

# Smart Contract Security Audit Report



# **Table Of Contents**

| 1 Executive Summary           |  |
|-------------------------------|--|
| 2 Audit Methodology           |  |
| 3 Project Overview            |  |
| 3.1 Project Introduction      |  |
| 3.2 Vulnerability Information |  |
| 4 Code Overview               |  |
| 4.1 Contracts Description     |  |
| 4.2 Visibility Description    |  |
| 4.3 Vulnerability Summary     |  |
| 5 Audit Result                |  |
| 6 Statement                   |  |



## **1 Executive Summary**

On 2024.04.30, the SlowMist security team received the Owlto team's security audit application for Owlto Depositor, developed the audit plan according to the agreement of both parties and the characteristics of the project, and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete security test on the project in the way closest to the real attack.

The test method information:

| Test method          | Description                                                                                                                           |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Black box testing    | Conduct security tests from an attacker's perspective externally.                                                                     |
| Grey box testing     | Conduct security testing on code modules through the scripting tool, observing the internal running status, mining weaknesses.        |
| White box<br>testing | Based on the open source code, non-open source code, to detect whether there are vulnerabilities in programs such as nodes, SDK, etc. |

The vulnerability severity level information:

| Level      | Description                                                                                                                                                                                                        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Critical   | Critical severity vulnerabilities will have a significant impact on the security of the DeFi project, and it is strongly recommended to fix the critical vulnerabilities.                                          |
| High       | High severity vulnerabilities will affect the normal operation of the DeFi project. It is strongly recommended to fix high-risk vulnerabilities.                                                                   |
| Medium     | Medium severity vulnerability will affect the operation of the DeFi project. It is recommended to fix medium-risk vulnerabilities.                                                                                 |
| Low        | Low severity vulnerabilities may affect the operation of the DeFi project in certain scenarios. It is suggested that the project team should evaluate and consider whether these vulnerabilities need to be fixed. |
| Weakness   | There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.                                                                                                                   |
| Suggestion | There are better practices for coding or architecture.                                                                                                                                                             |



# 2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

- Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using automated analysis tools.
- Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

| Serial Number | Audit Class                    | Audit Subclass                        |  |
|---------------|--------------------------------|---------------------------------------|--|
| 1             | Overflow Audit                 | -                                     |  |
| 2             | Reentrancy Attack Audit        | -                                     |  |
| 3             | Replay Attack Audit            | -                                     |  |
| 4             | Flashloan Attack Audit         | -                                     |  |
| 5             | Race Conditions Audit          | Reordering Attack Audit               |  |
| 6             | Permission Vulnerability Audit | Access Control Audit                  |  |
| 0             |                                | Excessive Authority Audit             |  |
|               |                                | External Module Safe Use Audit        |  |
| 7             |                                | Compiler Version Security Audit       |  |
|               |                                | Hard-coded Address Security Audit     |  |
|               | Security Design Audit          | Fallback Function Safe Use Audit      |  |
|               |                                | Show Coding Security Audit            |  |
|               |                                | Function Return Value Security Audit  |  |
|               |                                | External Call Function Security Audit |  |



| Serial Number | Audit Class                           | Audit Subclass                          |  |
|---------------|---------------------------------------|-----------------------------------------|--|
| 7             | Conveits Donige Audit                 | Block data Dependence Security Audit    |  |
| 7             | Security Design Audit                 | tx.origin Authentication Security Audit |  |
| 8             | Denial of Service Audit               | -                                       |  |
| 9             | Gas Optimization Audit                | -                                       |  |
| 10            | Design Logic Audit                    | -                                       |  |
| 11            | Variable Coverage Vulnerability Audit | -                                       |  |
| 12            | "False Top-up" Vulnerability Audit    | -                                       |  |
| 13            | Scoping and Declarations Audit        | -                                       |  |
| 14            | Malicious Event Log Audit             | -                                       |  |
| 15            | Arithmetic Accuracy Deviation Audit   | -                                       |  |
| 16            | Uninitialized Storage Pointer Audit   | -                                       |  |

## **3 Project Overview**

## 3.1 Project Introduction

This is a deposit contract of Owlto.

## 3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

| NO | Title            | Category | Level      | Status |
|----|------------------|----------|------------|--------|
| N1 | Redundant code   | Others   | Suggestion | Fixed  |
| N2 | Spelling mistake | Others   | Suggestion | Fixed  |



### **4 Code Overview**

## **4.1 Contracts Description**

**Audit Version:** 

owlto.tar

SHA256: 5d023df157b060584c1a1f12d10591fb7c7b56f57826430db03cbd736378fc38

**Fixed Version:** 

owlto\_v2.tar.gz

SHA256: 8802358d7159f4b140ad016924b426bd96d0256da302ab62c4090bafe4a280ca

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

## **4.2 Visibility Description**

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

| Depositor                    |            |                  |           |  |
|------------------------------|------------|------------------|-----------|--|
| Function Name                | Visibility | Mutability       | Modifiers |  |
| <constructor></constructor>  | Public     | Can Modify State | -         |  |
| <receive ether=""></receive> | External   | Payable          | -         |  |
| isOwltoDepositor             | Public     | -                | -         |  |
| deposit                      | External   | Payable          | -         |  |

## 4.3 Vulnerability Summary

[N1] [Suggestion] Redundant code

**Category: Others** 

Content



There are useless codes in the file and codes that are not used in actual business.

Code Location:

Depositor.sol#L225-227

```
contract Depositor {
    ...
    error NotOwnerError();
    error LengthError();
    error ZeroAddressError();
    ...
}
```

#### Solution

It is recommended to remove redundant commented code and useless code.

#### **Status**

Fixed

#### [N2] [Suggestion] Spelling mistake

#### **Category: Others**

#### **Content**

Spelling mistake was identified within the code.

Code Location:

Depositor.sol

```
function isContractt(address account) internal view returns (bool) {
    // This method relies on extcodesize, which returns 0 for contracts in
    // construction, since the code is only stored at the end of the
    // constructor execution.

uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
```



```
function callOptionalReturn(IERC20 token, bytes memory data) private {
    ...
    require(address(token).isContractt(), "SafeERC20: call to non-contract");
    ...
}
```

#### Solution

It is recommended that isContractt be changed to isContract, as this will avoid confusion during development.

Proper spelling can also help convey a sense of professionalism to the various project stakeholders.

#### **Status**

Fixed

## **5 Audit Result**

| Audit Number   | Audit Team             | Audit Date              | Audit Result |
|----------------|------------------------|-------------------------|--------------|
| 0X002404300006 | SlowMist Security Team | 2024.04.30 - 2024.04.30 | Passed       |

Summary conclusion: The SlowMist security team uses a manual and SlowMist team's analysis tool to audit the project, during the audit work we found 2 suggestion vulnerabilities. All the findings were fixed. The code was not deployed to the mainnet.

65. SIIII



## 6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this project, and is not responsible for them. The security audit analysis and other contents of this report are based on the documents and materials provided to SlowMist by the information provider till the date of the insurance report (referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with, deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not responsible for the background and other conditions of the project.



## **Official Website**

www.slowmist.com



# E-mail

team@slowmist.com



## **Twitter**

@SlowMist\_Team



## **Github**

https://github.com/slowmist