, 1)

{yjsung, jpark}@cs.sungshin.ac.kr

가

가

MST, CLARANS, CURE PROCLUS

. CLARANS PROCLUS
. PROCLUS

. 가

•

2 3 . 가

confusion matrix

1. 가

. 가

[8, 13, 14]. 가

MST, CLARANS[2], CURE[1]

PROCLUS[3]

. 2 가 ,

1) 37 249-1,

, 3		5		,	4
		2.			
2.1					
2.1.1 MST (Minim Hierarchical 	가 가		가 g effect가	. Ouliter	·
2.1.2 CLARANS (CLARANS		e Applica CLARA	tion based on CLARANS k-medoid	CLAR	
(neighbor)	k	- medoid CLARA		medoid maxneighb 가	or
(local optimal)			· incuoiu	CLAR	ANS
	numlocal		[2].	•	
2.1.3 CURE (Clust 가	tering Using Re	presentat	ives)	k	가
가 centroid-based app	c shrinking factor c MST proach	·	outlier , 가	ch	aining effec
2.2				(spa	rsity) 가
. [1] 가 [2]	가 3	가	フト x - y 3 2	가	21
가					

2.2.1 PROCLUS (Projected Clustering)

가 (sparsity) . PROCLUS . Projected cluster D CLARANS PROCLUS CLARANS k medoid medoid dissilmilarity가 가 iteration [3]. k-medoid

3. 가 . . 2

. [3]

```
2
                                                                 k
                                                                         [0.0, 1.0)
outlier
                                   5%
3.1.1
                         [3]
3.2
                        MST, CLARANS, CURE
         PROCLUS
     PROCLUS
                                               m\,edoid
                    \mathbf{A} \bullet \mathbf{k}
                                                                    B • k medoid
                                             greedy
                         A > B
                                                                        greedy
                                       greedy
outlier가
                                                        A • k
                                                        medoid
                                                B • k
   medoid
                              medoid
     medoid
                                                                       . M current가
             M current locality medoid
PROCLUS
               가
                                                                     k medoid
M = \{m_1, \dots, m_k\} m_i \delta_i = \min_{j=1} d(m_i, m_j)
                                                                     . [
                                                                             3] k가
3 medoid , M = m_1, m_2, m_3 \delta_i 2
                                                                               medoid
                                 L_i m_i
   locality L<sub>i</sub>
                                                       \delta_i
             (L_i, ...L_k 7) disjoint
                                                           L_{i}
                                                                     가 가
\delta_i
                                medoid m_i
                                                                               j
                      medoid
                                                                             . Medoid
                                                         k \cdot l
                                                      가 가
                                          medoid
                                                                   medoid
                                                                         M current
Medoid
                               medoid
               가
                                                가
                                                         . M_{best}
                                                                            M_{current}7
                              M current
                                                             termination_criterion
              M current M best
                                                M_{best}
                                                                             locality
```

3] Locality

4.

가 , outlier 가 가 confusion matrix 가 4.1 Outlier 가 outlier가 outlier 10000 , outlier 5% . MST가 outlier 가 , CLARANS CURE outlier . [4] [5] MST, CLARANS, CURE outlier가 (b) MST, CLARANS, CURE (a) [4] Outlier가 (a) (b) MST (c) CLARANS (4) CURE [5] 5% outlier 가 4.2 [6] [7] 가 CLARANS .), CURE [1]. 10000 outlier 5% 6] CLARANS outlier가

centroid-based

Input	Dim en sion s	Points
A	2, 4, 11, 14	2584
В	2, 3, 7, 14	2812
С	2, 12, 14, 17	2204
D	2, 3, 13, 14	1900
Outliers		500

[1]
$$n = 10000, k = 4,$$
 = 4

Found	Dim en sion s	Points	
1	Full dimensions	2701	
2	Full dimensions	1736	
3	Full dimensions	1965	
4	Full dimensions	3598	
Outliers			

[2] CLARANS

Input	Λ.	D	С	D	Out.
Output	A	В	<u> </u>	<u></u>	Out.
1	834	1062	21	649	135
2	283	276	156	953	68
3	196	5	1602	25	137
4	1271	1469	425	273	160
Outliers					182

[3] CLARANS: Confusion Matrix

Found	Dimensions	Points
1	2, 4, 11, 14	2659
2	2, 3, 7, 14	2859
3	2, 12, 14, 17	2360
4	2, 3, 13, 14	1940
Outliers		182

[4] PROCLUS

Input	A	В	С	D	Out.
Output					
1	0	0	0	1900	135
2	0	2812	0	0	47
3	2584	0	0	0	75
4	0	0	2204	0	156
Outliers					182

[5] PROCLUS: Confusion Matrix

(a) CLARANS

[

(b) PROCLUS

3

8] 20

6.

가 가

. . 가

(MST, CLARANS,

CURE) CURE가 가

PROCLUS

가

가

boolean categorical

- [1] S. Guha, R. Rastogi and K. Shim, CURE: "A Efficient Clustering Algorithm for Large Databases", In *Proceedings of A CM SIGM OD*, pages 73-84, 1998.
- [2] R. Ng and J. Han, "Efficient and Effective Clustering Method for Spatial Data Mining", In *Proceedings of the 20th VLDB Conference*, pages 144-155, 1994.
- [3] C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park, "Fast Algorithms for Projected Clustering," In *Proceedings of the ACM SIGMOD International Conference on Management of Data*, pp. 61-72, Philadelphia, PA, June 1-3, 1999.
- [4] R. Agrawal, J. Gehrke, D. Cunoploes, P. Raghavan, "Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications", In *Proceedings of the ACM SIGM OD International Conference on Management of Data*, 1998.
- [5] S. Guha, R. Rastogi, and K. Shim, "ROCK: A Roust Clustering Algorithm for Categorical Attributes", the 15th International Conference on IEEE Data Engineering, 1999.
- [6] M. Ester, H.-P. Kreigel, J. Sander, "A Density Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise", In *Proceedings of the 2nd International Conference on Knowledge Discovery in Databases and Data Mining*, 1995.
- [7] T. Zhang, R. Ramakrishnan, M. Livny, "BIRCH: An Efficient Data Clustering Method for Very Large Databases", In *Proceedings of the ACM SIGMOD International Conference on Management of Data*, 1996.
- [8] R. Agrawal, M. Mehta, J. Shafer, and R. Srikant, "The Quest Data Mining System", In Proceedings of the 2nd International Conference on Knowledge Discovery in Databases and Data Mining, 1996.

- [9] T. Fukuta, Y. Morimoto, and S. Morishita, "Data Mining Using Two-Dimensional Optimized Association Rules: Scheme, Algorithms, and Visualization", In *Proceedings of A CM SIGM OD*, pages 13-23, 1996.
- [10] R. Agrawal, T. Imielinski and A. Swami, "Mining Association Rules between Sets of Items in Large Databases", In *Proceedings of A CM SIGM OD*, pages 207-216, 1993.
- [11] R. Agrawal and R. Srikant, "Mining Sequential Patterns", In *Proceedings of the 11th International Conference on Data Engineering*, pages 3-14, 1995.
- [12] M.-S. Chen, J. S. Park, and P. S. Yu, "Data Mining for Path Traversal Patterns in a Web Environment", In *Proceedings of the 16th International Conference on Distributed Computing Systmes*, pages 385-392, 1996.
- [13] M. S. Chen, J. Han, and P. S. Yu, "Data Mining: An Overview from Database Perspective", *IEEE Transactions on Knowledge and Data Engineering*, Vol. 8, No. 6, pp. 866-883, Dec. 1996.
- [14] R. Agrawal, T. Imielinski and A. Swami, "Database Mining: A Performance Perspective", *IEEE Transformation on Knowledge and Data Engineering*, pages 914-925, 1993.
- [15] S. M. Weiss and N. Indurkhya, "Predictive Data Mining", Morgan Kaufmann Publishers, Inc, 1998.
- [16] , " ", , 1999.

[17] , "