Data Smoothing

Exercise 3

Data Smoothing Report

Author Cesare De Cal Professor
ANNIE CUYT
Assistant Professor
FERRE KNAEPKENS

1 Introduction

This exercise asks to use the linearly independent basis functions:

$$\Phi_{3,i}(x) =$$

to find the optimal combination

$$\Phi(x) = \lambda_0(x)$$

that minimizes for the 20 data points (x_j,y_j) given in

j	x_j	y_j
0	0.0	-0.80
1	0.6	-0.34
2	1.5	0.59
3	1.7	0.59
4	1.9	0.23
5	2.1	0.10
6	2.3	0.28
7	2.6	1.03
8	2.8	1.50
9	3.0	1.44
10	3.6	0.74
11	4.7	-0.82
12	5.2	-1.27
13	5.7	-0.92
14	5.8	-0.92
15	6.0	-1.04
16	6.4	-0.79
17	6.9	-0.06
18	7.6	1.00
19	8.0	0.00

2 Tools

The following programming language and libraries have been used in this exercise:

- Item 1
- C Math Library
- GSL (GNU Scientific Library)

The following double-precision GSL data types have been used in the exercise:

• gsl_vector ?

The following GSL methods have been used in the exercise:

- gsl_matrix_alloc(size1, size2)
- gsl_matrix_set_zero(matrix)
- gsl_matrix_set(matrix, row, column, value)
- gsl_matrix_get(matrix, row, column)
- gsl_vector_alloc(size)
- gsl_vector_set_zero(vector)
- gsl_vector_set(vector, index, value)
- gsl_vector_get(vector, index)
- gsl_matrix_memcpy(matrixToCopyFrom, matrix)
- gsl_linalg_SV_decomp(A, V, S, workspaceVector)
- gsl_vector_minmax(vector, minInVector, maxInVector)

In order to factorize a matrix into the LU decomposition, and then solve the square system Ax = y using the decomposition of A, I've used the following methods:

- gsl_linalg_LU_decomp(A, permutation, signum)
- gsl_linalg_LU_solve(LU, permutation, b, x)
- gsl_permutation_alloc(size)

The following method from the C Math library was used in this exercise to calculate the absolute value of a number:

• fabs(x)

3 Computation

First off, I compute the coefficients A of the linear system by using the linearly independent basis function. This is what A looks like:

```
6.400000000000002e - 02
                      2.8800000000000000e - 01
                                            4.320000000000001e - 01
                                                                  2.1600000000000000e - 01
                                                                  3.37500000000000000e + 00
1.12500000000000000000e + 00
                                            -3.37500000000000000e + 00
-3.429999999999999e - 01
                      2.4990000000000000e + 00
                                            -6.06899999999998e + 00
                                                                  -7.28999999999998e - 01
                      4.61699999999998e + 00
                                            -9.7470000000000000e + 00
                                                                  9.261000000000001e + 00
-1.3310000000000000e + 00
                      7.623000000000002e + 00
                                            -1.455300000000000000000e + 01
-2.196999999999999e + 00
                      1.1661000000000000e + 01
                                            -2.063099999999999e + 01
                                                                  1.2167000000000000e + 01
                                                                  1.7576000000000000e + 01
-4.096000000000001e + 00
                      1.99680000000001e + 01
                                            -3.2448000000000000e + 01
-5.83199999999998e + 00
                      2.721599999999999e + 01
                                            -4.233599999999999e + 01
                                                                  2.195199999999999e + 01
                                                                  -1.75760000000000000e + 01
                      7.300800000000001e + 01
                                            -1.0108800000000000e + 02
                                                                  4.665600000000001e + 01
-5.065300000000001e + 01
                      1.9302900000000000e + 02
                                            -2.4519900000000000e + 02
                                                                  1.0382300000000000e + 02
                                            -3.4070400000000000e + 02
                                                                  1.4060800000000000e + 02
-7.40880000000001e + 01
                      2.751840000000000e + 02
-1.0382300000000000e + 02
                      3.777390000000001e + 02
                                            -4.5810900000000000e + 02
                                                                  1.851930000000000e + 02
-1.1059200000000000e + 02
                      4.0089600000000000e + 02
                                            -4.8441600000000000e + 02
                                                                  1.9511200000000000e + 02
-1.250000000000000000000e + 02
                                            -1.5746400000000000e + 02
                      5.598720000000002e + 02
                                            -6.635520000000001e + 02
                                                                  2.621440000000001e + 02
-2.0537900000000000e + 02
                      7.205670000000001e + 02
                                            -8.426970000000001e + 02
                                                                  3.285090000000001e + 02
-2.8749600000000000e + 02\\
                      9.93167999999998e + 02
                                            -1.143648000000000e + 03
                                                                  4.389759999999999e + 02
1.1760000000000000e + 03
                                            -1.344000000000000000000e + 03
                                                                  5.12000000000000000e + 02
```

The column vector \vec{b} is formed by the input y values:

```
-8.000000000000000000000e - 01
5.9000000000000000e - 01
5.9000000000000000e-01\\
2.3000000000000000e - 01
2.8000000000000000e - 01
1.0300000000000000e + 00
1.5000000000000000e + 00
1.4400000000000000e + 00
7.4000000000000000e - 01
-8.2000000000000000e - 01
-1.270000000000000000000e + 00
-9.20000000000000000e - 01
-1.040000000000000000000e + 00
1.0000000000000000e + 00
0.000000000000000000000e + 00
```

In order to calculate the residual of this system, I first need to calculate the missing λ vector.

- 4 Plot
- 5 Observations