EES216: Circuit Analysis Midterm Mock Exam

curated by The Peanuts

NT	ID	0	Seat No	
Name	11)	Section	Seat No	
1 (01110	1			

Conditions: Semi-Closed Book

Directions:

- 1. This exam has 15 pages (including this page).
- 2. Calculators are permitted (You may bring 100 of them. Haha)
- 3. Write your name clearly at the top of each page.
- 4. Reading the problem is optional but highly recommended.
- 5. You may bring one A3 sheet of note, which will magically become illegible the moment the exam begins.
- 6. Tears shed on your answer sheet may cause short circuits. Please cry responsibly.

Find the equivalent resistance R_{ab} in the circuit.

For an ideal operational amplifier (op-amp), state the values of the following characteristics and briefly explain their significance:

- 1. Open-loop voltage gain (A)
- 2. Input resistance (R_i)
- 3. Output resistance (R_o)

Let a be the number of branches in the circuit, b be the number of nodes, and c be the number of meshes. Then, compute the value of:

$$a^2 + b^2 - c$$

Take the last digit of your student ID and compute:

(last digit) mod 3

Based on the result:

- If the result is 0, find a limitation of **Mesh Analysis**.
- If the result is 1, find a limitation of **Node Analysis**.
- If the result is 2, find a limitation of **Superposition Theorem**.

Determine the value of \mathcal{C}_T in the circuit

Find the total inductance \mathcal{L}_T in the circuit, All inductors are in millihenrys.

The current waveform in a 40-mH inductor is shown below. Derive the waveform for the inductor voltage.

Given the circuit, find the power dissipated in the 3- Ω resistor and the energy stored in the capacitor.

Find V_o in the circuit.

Determine the loop currents I_1, I_2, I_3, I_4 in the given electrical circuit and express the solution in matrix form.

$$\begin{bmatrix} --- & --- & --- & --- \\ --- & --- & --- & --- \\ --- & --- & --- & --- \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix} = \begin{bmatrix} --- \\ --- \\ --- \\ --- \end{bmatrix}$$

Obtain the Thevenin equivalent circuit at terminal.

Find V_o in the circuit.

Find Norton equivalent circuit.

Find R_L for maximum power transfer and the maximum power that can be transferred to the load.

Given the summing amplifier shown below, find the values of R_2 that will produce an output voltage of -3 V.

Consider the circuit. The switch opens at t = 0. Find $v_o(t)$ for t > 0.

Assume that the circuit reaches steady state after a duration equal to five times the time constant. Calculate the exact time at which the circuit reaches steady state.

The switch in the circuit shown below has been in position a for a long time. At t=0, the switch moves instantaneously to position b.

- Find the numerical expression for $i_o(t)$ when $t \ge 0$.
- Find the numerical expression for $v_o(t)$ when $t \ge 0^+$.

