XX Летняя Физическая Школа. Физбой, 10 класс. Финал.

xx.07.2014

1	В точках A и B жёсткого невесомого стержня укреплены два маленьких шарика. В точке O стержень закреплен и может свободно вращаться в вертикальной плоскости. В начальный момент времени стержень отклоняют от вертикального положения на очень маленький угол и отпускают. Найти силу, действующую на шарик B со стороны стержня в момент, когда угол между стержнем и вертикалью равен α . Масса каждого груза m , длина стержня L , $OA = AB$.
2	Из тонкой проволоки сопротивлением $R_0 = 6$ Ом изготовили плоскую фигуру, состоящую из большого числа равносторонних треугольников, стороны каждого из которых, начиная со второго, являются средними линиями предыдущего треугольника (см. рисунок). Вычислите сопротивление R полученной фигуры между точками A и B .
3	Астероид, взорванный в процессе космического эксперимента, превратился в облако мелкой пыли. Сразу после взрыва облако однородно и шарообразно, имеет радиус R и плотность ρ_0 . Начальная скорость v каждой пылинки направлена от центра облака и пропорциональна расстоянию r до центра: $v = Hr$ (H — известный коэффициент). Определите плотность пыли на расстоянии x от центра облака через время t после взрыва. Гравитационным взаимодействием пылинок пренебречь.
4	На горизонтальной поверхности лежат два бруска с массами m_1 и m_2 , соединённые недеформированной пружиной жесткости k . Какую наименьшую горизонтальную силу F нужно приложить к одному из брусков, чтобы сдвинулся и второй брусок?
5	Над тонкостенным металлическим шаром, радиус которого $R=5$ см, на высоте $h=10$ см находится капельница с заряженной жидкостью. Капли жидкости падают из капельницы в небольшое отверстие в шаре. Определить максимальный заряд Q_0 , который накопится на шаре, если заряд каждой капли $q=1.8\cdot 10^{-11}$ Кл. Радиус капель $r=1$ мм.

В теплоизолированном цилиндре на расстоянии $L_1 = 80$ см друг от друга находятся два легкоподвижных теплопроводящих поршня. Пространство между ними заполнено водой, а снаружи на поршни действует атмосферное давление. Слева от левого поршня включили холодильник, который поддерживает постоянную температуру $t_1 = -40^{\circ}\mathrm{C}$, а справа от правого нагреватель, поддерживающий постоянную температуру $t_2 = 16$ °C. Через некоторое время система пришла в стационарное состояние и расстояние между поршнями стало L_2 . После этого поршни снаружи теплоизолировали и дождались установления теплового равновесия в цилиндре. Расстояние между поршнями стало L_3 . Найдите L_2 и L_3 . Плотность льда $\rho_{\scriptscriptstyle \Pi} = 900$ кг/м 3 , плотность воды $\rho_{\rm B}=1000~{\rm kr/m}^3$, удельная теплоёмкость воды $c_{\rm B}=$ 4200 Дж/(кг·°С), удельная теплоёмкость льда $c_{\pi} = 2100$ Дж/(кг·°С), удельная теплота плавления льда $\lambda = 330 \ \mathrm{кДж/кг}$, коэффициент теплопроводности льда в 4 раза больше коэициента теплопроводности воды.

Указание. Считайте, что мощность теплового потока P вдоль цилиндра, между торцами которого поддерживается постоянная разность температур Δt , равна:

$$P = \frac{kS\Delta t}{L},$$

где k — коэффициент теплопроводности среды, S — площадь торца цилиндра, L — длина цилиндра.

