1GHz—25GHz Rad	diated emissison Test result
EUT: Outdoor Wireless Speakers	M/N: CORNERSTONE
Power: DC 15V from adapter	

Test date: 2016-01-06 Test site: 3m Chamber Tested by: Peter

Test mode: 8- DQPSK Tx CH1 2402MHz

Antenna polarity: Vertical

1 11100	Jima pora	1109: 1010100	41						
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4804	45.16	33.95	10.18	34.26	55.03	74	18.97	PK
2	4804	36.76	33.95	10.18	34.26	46.63	54	7.37	AV
3	7206	/							
4	9608	/							
5	12010	/							
Ante	enna Pola	rity: Horizo	ntal						
1	4804	44.84	33.95	10.18	34.26	54.71	74	19.29	PK
2	4804	36.42	33.95	10.18	34.26	46.29	54	7.71	AV
3	7206	/							
4	9608	/							
5	12010	/							

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz-	-25GHz Radiated	d emissison	Test result

EUT: Outdoor Wireless Speakers M/N: CORNERSTONE

Power: DC 15V from adapter

Test date: 2016-01-06 Test site: 3m Chamber Tested by: Peter

Test mode: 8- DQPSK Tx CH40 2441MHz

Antenna polarity: Vertical

No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4882	44.97	33.93	10.2	34.29	54.81	74	19.19	PK
2	4882	36.85	33.93	10.2	34.29	46.69	54	7.31	AV
3	7323	/							
4	9764	/							
5	12205	/							
Anter	nna Polari	ty: Horizon	ıtal						
1	4882	45.15	33.93	10.2	34.29	54.99	74	19.01	PK
2	4882	36.97	33.93	10.2	34.29	46.81	54	7.19	AV
3	7323	/							
4	9764	/							
5	12205	/							

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

	1GHz—25GHz Radiated emissison Test result											
EU'	EUT: Outdoor Wireless Speakers M/N: CORNERSTONE											
Pow	Power: DC 15V from adapter											
Test	Test date: 2016-01-06 Test site: 3m Chamber Tested by: Peter											
Test	Test mode: 8- DQPSK Tx CH79 2480MHz											
Ant	enna pola	arity: Vertic	al									
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark			
1	4960	44.95	33.98	10.22	34.25	54.9	74	19.1	PK			
2	4960	38.38	33.98	10.22	34.25	48.33	54	5.67	AV			
3	7440	/										
4	9920	/										
5	12400	/										
Ant	enna Pola	arity: Horizo	ontal									
1	4960	45.27	33.98	10.22	34.25	55.22	74	18.78	PK			
2	4960	36.85	33.98	10.22	34.25	46.8	54	7.2	AV			
3	7440	/										
4	9920	/										
5	12400	/										

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

9. Band Edge Compliance

9.1. Block Diagram of Test Setup

9.2. Limit

All the lower and upper band-edges emissions appearing within restricted frequency bands shall not exceed the limits shown in RSS-GEN, all the other emissions outside operation shall be at least 20dB below the fundamental emissions, or comply with RSS-GEN limits.

9.3. Test Procedure

All restriction band and non- restriction band have been tested , only worse case is reported.

9.4. Test Result

PASS. (See below detailed test data)

Radiated Method

GFSK (CH Low)

			Band Ed	dge Test	result			
EUT: Outdoo	r Wireless S	Speakers		1	M/N: CORN	NERSTONE	,	
Power: DC 1:	5V from ada	apter						
Test date: 201	16-01-06	Test site	: 3m Cl	namber	Tested by	: Peter		
Test mode: T	x CH Low 2	2402MHz	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	45.55	27.62	3.92	34.97	42.12	74	31.88	PK
2390		27.62	3.92	34.97		54		AV
Antenna Pola	rity: Horizo	ntal						
2390	44.32	27.62	3.92	34.97	40.89	74	33.11	PK
2390		27.62	3.92	34.97		54		AV
Note:								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

GFSK (CH High)

			Band Ed	lge Test	result			
EUT: Outdoo	or Wireless S	Speakers		1	M/N: CORN	NERSTONE		
Power: DC 1	5V from ada	apter						
Test date: 20	16-01-06	Test site	: 3m Cł	namber	Tested by	: Peter		
Test mode: T	x CH High	2480MH	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)		Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	44.88	27.89	4	34.97	41.8	74	32.2	PK
2483.5						54		AV
Antenna Pola	rity: Horizo	ontal						
2483.5	44.35	27.89	4	34.97	41.27	74	32.73	PK
2483.5						54		AV
Notes								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

GFSK (Hopping Low)

		Band Ed	dge Test	result						
EUT: Outdoor Wireless Speakers M/N: CORNERSTONE										
5V from ada	apter									
16-01-06	Test site	: 3m Cł	namber	Tested by	: Peter					
X										
rity: Vertica	al									
Read Level (dBuV/m)	Factor		Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark			
43.06	27.62	3.92	34.97	39.63	74	34.37	PK			
	27.62	3.92	34.97		54		AV			
rity: Horizo	ntal	T	1			1				
43.76	27.62	3.92	34.97	40.33	74	33.67	PK			
	27.62	3.92	34.97		54		AV			
	5V from additional forms of the second secon	5V from adapter 16-01-06 Test site ix rity: Vertical Read Antenna Level Factor (dBuV/m) (dB/m) 43.06 27.62 27.62 arity: Horizontal 43.76 27.62	Note the content of	rity: Vertical Read Antenna Cable Amp Level Factor (dBuV/m) (dB/m) B) (dB) 43.06 27.62 3.92 34.97 Arity: Horizontal 43.76 27.62 3.92 34.97	Test site: 3m Chamber Tested by St. Test site: 3m Chamber Tested by St.	Note Corne Corne	Note Speakers M/N: CORNERSTONE			

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

GFSK (Hopping High)

			Band Ed	dge Test	result			
EUT: Outdoo	or Wireless S	Speakers		1	M/N: CORN	IERSTONE		
Power: DC 1:	5V from ada	apter						
Test date: 20	16-01-06	Test site	: 3m Cł	namber	Tested by	: Peter		
Test mode: T	X							
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)		Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	43.12	27.89	4	34.97	40.04	74	33.96	PK
2483.5						54		AV
Antenna Pola	rity. Horizo	ontal						
2483.5	43.85	27.89	4	34.97	40.77	74	33.23	PK
2483.5						54		AV
NI 4								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

$\pi/4$ DQPSK (CH Low)

n + DQI bit	(CII LOW	<u> </u>						
			Band Ed	dge Test	result			
EUT: Outdoo	r Wireless S	Speakers		1	M/N: CORN	NERSTONE		
Power: DC 1:	5V from ada	apter						
Test date: 201	16-01-06	Test site	: 3m Cl	namber	Tested by	: Peter		
Test mode: T	x CH Low 2	2402MHz	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	43.93	27.62	3.92	34.97	40.5	74	33.5	PK
2390		27.62	3.92	34.97		54		AV
		. 1						
Antenna Pola	rity: Horizo	ntal		Т			T	T
2390	44.25	27.62	3.92	34.97	40.82	74	33.18	PK
2390		27.62	3.92	34.97		54		AV
Note:								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

π /4 DQPSK (CH High)

			Band Ed	dge Test	result			
EUT: Outdoo	or Wireless	Speakers		1	M/N: CORN	NERSTONE	,	
Power: DC 1	5V from ad	apter						
Test date: 20	16-01-06	Test site	: 3m Cl	namber	Tested by	: Peter		
Test mode: T	x CH High	2480MH	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)		Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	43.34	27.89	4	34.97	40.26	74	33.74	PK
2483.5						54		AV
Antenna Pola	rity: Horizo	ntal						
2483.5	43.78	27.89	4	34.97	40.7	74	33.3	PK
2483.5						54		AV
Note:								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

π /4 DQPSK (Hopping Low)

			Band Ed	dge Test	result			
EUT: Outdoo	or Wireless	Speakers		I	M/N: CORN	NERSTONE	·	
Power: DC 1	5V from ad	apter						
Test date: 20	16-01-06	Test site	: 3m Cl	namber	Tested by	: Peter		
Test mode:								
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	43.93	27.62	3.92	34.97	40.5	74	33.5	PK
2390		27.62	3.92	34.97		54		AV
Antenna Pola	rity: Horizo	ontal						
2390	43.89	27.62	3.92	34.97	40.46	74	33.54	PK
2390		27.62	3.92	34.97		54		AV
Note:								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

 π /4 DQPSK (Hopping High)

Band Edge Test result											
EUT: Outdoo	r Wireless	Speakers	M/N: CORNERSTONE								
Power: DC 1:	5V from ad	apter									
Test date: 201	Test date: 2016-01-06 Test site: 3m Chamber Tested by: Peter										
Test mode: T	X										
Antenna pola	rity: Vertica	al									
Freq (MHz) Read Level Factor (dBuV/m) Result (dBuV/m) Remark (dBuV/m) Result (dBuV/m) Remark											
2483.5 43.18		27.89	4	34.97	40.1	74	33.9	PK			
2483.5						54		AV			
Antenna Pola	rity: Horizo	ontal									
2483.5	27.89	4	34.97	41.35	74	32.65	PK				
2483.5						54		AV			
NI-4											

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

8- DPSK (CH Low)

Band Edge Test result										
EUT: Outdoo	r Wireless S	Speakers	M/N: CORNERSTONE							
Power: DC 15	5V from ada	apter								
Test date: 2016-01-06 Test site: 3m Chamber Tested by: Peter										
Test mode: T	x CH Low 2	2402MHz	Z							
Antenna pola	rity: Vertica	ıl								
Freq Level Factor (dBuV/m) (dB/m) B) Result (dBuV/m) Result (dBuV/m) Remarks										
2390 44.11		27.62	3.92	34.97	40.68	74	33.32	PK		
2390		27.62	3.92	34.97		54		AV		
Antenna Pola	Antenna Polarity: Horizontal									
2390	44.32	27.62	3.92	34.97	40.89	74	33.11	PK		
2390		27.62	3.92	34.97		54		AV		
N.T										

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

8- DPSK (CH High)

Band Edge Test result										
EUT: Outdoo	r Wireless S	Speakers	M/N: CORNERSTONE							
Power: DC 1:	5V from ada	apter								
Test date: 2016-01-06 Test site: 3m Chamber Tested by: Peter										
Test mode: T	x CH High	2480MH	Z							
Antenna pola	rity: Vertica	al								
Freq Level Factor Cable Amp Result Limit Margin (dBuV/m) (dB/m) B) (dB) Result (dBuV/m) (dB) Remark										
2483.5	43.16	27.89	4	34.97	40.08	74	33.92	PK		
2483.5						54		AV		
Antenna Pola	rity: Horizo	ntal		•						
2483.5	44.51	27.89	4	34.97	41.43	74	32.57	PK		
2483.5						54		AV		
Note:	ı									

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

8- DPSK (Hopping Low)

			Band Ed	dge Test	result					
EUT: Outdoo	r Wireless S	Speakers	M/N: CORNERSTONE							
Power: DC 1:	5V from ada	apter								
Test date: 2016-01-06 Test site: 3m Chamber Tested by: Peter										
Test mode: T	X									
Antenna pola	rity: Vertica	al								
Freq (MHz) Read Level Factor (dB/m) Result (dBuV/m) Result (dBuV/m) Remark										
2390 43.83 27.62		27.62	3.92	34.97	40.4	74	33.6	PK		
2390 :		27.62	3.92	34.97		54		AV		
Antenna Pola	rity: Horizo	ntal		I	L					
2390	44.36	27.62	3.92	34.97	40.93	74	33.07	PK		
2390		27.62	3.92	34.97		54		AV		
Note:										

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

8- DPSK (Hopping High)

Band Edge Test result											
EUT: Outdoo	or Wireless	Speakers	M/N: CORNERSTONE								
Power: DC 1	5V from ad	apter									
Test date: 20	Test date: 2016-01-06 Test site: 3m Chamber Tested by: Peter										
Test mode: T	X										
Antenna pola	rity: Vertica	al									
Freq Level Factor loss(d Factor (dBuV/m) (dB/m) B) Result (dBuV/m) Result (dBuV/m) Result (dBuV/m) Remarks											
2483.5	43.25	27.89	4	34.97	40.17	74	33.83	PK			
2483.5						54		AV			
Antenna Pola	arity: Horizo	ontal	<u> </u>				<u> </u>				
2483.5	43.96	27.89	4	34.97	40.88	74	33.12	PK			
2483.5						54		AV			
NT - 4	1	l	1	1	1	I	1	I .			

Rand Edge Test result

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Conducted Method GFSK

CH LOW:

CH High:

Hopping

Low

High

$\pi \ /4 \ DQPSK$ Low

High

Hopping Low

High

8- DPSK:

Low

High

Hopping

Low

High

10. Power Line Conducted Emissions

10.1.Block Diagram of Test Setup

2:50Ω Terminator

10.2.Limit

	Maximum RF Line Voltage					
Frequency	Quasi-Peak Level	Average Level				
	$dB(\mu V)$	$dB(\mu V)$				
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*				
500kHz ~ 5MHz	56	46				
5MHz ~ 30MHz	60	50				

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

10.3. Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane.
- (2) Setup the EUT and simulator as shown in 10.1
- (3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N2), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2014 on conducted Emission test.
- (4) The bandwidth of test receiver is set at 10KHz.
- (5) The frequency range from 150 KHz to 30MHz is checked.

10.4. Test Result

PASS. (See below detailed test data)

Model No

: ISP55 : BI MODE Test Mode

: DC 15V from Adapter with AC 120V/60Hz Power

Test Engineer: Remark

Item	Freq	Read	LISN	Attenuato		Level	Limit	Margin	Remark
	MHz	dBuV	Factor dB	Factor dB	Lose dB	dBuV	dBuV	dBuV	
1	0.192	32.18	0.03	-9.52	0.10	41.83	63.93	-22.10	Peak
2	0.336	29.07	0.03	-9.56	0.10	38.76	59.31	-20.55	Peak
3	0.452	29.31	0.03	-9.58	0.10	39.02	56.85	-17.83	Peak
4	1.628	23.03	0.05	-9.69	0.10	32.87	56.00	-23.13	Peak
5	6.769	17.51	0.12	-9.97	0.15	27.75	60.00	-32.25	Peak
6	18.820	20.12	0.30	-9.81	0.33	30.56	60.00	-29.44	Peak

Remarks: Level = Read + LISN Factor - Attenuator Factor + Cable loss

Note1: If QP Result comply with AV limit, AV Result is deemed to comply with AV limit

11. Antenna Requirements

11.1.Limit

For intentional device, according to RSS-GEN, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to RSS-GEN, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2.Result

The antennas used for this product are PCB Antenna for Bluetooth, no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 0dBi.

12. Test setup photo

12.1.Photos of Radiated emission

12.2.Photos of Conducted Emission test

13. Photos of EUT

-----END OF THE REPORT-----