LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

Edward J. Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Lu Wang and Weizhu Chen

Presented by, Anagha M B, Gokul P V, and Chandu Dadi

Challenges with Existing Adaptation Methods

Adapter Layers:

Small modules inserted into transformer layers. Their purpose is to modify the model's behavior for specific tasks without fine-tuning the entire network.

Advantages: Parameter-efficient; supports multi-task learning

Problems:

- Inference Latency: Additional depth increases sequential computations.
- **Scalability Issues:** Requires GPU synchronization (e.g., AllReduce) in large-scale deployments.

Prompt Tuning:

Modifies input tokens with task-specific prefixes.

Example:

Input sequence: "Translate English to French: What is your name?"

With prompt tuning: "[TASK_SPECIFIC] Translate English to French: What is your name?"

Advantages: Keeps model weights frozen; lightweight.

Problems:

- Optimization Difficulty: Training prompt embeddings is unstable.
- Sequence Length Reduction: Prefix tokens reduce space for task input.

Eckart-Young Theorem

Given a matrix $A \in \mathbb{R}^{m \times n}$ and its singular value decomposition:

$$A = U\Sigma V^T$$

where $\Sigma = \text{diag}(\sigma_1, \sigma_2, ..., \sigma_r)$, with $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$ (singular values), the best rank-k approximation of A, in the Frobenius norm, is:

$$A_k = U_k \Sigma_k V_k^T$$

where Σ_k is the diagonal matrix containing the top k singular values, and U_k , V_k are the corresponding singular vectors.

Key Ideas of LoRA

- Instead of updating all model parameters, LoRA injects trainable low-rank matrices into the pretrained weights.
- Pretrained weights remain frozen, reducing computational overhead.
- Parameter updates are represented as the product of two low-rank matrices.
- Gradients scaled by α/r

Figure 1: Our reparametrization. We only train A and B.

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

LoRA Memory Efficiency

 The low-rank structure significantly reduces memory overhead and computational complexity during training.

Storage: $d \times k \rightarrow r(d+k)$

- Example: For d=512, k=512, r=8
- Original: 262,144 parameters
- LoRA: 8,192 parameters (96.9% reduction)
- Maintains expressiveness of full-rank updates with far fewer trainable parameters.

https://colab.research.google.com/drive/1DzArDRxgcPiu32fwWd3BgREy9SKRcOJ

https://colab.research.google.com/drive/142Wy4B5cVUWnzS2JaSt9jPsyVcYTtB3O

Applications of LoRA

- 1. Natural Language Processing (NLP)
 - a. Text Classification: Fine-tuning LLMs like RoBERTa, BERT, or GPT for sentiment analysis, spam detection, or topic classification with minimal parameter updates.
 - b. Question Answering (QA): Tuning models like RoBERTa or GPT for domain-specific Q&A applications, such as customer support or medical FAQs.
- 2. Personalized AI and Chatbots
- 3. Generative Al

EMPIRICAL EXPERIMENTS

Model & Method	# Trainable Parameters		SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
$RoB_{base} (Adpt^{D})^*$	0.3M	$87.1_{\pm .0}$	$94.2 \scriptstyle{\pm .1}$	$88.5 \!\pm\! 1.1$	$60.8 \scriptstyle{\pm.4}$	$93.1 \scriptstyle{\pm .1}$	$90.2 \scriptstyle{\pm .0}$	$71.5{\scriptstyle\pm2.7}$	$89.7_{\pm .3}$	84.4
$RoB_{base} (Adpt^{D})^*$	0.9M	$87.3_{\pm .1}$	$94.7 \scriptstyle{\pm .3}$	$88.4_{\pm.1}$	$62.6_{\pm .9}$	$93.0_{\pm.2}$	$90.6 \scriptstyle{\pm .0}$	$75.9_{\pm 2.2}$	$90.3_{\pm .1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm .3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm.7}$	$63.4_{\pm 1.2}$	$\textbf{93.3}_{\pm.3}$	$90.8_{\pm.1}$	$\textbf{86.6}_{\pm.7}$	$\textbf{91.5}_{\pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	$90.6_{\pm .2}$	$96.2 \scriptstyle{\pm .5}$	$\textbf{90.9}_{\pm 1.2}$	68.2 $_{\pm 1.9}$	$\textbf{94.9}_{\pm.3}$	$91.6 \scriptstyle{\pm .1}$	87.4 $_{\pm 2.5}$	92.6 $_{\pm .2}$	89.0
$RoB_{large} (Adpt^P)^{\dagger}$	3.0M	90.2 _{±.3}	96.1 _{±.3}	90.2 _{±.7}	68.3 _{±1.0}	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
RoB _{large} (Adpt ^P)†	0.8M	90.5 _{±.3}	$\textbf{96.6}_{\pm .2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	$\textbf{94.8}_{\pm.3}$	$91.7_{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm .4}$	87.9
RoB _{large} (Adpt ^H)†	6.0M	$89.9_{\pm .5}$	$96.2 \scriptstyle{\pm .3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm.2}$	$92.1_{\pm.1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
$RoB_{large} (Adpt^{H})^{\dagger}$	0.8M	$90.3_{\pm .3}$	$96.3_{\pm.5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm.2}$	$91.5_{\pm.1}$	$72.9_{\pm 2.9}$	$91.5_{\pm .5}$	86.4
RoB _{large} (LoRA)†	0.8M	90.6 $_{\pm .2}$	$96.2 \scriptstyle{\pm .5}$	$\textbf{90.2}_{\pm 1.0}$	$68.2_{\pm1.9}$	$\textbf{94.8}_{\pm.3}$	$91.6 \scriptstyle{\pm .2}$	$\textbf{85.2}_{\pm 1.1}$	$\textbf{92.3}_{\pm.5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB_{XXL} (LoRA)	4.7M	$91.9_{\pm .2}$	$96.9_{\pm.2}$	$\textbf{92.6}_{\pm.6}$	$\textbf{72.4}_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	$\textbf{94.9}_{\pm.4}$	$\textbf{93.0}_{\pm.2}$	91.3

EMPIRICAL EXPERIMENTS

GPT-3 175 B

CONCLUSION

Fine-tuning enormous language models is expensive in terms of the hardware required and the storage/switching cost for hosting independent instances for different tasks.

LoRA, an efficient adaptation strategy that neither introduces inference latency nor reduces input sequence length while retaining high model quality.

References

- https://arxiv.org/pdf/2106.09685
- https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms
- https://towardsdatascience.com/understanding-lora-low-rank-adaptation-for-finetuning-large-models-936bce1a07c6
- https://github.com/huggingface/smol-course

Thank you!