Chaining Garbled Circuits

Alex Ledger

Reed College

April 11, 2016

Overview

- 1. Secure Computation
- 2. Garbled Circuits
- 3. Better Garbled Circuits
- 4. Chaining Garbled Circuits
- 5. Better Chaining of Garbled Circuits

Goals of this talk

- 1. Understand the high level idea of secure computation
 - ▶ Maybe you'll run into a situtation where it's useful, and it can help solve an otherwise unsolvable, real world problem.
- 2. Understand garbled circuits the most basic construction
- 3. Understand chaining how we (my thesis) made secure computation faster
- 4. We will not be focusing on security (different from most crypto talks)

Before we start:

- 1. Lots of notation: ask me if I brush over something, or you forget what something means.
- 2. Lots of moving parts.

The Millionaire Problem

- ▶ Alice and Bob want to determine who is wealthier.
- ▶ They do want to disclose their wealth to each other.
 - ▶ Alice has \$x, Bob has \$y.
 - ▶ Alice should not learn anything about *y*.
 - ▶ Bob should not learn anything about *x*.

$$f(x,y) = \begin{cases} Alice, & y \le x; \\ Bob, & y > x. \end{cases}$$
 (1)

Security Properties

- Privacy of inputs
 - Alice and Bob do not learn anything about the other's input.
 - **Except** for info that is inferable from x and f(x, y).
 - ▶ Bob should not learn that $1,000,000 < x \le 2,000,000$.
 - ▶ But if y < x and y = 2,000, then he learns x < 2,000.
- Correctness
 - ▶ Alice and Bob receive f(x, y).
 - As opposed to some value near f(x, y).
 - Or not receiving a value at all
- Semi-honest
 - We assume that each party obeys the protocol, but attemps to learn extra information from its interactions

Security

A secure computation protocol is secure if Alice and Bob learn the same information in the real world as they would in ideal world.

Boolean Circuits

- ▶ We encode a function f into a circuit C.
- ▶ Circuit *C* is made of AND, XOR and NOT gates.
- ► Each gate has two input wires and a single output wire

Boolean Circuits

- Any function can be encoded into a circuit.
- ▶ Here is the less than circuit.

Encryption

Oblivious Transfer (OT) in brief

- ▶ Alice potentially sends either m_0 or m_1 to Bob.
- Bob receives m_b.
- Property 1: Alice does not know which message Bob recieved.
- ▶ Property 2: Bob doesn't anything about m_{1-b} .

Hash Function in brief

- ▶ Hash function $H: \{0,1\}^* \to \{0,1\}^{128}$
- ► For our purposes, *H* maps any string to a uniform, random 128-bit string.
- ► A.k.a. *H* is a random oracle.

Figure 17: Hash Function

Roadmap of Garbled Circuits

- Suppose Alice and Bob are computing a circuit that is only the AND gate.
- 2. Alice garbles the AND gate.
- 3. Alice then sends *garbled table* of the gate and some auxiliary information to Bob.
- 4. Bob evaluates the gate.

Step 1. Assign wire labels to each wire.

- ► For each wire in the circuit, assign two random labels to each wire
- ▶ Wire A has two wire labels A_0 and A_1 .
- ▶ We say A₀ semantically represents 0, and A₁ semantically represents 1.
- ▶ And A_0 and A_1 are sampled uniform randomly from $\{0,1\}^n$.
 - ▶ Generally use AES-128 for encryption, so n = 128.

Step 2. Construct garbled table.

- ▶ Encrypt wire labels for C, C_0 and C_1 , using wire labels of A and B.
- Randomly permute table

Α	В	Encryption
A_0	B_0	$Enc_{A_0,B_0}(C_0)$
A_1	B_0	$Enc_{A_1,B_0}(C_0)$
A_0	B_1	$Enc_{A_0,B_1}(C_0)$
A_1	B_1	$Enc_{A_1,B_1}(C_1)$

Step 3. Send garbled table to Bob.

 $\begin{aligned} &\mathsf{Enc}_{A_0,B_0}(C_0) \\ &\mathsf{Enc}_{A_1,B_0}(C_0) \\ &\mathsf{Enc}_{A_0,B_1}(C_0) \\ &\mathsf{Enc}_{A_1,B_1}(C_1) \end{aligned}$

Step 4. Send input wire labels to Bob.

- ▶ Suppose $x \in \{0,1\}$ is Alice's input, and $y \in \{0,1\}$ is Bob's input.
- ▶ Alice sends *A*_× to Bob.
- ightharpoonup Alice sends B_{ν} to Bob via Oblvious Transfer
 - ▶ The wire labels corresponding to her inputs.
- Bob has:

Garbled Table
$Enc_{A_0,B_0}(C_0)$
$Enc_{A_1,B_0}(C_0)$
$Enc_{A_0,B_1}(C_0)$
$Enc_{A_1,B_1}(C_1)$

Step 5. Bob evaluates the circuit

- ▶ Bob has the garbled table, A_x and B_y .
- ▶ Bob trial decrypts each row of the garbled table, until an encrytion succeeds.
- ▶ Bob acquires $C_{x \wedge y}$.
- Bob has:

Garbled Table
$Enc_{A_0,B_0}(C_0)$
$Enc_{A_1,B_0}(C_0)$
$Enc_{A_0,B_1}(C_0)$
$Enc_{A_1,B_1}(C_1)$

Step 6. Bob gets a final answer.

- ▶ Alice sends Bob $Enc_{C_0}(0)$ and $Enc_{C_1}(1)$.
- ▶ Bob trial decrypts these with $C_{x \wedge y}$.
- ▶ One will succeed, and Bob will acquire $z = x \land y$.
- ► So Bob knows z, but not x!

Garbled Table
$Enc_{A_0,B_0}(C_0)$
$Enc_{A_1,B_0}(C_0)$
$\operatorname{Enc}_{A_0,B_1}(C_0)$
$Enc_{A_1,B_1}(C_1)$

Input Labels	
A_a	
B_b	

Output Map
$Enc_{C_0}(0)$
$Enc_{C_1}(1)$

Security Considerations

- Think about what Alice acquires:
 - Well Bob had no input in this case, so ...
 - ▶ In general, Alice generates objects and sends them to Bob
 - ► So she doesn't have many opportunities to learn about Bob's input.
- Think about what Bob acquires:
 - 1. Garbled table
 - 2. Input wire labels: A_a and B_b
 - 3. Encryptions of output: $\operatorname{Enc}_{C_0}(0)$ and $\operatorname{Enc}_{C_1}(1)$
- ► Can Bob learn anything about a or b?
 - If he could decrypt another row of the garbled table, then we would learn something.
 - ▶ But he can't, because he doesn't have the keys.
 - ▶ Not really, because everything is encrypted.

REAL TDFAI 19/30

Extending a garbled gate into a garbled circuit

- ► To operate on a more complex function, the operation is recursed.
- ► The output wires of the first gates are used as inputs to subsequent gates.
- Alice only sends output maps for the final gates.

The Garbled Circuit Protocol

The cost of garbled circuits

- Alice sends Bob 4 ciphertexts per gate, since the garbled table has 4 rows.
- This is the bandwidth, or the amount of the communication required.
- ▶ Based on empirical work, bandwidth is the biggest bottleneck in garbled circuits.
- ► So reducing the size of the garbled table is of utmost priority.

Reducing the size of the garbled table with Free XOR

- Most improvements to garbled circuits are about choosing wire labels intelligently.
- ▶ Let $\Delta \leftarrow \{0,1\}^n$ be fixed globally in a circuit.
- ▶ Let $W_0 \oplus W_1 = \Delta$ for all wires.
 - ightharpoonup aka $W_1=W_0\oplus\Delta$.
 - ▶ We now say that $W_0 = W$.
- ▶ And set the output wire of a gate to be $A \oplus B$.
 - The xor of its input wires.
- Then an XOR gate can be computed by XORing the two input labels.

$$A \oplus B = C$$

$$A \oplus B \oplus \Delta = A \oplus B \oplus \Delta = C \oplus \Delta$$

$$A \oplus \Delta \oplus B = A \oplus \Delta \oplus B = C \oplus \Delta$$

$$A \oplus \Delta \oplus B \oplus \Delta = A \oplus B = C$$

- So XOR gates do not require a garbled table, aka Free.
- Secure?

Offline/Online

- Imagine two banks use secure computation during their daily operations
- At night the offline phase they exchange garbled circuits (the garbled tables)
- During the day the online phase they exchange input wire labels and use the pre-exchanged garbled circuits.
- The computation is fast!
- Problems
 - Functions are decided at night no room for flexibility
 - Input size is fixed at night

Chaining Garbled Circuits

- Goal: improve offline/online garbled circuits by adding flexibility
- Key observation: many useful functions in the real world are constructed in a modular way
 - ▶ They are composed of standard components
 - ▶ E.g. addition, subtraction, matrix multiplication
- Idea: chain garbled circuits together
 - Take the output of one garbled circuit and plug it into another garbled circuit

How to chain garbled circuits

- ▶ Suppose that we are chaining a garbled circuit with output wire *A* to garbled circuit with input wire *X*.
- ▶ We want $A \to B$ and $X \oplus \Delta \to X \oplus \Delta$.
- Straightforward:
 - ▶ Alice sends Bob $W_{AB} = A \oplus B$
 - ▶ Bob sets $B_* \leftarrow A_* \oplus W_{AB}$

How to chain garbled circuits

- ▶ Suppose that we are chaining a garbled circuit with output wire *A* to garbled circuit with input wire *X*.
- ▶ We want $A \to B$ and $X \oplus \Delta \to X \oplus \Delta$.
- Straightforward:
 - ▶ Alice sends Bob $W_{AB} = A \oplus B$
 - ▶ Bob sets $B_* \leftarrow A_* \oplus W_{AB}$

- Is this secure? What does Bob learn?
 - Not really anything.

Efficiency of chaining garbled circuits

- ► In online phase, chaining requires communicating a ciphertext per chain
- This can be a lot of communication
 - ▶ Suppose 100 by 100 matrix with entries of max value 2⁸
 - ► Then requires 8,000 ciphertexts
 - That's 256 kBs.
- ▶ We can reduce this chaining to a single ciphertext

Single Communication Multiple Connections SCMC

- ► Problem: number of ciphertexts communicated scales linearly with the number of chains
- ► Key observation: the chaining is predictable, consecutive wires are chained to consecutive wires
- ► Solution: give consecutive wire labels a predictable pattern

Single Communcation Multiple Connections SCMC

- ▶ Set *i*th input wire label of circuit to $A \oplus H(i)$.
- ▶ Set *j*th output wire label of circuit to $X \oplus H(j)$.
 - ▶ Technically, we the labels to $A \oplus H(T \oplus (i||b))$
 - ▶ Where *H* is a hash function or a random oracle

