

Development of an optical simulation for the SuperNEMO calorimeter

Arnaud Huber CENBG – Bordeaux – France On behalf of the SuperNEMO Collaboration

The SuperNEMO detector

SuperNEMO is a $0\nu\beta\beta$ experiment based on the NEMO-3 technique of tracking and calorimetry. It will search for $0\nu\beta\beta$ decay in ~ 100 kg of enriched isotopes, reaching a half-life sensitivity of $T_{1/2} \approx 10^{26}$ years, corresponding to a neutrino mass sensitivity of ~ 50 meV.

Calorimeters

20 modules each containing in:

- a central thin source of 5 kg ββ isotope [baseline with 82Se]
- a **tracking chamber** made of 2000 drift cells in Geiger mode
- an **e- calorimeter** made up of 712 plastic scintillators and low-radioactivity PMTs acting also as a gamma tagger

a SuperNEMO module

The demonstrator:

Intermediate phase to test the technical feasibility of the experiment and the background levels with 1 module:

- > 7 kg x 2.5 years of 82 Se
- $> T_{1/2}(\beta\beta0\nu) > 6 \ 10^{24} \text{ years}$
- > <m_v> < (0.2 0.4) eV

Starts running in 2017 in LSM

The main wall calorimeter design

+ G4OpticalPhoton processes

520 Optical Modules each made up of

- 10 L NUVIA polystyrene **scintillator**
- R5912-03mod Hamamatsu Photonics 8" PMT
- Teflon and mylar wrapping
- Individual pure iron magnetic shields (25 G)

Requirements

• Resolution \lesssim 8 % [FWHM] /VE [MeV]

note: NEMO3 \simeq 16 % [FWHM] /VE [MeV]

Time resolution 400 ps (σ) @ 1 MeV

Optical Simulation

- Goal: Modeling of the Optical Module response (energy, time) regarding the interaction location
- > How?: With addition of some available classes in GEANT4 & inputs in order to simulate all the optical processes

Scintillator:

- Simulation emission properties :
 - Lightyield
 - Primary emission spectrum
 - Secondary emission spectrum
 - Absorption spectrum
- Simulation reflective properties :
 - Diffuse reflection [Teflon]Specular reflection [Mylar]
 - Reflectivity spectrum
- Simulation light path:
 - Refraction index spectrum
 - Absorption length spectrum

Photomultiplier:Simulation quantum efficiency:

- Simulation quantum emiciency
- Simulation anode uniformity:
 - Photocathode uniformity & Collection efficiency convolution

Results

Energy performances

Elaboration of a scintillator map taking into account the Non uniformity of the light collection

deposited energy ≠ visible energy

Depending on the:

PMT's uniformity

Test on the Single rate spectrum (due to radioactive contaminations) for 1 optical module at LSM

Optical Simulation is essential to reproduce data

Timing performances

- Emission time
- Propagation time
- PMt transit time
- HV Divider
 transfer function
 [preliminary]

Good representation of rise time [most important parameter for trigger study]

Optical Simulation is able to reproduce geometry & photocathode effects