Exercise 3.1 Let V be an n-dimensional complex vector space. If L is a Hermitian matrix then V has an orthonormal basis consisting of eigenvectors of L.

Proof. First we must show that *L* **has** an eigenvector. Then we will show how to extend it to a full basis. For this first step, *L* can be any matrix, not necessarily Hermitian.

 $p_{_L}(\lambda) = \det(L - \lambda I)$ is a polynomial in λ known as the characteristic polynomial of L. By the Fundamental Theorem of Algebra, there are complex roots λ_i of $p_{_L}(\lambda)$ of multiplicity p_i such that $p_{_L}(\lambda) = (\lambda - \lambda_{_1})^{p_1} \cdots (\lambda - \lambda_{_r})^{p_r}$ where r is a positive integer and $p_1 + \cdots + p_r = n$. In particular, $p_{_L}(\lambda)$ has at least one root, λ_1 .

By the Lemma, below, there is an eigenvector $\left|\lambda_{\scriptscriptstyle 1}\right\rangle$ having $\lambda_{\scriptscriptstyle 1}$ as an eigenvalue. This proves that every matrix L has at least one non-zero eigenvector. WLOG we can assume $\left|\lambda_{\scriptscriptstyle 1}\right\rangle$ is a unit vector because we can, if necessary, divide $\left|\lambda_{\scriptscriptstyle 1}\right\rangle$ by its magnitude and it will still be an eigenvector having $\lambda_{\scriptscriptstyle 1}$ as its eigenvalue.

Define the null space $N = \{ |v\rangle : \langle v|\lambda_1 \rangle = 0 \}$. It is easy to see that N is a vector subspace of V.

Claim dim N = n - 1:

$$|\lambda_1\rangle$$
 can be extended to a basis $\{|\lambda_1\rangle, |e_2\rangle, \cdots, |e_n\rangle\}$ of V, and the sub-basis vectors $\{|e_2\rangle, \cdots, |e_n\rangle\}$ belong to N because $\langle e_i|\lambda_1\rangle = 0$ for all *i*.

Claim $LN \subseteq N$:

Let $|v\rangle \in \mathbb{N}$. We need to show that $L|v\rangle \in \mathbb{N}$. Since L is Hermitian, $L = L^{\dagger}$, the transpose of the complex conjugate of L. Thus, $L|v\rangle = \langle v|L^{\dagger} = \langle v|L$. So, we need to show that $\langle v|L|\lambda_1\rangle = 0$:

$$\langle v | L | \lambda_1 \rangle = \langle v | \lambda_1 | \lambda_1 \rangle = \lambda_1 \langle v | \lambda_1 \rangle = 0$$

Let $L_2 = L$ restricted to N. Repeating our logic above, $p_L(L_2)$ has a root λ_2 that is an eigenvalue of L_2 with corresponding unit eigenvector $|\lambda_2\rangle$. Since $|\lambda_2\rangle \in N$, $\langle \lambda_1 | \lambda_2 \rangle = 0 \Rightarrow |\lambda_1\rangle \perp |\lambda_2\rangle$.

Restricting L to the (n-2)-dimensional null space of L_2 , as above we generate unit eigenvector $\left|\lambda_3\right>$ such that $\left|\lambda_3\right> \perp \left|\lambda_2\right>$, and since $\left|\lambda_3\right> \in \mathbb{N}$, $\left|\lambda_3\right> \perp \left|\lambda_1\right>$ also.

Continuing this process, we eventually obtain the orthonormal basis $\left\{ \left| \lambda_i \right\rangle : i = 1, \cdots, n \right\}$.

Lemma Every real or complex matrix A has at least one (possibly complex) eigenvector corresponding to the root λ_1 of the characteristic polynomial.

Proof. We seek a non-zero vector $|x\rangle$ that satisfies $A|x\rangle = \lambda_1|x\rangle$. Let $\{|e_i\rangle\}$ be an orthonormal basis for V. Every matrix $A = (a_{ij})$ represents a linear transformation $T: V \to V$ defined by $T|e_i\rangle = \sum_j a_{ij}|e_j\rangle$ on the basis vectors and then extended linearly to all of V.

A linear transformation T is **singular** if dim TV < n, and T is singular iff det $A \ne 0$.

Set $B = A - \lambda I = (b_{ij})$. Since **det** B = 0, B is singular. That means that the n-equations in n-unknowns,

$$\begin{cases} b_{11}v_1 + \dots + b_{1n}v_n = 0 \\ \vdots \\ b_{n1}v_1 + \dots + b_{nn}v_n = 0 \end{cases} \Leftrightarrow B|v\rangle = |0\rangle, \text{ where } |v\rangle = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

has redundant rows. In theory, one or more rows can be eliminated by row reduction. Specifically, let $m = \dim TV$. Assuming $A \neq 0$, then 0 < m < n, and so n - m unknowns are redundant and thus are free variables that can be given any value. We set the free variables equal to 1 and then solve the remaining equations for the unique values of $v_1 - v_m$. Then $|v\rangle$ is a non-zero vector that satisfies

$$0 = B|v\rangle = (A - \lambda_{_{\!1}} I)|v\rangle = A|v\rangle - \lambda_{_{\!1}}|v\rangle \quad \Rightarrow \quad A|v\rangle = \lambda_{_{\!1}}|v\rangle.$$

That is, we have found an eigenvector having λ_1 as an eigenvalue.