AI 도로영상 분석 플랫폼 기획서

25.07.02(Wed.)

The KY 영상분석팀

Table of Contents

▮. 프로젝트 개요

Ⅵ. 핵심 화면 흐름

Ⅱ . 주요 서비스 기능

Ⅷ. 개발 일정

ш. 업무 **FLOW** (서비스 시나리오)

Ⅷ. 기대효과 및 향후계획

₩ 시스템 구성도

IX. Q&A

Ⅴ. 개발환경 및 도구

프로젝트 개요

□ 프로젝트 배경

- 도로 사고영상 분석 수요 증가
- 수작업 분석의 한계
- '한문철의 블랙박스 리뷰'와 같이, 디지털 플랫폼에서 교통사고 관련 정보를 공유하고, 온라인 상담을 제공하는 서비스 필요.

□ 프로젝트 목적

- AI로 사고 객체 검출 및 검출률 시각화
- 사용자 편의 제공 및 판단 보조

KY 영상분석팀

- □ 목표기간 : 4주('25.06.02~'25.07.04)
- □ 팀원(3명)
 - 이경윤(프론트엔드) : Notion관리, 프론트엔드 개발
 - 최소희(백엔드) : FLASK API·DB 설계·AI 모델 통합
 - 고수혁(팀장, AI모델,기타) : PPT· 회의록· 테스트 시나리오
- □ 솔루션명: The KY AI 영상 분석 Platform
- □ 개발 목표
 - 1. 최소 구현: 교통 영상 객체 검출 (ex;보행자·차·자전거·차량)
 - 2. 차후 구현 : 사고 상황분석 및 과실비율 산정
- 3. 배포 : 웹 서비스 형태, 배포시 도메인 등록 + 차후 클라우드 서버

주요 서비스 기능

- 1. 회원가입 / 로그인 기능
- 2. 객체 검출시 AI 엔진 활용
- 3. AI 객체 검출
- 4. 검출 결과 DB 저장 및 다운로드 API
- 5. (확장) 사고 분석 · 과실 비율 리포트

개발 프로세스 (Development Process)

업무 FLOW (서비스 SCENARIO)

업무 FLOW (서비스 SCENARIO)

사용자 영상수집

•드론/카메라/차량 블랙박스 에서 교통영상 수집

영상 업로드

•AI 영상분석 플랫폼에 영상 업로드

AI 영상 분석

- 객체탐지(차량, 보행자, 신호등 etc.)
- 검출률 제공
- 교통량 측정
- YOLO8로 객체검출 및 검출률 제공

결과 전송

- User 정보와 함께 DB에 분석 결과 저장
- •사용자 조회시 제공

활용 시나리오

블랙박스 분석 지원

• 교통사고 발생시, 블랙박스 를 바탕으로 사고경위 및 원인파악에 대한 정보 제공

교통사고 분석 Report

- 교통사고 발생시 귀책& 손해사정의 근거자료로 활용
- ✔ 귀책 판단)책임,과실,고의 여부
- ✓ 손해사정) 화재,해상,책임보험

- 사고 원인&사고 빈번 발생 구간에 대한 교통정보 제공 으로 교통사고 사전예방 지 원
 - ✓ 신호등 최적화를 통한 교통흐름 개선
 - ✓ 구급차/소방차 경로 최적화 지 원
 - ✓ 운전자 교육에 활용

보행자 안전

- 스쿨존 보행자 감지 및 차량 속도 제어
- 횡단보도 보행자 우선 신호 운영

사용자 인터페이스

사용자가 영상을 시스템에 업로드하면, 특정시점의 분석결과가 조회 가능하도록 인터페이스를 그림과 같이 제공 예정.

영상 분석 시스템 업로드 결과 확인 로그아웃 X 로그인 성공! tester님 환영합니다 파일 선택: 새 파일 업로드 파일 선택 선택된 파일 없음 분석 시작

영상 업로드

분석결과

시스템 아키텍처 & 인증

● WEB 서버

- o Jinja2 템플릿 사용 : Flask 내장 템플릿 엔진
- Jinja2 : 서버에서 데이터를 주입해최종 HTML을 만들어 내는 역할

● 세션 기반 인증 활용

- 세션 기반 인증을 위해 Session과Cookie사용
- 장점 1) 서버에 저장하기 때문에 편하고 효율적
- 장점 2)구현이 명확하며 실제 서버에서 로그인 상태를 확인하기 유용

<데이터 흐름도>

동영상 업로드

분석요청

분석결과 반환 & REPORT제공

분석 결과 **DB** 저장

● 데이터 흐름

- 1. 사용자 → 영상 업로드
- 2. AI 서버로 전송 → AI 학습 모델로 추론
- 3. 검출결과 저장 → 사용자 웹 UI 조회/다운로드

개발환경 및 도구

분 류	도구/라이브러리	역할 및 이유	
서버 언어	Python 3.13	Al·APl·스크립트 통합개발	
AI 모델	YOLOv8	빠른 추론·COCO 사전학습 활용	•
DB	SQLite	SQL 친숙도· 로컬테스트 용이	(
백엔드 프레임워 크	FLASK	경량 REST API·JWT 인증 지원	
프론트 엔드	HTML/CSS/JS, Axios	로그인·업로드·결과조회 화면 개발	
인증·보안	세션기반 / Flask		(
배포 패키징	AWS S3 버킷에 런칭	 정적 웹 배포)HTMLS/CSS/JS 파일을 S3에 업로드하여 웹으로 배포 이미지/동영상 저장소) 사용자 업로드 파일이나 분석된 AI 결과 저장에 사용 AI 결과 공유) YOLO 결과 이미지나 리포트 파일을 S3에 저장해 외부에 공유 가능 백업 저장소) 로그/데이터베이스 백업 등을 주기적으로 저장 클라우드 Lambda 함수 연동) S3에 업로드될 때 자동으로 처리하는 workflow가능 	>
버전 관리	Git + Git Hub	브랜치별 협업· PR 리뷰	(
프로젝트 관리	Notion	일정·태스크·회의록·문서 관리 총괄	

Al 모델 관련 작업

- 초기 단계: YOLOv8-n(nano)
- CPU 모드만으로도 충분한 실시간 처리 성능 확보
- 차후 고도화·클라우드 배포 :YOLOv8-s(small)
- GPU 서버 환경에서 속도·정확도 모두 안정적
- API 변경없이 모델 크기만 바꿔 재학습/배포 가능
- ▶ YOLOv8 선택 이유:
- 다양한 컴퓨터 비전 작업 지원▶객체감지,인스턴스 분할,포즈 추정, 이미지 분류 등
- o Anchor Free Detection 지원
- 직관적인 API제공

핵심 화면 흐름

핵심화면 흐름>사용자 접속

개발 일정

	TASK		6월				7월				
업무영역	세부과제	W1	W2	W3	W4	W1	W2	W3	W4	담당자	
전반	• 프로젝트 기획 및 역할분담	12	25.06.02~							ALL	
BackEnd	• 요구사항 확정&ERD 설계→DB설계									최소희, 이경윤	
전반	•개발환경 셋업(venv,SQLite,Git)									ALL	
전반	• Notion보드, API 명세서, 템플릿 구성									ALL	
FrontEnd, BackEnd	• 회원가입/로그인 • 세션 기반 인증 API 구현									최소희, 이경윤	
DB	• SQLite 내장 DB로 구축									이경윤	
FrontEnd	•로그인·영상 업로드 화면 기본 레이아웃 구현									이경윤	
BackEnd, AI 모델	• YOLOv8 모델 연동 및 분석서버 엔드포인트 구현									최소희, 고수혁	
BackEnd	• 영상 → 프레임 → 객체검출 파이프라인 검출									최소희	
FrontEnd	• 결과 조회·다운로드 기능 완성									이경윤, 고수혁	
전반	• 통합 테스트 및 버그 수정 • 최종 문서화(배포 가이드· API 명세) 및 demo 준비				~′2	5.07.04			1/	고수혁	

API 명세서

현재 GIT HUB 상에 API 명세서를 작성 & 관리하고 있음.

API 명세서

인증 관련

POST /register

- 설명: 회원가입
- 요청: username, password, confirm_password (form)
- 응답: 성공/실패 메시지, 리다이렉트
- 인증: 불필요

POST /login

- 설명: 로그인
- 요청: username, password (form)
- 응답: 성공/실패 메시지, 세션 저장, 리다이렉트
- 인증: 불필요

GET /logout

• 설명: 로그아웃

개발코드 및 결과화면

개발코드

결과화면

개발코드 및 결과화면

다운로드

분석화면 (img)

개발코드 및 결과화면

다운로드

분석화면 (.mp4)

기대효과 및 향후 계획

기대효과

- 교통사고 영상 분석 자동화
- 인터넷을 통한 사고영상 업로드&Report 조회 가능
- 교통 사고 경위 정량화 및 객관화

고도화 방향

- 귀책사유 추정 로직 탑재 가능
- Al Library 도입을 통한 분석 모델 업그레이드
- (COCO아닌) 데이터 전처리/수집부터 시작하여 데이터 분석 수행
- 사용자의 모바일 기기를 통한 서비스 활용 지원

참고자료(Appendix)

- Yolo 버전 시리즈에 대한 기입 & 작동원리
- API 명세서
- Sequence Diagram
- AI 허브 > 교통사고 영상 분석에서 사용했던 알고리즘 &AI 모델 deep 리서치 필요

(ex; DetectoRS,VTN)

참고자료(Appendix)

<AI 영상분석플랫폼 업무 FLOW>

※추가 가능 기능 :

《AI 학습/재학습 시스템: 수집된 데이터를 통해 모델을 지속적으로 개선할 수 있는 파이프라인 델을 지속적으로 개선할 수 있는 파이프라인 (AutoML 또는 주기적 Fine-tuning). (AutoML 또는 주기적 Fine-tuning) 보안 관리: 사용자 접근 제어, 데이터 암호화, 로그 감사 기능.

r	
-	CCTV/영상 수집 장치 - IP 카메라, CCTV 등
	(RTSP/HTTP) ▼
	데이터 수집 모듈 - 영상 스트림 수집/저장 - 메타데이터 추출
	<u> </u>
_'	
I	데이터 저장소 (Storage) ㅣ
!	- 원본 영상 저장 (NAS/Cloud)
ŀ	- 메타데이터 DB (MySQL, MongoDB)
_	'
	<u> </u>
_	
	AI 분석 엔진 (Inference) - 보행자 검출 (YOLO 등) - 트래킹 (DeepSort 등) - 행위 분석 (Pose Estimation, LSTM) - 이상행동 감지
_	<u></u>
 	분석 결과 저장/가공 - DB/로그/알람 저장 - 데이터 라벨링 도구 포함
	1
	▼
ı	사용자 서비스
i	- 대시보드/웹 UI
I	- 실시간 모니터링
ı	- 검색 및 리포팅

참고자료(Appendix)

구성 요소	기술 예시
수집	RTSP, FFmpeg, Kafka
저장	AWS S3, NAS, PostgreSQL, MongoDB
AI 모델	YOLOv5, DeepSort, OpenPose, Detectron2
분석/처리	Python, PyTorch, TensorFlow, ONNX
실시간 처리	Kafka, Redis, Flask/FastAPI
프론트엔드	React, Vue.js, D3.js (시각화)
백엔드/API	Django, FastAPI
배포/운영	Docker, Kubernetes, Nginx, Grafana

참조자료(Reference)

- AI-HUB> 교통사고 영상 데이터
 - ✓ URL) <u>AI-Hub</u>
- Yolov8) You Only Look Once 나무위키
- 세션 인증 방식 VS Token 인증방식(인증과 인가)

