MATH255: Mathematics for Computing Tutorial Sheet Week 5 - Autumn 2023

Note. Question 3 is your Tutorial Preparation exercises for this week. It must be completed and handed in on Moodle as a pdf before the start of your tutorial.

- 1. Let $A = \{1, 2, 3\}, B = \{x, y\}.$
 - (a) Which is bigger, $|A \times B|$ or $|B \times A|$? Is any of the following true: $A \times B \subseteq B \times A, B \times A \subseteq A \times B, A \times B = B \times A$?
 - (b) Define relation $R: A \to B, R = \{(a, y) : a \in A\}$. Which of the following are in R? (y, 1), (1, y), (x, 2), (2, x)
- 2. On \mathbb{R} , find the largest domain possible for the following functions.

(a)
$$f(x) = \frac{1}{2x^2 - 5x + 3}$$

(b)
$$g(x) = \sqrt{1 - x^2} + \sqrt[3]{x + 2} + \sqrt{-x}$$

(c)
$$h(x) = \frac{\ln(x+5)}{\sqrt{x^2+3x-28}}$$

- 3. On \mathbb{R} , let relation R be defined $xRy \Leftrightarrow |x-y| \leq 1$. Prove that R is not an equivalence relation.
- 4. On \mathbb{R}^2 , let the relation R be defined $(a,b)R(c,d) \Leftrightarrow 2a-b=2c-d$. Prove that R is an equivalence relation. Write 3 elements of [(1,2)].
- 5. (a) Let $f:[0,1)\to\mathbb{R}$ be defined by $f(x)=x^2+1$. Show that f is one-to-one but not onto.
 - (b) Let $f: \mathbb{R} \to [0, \infty)$ be defined by $f(x) = x^4$. Show that f is onto but not one-to-one.
- 6. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) := x^3$ for $x \in \mathbb{R}$. Can the inverse function be defined? If so, what is it?
 - (b) Let $f:(0,1)\to (0,\infty)$ be defined by $f(x):=\frac{x}{1-x}$ for $x\in (0,1)$. The function f is bijective; show that $g:(0,\infty)\to (0,1)$, defined by $g(x):=\frac{x}{x+1}$ is the inverse of f by demonstrating that f(g(x))=x and g(f(x))=x.