

Preliminaries

Who should take this class?

 This is a difficult, math- and programming-intensive class geared primarily towards graduate students

 Historically, much fewer undergraduates manage an A than graduate students

- Linear algebra
- Multivariate Calculus, including partial derivatives
- Probability
- Comfort with programming in Python

Intro to Optimization (CAS CS 507) is not a formal prerequisite, but is highly recommended before taking this class

Multivariate Calculus

- Vectors; dot product
- Determinants; cross product
- Matrices; inverse matrices
- Square systems; equations of planes
- Parametric equations for lines and curves
- Max-min problems; least squares
- Second derivative test; boundaries and infinity
- Level curves; partial derivatives; tangent plane approximation
- Differentials; chain rule
- Gradient; directional derivative; tangent plane
- Lagrange multipliers
- Non-independent variables
- Double integrals
- Change of variables
- and other Calculus concepts such as convexity, etc.

- Linear algebra
 - Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
 - Matrix inverse
 - Matrix rank
 - Eigenvalues and Eigenvectors
 - Matrix Calculus

Probability

Rules of probability,
 conditional probability and
 independence, Bayes rule

- Random variables (expected value, variance, their properties); discrete and continuous variables, density functions, vector random variables, covariance, joint distributions
- Common distributions: Normal, Bernoulli, Binomial,
 Multinomial, Uniform, etc.

A review: http://cs229.stanford.edu/section/cs229-prob.pdf

"..but I really want to take this course!"

- If you lack any of these prerequisites, you SHOULD NOT take this class
- we cannot teach you the class material and also the prerequisite material
- we are not miracle workers!
- instead, please consider these alternative courses:
 - EC 414 Introduction to Machine Learning
 - CS 506 Computational Tools for Data
 - CS 504 Data Mechanics

Sufficient background

Insufficient background

Read the book

Matrix Algebra Review

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculus

Matrix Algebra Review

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculus

Vector

• A column vector $\mathbf{v} \in \mathbb{R}^{n \times 1}$ where

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

• A row vector $\mathbf{v}^T \in \mathbb{R}^{1 \times n}$ where

$$\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

 ${\cal T}$ denotes the transpose operation

Vector

We'll default to column vectors in this class

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

Matrix

• A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is an array of numbers with size by , i.e. m rows and n columns.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

• If m=n , we say that ${\bf A}$ is square.

Basic Matrix Operations

- What you should know:
 - Addition
 - Scaling
 - Dot product
 - Multiplication
 - Transpose
 - Inverse / pseudoinverse
 - Determinant / trace

Vectors

Norm

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

- More formally, a norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ that satisfies 4 properties:
- Non-negativity: For all $x \in \mathbb{R}^n$, $f(x) \ge 0$
- **Definiteness**: f(x) = 0 if and only if x = 0.
- Homogeneity: For all $x \in \mathbb{R}^n, t \in \mathbb{R}, f(tx) = |t|f(x)$
- Triangle inequality: For all

$$x, y \in \mathbb{R}^n, f(x+y) \le f(x) + f(y)$$

Example Norms

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_{\infty} = \max_{i} |x_{i}|.$$

• General ℓ_p norms:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

- Inner product (dot product) of vectors
 - Multiply corresponding entries of two vectors and add up the result
 - $x \cdot y$ is also |x||y|Cos (the angle between x and y)

$$\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{vmatrix} y_1 \\ \vdots \\ y_n \end{vmatrix} = \sum_{i=1}^n x_i y_i \quad \text{(scalar)}$$

- Inner product (dot product) of vectors
 - If B is a unit vector, then A·B gives the length of A which lies in the direction of B

The product of two matrices

Matrix multiplication is associative: (AB)C = A(BC).

Matrix multiplication is distributive: A(B+C) = AB + AC.

Matrix multiplication is, in general, *not* commutative; that is, it can be the case that $AB \neq BA$. (For example, if $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times q}$, the matrix product BA does not even exist if m and q are not equal!)

Powers

- By convention, we can refer to the matrix product
 AA as A², and AAA as A³, etc.
- Obviously only square matrices can be multiplied that way

 Transpose – flip matrix, so row 1 becomes column 1

$$\begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}^T = \begin{bmatrix} 0 & 2 & 4 \\ 1 & 3 & 5 \end{bmatrix}$$

A useful identity:

$$(ABC)^T = C^T B^T A^T$$

- Determinant
 - $-\det(\mathbf{A})$ returns a scalar
 - Represents area (or volume) of the parallelogram described by the vectors in the rows of the matrix

- For
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $\det(\mathbf{A}) = ad - bc$

- Properties: $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{B}\mathbf{A})$ $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$ $\det(\mathbf{A}^{T}) = \det(\mathbf{A})$

 $det(\mathbf{A}) = 0 \Leftrightarrow \mathbf{A} \text{ is singular}$

Trace

 $\operatorname{tr}(\mathbf{A}) = \operatorname{sum of diagonal elements}$ $\operatorname{tr}(\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix}) = 1 + 7 = 8$

- Invariant to a lot of transformations, so it's used sometimes in proofs. (Rarely in this class though.)
- Properties:

$$tr(\mathbf{AB}) = tr(\mathbf{BA})$$

 $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$

Vector Norms

$$||x||_1 = \sum_{i=1}^n |x_i|$$
 $||x||_{\infty} = \max_i |x_i|$

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$
 $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$

 Matrix norms: Norms can also be defined for matrices, such as

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{\operatorname{tr}(A^T A)}.$$

Special Matrices

Symmetric matrix

$$\mathbf{A}^T = \mathbf{A}$$

Skew-symmetric matrix

$$\mathbf{A}^T = -\mathbf{A}$$

• Identity matrix I

Diagonal matrix

$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 7 \\ 5 & 7 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -2 & -5 \\ 2 & 0 & -7 \\ 5 & 7 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 2.5 \end{bmatrix}$$

Matrix Algebra Review

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

Inverse

• Given a matrix A, its inverse A^{-1} is a matrix such that $AA^{-1} = A^{-1}A = I$

• E.g.
$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$

- Inverse does not always exist. If A⁻¹ exists, A is
 invertible or non-singular. Otherwise, it's singular.
- Useful identities, for matrices that are invertible:

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
$$\mathbf{A}^{-T} \triangleq (\mathbf{A}^{T})^{-1} = (\mathbf{A}^{-1})^{T}$$

- Pseudoinverse
 - Say you have the matrix equation AX=B, where A and B are known, and you want to solve for X

Pseudoinverse

- Say you have the matrix equation AX=B, where A and B are known, and you want to solve for X
- You could calculate the inverse and pre-multiply by it: $A^{-1}AX=A^{-1}B$ → $X=A^{-1}B$

Pseudoinverse

- Say you have the matrix equation AX=B, where A and B are known, and you want to solve for X
- You could calculate the inverse and pre-multiply by it: $A^{-1}AX=A^{-1}B$ → $X=A^{-1}B$
- Python command would be np.linalg.inv(A)*B
- But calculating the inverse for large matrices often brings problems with computer floating-point resolution (because it involves working with very small and very large numbers together).
- Or, your matrix might not even have an inverse.

Pseudoinverse

- Fortunately, there are workarounds to solve AX=B in these situations. And python can do them!
- Instead of taking an inverse, directly ask python to solve for X in AX=B, by typing np.linalg.solve(A, B)
- Python will try several appropriate numerical methods (including the pseudoinverse if the inverse doesn't exist)
- Python will return the value of X which solves the equation
 - If there is no exact solution, it will return the closest one
 - If there are many solutions, it will return the smallest one

Python example:

$$AX = B$$

$$A = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

```
>> import numpy as np
>> x = np.linalg.solve(A,B)
x =
    1.0000
    -0.5000
```

Matrix Algebra Review

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

Linear independence

- Suppose we have a set of vectors $v_1, ..., v_n$
- If we can express \mathbf{v}_1 as a linear combination of the other vectors $\mathbf{v}_2...\mathbf{v}_n$, then \mathbf{v}_1 is linearly dependent on the other vectors.
 - The direction v_1 can be expressed as a combination of the directions $v_2...v_n$. (E.g. $v_1 = .7 v_2 .7 v_4$)

Linear independence

- Suppose we have a set of vectors $v_1, ..., v_n$
- If we can express \mathbf{v}_1 as a linear combination of the other vectors $\mathbf{v}_2...\mathbf{v}_n$, then \mathbf{v}_1 is linearly dependent on the other vectors.
 - The direction \mathbf{v}_1 can be expressed as a combination of the directions $\mathbf{v}_2...\mathbf{v}_n$. (E.g. \mathbf{v}_1 = .7 \mathbf{v}_2 -.7 \mathbf{v}_4)
- If no vector is linearly dependent on the rest of the set, the set is linearly independent.
 - Common case: a set of vectors $v_1, ..., v_n$ is always linearly independent if each vector is perpendicular to every other vector (and non-zero)

Linear independence

Linearly independent set

Not linearly independent

Matrix rank

Column/row rank

 $\operatorname{col-rank}(\mathbf{A}) = \operatorname{the\ maximum\ number\ of\ linearly\ independent\ column\ vectors\ of\ \mathbf{A}}$ row-rank $(\mathbf{A}) = \operatorname{the\ maximum\ number\ of\ linearly\ independent\ row\ vectors\ of\ \mathbf{A}}$

Column rank always equals row rank

Matrix rank

$$rank(\mathbf{A}) \triangleq col\text{-}rank(\mathbf{A}) = row\text{-}rank(\mathbf{A})$$

Matrix rank

- For transformation matrices, the rank tells you the dimensions of the output
- E.g. if rank of A is 1, then the transformation

maps points onto a line.

Here's a matrix with rank 1:

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ 2x+2y \end{bmatrix} - \text{All points get mapped to the line y=2x}$$

Matrix rank

- If an m x m matrix is rank m, we say it's "full rank"
 - Maps an m x 1 vector uniquely to another m x 1 vector
 - An inverse matrix can be found
- If rank < m, we say it's "singular"
 - At least one dimension is getting collapsed. No way to look at the result and tell what the input was
 - Inverse does not exist
- Inverse also doesn't exist for non-square matrices

Matrix Algebra Review

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors(SVD)
- Matrix Calculus

Eigenvector and Eigenvalue

 An eigenvector x of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction.

$$Ax = \lambda x, \quad x \neq 0.$$

Eigenvector and Eigenvalue

- An eigenvector x of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction.
- Applying A to the eigenvector only scales the eigenvector by the scalar value λ , called an eigenvalue.

$$Ax = \lambda x, \quad x \neq 0.$$

Properties of eigenvalues

The trace of a A is equal to the sum of its eigenvalues:

$$tr A = \sum_{i=1}^{n} \lambda_i.$$

- The determinant of A is equal to the product of its eigenvalues $|A| = \prod_{i=1}^{n} \lambda_i$.
- The rank of A is equal to the number of non-zero eigenvalues of A.
- The eigenvalues of a diagonal matrix D = diag(d1, . . .
 dn) are just the diagonal entries d1, . . . dn

Diagonalization

Eigenvalue equation:

$$AV = VD$$
$$A = VDV^{-1}$$

Where D is a diagonal matrix of the eigenvalues

$$\left(\begin{array}{ccc} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{array}\right)$$

Diagonalization

Eigenvalue equation:

$$AV = VD$$
$$A = VDV^{-1}$$

• Assuming all λ_i 's are unique:

$$A = VDV^T$$

 Remember that the inverse of an orthogonal matrix is just its transpose and the eigenvectors are orthogonal

Symmetric matrices

Properties:

- For a symmetric matrix A, all the eigenvalues are real.
- The eigenvectors of A are orthonormal.

$$A = VDV^T$$

Symmetric matrices

• Therefore:

$$x^T A x = x^T V D V^T x = y^T D y = \sum_{i=1}^n \lambda_i y_i^2$$

- where $y = V^T x$
- So, if we wanted to find the vector x that:

$$\max_{x \in \mathbb{R}^n} x^T A x$$
 subject to $||x||_2^2 = 1$

Symmetric matrices

• Therefore:

$$x^T A x = x^T V D V^T x = y^T D y = \sum_{i=1}^n \lambda_i y_i^2$$

- where $y = V^T x$
- So, if we wanted to find the vector x that:

$$\max_{x \in \mathbb{R}^n} x^T A x$$
 subject to $||x||_2^2 = 1$

 Is the same as finding the eigenvector that corresponds to the largest eigenvalue.

Matrix Algebra Review

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors(SVD)
- Matrix Calculus

Matrix Calculus – The Gradient

- Let a function $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ take as input a matrix A of size m × n and returns a real value.
- Then the gradient of f:

$$\nabla_{A} f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

Matrix Calculus – The Gradient

- Every entry in the matrix is: $(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}$.
- the size of $\nabla_A f(A)$ is always the same as the size of A. So if A is just a vector x:

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

Exercise

Example:

For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some known vector $b \in \mathbb{R}^n$

$$f(x) = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 • Find: $\frac{\partial f(x)}{\partial x_k} = ?$

$$\nabla_x f(x) = ?$$

Exercise

Example:

For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some known vector $b \in \mathbb{R}^n$

$$f(x) = \sum_{i=1}^{n} b_i x_i$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k.$$

• From this we can conclude that: $\nabla_x b^T x = b$.

Matrix Calculus – The Gradient

Properties

- $\nabla_x (f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x)$.
- For $t \in \mathbb{R}$, $\nabla_x(t f(x)) = t\nabla_x f(x)$.

Matrix Calculus – The Jacobian

• if you have a vector valued function y = f(x) e.g., $x, y \in \mathbb{R}^n$, then the gradient of y with respect to x is a Jacobian matrix:

$$J = \left(egin{array}{cccc} rac{\partial y_1}{\partial x_1} & \dots & rac{\partial y_1}{\partial x_n} \\ dots & \ddots & dots \\ rac{\partial y_m}{\partial x_1} & \dots & rac{\partial y_m}{\partial x_n} \end{array}
ight)$$

• The Hessian matrix with respect to x, written $\nabla_x^2 f(x)$ or simply as H is the n × n matrix of partial derivatives

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

• Each entry can be written as: $\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$

 Exercise: Why is the Hessian always symmetric?

• Each entry can be written as: $\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$

The Hessian is always symmetric, because

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}.$$

 This is known as Schwarz's theorem: The order of partial derivatives don't matter as long as the second derivative exists and is continuous.

 Note that the hessian is not the gradient of whole gradient of a vector (this is not defined). It is actually the gradient of every entry of the gradient of the vector.

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

• Eg, the first column is the gradient of $\frac{\partial f(x)}{\partial x_1}$

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

Common vector derivatives

Scalar derivative			Vector derivative		
f(x)	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}x}$	$f(\mathbf{x})$	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$
bx	\rightarrow	b	$\mathbf{x}^T \mathbf{B}$	\rightarrow	В
bx	\rightarrow	b	$\mathbf{x}^T\mathbf{b}$	\rightarrow	\mathbf{b}
x^2	\rightarrow	2x	$\mathbf{x}^T\mathbf{x}$	\rightarrow	$2\mathbf{x}$
bx^2	\rightarrow	2bx	$\mathbf{x}^T \mathbf{B} \mathbf{x}$	\rightarrow	$2\mathbf{B}\mathbf{x}$