lab2 danhe178 rical803

Daniel Herzegh & Richard Friberg 2017-10-03

Uppgift 1 Likelihoodfunktioner

a)

```
llgamma <- function(x, alpha, beta) {
  return(length(x) * (alpha * log(beta) - lgamma(alpha)) + (alpha -1) * sum(log(x)) - beta * sum(x))
}</pre>
```

b)

```
set.seed(4711) #FRÅGA OM VI SKA ANVÄNDA SEED ELLER EJ
x1 <- rgamma(n = 10, shape = 4, scale = 1)
x2 <- rgamma(n = 100, shape = 4, scale = 1)

tendraws <- c()
hundreddraws <- c()
steps <- c()

i = 0.01
while(i <= 3) {
   tendraws <- c(tendraws, llgamma(x1, alpha = 4, beta = i))
   hundreddraws <- c(hundreddraws, llgamma(x2, alpha = 4, beta = i))
   steps <- c(steps, i)
   i <- i + 0.01
}</pre>
```

```
# plot for ten draws
plot(steps, tendraws)
```


plot for hundred draws
plot(steps, hundreddraws)


```
# Undersöker och returnerar vilket betavärde som loglikelyhoodfunktionen får sitt maxvärde på
findMaxIndex <- function(vect) {
   i <- NULL
   currentMax <- -Inf
   x <- 1
   while (x < length(vect)) {
      if (vect[x] > currentMax) {
```

```
currentMax <- vect[x]
    i <- x
}
    x <- x + 1
}
    return(i/100)
}

findMaxIndex(tendraws)</pre>
```

[1] 0.77

findMaxIndex(hundreddraws)

```
## [1] 0.96
```

Det varierar vilket av de upprepade värdena för beta som ger maximala värdet på loglikelihoodfunktionen, men ökar man antalet dragningar går denna siffra mot 1.0.

c)

```
x1 <- rgamma(n = 10, shape = 4, scale = 1)
x2 <- rgamma(n = 100, shape = 4, scale = 1)

tendraws <- c()
hundreddraws <- c()
steps <- c()

i = 0.01
while(i <= 10) {
   tendraws <- c(tendraws, llgamma(x1, alpha = i, beta = 1))
   hundreddraws <- c(hundreddraws, llgamma(x2, alpha = i, beta = 1))
   steps <- c(steps, i)
   i <- i + 0.01
}</pre>
```

```
# plot for ten draws
plot(steps, tendraws)
```


plot for hundred draws
plot(steps, hundreddraws)


```
if (vect[x] > currentMax) {
    currentMax <- vect[x]
    i <- x
}
    x <- x + 1
}
return(i/100)
}</pre>
```

[1] 3.33

findMaxIndex(hundreddraws)

[1] 4.28

Det varierar vilket av de upprepade värdena för alpha som ger maximala värdet på loglikelihoodfunktionen, men ökar man antalet dragningar går denna siffra mot 4.0.

d) FRÅGA PÅ LABBEN!

```
llnormal <- function(x, mu, sigma2) {
}</pre>
```

e)

Uppgift 2 Punktskattning med MLE i en gammafördelning

```
gamma_beta_mle <- function(x, alpha) {
   return(length(x)*alpha*1/sum(x))
}
x1 <- rgamma(n = 10, shape = 4, scale = 1)
x2 <- rgamma(n = 100, shape = 4, scale = 1)
gamma_beta_mle(x1, 2)</pre>
```

[1] 0.4085222

```
gamma_beta_mle(x2, 2)
```

[1] 0.4839516

Vi testade att öka antalet dragningar och drar slutsatsen att estimatet går mot 0.5

Uppgift 3 Punktskattning med MLE i en normalfördelning

a)

```
norm_mu_mle <- function(x) {</pre>
  return(1/length(x)*sum(x))
norm_sigma2_mle <- function(x) {</pre>
  sumhelp <- 0</pre>
  j <- 1
  while(j <= length(x)) {</pre>
    sumhelp <- sumhelp + (x[j] - norm_mu_mle(x))**2</pre>
    j <- j + 1
  return(1/length(x)*sumhelp)
test_x <- 1:10
norm_mu_mle(x = test_x)
## [1] 5.5
norm_sigma2_mle(x = test_x)
## [1] 8.25
b)
set.seed(42)
\# Skattning med n = 10
y1 \leftarrow rnorm(n = 10, mean = 10, sd = 2)
norm_mu_mle(x = y1)
## [1] 11.09459
norm_sigma2_mle(x = y1)
## [1] 2.512709
\# Skattning med n = 10000
y2 \leftarrow rnorm(n = 10000, mean = 10, sd = 2)
norm_mu_mle(x = y2)
## [1] 9.9762
```

```
norm_sigma2_mle(x = y2)
```

```
## [1] 4.048198
```

Desto större antal dragningar som görs, desto närmare kommer vi mu och sigma2, med respektive norm_mu_mle och norm_sigma2_mle. Detta följer av centralagärnsvärdessatsen som ger oss ett y som går mot normalfördelning och därmed tydligare väntevärde samt varians.

FRÅGA OM MAN KAN SÄGA ATT EN VEKTOR MED TAL GÅR MOT EN VISS FÖRDELNING

Uppgift 4 Samplingfördelningen för Bmle, MUmle och sigma2mle

a)

```
beta1_mle <- c(1:2000)
beta2_mle <- c(1:2000)
mu1 <- c(1:2000)
mu2 <- c(1:2000)
sigma1 <- c(1:2000)
sigma2 <- c(1:2000)
i <- 1
while (i \leq 2000) {
  x1 \leftarrow rgamma(n = 10, shape = 4, rate = 1)
  x2 \leftarrow rgamma(n = 10000, shape = 4, rate = 1)
  beta1_mle[i] <- gamma_beta_mle(x = x1, alpha = 4)
  beta2_mle[i] <- gamma_beta_mle(x = x2, alpha = 4)</pre>
  y1 \leftarrow rnorm(n = 10, mean = 10, sd = 2)
  y2 \leftarrow rnorm(n = 10000, mean = 10, sd = 2)
  mu1[i] \leftarrow norm_mu_mle(x = y1)
  mu2[i] \leftarrow norm_mu_mle(x = y2)
  sigma1[i] <- norm_sigma2_mle(x = y1)</pre>
  #sigma2[i] <- norm_sigma2_mle(x = y2) #FRÅGA: GÅR LÅNGSAMT. HOW TO MAKE IT GO FASTER??? CAN WE DO THI
  i <- i + 1
hist(beta1_mle)
```

Histogram of beta1_mle

hist(beta1_mle)

Histogram of beta1_mle

hist(beta2_mle)

Histogram of beta2_mle

hist(mu1)

Histogram of mu1

hist(mu2)

Histogram of mu2

hist(sigma1)

Histogram of sigma1

hist(sigma2)

Histogram of sigma2

Precis som tidigare ser vi att ju fler dragningar så närmar sig histogrammen en normalfördelning vilket följer av den centrala gränsvärdessatsen.

Uppgift 5 Log-likelihoodfunktionen för betafördelning

a)

```
llbeta <- function(par, x){
  helpsum <- 0
  i <- 1
  while(i <= length(x)) {
    helpsum <- helpsum + logb(par[1] + 1, x[i] + par[2])
    i <- i + 1
  }
  return (helpsum + length(x)*logb(par[1], par[2]))
}
llbeta(par = c(2, 2), x = c(0.01, 0.5, 0.99))</pre>
```

[1] 6.775666

FRÅGA: OPTIM()?, MULTIPLICERAD MED -1???

relevant länk (med vår formel): https://stats.stackexchange.com/questions/137989/how-do-you-work-out-the-likelihood-function-for-the-beta-