Question	Answer	Marks	Guidance
(a)	Separate variables correctly	B1	$\frac{dN}{N^{\frac{3}{2}}} = (k \cos 0.02t) dt$ Allow without integral signs.
	Obtain term $-\frac{2}{\sqrt{N}}$	B1	OE Ignore position of k .
	Obtain term $50\sin 0.02t$	B1	OE Ignore position of k .
	Use $t = 0$, $N = 100$ to evaluate a constant, or as limits, in a solution containing terms $\frac{a}{\sqrt{N}}$ and $b \sin 0.02t$, where $ab \neq 0$	M1	[e.g. $c = -0.2$ or $c = \frac{-0.2}{k}$]
	Obtain correct solution in any form, e.g. $-\frac{2}{\sqrt{N}} = 50k \sin 0.02t - 0.2$	A1	OE ISW e.g. $N = \frac{1}{(25k\sin 0.02t - 0.1)^2} -2N^{-\frac{1}{2}} = \frac{k}{0.02}\sin 0.02t - \frac{1}{5}$ $50k\sin 0.02t = -\frac{2}{\sqrt{N}} + \frac{1}{5} \frac{1}{\sqrt{N}} = -\frac{1}{2}k(50\sin 0.02t) + \frac{1}{10}$ $50\sin\left(\frac{1}{50}t\right) = -\frac{2\sqrt{N}}{kN} + \frac{20}{100k}$
		5	
(b)	Use the substitution $N = 625$ and $t = 50$ in expression of appropriate form to evaluate k	M1	Expression must contain $a + bk\sin 0.02t$, $(\sqrt{N})^{\pm n}$, where $n = -1, 1, 3$ or 5 and a and b are constants $ab \neq 0$ or $(a + bk\sin 0.02t)^{\pm 2}$ and $(N)^{\pm n}$. Allow with k replaced by $\frac{1}{k}$, error due to $k(N^{-3/2})$ when separating variables in 8(a) . If invert term by term when 3 terms shown then M0.
	Obtain $k = 0.00285[2148]$	A1	Must evaluate sin1. Degrees $k = 0.138$ M1 A0.
		2	

Question	Answer	Marks	Guidance
(c)	Rearrange and obtain $N = 4(0.2 - 0.142(607)\sin 0.02t)^{-2}$ Substitution for k required	M1	Anything of the form $N = c(d - ek \sin 0.02t)^{-2}$, where c, d and e are constants $cde \neq 0$ and value of k substituted. Allow with k replaced by $1/k$, error due to $k(N^{-3/2})$ when separating variables in $\mathbf{8(a)}$. OE ISW e.g. $N = \left(-\frac{10}{0.7125\sin 0.02t - 1}\right)^2 N = \frac{1}{\left(-0.0713\sin 0.02t + 0.1\right)^2}$ $N = \frac{100}{\left(\left(\frac{0.6}{\sin 1}\right)\sin 0.02t - 1\right)^2} \qquad N = \frac{1}{\left(\frac{3}{-50\sin 1}\times\sin 0.02t + \frac{1}{10}\right)^2}$ $N = \left(-\frac{0.06}{\sin 1}\sin 0.02t + 0.1\right)^{-2} \qquad N = \left(\frac{800}{80 - 57\sin 0.02t}\right)^2$ Do not need to substitute for $\sin(0.02t) = 1$, but must substitute for k .
	Accept answers between 1209 and 1215	A1	ISW Substitute $\sin 0.02t = 1$ or $t = 50 \sin^{-1} 1$ or 78.5 or 25π . Answer with no working (rubric) $0/2$. SC $N = \dots$ not seen but correct numerical answer B1 $1/2$.
		2	