Functional Analysis - Homework 6

Problem 1. Let X and Y be Banach spaces, and let $T:D\subset X\to Y$ be a linear operator with closed graph. Show that the following two statements are equivalent:

- (a) T is injective and T(D) is closed in Y.
- (b) $\exists C > 0$ such that $||x||_X \le C ||Tx||_Y$ $\forall x \in D$.

Proof. (b) \Longrightarrow (a)

Let $x_1, x_2 \in X$ and set $Tx_1 = Tx_2$. We have

$$||x_1 - x_2||_X \le C ||T(x_1 - x_2)||_Y = C ||Tx_1 - Tx_1||_Y = 0$$
(1)

$$\therefore x_1 - x_2 = 0 \tag{2}$$

$$\therefore x_1 = x_2 \tag{3}$$

Thus T is injective.

Next, we prove that T(D) is closed. Let $y_n = Tx_n \in T(D)$ be a sequence such that $y_n \to y$ in Y. Then, $\forall \epsilon > 0, \exists m, n > N$, such that $\|y_n - y_m\|_Y < \frac{\epsilon}{C}$, then we have

$$||x_n - x_m||_{Y} \le C ||Tx_n - Tx_m||_{Y} = C ||y_n - y_m||_{Y} < \epsilon \tag{4}$$

so (x_n) is Cauchy in X. Since X is Banach, there exists $x \in X$ with $x_n \to x$. Because the graph of T is closed and $Tx_n \to y$, we have (x, y) in the graph of T, so $x \in D$ and Tx = y. Thus $y \in T(D)$, so T(D) is closed.

 $(a) \Rightarrow (b)$

With the assumption that T is injective we can define the inverse operator

$$S := T^{-1} : T(D) \to D \subset X. \tag{5}$$

Since T(D) is a closed subspace of a Banach space Y, it is also a Banach space.

Let $y_n = Tx_n \to y$ in T(D) and $Sy_n = x_n \to x$ in X. Since T has closed graph, (x, y) is in the graph of T, so y = Tx. Therefore (y, x) is in the graph of S, hence the graph of S is closed.

Let graph

$$Gr(S) = \{(y, x) \in Y \times X : x = Sy\}$$

$$(6)$$

with a norm

$$||(y,x)|| = ||y||_Y + ||x||_X. (7)$$

Since X and Y are Banach, Gr(S) is Banach as well.

Define projections, $\forall x \in X, y \in Y$

$$\pi_1(y, x) = y \tag{8}$$

$$\pi_2(y, x) = x \tag{9}$$

 π_1 is bounded since $||y||_Y \le ||(y,x)|| = ||y||_Y + ||x||_X$. It is bijective as well. With the open mapping theorem, for any open set $O \subset Y \times X$, $\pi_1(O) \subset Y$, which implies π_1^{-1} is continuous.

Similar to π_1 , π_2 is also bounded and continuous. Thus, $S = \pi_2 \circ \pi_1^{-1}$ is continuous and bounded.

That is, there exists C > 0 such that

$$||Sy||_X \le C ||y||_Y \qquad \forall y \in T(D) \tag{10}$$

$$\implies \|x\|_X \le C \|Tx\|_Y \qquad \forall x \in D \tag{11}$$

which is (b).

Problem 2. Let $(X, \|\cdot\|)$ be an infinite-dimensional normed space. Let $Y \subset X$ be bounded. Assume that the boundary ∂Y is compact. Prove that $int(Y) = \emptyset$.

Proof. Assume for contradiction that $int(Y) \neq \emptyset$. Then there exists a point $x_0 \in X$ and r > 0 such that the open ball $B(x_0,r) \subset Y$.

For each $u \in S := \{v \in X : ||v|| = 1\}$ define

$$t(u) := \sup\{t \ge 0 : x_0 + tu \in Y\}. \tag{12}$$

Since $B(x_0,r) \subset Y$ we have $t(u) \geq r > 0$ for all u, and because Y is bounded each t(u) is finite. Set

$$f(u) := x_0 + t(u)u, \tag{13}$$

$$V := \{ f(u) : u \in S \} \subset \partial Y. \tag{14}$$

Injectivity. If f(u) = f(v) then t(u)u = t(v)v. As t(u), t(v) > 0 this forces u = v, so f is injective. Thus $f: S \to V$ is a bijection.

Continuity of the inverse. For $y \in V$ we have $y - x_0 \neq 0$ and

$$f^{-1}(y) = \frac{y - x_0}{\|y - x_0\|} \in S, \tag{15}$$

which is a continuous map on V. Hence $f^{-1}:V\to S$ is continuous.

Continuity of f. Let $u_n \to u$ in S and $y_n := f(u_n) \in \partial Y$. Since ∂Y is compact, $\{y_n\}$ has a convergent subsequence $y_{n_k} \to y \in \partial Y$. Thus,

$$\frac{y_{n_k} - x_0}{\|y_{n_k} - x_0\|} = u_{n_k} \to u,\tag{16}$$

so the limit satisfies $\frac{y-x_0}{\|y-x_0\|}=u$. By definition of t(u) we have $y=x_0+t(u)u=f(u)$. Thus every convergent subsequence of $\{y_n\}$ converges to f(u), so the whole sequence $y_n \to f(u)$.

Therefore, f is sequentially continuous, and in turn it is continuous.

Combining bijectivity, continuity of f, and continuity of f^{-1} , we have that $f: S \to V$ is a homeomorphism.

Since S is not compact as a unit sphere in an infinite-dimensional normed space, V is not compact. But $V \subset \partial Y$ and ∂Y was assumed compact, a contradiction. Hence int $Y = \emptyset$.

Problem 3. Let $(X, \|\cdot\|_X)$ be a finite-dimensional normed space with $\dim(X) = d$. Let $x \in X$ and $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. Prove that weak convergence $x_n\xrightarrow{w} x$ for $n\to\infty$ implies that $||x_n-x||_X\to\infty$ $0 \text{ for } n \to \infty.$

Proof. Since dim(X) = $d < \infty$, X has a basis $\mathcal{B} = \{e_1, e_2, \dots, e_d\}$.

Any vector $x \in X$ can be uniquely represented by its coordinates $x = \sum_{i=1}^{d} \alpha_i e_i$, where $\alpha_i \in \mathbb{K}$. Similarly, for the sequence, $x_n = \sum_{i=1}^d \alpha_i^{(n)} e_i$. For each basis vector e_i , let the *i*-th element of the dual basis $\phi_i \in X^*$ defined by $\phi_i(e_j) = \delta_{ij}$. Thus,

$$\phi_i(x) = \phi_i \left(\sum_{j=1}^d \alpha_j e_j \right) = \alpha_i \tag{17}$$

In a finite-dimensional space, every linear functional is continuous, so $\phi_i \in X^*$. $x_n \xrightarrow{w} x$ means

$$\lim_{n \to \infty} f(x_n) = f(x) \qquad \forall f \in X^*$$
(18)

$$\therefore \lim_{n \to \infty} \phi_i(x_n) = \phi_i(x) \tag{19}$$

$$\therefore \lim_{n \to \infty} \alpha_i^{(n)} = \alpha_i \tag{20}$$

2

Since X is finite-dimensional, all norms on X are equivalent. Specifically, $\|\cdot\|_X$ is equivalent to the L^1 norm:

$$||x||_1 = \left\| \sum_{i=1}^d \alpha_i e_i \right\|_1 := \sum_{i=1}^d |\alpha_i|$$
 (21)

The equivalence of norms implies that there exists a constant C > 0 such that for any vector $v \in X$, $||v||_X \le C ||v||_1.$

Apply this equivalence, we can have

$$||x_n - x||_X = \left\| \sum_{i=1}^d (\alpha_i^{(n)} - \alpha_i) e_i \right\| \le C \sum_{i=1}^d |\alpha_i^{(n)} - \alpha_i|$$
 (22)

$$\therefore \lim_{n \to \infty} \|x_n - x\|_X \le \lim_{n \to \infty} \left(C \sum_{i=1}^d |\alpha_i^{(n)} - \alpha_i| \right)$$
 (23)

$$\therefore \lim_{n \to \infty} \|x_n - x\|_X \le C \sum_{i=1}^d \left(\lim_{n \to \infty} |\alpha_i^{(n)} - \alpha_i| \right)$$
 (24)

From (19), we know $\lim_{n\to\infty} |\alpha_i^{(n)} - \alpha_i| = 0$. Therefore,

$$\lim_{n \to \infty} \|x_n - x\|_X \le C \sum_{i=1}^d 0 = 0$$
 (25)

$$\therefore \lim_{n \to \infty} ||x_n - x||_X = 0 \tag{26}$$

, which is $||x_n - x||_X \to 0$ for $n \to \infty$.

Problem 4. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces, and let $T: X \to Y$ be a linear operator. Prove the equivalence of the following statements:

- (a) T is continuous.
- (b) Given a sequence $(x_n)_{n\in\mathbb{N}}$ in X, if $x_n \xrightarrow{w} x$ in X then $Tx_n \xrightarrow{w} Tx$ in Y.

Proof. (a) \Longrightarrow (b)

Assume T is continuous (i.e., bounded). Let (x_n) be a sequence such that $x_n \xrightarrow{w} x$ in X.

Let $g \in Y^*$, meaning it is a continuous linear functional on Y.

Let $f = g \circ T : X \to \mathbb{K}$, defined by f(z) = g(Tz). f is linear and continuous, as T and g are linear and continuous. Thus, $f \in X^*$.

Since $x_n \xrightarrow{w} x$ in X, by the definition of weak convergence, we have

$$\lim_{n \to \infty} f(x_n) = f(x) \tag{27}$$

$$\lim_{n \to \infty} f(x_n) = f(x)$$

$$\therefore \lim_{n \to \infty} g(Tx_n) = g(Tx)$$
(28)

Since this holds for every $g \in Y^*$, we conclude that $Tx_n \xrightarrow{w} Tx$ in Y.

 $(b) \implies (a)$

Let $g \in Y^*$ with $\|g\|_{Y^*} = 1$, and $F = \{f_g = g \circ T : g \in Y^*, \|g\|_{Y^*} = 1\}$. For fixed $x \in X, \forall f_g \in F, |f_g(x)|$ is bounded because

$$|f_g(x)| = |g(Tx)| \le ||g||_{Y^*} ||Tx||_Y = ||Tx||_Y < \infty.$$
(29)

By the statement (b), $\forall g \in Y^*, f_g = g \circ T$ is weakly sequentially continuous. Since f_g is linear, it is continuous and $f_g \in X^*$.

By the Uniform Boundedness Principle, ${\cal F}$ is uniformly bounded.

$$\sup_{f_* \in F} \|f_g\|_{X^*} < \infty \tag{30}$$

$$\sup_{f_g \in F} \|f_g\|_{X^*} < \infty$$

$$\therefore \sup_{\|g\|_{Y^*} = 1} \|g \circ T\|_{X^*} < \infty.$$
(30)

Therefore,

$$||T|| = \sup_{\|x\|_X = 1} ||Tx||_Y \tag{32}$$

$$\begin{aligned}
&= \sup_{\|x\|_{X}=1} \left(\sup_{\|g\|_{Y^{*}}=1} |g(Tx)| \right) \\
&= \sup_{\|g\|_{Y^{*}}=1} \left(\sup_{\|x\|_{X}=1} |(g \circ T)(x)| \right) \\
&= \sup_{\|g\|_{Y^{*}}=1} \|g \circ T\|_{X^{*}} < \infty
\end{aligned} (33)$$

$$= \sup_{\|g\|_{Y^*}=1} \left(\sup_{\|x\|_X=1} |(g \circ T)(x)| \right)$$
 (34)

$$= \sup_{\|g\|_{Y^*} = 1} \|g \circ T\|_{X^*} < \infty \tag{35}$$

, which means T is continuous.

4