Privacy-Preserving Federated Learning for Depression Assessment

•••

Murat Şahin - 22301345 Melih Coşğun - 22301344

Presentation Structure

- Introduction
- Dataset
- Centralized Learning
- Preprocessing
- Methodology
- Federated Learning
- Background
- Methodology
- Evaluation
- Future work
- Conclusion

Introduction - DL Motivation

Depression is a serious condition

- Depression affects millions of people worldwide, harms overall life
- Curable after the correct diagnosis
- Assessment is done by popular questionnaires they require collaboration

Deep learning - is good - can use multimodal features

Introduction - FL Motivation

Addressing data sparsity + privacy

Federated learning allows training ML models without seeing the whole data

It can help clinics or hospitals to collaborate without compromising privacy

 In real world scenarios, this can lead usage of more data and allows for more generalizable models

Dataset

• **E-DAIC** dataset, which is used in **AVEC 2019** challenge

Clinical interviews done by a virtual agent, ~300 samples

Contains video features, audio recordings and transcripts

• Binary classification (depressed or non depressed)

Centralized Learning

How to use audio data? This is what you have:

MFCC coefficients can be extracted from the audio signal for further usage:

- Our dataset has ~15 minute samples
- Samples with 8 minutes of speech extracted using Weighted Random Sampling

• What is **Weighted Random Sampling**?

E-DAIC dataset is not balanced, nearly **75%** of samples are from **non-depressive** individuals.

We extract 8 minutes of random speech segments from each sample in following quantities:

10 sample if non-depressive, **30 sample** if depressive

This helps model to generalize well.

• What is **Weighted Random Sampling**?

	Non-Depressive	Depressive
Training Samples	126	37
Validation Samples	44	12
Test Samples	39	17

TABLE I
DISTRIBUTION BEFORE SAMPLING

	Non-Depressive	Depressive
Training Samples	1240	1110
Validation Samples	440	360
Test Samples	390	170

TABLE II
DISTRIBUTION AFTER SAMPLING

Centralized Learning - Methodology

- We tried different convolutional and recurrent architectures
- **Single layer GRU** and a following fully-connected layer worked the best
- We tuned parameters over validation loss and results are comparable to earlier studies in the domain

Optimizer:

Adam, lr = 0.0003, bs=32, label smoothing (0.1), early-stopping

Centralized Learning - Failed Trials

• **Excluding segments** that subject is not speaking did not worked well: model overfits to frequency jumps

 Using convolutional networks over audio features did not perform well during our testings

• Re-implementing the **work from Lin et. al.** (1D CNN) including preprocessing and training did not yield meaningful results

Centralized Learning - Test Results

Class	F1	Prec.	Rec.	Acc.
Non-Depressive	0.78	0.85	0.72	0.71
Depressive	0.60	0.52	0.71	0.71

TABLE IV
RESULTS ON CENTRALIZED

Federated Learning

FL Background Traditional ML Training on Depression Data

FL Background

Federated Approach

Federated Learning Methodology

Data partitioning

• Secure Random Sampling

• FL environment setup

FL Methodology: Data partitioning

FL Methodology: Secure Random Sampling

FL Methodology: Environment setup

• Used **Flower** framework with TensorFlow

• Centralized evaluation (server holds the validation data)

Run X epochs, get best weights based on centralized validation loss

• Tuned learning rate and batch size based on number of clients

Evaluation

Evaluation: 4-client case

- Learning rate = 0.0005, Batch Size = 32
- All other parameters are same with centralized model

- F1 score: 0.53 (0.76)
- Precision: 0.48 (0.80)
- Recall: 0.59 (0.72)
- Accuracy: 0.68

Evaluation: 4-client with differential privacy

- Learning rate = 0.0005, Batch Size = 32
- VectorizedDPKerasSGDOptimizer is used from TensorFlow-privacy library
- Default parameters are used for DP

- F1 score: 0.0 (0.81)
- Precision: 0.0 (0.69)
- Recall: 0.0 (0.97)
- Accuracy: 0.68

Evaluation: Results comparison

Case	F1	Prec.	Rec.	Acc.
Centralized	.60 (.78)	.52 (.85)	.71 (.72)	.71
4-Client	.53 (.76)	.48 (.80)	.59 (.72)	.68
8-Client	.33 (.68)	.32 (.70)	.35 (.67)	.57
4-Client DP	.0 (.81)	.0 (.69)	.0 (.97)	.68

Values in brackets represents the non-depressive class

- 4-Client case is very promising
- Only 3% accuracy loss compared to centralized training

Future Work

• Implementing more defence techniques to FL environment

Improving centralized model performance

Using different data modalities (video, text)

Evaluate different metrics (communication cost, privacy cost)

Conclusion

• Depression Assessment is an important topic

Datasets are not enough for Deep Learning

Using Federated Learning for depression assessment is applicable!

Thanks for listening.