Day 3: Intro to Comp. Complexity, P & NP

Zach Neveu

May 8, 2019

1 Review

- Huge difference between $O(n^k)$ and $O(k^n)$ (Polynomial vs. Exponential)
- Intractable Problems can only be solved (exactly) with an Exponential time algorithm
- Intractable ≠ Unsolvable!!

2 New Stuff: Intractable Problems

How to prove a problem is intractable?

- 1. If solution has size that is exponential, then any algorithm to find that solution can't be polynomial.
- 2. If problem can't be solved by any algorithm at all (undecidable) Halting Problem
- 3. Certain niche problems with small output that are solvable but intractable

Figure 1: Intractable Problem Categories

3 NP-Completeness

Properties

- No one has ever found a polynomial-time algorithm to solve
- If someone found one algorithm to solve a single NP complete problem in polynomial-time, it would solve all other NP-Complete problems too.
- NP complete problems are either all tractable, or all intractable.
- All in same boat, we just don't know what boat.
- Tons of practical NP complete problems
- Seems unlikely that NP-Complete problems are tractable.
- It is widely believed that the NP-Complete problems are intractable.

What is NP-Complete?

If you can't find an efficient algorithm what do you say?

- "I can't find a solution" get fired
- "A solution provably doesn't exist" exceedingly unlikely
- "I can't solve it, but neither can anyone" show that NP-Complete

Decision vs. Optimization Problems

- Computational Complexity initially developed for decision problems
- Must prove that it can be applied to optimization problems as well
- TSP-opt Given weighted graph, find shortest Hamiltonian cycle optimization problem
- TSP-dec Given weighted graph, is there a Hamiltonian Cycle with weight $\leq k$
- Knapsack-opt Given objects w/ values and sizes and size bound, find subset to maximize values within size bound.
- Knapsack-dec Given objects w/ values and sizes and size bound, is there a subset of the objects that are within the size bound and have a value $\geq k$.
- If optimization is tractable, then decision is tractable just plug in answer from optimization
- If decision is tractable, then optimization is also tractable just run binary search over *k* values (adds log of constant)
- Decision and Optimization always have same complexity

4 Complexity Classes

P

- The set of all decision problems that can be solved by a polynomial-time algorithm.
- HC Problem: Given a graph, is it Hamiltonian (does it contain at least one Hamiltonian cycle)?

Figure 2: Does this graph have a Hamiltonian Cycle?

- A Verification Algorithm takes some information and checks it to make sure it satisfies the problem requirements.
- Example: given a cycle, verify that it is in fact Hamiltonian
- A Yes Instance of a problem will have some certificate that a verification algorithm can verify
- a No Instance will not contain a valid certificate to be verified
- Example: TSP-dec
 - certificate: sequence of nodes in the found HC
 - Verification algorithm: Check that each node appears once, edges are valid, and $\sum weights \le k$
- Example: Matching given graph and k, is there a matching of size k?
 - Certificate: list of edges in found matching
 - Verification algorithm: make sure no two edges have same end point, edges exist, and number of edges is k
- Shortest Path given graph, source and dest nodes, and k is there a path from start to end cheaper or equal to k?

- certificate: ordered nodes in the path found
- verification: check that edges exist, $\sum weight \le k$