MAXIMA AND MINIMA

Fermat's theorem

If f has a relative extremum at a, then either f'(a) = 0 or f'(a) does not exist.

Example Find the intervals on which the following function is

- a) Increasing and Decreasing or Constant
- b) Concave up and Concave down

Also find the point of inflection, where the concavity changes.

$$f(x) = 4x^3 - 12x + 2$$

Solution: a)

The first derivative of the given function is,

$$f'(x) = 12x^2 - 12 = 12(x - 1)(x + 1)$$
(1)

So the derivative becomes zero at x = -1 and x = 1

Interval	12(x-1)(x+1)	Sign of $f'(x)$	f
x < -1	(+)(-)(-)	+	Increasing
-1 < x < 1	(+)(-)(+)	_	Decreasing
<i>x</i> > 1	(+)(+)(+)	+	Increasing

b) The second derivative of the function is given by,

$$f''(x) = 24x \tag{2}$$

Semester: Summer 2014

So the second derivative becomes zero at x = 0

Interval	24 <i>x</i>	Sign of $f''(x)$	f	Conclusion
x < 0	(+)(-)	_	Concave down	f has a point of
x > 0	(+)(+)	+	Concave up	Inflection at $x = 0$

As the second derivative changes sign left and right to the point x = 0, so the function has a point of inflection thereat.

Example Use

- a) First derivative test
- b) Second derivative test

to find the relative/local extrema (maxima or minima) values of the following function

$$f(x) = 4x^3 - 12x + 2$$

Solution: a)

The first derivative of the given function is,

$$f'(x) = 12x^2 - 12 = 12(x - 1)(x + 1)$$
(1)

The derivative becomes zero at x = -1 and x = 1 so the critical points of f are,

$$x = -1,$$
 1

Interval	12(x-1)(x+1)	Sign of $f'(x)$	f	Conclusion
x < -1	(+)(-)(-)	+	Increasing	Relative maxima at
-1 < x < 1	(+)(-)(+)	_	Decreasing	x = -1
-1 < x < 1	(+)(-)(+)	_	Decreasing	Relative minima at
1 < <i>x</i>	(+)(+)(+)	+	Increasing	x = 1

b)

The second derivative of the given function is given by,

$$f''(x) = 24x \tag{2}$$

Now, for x = -1

$$f''(-1) = -24 < 0$$

Since f''(-1) < 0, f has a local maximum value at x = -1 and the value is

$$f(-1) = 4(-1)^3 - 12 \times (-1) + 2 = -4 + 12 + 2 = 10$$

Similarly, for x = 1

Course Code: MAT110 Semester: Summer 2014

$$f''(1) = 24 > 0$$

Since, f''(1) > 0, f has a local minimum value at x = 1 and the value is

$$f(1) = 4(1)^3 - 12 \times (1) + 2 = 4 - 12 + 2 = -6$$

Ans. Local maximum value 10 at x = -1, local minimum value -6 at x = 1.

Problem Use

- a) First derivative test
- b) Second derivative test

to find the relative/local extrema (maxima or minima) values of the following function

$$f(x) = 2x^3 + 3x^2 - 36x + 5$$

Example Find the intervals on which the following function is increasing, decreasing, concave up, concave down, relative extrema, and point of inflection (if any).

$$f(x) = 4x^3$$

Solution: The first and the second derivatives of the given function are,

$$f'(x) = 12x^2 \tag{1}$$

$$f''(x) = 24x \tag{2}$$

The critical points of f are given by,

$$f'(x) = 0 \Rightarrow 12x^2 = 0 \Rightarrow x = 0$$

Interval	$12x^{2}$	Sign of $f'(x)$	f
<i>x</i> < 0	(+)(+)	+	Increasing
x > 0	(+)(+)	+	Increasing

As the first derivative does not change sign left and right to the point x = 0, so the function has no relative extrema at the critical point.

Interval	24 <i>x</i>	Sign of $f''(x)$	f	Conclusion
x < 0	(+)(-)	+	Concave down	f has a point of
x > 0	(+)(+)	+	Concave up	Inflection at $x = 0$

Problem Find the extreme (maximum or minimum) values and the point of inflection (if any) of the function

$$f(x) = x^3 - 2x^2 + x + 1$$

Example Find the intervals on which the following function is increasing, decreasing, concave up, concave down, relative extrema, and point of inflection (if any).

$$f(x) = -5x^4$$

Solution: The first and the second derivatives of the given function are,

$$f'(x) = -20x^3 \tag{1}$$

$$f''(x) = -60x^2 (2)$$

The critical points of *f* are given by,

$$f'(x) = 0 \Rightarrow -20x^3 = 0 \Rightarrow x = 0$$

Interval	$-20x^{3}$	Sign of $f'(x)$	f
<i>x</i> < 0	(-)(-)	+	Increasing
x > 0	(-)(+)	_	Increasing

As the first derivative does not change sign left and right to the point x = 0, so the function has no relative extrema at the critical point.

Interval	24 <i>x</i>	Sign of $f''(x)$	f	Conclusion
x < 0	(+)(-)	+	Concave down	f has a point of
x > 0	(+)(+)	+	Concave up	Inflection at $x = 0$

As the second derivative changes sign left and right to the point x = 0, so the function has a point of inflection at the critical point.

Mohammad Hassan Murad Lecturer, MNS BRAC University Course Title: Mathematics I Differential Calculus Course Code: MAT110

Example Find the intervals on which the following function is increasing, decreasing, concave up, concave down, relative extrema, and point of inflection (if any).

$$f(x) = 3x^5 - 5x^3 + 8$$

Solution: The first and the second derivatives of the given function are,

$$f'(x) = 15x^4 - 15x^2 = 15x^2(x-1)(x+1)$$
 (1)

$$f''(x) = 60x^3 - 30x = 30x(2x^2 - 1) = 30x(\sqrt{2}x - 1)(\sqrt{2}x + 1)$$
 (2)

The critical points of *f* are given by,

$$f'(x) = 0 \Rightarrow 15x^2(x-1)(x+1) = 0 \Rightarrow x = -1,$$
 0, 1

Interval	$15x^2(x-1)(x+1)$	Sign of $f'(x)$	f	Conclusion	Conclusion
<i>x</i> < −1	(+)(+)(-)(-)	+	Increasing	f has a relative	f has a relative
-1 < x < 0	(+)(+)(-)(+)	_	Decreasing	maxima at $x = -1$	maxima at $x = -1$
-1 < x < 0	(+)(+)(-)(+)	_	Decreasing	f has no relative	f has no relative
0 < x < 1	(+)(+)(-)(+)	_	Decreasing	extrema at $x = 0$	extrema at $x = 0$
0 < x < 1	(+)(+)(-)(+)	_	Decreasing	f has a relative	f has a relative
x > 1	(+)(+)(+)(+)	+	Increasing	minima at $x = 1$	minima at $x = 1$

So the second derivative becomes zero at $x = -\sqrt{2}/2$, 0, $\sqrt{2}/2$, and as x = 0 is only the critical point it is required to examine the change of sign of f''(x) left and right to x = 0.

Interval	$30x(\sqrt{2}x-1)(\sqrt{2}x+1)$	Sign of $f''(x)$	f	Conclusion
$-\sqrt{2}/2 < x < 0$	(+)(-)(+)(+)	_	Concave down	f has a point of
$0 < x < \sqrt{2}/2$	(+)(+)(+)(+)	+	Concave up	Inflection at $x = 0$

As the second derivative changes sign left and right to the point x = 0, so the function has a point of inflection at the critical point.

Course Code: MAT110

therefore the point is (0,8)

f has a local minimum value at x = 1 and the value is

$$f(1) = 3(1)^5 - 5(1)^3 + 8 = 3 - 5 + 8 = 6$$

For, $x = -\sqrt{2}/2$

$$f\left(-\frac{\sqrt{2}}{2}\right) = 3\left(-\frac{\sqrt{2}}{2}\right)^5 - 5\left(-\frac{\sqrt{2}}{2}\right)^3 + 8$$

$$= -3\left(\frac{4\sqrt{2}}{32}\right) + 5\left(\frac{2\sqrt{2}}{8}\right) + 8 = -3\left(\frac{\sqrt{2}}{8}\right) + 5\frac{\sqrt{2}}{4} + 8 = 8 + 7\frac{\sqrt{2}}{4}$$

Similarly, for $x = \sqrt{2}/2$

$$f\left(\frac{\sqrt{2}}{2}\right) = 8 - 7\frac{\sqrt{2}}{4}$$

Ans. *f* has local maximum value 10 at x = -1, local minimum value 6 at x = 1 and a points of inflection $(0,8), (-\sqrt{2}/2, 8 + 7\sqrt{2}/4), (\sqrt{2}/2, 8 - 7\sqrt{2}/4)$.

Example Find the intervals on which the following function is increasing, decreasing, concave up, concave down, relative extrema, and point of inflection (if any).

$$f(x) = xe^{-x}$$

Solution: The first and the second derivatives of the given function are,

$$f'(x) = e^{-x} - xe^{-x} = (1 - x)e^{-x}$$
 (1)

$$f''(x) = -e^{-x} - (1-x)e^{-x} = (x-2)e^{-x}$$
 (2)

The critical points of *f* are given by,

$$f'(x) = 0 \Rightarrow (1 - x)e^{-x} = 0 \Rightarrow x = 1$$

Interval	$(1-x)e^{-x}$	Sign of $f'(x)$	f	Conclusion	f(1)
<i>x</i> < 1	(+)(+)	+	Increasing	f has a relative	a-1
x > 1	(-)(+)	_	Decreasing	maximum at $x = 1$	е

 $(1, e^{-1})$ is the relative maximum point.

So the second derivative becomes zero at x = 2 and it is required to examine the change of sign of f''(x) left and right to x = 2.

Interval	$(x-2)e^{-x}$	Sign of $f''(x)$	f	Conclusion	f(2)
<i>x</i> < 2	(-)(+)	_	Concave down	f has a point of	2.0-2
x > 2	(+)(+)	+	Concave up	Inflection at $x = 2$	2e -

As the second derivative changes sign left and right to x = 2, so the function has a point of inflection at the critical number and the point is $(2, 2e^{-2})$.

Ans. f has local maximum value e^{-1} at x = 1, and a point of inflection $(2, 2e^{-2})$.

Example Using *Second derivative test* to find the maximum, minimum values and the point of inflection of the following function

$$f(x) = x^2 e^{-x}$$

Solution: Given that,

$$f(x) = x^2 e^{-x} \tag{1}$$

Now differentiating (1) w. r. t. x we get,

$$f'(x) = 2xe^{-x} - x^2e^{-x}$$
$$f'(x) = xe^{-x}(2-x)$$
 (2)

Let,

$$f'(x) = 0 \Rightarrow xe^{-x}(2-x) = 0 \Rightarrow x(2-x) = 0$$
 $e^{-x} \neq 0$

Solving the above equation, we get,

$$x = 0, 2$$

Course Title: Mathematics I Differential Calculus Course Code: MAT110 Semester: Summer 2014 Again differentiating (2) w. r. t. x we get,

$$f''(x) = e^{-x}(2-x) - xe^{-x}(2-x) - xe^{-x} = e^{-x}(2-x-2x+x^2-1)$$
$$f''(x) = e^{-x}(1-3x+x^2)$$
 (3)

Let,

$$f''(x) = 0 \Rightarrow x^2 - 3x + 1 = 0 \qquad [e^{-x} \neq 0]$$

Solving the above equation, we get,

$$x = \frac{3 \pm \sqrt{9 - 4}}{2} = \frac{3 \pm \sqrt{5}}{2} = \frac{3 + \sqrt{5}}{2}, \qquad \frac{3 - \sqrt{5}}{2}$$

Now, for x = 0

$$f''(0) = 1$$

Since f''(0) > 0, f has a local minimum value at x = 0 and the value is

$$f(0) = 0$$

Again, for x = 2

$$f''(2) = -e^{-2}$$

Since f''(0) < 0, f has a local maximum value at x = 2 and the value is

$$f(2) = 4e^{-2}$$

Points of Inflection

Substituting $x = (3 - \sqrt{5})/2$ into the given function

$$f\left(\frac{3-\sqrt{5}}{2}\right) = \left(\frac{3-\sqrt{5}}{2}\right)^2 \exp\left(-\frac{3-\sqrt{5}}{2}\right) \approx 0.099578$$
$$= \left(7-\sqrt{5}\right) \exp\left(-\frac{3-\sqrt{5}}{2}\right)$$

Similarly, for $x = (3 + \sqrt{5})/2$

$$f\left(\frac{3+\sqrt{5}}{2}\right) = \left(\frac{3+\sqrt{5}}{2}\right)^2 \exp\left(-\frac{3+\sqrt{5}}{2}\right) \approx 0.49998$$
$$= \left(7+\sqrt{5}\right) \exp\left(-\frac{3+\sqrt{5}}{2}\right)$$

Therefore the point is $(2, 2e^{-2})$

Ans. The function f has local maximum value $4e^{-2}$ at x=2, and a points of inflection

$$\left(\frac{3-\sqrt{5}}{2},\left(7-\sqrt{5}\right)\exp\left(-\frac{3-\sqrt{5}}{2}\right)\right),\left(\frac{3+\sqrt{5}}{2},\left(7+\sqrt{5}\right)\exp\left(-\frac{3+\sqrt{5}}{2}\right)\right)$$

Problem Find the extreme (maximum or minimum) values and the point of inflection (if any) of the function

$$1. f(x) = 12x^{5} - 45x^{4} + 40x^{3} + 6 \qquad 2. f(x) = x^{4} - 2x^{3} - 3x^{2} + 4x + 4 \qquad 3. f(x) = x^{3} + 2x^{2} - 4x - 8$$

$$4. f(x) = x^{3} - 6x^{2} + 9x + 6 \qquad 5. f(x) = xe^{-2x}, \quad xe^{-\frac{x}{2}}, \qquad 6. f(x) = x^{3} + \frac{48}{x}$$

$$x^{2}e^{-2x}, \quad x^{3}e^{-\frac{x}{2}}$$

Problem Find the minimum distance from the point (4, 2) to the parabola $y^2 = 8x$.

② **Air Pollution** The level of ozone, an invisible gas that irritates and impairs breathing, which was present in the atmosphere on a certain day in May in the city of Riverside is approximated by

$$A(t) = 1.0974t^3 - 0.0915t^4 \qquad 0 \le t \le 11$$

where A(t) is measured in pollutant standard index (PSI) and t is measured in hours, with corresponding to 7 A.M. Use the *Second Derivative Test* to show that the function has a relative maximum at approximately. Interpret your results.

Course Title: Mathematics I Differential Calculus Course Code: MAT110 Semester: Summer 2014