

FILU-200[™] ≈ 200 MIPS 30000 gate DSP Coprocessor Core

Performance

- 200 MIPS in 0.25 μm
- Dual Mac architecture
- ☐ 16-bit architecture, 20-bit internal data path, 44-bit accumulation

Features

- ☐ Fully synthesizable Verilog single clock design
- ☐ Technology independent
- ☐ Scan testable high test coverage
- Enables efficient DSP on RISC or CISC processors
- ☐ Enables DSP development in C

Microcoded Functions

- ☐ Real & Complex FFT/IFFT
- ☐ FIR filters
- Adaptive filters
- ☐ 1st, 2nd & Nth order IIR filters
- Real & Complex Matrix/Vector operations

Applications

The ${
m FILU}$ enables the efficient realization of very high performance DSP in a large variety of applications where a RISC or CISC is already present.

- ☐ Telecomms (Soft Modems/xDSL)
- ☐ Consumer (Speech, Audio)
- ☐ General purpose DSP

Introduction

The $Filu-200^{\rm TM}$ is a small 16-bit 200 MIPS DSP coprocessor core. It is a dual MAC architecture with dual adders and dual barrel shifters and is tailored to enable highest performance DSP on RISC/CISC processors. Applications include soft modems, speech & audio processing and a wide range of other DSP based products.

The F_{ILU} is capable of implementing various DSP functions which are pre-programmed and are accessed by a host processor (RISC/CISC) via a shared RAM. This RAM is viewed by the Host as a memory mapped peripheral. The Host has Master control of the RAM via control bits. All the DSP functions are fully parameterizable and configurable by the Host. A simple API is provided to allow the Host to access the F_{ILU} through simple C macro function calls.

The microcoded kernel includes FFT/IFFT, FIR and IIR filters, adaptive filters, correlation, Taylor series, real and complex matrix/vector operations. Extra DSP functions can be microcoded to suit particular applications.

The $F_{ILU}\text{-}200^\text{TM}$ is particularly well suited to fast complex number arithmetic. A Radix-4 butterfly can be implemented in 8 cycles yielding a fully complex 1024 point FFT in 128 μs . Near floating point performance is achieved via a 20-bit internal data path and block-floating point arithmetic.

It is expected that the user will develop their application entirely in C using an API to invoke ${\rm FiLU}$ functions. To aid in the development process C and Verilog models are provided to allow system simulation.

Figure 1 FILU-200TM block diagram and Host Interface.

Benchmarks

The following benchmarks assume a 100 MHz clock.

Function	Data Points	Num of Coeff	Num of Cycles	Exec Time µs
Real FIR	N =100	p = 20	N(p/2+1)+p+18	11 μs
Real FFT	N = 1024	-	N(log ₄ N+1)+49	62 μs
Complex FFT	N = 1024	-	2N(log ₄ N+½)+30	103 μs
Complex Mult ¹	N = 256	N = 256	3N+9	8 µs
2 nd Order IIR	N = 256	M = 8	2N+17	5 μs

¹Complex vector multiply of 256 complex data points.

Technical Specification

- ☐ Fully synthesizable—library independent
- 20-bit internal data path, 44-bit accumulation
- ☐ 16/32-bit host interface
- ☐ 30000 gates
- \Box 0.75 mm² in 0.25 μ m TLM

Hardware & Software Interface

The $F_{\rm ILU}$ uses a very simple hardware and software interface. The $F_{\rm ILU}$ RAM is memory mapped into Host address space. An API allows the Host to use C function calls. These automatically generate the appropriate initialization vector for the RAM.

- Coefficients & data written as vectors in RAM, accessed with pointers
- □ A busy bit indicates start/end of processing
- Host has Master control of RAM via control/status bits in RAM

For More Information

For more information contact

USA Massana Inc., 51 E. Campbell Ave,

Campbell, CA 95008. Tel: (408) 871 1415 Fax: (408) 871 2414

Europe Massana Ltd., 5 Westland Square,

Dublin 2, Ireland. Tel: +353 1 602 3999

Tel: +353 1 602 3999 Fax: +353 1 602 3977

email info@massana.com web www.massana.com