

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Lineare Algebra I

Winter-Semester 2020/2021

Musterlösung zu Übungsblatt 3

23.11.20

Aufgabe 1 (Basisergänzungssatz)

(10 Punkte)

Wir definieren die Mengen

$$U := \left\{ x \in \mathbb{R}^3 \mid x_1 + 2x_2 + 3x_3 = 0 \right\},\$$

$$M := \left\{ \begin{pmatrix} -5\\1\\1 \end{pmatrix}, \begin{pmatrix} 3\\0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\3\\-2 \end{pmatrix}, \begin{pmatrix} -2\\1\\0 \end{pmatrix} \right\}.$$

- a) Zeigen Sie, dass U ein Untervektorraum von \mathbb{R}^3 ist.
- b) Zeigen Sie, dass M ein Erzeugendensystem von U ist.
- c) Erzgänzen Sie $L := \emptyset$ zu einer Basis $B \subseteq M$ von U.

Lösung zu Aufgabe 1

- a) Wir prüfen die Untervektorraumaxiome nach:
 - (i) Es gilt $0 \in U$, denn $0 + 2 \cdot 0 + 3 \cdot 0 = 0$

(ii) Für
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in U$ gilt $x_1 + 2x_2 + 3x_3 = 0$ und $y_1 + 2y_2 + 3y_3 = 0$ und somit auch

$$(x_1 + y_1) + 2(x_2 + y_2) + 3(x_3 + y_3) = 0$$
, woraus $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in U$ folgt.

(iii) Für
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in U$$
 und $\lambda \in \mathbb{R}$ gilt $x_1 + 2x_2 + 3x_3 = 0$ und somit auch $\lambda x_1 + 2\lambda x_2 + 3\lambda x_3 = 0$

und deshalb
$$\lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in U$$

Alternative Lösung: U ist der Kern der Matrix $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \in \mathbb{R}^{1\times 3}$ und somit nach Vorlesung ein Untervektorraum von \mathbb{R}^3 .

b) $x_1 + 2x_2 + 3x_3 = 0$ ist äquivalent zu $x_1 = -2x_2 - 3x_3$. Damit haben alle Elemente von U die Form

$$\begin{pmatrix} -2x_2 - 3x_3 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \underbrace{\begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}}_{\in M} -x_3 \underbrace{\begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}}_{\in M}$$

für geeignete $x_2, x_3 \in \mathbb{R}$ und liegen somit in LH(M); daraus folgt $U \subseteq LH(M)$.

Umgekehrt kann man leicht nachrechnen, dass alle Elemente von M auch Elemente von U sind. Daraus folgt $M \subseteq U$ und wegen Lemma 2.3.4. gilt dann $LH(M) \subseteq U$.

c) Der Beweis von Satz 2.3.18 (Basisauswahl- und Ergänzungssatz) zeigt uns, wie wie diese Basis konstruieren:

Wir starten mit r = 0 und definieren $L_0 := L = \emptyset$ und $W_0 := LH(L_0) = \{0\}.$

Die Lineare Hülle eines Vektors besteht aus allen Vielfachen dieses Vektors. Wir wählen nun ein $v_2 \in M \setminus L_1$, also ein Element aus M, das kein Vielfaches von v_1 ist. Dies trifft hier auf

alle Elemente von
$$M$$
 außer v_1 selbst zu, also z.B. auf $v_2 = \begin{pmatrix} -2\\1\\0 \end{pmatrix}$.

Damit ist nun $L_2 = \{v_1, v_2\}$ und $W_2 = LH(L_2)$. Wir haben aber in b) schon gesehen, dass $U = LH(v_1, v_2)$ gilt und somit sind wir fertig. Nach Satz 2.3.18 bildet dann $B := L_2 = \{v_1, v_2\}$ eine Basis von U mit $L \subseteq B \subseteq M$.

Aufgabe 2 (Maximal linear unabhängig / minimales Erzeugendensystem) (10 Punkte)

Es $U \subseteq \mathbb{R}^n$ ein Untervektorraum und $B \subseteq U$ eine Menge. Beweisen Sie die Äquivalenz der folgenden Aussagen:

- (i) Jede linear unabhängige Menge $L \subseteq U$ mit $B \subseteq L$ erfüllt B = L.
- (ii) Jedes Erzeugendensystem E von U mit $E \subseteq B$ erfüllt B = E.
- (iii) Die Menge B ist eine Basis von U.

Bemerkung: Man sagt auch: Eine Basis B ist eine maximale linear unabhängige Teilmenge von U und ein minimales Erzeugendensystem von U.

Lösung zu Aufgabe 2

Wir zeigen i) \Longrightarrow iii): Sei B maximal linear unabhängig in U. Nach dem Basisergänzungssatz Satz 2.3.18 kann B zu einer Basis B' von U ergänzt werden. Nun ist B' linear unabhängig. Also gilt B' = B. Das bedeutet B ist eine Basis von U.

Wir zeigen iii) \Longrightarrow i): Sei B eine Basis von U und $L \supseteq B$ linear unabhängig. Da B schon U erzeugt, erzeugt L auch U. Also ist L eine Basis von U. Dann ist $|B| = \dim U = |L|$. Also L = B. Das bedeutet L ist maximal linear unabhängig.

Wir zeigen ii) \Longrightarrow iii): Sei B ein minimales Ezeugendensystem von U. Nach dem Basisergänzungssatz Satz 2.3.18 gibt es eine Basis $B' \subseteq B$ von U. Nun ist B' auch ein Erzeugendensystem. Also gilt B' = B. Das bedeutet B ist eine Basis von U.

Wir zeigen iii) \Longrightarrow ii): Sei B eine Basis von U und $E \subseteq B$ ein Erzeugendensystem von U. Da B linear unabhängig ist, ist auch E linear unabhängig, also eine Basis von U. Dann gilt $|B| = \dim U = |E|$. Also E = B. Das bedeutet B ist ein minimales Erzeugendensystem.

Aufgabe 3 (Basis eines Kerns)

(10 Punkte)

Es sei die reelle 4×4 -Matrix

$$A := \begin{pmatrix} 2 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

gegeben. Bestimmen Sie eine Basis von $\ker(A) \subseteq \mathbb{R}^4$.

Lösung zu Aufgabe 3

Ein Vektor $v \in \mathbb{R}^4$ ist im Kern von A wenn

$$0 = Av = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \begin{pmatrix} 2v_1 + v_2 + v_3 + v_4 \\ 2v_3 + v_4 \\ v_3 \\ 0 \end{pmatrix}$$

Aus der dritten Zeile folgt $v_3 = 0$. Wenn man $v_3 = 0$ in der zweiten Zeile einsetzt, folgt aus der zweiten Zeile $v_4 = 0$. Wenn man in der ersten Zeile die Werte für v_3, v_4 einsetzt, folgt $2v_1 = -v_2$.

Also
$$\ker A = \left\{ \begin{pmatrix} -t \\ 2t \\ 0 \\ 0 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$
. Die Menge $B = \left\{ \begin{pmatrix} -1 \\ 2 \\ 0 \\ 0 \end{pmatrix} \right\}$ ist linear unabhängig. Ist $v \in \ker A$,

dann ist $v = \begin{pmatrix} -t \\ 2t \\ 0 \\ 0 \end{pmatrix}$ für ein $t \in \mathbb{R}$. Dann $v = t \begin{pmatrix} -1 \\ 2 \\ 0 \\ 0 \end{pmatrix}$. Also wird ker A von B erzeugt. Damit

folgt, dass B eine gewünschte Basis von ker A ist.

Aufgabe 4 (Lineare Unabhängigkeit und lineare Hülle)

(10 Punkte)

Es sei $U \subseteq \mathbb{R}^n$ ein Untervektorraum.

a) Es seien $v_1, v_2, v_3 \in U$ und $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \setminus \{0\}$, so dass $\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 + \lambda_3 \cdot v_3 = 0$ gilt. Zeigen Sie:

$$LH(v_1, v_2) = LH(v_1, v_3).$$

b) Seien $v_1, ..., v_n \in U \setminus \{0\}$. Zeigen Sie: Die Menge $\{v_1, ..., v_n\}$ ist genau dann linear unabhängig, wenn

$$LH(v_1, ..., v_s) \cap LH(v_{s+1}, ..., v_n) = \{0\}$$

für alle $1 \le s < n$ gilt.

Lösung zu Aufgabe 4

a) Aus der Aufgabenstellung folgt direkt, dass v_1, v_2, v_3 linear abhängig sind. Wegen $\lambda_3 \neq 0$ gilt

$$v_3 = -\frac{\lambda_1}{\lambda_3}v_1 - \frac{\lambda_2}{\lambda_3}v_2,$$

Damit ist $v_3 \in LH(v_1, v_2)$. Der Untervektorraum $LH(v_1, v_2)$ enthält also insbesondere die Vektoren v_1, v_3 und umfasst somit ganz $LH(v_1, v_3)$, denn $LH(v_1, v_3)$ ist der kleinste Untervektorraum, der v_1 und v_3 enthält (siehe . Wir haben also

$$LH(v_1, v_3) \subseteq LH(v_1, v_2)$$

gezeigt. Analog folgt

$$v_2 = -\frac{\lambda_1}{\lambda_2}v_1 - \frac{\lambda_3}{\lambda_2}v_3,$$

und mit derselben Argumentation

$$LH(v_1, v_2) \subseteq LH(v_1, v_3)$$

und somit die Gleichheit.

b) Zu zeigen ist die Äquivalenz

$$\{v_1,...,v_n\} \text{ linear unabhängig } \iff \forall s \in \mathbb{N}, 1 \leq s < n : \mathrm{LH}(v_1,...,v_s) \cap \mathrm{LH}(v_{s+1},...,v_n) = 0$$

"⇒": Es seien $v_1, ..., v_n$ linear unabhängig, $1 \le s < n$, und $v \in LH(v_1, ..., v_s) \cap LH(v_{s+1}, ..., v_n)$. Dann gibt es nach Definition der linearen Hülle Zahlen $\lambda_1, ..., \lambda_n \in \mathbb{R}$ mit

$$\lambda_1 v_1 + \dots + \lambda_s v_s = v = \lambda_{s+1} v_{s+1} + \dots + \lambda_n v_n$$

$$\Longrightarrow \lambda_1 v_1 + \dots + \lambda_s v_s - \lambda_{s+1} v_{s+1} - \dots - \lambda_n v_n = 0$$

$$\Longrightarrow \lambda_1 = \dots \lambda_s = -\lambda_{s+1} = \dots = -\lambda_n = 0$$

$$\Longrightarrow v = 0$$

Das heißt, v=0 ist das einzige Element von $\mathrm{LH}(v_1,...,v_s)\cap\mathrm{LH}(v_{s+1},...,v_n)$. " —": Angenommen, $v_1,...,v_n$ sind linear abhängig. Dann gibt es Zahlen $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ mit

$$\lambda_1 v_1 + \dots + \lambda_n v_n = 0$$

und ein $s \in \{1, ..., n\}$ mit $\lambda_s \neq 0$. Wir wählen das minimale solche s. Damit gilt

$$\lambda_s v_s = \underbrace{\lambda_1 v_1 + \dots + \lambda_{s-1} v_{s-1}}_{=0, \text{ da } s \text{ minimal}} + \lambda_s v_s = -\lambda_{s+1} v_{s+1} - \dots - \lambda_n v_n.$$

Dies zeigt aber, dass $\lambda_s v_s$ sowohl in $LH(v_1, \ldots, v_s)$ als auch in $LH(v_{s+1}, \ldots, v_n)$ liegt. Außerdem ist $v_s \in U \setminus \{0\}$ und $\lambda_s \neq 0$ und somit

$$0 \neq \lambda_s v_s \in LH(v_1, \dots, v_s) \cap LH(v_{s+1}, \dots, v_n).$$