Алгоритмы и структурам данных: ДЗ #12, жадность и персистентность СПБ, CS-Center, осенний семестр 2014

Содержание

12.Base $[2/2]$		3
Задача 12А.	Декодирование [0.5 sec, 256 mb]	3
Задача 12В.	Снеговики [0.5 sec (1.5 sec), 256 mb]	4
12.Advanced	[2/4]	5
Задача 12С.	Persistant Array [0.5 sec (1 sec), 256 mb]	5
Задача 12D.	CHM [0.7 sec (1.5 sec), 256 mb]	6
Задача 12Е.	Больше чёрного! [0.5 sec (1 sec), 256 mb]	7
Задача 12F.	Ребра добавляются, граф растет [2.5 sec (5 sec), 256 mb]	8
12.Hard [0/2		9
Задача 12 G .	Приключение [0.8 sec (1.6 sec), 256 mb]	9
Задача 12Н.	Менеджер памяти [3.5 sec (6 sec), 256 mb]	10

Алгоритмы и структурам данных: ДЗ #12, жадность и персистентность СПБ, CS-Center, осенний семестр 2014

Общая информация:

Bход в контест: http://contest.yandex.ru/contest/956/

Дедлайн на задачи 17-го декабря в 23:59.

К каждой главе есть более простые задачи (base), посложнее (advanced), и сложные (hard).

В скобках к каждой главе написано сколько любых задач из этой главы нужно сдать.

Cайт курса: http://compscicenter.ru/courses/algorithms-1/2014-autumn/

Семинары ведет Сергей Владимирович Копелиович, контакты: burunduk30@gmail.com, vk.com/burunduk1

В каждом условии 2 таймлимита: для C/C++ и для Java, Python.

12.Base [2/2]

Задача 12A. Декодирование [0.5 sec, 256 mb]

В этой задаче по набору беспрефиксных кодов букв и строке, закодированной с помощью этих кодов так, как это описано в задаче "Кодирование", нужно восстановить исходную строку.

Формат входных данных

В первой строке входного файла заданы два целых числа k и l через пробел — количество различных букв, встречающихся в строке, и размер получившейся закодированной строки, соответственно. В следующих k строках записаны коды букв в формате "<letter>: <code>". Ни один код не является префиксом другого. Буквы могут быть перечислены в любом порядке. В качестве букв могут встречаться лишь строчные буквы латинского алфавита; каждая из этих букв встречается в строке хотя бы один раз. Наконец, в последней строке записана закодированная строка.

Исходная строка и коды всех букв непусты. Заданный код таков, что закодированная строка имеет минимальный возможный размер.

Формат выходных данных

В первой строке выходного файла выведите строку s. Она должна состоять из строчных букв латинского алфавита. Гарантируется, что длина правильного ответа не превосходит $100\,000$ символов.

decoding.in	decoding.out
1 1	a
a: 0	
0	
4 14	abacabad
a: 0	
b: 10	
c: 110	
d: 111	
01001100100111	

Задача 12В. Снеговики [0.5 sec (1.5 sec), 256 mb]

Зима. 2012 год. На фоне грядущего Апокалипсиса и конца света незамеченной прошла новость об очередном прорыве в областях клонирования и снеговиков: клонирования снеговиков. Вы конечно знаете, но мы вам напомним, что снеговик состоит из нуля или более вертикально поставленных друг на друга шаров, а клонирование — это процесс создания идентичной копии (клона).

В местечке Местячково учитель Андрей Сергеевич Учитель купил через интернет-магазин «Интернет-магазин аппаратов клонирования» аппарат для клонирования снеговиков. Теперь дети могут играть и даже играют во дворе в следующую игру. Время от времени один из них выбирает понравившегося снеговика, клонирует его и:

- либо добавляет ему сверху один шар;
- либо удаляет из него верхний шар (если снеговик не пустой).

Учитель Андрей Сергеевич Учитель записал последовательность действий и теперь хочет узнать суммарную массу всех построенных снеговиков.

Формат входных данных

Первая строка содержит количество действий n ($1 \le n \le 200\,000$). В строке номер i+1 содержится описание действия i:

- t m клонировать снеговика номер $t \ (0 \le t < i)$ и добавить сверху шар массой $m \ (0 < m \le 1000);$
- t \emptyset клонировать снеговика номер t ($0 \le t < i$) и удалить верхний шар. Гарантируется, что снеговик t не пустой.

В результате действия i, описанного в строке i+1 создается снеговик номер i. Изначально имеется пустой снеговик с номером ноль.

Все числа во входном файле целые.

Формат выходных данных

Выведите суммарную массу построенных снеговиков.

snowmen.in	snowmen.out
8	74
0 1	
1 5	
2 4	
3 2	
4 3	
5 0	
6 6	
1 0	

12.Advanced [2/4]

Задача 12C. Persistant Array [0.5 sec (1 sec), 256 mb]

Дан массив (вернее, первая, начальная его версия).

Нужно уметь отвечать на два запроса:

- $\circ a_i[j] = x$ создать из i-й версии новую, в которой j-й элемент равен x, а остальные элементы такие же, как в i-й версии.
 - \circ get $a_i[j]$ сказать, чему равен j-й элемент в i-й версии.

Формат входных данных

Количество чисел в массиве N ($1 \le N \le 10^5$) и N элементов массива. Далее количество запросов M ($1 \le M \le 10^5$) и M запросов. Формат описания запросов можно посмотреть в примере. Если уже существует K версий, новая версия получает номер K+1. И исходные, и новые элементы массива — целые числа от 0 до 10^9 . Элементы в массиве нумеруются числами от 1 до N.

Формат выходных данных

На каждый запрос типа get вывести соответствующий элемент нужного массива.

parray.in	parray.out
6	6
1 2 3 4 5 6	5
11	10
create 1 6 10	5
create 2 5 8	10
create 1 5 30	8
get 1 6	6
get 1 5	30
get 2 6	
get 2 5	
get 3 6	
get 3 5	
get 4 6	
get 4 5	

Задача 12D. CHM [0.7 sec (1.5 sec), 256 mb]

Ваша задача — реализовать **Persistent Disjoint-Set-Union**. Что это значит? Про **Disjoint-Set-Union**:

Изначально у вас есть n элементов. Нужно научиться отвечать на 2 типа запросов.

- ullet + ${\tt a}$ b объединить множества, в которых лежат вершины a и b
- \bullet ? a b сказать, лежат ли вершины a и b сейчас в одном множестве

Πpo **Persistent**:

Теперь у нас будет несколько копий (версий) структуры данных **Disjoint-Set-Union**. Запросы будут выглядеть так:

- + і а b запрос к i-й структуре, объединить множества, в которых лежат вершины a и b. При этом i-я структура остается не изменной, создается новая версия, ей присваивается новый номер (какой? читайте дальше)
- ullet ? i a b запрос к i-й структуре, сказать, лежат ли вершины a и b сейчас в одном множестве

Формат входных данных

На первой строке 2 числа N ($1 \le N \le 10^5$) и K ($0 \le K \le 10^5$) — число элементов и число запросов. Изначально все элементы находятся в различных множествах. Эта изначальная копия (версия) структуры имеет номер 0.

Далее следуют K строк, на каждой описание очередного запроса. Формат запросов описан выше. Запросы нумеруются целыми числами от 1 до K.

При обработки j-го запроса вида + i a b, новая версия получит номер j.

Формат выходных данных

Для каждого запроса вида? і а b на отдельной строке нужно вывести YES или NO.

snm.in	snm.out
4 7	NO
+ 0 1 2	YES
? 0 1 2	YES
? 1 1 2	YES
+ 1 2 3	NO
? 4 3 1	
? 0 4 4	
? 4 1 4	

Задача 12E. Больше чёрного! [0.5 sec (1 sec), 256 mb]

Дана прямоугольная доска $w \times h$, состоящая из квадратов 1×1 . Некоторые из квадратов отсутствуют. Нужно покрасить оставшиеся квадраты в чёрный и белый так, чтобы число чёрных было как можно больше, и чтобы никакие два одноцветных квадрата не имели общей стороны.

Формат входных данных

В первой строке ввода записаны числа w и h—размеры доски ($1 \leq w, h \leq 50$). В следующих h строках записано по w символов: «.» означает, что соответствующий квадрат отсутствует, «#»— обратное.

Формат выходных данных

Выведите доску, раскрашенную указанным образом. Среди всех оптимальных решений выведите лексикографически минимальное. Чёрный квадрат обозначается символом «b», белый — «w».

black.in	black.out
3 3	.b.
.#.	bwb
###	.b.
.#.	
6 6	b.b.b.
#.#.#.	.b.b.b
.#.#.#	b.b.b.
#.#.#.	.b.b.b
.#.#.#	b.b.b.
#.#.#.	.b.b.b
.#.#.#	
6 1	bwbwbw
######	
3 4	. w .
.#.	.b.
.#.	bwb
###	.b.
.#.	

Задача 12F. Ребра добавляются, граф растет [2.5 sec (5 sec), 256 mb]

В неориентированный граф последовательно добавляются новые ребра. Изначально граф пустой. После каждого добавления нужно говорить, является ли текущий граф двудольным.

Формат входных данных

На первой строке n — количество вершин, m — количество операций «добавить ребро». Следующие m строк содержат пары чисел от 1 до n — описание добавляемых ребер.

Формат выходных данных

Выведите в строчку m нулей и единиц. i-й символ должен быть равен единице, если граф, состоящий из первых i ребер, является двудольным.

Система оценки

Подзадача 1 (25 баллов) $1 \le n, m \le 1000$. Подзадача 2 (50 баллов) $1 \le n, m \le 50000$. Подзадача 3 (25 баллов) $1 \le n, m \le 300000$.

addedge.in	addedge.out
3 3	110
1 2	
2 3	
3 1	

12.Hard [0/2]

Задача 12G. Приключение [0.8 sec (1.6 sec), 256 mb]

Теплым весенним днем группа из *N* школьников-программистов гуляла в окрестностях города Кисловодска. К несчастью, они набрели на большую и довольно глубокую яму. Как это случилось — непонятно, но вся компания оказалась в этой яме.

Глубина ямы равна H. Каждый школьник знает свой рост по плечи h_i и длину своих рук l_i . Таким образом, если он, стоя на дне ямы, поднимет руки, то его ладони окажутся на высоте $h_i + l_i$ от уровня дна ямы. Школьники могут, вставая друг другу на плечи, образовывать вертикальную колонну. При этом любой школьник может встать на плечи любого другого школьника. Если под школьником i стоят школьники j_1, j_2, \ldots, j_k , то он может дотянуться до уровня $h_{j1} + h_{j2} + \ldots + h_{jk} + h_i + l_i$.

Если школьник может дотянуться до края ямы (то есть $h_{j1} + h_{j2} + \ldots + h_{jk} + h_i + l_i \ge H$), то он может выбраться из нее. Выбравшиеся из ямы школьники не могут помочь оставшимся. Найдите наибольшее количество школьников, которые смогут выбраться из ямы до прибытия помощи, и перечислите их номера.

Формат входных данных

В первой строке входного файла записано натуральное число N — количество школьников, попавших в яму. Далее в N строках указаны по два целых числа: рост i-го школьника по плечи h_i и длина его рук l_i . В последней строке указано целое число — глубина ямы H.

Формат выходных данных

В первой строке выведите K — максимальное количество школьников, которые смогут выбраться из ямы. Если K>0, то во второй строке выведите их номера в том порядке, в котором они вылезают из ямы. Школьники нумеруются с единицы в том порядке, в котором они заданы во входном файле. Если существует несколько решений, выведите любое.

Система оценки

Подзадача 1 (50 баллов) $n \leqslant 2\,000$ $1 \leqslant l_i, h_i, H \leqslant 10^5$ Подзадача 2 (50 баллов) $n \leqslant 100\,000$ $1 \leqslant l_i, h_i, H \leqslant 10^9$

advent.in	advent.out
2	0
10 4	
5 2	
20	
6	4
6 7	5 2 4 1
3 1	
8 5	
8 5	
4 2	
10 5	
30	

Задача 12H. Менеджер памяти [3.5 sec (6 sec), 256 mb]

Одно из главных нововведений новейшей операционной системы Indows 7 — новый менеджер памяти. Он работает с массивом длины N и позволяет выполнять три самые современные операции:

- \bullet сору(a, b, 1) скопировать отрезок длины [a, a+l-1] в [b, b+l-1]
- ullet sum(1, r) посчитать сумму элементов массива на отрезке [l,r]
- ullet print(1, r) напечатать элементы с l по r, включительно

Вы являетесь разработчиком своей операционной системы, и Вы, безусловно, не можете обойтись без инновационных технологий. Вам необходимо реализовать точно такой же менеджер памяти.

Формат входных данных

Первая строка входного файла содержит целое число N ($1 \le N \le 1000000$) — размер массива, с которым будет работать Ваш менеджер памяти.

Во второй строке содержатся четыре числа $1 \leq X_1, A, B, M \leq 10^9 + 10$. С помощью них можно сгенерировать исходный массив чисел X_1, X_2, \cdots, X_N . $X_{i+1} = (A * X_i + B) \mod M$

Следующая строка входного файла содержит целое число K ($1 \le K \le 200\,000$) — количество запросов, которые необходимо выполнить Вашему менеджеру памяти.

Далее в K строках содержится описание запросов. Запросы заданы в формате:

- \bullet сру $a\ b\ l$ для операции сору
- sum l r для операции sum $(l \leqslant r)$
- out $l \ r$ —для операции print $(l \leqslant r)$

Гарантируется, что суммарная длина запросов **print** не превышает 3 000. Также гарантируется, что все запросы корректны.

Формат выходных данных

Для каждого запроса sum или print выведите в выходной файл на отдельной строке результат запроса.

memory.in	memory.out
6	1 2 6 1 2 6
1 4 5 7	18
8	1 2
out 1 6	3
sum 1 6	1 1 2 1 2 6
cpy 1 3 2	13
out 3 4	
sum 3 4	
cpy 1 2 4	
out 1 6	
sum 1 6	