BNPlib for density estimation

A nonparametric C++ library

Bruno Guindani Elena Zazzetti

November 22, 2019

https://github.com/poliprojects/BNPlib

Non-Parametric statistics

- Goal: density estimation
- Infinite-dimensional parameters, e.g. functions
- Model:

$$y_i|G \stackrel{\text{iid}}{\sim} G, \quad i = 1, \dots, n$$

 $G \sim \mathcal{P}$

$$\mathcal{P}:\Omega \to M(S)$$
 fixed $\left[\ \omega \mapsto G(\cdot) \ \right]$

Model name: BNP model

Dirichlet Process prior

$$y_i|G \stackrel{\text{iid}}{\sim} G$$

$$G \sim \mathcal{P} = DP(MG_0)$$

- Parameters: $M > 0, G_0 \in M(S)$
- Defining property: $\forall \{B_{1:k}\}$ partition of S,

$$[G(B_1),\ldots,G(B_k)] \sim \operatorname{Dir}\left(MG_0(B_1),\ldots,MG_0(B_k)\right)$$

- Discreteness (stick-breaking): $G(\cdot) = \sum_{k=1}^{+\infty} w_h \delta_{m_h}(\cdot)$
- Conjugacy: $G|\mathbf{y} \sim DP(MG_0 + \sum_i \delta_{y_i}) \implies \text{density estimation}$

Continuous density estimation

• **Mixtures** (kernel F + mixing distribution <math>G):

$$y_i|G \sim F_G(y) = \int F(y, \vartheta) G(d\vartheta)$$

 $G \sim DP(MG_0)$

- Model name: DPM model
- Equivalent to:

$$\begin{aligned} y_i | \vartheta_i &\overset{\perp}{\sim} F(\cdot, \vartheta_i) \\ \vartheta_i | G &\overset{\text{iid}}{\sim} G \\ G &\sim DP(MG_0) \end{aligned}$$

• ϑ_i "latent variables" $\forall i = 1, \dots, n$

Clustering in the DPM

- Discreteness: the ϑ_i have one of the k unique values ϕ_j $(j=1,\ldots,k)$
- $k \simeq M \log(n) \ll n$
- ullet All i s.t. $\vartheta_i = \phi_j$ belong to cluster S_j $(j=1,\ldots,k)$, and $n_j = |S_j|$

5 / 17

Clustering in the DPM

- Discreteness: the ϑ_i have one of the k unique values ϕ_j $(j=1,\ldots,k)$
- $k \simeq M \log(n) \ll n$
- ullet All i s.t. $artheta_i=\phi_j$ belong to cluster S_j $_{(j=1,\ldots,k)}$, and $n_j=|S_j|$
- Conditional prior for ϑ_i :

$$\mathcal{L}(\vartheta_i|\boldsymbol{\vartheta}_{-i}) \propto \sum_{j=1}^{k^-} n_j^- \delta_{\phi_j^-}(\vartheta_i) + MG_0(\vartheta_i)$$

$$\uparrow \qquad \uparrow$$

• Conditional posterior for ϑ_i :

$$\mathcal{L}(\vartheta_i|\boldsymbol{\vartheta}_{-i},y_i) \propto \sum_{j=1}^{k^-} F(y_i,\vartheta) \,\delta_{\phi_j^-}(\vartheta_i) + M \,r_i \,G_0(\vartheta_i|y_i)$$

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Discrete model

$$(Y_{i}|\vartheta_{i}) \sim F(\cdot,\vartheta_{i}) \qquad (Y_{i}|\phi,c_{i}) \sim F(\cdot,\phi_{c_{i}})$$

$$(\vartheta_{i}|G) \sim G \qquad (c_{i}|\mathbf{p}) \sim \mathsf{Discrete}(p_{1},\ldots,p_{K})$$

$$G \sim DP(M,G_{0}) \qquad \stackrel{K \to +\infty}{\Longleftrightarrow} \qquad \phi_{c} \sim G_{0}$$

$$\mathbf{p} \sim \mathsf{Dir}(M/K,\ldots,M/K)$$
(hierarchical model)
$$(K\text{-discrete model})$$

with c_i allocation parameters and

$$oldsymbol{artheta} \leftrightsquigarrow (oldsymbol{\phi}, \mathbf{c})$$

Neal's Algorithm 2

Gibbs sampling algorithm:

- ullet $(oldsymbol{\phi}, \mathbf{c})$ is the **state** of a Markov chain
- For $i = 1, \ldots, n$: update c_i
 - ▶ If c_i allocates ϕ_i to a singleton, remove ϕ_{c_i} from the state
 - ▶ Sample c_i as follows:

If
$$c=c_j$$
 for some $j\neq i$: $\mathbb{P}(c_i=c|\mathbf{c}_{-i},y_i,\pmb{\phi})\propto \frac{n_{-i,c}}{n-1-M}F(y_i,\phi_c)$
$$\mathbb{P}(c_i\neq c_j \text{ for all } j|\mathbf{c}_{-i},y_i,\pmb{\phi})\propto \frac{M}{n-1-M}\int F(y_i,\phi)\,G_0(\mathrm{d}\phi)$$

- ▶ If the new c_i allocates ϕ_i to a singleton, draw $\phi_{c_i} \sim G_0(\cdot|y_i)$ and add it to the state
- For $c \in \{c_1, \ldots, c_n\}$: update ϕ_c , given all the y_i with $c_i = c$

Advantages

- Feasible if we can compute $\int F(y_i, \phi)G_0(\mathrm{d}\phi)$ and sample from $G_0(\cdot|y_i)$ (conjugate case)
- ullet Change the artheta for more than one observation simultaneously

Neal's Algorithm 8

ullet Gibbs sampling on the state, which is extended by the addition of m auxiliary parameters

• Prior for c_i :

If
$$c=c_j$$
 for some j : $\mathbb{P}(c_i=c|\mathbf{c}_{-i})=\frac{n_{-i,c}}{n-1-M}$
$$\mathbb{P}(c_i\neq c_j \text{ for all } j)=\frac{M}{n-1-M}\Rightarrow \begin{array}{c} \text{split among the } m \\ \text{auxiliary parameters} \end{array}$$

Neal's Algorithm 8

Algorithm:

- For $i = 1, \ldots, n$: update c_i
 - Sample auxiliary parameters:
 - $\circ \ c_i = c_j \ \text{for some} \ j \ \Rightarrow \text{no connection}$
 - $\circ \ c_i
 eq c_j \ \Rightarrow$ association to one of m

The other ϕ values drawn from G_0

▶ Draw c_i as follows:

$$P(c_i = c | \mathbf{c}_{-i}, y_i, \phi_1, ..., \phi_h) \propto \begin{cases} \frac{n_{-i,c}}{n_1 - M} F(y_i, \phi_c), & \text{for } 1 \le c \le k^-\\ \frac{M/m}{n_1 - M} F(y_i, \phi_c), & \text{for } k^- + 1 < c \le h \end{cases}$$

- lacktriangle Discard values in ϕ not associated to any ϑ_j
- For $c \in \{c_1,..,c_n\}$: update ϕ_c given y_i such that $c_i = c$

Advantages

- Models with non-conjugate priors
- As $m \to +\infty$ it approaches Algorithm 2 but equilibrium distribution is exact
- More efficient than similar algorithms (e.g. no-gaps)
- Hierarchical extensions

Stick-Breaking Priors

$$\mathscr{P}(\cdot) = \sum_{k=1}^{N} p_k \delta_{Z_k}(\cdot)$$

with:

- $Z_k \stackrel{\mathsf{iid}}{\sim} H$ (allocations),
- $V_k \stackrel{\text{iid}}{\sim} \operatorname{Beta}(a_k, b_k)$ with $\mathbf{a} = (a_1, a_2, ...)$ and $\mathbf{b} = (b_1, b_2, ...)$
- $p_k = (1 V_1)(1 V_2) \cdots (1 V_{k-1})V_k$ (weights)

with
$$0 \le p_k \le 1, \sum_{k=1}^{N} p_k = 1$$

- \circ $N < +\infty$: $\mathscr{P}_N(\mathbf{a}, \mathbf{b})$
 - ▶ $\mathbf{p} \sim \mathscr{G}\mathscr{D}(\mathbf{a}, \mathbf{b})$ (Generalized Dirichlet)
 - e.g. all finite dimensional Dirichlet priors
- $\circ N = +\infty : \mathscr{P}_{\infty}(\mathbf{a}, \mathbf{b})$
 - e.g. Dirichlet process, the two-parameter Poisson-Dirichlet process

Blocked Gibbs Algorithm

- Assumption: **finite-dimensional** prior $P \sim \mathscr{P}_N(\mathbf{a}, \mathbf{b})$
- Finite number of variables ⇒ blocks of parameters
- Model:

$$(Y_i|\phi,\mathbf{c}) \stackrel{\perp}{\sim} F(\cdot,\phi_{c_i}), \ i=1,..,n$$
 $(c_i|\mathbf{p}) \stackrel{\mathsf{iid}}{\sim} \sum_{k=1}^N p_k \delta_k(\cdot)$
 $\mathbf{p} \sim \mathscr{G}\mathscr{D}(\mathbf{a},\mathbf{b})$
 $\phi_c \sim G_0$

Blocked Gibbs Algorithm

Algorithm:

- Repeatedly draw values from conditional distributions of the blocked variables:
 - $\phi \sim \mathcal{L}(\phi | \mathbf{c}, \mathbf{v})$
 - ightharpoonup $\mathbf{c} \sim \mathcal{L}(\mathbf{c}|\boldsymbol{\phi}, \mathbf{p}, \mathbf{y})$
 - $ightharpoonup p \sim \mathcal{L}(\mathbf{p}|\mathbf{c})$

Direct sampling of the **posterior** $\mathscr{P}(\cdot|\mathbf{y})$:

- \bullet The algorithm produces draws from $(\phi, \mathbf{c}, \mathbf{p}|\mathbf{y})$
- \bullet Each draw $(\phi, \mathbf{c}, \mathbf{p})$ defines a measure $P(\cdot) = \sum\limits_{k=1}^N p_k \delta_{\phi_k}(\cdot)$
- \bullet Each P is a drawn from $\mathscr{P}(\cdot|\mathbf{y})$

Advantages

- Handles the issue of conjugacy
- Good mixing
- Hierarchical extensions

Code structure

Bibliography

- 陯 Muller, Quintana, *Bayesian Nonparametric Data Analysis*
- Neal (2000), Markov Chain Sampling Methods for Dirichlet Process Mixture Models
- Ishwaran, James (2001), Gibbs Sampling Methods for Stick-Breaking Priors