For any finite set A and full relation R on A, there is a Hamilton path in R. Proof: We must show the for any finite set A and full relation R on A, then there exists a Hamilton path in R. Suppose A is an arbitrary set, |A| = k, and R is a full relation on A. We must show there exists a Hamilton path in R. By definition of a Hamilton path, we must show that there is a non-repeating R-path through every element in A. Assume for contradiction that the longest R-path does not include every element in A. Let (a_1, \dots, a_t) be the longest R-path, where t < k. Therefore exists an element $a^* \in A$ such that $a^* \notin (a_1, \dots, a_t)$. Since R is full, then there exists 4 cases of how a^* relates to a_1 and a_t :

- a^*Ra_1 , a^*Ra_t Since a^*Ra_1 , a^* can be appended onto the beginning of (a_1, \dots, a_t) and form a valid R-path, contradicting our previous assumption.
- a^*Ra_1 , a_tRa^* Since a^*Ra_1 , a^* can be appended onto the beginning of (a_1, \dots, a_t) and form a valid R-path, contradicting our previous assumption.
- a_1Ra^* , a_tRa^* Since a_tRa^* , a^* can be appended onto the end of (a_1, \dots, a_t) and form a valid R-path, contradicting our previous assumption.
- a_1Ra^* , a^*Ra_t Since these two relations don't provide a clear insertion point for a^* , then we must look at the orbit of a^* : $O^* = \{a \in A : a^*Ra\}$. Since a_1Ra^* , we have at least one element that is in O^{*c} . Since the relation is full by definition $A = O^* + O^{*c}$. Therefore since there exists elements of both O^* and O^{*c} that lie in (a_1, \dots, a_t) , then there must exists an element in O^{*c} next to an element from O^* . Suppose the element from O^{*c} occurs at index i. Therefore since a_iRa^* and a^*Ra_i , then a^* may be inserted at i, forming a valid R-path.

Therefore since all of the cases result in a contradiction, then t = k, and R has a Hamilton path.