

Taylor Series & Polynomials MC Review

Select the correct capital letter. NO CALCULATOR unless specified otherwise.

1. Let
$$T_5(x) = 3x^2 - 5x^3 + 7x^4 + 3x^5$$
 be the fifth-degree Taylor polynomial for the function f about $x = 0$. What is the value of $f'''(0)$?

$$f'(x) = 6x - 15x^{2}$$
 $f'(x) = 6 - 30x$
(A) -30 (B) -15 (C) -5 (D) $-\frac{5}{6}$ (E) $-\frac{1}{6}$
 $f'''(x) = -30$
 $f'''(x) = -30$

2. For what integer
$$k$$
, $k > 1$, will both $\sum_{n=1}^{\infty} \frac{(-1)^{kn}}{n}$ and $\sum_{n=1}^{\infty} \left(\frac{k}{4}\right)^n$ converge?

(A) 6 (B) 5 (C) 4 (D) 3 (E) 2

(-1)^{3n} converges by $A ST$.

3. (Calculator Permitted) The Taylor series for
$$\ln x$$
, centered at $x = 1$, is $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$. Let f be the function given by the sum of the first three nonzero terms of this series. The maximum value of $|\ln x - f(x)|$ for $0.3 \le x \le 1.7$ is which of the following? $f(x) = (x-1) + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3}$.

(A) 0.030 (B) 0.039 (C) 0.145 (D) 0.153 (E) 0.529 For $x = 0.3$ $\int \ln (0.3) - f(0.3) \approx 0.14464$ **

For $x = 0.3$ $\int \ln (1.7) - f(1.7) \approx 0.03875$

Since graph is concave up from endpoint to endpoint, one of the Page 1 of 10

 $\int_{-\infty}^{\infty} 4$. What are the values of x for which the series $\sum_{n=0}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$ converges?

(A)
$$-3 < x < -1$$
 (B) $-3 \le x < -1$ (C) $-3 \le x \le -1$ (D) $-1 \le x < 1$ (E) $-1 \le x \le 1$

$$\frac{(-3+2)^n}{\sqrt{n}} = \frac{(-1)^n}{\sqrt{n}} = \frac{(-1)!}{\sqrt{n}} = \frac{(-1)!}{\sqrt{n}$$

$$\frac{(-1.1+2)^n}{\sqrt{n}} = \frac{(0.9)^n}{\sqrt{n}} = (0.9)^n \cdot \frac{1}{\sqrt{n}}$$

Direct Companison with Geometric series

5. (Calculator Permitted) The graph of the function represented by the Maclaurin series

$$1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^n}{n!} + \dots$$
 intersects the graph of $y = x^3$ at $x =$

$$(A) 0.773 / (B) 0.865$$

$$(A) 0.773 / (B) 0.865$$

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!}$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{3}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{3}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{3}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{3}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{3}}{2!} - \frac{x^{3}}{3!}$$

$$e^{-x} = 1 - x + \frac{x^{3}$$

Graph
$$y = x^3 - e^{-x}$$
 and β

6. Which of the following sequences converge?

I. $\left\{ \frac{5n}{2n-1} \right\}$ II. $\left\{ \frac{e^n}{n} \right\}$

I.
$$\left\{\frac{5n}{2n-1}\right\}$$

II.
$$\left\{\frac{e^n}{n}\right\}$$

III.
$$\left\{\frac{e^n}{1+e^n}\right\}$$

- (A) I only (B) II only

$$\sqrt{\lim_{n\to\infty} \frac{5n}{2n-1}} = \frac{5}{2}$$

$$\lim_{n\to\infty}\frac{e^n}{n}=\infty$$

__7. What is the approximation of the value of sin1 obtained by using the fifth-degree Taylor polynomial about x = 0 for $\sin x$?

(A)
$$1 - \frac{1}{2} + \frac{1}{24}$$
 (B) $1 - \frac{1}{2} + \frac{1}{4}$ (C) $1 - \frac{1}{3} + \frac{1}{5}$ (D) $1 - \frac{1}{4} + \frac{1}{8}$ (E) $1 - \frac{1}{6} + \frac{1}{120}$
Sin $X = X - \frac{X^3}{3!} + \frac{X^5}{5!}$

8. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{\overline{n}}{n+2}$$
 II.
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$$
 III.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

II.
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$$

III.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

(A) None (B) II only (C) III only (D) I and II only (E) I and III only

(X i)
$$\lim_{n \to \infty} \frac{n}{n+2} = 1 \neq 0$$
 Diverges by n^{++} term test

$$V(i)$$
 $= \frac{cos(nπ)}{n} = \frac{(-1)^n}{n}$ converges by A5T (Alternating Harmonic) Series)

9. If $\lim_{h\to\infty} \int_{r^p}^{b} \frac{dx}{dx}$ is finite, then which of the following must be true?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges
(B) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges
(C) $\sum_{n=1}^{\infty} \frac{1}{n^{p-2}}$ converges

(D) $\sum_{n=1}^{\infty} \frac{1}{n^{p-1}}$ converges
(E) $\sum_{n=1}^{\infty} \frac{1}{n^{p+1}}$ diverges

The grad Test (If $\int_{K}^{\infty} f(x) dx$ converges then $\sum_{n=K}^{\infty} a_n$ converge

10. If $\sum_{n=0}^{\infty} a_n x^n$ is a Taylor series that converges to f(x) for all real x, then $f'(1) = \int_{0}^{\infty} a_n x^n dx$

(A) 0 (B)
$$a_1$$
 (C) $\sum_{n=0}^{\infty} a_n$ (D) $\sum_{n=1}^{\infty} na_n$ (E) $\sum_{n=1}^{\infty} na_n^{n-1}$

$$f'(x) = \sum_{n=1}^{\infty} a_n \cdot n \cdot x$$

$$f'(1) = \sum_{n=1}^{\infty} a_n \cdot n \cdot 1^{n-1} = \sum_{n=1}^{\infty} a_n \cdot n$$

11. What is the value of
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$$
? = $\frac{2^n \cdot 2}{3^n}$ = $2 \cdot \left(\frac{2}{3}\right)^n$
(A) 1 (B) 2 (C) 4 (D) 6 (E) The series diverges
$$5 = \frac{4}{1-r} = \frac{4}{3} = \frac{4}{1-2\sqrt{3}} =$$

 $\sum_{n=0}^{\infty} 12$. The Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^n$. Which of the following is a power series expansion

for
$$\frac{x^2}{1-x^2}$$
? $\longrightarrow X^2 \left(\frac{1}{1-x^2}\right) = X^2 \left[1+x^2+x^4+x^4+x^5+\dots\right]$

(A)
$$1+x^2+x^4+x^6+x^8+\cdots$$
 (B) $x^2+x^3+x^4+x^5+\cdots$ (C) $x^2+2x^3+3x^4+4x^5+\cdots$ (D) $x^2+x^4+x^6+x^8+\cdots$ (E) $x^2-x^4+x^6-x^8+\cdots$

13. A function f has a Maclaurin series given by
$$\frac{x^4}{2!} + \frac{x^5}{3!} + \frac{x^6}{4!} + \dots + \frac{x^{n+3}}{(n+1)!} + \dots$$
. Which of the

following is an expression for
$$f(x)$$
?

resembles pattern of e^{x} : $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{n}}{n!}$

(A) $-3x\sin x+3x^{2}$ (B) $-\cos(x^{2})+1$ (C) $-x^{2}\cos x+x^{2}$

14. Which of the following series diverge?

I. $\sum_{n=1}^{\infty} \left(\frac{\sin 2}{\pi}\right)^n$ II. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ III. $\sum_{n=1}^{\infty} \left(\frac{e^n}{e^n+1}\right)$

I.
$$\sum_{n=0}^{\infty} \left(\frac{\sin 2}{\pi} \right)^n$$

II.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$

III.
$$\sum_{n=1}^{\infty} \left(\frac{e^n}{e^n + 1} \right)$$

ii)
$$\sum_{n''_3}^{1}$$
 diverges by p-series test p<1

iii)
$$\sum_{e+1}^{e} \frac{e^{-1}}{e^{-1}} \frac{1}{e^{-1}} \frac{1}{e^$$

15. What is the coefficient of
$$x^2$$
 in the Taylor series for $\frac{1}{(1+x)^2}$ about $x = 0$?
$$f(x) = (1+x)^2 \qquad (A) \frac{1}{6} \qquad (B) \frac{1}{3} \qquad (C) 1 \qquad (D) 3 \qquad (E) 6$$

$$f(x) = (1+x)_{x}$$

$$(A) - (A)$$

(B)
$$\frac{1}{3}$$

$$\overline{3}$$
 (E) ϵ

$$\frac{\int_{0}^{\infty} \left(\frac{1}{2!} \left(x-0\right)^{2}\right)}{\left(x-0\right)^{2}}$$

$$f'(x) = -2(1+x)^3$$

$$f'(x) = -2(1+x)$$

$$f''(x) = 6(1+x)^{-4}$$

$$f''(0) = 6(1)^{-4} = 6$$

$$\frac{6}{2!} = 3$$

$$\frac{f''(0)}{2!}(x-6)^2$$

$$\left|\frac{6}{2!}\right| = 3$$

16. The sum of the infinite geometric series
$$\frac{3}{2} + \frac{9}{16} + \frac{27}{128} + \frac{81}{1024} + \cdots$$
 is

(B) 2.35
$$(C)$$
 (D) 2.45 (E) 2.50

$$=\frac{3}{8}$$
 S=

$$S = \frac{a_1}{1-r} = \frac{\frac{3}{2}}{\frac{1-3}{8}} = \frac{\frac{3}{2}}{\frac{5}{8}} = \frac{\frac{3}{2} \cdot \frac{8}{5}}{\frac{5}{8}} = \frac{\frac{24}{10} - 2.4}{\frac{2}{10}}$$

$$\frac{3.8}{2.5} = \frac{24}{10} = \sqrt{2.4}$$

$$\sum_{n=1}^{\infty} 17$$
. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n}$ converges?

$$(A) -3 \le x \le 3$$

(B)
$$-3 < x < 3$$

$$(C) -1 < x \le 3$$

(D)
$$-1 \le x \le 5$$

(A)
$$-3 \le x \le 3$$
 (B) $-3 < x < 3$ (C) $-1 < x \le 3$ (D) $-1 \le x \le 5$ (E) $-1 \le x < 5$

$$\lim_{n \to \infty} \left| \frac{(x-2)^{n+1}}{(n+1)3^{n+1}} \cdot \frac{n3^n}{(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{(x-2)^n(x-2) \cdot n3^n}{(n+1) \cdot 3^n \cdot 3 \cdot (x-2)^n} \right| = \left| \frac{x-2}{3} \right| < 1 \to |x-2| < 3$$

* Test endpts:

$$X=-1$$
 $\left(\frac{-1-2}{n}\right)^n = \frac{-1}{n}$ converges $\left| \begin{array}{c} X=5\\ \overline{2n-3} \end{array} \right| = \frac{1}{n}$ diverges

$$3^{2} \cdot 3(x^{2})^{3}$$
 $-3 < x - 2 < 3$
 $|x = 5|^{2}$
 $-1 < x < 5$

18. The Taylor series for $\sin x$ about x = 0 is $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$. If f is a function such that

 $f'(x) = \sin(x^2)$, then the coefficient of x^7 in the Taylor series for f(x) about x = 0 os

$$(A) \frac{1}{7!} \qquad (B) \frac{1}{7} \qquad (C) 0 \qquad (D) -\frac{1}{42} \qquad (E) -\frac{1}{7!}$$

$$f'(x) = \sin(x^2) = x^2 - \frac{(x^2)^3}{3!} + \frac{(x^2)^5}{5!} = x^2 - \frac{x^6}{3!} + \frac{x^{16}}{5!}$$

$$\int x^{2} \frac{x^{6}}{3!} + \frac{x^{10}}{5!} = \frac{x^{3}}{3} - \frac{x^{7}}{3! \cdot 7} + \frac{x^{11}}{5! \cdot 11}$$

$$-\frac{1}{3!7}x^{7} = -\frac{1}{6.7}x^{7} = -\frac{1}{42}x^{7}$$

19. $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$ is the Taylor series about zero for which of the following functions?

(A)
$$\sin x$$
 (B) $\cos x$ (C) e^x (D) e^{-x} (E) $\ln(1+x)$

Since $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{7!} + \frac{x^n}{n!}$

then $e^{-x} = (-1)^n \frac{x^n}{n!}$

20. For what values of x does the series $1+2^x+3^x+4^x+\cdots+n^x+\cdots$ converge?

21. The complete interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x+1)^k}{k^2}$ is $\sum_{k=1}^{\infty} \frac{(x+1)^k}{k^2}$

A)
$$0 < x < 2$$
 (B) $0 \le x \le 2$ (C) $-2 < x \le 6$

(D)
$$-2 \le x < 0$$
 (E) $-2 \le x \le 0$

(A)
$$0 < x < 2$$
 (B) $0 \le x \le 2$ (C) $-2 < x \le 0$ (D) $-2 \le x < 0$ (E) $-2 \le x \le 0$

$$\lim_{n \to \infty} \left| \frac{(x+i)^{n+1}}{(n+1)^2} \cdot \frac{(n)^2}{(x+i)^n} \right| = \left| \frac{(x+i)^n}{(x+i)^n} \right| = \left| \frac{(x+i)^n}{(x+i)^n}$$

If
$$x=0$$
 $(0+1)^n = \frac{1}{n^2}$ converges

 $p-series$

21. For
$$-1 < x < 1$$
, if $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{2n-1}$, then $f'(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{2n-1}$

$$\underbrace{(A)\left(\sum_{n=1}^{\infty}(-1)^{n+1}x^{2n-2}\right)}_{n=1}(B)\underbrace{\sum_{n=1}^{\infty}(-1)^{n}x^{2n-2}}_{n=1}(C)\underbrace{\sum_{n=1}^{\infty}(-1)^{2n}x^{2n}}_{n=1}(D)\underbrace{\sum_{n=1}^{\infty}(-1)^{n}x^{2n}}_{n=1}(E)\underbrace{\sum_{n=1}^{\infty}(-1)^{n+1}x^{2n}}_{n=1}$$

$$\underbrace{(A)\left(\sum_{n=1}^{\infty}(-1)^{n+1}x^{2n-2}\right)}_{n=1}(D)\underbrace{\sum_{n=1}^{\infty}(-1)^{n}x^{2n}}_{n=1}(E)\underbrace{\sum_{n=1}^{\infty}(-1)^{n+1}x^{2n}}_{n=1}$$

$$\underbrace{(A)\left(\sum_{n=1}^{\infty}(-1)^{n+1}x^{2n-2}\right)}_{n=1}(D)\underbrace{\sum_{n=1}^{\infty}(-1)^{n}x^{2n}}_{n=1}(E)\underbrace{\sum_{n=1}^{\infty}(-1)^{n+1}x^{2n}}_{n=1}$$

$$\sum$$
 22. The coefficient of x^3 in the Taylor series fo e^{3x} about $x = 0$ is

$$S = \frac{\alpha_1}{1 - r} = \frac{\left(\frac{1}{3}\right)^n}{1 - \frac{1}{3}} = \frac{\left(\frac{1}{3}\right)^n}{\frac{2}{3}} = \frac{\frac{3}{2}\left(\frac{1}{3}\right)^n}{\frac{2}{3}}$$

24. Which of the followign series converge?

I.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n+1} \quad \text{II.} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{3}{2}\right)^n \quad \text{III.} \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
(A) I only (B) II only (C) III only (D) I and III only (E) I, II, and III

(i) Converges of AST $\lim_{n \to \infty} \frac{1}{2n+1} = 0$

$$\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n$$

$$\begin{array}{c|c}
\hline
(A) \frac{1}{5} & (B) 1 & (C) \frac{5}{4} & (D) \left(\frac{5}{4}\right)^{100} \\
\hline
lim \left(\frac{5+n}{4+n}\right)^{100} & \frac{5}{5} & = \frac{1}{5}
\end{array}$$
(E) The sequence does not converge

26. (Calculator Permitted) If
$$f(x) = \sum_{k=1}^{\infty} (\sin^2 x)^k$$
, then $f(1)$ is

(A) 0.369 (B) 0.585 (C) 2.400 (D) 2.426 (E) 3.426
$$\sum_{n=1}^{\infty} \left[\sin(i) \right]^{2} < 1 \text{ Converges}$$

$$S = \frac{a_{1}}{1-r} = \frac{\left(\sin i \right)^{2}}{1 - \left(\sin i \right)^{2}} = \frac{0.708}{1 - 0.708} = 2.426$$

27. Let the function given by $f(x) = \ln(3-x)$. The third-degree Taylor polynomial for f about

(A)
$$-(x-2) + \frac{(x-2)^2}{2} - \frac{(x-2)^3}{3}$$
 (B) $-(x-2) - \frac{(x-2)^2}{2} - \frac{(x-2)^3}{3}$ (C) $(x-2) + (x-2)^2 + (x-2)^3$
(D) $(x-2) + \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3}$ (E) $(x-2) - \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3}$
 $f'(x) = \int_{3-x}^{1} = -(3-x)^{-1} - f'(2) = -1$

$$f''(x) = (3-x)^{-2} - f''(2) = -1$$

$$f'''(x) = 3(3-x)^{-2} - f''(2) = -2$$

$$f'''(x) = 3(3-x)^{-2} - 3(3-x$$

$$\frac{f''(2)}{r!}(x-2)^{n}$$

$$O - 1(x-2) - 1(x-2)^{2} - \frac{2}{3!}(x-2)^{3}$$

$$-(x-2) - (x-2)^{2} - (x-2)^{3}$$

28. (Calculator Permitted) Suppose a function f is approximated with a fourth-degree Taylor polynomial about x = 1. If the maximum value of the fifth derivative between x = 1 and x = 3is 0.01, that is, $|f^{(5)}(x)| < 0.01$, then the maximum error incurred using this approximation to ximum error $\frac{1}{(x-c)^{n+1}}$ $\frac{f^{n+1}(z)}{(x-c)^{n+1}}$ (E) 0.00267 compute f(3) is

 $R_{4}(x) = \left| \frac{f'(z)}{5!} (x-c)^{5} \right|$

$$R_4(3)$$

$$\frac{0.01}{5!}(2)^5$$

$$R_{4}(3) = \left| \frac{f^{5}(z)}{5!} (3-1)^{5} \right|$$