Theorem 6.5

If G is a $Hamiltonian\ graph$, then for every $non\text{-}empty\ proper\ set\ S$ of vertices of G,

$$k(G-S) \le |S|$$

Proof:

Let S be a non-empty proper subset of V(G). Suppose that k(G-S)=k and that G_1,G_2,\ldots,G_k are components of G-S. Since G is Hamiltonian, G contains a Hamiltonian cycle C. Whenever C encounters a vertex of G_i for the last time $(1 \le i \le k)$, the next vertex of C must belong to S. This implies that S must contain at least k vertices, that is, $k = k(G-S) \le |S|$.