89/695398

## **ABSTRACT**

Racemates, diastereoisomers and optical isomers of a compound of formula (I):

 $\begin{array}{c|c} B & & \\ & & \\ & & \\ Y & O \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ 

\_\_\_\_

wherein B is H, a C<sub>6</sub> or C<sub>10</sub> aryl, C<sub>7-16</sub> aralkyl; Het or (lower alkyl)-Het, all of which optionally substituted with C<sub>1-6</sub> alkyl; C<sub>1-6</sub> alkoxy; C<sub>1-6</sub> alkanoyl; hydroxy; hydroxyalkyl; halo; haloalkyl; nitro; cyano; cyanoalkyl; amino optionally substituted with C<sub>1-6</sub> alkyl; amido; or (lower alkyl)amide; or

B is an acyl derivative of formula  $R_4$ -C(O)-; a carboxyl of formula  $R_4$ -O-C(O)-; an amide of formula  $R_4$ -N( $R_5$ )-C(O)-; a thioamide of formula  $R_4$ -N( $R_5$ )-C(S)-; or a

sulfonyl of formula  $R_4$ -SO<sub>2</sub>;  $R_5$  is H or C<sub>1-6</sub> alkyl; and Y is H or C<sub>1-6</sub> alkyl;

 $\mathbf{R}^3$  is  $C_{1-8}$  alkyl,  $C_{3-7}$  cycloalkyl, or  $C_{4-10}$  alkylcycloalkyl, all optionally substituted with hydroxy,  $C_{1-6}$  alkoxy,  $C_{1-6}$  thioalkyl, amido, (lower alkyl)amido,  $C_6$  or  $C_{10}$  aryl, or  $C_{7-16}$  aralkyl;

R<sub>2</sub> is CH<sub>2</sub>-R<sub>20</sub>, NH-R<sub>20</sub>, O-R<sub>20</sub> or S-R<sub>20</sub>, wherein R<sub>20</sub> is a saturated or unsaturated C<sub>3-7</sub> cycloalkyl or C<sub>4-10</sub> (alkylcycloalkyl), all of which being optionally mono-, di- or trisubstituted with R<sub>21</sub>,

or  $R_{20}$  is a  $C_6$  or  $C_{10}$  aryl or  $C_{7-14}$  aralkyl optionally substituted, or  $R_{20}$  is Het or (lower alkyl)-Het, both optionally substituted, Het or (lower alkyl)-Het; carboxyl;

carboxy(lower alkyl); C<sub>6</sub> or C<sub>10</sub> aryl, C<sub>7-14</sub> aralkyl or Het, said aryl, aralkyl or Het being optionally substituted; and

 $\mathbf{R}^1$  is H;  $\mathbf{C}_{1-6}$  alkyl,  $\mathbf{C}_{3-7}$  cycloalkyl,  $\mathbf{C}_{2-6}$  alkenyl, or  $\mathbf{C}_{2-6}$  alkynyl, all optionally substituted with halogen; or a pharmaceutically acceptable salt or ester thereof.

25

ONVINACTOONS