0,006	0,006950308	0,00695030
52				0,007	0,006686108	0,00668610
53				0,006	0,00643195	0,0064319
54				0,01	0,006187454	0,0061874
55				0,006	0,005952252	0,00595225
56				0,005	0,00572599	0,0057259
57				0,006	0,00550833	0,0055083
58				0,006	0,005298943	0,00529894
59				0,005	0,005097515	0,0050975
60				0,004	0,004903744	0,00490374
61				0,005	0,004717339	0,00471733
62				0,004	0,00453802	0,0045380
63				0,01	0,004365518	0,0043655
64				0,002	0,004199572	0,0041995
65				0,002	0,004039935	0,00403993
66				0,003	0,003886366	0,00388630
67				0,002	0,003738634	0,00373863
68				0,006	0,003596518	0,00359651
69				0,005	0,003459805	0,00345980
70				0,003	0,003328288	0,00332828
71				0,005	0,00320177	0,0032017
72				0,002	0,003080062	0,00308000
73				0,003	0,00296298	0,00296298
74				0,002	0,002850349	0,00285034
75				0,002	0,002741999	0,00274
76				0	0,002637767	0,00263776
77				0	0,002537497	0,002537
78				0,002	0,002441037	0,00244104
79				0,005	0,002348243	0,00234825
80				0,002	0,002258975	0,00225898
				0	0,002173097	0,0021731

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereic
82				0,004	0,002090479	0,0020905
83				0	0,002010996	0,00201104
84				0,005	0,001934527	0,001934
85				0,002	0,001860953	0,0018610
86				0,001	0,001790161	0,0017903
87				0,001	0,001722039	0,00172226
88				0,003	0,001656481	0,00165679
89				0,003	0,00159338	0,0015938
90				0,001	0,001532634	0,00153322
91				0,002	0,001474141	0,00147494
92				0,002	0,001417801	0,0014745
93				0		
94					0,001363517	0,00136494
				0,001	0,001311192	0,00131305
95				0,002	0,001260729	0,00126314
96				0,001	0,001212034	0,0012151
97				0,001	0,001165012	0,0011689
98				0	0,001119572	0,00112450
99				0,002	0,001075622	0,0010817
100				0,001	0,001033074	0,00104063
101				0,002	0,000991838	0,00100108
102				0,002	0,000951833	0,00096302
103				0	0,000912975	0,0009264
104				0,001	0,000875189	0,00089120
105				0,001	0,000838402	0,00085732
106				0,001	0,000802548	0,00082473
107				0,001	0,000767564	0,00032473
107				0,001	0,000767364	0,00076322
109				0,001		
					0,000700003	0,00073421
110				0,002	0,000667339	0,00070630
111				0	0,000635376	0,00067945
112				0,001	0,000604091	0,0006536
113				0,001	0,00057347	0,00062878
114				0,002	0,000543507	0,00060488
115				0,002	0,000514203	0,00058188
116				0,001	0,000485566	0,00055976
117				0	0,000457612	0,00053849
118				0	0,000430361	0,00051802
119				0,001	0,00040384	0,0004983
120				0,001	0,000378076	0,00047938
121				0,001	0,000353101	0,00046116
122				0,001	0,000328949	0,00044363
123				0	0,000305651	0,000426
124				0	0,00028324	0,00041054
125				0,001	0,000261745	0,00039494
126				0,001	0,000241192	0,00037492
127				0,001	0,000241192	0,00037552
128				0	0,000221004	0,00035159
129				0,001		
					0,000185387	0,00033822
130				0	0,000168777	0,00032537
131				0	0,00015317	0,00031300
132				0	0,000138559	0,00030110
133				0,001	0,000124934	0,00028965
134				0	0,000112277	0,00027864
135				0	0,000100566	0,00026803
136				0,002	8,98E-05	0,00025786
137				0	7,99E-05	0,0002480
138				0	7,08E-05	0,00023863
139				0	6,26E-05	0,00022956
140				0,001	5,51E-05	0,00022083
141				0,001	4,83E-05	0,00021244
142				0,003	4,23E-05	0,00020436
143				0,005	3,68E-05	0,00019659
144				0	3,20E-05	0,0001903
145				0	2,76E-05	0,0001891
146				0	2,76E-05 2,38E-05	0,0001750
147				0	2,05E-05	0,00016830
148				0	1,75E-05	0,00016196
149				0	1,49E-05	0,0001558
150				0	1,27E-05	0,00014988
151				0	1,08E-05	0,000144
152				0	9,07E-06	0,00013870
153				0	7,63E-06	0,00013343
154				0	6,39E-06	0,00012830
155				0	5,33E-06	0,00012348
156				0	4,44E-06	0,000118
157				0	3,68E-06	0,0001142
158				0	3,04E-06	0,0001142
159				0	2,50E-06	0,00010575
160				0	2,05E-06	0,00010173
					1,67E-06	9,79E-0
161						
				0	1,36E-06 1,11E-06	9,41E-0 9,06E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
165				0	7,21E-07	8,38E-0
166				0	5,79E-07	8,06E-0
167				0	4,63E-07	7,76E-0
168				0	3,69E-07	7,46E-0
169				0	2,93E-07	7,18E-0
170				0	2,32E-07	6,90E-0
171				0	1,83E-07	6,64E-0
172				0	1,44E-07	6,39E-0
				0		
173					1,13E-07	6,15E-0
174				0	8,81E-08	5,91E-0
175				0	6,86E-08	5,69E-0
176				0	5,32E-08	5,47E-0
177				0,001	4,11E-08	5,26E-0
178				0	3,17E-08	5,06E-0
179				0	2,43E-08	4,87E-0
180				0,001	1,86E-08	4,69E-0
181				0	1,42E-08	4,51E-0
182				0	1,08E-08	4,34E-0
183				0	8,16E-09	4,17E-0
184				0	6,16E-09	4,01E-0
185				0	4,63E-09	3,86E-0
186				0	3,47E-09	3,71E-0
187				0	2,60E-09	3,57E-0
188				0	1,93E-09	3,44E-0
189				0	1,43E-09	3,31E-0
190				0	1,06E-09	3,18E-0
191				0	7,83E-10	
						3,06E-0
192				0	5,75E-10	2,94E-0
193				0	4,21E-10	2,83E-0
194				0	3,08E-10	2,72E-0
195				0	2,24E-10	2,62E-0
196				0	1,62E-10	2,52E-0
197				0	1,17E-10	2,43E-0
198				0	8,46E-11	2,33E-0
199				0,001	6,08E-11	2,24E-0
200				0,001	4,35E-11	2,16E-0
				0		
201					3,10E-11	2,08E-0
202				0	2,21E-11	2,00E-0
203				0	1,57E-11	1,92E-0
204				0	1,11E-11	1,85E-0
205				0	7,79E-12	1,78E-0
206				0	5,47E-12	1,71E-0
207				0	3,83E-12	1,65E-0
208				0	2,67E-12	1,58E-0
209				0	1,86E-12	1,52E-0
210				0	1,29E-12	1,47E-0
211				0	8,90E-13	
						1,41E-0
212				0	6,13E-13	1,36E-0
213				0	4,21E-13	1,30E-0
214				0	2,88E-13	1,25E-0
215				0	1,96E-13	1,21E-0
216				0	1,33E-13	1,16E-0
217				0	9,05E-14	1,12E-0
218				0,001	6,11E-14	1,07E-0
219				-,	4,12E-14	1,03E-0
220					2,76E-14	9,95E-0
221						
					1,85E-14	9,57E-0
222					1,23E-14	9,20E-0
223					8,21E-15	8,85E-0
224					5,44E-15	8,52E-0
225					3,60E-15	8,19E-0
226					2,37E-15	7,88E-0
227					1,56E-15	7,58E-0
228					1,02E-15	7,29E-0
229					6,64E-16	7,02E-0
230					4,32E-16	6,75E-0
231					2,80E-16	6,49E-0
232					1,81E-16	6,25E-0
233					1,17E-16	6,01E-0
234					7,49E-17	5,78E-0
235					4,80E-17	5,56E-0
236					3,06E-17	5,35E-0
237					1,95E-17	5,15E-0
238					1,24E-17	4,95E-0
239						
					7,81E-18	4,76E-0
240					4,92E-18	4,58E-0
241					3,09E-18	4,41E-0
242					1,94E-18	4,24E-0
243					1,21E-18	4,08E-0
244					7,52E-19	3,92E-0
					4.66E-19	4 / /H-I
245 246					4,66E-19 2,88E-19	3,77E-0 3,63E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereic
248					1,09E-19	3,36E-0
249					6,69E-20	3,23E-0
250					4,09E-20	3,11E-0
251					2,49E-20	2,99E-0
252					1,51E-20	2,88E-0
253					9,12E-21	2,77E-0
254					5,50E-21	2,66E-0
255					3,31E-21	2,56E-0
256					1,98E-21	2,46E-0
257					1,18E-21	2,37E-0
258					7,04E-22	2,28E-0
259					4,17E-22	2,19E-0
260					2,47E-22	2,11E-0
261					1,46E-22	2,03E-0
262					8,55E-23	1,95E-0
263						
264					5,01E-23	1,88E-0
					2,92E-23	1,81E-0
265					1,70E-23	1,74E-0
266					9,87E-24	1,67E-0
267					5,71E-24	1,61E-0
268					3,29E-24	1,55E-0
269					1,89E-24	1,49E-0
270					1,08E-24	1,43E-0
271					6,17E-25	1,38E-0
272					3,51E-25	1,33E-0
273					1,99E-25	1,28E-0
274					1,13E-25	1,23E-0
275					6,34E-26	1,18E-0
276					3,56E-26	1,14E-0
277					1,99E-26	1,09E-0
278					1,11E-26	1,05E-0
279					6,17E-27	1,01E-0
280						
					3,42E-27	9,72E-0
281					1,89E-27	9,35E-0
282					1,04E-27	9,00E-0
283					5,70E-28	8,66E-0
284					3,12E-28	8,33E-0
285					1,70E-28	8,01E-0
286					9,21E-29	7,71E-0
287					4,99E-29	7,41E-0
288					2,69E-29	7,13E-0
289					1,44E-29	6,86E-0
290					7,74E-30	6,60E-0
291					4,13E-30	6,35E-0
292					2,20E-30	6,11E-
293					1,16E-30	5,87E-0
294					6,15E-31	5,65E-0
295					3,24E-31	5,44E-0
296					1,70E-31	
297						5,23E-
					8,87E-32	5,03E-0
298					4,62E-32	4,84E-0
299					2,40E-32	4,66E-0
300					1,24E-32	4,48E-0
301					6,38E-33	4,31E-0
302					3,28E-33	4,14E-
303					1,68E-33	3,99E-
304					8,54E-34	3,84E-
305					4,34E-34	3,69E-0
306					2,19E-34	3,55E-0
307					1,11E-34	3,41E-0
308					5,55E-35	3,28E-0
309					2,78E-35	3,16E-0
310					1,38E-35	3,04E-0
311					6,88E-36	2,92E-
312					3,40E-36	2,81E-
313					1,68E-36	2,71E-
					8,23E-37	
314						2,60E-0
315					4,02E-37	2,50E-0
316					1,96E-37	2,41E-0
317					9,50E-38	2,32E-0
318					4,59E-38	2,23E-0
319					2,21E-38	2,14E-0
320					1,06E-38	2,06E-0
321					5,06E-39	1,98E-0
322					2,41E-39	1,91E-0
323					1,14E-39	1,84E-0
324					5,37E-40	1,77E-0
325					2,52E-40	1,70E-0
326					1,18E-40	1,64E-0
327					5,50E-41	1,57E-0
220						
328 329					2,55E-41 1,18E-41	1,51E-0 1,46E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
331					2,48E-42	1,35E-0
332					1,13E-42	1,30E-0
333					5,13E-43	1,25E-0
334					2,32E-43	1,20E-0
335					1,04E-43	1,15E-0
336					4,66E-44	1,11E-0
337					2,08E-44	1,07E-0
338					9,21E-45	1,03E-0
339					4,07E-45	9,88E-0
340					1,79E-45	9,50E-0
341						
					7,81E-46	9,14E-0
342					3,40E-46	8,80E-0
343					1,47E-46	8,46E-0
344					6,34E-47	8,14E-0
345					2,72E-47	7,83E-0
346					1,16E-47	7,53E-0
347					4,91E-48	7,25E-0
348					2,07E-48	6,97E-0
349					8,71E-49	6,71E-0
350					3,64E-49	6,45E-0
351					1,51E-49	6,21E-0
352					6,24E-50	5,97E-0
353					2,56E-50	5,74E-0
354					1,05E-50	5,52E-0
355					4,25E-51	5,31E-0
356					1,72E-51	5,11E-0
357					6,89E-52	4,92E-0
358					2,75E-52	4,73E-0
359					1,09E-52	4,55E-0
360					4,30E-53	4,38E-0
361					1,68E-53	4,21E-0
362					6,55E-54	4,05E-0
363					2,53E-54	3,90E-0
364					9,72E-55	3,75E-0
365					3,71E-55	3,61E-0
366					1,41E-55	3,47E-0
367					5,29E-56	3,34E-0
368					1,97E-56	3,21E-0
369					7,32E-57	3,09E-0
370					2,70E-57	2,97E-0
371					9,85E-58	2,86E-0
372					3,57E-58	2,75E-0
373					1,28E-58	2,65E-0
374					4,58E-59	2,55E-0
375					1,62E-59	2,45E-0
376					5,68E-60	2,36E-0
377					1,98E-60	2,27E-0
378					6,81E-61	2,18E-0
379					2,33E-61	2,10E-0
380					7,87E-62	2,02E-0
381					2,64E-62	1,94E-0
382					8,75E-63	1,87E-0
383					2,87E-63	1,80E-0
384					9,33E-64	1,73E-0
385					3,00E-64	1,66E-0
386					9,54E-65	1,60E-0
387					3,00E-65	1,54E-0
388					9,30E-66	1,48E-0
389					2,85E-66	1,42E-0
390					8,64E-67	1,37E-0
391					2,58E-67	1,32E-0
392					7,60E-68	1,27E-0
393					2,21E-68	1,22E-0
394					6,31E-69	1,17E-0
395					1,78E-69	1,13E-0
396					4,93E-70	1,08E-0
397					1,34E-70	1,04E-0
398					3,59E-71	1,00E-0
399					9,42E-72	9,66E-0
400					2,42E-72	9,29E-0
401					6,11E-73	8,94E-0
402						
					1,51E-73	8,60E-0
403					3,62E-74	8,27E-0
404					8,50E-75	7,96E-0
405					1,94E-75	7,65E-0
					4,31E-76	7,36E-0
406						
406					9,29E-77	7,08E-0
407					1,94E-77	6,81E-0
407 408					1,7 12 77	.,.
407					3,89E-78	
407 408 409					3,89E-78	6,56E-0
407 408 409 410					3,89E-78 7,52E-79	6,56E-0 6,31E-0
407 408 409					3,89E-78	

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
414					6,54E-82	5,40E-0
415					9,71E-83	5,20E-0
416					1,34E-83	5,00E-0
417					1,70E-84	4,81E-0
418					1,95E-85	4,63E-0
419					1,99E-86	4,45E-0
420						4,28E-0
					1,76E-87	
421					1,30E-88	4,12E-0
422					7,50E-90	3,96E-0
423					3,02E-91	3,81E-0
424					6,41E-93	3,67E-0
425						3,53E-0
426						3,39E-0
427						
						3,26E-0
428						3,14E-0
429						3,02E-0
430						2,91E-0
431						2,79E-0
432						2,69E-0
433						2,59E-0
434						2,49E-0
435						2,39E-0
436						2,30E-0
437						2,21E-0
438						2,13E-0
439						2,05E-0
440						1,97E-0
441						1,90E-0
442						1,82E-0
443						1,76E-0
444						
						1,69E-0
445						1,62E-0
446						1,56E-0
447						1,50E-0
448						1,45E-0
449						1,39E-0
450						1,34E-0
451						1,29E-0
452						1,24E-0
453						1,19E-0
454						1,15E-0
455						
						1,10E-0
456						1,06E-0
457						1,02E-0
458						9,82E-1
459						9,44E-1
460						9,08E-1
461						8,74E-1
462						8,41E-1
463						8,09E-1
464						7,78E-1
465						7,48E-1
466						7,20E-1
467						6,93E-1
468						6,66E-1
469						6,41E-1
470						6,17E-1
471						5,93E-1
472						5,71E-1
473						5,49E-1
474						5,28E-1
475						5,08E-1
476						4,89E-1
477						4,70E-1
478						4,52E-1
479						4,35E-1
480						4,18E-1
481						4,03E-1
482						3,87E-1
483						3,73E-1
484						3,58E-1
485						3,45E-1
						3,32E-1
486						3,19E-1
486 487						3,07E-1
486 487						
486 487 488						2,95E-1
486 487 488 489						
486 487 488 489 490						
486 487 488 489						
486 487 488 489 490 491						2,73E-1
486 487 488 489 490 491 492						2,73E-1 2,63E-1
486 487 488 489 490 491 492 493						2,84E-1 2,73E-1 2,63E-1 2,53E-1
486 487 488 489 490 491 492						2,73E-1 2,63E-1
486 487 488 489 490 491 492 493						2,73E-1 2,63E-1 2,53E-1

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnung (Frequenzbereich)
497						2,17E-10
498						2,08E-10
499						2,00E-10
500						1,93E-10
501						1,85E-10
502						1,78E-10
503						1,72E-10
504						1,65E-10
505						1,59E-10
506						1,53E-10
507						1,47E-10
508						1,41E-10
509						1,36E-10
510						1,31E-10
511						1,26E-10

Tabelle 38: Dichtefunktionen für die Schleife bei 1000 Messungen, p=0.8 und $\varepsilon=0.01$.

(10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
0						1,21E-1
1	0,25852889	0,441660526				1,16E-1
2	0,207059752	0,254482928				1,12E-1
3	0,149083021	0,134610661				1,08E-1
4	0,10826267	0,087447802				1,04E-1
5	0,089331493	0,037337264				9,97E-1
6			0.597			
	0,063103924	0,019405551	0,587	0.004	0.00000000	9,60E-1
7	0,046933544	0,012527634	0,252	0,031	0,030351292	0,03035129
8	0,03293236	0,006632277	0,091	0,045	0,037338671	0,03733867
9	0,023663972	0,003193319	0,046	0,027	0,035415841	0,03541584
10	0.021100375	0,002702039	0,013	0,03	0,03359948	0,0335994
11			0,008	0,044	0,032889623	0,03288962
12			0,002	0,028	0,031617153	0.03161715
13						2/11.11.11.11
			0	0,036	0,030567709	0,03056770
14			0,001	0,031	0,029450642	0,02945064
15				0,024	0,028552573	0,02855257
16				0,033	0,028191069	0,02819106
17				0,019	0,025664738	0,02566473
18				0,03	0,024629629	0,02462962
19						
				0,021	0,023884142	0,02388414
20				0,018	0,023033513	0,02303351
21				0,02	0,022217642	0,02221764
22				0,023	0,02138696	0,0213869
23				0,027	0,020580078	0,02058007
24				0,026	0,01980375	0,0198037
25				0,011	0,019047185	0,01904718
26				0,023	0,018321599	0,01832159
27				0,012	0,017623721	0,01762372
28				0,022	0,016945513	0,01694551
29				0,011	0,016299666	0,01629966
30				0.014	0,015681514	0,01568151
31				0,02	0,015086421	0,01508642
32				0,009	0,014513847	0,01451384
33				0,013	0,013962527	0,01396252
34				0,013	0,013431812	0,01343181
35				0,013	0,012921209	0,01292120
36				0,014	0,012429962	0,01242996
37				0,01	0,011957378	0,01195737
38						
				0,006	0,011502808	0,01150280
39				0,009	0,011065503	0,01106550
40				0,007	0,01064486	0,0106448
41				0,006	0,010240234	0,01024023
42				0,005	0,009850988	0,00985098
43				0,014	0,009476536	0,00947653
44						
				0,01	0,009116312	0,00911631
45				0,009	0,008769775	0,00876977
46				0,011	0,008436408	0,00843641
47				0,007	0,008115712	0,00811571
48				0,009	0,007807203	0,00780721
49				0,008	0,007510415	0,00751044
50						
				0,009	0,007224897	0,00722494
51				0,006	0,006950212	0,00695030
52				0,007	0,006685934	0,00668610
53				0,006	0,006431646	0,0064319
54				0,01	0,00618694	0,00618745
55				0.006	0.005951408	0,00595225
56				0,005	0,005724644	
						0,0057259
57				0,006	0,005506239	0,0055083
58				0,006	0,005295774	0,00529894
59				0,005	0,005092824	0,00509751
60				0,004	0,004896948	0,00490374
61				0,005	0,004707695	0.00471733
						.,
62				0,004	0,004524597	0,0045380
63				0,01	0,004347177	0,00436551
64				0,002	0,004174945	0,00419957
65				0,002	0,004007412	0,00403993
66				0,003	0,00384409	0,00388636
67				0,002	0,0036845	0,00373863
				0,006	0,003528189	0,00359651
68				0,005	0,003374734	0,00345980
68 69				0,003	0,003223754	0,00332828
				0,005	0.003074925	0,0032017
69 70					0,002927984	0.00308006
69 70 71						
69 70 71 72				0,002		.,
69 70 71 72 73				0,003	0,002782742	0,00296298
69 70 71 72 73 74						0,00296298
69 70 71 72 73				0,003	0,002782742	0,00296298 0,00285034
69 70 71 72 73 74 75				0,003 0,002 0,002	0,002782742 0,002639088 0,002496994	0,00296298 0,00285034 0,00274
69 70 71 72 73 74 75 76				0,003 0,002 0,002 0	0,002782742 0,002639088 0,002496994 0,002356514	0,00296298 0,00285034 0,00274 0,00263776
69 70 71 72 73 74 75 76				0,003 0,002 0,002 0	0,002782742 0,002639088 0,002496994 0,002356514 0,002217782	0,00296298 0,00285034 0,00274 0,00263776 0,002537
69 70 71 72 73 74 75 76 77				0,003 0,002 0,002 0 0 0	0,002782742 0,002639088 0,002496994 0,002356514 0,002217782 0,002081009	0,00296298 0,00285034 0,00274 0,00263776 0,002537 0,00244104
69 70 71 72 73 74 75 76 77				0,003 0,002 0,002 0	0,002782742 0,002639088 0,002496994 0,002356514 0,002217782	0,00296298 0,00285034 0,00274 0,00263776 0,002537

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereic
82				0,004	0,001559808	0,0020905
83				0	0,001437904	0,00201104
84				0,005	0,001320187	0,001934
85				0,002	0,001207056	0,0018610
86				0,001	0,001098883	0,0017903
87				0,001	0,000995995	0,0017222
88				0,003	0,000898669	0,00165679
89				0,003	0,00080712	0,0015938
90				0,001	0,000721501	0,00153322
91				0,002	0,000641893	0,00147494
92				0	0,000568314	0,001418
93				0	0,000500712	
						0,00136494
94				0,001	0,000438977	0,0013130
95				0,002	0,000382939	0,0012631
96				0,001	0,000332381	0,001215
97				0,001	0,000287044	0,001168
98				0	0,000246635	0,0011245
99						
				0,002	0,000210838	0,001081
100				0,001	0,000179317	0,0010406
101				0,002	0,000151729	0,0010010
102				0,002	0,000127728	0,0009630
103				0	0,000106972	0,000926
104				0,001	8,91E-05	0,0008912
105				0,001	7,39E-05	0,00085732
106				0	6,09E-05	0,0008247
107				0,001	5,00E-05	0,0007933
108				0,001	4,08E-05	0,0007632
109				0	3,31E-05	0,0007342
110				0,002	2,68E-05	0,0007342
110						
				0	2,15E-05	0,0006794
112				0,001	1,72E-05	0,000653
113				0,001	1,37E-05	0,00062878
114				0,002	1,08E-05	0,00060488
115				0,002	8,54E-06	0,00058188
116				0,001	6,69E-06	0,00055976
117				0	5,22E-06	0,0005384
118				0	4,05E-06	0,0005180
119				0,001	3,12E-06	0,000498
120				0,001	2,40E-06	0,0004793
121				0,001	1,83E-06	0,0004611
122				0,001	1,40E-06	0,0004436
123				0	1,06E-06	0,000426
124				0	7,95E-07	0,0004105
125				0,001	5,96E-07	0,0003949
126				0,001	4,44E-07	0,0003799
127				0	3,29E-07	0,0003654
128				0	2,43E-07	0,0003515
129				0,001	1,79E-07	0,0003382
130				0	1,31E-07	0,0003253
131				0	9,51E-08	0,0003130
132				0	6,88E-08	0,0003011
133				0,001	4,96E-08	0,0002896
134				0,001	3,56E-08	0,0002786
135				0	2,54E-08	0,0002680
136				0,002	1,80E-08	0,0002578
137				0	1,27E-08	0,0002480
138				0	8,96E-09	0,0002386
139				0	6,27E-09	0,0002295
140				0,001	4,37E-09	0,0002208
141				0,001	3,03E-09	0,0002124
142				0,003	2,09E-09	0,0002043
143				0	1,44E-09	0,0001965
144				0	9,82E-10	0,0001891
145				0	6,68E-10	0,0001819
146				0	4,52E-10	0,000175
147				0	3,05E-10	0,0001683
148				0	2,04E-10	0,0001619
149				0	1,36E-10	0,000155
150				0	9,06E-11	0,0001498
151				0	5,99E-11	0,000144
				0		
					3,94E-11	0,0001387
152				0	2,58E-11	0,0001334
152 153				0	1,68E-11	0,0001283
152				0	1,09E-11	0,0001234
152 153						0,000118
152 153 154 155				(1)		
152 153 154 155 156				0	7,06E-12	
152 153 154 155 156 157				0	4,53E-12	0,0001142
152 153 154 155 156 157 158				0	4,53E-12 2,90E-12	0,0001142 0,0001099
152 153 154 155 156 157				0	4,53E-12	0,0001142 0,0001099
152 153 154 155 156 157 158				0	4,53E-12 2,90E-12	0,0001142 0,0001099 0,0001057
152 153 154 155 156 157 158 159 160				0 0 0	4,53E-12 2,90E-12 1,85E-12 1,17E-12	0,0001142 0,0001099 0,0001057 0,0001017
152 153 154 155 156 157 158 159 160				0 0 0 0	4,53E-12 2,90E-12 1,85E-12 1,17E-12 7,38E-13	0,0001142 0,0001099 0,0001057 0,0001017 9,79E-
152 153 154 155 156 157 158 159 160				0 0 0	4,53E-12 2,90E-12 1,85E-12 1,17E-12	0,0001142 0,0001099 0,0001057

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereic
165				0	1,11E-13	8,38E-0
166				0	6,86E-14	8,06E-0
167				0	4,20E-14	7,76E-0
168				0	2,57E-14	7,46E-0
169				0	1,56E-14	7,18E-0
170				0	9,41E-15	6,90E-0
171				Ö	5,66E-15	6,64E-0
172				0		
				0	3,39E-15	6,39E-0
173					2,02E-15	6,15E-0
174				0	1,20E-15	5,91E-0
175				0	7,06E-16	5,69E-0
176				0	4,14E-16	5,47E-0
177				0,001	2,42E-16	5,26E-0
178				0	1,41E-16	5,06E-0
179				0	8,15E-17	4,87E-0
180				0,001	4,69E-17	4,69E-0
181				0	2,69E-17	4,51E-0
182				0	1,53E-17	4,34E-0
				0		
183					8,70E-18	4,17E-0
184				0	4,91E-18	4,01E-0
185				0	2,76E-18	3,86E-0
186				0	1,54E-18	3,71E-0
187				0	8,59E-19	3,57E-0
188				0	4,75E-19	3,44E-0
189				0	2,62E-19	3,31E-0
190				0	1,43E-19	3,18E-0
191				0	7,82E-20	3,06E-0
192				0		
					4,24E-20	2,94E-0
193				0	2,29E-20	2,83E-0
194				0	1,23E-20	2,72E-0
195				0	6,57E-21	2,62E-0
196				0	3,49E-21	2,52E-0
197				0	1,84E-21	2,43E-0
198				0	9,70E-22	2,33E-0
199				0,001	5,07E-22	2,24E-0
200				0	2,64E-22	2,16E-0
201				0	1,37E-22	2,08E-0
				0		
202					7,03E-23	2,00E-0
203				0	3,60E-23	1,92E-0
204				0	1,83E-23	1,85E-0
205				0	9,29E-24	1,78E-0
206				0	4,68E-24	1,71E-0
207				0	2,34E-24	1,65E-0
208				0	1,17E-24	1,58E-0
209				0	5,78E-25	1,52E-0
210				0	2,84E-25	1,47E-0
211				0	1,39E-25	1,41E-0
212				0	6,77E-26	1,36E-0
213				0	3,28E-26	1,30E-0
214				0		
					1,58E-26	1,25E-0
215				0	7,53E-27	1,21E-0
216				0	3,58E-27	1,16E-0
217				0	1,69E-27	1,12E-0
218				0,001	7,93E-28	1,07E-0
219					3,70E-28	1,03E-0
220					1,71E-28	9,95E-
221					7,90E-29	9,57E-0
222					3,61E-29	9,20E-0
223					1,64E-29	8,85E-
224						
					7,41E-30	8,52E-0
225					3,32E-30	8,19E-0
226					1,48E-30	7,88E-0
227					6,54E-31	7,58E-
228					2,87E-31	7,29E-
229					1,25E-31	7,02E-
230					5,42E-32	6,75E-0
231					2,33E-32	6,49E-
232					9,93E-33	6,25E-
233					4,20E-33	6,01E-0
234					1,76E-33	5,78E-0
235					7,34E-34	5,56E-0
236					3,03E-34	5,35E-0
237					1,24E-34	5,15E-0
238					5,05E-35	4,95E-0
239					2,03E-35	4,76E-0
240					8,11E-36	4,58E-0
241					3,21E-36	
						4,41E-0
242					1,26E-36	4,24E-0
243					4,88E-37	4,08E-0
244					1,88E-37	3,92E-0
						0.000
245					7,14E-38	3,77E-0
					7,14E-38 2,69E-38	3,7/E-0 3,63E-0

A Berechnete und gemessene Funktionen

(10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
248					3,69E-39	3,36E-0
249					1,35E-39	3,23E-0
250					4,85E-40	3,11E-0
251					1,73E-40	2,99E-0
252					6,08E-41	2,88E-0
253					2,11E-41	2,77E-0
254					7,23E-42	2,66E-0
255					2,44E-42	2,56E-0
256					8,14E-43	2,46E-0
257					2,67E-43	2,37E-0
258					8,63E-44	2,28E-0
259					2,74E-44	2,19E-0
260						
					8,58E-45	2,11E-0
261					2,63E-45	2,03E-0
262					7,93E-46	1,95E-0
263					2,34E-46	1,88E-0
264					6,76E-47	1,81E-0
265					1,91E-47	1,74E-0
266					5,26E-48	1,67E-0
267					1,41E-48	1,61E-0
268					3,69E-49	1,55E-0
269					9,36E-50	1,49E-0
270					2,30E-50	1,43E-0
271					5,43E-51	1,38E-0
272					1,23E-51	1,33E-0
273					2,69E-52	1,28E-0
274					5,56E-53	1,23E-0
275					1,09E-53	1,18E-0
276					2,00E-54	1,14E-0
277					3,41E-55	
						1,09E-0
278					5,33E-56	1,05E-0
279					7,50E-57	1,01E-0
280					9,27E-58	9,72E-0
281					9,71E-59	9,35E-0
282					8,12E-60	9,00E-0
283					4,85E-61	8,66E-0
284					1,56E-62	8,33E-0
285						8,01E-0
286						7,71E-0
287						7,41E-0
288						7,13E-0
289						6,86E-0
290						6,60E-0
291						6,35E-0
292						6,11E-0
293						5,87E-0
294						
						5,65E-0
295						5,44E-0
296						5,23E-0
297						5,03E-0
298						4,84E-0
299						4,66E-0
300						4,48E-0
301						4,31E-0
302						4,14E-0
303						3,99E-0
304						3,84E-0
305						3,69E-0
306						3,55E-0
307						3,41E-0
308						3,28E-0
309						
						3,16E-0
310						3,04E-0
311						2,92E-0
312						2,81E-0
313						2,71E-0
314						2,60E-0
315						2,50E-0
316						2,41E-0
317						2,32E-0
318						2,23E-0
319						2,14E-0
320						2,06E-0
						1,98E-0
321						1,91E-0
321 322						
322						1,84E-0 1,77E-0
322 323						
322 323 324						
322 323 324 325						1,70E-0
322 323 324 325 326						1,70E-0 1,64E-0
322 323 324 325 326 327						1,70E-0
322 323 324 325 326						1,70E-0 1,64E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnum (Frequenzbereich
331						1,35E-0
332						1,30E-0
333						1,25E-0
334						1,20E-0
335						1,15E-0
336						1,11E-0
337						
						1,07E-0
338						1,03E-0
339						9,88E-0
340						9,50E-0
341						9,14E-0
342						8,80E-0
343						8,46E-0
344						8,14E-0
345						7,83E-0
346						7,53E-0
347						7,25E-0
348						6,97E-0
349						6,71E-0
350						6,45E-0
351						6,21E-0
352						5,97E-0
353						5,74E-0
354						5,52E-0
355						5,31E-0
356						5,11E-0
357						4,92E-0
358						4,73E-0
359						4,55E-0
360						4,38E-0
361						4,21E-0
362						4,05E-0
363						3,90E-0
364						
						3,75E-0
365						3,61E-0
366						3,47E-0
367						3,34E-0
368						3,21E-0
369						3,09E-0
370						2,97E-0
371						2,86E-0
372						2,75E-0
373						2,65E-0
374						2,55E-0
375						2,45E-0
376						2,36E-0
377						2,27E-0
378						2,18E-0
379						2,10E-0
380						2,02E-0
381						1,94E-0
382						1,87E-0
383						1,80E-0
384						1,73E-0
385						1,66E-0
386						1,60E-0
387						1,54E-0
388						1,48E-0
389						1,42E-0
390						1,37E-0
391						1,32E-0
392						1,27E-0
393						1,22E-0
394						1,17E-0
395						1,13E-0
396						1,08E-0
397						1,04E-0
398						1,00E-0
399						9,66E-0
400						9,29E-0
401						8,94E-0
402						8,60E-0
403						8,27E-0
404						7,96E-0
405						7,65E-0
406						7,36E-0
407						7,08E-0
408						
						6,81E-0
409						6,56E-0
410						6,31E-0
411						6,07E-0
412 413						5,84E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
414						5,40E-0
415						5,20E-0
416						5,00E-0
417						4,81E-0
418						4,63E-0
419						4,45E-0
420						4,28E-0
421						4,12E-0
422						3,96E-0
423						3,81E-0
424						3,67E-0
425						3,53E-0
426						
						3,39E-0
427						3,26E-0
428						3,14E-0
429						3,02E-0
430						2,91E-0
431						2,79E-0
432						2,69E-0
433						2,59E-0
434						2,49E-0
435						2,39E-0
436						2,30E-0
437						2,21E-0
438						2,13E-0
439						2,05E-0
440						1,97E-0
441						1,90E-0
442						1,82E-0
443						1,76E-0
444						1,69E-0
445						
						1,62E-0
446						1,56E-0
447						1,50E-0
448						1,45E-0
449						1,39E-0
450						1,34E-0
451						1,29E-0
452						1,24E-0
453						1,19E-0
454						1,15E-0
455						1,10E-0
456						1,06E-0
457						1,02E-0
458						9,82E-1
459						9,44E-1
460						9,08E-1
461						8,74E-1
462						8,41E-1
463						8,09E-1
464						7,78E-1
465						7,78E-1 7,48E-1
466						
						7,20E-1
467						6,93E-1
468						6,66E-1
469						6,41E-1
470						6,17E-1
471						5,93E-1
472						5,71E-1
473						5,49E-1
474						5,28E-1
475						5,08E-1
476						4,89E-1
477						4,70E-1
478						4,52E-1
479						4,35E-1
480						4,18E-1
481						4,03E-1
482						
482 483						3,87E-1
						3,73E-1
484						3,58E-1
485						3,45E-1
486						3,32E-1
487						3,19E-1
488						3,07E-1
489						2,95E-1
490						2,84E-1
491						2,73E-1
492						2,63E-1
493						2,53E-1
494						2,43E-1
495						2,34E-1

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnung (Frequenzbereich)
497						2,17E-10
498						2,08E-10
499						2,00E-10
500						1,93E-10
501						1,85E-10
502						1,78E-10
503						1,72E-10
504						1,65E-10
505						1,59E-10
506						1,53E-10
507						1,47E-10
508						1,41E-10
509						1,36E-10
510						1,31E-10
511						1,26E-10

Tabelle 39: Dichtefunktionen für die Schleife bei 10000 Messungen, p=0.4 und $\varepsilon=0.05$.

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereich
0						2,23E-0
1	0,279378088	0,45177434				1,92E-0
2	0,194889719	0,250379133				1,66E-0
3	0,15035555	0,138155899				1,43E-0
4	0,11413764	0,074916591				1,23E-0
5	0,082620224	0,036093418				1,06E-0
6	0,06080511	0,021989688	0,5918			9,13E-1
7	0,04411233	0,013800425	0,2419	0,1007	0,099201572	0,09920157
8	0,034108714	0,006369427	0,0986	0,1115	0,109750377	0,10975037
9	0,023622996	0,004094631	0,0382	0,1025	0,103210875	0,10321087
10	0,015969628	0,002426448	0,0175	0,0939	0,092093919	0,0920939
11			0,0072	0,0783	0,080508146	0,08050814
12			0,0038	0,0729	0,070463694	0,07046369
13			0,0006	0,0595	0,061783275	0,06178327
14			0,0004	0,0556	0,05481853	0,0548185
15				0.0442	0,048007593	0,04800823
16				0,0418	0,041811012	0,04181495
17				0,0352	0,032646002	0,03265947
18				0,0275	0,027740463	0,02777440
19				0,0247	0,024065278	0,02413541
20				0,0222	0,020907319	0,02103313
21						
				0,0168	0,018051569	0,01825439
22				0,0178	0,015500192	0,01580084
23				0,0132	0,01323227	0,01364880
24				0,011	0,011238009	0,01178384
25				0,0101	0,009475591	0,0101581
26				0,0076	0,007928178	0,00874803
27				0,0072	0,006576568	0,0075272
28				0,0072	0,005405577	0,00647383
29				0,0048	0,00440782	0,00557493
30				0,0039	0,003561622	0,0048046
31				0,0031	0,002848306	0,0041419
32				0,003	0,002252295	0,0035704
33				0,0035	0,001759791	0,00307745
34				0,0028	0,001357969	0,00265220
35				0.0021	0,001034549	0.0022855
36				0,0016	0,000777824	0,0019694
37				0,0017	0,000576979	0,0016970
38				0,0017	0,000422171	0,0014623
39						
				0,0011	0,000304618	0,00126000
40				0,0013	0,00021672	0,00108580
41				0,0012	0,000151995	0,0009356
42				0,0006	0,00010506	0,00080630
43				0,0009	7,16E-05	0,0006948
44				0,0004	4,80E-05	0,00059874
45				0,0006	3,17E-05	0,00051593
46				0,0005	2,06E-05	0,0004446
47				0,0004	1,32E-05	0,0003831
48				0,0006	8,33E-06	0,0003301:
49				0,0001	5,17E-06	0,00028450
50				0	3,15E-06	0,0002451
51				0,0001	1,89E-06	0,0002112
52				0,0005	1,12E-06	0,0001820
53				0,0003	6,49E-07	0,0001568
54				0,0005	3,71E-07	0,0001351
55				0,0005	2,08E-07	0.0001351
56				0,0003	1,15E-07	0,0001104
57				0,0003		
					6,20E-08	8,65E-
58				0	3,30E-08	7,45E-
59				0,0001	1,72E-08	6,42E-
60				0	8,80E-09	5,54E-0
61				0,0001	4,42E-09	4,77E-0
62				0,0001	2,17E-09	4,11E-0
63				0	1,05E-09	3,54E-0
64				0,0001	4,94E-10	3,05E-0
65				0	2,28E-10	2,63E-0
66				0	1,03E-10	2,27E-0
67				0	4,52E-11	1,95E-0
68				0	1,94E-11	1,68E-0
69				0,0001	8,08E-12	1,45E-0
70				0,0001	3,28E-12	1,25E-0
				0,0001	3,28E-12 1,29E-12	
71 72						1,08E-0
72				0,0001	4,89E-13	9,28E-0
73					1,79E-13	8,00E-0
74					6,28E-14	6,89E-0
75					2,11E-14	5,94E-0
76					6,79E-15	5,12E-0
77					2,07E-15	4,41E-0
78					5,90E-16	3,80E-0
79					1,56E-16	3,27E-0
80					3,71E-17	2,82E-

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
82	(8 /	.	,	(8 /	1,34E-18	2,10E-0
83					1,78E-19	1,81E-0
84					1,43E-20	1,56E-0
85					1,132 20	1,34E-0
86						1,16E-0
87						9,96E-0
88						8,58E-0
89						7,39E-0
90						6,37E-0
91						5,49E-0
92						4,73E-0
93						4,73E-0 4,08E-0
93						
94 95						3,51E-0
						3,03E-0
96						2,61E-0
97						2,25E-0
98						1,94E-0
99						1,67E-0
100						1,44E-0
101						1,24E-0
102						1,07E-0
103						9,20E-0
104						7,93E-0
105						6,84E-0
106						5,89E-0
107						5,08E-0
108						4,37E-0
109						3,77E-0
110						3,25E-0
111						2,80E-0
112						2,41E-0
113						2,08E-0
114						1,79E-0
115						1,54E-0
116						1,33E-0
117						1,15E-0
118						9,87E-0
119						8,51E-0
120						7,33E-0
121						6,32E-0
122						5,45E-0
123						4,69E-0
123						4,04E-0
124						3,48E-0
125						3,48E-0 3,00E-0
120						3.00E-0

Tabelle 40: Dichtefunktionen für die Schleife bei 10000 Messungen, p=0.4 und $\varepsilon=0.01$.

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
0						2,23E-0
1	0,279378088	0,45177434				1,92E-0
2	0,194889719	0,250379133				1,66E-0
3	0,15035555	0,138155899				1,43E-0
4	0,11413764	0,074916591				1,23E-0
5	0,082620224	0,036093418				
			0.5010			1,06E-0
6	0,06080511	0,021989688	0,5918	0.1007	0.000201572	9,13E-1
7	0,04411233	0,013800425	0,2419	0,1007	0,099201572	0,09920157
8	0,034108714	0,006369427	0,0986	0,1115	0,109750377	0,10975037
9	0,023622996	0,004094631	0,0382	0,1025	0,103210875	0,10321087
10	0,015969628	0,002426448	0,0175	0,0939	0,092093919	0,0920939
11			0,0072	0,0783	0,080508146	0,08050814
12			0.0038	0,0729	0.070463694	0,07046369
13			0,0006	0,0595	0,061783275	0,06178327
14			0,0004	0,0556	0,05481853	0,0548185
			0,0004			
15				0,0442	0,048008238	0,04800823
16				0,0418	0,041814952	0,04181495
17				0,0352	0,032659474	0,03265947
18				0,0275	0,027774402	0,02777440
19				0,0247	0,024135413	0,02413541
20				0,0222	0,021033124	0,02103313
21				0,0168	0,018254327	0,01825439
22						
				0,0178	0,015800622	0,01580084
23				0,0132	0,013648205	0,01364880
24				0,011	0,011782478	0,01178384
25				0,0101	0,010155377	0,01015815
26				0,0076	0,008742934	0,00874803
27				0,0072	0,007518569	0,00752721
28				0,0072	0,006460156	0,00647385
29				0,0048	0,005554448	0,00557493
30				0,0039	0,004775486	0,00480465
31				0,0031	0,004102157	0,00414191
32				0,003	0,003518326	0,00357047
33				0,0035	0,003011353	0,00307745
34				0,0028	0,002570973	0,00265220
35				0,0021	0,002188495	0,00228555
36				0,0016	0,001856446	0,00196947
37				0,0017	0,001568515	0,00150547
38				0,0019	0,001319299	0,00146232
39				0,0011	0,001104125	0,00126006
40				0,0013	0,000918971	0,00108580
41				0,0012	0,000760295	0,00093567
42				0,0006	0,000624963	0,00080630
43				0.0009	0,000510188	0,0006948
44				0,0004	0,000413464	0,00059874
45				0,0006	0,000332525	0,00051595
46				0,0005	0,000332323	
						0,00044461
47				0,0004	0,000209941	0,00038313
48				0,0006	0,000164723	0,00033015
49				0,0001	0,000128121	0,00028450
50				0	9,88E-05	0,00024516
51				0,0001	7,54E-05	0,00021126
52				0,0005	5,71E-05	0,00018205
53						
				0,0003	4,28E-05	0,00015687
54				0,0005	3,18E-05	0,00013518
55				0	2,34E-05	0,00011649
56				0,0003	1,70E-05	0,00010038
57				0,0001	1,23E-05	8,65E-0
58				0	8,78E-06	7,45E-0
59				0,0001	6,21E-06	6,42E-0
60				0,0001	4,35E-06	5,54E-0
61				0,0001	3,01E-06	4,77E-0
62				0,0001	2,07E-06	4,11E-0
63				0	1,40E-06	3,54E-0
64				0,0001	9,44E-07	3,05E-0
65				0	6,28E-07	2,63E-0
66				0	4,14E-07	2,27E-0
67				0	2,70E-07	1,95E-0
68				0 0001	1,74E-07	1,68E-0
69				0,0001	1,11E-07	1,45E-0
70				0	7,00E-08	1,25E-0
71				0,0001	4,37E-08	1,08E-0
72				0,0001	2,70E-08	9,28E-0
73				,,,,,,	1,65E-08	8,00E-0
74					9,99E-09	6,89E-0
75					5,98E-09	5,94E-0
76					3,54E-09	5,12E-0
77					2,07E-09	4,41E-0
78					1,20E-09	3,80E-0
79					6,85E-10	3,27E-0
19						
80					3,87E-10	2,82E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
82	(gemessen)	(genressen)	(genressen)	(genressen)	1,20E-10	2,10E-0
83					6,53E-11	1,81E-0
84					3,53E-11	1,56E-0
85					1,88E-11	1,34E-0
86					9,90E-12	1,16E-0
87					5,15E-12	9,96E-0
88					2,65E-12	8,58E-0
89					1,34E-12	7,39E-0
90					6,72E-13	6,37E-0
91					3,32E-13	5,49E-0
92					1,62E-13	3,49E-0 4,73E-0
92					7,76E-14	
93						4,08E-0
94 95					3,68E-14	3,51E-0
					1,72E-14	3,03E-0
96					7,89E-15	2,61E-0
97					3,57E-15	2,25E-0
98					1,59E-15	1,94E-0
99					6,96E-16	1,67E-0
100					3,00E-16	1,44E-0
101					1,27E-16	1,24E-0
102					5,26E-17	1,07E-0
103					2,14E-17	9,20E-0
104					8,53E-18	7,93E-0
105					3,33E-18	6,84E-0
106					1,27E-18	5,89E-0
107					4,72E-19	5,08E-0
108					1,71E-19	4,37E-0
109					6,02E-20	3,77E-0
110					2,06E-20	3,25E-0
111					6,82E-21	2,80E-0
112					2,18E-21	2,41E-0
113					6,70E-22	2,08E-0
114					1,97E-22	1,79E-0
115					5,54E-23	1,54E-0
116					1,47E-23	1,33E-0
117					3,65E-24	1,15E-0
118					8,40E-25	9,87E-0
119					1,76E-25	8,51E-0
120					3,27E-26	7,33E-0
121					5,22E-27	6,32E-0
122					6,78E-28	5,45E-0
123					6,45E-29	4,69E-0
124					3,43E-30	4,04E-0
125					-, 20	3,48E-0
126						3,00E-0
127						2,59E-0

Tabelle 41: Dichtefunktionen für die Schleife bei 10000 Messungen, p=0.8 und $\varepsilon=0.05$.

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereic
0	0.00000000	0.450.100.15				9,08E-1
1	0,276206025	0,45049345				8,73E-1
2	0,206243654	0,245705621				8,39E-1
3	0,151352858	0,138116191				8,07E-1
4	0,108288371	0,074701071				7,76E-1
5	0,079479165	0,041141522				7,46E-1
6	0,058414797	0,023690556	0,5904			7,17E-1
7	0,043880781	0,012653193	0,2371	0,0386	0,032614407	0,03261440
8	0,033627332	0,006960499	0,1018	0,0358	0,03745094	0,0374509
9	0,024707826	0,00484749	0,0432	0,0356	0,036521917	0,03652191
10	0,017659824	0,001690407	0,0165	0,0307	0,034472283	0,03447228
11	0,000119458		0,0066	0,032	0,032843964	0,03284396
12	1,99E-05		0,0025	0,0292	0,031581896	0,03158189
13			0,001	0,0302	0,030625436	0,03062543
14			0,0006	0,0292	0,029859941	0,02985994
15			0,0002	0,0278	0,029023027	0,02902302
16			0,0001	0,0288	0,028149464	0,02814946
17				0,024	0,025852039	0,02585203
18				0,0212	0,024883027	0,02488302
19				0,0245	0,02403482	0,0240348
20				0,0219	0,02317445	0,0231744
21				0,0226	0,022314556	0,02231455
22				0,0214	0,021470935	0,02147093
23				0,0175	0,020653006	0,02065300
24				0,0175	0,019861974	0,02003300
25				0,0193	0,019097262	0,01909720
26				0,0176	0,018358472	0,0190972
27				0,0178	0,017644656	0,0176446
28						
				0,0148	0,016957148	0,0169571
29				0,0157	0,016302069	0,0163020
30				0,0166	0,015674007	0,0156740
31				0,0182	0,015070176	0,0150701
32				0,0173	0,01448927	0,0144892
33				0,0153	0,013930482	0,01393048
34				0,0152	0,013393085	0,01339308
35				0,0146	0,012876311	0,0128763
36				0,0089	0,012379414	0,0123794
37				0,0115	0,011901677	0,0119016
38				0,0114	0,01144237	0,011442
39				0,0109	0,011000802	0,0110008
40				0,0109	0,010576313	0,0105763
41				0,009	0,010168221	0,0101682
42				0,0113	0,009775877	0,0097758
43				0,0114	0,009398669	0,0093986
44				0,0095	0,00903601	0,0090360
45				0,0091	0,008687342	0,0086873
46				0,0097	0,008352125	0,008352
47				0,009	0,008029838	0,008029
48				0,0069	0,007719979	0,0077200
49				0,0072	0,007422065	0,0074221
50				0,0071	0,007135624	0,0071357
51				0,0059	0,006860198	0,0068603
52				0,0069	0,006595341	0,0065956
53				0,0062	0,00634061	0,0063411
54				0,005	0,00609557	0,0060964
55				0.005	0,005859782	0.0058612
56				0,007	0,005632805	0,0056350
57				0,0077	0,005414192	0,0054176
58				0,0045	0,005203483	0,0052085
58 59					0,005203483	
				0,0057		0,0050076
60				0,0046	0,004803878	0,004814
61				0,0048	0,004614	0,004628
62				0,0043	0,004430061	0,0044500
63				0,0043	0,004251548	0,0042782
64				0,0042	0,004077941	0,0041132
65				0,0039	0,003908731	0,00395
66				0,0044	0,003743422	0,003801
67				0,0046	0,003581546	0,0036552
68				0,0032	0,003422673	0,0035141
69				0,0029	0,003266421	0,0033785
70				0,0032	0,003112469	0,00324
71				0,0044	0,002960565	0,0031228
72				0,0029	0,002810534	0,0030023
73				0,0043	0.002662284	0,0028865
74				0,0035	0,002002284	0,0027751
75				0,0035	0,002371187	0,0027731
76				0,0038	0,002371187	0.0025650
77				0,0038	0,002228376	0,0023630
						0,0024661
78 79				0,0025	0,001950386	.,
/4)				0,0029	0,001815454	0,0022794
80				0,0022	0,001683804	0,0021915

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereich
82				0,0024	0,001432003	0,00202565
83				0,0021	0,001312685	0,00194749
84				0,0023	0,001198284	0,00187234
85				0,0032	0,001089153	0,00180009
86						0,00173063
				0,0022	0,000985601	
87				0,0016	0,000887879	0,0016638
88				0,0017	0,000796175	0,00159965
89				0,0017	0,00071061	0,00153793
90				0,0017	0,000631237	0,00147858
91				0,0013	0,000558041	0,00142153
92				0,0007	0,00049094	0,00136668
93				0,0009	0,000429795	0,00131394
94				0,0011	0,000374409	0,00126324
95				0,0011	0,000374409	0,0012032
96				0,0005	0,000279913	0,0011676
97				0,0009	0,000240211	0,00112258
98				0,0015	0,000205103	0,00107926
99				0,0008	0,000174243	0,00103762
100				0,0008	0,000147279	0,00099758
101				0,0007	0,000123858	0,00095909
102				0,001	0,000103634	0,00092208
103				0,0008	8,63E-05	0,00088650
104				0,0007	7,15E-05	0,00085229
105				0,0012	5,89E-05	0,00081940
106				0,0008	4,83E-05	0,00078779
107				0,0005	3,94E-05	0,00075739
108				0,0006	3,20E-05	0,00072810
109				0,0006	2,58E-05	0,0007000
110				0,0005	2,07E-05	0,0006730
111				0,0007	1,66E-05	0,0006470
112				0,0007	1,32E-05	0,0006221
113				0,0007	1,04E-05	0,0005981
114				0,0009	8,23E-06	0,00057503
115				0,0003	6,45E-06	0,0005528
116				0	5,03E-06	0,0005315
117				0,0007	3,90E-06	0,00051100
118				0,0007	3,01E-06	0,0004912
119				0,0001	2,31E-06	0,0004723
120				0,0009		
					1,77E-06	0,0004541
121				0,0002	1,35E-06	0,0004365
122				0,0004	1,02E-06	0,0004197
123				0,0003	7,68E-07	0,00040353
124				0,0001	5,76E-07	0,0003879
125				0,0003	4,30E-07	0,00037299
126				0,0003	3,19E-07	0,00035860
127				0,0004	2,36E-07	0,00034470
128				0,0002	1,73E-07	0,00033146
129				0	1,27E-07	0,0003186
130				0,0004	9,24E-08	0,0003160
131				0,0001	6,70E-08	0,0002945
132				0,0002	4,83E-08	0,000283
133				0	3,47E-08	0,0002722
134				0	2,48E-08	0,0002617
135				0,0003	1,76E-08	0,0002516
136				0	1,25E-08	0,0002419
137				0,0002	8,80E-09	0,000232
138				0,0002	6,17E-09	0,000232
139				0,0002	4,30E-09	0,0002150
140				0	2,99E-09	0,0002067
141				0,0003	2,07E-09	0,0001987
142				0,0001	1,42E-09	0,0001910
143				0,0003	9,74E-10	0,0001836
144				0,0001	6,64E-10	0,0001766
145				0	4,50E-10	0,0001697
146				0,0004	3,04E-10	0,0001632
147				0	2,04E-10	0,0001569
148				0	1,37E-10	0,0001508
149				0,0003	9,10E-11	0,0001450
150				0,0002	6,03E-11	0,0001394
151				0,0003	3,98E-11	0,0001340
152				0,0002	2,61E-11	0,00012890
153				0,0001	1,70E-11	0,00012393
154				0,0001	1,11E-11	0,0001233
155				0,0004	7,17E-12	0,0001145
156				0,0003	4,62E-12	0,00011013
157				0,0002	2,96E-12	0,00010588
				0,0005	1,89E-12	0,00010179
158				0	1,20E-12	9,79E-0
158 159						
159				0,0001	7,59E-13	9,41E-0
159 160				0,0001	7,59E-13 4,78E-13	
159 160 161				0,0001 0	4,78E-13	9,41E-0 9,05E-0 8,70E-0
159 160				0,0001		

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereich
165				0	7,13E-14	7,73E-0
166				0,0003	4,38E-14	7,43E-0
167				0	2,68E-14	7,14E-0
168				0,0003	1,63E-14	6,87E-0
				0,0003		
169					9,87E-15	6,60E-0
170				0	5,95E-15	6,35E-0
171				0,0002	3,57E-15	6,10E-0
172				0,0001	2,13E-15	5,87E-0
173				0	1,27E-15	5,64E-0
174				0	7,48E-16	5,42E-0
175				0	4,40E-16	5,21E-0
176				0,0001	2,58E-16	5,01E-0
177				0,0001	1,50E-16	4,82E-0
178				0,0002	8,70E-17	4,63E-0
179				0,0003	5,02E-17	4,46E-0
180				0	2,88E-17	4,28E-0
181				0	1,64E-17	4,12E-0
182				0,0001	9,35E-18	3,96E-0
183				0	5,28E-18	3,81E-0
184				0,0003	2,97E-18	3,66E-0
185				0	1,66E-18	3,52E-0
186				0,0001	9,27E-19	3,38E-0
187				0,0001		
					5,13E-19	3,25E-0
188				0	2,83E-19	3,13E-0
189				0	1,55E-19	3,01E-0
190				0	8,47E-20	2,89E-0
191				0	4,59E-20	2,78E-0
192				0	2,48E-20	2,67E-0
193				0		
					1,33E-20	2,57E-0
194				0,0001	7,12E-21	2,47E-0
195				0	3,78E-21	2,37E-0
196				0	2,00E-21	2,28E-0
197				0	1,05E-21	2,19E-0
198				0,0001	5,49E-22	2,11E-0
199				0,0001		
					2,86E-22	2,03E-0
200					1,48E-22	1,95E-0
201					7,59E-23	1,87E-0
202					3,88E-23	1,80E-0
203					1,97E-23	1,73E-0
204					9,98E-24	1,67E-0
205					5,02E-24	
						1,60E-0
206					2,51E-24	1,54E-0
207					1,25E-24	1,48E-0
208					6,16E-25	1,42E-0
209					3,02E-25	1,37E-0
210					1,48E-25	1,32E-0
211					7,16E-26	1,26E-0
212					3,45E-26	1,22E-0
213					1,66E-26	1,17E-0
214					7,88E-27	1,12E-0
215					3,73E-27	1,08E-0
216					1,75E-27	1,04E-0
217					8,20E-28	9,99E-0
218					3,80E-28	9,60E-0
219					1,75E-28	9,23E-0
220					8,03E-29	8,88E-0
221					3,65E-29	8,53E-0
222					1,65E-29	8,20E-0
223						
					7,41E-30	7,89E-0
224					3,30E-30	7,58E-0
225					1,46E-30	7,29E-0
226					6,41E-31	7,01E-0
227					2,79E-31	6,74E-0
228					1,21E-31	6,48E-0
229					5,19E-32	6,23E-0
230					2,21E-32	5,99E-0
231					9,34E-33	5,76E-0
232					3,92E-33	5,53E-0
233					1,63E-33	5,32E-0
234					6,71E-34	5,12E-0
235					2,75E-34	4,92E-0
236					1,11E-34	4,73E-0
237					4,47E-35	4,55E-0
238					1,78E-35	
						4,37E-0
239					7,02E-36	4,20E-0
240					2,74E-36	4,04E-0
241					1,06E-36	3,88E-0
242					4,07E-37	3,73E-0
243					1,54E-37	3,59E-0
					5,79E-38	3,45E-0
244						
244 245					2,15E-38	3,32E-0
					2,15E-38 7,90E-39	3,32E-0 3,19E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
248					1,03E-39	2,95E-0
249					3,65E-40	2,84E-0
250					1,28E-40	2,73E-0
251					4,42E-41	2,62E-0
252					1,51E-41	2,52E-0
253					5,08E-42	2,42E-0
254					1,68E-42	2,33E-0
255					5,51E-43	2,24E-0
256					1,77E-43	2,15E-0
257					5,61E-44	2,07E-0
258					1,75E-44	1,99E-0
259					5,34E-45	1,91E-0
260					1,60E-45	1,84E-0
261					4,71E-46	1,77E-0
262					1,36E-46	1,70E-0
263					3,83E-47	1,63E-0
264						
					1,05E-47	1,57E-0
265					2,83E-48	1,51E-0
266					7,42E-49	1,45E-0
267					1,89E-49	1,40E-0
268					4,66E-50	1,34E-0
269						
					1,11E-50	1,29E-0
270					2,57E-51	1,24E-0
271					5,72E-52	1,19E-0
272					1,22E-52	1,15E-0
273					2,50E-53	1,10E-0
274						
					4,88E-54	1,06E-0
275					9,04E-55	1,02E-0
276					1,58E-55	9,80E-0
277					2,62E-56	9,42E-0
278					4,05E-57	9,06E-0
279					5,84E-58	8,71E-0
280					7,82E-59	8,37E-0
281					9,67E-60	8,05E-0
282					1,10E-60	7,74E-0
283					1,15E-61	7,44E-0
284					1,10E-62	7,15E-0
285					9,60E-64	6,88E-0
286					7,74E-65	6,61E-0
287					5,74E-66	6,36E-0
288					3,93E-67	6,11E-0
289					2,50E-68	5,87E-0
290						
					1,48E-69	5,65E-0
291					8,12E-71	5,43E-0
292					4,17E-72	5,22E-0
293					2,00E-73	5,02E-0
294					9,01E-75	4,83E-0
295					3,80E-76	4,64E-0
296						
					1,50E-77	4,46E-0
297					5,58E-79	4,29E-0
298					1,95E-80	4,12E-0
299					6,37E-82	3,96E-0
300					1,97E-83	3,81E-0
301					5,63E-85	
						3,66E-0
302					1,53E-86	3,52E-0
303					3,81E-88	3,39E-0
304					9,02E-90	3,26E-0
305					1,93E-91	3,13E-0
306					3,95E-93	3,01E-0
307					7,11E-95	2,89E-0
308					1,23E-96	2,78E-0
309					1,78E-98	2,67E-0
310					2,55E-100	2,57E-0
311					2,73E-102	2,47E-0
312						
					3,08E-104	2,38E-0
313					1,92E-106	2,28E-0
314					1,56E-108	2,20E-0
315						2,11E-0
316						2,03E-0
317						1,95E-0
318						1,88E-0
319						1,80E-0
320						1,73E-0
321						1,67E-0
322						1,60E-0
323						1,54E-0
324						1,48E-0
325						1,42E-0
326						1,37E-0
327						1,32E-0
						4.000.0
328						1,27E-0
						1,27E-0 1,22E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
331						1,13E-0
332						1,08E-0
333						1,04E-0
334						1,00E-0
335						9,61E-0
336						9,24E-0
337						8,89E-0
338						8,54E-0
339						8,21E-0
340						7,90E-0
341						7,59E-0
342						7,30E-0
343						7,02E-0
344						6,75E-0
345						6,49E-0
346						6,24E-0
347						5,99E-0
348						5,76E-0
349						
						5,54E-0
350						5,33E-0
351						5,12E-0
352						4,92E-0
353						4,73E-0
354						4,55E-0
355						4,38E-0
356						4,21E-0
357						4,04E-0
358						3,89E-0
359						3,74E-0
360						3,59E-0
361						3,46E-0
362						3,32E-0
363						3,19E-0
364						3,07E-0
365						2,95E-0
366						2,84E-0
367						2,73E-0
368						2,62E-0
369						2,52E-0
370						
						2,43E-0
371						2,33E-0
372						2,24E-0
373						2,15E-0
374						2,07E-0
375						1,99E-0
376						1,92E-0
377						1,84E-0
378						1,77E-0
379						1,70E-0
380						1,64E-0
381						1,57E-0
382						1,51E-0
383						1,45E-0
384						1,40E-0
385						1,34E-0
386						1,29E-0
387						1,24E-0
388						
						1,19E-0
389						1,15E-0
390						1,10E-0
391						1,06E-0
392						1,02E-0
393						9,81E-0
394						9,43E-0
395						9,07E-0
396						8,72E-0
397						8,38E-0
398						8,06E-0
399						7,75E-0
400						7,45E-0
401						7,16E-0
402						6,88E-0
403						6,62E-0
404						6,36E-0
405						6,12E-0
406						5,88E-0
407						5,65E-0
408						5,44E-0
409 410						5,23E-0
						5,02E-0
411 412						4,83E-0 4,64E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereich
414						4,29E-0
415						4,13E-0
416						3,97E-0
417						3,81E-0
418						3,67E-0
419						3,53E-0
420						3,39E-0
421						3,26E-0
422						3,13E-0
423						3,01E-0
424						2,90E-0
425						2,78E-0
426						2,68E-0
427						2,57E-0
428						2,47E-0
429						2,38E-0
430						2,29E-0
431						2,20E-0
432						2,11E-0
433						2,03E-0
434						1,95E-0
435						1,88E-0
436						
436						1,81E-0
437						1,74E-0
						1,67E-0
439 440						1,61E-0
						1,54E-0
441						1,48E-0
442						1,43E-0
443						1,37E-0
444						1,32E-0
445						1,27E-0
446						1,22E-0
447						1,17E-0
448						1,13E-0
449						1,08E-0
450						1,04E-0
451						1,00E-0
452						9,62E-1
453						9,25E-1
454						8,90E-1
455						8,55E-1
456						8,22E-1
457						7,91E-1
458						7,60E-1
459						7,31E-1
460						7,02E-1
461						6,75E-1
462						6,49E-1
463						6,24E-1
464						6,00E-1
465						5,77E-1
466						5,55E-1
467						5,33E-1
468						5,13E-1
469						4,93E-1
470						4,74E-1
471						4,56E-1
472						4,38E-1
473						4,38E-1
474						4,05E-1
474						3,89E-1
475 476						
476 477						3,74E-1
						3,60E-1
478						3,46E-1
479						3,33E-1
480						3,20E-1
481						3,07E-1
482						2,96E-1
483						2,84E-1
484						2,73E-1
485						2,63E-1
486						2,53E-1
487						2,43E-1
488						2,33E-1
489						2,24E-1
490						2,16E-1
491						2,07E-1
492						1,99E-1
493						1,92E-1
494						1,84E-1
494						1,77E-1
						1.//E-

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnung (Frequenzbereich)
497						1,64E-10
498						1,57E-10
499						1,51E-10
500						1,46E-10
501						1,40E-10
502						1,35E-10
503						1,29E-10
504						1,24E-10
505						1,20E-10
506						1,15E-10
507						1,11E-10
508						1,06E-10
509						1,02E-10
510						9,82E-11
511						9,44E-11

Tabelle 42: Dichtefunktionen für die Schleife bei 10000 Messungen, p=0.8 und $\varepsilon=0.01$.

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
0	-					9,08E-1
1	0,276206025	0,45049345				8,73E-1
2	0,206243654	0,245705621				8,39E-1
3	0,151352858	0,138116191				8,07E-1
4	0,108288371	0,074701071				7,76E-1
5	0,079479165	0,041141522				7,46E-1
6	0,058414797	0,023690556	0,5904			7,17E-1
7	0,043880781	0,012653193	0,2371	0,0386	0,032614407	0,03261440
8	0,033627332	0,006960499	0,1018	0,0358	0,03745094	0,0374509
9	0,024707826	0,00484749	0,0432	0,0356	0,036521917	0,03652191
10	0,017659824	0,001690407	0,0165	0,0307	0,034472283	0,03447228
11	0,000119458		0,0066	0,032	0,032843964	0,03284396
12	1,99E-05		0,0025	0,0292	0,031581896	0,03158189
13			0,001	0,0302	0,030625436	0,03062543
14			0,0006	0,0292	0,029859941	0,02985994
15			0,0002	0,0278	0,029023027	0,02902302
16			0,0001	0,0288	0,028149464	0,02814946
17				0,024	0,025852039	0,02585203
18				0,0212	0,024883027	0,02488302
19				0,0245	0,02403482	0,0240348
20				0,0219	0,02317445	0,0231744
21				0,0226	0,022314556	0,02231455
22				0,0214	0,021470935	0,02147093
23				0,0175	0,020653006	0,02065300
24				0,0195	0,019861974	0,01986197
25				0,0187	0,019097262	0,01909726
26				0,0176	0,018358472	0,01835847
27				0,0188	0,017644656	0,01764465
28				0,0148	0,016957148	0,01695714
29				0,0157	0,016302069	0,01630206
30				0,0166	0,015674007	0,01567400
31				0,0182	0,015070176	0,01507017
32				0,0173	0,01448927	0,0144892
33				0,0153	0,013930482	0,01393048
34				0,0152	0,013393085	0,01339308
35				0,0146	0,012876311	0,01287631
36				0,0089	0,012379414	0,01237941
37				0,0115	0,011901677	0,01190167
38				0,0114	0,01144237	0,0114423
39				0,0109	0,011000802	0,01100080
40				0,0109	0,010576313	0,01057631
41				0,009	0,010168221	0,01016822
42				0,0113	0,009775878	0,00977587
43				0,0114	0,009398669	0,00939866
44				0,0095	0,009036011	0,00903601
45				0,0091	0,008687345	0,00868734
46				0,0097	0,00835213	0,0083521
47				0,009	0,00802985	0,0080298
48				0,0069	0,007720006	0,00772000
49				0,0072	0,007422117	0,00742211
50				0,0071	0,007135724	0,00713572
51				0,0059	0,006860381	0,00686038
52				0,0069	0,006595664	0,00659566
53				0,0062	0,006341161	0,00634116
54				0,005	0,006096478	0,00609647
55				0,005	0,005861236	0,00586123
56				0,0077	0,005635072	0,00563507
57				0,0048	0,005417634	0,00541763
58				0,0045	0,005208587	0,00520858
59				0,0057	0,005007606	0,00500760
60				0,0046	0,00481438	0,0048143
61				0,0048	0,00462861	0,0046286
62				0,0043	0,004450009	0,00445000
63				0,0043	0,004278299	0,00427829
64				0,0042	0,004113214	0,00411321
65				0,0039	0,0039545	0,003954
66				0,0044	0,00380191	0,0038019
67				0,0046	0,003655207	0,00365520
68				0,0032	0,003514166	0,00351416
69				0,0029	0,003378567	0,00337856
70				0,0032	0,0032482	0,003248
71				0,0032	0,003122863	0,00312286
72				0,0029	0,003122803	0,00312280
73				0,0029	0,003002302	0,00300230
74				0,0045	0,002880311	0,00288031
75				0,0035	0,002773131	0,00277313
75 76				0,0038	0,002565095	0,00256509
76 77					0,002565095	
				0,0024		0,00246612 0,00237096
78 70				0,0025	0,00237095	.,
79				0,0029	0,002279456	0,00227947
80				0,0022	0,002191489	0,00219151

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereich
82				0,0024	0,002025589	0,00202565
83				0,0021	0,001947394	0,00194749
84				0,0023	0,001872201	0,00187234
85				0,0032	0,001799891	0,00180009
86				0,0022	0,001730345	0,00173063
87				0,0016	0,001663449	0,00175005
88				0,0017	0,001599091	0,00159965
89				0,0017	0,001537161	0,00153793
90				0,0017	0,001477551	0,00147858
91				0,0013	0,001420156	0,00142153
92				0,0007	0,001364871	0.00136668
93				0,0009	0,001311592	0,00131394
94						
				0,0011	0,001260218	0,00126324
95				0,0015	0,001210649	0,00121450
96				0,0005	0,001162784	0,0011676
97				0,0009	0,001116528	0,00112258
98				0,0015	0,001071783	0,00107926
99				0,0008	0,001028458	0,00103762
100				0,0008	0,000986462	0,00099758
101				0,0007	0,000945709	0,00095909
102				0,001	0,000906116	0,00092208
103				0,0008	0,000867607	0,00088650
104				0,0007	0,00083011	0,00085229
105				0,0012		
					0,00079356	0,00081940
106				0,0008	0,000757898	0,00078779
107				0,0005	0,000723075	0,00075739
108				0,0006	0,000689048	0,00072816
109				0,0006	0,000655783	0,00070007
110				0,0005	0,000623255	0,00067305
111				0,0007	0,000591446	0,00064708
112				0,0007	0,000560348	0,00062211
113				0,0007	0,000529961	0,0005981
114				0,0009	0,000500292	0,00057503
115				0,0003	0,000471353	0,00055284
116				0	0,000443165	0,00053151
117				0,0007	0,000415751	0,00051100
118				0,0007	0,000389139	0,00049128
119				0,0001	0,000363359	0,00047232
120				0,0009	0,000338444	0,00045410
121				0,0002	0,000314425	0,00043658
122				0,0004	0,000291332	0,00041973
123				0,0003	0,000269194	0,00040353
124				0,0001	0,000248036	0,00038796
125				0,0003	0,00022788	0,00037299
126				0,0003	0,000208742	0,00035860
127				0,0004	0,000190633	0,00034476
128				0,0002	0,000173559	0,00033146
129				0	0,00015752	0,00031863
130				0,0004	0,000142508	0,0003163
131				0,0001	0,00012851	0,00029455
132				0,0002	0,000115509	0,0002831
133				0	0,000103481	0,00027226
134				0	9,24E-05	0,00026175
135				0,0003	8,22E-05	0,00025165
136				0,0003	7,29E-05	0,00024194
137				0,0002	6,44E-05	0,0002326
138				0,0001	5,68E-05	0,00022363
139				0,0002	4,98E-05	0,00021500
140				0	4,36E-05	0,00020670
141				0,0003	3,80E-05	0,00019873
142				0.0001	3,30E-05	0,0001910
				.,	- ,	
143				0,0003	2,86E-05	0,00018369
144				0,0001	2,46E-05	0,00017660
145				0	2,12E-05	0,00016978
146				0,0004	1,81E-05	0,00016323
147				0,0001	1,55E-05	0,00015693
148						
				0	1,32E-05	0,00015088
149				0,0003	1,12E-05	0,0001450
150				0,0002	9,42E-06	0,0001394
151				0,0003	7,93E-06	0,00013408
152				0,0002	6,65E-06	0,00012890
153				0,0001	5,55E-06	0,00012393
133						
154				0	4,62E-06	0,00011915
154				0,0004	3,84E-06	0,0001145
155				0,0003	3,17E-06	0,00011013
				0,0002	2,61E-06	0,0001058
155 156				J,0002		0,0001030
155 156 157				0.0005	2.15E-06	
155 156 157 158				0,0005	2,15E-06	
155 156 157 158 159				0	1,76E-06	9,79E-0
155 156 157 158 159 160				0,0001	1,76E-06 1,43E-06	9,79E-0 9,41E-0
155 156 157 158 159				0	1,76E-06	9,79E-0
155 156 157 158 159 160				0,0001 0	1,76E-06 1,43E-06 1,16E-06	9,79E-0 9,41E-0 9,05E-0
155 156 157 158 159 160 161				0,0001	1,76E-06 1,43E-06	9,79E-0 9,41E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
165				0	4,89E-07	7,73E-0
166				0,0003	3,91E-07	7,43E-0
167				0	3,11E-07	7,14E-0
168				0,0003	2,47E-07	6,87E-0
169				0,0001	1,95E-07	6,60E-0
170				0,0001	1,54E-07	6,35E-0
171				0,0002	1,21E-07	6,10E-0
172				0,0002		
					9,43E-08	5,87E-0
173				0	7,35E-08	5,64E-0
174				0	5,71E-08	5,42E-0
175				0	4,42E-08	5,21E-0
176				0,0001	3,41E-08	5,01E-0
177				0,0001	2,63E-08	4,82E-0
178				0,0002	2,01E-08	4,63E-0
179				0,0003	1,54E-08	4,46E-0
180				0	1,17E-08	4,28E-0
181				0	8,89E-09	4,12E-0
182				0,0001	6,73E-09	3,96E-0
183				0	5,07E-09	3,81E-0
184				0,0003	3,81E-09	3,66E-0
185				0,0000	2,86E-09	3,52E-0
186				0,0001	2,13E-09	3,38E-0
187				0,0001	1,59E-09	3,25E-0
188				0	1,18E-09	3,13E-0
189				0	8,70E-10	3,01E-0
190				0	6,41E-10	2,89E-0
191				0	4,71E-10	2,78E-0
192				0	3,45E-10	2,67E-0
193				0	2,51E-10	2,57E-0
194				0,0001	1,83E-10	2,47E-0
195				0	1,33E-10	2,37E-0
196				0	9,58E-11	2,28E-0
197				0	6,90E-11	2,19E-0
198				0,0001	4,96E-11	2,11E-0
199				-,	3,55E-11	2,03E-0
200					2,53E-11	1,95E-0
201					1,80E-11	1,87E-0
202					1,28E-11	
						1,80E-0
203					9,01E-12	1,73E-0
204					6,35E-12	1,67E-0
205					4,45E-12	1,60E-0
206					3,12E-12	1,54E-0
207					2,17E-12	1,48E-0
208					1,51E-12	1,42E-0
209					1,05E-12	1,37E-0
210					7,24E-13	1,32E-0
211					4,99E-13	1,26E-0
212					3,43E-13	1,22E-0
213					2,34E-13	1,17E-0
214					1,60E-13	1,12E-0
215					1,09E-13	1,08E-0
216					7,37E-14	1,04E-0
217					4,98E-14	9,99E-0
218					3,36E-14	9,60E-0
219						
					2,25E-14	9,23E-0
220					1,51E-14	8,88E-0
221					1,01E-14	8,53E-0
222					6,70E-15	8,20E-0
223					4,44E-15	7,89E-0
224					2,94E-15	7,58E-0
225					1,94E-15	7,29E-0
226					1,27E-15	7,01E-0
227					8,33E-16	6,74E-0
228					5,43E-16	6,48E-0
229					3,54E-16	6,23E-0
230					2,29E-16	5,99E-0
231					1,48E-16	5,76E-0
232					9,56E-17	5,53E-0
233					6,14E-17	5,32E-0
234					3,93E-17	5,12E-0
235					2,51E-17	4,92E-0
236					1,60E-17	4,73E-0
237					1,01E-17	4,55E-0
238					6,42E-18	4,37E-0
239					4,05E-18	4,20E-0
240					2,54E-18	4,04E-0
241					1,59E-18	3,88E-0
242					9,95E-19	3,73E-0
243					6,19E-19	
243						3,59E-0
244						
244					3,84E-19	3,45E-0
244 245 246					3,84E-19 2,38E-19 1,47E-19	3,32E-0 3,19E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
248					5,52E-20	2,95E-0
249					3,37E-20	2,84E-0
250					2,05E-20	2,73E-0
251					1,24E-20	2,62E-0
252					7,53E-21	2,52E-0
253					4,54E-21	2,42E-0
254					2,73E-21	2,33E-0
255					1,63E-21	2,24E-0
256					9,76E-22	2,15E-0
257					5,81E-22	2,07E-0
258					3,45E-22	1,99E-0
259					2,04E-22	1,91E-0
260					1,20E-22	1,84E-0
261					7,06E-23	1,77E-0
262					4,13E-23	1,70E-0
263					2,41E-23	1,63E-0
264					1,40E-23	1,57E-0
265					8,13E-24	1,51E-0
266					4,70E-24	1,45E-0
267					2,71E-24	1,40E-0
268					1,55E-24	1,34E-0
269					8,90E-25	1,29E-0
270					5,07E-25	1,24E-0
271					2,88E-25	1,19E-0
272					1,63E-25	
						1,15E-0
273					9,22E-26	1,10E-0
274					5,19E-26	1,06E-0
275					2,91E-26	1,02E-0
276					1,63E-26	9,80E-0
277					9,06E-27	9,42E-0
278					5,03E-27	9,06E-0
279						
					2,78E-27	8,71E-0
280					1,53E-27	8,37E-0
281					8,43E-28	8,05E-0
282					4,62E-28	7,74E-0
283					2,52E-28	7,44E-0
284					1,37E-28	7,15E-0
285					7,42E-29	6,88E-0
286					4,01E-29	6,61E-0
287					2,16E-29	6,36E-0
288					1,16E-29	6,11E-0
289					6,18E-30	5,87E-0
290					3,29E-30	5,65E-0
291					1,74E-30	5,43E-0
292					9,22E-31	5,22E-0
293					4,85E-31	5,02E-0
294					2,55E-31	4,83E-0
295					1,33E-31	4,64E-0
296					6,94E-32	4,46E-0
297					3,60E-32	4,29E-0
298					1,86E-32	4,12E-0
299					9,59E-33	3,96E-0
300					4,92E-33	3,81E-0
301					2,52E-33	3,66E-0
302					1,28E-33	3,52E-0
303					6,50E-34	
					3,29E-34	3,39E-0
304						3,26E-0
305					1,66E-34	3,13E-0
306					8,31E-35	3,01E-0
307					4,15E-35	2,89E-0
308					2,07E-35	2,78E-0
309					1,02E-35	2,67E-0
310					5,06E-36	2,57E-0
311					2,49E-36	2,47E-0
312					1,22E-36	2,38E-0
313					5,95E-37	2,28E-0
314					2,89E-37	2,20E-0
315					1,40E-37	2,11E-0
316					6,74E-38	2,03E-0
317					3,23E-38	1,95E-0
318					1,55E-38	1,88E-0
319					7,36E-39	1,80E-0
320					3,49E-39	1,73E-0
321					1,65E-39	1,67E-0
322					7,73E-40	1,60E-0
					3,62E-40	1,54E-0
323					1,68E-40	1,48E-0
						1,42E-0
324						
324 325					7,81E-41	
324 325 326					3,61E-41	1,37E-0
324 325 326 327					3,61E-41 1,66E-41	1,37E-0 1,32E-0
324 325 326					3,61E-41	

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereich
331					7,06E-43	1,13E-0
332					3,17E-43	1,08E-0
333					1,42E-43	1,04E-0
334					6,31E-44	1,00E-0
335					2,79E-44	9,61E-0
336					1,23E-44	9,24E-0
337					5,39E-45	8,89E-0
338					2,35E-45	8,54E-0
339					1,02E-45	8,21E-0
340					4,40E-46	7,90E-0
341					1,89E-46	7,59E-0
342					8,07E-47	7,30E-0
343					3,43E-47	7,02E-0
344					1,45E-47	6,75E-0
345					6,10E-48	6,49E-0
346					2,55E-48	6,24E-0
347					1,06E-48	5,99E-0
348					4,38E-49	5,76E-0
349					1,80E-49	5,54E-0
350					7,36E-50	5,33E-0
351					2,99E-50	5,12E-0
352					1,21E-50	4,92E-0
353					4,84E-51	4,73E-0
354					1,93E-51	4,55E-0
355					7,66E-52	4,38E-0
356					3,02E-52	4,21E-0
357					1,18E-52	4,04E-0
358					4,59E-53	3,89E-0
359					1,77E-53	3,74E-0
360						
					6,81E-54	3,59E-0
361					2,59E-54	3,46E-0
362					9,81E-55	3,32E-0
363					3,69E-55	3,19E-0
364					1,37E-55	3,07E-0
365					5,09E-56	2,95E-0
366					1,87E-56	2,84E-0
367					6,82E-57	2,73E-0
368					2,47E-57	2,62E-0
369					8,85E-58	2,52E-0
370					3,15E-58	2,43E-0
371					1,11E-58	2,33E-0
372					3,89E-59	2,24E-0
373					1,35E-59	2,15E-0
374					4,64E-60	2,07E-0
375					1,58E-60	1,99E-0
376					5,33E-61	1,92E-0
377					1,78E-61	1,84E-0
378						
379					5,89E-62	1,77E-0
					1,93E-62	1,70E-0
380					6,24E-63	1,64E-0
381					2,00E-63	1,57E-0
382					6,35E-64	1,51E-0
383					1,99E-64	1,45E-0
384					6,16E-65	1,40E-0
385					1,88E-65	1,34E-0
386					5,69E-66	1,29E-0
387					1,70E-66	1,24E-0
388					4,99E-67	1,19E-0
389					1,45E-67	1,15E-0
390					4,14E-68	1,10E-0
391					1,17E-68	1,06E-0
392					3,24E-69	1,02E-0
393					8,83E-70	9,81E-0
394						9,43E-0
					2,37E-70	
395					6,24E-71	9,07E-0
396					1,62E-71	8,72E-0
397					4,10E-72	8,38E-0
398					1,02E-72	8,06E-0
399					2,49E-73	7,75E-0
400					5,93E-74	7,45E-0
401					1,38E-74	7,16E-0
402					3,14E-75	6,88E-0
403					6,97E-76	6,62E-0
404					1,51E-76	6,36E-0
405					3,16E-77	6,12E-0
406					6,45E-78	5,88E-0
407						
					1,27E-78	5,65E-0
408					2,44E-79	5,44E-0
409					4,51E-80	5,23E-0
						5,02E-0
410					8,05E-81	
410 411 412					1,38E-81 2,28E-82	4,83E-0 4,64E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
414					5,46E-84	4,29E-0
415					7,89E-85	4,13E-0
416					1,09E-85	3,97E-0
417					1,42E-86	3,81E-0
418						
					1,77E-87	3,67E-0
419					2,09E-88	3,53E-0
420					2,33E-89	3,39E-0
421					2,46E-90	3,26E-0
422					2,45E-91	3,13E-0
423					2,31E-92	3,01E-0
424					2,06E-93	2,90E-0
425					1,73E-94	2,78E-0
426					1,38E-95	2,68E-0
427					1,05E-96	2,57E-0
428					7,49E-98	2,47E-0
429						
					5,09E-99	2,38E-0
430					3,29E-100	2,29E-0
431					2,03E-101	2,20E-0
432					1,19E-102	2,11E-0
433					6,64E-104	2,03E-0
434					3,54E-105	1,95E-0
435					1,81E-106	1,88E-0
436					8,80E-108	1,81E-0
437					4,10E-109	1,74E-0
438					1,83E-110	1,67E-0
439					7,81E-112	1,61E-0
440					3,19E-113	1,54E-0
441					1,25E-114	1,48E-0
442					4,70E-116	1,43E-0
443					1,69E-117	1,37E-0
444					5,83E-119	1,32E-0
445					1,93E-120	1,27E-0
446					6,09E-122	1,22E-0
447					1,85E-123	1,17E-0
448					5,35E-125	1,13E-0
449						
					1,48E-126	1,08E-0
450					3,93E-128	1,04E-0
451					9,92E-130	1,00E-0
452					2,39E-131	9,62E-1
453					5,48E-133	9,25E-1
454					1,19E-134	8,90E-1
455						
					2,46E-136	8,55E-1
456					4,82E-138	8,22E-1
457					8,86E-140	7,91E-1
458					1,54E-141	7,60E-1
459					2,48E-143	7,31E-1
460					3,76E-145	7,02E-1
461					5,19E-147	6,75E-1
462					6,71E-149	6,49E-1
463					7,62E-151	6,24E-1
464					8,07E-153	6,00E-1
465					6,96E-155	5,77E-1
466						
					5,65E-157	5,55E-1
467					2,96E-159	5,33E-1
468					1,60E-161	5,13E-1
469						4,93E-1
470						4,74E-1
471						
						4,56E-1
472						4,38E-1
473						4,21E-1
474						4,05E-1
475						3,89E-1
476						3,74E-1
477						3,60E-1
478						3,46E-1
479						3,33E-1
480						3,20E-1
481						3,07E-1
482						2,96E-1
483						2,84E-1
484						2,73E-1
485						2,63E-1
486						2,53E-1
487						2,43E-1
488						2,33E-1
489						2,24E-1
490						2,16E-1
491						2,07E-1
492						1,99E-1
493						1,92E-1
494						1,04E-1
494 495						1,84E-1 1,77E-1

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnung (Frequenzbereich)
497						1,64E-10
498						1,57E-10
499						1,51E-10
500						1,46E-10
501						1,40E-10
502						1,35E-10
503						1,29E-10
504						1,24E-10
505						1,20E-10
506						1,15E-10
507						1,11E-10
508						1,06E-10
509						1,02E-10
510						9,82E-11
511						9,44E-11

Tabelle 43: Dichtefunktionen für die Schleife bei 30000 Messungen, p=0.8 und $\varepsilon=0.01$.

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
0						7,22079E-1
1	0,271644607	0,445961731				7,39555E-1
2	0,194718993	0,233025123				7,11624E-1
3	0,145313469	0,137139896				7,65816E-1
4	0,105422203	0,080625524				7,36647E-1
5	0,088095961	0,048427963				7,84995E-1
6	0,061671131		0.572066667			
		0,026159491	0,572066667		0.004.000.005	7,60886E-1
7	0,050019134	0,013943502	0,2414	0,029233333	0,031079765	0,03107976
8	0,035490426	0,007814942	0,1054	0,0344	0,035393451	0,03539345
9	0,027863185	0,003792304	0,0478	0,031333333	0,034765179	0,03476517
10	0,0181114	0,002829832	0,020333333	0,0301	0,032942161	0,03294216
11	0,00100289	0,000205656	0,008233333	0,028733333	0,032484616	0,03248461
12	0,000442063	5,75838E-05	0,002566667	0,0304	0,030922043	0,03092204
13	0,000184743	8,22625E-06	0,0011	0,029466667	0,03028836	0,0302883
14	1,31959E-05	8,22625E-06	0,000666667	0,0266	0,029275926	0,02927592
		6,22023E-00				
15	6,59796E-06		0,000333333	0,0255	0,028645465	0,02864546
16			0,0001	0,0239	0,027633042	0,02763304
17				0,023566667	0,025453822	0,02545382
18				0,021366667	0,024480853	0,02448085
19				0,022966667	0,023659229	0,02365922
20				0,023433333	0,022840766	0,02284076
21						
				0,023366667	0,022037999	0,02203799
22				0,0216	0,021247232	0,02124723
23				0,023066667	0,020466721	0,02046672
24				0,020633333	0,019707367	0,01970736
25				0,0202	0,018968915	0,01896891
26				0,0202	0.018255885	0,01825588
27				0,019733333	0,017566449	0,01756644
28				0,016666667	0,016902443	0,01690244
29				0,0176	0,016268942	0,01626894
30				0,016733333	0,015661083	0,01566108
31				0,0156	0,015076263	0,01507626
32				0,014666667	0,01451314	0,0145131
33				0,013366667	0,013970779	0,01397077
34				0,013833333	0,013448374	0,01344837
35				0,0133	0,012945318	0,01294531
36				0,013666667	0,012460972	0,01246097
37				0,0126	0,011994719	0,01199471
38				0,0098	0,011545927	0,01154592
39				0,011766667	0,011113954	0,01111395
40				0,0127	0,010698184	0,01069818
41				0,011366667	0,010297989	0,01029798
42				0,011866667	0,009912771	0,00991277
43				0,010333333	0,00954196	0,0095419
44				0,011166667	0,009185015	0,00918501
45				0,0092	0,008841419	0,00884141
46				0,009333333	0,008510673	0,00851067
47				0,008733333	0,008192299	0,00819229
48				0,007	0,007885835	0,00788583
49				0,0076	0,007590835	0,00759083
50				0,008033333		
					0,007306872	0,00730687
51				0,008	0,007033532	0,00703353
52				0,007433333	0,006770417	0,00677041
53				0,007866667	0,006517146	0,00651714
54				0,007166667	0,006273348	0,00627334
55				0,006733333	0,006038671	0,00603867
56				0,006266667	0,005812773	0,00581277
57				0,005866667	0,005595325	0,00559532
						0,00538601
58				0,005966667	0,005386011	.,
59				0,005666667	0,005184528	0,00518452
60				0,0051	0,004990582	0,00499058
61				0,004966667	0,004803891	0,00480389
62				0,0047	0,004624184	0,00462418
63				0,004966667	0,0044512	0,004451
64				0,004333333	0,004284686	0,00428468
65				0.0058		0,0042840
				.,	0,004124402	
66				0,004866667	0,003970114	0,00397011
67				0,0042	0,003821597	0,00382159
68				0,0039	0,003678637	0,00367863
69				0,0037	0,003541024	0,00354102
70				0,004066667	0,003408559	0,00340855
71				0,003	0,003408339	0,0032810
72				0,003333333	0,00315831	0,0031583
73				0,002933333	0,003040162	0,00304016
74				0,002866667	0,002926433	0,00292643
75				0,002933333	0,002816959	0,0028169
				0,00295555	0.002711579	0,00271158
					0.002/11/0/7	0,002/1130
76				.,	0.002610142	0.00361014
76 77				0,002766667	0,002610142	
76 77 78				0,002766667 0,0023	0,002512498	0,00261014 0,00251250
76 77				0,002766667		

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereich
82				0,0022	0,002157093	0,0021571
83				0,0019	0,002076384	0,00207642
84				0,001933333	0,001998687	0,00199874
85				0,0018	0,001923889	0,00192397
86				0,0017	0,001851876	0,00185200
87				0,001533333	0,001782541	0.00178272
88				0,001566667	0,001715778	0,00171603
89				0,001566667	0,001651486	0,00165184
90				0,000933333	0,001589564	0,00159004
91				0,001333333	0,001509904	0,00153056
92						
				0,0017	0,001472438	0,0014733
93				0,001366667	0,001417045	0,00141819
94				0,001066667	0,001363641	0,00136514
95				0,001066667	0,001312134	0,00131407
96				0,001166667	0,001262433	0,0012649
97				0,001066667	0,001214449	0,00121759
98				0,001	0,001168094	0,00117204
99				0,000833333	0,001123282	0,00112820
100				0,001	0,001079927	0,00108
101				0,001433333	0,001075927	0,0010453
102						
				0,001	0,000997255	0,00100620
103				0,000833333	0,000957778	0,00096862
104				0,000966667	0,000919439	0,0009323
105				0,000766667	0,000882165	0,0008975
106				0,000566667	0,000845888	0,00086393
107				0,0007	0,000810544	0,0008316
108				0,0006	0,000776075	0,00080050
109				0,000833333	0,00074243	0,0007705
110				0,000966667	0,000709561	0.00074173
111				0,000	0,00067743	0,0007417
111				0,0005	0.000646003	0,00071398
					.,	.,
113				0,0005	0,000615256	0,0006615
114				0,000766667	0,000585171	0,00063682
115				0,0004	0,000555736	0,00061299
116				0,000433333	0,000526948	0,00059000
117				0,0005	0,000498808	0,00056799
118				0,0005333333	0,000471326	0,00054674
119				0,000733333	0,000444515	0,00052629
120				0,000366667	0,000418394	0,00050660
121				0,000366667	0,000392984	0,0004876
122				0,000633333	0,000368311	0,0004694
123				0,000533333	0,000344402	0,0004518
123						
				0,000466667	0,000321283	0,00043494
125				0,0004	0,000298983	0,0004186
126				0,0004	0,000277528	0,0004030
127				0,0005	0,000256942	0,0003879
128				0,000366667	0,000237248	0,0003734
129				0,0002	0,000218464	0,0003594
130				0,000366667	0,000200603	0,0003460
131				0,0003333333	0,000183676	0,0003330
132				0,000133333	0,000167688	0,0003206
133				0,000133333	0,000152637	0,0003086
134				0.0002	0,00013852	0,0002970
135				0,000166667	0,00013832	
						0,00028593
136				0,000266667	0,000113035	0,0002752
137				0,000466667	0,000101633	0,0002649
138				0,000166667	9,10917E-05	0,0002550
139				0,0002	8,13837E-05	0,00024550
140				0,0003	7,24766E-05	0,0002363
141				0,000133333	6,43354E-05	0,0002274
142				0,000166667	5,69225E-05	0,0002189
143				3,33333E-05	5,01986E-05	0,0002107
144				0,000133333	4,41231E-05	0,00020289
145				0,000133333	3,86545E-05	0,00019530
146				0,000133333	3,37512E-05	0,0001933
147				0,000233333	2,93717E-05	0,0001809
148				0,0002	2,5475E-05	0,00017419
149				6,66667E-05	2,20213E-05	0,0001676
150				0,0002	1,89719E-05	0,0001614
151				0,0002	1,62899E-05	0,0001553
152				0,000166667	1,39399E-05	0,0001495
153				6,66667E-05	1,18888E-05	0,0001439
154				0,000133333	1,01053E-05	0,0001385
155				0,0001	8,56047E-06	0,0001333
156				6,66667E-05	7,22735E-06	0,0001284
157				0,000133333	6,08129E-06	0,00012360
158				0,0001	5,09974E-06	0,0001189
159				0,0001	4,26223E-06	0,00011452
1.00				6,66667E-05	3,55029E-06	0,00011024
160					2,94734E-06	0,0001061
161				6,66667E-05	2,77737L-00	0,0001001
161						
				3,33333E-05 3,33333E-05	2,43859E-06 2,0109E-06	0,00010014 0,00010214 9,83272E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereic
165				0,000133333	1,35373E-06	9,11082E-0
166				3,33333E-05	1,10517E-06	8,77E-0
167				0,0001	8,99243E-07	8,44192E-0
168				3,33333E-05	7,29258E-07	8,12612E-0
						7,82213E-0
169				0,000166667	5,89444E-07	
170				0,000133333	4,7486E-07	7,52952E-0
171				3,33333E-05	3,81287E-07	7,24785E-0
172				3,33333E-05	3,05144E-07	6,97672E-0
173				0,0001	2,43404E-07	6,71573E-0
174				0,000133333	1,93519E-07	6,4645E-0
175				0,0001	1,53354E-07	6,22267E-0
176				0,0001		
					1,21128E-07	5,98989E-0
177				0,0001	9,53626E-08	5,76582E-0
178				6,66667E-05	7,48334E-08	5,55013E-0
179				3,33333E-05	5,8533E-08	5,3425E-0
180				6,66667E-05	4,56349E-08	5,14265E-0
181				0,0001	3,5464E-08	4,95027E-0
182				3,33333E-05	2,74711E-08	4,76509E-0
183						
				6,66667E-05	2,12112E-08	4,58683E-0
184				3,33333E-05	1,63251E-08	4,41524E-0
185				3,33333E-05	1,25244E-08	4,25008E-0
186				3,33333E-05	9,57774E-09	4,09109E-0
187				0	7,30102E-09	3,93804E-0
188				6,66667E-05	5,54778E-09	3,79073E-0
189				6,66667E-05	4,20217E-09	3,64892E-0
						3,51242E-0
190				0	3,17284E-09	
191				3,33333E-05	2,38807E-09	3,38103E-0
192				0	1,79173E-09	3,25455E-0
193				0	1,34007E-09	3,1328E-0
194				0,0002	9,99116E-10	3,0156E-0
195				3,33333E-05	7,42571E-10	2,90279E-0
196				3,33333E-05	5,50171E-10	2,79421E-0
197				3,33333E-05	4,06348E-10	2,68968E-0
198				0,0001	2,99185E-10	2,58906E-0
199				0	2,19597E-10	2,49221E-0
200				3,33333E-05	1,6068E-10	2,39898E-0
201				0	1,17205E-10	2,30923E-0
202				3,33333E-05	8,52281E-11	2,22285E-0
203				0	6,17836E-11	2,1397E-0
204				0	4,46499E-11	2,05965E-0
205				0	3,21682E-11	1,9826E-0
206				0	2,31044E-11	1,90844E-0
207				0	1,65434E-11	1,83705E-0
208				3,33333E-05	1,18092E-11	1,76832E-0
209				0	8,40391E-12	1,70217E-0
210				3,33333E-05	5,96228E-12	1,6385E-0
211				0	4,2171E-12	1,5772E-0
212				3,33333E-05	2,97364E-12	1,5182E-0
213				0	2,09043E-12	1,46141E-0
214				0	1,46508E-12	1,40674E-0
215				0	1,02367E-12	1,35412E-0
216				0	7,13088E-13	1,30346E-0
217				0	4,95228E-13	1,2547E-0
218				3,33333E-05	3,42885E-13	1,20776E-0
219				0	2,36688E-13	1,16258E-0
220				3,33333E-05	1,62888E-13	1,11909E-0
221				0	1,1176E-13	1,07723E-0
222				3,33333E-05	7,64495E-14	1,03693E-0
223				.,	5,21375E-14	9,9814E-0
224					3,545E-14	9,60801E-0
225					2,40311E-14	9,24858E-0
226					1,62414E-14	8,90261E-0
227					1,09437E-14	8,56957E-0
228					7,35193E-15	8,249E-
229					4,92417E-15	7,94041E-
230					3,28822E-15	7,64337E-
231					2,1892E-15	7,35745E-0
232					1,45314E-15	7,08221E-0
233					9,61677E-16	6,81728E-0
234					6,34526E-16	6,56225E-0
235					4,17416E-16	6,31677E-0
236					2,73772E-16	6,08047E-
237					1,79023E-16	5,853E-0
238					1,16716E-16	5,63405E-0
239					7,58671E-17	5,42329E-0
240					4,91676E-17	5,22041E-0
241					3,17692E-17	5,02512E-0
242					2,04661E-17	4,83714E-0
243					1,31452E-17	4,65619E-0
					8,4179E-18	4,48201E-0
244						
244 245					5,37455E-18	4,31434E-0
					5,37455E-18 3,42124E-18	4,31434E-0 4,15295E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
248					1,37397E-18	3,84805E-0
249					8,66816E-19	3,7041E-0
250					5,4523E-19	3,56553E-0
251					3,41929E-19	3,43215E-0
252					2,13793E-19	3,30376E-0
253					1,33277E-19	3,18017E-0
254					8,28354E-20	3,0612E-0
255					5,1331E-20	2,94669E-0
256					3,17134E-20	2,83646E-0
257					1,95347E-20	2,73035E-0
258					1,1997E-20	2,62821E-0
259					7,34573E-21	2,52989E-0
260					4,48432E-21	2,43525E-0
261					2,72933E-21	2,34415E-0
262					1,6562E-21	2,25646E-0
263					1,00199E-21	2,17205E-0
264					6,04384E-22	2,0908E-0
265					3,63459E-22	2,01258E-0
266						
267					2,17917E-22	1,9373E-0
					1,30262E-22	1,86482E-0
268					7,76314E-23	1,79506E-0
269					4,61261E-23	1,72791E-0
270					2,7324E-23	1,66327E-0
271					1,61373E-23	1,60105E-0
272					9,50172E-24	1,54116E-0
273					5,57775E-24	1,48351E-0
274					3,26437E-24	1,42801E-0
275					1,90468E-24	1,37459E-0
276					1,10796E-24	1,32317E-0
277					6,42549E-25	1,27367E-0
278					3,71505E-25	1,22603E-0
279					2,14141E-25	1,18016E-0
280					1,23057E-25	1,13601E-0
281					7,04996E-26	1,09352E-0
282					4,02658E-26	1,05261E-0
283					2,29273E-26	
284					1,30148E-26	1,01323E-0 9,75329E-0
285					7,36519E-27	
						9,38843E-0
286					4,15521E-27	9,03722E-0
287					2,33701E-27	8,69915E-0
288					1,31035E-27	8,37373E-0
289					7,3243E-28	8,06048E-0
290					4,0813E-28	7,75895E-0
291					2,26715E-28	7,4687E-0
292					1,25548E-28	7,1893E-0
293					6,93082E-29	6,92036E-0
294					3,81418E-29	6,66148E-0
295					2,09246E-29	6,41228E-0
296					1,14432E-29	6,17241E-0
297					6,2384E-30	5,94151E-0
298					3,39023E-30	5,71924E-0
299					1,83659E-30	5,50529E-0
300					9,91792E-31	5,29935E-0
301					5,33887E-31	5,10111E-0
302					2,86481E-31	4,91028E-0
303					1,53235E-31	4,7266E-0
304					8,17016E-32	4,54978E-0
305					4,34221E-32	4,37958E-0
306					2,30036E-32	4,21575E-0
307					1,21473E-32	4,05804E-0
308					6,39386E-33	3,90623E-0
309					3,35458E-33	3,76011E-0
310					1,75429E-33	3,61945E-0
311					9,14431E-34	3,48405E-0
312					4,75096E-34	3,35371E-0
313					2,4603E-34	3,22826E-0
314					1,2699E-34	3,10749E-0
315					6,53307E-35	2,99125E-0
316					3,34989E-35	2,87935E-0
317					1,71199E-35	2,77163E-0
318					8,72027E-36	2,66795E-0
319					4,42699E-36	2,56815E-0
320					2,23992E-36	2,47208E-0
321					1,12953E-36	2,3796E-0
321					5,67673E-37	2,3790E-0 2,29058E-0
323					2,84335E-37	2,20489E-0
324					1,41935E-37	2,12241E-0
325					7,06102E-38	2,04302E-0
326					3,50076E-38	1,96659E-0
327					1,72968E-38	1,89302E-0
					8,51681E-39	1,82221E-0
328						1,022211-0
328 329					4,17913E-39	1,75404E

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnur (Frequenzbereich
331					9,95817E-40	1,62526E-0
332					4,83563E-40	1,56446E-0
333					2,33992E-40	1,50594E-0
334					1,12829E-40	1,4496E-0
335					5,42132E-41	1,39538E-0
336					2,59565E-41	1,34318E-0
337					1,23834E-41	1,29293E-0
338					5,88679E-42	1,24456E-0
339					2,78841E-42	1,19801E-0
340					1,31603E-42	1,15319E-0
341					6,18872E-43	1,11005E-0
342					2,89971E-43	1,06853E-0
343					1,3537E-43	1,02855E-0
344					6,29639E-44	9,90077E-0
345					2,91783E-44	9,5304E-0
346					1,34716E-44	9,17388E-0
347					6,19673E-45	8,83069E-0
348					2,83976E-45	8,50035E-0
349					1,29649E-45	8,18236E-0
350					5,8968E-46	7,87627E-0
351					2,67189E-46	7,58163E-0
352					1,20605E-46	7,29801E-0
353					5,42314E-47	7,02501E-0
354					2,42922E-47	6,76221E-0
355					1,08393E-47	6,50924E-0
356					4,81786E-48	6,26574E-0
357					2,1331E-48	6,03135E-0
358					9,40727E-49	5,80573E-0
359					4,13244E-49	5,58854E-0
360					1,80813E-49	5,37948E-0
361					7,87996E-50	5,17824E-0
362					3,42044E-50	4,98453E-0
363					1,47875E-50	4,79807E-0
364					6,36726E-51	
365					2,73054E-51	4,61858E-0
						4,4458E-0
366					1,1662E-51	4,27949E-0
367					4,96037E-52	4,1194E-0
368					2,1012E-52	3,9653E-0
369					8,86379E-53	3,81696E-0
370					3,72361E-53	3,67418E-0
371					1,55773E-53	3,53673E-0
372					6,48922E-54	3,40443E-0
373					2,69189E-54	3,27707E-0
374					1,11193E-54	3,15448E-0
375					4,5734E-55	3,03648E-0
376					1,87301E-55	2,92289E-0
377					7,63774E-56	2,81354E-0
378					3,10104E-56	2,70829E-0
379					1,25359E-56	2,60698E-0
380					5,04549E-57	2,50946E-0
381					2,0218E-57	2,41558E-0
382					8,06587E-58	2,32522E-0
383					3,20357E-58	2,23823E-0
384						
					1,26671E-58	2,15451E-0
385					4,98617E-59	2,07391E-0
386					1,95389E-59	1,99633E-0
387					7,62188E-60	1,92165E-0
388					2,95969E-60	1,84976E-0
389					1,14405E-60	1,78056E-0
390					4,40193E-61	1,71395E-0
391					1,68592E-61	1,64984E-0
392					6,42708E-62	1,58812E-0
393					2,43874E-62	1,52871E-0
394					9,21054E-63	1,47152E-0
395					3,46227E-63	1,41648E-0
396					1,29535E-63	1,36349E-0
397					4,82337E-64	1,31248E-0
398					1,7875E-64	1,26338E-
399					6,59271E-65	1,21612E-
400					2,41989E-65	1,17063E-0
401					8,83963E-66	1,12684E-0
402					3,21344E-66	1,08468E-0
403					1,16251E-66	1,04411E-0
404					4,18509E-67	1,00505E-0
405					1,4993E-67	9,67451E-0
406					5,34488E-68	9,3126E-0
407					1,89604E-68	8,96422E-0
408					6,69284E-69	8,62888E-0
409					2,35082E-69	8,30609E-0
410					8,21613E-70	7,99537E-0
411					2,85725E-70	7,69627E-0
					,	
412					9,88681E-71	7,40837E-0

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
414					1,16608E-71	6,86446E-0
415					3,97447E-72	6,60767E-0
416					1,34783E-72	6,36049E-0
417					4,54768E-73	6,12255E-0
418					1,52665E-73	5,89351E-0
419					5,09889E-74	5,67305E-0
420					1,69433E-74	5,46082E-0
421					5,60143E-75	5,25654E-0
422					1,84237E-75	5,0599E-0
423					6,02875E-76	4,87062E-0
424					1,96267E-76	4,68842E-0
425					6,35669E-77	4,51303E-0
426					2,04823E-77	4,3442E-0
427					6,56574E-78	4,18169E-0
428					2,09386E-78	4,02526E-0
429					6,64299E-79	3,87468E-0
430					2,09668E-79	3,72973E-0
431					6,58341E-80	3,59021E-0
432					2,05645E-80	3,45591E-0
433					6,39042E-81	3,32662E-0
434					1,97554E-81	3,20218E-0
435					6,07555E-82	3,08239E-0
436					1,85878E-82	2,96708E-0
437					5,65731E-83	2,85609E-0
438					1,7129E-83	2,74925E-0
439					5,15933E-84	2,6464E-0
440					1,54594E-84	2,5474E-0
441					4,6082E-85	2,45211E-0
442					1,36649E-85	2,36038E-0
443						,
					4,03106E-86	2,27208E-0
444					1,18296E-86	2,18708E-0
445					3,45347E-87	2,10527E-0
446					1,00295E-87	2,02651E-0
447					2,8976E-88	1,9507E-0
448					8,32792E-89	1,87773E-0
449					2,38107E-89	1,80749E-0
450					6,77243E-90	1,73987E-0
451					1,91626E-90	1,67479E-0
452					5,39391E-91	1,61213E-0
453					1,5104E-91	1,55183E-0
454					4,20743E-92	1,49377E-0
455					1,16596E-92	1,43789E-0
456					3,2143E-93	1,3841E-0
457					8,81518E-94	1,33233E-0
458					2,40501E-94	1,28249E-0
459					6,52743E-95	1,23451E-0
460						
461					1,76242E-95	1,18833E-0
					4,73387E-96	1,14388E-0
462					1,26493E-96	1,10108E-0
463					3,36244E-97	1,05989E-0
464					8,89174E-98	1,02025E-0
465					2,33916E-98	9,8208E-1
466					6,1217E-99	9,45341E-1
467					1,5938E-99	9,09977E-1
468					4,1279E-100	8,75936E-1
469					1,0636E-100	8,43169E-1
470					2,7261E-101	8,11627E-1
471					6,9512E-102	7,81265E-1
472					1,7633E-102	7,52039E-1
473					4,4495E-103	7,23906E-1
474					1,117E-103	6,96826E-1
					2,7894E-104	
475						6,70759E-1
476					6,9297E-105	6,45667E-1
477					1,7126E-105	6,21513E-1
478					4,2103E-106	5,98263E-1
479					1,0297E-106	5,75883E-1
480					2,5052E-107	5,5434E-1
481					6,0631E-108	5,33603E-1
482					1,4597E-108	5,13641E-1
483					3,496E-109	4,94427E-1
484					8,3289E-110	4,75931E-1
485					1,9739E-110	4,58127E-1
486					4,6534E-111	4,40989E-1
487					1,0913E-111	4,24492E-1
488					2,5457E-111	4,24492E-1 4,08613E-1
489					5,907E-113	3,93327E-1
490					1,3634E-113	3,78613E-1
491					3,1304E-114	3,6445E-1
492					7,1492E-115	3,50816E-1
493					1,624E-115	3,37693E-1
494					3,6696E-116	3,2506E-1
495					8,2474E-117	3,129E-1

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
497					4,0994E-118	2,89928E-1
498					9,0661E-119	2,79082E-1
499					1,9942E-119	2,68642E-1
500					4,3628E-120	2,58592E-1
501					9,4929E-121	2,48919E-1
502					2,0543E-121	2,39607E-1
503					4,4214E-122	2,30644E-1
504					9,464E-123	2,22016E-1
505					2,0146E-123	2,1371E-1
506					4,265E-124	2,05716E-1
507					8,979E-125	1,9802E-1
508					1,8799E-125	1,90612E-1
509					3,9138E-126	1,83482E-1
510					8,1026E-127	1,76618E-1
511					1,6681E-127	1,70011E-1
512					3,4146E-128	1,63651E-1
513					6,9502E-129	1,57529E-1
514					1,4066E-129	1,51636E-1
515					2,8305E-130	1,45964E-1
516					5,6629E-131	1,40503E-1
517					1,1264E-131	1,35247E-1
518					2,2276E-132	1,30188E-1
519					4,3794E-133	1,25318E-1
520					8,5593E-134	1,2063E-1
521					1,663E-134	1,16117E-1
522					3,2117E-135	1,11774E-1
523					6,1658E-136	1,07592E-1
524					1,1765E-136	1,03567E-1
525					2,2315E-137	9,9693E-1
526					4,2064E-138	
						9,59637E-1
527					7,8805E-139	9,23738E-1
528					1,4672E-139	8,89182E-1
529					2,7147E-140	8,55919E-1
530					4,9913E-141	8,239E-1
531					9,1189E-142	7,93079E-1
532					1,6553E-142	7,63411E-1
533					2,9855E-143	7,34853E-1
534					5,3497E-144	7,07363E-1
535					9,5232E-145	6,80902E-1
536					1,684E-145	6,5543E-1
537					2,9581E-146	6,30912E-1
538					5,1611E-147	6,0731E-1
539					8,9434E-148	5,84592E-1
540						
					1,5391E-148	5,62723E-1
541					2,6303E-149	5,41672E-1
542					4,4637E-150	5,21409E-1
543					7,5212E-151	5,01904E-1
544					1,2582E-151	4,83128E-1
545					2,0896E-152	4,65055E-1
546					3,4448E-153	4,47658E-1
547					5,6367E-154	4,30912E-1
548					9,154E-155	4,14792E-1
549					1,4753E-155	3,99275E-1
550					2,3592E-156	3,84339E-1
551						
					3,7434E-157	3,69961E-1
552					5,8924E-158	3,56122E-1
553					9,2004E-159	3,428E-1
554					1,4248E-159	3,29976E-1
555					2,1883E-160	3,17632E-1
556					3,3326E-161	3,0575E-1
557					5,0319E-162	2,94312E-1
558					7,5315E-163	2,83303E-1
559					1,1173E-163	2,72705E-1
560					1,6427E-164	2,62503E-1
561					2,393E-165	2,52683E-1
562					3,4535E-166	2,43231E-1
563					4,9366E-167	2,34132E-1
564					6,9884E-168	2,25373E-1
565					9,7952E-169	2,16942E-1
566					1,3591E-169	2,08827E-1
567					1,8663E-170	2,01015E-1
568					2,5359E-171	1,93495E-1
569					3,4087E-172	1,86257E-1
570					4,5314E-173	1,79289E-1
571					5,9559E-174	1,72582E-1
572					7,7377E-175	
						1,66126E-1
573					9,9333E-176	1,59912E-1
574					1,2597E-176	1,5393E-1
575					1,5775E-177	1,48172E-1
576					1,95E-178	1,42629E-1
370						
577					2,3786E-179	1,37293E-1
					2,3786E-179 2,8618E-180	1,37293E-1 1,32157E-1

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
580					3,9681E-182	1,22455E-1
581					4,5686E-183	1,17874E-1
582					5,1781E-184	1,13464E-1
583					5,7742E-185	1,0922E-1
584					6,3308E-186	1,05134E-1
585					6,8199E-187	1,01201E-1
586					7,2133E-188	9,74154E-1
587					7,4847E-189	9,37712E-1
588					7,6121E-190	9,02634E-1
589					7,5808E-191	8,68868E-1
590					7,3847E-192	8,36365E-1
591					7,0284E-193	8,05078E-1
592						
					6,5269E-194	7,74962E-1
593					5,9055E-195	7,45972E-1
594					5,1976E-196	7,18066E-1
595					4,4415E-197	6,91205E-1
596					3,6774E-198	6,65348E-1
597					2,9431E-199	6,40458E-1
598					2,2705E-200	6,165E-1
599					1,6831E-201	5,93438E-1
600					1,1943E-202	5,71238E-1
601					8,0773E-204	5,49869E-1
602					5,1783E-205	5,293E-1
603					3,1264E-206	5,095E-1
604					1,763E-207	4,9044E-1
605					9,1897E-209	4,72094E-1
606					4,3654E-210	4,72094E-1 4,54434E-1
607					1,855E-211	4,37434E-1
608					6,8436E-213	4,21071E-1
609					2,1057E-214	4,05319E-1
610					4,8934E-216	3,90157E-1
611					7,4899E-218	3,75562E-1
612						3,61513E-1
613						3,4799E-1
614						3,34972E-1
615						3,22442E-1
616						3,1038E-1
617						2,98769E-1
618						2,87593E-1
619						2,76835E-1
620						2,66479E-1
621						2,56511E-1
622						2,46915E-1
623						2,37679E-1
624						2,28788E-1
625						2,2023E-1
626						2,11991E-1
627						2,04061E-1
628						1,96428E-1
629						1,8908E-1
630						1,82007E-1
631						1,75199E-1
632						1,68645E-1
633						1,62337E-1
634						1,56264E-1
635						1,50419E-1
636						1,44792E-1
637						1,39376E-1
638						1,34162E-1
639						1,34162E-1 1,29144E-1
640						
						1,24313E-1
641						1,19663E-1
642						1,15187E-1
643						1,10878E-1
644						1,06731E-1
645						1,02738E-1
646						9,88953E-1
647						9,51959E-1
648						9,16351E-1
649						8,82074E-1
650						8,4908E-1
651						8,17319E-1
652						
						7,86747E-1
653						7,5732E-1
654						7,28991E-1
655						7,01723E-1
656						6,75476E-1
657						6,5021E-1
658						6,25887E-1
659						6,02476E-1
660						5,79943E-1
661						5,58251E-1

A Berechnete und gemessene Funktionen

663	(gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
						5,17269E-1
664						4,97921E-1
665						4,79298E-1
666						4,61369E-1
667						4,44113E-1
668						4,27503E-1
669						4,11514E-1
670						3,96122E-1
671						3,81306E-1
672						3,67045E-1
673						3,53318E-1
674						3,40102E-1
675						
						3,27382E-1
676						3,15139E-1
677						3,03352E-1
678						2,92006E-1
679						2,81086E-1
680						2,70574E-1
681						2,60454E-1
682						2,50714E-1
683						2,41339E-1
684						2,32313E-1
685						2,23625E-1
686						2,15261E-1
687						2,07212E-1
688						1,99463E-1
689						1,92004E-1
690						1,84824E-1
691						1,77914E-1
692						1,7126E-1
693						1,64857E-1
694						1,58692E-1
695						1,52759E-1
696						1,47047E-1
697						1,4155E-1
698						1,36257E-1
699						1,31162E-1
700						1,26259E-1
701						1,21539E-1
702						1,16994E-1
703						1,12622E-1
704						1,08411E-1
705						1,04359E-1
706						1,00456E-1
707						9,67022E-1
708						9,30869E-1
709						8,96078E-1
710						8,62572E-1
711						8,30331E-1
712						7,99299E-1
713						
						7,69438E-1
714						7,40666E-1
715						7,13007E-1
716						6,86354E-1
717						6,60709E-1
718						6,36008E-1
719						6,12251E-1
720						5,89362E-1
721						5,67355E-1
722						5,46147E-1
723						5,25746E-1
724						5,06112E-1
725						4,87205E-1
726						4,68993E-1
727						4,51486E-1
728						4,3462E-1
729						4,18396E-1
730						4,02754E-1
731						3,8773E-1
732						3,73249E-1
733						3,59319E-1
734						3,45889E-1
735						3,32994E-1
736						3,20553E-1
737						3,08602E-1
						2,97064E-1
738						2,85998E-1
739						2,75322E-1
739 740						
739 740 741						2,65048E-1
739 740 741 742						2,65048E-1 2,55158E-1
739 740 741						2,65048E-1 2,55158E-1 2,45641E-1 2,36479E-1

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
746						2,1917E-1
747						2,11006E-1
748						2,03146E-1
749						1,95559E-1
750						1,88272E-1
751						1,81255E-1
752						1,74496E-1
753						1,68004E-1
754						1,61732E-1
755						1,55725E-1
756						1,49927E-1
757						1,44355E-1
758						1,38969E-1
759						1,33798E-1
760						1,28827E-1
761						1,2404E-1
762						
						1,19412E-1
763						1,14982E-1
764						1,10716E-1
765						1,06604E-1
766						1,02632E-1
767						9,88327E-1
768						9,51581E-1
769						9,16454E-1
770						8,82238E-1
771						8,49672E-1
772						8,1807E-1
773						7,87802E-1
774						7,58503E-1
775						7,30828E-1
776						7,03752E-1
777						6,77459E-1
778						6,52551E-1
779						6,28328E-1
780						6,05461E-1
781						5,83021E-1
782						5,61382E-1
783						5,41019E-1
784						5,21054E-1
785						5,01852E-1
786						4,83146E-1
787						4,65491E-1
788						4,48429E-1
789						4,32117E-1
790						4,16177E-1
791						4,00933E-1
792						3,8595E-1
793						3,71975E-1
794						3,58206E-1
795						3,45074E-1
796						3,32548E-1
797						3,20522E-1
798						3,08571E-1
799						2,97376E-1
800						2,86511E-1
801						2,76194E-1
802						2,66066E-1
803						2,56446E-1
804						2,47149E-1
805						2,38249E-1
806						2,29547E-1
807						2,21334E-1
808						2,13337E-1
809						2,05472E-1
810						1,98169E-1
811						1,90943E-1
812						1,84228E-1
813						1,77655E-1
814						1,71108E-1
815						
						1,65128E-1
816						1,59243E-1
817						1,53557E-1
818						1,47963E-1
819						1,42752E-1
820						1,37762E-1
821						1,32929E-1
822						1,2806E-1
823						1,23684E-1
824						1,19488E-1
825						1,15249E-1
826						1,10998E-1
827						1,07309E-1

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
829						1,00103E-1
830						9,64479E-1
831						9,32808E-1
832						9,01037E-1
833						8,7011E-1
834						8,39041E-1
835						8,11207E-1
836						7,83692E-1
837						7,57892E-1
838						7,30972E-1
839						7,08654E-1
840						6,8426E-1
841						
						6,62433E-1
842						6,37643E-1
843						6,18272E-1
844						5,97418E-1
845						5,78387E-1
846						5,58483E-1
847						5,41445E-1
848						5,24812E-1
849						5,07714E-1
850						4,89432E-1
851						4,75775E-1
852						4,60846E-1
853						4,47235E-1
854						4,30642E-1
855						4,18961E-1
856						4,06706E-1
857						3,94009E-1
858						
						3,804E-1
859						3,70772E-1
860						3,59265E-1
861						3,49732E-1
862						3,3754E-1
863						3,29473E-1
864						3,19783E-1
865						3,11333E-1
866						3,00442E-1
867						2,93376E-1
868						2,8514E-1
869						2,77544E-1
870						2,68228E-1
871						2,62339E-1
872						2,55076E-1
873						2,49307E-1
874						2,40533E-1
875						2,35851E-1
876						2,30374E-1
877						2,24598E-1
878						2,16549E-1
879						2,13123E-1
880						2,07185E-1
881						2,0301E-1
882						1,96463E-1
883						1,9388E-1
884						1,88527E-1
885						1,85464E-1
886						1,79379E-1
887						1,76889E-1
888						1,72773E-1
889						1,6911E-1
890						1,63966E-1
891						1,62503E-1
892						1,589E-1
						1,56218E-1
893						
894						1,51033E-1
895						1,49782E-1
896						1,47356E-1
897						1,45061E-1
898						1,41103E-1
899						1,40201E-1
900						1,36482E-1
901						1,34773E-1
902						1,31539E-1
903						1,28952E-1
904						1,26421E-1
904						
						1,28083E-1
906 907						1,21734E-1
90.7						1,23365E-1
908						1,20334E-1
						1,20334E-1 1,19072E-1 1,15242E-1

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnun (Frequenzbereich
912						1,13982E-1
913						1,13557E-1
914						1,10811E-1
915						1,09511E-1
916						1,07704E-1
917						1,0761E-1
918						1,04729E-1
919						1,05601E-1
920						1,04558E-1
921						1,04216E-1
922						1,01896E-1
923						1,02526E-1
924						1,01719E-1
925						1,02121E-1
926						9,91119E-1
927						9,85689E-1
928						9,77903E-1
929						9,68025E-1
930						9,48692E-1
931						
						9,46009E-1
932						9,34962E-1
933						9,37015E-1
934						9,14646E-1
935						9,01105E-1
936						8,93311E-1
937						8,95417E-1
938						8,72821E-1
939						8,96345E-1
940						8,77031E-1
941						8,79436E-1
942						8,59579E-1
943						8,75013E-1
944						8,48909E-1
945						8,56798E-1
946						8,329E-1
947						8,44606E-1
948						8,31742E-1
949						8,39531E-1
950						
951						8,15631E-1
						8,26822E-1
952						8,12423E-1
953						8,18929E-1
954						7,97082E-1
955						8,13439E-1
956						8,02313E-1
957						8,14388E-1
958						7,94167E-1
959						7,99142E-1
960						7,92514E-1
961						7,99378E-1
962						7,8667E-1
963						8,02515E-1
964						7,84737E-1
965						7,94833E-1
966						7,81358E-1
967						7,79891E-1
968						7,73431E-1
969						7,82927E-1
970						7,68875E-1
970 971						7,86506E-1
972						7,97028E-1
973						7,81705E-1
974						7,73595E-1
975						7,87807E-1
976						7,75507E-1
977						7,73913E-1
978						7,6304E-1
979						7,79864E-1
980						7,65942E-1
981						7,6464E-1
982						7,4928E-1
983						7,46597E-1
984						7,3484E-1
985						7,40638E-1
986						7,31623E-1
987						7,39052E-1
988						
						7,30129E-1
989						7,46257E-1
990						7,22848E-1
991						7,30033E-1
						7,24202E-1
992 993						7,29506E-1

A Berechnete und gemessene Funktionen

Ausführungszeit (10 ms)	X1 (gemessen)	Y1 (gemessen)	Y2 (gemessen)	Messung (gemessen)	Berechnung (Zeitbereich)	Berechnung (Frequenzbereich)
995						7,33563E-17
996						7,14905E-17
997						7,237E-17
998						7,15211E-17
999						7,13225E-17
1000						6,91254E-17
1001						7,10374E-17
1002						7,11925E-17
1003						7,466E-17
1004						7,18312E-17
1005						7,29523E-17
1006						7,13371E-17
1007						7,23198E-17
1008						7,0651E-17
1009						7,11702E-17
1010						6,9303E-17
1011						7,17806E-17
1012						7,13021E-17
1013						7,23169E-17
1014						6,97415E-17
1015						7,1112E-17
1016						7,10189E-17
1017						7,28985E-17
1018						7.02932E-17
1019						7,36077E-17
1020						7,05316E-17
1021						7,20564E-17
1022						7,06622E-17
1023						7,23837E-17

A.3 Webserver

Die Messergebnisse des Webservers liegen der Arbeit als CD bei.