B.Tech.

Year: I Semester: I

Major Examination-2021-2022

Subject Name: Calculus and Linear Algebra

Max. Marks: 50 Time: 3 hrs.

Note: Attempt all questions. All questions carry equal marks.

110101	Attempt an questions	Marks	СО	BL	PO	PI	
Q.1	Attempt any five parts of the following.	Iviaiks				Code	:
<u></u>	If $x = r \cos \theta$, $y = r \sin \theta$, then show that	2	6	2	1	1.1.1	
	$\frac{\partial r}{\partial x} = \frac{\partial x}{\partial r} \qquad \text{(ii)} \qquad \frac{1}{r} \frac{\partial x}{\partial \theta} = r \frac{\partial \theta}{\partial x}$					1.1.1	
b)	If $u = \sin nx + \cos nx$, then show that	2	1	2	1	1.1.1	
,	$u_r = n^r [1 + (-1)^r \sin 2nx]^{1/2}$, where u_r is the r^{th}						
	differential coefficient of u w.r.t. x .	2	2	2	1	1.1.1	
De la company	Find the sum and product of all the Eigen values of	2					
	the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ 1 & -2 & 0 \end{bmatrix}.$					\	1.1
1	Compute the area bounded by the parabola $y = x^2 + x^2 + y = 0$	- 2	4	. \ ?	2	$1 \setminus 1$.	1.1
H)	2 and the straight lines $x = 0$, $x = 1$, $x + y = 0$.	2		5	2	1	1.1.1
s)	Evaluate						
	$\int_0^\pi x \sin^7 x \cos^4 x dx.$	2		4	2	1	1,1.1
1	Find the directional derivative of $\frac{1}{r^3}$ in direction of \vec{r}	,					
	where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $r = \vec{r} $		+	4	2	1	1.1.1
7	Show that $curl(grad \phi) = 0$. Here ϕ is the scalar	4		7			
	point function.						
Q.2	Attempt any Two parts of the following.		5	6	3	1	1.1.
N.	If u, v, w are the roots of the cubic equation			J			
,	$(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0 \text{ in } \lambda, \text{ then}$						
	find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.						

2)	If $\frac{x^2}{a^2+u} + \frac{y^2}{b^2+u} + \frac{z^2}{c^2+u} = 1$, then prove that	5	2	3	1	1.1.1
	$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 = 2\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}\right).$					
c)	(i) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, show that	5	1	3	1	1.1.1
	$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}.$					
	(ii) Given $z = x^n f_1\left(\frac{y}{x}\right) + y^{-n} f_2\left(\frac{x}{y}\right)$, prove that					
	$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} + x \frac{\partial z}{\partial x}$					
	$+ y \frac{\partial z}{\partial y} = n^2 z.$					
Q.3	Attempt any Two parts of the following.					
×	Find the inverse of following matrix by using	5	3	3	1	1.1.1
	elementary operations					
	A					
	$\begin{bmatrix} 0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \end{bmatrix}$					
	$= \begin{bmatrix} 0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 2 & 0 \end{bmatrix}$					
b)	Discuss the consistency of the following system of	5	. 3	3	1	1.1.1
	equations for various values of λ		3		1	1,1,1
	$2x_1 - 3x_2 + 6x_3 - 5x_4 = 3$					
	$x_2 - 4x_3 + x_4 = 1$					
	$4x_1 - 5x_2 + 8x_3 - 9x_4 = \lambda,$					
	and if consistent, solve it.					
*	Diagonalize the matrix	5	6	3	1	1.1.
	$\begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$					
Q.4	Attempt any Two parts of the following.			+		
a)	(i) Using double integration show that $\beta(m, n) =$	5	5	3	1	1.1.
	$\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}.$					
	Evaluate $\iint_R (x+y)^2 dx dy$, where R is the					
	parallelogram in the $x - y$ plane with vertices (1,0),					

	(3,1), (2,2), (0,1) using the transformation $u =$					
	x + y and $v = x - 2y$.					
b)	(i) Evaluate $\int_0^\infty \int_0^x xe^{-x^2/y} dxdy$ by changing the	5	5	3	1	1.1.1
	order of integration.					
	a. Evaluate $\int_{-\infty}^{\infty} \cos \frac{\pi}{2} x^2 dx$.					
c)	(i) Find the volume and mass contained in the solid	5	5	3	1	1.1.1
	region of the positive octant of the					
	surface $\left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q + \left(\frac{z}{c}\right)^r = 1$,					
	where $p, q \& r > 0$, given that density at any					
	point $\rho(x, y, z) = k\sqrt{xyz}$.					
Q.5	(ii) Attempt any Two parts of the following.					
a)	(i). Find the work done in moving a particle by force	5	4	3	1	1.1.1
	field $\bar{F} = 3xy\hat{\imath} - 5z\hat{\jmath} + 10x\hat{k}$ along the curve					
	$x = t^2$, $y = 2t^2$, $z = t^3$ from $t = 0$ to $t = 2$.					
	(iii) Show that the vector field $\vec{F} = (6xy + z^3)\hat{\imath} -$		1			1
	$(3x^2-z)\hat{j}+(3xz^2-y)\hat{k}$ is irrotational. Find					
	the scalar potential ϕ such that $\vec{F} = \nabla \phi$.	\	\	\	\	\
b)	(i) Verify stokes theorem for $\vec{F} = xy\hat{\imath} + xy^2\hat{\jmath}$ taken	5	4	3	1	1.1.1
	around a square having vertices		1			
	(1,1), $(-1,-1)$, $(1,-1)$ and $(-1,1)$ in $x-y$					
	plane.					
c)	(ii) Verify Gauss's divergence theorem for $\vec{F} =$	5	4	3	1	1.1.1
	$(x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ taken					
	over the rectangular parallelepiped $0 \le x \le a$,					

Roll No. 2 0 2 1 0 9 7 7 9

B.Tech. (4 Credit)

Year: 2022 Semester: 1st

Major Examination: 2021-2022

Advanced Environmental Chemistry

Max Marks: 50

Time: 3 Hrs.

Note: Attempt ALL questions. Each question carries equal marks

	2.1 C. IIing	Marks	CO	BL	PO	PI
Q1.	Attempt any Five parts of the following.	With				Code
(8	With a neat sketch and explain how nitrogen is	2	4	2	1	1.2
	recycled in nature?				-	2.2
b)	write a short note on organic pollutants.	2	1	2	2	2.3
(3°	Explain Greenhouse effect.	2	2	2	1	1.2
(d)	Explain the working of either cyclone separator or	2	4	3	2	2.3
	fabric filter. Mentioning their advantages,					
	disadvantages and applications.					
(e)	What are volatile organic compounds (VOC's)?	2	1	1	2	2.3
	List the sources VOC's.					
1)	Name and briefly explain the layers of atmosphere.	2	2	1	1	1.2
g)	What is indoor air pollution? Explain its sources	2	1	1	1	1.2
,	and effect on human being.					
Q2.	Attempt any Two parts of the following.					
1)	Discuss sources of water pollution and their effects.	5	2	1/2	1	1.2
)	Explain chemical degradation of wastes and	5	4	2	1	1.2
	chemicals.				4	
*	What are the sources and effects of ocean pollution?	5	1	1	1	1.2
Q3.	Attempt any Two parts of the following.					
a.)	List different type of water resources and its	5	1	1	2	2.3
	composition. Explain the qualities of potable water.					
b)_	Discuss different type of water pollutants.	5	2	1	1	1.2
c)	Explain photocatalytic degradation of pollutants.	5	4	2	2	2.4

Q4.	Attempt any Two parts of the following.				T	
(B)	Explain various control measures of soil pollution.	5	4	1	2	2.2
b)	Define I soil II soil pollution III soil erosion.	5	1	1	1	1.2
c)	List the type of solid waste and its harmful effect.	5	4	2	2	1.2
Q5.	Attempt any Two parts of the following.				1	
a)	Explain the composting technique and its advantages and disadvantages.	5	2	2	2	2.4
b)	Define the following terms I. municipal solid waste II. Hazardous waste	5	1	2	1.	2.3
EZ	Explain wastewater treatment/sewage treatment.	5	4	2	1	2.4

Sub Code: BEE-101

Roll No. 2 0 2

B. Tech

Year: 1st Semester: 1st Major Examination: 2021-22 Fundamental of Basic Electrical

Max Marks: 50

5

Time: 3 Hrs. Note: Attempt ALL questions. ALL questions carry equal marks.	Marks
Note: Attempt ALL questions. ALL questions early	Marks
1. Attempt any Five parts of the following.	2
1. Attempt any Tropic laws	2
State and explain Kirchoff's laws.	2
1) State Ohm's Law, Mention one minutes	2
c) Define RMS value and average value.	2
d) Calculate the form factor and peak rustormer	2
d) Calculate the form factor and positive of the positive of t	2
A 4 pole, 50 Hz, 3 phase madera	
Calculate its percentage slip? Calculate its percentage slip? Draw the phasor diagram of single phase transformer for lagging load.	2
Draw the phasor diagram of single phase transferred	
Attempt any Two parts of the following. Attempt any Two parts of the following.	5
Derive maximum power transfer theorem for resistant	
	5
efficiency in case of maximum power transfer. b) State superposition theorem and calculate I_x from the Fig.1 given below b) State superposition theorem and calculate I_x from the Fig.1 given below	
using superposition. All values of resistances are in ohm.	

Fig.1

- c) State Norton's theorem and draw equivalent circuit. Differentiate between 5 Thevenin's theorem and Norton's Theorem.
- Attempt any Two parts of the following. 3.
 - a) The voltage across the foad is $v(t)=60 \sin(\omega t)$ and the current through the load in the direction of voltage drop is $i(t)=1.5 \sin(\omega t+60)$ then
 - Find the complex and apparent power.
 - Find real and reactive power.

b) In an R-L-C parallel circuit the current through the resistor, inductor (pure),	5
and capacitor (pure) are 20A, 15A and 40A respectively. What is the Current	3
from the supply? Draw the phasor diagram.	
c) Define following terms in case of R-L-C series circuit:	5
i. Resonance frequency	3
ii. Band-width	
iii. Quality factor	
4. Attempt any Two parts of the following.	
Define following terms:	5
i. Magnetic flux density	3
ii. MMF	
iii. Reluctance	
Explain B-H curve. Also define Hysteresis and eddy current loss with their	5
expressions.	J
c) Explain working principle of Auto transformer. And also explain its	5
advantages over two winding transformer.	5
5. Attempt any Two parts of the following.	
(a) Explain the working principle of DC generator. And also explain its	5
construction with neat diagram.	
Explain the working principle of single phase induction motor. And explain	5
its classification.	
c) Explain classification of the DC motor with their required equations and neat	5
circuit diagrams.	,

B. Tech. (4 Credit Subjects)

Year: FIRST, Semester: ODD

Major Examination: 2021-2022

ENGINEERING PHYSICS

Time: 3 Hrs.

Max Marks: 50

Note: Attempt ALL questions. Each question carries equal marks PΙ PO BL \mathbf{CO} Marks Attempt any Five parts of the following. (All Unit) Code Q1. 1 1 Define space lattice. How is it helpful to describe a 1 2 a crystal structure? 1 1 What is Bragg's law? In Bragg's reflection of X-rays, 2 1 **(b)** a reflection was found at the glancing angle of 30° with lattice planes of spacing 1.87 Å. If this is a second-order reflection, then calculate the wavelength of X-rays. 1 2 1 What is matter wave? A proton is moving with a speed 2 (Kar of 2 × 108 m/s. Find the wavelength of the matter-wave associated with it. (Given that, mass of proton, m_0 $=1.67x10^{-27} \text{ kg}$ 2 1 2 2 What physical the Define wave function. is 0 significance of wave function? 1 Write down Maxwell's equations in integral form. 4 2 2 Write physical significance of each equation. Define (i) critical transition temperature and (ii) 5 2 1 2 f) critical field, in case of superconductors. 6 2 1 Describe quantum well, quantum wire, and quantum 2 **S** dots. Mention their important properties. Attempt any Two parts of the following. (Unit-I) Q2. Obtain Bragg's law for X-ray diffraction in crystals. 2 1 1 5 Show how it can be experimentally verified. What is interplanar spacing? Derive the formula for 1 1 5 b) calculating interplanar spacing. Define Miller indices. Find the perpendicular distance 1 1 1 5 (e)) between the two planes having Miller indices (1, 1, 1) and (2, 2, 2) in a unit cell of a cubic lattice with lattice constant parameter a.

Q3.	Attempt any Two parts of the following. (Unit-II)					
(9)	What was the objective of Davisson–Germer experiment? Discuss the results of this experiment.	5	2	2	1	
	Derive time-dependent and time-independent Schrödinger wave equations.	5	2	1	1	
c)	A particle is moving in a one-dimensional box of width 30 Å. Calculate the probability of finding the particle within and at interval of 2 Å at the centre of the box when it is in its state of least energy.	5	2	1	1	
Q4.	Attempt any Two parts of the following. (Unit-III)					
3	State Ampere's law in differential and integral forms. Discuss the modification of Ampere's law in terms of displacement current. Explain the term displacement current and give its implications.	5	3	2	1	
®	Find out the electromagnetic wave equation from Maxwell's equation. Show that the EM wave travels with speed of light in free space.	5	4	1	1	
c)	A plane electromagnetic wave propagating along the X-direction has a wavelength of 5.0 mm. The electric field is in the Y-direction and its maximum magnitude	5	4	1	1	
	is 48 V/m. Write the equations of the electric and magnetic fields as a function of x and t .			Variation of		
Q5.	Attempt any Two parts of the following. (Unit-IV)					
a)	Define electrical conductivity obtain the expression of conductivity for intrinsic and extrinsic semiconductors.	5	5	2	1	
(3)	Write down the characteristics and applications of superconductors. Calculate the transition temperature of niobium for which the critical field is 1×10^5 A/m at 8 K and 2×10^5 A/m at 0 K .	5	6	1	1	
®	What is nanoscience and nanotechnology? Discuss the significance of nanoscale materials.	5	6	1	1	

BL – Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 – Applying, 4 – Analysing, 5 – Evaluating, 6 - Creating)

CO – Course Outcomes

PO - Program Outcomes

PI Code – Performance Indicator Code

B.Tech (SEM I/ ODD SEMESTER) MAJOR EXAMINATION: 2021-2022

PROFESSIONAL COMMUNICATION

Max. Marks: 50 Time: 2 Hrs. Note: Attempt all questions. Each question carries equal marks (a) What are the four important aspects to be considered while planning for presentation? Qus1 Attempt any four parts of the following. 5 (b) Explain the uses of tables and charts in technical writing? 5 5 5 5 (c) Why is posture necessary for first impression? (d) Explain the importance of visuals and graphics in technical writing? (e) How can you develop a paragraph adequately? (f) What is a difference between comparison and contrast? Qus2 Attempt any three parts of the following. 5 (a) Discuss the importance of non-verbal communication in context to interview? 5 (b) What is elocution? What is the importance of elocution? 5 (e) State the difference between factual and inferential comprehension? 5 (d) What is skimming and scanning? Discuss their uses briefly? Qus3 Attempt any three parts of the following. 5 (a) What are the features of Notice? Explain its format? 5 (b) What are the salient features of resume? Draw a specimen of resume? (c) What points should be considered while writing a literature review in research paper? 5 (d) Why is referencing necessary in research paper? Give two examples of referencing. 5