

Mansoura University Faculty of Computers and Information Department of Computer Science First Semester: 2020-2021

[MED121] Bioinformatics: Sequencing Technologies I Grade: Third Year (Medical Informatics Program)

Sara El-Metwally, Ph.D.

Faculty of Computers and Information,

Mansoura University,

Egypt.

AGENDA

- Bioinformatics Road.
- Prepare a sequencing library.
- Sequencing Technologies
- Sequencing by Synthesis.
- Base Caller.
- Nanopore Sequencing .
- Single Molecule Real Time Sequencing.

BIOINFORMATICS ROAD

BIOINFORMATICS ROAD

https://www.genomicseducation.hee.nhs.uk/

We do this because DNA is three billions bases long and the sequencing machines can only sequence short (200-300 bp) fragments.

The adapters do two things:

- ✓ Allow the sequencing machine to recognize the fragments.
- ✓ Allow you to sequence different samples at the same time, since different samples have different adapters. (save time and money)

recognized by machine, so they are not represented in the sample)

Only fragments with sequencing adapters are amplified, they are enriched.

BIOINFORMATICS ROAD

https://www.genomicseducation.hee.nhs.uk/

SEQUENCING METHODS

- Sequencing: the process of determining the precise order of nucleotides (A,C,T and G) or amino acid sequence within a DNA fragment or a protein using chemical and enzymatic reactions.
- DNA sequencing machines are evolved through three generations.
- Each generation is characterized by some factors such as the sequencing technology, cost, the quantity and the quality of the sequencing data.

INTRODUCTION TO SEQUENCING TECHNOLOGIES

SEQUENCING TECHNOLOGIES

1990 13 years of Sequencing 3 B\$

2008 5 months 1.5 M\$

Now 1 day, 1000 \$

HUMAN REFERENCE GENOME

GRCh38

This assembly has been updated. See current version

Description: Genome Reference Consortium Human Build 38

Organism name: Homo sapiens (human)

BioProject: PRJNA31257

Submitter: Genome Reference Consortium

Date: 2013/12/17 Synonyms: hg38

Assembly type: haploid-with-alt-loci

Assembly level: Chromosome Genome representation: full

GenBank assembly accession: GCA_000001405.15 (replaced) RefSeq assembly accession: GCF_000001405.26 (replaced) RefSeq assembly and GenBank assembly identical: yes

Global statistics*

Number of regions with alternate loci or patches	207
Total sequence length	3,099,734,149
Total ungapped length	2,948,611,470
Gaps between scaffolds	349
Number of scaffolds	473
Scaffold N50	67,794,873
Scaffold L50	16
Number of contigs	999
Contig N50	57,879,411
Contig L50	18
Total number of chromosomes and plasmids	24
Number of component sequences (WGS or clone)	35,614

Image credits: https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.26/

T2T CONSORTIUM

Ewan Birney and 8 others liked

Adam Phillippy @aphillippy · 16h

So proud of @khmiga @sergekoren and our entire #T2T consortium for the first-ever "Telomere-to-telomere assembly of a complete human X chromosome"! Fills all reference gaps and reveals methylation patterns of satellite arrays nature.com/articles/s4158...

nature

Explore our content >

Journal information >

nature > articles > article

Article | Open Access | Published: 14 July 2020

Telomere-to-telomere assembly of a complete human X chromosome

Karen H. Miga ☑, Sergey Koren, [...] Adam M. Phillippy ☑

Nature **585**, 79–84(2020) | Cite this article

GATTACTTG ATCTTGT

ATGCTT GATC ATGCTT

ATCTTGATTACTTGTT

CTTT **ATCTTGTTTA ATCTTGT ATGCTT**

Deposit it on slide

Slide Credit: Ben Langmead course of Algorithms for DNA Sequencing

Slide Credit: Ben Langmead course of Algorithms for DNA Sequencing

Slide Credit: Ben Langmead course of Algorithms for DNA Sequencing

Slide Credit: Ben Langmead course of Algorithms for DNA Sequencing

BASE CALLER

 Base caller is a program that assigns bases to chromatogram peaks.

Image Credit: http://www.dnabaser.com/help/samples/what%20is%20a%20chromatogram.html

BASE CALLER

For each base, base caller reports an important value "base quality".

 Base Quality is the base caller estimates of the probability that the base was called incorrectly.

BASE QUALITIES

$$Q = -10 \cdot \log_{10} p$$

Base quality

Probability that base call is incorrect

$$Q = 10 \rightarrow 1$$
 in 10 chance call is incorrect
 $Q = 20 \rightarrow 1$ in 100
 $Q = 30 \rightarrow 1$ in 1,000

BASE QUALITIES

Suppose that base call is C "orange "

Estimate p?

Probability that base call is incorrect.

$$p = \frac{\text{non - orange light}}{\text{total light}}$$

$$p = \frac{3}{9} = \frac{1}{3}$$

$$Q = -10 \times \log_{10} p$$

$$Q = -10 \times \log_{10} \frac{1}{3} = 4.77$$

NANOPORE SEQUENCING

NANOPORE SEQUENCING

NANOPORE SEQUENCING

Electrophoresis solution

SEQUENCING TECHNOLOGIES

- □https://www.youtube.com/watch?v=IT3NqhKD840 (SMART Sequencing)
- □https://nanoporetech.com/applications/dna-nanopore-sequencing

SEQUENCING TECHNOLOGIES

TOP TECHNOLOGIES IN THE SEQUENCING MARKET.

Company	Instruments
Illumina	MiniSeq; NextSeq; MiSeq; HiSeq; NovaSeq
Pacific biosciences	RSII; Sequel
Oxford Nanopore Technologies	SmidgION (under dev); MinION; GridION; PromethION (under dev)

Sequencing Power for Every Scale

The broadest portfolio offering available

	<u> </u>	B:	-		Fig. 1. Sec. 1	The state of the s		
Sequencing System	iSeq [™]	MiniSeq [™]	MiSeq°	NextSeq*	HiSeq°	HiSeq* X	NovaSeq*	
					4000	Five/Ten	6000	
Output per run	1.2 Gb	7.5 Gb	15 Gb	120 Gb	1.5 Tb	1.8 Tb	1 Tb - 6 Tb ¹	
Instrument price	\$19.9K	\$49.5K	\$99K	\$275K	\$900K	\$6M ² /\$10M ²	\$985K	
Installed base ³	NA	~600	~600 ~6,000 ~2,400		~2,	~285		

- 1. Output per run for the S1, S2 and S4 flow cells equal 1 Tb, 2 Tb and 6 Tb, respectively assuming two flow cells per run
- 2. Based on purchase of 5 and 10 units for HiSeq X Five and HiSeq X Ten, respectively
- 3. Based on end of fiscal year 2017
- 4. Combined HiSeq family

SEQUENCING BY NANOPORE (FUN!)

Kate Rubins is pictured aboard ISS with the USB MinION sequencer (lower right) that was used in the firstever DNA sequencing in space in August 2016.

SEQUENCING BY NANOPORE (FUN!)

SEQUENCING PROJECTS

ENCODE

Human Microbiome Project

The Cancer Genome Atlas

SEQUENCING PROJECTS

Turkey—Turkish Genome Project

China—100,000 Genomes Project

Dubai, United Arab Emirates—Dubai Genomics

Saudi Arabia—Saudi Human Genome Program

SEQUENCING PROJECTS

مجلس أكاديمية البحث العلمي والتكنولوجي يوافق على برنامج الجينوم المصري

إطلاق مشروع جينوم للمصريين وقدماء المصريين

12 أكتوير 2020 / الزيارات: 57

أعلن مجلس أكاديمية البحث العلمي والتكنولوجيا في مصر، بدء تنفيذ مشروع 'الجينوم البشري المرجعي للمصريين'، ضمن الخطة التنفيذية للأكاديمية لعام 2020-2021.

أُعلن عن المشروع يوم السادس من أكتوبر الجارى، مرتكزًا على ثلاثة محاور:

الأول: بناء جينوم مرجعي مصرى يحمل المتغيرات الجينية الطبيعية والأكثر شيوعًا بين المصريين.

الثانى: هو دراسة جينوم المصريين القدماء،

الثالث: يكمن في البحث عن التغيرات الجينية المرتبطة بالأمراض الشائعة لدى الشعب المصري.

توفر الأكاديمية مليار جنيه مصري، تكفي لمعرفة المحتوى الجيني لنحو 20 ألف متطوع، يدرسها المشروع على مدار سنوات عمره الخمس، لكن المخطط زيادة مصادر التمويل كي يتسنى رسم التسلسل الوراثي لمئة ألف شخص،

DATA DELUGE

Sequencing Centers 2018

DATA DELUGE

Sequencing Centers 2028

https://www.abmgood.com/Whole-Genome-Sequencing-Service.html

For example:

the genes *KRAS* and *TP53* are often targeted across a range of cancer types, as they are commonly found to be mutated with a number of hotspots. *BRAF* and *EGFR* are also screened in many solid tumors, as they contain clinically relevant mutation

Image credits: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861594/

RNA-SEQ

RNA-seq is a particular technology-based sequencing technique which uses next-generation sequencing (NGS) to reveal the presence and quantity of RNA in a biological sample at a given moment, analyzing the continuously changing cellular transcriptome.

NOTES

Protein sequencing refers to methods for determining the amino acid sequence of proteins (or peptides) and analysis of the sequence, for example to infer protein conformation. Techniques include mass spectrometry and the Edman degradation reaction as well as prediction of the protein sequence from the encoding DNA or mRNA sequence.

- Bisulfite Sequencing: is the use of bisulfite treatment of DNA before routine sequencing to determine the pattern of methylation.
- DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription.

Cytosine

methylated Cytosine

- In mammals, DNA methylation is essential for normal development and is associated with a number of key processes including genomic imprinting, Xchromosome inactivation, repression of transposable elements, aging, and carcinogenesis.
- Treatment of DNA with bisulfite converts cytosine residues to uracil, but leaves 5-methylcytosine residues unaffected. Therefore, DNA that has been treated with bisulfite retains only methylated cytosines. Thus, bisulfite treatment introduces specific changes in the DNA sequence that depend on the methylation status of individual cytosine residues, yielding singlenucleotide resolution information about the methylation status of a segment of DNA.

- ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated proteins. It can be used to map global binding sites precisely for any protein of interest.
- Single cell sequencing examines the sequence information from individual cells with optimized next-generation sequencing (NGS) technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell.

COVERAGE DEPTH

- Per-base coverage is the average number of times a base of a genome is sequenced. The coverage depth of a genome is calculated as the number of bases of all short reads that match a genome divided by the length of this genome. It is often expressed as 1X, 2X, 3X,... (1, 2, or, 3 times coverage).
- coverage describes the average number of reads that align to, or "cover," known reference bases. The sequencing coverage level often determines whether variant discovery can be made with a certain degree of confidence at particular base positions.
- At higher levels of coverage, each base is covered by a greater number of aligned sequence reads, so base calls can be made with a higher degree of confidence.

COVERAGE DEPTH

Breadth of coverage is the percentage of bases of a reference genome that are covered with a certain depth. For example: "90% of a genome is covered at 1X depth; and still 70% is covered at 5X depth."

COVERAGE DEPTH

Sequencing Method	Recommended Coverage
Whole genome sequencing (WGS)	30× to 50× for human WGS (depending on application and statistical model)
Whole- exome sequencing	100×
RNA sequencing	Usually calculated in terms of numbers of millions of reads to be sampled. Detecting rarely expressed genes often requires an increase in the depth of coverage.
ChIP-Seq	100×

Table Credit:

https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/coverage.html

BASE QUALITIES

Bases and qualities line up:

Base quality is ASCII-encoded version of $Q = -10 \log_{10} p$

Usual ASCII encoding is "Phred+33":

take Q, rounded to integer, add 33, convert to character

ASCII

1																
2	0	<nul></nul>	32	<spc></spc>	64	@	96	*	128		160	†	192	ć	224	#
36	1	<soh></soh>	33	!	65	Α	97	a	129		161	0	193	i	225	.
4	2	<stx></stx>	34	"	66	В	98	ь	130		162	¢	194	\neg	226	,
S	3	<etx></etx>	35	#	67	C	99	c	131		163	£	195	√	227	
6	4	<eot></eot>	36	\$	68	D	100	d	132	Ñ	164	§	196	f	228	%00
7	5	<enq></enq>	37	%	60	_	101	e	133		165	•	197	\approx	229	
8	6	<ack></ack>	38	8:	70	F	102	f	134	Ü	166	1	198	Δ	230	Ê
10	7	<bel></bel>	39	,	71	G	103	g	135	á	167	ß	199	«	231	
10	8	<bs></bs>	40	(72	Н	104	h	136	à	168	®	200	>>	232	Ë
11	9	<tab></tab>	41)	73	I	105	i	137	â	169	©	201		233	È
12	10	<lf></lf>	42	*	74)	106	j	138	ä	170	TM	202		234	Í
13	11	<vt></vt>	43	+	75	K	107	k	139		171	,	203		235	Î
14	12	<ff></ff>	44	,	76	L	108	1	140	å	172	-	204		236	Ï
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	<cr></cr>	45	-	77	M	109	m	141	ç	173	≠	205	Õ	237	Ì
16	14	<50>	46		78	N	110	n	142	é	174	Æ	206	Œ	238	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	<si></si>	47	/	79	0	111	0	143	è	175	Ø	207	œ	239	ô
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	<dle></dle>	48	0	80	P	112	р	144	ê	176	∞	208	-	240	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	<dc1></dc1>	49	1	81	Q	113	q	145	ë	177	±	209	_	241	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	<dc2></dc2>	50	2	82	R	114	r	146	í	178	≤	210	**	242	
21	19	<dc3></dc3>	51	3	83	S	115	s	147	ì	179	≥	211	**	243	Û
22	20	<dc4></dc4>	52	4	84	Т	116	t	148	î	180	¥	212	*	244	Ù
23	21	<nak></nak>	53	5	85	U	117	u	149	ï	181	μ	213	,	245	1
24	22	<syn< td=""><td>54</td><td>6</td><td>86</td><td>V</td><td>118</td><td>v</td><td>150</td><td>ñ</td><td>182</td><td>Э</td><td>214</td><td>+</td><td>246</td><td></td></syn<>	54	6	86	V	118	v	150	ñ	182	Э	214	+	246	
25	23	<etb></etb>	55	7	87	W	119	w	151	ó	183	Σ	215	<	247	~
26	24	<can></can>	56	8	88	X	120	×	152	ò	184	Π	216	ÿ	248	-
27 <esc> 59 ; 91 [123 { 155 õ 187 a 219 € 251 ° 28 <fs> 60 < 92 \ 124 156 ú 188 ° 220 < 252 , 29 <gs> 61 = 93] 125 } 157 ù 189 Ω 221 > 253 ″ 30 <rs> 62 > 94 ^ 126 ~ 158 û 190 æ 222 fi 254 .</rs></gs></fs></esc>	25		57	9	89	Y	121	У	153	ô	185	п	217	Ÿ	249	~
27 <esc> 59 ; 91 [123 { 155 0 187 0 219 € 251 28 <fs> 60 < 92 \ 124 156 ú 188 0 220 < 252 , 29 <gs> 61 = 93] 125 } 157 ù 189 Ω 221 > 253 ″ 30 <rs> 62 > 94 ^ 126 ~ 158 û 190 æ 222 fi 254 .</rs></gs></fs></esc>	26		58	:	90	Z	122	z	154	ö	186	ſ	218	/	250	
29 <gs> 61 = 93] 125 } 157 û 189 Ω 221 > 253 ″ 30 <rs> 62 > 94 ^ 126 ~ 158 û 190 æ 222 fi 254</rs></gs>	27	<esc></esc>	59	;	91	[123	{	155	õ	187		219	€	251	0
29 <65 61 = 93 J 125 J 157 U 189 Ω 221 > 253 30 <85 62 > 94 ^ 126 ~ 158 Û 190 æ 222 fi 254	28	<fs></fs>	60	<	92	\	124	1	156	ú	188	0	220	<	252	,
	29	<gs></gs>	61	=	93]	125	}	157	ù	189	Ω	221	>	253	AK.
31 <us> 63 ? 95 _ 127 159 Ü 191 Ø 223 fl 255 °</us>	30	<rs></rs>	62	>	94	^	126	~	158	û	190	æ	222	fi	254	
	31	<us></us>	63	?	95		127		159	ü	191	Ø	223	fl	255	~

Example: Q=36.7
Phred+33= 37+33=70
= F

BASE QUALITIES

Bases and qualities line up:

GENOMIC DATA (A READ IN FASTQ)

PHRED Score	Probability of Incorrect	Accuracy of
	Base Call	Base Call
0	1 in 1	0%
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%

- 10 corresponds to 10% error (1/10),
- 20 corresponds to 1% error (1/100),
- 30 corresponds to 0.1% error (1/1,000) and
- 40 corresponds to one error every 10,000 measurements (1/10,000) that is an error rate of 0.01%.

GENOMIC DATA (A DATA IN FASTA)

>VIT_201s0011g03530.1

CAGGTAGCGTGAAGTTAAACCCTAGCGCTTTAGACAAACAGCTGTAGTCACCGCCCACAAACACC
AGCCTCTGAGACACCACCTCAAACCTTTCCACTTAAATACACATCCCTCACACCCTTTTCAATTC
>VIT_201s0011g03550.1

CATGCAAAGCTGAACGCGATGCTGTGATTGGTGGTAAGTGGTAGTTGAGTAAATTTGACAGTGAA GCCGAAATGGTAAAAGACTAAGGCTAGAAGTAGAATACCACTGTTCTTCTCATCACGTGGGCCCA

Thank you!