Multilingual Anchoring: Interactive Topic Modeling and Alignment across Languages

Michelle Yuan¹ Benjamin Van Durme² Jordan Boyd-Graber¹

 1 University of Maryland 2 John Hopkins University

Authors

Michelle Yuan UMD

Benjamin Van Durme JHU

Jordan Boyd-Gi UMD

- Large text collections often require topic triage quickly in low-resource settings (e.g. natural disaster, political instability).
- disaster, political instability).

 Analysts need to examine multilingual text collections, but are scarce in one or more

languages.

Generative Approaches

- ▶ Polylingual Topic Model (Mimno et al., 2009)
- ▶ JointLDA (Jagarlamudi and Daumé, 2010)
- Polylingual Tree-based Topic model (Hu et al., 2014b)
- ► MCTA (Shi et al., 2016)

Generative Approaches

- ▶ Polylingual Topic Model (Mimno et al., 2009)
- JointLDA (Jagarlamudi and Daumé, 2010)
- Polylingual Tree-based Topic model (Hu et al., 2014b)
- ► MCTA (Shi et al., 2016)

These methods are slow, assume extensive knowledge about languages, and preclude human refinement.

Anchor words

Definition

An **anchor word** is a word that appears with *high* probability in one topic but with *low* probability in all other topics.

From Co-occurrence to Topics

- Normally, we want to find p(word | topic) (Blei et al., 2003).
- ► Instead, what if we can easily find p(word | topic) through using anchor words and conditional word co-occurrence p(word 2 | word 1)?

From Co-occurrence to Topics

$$\bar{Q}_{i,j} = p(w_2 = j \mid w_1 = i)$$

From Co-occurrence to Topics

$$\bar{Q}_{i,j} = p(w_2 = j \mid w_1 = i)$$

$$\begin{split} \bar{Q}_{\mathsf{liner}} &\approx C_1 \bar{Q}_{\mathsf{carburetor}} + C_2 \bar{Q}_{\mathsf{concealer}} + C_3 \bar{Q}_{\mathsf{album}} \\ &= 0.4 * \begin{bmatrix} 0.3 \\ \cdots \\ 0.1 \end{bmatrix} + 0.2 * \begin{bmatrix} 0.1 \\ \cdots \\ 0.2 \end{bmatrix} + 0.4 * \begin{bmatrix} 0.1 \\ \cdots \\ 0.4 \end{bmatrix} \end{split}$$

- If an anchor word appears in a document, then its corresponding topic is among the set of topics used to generate document (Arora et al., 2012).
- Anchoring algorithm uses word co-occurrence to find anchors and gradient-based inference to recover topic-word distribution (Arora et al., 2013).
- Runtime is fast because algorithm scales with number of unique word types, rather than number of documents or tokens.

1. Construct co-occurrence matrix from documents with vocabulary of size V:

$$\bar{Q}_{i,j} = p(w_2 = j \mid w_1 = i).$$

1. Construct co-occurrence matrix from documents with vocabulary of size V:

$$\bar{Q}_{i,j} = p(w_2 = j \mid w_1 = i).$$

Given anchor words s₁,..., s_K, approximate co-occurrence distributions:

$$\bar{Q}_i \approx \sum_{k=1}^K C_{i,k} \bar{Q}_{s_k}$$
 subject to $\sum_{k=1}^K C_{i,k} = 1$ and $C_{i,k}$

1. Construct co-occurrence matrix from documents with vocabulary of size V:

$$\bar{Q}_{i,j} = p(w_2 = j \mid w_1 = i).$$

Given anchor words s₁,..., s_K, approximate co-occurrence distributions:

$$\bar{Q}_i \approx \sum_{k=1}^K C_{i,k} \bar{Q}_{s_k}$$
 subject to $\sum_{k=1}^K C_{i,k} = 1$ and $C_{i,k}$

3. Find topic-word matrix:

$$A_{i,k} = p(w = i | z = k) \propto p(z = k | w = i)p(w = i)$$

$$= C_{i,k} \sum_{i=1}^{V} \bar{Q}_{i,j}.$$

- ▶ So far, we assume that anchor words are given.
- ▶ How do we find anchor words from documents?

Anchor words are the vertices of the co-occurrence convex hull.

Anchor words are the vertices of the co-occurrence convex hull.

Anchor words are the vertices of the co-occurrence convex hull.

Topics

music concert singer voice chorus songs album singer pop songs music album chorale jazz cosmetics makeup eyeliner lipstick foundation primer eyesh

Topics

music concert singer voice chorus songs album singer pop songs music album chorale jazz cosmetics makeup eyeliner lipstick foundation primer eyesh

Duplicate topics.

Topics

music band art history literature books earth bts taehyung idol kpop jin jungkook jimin

Topics

music band art history literature books earth bts taehyung idol kpop jin jungkook jimin

Ambiguous topics. Overly-specific topics.

Interactive Anchoring

- Incorporating interactivity in topic modeling has shown to improve quality of model (Hu et al., 2014a).
- Anchoring algorithm offers speed for interactive work, but single anchors are unintuitive to users
- Ankura is an interactive topic modeling system that allows users to choose multiple anchors for each topic (Lund et al., 2017).
- After receiving human feedback, Ankura only takes a few seconds to update topic model.

Interactive Anchoring

- Incorporating interactivity in topic modeling has shown to improve quality of model (Hu et al., 2014a).
- Anchoring algorithm offers speed for interactive work, but single anchors are unintuitive to users.
- Ankura is an interactive topic modeling system that allows users to choose multiple anchors for each topic (Lund et al., 2017).
- After receiving human feedback, Ankura only takes a few seconds to update topic model.

These methods only work for monolingual document collections.

Linking Words

Definition

 $\mbox{\bf Language} \ \mathcal{L} \ \mbox{is a set of word types} \ w.$

Linking Words

Definition

Language $\mathcal L$ is a set of word types w.

Definition

Bilingual dictionary \mathcal{B} is a subset of the Cartesian product $\mathcal{L}^{(1)} \times \mathcal{L}^{(2)}$, where $\mathcal{L}^{(1)}, \mathcal{L}^{(2)}$ are two, different languages.

Linking Words

Definition

Language \mathcal{L} is a set of word types w.

Definition

Bilingual dictionary \mathcal{B} is a subset of the Cartesian product $\mathcal{L}^{(1)} \times \mathcal{L}^{(2)}$, where $\mathcal{L}^{(1)}, \mathcal{L}^{(2)}$ are two, different languages.

Idea: If dictionary $\mathcal B$ contains entry (w,v), create a link between w and v.

Finding Multilingual Anchors

Finding Multilingual Anchors

Multilingual Anchoring

- Given a dictionary, create links between words that are translations of each other.
- Select an anchor word for each language such that the words are linked and span of anchor words is maximized.
- 3. Once anchor words are found, separately find topic-word distributions for each language.

▶ What if dictionary entries are scarce or

inaccurate?

languages?

► What if topics aren't aligned properly across

- What if dictionary entries are scarce or inaccurate?
- ► What if topics aren't aligned properly across languages?

Incorporate human-in-the-loop topic modeling tools.

MTAnchor

Experiments

Datasets:

- 1. Wikipedia articles (EN, ZH)
- 2. Amazon reviews (EN, ZH)
- 3. LORELEI documents (EN, SI)

Experiments

Metrics:

- 1. Classification accuracy
 - Intra-lingual: train topic model on documents in one language and test on other documents in the same languages
 - Cross-lingual: train topic model on documents in one language and test on other documents in a different language.
- 2. Topic coherence (Lau et al., 2014).
 - Intrinsic: use the trained documents as the reference corpus to measure local interpretability.
 - Extrinsic: use a large dataset (i.e. entire Wikipedia) as the reference corpus to measure global interpretability.

Comparing Models

		Classification accuracy			
Dataset	Method	EN-I	ZH-I SI-I	EN-C	ZH-C SI-C
Wikipedia	Multilingual anchoring	69.5%	71.2%	50.4%	47.8%
	MTAnchor (maximum)	80.7%	75.3%	57.6%	54.5%
	MTAnchor (median)	69.5%	71.4%	50.3%	47.2%
	MCTA	51.6%	33.4%	23.2%	39.8%
Amazon	Multilingual anchoring MCTA	59.8 % 49.5%	61.1 % 50.6%	51.7 % 50.3%	53.2 % 49.5%
LORELEI	Multilingual anchoring MCTA	20.8 % 13.0%	32.7 % 26.5%	24.5% 4.1%	24.7 % 15.6%

Comparing Models

		Topic coherence			
Dataset	Method	EN-I	ZH-I SI-I	EN-E	ZH-E SI-E
Wikipedia	Wikipedia Multilingual anchoring MTAnchor (maximum) MTAnchor (median) MCTA	0.14	0.18	0.08	0.13
		0.20	0.20	0.10	0.15
		0.14	0.18	0.08	0.13
		0.13	0.09	0.00	0.04
Amazon	Multilingual anchoring MCTA	0.07 -0.03	0.06 0.02	0.03 0.02	0.05 0.01
LORELEI	Multilingual anchoring MCTA	0.08 0.13	0.00	0.03 0.04	n/a n/a

Multilingual Anchoring Is Much Faster

Improving Topics Through Interactivity

Improving Topics Through Interactivity

Improving Topics Through Interactivity

Comparing Topics

Dataset	Method	Topic
Wikipedia	MCTA	dog san movie mexican fighter novel california 主演 改編 本 小説 拍攝 角色 戰士
	Multilingual anchoring	adventure daughter bob kong hong robert movie 主演 改編 本片 飾演 冒險 講述 編劇
	MTAnchor	kong hong movie office martial box reception 主演 改編 飾演 本片 演員 編劇 講述
Amazon	MCTA	woman food eat person baby god chapter 來貨 頂頂 水 耳機 貨物 張傑 傑 同樣
	Multilingual anchoring	eat diet food recipe healthy lose weight 健康 幫 吃 身體 全面 同事 中醫
LORELEI	MCTA Multilingual anchoring	help need floodrelief please families needed victim aranayake warning landslide site missing nbro areas

Why Not Use Deep Learning?

- Neural networks are data-hungry and unsuitable for low-resource languages
- Deep learning models take long amounts of time to train
- Pathologies of neural models make interpretation difficult (Feng et al., 2018)

Summary

- Anchoring algorithm can be applied in multilingual settings.
- People can provide helpful linguistic or cultural knowledge to construct better multilingual topic models.

Future Work

- Apply human-in-the-loop algorithms to other tasks in NLP.
- Better understand the effect of human feedback on cross-lingual representation learning.

References I

- Sanjeev Arora, Rong Ge, Yonatan Halpern, David Mimno, Ankur Moitra, David Sontag, Yichen Wu, and Michael Zhu. 2013. A practical algorithm for topic modeling with provable guarantees. In ICML.
- Sanjeev Arora, Rong Ge, and Ankur Moitra. 2012. Learning topic models–going beyond SVD. In Foundations of Computer Science (FOCS).
- David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. JMLR.
- Shi Feng, Eric Wallace, Alvin Grissom II, Pedro Rodriguez, Mohit Iyyer, and Jordan Boyd-Graber. 2018. Pathologies of neural models make interpretation difficult. In EMNLP.
- Yuening Hu, Jordan Boyd-Graber, Brianna Satinoff, and Alison Smith. 2014a. Interactive topic modeling. MLJ.
- Yuening Hu, Ke Zhai, Vlad Eidelman, and Jordan Boyd-Graber. 2014b. Polylingual tree-based topic models for translation domain adaptation. In ACL.
- Jagadeesh Jagarlamudi and Hal Daumé. 2010. Extracting multilingual topics from unaligned comparable corpora. In ECIR.
- Jey Han Lau, David Newman, and Timothy Baldwin. 2014. Machine reading tea leaves: Automatically evaluating topic coherence and topic model quality. In EACL.

References II

- Jeffrey Lund, Connor Cook, Kevin Seppi, and Jordan Boyd-Graber. 2017. Tandem anchoring: A multiword anchor approach for interactive topic modeling. In ACL.
- David Mimno, Hanna M Wallach, Jason Naradowsky, David A Smith, and Andrew McCallum. 2009. Polylingual topic models. In *EMNLP*.
- Bei Shi, Wai Lam, Lidong Bing, and Yinqing Xu. 2016. Detecting common discussion topics across culture from news reader comments. In ACL.