UAI Formula Sheet

Fuzzy Sets

Fuzzy Set A set whos membership function range on interval [0,1]

Membership Function Defins a set by defining the degree of membership of an

element of the universe of discourse.

Frame of Cognition A set of fuzzy sets fully covering the universe of dis-

course(the range of variables)

- Coverage

- Unimodality

Fuzzy Partition A frame of cognition for which the sum of the member-

ship values of each value of the base variable is equal to

1.

 α -Cut Is the crisp set of the values of x such that $\mu(X) \geq \alpha$

 α -cut_{μ} $(X) = {\mu(x) \ge \alpha}$

Support The crisp set of values $x \in X$ such that $\mu(x) > 0$

Height of a Fuzzy Set The height of a fuzzy set f is the highest membership

degree of an element x of the fuzzy set.

 $h_f(X) = \max_{x \in X} \mu_f(x)$

Normal Fuzzy Set A fuzzy set is normal $\iff h_f(X) = 1$

Convex Fuzzy Set A fuzzy set is convex $\iff \forall x_1, x_2 \in X, \forall \lambda \in [0, 1]$

 $\mu_f(\lambda x_1 + (1 - \lambda)x_2) \ge \min(\mu_f(x_1), \mu_f(x_2))$

Fuzzy Logic

Fuzzy Logic Infinite-valued logic, with truth values is [0..1] A is L

Where

– A is a linguistic variable

-L is a label of a fuzzy set

Linguistic Variable A is (X, T(X), U, G, M) Where:

- X is the universe of discourse

-T(X) is the set of linguistic terms

- U is the set of values of the linguistic variable

- G is the semantic rule

-M is the mapping of the semantic rule

Fuzzy Modifiers A fuzzy modifier is a linguistic variable that is used to

modify the meaning of a linguistic variable.

- Strong Modifier - $m(a) \le a \forall a \in [0...1]$

- Prediction stronger, decrease the truth value

- Weak Modifier - $m(a) \ge a \forall a \in [0...1]$

- Prediction weaker, increase the truth value

Modifiers Properties

-m(0) = 0 and m(1) = 1

-m is a continuous function

- if m is strong, m^{-1} is weak and vice versa

- a composition of modifiers is a modifier. If both are of the same type, the result is of the same type

Handy Theorems

Chain Rule: $P(X_1, X_2) = P(X_1|X_2)P(X_2)$

Marginalization: $P(X_1) = \sum_{x \in X_2} P(X_1, X_2 = x)$

Bayes Rule: $P(X_1|X_2) = \frac{P(X_2|X_1)P(X_1)}{P(X_2)}$

1. $P(X_1|X_2) = \frac{P(X_2|X_1) \cdot P(X_1)}{\sum_{x \in X_1} P(X_2|X_1 = x) \cdot P(X_1 = x)}$

2. $P(X_1|X_2,X_3) = \frac{P(X_2|X_1,X_3) \cdot P(X_1|X_3)}{P(X_2|X_3)}$

3. $P(X_1 = x | X_2) = \frac{P(X_2 | X_1 = x) \cdot P(X_1 = x)}{P(X_2)}$

Bayesan Networks

Bayesan Network:

a DAG where Nodes represent random variables and edges represent direct influence.

WetGrass

Conditional Independence: $P(X_1|X_2,X_3) = P(X_1|X_3)$

then X_1 and X_2 are conditionally independent given X_3

Two (sets of) nodes A and B are conditionally independent (d-separated) given C if and only if all the path from A to B are shielded by C.

Joint Distribution Factorization: $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | pa(X_i))$

Explaining Away: describes two variable which become dependent because you observe a third one.

Markov Chains

(first Order) Markov Chain: $P(X_{t+1}|X_t,X_{t-1},...,X_1) = P(X_{t+1}|X_t)$

Stationary Event: $P(X_{t+1} = j | X_t = i) = p_{ij} \ \forall t$

Transition Matrix: $P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \dots & \dots & \dots \\ p_{n1} & \dots & p_{nn} \end{bmatrix} \quad \sum_{j=1}^n p_{ij} = 1$

Probability at step n: $P_{ij}(n) = P^n(i,j)$

Reachability: A state j is reachable from i if there exists

a path from i to j

Communicability: States i and j communicate if each is reach-

able from the other

Absorbing State: A state i is absorbing if $p_{ii} = 1$

Transient State: A state i is transient if $\exists j$ reachable from i

but not vice versa.

Recurrent State: A state i is recurrent if it is not transient.

Ergodic Markov Chain

A Markov Chain is ergodic if it is:

RecurrentAperiodic

- All states communicate

Steady State Distribution: $\pi = \lim_{n \to \infty} P^n$

Expected Transient Time: $m_{ij} = 1 + \sum_{k \neq j} p_{ik} m_{kj}$

Absorbing Markov Chain

 $P = \begin{bmatrix} Q & R \\ 0 & 1 \end{bmatrix}$ Q transient states,

R absorbing states.

Expected time trans s i from trans j ij^{th} element of $(I-Q)^{-1}$

Expected time abs j from trans i ij^{th} row of $(I-Q)^{-1}R$

Hidden Markov Models

Hidden Markov Models: A HMM is (S, E, P, A, B):

- S is the set of hidden states

– E is the set of observations

- P is the distribution of the initial state

A is the transition probability matrix

- B emission probability matrix

HMM: Viterbi Algorithm

F rom observations, compute the most likely sequence of hidden states:

$$\arg \max P(X_{1:t}|e_{1:t}) = \arg \max \frac{P(X_{1:t},e_{1:t})}{P(e_{1:t})} = \arg \max P(X_{1:t},e_{1:t})$$
(1)

Lets apply bayesan factorization:

$$P(X_{1:t}, e_{1:t}) = P(X_0) \prod_{i=1}^{t} P(X_i | X_{i-1}) P(e_i | X_i)$$
(2)

The solution is the one that minimize:

$$-\log P(X_{1:t}, e_{1:t}) = -\log P(X_0) + \sum_{i=1}^{t} (-\log P(X_i|X_{i-1}) - \log P(e_i|X_i))$$
 (3)

Graph Construction

Construct a graph with $1+t\cdot n$ nodes, where n is the number of hidden states with one initial node and n nodes at time i where j^{th} node is $X_i = s_j$. Find the shortest path from the initial node to the final node considering the weights of the edges.

Causal Inference

Individual treatment Effect (ITE) $ITE_i = Y_i(1) - Y_i(0)$

 $\begin{cases} ITE_i = 1 \text{ if there is causal association} \\ ITE_i = 0 \text{ otherwise} \end{cases}$

Average treatment effect (ATE) $\mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)]$ $\neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$

i is the same individual!

Randomized Control Trial (RCT) randomizes subject into treatment groups to remove confounding association.

In this case,

 $ATE = \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$

Observational Study observes subjects in their natural environment without randomization.

Adjust for confounding Shield all the paths from T to Y In this case, even if no RCT:

$$\begin{split} & \mathbb{E}[Y(t)|W=w] = \\ & = \mathbb{E}[Y|do(T=t), W=w] \\ & = \mathbb{E}[Y|T=t, W=w] \end{split}$$

Backdoor adjustment example
$$\begin{split} \mathbb{E}[Y|do(T=t)] = \\ = \mathbb{E}_C \mathbb{E}[Y|t,C] = \sum_{c \in C} \mathbb{E}[Y|t,c] P(c) \end{split}$$