CHƯƠNG V: PHỤ THUỘC HÀM

Nội dung chi tiết

- 1. Phụ thuộc hàm
- 2. Hệ tiên đề Amstrong
- 3. Bao đóng phụ thuộc hàm, tập thuộc tính
- 4. Bài toán thành viên
- 5. Tập PTH tương đương
- 6. Tập PTH tối thiểu Phủ tối thiểu
- 7. Khóa của quan hệ

I. Phụ thuộc hàm

•Định nghĩa:

Cho R(U), với R là quan hệ và U là tập thuộc tính.

Cho $X,Y \subseteq U$, phụ thuộc hàm $X \rightarrow Y$ (đọc là X xác định Y) được định nghĩa là:

 $\forall t, t' \in R \ n\acute{e}u \ t.X = t'.X \ thì \ t.Y = t'.Y$

(Có nghĩa là: Nếu hai bộ có cùng trị X thì có cùng trị Y

- Cách đọc: X xác định Y hay Y phụ thuộc hàm vào X
 - -X gọi là vế trái của PTH, Y là vế phải của PTH
- Phụ thuộc hàm thường được ký hiệu là FD hay F (Functional Dependencies)

Ví dụ 1:

- Trong quan hệ SV(MaSV,Ten,Diachi,Ngaysinh), mỗi thuộc tính Ten, Diachi, Ngaysinh đều phụ thuộc hàm (pth) vào thuộc tính MaSV.
- Mỗi giá trị MaSV xác định duy nhất một giá trị tương ứng đối với từng thuộc tính đó. Khi đó, có thể viết:
 - MaSV ightarrow DIACHI
 - MaSV \rightarrow TEN
 - MaSV → NGAYSINH

Ví dụ 2: Cho quan hệ R(A,B,C,D) như sau:

 R
 (A
 B
 C
 D)

 a
 1
 x
 2

 a
 1
 y
 2

 b
 2
 x
 1

 b
 2
 y
 1

- Cho biết các phụ thuộc hàm nào liệt kê dưới đây được thoả trong quan hệ R ở trên?
 - $f1: A \rightarrow A$
 - f2: A → B
 - f3: $A \rightarrow C$
 - $f4: AC \rightarrow C$
 - f5: A → D
 - $f6: D \rightarrow A$

■Nhận xét:

- Phụ thuộc hàm là công cụ để biểu diễn một cách hình thức các ràng buộc.
- PTH được ứng dụng giải quyết các bài toán tìm khoá, tìm phủ tối thiểu và chuẩn hoá các quan hệ trong cơ sở dữ liệu.
- Nếu $X \rightarrow Y$ thì không thể nói gì về $Y \rightarrow X$.
- Ví dụ:
 - Có MSV→Tên thì không thể khắng định Tên→MSV vì có thể có nhiều sinh viên cùng tên
 - Có MSV→Ngaysinh thì không thể khắng định Ngaysinh→MSV vì có thể có nhiều sinh viên sinh cùng ngày

- Biểu diễn phụ thuộc hàm:
 - Dùng đường nối mũi tên từ các thuộc tính vế trái đến các thuộc tính vế phải của tất cả các phụ thuộc hàm
- Ví dụ:

MƯỢN (Sốthẻ, Mãsốsách, Tênngười mượn, Tênsách, Ngày mượn)

Với các phụ thuộc hàm:

FD1: Sốthẻ → Tênngườimượn

FD2: Mãsốsách → Tênsách

FD3: Sốthẻ, Mãsốsách → Ngàymượn

Có sơ đồ phụ thuộc hàm như sau: MƯỢN

II. Hệ tiên đề Amstrong

Năm 1974, Amstrong đưa ra hệ luật dẫn hay các tính chất của phụ thuộc hàm, gọi là hệ tiên đề Amstrong ⇔ các nguyên tắc biến đổi của pth

Định nghĩa:

- F là tập pth trên quan hệ R(U) và A→B là một pth với A, B⊂U. Nói rằng, pth A→B được suy diễn logic từ F nếu với mỗi quan hệ r xác định trên R thỏa các phụ thuộc hàm trong F thì cũng thỏa phụ thuộc hàm A→B.

Ví dụ:

- Tập phụ thuộc hàm $F = \{A \rightarrow B, B \rightarrow C\}$
- Ta có phụ thuộc hàm A→C là phụ thuộc hàm được suy dẫn từ tập F

* Hệ tiên đề Amstrong:

- Cho X, Y, Z, W ⊆ U . Ký hiệu: XY = X∪Y. Ta có các luật sau :
- Luật phản xạ: Nếu Y ⊆ X thì X→ Y
 VD: ABC → BC
- 2. Luật bổ sung tăng trưởng: Nếu X → Y thì XZ → YZ VD: Nếu C → D thì ABC → ABD
- 3. Luật bắc cầu: Nếu X \rightarrow Y và Y \rightarrow Z thì X \rightarrow Z VD: Nếu có AB \rightarrow C, C \rightarrow EG thì AB \rightarrow EG
- 4. Luật hợp: Nếu X → Y và X → Z thì X → YZ
 VD: Nếu AB → CD và AB → EF thì AB → CDEF
- 5. Luật tách: Nếu X → Y và Z ⊆ Y thì X → Z
 VD: Nếu AB → CDEF thì AB → CD và AB →EF
- 6. Luật tựa bắc cầu:

Nếu $X \rightarrow Y$ và $WY \rightarrow Z$ thì $XW \rightarrow Z$

VD: Nếu AB \rightarrow EF và DEF \rightarrow G thì ABD \rightarrow G

Ví dụ 1: Cho R = ABC và

tập $F = \{AB \rightarrow C, C \rightarrow A\}$.

Áp dụng hệ tiên đề Amstrong CMR: BC→ABC

Ví dụ 2: Cho lược đồ quan hệ R (A, B, C, D, E, G, H) và tập phụ thuộc hàm F = {B→D, AB→C, CD→E, EC→GH, G→A}. Áp dụng hệ tiên đề Amstrong để tìm chuỗi suy diễn cho: AB → E và AB→ G

Thực hiện:

- 1. AB \rightarrow C (gt)
- 2. AB → BC (tăng cường thêm B)
- 3. $B \rightarrow D (gt)$
- 4. BC \rightarrow DC (t/c thêm C)
- 5. $CD \rightarrow E (gt)$
- 6. BC → E (bắc cầu 4 và 5)
- 7. AB → E (bắc cầu 2 và 6)
- 8. AB \rightarrow EC (hợp 1 và 7)
- 9. EC \rightarrow GH (gt)
- 10. AB → GH (bắc cầu 8 và 9)
- **11.** AB → G (tách)

- Ví dụ 3: Cho R= {A, B, C, E, F }
- Và F= { AB→ C, C→ B , ABC → E, F→ A}. Áp dụng hệ tiên đề Amstrong. CMR: **FB** → **E**

Thực hiện:

- 1. $F \rightarrow A (gt)$
- 2. FB → AB (tăng cường)
- 3. AB \rightarrow C (gt)
- 4. ABC \rightarrow C (tc)
- 5. ABC \rightarrow E (gt)
- 6. ABC → EC (hợp 4 và 5)
- 7. AB \rightarrow E (tách 6)
- 8. FB → E (bắc cầu 2 và 7)

Ví dụ 4:

- Hãy dùng hệ tiên đề Armstrong để chứng minh:
- Nếu X → Y và U → V thì XU → YV

Chứng Minh:

- 1. Tù $X \rightarrow Y$ (gt)
- 2. Có XU \rightarrow YU, (tăng trưởng U vào (1))
- 3. Từ $U \rightarrow V$ (gt)
- 4. Có YU \rightarrow YV (tăng trưởng Y vào (3)
- 5. Có XU \rightarrow YV (bắc cầu (2) và (4))

III. Bao đóng

1. Các khái niệm cơ bản

- Gọi F là tập các pth trên tập thuộc tính U, X ⊆U .
- Bao đóng của phụ thuộc hàm: là tập tất cả các PTH được suy diễn logic từ tập pth F, kí hiệu là F+

$$F + = \{ X \rightarrow Y \mid F \mid X \rightarrow Y \}$$

Nhận xét: Nếu F+ = F thì F là họ đầy đủ của các pth

■ Bao đóng của tập thuộc tính X: là tất cả các thuộc tính A mà phụ thuộc hàm X →A có thể được suy diễn logic từ F nhờ hệ tiên đề Amstrong. Kí hiệu: X+

$$X^+ = \{ A \in U \mid X \rightarrow A \in F^+ \}$$

Nhận xét:

- X ⊂ X+
- $X \rightarrow Y \in F+ \Leftrightarrow Y \subseteq X^+ => Có nghĩa là: <math>X \rightarrow Y$ được suy diễn từ hệ tiên đề Amstrong khi và chỉ khi $Y \subseteq X^+$

2. Thuật toán tìm bao đóng của tập thuộc tính

- Cho X⊂U là tập thuộc tính => Tìm X+
- ■Thuật toán CLOSURE(X,F).
 - -Input: Tập thuộc tính X và tập phụ thuộc hàm F
 - -Output: Tìm bao đóng X+ của F
 - -Thực hiện: Lần lượt tính các X⁰, X¹, X², ..., theo các bước sau:
 - **Bước 1**: Đặt X⁰ = X
 - Bước 2: Lần lượt xét các phụ thuộc hàm của F nếu tồn tại pth Y →Z∈F mà Y⊂Xi thì Xi+1 = Xi ∪ {Z}, ngược lại, đặt Xi+1 = Xi
 - **Bước 3:** Nếu ở bước 2 mà không tính được Xⁱ⁺¹ thì Xⁱ chính là bao đóng của tập thuộc tính X, ngược lại lặp lại bước 2.

Ví dụ 1:

■ Cho R = (A, B, C, D, E, G) và pth F = {AB \rightarrow C, C \rightarrow A, BC \rightarrow D, ACD \rightarrow B, D \rightarrow EG, BE \rightarrow C, CG \rightarrow BD, CE \rightarrow AG}. Tính: **(BD)***

Ví dụ 2:

- Cho R = (A,B,C,D,E,H) và
- $F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CE \rightarrow B\}$
- Tính (AB)+?

- Ví dụ 3: U = (ABCDEGH) và tập pth F ={A → D, AB → DE, CE →G, E→H}.
 - Tính bao đóng X+ với X= (AB)
- **Ví dụ 4**: Cho R = { A, B, C, D, E}
- Và $F = \{A \rightarrow C, B \rightarrow C, C \rightarrow D, DE \rightarrow C, CE \rightarrow A\}$
 - Tính bao đóng X+ với X = (AE)

Bài tập áp dụng:

- Cho LĐQH p = (U,F) với U = ABCDE,
- $F = \{A \rightarrow C, BC \rightarrow D, D \rightarrow E, E \rightarrow A\}$. Tính:
 - (AB)+
 - $(BD)^+ (D)^+$
 - Kiểm tra xem CE->A; DE->A có là thành viên của F