<i>Lycée Khatteb</i>	Examen Simili	2 SMA	Durée : 4h
Pr :Dir	IIème Semestre	Maths	Avril 2020

Renseignements d'ordre général

- -L'utilisation de la calculatrice est formellement interdite
- -Le candidat peut traiter les questions et les sous-questions selon l'ordre qui lui convient
- -La première page donne les renseignements sur le sujet d'examen et les pages qui suivent comportent l'énoncé de l'épreuve.
- -Eviter d'utiliser le stylo rouge lors de la rédaction
- -Le sujet d'examen comporte cinq exercices indépendants :

<u>Exercices</u>	<u>Domaines d'évaluation</u>	<u>Notes</u>
<u>Exercice1</u>	Arithmétique	3 points
<u>Exercice2</u>	Structures	3,5 points
<u>Exercice3</u>	Complexes	3,5 points
<u>Exercice4</u>	L'ANALYSE	5,5 points
<u>Exrcice5</u>	L'ANALYSE	4,5 points

Lycée Khatteb	Examen Simili	2 SMA	Durée : 4h
Pr :Dir	IIème Semestre	Maths	Avril 2020
11.011			

Exercice1 (3 pts.)

I- On considère dans \mathbb{Z} , *l'équation* (E) : $2x^4 + x - 1 \equiv 0$ [10]

1)Soit. (E) l'équation une solution de x

a-Montrer que :
$$x \land 10 = 1$$
 0,5
b- En déduire que : $x \equiv -1$ [10] 0,75

2) Déterminer l'ensemble des solutions de l'équation (E). 0,5

II- On considère dans $\mathbb R$, l'équation $(F): 2x^4+x-1=0$

1)Montrer que l'équation (F) admet dans $[0, +\infty[$ une solution unique α ,

Et que
$$\alpha \in]0,1[$$
 .

2) Montrer que : $\alpha \notin \mathbb{Q}$ 0,75

Exercice2 (3,5 pts.)

On considère dans $M_2(\mathbb{R})$, l'ensemble:

$$E = \left\{ M(a,b) = \begin{pmatrix} a+b & 4b \\ -b & a-b \end{pmatrix} / (a,b) \in \mathbb{R}^2 \right\}$$

On pose:
$$M(1,0) = I$$
 et $M(0,1) = J$

1)-a-Montrer que
$$(E, +, .)$$
 est un espace vectoriel réel . 0,25

b-Montrer que la famille
$$B = (I, J)$$
 est une base de $(E, +, .)$ 0,5

Lycée Khatteb	Examen Simili	2 SMA	Durée : 4h
Pr :Dir	IIème Semestre	Maths	Avril 2020

c-Montrer que $J^2=-3I$ et que E est une partie stable de $(M_2(\mathbb{R}),\times)$ 0,5

d-Déterminer dans la base B = (I, J) les coordonnées de la matrice :

$$S_n = I + J + \cdots + J^n$$
, avec $n \in \mathbb{N}$

2) Soit l'application :
$$\left\{ egin{array}{ll} f:\mathbb{C}
ightarrow E \ a+ib\sqrt{3}
ightarrow M(a,b) \end{array}
ight.$$

a-Montrer que f est un isomorphisme de (\mathbb{C}, \times) vers (E, \times) .

b- En déduire la structure de
$$(E, +, \times)$$
 0,25

C-Déterminer l'inverse de
$$M(a, b)$$
 dans (E^*, \times) 0,5

$$d-On\ pose: A = \frac{1}{2}(I+J)$$

Déterminer les valeurs de $n \in \mathbb{N}$ telles que : $A^n = I$

Exercice3 (3,5pts.)

0,5

On considère dans $\mathbb C$, l'équation :

$$(E): \frac{1}{m} z^2 + (1-3i)z - 4m = 0 \quad avec \ m \in \mathbb{C}^*$$

1)-a-Déterminer les deux racines carrées du nombre a = 8 - 6i 0,25

b-Déterminer en fonction de m les deux solutions z_1 et z_1 de (E). 0,5

$$\left(z_1 \ est \ la \ solution \ de \ (E) \ telle \ que \ Re\left(\frac{z_1}{m}\right) < 0\right)$$

c-On pose: $arg(m) \equiv \theta [2\pi]$

<i>Lycée Khatteb</i>	Examen Simili	2 SMA	Durée : 4h
Pr :Dir	IIème Semestre	Maths	Avril 2020

Calculer en fonction de θ , $arg(z_1)$ et $arg(z_2)$

0,5

2) Dans le plan complexe rapporté à un repère orthonormé direct $(m{0}, ec{m{u}}, ec{m{v}})$,

On considère les points : $M_1(z_1)$, $M_2(z_2)$, M(m) et $D(z_D=1+3i)$

a-Montrer que le triangle OM_1M_2 est rectangle en O.

b-Déterminer l'ensemble des points $oldsymbol{M}(oldsymbol{m})$ tels que les points $oldsymbol{O}$, $oldsymbol{M}$ et $oldsymbol{D}$ soient alignés .

0,5

0,25

c- Déterminer l'ensemble des points M(m) tels que le triangle ODM soit rectangle en O .

0,5

0,5

3) M_1' est l'image de M_1 par la rotation de centre 0 et d'angle $\frac{\pi}{2}$

 M_2' est l'image de M_2 par la rotation de centre 0 et d'angle $\frac{-\pi}{2}$

a-Montrer que les points M_1 , M_2 , M_1' et M_2' sont cocycliques .

b-Déterminer en fonction de $\, m \,$, l'affixe du point $\, \Omega \,$ le centre du cercle

passant par les points M_1 , M_2 , M'_1 et M'_2 . 0,5

<u>Exercice4 (</u> 5,5 pts.)

Soit f_n la fonction définie sur $\mathbb R$ par :

$$(\forall x \in \mathbb{R})$$
, $f_n(x) = x + \frac{e^{-x}}{n}$ avec $n \in \mathbb{N}^*$

On désigne par (C_n) le graphe de f_n dans un repère orthonormé $(0,\vec{\iota},\vec{j})$

Lycée Khatteb	Examen Simili	2 SMA	Durée : 4h
Pr :Dir	IIème Semestre	Maths	Avril 2020

1)-Montrer que :
$$\lim_{x\to -\infty} f_n(x) = +\infty$$
 et $\lim_{x\to -\infty} \frac{f_n(x)}{x} = -\infty$, puis en déduire la nature de la branche infinie de (C_n) au voisinage de $-\infty$ 0,75

2)a-Montrer que :
$$\lim_{x\to +\infty} f_n(x) = +\infty$$
 et $\lim_{x\to +\infty} f_n(x) - x = 0$.

Que peut -on en déduire ? 0,75 b-Etudier la position relative de
$$(C_n)$$
 et de la droite $(\Delta): y = x$ 0,25

3)-a- Montrer que :
$$(\forall x \in \mathbb{R})$$
 , $f'_n(x) = \frac{n-e^{-x}}{n}$ 0,25 b-Dresser le tableau de variation de f_n 0,5

4) Construire la courbe
$$(C_3)$$
 dans le repère (O, \vec{i}, \vec{j}) . 0,25

(On donne:
$$Ln3 \cong 1,1$$
; $f_3(-1,5) \cong 0$; $f_3(-0,6) \cong 0$)

5)a-Montrer que si $n \geq 3$, l'équation (E) : $f_n(x) = 0$, admet exactement

deux solutions
$$a_n$$
 et b_n tels que : $a_n \leq -Ln n$ et $\frac{-e}{n} \leq b_n < 0$ 0,75

b-Calculer:
$$\lim_{n \to +\infty} a_n$$
 et $\lim_{n \to +\infty} b_n$ 0,5

c-Montrer que:
$$\lim_{n \to +\infty} -n b_n = 1$$
 0,25

6) Soit g la fonction définie sur $[0, +\infty[$ par :

$$g(0) = -1 \ et \ (\forall x \in]0, +\infty[) \ g(x) = -1 - x \ Ln \ x$$

a-Montrer que g est continue à droite en 0 0,25

b-Montrer que :
$$(\forall n \ge 3)$$
, $g\left(\frac{-1}{a_n}\right) = \frac{\ln n}{a_n}$ et déduire $\lim_{n \to +\infty} \frac{\ln n}{a_n}$. 0,25

Lycée Khatteb	Examen Simili	2 SMA	Durée : 4h
Pr :Dir	IIème Semestre	Maths	Avril 2020
11.011			

Exercice5 (4,5 pts.)

Soit F la fonction définie sur $\left[\frac{1}{2}, +\infty\right[$ par :

$$\left(\forall x \in \left]\frac{1}{2}, +\infty\right[\right)$$
, $F(x) = \int_{x}^{2x} \frac{Ln(t)}{2t-1} dt$

1) Montrer que **F** est dérivable sur $\left[\frac{1}{2}, +\infty\right[$ et que :

$$(\forall x \in]\frac{1}{2}, +\infty[)$$
 $F'(x) = \frac{(4x-2)Ln2-Lnx}{(2x-1)(4x-1)}$

0.75

2)-a- Montrer que : $(\forall x \in]\frac{1}{2}$, $+\infty[$) (4x-2)Ln2-Ln x>0 0,25

b- En déduire la monotonie de F sur
$$\left[\frac{1}{2}, +\infty\right[$$
 0,25

3)-a-En utilisant le théorème des accroissements finis , montrer que :

$$(\forall x \in]1, +\infty[) (\exists c \in]x, 2x[) F(x) = \frac{x \ln c}{2c-1}$$
 0,5

b-En déduire que :
$$(\forall x \in]1, +\infty[), \frac{x \ln x}{4x-1} < F(x) < \frac{x \ln (2x)}{2x-1}$$
 0,5

c-Calculer et interpréter :
$$\lim_{x \to +\infty} F(x)$$
 et $\lim_{x \to +\infty} \frac{F(x)}{x}$ 0,25

4)-a-Montrer que :
$$(\forall x \in]0, +\infty[) Ln x \le x - 1$$
 0,25

b-Montrer que:
$$(\forall x \in]\frac{1}{2}, 1[)$$
, $\int_{1}^{x} \frac{Ln(t)}{2t-1} dt \ge \int_{1}^{x} \frac{t-1}{2t-1} dt$ 0,25

c-En déduire :
$$\lim_{x \to \left(\frac{1}{2}\right)^+} \int_1^x \frac{Ln(t)}{2t-1} dt$$

0,5

Lycée Khatteb	Examen Simili	2 SMA	Durée : 4h
Pr :Dir	IIème Semestre	Maths	Avril 2020

d-Montrer que:
$$\lim_{x \to \left(\frac{1}{2}\right)^{+}} F(x) = -\infty \qquad 0.25$$

Fin Du Sujet