БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики и информатики

Лабораторная работа №3

3HAKONGTBO G NAKETON Cisco Packet Tracer Student.

СОДЕРЖАНИЕ

1. Общая постановка заданий	3
2. Задание 1	3
3. Варианты заданий	4
4. Указания к выполнению работы:	6
5. Задание 2	6
6. Задание 3	7
7. Задание 4	9
Литература по теме	11

1. Общая постановка заданий

- 1. Знакомство с пакетом *Packet Tracer*
- 2. Спроектировать и построить простую одноранговую сеть с помощью перекрестного кабеля (Что означает однорангоавя сеть?).
- 3. Проверить соединение между равноправными узлами с помощью команды (предложите команду).
- 4. Реализовать схему подключения компьютеров к коммутатору (что за устройство коммутатор?) согласно предложенной схеме.
- 5. Освоить команды базовой настройки коммутатора.

2. Задание 1.

Знакомство с Packet Tracer.

Рассмотрим на рисунке 1 основные элементы рабочего стола пакета Packet Tracer

Рисунок 1

1. Поле логической диаграммы сети. Сюда переносится оборудование, из которого формируется сеть

- 2. Кнопки управления объектами на логической схеме (выделение объектов, перемещение по рабочей области, комментарии к описанию объектов, удаление объектов)
- 3. Кнопки визуального моделирования потоков данных. Верхняя выполняет простой ping запрос между двумя узлами. Нижняя позволяет сформировать сложный пакет данных
- 4. Окно наблюдения за пакетами визуального моделирования
- 5. Соединители (различные типы кабелей, которые используются для соединения устройств сети. Заметим, что используется для автоматического выбора кабеля)
- 6. Оконечные устройства (компьютер, сервер, принтер, телефон)
- 7. Router (маршрутизаторы).
- 8. Switch (коммутаторы).

Получите у преподавателя вариант задания для дальнейшего выполнения.

3. Варианты заданий

Вариант	ПК1	ПК2	Маска	Шлюз по умолчанию
1	179.198.210.1	179.198.210.2	255.255.255.192	179.198.210.3
2	187.16.0.1	187.16.0.2	255.255.255.192	187.16.0.3
3	135.151.0.1	135.151.0.2	255.255.255.192	135.151.0.3
4	170.16.0.1	170.16.0.2	255.255.255.192	170.16.0.3
5	196.5.10.1	196.5.10.2	255.255.255.192	196.5.10.3
6	189.102.0.1	189.102.0.2	255.255.255.192	189.102.0.3
7	203.21.140.1	203.21.140.2	255.255.255.192	203.21.140.3
8	176.141.64.1	176.141.64.2	255.255.255.192	176.141.64.3
9	155.79.0.1	155.79.0.2	255.255.255.192	155.79.0.3
10	176.141.64.1	176.141.64.2	255.255.255.192	176.141.64.3
11	11.62.111.1	11.62.111.2	255.255.255.192	11.62.111.3
12	170.96.0.1	170.96.0.2	255.255.255.192	170.96.0.3
13	185.206.1.1	185.206.1.2	255.255.255.192	185.206.1.3
14	130.62.32.1	130.62.32.2	255.255.255.192	130.62.32.3
15	132.101.22.1	132.101.22.2	255.255.255.192	132.101.22.3
16	179.37.0.1	179.37.0.2	255.255.255.192	179.37.0.3
17	164.6.25.1	164.6.25.2	255.255.255.192	164.6.25.3
18	140.135.0.1	140.135.0.2	255.255.255.192	140.135.0.3

Вариант	ПК1	ПК2	Маска	Шлюз по умолчанию
19	139.224.191.1	139.224.191.2	255.255.255.192	139.224.191.3
20	132.101.128.1	132.101.128.2	255.255.255.192	132.101.128.3
21	179.131.121.1	179.131.121.2	255.255.255.192	179.131.121.3
22	145.129.153.1	145.129.153.2	255.255.255.192	145.129.153.3
23	169.165.0.1	169.165.0.2	255.255.255.192	169.165.0.3
24	11.62.111.1	11.62.111.2	255.255.255.192	11.62.111.3
25	170.96.0.1	170.96.0.2	255.255.255.192	170.96.0.3
26	185.206.1.1	185.206.1.2	255.255.255.192	185.206.1.3
27	179.37.0.1	179.37.0.2	255.255.255.192	179.37.0.3
28	164.6.25.1	164.6.25.2	255.255.255.192	164.6.25.3
29	140.135.0.1	140.135.0.2	255.255.255.192	140.135.0.3
30	139.224.191.1	139.224.191.2	255.255.255.192	139.224.191.3
31	132.101.128.1	132.101.128.2	255.255.255.192	132.101.128.3
32	187.209.212.1	187.209.212.2	255.255.255.192	187.209.212.3
33	133.85.78.1	133.85.78.2	255.255.255.192	133.85.78.3
34	157.98.0.1	157.98.0.2	255.255.255.192	157.98.0.3
35	135.151.0.1	135.151.0.2	255.255.255.192	135.151.0.3
36	170.16.0.1	170.16.0.2	255.255.255.192	170.16.0.3
37	196.5.10.1	196.5.10.2	255.255.255.192	196.5.10.3
38	189.102.0.1	189.102.0.2	255.255.255.192	189.102.0.3
39	203.21.140.1	203.21.140.2	255.255.255.192	203.21.140.3
40	179.131.121.1	179.131.121.2	255.255.255.192	179.131.121.3
41	145.129.153.1	145.129.153.2	255.255.255.192	145.129.153.3
42	169.165.0.1	169.165.0.2	255.255.255.192	169.165.0.3
43	179.198.210.1	179.198.210.2	255.255.255.192	179.198.210.3
44	187.16.0.1	187.16.0.2	255.255.255.192	187.16.0.3
45	187.209.212.1	187.209.212.2	255.255.255.192	187.209.212.3
46	133.85.78.1	133.85.78.2	255.255.255.192	133.85.78.3
47	157.98.0.1	157.98.0.2	255.255.255.192	157.98.0.3
48	130.62.32.1	130.62.32.2	255.255.255.192	130.62.32.3
49	132.101.22.1	132.101.22.2	255.255.255.192	132.101.22.3
50	176.141.64.1	176.141.64.2	255.255.255.192	176.141.64.3
51	155.79.0.1	155.79.0.2	255.255.255.192	155.79.0.3
52	176.141.64.1	176.141.64.2	255.255.255.192	176.141.64.3

4. Указания к выполнению работы:

В отчет (*.doc) включить скриншоты, на которых видны:

- конфигурации компьютеров и коммутатора;
- работу утилит;
- ответы на вопросы в заданиях;
- комментарии к приведенным скриншотам.

5. Задание 2 (в отчет).

2.1. Предварительно составьте схему простой одноранговой сети.

Схема сети – это карта логической топологии сети.

2.2. Запустите пакет Cisco Packet Tracer Student

В рабочей области разместите два компьютера и соедините их перекрестным кабелем. При правильном выполнении задания, у Вас должна появиться схема, приведенная на рисунке 2.

Рисунок 2

2.3. Схема сети на рисунке 2 не может выполнять даже простейшие функции компьютерной сети. Необходимо пройти следующий этап — этап конфигурирования физических устройств. Для того, чтобы задать IP-адреса, дважды щелкните на значке компьютера в рабочей области и перейдите на вкладку, указанную на рисунке 3:

Рисунок 3

Задайте адреса хостам согласно вашему варианту. Скриншоты поместить в отчет и прокомментировать.

2.4. Проверьте работоспособность полученной схемы с помощью команды (*какой?*). Для этого необходимо перейти в режим работы в командной строке.

Рисунок 4

Скриншоты выполнения команды поместить в отчет и сделать вывод

- 2.5.Определить MAC-адреса узлов. Использовать команду (*какую?*). Скриншоты поместить в отчет и прокомментировать.
- 2.6.Модель простейшей одноранговой сети сохранить также в файле Номер_группѕ_Лаб03_ ФИО(модель1).pkt (например, 8_Лаб03_Иванов(модель1).pkt).

6. Задание 3 (в отчет).

Построить сети, приведенные на рисунках 5 и 6 (для получения навыков построения сети в среде пакета CISCO).

1. Для сети на рисунке 5 требуемые порты указаны точно.

Рисунок 5

На этом же рисунке имеем два беспроводных роутера. Для установления беспроводного подключения компьютера к роутеру WRT300N необходимо сделать следующее:

- Откройте панель настроек роутера WRT300N. Перейдите на вкладку Config, раздел Wireless. Задайте SSID для роутера (WRS2 или WRS3).
- Откройте панель настроек компьютера. На вкладке Physical находится изображение передней панели системного блока компьютера. Выключите компьютер, внизу панели вытащите мышью разъем для подключения сетевого кабеля и добавьте на это место модуль Linksys-WMP300N.
- Снова включите компьютер. Перейдите на вкладку Config, раздел Wireless. Укажите SSID роутера, к которому необходимо подключение.
- 2. Для сети на рисунке 6 порты выбрать самостоятельно.
- 3. Для схемы на рисунке 6 используйте либо роутер типа Generic либо добавьте интерфейс serial.

Рисунок 6

Для этого:

- Откройте панель настроек роутера.
- На вкладке Physical на изображение панели роутера. Выключите роутер и добавьте в подходящий слот модуль WIC-2T.
- Снова включите роутер

- 4. Используя опцию *config* для устройств, присвоить им символические имена.
- **5.** Результаты проектов сетей сохранить в файлах **pkt** (модель 1 и модель 2).

7. Задание 4 (в отчет).

Согласно своему варианту задания реализуйте следующую схему (рисунок 7):

Реализовать схему подключения компьютеров к коммутатору согласно предложенной схеме на рисунке 7. Освоить команды базовой настройки коммутатора. Необходимо организовать сеть, аналогичную той, что изображена на рисунке 7.

Пример адресной схемы:

Наименование устройства	IP-адрес	Маска подсети	Шлюз по умолчанию	
ПК 1	192.168.1.3	255.255.255.192	192.168.1.1	
ПК 2	192.168.1.4	255.255.255.192	192.168.1.1	

7.1. Подсоединение компьютеров к коммутатору.

Подсоедините ПК 1 к порту коммутатора Fa0/1 прямым кабелем. Выполните настройку ПК 1, задав IP-адрес, маску подсети и шлюз по умолчанию согласно таблице (см. выше). Аналогично подсоедините ПК 2 к интерфейсу Fa0/4 коммутатора. Выполните настройку ПК 2, задав IP-адрес, маску подсети и шлюз по умолчанию согласно таблице (см. выше).

7.2. Настройка начальной конфигурации коммутатора

Для того, чтобы начать настройку коммутатора перейдите в режим CLI (рисунок 8)

7.3. В качестве имени узла коммутатора задайте **FIO_№ варианта** (например; по нашим правилам: для студента **И**ванова **П**етра **А**лексеевича с вариантом задания 24 имя коммутатора – Sw_IPA_24)

Switch>enable Switch#config terminal Switch(config)#hostname Sw_IPA_24

Рисунок 8

7.4.. Проверка подключения

Для проверки правильной настройки конфигурации узлов выполните с узлов тестирование доступности других узлов с помощью эхо-запроса. (Что такое эхо-запрос? Как протестировать доступность других узлов?).

4.5.. Запись МАС-адреса

Определите и запишите МАС-адреса уровня	и сетевых интерфейсных плат. В командной
строке на каждом компьютере введите (какую	о команду и скакими параметрами?).

ПК1	 	 	
ПК 2			

7.6. Определение МАС-адресов, информацию о которых получил коммутатор.

Выясните, с помощью команды *show mac-address-table*, какие MAC-адреса определил коммутатор.

Sw_IPA_24#show mac-address-table

Сколько динамических адресов присутствует?

Соответствуют ли МАС-адреса МАС-адресам узла?

7.7 Модель №4 компьютерной сети сохранить в файле **pkt** по выше указанным правилам

Отчет и все файлы с моделями CISCO положить в архив Nrpynnы Lab03_ФИО и выложить на сервер

Литература по теме

- 1. A J. Packet Tracer Network Simulator. Packt Publishing, 2014.
- 2. *Олифер В. Г., Олифер Н. А.* Компьютерные сети. Принципы, технологии, протоколы. 5-е изд. Питер : Питер, 2017. (Учебник для вузов).
- 3. *Таненбаум* Э., Уэзеролл Д. Компьютерные сети. 5 изд. Питер : Питер, 2016. (Классика Computer Science).
- 4. *Кларк К.*, *Гамильтон К.* Принципы коммутации в локальных сетях Cisco. М. : Вильямс, 2003. (Cisco Press Core Series).