Les Animaux possèdent deux systèmes de communication et de régulation de l'organisme, le système :

Endocrinien	Nerveux
Pma : los daux systàmas interpaissent de facen átraite	

<u>RMQ :</u> les deux systemes interagissent de façon etroite.

Le système endocrinien

Les Animaux sécrètent dans le liquide extracellulaire des molécules appelées hormones qui leur servent d'intermédiaires pour réguler leur métabolisme et pour assurer la coordination du développement des parties de leur corps.

Le système endocrinien est principalement impliqué dans la régulation de :

- La reproduction
- Le développement
- Le métabolisme énergétique
- La croissance
- Le comportement

Chaque hormone est reconnue par un récepteur spécifique que possèdent des cellules dites cibles. L'activation du récepteur par l'hormone déclenche des réactions au sein de la cellule.

Les modes de transmission entre les cellules animales sont classés en fonction :

Du type de cellules sécrétrices	De la voie empruntée pour
	atteindre la cible

Les types des communications dans le corps :

Endocrine	Cell. sécrétrices :	Cellule endocrine
	Molécules :	Hormone
	Acheminé	Circulation sanguine

	Rôles :	Homéostasie
		Réguler la croissance
		Réaction aux stimuli
		environnementaux
	Cell. sécrétrices :	
Auto/paracrine	Cell. sécrétrices :	Plusieurs types de cellules
	Molécules :	Régulateurs locaux
	Cible :	Auto - la cellule sécrétrice
		Para – les cellules voisines
	Rôles :	Régulation de la pression
		artérielle
		Fonction nerveuse
		Dans la reproduction
Synaptique	Cell. sécrétrices :	Neurone
	Molécules :	Neurotransmetteur
	Cible :	Neurone voisin
	Rôles :	Passage du message nerveux
		entre les neurones
Neuroendocrine	Cell. sécrétrices :	Neurone neurosécrétrice
	Molécules :	Neurohormone
	Acheminé :	Circulation sanguine
	Rôles :	Fonction rénale
		Équilibre hydrique
Phéromone	Molécule	Phéromone
	Cible	Les cellules réceptrices d'un
		autre individu
	Rôles :	Délimiter un territoire
		Prévenir la présence de
		prédateur
		Attirer les partenaires sexuels

<u>Rmq</u>: les glandes exocrines libèrent les substances secrétées à l'extérieur du corps (exemple : les glandes salivaires).

<u>Rmq</u>: Les phéromones sont des substances libérées dans l'environnement

Les cellules endocrines sont présentes dans le corps :

De manière disparate	Regroupées en tissu appelé glande endocrine	
Thymus	Hypothalamus	
Cœur	Corps pinéal	
Foie	Glande thyroïde	
Reins	Glande parathyroïde	
Intestin grêle	Glandes surrénales	
	Pancréas	
	Ovaire/testicule	

Il existe trois types d'hormones classés en fonction de leur précurseur :

Type	Précurseur	Solubilité
Polypeptides	Acides aminés	hydrosoluble
Stéroïdes	Cholestérol	hydrophobe
Amine	Tyrosine ou tryptophane	hydrosoluble/hydrophobe
	(acide aminé)	

Les hormones hydrophobes

- 1. Les hormones hydrophobes sont sécrétées dans le milieu extracellulaire par exocytose.
- 2. Elles sont acheminées par des protéines de transport qui les rendent solubles et leur permet d'être acheminées par voie sanguine dans la région où se trouvent les cellules cibles.
- 3. Le complexe se désolidarise et les hormones traversent les membranes pour aller se fixer sur des récepteurs situés soit dans le noyau, soit dans le cytosol.
- 4. Transcription génétique

Les hormones solubles

Les hormones solubles ne peuvent pas traverser les membranes. Elles se fixent sur des récepteurs de la membrane plasmique.

Elles déclenchent un changement de voie dans la synthèse des molécules cytoplasmiques et parfois dans la transcription génétique.

Le diabète

Le diabète est une maladie dû à un disfonctionnement dans la production ou de la détection de l'insuline, l'hormone sécrétée par le pancréas. Il en résulte un taux de sucre dans le sang (glycémie) anormalement élevé. Il existe deux formes de diabètes :

- Type 1 : Les cellules pancréatiques ne sécrètent plus suffisamment d'insuline. Cela peut être dû à une destruction des cellules pancréatique par le système immunitaire.
- Type 2 : les cellules n'arrivent pas à absorber suffisamment le sucre présent dans le sang. La sédentarisation et l'obésité pourrait jouer un rôle déterminant dans l'apparition de cette maladie.

Glycémie concentration de glucose.

Les voies des hormones

La voie des hormones hydrosolubles

Transduction du signal conversion d'un signal en réponse intracellulaire.

Liposoluble généralement une modification de l'expression génétique

L'hormone pénètre dans le cytosol où elle se lie avec une protéine. Le complexe peut alors rentrer dans le noyau interagissent avec une protéine de liaison à la transcription.

Des effets combinés dans tous l'organisme.

Les réponses cellulaires peuvent varier en fonction

Du type de récepteurs cible Du type	pe de cellule
-------------------------------------	---------------

Exemple d'une hormone hydrosoluble : l'adrénaline

L'adrénaline est une hormone hydrosoluble produite en cas de stress. Elle cible des récepteurs membranaire de type G :

- β du foie provoque une augmentation de l'énergie disponible dans le sang en :
 - o activant des enzymes qui dégradent le glycogène et relâchent du sucre dans le sang.
 - o Inactivant les enzymes qui synthétisent le glycogène.
- β des vaisseaux sanguins des muscles squelettiques provoquant leur dilatation.
- A des vaisseaux des muscles intestinaux provoquant leur constriction.

La coordination des activités du système hormonal et du système nerveux

Les activités du système sont en partie régulées par une glande situé dans l'encéphale : l'hypothalamus. Il exerce une régulation hormonale en fonction des informations sur les conditions du milieu qu'il reçoit du système nerveux.

Exemple : les informations transmise par les neurones sur les changements saisonniers déclenchent la libération d'hormones qui provoque l'apparition de comportements sexuelles et la fonctionnement des organes sexuels durant la période de reproduction.

L'hypothalamus contrôle les activités d'une glande située en dessous appelé hypophyse. Elle est composée de deux lobes :

- Le neurohypophyse situé à l'avant. Il emmagasine deux types d'hormones fabriquées par l'hypothalamus.
- L'adénohypophyse situé à l'arrière. Il sécrète des hormones en fonction l'hypothalamus.

Les hormones neurohypophysaires

Les cellules sécrétoires de l'hypothalamus produisent deux types d'hormones à destination du neurohypophyse :

Ocytocine	Vasopressive
La sécrétion du lait	Fonctions rénales
Les contractions utérines	Comportement social
Comportements liés aux soins	
maternelles, à l'attachement, à	
l'activités sexuelles	

Les hormones sont acheminées dans le neurohypophyse par des axones.

Les hormones adénohypophysaires

L'hypothalamus libère des hormones par un réseau de veines qui va directement vers l'adénohypophyse. Les hormones produites sont de deux types en fonction de l'activité métabolique :

Libérine (provoque la libération	inhibine
d'hormones par l'adénohypophyse)	

Rmq: toutes les hormones adénohypophysaires sont régulées par au moins une libérine.

Régule

Le métabolisme

La reproduction

L'osmorégulation.

Les principales glandes chez les vertébrés

Les principales glandes endocrines et certaines hormones qu'elles libèrent ou sécrètent

Glandes	Hormone	Effets
Hypothalamus	Régule les hormones de l'hypophyse	

Hypophyse		
Neurohypophyse	Ocytocine	Contractions utérines
	Hormone anti- diurétique (ADH)	Absorption d'eau
Adénohypophyse	Hormone de croissance (GH)	Stimule la croissance et les fcts métaboliques
	Prolactine (PRL)	Sécrétion du lait
	Hormone folliculo- stimulante (FSH)	Maturation du follicule ovarien et la spermatogénèse
	Hormone lutéinisante (LH)	Production d'hormones sexuelles
	Thyréotrophine (TSH)	Régit les sécrétions de la glande thyroïde
	Corticotrophine	Régit la sécrétion du gluco- et du gonado-cordicoïde par le cortex surrénale
	Hormone mélanotrope (MSH)	Active les cellules pigmentaires de la peau (chez certains vertébrés)
Glande thyroïde	Trio-iodothyronine (T3) et T4	Stimulent et entretiennent les processus métaboliques
	Calcitonine	Diminue la calcémie
Glandes parathyroïdes	Parathormone	Augmente la calcémie

Pancréas	Insuline	Diminue la glycémie
	Glucagon	Augmente la glycémie
Glandes surrénales	Adrénaline	Augmente la glycémie, l'activité métabolique et la constriction de certains vaisseaux sanguins
	Glucocorticoïde	Augmentent la glycémie
	Minéralocorticoïde	Absorption de Na+ et K+ par les reins
Gonades Testicules	Androgène	Spermatogénèses et maintien des caractères masculins
Ovaires	Œstrogène	Stimulent le développement endomètre utérien et maintien des caractères féminins
	Progestine	Prépare l'endomètre utérien à recevoir l'embryon
Corps pinéal	Mélatonine	Intervient dans les rythmes circadiens

Endomètre utérien muqueuse utérine.