•
$$f_1(x) = c_1 e^{-x}$$
 on $(0, +\infty)$

if
$$c_1 \ge 0$$
: $f_1(x) \ge 0 \ \forall x \in (0, +\infty)$

We impose that the integral of $f_1(x)$ on $(0, +\infty)$ is equal to 1:

$$\int_0^{+\infty} c_1 e^{-x} dx = [-c_1 e^{-x}]_0^{+\infty} = c_1 = 1$$

For $c_1 = 1$, $f_1(x)$ is a probability density function.

•
$$f_2(x) = c_2 e^x$$

if
$$c_2 \ge 0$$
: $f_2(x) \ge 0 \ \forall x \in (0, +\infty)$

We impose that the integral of $f_2(x)$ on $(0, +\infty)$ is equal to 1:

$$\int_0^{+\infty} c_2 e^x dx = [c_2 e^x]_0^{+\infty} = +\infty \neq 1$$

$$\implies \not \exists c_2 \text{ s.t. } f_2(x) \text{ is a p.d.f.}$$

•
$$f_3(x) = c_3(x-1)$$
 on $(2,3)$

if
$$c_3 > 0$$
: $f_1(x) > 0 \ \forall x \in (2,3)$

We impose the integral of $f_2(x)$ on (2,3) equal to 1:

$$\int_{2}^{3} c_{3}(x-1)dx = c_{3} * \left[\frac{x^{2}}{2} - x\right]_{2}^{3} = \frac{3}{2}c_{3} = 1$$

For $c_3 = \frac{2}{3}$, $f_3(x)$ is a p.d.f.

• $f_4(x) = c_4(x-1)$ on (0,2)Since $f_4(0) = -c_3$ and $f_4(2) = c_3$:

$$\not\exists c_4 \ s.t. \ f_4(x) \ge 0 \ \forall x \in (0,2)$$

$$\implies \not\exists c_4 \text{ s.t. } f_4(x) \text{ is } a \text{ p.d.} f.$$

• $f_5(x) = c_5(x-1)^2$ on (0,2)

if
$$c_5 \ge 0$$
: $f_5(x) \ge 0 \quad \forall x \in (0,2)$

We impose that the integral of $f_5(x)$ on (0,2) is equal to 1:

$$\int_0^2 c_5(x-1)^2 dx = c_5 * \int_0^2 (x^2 - 2x + 1) dx = c_5 * \left[\frac{x^3}{3} - x^2 + x \right]_0^2 =$$

$$= \frac{2}{3} c_5 = 1$$

For $c_5 = \frac{3}{2}$, $f_5(x)$ is a p.d.f.