Jason Juliette, Kris Li

Lab 3 Deliverable

February 15th, 2018

1) Circuit diagram

2) Screenshot like showing your debugging in the simulator

3) Switch measurements (Table 3.1)

Parameter	Value	Units	Conditions
Resistance of the	9.82Kohm		with power off and
10kΩ resistor, R1	9820ohms	ohms	disconnected from circuit
			(measured with ohmmeter)
	3.29V		
Supply Voltage, V _{+3.3}		volts	Powered
			(measured with voltmeter)
	OV		Powered, but
Input Voltage, V _{PE1}		volts	with switch not pressed
			(measured with voltmeter)

Resistor current	0mA	mA	Powered, but switch not pressed I=V _{PE1} /R1 (calculated and measured with an ammeter)
Input Voltage, V _{PE1}	3.29V	volts	Powered and with switch pressed (measured with voltmeter)
Resistor current	.335mA	mA	Powered and switch pressed I=V _{PE1} /R1 (calculated and measured with an ammeter)

4) LED measurements (Table 3.2)

Row	Parameter	Value	Units	Conditions
	Resistance of the	215 ohms		with power off and
1	220Ω resistor, R19		ohms	disconnected from circuit
				(measured with ohmmeter)
	+5 V power supply	5.03 V		(measured with voltmeter relative to
2	V+5		volts	ground, notice that the +5V power is not exactly +5 volts)
	TM4C123 Output, V _{PEO}	0.0515 V		with PEO = 0
		0.0313 V		
3	input to 7406		volts	(measured with voltmeter relative to ground)
	7406 Output, V _{k-}	3.75 V		with PE0 = 0
4	LED k-		volts	(measured with voltmeter relative to
				ground)
	LED a+, V _{a+}	5.03 V		with PEO = 0

5	Bottom side of R19 (anode side of LED)		volts	(measured with voltmeter relative to ground)
6	LED voltage	1.28 V	volts	calculated as V_{a+} - V_{k-}
	LLD Voitage		VOICS	calculated as $V_{a+} - V_{k-}$
		0 A		calculated as $(V_{+5} - V_{a+})/R19$
7	LED current	And	mA	and
		0 A		measured with an ammeter
	TM4C123 Output, V _{PE0}	3.25 V		with PE0 = 1
8	input to 7406		volts	(measured with voltmeter relative to ground)
	7406 Output, <i>V_k</i> -	0.0952 V		with PE0 = 1
9	LED k-		volts	(measured with voltmeter relative to ground)
	LED a+, V_{a+}	2.05 V		with PE0 = 1
10	Bottom side of R19 (anode side of LED)		volts	(measured with voltmeter relative to ground)
		1.95 V		
11	LED voltage		volts	calculated as V_{a+} - V_{k-}
		13.86 mA		calculated as $(V_{+5} - V_{a+})/R19$
12	LED current	13 mA	mA	and
				measured with an ammeter

5) Assembly source code of your final program

;************* main.s **********

; Program written by: Jason Juliette, Kris Li

; Date Created: 2/4/2017

; Last Modified: 1/15/2018

```
; Brief description of the program
; The LED toggles at 8 Hz and a varying duty-cycle
; Hardware connections (External: One button and one LED)
; PE1 is Button input (1 means pressed, 0 means not pressed)
; PEO is LED output (1 activates external LED on protoboard)
; PF4 is builtin button SW1 on Launchpad (Internal)
     Negative Logic (0 means pressed, 1 means not pressed)
; Overall functionality of this system is to operate like this
; 1) Make PEO an output and make PE1 and PF4 inputs.
; 2) The system starts with the the LED toggling at 8Hz,
   which is 8 times per second with a duty-cycle of 20%.
   Therefore, the LED is ON for (0.2*1/8)th of a second
   and OFF for (0.8*1/8)th of a second.
; 3) When the button on (PE1) is pressed-and-released increase
   the duty cycle by 20% (modulo 100%). Therefore for each
    press-and-release the duty cycle changes from 20% to 40% to 60%
   to 80% to 100%(ON) to 0%(Off) to 20% to 40% so on
; 4) Implement a "breathing LED" when SW1 (PF4) on the Launchpad is pressed:
   a) Be creative and play around with what "breathing" means.
     An example of "breathing" is most computers power LED in sleep mode
     (e.g., https://www.youtube.com/watch?v=ZT6siXyIjvQ).
   b) When (PF4) is released while in breathing mode, resume blinking at 8Hz.
     The duty cycle can either match the most recent duty-
     cycle or reset to 20%.
   TIP: debugging the breathing LED algorithm and feel on the simulator is impossible.
; PortE device registers
GPIO_PORTE_DATA_R EQU 0x400243FC
GPIO PORTE DIR R EQU 0x40024400
GPIO_PORTE_AFSEL_R EQU 0x40024420
```

```
GPIO_PORTE_DEN_R EQU 0x4002451C
; PortF device registers
GPIO_PORTF_DATA_R EQU 0x400253FC
GPIO_PORTF_DIR_R EQU 0x40025400
GPIO_PORTF_AFSEL_R EQU 0x40025420
GPIO_PORTF_PUR_R EQU 0x40025510
GPIO_PORTF_DEN_R EQU 0x4002551C
GPIO_PORTF_LOCK_R EQU 0x40025520
GPIO_PORTF_CR_R EQU 0x40025524
SYSCTL_RCGCGPIO_R EQU 0x400FE608
Value EQU 600000
                         ;this is 20% duty cycle
Half EQU 75000
MAX EQU 3000000
                                ;this is 100% duty cycle
                                      ;this is correct for the debugger (possibly not for the
machine)
  IMPORT TExaS_Init
  THUMB
  AREA DATA, ALIGN=2
;global variables go here
  AREA |.text|, CODE, READONLY, ALIGN=2
  THUMB
 EXPORT Start
Start
; TExaS_Init sets bus clock at 80 MHz
  BL TExaS_Init; voltmeter, scope on PD3
```

```
; Initialization goes here
LDR RO, = SYSCTL_RCGCGPIO_R; i need port e and f
LDR R1,[R0];
ORR R1,#0x30;
STR R1,[R0];
NOP;
NOP;
NOP;
NOP;
LDR RO, = GPIO_PORTF_LOCK_R;
                                    unlock PF4
LDR R1, = GPIO_LOCK_KEY;
STR R1, [R0];
LDR RO, = GPIO_PORTF_CR_R;
ORR R1, #0xFF;
STR R1, [R0];
LDR RO, = GPIO_PORTF_DIR_R; port f PF4 as input (0)
LDR R1,[R0];
BIC R1, #0x11;
STR R1,[R0];
LDR RO, = GPIO_PORTF_PUR_R; port f is internal so i need to engage the pullup resistor(?)
LDR R1, [R0];
ORR R1, #0x10;
STR R1, [R0];
LDR RO, = GPIO_PORTF_DEN_R; enable PF4
LDR R1,[R0];
ORR R1,#0x11;
STR R1,[R0];
```

```
LDR RO, = GPIO_PORTE_DIR_R; port e PEO equals an output(1) and PE1 equals an input(0)
LDR R1,[R0];
ORR R1,#0x1;
BIC R1,#0x2;
STR R1,[R0];
LDR RO, = GPIO_PORTE_DEN_R; enable PEO/1
LDR R1,[R0];
ORR R1,#0x3;
STR R1,[R0];
LDR RO, = GPIO_PORTE_DATA_R
LDR R2, = GPIO_PORTF_DATA_R
LDR R8, = MAX
LDR R10, = Half
LDR R9, = Value; value is the incremention, and also the starting point, 1/5 of max duty cycle
MOV R1,R9;R1 starts at initial value
  CPSIE I ; TExaS voltmeter, scope runs on interrupts
loop
                                              ;//////some of the comments wont make sense cause
I changed the program without the comments
                                                     ;/////R4 is generally trash that are
consistantly changed
                                                     ;//////R1 is important in that it adjust the
delays
                                                     ;/////R2 and R0 hold data registers
                                                     ;//////R3 is typically for moving between Data
registers
                                                     ;/////R8 and R9 hold comparison or constants
for addition (could we just use immediate mode?) values
                                                     ;/////R10 is important for breathstart, but can
be used outside of it and the Occilation subroutine
```

```
;/////R12 is array
LDR R3,[R0]
                                        ;this wil be the register we adjust
LDR R4,[R2]
                                        ;i need the real contents of R2
AND R4,#0x10
                                                ; checks PF4
CMP R4,#0
BEQ breathstart
                                                ; PF4 is negative logic, so if the button is pressed then
(PF4=0)
ANDS R4,R3,#0x2
                                        ;checks PE1 value for 1 in bit 1
BEQ OOF
                                                ; if zero (button not pressed) continue
BIC R3,#0x1
                                        ; not then turn the light off
STR R3,[R0]
                                        ;it'll insignificant if the button is slightly pressed
Hold
LDR R3,[R0]
                                        ;load a renewed PORTE data register
                                        ;check bit 1, the button
ANDS R4,R3,#0x2
BNE Hold
                                                ;if 1, then it'll contiune the loop an have no light output
CMP R8,R1
                                                ;compare count to max
BNE Nope
                                                ;if max is greater than R1, skip these next lines
                                                reset R1 (will this actually make the duty cycle 0?)
AND R1,#0
B OOF
                                                ;skip the addition
                                                        ;////alll of this stuff above works pretty well
except i havent tried the branch to breathstart///
Nope
ADD R1,R9
                                                ;duty cycle increase linear?
OOF
```

BL Occilate

B loop

breathstart ; this is were the breathing subroutine will go MOV R1,R9 B BS breath CMP R1,R8 **BEQ DESCEND** ADD R1,R10 BS LDR R4, = 10 UDIV R5,R8,R1 MUL R5,R4 ok LDR R4, = 10 UDIV R1,R4 UDIV R8,R4 **BL** Occilate LDR R4, = 10 MUL R1,R4 MUL R8,R4 SUBS R5,#1 BNE ok LDR R6,[R2] ;i need the real contents of R2 AND R4,R6,#0x10 ;to check if it should continue to go through the breathing loop CMP R4,#0 BEQ breath MOV R1,R9 B loop DESCEND CMP R1,R9

BEQ breath	
SUB R1,R10	
LDR R4, = 10	
UDIV R5,R8,R1	
MUL R5,R4	
bazzok	
LDR R4, = 10	
UDIV R1,R4	
UDIV R8,R4	
BL Occilate	
LDR R4, = 10	
MUL R1,R4	
MUL R8,R4	
LDR R6,[R2]	
AND R4,R6,#0x10	;to check if it should continue to go through the breathing loop
CMP R4,#0	
BNE fin	
SUBS R5,#1	
BNE bazzok	
LDR R6,[R2]	
AND R4,R6,#0x10	; to check if it should continue to go through the breathing loop
CMP R4,#0	
BEQ DESCEND	
fin	
MOV R1,R9	
В Іоор	

Occilate ;one subroutine that will shift it up and down

EOR R3,#0x1 ; toggle the light, friendly

STR R3,[R0] ; store R3 into Data register

MOV R4,R1 ;R4 = R1, the count; change R1 in code to change the duty cycle

ADD R4,#1 ;////there will likely be the same error as in delay2, but when

duty cycle is 0%

Delay

SUBS R4,#1 ;R1 is the counter

BNE Delay ;PE1 will adjust the value of R1

EOR R3,#0x1 ; toggle the light, friendly

STR R3,[R0] ; store R3 into Data register

SUB R4,R8,R1 ;R4 = difference of R8, and R1 (the rest of the duty cycle)

ADD R4,#1 ;///instead of doing the comparison for bug, add 1 to R4 each time.

might change the stuff by a nanosecond but its simple

Delay2

SUBS R4,#1 ;R1 is the counter

BNE Delay2

;Bug

BX LR

ALIGN ; make sure the end of this section is aligned

END ; end of file