

NANOWIRE WEEK 2018

June 11-15, 2018
Hamilton, Ontario, Canada

Table of Contents

Organizers and program committee	03
Welcome	04
Conference partners	05
Program overview	06
Oral sessions	09
Poster sessions	23

Conference Chair

Ray LaPierre (McMaster University, Canada)

Local Organizing Committee

Janet Delsey (McMaster University, Canada)
Stephanie Haak (McMaster University, Canada)

International Steering Committee

Erik Bakkers (TU Eindhoven, Netherlands)
Vladimir Dubrovskii (Ioffe Physical Technical Institute, Russia)
Michael Filler (Georgia Institute of Technology, USA)
Anna Fontcuberta i Morral (EPFL, Switzerland)
Naoki Fukata (National Institute for Materials Science, Japan)
Lutz Geelhaar (Paul Drude Institute, Germany)
Jean-Christophe Harmand (CNRS, Université Paris-Sud, France)
Faustino Martelli (Consiglio Nazionale delle Ricerche, Italy)
Paul McIntyre (Stanford University, USA)
Werner Prost (Universität Duisburg-Essen, Germany)
Riccardo Rurali (Institut de Ciència de Materials de Barcelona, Spain)
Hadas Shtrikman (Weizmann Institute of Science, Israel)
Kimberly Thelander (Lund University, Sweden)

Welcome Message

I would like to extend a warm welcome to Hamilton and to Nanowire Week 2018. Nanowire Week 2018 will be 5 days of lively discussion on all areas of nanowire research, from growth to applications. Nanowire Week is the merger of two well-established and highly successful annual workshops: Nanowires (established in 2008) and the Nanowire Growth Workshop (established in 2006). This is the second Nanowire Week, with the first one being held in Lund, Sweden, in 2017. Nanowire Week 2018 will cover all topics of nanowire-related research, from fabrication and fundamental properties to applications.

Our aim with Nanowire Week is to create an open, dynamic atmosphere for discussing and debating the latest news and open questions in nanowire research. The presentations will therefore focus on hot topics and especially on new, unpublished results. Open questions, unexpected findings and unconventional ideas are encouraged!

The technical program of Nanowire Week 2018 includes 18 invited speakers, 41 contributed oral presentations, and over 100 poster presentations. We are pleased to welcome over 150 participants.

I would like to thank the International Steering Committee and the Local Organizing Committee for their hard work in making this meeting a success. I would also like to thank our sponsors for their support.

I hope you enjoy your stay in Hamilton, and I wish you a productive meeting.

Best Regards,

Ray LaPierre Nanowire Week 2018 Chair

Conference Partners

Platinum Sponsor:

Gold Sponsor:

Silver Sponsor:

Other Sponsor:

Program Overview

Nanowire Week 2018 includes 18 invited talks, 42 contribued talks, and 3 poster sessions.

	Monday, June 11	Tuesday, June 12	Wednesday, June 13	Thursday, June 14	Friday, June 15
08:50 - 09:00	Opening Remarks				
09:00 – 09:30	Invited Talk I1 Ning Semiconductor alloy nanowires with widely tunable compositions and bandgaps for photonic applications	Invited Talk 15 Yanagida Impact of flux window principle on oxide nanowires and their properties	Invited Talk I10 Reimer Nanowire-based quantum photonics	Invited Talk I12 Panciera In-situ TEM study of the crystal phase selection in III-V nanowires	Invited Talk 117 Dayeh A nanowire platform for high throughput drug screening
09:30 – 09:50	Contributed Talk M1.1 Friedl Laterally-oriented In(Ga)As nanowires grown on GaAs nanomembranes	Contributed Talk Tu1.1 Cahoon Self-catalyzed vapor- liquid-solid growth of lead halide and perovskite nanowires using a liquid lead catalyst	Contributed Talk W1.1 Estrada Saldaña Supercurrent through double quantum dots in nanowires with epitaxial superconducting contacts	Contributed Talk Th1.1 Anttu Intuitive and efficient analysis of absorption, scattering and emission of light in nanowire array solar cells, photodetectors and LEDs	Contributed Talk F1.1 Martelli Thermal rectification in telescopic nanowires
09:50 – 10:10	Contributed Talk M1.2 Tauchnitz A simple route to synchronized nucleation of self- catalyzed GaAs nanowires on Si for sub-Poissonian length distributions	Contributed Talk Tu1.2 Fadaly Realization of hexagonal Ge on GaAs	Contributed Talk W1.2 Kang Study of 0-pi phase transition in hybrid superconductor-InSb nanowire quantum dot devices	Contributed Talk Th1.2 Troian Nanobeam X-ray fluorescence investigation on in situ Zn-doped nanowires reveals gradients and background doping	Contributed Talk F1.2 Rossella Electric-double-layer transistor based on InAs nanowire gated by ionic liquid
10:10 – 10:30	Contributed Talk M1.3 Haffouz Telecom wavelength quantum dot single photon sources using position-controlled InP nanowires	Contributed Talk Tu1.3 Glas Quantitative modelling of step flow at the liquid-solid interface based on in situ TEM observation of the growth of III-V nanowires	Contributed Talk W1.3 Roddaro Field-effect control of spin-orbit coupling in suspended InAs nanowires	Contributed Talk Th1.3 Shan High-throughput contactless conductivity measurement of semiconductor nanowires with complex doping profiles	Contributed Talk F1.3 Sun Erbium chloride silicate nanowires with a giant optical gain
10:30 – 11:00	Refreshment Break	Refreshment Break	Refreshment Break	Refreshment Break	Refreshment Break
11:00 – 11:30	Invited Talk 12 Zhang InP/InAs heterostructure nanowires grown by indium-particle- catalyzed vapor-liquid- solid mode	Invited Talk 16 Lugstein Synthesis and applications of monolithic metal- semiconductor nanowire heterostructures	Invited Talk I11 Arakawa Nanowire-quantum- dots for nanolasers and single photon sources	Invited Talk 113 Boland Revealing novel optoelectronic properties of semiconductor nanowires via Terahertz spectroscopy	Invited Talk 118 Tian Silicon nanowire based biophysical tools for extracellular and intracellular modulations

NANOWIRE WEEK 2018 HAMILTON, CANADA JUNE 11-15, 2018

	O (-) best d T - U	On a talk out and Talk	O a set of baset and Talle	O a satisfication of Tallia	O t-'ll t I T-II-
	Contributed Talk M2.1	Contributed Talk Tu2.1	Contributed Talk W2.1	Contributed Talk Th2.1	Contributed Talk F2.1
	Cattoni	Namazi	Baugh	Herranz	Spies
	Advances in III-V	Suitable nanowire	Magneto-transport of	Direct correlation of	Linearity of the
11:30 - 11:50	nanowires on silicon	templates for realizing	nanowire FETs in	luminescence and	photoresponse in
	for tandem solar cells	wurtzite antimonides	normal and superconducting	polytype for (In,Ga)As shell quantum wells in	heterostructured GaN/AIN nanowires
			regimes	zincblende and wurtzite	GaryAirv Harlowires
			· ·	GaAs nanowire	
	Contributed Talk	Contributed Talk	Contributed Talk	segments Contributed Talk	Contributed Talk
	M2.2	Tu2.2	W2.2	Th2.2	F2.2
	Jaffal	Lepsa	Hartke	Mukherjee	Teitsworth
	Bright single InAs	InAs/GaSb core-shell	Microwave detection of	Bias-dependent	High-voltage
11:50 – 12:10	quantum dots at telecom wavelengths	nanowire arrays	electron-phonon	scanning photocurrent	multijunction p-i-n silicon nanowire
	in conical tapered InP		interactions in a cavity- coupled InAs nanowire	microscopy on single GaAs nanowire	devices for water-
	nanowires		double quantum dot	graphene hybrid device	splitting particle
	monolithically grown				suspension reactors
	on Si Contributed Talk	Contributed Talk	Contributed Talk	Contributed Talk	Contributed Talk
	M2.3	Tu2.3	W2.3	Th2.3	F2.3
	Jacobsson	Kris Bertness	Cordoba	Parkinson	Alexandra-
12:10 – 12:30	Relationship between	Spectral tuning of	Mapping the built-in	Non-contact	Madalina Siladie
12.10 - 12.30	seed particle composition and GaAs	localized surface phonon-polariton	potential at Si nanowire tunnel diodes	measurement of p- doping for high-yield	Doping and electrical
	nanowire growth	modes in selective area	tariffor diodes	room-temperature	transport optimization of Al _x Ga _{1-x} N nanowire
	dynamics revealed by	epitaxy GaN nanowire		nanowire lasing	heterostructures for
	in-situ TEM	arrays			UV-C LEDs
12:30 – 13:30	Lunch	Lunch	Lunch	Lunch	Closing Remarks
					Lunch
	Invited Talk I3	Invited Talk I7		Invited Talk	
	Bellet-Amalric	Buyanova		114	Conference Ends
10.00 11.00	Quantitative study of	GaAs/GaNAs core/shell		Weman Growth and fabrication	
13:30 – 14:00	the vapor-solid-solid growth of II-VI	nanowires - a promising platform for		of III-V	
	quantum dots in	nanoscale		nanowire/graphene	Tour of Canadian
	nanowires	optoelectronics		hybrid structures and devices	Centre for Electron
	Contributed Talk	Contributed Talk		Contributed Talk	Microscopy at
	M3.1	Tu3.1			McMaster University
	Zannier			I I N.3.1	
		Zytkiewicz		Th3.1 Kosmaca	(limited enrollment;
14.00 44.00	Nanoparticle stability in	Influence of growth		Kosmaca In-situ characterization	(limited enrollment; sign-up sheet at the
14:00 – 14:20	axial InAs-InP	Influence of growth parameters on the		Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x	(limited enrollment;
14.00 - 14:20		Influence of growth		Kosmaca In-situ characterization	(limited enrollment; sign-up sheet at the
14.00 - 14:20	axial InAs-InP nanowire heterostructures with atomically sharp	Influence of growth parameters on the incubation time preceding the self- assembled formation of		Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical	(limited enrollment; sign-up sheet at the
14.00 - 14:20	axial InAs-InP nanowire heterostructures with	Influence of growth parameters on the incubation time preceding the self- assembled formation of GaN nanowires on a-	Free time /	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in	(limited enrollment; sign-up sheet at the
14.00 – 14:20	axial InAs-InP nanowire heterostructures with atomically sharp interfaces	Influence of growth parameters on the incubation time preceding the self- assembled formation of GaN nanowires on a- Al _x O _y -buffered Si	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical switches	(limited enrollment; sign-up sheet at the
14.00 – 14:20	axial InAs-InP nanowire heterostructures with atomically sharp	Influence of growth parameters on the incubation time preceding the self- assembled formation of GaN nanowires on a-		Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical	(limited enrollment; sign-up sheet at the
	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann	Influence of growth parameters on the incubation time preceding the self- assembled formation of GaN nanowires on a- Al _x O _y -buffered Si Contributed Talk Tu3.2 Ishikawa	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee	(limited enrollment; sign-up sheet at the
14:00 – 14:20 14:20 – 14:40	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann Strain induced band-	Influence of growth parameters on the incubation time preceding the self- assembled formation of GaN nanowires on a- Al _x O _y -buffered Si Contributed Talk Tu3.2 Ishikawa Molecular beam	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee Fabrication of a GaP	(limited enrollment; sign-up sheet at the
	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann	Influence of growth parameters on the incubation time preceding the self- assembled formation of GaN nanowires on a- Al _x O _y -buffered Si Contributed Talk Tu3.2 Ishikawa	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee	(limited enrollment; sign-up sheet at the
	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann Strain induced band- gap modification of Ge	Influence of growth parameters on the incubation time preceding the self-assembled formation of GaN nanowires on a-Al _x O _y -buffered Si Contributed Talk Tu3.2 Ishikawa Molecular beam epitaxial growth of	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1+x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee Fabrication of a GaP nanowire betavoltaic	(limited enrollment; sign-up sheet at the
14:20 – 14:40	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann Strain induced band- gap modification of Ge NWs	Influence of growth parameters on the incubation time preceding the self-assembled formation of GaN nanowires on a-Al _x O _y -buffered Si Contributed Talk Tu3.2 Ishikawa Molecular beam epitaxial growth of GaNAs and GalnNAs	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1+x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee Fabrication of a GaP nanowire betavoltaic	(limited enrollment; sign-up sheet at the
	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann Strain induced band- gap modification of Ge	Influence of growth parameters on the incubation time preceding the self-assembled formation of GaN nanowires on a-Al _x O _y -buffered Si Contributed Talk Tu3.2 Ishikawa Molecular beam epitaxial growth of GaNAs and GalnNAs	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1+x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee Fabrication of a GaP nanowire betavoltaic	(limited enrollment; sign-up sheet at the
14:20 – 14:40	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann Strain induced band- gap modification of Ge NWs Refreshment Break Contributed Talk	Influence of growth parameters on the incubation time preceding the self-assembled formation of GaN nanowires on a-Al _x O _y -buffered Si Contributed Talk Tu3.2 Ishikawa Molecular beam epitaxial growth of GaNAs and GalnNAs	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1+x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee Fabrication of a GaP nanowire betavoltaic device using Ni-63	(limited enrollment; sign-up sheet at the
14:20 – 14:40	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann Strain induced band- gap modification of Ge NWs Refreshment Break Contributed Talk M4.1	Influence of growth parameters on the incubation time preceding the self- assembled formation of GaN nanowires on a- Al _x O _y -buffered Si Contributed Talk Tu3.2 Ishikawa Molecular beam epitaxial growth of GaNAs and GalnNAs nanowires	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee Fabrication of a GaP nanowire betavoltaic device using Ni-63 Poster Session P3	(limited enrollment; sign-up sheet at the
14:20 – 14:40 14:40 – 15:10	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann Strain induced band- gap modification of Ge NWs Refreshment Break Contributed Talk M4.1 Custer	Influence of growth parameters on the incubation time preceding the self-assembled formation of GaN nanowires on a-Al _x O _y -buffered Si Contributed Talk Tu3.2 Ishikawa Molecular beam epitaxial growth of GaNAs and GalnNAs nanowires Poster Session P2	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee Fabrication of a GaP nanowire betavoltaic device using Ni-63 Poster Session P3 with Refreshment	(limited enrollment; sign-up sheet at the
14:20 – 14:40	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann Strain induced band- gap modification of Ge NWs Refreshment Break Contributed Talk M4.1 Custer Asymmetric silicon	Influence of growth parameters on the incubation time preceding the self-assembled formation of GaN nanowires on a-Al ₂ O ₂ -buffered Si Contributed Talk Tu3.2 Ishikawa Molecular beam epitaxial growth of GaNAs and GalnNAs nanowires Poster Session P2 with Refreshment	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee Fabrication of a GaP nanowire betavoltaic device using Ni-63 Poster Session P3	(limited enrollment; sign-up sheet at the
14:20 – 14:40 14:40 – 15:10	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann Strain induced band- gap modification of Ge NWs Refreshment Break Contributed Talk M4.1 Custer	Influence of growth parameters on the incubation time preceding the self-assembled formation of GaN nanowires on a-Al ₂ O ₂ -buffered Si Contributed Talk Tu3.2 Ishikawa Molecular beam epitaxial growth of GaNAs and GalnNAs nanowires Poster Session P2 with Refreshment	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee Fabrication of a GaP nanowire betavoltaic device using Ni-63 Poster Session P3 with Refreshment	(limited enrollment; sign-up sheet at the
14:20 – 14:40 14:40 – 15:10	axial InAs-InP nanowire heterostructures with atomically sharp interfaces Contributed Talk M3.2 Bartmann Strain induced band- gap modification of Ge NWs Refreshment Break Contributed Talk M4.1 Custer Asymmetric silicon nanowires as	Influence of growth parameters on the incubation time preceding the self-assembled formation of GaN nanowires on a-Al ₂ O ₂ -buffered Si Contributed Talk Tu3.2 Ishikawa Molecular beam epitaxial growth of GaNAs and GalnNAs nanowires Poster Session P2 with Refreshment	Excursion to	Kosmaca In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x nanowires for their application in nanoelectromechanical switches Contributed Talk Th3.2 McNamee Fabrication of a GaP nanowire betavoltaic device using Ni-63 Poster Session P3 with Refreshment	(limited enrollment; sign-up sheet at the

NANOWIRE WEEK 2018 HAMILTON, CANADA JUNE 11-15, 2018

15:30 – 16:00	Invited Talk 14 Klinovaja Metallization of Rashba wire by superconducting layer in the strong-proximity regime				
16:00 – 16:20	Contributed Talk M4.2 Sistani Ultra-scaled quantum ballistic Ge nanowire photodetectors	Invited Talk 18 Lewis Nanowires bending over backwards from strain partitioning in asymmetric core—shell		Invited Talk 115 Prinz Bioapplications of nanowires	
16:20 – 16:30		heterostructures		0	
16:30 – 16:50		Contributed Talk Tu4.1 Meng Coherent misfit strain in core-shell Ge/Ge _{1-x} Sn _x nanowire light emitters		Contributed Talk Th4.1 Gagliano Efficient green emission from wurtzite Al _x In _{1-x} P nanowires	
16:50 – 17:10	Poster Session P1 and Cocktail Reception	Contributed Talk Tu4.2 Balaghi Strain engineering in lattice-mismatched core/shell nanowires: extending the properties of GaAs		Contributed Talk Th4.2 Høiaas Using graphene as substrate and transparent electrode in a GaN/AlGaN nanocolumn flip-chip UV LED	
17:10 – 17:40		Invited Talk 19 Beidenkopf Imaging effects of interactions in semiconducting nanowires		Invited Talk 116 Jagadish Semiconductor nanowires for optoelectronics and neuroscience applications	
19:00 – 23:00			Conference Dinner		

ORAL SESSIONS

Monday, June 11, 2018

8:00 - 8:50	Registration	
8:50 – 9:00	Opening remarks	
9:00 – 10:30	Oral Session M1 Chair: Michael Fill	er
9:00 – 9:30	Cun-Zheng Ning	Invited
	Tsinghua University, China	l1
	Semiconductor alloy nanowires with widely tunab	le
	compositions and bandgaps for photonic	
	applications	
9:30 - 9:50	Martin Friedl	Contributed
	École Polytechnique Fédérale de Lausanne,	M1.1
	Switzerland	
	Laterally-oriented In(Ga)As nanowires grown on	
	GaAs nanomembranes	
9:50 - 10:10	Tina Tauchnitz	Contributed
	Helmholtz-Zentrum Dresden-Rossendorf, Germar	ny M1.2
	A simple route to synchronized nucleation of self-	
	catalyzed GaAs nanowires on Si for sub-Poissonia	n
	length distributions	
10:10 – 10:30	Sofiane Haffouz	Contributed
	Telecom wavelength quantum dot single photon	M1.3
	sources using position-controlled InP nanowires	
10:30 – 11:00	Refreshment break	
11 00 10 00		
	Oral Session M2 Chair: Vladimir Dubrovs	
11:00 – 11:30	Guoqiang Zhang	Invited
	NTT Basic Research Laboratories, NTT Corporation	n, 12
	Japan	
	InP/InAs heterostructure nanowires grown by	
	indium-particle-catalyzed vapor-liquid-solid mode	

11:30 – 11:50	Andrea Cattoni	Contributed
	Centre de Nanosciences et de Nanotechnologies	M2.1
	(C2N) - CNRS, Université Paris-Sud, Université Paris-	
	Saclay, France	
	Advances in III-V nanowires on silicon for tandem	
	solar cells	
11:50 – 12:10	Ali Jaffal	Contributed
	Institut des Nanotechnologies des Lyon, France	M2.2
	Bright single InAs quantum dots at telecom	
	wavelengths in conical tapered InP nanowires	
	monolithically grown on Si	
12:10 – 12:30	Daniel Jacobsson	Contributed
	Lund University, Sweden	M2.3
	Relationship between seed particle composition	
	and GaAs nanowire growth dynamics revealed by	
	in-situ TEM	
12.20 12.20	Lala	
12:30 – 13:30	Lunch	
13:30 - 14:00	Oral Session M3 Chair: Andrea Cattoni	
13:30 – 14:00	Edith Bellet-Amalric	Invited
	Université Grenoble Alpes, CEA, INAC, France	13
	Quantitative study of the vapor-solid-solid growth	
	of II-VI quantum dots in nanowires	
14:00 - 14:20	Valentina Zannier	Contributed
	NEST, Istituto Nanoscienze – CNR and Scuola	M3.1
	Normale Superiore, Italy	
	Nanoparticle stability in axial InAs-InP nanowire	
	heterostructures with atomically sharp interfaces	
14:20 – 14:40	Maximilian Bartmann	Contributed
	Institute of Solid State Electronics, Technische	M3.2
	Universität Wien, Austria	
	Strain induced band-gap modification of Ge NWs	

14:40 – 15:10 Refreshment break

15:10 – 15:30	Oral Session M4 Chai	r: Anna Fontcuberta i Morral	
15:10 – 15:30	James Custer		Contributed
	University of North Carolina a	t Chapel Hill , USA	M4.1
	Asymmetric silicon nanowires	as geometric diodes	
	for high-frequency electron ra	tcheting	
15:30 – 16:00	Jelena Klinovaja		Invited
	University of Basel, Switzerlar	d	14
	Metallization of Rashba wire l	y superconducting	
	layer in the strong-proximity	regime	
16:00 - 16:20	Masiar Sistani		Contributed
	Institute of Solid State Electro	nics, Technische	M4.2
	Universität Wien, Austria		
	Ultra-scaled quantum ballistic	Ge nanowire	
	photodetectors		

16:20 – 17:40 Poster session P1 and cocktail reception

Tuesday, June 12, 2018

9:00 – 10:30	Oral Session Tu1	Chair: Elisabetta Maria Fiordaliso	
9:00 - 9:30	Takeshi Yanagida		Invited
	Kyushu University, Japan	ı	15
	Impact of flux window pr	rinciple on oxide nanowires	
	and their properties		
9:30 – 9:50	James Cahoon		Contributed
	University of North Caro	lina at Chapel Hill, USA	Tu1.1
	Self-catalyzed vapor-liqu	id-solid growth of lead	
	halide and perovskite na	nowires using a liquid lead	
	catalyst		
9:50 - 10:10	Elham Fadaly		Contributed
	TU Eindhoven, Netherlar	nds	Tu1.2
	Realization of hexagonal	Ge on GaAs	
10:10 - 10:30	Frank Glas		Contributed
	Centre for Nanoscience a	and Nanotechnology,	Tu1.3
	CNRS, Université Paris-Sa	aclay, France	
	Quantitative modelling o	f step flow at the liquid-	
	solid interface based on i	in situ TEM observation of	
	the growth of III-V nanov	vires	
10:30 – 11:00	Refreshment break		
11:00 – 12:30	Oral Session Tu2	Chair: James Cahoon	
11:00 - 11:30	Alois Lugstein		Invited
	Technical University of V	ienna, Austria	16
	Synthesis and application	ns of monolithic metal-	
	semiconductor nanowire	heterostructures	
11:30 – 11:50	Luna Namazi		Contributed
	Lund University, Sweden		Tu2.1
	-	ates for realizing wurtzite	

	antimonides	
11:50 - 12:10	Mihail Ion Lepsa	Contributed
	Forschungszentrum Jülich GmbH, Germany	Tu2.2
	InAs/GaSb core-shell nanowire arrays	
12:10 – 12:30	Kris Bertness	Contributed
	National Institute of Standards and Technology,	Tu2.3
	USA	
	Spectral tuning of localized surface phonon-	
	polariton modes in selective area epitaxy GaN	
	nanowire arrays	
12:30 – 13:30	Lunch	
13:30 – 14:00	Oral Session Tu3 Chair: Paul McIntyre	
13:30 – 14:00	Irina Buyanova	Invited
	Linkoping University, Sweden	17
	GaAs/GaNAs core/shell nanowires - a promising	
	platform for nanoscale optoelectronics	
14:00 – 14:20	Zbigniew Zytkiewicz	Contributed
	Institute of Physics, Polish Academy of Sciences,	Tu3.1
	Poland	
	Influence of growth parameters on the incubation	
	time preceding the self-assembled formation of	
	GaN nanowires on a-AlxOy-buffered Si	
14:20 – 14:40	Fumitaro Ishikawa	Contributed
	Ehime University, Japan	Tu3.2
	Molecular beam epitaxial growth of GaNAs and	
	GaInNAs nanowires	

14:40 – 16:00 Poster session P2 with refreshment break

16:00 – 17:40	Oral Session Tu4	Chair: Parsian Katal Mohseni	
16:00 – 16:30	Ryan Lewis		Invited
	Paul Drude Institute f	or Solid-State Electronics,	18
	Germany		
	Nanowires bending o	ver backwards from strain	
	partitioning in asymn	netric core–shell	
	heterostructures		
16:30 – 16:50	Andrew Meng		Contributed
	Stanford University, l	JSA	Tu4.1
	Coherent misfit strain	in core-shell Ge/Ge1-xSnx	
	nanowire light emitte	rs	
16:50 – 17:10	Leila Balaghi		Contributed
	Helmholtz-Zentrum D	resden-Rossendorf, Germany	Tu4.2
	Strain engineering in	lattice-mismatched core/shell	
	nanowires: extending	the properties of GaAs	
17:10 - 17:40	Haim Beidenkopf		Invited
	Weizmann Institute o	f Science, Israel	19
	Imaging effects of int	eractions in semiconducting	
	nanowires		

Wednesday, June 13, 2018

9:00 - 10:30	Oral Session W1	Chair: Jonathan Baugh	
9:00 – 9:30	Michael Reimer		Invited
	University of Waterloo, Can	ada	I10
	Nanowire-based quantum p		
9:30 – 9:50	Juan Carlos Estrada Saldaña	3	Contributed
	Niels Bohr Institute, Univers	ity of Copenhagen,	W1.1
	Denmark		
	Supercurrent through doubl	-	
	nanowires with epitaxial sup	perconducting contacts	
9:50 – 10:10	Ning Kang		Contributed
	Key Laboratory for the Phys		W1.2
	Nanodevices and Departme	nt of Electronics,	
	Peking University, China		
	Study of 0-pi phase transitio		
	superconductor-InSb nanow	ure quantum dot	
10:10 10:20	devices		Contributed
10:10 – 10:30	Stefano Roddaro	haratary Italy	Contributed W1.3
	University of Pisa & NEST La Field-effect control of spin-o	• • • • • • • • • • • • • • • • • • • •	VV 1.5
	suspended InAs nanowires	indit coupling in	
	suspended mas nunowires		
10:30 - 11:00	Refreshment break		
10.50 11.00	Nen estiment steak		
11:00 – 12:30	Oral Session W2	Chair: Naoki Fukata	
11:00 - 11:30	Yasuhiko Arakawa		Invited
	University of Tokyo, Japan		l11
	Nanowire-quantum-dots for	r nanolasers and single	
	photon sources		
11:30 – 11:50	Jonathan Baugh		Contributed
	University of Waterloo, Can		W2.1
	Magneto-transport of nano	wire FETs in normal and	
	superconducting regimes		

11:50 – 12:10	Thomas Hartke	Contributed
	Princeton University, USA	W2.2
	Microwave detection of electron-phonon	
	interactions in a cavity-coupled InAs nanowire	
	double quantum dot	
12:10 – 12:30	Cristina Cordoba	Contributed
	Simon Fraser University, Canada	W2.3
	Mapping the built-in potential at Si nanowire tunnel diodes	
12:30 – 13:30	Lunch	
13:30 – 18:00	Excursion to Niagara Falls	
19:00 – 23:00	Conference Dinner	

Thursday, June 14, 2018

9:00 - 10:30	Oral Session Th1 Ch	nair: Jessica Boland	
9:00 – 9:30	Federico Panciera		Invited
	Centre for Nanoscience and Nanotechnology,		l12
	CNRS, Université Paris-Sud, Université Paris-Saclay,		
	France		
	In-situ TEM study of the crystal pl	hase selection in	
	III-V nanowires		
9:30 – 9:50	Nicklas Anttu		Contributed
	Aalto University, Finland		Th1.1
	Intuitive and efficient analysis of	absorption,	
	scattering and emission of light ir	n nanowire array	
	solar cells, photodetectors and LE	Ds	
9:50 – 10:10	Andrea Troian		Contributed
	Synchrotron Radiation Research a	and NanoLund,	Th1.2
	Lund University, Sweden		
	Nanobeam X-ray fluorescence inv	vestigation on in	
	situ Zn-doped nanowires reveals gradients and		
	background doping		
10:10 – 10:30	Jerry Wei-Jen Shan		Contributed
	Rutgers University, USA		Th1.3
	High-throughput contactless conductivity		
	measurement of semiconductor nanowires with		
	complex doping profiles		
10:30 – 11:00	Refreshment break		
11:00 - 12:30	Oral Session Th2 Chair	r: Hadas Shtrikman	
11:00 - 11:30	Jessica Boland		Invited
	University of Regensburg, Germa	ny	I13
	Revealing novel optoelectronic pr	operties of	
	semiconductor nanowires via Terahertz		
	spectroscopy		

11:30 – 11:50	Jesus Herranz	Contributed
	Paul-Drude-Institut für Festkörperelektronik,	Th2.1
	Germany	
	Direct correlation of luminescence and polytype for	
	(In,Ga)As shell quantum wells in zincblende and	
	wurtzite GaAs nanowire segments	
11:50 - 12:10	Anjan Mukherjee	Contributed
	Norwegian University of Science and Technology, Norway	Th2.2
	Bias-dependent scanning photocurrent microscopy	
	on single GaAs nanowire graphene hybrid device	
12:10 - 12:30	Patrick Parkinson	Contributed
	University of Manchester, United Kingdom	Th2.3
	Non-contact measurement of p-doping for high-	
	yield room-temperature nanowire lasing	
12:30 – 13:30	Lunch	
42.20 44.00	Chain Sin an Madhin	
13:30 – 14:00		
13:30 – 14:00	Helge Weman	Invited
	Norwegian University of Science and Technology,	l14
	Norway	
	Growth and fabrication of III-V nanowire/graphene	
14.00 14.20	hybrid structures and devices	Cantributad
14:00 – 14:20	Jelena Kosmaca	Contributed
	University of Latvia, Latvia	Th3.1
	In-situ characterization of Bi ₂ Se ₃ and Ge _{1-x} Sn _x	
	nanowires for their application in nanoelectromechanical switches	
14:20 – 14:40	Simon McNamee	Contributed
14.20 - 14.40		Contributed Th3.2
	McMaster University, Canada Entrication of a Gap nanowire betavoltaic device	1113.2
	Fabrication of a GaP nanowire betavoltaic device using Ni-63	
	using ivi-us	

14:40 – 16:40 Poster session P3 with refreshment break

16:00 - 18:00	Oral Session Th4	Chair: Kimberly Thelander	
16:00 – 16:30	Christelle Prinz		Invited
	Lund University, Sweden		l15
	Bioapplications of nanov	vires	
16:30 – 16:50	Luca Gagliano		Contributed
	Eindhoven University of	Technology, Netherlands	Th4.1
	Efficient green emission	from wurtzite AlxIn1-xP	
	nanowires		
16:50 – 17:10	Ida Marie Høiaas		Contributed
	Norwegian University of Science and Technology,		Th4.2
	Norway		
	Using graphene as substrate and transparent		
	electrode in a GaN/AlGaN nanocolumn flip-chip UV		
	LED		
17:10 - 17:40	Chennupati Jagadish		Invited
	Australian National University, Australia		l16
	Semiconductor nanowires for optoelectronics and		
	neuroscience applications		

Friday, June 15, 2018

9:00 – 10:30	Oral Session F1	Chair: Chennupati Jagadish	
9:00 – 9:30	Shadi Dayeh		Invited
	University of California San Diego, USA		l17
	A nanowire platform for hig	h throughput drug	
	screening		
9:30 – 9:50	Faustino Martelli		Contributed
	Consiglio Nazionale delle Ric	cerche, Italy	F1.1
	Thermal rectification in teles	scopic nanowires	
9:50 - 10:10	Francesco Rossella		Contributed
	NEST, Scuola Normale Supe	riore and Istituto	F1.2
	Nanoscienze-CNR, Italy		
	Electric-double-layer transis	tor based on InAs	
	nanowire gated by ionic liqu	id	
10:10 - 10:30	Hao Sun		Contributed
	Tsinghua University, China		F1.3
	Erbium chloride silicate nand	owires with a giant	
	optical gain		
10:30 – 11:00	Refreshment break		
11:00 – 12:30	Oral Session F2	Chair: Lutz Geelhar	
11:00 - 11:30	Bozhi Tian		Invited
	University of Chicago, USA		118
	Silicon nanowire based biop	hysical tools for	
	extracellular and intracellul	ar modulations	
11:30 – 11:50	Maria Spies		Contributed
	University Grenoble-Alpes, (CNRS, Institut Néel,	F2.1
	France		
	Linearity of the photoresport GaN/AIN nanowires	se in heterostructured	

Taylor Teitsworth	Contributed
University of North Carolina at Chapel Hill, USA	F2.2
devices for water-splitting particle suspension	
reactors	
Alexandra-Madalina Siladie	Contributed
CEA Grenoble, France	F2.3
Doping and electrical transport optimization of	
AlxGa1-xN nanowire heterostructures for UV-C	
LEDs	
Closing remarks	
Lunch	
Tour of Canadian Centre for Electron Microscop University (limited enrollment; sign-up sheet at registration desk)	-
	University of North Carolina at Chapel Hill, USA High-voltage multijunction p-i-n silicon nanowire devices for water-splitting particle suspension reactors Alexandra-Madalina Siladie CEA Grenoble, France Doping and electrical transport optimization of AlxGa1-xN nanowire heterostructures for UV-C LEDs Closing remarks Lunch Tour of Canadian Centre for Electron Microscop University (limited enrollment; sign-up sheet at

POSTER SESSIONS

Monday, June 11, 2018

16:20 – 18:20 Poster Session P1

P1.1	Yamina Andre
	Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal,
	France
	Hydride vapor phase epitaxy of binary and ternary III-nitride nanowires
P1.2	Thomas Auzelle
	Paul-Drude-Institut für Festkörperelektronik, Germany
	Tuning the shape of GaN nanowires in molecular beam epitaxy using an
	in situ thermal decomposition process
P1.3	Ashkan Djaberi Dashtestani
	University Ulm, Germany
	Metal catalyst-free nucleation of silicon nanowires
P1.4	Marion Gruart
	CEA Grenoble, France
	Control of GaN nanowire morphology by molecular beam epitaxy
P1.5	Reza Jafari Jam
	Lund University, Sweden
	Gold electrodeposition in semiconductor nanowire technology
P1.6	Eero Koivusalo
	Tampere University of Technology, Finland
	Changing growth direction during self-catalyzed MBE of GaAs nanowires
P1.7	Simon Watkins
	Simon Fraser University, Canada
	Oxide fracture mechanism for nanowire regrowth and isolation
P1.8	Simone Assali
	École Polytechnique Montréal, Canada
	SiGeSn nanowire heterostructures for Si-compatible IR opto-electronics
P1.9	Romaric de Lépinau
	IPVF, Institut Photovoltaïque d'Île-de-France, France
	Investigating the composition variations in GaAsP nanowires for core-
	shell solar cell applications

P1.10	Anna Fontcuberta i Morral
	École Polytechnique Fédérale de Lausanne, Switzerland
	A-polar GaAs nanowires with improved structure and optical properties
P1.11	Lea Ghisalberti
	École Polytechnique Fédérale de Lausanne, Switzerland
	Understanding the wetting behavior of nanodroplets catalyzing the
	growth of III-V nanowires
P1.12	Vladimir Dubrovskii
	ITMO University, Russia
	"Stopping effect" and its role in oscillations of the truncated growth
	interface in III-V nanowires
P1.13	Erik Mårtensson
	Solid State Physics, Lund University, Sweden
	Simulating growth and polytypism of Au-seeded GaAs nanowires
P1.14	Amnon Rothman
	Weizmann Institute of Science, Israel
	Kinetics of horizontally guided nanowire growth
P1.15	Lucas Güniat
	École Polytechnique Fédérale de Lausanne, Switzerland
	The quest of [100] nanowires
P1.16	Jan Hajer
	Physikalisches Institut (EP3), Universität Würzburg, Germany
	Selective area grown ZnTe nanowires as the basis for quasi-one-
	dimensional CdTe-HgTe multishell heterostructures
P1.17	Miroslav Kolibal
	Central European Institute of Technology – CEITEC, Czech Republic
	Doping of ZnO whiskers: towards mid-IR plasmonics
P1.18	Egor Leshchenko
	Lund University, Sweden
	Composition of ternary III-V nanowires nucleating from quaternary liquid
	melts
P1.19	Martin Magnusson
	Lund University, Sweden
	Pseudo-particle continuum modeling of nanowire growth in aerotaxy

P1.20	Parsian Mohseni
	Rochester Institute of Technology, USA
	Selective lateral pseudo-van der Waals epitaxy of III-V nanowire arrays
	on graphene
P1.21	Martin Müller
	Institute of Physics, Academy of Sciences of the Czech Republic, Czech
	Republic
	3D Si nanowire structures: Controlling Si nanowire growth in-plane and
	out-of-plane
P1.22	Silvia Rubini
	IOM-CNR Laboratorio TASC, Italy
	Bi ₂ Se ₃ nanowires by Au seeded molecular beam epitaxy
P1.23	Marta Sobanska
	Institute of Physics, Polish Academy of Sciences, Poland
	Growth mode, arrangement and polarity of GaN nanowires grown by
	PAMBE on Si(001) substrates: importance of the Si _x N interlayer
P1.24	Andrei Sokolovskii
	ITMO University, Russia
	Bi-stability of contact angle and its role in tuning the morphology of self-
	assisted GaAs nanowires
P1.25	Katsuhiro Tomioka
	Hokkaido University, Japan
	Vertical GaAs-InGaP core-shell nanowires on Si by selective-area growth
P1.26	Fumitaro Ishikawa
	Ehime University, Japan
	Over visible wavelengths polarized light from AlGaO _x nanowire
P1.27	Julien Francois
	C2N, Univ. Paris-Sud, Univ. Paris Saclay, France
	Flexible optoelectronic devices based on III-nitride nanowires
P1.28	Naoki Fukata
	National Institute for Materials Science (NIMS), Japan
	Investigation of nanoscale voids in Sb-doped p-type ZnO nanowires
P1.29	Paige Wilson
	McMaster University, Canada
	Increasing nanowire diameters for solar cell applications

Tuesday, June 12, 2018

14:40 – 16:40 Poster Session P2

P2.1	Elisabetta Maria Fiordaliso
	Center for Electron Nanoscopy, Technical University of Denmark,
	Denmark
	Characterization of doping distribution in solar cell nanowires by off-axis
	electron holography
P2.2	Simon Watkins
	Simon Fraser University, Canada
	Photoluminescence excitation spectroscopy of surface excitons in ZnO
	nanowires
P2.3	Xulu Zeng
	Solid State Physics, NanoLund, Lund University, Sweden
	In situ surface passivation of GaInP nanowires by use of radially-grown
	AlinP shells
P2.4	Damon Carrad
	Center for Quantum Devices, Niels Bohr Institute, University of
	Copenhagen, Denmark
	In-situ patterned superconductor/semiconductor nanowires
P2.5	Hadi Hijazi
	Université Clermont Auvergne, Institut Pascal, France
	Charge and spin transport in GaAs nanowires grown by HVPE
P2.6	Fumitaro Ishikawa
	Ehime University, Japan
D2 7	Structural investigations on GaAs/GaAsBi core-multishell nanowires
P2.7	Faustino Martelli
	Istituto Microelettronica e Microsistemi del Consiglio Nazionale delle
	Ricerche, Italy
D2 0	Plasmon-induced changes to the luminescence of ZnSe nanowires
P2.8	Roy Op het Veld
	Eindhoven University of Technology, Netherlands
	In-plane InSb nanowire networks for scalable Majorana devices

P2.9	Lyubomir Ahtapodov
1 2.3	Norwegian University of Science and Technology, Norway
	Optical determination of the GaAs zinc-blende/wurtzite band offsets
P2.10	Simone Assali
FZ.10	Polytechnique Montreal, Canada
	Critical strain for Sn incorporation in spontaneously graded Ge/GeSn
	core/shell nanowires
P2.11	Franck Bassani
1 2.11	CNRS/LTM, France
	Dopant and chemical composition profiling in IV-IV nanowires
P2.12	Kris Bertness
1 2.12	National Institute of Standards and Technology, USA
	Raman spectroscopy for dopant optimization in GaN nanowire light-
	emitting diodes
P2.13	Luca Françaviglia
	École Polytechnique Fédérale de Lausanne, Switzerland
	Self-assembled quantum-dots in nanowires: from self-formation
	mechanisms to emission engineering
P2.14	Nebile Isik Goktas
	McMaster University, Canada
	Study of doping incorporation in self-assisted GaAs nanowires
P2.15	Felix Jekat
	II. Institute of Physics B, RWTH Aachen University, Germany
	Designing a charge detector for a single electron counting scanning
	tunneling microscope and quantum point contact transport
	measurements in indium arsenide nanowires
P2.16	Andrew Meng
	Stanford University, USA
	Surface defect passivation of silicon micro pillars
P2.17	Dingding Ren
	Norwegian University of Science and Technology, Norway
	Crystal phase mapping in nanowires by scanning electron diffraction

P2.18	Anna Sitek
	Reykjavik University, Iceland
	Excitons confined in prismatic shells
P2.19	Neimantas Vainorius
	Solid State Physics and NanoLund, Lund University, Sweden
	Temperature-dependent electronic structure of wurtzite GaAs nanowires
	studied by resonant Raman scattering spectroscopy
P2.20	Mingze Yang
	Simon Fraser University, Canada
	Spatial oscillations in the EBIC signal from GaAs/Fe core-shell NW diodes
P2.21	Naoki Fukata
	National Institute for Materials Science (NIMS), Japan
	Control of hole gas accumulation in selectively doped Ge/Si and Si/Ge
	core-shell nanowires
P2.22	Jakub Płachta
	Institute of Physics, Polish Academy of Sciences, Poland
	Activation of luminescence from wurtzite CdTe nanowires
P2.23	Yu Liu
	Niels Bohr Institute, University of Copenhagen
	Tri-crystal hybrid epitaxy of semiconductor - ferromagnetic insulator -
	superconductors
P2.24	Sergej Schuwalow
	Niels Bohr Institute, University of Copenhagen
	Direct probing of the hybrid band structure of InAs/Al and InSb/Al
P2.25	nanostructures Tomáš Musálek
FZ.23	
	Brno University of Technology, Czech Republic Si dopant incorporation in MBE-grown InAs nanowires
P2.26	Sudhakar Sivakumar
F Z.ZU	Lund University, Sweden
	Exploring dopant incorporation in GaAsP nanowires grown by Aerotaxy
P2.27	Curtis Goosney
r 4.4/	McMaster University, Canada
	InSb nanowire fabrication for application in multispectral photodetectors
	man nanowite jubilication for application in mainspectial photoaetectors

P2.28	Dong Pan
	State Key Laboratory of Superlattices and Microstructures, Institute of
	Semiconductors, Chinese Academy of Sciences, China
	Large composition range high-quality $InAs_{1-x}Sb_x$ nanowires grown on Si
	substrates by molecular-beam epitaxy
P2.29	Tomáš Pejchal
	Central European Institute of Technology – CEITEC, Czech Republic
	Bimetallic catalysts for MBE-grown Ge nanowires

Thursday, June 14, 2018

14:40 – 16:40 Poster Session P3

P3.1	Kris Bertness
	National Institute of Standards and Technology, USA
	AlGaN/GaN core-shell heterostructures for nanowire UV LEDs
P3.2	Vladislav Khayrudinov
	Aalto University, Finland
	III-V nanowires on black silicon for broadband absorption and
	optoelectronics
P3.3	Masato Takiguchi
	NTT Basic Research Laboratories, Japan
	Gb/s direct modulation of a single InP/InAs nanowire light emitting diode
	at telecom-band
P3.4	Francesco Rossella
	NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Italy
	Electronic transport at high magnetic fields in broken-gap nanowire
	heterostructures
P3.5	Fanny Morisot
	LMGP/IMEP-LaHC, France
	Effect of passivation on two-dimensional randomly oriented ZnO
	nanowire networks for the electrical detection of acetone

P3.6	Naoki Fukata
	National Institute for Materials Science, Japan
	Realizing high efficiency hybrid silicon nanowire/PEDOT:PSS
	heterojunction solar cells via surface treatment
P3.7	Yunlong Zhao
	Harvard University, USA
	Deterministic assembly and fabrication of ultrasmall nanowire 3D
	transistor probes for intracellular neural and cardiac recording
P3.8	Eduardo Barrera
	University of Waterloo, Canada
	Integrated III-V/Si visible and IR photodetectors
P3.9	Luca Boarino
	Istituto Nazionale di Ricerca Metrologica, Italy
	Resistive switching in Ag/single ZnO nanowire/Pt devices
P3.10	Irene Goldthorpe
	University of Waterloo, Canada
	Silver nanowires for flexible transparent electrodes and e-textiles
P3.11	Anna Sitek
	Reykjavik University, Iceland
	Anisotropic conductance of prismatic core-shell nanowires in transverse
	magnetic fields
P3.12	Junichi Motohisa
	Hokkaido University, Japan
	Study on emission mechanisms in InP-based nanowire LEDs
P3.13	Julien Francois
	C2N-CNRS, Université Paris Sud, France
	Multi-scale electrical characterization of single core/shell NWs
	containing GaAs or AlGaAs radial junction on Si(111) for photovoltaics
P3.14	Marco Vettori
	Lyon Institute of Nanotechnology, France
	GaAs/AlGaAs core/shell nanowires on Si substrates for photovoltaics:
	toward an optimized tandem solar cell
P3.15	Étienne Bouthillier
	Polytechnique Montreal, Canada
	Light absorption engineering in GeSn nanowires

P3.25	Mitchell Robson
	McMaster University, Canada
	Multispectral infrared photodetection in III-V nanowires
P3.26	Julien Francois
	Centre de Nanosciences et de Nanotechnologies(C2N), University Paris-
	Saclay, France
	Piezogeneration exploration of MBE and MOCVD GaN-nanowire-based
	devices
P3.27	Chunyi Huang
	Northwestern University, USA
	Tomographic composition analysis of InGaAs nanowires on GaAs
	nanomembranes
P3.28	Reza Zamani
	Solid State Physics, Lund University, Sweden
	Understanding electronic and structural properties of III-V
	heterostructure nanowires through advanced electron microscopy
	studies
P3.29	Yuri Pusep
	IFSC/USP, Brazil
	Manipulation of emission energy in GaAs/AlGaAs core-shell nanowires
	with radial heterostructure