

Behnam Amiri

acn.dailysec.ir aComputerNetworks.github.io

Fast Recap

Application Layer

- Web and HTTP
- HTTP Request
 - GET, POST, ...
- HTTP Response
 - HTTP/1.1 200 OK
- HTTP is over TCP

www.someschool.edu/someDept/pic.gif

host name

path name

Maintaining user/server state

- HTTP is stateless protocol.
- HTTP can't remember previous actions.
- Web sites and client browser use cookies to maintain some state between transactions.
- Cookies can be used to:
 - track user behavior on a given website (first party cookies)
 - track user behavior across multiple websites (third party cookies) without user ever choosing to visit tracker site (!)
 - tracking may be invisible to user.
- GDPR (EU General Data Protection Regulation) and cookies

Web Cache

• Goal: satisfy client requests without involving origin server

EMAIL

- SMTP protocol between mail servers to send email messages
- client: sending mail server
- server: receiving mail server
- Uses TCP to reliably transfer email message
- Use port 25 TCP
- Mail message format

Receive Email

- mail access protocol: retrieval from server
 - IMAP: Internet Mail Access Protocol [RFC 3501].
 - Messages stored on server, IMAP provides retrieval, deletion, folders of stored messages on server.
- HTTP: Gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on top of STMP (to send), IMAP (or POP) to retrieve e-mail messages.

DNS: Domain Name System

- Translate *Domain names* to *IP.*
- distributed database implemented in hierarchy of many name servers.

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of SMTP mail server associated with name

DNS Security

- DNS request and response are in clear text (Sniff)
- Change request and response (Spoofing)
- DNSec is a good solution!

Other topics

- P2P file sharing
 - Like torrent
- CDN
 - Distribute web contents over servers.

Socket Programming

goal: learn how to build client/server applications that communicate using sockets

socket: door between application process and end-end-transport protocol

Client/server socket interaction: UDP

Client/server socket interaction: TCP

Transport Layer

Based on https://gaia.cs.umass.edu/kurose_ross/index.php slides.

Transport services and protocols

- provide *logical communication* between application processes running on different hosts
- transport protocols actions in end systems:
 - sender: breaks application messages into segments, passes to network layer
 - receiver: reassembles segments into messages, passes to application layer
- two transport protocols available to Internet applications
 - TCP, UDP

Transport Layer Actions

Sender:

- is passed an applicationlayer message
- determines segment header fields values
- creates segment
- passes segment to IP

Transport Layer Actions

Receiver:

- receives segment from IP
- checks header values
- extracts application-layer message
- demultiplexes message up to application via socket

Internet transport protocols

- TCP: Transmission Control Protocol
 - Reliable
 - in-order delivery
 - Congestion control
 - Flow control
 - Connection setup
- UDP: User Datagram Protocol
 - Unreliable
 - Unordered delivery
 - Faster than TCP

2

Q: how did transport layer know to deliver message to Firefox browser process rather then Netflix process or Skype process?

Multiplexing

Multiplexing

Multiplexing Example

• Speak in different languages.

de-multiplexing

de-multiplexing

multiplexing

Multiplexing in Computer Networks

Use IP & Port number.

TCP/UDP segment format

Connectionless demultiplexing: an example

Connection-oriented demultiplexing: example

Three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to *different* sockets

Summary

- Multiplexing, demultiplexing: based on segment, datagram header field values
- UDP: demultiplexing using destination port number (only)
- TCP: demultiplexing using 4-tuple: source and destination IP addresses, and port numbers

UDP: User Datagram Protocol

UDP

- connectionless:
 - no handshaking between UDP sender, receiver.
 - each UDP segment handled independently of others.
- UDP use:
 - streaming multimedia apps (loss tolerant, rate sensitive).
 - DNS
 - SNMP
 - HTTP/3

UDP: User Datagram Protocol [RFC 768]

INTERNET STANDARD

RFC 768

J. Postel ISI 28 August 1980

User Datagram Protocol

Introduction

This User Datagram Protocol (UDP) is defined to make available a datagram mode of packet-switched computer communication in the environment of an interconnected set of computer networks. This protocol assumes that the Internet Protocol (IP) $[\underline{1}]$ is used as the underlying protocol.

This protocol provides a procedure for application programs to send messages to other programs with a minimum of protocol mechanism. The protocol is transaction oriented, and delivery and duplicate protection are not guaranteed. Applications requiring ordered reliable delivery of streams of data should use the Transmission Control Protocol (TCP) [2].

Format

UDP segment header

UDP checksum

Goal: detect errors (*i.e.*, flipped bits) in transmitted segment

Internet checksum: an example

example: add two 16-bit integers

Note: when adding numbers, a carryout from the most significant bit needs to be added to the result

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Internet checksum: weak protection!

example: add two 16-bit integers

UDP Checksum

UDP Checksum Error detection

- All 1 bit error detected.
- Not All 2 bit errors.
- Odd Number of Bit Errors detected (e.g., 1, 3, 5, etc.)
- Some combinations of bit flips may also go undetected.

Reliable Data Transfer

Reliable Data Transfer

- There is Packet Loss and Bit Error in packet transfer.
- How can guarantee receive data?
- Let's Think about it!

Acknowledge - ACK

- Real Examples
 - Text Message delivery report.
 - Text me whenever you get home.
- This action called Acknowledge ACK.
- What if loss or error in ACK?
- Send an Ack2 for Ack?
- What if loss or error in ACK2?

In action

rdt3.0 in action

Stop-and-wait operation

Pipelining: increased utilization

Go-Back-N: sender

- sender: "window" of up to N, consecutive transmitted but unACKed pkts
 - k-bit seq # in pkt header

- cumulative ACK: ACK(n): ACKs all packets up to, including seq # n
 - on receiving ACK(n): move window forward to begin at n+1
- timer for oldest in-flight packet
- timeout(n): retransmit packet n and all higher seq # packets in window

Go-Back-N: receiver

- ACK-only: always send ACK for correctly-received packet so far, with highest in-order seq #
 - may generate duplicate ACKs
 - need only remember rcv base
 - on receipt of out-of-order packet:
 - can discard (don't buffer) or buffer: an implementation decision
 - re-ACK pkt with highest in-order seq #

Receiver view of sequence number space:

received and ACKed

Out-of-order: received but not ACKed

Not received

Go-Back-N in action

Selective repeat: sender, receiver windows

Selective repeat: sender and receiver

sender

data from above:

if next available seq # in window, send packet

timeout(*n*):

resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N-1]:

- mark packet n as received
- if n smallest unACKed packet, advance window base to next unACKed seq #

receiver

packet n in [rcvbase, rcvbase+N-1]

- send ACK(n)
- out-of-order: buffer
- in-order: deliver (also deliver buffered, in-order packets), advance window to next not-yetreceived packet

packet n in [rcvbase-N,rcvbase-1]

ACK(*n*)

otherwise:

ignore

Selective Repeat in action

Selective repeat: a dilemma!

example:

- seq #s: 0, 1, 2, 3 (base 4 counting)
- window size=3

Selective repeat: a dilemma! sender window

example:

- seq #s: 0, 1, 2, 3 (base 4 counting)
- window size=3

Q: what relationship is needed between sequence # size and window size to avoid problem in scenario (b)?

TCP: Transmission Control Protocol

TCP

- RFCs: 793,1122, 2018, 5681, 7323
 - connection-oriented
 - flow controlled: sender will not overwhelm receiver
 - point-to-point: one sender, one receiver
 - reliable, in-order byte steam: no "message boundaries"
 - full duplex data:
 - bi-directional data flow in same connection
 - MSS: maximum segment size

TCP segment structure

TCP sequence numbers, ACKs

Sequence numbers:

 byte stream "number" of first byte in segment's data

Acknowledgements:

- seq # of next byte expected from other side
- cumulative ACK

Q: how receiver handles out-oforder segments

 <u>A:</u>TCP spec doesn't say, - up to implementor

TCP sequence numbers, ACKs

simple telnet scenario

TCP fast retransmit

TCP fast retransmit

if sender receives 3 additional ACKs for same data ("triple duplicate ACKs"), resend unACKed segment with smallest seq #

 likely that unACKed segment lost, so don't wait for timeout

Receipt of three duplicate ACKs indicates 3 segments received after a missing segment – lost segment is likely. So retransmit!

TCP flow control

Q: What happens if network layer delivers data faster than application layer removes data from socket buffers?

TCP Connection establishment

Why 3 way hand shake not 2 way?

TCP flow control

Q: What happens if network layer delivers data faster than application layer removes data from socket buffers?

Application removing data from TCP socket buffers

application process TCP socket receiver buffers **TCP** code code from sender

receiver protocol stack

flow control: # bytes receiver willing to accept

2-way handshake scenarios

2-way handshake scenarios

Spring 2025 68/78

2-way handshake scenarios

A human 3-way handshake protocol

Closing a TCP connection

- client, server each close their side of connection
 - send TCP segment with FIN bit = 1
- respond to received FIN with ACK
 - on receiving FIN, ACK can be combined with own FIN
- simultaneous FIN exchanges can be handled

Full TCP state diagram

Congestion Control

TCP congestion control: AIMD

 approach: senders can increase sending rate until packet loss (congestion) occurs, then decrease sending rate on loss event

<u>Additive Increase</u>

increase sending rate by 1 maximum segment size every RTT until loss detected

<u>Multiplicative</u> <u>Decrease</u>

cut sending rate in half at each loss event

AIMD sawtooth

behavior: *probing*

for bandwidth

TCP slow start

- when connection begins, increase rate exponentially until first loss event:
 - initially cwnd = 1 MSS
 - double cwnd every RTT
 - done by incrementing cwnd for every ACK received
- summary: initial rate is slow, but ramps up exponentially fast

avoidance

Q: when should the exponential increase switch to linear?

A: when **cwnd** gets to 1/2 of its value before timeout.

Implementation:

- variable ssthresh
- on loss event, **ssthresh** is set to 1/2 of **cwnd** just before loss event

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Summary: TCP congestion control

TCP CUBIC

- K: point in time when TCP window size will reach W_{max}
 - K itself is tunable
- increase W as a function of the cube of the distance between current time and K
 - larger increases when further away from K
 - smaller increases (cautious) when nearer K
- TCP CUBIC default in Linux, most popular TCP for popular Web servers

