Shortest Job First

- This is also known as shortest job next, or SJN.
- It is a non-preemptive scheduling algorithm.
- Best approach to minimize waiting time.
- Easy to implement in Batch systems where required CPU time is known in advance.
- Impossible to implement in interactive systems where the required CPU time is not known.
- The processor should know in advance how much time a process will take.

Here I am going to use some short forms .

PID = Process ID

AT = Arrival Time

BT = Burst Time

CT = Completion Time

TAT = Turn Around Time

WT = Waiting Time

Example : Find Average Waiting Time & Average Turn Around Time

PID	AT	BT	
PO	1	7	
P1	2	5	
P2	3	1	
Р3	4	2	
P4	5	8	

Solution:

Process Number = N = 4

Gantt Chart:

 0.1									
PO	P2	Р3	P1	P5					
	,	,							
	8 9	7 1	1 10	5 24					

PID	AT	BT	СТ	TAT	WT
PO	1	7	8	7	0
P1	2	5	16	14	9
P2	3	1	9	6	5
P3	4	2	11	7	5
P4	5	8	24	19	11

We have gotten CT from Gantt chart.

$$TAT = CT - AT$$

 $WT = TAT - BT$

Average Turn Around Time (TAT) = Sum of TAT/N

$$= (7+14+6+7+19)/5 = 53/5 = 10.6$$
ms

Average Waiting Time (WT) = Sum of WT/N
=
$$(0+9+5+5+11)/5 = 30/5 = 6ms$$

If there is no Arrival time then Arrival time = 0 for all processes.