Visualizing Dynamic Clustered Data Using Area-proportional Maps

Christian Schnorr

July 3, 2020

Christian Schnorr July 3, 2020 1 / 30

Agenda

- Introduction
 - Problem Statement
 - Motivation
- Visualizing Static Input Graphs
- Visualizing Dynamic Input Graphs
- Evaluation

Problem Statement

- Visualize clustered graph as a map
 - Each country represents a cluster in the original graph
 - Countries have area close to proportional to cluster size
 - $lue{}$ Dynamic setting: input graph changes over time ightarrow map needs to adapt

July 3, 2020

3 / 30

Motivation

- Clustered data appears naturally
- Map metaphor helps us make sense of data
- Dynamic data appears naturally: preserving mental map is crucial
- Area is a strong visual variable

July 3, 2020

4 / 30

Agenda

- Introduction
- Visualizing Static Input Graphs
 - Definitions
 - Algorithmic Pipeline
 - Transformation to Dual
 - Drawing the Polygonal Dual
- Visualizing Dynamic Input Graphs
- Evaluation

Definitions

- Polygonal contact representation
 - Contact representation in which all regions are simple polygons
 - No holes
 - No duplicate adjacencies
- Polygonal dual of graph G
 - Polygonal contact representation of G

Algorithmic Pipeline

7 / 30

Transformation to Dual

Definition: Augmented Dual G^+

- Add helper vertex in outer face and connect to all vertices on outer face
- 2 Form "normal" dual

8 / 30

Transformation to Dual Construction

Christian Schnorr July 3, 2020 9 / 30

Drawing the Polygonal Dual

- Force-directed graph drawing
 - Air pressure
 - Angular resolution
 - Vertex-vertex repulsion
 - Vertex-edge repulsion
- Preserve edge crossing and combinatorial properties: ImPrEd (Simonetto et al.)

10 / 30

Agenda

- Introduction
- Visualizing Static Input Graphs
- Visualizing Dynamic Input Graphs
 - Algorithmic Pipeline
 - Incremental Transformation
 - Weight Changes
 - Inserting Vertices
 - Removing Vertices
 - Flipping Edges
- Evaluation

Algorithmic Pipeline

12 / 30

Incremental Transformation Inserting Vertices

- Internal faces in primal are triangles
- No preconditions
- Idea: insert new face in dual at point where three existing faces meet

13 / 30

Inserting Vertices — Construction

14 / 30

Inserting Vertices — Implicit Outer Face

15 / 30

Removing Vertices

- Primal must remain internally triangulated
- Vertex to be removed must have degree 3
- Idea: remove boundary with one adjacent region

Removing Vertices — Construction

17 / 30

Flipping Edges

- Internal edge is incident to two triangular faces
- Edge can only be flipped if vertices on either side aren't already adjacent
- Idea
 - Contact boundary to be removed into single point
 - Create boundary in opposing direction

Flipping Edges — Construction — Contract *u-v-*Boundary

19 / 30

Flipping Edges — Construction — Contract *u-v-*Boundary

20 / 30

Flipping Edges — Construction — Create *x-y-*Boundary

21 / 30

Flipping Edges — Inserting and Removing Edges

Christian Schnorr July 3, 2020 22 / 30

Agenda

- Introduction
- Visualizing Static Input Graphs
- Visualizing Dynamic Input Graphs
- Evaluation
 - Research Questions
 - Quality Metrics
 - Evaluation Results
 - Examples

Research Questions

- Which quantitative measures best capture the quality of the maps generated by our algorithm in terms of
 - accuracy?
 - our understanding of locally fat regions?
- 2 What is the quality of the maps generated by our algorithm according to these quality metrics?
 - How does this quality change based on the size and other properties of the input graph?
 - How does this quality change over time as dynamic updates are incorporated?

Quality Metrics

- Cartographic error
 - How much do the actual region areas differ from the prescribed ones?
- Polygon complexity
 - How convex is the polygon?
 - What's the frequency and amplitude of the "vibration" on the polygon's boundary?

25 / 30

Evaluation Results

Effect of initial number of clusters

26 / 30

Evaluation Results

Effect of number of operations

Examples Maps with n = 10

Christian Schnorr July 3, 2020 28 /

Examples Maps with n = 20

Examples Maps with n = 30

