

MIEEC/MIEMN

2024/2025

Course: Electrónica de Rádio Frequência

Low Noise Amplifier - Part 2

Goal:

Analysis and design of a CMOS LNA.

http://moodle.fct.unl.pt

Version 1.0 Date: 12th May 2025 Author: Luís Oliveira 2024 / 2025 ERF- Final Project

Motivation

Modern telecommunications systems use high-frequencies with high data-rates. In the receiver path the critical block is the LNA, since, it needs to deal with very low amplitude signals. The LNA has stringent specifications in terns of gain, noise, IM3, P-1dB... In this Project it is expected that the students will understand in detail all these aspects designing an LNA for a ISM (industrial, scientific and medical) band.

Specifications

The LNA should fulfill the following specifications:

- ➤ S11 < 10 dB;
- ➤ S22 < -10 dB;
- \triangleright F < 3 dB;
- ➤ Gain > 10dB (= MAG 1st part);
- > 0.1 2 GHz with 350 nm CMOS and 65nm (5GHz) and 45 nm (10 GHz);

DEEC / FCT-UNL May 2025 2 / 4

2024 / 2025 ERF- Final Project

Project assignment

Group	Transistor 350 nm CMOS	Group	Transistor 350 nm CMOS	Group	Transistor 350 nm CMOS
	VDD = 3 V		VDD = 3.3 V		VDD = 2.5 V
P1G1	n = 1.75	P2G1	n = 1.75	P3G1	n = 1.75
	VDD = 3 V		VDD = 3.3 V		VDD = 2.5 V
P1G2	n = 2	P2G2	n = 2	P3G2	n = 2
	VDD = 3 V		VDD = 3.3 V		VDD = 2.5 V
P1G3	n = 2.25	P2G3	n = 2.25	P3G3	n = 2.25
	VDD = 3 V		VDD = 3.3 V		VDD = 2.5 V
P1G4	n = 2.5	P2G4	n = 2.5	P3G4	n = 2.5
	VDD = 3 V		VDD = 3.3 V		VDD = 2.5 V
P1G5	n = 2.75	P2G5	n = 2.75	P3G5	n = 2.75
	VDD = 3 V		VDD = 3.3 V		VDD = 2.5 V
P1G6	n = 3	P2G6	n = 3	P3G6	n = 3
	VDD = 3 V		VDD = 3.3 V		VDD = 2.5 V
P1G7	n = 3.25	P2G7	n = 3.25	P3G7	n = 3.25

Optional: a) technology 65nm (cadence) VDD=1.2 V, b) technology of 45nm (LTSPICE) VDD = 1 V

Components

Transistors

Using 350 nm and optional: 45 nm CMOS technology in simulator LTSPICE and 65nm (cadence in Lab)

Design procedure

1- Project:

LNA

- a. Design the LNA using the circuit topology combined CG + CS stages.
 - Design Transistor Bias and sizing for CG and CS (each stage gain = MAG or > 10 dB).
 - ii. Determine the gain and NF.
 - iii. Implement the ratio n between CG and CS gm.
 - iv. Implement the LNA with minimum L (350nm) and compare with 130nm (optional) and 45 nm technology.
 - v. Design the output buffer for output Z0 match.

b. Simulation:

- i. Validate LNA design using Spice.
- ii. Simulate ratio n between CG and CS gm and check the differences in Gain, NF and Power consumption.
- iii. Compare the results between different CMOS technologies.

2- Report

DEEC / FCT-UNL May 2025 3 / 4

2024 / 2025 ERF- Final Project

- a. The report should have:
 - i. Detailed justification about the options done during the project.
 - ii. Circuit schematics, simulations files, plot, simulation results.
- b. Structure:
 - i. First page with the group number and students identification.
 - ii. Introduction
 - 1. Objective
 - 2. Motivation
 - iii. Main Body
 - 1. Design
 - 2. Simulations
 - 3. Final circuit
 - 4. Analysis of Results
 - 5. Comparison between bipolar and CMOS design.
 - iv. Conclusions

3- Delivery

a. Date: 12-06-2025

b. Place: upload in moodle

Contacts

Prof. Luís Oliveira: Room 3.19 Ed. X / l.oliveira@fct.unl.pt

http://moodle.fct.unl.pt