

08 - Projeto PIO Input

Rafael Corsi rafael.corsi@insper.edu.br 8 de março de 2017

Entregar até o final da aula

1.	${\it Criar softwares para microcontroladores utilizando suas especificidades (periféricos/low power);}$	
2.	Avaliar e melhorar soluções embarcadas integrando hardware/software levando em conta adequação a uma aplicaç	ão;
3.	Integrar em um protótipo hardware, software básico, sistema operacional de tempo real e módulos de interfaceamento com usuários, de comunicação e de alimentação;	
4.	Compreender as limitações de microcontroladores e seus periféricos;	
5	Ruscar o analisar documentação (datasheet) o extrair informações	

1 Entendimento

Passos necessários para o entendimento correto de como um pino digital, deve ser configurado para ser controlado pelo PIO.

1.	. Identifique no kit de desenvolvimento (SAI	ME-70-XPLD) qual botão é reservado
	para o usuário :	
	SW300	

2. Via o manual do kit de desenvolvimento, redesenhe o esquema elétrico referente ao botão do usuário:

3. Identifique o pino, o PIO e o bit correspondente ao botão.

Pino	PIO	Bit
64	A	11

4. Preencha a tabela a seguir com o valor lido nos casos em que o botão não está pressionado e quando está.

Botão Pressionado (SW0)	Valor digital lido no PIO
Sim	0
Não	1

5. Identifique os registradores que considera necessário modificar (leia a secção do datasheet referente a configurar o PIO em modo de entrada).

2 Programação parte 1 - SW0

Com base no projeto passado, utilize o botão reservado ao usuário para ativar o LED (Botão não pressionado = LED acesso/ Botão pressionado = Led apagado). Importe o projeto base localizado em : /codigos/08-PIO-INPUT para o seu repositório e modifique-o de acordo com os passos a seguir.

- 1. Importe as configurações do LED do projeto 07-PIO-INPUT. Coloque essas configurações dentro da função : ledConfig().
- 2. Ative o clock do PIO que controla o botão no PMC:

Registrador:	PMC_PCER0

3. Ative o PIO para controlar o pino do botão

Registrador:	PIO_PER

4. Desative o buffer de saída

Registrador:	PIO ODR

5. Ative o pull-up

Registrador:	PIO_PUER
--------------	----------

Explique porque isso é necessário :

Se quisermos alterar comportamento do botão, devemos ativar o pullup. Quando o pullup está ativado, a leitura será Vcc se o botão não estiver apertado, e 0 quando estiver apertado.

- 6. Decida se irá ativar ou não o deboucing
 - não ativado : deve tratar o problema por sw

Registrador:	
reconstructor.	

• ativado : deve configurar os registradores (mais indicado)

Registrador:	PIO_IFSCER
Registrador:	PIO_SCDR
Registrador:	

7. faça a leitura periódica no while(1) para checar se o botão foi ou não pressionado alterando, altere o status do led dependendo do botão.

Registrador:	PIO_SODR
--------------	----------

6 - While(1)

Qual a alternativa para evitar que o status do botão seja (ou precise ser) verificado continuamente?

3 Programação parte 2 - Blink

Utilize o botão para controlar se o LED irá piscar ou não.

4 Programação parte 3 - Botões extras

Utilize a placa : OLED1XPlained pro que possui mais 3 botões para, Utilize os mesmos passos anteriores para descobrir os pinos e o PIO referente a cada botão. Implemente as seguintes funcionalidades:

- 1. Button 1 : Diminuir a frequência do piscar do led
- 2. Button 3 : Aumentar a frequência do piscar do led

4.1 Questões do firmware em avaliação

Estaremos trabalhando nessa etapa os seguintes itens dos objetivos de

- 1. Faz uso correto de define a fim de melhorar o entendimento/ manipulação do firmware
- 2. Compreende como as informações extraídas do manual se traduzem para o código
- 3. Correlaciona as diversas informações contidas em diferentes documentos.
- 4. Faz uso de comentários
- 5. Sabe usar corretamente as ferramentas de gravação e depuração
- 6. Tem claro o fluxo de desenvolvimento

Não esqueça de enviar o código para o repositório do git.

5 Diagrama PIO

