PATENT ABSTRACTS OF JAPAN

(11)Publication numb r:

11-317503

(43) Date of publication of application: 16.11.1999

(51)Int.CI.

HO1L 27/10 G06F 15/78 H01L 21/8247 H01L 29/788 H01L 29/792

(21)Application number: 11-035391

(71)Applicant: HITACHI LTD

(22)Date of filing:

15.02.1999

(72)Inventor: KURODA KENICHI

(54) SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the functions of a semiconductor integrated circuit device which is made of a single—chip microcomputer.

SOLUTION: A CPU 100, a SRAM 108 and a DRAM 109 are integrated on the same semiconductor substrate. Next, the SRAM 108 is used for rapid data transfer in a small capacity, while the DRAM 109 is used for slow data transfer but in a large memory capacity, so that a RAM which obviates the mutual defects of the SRAM 108 hard to have the large capacity as well as the slow transfer velocity of the DRAM 109 can be obtained.

LEGAL STATUS

[Date of request for examination] 15.02.1999
[Date of sending the examiner's decision of 13.06.2000

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3358719
[Date of r gistration] 11.10.2002
[Number of appeal against examiner's decision 2000-10566

of rejecti n]

[Date of requesting appeal against examiner's 12.07.2000

d cisi n of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Semiconductor integrated circuit equipment characterized by accumulating CPU, and SRAM and DRAM on the same semiconductor substrate.

[Claim 2] Semiconductor integrated circuit equipment according to claim 1 characterized by Above CPU containing a control section, operation part, and a register at least.

[Claim 3] Semiconductor integrated circuit equipment according to claim 1 or 2 characterized by connecting Above SRAM with Above CPU through an internal bus, and operating as a cache memory.

[Claim 4] Semiconductor integrated circuit equipment given in any 1 term of the claim 1 characterized by the capacity of Above SRAM being smaller than the capacity of Above DRAM, or a claim 3.

[Claim 5] Above CPU, Above SRAM, and Above DRAM are semiconductor integrated circuit equipment given in any 1 term of the claim 1 characterized by connecting mutually through an internal bus, or a claim 4.

[Claim 6] Semiconductor integrated circuit equipment which DRAM is formed in the 1st field of the same base, SRAM is formed in the 2nd field, and CMISFET is formed in the 3rd field, and is characterized by the capacity of Above DRAM being larger than the capacity of SRAM.

[Claim 7] Above CMISFET is semiconductor integrated circuit equipment according to claim 6 characterized by constituting some circuits of CPU at least.

[Claim 8] Semiconductor integrated circuit equipment according to claim 6 or 7 characterized by forming the gate electrode of NMISFET of Above SRAM, and the gate electrode of Above CMISFET of the same conductor layer.

[Translation done.]

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] this invention is applied to the semiconductor integrated circuit equipment which consists of a 1 chip microcomputer especially about the manufacture method of semiconductor integrated circuit equipment, and relates to effective technology.

[0002]

[Description of the Prior Art] 1 chip microcomputer which carried a control section, operation part, the storage section, and the I/O section on the same semiconductor substrate is widely used for industrial use or household electric appliances as a cheap and highly efficient element for control as indicated by the Masaharu Hayakawa work "the foundation and the applied technology of an one chip microcomputer" published from CQ publication incorporated company on April 1, Showa 59. The storage section of the aforementioned 1 chip microcomputer consists of a ROM (Read Only Memory) a program, dictionary data, etc. for various information processing are remembered to be, and RAM (Random Access Memory) where the data in the middle of the program and operation under execution are mainly stored temporarily.

[0003] Although the mask ROM which usually writes in data into a manufacturing process is used as the above ROM, in order to make system debug etc. easy, EPROM (Erasable and Programmable ROM) which can write in data after manufacture is also used widely. Since EPROM can perform elimination of the data by irradiating ultraviolet rays, any number of tim s, it can perform informational rewriting and can obtain 1 chip microcomputer with big flexibility. [0004]

[Problem(s) to be Solved by the Invention] this invention person found out the following trouble. as a result of examining 1 chip microcomputer equipped with EPROM as a ROM. [0005] Rewriting of the data in Above EPROM is performed by irradiating ultraviolet rays. For this reason, after incorporating the aforementioned 1 chip microcomputer into electronic equipment, the information on EPROM is not easily rewritable. For this reason, in EPROM, there was a problem that the data storage which changes with time like the control data of the electronic equipment by which feedback control is made, for example was not made. And since the data for feedback control must be memorized in 1 chip microcomputer in preparation for the time of resuming operation after the power supply of electronic equipment is intercepted, it is surely necessary to memorize them by nonvolatile memory. Then, in order to memorize the control data which changes with time, it is possible to use EEPROM (Electrically Easable and Programmable ROM). If it is this EEPROM, the data in it can be rewritten according to the control signal from the control section of 1 chip microcomputer on a system, and the aforementioned data can be memorized also at the time of power supply interception. [0006] However, the thing performed to the memory cell of EEPROM when it has a floating-gate electrode like the memory cell of EPROM and informational storage pours in a carrier into the floating-gate electrode, Although there is a memory cell of the thing and two types which are p rformed when the gate insulator layer under the gate electrode of MISFET is formed by the silicon-oxide film and the two-layer film of a silicon nitride film and informational storage carries

out the trap of the carrier to the trap level between the silicon nitride film and silicon-oxide film MISFET for storage which has the portion into which any memory cell accumulates the charge used as information, Since it consists of two MISFET(s) with the switch MISFET for connecting to the data line MISFET for storage chosen at the time of writing, elimination, and read-out op ration, there is a problem that mem ry cell size becomes large. For this reason, alth ugh the function of Above EEPROM is excellent, in order to make mass nonvolatile information momentae in 1 chip microcomputer of the limited chip size, there is a problem that it is difficult to prepare EEPROM.

[0007] moreover — since the tunnel current which impresses the high voltage to a thin tunnel insulator layer, and flows the inside of the tunnel insulator layer performs the writing and elimination of the information on MISFET for storage in the memory cell of EEPROM — the above — the reliability of a thin tunnel insulator layer became a problem, and there was a problem that it was difficult to attain large capacity—ization of EEPROM [0008] The purpose of this invention is by raising the flexibility of ROM with which the semiconductor integrated circuit equipment which consists of a 1 chip microcomputer is equipped to offer the technology which can be improved in the function of the semiconductor int grated circuit equipment.

[0009] Other purposes of this invention are to offer the technology in which the manufacturing process of the semiconductor integrated circuit equipment which consists of a microcomputer equipped with EPROM and EEPROM can be reduced. The other purposes and the new feature will become clear by description and the accompanying drawing of this specification at the aforementioned row of this invention.

[0010]

[Means for Solving the Problem] It will be as follows if the outline of a typical thing is briefly explained among invention indicated in this application. Namely, it sets to the semiconductor integrated circuit equipment which constitutes the microcomputer equipped with a central processing unit and the non-volatile memory program data, dictionary data, etc. of the central processing unit are remembered to be on one semiconductor chip. The aforementioned non-volatile memory writes in information electrically, and consists of the 1st non-volatile memory which eliminates the written-in information by irradiation of ultraviolet rays, and the 2nd non-volatile memory which performs informational writing electrically and eliminates the written-in information electrically.

[0011] Moreover, form the memory cell of EPROM in the 1st field of a semiconductor substrate, and MISFET for storage in the memory cell of EEPROM is formed in the 1st field of the above of the aforementioned semiconductor substrate, and the 2nd different field. It is the manufacture method of the semiconductor integrated circuit equipment which constitutes the microcomput r equipped with the process which forms the switch MISFET in the memory cell of Above EEPROM in the 3rd field contiguous to the 2nd field of the above of the aforementioned semiconductor substrate. The process which forms the 1st gate insulator layer in the front face of the 1st, the 2nd, and 3rd fields of the aforementioned semiconductor substrate, respectively, The process which forms the source and a drain in the predetermined portion under the aforementioned 1st gate insulator layer of the above 2nd and the 3rd field. The process which forms a floating-gate electrode on the 1st gate insulator layer of the above 1st and the 2nd field, and forms a gate electrode on the 1st gate insulator layer of the 3rd field of the above, The process which forms the 2nd gate insulator layer in the front face of the floating-gate electrode of the 1st field of the above, and the 2nd field, It has the process which forms a control gate electrode on the 2nd gate insulator layer of the above 1st and the 2nd field, respectively, and the process which forms the source and a drain in the predetermined portion under the 1st gate insulator layer of the 1st field of the above, and each aforementioned process is made in th aforementioned sequence.

[0012] Since the control data with required memorizing when program data and dictionary data which need big storage capacity are memorized by EPROM, and the contents of data change with time like the control data of feedback control and a power supply is intercepted is memorized by EEPROM according to the means mentioned above, the function of the

semiconductor integrated circuit equipment which consists of a 1 chip microcomputer can be improv d.

[0013] Moreover, since a part of process which forms the memory cell of EPROM on the semiconductor integrated circuit equipment which consists of a 1 chip microcomputer, and process which forms the memory cell of EEPROM are shared, the manufacturing process of the aforementioned semiconductor integrated circuit equipment can be reduced.

[0014]

[Embodiments of the Invention] Hereafter, the form of 1 operation of this invention is explained using a drawing. <u>Drawing 1</u> is the block diagram of the semiconductor integrated circuit equipment which consists of a 1 chip microcomputer of the form of 1 operation of this invention.

[0015] It is the semiconductor chip which, as for 1, the microcomputer consists of in drawing 1. CPU 100 OSC (Microprocessor) 101 I/O (Transmitter) 102 SI (Input/output port) 103 TIMER (Serial interface) 104 EPROM (Timer) 105 VCXC (armature-voltage control circuit)106, EEPROM (erection RIKARI erasable & programmable ROM)107, SRAM (Erasable & programmable ROM) (Static random access memory) It has 108, DRAM (dynamic random access memory)109, and I/O BUS(input/output bus) 110. CPU100 consists of a control section, operation part, and various registers. Although OSC101 is not restricted, it forms the clock pulse needed in CPU100 by the reference frequency signal which forms a highly precise reference frequency signal using the quartz resonator Xtal prepared in the exterior of a semiconductor chip 1, and was formed here. I/O102 contains the direction register of data transfer in the interior. The control circuit required for read-out, the writing, or elimination operation of the information on a storage element is contained in EPROM105, EEPROM107, SRAM108, and DRAM109, VCXC106 controls word line voltage required for write-in operation of EPROM105, or write-in elimination operation of EEPROM107, or data-line voltage. SI103 consists of registers of three terminals, a serial clock, serial in, and serial out, and a predetermined bit, and is used as input/output port for performing data transfer between these microcomputers in the case of using two or more microcomputers. TIMER104 is used in order to set up time required for multi-processing, such interruption processing. These CPUs100, I/O102, and SI103, TIMER104, EPROM105, VCXC106, EEPROM107. SRAM108 and DRAM109 are mutually connected by I/O BUS110 focusing on CPU100. In addition, I/O BUS110 consists of three, a data bus, an address bus, and a control bus.

[0016] As for the above EPROM 105, a program, dictionary data, etc. for various information processing are memorized. And EPROM105 has comparatively little number of times of rewriting of data in the aforementioned program, dictionary data, etc., and it uses for storage of what needs large capacity. EEPROM107 is used also for the data storage which needs making it memorize also at the time of power supply interception in the control data of the feedback control which changes [storage / of the program for various information processing, dictionary data, etc.] with time, the data in the middle of the program and operation under execution, or the data in the register of CPU100. Moreover, in the data which EPROMs105, such as a program f r various information processing and dictionary data, can also be made to memorize, rewriting of data is performed frequently and EEPROM107 is used for the data storage which data capacity does not have.

[0017] Write-in operation of the above EPROM 105 is performed by the following procedure. That is, with various kinds of control signals taken out from CPU100, while making it the operating state which can write in EPROM105, the armature-voltage control circuit (VCXC) 106 is operated, and predetermined word line voltage or predetermined data-line voltage is generated with the voltage impressed for usual operation of the write-in voltage or the microcomputer impressed from the utsid.

[0018] Next, CPU100 writes predetermined data in the predetermined address of EPROM105 based on the data inputted through RAM (SRAM108, DRAM109) the data inputted into direct EPROM105 from the exterior through I/O102, or at once. After the writing of the various data to EPROM105 is completed, CPU100 terminates write—in operation of EPROM105, and operation of the armature—voltage control circuit 106.

[0019] Next, the writing and elimination operation of the above EEPROM 107 are explained. The writing and elimination operation of EEPROM107 generate predetermined word line voltage or predetermined data-line voltage with the voltage for usual operation of the write-in voltage, the elimination voltage, or the microcomputer which the armature-voltage control circuit 106 is operated and is impressed from the outside while they write in EEPROM106 or making them into the operating state in which ***** is possible with the various control signals taken out from CPU100. Next, CPU100 carries out writing of predetermined data, elimination, or rewriting of to the predetermined address of EEPROM107 based on the data inputted through SRAM108 or DRAM109 the data inputted into direct EEPROM107 from the exterior through I/O102, or at once. After the writing of the various data to this EEPROM107, elimination, or rewriting of data is completed, CPU100 terminates the writing or ***** operation of EEPROM107. [0020] The usual operation of the microcomputer of the form of this operation outputs the data to the I/O102 shell exterior, after performing predetermined processing to the various data inputted into I/O102 based on various control signals, and the program and dictionary data which are memorized by EPROM105 and EEPROM107. The predetermined address is made to memorize each aforementioned data which is needed at the time of re-operation after data with required memorizing also at the time of power supply interception, i.e., power supply interception, in the various data inputted into I/O102, the data with which predetermined processing was performed, or the data in the register of CPU100 here according to the operations sequence of EEPROM107 mentioned above. You may make it make EEPROM107 memorize the last data after performing the storage to this EEPROM107, making EEPROM107 memorize the middle data for every processing in each place or completing predetermined processing. [0021] On the other hand, when unusual power supply interception occurs according to accident, the predetermined address is made to memorize the microcomputer of the form of this operation according to the operating procedure of EEPROM107 which mentioned above the predetermined data in the various data which are needed when starting operation again, i.e., the various data inputted into I/O102, the data with which predetermined processing was performed, or the data in the register of CPU100. Thus, the microcomputer of the form of this operation has the supply voltage backup circuit which supplies voltage required for the operation in order to operate EEPROM107 normally also at the time of power supply interception. Although especially this supply voltage backup circuit is not restricted, it consisted of capacity and a control circuit, could be constituted by the same semiconductor chip as the microcomputer of the form of this operation, and may be constituted on the electronic equipment which makes a power supply the same including the microcomputer of the form of this operation. [0022] Next, circuit operation of the above EPROM 105 is explained using drawing 1 and drawing 3. Drawing 3 is the representative circuit schematic having shown the outline composition of the circuit of EPROM105 carried in the microcomputer of the form of this operation. [0023] a logic voltage system [like supply voltage Vcc, 5V / for example, /,] whose EPROM105 of the microcomputer of the form of this operation is, and the write-in voltage Vpp or the writein voltage Vpp — the armature-voltage control circuit 106 — a pressure up or about ten lowered the pressure of and obtained — it consists of high voltage VCX of V — writing in business — the voltage system is used as the power supply of operation At the time of the usual read-out operation, it operates by the logic voltage system. [0024] The operation is controlled by the address signal which EPROM105 intervenes the address input terminal Xo, Xi and Yo, or Yj, and is supplied, the chip enable signal supplied through the control terminals CE, OE, and PGM, the output enable signal, and the program signal, These control signals are relayed by the control circuit in EPROM105 which is not illustrated by control from CPU100, or are formed.

[0025] EPROM105 in the form of this operation performs read— ut or write—in operation of a memory c II per 8 bits. Memory cell array M-ARY writes in electrically, and is constitut d by two or more MISFETQEP1 eliminated by irradiation of ultraviolet rays or QEP4, two or more word lines containing a w rd line W0 or W1, and two r more data lines containing the data line D0 or D1. In m m ry cell array M-ARY, the drain of MISFETQEP1, QEP2, or QEP3 and QEP4 arranged at the same line is connected to the corresponding data lines D0 and D1, respectively. X address

signal and Y address signal which are supplied from CPU100 through an address terminal Xo, Xi and Yo, or Yj are inputted into the X address buffer XADB and the Y address buffer YADB. Address buffers XADB and YADB operate by the timing signal ce formed of a control circuit CONT, incorporate the address signal supplied from CPU100, form the complementary address signal which consists of an internal address signal of it, an inphase, and an antiphase, and supply it to the X address decoder XDCR and the Y address decoder YDCR.

[0026] The aforementioned X address decoder XDCR supplies the selection signal for choosing the word line of memory cell array M-ARY according to the complementary address signal supplied by the X address buffer XADB. The voltage level of the word line selection signal formed of the X address decoder XDCR is determined by the voltage VCX supplied from the armature-voltage control circuit 106. It is set as the supply voltage Vcc level which is a logic voltage system at the time of the usual read-out operation, and is set as the VCX level which is a voltage system for writing at the time of write-in operation.

[0027] The Y address decoder YDCR forms the selection signal for choosing the data line of memory cell array M-ARY by the complementary address signal supplied by the address buffer YADB. The selection signal outputted from the Y address decoder YDCR is supplied to the gate electrode of MISFETY11, Y12, Y21, and Y22 of Y gate circuit YGATE. After selection of the data line performs 1st selection which consists of two or more data-line groups by MISFETY11 and Y12 of Y gate circuit YGATAE, the 2nd selection which chooses the predetermined data line from the aforementioned data-line group by MISFETY21 and Y22 performs it having constituted Y gate circuit YGATE from two MISFET(s) connected in series here — every — the load-carrying capacity of MISFET can be reduced and high-speed read-out operation is attained Moreover, the voltage level of the data line in the usual read-out operation is set as level lower than the supply voltage Vcc level supplied to a word line, in order to prevent that MISFETQEP1 or QEP4 is incorrect-written in during read-out. It is still more specifically set as 20 or 40% of level of Vcc. At the time of write-in operation, it is set as the predetermined voltage corresponding to the VCX level which is a voltage system for writing. Moreover, each data lines D0 and D1 are combined with the common data line CD.

[0028] The data output circuit DOB is combined with a common data line through the sense amplifier circuit SA. Although especially a sense amplifier is not restricted, with the form of this operation, the sense amplifier circuit of a current mirror method is used. Moreover, the data output circuit DOB is combined with an input/output terminal DI 0 or ** DI 7. The data input circuit DIB consists of input buffers combined with the input/output terminals [DI / DI and / 7] 0.

[0029] The data storage in EPROM105 is performed by whether threshold voltage of MISFETQEP1 used for a memory cell or QEP4 is made into comparatively high voltage (logic "0") by the writing by charge pouring to usual comparatively low voltage (logic "1") and a usual floating-gate electrode.

[0030] Next, circuit operation of the above EEPROM 107 is explained using <u>drawing 1</u> and <u>drawing 4</u>. <u>Drawing 4</u> is the representative circuit schematic having shown the outline composition of the circuit of EEPROM107 carried in the microcomputer of the form of this operation.

[0031] a logic voltage system [like supply voltage Vcc, 5V / for example, /,] whose EEPROM107 which the microcomputer of the form of this operation carries is — writing in — or the elimination voltage Vpp or the armature-voltage control circuit 106 — voltage Vpp or ******* Vcc — a pressure up or about ten lowered the pressure of and obtained — the writing of high level like V or the elimination voltage VCX system is used as the power supply of operation The usual read-out operation operates by the logic voltage system. The operation is controlled by vari us kinds of control signals which EEPROM107 is controlled by the memory control circuit in the address signal supplied through the address input terminal Xo, Xi and Yo, or Yi, and EEPROM107 which is not illustrat d by control from CPU100, or are formed.

[0032] Per 8 bits, it reads, and memory writes in EEPROM107 in the form of this operation, or it performs elimination operation. Memory array M-ARY is constituted by the switch MISFETQS1 which controls operation of read-out f two or more m mory MISFETQEEP1 or QEEP4 which

performs writing and elimination electrically, and the aforementioned memory MISFETQEEP1 or QEEP4, writing, and elimination or QS4, two or more word lines containing a word line WE0, WE1 and WS0, or WS1, and two or more data lines containing the data line D0 or D1. In memory array M-ARY, the memory MISFETQEEP1 and QEEP2 or the control gate electrode of QEEP3 and QEEP4 arranged at the same line is connected to the corresponding word line WE0 or WE1, respectively. Switch s MISFETQS1 and QS2 or the gate electrode of QS3 and QS4 is connected to corresponding word line WS0 or corresponding WS1, respectively. The switches MISFETQS1 and QS3 arranged at the same train or the drain of QS2 and QS4 is connected to the corresponding data line D0 or D1, respectively. Moreover, a switch MISFETQS1 or the source of QS4 is connected to memory MISFETQEEP1 or QEEP4, and memory MISFETQEEP1 or the source of QEEP4 is grounded.

[0033] X address signal and Y address signal which are supplied from CPU100 through an address terminal Xo, Xi and Yo, or Yj are inputted into X and the Y address buffer XYADB. An address buffer XYADB operates according to the timing signal formed of a control circuit CONT, incorporates the address signal supplied from CPU100, forms the complementary address signal which consists of an internal address signal of it, an inphase, and an antiphase, and supplies it to the X address decoder XDCR and the Y address decoder YDCR. Moreover, the address buffer XYADB equips the interior with the latch circuit, and can store an address signal temporarily at a latch circuit.

[0034] The X address decoder XDCR forms the selection signal for choosing two kinds of word lines of memory array M-ARY according to the complementary address signal supplied from an address buffer XYADB.

[0035] The Y address decoder YDCR forms the selection signal for choosing the data line D0 of memory array M-ARY, or D1 according to the complementary address signal supplied from an address buffer YADB. The selection signal taken out from the Y address decoder YDCR is supplied to Y gate circuit YGATE. Although especially Y gate circuit YGATE is not restricted, it is the same method as Y gate circuit YGATE of aforementioned drawing 3.

[0036] The data I/O circuit IOB is combined with the aforementioned data line and the input/output terminals [DI / DI and / 7] 0. Moreover, the data I/O circuit IOB consists of a sense amplifier circuit, an input—output—buffer circuit, and a latch circuit for the temporary storage of input data.

[0037] They are a thing for [the] writing in or performing the writing or elimination operation of a memory cell MISFETQEEP1 or the information on QEEP4 based on elimination data while a data latch circuit and the program circuit DL are supplied from the input/output terminals [DI / DI and / 7] 0, and are written in or store elimination data temporarily.

[0038] When EEPROM107 of the microcomputer of the form of this operation is equipped with various latch circuits as mentioned above, it can write in or the incorrect writing or incorrect elimination at the time of elimination operation can be prevented.

[0039] The memory MISFETQEEP1 or QEEP4 of the above EEPROM 107 is equipped with th floating-gate electrode, the tunnel insulator layer which can pass the tunnel current of the lower part, and the semiconductor region under it so that it may mention later. And write-in operation means making memory MISFETQEEP1 or threshold voltage of QEEP4 lower than source voltage by emitting an electron from a floating-gate electrode, and elimination operation means making memory MISFETQEEP1 or the threshold of QEEP4 higher than source voltage by injecting an electron into a floating-gate electrode. Pouring of the electron in discharge and elimination of the electron in these writing is performed through a tunnel insulator layer.

[0040] Next, circuit operation when writing in the information on the above EEPROM 107 is explained.

[0041] First, while making it the op rating state which can write in EEPROM107 with the various control signals taken out from CPU100, the address which writes in is stored temporarily at the latch circuit of an address buffer XYADB. More ver, it writes in the latch circuit of a data latch circuit and the program circuit DL, and data are stored temporarily. Next, potential of the switch MISFETQS1 with which the memory MISFETQEEP1 or QEEP4 which writes in was combined, word line WS0 of QS4, or WS1 is mad into the high voltage which can be written in, and a

switch MISFETQS1 or QS4 is made into operating state. At this time, all the word lines WE0 combined with memory MISFETQEEP1 r QEEP4 or WE(s)1 are made into the low voltage of simultaneously 0V. Then, the high voltage which can be written in the data line D0 combined with the memory MISFETQEEP1 or QEEP4 which writes in through a switch MISFETQS1 or QS4, or D1 is impressed.

[0042] Since the potential of the semiconductor region of the lower part of the tunnel insulator lay r prepared in the bottom of memory MISFETQEEP1 or the floating-gate electrode of QEEP4 becomes higher than the potential currently impressed to the control gate electrode, the electron in the floating-gate electrode which has low potential from this control gate electrode further is emitted into the semiconductor region under it through the aforementioned tunnel insulator layer by the above circuit operation, and writing is made.

[0043] Next, circuit operation for eliminating information is explained. Although not controlled by the form of this operation, elimination operation is performed for every word line. Elimination operation is first made into the operating state which can eliminate EEPROM107 with the various control signals taken out from CPU100, and sets word lines WE0 and WE1, or WS0 and WS1 as the low voltage level near grounding voltage. Although not restricted at this time, it is made to also set the voltage of the data lines D0 and D1 as the low voltage level near grounding voltage. Next, let the word line WE0 which should be eliminated, or WE1 be an eliminable high voltage level among the word lines WE0 and WE1 combined with memory MISFETQEEP1 or QEEP4. If these things are performed, since the voltage of memory MISFETQEEP1 or the control gate electrode of QEEP4 will become higher than the voltage of the semiconductor region under a tunnel insulator layer, the electron in the semiconductor region is poured in into a floating—gate electrode through a tunnel insulator layer, and elimination is made.

[0044] Next, circuit operation for reading information is explained. Read-out operation chooses a specific memory cell out of two or more memory cells by changing into the state always near grounding voltage where it does not choose the word line WE0 first combined with memory MISFETQEEP1 or QEEP4, or WE1, and choosing word line WS0 or WS1 combined with a switch MISFETQS1 or QS4, the data line D0, or D1.

[0045] Since a word line WE0 or WE1 has low potential as mentioned above when the electron is written in into the floating-gate electrode of the memory MISFET of this selected memory cell (either QEEP1 or QEEP4 and the following, only QEEP1 or QEEP4), the memory MISFETQEEP1 or QEEP4 is un-flowing, and the logic "0" corresponding to this is read to the data line D0 or D1.

[0046] On the other hand, when the electron is not poured in into the memory MISFETQEEP1 of the memory cell by which selection was carried out [aforementioned], or the floating-gate electrode of QEEP4, the memory MISFETQEEP1 or QEEP4 will be in switch-on, and logic "1" is read to the data line D0 or D1 corresponding to this.

[0047] Next, SRAM108 and DRAM109 with which the microcomputer shown in <u>drawing 1</u> is equipped are described.

[0048] The above SRAM 108 is used as a temporary storage circuit of the data which have the need of performing the data transfer between CPU100 or I/O102 at high speed, mainly in the data in the middle of the program and operation under execution.

[0049] The memory cell of SRAM108 with which the microcomputer of the form of this operation is equipped consists of two P channels MISFET205,206 and four N channels MISFET203,204,207,208, as shown in <u>drawing 2</u>.

[0050] In addition, drawing 2 is the equal circuit of the memory cell of SRAM108 with which the microcomputer of the form of 1 operation of this invention shown in drawing 1 is equipped. [0051] In addition, the memory cell of SRAM108 may consist of two resistance elements of high r sistance, and four MISFET(s). DRAM109 is used as a temporary storag circuit of the data which do not need to perform data transf r between CPU100 or I/O102 at high speed, and need mass m mory mainly in the data in the middle of the program and operation under execution. The memory cell of DRAM109 of the form of this operation consists of a part by volume which accumulat s a charge, and a switch MISFET which controls this. Thus, RAM of the microcomputer of the form of this operation consists of SRAM108 and DRAM109, and DRAM109

is used for a data storage with a big capacity although it is not necessary using SRAM108 to perform a data transfer to the data storage which needs high-speed data transfer although data capacity is a small amount at high speed. The ab ve SRAM 108 operates as the so-called cache m m ry, and performs high-speed data transf r between CPUs100.

[0052] DRAM109 in the gestalt of this operation does not carry out impressing a low negative potential and operating it to a substrate 1, from the potential Vss used as the criteria of electric operation of a circuit, i.e., grounding potential, 0V [for example,]. This is because the property of MISFET which constitutes EPROM105 usually operated without making a substrate 1 into a negative potential, and EEPROM107 grade will change if a low negative potential is impressed to a substrate 1 from the grounding potential Vss as mentioned above. However, when the field where DRAM109 of a substrate 1 is constituted is electrically separated with the field where EPROM105 and MISFET of EEPROM107 grade others are constituted, the aforementioned negative potential is impressed to a substrate 1, and you may make it make it operate, that is, it mentions later — as — DRAM109, and other EEPROMs107 and EPROM105 grade — respectively separate P type — a well — a field — preparing — making — these P type — a well — you may make it separate between fields electrically

[0053] Control of CPU100 performs refreshment operation of DRAM109. Moreover, the potential of the word line of DRAM109 is set as potential higher than Vcc which is the voltage of a logic system, and is operated. This voltage is generated in the armature-voltage control circuit 106. [0054] Next, the structure of each MISFET which constitutes the microcomputer of the gestalt of this operation is explained using <u>drawing 5</u>, <u>drawing 6</u>, and <u>drawing 7</u>.

[0055] The cross section of MISFET which constitutes EEPROM107 which the microcomputer of drawing 1 equips with the cross section of MISFET which constitutes EPROM105 which the microcomputer of drawing 1 equips with drawing 5, and drawing 6, and drawing 7 are the cross sections of MISFET which constitutes CPU100 with which the microcomputer of drawing 1 is equipped, and I/O102 grade.

[0056] In drawing 5 , Q1 is MISFET which constitutes the memory cell of EPROM105, and N channel MISFET from which Q2 constitutes circumference circuits, such as an address buffer of the above EPROM 105 and a decoder, and Q3 are P channel MISFET(s) which constitute circumference circuits, such as an address buffer of the above EPROM 105, and a decoder. MISFETQ1 which constitutes the memory cell of EPROM105 p- type of the principal plane section of the semiconductor substrate 1 which consists of p - type single crystal silicon -- a well — it being prepared in a field 3 and with the 1st gate insulator layer 6 which consists of a thin silicon-oxide film For example, floating-gate electrode 7A which consists of a polycrystal silicon film, With 2nd gate insulator layer 8A which consists of a thin silicon-oxide film, for example, control gate electrode 9A which consists of a two-layer film which carried out the laminating of the tungsten silicide film (WSi2) on the polycrystal silicon film, It consists of ntype-semiconductor field 11A which accomplishes the portion by the side of the source and the channel field of a drain, and n+ type semiconductor-region 13A which accomplishes portions other than the aforementioned n-type-semiconductor field 11A of the source and a drain. The thickness of the 1st gate insulator layer 6 is about 500A, and 2nd gate insulator layer 8A is about 350A. The aforementioned n-type-semiconductor field 11A is for making a hot generation of carriers increase and raising an informational write-in property. In addition, control gate electrode 9A is also a word line. The side of floating-gate electrode 7A, and the side and the upper surface of control gate electrode 9A are being worn by the thin silicon-oxide film 10. And the sidewall 12 which consists of a silicon-oxide film is formed in the flank of floating-gate electrode 7A and control gate electrode (WORD electrode) 9A. And it dissociates in the field insulator layer 4 which consists of a silicon-oxide film, and p type channel-stopper field 5 under it betw en memory cell Q1 comrades in the dir cti n in which the word line has xtended. Dataline 16D has connected with n+ type semiconductor region 13 which accomplishes a part of drain at the time of read-out of information, the lower part of the things to which data-line 16D add d for example, an aluminum film and aluminum for silicon, copper, PARAJUUMU, etc. to this as a principal component, or the se films — or it consists of a multilayer which prepared the silicide film (MoSi2, TaSi2, TiSi2, WSi2 grade) in the upper part 14 is formed by the silicon-oxide film

which is a passivation film of the 1st layer, for example, was formed by CVD, the FOSUFO silicate glass (PSG) film, the boron doped PSG (BPSG) film, the silicon-oxide films by the plasma CVD method, or these cascade scr ens. 15 — connection — it is a hole 17 is the passivation film of the 2nd layer and consists of a silicon-oxide film formed by the plasma CVD method, a spin-on glass film formed by the rotation applying method. N channel MISFETQ2 which constitutes the aforementioned circumference circuit consists of a gate insulator layer 6 and n+ type semiconductor-region 13B which accomplishes portions other than gate electrode 7B which consists of a polycrystal silicon film, n which accomplishes the source and channel field side of a drain - type semiconductor-region 11B, and the above n of the source and a drain - type semiconductor-region 11B. Above n - type semiconductor-region 11B are for preventing that control the hot generation of carriers in the edge of a drain, and the electrical property of MISFETQ2 changes. The side and the upper surface of gate electrode 7B are being worn with the thin silicon–oxide film 10. n+ type semiconductor–region 13B by the side of a drain connection — the wiring 16 which consists of an aluminum film through a hole 15 has connected And in order that this n+ type semiconductor region 13 may raise pressure-proofing of a drain, from the sidewall 12, it detaches only predetermined distance and is prepared. P channel MISFETQ3 which constitutes the aforementioned circumference circuit - n type of the principal plane of the semiconductor substrate 1 - a well - it is prepared in the field 2 and it consists of a gate insulator layer 6 and p+ type semiconductor-region 13C which accomplishes portions other than gate electrode 7B which consists of a polycrystal silicon film, p which accomplishes the portion by the side of the source and the channel of a drain – type semiconductor–region 11C, and the above p of the source and a drain – type semiconductor– region 11C wiring 17 -- connection -- wiring 19 is connected through the hole 18 This wiring 19 consists of the same material as the aforementioned wiring 17. In addition, although not illustrated, after wiring 19, the last passivation film which consists of a PSG film, a silicon nitride film by the plasma CVD method, etc. is prepared.

[0057] Floating-gate electrode 7A of the aforementioned memory cell Q1, gate electrode 7B of N channel MISFETQ2, and gate electrode 7B of P channel MISFETQ3 consist of the same electric conduction film of the 1st layer. Gate electrode 9A of a memory cell Q2 consists of an electric conduction film of the 2nd layer. Moreover, thickness of each gate insulator layer 6 of a memory cell Q1, N channel MISFETQ2, and P channel MISFETQ3 is made the same.

[0058] In drawing 6, N channel MISFET from which Q4 constitutes the memory MISFETQEEP1 or QEEP4 in the memory cell of EEPROM107, N channel MISFET from which Q5 constitutes circumference circuits, such as an address buffer of the switch MISFETQS1 in the memory cell of the above EEPROM 107, QS4, or EEPROM107 and a decoder, and Q6 are P channel MISFET (s) which constitute the circumference circuit of EEPROM107.

[0059] The 1st gate insulator layer 6 which aforementioned N channel MISFETQ4 becomes from an about 500A thin silicon-oxide film, The insulator layer 21 which consists of a silicon-oxid film with a thickness of about 1000-2000A, The tunnel insulator layer 22 which consists of an about 100A very thin silicon-oxide film, For example, floating-gate electrode 7C which consists of a polycrystal silicon film. It consists of 2nd gate insulator layer 8C which consists of an about 350A thin silicon-oxide film, a word line and control gate electrode 9C currently formed in one, and a n-type-semiconductor field 20 used as the source and a drain. The thin silicon-oxide film 10 is covered with the side of floating-gate electrode 7C, the side of control gate electrode (word line) 9C, and the upper surface. An insulator layer 21 is for easing the electric field of the edge of floating-gate electrode 7C, and raising pressure-proofing. N channel MISFETQ5 for constituting Switch MISFET or the circumference circuit of the aforementioned memory cell consists of a gate insulator layer 6, an insulator layer 21, and gate electrode 7B which consists of a polycrystal silicon film and the n-type-s miconductor field 20 us d as the source and a drain. The side and the upper surface of gate electrode 7B are being worn by the insulator layer 10. the n-type-semiconductor field 20 used as the drain f this N channel MISFETQ5 connecti n -- wiring 16D is connected through the hole 15 Wiring 16D is the data line in a memory cell, and is signal wiring which inherits b tween MISFET in a circumference circuit. P channel MISFETQ6 which c institutes the afor mentioned circumf rence circuit consists of p+

type semiconductor-region 13C which accomplishes portions other than the gate insulator layer 6, gate electrode 7B, p that accomplishes the portion by the side of the source and the channel field of a drain – type semiconductor-region 11C, and the above p of the source and a drain – type semiconductor-region 11C. The insulator layer 10 is wearing the side and the upper surface of gate electrode 7B. p+ type semiconductor-region 13C which accomplishes a part of source field — connection — wiring 16 is connected through the hole 15 And in order that this p+ type semiconductor-region 13C may raise pressure-proofing of a source field, from the sidewall 12, it detaches only predetermined distance and is prepared.

[0060] In addition, the wiring 19 which consists of an aluminum film of the 2nd layer has covered the N channel MISFETQ5 top which accomplishes N channel MISFETQ4 and switching device of a memory cell. That is, all memory cell array fields are covered with wiring 19. This is for preventing that the data memorized by EEPROM107 will be eliminated by the ultraviolet rays, when irradiating ultraviolet rays and eliminating the data memorized by EPROM105.
[0061] In addition, floating—gate electrode 7C of a storage element Q4 and gate electrode 7B of MISFETQ5 and Q6 are formed by the same electric conduction film of the 1st layer as floating—gate electrode 7A of the memory cell Q1 of the above EPROM 105, and gate electrode 7B of MISFETQ2 and Q3. Control gate electrode 9C of the memory MISFETQ4 of EEPROM107 consists of the same electric conduction film of the 2nd layer as control gate electrode 9A of EPROM105.

[0062] In drawing 7,N channel MISFET for Q7 constituting CPU100, N channel MISFET from which Q8 constitutes I/O102 and SI (serial interface)103, and Q9 are P channel MISFET(s) for constituting CPU100. Aforementioned N channel MISFETQ7 consists of n+ type semiconductorregion 13B which accomplishes portions other than gate insulator layer 8D which consists of an about 250A thin silicon-oxide film, gate electrode 9D, n which accomplishes the portion by the side of the source and the channel field of a drain - type semiconductor-region 11B, and the above n of the source and a drain – type semiconductor–region 11B. Aforementioned N channel MISFETQ8 consists of n+ type semiconductor-region 13B which accomplishes portions other than gate insulator layer 8D, gate electrode 9D, n~type-semiconductor field 11A that accomplishes the portion by the side of the source and the channel field of a drain, and the aforementioned n-type-semiconductor field 11A of the source and a drain. N-typesemiconductor field 11A is for preventing destroying MISFETQ8, when the unusual high voltage is impressed to a drain field. Aforementioned P channel MISFETQ9 consists of p+ type semiconductor-region 13C which accomplishes portions other than gate insulator layer 8D, gate electrode 9D, p that accomplishes the portion by the side of the source and the channel field of a drain - type semiconductor-region 11C, and the above p of the source and a drain - type semiconductor-region 11C.

[0063] In addition, each gate electrode 9D of MISFETQ7, Q8, and Q9 consists of the same electric conduction film of the 2nd layer as control gate electrode 9A of the above EPROM 105, and control gate electrode 9C of EEPROM107.

[0064] Moreover, N channel MISFET and P channel MISFET which constitute the memory cell of SRAM108 shown in <u>drawing 2</u> have the same structure as N channel MISFETQ7 and P channel MISFETQ9 which constitute CPU (Boolean part)100 shown in <u>drawing 7</u>.

[0065] Next, each manufacture method of the above MISFETQ1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, and Q9 is explained using <u>drawing 5</u>, <u>drawing 6</u>, <u>drawing 7</u> or <u>drawing 56</u>, <u>drawing 57</u>, and <u>drawing 58</u>.

[0066] Drawing 5, drawing 6, drawing 7 or drawing 56, drawing 57, and drawing 58 It is a cross section in the manufacturing process of MISFET which constitutes EPROM105, EEPROM107, and the CPU100 grade of the microcomputer of the form of 1 operation of this invention. The cross section of the field in which MISFET from which drawing 5 or drawing 56 constitutes th memory cell and its circumference circuit of EPROM105 is prepared, It is the cross section of the field in which MISFET from which the cross section, drawing 7, or drawing 58 of the field in which MISFET from which drawing 6 or drawing 57 constitutes the memory cell and its circumference circuit of EEPROM107 is prepared constitutes CPU100 and I/O102 is prepared. [0067] In addition, since P channel MISFET and N channel MISFET which constitut the memory

cell of SRAM shown in drawing 2 are formed by the same manufacture method as N channel MISFETQ7 and P channel MISFETQ9 which constitute Boolean part shown in drawing 7, they omit explanation. [0068] the manufacture method of MISFET which constitutes EPROM105, EEPROM107, CPU100, and I/O102 of the microcomputer of the g stalt of this operation is shown in drawing 8 or drawing 10 - as - each predetermined field of the principal plane section of the p - type semiconductor substrate (chip) 1 -- an ion implantation and annealing -- carrying out -- n- type --- a well --- a field 2 or p- type --- a well --- a field 3 is formed 50 is the thin silicon-oxide film used as a buffer film, when performing the aforementioned ion implantation. [0069] next, it is shown in drawing 11 or drawing 13 — as — well-known technology — using n- type — a well — a field 2 and p- type — a well — each predetermined field of a field 3 oxidizing thermally — the field insulator layer 4 — forming — moreover, p- type — a well — p channel-stopper field 5 is formed in a field 3 51 is the silicon nitride film used as a mask of thermal oxidation, when forming the field insulator layer 4. next, the silicon-oxide film 50 which removed the silicon nitride film 51 and was further used as a ground film - removing - n- type — a well — a field 2 and p- type — a well — after exposing the portion which is not covered by the field insulator layer 4 of a field 3, the exposed front face is again oxidized thermally, and as shown in drawing 14 or drawing 16, the gate insulator layer 6 is formed [0070] next — as the mask of the ion implantation when forming the n-type-semiconductor field 20 used as the memory cell of EEPROM107 shown in drawing 15 and the source of N channel MISFET of the circumference circuit, and a drain — n- type — a well — a field 2 and p- type a well — the resist film 52 is formed on a field 3 Next, n type impurity, for example, arsenic (As) ion, is introduced about two 1014 - 1016 atoms/cm, and the n-type-semiconductor field 20 is formed. Then, the resist film 52 is removed. [0071] Next, as shown in <u>drawing 17</u> or <u>drawing 19</u> , it oxidizes thermally and an insulator layer (SiO2) 21 is formed in the upper part of the aforementioned n-type-semiconductor field 20. Since an insulator layer 21 has the n-type-semiconductor field 20 of a high concentration layer in the lower part, a thick insulator layer is obtained. At this time, the thickness of the gate insulator layer 6 sets up the aforementioned oxidization thickness so that it may become about 500A. The thickness of an insulator layer 21 is about 1000-2000A. Or after removing the aforementioned gate insulator layer 6, you may form simultaneously an about 500A gate insulator layer and the insulator layer of the upper part of the about 1000-2000A n-type-semiconductor field 20 by one thermal oxidation. Next. in order to ******** the insulator laver 21 of a portion in which the tunnel insulator layer 22 of the memory MISFETQ4 of EEPROM107 is formed, as shown in drawing 20 or drawing 22, the resist film 54 as a mask is formed. [0072] Next, as shown in <u>drawing 21</u> , the portion in which the tunnel insulator layer 22 of an insulator layer 21 is formed is *********ed, and the front face of the n-type-semiconductor field 20 is exposed. Then, the resist film 54 is removed. Next, the front face of the n-typesemiconductor field 20 exposed by having removed the insulator layer 21 at the previous process is oxidized thermally, and the tunnel insulator layer 22 which consists of a silicon–oxide film is formed. The thickness of the tunnel insulator layer 22 is about 100A. [0073] Next Floating-gate electrode 7A of the memory cell Q1 of EPROM105, In order to form gate electrode 7B of MISFETQ5 of the switch MISFET of gate electrode 7B of MISFETQ2 and Q3 of a circumference circuit and floating-gate electrode 7C of the memory MISFETQ4 of the memory cell of EEPROM107, and the aforementioned memory cell, and a circumference circuit it is shown in drawing 23 or drawing 25 -- as -- for example, CVD -- n- type -- a well -- a field 2 and p- type — a well — the polycrystal silicon film 7 is formed in the upper part of a field 3 n type impurity, for example, Lynn (P), is introduced into this polycrystal silicon film 7 with thermal diffusion, an ion implantation, etc., and I w resistance–ization is attained.

[0074] next, it is shown in <u>drawing 26</u> or <u>drawing 28</u> — as — the aforementioned polycrystal silicon film 7 — patterning — carrying out — the gate electrode 7 of floating—gate electrode 7A of the memory cell Q1 of EPROM105, and a circumference circuit — the floating—gate electrode 7 of the memory MISFETQ4 of B and EEPROM107 — gate electrode 7B of MISFETQ5 and Q6 of the switch MISFET of the memory cell f C and EEPROM107 and a circumference circuit is

formed, respectively Since the gate electrode of MISFETQ7, Q8, and Q9 which constitute CPU100 and I/O102 is formed by the electric conduction film of the 2nd layer formed behind, in the field for forming these [MISFETQ7-Q9], the polycrystal silicon film 7 of the 1st layer will be removed, and it does not remain.

[0075] Here, floating-gate electrode 7A of the memory cell Q1 of EPROM105 shown in <u>drawing 26</u> is the pattern which extends for a long time in the direction in which the data line xtends, without being divided into every floating-gate electrode 7of each memory cell A. However, it is the pattern separated to every floating-gate electrode 7of memory cell which adjoins in direction in which word line extends A. This is for performing 2nd patterning to floating-gate electrode 7A which has extended for a long time in the direction in which the aforementioned data line has extended, and making it a predetermined pattern, when forming control gate electrode (word line) 9A on this behind.

[0077] Next, as shown in <u>drawing 32</u> or <u>drawing 34</u>, CPU100 field and I/O102 field which exposed the silicon-oxide film 6 by having **********ed previously are oxidized thermally, and gate insulator layer 8D of MISFET for constituting CPU100 and I/O102 is formed. When forming this gate insulator layer 8D, the front face of each floating-gate electrode 7A and 7C and gate el ctrode 7B oxidizes, and the thickness of the 2nd gate insulator layers 8A and 8C and the silicon-oxide film 8 increases.

[0078] It is made for the thickness of the 2nd gate insulator layers 8A and 8C to become about 350A finally here. Moreover, thickness of gate insulator layer 8D is made into the thickness optimal for MISFETQ7-Q9 which constitute CPU100 and I/O102. In addition, since gate insulator layer 8D of MISFET which constitutes the gate insulator layer 6, and CPU100 and I/O102 of MISFET which constitutes the memory cells and those circumference circuits of EPROM105 or EEPROM107 is made into the value optimal for these MISFET(s) and the direction of the gate insulator layer 6 is formed thickly, the direction of gate insulator layer 8D may be formed thickly. Moreover, the gate insulator layer 6 and gate insulator layer 8D may be formed in the same thickness.

[0079] After forming the aforementioned gate insulator layer 8D, the electric conduction film 9 of the 2nd layer is formed the whole surface on a semiconductor chip 1. This electric conduction film 9 consists of a two-layer film which formed the polycrystal silicon film by CVD and carried out the laminating of the silicide film by the spatter further on this. n type impurity, for example, Lynn (P), is put into the aforementioned polycrystal silicon film by the ion implantation or thermal diffusion, and low resistance-ization is attained.

[0080] Next, as shown in <u>drawing 35</u> or <u>drawing 36</u>, patterning of the electric conduction film 9 is carried out for the resist film 72 to a mask, and control gate electrode (word line) 9C of the memory MISFETQ4 of EEPROM107 and gate electrode 9D of MISFETQ7, Q8, and Q9 are

[0082] Next, as shown in <u>drawing 44</u> or <u>drawing 46</u>, the front face of each control gate electrode (word line) 9A and 9D of EPROM105 and EEPROM107 is oxidized thermally, and the thin silicon-oxide film 10 is formed. At this tim, the front face of oth r gate electrodes 7B and 9D of

MISFETQ2, Q3, Q5, Q6, Q7, Q8, and Q9 also oxidizes, and the silicon-oxide film 10 is formed. the resist film 56 which carried out opening of the p rtions of the field of the memory cell Q1 of EPROM105, and the field of MISFETQ8 of I/O102 — forming — an ion implantation — p- type – a well — n type impurity (As), for example, an arsenic, is introduced to a field 3, and n-type-semiconductor field 11A which becomes a part [the source of a memory cell Q1 and N channel MISFETQ8 and a drain] is formed The dose of the impurity ion introduced at this time is 1015 atoms/cm2.

[0083] Then, the resist film 56 is removed, and as shown in drawing 47 or drawing 49, the resist film 57 which carried out opening of the field in which N channel MISFETQ2 for constituting the circumference circuit of EPROM105 is formed, and the field in which N channel MISFETQ7 for constituting CPU100 is formed is formed. And n type impurity, for example, Lynn (P), is introduced with an ion implantation, and n which becomes a part [the source of aforementioned N channels MISFETQ2 and Q7 and a drain] – type semiconductor—region 11B are formed. The dose of the impurity ion introduced at this time is 1013 atoms/cm2. Then, the resist film 57 is removed.

[0084] Next, as shown in <u>drawing 50</u> or <u>drawing 52</u>, the resist film 58 which carried out opening of the field in which P channels MISFETQ3 and Q6 for constituting each circumference circuit of EPROM105 and EEPROM107 are formed, and the field in which P channel MISFETQ9 for constituting CPU100 is formed is formed. And p type impurity (B), for example, boron, is introduced with an ion implantation, and p which becomes a part [the source of aforementioned P channels MISFETQ3, Q6 and Q9 and a drain] – type semiconductor–region 11C are formed. The dose of the impurity ion at this time is about two 1013 atoms/cm. Then, the resist film 58 is removed.

[0085] Next, as shown in <u>drawing 53</u> or <u>drawing 55</u>, the sidewall 12 which consists of a silicon-oxide film using CVD and reactive ion etching is formed in the flank of each gate electrode 7A, 9A, 7B, 7C, 9C, and 9D. Next, the field in which N channel MISFET for constituting the memory cells and those circumference circuits of P channels MISFETQ3, Q9, and EEPROM107 is prepared is covered by the resist film 59. Moreover, in order to raise pressure-proofing of the drain of N channel MISFETQ2 of the circumference circuit of EPROM105, in order that only a predetermined distance may separate the high concentration portion of that from a sidewall 12 and the field insulator layer 4, the resist film 59 is formed. And n type impurity (As), for example, an arsenic, is introduced with an ion implantation, and n+ type semiconductor regions 13A and 13B are formed. Then, the resist film 59 is removed.

[0086] Next, as shown in <u>drawing 56</u> or <u>drawing 58</u>, in order to cover each N channel MISFETQ1, Q2, Q4, Q5, Q7, and Q8 top by the resist film 60 and to raise pressure-proofing of the drain of P channel MISFETQ6 of the circumference circuit of EEPROM107, in order that only a predetermined distance may separate the high-concentration portion from a sidewall 12 and the field insulator layer 4, the resist film 60 is formed. And p type impurity (B), for example, boron, is introduced with an ion implantation, and each p+ type semiconductor region 13 is formed. Then, the resist film 60 is removed. Then, as shown in <u>drawing 5</u> or <u>drawing 7</u>, the passivation film 14 is formed using the silicon-oxide film by CVD, a PSG film, the silicon-oxide films by the BPSG film spatter, or these cascade screens.

[0087] next, the passivation film 14 — alternative — removing — connection — a hole 15 — forming — next — connection — in order to ease the level difference of the portion of a hole 15, it anneals at the temperature of about 900 degrees C, and the glass flow of the passivation film 14 is performed Next, on the passivation film 14, after forming an aluminum film and the aluminum containing alloy film which added aluminum for silicon, copper or palladium, etc. to this as a principal component by the spatter, CVD, or the vacuum deposition or forming a silicide film (MoSi2, TaSi2, TiSi2, WSi2) in the upp r part of these films further, patterning of these films is carried out and wiring 16 and data—line 16D are formed. In addition, before the aforementioned silicide film forms the aforementioned aluminum film or an aluminum containing alloy film, it is formed on the passivation film 14, and you may make it f rm the aforementioned aluminum film etc. on this. After forming Wiring 16 and 16D, the laminating of the silicon—oxide film by plasma CVD, th spin—on glass film by the rotation applying method, and the silicon—oxide film by plasma

CVD is carried out in order of a lower shell, and the passivation film 17 is formed. next, the passivation film 17 — alternative — removing — connection — a hole 18 is formed connection — since a hol 18 has the wiring layers 16 and 16D which become the lower part from the low aluminum film of the melting point etc. and it cannot make a level difference ease by the glass flow, it ***********, for example to the half grade of the thickness of the passivation film 17 by isotropic etching, such as wet etching, first, and, next, ******** and forms the half remaining by the dry etching of an anisotropy Next, wiring 19 is formed by the method of having formed the aforementioned wiring 16 and 16D on the passivation film 17. Next, although not illustrated, a PSG film and a silicon nitride film are formed as final passivation.

[0089] Moreover, although the manufacture method of the gestalt this operation forms simultaneously the 1st gate insulator layer 6 of the memory cell Q1 of EPROM105 shown in drawing 14 or drawing 16, and the 1st gate insulator layer 6 of the memory MISFETQ4 of the memory cell of EEPROM107, you may make it change some of those thickness, as it forms these at a respectively separate process.

[0090] Next, the manufacture method of the memory cell of DRAM formed in the microcomputer of the gestalt of this operation shown in <u>drawing 1</u> is explained.

[0091] <u>Drawing 59</u> or <u>drawing 62</u> is a cross section in the manufacturing process of the memory cell of DRAM prepared in the microcomputer of the gestalt of this operation shown in drawing 1.

[0092] First, the cross-section structure of the memory cell of Above RAM is explained using drawing 59 . it is shown in drawing 59 — as — the memory cell of DRAM — p- type — a well it is prepared in the field 3 And Q is the switch MISFET of a memory cell and C is the capacitative element of a memory cell. Gate insulator layer 8D which Switch MISFETQ becomes from a silicon-oxide film, For example, gate electrode (word line) 9D which consists of a twolayer film which carried out the laminating of the silicide film (MoSi2, TaSi2, TiSi2, WSi2), and constituted it on the polycrystal silicon film, It consists of n+ type semiconductor-region 13B which accomplishes portions other than the above n of n which accomplishes the portion by the side of the source and the channel field of a drain - type semiconductor-region 11B, the source, and a drain - type semiconductor-region 11B. The aforementioned capacitative element C consists of a n-type-semiconductor field 20 used as one electrode, a dielectric film 22 which consists of a thin silicon-oxide film, and electric conduction plate 7E which is the electrode of diff rent another side from the above, for example, consists of a polycrystal silicon film. The insulator layer 21 which consists of a silicon-oxide film thicker than a dielectric film 22 is formed in the edge by the side of the switch MISFETQ of electric conduction plate 7E, and the electric field of the edge of electric conduction plate 7E are eased. The insulator layer 23 which consists of a silicon-oxide film is formed in the front face of electric conduction plate 7E. 16D is the data line and is connected to n+ type semiconductor-region 13B of the drain at the time of read-out of information.

[0093] Next, the manufacture method of the memory cell Above DRAM is explained using drawing 60 or drawing 62. it is shown in drawing 60 — as — the principal plane of the p — type semiconductor substrate 1 — p— type — a well — after forming a field 3, the field insulator layer 4, and p type channel—stopper field 5, the silicon—oxide film 6 whose thickness is about 500A is formed in the memory cell field of DRAM at the process (drawing 14 or drawing 16) which forms the gate insulator layer 6 of the memory cells Q1, Q4, and Q5 of EPROM105 or

EEPROM107 However, this silicon-oxide film 6 is not used as a gate insulator layer of Switch MISFETQ. At this time, the n-type-semiconductor field 20 shown in drawing 60 and insulator layers 21 and 22 are not formed. Then, the n-type-semiconductor field 20 which is one of capacitative element C is formed at the process which forms the n-type-semiconductor field 20 which are the source of the memory cells Q4 and Q5 of EEPROM107, and a drain. [0094] Next, an insulator layer 21 is formed in the field in which capacitative element C is formed at the process (drawing 17 or drawing 19) which forms the insulator layer 21 of the memory cell of EEPROM107. At this time, the field in which a dielectric film 22 is formed also serves as an insulator layer 21. The thickness of an insulator layer 21 is about 1000-2000A. Next, the insulator layer 21 of a portion in which the dielectric film 22 of capacitative element C is formed is alternatively removed at the process (drawing 20 or drawing 22) which ********* the insulator layer 21 of a portion in which the tunnel insulator layer 22 of EEPROM107 is formed. N xt, the dielectric film 22 of capacitative element C is formed at the process which forms the tunnel insulator layer 22 of EEPROM107. Next, at the floating-gate electrodes 7A and 7C and the process (drawing 23 or drawing 28) which forms gate electrode 7B of MISFETQ2, Q3, and Q6 of a circumference circuit, respectively of EPROM105 and EEPROM107, as shown in drawing <u>61</u> , plate electrode 7E of capacitative element C is formed. Next, the insulator layer 23 which oxidizes thermally the front face of electric conduction plate 7E, and consists of a silicon-oxide film is formed. In addition, an insulator layer 23 may be formed by the silicon-oxide film by CVD, or may consist of laminatings of the silicon-oxide film by thermal oxidation, and the silicon-oxide film by CVD. When forming the aforementioned insulator layer 23, the field in which Switch MISFETQ is formed, CPU100, I/O102, and the silicon-oxide film 6 of the field in which MISFET which constitutes the circumference circuit of EPROM105 and EEPROM107 is prepared turn into the thick insulator layer 74 of thickness. Moreover, the thick insulator layer 23 is formed in the floating-gate electrode of the memory cells Q1 and Q4 of EPROM105 or EEPROM107, and the front face of gate electrode 7B of those circumference circuits. Then, after forming an insulator layer 23 in the front face of the aforementioned electric conduction plate 7E, the portion of the capacitative element C of DRAM109 is covered by the resist film. The field in which Switch MISFETQ is formed, CPU100, I/O102, and the thick insulator layer 74 of the field in which MISFET which constitutes the circumference circuit of EPROM105 and EEPROM107 is prepared, It ******** and the thick insulator layer 23 formed in the floating-gate electrode of the memory cells Q1 and Q4 of EPROM105 or EEPROM107 and the front face of gate electrode 7B of those circumference circuits is removed. And after removing the aforementioned resist film, the front face of the floating-gate electrodes 7A and 7C of EPROM105 and EEPROM107 is oxidized thermally, and the 2nd gate insulator layers 8A and 8C are formed. [0095] Next, as shown in <u>drawing 62</u>, gate insulator layer 8D which consists of a silicon-oxide film is formed in the field in which Switch MISFETQ is formed at the process (drawing 32 or drawing 34) which forms gate insulator layer 8D in the field of CPU100 or I/O102. In addition, you may make it form this gate insulator layer 8D simultaneously with the process which forms the 2nd gate insulator layers 8A and 8C of the front face of the floating-gate electrodes 7A and 7C of EPROM105 and EEPROM107. Next, gate electrode 9D of Switch MISFETQ is formed at the process (drawing 32 or drawing 43) which forms gate electrode 9D of the control gate electrodes 9A and 9C of EPROM105 and EEPROM107, CPU100, and L/O102 field. Next, when forming an insulator layer 10 in the front face of the control gate electrodes 9A and 9C of EPROM105 and EEPROM107, an insulator layer 10 is formed in the front face of the aforementioned gate electrode 9D of Switch MISFETQ. Then, the sidewall 12 which consists of a silicon-oxide film is formed. Next, n which accomplishes the source [of Switch MISFETQ] and channel side of a drain - type semiconductor-region 11B are formed at the process (drawing 47 or drawing 49) which forms n of N channel MISFETQ2 of the circumference circuit of EPROM105, and N channel MISFETQ7 of CPU100 field - type semiconductor-region 11B. Next, n+ typ semiconductor-region 13B of the s urce f Switch MISFETQ and a drain is formed at th process (drawing 53 or drawing 55) which f rms n+ type semiconductor regions 13A and 13B which are the source of the memory c Ils Q1 and Q4 of EPROM105 and EEPROM107, and N channels MISFETQ7 and Q8 of MISFETQ2, Q5, CPU100, and I/O102 field of the se

circumference circuits, and a part of drain, then, the passivation film 14 and connection — a hole 15, data—line 16D, the passivation film 17, wiring 19, and the final passivation film that is not illustrated are formed

[0096] As mentioned above, as explained, DRAM109 can be formed at the process which forms EPROM105 and EEPROM107.

[0097] Next, the structure of the capacitative element in the operational amplifier with which the microcomputer shown in <u>drawing 1</u> is equipped, an analog—to—digital converter, and a digital to analog converter, and a resistance element is explained. This resistance element and capacitative element are used when a microcomputer processes an analog quantity.

[0098] <u>Drawing 63</u> is a cross section of capacitative element and a resistance element with which the operational amplifier in the microcomputer which <u>drawing 1</u> showed, the analog—to—digital converter, and the digital to analog converter are equipped.

[0099] In <u>drawing 63</u>, the resistance element and C which are used when R processes an analog quantity are capacitative element used when processing an analog quantity.

[0100] The aforementioned resistance element R consists of resistive-layer 7G which consist of a conductor of the 1st layer on the field insulator layer 4 (polycrystal silicon film), and endconnection child 7H which were prepared in the ends. An impurity is poured into high concentration and end-connection child 7H have come to be able to do the wiring 16 and the ohmic contact which consist of aluminum etc. Moreover, the wiring 16 with which the fixed potential Vcc or Vss is impressed is formed in the upper part of resistive-layer 7G. n- type — a well — the potential of a field 2 is being fixed to Vcc or Vss the 1st which the aforementioned capacitative element C becomes from the polycrystal silicon film of the 1st layer on the field insulator layer 4 — electrode 7F and the 1st — dielectric-film 8F of the front face of electrode 7F, and the 1st - the 2nd which consists of an electric conduction film of the 2nd layer prepared in piles on electrode 7F — it consists of electrode 9F The electric conduction film of the 2nd aforementioned layer consists of a two-layer film which carried out the laminating of the silicide film (MoSi2, TaSi2, TiSi2, WSi2) on for example, the polycrystal silicon film. the 1st $-\!-\!$ electrode 7F and the 2nd — an impurity is poured into high concentration and, as for electrode 9F. low resistance-ization is made and the 1st — electrode 7F and the 2nd — electrode 9F were alike, respectively and wiring 16 has connected

[0101] Next, the formation method of the aforementioned resistance element R and capacitativ element C is explained. <u>Drawing 64</u> or <u>drawing 66</u> is a cross section in the manufacturing process of the resistance element shown in drawing 63, and capacitative element.

[0102] The formation method of the aforementioned resistance element R and capacitative element C forms the polycrystal silicon film 7 of the 1st layer by CVD on the field insulator layer 4, as shown in drawing 64. The impurity for the reduction in resistance is not introduced into the polycrystal silicon film 7 at this time. Next, as a buffer film when introducing an impurity into the polycrystal silicon film 7 with an ion implantation, the front face of the polycrystal silicon film 7 is oxidized thermally, and the silicon-oxide film 61 is formed. Next, one or more kinds in Lynn (P), boron (B), or an arsenic (As) are poured into the polycrystal silicon film 7 about two 1012 - 1016 atoms/cm with an ion implantation. In addition, in performing this ion implantation by thermal diffusion, it removes the silicon-oxide film 61 of the front face of the polycrystal silicon film 7. Next, the impurity pouring mask 62 is formed in the upper part of the predetermined field used as resistive-layer 7G. What is necessary is just to form this impurity pouring mask 62 by the silicon-oxide film by CVD that what is necessary is just to form by the resist film when an ion implantation performs impurity pouring performed after this, when carrying out by thermal diffusion. The polycrystal silicon film 7 And the floating-gate electrodes 7A and 7C of the memory cells Q1 and Q4 of EPROM105 and EEPROM107, as gate electrode 7B of MISFETQ2, Q3, Q5, and Q6 of thos circumference circuits -- using it -- moreover, end-connection child 7H of a resistance element R and the 1st of capacitative element C, since it is used as electrode 7F After forming the aforementioned impurity pouring mask 62, 2nd impurity pouring is performed and low resistance-ization of the polycrystal silicon film 7 is attained. In addition, thermal diffusion is performed, after removing the insulator layer 61 of the portion which is not covered with the impurity pouring mask 62 and exposing the polycrystal silicon film 7, in pouring in the

2nd aforementioned impurity by thermal diffusion.

[0103] next, it is shown in <u>drawing 65</u> — as — the resist film 63 — using — the polycrystal silicon film 7 — patterning — carrying out — resistive-layer 7G, end-connection child 7H, and the 1st of capacitative element C — electrode 7F are formed At this time, gate electrode 7of MISFETQ2, Q3, Q5, and Q6 B of the floating-gate electrodes 7A and 7C of the memory cells Q1 and Q4 of EPROM105 and EEPROM107 and those circumference circuits is also formed. next, the same process as aforementioned <u>drawing 29</u>, <u>drawing 30</u>, <u>drawing 31</u> or <u>drawing 44</u>, <u>drawing 45</u>, and <u>drawing 46</u> shows to <u>drawing 66</u> — as — dielectric—film 8F of capacitative element C, and the 2nd — electrode 9F, a resistance element R, and capacitative element C — the 1st — electrode 7F and the 2nd — the front face of electrode 9F — a wrap — the thin insulator lay r 10 is formed

[0104] In addition, an impurity predetermined by the 1st impurity pouring is replaced with carrying out low concentration pouring as mentioned above as a method of giving predetermined resistance to resistive—layer 7G. Before performing the 2nd aforementioned impurity pouring, or after carrying out, you may make it aim at adjustment of the resistance of resistive—layer 7G by pouring in the impurity introduced by the 2nd impurity pouring, and the impurity of a reverse conductivity type, or carrying out specified quantity pouring of the insulators, such as oxygen and nitrogen. Furthermore, resistive—layer 7G may still be the polycrystal silicon film 7 (however, end—connection child 7H pour in an impurity, and attain low resistance—ization.) which does not pour in an impurity, or may introduce a high—concentration impurity like conductive layers 7A, 7B, 7C, 7H, and 7F other than resistive—layer 7G.

[0105] As mentioned above, as explained, a resistance element R and capacitative element C can be formed using the process which forms EPROM105 and EEPROM107.

[0106] Next, one I/O cell in I/O102 of the microcomputer shown in <u>drawing 1</u> is shown in <u>drawing 67</u>.

[0107] The I/O cell shown in this <u>drawing 67</u> is used for making a fluorescent display etc. drive. A fluorescent display is driven in [big / voltage] about -40-0V, and a big difference is from 0V to 5V which are the usual operating range of a microcomputer. After about [-40V] voltage carries out voltage conversion to the usual operating voltage Vcc level of a microcomputer by depletion type P channel MISFETTD1, it is inputted into the inverter which consists of P channel MISFETTP1 and N channel MISFETTN1, and after that various processing is performed there. In addition, N channel MISFETQ8 shown in <u>drawing 7</u> is equivalent to aforementioned N channel MISFETTN1. On the other hand, through the inverter circuit which consists of P channel MISFETTN2, the data outputted towards a fluorescent display from a microcomputer are outputted, after voltage conversion is carried out by the inverter circuit which consists of P channel MISFETTD2 of a depletion type, and P channel MISFETTP3 of an enhancement type.

[0108] Next, the cross-section structure of P channel MISFETP3 shown in aforementioned drawing 67 is shown in drawing 68. it is shown in drawing 68 — as — P channel MISFETTP3 — n— type — a well — it is constituted by field 2I this n— type — a well — field 2I — n— type — a well — a field 2 — high impurity concentration — low — moreover, the junction depth — n— type — a well — it is deeper than a field 2 And MISFETTP3 consists of a gate insulator layer 6 which consists of a silicon—oxide film, and p+ type semiconductor—region 13C which accomplishes portions other than gate electrode 7I which consists of a polycrystal silicon film, p which becomes a part [the source and a drain] — type semiconductor—region 11I, and the above p of the source and a drain — type semiconductor—region 11I. p — type semiconductor—region 11I is prepared in the lower part of the field insulator layer 4 without gate electrode 7I, and surrounds the circumference of the aforementioned p+ type semiconductor—region 13C, and is prepared. The dge of gate electrode 7I has extended on the field insulator layer 4. described [above] n— type — a well — you made it isolated from Above p — type semiconductor—region 11I, and n type channel—stopper field 5I is prepared in the bottom of the field insulator layer 4 of field 2I

[0109] Next, the manufacture method of aforementioned P channel MISFETTP3 is explained using <u>drawing 69</u> or <u>drawing 70</u>. <u>Drawing 69</u> or <u>drawing 70</u> is a cross section in the

```
manufacturing process of P channel MISFETTP3 which operates in 0-+40V.
[0110] the manufacture method of P channel MISFETTP3 is shown in drawing 69 — as — first -
- n- type -- a w II -- in order to form field 2I, the front face of the p - type semiconductor
substrate 1 is oxidized thermally, and the silicon-oxide film 64 is formed next - as the mask of
heat-resistant oxidization on this -- a silicon nitride film 66 -- forming -- this -- as the mask of
an ion implantation — using — ion implantation — carrying out — n- type — a well — field 2I is
formed next, the portion, i.e., n- type, exposed from the silicon nitride film 66 of the front face of
the semiconductor substrate 1 — a well — field 2I is oxidized thermally and the silicon-oxide
film 65 somewhat thicker than the silicon-oxide film 64 is formed
[0111] it is shown in drawing 70 — as — a silicon nitride film 66 — removing — new — a silicon
nitride film — forming — n- type — a well — the aforementioned silicon nitride film of the
formation field of a field 2 -- removing -- an ion implantation -- carrying out -- n- type -- a
well — after forming a field 2, the silicon-oxide film 65 is formed in the front face by thermal
oxidation then, a silicon nitride film is removed, next it is shown in drawing 71 -- as -- the
thickness difference of the silicon-oxide film 64 and the silicon-oxide film 65 -- using --
described [ above ] n- type of the semiconductor substrate 1 -- a well -- field 2l and n- typ -
- a well - portions other than field 2 - p type impurity - pouring in - p-type - a well - a
field 3 is formed Next, a silicon nitride film 68 is formed as a mask of the thermal oxidation when
forming the field insulator layer 4 on the silicon-oxide films 64 and 65, next - as the mask when
forming n type channel-stopper field 5I — n- type — a well — field 2I and n- type — a well —
a field 2 and p- type --- a well --- a resist film is formed on a field 3 and n- type --- a well --- the
ion implantation of the n type impurity is carried out to the front face of field 2I, and n type
channel-stopper field 5I is formed in it Then, the resist film 68 is removed.
[0112] next, it is shown in <u>drawing 72</u> — as — new — the resist film 69 — forming — this resist
film 69 and silicon nitride film 68 — a mask — carrying out — n- type — a well — an ion
implantation is carried out to the front face of field 2I, and p - type semiconductor-region 11I is
formed in it The resist film 69 is removed after this, next, it is shown in drawing 73 — as — the
thickness difference of the silicon-oxide film 64 and the silicon-oxide film 65 - using - p- type
— a well — the ion implantation of the p type impurity is carried out to the front face of a field
3, and p type channel-stopper field 5 is formed in it then, n- type - a well - field 2I and n-
type — a well — a field 2 and p- type — a well — the portion exposed from the silicon nitride
film 68 of a field 3 is oxidized thermally, and the field insulator layer 4 is formed After this,
Switch MISFET or the circumference circuit in the memory MISFETQ4 of the memory cell Q1 of
EPROM105 shown in drawing 5 or drawing 7 explained previously, and the memory cell of
MISFETQ2, Q3, and EEPROM107 of a circumference circuit, and its memory cell p+ type
semiconductor-region 13C which accomplishes a part of the gate insulator layer 6 shown in
drawing 68, gate electrode 71, an insulator layer 10, sidewall 12, source, and drain at the process
which forms N channel MISFETQ5 for constituting and P channel MISFETQ6 of a circumference
circuit is formed. furthermore, the passivation film 14 of the 1st layer and connection — a hole
15, wiring 16, the passivation film 17 of the 2nd layer, and connection — a hole 18, wiring 19, and
the final passivation film that is not illustrated are formed
[0113] In addition, P channel MISFET shown in aforementioned drawing 68 may consist of gate
insulator layers 6 using the thick gate insulator layer 70, as shown in drawing 74
[0114] <u>Drawing 74</u> is the cross section of P channel MISFET using the gate insulator layer 70
thicker than the gate insulator layer 6 of P channel MISFET shown in drawing 68, and N channel
MISFET.
[0115] drawing 74 — setting — left-hand side n- type — a well — P channel MISFET is
constituted in field 2I The gate insulator layer 70 of this P channel MISFET consists of a silicon-
oxide film, and thickness is thick with about 1000-2000A, p- typ - a well \div N channel MISFET
which operates in 0-+40V is constituted by the field 3 This N channel MISFET consists of n+
type semiconductor-regi n 13B which accomplishes portions other than the gate insulator layer
70, gate electrode 7J which consist for example, of a pilycrystal silicon film, n-type-
s miconductor field 5I which accomplish is a part of source and drain, and the aforementioned n-
```

type-semiconductor field 5I of the source and a drain. Gat electrode 7J have extended also on

the field insulator layer 4. Moreover, n-type-semiconductor field 5I is prepared in the bottom of the field insulator layer 4, surrounds n+ type semiconductor-region 13B, and is prepared. moreover, n-type-semiconductor field 5I and n- type — a well — between field 2I and between n-type-semiconductor field 5I and p type channel-stopper fields 5 — p type with high impurity concentration higher than p type channel-stopper field 5 — channel-stopper field 5J are prepared

[0116] Next, the manufacture method of P channel MISFET shown in aforementioned drawing 74 and N channel MISFET is explained using drawing 75. Drawing 75 is a cross section in the manufacturing process of P channel MISFET shown in drawing 74, and N channel MISFET. [0117] the process as the process shown in aforementioned drawing 69 or drawing 73 that P channel MISFET and N channel MISFET which were shown in drawing 75 are almost the same -it is -- the p - type semiconductor substrate 1 -- n- type -- a well -- field 2[(and 2) and ptype -- a well -- field 3, n-type-semiconductor field 5I, p type semiconductor field 5J, and p type semiconductor-region 11L p type channel-stopper field 5, and the field insulator layer 4 are formed then, the silicon nitride film 68 (drawing 71) which is the mask of the thermal oxidation used when forming the field insulator layer 4 and the silicon-oxide films 64 and 65 under it --removing -- n- type -- a well -- field 2I (and 2) and p- type -- a well -- the front face of the portion which is not covered by the field insulator layer 4 of a field 3 is exposed and the exposed n- type — a well — field 2I (and 2) and p- type — a well — the front face of a field 3 is oxidized thermally and the gate insulator layer 70 is formed Then, gate insulator layers 70 other than the field in which P channel MISFET and N channel MISFET which were shown in drawing 74 are prepared are removed by etching using the resist film. after [and] removing the resist film again -- n- type -- a well -- field 2I (and 2) and p- type -- a well -- the gate insulator layer 6 of MISFET which oxidizes the front face of a field 3 thermally, for example, operates in 0-5V is formed

[0118] After this, drawing 4 explained previously — or N channel MISFETQ5 which are the memory MISFETQ4 of the memory cell Q1 of EPROM105 shown in drawing 7, and the memory cell of MISFETQ2, Q3, and EEPROM107 of a circumference circuit, and the switch MISFET in the memory cell, At the process which forms P channel MISFETQ6 of a circumference circuit, the gate electrodes 7I and 7J, n+ type semiconductor-region 13B which is an insulator layer 10, a sidewall 12, the source of N channel MISFET, and a part of drain, p+ type semiconductorregion 13C which is the source of P channel MISFET, and a part of drain, the passivation film 14, and connection — a hole 15, wiring 16, the passivation film 17, and connection — a hole 18, wiring 19, and the final passivation film that is not illustrated are formed [0119] In addition, as mentioned above, although the microcomputer of the form of this operation forms gate electrode 7B [of the circumference circuit of EPROM105] of MISFETQ2 and Q3, and gate electrode 7B of MISFETQ5 and Q6 of the circumference circuit of EEPROM107 using the polycrystal silicon film of the 1st layer, thickness of the polycrystal silicon film of the 1st aforementioned layer is made thin with detailed-izing of semiconductor integrated circuit equipment. Moreover, thickness of the gate insulator layer 6 or the silicon-oxide film 10 of the front face of gate electrode 7B is also made thin. For this reason, at the time of the ion implantation for forming the source and a drain, impurity ion may penetrate the aforementioned silicon-oxide film 10, the gate electrode 7, and the gate insulator layer 6, and may leak to a channel field, MISFETQ2, Q3, Q5, and Q6 may carry out, and a threshold may shift from a predetermined value. If patterning of the silicon-oxide film and the polycrystal silicon film is carried out and gate electrode 7B is formed, after forming a thick silicon-oxide film by CVD etc. on the polycrystal silicon film of the 1st aforementioned layer, in order to solve this, since a thick silicon-oxide film is on gate electrode 7B, the leakage of the impurity ion to the channel field at the time of the aforemention d i n implantati n can be prevented. However, as mentioned above, the polycrystal silicon film of the 1st layer is used as floating-gate electrode 7A of the memory cell Q1 of EPROM105, or floating-gate electrode 7C of the memory MISFETQ4 of the memory cell of EEPROM107. If the 2nd gate insulator layers 8A and 8C which consist of a silicon-oxid film thin on it are not formed, since there is nothing, there is a satisfactory problem that a thick silicon-oxide film cannot above only be formed by CVD etc. on

a polycrystal silicon film.

[0120] How to form the source and a drain is explained in MISFET which it is there, next gate electrode 7B becomes from the polycrystal silicon film of the 1st layer, without impurity ion leaking to a channel field.

[0121] <u>Drawing 76</u> or <u>drawing 81</u> is drawing for explaining the manufacture method of MISFET which can form the source and a drain, without forming a gate electrode, the electric conduction film, for example, the polycrystal silicon film, of the 1st layer, and moreover leaking impurity ion t a channel field. In addition, in <u>drawing 76</u> or <u>drawing 81</u>, the field shown by Q1 is a field in which the memory cell of EPROM105 is formed, and the field shown by Q2 is a field in which N channel MISFET of the circumference circuit of EPROM105 is formed.

[0122] As shown in drawing 76, the method of forming MISFET, without leaking impurity ion to a channel field forms the polycrystal silicon film 7 of the 1st layer, and after it pours in the predetermined impurity for aiming at low resistance to it, it forms the thick silicon—oxide film 71 by CVD.

[0123] Next, as shown in <u>drawing 77</u>, the silicon-oxide film 71 of the field which forms the memory cell Q1 of EPROM105 is removed by etching by using for example, a resist film as a mask. After a resist film removes the silicon-oxide film 71 alternatively, it is removed. Next, as patterning of the aforementioned polycrystal silicon film 7 is carried out and it is shown in <u>drawing 78</u> by etching which used as the mask the resist film which is not illustrated, floating-gate electrode 7A of the memory cell Q1 of EPROM105 and gate electrode 7B of MISFETQ2 are formed. The mask which consists of a resist film is removed after patterning. The thick silicon-oxide film 71 is on gate electrode 7B of N channel MISFETQ2.

[0124] Next, as shown in <u>drawing 79</u>, the front face of floating—gate electrode 7A is oxidized thermally, and 2nd gate insulator layer 8A is formed. Next, as shown in <u>drawing 80</u>, the electric conduction film of the 2nd layer is formed on the semiconductor substrate (chip) 1, patterning of this is carried out and control gate electrode (word line) 9A of EPROM105 is formed. Next, as shown in <u>drawing 81</u>, n+ type semiconductor regions 13A and 13B which accomplish portions other than the source of MISFETQ2 of n which accomplishes the source of MISFETQ2 of n—type—semiconductor field 11A which accomplishes the source of a memory cell Q1 and a part of drain, and a circumference circuit, and a part of drain — type semiconductor—region 11B, a memory cell Q1, and a circumference circuit, and the above of a drain are formed.

[0125] Thus, since the thick silicon—oxide film 71 is on gate electrode 7B if the source of N channel MISFETQ2 and a drain are formed, it can prevent that the impurity for forming the source and a drain leaks to a channel field.

[0126] As mentioned above, according to the gestalt of this operation, the following effects can be acquired so that it may understand from having explained.

(1) In the semiconductor integrated circuit equipment which constitutes the microcomputer equipped with a central processing unit and the non-volatile memory program data, dictionary data, etc. of the central processing unit are remembered to be on one semiconductor chip The 1st non-volatile memory from which the aforementioned non-volatile memory writes in information electrically, and eliminates the written-in information by irradiation of ultraviolet rays (EPROM105), Information is written in electrically. by the bird clapper from the 2nd non-volatile memory (EEPROM107) which writes in and eliminates information electrically ROM rewritable [with large capacity] can be obtained and rewritable ROM can be electrically obtained on a system.

[0127] (2) Use EPROM105 for the data storage which needs large capacity from the above (1) although there is little number of times of rewriting. By using EEPROM107 for an operation data storage with required memorizing after the data storage as which small capacity is sufficient although many, or power supply interception, the number of times of rewriting The semiconductor integrated circuit equipment with which EPROM105 consists of a MAKUIRO computer equipped with ROM with the high flexibility with which the fault that informational r writing cannot be performed on a system, and the fault that the memory space of EEPROM107 was small were compensated mutually can be obtained.

[0128] That is, since the control data with required mem rizing when program data and

dictionary data which need big storage capacity are memorized by EPROM105, and the contents of data change with time like the data for control of feedback control and a power supply is intercepted is memorizable by EEPROM107, it can improve the function of the semiconductor integrated circuit equipment which consists of a 1 chip microcomputer.

[0129] (3) Nonvolatile RAM can be obtained from EEPROM107 of the above (1).

- (4) Since it had SRAM as the 1st RAM of 1 chip microcomputer, RAM which can perform data transfer at high speed is obtained.
- (5) Since it had DRAM as the 2nd RAM of 1 chip microcomputer, mass RAM can be obtained.
- (6) Although it is not necessary using SRAM to perform high-speed data transfer to a data storage with required performing data transfer at high speed although small capacity is sufficient from the above (4) and (5), RAM with which the fault that-izing of the SRAM cannot be carried out [large capacity], and the fault that the transfer rate of DRAM was slow were compensated mutually can be obtained by using DRAM for the data storage which needs big storage capacity. [0130] (7) Form the memory cell Q1 of EPROM105 in the 1st field of the semiconductor substrate 1. The memory MISFETQ4 in the memory cell of EEPROM107 is formed in the 1st field of the above of the aforementioned semiconductor substrate 1, and the 2nd different field. In the manufacture method of the semiconductor integrated circuit equipment which constitutes the microcomputer equipped with the process which forms the switch MISFETQ5 in the memory cell of the above EEPROM 107 in the 3rd field contiguous to the 2nd field of the above of the aforementioned semiconductor 1 The process which forms the 1st gate insulator layer 6 in the front face of the 1st, the 2nd, and 3rd fields of the aforementioned semiconductor substrate 1. respectively, The process which forms the source and a drain 20 in the predetermined portion under the above 2nd and the aforementioned 1st gate insulator layer 6 of the 3rd field. The process which forms the floating-gate electrodes 7A and 7C on the above 1st and the 1st gate insulator layer 6 of the 2nd field, and forms gate electrode 7B on the 1st gate insulator layer 6 of the 3rd field of the above, The process which forms the 2nd gate insulator layers 8A and 8C in the front face of the floating-gate electrodes 7A and 7C of the 1st field of the above, and the 2nd field, The process which forms the control gate electrodes 9A and 9C, respectively on the above 1st and the 2nd gate insulator layers 8A and 8C of the 2nd field. By equipping the predetermined portion under the 1st gate insulator layer 6 of the 1st field of the above with the process which forms the source and Drains 11A and 13A, and performing each aforementioned process in above sequence EEPROM107 can be formed only by adding the process which forms the n-type-semiconductor field 20 used as the source of EEPROM107, and a drain in the pr cess which forms EPROM105, and the process which forms the tunnel insulator layer 22 on the n-type-semiconductor field 20.

[0131] (8) Floating-gate electrode 7A of the memory cell Q1 of EPROM105, Floating-gate electrode 7C of the storage element Q4 in the memory cell of EEPROM107 is formed by the conductive layer (polycrystal silicon film) of the 1st layer. By having formed the 1st gate insulator layer 6 of the elements Q1 and Q4 of each above at the same process, and having formed the 2nd gate insulator layers 8A and 8C on the floating-gate electrodes 7A and 7C of the elements Q1 and Q4 of each above at the same process Each memory cell of EPROM105 and EEPROM107 can be obtained by the few manufacturing process.

[0132] (9) The circumference circuit of EPROM105 MISFETQ2, Q3 to constitute And the circumference circuit of EEPROM107 Since the gate insulator layer 6 of MISFETQ5 and Q6 to constitute was formed at the same process as the 1st gate insulator layer 6 of the memory cell Q1 of the above EPROM 105, and the 1st gate insulator layer 6 of the memory MISFETQ4 in the memory cell of EEPROM107 The thickness of the gate insulator layer 6 of MISFETQ2, Q3, Q5, and Q6 of these circumference circuit can become thick, and can raise isolation voltage. [0133] (10) Since gate insulator layer 8D f MISFETQ7-Q9 for constituting CPU (Bool an part) 100 and I/O102 is formed at the 1st gate insulator layer 6 of the memory cell Q1 of EPROM105 and the 1st gate insulator layer 6 of the memory MISFETQ4 in the memory cell of EEPROM107, and another process, a setup of the thickness of the aforementing date insulator layer 8D and the gate insulator layer 6 can be made into the independently optimal respectively value. [0134] (11) Since gate electrode 9D of MISFETQ7-Q9 for constituting CPU (Boolean part)100

and I/O102 was formed by the two-layer film which carried out the laminating of the silicide film on the conductive layer of the 2nd layer, i.e., for example, a polycrystal silicon film, low resistance-ization of the gate electrode 9D can be attained.

[0135] (12) Since the voltage impressed to MISFET of EPROM105 and EEPROM107 including the circumference circuit from the above (8) or the thing of (11) and the voltage impressed to MISFET for constituting CPU (Bo lean part)100 and I/O102 can be set up independently, the structure of each element can be set up independently.

[0136] (13) DRAM109 can be formed at the manufacturing process or ****** same process of EEPROM107.

- (14) Since the dielectric film 22 of the capacitative element C of the memory cell of DRAM109 is formed very thinly like the tunnel insulator layer 22 of the memory cell of EEPROM107 from the thing of the above (12), capacity value of the capacitative element C can be enlarged.

 [0137] (15) Mass DRAM can be obtained from the thing of the above (14), and mass RAM is further obtained from this.
- (16) the resistance element R which constitutes an analog circuit the same process as the floating-gate electrodes 7A and 7C of the memory MISFETQ4 in the memory cell of EPROM105, or the memory cell of EEPROM107 or it can form at the same process mostly and capacitative element C can be formed at the same process as the memory cell of EPROM105 or EEPROM107
- [0138] (17) Since a resistance element R and capacitative element C are covered by the insulator layer 10, the resistance and capacity value which were stabilized at the time of operation of a circuit are obtained.
- (18) the well under a resistance element R and capacitative element C since the field was fixed electrically, the resistance and capacity value which were stabilized at the time of operation of a circuit are obtained
- (19) Since the upper part of a resistance element R is covered by the conductive layer 19 made into fixed potential, other signal wiring can be made to extend on the conductive layer 19. (20) From the above (16) or (19), the stable resistance element R and stable capacitative element C of an analog quantity required for processing of 1 chip microcomputer can be obtained easily.
- [0139] (21) The high proof pressure MISFET can be mostly formed at the same process with the process which forms EPROM105, EEPROM107, and DRAM109.
- (22) When gate electrode 7I of the high proof pressure MISFET is made to extend even on the field insulator layer 4 and it was made for an edge to ride on the field insulator layer 4, pressure—proofing between gate electrode 7I and the semiconductor substrate 1 can be improved.
- [0140] (23) Pressure-proofing of the source and a drain can be improved by having surrounded **** of the high semiconductor region of the high impurity concentration which is the source of the high proof pressure MISFET, and a part of drain by the low semiconductor region of high impurity concentration.
- (24) The high proof pressure MISFET used for I/O102 of 1 chip microcomputer can be easily obtained from the above (21) or the thing of (23).
- [0141] As mentioned above, although this invention was concretely explained based on the form of operation, it cannot be overemphasized by this invention that it can change variously in the range which is not limited to the form of the aforementioned implementation and does not deviate from the summary.
- [0142] although the microcomputer shown in <u>drawing 1</u> is equipped with SRAM108 and DRAM109 as RAM SRAM108 or either of DRAMs109 it is good [0143]

[Effect of the Invention] It will be as follows if the effect of a typical thing is briefly explained among invention indicated by this application. EPROM is used for the data storage which needs large capacity although there is little number of times of rewriting. Although there is much number of times of rewriting, by using EEPROM for an operation data storage with required memorizing after a small data storage or power supply interception, data capacity 1 chip microcomputer equipped with ROM with the high flexibility with which the fault that EPROM

cannot perform informational rewriting on a system, and the fault that the memory space of EEPROM was small were compensated mutually can be obtained.

[0144] That is, since the data for control with required memorizing program data and dictionary data which need big storage capacity by EPROM, and memorizing when the content of data changes with time lik the data for control of feedback control and a power supply is intercepted are memorized by EEPROM, they can improve the function of the semiconductor integrated circuit equipment which consists of a 1 chip microcomputer.

[0145] Moreover, EEPROM can be formed only by adding the process which forms the n-type-semiconductor field 20 used as the source of EEPROM, and a drain in the process which forms EPROM, the process which forms the thick insulator layer 21 on the n-type-semiconductor field 20, and the process which forms the tunnel insulator layer 22 on the n-type-semiconductor field 20.

[Translation done.]

Japan Patent Office is not responsible for any damages caused by the us f this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the block diagram showing the microcomputer of the semiconductor integrated circuit equipment which is the gestalt of 1 operation of this invention.

[Drawing 2] It is the representative circuit schematic of the memory cell of SRAM108 with which the microcomputer shown in <u>drawing 1</u> is equipped.

[Drawing 3] It is the representative circuit schematic showing the outline composition of EPROM105 carried in the aforementioned microcomputer.

[Drawing 4] It is the representative circuit schematic showing the outline composition of EEPROM107 carried in the aforementioned microcomputer.

[Drawing 5] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 6] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 7] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. Drawing 8] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 9] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 10] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 11] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 12] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 13] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 14] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 15] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 16] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU, [Drawing 17] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 18] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 19] It is a cross s ction in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 20] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU.

[Drawing 21] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 22] It is a cross section in the manufacturing pr cess of MISFET which constitutes Bo lean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 23] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 24] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 25] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 26] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 27] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 27] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 28] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 29] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 30] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 31] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 32] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 33] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 34] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 35] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 36] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 37] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 38] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 39] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 40] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 41] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 42] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 43] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU, [Drawing 44] It is a cross sectin in the manufacturing process of MISFET which constitutes B olean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 45] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 46] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU.

[Drawing 47] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 48] It is a cross section in the manufacturing process of MISFET which c institutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 49] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 50] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 51] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 52] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 53] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 54] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 55] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 56] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 57] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 58] It is a cross section in the manufacturing process of MISFET which constitutes Boolean parts of the aforementioned microcomputer, such as EPROM, EEPROM, and CPU. [Drawing 59] It is a cross section in the manufacturing process of the memory cell of DRAM prepared in the aforementioned microcomputer.

[Drawing 60] It is a cross section in the manufacturing process of the memory cell of DRAM prepared in the aforementioned microcomputer.

[Drawing 61] It is a cross section in the manufacturing process of the memory cell of DRAM prepared in the aforementioned microcomputer.

[Drawing 62] It is a cross section in the manufacturing process of the memory cell of DRAM prepared in the aforementioned microcomputer.

Drawing 63] It is the cross section of the capacitative element in the operational amplifier with which the aforementioned microcomputer is equipped, an analog—to—digital converter, and a digital to analog converter, and a resistance element.

Drawing 64] It is a cross section in the manufacturing process of the capacitative element shown in drawing 63, and a resistance element.

Drawing 65] It is a cross section in the manufacturing process of the capacitative element shown in drawing 63, and a resistance element.

[Drawing 66] It is a cross section in the manufacturing process of the capacitative element shown in drawing 63, and a resistance element.

Drawing 67 It is the representative circuit schematic showing one I/O cell in I/O of the microcomputer shown in drawing 1.

[Drawing 68] It is the cross section of P channel MISFET shown in drawing 67.

[Drawing 69] It is a cross section in the manufacturing process of P channel MISFETTP3 shown in drawing 68.

[Drawing 70] It is a cross section in the manufacturing process of P channel MISFETTP3 shown in drawing 68.

Drawing 71] It is a cross section in the manufacturing process of P channel MISFETTP3 shown in drawing 68.

[Drawing 72] It is a cross section in the manufacturing process of P channel MISFETTP3 shown in drawing 68.

[Drawing 73] It is a cross section in the manufacturing process of P channel MISFETTP3 shown in drawing 68.

[Drawing 74] It is the cross section of P channel MISFET using the gate insulator layer 70 thicker than the gate insulator layer 6 of P channel MISFET shown in <u>drawing 68</u>, and N channel MISFET.

[Drawing 75] It is a cross section in the manufacturing process of P channel MISFET shown in drawing 74, and N channel MISFET.

[Drawing 76] They are the source and a cross section explaining the manufacture method of MISFET which can form a drain, without forming a gate electrode by the polycrystal silicon film of the 1st layer, and leaking impurity ion to a channel field further.

[Drawing 77] They are the source and a cross section explaining the manufacture method of MISFET which can form a drain, without forming a gate electrode by the polycrystal silicon film of the 1st layer, and leaking impurity ion to a channel field further.

[Drawing 78] They are the source and a cross section explaining the manufacture method of MISFET which can form a drain, without forming a gate electrode by the polycrystal silicon film of the 1st layer, and leaking impurity ion to a channel field further.

[Drawing 79] They are the source and a cross section explaining the manufacture method of MISFET which can form a drain, without forming a gate electrode by the polycrystal silicon film of the 1st layer, and leaking impurity ion to a channel field further.

[Drawing 80] They are the source and a cross section explaining the manufacture method of MISFET which can form a drain, without forming a gate electrode by the polycrystal silicon film of the 1st layer, and leaking impurity ion to a channel field further.

[Drawing 81] They are the source and a cross section explaining the manufacture method of MISFET which can form a drain, without forming a gate electrode by the polycrystal silicon film of the 1st layer, and leaking impurity ion to a channel field further.

[Description of Notations]

1 [— OSC,] — A semiconductor chip (microcomputer), 100 — CPU, 101 102 [— TIMER, 105 / — EPROM,] — I/O, 103 — SI, 104 106 [— SRAM,] — An armature—voltage control circuit, 107 — EEPROM, 108 109 [— The memory cell of EPROM,] — DRAM, 110 — I/O BUS and Q1 Q2, Q3 — MISFET of a circumference circuit, Q4 — The storage element in the memory cell of EEPROM, Q5, Q6 — MISFET of the circumference circuit of EEPROM, Q7, Q9 — MISFET of CPU, Q8 [— The gate electrode which consists of an electric conduction film of the 1st layer,] — MISFET, 6 — The 1st gate insulator layer, 7A, 7B, 7C 8A, 8C — The 2nd gate insulator layer on a floating—gate electrode, 8 D—CPU, and the 1st gate insulator layer of an I/O field, 9A, 9C, 9D — The gate electrode which consists of an electric conduction film of the 2nd layer, 10 — A thin silicon—oxide film, 11A, 11B, 11C [— The source the high concentration layer of a drain, 20 / — n type source of EEPROM a drain, 21 / — A thick gate insulator layer, 22 / — Tunnel insulator layer.] — The source, the low concentration layer of a drain, 12 — A sidewall, 13A, 13B, 13C

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-317503

(43) 公開日 平成11年(1999) 11月16日

(51) Int. Cl. 6	識別記号	F I	
H01L 27/10	461	HO1L 27/10 461	
G06F 15/78	510	G06F 15/78 510 A	
HÖ1L 21/8247 29/788 29/792		HO1L 29/78 371:	
(21) 出願番号	特顧平11-35391	(71) 出願人 000005108	
(62)分割の表示	特願平9ー221404の分割	株式会社日立製作所	
(22) 出願日	昭和63年(1988) 5月20日	東京都千代田区神田駿河台四丁目 6 番地	
		(72) 発明者 黒田 鎌一	
		東京都小平市上水本町1450番地 株式会社 日立製作所武蔵工場内	
		(74) 代理人 弁理士 秋田 収喜	
	•		
	•		

(54) 【発明の名称】半導体集積回路装置

(57)【要約】

【課題】 1 チップマイクロコンピュータからなる半導体集積回路装置の機能を向上させる。

【解決手段】 CPUとSRAMとDRAMとを同一の 半導体基板上に集積する。小容量でよいが高速でデータ 転送を行うことが必要なデータの記憶にはSRAMを用 い、高速のデータ転送を行う必要はないが大きな記憶容 量を必要とするデータの記憶にはDRAMを用いること によって、SRAMが大容量化できないという欠点と、 DRAMの転送速度が遅いという欠点を互いに補ったR AMを得ることができる。

【特許請求の範囲】

[請求項1] CPUとSRAMとDRAMとが同一の 半導体基板上に集積されていることを特徴とする半導体 集積回路装置。

【請求項2】 前記CPUが少なくとも制御部、演算部及びレジスタを含むことを特徴とする請求項1に記載の 半導体集積回路装置。

【請求項3】 前記SRAMが、前記CPUと内部バスを介して接続され、キャッシュメモリとして動作することを特徴とする請求項1又は請求項2に記載の半導体集 10 積回路装置。

【請求項4】 前記SRAMの容量が前記DRAMの容量よりも小さいことを特徴とする請求項1乃至請求項3 の何れか一項に記載の半導体集積回路装置。

【請求項5】 前記CPUと前記SRAMと前記DRA Mとは、相互に内部パスを介して接続されていることを特徴とする請求項1乃至請求項4の何れか一項に記載の半導体集積回路装置。

【請求項6】 同一基体の第1の領域にDRAMが形成され、第2の領域にSRAMが形成され、第3の領域に 20 CMISFETが形成され、前記DRAMの容量がSRAMの容量よりも大きいことを特徴とする半導体集積回路装置。

【請求項7】 前記CMISFETは少なくともCPUの一部の回路を構成することを特徴とする請求項6に記載の半導体集積回路装置。

【請求項8】 前記SRAMのNMISFETのゲート電極と、前記CMISFETのゲート電極とが同一の導体層によって形成されていることを特徴とする請求項6 又は請求項7に記載の半導体集積回路装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体集積回路装置の製造方法に関するものであり、特に、1チップマイクロコンピュータからなる半導体集積回路装置に適用して有効な技術に関するものである。

[0002]

【従来の技術】制御部、演算部、記憶部及び入出力部を同一半導体基板上に搭載した1チップマイクロコンピュータは、例えば、CQ出版株式会社から昭和59年4月 401日に発行された早川正春著「ワンチップ・マイコンの基礎とその応用技術」に記載されているように、安価でかつ高機能な制御用素子として産業用や家電用に広く使われている。前記1チップマイクロコンピュータの記憶部は各種情報処理のためのプログラムや辞書データ等が記憶されるROM(Read Only Memory)と、主に実行中のプログラムや演算途中のデータが一時記憶されるRAM(Random Access Memory)とから構成される。

【0003】前配ROMとしては通常、製造工程中にデータの き込みを行うマスクROMが使用されている

が、システムデバッグ等を容易にするため、製造後にデータを書き込むことが可能なEPROM(Erasable and Programmable ROM) も広く使用されている。EPROMは、紫外線を照射することによってそのデータの消去ができるので、何回でも情報の書き替えができて、自由度の大きな1チップマイクロコンピュータを得ることができる。

[0004]

【発明が解決しようとする課題】本発明者は、ROMとしてEPROMを備えた1チップマイクロコンピュータを検討した結果、次の問題点を見出した。

【0005】前配EPROMの中のデータの書き替え は、紫外線を照射することによって行われる。このた め、前記1チップマイクロコンピュータを電子機器の中 に組み込んだ後は、EPROMの情報の書き替えを容易 に行うことができない。このため、EPROMでは、例 えばフィードバック制御がなされる電子機器の制御デー 夕のように時間と共に変化するデータの記憶ができない という問題があった。そして、フィードバック制御用の データは、電子機器の電源が遮断された後も動作を再開 する時に備えて1チップマイクロコンピュータの中に記 憶されていなければならないので、どうしても不揮発性 のメモリで記憶しておく必要がある。そこで、時間と共 に変化する制御データを記憶するためにEEPROM(E lectricallyEasable and Programmable ROM)を用いるこ とが考えられる。このEEPROMであれば、その中の データをシステム上においてさえ、1 チップマイクロコ ンピュータの制御部からの制御信号に従って書き替える ことができ、また電源遮断時にも前記データを記憶して 30 おくことができる。

【0006】しかし、EEPROMのメモリセルには、 EPROMのメモリセルと同じようにフローティングゲ 一ト電極を有し、情報の記憶がそのフローティングケー ト電極中にキャリアを注入することによって行われるも のと、MISFETのゲート電極の下のゲート絶縁膜を 酸化シリコン膜と窒化シリコン膜の2層膜で形成し、情 報の記憶がその窒化シリコン膜と酸化シリコン膜の間の トラップ準位にキャリアをトラップさせることによって 行われるものと2つのタイプのメモリセルがあるが、い ずれのメモリセルも、情報となる電荷を蓄積する部分を 有する記憶用MISFETと、書き込み、消去及び読み 出し動作時に選択された記憶用MISFETをデータ線 に接続するためのスイッチMISFETとの2つのMI SFETとで構成されているため、メモリセルサイズが 大きくなるという問題がある。このため、前記EEPR OMの機能が優れているにもかかわらず、限られたチッ プサイズの1チップマイクロコンピュータの中に大容量 の不揮発性情報を記憶させるためにEEPROMを設け ることが難しいという問題がある。

50 【0007】また、EEPROMのメモリセルの中の記

簡用MISFETの情報の き込み及び消去は、薄いトンネル絶縁膜に高電圧を印加してそのトンネル絶縁膜の中を流れるトンネル電流によって行うので、前記薄いトンネル絶縁膜の信頼性が問題となり、EEPROMの大容量化を図ることが難しいという問題があった。

【0008】本発明の目的は、1チップマイクロコンピュータからなる半導体集積回路装置が備えているROMの自由度を高めることにより、その半導体集積回路装置の機能を向上することが可能な技術を提供することにある。

【0009】本発明の他の目的は、EPROMとEEPROMを備えたマイクロコンピュータからなる半導体集積回路装置の製造工程を低減することができる技術を提供することにある。本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかになるであろう。

[0010]

【課題を解決するための手段】本願において開示される 発明のうち、代表的なものの概要を簡単に説明すれば、 下記のとおりである。すなわち、一つの半導体チップ上 20 に中央処理装置と、その中央処理装置のプログラムデー 夕や辞書データ等が記憶される不揮発性メモリとを備え たマイクロコンピュータを構成する半導体集積回路装置 において、前記不揮発性メモリが、情報の書き込みを電 気的に行い、その書き込んだ情報を紫外線の照射によっ て消去する第1の不揮発性メモリと、情報の書き込みを 電気的に行い、その書き込んだ情報を電気的に消去する 第2の不揮発性メモリとからなるものである。

【0011】また、半導体基板の第1領域にEPROM のメモリセルを形成し、前記半導体基板の前記第1領域 30 と異なる第2領域にEEPROMのメモリセルの中の記 憶用MISFETを形成し、前記半導体基板の前記第2 領域に隣接した第3領域に前記EEPROMのメモリセ ルの中のスイッチMISFETを形成する工程を備えた マイクロコンピュータを構成する半導体集積回路装置の 製造方法であって、前記半導体基板の第1,第2及び第 3 領域の表面にそれぞれ第1ゲート絶縁膜を形成する工 程と、前記第2及び第3領域の前記第1ゲート絶縁膜の 下の所定部分にソース、ドレインを形成する工程と、前 記第1及び第2領域の第1ゲート絶縁膜の上にフローテ 40 ィングゲート電極を形成しかつ前記第3領域の第1ゲー ト絶縁膜の上にゲート電極を形成する工程と、前記第1 領域及び第2領域のフローティングゲート電極の表面に 第2ゲート絶縁膜を形成する工程と、前記第1及び第2 領域の第2ゲート絶縁膜の上にそれぞれコントロールゲ ート電極を形成する工程と、前記第1領域の第1ゲート 絶縁膜の下の所定部分にソース、ドレインを形成するエ 程を備え、前記各工程は前記の順序でなされるものであ

【0012】上述した手段によれば、大きな記憶容量を 50 られるものである。これらCPU100、I/O10

必要とするプログラムデータや辞書データはEPROMで記憶し、フィードバック制御の制御データのようにデータの内容が時間と共に変化しかつ電源が遮断されたときにも記憶しておくことが必要な制御データはEEPROMで記憶するので、1チップマイクロコンピュータからなる半導体集積回路装置の機能を向上することができる。

【0013】また、1チップマイクロコンピュータからなる半導体集積回路装置上のEPROMのメモリセルを 10 形成する工程と、EEPROMのメモリセルを形成する 工程の一部を共用しているので、前記半導体集積回路装 置の製造工程を低減することができる。

[0014]

【発明の実施の形態】以下、本発明の一実施の形態を図面を用いて説明する。図1は、本発明の一実施の形態の1チップマイクロコンピュータからなる半導体集積回路装置のブロック図である。

【0015】図1において、1はマイクロコンピュータ が構成されている半導体チップであり、CPU(マイク ロプロセッサ) 100、OSC (発信器) 101、I/ 〇(入出力ポート)102、SI(シリアル・インター フェース) 103、TIMER (タイマ) 104、EP ROM(イレイザブル&プログラマブル・リード・オン リー・メモリ) 105、V_{rr} C (電圧制御回路) 10 6、EEPROM(エレクトリカリー・イレイザブル& プログラマブル・リード・オンリー・メモリ) 107、 SRAM(スタティック・ランダム・アクセス・メモ リ) 108、DRAM (ダイナミック・ランダム・アク セス・メモリ) 109、 I/OBUS (入出カバス) 1 10を備えている。CPU100は制御部、演算部及び 種々のレジスタから構成されている。OSC101は、 制限されるものではないが、半導体チッ プ1の外部に設 けられる水晶振動子Xtalを利用して高精度の基準周 波数信号を形成するものであり、ここで形成された基準 周波数信号によりCPU100において必要とされるク ロックパルスを形成する。I/O102はその内部にデ ータ転送方向レジスタを含んでいる。EPROM10 5、EEPROM107、SRAM108、DRAM1 09には記憶素子の情報の読み出しや書き込みあるいは 消去動作に必要な制御回路が含まれている。 Vcx C10 6は、EPROM105の書き込み動作やEEPROM 107の書き込み消去動作に必要なワード線電圧あるい はデータ線電圧を制御するものである。 SI103はシ リアル・クロック、シリアル・イン、シリアル・アウト の3本の端子と所定ビットのレジスタから構成されてお り、複数のマイクロコンピュータを用いる場合のそれら マイクロコンピュータ間のデータ転送を行うための入出 カポートとして使用される。TIMER104は割り込 み処理等の多重処理に必要な時間を設定するために用い

5

2、SI103、TIMER104、EPROM105、 V_{α} C106、EEPROM107、SRAM108、DRAM109は、CPU100を中心にI/OBUS110によって相互に接続されている。なお、I/OBUS110は、データバス、アドレスバス、制御バスの三つからなっている。

【0016】前記EPROM105は、各種情報処理のためのプログラムや辞書データ等が記憶される。そして、EPROM105には、前記プログラムや辞書データ等の中で比較的データの書き替え回数が少なく、また10大容量を必要とするものの記憶に用いる。EEPROM107は、各種情報処理のためのプログラムや辞書データ等の記憶とともに、時間と共に変化するフィードバック制御の制御データ、実行中のプログラムや演算途中のデータあるいはCPU100のレジスタ中のデータ等の中で、電源遮断時にも記憶させておくことが必要なデータの記憶にも用いられる。また、EEPROM107は、各種情報処理のためのプログラムや辞書データ等のEPROM105にも記憶させることができるデータの中で、データの書き替えが頻繁に行われ、またデータ容20量の少なくないデータの記憶に用いられる。

【0017】前記EPROM105の書き込み動作は、次の手順で行われる。すなわち、CPU100から出される各種の制御信号により、EPROM105を書き込み可能な動作状態にするとともに電圧制御回路 (V_{α} C) 106を動作させ、外部から印加される書き込み電圧あるいはマイクロコンピュータの通常の動作のために印加される電圧により所定のワード線電圧あるいはデータ線電圧を発生させる。

【0018】次に、CPU100はI/O102を介し 30 て外部から直接EPROM105に入力されたデータあるいは一度RAM(SRAM108, DRAM109)を介して入力されたデータに基づき、EPROM105の所定のアドレスに所定のデータを書き込む。EPROM105への各種データの書き込みが終了した後、CPU100は、EPROM105の書き込み動作と電圧制御回路106の動作を終了させる。

【0019】次に、前記EEPROM107の書き込みおよび消去動作を説明する。EEPROM107の書き込みおよび消去動作は、CPU100から出される各種 40制御信号により、EEPROM106を書き込み乃至は消去可能な動作状態にするとともに、電圧制御回路106を動作させて外部から印加される書き込み電圧、消去電圧あるいはマイクロコンピュータの通常の動作のための電圧により所定のワード線電圧あるいはデータ線電圧を発生させる。次に、CPU100は1/O102を介して外部から直接EEPROM107に入力されたデータあるいは一度SRAM108やDRAM109を介して入力されたデータに基づいて、EEPROM107の所定のアドレスに所定のデータの き込みあるいは消去 50

またはデータの書き替えを行う。このEEPROM107への各種データの書き込み、消去あるいはデータの書き替えが終了した後、CPU100はEEPROM107の書き込み乃至は消去動作を終了させる。

【0020】本実施の形態のマイクロコンピュータの通 常の動作は、各種制御信号、EPROM105及びEE PROM107に記憶されているプログラムや辞書デー タを基に、 I / O 1 0 2 に入力された各種データに所定 の処理を施した後、そのデータを I / O 1 0 2 から外部 へ出力する。ここで、1/0102に入力された各種デ ータ、所定の処理が施されたデータあるいはCPU10 0のレジスタ中のデータの中で電源遮断時にも記憶して おくことが必要なデータ、すなわち電源遮断後の再動作 時において必要となる前記各データは、前述したEEP ROM107の動作手順に従って所定のアドレスに記憶 させる。このEEPROM107への記憶は、各所の処 理毎にその中間データをEEPROM107に記憶させ ながら行ってもよく、あるいは所定の処理が終了した後 の最終のデータをEEPROM107に記憶させるよう にしてもよい。

【0021】一方、本実施の形態のマイクロコンピュー 夕は、事故によって異常な電源遮断が発生した場合に は、再び動作を開始するときに必要となる各種データ、 すなわちI/O102に入力される各種データ、所定の 処理が施されたデータあるいはCPU100のレジスタ 中のデータの中の所定のデータを前述したEEPROM 107の操作手順に従って所定のアドレスに記憶させ る。このように、本実施の形態のマイクロコンピュータ は、電源遮断時にもEEPROM107の動作を正常に 行うため、その動作に必要な電圧を供給する電源電圧バ ックアップ回路を有している。この電源電圧バックアッ プ回路は、特に制限されるものではないが、容量と制御 回路とからなり本実施の形態のマイクロコンピュータと 同一の半導体チップに構成されたものでもよく、あるい は本実施の形態のマイクロコンピュータを含み、電源を 同一とする電子機器上に構成されたものであってもよ

【0022】次に、図1と図3を用いて、前記EPROM105の回路動作を説明する。図3は、本実施の形態のマイクロコンピュータに搭載されているEPROM105の回路の概略構成を示した等価回路図である。

【0023】本実施の形態のマイクロコンピュータのEPROM105は、電源電圧Vcc 例えば5Vのような論理電圧系と、書き込み電圧Vppあるいは書き込み電圧Vppを電圧制御回路106で昇圧又は降圧して得た十数Vの高い電圧 V_{cr} からなる書き込み用電圧系を動作電源としている。通常の読み出し動作時は、論理電圧系によって動作する。

て入力されたデータに基づいて、EEPROM1070 【0024】<math>EPROM105はアドレス入力端子Xo所定のアドレスに所定のデータの き込みあるいは消去 50 乃至XiおよびYo乃至Yjを介入して供給されるアド

レス信号と、制御端子CE、OE、PGMを介して供給 されるチップイネーブル信号、出力イネーブル信号、プ ログラム信号によってその動作が制御される。これらの 制御信号はCPU100からの制御により図示されてい ないEPROM105内の制御回路により中継され、あ るいは形成される。

[0025] 本実施の形態におけるEPROM105は 8ピット単位でメモリセルの読み出しあるいは書き込み 動作を行う。メモリセルアレイM-ARYは、電気的に 書き込みを行い、紫外線の照射により消去する複数のM 10 ISFETQm 乃至Qm と、ワード線W0乃至W1を 含む複数のワード線と、データ線DO乃至D1を含む複 数のデータ線により構成される。メモリセルアレイM-ARYにおいて、同じ行に配置されたMISFETQ EI , Qm 乃至Qm , Qm のドレインはそれぞれ対応 するデータ線DO、D1に接続される。アドレス端子X o乃至XiおよびYo乃至Yjを介してCPU100か ら供給されるXアドレス信号およびYアドレス信号はX アドレスパッファXADBおよびYアドレスパッファY ADBに入力される。アドレスバッファXADB、YA 20 入による書き込みにより比較的高い電圧(論理"O") DBは制御回路CONTによって形成されるタイミング 信号ceによって動作し、CPU100から供給される アドレス信号を取り込み、それと同相および逆相の内部 アドレス信号からなる相補アドレス信号を形成し、Xア ドレスデコーダXDCRおよびYアドレスデコーダYD CRに供給する。

【0026】前記XアドレスデコーダXDCRはXアド レスパッファXADBにより供給される相補アドレス信 号に従い、メモリセルアレイM-ARYのワード線を選 択するための選択信号を供給する。Xアドレスデコーダ 30 XDCRにより形成されるワード線選択信号の電圧レベ ルは、電圧制御回路106から供給される電圧Vcx によ り決定される。通常の読み出し動作時は論理電圧系であ る電源電圧Vccレベルに設定され、また書き込み動作 時は書き込み用電圧系であるVa レベルに設定される。

[0027] YアドレスデコーダYDCRは、アドレス バッファYADBにより供給される相補アドレス信号に より、メモリセルアレイM-ARYのデータ線を選択す るための選択信号を形成する。YアドレスデコーダYD CRから出力される選択信号はYゲート回路YGATE 40 のMISFETY₁₁, Y₁₁, Y₁₁, Y₁₂ のゲート電極に 供給される。データ線の選択は、Yゲート回路YGAT AEのMISFETY_n, Y_nにより複数のデータ線群 からなる第1の選択を行った後、MISFETY』、Y и により前記データ線群から所定のデータ線を選択する 第2の選択により行う。ここで、Yゲート回路YGAT Eを直列に接続した2つのMISFETで構成したこと により、各MISFETの負荷容量を低下させることが でき、高速の銃み出し動作が可能となる。また、通常の 読み出し動作におけるデータ線の電圧レベルは、読み出 50

し中にMISFETQm 乃至Qm が誤書き込みされる のを防止するために、ワード線に供給される電源電圧V c c レベルよりも低いレベルに設定される。 さらに具体 的にはVccの20乃至40%のレベルに設定される。 魯き込み動作時は、書き込み用電圧系である Vαレベル に対応した所定の電圧に設定される。また、各々のデー 夕線D0、D1は共通データ線CDに結合されている。 【0028】データ出力回路DOBは、センスアンプ回 路SAを介して共通データ線に結合される。センスアン プは、特に制限されるものではないが、本実施の形態で はカレントミラー方式のセンスアンプ回路が用いられて いる。また、データ出力回路DOBは、入出力端子DI

【0029】EPROM105におけるデータの記憶 は、メモリセルに用いられるMISFETQen 乃至Q pu のしきい値電圧を通常の比較的低い電圧(論理 "1")か、フローティングゲート電極に対する電荷注 にするかによって行われる。

0 乃至はDI7に結合されている。データ入力回路DI

Bは、入出力端子DIO乃至DI7に結合された入力バ

ッファから構成されている。

【0030】次に、図1と図4を用いて、前記EEPR OM107の回路動作を説明する。図4は、本実施の形 態のマイクロコンピュータに搭載されているEEPRO M107の回路の概略構成を示した等価回路図である。 【0031】本実施の形態のマイクロコンピュータが搭 載しているEEPROM107は、電源電圧Vcc例え ば5Vのような論理電圧系と、書き込み乃至消去電圧V ppあるいは電圧制御回路106により電圧Vpp乃至 は電圧Vccを昇圧あるいは降圧して得られた十数Vの ような高いレベルの書き込み乃至消去電圧Va系を動作 電源としている。通常の読み出し動作は論理電圧系によ って動作する。EEPROM107はアドレス入力端子 Xo乃至XiおよびYo乃至Yiを介して供給されるア ドレス信号と、CPU100からの制御により図示され ていないEEPROM107中のメモリ制御回路により 制御され、あるいは形成される各種の制御信号によっ て、その動作が制御される。

【0032】本実施の形態におけるEEPROM107 は、8ピット単位でメモリの読み出し、書き込みあるい は消去動作を行う。メモリアレイM-ARYは電気的に 書き込みおよび消去を行う複数のメモリ MISFETQ m 乃至Qm と、前記メモリMISFETQm 乃至 Qua の読み出し、書き込みおよび消去の動作を制御す るスイッチMISFETQsi 乃至Qsi と、ワード線Wa 乃至 W_{ti} と W_{si} 乃至 W_{si} を含む複数のワード線と、デー 夕線 D_e 乃至 D_e を含む複数のデータ線により構成され る。メモリアレイM-ARYにおいて、同じ行に配置さ れたメモリMISFETQm:, Qm 乃至Qm , Q EIM のコントロールゲート電極はそれぞれ対応するワー

ド線Wa 乃至Wa に接続され、スイッチMISFETQ s_1 , Q_{SI} 乃至 Q_{SI} , Q_{SI} のゲート電極はそれぞれ対応す るワード線Wsg 乃至Wsg に接続され、同じ列に配置され たスイッチMISFETQsi, Qsi 乃至Qsi, Qsi のド レインはそれぞれ対応するデータ線Do乃至Diに接続さ れる。また、スイッチMISFETQsi 乃至Qsi のソー スはメモリMISFETQen 乃至Qen に接続され、 メモリMISFETQen 乃至Qen のソースは接地さ れている。

【0033】アドレス端子Xo乃至XiおよびYo乃至 10 Yjを介してCPU100から供給されるXアドレス信 号およびYアドレス信号は、XおよびYアドレスパッフ ァXYADBに入力される。アドレスパッファXYAD Bは、制御回路CONTによって形成されるタイミング 信号に従って動作し、CPU100から供給されるアド レス信号を取り込み、それと同相および逆相の内部アド レス信号からなる相補アドレス信号を形成し、それをX アドレスデコーダXDCRおよびYアドレスデコーダY DCRに供給する。また、アドレスパッファXYADB はその内部にラッチ回路を備えており、ラッチ回路にア 20 ドレス信号を一時記憶することができる。

【0034】 XアドレスデコーダXDCRは、アドレス バッファXYADBから供給される相補アドレス信号に 従い、メモリアレイM-ARYの2種類のワード線を選 択するための選択信号を形成する。

【0035】 YアドレスデコーダYDCRは、アドレス バッファYADBから供給される相補アドレス信号に従 って、メモリアレイM-ARYのデータ線D。乃至D、を 選択するための選択信号を形成する。Yアドレスデコー ダYDCRから出される選択信号は、Yゲート回路YG 30 ATEに供給される。Yゲート回路YGATEは、特に 制限されるものではないが、前記図3のYゲート回路Y GATEと同じ方式である。

【0036】データ入出力回路IOBは、前記データ線 と入出力端子DI0乃至DI7に結合されている。ま た、データ入出力回路IOBはセンスアンプ回路、入出 カバッファ回路および入力データの一時記憶用のラッチ 回路から構成されている。

【0037】データラッチ回路及びプログラム回路DL は、入出力端子DIO乃至DI7から供給される書き込 40 み乃至消去データを一時記憶するとともに、その書き込 み乃至消去データに基づいてメモリセルMISFETQ III 乃至QIIII の情報の書き込み乃至消去動作を行うた めのものである。

【0038】本実施の形態のマイクロコンピュータのE EPROM107が前記のように種々のラッチ回路を備 えていることにより、 き込み乃至消去動作時の誤書き 込み乃至誤消去を防止することができる。

【0039】前記EEPROM107のメモリMISF

ングゲート電極と、その下部のトンネル電流を流すこと が可能なトンネル絶縁膜と、その下の半導体領域を備え ている。そして、 き込み動作とは、フローティングゲ ート電極から電子を放出することによってメモリMIS FETQm 乃至Qm のしきい値電圧をソース電圧よ り低くすることを言い、また消去動作とはフローティン グゲート電極に電子を注入することによってメモリMI SFETQm, 乃至Qm, のしきい値をソース電圧より も高くすることを言う。これら書き込みにおける電子の 放出及び消去における電子の注入は、トンネル絶縁膜を 通して行われる。

10

【0040】次に、前記EEPROM107の情報の書 き込みを行うときの回路動作を説明する。

【0041】まず、CPU100から出される各種制御 信号によりEEPROM107を書き込み可能な動作状 態にするとともに、書き込みを行うアドレスをアドレス パッファXYADBのラッチ回路に一時記憶する。ま た、データラッチ回路及びプログラム回路DLのラッチ 回路に書き込みデータを一時記憶する。次に、書き込み を行うメモリMISFETQen 乃至Qen が結合され たスイッチMISFETQsi 乃至Qsi のワード線Wso 乃 至Wsiの電位を書き込みが可能な高い電圧にして、スイ ッチMISFETQsi乃至Quを動作状態にする。この とき、メモリMISFETQue 乃至Que に結合され る全てのワード線Wm 乃至Wil は、ほぼ0Vの低い電圧 にする。この後、書き込みを行うメモリMISFETQ En 乃至QEN にスイッチMISFETQs 乃至Qs を 介して結合されているデータ線D。乃至Di に書き込み可 能な高い電圧を印加する。

【0042】以上の回路動作により、メモリMISFE TQm 乃至Qm のフローティングゲート電極の下に 設けられているトンネル絶縁膜の下部の半導体領域の電 位が、コントロールゲート電極に印加されている電位よ りも高くなるので、このコントロールゲート電極よりさ らに低い電位になっているフローティングゲート電極中 の電子は、前記トンネル絶縁膜を介してその下の半導体 領域中へ放出され書き込みがなされる。

【0043】次に、情報の消去を行うための回路動作を 説明する。本実施の形態では、制御されるものではない が、ワード線毎に消去動作を行うようになっている。消 去動作は、まず、CPU100から出される各種制御信 号によりEEPROM107を消去可能な動作状態にし て、ワード線W_{st}、W_{st} 乃至W_{st}、W_{st} を接地電圧に近 い低い電圧レベルに設定する。このとき、制限されるも のではないが、データ線Do、Do電圧も接地電圧に近 い低い電圧レベルに設定するようにしている。次に、メ モリMISFETQue, 乃至Que, に結合されたワード 線Wu 、Wu のうちで、消去すべきワード線Wu 乃至W EI を消去が可能な高い電圧レベルとする。これらのこと ETQ_{EM} 乃至Q_{EM} は、後述するように、フローティ 50 を行うと、メモリMISFETQ_{EM} 乃至Q_{EM} のコン

トロールゲート電極の電圧が、トンネル絶縁膜の下の半 導体領域の電圧よりも高くなるので、その半導体領域中 の電子がトンネル絶縁膜を介してフローティングゲート 電極中に注入されて消去がなされる。

【0044】次に、惰報の銃み出しを行うための回路動 作を説明する。読み出し動作は、まずメモリMISFE TQm 乃至Qm に結合されたワード線Wn 乃至Wn を常に接地電圧に近い非選択状態にして、スイッチMI SFETQsi 乃至Qsi に結合されるワード線Wsi 乃至W si とデータ線Di 乃至Di を選択することにより、複数の 10 メモリセルの中から特定のメモリセルを選択する。

[0045] この選択されたメモリセルのメモリMIS FET (Quan 乃至Quan のいずれか、以下、単にQ ERI 乃至QERI) のフローティングゲート電極中に電子 が書き込まれていた場合には、前記のようにワード線W B 乃至Wei が低い電位になっているので、そのメモリM ISFETQm 乃至Qm が非導通となり、これに対 応した論理 "0" がデータ線 D。乃至D、に読み出され

MISFETQue, 乃至Que, のフローティングゲート 電極中に電子が注入されていない場合には、そのメモリ MISFETQen 乃至Qen が導通状態となり、これ に対応して論理"1"がデータ線D。乃至D」に読み出さ れる。

【0047】次に、図1に示したマイクロコンピュータ が備えているSRAM108及びDRAM109につい て述べる。

【0048】前記SRAM108は、主として実行中の プログラムや演算途中のデータの中で、CPU100あ 30 るいはI/O102との間のデータの転送を高速で行う 必要のあるデータの一時記憶回路として用いられる。

【0049】本実施の形態のマイクロコンピュータが備 えているSRAM108のメモリセルは、図2に示した ように、2個のPチャネルMISFET205, 206 と、4個のNチャネルMISFET203, 204, 2 07,208とで構成されている。

【0050】なお、図2は、図1に示した本発明の一実 施の形態のマイクロコンピュータが備えているSRAM 108のメモリセルの等価回路である。

【0051】なお、SRAM108のメモリセルは、2 個の髙抵抗の抵抗案子と4個のMISFETとで構成し たものであってもよい。DRAM109は、主として実 行中のプログラムや演算途中のデータの中で、 CPU1 00あるいは1/0102との間のデータ転送を高速で 行う必要がなく、また大容量のメモリを必要とするデー タの一時記憶回路として用いられる。本実施の形態のD RAM109のメモリセルは、電荷を蓄積する容量部と これを制御するスイッチMISFETとで構成されてい の、RAMはSRAM108とDRAM109とで構成 され、データ容量は小量であるが高速のデータ転送を必 要とするデータの記憶にはSRAM108を用い、デー タの転送は高速で行う必要はないが容量の大きなデータ の配憶にはDRAM109を用いる。前記SRAM10 8は、いわゆるキャッシュメモリとして動作し、CPU 100との間で高速のデータ転送を行う。

【0052】本実施の形態におけるDRAM109は、 基板1に回路の電気的動作の基準となる電位すなわち接 地電位Vss例えば0Vより低い負電位を印加して動作 させることはしない。これは、基板1に前記のように接 地電位Vssより低い負電位を印加すると、通常、基板 1を負電位にしないで動作させるEPROM105やE EPROM107等を構成するMISFETの特性が変 化してしまうからである。ただし、基板1のDRAM1 09が構成されている領域が、EPROM105やEE PROM107等他のMISFETが構成されている領 域と電気的に分離されている場合には、基板1に前記負 電位を印加して動作させるようにしてもよい。 すなわ 【0046】一方、前記選択されたメモリセルのメモリ 20 ち、後述するように、DRAM109とその他のEEP ROM107、EPROM105等とをそれぞれ別々の P型ウエル領域に設けるようにし、それらP型ウエル領

> 【0053】DRAM109のリフレッシュ動作は、C PU100の制御により行う。また、DRAM109の ワード線の電位は、論理系の電圧であるVccよりも高 い電位に設定して動作させる。この電圧は電圧制御回路 106で発生させる。

域の間を電気的に分離するようにしてもよい。

【0054】次に、本実施の形態のマイクロコンピュー タを構成しているそれぞれのMISFETの構造を図 5、図6、図7を用いて説明する。

【0055】図5は、図1のマイクロコンピュータが備 えているEPROM105を構成しているMISFET の断面図、図6は、図1のマイクロコンピュータが備え ているEEPROM107を構成しているMISFET の断面図、図7は、図1のマイクロコンピュータが備え ているCPU100やI/O102等を構成するMIS FETの断面図である。

【0056】図5において、Q1はEPROM105の 40 メモリセルを構成するMISFETであり、Q2は前記 EPROM105のアドレスパッファやデコーダ等の周 辺回路を構成するNチャネルMISFET、Q3は前記 EPROM105のアドレスパッファやデコーダ等の周 辺回路を構成するPチャネルMISFETである。EP ROM105のメモリセルを構成するMISFETQ1 は、p~型単結晶シリコンからなる半導体基板1の主面 部のp~型ウエル領域3に設けられ、薄い酸化シリコン 膜からなる第1ゲート絶縁膜6と、例えば多結晶シリコ ン膜からなるフローティングゲート電板7Aと、薄い酸 る。このように、本実施の形態のマイクロコンピュータ 50 化シリコン膜からなる第2ゲート絶縁膜8Aと、例えば 多結晶シリコン膜の上にタングステンシリサイド膜(W Si₁)を積層した2層膜からなるコントロールゲート 電極9Aと、ソース、ドレインのチャネル領域側の部分 を成す n型半導体領域 11Aと、ソース、ドレインの前 記n型半導体領域11A以外の部分を成すn+型半導体 領域13Aとで構成されている。第1ゲート絶縁膜6の 膜厚は例えば500A程度であり、第2ゲート絶縁膜8 Aは例えば350A程度である。前記n型半導体領域1 1 Aは、ホットキャリアの発生を増加させて情報の書き 込み特性を向上させるためのものである。なお、コント 10 ロールゲート電極9Aはワード線でもある。フローティ ングゲート電板7Aの側面及びコントロールゲート電極 9 Aの側面と上面は、薄い酸化シリコン膜10で覆われ ている。そして、フローティングゲート電極7A及びコ ントロールゲート電極(ワード電極)9Aの側部には酸 化シリコン膜からなるサイドウォール12が設けられて いる。そして、ワード線が延在している方向におけるメ モリセルQ1同志の間は、酸化シリコン膜からなるフィ ールド絶縁膜4とその下のp型チャネルストッパ領域5 とで分離されている。情報の読み出し時におけるドレイ 20 ンの一部を成すn+型半導体領域13にはデータ線16 Dが接続している。データ線16Dは、例えばアルミニ ウム膜、アルミニウムを主成分としてこれにシリコン、 銅、バラジュウム等を添加したもの、あるいはこれらの 膜の下部にあるいは上部にシリサイド膜(MoSi₂, TaSi₂、TiSi₂、WSi₂等)を設けた多層膜か らなっている。14は第1層目のパッシベーション膜で あり、例えばCVDで形成した酸化シリコン膜、フォス フォシリケートガラス (PSG) 膜、ポロンドープドP SG(BPSG)膜、プラズマCVD法による酸化シリ 30 コン膜あるいはこれらの積層膜で形成されている。15 は接続孔である。17は第2層目のパッシベーション膜 であり、プラズマCVD法で形成した酸化シリコン膜、 回転塗布法で形成したスピン・オン・グラス膜等からな っている。前配周辺回路を構成するNチャネルMISF ETQ2は、ゲート絶縁膜6と、例えば多結晶シリコン 膜からなるゲート電極7Bと、ソース、ドレインのチャ ネル領域側を成すn~型半導体領域11Bと、ソース, ドレインの前記n~型半導体領域11B以外の部分を成 すn+型半導体領域13Bとで構成されている。前記n ~型半導体領域11Bは、ドレインの端部でのホットキ ャリアの発生を制御して、MISFETQ2の電気的特 性が変化するのを防止するためのものである。ゲート電 極7Bの側面及び上面は薄い酸化シリコン膜10によっ て覆われている。ドレイン側のn+型半導体領域13B には接続孔15を通してアルミニウム膜からなる配線1 6 が接続している。そして、このn+型半導体領域13 は、ドレインの耐圧を向上させるため、サイドウォール 12から所定距離だけ離して設けられている。前記周辺

基板1の主面のn~型ウエル領域2に設けられており、ゲート絶縁膜6と、例えば多結晶シリコン膜からなるゲート電極7Bと、ソース、ドレインのチャネル側の部分を成すp~型半導体領域11Cと、ソース、ドレインの前記p~型半導体領域11C以外の部分を成すp+型半導体領域13Cとで構成されている。配線17には接続孔18を通して配線19が接続されている。この配線19は前記配線17と同様の材料からなっている。なお、図示していないが、配線19の上にはPSG膜、プラズマCVD法による窒化シリコン膜等からなる最終バッシベーション膜が設けられる。

【0057】前記メモリセルQ1のフローティングゲート電極7Aと、NチャネルMISFETQ2のゲート電極7Bと、PチャネルMISFETQ3のゲート電極7Bは、同じ第1層目の導電膜からなっている。メモリセルQ2のゲート電極9Aは第2層目の導電膜からなっている。また、メモリセルQ1、NチャネルMISFETQ2、PチャネルMISFETQ3のそれぞれのゲート絶縁膜6の膜厚は、同じにされている。

【0058】図6において、Q4はEEPROM107のメモリセルの中のメモリMISFETQmi 乃至Qmi を構成するNチャネルMISFET、Q5は前記EEPROM107のメモリセルの中のスイッチMISFETQsi 乃至Qsi あるいはEEPROM107のアドレスパッファやデコーダ等の周辺回路を構成するNチャネルMISFET、Q6はEEPROM107の周辺回路を構成するPチャネルMISFETである。

【0059】前記NチャネルMISFETQ4は、50 0 A程度の薄い酸化シリコン膜からなる第1ゲート絶縁 膜6と、1000~2000A程度の厚さの酸化シリコ ン膜からなる絶縁膜21と、100A程度の極めて薄い 酸化シリコン膜からなるトンネル絶縁膜22と、例えば 多結晶シリコン膜からなるフローティングゲート電極7 Cと、350A程度の薄い酸化シリコン膜からなる第2 ゲート絶縁膜80と、ワード線と一体に形成されている コントロールゲート電極9Cと、ソース、ドレインとな るn型半導体領域20とで構成されている。フローティ ングゲート電極7Cの側面とコントロールゲート電極 (ワード線) 9 Cの側面及び上面は、薄い酸化シリコン 40 膜10が覆っている。絶縁膜21はフローティングゲー ト電極7Cの端部の電界を緩和して耐圧を向上させるた めのものである。前記メモリセルのスイッチMISFE Tまたは周辺回路を構成するためのNチャネルM I S F ETQ5は、ゲート絶縁膜6と、絶縁膜21と、例えば 多結晶シリコン膜からなるゲート電極7Bと、ソース、 ドレインとなるn型半導体領域20とで構成されてい る。ゲート電極7日の側面及び上面は絶縁膜10で覆わ れている。このNチャネルMISFETQ5のドレイン となるn型半導体領域20には、接続孔15を通して配 回路を構成するPチャネルMISFETQ3は、半導体 50 線16Dが接続されている。配線16Dは、メモリセル

においてはデータ線であり、周辺回路においてはMIS FET間を継ぐ信号配線である。前記周辺回路を構成す るPチャネルMISFETQ6は、ゲート絶録膜6と、 ゲート電極 7 B と、ソース、ドレインのチャネル領域側 の部分を成すp~型半導体領域11Cと、ソース、ドレ インの前記p~型半導体領域11C以外の部分を成すp +型半導体領域13Cとで構成されている。ゲート電極 7 Bの側面及び上面は絶縁膜10が覆っている。ソース 領域の一部を成す p+型半導体領域13 Cには接続孔1 +型半導体領域13Cは、ソース領域の耐圧を向上させ るため、サイドウォール12から所定距離だけ離して設 けてある。

【0060】なお、メモリセルのNチャネルMISFE TQ4及びスイッチ素子を成すNチャネルMISFET Q5の上を第2層目のアルミニウム膜からなる配線19 が覆っている。すなわち、メモリセルアレイ領域は、全 て配線19で覆われている。これは、EPROM105 に記憶されたデータを紫外線を照射して消去するとき 線で消去されてしまうのを防止するためである。

【0061】なお、記憶案子Q4のフローティングゲー ト電極7Cと、MISFETQ5, Q6のゲート電極7 Bは、前記EPROM105のメモリセルQ1のフロー ティングゲート電極 7 A 及びMISFET Q2, Q3の ゲート電極7Bと同じ第1層目の導電膜で形成されてい る。EEPROM107のメモリMISFETQ4のコ ントロールゲート電極9Cは、EPROM105のコン トロールゲート電極9Aと同じ第2層目の導電膜からな っている。

【0062】図7において、Q7はCPU100を構成 するためのNチャネルMISFET、Q8はI/O10 2やSI(シリアルインターフェイス)103を構成す るNチャネルMISFET、Q9はCPU100を構成 するためのPチャネルMISFETである。前記Nチャ ネルMISFETQ7は、250A程度の薄い酸化シリ コン膜からなるゲート絶縁膜8Dと、ゲート電極9D と、ソース、ドレインのチャネル領域側の部分を成すn ~型半導体領域11Bと、ソース, ドレインの前記n~ 型半導体領域11B以外の部分を成すn+型半導体領域 13Bとで構成されている。前記NチャネルMISFE TQ8は、ゲート絶縁膜8Dと、ゲート電極9Dと、ソ ース、ドレインのチャネル領域側の部分を成すn型半導 体領域11Aと、ソース、ドレインの前記n型半導体領 域11A以外の部分を成すn+型半導体領域13Bとで 機成されている。n型半導体領域11Aは、ドレイン領 域に異常な高電圧が印加されたときにMISFETQ8 が破壊されるのを防ぐためのものである。前記Pチャネ ルMISFETQ9は、ゲート絶縁膜8Dと、ゲート電 成すp~型半導体領域11Cと、ソース、ドレインの前 記p~型半導体領域11C以外の部分を成すp+型半導 体領域13Cとで構成されている。

[0063] なお、MISFETQ7, Q8, Q9のそ れぞれのゲート電極9Dは、前記EPROM105のコ ントロールゲート電極9A及びEEPROM107のコ ントロールゲート電極9Cと同じ第2層目の導電膜から なっている.

【0064】また、図2に示したSRAM108のメモ 5を通して配線16が接続されている。そして、このp 10 リセルを構成するNチャネルMISFET及びPチャネ ルMISFETは、図7に示したCPU(論理部)10 0を構成するNチャネルMISFETQ7及びPチャネ ルMISFETQ9と同様の構造になっている。

> 【0065】次に、前記MISFETQ1, Q2, Q 3, Q4, Q5, Q6, Q7, Q8, Q9077770 製造方法を図5、図6、図7、乃至図56、図57、図 58を用いて説明する。

【0066】図5、図6、図7乃至図56、図57、図 58は、本発明の一実施の形態のマイクロコンピュータ に、EEPROM107に記憶されたデータがその紫外 20 のEPROM105, EEPROM107及びCPU1 00等を構成するMISFETの製造工程における断面 図であり、図5乃至図56がEPROM105のメモリ セル及びその周辺回路を構成するMISFETが設けら れる領域の断面図、図6乃至図57がEEPROM10 7のメモリセル及びその周辺回路を構成するMISFE Tが設けられる領域の断面図、図7乃至図58がCPU 100とI/O102を構成するMISFETが設けら れる領域の断面図である。

> 【0067】なお、図2に示したSRAMのメモリセル 30 を構成するPチャネルMISFET及びNチャネルMI SFETは、図7に示した論理部を構成するNチャネル MISFETQ7及びPチャネルMISFETQ9と同 様の製造方法で形成されるので説明を省略する。

【0068】本実施の形態のマイクロコンピュータのE PROM105, EEPROM107, CPU100及 びI/O102を構成するMISFETの製造方法は、 図8乃至図10に示すように、p~型半導体基板(チッ プ) 1の主面部のそれぞれの所定の領域にイオン注入と アニールを行ってn~型ウエル領域2又はp~型ウエル 領域3を形成する。50は前記イオン注入を行うときに パッファ膜として使用した薄い酸化シリコン膜である。 【0069】次に、図11乃至図13に示すように、周 知の技術を使って、n~型ウェル領域2及びp~型ウエ ル領域3のそれぞれの所定領域を熱酸化してフィールド 絶縁膜4を形成し、またp~型ウエル領域3にpチャネ ルストッパ領域5を形成する。51はフィールド絶縁膜 4を形成するときに熱酸化のマスクとして使用した窒化 シリコン膜である。次に、窒化シリコン膜51を取り除 き、さらに下地膜として使用した酸化シリコン膜50を 極9Dと、ソース、ドレインのチャネル領域側の部分を 50 除去してn~型ウエル領域2及びp~型ウエル領域3の

フィールド絶縁膜4で覆われていない部分を露出させた 後、その舞出した表面を再び熱酸化して、図14乃至図 16に示すようにゲート絶縁膜6を形成する。

17

【0070】次に、図15に示したEEPROM107 のメモリセル及びその周辺回路のNチャネルMISFE Tのソース, ドレインとなる π型半導体領域 2 0 を形成 するときのイオン注入のマスクとして、n~型ウエル領 域2及びp~型ウエル領域3の上にレジスト膜52を形 成する。次に、n型不純物、例えばヒ素(As)イオン を 10" ~ 10" atoms/cm²程度導入して n 型半導体領 域20を形成する。この後、レジスト膜52を除去す

【0071】次に、図17乃至図19に示すように、熱 酸化して前記n型半導体領域20の上部に絶縁膜(Si O₁) 21を形成する。絶縁膜21は下部に高濃度層の n型半導体領域20があるので、厚い絶縁膜が得られ る。このときゲート絶縁膜6の膜厚は、500A程度に なるように前記酸化膜厚を設定しておく。絶縁膜21の 膜厚は、1000~2000A程度である。あるいは前 記ゲート絶縁膜6を除去した後、1度の熱酸化により5 20 00A程度のゲート絶縁膜と1000~2000A程度 の n 型半導体領域 2 0 の上部の絶縁膜を同時に形成して もよい。次に、EEPROM107のメモリMISFE TQ4のトンネル絶縁膜22が設けられる部分の絶縁膜 21をエッチングするために、図20万至図22に示す ように、マスクとしてのレジスト膜54を形成する。

【0072】次に、図21に示したように、絶縁膜21 のトンネル絶縁膜22が形成される部分をエッチングし てn型半導体領域20の表面を露出させる。この後、レ ジスト膜54を除去する。次に、先の工程で絶縁膜21 30 が除去されたことによって露出した n型半導体領域 20 の表面を熱酸化して、酸化シリコン膜からなるトンネル 絶縁膜22を形成する。トンネル絶縁膜22の膜厚は、 100 A 程度である。

【0073】次に、EPROM105のメモリセルQ1 のフローティングゲート電極7A、周辺回路のMISF ETQ2, Q3のゲート電極7B及びEEPROM10 7のメモリセルのメモリMISFETQ4のフローティ ングゲート電極7C、前記メモリセルのスイッチMIS FET及び周辺回路のMISFETQ5のゲート電極7 40 Bを形成するために、図23乃至図25に示すように、 例えばCVDでn~型ウエル領域2及びp~型ウエル領 域3の上部に多結晶シリコン膜7を形成する。この多結 晶シリコン膜?には熱拡散やイオン注入等でn型不純 物、例えばリン(P)を導入して低抵抗化を図る。

【0074】次に、図26乃至図28に示すように、前 記多結晶シリコン膜?をパターニングして、EPROM 105のメモリセルQ1のフローティングゲート電板7 A、周辺回路のゲート電極7B、EEPROM107の

C、EEPROM107のメモリセルのスイッチMIS FET及び周辺回路のMISFETQ5、Q6のゲート 電極7Bをそれぞれ形成する。CPU100及びI/O 102を構成するMISFETQ7、Q8、Q9のゲー ト電極は、後に形成される第2層目の導電膜で形成する ので、これらMISFETQ7~Q9を形成するための 領域では第1層目の多結晶シリコン膜7が除去されてし まって残らない。

【0075】ここで、図26に示したEPROM105 10 のメモリセルQ1のフローティングゲート電極7Aは、 データ線が延在する方向においては、個々のメモリセル のフローティングゲート電極7Aごとに分割されること なく、長く延在するパターンとなっている。しかし、ワ ード線が延在する方向においては隣接するメモリセルの フローティングゲート電極TAごとに切り離したパター ンとなっている。これは、後にこの上にコントロールゲ ート電極(ワード線) 9 A を形成するときに、前記デー 夕線が延在している方向に長く延在しているフローティ ングゲート電極?Aに2回目のパターニングを施して所 定のパターンにするためである。

【0076】一方、EEPROM107のメモリセルの メモリMISFETQ4のフローティングゲート電極7 Cは個々のメモリセルごとに切り離されたパターンにな っている。次に、図29乃至図31に示すように、EP ROM105のフローティングゲート電極7A及びEE PROM107のフローティングゲート電極7Cの表面 を熱酸化して第2ゲート絶縁膜8A,8Cを形成する。 この第2ゲート絶縁膜8A、8Cを形成するときに、そ の他のゲート電極7Bの表面も熱酸化されて薄い酸化シ リコン膜8が形成される。次に、CPU100領域及び I/O102領域以外の部分をレジスト膜55で覆った 後、CPU100領域及びI/O102領域に形成され ていた薄い酸化シリコン膜(ゲート絶縁膜)6をエッチ ングして取り除く。

【0077】次に、図32乃至図34に示すように、先 に酸化シリコン膜6をエッチングしたことによって露出 したCPU100領域及びI/O102領域を熱酸化し て、CPU100及びI/O102を構成するためのM ISFETのゲート絶縁膜8Dを形成する。このゲート 絶縁膜8Dを形成するときにそれぞれのフローティング ゲート電極7A、7C及びゲート電極7Bの表面が酸化 されて、第2ゲート絶縁膜8A、8C及び酸化シリコン 膜8の膜厚が増加する。

【0078】ここで、第2ゲート絶縁膜8A, 8Cの膜 厚は、最終的に350A程度になるようにする。また、 ゲート絶縁膜8Dの膜厚は、CPU100やI/O10 2を構成するMISFETQ7~Q9にとって最適な膜 厚にする。なお、EPROM105やEEPROM10 7のメモリセル及びそれらの周辺回路を構成するMIS メモリMISFETQ4のフローティングゲート電極7 50 FETのゲート絶縁膜6と、CPU100やI/O10

2を構成するMISFETのゲート絶縁膜8Dは、それ らMISFETにとって最適な値にするので、ゲート絶 緑膜6の方が厚く形成されることもあり、ゲート絶縁膜 8 Dの方が厚く形成されることもある。また、ゲート絶 縁膜6とゲート絶縁膜8Dを同じ膜厚に形成することも ある。

19

[0079] 前記ゲート絶縁膜8Dを形成した後、半導 体チップ1の上の全面に第2層目の導電膜9を形成す る。この導電膜9は、例えばCVDで多結晶シリコン膜 を形成し、この上にさらにスパッタでシリサイド膜を積 10 層した 2 層膜からなっている。前記多結晶シリコン膜に はイオン注入や熱拡散でn型不純物例えばリン(P)を 入れて低抵抗化を図る。

【0080】次に、図35乃至図36に示すように、レ ジスト膜72をマスクに導電膜9をパターニングして、 EEPROM107のメモリMISFETQ4のコント ロールゲート電極(ワード線)9C、MISFETQ 7, Q8, Q9のゲート電極9Dを形成する。

【0081】次に、図38乃至図40に示すように、レ 5のメモリセルQ1のコントロールゲート電極9A、第 2ゲート絶縁膜8A、フローティングゲート電極7Aを エッチングして、図41乃至図43に示すように、デー 夕線が延在する方向においても個々のメモリセルごとに 分割されたフローティングゲート電極?Aを形成する。 この後レジスト膜73を除去する。

【0082】次に、図44乃至図46に示すように、E PROM105とEEPROM107のそれぞれのコン トロールゲート電極(ワード線)9A, 9Dの表面を熱 酸化して薄い酸化シリコン膜10を形成する。このと き、他のMISFETQ2, Q3, Q5, Q6, Q7, Q8, Q9のゲート電極7B, 9Dの表面も酸化されて 酸化シリコン膜10が形成される。EPROM105の メモリセルQ1の領域と、I/O102のMISFET Q8の領域の部分を開口したレジスト膜56を形成し、 イオン注入によってp~型ウエル領域3へn型不純物例 えばヒ素(As)を導入して、メモリセルQ1とNチャ ネルMISFETQ8のソース、ドレインの一部となる n型半導体領域11Aを形成する。このとき導入される 不純物イオンのドーズ量は、例えば10 alons/cmで ある。

【0083】この後、レジスト膜56を除去し、図47 乃至図49に示すように、EPROM105の周辺回路 を構成するためのNチャネルMISFETQ2が設けら れる領域と、CPU100を構成するためのNチャネル MISFETQ7が設けられる領域とを開口したレジス ト膜57を形成する。そして、イオン注入によってn型 不純物例えばリン(P)を導入して、前記NチャネルM ISFETQ2, Q7のソース, ドレインの一部となる n〜型半導体領域11Bを形成する。このとき導入され 50 ルミニウムを主成分としてこれにシリコンや銅、あるい

る不純物イオンのドーズ量は、例えば10" atoms/cm である。この後、レジスト膜57を除去する。

20

【0084】次に、図50乃至図52に示すように、E PROM105、EEPROM107のそれぞれの周辺 回路を構成するためのPチャネルMISFETQ3、Q 6が設けられる領域と、CPU100を構成するための PチャネルMISFETQ9が設けられる領域とを開口 したレジスト膜58を形成する。そして、イオン注入に よってp型不純物例えばボロン(B)を導入して、前記 PF+ネルMISFETQ3, Q6, Q9のソース, ド レインの一部となるp~型半導体領域11Cを形成す る。このときの不純物イオンのドーズ量は、例えば10 "atoms/cm"程度である。この後、レジスト膜58を除 去する。

【0085】次に、図53万至図55に示すように、そ れぞれのゲート電極7A、9A、7B、7C、9C及び 9 Dの側部に、例えばCVDと反応性イオンエッチング を使って酸化シリコン膜からなるサイドウォール12を 形成する。次に、PチャネルMISFETQ3、Q9 ジスト膜73を形成する。この状態で、EPROM10 20 と、EEPROM107のメモリセル及びそれらの周辺 回路を構成するためのNチャネルMISFETが設けら れる領域をレジスト膜59で覆う。また、EPROM1 05の周辺回路のNチャネルMISFETQ2のドレイ ンの耐圧を高めるため、それの高濃度部分をサイドウォ ール12及びフィールド絶縁膜4から所定の距離だけ離 すために、レジスト膜59を形成する。そして、イオン 注入でn型不純物例えばヒ素 (As) を導入してn+型 半導体領域13A、13Bを形成する。この後、レジス ト膜59を除去する。

> 【0086】次に、図56乃至図58に示すように、そ れぞれのNチャネルMISFETQ1, Q2, Q4, Q 5、Q7、Q8の上をレジスト膜60で覆い、またEE PROM107の周辺回路のPチャネルMISFETQ 6のドレインの耐圧を高めるため、その高濃度の部分を サイドウォール12及びフィールド絶縁膜4から所定の 距離だけ離すためにレジスト膜60を形成する。そし て、イオン注入でp型不純物例えばポロン(B)を導入 して、それぞれのp+型半導体領域13を形成する。こ の後、レジスト膜60を除去する。この後、図5乃至図 40 7に示すように、パッシペーション膜1 4を例えばCV Dによる酸化シリコン膜、PSG膜、BPSG膜スパッ 夕による酸化シリコン膜あるいはこれらの積層膜を使っ て形成する。

【0087】次に、パッシペーション膜14を選択的に 除去して接続孔15を形成し、この後接続孔15の部分 の段差を緩和するため例えば900℃程度の温度でアニ ールしてパッシペーション膜14のグラスフローを行 う。次に、パッシペーション膜14の上に、例えばスパ ッタ法、CVD法あるいは蒸着法でアルミニウム膜、ア

はパラジウム等を添加したアルミ合金膜を形成し、また は、さらにこれらの膜の上部にシリサイド膜(MoSi ,, TaSi,, TiSi,, WSi,) を形成した後、こ れらの膜をパターニングして配線16. データ線16D を形成する。なお、前記シリサイド膜は、前記アルミニ ウム膜又はアルミ合金膜を形成する前にパッシペーショ ン膜14の上に形成し、この上に前記アルミニウム膜等 を形成するようにしてもよい。配線16,16Dを形成 した後、例えば下から順にプラズマCVDによる酸化シ リコン膜、回転塗布法によるスピン・オン・グラス膜、 プラズマCVDによる酸化シリコン膜を積層してパッシ ベーション膜17を形成する。次に、パッシペーション 膜17を選択的に除去して接続孔18を形成する。接続 孔18は、下部に融点の低いアルミニウム膜等からなる 配線層16、16Dがあるためグラスフローによって段 差を緩和させることができないので、まず例えばウエッ トエッチングなど等方性のエッチングでパッシベーショ ン膜17の膜厚の半分程度までエッチングし、次に異方 性のドライエッチングで残りの半分をエッチングして形 成する。次に、パッシベーション膜17の上に、前記配 20 線16、16Dを形成した方法で配線19を形成する。 次に、図示していないが、ファイナルパッシペーション として、PSG膜、窒化シリコン膜を形成する。

【0088】なお、図29乃至図31と図32乃至図3 4 に示したように、CPU100を構成するためのMI SFETQ7, Q9とI/O102を構成するためのM ISFETQ8のゲート絶縁膜8Dは、まずEPROM 105の第2ゲート絶縁膜8A及びEEPROM107 の第2ゲート絶縁膜8Cを形成した後、前記MISFE 化シリコン膜6をエッチングして取り除き、この後専用 の熱酸化工程で形成したが、前記EPROM105の第 2ゲート絶縁膜8A及びEEPROM107の第2ゲー ト絶縁膜8Cを形成する前にMISFETQ7、Q8、 Q9の領域の薄い酸化シリコン膜6をエッチングし、こ の後、前記EPROM及びEEPROM 107の第2ゲ ート絶縁膜8A、8Cを形成するときに同時にMISF ETQ7、Q8、Q9領域を酸化してゲート絶縁膜8D を形成するようにしてもよい。

[0089] また、本実施の形態の製造方法は、図14 40 乃至図16に示したEPROM105のメモリセルQ1 の第1ゲート絶縁膜6と、EEPROM107のメモリ セルのメモリMISFETQ4の第1ゲート絶縁膜6と を同時に形成しているが、これらをそれぞれ別々の工程 で形成するようにして、それらの膜厚を少し異ならせる ようにしてもよい。

[0090]次に、図1に示した本実施の形態のマイク ロコンピュータに設けられているDRAMのメモリセル の製造方法を説明する。

の形態のマイクロコンピュータに設けられているDRA Mのメモリセルの製造工程における断面図である。

22

【0092】まず、図59を使って前記RAMのメモリ セルの断面構造を説明する。図59に示すように、DR AMのメモリセルは、p~型ウエル領域3に設けられて いる。そして、QがメモリセルのスイッチMISFET であり、Cがメモリセルの容量素子である。スイッチM ISFETQは、酸化シリコン膜からなるゲート絶縁膜 8 Dと、例えば多結晶シリコン膜の上にシリサイド膜 (MoSi, TaSi, TiSi, WSi,)を積層 して構成した2層膜からなるゲート電極(ワード線)9 D、ソース、ドレインのチャネル領域側の部分を成すn ~型半導体領域11B、ソース、ドレインの前記n~型 半導体領域11B以外の部分を成すn+型半導体領域1 3 Bとで構成されている。前配容量素子Cは、一方の電 極となるn型半導体領域20と、薄い酸化シリコン膜か らなる誘電体膜22と、前記と異なる他方の電極であり 例えば多結晶シリコン膜からなる導電プレート7Eとで 構成されている。導電プレート7EのスイッチMISF ETQ側の端部には誘電体膜22より厚い酸化シリコン 膜からなる絶縁膜21が設けてあり、導電プレート7日 の端部の電界を緩和するようになっている。導電プレー ト7日の表面には酸化シリコン膜からなる絶縁膜23が 設けてある。16Dはデータ線であり、情報の読み出し 時のドレインのn+型半導体領域13Bに接続されてい

【0093】次に、前記DRAMのメモリセルの製造方 法を図60乃至図62を使って説明する。図60に示す ように、p~型半導体基板1の主面にp~型ウエル領域 TQ7, Q8, Q9の領域に先に形成されていた薄い酸 30 3、フィールド絶縁膜4、p型チャネルストッパ領域5 を形成した後、EPROM105やEEPROM107 のメモリセルQ1、Q4及びQ5のゲート絶縁膜6を形 成する工程(図14乃至図16)でDRAMのメモリセ ル領域に膜厚が500A程度の酸化シリコン膜6が形成 される。ただし、この酸化シリコン膜6はスイッチMI SFETQのゲート絶縁膜としては使用されない。この 時点では、図60に示したn型半導体領域20、絶縁膜 21, 22は形成されていない。この後、EEPROM 107のメモリセルQ4及びQ5のソース、ドレインで あるn型半導体領域20を形成する工程で、容量素子C の一方の電極であるn型半導体領域20を形成する。

【0094】次に、EEPROM107のメモリセルの 絶縁膜21を形成する工程(図17乃至図19)で、容 量素子Cが設けられる領域に、絶縁膜21を形成する。 この時点では誘電体膜22が設けられる領域も絶縁膜2 1となっている。絶縁膜21の膜厚は、1000~20 00A程度である。次に、EEPROM 107のトンネ ル絶縁膜22が形成される部分の絶縁膜21をエッチン グする工程(図20乃至図22)で、容量素子Cの誘電 【0091】図59乃至図62は、図1に示した本実施 50 体膜22が設けられる部分の絶縁膜21を選択的に除去

24

する。次に、EEPROM107のトンネル絶縁膜22 を形成する工程で、容量素子Cの誘電体膜22を形成す る。次に、EPROM105及びEEPROM107の フローティングゲート電極TA、TC及びそれぞれ周辺 回路のMISFETQ2, Q3, Q6のゲート電極7B を形成する工程(図23乃至図28)で、図61に示す ように、容量素子Cのプレート電極7Eを形成する。次 に、導電プレート?Eの表面を熱酸化して酸化シリコン 膜からなる絶縁膜23を形成する。なお、絶縁膜23 は、CVD法による酸化シリコン膜で形成してもよく、 あるいは熱酸化による酸化シリコン膜とCVDによる酸 化シリコン膜の積層で構成してもよい。前配絶緑膜23 を形成するとき、スイッチMISFETQが設けられる 領域やCPU100、I/O102、EPROM105 及びEEPROM107の周辺回路を構成するMISF ETが設けられる領域の酸化シリコン膜6は、膜厚の厚 い絶縁膜74となる。また、EPROM105やEEP ROM107のメモリセルQ1、Q4のフローティング ゲート電極及びそれらの周辺回路のゲート電極7Bの表 面に厚い絶縁膜23が形成される。そこで、前記導電プ 20 レート7Eの表面に絶縁膜23を形成した後、例えばD RAM109の容量素子Cの部分をレジスト膜で覆い、 スイッチMISFETQが設けられる領域やCPU10 0、I/O102、EPROM105及びEEPROM 107の周辺回路を構成するMISFETが設けられる 領域の厚い絶縁膜74と、EPROM105やEEPR OM107のメモリセルQ1, Q4のフローティングゲ ート電極及びそれらの周辺回路のゲート電極7Bの表面 に形成された厚い絶縁膜23をエッチングして取り除 く。そして、前記レジスト膜を除去した後、EPROM 30 105及びEEPROM107のフローティングゲート 電極 7 A、 7 C の表面を熱酸化して第 2 ゲート絶縁膜 8 A, 8 C を形成する。

【0095】次に、図62に示すように、CPU100 や I / O 1 0 2 の領域にゲート絶縁膜 8 Dを形成する工 程(図32乃至図34)で、スイッチMISFETQが 設けられる領域に酸化シリコン膜からなるゲート絶縁膜 8Dを形成する。なお、このゲート絶縁膜8Dは、EP ROM105及びEEPROM107のフローティング ゲート電極 7 A、 7 Cの表面の第 2 ゲート絶縁膜 8 A、 8 Cを形成する工程と同時に形成するようにしてもよ い。次に、EPROM105及びEEPROM107の コントロールゲート電極9A, 9C, CPU100及び I/O102領域のゲート電極9Dを形成する工程(図 32乃至図43)で、スイッチMISFETQのゲート 電極9Dを形成する。次に、EPROM105及びEE PROM107のコントロールゲート電極9A、9Cの 表面に絶縁膜10を形成するときに、スイッチMISF ETQの前記ゲート電極9Dの表面に絶縁膜10が形成 される。この後、酸化シリコン膜からなるサイドウォー 50 抗化がなされている。そして、第1電極7F及び第2電

ル12を形成する。次に、EPROM105の周辺回路 のNチャネルMISFETQ2及びCPU100領域の NチャネルMISFETQ7のn~型半導体領域11B を形成する工程(図47乃至図49)で、スイッチMI SFETQのソース、ドレインのチャネル側を成すn~ 型半導体領域11Bを形成する。次に、EPROM10 5及びEEPROM107のメモリセルQ1、Q4及び それらの周辺回路のMISFETQ2、Q5、CPU1 00とI/O102領域のNチャネルMISFETQ 10 7、Q8のソース、ドレインの一部であるn+型半導体 領域13A, 13Bを形成する工程(図53乃至図5 5) で、スイッチMISFETQのソース、ドレインの n+型半導体領域13Bを形成する。この後、パッシベ ーション膜14、接続孔15、データ線16D、パッシ ペーション膜17、配線19、図示していないファイナ ルパッシペーション膜を形成する。

【0096】以上、説明したように、EPROM10 5、EEPROM107を形成する工程でDRAM10 9を形成することができる。

【0097】次に、図1に示したマイクロコンピュータ が備えている演算増幅器、アナログ/デジタル変換器、 デジタル/アナログ変換器の中の容量素子と抵抗素子の 構造を説明する。この抵抗素子と容量素子は、マイクロ コンピュータがアナログ量の処理を行うときに使用され る。

【0098】図63は、図1の示したマイクロコンピュ ータの中の演算増幅器, アナログ/デジタル変換器, デ ジタル/アナログ変換器が備えている容量素子と抵抗素 子の断面図である。

【0099】図63において、Rはアナログ量の処理を 行うときに使用される抵抗素子、Cはアナログ量の処理 を行うときに使用される容量素子である。

【0100】前記抵抗素子Rは、フィールド絶縁膜4の 上の第1層目の導電体(多結晶シリコン膜)からなる抵 抗層7Gと、その両端に設けられた接続端子7Hとから なっている。接続端子7Hは不純物が髙濃度に注入され て、アルミニウム等からなる配線16とオーミック接続 ができるようになっている。また、抵抗層7Gの上部に は固定電位Vcc又はVssが印加される配線16が設 けられている。 n~型ウエル領域2の電位は、Vcc又 はVssに固定されている。前記容量素子Cは、フィー ルド絶縁膜4の上の第1層目の多結晶シリコン膜からな る第1電極7Fと、第1電極7Fの表面の誘電体膜8F と、第1電極7下の上に重ねて設けられた第2層目の導 電膜からなる第2電極9Fとで構成されている。前記第 2層目の導電膜は、例えば多結晶シリコン膜の上にシリ サイド膜 (MoSi, TaSi, TiSi, WS 11)を積層した2層膜からなっている。 第1電極7F 及び第2電極9Fは、不純物が高濃度に注入されて低抵

極9Fのそれぞれに配線16が接続している。

【0 1 0 1】次に、前記抵抗素子Rと容量素子Cの形成 方法を説明する。図64乃至図66は、図63に示した 抵抗素子と容量素子の製造工程における断面図である。

25

【0102】前記抵抗素子Rと容量素子Cの形成方法 は、図64に示すように、フィールド絶縁膜4の上に例 えばCVDで第1層目の多結晶シリコン膜7を形成す る。この時点では多結晶シリコン膜7には低抵抗化のた めの不純物を導入していない。次に、多結晶シリコン膜 して、例えば多結晶シリコン膜7の表面を熱酸化して酸 化シリコン膜61を形成する。次に、イオン注入によっ て多結晶シリコン膜?にリン(P)、ボロン(B)ある いはヒ素 (As) 等のうち一種類以上を例えば10"~ 10" atoms/cm² 程度注入する。なお、このイオン注入 を熱拡散で行う場合には、多結晶シリコン膜7の表面の 酸化シリコン膜61を除去する。次に、抵抗層7Gとな る所定領域の上部に不純物注入マスク62を形成する。 この不純物注入マスク62は、この後行う不純物注入を イオン注入によって行う場合にはレジスト膜で形成すれ 20 ばよく、熱拡散で行う場合にはCVDによる酸化シリコ ン膜で形成すればよい。そして、多結晶シリコン膜 7 を EPROM105、EEPROM107のメモリセルQ 1, Q4のフローティングゲート電極7A, 7C、それ らの周辺回路のMISFETQ2, Q3, Q5, Q6の ゲート電極 7 Bとして使用し、また抵抗素子Rの接続端 子7H、容量素子Cの第1電極7Fとして使用するの で、前記不純物注入マスク62を形成した後第2回目の 不純物注入を行って多結晶シリコン膜7の低抵抗化を図 る。なお、前記第2回目の不純物の注入を熱拡散で行う 30 場合には、不純物注入マスク62で覆われていない部分 の絶縁膜61を除去して多結晶シリコン膜7を露出させ た後、熱拡散を行う。

【0103】次に、図65に示すように、レジスト膜6 3を使って多結晶シリコン膜7をパターニングして、抵 抗層 7 G,接続端子 7 H、容量素子 C の第 1 電極 7 F を 形成する。このとき、EPROM105、EEPROM 107のメモリセルQ1、Q4のフローティングゲート **電極7A,7C、それらの周辺回路のMISFETQ** 2, Q3, Q5, Q6のゲート電極7Bも形成される。 次に、前記図29、図30、図31乃至図44、図4 5、図46と同様の工程により、図66に示すように、 容量素子Cの誘電体膜8F、第2電極9F、抵抗素子R および容量素子C第1電極7F、第2電極9Fの表面を 覆う薄い絶縁膜10を形成する。

【0104】なお、抵抗層7Gに所定の抵抗値を持たせ る方法として、前記のように第1回目の不純物注入で所 定の不純物を低濃度注入するのに代えて、前記第2回目 の不純物注入を行う前あるいは行った後に、その第2回 目の不純物注入で導入した不純物と逆導電型の不純物を 50 フィールド絶縁膜4の下には、前記p~型半導体領域1

注入してもよく、あるいは酸素や窒素等の絶縁物を所定 量注入することにより抵抗層 7 Gの抵抗値の調整を図る ようにしてもよい。さらに、抵抗層7Gは不純物を注入 しない多結晶シリコン膜? (ただし、接続端子? Hは不 純物を注入して低抵抗化を図る。) のままであってもよ く、又は抵抗層7G以外の導電層7A、7B、7C、7 H. 7 Fと同様に高濃度の不純物を導入したものであっ てもよい。

【0105】以上、説明したように、抵抗索子Rと容量 7にイオン注入で不純物を導入するときのパッファ膜と 10 案子Cは、EPROM105,EEPROM107を形 成する工程を使って形成することができる。

> 【0106】次に、図1に示したマイクロコンピュータ のI/O102の中の一つのI/Oセルを図67に示

【0107】この図67に示したI/Oセルは、蛍光表 示管等を駆動させるのに用いるものである。蛍光表示管 は例えばー40~0V程度の大きな電圧範囲で駆動する ものであり、マイクロコンピュータの通常の動作範囲で ある0Vから5Vとの間に大きな差がある。そこで、例 えば、-40V程度の電圧は、ディプレッション型Pチ ャネルMISFETT』によってマイクロコンピュータ の通常の動作電圧Vccレベルまで電圧変換した後、P チャネルMISFETT とNチャネルMISFETT n からなるインパータに入力され、その後種々の処理が 行われる。なお、図7に示したNチャネルMISFET Q8が、前記NチャネルMISFETTm に相当する。 一方、マイクロコンピュータから蛍光表示管へ向けて出 カされるデータは、PチャネルMISFETTn とNチ ャネルMISFETT。からなるインパータ回路を介し て、ディブレッション型のPチャネルMISFETTn と、エンハンスメント型のPチャネルMISFETT。 とからなるインバータ回路により電圧変換された後出力 される。

【0108】次に、前記図67に示したPチャネルMI SFET,の断面構造を図68に示す。図68に示すよ うに、PチャネルMISFETTn は、n~型ウエル領 ' **域2Ⅰに構成されている。このn~型ウエル領域2Ⅰ** は、n~型ウエル領域2より不純物濃度が低く、また接 合深さがn~型ウエル領域2より深くなっている。そし 40 て、MISFETTn は、酸化シリコン膜からなるゲー ト絶縁膜6と、例えば多結晶シリコン膜からなるゲート 電極71と、ソース、ドレインの一部となるp~型半導 体領域111と、ソース、ドレインの前記p~型半導体 領域11Ⅰ以外の部分を成す p+型半導体領域13Cと で構成されている。p~型半導体領域111は、ゲート 電極7Iのないフィールド絶縁膜4の下部に設けられ、 かつ前記p+型半導体領域13Cの周囲を囲んで設けら れている。ゲート電極7Ⅰの端部は、フィールド絶緑膜 4の上に延在されている。前記n~型ウエル領域2 Iの

1 I から離隔させてn型チャネルストッパ領域5 I を設 けている。

[0109] 次に、前記PチャネルMISFETTn の 製造方法を図69乃至図70を用いて説明する。図69 乃至図70は、0~+40Vの範囲で動作するPチャネ ルMISFETT, の製造工程における断面図である。 【0110】PチャネルMISFETTm の製造方法 は、図69に示すように、まずn~型ウエル領域21を 形成するために、p~型半導体基板1の表面を熟酸化し て酸化シリコン膜64を形成する。次に、この上に耐熱 10 酸化のマスクとして窒化シリコン膜66を形成し、これ をイオン注入のマスクとして使ってイオン打込みを行っ てn~型ウエル領域2 Iを形成する。次に、半導体基板 1の表面の窒化シリコン膜66から露出している部分す なわちn~型ウエル領域2Iを熱酸化して、酸化シリコ ン膜64より少し厚い酸化シリコン膜65を形成する。 【0111】図70に示すように、窒化シリコン膜66 を除去して、新たに窒化シリコン膜を形成し、n~型ウ エル領域2の形成領域の前記窒化シリコン膜を除去し、 イオン注入を行ってn~型ウエル領域2を形成した後、 その表面に熱酸化によって、酸化シリコン膜65を形成 する。この後、窒化シリコン膜を除去し、次に、図71 に示すように、酸化シリコン膜64と酸化シリコン膜6 5の膜厚差を利用して、半導体基板1の前記n~型ウエ ル領域2 I と n ~型ウエル領域2以外の部分にp型不純 物を注入してp~型ウエル領域3を形成する。次に、酸 化シリコン膜64,65の上に、フィールド絶縁膜4を 形成するときの熱酸化のマスクとして窒化シリコン膜6 8を形成する。次に、n型チャネルストッパ領域5 I を 形成するときのマスクとして、n~型ウエル領域2I, n~型ウエル領域2及びp~型ウエル領域3の上にレジ スト膜を形成する。そして、n~型ウエル領域2Iの表 面にn型不純物をイオン注入して、n型チャネルストッ パ領域5 [を形成する。この後、レジスト膜68を除去 する。

【0112】次に、図72に示すように、新たにレジス ト膜69を形成し、このレジスト膜69と窒化シリコン 膜68をマスクとして、n~型ウエル領域2Iの表面に イオン注入してp~型半導体領域111を形成する。こ の後レジスト膜69を除去する。次に、図73に示すよ 40 うに、酸化シリコン膜64と酸化シリコン膜65の膜厚 差を利用して、p~型ウエル領域3の表面にp型不純物 をイオン注入して、p型チャネルストッパ領域5を形成 する。この後、n~型ウエル領域21, n~型ウエル領 域2及びp~型ウエル領域3の窒化シリコン膜68から 露出している部分を熱酸化してフィールド絶縁膜4を形 成する。この後、先に説明した図5乃至図7に示したE PROM105のメモリセルQ1、周辺回路のMISF ETQ2, Q3, EEPROMIO7のメモリセルのメ

MISFETまたは周辺回路を構成するためのNチャネ ルMISFETQ5、周辺回路のPチャネルMISFE TQ6を形成する工程で、図68に示したゲート絶縁膜 6、ゲート電極71、絶縁膜10、サイドウォール1 2、ソース、ドレインの一部を成す pt型半導体領域 1 3 Cを形成する。さらに、第1層目のパッシペーション 膜14、接続孔15、配線16、第2層目のパッシベー ション膜17、接続孔18、配線19及び図示していな いファイナルパッシペーション膜を形成する。

【0113】なお、前記図68に示したPチャネルMI SFETは、図74に示すように、ゲート絶縁膜6より も厚いゲート絶縁膜70を使って構成してもよい。

【0114】図74は、図68に示したPチャネルMI SFETのゲート絶縁膜6より厚いゲート絶縁膜70を 用いたPチャネルMISFET及びNチャネルMISF ETの断面図である。

【0115】図74において、左側のn~型ウエル領域 2 I にPチャネルMISFETが構成してある。このP チャネルMISFETのゲート絶縁膜70は酸化シリコ 20 ン膜からなり、膜厚が1000~2000A程度と厚く なっている。p~型ウエル領域3には0~+40Vの範 囲で動作するNチャネルMISFETが構成されてい る。このNチャネルMISFETは、ゲート絶縁膜70 と、例えば多結晶シリコン膜からなるゲート電極7J と、ソース、ドレインの一部を成すn型半導体領域5I と、ソース、ドレインの前記n型半導体領域5 I 以外の 部分を成すn+型半導体領域13Bとで構成されてい る。ゲート電極7」はフィールド絶縁膜4の上にも延在 している。また、n型半導体領域5 I は、フィールド絶 縁膜4の下に設けられ、n+型半導体領域13Bを囲ん で設けられている。また、n型半導体領域5Iとn~型 ウエル領域2Iの間及びn型半導体領域5Iとp型チャ ネルストッパ領域5の間に、p型チャネルストッパ領域 5より不純物濃度の高いp型チャネルストッパ領域5J が設けてある。

【0116】次に、前記図74に示したPチャネルMI SFET及びNチャネルMISFETの製造方法を図7 5を用いて説明する。図75は、図74に示したPチャ ネルMISFET及びNチャネルMISFETの製造工 程における断面図である。

【0117】図75に示したPチャネルMISFET及 びNチャネルMISFETは、前配図69乃至図73に 示した工程とほぼ同様の工程で、p~型半導体基板1に n~型ウエル領域2I(及び2), p~型ウエル領域 3, n型半導体領域5 I, p型半導体領域5 J, p~型 半導体領域111, p型チャネルストッパ領域5, フィ ールド絶縁膜4を形成する。この後、フィールド絶縁膜 4を形成するときに使用した熱酸化のマスクである窒化 シリコン膜68(図71)とその下の酸化シリコン膜6 モリMISFETQ4、そのメモリセルの中のスイッチ 50 4.65を除去しTn~型ウェル領域2 I (及び2),

p~型ウエル領域3のフィールド絶縁膜4で覆われていない部分の表面を露出させる。そして、その露出したれ~型ウエル領域2I(及び2)とp~型ウエル領域3の表面を熱酸化してゲート絶縁膜70を形成する。この後、図74に示したPチャネルMISFET及びNチャネルMISFETが設けられる領域以外のゲート絶縁膜70をレジスト膜を使ったエッチングで除去する。そして、そのレジスト膜を除去した後、再度n~型ウエル領域2I(及び2)とp~型ウエル領域3の表面を熱酸化して、例えば0~5Vの範囲で動作するMISFETの10ゲート絶縁膜6を形成する。

【0118】この後、先に説明した図4万至図7に示したEPROM105のメモリセルQ1、周辺回路のMISFETQ2、Q3、EEPROM107のメモリセルのメモリセルのメモリエルのメモリエルのメモリエルの中のスイッチMISFETQ4、そのメモリセルの中のスイッチMISFETであるNチャネルMISFETQ5、周辺回路のPチャネルMISFETQ6を形成する工程で、ゲート電極7I、7J、絶縁膜10、サイドウォール12、NチャネルMISFETのソース、ドレインの一部であるn+型半導体領域13B、PチャネルMISFETのソース、ドレインの一部であるp+型半導体領域13C、パッシベーション膜14、接続孔15、配線16、パッシベーション膜17、接続孔18、配線19及び図示していないファイナルパッシベーション膜を形成する。

【0119】なお、前記のように、本実施の形態のマイ クロコンピュータは、EPROM105の周辺回路のM ISFETQ2, Q3のゲート電極7B、EEPROM 107の周辺回路のMISFETQ5, Q6のゲート電 極7日は、第1層目の多結晶シリコン膜を使って形成し 30 ているが、半導体集積回路装置の微細化に伴って前記第 1層目の多結晶シリコン膜の膜厚が薄くされる。また、 ゲート絶縁膜6やゲート電極7Bの表面の酸化シリコン 膜10の膜厚も薄くされる。このため、ソース、ドレイ ンを形成するためのイオン注入時に、不純物イオンが前 記酸化シリコン膜10、ゲート電極7、ゲート絶縁膜6 を貫通してチャネル領域に漏れてしまうことがあり、M ISFETQ2, Q3, Q5, Q6のしいき値が所定の 値からずれてしまうことがある。これを解決するには、 前記第1層目の多結晶シリコン膜の上に例えばCVD等 40 で厚い酸化シリコン膜を形成した後、その酸化シリコン 膜及び多結晶シリコン膜をパターニングしてゲート電極 7 Bを形成すれば、ゲート電極7 Bの上に厚い酸化シリ コン膜があるので、前記イオン注入時におけるチャネル 領域への不純物イオンの漏れを防止することができる。 ところが、前述したように、第1層目の多結晶シリコン 膜はEPROM105のメモリセルQ1のフローティン グゲート電極7AやEEPROM107のメモリセルの メモリMISFETQ4のフローティングゲート電極7

なる第2ゲート絶縁膜8A、8Cを形成しなければないないので、前記のように、単に多結晶シリコン膜の上にCVD等で厚い酸化シリコン膜を形成することはできないという問題がある。

30

【0120】そこで、次に、ゲート電極7Bが第1層目の多結晶シリコン膜からなるMISFETにおいて、チャネル領域に不純物イオンが漏れることなくソース、ドレインを形成することができる方法を説明する。

【0121】図76乃至図81は、ゲート電極を第1層目の導電膜例えば多結晶シリコン膜で形成し、しかもチャネル領域に不純物イオンを漏らすことなくソース、ドレインを形成することができるMISFETの製造方法を説明するための図である。なお、図76乃至図81において、Q1で示した領域がEPROM105のメモリセルが形成される領域であり、Q2で示した領域がEPROM105の周辺回路のNチャネルMISFETが形成される領域である。

【0122】チャネル領域に不純物イオンを漏らすことなくMISFETを形成する方法は、図76に示すように、第1層目の多結晶シリコン膜7を形成し、それに低抵抗を図るための所定の不純物を注入した後、例えばCVDで厚い酸化シリコン膜71を形成する。

【0123】次に、図77に示すように、EPROM105のメモリセルQ1を形成する領域の酸化シリコン膜71を、例えばレジスト膜をマスクとしてエッチングで除去する。レジスト膜は酸化シリコン膜71を選択的に除去した後取り除く。次に、図示していないレジスト膜をマスクとしたエッチングによって前記多結晶シリコン膜7をパターニングして、図78に示すように、EPROM105のメモリセルQ1のフローティングゲート電極7Aと、MISFETQ2のゲート電極7Bを形成する。レジスト膜からなるマスクは、パターニングの後取り除く。NチャネルMISFETQ2のゲート電極7Bの上には厚い酸化シリコン膜71が乗っている。

【0124】次に、図79に示すように、フローティングゲート電極7Aの表面を熱酸化して第2ゲート絶縁膜8Aを形成する。次に、図80に示すように、半導体基板(チップ)1の上に第2層目の導電膜を形成し、これをパターニングしてEPROM105のコントロールゲート電極(ワード線)9Aを形成する。次に、図81に示すように、メモリセルQ1のソース、ドレインの一部を成すn型半導体領域11A、周辺回路のMISFETQ2のソース、ドレインの一部を成すn~型半導体領域11B、メモリセルQ1及び周辺回路のMISFETQ2のソース、ドレインの前記以外の部分を成すn+型半導体領域13A、13Bを形成する。

膜はEPROM105のメモリセルQ1のフローティン 【0125】このようにして、NチャネルMISFET グゲート電極7AやEEPROM107のメモリセルの Q2のソース、ドレインを形成すればゲート電極7Bの メモリMISFETQ4のフローティングゲート電極7 上に厚い酸化シリコン膜71が乗っているので、ソー Cとして用いており、その上に薄い酸化シリコン膜から 50 ス、ドレインを形成するための不純物がチャネル領域に 漏れるのを防止できる。

【0126】以上、説明したことから分かるように、本 実施の形態によれば、以下の効果を得ることができる。

(1) 一つの半導体チップ上に中央処理装置と、その中 央処理装置のプログラムデータや辞書データ等が記憶さ れる不揮発性メモリとを備えたマイクロコンピュータを 構成する半導体集積回路装置において、前記不揮発性メ モリが、情報の書き込みを電気的に行い、その書き込ん だ情報を紫外線の照射によって消去する第1の不揮発性 メモリ (EPROM105) と、情報の書き込みを電気 10 的に行い、その書き込んで情報を電気的に消去する第2 の不揮発性メモリ(EEPROM107)とからなるこ とにより、大容量でかつ書き替え可能なROMを得るこ とができ、またシステム上で電気的に書き替え可能なR OMを得ることができる。

【0127】(2)上記(1)から、書き替え回数は少 ないが大容量を必要とするデータの記憶にはEPROM 105を用い、書き替え回数は多いが小容量でよいデー 夕の記憶あるいは電源遮断後も記憶しておくことが必要 な演算データの記憶にはEEPROM107を用いるこ 20 とによって、EPROM105がシステム上で情報の書 き替えができないという欠点と、EEPROM107の メモリ容量が小さいという欠点を互いに補った自由度の 高いROMを備えたマクイロコンピュータからなる半導 体集積回路装置を得ることができる。

【0128】すなわち、大きな記憶容量を必要とするプ ログラムデータや辞書データはEPROM105で記憶 し、フィードバック制御の制御用データのようにデータ の内容が時間と共に変化しかつ電源が遮断されたときに も記憶しておくことが必要な制御データはEEPROM 30 107で記憶することができるので、1チップマイクロ コンピュータからなる半導体集積回路装置の機能を向上 することができる。

【0129】(3)上記(1)のEEPROM107か ら不揮発性RAMを得ることができる。

(4) 1チップマイクロコンピュータの第1のRAMと してSRAMを備えたので、高速でデータ転送を行うこ とができるRAMが得られる。

(5) 1チップマイクロコンピュータの第2のRAMと してDRAMを備えたので、大容量のRAMを得ること 40 ができる。

(6) 上記(4) と(5) から、小容量でよいが高速で データ転送を行うことが必要なデータの記憶にはSRA Mを用い、高速のデータ転送を行う必要はないが大きな 記憶容量を必要とするデータの記憶にはDRAMを用い ることによって、SRAMが大容量化できないという欠 点と、DRAMの転送速度が遅いという欠点を互いに補 ったRAMを得ることができる。

【0130】(7)半導体基板1の第1領域にEPRO

の前記第1領域と異なる第2領域にEEPROM107 のメモリセルの中のメモリMISFETQ4を形成し、 前記半導体1の前記第2領域に隣接した第3領域に前記 EEPROM107のメモリセルの中のスイッチMIS FETQ5を形成する工程を備えたマイクロコンピュー 夕を構成する半導体集積回路装置の製造方法において、 前記半導体基板1の第1、第2及び第3領域の表面にそ れぞれ第1ゲート絶縁膜6を形成する工程と、前記第2 及び第3領域の前記第1ゲート絶縁膜6の下の所定部分 にソース、ドレイン20を形成する工程と、前記第1及 び第2領域の第1ゲート絶縁膜6の上にフローティング ゲート電極7A,7Cを形成しかつ前配第3領域の第1 ゲート絶縁膜6の上にゲート電極7Bを形成する工程 と、前記第1領域及び第2領域のフローティングゲート 電極7A、7Cの表面に第2ゲート絶縁膜8A、8Cを 形成する工程と、前記第1及び第2領域の第2ゲート絶 緑膜8A、8Cの上にそれぞれコントロールゲート電極 9A,9Cを形成する工程と、前記第1領域の第1ゲー ト絶縁膜6の下の所定部分にソース、ドレイン11A、 13Aを形成する工程を備え、前配各工程を前配の順序 で行うことにより、EPROM105を形成する工程 に、EEPROM107のソース、ドレインとなるn型 半導体領域20を形成する工程と、n型半導体領域20 の上にトンネル絶縁膜22を形成する工程を追加するだ けでEEPROM107を形成することができる。

【0131】(8) EPROM105のメモリセルQ1 のフローティングゲート電極7Aと、EEPROM10 7のメモリセルの中の記憶素子Q4のフローティングゲ ート電極 7 Cを第1層目の導電層(多結晶シリコン膜) で形成し、前記それぞれの素子Q1、Q4の第1ゲート 絶縁膜6を同一工程で形成し、また前記それぞれの素子 Q1,Q4のフローティングゲート電極7A,7Cの上 の第2ゲート絶縁膜8A、8Cを同一工程で形成したこ とによって、少ない製造工程でEPROM105および EEPROM107のそれぞれのメモリセルを得ること ができる。

【0132】(9) EPROM105の周辺回路を構成 するMISFETQ2, Q3及びEEPROM107の 周辺回路を構成するMISFETQ5, Q6のゲート絶 縁膜6を前記EPROM105のメモリセルQ1の第1 ゲート絶縁膜6及びEEPROM107のメモリセルの 中のメモリMISFETQ4の第1ゲート絶縁膜6と同 じ工程で形成したので、それら周辺回路のMISFET Q2, Q3, Q5, Q6のゲート絶縁膜6の膜厚が厚く なり、絶縁耐圧を向上させることができる。

【0133】(10) CPU (論理部) 100及びI/ O102を構成するためのMISFETQ7~Q9のゲ 一ト絶縁膜8DをEPROMF05のメモリセルO1の 第1ゲート絶縁膜6及びEEPROM1 07のメモリセ M105のメモリセルQ1を形成し、前記半導体基板1 50 ルの中のメモリMISFETQ4の第1ゲート絶縁膜6

と別工程で形成するので、前記ゲート絶録膜8Dとゲー ト絶縁膜6の膜厚の設定をそれぞれ独立に最適な値にす ることができる。

【0134】 (11) CPU (論理部) 100及びI/ ○102を構成するためのMISFETQ7~Q9のゲ ート電極9Dを第2層目の導電層、すなわち例えば多結 晶シリコン膜の上にシリサイド膜を積層した2層膜で形 成したので、そのゲート電極9Dの低抵抗化が図れる。

【0135】(12)上記(8)乃至(11)のことか M107のMISFETに印加される電圧と、CPU (論理部) 100及びI/O102を構成するためのM ISFETに印加される電圧を独立に設定できるので、

[0136] (13) DRAM109&EEPROM1 07の製造工程乃至はほぼ同一工程で形成できる。

それぞれの素子の構造を独立に設定できる。

(14) 上記(12) のことから、DRAM109のメ モリセルの容量素子Cの誘電体膜22が、EEPROM 107のメモリセルのトンネル絶縁膜22と同様に非常 に薄く形成されるので、その容量素子Cの容量値を大き 20

【0137】(15)上記(14)のことから大容量の DRAMを得ることができ、さらにこのことから大容量 のRAMが得られる。

(16) アナログ回路を構成する抵抗案子RをEPRO M105のメモリセルあるいはEEPROM107のメ モリセルの中のメモリMISFETQ4のフローティン グゲート電極7A、7Cと同一工程あるいはほぼ同一工 程で形成することができ、容量素子CはEPROM10 5あるいはEEPROM107のメモリセルと同一工程 30 で形成することができる。

【0138】(17)抵抗案子Rと容量案子Cが絶縁膜 10で覆われているので、回路の動作時に安定した抵抗 値と容量値が得られる。

(18) 抵抗素子R及び容量素子Cの下のウエル領域を 電気的に固定したので、回路の動作時に安定した抵抗値 と容量値が得られる。

(19)抵抗案子Rの上部を固定電位にされた導電層1 9で覆っているので、その導電層19の上に他の信号配 線を延在させることができる。

(20) 上記(16) 乃至(19) より、1チップマイ クロコンピュータのアナログ量の処理に必要な安定した 抵抗索子Rと容量索子Cを容易に得ることができる。

[0139] (21) EPROM105, EEPROM 107、DRAM109を形成する工程とほぼ同一工程 で高耐圧MISFETを形成できる。

(22) 高耐圧MISFETのゲート電極7 I をフィー ルド絶縁膜4の上にまで延在させて端部がフィールド絶 **緑膜4の上に乗るようにしたことにより、ゲート電極7** Iと半導体基板1との間の耐圧を向上することができ

【0140】 (23) 高耐圧MISFETのソース, ド レインの一部である不純物濃度の高い半導体領域の囲り を不純物濃度の低い半導体領域で囲んだことにより、ソ ース、ドレインの耐圧を向上することができる。

(24) 上記(21) 乃至(23) のことから1チップ マイクロコンピュータのI/O102に使用する髙耐圧 MISFETを容易に得ることができる。

【0141】以上、本発明を実施の形態に基づき具体的 ら、周辺回路を含めたEPROM105及びEEPRO 10 に説明したが、本発明は前記実施の形態に限定されるも のではなく、その要旨を逸脱しない範囲において種々変 更可能であることはいうまでもない。

> 【0142】例えば、図1に示したマイクロコンピュー タは、RAMとしてSRAM108とDRAM109を 備えているが、SRAM108か又はDRAM109の いずれか一方のみでもよい。

[0143]

【発明の効果】本願によって開示された発明のうち、代 表的なものの効果を簡単に説明すれば、以下のとおりで ある。書き替え回数は少ないが大容量を必要とするデー 夕の記憶にはEPROMを用い、書き替え回数は多いが データ容量は小さいデータの記憶あるいは電源遮断後も 記憶しておくことが必要な演算データの記憶にはEEP ROMを用いることによって、EPROMが情報の書き 替えをシステム上でできないという欠点と、EEPRO Mのメモリ容量が小さいという欠点を互いに補った自由 度の高いROMを備えた1チップマイクロコンピュータ を得ることができる。

【0144】すなわち、大きな記憶容量を必要とするプ ログラムデータや辞書データはEPROMで記憶し、フ ィードバック制御の制御用データのようにデータの内容 が時間と共に変化し電源が遮断されたときも記憶してお くことが必要な制御用データはEEPROMで記憶する ので、1 チップマイクロコンピュータからなる半導体集 積回路装置の機能を向上することができる。

【0145】また、EPROMを形成する工程に、EE PROMのソース、ドレインとなるn型半導体領域20 を形成する工程と、n型半導体領域20の上の厚い絶縁 膜21を形成する工程と、n型半導体領域20の上にト 40 ンネル絶縁膜22を形成する工程を追加するだけでEE PROMを形成することができる。

【図面の簡単な説明】

【図1】本発明の一実施の形態である半導体集積回路装 鐘のマイクロコンピュータを示すブロック図である。

【図2】図1に示したマイクロコンピュータが備えてい るSRAM108のメモリセルの等価回路図である。

【図3】前記マイクロコンピュータに搭載されているE PROM105の概略構成を示す等価回路図である。

【図4】前記マイクロコンピュータに搭載されているE 50 EPROM107の概略構成を示す等価回路図である。

35

【図5】 前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図6】 前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図7】 前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図8】前記マイクロコンピュータのEPROM、EE 10 PROM及びCPU等の論理部を構成するMISFET の製造工程における断面図である。

【図9】 前記マイクロコンピュータのEPROM、EE PROM及びCPU等の論理部を構成するMISFET。 の製造工程における断面図である。

【図10】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE ての製造工程における断面図である。

【図11】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE 20 Tの製造工程における断面図である。

【図12】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図13】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE ての製造工程における断面図である。

【図14】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図15】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図16】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図17】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図18】前記マイクロコンピュータのEPROM、E 40 EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図19】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図20】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図21】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE 50 Tの製造工程における断面図である。

【図22】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図23】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図24】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図25】前記マイクロコンピュータのEPROM, EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図26】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図27】前配マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図27】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図28】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図29】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図30】前記マイクロコンピュータのEPROM、E 30 EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図31】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図32】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図33】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図34】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図35】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図36】前記マイクロコンピュータのEPROM, EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図37】前記マイクロコンピュータの EPROM、E

EPROM及びCPU等の論理部を構成するMISFE (丁の製造工程における断面図である。

【図38】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図39】前記マイクロコンピュータのEPROM, E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図40】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE 10 Tの製造工程における断面図である。

【図41】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図42】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図43】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図44】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図45】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図46】前記マイクロコンピュータのEPROM, E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図47】前記マイクロコンピュータのEPROM、E 30 グ変換器の中の容量素子と抵抗素子の断面図である。 EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図48】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図49】前記マイクロコンピュータのEPROM, E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図50】前配マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE 40 図である。 Tの製造工程における断面図である。

【図51】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図52】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図53】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図54】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図55】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図56】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図57】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図58】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図59】前記マイクロコンピュータに設けられている DRAMのメモリセルの製造工程における断面図であ

【図60】前記マイクロコンピュータに設けられている 20 DRAMのメモリセルの製造工程における断面図であ

【図61】前記マイクロコンピュータに設けられている DRAMのメモリセルの製造工程における断面図であ

【図62】前記マイクロコンピュータに設けられている DRAMのメモリセルの製造工程における断面図であ る。

【図63】前記マイクロコンピュータが備えている演算 増幅器、アナログ/デジタル変換器、デジタル/アナロ

【図64】図63に示す容量素子と抵抗素子の製造工程 における断面図である。

【図65】図63に示す容量素子と抵抗素子の製造工程 における断面図である。

【図66】図63に示す容量素子と抵抗素子の製造工程 における断面図である。

【図67】図1に示すマイクロコンピュータの I/Oの 中の一つの I / Oセルを示す等価回路図である。

【図68】図67に示すPチャネルMISFETの断面

【図69】図68に示すPチャネルMISFETTn の 製造工程における断面図である。

【図70】図68に示すPチャネルMISFETTnの 製造工程における断面図である。

【図71】図68に示すPチャネルMISFETT。の 製造工程における断面図である。

【図72】図68に示すPチャネルMISFETTn の 製造工程における断面図である。

【図73】図68に示すPチャネルMISFETT_Pの 50 製造工程における断面図である。

【図74】図68に示すPチャネルMISFETのゲー ト絶縁膜6より厚いゲート絶縁膜70を用いたPチャネ ルMISFET及びNチャネルMISFETの断面図で ある.

【図75】図74に示すPチャネルMISFET及びN チャネルMISFETの製造工程における断面図であ る.

【図76】ゲート電極を第1層目の多結晶シリコン膜で 形成し、さらにチャネル領域に不純物イオンを漏らすこ FETの製造方法を説明する断面図である。

【図77】ゲート電極を第1層目の多結晶シリコン膜で 形成し、さらにチャネル領域に不純物イオンを漏らすこ となくソース、ドレインを形成することができるMIS FETの製造方法を説明する断面図である。

【図78】ゲート電極を第1層目の多結晶シリコン膜で 形成し、さらにチャネル領域に不純物イオンを漏らすこ となくソース、ドレインを形成することができるMIS FETの製造方法を説明する断面図である。

【図79】ゲート電極を第1層目の多結晶シリコン膜で 20 形成し、さらにチャネル領域に不純物イオンを漏らすこ となくソース、ドレインを形成することができるMIS FETの製造方法を説明する断面図である。

【図80】ゲート電極を第1層目の多結晶シリコン膜で 形成し、さらにチャネル領域に不純物イオンを漏らすこ となくソース、ドレインを形成することができるMIS

FETの製造方法を説明する断面図である。

【図81】ゲート電極を第1層目の多結晶シリコン膜で 形成し、さらにチャネル領域に不純物イオンを漏らすこ となくソース、ドレインを形成することができるMIS FETの製造方法を説明する断面図である。

【符号の説明】

1…半導体チップ(マイクロコンピュータ)、100… CPU, 101...OSC, 102...I/O, 103...S I, 104...TIMER, 105...EPROM, 106 となくソース、ドレインを形成することができるMIS 10 …電圧制御回路、107…EEPROM、108…SR AM, 109 ... DRAM, 110 ... I/OBUS, Q1 …EPROMのメモリセル、Q2, Q3…周辺回路のM ISFET、Q4…EEPROMのメモリセルの中の記 憶素子、Q5, Q6…EEPROMの周辺回路のMIS FET. Q7. Q9...CPUOMISFET. Q8...M ISFET、6…第1ゲート絶縁膜、7A、7B, 7C …第1層目の導電膜からなるゲート電極、8A,8C… フローティングゲート電極の上の第2ゲート絶縁膜、8 D…CPU及びI/O領域の第1ゲート絶縁膜、9A, 9 C, 9 D…第2 層目の導電膜からなるゲート電極、1 0…薄い酸化シリコン膜、11A, 11B, 11C…ソ ース,ドレインの低濃度層、12…サイドウォール、1 3A. 13B, 13C…ソース, ドレインの高濃度層、 20…EEPROMのn型ソース、ドレイン、21…厚 いゲート絶縁膜、22…トンネル絶縁膜。

[図1]

[図2]

図17 図17 図17 (図19) 図19]

[図21]

[図18]

[図40]

[図42]

[図43]

[図44]

[図45]

[図46]

【図60】

【図47】

[図48]

[図49]

[図50]

[図51]

【図52】

【図53】

[図54]

【図55】

[図56]

【図57】

[図58]

[図59]

[図61]

[図63]

[図62]

[図65]

[図64]

図65

[图72] (图73) 图72 图73 (图73) (图73)

[図74]

[図75]

[図76]

[図77]

[図78]

™ 78 71 02 7A 01 7A 01 6 8 7A 01 6 7A 01

[図79]

[図80]

【図81】

【手統補正書】

【提出日】平成11年6月22日

【手続補正1】

【補正対象睿類名】明細書

【補正対象項目名】図面の簡単な説明

【補正方法】変更

【補正内容】

【図面の簡単な説明】

[図1] 本発明の一実施の形態である半導体集積回路装置のマイクロコンピュータを示すプロック図である。

【図2】図1に示したマイクロコンピュータが備えているSRAM108のメモリセルの等価回路図である。

【図3】前記マイクロコンピュータに搭載されているE PROM105の概略構成を示す等価回路図である。

【図4】前記マイクロコンピュータに搭載されているE EPROM107の概略構成を示す等価回路図である。

【図5】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図6】 前記マイクロコンピュータのEPROM、EE PROM及びCPU等の論理部を構成するMISFET の製造工程における断面図である。

【図7】 前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図8】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図9】前記マイクロコンピュータのEPROM、EE PROM及びCPU等の論理部を構成するMISFET の製造工程における断面図である。

【図10】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図11】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE ての製造工程における断面図である。

【図12】前配マイクロコンピュータのEPROM, E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図13】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図14】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図15】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図16】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図17】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図18】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図19】前記マイクロコンピュータのEPROM, EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図20】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図21】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図22】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE

Tの製造工程における断面図である。

【図23】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図24】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図25】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図26】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図27】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図28】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図29】前記マイクロコンピュータのEPROM, EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図30】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図31】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図32】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図33】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図34】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図35】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図36】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図37】前記マイクロコンピュータの EPROM、 E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図38】前記マイクロコンピュータの EPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図39】前記マイクロコンピュータの EPROM, E

EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図40】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図41】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図42】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図43】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図44】前記マイクロコンピュータのEPROM、E EPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図45】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図46】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図47】前配マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図48】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図49】前記マイクロコンピュータのEPROM, EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図50】前記マイクロコンピュータのEPROM, EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図51】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図52】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図53】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE ての製造工程における断面図である。

【図54】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図55】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図56】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図57】前記マイクロコンピュータのEPROM、EEPROM及びCPU等の論理部を構成するMISFE Tの製造工程における断面図である。

【図58】前記マイクロコンピュータのEPROM, EEPROM及びCPU等の論理部を構成するMISFETの製造工程における断面図である。

【図59】前記マイクロコンピュータに設けられている DRAMのメモリセルの製造工程における断面図である

【図60】前記マイクロコンピュータに設けられている DRAMのメモリセルの製造工程における断面図である。

【図61】前記マイクロコンピュータに設けられている DRAMのメモリセルの製造工程における断面図である。

【図62】前記マイクロコンピュータに設けられている DRAMのメモリセルの製造工程における断面図であ

【図63】前記マイクロコンピュータが備えている演算 増幅器、アナログ/デジタル変換器、デジタル/アナロ グ変換器の中の容量素子と抵抗素子の断面図である。

【図64】図63に示す容量案子と抵抗素子の製造工程における断面図である。

【図65】図63に示す容量素子と抵抗素子の製造工程 における断面図である。

【図66】図63に示す容量素子と抵抗素子の製造工程における断面図である。

【図67】図1に示すマイクロコンピュータのI/Oの中の一つの1/Oセルを示す等価回路図である。

【図68】図67に示すPチャネルMISFETの断面図である。

【図69】図68に示すPチャネルM I S F E T T n O 製造工程における断面図である。

【図70】図68に示すPチャネルMISFETT_nの 製造工程における断面図である。

【図71】図68に示すPチャネルM1SFET T_n の製造工程における断面図である。

【図72】図68に示すPチャネルMISFETT。の 製造工程における断面図である。

【図73】図68に示すPチャネルMISFETT。の 製造工程における断面図である。

【図74】図68に示すPチャネルMISFETのゲート絶縁膜6より厚いゲート絶縁膜70を用いたPチャネルMISFET及びNチャネルMISFETの断面図である。

【図75】図74に示すPチャネルMISFET及びN チャネルMISFETの製造工程における断面図であ る。

【図76】ゲート電極を第1層目の多結晶シリコン膜で形成し、さらにチャネル領域に不純物イオンを漏らすことなくソース、ドレインを形成することができるMISFETの製造方法を説明する断面図である。

【図77】ゲート電極を第1層目の多結晶シリコン膜で 形成し、さらにチャネル領域に不純物イオンを漏らすこ となくソース、ドレインを形成することができるMIS FETの製造方法を説明する断面図である。

【図78】ゲート電極を第1層目の多結晶シリコン膜で形成し、さらにチャネル領域に不純物イオンを漏らすことなくソース、ドレインを形成することができるMISFETの製造方法を説明する断面図である。

【図79】ゲート電極を第1層目の多結晶シリコン膜で 形成し、さらにチャネル領域に不純物イオンを漏らすこ となくソース、ドレインを形成することができるMIS FETの製造方法を説明する断面図である。

【図80】ゲート電極を第1層目の多結晶シリコン膜で形成し、さらにチャネル領域に不純物イオンを漏らすことなくソース、ドレインを形成することができるMISFETの製造方法を説明する断面図である。

【図81】ゲート電極を第1層目の多結晶シリコン膜で 形成し、さらにチャネル領域に不純物イオンを漏らすこ となくソース、ドレインを形成することができるMIS FETの製造方法を説明する断面図である。

【符号の説明】

1…半導体チップ(マイクロコンピュータ)、100… CPU, 101-0SC, 102-1/0, 103-S I, 104...TIMER, 105...EPROM, 106 …電圧制御回路、107…EEPROM、108…SR AM, 109...DRAM, 110...I/OBUS, Q1 …EPROMのメモリセル、Q2. Q3…周辺回路のM ISFET、Q4…EEPROMのメモリセルの中の記 憶素子、Q5、Q6…EEPROMの周辺回路のMIS FET, Q7, Q9...CPUOMISFET, Q8...M ISFET、6…第1ゲート絶縁膜、7A, 7B, 7C …第1層目の導電膜からなるゲート電極、8A.8C… フローティングゲート電極の上の第2ゲート絶縁膜、8 D…CPU及びI/O領域の第1ゲート絶縁膜、9A. 9 C. 9 D…第2層目の導電膜からなるゲート電極、1 0…薄い酸化シリコン膜、11A、11B、11C…ソ ース、ドレインの低濃度層、12…サイドウォール、1 3A, 13B, 13C…ソース, ドレインの高濃度層、 20…EEPROMのn型ソース、ドレイン、21…厚 いゲート絶縁膜、22…トンネル絶縁膜。