Об одном примере, относящемся к анализу сингулярного спектра временных рядов

Иванова Елизавета, 422 группа

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. В. В. Некруткин Рецензент: к.ф.-м.н., доц. Н. Э. Голяндина

> Санкт-Петербург 2015 г.

Основные обозначения: подпространство сигнала

- $F_N = (x_0, \dots, x_{N-1})$ сигнал;
- ullet $x_n = \sum_{k=1}^d a_k x_{n-k}$ минимальная ЛРФ ранга d;
- ullet $oldsymbol{H}$ траекторная (ганкелева) матрица размерности L imes K, N=K+L-1, со столбцами $(x_j,\ldots,x_{L+j-1})^{\mathrm{T}}$;
- \mathbb{U}_0^\perp линейное пространство, натянутое на столбцы матрицы \mathbf{H} «сигнальное подпространство», $\dim \mathbb{U}_0^\perp = d;$
- ullet \mathbf{P}_0^\perp ортогональный проектор на $\mathbb{U}_0^\perp.$

Основные обозначения: возмущение сигнала

- $E_N = (e_0, \dots, e_{N-1})$ nomexa;
- $\mathrm{F}_N(\delta)=\mathrm{F}_N+\delta\mathrm{E}_N$ возмущенный сигнал, δ формальный параметр возмущения;
- $\mathbf{H}(\delta) = \mathbf{H} + \delta \mathbf{E}$;
- $\mathbb{U}_0^\perp(\delta)$ линейное пространство, натянутое на d главных левых сингулярных векторов SVD матрицы $\mathbf{H}(\delta)$;
- ullet $\mathbf{P}_0^\perp(\delta)$ ортогональный проектор на $\mathbb{U}_0^\perp(\delta)$;
- $\|\mathbf{P}_0^{\perp}(\delta) \mathbf{P}_0^{\perp}\|$ синус наибольшего главного угла между \mathbb{U}_0^{\perp} и $\mathbb{U}_0^{\perp}(\delta)$.

Ошибка аппроксимации

- $oldsymbol{ ilde{H}}$ сумма d главных элементарных матриц SVD $\mathbf{H}(\delta)$;
- ullet ${\cal S}$ оператор диагонального осреднения;
- $\mathcal{S}\widetilde{\mathbf{H}}=:\widetilde{\mathrm{F}}_N(\delta)=(\widetilde{x}_0(\delta),\ldots,\widetilde{x}_{N-1}(\delta))$ аппроксимация F_N ;
- $\|\widetilde{F}_N(\delta) F_N\|_{\max} = \max_{0 \le n < N} |\widetilde{x}_n(\delta) x_n|.$

Ошибка аппроксимации Н:

$$\widetilde{\mathbf{H}} - \mathbf{H} = (\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp})\mathbf{H}(\delta) + \delta\mathbf{P}_0^{\perp}\mathbf{E}.$$

Тогда $\mathcal{S}(\widetilde{\mathbf{H}} - \mathbf{H})$ — ошибка аппроксимации F_N .

Получаем частный случай метода Basic SSA.

Пример с экспонентой

Известные результаты:

Некруткин В.В., «Perturbation expansions of signal subspaces», (SII, 2010):

Для сигнала $x_n=a^n,\ a>1$ и помехи $e_n=1$ при $N\to\infty$

1.

$$\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\| = O(\sqrt{N}a^{-N});$$

2.

$$\limsup_N \|\widetilde{\mathrm{F}}_N(\delta) - \mathrm{F}_N\|_{\mathrm{max}} > 0$$
 при $\delta
eq 0$.

Вопросы

1. Замена помехи

- $x_n = a^n$
- $e_n = 1 \mapsto e_n = (-1)^n$.

2. Дискретизация

ullet x(t) – непрерывная функция, $t \in [0,T]$: $x_i = x(iT/N), \ i = 0, \dots, N-1, \ N o \infty, \ T = T(N).$

Здесь:
$$x_i = a^{iT/N}$$
.

3. Замена помехи + дискретизация

Задача бакалаврской работы

Для сигнала $x_n=a^n, a>1$ до и после дискретизации при двух видах помех и $N\to\infty$

- Исследовать сближение возмущенного и невозмущенного сигнальных подпространств;
- Проанализировать максимальную ошибку восстановления.

Результаты: случай $e_n = (-1)^n$

Сигнал: $x_n=a^n$, помеха: $e_n=(-1)^n$ и $L\sim \alpha N$.

Основной результат:

- Доказано, что проекторы сближаются со скоростью $\sqrt{N}a^{-N}$.
- Доказано, что максимальная ошибка восстановления не стремится к нулю.

Кроме того:

- Определен главный член нормы разности проекторов.
- Найдены асимптотики ошибок восстановления $r_n = \widetilde{x}_n(\delta) x_n$ для $n = 0, \dots, N-1$ при $N \to \infty$.

Результаты: дискретизация с $e_n=1$

Сигнал: $x_n = a^n$, помеха: $e_n = 1$.

Таблица: Скорость сближения возмущенного и невозмущенного подпространств сигнала в случае постоянной помехи.

${\sf Условия}\;{\sf на}\; L$	${\sf У}$ словия на T	Порядок сход-сти
L = const	$T = T_0 + o(1)$	$C(\delta)N^{-1}$
	$T \to \infty, \ T = o(N)$	$ \delta TN^{-1}a^{-T}$
	$T = \beta N + o(N)$	$ \delta a^{-T}$
	$T \to \infty, \ T = \omega(N)$	$ \delta a^{-(T-T/N)}$
	$T = T_0 + o(1)$	<u> </u>
$L = \alpha N + o(N),$	$T \to \infty, \ T = o(N)$	$ \delta \sqrt{T}a^{-T}$
$\alpha \in (0,1)$	$T = \beta N + o(N)$	$ \delta \sqrt{T}a^{-T}$
	$T \to \infty, \ T = \omega(N)$	$ \delta \sqrt{N}a^{-(T-T/N)}$

Результаты: дискретизация с $T = T_0 + o(1)$, $e_n = 1$

Сигнал: $x_n=a^{nT/N}$, $T=T_0+o(1)$, помеха: $e_n=1$ и $L\sim \alpha N$.

Норма разности проекторов:

Существует $\delta_1>0$ и такая неотрицательная функция $C(\delta)$, определенная на интервале $(-\delta_1,\delta_1)$, что

$$\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\| \ge C(\delta) > 0$$

при любом $\delta \in (-\delta_1, \delta_1) \setminus \{0\}$.

Ошибки восстановления не стремятся к 0 — подтверждается вычислительными экспериментами.

Результаты: дискретизация с $T = T_0 + o(1)$, $e_n = (-1)^n$

Сигнал: $x_n = a^{nT/N}$, $T = T_0 + o(1)$, помеха: $e_n = (-1)^n$ и $L \sim \alpha N$.

Основной результат:

- ullet Доказано, что проекторы сближаются со скоростью 1/N.
- Доказано, что максимальная ошибка восстановления стремится к нулю со скоростью 1/N.

Кроме того:

• Найдены порядки асимптотик ошибок восстановления $r_n = \widetilde{x}_n(\delta) - x_n$ для $n = 0, \dots, N-1$ при $N \to \infty$.

Вопрос

Получено: теоретические результаты для постоянной и пилообразной помехи в случае $T=T_0+o(1)$ и $L\sim \alpha N.$

Вопрос: другие случаи поведения T = T(N).

Вычислительные эксперименты: ошибки восстановления при $T \to \infty$, T = o(N) ведут себя аналогично $T = T_0 + o(1)$.

Другие случаи: дискретизация с $e_n=1$

Вычислительный эксперимент: $T = \sqrt{N}, L = \lfloor N/3 \rfloor, r_i = \widetilde{x}_i(\delta) - x_i$.

Рис.: Ошибки восстановления ряда $x_i=a^{iT/N}$ из зашумленного ряда $f_i=x_i+\delta,\, T=\sqrt{N},\, L=\lfloor N/3\rfloor,\, a=1.1,\, \delta=1$ и N=1499,2499.

Другие случаи: дискретизация с $e_n = (-1)^n$

Вычислительный эксперимент: $T = \sqrt{N}, L = \lfloor N/3 \rfloor, r_i = \widetilde{x}_i(\delta) - x_i$.

Рис.: Ошибки восстановления ряда $x_i=a^{iT/N}$ из зашумленного ряда $f_i=x_i+\delta(-1)^i$, $T=\sqrt{N}$, $L=\lfloor N/3\rfloor$, a=1.1, $\delta=1$ и N=1499,2499.

Основные результаты,

- Для сигнала $x_n = a^n$ с помехой $e_n = (-1)^n$ доказано, что максимальная ошибка восстановления не стремится к нулю при $N \to \infty$;
- Для дискретизованного сигнала $x_i \! = \! a^{iT/N}$ с помехой $e_n = (-1)^n$ в случае $T = T_0$ и $L \sim \alpha N$ доказано, что максимальная ошибка восстановления стремится к нулю при $N \to \infty$;
- Для дискретизованного сигнала $x_i = a^{iT/N}$ с помехой $e_n = 1$ при различных зависимостях T = T(N) исследованы асимптотики скорости сближения сигнальных подпространств. Выделен случай, когда подпространства не сходятся.
- Проведена численная проверка полученных теоретических результатов.