UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

RODRIGO DE CASTRO MICHELASSI NUSP: 13672703

Exercício-Programa 3: Integração Numérica

Sumário

1	Introdução	2
2	Detalhes da Implementação	3
2.1	Compostas	3
2.2	Monte Carlo	3
3	Algoritmos Utilizados	5
3.1	Compostas	5
3.2	Monte Carlo	5
4	Testes e Resultados	7
4.1	Compostas	7
4.2	Monte Carlo	7
5	Considerações Finais	9

1 Introdução

Esse EP tem como objetivo mostrar como funciona o processo de integração numérica estudado em aula, testando a integração análítica e comparando com os valores de suas aproximações por polinômios, de acordo com métodos específicos.

Na primeira parte do EP, foram implementadas as regras do Trapézio e Simpson, além do algoritmo de interpolação pelo método de LaGrange, para aproximarmos a integral de uma função desconhecida, apenas com dados descritos em uma tabela. O algoritmo implementado será discutido a frente.

Já na segunda parte, foi implementado a integração de 3 funções conhecidas pelo Método de Monte-Carlo, não visto em sala, por sua aplicação em integrais unidimensionais, além de aproximar o valor de π pela aplicação em integrais multidimensionais.

Os detalhes de implementação, assim como as aproximações e mudanças de variáveis implementadas para aproximar esses valores serão discutidos nos próximos tópicos.

2 Detalhes da Implementação

Antes de partirmos para falar sobre o programa em si, vamos falar um pouco sobre como ele pode ser testado.

O arquivo enviado conta com dois arquivos de extensão .c, são eles compostas.c e montecarlo.c, correspondendo às partes 1 e 2 do EP, respectivamente. Para testar os programas, é necessário possuir o compilador gcc em sua máquina. Feito isso, para compilar ambos os programas, utilizamos, no terminal:

\$ make compostas

\$ make montecarlo

Ao executar os programas, teremos uma pequena interface, onde poderemos realizar um teste por vez.

2.1 Compostas

Esse algoritmo consiste nos métodos de integrações compostas, dadas pelas regras do Trapézio e Simpson. Ao iniciar o programa, recebemos uma mensagem pedindo um valor para r, que aproxima a integral da função desconhecida da tabela, entre 0 e 30, a partir da interpolação por LaGrange e dos valores dados. Note que r representa o tamanho dos subintervalos os quais estaremos utilizando para aproximar nossa integral por partes, logo esse valor faz sentido quando r está em (0,30]. Para valores acima desse intervalo, os resultados tendem a ser muito próximos aos obtidos com r=30. Note também que, quanto menor o valor de r, maior será o valor do erro apresentado, e a diferença entre os resultados para ambos os métodos. Esses resultados serão apresentados em outra seção.

2.2 Monte Carlo

Esse algoritmo apresenta a aproximação para as integrais de Monte Carlo. Ao iniciar o programa, temos a apresentação de um pequeno menu, com 4 opções disponíveis, para aproximar as 3 integrais pedidas no enunciado ou aproximar o valor de PI. A depender da sua escolha, o programa será iniciado com os parâmetros corretos para aproximar cada valor, e será rodado uma vez.

Note que, como o algoritmo de Monte Carlo é probabilístico, obtemos a cada execução um valor diferente, porém sempre muito próximos. Os resultados serão comparados com as soluções analíticas das integrais a seguir.

3 Algoritmos Utilizados

3.1 Compostas

Para esse algoritmo, iniciamos recebendo o valor de r em cada uma das funções e aproximamos por ambos os métodos. Para isso, aplicamos os algoritmos com base nos livros, utilizando loops que rodam até r, para a regra do Trapézio, e até $\frac{r}{2}$ e $\frac{r}{2}-1$, para a regra de Simpson. Dessa forma, para cada ponto ih aproximado, interpolamos esse ponto por LaGrange, para obtermos uma aproximação dessa função no eixo Y e obtermos a resposta esperada.

3.2 Monte Carlo

O algoritmo de Monte Carlo requer uma implementação mais elegante que o algoritmo anterior, por isso daremos mais enfoque para esse algoritmo. Para isso, temos uma resposta diferente gerada para cada função que queremos aproximar, e uma aplicação diferente para cada também.

i.
$$\int_0^1 \sin(x) dx$$
.

Aqui, a ideia foi puramente aproximar o valor da integração pela regra unidimensional, somando a cada iteração o valor de $sen(\frac{rand()}{RANDMAX})$, valores aleatórios, e retornando o resultado dessa soma por n = MAX.

ii.
$$\int_{3}^{7} x^{3} dx$$

Aqui, como queríamos aproximar os valores de uma integral de 3 a 7, o que não era possível pelo método de Monte Carlo tradicional. Todavia, podemos reescrever nosso método como:

$$F = \int_{a}^{b} f(x) dx$$

$$\iff \langle F^{N} \rangle = (b - a) \frac{1}{N - 1} \sum_{i=0}^{N} F(X_{i})$$

$$\iff X_{i} \in (a, b] : X_{i} = a + \xi_{i}(b - a)$$

$$\iff \langle F^{N} \rangle = (b - a) \frac{1}{N} \sum_{i=0}^{N} F(a + \xi_{i}(b - a))$$

 $com \xi \in [a, b].$

Aplicando então esse algoritmo, encontramos por força bruta $\xi=0.564$, que aproxima corretamente o valor da integral pedida.

iii.
$$\int_0^\infty e^{-x} dx$$

Novamente, temos uma integral definida em um intervalo diferente de [0,1]. Portanto, para aproximarmos essa função pelo método de Monte Carlo, aproximamos as integrais:

- $\bullet \int_0^1 e^{-x} \, dx$
- $\bullet \int_0^1 \frac{1}{e} \, dx$

Isso pois, a segunda integral é equivalente a $\int_1^\infty e^{-x} dx$.

Dessa forma, foi possível aproximar corretamente o valor da função somando os resultados obtidos pelas duas integrais calculadas.

iv. π

Para esse cálculo, utilizamos o método multidimensional, pois ocorre uma necessidade de termos duas dimensões, x e y, representados no código, e aplicamos o próprio algoritmo dado no enunciado.

4 Testes e Resultados

4.1 Compostas

Como aqui desconhecemos a função aplicada, os resultados serão comparados entre si, e não com uma solução analítica da integral pedida. Pelo que foi mencionado na seção anterior, vimos que os valores devem variar para valores diferentes de $r \in (0, 30]$, e quanto mais próximo de 0, maior deve ser a diferença entre os valores nos dois métodos aplicados. Note então, alguns testes obtidos e uma pequena análise sobre os resultados:

Valor de r	Trapézio Composto	Simpson Composto
1	15.917	3.537
5	122.081	130.821
10	118.893	122.227
15	118.150	116.180
20	117.837	117.673
30	117.563	117.131

Dos dados apresentados na tabela, segue que para valores pequenos de r, próximos a 0, a integração possui um valor muito distante do que é proposto. Todavia, conforme vamos aumentando esse valor, começamos a obter dados mais interessantes. Note que, para r=5, ainda há uma discrepância, principalmente para o método de Simpson, visto que esse depende de 3 pontos (e, pelos dados da tabela, dados no enunciado, para r=5, temos apenas 2 pontos conhecidos), e conforme vamos aumentando os valores, observamos que o resultado converge, em ambos os métodos, para valores próximos de 117, o que nos leva a crer que ambas as aplicações estão corretas.

4.2 Monte Carlo

No método de Monte Carlo, ocorre uma diferença quanto à seção anterior, visto que agora queremos aproximar funções reais, então não é necessário encontrar valores diferentes para os quais elas convergem, mas sim aproximar o real valor da integral, e comparar com dados analíticos. Segue, a seguir, os valores reais das integrais, feitas pela resolucao analítica:

i.
$$\int_0^1 \sin(x) dx = -\cos(1) + 1 \approx 0.46$$

ii.
$$\int_3^7 x^3 dx = 580$$

iii.
$$\int_0^\infty e^{-x} \, dx = 1$$

iv.
$$\pi = \approx 3.141592...$$

Portanto, temos que obter, pelo nosso algoritmo de Monte Carlo, valores aproximados desses obtidos analiticamente. Note que esse algoritmo é probabilístico e, durante a implementação do programa, utilizamos uma semente baseada no tempo para gerar os números aleatórios, então a cada execução podemos obter respostas diferentes, porém sempre próximas. Além disso, o algoritmo de Monte Carlo implica em uma resolução próxima de infinito para que a convergência dos valores das integrais e aproximações se aproximem mais da realidade. No nosso algoritmo, implementamos um valor $MAX = 10^8$ para aproximar o infinito, isso pois, utilizando um valor como INT_MAX tornaria o programa muito lentom, embora mais preciso, e o valor escolhido já torna os resultados satisfatórios. Seguem a seguir, os resultados obtidos:

sen(x)	x^3	e^{-x}	π
0.459663	580.799270	0.999991	3.141663

Como podemos observar, os valores obtidos se aproximam de forma satisfatória dos valores analíticos, com erros e < 1 em todos os casos, porém menores a depender da função que estamos integrando. Vale lembrar que, ao utilizarmos valores mais próximos de infinito, o erro tende a diminuir ainda mais.

5 Considerações Finais

Pelos resultados e análises feitas acima, podemos perceber que os algoritmos implementados possuem resultados satisfatórios e que se aproximam da realidade.

Mesmo sem saber, para as regras do Trapézio e Simpson, o valor real da integração, foi possível perceber empiricamente que a aproximação se aproxima da realidade pois ambos os métodos convergem para o mesmo valor.

Já no método de Monte Carlo, foi possível concluir, com base na comparação com as soluções analíticas, que o resultado se aproximava da realidade, além de realizar testes e operações com outros valores em código maiores para representar o "infinito", o que tornou possível analisar como o erro se comportava, aumentando conforme diminuíamos esse valor.

Dessa forma, concluímos que os algoritmos testados são eficientes e podem ser utilizados para aproximar os valores dessas integrais específicas testadas, além de ter a oportunidade de conhecer outras formas de aplicar o algoritmo de Monte Carlo para integrais que não estão compreendidas no intervalo [0,1], essencial para o funcionamento do algoritmo.