Возрастающая последовательность

<u>Краткая формулировка.</u> Задана числовая последовательность. Требуется построить монотонно возрастающую числовую последовательность, наилучшим образом аппроксимирующую заданную последовательность. Наилучшей считается последовательность с наименьшим суммарным отклонением от заданной.

<u>Более точно.</u> Пусть задана числовая последовательность $t_1, t_2, ..., t_N$. Требуется построить последовательность чисел $z_1, z_2, ..., z_N$, удовлетворяющую следующим условиям:

- 1. $z_1 < z_2 < ... < z_N$
- 2. Сумма $|t_1 z_1| + |t_2 z_2| + ... + |t_N z_N|$ была бы наименьшей возможной.

Формат входных данных. Входной файл в первой строке содержит натуральное число N (1 <= N <= 1000000). Каждая из следующих N строк содержит одно целое число — очередной элемент заданной последовательности. В (K+1)-й строке входного файла задается t_K . Все элементы последовательности удовлетворяют соотношению $0 <= t_K <= 2000000000$.

Формат выходных данных. В первой строке выходного файла должно содержаться одно число — наименьшее возможное суммарное отклонение. В каждой из следующих N строк должно содержаться одно число — очередной элемент построенной последовательности.

Следует выводить одну любую последовательность из всех последовательностей с наименьшим суммарным отклонением.

Пример.

Входной файл	Выходной файл
7	13
9	6
4	7
8	8
20	13
14	14
15	15
18	18

Решение

1.

Назовем последовательность (y_1 , y_2 , ... y_N) *неубывающей*, если ее элементы удовлетворяют условию $y_1 <= y_2 <= ... <= y_N$.

Установим взаимно-однозначное соответствие между возрастающими неубывающими последовательностями следующим образом:

$$z_i = y_i + i$$
, $i = 1, 2, ..., N$

и, соответственно,

$$y_i = z_i$$
-i, $i = 1, 2, ..., N$

Легко видеть, что, если $(z_i)_{i=1+N}$ — возрастающая последовательность, то $(y_i)_{i=1+N}$ — неубывающая последовательность, и наоборот.

Сведем исходную задачу к задаче построения наилучшей неубывающей последовательности. Заметим, что $\sum\limits_{i=1}^N \left| t_i - z_i \right| = \sum\limits_{i=1}^N \left| t_i - (y_i + i) \right| = \sum\limits_{i=1}^N \left| (t_i - i) - y_i \right|$.

Следовательно, можем действовать так:

А. заменяем последовательность t_i на последовательность x_i = t_i – i, i = 1, 2, ..., N

В. находим неубывающую последовательность (y_i) $_{i=1+N}$, для которой сумма $\sum_{i=1}^N \left| x_i - y_i \right|$

будет наименьшей возможной

С. вычисляем $z_i = y_i + i$, i = 1, 2, ..., N

<u>Определение.</u> Будем называть любую такую последовательность $(y_i)_{i=1+N}$ *решающей последовательностью*.

2.

<u>Лемма 1</u>. Пусть $a \le b$. Тогда $\min_{y} (|y-a|+|y-b|) = |b-a|$, и этот минимиум достигается для всех $a \le y \le b$.

Доказательство очевидно.

<u>Лемма 2.</u> Пусть $a_1 \le a_2 \le ... \le a_n$. Тогда сумма $\sum_{i=1}^n |y - a_i|$ достигает своего минимума при a). $a_k \le y \le a_{k+1}$, если n=2k b). $y = a_k$, если n=2k-1

Доказательство.
$$\sum_{i=1}^{n} \left| y - a_i \right| = \left(\left| y - a_1 \right| + \left| y - a_n \right| \right) + \left(\left| y - a_2 \right| + \left| y - a_{n-1} \right| \right) + \left(\left| y - a_3 \right| + \left| y - a_{n-2} \right| \right) + \dots$$

Заключение леммы сразу вытекает из этого и леммы 1.

<u>Определение.</u> *Медианой* числовой последовательности $(x_1, x_2, ... x_n)$ называется число, расположенное в середине последовательности, если расположить ее элементы в неубывающем порядке.

Более точно, пусть последовательность $(a_1, a_2, \dots a_n)$ получена из последовательности $(x_1, x_2, \dots x_n)$ перестановкой ее элементов, причем $a_1 \le a_2 \le \dots \le a_n$; медиана последовательности $(x_1, x_2, \dots x_n)$ — это величина $a_{(n+1) \text{ div } 2}$:

median
$$(x_1, x_2, ... x_n) = a_{(n+1) \text{ div } 2}$$
.

Следствие. Сумма
$$\sum_{i=1}^{n} |y - x_i|$$
 достигает своего минимума при $y = \text{median}(x_1, x_2, ... x_n)$.

3. Проанализируем последовательность $(y_i)_{i=1 \div N}$. Выберем в ней постоянный отрезок $y_p, y_{p+1}, ..., y_q$: $y_{p-1} < y_p = y_{p+1} = ... = y_q < y_{q+1}$ (считаем $y_0 = -\infty$, $y_{N+1} = +\infty$).

Обозначим $y_p = y$. Тогда сумма $\sum_{i=p}^{q} |y_i - x_i| = \sum_{i=p}^{q} |y - x_i|$ достигает своего минимума при $y = \text{median}(x_p, x_{p+1}, \dots x_q)$.

Отсюда сразу следуют два утверждения:

<u>Лемма 3.</u> Существует решающая последовательность, каждый элемент которой равен некоторому элементу последовательности $(x_i)_{i=1+N}$.

<u>Лемма 4.</u> Существует решающая последовательность $(y_i)_{i=1+N}$ следующего вида:

$$y_1 = y_2 = \dots = y_{q_1} < y_{q_1+1} = y_{q_1+2} = \dots = y_{q_2} < \dots < y_{q_{R-1}+1} = y_{q_{R-1}+2} = \dots = y_{q_R}$$
 ($q_R = N$),

причем $y_{q_i} = median(x_{q_{i-1}+1}, x_{q_{i-1}+2}, ..., x_{q_i})$

<u>Определение.</u> Назовем такую решающую последовательность канонической.

- 4. Первое решение (индуктивное).
 - А. Пусть для последовательности $(x_1, x_2, ... x_k)$ построена каноническая решающая последовательность, т.е. найдены числа $q_1 < q_2 < ... q_{S-1} < q_S = k$ и $y_{q_1} < y_{q_2} < ... < y_{q_S}$.
 - В. Рассмотрим последовательность $(x_{k+1}, x_{k+2}, ... x_m)$. Допустим, соответствующая ей каноническая решающая последовательность состоит из одного отрезка все элементы этой канонической решающей последовательности равны между собой и равны $Y=median\ (x_{k+1}, x_{k+2}, ... x_m)$.

C.

- Если $y_{q_s} < Y$, то полагаем $q_{S+1} = m$, $y_{q_{S+1}} = Y$, и получаем каноническую решающую последовательность для $(x_1, x_2, ... x_m)$, m > k.
- Если $y_{q_s} = Y$, то заменяем q_S на m, и тоже получаем каноническую решающую последовательность для $(x_1, x_2, ... x_m)$, m > k.
- Если $y_{q_S} > Y$, то "сливаем" два последних отрезка: полагаем $Y = median(x_{q_{S-1}+1}, \dots, x_k, x_{k+1}, \dots, x_m)$ и уменьшаем S на 1.
- Если S>0, то мы оказываемся в условиях пункта В. переходим на В.; если S=0, то каноническая решающая последовательность для $(x_1, x_2, ... x_m)$ построена все ее элементы равны между собой и равны median $(x_1, x_2, ... x_m)$.

Итого, получаем следующий алгоритм:

<u>Алгоритм 1.</u> последовательно для k=1, 2, ..., (N-1)

- 1. полагаем m=k+1 и
- 2. строим каноническую решающую последовательность для $(x_1, x_2, ... x_m)$ так, как описано выше.

Сложность представленного алгоритма $O(N^2)$ при затратах памяти $O(N^2)$.

5. Второе решение (основанное на Quick-подходе).

Положим

 $L(b_1, b_2, ..., b_P)$ количество таких элементов b_i массива $(b_1, b_2, ..., b_P)$, что $b_i < median (b_1, b_2, ..., b_P)$;

 $LE(b_1,\,b_2,\,...,\,b_P)$ количество таких элементов b_i массива $(b_1,\,b_2,\,...,\,b_P)$, что $b_i \leqslant \textit{median}\ (b_1,\,b_2,\,...,\,b_P)$;

 $G(b_1,\,b_2,\,...,\,b_P)$ количество таких элементов b_i массива $(b_1,\,b_2,\,...,\,b_P)$, что $b_i > median\,(b_1,\,b_2,\,...,\,b_P);$

 $GE(b_1, b_2, ..., b_P)$ количество таких элементов b_i массива $(b_1, b_2, ..., b_P)$, что $b_i \ge median (b_1, b_2, ..., b_P)$;

Обозначим $Y = median(x_1, x_2, ..., x_N)$.

<u>Лемма 5.</u> Пусть массив $(x_1, x_2, ..., x_N)$ можно разбить на два отрезка $(x_1, x_2, ..., x_K)$ и $(x_{K+1}, x_{K+2}, ..., x_N)$ так, что выполняются условия:

- i. $L(x_P, x_{P+1}, ..., x_K) > GE(x_P, x_{P+1}, ..., x_K)$ для всех $P, 1 \le P \le K$;
- іі. $L(x_{K+1}, x_{K+2}, ..., x_0)$ ≤ $GE(x_{K+1}, x_{K+2}, ..., x_0)$ для всех Q, K < Q ≤ N.

Тогда

 $y_K < Y$ для любой решающей последовательности $(y_1, y_2, ... y_N)$, и

существует решающая последовательность, для которой $y_{K+1} \gg Y$.

Длказательство.

Пусть $(y_1, y_2, ... y_N)$ – некоторая решающая последовательность с $y_K > Y$.

Пусть $y_{K-1} \ge Y$, $y_{K-2} \ge Y$, ..., $y_P \ge Y$, а $y_{P-1} < Y$ (полагая $y_0 = -\infty$).

Уменьшим на 1 все числа y_K , y_{K-1} , ..., y_P .

Если $x_i < Y$ ($P \le i \le K$), то $|y_i - x_i| = y_i - x_i$ уменьшится на 1,

если $x_i \gg Y$ ($P \le i \le K$), то $|y_i - x_i|$ изменится (либо уменьшится либо увеличится) на 1.

Следовательно, сумма $\sum_{i=P}^{K} |y_i - x_i|$ увеличится не более чем на

$$GE(x_P, x_{P+1}, ..., x_K) - L(x_P, x_{P+1}, ..., x_K),$$

а $GE(x_P, x_{P+1}, ..., x_K) - L(x_P, x_{P+1}, ..., x_K) < 0$ в силу условия i.

Если теперь $y_K=Y$, то процесс останавливаем, если же $y_K>Y$, то повторяем вышеописанное преобразование: снова находим такое P, что $y_{K-1} > Y$, $y_{K-2} > Y$, ..., $y_P > Y$, а $y_{P-1} < Y$, и уменьшаем на 1 все числа y_K , y_{K-1} , ..., y_P . Понятно, что после некоторого количества шагов процесс остановится. Сумма $\sum_{i=1}^N |y_i - x_i|$ в этом процессе не возрастает, т.е. новая последовательность $(y_1, y_2, ..., y_N)$ также является решающей.

Во вновь построенной последовательности $y_K = y_{K-1} = ... = y_P = Y > y_{P-1}$. Еще раз уменьшим на 1 все числа y_K , y_{K-1} , ..., y_P . В результате сумма $\sum_{i=P}^K \left| y_i - x_i \right|$ уменьшится на

 $L(x_P, x_{P+1}, ..., x_K)$ - $GE(x_P, x_{P+1}, ..., x_K)$ > 0, что противоречит предположению о том, что начальная последовательность является решающей. Полученное противоречие доказывает первое утверждение леммы.

Второе утверждение леммы доказывается аналогично. Приведем это доказательство для полноты.

Пусть у нас имеется некоторая решающая последовательность (y_1 , y_2 , ... y_N), причем $y_{K+1} < Y$.

Пусть $y_{K+2} < Y$, ..., $y_0 < Y$, a $y_{O+1} \ge Y$.

Увеличим на 1 все числа y_{K+1} , y_{K+2} , ..., y_Q .

Если $x_i \ge Y$ (K<i $\le Q$), то $|y_i - x_i| = y_i - x_i$ уменьшается 1,

если $x_i < Y$ (K<i \leq Q), то $|y_i - x_i|$ изменяется (уменьшается либо увеличивается) на 1.

Следовательно, сумма $\sum_{i=p}^{K} |y_i - x_i|$ увеличивается не более, чем на

$$L(x_{K+1}, x_{K+2}, ..., x_Q)$$
 - $GE(x_{K+1}, x_{K+2}, ..., x_Q)$.

Эта разность не положительна по условию іі.

Теперь, если $y_{K+1} \geqslant Y$, то останавливаем процесс, если же $y_{K+1} < Y$, то повторяем процесс: снова находим такое Q, что $y_{K+1} < Y$, $y_{K+2} < Y$, ..., $y_Q < Y$, и $y_{Q+1} \geqslant Y$, и увеличиваем на 1 все числа y_{K+1} , y_{K+2} , ..., y_Q . Понятно, что после некоторого (конечного) количества повторений процесс остановится. Сумма $\sum_{i=1}^N \left| y_i - x_i \right|$ не возрастает в этом процессе, т.е. новая последовательность (y_1, y_2, \ldots, y_N) также является решающей.

<u>Lemma 6.</u> Обозначим D(P) = L($x_1, x_2, ..., x_P$) - GE($x_1, x_2, ..., x_P$), 1≤P≤N.

Пусть P_0 – это наименьшее из тех P, при которых D(P) достигает своего наибольшего значения: D(P₀) \geqslant D(P), 1 \leqslant P \leqslant N, и D(P₀) = D(P) \Rightarrow P₀ < P.

Массив $(x_1, x_2, ..., x_N)$ можно разбить на два отрезка так, как описано в условиях леммы 5, тогда и только тогда, когда $D(P_0) > 0$. При этом полагаем $K = P_0$.

Доказательство.

Итак, полагаем $K = P_0$.

Если для некоторого P ($1 < P \le K$) $L(x_P, x_{P+1}, ..., x_K) \le GE(x_P, x_{P+1}, ..., x_K)$, то $D(P-1) = D(K) - (L(x_P, x_{P+1}, ..., x_K) - GE(x_P, x_{P+1}, ..., x_K)) \geqslant D(K)$, и P-1 < K. Более того, $L(x_P, x_{P+1}, ..., x_K) > GE(x_P, x_{P+1}, ..., x_K)$ для P=1, поскольку $L(x_1, x_2, ..., x_K) - GE(x_1, x_2, ..., x_K) = D(K) > 0$.

Если $L(x_{K+1}, x_{K+2}, ..., x_Q) > GE(x_{K+1}, x_{K+2}, ..., x_Q)$ для некоторого Q, K<Q \leq N, то $D(Q) = D(K) + (L(x_{K+1}, x_{K+2}, ..., x_Q) - GE(x_{K+1}, x_{K+2}, ..., x_Q)) > D(K).$

<u>Следствие.</u> Если массив $(x_1, x_2, ..., x_N)$ можно разбить на два отрезка в соответствии с условиями леммы 5, то K \leq N-2. Доказаьельство.

 $D(N) = L(x_1, x_2, ..., x_N)$ - $GE(x_1, x_2, ..., x_N) < 0$ по определению медианы. Понятно, что |D(N)- D(N-1)|=1, hence $D(N-1) \le 0$.

<u>Лемма 7.</u> Пусть массив $(x_1, x_2, ..., x_N)$ невозможно разбить на два отрезка в соответствии с условиями леммы 5, и

пусть массив $(x_1, x_2, ..., x_N)$ можно разбить на два отрезка $(x_1, x_2, ..., x_M)$ и $(x_{M+1}, x_{M+2}, ..., x_N)$, $M \le N$, так, что

ііі. LE(x_P , x_{P+1} , ..., x_M) \geq G(x_P , x_{P+1} , ..., x_M) для всех P, 1 \leq P \leq M;

iv. LE($x_{M+1}, x_{M+2}, ..., x_0$) $\leq G(x_{M+1}, x_{M+2}, ..., x_0)$ для всех Q, M<Q \leq N.

Тогда существует решающая последовательность, для которой $y_1 = y_2 = ... = y_M = Y$.

Доказательство.

Аналогично доказательству леммы 5 получаем, что существует решающая последовательность с $y_{M+1} \ge Y$, и $y_M \le Y$.

Кроме того, известно, что массив $(x_1, x_2, ..., x_N)$ нельзя разбить на отрезки в соответствии с условиями леммы 5. Это означает (в соотвествии с леммой 6), что для всех P, $1 \le P \le N$, $D(P) \le 0$, т.е. $L(x_1, x_2, ..., x_P) \le GE(x_1, x_2, ..., x_P)$.

Пусть $y_1 < Y$, $y_2 < Y$, ..., $y_R < Y$, и $y_{R+1} \ge Y$. Увеличим на 1 все числа y_1 , y_2 , ..., y_R .

Если $x_i < Y$ ($1 \le i \le R$), то $|y_i - x_i| = y_i - x_i$ изменится (увеличится или уменьшится) на 1, если же $x_i \ge Y$ ($1 \le i \le R$), то $|y_i - x_i|$ увеличится.

Следовательно сумма $\sum\limits_{i=1}^R \left| y_i - x_i \right|$ увеличится по крайней мере на

$$L(x_1, x_2, ..., x_R) - GE(x_1, x_2, ..., x_R) \leq 0.$$

Как и выше, повторяем этот процесс до тех пор, пока не окажется $y_1 = Y$. Мы построили решающую последовательность с $y_1 = y_2 = ... = y_R = Y$, и $y_M \le Y$. Поскольку последовательность неубывающая, то $y_1 = y_2 = ... = y_M = Y$.

<u>Лемма 8.</u> Любой массив $(x_1, x_2, ..., x_N)$ можно разбить на два отрезка так, чтобы выполнялись условия ііі. и іv. леммы 7.

Доказательство.

Аналогично лемме 6.

Обозначим DE(P) = LE($x_1, x_2, ..., x_P$) - G($x_1, x_2, ..., x_P$), $1 \le P \le N$.

Пусть DE(P) достигает своего наибольшего значения при $P=P_0$ (DE(P_0) \geqslant DE(P), $1 \leqslant P \leqslant N$).

Заметим, что $DE(N) \ge 0$ по определению медианы, и поэтому $DE(P_0) \ge 0$.

Теперь мы можем разбить массив $(x_1, x_2, ..., x_N)$ желаемым образом, полагая $M = P_0$.

Итого сформулируем алгоритм решения.

Алгоритм 2.

1. Разбиваем (если это возможно) массив $(x_1, x_2, ..., x_N)$ так, чтобы выполнялись условия леммы 5. Метод поиска такого разбиения описан в лемме 6.

- 2. Если такое разбиение существует, то применяем процесс построения решающей последовательности рекурсивно к обеим частям последовательности.
- 3. Если же такое разбиение невозможно, то разбиваем массив $(x_1, x_2, ..., x_N)$ так, чтобы выполнялись условия леммы 7, методом, описанным в лемме 8. Полагаем $y_1 = y_2 = ... = y_M = median (x_1, x_2, ..., x_N)$ и применяем рекурсивно процесс построения решающей последовательности к правой части полученного разбиения.

Анализ сложности.

В худшем случае сложность алгоритма 2 равна $O(N \cdot T(N))$, где T(N) I- сложность поиска медианы. Медиана может быть найдена с затратами времени O(N) (см. Д.Э.Кнут, *Искусство программирования*, том 3. Сортировка и поиск. 2-е изд. М., "Вильямс", 2002. Теорема L в разделе 5.3.3). Программа quick2.pas реализует этот подход. Однако численный эксперимент показал, что эта программа работает, вследствие сложности реализации, относительно медленно. Другой вариант программы (quick1.pas) использует "приведенный" QuickSort для поиска медианы и работает гораздо быстрее, чем любая другая из приведенных программ. "Приведенный" QuickSort означает, что мы продолжаем поиск медианы только в одной из двух частей, получающихся в результате разделения массива. Сложность этой процедуры равна $O(N^2)$ в худшем случае и O(N) в среднем.

В среднем сложность алгоритма 2 равна $O(log\ N\ \cdot T(N))$. Это доказывается точно также, как и при анализе QuickSort [Д.Э.Кнут, *Искусство программирования, том 3. Сортировка и поиск.* 2-е изд. М., "Вильямс", 2002. Алгоритм Q в разделе 5.2.2].

Итого

	Сложность			
Программа	В худшем случае	В среднем		
quick1	O (N ³)	O(N·log N)		
quick2	O (N ²)	O(N·log N)		

Несмотря на то, что quick1 имеет плохую теоретическую оценку сложности, эта программа работает гораздо быстрее, чем quick2 (и любая другая из предложенных программ) — см. Приложение. Quick внутри Quick'а работает воистину быстро! \odot

6. Третье решение (динамическое программирование).

Упорядочим массив (x_1 , x_2 , ..., x_N) в неубывающем порядке и удалим из него все повторяющиеся числа. Получим массив (a_1 , a_2 , ..., a_m): $a_1 < a_2 < ... < a_m$, причем каждый из элементов массива (x_1 , x_2 , ..., x_N) встречается в массиве (a_1 , a_2 , ..., a_m).

В соответствии с леммой 3 мы можем построить решающую последовательность $(y_1, y_2, ..., y_N)$, состоящую из элементов массива $(a_1, a_2, ..., a_m)$.

Обозначим aim(k,j) наименьшее возможное значение суммы $\sum_{i=1}^{k} \left| y_i - x_i \right|$ при условии $y_1 \le y_2 \le ... \le y_k = a_j$.

Алгоритм 3.

Прямой ход – заполнение массива aim.

$$aim(1, j) = |x_1 - a_j|$$
, j=1, 2, ..., m
 $aim(k, j) = |x_k - a_j| + \min_{1 \le p \le j} aim(k-1, p)$, j=1, 2, ..., m; k=2, 3, ..., N

Ясно, что
$$min\sum_{i=1}^{n}\left|y_{i}-x_{i}\right|=\min_{1\leq j\leq m}aim(N,j)$$

<u>Обратный ход</u> – построение последовательности ($y_1, y_2, ... y_N$).

Пусть
$$\min_{1 \leq j \leq m} aim(N,j) = aim(N,j_0)$$
 . Тогда $y_{_N} = a_{_{j_0}}$.

Находим у_{N-1} из соотношений
$$y_{N-1}=a_{j_1}$$
 , где $\mathbf{j}_1 \leq \mathbf{j}_0$ и $aim(N-1,j_1)+\left|y_N-x_N\right|=aim(N,j_0)$.

Затем аналогично находим последовательно y_{N-2} , y_{N-3} , ... y_2 , y_1 .

Сложность представленного алгоритма 3 равна $O(N^2)$ при затратах памяти $O(N^2)$. Реализация алгоритма представлена в программе dynamic1.pas.

Мы можем обойтись без двумерного масива aim при построении решающей последовательности (на обратном ходу). Однако тогда обратный ход потребует пересчитывать каждый раз одномерный массив aim(m,*). Такой вариант требует только O(N) памяти, но его сложность оказывается равной $O(N^3)$. Этот вариант реализован в программе dynamic2.pas.

Приложение. Сравнение скорости представленных алгоритмов. План генерации тестов.

		Время выполнения (сек.)					
Описание теста	Размер теста (N)	dynamic2	dynamic1	induct	quick1	quick2	
	1000	63	<0.1	<0.1	<0.1	<0.1	
Возрастающая последовательность t _{i+1} -t _i > 1	2000	173	0.1	<0.1	<0.1	<0.1	
	50000	_	_	0.1	0.15	6.1	
	100000	_	_	0.3	0.25	8.7	
	500000	_	_	1.3	1.5	14.3	
	1000000			2.7	3.3	32.0	
Возрастающая последовательность t_{i+1} - t_i = 1	1000	50	<0.1	<0.1	<0.1	<0.1	
	2000	100	<0.1	<0.1 1.2	<0.1	<0.1 2.6	
	500000 1000000			2.4	1.1 2.3	5.1	
	1000	58	<0.1	0.2	<0.1	<0.1	
	2000	157	0.1	0.25	<0.1	<0.1	
	10000	-	U.Z —	2.1	<0.1	0.15	
	30000	_	_	9.9	<0.1	0.13	
Убывающая последовательность	50000	_	_	22.3	0.12	0.35	
	100000	_	_	116.0	0.2	1.0	
	500000	_	_	_	1.2	4.9	
	1000000	-	_	_	2.5	9.9	
	1000	58	<0.1	0.2	<0.1	<0.1	
	2000	157	<0.1	0.35	<0.1	<0.1	
Постоянная посполоворотовы ность	10000	_	_	2.1	<0.1	0.15	
Постоянная последовательность	30000	_	_	9.8	<0.1	0.3	
(эквивалентно убывающей	50000	_	_	22.3	0.12	0.35	
последовательности)	100000	_	-	116.0	0.2	1.0	
	500000	_	_	_	1.2	4.9	
	1000000	_	_	_	2.3	9.8	
1,1,2,2,3,3,4,4,5,5,	2000	136	0.1	0.35	<0.1	<0.1	
	100000	_	_	116.0	0.2	1.0	
	1000000	-	_	_	2.1	9.5	
	2000	139	0.1	0.35	<0.1	<0.1	
1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,	100000	_	_	116.0	0.2	0.95	
	1000000	424	-	- 0.25	2.1	9.6	
1,2,1,2,1,2,	100000	131 —	<0.1 —	0.35 116.0	<0.1 0.15	0.1 0.95	
1,2,1,2,1,2,	100000			110.0	1.6	9.2	
	2000	106	<0.1	<0.1	<0.1	<0.1	
1,1,3,3,5,5,7,7,9,9,	100000	-	- 1	7.6	0.2	0.7	
1, 1,0,0,0,0,1,1,0,0,	1000000	_	_	17.2	2.1	7.2	
	2000	102	<0.1	0.2	<0.1	<0.1	
1,1,1,4,4,4,7,7,7,10,10,10,	100000	_	_	10.2	0.2	0.5	
.,.,.,.,.,.,.,.,.,,,,	1000000	_	_	102	2.1	5.3	
Случайная последовательность, 0 ≤ t _i ≤ 100	1000	56	<0.1	0.2	<0.1	<0.1	
Случайная последовательность, 0≤t _i ≤100	2000	139	0.1	0.35	<0.1	<0.1	
Случайная последовательность, 0 <i>≤</i> t _i <i>≤</i> 10 ⁶	2000	158	0.15	0.3	<0.1	0.12	
		100	0.10	2.1			
Случайная последовательность, 0 ≤ t ≤ 100	10000	_	_		<0.1	0.15	
Случайная последовательность, 0 ≤t _i ≤ 10 ⁶	10000	_	_	1.4-1.6	<0.1	0.3-0.4	
Случайная последовательность, 0≤t _i ≤100	30000	_	_	9.8	<0.1	0.3-0.35	
Случайная последовательность, 0≤t _i ≤106	30000	_	_	4.8-5.3	0.1	0.7-0.8	
Случайная последовательность, 0 ≤ t _i ≤ 500	50000	-		22.3	0.12	0.45-0.5	
Случайная последовательность, 0≤t _i ≤10 ⁵	50000	_	_	19.3	0.12	0.5-0.55	
Случайная последовательность, 0≤t _i ≤10 ⁸	50000	_	_	7.9-8.0	0.15	1.4-1.7	
Случайная последовательность, 0 ≪ti≪10 ⁵	100000	_	_	135	0.13	1.4-1.7	
		_	_				
Случайная последовательность, 0 < t < 109	100000	_	_	15-16	0.3	2.9-3.2	
Случайная последовательность, 0 ≤t _i ≤ 10 ⁶	300000	_	_	740-790	0.6-0.8	3.5-7	
Случайная последовательность, 0≤t _i ≤10 ⁹	300000	_	_	55-60	0.9-1.0	8.5-9.5	
Случайная последовательность, 0≤t _i ≤106	500000	_	_		1.25-1.3	4.8-4.9	

Случайная последовательность, 0≤t _i ≤2 · 10 ⁹	500000	_	_	120-140	1.7-1.8	13-14
Случайная последовательность, 0≤t _i ≤10 ⁶	1000000	_	_	_	2.2-2.3	9.7-10.0
Случайная последовательность, 0 ≤ t _i ≤ 5 ⋅ 10 ⁸	1000000	_	_	240-280	3.2-3.4	26-28
Случайная последовательность, 0 ≤ t _i ≤ 2 · 10 ⁹	1000000	=	_	240-280	3.3-3.6	26-28