KOMPLEKSNA ŠTEVILA

Kompleksno število je število oblike z = x + iy, kjer sta x in y realni števili in je $i = \sqrt{-1}$ imaginarna enota.

Množico kompleksnih števil označimo s C.

Konjugirano število \overline{z} kompleksnega števila z = x + iy je število x - iy. V kompleksni ravnini je to ravno zrcalna točka točke z glede na realno os.

Veljajo zveze:
$$\overline{z} = z \Leftrightarrow z \in \mathbb{R}, \quad \overline{z+w} = \overline{z} + \overline{w}, \quad \overline{z \cdot w} = \overline{z} \cdot \overline{w}, \quad \overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}.$$

Obrat (tudi inverz) neničelnega kompleksnega števila z je kompleksno število

$$\frac{1}{z} = \frac{1}{z} \cdot \frac{\overline{z}}{\overline{z}} = \frac{\overline{z}}{|z|^2}$$

Realni del Re z kompleksnega števila z = x + iy je realno število x. Geometrijski pomen: oddaljenost točke z od imaginarne osi. Velja zveza:

$$Re z = \frac{z + \overline{z}}{2}.$$

Imaginarni del Im z kompleksnega števila z = x + iy je realno število y. Geometrijski pomen: oddaljenost točke z od realne osi. Velja zveza:

$$Re z = \frac{z - \overline{z}}{2i}.$$

Absolutna vrednost |z| kompleksnega števila z = x + iy je realno število $\sqrt{z\overline{z}} = \sqrt{x^2 + y^2}$. Geometrijski pomen: oddaljenost točke z od izhodišča 0.

Argument arg z neničelnega kompleksnega števila z je tak kot $\varphi \in (-\pi, \pi]$, za katerega velja $tg \varphi = \frac{Imz}{Rez}$ in leži število $\cos \varphi + i \sin \varphi$ v istem kvadrantu kot število z. Vrednost arg 0 ni definirana. Geometrijski pomen: kot, ki ga oklepa daljica, ki ima za krajišči izhodišče 0 in točko z, s pozitivnim poltrakom realne osi.

Kompleksno število z ima poleg kartezičnega zapisa Re z + i Im z še polarni zapis oblike $z = r(\cos \varphi + i \sin \varphi)$, za katerega velja, da je $r \ge 0$ in $\varphi \in \mathbb{R}$.

Iz postavljene zahteve za neničelna števila z sledi karakterizacija r=|z| in $\varphi=arg\,z+2k\pi$ za kak $k\in\mathbb{Z}.$

Pri potenciranju kompleksnih števil nam pomaga Moivrov obrazec:

$$(\cos \varphi + i \sin \varphi)^k = \cos(k\varphi) + i \sin(k\varphi)$$
 za vsak $\varphi \in \mathbb{R}$ in $k \in \mathbb{Z}$

Pri korenjenju kompleksnih števil nam za vsak $\varphi \in \mathbb{R}$ in za vsak $n \in \mathbb{N}$ pomaga formula:

$$\sqrt[n]{(\cos\varphi + i\sin\varphi)} = \cos\left(\frac{\varphi + 2k\pi}{n}\right) + i\sin\left(\frac{\varphi + 2k\pi}{n}\right), \quad k = 0, 1, 2, \dots, n - 1$$

Naloge

1. V ravnini kompleksnih števil označi množico točk, ki ustrezajo naslednjim neenačbam oz. enačbam:

(a)
$$arg(z) = \frac{5\pi}{6}$$

(b)
$$2 < |z| \le 3$$

(c)
$$|z+i+1| > 2$$

(d)
$$|z| + Re(z) \le Im(z)$$

2. Poišči realni števili x in y, ki ustrezata enačbi:

$$(3-i)x^2 - (3+2i)x - (1-i)y = 13-10i$$

Rešitev:
$$x = 3$$
, $y = 5$ ali $x = -\frac{1}{2}$, $y = -\frac{43}{4}$

3. Določi števila $z \in \mathbb{C}$, za katera je Re(z+iz) = 0.

Rešitev:
$$z = x + ix, x \in \mathbb{R}$$

- 4. Izračunaj $(1-i)^{2012}$.
- 5. Izračunaj $1+z+z^2$, če je $z=\cos(\frac{2\pi}{3})+i\sin(\frac{2\pi}{3})$.

6. Reši enačbo: $z^6 + 8 = 0, z \in \mathbb{C}$.

Rešitev:
$$\left\{ \frac{\sqrt{2}}{2}(\sqrt{3}+i), \sqrt{2}i, \frac{\sqrt{2}}{2}(-\sqrt{3}+i), \frac{\sqrt{2}}{2}(-\sqrt{3}-i), -\sqrt{2}i, \frac{\sqrt{2}}{2}(\sqrt{3}-i) \right\}$$

7. Ali v množici kompleksnih števil vedno velja enakost:

$$|z|^2 = z^2?$$

Če enakost vedno velja, to dokažite, sicer pa utemeljite, za natanko katera kompleksna števila enakost velja.

Rešitev: Enakost velja natanko tedaj, ko je z realno število.

8. V množici kompleksnih števil poišči vse rešitve enačbe:

$$z^3 + 1 = \frac{z^4 + z^3 + z^2 + z + 1}{z^2 + z + 1}.$$

Rešitev: z = 0

9. Poenostavi izraze

(a)
$$(3+4i)\overline{(1-3i)}$$

Rešitev: -9 + 13i

 $(b) \ \frac{7-3i}{1+i}$

Rešitev: 2-5i

10. Poišči vsa kompleksna števila, ki zadoščajo enačbi

(a)
$$z^3 + 4z^2 - z - 4 = 0$$

Rešitev: $z \in \{4, -1, 1\}$

(b)
$$z^3 - z^2 - 4z - 6 = 0$$

Rešitev: $z = -1 \pm i$

11. Poišči kakšen polinom z realnimi koeficienti, ki ima ničlo $\sqrt{3}-i\sqrt{5}.$

Rešitev: $x^2 - 2\sqrt{3}x + 8$

12. Določi množice kompleksnih števil z, ki zadoščajo enačbi in jih nariši.

(a)
$$|z| = |2z - 3 - i \operatorname{Im} z|$$

Rešitev: $\{z \mid \operatorname{Re} z = 1 \text{ ali } \operatorname{Re} z = 3\}$

(b)
$$z^4 = -8\sqrt{3} - 8i$$

Rešitev: $z_k = 2\left(\cos\left(\frac{7\pi}{24} + \frac{k\pi}{2}\right) + i\sin\left(\frac{7\pi}{24} + \frac{k\pi}{2}\right)\right)$ za $k \in \mathbb{Z}$

13. Skiciraj naslednje podmnožice kompleksnih števil; φ označuje argument kompleksnega števila z. (Nalogo poizkusi rešiti s čim manj računanja.)

(a)
$$\{z \in \mathbb{C} \mid |z+3-4i| < 2\}$$

Rešitev: Notranjost krožnice s središčem (-3,4) in polmerom 2.

(b) $\{z \in \mathbb{C} \, | \, |z| > 3, \, \varphi \in [\frac{\pi}{3}, \pi] \}$

Rešitev: Števila v izseku zunanjosti krožnice s središčem v izhodišču in polmerom 3 med vključno kotom $\pi/3$ in kotom π .

(c) $\{z \in \mathbb{C} \mid |z - 2| = |z + 3i|\}$

Rešitev: točke, ki ležijo na simetrali daljice med točkama (2,0) in (0,-3); t.j. premica: 6y+4x+5=0.

(d) $\{z \in \mathbb{C} \mid |z - 1| + |z + 5| \le 10\}$

Rešitev: Točke na in znotraj elipse z enačbo $(\frac{x+2}{5})^2 + (\frac{y}{4})^2 = 1$.

(e) $\{z \in \mathbb{C} \mid \text{Re}(z^2) + 4 \text{Im } z = 0\}$

Rešitev: Hiperbola z enačbo $x^2 - (y-2)^2 = -4$.

14. Naj bo z kompleksno število, $z \neq 1$ in |z| = 1. Dokaži, da je število $i \frac{z+1}{z-1}$ realno.

Rešitev: Upoštevaj $|z|^2=z\overline{z}=1$ in izračunaj konjugirano vrednost.

15. Dokaži, da je množica kompleksnih števil

$$\left\{ z = \frac{3}{2 + \cos \varphi + i \sin \varphi} \,\middle|\, \varphi \in \mathbb{R} \right\}$$

podmnožica krožnice s središčem a=2 in polmerom 1.

Rešitev: Dokaži, da vsa števila iz množice ustrezajo enačbi |z-2|=1.

- 16. Določi množice kompleksnih števil z, ki zadoščajo enačbam, in jih nariši.
 - (a) $z^8 + z^4 12 = 0$

Rešitev: $\{\pm\sqrt[4]{3}, \pm i\sqrt[4]{3}, \pm 1 \pm i\}$

(b) $z^3 + 3z^2 + 3z + i = 0$

Rešitev: $-1 + \sqrt[6]{2}(\cos(\frac{8k-1}{12}\pi) + i\,\sin(\frac{8k-1}{12}\pi))$ za k = 0, 1, 2

(c) $z^2 + 2i \operatorname{Re} z = |z|$

Rešitev: $\{0, \sqrt{3} - i, -\sqrt{3} - i\}$