

1. Aplica-se uma carga de 3000N a um varão de cobre cilíndrico com 20cm de comprimento e 0.2cm de diâmetro. Determine a tensão aplicada e a variação de comprimento (extensão) do varão. (Nota: E_{cobre}=110GPa) (R: 0.95GPa, 1.74mm)

2. Uma chapa de aço inoxidável (E=193GPa, α=0.28) com a forma de um paralelepípedo tem as seguintes dimensões: 50.8mm×12.7mm×0.4mm. Num dado instante, é-lhe aplicada uma força de tração de 4500N, na direção do seu comprimento. Determine:

a) A tensão aplicada à barra (R: 8.86×10⁸Pa)

b) O alongamento da barra (R: 0.233mm)

c) A largura e espessura finais da barra (R: 12.68mm, 0.399mm)

3. Uma quantidade de água (V=1.8 m³) sofre uma diminuição de volume quando sujeita a uma pressão de 5 x 10^6 Nm⁻². O módulo de compressibilidade para a água é B= 2.1×10^{11} Nm⁻². Determine:

a) A variação de volume sofrida pela água. (R: 42,86 cm³)

b) A variação percentual de volume sofrida pela água (R: 2.38×10⁻³ %).

4. Um objecto de vidro com o volume de 25cm^3 cai no oceano. Sabendo que no fundo do oceano este objecto está sujeito a uma pressão de 5.0×10^6 Pa, calcule a sua variação de volume. (Nota: $K_{\text{vidro}} = 50\text{GPa}$) (R: $2.5\times10^{-3}\text{cm}^3$)

5. Dê a definição do tensor das tensões. A sua propriedade de simetria traduz uma lei fundamental. Qual?

6. Num ponto (x, y, z) de um meio contínuo de densidade $\rho = 8.3 \text{g/cm}^3$, em equilíbrio, que está sob tensão, o tensor das tensões tem a seguinte forma (em unidades S.I.):

$$\sigma_{ij} = \begin{pmatrix} 6xy & 3y^2 & 0\\ 3y^2 & 6xy & 2z\\ 0 & 2z & -12xy \end{pmatrix}$$

Calcule a densidade da força mássica que equilibra esta tensão no ponto (1 m,1 m,1 m).

7. O tensor das tensões em P é dado em relação a x₁, x₂, x₃ na forma de matriz em unidades de MPa por:

$$\sigma_{ij} = \begin{pmatrix} 4 & b & b \\ b & 7 & 2 \\ b & 2 & 4 \end{pmatrix}$$

onde b é desconhecido. Sabendo as seguintes relações para as tensões principais: $T_3 = 3$ MPa, $T_1 = 2$ T_2 . Determine:

- a) As tensões principais;
- b) O valor de b;
- c) A direção principal de T₂.

8. O tensor das tensões em P é dado em relação a x₁, x₂, x₃ na forma de matriz em unidades de MPa por

$$\sigma_{ij} = \begin{pmatrix} 25 & 0 & 0\\ 0 & -30 & -60\\ 0 & -60 & 5 \end{pmatrix}$$

- a) Determine o vector de tensão no plano cuja normal é $\hat{n} = (2\hat{e}_1 + \hat{e}_2 + 2\hat{e}_3)/3$.
- b) Determine as componentes normal e tangencial da tensão no mesmo plano.

9. A figura mostra uma rotação de um objecto plano em torno do eixo z por um ângulo φ. Considere um ponto P(x,y) que, após a rotação, toma a posição P'(x',y').

- a) Obtenha as componentes do vector deslocamento deste ponto, $\vec{u}=\vec{r}^{P'}-\vec{r}^P$, em função do ângulo ϕ .
- b) Mostre que, no limite ϕ -> 0 os elementos diagonais da matriz (que representa o tensor de distorção),

$$e_{ij} = \frac{\partial u_i}{\partial r_j^P}$$
 (i,j = x,y)

são nulos.

- c) Mostre que as grandezas (que representam o tensor de deformação), $\epsilon_{ij}=(e_{ij}+e_{ji})/2$, são todas nulas neste caso.
- **10.** Qual é a diferença entre as forças mássicas e as de superfície? Dê exemplos de cada tipo de forças.

- **11.** Faça um desenho apresentando a alteração da forma de uma figura geométrica simples (por exemplo, quadrado) quando estiver sujeito a uma deformação do tipo:
 - a) Dilatação,
 - a) Tração simples,
- **12.** Considere a deformação dada por (onde $\alpha = 10^{-4}$):

$$u_x = \alpha \; (5x-y+3z) \quad u_y = \alpha \; (x+8y) \qquad \qquad u_z = \alpha \; (-3x+4y+5z) \label{eq:ux}$$

Calcule:

a) O tensor das distorções;

b) O tensor das deformações

- c) O tensor das rotações
- d) Os ângulos entre os lados paralelos aos eixos coordenados após a deformação
- 13. O tensor de deformação, para um certo corpo deformado, tem a seguinte forma:

$$\varepsilon_{ij} = \begin{pmatrix} 0 & s & s \\ s & 0 & 0 \\ s & 0 & 0 \end{pmatrix}$$

onde s é uma constante. Calcule as deformações principais e as direções principais.

14. O paralelepípedo representado na figura, de um material com módulo de Young de 200 GPa e coeficiente de Poisson de 0.25, tem um estado de deformação homogéneo a que

correspondem os seguintes alongamentos das arestas: $\Delta OA = 0.025$ mm, $\Delta OB = 0.2$ mm e $\Delta OC=0.05$ mm. Sabe-se também, que a direção 1 (eixo dos x) é uma direção principal de deformação e que o ângulo BOC após distorção foi de $\theta = 89.95^{\circ}$.

a) Mostre que tensor das deformações é dado por:

$$\varepsilon_{ij} = 10^{-4} \times \begin{pmatrix} 2.5 & 0 & 0 \\ 0 & 10 & 4.33 \\ 0 & 4.33 & 5 \end{pmatrix}$$

b) Determine as deformações principais e as direções principais de deformação.

- 15. O campo de deslocamentos num sólido é definido pelo vetor $\vec{u} = (ax^2, bxy, cz^2)$, onde a, b e c são contantes. No ponto (1,3,1), a deformação volumétrica é nula, a extensão relativa segundo x é 0.0002 e o angulo de deformação xy é 0.0006 rad.
 - a) Mostre que o tensor de deformações nesse ponto é $\hat{\varepsilon} = 10^{-4} \begin{pmatrix} 2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$
 - b) Determine as deformações principais e as direções principais de deformação