

RELATÓRIO FINAL FORMAÇÃO EM CONTEXTO DE TRABALHO DA LICENCIATURA EM INFORMÁTICA

ESTÁGIO DESENVOLVIDO NA CÂMARA MUNICIPAL DA MAIA

BRUNO SOARES – A036152 BRUNO MIGUEL ALVES FIGUEIREDO PROFESSORA CLÁUDIA FREITAS

MAIA, 21 DE JUNHO DE 2023

FICHA DE CARACTERIZAÇÃO

Instituição de Ensino Superior: UNIVERSIDADE DA MAIA – UMAIA
Licenciatura em: INFORMÁTICA
Entidade Acolhedora: Câmara Municipal da Maia
Departamento onde realizou o estágio: Divisão de Qualidade e Sistemas de Informação
Nome Completo do Aluno: Bruno Rafael Rodrigues Soares
N.º de Aluno: 36152
Nome do Orientador na Entidade Acolhedora: Bruno Miguel Alves Figueiredo
Nome do Supervisor do ISMAI: Cláudia Sofia Borlido de Freitas
Duração do Estágio: 250 h
Período de Realização do Estágio: 22 / 03 / 2023 a 31 / 05 / 2023
Validação:
Assinatura do Aluno:
Assinatura do Orientador:
Assinatura do Supervisor:
Após a conclusão da Formação em Contexto de Trabalho/Estágio, recebeu um
convite para ficar a desempenhar funções na entidade?
☐ Sim ⊠ Não

SUMÁRIO

Este relatório descreve o estágio realizado na Divisão de Qualidade e Sistemas de Informação, localizada no piso 4 da Torre do Lidador da Câmara Municipal da Maia. Durante o estágio, foi possível explorar ferramentas e técnicas da área de *Data Science* para trabalhar em projetos relevantes e contribuir para a melhoria de processos e tomadas de decisões na divisão. Além disso, será apresentado todo o conhecimento adquirido e a relevância dessas experiências para minha formação académica e profissional.

Este relatório servirá como uma síntese das atividades desenvolvidas durante o estágio. No decorrer deste relatório, serão abordados em detalhes os projetos desenvolvidos, as técnicas aplicadas e as lições aprendidas ao longo do estágio.

Palavras-chave: Divisão de Qualidade e Sistemas de Informação, Câmara Municipal da Maia, *Data Science*

AGRADECIMENTOS

Gostaria de expressar os meus sinceros agradecimentos a todas as pessoas e instituições que contribuíram para o sucesso da minha jornada académica e para a conclusão deste relatório.

Em primeiro lugar, gostaria de agradecer à minha família. O amor, apoio e encorajamento incondicionais que me deram ao longo destes anos foram fundamentais para o meu crescimento pessoal e para a realização deste objetivo. Agradeço por estarem sempre presentes, por me motivarem nos momentos mais desafiadores e por acreditarem no meu potencial.

Gostaria também de expressar a minha gratidão à Universidade da Maia, que me proporcionou uma formação académica sólida e enriquecedora. Agradeço aos docentes que partilharam os seus conhecimentos e experiências, despertando em mim a paixão pelo saber e incentivando-me a expandir os meus horizontes, dando um especial agradecimento à minha supervisora a professora Cláudia Sofia Borlido de Freitas.

Por fim, quero expressar o meu profundo agradecimento à Câmara Municipal da Maia por me ter proporcionado a oportunidade de realizar um estágio. Agradeço sinceramente pelo voto de confiança e pela experiência enriquecedora que adquiri durante esse período. O estágio foi uma oportunidade valiosa para aplicar os conhecimentos teóricos adquiridos ao longo do curso e para desenvolver habilidades práticas relevantes para a minha futura carreira. Um especial agradecimento ao meu orientador da EA o Bruno Figueiredo e ao Emanuel Ferreira que foi como um segundo orientador para mim.

A todos os mencionados acima, o meu mais profundo agradecimento. Sem o vosso apoio e contribuição, esta conquista não seria possível. Obrigado!

ÍNDICE

FICHA DE CARACTERIZAÇÃO	ii
SUMÁRIO	iii
AGRADECIMENTOS	iv
ÍNDICE	v
INTRODUÇÃO E OBJETIVOS	1
DESCRIÇÃO E CARACTERIZAÇÃO DA EMPRESA	3
DESCRIÇÃO DAS TECNOLOGIAS E DAS ATIVIDADES DA EMPRESA	4
DESCRIÇÃO DAS ATIVIDADES REALIZADAS PELO ESTUDANTE	11
Páginas desenvolvidas	12
Menu Principal	12
Menu Categorias	12
Categoria Exemplo	13
Dashboard exemplo (Início)	14
Dashboard exemplo (Metadados)	16
Dashboard exemplo (Gráfico linha e barras)	17
Explicação passo a passo	18
Importação e tratamento de dados	18
DAX Measures	20
Quick measures	20
Filtros	21
Bookmarks	22
CONCLUSÕES	24
REFERÊNCIAS BIBLIOGRÁFICAS	25

INTRODUÇÃO E OBJETIVOS

Este relatório foi elaborado no âmbito da unidade curricular Estágio, que faz parte do programa de Licenciatura em Informática da Universidade da Maia – UMAIA. O estágio foi realizado na Câmara Municipal da Maia, com uma duração total de 250 horas, ocorrendo entre os dias 22 de março e 31 de maio de 2023.

Este relatório tem como objetivo descrever e detalhar as atividades realizadas durante o período de estágio, proporcionando uma visão abrangente das experiências vivenciadas. O estágio representou uma oportunidade valiosa para aplicar os conhecimentos adquiridos ao longo da licenciatura de forma prática e significativa. O principal objetivo dessa experiência foi expandir e aplicar os conhecimentos adquiridos no ambiente de trabalho. O estágio permitiu colocar em prática essas habilidades, consolidando a base de conhecimento adquirida ao longo da licenciatura assim como aquisição de novos conhecimentos no contexto de data science.

O objetivo inicial do estágio foi a identificação e análise de ferramentas ETL/ELT (Extract Transform Load/Extract Load Transform). Após a escolha da ferramenta a utilizar (Nomeadamente o Power BI) o principal objetivo foi o desenvolvimento de *dashboard*s de acordo com a norma ISO 37120. A norma ISO 37120, intitulada "Indicadores de cidades sustentáveis - Desenvolvimento e manutenção de indicadores de desempenho da cidade", estabelece diretrizes para a medição e avaliação do desempenho de cidades em áreas-chave, como economia, meio ambiente, infraestrutura, educação, saúde e bem-estar. Essa norma visa fornecer um quadro comum para as cidades avaliarem seu progresso rumo à sustentabilidade e melhorarem a qualidade de vida dos seus habitantes (ISO 37120, 2023).

UNIVERSIDADE

Licenciatura em Informática

A norma ISO 37120 já estava a ser trabalhada na Câmara Municipal da Maia no Dundas BI e no Open Data Soft que são duas ferramentas semelhantes ao Power BI. O propósito deste estágio foi então mostrar o potencial de uma outra ferramenta para a criação de *dashboard*s para que no futuro a Câmara Municipal da Maia pudesse tirar conclusões de qual foi a ferramenta que se enquadra melhor para as suas necessidades.

DESCRIÇÃO E CARACTERIZAÇÃO DA EMPRESA

Câmara Municipal da Maia

A Câmara Municipal da Maia é uma instituição governamental local localizada no concelho da Maia, na região Norte de Portugal. Fundada com o propósito de administrar e governar o município, a câmara desempenha um papel essencial no desenvolvimento e bem-estar da população.

Descrição:

A Câmara Municipal da Maia tem como missão promover o desenvolvimento integrado do concelho, melhorar a qualidade de vida dos seus habitantes e impulsionar o progresso socioeconómico. Através de uma gestão eficiente e responsável, a câmara tem como objetivo criar um ambiente favorável para o crescimento sustentável da Maia.

A câmara desempenha um papel ativo em diversas áreas, incluindo urbanismo, ordenamento do território, educação, cultura, desporto, ambiente, transporte e infraestruturas. Trabalhando em estreita colaboração com os munícipes, empresas, organizações locais e outras entidades, a câmara procura atender às necessidades e demandas da comunidade, desenvolvendo projetos e programas que beneficiem o concelho.

Além disso, a Câmara Municipal da Maia está comprometida em promover o turismo e o desenvolvimento económico da região, através da valorização dos recursos naturais, culturais e patrimoniais da Maia. A câmara apoia a criação de um ambiente favorável aos negócios e incentiva o empreendedorismo, visando a geração de empregos e a promoção do crescimento económico local (Câmara Municipal da Maia, 2023).

DESCRIÇÃO DAS TECNOLOGIAS E DAS ATIVIDADES DA EMPRESA

O Power BI é uma plataforma de análise de negócios desenvolvida pela Microsoft, que permite transformar dados em informação. Com o Power BI, é possível conectar a várias fontes de dados, como base de dados, APIs (Aplication Programming Interface) e arquivos armazenados localmente. Depois de conectar as fontes de dados é possível criar visualizações interativas, como gráficos, tabelas e mapas. A plataforma oferece recursos avançados de análise de dados, como a capacidade de criar medidas personalizadas e segmentar informações com base em diferentes critérios.

Além disso, o Power BI permite partilhar relatórios e *dashboard*s com colegas de trabalho, promovendo a colaboração e a tomada de decisões baseadas em dados. Ele está disponível em diferentes edições, incluindo uma versão gratuita com recursos limitados e versões pagas com funcionalidades avançadas. O Power BI é amplamente utilizado por empresas de diversos setores para obter insights e impulsionar o desempenho empresarial (Microsoft Power BI, 2023).

O Power Query é uma ferramenta integrada ao Power BI e outras soluções da Microsoft, como o Excel, que permite aos utilizadores obter, transformar e carregar dados de várias fontes para análise e visualização. Com o Power Query, é possível conectar-se a diferentes fontes de dados, como base de dados, arquivos CSV, xls e xlsx, APIs e web Services.

Uma das principais funcionalidades do Power Query é a capacidade de realizar transformações nos dados durante o processo de importação. Isso inclui etapas de limpeza, filtragem, junção de tabelas e criação de cálculos personalizados. O Power Query permite automatizar tarefas repetitivas por meio

da criação de consultas personalizadas que podem ser atualizadas automaticamente quando novos dados são adicionados.

No Power BI, o Power Query desempenha um papel importante ao permitir que os utilizadores obtenham e preparem dados para análise e visualização. É uma ferramenta poderosa para explorar e transformar dados, garantindo que estejam prontos para serem utilizados em *dashboard*s (Microsoft Power Query, 2023).

Figura 1 – Logotipo Power BI (Wikipedia Power BI Logo, 2023)

O OpenDataSoft é uma plataforma web de dados abertos alojada na Cloud que também é utilizada para a gestão do conhecimento com vista a fornecer inputs para as tomadas de decisões. Esta aplicação permite que as organizações coletem, processem, visualizem e partilhem os seus conjuntos de dados de forma eficiente. Com recursos avançados de visualização, como gráficos interativos e mapas georreferenciados, os utilizadores podem explorar os dados de maneira intuitiva. A plataforma também oferece recursos, como por exemplo APIs, para integração em aplicações e sistemas. Com flexibilidade e escalabilidade, o OpenDataSoft suporta diversos tipos de dados e formatos, facilitando a publicação e a partilha de informações em tempo real.

Além disso, os recursos de colaboração permitem que várias partes interessadas contribuam com seus dados e insights. A plataforma é altamente personalizável, permitindo que as organizações adaptem o portal de dados de acordo com suas necessidades.

Em resumo, o OpenDataSoft é uma solução abrangente para a gestão de dados abertos, promovendo a transparência, a inovação e a tomada de decisões informadas (Open Data Soft, 2023).

Figura 2 – Logotipo Open Data Soft (Open Data Soft Logo, 2023)

O Dundas BI é uma plataforma de inteligência de negócios desenvolvida pela Dundas Data Visualization. Ele oferece recursos avançados para análise, visualização e apresentação de dados. Com o Dundas BI, as empresas podem conectar-se a várias fontes de dados, combinar e transformar informações para criar modelos de dados consolidados. A plataforma permite criar *dashboards* interativos, relatórios personalizados, gráficos e mapas. Recursos de análise avançada, como medidas personalizadas e segmentação de dados, estão disponíveis. O Dundas BI é altamente flexível e escalável, podendo ser personalizado e integrado a outras ferramentas e aplicativos existentes. Ele suporta implantações em nuvem, local ou híbridas. Com sua ampla gama de recursos e capacidades, o Dundas BI ajuda as empresas a tomar decisões informadas e obter insights valiosos a partir de seus dados (Dundas BI, 2023).

Figura 3 - Logotipo Dundas BI (Dundas BI Logo, 2023)

JSON (JavaScript Object Notation) é um formato de dados leve e legível usado para trocar informações entre um servidor e um cliente. Ele consiste em uma coleção de pares de chave-valor e é amplamente utilizado na web para

estruturar dados. O JSON é fácil de interpretar e gerar por várias linguagens de programação. Ele substituiu formatos mais complexos, como XML, devido à sua simplicidade e capacidade de ser lido por humanos. JSON é comumente usado em APIs para retornar dados estruturados para os clientes. Com sua popularidade crescente, é amplamente suportado por muitas linguagens de programação e se tornou um padrão na *web* para representar informações hierárquicas. Em resumo, JSON é um formato de dados simples e eficiente que facilita a troca de informações entre servidores e clientes (JSON, 2023).

GeoJSON é um formato de dados geoespaciais baseado em JSON (JavaScript Object Notation). Ele permite representar objetos geográficos, como pontos, linhas e polígonos, juntamente com suas propriedades. Com sua sintaxe simples e legível, o GeoJSON é amplamente utilizado para trocar e armazenar informações geográficas na web. Ele oferece suporte a geometrias e propriedades associadas, permitindo que os dados sejam estruturados de maneira eficiente. Além disso, o GeoJSON é facilmente interpretado e processado por várias linguagens de programação. Ele é amplamente utilizado em aplicações de mapeamento e geolocalização, permitindo a exibição de dados geográficos em mapas interativos. Com sua popularidade crescente, o GeoJSON se tornou um padrão de fato para representação e troca de informações geoespaciais na web, oferecendo uma maneira conveniente e interoperável de lidar com dados geográficos (GeoJSON, 2023).

Figura 4 - Logotipo JSON (Wikipedia JSON Logo, 2023)

Foi também utilizada a API da Câmara Municipal da Maia para aceder aos dados que se encontram em formato JSON e em formato GeoJSON. A API funciona como um *datalake*, ou seja, é um repositório centralizado que permite armazenar os dados retirados de diversas fontes públicas como o Instituto Nacional de Estatística (INE), Pordata, Lipor, etc.

Na Figura 5, temos uma lista com o código das séries disponíveis (JSON) no *datalake*, esse código está acompanhado de uma breve descrição a fonte de onde os dados foram obtidos e as datas.

Figura 5 - API Câmara Municipal da Maia (JSON)

Na Figura 6, é possível observar o nome do código das séries disponíveis (GeoJSON) no *datalake*, temos novamente uma breve descrição a fonte e a data.

Figura 6 - API Câmara Municipal da Maia (GeoJSON)

Para a utilização da API pode-se encontrar no rodapé de qualquer uma das páginas da API um exemplo para aceder aos dados. Neste caso, na Figura 7 está representado o exemplo da página mostrada na Figura 5. Note-se que para aceder a uma outra série seria necessário trocar o nome da série, ou seja, onde está "nhabit" introduzir um outro código disponível na respetiva página.

Figura 7 - API Câmara Municipal da Maia Exemplo (Rodapé)

Se utilizarmos o URL do exemplo da Figura 7, ter-se-á acesso ao JSON da série "nhabit" como é possível observar na Figura 8. Neste JSON conseguimos ver a lista "t" e a lista "v", que se traduz para os anos e para os seus respetivos dados respetivamente. Em seguida são apresentados os

UNIVERSIDADE

Licenciatura em Informática

metadados. Os metadados são importantes pois em caso de necessidade é possível facilmente consultar a fonte de onde os dados foram retirados, assim como a pessoa encarregue pela inserção dos mesmos no datalake.

```
("t":[2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2029, 2021, 2022],
"V:[139997, 136017, 139924, 135017, 139688, 136011, 136069, 137727, 138971, 139641, 134971, null],
"metadata".
"metadata".
"descripto". "População residente (N. *) por local de residência (NUTS - 2013); Annal - INE, Estimativas annais da população residente",
"descripto". "População residente (N. *) por local de residência (NUTS - 2013); Annal - INE, Estimativas annais da população residente",
"descripto". "População residente (N. *) por local de residência (NUTS - 2013); Annal - INE, Estimativas annais da população residente",
"descripto". "População residente",
"descripto". "População residente",
"descripto". "2022-08-11 10:03:20*,
"Datalltimadrual". "2021-06-14",
"RegBate". "2022-08-13 10:03:20*,
"Datalltimadrual out. "". "2023-08-13 10:28:03",
"Datalltimadrual out. "". "2023-0
```

Figura 8 - API Câmara Municipal da Maia Exemplo (nhabit)

DESCRIÇÃO DAS ATIVIDADES REALIZADAS PELO ESTUDANTE

O estágio foi realizado presencialmente na Divisão de Qualidade e Sistemas de Informação, teve início em março e terminou no fim de maio do mesmo ano.

Inicialmente, nas primeiras semanas o trabalho realizado foi maioritariamente de pesquisa e nas semanas seguintes foi em contexto prático. Uma das tarefas propostas foi a identificação e análise de ferramentas ETL/ELT (Extract Transform Load/Extract Load Transform) tendo sido escolhido o Power BI.

Para a realização dos *dashboard*s foi seguida a norma ISO 37120 que possui 104 indicadores sendo 45 indicadores principais e 59 indicadores de suporte, há também 24 indicadores de perfil, mas estes não são necessários para obter nível de certificação como se vê na Figura 9.

WCCD CERTIFICATION LEVELS

Figura 9 - WCCD Níveis Certificação ISO 37120 (WCCD ISO 37120, 2023)

Durante o período do estágio foram preenchidos 36 indicadores principais, 35 indicadores de suporte e 16 indicadores de perfil. Não foi possível preencher a totalidade dos indicadores por falta de dados disponíveis.

Páginas desenvolvidas

Passando então à parte desenvolvida, pode-se começar por mostrar as diferentes páginas presentes e posteriormente mostrar passo a passo o processo de criação dos *dashboard*s.

Menu Principal

No ficheiro do Power BI onde foi realizado o trabalho pode-se encontrar como primeira página um mapa com a área do concelho da Maia delimitada e sombreada a azul como é possível visualizar ver na Figura 10, para a criação deste mapa foi utilizada a API da câmara municipal da Maia para ter acesso ao GeoJSON com as coordenadas necessárias para concluir esta delimitação. Podemos ver também o título da nossa norma a ISO 37120 assim como um botão "Categorias".

Figura 10 - Menu Inicial

Menu Categorias

Após clicar no botão "Categorias" (presente na Figura 10) será redirecionado para a página que contém todas as nossas categorias como se pode ver na Figura 11. Neste menu pode-se ver então as nossas 19 categorias assim como um botão de retroceder para voltar à página inicial.

UNIVERSIDADE DA MAIA – UMAIA

Licenciatura em Informática

Figura 11 - Menu Categorias

Categoria Exemplo

Para o propósito deste relatório irá ser mostrado apenas uma categoria como exemplo, pois as restantes têm um layout semelhante. Como exemplo considera-se então a categoria "5 - Economia" presenta da Figura 11.

Na Figura 12 estão os indicadores relativos à categoria "5 - Economia" assim como um botão de retroceder para voltar ao menu de categorias.

UNIVERSIDADE DA MAIA - UMAIA

Licenciatura em Informática

Figura 12 - Categoria "5 - Economia"

Dashboard exemplo (Início)

Vai ser usado como exemplo o primeiro indicador "5.1 – Taxa de Desemprego", presenta na Figura 12 para demonstrar o método utilizado por trás da organização dos gráficos (*visuals*) nas páginas (*dashboard*s) assim como o processo de criação passo a passo. Mais tarde vai ser possível também observar outros *visuals* que utilizaram ferramentas mais específicas para o cálculo do respetivo indicador.

Na Figura 13 é possível encontrar o primeiro *dashboard*. Tal como as outras páginas possui um botão de retroceder (neste caso para a categoria "5 - Economia"), pode-se encontrar três gráficos de linha, uma tabela com os dados relativos aos três gráficos e por fim, pode-se encontrar dois botões, o botão "Mais informações" que dá acesso aos metadados (Figura 15) dos JSONs importados e o botão "Gráfico Linha e Barra" (Figura 16) que substitui o gráfico de linha da parte inferior da página por um gráfico de barras e linha.

Há dois tipos de indicadores presentes no projeto, indicadores diretos que utilizam apenas dados de um JSON (Figura 14) e indicadores que necessitam

de cálculos pois utilizam dois ou mais JSONs. Os indicadores diretos são apresentados com apenas um gráfico de linha e são acompanhados dos respetivos metadados, neste caso do exemplo do indicador "5.1 – Taxa de Desemprego" é necessário obter dados de dois JSONs.

Para se chegar à "Taxa de desemprego" do indicador é necessário fazer a divisão do "Total de Desempregados por Ano" pelo "Total de População Ativa por Ano (Idades dos 15 aos 64 anos)" ou seja numerador/denominador respetivamente. Para tornar a visualização do *dashboard* mais intuitiva os dois gráficos que se encontram na parte superior do *dashboard* têm como objetivo mostrar que o gráfico da esquerda é o numerador e o da direita o denominador. Por sua vez o gráfico que se encontra na parte inferior é o produto da divisão dos dados presentes nos gráficos de cima.

Figura 13 - Dashboard "5.1 - Taxa de Desemprego"

Figura 14 - Indicador Direto "Rendimento Médio Bruto por Agregado"

Dashboard exemplo (Metadados)

Na Figura 15 observa-se os metadados dos respetivos ficheiros JSON. Os metadados são importantes porque dão informações sobre os dados como, por exemplo, a fonte de onde foram retirados, quando é que foram a retirados da respetiva fonte, quem é foi a pessoa que retirou os dados da fonte para inserir na API da câmara municipal da Maia e o próprio URL utilizado para aceder ao JSON.

Ao apresentar os metadados passa-se a ter o botão "Menos informações" sendo assim possível regressar ao layout principal do *dashboard* (Figura 13).

Figura 15 - Dashboard "5.1 - Taxa de Desemprego" Metadados

Dashboard exemplo (Gráfico linha e barras)

Na Figura 16, visualiza-se o gráfico de linha e barra que apresenta dados dos gráficos da parte superior assim como a linha da "Taxa de Desemprego por Ano".

É possível regressar ao layout principal (Figura 13) através do botão "Gráfico Linha" presente na página atual.

Figura 16 - Dashboard "5.1 - Taxa de Desemprego" Gráfico Linha e Barra

Explicação passo a passo

Agora que foi explicado o conteúdo e layout de um dashboard é possível proceder com uma explicação passo a passo do processo de criação de um dashboard.

Importação e tratamento de dados

Primeiro passo para a criação de *dashboard*s é importar da API da câmara municipal da Maia os dados presentes nos ficheiros JSON necessários para o preenchimento do indicador.

O Power BI permite importar dados de inúmeras fontes, mas neste caso foi escolhida a opção *Web* tal como é possível observar na Figura 17.

Figura 17 - Importar dados de páginas web

Para este exemplo importa-se o "Total de Desempregados por Ano" como mostra a Figura 18.

Após clicar em "Ok" o Power BI vai abrir uma janela do Power Query para ser possível trabalhar os dados importados. Como foi observado na Figura 8 os

UNIVERSIDADE

Licenciatura em Informática

dados estão em duas listas a "t" e a "v", ou seja, o ano e neste caso o total de desempregados respetivamente.

Para abrir as listas "t" e "v" em simultâneo de forma a não causar dados repetidos foi criada uma nova coluna (Custom Column) usando esta fórmula "Table.FromColumns({[t],[v]})". Assim assegura-se que a tabela de dados tem as supostas 12 linhas de dados e não 144 linhas. Se as duas listas não forem abertas ao mesmo tempo, cada ano da coluna "t" vai ter os 12 valores da coluna "v" o que não é o pretendido.

Figura 18 - URL a importar

Após a aplicação dos passos descritos anteriormente os dados deverão ter o aspeto mostrado na Figura 19. Para o indicador exemplo utilizado seria necessário repetir os seguintes passos para importar os dados do "Total de População Ativa por Ano (Idades dos 15 aos 64 anos)".

Figura 19 - Dados importados

DAX Measures

Depois de todos os ficheiros JSON necessários serem importados podese finalmente com o auxílio das *DAX* Measures proceder ao cálculo do indicador. As *DAX* Measures são um recurso poderoso do Power BI que permite criar cálculos personalizados para análise e visualização de dados. Com base na linguagem *DAX*, semelhante ao Excel, é possível realizar operações matemáticas, lógicas e de texto, além de aplicar filtros e condições complexas aos dados (Microsoft Power BI, 2023).

Como se vê na Figura 20, utiliza-se uma *DAX* Measure para calcular a "Taxa de Desemprego". Analisando a figura pode-se ver que se usa a função "DIVIDE" que como o nome diz vai dividir. A vantagem desta função é que ela consegue tratar divisões por 0, a função aceita 3 campos, sendo o primeiro o numerador, o segundo o denominador e o terceiro permite dar uma resposta caso haja uma divisão por 0. Neste caso a resposta escolhida é "Sem Dados" porque a tabela do denominador não possui valores para "2021", é devido a esta função que a tabela da Figura 13 contém "Sem Dados" para 2021 da nossa "Taxa de Desemprego".

Figura 20 - DAX Measure

Depois dos cálculos feitos é só preencher os gráficos com os dados calculados para obter o resultado mostrado anteriormente na Figura 13.

Quick measures

Em alguns indicadores foi necessária a utilização de *quick measures* para conseguir obter o resultado pretendido. *Quick measures* é um recurso do Power BI que permite criar rapidamente medidas personalizadas sem a necessidade de escrever fórmulas *DAX* complexas (Microsoft Power BI, 2023).

UNIVERSIDADE

Licenciatura em Informática

Um exemplo para o qual foi necessária a utilização das *quick measures* foi para o cálculo da "Taxa de Inflação em Função da Média dos Últimos 5 Anos". Foi utilizada a "Rolling average" como mostra a Figura 21, para ser possível calcular a média para os últimos cinco anos.

Figura 21 - Quick Measure

Filtros

Os filtros são um recurso essencial no Power BI que permite controlar a exibição e a análise dos dados em relatórios e *dashboard*s. Os filtros permitem restringir os dados com base em critérios específicos, como datas, categorias, regiões, entre outros. Ao aplicar filtros, é possível visualizar os dados relevantes para suas análises, fornecendo uma visão mais precisa e segmentada (Microsoft Power BI, 2023).

Na Figura 22 está presente o exemplo do filtro utilizado no *dashboard* do indicador da "Taxa de Inflação em Função da Média dos Últimos 5 Anos". Os dados disponíveis abrangem o período entre 2011 e 2021, ou seja, para que o

cálculo seja em função dos últimos cinco anos a visualização deveria mostrar o período de 2015 a 2021. Com recurso a um filtro foi possível obter o resultado esperado como é visível na Figura 23.

Figura 22 - Filtro

Figura 23 – Taxa de inflação em função da média dos últimos 5 anos

Bookmarks

Os *Bookmarks* são um recurso poderoso do Power BI que permite guardar o estado atual de um *dashboard*, incluindo filtros, seleções e configurações visuais, para facilitar a navegação (Microsoft Power BI, 2023).

A criação desses *bookmarks* foi feita com recurso à ferramenta de "Selection" e "Bookmarks" presente na Figura 24. Com a "Selection" pode-se escolher que visuals é que são mostrados, sendo apenas necessário clicar no "Add" presente nos "Bookmarks" para gravar essa visualização como um bookmark. É possivel

renomear e organizar por pastas os *bookmarks* para fácil utilização posteriormente.

Os botões utilizados nos dashboards funcionam com esses bookmarks, permitindo com apenas uma página do dashboard mostrar toda a informação necessária relativamente ao respetivo indicador, no fundo a ferramenta permite esconder alguns visuals e a apresentar outros diferentes na mesma página.

Por norma, para cada *dashboard* foram utilizados 3 *bookmarks* (Figura 24), um para guardar o estado principal do *dashboard* (Figura 13), um para o estado que contém o gráfico de linha e barra como está na Figura 16 e por fim, um bookmark para a visualização dos metadados como está presente na Figura 15.

Claro que há exceções, os indicadores diretos não necessitam de *bookmarks* pois é apenas apresentado um só estado, também está presente o outro lado do espectro, onde os indicadores utilizam mais do que 3 *bookmarks*, por utilizarem dados de mais do que dois ficheiros JSON havendo necessidade da utilização de mais *bookmarks* para podermos visualizar os metadados de todos os dados importados.

Figura 24 - Ferrameta "Selection" e "Bookmarks"

CONCLUSÕES

Este trabalho foi relevante para a Câmara Municipal da Maia porque teve o propósito de mostrar o potencial de mais um *software* da área de *Data Science* para a criação de *dashboards*. No futuro vai ser possível tirar conclusões deste trabalho e comparar com o trabalho desenvolvido atualmente na Câmara Municipal da Maia.

Apesar de no estágio ter sido usado apenas o Power BI para o desenvolvimento de *dashboards*, foi possível observar presencialmente algumas limitações do Dundas BI e do OpenDataSoft encontradas pelos profissionais que estavam a trabalhar com os respetivos *softwares*. Limitações essas que não se verificaram no Power BI.

Este estágio foi enriquecedor e útil para ambos os lados, tendo sido adquiridas novas competências assim como foi possível ajudar uma Câmara Municipal com um projeto relevante que pode potencialmente melhorar a qualidade de vida dos habitantes da Maia.

REFERÊNCIAS BIBLIOGRÁFICAS

Câmara Municipal da Maia. (2023, 6 10). Retrieved from https://www.cm-maia.pt/ Dundas Bl. (2023, 6 12). Retrieved from https://insightsoftware.com/dundas/ Dundas Bl Logo. (2023, 6 16). Retrieved from https://www.dundas.com/support/ GeoJSON. (2023, 6 12). Retrieved from https://datatracker.ietf.org/doc/html/rfc7946 ISO 37120. (2023,6 17). Retrieved from https://www.iso.org/obp/ui/en/#iso:std:iso:37120:ed-2:v1:en JSON. (2023, 6 12). Retrieved from https://www.w3schools.com/whatis/whatis_json.asp Microsoft Power BI. (2023, 6 12). Retrieved from https://powerbi.microsoft.com/en-au/ Microsoft Power Query. (2023, 6 12). Retrieved from https://powerbi.microsoft.com/enau/ Open Data Soft. (2023, 6 12). Retrieved from https://www.opendatasoft.com/en/ Open Data Soft Logo. (2023, 6 16). Retrieved from https://twitter.com/Opendatasoft WCCD ISO 37120. (2023, 6 19). Retrieved from https://www.dataforcities.org/iso-37120 Wikipedia JSON Logo. (2023, 6 16). Retrieved from https://en.wikipedia.org/wiki/JSON Wikipedia Power ΒI Logo. (2023,6 16). Retrieved from https://en.wikipedia.org/wiki/Microsoft_Power_BI