41080 Theory of Computing Science Week 2 Tutorial Class

Chuanqi Zhang

Centre for Quantum Software and Information University of Technology Sydney

15th August, 2024

Outline

• Review: languages and operations on them

• Keynote: DFAs and their relation with languages

• Tutorial: how to do the product construction of two DFAs

- Σ : an alphabet set;
- Σ^n : the set of all length-n strings over Σ :
- Σ^* : the set of ALL strings over Σ .

Definition (Language)

L is a language if $L \subseteq \Sigma^*$ for some Σ

Example (Language)

- Σ : an alphabet set;
- Σ^n : the set of all length-n strings over Σ ;
- Σ^* : the set of ALL strings over Σ .

Definition (Language)

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

- Σ : an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- Σ^* : the set of ALL strings over Σ .

Definition (Language)

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

- Σ : an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- Σ^* : the set of ALL strings over Σ .

Definition (Language)

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

- Σ : an alphabet set;
- Σ^n : the set of all length-n strings over Σ ;
- Σ^* : the set of ALL strings over Σ .

Definition (Language)

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}$

the empty string

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^{\mathbb{R}} = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}$

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

the empty string

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$ the empty string

Definition (DFA)

- \bigcirc Q: a set of states;

- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

- \bigcirc Q: a set of states;

- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

- lacktriangledown Q: a set of states;
- \circ Σ : an alphabet set;

- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

- \bigcirc Q: a set of states;
- \circ Σ : an alphabet set;
- \circ q_0 : the start state;
- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

- lacktriangledown Q: a set of states;
- \circ Σ : an alphabet set;
- \circ q_0 : the start state;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

- Q: a set of states;
- \circ Σ : an alphabet set;
- \circ q_0 : the start state;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

- Q: a set of states;
- \circ Σ : an alphabet set;
- $\mathbf{0}$ q_0 : the start state;
- \bullet $F \subseteq Q$: a set of accept states;
- $\delta: Q \times \Sigma \to Q$: a transition function, e.g., $\delta(q_0, 1) = q_1$.

From DFA to language

Example (DFA)

Exercise

Write down the language that the above DFA recognises

Solution: $L = \{w \in \{0,1\}^* \mid w \text{ contains even number of 1s}\}$

From DFA to language

Example (DFA)

Exercise

Write down the language that the above DFA recognises.

Solution: $L = \{w \in \{0,1\}^* \mid w \text{ contains even number of 1s}\}$

From DFA to language

Example (DFA)

Exercise

Write down the language that the above DFA recognises.

Solution: $L = \{w \in \{0,1\}^* \mid w \text{ contains even number of 1s}\}.$

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language

Solution:

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

UTS:QS

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

UTS:QS

Definition (NFA)

- Q: a set of states
- $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function

Definition (NFA)

- $\mathbf{0}$ Q: a set of states;
- $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states:
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function

Definition (NFA)

- $\mathbf{0}$ Q: a set of states;
- \circ Σ : an alphabet set;
- $Q_0 \subseteq Q$: a set of start states
- \bullet $F \subseteq Q$: a set of accept states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function.

Definition (NFA)

- $\mathbf{0}$ Q: a set of states;
- \circ Σ : an alphabet set;
- $Q_0 \subseteq Q$: a set of start states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function

Definition (NFA)

- Q: a set of states;
- \circ Σ : an alphabet set;
- $Q_0 \subseteq Q$: a set of start states;
- \bullet $F \subseteq Q$: a set of accept states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function

Definition (NFA)

- $\mathbf{0}$ Q: a set of states;
- \circ Σ : an alphabet set;
- $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function.

Definition (NFA)

- $\mathbf{0}$ Q: a set of states;
- $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function, e.g., $\delta(q_0, 1) = \{q_1, q_2\}$.

What is a non-deterministic finite automaton?

Definition (NFA)

A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

- \bullet Q: a set of states;
- **3** $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function.

Note that 2^Q refers to the set consisting of all subsets of Q.

From NFA to language

Exercise

Write down the language that the above NFA recognises

Solution: $L = \{w \in \{0,1\}^* \mid w \text{ contains } 11 \text{ or } 101 \text{ as substrings.} \}$

From NFA to language

Exercise

Write down the language that the above NFA recognises.

Solution: $L = \{w \in \{0,1\}^* \mid w \text{ contains } 11 \text{ or } 101 \text{ as substrings.} \}$

From NFA to language

Exercise

Write down the language that the above NFA recognises.

Solution: $L = \{w \in \{0,1\}^* \mid w \text{ contains } 11 \text{ or } 101 \text{ as substrings.}\}.$

From language to NFA

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Solution.

start
$$\longrightarrow q_0 \longrightarrow q_1 \longrightarrow q_2$$

$$0, 1$$

From language to NFA

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Solution:

$$\operatorname{start} \longrightarrow \overbrace{q_0} \longrightarrow \overbrace{q_1} \longrightarrow \overbrace{q_2}$$

$$0.1$$

From language to NFA

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Solution:

Definition (Product construction of two DFAs)

Let $M=(P,\Sigma,p_0,E,\alpha)$ and $N=(Q,\Sigma,q_0,F,\beta)$ be two DFAs. The product construction for recognising $L(M)\cup L(N)$ is to construct $O=(R,\Sigma,r_0,G,\gamma)$ where

- ① the state set $R = P \times Q$
- ② the start state $r_0 = (p_0, q_0)$;
- the transition function $\gamma: (P \times Q) \times \Sigma \to (P \times Q)$ given by $\gamma((p,q),a)) = (\alpha(p,a), \beta(q,a)).$

Definition (Product construction of two DFAs)

Let $M=(P,\Sigma,p_0,E,\alpha)$ and $N=(Q,\Sigma,q_0,F,\beta)$ be two DFAs. The product construction for recognising $L(M)\cup L(N)$ is to construct $O=(R,\Sigma,r_0,G,\gamma)$ where

- the state set $R = P \times Q$;

- the transition function $\gamma: (P \times Q) \times \Sigma \to (P \times Q)$ given by $\gamma((p,q),a) = (\alpha(p,a), \beta(q,a))$.

Definition (Product construction of two DFAs)

Let $M=(P,\Sigma,p_0,E,\alpha)$ and $N=(Q,\Sigma,q_0,F,\beta)$ be two DFAs. The product construction for recognising $L(M)\cup L(N)$ is to construct $O=(R,\Sigma,r_0,G,\gamma)$ where

- the state set $R = P \times Q$;
- 2 the start state $r_0 = (p_0, q_0)$;
- \bullet the accept state set $G = \{(p,q) \mid p \in Eq \in F\}$
- the transition function $\gamma:(P\times Q)\times\Sigma\to(P\times Q)$ given by $\gamma((p,q),a))=(\alpha(p,a),\beta(q,a)).$

Definition (Product construction of two DFAs)

Let $M = (P, \Sigma, p_0, E, \alpha)$ and $N = (Q, \Sigma, q_0, F, \beta)$ be two DFAs. The product construction for recognising $L(M) \cup L(N)$ is to construct $O = (R, \Sigma, r_0, G, \gamma)$ where

- the state set $R = P \times Q$;
- 2 the start state $r_0 = (p_0, q_0)$;
- **3** the accept state set $G = \{(p,q) \mid p \in E \text{ or } q \in F\}.$
- the transition function $\gamma: (P \times Q) \times \Sigma \to (P \times Q)$ given by $\gamma((p,q),a)) = (\alpha(p,a), \beta(q,a)).$

Definition (Product construction of two DFAs)

Let $M = (P, \Sigma, p_0, E, \alpha)$ and $N = (Q, \Sigma, q_0, F, \beta)$ be two DFAs. The product construction for recognising $L(M) \cup L(N)$ is to construct $O = (R, \Sigma, r_0, G, \gamma)$ where

- the state set $R = P \times Q$;
- 2 the start state $r_0 = (p_0, q_0)$;
- **3** the accept state set $G = \{(p,q) \mid p \in E \text{ or } q \in F\}.$
- $\textbf{ 1} \text{ the transition function } \gamma: (P \times Q) \times \Sigma \to (P \times Q) \text{ given by } \gamma((p,q),a)) = (\alpha(p,a),\beta(q,a)).$

Definition (Product construction of two DFAs)

Let $M = (P, \Sigma, p_0, E, \alpha)$ and $N = (Q, \Sigma, q_0, F, \beta)$ be two DFAs. The product construction for recognising $L(M) \cap L(N)$ is to construct $O = (R, \Sigma, r_0, G, \gamma)$ where

- the state set $R = P \times Q$;
- 2 the start state $r_0 = (p_0, q_0)$;
- \bullet the accept state set $G = \{(p,q) \mid p \in E \text{ and } q \in F\}.$
- $\textbf{ 1} \text{ the transition function } \gamma: (P \times Q) \times \Sigma \to (P \times Q) \text{ given by } \gamma((p,q),a)) = (\alpha(p,a),\beta(q,a)).$

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

Construct a DFA for $L_1 \cap L_2$ (recognised by the given two DFAs, respectively).

