1 3-SAT Reduction

variable : type literal : type clause : type term : type

 $\begin{array}{ll} \text{pos} & : & \text{variable} \rightarrow \text{literal} \\ \text{neg} & : & \text{variable} \rightarrow \text{literal} \end{array}$

3disjunct : $literal \rightarrow literal \rightarrow literal \rightarrow type$

 $ndisjunct : clause \rightarrow literal \rightarrow type$

convert : ndisjunct $C L_1 \multimap$ ndisjunct $C L_2 \multimap$ ndisjunct $C L_3 \multimap$ ndisjunct $C L_4$

 \multimap {∃u : variable.3disjunct L_1 L_2 (pos u) \otimes ndisjunct C (neg u) \otimes

ndisjunct $C L_3 \otimes$ ndisjunct $C L_4$ }

terminate : $(term \rightarrow \{\top\}) \rightarrow cnfreduction$

term1 : term \rightarrow ndisjunct $C L_1 \multimap$ ndisjunct $C L_2 \multimap$ ndisjunct $C L_3$

 \multimap {3disjunct $L_1 L_2 L_3$ }

term2 : term \rightarrow ndisjunct $CL_1 \rightarrow$ ndisjunct CL_2

 $\multimap \{\exists u : \text{variable3disjunct } L_1 L_2 \text{ (pos } u) \otimes \text{3disjunct } L_1 L_2 \text{ (neg } u) \}$

term3 : term \rightarrow ndisjunct $CL_1 \rightarrow \{\exists u_1 : \text{variable } u_2 : \text{vari$

3disjunct L_1 (pos u_1) (pos u_2) \otimes 3disjunct L_1 (pos u_1) (neg u_2) \otimes 3disjunct L_1 (neg u_1) (pos u_2) \otimes 3disjunct L_1 (neg u_1) (neg u_2) \otimes

2 Satisfiability

```
boolean :
                  type
     true
            :
                  boolean
    false :
                  boolean
  assign :
                  variable \rightarrow boolean \rightarrow type
   3cnf1 : assign V true \rightarrow 3disjunct (pos V) L_2 L_3 \multimap {1}
   3cnf2 : assign V true \rightarrow 3disjunct L_1 (pos V) L_3 \rightarrow \{1\}
   3cnf3 : assign V true \rightarrow 3disjunct L_1 L_2 (pos V) \rightarrow {1}
   3cnf4 : assign V false \rightarrow 3disjunct (neg V) L_2 L_3 \rightarrow {1}
   3cnf5 : assign V false \rightarrow 3disjunct L_1 (neg V) L_3 \multimap \{1\}
                 assign V false \rightarrow 3disjunct L_1 L_2 (neg V) \rightarrow {1}
   3cnf6
       sat : clause \rightarrow type
     cnf1
                  sat C \rightarrow \text{ndisjunct } C \text{ (pos } V) \rightarrow \{1\}
                  sat C \rightarrow \text{ndisjunct } C \text{ (neg } V) \rightarrow \{1\}
                 assign V true \rightarrow ndisjunct C (pos V) \rightarrow {!sat C}
     cnf3 :
     cnf4
                 assign V false \rightarrow ndisjunct C (neg V) \rightarrow {!sat C}
```

3 Proofs

```
Let \Gamma \in (u : \text{variable})^*, \Sigma \in (\text{assign } u \text{ true}|\text{assign } u \text{ false})^*, \Lambda \in (s : \text{sat } c)^*, \Phi \in (c : \text{clause})^*, \Omega \in (t : \text{term}), \Delta \in (l : \text{ndisjunct } c : x)^*, \Theta \in (k : \text{3disjunct } x_1 : x_2 : x_3)^*
```

Lemma 3.1 If Γ , Φ ; Δ , Θ ; $[u, k \otimes l' \otimes l_3 \otimes l_4] \vdash E \leftarrow \text{cnfreduction } where c : \text{clause} \in \Phi$, u : variable, l' : ndisjunct c (neg u), $l_3 : \text{ndisjunct } c \text{ } x_3$, and $l_4 : \text{ndisjunct } c \text{ } x_4$ where x_3 , $x_4 : \text{literal}$, then there exists a derivation \mathcal{D} such that

$$\begin{array}{l} \Gamma, u: \mathsf{variable}, \Phi; \Delta, l', l_3, l_4, \Theta, k \vdash E \leftarrow \mathsf{cnfreduction} \\ \Gamma, u: \mathsf{variable}, \Phi; \Delta, l', l_3, l_4, \Theta, k; \cdot \vdash E \leftarrow \mathsf{cnfreduction} \\ & \vdots \mathcal{D} \\ \Gamma, \Phi; \Delta, \Theta; [u, k \otimes l' \otimes l_3 \otimes l_4] \vdash E \leftarrow \mathsf{cnfreduction} \end{array}$$

Proof: The derivation \mathcal{D} is given by (*modulo commutativity of these rules*):

$$\begin{array}{l} \Gamma,u: {\sf variable}, \Phi; \Delta, l', l_3, l_4\Theta, k \vdash E \leftarrow {\sf cnfreduction} \\ \hline \Gamma,u: {\sf variable}, \Phi; \Delta, l', l_3, l_4\Theta, k; \cdot \vdash E \leftarrow {\sf cnfreduction} \\ \hline \Gamma,u: {\sf variable}, \Phi; \Delta, l', l_3, \Theta, k; l_4 \vdash E \leftarrow {\sf cnfreduction} \\ \hline \Gamma,u: {\sf variable}, \Phi; \Delta, l', \Theta, k; l_3, l_4 \vdash E \leftarrow {\sf cnfreduction} \\ \hline \Gamma,u: {\sf variable}, \Phi; \Delta, \Theta, k; l', l_3, l_4 \vdash E \leftarrow {\sf cnfreduction} \\ \hline \Gamma,u: {\sf variable}, \Phi; \Delta, \Theta; k, l', l_3, l_4 \vdash E \leftarrow {\sf cnfreduction} \\ \hline \Gamma,u: {\sf variable}, \Phi; \Delta, \Theta; k, l', l_3 \otimes l_4 \vdash E \leftarrow {\sf cnfreduction} \\ \hline \Gamma,u: {\sf variable}, \Phi; \Delta, \Theta; k, l' \otimes l_3 \otimes l_4 \vdash E \leftarrow {\sf cnfreduction} \\ \hline \Gamma,u: {\sf variable}, \Phi; \Delta, \Theta; k \otimes l' \otimes l_3 \otimes l_4 \vdash E \leftarrow {\sf cnfreduction} \\ \hline \Gamma,u: {\sf variable}, \Phi; \Delta, \Theta; k \otimes l' \otimes l_3 \otimes l_4 \vdash E \leftarrow {\sf cnfreduction} \\ \hline \Gamma, \Phi; \Delta, \Theta; [u, k \otimes l' \otimes l_3 \otimes l_4] \vdash E \leftarrow {\sf cnfreduction} \\ \hline \exists L \\ \hline \end{array}$$

Lemma 3.2 If

$$\begin{array}{c} \Gamma, \Phi, \Sigma, \Lambda; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} \Leftarrow \mathbf{1} \\ \vdots & \mathcal{S}_1 \\ \Gamma, \Phi, \Sigma; \Delta, l_1, l_2, l_3, l_4, \Theta \vdash_{\mathsf{SAT}} E_{s_1} \leftarrow \mathbf{1} \end{array}$$

where c: clause $\in \Phi$, l_i : ndisjunct c x_i and x_i : literal, then there exists a Σ' and a derivation S_2 such that

$$\begin{split} \Gamma, \Gamma', \Phi, \Sigma, \Sigma', \Lambda'; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} & \Leftarrow \mathbf{1} \\ & \vdots \ \mathcal{S}_2 \\ \Gamma, u : \mathsf{variable}, \Phi, \Sigma, \Sigma'; \Delta, l', l_3, l_4, \Theta, k \vdash_{\mathsf{SAT}} E_{s_2} \leftarrow \mathbf{1} \end{split}$$

where l': ndisjunct c (neg u) and k: 3disjunct x_1 x_2 (pos u).

Proof: Let us assume $x_1 = pos u_1$ and $x_2 = pos u_2$. The other three cases are similar.

The derivation S_1 can be in one of the following forms:

Case: Let $\Sigma = \Sigma_1, a_1$: assign u_1 true = Σ_2, a_2 : assign u_2 true.

$$\Gamma, \Phi, \Sigma, \Lambda; \cdot \vdash_{\mathsf{SAT}} 1 \Leftarrow 1 \\ \vdots S_1' \\ \Gamma, \Phi, \Sigma, s_1 : \mathsf{sat}\ c, s_2 : \mathsf{sat}\ c; \Delta, l_3, l_4, \Theta \vdash_{\mathsf{SAT}} E_{s_1}'' \leftarrow 1 \\ \vdots \mathcal{D}_2 \\ \frac{\Gamma, \Phi, \Sigma; \cdot \vdash_{\mathsf{SAT}} \mathsf{cnf3}\ a_2^{\wedge} l_2 \Rightarrow \{\exists s_2 : \mathsf{sat}\ c.1\} \quad \Gamma, \Phi, \Sigma, s_1 : \mathsf{sat}\ c; \Delta, l_3, l_4, \Theta; [s_2, 1] \vdash_{\mathsf{SAT}} \mathsf{in}\ E_{s_1}'' \leftarrow 1}{\Gamma, \Phi, \Sigma_2, a_2 : \mathsf{assign}\ u_2\ \mathsf{true}, s_1 : \mathsf{sat}\ c; \Delta, l_2, l_3, l_4, \Theta \vdash_{\mathsf{SAT}} \mathsf{let}\ [s_2, 1] = \mathsf{cnf3}\ a_2^{\wedge} l_2 \mathsf{in}\ E_{s_1}'' \leftarrow 1 \\ \vdots \mathcal{D}_1 \\ } \{\} \mathsf{E}$$

П

In this case $E_{s_1} = (\text{let } [s_1, 1] = \text{cnf3 } a_1^{\wedge} l_1 \text{in } E'_{s_1})$ and $E'_{s_1} = (\text{let } [s_2, 1] = \text{cnf3 } a_2^{\wedge} l_2 \text{in } E''_{s_1})$.

Let $\Sigma' = a'$: assign u false. Now, the derivation S_2 is given by

$$\Gamma, u, \Phi, \Sigma, \Sigma', s' : \mathsf{sat}\ c; \Delta, l_3, l_4, \Theta \vdash_{\mathsf{SAT}} E''_{s_1} \leftarrow 1$$

$$\vdots$$

$$\Gamma, u : \mathsf{variable}, \Phi, \Sigma, \Sigma'; \Delta, l', l_3, l_4, \Theta \vdash_{\mathsf{SAT}} \mathsf{let}\ [s', 1] = \mathsf{cnf4}\ a'^l' \mathsf{in}\ E''_{s_1} \leftarrow 1$$

$$\vdots$$

$$\Gamma, u : \mathsf{variable}, \Phi, \Sigma, \Sigma'; \Delta, l', l_3, l_4, \Theta, k \vdash_{\mathsf{SAT}} \mathsf{let}\ \{1\} = \mathsf{3cnf1}\ a_1^k \mathsf{k}\ \mathsf{in}\ E'_{s_2} \leftarrow 1$$

$$\{\} \mathsf{E}$$

We have a proof of Γ , u, Φ , Σ , Σ' , s': sat c; Δ , l_3 , l_4 , $\Theta \vdash_{\mathsf{SAT}} E''_{s_1} \leftarrow 1$ due to \mathcal{S}'_1 and weakening/contraction of contexts.

 $\overline{\text{Case: Let }\Sigma = \Sigma_1, a_1 :}$ assign u_1 true = $\Sigma_2, a_2 :$ assign u_2 false.

$$\begin{split} \Gamma, \Phi, \Sigma, \Lambda; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} &\leftarrow \mathbf{1} \\ & \vdots \ \mathcal{S}'_1 \\ \Gamma, \Phi, \Sigma, s_1 : \mathsf{sat} \ c; \Delta, l_3, l_4, \Theta \vdash_{\mathsf{SAT}} E''_{s_1} \leftarrow \mathbf{1} \\ & \vdots \ \mathcal{D}_2 \\ \hline \Gamma, \Phi, \Sigma; \cdot \vdash_{\mathsf{SAT}} \mathsf{cnf1} \ s_1^{\wedge} l_2 \Rightarrow \{\mathbf{1}\} \quad \Gamma, \Phi, \Sigma, s_1 : \mathsf{sat} \ c; \Delta, l_3, l_4, \Theta; \{\mathbf{1}\} \vdash_{\mathsf{SAT}} \mathsf{in} \ E''_{s_1} \leftarrow \mathbf{1} \\ \hline \Gamma, \Phi, \Sigma, s_1 : \mathsf{sat} \ c; \Delta, l_2, l_3, l_4, \Theta \vdash_{\mathsf{SAT}} \mathsf{let} \{\mathbf{1}\} = \mathsf{cnf1} \ s_1^{\wedge} l_2 \mathsf{in} \ E''_{s_1} \leftarrow \mathbf{1} \\ \vdots \ \mathcal{D}_1 \end{split}$$

$$\vdots \mathcal{D}_{1} \\ \frac{\Gamma, \Phi, \Sigma; \cdot \vdash_{\mathsf{SAT}} \mathsf{cnf3} \ a_{1}^{\wedge} l_{1} \Rightarrow \{\exists s_{1} : \mathsf{sat} \ c.1\} \quad \Gamma, \Phi, \Sigma_{1}, a_{1} : \mathsf{assign} \ u_{1} \ \mathsf{true}; \Delta, l_{2}, l_{3}, l_{4}, \Theta; [s_{1}, 1] \vdash_{\mathsf{SAT}} E'_{s_{1}} \leftarrow 1}{\Gamma, \Phi, \Sigma, a_{1} : \mathsf{assign} \ u_{1} \ \mathsf{true}; \Delta, l_{1}, l_{2}, l_{3}, l_{4}, \Theta \vdash_{\mathsf{SAT}} \mathsf{let} \ [s_{1}, 1] = \mathsf{cnf3} \ a_{1}^{\wedge} l_{1} \mathsf{in} \ E'_{s_{1}} \leftarrow 1} \ \ \{\} \mathsf{E}_{1}$$

Let $\Sigma' = a'$: assign u false. The rest of the proof same as above.

Case: Let $\Sigma = \Sigma_1, a_1$: assign u_1 false = Σ_2, a_2 : assign u_2 true.

Same as above.

Case: Let $\Sigma = \Sigma_1, a_1$: assign u_1 false = Σ_2, a_2 : assign u_2 false. Let

 $\Sigma' = a'$: assign u true.

Using Lemma 4.3, there exists S'_1 given by

$$\Gamma, \Phi, \Sigma, \Lambda; \cdot \vdash_{\mathsf{SAT}} 1 \Leftarrow 1$$

$$\vdots \ \mathcal{S}'_1$$

$$\Gamma, \Phi, \Sigma; \Delta, l_3, l_4, \Theta \vdash_{\mathsf{SAT}} E''_{s_1} \leftarrow 1$$

and S_1'' given by

$$\begin{split} \Gamma, u, \Phi, \Sigma, \Sigma', \Lambda; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} &\Leftarrow \mathbf{1} \\ & \vdots \ \mathcal{S}_1' \\ \Gamma, u : \mathsf{variable}, \Phi, \Sigma, \Sigma'; \Delta, l_3, l_4, l', \Theta \vdash_{\mathsf{SAT}} E_{\mathtt{S}_1}''' \leftarrow 1 \end{split}$$

Now, S_2 is given by

$$\Gamma, u, \Phi, \Sigma, \Sigma', \Lambda; \cdot \vdash_{\mathsf{SAT}} 1 \Leftarrow 1$$

$$\vdots S'_1$$

$$\Gamma, u, \Phi, \Sigma, \Sigma'; \Delta, l_3, l_4, l', \Theta \vdash_{\mathsf{SAT}} \mathsf{let} E'''_{\mathsf{S}_1} \leftarrow 1$$

$$\overline{\Gamma, u, \Phi, \Sigma, \Sigma'; \Delta, l_3, l_4, l', \Theta, k \vdash_{\mathsf{SAT}} \mathsf{let}\{1\}} = \mathsf{3cnf3} \ a'^{\land} k \ \mathsf{in} \ E'''_{\mathsf{S}_1} \leftarrow 1$$

Lemma 3.3

$$\begin{array}{c} \Gamma, \Phi, \Sigma, \Lambda'; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} \Leftarrow \mathbf{1} \\ \vdots & \mathcal{S}_1 \\ \Gamma, \Phi, \Sigma, \Lambda; \Delta, l_1, \Theta \vdash_{\mathsf{SAT}} E_{s_1} \leftarrow \mathbf{1} \end{array}$$

where c: clause $\in \Phi$, $l_i:$ ndisjunct c x_i and $x_i:$ literal, $\Sigma = \Sigma_1, a_1:$ assign u_1 b b = true if $a_1:$ neg $a_2:$ neg $a_3:$ not contain $a_3:$ sat $a_3:$ if and only if there exists

$$\begin{array}{l} \Gamma, \Phi, \Sigma, \Lambda'; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} \Leftarrow \mathbf{1} \\ \vdots \\ \mathcal{S}_1' \\ \Gamma, \Phi, \Sigma, \Lambda; \Delta, \Theta \vdash_{\mathsf{SAT}} E'_{s_1} \leftarrow \mathbf{1} \end{array}$$

.

Proof: (\Rightarrow) Let $l_2 = pos \ u_2$. The other case is similar.

By induction on S_1 :

Case:

When l': ndisjunct c' x' and $c' \neq c$.

$$\begin{split} \Gamma, \Phi, \Sigma, \Lambda'; \cdot \vdash_{\mathsf{SAT}} 1 &\leftarrow 1 \\ & \vdots \ \mathcal{S}_1'' \\ \frac{\Gamma, \Phi, \Sigma, \Lambda, s : \mathsf{sat} \ c'?; \Delta', l_1, \Theta \vdash_{\mathsf{SAT}} E'_{s_1} \leftarrow 1}{\Gamma, \Phi, \Sigma, \Lambda; \Delta', l', l_1, \Theta \vdash_{\mathsf{SAT}} \mathsf{let}\{\ldots\} = \mathsf{cnfi} \ (a \mid s)^{\land} l' \mathsf{in} \ E'_{s_1} \leftarrow 1 \end{split} \ \{\} \mathbf{E} \end{split}$$

Apply induction hypothesis to S_1'' .

Case: When l': ndisjunct c x', x': pos u' (the other neg case is similar) and $\Sigma = \Sigma', a'$: assign u' true (The case $\Sigma = \Sigma', a'$: assign u' false is not possible.).

$$\begin{split} \Gamma, \Phi, \Sigma, \Lambda'; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} &\leftarrow \mathbf{1} \\ & \vdots \ \mathcal{S}_1'' \\ \hline \Gamma, \Phi, \Sigma, \Lambda, s'; \Delta', \Theta \vdash_{\mathsf{SAT}} E''_{s_1} \\ \hline \frac{\Gamma, \Phi, \Sigma, \Lambda, s'; \Delta', l_1, \Theta \vdash_{\mathsf{SAT}} \mathsf{let} \left\{1\right\} = \mathsf{cnf1} \ s'^{\land} l' \mathsf{in} \ E''_{s_1} \leftarrow \mathbf{1}}{\Gamma, \Phi, \Sigma, \Lambda; \Delta', l', l_1, \Theta \vdash_{\mathsf{SAT}} \mathsf{let} \left[s', \mathbf{1}\right] = \mathsf{cnf3} \ a'^{\land} l' \mathsf{in} \ E'_{s_1} \leftarrow \mathbf{1}} \ \left\{\right\} \mathbf{E} \end{split}$$

In this case, S'_1 is given by:

$$\begin{split} \Gamma, \Phi, \Sigma, \Lambda'; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} &\Leftarrow \mathbf{1} \\ & \vdots \mathcal{S}_1'' \\ \hline \Gamma, \Phi, \Sigma, \Lambda, s'; \Delta', \Theta \vdash_{\mathsf{SAT}} E''_{s_1} \\ \hline \Gamma, \Phi, \Sigma, \Lambda; \Delta', l', \Theta \vdash_{\mathsf{SAT}} \mathsf{let} \left[s', \mathbf{1} \right] &= \mathsf{cnf3} \ a'^{\land} l' \mathsf{in} \ E'_{s_1} \ \leftarrow \mathbf{1} \end{split} \} \mathbf{E} \end{split}$$

(Base) Case: When $\Delta' = \cdot$. The first case is not possible as the intuitionistic context does not contain s: Sat c. The second case is trivial.

(\Leftarrow) By induction on S'_1 . The proof is similar to above.

Lemma 3.4 *If* Γ , Φ , Ω ; Δ , Θ ; $k_1 \vdash E \leftarrow \top$ *where* c : clause $\in \Phi$, k_1 : 3disjunct $x_1 x_2 x_3$, *where* x_1, x_2, x_3 : literal, *then there exists a derivation* \mathcal{D} *such that*

$$\begin{array}{l} \Gamma, u : \mathsf{variable}, \Phi; \Delta, \Theta, k_1 \vdash E \leftarrow \top \\ \Gamma, u : \mathsf{variable}, \Phi; \Delta, \Theta, k_1; \cdot \vdash E \leftarrow \top \\ & \vdots \ \mathcal{D} \\ \Gamma, \Phi; \Delta, \Theta; k_1 \vdash E \leftarrow \top \end{array}$$

.

Lemma 3.5 *If* Γ , Φ , Ω ; Δ , Θ ; $[u, k_1 \otimes k_2] \vdash E \leftarrow \top$ *where* c : clause $\in \Phi$, u : variable, k_1 : 3disjunct (pos u) x_1 x_2 , and k_2 : 3disjunct (neg u) x_1 x_2 where x_1, x_2 : literal, then there exists a derivation \mathcal{D} such that

$$\begin{array}{l} \Gamma, u : \mathsf{variable}, \Phi; \Delta, \Theta, k_1, k_2 \vdash E \leftarrow \top \\ \overline{\Gamma, u} : \mathsf{variable}, \Phi; \Delta, \Theta, k_1, k_2; \cdot \vdash E \leftarrow \top \\ & \vdots \ \mathcal{D} \\ \Gamma, \Phi; \Delta, \Theta; [u, k_1 \otimes k_2] \vdash E \leftarrow \top \end{array}$$

.

Lemma 3.6 *If* Γ , Φ , Ω ; Δ , Θ ; $[u_1u_2, k_1 \otimes k_2 \otimes k_3 \otimes k_4] \vdash E \leftarrow \top$ *where* c: clause $\in \Phi$, u: variable, k_1 : 3disjunct (pos u_1) (pos u_2) x_1 , k_2 : 3disjunct (pos u_1) (neg u_2) x_1 , k_3 : 3disjunct (neg u_1) (pos u_2) x_1 , k_4 : 3disjunct (neg u_1) (neg u_2) x_1 *where* x_1 : literal, then there exists a derivation \mathcal{D} such that

$$\begin{array}{c} \Gamma, u_1 : \mathsf{variable}, u_2 : \mathsf{variable}, \Phi; \Delta, \Theta, k_1, k_2, k_3, k_4 \vdash E \leftarrow \top \\ \Gamma, u_1 : \mathsf{variable}, u_2 : \mathsf{variable}, \Phi; \Delta, \Theta, k_1, k_2, k_3, k_4; \vdash E \leftarrow \top \\ & \vdots \mathcal{D} \\ \Gamma, \Phi; \Delta, \Theta; [u_1 u_2, k_1 \otimes k_2 \otimes k_3 \otimes k_4] \vdash E \leftarrow \top \end{array}$$

.

Lemma 3.7 If

$$\begin{array}{c} \Gamma, \Phi, \Sigma, \Lambda; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} \Leftarrow \mathbf{1} \\ \vdots \quad \mathcal{S}_1 \\ \Gamma, \Phi, \Sigma; \Delta, l_1, l_2, l_3, \Theta \vdash_{\mathsf{SAT}} E_{s_1} \leftarrow \mathbf{1} \end{array}$$

where c: clause $\in \Phi$, l_i : ndisjunct c x_i and x_i : literal, then there exists a derivation S_2 such that

$$\begin{split} \Gamma, \Gamma', \Phi, \Sigma, \Lambda'; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} &\Leftarrow \mathbf{1} \\ &\vdots \ \mathcal{S}_2 \\ \Gamma, \Phi, \Sigma; \Delta, \Theta, k_1 \vdash_{\mathsf{SAT}} E_{s_2} &\leftarrow \mathbf{1} \end{split}$$

where k_1 : 3disjunct x_1 x_2 x_3 .

Lemma 3.8 If

$$\begin{array}{c} \Gamma, \Phi, \Sigma, \Lambda; \cdot \vdash_{\mathsf{SAT}} \mathsf{1} \Leftarrow \mathsf{1} \\ \vdots & \mathcal{S}_1 \\ \Gamma, \Phi, \Sigma; \Delta, l_1, l_2, \Theta \vdash_{\mathsf{SAT}} E_{s_1} \leftarrow \mathsf{1} \end{array}$$

where c: clause $\in \Phi$, l_i : ndisjunct c x_i and x_i : literal, then there exists a Σ' and a derivation S_2 such that

$$\begin{split} \Gamma, \Gamma', \Phi, \Sigma, \Sigma', \Lambda'; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} &\Leftarrow \mathbf{1} \\ & \vdots \ \mathcal{S}_2 \\ \Gamma, u : \mathsf{variable}, \Phi, \Sigma, \Sigma'; \Delta, \Theta, k_1, k_2 \vdash_{\mathsf{SAT}} E_{s_2} &\leftarrow \mathbf{1} \end{split}$$

where k_1 : 3disjunct (pos u) x_1 x_2 , and k_2 : 3disjunct (neg u) x_1 x_2 .

Lemma 3.9 If

$$\begin{array}{l} \Gamma, \Phi, \Sigma, \Lambda; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} \Leftarrow \mathbf{1} \\ \vdots \quad \mathcal{S}_1 \\ \Gamma, \Phi, \Sigma; \Delta, l_1, \Theta \vdash_{\mathsf{SAT}} E_{s_1} \leftarrow \mathbf{1} \end{array}$$

where c: clause $\in \Phi$, l_i : ndisjunct c x_i and x_i : literal, then there exists a Σ' and a derivation S_2 such that

$$\begin{split} \Gamma, \Gamma', \Phi, \Sigma, \Sigma', \Lambda'; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} &\Leftarrow \mathbf{1} \\ & \vdots \ \mathcal{S}_2 \\ \Gamma, u_1 : \mathsf{variable}, u_2 : \mathsf{variable}, \Phi, \Sigma, \Sigma'; \Delta, \Theta, k_1, k_2, k_3, k_4 \vdash_{\mathsf{SAT}} E_{s_2} &\leftarrow \mathbf{1} \end{split}$$

where k_1 : 3disjunct (pos u_1) (pos u_2) x_1 , k_2 : 3disjunct (pos u_1) (neg u_2) x_1 , k_3 : 3disjunct (neg u_1) (pos u_2) x_1 , and k_4 : 3disjunct (neg u_1) (neg u_2) x_1

Lemma 3.10 (Termination) If

$$\begin{array}{l} \frac{\Gamma,\Phi,\Gamma',\Omega;\Theta,\Theta' \vdash \langle\rangle \Leftarrow \top}{\Gamma,\Phi,\Gamma',\Omega;\Theta,\Theta' \vdash \langle\rangle \leftarrow \top} \Leftarrow \leftarrow \\ \vdots \mathcal{R} \\ \Gamma,\Phi,\Omega;\Delta,\Theta \vdash E_r \leftarrow \top \end{array}$$

where only expression checking and pattern expansion rules are permitted within R and

$$\Gamma, \Phi, \Sigma, \Omega, \Lambda; \cdot \vdash_{\mathsf{SAT}} 1 : 1$$

$$\Gamma, \Gamma', \Phi, \Omega, \Sigma, \Sigma', \Lambda'; \cdot \vdash_{\mathsf{SAT}} 1 : 1$$

$$\vdots S_1$$

$$\Phi, \Omega, \Sigma : \Lambda, \Theta \vdash_{\mathsf{SAT}} F \iff \{1\} \text{ then there exists a Σ' such that Γ} \Gamma', \Phi, \Omega, \Sigma, \Sigma' : \Theta, \Theta' \vdash_{\mathsf{SAT}} F \iff \{1\}$$

 $\Gamma, \Phi, \Omega, \Sigma; \Delta, \Theta \vdash_{\mathsf{SAT}} E_{s_1} \Leftarrow \{1\}$, then there exists a Σ' such that $\Gamma, \Gamma', \Phi, \Omega, \Sigma, \Sigma'; \Theta, \Theta' \vdash_{\mathsf{SAT}} E_{s_2} \Leftarrow \{1\}$.

Proof: By induction on the derivation \mathcal{R} :

Case:

$$\begin{split} &\frac{\Gamma,\Phi,\Gamma';\Delta',\Theta,\Theta' \vdash E'_r \leftarrow \top}{\Gamma,\Phi,\Gamma';\Delta',\Theta,\Theta' \vdash E'_r \leftarrow \top} \Leftarrow \leftarrow \\ &\stackrel{\vdots}{:} \mathcal{R}' \\ &\frac{\Gamma,\Phi;\Delta,\Theta \vdash E_r \Leftarrow \top}{\Gamma,\Phi;\Delta,\Theta \vdash E_r \leftarrow \top} \Leftarrow \leftarrow \end{split}$$

Base Case. Here $E_r = E'_r$, $\Delta = \Delta'$ and $\Theta' = \cdot$. Let $\Sigma' = \cdot$ and the lemma follows.

Case:

$$\frac{\Gamma,\Phi,\Gamma',\Omega;\Delta',\Theta,\Theta' \vdash E'_r \Leftarrow \top}{\Gamma,\Phi,\Gamma',\Omega;\Delta',\Theta,\Theta' \vdash E'_r \leftarrow \top} \Leftarrow \leftarrow \frac{C}{\Gamma,\Phi,\Omega; \cdot \vdash \operatorname{term1} t^{\wedge}l_1^{\wedge}l_2^{\wedge}l_3 \Rightarrow \{\ldots\}} \qquad \Gamma,\Phi,\Omega;\Delta,\Theta;k_1 \vdash E_r \leftarrow \top}{\Gamma,\Phi,\Omega;\Delta,l_1,l_2,l_3,\Theta \vdash \operatorname{let} \{k_1\} = \operatorname{term1} t^{\wedge}l_1^{\wedge}l_2^{\wedge}l_3 \text{ in } E_r \leftarrow \top} \; \{\}\mathbf{E}$$

where l_i : ndisjunct c x_i , k: 3disjunct x_1 x_2 x_3 and t: term $\in \Omega$. By Lemma 4.4, there exists a derivation \mathcal{D} such that

$$\begin{split} & \frac{\Gamma, \Phi, \Gamma', \Omega; \Delta', \Theta, \Theta' \vdash E'_r \Leftarrow \top}{\Gamma, \Phi, \Gamma', \Omega; \Delta', \Theta, \Theta' \vdash E'_r \leftarrow \top} \Leftarrow \leftarrow \\ & \vdots \mathcal{R}'' \\ & \Gamma, \Phi, \Omega; \Delta, \Theta, k_1 \vdash E_r \leftarrow \top \\ & \vdots \mathcal{D} \\ & \Gamma, \Phi, \Omega; \Delta, \Theta; k_1 \vdash E_r \leftarrow \top \end{split}$$

Apply Lemma 4.7 and induction hypothesis on \mathcal{R}'' . **Case:**

$$\begin{split} \frac{\Gamma, \Phi, \Gamma', \Omega; \Delta', \Theta, \Theta' + E'_r \Leftarrow \top}{\Gamma, \Phi, \Gamma', \Omega; \Delta', \Theta, \Theta' + E'_r \leftarrow \top} \Leftarrow \leftarrow \\ \frac{C}{\vdots \mathcal{R}''} \\ \frac{\Gamma, \Phi, \Omega; \cdot \vdash \text{term2 } t^{\wedge} l_1^{\wedge} l_2 \Rightarrow \{ \ldots \} \quad \Gamma, \Phi, \Omega; \Delta, \Theta; [u, k_1 \otimes k_2] \vdash E_r \leftarrow \top}{\Gamma, \Phi, \Omega; \Delta, l_1, l_2, \Theta \vdash \text{let } [u, k_1 \otimes k_2] = \text{term2 } t^{\wedge} l_1^{\wedge} l_2 \text{ in } E_r \leftarrow \top} \; \; \{\} \mathbf{E} \end{split}$$

where l_i : ndisjunct $c x_i, k_1$: 3disjunct (pos u) $x_1 x_2, k_2$: 3disjunct (neg u) $x_1 x_2$ and t: term $\in \Omega$.

Apply Lemma 4.5 and Lemma 4.8 and induction hypothesis on \mathcal{R}'' . **Case:**

$$\frac{\Gamma, \Phi, \Gamma', \Omega; \Delta', \Theta, \Theta' \vdash E'_r \Leftarrow \top}{\Gamma, \Phi, \Gamma', \Omega; \Delta', \Theta, \Theta' \vdash E'_r \leftarrow \top} \Leftarrow \leftarrow \\ \frac{C}{\Gamma, \Phi, \Omega; \cdot \vdash \text{term3 } t^{\land}l_1 \Rightarrow \{\ldots\} \quad \Gamma, \Phi, \Omega; \Delta, \Theta; [u_1u_2, k_1 \otimes k_2 \otimes k_3 \otimes k_4] \vdash E_r \leftarrow \top}{\Gamma, \Phi, \Omega; \Delta, l_1, \Theta \vdash \text{let } [u_1u_2, k_1 \otimes k_2 \otimes k_3 \otimes k_4] = \text{term3 } t^{\land}l_1 \text{ in } E_r \leftarrow \top} \; \{\} \mathbf{E}$$

where l_i : ndisjunct $c x_i, k_1$: 3disjunct (pos u_1) (pos u_2) x_1, k_2 : 3disjunct (pos u_1) (neg u_2) x_1 , k_1 : 3disjunct (neg u_1) (neg u_2) x_1 and t: term $\in \Omega$.

Apply Lemma 4.6 and Lemma 4.9 and induction hypothesis on \mathcal{R}'' .

Theorem 3.11 (Conversion) *If*

$$\Gamma, \Phi, \Gamma', \Omega; \Theta \vdash \langle \rangle \Leftarrow \top$$

$$\vdots \mathcal{R}$$

$$\Gamma, \Phi; \Delta \vdash E_r \leftarrow \text{cnfreduction}$$

where only expression checking and pattern expansion rules are permitted within
$$\mathcal{R}$$
 and $\Gamma, \Phi, \Sigma, \Lambda; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} \Leftarrow \mathbf{1}$
$$\vdots \ \mathcal{S}_1 \qquad \qquad \Gamma, \Gamma', \Phi, \Omega, \Sigma, \Sigma', \Lambda'; \cdot \vdash_{\mathsf{SAT}} \mathbf{1} \Leftarrow \mathbf{1}$$

 $\Gamma, \Phi, \Sigma; \Delta \vdash_{\mathsf{SAT}} E_{s_1} \Leftarrow \{1\}$, then there exists a Σ' such that $\Gamma, \Gamma', \Phi, \Omega, \Sigma, \Sigma'; \Theta \vdash_{\mathsf{SAT}} E_{s_2} \Leftarrow \{1\}$.

Proof: By induction on the derivation \mathcal{R} :

Case:

$$\frac{\Gamma, \Phi, \Gamma', \Omega; \Theta \vdash \langle \rangle \leftarrow \top}{\Gamma, \Phi, \Gamma', \Omega; \Theta \vdash \langle \rangle \leftarrow \top} \Leftarrow \leftarrow$$

$$\vdots \mathcal{R}'$$

$$\begin{split} \frac{\Gamma,\Phi,\Gamma',\Omega;\Theta\vdash \langle\rangle \Leftarrow \top}{\Gamma,\Phi,\Gamma',\Omega;\Theta\vdash \langle\rangle \leftarrow \top} \Leftarrow \leftarrow \\ &\vdots \mathcal{R'} \\ \frac{C}{\Gamma,\Phi; \vdash \mathsf{convert}^{\land} l_{1}^{\land} l_{2}^{\land} l_{3}^{\land} l_{4} \Rightarrow \{\ldots\} \quad \Gamma,\Phi;\Delta,\Theta; [u,k_{1}\otimes l'\otimes l_{3}\otimes l_{4}] \vdash E_{r} \leftarrow \mathsf{cnfreduction}}{\Gamma,\Phi;\Delta,l_{1},l_{2},l_{3},l_{4},\Theta\vdash \mathsf{let} \left\{[u,k_{1}\otimes l'\otimes l_{3}\otimes l_{4}]\right\} = \mathsf{convert}^{\land} l_{1}^{\land} l_{2}^{\land} l_{3}^{\land} l_{4} \; \mathsf{in} \; E_{r} \leftarrow \mathsf{cnfreduction}} \;\; \{\} \mathbf{E} \end{split}$$

where l_i : ndisjunct c x_i , c: ndisjunct c (neg u), k: 3disjunct x_1 x_2 x_3 By Lemma 4.1, the derivation \mathcal{R}' has a subderivation \mathcal{D} such that

$$\frac{\Gamma,\Phi,\Gamma',\Omega;\Theta\vdash\langle\rangle\leftarrow\top}{\Gamma,\Phi,\Gamma',\Omega;\Theta\vdash\langle\rangle\leftarrow\top}\Leftarrow\leftarrow\\ \vdots \mathcal{R}''\\ \overline{\Gamma,u}: \text{variable},\Phi;\Delta,l',l_3,l_4,\Theta,k_1\vdash E_r\leftarrow \text{cnfreduction}\\ \overline{\Gamma,u}: \text{variable},\Phi;\Delta,l',l_3,l_4,\Theta,k_1;\vdash E_r\leftarrow \text{cnfreduction}}\leftarrow\leftarrow$$

 $: \mathcal{L}$ Γ,Φ; Δ,Θ; $[u,k_1 \otimes l' \otimes l_3 \otimes l_4]$ ⊢ $E_r \leftarrow$ cnfreduction

Using Lemma 4.2, there exists a derivation $\mathcal{S}_1^{\prime\prime}$ such that

$$\begin{array}{c} \Gamma, u, \Phi, \Sigma, \Lambda; \cdot \vdash_{\mathsf{SAT}} \mathsf{1} \Leftarrow \mathsf{1} \\ \vdots & \mathcal{S}_1{}'' \\ \Gamma, u, \Phi, \Sigma; \Delta, l', l_3, l_4, \Theta, k_1 \vdash_{\mathsf{SAT}} \{E_{s_1}''\} \Leftarrow \{\mathsf{1}\} \end{array}$$

Apply induction hypothesis to \mathcal{R}'' .

Case:

$$\begin{split} \frac{\Gamma,\Phi,\Gamma',\Omega;\Theta \vdash \langle\rangle \Leftarrow \top}{\Gamma,\Phi,\Gamma',\Omega;\Theta \vdash \langle\rangle \leftarrow \top} \Leftarrow \leftarrow \\ & \vdots \mathcal{R}' \\ \frac{\Gamma,\Phi;\Delta,\Theta \vdash E_r \Leftarrow \text{cnfreduction}}{\Gamma,\Phi;\Delta,\Theta \vdash E_r \leftarrow \text{cnfreduction}} \Leftarrow \leftarrow \end{split}$$

Base Case. Here $E_r = \text{terminate}^{\wedge}(\lambda t : \text{term}.E_r')$. Apply Theorem 4.12.

Theorem 3.12 (Termination) If

$$\begin{split} \Gamma, \Phi, \Gamma', \Omega; \Theta, \Theta' \vdash \langle \rangle & \Leftarrow \top \\ & \vdots \ \mathcal{R} \\ \Gamma, \Phi; \Delta, \Theta \vdash \mathsf{terminate}^{\wedge}(\lambda t : \mathsf{term}.E_r) \Leftarrow \{\mathsf{cnfreduction}\} \end{split}$$

where only expression checking and pattern expansion rules are permitted within R and

$$\begin{array}{ll} \Gamma, \Phi, \Sigma, \Lambda; \vdash_{\mathsf{SAT}} 1 \Leftarrow 1 & \Gamma, \Gamma', \Phi, \Omega, \Sigma, \Sigma', \Lambda'; \vdash_{\mathsf{SAT}} 1 \Leftarrow 1 \\ \vdots & \mathcal{S}_1 & \vdots & \mathcal{S}_2 \\ \Gamma, \Phi, \Sigma; \Delta, \Theta \vdash_{\mathsf{SAT}} E_{s_1} \Leftarrow \{1\}, \textit{then there exists a Σ' such that $\Gamma, \Gamma', \Phi, \Omega, \Sigma, \Sigma'; \Theta, \Theta' \vdash_{\mathsf{SAT}} E_{s_2} \Leftarrow \{1\}. \end{array}$$

Proof: The reduction \mathcal{R} can be written as shown below:

$$\begin{array}{c} \Gamma, \Phi, \Gamma', \Omega; \Theta, \Theta' \vdash \langle \rangle \Leftarrow \top \\ \vdots \; \mathcal{R}' \\ \frac{\Gamma, \Phi, t : \mathsf{term}; \Delta, \Theta \vdash E_r \Leftarrow \top}{\Gamma, \Phi, t : \mathsf{term}; \Delta, \Theta \vdash E_r \Leftarrow \{\top\}} \{\}\mathbf{I} \\ \frac{\Gamma, \Phi; \Delta, \Theta \vdash \Rightarrow \dots \quad \overline{\Gamma, \Phi; \Delta, \Theta \vdash \lambda t : \mathsf{term}. E_r \Leftarrow \mathsf{term} \to \{\top\}}}{\Gamma, \Phi; \Delta, \Theta \vdash \mathsf{terminate}^{\wedge}(\lambda t : \mathsf{term}. E_r) \Leftarrow \{\mathsf{cnfreduction}\}} \overset{\Pi\mathbf{I}}{\multimap} \mathbf{E} \end{array}$$

Apply Lemma 4.10.

Theorem 3.13 (Main Theorem) If

$$\begin{array}{c} \Gamma, \Phi, \Gamma', \Omega; \Theta \vdash \langle \rangle \Leftarrow \top \\ \vdots \ \mathcal{R} \\ \Gamma, \Phi; \Delta \vdash E_r \Leftarrow \{ \text{cnfreduction} \} \end{array}$$

where only expression checking and pattern expansion rules are permitted within
$$\mathcal{R}$$
 and $\Gamma, \Phi, \Sigma, \Lambda; \cdot \vdash_{\mathsf{SAT}} 1 \Leftarrow 1$ $\Gamma, \Gamma', \Phi, \Omega, \Sigma, \Sigma', \Lambda'; \cdot \vdash_{\mathsf{SAT}} 1 \Leftarrow 1$ $\vdots \mathcal{S}_2$ $\Gamma, \Phi, \Sigma; \Delta \vdash_{\mathsf{SAT}} E_{s_1} \Leftarrow \{1\}$, then there exists a Σ' such that $\Gamma, \Gamma', \Phi, \Omega, \Sigma, \Sigma'; \Theta \vdash_{\mathsf{SAT}} E_{s_2} \Leftarrow \{1\}$.

Proof: The reduction \mathcal{R} can be written as shown below:

$$\begin{array}{c} \Gamma, \Phi, \Gamma', \Omega; \Theta \vdash \langle \rangle \Leftarrow \top \\ \vdots \ \mathcal{R}' \\ \hline \Gamma, \Phi; \Delta \vdash E_r \leftarrow \text{cnfreduction} \\ \hline \Gamma, \Phi; \Delta \vdash E_r \Leftarrow \{\text{cnfreduction}\} \end{array} \{\} \mathbf{I}$$

Apply Theorem 4.11.