AUT202 - Automatique : dynamique et contrôle des systèmes

Commande optimale

NICOLAS PETIT

Centre Automatique et Systèmes MINES ParisTech, PSL University nicolas.petit@mines-paristech.fr

Vendredi 12 février 2021

Plan

- Optimisation de transitoires
- 2 Contrôleur LQ
- 3 Régulateur LQR

Optimisation de transitoires

Exemple : réentrée atmosphérique, optimisation d'une trajectoire (loi horaire)

Régulateur LQR

"Rebonds atmosphériques", osc. phugoïde, Zhukovskii 1891

- on rajoute des multiplicateurs de Lagrange $\lambda = (\lambda_1,...,\lambda_p) \in \mathbb{R}^p$
- on introduit le Lagrangien

$$\mathcal{L}(x,\lambda) = J(x) + \sum_{i=1}^{p} \lambda_i h_i(x) = J(x) + \lambda^T h(x)$$

- on rajoute des multiplicateurs de Lagrange $\lambda = (\lambda_1,...,\lambda_p) \in \mathbb{R}^p$
- on introduit le Lagrangien

$$\mathcal{L}(x,\lambda) = J(x) + \sum_{i=1}^{p} \lambda_i h_i(x) = J(x) + \lambda^T h(x)$$

- on rajoute des multiplicateurs de Lagrange $\lambda = (\lambda_1, ..., \lambda_p) \in \mathbb{R}^p$
- on introduit le Lagrangien

$$\mathcal{L}(x,\lambda) = J(x) + \sum_{i=1}^{p} \lambda_i h_i(x) = J(x) + \lambda^T h(x)$$

- on rajoute des multiplicateurs de Lagrange $\lambda = (\lambda_1, ..., \lambda_p) \in \mathbb{R}^p$
- on introduit le Lagrangien

$$\mathcal{L}(x,\lambda) = J(x) + \sum_{i=1}^{p} \lambda_i h_i(x) = J(x) + \lambda^T h(x)$$

Théorème de stationnarité

Si (x^*, λ^*) est un point stationnaire du Lagrangien $\mathcal{L}(x, \lambda) = J(x) + \lambda^T h(x)$ (i.e. $\frac{\partial \mathcal{L}}{\partial x} = 0$, $\frac{\partial \mathcal{L}}{\partial \lambda} = 0$, (n+p équations)) alors x^* est un point stationnaire de J sous les contraintes h, i.e. un candidat à être solution de

Calcul des variations et adjoint

$$\min_{x,u} \ell(x(t_f)) + \int_0^{t_f} L(x(t), u(t)) dt
\begin{cases}
[0, t_f] \ni t \mapsto (x(t), u(t)) \in \mathbb{R}^n \times \mathbb{R}^m \\
x(0) = x^0 \\
f_1(x(t), u(t)) - \frac{d}{dt}x_1(t) = 0, \ t \in [0, t_f] \\
\vdots \\
f_n(x(t), u(t)) - \frac{d}{dt}x_n(t) = 0, \ t \in [0, t_f]
\end{cases}$$

On introduit le Lagrangien

$$\mathcal{L}(x, u, \lambda) = \ell(x(t_f)) + \int_0^{t_f} L(x(t), u(t)) dt$$
$$+ \sum_{i=1}^n \int_0^{t_i} \lambda_i(t) \left(f_i(x(t), u(t)) - \frac{d}{dt} x_i(t) \right) dt$$

Le Lagrangien \mathcal{L} est une fonctionnelle

On écrit les conditions de stationnarité de \mathcal{L} pour toutes variations

- $t \mapsto \delta \lambda(t)$
- $t \mapsto \delta u(t)$
- $t \mapsto \delta x(t) \ (\delta x(0) = 0)$

Conditions de stationnarité (1)

Pour toute fonction $t \mapsto \delta \lambda(t) \in \mathbb{R}^n$ on doit avoir

$$\delta \mathcal{L} = \int_0^{t_f} \delta \lambda^T(t) \left(f(x(t), u(t)) - \frac{d}{dt} x(t) \right) dt = 0$$

La seule possibilité ¹ est qu'à chaque instant $t \in [0, t_f]$,

$$f(x(t), u(t)) - \frac{d}{dt}x(t) = 0$$

Conditions de stationnarité (2)

Pour toute fonction $t \mapsto \delta u(t) \in \mathbb{R}^m$, on doit avoir

$$\delta \mathcal{L} = \int_0^{t_f} \left(\frac{\partial L}{\partial u} \Big|_{(x(t), u(t))} \delta u(t) + \lambda^T(t) \left. \frac{\partial f}{\partial u} \Big|_{(x(t), u(t))} \delta u(t) \right) dt = 0$$

En mettant δu en facteur on obtient

$$\delta \mathcal{L} = \int_0^{t_f} \left(\left. \frac{\partial L}{\partial u} \right|_{(x(t), u(t))} + \lambda^T(t) \left. \frac{\partial f}{\partial u} \right|_{(x(t), u(t))} \right) \, \delta u(t) \, dt = 0$$

Ceci donne la condition de stationnarité sur u

$$\frac{\partial L}{\partial u}(x, u) + \lambda^{T} \frac{\partial f}{\partial u}(x, u) = 0, \quad t \in [0, t_f]$$

Conditions de stationnarité (3)

Pour toute function $t \mapsto \delta x(t) \in \mathbb{R}^n$ telle que $\delta x(0) = 0$, on doit avoir

$$0 = \delta \mathcal{L} = \frac{\partial \ell}{\partial x}(x(t_f))\delta x(t_f) + \int_0^{t_f} \left[\frac{\partial L}{\partial x} \Big|_{(x(t),u(t))} \delta x(t) + \lambda^{\mathsf{T}}(t) \left(\frac{\partial f}{\partial x} \Big|_{(x(t),u(t))} \delta x(t) - \frac{d}{dt} \delta x(t) \right) \right] dt$$

Intégration par partie

$$-\int_{0}^{t_{f}} \lambda^{T}(t) \frac{d}{dt} \delta x(t) dt = -[\lambda^{T} \delta x]_{0}^{t_{f}} + \int_{0}^{t_{f}} \frac{d}{dt} \lambda^{T}(t) \delta x(t) dt$$
$$= -\lambda^{T}(t_{f}) \delta x(t_{f}) + \int_{0}^{t_{f}} \frac{d}{dt} \lambda^{T}(t) \delta x(t) dt$$

$$(\operatorname{car} \delta x(0) = 0)$$

Pour toute function $t \mapsto \delta x(t)$ telle que $\delta x(0) = \delta x(t_f) = 0$, on a

$$\int_{0}^{t_{f}} \left[\frac{\partial L}{\partial x} \Big|_{(x(t),u(t))} + \lambda^{T}(t) \left. \frac{\partial f}{\partial x} \Big|_{(x(t),u(t))} + \frac{d}{dt} \lambda^{T}(t) \right] \delta x(t) dt = 0$$

On en déduit

$$\frac{\partial L}{\partial x}\bigg|_{(x(t),u(t))} + \lambda^{T}(t) \left. \frac{\partial f}{\partial x} \right|_{(x(t),u(t))} + \frac{d}{dt} \lambda^{T}(t) = 0$$

c.-à-d.

$$\left(\frac{\partial L}{\partial x}\right)_{(x,u)}^T + \left(\frac{\partial f}{\partial x}\right)_{(x,u)}^T \lambda + \frac{d}{dt}\lambda = 0, \ t \in [0,t_f]$$

Enfin, avec $\delta x(t_f) \neq 0$ on obtient de $\delta \mathcal{L} = 0$ la condition finale

$$\lambda(t_f) = \frac{\partial \ell}{\partial \mathbf{x}}(\mathbf{x}(t_f))$$

Problème aux deux bouts

En somme, les conditions de stationnarité sont, pour $t \in [0, t_f]$

$$\begin{cases} \frac{d}{dt}x(t) = f(x(t), u(t)) \\ \frac{d}{dt}\lambda(t) = -\left(\frac{\partial f}{\partial x}\right)_{(x(t), u(t))}^{T} \lambda(t) - \left(\frac{\partial L}{\partial x}\right)_{(x(t), u(t))}^{T} \\ 0 = \left(\frac{\partial L}{\partial u}\right)_{(x(t), u(t))} + \lambda^{T} \left(\frac{\partial f}{\partial u}\right)_{(x(t), u(t))} \end{cases}$$

avec comme conditions au bord

$$x(0) = x^0, \quad \lambda(t_f) = \frac{\partial \ell}{\partial x}(x(t_f))$$

Il s'agit d'un problème aux deux bouts, ce n'est pas un problème de Cauchy

Linéarisé tangent autour d'une trajectoire $(x_r(t), u_r(t))$

Optimisation

La trajectoire elle même est issue d'une optimisation

$$\begin{cases} \Delta x(0) = \Delta x^{0} \\ \frac{d}{dt} \Delta x(t) = \underbrace{\left(\frac{\partial f}{\partial x}(x_{r}(t), u_{r}(t))\right)}_{A(t)} \cdot \Delta x(t) + \underbrace{\left(\frac{\partial f}{\partial u}(x_{r}(t), u_{r}(t))\right)}_{B(t)} \cdot \Delta u(t) \\ \frac{d}{dt} x = A(t)x + B(t)u(t) \end{cases}$$

Problème à résoudre

Étant donné un point de départ (perturbation), on cherche les meilleures corrections (autour de la trajectoire)

Contrôleur LQ

En particulier, pour un système linéaire (instationnaire)

$$\frac{d}{dt}x(t) = A(t)x(t) + B(t)u$$

et un coût quadratique à minimiser

$$\frac{1}{2}x^T(t_f)S_fx(t_f) + \frac{1}{2}\int_0^{t_f} \left(x^T(t)Rx(t) + u^T(t)Qu(t)\right)$$

compromis tolérance sur l'erreur d'état, effort sur la commande S_f , R sont sym. positives, Q est sym. définie pos.

Problème aux deux bouts

$$f = Ax + Bu, L = \frac{1}{2}(x^TRx + u^TQu) \text{ et } \ell = \frac{1}{2}x^TS_fx$$

$$\frac{d}{dt}x(t) = A(t)x(t) - BQ^{-1}B^T\lambda(t)$$

$$\frac{d}{dt}\lambda(t) = -Rx(t) - A^T(t)\lambda(t)$$

avec les conditions limites bilatérales

$$x(0) = x^0, \quad \lambda(t_f) = S_f x(t_f)$$

L'état adjoint λ est de la même dimension que x. La commande optimale est alors donnée par

$$u(t) = -Q^{-1}B^{T}(t)\lambda(t)$$

Solution explicite sous forme linéaire

$$\lambda(t) = S(t)x(t)$$

avec
$$S(t_f) = S_f$$

En substituant, on obtient

$$\frac{d}{dt}S(t)x(t) + S(t)A(t)x(t) - S(t)B(t)Q^{-1}B^{T}(t)S(t)x(t)$$

$$= -Rx(t) - A^{T}(t)S(t)x(t)$$

Il suffit alors de choisir S solution de l'équation différentielle matricielle de Riccati en temps rétrograde (quadratique en l'inconnue S)

$$\begin{cases} \frac{d}{dt}S(t) = -S(t)A(t) + S(t)B(t)Q^{-1}B^{T}(t)S(t) - R - A^{T}(t)S(t) \\ S(t_f) = S_f \end{cases}$$

pour obtenir finalement la commande optimale

$$u(t) = -Q^{-1}B^{T}(t)S(t)x(t)$$

Énoncé

Contrôleur LQ

Soit $\frac{d}{dt}x(t) = A(t)x(t) + B(t)u$ avec x(0) comme condition initiale, et le critère à minimiser

$$J = \frac{1}{2} x^{T}(t_{f}) S_{f} x(t_{f}) + \frac{1}{2} \int_{0}^{t_{f}} \left(x^{T}(t) R x(t) + u^{T}(t) Q u(t) \right) dt$$

où A(t) est une matrice $n \times n$, B(t) est une matrice $n \times m$, S_f et R sont symétriques positives, Q est symétrique définie positive. La solution à ce problème de minimisation est la loi de *feedback optimal*

$$u(t) = -Q^{-1}B^{T}(t)S(t)x(t)$$

où S est définie par l'équation différentielle de Riccati rétrograde, et la valeur du critère qui lui est associée est $J^{opt} = \frac{1}{2}x^{T}(0)S(0)x(0)$

Corrections optimales:

$$\Delta u(t) = -Q^{-1}B^{T}(t)S(t)\Delta x(t)$$

Coût total de la correction :

$$\frac{1}{2}x^T(0)S(0)x(0)$$

Régulateur LQR

Optimisation de transitoires

Passage à la limite $t_f \to +\infty$ on va utiliser la commande LQ en feedback, l'horizon étant naturellement glissant

$$\int_0^{+\infty} \left(x^T(t) R x(t) + u^T(t) Q u(t) \right) dt$$

où *R* est sym. positive, *Q* sym. définie positive et le système est linéaire stationnaire

$$\frac{d}{dt}x(t) = Ax(t) + Bu$$

où l'état $x \in \mathbb{R}^n$, la commande $u \in \mathbb{R}^m$ et les matrices A et B sont de tailles $n \times n$ et $n \times m$

Régulateur LQR

$$\min_{u} \int_{0}^{+\infty} \left(x^{T}(t) R x(t) + u^{T}(t) Q u(t) \right) dt, \quad \frac{d}{dt} x(t) = A x(t) + B u$$

i) (A, B) est *commandable ii)* R est sym. pos. *iii)* Q est sym. déf. pos. *iv)* \exists une racine de R telle que $(R^{1/2}, A^T)$ est commandable Solution : loi de feedback optimal

$$u(t) = -Q^{-1}B^TS^0x(t)$$

où S^0 est l'unique solution symétrique stabilisante de l'équation de Riccati algébrique

$$0 = SA + A^TS - SBQ^{-1}B^TS + R$$

et la valeur du critère qui lui est associée est $x^{T}(0)S^{0}x(0)$

Preuve: construction d'une solution

- comparaison avec un placement de pôles : exp. stabilisant, il fournit une intégrale convergente. $t \mapsto \min_{u} \int_{0}^{t}$ est majorée et croissante donc convergente. Limite : $x^{T}(0)\Sigma_{\infty}x(0)$
- $\ \ \Sigma_{\infty}$ est solution de l'équation de Riccati algébrique

$$0 = SA + A^TS - SBQ^{-1}B^TS + R$$

- $\ \ \ \Sigma_{\infty}$ est sym. déf. pos. sous l'hypothèse de commandabilité
- $V(x) = x^T \Sigma_{\infty} x$ est fonction de Lyapounov. L'ensemble $\frac{d}{dt}V(x) = 0$ est donné par

$$R^{1/2}x(0) = 0 = R^{1/2}Ax(0) = \dots = R^{1/2}A^{n-1}x(0)$$

qui est réduit à {0}

- Unicité de la solution de l'éq. de Riccati stabilisante : lemme d'algèbre linéaire
- 6 Calcul du coût optimum

Exemple

Problème

Considérons le système $\frac{d}{dt}x = \frac{-1}{\tau}x + u$ et le critère quadratique à minimiser $\frac{1}{2}\int_0^{+\infty} (ax^2 + bu^2)dt$ où $a \ge 0$, b > 0

Solution

L'équation (ici scalaire) de Riccati algébrique associée est

$$0=-\frac{2}{\tau}S-\frac{S^2}{b}+a$$

possède 2 solutions $S_{\pm}=\frac{-b}{\tau}\pm\sqrt{\frac{b^2}{\tau^2}}+ab$. La commande associée est $u=\left(\frac{1}{\tau}\mp\sqrt{\frac{1}{\tau^2}+\frac{a}{b}}\right)x$. La commande optimale correspond à S_+

$$a \to +\infty$$
, max $|u| \to +\infty$

Résumé : Optimiser une trajectoire

- De manière générale : un problème aux deux bouts
- Admet une solution analytique pour dynamique linéaire et coût quadratique
- Requière des outils numériques pour les autres cas

Produit intéressant : le régulateur LQR

Implicitement place les pôles (les valeurs propres en boucle fermée) de manière optimale.

plus facile que de choisir les valeurs propres (la stabilité est robuste)

Alternative numérique

Adjoindre puis discrétiser

Adjoint : λ

Solveur : discrétisation des conditions

ou

Discrétiser puis adjoindre

Chercher les inconnues x, u sous forme discrètisée Solveur créera les multiplicateurs au cours de la résolution.

Généralisation : commande optimale temps-réel

