

SMore ViMo

超级AI平台 让生产无忧

制造市场广阔,工业AI落地困难重重

工业产品种类多,生产周期短,现有AI打法无法满足规模化交付需求

普通AI落地一高成本、低效率

现有工业AI打法,几乎不可能实现跨行业的工业AI落地

周期长

从需求收集到系统上线 要**至少半个月**时间

人力复杂

整个流程涉及多个角色人员沟通协调成本高

维护成本高

后期模型升级更新等 都要重复相同流程

我们举个例子来看下

用目前广泛应用的AI架构和工业AI打法,在高端制造业实现AI全面产业化有多难?

如果,我们把范围放大到为全球排名前5的智能手机品牌,每品牌每年出6款不同型号

第1年

需要生成算法

30000 x 5 x 6 = 900,000 种

第2-3年

假设50%的材料用旧款,检测任务不变

折半算40万,我们得到80万种算法

这,几乎是一个不可能完成的任务

而这还只是部分智能手机行业

只有当系统可以自动实现算法组合和部署 人类只需要少量定制化.算法设计

才有可能实现 AI的跨领域规模产业化

思谋AI落地 降门槛、提效率

全链路工具化平台,打通数据收集、模型训练、模型部署、模型迭代全流程,无需专业算法工程师参与

后AI对人,高技术门槛,低应用门槛

周期短

采用平台工具 大大缩减标注时间

低门槛

无需专业的算法和软件工程师参与 计算机操作经验即可使用

维护简单

客户可用平台自维护

新一代视觉解决方案通用平台 可快速实现AI全链路交付

SMore ViMo (Vision Inspection and More) 是一款面向工业制造,提供通用视觉解决方案的平台

 数据管理
 模型训练

 数据采集
 模型训练

 数据清洗
 模型训练

 数据管理
 模型测试

 智能标注
 浏试报告

 模型训练

 双据管理

M SMore ViMo

视觉解决方案通用平台

矩阵式视觉AI核心技术 四位一体方案解决能力,赋能智能制造

4大核心算法

新一代视觉AI技术, 20余载实践凝练

1

OCR

端对端的字符识别 可识别不同背景

如钢印、印刷、激光雕刻

分割

对检测对象精细至/水系级、引心检测和边缘、只写

例如识别硅芯片表纹

分类

对检测物料进行分类判断 如对物料进行OK/NG二分类、颜色分类

检测

对检测目标进行定位及分类适用于多目标、小目标、计数等

1.3亿像素处理能力

4像素算法分割

动态数据增强

小样本纠错

OCR算法

使用端对端的深度学习技术,对产品进行字符信息识别 从而实现产品溯源,信息判断

分类算法

对整图分类,可支持单图高达1000种分类

检测算法

识别目标可能存在的区域,并对区域进行分类

电阻计数

目标定位

输出目标位置和类别 可用于计数、缺陷检测、目标识别等

分割算法

4像素精细化处理能力,可识别最小缺陷: 2pixel * 2pixel

电池极片划伤识别

对图像进行像素级别的分类可输出缺陷的面积等

从传统的串联流程到螺旋上升式快速学习模式

AI训练

传统的串联模式

无平台情况下,会将数据进行全量标注 花费大量人力时间成本

螺旋上升式快速学习

SMore ViMo

采用边学边标注方式,充分利用模型效果,对难点进行人工干预,剩下全部机器自己标注,大大减少人工及时间,整体减少90%人力,时间提高6倍

平台架构灵活,提供多元化的算法组合方案

模型可运行多个环境,兼容性强

- 支持多种系统环境, Linux/windows
- 支持二次开发语言: C++、C#、Python

可兼容各种硬件类别

- 可运行在CPU和GPU
- 可运行在智能视觉控制器、智能相机、工控机等

轻量模型

经过压缩、剪枝等,进行专业的模型提速和压缩, 打造小而强大的模型

提供多种部署方式

SMore ViMo: 产线深度学习的 "中枢系统"

打造智能制造的AI大脑

SmartMore園園

应用案例

赋能1000+行业应用场景,支持300+检测任务

1000 + 300 +

行业应用场景

检测任务

300+ 种处理任务

- 划痕、缺胶、缺角、偏移、异物、漏材、气泡等
- 字符识别、弯曲识别

降本增效

替代人力 实现100%全检

机器提速产能提高

降低漏检 节约成本

26个行业应用

变速箱轴承缺陷检测

全球顶级汽车零部件供应商"未来工厂"质检无人化项目

轴承是汽车的关键基础零部件,直接决定着汽车的性能、质量和可靠性,一直 被誉为汽车的"心脏"部件

轴承制造是一种精密的基础件制造业,精度以**0.001mm**来衡量,比普通机械零件的**精度要求高10倍**

思谋基于 SMore ViMo 检测/分类模块,为全球TC P i 汽车轴承厂商搭建质检 无人化系统,实现了多种细分类AI自动化检测

检出率 过检率 产线的处理速度 实现AI全检 ≥99.0% ≤3% ≤0.2_{秒/片, 日均处理}20,000+ 人力成本节省80%

手机无线充电线圈检测

超20种高难度缺陷检测类 通过全球市值最高智能终端品牌厂商的ARR测试

思谋基于 Statore ViMo 检测/分割模块,构建了多模型方案,可同时在多区域进行20+种类型的外观缺陷检测

检出率 处理速度 Al全检 ≥ 99.0% ≤ 0.2_{秒/片,每日每产线处理}25,000+ 人力成本削减95%

智能手表字符溯源

项目内容

项目内容:智能手表金属件字符识别

字符范围: 0-9 和 a-z

字符个数: 13个字符组成字符串

项目难点

字符种类多: 单款模型支持3种字体

表带颜色多:包含黑白和橘色3种颜色

成像情况多: 在, 括成像模糊、打光、倾斜等

宗言字符种类、颜色、打光等

共15种不同形态

物料说明

解决方案

首次与同类竞品PK, 技术性能上完胜,

得到客户集团高层的认可

基于SMore Vimo工业OCR识别算法

复杂高效的预处理,增加算法对环境鲁棒性

99.9%

字符读取准确率 兼容多种产品形态

100%

人力替换率 6条产线全自动化生产 24天

从需求了解,到完成产品部署 一共花费24天

谢谢! 欢迎咨询

扫码申请试用

