

PCT/FR2004/050475

REC'D 1 8 JAN 2005

WIPO PCT

BREVET D'INVENTIO

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

> 0.5 NOV. 2004 Fait à Paris, le

> > Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b) Martine PLANCHE

26 bis, rue de Saint-Petersbourg 75800 PARIS cedex 08 Téléphone : 33 (0)1 53 04 53 04 Télécopie : 33 (0)1 53 04 45 23

26 bis, rue de Saint Pétersbourg - 75800 Paris Cedex 08

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

REQUÊTE EN DÉLIVRANCE page 1/2

	s informer : INPI DIR ndligo 0 825 83 8 0,15			•	-	ge 1/2	D K 1
Télécopie	: 33 (0)1 53 04 52	65		Cet imprim	ė est à remplir lisible	ment à l'encre noire	D8 540 @ W / 030103
REMISE	DES PIÈCES	Treservé à l'INPI		MOM	ET ADRESSE DU DE	MANDEUR OU DU MANI DANCE DOIT ÊTRE ADRE	SSÉE
DATE	69 INPI LYC	NC		д	MI LA CORRESPON	DANCE DON'E LIKE ADME	
LIEU		0311483		bioMé	rieux		
1	IREGISTREMENT AL ATTRIBUÉ PAR L'INF			Département de la Propriété Industrielle Chemin de l'Orme			
DATE D	e dépôt attribuée NPI	0 1 007. 200	3		MARCY L'ETOIL	E	
Vos 1	r <mark>éférences pou</mark> lialif) BLASTO	r ce dossier)PUCE					
Conf	firmation d'un (dépôt par télécopie	☐ N° attribué par	l'INPI à la	télécopie		CHARLES CANADAGA.
		DEMANDE	Cochez l'une des	4 cases s	ulvantes		
7-31, 4-	Demande de bre	12.17/13.5.11.5.18.51.02.19.12.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	K		Series de la company de la		
		+					
1	Demande de cer		<u> </u>				
ļ	Demande divisio	nnaire				1.1.1	, I
		Demande de brevet initiale	N°		Date		-
1	ou demana	le de certificat d'utilité initiale	N°		Date		
		d'une demande de					
		Demande de brevet initiale	N° .		· Date		
4	DÉCLARATION	I DE PRIORITÉ	Pays ou organisat	ion	l N°		٠
	OU REQUÊTE	DU BÉNÉFICE DE	Pays ou organisat	ion	.		
	LA DATE DE D	ÉPÔT D'UNE	Date 1		N°		
	DEMANDE AN	ITÉRIEURE FRANÇAISE	Pays ou organisation				
1			Date S'il y a d'autres priorités, cochez la case et utilisez l'imprimé «Suite»				
	are a series of state to	enteration preparation of the Section (1997)	Silyad	aures pro	Values, Cochez la C	rsonne physique	destination of
5	DEMANDEUR	(Cochez l'une des 2 cases)	X Personne	morale	L Pe	rsonne physique	ny sympositros
	Nom ou dénomination	on sociale	bioMérieux		<u></u>		
	Prénoms						
	Forme juridiqu	е	S.A.				
	N° SIREN		[6,7,3,6,2,0	18 19 19 1			
	Code APE-NAF						
	Domicile	Rue	Chemin de l'O				
	ou siège	Code postal et ville	[6,9,2,8,0]	MARCY L	ETOILE		
1	siege	Pays	FRANCE				
	Nationalité		Française			6 JO 04 70 07 04 40	
	N° de télépho		04.78.87.53.2			acultatif) 04.78.87.21.16)
	Adresse électi	ronique (facultatif)	catherine.dur	et@eu.bic	merieux.com		ná «Suita»
1			X S'il y a plus	d'un dem	andeur, cochez la	case et utilisez l'impri	ne «Sune»

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

REQUÊTE EN DÉLIVRANCE page 2/2

REN DAT	AISE DES PIÈCES E 69 INPI I	20 Gervé à l'INPI		_	·			
UEL		0311483	<u>.</u>					
N° €	D'ENREGISTREMENT	0011-100	•		•			
NAT	IONAL ATTRIBUÉ PAR	LINDI			DB 540 W / 21050			
6	MANDATAIR	E (sily a lieu)						
	Nom	E-sear in the restriction of	DENJEAN		。 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
	Prénom		Frédérique	Frédérique				
	Cabinet ou So	ciété	bioMérieux					
	N °de pouvoir de lien contrac	permanent et/ou ctuel	PG 10870	PG 10870				
	Advance	Rue	Chemin de l'Orm	е				
	Adresse	Code postal et ville	[6 9 12 18 10] MA	RCY L'ETOILE				
		Pays	FRANCE					
	N° de téléphoi		04.78.87.75.70	······································				
	N° de télécopi	_ *	04.78 .87,21. 16					
		onique <i>(facultatif)</i>	frédérique.denjea	n@eu.biomerieux.co	m			
	INVENTEUR	(5)	Les inventeurs sont nécessairement des personnes physiques					
	sont les même		Oui Non: Dans c	e cas remplir le formu	laire de Désignation d'inventeur(s)			
8	RAPPORT DE	RECHERCHE	Uniquement pour une demande de brevet (y compris division et transformation)					
	Établissement immédiat ou établissement différé							
		elonné de la redevance on deux versements)	Uniquement pour les personnes physiques effectuant elles-mêmes leur propre dépôt Oui Non					
·	RÉDUCTION DU TAUX DES REDEVANCES		Uniquement pour les personnes physiques Requise pour la première fois pour cette invention (joindre un avis de non-imposition) Obtenue antérieurement à ce dépôt pour cette invention (joindre une copie de la décision d'admission à l'assistance gratuite ou indiquer sa référence): AG					
E	SÉQUENCES ET/OU D'ACII	DE NUCLEOTIDES DES AMINÉS	Cochez la case si la description contient une liste de séquences					
	Le support élec	tronique de données est joint	X					
La déclaration de conformité de la liste de séquences sur support papier avec le support électronique de données est jointe		M		·				
	Si vous avez u indiquez le no	rtilisé l'imprimé «Suite», mbre de pages jointes						
iii	OU DU MAND (Nom et quali Frédériqu	OU DEMANDEUR ATAIRE té du signataire) LE DENJEAN T Brevets	Weell.		VISA DE LA PRÉFECTURE OU DE L'INPI			
			+	<				

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce forhullaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

PP

Code de la propriété intellectuelle - Livre VI

REQUÊTE EN DÉLIVRANCE

	29 nezervé à l'INPI		_	Page suite N° 1/1	EDEN/SUILE
REMISE DES PIÈCES DATE 69 INPIL					
LIEU	0311483	ı			
NO MENDEMENT	0011700	'			
N° D'ENREGISTREMENT NATIONAL ATTRIBUÉ PAR I	L'INPI		Cet imprimé est à remplir	r lisiblement à l'encre noire	DB 829 @ W /210103
Vos références po	our ce dossier (facultatif)	BLASTOPUCE			
DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UNE DEMANDE ANTÉRIEURE FRANÇAISE		Pays ou organisation Date	N°		. Dulem night we
D DEMANDEUR	(Cochez l'une des 2 cases)	X Personne mora	ile	Personne physique	MIN'S STATE OF STATE OF
Nom ou dénominati	on sociale	Centre LEON-BE	:RARD		
Prénoms					
Forme juridiqu	ie				
Nº SIREN	-				
Code APE-NAF	•			7	
Domicile ou	Rue	28 rue Laennec		G. Garage	
siège	Code postal et ville	[619131713] LY	ON Cedex 08		·
	Pays	FRANCE		· 一	
Nationalité					~ <u>d</u>
N° de téléphoi	ne (facultatif)				- 1 d
N° de télécopi					
	onique (facultatif)			3 ·	:
DEMANDEUR	(Cochez l'une des 2 cases)	Personne mora	ale .	Personne physique	
Nom ou dénominati	ion sociale				
Prénoms					
Forme juridiqu	le				
N° SIREN					
Code APE-NAF	-				
Domicile	Rue				
ou siège	Code postal et ville				
*	Pays				
Nationalité					
N° de téléphone (facultatif)					
N° de télécopie (facultatif)					
Adresse électr	ronique (<i>facultatif</i>)				
OU DU MAR		érique DENJEAN lieur Brevets	vujem.	VISA DE LA PRÉF OU DE L'INF	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI La présente invention concerne un procédé pour le pronostic du neuroblastome.

Le neuroblastome est en fréquence la deuxième cause de tumeur solide chez l'enfant après les tumeurs cérébrales. Le neuroblastome est le plus fréquent des cancers de l'enfant avant cinq ans et représente environ 15 % des cancers avant cet âge.

Les neuroblastomes sont des tumeurs malignes développées à partir de neuroblastes nés de la crête neurale et migrant pour former les ganglions sympathiques et la médullo-surrénale durant la période embryonnaire et fœtale.

Lorsqu'un premier examen clinique permet de suspecter un neuroblastome (boule, hématome, endroit douloureux, difficulté à bouger les membres, etc...), un bilan complet est réalisé afin de confirmer le diagnostic.

Généralement, ce bilan comprend :

5

10

15

20

25

- des examens par prélèvements (sang, urines),
- > différents examens radiologiques qui ont pour but de bien situer la tumeur, ses limites et sa taille (scintigraphie, échographie et/ou scanner et/ou IRM),
- > des examens au microscope de fragments de tumeurs afin de découvrir exactement de quel type de tumeur dont il s'agit.

A l'heure actuelle, il n'existe pas de traitement universel lorsqu'un neuroblastome est diagnostiqué, et un traitement spécifique doit être adapté en fonction de l'âge du patient. On distingue alors principalement les traitements loco-régionaux (chirurgie et radiothérapie) afin d'enlever ou détruire la tumeur directement à l'endroit où elle se trouve et les traitements généraux (chimiothérapie), qui agissent dans tout l'organisme du patient à la fois sur la tumeur et mais aussi là où peuvent se trouver les métastases.

Le traitement du patient peut être adapté selon le pronostic du neuroblastome et la stratégie thérapeutique peut s'avérer très différente selon le stade et la caractérisation génétique des cellules tumorales. Ainsi, dans les formes localisées dont les cellules tumorales ne portent aucun caractère de mauvais pronostic, le traitement est essentiellement chirurgical alors que dans les formes localisées dont les cellules

10

15

20

25

30

tumorales sont de mauvais pronostic, le traitement doit être plus agressif, reposant sur la chimiothérapie et une radiothérapie locale.

Il existe a l'heure actuelle différentes classifications du neuroblastome permettant de définir de la façon la plus précise possible des groupes pronostiques. Ces groupes permettent théoriquement de définir les indications thérapeutiques de façon adaptée au risque de la maladie. On peut citer notamment la classification de l'International Neuroblastoma Staging System (Brodeur et al. (1993) J. Clin. Oncol. 11, 1466-77), qui tient compte des données anatomiques actuellement reconnues comme ayant une valeur pronostique. Selon cette classification, on distingue les stades suivants :

- > stade 1 : tumeur localisée totalement enlevée macroscopiquement ; ganglions homo et controlatéraux examinés et négatifs microscopiquement
- > stade 2A: tumeur unilatérale enlevée incomplètement avec des ganglions homo et controlatéraux examinés et négatifs.
- > stade 2B : tumeur unilatérale avec atteinte ganglionnaire homolatérale et non controlatérale.
- > stade 3 : tumeur unilatérale non opérable montrant un dépassement de la ligne médiane ou tumeur unilatérale avec atteinte ganglionnaire controlatérable ou tumeur à cheval sur la ligne médiane avec extension bilatérale par infiltration ou par adénopathie.
- > stade 4 : tumeur primitive s'accompagnant d'une dissémination à distance : ganglionnaire, osseuse, médullaire, hépatique.
- > stade 4S: tumeur de stade local 1 ou 2 avec une dissémination limitée au foie, à la peau ou à la moelle osseuse. Les stades 4S sont des enfants ayant un âge inférieur à 1 an.
- Actuellement, le pronostic d'un neuroblatome peut être établi par l'étude de différents facteurs:
 - 1) l'amplification de l'oncogène N-myc est considérée comme un outil de référence, et est utilisée par la plupart des oncologues pédiatriques pour définir, au moment du diagnostic, les malades qui doivent recevoir une chimiothérapie intensive suivie de greffe de moelle (Seeger et al, N Engl J

10

15

20

25

30

Med. 1985; 313(18):1111-6; Rubie et al J Clin Oncol. 1997 Mar;15(3):1171-82.).

- 2) il existerait également une corrélation entre le pronostic du neuroblastome et le rapport des catécholamines VMA (vanilmandelic acid) / HVA (homovanillic acid), au moment du diagnostic. Dans les stades avancés, une excrétion-urinaire élevée d'HVA et basse de VMA, voire normale, signerait un mauvais pronostic (Laug et al Pediatrics. 1978; 62(1):77-83).
- 3) l'augmentation de la ferritine sérique dans les neuroblastomes est également considérée comme un facteur de mauvais pronostic (Evans et al, Cancer. 1987; 59(11):1853-9).
- 4) le taux de LDH (lactate deshydrogénase) pourrait également être un facteur de pronostic indépendant et prédominant pour les stades localisés I à III chez l'enfant de plus d'un an, et de façon moins importante chez l'enfant de moins d'un an avec un stade IV (Berthold et al, Am J Pediatr Hematol Oncol. 1994; 16(2):107-15).

Toutefois, la corrélation entre l'amplification de l'oncogène N-myc et le pronostic du neuroblastome n'est pas absolue (Maris & Matthay, J Clin Oncol, 1999, 17(7): 2264-2279). De plus la LDH et la ferritine étant deux facteurs corrélés entre eux, la fiabilité de ces facteurs pour le pronostic du neuroblastome reste discutée (Berthold et al, 1992, Am J Pediatr Hamtol Oncol, 14(3): 207-215). Enfin, l'utilisation du rapport VMA/HVA donne une sensibilité et une spécificité insuffisantes pour le pronostic du neuroblastome.

La présente invention se propose de résoudre l'ensemble des inconvénients de l'état de la technique en présentant un nouvel outil de pronostic du neuroblastome.

D'une manière surprenante, les inventeurs ont mis en évidence que le pronostic d'un neuroblastome peut être déterminé par l'analyse de l'expression de gènes cibles sélectionnés parmi 37 gènes tel que présenté dans le tableau 1 ci après, qui sont exprimés différentiellement selon que le patient soit de bon ou de mauvais pronostic.

Tableau 1 - liste des 37 gènes cibles selon l'invention

SEQ ID	Description de la séquence	N° Genbank
N°	·	
1 .	Flap structure-specific endonuclease 1 (FEN1)	NM_004111
2	Ubiquitin-conjugating enzyme E2C (UBE2C)	NM_007019
3	Insulin-like growth factor binding protein 7 (IGFBP7)	NM_001553
4	Collagen, type I, alpha 2 (COL1A2)	NM_000089
5	Nucleolin (NCL)	NM_005381
6	Interleukin enhancer binding factor 3, 90kDa (ILF3), transcript variant 2	NM_004516
7	cDNA FLJ30781 fis, clone FEBRA2000874	AK055343
8	TIF1 beta zinc finger protein	X97548
9	Likely ortholog of mouse tumor differentially expressed 1, like (TDE1L)	NM 020755
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831
	v-myc myelocytomatosis viral related oncogene, neuroblastoma derived	11200,001
11	(avian)(MYCN)	NM_005378
	Small nuclear ribonucleoprotein D2 polypeptide 16.5kDa (SNRPD2), transcript	,
12	variant 1	NM_004597
13	MCM2 minichromosome maintenance deficient 2, mitotin (S. cerevisiae)	NM 004526
14	RuvB-like 2 (E. coli) (RUVBL2)	NM_006666
15	Immediate early protein ETR101	NM_004907
16	RNA binding protein S1, serine-rich domain (RNPS1), transcript variant 1	NM_006711
17	Ornithine decarboxylase 1 (ODC1)	NM_002539
18	Activity-regulated cytoskeleton-associated protein (ARC)	NM 015193 🚣
19	Secretogranin II (chromogranin C) (SCG2)	NM_003469
20	Structure specific recognition protein 1 (SSRP1)	NM_003146
21	Collagen, type VI, alpha 3 (COL6A3), transcript variant 1	NM ² 004369
22	Small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB)	NM_003091
23	Acidic (leucine-rich) nuclear phosphoprotein 32 family, member B (ANP32B)	NM_006401
24	Non-POU domain containing, octamer-binding (NONO)	NM_007363
25	Peripheral myelin protein 22 (PMP22), transcript variant 1	NM_000304
26	Small nuclear ribonucleoprotein polypeptide E (SNRPE)	NM_003094
27	KIAA0436 mRNA, partial cds	AB007896
28	Fibrillarin (FBL)	NM_001436
29	Tripartite motif-containing 2 (TRIM2)	NM_015271
20	MCM6 minichromosome maintenance deficient 6 (MIS5 homolog, S. pombe)	NINA COSOLE
30	(S. cerevisiae) (MCM6) Polypyrimidine tract binding protein 1 (PTBP1), transcript variant 1	NM 005915
31	Small nuclear ribonucleoprotein polypeptide A (SNRPA)	NM_002819
32		NM 004596
33	Creatine kinase, brain (CKB)	NM_001823
34	Erythrocyte membrane protein band 4.1-like 3 (EPB41L3)	NM_012307
35	Hypothetical protein MGC3077	NM_024051
36	Tissue alpha-L-fucosidase 1 (FUCA 1)	NM_000147
37	Secreted protein acidic and rich in cysteine (SPARC)	NM_003118

10

15

20

Parmi ces gènes, on peut distinguer des gènes dont la fonction est connue mais qui n'ont jamais été mis en relation avec le neuroblastome (SEQ ID N°1 à 8; 12 à 16; 18 à 26; 28; 30 à 34; 36) ainsi que des gènes dont la fonction est inconnue (SEQ ID N°9; 10; 27; 29; 35). Il est bien entendu que si différentes isoformes de ces gènes existent, toutes les isoformes sont relevantes pour la présente invention, et pas uniquement celles présentées dans le précèdent tableau.

A cet effet, la présente invention concerne un procédé pour le pronostic du neuroblastome chez un patient atteint du neuroblastome caractérisé en ce qu'il comprend les étapes suivantes :

- a. on extrait du matériel biologique d'un échantillon biologique prélevé chez le patient,
- b. on met en contact le matériel biologique avec au moins un réactif spécifique choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37, étant entendu que lorsque que le gène cible présente une séquence nucléique ayant l'une des SEQ ID N°11, 17 ou 37, on met en contact le matériel biologique avec au moins deux réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37,
- c. on détermine l'expression d'au moins un desdits gènes cibles, étant entendu que lorsque que le gène cible présente une séquence nucléique ayant l'une des SEQ ID N°11, 17 ou 37, on détermine l'expression d'au moins deux desdit gènes cibles
- Au sens de la présente invention, on entend par <u>échantillon biologique</u>, tout échantillon prélevé chez un patient, et susceptible de contenir un matériel biologique tel que défini ci après. Cet échantillon biologique peut être notamment un échantillon de sang, de sérum, de salive, tissu, de tumeur, de moelle osseuse, de cellules circulantes du patient. On dispose de cet échantillon biologique par tout type de prélèvement connu de l'homme du métier. Selon un mode préféré de réalisation de

l'invention, l'échantillon biologique prélevé chez le patient est un échantillon tissulaire, préférentiellement un échantillon de tumeur ou de moelle osseuse.

Au sens de la présente invention, on entend par matériel biologique, tout matériel permettant de détecter l'expression d'un gène cible. Le matériel biologique peut comprendre notamment des protéines, ou des acides nucléiques tels que notamment les acides desoxyribonucléiques (ADN) ou les acides ribonucléiques (ARN). L'acide nucléique peut être notamment un ARN (acide ribonucléique). Selon un mode préféré de réalisation de l'invention, le matériel biologique comprend des acides nucléiques, préférentiellement, des ARN, et encore plus préférentiellement des ARN totaux. Les ARN totaux comprennent les ARN de transfert, les ARN messagers (ARNm), tel que les ARNm transcrit du gène cible, mais également transcrit de tout autre gène et les ARN ribosomaux. Ce matériel biologique comprend du matériel spécifique d'un gène cible, tel que notamment les ARNm transcrits du gène cible ou les protéines issues de ces ARNm mais peut comprendre également du matériel non spécifique d'un gène cible, tel que notamment les ARNm transcrits d'un gène autre que le gène cible, les ARNt, les ARNr issus d'autres gènes que le gène cible.

Lors de l'étape a) du procédé selon l'invention, on <u>extrait le matériel biologique</u> de l'échantillon biologique par tous les protocoles d'extraction et de purification d'acides nucléiques bien connus de l'homme du métier.

A titre indicatif, l'extraction d'acides nucléique peut être réalisée par :

- une étape de lyse des cellules présentes dans l'échantillon biologique, afin de libérer les acides nucléiques contenus dans les cellules du patient. A titre d'exemple, on peut utiliser les méthodes de lyse telles que décrites dans les demandes de brevet:
 - O WO 00/05338 sur la lyse mixte magnétique et mécanique,
 - o WO 99/53304 sur la lyse électrique,
 - O WO 99/15321 sur la lyse mécanique.

L'homme du métier pourra utiliser d'autres méthodes de lyse bien connues, telles que les chocs thermiques ou osmotiques ou les lyses chimiques par des agents chaotropiques tels que les sels de guanidium (US 5,234,809).

25

5

10

15

30

une étape de purification, permettant la séparation entre les acides nucléiques et les autres constituants cellulaires relargués dans l'étape de lyse. Cette étape permet généralement de concentrer les acides nucléiques, et peut être adapté à la purification d'ADN ou d'ARN. A titre d'exemple, on peut utiliser des particules magnétiques éventuellement revêtues d'oligonucléotides, par adsorption ou covalence (voir à ce sujet les brevets US 4,672,040 et US 5,750,338), et ainsi purifier les acides nucléiques qui se sont fixés sur ces particules magnétiques, par une étape de lavage. Cette étape de purification des acides nucléiques est particulièrement intéressante si l'on souhaite amplifier ultérieurement les dits acides nucléiques. Un mode de réalisation particulièrement intéressant de ces particules magnétiques est décrit dans les demandes de brevet: WO-A-97/45202 et WO-A-99/35500. Un autre exemple intéressant de méthode de purification des acides nucléiques est l'utilisation de silice soit sous forme de colonne, soit sous forme de particules inertes (Boom R. et al., J. Clin. Microbiol., 1990, n°28(3), p. 495-503) ou magnétiques (Merck: MagPrep® Silica, Promega: MagneSilTM Paramagnetic particles). D'autres méthodes très répandues reposent sur des résines échangeuses d'ions en colonne ou en format particulaire paramagnétique (Whatman: DEAE-Magarose) (Levison PR et al., J. Chromatography, 1998, p. 337-344). Une autre méthode très pertinente mais non exclusive pour l'invention est celle de l'adsorption sur support d'oxyde métallique (société Xtrana: matrice Xtra-BindTM).

Lorsque l'on souhaite extraire spécifiquement l'ADN d'un échantillon biologique, on peut notamment réaliser une extraction par du phénol, du chloroforme et de l'alcool pour éliminer les protéines et précipiter l'ADN avec de l'éthanol 100%. L'ADN peut alors être culoté par centrifugation, lavé et remis en solution.

Lorsque l'on souhaite extraire spécifiquement les ARN d'un échantillon biologique, on peut notamment réaliser une extraction par du phénol, du chloroforme et de l'alcool pour éliminer les protéines et précipiter les ARN

20

5

10

15

25

30

10

15

20

25

30

avec de l'éthanol 100%. Les ARN peuvent alors être culoté par centrifugation, lavé et remis en solution.

Au sens de la présente invention, on entend par réactif spécifique, un réactif qui, lorsqu'il est mis en contact du matériel biologique tel que défini précédemment, se lie avec-le matériel spécifique dudit gène cible. A titre indicatif, lorsque le réactif spécifique et le matériel biologique sont d'origine nucléique, la mise en contact du réactif spécifique et du matériel biologique permet l'hybridation du réactif spécifique avec le matériel spécifique du gène cible. Par hybridation, on entend le processus au cours duquel, dans des conditions appropriées, deux fragments nucléotidiques se lient avec des liaisons hydrogènes stables et spécifiques pour former un complexe double brin. Ces liaisons hydrogènes se forment entre les bases complémentaires Adénine (A) et thymine (T) (ou uracile (U)) (on parle de liaison A-T) ou entre les bases complémentaires Guanine (G) et cytosine (C) (on parle de liaison G-C). L'hybridation de deux fragments nucléotidiques peut être totale (on parle alors de fragments nucléotidiques ou de séquences complémentaires), c'est à dire que le complexe double brin obtenu lors de cette hybridation comprend uniquement des liaisons A-T et des liaisons C-G. Cette hybridation peut être partielle (on parle alors de fragments nucléotidiques ou de séquences suffisamment complémentaires), c'est à dire que le complexe double brin obtenu comprend des liaisons A-T et des liaisons C-G permettant de former le complexe double brin, mais également des bases non liées à une base complémentaire. L'hybridation entre deux fragments nucléotidiques dépend des conditions opératoires qui sont utilisées, et notamment de la stringence. La stringence est définie notamment en fonction de la composition en bases des deux fragments nucléotidiques, ainsi que par le degré de mésappariement entre deux fragments nucléotidiques. La stringence peut également être fonction des paramètres de la réaction, tels que la concentration et le type d'espèces ioniques présentes dans la solution d'hybridation, la nature et la concentration d'agents dénaturants et/ou la température d'hybridation. Toutes ces données sont bien connues et les conditions appropriées peuvent être déterminées par l'homme du métier. En général, selon la longueur des fragments nucléotidiques que l'on souhaite hybrider, la température

10

15

20

25

30

d'hybridation est comprise entre environ 20 et 70°C, en particulier entre 35 et 65°C dans une solution saline à une concentration d'environ 0,5 à 1 M. Une séquence, ou fragment nucléotidique, ou oligonucléotide, ou polynucléotide, est un enchaînement de motifs nucléotidiques assemblés entre eux par des liaisons ester phosphorique, caractérisé par la séquence informationnelle des acides nucléiques naturels, susceptibles de s'hybrider à un fragment nucléotidique, l'enchaînement pouvant contenir des monomères de structures différentes et être obtenu à partir d'une molécule d'acide nucléique naturelle et/ou par recombinaison génétique et/ou par synthèse chimique. Un motif est dérivé d'un monomère qui peut être un nucléotide naturel d'acide nucléique dont les éléments constitutifs sont un sucre, un groupement phosphate et une base azotée ; dans l'ADN le sucre est le désoxy-2-ribose, dans l'ARN le sucre est le ribose ; selon qu'il s'agisse de l'ADN ou l'ARN, la base azotée est choisie parmi l'adénine, la guanine, l'uracile, la cytosine, la thymine ; ou bien le monomère est un nucléotide modifié dans l'un au moins des trois éléments constitutifs ; à titre d'exemple, la modification peut intervenir soit au niveau des bases, avec des bases modifiées telles que l'inosine, la méthyl-5désoxycytidine, la désoxyuridine. diméthylamino-5désoxyuridine, la la diamino-2,6-purine, bromo-5désoxyuridine ou toute autre base modifiée capable d'hybridation, soit au niveau du sucre, par exemple le remplacement d'au moins un désoxyribose par un polyamide (P.E. Nielsen et al, Science, 254, 1497-1500 (1991), soit encore au niveau du groupement phosphate, par exemple son remplacement par des esters notamment choisis parmi les diphosphates, alkyl- et aryl-phosphonates et phosphorothioates.

Selon un mode particulier de réalisation de l'invention, le réactif spécifique comprend au moins une amorce d'amplification. Au sens de la présente invention, on entend par amorce d'amplification, un fragment nucléotidique comprenant de 5 à 100 motifs nucléiques, préférentiellement de 15 à 30 motifs nucléiques permettant l'initiation d'une polymérisation enzymatique, telle que notamment une réaction d'amplification enzymatique. Selon un mode particulier de réalisation de l'invention, l'amorce d'amplification comprend une séquence choisie parmi les SEQ ID N°38 à 41 et SEQ ID N°44 à 45. Par réaction d'amplification enzymatique, on entend un

processus générant de multiples copies d'un fragment nucléotidique par l'action d'au moins une enzyme. De telles réactions d'amplification sont bien connues de l'homme du métier et on peut citer notamment les techniques suivantes :

PCR (Polymerase Chain Reaction), telle que décrite dans les brevets US 4,683,195, US 4,683,202 et US 4,800,159,

5

15

20

25

30

- LCR (Ligase Chain Reaction), exposée par exemple dans la demande de brevet EP 0 201 184,
- RCR (Repair Chain Reaction), décrite dans la demande de brevet WO 90/01069,
- 3SR (Self Sustained Sequence Replication) avec la demande de brevet WO 90/06995,
 - NASBA (Nucleic Acid Sequence-Based Amplification) avec la demande de brevet WO 91/02818, et
 - TMA (Transcription Mediated Amplification) avec le brevet US 5,399,491.

 Lorsque l'amplification enzymatique est une PCR, le réactif spécifique comprend au
 - Lorsque l'amplification enzymatique est une PCR, le reactif specifique comprend au moins 2 amorces d'amplification, spécifiques d'un gène cible, et permettent l'amplification du matériel spécifique du gène cible. Le matériel spécifique du gène cible comprend alors préférentiellement un ADN complémentaire obtenu par transcription inverse d'ARN messager issu du gène cible (on parle alors d'ADNc spécifique du gène cible) ou un ARN complémentaire obtenu par transcription des ADNc spécifique d'un gène cible (on parle alors d'ARNc spécifique du gène cible). Lorsque l'amplification enzymatique est une PCR réalisée après une réaction de transcription reverse, on parle de RT-PCR.
 - Selon un autre mode préféré de réalisation de l'invention, le réactif spécifique de l'étape b) comprend préférentiellement une sonde d'hybridation.
 - Par <u>sonde d'hybridation</u>, on entend un fragment nucléotidique comprenant de 5 à 100 motifs nucléiques, notamment de 10 à 35 motifs nucléiques, possédant une spécificité d'hybridation dans des conditions déterminées pour former un complexe d'hybridation avec le matériel spécifique d'un gène cible. Dans la présente invention, le matériel spécifique du gène cible peut être une séquence nucléotidique comprise dans un ARN messager issu du gène cible (on parle alors d'ARNm spécifique du

10

15

20

25

30

gène cible), une séquence nucléotidique comprise dans un ADN complémentaire obtenu par transcription inverse dudit ARN messager (on parle alors d'ADNc spécifique du gène cible), ou encore une séquence nucléotidique comprise dans un ARN complémentaire obtenu par transcription dudit ADNc tel que décrit précédemment (on parlera alors d'ARNc spécifique du gène cible). La sonde d'hybridation peut comprendre un marqueur permettant sa détection. Par détection on entend soit une détection directe par une méthode physique, soit une détection indirecte par une méthode de détection à l'aide d'un marqueur. De nombreuses méthodes de détection existent pour la détection des acides nucléiques. [Voir par exemple Kricka et al., Clinical Chemistry, 1999, nº 45(4), p.453-458 ou Keller G.H. et al., DNA Probes, 2nd Ed., Stockton Press, 1993, sections 5 et 6, p.173-249]. Par marqueur, on entend un traceur capable d'engendrer un signal que l'on peut détecter. Une liste non limitative de ces traceurs comprend les enzymes qui produisent un signal détectable par exemple par colorimétrie, fluorescence ou luminescence, comme la peroxydase de raifort, la phosphatase alcaline, la beta galactosidase, la glucose-6-phosphate déshydrogénase; les chromophores comme les composés fluorescents, luminescents ou colorants ; les groupements à densité électronique détectables par microscopie électronique ou par leurs propriétés électriques comme la conductivité, par les méthodes d'ampérométrie ou de voltamétrie, ou par des mesures d'impédance ; les groupements détectables par des méthodes optiques comme la diffraction, la résonance plasmon de surface, la variation d'angle de contact ou par des méthodes physiques comme la spectroscopie de force atomique, l'effet tunnel, etc.; les molécules radioactives comme ³²P, ³⁵S ou ¹²⁵I.

Au sens de la présente invention, la sonde d'hybridation peut être une sonde dite de détection. Dans ce cas, la sonde dite de détection est marquée au moyen d'un marqueur tel que défini précédemment. La sonde d'hybridation peut être également une sonde dite de capture. Dans ce cas, la sonde dite de capture est immobilisée ou immobilisable sur un support solide par tout moyen approprié, c'est-à-dire directement ou indirectement, par exemple par covalence ou adsorption. Comme support solide, on peut utiliser des matériaux de synthèse ou des matériaux naturels, éventuellement modifiés chimiquement, notamment les polysaccharides tels que les

10

15

20

25

30

matériaux à base de cellulose, par exemple du papier, des dérivés de cellulose tels que l'acétate de cellulose et la nitrocellulose ou le dextrane, des polymères, des copolymères, notamment à base de monomères du type styrène, des fibres naturelles telles que le coton, et des fibres synthétiques telles que le nylon ; des matériaux minéraux tels que la silice, le quartz, des verres, des céramiques ; des latex ; des particules magnétiques ; des dérivés métalliques, des gels etc. Le support solide peut être sous la forme d'une plaque de microtitration, d'une membrane comme décrit dans la demande WO-A-94/12670, d'une particule. On peut également immobiliser sur le support plusieurs sondes de capture différentes, chacune étant spécifique d'un gène cible. En particulier, on peut utiliser comme support une biopuce sur laquelle peuvent être immobilisées un grand nombre de sondes. Par biopuce, on entend un support solide de dimension réduite où sont fixée une multitude de sondes de capture à des positions prédéterminées. Le concept de biopuce, ou puce à ADN, date du début des années 90. Il repose sur une technologie pluridisciplinaire intégrant la microélectronique, la chimie des acides nucléiques, l'analyse d'images et l'informatique. Le principe de fonctionnement repose sur un fondement de la biologie moléculaire. le phénomène d'hybridation, c'est-à-dire l'appariement par complémentarité des bases de deux séquences d'ADN et/ou d'ARN. La méthode des biopuces repose sur l'emploi de sondes de capture fixées sur un support solide sur lesquelles on fait agir un échantillon de fragments nucléotidiques cibles marqués directement ou indirectement avec des fluorochromes. Les sondes de capture sont positionnées de manière spécifique sur le support ou puce et chaque hybridation donne une information particulière, en relation avec le fragment nucléotidique cible. Les informations obtenues sont cumulatives, et permettent par exemple de quantifier le niveau d'expression d'un gène ou de plusieurs gènes cibles. Pour analyser l'expression d'un gène cible, on peut alors réaliser une biopuce portant de très nombreuses sondes qui correspondent à tout ou partie du gène cible, qui est transcrit en ARNm. On hybride alors par exemple les ADNc ou les ARNc spécifiques d'un gène cible que l'on souhaite analyser sur des sondes de capture spécifique. Après hybridation, le support ou puce est lavé(e), et les complexes ADNc ou ARNc marquées / sondes de capture sont révélés par un ligand de forte affinité lié par

exemple à un marqueur de type fluorochrome. La fluorescence est lue par exemple par un scanner et l'analyse de la fluorescence est traitée par informatique. On peut citer à titre indicatif, les puces à ADN mises au point par la société Affymetrix ("Accessing Genetic Information with High-Density DNA arrays", M. Chee et al., Science, 1996, 274, 610-614. "Light-generated oligonucleotide arrays for rapide DNA sequence analysis", A. Caviani Pease et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 5022-5026), pour les diagnostics moléculaires. Dans cette technologie, les sondes de capture sont généralement de tailles réduites, autour de 25 nucléotides. D'autres exemples de biopuces sont donnés dans les publications de G. Ramsay, Nature Biotechnology, 1998, n°16, p. 40-44; F. Ginot, Human Mutation, 1997, n°10, p.1-10; J. Cheng et al, Molecular diagnosis, 1996, n°1(3), p.183-200; T. Livache et al, Nucleic Acids Research, 1994, nº 22(15), p. 2915-2921; J. Cheng et al, Nature Biotechnology, 1998, nº 16, p. 541-546 ou dans les brevets US-A-4,981,783, US-A-5,700,637, US-A-5,445,934, US-A-5,744,305 et US-A-5,807,522. La caractéristique principale du support solide doit être de conserver les caractéristiques d'hybridation des sondes de capture sur les fragments nucléotidiques cibles tout en générant un bruit de fond minimum pour la méthode de détection. Pour l'immobilisation des sondes sur le support, on distingue trois grands types de

5

10

15

20

25

30

fabrication.

Il y a, tout d'abord, une première technique qui consiste en un dépôt de sondes pré-synthétisées. La fixation des sondes se fait par transfert direct, au moyen de micropipettes, de micro-pointes ou par un dispositif de type jet d'encre. Cette technique permet la fixation de sondes de taille allant de quelques bases (5 à 10) jusqu'à des tailles relativement importantes de 60 bases (impression) à quelques centaines de bases (micro-déposition):

L'impression est une adaptation du procédé utilisé par les imprimantes à jet d'encre. Elle repose sur la propulsion de très petites sphères de fluide (volume <1 nl) et à un rythme pouvant atteindre 4000 gouttes/secondes. L'impression n'implique aucun contact entre le système libérant le fluide et la surface sur laquelle il est déposé.

La micro-déposition consiste à fixer des sondes longues de quelques dizaines à plusieurs centaines de bases à la surface d'une lame de verre. Ces sondes sont généralement extraites de bases de données et se présentent sous forme de produits amplifiés et purifiés. Cette technique permet de réaliser des puces dénommées microarrays portant environ dix mille spots, dit zones de reconnaissance, d'ADN sur une surface d'un peu moins de 4 cm2. Il-ne faut toutefois pas oublier l'emploi de membranes de Nylon, dites « macroarrays », qui portent des produits amplifiés, généralement par PCR, avec un diamètre de 0,5 à 1 mm et dont la densité maximale est de 25 spots/cm2. Cette technique très flexible est utilisée par de nombreux laboratoires. Dans la présente invention, cette dernière technique est considérée comme faisant partie des biopuces. On peut toutefois déposer en fond de plaque de microtitration un certain volume d'échantillon dans chaque puits, comme c'est le cas dans les demandes de brevet WO-A-00/71750 et FR 00/14896, ou déposer au fond d'une même boîte de Pétri un certain nombre de gouttes séparées les unes des autres, selon une autre demande de brevet FR00/14691.

La deuxième technique de fixation des sondes sur le support ou puce est appelée la synthèse in situ. Cette technique aboutit à l'élaboration de sondes courtes directement à la surface de la puce. Elle repose sur la synthèse d'oligonucléotides in situ (voir notamment les demandes de brevet WO 89/10977 et WO 90/03382), et est fondée sur le procédé des synthétiseurs d'oligonucléotides. Elle consiste à déplacer une chambre de réactions, où se déroule la réaction d'élongation d'oligonucléotides, le long de la surface de verre.

Enfin, la troisième technique est appelée la photolithographie, qui est un procédé à l'origine des biopuces développées par Affymetrix. Il s'agit également d'une synthèse in situ. La photolithographie est dérivée des techniques des microprocesseurs. La surface de la puce est modifiée par la fixation de groupements chimiques photolabiles pouvant être activés par la lumière. Une fois illuminés, ces groupes sont susceptibles de réagir avec l'extrémité 3' d'un oligonucléotide. En protégeant cette surface par des masques de formes définies, on peut illuminer et donc activer sélectivement des zones de la puce où l'on souhaite fixer l'un ou l'autre des quatre nucléotides. L'utilisation successive de masques différents permet

10

15

20

25

30

d'alterner des cycles de protection/réaction et donc de réaliser les sondes d'oligonucléotides sur des spots d'environ quelques dizaines de micromètre carré (μm2). Cette résolution permet de créer jusqu'à plusieurs centaines de milliers de spots sur une surface de quelques centimètres carré (cm2). La photolithographie présente des avantages : massivement parallèle, elle permet de créer une puce de N-mères en seulement 4 x N cycles. Toutes ces techniques sont bien entendues utilisables avec la présente invention. Selon un mode préféré de réalisation de l'invention, le au moins un réactif spécifique de l'étape b) définie précédemment comprend au moins une sonde d'hybridation, qui est préférentiellement immobilisée sur un support. Ce support est préférentiellement une biopuce telle que définie précédemment.

Lors de l'étape c) la <u>détermination de l'expression d'un gène cible</u> peut être réalisée par tous les protocoles connus de l'homme du métier.

D'une manière générale, l'expression d'un gène cible peut être analysée par la détection des ARNm (ARN messagers) qui sont transcrits du gène cible à un instant donné ou par la détection des protéines issues de ces ARNm.

L'invention concerne préférentiellement la détermination de l'expression d'un gène cible par la détection des ARNm issus de ce gène cible selon tous les protocoles bien connus de l'homme du métier. Selon un mode particulier de réalisation de l'invention, on détermine simultanément l'expression de plusieurs gènes cibles, par la détection de plusieurs ARNm différents, chaque ARNm étant issus d'un gène cible.

Lorsque le réactif spécifique comprend au moins une amorce d'amplification, on peut, lors de l'étape c) du procédé selon l'invention, déterminer l'expression d'un gène cible de la manière suivante:

1) après avoir extrait comme matériel biologique, les ARN totaux (comprenant les ARN de transfert (ARNt), les ARN ribosomaux (ARNr) et les ARN messagers (ARNm)) d'un échantillon biologique tel que présenté précédemment, on réalise une étape de transcription reverse afin d'obtenir les ADN complémentaires (ou ADNc) desdits ARNm. A titre indicatif, cette réaction de transcription reverse peut

.

5

10

15 .

20

25

30

être réalisée à l'aide d'une enzyme reverse transcriptase qui permet d'obtenir, à partir d'un fragment d'ARN, un fragment d'ADN complémentaire. On peut utiliser notamment l'enzyme reverse transcriptase provenant de l'AMV (Avian Myoblastosis Virus) ou de MMLV (Moloney Murine Leukaemia Virus). Lorsque l'on souhaite plus particulièrement obtenir uniquement les ADNc des ARNm, on réalise cette étape de transcription reverse en présence de fragments nucléotidiques comprenant uniquement des bases thymine (polyT), qui s'hybrident par complémentarité sur la séquence polyA des ARNm afin de former un complexe polyT-polyA qui sert alors de point de départ à la réaction de transcription reverse réalisée par l'enzyme reverse transcriptase. On obtient alors des ADNc complémentaires des ARNm issus d'un gène cible (ADNc spécifique du gène cible) et des ADNc complémentaires des ARNm issus d'autres gènes que le gène cible (ADNc non spécifique du gène cible).

- 2) on met en contact la ou les amorces d'amplification spécifiques d'un gène cible avec les ADNc spécifique du gène cible et les ADNc non spécifique du gène cible. La ou les amorces d'amplification spécifiques d'un gène cible s'hybrident avec les ADNc spécifique du gène cible et on amplifie spécifiquement une région prédéterminée, de longueur connue, des ADNc provenant des ARNm issus du gène cible. Les ADNc non spécifiques du gène cible ne sont pas amplifiés, alois qu'on obtient alors une grande quantité d'ADNc spécifiques du gène cible. Au sens de la présente invention, on parle indifféremment d' «ADNc spécifiques du gène cible » ou d' «ADNc provenant des ARNm issus du gène cible ». Cette étape peut être réalisée notamment par une réaction d'amplification de type PCR ou par toute autre technique d'amplification telle que définie précédemment. En PCR, on peut également amplifier simultanément plusieurs ADNc différents, chacun étant spécifique de différent gène cible par l'utilisation de plusieurs couples d'amorces d'amplification différentes, chacune étant spécifique d'un gène cible: on parle alors d'amplification en multiplex.
- 3) on détermine l'expression du gène cible en détectant et quantifiant les ADNc spécifiques du gène cible obtenus lors de l'étape 2) ci dessus. Cette détection peut être réalisée après migration par électrophorèse des ADNc spécifiques du gène cible en fonction de leur taille. Le gel et le milieu de migration peuvent comprendre

du bromure d'éthydium afin de permettre la détection directe des ADNc spécifiques du gène cible lorsque le gel est placé, après un temps de migration donné, sur une table lumineuse à rayons UV (ultra violet) par l'émission d'un signal lumineux. Ce signal est d'autant plus lumineux que la quantité des ADNc spécifique du gène cible est importante. Ces techniques d'électrophorèse sont bien connues de l'homme du métier. Les ADNc spécifiques du gène cible peuvent également être détectés et quantifiés par l'utilisation d'une gamme de quantification obtenue par une réaction d'amplification conduite jusqu'à saturation. Afin de tenir compte de la variabilité d'efficacité enzymatique qui peut être observée lors des différentes étapes (transcription reverse, PCR...), on peut normaliser l'expression d'un gène cible de différents groupes de patients, par la détermination simultanée de l'expression d'un gène dit de ménage, dont l'expression est similaire chez les différents groupes de patients. En réalisant un rapport entre l'expression du gène cible et l'expression du gène de ménage, c'est à dire en réalisant un rapport entre la quantité d'ADNc spécifiques du gène cible, et la quantité d'ADNc spécifiques du gène de ménage, on corrige ainsi toute variabilité entre les différentes expérimentations. L'homme du métier pourra se référer notamment aux publications suivantes : Bustin SA Journal of molecular endocrinology, 2002, 29: 23-39; Giulietti A Methods, 2001, 25: 386-401.

20

25

30

15

5

10

Lorsque le réactif spécifique comprend au moins une sonde d'hybridation, on peut déterminer l'expression d'un gène cible de la manière suivante:

- 1) après avoir extrait, comme matériel biologique, les ARN totaux d'un échantillon biologique tel que présenté précédemment, on réalise une étape de transcription reverse, telle que décrite précédemment afin des ADNc complémentaires des ARNm issus d'un gène cible (ADNc spécifique du gène cible) et des ADNc complémentaires des ARNm issus d'autres gènes que le gène cible (ADNc non spécifique du gène cible).
- 2) on met en contact tous les ADNc avec un support, sur lequel sont immobilisées des sondes de capture spécifiques du gène cible dont on souhaite analyser l'expression, afin de réaliser une réaction d'hybridation entre les ADNc

spécifiques du gène cible et les sondes de capture, les ADNc non spécifiques du gène cible ne s'hybridant pas sur les sondes de capture. La réaction d'hybridation peut être réalisée sur un support solide qui inclut tous les matériaux tels qu'indiqué précédemment. Selon un mode préféré de réalisation, la sonde d'hybridation est immobilisée sur un support. Préférentiellement, le support est une biopuce. La réaction d'hybridation peut être précédée d'une étape d'amplification enzymatique des ADNc spécifique du gène cible telle que décrite précédemment pour obtenir une grande quantité d'ADNc spécifiques du gène cible et augmenter la probabilité qu'un ADNc spécifique d'un gène cible s'hybride sur une sonde de capture spécifique du gène cible. La réaction d'hybridation peut également être précédée d'une étape de marquage et/ou de clivage des ADNc spécifiques du gène cible telle que décrite précédemment, par exemple en utilisant un désoxyribonucléotide triphosphate marqué pour la réaction d'amplification. Le clivage peut être réalisé notamment par l'action de l'imidazole et de chlorure de manganèse. L'ADNc spécifique du gène cible peut aussi être marqué après l'étape d'amplification, par exemple en hybridant une sonde marquée selon la technique d'hybridation sandwich décrite dans le document WO-A-91/19812. D'autres modes particuliers préférentiels de marquage et/ou : clivage d'acides nucléiques sont décrit dans les demandes WO 99/65926, WO 01/44507, WO 01/44506, WO 02/090584, WO 02/090319.

20

25

5

10

15

3) on réalise ensuite une étape de détection de la réaction d'hybridation. La détection peut être réalisée par la mise en contact du support sur lequel sont hybridés les sondes de capture spécifique du gène cible avec les ADNc spécifiques du gène cible avec une sonde dite de détection, marquée par un marqueur, et on détecte le signal émis par le marqueur. Lorsque l'ADNc spécifique du gène cible a été préalablement marqué par un marqueur, on détecte directement le signal émis par le marqueur.

Lorsque le au moins un réactif spécifique mis en contact l'étape b) du procédé selon l'invention comprend au moins une sonde d'hybridation, on peut également déterminer l'expression d'un gène cible de la manière suivante:

30

1) après avoir extrait, comme matériel biologique, les ARN totaux d'un échantillon biologique telle que présentée précédemment, on réalise une étape de transcription reverse, telle que décrite précédemment afin d'obtenir les ADNc des ARNm du matériel biologique. On réalise ensuite la polymérisation de l'ARN complémentaire du ADNc par l'utilisation d'une enzyme polymerase de type T7 polymérase qui fonctionnent sous la dépendance d'un promoteur et qui permettent d'obtenir, à partir d'une matrice d'ADN, l'ARN complémentaire. On obtient alors les ARNc des ADNc des ARNm spécifiques du gène cible (on parle alors d'ARNc spécifique du gène cible) et les ARNc des ADNc des ARNm non spécifiques du gène cible.

2) on met en contact tous les ARNc avec un support, sur lequel sont immobilisées des sondes de capture spécifiques du gène cible dont on souhaite analyser l'expression, afin de réaliser une réaction d'hybridation entre les ARNc spécifiques du gène cible et les sondes de capture, les ARNc non spécifiques du gène cible ne s'hybridant pas sur les sondes de capture. Lorsque l'on souhaite analyser simultanément l'expression de plusieurs gènes cibles, on peut immobiliser sur le support plusieurs sondes de capture différentes, chacune étant spécifique d'un gène cible. La réaction d'hybridation peut également être précédée d'une étape de marquage et/ou de clivage des ARNc spécifiques du gène cible telles que décrites précédemment.

3) on réalise ensuite une étape de détection de la réaction d'hybridation. La détection peut être réalisée par la mise en contact du support sur lequel sont hybridées les sondes de capture spécifiques du gène cible avec l'ARNc spécifique du gène cible avec une sonde dite de détection, marquée par un marqueur, et on détecte le signal émis par le marqueur. Lorsque l'ARNc spécifiques du gène cible a été préalablement marqué par un marqueur, on détecte directement le signal émis par le marqueur. L'utilisation d'ARNc est particulièrement avantageux lorsqu'on utilise un support de type biopuce sur lequel est hybridés un grand nombre de sondes.

L'analyse de l'expression d'un gène cible choisi parmi l'une quelconque des SEQ ID N°1 à 37 permet alors de disposer d'un outil pour le pronostic du neuroblatome. On

10

15

20

25

30

peut par exemple analyser l'expression d'un gène cible chez un patient dont on ne connaît pas le pronostic, et comparer avec des valeurs d'expression moyenne connues du gène cible de patients de bon pronostic et des valeurs d'expression moyenne connues du gène cible de patients de mauvais pronostic. Ceci permet de déterminer si le patient est de bon ou de mauvais pronostic afin de lui proposer un traitement adapté.

Selon un mode préféré de réalisation de l'invention, lors de l'étape b) on met en contact le matériel biologique avec au moins 37 réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37 et on détermine, lors de l'étape c, l'expression d'au moins 37 desdits gènes cibles.

Selon un autre mode préféré de réalisation, lors de l'étape b) on met en contact le matériel biologique avec au moins 2, au moins 3, au moins 4, au moins 5, au moins 6, au moins 7, au moins 8, au moins 9, au moins 10, au moins 11, au moins 12, au moins 13, au moins 14, au moins 15, au moins 16, au moins 17, au moins 18, au moins 19, au moins 20, au moins 21, au moins 22, au moins 23, au moins 24, au 🗸 moins 25, au moins 26, au moins 27, au moins 28, au moins 29, au moins 30, au moins moins 31, au moins 32, au moins 33, au moins 34, au moins 35, ou au moins 36 réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37 et on détermine, lors de l'étape c, l'expression d'au moins au moins 2, au moins 3, au moins 4, au moins 5, au moins 6, au moins 7, au moins 8, au moins 9, au moins 10, au moins 11, au moins 12, au moins 13, au moins 14, au moins 15, au moins 16, au moins 17, au moins 18, au moins 19, au moins 20, au moins 21, au moins 22, au moins 23, au moins 24, au moins 25, au moins 26, au moins 27, au moins 28, au moins 29, au moins 30, au moins 31, au moins 32, au moins 33, au moins 34, au moins 35, ou au moins 36 desdits gènes cibles.

Selon un autre mode préféré de réalisation, lors de l'étape b) on met en contact le matériel biologique avec au moins 19 réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant la SEQ ID

10

15

20

25

30

N°1; SEQ ID N°2; SEQ ID N°3; SEQ ID N°7; SEQ ID N°8; SEQ ID N°9; SEQ ID N°10; SEQ ID N°14; SEQ ID N°16; SEQ ID N°20; SEQ ID N°21; SEQ ID N°22; SEQ ID N°25; SEQ ID N°27; SEQ ID N°29; SEQ ID N°31; SEQ ID N°34; SEQ ID N°36 ou SEQ ID N°37 on détermine, lors de l'étape c) l'expression d'au moins 19 desdits gènes cibles.

Selon un autre mode préféré de réalisation, lors de l'étape b) on met en contact le matériel biologique avec au moins 2, au moins 3, au moins 4, au moins 5, au moins 6, au moins 7, au moins 8, au moins 9, au moins 10, au moins 11, au moins 12, au moins 13, au moins 14, au moins 15, au moins 16, au moins 17, au moins 18, ou au moins 19 réactifs spécifiques choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant la SEQ ID N°1; SEQ ID N°2; SEQ ID N°3; SEQ ID N°7; SEQ ID N°8; SEQ ID N°9; SEQ ID N°10; SEQ ID N°14; SEQ ID N°16; SEQ ID N°20; SEQ ID N°21; SEQ ID N°22; SEQ ID N°25; SEQ ID N°27; SEQ ID N°29; SEQ ID N°31; SEQ ID N°34; SEQ ID N°36 ou SEQ ID N°37 on détermine, lors de l'étape c) l'expression d'au moins 2, au moins 3, au moins 4, au moins 5, au moins 6, au moins 7, au moins 8, au moins 9, au moins 10, au moins 11, au moins 12, au moins 13, au moins 14, au moins 15, au moins 16, au moins 17, au moins 18, ou au moins 19 desdits gènes cibles.

Les figures ci-jointes sont données à titre d'exemples explicatifs et n'ont aucun caractère limitatif. Elles permettront de mieux comprendre l'invention.

La figure 1 présente un dendogramme obtenu à partir de 23 échantillons de tumeurs issus de patients de bon pronostic (BP) ou de mauvais pronostic (MP), et l'utilisation d'un panel de 40 sondes permettant l'analyse de l'expression des 37 gènes présentés précédemment dans le tableau 1. On retrouve sur ce dendograme 23 colonnes correspondant aux 23 échantillons de tumeurs, et 40 lignes correspondant aux 40 sondes utilisées pour l'analyse de l'expression des 37 gènes. Les échantillons de tumeurs, ainsi que les gènes ayant un profil d'expression comparable, mis en évidence par une corrélation de type Pearson, ont été placés côte à côte. Les échantillons de tumeurs ont été classés selon la méthode de moyenne non-pondérée (Spotfire Decision Site for Functional Genomics V7.1, manual) alors que les gènes

10

15

20

25

30

ont été classés selon la valeur moyenne d'expression obtenue dans l'ensemble des échantillons. Le niveau d'expression de chaque gène, calculé par le logiciel Microarray Suite (MAS5.0, Affymetrix) est représenté par différents niveaux de couleur. Ainsi, la couleur blanche correspond à un faible niveau d'expression, la couleur grise correspond à un niveau d'expression intermédiaire, alors que la couleur noire correspond à un fort niveau d'expression. La longueur des branches du dendograme est corrélée au profil d'expression et la ligne en pointillée qui divise le dendograme permet de distinguer deux groupes de patients : un premier groupe de patients de mauvais pronostic "MP" et un deuxième groupe de patients de bon pronostic "BP". Les six tumeurs "MP-test" et « BP-test » sont des tumeurs qui ont été analysées « en aveugle », c'est à dire sans connaître leur pronostic.

La figure 2 présente un dendogramme obtenu à partir de 23 échantillons de tumeurs issus de patients de bon pronostic ou de mauvais pronostic, et l'analyse de l'expression de 19 gènes. Ce dendogramme a été obtenu comparablement à ce qui est décrit pour la figure 1.

La figure 3 présente un dendogramme obtenu à partir de 23 échantillons de tumeurs issus de patients de bon pronostic ou de mauvais pronostic, et l'analyse de l'expression de 16 gènes. Ce dendogramme a été obtenu comparablement à ce qui est décrit pour la figure 1.

La figure 4 présente un dendogramme obtenu à partir de 23 échantillons de tumeurs issus de patients de bon pronostic ou de mauvais pronostic, et l'analyse de l'expression de 12 gènes. Ce dendogramme a été obtenu comparablement à ce qui est décrit pour la figure 1.

La figure 5 présente un dendogramme obtenu à partir de 23 échantillons de tumeurs issus de patients de bon pronostic ou de mauvais pronostic, et l'analyse de l'expression de 9 gènes. Ce dendogramme a été obtenu comparablement à ce qui est décrit pour la figure 1.

Les exemples suivants sont donnés à titre illustratif et n'ont aucun caractère limitatif. Ils permettront de mieux comprendre l'invention.

10

15

20

25

30

Caractéristiques des échantillons biologiques (tumeurs localisées ou ponctions de moelles osseuses): 23 échantillons de neuroblatome, obtenus auprès du Centre Léon Bérard (CLB) de Lyon, France, ont été utilisées dans cette étude. Ces échantillons de neuroblastome ont été prélevés préalablement à tout traitement thérapeutique. Chaque tumeur a été classée suivant la classification INSS (International Neuroblastoma Staging System; Brodeur et al; (1993) J. Clin. Oncol. 11, 1466-77). On distinguait alors 12 tumeurs de stade 1/2, 4 tumeurs de stade 4s et 7 échantillons de stade 4. (2 ponctions tumorales, 1 biopsie, 4 ponctions medullaires massivement envahies. L'analyse histochimique montrait dans les turneurs localisées la présence d'environ 80% de cellules tumorales. L'analyse immunocytochimique montrait également dans les ponctions de moelle osseuse la présence d'environ 80% de cellules tumorales. L'âge médian des patients au moment du diagnostic du neuroblastome était de 10 mois et demi, et 5 patients sont décédés au cours de la période de suivi médian de 75 mois. Les patients ayant décédé au cours de l'étude, et les patients présentant un neuroblatome de stade IV étaient qualifiés de patients de mauvais pronostic (MP), alors que les patients en vie, ayant developpé un neuroblastome de stade 1, 2 et 4s étaient qualifiés de patients de bon pronostic (BP) (qualification selon Brodeur, 2003, Nat Rev Cancer, 203-216). Cette analyse a ainsi été réalisée sur 8 patients MP et 15 patients BP.

Extraction du matériel biologique (ARN totaux) de l'échantillon biologique: les ARN totaux ont été extraits de chaque tumeur ou ponction de moelle osseuse selon un protocole bien connu de l'homme du métier (Voir notamment Ausubel et al (1997), Current protocols in Molecular Biology, Volume 1, John Wiley and Sons, New York). Pour cela, chaque échantillon biologique a été homogénéisé dans 1 ml de Trizol (Invitrogen, Cergy Pointoise, France), et traité avec 300 μl de chloroforme afin d'éliminer tout contaminant protéique et lipophile. Les ARN totaux ont ensuite été précipités avec 750 μl d'isopropanol, lavés deux fois avec une solution à 80 % en ethanol (vol/vol) et remis en solution dans de l'eau DEPC. Les ARN totaux ont

10

15

20

25

30

ensuite été purifiés sur colonne Qiagen RNeasy (Qiagen, Hilden, Germany) conformément aux instructions du fabriquant, à l'exception de l'élution finale qui a été réalisée dans 200 µl d'eau RNAse-free après 1 min d'incubation à 65°C. Préalablement à l'étape de transcription reverse, une étape de précipitation par de l'acétate d'ammonium (0,5 vol, 7.5M) et de l'éthanol (2,5 vol) a été réalisée pour garantir la purification des ARN totaux. La qualité des ARN totaux a été analysée par le bio analyseur AGILENT 2100 (Agilent Technologies, Waldbronn, Germany). Les ARN totaux comprennent les ARN de transfert, les ARN messagers (ARNm) et les ARN ribosomaux.

Synthèse d'ADNc, obtention des ARNc et marquage des ARNc et quantification: Afin d'analyser l'expression des gènes cibles selon l'invention, les ADN complémentaires (ADNc) des ARNm contenus dans les ARN totaux tels que purifiés ci dessus, ont été obtenus à partir de 10 µg d'ARN totaux par l'utilisation de 400 unités de l'enzyme de transcription reverse SuperScriptII (Invitrogen) et 100 pmol d'amorce poly-T contenant le promoteur de la T7 promotor (T7-oligo(dT)24-primer, Proligo, Paris, France). Les ADNc ainsi obtenus ont ensuite été extraits avec du phénol/chloroforme, et précipités tels que décrit précédemment par de l'acétate d'ammonium et de l'éthanol, et remis en solution dans 24 µl d'eau DEPC. Un volume de 20 ul de cette solution purifiée d'ADNc a fait l'objet ensuite d'une transcription in vitro par l'utilisation d'une ARN polymérase T7 qui reconnaît spécifiquement le promoteur de la T7 polymérase tel que mentionné ci dessus. Cette transcription permet d'obtenir l'ARNc de l'ADNc. Cette transcription a été réalisée par l'utilisation d'un kit Bioarray High Yield RNA Transcript Labeling Kit (Enzo Diagnostics, Farmingdale, NY), qui permet non seulement d'obtenir l'ARNc mais également l'incorporation de bases cytidine et uridine biotinylées lors de la synthèse de l'ARNc.

Les ARNc purifiés ont ensuite été quantifiés par spectrophotométrie, et la solution d'ARNc a été ajustée à une concentration de 1 µg/µl d'ARNc. L'étape de clivage de ces ARNc a ensuite été réalisée à 94°C pendant 35 min, par l'utilisation d'un tampon de fragmentation (40 mM de Tris acétate, pH 8,1, 100 mM d'acétate de potassium, 30 mM d'acétate de magnesium) afin de provoquer l'hydrolyse des ARNc et obtenir

10

15

20

25

30

des fragments de 35 à 200 bp. Le succès d'une telle fragmentation a été vérifié par une électrophorèse sur gel d'agarose 1,5%).

Mise en évidence d'un profil d'expression différentiel entre les patients BP et MP

L'expression d'environ 10 000 gènes a été analysée et comparée entre les patients BP et MP. Pour cela, 10 µg d'ARNc fragmentés issus de chaque échantillon ont été ajoutés à un tampon d'hybridation (Affymetrix) et 200 µl de cette solution ont été mis en contact pendant 16 h à 45°C sur une puce d'expression (Human Genome U95Av2 GeneChip® (Affymetrix), qui comporte 12 625 groupes de sondes représentant environs 10 000 gènes selon le protocole d'Affymetrix tel que décrit sur le site internet d'Affymetrix (voir notamment à l'adresse suivante

http://www.affymetrix.com/support/downloads/manuals/expression_s2_manual.pdf). Afin d'enregistrer les meilleures performances d'hybridation et de lavage, des ARN qualifiés de « contrôle » biotinylés (bioB, bioC, bioD et cre) et des oligonucléotides (oligo B2) ont également été inclus dans le tampon d'hybridation. Après l'étape d'hybridation, la solution d'ARNc biotinylée et hybridée sur la puce, a été révélée par l'utilisation d'une solution de streptavidine-phycoerythrine et le signal a été amplifié par l'utilisation d'anticorps anti-streptavidine. L'hybridation a été réalisée dans une étuve d'hybridation « GeneChip Hybridisation oven » (Affymetrix), et le protocole Euk GE-WS2 du protocole d'Affymetrix a été suivi. Les étapes de lavage et de révélation ont été réalisées sur une station «Fluidics Station 400 » (Affymetrix). Chaque puce U95Av2 a ensuite été analysée sur un scanner Agilent G2500A GeneArray Scanner à une résolution de 3 microns afin de repérer les zones hybridées sur la puce. Ce scanner permet la détection du signal émis par les molécules fluorescentes après excitation par un laser argon en utilisant la technique du microscope à épifluorescence. On obtient ainsi pour chaque position, un signal proportionnel à la quantité de ARNc fixés. Le signal a ensuite été analysé par le logiciel Microarray Suite 5.0 software (MAS5.0, Affymetrix).

Afin de prévenir les variations obtenues par l'utilisation de différentes puces, il a été réalisé une approche de normalisation globale utilisant le logiciel MAS5.0 (Affymetrix), qui permet de convertir les données brutes obtenues pour chaque puce en un signal moyen d'une intensité de 500. Les résultats obtenus sur une puce

peuvent alors être comparés aux résultats obtenus sur une autre puce. Le logiciel MAS5.0 permettait aussi d'inclure un algorithme statistique pour considérer si un gène était exprimé ou non. Chaque gène représenté sur la puce U95Av2 était couvert par 16 à 20 couples de sondes de 25 oligonucléotides. Par couple de sondes, on entend une première sonde qui s'hybridait parfaitement (on parle alors de sondes PM ou perfect match) avec un des ARNc issus d'un gène cible, et une deuxième sonde, identique à la première sonde à l'exception d'un mésappariement (on parle alors de sonde MM ou mismatched) au centre de la sonde. Chaque sonde MM servait à estimer le bruit de fond correspondant à une hybridation entre deux fragments nucléotidiques de séquence non complémentaire. (Affymetrix technical note "Statistical Algorithms Reference Guide"; Lipshutz, et al (1999) Nat. Genet. 1 Suppl., 20-24). Deux tumeurs de stade IV présentant un faible pourcentage de gènes exprimés, du à un biais soit dans la qualité des ARNc soit dans l'étape d'hybridation, ont été exclues de l'analyse. Les 23 échantillons restant montraient une moyenne de 48 % de gènes exprimés.

L'analyse des données d'expression a été réalisée par le logiciel Microsoft Excel, le logiciel Spotfire Decision Site for Functionnal Genomics V7.1 (Spotfire AB, Gothenburg, Sweden), ainsi que le module PAM (Prediction Analysis in Microarrays) du logiciel de statistiques R (Ihaka & Gentleman (1996) Journal of Computational and Graphical Statistics 5, 299-314.; Tibshirani, et al (2002) Proc. Natl. Acad. Sci. 99, 6567-6572).

A partir des 12625 groupes de sondes, représentant environ 10 000 gènes, de la puce, les inventeurs ont sélectionné les gènes pertinents qui étaient corrélés à un mauvais pronostic du neuroblastome.

Pour cela, une première étape a consisté à exclure les gènes présentant un niveau d'expression comparable entre tous les groupes de patients [Tibshirani, et al Proc. Natl. Acad. Sci. 99, 6567-6572]. Les gènes non exprimés chez l'ensemble des patients ont également été exclus (logiciel MAS5.0). Enfin, certains gènes ont été exclus si la moyenne d'expression des 2 groupes (patients de bon pronostic et patient de mauvais pronostic) était inférieur à 500 ou si le rapport des moyennes

d'expression entre les patients de mauvais et de bon pronostics étaient compris entre 0,7 et 1,3.

L'expression des 1488 gènes restants a ensuite été analysée (algorithme PAM, Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. 99, 6567-6572).

Résultats obtenus: Dans un premier temps, 37 gènes permettant de différencier les patients de bon et de mauvais pronostic ont été identifiés. L'augmentation ou la diminution d'expression de chacun de ces gènes, observée chez les patients de mauvais pronostic par rapport aux patients de bons pronostics est indiquée dans le tableau 2.

Tableau 2 - liste des 37 gènes exprimés différentiellement dans les neuroblatomes patients BP et MP

SEQ ID N°	Description de la séquence	N° Genbank	Expression MP vs BP
1	Flap structure-specific endonuclease 1	NM_004111	augmentée
2	Ubiquitin-conjugating enzyme E2C	NM_007019	augmentée
3	Insulin-like growth factor binding protein 7(MAC25)	NM_001553	diminuée
4	Collagen type I, alpha 2 chain	NM_000089	diminuée
5	Nucleolin	NM_005381	augmentée
6	Interleukin enhancer binding factor 3	NM_004516	augmentée
7	cDNA clone FLJ30781 fis	AK055343	diminuée
8	TIF1beta zinc finger protein	X97548	augmentée
9	Likely ortholog of mouse tumor differentially expressed 1 TDE1L	NM_020755	diminuée
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831	diminuée
11	N-MYC proto-oncogene	NM_005378	augmentée
12	Small nuclear ribonucleoprotein D2 polypeptide 16.5kDa	NM_004597	augmentée
13	DNA replication licensing factor MCM2	NM_004526	augmentée
14	RuvB-like DNA helicase TIP49b	NM_006666	augmentée
15	Immediate early protein ETR101	NM_004907	augmentée ·
16	RNA binding protein S1, serine-rich domain	NM_006711	augmentée
17	Ornithine decarboxylase 1	NM_002539	augmentée
18	Activity-related cytoskeleton-asso. protein (KIAA0278)	NM_015193	augmentée
19	Secretogranin II (chromogranin C)	NM_003469	diminuée
20	Structure specific recognition protein 1	NM_003146	augmentée
21	Collagen type VI, alpha 3 chain	NM_004369	diminuée
22	Small nuclear ribonucleoprotein polypeptides B and B1	NM_003091	augmentée
23	Acidic nuclear phosphoprotein 32 family, member B	NM_006401	augmentée
24	Non-POU domain containing, octamer-binding	NM_007363	augmentée
25	Peripheral myelin protein 22	NM 000304	diminuée
26	Small nuclear ribonucleoprotein polypeptide E Putative L-type neutral amino acid transporter	NM 003094	augmentée
27	(KIAA0436)	AB007896	diminuée
28	Fibrillarin	NM_001436	augmentée
29	Tripartite motif-containing 2	NM_015271	diminuée
30	DNA replication licensing factor MCM6	NM 005915	augmentée
31	Polypyrimidine tract binding protein 1	NM 002819	augmentée
32	Small nuclear ribonucleoprotein polypeptide A	NM 004596	augmentée
33	Creatine kinase, brain	NM 001823	augmentée
34	Erythrocyte membrane protein band 4.1 like3	NM_012307	diminuée
35	Hypothetical protein MGC3077	NM 024051	augmentée
36	Tissue alpha-L-fucosidase 1	NM 000147	diminuée
37	Secreted protein acidic and rich in cysteine	NM_003118	diminuée

Ces résultats ont également été validés par l'utilisation d'une autre technique de biologie moléculaire dans laquelle l'analyse de l'expression de gènes tel que présentés dans le tableau 2 a été réalisée par RT-PCR.

Pour cela, une réaction de reverse transcription (RT) a été réalisée à partir d'1 µg d'ARN total tel qu'obtenu précédemment (kit Amersham, First strand cDNA synthesis kit). La transcription reverse a été effectuée pendant 1 h à 37°C. Chaque solution de cDNA a été diluée 6 fois avant la réalisation de la PCR.

10

15

20

25

30

L'expression des ARNm de gènes du tableau 2 (Peripheral myelin protein ou PMP22 (SEQ ID N°25); Insulin-like growth factor binding protein ou IGFBP7 (SEQ ID N°3; SPARC (SEQ ID N°37); EPB41L3 (SEQ ID N°34)) a ensuite été analysé par PCR (polymerase chain réaction) et l'utilisation d'amorces d'amplification spécifiques (amplification du gène PMP22: brin sens: 5'-AGGGAGGAAG GGAAAACAGA-3' (SEQ ID N°38); brin antisens: 5'-TTAAGGCTCA ACACGAGGCT-3' (SEQ ID N°39); gène IGFBP7: brin sens: 5'-CTTGAGCTGT GAGGTCATCG-3' (SEO ID $N^{\circ}40$); brin antisens: 5'-TATAGCTCGG CACCTTCACC-3' (SEQ ID N°41); gène SPARC : brin sens : 5'-CTGCCTGCCA CTGAGGGTTCC-3' (SEQ ID N°42); brin antisens: 5'-TCCAGGCAGA ACAACAAACC ATCC-3' (SEQ ID N°43); gène EPB41L3: brin sens: 5'-ACCACCACCA CTACCCACAT-3' (SEQ ID N°44); brin antisens: 5'-TGGTTTTCCT AACGGTTTGC-3' (SEQ ID N°45); gène beta actine : brin sens : 5'-TGTTGGCGTA CAGGTCTTTG C-3' (SEQ ID N°46); brin antisens: 5'-GCTACGAGCT GCCTGACGG-3' (SEQ ID N°47). L'expression du gène codant la β-actine a été utilisée comme contrôle. Trente cycles de PCR sont ensuite été réalisé en présence des différentes amorces d'amplification (0,2µM); de dNTPs (0,15mM, Euromedex) et d'enzyme polymérase (Taq Polymerase; 0,027U/µl; Perkin Elmer) (dénaturation 30" à 94 °C, hybridation 1' à 60 °C; polymérisation 1' à 72 °C).

Les résultats obtenus sont présentés dans le tableau 3 ci dessous, qui montre la corrélation existant entre les résultats obtenues par l'utilisation d'une biopuce et ceux obtenues par RT-PCR.

	Patients BP		Patients MP		р
	Résultats biopuce	Résultats RT PCR	Résultats biopuce	Résultats RT PCR	
SEQ ID N°37 : SPARC	3498	2,2	709	0,87	0,04
SEQ ID N°3 IGFBP7	4112	3,7	691	1,87	0,003
SEQ ID N° 34 EPB41L3	6041	4,2	986	1,5	0,001
SEQ ID N°25 PMP22	9051	3,8	2282	2,75	0,003

Tableau 3

Les résultats de RT-PCR, obtenus à partir de 15 patients BP et 8 patients MP, sont exprimés par le rapport de quantification relative entre les ARNm du gène cible et les ARNm du gène \u03b3-actine qui servait de contrôle. Les résultats sont exprimés par la moyenne des rapports obtenus pour chacun des groupes de patients. La corrélation des résultats obtenus d'une part avec la biopuce et d'autre part avec la technique en 👾 RT-PCR a été établie grâce au test de corrélation du Tau-B de Kendall. Les patients' MP présentaient un niveau d'expression diminuée pour les gènes SPARC, IGFBP7, EPB41L3, et PMP22, confirmant les résultats présentés dans le tableau 2.

5

10

15

20

Les inventeurs ont également étudié l'expression simultanée des 37 gènes du tableau 2 pour obtenir un profil d'expression. Les résultats sont présentés dans la figure 1. On observe sur ce dendograme deux groupes ayant deux profils d'expression différents : un premier groupe permettant de classer les patients de bon pronostic (BP) et un deuxième groupe permettant de classer les patients de mauvais pronostic (MP).

Dans l'objectif de valider le pouvoir de discrimination du profil d'expression de ces 37 gènes, 6 tumeurs supplémentaires de patients « test » ont été analysées sans connaissance préalable de leur pronostic, et classées comme étant de bon pronostic «BP-test» ou de mauvais pronostic «MP-test» en fonction de l'analyse de leur profil d'expression. Leur bon classement a été vérifié ensuite selon leurs propriétés cliniques: tous les échantillons «tests» analysés en aveugle par l'analyse de l'expression de 37 gènes avaient été correctement classés dans le groupe de patients de mauvais pronostic « test-MP » ou dans le groupe de patients de bon pronostic « test-BP ». Ceci confirme que l'analyse de l'expression de ces 37 gènes est un bon outil pour le pronostic du neuroblastome.

A titre indicatif, l'oncogène N-MYC a également été utilisée comme outil de pronostic. L'utilisation de ce gène mettait en évidence 5 patients de mauvais pronostic (MP). Toutefois, 3 patients étaient également de mauvais pronostic alors qu'aucune augmentation de l'expression de l'oncogène N-MYC n'ait été observée, suggérant que l'analyse unique de ce gène n'est pas suffisant pour le pronostic du neuroblastome.

Les inventeurs ont également défini des panels de gènes plus restreint permettant également de discriminer les patients de bon et de mauvais pronostic.

Un premier panel comportait 19 gènes qui sont présentés dans le tableau 4. Les résultats sont exprimés par le ratio obtenu entre l'expression moyenne du gène chez des patients MP et l'expression du gène chez des patients BP (ratio MP / BP).

15

Tableau 4 - liste des 19 gènes exprimés différentiellement dans les neuroblatomes de patients BP et MP

SEQ ID N°.	Description de la séquence	N° Genbank	Ratio MP/BP
1	Flap structure-specific endonuclease I (FEN1)	NM_004111	2,7
2	Ubiquitin-conjugating enzyme E2C (UBE2C)	NM 007019	2,9
3	Insulin-like growth factor binding protein 7 (IGFBP7)	NM 001553	0,2
7	cDNA FLJ30781 fis, clone FEBRA2000874	AK055343	0,3
8	TIF1 beta zinc finger protein	X97548	1,8
9	Likely ortholog of mouse tumor differentially expressed 1, like (TDE1L)	NM_020755	0,5
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831	0,4
14	RuvB-like 2 (E. coli)(RUVBL2)	NM_006666	2,1
16	RNA binding protein S1, serine-rich domain (RNPS1), transcript variant 1	NM_006711	1,6
20	Structure specific recognition protein 1 (SSRP1)	NM_003146	2,0
21	Collagen, type VI, alpha 3 (COL6A3), transcript variant 1	NM_004369	0,2
22	Small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB)	NM_003091	1,7
25	Peripheral myelin protein 22 (PMP22), transcript variant 1	NM 000304	0,3
27	KIAA0436 mRNA, partial cds	AB007896	0,5
29	Tripartite motif-containing 2 (TRIM2)	NM_015271	0,4
31	Polypyrimidine tract binding protein 1 (PTBP1), transcript variant 1	NM_002819	2,1
34	Erythrocyte membrane protein band 4.1-like 3	NM 012307	0,2
36	Fucosidase, alpha-L- 1, tissue (FUCA1)	NM_000147	0,2
37	Secreted protein, acidic, cysteine-rich (osteonectin) (SPARC)	NM_003118	0,2

Les inventeurs ont également étudié l'expression simultanée de ces 19 gènes pour obtenir un profil d'expression. Les résultats sont présentés dans la figure 2. On observe sur ce dendogramme deux groupes ayant deux profils d'expression différents: un premier groupe permettant de classer les patients de bon pronostic (BP) et un deuxième groupe permettant de classer les patients de mauvais pronostic (MP).

5

10

Dans l'objectif de valider le pouvoir de discrimination de ces 19 gènes, 6 tumeurs de patients « test » ont été analysées sans connaissance préalable de leur pronostic. Ainsi, les six tumeurs "MP-test" et « BP-test » présentées dans la figure 3 sont des tumeurs qui ont été analysés « en aveugle ». Leur bon classement a été vérifié selon

5

10

15

leur propriété clinique : tous les patients « MP-test » classés en fonction de leur profil d'expression comme patients de mauvais pronostic s'avéraient être des patients de mauvais pronostic et tous les patients « BP-test » classés en fonction de leur profil d'expression comme patients de bon pronostics s'avéraient être des patients de bon pronostic.

D'une façon comparable, un deuxième panel comportait 16 gènes tels que présentés dans le tableau 5.

Tableau 5 - liste des 16 gènes exprimés différentiellement dans les neuroblatomes de patients BP et MP

SEQ ID Nº	Description de la séquence	N° Genbank
1	Flap structure-specific endonuclease 1 (FEN1)	NM_004111
2	Ubiquitin-conjugating enzyme E2C (UBE2C)	NM 007019
3	Insulin-like growth factor binding protein 7 (IGFBP7)	NM_001553
7	cDNA FLJ30781 fis, clone FEBRA2000874	AK055343
8	TIF1beta zinc finger protein	X97548
9	Likely ortholog of mouse tumor differentially expressed 1, like (TDE1L)	NM_020755
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831
20	Structure specific recognition protein 1 (SSRP1)	NM 003146
21	Collagen, type VI, alpha 3 (COL6A3), transcript variant 1	NM_004369
22	Small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB)	NM_003091
25	Peripheral myelin protein 22 (PMP22), transcript variant 1	NM_000304
29	Tripartite motif-containing 2 (TRIM2)	NM 015271
31	Polypyrimidine tract binding protein 1 (PTBP1), transcript variant 1	NM_002819
34	Erythrocyte membrane protein band 4.1-like 3 (EPB41L3)	NM_012307
36	Fucosidase, alpha-L- 1, tissue (FUCA1)	NM 000147
37	Secreted protein, acidic, cysteine-rich (osteonectin) (SPARC)	NM_003118

Les inventeurs ont également étudié l'expression simultanée de ces 16 gènes pour obtenir un profil d'expression. Les résultats sont présentés dans la figure 3. On observe sur ce dendogramme deux groupes ayant deux profils d'expression différents : un premier groupe permettant de classer les patients de bon pronostic (BP) et un deuxième groupe permettant de classer les patients de mauvais pronostic (MP).

Un troisième panel comportait 12 gènes tels que présentés dans le tableau 6.

Tableau 6 - liste des 12 gènes exprimés différentiellement dans les neuroblatomes de patients BP et MP

SEQ ID N°	Description de la séquence	N° Genbank
2	Ubiquitin-conjugating enzyme E2C (UBE2C)	NM_007019
3	Insulin-like growth factor binding protein 7 (IGFBP7)	NM_001553
7	cDNA FLJ30781 fis, clone FEBRA2000874	AK055343
8	TIF1beta zinc finger protein	X97548
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831
20	Structure specific recognition protein 1 (SSRP1)	NM_003146
22	Small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB)	NM_003091
25	Peripheral myelin protein 22 (PMP22), transcript variant 1	NM_000304
29	Tripartite motif-containing 2 (TRIM2)	NM 015271
31	Polypyrimidine tract binding protein 1 (PTBP1), transcript variant 1	NM_002819
34	Erythrocyte membrane protein band 4.1-like 3 (EPB41L3)	NM_012307
.37	Secreted protein, acidic, cysteine-rich (osteonectin) (SPARC)	NM_003118

Les inventeurs ont également étudié l'expression simultanée de ces 12 gènes pour obtenir un profil d'expression. Les résultats sont présentés dans la figure 4. On observe sur ce dendograme deux groupes ayant deux profils d'expression différents : un premier groupe permettant de classer les patients de bon pronostic (BP) et un deuxième groupe permettant de classer les patients de mauvais pronostic (MP).

Un quatrième panel comportait 9 gènes tels que présentés dans le tableau 7.

Tableau 7 - liste des 9 gènes exprimés différentiellement dans les neuroblatomes de patients BP et MP

SEQ ID N°	Description de la séquence	N° Genbank
2	Ubiquitin-conjugating enzyme E2C (UBE2C)	NM 007019
3	Insulin-like growth factor binding protein 7 (IGFBP7)	NM_001553
7	cDNA FLJ30781 fis, clone FEBRA2000874	AK055343
8	TIF1 beta zinc finger protein	X97548_
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112_3'	AL039831
22	Small nuclear ribonucleoprotein polypeptides B and B1	NM_003091
25	Peripheral myelin protein 22 (PMP22), transcript variant 1	NM_000304

29	Tripartite motif-containing 2 (TRIM2)	NM 015271
	Erythrocyte membrane protein band 4.1-like 3 (EPB41L3)	NM 012307
T		1 11112 012301

Les inventeurs ont également étudié l'expression simultanée de ces 9 gènes pour obtenir un profil d'expression. Les résultats sont présentés dans la figure 5. On observe sur ce dendogramme deux groupes ayant deux profils d'expression différents : un premier groupe permettant de classer les patients de bon pronostic (BP) et un deuxième groupe permettant de classer les patients de mauvais pronostic (MP).

5

10

Le pouvoir de discrimination de tous ces panels de gènes a été validé avec des tumeurs « tests » tels que décrit précédemment : tous les patients « MP-test » classé en fonction de leur profil d'expression comme patients de mauvais pronostic s'avéraient être des patients de mauvais pronostic et tous les patients « BP-test » classés en fonction de leur profil d'expression comme patients de bon pronostics s'avéraient être des patients de bon pronostic.

15 Ces résultats démontrent que le pronostic d'un neuroblastome peut être déterminé par l'analyse de l'expression de tout ou partie des 37 gènes de séquence SEQ ID N°1 à 37.

5

10

15

20

25

REVENDICATIONS

- 1. Procédé pour le pronostic du neuroblatome chez un patient atteint du neuroblastome caractérisé en ce qu'il comprend les étapes suivantes :
 - a. on extrait du matériel biologique d'un échantillon biologique prélévé chez le patient,
 - b. on met en contact le matériel biologique avec au moins un réactif spécifique choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37, étant entendu que lorsque que le gène cible présente une séquence nucléique ayant l'une des SEQ ID N°11, 17 ou 37, on met en contact le matériel biologique avec au moins deux réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37,
 - c. on détermine l'expression d'au moins un desdits gènes cibles, étant entendu que lorsque que le gène cible présente une séquence nucléique ayant l'une des SEQ ID N°11, 17 ou 37, on détermine l'expression d'au moins deux desdit gènes cibles.
- Procédé pour le pronostic du neuroblatome selon la revendication 1 caractérisé en ce que l'échantillon biologique prélevé chez le patient est un échantillon tissulaire.
 - 3. Procédé selon la revendication 1 ou 2 caractérisé en ce que le matériel biologique extrait lors de l'étape a) comprend des acides nucléiques.
 - 4. Procédé selon la revendication 3 caractérisé en ce que le au moins un réactif spécifique de l'étape b) comprend au moins une sonde d'hybridation
- Procédé selon la revendication 4 caractérisé en ce que la au moins une sonde d'hybridation est immobilisée sur un support.

- 6.. Procédé selon la revendication 5 caractérisé en ce que le support est une biopuce.
- 7. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que lors de l'étape b) on met en contact le matériel biologique avec au moins 37 réactifs spécifiques choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37 et on détermine, lors de l'étape c, l'expression d'au moins 37 desdits gènes cibles.
 - 8. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que lors de l'étape b) on met en contact le matériel biologique avec au moins 19 réactifs spécifiques choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant la SEQ ID N°1; SEQ ID N°2; SEQ ID N°3; SEQ ID N°7; SEQ ID N°8; SEQ ID N°9; SEQ ID N°10; SEQ ID N°14; SEQ ID N°16; SEQ ID N°20; SEQ ID N°21; SEQ ID N°22; SEQ ID N°25; SEQ ID N°27; SEQ ID N°29; SEQ ID N°31; SEQ ID N°34; SEQ ID N°36 ou SEQ ID N°37 on détermine, lors de l'étape c) l'expression d'au moins 19 desdits gènes cibles.

15

Figure 1

Figure 2

3/5

Figure 3

Figure 5

SEQUENCE LISTING

<110> B:	IOMERIEUX SA	/ CENTRE LI	ON BERARD			
<120> P:	rocédé pour	le pronosti	ic du neurol	olastome		
<130> U1	nknown					
<160> 4	7					
<170> Pa	atentIn versi	on 3.1				
<212> DI	265 NA omo sapiens					
<400> 1 agtcctgcc	ja tttcgggtgt	. agagggagca	ggggcctgcg	gggacctggt	gtgggtggag	60
	ng cggtggagaa					120
gggactggt	t gccatgagag	cagccgtctg	aggggacgca	gcctgcacta	cgcgccccaa	180
gaggctgtg	o gtggcgagca	. ggtcacgtga	. cgggagcgcg	ggctttggaa	ggcggctgaa	240
cgtcaggc	a cccgccgcta	. agctgagaag	ggagagcgag	cttaggaccg	cctgcccggg	300
gcaaccccc	ga accaagcttt	agccgccgag	gacgagtgta	ccaaaggcca	gtcatccctc	360
ctctgtgtt	g ccatgggaat	tcaaggcctg	gccaaactaa	ttgctgatgt	ggcccccagt	420
gccatecgg	g agaatgacat	caagagctac	tttggccgta	aggtggccat	tgatgcctct	480
atgagcatt	t atcagttcct	gattgctgtt	cgccagggtg	gggatgtgct	gcagaatgag	540
gagggtgag	a ccaccagcca	cctgatgggc	atgttctacc	gcaccattcg	catgatggag	600
aacggcatc	a agcccgtgta	tgtctttgat	ggcaagccgc	cacagctcaa	gtcaggcgag	660
ctggccaaa	c gcagtgagcg	gcgggctgag	gcagagaagc	agctgcagca	ggctcaggct	720
gctggggcd	g agcaggaggt	ggaaaaattc	actaagcggc	tggtgaaggt	cactaagcag	780
cacaatgat	g agtgcaaaca	tctgctgagc	ctcatgggca	tcccttatct	tgatgcaccc	840
agtgaggca	g aggccagctg	tgctgccctg	gtgaaggctg	gcaaagtcta	tgctgcggct	900
accgaggac	a tggactgcct	caccttcggc	agccctgtgc	taatgcgaca	cctgactgcc	960
agtgaagcc	a aaaagctgcc	aatccaggaa	ttccacctga	gccggattct	gcaggagctg	1020
ggcctgaac	c aggaacagtt	tgtggatctg	tgcatcctgc	taggcagtga	ctactgtgag	1080
agtateegg	g gtattgggcc	caagcgggct	gtggacctca	tccagaagca	caagagcatc	1140
	g tgcggcgact					1200
	c accagetett					1260
aagtggagc	g agccaaatga	agaagagctg	atcaagttca	tgtgtggtga	aaagcagttc	1320

tetgaggage gaateegeag tggggteaag aggetgagta agageegeea aggeageace 1380 cagggccgcc tggatgattt cttcaaggtg accggctcac tctcttcagc taagcgcaag 1440 gagccagaac ccaagggatc cactaagaag aaggcaaaga ctggggcagc agggaagttt 1500 aaaaggggaa aataaatgtg tttccccatt atacctcctt caccccagaa tatttgccgt 1560 cttgtaccet taagagetac agetagagaa acetteaegg ggtggagaga ggattetaag 1620 gcttttctag cgtgaccctt ttcagtagtg ctagtccctt ttttacttga tcttaatggc 1680 aagaaggcca cagaggtact tttccttttt tagctcagga aaatatgtca ggctcaaacc 1740 1800 actteteagg cagtttaatg gacactaagt ceattgttae atgaaagtga tagatageaa caagttttgg agaagagaga gggagataaa agggggagac aaaagatgta cagaaatgat 1860 ttcctggctg gccaactggt ggccagtggg aggtgatggt ggacctagac tgtgcttttc 1920 tgtcttgttc agccttgacc caccttgaga gagagccacc aggaaggcgc atcttagcag 1980 atgggaggaa ctgctgagag aagatgggca gaaagctgga gcccctggag ttggctgtgt 2040 ctgtgtttgt gactgattac tggctgtgtc ttgggtgggc agaaactcga acttgctatg 2100 taatttgtgt ctagttattc agaggagtaa gatggtgatg ttcacctggc aatcagctga 2160 · 2220 · * gttgagactt tggaataaga cactggtttt catgcgctgt ttttgtttta aagttatgaa 2265

<210> 2

<211> 783

<212> DNA

<213> Homo sapiens

<400> ggcacgageg agttectgte tetetgecaa egeegeeegg atggetteee aaaacegega 60 cccagccgcc actagcgtcg ccgccgccg taaaggagct gagccgagcg ggggcgccgc 120 ccggggtccg gtgggcaaaa ggctacagca ggagctgatg accctcatga tgtctggcga 180 taaagggatt tetgeettee etgaateaga caacetttte aaatgggtag ggaceateea 240 tggagcagct ggaacagtat atgaagacct gaggtataag ctctcgctag agttccccag 300 tggctaccct tacaatgcgc ccacagtgaa gttcctcacg ccctgctatc accccaacgt 360 ggacacccag ggtaacatat gcctggacat cctgaaggaa aagtggtctg ccctgtatga 420 tgtcaggacc attctgctct ccatccagag ccttctagga gaacccaaca ttgatagtcc 480 cttgaacaca catgctgccg agctctggaa aaaccccaca gcttttaaga agtacctgca 540 agaaacctac tcaaagcagg tcaccagcca ggagccctga cccaggctgc ccagcctgtc 600 cttgtgtcgt ctttttaatt tttccttaga tggtctgtcc tttttgtgat ttctgtatag 660

gactctttat cttgagctgt	ggtatttttg	ttttgttttt	gtcttttaaa	ttaagcctcg	720
gttgagccct tgtatattaa	ataaatgcat	ttttgtcctt	ttttaaaaaa	aaaaaaaaa	780
aaa					783
<210> 3 <211> 1124					
<212> DNA					
<213> Homo sapiens					
<400> 3	aastaasaaa	aggat aggt a	aggagagtag	taataaaaa	60
gccgctgcca ccgcaccccg					
cgctgggctg ctgctcctgc	•				120
cccctgcgag ccggcctcct	geeegeeet	gcccccgctg	ggctgcctgc	tgggcgagac	180
ccgcgacgcg tgcggctgct	gccctatgtg	cgcccgcggc	gagggcgagc	cgtgcggggg	240
tggcggcgcc ggcagggggt	actgcgcgcc	gggcatggag	tgcgtgaaga	gccgcaagag	300
gcggaagggt aaagccgggg	cagcagccgg	cggtccgggt	gtaageggeg	tgtgcgtgtg	. 360
caagageege taceeggtgt	gcggcagcga	cggcaccacc	tacccgagcg	gctgccagct	420
gegegeegee ageeagaggg	ccgagagccg	cggggagaag	gccatcaccc	aggtcagcaa	480
gggcacctgc gagcaaggtc	cttccatagt	gacgccccc	aaggacatct	ggaatgtcac	540
tggtgcccag gtgtacttga	gctgtgaggt	catcggaatc	ccgacacctg	tcctcatctg	600
gaacaaggta aaaaggggtc	actatggagt	tcaaaggaca	gaactcctgc	ctggtgaccg	660
ggacaacctg gccattcaga	cccggggtgg	cccagaaaag	catgaagtaa	ctggctgggt	720
gctggtatct cctctaagta	aggaagatgc	tggagaatat	gagtgccatg	catccaattc	780
ccaaggacag gcttcagcat	cagcaaaaat	tacagtggtt	gatgccttac	atgaaatacc	840
agtgaaaaaa ggtgaaggtg	ccgagctata	aacctccaga	atattattag	tctgcatggt	900
taaaagtagt catggataac	tacattacct	gttcttgcct	aataagtttc	ttttaatcca	960
atccactaac actttagtta	tattcactgg	ttttacacag	agaaatacaa	aataaagatc	1020
acacatcaag actatctaca	aaaatttatt	atatatttac	agaagaaaag	catgcatatc	1080
attaaacaaa taaaatactt	tttatcacaa	aaaaaaaaa	aaaa		1124
		,			
<210> 4 <211> 5084					
<212> DNA					
<213> Homo sapiens				•	
<400> 4					

agcaccacgg cagcaggagg tttcggctaa gttggaggta ctggccacga ctgcatgccc 60

gegeeegeea ggtgataeet eegeeggtga eeeagggget etgegaeaea aggagtetge 120 180 atgtetaagt getagacatg etcagetttg tggatacgeg gactttgttg etgettgcag 240 taaccttatg cetagcaaca tgccaatctt tacaagagga aactgtaaga aagggcccag 300 ccggagatag aggaccacgt ggagaaaggg gtccaccagg ccccccaggc agagatggtg aagatggtee cacaggeeet cetggteeae etggteetee tggeeeeet ggteteggtg 360 420 ggaactttgc tgctcagtat gatggaaaag gagttggact tggccctgga ccaatgggct taatgggacc tagaggccca cctggtgcag ctggagcccc aggccctcaa ggtttccaag 480 gacctgctgg tgagcctggt gaacctggtc aaactggtcc tgcaggtgct cgtggtccag 540 600 ctggccctcc tggcaaggct ggtgaagatg gtcaccctgg aaaacccgga cgacctggtg agagaggagt tgttggacca cagggtgctc gtggtttccc tggaactcct ggacttcctg 660 720 gcttcaaagg cattagggga cacaatggtc tggatggatt gaagggacag cccggtgctc 780 ctggtgtgaa gggtgaacct ggtgccctg gtgaaaatgg aactccaggt caaacaggag 840 cccgtgggct tcctggtgag agaggacgtg ttggtgcccc tggcccagct ggtgcccgtg gcagtgatgg aagtgtgggt cccgtgggtc ctgctggtcc cattgggtct gctggccctc 900 . . caggettece aggtgeeest ggeeceaagg gtgaaattgg agetgttggt aacgetggte 960, 1020 _{\$1}. etgetggtee egeeggteee egtggtgaag tgggtettee aggeetetee ggeeeegttg 1080 🔩 gacctcctgg taatcctgga gcaaacggcc ttactggtgc caagggtgct gctggccttc 1140 🧓 📜 ccggcgttgc tggggctccc ggcctccctg gaccccgcgg tattcctggc cctgttggtg 1200 m _f ctgccggtgc tactggtgcc agaggacttg ttggtgagcc tggtccagct ggctccaaag gagagagegg taacaagggt gageeegget etgetgggee ecaaggteet eetggteeea 1260 gtggtgaaga aggaaagaga ggccctaatg gggaagctgg atctgccggc cctccaggac 1320 1380 ctcctgggct gagaggtagt cctggttctc gtggtcttcc tggagctgat ggcagagctg gcgtcatggg ccctcctggt agtcgtggtg caagtggccc tgctggagtc cgaggaccta 1440 atggagatgc tggtcgccct ggggagcctg gtctcatggg acccagaggt cttcctggtt 1500 cccctggaaa tatcggcccc gctggaaaag aaggtcctgt cggcctccct ggcatcgacg 1560 gcaggcctgg cccaattggc ccagctggag caagaggaga gcctggcaac attggattcc 1620 ctggacccaa aggccccact ggtgatcctg gcaaaaacgg tgataaaggt catgctggtc 1680 1740 ttgctggtgc tcggggtgct ccaggtcctg atggaaacaa tggtgctcag ggacctcctg 1800 gaccacaggg tgttcaaggt ggaaaaggtg aacagggtcc cgctggtcct ccaggcttcc agggtctgcc tggcccctca ggtcccgctg gtgaagttgg caaaccagga gaaaggggtc 1860 1920 tecatggtga gtttggtete cetggteetg etggteeaag aggggaaege ggteeeceag

gtgagagtgg	tgctgccggt	cctactggtc	ctattggaag	ccgaggtcct	tctggacccc	1980
cagggcctga	tggäaacaag	ggtgaacctg	gtgtggttgg	tgctgtgggc	actgctggtc	2040
catctggtcc	tagtggactc	ccaggagaga	ggggtgctgc	tggcatacct	ggaggcaagg	2100
gagaaaaggg	tgaacctggt	ctcagaggtg	aaattggtaa	ccctggcaga	gatggtgctc	2160
gtggtgctca	tggtgctgta	ggtgcccctg	gtcctgctgg	agccacaggt	gaccggggcg	2220
aagctggggc	tgctggtcct	gctggtcctg	ctggtcctcg	gggaagccct	ggtgaacgtg	2280
gcgaggtcgg	tcctgctggc	cccaacggat	ttgctggtcc	ggctggtgct	gctggtcaac	2340
cgggtgctaa	aggagaaaga	ggagccaaag	ggcctaaggg	tgaaaacggt	gttgttggtc	2400
ccacaggccc	cgttggagct	gctggcccag	ctggtccaaa	tggtccccc	ggtcctgctg	2460
gaagtcgtgg	tgatggaggc	ccccctggta	tgactggttt	ccctggtgct	gctggacgga	2520
ctggtccccc	aggaccctct	ggtatttctg	gccctcctgg	tccccctggt	cctgctggga	2580
aagaagggct	tegtggteet	cgtggtgacc	aaggtccagt	tggccgaact	ggagaagtag	2640
gtgcagttgg	tccccctggc	ttcgctggtg	agaagggtcc	ctctggagag	gctggtactg	2700
ctggacctcc	tggcactcca	ggtcctcagg	gtcttcttgg	tgctcctggt	attctgggtc	2760
tccctggctc	gagaggtgaa	cgtggtctac	ctggtgttgc	tggtgctgtg	ggtgaacctg	2820
gtcctcttgg	cattgccggc	cctcctgggg	cccgtggtcc	tcctggtgct	gtgggtagtc	2880
ctggagtcaa	cggtgctcct	ggtgaagctg	gtcgtgatgg	caaccctggg	aacgatggtc	2940
ccccaggtcg	cgatggtcaa	cccggacaca	agggagagcg	cggttaccct	ggcaatattg	3000
gtcccgttgg	tgctgcaggt	gcacctggtc	ctcatggccc	cgtgggtcct	gctggcaaac	3060
atggaaaccg	tggtgaaact	ggtccttctg	gtcctgttgg	tcctgctggt	gctgttggcc	3120
caagaggtcc	tagtggccca	caaggcattc	gtggcgataa	gggagagccc	ggtgaaaagg	3180
ggcccagagg	tcttcctggc	ttaaagggac	acaatggatt	gcaaggtctg	cctggtatcg	3240
ctggtcacca	tggtgatcaa	ggtgctcctg	gctccgtggg	tectgetggt	cctaggggcc	3300
ctgctggtcc	ttctggccct	gctggaaaag	atggtcgcac	tggacatcct	ggtacggttg	3360
gacctgctgg	cattcgaggc	cctcagggtc	accaaggccc	tgctggcccc	cctggtcccc	3420
ctggccctcc	tggacctcca	ggtgtaagcg	gtggtggtta	tgactttggt	tacgatggag	3480
acttctacag	ggctgaccag	cctcgctcag	caccttctct	cagacccaag	gactatgaag	3540
ttgatgctac	tctgaagtct	ctcaacaacc	agattgagac	ccttcttact	cctgaaggct	3600
ctagaaagaa	cccagctcgc	acatgccgtg	acttgagact	cagccaccca	gagtggagca	3660
gtggttacta	ctggattgac	cctaaccaag	gatgcactat	ggatgctatc	aaagtatact	3720

3780 gtgatttctc tactggcgaa acctgtatcc gggcccaacc tgaaaacatc ccagccaaga actggtatag gagctccaag gacaagaaac acgtctggct aggagaaact atcaatgctg 3840 3900 gcagccagtt tgaatataat gtagaaggag tgacttccaa ggaaatggct acccaacttg 3960 ccttcatgcg cctgctggcc aactatgcct ctcagaacat cacctaccac tgcaagaaca gcattgcata catggatgag gagactggca acctgaaaaa ggctgtcatt ctacagggct 4020 ctaatgatgt tgaacttgtt gctgagggca acagcaggtt cacttacact gttcttgtag 4080 4140 atggctgctc taaaaagaca aatgaatggg gaaagacaat cattgaatac aaaacaaata agccatcacg cctgcccttc cttgatattg cacctttgga catcggtggt gctgaccatg 4200 aattotttgt ggacattggo coagtotgtt toaaataaat gaactoaato taaattaaaa 4260 aagaaagaaa tttgaaaaaa ctttctcttt gccatttctt cttcttcttt tttaactgaa 4320 agetgaatee ttecatttet tetgeacate taettgetta aattgtggge aaaagagaaa 4380 aagaaggatt gatcagagca ttgtgcaata cagtttcatt aactccttcc cccgctcccc 4440 caaaaatttg aattttttt tcaacactct tacacctgtt atggaaaatg tcaacctttg 4500 4560 taagaaaacc aaaataaaaa ttgaaaaata aaaaccataa acatttgcac cacttgtggc 4620 ... ttttgaatat cttccacaga gggaagttta aaacccaaac ttccaaaggt ttaaactacc Α, 4680 . tcaaaacact ttcccatgag tgtgatccac attgttaggt gctgacctag acagagatga 4740 actgaggtcc ttgttttgtt ttgttcataa tacaaaggtg ctaattaata gtatttcaga tacttgaaga atgttgatgg tgctagaaga atttgagaag aaatactcct gtattgagtt 4800 4860 gtatcgtgtg gtgtattttt taaaaaattt gatttagcat tcatattttc catcttattc ccaattaaaa gtatgcagat tatttgccca aagttgtcct cttcttcaga ttcagcattt 4920 gttctttgcc agtctcattt tcatcttctt ccatggttcc acagaagctt tgtttcttgg 4980 gcaagcagaa aaattaaatt gtacctattt tgtatatgtg agatgtttaa ataaattgtg 5040 5084 aaaaaaatga aataaagcat gtttggtttt ccaaaagaac atat

<210> 5

<211> 2518

<212> DNA

<213> Homo sapiens

<400> 5
cttcgggtgt acgtgetccg ggatcttcag cacccgcggc cgccatcgcc gtcgcttggc 60
ttcttctgga ctcatctgcg ccacttgtcc gcttcacact ccgccgccat catggtgaag 120
ctcgcgaagg caggtaaaaa tcaaggtgac cccaagaaaa tggctcctcc tccaaaggag 180
gtagaagaag atagtgaaga tgaggaaatg tcagaagatg aagaagatga tagcagtgga 240

gaagaggtcg	tcatacctca	gaagaaaggc	aagaaggctg	ctgcaacct	agcaaagaag	300
gtggtcgttt	ccccaacaaa	aaaggttgca	gttgccacac	cagccaagaa	agcagctgtc	3.60
actccaggca	aaaaggcagc	agcaacacct	gccaagaaga	cagttacaco	agccaaagca	420
gttaccacac	ctggcaagaa	gggagccaca	ccaggcaaag	cattggtago	: aactcctggt	480
aagaagggtg	ctgccatccc	agccaagggg	gcaaagaatg	gcaagaatgc	: caagaaggaa	540
gacagtgatg	aagaggagga	tgatgacagt	gaggaggatg	aggaggatga	cgaggacgag	600
gatgaggatg	aagatgaaat	tgaaccagca	gcgatgaaag	cagcagctgc	tgecectgec	660
tcagaggatg	aggacgatga	ggatgacgaa	gatgatgagg	atgacgatga	. cgatgaggaa	720
gatgactctg	aagaagaagc	tatggagact	acaccageca	aaggaaagaa	agctgcaaaa	780
gttgttcctg	tgaaagccaa	gaacgtggct	gaggatgaag	atgaagaaga	ggatgatgag	840
gacgaggatg	acgacgacga	cgaagatgat	gaagatgatg	atgatgaaga	tgatgaggag	900
gaggaagaag	aggaggagga	agagcctgtc	aaagaagcac	ctggaaaacg	aaagaaggaa	960
atggccaaac	agaaagcagc	tcctgaagcc	aagaaacaga	aagtggaagg	cacagaaccg	1020
actacggctt	tcaatctctt	tgttggaaac	ctaaacttta	acaaatctgc	tcctgaatta	1080
aaaactggta	tcagcgatgt	ttttgctaaa	aatgatcttg	ctgttgtgga	tgtcagaatt	1140
ggtatgacta	ggaaatttgg	ttatgtggat	tttgaatctg	ctgaagacct	ggagaaagcg	1200
ttggaactca	ctggtttgaa	agtctttggc	aatgaaatta	aactagagaa	accaaaagga	1260
aaagacagta	agaaagagcg	agatgcgaga	acacttttgg	ctaaaaatct	cccttacaaa	1320
gtcactcagg	atgaattgaa	agaagtgttt	gaagatgctg	cggagatcag	attagtcagc	1380
aaggatggga	aaagtaaagg	gattgcttat	attgaattta	agacagaagc	tgatgcagag	1440
aaaacctttg	aagaaaagca	gggaacagag	atcgatgggc	gatctatttc	cctgtactat	1500
	aaggtcaaaa					1560
	ctctggtttt					1620
	agaaagcaac					1680
	ttatagagtt					1740
	aaattgaggg					1800
	gaagccagcc					1860
	cattaaagga					1920
	ggtcctccaa					1980
	tggaagacgg					2040
cctaagggtg	aaggtggctt	cgggggtcgt	ggtggaggca	gaggcggctt	tggaggacga	2100

ggtggtggta gaggaggccg aggaggattt ggtggcagag gccggggagg ctttggaggg 2160 cgaggagget tecgaggagg cagaggagga ggaggtgace acaagccaca aggaaagaag 2220 acgaagtttg aatagcttct gtccctctgc tttccctttt ccatttgaaa gaaaggactc 2280 tggggttttt actgttacct gatcaatgac agagccttct gaggacattc caagacagta 2340 tacagtectg tggteteett ggaaateegt etagttaaca ttteaaggge aatacegtgt 2400 tggttttgac tggatattca tataaacttt ttaaagagtt gagtgataga gctaaccctt 2460 atctgtaagt tttgaattta tattgtttca tcccatgtac aaaaccattt tttcctac 2518 <210> 6 3677 <211> <212> DNA Homo sapiens <400> egectgeeeg eeegeeeget egeceeeggt eeggaeteet eeteeteete ttetegeeat 60 tgcagttgga cccagcagcc cggcgcgcac cgcgtggctt ttgggggcag accccggcgg 120 gctgtggcag gagggcggcg gcggcggctg cggtcgaaga aggggacgcc gacaagagtt 180 . . gaagtattga taacaccaag gaactctatc acaatttgaa aagataagca aaagtttgat 240 3 ttccagacac tacagaagaa gtaaaaatgc gtccaatgcg aatttttgtg aatgatgacc 300 💥 gccatgtgat ggcaaagcat tetteegttt atccaacaca agaggagetg gaggeagtee 360 ਼੍ਰਾ agaacatggt gtcccacacg gagcgggcgc tcaaagctgt gtccgactgg atagacgagc 420 🚁 aggaaaaggg tagcagcgag caggcagagt ccgataacat ggatgtgccc ccagaggacg 480 يند_ا 480 acagtaaaga aggggctggg gaacagaaga cggagcacat gaccagaacc ctgcggggag 540 tgatgcgggt gggcctggtg gcaaagggcc tcctactcaa gggggacttg gatctggagc 600 tggtgctgct gtgtaaggag aagcccacaa ccgccctcct ggacaaggtg gccgacaacc 660 tggccatcca gcttgctgct gtaacagaag acaagtacga aatactgcaa tctgtcgacg 720 atgetgegat tgtgataaaa aacacaaaag ageeteeatt gteeetgaee ateeaeetga 780 catcccctgt tgtcagagaa gaaatggaga aagtattagc tggagaaacg ctatcagtca 840 acgaccccc ggacgttctg gacaggcaga aatgccttgc tgccttggcg tccctccgac 900 acgccaagtg gttccaggcc agagccaacg ggctgaagtc ttgtgtcatt gtgatccggg 960 tettgaggga cetgtgeact egegtgeeca cetggggtee ceteegagge tggceteteg 1020 agctcctgtg tgagaaatcc attggcacgg ccaacagacc gatgggtgct ggcgaggccc 1080 tgeggagagt getggagtge etggegtegg geategtgat geeagatggt tetggeattt 1140

atgaccettg tgaaaaagaa gecaetgatg etattgggea tetagacaga cageaaeggg

aagatatcac acagagtgcg cagcacgcac tgcggctcgc tgccttcggc cagctccata 1260 aagteetagg catggaceet etgeetteea agatgeecaa gaaaceaaag aatgaaaace 1320 1380 cagtggacta caccgttcag atcccaccaa gcaccaccta tgccattacg cccatgaaac gcccaatgga ggaggacggg gaggagaagt cgcccagcaa aaagaagaag aagattcaga 1440 1500 agaaagagga gaaggcagag ccccccagg ctatgaatgc cctgatgcgg ttgaaccagc 1560 tgaagecagg getgeagtae aagetggtgt ceeagaetgg geeegteeat geeeceatet 1620 ttaccatgtc tgtggaggtt gatggcaatt cattcgaggc ctctgggccc tccaaaaaga cggccaagct gcacgtggcc gttaaggtgt tacaggacat gggcttgccg acgggtgctg 1680 1740 aaggcaggga ctcgagcaag ggggaggact cggctgagga gaccgaggcg aagccagcag 1800 tggtggecee tgececagtg gtagaagetg tetecacece tagtgeggee ttteceteag 1860 atgecaetge egageagggg eegateetga caaageaegg caagaaceca gteatggage 1920 tgaacgagaa gaggcgtggg ctcaagtacg agctcatctc cgagaccggg ggcagccacg 1980 acaagcgctt cgtcatggag gtcgaagtgg atggacagaa gttccaaggt gctggttcca 2040 acaaaaaggt ggcgaaggcc tacgctgctc ttgctgccct agaaaagctt ttccctgaca 2100 cccctctcgc ccttgatgcc aacaaaaaga agagagcccc agtacccgtc agagggggac cgaaatttgc tgctaagcca cataaccctg gcttcggcat gggaggcccc atgcacaacg 2160 2220 aagtgcccc acccccaac cttcgagggc ggggaagagg cgggagcatc cggggacgag 2280 ggcgcgggcg aggatttggt ggcgccaacc atggaggcta catgaatgcc ggtgctgggt 2340 atggaagcta tgggtacgga ggcaactcgg cgacagcagg ctacagtgac tttttcacag 2400 actgctacgg ctatcatgat tttgggtctt cctagagcgt ctaaaagtat tgcacacaaa 2460 atcaactttt tactccaatt teetecaact ccaaaaccca aagtgteegt getgtgteec tgtgcttcac tgggtttctc aaccgtggct tttcaccgca gcttgtctga aactcttagc 2520 ctgcagaatt taagacaatg gcagttttta tcgtgatttg cctttgaact tggtcctatt 2580 2640 gaagttcaca ataagtggaa aacaattttt tcagagaatg tatttttgtg cagaattgca cagaattota gagacagogt tgttoggcat caaggcaaaa gcccaccttt gctttttatg 2700 gaaagcatta ctttatttaa agagacagac aatgacgcat tttaatctac ctttgtctta 2760 atttacagca ggttttgtat gaatttttaa ccttttaaca aactcccaaa tctggttgat 2820 gcctttgaca gtgatgaaaa cgatttcacc acatctgaat ccagagaaac cggctttttt 2880 tcttattgcg agcatgttaa aacgttggga acatgtgggg aattgtatat tgcgctgaat 2940 3000 taacttctcc cgcctcttgt aatgctctgg tgggttcttg tttgggaatg cgatattttg

3060 tggctggttt agctagagag tgaactctca aaggtatcaa aactgtgctt ccattattag 3120 tgcaagaaac agacaggctt taaggggtag atgacgtgaa attttgcaag tcttaattac agetgeagat geatgggatt etggattttt ttgttgettt ttagtttaat gggaetttaa 3180 3240 aagtaattga ggagaaagaa ccgtgatgtt ccctgtttct ccagtaaagg actggctttt gcttgggcag aggtggtgct gctgggtgtg cagctgccac agactccaaa ggcgtagaag 3300 tttgtgccaa cacacggagt cattctggct ctctgctgag gcccctgttt tctggcaggt 3360 geceteettg gaaactggtt ttggetetga teageggtte tttttgeage aaageetgea 3420 tctqtqttqa cttqcaaqat tttqcqttta ttcaggcaaa aactggtcaa aatggttact 3480 acatgatttg ttcccagagg tttgaaacat tcagtgaaac tttttaaaac tttgattgca 3540 3600 tgatgtattt tttttttaga aagttattgt ttgagaataa tgtcttttta taccaggaaa atagttatcc tgaatgacgt tgaaaactcc ccctcccctt tattttttt taatcaatac 3660 3677 atgtgaaagt aacaagc

<210> 7 <211> 2901 <212> DNA

<213> Homo sapiens

<400> ttgaaatcag gaaatcaggc cgggcgcagt ggctcatgcc tgtaagccca gcactttggg 120, aggcggaggc gggtggatcc attgaggtca ggagctcaag accagcctgg tcaacatggt 180 🚎 . gaaaccccgt ctctactaaa aatacaaaaa aaaaattagc tgggcgtgtt ggcgggagcc tgtagtccca gctacacggg aggctaaggt gggagaattg cttgaacccg ggaggcggag 240 .. 300 gttgcagtga gctgagattg caccattgca ctccagcctg ggcgacagag caagactctc 360 tcaaaaaaaa aaaaaaagaa agaaagaaat cagaaaatcg accacagtgg tagccacctg gcctaatgct gtgtttttgt acctgacagg ggtcactcat tttaggcaca actccttcat 420 480 tctttgtgaa attagtgagt ttccttctac ccgtcaccag attcaatatg ttctattaat acaccgataa ccacagggga agggcacttg tcgctctccc acctggttac cacagtctcc 540 600 atgggtcttt tgccgtgacc acaaataaag gaaacactca tcactagtat ctaagtcggg ctttacagta actatgcacc ttctgtgtgc ttcacctcac tctctacttc aaacagccca 660 tggagggagg tattattata ctccttatgt tgacagtgaa gaatctgagg cccagagagg 720 780 ttggggactt gagtaaagtc acacagccct gagaggcagg accagggttc cattcctgct ctatccagtt ccaagecett gtgtttteca ttatgtttag tgeetetttg ctaacageaa 840 catctgcaag atttgtgttg gttttgatgg agaactctag ctcatccaca tgctagtgcc 900

.

4,

attittatit taaaaaaagt gaatggactg aaatgttaaa tgtgaatgta catticttaa 2820 ttgcaatttt tctactgagt gtttgcacta tactttctgg aatcttattt aacaaaaata 2880 2901 aagggaaaaa attgcttgac t <210> 8 <211> 3056 DNA Homo sapiens <400> 8 60 gcggggcggg ccggcggcgg aggccgggcc gcggagccag gagtgactag cagcagttgg ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg 120 180 tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcgc ggcggggcagc ggcccaggag gcgcgtggcg 240 300 gegeteggee tegeggegge ggeggeggea geggeeeage agttggegge gagegegtet 360 gegeetgege ggegggeece gegeeette teececett ggegeeceeg geggegtgtg aatggcggcc teegeggcgg cagectegge ageageggee teggeegeet etggcageee 420 gggcccgggc gagggctccg ctggcggcga aaagcgctcc accgcccctt cggccgcagc 480℃ 540 🐨 ctcggcctct gcctcagccg cggcgtcgtc gcccgcgggg ggcggcgccg aggcgctgga 600-∻ gctgctggag cactgcggcg tgtgcagaga gcgcctgcga cccgagaggg agccccgcct gctgccctgt ttgcactcgg cctgtagtgc ctgcttaggg cccgcggccc ccgccgccgc 660 👯 caacageteg ggggaeggeg gggeggeggg egaeggeace gtggtggaet gteeegtgtg 720億一 caagcaacag tgcttctcca aagacatcgt ggagaattat ttcatgcgtg atagtggcag 780 caaggotgoo accgaogooo aggatgogaa coagtgotgo actagotgtg aggataatgo 840 900 cccagccacc agctactgtg tggagtgctc ggagcctctg tgtgagacct gtgtagaggc 960 gcaccagegg gtgaagtaca ccaaggacca tactgtgege tetactggge cagecaagte 1020 togggatggt gaacgtactg totattgcaa cgtacacaag catgaacccc ttgtgctgtt ttgtgagagc tgtgatactc tcacctgccg agactgccag ctcaatgccc acaaggacca 1080 ccagtaccag ttcttagagg atgcagtgag gaaccagcgc aagctcctgg cctcactggt 1140 1200 gaagegeett ggggacaaac atgcaacatt geagaagage aecaaggagg ttegeagete 1260 aatccgccag gtgtctgacg tacagaagcg tgtgcaagtg gatgtcaaga tggccatcct gcagatcatg aaggagctga ataagcgggg ccgtgtgctg gtcaatgatg cccagaaggt 1320 1380 gactgagggg cagcaggagc gcctggagcg gcagcactgg accatgacca agatccagaa 1440

gcaccaggag cacattetge getttgeete ttgggetetg gagagtgaca acaacacage

ccttttgctt	tctaagaagt	tgatctactt	ccagetgcae	cgggccctca	agatgattgt	1500
ggatcccgtg	gagccacatg	gcgagatgaa	gtttcagtgg	gacctcaatg	cctggaccaa	1560
gagtgccgag	gcctttggca	agattgtggc	agagcgtcct	ggcactaact	caacaggccc	1620
tgcacccatg	gcccctccaa	gagccccagg	gcccctgagc	aagcagggct	ctggcagcag	1680
ccagcccatg	gaggtgcagg	aaggctatgg	ctttgggtca	ggagatgatc	cctactcaag	1740
tgcagagccc	catgtgtcag	gtgtgaaacg	gtcccgctca	ggtgagggcg	aggtgagcgg	1800
ccttatgcgc	aaggtgccac	gagtgagcct	tgaacgcctg	gacctggacc	tcacagctga	1860
cagccagcca	cccgtcttca	aggtettece	aggcagtacc	actgaggact	acaaccttat	1920
tgttattgaa	cgtggcgctg	ccgctgcagc	taccggccag	ccagggactg	cgcctgcagg	1980
aacccctggt	gccccacccc	tggctggcat	ggccattgtc	aaggaggagg	agacggaggc	2040
tgccattgga	gcccctccta	ctgccactga	gggccctgag	accaaacctg	tgcttatggc	2100
tcttgcggag	ggtcctggtg	ctgagggtcc	acgaatggaa	tcacctagtg	gcagcaccag	2160
ctcagggctg	gaggtggtgg	ctcctgaggg	tacctcagcc	ccaggtggtg	gcccgggaac	2220
cctggatgac	agtgccacca	tttgccgtgt	ctgccagaag	ccaggcgatc	tggttatgtg	2280
caaccagtgt	gagttttgtt	tccacctgga	ctgtcacctg	ccggccctgc	aggatgtacc	2340
aggggaggag	tggagctgct	cactctgcca	tgtgctccct	gacctgaagg	aggaggatgg	2400
cagcctcagc	ctggatggtg	cagacagcac	tggcgtggtg	gccaagctct	caccagccaa	2460
ccagcggaaa	tgtgagcgtg	tactgctggc	cctattctgt	cacgaaccct	gccgccccct	2520
gcatcagctg	gctaccgact	ccaccttctc	cctggaccag	cccggtggca	ccctggatct	2580
gaccctgatc	cgtgcccgcc	tccaggagaa	gttgtcacct	ccctacagct	ccccacagga	2640
gtttgcccag	gatgtgggcc	gcatgttcaa	gcaattcaac	aagttaactg	aggacaaggc	2700
agacgtgcag	tccatcatcg	gcctgcagcg	cttcttcgag	acgcgcatga	acgaggcctt	2760
cggtgacacc	aagttctctg	ctgtgctggt	ggagcccccg	ccgatgagcc	tgcctggtgc	2820
tggcctgagt	teccaggage	tgtctggtgg	ccctggtgat	ggcccctgag	gctggagccc	2880
ccatggccag	cccagcctgg	ctctgttctc	tgtcctgtca	ccccatcccc	actcccctgg	2940
tggcctgact	cccactccct	ggtggcccca	tcccccagtt	cctcacgata	tggtttttac	3000
ttctgtggat	ttaataaaaa	aaacttcacc	agttcaaaaa	aaaaaaaaaa	aaaaaa	3056

<210> 9

<211> 3149 <212> DNA <213> Homo sapiens

<400> 9 60 agcggaatct cggaaaggcg agaaagaagc tgtctccatc ttgtctgtat ccgctgctct tgtgacgttg tggagatggg gagcgtcctg gggctgtgct ccatggcgag ctggatacca 120 tgtttgtgtg gaagtgcccc gtgtttgcta tgccgatgct gtcctagtgg aaacaactcc -180 actgtaacta gattgatcta tgcacttttc ttgcttgttg gagtatgtgt agcttgtgta 240 300 atgttgatac caggaatgga agaacaactg aataagattc ctggattttg tgagaatgag aaaggtgttg tcccttgtaa cattttggtt ggctataaag ctgtatatcg tttgtgcttt 360 ggtttggcta tgttctatct tcttctctct ttactaatga tcaaagtgaa gagtagcagt 420 480 gatcctagag ctgcagtgca caatggattt tggttcttta aatttgctgc agcaattgca attattattg gggcattett cattecagaa ggaactttta caactgtgtg gttttatgta 540 ggcatggcag gtgccttttg tttcatcctc atacaactag tcttacttat tgattttgca 600 cattcatgga atgaatcgtg ggttgaaaaa atggaagaag ggaactcgag atgttggtat 660 gcagcettgt tatcagetac agetetgaat tatetgetgt etttagttge tategteetg 720 780 ttetttgtet actacactea tecagecagt tgttcagaaa acaaggegtt catcagtgte 840 aacatgctcc tctgcgttgg tgcttctgta atgtctatac tgccaaaaat ccaagaatca caaccaagat ctggtttgtt acagtcttca gtaattacag tctacacaat gtatttgaca 900 -5 tggtcagcta tgaccaatga accagaaaca aattgcaacc caagtctact aagcataatt 960 🖟 🔒 1020 ggctacaata caacaagcac tgtcccaaag gaagggcagt cagtccagtg gtggcatgct caaggaatta taggactaat tetetttttg ttgtgtgtat tttattecag cateegtaet 1080 🎋 🖫 tcaaacaata gtcaggttaa taaactgact ctaacaagtg atgaatctac attaatagaa 1140 1200 gatggtggag ctagaagtga tggatcactg gaggatgggg acgatgttca ccgagctgta gataatgaaa gggatggtgt cacttacagt tattccttct ttcacttcat gcttttcctg 1260 1320 gcttcacttt atatcatgat gacccttacc aactggtaca ggtatgaacc ctctcgtgag atgaaaagtc agtggacagc tgtctgggtg aaaatctctt ccagttggat tggcatcgtg 1380 ctgtatgttt ggacactcgt ggcaccactt gttcttacaa atcgtgattt tgactgagtg 1440 1500 agacttctag catgaaagtc ccactttgat tattgcttat ttgaaaacag tattcccaac 1560 ttttgtaaag ttgtgtatgt ttttgcttcc catgtaactt ctccagtgtt ctggcatgaa ttagatttta ctgcttgtca ttttgttatt ttcttaccaa gtgcattgat atgtgaagta 1620 1680 gaatgaattg cagaggaaag ttttatgaat atggtgatga gttagtaaaa gtggccacta 1740 ttgggcttat tetetgetet atagttgtga aatgaagagt gaaaacaaat ttgtttgact attttaaaat tatattagac cttaagctgt tttagcaagc attaaagcaa atgtatggct 1800

300 cataaagacc gtaatcgttc acattgaatc aatgactaaa catttttgat tacccagcta cctccaagca aactgaaaac tgtctagtgg atcctgaagt ccatagtgcc tctagccggg 360 420 tettteaagt gttgeaceae agggtgatga ttgatggtaa aaacagggat caaceettgt agatoggtgg taagtatgga aaccototaa gaacagtgca gcgtatgtgg tattcagact 480 ggttgcatac agcattcaaa accagtgctg gaatagcttg ccccaaagtg gtagagttat 540 aaaaggatat acattgacgt ttcttaaaag catgtgtaat 580 <210> 1.1 <211> 2467 DNA Homo sapiens <400> 60 ggcacgaggc tecggtgtgt ctgteggttg cagtgttgga ggteggegee ggceeeegee 120 ttccgcgccc cccacgggaa ggaagcaccc ccggtattaa aacgaacggg gcggaaagaa gccctcagtc gccggccggg aggcgagccg atgccgagct gctccacgtc caccatgccg 180 ggcatgatct gcaagaaccc agacctcgag tttgactcgc tacagccctg cttctacccg 240 300 gacgaagatg acttetaett eggeggeeee gactegaeee eeeeggggga ggacatetgg 360 aagaagtttg agetgetgee caegeeeeeg etgtegeeca geegtggett egeggageae 420 ^{É 6} agetecgage eccegagetg ggteaeggag atgetgettg agaaegaget gtggggeage 480 ccggccgagg aggacgcgtt cggcctgggg ggactgggtg gcctcacccc caacccggtc 540 atcctccagg actgcatgtg gagcggcttc tccgcccgcg agaagctgga gcgcgccgtg 600 agegagaage tgeageacgg cegegggeeg ceaacegeeg gtteeacege ceagteeceg ggagccggcg ccgccagccc tgcgggtcgc gggcacggcg gggctgcggg agccggccgc 660 geoggggeeg ceetgeeege egagetegee caeceggeeg cegagtgegt ggateeegee 720 780 gtggtcttcc cctttcccgt gaacaagcgc gagccagcgc ccgtgcccgc agccccggcc 840 agtgccccgg cggcgggccc tgcggtcgcc tcgggggcgg gtattgccgc cccagccggg 900 geceeggggg tegeeeetee gegeeeagge ggeegeeaga eeageggegg egaeeaeaag 960 gccctcagta cctccggaga ggacaccctg agcgattcag atgatgaaga tgatgaagag gaagatgaag aggaagaaat cgacgtggtc actgtggaga agcggcgttc ctcctccaac 1020 1080 accaaggetg teaccacatt caccateact gtgcgtccca agaacgcage cctgggtccc gggagggete agtecagega getgateete aaacgatgee tteecateea eeageageae 1140 1200 aactatgccg cccctctcc ctacgtggag agtgaggatg cacccccaca gaagaagata

aagagcgagg cgtccccacg tccgctcaag agtgtcatcc ccccaaaggc taagagcttg

agcccccgaa	actctgactc	ggaggacagt	gagcgtcgca	gaaaccacaa	catcctggag	1320
cgccagcgcc	gcaacgacct	teggtecage	tttctcacgc	. tcagggacca	_cgtgccggag	13.80
ttggtaaaga	atgagaaggc	cgccaaggtg	gtcattttga	aaaaggccac	tgagtatgtc	1440
cactccctcc	aggccgagga	gcaccagctt	ttgctggaaa	aggaaaaatt	gcaggcaaga	1500
cagcagcagt	tgctaaagaa	aattgaacac	gctcggactt	gctagacgct	tctcaaaact	1560
ggacagtcac	tgccactttg	cacattttga	tttttttt	aaacaaacat	tgtgttgaca	1620
ttaagaatgt	tggtttactt	tcaaatcggt	cccctgtcga	gttcggctct	gggtgggcag	1680
taggaccacc	agtgtggggt	tctgctggga	ccttggagag	cctgcatccc	aggatgctgg	1740
gtggccctgc	agcctcctcc	acctcacctc	catgacagcg	ctaaacgttg	gtgacggttg	1800
ggagcetetg	gggctgttga	agtcaccttg	tgtgttccaa	gtttccaaac	aacagaaagt	1860
cattccttct	ttttaaaatg	gtgcttaagt	tccagcagat	gccacataag	gggtttgcca	1920
tttgataccc	ctggggaaca	tttctgtaaa	taccattgac	acatccgcct	tttgtataca	1980
tcctgggtaa	tgagaggtgg	cttttgcggc	cagtattaga	ctggaagttc	atacctaagt	2040
actgtaataa	tacctcaatg	tttgaggagc	atgttttgta	tacaaatata	ttgttaatct	2100
ctgttatgta	ctgtactaat	tcttacactg	cctgtatact	ttagtatgac	gctgatacat	2160
aactaaattt	gatacttata	ttttcgtatg	aaaatgagtt	gtgaaagttt	tgagtagata	2220
ttactttatc	actttttgaa	ctaagaaact	tttgtaaaga	aatttactat	atatatatgc	2280
ctttttccta	gcctgtttct	tcctgttaat	gtatttgttc	atgtttggtg	catagaactg	2340
ggtaaatgca	aagttctgtg	tttaatttct	tcaaaatgta	tatatttagt	gctgcatctt	2400
atagcacttt	gaaatacctc	atgtttatga	aaataaatag	cttaaaatta	aaaaaaaaa	2460
aaaaaa						2467
010 10						
<210> 12 <211> 762						
<212> DNA						
<213> Homo	sapiens					
<400> 12						
Caccattett	caagaaacgg	tttgaatcag	actgcctttc	cttttgtctt	cattgtcata	60
aacatctgcc	cccgtgtggt	tctgactggc	cgcgaacccc	tacccgaagc	ttttattcca	120
tcattgtgca	ccgttggtgg	ggaatgctgt	ggcaacaggc	cacgcctcca	cttactggtt	180
ggctttgcgc	aggcgccaac	ggaagtgggt	cgcaggaaga	ggaagtcccg	cctctctctc	240
ctcaggcagc	agcaacgcgg	aggaaacggg	agtgaacgga	gagcgtagtg	accatcatga	300
gcctcctcaa	caagcccaag	agtgagatga	ccccagagga	gctgcagaag	cgagaggagg	360

420 aggaatttaa caccggtcca ctctctgtgc tcacacagtc agtcaagaac aatacccaag tgctcatcaa ctgccgcaac aataagaaac tcctgggccg cgtgaaggcc ttcgataggc 480 actgcaacat ggtgctggag aacgtgaagg agatgtggac tgaggtaccc aagagtggca 540 agggcaagaa gaagtccaag ccagtcaaca aagaccgcta catctccaag atgttcctgc 600 geggggaete agteategtg gteetgegga accegeteat egeeggeaag taggggeege 660 ctgtctgttg acagaactca ctcctctgtc ctatgaagac cgctgccatt ggtgttgaga 720 762 <210> 13 <211> 3379 DNA <213> Homo sapiens <400> 13 60 aattccgcgg aatcatcgga atccttcacc atggcatcca gcccggccca gcgtcggcga ggcaatgate eteteacete cagecetgge egaageteee ggegtaetga tgeeeteace 120 tecageeetg geegtgaeet tecaceattt gaggatgagt eegagggget eetaggeaea 180 gaggggeece tggaggaaga agaggatgga gaggagetea ttggagatgg catggaaagg 240 gactaccgcg ccatcccaga gctggacgcc tatgaggccg agggactggc tctggatgat 300 360 ⁽ gaggacgtag aggagctgac ggccagtcga agggaggcag cagacgggcc atgcggcacg gtgaccggga gctggccggg gctgggcgca tgcgccgtgg gctcctgtat gacagcgatg 420 " 480 aggaggacga ggagcgcct gcccgcaagc gccgccagtg gagccggcac ggaggacggc 540 gaggaggacg agcagatgat tgagagcatc gagaacctgg aggatctcaa aggccactct 600 gtgcgcgagt gggtgagcat ggcgggcccc cggctggaga tccaccaccg cttcaagaac 660 tteetgegea eteaegtega eageeaegge cacaaegtet teaaggageg cateagegae atgtgcaaag agaaccgtga gagcctggtg gtgaactatg aggacttggc agccagggag 720 780 cacgtgctgg cctacttcct gcctgaggca ccggcggagc tgctgcagat ctttgatgag 840 gctgccctgg aggtggtact ggccatgtac cccaagtacg accgcatcac caaccacatc catgtccgca tctcccacct gcctctggtg gaggagctgc gctcgctgag gcagctgcat 900 960 ctgaaccagc tgatccgcac cagtggggtg gtgaccagct gcactggcgt cctgccccag 1020 ctcagcatgg tcaagtacaa ctgcaacaag tgcaatttcg tcctgggtcc tttctgccag teccagaace aggaggtgaa accaggetee tgteetgagt gecagtegge eggeecettt 1080 1140 gaggtcaaca tggaggagac catctatcag aactaccagc gtatccgaat ccaggagagt

ccaggcaaag tggcggctcg gcggctgccc cgctccaagg acgccattct cctcgcagat

ctggtggaca	gctgcaacgc	aggagacgag	atagagctga	ctggcatcta	tcacaacaac	1260
tatgatggct	ccctcaacac	tgccaatggc	ttccctgtct	ttgccactgt	_catcctagcc	1320
aaccacgtgg	ccaagaagga	caacaaggtt	gctgtagggg	aactgaccga	tgaagatgtg	1380
aagatgatca	ctagcctctc	caaggatcag	cagatcggag	agaagatctt	tgccagcatt	1440
gctccttcca	tctatggtca	tgaagacatc	aagagaggcc	ctgctctggc	cctgttcgga	1500
ggggagccca	aaaacccagg	tggcaagcac	aaggtacgtg	gtgatatcaa	cgtgctcttg	1560
tgcggagacc	ctggcacagc	gaagtcgcag	tttctcaagt	atattgagaa	agtgtccagc	1620
cgagccatct	tcaccactgg	ccagggggcg	teggetgtgg	ccgtcacggc	gtatgtccag	1680
cggcaccctg	tcagcaggga	gtggaccttg	gaggctgggg	ccctggttct	ggctgaccga	1740
ggagtgtgtc	tcattgatga	atttgacaag	atgaatgacc	aggacagaac	cagcatccat	1800
gaggccatgg	agcaacagag	catctccatc	tcgaaggctg	gcatcgtcac	ctccctgcag	1860
gctcgctgca	cggtcattgc	tgccgccaac	cccataggag	ggcgctacga	cccctcgctg	1920
actttctctg	agaacgtgga	cctcacagag	cccatcatct	cacgetttga	catcctgtgt	1980
gtggtgaggg	acaccgtgga	cccagtccag	gacgagatgc	tggcccgctt	cgtggtgggc	2040
agccacgtca	gacaccaccc	cagcaacaag	gaggaggagg	ggctggccaa	tggcagcgct	2100
gctgagcccg	ccatgcccaa	cacgtatggc	gtggagcccc	tgccccagga	ggtcctgaag	2160
aagtacatca	tctacgccaa	ggagagggtc	cacccgaagc	tcaaccagat	ggaccaggac	2220
aaggtggcca	agatgtacag	tgacctgagg	aaagaatcta	tggcgacagg	cagcatcccc	2280
attacggtgc	ggcacatcga	gtccatgagt	catggcggag	gcccacgcgc	gcatccatct	2340
gcgggactat	gtgatcgaag	acgacgtcaa	catggccatc	cgcgtgatgc	tggagagctt	2400
catagacaca	cagaagttca	gcgtcatcgc	agcatgcgca	agacttttgc	ccgctacctt	2460
	gtgacaacaa					2520
	atcagcgcaa					2580
	tggataaggc					2640
	tcaggatgaa					2700
	gccctatgcc					2760
	tgctttatgg					2820
	tagcaggatg					2880
	tctcaccttt					2940
	acctccgagt					3000
ttcaygatgc	ctgcgtgtgg	tttaggtgtt	agccttctta	catggatgtc	aggagagctg	3060

ctgccctctt	ggcgtgagtt	gcgtattcag	gctgcttttg	ctcgctttgg	ccagagagct	3120	
ggttgaagat	gtttgtaatc	gttttcagtc	tcctgcaggt	ttctgtgccc	ctgtggtgga	3180	
agaggcacga	cagtgccagc	gcagcgttct	gggctcctca	gtcgcagggg	tgggatgtga	3240	
gtcatgcgga	ttatccactc	gccacagtta	tcagctgcca	ttgctccctg	tetgttteee	3300	
cactctctta	tttgtgcatt	cggtttggtt	tctgtagttt	taatttttaa	taaagttgaa	3360	
taaaatataa	aaaaaaaaa					3379	
<210> 14 <211> 148 <212> DNA <213> Hom	_						
<400> 14	atcatggcaa	ccgttacagc	cacaaccaaa	gtcccggaga	tccgtgatgt	60	
	gagcgaatcg					120	
	cggcaggctt					180	
tggcgtggtg	ctggagatga	tccgggaagg	gaagattgcc	ggtcgggcag	tccttattgc	240	, e.
tggccagccg	ggcacgggga	agacggccat	cgccatgggc	atggcgcagg	ccctgggccc	300	.7
tgacacgcca	ı ttcacagcca	tcgccggcag	tgaaatcttc	tecetggaga	tgagcaagac	360	7
cgaggcgctg	g acgcaggcct	tccggcggtc	: catcggcgtt	cgcatcaagg	aggagacgga	420	. *
gatcatcgaa	a ggggaggtgg	tggagatcca	gattgatcga	ccagcaacag	ggacgggctc	480	<
caaggtggg	aaactgacco	tcaagaccac	: agagatggag	accatctacg	acctgggcac	540	أج
caagatgatt	gagtccctga	ccaaggacaa	ggtccaggcc	ggggacgtga	tcaccatcga	600	
caaggcgacg	g ggcaagatct	ccaagctggg	g ccgctccttc	acacgcgccc	gcgactacga	660	
cgctatggg	c teccagacea	agttcgtgca	a gtgcccagat	. ggggagctcc	: agaaacgcaa	720	
ggaggtggt	g cacaccgtgt	ccctgcacga	a gatcgacgtc	atcaactctc	gcacccaggg	780	
cttcctggc	g ctcttctcag	gtgacacag	g ggagatcaag	r tcagaagtco	gtgagcagat	840	
caatgccaa	g gtggctgagt	ggcgcgagga	a gggcaaggcg	gagatcatco	ctggagtgct	900	
gttcatcga	c gaggtccaca	a tgctggaca	t cgagagctto	tccttcctca	accgggccct	960	
ggagagtga	c atggcgcctg	g teetgatea	t ggccaccaac	cgtggcatca	a cgcgaatccg	1020	
gggcaccag	c taccagage	c ctcacggca	t ccccatagad	c ctgctggaco	ggctgcttat	1080	
cgtctccac	c accccctace	a gcgagaaag	a cacgaagcag	g atcctccgca	a teeggtgega	1140	
ggaagaaga	t gtggagatga	a gtgaggacg	c ctacacggto	g ctgacccgca	a tegggetgga	1200	
gacgtcact	g cgctacgcc	a tecagetea	t cacagetge	c agettggtg	geeggaaaeg	1260	

caagggtaca	a gaagtgcagg	g tggatgacat	caagcgggto	tactcactc	t tcctggacga	1320
gteeegetee	acgcagtaca	tgaaggagta	ccaggacgc	ttcctcttc	a acgaactcaa	1380
aggcgagaco	c atggacacct	cctgagttgg	atgtcatccc	ccgacccca	cctgttttcc	1440
accagagtto	tgacactgtg	actctgtata	aaatggttgg	gaagctgc		1488
<210> 15 <211> 181 <212> DNF <213> Hon						
<400> 15 ggtttgtgta	ı gagaggcgtg	cagagecegt	tgtccggagt	gcacctgctg	g cetgttetgt	60
					agaaagaggc	120
acagegeate	atgaccctgt	cggtgtggaa	gatgtatcac	tcccgcatgo	: agcgcggtgg	180
cctgcggctg	caccggagtc	tgcagctgtc	gctggtcatg	cgcagcgccc	gggagctcta	240
cctctcggcc	aaggtggagg	ccctcgagcc	cgaggtgtcg	ttgccggccg	ccctcccctc.	300
tgaccctcgc	ctgcacccgc	cccgagaagc	cgagtccacg	gccgagacag	cgacccccga	360
cggtgagcac	ccgtttccgg	agccaatgga	cacgcaggag	gcgccgacag	ccgaggagac	420
ctccgcctgc	tgtgccccgc	gccccgccaa	agtcagccgc	aaacgacgca	gcagcagcct	480
gagcgacggc	ggggacgttg	gactggtccc	gagcaagaaa	gcccgtctgg	aagaaaagga	540
agaagaggag	ggagcgtcat	ccgaagtcgc	cgatcgcctg	cagccccctc	cgggccaagc	600
ggagggcgcc	tttcccaacc	tggcccgcgt	cctgcagagg	cgcttctccg	gcctcctgaa	660
ctgcagcccc	geggeeeete	cgacggcgcc	gcccgcgtgc	gaggcaaagc	ccgcttgccg	720
cccggcggac	agcatgctca	acgtgctcgt	gcgggccgtg	gtggccttct	gaggaccccg	780
agcggcgctg	ccggagccca	gagcgcgcgt	cgaaccgtcg	gcccgagggc	gcagacctga	840
ggcgaggcca	ccccctcca	teetggggga	agcgcccgcg	aaaaccgtgg	agagaagccg	900
ccgcccgggc	tgctgagagg	cccggagagg	actctgtccc	cggggagcca	tcgccttcag	960
tgtgcaggga	cggcaccgag	gagtctgagc	cgggcgcggg	cgccttccgc	agagacctgc	1020
gcccacaggt	gctgtcttag	tggactggga	cgtgaacctt	tegeteteet	tctggactgg	1080
gagaagggag	gcttgggtgt	tgtgttttt	gttttgtttg	tttgtttgtt	tttaaagatc	1140
tcctcagggt	cggacttcat	tttgtactgt	gggctgtgct	ggccctttca	aggtttttca	1200
agagttggtt	ttgcgtttcc	aacctcggag	aattccaggc	actccccttc	cccctccgct	1260
gacatacttg	tataagcggt	catcgttgcg	tcatggggca	ggcgtgggga	gcttcctgtc	1320
gccttggctg	ggtgtgggcc	tggaggaagg	tcctggggcg	tgcactcgcc	tgggcagtgg	1380

ggaggagagt ggcctgagtt acttcacccc cgcgtgctgc tggttaatgt cccgcgtctc 1440 tgcacctteg ggtgggageg gggactgate tactttcaca ttctcaagtt tttctcatct 1500 gcattagagg tccccagtag gttcccaggt tccagegtgc ccctccctca gacacacgga 1560 1620 cacaatcagc cgagaagttc ctggtctgaa tcacgagaat gtggaggggt ggggggtgtc agtggaaagg cataaggctg agctgagacc agttgctggt gaaactgggc caatctgggg 1680 aggggaacat cettgecagg gagtttetga gggtetgett tgtttacett tegtgeggtg 1740 gattettttt aacteegtet acetggegtt ttgttagaaa tgteagatag gaaaataaaa 1800 accatttgag t 1811 <210> 16 2038 <211> DNA <213> Homo sapiens <400> 16 60. ggcccgcggg actcagacca gcggggagcg cggcctccgc ccttggggcc ctcccgccgg 120, gccggagacc caagccccca acgccaggcc ctgccctgga agcgctcgcg gcccggcgcc tggacggggg agttgctgct ctttggcgta aattgcaatc gattagggat cgtttctcag 180 🚌 aatcaagtta gaagtgagag ttcagataag tgaggccgcc attgctgctt tgaacacctc 240 agaaggggag aatggattta tcaggagtga aaaagaagag cttgctagga gtcaaagaaa 300 ataataaaaa gtccagcact agggctcctt cacctaccaa acgcaaagac cgctcagatg 360 agaagtccaa ggatcgctca aaagataaag gggccaccaa ggagtcgagt gagaaggatc 420 🚎 geggeeggga caaaaccega aagaggegea gegetteeag tggtageage agtaccaggt 480 540 eteggtecag etegaettee ageteagget eeageaceag eactggetea ageagtgget ccagctette etcageatee ageogeteag gaagetecag caceteeege agetecaget 600 ctagcagete ttetggetet ecaagteett eteggegeag acaegacaac aggaggeget 660 cccgctccaa atccaaacca cctaaaagag atgaaaagga gaggaaaagg cggagcccat 720 780 ctcctaagcc caccaaagtg cacattggga gactcacccg gaatgtgaca aaggatcaca 840 tcatggagat attttccacc tatgggaaaa ttaaaatgat tgacatgccc gtggaaagga 900 tgcatcccca tctgtccaaa ggctatgcgt acgtagagtt tgagaatcca gatgaagccg agaaggcgct gaagcacatg gatggaggac aaattgatgg ccaggagatc actgccaccg 960 ccgtgctggc cccctggcct aggccacccc ccaggagatt cagccctccc aggagaatgt 1020 tgccaccacc gcctatgtgg cgcaggtctc ccccacggat gaggagaagg tcccgctccc 1080

egaggegeag gteeceegtg egeeggagat caeggteece gggeegeege egeeacagga

gatgatgact	tttgatagtg	aagttgagtt	gatgaaagtt	gccagagcac	atcccaaagc	780
aaagttggtt	ttgcggattg	ccactgatga	ttccaaagca	gtctgtcgtc	tcagtgtgaa	840
attcggtgcc	acgctcagaa	ccagcaggct	ccttttggaa	cgggcgaaag	agctaaatat	900
cgatgttgtt	ggtgtcagct	tccatgtagg	aagcggctgt	accgatcctg	agaccttcgt	960
gcaggcaatc	tctgatgccc	gctgtgtttt	tgacatgggg	gctgaggttg	gtttcagcat	.1020
gtatctgctt	gatattggcg	gtggctttcc	tggatctgag	gatgtgaaac	ttaaatttga	1080
agagatcacc	ggcgtaatca	acccagcgtt	ggacaaatac	tttccgtcag	actctggagt	1140
gagaatcata	gctgagcccg	gcagatacta	tgttgcatca	gctttcacgc	ttgcagttaa	1200
tatcattgcc	aagaaaattg	tattaaagga	acagacgggc	tctgatgacg	aagatgagtc	1260
gagtgagcag	acctttatgt	attatgtgaa	tgatggcgtc	tatggatcat	ttaattgcat	1320
actctatgac	cacgcacatg	taaagcccct	tctgcaaaag	agacctaaac	, cagatgagaa	1380
gtattattca	tccagcatat	ggggaccaac	atgtgatggc	ctcgatcgga	ttgttgagcg	1440
ctgtgacctg	cctgaaatgc	atgtgggtga	ttggatgctc	tttgaaaaca	tgggcgctta	1500
cactgttgct	gctgcctcta	cgttcaatgg	cttccagagg	ccgacgatct	actatgtgat	1560
gtcagggcct	gcgtggcaac	tcatgcagca	attccagaac	cccgacttcc	cacccgaagt	1620
agaggaacag	gatgccagca	ccctgcctgt	gtcttgtgcc	tgggagagtg	ggatgaaacg	1680
ccacagagca	gcctgtgctt	cggctagtat	taatgtgtag	atagcactct	ggtagctgtt	1740
aactgcaagt	ttagcttgaa	ttaagggatt	tggggggacc	atgtaactta	attactgcta	1800
gttttgaaat	gtctttgtaa	gagtagggtc	gccatgatgc	agccatatgg	aagactagģa	1860
tatgggtcac	acttatctgt	gttcctatgg	aaactatttg	aatatttgtt	ttatatggat	1920
ttttattcac	tcttcagaca	cgctactcaa	gagtgcccct	cagctgctga	acaagcattt	1980
gtagcttgta	caatggcaga	atgggccaaa	agcttagtgt	tgtgacctgt	ttttaaaata	2040
aagtatcttg	aaataattag	gc				2062

<210> 18

<211> 2989

<212> DNA

<213> Homo sapiens

<400> 18

aattegggea egagggteet eeeteegeag eageegagee ggacetgeet eeeegggegt 60
geteegeegg eeeegeegee ggeeegeage gacagacagg egeteeege ageteegeae 120
gggaceeagg eegeeggace eeagegeegg accaecetet gteegeeeg aggagtttge 180
egeetgeegg ageacetgeg eacagatgga getggaceae eggaceageg gegggeteea 240

cgcctacccc	gggccgcggg	gcgggcaggt	ggccaagccc	aacgtgatcc	tgcagatcgg	300
gaagtgccgg	gccgagatgc	tggagcacgt	gcggcggacg	caccggcacc	tgctggccga	360
ggtgtccaag	caggtggagc	gcgagctgaa	ggggctgcac	cggtcggtcg	ggaagctgga	420
gagcaacctg	gacggctacg	tgcccacgag	cgactcgcag	cgctggaaga	agtccatcaa	480
ggcctgcctg	tgccgctgcc	aggagaccat	cgccaacctg	gagcgctggg	tcaagcgcga	540
gatgcacgtg	tggcgcgagg	tgttctaccg	cctggagcgc	tgggccgacc	gcctggagtc	600
cacgggcggc	aagtacccgg	tgggcagcga	gtcagcccgc	cacaccgttt	ccgtgggcgt	660
ggggggtccc	gagagctact	gccacgaggc	agacggctac	gactacaccg	tcagccccta	720
cgccatcacc	ccgcccccag	ccgctggcga	gctgcccggg	caggagcccg	ccgaggccca	780
gcagtaccag	ccgtgggtcc	ccggcgagga	cgggcagccc	agccccggcg	tggacacgca	840
gatcttcgag	gaccctcgag	agttcctgag	ccacctagag	gagtacttgc	ggcaggtggg	900
cggctctgag	gagtactggc	tgtcccagat	ccagaatcac	atgaacgggc	cggccaagaa	960
gtggtgggag	ttcaagcagg	gctccgtgaa	gaactgggtg	gagttcaaga	aggagttcct	1020
gcagtacagc	gagggcacgc	tgtcccgaga	ggccatccag	cgggagctgg	acctgccgca	1080
gaagcagggc	gagccgctgg	accagttcct	gtggcgcaag	cgggacctgt	accagacgct	1140
ctacgtggac	gcggacgagg	aggagatcat	ccagtacgtg	gtgggcaccc	tgcagcccaa	1200
gctcaagcgt	tteetgegee	accccctgcc	caagaccctg	gagcagctca	tccagagggg	1260
catggaggtg	caggatgacc	tggagcaggc	ggccgagccg	geeggeeeee	acctcccggt	1320
ggaggatgag	gcggagaccc	tcacgcccgc	ccccaacagc	gagtccgtgg	ccagtgaccg	1380
gacccagccc	gagtagaggg	catcccggag	ccccagcct	gcccactaca	tccagcctgt	1440
ggctttgccc	accaggactt	ttgagctggg	gctgactcct	gcaggggaag	ccctggtcca	1500
gctgggtgcc	ccctcgagct	ccgggcggac	tcgcacacac	tcgtgtcatc	cagatgtgag	1560
caccgcaccc	agcggcaaag	ageceteece	cctgcagggc	tccacccatc	accetecete	1620
cgtctgtctt	teeggeetgg	accccaccct	ccacactctc	aggccatcac	agaacacccc	1680
agcttcctca	ttctgctaca	acacccaggc	cctctggaca	tccagaaaac	caagtgtccg	1740
gatggcaggg	gccagcggcc	accaagctca	tgggacaccc	agagcagaag	ctagggcaga	1800
gccaatgctg	agggagcctc	gacttccggc	gccgccgccc	tctcccggca	tccgcagagc	1860
cagctgacgc	cctccctgcc	tcccagggca	gctggccagc	ctcgggcagc	geggeeeet	1920
cctcccaggg	gagagtagaa	gtcgcacacg	cagcagagca	gacctgatgt	cccggtgctt	1980
cctggcccct	cagctccagt	gattcacgcc	cgcctggaga	agaatcagag	ctcagctcat	2040

gactcaccca tggcaggcgg agggtcccag aggggctgag tcctcaaatc cggctgaggc 2100 agcagctggc accatcagag ccaggagagt gacaacaggt ctcaaggttc ccacaaagtc 2160 tttgctgctg tgctgggcac cacccaccc tcaccttgca ggctgcctgc gtgggaggcg 2220 2280 aagtcccagg acagcccaga ggggggctac agagaggagt cggctgcagc agagggcagg 2340 agccccagct tagccctgag cgccagcgcg aggaccaggg cctgccacta agcccgcccc getggeegee agetgeeegt ceecagagee actgeageag gagtegggee etgeeteeet 2400 cccagcaggg aaaccccgcc cgctgccagg ccatcctctc tgccagaggc tttcatgagc 2460 cccaaggctg gggccacagc tcctacccct gcccagcagc cctgagctca gctgcaggaa 2520 ggacatccca gaagccatgg ctcctggggc gcttccaggc attctgccct gccccgacac 2580 cagaaccctg gtgctggtgg gccactagcg tctgcagcct aagcaggtgc tggctcaggg 2640 ttcatcgttc tgccttgtcc actgggggac cagccctgca gaccactctg acaagtcttc 2700 ageceacace etgecagece cacagatttt atttttgcae ataagecata accaateete 2760 aaggctggca caggctttgg ggaagccctg gagcctgtga agaccctgga aacctcatga 2820 ggctgtggcc aacccctgcc ccttgcccca cacagaccag gccttaaatg tcggtccagg 2880 2940 ccctgtgcac cttaccccag agacagactc tttttgtaag attttgttaa taaaacactg 2989

<210> 19

<211> 2365

<212> DNA

<213> Homo sapiens

<400> 19 gaaacggccc gagaagctcg cccggagaac ggggaggaat atgctgtgga gctcctctgc 60 catataaaca aaaagaggaa atctttcaaa catggctgaa gcaaagaccc actggcttgg 120 agcagccctg tetettatee etttaatttt eeteatetet ggggetgaag eagetteatt 180 tcagagaaac cagctgcttc agaaagaacc agacctcagg ttggaaaatg tccaaaagtt 240 300 tcccagtcct gaaatgatca gggctttgga gtacatagaa aacctccgac aacaagctca 360 taaggaagaa agcagcccag attataatcc ctaccaaggt gtctctgtcc cccttcagca 420 aaaagaaaat ggcgatgaaa gccacttgcc cgagagggat tcactgagtg aagaagactg gatgagaata atactcgaag ctttgagaca ggctgaaaat gagcctcagt ctgcaccaaa 480 540 agaaaataag ccctatgcct tgaattcaga aaagaacttt ccaatggaca tgagtgatga 600 ttatgagaca cagcagtggc cagaaagaaa gcttaagcac atgcaattcc ctcctatgta 660 tgaagagaat tccagggata acccctttaa acgcacaaat gaaatagtgg aggaacaata

ç

tcctctgagc tgttatcttg tgtatggata tgtgtaaatg ttatgactcc ttgataaaaa

atttattatg tccattattc aagaaagata tctatgactg tgtttaatag tatatctaat

ggctgtggca ttgttgatgc tcacatatga taaaaaagtg tcctataatt ctattgaaag

tttttaatat ttattgaatt attttgttac tgtctgtagc gttttgtgga gtactggacc

2160

2220

2280

2340

2365

aaaaaaataa agcattataa atata

<210> 20 <211> 2825

<212> DNA

<213> Homo sapiens

<400> 20 60 gtacggette eggtggeggg acgeggggee gegeaegegg gaaaagette eeeggtgtee ecceatecee eteccegege ecceeeegeg tecceeeage gegeeeacet etegegeegg 120 ggccctcgcg aggccgcagc ctgaggagat tcccaacctg ctgagcatcc gcacacccac 180 tcaggagttg gggcccagct cccagtttac ttggtttccc ttgtgcagcc tggggctctg 240 300 cccaggccac cacaggcagg ggtcgacatg gcagagacac tggagttcaa cgacgtctat caggaggtga aaggttccat gaatgatggt cgactgaggt tgagccgtca gggcatcatc 360 ttcaagaata gcaagacagg caaagtggac aacatccagg ctggggagtt aacagaaggt 420 atctggcgcc gtgttgctct gggccatgga cttaaactgc ttacaaagaa tggccatgtc 480 tacaagtatg atggetteeg agaateggag tttgagaaac tetetgattt etteaaaact 540 cactategee ttgagetaat ggagaaggae etttgtgtga agggetggaa etgggggaea 600 gtgaaatttg gtgggcagct gctttccttt gacattggtg accagccagt ctttgagata 660 cccctcagca atgtgtccca gtgcaccaca ggcaagaatg aggtgacact ggaattccac 720 780; caaaacgatg acgcagaggt gtctctcatg gaggtgcgct tctacgtccc acccacccag gaggatggtg tggaccctgt tgaggccttt gcccagaatg tgttgtcaaa ggcggatgta 840, 🐇 atccaggcca egggagatgc catctgcatc ttccgggagc tgcagtgtct gactcctcgt 900. 960 ggtcgttatg acattcggat ctaccccacc tttctgcacc tgcatggcaa gacctttgac 1020, tacaagatcc cctacaccac agtactgcgt ctgtttttgt taccccacaa ggaccagcgc cagatgttct ttgtgatcag cctggatccc ccaatcaagc aaggccaaac tcgctaccac 1080 ttcctgatcc tcctcttctc caaggacgag gacatttcgt tgactctgaa catgaacgag 1140 gaagaagtgg agaagcgctt tgagggtcgg ctcaccaaga acatgtcagg atccctctat 1200 1260 gagatggtca gccgggtcat gaaagcactg gtaaaccgca agatcacagt gccaggcaac 1320 ttecaaggge acteagggge ceagtgeatt acetgttect.acaaggeaag cteaggactg 1380 etetaceege tggagegggg etteatetae gtecacaage cacetgtgea cateegette gatgagatét cetttgteaa etttgetegt ggtaceaeta etactegtte etttgaettt 1440 gaaattgaga ccaagcaggg cactcagtat accttcagca gcattgagag ggaggagtac 1500 1560 gggaaactgt ttgattttgt caacgcgaaa aagctcaaca tcaaaaaccg aggattgaaa gagggcatga acccaagcta cgatgaatat gctgactctg atgaggacca gcatgatgcc 1620 tacttggaga ggatgaagga ggaaggcaag atccgggagg agaatgccaa tgacagcagc 1680 gatgactcag gagaagaaac cgatgagtca ttcaacccag gtgaagagga ggaagatgtg 1740

gcagaggagt	ttgacagcaa	cgcctctgcc	agctcctcca	gtaatgaggg	tgacagtgac	1800
cgggätgaga	agaagcggaa	acageteaaa	aaggccaaga	tggccaagga	ccgcaagagc	1860
cgcaagaagc	ctgtggaggt	gaagaagggc	aaagacccca	atgcccccaa	gaggcccatg	1920
tctgcataca	tgctgtggct	caatgccagc	cgagagaaga	tcaagtcaga	ccatcctggc	1980
atcagcatca	cggatctttc	caagaaggca	ggcgagatct	ggaagggaat	gtccaaagag	2040
aagaaagagg	agtgggatcg	caaggctgag	gatgccagga	gggactatga	aaaagccatg	2100
aaagaatatg	aagggggccg	aggcgagtct	tctaagaggg	acaagtcaaa	gaagaagaag	2160
aaagtaaagg	taaagatgga	aaagaaatcc	acgccctcta	ggggctcatc	atccaagtcg	2220
tcctcaaggc	agctaagcga	gagcttcaag	agcaaagagt	ttgtgtctag	tgatgagagc	2280
tcttcgggag	agaacaagag	caaaaagaag	aggaggagga	gcgaggactc	tgaagaagaa	2340
gaactagcca	gtactccccc	cagctcagag	gactcagcgt	caggatccga	tgagtagaaa	2400
cggaggaagg	ttctctttgc	gettgeette	tcacaccccc	cgactcccca	cccatatttt	2460
ggtaccagtt	tctcctcatg	aaatgcagtc	cctggattct	gtgccatctg	aacatgctct	2520
cctgttggtg	tgtatgtcac	tagggcagtg	gggagacgtc	ttaactctgc	tgcttcccaa	2580
ggatggctgt	ttataatttg	gggagagata	gggtgggagg	cagggcaatg	caggatccaa	2640
atcctcatct	tactttcccg	accttaagga	tgtagctgct	gcttgtcctg	ttcaagttgc	2700
tggagcaggg	gtcatgtgag	gccaggcctg	tagctcctac	ctggggccta	tttctacttt	2760
cattttgtat	ttctggtctg	tgaaaatgat	ttaataaagg	gaactgactt	tggaaaccaa	2820
aaaaa						2825
<210> 21 <211> 104 <212> DNA <213> Hom						
<400> 21 aagagttttc	ctccgcagct	ctgagtctcc	acttttttgg	tggagaaagg	ctqcaaaaaq	60
	gcagtgagtg					120
	cacacgcctt					180
	gaaacatcgg					240
	aactcatgcc					300
	tctagtggat					360
	atatgatgtt					420
ctctggtcca	gttcaacgga	aacccacata	ccgagttcct	gttaaatacg	tatcgtacta	480

.

aacaagaagt cctttctcat atttccaaca tgtcttatat tgggggaacc aatcagactg 540 600 gaaaaggatt agaatacata atgcaaagcc acctcaccaa ggctgctgga agccgggccg gtgacggagt ccctcaggtt atcgtagtgt taactgatgg acactcgaag gatggccttg 660 ctctgccctc agcggaactt aagtctgctg atgttaacgt gtttgcaatt ggagttgagg 720 atgcagatga aggagcgtta aaagaaatag caagtgaacc gctcaatatg catatgttca 780 acctagagaa ttttacctca cttcatgaca tagtaggaaa cttagtgtcc tgtgtgcatt 840 catecgtgag tecagaaagg getggggaea eggaaaecet taaagaeate acageacaag 900 actctgctga cattattttc cttattgatg gatcaaacaa caccggaagt gtcaatttcg 960 cagtcattct cgacttcctt gtaaatctcc ttgagaaact cccaattgga actcagcaga 1020 tecgagtggg ggtggtecag tttagegatg ageccagaae catgttttee ttggacaeet 1080 actccaccaa ggcccaggtt ctgggtgcag tgaaagccct cgggtttgct ggtggggagt 1140 tggccaatat cggcctcgcc cttgatttcg tggtggagaa ccacttcacc cgggcagggg 1200 gcagccgcgt ggaggaaggg gttccccagg tgctggtcct cataagtgcc gggccttcta 1260 gtgacgagat tcgctacggg gtggtagcac tgaagcaggc tagcgtgttc tcattcggcc 1320 ttggagccca ggccgcctcc agggcagagc ttcagcacat agctaccgat gacaacttgg 1380 1440 tgtttactgt cccggaattc cgtagctttg gggacctcca ggagaaatta ctgccgtaca ttgttggcgt ggcccaaagg cacattgtct tgaaaccgcc aaccattgtc acacaagtca 1500 _A 1560 ttgaagtcaa caagagagac atagtcttcc tggtggatgg ctcatctgca ctgggactgg ccaacttcaa tgccatccga gacttcattg ctaaagtcat ccagaggctg gaaatcggac 1620 aggatettat ecaggtggca gtggcccagt atgcagacae tgtgaggcet gaattttatt 1680 tcaataccca tccaacaaaa agggaagtca taaccgctgt gcggaaaatg aagcccctgg 1740 acggctcggc cctgtacacg ggctctgctc tagactttgt tcgtaacaac ctattcacga 1800 gttcagccgg ctaccgggct gccgagggga ttcctaagct tttggtgctg atcacaggtg 1860 gtaagtccct agatgaaatc agccagcctg cccaggagct gaagagaagc agcataatgg 1920 cctttgccat tgggaacaag ggtgccgatc aggctgagct ggaagagatc gctttcgact 1980 cctccctggt gttcatccca gctgagttcc gagccgcccc attgcaaggc atgctgcctg 2040 2100 gettgetgge accteteagg accetetetg gaacceetga agtteactea aacaaaagag atatcatctt tcttttggat ggatcagcca acgttggaaa aaccaatttc ccttatgtgc 2160 gcgactttgt aatgaaccta gttaacagcc ttgatattgg aaatgacaat attcgtgttg 2220 gtttagtgca atttagtgac actcctgtaa cggagttctc tttaaacaca taccagacca 2280

agtcagatat ccttggtcat ctgaggcagc tgcagctcca gggaggttcg ggcctgaaca 2340 caggeteage cetaagetat gtetatgeea accaetteae ggaagetgge ggeageagga 2400 tccgtgaaca cgtgccgcag ctcctgcttc tgctcacagc tgggcagtct gaggactcct 2460 atttgcaage tgccaacgee ttgacacgeg cgggcateet gaetttttgt gtgggageta 2520 gccaggcgaa taaggcagag cttgagcaga ttgcttttaa cccaagcctg gtgtatctca 2580 tggatgattt cagetecetg ccagetttge etcageaget gatteageee etaaceacat 2640 atgttagtgg aggtgtggag gaagtaccac tcgctcagcc agagagcaag cgagacattc 2700 tgttcctctt tgacggctca gccaatcttg tgggccagtt ccctgttgtc cgtgactttc 2760 tctacaagat tatcgatgag ctcaatgtga agccagaggg gacccgaatt gcggtggctc 2820 agtacagcga tgatgtcaag gtggagtccc gttttgatga gcaccagagt aagcctgaga 2880 tectgaatet tgtgaagaga atgaagatea agaegggeaa ageeeteaae etgggetaeg 2940 cgctggacta tgcacagagg tacatttttg tgaagtctgc tggcagccgg atcgaggatg 3000 gagtgcttca gttcctggtg ctgctggtcg caggaaggtc atctgaccgt gtggatgggc 3060 cagcaagtaa cctgaagcag agtggggttg tgcctttcat cttccaagcc aagaacgcag 3120 accetgetga gttagageag ategtgetgt etecagegtt tateetgget geagagtege 3180 ttcccaagat tggagatett catccacaga tagtgaatet ettaaaatea gtgcacaaeg 3240 gagcaccagc accagtttca ggtgaaaagg acgtggtgtt tctgcttgat ggctctgagg 3300 gcgtcaggag cggcttccct ctgttgaaag agtttgtcca gagagtggtg gaaagcctgg 3360 atgtgggcca ggaccgggtc cgcgtggccg tggtgcagta cagcgaccgg accaggcccg 3420 agttetacet gaatteatae atgaacaage aggaegtegt caaegetgte egecagetga 3480 ccctgctggg agggccgacc cccaacaccg gggccgccct ggagtttgtc ctgaggaaca 3540 tectggtcag ctctgeggga agcaggataa cagaaggtgt geeccagetg etgategtee 3600 tcacggccga caggtctggg gatgatgtgc ggaacccctc cgtggtcgtg aagaggggtg 3660 gggctgtgcc cattggcatt ggcatcggga acgctgacat cacagagatg cagaccatct 3720 cetteatece ggaetttgee gtggeeatte ceaeettteg ceagetgggg acegteeaae 3780 aggtcatctc tgagagggtg acccagctca cccgcgagga gctgagcagg ctgcagccgg 3840 tgttgcagcc tctaccgagc ccaggtgttg gtggcaagag ggacgtggtc tttctcatcg 3900 atgggtecca aagtgeeggg cetgagttee agtaegtteg caeceteata gagaggetgg 3960 ttgactacct ggacgtgggc tttgacacca cccgggtggc tgtcatccag ttcagcgatg 4020 accccaagge ggagtteetg etgaacgeec attecageaa ggatgaagtg cagaacgegg 4080 tgcagcggct gaggcccaag ggagggcggc agatcaacgt gggcaatgcc ctggagtacg 4140

tgtccaggaa	catcttcaag	aggcccctgg	ggagccgcat	tgaagagggc	gtcccacagt	4200
teetggteet	catctcgtct	ggaaagtctg	acgatgaggt	ggtcgtcccg	gcggtggagc	4260
tcaagcagtt	tggcgtggcc	cctttcacga	tcgccaggaa	cgcagaccag	gaggagctgg	4320
tgaagatctc	gctgagcccc	gaatatgtgt	tctcggtgag	caccttccgg	gagctgccca	4380
gcctggagca	gaaactgctg	acgcccatca	cgaccctgac	ctcagagcag	atccagaagc	4440
tcttagccag	cactcgctat	ccacctccag	cagttgagag	tgatgctgca	gacattgtct	4500
ttctgatcga	cagctctgag	ggagttaggc	cagatggctt	tgcacatatt	cgagattttg	4560
ttagcaggat	tgttcgaaga	ctcaacatcg	gccccagtaa	agtgagagtt	ggggtcgtgc	4620
agttcagcaa	tgatgtcttc	ccagaattct	atctgaaaac	ctacagatcc	caggeceegg	4680
tgctggacgc	catacggcgc	ctgaggctca	gagggggtc	cccactgaac	actggcaagg	4740
ctctcgaatt	tgtggcaaga	aacctctttg	ttaagtctgc	ggggagtcgc	atagaagacg	4800
gggtgcccca	acacctggtc	ctggtcctgg	gtggaaaatc	ccaggacgat	gtgtccaggt	4860
tcgcccaggt	gatccgttcc	togggcattg	tgagtttagg	ggtaggagac	cggaacatcg	4920
acagaacaga	gctgcagacc	atcaccaatg	accccagact	ggtcttcaca	gtgcgagagt	4980 [*]
tcagagagct	tcccaacata	gaagaaagaa	tcatgaactc	gtttggaccc	tccgcagcca	5040
ctcctgcacc	tccaggggtg	gacacccctc	ctccttcacg	gccagagaag	aagaaagcag	5100
acattgtgtt	cctgttggat	ggttccatca	acttcaggag	ggacagtttc	caggaagtgc	5160
ttcgttttgt	gtctgaaata	gtggacacag	tttatgaaga	tggcgactcc	atccaagtgg	5220
ggcttgtcca	gtacaactct	gaccccactg	acgaattctt	cctgaaggac	ttctctacca	5280 [.]
agaggcagat	tattgacgcc	atcaacaaag	tggtctacaa	agggggaaga	cacgccaaca	5340
ctaaggtggg	ccttgagcac	ctgcgggtaa	accactttgt	gcctgaggca	ggcagccgcc	5400
tggaccagcg	ggtccctcag	attgcctttg	tgatcacggg	aggaaagtcg	gtggaagatg	5460
cacaggatgt	gageetggee	ctcacccaga	ggggggtcaa	agtgtttgct	gttggagtga	5520
ggaatatcga	ctcggaggag	gttggaaaga	tagcgtccaa	cagcgccaca	gegtteegeg	5580
tgggcaacgt	ccaggagctg	teegaaetga	gcgagcaagt	tttggaaact	ttgcatgatg	5640
cgatgcatga	aaccctttgc	cctggtgtaa	ctgatgctgc	caaagcttgt	aatctggatg	5700
tgattctggg	gtttgatggt	tctagagacc	agaatgtttt	tgtggcccag	aagggcttcg	5760
agtccaaggt	ggacgccatc	ttgaacagaa	tcagccagat	gcacagggtc	agctgcagcg	5820
gtggccgctc	gcccaccgtg	cgtgtgtcag	tggtggccaa	cacgccctcg	ggcccggtgg	5880
aggcctttga	ctttgacgag	taccagecag	agatgctcga	gaagttccgg	aacatgcgca	5940

gccagcaccc	ctacgtcctc	acggaggaca	ccctgaaggt	ctacctgaac	aagttcagac	6000
agtectegee	ggacagcgtg	aaggtggtca	ttcattttac	tgatggagca	gacggagatc	6.0.60_
tggctgattt	acacagagca	tctgagaacc	tccgccaaga	aggagtccgt	gccttgatcc	6120
tggtgggcct	tgaacgagtg	gtcaacttgg	agcggctaat	gcatctggag	tttgggcgag	6180
ggtttatgta	tgacaggccc	ctgaggctta	acttgctgga	cttggattat	gaactagcgg	6240
agcagcttga	caacattgcc	gagaaagctt	gctgtggggt	tccctgcaag	tgctctgggc	6300
agaggggaga	ccgcgggccc	atcggcagca	tcgggccaaa	gggtattcct	ggagaagacg	6360
gctaccgagg	ctatcctggt	gatgagggtg	gacccggtga	gcgtggtccg	cctggtgtga	6420
acggcactca	aggtttccag	ggctgcccgg	gccagagagg	agtaaagggc	tctcggggat	6480
tcccaggaga	gaagggcgaa	gtaggagaaa	ttggactgga	tggtctggat	ggtgaagatg	6540
gagacaaagg	attgcctggt	tettetggag	agaaagggaa	tcctggaaga	aggggtgata	6600
aaggacctcg	aggagagaaa	ggagaaagag	gagatgttgg	gattcgaggg	gacccgggta	6660
acccaggaca	agacagccag	gagagaggac	ccaaaggaga	aaccggtgac	ctcggcccca .	6720
tgggtgtccc	agggagagat	ggagtacctg	gaggacctgg	agaaactggg	aagaatggtg	6780
gctttggccg	aaggggaccc	cccggagcta	agggcaacaa	gggcggtcct	ggccagccgg	6840
gctttgaggg	agagcagggg	accagaggtg	cacagggccc	agctggtcct	gctggtcctc	.6900
cagggctgat	aggagaacaa	ggcatttctg	gacctagggg	aagcggaggt	gcccgtggcg	6960
ctcctggaga	acgaggcaga	accggtccac	tgggaagaaa	gggtgagccc	ggagagccag	7020
gaccaaaagg	aggaatcggg	aacccgggcc	ctcgtgggga	gacgggagat	gacgggagag	7080
acggagttgg	cagtgaagga	cgcagaggca	aaaaaggaga	aagaggattt	cctggatacc	7140
caggaccaaa	gggtaaccca	ggtgaacctg	ggctaaatgg	aacaacagga	cccaaaggca	7200
tcagaggccg	aaggggaaat	tcgggacctc	cagggatagt	tggacagaag	gggagacctg	7260
gctacccagg	accagctggt	ccaaggggca	acaggggcga	ctccatcgat	caatgtgccc	7320
tcatccaaag	catcaaagat	aaatgccctt	gctgttacgg	gcccctggag	tgccccgtct	7380
tcccaacaga	actagccttt	gctttagaca	cctctgaggg	agtcaaccaa	gacactttcg	7440
gccggatgcg	agatgtggtc	ttgagtattg	tgaatgtcct	gaccattgct	gagagcaact	7500
gcccgacggg	ggcccgggtg	gctgtggtca	cctacaacaa	cgaggtgacc	acggagatcc	7560
ggtttgctga	ctccaagagg	aagtcggtcc	tcctggacaa	gattaagaac	cttcaggtgg	7620
ctctgacatc	caaacagcag	agtctggaga	ctgccatgtc	gtttgtggcc	aggaacacat	7680
ttaagcgtgt	gaggaacgga	ttcctaatga	ggaaagtggc	tgttttcttc	agcaacacac	7740
ccacaagagc	atccccacag	ctcagagagg	ctgtgctcaa	actctcagat	gcggggatca	7800

cccccttgtt ccttacaagg caggaagacc ggcagctcat caacgctttg cagatcaata 7860 acacagcagt ggggcatgcg cttgtcctgc ctgcagggag agacctcaca gacttcctgg 7920 agaatgtcct cacgtgtcat gtttgcttgg acatctgcaa catcgaccca tcctgtggat 7980 ttggcagttg gaggccttcc ttcagggaca ggagagcggc agggagtgat gtggacatcg 8040 acatggettt catettagae agegetgaga ceaceacet gttecagtte aatgagatga 8100 agaagtacat agcgtacetg gtcagacaac tggacatgag cccagatccc aaggcctccc 8160 agcacttcgc cagagtggca gttgtgcagc acgcgccctc tgagtccgtg gacaatgcca 8220 gcatgccacc tgtgaaggtg gaattctccc tgactgacta tggctccaag gagaagctgg 8280 tggacttcct cagcaggga atgacacagt tgcagggaac cagggcctta ggcagtgcca 8340 ttgaatacac catagagaat gtctttgaaa gtgccccaaa cccacgggac ctgaaaattg 8400 tggtcctgat gctgacgggc gaggtgccgg agcagcagct ggaggaggcc cagagagtca 8460 tectgeagge caaatgeaag ggetaettet tegtggteet gggeattgge aggaaggtga 8520 acatcaagga ggtatacacc ttcgccagtg agccaaacga cgtcttcttc aaattagtgg 8580 acaagteeae egageteaae gaggageett tgatgegett egggaggetg ttgeegteet 8640 tcgtcagcag tgaaaatgct ttttacttgt ccccagatat caggaaacag tgtgattggt 8700 tccaagggga ccaacccaca aagaaccttg tgaagtttgg tcacaaacaa gtaaatgttc cgaataacgt tacttcaagt cctacatcca acccagtgac gacaacgaag ccggtgacta cgacgaagcc ggtgaccacc acaacaaagc ctgtaaccac cacaacaaag cctgtgacta ttataaatca gccatctgtg aagccagccg ctgcaaagcc ggcccctgcg aaacctgtgg 8940 etgecaagee tgtggccaca aagaeggcca etgttagace eecagtggeg gtgaagecag 9000 caacagcagc gaagcctgta gcagcaaagc cagcagctgt aagacccccc gctgctgctg 9060 caaaaccagt ggcgaccaag cctgaggtcc ctaggccaca ggcagccaaa ccagctgcca 9120 ccaagccagc caccactaag cccgtggtta agatgctccg tgaagtccag gtgtttgaga 9180 taacagagaa cagcgccaaa ctccactggg agaggcctga gccccccggt ccttattttt 9240 atgaceteae egteacetea geceatgate agtecetggt tetgaageag aaceteaegg 9300 teacggaceg egteattgga ggeetgeteg etgggeagae ataceatgtg getgtggtet 9360 gctacctgag gtctcaggtc agagccacct accacggaag tttcagtaca aagaaatctc 9420 agececeace tecacageca geaaggteag ettetagtte aaccateaat etaatggtga 9480 gcacagaacc attggctctc actgaaacag atatatgcaa gttgccgaaa gacgaaggaa 9540 cttgcaggga tttcatatta aaatggtact atgatccaaa caccaaaagc tgtgcaagat 9600

tctggtatgg	aggttgtggt	ggaaacgaaa	acaaatttgg	atcacagaaa	gaatgtgaaa	9660
aggtttgcgc	tectgtgete	gccaaacccg	gagtcatcag	tgtgatggga	acctaagcgt	97.20_
gggtggccaa	catcatatac	ctcttgaaga	agaaggagtc	agccatcgcc	aacttgtctc	9780
tgtagaagct	ccgggtgtag	attcccttgc	actgtatcat	ttcatgcttt	gatttacact	9840
cgaactcggg	agggaacatc	ctgctgcatg	acctatcagt	atggtgctaa	tgtgtctgtg	9900
gaccctcgct	ctctgtctcc	agcagttctc	tcgaatactt	tgaatgttgt	gtaacagtta	9960
gccactgctg	gtgtttatgt	gaacattcct	atcaatccaa	attccctctg	gagtttcatg	10020
ttatgcctgt	tgcaggcaaa	tgtaaagtct	agaaaataat	gcaaatgtca	cggctactct	10080
atatactttt	gcttggttca	tttttttcc	cttttagtta	agcatgactt	tagatgggaa	10140
gcctgtgtat	cgtggagaaa	caagagacca	actttttcat	tccctgcccc	caatttccca	10200
gactagattt	caagctaatt	ttcttttct	gaagcctcta	acaaatgatc	tagttcagaa	10260
ggaagcaaaa	tcccttaatc	tatgtgcacc	gttgggacca	atgccttaat	taaagaattt	10320
aaaaaagttg	taatagagaa	tatttttggc	attcctctca	atgttgtgtg	tttttttt	10380
ttgtgtgctg	gagggagggg	atttaatttt	aattttaaaa	tgtttaggaa	atttatacaa	10440
agaaactttt	taataaagta	tattgaaagt	ttaaaaaaaa	aaaaaaaa		10488

<210> 22 <211> 1044 <212> DNA <213> Homo sapiens

<400> 22

gaattccctg	aggaggcgaa	tccggcgggt	atcagagcca	tcagaaccgc	caccatgacg	60
gtgggcaaga	gcagcaagat	gctgcagcat	attgattaca	ggatgaggtg	catcctgcag	120
gacggccgga	tcttcattgg	caccttcaag	gcttttgaca	agcacatgaa	tttgatcctc	180
tgtgactgtg	atgagttcag	aaagatcaag	ccaaagaact	ccaaacaagc	agaaagggaa	240
gagaagcgag	tecteggtet	ggtgctgctg	cgaggggaga	atctggtctc	aatgacagta	300
gagggacctc	ctcccaaaga	tactggtatt	gctcgagttc	cacttgctgg	agctgccggg	360
ggcccaggga	tcggcagggc	tgctggcaga	ggaatcccag	ctggggttcc	catgccccag	420
gctcctgcag	gacttgctgg	gccagtccgt	ggggttggcg	ggccatccca	acaggtgatg	480
accccacaag	gaagaggtac	tgttgcagcc	gctgcagctg	ctgccacagc	cagtattgcc	540
ggggctccaa	cccagtaccc	acctggccgt	gggggtcctc	ccccacctat	gggccgagga	600
gcaccccctc	caggcatgat	gggcccacct	cctggtatga	gacctcctat	gggtccccca	660
atggggatcc	cccctggaag	agggactcca	atgggcatgc	cccctccggg	aatgeggeet	720

cetecectg ggatgegagg cettetttga ecettggeca cagagtatgg aagtagetee 780
geagaggegt gggetegatt ceteagggee aegttaceae agacetgttt gtttettatg 840
etgttgtteg tggagtetea tgggattgte tggttteeet tacagggece cetececegg 900
gaatgegeee accaaggeee tagacteate ttggeeetee teageteeet geetgtttee 960
egtaaggetg tacatagtee ttttatetee ttgtggeeta tgaaactggt ttataataaa 1020
etettaagag aacattataa ttge 1044

<210> 23

<211> 1475

<212> DNA

<213> Homo sapiens

<400> 23

gtegacgegg cegegeteeg etecegtgag taacttgget cegggggete egetegeetg 60 ecegeacyce geoegecace caggaceycy cegeeggeet ecycegetay caaaccette 120 egaeggeeet egetgegeaa geegggaege eteteeeeee teegeeeeeg eegeggaaag 180 ttaagtttga agagggggga agaggggaac atggacatga agaggaggat ccacctggag 240 300 gatggaaaaa ttgagggctt aacagctgaa tttgtgaact tagagttcct cagtttaata 360. aatgtagget tgateteagt tteaaatete eecaagetge etaaattgaa aaagettgaa 420 % ctcagtgaaa atagaatctt tggaggtctg gacatgttag ctgaaaaact tccaaatctc 480 . 540 acacatctaa acttaagtgg aaataaactg aaagatatca gcaccttgga acctttgaaa aagttagaat gtctgaaaag cctggacctc tttaactgtg aggttaccaa cctgaatgac 600 taccgagaga gtgtcttcaa gctcctgccc cagcttacct acttggatgg ctatgaccga 660 gaggaccagg aagcacctga ctcagatgcc gaggtggatg gtgtggatga agaggaggag 720 gacgaagaag gagaagatga ggaagacgag gacgatgagg atggtgaaga agaggagttt 780 gatgaagaag atgatgaaga tgaagatgta gaaggggatg aggacgacga tgaagtcagt 840 gaggaggaag aagaatttgg acttgatgaa gaagatgaag atgaggatga ggatgaagag 900 gaggaagaag gtgggaaagg tgaaaagagg aagagagaaa cagatgatga aggagaagat 960 gattaagacc ccagatgacc tgcagaaaca gaactgttca gtattggttg gactgctcat 1020 ggattttgta gctgtttaaa aaaaaaaaa aggtagctgt gatacaaacc ccaggacacc 1080 cacccaccca aagagccaaa gaatagttee tgtgacatte egeetteett eeatgtagte 1140 1200 cctcttggta atctaccacc aagcttgtgg acttcacccc aacaaaattg taagcgttgt 1260 taggtttttg tgtaagattc ttgctgtagc gtggatagct gtgattggtg agtcaaccgt

ctgtggctac cagttacact gagattgtaa cagcattttt actttctgta caacaaaaa	1320
gctttgtaaa taaaatctta acattttggg tctgtttttt catgctttgc tttttaatta	.1380.
ttattattat tttttttaca ttaggacatt ttatgtgaca actgccaaaa aagtattttt	1440
aagaatttaa gegaaataaa cagttaetet ttgge	1475
<210> 24 <211> 2690 <212> DNA <213> Homo sapiens	
<400> 24 getetttet egggaeggga gaggeegtgt agegtegeeg ttaeteegag gagataecag	б0
toggtagagg agaagtogag gttagaggga actgggaggo actttgctgt otgcaatoga	120
agttgagggt gcaaaaatgc agagtaataa aacttttaac ttggagaagc aaaaccatac	180
tccaagaaag catcatcaac atcaccacca gcagcagcac caccagcagc aacagcagca	240
geogecacca ecgecaatae etgeaaatgg geaacaggee ageagecaaa atgaaggett	300
gactattgac ctgaagaatt ttagaaaacc aggagagaag accttcaccc aacgaagccg	360
tetttttgtg ggaaatette etecegaeat eactgaggaa gaaatgagga aactatttga	420
gaaatatgga aaggcaggcg aagtcttcat tcataaggat aaaggatttg gctttatccg	480
cttggaaacc cgaaccctag cggagattgc caaagtggag ctggacaata tgccactccg	540
tggaaagcag ctgcgtgtgc gctttgcctg ccatagtgca tcccttacag ttcgaaacct	600
tectcagtat gtgtccaacg aactgetgga agaageettt tetgtgtttg gecaggtaga	660
gagggctgta gtcattgtgg atgatcgagg aaggccctca ggaaaaggca ttgttgagtt	720
ctcagggaag ccagctgctc ggaaagctct ggacagatgc agtgaaggct ccttcctgct	780
aaccacattt cctcgtcctg tgactgtgga gcccatggac cagttagatg atgaagaggg	840
acttccagag aagctggtta taaaaaacca gcaatttcac aaggaacgag agcagccacc	900
cagatttgca cagcetgget cetttgagta tgaatatgce atgegetgga aggeacteat	960
tgagatggag aagcagcagc aggaccaagt ggaccgcaac atcaaggagg ctcgtgagaa	1020
gctggagatg gagatggaag ctgcacgcca tgagcaccag gtcatgctaa tgagacagga	1080
tttgatgagg cgccaagaag aacttcggag gatggaagag ctgcacaacc aagaggtgca	1140
aaaacgaaag caactggagc tcaggcagga ggaagagcgc aggcgccgtg aagaagagat	1200
gcggcggcac gaagaagaaa tgatgcggcg acacgaggaa ggattcaagg gaaccttccc	1260
tgatgcgaga gagcaggaga ttcggatggg tcagatggct atgggaggtg ctatgggcat	1320
aaacaacaga ggtgccatgc cccctgctcc tgtgccagct ggtaccccag ctcctccagg	1380

acctgccact atgatgccgg atggaacttt gggattgacc ccaccaacaa ctgaacgctt 1440 tggtcaggct gctacaatgg aaggaattgg ggcaattggt ggaactcctc ctgcattcaa 1500 ccgtgcagct cctggagctg aatttgcccc aaacaaacgt cgccgatact aataagttgc 1560 agtgtctagt ttctcaaaac ccttaaaaga aggacccttt ttggactagc cagaattcta 1620 ccctggaaaa gtgttaggga ttccttccaa tagttagatc taccctgcct gtactactct 1680 aagggattee tteeaatagt tagatetaee etgeetgtae taetetaggg agtatgetgg 1740 aggcagaggg caagggaggg gtggtattaa acaatgcaat tctgtgtggt atattgttta 1800 atcagttctg tgtggtgcat tcctgaagtc tctaatgtga ctgttgaggg cctgggggaaa 1860 1920 tttgtccatc ttgtttcatt tgcttgcccc gcccccgaga cggagtctta ctctgtcgcc 1980 caggetggag tgtagtggca tgatetegge teactgeaat etetgeetee egggtteaag 2040 cttgtccagg ttgatcttga actcctgacc tcgtgatcta cccacctcgg tctcccaaaa 2100 tgctgggatt acaggggtga gccaccgtgc ccaacctcac ttgcttctta tccttacact 2160 2220 ccccagccc cagagaaact gccacataca ccacaaaaac caaacatgcc ccaatgacct tagccccatt gctccattca ctcccaggtg agaattcagg caaacgtcca caaaggtcac 2280 2340 aggcagcqta catacqqttc tqttataccc catatattac cccttcatgt cctaaagaag 2400 acattttctc ttagagattt tcattttagt gtatctttaa aaaaaaaatc ttgtgttaac 2460 ttgcctccat cttttcttg gggtgaggga caccagggaa tgaccctttt gtgtctatga 2520 tgttgctgtt cacagctttt cttgataggc ctagtacaat cttgggaaca gggttactgt atactgaagg tetgacagta getettagae tegeetatet taggtagtea tgetgtgeat 2580 2640 tttttttttc attggtgtac tgtgtttgat ttgtctcata tatttggagt ttttctgaaa 2690 aatggagcag taatgcagca tcaacctatt aaaatacttt taagcctttt

<400> 25

60	ctgcaggctt	tggttggaag	teggggagee	agggaacatc	gagcaccacc	cagttacagg
120	aacatccctt	gtcttgcctt	tgtggggagg	ctgactgccc	ctgcgggtct	agtctgtcgg
180	ccgggcagaa	cgctgtttgg	gaaggggtta	ctgcttggaa	gcaaagaaat	gcatttggct
240	tcatcgtcct	ttgctgagta	getectectg	ccgccagaat	gcagaacttg	actccgctga
300	ggatcgtggg	gtcagccaat	ctccacgatc	tgctgttcgt	gtgctggtgc	ccacgtcgcg

<210> 25

<211> 1828

<212> DNA

<213> Homo sapiens

caatggacac	gcaactgatc	tctggcagaa	ctgtagcacc	tcttcctcag	gaaatgtcca	360
ccactgtttc	tcatcatcac	caaacgaatg	gctgcagtct	gtccaggcca	ccatgatcct.	420
gtcgatcatc	ttcagcattc	tgtctctgtt	cctgttcttc	tgccaactct	tcaccctcac	480
caaggggggc	aggttttaca	tcactggaat	cttccaaatt	cttgctggtc	tgtgcgtgat	540
gagtgctgcg	gccatctaca	cggtgaggca	cccggagtgg	catctcaact	cggattactc	600
ctacggtttc	gcctacatcc	tggcctgggt	ggccttcccc	ctggcccttc	tcagcggtgt	660
catctatgtg	atcttgcgga	aacgcgaatg	aggcgcccag	acggtctgtc	tgaggctctg	720
agcgtacata	gggaagggag	gaagggaaaa	cagaaagcag	acaaagaaaa	aagagctagc	780
ccaaaatccc	aaactcaaac	caaaccaaac	agaaagcagt	ggaggtgggg	gttgctgttg	840
attgaagatg	tatataatat	ctccggttta	taaaacctat	ttataacact	ttttacatat	900
atgtacatag	tattgtttgc	tttttatgtt	gaccatcagc	ctcgtgttga	gccttaaaga	960
agtagctaag	gaactttaca	tcctaacagt	ataatccagc	tcagtatttt	tgttttgttt	1020
tttgtttgtt	tgttttgttt	tacccagaaa	taagataact	ccatctcgcc	ccttcccttt .	1080
catctgaaag	aagatacctc	cctcccagtc	cacctcattt	agaaaaccaa	agtgtgggta	1140
gaaaccccaa	atgtccaaaa	gcccttttct	ggtgggtgac	ccagtgcatc	caacagaaac	1200
agccgctgcc	cgaacctctg	tgtgaagctt	tacgcgcaca	cggacaaaat	gcccaaactg	1260
gagcccttgc	aaaaacacgg	cttgtggcat	tggcatactt	gcccttacag	gtggagtatc	1320
ttcgtcacac	atctaaatga	gaaatcagtg	acaacaagtc	tttgaaatgg	tgctatggat	1380
ttaccattcc	ttattatcac	taatcatcta	aacaactcac	tggaaatcca	attaacaatt	1440
ttacaacata	agatagaatg	gagacctgaa	taattctgtg	taatataaat	ggtttataac	1500
tgcttttgta	cctagctagg	ctgctattat	tactataatg	agtaaatcat	aaagccttca	1560
tcactcccac	atttttctta	cggtcggagc	atcagaacaa	gcgtctagac	tccttgggac	1620
cgtgagttcc	tagagcttgg	ctgggtctag	gctgttctgt	gcctccaagg	actgtctggc	1680
aatgacttgt	attggccacc	aactgtagat	gtatatatgg	tgcccttctg	atgctaagac	1740
tccagacctt	ttgtttttgc	tttgcatttt	ctgattttat	accaactgtg	tggactaaga	1800
tgcattaaaa	taaacatcag	agtaactc				1828

<210> 26

<211> 500

<212> DNA

<213> Homo sapiens

<400> 26

gctctcagag gcagcgtgcg ggtgtgctct ttgtgaaatt ccaccatggc gtaccgtggc

cagggtcaga aagtgcagaa ggttatggtg cagcccatca acctcatctt cagatactta 120 caaaatagat cgcggattca ggtgtggctc tatgagcaag tgaatatgcg gatagaaggc 180 tgtatcattg gttttgatga gtatatgaac cttgtattag atgatgcaga agagattcat 240 tctaaaacaa agtcaagaaa acaactgggt cggatcatgc taaaaggaga taatattact 300 ctgctacaaa gtgtctccaa ctagaaatga tcaatgaagt gagaaattgt tgagaaggat 360 acagtttgtt tttagatgtc ctttgtccaa tgtgaacatt tattcatatt gttttgatta 420 ccctcgtgtt actacaagat ggcaataaat actatgggat tgtttgtatt aaaaaattta 480 500 cattgcttct taaaaaaaa <210> 27 4661 <212> DNA <213> Homo sapiens <400> 27 getggaettg cetgeggtga cacctgetee cetetgagag etteaggtte teeggeetge 60 cttcactggt ttgtgtccag agccggactg attctctcaa tttgcgatct tcagcctgtt 120 aaacaagaaa acgaaaaacc ccttccagaa aacatggatg catttgaaaa agtgagaaca 180 aaattagaaa cacagccaca agaagaatat gaaatcatca atgtggaagt taaacatggt 240 ggttttgttt attaccaaga aggttgttgc ttggttcgtt ccaaagatga agaagcagac 300 360 aatgataatt atgaagtttt attcaatttg gaggaactta agttagacca gcccttcatt gattgtatca gagttgctcc agatgaaaaa tatgtggctg ccaagataag aactgaagat 420 tctgaagcat ctacctgtgt aattataaag ctcagcgatc agcccgtaat ggaagcttct 480 ttcccgaatg tgtccagttt tgaatgggta aaggacgagg aagatgaaga tgttttattc 540 tacaccttcc agaggaacct tegetgteat gacgtatate gagecacttt tggtgataac 600 660 aaacgtaatg aacgetttta cacagaaaaa gacecaaget aetttgtttt cetttatett acaaaagaca gtcgtttcct caccataaat attatgaaca agactacttc tgaagtgtgg 720 ttgatagatg gcctgagccc ttgggaccca ccagtactta tccagaagcg aatacatggg 780 gtcctttact atgttgaaca cagagatgat gaattataca ttctcactaa tgttggagaa 840 cctacagaat ttaagctaat gagaacagcg gctgataccc ctgcaattat gaattgggat 900 960 ttatttttta caatgaagag aaatacaaaa gtgatagact tggacatgtt taaggatcac tgtgttctat ttctgaagca cagcaatctc ctttatgtta atgtgattgg tctggctgat 1020 gattcagttc ggtctctaaa gctccctcct tgggcctgtg gattcataat ggatacaaat 1080 1140 tetgacecaa agaactgeee ettteaaett tgeteteeaa taegteeeee aaaatattae

	acatacaagt	ttgcagaagg	caaactgttt	gaggaaactg	ggcatgaaga	cccaatcaca	1200
	aagactagto	gcgttttacg	tetagaagee	_aaaagcaagg	atggaaaatt	agtgccaatg	1260
	actgttttcc	acaaaactga	ctctgaggac	ttgcagaaga	aacctctctt	ggtacatgta	1320
	tatggagctt	atggaatgga	tttgaaaatg	aatttcaggo	ctgagaggcg	ggtcctggtg	1380
	gatgatggat	ggatattagc	atactgccat	gttcgaggtg	gtggtgagtt	aggcctccag	1440
	tggcacgctg	atggccgcct	aactaaaaaa	ctcaatggcc	ttgctgattt	agaggcttgc	1500
	attaagacgc	ttcatggcca	aggcttttct	cagccaagtc	taacaaccct	gactgctttc	1560
	agtgctggag	gggtgcttgc	aggagcattg	tgtaattcta	atccagagct	ggtgagagcg	1620
	gtgactttgg	aggcaccttt	cttggatgtt	ctcaacacca	tgatggacac	tacacttcct	1680
	ctgacattag	aagaattaga	agaatggggg	aatccttcat	ctgatgaaaa	acacaagaac	1740
•	tacataaaac	gttactgtcc	ctatcaaaat	attaaacctc	agcattatcc	ttcaattcac	1800
•	ataacggcat	atgaaaacga	tgaacgggta	cctctgaaag	gaattgtaag	ttatactgag	1860
•	aaactcaagg	aagccatcgc	ggagcatgct	aaggacacag	gtgaaggcta	tcagacccct	1920
i	aatattattc	tagatattca	gcctggaggc	aatcatgtaa	ttgaggattc	tcacaaaaag	1980
ě	attacagece	aaattaaatt	cctgtacgag	gaacttggac	ttgacagcac	cagtgttttc	2040
9	gaggatctta	agaaatacct	gaaattctga	aacactgcat	tcaactggga	attggaaaca	2100
•	cactgaaata	tttcatagtc	ttacttccaa	ttgagttagc	aaaaaaaaa	ttaataactt	2160
9	gagactttta	agttattaat	tttttaaaat	gtgcttctcc	atctaaattt	tgcttagtct	2220
â	acatctcact	tgcttatact	attcctccat	tgatgcacat	gcccattaac	ctaggaaagt	2280
ē	agttttcaaa	tcatgctcct	tagaaggatg	tggagtagag	ggaagggaag	gattggtgat	2340
ć	agcagagctc	caggcetece	ttccagtcag	aacagttgag	cagtttacaa	attagtgtcc	2400
t	geetetttg	ctagcaaatg	cttttagaca	ctgtggcagt	gagtcatcct	ctaatttcta	2460
t	gactgcatt	ttaagggaaa	agataaaatt	cttcccctta	aaattcgtta	aagtttttga	2520
ē	ataatctggg	gtcctaatgt	gttctggtca	tccctgattg	atgctatctg	aataaagtta	2580
t	aagctccta	taagccataa	tttactttta	aacattttat	ttttttcaaa	acatttgaga	2640
ŧ	acctttctta	aagcggttac	attcaagcta	cagaaatatc	gaagaattaa	tgattgttca	2700
C	caagcagca	tgctgtacat	gaagctatta	caaatgctta	caatcccact	gaaatgccag	2760
t	gtcttcatc	tcttcataaa	ggtgcctaac	acgaggtata	cagtatgttc	agtacactgg	2820
а	atagcatgc	tcgattggaa	acaaagcatc	tatctctgaa	agctgtttgg	cgatgaagga	2880
9	attcttcgt	gttgtgttca	aagatgagtc	cctctccctt	gtccagaaaa	atgccacttg	2940
t	atcaacttt	actgcctttg	tcggcagaat	tggtacttaa	ccttattctt	attttagcgg	3000

gaaggeeega aateatatta tgtagattta aeagtgttga tteteeaaaa tteagaacea 3060 cgataaagat tctgtcgatg ccatccagct ctcttgtgta cacaacatag tggctgtcat 3120 tecteaaatg geaaaaceag eeeetgttga ggagtagete attggeatga agtagaetta 3180 aatcttgata taacttcaaa geegatetgg getgagtett ttggacetat tttttaaaa 3240 aagtatttac gtaagtgttt gattctaaga attgtttgta agtattttta atatattgta 3300 aggagttatt tacccaaaac acttgctcca attttgcccc ttataattgc caaattgtaa 3360 gcatcaataa gtaggtaaga acaatttata taaaaactga tagaaatgac aaattcgggg 3420 tttcggettg tccgggagte aataagtacg cacagtgete tgetacattg tagagtttet 3480 gtagagatca aatttgactc cactttagga gtcccaaagc aaatgtccat gtctaagatg 3540 aatatttaac ttgcatagtc attctgtgct atattgtaac tgccagatgg ccagaaagaa 3600 ggcaacagtg gactcagact tctgaggaat ttgggtttgt tcccctttgt agactaatgt 3660 gtaggttget gttgtgcgaa gategtgtaa etttageaga eatgtattte ttgcaeaget 3720 aatagaagac aaagttgaaa aaaaggatgc aaaataaaaa gctgcctaag gtgaaagtta 3780 gaaattgtag acttttttt accataatag tatgtgttca ttgaagatga tttgggttta 3840 ttttacagct atataaaaca taatttgatg atgtacttct aacctttcaa gcattttctg 3900 ttattgacta tataatatag cctccataaa tgtttttaat gacaatattc tgttgaacgg 3960 ttgtaccata ctcagccatg ccctttcatt ttgacgatag tgtttctaat attttgtatt 4020 4080 tttattcccc tcccccatt tttgtattac ttaagataga ttatcagaaa gacagttact ttgtcaaaga gtatgggcac ttgatacata atgccaaatt attcttcata agagctgttg 4140 ccaaatcagt gataatgttc atttaattgt attcttgcca gccatgttta ctggggtgat 4200 agttgttatt gtggttgtta ttgttcttta ggggtaggtt cccaatatgt ggtctttaaa 4260 taattateta atggtgttta aaaagatgtt tattetgttt gteaggtaea aagatattta 4320 tgatacatgt atgacttgtc taagttatta acattttctc tagccttagg taatgcatga 4380 aagcacatgt ttcagtgcca ctcacataag aagtgcccgg taagtgttag ctattattgt 4440 ctacttgagt tactactttc taaaagtatg ttgaagtctt tttctgtaat tgcagatttg 4500 ttgattttgc atttgagtat tttctatatt ttgaagctgt tagatgcata gtcatgattt 4560 ttggtggaat gttttatcaa tttttgaaaa ttgcctttgt ctcatataat gcttttcata 4620 ttgaactata ttttgtctgc tattaaatac ttccaagcct g 4661

<210> 28

<211> 1135

<212> DNA

<213> Homo sapiens

	<400> 28						
		a acgaaggtac	catggccgga	ctccggagcc	gcacaaacca	gggctcgcca	60
1	tgaagccag	g attcagtccc	cgtgggggtg	gctttggcgg	ccgaggggc	tttggtgacc	120
4	gtggtggtc	g tggaggccga	gggggctttg	gcgggggccg	aggtcgaggc	ggaggcttta	180
9	gaggtcgtg	g acgaggagga	ggtggaggcg	gcggcggcgg	tggaggagga	ggaagaggtg	240
9	gtggaggct	t ccattctggt	ggcaaccggg	gtcgtggtcg	gggaggaaaa	agaggaaacc	300
i	agtcgggga	a gaatgtgatg	gtggagccgc	atcggcatga	gggtgtcttc	atttgtcgag	360
•	gaaaggaag	a tgcactggtc	accaagaacc	tggtccctgg	ggaatcagtt	tatggagaga	420
i	agagagtet	c gatttcggaa	ggagatgaca	aaattgagta	ccgagcctgg	aaccccttcc	480
•	gctccaagc	t agcagcagca	atcctgggtg	gtgtggacca	gatccacatc	aaaccggggg	540
•	ctaaggttc	t ctacctcggg	gatgaatagg	gcaccacggt	ctcccatgtc	tctgacatcg	600
1	ttggtccgg	a tggtctagtc	tatgcagtcg	agttctccca	ccgctctggc	cgtgacctca	660
1	ttaacttgg	c caagaagagg	accaacatca	ttcctgtgat	cgaggatgct	cgacacccac	720
i	acaaatacc	g catgctcatc	gcaatggtgg	atgtgatctt	tgctgatgtg	gcccagccag	780
i	accagaccc	g gattgtggcc	ctgaatgccc	acaccttcct	gcgtaatgga	ggacactttg	840
٠	tgatttcca	t taaggccaac	tgcattgact	ccacagcete	agccgaggcc	gtgtttgcct	900
,	ccgaagtga	a aaagatgcaa	caggagaaca	tgaagccgca	ggagcagttg	acccttgagc	960
•	catatgaaa	g agaccatgcc	gtggtcgtgg	gagtgtacag	gccacccccc	aaggtgaaga	1020
i	actgaagtt	c agcgctgtca	ggattgcgag	agatgtgtgt	tgatactgtt	gcacgtgtgt	1080
1	ttttctatt	a aaagactcat	ccgtcaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaa	1135
	<210> 29 <211> 67 <212> DN. <213> Ho <400> 29				·		
		c tgcgggctgc	ggggagctaa	gtccccagat	tggaggaggc	tggctctggt	60
,	cttcgatgc	a caggagtggc	cgttatggaa	cgcagcagca	gcgtgcaggg	tcaaagacag	120
	ccggccccc	c atgtcagtgg	tctaggatgg	ccagtgaagg	caccaacatc	ccaagtcctg	180
,	tggtgcgcc	a gattgacaag	cagtttctga	tttgcagtat	atgcctggaa	cggtacaaga	240
•	atcccaagg	t teteceetgt	ctgcacactt	tctgcgagag	gtgcctgcag	aactacattc	300
•	ctgcccaca	g tttaaccctc	tectgeccag	tgtgccgcca	gacctccatc	ctgcccgaga	360
							_

aaggggtggc cgcgctccag aacaatttct tcatcacaaa cctgatggac gtgctgcagc 420

gaactccagg	cagcaacgct	gaggagtett	ccatcctgga	gacagtcact	gctgtggctg	480
cgggaaagcc	tctctcttgc	ccaaaccacg	atgggaatgt	gatggaattt	tactgccagt	540.
cctgtgagac	tgccatgtgt	cgggagtgca	cggagggga	gcacgcagag	caccccacag	600
ttccactcaa	ggatgtggtg	gaacagcaca	aggcctcgct	ccaggtccag	ctggatgctg	660
tcaacaaaag	gctcccagaa	atagattctg	ctcttcagtt	catctctgaa	atcattcatc	720
agttaaccaa	ccaaaaggcc	agcatcgtgg	atgacattca	ttccaccttt	gatgagetee	780
agaagacttt	aaatgtgcgc	aagagtgtgc	tgcttatgga	attggaggtc	aactatggcc	840
tcaaacacaa	agtcctccag	tcgcagctgg	atactctgct	ccaggggcag	gagagcatta	900
agagctgcag	caacttcaca	gcgcaggccc	tcaaccatgg	cacggagacc	gaggtcctac	960
tggtgaagaa	gcagatgagc	gagaagctga	acgagctggc	cgaccaggac	ttccccttgc	1020
acccgcggga	gaacgaccag	ctggatttca	tcgtggaaac	cgaggggctg	aagaagtcca	1080
tccacaacct	cgggacgatc	ttaaccacca	acgccgttgc	ctcagagaca	gtggccacgg	1140
gcgaggggct	gcggcagacc	atcatcgggc	agcccatgtc	cgtcaccatc	accaccaagg	1200
acaaagacgg	tgagctgtgc	aaaaccggca	acgcctacct	caccgccgaa	ctgagcaccc	1260
ccgacgggag	cgtggcagac	ggggagatcc	tggacaacaa	gaacggcacc	tatgagtttt	1320 🕌
tgtacactgt	ccagaaggaa	ggggacttta	ccctgtctct	gagactctat	gaccagcaca	1380
tccgaggcag	cccgtttaag	ctgaaagtga	tccgatccgc	tgatgtgtct	cccaccacag	1440
aaggcgtgaa	gaggcgcgtt	aagtccccgg	ggagcggcca	cgtcaagcag	aaagctgtga	1500 8
aaagacccgc	aagcatgtac	agcactggaa	aacgaaaaga	gaatcccatc	gaagacgatt	1560
tgatctttcg	agtgggtacc	aaaggaagaa	ataaaggaga	gtttacaaat	cttcaggggg	1620
tagctgcatc	tacaaatgga	aagatattaa	ttgcagacag	taacaaccaa	tgtgtgcaga	1680
tattttccaa	tgatggccag	ttcaaaagtc	gttttggcat	acggggacgc	tctccggggc	1740
agctgcagcg	gcccacagga	gtggctgtac	atcccagtgg	ggacataatc	attgccgatt	1800
atgataataa	atgggtcagc	attttctcct	ccgatgggaa	atttaagaca	aaaattggat	1860
caggaaagct	gatgggaccc	aaaggagttt	ctgtggaccg	caatgggcac	attattgttg	1920
tggacaacaa	ggcgtgctgc	gtgtttatct	tccagccaaa	cgggaaaata	gtcaccaggt	1980
ttggtagccg	aggaaatggg	gacaggcagt	ttgcaggtcc	ccattttgca	gctgtaaata	2040
gcaataatga	gattattatt	acagatttcc	ataatcattc	tgtcaaggtg	tttaatcagg	2100
aaggagaatt	catgttgaag	tttggctcaa	atggagaagg	aaatgggcag	tttaatgctc	2160
caacaggtgt	agcagtggat	tcaaatggaa	acatcattgt	ggccgactgg	ggaaacagca	2220

ggatccaggt	ttttgatggg	agtggatcat	ttttgtccta	cattaacaca	tctgctgacc	2280
cactctatgg	cccccaaggc	ctggccctaa	cttcagatgg	tcatgttgtg	.gttgcagact .	2340
ctggaaatca	ctgtttcaaa	gtctatcgat	acttacagta	atggtgggca	ggtggatacc	2400
cgcttccatg	gtcttgcact	ataaactgga	atggatttct	caatgcggga	ccagattatg	2460
actagagttt	ttatgccaga	aggaatcatt	ggtgaacttt	ccaaggttat	ttctgaatgt	2520
aacaatttcc	ttaaaaatga	cttatccaat	ttctgtattt	cacctttagg	gttaaaaaaa	2580
actettetae	tgaatctata	aaaactgcag	ttttacatct	gtgaactatg	gcttaaggga	2640
caggatttat	gtagctaaac	taattttgca	aatcaaacag	acacttaaaa	aaactagcat	2700
atgtaaaggt	attcgttaat	cctgtgaatg	gtagcttttg	cacagaactt	ccaaaagcaa	2760
aacaaaaaca	aaatctattg	tagttatata	cttcatttaa	cctaggtcac	aagacccagg	2820
gaatcttcta	acctcacttt	tacagtaggt	attactcttg	tgacattttt	ttggttatca	2880
acaactaaat	ataaattact	ttggaaaaag	taaggctgtc	ttgcaaaatg	atcccagctc	2940
tgattagcag	ccctctggag	ttcagaactt	aagtatcagt	gcaaatttct	caacctttct .	3000
gggttagaca	aagatccttt	tttgtgtgtt	cttttcacca	cccctttggc	tcaccttgta	3060
tcagcaaaca	aagtacttct	tcagggaaac	ctgaaatttc	taatgccttg	aaaagcatat	3120
tacaaaagta	atgctacctt	ttgggaaaca	aactgccccg	ttaactccag	atcattgcac	3180
tggaatgtaa	tcaagaaagt	tagtcatgtt	ttatgtacca	tgttttcaca	cgtgtctctt	3240
ctcttcgact	tcctgaaagc	gaaagcttta	cctcctgcaa	atgtcagcac	atgtagtagg	3300
acaccagtat	cctaggacag	agagccataa	gtagcccttt	ggaggactga	tggtgtcaac	3360
caaaggcatg	tgattgatta	atgattcccc	cttagaaagc	aagtgttacc	aaagttgtgt	3420
tatcttgaaa	gcattacagg	taagggcatg	ttatggttat	ttatcattgt	ttaatgaata	3480
gtagaggtgt	caagggacta	tgtatacatg	attagggtaa	gatagaatgt	attatatata	3540
tatatatata	tacacacaca	catatatata	gctgaatctt	tggtgtattg	aaataggcag	3600
cactctgaaa	gacagaagct	tcgtccagcc	actetteage	acattccttt	actaagcagt	3660
ttaaagccgt	cctagtggag	caagccctaa	agcagattta	atttttgcca	ttttccaaga	3720
atgacggtgg	tggcttttag	tcagaaaatg	gccttctgtg	ctttcaaaaa	aaaaacaaaa	3780
			acaggtcaaa			3840
			gaaatgttaa			3900
			tggtctattt			3960
			catttttgat			4020
cactgaaagc	accttagaac	tgtactataa	gaaaacattt	cccctatgta	taattatatg	4080

aatgtgatgt ttattgctta ttaatttata attcagtcat tctctatata ggacttctta 4140 aaatttagaa gggaaatcta gctacttcaa attgtctgtt aaatttatta tgcccaaatc 4200 4260 aacctctgaa aaaaggtttt tccaggaaga tttacattta ggtttaatat ttttttagtt aggtagagtt ttaaaaaata cttgagcctg tccgtgataa agctataaaa ttcaataact 4320 4380 ttttagaatg ttaaatgaag acactgtttc ctaacatcag tgagatacat ctttgaattt aaacattcat atttactgag tacctactag gtaccaagta ctcttttagg cactggaaat 4440 acagtgatgg acaaaacagg taaaaaatcg ctgcccctc agagctgaca ttctggggtg 4500 4560 qqaatttcat tttqccacgt actaacgttc tgcacaaaag acaggctaga ctcttgtcta gattgtttaa aagaaacttt tcaaattggt tacattaatt ttagtttatt ttcacaagta 4620 aaaatggctt tttatttaga ttctttctgt cccaggctgt tgatcttaaa actagttgat 4680 ttaaagagtt tttttgcaca acatttcaat tatatttgtg aacttagaaa ttaacttaca 4740 atctaaccag ccatcatatc atatcctatc aggctagata tctcaatagt agactgaata 4800 4860 caaagctaat ttttttaca tgtcaatatt ggcacaaact ggaatgaaag aatagtttga 4920 ttcagacctg ctccactatg tgttgctaaa acacatgcta tgagcactcg aggaaacact 4980 atattttttc caaaaaatat gtgattatat atgttaaagt atagataaca tttcacactt ggatacatat gtgcatttac tgtatttctt ggtaagcata tttttggggg aaagtgctgc 5040 tgatatgata caagtagaca aaatttaaat gaaattttgt cacattctat ggaaaatggt ttctggtaaa ctgagaagga tattaaaata agtggctttt ttctgggcta ccattattgt ttgatttctc tttgtcaagt gtatagaacc tgtcatacat tcatgataag tagcactgaa 5220 aaattactca ttcaaatttc ccctgggcac gtaaggcaaa atattgccgg ttgggatttc 5280 5340 aaggtcagtg acgacgcatt teeteccagt acagaceeee cageeeeeet tgetggacat 5400 ggggaggcag agagtcactt gaccatccag aaatacatga ctacaagtcc tttatgactg 5460 tttgccattt tttttaatgg tacttagtat tttgatcaaa ctttagtctc cagaactaaa 5520 caagtcccta agtttcctta ttttaattta ctgtgactag atttgaagca aataaatact 5580 ccagatecat gcagetagaa cacaettget tecaetaeta aatatacagg gtatgteeta 5640 acatggagtt aactggaata gcagtacact agcaagtatc tgtgaatcct tagcactgac 5700 qqqttaacag aaatgctttg gtaataccta cttagttaat tggaggaagt agtaaataaa 5760 cattaggtaa tetgeagatt aetteaaatg ggaaaaatet ttttgtagae tetatagtae 5820 cctctctatt cactagcttc tgaaaaggga ggagtatttt tagtttgaca atttaataat 5880 ttaaaaacaa gacatctcca ggtaggaaaa aatgaaagct atttcatgca aacattatct

aatttagett aaaagtgaaa gtggtaatae tgttggttte tgtaaatgtt geagggtttt 5940 aaactttata attactttaa tatttttgat aactagaaat ctagtattgc cataaaggaa 6000 actaagtgcc catcaaagat ttgtttggta taaataaaga attatttgtt ttgttttcaa 6060 tgacagtaag ctacaaatca tgatgcttaa aaactttcta aagatgaatt gtgtggcagt 6120 gattggtctg tttgtggaga atgtatgaaa gctattaata ttctagaata gattaataaa 6180 ttggctatgt tgttccaatg aatgtacagc acttccatta acttttgaaa gcaacacagc 6240 cttaaactca atgcttttgc tttatgacat gggaatgttc tgtcatcaat ggagtgtatt 6300 cttgtaatag aattetttat ategttetea attetataga ettteaagee tatgtatgaa 6360 tatgaagggg tittitittt titgettigt titettitta gattitgtae attecatett 6420 tataggtctg tttcatatgt tttatgtata gaacactaag tcttgcactc tctgacattg 6480 atactgatat attctcgtca tttgttcttt tatgaatcaa aatgttgact gcctatttaa 6540 agaaaagaat gaacgetgtg catcaaagtg tttgtatgtt cgtagctaca tacgtaccac 6600 agtattttgg atgctttagt ctacaatgaa actttcaatt aattctgtct tgaaacatag 6660 gagaaacagg attcatgtgt atctctttac catgcacaaa atctcaaatc attataataa 6720 agcttgtttt ctcc 6734 <210> 30 <211> 3744 DNA <213> Homo sapiens <400> ccacgcgtcc ggtggcggtc gagcgtggcg taggcgaatc ctcggcacta agcatatgga 60 cctcgcggcg gcagcggagc cgggcgccgg cagccagcac ctggaggtcc gcgacgaggt 120 ggccgagaag tgccagaaac tgttcctgga cttcttggag gagtttcaga gcagcgatgg 180 agaaattaaa tacttgcaat tagcagagga actgattcgt cctgagagaa acacattggt 240 tgtgagtttt gtggacctgg aacaatttaa ccagcaactt tccaccacca ttcaagagga 300 gttctataga gtttaccctt acctgtgtcg ggccttgaaa acattcgtca aagaccgtaa 360 agagateeet ettgeeaagg atttttatgt tgeatteeaa gaeetgeeta eeagaeacaa 420 gattcgagag ctcacctcat ccagaattgg tttgctcact cgcatcagtg ggcaggtggt 480 geggaeteae ecagtteace eagagettgt gageggaaet tttetgtget tggaetgtea 540 gacagtgatc agggatgtag aacagcagtt caaatacaca cagccaaaca tctgccgaaa 600 tecagtttgt gecaacagga ggagattett actggataca aataaateaa gatttgttga 660 ttttcaaaag gttcgtattc aagagaccca agctgagctt cctcgaggga gtatcccccg 720

cagtttagaa gtaattttaa gggctgaagc tgtggaatca gctcaagctg gtgacaagtg 780 tgactttaca gggacactga ttgttgtgcc tgacgtctcc aagcttagca caccaggagc 840 900 acqtqcaqaa actaattccc gtgtcagtgg tgttgatgga tatgagacag aaggcattcg 960 aggactccgg gcccttggtg ttagggacct ttcttatagg ctggtctttc ttgcctgctg tgttgcgcca accaacccaa ggtttggggg gaaagagctc agagatgagg aacagacagc 1020 tgagagcatt aagaaccaaa tgactgtgaa agaatgggag aaagtgtttg agatgagtca 1080 agataaaaat ctataccaca atctttgtac cagcctgttc cctactatac atggcaatga 1140 tgaagtaaaa cggggtgtcc tgctgatgct ctttggtggc gttccaaaga caacaggaga 1200 1260 agggacetet ettegagggg acataaatgt ttgcattgtt ggtgacecaa gtacagetaa 1320 gagecaattt eteaageaeg tggaggagtt cageeceaga getgtetaea eeagtggtaa 1380 agcgtccagt gctgctggct taacagcagc tgttgtgaga gatgaagaat ctcatgagtt tgtcattgag gctggagctt tgatgttggc tgataatggt gtgtgttgta ttgatgaatt 1440 tgataagatg gacgtgcggg atcaagttgc tattcatgaa gctatggaac agcagaccat 1500 atccatcact aaagcaggag tgaaggctac tctgaacgcc cggacgtcca ttttggcagc 1560 agcaaaccca atcagtggac actatgacag atcaaaatca ttgaaacaga atataaattt 1620 gtcagctccc atcatgtccc gattcgatct cttctttatc cttgtggatg aatgtaatga 1680 ggttacagat tatgccattg ccaggcgcat agtagatttg cattcaagaa ttgaggaatc 1740 1800 aattgatcgt gtctattccc tcgatgatat cagaagatat cttctctttg caagacagtt taaacccaag atttccaaag agtcagagga cttcattgtg gagcaatata aacatctccg 1860 ccagagagat ggttctggag tgaccaagtc ttcatggagg attacagtgc gacagcttga 1920 gagcatgatt cgtctctctg aagctatggc tcggatgcac tgctgtgatg aggtccaacc 1980 2040 taaacatgtg aaggaagctt tccggttact gaataaatca atcatccgtg tggaaacacc tgatgtcaat ctagatcaag aggaagagat ccagatggag gtagatgagg gtgccggtgg 2100 catcaatggt catgctgaca gccctgctcc tgtgaacggg atcaatggct acaatgaaga 2160 cataaatcaa gagtctgctc ccaaagcctc cttaaggctg ggcttctctg agtactgccg 2220 2280 aatetetaac ettattgtge tteaceteag aaaggtggaa gaagaagagg acgagteage 2340 attaaaqaqq aqcqaqcttg ttaactggta cttgaaggaa atcgaatcag agatagactc 2400 tgaagaagaa cttataaata aaaaaagaat catagagaaa gttattcatc gactcacaca ctatgatcat gttctaattg agctcaccca ggctggattg aaaggctcca cagagggaag 2460 tgagagetat gaagaagate eetaettggt agttaaceet aactaettge tegaagattg 2520 agatagtgaa agtaactgac cagagctgag gaactgtggc acagcacctc gtggcctgga 2580

480 aactactaca cctcggtgac ccctgtgctg cgcggccagc ccatctacat ccagttctcc aaccacaagg agctgaagac cgacagctct cccaaccagg cgcgggccca ggcggccctg 540 caggeggtga acteggteca gteggggaac etggeettgg etgeetegge ggeggeegtg 600 gacgcaggga tggcgatggc cgggcagagc cccgtgctca ggatcatcgt ggagaacctc 660 ttctaccctg tgaccctgga tgtgctgcac cagattttct ccaagttcgg cacagtgttg 720 aagatcatca ccttcaccaa gaacaaccag ttccaggccc tgctgcagta tgcggacccc 780 gtgagcgccc agcacgccaa gctgtcgctg gacgggcaga acatctacaa cgcctgctgc 840 900 acgctgcgca tcgacttttc caagctcacc agcctcaacg tcaagtacaa caatgacaag agecgtgact acacacgece agacetgeet teeggggaca gecagecete getggaceag 960 1020 accatggccg cggccttcgg tgcacctggt ataatctcag cctctccgta tgcaggagct ggtttccctc ccacctttgc cattcctcaa gctgcaggcc tttccgttcc gaacgtccac 1080 ggcgccctgg cccccctggc catcccctcg gcggcggcgg cagctgcggc ggcaggtcgg 1140 ategecatee egggeetgge gggggeagga aattetgtat tgetggteag caaceteaae 1200 ccagagagag tcacacccca aagcctcttt attcttttcg gcgtctacgg tgacgtgcag 1260 cgcgtgaaga tcctgttcaa taagaaggag aacgccctag tgcagatggc ggacggcaac 1320,caggcccagc tggccatgag ccacctgaac gggcacaagc tgcacgggaa gcccatccgc 1380 1440 atcacgetet egaageacea gaaegtgeag etgeeeegeg agggeeagga ggaeeaggge ctgaccaagg actacggcaa ctcacccctg caccgcttca agaagccggg ctccaagaac 1500 ttccagaaca tattcccgcc ctcggccacg ctgcacctct ccaacatccc gccctcagtc 1560 1620 teegaggagg ateteaaggt cetgttttee ageaatgggg gegtegteaa aggatteaag ttcttccaga aggaccgcaa gatggcactg atccagatgg gctccgtgga ggaggcggtc 1680 1740 caggccctca ttgacctgca caaccacgac ctcggggaga accaccacct gcgggtctcc 1800 ttctccaagt ccaccatcta ggggcacagg cccccacggc cgggccccct ggcgacaact 1860 tccatcattc cagagaaaag ccactttaaa aacagctgaa gtgaccttag cagaccagag attttatttt tttaaagaga aatcagttta cctgttttta aaaaaattaa atctagttca 1920 1980 ccttgctcac cctgcggtga cagggacagc tcaggctctt ggtgactgtg gcagcgggag 2040 ttcccggccc tccacacccg gggccagacc ctcggggcca tgccttggtg gggcctgtgt cgggcgtggg gcctgcaggt gggcgccccg accacgactt ggcttccttg tgccttaaaa 2100 aacctgoott cotgoageca cacacecace eggggtgtee tggggaceca aggggtgggg 2160 gggtcacacc agagagaggc agggggcctg gccggctcct gcaggatcat gcagctgggg 2220

cggccaccaa gaaggctgtg caaggcgggg gagccacccc cgtggtgggg gctgtccagg 540 ggcctgtccc gggcatgccg ccgatgactc aggcgccccg cattatgcac cacatgccgg 600 660 gecageegee ctacatgeeg ecceetggta tgateeceee gecaggeett geacetggee agateceace aggggeeatg ecceegeage agettatgee aggacagatg ecceetgeee 720 780 agectettte tgagaateea eegaateaca tettgtteet caccaacetg eeagaggaga 840 ccaacgaget catgetgtec atgettttea atcagttece tggetteaag gaggteegte 900 tggtacccgg gcggcatgac atcgccttcg tggagtttga caatgaggta caggcagggg cagetegega tgeeetgeag ggetttaaga teaegeagaa eaaegeeatg aagateteet 960 ttgccaagaa gtagcacctt ttccccccat gcctgcccct tcccctgttc tggggccacc 1020 1080 cetttecece ttggeteage eccetgaagg taagteeece ettgggggee ttettggage cgtgtgtgag tgagtggtcg ccacacagca ttgtacccag agtctgtccc cagacattgc 1140 acctggcgct gttaggccgg aattaaagtg gctttttgag gtttggtttt tcacaaaaaa 1200 1209 aaggaattc

<210> 33

<211> 1432

<212> DNA

<213> Homo sapiens

<400> 60 gctgttcggc ctgcgtcgct ccgggagctg ccgacggacg gagcgccccc gcccccgccc ggccgcccgc ccgccgccgc catgcccttc tccaacagcc acaacgcact gaagctgcgc 120 ttcccggccg aggacgagtt ccccgacctg agggccaca acaaccacat ggccaaggtg 180 240 ctgacccccg agctgtacgc ggagctgcgc gccaagagca cgccgagcgg cttcacgctg gacgacgtca tccagacagg cgtggacaac ccgggccacc cgtacatcat gaccgtgggc 300 tgcgtggcgg gcgacgagga gtcctacgaa gtgttcaagg atctcttcga ccccatcatc 360 420 gaggaccggc acggcggcta caagcccagc gatgagcaca agaccgacct caaccccgac 480 aacctgcagg gcggcgacga cctggacccc aactacgtgc tgagctcgcg ggtgcgcacg ggccgcagca tccgtggctt ctgcctcccc ccgcactgca gccgcgggga gcgccgcgc 540 600 atcgagaage tegeggtgga agecetgtee ageetggaeg gegaeetgge gggeegatae 660 tacqcgctca agagcatgac ggaggcggag cagcagcagc tcatcgacga ccacttcctc 720 ttcqacaagc ccgtgtcgcc cctgctgctg gcctcgggca tggcccgcga ctggcccgac gcccgcggta tctggcacaa tgacaataag accttcctgg tgtgggtcaa cgaggaggac 780 840 cacctgcggg tcatctccat gcagaagggg ggcaacatga aggaggtgtt cacccgcttc

tgcaccggcc tcacccagat tgaaactctc ttcaagtcta aggactatga gttcatgtgg 900 aacceteace tgggetacat ceteacetge ceatecaace tgggcacegg getgegggea.... 960 ggtgtgcata tcaagctgcc caacctgggc aagcatgaga agttctcgga ggtgcttaag 1020 cggctgcgac ttcagaagcg aggcacaggc ggtgtggaca cggctgcggt gggcggggtc 1080 ttcgacgtct ccaacgctga ccgcctgggc ttctcagagg tggagctggt gcagatggtg 1140 gtggacggag tgaagctgct catcgagatg gagcagcggc tggagcaggg ccaggccatc 1200 gacgacetea tgeetgeeca gaaatgaage ceggeecaca eeegacacea geeetgetge 1260 ttcctaactt attgcctggg cagtgcccac catgcacccc tgatgttcgc cgtctggcga 1320 geeettagee ttgetgtaga gaetteegte accettggta gagtttattt ttttgatgge 1380 taagatactg ctgatgctga aataaactag ggttttggcc tgcctgcgtc tg 1432 <210> 34 <211> 3309 DNA <213> Homo sapiens <400> 34 geggegegee egageetagt ecceaegeeg eggegegeee gggeteeetg etgateeeag 60 . aacaatcaac catgacgacc gaatctggat cagactcgga atccaagccg gaccaggagg 120 cegageeca ggaggeggeg ggggegegggg geegtgeegg ageegeecaa 180 ggaggagcag cagcaggccc tggagcagtt cgccgccgct gcagcgcaca gcaccccggt 240 gcgagggagg tcactgacaa ggaacaggag tttgctgcca gggctgcaaa acagctcgaa 300 tatcagcaat tagaagacga taaactttct cagaaatcat ctagcagtaa actctctcgg 360 tetecattaa agattgteaa aaageetaaa ageatgeagt geaaagtgat aettetegat 420 ggatcagaat atacctgtga tgtagagaaa cgctccagag gacaagtgct gtttgataaa 480 gtgtgtgaac acttgaactt gctagagaaa gactactttg ggcttacgta tcgagatgct 540 gaaaaccaga agaattggtt ggaccctgct aaggaaataa aaaaacaggt tcgaagtggt 600 gcttggcact tttcatttaa tgtgaaattt tatccaccag accctgccca actatctgaa 660 gatatcacca ggtactacct ctgcttgcag ttgcgagatg acatcgtgtc cggaaggctg 720 ccctgctcct ttgttaccct ggccttgctg ggctcctaca ctgtccagtc agagctcgga 780 gactatgacc cagatgaatg tgggagcgat tacattagtg agttccgctt tgcaccaaac 840 cacactaaag aactggaaga caaagtgate gagetgcaca agagecacag aggaatgaeg 900 ccagcagaag cagagatgca tttcttggaa aatgccaaaa aattatcaat gtatggggta 960 gatttacatc atgctaagga ctcagaaggg gtagaaatta tgttaggagt ttgtgcaagt 1020

. u. uupui

ggtctgttga tatatcgcga ccggctgcga ataaacagat ttgcctggcc caaggttcta 1080 aagatttcat acaaacggaa caacttttac attaagatcc ggccgggaga gtttgaacaa 1140 tttgaaagca ccattgggtt taagctgcca aaccatcgag ctgccaagcg tttatggaaa 1200 gtatgtgttg agcatcatac atttttcaga ctactgttac cagaagcacc tcccaagaaa 1260 1320 ttcctaacct tgggttccaa gtttcgttat agtggcagga cacaagcgca aacgagaaga gecagtgcgt tgatagatcg cccagcacct tactttgaac gctcatccag caaacgttat 1380 1440 accatgtctc gcagcttgga tggagcatca gtgaatgaaa accatgaaat atacatgaag 1500 gattctatgt ctgctgcaga ggttggtact ggccagtacg ccacaacaaa aggcatctct 1560 cagaccaact tgatcaccac tgtgactccg gagaagaagg ctgaggagga gcgggacgag 1620 gaagaggaca aacggaggaa gggggaagaa gtcacgccca tctcggccat ccagcacgag ggaaagactg acagtgageg caeggacace geageegaeg gggagaceae tgecaetgag 1680 gagctagaaa aaactcaaga tgacctgatg aaacatcaaa ccaacattag cgagctgaaa 1740 agaaccttct tagaaacctc aacagacact gccgtaacga atgaatggga gaagaggctt 1800 tocacctccc ccgtgcgact ggccgccagg caggaggatg cccccatgat cgaaccactt 1860 gtccctgaag agaaaatgga aaccaagacg gagtccagtg gatagagacg gaacccaccg 1920 1980 tgcaccacct gccgcttagc actgagaagg tggtgcagga gaccgtgttg gtggaggagc 2040 ggcgtgtggt gcacgcgagt ggggatgctt cttactcggc gggagacagc ggggatgctg 2100 1 cagcacagec egeatteaca ggcattaaag ggaaagaggg etetgettga eggaggggge taaagaggaa ggaggggagg aggtcgctaa agctgtcctg gaacaggaag agacagccgc 2220 tgcttcccgt gagcgacaag aggagcagag tgcagccatc cacatttcag aaactttgga acaaaaacct cattttgagt cctcaacggt gaagacggaa accatcagtt ttggcagtgt 2280 ttcaccggga ggagtaaagc tagaaatttc cacaagaagt gccagtagtt cacaccgaaa 2340 ccaaaaccat cacatatgaa tcatcacagg tcgatccagg cacagatctg gagccaggcg 2400 2460 tgctgatgag tgcacagacg atcacatctg aaaccaccag taccaccacc actacccaca tcaccaaaac tgtgaaaggg ggcatttcag agacaagaat tgagaagcga atagtcatca 2520 2580 cgggggatgc agacattgac catgaccagg cgctggctca ggcaattaaa gaggccaaag agcagcaccc tgacatgtca gtgaccaaag tagtggtcca taaagagaca gagatcacac 2640 2700 cagaagatgg agaggattga ccagaggaat aacttagctt gcacatgaat gcagtcatgc aaaccgttag gaaaaccaga gcctatatgg agttccctct tctaacccaa ctgtacttgt 2760 atctgtccgt ggaaaatttc agtccagaag aattgacctt gaccattaat aaagacactg 2820 2880 gcagagagat cttcccataa taaagcaatc tgattcagca tcactaaacc gataatgcat

gaagcaacga taaaattaca aaagagcagc atttttaatt ttcacaaaat gtctcagttt 2940 tragctatar rtgctrgttr ataaccaaca atataaaccg tggtrtratg taacacataa 3000 acaattcatg cctttcatag tttattatta ttaaagtcta aacaaaattg caatttctta 3060 ggtaacetta tatttacaat aaatgaagat taccetcaaa tgctagaage tgtctaggte 3120 cgtccggtgt gtcagatttc ctcagattag atgtgccaat aaccaagttt attcagtaaa 3180 caacttgtac ttgtttcatc tggtttatta ctctcaccca taaacagtaa tgactctctg 3240 accetetgga aatatgtaat getteeaate ttgetttgtg tateteattt aatttgttee 3300 ggttaagga 3309 <210> 35 1195 DNA <213> Homo sapiens <400> 35 ggcacgaggc gccagtcccc taaccctgag gctgccgcgc ggcggtcact gcgccggggt 60 agtgggcccc agtgttgcgc tetetggccg tteettacac tttgettcag getecagtge 120 aggggcgtag tgggatatgg ccaactcggg ctgcaaggac gtcacgggtc cagatgagga 180 gagttttctg tactttgcct acggcagcaa cctgctgaca gagaggatcc acctccgaaa 240 cccctcggcg gcgttcttct gtgtggcccg cctgcaggat tttaagcttg actttggcaa 300 ttcccaaggc aaaacaagtc aaacttggca tggagggata gccaccattt ttcagagtcc 360 tggcgatgaa gtgtggggag tagtatggaa aatgaacaaa agcaatttaa attctctgga 420 tgagcaagaa ggggttaaaa gtggaatgta tgttgtaata gaagttaaag ttgcaactca 480 agaaggaaaa gaaataacct gtcgaagtta tctgatgaca aattacgaaa gtgctccccc 540 atccccacag tataaaaaga ttatttgcat gggtgcaaaa gaaaatggtt tgccgctgga 600 gtatcaagag aagttaaaag caatagaacc aaatgactat acaggaaagg tctcagaaga 660 aattgaagac atcatcaaaa agggggaaac acaaactctt tagaacataa cagaatatat 720 ctaagggtat tctatgtgct aatataaaat atttttaaca cttgagaaca gggatctggg 780 ggatetecae gtttgateeg tttteageag tgetetgaag gagtatetta ettgggtgat 840 tccttgtttt tagactataa aaagaaactg ggataggagt tagacaattt aaaaggggtg 900 tatgagggcc tgaaatatgt gacaaatgaa tgtgagtacc ccttctgtga acactgaaag 960 ctattetett gaattgatet taagtgtete ettgetetgg taaaagatag atttgtaget 1020 cacttgatga tggtgctggt gaattgctct gctctgtctg agatttttaa aaatcagctt 1080 aatgagagta atctgcagac aattgataat aacattttga aaattggaaa gatggtatac

1140

tgtttttaga ggaataaacg t	atttgtggt	ttaaaaaaaa	aaaaaaaaa	aaaaa	1195
<210> 36 <211> 2035 <212> DNA <213> Homo sapiens					
<400> 36 gaatteeggg eteeggggat g	gaggtcgcgg	ccggcgggtc	ccgcgctgtt	gatgatgatg	60
ctcttcctcg gagcggccga g	gtcggtgcgt	cgggcccagc	ctccgcgccg	ctacacccca	120
gactggccga gcctggattc t	ceggeegetg	ccggcctggt	tcgacgaagc	caagttcggg	180
gtgttcatcc actggggcgt g	gttctcggtg	cccgcctggg	gcagcgagtg	gttctggtgg	240
cactggcagg gcgaggggcg g	gccgcagtac	cagcgcttca	tgcgcgacaa	ctacccgccc	300
ggcttcagct acgccgactt	cggaccgcag	ttcactgcgc	gcttcttcca	cccggaggag	360
tgggccgacc tcttccaggc	cgcgggcgcc	aagtatgtag	ttttgacgac	aaagcatcac	420
gaaggettea caaactggee	gagtcctgtg	tcttggaact	ggaactccaa	agacgtgggg	480
cctcatcggg atttggttgg	tgaattggga	acagctctcc	ggaagaggaa	catccgctat	540
ggactatacc actcactctt	agagtggttc	catccactct	atctacttga	taagaaaaat	600
ggcttcaaaa cacagcattt	tgtcagtgca	aaaacaatgc	cagagctgta	cgaccttgtt :	660
aacagctata aacctgatct	gatctggtct	gatggggagt	gggaatgtcc	tgatacttac	720
tggaactcca caaattttct	ttcatggctc	tacaatgaca	gccctgtcaa	ggatgaggtg ,!	780
gtagtaaatg accgatgggg	tcagaactct	tcctgtcacc	atggaggata	ctataactgt 🦏	840
gaagataaat tcaagccaca	gagcttgcca	gatcacaagt	gggagatgtg	caccagcatt	900
gacaagtttt cctggggcta	tcgtcgtgac	atggcattgt	ctgatgttac	agaagaatct	960
gaaatcattt cggaactggt	tcagacagta	agtttgggag	gcaactatct	tctgaacatt	1020
ggaccaacta aagatggact	gattgttccc	atcttccaag	aaaggcttct	tgctgttggg	1080
aaatggctga gcatcaatgg	ggaggctatc	tatgcctcca	aaccatggcg	ggtgcaatgg	1140
gaaaagaaca caacatctgt	atggtatacc	tcaaagggat	cggctgttta	tgccattttt	1200
ctgcactggc cagaaaatgg	agtcttaaac	cttgaatccc	ccataactac	ctcaactaca	1260
aagataacaa tgctgggaat	tcaaggagat	ctgaagtggt	ccacagatco	agataaaggt	1320
ctcttcatct ctctacccca	gttgccaccc	tetgetgtee	ccgcagagtt	tgcttggact	1380
ataaagetga caggagtgaa	gtaatcattt	gagtgcaaga	agaaagaggo	gctgctcact	1440
gttttcctgc ttcagttttt	ctcttatagt	accatcacta	taatcaacga	acttctcttc	1500
tccacccaga gatggctttt	ccaacacatt	ttaattaaag	gaactgagta	cattaccctg	1560

1140

atgtctaaat ggaccaaaga tctgagatcc attgtgatta tatctgtatc aggtcagcag 1620 aagaaggaac tgagcagttg aactetgagt tcatcaattc taatatttgg aaattatcta 1680 caatggaatc ttccctctgt tctctgataa cctacttgct tactcaatgc ctttaagcca 1740 agtcaccetg ttgcctatgg gaggaggtgg aaggatttgg caagetcaac cacatgctat 1800 ttagttagca tcagttgtca ccaacagtct ttctgcaaag ggcaggagag ctttggggga 1860 aaggaaaagg cttaccaggc tgctatggtc aactcttcag aaattttcag agcaatctaa 1920 aagcgccaaa attcgctatg tttacagtga tactattaag aaaatgaatg tgattctgct 1980 ctgtcttttt aagtatgatc aaataaaaaa tttgtacatc acaatcattt ctacc 2035 <210> 37 2133 <212> DNA <213> Homo sapiens <400> 37 cgggagageg cgctctgcct gccgcctgcc tgcctgccac tgagggttcc cagcaccatg. 60 agggcctgga tettetttet eetttgeetg geegggaggg eettggeage eectcageaa 120 gaagccctgc ctgatgagac agaggtggtg gaagaaactg tggcagaggt gactgaggta 180 tctgtgggag ctaatcctgt ccaggtggaa gtaggagaat ttgatgatgg tgcagaggaa 240 accgaagagg aggtggtggc ggaaaatccc tgccagaacc accactgcaa acacggcaag 300 gtgtgcgagc tggatgagaa caacacccc atgtgcgtgt gccaggaccc caccagctgc 360 ccagececca ttggegagtt tgagaaggtg tgcageaatg acaacaagae ettegaetet 420 tectgecact tetttgecac aaagtgeace etggagggea ceaagaaggg ceacaagete 480 cacctggact acatcgggcc ttgcaaatac atccccctt gcctggactc tgagctgacc 540 gaattccccc tgcgcatgcg ggactggctc aagaacgtcc tggtcaccct gtatgagagg 600 gatgaggaca acaaccttct gactgagaag cagaagctgc gggtgaagaa gatccatgag 660 aatgagaagc gcctggaggc aggagaccac cccgtggagc tgctggcccg ggacttcgag 720 aagaactata acatgtacat cttccctgta cactggcagt tcggccagct ggaccagcac 780 cccattgacg ggtacctctc ccacaccgag ctggctccac tgcgtgctcc cctcatcccc 840 atggagcatt gcaccacccg ctttttcgag acctgtgacc tggacaatga caagtacatc 900 gccctggatg agtgggccgg ctgcttcggc atcaagcaga aggatatcga caaggatctt 960 gtgatetaaa tecaeteett eeacagtace ggattetete tttaaccete eeettegtgt 1020 ttcccccaat gtttaaaatg tttggatggt ttgttgttct gcctggagac aaggtgctaa 1080 catagattta agtgaataca ttaacggtgc taaaaatgaa aattctaacc caagacatga

cattettage	tgtaacttaa	ctattaaggc	cttttccaca	cgcattaata	gtcccatttt	1200
tctcttgcca	tttgtagctt	tgcccattgt	cttattggca	catgggtgga	cacggatctg	1260
ctgggctctg	ccttaaacac	acattgcagc	ttcaactttt	ctctttagtg	ttctgtttga	1320
aactaatact	taccgagtca	gactttgtgt	tcatttcatt	tcagggtctt	ggctgcctgt	1380
gggcttcccc	aggtggcctg	gaggtgggca	aagggaagta	acagacacac	gatgttgtca	1440
aggatggttt	tgggactaga	ggctcagtgg	tgggagagat	ccctgcagaa	técaccaacc	1500
agaacgtggt	ttgcctgagg	ctgtaactga	gagaaagatt	ctggggctgt	cttatgaaaa	1560
tatagacatt	ctcacataag	cccagttcat	caccatttcc	tcctttacct	ttcagtgcag	1620
tttctttca	cattaggctg	ttggttcaaa	cttttgggag	cacggactgt	cagttctctg	1680
ggaagtggto	agcgcatcct	gcagggcttc	tectectetg	tcttttggag	aaccagggct	1740
cttctcaggg	gctctaggga	ctgccaggct	gtttcagcca	ggaaggccaa	aatcaagagt	1800
gagatgtaga	aagttgtaaa	atagaaaaag	tggagttggt	gaatcggttg	ttctttcctc	1860
acatttggat	gattgtcata	aggtttttag	catgttcctc	cttttcttca	ccctcccctt	1920
tgttcttcta	ttaatcaaga	gaaacttcaa	agttaatggg	atggtcggat	ctcacaggct	1980
gagaactcgt	tcacctccaa	gcatttcatg	aaaaagctgc	ttcttattaa	tcatacaaac	2040
tctcaccato	g atgtgaagag	tttcacaaat	ctttcaaaat	aaaaagtaat	gacttagaaa ;	2100
ctgaaaaaa	a aaaaaaaaaa	. aaaaaaaaaa	aaa		÷.	2133
<210> 38						
<211> 20						
<212> DNA <213> Hor						
	no baprens					
<400> 38	g ggaaaacaga	•				20
ugggugguu;	ggaaaaaaga	•				
<210> 39						
<211> 20	_					
<212> DN2 <213> HO	a mo sapiens					
<400> 39	a acacgaggct	:				20
<210> 40						
<211> 20						
<212> DN.	A mo sapiens					
	wo saprens					
<400> 40	t gaggtcatco	7				20
cccgagccg	- yayycoaco	9				

```
<210> 41
<212> DNA
       <213> Homo sapiens
       <400> 41
       tatagctcgg caccttcacc
                                                                     20
       <210> 42
       <211> 21
       <212> DNA
       <213> Homo sapiens
       <400> 42
       ctgcctgcca ctgagggttc c
                                                                     21
       <210> 43
       <211> 24
       <212> DNA
       <213> Homo sapiens
       <400> 43
       tccaggcaga acaacaaacc atcc
                                                                    24
       <210> 44
       <211> 20
<212> DNA
       <213> Homo sapiens
       <400> 44
       accaccacca ctacccacat
                                                                    20
       <210> 45
       <211> 20
       <212> DNA
       <213> Homo sapiens
       <400> 45
       tggttttcct aacggtttgc
                                                                    20
      <210> 46
<211> 21
<212> DNA
       <213> Homo sapiens
       <400> 46
      tgttggcgta caggtctttg c
                                                                    21
      <210> 47
      <211> 19
      <212> DNA
      <213> Homo sapiens
```

...

<400> 47 getacgaget geetgaegg

19

1

1

1

٠.

• •

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

Pour vous informer : INPI DIRECT

NShid (a) 0 825 83 85 87)

Télécopie: 33 (0)1 53 04 52 65

DÉSIGNATION D'INVENTEUR(S) Page N° 1../2..

(À fournir dans le cas où les demandeurs et les inventeurs ne sont pas les mêmes personnes)

	Cet imprimé est a remplir lisiblement à l'encre noire	DB 113 ⊕ W / 210103
Vos références pour ce dossier (facultatif)	BLASTOPUCE	
N° D'ENREGISTREMENT NATIONAL	FR03/11483	
TITRE DE L'INVENTION (200 caractères ou es	paces maximum)	
Procédé pour le diagnostic/propostic du	u neuroblastome	

LE(S) DEMANDEUR(S):

- bioMérieux
- Centre Léon Bérard

DESIGNE(NT) EN TANT QU'INVENTEUR(S):

Nom Nom		KRAUSE	
Prénoms		Alexander	
Adresse	Rue	67 rue Maryse Bastié	
	Code postal et ville	16 1 9 1 0 1 0 1 8 1 LYON	
	ppartenance (facultatif)		
2 Nom		COMBARET	
Prénoms		Valérie	
Adresse	Adresse Rue	70 rue Auguste Compte	
	Code postal et ville	l6 19101012 LYON	
Société d'a	ppartenance (facultatif)		
3 Nom		LACROIX	
Prénoms		Bruno	
Adresse	Rue	Chemin Montlouis	
	Code postal et ville	[6 19 12 13 10] SAINT-GENIS LAVAL	
Société d'a	Société d'appartenance (facultatif)		

S'il y a plus de trois inventeurs, utilisez plusieurs formulaires. Indiquez en haut à droite le N° de la page suivi du nombre de pages.

DATE ET SIGNATURE(S) DU (DES) DEMANDEUR(S) **OU DU MANDATAIRE** (Nom et qualité du signataire)

Marcy l'Etoile, le 10 mars 2004 Frédérique DENJEAN Ingénieur Brevets

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

Pour vous informer : INPI DIRECT (P) N (100 (0) 0 825 83 85 87) DÉSIGNATION D'INVENTEUR(S) Page N° 2../2..

(À fournir dans le cas où les demandeurs et les inventeurs ne sont pas les mêmes personnes)

relecople : 33 (0)1 53 0	14 32 03	Cet imprimé est à remplir lisiblement à l'encre noire	DB 113 ⊕ W / 210103	
Vos références p	our ce dossier (facultatif)	BLASTOPUCE		
N° D'ENREGIST	EMENT NATIONAL FR03/11483			
TITRE DE L'INVE	ENTION (200 caractères ou esp	paces maximum)		
Procédé pour	le diagnostic/pronostic du	neuroblastome		
LE(S) DEMAND	EUR(S) :			
- bioMérieux				
- Centre Léon	Rérard			
- Ochile Leon	D0.0.0		•	
DESIGNE(NT)	EN TANT QU'INVENTEUR	(S) :	\ddot{z}	
Nom		PUISIEUX		
Prénoms		Alain	<i>f.</i>	
	Rue	1 chemin du Petit Rozière		
Adresse	Code postal et ville	In a control of the c	in the second se	
Société d'ap	partenance (facultatif)	3 1 8 1 3 1 0 1 0 1 RUY MONTCEAU		
2 Nom	F		"1,	
Prénoms				
Adresse	Rue			
1	Code postal et ville			
	partenance (facultatif)			
3 Nom				
Prénoms				
Adresse	Rue			
	Code postal et ville			
	partenance (facultatif)			
	**************************************	olusieurs formulaires. Indiquez en haut à droite le N° de la pa	age sulvi du nombre de pages.	
	IGNATURE(S)			
DU (DES) DEMANDEUR(S) OU DU MANDATAIRE				
(Nom et qualité du signataire) Marcy l'Etoile, le 10 mars 2004 Frédérique DENJEAN				
Marcy l'Etoile, le 10 mars 2004				
Frédérique	e DENJEAN (// / ,		
Ingénieur	Brevets	\mathcal{N}		
Ingénieur				

La loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
GRAY SCALE DOCUMENTS		
LINES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.