A Weekly Update on

DiaCare: An Intelligent Diabetes Management Application with LLM-Augmented Chatbot and ML-Based Early Risk Prediction

27 February, 2025

Group Information

Group-01 CSE299 (Section-17)

- 1. Saif Mohammed 2121913042
- 2. Nazibul Islam Nabil 2222456642
- 3. Humayra Rahman Nipa 2121128042
- 4. Umme Suraia Haque Setu 2031278642

Weekly Update Brief

- ▶ Machine Learning: Completed Preprocessing, including data cleaning, handling categorical data, feature engineering, and train-test split.
- ▶ LLM Chatbot: A comparative analysise of
 - different Large Language Models
 - different embedding models
 - different chunking strategies

Machine Learning (Preprocessing)

Data Loading

In [53]:	import pandas as pd sepert mittallib.ppplot as plt sepert multy as po import sklearn as scikit_learn cav_path = "/Users/ssifeohammed/Desktop/CSE299-Junior-Design-Project/ML/Test/Copy Dataset/Diabetes_Final_Data_V21.csv" of = pd = mead_csv(csv_path) of = pd = mead_csv(csv_path)												
In [54]:													
Out[54]:		age	gender	pulse_rate	systolic_bp	diastolic_bp	glucose	height	weight	bmi	family_diabetes	hypertensive	family_hypertens
	0	42	Female	66	110	73	5.88	1.65	70.2	25.75	0	0	
	1	35	Female	60	125	68	5.71	1.47	42.5	19.58	0	0	
	2	62	Female	57	127	74	6.85	1.52	47.0	20.24	0	0	
	3	73	Male	55	193	112	6.28	1.63	57.4	21.72	0	0	
	4	68	Female	71	150	81	5.71	1.42	36.0	17.79	0	0	
			-		-		-	-					
	5432	74	Male	83	164	89	6.47	1.60	64.0	24.99	0	1	
	5433	75	Male	67	141	104	8.31	1.65	62.0	22.75	0	0	
	5434	40	Female	67	134	114	7.61	1.50	69.0	30.72	0	1	
	5435	36	Female	62	139	80	4.90	1.52	41.5	17.87	0	0	
	5436	26	Female	80	134	93	5.15	1.47	67.1	30.92	0	0	

Figure: Data loading

Analyzing Different Chunking Models

```
[96]: cluster chunker = ClusterSemanticChunker(
        embedding function-embedding function,
        max chunk size=100,
        length function=token count
     cluster chunker chunks = cluster chunker.split text(all text)
     analyze chunks(cluster chunker chunks, use tokens=True)
     Number of Chunks: 451
      299th Churk
      Anion gap >10 >12 >12 Variable
     Mental status Alert Alert/ drowsy Stupor/coma Stupor/coma
      201st Chunk
      NB: Effective serum osmolality: 2 [measured Nat (mEq/L) + Glucose (mmol/L); Anion Gap: (Na*)
     -[C1 + HCO3 (mEq/L)]
     No token overlap found
     LLM Semantic Chunker
[1011: from sentence transformers import SentenceTransformer
     import numpy as np
     model = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L6-v2")
     def split document into sentences(all text):
```

Figure: Different Chunking Strategies

Analyzing Cosine Similarity for Different Text Embedding Models

```
Cosine Similarity for intfloat/e5-small-v2
[51]: import numpy as no
      def cosine similarity(yec1, yec2):
          dot product = np.dot(vec2, vec1) # (79, 384) @ (384,) + (79,)
         norm vec1 = np.linalg.norm(vec1)
         norm_vec2 = np.linalg.norm(vec2, axis=1) # Compute norms for each document
         return dot product / (norm vec1 * norm vec2)
      document embeddings = np.array(document result) # Shape: (79, 384)
      similarities = cosine_similarity(query_result, document_embeddings)
     top indices = np.argsort(similarities)[::-1][:5] # Sort in descending order and take top 5
     for i, idx in enumerate(top indices):
         print(f"(i+1), Document (idx) - Similarity: (similarities(idx):.4f)")
      Top 5 Similar Documents:
      1. Document 9 - Similarity: 0.8518
      2. Document 11 - Similarity: 0.8379
      Document 15 - Similarity: 0.8342
      4. Document 46 - Similarity: 0.8193
      5. Document 59 - Similarity: 0.8179
```

Figure: Cosine Similarity for Different Models

Achievements

- ▶ Completed preprocessing for machine learning model development.
- ▶ Conducted an analysis of various LLM models.
- ► Evaluated multiple embedding models.
- ► Assessed different chunking models
- ▶ Performed a comparative analysis of these models

Technology Stack

- ▶ **Programming Language:** Python
- ▶ Framework: LangChain
- ▶ Libraries: Pandas, Matplotlib, Seaborn, langchain-experimental, mistralai, spacy, scikit-learn, langchain-ollama, sentencepiece, torch
- ▶ Embedding Model: OllamaEmbeddings
- ▶ Vector Database: chromadb
- ► **LLM:** HuggingFace LLM
- ▶ **Document Processing:** PyMuPDF, PyPDF

Work Distribution (This Week)

- ► Saif Mohammed 2121913042
 - ► LLM Chatbot Text Embedding
- Nazibul Islam Nabil -2222456642
 - ► LLM Chatbot Chunking Methods

- ► Humayra Rahman Nipa 2121128042
 - ▶ ML Preproessing
- ► Umme Suraia Haque Setu 2031278642
 - ► ML Preproessing

References

- A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd ed. Sebastopol, CA, USA: O'Reilly Media, 2023.
- LangChain Engineer, "LLM Part: Learn RAG From Scratch Python AI Tutorial," YouTube. [Online]. Available: https://www.youtube.com/. [Accessed: Feb. 19, 2025].
- P. Lewis, E. Denoyer, and S. Riedel, "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks," arXiv preprint arXiv:2005.11401, May 2020. [Online]. Available: https://arxiv.org/abs/2005.11401.
- GPT-4 Tutorial, "RAG Prototyping: GPT-4 Tutorial: How to Chat With Multiple PDF Files (1000 pages of Tesla's 10-K Annual Reports)," YouTube. [Online]. Available: https://www.youtube.com/. [Accessed: Feb. 19, 2025].