15. Hypothesis testing

Hypothesis test for the mean (μ)

Case 1: X has a normal distribution with known population variance (σ^2)

Case 2: X has a normal distribution with unknown population variance (σ^2)

Case 3: X has a general distribution, but we have a large sample size $(n \ge 30)$.

Hypothesis testing has 4 steps –

Step 1: Null hypothesis

Alternative hypothesis

Step 2: Test statistic: Test statistic will give a calculated value which will use to take decision either we accept or reject H_0 .

Step 3: Rejection region: If calculated value falls in the rejection region, we reject H_0 (null hypothesis).

Step 4: Comment. (Since the calculated value falls in the rejection region, so we reject H_0 (null hypothesis) or since the calculated value does not fall in the rejection region, so we can not reject H_0 (null hypothesis)).

	Case 1	Case 2	Case 3			
Null hypothesis (H ₀) Alternative hypothesis (H ₁)		H_0 : $\mu = \mu_0$				
	H_1 : $\mu > \mu_0$					
	or , H_1 : $\mu < \mu_0$					
	$or, H_1: \mu \neq \mu_0$					
Test Statistic	$\frac{\bar{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$	$\frac{\bar{x} - \mu_0}{\sqrt{\frac{s^2}{n}}} \sim t_{(n-1)}$ $s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$	σ^2 is known, the test statistics is $\frac{\bar{x} - \mu_0}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0,1)$ When population variance (σ^2) is unknown, The test statistic is, $\frac{\bar{x} - \mu_0}{\sqrt{\frac{s^2}{n}}} \sim N(0,1)$			
Rejection Region	$\mu > \mu 0 \qquad \mu < \mu 0 \qquad \mu \neq \mu 0$ $; [Z_{\alpha}, +\infty[$ $;]-\infty, -Z_{\alpha}] \qquad]-\infty, -Z_{\frac{\alpha}{2}}$ $[Z_{\frac{\alpha}{2}}, +\infty]$	$\mu > \mu 0 \qquad \mu < \mu 0 \qquad \mu \neq \mu 0$ $[t_{\alpha}, +\infty[\qquad]-\infty, -t_{\alpha}] \qquad]-\infty, -t_{\frac{\alpha}{2}} \cup [t_{\frac{\alpha}{2}}, +\infty[$	$H_1: \mu > \mu_0$ The rejection region is $[Z_{\alpha}, +\infty[$ $H_1: \mu < \mu_0$ The rejection region is $] - \infty, -Z_{\alpha}]$ When $H_1: \mu \neq \mu_0$ The rejection region is $] - \infty, -Z_{\frac{\alpha}{2}}] \cup [Z_{\frac{\alpha}{2}}, +\infty[$			

Comment	Step 4: Comment. (Since the calculated value falls in the rejection region, so we reject H_0 (null hypothesis) or since the calculated value does not fall in the rejection region, so we can not reject H_0 (null hypothesis)).		
	And, H0 reject mean, H1 correct. H0 not reject mean H1 incorrect.		

```
Here, \bar{x} (Sample mean) \mu_0 (Given) \sigma (Population standard deviation) n (Sample size)
```


Note:

Critical Points

α	z_{α}		
0.10	1 _r 282		
0.05	1.645		
0.025	1.960		
0.01	2.326		
0.005	2.576		

pto(for t alfa)

Table III: Critical Points of the t-Distribution

V	-W-1	
V		

	Degrees of	α						
	freedom v	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
1	1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
	2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
	3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
	4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	_	1.476	2.015	0.571	2.265	4.022	5.002	6.060
	5 6	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	7	1.440 1.415	1.943 1.895	2.447 2.365	3.143 2.998	3.707 3.499	5.208 4.785	5.959 5.408
	8	1.415	1.860	2.306	2.896	3.355	4.763	5.041
	9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	,	1.363	1.033	2.202	2.021	3.230	4.291	4./01
	10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
	15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
	16	1.337	1.746	2.131	2.583	2.921	3.686	4.015
	17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
	22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
	23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
	24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
	25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
	27	1.314	1.703	2.052	2,473	2.771	3,421	3,690
	28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
	40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
	60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
	∞	1.282	1.645	1.960	2.326	2.576	3.090	3.291