Computational Methods

Heat Conduction Equation

November 3, 2017

António Pedro Araújo Fraga
Student ID: 279654
Cranfield University
M.Sc. in Software Engineering for Technical Computing

Contents

Introduction	1
Problem definition	2
Numerical analysis	2
Procedures	3
Explicit Schemes	4
Richardson	5
DuFort-Frankel	5
Implicit Schemes	5
Laasonen Simple Implicit	6
Crank-Nicholson	7
Results & Discussion	8
Laasonen Implicit Scheme: study of time step variation	9
Conclusions	. 1
Acknowledgements	2
References 1	5

Abstract

Four numerical schemes were applied to compute a solution for a parabolic partial differential equation, the heat conduction equation. Two different types of schemes were used, explicit and implicit, and their solutions were evaluated. This evaluation could be done with a qualitative analysis, in which is evaluated how good the computed solution approximates the analytical solution, and a quantitative analysis, a more mathematical approach were the norms of both solutions were calculated.

Table 1: Nomenclature

Diffusivity	D
First derivative in time	$\frac{\partial f}{\partial t}$
First derivative in space	$\frac{\partial f}{\partial x}$
Time grid position	n
Space grid position	i
Function at time and space grid position	f_i^n
Time step	Δt
Space step	Δx
Time value	t
Space value	X
Function value at specific space and time values	f(x, t)
Initial Temperature	T_{in}
Surface Temperature	T_{sur}

Introduction

Numerical methods are used to obtain an approximated solution to problems with no given analytical solution. These methods can be used in order to save computational time, therefore they can obtain results which are similar to the real solution more efficiently. Four different schemes were applied to compute an approximated solution to a **Parabolic Partial Differential Equation**, in this case the heat conduction equation.

$$\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2}$$

This condition had to be satisfied on a grid in space and time, which means the problem has a structured mesh type, and therefore can be represented as a grid of two dimensions. The previous equation could be written in its discretized form for each method.

Problem definition

A few initial or boundary conditions were set, including the heat conduction equation. An existing wall with **1** ft thick had an initial temperature of **100°F** and the surface temperatures at both sides were suddenly increased and maintained to **300°F**. It is also known that the wall is composed of nickel steel (40% Ni) with a Diffusivity of **0.01** ft^2/h .

Since the wall has a 1 ft thickness, the problem space domain could be restricted between **0** and **1**, and the diffusivity value, which is considered constant, could be set to **0.01**. The time domain was restricted between **0** to **0.5**:

$$x \in [0,1], \, t \in [0,0.5]$$

$$T_{in} = 100, T_{sur} = 300$$

$$D = 0.01$$

The initial boundaries can be formalized in mathematical expressions:

$$f(x,0) = T_{in}$$

$$f(0,t) = T_{sur}$$

$$f(1, t) = T_{sur}$$

The analytical solution of this problem was given by the following expression:

$$f(x,t) = T_{sur} + 2(T_{in} - T_{sur}) \sum_{m=1}^{m=\infty} e^{-Dt(m\pi/L)^2} \frac{1 - (-1)^m}{m\pi} sin\left(\frac{m\pi x}{L}\right)$$

Numerical analysis

Numerical analysis is the study of the obtained solution. Criticism is very important on this phase, since the solutions are evaluated. Digitals computers have problems with round-off errors, and since values were truncated, problems with discretization errors may appear. There are some definitions related with this study: stability, convergence and approximation.

A method is declared stable if an error doesn't grow as time advances. Theoretically, conditions that make a scheme becomes stable or unstable can be known, by making use of Fourier series.

Approximation can be verified by comparing the computed solution with the analytical solution, and check if there is an approximation at all.

Convergence is defined by how well the computed solution approximates to the analytical solution. This can vary with a change in the number of **time steps** or **space steps**. A big number of steps can lead to a bigger number of round-off errors or a considerably more time expensive solution. This definition is related with the **numerical viscosity** concept which must have a positive value in order to our scheme to be stable. It was possible to calculate on which conditions there is a stable solution by considering the Navier-Stokes equation for this problem:

$$\frac{\partial f}{\partial t} = \nu \frac{\partial^2 f}{\partial x^2}$$

By developing the unknown terms with Taylor expansion series and replacing their equivalences in the previous equation, it could be concluded which methods are conditionally stable, unconditionally unstable and unconditionally stable.

A stencil could also be developed for each method, which relates the several grid points, revealing the dependencies for a calculation in a more graphical way.

Procedures

Four different schemes/methods were used to compute a solution for the given problem, two of them are explicit schemes, **Richardson**, **DuFort-Frankel**, and two of them are implicit schemes, **Laasonen Simple Implicit** and **Crank-Nicholson**. The space step was maintained at **0.05** ft, and the time step took the value of **0.1** h, studying every solutions from **0.0** to **0.5** hours. The **Laasonen Simple Implicit** solution was also studied with different time steps, always maintaining the same space step, $\Delta x = 0.05$:

- $\Delta t = 0.01$
- $\Delta t = 0.025$
- $\Delta t = 0.05$
- $\Delta t = 0.1$

As referred, considering the initial equation, these methods can be written in its discretized form.

Explicit Schemes

This type of schemes rely only on the previous time steps to calculate the current time step solution. In the case of both used methods, they were relying in known values of the \mathbf{n} - $\mathbf{1}$ and \mathbf{n} time steps to calculate a value for the \mathbf{n} + $\mathbf{1}$ time step. Thereby, the second time step can not be calculated by these methods, because there's no possible value for a negative time step. A different method, for the same equation, with two levels of time steps was used in order to overcome this situation, the **Forward in Time and Central in Space** scheme. It's known that this method is **conditionally stable**, and its stability condition is given by,

$$\frac{D\Delta t}{(\Delta x)^2} \le 0.5$$

Therefore, considering $\Delta t = 0.1$, $\Delta x = 0.05$, and D = 0.1, this method is declared unstable. Nevertheless, is known that in unstable methods the error grows as the time advance. Therefore it can be admitted that the error present in the first iteration is not large enough to considerably affect the final output values computed by the other two methods. The first iteration can be calculated with,

$$f_i^{n+1} = f_i^n + \frac{D\Delta t}{(\Delta x)^2} (f_{i+1}^n - 2f_i^n + f_{i-1}^n)$$

Figure 2: Richardson's method stencil.

Richardson

The Richardson method can be applied by having a central in time and central in space scheme. Regarding to stability issues, this method is unconditionally unstable. Following the heat conduction equation, the expression can be written as following:

$$\frac{f_i^{n+1} - f_i^{n-1}}{2\Delta t} = D \frac{f_{i+1}^n - 2f_i^n + f_{i-1}^n}{(\Delta x)^2}$$

Which corresponds to,

$$f_i^{n+1} = f_i^{n-1} - \frac{2\Delta tD}{(\Delta x)^2} (f_{i+1}^n - 2f_i^n + f_{i-1}^n)$$

DuFort-Frankel

The DuFort-Frankel scheme can be applied by having central differences in both derivatives, but to prevent stability issues, the space derivative term f_i^n can be written as the average value of f_i^{n+1} and f_i^{n-1} . This scheme is declared as unconditionally stable and it may be formulated as follows:

$$\frac{f_i^{n+1} - f_i^{n-1}}{2\Delta t} = D \frac{f_{i+1}^n - f_i^{n+1} - f_i^{n-1} + f_{i-1}^n}{(\Delta x)^2}$$

Which is equivalent to,

$$f_i^{n+1} = f_i^{n-1} - \frac{2\Delta tD}{(\Delta x)^2} (f_{i+1}^n - f_i^{n+1} - f_i^{n-1} + f_{i-1}^n)$$

Implicit Schemes

In other hand, implicit schemes rely not only on lower time steps to calculate a solution, but also on current time step known values. Each time step solution can often be solved by applying the Thomas Algorithm, which is an algorithm that can solve tridiagonal matrix systems, Ax = r. This algorithm is a special case of the LU decomposition, with a better performance. The matrix A can be decomposed in a lower triangular matrix A and an upper triangular matrix A, therefore A = A. This algorithm consists of two steps, the downwards phase where the equation A0 is solved and the upwards phase, solving A1 is solved as solution for A2.

Figure 3: Laasonen's method stencil.

Figure 4: Crank-Nicholson's method stencil.

Laasonen Simple Implicit

The time derivative is considered forward in time. Central difference is used in space derivative, and the scheme is unconditionally stable. Concluding, the below equation could be established:

$$\frac{f_i^{n+1} - f_i^n}{\Delta t} = D \frac{f_{i+1}^{n+1} - 2f_i^{n+1} + f_{i-1}^{n+1}}{(\Delta x)^2}$$

Assuming that $c = \frac{\Delta t D}{(\Delta x)^2}$, the equation could be represented as:

$$(1-2c)f_i^{n+1} = f_i^n + c\left[f_{i+1}^{n+1} + f_{i-1}^{n+1}\right]$$

The values of the first and last space position of each time step are known, they are represent by the T_{sur} value. Therefore, in every second and penultimate space step, two terms of the previous equation could be successfully inquired. For the second space step, the equation could be divided by having the unknown terms in the left side and the known terms in the right side:

$$(1-2c)f_i^{n+1} - cf_{i+1}^{n+1} = f_i^n + cf_{i-1}^{n+1}$$

And the same could be done for the penultimate space step:

$$(1-2c)f_i^{n+1} - cf_{i-1}^{n+1} = f_i^n + cf_{i+1}^{n+1}$$

For every other space steps with unknown values, the expression could be generalized as:

$$(1-2c)f_i^{n+1} - c\left[f_{i+1}^{n+1} + f_{i-1}^{n+1}\right] = f_i^n$$

Considering that the maximum number of space steps is \mathbf{m} , the previous expressions could form a system of linear equations, A.x = r:

$$\begin{bmatrix} (1-2c) & -c & 0 & 0 & \dots & 0 & 0 \\ -c & (1-2c) & -c & 0 & \dots & 0 & 0 \\ 0 & -c & (1-2c) & -c & \dots & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} f_1^{n+1} \\ f_2^{n+1} \\ f_3^{n+1} \\ \vdots \\ f_{m-1}^{n+1} \end{bmatrix} = \begin{bmatrix} f_1^n + c f_0^{n+1} \\ f_2^n \\ f_3^n \\ \vdots \\ f_{m-1}^n + c f_m^{n+1} \end{bmatrix}$$

Crank-Nicholson

The time derivative is considered forward in time, and the space derivative can be replaced by the average of central differences in time steps \mathbf{n} and $\mathbf{n} + \mathbf{1}$, the method is declared as unconditionally stable. Thus:

$$\frac{f_i^{n+1} - f_i^n}{\Delta t} = \frac{1}{2} D \left[\frac{f_{i+1}^{n+1} - 2f_i^{n+1} + f_{i-1}^{n+1}}{(\Delta x)^2} + \frac{f_{i+1}^n - 2f_i^n + f_{i-1}^n}{(\Delta x)^2} \right]$$

In this method, the coefficient had a new value, $c = \frac{1}{2} \frac{\Delta tD}{(\Delta x)^2}$, and assuming that $p = f_{i+1}^n + f_{i-1}^n$, the equation could be written as follows,

$$(1-2c)f_i^{n+1} = (1-2c)f_i^n + c\left[f_{i+1}^{n+1} + f_{i-1}^{n+1} + p\right]$$

Following the same logical principles of the previous scheme, some expressions could be generalized for the second,

$$(1-2c)f_i^{n+1} - cf_{i+1}^{n+1} = (1-2c)f_i^n + c\left[f_{i-1}^{n+1} + p\right]$$

, penultimate,

$$(1-2c)f_i^{n+1} - cf_{i+1}^{n+1} = (1-2c)f_i^n + c\left[f_{i+1}^{n+1} + p\right]$$

, and every other space steps with unknown values.

$$(1-2c)f_i^{n+1} - c\left[f_{i+1}^{n+1} + f_{i-1}^{n+1}\right] = (1-2c)f_i^n + cp$$

Thus, a tridiagonal matrix system is obtained

$$\begin{bmatrix} (1-2c) & -c & 0 & 0 & \dots & 0 & 0 \\ -c & (1-2c) & -c & 0 & \dots & 0 & 0 \\ 0 & -c & (1-2c) & -c & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -c & (1-2c) \end{bmatrix} \begin{bmatrix} f_1^{n+1} \\ f_2^{n+1} \\ f_3^{n+1} \\ \vdots \\ f_{m-1}^{n+1} \end{bmatrix} = \begin{bmatrix} (1-2c)f_1^n + c \left[f_0^{n+1} + p \right] \\ (1-2c)f_2^n + cp \\ (1-2c)f_3^n + cp \\ \vdots \\ (1-2c)f_{m-1}^n + c \left[f_{m}^{n+1} + p \right] \end{bmatrix}$$

Results & Discussion

The results of the four methods, **Richardson**, **DuFort-Frankel**, **Laasonen Simple Implicit** and **Crank-Nicholson** can be seen in the following figures/tables. These results were used to analyze each solution quantitatively and qualitatively. In most of the plot charts, the obtained solution was compared to the analytical solution so that it would be possible to realize whether the solution was a good approximation or not. Notice that the next results are regarding to the "default" values of time and space steps, $\Delta t = 0.01$ and $\Delta x = 0.05$.

t	x	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
0.	1	1.05136e+06	631856	123707	8417.73	300.81	8417.73	123707	631856	1.05136e+06
0.2	2	1.33245e+11	1.39e+11	7.02854e+10	2.06123e+10	6.93136e+09	2.06123e+10	7.02854e+10	1.39e+11	1.33245e+11
0.3	3	2.14659e+16	2.74969e+16	1.97012e+16	9.88337e+15	5.98161e+15	9.88337e+15	1.97012e+16	2.74969e+16	2.14659e+16
0.4	4	3.91917e+21	5.60267e+21	4.87086e+21	3.31281e+21	2.58429e+21	3.31281e+21	4.87086e+21	5.60267e+21	3.91917e+21
0.5	5	7.74272e+26	1.19047e+27	1.18021e+27	9.72231e+26	8.60626e+26	9.72231e+26	1.18021e+27	1.19047e+27	7.74272e+26

Table 2: Richardson method error table.

By examining **Table 2**, it could be concluded that the solution given by the Richardson method was considerably different from the analytical solution. This was due to the fact that this method is declared as **unconditionally unstable**. As referred before, when a method is declared unstable, the error grows as the time advances. The error growth was responsible for obtaining a different solution, or a solution to a different problem. The mathematical calculations regarding the stability and accuracy properties of this method can be found under the appendix section.

Figure 5: DuFort-Frankel's solution at t = 0.5.

When looking at **Figure 5**, it can be observed that the DuFort-Frankel solution is quite approximated to the real solution. This scheme is more efficient comparing to other unconditionally stable methods, the only disadvantage is the fact that it requires a different method for the first iteration.

Similarly of what could be concluded on DuFort-Frankel results, by observing **Figure 6** and **Figure 7**, it can also be deducted that these are good solutions. These schemes, Crank-Nicholson and Laasonen, are unconditionally stable as well. Therefore good results were expected.

Figure 6: Laasonen's solution at t = 0.4.

Figure 7: Crank-Nicholson's solution at t = 0.4.

Laasonen Implicit Scheme: study of time step variation

Laasonen Implicit Scheme is an unconditionally stable scheme to solve Parabolic Partial Differential Equations. Therefore, with the right time and space step, there's almost no error related to the development of its results throughout the time advancement.

A reduction on these steps led to a higher computational time, since there's more calculations to be made. Whereas steps with higher values led to more inaccurate results. This phenomenon could be explained with a concept that was introduced earlier, the **truncation error**. This error can only be avoided with exact calculations, but can be reduced by applying a larger number of smaller intervals or steps. As referred before, different results of this method were studied by changing the time step size. The space step was maintained, $\Delta x = 0.05$.

Table 3 and **figure 8** could support the previous affirmations. While observing **table 3**, it can be seen that the error is larger for bigger time steps, as it was expected. Whereas when

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Δt 0.288694 0.01 0.385764 0.255427 0.0405061-0.0611721 0.0405061 0.255427 0.385764 0.2886940.025 0.738044 1.0344 0.805442 0.368491 0.157551 0.368491 0.805442 1.0344 0.738044 1.53627 2.15669 1.71375 0.864487 0.457364 0.864487 1.71375 2.15669 1.53627 0.05 3.29955 4.49523 1.7082 0.898726 1.7082 0.1 3.46045 3.46045 4.49523 3.29955

Table 3: Laasonen method error table for the several Δt at t = 0.5

observing **figure 8**, it can be identified a reduction in computational time as the **time step** becomes larger.

Figure 8: Laasonen method computational times for the several Δt .

Conclusions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellen-

tesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Acknowledgements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel. odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

References

Gilberto E. Urroz, July 2004, Convergence, Stability, and Consistency of Finite Difference Schemes in the Solution of Partial Differential Equations, Available at: http://ocw.usu.edu/Civil_and_Environmental_Engineering/Numerical_Methods_in_Civil_Engineering/StabilityNumericalSchemes.pdf> [Accessed 2 October 2017]

S. Scott Collis, April 26, 2005, An Introduction to Numerical Analysis for Computational Fluid Mechanics, Available at: https://bb.cranfield.ac.uk/bbcswebdav/pid-604246-dt-content-rid-92/courses/N-CST-CM-17-A17/CompMethods_Assignment_2017.pdf (a private book provided by the course supervisor on Black Board) [Accessed 2 October 2017]

Klaus A. Hoffman, Steve T. Chiang, August 2000, *Computational Fluid Dynamics, Volume 1* [Accessed 27 October 2017]

Richard H. Pletcher, Jhon C. Tannehill, Dale A. Anderson, 2013, Computational Fluid Mechanics and Heat Transfer, Third Edition, Available at: [Accessed 27 October 2017]

W. T. Lee, *Tridiagonal Matrices: Thomas Algorithm*, Available at: https://www3.ul.ie/wlee/ms6021_thomas.pdf> [Accessed 28 October 2017]

Error in Euler's Method, Available at: http://www.math.unl.edu/~gledder1/Math447/ EulerError> [Accessed 2 November 2017]