

NATIONAL OPEN UNIVERSITY OF NIGERIA 14/16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY MARCH/APRIL 2014 EXAMINATION

COURSE TITLE: NUCLEAR AND RADIOCHEMISTRY

COURSE CODE: CHM406

IN	E ALLOWED: 2 ½ HOURS STRUCTION: ANSWER ANY FOUR (4 STION CARRIES 17¹/²MARKS.) QUESTIONS. EACH
QUES	STION 1	
A (i)	what is radioactivity? (2 mark)	
ii)	Briefly discuss the types of radioactivity (4 i	marks)
В	Differentiate between ordinary chemical reaction (4 marks)	s and nuclear reactions
С	Define these terms in radioactivity	
(i)	Nuclear Stability (2 mark)	
(ii)) Electron capture (2 mark)	
(iii	i) Gamma ray emission (2 mark	
d	$+ ^{27} AI \rightarrow ^{30} P + ^{1}_{1} n$ (1)	½)
QUES	STION 2	
A i)	Mention and discuss the types of exposure to lar	ge dose radiation
	(51/2 marks)	
ii)	write short notes on the basic principles recomm	ended for keeping
radiat	tions exposure to a minimum level	(6 marks)
b.	Discuss the protection of radiation measures in la	arge organisation (6
mark	s)	
QUES	STION 3	
ai)	Identify the symbol X in each of the following	
ii)	$^{0}_{-1}X$ (ii) $^{4}_{2}X$ (iii) $^{0}_{+1}X$ (iv) $^{1}_{0}X$	(2 marks)
b (i)	Explain the term Radioactive decay	(2 ½ marks)
	Write short notes on the following:	
(ii)	Conservation laws that must hold in radioactive i	eactions (8 marks)
(iii)	Above the stability region	(1 ½ marks)

iv)	Below stability level	(1 ½ marks)						
С	Balance the following radioactive equations							
i)	$^{38}_{19}$ K> + $^{0}_{+1}$ β	(1 mark)						
ii)	⁴⁰ ₁₉ K> > ⁴⁰ ₂₀ Ca +	(1 mark)						
QUESTION 4								
Α	write short notes representing with an equation wh	nere necessary on these						
i)	Beta decay	(2 marks)						
ii) ,	Alpha decay	(2 marks)						
iii)	Positron decay	(2 marks)						
iv) b)	Gamma decay Define and discuss the following	(2 marks)						
i)	Nuclear fusion Reactor	(2 marks)						
ii)	Nuclear fusion	(2 marks)						
iii)	Nuclear Fission	(2 marks)						
iv)	Chain reaction	(2 marks)						
С	Mention 2 uses of radioactivity (1 1/2mks)							
OUES	TION 5							
A	what are tracks and its measurement	(2 marks)						
В	Briefly discuss the following	(2 mans)						
i)	Solid state nuclear track detector (SSNTD)	(2 marks)						
ii)	Cloud and bubble chambers	(2 marks)						
117	Cloud and bubble chambers	(Z marks)						
С	Briefly explain the various forms of gas ionization of	counter (6 marks)						
D	Explain the two types of sample preparation in rad	ioactivity						
measurements (5 ½ marks)								
QUES	TION 6							
A (i)	Mention the two major rules guiding the writing of	chemical equations of						
	nuclear reactions.	(4						
	marks)							
ii)	Mention the nuclear models	(3						
	marks)							
b	write short notes on the following							
i)	Elastic scattering	(2 marks)						
ii)	Inelastic scattering	(2 marks)						
iii)	Nuclear excitation	(2 marks)						

iv)	Rotational excitation		(2
marks	5)		
v)	Vibrational excitation		(1
	mark)		
С	Mention the types of scintillation detector	(1	
1/2ma	arks)		