2013 3 In the Fibonacci sequence, 1; 1; 2; 3; 5; ----- each term after the second is the sum of the previous two terms. How many of the first 100 terms of the Fibonacci sequence are odd?

Notice there's a pattern of odd odd even odd odd even.....

Odd+odd=even & odd +even = odd, therefore the pattern will continue

So for the first 99 terms there are 66 odds, and the 100th term is also odd,

So there are 67 odds in the first 100 terms

2016 6 Determine all possible values for the area of a right-angled triangle with one side length equal to 60 and with the property that its side lengths form an arithmetic sequence.

Suppose that a triangle has side lengths in arithmetic sequence.

Then the side lengths can be written as a-d, a, a+d for some a>0 and $d\geq 0$.

Note that $a - d \le a \le a + d$.

For such a triangle to be right-angled, by the Pythagorean Theorem, the following equivalent equations are true:

$$(a-d)^{2} + a^{2} = (a+d)^{2}$$

$$a^{2} - 2ad + d^{2} + a^{2} = a^{2} + 2ad + d^{2}$$

$$a^{2} = 4ad$$

Since a > 0, then a = 4d, and so the side lengths of the triangle are a - d = 3d, a = 4d, and a + d = 5d for some $d \ge 0$.

(Note that such triangles are all similar to the 3-4-5 triangle.)

If such a triangle has 60 as a side length, then there are three possibilities:

- (i) 3d = 60: This gives d = 20 and side lengths 60, 80, 100. Since the triangle is right-angled and its hypotenuse has length 100, then its area will equal $\frac{1}{2}(60)(80) = 2400$.
- (ii) 4d = 60: This gives d = 15 and side lengths 45, 60, 75. In a similar way to case (i), its area will equal $\frac{1}{2}(45)(60) = 1350$.
- (iii) 5d = 60: This gives d = 12 and side lengths 36, 48, 60. In a similar way to case (i), its area will equal $\frac{1}{2}(36)(48) = 864$.

Therefore, the possible values for the area of such a triangle are 2400, 1350, and 864.

2014 6 The geometric sequence with n terms t_1 ; t_2 ; ----- t_{n-1} ; t_n has $t_1t_n = 3$. Also, the product of all n terms equals 59 049 (that is, $t_1*t_2*....*t_{n-1}*t_n = 59$ 049). Determine the value of n.

(b) Suppose that the first term in the geometric sequence is $t_1 = a$ and the common ratio in the sequence is r.

Then the sequence, which has n terms, is $a, ar, ar^2, ar^3, \ldots, ar^{n-1}$.

In general, the kth term is $t_k = ar^{k-1}$; in particular, the nth term is $t_n = ar^{n-1}$. Since $t_1t_n = 3$, then $a \cdot ar^{n-1} = 3$ or $a^2r^{n-1} = 3$.

Since $t_1 t_2 \cdots t_{n-1} t_n = 59049$, then

$$\begin{array}{rcl} (a)(ar)\cdots(ar^{n-2})(ar^{n-1}) & = & 59\,049 \\ & a^nrr^2\cdots r^{n-2}r^{n-1} & = & 59\,049 \\ & a^nr^{1+2+\cdots+(n-2)+(n-1)} & = & 59\,049 \\ & a^nr^{\frac{1}{2}(n-1)(n)} & = & 59\,049 \end{array}$$
 (since there are n factors of a on the left side)

since
$$1 + 2 + \dots + (n-2) + (n-1) = \frac{1}{2}(n-1)(n)$$
.
Since $a^2r^{n-1} = 3$, then $(a^2r^{n-1})^n = 3^n$ or $a^{2n}r^{(n-1)(n)} = 3^n$.
Since $a^nr^{\frac{1}{2}(n-1)(n)} = 59\,049$, then $\left(a^nr^{\frac{1}{2}(n-1)(n)}\right)^2 = 59\,049^2$ or $a^{2n}r^{(n-1)(n)} = 59\,049^2$.

Since the left sides of these equations are the same, then $3^n = 59049^2$. Now

$$59\,049 = 3(19\,683) = 3^2(6561) = 3^3(2187) = 3^4(729) = 3^5(243) = 3^6(81) = 3^63^4 = 3^{10}$$

Since $59\,049 = 3^{10}$, then $59\,049^2 = 3^{20}$ and so $3^n = 3^{20}$, which gives n = 20.

2015 7 The numbers a_1 ; a_2 ; a_3 ; form an arithmetic sequence with $a_1 \neq a_2$. The three numbers a_1 ; a_2 ; a_3 form a geometric sequence in that order. Determine all possible positive integers k for which the three numbers a₁; a_k also form a geometric sequence in that order.

Suppose that the arithmetic sequence a_1, a_2, a_3, \ldots has first term a and common difference d.

Then, for each positive integer n, $a_n = a + (n-1)d$.

Since $a_1 = a$ and $a_2 = a + d$ and $a_1 \neq a_2$, then $d \neq 0$.

Since a_1, a_2, a_6 form a geometric sequence in that order, then $\frac{a_2}{a_1} = \frac{a_6}{a_2}$ or $(a_2)^2 = a_1 a_6$. Substituting, we obtain

$$(a+d)^2 = a(a+5d)$$

$$a^2 + 2ad + d^2 = a^2 + 5ad$$

$$d^2 = 3ad$$

$$d = 3a (since $d \neq 0$)$$

Therefore, $a_n = a + (n-1)d = a + (n-1)(3a) = (3n-2)a$ for each $n \ge 1$. Thus, $a_4 = (3(4) - 2)a = 10a$, and $a_k = (3k-2)a$. (Note that $a_1 = (3(1) - 2)a = a$.) For a_1, a_4, a_k to also form a geometric sequence then, as above, $(a_4)^2 = a_1a_k$, and so

$$(10a)^2 = (a)((3k-2)a)$$

$$100a^2 = (3k-2)a^2$$

Since $d \neq 0$ and d = 3a, then $a \neq 0$.

Since $100a^2 = (3k - 2)a^2$ and $a \neq 0$, then 100 = 3k - 2 and so 3k = 102 or k = 34.

Checking, we note that $a_1 = a$, $a_4 = 10a$ and $a_{34} = 100a$ which form a geometric sequence with common ratio 10.

Therefore, the only possible value of k is k = 34.

2012 10 For each positive integer N, an Eden sequence from {1; 2; 3; ...; N} is defined to be a sequence that satisfies the following conditions:

- (i) each of its terms is an element of the set of consecutive integers {1; 2; 3; ...; N},
- (ii) the sequence is increasing, and
- (iii) the terms in odd numbered positions are odd and the terms in even numbered positions are even.

For example, the four Eden sequences from {1; 2; 3} are

- (a) Determine the number of Eden sequences from {1; 2; 3; 4; 5}.
- (b) For each positive integer N, define e(N) to be the number of Eden sequences from $\{1; 2; 3;; N\}$. If e(17) = 4180 and e(20) = 17710, determine e(18) and e(19).

```
a. 1, 3, 5, 12, 14, 34, 123, 125, 145, 345, 1284, 12845 . .: e(s)=12
b. let O(N) be number of eden sequence that ends with an odd number from $1.2. N
                                                     even -
  .. E(N).
  : e(N) = O(N) (E(N)
   notice when Nis odd.
   O(N) = O(N-1) + E(N-1)+ |
   because from set 31- N-1] then Edons that ends in odd number can also be
   Chosen from {1... N while ones ends in even number can form a new Eden
    by adding number N in it's end and those's also a new sequence N
     AGO, E(N) = E(N-1)
     because no new terms are formed with the additional choice of N (since N: sold
                     that ends in even
     Guni larly
     when N'is Even
     O(N) = O(N-1)
     E(N)= E(N-1) +0(N-1)
     notice there's no +1 this time because N is no longer an Eden
    with this pattern,
     e(n) = E(n) + o(n)
                                                 (e(8)= 2(2(7))+ E(17)
     E(18) = E(11) + O(17) O(18) = O(17)
     E(19) = E(18) = E(1)+0(17) D(19) = E(18)+0(18)+1 = 2(0(17))+E(17)+1
    [eca)= E(19)+ O(19)= 3(O(1))+>(E(17))+1 (2)
     e(20) = E(20) + O(20) = (E(19) + O(19)) + (D(19)) = 5(O(17))+3(E(17))+2
    : (E(1)+0(17)= 4(90
       | 5 (0(17))+3(E(17))+2= 177/0
      Solve the equation and sub ausness into 080
                       * challenge: try to prove e(N) +E(N+1) = e(N+L) &
      C(18)= 6764
                                    Solve the problem
```

e((9)= (0945