CLASSICAL MECHANICS

Yannis Bähni*

Semester Paper under the Supervision of Prof. Dr. Ana Cannas Da Silva at ETH Zürich

^{*}ETH Zürich, Rämistrasse 101, 8092 Zürich. E-mail address: baehniy@student.ethz.ch

Preface

Winterthur, Yannis Bähni September 8, 2018

Contents

Preface	ii
Chapter 1: Lagrangian Mechanics	1
Lagrangian Systems and the Principle of Least Action	1
Chapter 2: Hamiltonian Mechanics	3

CHAPTER 1

Lagrangian Mechanics

Lagrangian Systems and the Principle of Least Action

Definition 1.1 (Lagrangian System). A Lagrangian system is defined to be a tuple (M, L) consisting of an object $M \in \mathsf{Diff}$ and a morphism $L \in \mathsf{Diff}(TM \times \mathbb{R}, \mathbb{R})$, called a Lagrangian function.

Definition 1.2 (Path Space). Let $M \in \text{Diff}$, $p, q \in M$ and $t_p, t_q \in \mathbb{R}$ with $t_p \leq t_q$. Define the path space of M connecting (p, t_p) and (q, t_q) to be the set

$$\mathcal{P}(M)_{q,t_q}^{p,t_p} := \left\{ \gamma \in \text{Diff}([t_p, t_q], M) : \gamma(t_p) = p \text{ and } \gamma(t_q) = q \right\}. \tag{1}$$

Remark 1.3. For the sake of simplicity, we will just use the terminology *path space* for $\mathcal{P}(M)_{q,t_q}^{p,t_p}$ and simply write $\mathcal{P}(M)$. We implicitely assume the conditions of definition 1.2, however.

Proposition 1.4. The path space $\mathcal{P}(M)$ is an infinite-dimensional real Fréchet manifold. Proof.

Definition 1.5 (Variation). Let $\mathcal{P}(M)$ be a path space and $\gamma \in \mathcal{P}(M)$. A variation of γ is defined to be a morphism $\Gamma \in \mathsf{Diff}([t_p,t_q] \times [-\varepsilon_0,\varepsilon_0],M)$ for some $\varepsilon_0 > 0$ and such that

- $\Gamma(t,0) = \gamma \text{ for all } t \in [t_p,t_q].$
- $\Gamma(t_p, \varepsilon) = p \text{ for all } \varepsilon \in [-\varepsilon_0, \varepsilon_0].$
- $\Gamma(t_a, \varepsilon) = q \text{ for all } \varepsilon \in [-\varepsilon_0, \varepsilon_0].$

Remark 1.6. If Γ is a variation of $\gamma \in \mathcal{P}(M)$, we write $\gamma_{\varepsilon}(-) := \Gamma(-, \varepsilon)$ for all $\varepsilon \in [-\varepsilon_0, \varepsilon_0]$.

Definition 1.7 (Action Functional). *Let* (M, L) *be a Lagrangian system and* $\mathcal{P}(M)$ *be a path space. The morphism* $S : \mathcal{P}(M) \to \mathbb{R}$ *defined by*

$$S(\gamma) := \int_{t_n}^{t_q} L(\gamma(t), \gamma'(t), t) dt$$

is called the action functional.

Axiom 1 (Hamilton's Principle of Least Action). Let (M, L) be a Lagrangian system and $\mathcal{P}(M)$ be a path space. A path $\gamma \in \text{Diff}([t_p, t_q], M)$ describes a motion of (M, L) iff

$$\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}S(\gamma_{\varepsilon})=0\tag{2}$$

for all variations γ_{ε} of γ .

CHAPTER 2

Hamiltonian Mechanics