1998

- Let f be a function that has derivatives of all orders for all real numbers. Assume f(0) = 5, f'(0) = -3, f''(0) = 1, and f'''(0) = 4.
  - (a) Write the third-degree Taylor polynomial for f about x = 0 and use it to approximate f(0.2).
  - (b) Write the fourth-degree Taylor polynomial for g, where  $g(x) = f(x^2)$ , about x = 0.
  - (c) Write the third-degree Taylor polynomial for h, where  $h(x) = \int_0^x f(t) dt$ , about x = 0.
  - (d) Let h be defined as in part (c). Given that f(1) = 3, either find the exact value of h(1) or explain why it cannot be determined.

BC-4 1999

- 4. The function f has derivatives of all orders for all real numbers x. Assume f(2) = -3, f'(2) = 5, f''(2) = 3, and f'''(2) = -8.
  - (a) Write the third–degree Taylor polynomial for f about x = 2 and use it to approximate f(1.5).
  - (b) The fourth derivative of f satisfies the inequality |f<sup>(4)</sup>(x)| ≤ 3 for all x in the closed interval [1.5, 2]. Use the Lagrange error bound on the approximation to f(1.5) found in part (a) to explain why f(1.5) ≠ -5.
  - (c) Write the fourth-degree Taylor polynomial, P(x), for  $g(x) = f(x^2 + 2)$  about x = 0. Use P to explain why g must have a relative minimum at x = 0.

AP Calculus BC-3 2000

The Taylor series about x=5 for a certain function f converges to f(x) for all x in the interval of convergence. The nth derivative of f at x=5 is given by  $f^{(n)}(5)=\frac{(-1)^n n!}{2^n (n+2)}$ , and  $f(5)=\frac{1}{2}$ .

- (a) Write the third-degree Taylor polynomial for f about x = 5.
- (b) Find the radius of convergence of the Taylor series for f about x = 5.
- (c) Show that the sixth-degree Taylor polynomial for f about x = 5 approximates f(6) with error less than  $\frac{1}{1000}$ .

## 2001 SCORING GUIDELINES

## Question 6

A function f is defined by

$$f(x) = \frac{1}{3} + \frac{2}{3^2}x + \frac{3}{3^3}x^2 + \dots + \frac{n+1}{3^{n+1}}x^n + \dots$$

for all x in the interval of convergence of the given power series.

- (a) Find the interval of convergence for this power series. Show the work that leads to your answer.
- (b) Find  $\lim_{x\to 0} \frac{f(x)-\frac{1}{3}}{x}$ .
- (c) Write the first three nonzero terms and the general term for an infinite series that represents  $\int_0^1 f(x) dx$ .
- (d) Find the sum of the series determined in part (c).

# AP® CALCULUS BC 2002 SCORING GUIDELINES

### Question 6

The Maclaurin series for the function f is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{(2x)^{n+1}}{n+1} = 2x + \frac{4x^2}{2} + \frac{8x^3}{3} + \frac{16x^4}{4} + \dots + \frac{(2x)^{n+1}}{n+1} + \dots$$

on its interval of convergence.

- (a) Find the interval of convergence of the Maclaurin series for f. Justify your answer.
- (b) Find the first four terms and the general term for the Maclaurin series for f'(x).
- (c) Use the Maclaurin series you found in part (b) to find the value of  $f'\left(-\frac{1}{3}\right)$ .

#### Question 6

The Maclaurin series for  $\ln\left(\frac{1}{1-x}\right)$  is  $\sum_{n=1}^{\infty} \frac{x^n}{n}$  with interval of convergence  $-1 \le x < 1$ .

- (a) Find the Maclaurin series for  $\ln\left(\frac{1}{1+3x}\right)$  and determine the interval of convergence.
- (b) Find the value of  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ .
- (c) Give a value of p such that  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$  converges, but  $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$  diverges. Give reasons why your value of p is correct.
- (d) Give a value of p such that  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  diverges, but  $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$  converges. Give reasons why your value of p is correct.

## 2003 SCORING GUIDELINES

#### Question 6

The function f is defined by the power series

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots + \frac{(-1)^n x^{2n}}{(2n+1)!} + \dots$$

for all real numbers x.

- (a) Find f'(0) and f"(0). Determine whether f has a local maximum, a local minimum, or neither at x = 0. Give a reason for your answer.
- (b) Show that  $1 \frac{1}{3!}$  approximates f(1) with error less than  $\frac{1}{100}$ .
- (c) Show that y = f(x) is a solution to the differential equation  $xy' + y = \cos x$ .

# 2003 SCORING GUIDELINES (Form B)

### Question 6

The function f has a Taylor series about x=2 that converges to f(x) for all x in the interval of convergence. The nth derivative of f at x=2 is given by  $f^{(n)}(2)=\frac{(n+1)!}{3^n}$  for  $n \ge 1$ , and f(2)=1.

- (a) Write the first four terms and the general term of the Taylor series for f about x=2.
- (b) Find the radius of convergence for the Taylor series for f about x = 2. Show the work that leads to your answer.
- (c) Let g be a function satisfying g(2) = 3 and g'(x) = f(x) for all x. Write the first four terms and the general term of the Taylor series for g about x = 2.
- (d) Does the Taylor series for g as defined in part (c) converge at x = -2? Give a reason for your answer.

#### 2004 SCORING GUIDELINES

#### Question 6

Let f be the function given by  $f(x) = \sin\left(5x + \frac{\pi}{4}\right)$ , and let P(x) be the third-degree Taylor polynomial for f about x = 0.

- (a) Find P(x).
- (b) Find the coefficient of  $x^{22}$  in the Taylor series for f about x = 0.
- (c) Use the Lagrange error bound to show that  $\left| f\left(\frac{1}{10}\right) P\left(\frac{1}{10}\right) \right| < \frac{1}{100}$ .
- (d) Let G be the function given by  $G(x) = \int_0^x f(t) dt$ . Write the third-degree Taylor polynomial for G about x = 0.

# 2004 SCORING GUIDELINES (Form B)

#### Question 2

Let f be a function having derivatives of all orders for all real numbers. The third-degree Taylor polynomial for f about x = 2 is given by  $T(x) = 7 - 9(x - 2)^2 - 3(x - 2)^3$ .

- (a) Find f(2) and f''(2).
- (b) Is there enough information given to determine whether f has a critical point at x = 2? If not, explain why not. If so, determine whether f(2) is a relative maximum, a relative minimum, or neither, and justify your answer.
- (c) Use T(x) to find an approximation for f(0). Is there enough information given to determine whether f has a critical point at x = 0? If not, explain why not. If so, determine whether f(0) is a relative maximum, a relative minimum, or neither, and justify your answer.
- (d) The fourth derivative of f satisfies the inequality |f<sup>(4)</sup>(x)| ≤ 6 for all x in the closed interval [0, 2]. Use the Lagrange error bound on the approximation to f(0) found in part (c) to explain why f(0) is negative.

### 2005 SCORING GUIDELINES

#### Question 6

Let f be a function with derivatives of all orders and for which f(2) = 7. When n is odd, the nth derivative of f at x = 2 is 0. When n is even and  $n \ge 2$ , the nth derivative of f at x = 2 is given by  $f^{(n)}(2) = \frac{(n-1)!}{3^n}$ .

- (a) Write the sixth-degree Taylor polynomial for f about x = 2.
- (b) In the Taylor series for f about x = 2, what is the coefficient of  $(x 2)^{2n}$  for  $n \ge 1$ ?
- (c) Find the interval of convergence of the Taylor series for f about x = 2. Show the work that leads to your answer.

### Question 3

The Taylor series about x = 0 for a certain function f converges to f(x) for all x in the interval of convergence. The nth derivative of f at x = 0 is given by

$$f^{(n)}(0) = \frac{(-1)^{n+1}(n+1)!}{5^n(n-1)^2} \text{ for } n \ge 2.$$

The graph of f has a horizontal tangent line at x = 0, and f(0) = 6.

- (a) Determine whether f has a relative maximum, a relative minimum, or neither at x = 0. Justify your answer
- (b) Write the third-degree Taylor polynomial for f about x = 0.
- (c) Find the radius of convergence of the Taylor series for f about x = 0. Show the work that leads to your answer.

#### 2006 SCORING GUIDELINES

#### Question 6

The function f is defined by the power series

$$f(x) = -\frac{x}{2} + \frac{2x^2}{3} - \frac{3x^3}{4} + \dots + \frac{(-1)^n nx^n}{n+1} + \dots$$

for all real numbers x for which the series converges. The function g is defined by the power series

$$g(x) = 1 - \frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} + \dots + \frac{(-1)^n x^n}{(2n)!} + \dots$$

for all real numbers x for which the series converges.

- (a) Find the interval of convergence of the power series for f. Justify your answer.
- (b) The graph of y = f(x) g(x) passes through the point (0, -1). Find y'(0) and y''(0). Determine whether y has a relative minimum, a relative maximum, or neither at x = 0. Give a reason for your answer.

### 2006 SCORING GUIDELINES (Form B)

#### Question 6

The function f is defined by  $f(x) = \frac{1}{1+x^3}$ . The Maclaurin series for f is given by

$$1 - x^3 + x^6 - x^9 + \dots + (-1)^n x^{3n} + \dots$$

which converges to f(x) for -1 < x < 1.

- (a) Find the first three nonzero terms and the general term for the Maclaurin series for f'(x).
- (b) Use your results from part (a) to find the sum of the infinite series  $-\frac{3}{2^2} + \frac{6}{2^5} \frac{9}{2^8} + \dots + (-1)^n \frac{3n}{2^{3n-1}} + \dots$
- (c) Find the first four nonzero terms and the general term for the Maclaurin series representing  $\int_0^x f(t) dt$ .
- (d) Use the first three nonzero terms of the infinite series found in part (c) to approximate  $\int_0^{1/2} f(t) dt$ . What are the properties of the terms of the series representing  $\int_0^{1/2} f(t) dt$  that guarantee that this approximation is within  $\frac{1}{10,000}$  of the exact value of the integral?

## 2007 SCORING GUIDELINES

## Question 6

Let f be the function given by  $f(x) = e^{-x^2}$ .

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 0.
- (b) Use your answer to part (a) to find  $\lim_{x\to 0} \frac{1-x^2-f(x)}{x^4}$ .
- (c) Write the first four nonzero terms of the Taylor series for  $\int_0^x e^{-t^2} dt$  about x = 0. Use the first two terms of your answer to estimate  $\int_0^{1/2} e^{-t^2} dt$ .
- (d) Explain why the estimate found in part (c) differs from the actual value of  $\int_0^{1/2} e^{-t^2} dt$  by less than  $\frac{1}{200}$ .

#### Question 6

Let f be the function given by  $f(x) = 6e^{-x/3}$  for all x.

- (a) Find the first four nonzero terms and the general term for the Taylor series for f about x = 0.
- (b) Let g be the function given by  $g(x) = \int_0^x f(t) dt$ . Find the first four nonzero terms and the general term for the Taylor series for g about x = 0.
- (c) The function h satisfies h(x) = kf'(ax) for all x, where a and k are constants. The Taylor series for h about x = 0 is given by

$$h(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

Find the values of a and k.

## 2008 SCORING GUIDELINES

### Question 3

| x | h(x) | h'(x)           | h''(x)    | h'''(x)    | $h^{(4)}(x)$    |
|---|------|-----------------|-----------|------------|-----------------|
| 1 | 11   | 30              | 42        | 99         | 18              |
| 2 | 80   | 128             | 488<br>3  | 448 3      | <u>584</u><br>9 |
| 3 | 317  | <u>753</u><br>2 | 1383<br>4 | 3483<br>16 | 1125<br>16      |

Let h be a function having derivatives of all orders for x > 0. Selected values of h and its first four derivatives are indicated in the table above. The function h and these four derivatives are increasing on the interval  $1 \le x \le 3$ .

- (a) Write the first-degree Taylor polynomial for h about x = 2 and use it to approximate h(1.9). Is this approximation greater than or less than h(1.9)? Explain your reasoning.
- (b) Write the third-degree Taylor polynomial for h about x = 2 and use it to approximate h(1.9).
- (c) Use the Lagrange error bound to show that the third-degree Taylor polynomial for h about x = 2 approximates h(1.9) with error less than  $3 \times 10^{-4}$ .

### Question 6

Let f be the function given by  $f(x) = \frac{2x}{1+x^2}$ .

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 0.
- (b) Does the series found in part (a), when evaluated at x = 1, converge to f(1)? Explain why or why
- (c) The derivative of  $\ln(1+x^2)$  is  $\frac{2x}{1+x^2}$ . Write the first four nonzero terms of the Taylor series for  $\ln(1+x^2)$  about x=0.
- (d) Use the series found in part (c) to find a rational number A such that  $\left|A \ln\left(\frac{5}{4}\right)\right| < \frac{1}{100}$ . Justify your answer.

## 2009 SCORING GUIDELINES

#### Question 6

The Maclaurin series for  $e^x$  is  $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + \dots$ . The continuous function f is defined by  $f(x) = \frac{e^{(x-1)^2} - 1}{(x-1)^2}$  for  $x \ne 1$  and f(1) = 1. The function f has derivatives of all orders at x = 1.

- (a) Write the first four nonzero terms and the general term of the Taylor series for  $e^{(x-1)^2}$  about x=1.
- (b) Use the Taylor series found in part (a) to write the first four nonzero terms and the general term of the Taylor series for f about x = 1.
- (c) Use the ratio test to find the interval of convergence for the Taylor series found in part (b).
- (d) Use the Taylor series for f about x = 1 to determine whether the graph of f has any points of inflection.

#### Question 6

The function f is defined by the power series

$$f(x) = 1 + (x+1) + (x+1)^2 + \dots + (x+1)^n + \dots = \sum_{n=0}^{\infty} (x+1)^n$$

for all real numbers x for which the series converges.

- (a) Find the interval of convergence of the power series for f. Justify your answer.
- (b) The power series above is the Taylor series for f about x = -1. Find the sum of the series for f.
- (c) Let g be the function defined by  $g(x) = \int_{-1}^{x} f(t) dt$ . Find the value of  $g\left(-\frac{1}{2}\right)$ , if it exists, or explain why  $g\left(-\frac{1}{2}\right)$  cannot be determined.
- (d) Let h be the function defined by  $h(x) = f(x^2 1)$ . Find the first three nonzero terms and the general term of the Taylor series for h about x = 0, and find the value of  $h(\frac{1}{2})$ .

### 2010 SCORING GUIDELINES

### Question 6

$$f(x) = \begin{cases} \frac{\cos x - 1}{x^2} & \text{for } x \neq 0\\ -\frac{1}{2} & \text{for } x = 0 \end{cases}$$

The function f, defined above, has derivatives of all orders. Let g be the function defined by  $g(x) = 1 + \int_0^x f(t) dt$ .

- (a) Write the first three nonzero terms and the general term of the Taylor series for  $\cos x$  about x = 0. Use this series to write the first three nonzero terms and the general term of the Taylor series for f about x = 0.
- (b) Use the Taylor series for f about x = 0 found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at x = 0. Give a reason for your answer.
- (c) Write the fifth-degree Taylor polynomial for g about x = 0.
- (d) The Taylor series for g about x = 0, evaluated at x = 1, is an alternating series with individual terms that decrease in absolute value to 0. Use the third-degree Taylor polynomial for g about x = 0 to estimate the value of g(1). Explain why this estimate differs from the actual value of g(1) by less than  $\frac{1}{6!}$ .

### Question 6

The Maclaurin series for the function f is given by  $f(x) = \sum_{n=2}^{\infty} \frac{(-1)^n (2x)^n}{n-1}$  on its interval of convergence.

- (a) Find the interval of convergence for the Maclaurin series of f. Justify your answer.
- (b) Show that y = f(x) is a solution to the differential equation  $xy' y = \frac{4x^2}{1 + 2x}$  for |x| < R, where R is the radius of convergence from part (a).

## 2011 SCORING GUIDELINES

### Question 6

Let  $f(x) = \sin(x^2) + \cos x$ . The graph of  $y = |f^{(5)}(x)|$  is shown above.

- (a) Write the first four nonzero terms of the Taylor series for sin x about x = 0, and write the first four nonzero terms of the Taylor series for sin(x²) about x = 0.
- (b) Write the first four nonzero terms of the Taylor series for cos x about x = 0. Use this series and the series for sin(x²), found in part (a), to write the first four nonzero terms of the Taylor series for f about x = 0.



- (c) Find the value of  $f^{(6)}(0)$ .
- (d) Let  $P_4(x)$  be the fourth-degree Taylor polynomial for f about x = 0. Using information from the graph of  $y = \left| f^{(5)}(x) \right|$  shown above, show that  $\left| P_4\left(\frac{1}{4}\right) f\left(\frac{1}{4}\right) \right| < \frac{1}{3000}$ .

#### Question 6

Let  $f(x) = \ln(1+x^3)$ .

- (a) The Maclaurin series for  $\ln(1+x)$  is  $x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots + (-1)^{n+1} \cdot \frac{x^n}{n} + \dots$ . Use the series to write the first four nonzero terms and the general term of the Maclaurin series for f.
- (b) The radius of convergence of the Maclaurin series for f is 1. Determine the interval of convergence. Show the work that leads to your answer.
- (c) Write the first four nonzero terms of the Maclaurin series for  $f'(t^2)$ . If  $g(x) = \int_0^x f'(t^2) dt$ , use the first two nonzero terms of the Maclaurin series for g to approximate g(1).
- (d) The Maclaurin series for g, evaluated at x = 1, is a convergent alternating series with individual terms that decrease in absolute value to 0. Show that your approximation in part (c) must differ from g(1) by less than  $\frac{1}{5}$ .

### 2012 SCORING GUIDELINES

#### Question 4

| x     | 1 | 1.1 | 1.2 | 1.3 | 1.4  |
|-------|---|-----|-----|-----|------|
| f'(x) | 8 | 10  | 12  | 13  | 14.5 |

The function f is twice differentiable for x > 0 with f(1) = 15 and f''(1) = 20. Values of f', the derivative of f, are given for selected values of x in the table above.

- (a) Write an equation for the line tangent to the graph of f at x = 1. Use this line to approximate f(1.4).
- (b) Use a midpoint Riemann sum with two subintervals of equal length and values from the table to approximate  $\int_{1}^{1.4} f'(x) dx$ . Use the approximation for  $\int_{1}^{1.4} f'(x) dx$  to estimate the value of f(1.4). Show the computations that lead to your answer.
- (c) Use Euler's method, starting at x = 1 with two steps of equal size, to approximate f(1.4). Show the computations that lead to your answer.
- (d) Write the second-degree Taylor polynomial for f about x = 1. Use the Taylor polynomial to approximate f(1.4).

### 2012 SCORING GUIDELINES

### Question 6

The function g has derivatives of all orders, and the Maclaurin series for g is

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+3} = \frac{x}{3} - \frac{x^3}{5} + \frac{x^5}{7} - \cdots$$

- (a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
- (b) The Maclaurin series for g evaluated at  $x = \frac{1}{2}$  is an alternating series whose terms decrease in absolute value to 0. The approximation for  $g\left(\frac{1}{2}\right)$  using the first two nonzero terms of this series is  $\frac{17}{120}$ . Show that this approximation differs from  $g\left(\frac{1}{2}\right)$  by less than  $\frac{1}{200}$ .
- (c) Write the first three nonzero terms and the general term of the Maclaurin series for g'(x).

# 2013 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 6. A function f has derivatives of all orders at x = 0. Let  $P_n(x)$  denote the nth-degree Taylor polynomial for f about x = 0.
  - (a) It is known that f(0) = -4 and that  $P_1\left(\frac{1}{2}\right) = -3$ . Show that f'(0) = 2.
  - (b) It is known that  $f''(0) = -\frac{2}{3}$  and  $f'''(0) = \frac{1}{3}$ . Find  $P_3(x)$ .
  - (c) The function h has first derivative given by h'(x) = f(2x). It is known that h(0) = 7. Find the third-degree Taylor polynomial for h about x = 0.

#### 2014 BC # 6

- 6. The Taylor series for a function f about x = 1 is given by  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n} (x-1)^n$  and converges to f(x) for |x-1| < R, where R is the radius of convergence of the Taylor series.
  - (a) Find the value of R.
  - (b) Find the first three nonzero terms and the general term of the Taylor series for f', the derivative of f, about x = 1.
  - (c) The Taylor series for f' about x = 1, found in part (b), is a geometric series. Find the function f' to which the series converges for |x − 1| < R. Use this function to determine f for |x − 1| < R.</p>

### BC 2015 #6 No Calculator Permitted

- 6. The Maclaurin series for a function f is given by  $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^n = x \frac{3}{2} x^2 + 3x^3 \dots + \frac{(-3)^{n-1}}{n} x^n + \dots$  and converges to f(x) for |x| < R, where R is the radius of convergence of the Maclaurin series.
  - (a) Use the ratio test to find R.
  - (b) Write the first four nonzero terms of the Maclaurin series for f', the derivative of f. Express f' as a rational function for |x| < R.
  - (c) Write the first four nonzero terms of the Maclaurin series for  $e^x$ . Use the Maclaurin series for  $e^x$  to write the third-degree Taylor polynomial for  $g(x) = e^x f(x)$  about x = 0.

### BC 2016 #6 No Calculator Permitted

### 2016 SCORING GUIDELINES

#### Question 6

The function f has a Taylor series about x = 1 that converges to f(x) for all x in the interval of convergence.

It is known that f(1) = 1,  $f'(1) = -\frac{1}{2}$ , and the *n*th derivative of f at x = 1 is given by

$$f^{(n)}(1) = (-1)^n \frac{(n-1)!}{2^n}$$
 for  $n \ge 2$ .

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 1.
- (b) The Taylor series for f about x = 1 has a radius of convergence of 2. Find the interval of convergence. Show the work that leads to your answer.
- (c) The Taylor series for f about x = 1 can be used to represent f(1.2) as an alternating series. Use the first three nonzero terms of the alternating series to approximate f(1.2).
- (d) Show that the approximation found in part (c) is within 0.001 of the exact value of f(1.2).

### AP Calculus BC 2017 No Calculator Permitted

$$f(0) = 0$$
  
 $f'(0) = 1$   
 $f^{(n+1)}(0) = -n \cdot f^{(n)}(0)$  for all  $n \ge 1$ 

- A function f has derivatives of all orders for −1 < x < 1. The derivatives of f satisfy the conditions above.</li>
   The Maclaurin series for f converges to f(x) for |x| < 1.</li>
  - (a) Show that the first four nonzero terms of the Maclaurin series for f are  $x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4}$ , and write the general term of the Maclaurin series for f.
  - (b) Determine whether the Maclaurin series described in part (a) converges absolutely, converges conditionally, or diverges at x = 1. Explain your reasoning.
  - (c) Write the first four nonzero terms and the general term of the Maclaurin series for  $g(x) = \int_0^x f(t) dt$ .
  - (d) Let  $P_n\left(\frac{1}{2}\right)$  represent the *n*th-degree Taylor polynomial for g about x=0 evaluated at  $x=\frac{1}{2}$ , where g is the function defined in part (c). Use the alternating series error bound to show that

$$|P_4\left(\frac{1}{2}\right) - g\left(\frac{1}{2}\right)| < \frac{1}{500}.$$

#### 2018 No Calculator

The Maclaurin series for ln(1 + x) is given by

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$$

On its interval of convergence, this series converges to ln(1 + x). Let f be the function defined by

$$f(x) = x \ln\left(1 + \frac{x}{3}\right).$$

- (a) Write the first four nonzero terms and the general term of the Maclaurin series for f.
- (b) Determine the interval of convergence of the Maclaurin series for f. Show the work that leads to your answer.
- (c) Let  $P_4(x)$  be the fourth-degree Taylor polynomial for f about x = 0. Use the alternating series error bound to find an upper bound for  $|P_4(2) f(2)|$ .

## 2019 #6 (no calculator)



| n | $f^{(n)}(0)$    |
|---|-----------------|
| 2 | 3               |
| 3 | $-\frac{23}{2}$ |
| 4 | 54              |

- 6. A function f has derivatives of all orders for all real numbers x. A portion of the graph of f is shown above, along with the line tangent to the graph of f at x = 0. Selected derivatives of f at x = 0 are given in the table above.
  - (a) Write the third-degree Taylor polynomial for f about x = 0.
  - (b) Write the first three nonzero terms of the Maclaurin series for  $e^x$ . Write the second-degree Taylor polynomial for  $e^x f(x)$  about x = 0.
  - (c) Let h be the function defined by  $h(x) = \int_0^x f(t) dt$ . Use the Taylor polynomial found in part (a) to find an approximation for h(1).
  - (d) It is known that the Maclaurin series for h converges to h(x) for all real numbers x. It is also known that the individual terms of the series for h(1) alternate in sign and decrease in absolute value to 0. Use the alternating series error bound to show that the approximation found in part (c) differs from h(1) by at most 0.45.