

О РАСХОДИМОСТИ РЯДОВ ВИДА $\sum_{k=1}^{\infty} \|A_k x\|^p$

И. С. Фещенко

Пусть $X, Y_k, k \geq 1$ – линейные нормированные пространства (ЛНП) над \mathbb{R} , $A_k : X \rightarrow Y_k, j \geq 1$ – линейные непрерывные операторы. Для $p \in [1, \infty]$ определим множество

$$\mathbf{D}_p = \{x \in X \mid (\|A_1 x\|, \|A_2 x\|, \dots) \notin l_p\}.$$

В работе изучается вопрос о плотности \mathbf{D}_p в X при заданой последовательности $\|A_k\|, k \geq 1$.

Далее под ЛНП мы понимаем ЛНП над \mathbb{R} . Относительно ЛНП над \mathbb{C} см. замечание 2. Для ЛНП X, Y обозначим $\mathcal{L}(X, Y)$ множество всех линейных непрерывных операторов $A : X \rightarrow Y$. Пусть $p \in [1, \infty]$, $n \in \mathbb{N}$. Для $x = (x_1, \dots, x_n)$, $x_k \in \mathbb{R}$ определим $\|x\|_p = (\sum_{k=1}^n |x_k|^p)^{1/p}$ (если $p = \infty$, то $\|x\|_{\infty} = \max_k |x_k|$). Для $x = (x_1, x_2, \dots)$, $x_k \in \mathbb{R}$ определим $\|x\|_p = (\sum_{k=1}^{\infty} |x_k|^p)^{1/p}$ (если $p = \infty$, то $\|x\|_{\infty} = \sup_k |x_k|$). Напомним определение пространства M -котипа p (см., например, раздел 4.2 книги [1]).

Определение 0.1. Пусть $p \in [1, \infty)$. Говорят, что ЛНП X имеет M -котип p если существует $\gamma > 0$, такое, что для произвольного $n \in \mathbb{N}$, произвольных $x_1, \dots, x_n \in X$ существуют $\varepsilon_k \in \{\pm 1\}$, $1 \leq k \leq n$, такие, что

$$\left\| \sum_{k=1}^n \varepsilon_k x_k \right\| \geq \gamma \|(\|x_1\|, \|x_2\|, \dots)\|_p.$$

Если это условие выполнено, то говорят, что X имеет M -котип p с константой γ .

Аналогично можно дать определение пространства, имеющего M -котип ∞ , но, как легко видеть, что произвольное ЛНП X имеет M -котип ∞ . Хорошо известно (и это легко доказать), что если X конечномерно, то оно имеет M -котип 1; если X гильбертово, то оно имеет M -котип 2. Если (T, \mathcal{F}, μ) –измеримое пространство и $X = L_p(T, \mathcal{F}, \mu)$ ($1 \leq p < \infty$), то оно имеет M -котип $\max(2, p)$ (см. например раздел 4.2 книги [1]).

Теорема 0.1. Пусть X – банахово пространство, X^* имеет M -котип $\rho \in [1, \infty)$, $Y_k, k \geq 1$ – ЛНП, $A_k \in \mathcal{L}(X, Y_k)$, $k \geq 1$. Пусть $r \in [1, \rho/(\rho - 1)]$ (считаем, что $1/0 = \infty$). Определим $r \in [\rho, \infty]$ равенством $1/p - 1/r = 1 - 1/\rho$.

Если $(\|A_1\|, \|A_2\|, \dots) \notin l_r$, то множество \mathbf{D}_p плотно в X .

Для доказательства нам нужны некоторые определения и лемма. Пусть $n \in \mathbb{N}$, $X_k, 1 \leq k \leq n$ – ЛНП. Для $s \in [1, \infty]$ определим ЛНП

$$l_s(X_1, \dots, X_n) = \{x = (x_1, \dots, x_n) \mid x_k \in X_k\},$$

$\|x\|_s = \|(\|x_1\|, \dots, \|x_n\|)\|_s$. Несложно проверить, что если $s \in [1, \infty)$, то $(l_s(X_1, \dots, X_n))^* = l_t(X_1^*, \dots, X_n^*)$, где $t \in (1, \infty]$ таково, что $1/s + 1/t = 1$. Тут действие $x^* = (x_1^*, \dots, x_n^*)$ на $x = (x_1, \dots, x_n)$ определено равенством $x^*(x) = \sum_{k=1}^n x_k^*(x_k)$.

Пусть X_k , $k \geq 1$ – ЛНП. Для $s \in [1, \infty]$ определим ЛНП

$$l_s(X_1, X_2, \dots) = \{x = (x_1, x_2, \dots) \mid x_k \in X_k, \|(\|x_1\|, \|x_2\|, \dots)\|_s < \infty\},$$

$\|x\|_s = \|(\|x_1\|, \|x_2\|, \dots)\|_s$. Несложно проверить, что если $s \in [1, \infty)$, то $(l_s(X_1, X_2, \dots))^* = l_t(X_1^*, X_2^*, \dots)$, где $t \in (1, \infty]$ таково, что $1/s + 1/t = 1$. Тут действие $x^* = (x_1^*, x_2^*, \dots)$ на $x = (x_1, x_2, \dots)$ определено равенством $x^*(x) = \sum_{k=1}^{\infty} x_k^*(x_k)$.

Лемма 0.1. *Пусть $n \in \mathbb{N}$, X_1, \dots, X_n – ЛНП, Y имеет M -котип $\rho \in [1, \infty)$ с константой γ , $A_k \in \mathcal{L}(X_k, Y)$, $1 \leq k \leq n$. Пусть $q \in [\rho, \infty]$. Определим оператор $B : l_{n,q}(X_1, \dots, X_n) \rightarrow Y$ равенством $B(x_1, \dots, x_n) = \sum_{k=1}^n A_k x_k$. Тогда*

$$\|B\| \geq \gamma \|(\|A_1\|, \dots, \|A_n\|)\|_r,$$

где $r \in [\rho, \infty]$ такое, что $1/q + 1/r = 1/\rho$.

ДОКАЗАТЕЛЬСТВО. Если $A_1 = \dots = A_n = 0$, то нужное утверждение очевидно. Далее не все A_k нулевые. Зафиксируем произвольное $\delta > 0$. Существуют $x_k \in X_k$, $\|x_k\| = 1$, такие, что $\|A_k x_k\| \geq \|A_k\|/(1 + \delta)$. Пусть α_k , $1 \leq k \leq n$ – неотрицательные числа, которые мы выберем позже. Тогда $\|A_k(\alpha_k x_k)\| \geq (\alpha_k \|A_k\|)/(1 + \delta)$. Поскольку Y имеет M -котип ρ с константой γ , то существуют $\varepsilon_k \in \{\pm 1\}$, $1 \leq k \leq n$, такие, что

$$(1) \quad \begin{aligned} \left\| \sum_{k=1}^n \varepsilon_k A_k(\alpha_k x_k) \right\| &\geq \gamma \|(\|A_1(\alpha_1 x_1)\|, \dots, \|A_n(\alpha_n x_n)\|)\|_{\rho} \geq \\ &\geq \gamma(1 + \delta)^{-1} \|(\alpha_1 \|A_1\|, \dots, \alpha_n \|A_n\|)\|_{\rho}. \end{aligned}$$

Пусть $x = (\varepsilon_1 \alpha_1 x_1, \dots, \varepsilon_n \alpha_n x_n) \in l_{n,q}(X_1, \dots, X_n)$, тогда из неравенства (1) следует $\|Bx\| \geq \gamma(1 + \delta)^{-1} \|(\alpha_1 \|A_1\|, \dots, \alpha_n \|A_n\|)\|_{\rho}$. Поскольку $\|x\| = \|(\alpha_1, \dots, \alpha_n)\|_q$, то

$$(2) \quad \|B\| \geq \gamma(1 + \delta)^{-1} \frac{\|(\alpha_1 \|A_1\|, \dots, \alpha_n \|A_n\|)\|_{\rho}}{\|(\alpha_1, \dots, \alpha_n)\|_q}.$$

Если $q \in (\rho, \infty)$, то $r \in (\rho, \infty)$. Подставим $\alpha_k = \|A_k\|^{r/q}$, $1 \leq k \leq n$ в неравенство (2). Тогда, учитывая, что $1/\rho = 1/q + 1/r$, получим

$$(3) \quad \|B\| \geq (1 + \delta)^{-1} \|(\|A_1\|, \dots, \|A_n\|)\|_r.$$

Если $q = \rho$, то $r = \infty$. Пусть $\|A_i\| = \max_k \|A_k\|$. Подставив $\alpha_i = 1$, $\alpha_j = 0$, $j \neq i$ в (2), получим (3).

Если $q = \infty$, то $r = \rho$. Подставив $\alpha_k = 1$, $1 \leq k \leq n$ в (2), получим (3).

Поскольку $\delta > 0$ произвольно, то из неравенства (3) следует нужное утверждение. Лемма доказана.

ДОКАЗАТЕЛЬСТВО. (теоремы 0.1) Сначала покажем, что \mathbf{D}_p непусто. Если $\rho = 1, p = \infty$, то $r = \infty$ и непустота \mathbf{D}_p является следствием принципа равномерной ограниченности (его доказательство такое же, как и в случае $Y_k = Y$, $k \geq 1$). Далее $p < \infty$. Для $n \geq 1$ определим оператор $B_n : X \rightarrow l_p(Y_1, Y_2, \dots)$ равенством $B_n x = (A_1 x, \dots, A_n x, 0, \dots)$.

Пусть q таково, что $1/p + 1/q = 1$. Тогда $B_n^* : l_q(Y_1^*, Y_2^*, \dots) \rightarrow X^*$. Поскольку для произвольных $y^* = (y_1^*, y_2^*, \dots), x \in X$

$$B_n^* y^*(x) = y^*(B_n x) = \sum_{k=1}^n y_k^*(A_k x) = (\sum_{k=1}^n A_k^* y_k^*) x,$$

то $B_n^*(y_1^*, y_2^*, \dots) = \sum_{k=1}^n A_k^* y_k^*$. Поскольку $1/p - 1/r = 1 - 1/\rho$, $1/p + 1/q = 1$, то $1/q + 1/r = 1/\rho$. Пусть X^* имеет M -котип ρ с константой γ . Из леммы 0.1 следует, что $\|B_n\| \geq \gamma \|(\|A_1^*\|, \dots, \|A_n^*\|)\|_r = \gamma \|(\|A_1\|, \dots, \|A_n\|)\|_r$. Поскольку $(\|A_1\|, \|A_2\|, \dots) \notin l_r$, то $\sup_n \|B_n\| = \infty$. Как следствие принципа равномерной ограниченности получаем, что D_p непусто.

Покажем, что D_p плотно в X . Пусть $x_0 \in D_p$. Обозначим $C_p = X \setminus D_p = \{x \in X \mid (\|A_1 x\|, \|A_2 x\|, \dots) \notin l_p\}$. Ясно, что C_p – линейное множество. Пусть $x \in X$. Тогда не более чем для одного действительного λ элемент $x + \lambda x_0 \in C_p$ (иначе $x_0 \in C_p$). Отсюда следует, что D_p плотно в X . Теорема доказана.

Приведём несколько примеров, в которых условие $(\|A_1\|, \|A_2\|, \dots) \notin l_r$ необходимо для того, чтобы D_p было плотно в X . Более точно, в этих примерах для произвольной последовательности неотрицательных чисел $a_k, k \geq 1$, таких, что $(a_1, a_2, \dots) \in l_r$ мы построим операторы $A_k \in \mathcal{L}(X, Y_k)$, для которых $\|A_k\| = a_k, k \geq 1$ и $D_p = \emptyset$.

Пример 0.1. Пусть $X = \mathbb{R}$, тогда $X^* = \mathbb{R}$. Тогда $\rho = 1, r = p$. Пусть неотрицательные числа a_k таковы, что $(a_1, a_2, \dots) \in l_r$. Определим $A_k : \mathbb{R} \rightarrow \mathbb{R}$ так: $A_k x = a_k x, x \in \mathbb{R}$. Тогда $\|A_k\| = a_k, k \geq 1$ и $D_p = \emptyset$.

Пример 0.2. Пусть $s \in (1, 2]$, $X = l_s$. Тогда $X^* = l_{s'}$, где число $s' \in [2, \infty)$ определено равенством $1/s + 1/s' = 1$. Поэтому $\rho = s'$. Для $p \in [1, s]$ r определено равенством $1/p - 1/r = 1/s$. Пусть неотрицательные числа a_k таковы, что $(a_1, a_2, \dots) \in l_r$. Определим операторы $A_k : l_s \rightarrow \mathbb{R}$ так: $A_k(x_1, x_2, \dots) = a_k x_k$. Тогда $\|A_k\| = a_k, k \geq 1$. Для $x = (x_1, x_2, \dots) \in l_s$ имеем

$$\sum_{k=1}^{\infty} \|A_k x\|^p = \sum_{k=1}^{\infty} (a_k |x_k|)^p.$$

Поскольку $(a_1, a_2, \dots) \in l_r$, $(|x_1|, |x_2|, \dots) \in l_s$ и $1/r + 1/s = 1/p$, то для произвольного $x \in l_s$ $\sum_{k=1}^{\infty} \|A_k x\|^p < \infty$. Отсюда $D_p = \emptyset$.

Пример 0.3. Пусть $s \in [2, \infty)$, $X = L_s([0, 1], dx)$ (далее пишем просто L_s). Тогда $X^* = L_{s'}$, где число $s' \in (1, 2]$ определено равенством $1/s' + 1/s = 1$. Поэтому $\rho = 2$. Для $p \in [1, 2]$ r определено равенством $1/p - 1/r = 1/2$. Пусть неотрицательные числа a_k таковы, что $(a_1, a_2, \dots) \in l_r$. Обозначим $r_k(t) = \text{sign} \sin 2^k t, t \in [0, 1], k \geq 1$ (функции Радемахера). Хорошо известно, что $r_k(t), k \geq 1$ – ортонормированная система в L_2 . Определим операторы $A_k : L_s \rightarrow \mathbb{R}$ так:

$$A_k x = a_k(x, r_k) = a_k \int_0^1 x(t) r_k(t) dt.$$

Поскольку $|A_k x| \leq a_k \|x\|_{L_1} \leq a_k \|x\|_{L_s}$, то $\|A_k\| \leq a_k$. Но $A_k r_k = a_k$ и $\|r_k\|_{L_s} = 1$, поэтому $\|A_k\| = a_k$. Для $x \in L_s$ имеем

$$\sum_{k=1}^{\infty} |A_k x|^p = \sum_{k=1}^{\infty} (a_k |(x, r_k)|)^p.$$

Поскольку $L_s \subset L_2$, то $((|(x, r_1)|, |(x, r_2)|, \dots) \in l_2$. Кроме того, $(a_1, a_2, \dots) \in l_r$ и $1/2 + 1/r = 1/p$, поэтому $\sum_{k=1}^{\infty} |A_k x|^p < \infty$. Таким образом, $\mathbf{D}_p = \emptyset$.

Теорема 0.2. *Пусть X – банахово пространство, X^* имеет M -котип $\rho \in [1, \infty)$, Y_k , $k \geq 1$ – ЛНП, $A_k \in \mathcal{L}(X, Y_k)$, $k \geq 1$. Пусть $p_0 \in (1, \rho/(\rho-1)]$. Определим $r_0 \in (\rho, \infty]$ равенством $1/p_0 - 1/r_0 = 1 - 1/\rho$.*

Если $(\|A_1\|, \|A_2\|, \dots) \notin l_r$ для всех $r \in [\rho, r_0)$, то $\bigcap_{p \in [1, p_0]} \mathbf{D}_p$ плотно в X .

Замечание 1. Поскольку $\mathbf{C}_p \subset \mathbf{C}_{p'}$ для $p < p'$, то $\bigcup_{p \in [1, p_0]} \mathbf{C}_p$ – линейное множество. Поэтому $\bigcap_{p \in [1, p_0]} \mathbf{D}_p = X \setminus \bigcup_{p \in [1, p_0]} \mathbf{C}_p$ плотно в X тогда и только тогда, когда $\bigcup_{p \in [1, p_0]} \mathbf{C}_p \neq X$ (см. окончание доказательства теоремы 0.1). При выполнении условий теоремы 0.2 $\mathbf{C}_p \neq X$, $p \in [1, p_0]$. Кроме того, множества \mathbf{C}_p линейны и $\mathbf{C}_p \subset \mathbf{C}_{p'}$ при $p < p'$. Однако из этих условий на \mathbf{C}_p , вообще говоря, не следует, что $\bigcup_{p \in [1, p_0]} \mathbf{C}_p \neq X$. Это показывает следующий пример. Пусть X – бесконечномерное ЛНП, E – базис Гамеля для X . Выделим в E счётную последовательность e_k , $k \geq 1$. Для $n \in \mathbb{N}$ определим линейное множество L_n как линейную оболочку векторов $E \setminus \{e_k, k > n\}$. Тогда $L_n \neq X$, $L_n \subset L_{n'}$ при $n < n'$, но $\bigcup_n L_n = X$.

ДОКАЗАТЕЛЬСТВО. (теоремы 0.2) Для доказательства теоремы достаточно показать, что $\bigcap_{p \in [1, p_0]} \mathbf{D}_p$ непусто. Выберем возрастающую последовательность $p_k \in [1, p_0)$, $k \geq 1$, такую, что $p_k \rightarrow p_0$, $k \rightarrow \infty$. Пусть $n_1 < n_2 < \dots$ – возрастающая последовательность натуральных чисел, которую мы выберем позже. Определим ЛНП

$$Y = l_1(l_{p_1}(Y_1, \dots, Y_{n_1}), l_{p_2}(Y_{n_1+1}, \dots, Y_{n_2}), \dots).$$

Таким образом, Y состоит из элементов $y = (y_1, y_2, \dots)$, $y_k \in Y_k$, таких, что $\sum_{k=1}^{\infty} \|(\|y_{n_{k-1}+1}\|, \dots, \|y_{n_k}\|)\|_{p_k} < \infty$. Для $k \geq 1$ определим линейный непрерывный оператор $B_k : X \rightarrow Y$ равенством

$$B_k x = (\underbrace{0, \dots, 0}_{n_{k-1}}, A_{n_{k-1}+1} x, \dots, A_{n_k} x, 0, \dots).$$

Пусть q_k такое, что $1/p_k + 1/q_k = 1$. Тогда

$$Y^* = l_{\infty}(l_{q_1}(Y_1^*, \dots, Y_{n_1}^*), l_{q_2}(Y_{n_1+1}^*, \dots, Y_{n_2}^*), \dots)$$

состоит из элементов $y^* = (y_1^*, y_2^*, \dots)$, $y_k^* \in Y_k^*$, таких, что

$$\sup_{k \geq 1} \|(\|y_{n_{k-1}+1}^*\|, \dots, \|y_{n_k}^*\|)\|_{q_k} < \infty.$$

Легко видеть, что $B_k^* : Y^* \rightarrow X^*$ имеет вид $B_k^*(y_1^*, y_2^*, \dots) = \sum_{j=n_{k-1}+1}^{n_k} A_j^* y_j^*$. Пусть X^* имеет M -котип ρ с постоянной γ . Из леммы 0.1 следует, что $\|B_k^*\| \geq \|(\|A_{n_{k-1}+1}^*\|, \dots, \|A_{n_k}^*\|)\|_{r_k}$, где r_k такое, что $1/q_k + 1/r_k = 1/\rho$. Поскольку $1/p_k + 1/q_k = 1$, то $1/p_k - 1/r_k = 1 - 1/\rho$.

Поскольку $p_k < p_0$, то $r_k < r_0$, $k \geq 1$. По условию теоремы $(\|A_1\|, \|A_2\|, \dots) \notin l_r$, $r \in [\rho, r_0)$, поэтому последовательность n_k можно выбрать так, чтобы $\|(\|A_{n_{k-1}+1}\|, \dots, \|A_{n_k}\|)\|_{r_k} \geq k$. Тогда $\sup_k \|B_k\| = \infty$, и, как следствие принципа равномерной ограниченности, существует $x_0 \in X$, для которого $\sup_k \|B_k x_0\| = \infty$.

Покажем, что $x_0 \in \bigcap_{p \in [1, p_0)} D_p$. Предположим, существует $p \in [1, p_0)$, такое, что $\sum_{k=1}^{\infty} \|A_k x_0\|^p < \infty$. Выберем N так, чтобы $\sum_{k=N}^{\infty} \|A_k x_0\|^p < 1$. Выберем m так, чтобы $n_{m-1} + 1 \geq N$, $p_m > p$. Тогда для каждого $k \geq m$ $\sum_{j=n_{k-1}+1}^{n_k} \|A_j x_0\|^{p_k} < 1$, откуда $\|B_k x_0\| < 1$, противоречие. Теорема доказана.

Замечание 2. (про ЛНП над \mathbb{C}) Определения и результаты работы переносятся на случай ЛНП над \mathbb{C} . В определении 0.1 числа $\varepsilon_k \in \mathbb{C}$, $|\varepsilon_k| = 1$. Легко проверить, что каждое конечномерное пространство имеет M -котип 1, гильбертово пространство имеет M -котип 2. Если (T, \mathcal{F}, μ) – измеримое пространство, то $X = L_p(T, \mathcal{F}, \mu)$ (комплексное) имеет M -котип $\max(2, p)$ (рассуждения на ст. 50-52 книги [1] верны и в комплексном случае). Теоремы 0.1, 0.2 и лемма 0.1 верны без изменений формулировок.

СПИСОК ЛИТЕРАТУРЫ

[1] Mikhail I. Kadets, Vladimir M. Kadets, *Series in Banach spaces. Conditional and unconditional convergence*, Basel–Boston–Berlin, Birkhäuser, 1997

КИЕВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. Т. ШЕВЧЕНКО

E-mail address: ivanmath007@gmail.com