| Информатика 1 | [          |       |
|---------------|------------|-------|
| Весна 2016    |            |       |
| Экзамен 1     |            |       |
| 4/2/2016      |            |       |
| Длительность: | <b>120</b> | Минут |

| Имя | Фамилия: |  |
|-----|----------|--|
| Имя | Фамилия: |  |

7 страниц (включая эту) и 15 вопросов. Общее число баллов 500.

Таблица баллов (заполняется преподавателем)

| Вопрос | Баллы | Набранные баллы |
|--------|-------|-----------------|
| 1      | 10    |                 |
| 2      | 20    |                 |
| 3      | 20    |                 |
| 4      | 20    |                 |
| 5      | 10    |                 |
| 6      | 20    |                 |
| 7      | 25    |                 |
| 8      | 25    |                 |
| 9      | 15    |                 |
| 10     | 10    |                 |
| 11     | 10    |                 |
| 12     | 30    |                 |
| 13     | 55    |                 |
| 14     | 80    |                 |
| 15     | 150   |                 |
| Всего: | 500   |                 |

## 1 Вопросы

|       |                | опросы                                                                    |                                                             |                                                           |
|-------|----------------|---------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|
| 1. (1 | 10 баллов)     | Уему равен порядок                                                        | роста продолжительности ра                                  | боты следующего участка кода:                             |
|       |                | nt i = 0; i < N; i++ r (int j = i+1; j < for (int k = j+1; for (int h = 0 | N; j++)<br>k < N; k++)                                      |                                                           |
|       |                | sum++;                                                                    |                                                             |                                                           |
|       |                | O(1)                                                                      |                                                             |                                                           |
|       |                | $\supset O(n)$                                                            |                                                             |                                                           |
|       |                | $O(n^3)$                                                                  |                                                             |                                                           |
|       |                | $O(n^3\sqrt{n})$                                                          |                                                             |                                                           |
|       |                | $O(n^3 \log n)$                                                           |                                                             |                                                           |
|       | (              | $O(n^4)$                                                                  |                                                             |                                                           |
| 2. (2 | 20 баллов)     | ) Расположите следую                                                      | ощие функции в порядке увел                                 | ичения скорости роста:                                    |
|       | A              | $\Lambda. \log n$                                                         | E. $\log \log n$                                            | I. $n \log n$                                             |
|       |                | 3. 1                                                                      | F. $n\sqrt{n}$                                              | J. $n^2$                                                  |
|       |                | C. $e^n$                                                                  | G. $n!$                                                     |                                                           |
|       | Ι              | D. <i>n</i>                                                               | H. $n^n$                                                    | $K. 2^n$                                                  |
|       |                |                                                                           |                                                             |                                                           |
| 3. (2 | <br>20 баллов) | ) Отметьте все функц                                                      | ии, чьё О-большое равно $O(n^2)$                            | 2)                                                        |
|       | [              | $\Box 1000n^2$                                                            |                                                             | $\square \ n^3 + 100n^2$                                  |
|       | [              | □ 1                                                                       |                                                             | $\square \ n^3 - 100n^2$                                  |
|       | [              | $\Box e^n$                                                                |                                                             | $\square \ n \log n$                                      |
|       | [              | $\Box 4n^2 + 10n + 50$                                                    |                                                             | $\square \ n^3/(1+n)$                                     |
| 4. (2 | 20 баллов)     | ) Какие утверждения                                                       | об алгоритмах сортировки веј                                | рны (можно отметить несколько вариантов).                 |
|       | [              |                                                                           | никакой дополнительной инф<br>вки числового массива равна ( | ормации об элементах массива, то оптимальная $O(n\log n)$ |
|       | [              | □ Есть только один ал                                                     | лгоритм сортировки, имеющи                                  | й оптимальную сложность.                                  |
|       | [              | □ Алгоритм быстрой (                                                      | сортировки основан на принц                                 | ипе "разделяй и властвуй"                                 |
|       | [              | Время работы боль                                                         | ышинства алгоритмов сортиро                                 | овки не зависит от расположения элементов вс              |

| 100-й элеме    | Пусть у уже отсортированного масс: нт переставили с 101-ым, 242-й с 243-                              | $\ddot{\mathbf{n}}$ , так $k$ перестановог | к). При этом известно, ч | ( 1 1 )          |
|----------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|------------------|
| из алгоритм    | мов будет лучшим выбором для сорти                                                                    | провки такого массива                      | <b>1.</b>                |                  |
|                | ) Сортировка выбором                                                                                  |                                            |                          |                  |
|                | ) Сортировка вставками                                                                                |                                            |                          |                  |
|                | ) Сортировка пузырьком                                                                                |                                            |                          |                  |
|                | ) Сортировка слиянием                                                                                 |                                            |                          |                  |
|                | ) Быстрая сортировка                                                                                  |                                            |                          |                  |
| `              | пов) Пусть есть массив чисел: 42 55<br>е массив, который получится после п                            |                                            |                          | рром.            |
|                |                                                                                                       |                                            |                          |                  |
| 7. (25 баллов) | Заполните таблицу:                                                                                    |                                            |                          |                  |
|                | Алгоритм                                                                                              |                                            | Сложность(в среднем)     | =                |
|                | Сортировка пузырьком                                                                                  |                                            | $O(n^2)$                 | =                |
|                | Сортировка вставками                                                                                  |                                            | ( )                      | _                |
|                | Сортировка слиянием                                                                                   |                                            |                          | _                |
|                | Быстрая сортировка                                                                                    |                                            |                          | _                |
|                | Сортировка выбором                                                                                    |                                            |                          | =                |
|                | Простейший алгоритм перемно                                                                           | ожения матриц nxn                          |                          | _                |
|                | Простейший алгоритм сложен                                                                            | ия матриц nxn                              |                          | _                |
| 8. (25 баллов) | Заполните таблицу:                                                                                    |                                            |                          |                  |
|                |                                                                                                       | Доступ к элементу                          | Вставка элемента         |                  |
|                | Массив                                                                                                |                                            |                          |                  |
|                | Односвязный список(list)                                                                              |                                            |                          |                  |
|                | Двоичное дерево поиска                                                                                | O(1)                                       | O(1)                     |                  |
|                | Хеш-таблица                                                                                           | O(1)                                       | O(1)                     |                  |
|                | Отметьте все преимущества односвя  Односвязный список занимает меня В односвязном списке можно гораз, | ьше памяти, чем масс                       | ИВ                       | ассивом.         |
|                | В односвязный список можно гораз                                                                      |                                            |                          |                  |
|                | В односвязный список можно доба программы).                                                           | - · · ·                                    |                          | во время работы  |
| С              | Все элементы односвязного списка з быть полезно.                                                      | кранятся в памяти лог                      | кально(друг за другом),  | что иногда может |

- 10. (10 баллов) Класс NP это:
  - Класс задач, которые можно за полиномиальное время решить на детерминированной машине Тьюринга.
  - Класс задач, которые можно за полиномиальное время решить на недетерминированной машине Тьюринга.
  - Класс алгоритмов, которые можно за полиномиальное время решить на детерминированной машине Тьюринга.
  - Класс алгоритмов, которые можно за полиномиальное время решить на недетерминированной машине Тьюринга.
- 11. (10 баллов) Как соотносятся между собой классы Р и NP?









Если сомневаетесь в выборе варианта, можете дать развёрнутый ответ:

12. (30 баллов) Пусть на вход алгоритма построения бинарного дерева поиска поступает следующая последовательность: 91 40 22 87 36 60 27 43 62 24

Постройте получившиеся бинарное дерево поиска.



Предположим, что вам потребовалось найти в этом дереве число 76. Найдите последовательность чисел, с которыми число 76 будет сравниваться.

13. (55 баллов) Рассмотрим следующий взвешенный ориентированный граф:



11.А. (5 баллов) Найдите число вершин и рёбер данного графа.

11.Б. (15 баллов) Известно, что есть 2 стандартных представления графа: список смежных вершин и матрица смежности. Представьте данный граф в обоих представлениях.



11.В. (35 баллов) Пошагово проиллюстрируйте работу алгоритма Дейкстры на этом графе.



## 2 Задачи на программирование

14. (80 баллов) Алгоритм бинарного поиска – это алгоритм поиска элемента в отсортированном массиве, использующий дробление массива на половины.

На вход алгоритма подаётся отсортированный по возрастанию массив и число, которое требуется в нём найти. Поиск осуществляется путём сравнения числа, которое нужно найти, с центральным элементом массива. Если это число оказалось больше центрального элемента, то оно рекурсивно ищется в правой половине массива, а если меньше, то в левой.

15. (150 баллов) Реализуйте алгоритм волновой трассировки.

| 9 | 10 |   | 10 | 9 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|---|----|---|----|---|---|---|----|----|----|----|----|
| 8 | 9  |   | တ  | 8 | 7 | 8 | 9  | 10 | 11 | 12 | 13 |
| 7 | 8  | 9 | 8  | 7 | 6 | 7 | 8  | 9  | 10 | 11 | 12 |
| 6 | 7  | 8 | 7  | 6 | 5 | 6 | 7  |    |    | 10 | 11 |
| 5 |    |   |    |   | 4 | 5 | 6  | 7  | 8  | 9  | 10 |
| 4 | 3  | 2 | 1  | 2 | 3 | 4 | 5  | 6  |    |    | 11 |
| 3 | 2  | 1 | 0  | 1 | 2 | 3 | 4  | 5  |    |    | 10 |
| 4 | 3  | 2 | 1  | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  |

| Вход                                               | Выход |
|----------------------------------------------------|-------|
| 45<br>00100<br>00100<br>00100<br>00000<br>20<br>03 |       |

От стартовой ячейки порождается шаг в соседнюю ячейку, при этом проверяется, проходима ли она, и не принадлежит ли ранее меченной в пути ячейке. При выполнении условий проходимости и непринадлежности её к ранее помеченным в пути ячейкам, в атрибут ячейки записывается число, равное количеству шагов от стартовой ячейки, от стартовой ячейки на первом шаге это будет Каждая ячейка, меченая числом шагов от стартовой ячейки становится стартовой и из неё порождаются очередные шаги в соседние ячейки. Восстановление кратчайшего пути происходит в обратном направлении: при выборе ячейки от финишной ячейки к стартовой на каждом шаге выбирается ячейка, имеющая атрибут расстояния от стартовой на единицу меньше текущей ячейки.

Считывание входа и построение графа (35 баллов из 125) Распространение волны (35 баллов из 125):

```
ЦИКЛ
ДЛЯ каждой ячейки loc, помеченной числом d
пометить все соседние свободные непомеченные ячейки числом d + 1
КЦ
d := d + 1
ПОКА (финишная ячейка не помечена) И (есть возможность распространения волны)
```

Восстановление пути (55 баллов из 125):

```
ЕСЛИ финишная ячейка помечена
ТО
перейти в финишную ячейку
ЦИКЛ
выбрать среди соседних ячейку, помеченную числом на 1 меньше числа в текущей ячейке
перейти в выбранную ячейку и добавить её к пути
ПОКА текущая ячейка - не стартовая
вОЗВРАТ путь найден
ИНАЧЕ
вОЗВРАТ путь не найден
```