

Harmonogram

schedule

- Każdy plan określony w wymiarze czasowym (plan zatrudnienia, finansowy, zarządzania projektem, itp..)
- Harmonogram projektu mapa drogowa projektu określająca co jest wykonywane, kiedy i kto jest odpowiedzialny za wykonanie

Harmonogram zarządzania projektem

- Składnikami są oszacowania, produkty, aktywności i zadania z WBS oraz informacje o zasobach.
- Zawiera planowane daty wykonania czynności projektu oraz osiągania kamieni milowych (oraz może definiować jak obecny projekt wiąże się z innymi)

Harmonogramowanie – rozważania (1)

- Dla optymalnego wykorzystania zasobów ludzkich zadania powinny być organizowane równolegle
- Zależności pomiędzy zadaniami powinny być minimalizowane
- Opracowanie zależne od intuicji i doświadczenia kierownika

Harmonogramowanie – rozważania (2)

- Szacowanie jest trudnym zadaniem
- Produktywność nie jest proporcjonalna do liczności personelu
 - Adding manpower to a late software project makes it later (Frederick P. Brooks Jr.)
- Rzeczy nieoczekiwane zawsze się zdarzają!
 - Harmonogram powinien uwzględniać taką ewentualność (ryzyko)

Harmonogramowanie – terminologia (1)

- Zadanie (ang. task) najniższy poziom WBS porcja aktywności.
- Aktywność (ang. activity) element pracy wykonywanej w projekcie w określonym czasie posiadający mierzalny początek i koniec (element WBS) i korzystający z określonych zasobów
- Zdarzenie (ang. event) punkt w czasie: początek, koniec aktywności
- Kamień milowy (ang. milestone) (końcowy) punkt aktywności reprezentowany zwykle jako aktywność o zerowym czasie trwania i zerowych zasobach

Harmonogramowanie – terminologia (2)

- Relacja pierwszeństwa (ang. precedence relationship) – zależność czasowa pomiędzy dwoma aktywnościami (lub aktywnością i kamieniem milowym)
- ?? (ang. Precedence Diagramming Method PDM) - metoda polegająca na konstruowaniu sieci aktywności projektu używając symboli reprezentujących działania i łączących ich strzałek

- Najpopularniejsze sposoby reprezentowania harmonogramu:
 - Sieci aktywności (ang. Project network diagram/ precedence diagram)- pokazują zależności pomiędzy zadaniami oraz ścieżki krytyczne (ang. Critical path)
 - Diagramy Gantta pokazują harmonogram w kontekście kalendarzowym

Czas trwania i zależności pomiędzy zadaniami

Zadanie	Czas (dni)	Zależności
T1	8	
T2	15	
Т3	15	T1 (M1)
T4	10	
T5	10	T2, T4 (M2)
T6	5	T1, T2 (M3)
T7	20	T1 (M1)
Т8	25	T4 (M5)
T9	15	T3, T6 (M4)
T10	15	T5, T7 (M7)
T11	7	T9 (M6)
T12	10	T11 (M8)

Sieci aktywności

WBS a sieci aktywności

Diagram Gantta

Przydzielenie personelu do zadań

Precendence Diagramming Method (PDM)

 Metoda polegająca na konstruowaniu sieci aktywności projektu w której aktywności są węzłami powiązanymi graficznie jedną lub większą liczbą logicznych zależności (pokazujących sekwencję aktywności)

Metoda Ścieżki Krytycznej (CPM)

ang. Critical Path Method

- Technika analizy diagramu sieciowego mająca na celu określenie elastyczności harmonogramu na różnych jego logicznych ścieżkach wraz z określeniem minimalnego czasu trwania projektu
- Ścieżka krytyczna seria aktywności określająca czas trwania projektu (najdłuższa ścieżka przez projekt)

Dokumentowanie PDM i CPM

- ES early start najwcześniejszy moment w którym aktywność może się rozpocząć
- EF early finish najwcześniejszy moment w którym aktywność może się zakończyć
- LS late start najpóźniejszy moment w którym aktywność może się rozpocząć (bez opóźniania projektu)
- LF late finish najpóźniejszy moment w którym aktywność może się zakończyć (bez opóźniania projektu)

PDM & CPM - przykład

Ryzyko

Ryzyko / Zagrożenie

- Ryzyko jest to zmienna, która może zagrozić lub nawet uniemożliwić zakończenie projektu z sukcesem.
 - Wszystko to co może stanąć nam na drodze do sukcesu a jest obecnie nieznane lub niepewne.
- Ryzyko może być:
 - Bezpośrednie na które mamy wpływ.
 - Pośrednie na które wpływu nie mamy (lub nasz wpływ może być minimalny).

Harmonogram a ryzyko

- Doświadczenie pokazuje, że 85% zagrożeń ma bezpośredni lub pośredni wpływ na harmonogram. Tylko ok. 5% ma wpływ tylko na koszty.
- Niektóre projekty mają sztywno ograniczony czas (ang. drop-dead).
 - Konkurencja, która zrobi to szybciej
 - Finansowanie unijne

Zarządzanie ryzykiem

- Identyfikacja oraz określanie planów minimalizacji wpływu zagrożeń na powodzenie projektu
- Proces:
 - Identyfikacja
 - Identyfikacja zagrożeń produktu, procesu i biznesu
 - Analiza
 - Prawdopodobieństwo i wpływ na projekt
 - Planowanie
 - Plan minimalizacji wpływu
 - Monitoring
 - Monitoring zagrożeń w czasie trwania projektu

Identyfikacja zagrożeń

- Typy zagrożeń
 - Technologiczne
 - Technologia (stabilność, bezpieczeństwo, nietypowe wymagania techniczne)
 - Zależności zewnętrzne (gotowe elementy, równoległe projekty, integracja narzędzi)
 - Organizacyjne/biznesowe
 - konkurencja, wartość projektu a jego koszty, dostępność poddostawców
 - Związane z wymaganiami
 - stabilność wymagań, możliwość pomiaru
 - Szacowania
 - Dostępności zasobów, personelubudżetu, wymagań szkoleniowych

Analiza zagrożeń

- Prawdopodobieństwo pojawienia się
 - Wysokie (ang. High)
 - Znaczące (ang. Significant)
 - Umiarkowane (ang. Moderate)
 - Niewielkie (ang. Minor)
 - Niskie (ang. Low)
- Efekt (wpływ na projekt)
 - Katastroficzny, poważny, tolerowalny, nieznaczący

Analiza ryzyka - przykłady

Ryzyko	Prawdopodo bieństwo	Efekt
Problemy finansowe organizacji – redukcja budżetu projektu	Niskie	Katastrofic zny
Brak odpowiednio wykształconego personelu	Wysokie	Katastrofic zny
Kluczowi pracownicy chorują w krytycznym momencie	Umiarkowane	Poważny
Komponenty ponownego użycia zawierają błędy ograniczające ich funkcjonalność	Umiarkowane	Poważny
Proponowane są zmiany w wymaganiach, które powodują potrzebę dużych zmian w projekcie	Umiarkowane	Poważny
Organizacja jest w trakcie restrukturyzacji co powoduje zmiany w kadrze zarządzającej projektem	Wysokie	Poważny

Analiza ryzyka - przykłady

Ryzyko	Prawdopodobie ństwo	Efekt
Wykorzystywana baza danych nie jest w stanie przetwarzać wymaganej liczby transakcji na sekundę	Średnie	Poważny
Czas potrzebny na budowę systemu jest niedoszacowany	Wysokie	Poważny
Narzędzia CASE nie integrują się	Wysokie	Tolerowalny
Klienci nie są w stanie zrozumieć wpływu zmian w wymaganiach na projekt	Umiarkowane	Tolerowalny
Brak możliwości szkolenia personelu	Umiarkowane	Tolerowalny
Rozmiar oprogramowania jest niedoszacowany	Wysokie	Tolerowalny
Kod generowany przez narzędzi CASE jest mało wydajny	Średnie	Nieznaczący

Planowanie

- Kluczowa idea:
 - Atakuj ryzyko zanim ono zaatakuje Ciebie!
 - Opracuj strategię zarządzania ryzykiem.
- Unikanie ryzyka
 - Reorganizacja projektu aby ryzyko nie miało wpływu
 - Transfer ryzyka
 - Przeniesienie ryzyka na kogoś innego (klienta, bank, itp.)
- Akceptacja ryzyka
 - Akceptujemy ryzyko jako ewentualność, która może się pojawić (migracja ryzyka, plan awaryjny)

Ryzyko	Strategia
Problemy organizacyjne i finansowe	Przygotuj dokument dla zarządu pokazujący w jaki sposób projekt realizuje najistotniejsze cele biznesowe i stanowi dla nich znaczącą wartość dodaną
Problem wymagań	Zawiadom klientów o potencjalnych problemach i opóźnieniach, zbadaj możliwość dostarczenia funkcjonalności poprzez gotowe elementy
Choroby personelu	Zreorganizuj projekt w taki sposób aby prace mocniej na siebie nachodziły, tak żeby pracownicy wiedzieli co robią inni
Psujące się komponenty	Zastąp niestabilne komponenty innymi, bardziej wiarygodnymi

Ryzyko	Strategia	
Zmiany w wymaganiach	Wypracuj dane o zależnościach aby określić wpływ zmian, zmaksymalizuj dekompozycję projektu na niezależne elementy	
Restrukturyzacja organizacji	Przygotuj dokument dla zarządu pokazujący w jaki sposób projekt realizuje najistotniejsze cele biznesowe i stanowi dla nich znaczącą wartość dodaną	
Wydajność bazy danych	Zbadaj możliwość zakupienia bardziej wydajnej bazy danych	
Niedoszacowany czas produkcji	Zbadaj możliwość wykorzystani gotowych komponentów, generatorów	

- Regularne dokonywanie oceny każdego zagrożenia
 - jak zmienia się prawdopodobieństwo?
 - Jak zmienia się wpływ na projekt
- Każde zagrożenie powinno być przedyskutowane po zakończeniu etapu prac

Wskaźniki zagrożeń

Ryzyko	Potencjalny wskaźnik	
Technologiczne	Opóźniona dostawa sprzętu, oprogramowania narzędziowego, duża liczba raportowanych problemów technologicznych	
Zasoby ludzkie	Niskie morale, słaba komunikacja pomiędzy członkami zespołu, dostępność innego zatrudnienia	
Narzędzia	Niechęć do korzystania z narzędzi, narzekania na narzędzia, wymagania co do wydajniejszych stacji roboczych	
Organizacja	Plotki, brak aktywności kadry zarządczej	
Wymagania	Duża liczba zmian w wymaganiach, narzekania klientów	
Oszacowania	Niedotrzymywanie harmonogramu, nieudane poprawy błędów	

Inżynierski kompromisy (1)

Trójkąt kompromisu (ang. tradeoff triangle)

- Istnieje bezpośrednia zależność pomiędzy zakresem (cechami systemu) a zasobami i harmonogramem przedsięwzięcia
- Kluczem do sukcesu jest odpowiednia równowaga pomiędzy zasobami, datą dostarczenia i cechami systemu.

Macierz kompromisu (ang. tradeoff matrix)

	Stała	Określona	Zmienna
Zasoby	✓		
Harmonogram		✓	
Cechy			√

Przyjmując stałe/y wybierzemy określone/y
i w razie potrzeby zmodyfikujemy ...

Podsumowanie

- Dobre zarządzanie projektem jest kluczem do powodzenia projektu
- Nieuchwytna natura oprogramowania powoduje problemy zarządzania
- Kierownik projektu ma wiele zadań, ale do podstawowych należą planowanie, szacowanie i harmonogramowanie
- Planowanie i szacowanie są procesami iteracyjnymi.
- Kamień milowy projektu to możliwy do określenia i przewidzenia stan, który jest podstawą do utworzenia formalnego raportu z postępów

Podsumowanie

- Harmonogramowanie projektu wymaga utworzenia graficznych reprezentacji aktywności projektu, czasu jego trwania oraz zatrudnienia (przydzielenia zasobów do zadań)
- Zarządzanie ryzykiem związane jest z identyfikacją zagrożeń, które mogą utrudnić wykonanie projektu oraz opracowaniem planów, które zapobiegną negatywnym wpływom zmaterializowanych zagrożeń.

- Sommerville: Inżynieria Oprogramowania, rozdział 4.
- Dąbrowski, Subieta: Podstawy Inżynierii
 Oprogramowania, rozdział 2.
- Barry W. Boehm 1991. Software Risk Management: Principles and Practices, IEEE Software, Jan. 1991, IEEE, pp.32-41.
- Marvin J. Carr, et al. 1993. Taxonomy-Based Risk Identification, Technical Report CMU/SEI-93-TR-6, Pittsburgh, PA, SEI, June 1993, 24p.
- Richard Fairley 1994. "Risk Management for Software Project," *IEEE Software*, 11 (3), May 1994, pp.57-67