ENRICHED LENSES

BRYCE CLARKE

Inria Saclay Centre

joint work with

<u>Matthew Di Meglio</u> University of Edinburgh

Applied Category Theory 2022 University of Strathclyde, Glasgow, Scotland

OVERVIEW & MOTIVATION

Lenses model bidirectional transformations:

- · object assignment a consistency relation
- · functor > forwards consistency restoration
- · cofunctor > backwards consistency restoration

MOTIVATING QUESTION

What is the correct way to restore consistency if the systems are enriched?

- 1. Introduce enriched cofunctors & lenses.
- 2. Share some examples, incl. weighted lenses.

ENRICHED FUNCTORS VS. COFUNCTORS

Assumption: enrichment in a distributive monoidal category V

enriched functor
$$F:A \rightarrow B$$

$$obj(A) \xrightarrow{F} obj(B)$$

$$\sum_{x \in X} A(a,x) \xrightarrow{[F_{a,x}]} B(F_{a,b})$$

$$X = F^{-1}\{b\} + axioms$$

enriched cofunctor
$$(F, \Psi): A \rightarrow B$$

obj $(A) \xrightarrow{F} \text{obj}(B)$
 $B(Fa, b) \xrightarrow{\Psi_{a,b}} \sum_{x \in X} A(a, x)$
 $X = F^{-1}\{b\} + axioms$

$$V = \omega Set$$
 weighted functor $v \in A(a,a')$ $|F_{a,a'}v| \leq |v|$

03

ENRICHED COFUNCTORS AS SPANS

Assumption: enrichment in a distributive monoidal & extensive category V

ENRICHED LENSES

enriched functor F: A -> B

$$F_{a,a'}: A(a,a') \longrightarrow B(F_{a},F_{a'})$$

$$F: obj(A) \longrightarrow obj(B)$$

$$\Psi_{a,b}: \mathfrak{B}(F_a,b) \longrightarrow \sum_{x \in F^{-1}\{b\}} \mathcal{A}(a,x)$$

enriched cofunctor $(F, \Psi): A \longrightarrow B$

enriched lens (F, Ψ): A -+> B

V=ωSet weighted lens u∈B(Fa,b) |Y_{a,b}u|=|u|

EXAMPLES OF ENRICHED LENSES			
\mathcal{U}	Coproduct	lifting map	notes
(Set,×,1)	Ц	$\beta(F_{a,b}) \xrightarrow{\varphi_{a,b}} \underset{x \in F^{-1}\{b\}}{\coprod} A(a,x)$	delta lens Diskin et al. 2011
(ωSet,+,0)	Ц	same, s.t. Yu = u Vu	weighted lens Perrone 2021
([0,∞],+,0)	inf	$d(F_{a,b}) \geqslant \inf_{x \in F^{-1}\{b\}} d(a,x)$	submetry is an example
(Ab,⊗,ℤ)	⊕ biproduct	$\{\beta(F_{a,b})\xrightarrow{\varphi_{a,b}}A(a,x)\}_{x\in F^{-1}\{b\}}$	additive lens
Fam(V)	Ш	similiar to first example	any monoidal category V

06

WHY IS THIS NOTION "CORRECT"?

Mndret (ID)

 $\Gamma(IMnd_{rot}(ID))$

double category with companions

monads, monad morphisms, & monad retromorphisms

right-connected completion ~> lenses between monads

Mat(V)

enriched categories, functors,

enriched lenses

& cofunctors internal categories, functors, & cofunctors

internal lenses

Span(E) F-IRel

topological spaces, continuous maps, & open maps

open continuous maps

07

SUMMARY & FUTURE WORK

More examples!

- · V = Poly my collectives
- · V = PM, M monoid, P powerset

More theory!

- Can we better understand enriched split opfibrations using enriched lenses?
- Grothendieck construction
 for weighted lenses? Enriched?
- · 2-cells of enriched cofunctors.