无线通信实验在线开放课程

主讲人: 吴光 博士

广东省教学质量工程建设项目

An example in our daily life

Lab 16: LDPC Code

主讲人: 吴光 博士

Email: wug@sustech.edu.cn

 Given a noisy channel with channel capacity C and information transmitted at a rate R, then if

 There exists a coding technique which allows the probability of error at the receiver to be made arbitrarily small.

(7,4) Hamming Encoding > 放水 機能

Code word

$$(c_6, c_5, c_4, c_3, c_2, c_1, c_0)$$

Transmitted bits

Redundant bits

$$\begin{cases} C_2 = C_6 + C_5 + C_4 \\ C_1 = C_5 + C_4 + C_3 \\ C_0 = C_6 + C_5 + C_3 \end{cases}$$

Generator Matrix

Transmitted bits

$$\begin{cases} C_2 = C_6 + C_5 + C_4 \\ C_1 = C_5 + C_4 + C_3 \\ C_0 = C_6 + C_5 + C_3 \end{cases}$$

$$\mathbf{G}_{4\times7} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Generator matrix

Example

Parity-check Matrix

$$\begin{cases} C_2 = C_6 + C_5 + C_4 \\ C_1 = C_5 + C_4 + C_3 \\ C_0 = C_6 + C_5 + C_3 \end{cases}$$

$$\begin{cases} C_6 + C_5 + C_4 + 0 + C_2 + 0 + 0 = 0 \\ 0 + C_5 + C_4 + C_3 + 0 + C_1 + 0 = 0 \\ C_6 + C_5 + 0 + C_3 + 0 + 0 + C_0 = 0 \end{cases}$$

$$\begin{cases} C_2 = C_6 + C_5 + C_4 \\ C_1 = C_5 + C_4 + C_3 \\ C_0 = C_6 + C_5 + C_3 \end{cases}$$

$$\begin{cases} C_6 + C_5 + C_4 + 0 + C_2 + 0 + 0 = 0 \\ 0 + C_5 + C_4 + C_3 + 0 + C_1 + 0 = 0 \\ C_6 + C_5 + 0 + C_3 + 0 + 0 + C_0 = 0 \end{cases}$$

Syndrome vector $\mathbf{S}^{T} = \mathbf{H} \cdot \mathbf{R}^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{6} \\ r_{5} \\ r_{4} \\ r_{3} \\ r_{2} \\ r_{1} \\ r_{0} \end{bmatrix} = \begin{bmatrix} r_{6} + r_{5} + r_{4} + r_{2} \\ r_{5} + r_{4} + r_{3} + r_{1} \\ r_{6} + r_{5} + r_{3} + r_{0} \end{bmatrix} = \begin{bmatrix} s_{2} \\ s_{1} \\ s_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Another View--Tanner Graph 分析检验解的

$$\begin{bmatrix} s_2 \\ s_1 \\ s_0 \end{bmatrix} = \begin{bmatrix} r_6 + r_5 + r_4 + r_2 \\ r_5 + r_4 + r_3 + r_1 \\ r_6 + r_5 + r_3 + r_0 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} s_{2}$$

$$r_{6} \quad r_{5} \quad r_{4} \quad r_{3} \quad r_{2} \quad r_{1} \quad r_{0}$$

$$r_{0} \quad r_{1}$$

$$R_i = C_i$$

$$i = 0,1,...,6$$

$$\mathbf{S}^{T} = \mathbf{H} \cdot \mathbf{R}^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 + 1 + 0 + 1 \\ 1 + 0 + 1 + 0 \\ 0 + 1 + 1 + 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$R_3 \neq C_3$$

$$\mathbf{S}^{T} = \mathbf{H} \cdot \mathbf{R}^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 + 1 + 0 + 1 \\ 1 + 0 + 0 + 0 \\ 0 + 1 + 0 + 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Error pattern and Syndrome vector

The relationship between G and H

Exercise: (7,4) Hamming Encoding

- Random coding
- Codeword length tends to infinity
- Maximum-Likelihood Decoding

Regular LDPC

The parity-check matrix of a LDPC has *sparse* property, that is:

As for a $m \times n$ parity-check matrix H:

- The number of 1's in any column (the row weight w_r), is much less than row-length ($w_r << m$).
- The number of 1's in any row (the column weight w_c), is much less than column-length ($w_c << n$).
- w_c is constant for every column, w_r is constant for every row and $\frac{w_r}{m} = \frac{w_c}{n}$.

Here is an example of H

Γ1	1	1	1	$0 \downarrow 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	$0 \rfloor$
0	0	0	0	1 1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0 0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0 0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
0	0	0	0	$0 \mid 0$	0	0	0	0	0	0	0	0	0	0	1	1	1	1
1	0	0	0	1 0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	0 1	0	0	0	1	0	0	0	0	0	0	1	0	0	0
0	0	1	0	$0 \mid 0$	1	0	0	0	0	0	0	1	0	0	0	1	0	0
0	0	0	1	$0 \mid 0$	0	0	0	0	1	0	0	0	1	0	0	0	1	0
0	0	0	0	0 + 0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
1	0	0	0	0 1	0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	1	0	0	$0 \mid 0$	1	0	0	0	1	0	0	0	0	1	0	0	0	0
0	0	1	0	$0 \mid 0$	0	1	0	0	0	0	1	0	0	0	0	0	1	0
0	0	0	1	$0 \mid 0$	0	0	1	0	0	0	0	1	0	0	1	0	0	0
$\lfloor 0$	0	0	0	1 0	0	0	0	1	0	0	0	0	1	0	0	0	0	1

$$(20, 3, 4) m = 15, n = 20, w_r = 4, w_c = 3$$

Low-Density Parity-Check Codes, Robert G. Gallager, 1963.

(8, 2, 4)

A length 12 (3,4)-regular Gallager parity-check matrix

All variable nodes send a message to their connected check nodes.

Every check nodes calculate a response to their connected variable nodes

Variable nodes use the messages they get from the check nodes to decide if the bit at their position is a 0 or a 1 by **majority rule**.

Repeat step 2 until either exit at step 2 or a certain number of iterations has been passed.

$$c = [1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1]^T$$

 $y = [1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1]^T$

Check nodes update

check nodes	$E_{i,j}$							
f_1	receive	$c_2 \rightarrow 1$	$c_4 \rightarrow 1$	$c_5 \rightarrow 0$	$c_8 \rightarrow 1$			
	send	$0 \rightarrow c_2$	$0 \rightarrow c_4$	$1 \rightarrow c_5$	$0 \rightarrow c_8$			
f_2	receive	$c_1 \rightarrow 1$	$c_2 \rightarrow 1$	$c_3 \rightarrow 0$	$c_6 \rightarrow 1$			
	send	$0 \rightarrow c_1$	$0 \rightarrow c_2$	$1 \rightarrow c_3$	$0 \rightarrow c_6$			
f_3	receive	$c_3 \rightarrow 0$	$c_6 \rightarrow 1$	$c_7 \rightarrow 0$	$c_8 \rightarrow 1$			
	send	$0 \rightarrow c_3$	$1 \rightarrow c_6$	$0 \rightarrow c_7$	$1 \rightarrow c_8$			
f_4	receive	$c_1 \rightarrow 1$	$c_4 \rightarrow 1$	$c_5 \rightarrow 0$	$c_7 \rightarrow 0$			
	send	$1 \rightarrow c_1$	$1 \rightarrow c_4$	$0 \rightarrow c_5$	$0 \rightarrow c_7$			

$$c = [1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1]^{T}$$
$$y = [1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1]^{T}$$

Majority rule: if vote > 50%, flip else, hold on

Variable nodes update

Variable nodes	y _i	messag check	decision	
c ₁	1	$f_2 \rightarrow 0$	$f_4 \rightarrow 1$	1
c_2	1	$f_1 \rightarrow 0$	$f_2 \rightarrow 0$	0
c ₃	0	$f_2 \rightarrow 1$	$f_3 \rightarrow 0$	0
c ₄	1	$f_1 \rightarrow 0$	$f_4 \rightarrow 1$	1
c ₅	0	$f_1 \rightarrow 1$	$f_4 \rightarrow 0$	0
c ₆	1	$f_2 \rightarrow 0$	$f_3 \rightarrow 1$	1
c ₇	0	$f_3 \rightarrow 0$	$f_4 \rightarrow 0$	0
c ₈	1	$f_1 \rightarrow 1$	$f_3 \rightarrow 1$	1

Exercise: Simple LDPC (BSC)

Exercise: Simple LDPC (AWGN)

Question ?

