

IMDb Internet Movie Database

Content

Objectives

Work Packages:

- Databricks
 - Exploratory Data Analysis (EDA)
 - Feature Engineering
- Sagemaker
 - Model Selection
 - Tuning

Conclusion:

- Lessons Learned
- Future Outlook

Objectives

Objectives

- 1. **Explore** the data on a distributive computing cluster
- 2. **Select features** that may help you predict the ratings of movies
- 3. **Train** a model of your choice on your features to predict the rating of a movie
- 4. **Deploy** the model on AWS

Work Packages - Databricks

What we had to do

Preprocessing

- 5 tables, 5 dataframes:
 - df_akas,
 - df_basics,
 - df_principals,
 - df_ratings,
 - df_names*
- Cleaning files of e.g. NaN's, inconsistent values
- Encoding of e.g. region, genre etc.

General overview

- df_principals has the the most entries
- There are more unique titles in df_principals than in df_ratings

<u>Akas</u>

- Contains alternative names of films. For e.g. Pokemon has one tt-number and diverse names
- Types and Attributes are more than 90% empty
- Most movies are from France, Germay, Spain, Italy, India,...

<u>Ratings</u>

- The mean rating is 6.89 (maybe people are a little bit kinder than expected), with a standard deviation of roughly 1.40.

 We have roughly 1 million entries in total.
- 75% of the movies have 74 or fewer total votes.

Basics

Splitting the multiple columns into separate genres shows that the genre DRAMA has 866.7K and COMEDY 666.5K titles

Modular features which are on a per table basis:

- df_ids = votes(df_ids)
- df_ids = principals(df_ids)
- df_ids = akas(df_ids)
- df_ids = basics(df_ids)

----> We could have spent more time on the EDA, but we wanted to focus on the pipeline and wanted to sharpen our skills there.

Model Selection and Tuning

XGB performs best

Linear Learner

Started with Linear Regression as a baseline model

1.32

objective_type = 'Minimize' strategy='Random'

KNN

KNN as the idea of nearest neighbor came across

as KNN brought the worst score, no further steps

1.44

XGBoost

Trying to push weak learner features

1.22

objective_type='Minimize' strategy='Bayesian'

1.20

1.32

First thoughts:

- History with biggest impact on features and it seems like that history movies have better ratings and smaller standard deviation compared to the overall count
- Other genres like Talk-Show and Crime are also important. Further Analysis required as to why.
- Countries: It could be that countries with a low number of movies are easier to split the dataset with.

IMDb

Conclusion

Lessons Learned

- Separate tasks (code cleaning, eda) can be conducted when waiting for a long query
- Always check the logic first (e.g. with a small sample) before conducting a query on the whole dataset
- Making different pieces of software talk to each other is complex

Future Outlook

- Continue EDA
- Analyze Feature importance
- Automated Feature Selection
- Incorporate MlFlow
- Make the endpoint publicly available
- Implement logic which takes care of input data
- Document the model
- ..

https://github.com/yaedin/imdb_project

