Section 12.1 Context-Free Languages

We know that the language $\{a^nb^n \mid n \in \mathbb{N}\}$ is not regular, but it certainly has a non-regular grammar, such as

$$S \rightarrow aSb \mid \Lambda$$
.

A context-free grammar has productions of the form

$$N \rightarrow w$$

Where N is a nonterminal and w is any string containing terminals and/or nonterminals.

A *context-free language* is the set of strings derived from a context-free grammar.

Example. $\{a^nb^n \mid n \in \mathbb{N}\}$ is a C-F language derived from the C-F grammar $S \to aSb \mid \Lambda$.

Example. Any regular grammar is context-free. So regular languages are C-F languages.

Quiz. Find a grammar for $\{a^nb^{n+2} \mid n \in \mathbb{N}\}$.

Answer. $S \rightarrow aSb \mid bb$.

Quiz. Find a grammar for $\{ww^R | w \in \{a, b\}^*\}$, where w^R is the reverse of w.

Answer. $S \rightarrow aSa \mid bSb \mid \Lambda$.

Techniques for Constucting Grammars:

Let *L* and *M* be two C-F grammars with disjoint sets of nonterminals and with start symbols *A* and *B*, respectively. Then

- $L \cup M$ has grammar $S \rightarrow A \mid B$.
- LM has grammar $S \rightarrow AB$.
- L^* has grammar $S \rightarrow AS \mid \Lambda$.

Example. Let L be the language of strings over $\{a, b\}$ with the same number of a's and b's. Does L have the following grammar?

$$S \rightarrow aSbS \mid bSaS \mid \Lambda$$
.

It's easy to see that the language of the grammar is a subset of L.

What about the other way?

Assume that $w \in L$ and show w is derived by the grammar.

If $w = \Lambda$, then $S \Rightarrow \Lambda$.

Let $w \neq \Lambda$ and assume that if $s \in L$ and |s| < |w|, then $S \Rightarrow^+ s$.

Show that $S \Rightarrow^+ w$. Consider the four cases:

- 1. w = asb for some string s. In this case, $s \in L$ and |s| < |w|. So by induction we have $S \Rightarrow^+ s$. Therefore, we have $S \Rightarrow aSb \Rightarrow^+ asb = w$.
- 2. w = bsa for some string s. Similar to case 1.
- 3. w = axa for some string x. In this case, x has two more b's than a's. So $x \notin L$.

What do we do now?

Notice, for example, if |w| = 4, then w = abba. If |w| = 6, then w has one of the forms aabbba, ababba, abbaba abbbaa.

We claim that x can be written in the form x = ubbv where $u, v \in L$. (Can you prove it?) So by induction we have derivations $S \Rightarrow^+ u$ and $S \Rightarrow^+ v$. Therefore, we have

$$S \Rightarrow aSbS \Rightarrow^{+} aubS \Rightarrow aubbSaS \Rightarrow^{+} aubbvaS \Rightarrow aubbva = axa = w.$$

4. w = bxb for some string x. Similar to case 3. QED.

Examples/Quizzes. For a string x and letter a let $n_a(x)$ be the number of a's in x. Let $L = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$. A grammar for L with start symbol E can be written as:

$$E \rightarrow aEbE \mid bEaE \mid \Lambda$$
.

Use this information to find grammars for the following languages.

- 1. $\{x \in \{a, b\}^* \mid n_a(x) = 1 + n_b(x)\}.$ Solution: $S \to EaE$.
- 2. $\{x \in \{a, b\}^* \mid n_a(x) = 2 + n_b(x)\}$. Solution: $S \rightarrow EaEaE$.
- 3. $\{x \in \{a, b\}^* \mid n_a(x) > n_b(x)\}$. Solution: $S \to EaET$ $T \to aET \mid \Lambda$.
- 4. $\{x \in \{a, b\}^* \mid n_a(x) < n_b(x)\}$. Solution: $S \to EbET$ $T \to bET \mid \Lambda$.
- 5. $\{x \in \{a, b\}^* \mid n_a(x) \neq n_b(x)\}.$

Solution: This language is the union of the languages in (3) and (4). Rename the nonterminals in the grammars for (3) and (4) as follows:

- (3) $A \rightarrow EaET$ $T \rightarrow aET \mid \Lambda$.
- $(4) B \to EbEU$ $U \to bEU \mid \Lambda.$

Then $S \rightarrow A \mid B$ is the desired grammar.