Stein's Unbiased Risk Estimator: SURE Principle

Consider a simple additive white Gaussian noise model:

$$y = z + v$$

where $\mathbf{v} \sim \mathcal{N}(\mathbf{v}; 0, \sigma^2 \mathbf{I})$.

• Let $\hat{\mathbf{z}}(\mathbf{y})$ be an estimator of \mathbf{z} . Then we get for the MSE

$$MSE_{\mathbf{z}} = \mathbb{E} \|\widehat{\mathbf{z}} - \mathbf{z}\|^{2} = \mathbb{E} \{\|\mathbf{z}\|^{2} + \|\widehat{\mathbf{z}}\|^{2} - 2\widehat{\mathbf{z}}^{T}\mathbf{z}\}$$

$$\stackrel{(a)}{=} \mathbb{E} \{\|\mathbf{z}\|^{2} + \|\widehat{\mathbf{z}}\|^{2} - 2\widehat{\mathbf{z}}^{T}\mathbf{y} + 2\sigma^{2}\operatorname{tr}\{\frac{\partial\widehat{\mathbf{z}}^{T}}{\partial\mathbf{y}}\}\}$$

$$= \mathbb{E} \{\|\mathbf{z}\|^{2} - \|\mathbf{y}\|^{2} + \|\widehat{\mathbf{z}} - \mathbf{y}\|^{2} + 2\sigma^{2}\operatorname{tr}\{\frac{\partial\widehat{\mathbf{z}}^{T}}{\partial\mathbf{y}}\}\}$$

where E is w.r.t. \mathbf{v} (\mathbf{z} is treated as deterministic) and (\mathbf{a}) follows as a property of the Gaussian pdf [Eldar'09].

e By dropping expectation, we get an instantaneous unbiased estimate of the MSE and the corresponding SURE function (which is the part of $\widehat{\text{MSE}}$ that depends on $\widehat{\mathbf{z}}$)

$$\widehat{\mathsf{MSE}}_{\mathsf{z}} = \|\mathsf{z}\|^2 - \|\mathsf{y}\|^2 + \mathsf{SURE}_{\mathsf{z}} \;, \;\; \mathsf{SURE}_{\mathsf{z}} = \|\widehat{\mathsf{z}} - \mathsf{y}\|^2 + 2\sigma^2 \operatorname{tr}\{\frac{\partial \widehat{\mathsf{z}}'}{\partial \mathsf{y}}\}$$

In $SURE_z$, the first term reflects the effect of bias in $\widehat{\mathbf{z}}$ whereas the second term reflects the variance of $\widehat{\mathbf{z}}$ and the noise effect in the first term due to replacing \mathbf{z} by \mathbf{y} .