Лабораторная работа №6

Khokhlacheva Yana Dmitrievna¹

RUDN University, 27 February, 2021 Moscow, Russia

 $^{^{1}\,\}mathrm{RUDN}$ University, Moscow, Russian Federation

Прагматика выполнения лабораторной работы(Зачем)

Понимание принципов построения модели "Эпидемия" и знание соответствующих модельных уравнений позволяет выявить тенденции к росту/падению числа особей, восприимчивых к болезни, инфицированных особей, а также здоровых особей.

Цель работы

- Ознакомиться с простейшей моделью Эпидемии
- · Некая популяция, состоящая из N особей, подразделяется на три группы:
 - 1. Восприимчивые к болезни, но пока здоровые особи S.
 - 2. Инфицированных особей, которые также при этом являются распространителями инфекции I.
 - 3. Здоровые особи с иммунитетом к болезни R.

- Построить графики изменения числа особей в каждой из трех групп (восприимчивые к болезни (S), заболевшие люди (I), здоровые люди с иммунитетом (R)), если I(0) ≤I* (число инфицированных не превышает критического значения).
- Построить графики изменения числа особей в каждой из трех групп (восприимчивые к болезни (S), заболевшие люди (I), здоровые люди с иммунитетом (R)), если I(0) > I* (число инфицированных выше критического значения).

Результат

В данной лабораторной работе рассмотрела простейшие модели эпидемии, а также научилась строить динамику изменения числа особей в каждой из трех групп (восприимчивые к болезни (S), заболевшие люди (I), здоровые люди с иммунитетом (R)) для двух случаев: I(0) <= I* и I(0) > I*

(рис. @fig:001)

Рис. 1: Динамика изменения числа людей в каждой из трех групп в случае, когда $I(0) <= I^*$ с начальными условиями I(0)=78, R(0)=28, S(0)=4578. Коэффициенты $\alpha=0.01, \beta=0.02$

(рис. @fig:002)

Рис. 2: Динамика изменения числа людей в каждой из трех групп в случае, когда $I(0)>I^*$ с начальными условиями I(0)=78, R(0)=28, S(0)=4578. Коэффициенты $\alpha=0.01,$ $\beta=0.02.$