Automating Algorithm Design through Genetic Programming Hyper-Heuristics

Elsa Browning

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

> April 15, 2017 Morris, MN

What does the title mean?

 Reducing the human component in algorithm design

https://scratch.mit.edu/discuss/m/topic/200574/

What does the title mean?

- Reducing the human component in algorithm design
- More work at the beginning, more possibilities

https://scratch.mit.edu/discuss/m/topic/200574/

What does the title mean?

- Reducing the human component in algorithm design
- More work at the beginning, more possibilities
- Genetic programming hyper-heuristics as a method to the madness

https://scratch.mit.edu/discuss/m/topic/200574/

- Background
- 2 Hyper-heuristics
- Genetic Programming Variants
- 4 Autoconstruction
- Summary

- Background
 - Evolutionary Computation
 - Genetic Programming
- 2 Hyper-heuristics
- Genetic Programming Variants
- **4** Autoconstruction
- 5 Summary

- 1 Background
- 2 Hyper-heuristics
 - What they are
 - What they aren't
 - How they work
- Genetic Programming Variants
- Autoconstruction
- 5 Summary

- Background
- 2 Hyper-heuristics
- Genetic Programming Variants
 - Why they matter
 - Stack-based genetic programming
- Autoconstruction
- 5 Summary

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

Data-stacks are used for managing input and output of operations.

Programs are represented as linear sequences of literals and instructions. Below is an example of a simple Push program:

- Background
- 2 Hyper-heuristics
- Genetic Programming Variants
- Autoconstruction
 - What is it?
 - AutoDoG
 - Evolution is evolving!
 - Results
- **5** Summary

- Background
- 2 Hyper-heuristics
- **3** Genetic Programming Variants
- Autoconstruction
- Summary