ADVANCED BAYESIAN MODELING

Generalizations and Extensions

General Covariance Structure

Let y have a general covariance structure

$$var(y \mid \theta, X) = \sigma^2 Q_y$$

where Q_y is a known $n \times n$ matrix.

The normal-theory linear regression then becomes

$$y \mid \theta, X \sim N(X\beta, \sigma^2 Q_y)$$

(For ordinary linear regression, $Q_y = I$.)

Assume the standard noninformative prior, and that Q_y is invertible (in addition to the earlier conditions).

Then the posterior exists and has the same form as before, except with

$$\hat{\beta} = (X^T Q_y^{-1} X)^{-1} X^T Q_y^{-1} y \qquad s^2 = \frac{1}{n-k} (y - X \hat{\beta})^T Q_y^{-1} (y - X \hat{\beta})$$
$$V_{\beta} = (X^T Q_y^{-1} X)^{-1}$$

These are generalized least squares estimates.

The case of diagonal Q_y is weighted least squares.

Remark: Often unrealistic to assume Q_y is fully known – but may still be useful as a component of a larger hierarchical model.

Conjugate Priors

A possible informative prior is

$$\beta \mid \sigma^2, X \sim \mathrm{N}(\beta_0, \sigma^2 K_0^{-1})$$

$$\sigma^2 \mid X \sim \mathrm{Inv-}\chi^2(\nu_0, \sigma_0^2)$$

Values β_0 , K_0 , ν_0 , and σ_0^2 may reflect prior information, and may depend on X.

This can be shown to be conjugate.

A particular example is Zellner's g-prior: $K_0 = X^T X/g$, g constant

 \boldsymbol{X} is fully conditioned upon, hence treated as constant

X is on the plate to represent that y_i directly depends on X only through X_i

A semi-conjugate prior is

$$\beta \mid X \sim \mathrm{N}(\beta_0, \Sigma_\beta)$$

$$\sigma^2 \mid X \sim \mathrm{Inv-}\chi^2(\nu_0, \sigma_0^2)$$

Could alternatively replace either the β prior or the σ^2 prior with its improper noninformative prior.

Could put proper priors on only some elements of β (BDA3, Sec. 14.8).

