

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Исследование взаимной диффузии газов

Работа №2.2.1; дата: 21.02.22 Семестр: 2

1. Аннотация

В данной работе изучается взаимная диффузия газов. Дается определение коэффициента взаимной диффузии и изучается влияние рабочего давления системы на коэффициент взаимной диффузии газов на примере пары воздух-гелий.

Схема установки:

Рис. 1: Схема установки

Рис. 2: Схема установки

В работе используются: два сосуда для газов V_1 и V_2 , система кранов K_i , манометр M, баллон сжатого гелия, форвакуумный насос (Рис. 1).

Для исследования взаимной диффузии газов и измерения коэффициента взаимной диффузии D используются два сосуда объёмами V_1 и V_2 ($V_1 \approx V_2 \equiv V$), соединенные трубкой длины L и сечения S (Рис. 2). Предполагается, что сосуды заполнены смесью двух газов при одинаковом давлении, но с различной концентрацией компонентов. Вследствие взаимной диффузии, проходящей в соединительной трубке, концентрации компонентов в сосудах с течением времени выравниваются. Важно отметить, что диффузия – относительно медленный процесс, и для его наблюдения необходимо отсутствие конвекции, т. е. макроскопических течений газа. Для этого необходимо обеспечить равенство давлений и температур в сосудах до начала измерений.

2. Теоретические сведения

В общем случае концентрации компонентов n(t,x) зависят от как от координаты, так и времени. Задача упрощается, если объём соединительной трубки мал по сравнению с объёмами сосудов – тогда концентрации газов $n_1(t)$ и $n_2(t)$ внутри каждого сосуда можно считать постоянными по всему объёму сосуда, и принять, что процесс выравнивания концентраций происходит благодаря диффузии в трубке.

Применяя закон Фика в трубке, получим:

$$j = -D\frac{\partial n}{\partial x} = \text{const}$$

Следовательно, распределение концентрации в трубке n(x) — линейная функция:

$$n(x) = \frac{\Delta n}{L}x$$

и плотность потока частиц всюду постоянна и равна

$$j = -D\frac{\Delta n}{L}$$

где $\Delta n = n_2 - n_1$ – разность концентраций гелия на концах трубки.

Теперь вернёмся к процессу выравнивания концентраций в сосудах. Частицы перетекают из сосуда 2 в сосуд 1 по трубке и концентрации $n_1(t)$ и $n_2(t)$ меняются во времени. Предположим, что этот процесс происходит достаточно медленно, так что в трубке в любой момент времени успевает установиться практически стационарное течение, описываемое предыдущими формулами. Такое приближение называют квазистационарным. Кроме того, будем считать, что в пределах каждого сосуда частицы распределены равномерно, так что концентрации примеси вблизи трубки и в остальных частях сосуда отличаются мало. Тогда полное число частиц примеси в сосудах равно соответственно $N_1 = n_1 V$ и $N_2 = n_2 V$. Произведение плотности потока j на площадь сечения трубки S даёт количество частиц, пересекающих в единицу времени любое поперечное сечение трубки. Поэтому

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = jS, \ \frac{\mathrm{d}N_2}{\mathrm{d}t} = -jS$$

Выразим отсюда скорость изменения Δn . Вычитая из второго равенства первое и деля результат на объём сосуда V, с учетом j получим

$$\frac{\mathrm{d}(\Delta n)}{\mathrm{d}t} = -\frac{\Delta n}{\tau}$$

где введено обозначение

$$\tau = \frac{1}{D} \frac{VL}{2S}$$

Интегрируя, получаем, что разность концентраций будет убывать по экспоненциальному закону

$$\Delta n = \Delta n_0 e^{-t/\tau}$$

где Δn_0 – разность концентраций примеси в сосудах в начальный момент времени. Видно, что величина τ есть характерное время выравнивания концентраций между сосудами. Оно определяется геометрическими размерами установки и коэффициентом диффузии.

Для измерения разности концентраций в установке применяются датчики теплопроводности. При этом используется тот факт, что теплопроводность смеси зависит от её состава. При этом для напряжения на парах выполняется:

$$U = U_0 e^{-t/\tau}$$

3. Проведение эксперимента

3.1. Определение вязкости воды

Измерение параметров установки

Занесем в таблицу отношение длины трубки L/S и объем сосудов V.

$L/S, {\rm M}^{-1}$	V , 3		
1500 ± 10	$(8.00 \pm 0.05) \cdot 10^{-4}$		

Табл. 1: Параметры установки

Измерение коэффициента диффузии

Таблицы измерения напряжений очень большие по размеру, поэтому не будем приводить их в данном пункте. Приведем лишь построенный на основании таблицы график и полученные значения D от давления P.

Рис. 3: Графики зависимостей $-\ln(U/U_0)(t)$

Отсюда через коэффициенты наклона получаем

P, ropp	40	80	120	180	240
$D \cdot 10^4, {\rm m}^2/{\rm c}$	12.11 ± 0.01	6.65 ± 0.01	4.34 ± 0.01	3.10 ± 0.01	2.29 ± 0.01

Табл. 2: Подсчет коэффициентов диффузии

Теперь можно построить зависимость D(1/p), получим вид зависимости и подсчитаем значение в точке, соответствующей атмосферному давлению:

$$D_0 = (10.9 \pm 1.5) \cdot 10^{-5} \text{ m}^2/\text{c}$$

Рис. 4: График зависимости D(1/P)

Определение длины свободного пробега и эффективного сечения столкновения атомов гелия с молекулами воздуха Из полученных ранее данных определим:

$$\lambda_0=rac{3D}{\upsilon}=260\pm70$$
 нм

$$\sigma_0 = \frac{kT}{\lambda P} = (1.6 \pm 0.4) \cdot 10^{-19} \text{ m}^2$$

4. Выводы

В ходе работы определено значение коэффициента диффузии пары воздух-гелий при атмосферном давлении $D_0 = (10.9 \pm 1.5) \cdot 10^{-5} \text{ M}^2/\text{c}.$

Также определена длина свободного пробега $\lambda_0=260\pm70$ нм и эффективное сечение столкновения стомов гелия с молекулами воздуха.

Все полученные значения совпадают с референсными в пределах 2 величин отклонения.