Einführung in die Informatik, Übung 5

HENRY HAUSTEIN

Aufgabe 5.1

(a) Gewichtsmatrix

$$\begin{pmatrix}
\infty & 60 & 20 & 10 & \infty & \infty \\
\infty & \infty & 20 & \infty & 10 & \infty \\
30 & \infty & \infty & \infty & \infty & 30 \\
\infty & \infty & \infty & \infty & 70 & 50 \\
\infty & \infty & \infty & 40 & \infty & 30 \\
\infty & \infty & \infty & 20 & \infty & \infty
\end{pmatrix}$$

(b) Dijkstra's Algorithmus

Iteration	S	v_1	D(b)	D(c)	D(d)	D(e)	D(f)
0	$\{a\}$		60	20	10	∞	∞
1	$\{a,d\}$	d	60	20	10	80	60
2	$\{a,d,c\}$	c	60	20	10	80	50
3	$\{a,d,c,f\}$	f	60	20	10	80	50
4	$\{a,d,c,f,b\}$	b	60	20	10	70	50
5	$\{a,d,c,f,b,e\}$	e	60	20	10	70	50

Aufgabe 5.2

Zahlen in den einzelnen Knoten sind die Knotengrade

(a) ohne Waldschlösschenbrücke: alle Knotengrade sind gerade \Rightarrow es gibt einen Eulerkreis \Rightarrow Brückenproblem hat eine Lösung

(b) mit Waldschlösschenbrücke: nicht alle Knotengrade sind gerade \Rightarrow es gibt keinen Eulerkreis \Rightarrow Brückenproblem hat keine Lösung

1

Aufgabe 5.3

- (a) Kantenzahl: 17, Knotenzahl: 7 \Rightarrow 17 $\not\leq$ 3 \cdot 7 6 \Rightarrow nicht planar
- (b) nicht planar (zumindest vom Gefühl her)

Aufgabe 5.4

 G_1 G_2 G_3 $\begin{array}{c} a \\ \hline b \\ \hline c \\ \hline d \\ \end{array} \begin{array}{c} a \\ \hline c \\ \hline \end{array} \begin{array}{c} a \\ \hline \end{array} \begin{array}$

(a) G_1 ist isomorph zu G_3 $(G_1\stackrel{\sim}{=} G_3)$ mit folgender Bijektion

(b) G_1 und damit auch G_3 sind 2-färbbar, G_2 ist es nicht, da es einen Kreis ungerader Länge enthält: $b \to g \to c \to b$

 G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_8 G_8 G_8 G_8 G_9 G_9

(c) Bipartit und 2-färbbar sind das gleiche \Rightarrow selbe Antwort wie bei (b)