Assignment-5 Due date: 26th March, 2022

Let's explore why in the RSA trapdoor permutation every party has to be assigned a different modulus $\mathbf{n} = \mathbf{pq}$. Suppose we try to use the same modulus $\mathbf{n} = \mathbf{pq}$ for everyone. Every party is assigned a public exponent $\mathbf{e_i} \in \mathbf{Z}$ and a private exponent $\mathbf{d_i} \in \mathbf{Z}$ such that $\mathbf{e_i} \cdot \mathbf{d_i} = 1 \text{ mod } \phi(\mathbf{n})$. At first this appears to work fine: to sign a message $\mathbf{m} \in \mathbf{M}$, Alice would publish the signature $\sigma_a \leftarrow \mathbf{H}(\mathbf{m})^{da} \in \mathbf{Z_n}$ where $\mathbf{H} : \mathbf{M} \to \mathbf{Z}^*_n$ is a hash function. Similarly, Bob would publish the signature $\sigma_b \leftarrow \mathbf{H}(\mathbf{m})^{db} \in \mathbf{Z_n}$. Since Alice is the only one who knows $\mathbf{d_a} \in \mathbf{Z}$ and Bob is the only one who knows $\mathbf{d_b} \in \mathbf{Z}$, this seems fine. Let's show that this is completely insecure: Bob can use his secret key $\mathbf{d_b}$ to sign messages on behalf of Alice.

- (1) Show that Bob can use his public-private key pair (e_b, d_b) to obtain a multiple of $\phi(n)$. Let us denote that integer by V.
- (2) Now, suppose Bob knows Alice's public key $\mathbf{e_a}$. Show that for any message $\mathbf{m} \in \mathbf{M}$, Bob can compute $\mathbf{\sigma} \leftarrow \mathbf{H}(\mathbf{m})^{1/ea} \in \mathbf{Z_n}$. In other words, Bob can invert Alice's trapdoor permutation and obtain her signature on \mathbf{m} . Hint: First, suppose $\mathbf{e_a}$ is relatively prime to \mathbf{V} . Then Bob can find an integer \mathbf{d} such that $\mathbf{d} \cdot \mathbf{e_a} = 1 \mod \mathbf{V}$. Show that \mathbf{d} can be used to efficiently compute $\mathbf{\sigma}$.
- (3) Next, show how to make your algorithm work even if e_a is not relatively prime to V.