Next: About this document ... Up: final16s Previous: Instruction (read this before

The Final Exam (don't click until you are ready to take the exam)

- 1. Answer the following questions:
 - (10 pts) The RMS values of the three AC voltages across R, L, and C are known to be $V_1 = 4V$, $V_2 = 5V$, and $V_3 = 2V$, respectively. Find the RMS voltage V_0 of the source. If the AC voltage source is replaced by a DC voltage source $V_0 = 10V$, find the three voltages V_1 , V_2 , and V_3 .

- (10 pts) In the figure above, it is know that $R=10\Omega$, $L=100\,mH$, and $C=500\,\mu F$, and the current through the loop is known to be $i(t)=\cos(100\,t)\,A$, find all four voltages $v_0(t)$, $v_1(t)$, $v_2(t)$, and $v_3(t)$.
- (10 pts) The RMS values of the three AC currents through R, L, and C measured by the three ammeters A_1 , A_2 , and A_3 are $I_1 = 4$ A, $I_2 = 5$ A, and $I_3 = 2$ A, respectively. Find the RMS value of the source current I_0 . If the AC voltage source is replaced by a DC current source $I_0 = 1$ A, find the three currents I_1 , I_2 , and I_3 measured respectively by ammeters A_1 , A_2 , and A_3 .

2. (23 pts) In the circuit below, $R_1 = 20\Omega$, $R_2 = 10\Omega$, $R_3 = 30\Omega$, $L = 10 \, mH$, $I_0 = 5A$.

The circuit is at steady state before the switch is turned from position 1 to position 2 at $\underline{t=0}$. Find the three voltages $v_1(t)$, $v_2(t)$ and $v_L(t)$ across R_1 , R_2 and L, respectively, for t>0 (the bottom wire is treated as ground).

3. (23 pts) The circuit below shows a simple means for obtaining improved bias stability of the DC operating point of the transistor. As always, assume $V_{BE} = 0.7V$ when answering the following questions.

 \circ Complete the event chain below (in terms of V_C , V_B , I_B , etc.) to show qualitatively that R_B connected to the collector C (instead of V_{CC}) introduces a negative feedback by

which the DC operating point tends to be stabilized:

$$I_C \uparrow \Longrightarrow \cdots \Longrightarrow I_C \downarrow$$

- Derive an expression for I_C in terms of R_B , R_C , V_{CC} and β .
- Assuming $\beta=100$, $V_{BE}=0.7$, and $V_{CC}=10V$, find R_C and R_B so that $V_{CE}=5\overline{V}$ and $I_C=2mA$.
- Confirm your design does put the DC operating point in the middle of the linear region.
- 4. (24 pts) Determine qualitatively what kind of filter the following op-amp circuit is. Is it a first or second order? a low-pass, high-pass, or band-pass?

Find the frequency response function (FRF) of the circuit, and find the cut-off frequency ω_c of the filter in terms of the given circuit parameters R_1 , R_2 , R and C, so that

 $|H(j\omega_c)|=|H(j\omega_p)|/\sqrt{2}$, where ω_p is the frequency at which $|H(j\omega_p)|$ reaches maximum.

Next: About this document ... Up: final16s Previous: Instruction (read this before

Ruye Wang 2016-05-09