- 1. Use the following regular expression and answer the questions. (All answers need to be described with the steps toward the final answer.)
- (a | b)*abb
- A) Draw a NFA by using Thompson's construction.
- ($a \mid b$)*abb is also same with (((($a \mid b$)*)a)b)b so we can add NFA of 'abb' to the tail of the NFA of ($a \mid b$)* The NFA of 'abb' can be drawn

and NFA of '(a | b)* can be drawn

therefore the NFA of (a | b)*abb is

B) Convert the NFA in (A) to DFA by using subset construction.

We can make table with the NFA of ($a \mid b$)*abb.

		E-closure		
	NFA state	а	b	
DFA	s0,s1,s2,s4,s7,s8	s1,s2,s3,s4,s6,s7,s8,s9,s10	s1,s2,s4,s5,s6,s7,s8	
s0				
DFA	s1,s2,s3,s4,s6,s7,s8,s9,s10	DFA s1	s1,s2,s4,s5,s6,s7,s8,s11,s12	
s1				
DFA	s1,s2,s4,s5,s6,s7,s8	DFA s1	DFA s2	
s2				
DFA	s1,s2,s4,s5,s6,s7,s8,s11,s12	DFA s1	s1,s2,s4,s5,s6,s7,s8,s13	
s3				
DFA	s1,s2,s4,s5,s6,s7,s8,s13	DFA s1	DFA s2	
s4				

Therefore,

DFA s0 is connected with DFA s1 with a, and DFA s2 with b.

DFA s1 is connected with DFA s1 with a, and DFA s3 with b

DFA s2 is connected with DFA s1 with a, and DFA s2 with b

DFA s3 is connected with DFA s1 with a, and DFA s4 with b

DFA s4 is connected with DFA s1 with a, and DFA s2 with b.

So the answer is

C) Minimize the DFA in (B) by using Hopcroft's algorithm.

We can make a table that was made by applying minimization algorithm of DFA.

	Current partition	Work list	S	Split on a	Split on b
p0	{s4}{s0,s1,s2,s3}	{s4}{s0,s1,s2,s3}	{s4}	None	{s3}
p1	{s4}{s3}{s0,s1,s2}	{s3}{s0,s1,s2}	{s3}	None	{s1}
p2	{s4}{s3}{s1}{s0,s2}	{s1}{s0,s2}	{s1}	None	None

Therefore we can minimize s0 and s2 by considering as the same group and can draw minimized DFA like

