

Sistemas Digitais (SD)

Definição de Circuito Combinatório Tempo de Propagação de um Circuito

Aula Anterior

Na aula anterior:

- ▶ Minimização de Karnaugh:
 - Agrupamentos de uns e zeros:
 - Eixos de simetria;
 - o Implicantes e implicados;
 - o Implicantes e implicados primos;
 - Implicantes e implicados primos essenciais.
 - Método de minimização de Karnaugh:
 - o Algoritmo de minimização;
 - o Forma normal/mínima disjuntiva;
 - Forma normal/mínima conjuntiva;
 - o Funções incompletamente especificadas.

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

Sumário

Tema da aula de hoje:

- Noção de circuito combinatório;
- Tempo de propagação num circuito;
- Dispositivos lógicos especiais:
 - Buffer de três estados (tri-state);
 - Portas de passagem (transmission gates).

Bibliografia:

- M. Mano, C. Kime: Secções 3.1.4, 3.4 e 3.1.6
- G. Arroz, J. Monteiro, A. Oliveira: Secção 6.2 e 2.10

NOÇÃO DE CIRCUITO COMBINATÓRIO

Noção de Circuito Combinatório

Circuito Combinatório:

- ▶ A saída é uma função que depende <u>apenas</u> das entradas actuais;
- Definido através de:
 - Função Booleana Ex: $Q = (^{-}A.B).(^{-}A+B).C$
 - Diagrama lógico
 - Tabela de verdade

С	В	A	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Noção de Circuito Combinatório

Circuito Combinatório:

► A saída é uma função que depende <u>apenas</u> das entradas actuais;

▶ Definido em contraste com a noção de circuito sequencial, em que a saída depende não só das entradas actuais, mas também dos valores anteriores dessas entradas...

i.e., circuitos sequenciais têm "efeito de memória", enquanto que um circuito combinatório não.

Veremos daqui a algumas semanas...

Noção de Circuito Combinatório

Circuito Combinatório:

- ► Até ao momento, tem-se assumido um modelo ideal dos circuitos lógicos, em que a saída muda instantaneamente face aos valores na entrada do circuito.
- Na realidade, todos os circuitos caracterizam-se por um certo tempo de propagação, entre as entradas e as saídas, e que depende no número e complexidade de portas lógicas envolvidas:

Tempo de Propagação num Circuito Lógico

Tempos de Propagação

Tempo de Propagação:

corresponde ao intervalo de tempo necessário para que uma alteração na entrada se propague até à saída de uma determinada porta lógica ou circuito combinatório.

- t_{PHL} Tempo de propagação de H para L na saída, desde a variação da entrada.
- ▶ t_{PLH} Tempo de propagação de L para H na saída, desde a variação da entrada.

Tempos de Propagação

- Exemplo (para TTL LS):
 - ► Valores Típicos: 8 a 10 ns
 - ▶ Valores Máximos: 15 a 20 ns
- ATENÇÃO: Em geral, os tempos de propagação aumentam com o número de entradas ligadas à saída da porta lógica (fan-out).
- Na determinação do atraso máximo na propagação de um sinal através de um circuito combinatório consideram-se, sempre, os valores máximos.

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

O atraso máximo do circuito é calculado como:

$$t_p = max\{ t_{pLH} ; t_{pHL} \}$$

em que:

t_{pLH} - máximo tempo de propagação de uma qualquer entrada para a saída que leva a saída a transitar de Low para High

t_{pHL} - máximo tempo de propagação de uma qualquer entrada para a saída que leva a saída a transitar de High para Low

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:

 - 1. X=0 , $Y=0 \rightarrow 1$
 - 2. $X=0 \rightarrow 1$, Y=0

- 3. X=1 , $Y=1 \rightarrow 0$
- 4. $X=1 \to 0$, Y=1

	t_{PHL}	t_{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:

$$X=0$$
 , $Y=0 \rightarrow 1$

$$X=0 \rightarrow 1$$
 , $Y=0$

3.
$$X=1$$
 , $Y=1 \rightarrow 0$

4.
$$X=1 \to 0$$
 , $Y=1$

$$X=0 \rightarrow B=1, W=1, A=0$$

Logo C transita
$$1 \rightarrow 0$$

$$t_{pLH} = t_{pLH}(NOR) + t_{pLH}(XOR) = 54ns$$

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:
 - X=0

- 3. X=1 , $Y=1 \rightarrow 0$
- 4. $X=1 \rightarrow 0$, Y=1

O pior caso corresponde à transição vir da porta NOT:

A transita 0 → 1

$$t_{pLH} = t_{pHL}(NOT) + t_{pLH}(NAND) + t_{pLH}(XOR)$$

= 14+17+32=63ns

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:
 - 1. X=0
- , $Y=0 \rightarrow 1$
- $X=0 \rightarrow 1$, Y=0

- 3. X=1 , $Y=1 \rightarrow 0$ 4. $X=1 \rightarrow 0$, Y=1

$$t_{pLH} = t_{pHL}(NOR) + t_{pLH}(XOR) =$$

= 24+32=56ns

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:

1.
$$X=0$$
 , $Y=0 \rightarrow 1$

- 2. $X=0 \rightarrow 1$, Y=0

- 3. X=1 , $Y=1 \rightarrow 0$ 4. $X=1 \rightarrow 0$, Y=1

$$t_{pLH} = t_{pHL}(NAND) + t_{pLH}(XOR) =$$

= 15+32=47ns

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:

 - 1. X=0 , $Y=0 \rightarrow 1$
- \rightarrow t_{pLH} = 54ns
- 2. $X=0 \rightarrow 1$, Y=0

 \rightarrow $t_{pLH} = 63 \text{ns}$

- 3. X=1 , $Y=1 \rightarrow 0$
- \rightarrow t_{pLH} = 56ns

- 4. $X=1 \to 0$, Y=1

 \rightarrow t_{pLH} = 47ns

Tempo de propagação

$$t_{pLH}$$
 = 63 ns

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:

 - 1. X=0 , $Y=0 \rightarrow 1$
 - 2. $X=0 \rightarrow 1$, Y=0

- 3. X=1 , $Y=1 \rightarrow 0$
- 4. $X=1 \to 0$, Y=1

- Ver todos os casos possíveis...
- verificar qual é o pior!!!

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

O atraso máximo do circuito é calculado como:

$$t_p = max\{ t_{pLH} ; t_{pHL} \}$$

em que:

t_{pLH} - máximo tempo de propagação de uma qualquer entrada para a saída que leva a saída a transitar de Low para High

t_{pHL} - máximo tempo de propagação de uma qualquer entrada para a saída que leva a saída a transitar de High para Low

Cálculo do Caminho com Atraso de Propagação Máximo

Exemplo:

O caminho de atraso máximo é activado quando C comuta e A=1, B.D=0 e A.B=0.

$$t_{PLHtotal} = t_{PLHnot} + t_{PLHand} + t_{PLHor}$$
 ou
$$t_{PHLtotal} = t_{PHLnot} + t_{PHLand} + t_{PHLor}$$

Cálculo do Caminho com Atraso de Propagação Máximo

Exemplo (cont.):

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
AND	17ns	20ns
OR	24ns	22ns

$$t_{P \max} = \max (14ns + 17ns + 24ns; 15ns + 20ns + 22ns)$$

= $\max (55ns; 57ns) = 57ns$

Cálculo do Caminho com Atraso de Propagação Máximo (com NANDs)

Exemplo:

O caminho de atraso máximo é activado quando C comuta e A=1, B.D=1 e A.B=1.

$$t_{PLHtotal} = t_{PLHnot} + t_{PHLnand1} + t_{PLHnand2}$$
 ou
$$t_{PHLtotal} = t_{PHLnot} + t_{PLHnand1} + t_{PHLnand2}$$

Cálculo do Caminho com Atraso de Propagação Máximo (com NANDs)

Exemplo (cont.)

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	17ns	16ns

$$t_{P \max} = \max (14ns + 16ns + 17ns; 15ns + 17ns + 16ns)$$

= $\max (47ns; 48ns) = 48ns$

DISPOSITIVOS LÓGICOS ESPECIAIS

Dispositivos Especiais

- Para além das portas básicas, existem outros dispositivos lógicos que são importantes para garantir certo tipo de funcionalidades:
 - ► Buffers de três estados (*tri-state*)
 - ► Portas de passagem (*transmission gates*)

Buffers de Três Estados

■ Buffer de três estados (*tri-state*):

- Dispositivo que, para além de uma entrada e uma saída de dados, dispõe ainda de uma entrada de controlo que define o comportamento da saída:
 - Controlo = H → o valor da saída é igual ao valor que se apresenta na entrada de dados;
 - Controlo = L → o porto de saída fica em alta impedância, i.e., <u>desligada electricamente</u>.

Ctrl	In	Out	Out
L	Χ	Desligada	Desligada
Н	L	L	Н
Н	Н	Н	L

Buffers de Três Estados

Exemplos de aplicação:

▶ Linha Bidireccional:

▶ Selecção de Sinais:

Portas de Passagem

Portas de Passagem (transmission-gates):

▶ Permite, quando activada, a passagem de sinais em <u>ambos os</u> <u>sentidos</u> e em <u>toda a gama de tensão</u>, i.e., permite a passagem de sinais dentro ou fora dos níveis digitais da família lógica considerada (ex: CMOS, TTL, etc.) :

Próxima Aula

Próxima Aula

Tema da Próxima Aula:

- ► Circuitos combinatórios típicos:
 - Descodificadores
 - Codificadores
 - Multiplexeres
 - Demultiplexeres

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás