Projet SFPN : Manipulation de suites P-récursives avec SageMath

Mathis Caristan & Aurélien Lamoureux Sous la responsabilité de Marc Mezzarobba

Université Pierre & Marie Curie

29/05/2017

Introduction

2 Contenu du module

Contexte & problématique

Les suites P-récursives sont des objets couramment utilisés en mathématiques et en sciences.

Problématique

- La question se pose de comment représenter et manipuler informatiquement ces objets.
- Les suites sont infinies.

Contexte & problématique

Les suites P-récursives sont des objets couramment utilisés en mathématiques et en sciences.

Problématique

- La question se pose de comment représenter et manipuler informatiquement ces objets.
- Les suites sont infinies.

Solution

Il est nécessaire d'utiliser les propriétés mathématiques des suites P-récursives.

Suites P-récursives

Définition formelle

Une suite P-récursive sur un corps $\mathbb K$ vérifie la propriété suivante :

$$\sum_{i=0}^k P_i(n)u_{n+i}=0$$

où les P_i sont des polynômes en n, et k est l'ordre de la récurrence.

Une suite P-récursive peut être représentée exactement avec sa relation de récurrence, et ses conditions initiales*

Exemples

Fibonacci :
$$F_{n+2} - F_{n+1} - F_n = 0$$
, $F_0 = 0, F_1 = 1$
Factorielle : $(n+1)! - (n+1)(n!) = 0$, $0! = 1$

Algèbre d'Ore

TODO 2nd slide?

SageMath & Python

SageMath, qu'est-ce que c'est?

- Un logiciel de calcul formel
- Opensource
- Construit sur un ensmble d'outil pré-éxistant et Python
- Basé sur Python
- Doté d'une syntaxe spécifique pour la ligne de commande

Python?

- C'est le langage sur lequel est basé Sage
- Python 2.7.9
- Les idiomes Sage sont transformés en Python pur
- Possibilité d'écrire des modules pour Sage en Python

La bibliothèque OreAlgebra

- Implémente l'algèbre d'Ore
- Non intégrée au projet Sage, et développée par la communauté
- Contient une partie des outils nécessaires à la réalisation du projet
 - Définir une algèbre dans laquelle travailler
 R.<n> = PolynomialRing(ZZ)
 A.<Sn> = OreAlgebra(R)
 - Les fonctions lclm et to_list pour +/×
 annihilSum = annihil1.lclm(annihil2)
 - annihilProd = annihil1.symmetric_product(annihil2)
 - La fonction forward_matrix_bsplit pour le calcul d'un terme

Présentation du module

Objectifs du module

TODO

Objectifs principaux

Objectifs du module

TODO

Objectifs principaux

Objectifs importants

Objectifs du module

Objectifs principaux Objectifs importants Objectifs secondaires

Constructeur

C'est la méthode appelée par Python lors d'une instanciation de la classe.

Constructeur

getitem

getitem

Addition et multiplication

Addition et multiplication

Autres fonctions