碩管一甲 M09218001 周彥廷

高等類神經網路作業:0205 課輔練習

- 1.實驗調整初始化權重方法 例如我是用 uniform 分佈初始化 w,改成 normal 分佈 會有什麼影響??
- 2.實驗調整激勵函數 或是不要加激勵函數 會有什麼影響?
- 3.實驗調整學習率(lr)會有什麼影響?

1. 導入套件

jax 可以想成有微分功能的 numpy import jax import jax.numpy as jnp from jax import random import numpy as np

進度條

from tqdm import tqdm notebook as tqdm

機器學習套件庫 sklearn from sklearn.metrics import accuracy_score from sklearn.datasets import make blobs

繪圖用

import matplotlib.pyplot as plt

#整理&操作表格數據用 import pandas as pd

畫出散點圖用

```
def plot_data(class_zero,class_one):
   plt.scatter(class_zero.x1,class_zero.x2,label='class_zero',color='red')
   plt.scatter(class_one.x1,class_one.x2,label='class_one',color='blue')
   plt.xlabel('x1')
   plt.ylabel('x2')
   plt.legend()
```

畫出決策表面用

def plot decision surface(X,predict fn):

```
min1, max1 = X[:, 0].min()-1, X[:, 0].max()+1
  min2, max2 = X[:, 1].min()-1, X[:, 1].max()+1
  x1grid = np.arange(min1, max1, 0.05)
  x2grid = np.arange(min2, max2, 0.05)
  xx, yy = np.meshgrid(x1grid, x2grid)
  r1, r2 = xx.flatten(), yy.flatten()
  r1, r2 = r1.reshape((len(r1), 1)), r2.reshape((len(r2), 1))
  grid = np.hstack((r1,r2))
  yhat = predict fn(grid)
  zz = yhat.reshape(xx.shape)
  plt.contourf(xx,yy,zz,cmap='Paired')
  plt.contour(xx,yy,zz,color='black',lw=0.5)
2.製作數據
X, y = make_blobs(n_samples=100,centers=2, n_features=2,random_state=0) #random_state = 0
確保實驗結果依樣
df = pd.DataFrame()
df['x1'] = X[:,0]
df['x2'] = X[:,1]
df['y'] = y
df.head()
3.定義感知器模型參數
Q1.實驗調整初始化權重方法 例如我是用 uniform 分佈初始化 w,改成 normal 分
佈會有什麼影響?
key = random.PRNGKey(0) #random seed
params = {
  'w': random.uniform(key,minval=0.0,maxval=1.0,shape=(2,)),
 'b': 0.
}
key = random.PRNGKey(0)
params_normal = {
  'w': random.normal(key,shape=(2,)), #使用 normal 分佈
 'b': 0.
params_normal
```

訓練前結果: 0.47→0.17

plot_decision_surface(df[['x1','x2']].values,lambda x:(forward(params,x)>=0.5).astype(int)) #params,x 改參數

 $plot_data(df[df.y == 0], df[df.y == 1])$

plt.show()

4.訓練感知器模型(梯度下降法)

def J(params):

y_pred = forward(params,X) # 預測值

 $loss = jnp.mean(jnp.square(y_pred - y)) # 預測值跟真實值之間的 mse loss$

return loss

loss = J(params)

print('loss:',loss)

loss: 0.50943154 -> 0.6486839

#這裡 α代表 lr(learning rate)學習率,也是可以改的大家可以改看看

舊參數 {'w': DeviceArray([-0.784766, 0.8564448], dtype=float32), 'b': 0.0}

新參數: {'b': DeviceArray(-0.2745567, dtype=float32), 'w': DeviceArray([1.0169114 , -

0.27104917], dtype=float32)}

#改變前

#改變後

#評估感知器模型(訓練後): 0.87→0.86

Q2.實驗調整激勵函數或是不要加激勵函數 會有什麼影響?

若不加激勵函數,即為基本的 Perceptron,僅能產生簡單線性組合結果,無法進行非線性函數轉換。

EX: 不加激勵函數如下圖 output 只會得到 Z 值($\sum X_1W_1+X_2W_2+...X_nW_n$)

Q3.實驗調整學習率(lr)會有什麼影響?

def update(params, grads,lr = 0.1):

lr 代表學習率 為 0.01(0.87), 0.05(0.87), 0.1(0.88)

new_params = jax.tree_multimap(lambda p, g: p - lr * g, params, grads)

return new_params

1r = 0.1

#可視化預測結果:

(lr)=0.01, accuracy = 0.87

(lr)=0.01, accuracy = 0.88

結論:學習率調整為 0.01(0.87), 0.05(0.87)與 0.1(0.88),顯示三種學習率準確率 差不多,準確率影響原因由決策邊界(Decision boundary)處(黃色區間)之藍色正確分類數目與紅色正確分類數目比例決定。