

UNCLASSIFIED

AII 410273

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

Reproduced From
Best Available Copy

UNCLASSIFIED

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

NOTICE: No government or other drawings, specifications, or data may be used for any purpose other than in connection with a defense contract between government procurement contractor, the U. S. Government or its duly authorized representative, and obligee, whomever; and the fact that the instrument may have been prepared, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any right or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

410273

ESD-TDR-63-198
Vol II

CATALOGED BY DDC

PERT EACH

(PERT Fundamentals, Volume II)

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-63-1

NATIONAL APPLICATIONS LABORATORY
DEPUTY FOR TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
L. G. Hanscom Fld., Bedford, Mass

AS

NO OTS

(Prepared under contract AF19(628)-365 by the Equipment Division, Raytheon Co. Waltham, Mass.)

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have furnished, furnished, or in any way supplied the said drawings, specifications, equipment, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies from ASTIA. Others will be expedited if placed through the librarian or other person designated to request documents from ASTIA.

ASTIA release to OTS is not authorized.

© Raytheon Co., 1963. All rights reserved. This Government of the United States has the right to duplicate, copy, license and distribute all data furnished furnished or contained under this contract for any purpose whatsoever and to have others do so.

ESD-TDR-63-198
Vol II

PERT EACH

(PERT Fundamentals, Volume II)
TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-63-198

OPERATIONAL APPLICATIONS LABORATORY
DEPUTY FOR TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
L. G. Hanscom Fld., Bedford, Mass

(Prepared under contract AF19(628)-365 by the Equipment Division, Raytheon Co. Waltham, Mass.)

NOTE: Instructions for this volume
and all other volumes are to
be found in Volume I.

2-ii

ESD-TDR-63-198

PERTeach

ABSTRACT

This self-instructional course teaches the basic concepts and techniques of PERT (Program Evaluation Review Technique). The course consists of six volumes and is intended for use by Air Force managers. Presented in programmed-instruction format, the course allows the student to proceed at his own pace and to learn without the aid of an instructor.

PUBLICATION REVIEW AND APPROVAL

This Technical Documentary Report has been reviewed and is approved.

G. Fletcher, USAF
ANTHONY DEBONS, Colonel, USAF
Director,
Operational Applications Laboratory

Walter E. Organist
WALTER E. ORGANIST
Chief, Operator Performance Division
Operational Applications Laboratory

VOLUME II

Table of Contents

<u>Chapter</u>	<u>Title</u>	<u>Page</u>
1	Latest Time	2-1
2	Fundamentals of Slack	2-58
3	Schedule Date	2-80
4	Positive and Negative Slack	2-103
5	PERT Probability	2-134
6	Review of PERT Fundamentals	2-195
7	Network Replanning and/or Simulation	2-215

2-1

PER Teach

Volume II

CHAPTER I

Latest Time

Suppose you can expect that from your office it will take you exactly one-half hour to reach a train that starts at 5:00 p.m. To catch this train you can leave your office at 3:30 p.m., at a later time, 4:00 p.m., or at an even later time, 4:15 p.m. But unless you delay the train, 4:30 p.m. is the _____ at which you can leave your office.

Latest Time

三

There is a _____, T_L , for each _____ of a PERT network.

三
一
八

2-4

The symbol for Latest Time is _____

event

Latest Time

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

T_L

The T_L of an event is the latest time at which it can take place without delaying occurrence of the network ending event beyond a specified time.

T_L is the symbol for

Latest Time

The Accumulated Expected Time, T_E , of any event is the time at which the event can be expected to occur after the network beginning event has taken place. T_E is related only to the network beginning event.

The Latest Time, T_L , of any event is the latest time at which it can take place without delaying occurrence of the network ending event. T_L is related only to the network ending event.

The T_L value of any event _____ (need not/must always) equal its T_E value.

need not

Scheduling or contract requirements may specify the time or date when a network is to be completed; that is, when the network ending event is to take place. This specified time may differ from the Accumulated Expected Time, T_E , of the network ending event. Where no contractual or schedule dates for completion of the network exist, the Latest Times of its events are calculated with respect to the T_E of the network ending event.

For the remainder of this chapter we will assume that there are no contractual or scheduling requirements that specify when the network must be completed.

Assuming that there are no contractual or scheduling requirements, the T_L value of an event is calculated with respect to the T_E value of the network ending event. Then the Latest Time, T_L , of an event is the latest time it can take place without delaying occurrence of the T_E value.

network ending event

Assuming that there are no contractual or scheduling agreements, the Latest Time, T_L , of all events are calculated with respect to the T_E of the network ending event. Therefore, before T_L values can be calculated, the T_E of the network ending event must be known.

Suppose the T_E of a network ending event is 61.0 weeks. Then, the T_L of any event is the latest time it can take place without delaying occurrence of the _____ beyond _____ weeks.

network ending event beyond 61.0 weeks.

The T_L of an event is the latest time it can take place without delaying the network ending event beyond its T_E value. Any delay in occurrence of the network ending event itself will make it take place later than its T_E value.

Therefore the _____ value of the network ending event must equal its _____ value.

$$\begin{array}{l} TE - TL \\ \text{or} \\ TL - TE \end{array}$$

The T_L of a network ending event equals the previously determined TE value of this event.

If the TE value of a network ending event is 61.0 weeks, its _____ value equals _____ weeks.

2-12

TIT
61.0

For any activity, the T_L of its beginning event equals the T_L of its ending event minus the TE value of the activity. Start T_L calculations at the network ending event.

In the network below, event no. 8 is the ending event of activity 7-8 as well as the network ending event. Event no. 7 is the beginning event of activity 7-8 as well as the ending event of activity 6-7. Assume TE of event no. 8 equals 61 weeks.

Following the above rule, T_L of event no. 7 equals $(61-9)$ or 52 and the T_L of event no. 6 equals $(52-11)$ or 41.

The T_L of event no. 5 is _____. The T_L of event no. 4 is _____.

T_L of event no. 5 is 40.
 T_L of event no. 4 is 27.

In the network below, the T_L of event no. 5 is 40. Adding the t_e of activity 5-8 (21) to 40 gives 61, the T_L of event no. 8. If event no. 5 occurs at any time later than 40, adding 21 to it will make event no. 8 occur at a time _____ (earlier/later) than its T_L value.

Thus 40 is the _____ without delaying the occurrence of the network ending event, no. 8, beyond 61.

2-16

later
latest time

Always start T_L calculations at the network _____ event.

For any activity, the T_L of its beginning event equals the T_L of its ending event minus the t_e of the activity.

In the network shown below:

$$T_L \text{ of event no. } 14 = \underline{\hspace{2cm}}$$

$$T_L \text{ of event no. } 13 = \underline{\hspace{2cm}}$$

$$T_L \text{ of event no. } 12 = \underline{\hspace{2cm}}$$

ending

TL of event no. 14 = 34

TL of event no. 13 = 25.

TL of event no. 12 = 18

2-20

Where an event is the beginning event for more than one activity, its T_L value is the smallest of all possible values.

In the section of network below, event no. 5 is the beginning event of activities 5-6 and 5-7. One possible value of the T_L for event no. 5 is 16. This is obtained by subtracting 9, the t_e of activity 5-6 from 25, the T_L of event no. 6. The other possible value, obtained in similar manner with activity 5-7, is (34-14) or 20.

Since 16 is smaller than 20, the T_L of event no. 5 is ____.

2-22

The T_L of event no. 5 is 16.

In the section of network below, event no. 5 is the beginning event of activities 5-6, 5-7 and 5-8.

The TL of event no. 5 is .

The TI of event no. 5 is 20.

The T_L of a beginning event that starts more than one activity must be the smallest of all possible values. Otherwise, some events which are to occur after the given event will take place at times later than their calculated T_L values.

In the network below, the possible T_L values of event no. 5 are 16 and 20. If 20 is used as the T_L value, and we add to it the t_e (14) of activity 5-7, then we allow event no. 7 to occur at a time no later than its T_L value, 34. However, adding the t_e (9) of activity 5-6 to 20 will force event no. 6 to occur at 29, a time later than its T_L value, 25.

If 16 is used as the T_L value of event no. 5, adding 16 to 9 (t_e of activity 5-6) permits event no. 6 to occur no later than its T_L value. Also adding 16 to 14 (t_e of activity 5-7) allows event no. 7 to take place before its T_L value.

Suppose the T_L of event no. 7 were 42 instead of 34 as in the sketch - would that change the T_L of event no. 5?

- Your Answer _____
A. Yes
B. No.

Turn to page
2-26
2-27

Your Answer: A.. Yes

Wrong. If the increased T_L of event no. 7 is 42, subtracting from it the t_e of activity 5-7 gives (42-14) or 28. The T_L of event no. 6 remains unchanged at 25. Subtracting the t_e of activity 5-6 from this leave 16.

Remember that the T_L of an event must be the smallest of possible values.

Return to page 2-25, review the information, then select the correct answer.

Your Answer: A.

Wrong. If the increased T_L of event no. 7 is 42, subtracting from it the T_E of activity 5-7 gives (42-14) or 28. The T_L of event no. 6 remains unchanged at 25.

Subtracting the T_E of activity 5-6 from this leaves 16.

Remember that the T_L of an event must be the sum of all possible values.

Return to page 2-25, review the information, then select the correct answer.

Your Answer: B. No

Correct! Subtracting the t_e (14) of activity 5-7 from the increased T_L (42) of event no. 7 gives 28, a value greater than 16, the value obtained with event no. 6 and activity 5-6. The T_L of event no. 5 is the smaller of these two values and remains unchanged at 16.

Turn to next page.

For any activity, T_L of the _____ event equals T_L of the _____ event minus t_e of the activity.
Where an event is the beginning event for more than one activity, its T_L value is the _____ (smallest/largest) of all possible T_L values.

For any activity, T_L of the beginning event equals T_L of the ending event minus t_E of the activity.

T_L is the smallest of all possible T_L values.

In the following network section:

TL of event no. 11 = _____

TL of event no. 10 = _____

TL of event no. 9 = _____

2-31

T_L of event no. 11 = 36
 T_L of event no. 10 = 39
 T_L of event no. 9 = 31

We must know the T_L of the network ending event when we start all calculations of T_L values. The T_L of the network ending event is set equal to its T_E value.

Therefore before we start T_L calculations we must determine the _____ value of the _____

TE value of the network ending event.

When you determined the TE of the network ending event to be 66.0 in Panel B you also found the TE values of all other events of the network. However, when you found TL values in the last few pages you did not know the TE of any event except the network ending event, and in these examples the network beginning event was not even shown.

Except for the network ending event, the TE of a given event _____ (must be/is not) used to determine the TL of the given event.

is not

To say that a given event has a T_L of 29.0 weeks means that the event must occur no later than 29.0 weeks after the network beginning event.

T_L is expressed as time elapsed after occurrence of the Network _____ Event but calculation of T_L starts at the Network _____ Event.

beginning
ending

2-35

Turn to Panel C in the workbook and leave it exposed to view. For computation of T_L values in a complete network, a table like that of Panel C is convenient. To simplify later use of T_L values in this course, the events are arranged with the network beginning event at the top of the table and the network ending event at the bottom. Because T_L calculations start at the network ending event, we start at the bottom of the table and work up towards the top.

For these computations we assume that all activity t_e values are known and that the T_L of the network ending event (equal to its T_E value) has been determined by previous T_E calculations.

We will use the relation that for any activity, the T_L of its beginning event equals the T_L of its ending event minus the t_e of the activity. Also, if an event is the beginning event for more than one activity, its true T_L value is the smallest of all possible values.

$$T_L(\text{of beginning event}) = T_L(\text{of ending event}) - t_e \text{ (of activity)}$$

Start filling in the blanks in the table and network of Panel C in accordance with the following directions:

Step 1. In column labelled "Ending Event T_L " and in the bottom row, next to activity 4-5, write the known T_L of network ending event no. 5. This T_L is given in the network. Then subtract the T_L of activity 4-5 from the T_L of event no. 5. Write the result, a possible T_L of event no. 4, in the column labelled "Beginning Event Possible T_L ".

Look at event no. 4 in the network. It is a beginning event for only one activity, 4-5. Therefore the possible T_L , which you just calculated for event no. 4 must be its true T_L . Place a star beside this T_L value in the table.

Finally, write the T_L of event no. 4 in the box over event no. 4 in the network of Panel C.

Your Panel C should now look like this. If it doesn't correct it.

ACTIVITY		BEGINNING EVENT	ENDING EVENT	t_L	BEGGINING EVENT POSSIBLE t_L
BEGIN. EVENT	ENDING EVENT				
STEP 6	1	1	2	13	
STEP 5	1	3	11		
STEP 4	2	4	7		
STEP 3	3	4	6		
STEP 2	2	5	9		
STEP 1	4	5	8	28	20*

* = TRUE t_L OF BEGINNING EVENT

Step 2. In Panel C, write the T_L of event no. 5 again in the Ending Event T_L column but this time in line with activity 2-5. Subtract the t_e of activity 2-5 from this T_L value. Write the result, a possible T_L of event no. 2, in the column labelled "Beginning Event Possible T_L ".

Notice that event no. 2 is the beginning event for activity 2-4 as well as for activity 2-5. The possible T_L value you just calculated for event no. 2 applies only to activity 2-5. It may not be smaller than that for activity 2-4. Therefore, do not star this possible value yet and do not write it in the box over event no. 2 in the network.

Panel C now looks like this. If it doesn't, correct it.

ACTIVITY	BEGINNING EVENT	ENDING EVENT	ACTIVITY TL	BEGINNING EVENT POSSIBLE TL
				BEGIN. EVENT ENDING EVENT ACTIVITY TL ENDING EVENT TL
STEP 6	1	2	13	
STEP 5	1	3	11	
STEP 4	2	4	7	
STEP 3	3	4	6	
STEP 2	2	5	9	28
STEP 1	4	5	8	28
			*	20*

* = TRUE TL OF BEGINNING EVENT

Step 3. Event no. 4 is the ending event for activity 3-4. In step 1 you found for activity 4-5, that the T_L of event no. 4 was 20. Write this value in the table of Panel C as the Ending Event T_L for activity 3-4. Subtract the t_e of activity 3-4 from this T_L and enter the result as a possible T_L of beginning event no. 3 of activity 3-4.

Notice that event no. 3 is a beginning event for only activity 3-4. Therefore the possible T_L value you just computed must be the true T_L value for event no. 3. Place a star beside this T_L value. Write this value in the box over event no. 3 in the network.

Your Panel C should look like this. Correct it if it doesn't.

ACTIVITY	BEGIN. EVENT	ENDING EVENT	ACTIVITY i ₀	ENDING EVENT T _L	BEGINNING EVENT POSSIBLE T _L
STEP 6	1	2	13		
STEP 5	1	3	11		
STEP 4	2	4	7		
STEP 3	3	4	6	20*	14*
STEP 2	2	5	9	28	19
STEP 1	4	5	8	28	20*

* = TRUE T_L OF BEGINNING EVENT

Step 4. Event no. 4 is the ending event for activity 2-4 and you found that the T_L of this event is 20. Write this value as the ending event T_L of the activity 2-4. Subtract the t_e of activity 2-4 from 20 and write the result as a possible T_L of beginning event no. 2 of activity 2-4.

Look at the table. There are now two possible T_L values for beginning event no. 2. One value applies to activity 2-4, the other to activity 2-5. The smaller of these two values is the true T_L of event no. 2. Place a star beside the true value. Write the true value in the box over event no. 2 of the network.

Your Panel C should look like this. Make any needed corrections.

13

13

13

13

13

13

13

2-44

Step 5. Write the T_L of event no. 3 which you determined in step 3, as the ending event T_L of activity 1-3. Subtract the t_e of activity 1-3 from this value. Write the result as a possible T_L for beginning event no. 1 of activity 1-3.

Step 6. Write the T_L of event no. 2 determined in Step 4, as the ending event T_L of activity 1-2. Subtract the t_e of activity 1-2 from this T_L . Write the result as a possible T_L for beginning event no. 1 of activity 1-2.

The smaller of these two possible T_L values for event no. 1 is the true T_L value. Place a star beside the true value in the table. Write the true value in the box over event no. 1 in the network.

Congratulations! You have completed Panel C. It looks like this.

ACTIVITY		BEGINNING EVENT	ACTIVITY t_0	ENDING EVENT	t_L	BEGINNING EVENT POSSIBLE t_L
BEGIN. EVENT	ENDING EVENT					
STEP 6	1	2	13	13	13 4..	0*
STEP 5	1	3	11	14 4..	3 4..	smaller than
STEP 4	2	4	7	20	13*	
STEP 3	3	4	6	20	14*	
STEP 2	2	5	9	28	19	
STEP 1	4	5	9	28	20*	

* = TRUE t_L OF BEGINNING EVENT

Now turn to Panel D and leave it exposed to view. Start computing the T_L values of this network, and fill in the table. Use the procedures you employed for Panel C. Refer to Panel C whenever you wish.

After you have completed step 7 of Panel D, turn to the next page.

Note. The network of Panel D is like that of Panel B. The T_E and T_L values of these two panels are used together later in this course.

After you have finished step 7 of Panel D, the completed part of the table should look like this. Make any necessary corrections.

Activity	Beginning Event		Ending Event		Beginning Event Possible	
	Beginning Event	Ending Event	Activity	Event	T1	T1
Step 7	4	7	13.2		56.8	43.6
Step 6	5	7	14.0		56.8	42.8
Step 5	6	7	12.3		56.8	44.5*
Step 4	6	8	1.0		57.2	56.2
Step 3	5	9	30.8		66.0	35.2*
Step 2	7	9	9.2		66.0	56.8*
Step 1	8	9	8.8		66.0	57.2*

After you have finished step 7 of Panel D, the completed part of the network should look like this. Make any necessary corrections.

Complete the table and network of Panel D. Then turn to the next page.

After you have completed Panel D, the table should look like this. Make any necessary corrections, then turn to the next page.

<u>Activity</u>	<u>Beginning Event</u>	<u>Ending Event</u>	<u>Activity time</u>	<u>Beginning Event Possible TL</u>	<u>Ending Event Possible TL</u>
Step 14	1	2	14.0	14.0	0.0 *
Step 13	1	3	11.3	17.4	6.1
Step 12	2	4	21.2	35.2	14.0 *
Step 11	3	4	15.3	35.2	19.9
Step 10	3	5	17.8	35.2	17.4 *
Step 9	4	5	0.0	35.2	35.2 *
Step 8	2	6	15.0	44.5	29.5
Step 7	4	7	13.2	56.8	45.6
Step 6	5	7	14.0	56.8	42.8
Step 5	6	7	12.3	56.8	44.5 *
Step 4	6	8	1.0	57.2	56.2
Step 3	5	9	30.8	66.0	35.2 *
Step 2	7	9	9.2	66.0	56.8 *
Step 1	8	9	8.8	66.0	57.2 *

After you have completed Panel D, your network should look like this. Make corrections if necessary.

TEST NO. 1

Circle the letter identifying the phrase which appears to be most nearly correct.

1. The critical path
 - a) passes through every event of a network
 - b) is the least time-consuming path of activities between the network beginning event and the network ending event
 - c) is the most time-consuming path of activities between the network beginning event and the network ending event
 - d) includes the single most time-consuming activity of the network.

2. Always start T_L calculations at the
 - a) network ending event
 - b) network beginning event
 - c) middle of the network
 - d) either the network ending event or the network beginning event.

3. T_L is the latest time that:
- an event can take place without delaying occurrence of the network ending event
 - an activity can take place without delaying occurrence of the network ending event
 - an event can take place after occurrence of the network ending event
 - an activity can take place after occurrence of the network ending event.
4. For any activity, T_L of its beginning event equals:
- T_L of its ending event plus t_E of the activity
 - T_L of its ending event minus t_E of the activity
 - T_L of its ending event plus T_E of the activity
 - T_L of its ending event minus T_E of the activity.

5. T_L for event no. 1 in the following network is:

- a) 15
- b) 16
- c) 8
- d) 12

6. In the network in question no. 5, the te of activity 1-3 changes from 8 to 1. T_L for event 1 is now:

- a) 16
- b) 12
- c) 15
- d) 5

If you had difficulty selecting the right answers, review Chapter 7 of Volume I and Chapter 1 of Volume II. Turn to the next page and continue the program.

Chapter 1

Summary

Each event of a PERT network has a characteristic called its Latest Time or T_L . The T_L of any event is the latest time it can take place without delaying occurrence of the network ending event. T_L is calculated (backwards, so to speak) from the network ending event.

The TE of the network ending event must be known, however, before the T_L of an event can be determined.

For any activity, the T_L of its beginning event equals the T_L of its ending event minus the t_e value of the activity. Start T_L calculations at the network ending event.

In the above network, for example, by subtracting the t_e of activity 3-4 from the T_L of event no. 4, it is possible to arrive at a T_L for event no. 3 equal to 35.

Where an event is the beginning event for more than one activity, as is the case with event no. 1, above, its T_L value must be the smallest of all possible values - in order that later events may not occur after their latest times. By performing the necessary arithmetic, two T_L values for event no. 1 will be found, only one of which is acceptable; the smaller in this case 0 (zero). Event no. 1 must, therefore, begin without delay in order that the ending event may be finished in 50 weeks.

PERTeach

Volume II

CHAPTER 2

Fundamentals of Slack

2-57

Slack is a characteristic of PERT networks that is of major importance because it focuses attention on the "time to spare" permitted for various events. Knowing the slack values which exist along different paths of activities allows management to make decisions concerning optimum use and allocation of resources.

In this chapter we are still assuming that there are no contractual or scheduling requirements that specify when the network must be completed. Under these circumstances the Latest Times of the events are calculated with respect to the TE of the network ending event. Also the T_L of the network ending event equals its TE value.

Each event of a PERT network has a characteristic called its Slack, S. This is the difference between the T_L of the event and the T_E of the event.

Algebraically, $T_L - T_E = \underline{\hspace{2cm}}$

$$T_L - T_E = \underline{S} \text{ or Slack}$$

2-60

- 1.4 In the network of Panel D you found that the T_L of event no. 8 was 57.2 if (66, 0-8, 8). For the same network as shown in Panel B you found that the T_E of event no. 9 was 30.0. As shown below, the difference between T_L and T_E is the Slack, S , of event no. 8. Thus $S = T_L - T_E$ and for event no. 8.

$$S = 57.2 - 30 = 27.2$$

S is the symbol for _____.

S equals _____ minus _____.

2-62

2-63

For a certain event $T_L = 56$, and $T_E = 39$.
Therefore, $S = \underline{\hspace{2cm}}$

Slack
 $S = T_L - T_E$

$$S = \underline{17}$$

The amount of time between the T_L of an event and the T_E of an event is called the _____ of the event.

Slack
or
S

"Time to spare" that exists between the time when an event must occur and
the time it is expected to occur is called _____

Slack

Now open the workbook to Panel E. The network drawn here is that used for Panels B and D. Over each event is the T_L value found in Panel D and the T_E value you found in Panel B. Calculate the Slack, S_i , for each event. Enter your results above each event of the network.

After you have completed your computations, turn to the next page.

The network of your Panel E should look like this. Make any necessary corrections, then turn to next page.

In Panel E notice that several events have Slack values equal to zero. These events are numbered 1, _____, _____, and 9.

2-69

Draw a line from event no. 1 to event no. 9 over the path of activities that include the events having $S = 0$. Then turn to next page.

1. 2, 4, 5, and 9

Your Panel E should now look like this. Correct it if necessary.

$S = T_L - T_E$. If $S = 0$, then $T_L - T_E = 0$ or $T_E = T_L$.

For an event where $T_L = T_E$, there is no "time to spare" between the instant when the event must occur and the instant when the event is _____ to occur.

expected (or equivalent word).

The critical path of the network, the path of greatest time duration through the network, determines the time required to complete it. Any delay in occurrence of events on the critical path will delay completion of the network. Therefore, these events have minimum "time to spare"; that is, their Slack values must be the minimum values of the network.

In Panel E, the activity path 1-2-4-5-9 includes all those events having zero Slack. Since zero is the minimum Slack of this network, the activity path 1-2-4-5-9 should be the _____ Path of the network.

11 12 13 14 15 16 17 18 19 20

critical

Panel B uses the same network that is shown in Panel E.

As you will remember, in Panel B you found that the critical path, the activity path of greatest time through the network, was path 1-2-4-5-9.

In Panel E you found that the Path 1-2-4-5-9 includes all those events having minimum (zero) Slack.

Thus, we see that the critical path of this network actually is the activity path whose events have _____ Slack.

2-74

zero or minimum

TEST NO. 2

Circle the letter identifying the phrase which appears to be most nearly correct.

1. Slack is:

- a) The amount of time remaining at each event to complete the project.
- b) The amount of time an event can be delayed without delaying the Network Ending Event.
- c) The expired time from the Network Beginning Event.
- d) None of the above.

2. The formula for slack is:

- a) $T_L + TE$
- b) $TE - TL$
- c) $TL - TE$
- d) $t_e - TL$

3. What is the slack for an event if the event TL is 20 and the event TE is 5?

- a) 20
- b) 15
- c) 10
- d) 5

4. Assuming no schedule date for the network ending event, the slack time of the events in the critical path are always:

- a) maximum values of the network.
- b) zero.
- c) different from each other.
- d) are always unequal.

5. In the network below, the critical path passes through events:

- a) 1-3-5
- b) 1-4-5
- c) 1-2-5
- d) 1-3-4-5

If you had difficulty selecting the correct answers, review Chapter 2.

Turn to the next page.

Chapter 2 Summary

Time to spare that exists between the time when an event must occur (T_L) and the time it is expected to occur (T_E) is called Slack(S). Knowing which events have time to spare, or slack, is crucial to the manager who makes decisions concerning optimum allocation of resources.

Algebraically, slack or $S = T_L - T_E$. In the network below, for example, all slack values have been determined.

Notice that activity path 1-2-5 has the minimum slack (zero) in this network. This path with least time to spare is, conversely, the path of greatest time through the network - in other words, the critical path.

2-79

PERTeach

Volume II

CHAPTER 3

Schedule Date

In chapters 1 and 2 we assumed there were no requirements specifying the calendar date when a network was to be completed. In that case, the latest time, T_L , of the network ending event equals its Accumulated Expected Time, T_E .

The T_E of the network ending event can be considered the time expected to be required to accomplish the complete network. The T_L of the network ending event can be considered the time allowed to accomplish the network.

A Schedule Date, T_S , is a predetermined calendar date by which a given event is scheduled to occur. Usually Schedule Dates are applied only to network beginning and ending events.

In this chapter we assume there is a Schedule Date, T_S , specifying a calendar date by which the network is to be completed and another T_S specifying the date when it is to be started. The elapsed time corresponding to the difference between these two dates is the time allowed to accomplish the network. The T_L of the network ending event now equals this elapsed time. Setting dates on a project does not, however, modify the time required to accomplish it. Therefore the T_E of the network ending event is not affected by T_S values.

A predetermined calendar date by which an event is scheduled to occur is called the Schedule Date of the event and is symbolized by TS:

An example of a Schedule Date is 19 September 1962. The calendar date, 23 April 1975, is another example of a _____.

Schedule Date

T_S is the symbol for _____

2-82

Schedule Date

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A predetermined calendar date by which an event is scheduled to occur is called the Schedule Date of the event and is symbolized by _____.

2-83

T_S

In PERT terminology, Schedule Date, T_S, is a pre-determined calendar date.

The Accumulated Expected Time, T_E, of an event or its Latest Time, T_L, are not calendar dates. Instead they are elapsed times.

To compute T_E we start at the network beginning event. To compute T_L we start at the network ending event. However, both T_E and T_L are expressed as time (in weeks) that has elapsed since occurrence of the network beginning event.

To use Schedule Date, T_S, in conjunction with Accumulated Expected Time, T_E, or Latest Time, T_L, we must change the calendar date of T_S into an _____ measured from occurrence of the network beginning event.

elapsed time

The T_E and T_L of a given event are elapsed times measured from occurrence of the network beginning event. They are expressed in units and tenths of a 7-day week.

The elapsed time corresponding to the T_S of an event is also expressed in units and tenths of a

7-day week

If T_{S2} is the Schedule Date of a given event and T_{S1} is the Schedule Date of the network beginning event, then the elapsed time corresponding to T_{S2} is expressed as the number and tenths of 7-day weeks between T_{S2} and T_{S1} .

To determine the number of weeks, find the number of days between T_{S2} and T_{S1} , then divide the result by seven.

Suppose T_{S1} is 15 May 1962 and T_{S2} is 11 October 1962. There are 31 days in May, 30 in June, 31 each in July and August, and 30 in September. The elapsed time between the above two calendar dates is 149 days. Dividing 149 by 7 gives 21.3 weeks as the elapsed time between 15 May 1962 and 11 October 1962.

Thirty days hath September,
April, June and November,
All the rest have 31,
Except February which has 28.
(Yes, we know - 29 in Leap Year.)

The network beginning event of a certain project is scheduled to occur on 1
July 1962 and the TS of the network ending event is 15 February 1963. Expressed
in units and tenths of a 7-day week, the elapsed time corresponding to the TS of
the network ending event is _____ weeks.

32. 85 weeks

Suppose a network beginning event has a Schedule Date, T_S , of 1 January 1962 and the network ending event has a T_S of 1 January 1963. Then the elapsed time between these two T_S values is 52.0 weeks. The network ending event is allowed to occur at any time within these limits but the Latest Time at which it can occur within these limits must be 52.0 weeks after the network beginning event takes place. Thus the elapsed time between the T_S values of the network beginning and ending events equals the _____, T_L , of the network event.

2-69

latest time

ending

Suppose that a project represented by a PERT network must be started on 1 January 1962 and is scheduled to end on 8 January 1963. These are the T_S dates of the network beginning and ending events respectively. The elapsed time allowed for this project is 53 weeks. The Latest Time, T_L , of the network ending event must equal 53 weeks. If this event takes place after more than 53 weeks, it will occur after 8 January 1963. By summing the values of the activity paths we find that the Accumulated Expected Time, T_E , of the network ending event is 48 weeks. This is the elapsed time expected to be required to accomplish the entire network. It is not related to the T_L or T_S values.

Later, through contract revisions, the Schedule Date of the network ending event is changed from 8 January 1963 to 22 January 1963.

The Latest Time, T_L , of the network ending event is now _____ weeks.
The Accumulated Expected Time, T_E , of the network ending event is now _____ weeks.

2-91

$T_L = 55 \text{ weeks}$

$T_E = 48 \text{ weeks}$

In the network below the T_S of the network beginning event is 1 January 1962 and the T_E of the network ending event is 24 December 1962.

The Latest Time, T_L , of the network ending event no. 5 is _____ weeks.

The Accumulated Expected Time, T_E , of network ending event no. 5 is _____ weeks.

For the network ending event, Slack, $S = T_L - T_E =$ _____ weeks.

2-93

$$T_L = 51 \text{ weeks}$$

$$\frac{T_E}{S} = \frac{49 \text{ weeks}}{2 \text{ weeks}}$$

The TE of a network ending event is 31 weeks.

The elapsed time corresponding to the TS of the network ending event is 39 weeks.

The TL of the network ending event is _____ weeks.

The S of the network ending event is _____ weeks.

$$T_L = \underline{39 \text{ weeks}}$$

$$S = \underline{8 \text{ weeks}}$$

Although Schedule Date, T_S , is commonly applied to network beginning and ending events, it should be remembered that T_S can apply to any event of a PERT network. In this case the elapsed time corresponding to the T_S of the event becomes the T_L of the event. This T_L value supersedes any other value that may be calculated.

Suppose the T_L of an event within a network is 27.0 weeks but that later a Schedule Date is imposed on this event. Assume the elapsed time corresponding to this date is 25.0 weeks after occurrence of the network beginning event. Then the T_L of this event becomes _____ weeks.

25 weeks

We calculate that the T_L of a given event is 17 weeks. Soon after the program starts, however, a Schedule Date is imposed on this event and the elapsed time corresponding to this date is 14 weeks. Then to calculate the Latest Times of events which occur before this event and which are on the same path of activities we use a T_L value of _____ weeks for the given event.

2-96

2-97

14 weeks

TEST NO. 3

Circle the letter identifying the phrase which appears to be most nearly correct.

1. TS stands for:
 - a) slack time.
 - b) summary time.
 - c) schedule date.
 - d) estimated time.

2. Ts1 is 1 January 1962, Ts2 is 11 February 1962. Elapsed time between the two, expressed in units and tenths of a week, is:
 - a) 4.5
 - b) 6.0
 - c) 8.4
 - d) 10.0

3. T_{S1} is 1 July 1962, T_{S2} is 31 May 1963. Elapsed time, expressed in units and tenths of a week, is:

- a) 47.9
- b) 67.2
- c) 36.0
- d) 45.7

4. A certain network ending event is given a T_S value. The corresponding elapsed time is used in calculating:

- a) Accumulated Expected Time
- b) Estimated Time
- c) Expected Time
- d) Slack Time

5. T_S can be applied to:

- a) only an activity.
- b) either activities or events.
- c) only a network ending event.
- d) any event in a network.

If you had difficulty in selecting the correct answers, review Chapter 3.
Now turn the page and continue the program.

Chapter 3

Summary

Both T_E and T_L are elapsed times, not calendar dates. T_S or the Schedule Date, on the other hand, is a predetermined calendar date by which an event is scheduled to occur.

To use T_S in conjunction with T_E or T_L , T_S must be changed into an elapsed time measured from occurrence of the network beginning event. T_S is expressed in units and tenths of seven-day weeks. If a T_S is assigned to an event, the corresponding elapsed time becomes the T_L of the event.

Suppose, for example, that T_S1 (the Schedule Date of the network beginning event) is 15 May 1962, while T_S2 (the Schedule Date of a particular given event) is 11 October 1962. The elapsed time between these two dates is 149 days divided by 7 or 21.3 weeks.

2-101

Positive and Negative Slack

CHAPTER 4

Volume II

PER Teach

Slack is a PERT characteristic of major importance to a manager for it provides the replanning or allocation information on which he can base rational decisions. Slack takes account of other PERT concepts such as T_E , T_L , and T_S to point out the network areas having excesses or deficiencies of time.

For any event, Slack, S , equals its Latest Time, T_L , minus its Accumulated Expected Time, T_E . That is, $S = T_L - T_E$.

The T_E of an event represents the time expected to elapse before the event will take place. It is not dependent on T_L or the Schedule Date, T_S , the calendar date by which the event is to occur. On the other hand, the T_L of an event equals the elapsed time corresponding to the T_S of the event. T_L is the latest time the event can occur without delaying scheduled completion of the network. It is the time allowed for occurrence of the event. Obviously, the Slack of an event will be zero, positive, or negative, depending on whether T_L is equal to, greater than, or less than T_E .

If T_L and T_E are those of the network ending event, the value of S applies not only to this event but to all events on the critical path.

In this chapter we will explore the relation between Schedule Date of the network ending event and Slack, and we will consider some characteristics of Slack.

Open the workbook to Panel F. In this panel the same network is repeated three times, as Case 1, Case 2, and Case 3. We will work first only with Case 1.

2-104

Slack, $S = T_L - T_E$. When the T_L of a network ending event equals its T_E value, $S = 0$ for all events on the critical path. This common Slack value is smaller than that for any event not on the critical path.

To prove this, consider Case 1 of Panel F. Here the network is to be started on 1 January 1962 and is to be completed by 6 May 1962, 18 weeks later. This elapsed time becomes the T_L of the network ending event. The greatest sum of activity t_E values along any path of activities between network beginning and ending events is 18 weeks, the T_E of the network ending event. Thus, $T_L = T_E$ for the network ending event, and its Slack value is zero.

Compute the Slack, S , for each event of Case 1.

Case 1 of your Panel F should look like this. Correct it if necessary.

- In case 1, T_L of the network ending event equals its T_E value.
- In the network of Case 1 the critical path includes events numbered 1, _____.
8. Draw a line over this activity path.
- When the T_L of the network ending event equals its T_E value, the Slack of each event on the critical path equals _____.
- The Slack value of events on the critical path is _____ (smaller/greater) than those of events that are not on the critical path.

Events numbered 1, 2, 3, 4, 5, 6, 7, 8.

zero or a

smaller

Refer to Case 1: Panel F.

If Schedule Dates for the beginning and ending events of a network result in a Slack of zero along the critical path, there is _____ (not / just) enough time allowed to complete the network on schedule.

just

Slack, $S = T_L - TE$. When the T_L of a network ending event is greater than its TE value, the Slack values of events on the critical path are positive and equal to each other. This common Slack value is smaller than that of any event not on the critical path.

To prove this, consider Case 2 of Panel F. Here the network is to be started on 1 January 1962 and is to be completed by 27 May 1962, 21 weeks later. This elapsed time becomes the T_L of the network ending event. The TE of the network ending event, 13 weeks, remains unchanged. Thus, in Case 2, T_L is greater than TE for the network ending event.

Compute the Slack, S , for each event of Case 2. Write your answers in the spaces above the corresponding events of the network.

Case 2 of your Panel P should look like this. Correct it if necessary.

In Case 2 the T_L of the network ending event is greater than its TE value.

For the network of Case 4, the critical path includes events numbered 1, _____, 8. Draw a line over this activity path.

When the T_L of the network ending event is greater than its TE value, the Slack values of events on the critical path are _____ (positive/negative) and are _____ (different from/equal to) each other.

The Slack values of events off the critical path are _____ (larger/smaller) than those of events not on the critical path.

Events numbered 1, 2, 5, 8.
positive
equal to
earlier

Refer to Case 4, Panel F.

If Schedule Dates for the beginning and ending events of a network result in a positive Slack along the critical path, there is _____ (more/less) than enough time allowed to complete the network on schedule.

2-112

more

Slack, $S_i = T_{L_i} - T_E$. If the T_L of a network is less than its T_E value, the slack values of events on the critical path are negative and equal to each other. The slack values of other events may be either positive or negative but the common negative value of those on the critical path is a greater negative number than that of any other event.

Consider Case 3 of Panai F. Here the network is to be started on 1 January 1962 and is to be completed by 8 April 1962. The elapsed time between these two dates, 14 weeks, becomes the T_L of the network ending event. The T_E of the network ending event, 14 weeks, remains unchanged. Thus, in Case 3, the T_L of the network ending event is less than its T_E value.

Compute the slack for each event of Case 3. Write your answers above the corresponding events of the network.

2-113

Case 3 of your Panel F should look like this. Correct it if necessary.

2-114

In Case 3 of Paper 5, the f_L of the network ending event is less than its TE value.

For the network of Case 3, events on the critical path are numbered 1, _____, 8. Draw a line over this activity path.

If the i_1 of the network ending event is less than its TE value, the Slack values of events on the critical path are _____ (positive/negative) and are _____ from/equal to each other.

The Slack values of events on the critical path are more _____ (positive/negative) than that of any other event.

Events numbered 1, 2, 5, 8.

negative
equal to
negative

Refer to Case 1, Panel P.

If Schedule Dates for the beginning and ending events of a network result in a negative Slack along the critical path, there is _____ (more/less) than enough time allowed to complete the Project on schedule.

If the Slack of the critical path is negative, not enough time is being allowed to complete the network. Under these circumstances, or wherever the Slack of the critical path is unacceptable, it may be possible to replan the network in one or more of the following ways.

1. Change an activity path composed of series-connected activities into a series-parallel group of paths.
2. Change the resources applied to the critical path.
3. Change the scope of various activities.

In Case 1 of Panel F, the slack of the network beginning event, no. 1 is zero. This means that the event must occur (on/after) 1 January 1962 if the network ending event, no. 8, is to take place by 6 May 1962.

2-119

In Case 2, the slack of the network beginning event, no. 1, is 3 weeks. This means that the event may occur 3 weeks (before/after) 1 January 1962 and still have the network ending event occur by 27 May 1962.

93

2-120

In Case 3, the Slack of the network ending event is minus 4 weeks.
This means that the network beginning event must occur 4 weeks
(before/after) 1 January 1962 if the network
ending event is to take place by 8 April 1962.

before

Look at the critical paths outlined in the three cases of Panel F. From these sketches we conclude that changing the T_L or T_S of the network ending event (always/never) changes the critical path.

2-121

never

The events on any one activity path have the same value of Slack until that path intersects another.

For example, in Case 1 of Panel F, the Slack of events nos. 3 and 6, on activity path 1-3-6-8, is 3 weeks.

Similarly events nos. 4 and 7, on activity path 1-4-7-8, have a common Slack value of _____ weeks.

The Slack of an event that is at the intersection of two or more activity paths is equal to the smallest possible value.

For example, event no. 1 of Case 2, Panel F, is at the intersection of three activity paths along which Slack values are 3, 6, and 9 weeks, respectively. The Slack of event no. 1 is the smallest of these, at 3 weeks. This result is not dependent on the fact that event no. 1 is a network beginning event.

2-124

The slack along the critical path is the _____ (minimum/maximum) possible in the network.

The Slack value along the critical path of a network is a measure of the "time to spare" for completion of the network. If two activity paths give the same value of TE for the network ending event, both are called _____ paths.

The critical path on a network has minimum Slack and therefore is of major importance to a manager who bases decisions on PERT information. However, other activity paths having slack values somewhat greater than that of the critical path must also be considered. Any network changes that decrease the elapsed time represented by the critical path or which increase the time represented by other activity paths may transform a non-critical path into a critical one.

Critical

In Case 3 of Panel F, $S = 4$ for the critical path 1-2-5-8. Suppose replanning reduces the t_e of activity 2-5 from 7 weeks to 3 weeks. This does not change the T_L of the network ending event because its T_S remains the same.

The T_E of the network ending event is now _____ weeks.

The critical path is now 1-_____ -8.

The Slack along the critical path is now _____ weeks.

The Slack of path 1-2-5-9 is now _____ weeks.

The TE of the network ending event is now 15 weeks.

The critical path is now 1-3-6-8.

The Slack along the critical path is -1 week.

The Slack of path 4-2-5-8 is now zero weeks.

If your answer was incorrect:

- a) check your computation.
- b) remember that the critical path may change if te values are altered.

2-178

TEST NO. 4

Circle the letter identifying the phrase which appears to be most nearly correct.

1. When the T_f value of a network ending event is greater than its TE value, the slack value of events on the critical path are:
 - a) positive and unequal
 - b) negative and equal
 - c) positive and equal
 - d) negative and unequal

2. If a critical path has negative slack, there is:
 - a) insufficient time to complete the network on schedule
 - b) more than enough time to complete the network on schedule
 - c) exactly enough time to complete the network on schedule
 - d) none of the above

- 11 11 11 11 11 11 11 11 11 11 11 11 11 11
3. The slack values of two activity paths are the same and this value is the minimum in the network. These paths are:
- non-critical paths
 - critical paths
 - slack paths
 - none of the above
4. TS of a network ending event is 4 March 1963. The slack for this event is positive and equal to 3.0 weeks. Therefore, the event must occur no later than:
- 4 March 1963
 - 25 March 1963
 - 14 February 1963
 - 7 March 1963
- 11 11 11 11 11 11 11 11 11 11 11 11 11 11

If you had difficulty selecting the right answers, review Chapter 4.

Chapter 4

Summary

The slack of an event will be zero, positive, or negative depending upon whether T_L is equal to, greater than, or less than T_E .

The slack value of events on the critical path is smaller than those of events not on the critical path.

If the slack of the critical path is negative, not enough time is being allowed to complete the network. Altering the T_L or T_S of the network ending event never changes the critical path.

The manager must pay attention to paths other than the critical one. Any network changes that decrease the elapsed time represented by the critical path or which increase the time represented by other activity paths may transform a non-critical path into a critical one.

Turn this page, turn the book around and continue the program on page 2-132.

2-132

PERT Probability

CHAPTER 5

Volume II

PERT Teach

In previous chapters we have been concerned with those aspects of PERT that tell a manager how long it should take to complete a project and whether there appears to be sufficient time to meet scheduled completion dates. However, all elapsed time information provided by a network contains inherent uncertainties. This is so because such information is primarily based on the three time estimates (Pessimistic Time, b, Most Likely Time, m, and Optimistic Time, a) required for each activity.

Such estimates involve varying degrees of uncertainty. Consequently, the Expected Activity Times (t_e) of the network activities, as well as the Accumulated Expected Times, (T_E) of the events, must also be uncertain.

This chapter is concerned with statistical measures of these uncertainties and the resulting probabilities that events, particularly the network ending event will occur at the times calculated. To a manager this statistical information can be of interest. It tells him the odds of completing a group of activities or an entire network within the calculated expected time, and provides a measure of the risks involved in trying to meet a given schedule.

You will remember that for each activity, three time estimates are required. These are Optimistic Time, a, Most Likely Time, m, and Pessimistic Time, b. They are arranged over an activity as shown below.

The time spread or span between Pessimistic Time, b, and Optimistic Time, a, is expressed by the quantity $(b - a)/6$. This quantity is called Activity Standard Deviation. The symbol for Activity Standard Deviation is the Greek letter "sigma", written σ .

Symbolically $\sigma = (b - a)/6$.

For activity 9-10 above: σ equals $(b - a)/6 = (12 - 4)/6 = 1.3$.

If m is changed from 7 to any other value, say 5 or 9, the Activity Standard Deviation, σ , would still be $(12 - 4)/6$ or 1.3.

The value of Most Likely Time, m, _____ (always/never) affects the value of Activity Standard Deviation, σ .

2-135

The symbol for Activity Standard Deviation is _____

$$(b - a)/6 = \underline{\hspace{2cm}}$$

never

The symbol for Activity Standard Deviation is σ .

$$(b - a)/6 = \frac{\sigma}{\text{_____}}$$

σ is the symbol for _____.

Minus Sign / Letter Number
Letter σ / a / b / 6

σ is the symbol for Activity Standard Deviation.

$$\frac{b - a}{3}$$

For our purposes, the value of σ need be accurate to only the first decimal place. Thus, although we may calculate that $\sigma = 2.33$, we use the value 2.3.

Make calculations to two decimal places. If the digit in the second decimal place (the digit 8 in 1.28) is equal to or greater than 5, increase the digit in the first decimal place (the digit 2 in 1.28) by one and then discard the digit in the second decimal place. Thus 1.28 becomes 1.3.

If the digit in the second decimal place is less than 5, discard it without changing the rest of the number. Thus 1.24 becomes 1.2.

According to the above rules:

$$\begin{array}{ll} 2.16 = \underline{\quad} & 2.33 = \underline{\quad} \\ 2.83 = \underline{\quad} & 9.85 = \underline{\quad} \\ & 9.95 = \underline{\quad} \end{array}$$

$$2.16 = 2.2 \quad 2.33 = 2.3 \quad 2.66 = 2.7$$

$$2.83 = 2.8 \quad 9.85 = 9.9 \quad 9.95 = 10.0$$

For activity 3-4, $\sigma =$ _____

For activity 7-3, $\sigma =$ _____

For activity 3-4, $\sigma = (13 - 2)/6 = 11/6$ or 1.8..

For activity 7-8, $\sigma = (24 - 9)/6 = 15/6$ or 2.5.

2-139

- Activity Standard Deviation, σ , is a measure of the spread between the Pessimistic and Optimistic Time estimates, b and a. However, the position of Most Likely Time, m, can vary appreciably between a and b among several activities. Consequently, Activity Standard Deviation, σ , has little useful significance as far as the activities themselves are concerned.
- However, if we consider several activities connected in series, the different positions of the m values tend to cancel each other. In this case, the square root of the sum of the squares of Activity Standard Deviation gives the Standard Deviation of the event which terminates the series of activities. This is called Event Standard Deviation, σ_{TE} .
- Because the Accumulated Expected Time, TE , of an event is basically the result of a series of time estimates, rather than of a group of known values of time, there is some uncertainty associated with the calculated TE value. Event Standard Deviation, σ_{TE} , is a valid statistical measure of this uncertainty, particularly if the event in question terminates a series of ten or more activities.
- Knowing the Event Standard Deviation, σ_{TE} , of an event and its TE value permits us to calculate the probability of accomplishing the event by any given Schedule Date, T_S .

σ_{TF} is the symbol for

2-141

Event Standard Deviation

The symbol for Event Standard Deviation is _____

2-142

CTE

Activity time estimates, a, m, and b, are expressed in units and tenths of a 7-day week. Expected Activity Time (t_e) as well as Accumulated Expected Time (TE) and Latest Time (TL) for events are also expressed in units and tenths of a 7-day week. Activity Standard Deviation (σ) and Event Standard Deviation (σ_E) are also expressed as _____ and _____ of a _____.

2-143

Activity Standard Deviation (σ) and Event Standard Deviation (σ_{TE}) are also expressed as units and tenths of a 7-day week.

For several activities connected in series, the square root of the sum of the squares of the Activity Standard Deviations, σ , equals the Event Standard Deviation, σ_{TE} , of the event terminating the series.

Expressed symbolically for the series of activities below,

$$\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2} = \sigma_{TE} \text{ for event no. } \dots$$

$$\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2} = \sigma_{TE} \text{ for event no. } 4$$

For several activities connected in series, the square root of the sum of the squares of the Activity Standard Deviations, σ , equals the Event Standard Deviation, σ_{TE} , of the event terminating the series.

$$\text{Symbolically, } \sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2 + \dots} \text{ etc.} = \text{_____}$$

of the event terminating the series of activities.

2-146

$$\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2 + \dots} = \sigma_{TE}$$

terminating the series of activities.

For activities connected in series, as shown below:

$$\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2} = \sigma_{TE} \text{ for the event terminating the series.}$$

In the example below, the Activity Standard Deviations, σ , of the activities are respectively:

$$\sigma_{1-2} = (14 - 2)/6 = 2.0; \sigma_{2-3} = (7 - 1)/6 = 1.0; \sigma_{3-4} = (21 - 3)/6 = 3.0.$$

$$\text{Squaring these values, } (\sigma_{1-2})^2 = 4; (\sigma_{2-3})^2 = 1; (\sigma_{3-4})^2 = 9.$$

$$\text{Adding these squares, } 4 + 1 + 9 = 14.$$

The square root of 14 = 3.7. (See Section 3, Square and Square Root Table. Panel G page 6-7 in your workbook).

Therefore, the Event Standard Deviation, σ_{TE} of event No. 4 is _____.

2-148

The Event Standard Deviation, σ_{TE} , of event No. 4 is 3.7.

For the three activities connected in series below
 σ_{TE} of event No. 4 = _____

$$\sigma_{TE} \text{ of event No. } 4 = \underline{3.0}$$

If you got this answer, turn to the next frame. If not, read on.

$$(b - a)/6 = \sigma$$

$$\sigma_{1-2} = (15 - 3)/6 = 12/6 = 2.0; (\sigma_{1-2})^2 = 4.0$$

$$\sigma_{2-3} = (7 - 1)/6 = 6/6 = 1.0; (\sigma_{2-3})^2 = 1.0$$

$$\sigma_{3-4} = (17 - 5)/6 = 12/6 = 2.0; (\sigma_{3-4})^2 = 4.0$$

$$\text{Thus, } (\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2 = 9.$$

Taking the square root of both sides:

$$\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2} = \sqrt{9} = 3 = \sigma_{TE}$$

$$\sigma_{TE} \text{ of event No. } 4 = 3.0.$$

If you got this answer, turn to the next frame. If not, read on.

$$(b - a)/6 = \sigma$$

$$\sigma_{1-2} = (15 - 3)/6 = 12/6 = 2.0; (\sigma_{1-2})^2 = 4.0$$

$$\sigma_{2-3} = (7 - 1)/6 = 6/6 = 1.0; (\sigma_{2-3})^2 = 1.0$$

$$\sigma_{3-4} = (17 - 5)/6 = 12/6 = 2.0; (\sigma_{3-4})^2 = 4.0$$

$$\text{Thus, } (\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2 = 9.$$

Taking the square root of both sides:

$$\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2} = \sqrt{9} = 3 = \sigma_{TE}$$

The Event Standard Deviation, σ_{TE} , of an event which terminates several activities connected in series equals the square root of the sum of the squares of the Activity Standard Deviations, σ . If this series of activities forms the critical path leading from the network beginning event to the network ending event, the Event Standard Deviation is that of the _____.

The Event Standard Deviation, σ_{TE} , of the network ending event is derived from the Activity Standard Deviations, σ , of the _____ path.

The critical path of a certain network is shown below. The σ_{TE} of network ending event, No. 6, equals _____.

The σ_{TE} of network ending event, No. 6, equals 4.0.

If you got this answer, turn to the next page. If not, read on.

$$(b - a)/6 = \sigma$$

Activity	$\frac{\sigma}{\sigma}$
1-2	1
2-3	1
3-4	2
4-5	4
5-6	1
	3

$$\frac{9}{16} = \text{Sum of } \sigma^2$$

$$\text{Square root of sum of } \sigma^2 = 4 = \sigma_{TE}$$

Find your error, correct your answer, then turn to the next page.

Although the value of σ need only be calculated to the first decimal place for each activity, the square of $\sigma (\sigma^2)$ should be calculated to the second decimal place when these squares are to be added. Also σTE , the square root of the resulting sum, need only be calculated to the first decimal place.

Section 3 of Panel G of the workbook is a table of useful square root and square values. Turn to it.

Example: For a certain critical path 1-2-3-4-5:

Activity	σ^2
1-2	1.2
2-3	2.3
3-4	1.5
4-5	1.8
	<u>12.22 sum of σ^2</u>

σ_{TE} of event no. 5 = the square root of 12.22. From section 3, Panel G,
we see that the square root of 12.0, to the first decimal place, equals 3.5 and
the square root of 13 is 3.6. Since we need only the first decimal place for σ_{TE} ,
the square root of 12.22 can be taken as 3.5. Consequently $\sigma_{TE} = 3.5$ for
event no. 5.

2-156

In the above activity path σ_{TE} of event no. 5 equals _____.

12 11 10 9 8 7 6 5 4 3 2 1

The σ_{TE} of event no. 2 is 4.1.

If you got this answer, turn to the next page. If not, correct your answer, then read below.

$\sigma = \frac{b-a}{6}$	Activity	$b-a$	$\frac{\sigma}{\sqrt{2}}$
1-2	8.4	1.4	1.96
2-3	7.2	1.2	1.44
3-4	13.8	2.3	5.29
4-5	17.4	2.9	8.41
			<u>17.10</u>

From section 3, Panel G, the square root of 17.0 is 4.1 and the square root of 13.0 is 4.2 to the first decimal place. The square root of 17.10 must equal 4.1. This is the value of σ_{TE} for event no. 5.

Knowing the T_E and σ_{TE} values of a network ending event permits us to calculate the probability of accomplishing this event, and thereby completing the network, by any given Schedule Date, T_S .

Together T_E and σ_{TE} define a probability curve whose shape approaches the normal distribution shown below, particularly if ten or more activities comprise the critical path. The range extending from $-3\sigma_{TE}$ on the left of the mean value, T_E , to $+3\sigma_{TE}$ on the right of the T_E includes 99% of all the elapsed times at which it is possible for the event to occur. The vertical height of any point of the curve is a measure of the probability that the event will occur at the corresponding time of the horizontal axis. The area to the left of any vertical line is the probability that the event will occur on or before the corresponding time.

In effect the horizontal width of the probability curve, extending from $-3\sigma_{TE}$ to $+3\sigma_{TE}$, measures the uncertainty of the T_E value. As σ_{TE} becomes smaller, the horizontal width narrows and the more certain does T_E become; as σ_{TE} becomes larger, T_E becomes less certain.

For example, suppose the T_E of a network ending event equals 15 weeks and σ_{TE} for this event equals 1.0 week. Then there is a small probability that the network either may be completed in as little time as 12 weeks ($-3\sigma_{TE}$) or may require as long as 18 weeks ($+3\sigma_{TE}$). However, if σ_{TE} equals 2.0 weeks, it is possible for the network to be completed in only 11 weeks.

As σ_{TE} becomes smaller, the possible difference of event occurrence from the TE value becomes less; that is, the calculated value of TE becomes more certain.

- A. As large as possible. 2-161
B. As small as possible. 2-162

Turn to page

To maximize the certainty of TE for the network ending event, the quantity $(b - a)$, the difference between the Pessimistic Time, b, and the Optimistic Time, a, estimated for each activity, should be:

σ_{TE} is derived from a series of σ^2 values which in turn are dependent on the quantity $(b - a)/6$ for each of several activities.

Your Answer: A. For each activity, $(b - a)$ should be as large as possible to maximize the certainty of T_E .

Sorry. Remember T_E becomes more certain as σ_{TE} becomes smaller. σ_{TE} is the square root of the sum of the σ^2 values. This sum decreases as the Activity Standard Deviations (σ) take smaller values. Since each σ value equals $(b - a)/6$, you can see that only small values of $(b - a)$ will result in the desired small value of σ_{TE} .

Return to page 2-160, review it, then select the right answer.

Your Answer: B. For each activity, $(b - a)$ should be as small as possible to maximize the certainty of T_E .

Right! T_E becomes more certain as σ_{TE} becomes smaller. σ_{TE} equals the square root of the sum of the σ^2 values, and $\sigma = (b - a)/6$. Therefore, σ_{TE} will have the small value desired to maximize T_E certainty only if the $(b - a)$ values are themselves small.

It may not be possible to keep $(b - a)$ small in all cases, but at least $(b - a)$ values that appear abnormally large when compared to others of the network should be examined as possible errors in judgment.

If T_E and σ_{TE} of an event (particularly a network ending event) are known, we can calculate the probability that the event will occur by its Latest Time, T_L . To do this we use the equation,

$$Z = \frac{T_L - T_E}{\sigma_{TE}}$$

In this equation $T_L - T_E$ equals the Slack, S , of the event, as discussed previously. If a calendar Schedule Date, T_S , is assigned to the event, T_L is the elapsed time corresponding to this calendar date. If no Schedule Date is assigned, T_L is obtained by subtracting t_e values from the T_L of the network ending event. The T_L of the network ending event equals the elapsed time corresponding to its T_S calendar date. If no T_S is assigned to the network ending event, its T_L value equals its T_E value, the Accumulated Expected Time of the event.

In the formula $Z = \frac{T_L - T_E}{\sigma_{TE}}$, Z is an estimate of probability that is used with panel G. Open the workbook to Panel G.

Section 1 of Panel G is to be used with _____ values of Z.

Section 2 of Panel G is to be used with _____ values of Z.

For either section $Z = \underline{\hspace{2cm}}$.

By means of this equation we determine the probability of an event occurring by its $\underline{\hspace{2cm}} (T_L/T_E)$ time.

When Z is negative T_L must be $\underline{\hspace{2cm}}$ (less/greater) than T_E .

When Z is positive T_L must be $\underline{\hspace{2cm}}$ (less/greater) than T_E .

2-165

greater

less

T_L

$$Z = \frac{T_L - T_E}{\sigma T_E}$$

positive

negative

In Panel G, values of Z are given to _____ (one/three) decimal place(s).

$$Z = 1.1, \text{ Probability } P = \underline{\hspace{2cm}}$$

$$Z = -1.1, \text{ Probability } P = \underline{\hspace{2cm}}$$

$$Z = 0.5, P = \underline{\hspace{2cm}}$$

$$Z = -0.5, P = \underline{\hspace{2cm}}$$

$$Z = 2.3, P = \underline{\hspace{2cm}}$$

$$Z = -2.3, P = \underline{\hspace{2cm}}$$

2..167

P

0.864
0.136
0.692
0.309
0.989
0.011

Z

1.1
-1.1
0.5
-0.5
2.3
-2.3

one

74
69
61
51
41
31

The value of Z need be calculated to only the first decimal place.
(See page 2-137 for a review of how to round off numbers to the first decimal place.)

Suppose that for a certain event, $T_L = 17.0$ weeks, $T_E = 13.5$ weeks, and $\sigma_{TE} = 2.0$ weeks.

$$Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{17.0 - 13.5}{2.0} = \frac{3.5}{2} = 1.8$$

Z is positive. Therefore, we use Section 1 of Panel G. Here, next to $Z = 1.8$, we find the probability value 0.964. This means that there are 96.4 chances out of 100 that the event will be accomplished within 17.0 weeks after the network beginning event takes place.

Suppose $T_L = 15.5$ weeks, $T_E = 13.5$ weeks, and $\sigma_{TE} = 2.0$ weeks. The probability that the event will be accomplished within 15.5 weeks after the network beginning event occurs is _____.

Probability equals 0.841.

$$Z = \frac{T_L - TE}{\sigma_{TE}} = \frac{15.5 - 13.5}{2.0} = \frac{2.0}{2.0} = 1.0$$

In Section 1 of Panel G next to $Z = 1.0$ is the probability value 0.841.

For a certain event $T_L = 17.5$ weeks, $T_E = 19.1$ weeks, and $\sigma_{TE} = 1.2$ weeks.

$$Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{17.5 - 19.1}{1.2} = \frac{-1.6}{1.2} = -1.3$$

Z is negative. Therefore we use section 2 of Panel G. Here next to $Z = -1.3$ we find the probability value 0.097. There are 9.7 chances out of a hundred of this event occurring within 17.5 weeks after the network beginning event.

Suppose $T_L = 15.9$ weeks, $T_E = 18.2$ weeks, and $\sigma_{TE} = 2.6$ weeks. The probability that the event will occur within 15.9 weeks after the network beginning event is _____.

The probability that the event will occur within 15.9 weeks after the network beginning event is 0.184.

$$Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{15.9 - 18.2}{2.6} = \frac{-2.3}{2.6} = -0.88 = -0.9$$

In Section 2 of Panel G next to $Z = -0.9$ is the probability value of 0.184.

II. Determine the probability for the following.

Event: T_L (weeks)	Event: T_E (weeks)	Probability of event occurring by its T_E time
18.3	17.3	1.4
23.6	19.7	2.1
15.5	16.9	1.7
14.7	17.0	1.3

Event T_L (weeks)	Event T_E (weeks)	Event σTE (weeks)	Probability of event occurring by its T_L time
18.3	17.3	1.4	0.758
23.6	19.7	2.1	0.971
15.5	16.9	1.7	0.212
14.7	17.0	1.3	0.036

Work on a certain project is to start on 1 January 1962, and the Schedule Date for its final event is 3 December 1962. The Accumulated Expected Time of the final event is 17.0 weeks, and its Event Standard Deviation, σTE , is 2.0 weeks. The probability that the network will be completed by 3 December 1962 is _____.

Probability equals 0.692

T_L corresponding to 3 December 1962 is 48 weeks.

$$Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{48 - 47}{2} = 0.50$$

From Section I of Panel G

If $Z = 0.50$, then probability = 0.692.

If the T_L of a network ending event equals its T_E value, the probability that the network will be completed on time is _____

$$\text{Probability} = \underline{0.500}$$

$$Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{-0}{\sigma_{TE}} = 0$$

From Section 1, Panel G, if $Z = 0$, probability = 0.500.

Suppose a network is to start on 1 January 1962 and is scheduled to be completed by 10 December 1962. The T_E of the network ending event is 51.0 weeks, and its σ_{TE} is 2.0 weeks. The probability that the network will be completed by 10 December 1962 is _____.

63 Probability' = 0.159

64 T_L corresponding to 10 December 1962 is 49 weeks.

65 $Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{49 - 51}{2.0} = \frac{-2}{2} = -1.0$

66 From Section 2 of Panel G, when $Z = -1.0$ probability = 0.159.

67 $Z = \frac{T_L - T_E}{\sigma_{TE}}$. Slack, $S = T_L - T_E$

68 Therefore $Z = \underline{\hspace{2cm}}$ divided by σ_{TE}

2-177

Z = Slack (or S) divided by σ_{TE}

$$Z = \frac{S}{\sigma_{TE}}$$

$$Z = \frac{T_L - TE}{\sigma_{TE}} = \frac{S}{\sigma_{TE}} \quad \text{If, in this equation, } T_L - TE \text{ or } S \text{ is expressed as}$$

a multiple of σ_{TE} , we can see the effect of Slack ($S = T_L - TE$) on the probability of accomplishing an event within the elapsed time corresponding to its T_L value.

Suppose that for a certain event $T_L = 15.0$ weeks, $TE = 19.5$ weeks, and $\sigma_{TE} = 1.5$ weeks. Then $T_L - TE = S = -4.5$ weeks = $-3\sigma_{TE}$.

$$Z = \frac{S}{\sigma_{TE}} = \frac{-3\sigma_{TE}}{\sigma_{TE}} = -3$$

From Section 2 of Panel G the probability corresponding to $Z = -3$ is 0.001. This means that if $T_L - TE = -3\sigma_{TE}$, there is only one chance in 1000 that the event will be accomplished within 15.0 weeks.

Find the probability corresponding to each of the σ_{TE} multiples of Slack shown below.

S	Probability
$-3\sigma_{TE}$	0.001
$-2\sigma_{TE}$	
$-1\sigma_{TE}$	
$0\sigma_{TE}$	
$+1\sigma_{TE}$	
$+2\sigma_{TE}$	
$+3\sigma_{TE}$	

<u>S</u>	<u>Probability</u>
-3 σ_{TE}	0.001
-2 σ_{TE}	0.023
-1 σ_{TE}	0.159
0 σ_{TE}	0.500
+1 σ_{TE}	0.841
+2 σ_{TE}	0.977
+3 σ_{TE}	0.999

2-180

$\frac{S}{\sigma_{TE}}$	Probability	$Z = \frac{S}{\sigma_{TE}}$
-3 σ_{TE}	0.001	
-2 σ_{TE}	0.023	
-1 σ_{TE}	0.159	
0 σ_{TE}	0.500	
+1 σ_{TE}	0.841	
+2 σ_{TE}	0.977	
+3 σ_{TE}	0.999	

Assume that we are considering a network ending event. From this table we see that as S equals increasing and positive multiples of σ_{TE} , the probability of completing the network on schedule increases.

However experience shows that if Slack ($S = T_L - T_E$) is negative and exceeds $-1\sigma_{TE}$, you can be reasonably sure that completing the network on time will be a problem. And if Slack exceeds $-2\sigma_{TE}$, you can be darn sure there will be problems.

In short, if a manager thinks of the Slack of the network ending event in terms of the Event Standard Deviation, σ_{TE} , he has a measure of the probability that the network will be completed on schedule.

TEST NO. 5

Circle the letter identifying the answer which appears to be most nearly correct.

1. The formula for the activity standard deviation is:

- a) $\sigma = (a-b)/6$
- b) $\sigma = (b-m)/6$
- c) $\sigma = (b-a)/6$
- d) $\sigma = (m-a)/6$

2. In the network shown below what is σ for activity 1-2?

3. The event standard deviation for event 4 in the network shown in question 2 is:

- a) 26.0
- b) 18.2
- c) 5.1
- d) 10.3

4. If Z equals 0, probability equals:

- a) 0.001
- b) 0.999
- c) 0.341
- d) 0.500

5. The formula for σ_{TE} in the figure in question 2 is:

- a) $\sigma_{TE} = \sqrt{\sigma_{1-2}^2 + \sigma_{2-3}^2 + \sigma_{3-4}^2}$
- b) $\sigma_{TE} = (\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2$
- c) $\sigma_{TE} = \sqrt{(\sigma_{1-2} + \sigma_{2-3} + \sigma_{3-4})^2}$
- d) $\sigma_{TE} = \sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2}$

If you had difficulty selecting the right answers, review chapter 5.

Chapter 5

Summary

Because of the uncertainties associated with t_e and T_E , the manager must be concerned with the probabilities that events, particularly the network ending event, will occur at the times calculated. Statistical information can provide a measure of the risks involved in trying to meet a schedule.

The time span between pessimistic and optimistic time for each activity is expressed by $(b-a)/6$, a quantity called σ or Activity Standard Deviation. In the activity shown below, for example, $\sigma = 1.3$.

The value of m , Most Likely Time, never affects the value of σ . The standard deviation of an event terminating a given activity path is called Event Standard Deviation or σ_{TE} :

$$\sigma_{TE} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \dots + \sigma_n^2}$$

where $\sigma_1, \sigma_2, \sigma_3$, etc., are the standard deviations of the activities on the path.

As with the estimates on which they are based, σ and σ_{TE} are expressed in units and tenths of a 7-day week.

σ_{TE} of the network ending event is derived from the standard deviations of the activities on the critical path.

To calculate the probability that a given event will occur by a given T_S , use the equation

$$Z = \frac{T_L - T_E}{\sigma_{TE}}$$

Here T_L is the elapsed time between the T_S of the given event and the T_S of the network beginning event where $T_S - T_E$ is the slack of the event, and Z is a parameter of probability that is used with a normal probability table. Replace T_S by T_L if no T_S is specified.

2-186

Review of PERT Fundamentals

CHAPTER 6

Volume II

PERTeach

The critical path of the PERT network for a small project is shown below, together with the three estimated times (in weeks) for each of the critical path activities. The project is to be started on 1 February 1962 and is scheduled to be completed by 30 June 1962. We are to determine the probability that the project will be completed on time.

Without involving any network characteristics we can immediately determine the T_L of the network ending event. The Schedule Date T_S , of the network ending event is 30 June, 1962. The T_S of the network beginning event is 1 February, 1962. Therefore, the T_L of network ending event, no. 5, is _____ weeks.

The T_L of network ending event, no. 5, is 21.4 weeks.

If you obtained this answer turn to the next page. If not, read on.

Latest Time, T_L , is, in effect, the time allowed to complete the program. T_L is the elapsed time between Schedule Date, T_S , of the network ending event and T_S of the network beginning event. To determine T_L for our network ending event, no. 5, compute the number of days between the two T_S dates. Divide the result by 7 to express T_L in weeks.

Month	Days
Feb	28
March	31
April	30
May	31
June	30

$$\frac{150}{7} \text{ days. } 150/7 = 21.4 \text{ weeks}$$

Correct your answer and then turn to the next page.

10
11
12
13
14
15
16
17
18
19
20

We have found that 21.4 weeks is the T_L of our network ending event. This is the elapsed time allowed to complete the project. Now we will find the elapsed time required for the work.

To find this total elapsed time, we must first determine the Expected Activity Time, t_e , for each activity.

The Expected Activity Time, t_e , for activity 1-2 is _____ weeks.

63
11
44
11
81
41

The Expected Activity Time, t_e , for activity 1-2 is 6.2 weeks.

If you obtained this answer turn to the next page. If not, correct your answer, then read the rest of this page.

$$T_L = 21.4 \text{ WEEKS}$$

$$t_e = \frac{a + 4m + b}{6} . \text{ For activity 1-2, } t_e = \frac{2 + 24 + 11}{6} = 6.2$$

If you wish to review Expected Activity Time, t_e , read chapter 4 of Volume I again. To review activity time estimates, read chapter 3 of Volume I.

For this critical path the Accumulated Expected Time, T_E , of event no. 5,
 the network ending event, equals _____ weeks.

2-191

2-192

The T_E of event no. 5 equals 23.4 weeks.

If you obtained this answer turn to page 2-195.

If not, correct your answer, then turn to page 2-193.

The TE of the network ending event, no. 5, equals the sum of the t_e values of the activities composing the critical path. To find this T_E , complete the following table.

Activity	t_e
1-2	6.2 weeks
2-3	_____
3-4	_____
4-5	_____
	= sum of t_e values = T_E of event no. 5.

Now turn to page 2-194.

The sum of these t_e values is 23.4 weeks, the T_E of network ending event no. 5.

- 1 To review Accumulated Expected Time, T_E , read chapter 6 of Volume I again.
- 2 To review Critical Path, read chapter 7 of Volume I.

2-195

We have found that the T_L of event no. 5 is 21.4 weeks and that the TE of this event is 23.4 weeks.

5, the slack of event no. 5 is _____ (positive/negative) and is equal to
_____ weeks.

S, the Slack of event no. 5 is negative and is equal to 2.0 weeks.

$$S = -2.0 \text{ weeks.}$$

If you obtained these answers turn to the next page. If not, correct your answers, then read the rest of this page.

$$\text{Slack, } S, = T_L - T_E$$

$$\text{For our example, } S = 21.4 - 23.4 = -2.0$$

To review Slack, read Chapters 2 and 4 again.

2-197

We must now determine the squares of the Activity Standard Deviations, σ , in order to find the Event Standard Deviation σ_{TE} of event no. 5.

The square of the Activity Standard Deviation, σ , for activity 1-2 equals _____.

The square of Activity Standard Deviation, σ , for activity 1-2 equals 2.25.

If you obtained this answer, turn to the next page. If not, correct your answer, then read the rest of this page.

Activity Standard Deviation $\sigma = (b - a)/6$. For activity 1-2, $(b - a)/6 = 1.5$.
The square of 1.5 = 2.25.

To review Activity Standard Deviation read pages 2-133 through 2-139.

2-199

σ_{TE} for event no. 5 equals _____ weeks.

σ_{TE} for event no. 5 equals 3.2 weeks.

If you obtained this answer, turn to page 2-203.

If not, correct your answer then turn to page 2-201.

$T_L = 21.4 \text{ WEEKS}$

$T_L = 21.4 \text{ WEEKS}$

$$\sigma_{TE} \text{ for event no. 5 equals } \sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2 + (\sigma_{4-5})^2}.$$

To find σ_{TE} , complete the following table:

Activity	$(b - a)/6$	σ	σ^2
1-2	(11-2)/6	1.5	2.25
2-3	(7-1)/6	1.0	-----
3-4	(8-1)/6	1.2	-----
4-5	(18-4)/6	2.3	-----

$$\sigma_{TE} = \sqrt{\text{sum of } \sigma^2} = \text{_____} = \text{sum of } \sigma^2$$

<u>Activity</u>	$\frac{\sigma^2}{}$
1-2	2.25
2-3	1.00
3-4	1.44
4-5	5.29 9.98 = sum of σ^2

For event no. 5, $\sigma_{TE} = \sqrt{\text{sum of } \sigma^2} = \sqrt{9.98} = 3.2$ weeks for event no. 5.

To review σ_{TE} read pages 2-140 through 2-162 again.

Having found σ_{TE} of event no. 5, we can now determine the probability that this event (and therefore the entire network) will be completed within the allowed 21.4 weeks.

The probability that the network will be completed within 21.4 weeks is _____

The Probability that the network will be completed within 21.4 weeks is 0.274.
If you got this answer turn to the next page. If not correct your answer then
read below.

$$Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{21.4 - 23.4}{3.16} = -0.6$$

From Section 2 of Panel G, if $Z = -0.6$, then probability = 0.274.

To review Z and probability, read pages 2-163 through 2-185.

2-205

Network Replanning and/or Simulation

CHAPTER 7

Volume III

PERTeach

14
15 The chances of completing a network on schedule can be determined fairly well
16 from the Slack value of the critical path, and can be calculated more precisely by
17 means of probability computations. From this information management may decide
18 that the risk of being late is too great or may, for other reasons, believe that a
19 given completion date is unrealistic. In any of these cases, a PERT network may often
20 be modified or "replanned" to improve the chances of completing the network within
21 the time allowed.

22
23 Replanning is an area that illustrates the flexibility of the PERT system and
24 which calls for managerial decision. There are only three types of action a manager
25 may take to replan a network, but the type to be used depends on circumstances.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
701

A network may be replanned by one or more of the following three methods:

1. Changing a chain of series-connected activities into a series-parallel arrangement.
2. Changing resources applied to activities.
3. Changing the scope of various activities, even eliminating activities as a last resort.

The three replanning procedures outlined above have one purpose in common.
They are intended to:

- Your Answer
- Turn to page
- 2-208
- 2-209
- A. Increase the time allowed to complete the network.
- B. Decrease the time required to complete the network.

13 Your Answer: A. Replanning procedures are intended to increase the time allowed to complete a network.

Wrong. If 50 weeks are allowed for a program that requires 57, changing the network affects the time required, not that allowed. The time allowed to accomplish work is physically independent of the time required.

Read page 2-207 again and then select the correct answer.

Your Answer: B. Replanning procedures are intended to decrease the time required to complete a network.

Correct! Modification of PERT activities usually affects the time required to complete them. To improve the chances of meeting a given completion date, always try to reduce such time.

One method of reducing the time allowed is to transform a set of series connected activities into a series-parallel arrangement. The following elementary sketch shows how this is done. In case B, note that each activity of work keeps its beginning and ending events, and is joined to others by short constraining activities which maintain the necessary work sequence.

All the values written below the activities are in units and tenths of a week. In Case A, the activity path extending from "start receiver design" to "end environment test" is expected to require a total of _____ weeks. In Case B where the same activities now include a series-parallel arrangement, the maximum time between these same two events is expected to be _____ weeks.

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Case A, 19 weeks
Case B, 12 weeks

One replanning method involves rearranging a chain of activities connected in series to include a _____ configuration.

2-212

Another replanning method that reduces the time required by a critical path is to increase the resources applied to various activities of this path. Such resources include manpower and equipment as well as space or capital that permit the use of more manpower and equipment. Overtime work is also a _____ that may be applied to many activities.

series-parallel
or
parallel-series

resource

11 12 13 14 15 16 17 18

A convenient method of obtaining increased resources for activities of the critical path is to take some resources away from other activity paths that can afford to lose them. This may increase the time durations required for these paths but as long as such durations do not closely approximate that of the critical path, the procedure is useful.

Those activity paths which can afford to lose some resources have slack values $(T_L - T_E)$ much _____ (greater/less) than that of the critical path.

2-214

greater

Remember, the critical path always has the smallest possible slack value.

Not all activities can be shortened in time by applying increased resources to them. An engineer may design new equipment based on new principles. The time required for this activity is not easily shortened. Activities involving chemical action usually cannot be speeded up appreciably.

We _____ (can/cannot) reduce the time required to make the drawings for a new system by using more draftsmen.

We _____ (can/cannot) easily reduce the time required for concrete to harden.

One method of replanning consists of increasing the _____ applied to
various _____ of the _____ path.

2-216

One method of replanning consists of increasing the resources applied to various activities of the critical path.

A third method of replanning to reduce the time required by the critical path is to decrease the scope of various critical path activities, if this is feasible. By reducing the work involved in an activity, we decrease the scope of the activity.

For example, an activity may be an environmental test involving operation of a unit under these different conditions; extreme cold, extreme heat, and severe vibration. By eliminating the vibration test we reduce the time required to accomplish the activity.

2-217

Sometimes the standards or quality assurance applying to a given activity are too high. Reducing such standards to lesser but still acceptable values is another way of reducing the work, time and _____ of the activity.

2-218

scope

If you plan to reduce the critical path time by reducing the scope of some of its activities, you should also consider the possibility of eliminating such activities. Maximum reduction of activity scope may be elimination of the activity.

For example suppose environmental test is an appreciable activity of the critical path. If PERT calculations show there is little chance of meeting firm delivery dates, the possibility of eliminating environmental test for the first models of the equipment should be explored.

Increasing the resources applied to an activity of the critical path will reduce the three time estimates applying to this activity. These estimates you remember, are Optimistic Time, a, Most Likely Time, m, and Pessimistic Time, b. They determine the Expected Activity Time, t_e .

Reducing the scope of the activity also reduces the values of these three time estimates and will therefore _____ (decrease/increase) the Expected Activity Time, t_e .

22
II
44
II
33
II
44
II

decrease

Only after increasing the resources applied to an activity or decreasing the scope of the activity are we justified in changing the three time estimates of the activity.

Changing these estimates without such justification is not considered cricket. Experience has shown that these estimates, as first provided by responsible experts who will be involved in accomplishing the activities, are as reliable as any that may be obtained later. Pressure should never be applied to make responsible personnel change their estimates in order to reduce activity times. This only reduces the effectiveness and reliability of the PERT system.

Any of the three replanning methods should be used primarily to reduce the time required by the critical path, the activity path of maximum time through the network.

However there are always several activity paths leading from the network beginning event to the network ending event. The activity path that requires minimum time after the original critical path has been replanned becomes the new critical path and determines the time required to complete the network.

Activity Path	Weeks Required	
	Before Replanning	After Replanning
A	39	33
B	32	32
C	37	37
D	35	35

Each Activity Path, A, B, C and D, extends from the network beginning event to the network ending event. Before replanning, Activity Path A is the critical path. After replanning, the critical path is Activity Path _____.

13 11 10 11 12 13 14

After replanning the critical path is Activity Path C. Activity Path C now requires maximum time, 37 weeks.

Activity Path	Weeks Required	
	Before Replanning	After Replanning
A	43	38
B	40	40
C	36	36
D	37	37

Each Activity Path, A, B, C and D, extends from the network beginning event to the network ending event. To shorten the time required to complete the network, the original critical path is replanned.

Such replanning shortens the time required to complete the network by

- Your Answer
A. 5 weeks
B. 3 weeks

- Turn to Page
2-224
2-225

2-223

11 12 13 14 15 16 17 18 19 20

Your Answer: A. Replanning the original critical path shortens the time needed to complete the network by 5 weeks.

Sounds logical, but this is the wrong answer.

The original critical path is the one requiring the greatest time before replanning. This is Activity Path A which requires 43 weeks. Replanning this path reduces the time it requires to 38 weeks. The difference between these two values is 5 weeks. However after replanning, Activity Path A is not the path of maximum time through the network and therefore is not the critical path.

The time needed to accomplish the entire network always equals that required by the critical path. Therefore to find the time saved by replanning we subtract the critical path time after replanning from the critical path time before replanning.

Return to page 2-223 and select the right answer.

Your Answer: B. Replanning the original critical path shortens the time needed to complete the network by 3 weeks:

Right! The original critical path, Activity Path A is shortened from 43 weeks to 38 weeks by replanning. But after replanning, this path is no longer the critical path because Activity Path B requires a greater time, 40 weeks.

The time needed to accomplish a complete network always equals the time required by the critical path. Therefore to find the time saved by replanning we subtract the critical path time after replanning from the critical path time before replanning.

Replanning may reduce the time required by the original critical path to such an extent that some other activity path requires more time and therefore becomes the new critical path. Consequently when replanning, you must always keep track of those which may become after replanning.

2-226

activity paths

critical paths

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

2-227

The activity paths which may become critical paths after replanning of the original critical path can be identified by their slack values ($T_L - TE$). The critical path always has less slack than any other activity path. Those activity paths whose slack values approximate that of the original critical path are the ones likely to become critical paths after replanning.

Activity Path	Slack
A	+1
B	-3
C	0
D	-5
E	-2

In the above table Activity Path is now the critical path. If through replanning, the slack of this path becomes equal to -1, then the new critical path will be Activity Path .

Activity Path D is now the critical path.

After replanning, Activity Path B will be the new critical path if the slack of Activity Path D then equals -2 , -1 or any other value more positive than -3 .

A PERT network may be replanned in one or more of the following three ways:

1. By modifying a chain of activities connected only in series so that it contains a _____ - _____ configuration of activities.
2. By increasing the _____ applied to activities of the critical path.
3. By changing the _____ of one or more activities of the critical path.

1. series-parallel
- or
- parallel-series
2. resources
3. scope

When undertaking replanning procedures always keep an eye on those activity paths whose _____ values approximate that of the _____ path. After replanning, one of these paths may become the new _____.

When undertaking replanning procedures always keep an eye on those activity paths whose slack values approximate that of the critical path. After replanning, one of these paths may become the new critical path.

Simulation procedures are used to find the effects of replanning changes on the network characteristics. Simulation consists of determining the characteristics of a network which contains the proposed replanning changes. Usually the basic data (event identification and time estimates for each activity of the simulated network) are passed through the PERT computer. By means of such data processing we find the network critical path and slack values as well as the Accumulated Expected Time of the network ending event.

None of the results obtained with the _____ network apply to the real network until the proposed _____ changes have been adopted.

10 None of the results obtained with the simulated network apply to the real
11 network until the proposed replanning changes have been adopted.

In using the computer for simulation, the same input forms are used as
12 are used for filing actual reports. Caution must be exercised to prevent con-
13 fusion between actual data and data used for _____.

simulation

Computer printout of simulated data must be clearly identified. To prevent any accidental mixup simulated data should not be kept together with actual network data. Simulated data should be kept in a _____ file.

2-233

Various possibilities and alternate procedures are provided by simulation.
You as a manager must _____ which of these are to be adopted.

separate
(or equivalent word)

1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

decide (or an equivalent word)

14 15 16 17 18 19 20 21 22 23 24 25

Any proposed changes in the network can be simulated. Simulation can provide new outlooks on the project, and may provide important network improvements. The flexibility and usefulness of PERT are enhanced by means of _____ procedures.

simulation

Presentation of alternatives by simulation is not a commitment. Simulation of alternatives must be carefully analyzed for the possibility of newly developed risks, or changes in the scope of the project.

Simulation is a vital aid in formulating a decision, but it is not a _____.

2-236

commitment

When unexpected troubles occur, the computer may be used to test alternate activities, activity times, and/or events to alleviate the problem, or prove that there are no alternates. This is also called

2-237

simulation

2-238

TEST NO. 6

1. The purpose of replanning is:
 - a) increase the time allowed to complete the network.
 - b) decrease the time required to complete the network.
 - c) change resources.
 - d) change activity paths.
2. To increase the probability of completing the network on time a "manager" may:
 - a) change resources of an activity path.
 - b) change a chain of critical path activities.
 - c) change the scope of activities.
 - d) do all of the above.
 - e) do none of the above.
3. Which statement is most nearly correct?
 - a) Only critical path proposed changes in a network can be simulated.
 - b) Any proposed change in a network can be simulated.
 - c) Only non-critical path proposed changes can be simulated.
 - d) None of the above.

2.739