

Supervised Learning Diabetes report

BERNARD ADEBOYE

Project Goals

Use supervised learning techniques to build a machine learning model that can predict whether a patient has diabetes or not, based on certain diagnostic measurements.

- Perform exploratory data analysis,
- Preprocessing and feature engineering, and
- Training machine learning model.
- Testing machine learning model.
- Validating machine learning model.

Process

- Step 1: Import libraries and load dataset
- Step 2: Explorative Data Analysis to understand the dataset.
- Step 3: Check for missing information in the dataset.
- Step 4: Clean dataset by identifying and treating outliers, and filling missing values.
- Step 5: Apply various machine learning algorithms
- Step 6: Validate the ML algorithms to ascertain the best.
- Step 7: Interpret and summary findings

Data visualization dashboard

Insulin and BMI chart

Blood Pressure and glucose

Correlation Matrix

Dataset findings

After analyzing the histogram we can identify that there are some outliers in some columns.

For Example:-

Blood Pressure - A living person cannot have a diastolic blood pressure of zero.

Plasma glucose levels - Zero is invalid number as fasting glucose level would never be as low as zero.

Skin Fold Thickness - For normal people, skin fold thickness can't be less than 10 mm better yet zero.

BMI: Should not be 0 or close to zero unless the person is really underweight which could be life-threatening.

Insulin: In a rare situation a person can have zero insulin but by observing

Models
performanceAccuracy
score metrics

Model
performance
– Kfold Cross
validation

Model summary – Logistic Regression

```
OLS Regression Results
Dep. Variable:
                                 R-sauared:
                         Outcome
                                                              1.000
Model:
                                                             1.000
                            OLS Adj. R-squared:
Method:
                  Least Squares F-statistic:
                                                        1.450e+29
Date:
                Tue, 25 Jul 2023 Prob (F-statistic):
                                                              0.00
Time:
                        10:03:47 Log-Likelihood:
                                                           19403.
No. Observations:
                            636
                                AIC:
                                                        -3.879e+04
Df Residuals:
                                 BIC:
                                                       -3.877e+04
                            630
Df Model:
Covariance Type:
                       nonrobust
                          coef
                                 std err
                                                               [0.025
                                                                         0.975]
const
                     1.013e-15 3.66e-15
                                            0.277
                                                     0.782 -6.18e-15
                                                                        8.2e-15
Pregnancies
                     4.195e-15 1.72e-16 24.345 0.000 3.86e-15
                                                                      4.53e-15
Glucose
                     -7.581e-17 2.16e-17 -3.505 0.000 -1.18e-16 -3.33e-17
BMI
                     -2.151e-16 8.92e-17 -2.412 0.016 -3.9e-16
                                                                      -4e-17
DiabetesPedigreeFunction 5.135e-16 2.27e-15
                                         0.226
                                                   0.821 -3.94e-15
                                                                      4.97e-15
                        1.0000 1.42e-15 7.03e+14
                                                     0.000
Outcome
                                                              1.000
                                                                        1.000
_____
Omnibus:
                          53.377 Durbin-Watson:
Prob(Omnibus):
                         0.000 Jarque-Bera (JB):
                                                           65.689
                          -0.787 Prob(JB):
Skew:
                                                           5.44e-15
Kurtosis:
                          3.035
                                 Cond. No.
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

Model classification report-recall, precision, f1-score

LR		precision	recall	f1-score	support
	9	0.80	0.90	0.85	439
	1	0.69	0.50	0.58	197
	_	0.05	0.50	0.50	227
accurac	у			0.77	636
macro av	g	0.74	0.70	0.71	636
weighted av	g	0.76	0.77	0.76	636
KNN		precision	recall	f1-score	support
(0	0.84	0.88	0.86	439
:	1	0.70	0.62	0.66	197
accurac	у			0.80	636
macro av	g	0.77	0.75	0.76	636
weighted av	g	0.80	0.80	0.80	636
DT		precision	recall	f1-score	support
(0	0.97	0.95	0.96	439
:	1	0.88	0.93	0.91	197
accurac	у			0.94	636
macro av	g	0.93	0.94	0.93	636
accurac	у			0.92	636
macro av	g	0.91	0.89	0.90	636
weighted av	g	0.92	0.92	0.92	636

Roc-AUC curve for Logistic regression

Roc-AUC curve for Random Forest

Conclusion

We can see the Logistic Regression, Random Forest and Gradient Boosting have performed better than the rest.

Diabetic and non-diabetic groups shows similar distribution pattern.

Most variables shows relative positive relationship between themselves.

Skin thickness and Insulin shows a lot of outliers due to the numbers of zeros.

Pregnancies, glucose and BMI variables help to explain the outcome variables better.