Extrapolation and Bubbles

Barberis, Greenwood, Jin, and Shleifer (2018)

Presented by Yile Chen

Apr 2023

Motivation

- Empirical evidence suggests a close relationship between extrapolation and bubbles (Case et al., 2012; Greenwood and Shleifer, 2014; Haruvy et al., 2007)
- It remains unclear whether extrapolation can help explain high trading volumes in bubbles and how bubbles evolve around cash flow news

Model Setup

- An economy in discrete time. t = 0, 1, 2...T
- Two assets
 - One risk-free asset
 - One risky asset with a fixed supply of Q shares and dividend payment on time T.

$$ilde{D_T} = D_0 + ilde{\epsilon_1} + ... + ilde{\epsilon_T}$$
 where $ilde{\epsilon_t} \sim extstyle N(0, \sigma_\epsilon^2)$

 In equilibrium, aggregate share demand for the risky asset equals supply.

Model Setup

- Two types of investors
 - Fundamental Investors:
 - Maximize CARA utility over next period's wealth
 - Boundedly rational: do not have a full picture of how others behave
 - Extrapolators:
 - Form demand by weighing a **growth signal** G_t (based on past prices) against a **value signal** V_t (based on fundamental evaluation of cash flow)
 - 'Wavering': random slight shifts in relative weights between the signals
- All investors are subject to short-selling constraints, i.e., non-negative demand.

Investor Demand

Fundamental Investor Demand:

$$\frac{D_t - \gamma \sigma_{\epsilon}^2 (T - t - 1)Q - P_t}{\gamma \sigma_{\epsilon}^2}$$

 Expected price change scaled by the trader's risk aversion and by her estimate of the risk

Investor Demand

Extrapolator Demand:

$$w_{i} \underbrace{\left(\frac{D_{t} - \gamma \sigma_{\epsilon}^{2} (T - t - 1)Q - P_{t}}{\gamma \sigma_{\epsilon}^{2}}\right)}_{\text{Value signal } (V_{t})} + \left(1 - w_{i}\right) \underbrace{\left(\frac{X_{t}}{\gamma \sigma_{\epsilon}^{2}}\right)}_{\text{Growth Signal } (G_{t})}$$

$$X_t = \theta X_{t-1} + (1-\theta)(P_{t-1} - P_{t-2})$$

• X_t (extrapolator enthusiasm): weighted average of past price changes, with more recent price changes weighted more heavily.

Wavering between value and growth

$$w_{i}\underbrace{\left(\frac{D_{t}-\gamma\sigma_{\epsilon}^{2}(T-t-1)Q-P_{t}}{\gamma\sigma_{\epsilon}^{2}}\right)}_{\text{Value signal }(V_{t})} + (1-w_{i}) \underbrace{\left(\frac{X_{t}}{\gamma\sigma_{\epsilon}^{2}}\right)}_{\text{Growth Signal }(G_{t})}$$

- Wavering of w_i : slight shift of weights on signals
 - Intuition: extrapolators face a fear vs. greed dilemma
 - $w_{i,t} = \bar{w}_i + \tilde{u}_{i,t}$
 - $\tilde{u}_{i,t} \sim N(0, \sigma_u^2)$, i.i.d. over time and across extrapolators

Equilibrium Price

• Equilibrium Price:

$$P_{t} = D_{t} + \underbrace{\frac{\sum_{i \in I^{*}\mu_{i}(1-w_{i,t})}{\sum_{i \in I^{*}\mu_{i}w_{i,t}}} X_{t}}_{\sum_{i \in I^{*}\mu_{i}w_{i,t}}} - \gamma \sigma_{\epsilon}^{2} Q^{\frac{(\sum_{i \in I^{*}\mu_{i}w_{i,t}})(T-t-1)+1}{\sum_{i \in I^{*}\mu_{i}w_{i,t}}}}$$

Extrapolation component

- I*: set of investors with positive demands at t
- μ_i : Proportion of investor i among all investors
- Fundamental Value (price if no extrapolators):

$$D_t - \gamma \sigma_{\epsilon}^2 (T - t) Q$$

Replication: Numerical example of a bubble episode

- 50 cash-flow shocks: 10 shocks of 0, followed by positive shocks of 2, 4, 6, 6, followed by 36 shocks of 0
- 30% of investors are fundamental traders and the reminders are extrapolators
- Extrapolators put base weight $\bar{w}_i = 0.1$ on a value signal and waver with $\sigma_u = 0.03$
- Other parameters: $D_0=100$, T=50, Q=1, $\sigma_\epsilon=3$, $\gamma=0.1$, I=50, $X_1=0.9$

Replication: Price in a bubble episode

• The bubble emerges after a sequence of cash flow shocks and deflates as the news fades.

Replication: Extrapolator Enthusiasm in a bubble episode

• Extrapolator enthusiasm is high during the bubble episode and decreases sharply as the price drops.

Intuition: Three stages of a bubble

- First stage: emerge
 - Cash flow news pushes up the price of the risky asset
 - Extrapolators sharply increase the demand and buy from fundamental investors
- Second stage: evolve
 - High over-valuation makes fundamental investors exit the market
 - Extrapolators continue to trade due to wavering (more on this later)
- Third stage: deflate
 - Bubble begins to collapse as cash flow news subsides
 - Fundamental investors re-enter the market and buy from extrapolators

Replication: Demand in a bubble episode

• The role of **wavering**: during bubble periods, extrapolators face both high V_t and high G_t , even a slight change in weights can lead to large demand changes

Replication: Volume - the three peaks

ullet The role of **wavering**: during bubble periods, even a slight change in weights can lead to large demand changes o intense trading, i.e., high volume

Discussion: key takeaways

- The model captures various asset pricing patterns
 - Formulation of bubbles: emerge after a series of intense cash flow news
 - Heavy trading volume: even during bubble episodes
 - Excessive volatility: price changes are more volatile compared to fundamental value
 - Return predictability: the difference between the price and the fundamental value predicts long-term price change
- The model provides a mechanism wavering to explain intense trading during bubbles:
 - alternative sources of heterogeneity among extrapolators, e.g., different θ and $\bar{w_i}$ do not generate as much trading volume as wavering.

Discussion: issues and possible extensions

- The model setup for investor behaviors seems a bit ad-hoc
- It remains silent on empirical facts such as rational investors 'riding the bubble' (Brunnermeier and Nagel, 2004)
- The model does not provide a concrete definition for bubbles or address their existence
- Is it realistic to assume i.i.d. wavering?
 - ightarrow Perhaps extrapolators 'fear' more and thus put more weight on the value signal when the price is far from fundamental
- Can investors tell whether they are in a bubble episode?
 - ightarrow If they can, we may want to model them differently in/out of a bubble

Appendix: Comparative Statics

Appendix: Why not fully rational traders?

The paper considers boundedly rational traders under short-selling constraints because this captures the main ideas in a simpler way than models with fully rational traders.

Another advantage is that it makes more realistic predictions about downturns - lower volume in 'negative bubbles'