Linear Search

Linear Search

index	0	1	2	3	4	5	6
array	-INF	8	2	9	3	4	INF

Linear Search

The index of 3 is 4

Linear Search

O(n)

Linear Search

The index of 12 is 4

Linear Search

O(n)

Binary Search

Binary Search

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

Binary Search

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid) >= 23 then
$$r = mid$$

else array(mid) < then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid)
$$>= 23$$
 then $r = mid$ else array(mid) $<$ then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid)
$$>= 23$$
 then $r = mid$ else array(mid) $<$ then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid)
$$>= 23$$
 then $r = mid$ else array(mid) $<$ then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid)
$$>= 23$$
 then $r = mid$ else array(mid) $<$ then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid)
$$>= 23$$
 then $r = mid$ else array(mid) $<$ then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

The index of 23 is 7

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid)
$$>= 23$$
 then $r = mid$ else array(mid) $<$ then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid) >= 23 then
$$r = mid$$

else array(mid) < then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid)
$$>= 23$$
 then $r = mid$ else array(mid) $<$ then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid)
$$>= 23$$
 then $r = mid$ else array(mid) $<$ then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

$$1.let l = 0, r = 11$$

$$2.let mid = (l + r) / 2$$

3.If array(mid) >= 23 then
$$r = mid$$

else array(mid) < then $l = mid + 1$

4.Repeat 2-3 until
$$l = r$$

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

Is the index of array(5) is 14?

1.let l = 0, r = 11

2.let mid = (l + r) / 2

3.If array(mid) >= 23 then r = mid else array(mid) < then <math>l = mid + 1

4.Repeat 2-3 until l = r

5.If array(1) == 5 : found

else : not found

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

The index of array(5) is 15

1.let l = 0, r = 11

2.let mid = (l + r) / 2

3.If array(mid) >= 23 then r = midelse array(mid) < then l = mid + 1

4.Repeat 2-3 until l = r

5.If array(1) == 5 : found

else : not found

Binary Search

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

1.let l = 0, r = 112.let mid = (l + r + 1) / 23.If array(mid) <= 23 then l = midelse array(mid) > 23 then r = mid - 14.Repeat 2-3 until l = r5.If array(l) == 23: found
else : not found

						l			mid			r
index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

Where is the index of 23?

1.let l = 0, r = 11

2.let mid = (l + r + 1) / 2

3.If array(mid) \leftarrow 23 then l = mid else array(mid) \rightarrow 23 then r = mid - 1

4.Repeat 2-3 until l = r

5.If array(l) == 23 : found

else : not found

						l	mid •	r				
index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

Where is the index of 23?

1.let l = 0, r = 112.let mid = (l + r + 1) / 23.lf array(mid) <= 23 then l = midelse array(mid) > 23 then r = mid - 14.Repeat 2-3 until l = r5.lf array(l) == 23: found
else : not found

								l midr	7			
index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

The index of 23 is 7?

1.let l = 0, r = 112.let mid = (l + r + 1) / 23.lf array(mid) <= 23 then l = midelse array(mid) > 23 then r = mid - 14.Repeat 2-3 until l = r5.lf array(l) == 23: found else : not found

Upperbound & Lowerbound

Upperbound(l , r , val)

- first index in range l-r that value more than val

Lowerbound(l, r, val)

- first index in range l-r that value more than equal val

```
int lowerbound (int L , int R , int val){
   int l = L , r = R , mid ;

   while(l ≠ r){

       mid = (l + r) / 2 ;
       if(arr[mid] ≥ val)r = mid ;
       else l = mid + 1 ;
   }

   return l ;
}
```

```
int upperbound (int L , int R , int val){
   int l = L , r = R , mid ;

   while(l ≠ r){

       mid = (l + r) / 2 ;
       if(arr[mid] > val)r = mid ;
       else l = mid + 1 ;
   }

   return l ;
}
```

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

Upperbound(O , 11 , val)
lowerbound(O , 11 , val)

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

Upperbound(0 , 11 , 13) -> 5
lowerbound(0 , 11 , 13) -> 5

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	4	7	12	15	18	23	28	29	35	INF

Upperbound(0, 11, 12) -> 5 lowerbound(0, 11, 12) -> 4

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	2	2	2	3	3	7	9	9	10	INF

How many 3 are there?

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	2	2	2	3	3	7	9	9	10	INF

index	0	l	2	3	4	5	6	7	8	9	10	11
array	-INF	1	2	2	2	3	3	7	9	9	10	INF

									•			
index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	2	2	2	3	3	7	9	9	10	INF

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	2	2	2	3	3	7	9	9	10	INF

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	2	2	2	3	3	7	9	9	10	INF

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	2	2	2	3	3	7	9	9	10	INF

Count(3) -> 2

index	0	1	2	3	4	5	6	7	8	9	10	11
array	-INF	1	2	2	2	3	3	7	9	9	10	INF

Solution 2: upper and lower bound $O(log_2 n)$

Solution 2 : upper and lower bound O(log₂n)

 $Count(3) \rightarrow Upperbound(0, 11, 3) - Lowerbound(0, 11, 3)$

Solution 2: upper and lower bound O(log₂n)

Count(3) -> 7 - 5 -> 2

```
lower_bound(arr , arr + n , val) ;
upper_bound(arr , arr + n , val) ;
//---> return pointer of array
```

```
lower_bound(vec.begin() , vec.end() , val) ;
upper_bound(vec.begin() , vec.end() , val) ;
//---> return iterator of vector
```

Longest Increase Subsequence

index	0	l	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10

LIS(array) ?

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10

index	0	l	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10

index	0	l	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10

```
int LIS(){
    int MAX = 0;
    for(int i = 0 ; i < N ; i ++ ){</pre>
        if(i = 0)dp[i] = 1;
        else {
            for(int j = 0 ; j < i ; j ++ ){</pre>
                 if(arr[i] > arr[j])dp[i] = max(dp[i] , dp[j] + 1);
            MAX = max(MAX , dp[i]) ;
    return MAX ;
```

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10
lis	3								

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10
lis	1								

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10
lis	1	4							

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10
lis	1	4	7						

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10
lis	1	2	7						

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10
lis	1	2	6						

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10
lis	1	2	6	9					

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10
lis	1	2	3	9					

DP Optimization

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10
lis	1	2	3	9	10				

DP Optimization

index	0	1	2	3	4	5	6	5	6
array	3	1	4	7	2	6	9	3	10
lis	1	2	3	9	10				

```
int LIS(){
   vector<int>lis ;
    for(int i = 0 ; i < N ; i ++ ){</pre>
        if(i = 0)lis.push_back(arr[i]);
        else {
            auto it = lower_bound(lis.begin(),lis.end(),arr[i]);
            if(it = lis.end())lis.push_back(arr[i]);
            else *it = arr[i] ;
    return lis.size();
```