

Stroke Prediction

SC1015 A133:

Teh Min Ze (U2111370H)

Teo Zhi Hao (U2222650F)

Ang Jia Wei Leon (U2222065K)

Contents

Practical Motivation

Data Preparation

Practical Motivation

Stroke Prediction Dataset from Kaggle was used.

Purpose:

To accurately predict stroke based on common variables shared

Importance in today's context:

- Stroke is the 4th leading cause of death in Singapore (WSO)
- Variables are familiar and easy to manage

Remove entries specified as 'N/A'

Int64Index: 4909 entries, 0 to 5109							
Data	columns (total 12 d						
#	Column	Non-Null Count	Dtype				
0	id	4909 non-null	int64				
1	gender	4909 non-null	object				
2	age	4909 non-null	float64				
3	hypertension	4909 non-null	int64				
4	heart_disease	4909 non-null	int64				
5	ever_married	4909 non-null	object				
6	work_type	4909 non-null	object				
7	Residence_type	4909 non-null	object				
8	avg_glucose_level	4909 non-null	float64				
9	bmi	4909 non-null	float64				
10	<pre>smoking_status</pre>	4909 non-null	object				
11	stroke	4909 non-null	int64				
dtypes: float64(3), int64(4), object(5)							
memory usage: 498.6+ KB							

Response Variable: Stroke

Numerical Variables			
age			
bmi			
avg_glucose_level			

Categorical Variables				
gender				
hypertension				
heart_disease				
ever_married				
work_type				
smoking_status				
residence_type				

Numerical Variables - Age

- 1. Minimum age for stroke patients > 30
- 2. Older people tend to suffer from stroke

Numerical Variables - Average Glucose Level

- 1. Large number of anomalies
- 2. More even distribution for patients with stroke
- Patients with acceptable glucose levels are at less risk of stroke (72 - 99 mg/DL)

Numerical Variables - Body Mass Index

- 1. Large number of anomalies
- Similar violin plot shapes → Similar distribution of data
- 3. Overlap in KDE plot

Categorical Variables - Health

Hypertension

- ☐ Higher proportions of patients with hypertension and heart disease have stroke
- ☐ Can deduce that having health related issues increase chance of stroke

Categorical Variables - Lifestyle

- Patients who are working (Private jobs, self-employed or government jobs) are more likely to be at risk of stroke compared to children and those who never worked
- Patients who smoke (formerly and currently) have a higher risk of suffering from a stroke

Categorical Variables - Others

- Although there are more female patients than male, proportion of patients with stroke remain similar in both genders
- This is similar for residence type → is not an significant factor in stroke prediction

Relationship between Variables

Positive Correlation between age and heart disease

Positive Correlation between age and hypertension

Patients who smoke tend to be from urban areas

Patients who were ever married have higher BMI

Self employed individuals tend to be older than those of other

categories

Machine Learning Models

Random Forest

Logistics Regression

Artificial Neural Network (ANN)

Metrics for Model Evaluation

F1 Score

Classification Accuracy

Random Forest Model

Class balancing

Encodes categorical variables via OHE (One-Hot-Encoding)

Fine tuning of number of trees and depth

Random Forest Model

Number of trees: 900

Maximum depth: 10

Classification Accuracy:

0.95

F1 Score: 0.953

Insight - Random Forest

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9400 entries, 114 to 5109
Data columns (total 24 columns):

0 age 1 avg glucose level

Column

2 bmi
3 ever_married_No
4 ever married Yes

work_type_Govt_job work_type_Never_worked

work_type_Private
work_type_Self-employed

work_type_childrenResidence type Rural

.1 Residence_type_Urban

2 smoking_status_Unknown

.3 smoking_status_formerly smoked

4 smoking_status_never smoked

L5 smoking_status_smokes

16 gender_Female
17 gender Male

18 gender_Other

19 hypertension_0

20 hypertension 1

1 heart_disease_0

22 heart_disease_1

23 stroke

dtypes: float64(24)
memory usage: 1.8 MB

Logistic Regression

Hyperparameters

Learning Algorithms

Artificial Neural Network (ANN)

MLPClassifier(hidden_layer_sizes=(10, 10, 10), max_iter=1000)

	precision	recall	f1-score	support
0	0.95	0.81	0.87	1190
1	0.84	0.96	0.90	1241
accuracy			0.89	2431
macro avg	0.90	0.88	0.89	2431
weighted avg	0.89	0.89	0.89	2431

- 1. Relatively high accuracy and F1 score
- 2. Able to be refined further by increasing layer sizes and iterations at the cost of time and computational cost
- One drawback → Finding the right parameters has to be done iteratively

Models Evaluation

High Accuracy and F1 score, with the lowest FNR which is crucial in our problem statement.

Findings & Thoughts

With the high accuracy and f1 scores coupled with low FNR, we achieved our goal of predicting stroke

- Several unconventional data that can be used by the health industry for better prediction of stroke such as marriage status, work type & residence type.
- Our dataset does not include some variables that can be of significance when predicting stroke such as family stroke history, hours exercise per week etc.

Moving on, instead of predicting whether a person might get stroke or not, we could try to determine the probability of a person getting stroke...

