CSC343 Assignment 3: Database Design

Ryan Chang, Le Rong Shi

1. Relation R has attributes IJKLMNOP and functional dependencies:

$$S_P = \{M
ightarrow IJL, J
ightarrow LI, JN
ightarrow KM, M
ightarrow J, KLN
ightarrow M, K
ightarrow IJL, IJ
ightarrow K\}$$

(a) Find a minimal basis for R.

Step 1: Split the RHSs to get our initial set of FDs, S_{p1} . We obtain:

(1) $M \rightarrow I$

- (6) $JN \rightarrow K$
- (11) K o J

- (2) $M \rightarrow J$
- (7) JN o M
- (12) K o L

- (3) $M \rightarrow L$
- (8) M o J
- (13) $IJ \rightarrow K$

- (4) $J \rightarrow L$
- (9) $KLN \rightarrow M$

(5) $J \rightarrow I$

(10) $K \rightarrow I$

Step 2: For each FD, try to reduce the LHS with 2+ attributes. We obtain:

- (6) $JN \to K$ to $J \to K$. Since $J^+ = JLIK$, so we can reduce the LHS of this FD to just J.
- (7) Since the closure of both J and N doesn't include M, so no need to reduce this FD.
- (9) Since non of the closure of the singleton attributes include M, and $KN^+ = KNIJLM$, so we can reduce the LHS of this FD to KN.
- (13) Using the reduced FD from (6), we know that $J \to K$. So any superset of J that determines K can be reduced to just J on the LHS.

Our new set, which we call S_{p2} :

(1) $M \rightarrow I$

- (6) $J \rightarrow K$
- (11) $K \rightarrow J$

- (2) $M \rightarrow J$
- (7) $JN \rightarrow M$
- (12) $K \rightarrow L$

- (3) $M \rightarrow L$
- (8) $M \rightarrow J$
- (13) $J \rightarrow K$

- (4) $J \rightarrow L$
- (9) $KN \rightarrow M$

- (5) $J \rightarrow I$
- (10) $K \rightarrow I$

Step 3: Try remove redundant FDs (those that are implied by others). We obtain:

- (1) $M_{S_{v^2}-\{(1)\}}^+ = MJL\underline{I}K$. We can remove this FD.
- (2) $M^+_{S_{r^2}-\{(1),(2)\}}=ML.$ We need this FD.
- (3) $M^+_{S_{p2}-\{(1),(3)\}}=MJ\underline{L}IK.$ We can remove this FD.
- (4) $J^+_{S_{p_2}-\{(1),(3),(4)\}}=JIK\underline{L}$. We can remove this FD.
- (5) $J_{S_{p_2}-\{(1),(3),(4),(5)\}}^+ = JK\underline{I}L$. We can remove this FD.
- (6) $J_{S_{p2}-\{(1),(3),(4),(5),(6)\}}^+=J$. We need this FD.
- (7) $JN_{S_{22}-\{(1),(3),(4),(5),(7)\}}^+ = JNKIL\underline{M}$. We can remove this FD.
- (8) Duplicate FD from (2). We can remove this FD.
- (9) $KN_{S_{n^2}-\{(1),(3),(4),(5),(7),(8),(9)\}}^+ = KN$. We need this FD.
- (10) $K^+_{S_{p2}-\{(1),(3),(4),(5),(7),(8),(10)\}}=KJL.$ We need this FD.
- (11) $K^+_{S_{p2}-\{(1),(3),(4),(5),(7),(8),(11)\}}=KIL$. We need this FD.
- (12) $K^+_{S_{p2}-\{(1),(3),(4),(5),(7),(8),(12)\}}=KIJ.$ We need this FD.
- (13) Duplicate FD from (6). We can remove this FD.

Our final set of FDs is:

$$S_{p3} = \{M
ightarrow J, J
ightarrow K, KN
ightarrow M, K
ightarrow I, K
ightarrow J, K
ightarrow L\}$$

(b) Find all keys for R.

Attribute	LHS	RHS	Conclusion
I	✓	✓	must check
J	✓	✓	must check
K	✓	✓	must check
L	✓	✓	must check
M	✓	✓	must check
N	✓	_	must be in every key
0	_	_	must be in every key
P	_	_	must be in every key

Now checking the closure of every attribute that is in both LHS and RHS:

- $INOP^+ = NOPI$. Not a key.
- $\underline{J}NOP^+ = NOPJLIKM$. So JNOP is a key.
- $\underline{K}NOP^+ = NOPKIJLM$. So KNOP is a key.
- $\underline{L}NOP^+ = NOPL$. Not a key.
- $\underline{M}NOP^+ = NOPMIJLK$. So MNOP is a key.
- (c) Uses 3NF to find a lossless, dependency-preserving decomposition of R. Revised FDs (concat rightside):
 - ullet M o J
 - ullet J o K
 - \bullet $KN \rightarrow M$
 - ullet K o IJL

From these we get four relations.

$$R_1(J, M), R_2(J, K), R_3(K, N, M), R_4(I, J, K, L)$$

- Since J, K occur in R_4 , we don't need R_2
- Since none of the relations have attribute lists that are keys we need to add a relation that contains a key, So We'll add $R_5(N, O, P, K)$

So our final answer will be $R_1(J, M), R_5(K, N, O, P), R_3(K, M, N), R_4(I, J, K, L)$

(d) Does your schema allow redundancy? Explain why, or why not.

No because all relations are in BCNF. WILL TYPE UP explaination TMRW

2. Relation T contains attributes CDEFGHIJ and functional dependencies:

$$S_T = \{C
ightarrow EH, DEI
ightarrow F, F
ightarrow D, EH
ightarrow CJ, J
ightarrow FGI\}$$

(a)

Which of the FDs in S_T violate BCNF?

- ullet $C^+ = CDEFGHIJ$ so C o EH does not violate BCNF
- ullet $DEI^+ = DEIF$ so DEI
 ightarrow F does violate BCNF
- ullet $F^+=FD$ so F o D does violate BCNF
- ullet $EH^+=CDEFGHIJ$ so EH o CJ does not violate BCNF
- ullet $J^+=JFGID$ so J o FGI does violate BCNF

(b)

Decompose T into a collection of relations that are each in BCNF.

- ullet Decompose T using FD $DEI o F.\ DEI^+ = DEIF$, so this yields two relations $R_1 = DEFI$ and $R_2 = CDEGHIJ$
- Project the DFs onto $R_1 = DEFI$.

D	E	F	I	closure	FDs
√				$D^+ = D$	nothing
	√			$E^+=E$	nothing
		√		$F^+=FD$	F o D; violates BCNF; abort

We must decompose R_1 further.

- ullet Decompose R_1 using FD F o D. so this yields two relations $R_3=FD$ and $R_4=FEI$
- Project the FDs onto $R_3 = FD$.

,		0	
F	D	closure	FDs
✓		$F^+=FD$	F o D
	✓	$D^+ = D$	nothing

• Project the FDs onto $R_4 = FEI$.

F	E	I	closure	FDs
√			$F^+=FD$	nothing
	✓		$E^+=E$	nothing
		✓	$I^+ = I$	nothing
√	✓		$FE^+=FED$	nothing
√		✓	$FI^+=FI$	nothing
	✓	✓	$EI^+=EI$	nothing

ullet Return to $R_2=CDEGHIJ$ and prodject the FDs onto it.

		۵			1	J		
C	D	E	G	Н	I	J	closure	FDs
✓							$C^+ = CDEGHIJ$	nothing
	✓						$D^+ = D$	nothing
		✓					$E^+=E$	nothing
			✓				$G^+=G$	nothing
				✓			$H^+ = H$	nothing
					✓		$I^+ = I$	nothing
						√	$J^+=JFGID$	J o IDG

- ullet Decompose R_2 using FD J o IDG. so this yields two relations $R_5 = JIDG$ and $R_6 = CEHJ$
- Project the FDs onto $R_5 = JIDG$.

J	I	D	G	closure	FDs
/				$J^+=JFGID$	J ightarrow IDG; dont need to consider
V				$\sigma = \sigma \Gamma G D$	super-sets of J
	✓			$I^+ = I$	nothing
		✓		$D^+ = D$	nothing
			✓	$G^+=G$	nothing
	√	✓		$ID^+ = ID$	nothing
	√		✓	$IG^+=IG$	nothing
		✓	✓	$DG^+=DG$	nothing

• Project the FDs onto $R_6 = CEHJ$.

C	E	Н		-1	FDs
	F.	П	J	closure	F DS
				$C^+ =$	ig C ightarrow EHJ; dont need to consider
V				CEHJFGI	super-sets of C
	✓			$E^+=E$	nothing
		✓		$H^+=H$	nothing
			✓	$J^+=J$	nothing
	√	1		$EH^+ =$	EH ightarrow CEHJFGID
	'	\ \ \		CEHJFGID	$BH \rightarrow CBH F G I D$
				$EJ^+ =$	nothing
	V		'	EJFGID	nothing
			,	$HJ^+ =$	nothing
		'	'	HJFGID	nothing

So relation T containing attributes CDEFGHIJ decomposes in to relations

$$ullet R_3 = FD \ ext{FDs} = \{F
ightarrow D\}$$

•
$$R_4 = EFI$$

FDs = {}

$$ullet R_5 = DGIJ \ {
m FDs} = \{J
ightarrow DGI\}$$

$$ullet R_6 = CEHJ \ {
m FDs} = \{EH
ightarrow CJ, C
ightarrow EH\}$$