Glass and Ceramics Vol. 63, Nos. 9 - 10, 2006

UDC 666.5:546.65

USE OF RARE-EARTH METAL OXIDES FOR DECORATION OF PORCELAIN

A. S. Vlasov, E. P. Gorbatov, A. A. Kondrukevich, V. M. Loginov, and N. S. Rusovich-Yugai 1

Translated from *Steklo i Keramika*, No. 9, pp. 9 – 10, September, 2006.

A variant of use of rare-earth metal oxides for decoration of porcelain is examined. The effect of these oxides on phase formation and on the character of coloring of the structure on incorporation in the paste is examined.

Underglaze painting is widely used as a type of decoration in many porcelain factories in the country. The palette of different underglaze colors is greatly limited by the fact that the coloring pigments can burn off or be reduced at high temperatures (1300 – 1420°C) and in the reducing character of the gas medium [1, 2]. For this reason, it becomes necessary to use high-temperature coloring compounds which are stable in these conditions. Rare-earth metal oxides (REMO) are such compounds. They can be used as components of paints for decorating porcelain articles and as a constituent part of the mass which has the property of coloring porcelain. Some properties and the color range of a series of REMO are reported in Table 1 [3].

Coloring porcelain paste allows manufacturing porcelain for different applications: artistic, household, industrial, etc. One of the main problems in coloring the paste is giving the porcelain previously known coloristic and esthetic characteristics while preserving all of the properties of classic porcelain.

The optimum amount of REMO (5.0 - 7.5%) [4] was added to porcelain paste of the following composition (mass content, %): 66.21 SiO₂, 21.12 Al₂O₃, 0.29 Fe₂O₃, 0.69 CaO, 0.47 MgO, 1.83 K₂O, 0.85 Na₂O, 0.13 TiO₂, 6.31 calcina-

The porcelain samples underwent microscopic analysis [5, 6]. Petrographic analysis showed (Table 2) that incorporation of REMO in the porcelain changed its structure. With respect to the character of the effect of the REMO on coloration of the porcelain samples, they can be divided into two groups:

forming crystal aggregates in the structure of the porcelain (Er₂O₃, CeO₂);

not forming a crystalline phase but forming colored glass (Nd₂O₃, Pr₆O₁₁).

The boundaries of the pseudomorphoses with respect to feldspar are basically preserved and the size of the mullite needle network is $2-10 \,\mu m$, less frequently up to 15-20 µm, the mullite in the basic paste is less than 1 µm in size, and aggregates are pronounced.

All of the REMO alter the porosity and increase the amount of glass phase, manifested by perfection of the shape of the pores and slight improvement in the character of mullitization. Their effect is especially marked in blue porcelain containing Nd₂O₃ (with respect to the structure, this is a porcelain of a normal degree of ripeness but with slightly larger pores).

A possible cause of the appearance of isolated pores and sections of glass in incorporation of REMO is inadequate dispersion of the pigment in the paste, which can be eliminated by combined disaggregation of the components of the porcelain paste.

X-ray phase analysis of the porcelain samples with REMO showed that CeO₂ forms an eutectic with mullite while Nd₂O₃ and Er₂O₃ forms the chemical compounds $2Nd_2O_3\cdot 3SiO_2$ and $Er_2O_3\cdot 2SiO_2.$ An insignificant decrease in mechanical strength (by approximately 4.3%) is observed

TABLE 1

Oxide	Density, g/cm ³	Melting point, °C	$-\Delta H_{298(f)}^{0}$, kJ/mole	$-\Delta G_{298(\mathrm{f})}^{0},$ kJ/mole	Color	
					oxide	porcelain after addition of oxide
Nd ₂ O ₃	6.59	2320	1808.3	1721.3	Light blue	Blue
Ho_2O_3	8.41	2360	1881.1	1791.6	Yellow	Dark yellow
Er_2O_3	8.66	2380	1987.9	1808.7	Pink	
CeO_2	7.22	2600	1087.6	1024.5	Light yellow	
Pr ₆ O ₁₁	6.91	2183	942.6	892.4	Black	Light green

D. I. Mendeleev Russian Chemical Engineering University, Moscow, Russia; Gzhel Association CJSC, Moscow oblast, Russia; Gzhel State Industrial Arts Institute, Moscow oblast, Russia.

A. S. Vlasov et al.

TABLE 2

Chamadanistia.	Porcelain paste							
Characteristics of the structure of porcelain	with no additives (standard)	with 5% Er ₂ O ₃	with 5% Nd ₂ O ₃	with 5% CeO ₂	with 5% Pr ₆ O ₁₁			
Amount of residual quartz, %	13.7	14.1	12.9	13.6	14.0			
Quartz grain size, µm:								
average	17.5	18.2	17.2	20.7	20.1			
maximum	120 - 130	120	120	120	120 - 130			
Fusion of quartz grains, µm	1 - 2	1 - 2	1 - 2	1 - 2	1 - 3			
Porosity, %	7.2	11.0	7.2	9.1	9.6			
Pore size, µm:								
average	14.0	14.8	15.0	16.0	16.0			
maximum	90 - 100	100 - 120	140	140	100 - 120			
Type of porosity	Isolated pores	Basically isolated,	Isolated	Round, less	Isolated			
	and pores contorted	less frequently		frequently oblong	and round			
	along several pieces	contorted		and contorted				
Mullite needle network size,	2 - 10	2 - 10	2 - 10	2 - 10	2 - 10			
μm	10 - 20	10 - 20	Less frequently	Less frequently	Less frequently			
•			10 - 20	10 - 20	15 - 20			
Mullite needle size, µm	1	< 1	< 1	< 1	< 1			
Accumulation of mullite	Local	Reticular	Reticular, pronounced	Reticular	Reticular, pronounced			
Crystal aggregates, µm	None	10 - 50	None	10 - 130	None			

in addition of up to 7% REMO to porcelain paste, and the REMO content subsequently increases undesirably, since the strength decreases sharply.

Rare-earth metal oxides can thus be used for decorating porcelain and the maximum amount in the porcelain paste is 5.0-7.5%.

REFERENCES

1. A. I. Avgustinik, *Ceramics* [in Russian], Stroiizdat, Leningrad (1975).

- 2. I. Ya. Guzman (ed.), *Chemical Engineering of Ceramics: A Handbook for Universities* [in Russian], OOO RIF Stroimaterialy, Moscow (2003).
- 3. A. I. Mikhailichenko, E. B. Mikhlis, and Yu. S. Patrikeev, *Rare-Earth Metals* [in Russian], Metallurgiya, Moscow (1987).
- 4. Han Soo Kim and Patrick S. Nicholson, "Use of mixed rare-earth oxide in the preparation of reaction-bonded mullite at ≤ 1300°C," *J. Am. Ceram. Soc.*, **85**, No. 7, 1730 1734 (2002).
- 5. M. Otto, *Modern Methods in Analytical Chemistry* [Russian translation], Vol. 1, Tekhnosfera, Moscow (2003).
- 6. M. Otto, *Modern Methods in Analytical Chemistry* [Russian translation], Vol. 2, Tekhnosfera, Moscow (2003).