- 1. For search, let n be the size of the large array, and \sqrt{n} be the size of the small array. The program first searches the \sqrt{n} array in $O(\log(\sqrt{n})) = O(\frac{1}{2}\log(n)) = O(\log(n))$ time, then the search continues in the large array which contains at most n values, searching in $O(\log(n))$ time, giving a total time complexity of $O(\log(n))$.
- 2. For insert, let n be the size of the large array, and \sqrt{n} be the size of the small array. This proof will show by potential method that the amoritized cost of each insert is $O(\log(\sqrt{n}))$. Let $\Phi(s_i) = \{$ number of values in of the small array $\}$. For simplicity, we will note the difference between potentials as $\Delta\Phi(s_i) = \Phi(s_i) \Phi(s_{i-1})$. For a basic insert which does not overflow the small array, assume there are i-1 values in the small array. At this point the total insertion cost using insertion sort is \sqrt{i} on the ith step. Note also, $\Delta\Phi(s_i) = 1$ since the difference between the number of values between the ith and (i-1)th step is only one added value. Note also that for any i, $\sqrt{i} < \sqrt{n}$. So the potential cost c_i on the ith step is then

$$c_i = \sqrt{i} + \Delta \Phi(s_i) = \sqrt{i} + 1 = O(\sqrt{n})$$

For an insert step that overflows, the total number of values in the large array at this point some multiple of \sqrt{n} , since each merge must add \sqrt{n} values from the small array. Now from the program, we first insert the element into the small array for at most \sqrt{n} operations, then merge with the multiple of \sqrt{n} . So the time complexity of this operation then be $k\sqrt{n} + \sqrt{n}$. Note also $\Delta\Phi(s_i) = -\sqrt{n}$. At this point we see, the potential accumulates an extra operation of 1, but it does this \sqrt{n} times to pay for the eventual merge cost of $k\sqrt{n} + \sqrt{n}$. So the potential cost c_i on the ith step which is a merge insert operation is then

$$c_i = k\sqrt{n} + \sqrt{n} + \Delta\Phi(s_i) = k\sqrt{n} + \sqrt{n} - \sqrt{n} = k\sqrt{n} = O(\sqrt{n})$$

So this proof has shown each operation has an amoritized cost of $O(\sqrt{n})$.