Матрично-векторное дифференцирование. Линейный поиск

Даня Меркулов

1 Матрично-векторное дифференцирование

1.1 Градиент

Пусть $f(x): \mathbb{R}^n \to \mathbb{R}$, тогда вектор, который содержит все первые частные производные:

$$\nabla f(x) = \frac{df}{dx} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

называется градиентом функции f(x). Этот вектор указывает направление наискорейшего возрастания. Таким образом, вектор $-\nabla f(x)$ указывает направление наискорейшего убывания функции в точке. Кроме того, вектор градиента всегда ортогонален линии уровня в точке.

i Example

Для функции $f(x,y) = x^2 + y^2$ градиент равен:

$$\nabla f(x,y) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

Он указывает направление наискорейшего возрастания функции.

i Question

Как связана норма градиента с крутизной функции?

1.2 Гессиан

Пусть $f(x):\mathbb{R}^n o \mathbb{R}$, тогда матрица, содержащая все вторые частные производные:

$$f''(x) = \nabla^2 f(x) = \frac{\partial^2 f}{\partial x_i \partial x_j} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix}$$

Гессиан может быть тензором: $(f(x):\mathbb{R}^n \to \mathbb{R}^m)$ Таким образом, это просто трехмерный тензор, каждый срез которого это гессиан соответствующей скалярной функции $(\nabla^2 f_1(x),\dots,\nabla^2 f_m(x))$.

i Example

Для функции $f(x,y)=x^2+y^2$ гессиан равен:

$$H_f(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Эта матрица содержит информацию о кривизне функции в разных направлениях.

Question

Как можно использовать гессиан для определения выпуклости или вогнутости функции?

1.3 Теорема Шварца

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ - функция. Если смешанные частные производные $\frac{\partial^2 f}{\partial x_i \partial x_j}$ и $\frac{\partial^2 f}{\partial x_j \partial x_i}$ непрерывны на открытом множестве, содержащем точку a, то они равны в точке a. То есть,

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a)$$

Согласно данной теореме, если смешанные частные производные непрерывны на открытом множестве, то гессиан симметричен. То есть,

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} \quad \nabla^2 f(x) = (\nabla^2 f(x))^T$$

Эта симметричность упрощает вычисления и анализ, связанные с гессианом в различных приложениях, особенно в оптимизации.

🕯 Контрпример Шварца

Можно проверить, что $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$, хотя смешанные частные производные существуют, и в каждой другой точке симметричность выполняется.

1.4 Якобиан

Обобщением понятия градиента на случай многомерной функции $f(x):\mathbb{R}^n \to \mathbb{R}^m$ является следующая матрица:

$$J_f = f'(x) = \frac{df}{dx^T} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Она содержит информацию о скорости изменения функции по отношению к ее входу.

Question

Можно ли связать эти три определения выше (градиент, якобиан, и гессиан) с помощью одного утверждения?

i Example

Для функции

$$f(x,y) = \begin{bmatrix} x+y \\ x-y \end{bmatrix},$$

3

Якобиан равен:

$$J_f(x,y) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

i Question

Как матрица Якоби связана с градиентом для скалярных функций?

1.5 Итог

$$f(x): X \to Y; \qquad \frac{\partial f(x)}{\partial x} \in G$$

X	Y	G	Name
\mathbb{R}	\mathbb{R}	\mathbb{R}	f'(x) (производная)
\mathbb{R}^n	\mathbb{R}	\mathbb{R}^n	$rac{\partial f}{\partial x_i}$ (градиент)
\mathbb{R}^n	\mathbb{R}^m	$\mathbb{R}^{n imes m}$	$rac{\partial f_i}{\partial x_j}$ (якобиан)
$\mathbb{R}^{m imes n}$	$\mathbb R$	$\mathbb{R}^{m imes n}$	$rac{\partial f}{\partial x_{ij}}$

1.6 Аппроксимация Тейлора первого порядка

Аппроксимация Тейлора первого порядка, также известная как линейное приближение, строится вблизи некоторой точки x_0 . Если $f:\mathbb{R}^n \to \mathbb{R}$ - дифференцируемая функция, то ее аппроксимация первого порядка задается следующим образом:

$$f_{x_0}^I(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)$$

где:

- $f(x_0)$ значение функции в точке x_0 .
- $\nabla f(x_0)$ градиент функции в точке x_0 .

Часто для упрощения теоретического анализа в некоторых методах заменяют функцию вблизи некоторой точки на её аппроксимацию

Рисунок 1: Аппроксимация Тейлора первого порядка в окрестности точки x_{0}

1.7 Аппроксимация Тейлора второго порядка

Аппроксимация Тейлора второго порядка, также известная как квадратичное приближение, включает кривизну функции. Для дважды дифференцируемой функции $f:\mathbb{R}^n \to \mathbb{R}$, ее аппроксимация второго порядка, строящаяся вблизи некоторой точки x_0 , задается следующим образом:

$$f_{x_0}^{II}(x) = f(x_0) + \nabla f(x_0)^T(x-x_0) + \frac{1}{2}(x-x_0)^T \nabla^2 f(x_0)(x-x_0)$$

Где $abla^2 f(x_0)$ - гессиан функции f в точке x_0 .

Когда линейного приближения функции не достаточно, можно рассмотреть замену f(x) на $f_{x_0}^{II}(x)$ в окрестности точки x_0 . В общем, приближения Тейлора дают нам способ локально аппроксимировать функции. Аппроксимация первого порядка определяется градиентом функции в точке, т.е. нормалью к касательной гиперплоскости. А аппроксимация второго порядка представляет из себя параболу Эти приближения особенно полезны в оптимизации и численных методах, потому что они предоставляют простой способ работы с сложными функциями.

Рисунок 2: Аппроксимация Тейлора второго порядка в окрестности точки x_0

2 Дифференциалы

i Theorem

Пусть $x \in S$ - внутренняя точка множества S, и пусть $D:U \to V$ - линейный оператор. Мы говорим, что функция f дифференцируема в точке x с производной D, если для всех достаточно малых $h \in U$ выполняется следующее разложение:

$$f(x+h) = f(x) + D[h] + o(\|h\|)$$

Если для любого линейного оператора D:U o V функция f не дифференцируема в точке x с производной D, то мы говорим, что f не дифференцируема в точке x.

После получения дифференциальной записи df мы можем получить градиент, используя следующую формулу:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Далее, если у нас есть дифференциал в такой форме и мы хотим вычислить вторую производную матричной/векторной функции, мы рассматриваем "старый" dx как константу dx_1 , затем вычисляем $d(df) = d^2 f(x)$

$$d^2f(x) = \langle \nabla^2 f(x) dx_1, dx \rangle = \langle H_f(x) dx_1, dx \rangle$$

2.1 Свойства дифференциалов

Пусть A и B - постоянные матрицы, а X и Y - переменные (или матричные функции).

- dA = 0
- $d(\alpha X) = \alpha(dX)$

- d(AXB) = A(dX)B

- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$
- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $\bullet \ d\left(\det X\right) = \det X\langle X^{-T}, dX\rangle$
- $d(\operatorname{tr} X) = \langle I, dX \rangle$
- $df(g(x)) = \frac{df}{dq} \cdot dg(x)$
- $H = (J(\nabla f))^T$ $d(X^{-1}) = -X^{-1}(dX)X^{-1}$

i Example

Найти df, $\nabla f(x)$, если $f(x) = \langle x, Ax \rangle - b^T x + c$.

Example

Найти df, $\nabla f(x)$, если $f(x) = \ln \langle x, Ax \rangle$.

1. Заметим, что A должна быть положительно определенной, потому что $\langle x,Ax \rangle$ аргумент логарифма и для любого х формула должна быть положительной. Таким образом, $A \in \mathbb{S}^n_{++}$ Давайте сначала найдем дифференциал:

$$\begin{split} df &= d\left(\ln\langle x,Ax\rangle\right) = \frac{d\left(\langle x,Ax\rangle\right)}{\langle x,Ax\rangle} = \frac{\langle dx,Ax\rangle + \langle x,d(Ax)\rangle}{\langle x,Ax\rangle} = \\ &= \frac{\langle Ax,dx\rangle + \langle x,Adx\rangle}{\langle x,Ax\rangle} = \frac{\langle Ax,dx\rangle + \langle A^Tx,dx\rangle}{\langle x,Ax\rangle} = \frac{\langle (A+A^T)x,dx\rangle}{\langle x,Ax\rangle} \end{split}$$

2. Наша основная цель - получить форму $df = \langle \cdot, dx \rangle$

$$df = \left\langle \frac{2Ax}{\langle x, Ax \rangle}, dx \right\rangle$$

Таким образом, градиент равен $\nabla f(x) = \frac{2Ax}{\langle x, Ax \rangle}$

i Example

Найти df, $\nabla f(X)$, если $f(X) = \langle S, X \rangle - \log \det X$.

3 Линейный поиск

3.1 Задача

Предположим, у нас есть задача минимизации функции $f(x): \mathbb{R} \to \mathbb{R}$ скалярной переменной:

$$f(x)\to \min_{x\in\mathbb{R}}$$

Иногда мы рассматриваем похожую задачу поиска минимума функции на отрезке [a,b]:

$$f(x) \to \min_{x \in [a,b]}$$

i Example

Типичным примером задачи линейного поиска является выбор подходящего шага для алгоритма градиентного спуска:

$$\begin{aligned} x_{k+1} &= x_k - \alpha \nabla f(x_k) \\ \alpha &= \operatorname{argmin} f(x_{k+1}) \end{aligned}$$

Линейный поиск является фундаментальной задачей оптимизации, использующийся для решения сложных задач. Для упрощения предположим, что f(x) унимодальна, то есть имеет единственный пик или впадину.

3.2 Унимодальная функция

Definition

Функция f(x) называется **унимодальной** на отрезке [a,b], если существует $x_* \in [a,b]$, что $f(x_1) >$ $f(x_2)$ $\forall a \leq x_1 < x_2 < x_*$ и $f(x_1) < f(x_2)$ $\forall x_* < x_1 < x_2 \leq b$

Рисунок 3: Примеры унимодальных функций

3.3 Ключевое свойство унимодальных функций

Пусть f(x) является унимодальной функцией на отрезке [a,b]. Тогда если $x_1 < x_2 \in [a,b]$, то:

- $\begin{array}{l} \bullet \ \ \text{if} \ f(x_1) \leq f(x_2) \rightarrow x_* \in [a,x_2] \\ \bullet \ \ \text{if} \ f(x_1) \geq f(x_2) \rightarrow x_* \in [x_1,b] \\ \end{array}$

♥ 🗘 🧿

Доказательство Докажем первое утверждение. Предположим, что $f(x_1) \leq f(x_2)$, но $x^* > x_2$. Тогда, поскольку $x_1 < x_2 < x^*$, из определения унимодальности функции f(x) следует, что должно выполняться неравенство $f(x_1) > f(x_2)$. Мы получили противоречие.

3.4 Метод дихотомии

Мы хотим решить следующую задачу:

$$f(x) \to \min_{x \in [a,b]}$$

Делим отрезок на две равные части и выбираем, основываясь на ключевом свойстве, описанном выше, ту, которая содержит решение задачи. Наша цель после одной итерации метода - локализовать решение в отрезке в два раза меньшей длины.

Рисунок 4: Метод дихотомии для унимодальной функции

Мы измеряем значение функции в середине отрезка

Рисунок 5: Метод дихотомии для унимодальной функции

Чтобы применить ключевое свойство, мы выполняем еще одно измерение.

Рисунок 6: Метод дихотомии для унимодальной функции

Выбираем целевой отрезок. В этом случае нас все устраивает, потому что уже разделили решение на две равные части. Но это не всегда так.

Рисунок 7: Метод дихотомии для унимодальной функции

Рассмотрим другую унимодальную функцию.

Рисунок 8: Метод дихотомии для унимодальной функции

Измеряем значение функции в середине отрезка.

Рисунок 9: Метод дихотомии для унимодальной функции

Делаем еще одно измерение.

Рисунок 10: Метод дихотомии для унимодальной функции

Выбираем целевой отрезок. Мы можем видеть, что полученный отрезок не является половиной исходного. Он равен $\frac{3}{4}(b-a)$. Чтобы исправить это, нам нужен еще один шаг алгоритма.

Рисунок 11: Метод дихотомии для унимодальной функции

После еще одного дополнительного измерения мы точно получим $\frac{2}{3}\frac{3}{4}(b-a)=\frac{1}{2}(b-a)$

Рисунок 12: Метод дихотомии для унимодальной функции

y

0

В итоге, каждая последующая итерация будет требовать не более двух измерений значений функции.

Рисунок 13: Метод дихотомии для унимодальной функции

3.5 Метод дихотомии. Алгоритм

```
def binary_search(f, a, b, epsilon):
   c = (a + b) / 2
      while abs(b - a) > epsilon:
         y = (a + c) / 2.0
         if f(y) \ll f(c):
            b = c
```



```
c = y
else:
    z = (b + c) / 2.0
if f(c) <= f(z):
    a = y
    b = z
else:
    a = c
    c = z
return c</pre>
```

3.6 Метод дихотомии. Оценка

 Δ лина отрезка на k-й итерации:

$$\Delta_k = b_k - a_k = \frac{1}{2^k}(b-a)$$

Для унимодальных функций это верно, если мы выбираем середину отрезка в качестве выхода итерации x_{k+1} :

$$|x_k - x_*| \leq \frac{\Delta_k}{2} \leq \frac{1}{2^{k+1}} (b-a) \leq (0.5)^{k+1} \cdot (b-a)$$

Заметим, что на каждой итерации мы спрашиваем оракул не более двух раз, поэтому количество вызовов функции равно $N=2\cdot k$, что означает:

$$|x_{k+1} - x_*| \leq (0.5)^{\frac{N}{2} + 1} \cdot (b - a) \leq (0.707)^N \frac{b - a}{2}$$

Помечая правую часть последнего неравенства за ε , мы получаем количество итераций метода, необходимое для достижения точности ε :

$$K = \left\lceil \log_2 \frac{b-a}{\varepsilon} - 1 \right\rceil$$

3.7 Метод золотого сечения

Идея очень похожа на метод дихотомии. На отрезке есть две точки - левая и правая точки золотого сечения и интуитивно понятно, что на следующей итерации одна из точек останется точкой золотого сечения.

Рисунок 14: Идея, позволяющая уменьшить количество вызовов функции

3.8 Метод золотого сечения. Алгоритм

```
def golden_search(f, a, b, epsilon):
    tau = (sqrt(5) + 1) / 2
    y = a + (b - a) / tau**2
    z = a + (b - a) / tau
    while b - a > epsilon:
        if f(y) <= f(z):
            b = z
            z = y
            y = a + (b - a) / tau**2
    else:
        a = y
        y = z
        z = a + (b - a) / tau
    return (a + b) / 2</pre>
```

3.9 Метод золотого сечения. Оценка

$$|x_k-x_*|\leq \frac{b_k-a_k}{2}=\left(\frac{1}{\tau}\right)^N\frac{b-a}{2}\approx 0.618^k\frac{b-a}{2}$$
 где $\tau=\frac{\sqrt{5}+1}{2}.$

- Знаменатель геометрической прогрессии для метода золотого сечения **больше**, чем для метода дихотомии: 0.618 больше, чем 0.5.
- Количество вызовов функции **меньше** для метода золотого сечения, чем для метода дихотомии: 0.707 больше (значит медленнее), чем 0.618. Для каждой итерации метода дихотомии (кроме первой), функция вызывается не более двух раз, в то время как для метода золотого сечения, она вызывается не более одного раза за итерацию.

3.10 Метод параболической интерполяции

Три точки, не лежащие на одной прямой, однозначно определяют параболу, проходящую через них. Идея метода— аппроксимировать функцию такой параболой и в качестве следующего приближения

взять точку её минимума. Предположим, у нас есть 3 точки $x_1 < x_2 < x_3$ такие, что отрезок $[x_1, x_3]$ содержит минимум функции f(x). Тогда мы должны решить следующую систему уравнений:

$$ax_i^2 + bx_i + c = f_i = f(x_i), i = 1, 2, 3$$

Заметим, что эта система линейна, мы должны решить ее относительно a,b,c. Минимум этой параболы вычисляется по формуле:

$$u = -\frac{b}{2a} = x_2 - \frac{(x_2 - x_1)^2 (f_2 - f_3) - (x_2 - x_3)^2 (f_2 - f_1)}{2 \left[(x_2 - x_1)(f_2 - f_3) - (x_2 - x_3)(f_2 - f_1) \right]}$$

Заметим, что если $f_2 < f_1, f_2 < f_3$, то u будет лежать в $[x_1, x_3]$

3.11 Метод параболической интерполяции. Алгоритм ¹

```
def parabola_search(f, x1, x2, x3, epsilon):
   f1, f2, f3 = f(x1), f(x2), f(x3)
   while x3 - x1 > epsilon:
      u = x2 - ((x2 - x1) **2 * (f2 - f3) - (x2 - x3) **2 * (f2 - f1)) / (2 * ((x2 - x1) * (f2 - f3) - (x2 - x3) * (f2 - f1)))
      fu = f(u)
      if x2 <= u:
         if f2 <= fu:
            x1, x2, x3 = x1, x2, u
            f1, f2, f3 = f1, f2, fu
         else:
            x1, x2, x3 = x2, u, x3
            f1, f2, f3 = f2, fu, f3
         if fu <= f2:
            x1, x2, x3 = x1, u, x2
            f1, f2, f3 = f1, fu, f2
            x1, x2, x3 = u, x2, x3
            f1, f2, f3 = fu, f2, f3
   return (x1 + x3)/2
```

 $^{^{1}}$ Скорость сходимости этого метода суперлинейна, но локальна, что означает, что мы можем получить выгоду от использования этого метода только вблизи некоторой окрестности оптимума. 3decb доказательство суперлинейной сходимости порядка 1.32.

3.12 Неточный линейный поиск

Нам не всегда нужно точно решать задачу минимизации. Иногда, достаточно найти приближенное решение. Такое часто встречается в задаче выбора шага метода оптимизации

$$\begin{aligned} x_{k+1} &= x_k - \alpha \nabla f(x_k) \\ \alpha &= \operatorname{argmin} f(x_{k+1}) \end{aligned}$$

Рассмотрим скалярную функцию $\phi(\alpha)$ в точке x_k :

$$\phi(\alpha) = f(x_k - \alpha \nabla f(x_k)), \alpha \geq 0$$

Первое приближение $\phi(\alpha)$ в окрестности $\alpha=0$ равно:

$$\phi(\alpha) \approx f(x_k) - \alpha \nabla f(x_k)^T \nabla f(x_k)$$

Рисунок 15: Иллюстрация аппроксимации Тейлора $\phi_0^I(\alpha)$

3.13 Неточный линейный поиск. Условие достаточного убывания

Условие неточного линейного поиска, известное как условие Армихо, утверждает, что α должно обеспечить достаточное убывание функции f, удовлетворяющее:

$$f(\boldsymbol{x}_k - \alpha \nabla f(\boldsymbol{x}_k)) \leq f(\boldsymbol{x}_k) - c_1 \cdot \alpha \nabla f(\boldsymbol{x}_k)^T \nabla f(\boldsymbol{x}_k)$$

для некоторой постоянной $c_1 \in (0,1)$. Заметим, что установка $c_1 = 1$ соответствует первому приближению Тейлора $\phi(\alpha)$. Однако это условие может принимать очень малые значения lpha, потенциально замедляя процесс решения. Обычно на практике используется $c_1\approx 10^{-4}.$

i Example

Если f(x) представляет собой функцию стоимости в задаче оптимизации, важен выбор подходящего значения c_1 . Например, при обучении моделей ML неправильное значение c_1 может привести к очень медленной сходимости или пропуску минимума.

Рисунок 16: Иллюстрация условия достаточного убывания с коэффициентом c_1

3.14 Неточный линейный поиск. Условия Гольдштейна

Рассмотрим две линейные скалярные функции $\phi_1(\alpha)$ и $\phi_2(\alpha)$:

$$\phi_1(\alpha) = f(x_k) - c_1 \alpha \|\nabla f(x_k)\|^2$$

$$\phi_2(\alpha) = f(x_k) - c_2 \alpha \|\nabla f(x_k)\|^2$$

Условия Гольдштейна-Армихо находят функцию $\phi(\alpha)$ между $\phi_1(\alpha)$ и $\phi_2(\alpha)$. Обычно $c_1=\rho$ и $c_2=1-\rho$, с $\rho\in(0,0.5)$.

Рисунок 17: Иллюстрация условий Гольдштейна

3.15 Неточный линейный поиск. Условие ограничения на кривизну

Чтобы избежать слишком коротких шагов, мы вводим второй критерий:

$$-\nabla f(\boldsymbol{x}_k - \alpha \nabla f(\boldsymbol{x}_k))^T \nabla f(\boldsymbol{x}_k) \geq c_2 \nabla f(\boldsymbol{x}_k)^T (-\nabla f(\boldsymbol{x}_k))$$

для некоторого $c_2 \in (c_1,1)$. Здесь c_1 из условия Армихо.

 Левая часть является производной $\nabla_{lpha}\phi(lpha)$, гарантирующей, что наклон $\phi(lpha)$ в целевой точке не менее чем в c_2 раз больше начального наклона $\nabla_{\alpha}\phi(\alpha)(0)$.

Обычно для методов Ньютона и квазиньютоновских методов используется $c_2 pprox 0.9$. В объединении условие достаточного убывания и ограничение на кривизну образуют условия Вульфа.

Рисунок 18: Иллюстрация условия ограничения на кривизну

3.16 Неточный линейный поиск. Условия Вульфа

$$-\nabla f(x_k - \alpha \nabla f(x_k))^T \nabla f(x_k) \geq c_2 \nabla f(x_k)^T (-\nabla f(x_k))$$

Вместе, условие достаточного убывания и ограничение на кривизну образуют условия Вульфа.

i Theorem

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ непрерывно дифференцируема, и пусть $\phi(\alpha) = f(x_k - \alpha \nabla f(x_k))$. Предположим, что $\nabla f(x_k)^T p_k < 0$, где $p_k = -\nabla f(x_k)$, делая p_k направлением спуска. Также предположим, что f ограничена снизу вдоль луча $\{x_k + \alpha p_k \mid \alpha > 0\}$. Мы хотим показать, что для $0 < c_1 < c_2 < 1$, существуют интервалы шагов, удовлетворяющие условиям Вульфа.

Рисунок 19: Иллюстрация условий Вульфа

3.17 Неточный линейный поиск. Условия Вульфа. Доказательство

1. Поскольку $\phi(\alpha) = f(x_k + \alpha p_k)$ ограничена снизу и $l(\alpha) = f(x_k) + \alpha c_1 \nabla f(x_k)^T p_k$ неограничена снизу (как $\nabla f(x_k)^T p_k < 0$), график $l(\alpha)$ должен пересекать график $\phi(\alpha)$ по крайней мере один раз. Пусть $\alpha'>0$ будет наименьшим таким значением, удовлетворяющим:

$$f(x_k + \alpha' p_k) \le f(x_k) + \alpha' c_1 \nabla f(x_k)^T p_k. \tag{1}$$

Это гарантирует выполнение условия достаточного убывания.

2. По теореме о среднем значении, существует $\alpha'' \in (0,\alpha')$ такое, что:

$$f(x_k + \alpha' p_k) - f(x_k) = \alpha' \nabla f(x_k + \alpha'' p_k)^T p_k. \tag{2}$$

Подставляя $f(x_k + \alpha' p_k)$ из (1) в (2), мы получаем:

$$\alpha' \nabla f(x_k + \alpha'' p_k)^T p_k \le \alpha' c_1 \nabla f(x_k)^T p_k.$$

 Δ елим на $\alpha' > 0$, получаем:

$$\nabla f(x_k + \alpha'' p_k)^T p_k \le c_1 \nabla f(x_k)^T p_k. \tag{3}$$

3. Поскольку $c_1 < c_2$ и $\nabla f(x_k)^T p_k < 0$, неравенство $c_1 \nabla f(x_k)^T p_k < c_2 \nabla f(x_k)^T p_k$ выполняется. Это означает, что существует α'' такое, что:

$$\nabla f(x_k + \alpha'' p_k)^T p_k \le c_2 \nabla f(x_k)^T p_k. \tag{4}$$

Неравенства (3) и (4) вместе гарантируют выполнение условий Вульфа.

4. Для сильных условий Вульфа, условие ограничения на кривизну:

$$\left|\nabla f(x_k + \alpha p_k)^T p_k\right| \le c_2 \left|\nabla f(x_k)^T p_k\right| \tag{5}$$

выполняется, потому что $\nabla f(x_k + \alpha p_k)^T p_k$ отрицательно и ограничено снизу $c_2 \nabla f(x_k)^T p_k$.

5. Из-за гладкости f, существует интервал вокруг α'' , где выполняются условия Вульфа (и, следовательно, сильные условия Вульфа). Таким образом, доказательство завершено.

3.18 Бэктрекинг

Бэктрекинг - это техника для нахождения шага, удовлетворяющего условию Армихо, условиям Гольдштейна или другим критериям неточного линейного поиска. Она начинает с относительно большого шага и итеративно уменьшает его до тех пор, пока не будет выполнено условие.

3.18.1 Алгоритм:

- 1. Выберите начальный шаг, α_0 , и параметры $\beta \in (0,1)$ и $c_1 \in (0,1)$.
- 2. Проверьте, удовлетворяет ли выбранный шаг выбранному условию (например, условию Армихо).
- 3. Если условие выполнено, остановитесь; в противном случае, установите lpha:=etalpha и повторите шаг 2.

Шаг α обновляется как

$$\alpha_{k+1} \coloneqq \beta \alpha_k$$

в каждой итерации до тех пор, пока выбранное условие не будет выполнено.

i Example

В обучении моделей машинного обучения линейный поиск с возвратом может использоваться для регулировки скорости обучения. Если потеря не уменьшается достаточно, скорость обучения уменьшается мультипликативно до тех пор, пока не будет выполнено условие Армихо.

3.19 Численная иллюстрация

Рисунок 20: Сравнение различных алгоритмов линейного поиска

Открыть в Colab 🗍

3.20 Градиентный спуск с линейным поиском

4 Задачи

4.1 Задача 1

 ${
m 1}$ Example ${
m Haйдure}\
abla f(x), {
m e}{
m c}{
m a}{
m u}\ f(x) = rac{1}{2}x^TAx + b^Tx + c.$

4.2 Задача 2

 ${f 1}$ Example $\label{eq:hamaure}$ Найдите abla f(X), если $f(X)=tr(AX^{-1}B)$

4.3 Задача 3

5 Задачи на дом

5.1 Линейный поиск

1. [10 баллов] Рассмотрим строго выпуклую квадратичную функцию $f:\mathbb{R}^n o\mathbb{R}$, и пусть мы начинаем из точки $x_k\in\mathbb{R}^n$ двигаться в направлении антиградиента $-\nabla f(x_k)$, при этом $\nabla f(x_k) \neq 0$. Покажите, что минимум f вдоль этого направления как функция шага lpha, для убывающей функции в точке x_k , удовлетворяет условию Армихо для любого c_1 в диапазоне $0 \le c_1 \le \frac{1}{2}$. В частности, покажите, что следующее неравенство выполняется в оптимальном α^* :

$$\varphi(\alpha) = f(x_{k+1}) = f(x_k - \alpha \nabla f(x_k)) \le f(x_k) - c_1 \alpha \|\nabla f(x_k)\|_2^2$$

2. Реализация и тестирование условий линейного поиска в градиентном спуске [36 баллов]

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

В этом задании мы будем модифицировать существующий Python код для градиентного спуска, чтобы включить различные условия линейного поиска. Мы протестируем эти модификации на двух функциях: квадратичной функции и функции Розенброка. Основные цели - понять, как различные стратегии линейного поиска влияют на сходимость алгоритма градиентного спуска и сравнить их эффективность на основе количества вызовов функции.

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize_scalar
np.random.seed(214)
# Define the quadratic function and its gradient
def quadratic_function(x, A, b):
    return 0.5 * np.dot(x.T, np.dot(A, x)) - np.dot(b.T, x)
def grad_quadratic(x, A, b):
    return np.dot(A, x) - b
# Generate a 2D quadratic problem with a specified condition number
def generate_quadratic_problem(cond_number):
    # Random symmetric matrix
   M = np.random.randn(2, 2)
   M = np.dot(M, M.T)
   # Ensure the matrix has the desired condition number
   U, s, V = np.linalg.svd(M)
    s = np.linspace(cond_number, 1, len(s)) # Spread the singular values
   A = np.dot(U, np.dot(np.diag(s), V))
    # Random b
   b = np.random.randn(2)
   return A, b
# Gradient descent function
def gradient_descent(start_point, A, b, stepsize_func, max_iter=100):
    x = start_point.copy()
    trajectory = [x.copy()]
    for i in range(max_iter):
        grad = grad_quadratic(x, A, b)
       step_size = stepsize_func(x, grad)
        x -= step_size * grad
        trajectory.append(x.copy())
    return np.array(trajectory)
# Backtracking line search strategy using scipy
def backtracking_line_search(x, grad, A, b, alpha=0.3, beta=0.8):
    def objective(t):
        return quadratic_function(x - t * grad, A, b)
   res = minimize_scalar(objective, method='golden')
   return res.x
# Generate ill-posed problem
```



```
cond_number = 30
A, b = generate_quadratic_problem(cond_number)
# Starting point
start_point = np.array([1.0, 1.8])
# Perform gradient descent with both strategies
trajectory_fixed = gradient_descent(start_point, A, b, lambda x, g: 5e-2)
trajectory_backtracking = gradient_descent(start_point, A, b, lambda x, g: backtracking_line_search(x, g, A, b))
# Plot the trajectories on a contour plot
x1, x2 = np.meshgrid(np.linspace(-2, 2, 400), np.linspace(-2, 2, 400))
Z = np.array([quadratic_function(np.array([x, y]), A, b) for x, y in zip(x1.flatten(), x2.flatten())]).reshape(x1.shape)
plt.figure(figsize=(10, 8))
plt.contour(x1, x2, Z, levels=50, cmap='viridis')
plt.plot(trajectory_fixed[:, 0], trajectory_fixed[:, 1], 'o-', label='Fixed Step Size')
plt.plot(trajectory_backtracking[:, 0], trajectory_backtracking[:, 1], 'o-', label='Backtracking Line Search')
# Add markers for start and optimal points
plt.plot(start_point[0], start_point[1], 'ro', label='Start Point')
optimal_point = np.linalg.solve(A, b)
plt.plot(optimal_point[0], optimal_point[1], 'y*', markersize=15, label='Optimal Point')
plt.legend()
plt.title('Gradient Descent Trajectories on Quadratic Function')
plt.xlabel('x1')
plt.ylabel('x2')
plt.savefig("linesearch.svg")
```

Начните с ознакомления с предоставленным Python кодом. Этот код реализует градиентный спуск с фиксированным шагом и бэктрекингом на квадратичной функции. Ознакомьтесь с тем, как реализованы функции градиентного спуска и стратегии размера

- 1. [10/36 баллов] Измените функцию градиентного спуска, чтобы включить следующие условия линейного поиска:
 - 1. Дихотомия
 - 2. Условие достаточного убывания
 - 3. Условия Вольфа
 - 4. Шаг Поляка

$$\alpha_k = \frac{f(x_k) - f^*}{\|\nabla f(x_k)\|_2^2},$$

где f^st - оптимальное значение функции. Кажется странным использовать оптимальное значение функции в размере шага, но есть варианты оценить его даже без знания оптимального значения.

5. Метод знака градиента:

$$\alpha_k = \frac{1}{\|\nabla f(x_k)\|_2},$$

Протестируйте модифицированный алгоритм градиентного спуска с реализованными стратегиями поиска размера шага на предоставленной квадратичной функции. Постройте траектории по итерациям для каждого условия. Выберите и укажите гиперпараметры для неточных условий линейного поиска. Выберите и укажите критерий остановки. Начните с точки $x_0 = (-1, 2)^T$.

- 2. [8/36 баллов] Сравните эти 7 методов с точки зрения бюджета. Постройте график значения функции от количества вызовов функции для каждого метода на одном графике.
- 3. [10/36 баллов] Постройте траекторию для другой функции с тем же набором методов

$$f(x_1,x_2) = 10(x_2-x_1^2)^2 + (x_1-1)^2$$

с $x_0 = (-1, 2)^T$. Возможно, вам придется подстроить гиперпараметры.

4. [8/36 баллов] Постройте тот же график значения функции от количества вызовов функции для этого эксперимента.

5.2 Матрично-векторное дифференцирование

- 1. [6 баллов] Найдите градиент $\nabla f(x)$ и гессиан f''(x), если $f(x)=rac{1}{2}\|A-xx^T\|_F^2, A\in\mathbb{S}^n$
- 2. [6 баллов] Найдите градиент $\nabla f(x)$ и гессиан f''(x), если $f(x) = \frac{1}{2} \|Ax b\|_2^2$.
- 3. [8 баллов] Найдите градиент abla f(x) и гессиан f''(x), если

$$f(x) = \frac{1}{m} \sum_{i=1}^m \log \left(1 + \exp(a_i^T x) \right) + \frac{\mu}{2} \|x\|_2^2, \ a_i, x \in \mathbb{R}^n, \ \mu > 0$$

- 4. [8 баллов] Найдите градиент $\nabla_A f(A)$ от следа функции матричной экспоненты $f(A) = \operatorname{tr}(e^A)$ с точки зрения A. Подсказка: Используйте определение матричной экспоненты. Используйте определение дифференциала $df = f(A+dA) f(A) + o(\|dA\|)$ с пределом $\|dA\| \to 0$.
- 5. [20 баллов] **Главные компоненты через вычисление градиента.** Пусть есть набор данных $\{x_i\}_{i=1}^N, x_i \in \mathbb{R}^D$, который мы хотим преобразовать в набор данных меньшей размерности d с помощью проекции на линейное подпространство, определяемое матрицей $P \in \mathbb{R}^{D \times d}$. Ортогональная проекция вектора x на это подпространство может быть вычислена как $P(P^TP)^{-1}P^Tx$. Чтобы найти оптимальную матрицу P, рассмотрим следующую задачу оптимизации:

$$F(P) = \sum_{i=1}^N \|x_i - P(P^TP)^{-1}P^Tx_i\|^2 = N \cdot \mathrm{tr}\left((I - P(P^TP)^{-1}P^T)^2S\right) \to \min_{P \in \mathbb{R}^{D \times d}},$$

где $S = \frac{1}{N} \sum_{i=1}^N x_i x_i^T$ - выборочная ковариационная матрица для нормализованного набора данных.

- 1. Найдите градиент $\nabla_P F(P)$, рассчитанный для произвольной матрицы P с ортогональными столбцами, т.е. $P: P^T P = I$. Подсказка: При вычислении дифференциала dF(P), сначала рассмотрите P как произвольную матрицу, а затем используйте ортогональность столбцов P в полученном выражении.
- 2. Рассмотрите разложение матрицы S на собственные значения:

$$S = Q\Lambda Q^T,$$

где Λ - диагональная матрица с собственными значениями на диагонали, и $Q=[q_1|q_2|\dots|q_D]\in\mathbb{R}^{D\times D}$ - ортогональная матрица, состоящая из собственных векторов q_i в качестве столбцов. Докажите следующее:

- 1. Градиент $\nabla_P F(P)$ равен нулю для любой матрицы P, состоящей из d различных собственных векторов q_i в качестве ее столбиов
- 2. Минимальное значение F(P) достигается для матрицы P, состоящей из собственных векторов q_i , соответствующих наибольшим собственным значениям S.