Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

 $\begin{tabular}{ll} \textbf{Reaction scoring formula:} & TUNNEL_COEF*FGI_COEF*STEP*20+1000\\ 0000*(CONFLICT+NON_SELECTIVITY+FILTERS+PROTECT)\\ \end{tabular}$

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 45.00

Figure 1: Outline of path 1

2.1.1 Grignard Reaction

Substrates:

- 1. 1-phenylbut-3-en-1-one available at Sigma-Aldrich
- 2. chloroethyne

Products:

1. C#CC(O)(CC=C)c1ccccc1

 ${\bf Typical\ conditions:}\ {\rm Mg.ether}$

Protections: none

Reference: 10.1039/C0CC02612C or 10.1002/cber.19681011029

Retrosynthesis ID: 10219

2.1.2 Alkylation of tertiary alcohols

Substrates:

1. Chlorallylene - available at Sigma-Aldrich

2. C#CC(O)(CC=C)c1ccccc1

Products:

1. C#CC(CC=C)(OCC=C)c1ccccc1

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0022-1139(00)85021-6 and

Retrosynthesis ID: 31010936

2.2 Path 2

Score: 48.83

Figure 2: Outline of path 2

2.2.1 Alkylation of tertiary alcohols

Substrates:

1. Methyl chloroacetate - available at Sigma-Aldrich

 $2. \ \, 1\text{-chloro-}2\text{-phenyl-pent-}4\text{-en-}2\text{-ol}$

Products:

1. C=CCC(CCl)(OCC(=O)OC)c1ccccc1

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0022-1139(00)85021-6 and

2.2.2 Kornblum Oxidation

Substrates:

 $1. \ C{=}CCC(CCl)(OCC(=O)OC)c1ccccc1$

Products:

1. C=CCC(C=O)(OCC(=O)OC)c1ccccc1

Typical conditions: DMSO.NEt3

Protections: none

Reference: 10.1080/00397918608056381 and 10.1002/9780470638859.conrr373

Retrosynthesis ID: 11658

2.2.3 Corey-Fuchs reaction

Substrates:

1. C=CCC(C=O)(OCC(=O)OC)c1ccccc1

2. Tetrabromomethane - available at Sigma-Aldrich

Products:

1. C#CC(CC=C)(OCC(=O)OC)c1ccccc1

Typical conditions: PPh3.BuLi.CBr4

Protections: none

Reference: 10.1002/ejoc.200601137 and 10.1016/S0040-4039(01)94157-7

Retrosynthesis ID: 10912

2.2.4 Aldehyde Formation

Substrates:

1. C#CC(CC=C)(OCC(=O)OC)c1ccccc1

Products:

 $1. \ C\#CC(CC=C)(OCC=O)c1ccccc1$

Typical conditions: DIBAL.solvent e.g. DCM

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and

10.1021/jo00222a054 and 10.1021/ja9934908 and 10.1021/jo902426z

2.2.5 Tebbe Olefination

Substrates:

 $1. \ C\#CC(CC=C)(OCC=O)c1ccccc1$

Products:

 $1. \ C\#CC(CC=C)(OCC=C)c1ccccc1$

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.3 Path 3

Score: 48.83

Figure 3: Outline of path 3

${\bf 2.3.1} \quad {\bf Reaction\ of\ alpha-bromo\ carbonyl\ compounds\ with\ alcohols\ or\ phenols}$

Substrates:

1. Methyl bromoacetate - available at Sigma-Aldrich

 $2. \ \, 1\text{-chloro-}2\text{-phenyl-pent-}4\text{-en-}2\text{-ol}$

Products:

1. C=CCC(CCl)(OCC(=O)OC)c1ccccc1

Typical conditions: NaOH.EtOH

Protections: none

Reference: 10.1021/jm070511x AND 10.1021/op1002038 AND

10.1007/BF00758669 AND 10.1021/ja01117a054

2.3.2 Kornblum Oxidation

Substrates:

 $1. \ C{=}CCC(CCl)(OCC(=O)OC)c1ccccc1$

Products:

1. C=CCC(C=O)(OCC(=O)OC)c1ccccc1

Typical conditions: DMSO.NEt3

Protections: none

Reference: 10.1080/00397918608056381 and 10.1002/9780470638859.conrr373

Retrosynthesis ID: 11658

2.3.3 Corey-Fuchs reaction

Substrates:

1. C=CCC(C=O)(OCC(=O)OC)c1ccccc1

2. Tetrabromomethane - available at Sigma-Aldrich

Products:

1. C#CC(CC=C)(OCC(=O)OC)c1ccccc1

Typical conditions: PPh3.BuLi.CBr4

Protections: none

Reference: 10.1002/ejoc.200601137 and 10.1016/S0040-4039(01)94157-7

Retrosynthesis ID: 10912

2.3.4 Aldehyde Formation

Substrates:

1. C#CC(CC=C)(OCC(=O)OC)c1ccccc1

Products:

 $1. \ C\#CC(CC=C)(OCC=O)c1ccccc1$

Typical conditions: DIBAL.solvent e.g. DCM

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and

10.1021/jo00222a054 and 10.1021/ja9934908 and 10.1021/jo902426z

2.3.5 Tebbe Olefination

Substrates:

 $1. \ C\#CC(CC=C)(OCC=O)c1ccccc1$

Products:

 $1. \ C\#CC(CC=C)(OCC=C)c1ccccc1$

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.4 Path 4

Score: 51.25

Figure 4: Outline of path 4

2.4.1 Alkylation of tertiary alcohols

Substrates:

1. Chlorallylene - available at Sigma-Aldrich

2. 1-chloro-3-phenyl-5-hexen-3-ol - A1BioChemLabs

Products:

 $1. \ C{=}CCOC(CC{=}C)(CCCl)c1ccccc1$

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0022-1139(00)85021-6 and

Retrosynthesis ID: 31010936

2.4.2 Kornblum Oxidation

Substrates:

 $1. \ C{=}CCOC(CC{=}C)(CCCl)c1ccccc1$

Products:

 $1. \ C{=}CCOC(CC{=}C)(CC{=}O)c1ccccc1$

Typical conditions: DMSO.NEt3

Protections: none

Reference: 10.1080/00397918608056381 and 10.1002/9780470638859.conrr373

Retrosynthesis ID: 11658

2.4.3 Synthesis of alkynes from aldehydes

Substrates:

 $1. \ C{=}CCOC(CC{=}C)(CC{=}O)c1ccccc1$

Products:

1. C#CC(CC=C)(OCC=C)c1ccccc1

Typical conditions: P1-base.DMF

Protections: none

Reference: 10.1055/s-0028-1087919

Retrosynthesis ID: 15028

2.5 Path 5

Score: 56.25

Figure 5: Outline of path 5

2.5.1 Keto-enol Tautomerism

Substrates:

1. allyl-phenacyl-ether

Products:

1. C=CCOC=C(O)c1ccccc1

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

2.5.2 Enolate O-Alkylation

Substrates:

1. Allyl bromide - available at Sigma-Aldrich

2. C=CCOC=C(O)c1ccccc1

Products:

 $1. \ C{=}CCOC{=}C(OCC{=}C)c1ccccc1$

Typical conditions: Cs2CO3.DMF

Protections: none

Reference: 10.1016/j.bmcl.2012.05.070 and 10.1039/b612336h

Retrosynthesis ID: 14841

2.5.3 Claisen Rearrangement

Substrates:

 $1. \ C{=}CCOC{=}C(OCC{=}C)c1ccccc1$

Products:

1. rac-2-allyloxy-2-phenylpent-4-enal

Typical conditions: heat

Protections: none

Reference: DOI: 10.1021/ja00206a017 and 10.1016/S0022-1139(98)00313-3

Retrosynthesis ID: 1226

2.5.4 Corey-Fuchs reaction

Substrates:

1. rac-2-allyloxy-2-phenylpent-4-enal

2. Tetrabromomethane - available at Sigma-Aldrich

Products:

1. C#CC(CC=C)(OCC=C)c1ccccc1

Typical conditions: PPh3.BuLi.CBr4

Protections: none

Reference: 10.1002/ejoc.200601137 and 10.1016/S0040-4039(01)94157-7