

강화학습(reinforcement learning)

(= 결과에 대해 상과 벌을 준다.)

- 컴퓨터에게 보상을 주면서 학습을 시키는 것입니다.
- 컴퓨터에게 당근을 주면서 상을 내리는 방식입니다.
- 컴퓨터에게 알려주고 학습시키고 싶은 분야가 있을 수 있습니다.
- 강화학습은 알파고 제로를 가능하게 한 머신 러닝 기법입니다.
- 경험과 시행착오에 따른 보상체계를 시반으로 학습이 이루어집니다.
- 주어진 데이터는 없고 일단 부딪혀보면서 될 때까지 학습하는 막무 가내 기법입니다.

비지도 학습 지도 학습

강화 학습 동작 방식

- 강화 학습은 시행착오 방법을 따라 원하는 결과를 얻습니다.
- 작업을 완료한 후 에이전트는 상을 받습니다.
- 예를 들어 개에게 공을 잡도록 훈련 시키는 것을 들 수 있습니다.
- 개가 공을 잡는 법을 배우면 비스킷과 같은 보상을 줍니다.
- 강화 학습 방법은 모델을 훈련하기 위해 외부 감독이 필요하지 않습 니다.
- 강화 학습의 문제는 보상 기반입니다.
- 모든 작업 또는 완료된 모든 단계에 대해 에이전트가 받는 보상이 있습니다.
- 작업이 올바르게 수행되지 않으면 약간의 패널티가 추가됩니다.

강화 학습에서 많이 사용되는 알고리즘

- -Q-Learning
- Sarsa
- Monte Carlo
- Deep A network

강화 학습의 두가지 형태: Model-based

- 환경에 대한 정보가 주어진 모델이 있는 강화 학습입니다.

강화 학습의 두가지 형태 : Model-free

- 환경에 대한 정보가 없는 강화 학습입니다.

강화 학습의 두가지 형태 핵심: 환경에 대한 정보

- 환경에 대한 정보가 중요한 이유는 어떤 Action을 했을 때 어떤 Reward를 받는지를 안다면, 쉽게 최적의 보상을 얻는 방법을 찾을 수 있겠죠.
- 하지만 대부분은 이러한 환경 정보가 주어지지 않습니다.
- 따라서, Agent는 수 많은 시행착오를 거쳐서 환경 정보를 습득하며 그 정보를 이용해서 최적의 해를 구합니다.

비지도 학습 지도 학습 강화 학습

강화 학습의 두가지 형태 핵심 : 환경에 대한 정보 예시

- 미로 찾기를 생각해 볼 수 있습니다. 미로의 구조가 어떻게 되어있는 지를 알고 있다면 해당 강화학습은 Model based 학습에 해당됩니다.
- 반면 미로의 구조를 모른다면 Model free 학습에 해당되는 것입니다.
- Model free 강화학습의 경우에는 미로의 구조를 모르기 때문에 더 많은 시행착오를 거쳐서 미로의 구조를 파악해야 합니다.
- 따라서 Model free 강화학습이 Model- based 보다 난해하고 어려운 경우가 많습니다.

비지도 학습 지도 학습

지도학습의 보완인 강화학습

- 지도학습을 보면 입력들을 이용해 규칙을 만들어 냈다.
- 하지만 한 번 만든 모델에 입력을 넣어 그 예상 결과만 받아볼 뿐 입력의 성격이 바뀌면 여기에는 적응 못하는 한계를 가지고 있는데 이걸 해결할 수 있는 방법이 강화 학습입니다.
- 강화학습은 입력을 가지고 타겟을 평가한다. 그래서 맞으면 상을 주고 틀리면 벌을 주면서 가지고 있는 규칙을 조정한다.
- 나중에 입력들의 성격이 바뀌어도 상벌에 의해서 규칙이 그 환경에 맞게 적응할 수 있다.
- 위 내용을 하나의 모델로 만든 것을 에이전트라고 부른다,
- 에이전트의 목표는 최대한 많은 보상을 받는 것이다.

강화학습에서 상과 벌이란

- 강화학습의 상과 벌은 평가한 것에 대한 정답 오답을 알려주는 것이다.

강화학습에서 어려움: 지연되는 보상

- 행위를 선택했을 때 모든 보상이 즉시 일어나지 않아서 행동 선택의 어려움이 존재한다.
- 더구나 행동을 취했을 때 발생하는 상항과 보상에 불확실성이 있다 면 의사결정은 더욱 어려워진다.
- 따라서 현재 상태만 참조하면 항상 필요한 모든 정보를 알 수 있다는 마르코프 Markov 가정한다.

비지도 학습 지도 학습 강화 학습

강화학습에서 어려움: 지연되는 보상 해결

- 지능적 에이전트는 시작 상태까지 누적된 보상을 최대화하는 행동의 순서, 즉 궤적을 배워야한다. 누적 보상을 최대화하기 위하여 단기적 이익을 희생하기도 해야 한다.
- 에이전트의 바람직한 행동은 매 순간마다 가능한 여러 궤적 중에서 누적 보상의 기댓값이 가장 큰 것을 선택하는 것이다.
- Explore 와 Eploit 는 좋은 보상을 얻을 새로운 기회 탐색과 경험의 활용의 문제(기회탐색과 투자의 조화)
- 알파코도 몬테칼로 방법의 강화학습을 사용하여 매번 놓을 수의 승리 기댓 값을 계산한다.
- 자율주행차의 조정, 로봇 제어, 화학 반응 설계 등의 문제에서 사람을 응 능가하는 성과를 보여주고 있다.

Frozen Lake

강화학습의 예시1: Frozen Lake

- 강화 학습의 유명한 예제인 Frozen Lake 게임이다.
- 4*4 사각형은 얼음 호수의 표면을 나타내고 파란색은 출발지, 녹색은 도착지, 갈색은 함정입니다.
- 게임의 목표는 출발점에서 시작하여 도착점까지 구멍에 빠지지 않고 도착하는 것입니다.
- 무턱대고 일단 출발하면 계속 구멍에 빠지거나 뱅뱅 돌거나 하면서
 좀처럼 도착점을 찾지 못할 것입니다.
- 그렇게 계속 실패를 하다가 언젠가는 우연히 목표점에 도착하는 경우가 생길 것입니다.

지도 학습 강화 학습

강화학습의 예시1: Frozen Lake

- 그렇게 계속 실패를 하다가 언젠가는 우연히 목표점에 도착하는 경우가 생길 것입니다.
- 그때 보상 점수가 부여하지만 도착점인 녹색 바로 전 까지만 점수를 부여합니다.
- 다시 학습을 시작하다 보면 또 우연히 빨간 1점이 있는 박스로 들어 서는 경우가 생길 것입니다.
- 그때 보상 점수를 부여하지만 도착점인 빨간 1점 바로 전인 파란 1점 까지만 점수를 부여합니다.

강화학습의 예시1: Frozen Lake

- 그때 보상 점수를 부여하지만 도착점인 빨간 1점 바로 전인 파란 1점 까지만 점수를 부여합니다.
- 같은 방법을 반복하면 출발점에서 도착점으로 가는 경로가 만들어집 <u>니다.</u>
- Frozen Lake는 간단한 게임이므로 이런 막무가내식으로 학습이 가 능합니다.
- 복잡한 현실 문제는 이런 방법으로 성공하기 힘듭니다.

강화학습의 예시1: Frozen Lake

- 현실에서는 일정 기간 죽지 않고 살아만 있어도 보상을 준다 하던가 매번 확인된 길만 가는 것이 아니라 일정 비율로 안 가본 길을 가도록 하는 좀 더 복잡한 보상체계와 학습체계를 활용합니다.

강화학습의 예시2 : 알파고

- 강화학습은 게임과 같은 제한된 조건을 가진 환경에서는 막강한 성능을 보여줍니다.
- 강화 학습을 기반으로 만들어진 인공지능인 알파고 제로가 지도 학습으로 학습한 알파고 마스터를 압도적으로 이기기도 하였습니다.
- 알파고 마스터는 3000만 기보를 보며 학습을 한 후 알파고 끼리의
 셀프 대국을 통한 강화 학습을 하였습니다.

강화학습의 예시2: 알파고

- 알파고 제로는 기보에 대한 학습과 훈련 없이 알파고 제로끼리 셀프 대국을 통한 학습을 하였습니다.
- 최종 승률이 가장 높은 수를 스스로 학습하고 바둑 이론을 업데이트 하였습니다.

AUTO DRIVING COO CO

강화학습의 예시2: 자율주행 자동차

- 자율주행 기술 개발(심층 강화학습)

머신 러닝 강화 학습 (Reinforcement Learning) 비지도 학습 (Unsupervised Learning) 지도 학습 (Supervised Learning) 보상을통해 문제와 정답을 모두 알려주고 답을가르쳐주지않고 공부시키는방법 공부시키는방법 상은최대화, 벌은최소화하는 방향으로행위를강화하는학습 t≙은 답을 가르쳐주지 않고 공부를 시키는거야. 강화학습은 일종의 게임 같이 보상해주는거야 예측, 분류 연관 규칙, 군집

지도학습, 비지도학습, 강화학습 차이점

입출력 쌍으로 이루어진 훈련데이터 집합이 제시되지 않는다는 점에서 지도학습과 다르고 훈련데이터가 아주 없는 것이 아니라 상황 종료시에 종합적으로 주어진다는 점에서 비지도 학습과 다르다.