HOMEWORK 6: SINGULARITIES DUE: WEDNESDAY, OCTOBER 30TH

(1) Show that if $u \in \mathbb{R} \setminus \mathbb{Z}$, then

$$\sum_{n=-\infty}^{\infty} \frac{1}{(u+n)^2} = \frac{\pi^2}{\sin(\pi u)^2}.$$

This can be done by integrating $f(z) = \frac{\pi \cot(\pi z)}{(u+z)^2}$ on the circle of radius $N + \frac{1}{2}$ with $N \in \mathbb{Z}$, and sending $N \to \infty$. Show why.¹

(2) Suppose f is holomorphic in $B_*(0,1)$ and that

$$|f(z)| \le A|z|^{-1+\epsilon}$$

for some $\epsilon > 0$ and all z_0 near 0. Show that f has a removable singularity at 0.

(3) Show that all entire functions which are also injective (f(z) = f(w)) if and only if z = w are linear:

$$f(z) = az + b a \neq 0$$

(hint: Use Casorati-Weirstrass on $f(\frac{1}{z})$, and apply the open mapping theorem).

(4) Suppose f and g are holomorphic on $\bar{B}(0,1)$, and that f has only a simple zero at z=0. Show that

$$f_{\epsilon}(z) = f(z) + \epsilon g(z)$$

has exactly one zero on $\bar{B}(0,1)$, and if we call it z_{ϵ} , then z_{ϵ} varies continuously in ϵ .

(5) Let f be non-constant holomorphic in $\Omega \supseteq \bar{B}(0,1)$. Show that if |f(z)| = 1 whenever |z| = 1, then $\bar{B}(0,1) \subseteq f(\Omega)$.

If instead $|f(z)| \ge 1$ whenever |z| = 1 and there is some $z_0 \in \bar{B}(0,1)$ with $|f(z_0)| < 1$, then $\bar{B}(0,1) \subseteq f(\Omega)$.

(hint: for the first part, show that it suffices to check that f(z) has a root. Then apply the maximum modulus principle).

¹This is a sort of shifted ζ -function at s=2.