

Università di Pisa

Computer Engineering

Electronic and Communication Systems

Perceptron

Project Report

TEAM MEMBERS: Olgerti Xhanej

Academic Year: 2020/2021

Contents

1	Introduction	2
	1.1 Problem Description	2
	1.2 Applications	3
	1.3 Possible Architectures	3
2	Architecture	4
3	VHDL CODE	5
4	Test Plan	6
5	XILINX VIVADO Report	7
6	Conclusion	8

1 Introduction

1.1 Problem Description

The main goal of the activity described in this report is the following: realizing a network implementing a **perceptron** with a **sigmoid activation** function.

Before describing the whole design and implementation process a very little introduction about the architecture must be done.

Figure 1.1: Perceptron Architecture

A **Perceptron** is a binary classifier that maps his inputs to a specific output y = f(z), where f() is the **activation function** of the perceptron. The inputs are real numbers and the input z of the activation function is obtained as:

$$z = b + \sum_{i=0}^{N_L - 1} w_i * x_i \tag{1.1}$$

(1.2)

Every input x_i , every weight w_i and the bias b are real numbers in the range of [-1, 1].

The activation function, in our case, will be a sigmoid function, described as follows:

0.6

Figure 1.2: Sigmoid Function Plot

 $y = \frac{1}{1 + e^{-z}}$ Where z is the result of the equation (1.1).

1.2 Applications

1.3 Possible Architectures

2 | Architecture

3 | VHDL CODE

4 | Test Plan

5 | XILINX VIVADO Report

6 | Conclusion