

本章内容 Topic

- □引言
- □布尔代数
- □卡诺图
- □从逻辑到门
- □多级组合逻辑

- □ X和Z
- □组合逻辑电路设计方法
- □组合逻辑中的时序问题
- □组合逻辑模块

本章内容

Topic

- □引言
- □ 布尔代数
- 口卡诺图
- □从逻辑到门
- □多级组合逻辑

- □ X和Z
- □组合逻辑电路设计方法
- □组合逻辑中的时序问题
- □组合逻辑模块

数字逻辑电路

- 数字逻辑电路(logic circuit)是一个可以处理离散值变量的网络
- 其中包括:
 - 一个或多个离散值输入端
 - 一个或多个离散值输出端
 - ■描述输入和输出关系的功能规范
 - 描述当输入改变时输出响应延迟的时序规范

结点和模块

- 电路由结点 (nodes) 和模块 (elements) 组成
- 结点是一段导线,通过电压传递离散值变量
 - 输入结点:接收外部的值(图中的A, B, C)
 - 输出结点:输出值到外部(图中的Y, Z)
 - 内部结点:不属于以上两者的结点(图中的n1)
- 模块本身是一个带有输入、输出、功能规范和时序规 范的电路
 - ■每一个模块本身都是一个电路
 - 图中的E1, E2, E3

数字逻辑电路的分类

- 组合逻辑电路(combinational logic)
 - 任一时刻的输出仅由该时刻的输入信号决定
 - 无记忆的,与电路状态无关
- 时序逻辑电路(sequential logic)
 - 任一时刻的输出由该时刻的输入和电路该时刻的 状态共同决定
 - 有记忆的,与电路状态有关

组合逻辑电路

- ■每个电路模块都是一个组合逻辑电路
- 每个电路结点:
 - ■或者是电路的输入
 - 或者是只连接电路模块的一个输出端
- 电路中不包含回路

在本课程中我们使用 **€** 符号 表示组合逻辑

思考: 下列哪些电路是组合逻辑电路?

本章内容

Topic

- □引言
- □布尔代数
- □卡诺图
- □从逻辑到门
- □多级组合逻辑

- □ X和Z
- □组合逻辑电路设计方法
- □组合逻辑中的时序问题
- □组合逻辑模块

布尔代数

Boolean Algebra

- 1 基本概念
- 2 公理
- 3 定理
- 4 最小项
- 5 最大项
- 6 标准与或式和标准或与式
- 7 布尔表达式与真值表的转换
- 8 使用定理化简表达式

乔治·布尔

- 乔治· 布尔(George Boole,1815~1864)
- 19世纪最重要的数学家之一
- 1854年,出版了*The Laws of Thought* 一书
- 直 在这本书中,对布尔代数进行了全面的介绍
- 布尔代数是研究数字电路的数学基础

基本概念

Basic Concepts

布尔代数的定义

- ■布尔代数中的变量取值只能为"真"(TRUE) 或"假"(FALSE)
- "1"表示真,"0"表示假
- 三种基本逻辑运算:
 - 「与", 运算符 · , 例: A·B 或 AB
 - ■"或", 运算符 +, 例: A+B

基本概念

Basic Concepts

基本概念

- 变量:可以使用A、B、C …… 或 a、b、c …… 来表示,取值只能为0或1
- 反变量(变量的非, Complement): 变量上面有一条横线

 \bar{A} , \bar{B} , \bar{C}

■ 项(Literal): 变量或它的反变量

 $A, \bar{A}, B, \bar{B}, C, \bar{C}$

布尔表达式

- 适用于描述组合逻辑电路中输入与输出间的功能规范
- M如: $S = F(A, B, C_{in})$

$$C_{\text{out}} = F(A, B, C_{\text{in}})$$

$$\begin{array}{c|c}
A & & \\
B & & \\
C_{\text{in}}
\end{array}$$

$$\begin{array}{c|c}
C & S \\
C_{\text{out}}$$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

布尔代数

Boolean Algebra

- 1 基本概念
- 2 公理
- 3 定理
- 4 最小项
- 5 最大项
- 6 标准与或式和标准或与式
- 7 布尔表达式与真值表的转换
- 8 使用定理化简表达式

布尔代数的公理

	公理		对偶公理	名称
A1	B = 0 如果 B ≠ 1	A1'	B = 1 如果 B ≠ 0	二进制量
A2	$\overline{0} = 1$	A2'	$\overline{1} = 0$	NOT
A3	$0 \cdot 0 = 0$	A3'	1 + 1 = 1	AND/OR
A4	$1 \cdot 1 = 1$	A4'	0 + 0 = 0	AND/OR
A5	$0 \cdot 1 = 1 \cdot 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

对偶规则

- 对偶(Duality)
 - UF为任意逻辑表达式,若将F中所有运算符和常量作如下变换

例:
$$F = A\overline{B} + C\overline{D}$$

 $F' = (A + \overline{B}) (C + \overline{D})$

- 则所得新的表达式为F的对偶式 F'
- 对偶是相互的, F和 F'互为对偶式
- 对偶规则: 两个逻辑表达式F和G相等,则对偶式F'和G'也相等

$$A(B+C) = AB + AC$$

対偶关系
 $A + BC = (A+B)(A+C)$

布尔代数

Boolean Algebra

- 1 基本概念
- 2 公理
- 3 定理
- 4 最小项
- 5 最大项
- 6 标准与或式和标准或与式
- 7 布尔表达式与真值表的转换
- 8 使用定理化简表达式

单变量定理

<u> </u>				
	定理		对偶定理	名称
T1	$B \cdot 1 = B$	T1'	B+0=B	同一性
T2	$B \cdot 0 = 0$	T2'	B + 1 = 1	零元
T3	$B \cdot B = B$	T3'	B + B = B	重叠
T4		$\overline{\overline{B}} = B$		回旋
T5	$B \cdot \overline{B} = 0$	T5'	$B + \overline{B} = 1$	互补

多变量定理

	定理		对偶定理	名称
T6	$B \cdot C = C \cdot B$	T6'	B+C=C+B	交換律
T7	$(B \cdot C) \cdot D = B \cdot (C \cdot D)$	T7'	(B+C)+D=B+(C+D)	结合律
T8	$(B \cdot C) + (B \cdot D) = B \cdot (C + D)$	T8'	$(B+C)\cdot (B+D)=B+(C\cdot D)$	分配律
T9	$B \cdot (B + C) = B$	T9'	$B + (B \cdot C) = B$	吸收律
T10	$(B \cdot C) + (B \cdot \overline{C}) = B$	T10'	$(B+C)\cdot (B+\overline{C})=B$	合并律
T11	$(B \cdot C) + (\overline{B} \cdot D) + (C \cdot D) = B \cdot C + \overline{B} \cdot D$	T11'	$(B+C)\cdot (\overline{B}+D)\cdot (C+D)$ = $(B+C)\cdot (\overline{B}+D)$	一致律
T12	$\overline{B_0 \cdot B_1 \cdot B_2 \dots} = \overline{B_0} + \overline{B_1} + \overline{B_2} \dots$	T12'	$\overline{B_0 + B_1 + B_2 \dots} = \overline{B_0} \cdot \overline{B_1} \cdot \overline{B_2} \dots$	德•摩根定律

德·摩根定律

定理的证明

主要思想:完全归纳法 证明在变量所有的可能取值的组合下,定理都能够成立

等号左右两端的表达式所对 应的真值表相等

真值表

表征逻辑表达式输入和输出 之间全部状态的表格

与逻辑真值表

A	В	F=A · B
0	0	0
0	1	0
1	0	0
1	1	1

布尔代数

Boolean Algebra

- 1 基本概念
- 2 公理
- 3 定理
- 4 最小项
- 5 最大项
- 6 标准与或式和标准或与式
- 7 布尔表达式与真值表的转换
- 8 使用定理化简表达式

基本概念

- in \underline{a} and \underline{a}
- 量最小项(Miniterm):包含全部输入变量的乘积项

 $AB\bar{C}$, $A\bar{B}\bar{C}$, ABC

■ 最大项(Maxterm):包含全部输入变量的求和项(Sum)

$$(A+B+\bar{C})$$
 , $(A+\bar{B}+\bar{C})$, $(A+B+C)$

最小项

- 量最小项是一种特殊的乘积项("与"项)
- ■最小项特点
 - ■n个变量逻辑函数的每个最小项,一定是包含n个因子的乘积项
 - 在各个最小项中,每个变量必须以原变量或反变量形式作为因子出现一次,而且仅出现一次 例:包含A、B两变量的最小项共有四项(2²)

 $\bar{A} \, \bar{B} \quad \bar{A} \, B \quad A \, \bar{B} \quad A \, B$

例:包含A、B、C三变量的最小项共有八项(23)

 $\bar{A}\,\bar{B}\,\bar{C}$ $\bar{A}\,\bar{B}\,C$ $\bar{A}\,B\,\bar{C}$ $\bar{A}\,B\,C$ $\bar{A}\,\bar{B}\,\bar{C}$ $\bar{A}\,\bar{B}\,C$ $\bar{A}\,B\,\bar{C}$ $\bar{A}\,B\,\bar{C}$ $\bar{A}\,B\,\bar{C}$ $\bar{A}\,B\,\bar{C}$

最小项的编号

- 最小项用 m_i 表示
 - ■m表示最小项
 - 下标 i 为使该最小项为1的变量取值所对应的等效十进制数

■ 例: 最小项 ĀBC

要使该最小项为1, A、B、C的取值应为0、1、1

二进制数 011所等效的十进制数为 3,所以 \overline{A} B $C=m_3$

三变量最小项编号表

最小项	使最小项	页为1的变量	对应的十	编号	
	А	В	С	进制数	細ケ
$ar{A} \ ar{B} \ ar{C}$	0	0	0	0	m_0
$ar{A} \ ar{B} \ C$	0	0	1	1	m_1
$\bar{A} B \bar{C}$	0	1	0	2	m_2
ĀBC	0	1	1	3	m_3
$A \bar{B} \bar{C}$	1	0	0	4	m_4
$A \overline{B} C$	(1	0	1	5	m_5
$AB\bar{C}$	1	1 \	0	6	m_6
ABC	1	1	1	7	m_7

三变量最小项真值表

	D	<u> </u>	m_0	m_1	m_2	m_3	$m_3 \mid m_4 \mid m_5 \mid m_6 \mid$		m_7	
A	В	С	$\bar{A} \; \bar{B} \; \bar{C}$	$\bar{A} \; \bar{B} \; C$	$\bar{A} B \bar{C}$	$\bar{A} B C$	$A \bar{B} \bar{C}$	$A \overline{B} C$	$A B \bar{C}$	ABC
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

从表中可以看出, 每个最小项只有一 组变量取值能使其 值为1,而其他各组 取值该最小项皆为 0。由这种"与"函 数真值表中1的个 数最少, 而得名 "最小项"

最小项的性质

- ① 变量任取一组值,仅有一个最小项为1,其他最小项为0
 - 例: 变量ABC的值为010, 只有最小项 $\overline{A}B\overline{C}$ (m_2) 能使其为1

$$\bar{A} \bar{B} \bar{C} = \bar{A} \bar{B} C = \bar{A} B C = A \bar{B} \bar{C} = A \bar{B} C = A B \bar{C} = A B C = 0$$

② n变量的全体最小项(共有2ⁿ个)之和恒为1

$$\sum_{n=1}^{2^{n}-1} m_i = 1$$

③ n个变量任意两个不同的最小项相与, 结果恒为0

最小项的性质(cont.)

- 4 两最小项相邻,相邻最小项相"或",可以合并成一项,并可以消去一个变量因子
- 相邻: 两最小项如仅有一个变量因子不同, 其他变量均相同, 则称这两个最小项相邻
- 例: $ABC + AB\bar{C} = AB$

- 任一n变量的最小项,必定和其他n个不同最小项相邻 (每一变量取反都是相邻项)
- 例: ABC与ĀBC、ABC、ABC 相邻

布尔代数

Boolean Algebra

- 1 基本概念
- 2 公理和定理
- 3 最小项
- 4 最大项
- 5 标准与或式和标准或与式
- 6 布尔表达式与真值表的转换
- 7 使用定理化简表达式

最大项

- 最大项是一种特殊的和项("或"项)
- ■最大项特点
 - n个变量构成的每个最大项,一定是包含n个因子的"或"项;
 - 在各个最大项中,每个变量必须以原变量或反变量形式作为因子出现一次, 而且仅出现一次

例:包含A、B两变量的最大项共有四项(22)

$$\bar{A} + \bar{B}$$
 $\bar{A} + B$ $A + \bar{B}$ $A + B$

例:包含A、B、C三变量的最小项共有八项(23)

$$\bar{A} + \bar{B} + \bar{C}$$
 $\bar{A} + \bar{B} + C$ $\bar{A} + B + \bar{C}$ $\bar{A} + B + C$

$$A + \overline{B} + \overline{C}$$
 $A + \overline{B} + C$ $A + B + \overline{C}$ $A + B + C$

最大项编号

- \blacksquare 最大项用 M_i 表示
 - M 表示最大项
 - \blacksquare 下标 i 为使该最大项为0的变量取值所对应的等效十进制数

■ 例: 最大项 A + B + C

要使该最大项为 0, A、B、C的取值应为 1、 0、 0

二进制数 100 所等效的十进制数为 4, 所以 $\overline{A} + B + C = M_4$

三变量最大项编号表

最大项	使最っ	大项为0的变	对应的十	编号		
取入坝	А	В	С	进制数	利用 ケ	
A + B + C	0	0	0	0	M_0	
$A + B + \overline{C}$	0	0	1	1	M_1	
$A + \overline{B} + C$	0	1	0	2	M_2	
$A + \overline{B} + \overline{C}$	0	1	1	3	M_3	
$\overline{A} + B + C$	1	0	0	4	M_4	
$\overline{A} + B + \overline{C}$	1	0	1	5	M_5	
$\overline{A} + \overline{B} + C$	1	3~1	0	6	M ₆	
$\overline{A} + \overline{B} + \overline{C}$	1	1	1	7	M ₇	

三变量最大项真值表

Α	В	С	M_0	M_1	M_2	M_3	M_3 M_4 M_5 M_6 M_7	M_7		
Α	D	C	A+B+C	$A+B+\bar{C}$	$A + \bar{B} + C$	$A + \bar{B} + \bar{C}$	$ \bar{A} + B + C $	$ \bar{A} + B + \bar{C} $	$ \bar{A} + \bar{B} + C $	1
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	- 1	1	1	0	1
1	1	1	1	1	1	<u>, 1</u>	1	1	1	0

每个最大项只有对 应的1组变量取值 能使其值为0,正 因为这种"或"函数 真值表中1的个数 最多,所以得名 "最大项"

最大项的性质

- ① 变量任取一组值,仅有一个最大项为0,其它最大项为1
- 2 n变量的全体最大项之积为 0

$$\prod_{i=0}^{2^{n}-1} M_i = 0$$

③ 不同的最大项相或,结果为1

最大项的性质(cont.)

- 4 两相邻的最大项相"与",可以合并成一项(等于相同因子之和),并可消去一个变量因子
- 相邻: 两最大项如仅有一个变量因子不同, 其他变量均相同, 则称这两个最大项相邻
- **例**: $(A + B + C)(A + B + \bar{C}) = A + B$
- 证明: $= (A + B) + (A + B)\bar{C} + (A + B) + (A + B)C$ $= (A + B) + (A + B)(\bar{C} + C)$ $= (A + B) + (A + B) \cdot 1 = A + B$
- 任一n变量的最大项,必定和其他n个不同的最大项相邻

最小项和最大项的关系

- 编号下标相同的最小项和最大项互为反函数
- 即 $M_i = \overline{m_i}$ 或 $m_i = \overline{M_i}$

例
$$\mathbf{m}_0 = \bar{A} \, \bar{B} \, \bar{C} = \overline{A + B + C} = \overline{M_0}$$

$$M_0 = A + B + C = \overline{A} + \overline{B} + \overline{C} = \overline{m_0}$$

布尔代数

Boolean Algebra

- 1 基本概念
- 2 公理
- 3 定理
- 4 最小项
- 5 最大项
- 6 标准与或式和标准或与式
- 7 布尔表达式与真值表的转换
- 8 使用定理化简表达式

Canonical SOP & Canonical POS

标准与或式(sum-of-products)

- 由最小项之和构成的逻辑表达式
- 例: $F(A,B,C) = \bar{A} B \bar{C} + A \bar{B} \bar{C} + A B \bar{C}$ = $\sum (m_2, m_4, m_6)$ = $\sum (2, 4, 6)$
- 每个最小项都对应真值表中值为1的一行
- 标准与或式是最小项之间的或运算
- 标准与或式与真值表间——对应
- 国此,从标准与或式中可以直接判断哪些变量取值可以是表达式为1

А	В	С	F(A, B, C)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

标准与或式和标准或与式

Canonical SOP & Canonical POS

标准与或式具有唯一性

- 任一逻辑函数都可以表达为最小项之和的形式,而且是唯一的
- 例: $F(A,B,C) = AB + \bar{A}C$

$$= A B(\bar{C} + C) + \bar{A} C(\bar{B} + B)$$

$$=AB\bar{C}+ABC+\bar{A}\bar{B}C+\bar{A}BC$$

$$= m_6 + m_7 + m_1 + m_3$$

$$= \sum (1, 3, 6, 7)$$

标准与或式和标准或与式

Canonical SOP & Canonical POS

标准或与式(product-of-sums)

- ■最大项之积的构成的逻辑表达式
- 例: $F(A,B,C) = (A+B+C)(A+\overline{B}+C)(\overline{A}+B+C)$ $= \prod (M_0, M_2, M_4)$ $= \prod (0, 2, 4)$
- 任一逻辑函数都可以表达为最大项之积的形式,而且是唯一的

Canonical SOP & Canonical POS

标准与或式和标准或与式的关系

$$F = \sum_{i} m_{i} = \prod_{j \neq i} M_{j}$$

■ 推导:

$$F = \sum_{j \neq i} m_j$$

(根据最小项的性质,当 $m_i = 1$ 时,其它最小项都是0)

$$=\prod_{j\neq i}\overline{m_j}$$

(德·摩根定律)

$$= \prod_{j\neq i} M_j$$

(最小项和最大项的关系, $M_i = \overline{m_i}$)

布尔代数

Boolean Algebra

- 1 基本概念
- 2 公理
- 3 定理
- 4 最小项
- 5 最大项
- 6 标准与或式和标准或与式
- 7 布尔表达式与真值表的转换
- 8 使用定理化简表达式

Conversion Between Boolean Equation & Truth Table

布尔表达式→真值表

- 1 将变量的组合所有取值组合——代入表达式进行计算得到
- ② 将表达式转化为标准与或式

例:
$$F(A, B, C) = AB + BC$$

$$= AB(C + \bar{C}) + (A + \bar{A})BC$$

$$= ABC + AB\bar{C} + \bar{A}BC$$

$$= \sum m(3, 6, 7)$$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

布尔表达式与真值表的转换

Conversion Between Boolean Equation & Truth Table

布尔表达式→真值表(cont.)

③ 根据函数式的逻辑含义,直接填表

$$F(A,B,C) = AB + BC$$
 表示的逻辑含义为:

- 1. A和B同时为"1",即AB=1时,F=1
- 2. B和C同时为"1",即BC=1时,F=1
- 3. 当不满足上面两种情况时,F=0

V =	Α	В	С	F
- 13	0	0	0	0
	0	0	1	0
	0	1	0	0
BC同时为1	0	1	1	1
	1	0	0	0
	1	0	1	0
	1	1	0	1
AB同时为1	1	1	1	1
		•	,	

布尔表达式与真值表的转换

Conversion Between Boolean Equation & Truth Table

真值表→布尔表达式

■ 根据最小项的性质,直接从真值表写出标准与或式

$$F(A, B, C) = \sum m(3, 5, 6, 7)$$

■ 也可根据最大项的性质,直接写出标准或与式

$$F(A, B, C) = \prod M(0, 1, 2, 4)$$

	Α	В	С	F
	0	0	0	0
	0	0	1	0
	0	1	0	0
_	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1
	1	1	1	1

布尔代数

Boolean Algebra

- 1 基本概念
- 2 公理
- 3 定理
- 4 最小项
- 5 最大项
- 6 标准与或式和标准或与式
- 7 布尔表达式与真值表的转换
- 8 使用定理化简表达式

使用定理化简表达式

Simplifying Equations

使用定理化简表达式

例 1:

$$Y = AB + \overline{A}B$$

$$=B(A+\overline{A})$$
 T8 $(B\cdot C)+(B\cdot D)=B\cdot (C+D)$

$$= B(1)$$
 T5' $B + \overline{B} = 1$

$$= B$$
 $T1$ $B \cdot 1 = B$

使用定理化简表达式

Simplifying Equations

使用定理化简表达式(cont.)

例 2:

$$Y = A(AB + ABC)$$

$$= A(AB(1+C)) \qquad \text{T8} \quad (B \cdot C) + (B \cdot D) = B \cdot (C+D)$$

$$= A(AB(1))$$
 T2' $B + 1 = 1$

$$= A(AB) \qquad \qquad \text{T1} \quad B \cdot 1 = B$$

$$= (AA)B T7 (B \cdot C) \cdot D = B \cdot (C \cdot D)$$

$$= AB$$
 $\mathbf{T3} \quad \mathbf{B} \cdot \mathbf{B} = \mathbf{B}$

使用定理化简表达式

Simplifying Equations

化简时的注意事项

- 借助布尔代数的公理、定理,对复杂的布尔表达式推导、变换和化简是逻辑设计的重要工作
- 其中必须注意逻辑代数与普通代数的区别:
 - 不存在指数、系数、减法和除法
 - ■等式两边的相同项不能随便消去

$$A + A = A$$
 不能得到 $A + A = 2A$ 系数

$$A \cdot A = A$$
 不能得到 $A \cdot A = A^2$ 指数

$$A + \overline{A} = 1$$
 不能得到 $A = 1 - \overline{A}$ 消项

$$A\overline{B} + \overline{A}B + AB = A + B + AB$$

不能得到
$$A\overline{B} + \overline{A}B = A + B$$
 消项

$$A(A+B) = A$$
 不能得到 $A+B=1$ 消项

本章内容

Topic

- 口引言
- 口布尔代数
- □卡诺图
- □从逻辑到门
- □多级组合逻辑

- □ X和Z
- □组合逻辑电路设计方法
- □组合逻辑中的时序问题
- □组合逻辑模块

- 1 基本概念
- 2 在卡诺图中合并最小项
- 3 使用卡诺图化简表达式
- 4 使用无关项化简表达式

使用卡诺图化简布尔表达式

- 通过合并项可以实现布尔表达式的化简
- $PA + P\bar{A} = P$
- 卡诺图化简法是将逻辑函数用一种称为"卡诺图"的图形来表示,然后在卡诺图上进行函数化简的方法。

卡诺图的构成

- ■卡诺图是一种包含一些小方块的几何图形
- 图中每个小方块称为一个单元,每个单元对应一个最小项

- 两个相邻的最小项在卡诺图中也必须是相邻的。卡诺图中相邻的含义:
- ① 几何相邻性,即几何位置上相邻,也就是左右紧挨着或者上下相接
- 2 对称相邻性,即图形中位于边缘的单元与对称位置的单元是相邻的

三变量卡诺图

相邻性规则

几何相邻性规则

对称相邻:

- $> m_0 = m_2$
- $\rightarrow m_4 = m_6$

申点:任何两组相邻,只有1位变量取值不同。即符合循环码排列规则。如BC的取值00,01,11,10→00···

Basic Concepts

二变量、四变量卡诺图

五变量卡诺图

取值排列符合相邻性规则

\CD	E /						-	
AB	000	001	011	010	110	111	101	100
00	0	1	3	2	6	7	5	4
01	8	9	11	10	14	15	13	12
11	24	25	27	26	30	31	29	28
10	16	17	19	18	22	23	21	20

用卡诺图表示逻辑函数

- 把各组变量值所对应的逻辑函数的值,填在卡诺图对应的小方格中
- 卡诺图是真值表的一种变形
- 例: $F(A, B, C) = \bar{A}BC + A\bar{B}C + ABC$

用卡诺图表示为:

B	C 00	01	11	10
0	0	0	1 m $_{3}$	0
1	0	$1_{\rm m_5}$	$\frac{1}{m_7}$	0

卡诺图 Karnaugh Maps

- 1 基本概念
- 2 在卡诺图中合并最小项
- 3 使用卡诺图化简表达式
- 4 使用无关项化简表达式

Merge Miniterms in Karnaugh Map

卡诺图上合并最小项的规则

■ 当卡诺图中有最小项相邻时(即:有标1的方格相邻),可利用最小项相邻的性质,对最小项合并

■ 规则一:

卡诺图上任何两个标1的方格相邻,可以合为1项,并可消去1个(取值相反的)变量。

Merge Miniterms in Karnaugh Map

例:三变量卡诺图,消去1个变量

$$F = \bar{A}BC + ABC + A\bar{B}C$$

取值: 011 111 101

化简结果: F = AC + BC

Merge Miniterms in Karnaugh Map

例:四变量卡诺图,消去1个变量

Merge Miniterms in Karnaugh Map

合并最小项的规则(cont.)

■ 规则二:

卡诺图上四个标1方格相邻,可合并为一项,并可消去2个变量

- 四个标1方格相邻的特点:
 - 同在一行或一列
 - 同在一个田字格中

Merge Miniterms in Karnaugh Map

例:四变量卡诺图,消去2个变量

①同在一行或一列

②同在一个田字格中

横看消去C,纵看消去A

Merge Miniterms in Karnaugh Map

思考题

 \setminus CD

 $\mathbf{F} = ?$

ĀB

BC

F = ?

BD

BC

Merge Miniterms in Karnaugh Map

合并最小项的规则(cont.)

■ 规则三:

卡诺图上八个标1方格相邻,可以并为 一项,并可消去3个变量

Merge Miniterms in Karnaugh Map

思考题

Merge Miniterms in Karnaugh Map

合并规则总结

- 综上, 在 n 个变量的卡诺图中:
 - 只有 2 的 i 次方个相邻的 标1 方格(必须排列成方形格或矩形格的形状)才能圈在一起,合并为一项
 - 该项保留了原来各项中 n-i 个相同的变量
 - 消去 i 个不同变量

如: n=4, i=3 (4个变量, 如: ABCD, 2ⁱ=2³=8)

则:保留1个相同值变量,消去3个不同值变量

卡诺图 Karnaugh Maps

- 1 基本概念
- 2 在卡诺图中合并最小项
- ③ 使用卡诺图化简表达式
- 4 使用无关项化简表达式

使用卡诺

使用卡诺图化简逻辑表达式

Simplifying Equations Using Karnaugh Maps

用卡诺图化简表达式

- 基本概念:
 - ■卡诺图上的每一个圈都代表一个蕴含项
 - 主蕴含项: 扩展到最大的蕴含项
 - 奇异"1"单元:卡诺图中仅能被单一主蕴含项覆盖的方格
 - 质主蕴含项:包含着一或多个的奇异"1"单元的主蕴含项
- 化简目标: 最简与或式
- 最简标准
 - 项数最少,意味着卡诺图中圈数最少
 - 每项中的变量数最少, 意味着卡诺图中的圈尽可能大

Simplifying Equations Using Karnaugh Maps

例: 将 $F(A, B, C) = \sum m(3, 4, 5, 6, 7)$ 化为最简与或式

$$F = A + BC$$
 (最简)

$$F = A\overline{B} + BC + AB\overline{C}$$
 (非最简)
= $A(\overline{B} + B\overline{C}) + BC$
= $A(\overline{B} + \overline{C}) + BC$
= $A\overline{BC} + BC$
= $A + BC$

Simplifying Equations Using Karnaugh Maps

化简步骤 (结合实例说明)

- 例: 将 $F(A, B, C, D) = \sum m(0, 1, 3, 7, 8, 10, 13)$ 化为最简与或式
- 解:
 - 1 由表达式填卡诺图
 - ② 圏出孤立的标1方格 (质主蕴含项)

Simplifying Equations Using Karnaugh Maps

- ③ 找出只被一个最大的圈所覆盖的标1方格,并圈出覆盖该标1方格的最大圈(质主蕴含项) *m*₃*m*₇, *m*₈*m*₁₀
- 4 将剩余的相邻标1方格,圈成尽可能 少,而且尽可能大的圈 m_3m_7
- ⑤ 将各个对应的乘积项相加,写出最简与或式

 $F(A,B,C,D) = AB\overline{C}D + \overline{A}CD + A\overline{B}\overline{D} + \overline{A}\overline{B}\overline{C}$

Simplifying Equations Using Karnaugh Maps

一种特殊情况

$$F = A\overline{B} + B\overline{C} + \overline{AC}$$

$$F = \overline{AB} + \overline{BC} + A\overline{C}$$

得到两种化简结果,都是最简的

Simplifying Equations Using Karnaugh Maps

化简中注意的问题

- 1 每一个标1的方格必须至少被圈一次
- ② 每个圈中包含的相邻小方格数,必 须为2的整数次幂
- ③ 为了得到尽可能大的圈,圈与圈之间可以重叠

Simplifying Equations Using Karnaugh Maps

化简中注意的问题(cont.)

4 若某个圈中的所有标1方格,已 经完全被其它圈所覆盖,则该 圈为多余的。即每个圈中至少 应有1个标1方格未被其他圈覆 盖

图中蓝色的圈是多余的

Simplifying Equations Using Karnaugh Maps

课堂练习

$$F(A,B,C,D) = \bar{A}\bar{C} + \bar{A}C\bar{D} + ABD + \bar{B}\bar{C} + \bar{B}C\bar{D}$$

$$F(A,B,C,D) = ABD + \overline{B}\overline{D} + \overline{A}\overline{D} + \overline{C}D$$

卡诺图 Karnaugh Maps

- 1 卡诺图的定义
- 2 在卡诺图中合并最小项
- 3 使用卡诺图化简表达式
- 4 使用无关项化简表达式

使用无关项化简表达式

Simplifying Equations With Don't Cares

无关项的化简

- 真值表的输出x
 - ■当输出的值不重要或者相对应的输入组合从不出现时
 - 可以由设计者决定这些输出是0还是1
- 充分利用无关项,可以进一步化简逻辑表达式

使用无关项化简表达式

Simplifying Equations With Don't Cares

A	В	С	D	Y
A 0 0 0 0 0 0 0 1 1 1 1 1 1	B 0 0 0 1 1 1 1 0 0 0 1 1 1 1	C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	D 0 1 0 1 0 1 0 1 0 1 0 1	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	Χ
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Χ
1	0	1	1	Χ
1	1	0	0	Χ
1	1	0	1	X
1	1	1	0	X
1	1	1	_ 1	Y 1 0 1 1 0 X 1 1 1 1 X X X X X X

$$Y = A + \overline{B}\overline{D} + C$$

本章内容

Topic

- 口引言
- □ 布尔代数
- □卡诺图
- □从逻辑到门
- □多级组合逻辑

- □ X和Z
- □组合逻辑电路设计方法
- □组合逻辑中的时序问题
- □组合逻辑模块

由布尔表达式绘制原理图

- 与或式可以使用两级门电路来实现
 - 第一级:与门
 - 第二级:或门
- 例:

$$Y = \bar{A} \, \bar{B} \, \bar{C} + A \, \bar{B} \, \bar{C} + A \, \bar{B} \, C$$

从逻辑到门 From Logic To Gates

电路原理图绘制原则

- 原理图绘制需要遵循一致的风格, 以易于阅读和检查错误
- 绘制原则如下:
 - 输入在原理图的左边(或顶部)
 - 输出在原理图的右边(或底部)
 - 门电路流应从左至右(或从上至下)
 - 尽量使用直线连接
 - ■T型接头表示两条线有连接
 - 两条线交叉的地方有一个点,表示有连接
 - 两条线交叉的地方没有点,表示没有连接

From Logic To Gates

$$F = A\bar{B} + \bar{B}\bar{C}$$

原理图

■ 使用更少的门

德·摩根定理
$$\overline{B} \cdot \overline{C} = \overline{B + C}$$

本章内容

Topic

- 口引言
- □ 布尔代数
- □卡诺图
- □从逻辑到门
- □多级组合逻辑

- □ X和Z
- □组合逻辑电路设计方法
- □组合逻辑中的时序问题
- □组合逻辑模块

多级组合逻辑

Multilevel Combinational Logic

- 1 减少硬件
- 2 推气泡

减少硬件 Hardware Reduction

减少硬件的目的

- 所有的逻辑表达式都可以转化为与或式
- 理论上,与或式可以使用两级门电路来实现(先与后或)
- 使用二级逻辑可能带来更高的成本
- 在工程上,门电路的扇入数不可能无限制的增加
 - 受工艺、成本等方面的制约
- 采用多级逻辑
 - 可以减少门电路的数量
 - 可以减少扇入数

扇入(fan-in):单个逻辑门能 够接受的数字信号最大输入数

扇入数: 2 扇入数: 5

Hardware Reduction

3输入异或门的实现

$$Y = A \oplus B \oplus C = \bar{A}\bar{B}C + \bar{A}B\bar{C} + A\bar{B}\bar{C} + ABC$$

	Α	В	С	Υ
	0	0	0	0
	0	0	1	1
	0 5]1	0	1
	0	1	1	0
(1	0	0	1
	1	0	1	0
	1	1	0	0
(1	1	1	1

使用更少的门电路

$$Y = A \oplus B \oplus C = (A \oplus B) \oplus C$$

使用两个2输入异或门 构造一个3输入异或门

多级组合逻辑

Multilevel Combinational Logic

- 1 减少硬件
- 2 推气泡

推气泡

- CMOS电路中经常使用与非门和 或非门
- 不易直接根据电路推导出表达式
- 推气泡可以帮助我们重画电路,更容易确定逻辑功能

- 向后推
 - ■电路符号变化
 - ■将气泡加在输入端

- 向前推
 - ■电路符号变化
 - 将气泡加在输出端

写出电路的逻辑表达式

$$Y = AB + CD$$

推气泡的方法

- 从输出端向输入端推
- 将气泡从电路最后的输出端开始推
- 如果当前门有一个输入气泡,则消除该气泡,并在其上一级门的输出加上气泡

推气泡的例子

本章内容

Topic

- 口引言
- □ 布尔代数
- 口卡诺图
- □从逻辑到门
- □多级组合逻辑

- □ X和Z
- □组合逻辑电路设计方法
- □组合逻辑中的时序问题
- □组合逻辑模块

- 1 非法值
- 2 无关项
- 3 浮空值

非法值: X

- 竞争 (Contention): 电路结点同时被0和1驱动
 - 电压值可能介于 $0 \sim V_{DD}$ 之间
 - 可能是0,可能是1,也可能处于禁止区域内
 - 导致电路的功耗变大、电路发热,并导致损坏

■ 注意: 竞争通常是由于电路设计缺陷引起的

$$A = 1$$

$$Y = X$$

$$B = 0$$

- 1 非法值
- 2 无关项
- 3 浮空值

无关项: X

A_3	A_2	A_1	A_{o}	Y ₃	Y_2	Y_1	Y _o 0 1 0 0 0 0 0 0 0 0 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	0 0 0 0 1 1 1 1 0 0 0	0 0 1 1 0 0 1 1 0 1	1	0	0 0 0 0 1 1 1 0 0	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0		1	1	0	0	0
1	1	0	0	1	0	0	0
1	1 1	0	1	1	0	0	0
0 0 0 0 0 0 0 0 1 1 1 1 1		0 0 1 1	01010101010101	000000011111111	0	0 0 1 1 0 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

- 在优先级电路中:
 - 如果A₃输入为TRUE,则输出<mark>不用考虑</mark>其他的输入量
- 用符号X表示输出不需要考虑的输入(Don't Care)

A_3	A_2	A_1	A_o	Y ₃ 0 0 0 1	Y_2	Y ₁	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	Χ	Χ	0	1	0	0
1	Χ	Χ	X	1	0	0	0

- 1 非法值
- 2 无关项
- 3 浮空值

浮空值(floating): Z

- 浮空也称为悬空、高阻态(High impedance)、高Z态、开路、断路
- 学空不等于逻辑0
 - 使用电压表并不能判断哪个电路结点处于浮空状态
 - 测量断路结点的电压和接地点的电压,在电压表上的读数都为0
- 当电路的输入结点浮空时,输出不确定
 - 可能为0,可能为1,也可能为某个中间电压(处于禁止区)
- 产生浮空结点常见的原因是忘记将电压连接到输入端
- 但浮空结点并不意味着电路一定出错

三态缓冲器 (tristate buffer)

- 浮空可以用来防止结点处于竞争状态
- 三态缓冲器
 - 有3种可能输出状态
 - ■高电平、低电平和浮空
 - 输入端 A、输出端 Y、使能端 E

该图表示 E为高 电平有效使能

E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

使能端为0时, 输出端浮空 使能端为1时, Y跟随A变化

三态缓冲器的应用

- 当一个结点同时连接n个输出时,若其中n-1个输出处于浮空状态,则当前结点的值等于驱动正常电平输出端的值
- 在连接多个芯片的总线上使用
 - 许多不同的设备同时连接在同一总线上
 - 在某一个时刻只允许一个芯片的使能信号有效,并向总线输出数据
 - 其它芯片的输出必须浮空,以防止总线竞争
 - 任何芯片在任何时刻都可以通过总线读取信息

本章内容

Topic

- 口引言
- □ 布尔代数
- 口卡诺图
- □从逻辑到门
- □多级组合逻辑

- □ X和Z
- □组合逻辑电路设计方法
- □组合逻辑中的时序问题
- □组合逻辑模块

组合逻辑电路设计方法

The Design Method of Combinatorial Logic Circuit

设计思路

- 1 对实际逻辑问题进行抽象,定义输入和输出逻辑变量
- 2 由实际逻辑问题列出真值表
- 3 由真值表写出表达式
- 4 化简表达式
- 5 画出原理图

组合逻辑电路设计方法

The Design Method of Combinatorial Logic Circuit

7段数码管驱动电路

- 7段数码管驱动电路
 - 4位输入数据,输入一个十进制数字 (4位二进制数可表示一位十进制数)
 - ■7位输出控制发光管显示数字0-9

七段数码管的两种连接方法

① 共阴极

对应字段高电平时点亮

② 共阳极

对应字段低电平时点亮

The Design Method of Combinatorial Logic Circuit

- ■在这里,我们讨论共阴极7段管显示译码器的设计
- 1 对实际逻辑问题进行抽象,定义输入和输出逻辑变量

设: 4位输入数据为 D_3 、 D_2 、 D_1 、 D_0 ,对应输入的十进制数字 7位输出数据为 S_a , S_b , S_c , S_d , S_e , S_f , S_g , 输出为1时,点亮对应字段的数码管

The Design Method of Combinatorial Logic Circuit

2 由实际逻辑问题列出真值表

D_3	D_2	D_1	D_0	S _a	S _b	S_{c}	S _d	S _e	S_{f}	S_g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
	其	他		0	0	0	0	0	0	0

The Design Method of Combinatorial Logic Circuit

- 3 由真值表写出表达式
- 4 化简表达式

$$S_a = \sum m(0,2,3,5,6,7,8,9)$$

$$S_a = \overline{D_3}D_1 + \overline{D_3}D_2D_0 + D_3\overline{D_2}\,\overline{D_1} + \overline{D_2}\,\overline{D_1}\,\overline{D_0}$$

The Design Method of Combinatorial Logic Circuit

5 画出原理图

S_b, S_c, S_d, S_e, S_f, S_g 的设计略

The Design Method of Combinatorial Logic Circuit

考虑无关项

D_3	D_2	D_1	D_0	S _a
0	0	0	D ₀ 0 1 0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1 0	1
0	1	0	0	0
0	1	0	1	1
0	1	1	1	1
0	1	1	1	1 0 1 0 1 1
D ₃ 0 0 0 0 0 0 0 1	0	0	0	1
1	0	0	1	1 X X X X X
1	0	1	1 0 1	Χ
1	0	1	1	X
1	1	0	0	Χ
1	1	0	0 1 0	Χ
1 1 1	1	1	0	X
1	1	1	1	X

$$S_a = D_3 + D_2 D_0 + \overline{D_2} \, \overline{D_0} + D_1$$

本章内容

Topic

- 口引言
- □ 布尔代数
- 口卡诺图
- □从逻辑到门
- □多级组合逻辑

- □ X和Z
- □组合逻辑电路设计方法
- □组合逻辑中的时序问题
- □组合逻辑模块

组合逻辑中的时序问题

Timing in Combinational Logic

- 1 传播延迟和最小延迟
- 2 "毛刺"

Propagation & Contamination Delay

时序

■ 在实际电路中,输出响应输入的改变需要一定的时间

电路设计中最具有挑战性的问题是时序如何使电路运行得最快?

Propagation & Contamination Delay

定义

- 传播延迟(propagation delay): t_{pd}
 - 输入改变直到一个或多个输出改变为最终 值所经历的最长时间延迟
- 量最小延迟(contamination delay): t_{cd}
 - 输入发生变化直到任何一个输出开始改变 的最短时间

Propagation & Contamination Delay

产生原因

- 产生延迟的原因包括:
 - ■电路中的电阻和电容的充放电
 - ■光速的上限
- $= t_{pd} \pi t_{cd}$ 的值可能不同
 - ■上升沿与下降沿的延迟可能不同
 - 电路存在多个输入和输出时,不同输出的延迟可能不同
 - 电路对温度敏感,电路较热时速度会变慢

Propagation & Contamination Delay

关键路径与最短路径

- 关键路径(critical path):信号传输最慢的一条路径
- 最短路径(short path):信号通过最快的一条路径

组合逻辑中的时序问题

Timing in Combinational Logic

- 1 传播延迟和最小延迟
- 2 "毛刺"

"毛刺"的产生

- 一个输入改变引起输出的多次变化
- 也称为"冒险"(hazard)
- 观察A = 0, C = 1时, B由1变0的瞬间发生了什么?

"毛刺"产生的分析

消除"毛刺"

- 当信号的变化在卡诺图中穿越2个主蕴含项的边缘时会出现"毛刺"
- 通过在卡诺图中增加多余的蕴含项来盖住这些边缘以避免毛刺

- 多个输入(几乎)同时变化也会产生"毛刺"
 - 这些不能通过增加硬件来避免
- **毛刺在大多数电路中都存在**

本章内容

Topic

- 口引言
- □ 布尔代数
- 口卡诺图
- □从逻辑到门
- □多级组合逻辑

- □ X和Z
- □组合逻辑电路设计方法
- □组合逻辑中的时序问题
- □组合逻辑模块

组合逻辑模块

Combinational Building Blocks

- 1 编码器
- 2 译码器
- 3 多路选择器
- 4 算术电路

编码器

■ 用n位二进制代码对 N=2ⁿ 个特定信息进行编码的逻辑电路

■ 例:设计一个具有 4路信号输入的优先级编码器

输入: $X_0 \setminus X_1 \setminus X_2 \setminus X_3$ (高电平有效)

 $输出: A_1, A_0, EO$ (用于判定是否存在有效输入)

功能: 将4个输入信号进行二进制编码(4线-2线编码器)

带输出使能的优先级编码器

■ 优先级编码

当有多个信号同时输入时,只对优先权高的一个信号进行编码

■ 输出使能端 用于判别电路是否有信号输入。 用EO表示, EO=0有信号输入; EO=1无信号输入

输入	A_1	A_0	EO
无有效输入	0	0	1
X_0 有效且 X_1 、 X_2 、 X_3 无效	0	0	0
X_1 有效且 X_2 、 X_3 无效	0	1	0
X_2 有效且 X_3 无效	1	0	0
X_3	1	1	0

真值表

输入	A_1	A_0	EO	_
无有效输入	0	0	1	_
X_0 有效且 X_1 、 X_2 、 X_3 无效	0	0	0	N
X_1 有效且 X_2 、 X_3 无效	0	1	0	
X_2 有效且 X_3 无效	1	0	0	
X_3	1	1	0	

X_3	X_2	X_1	X_0	A_1	A_0	EO
X ₃ 0 0 0 0 0 0 1 1 1 1 1	X ₂ 0 0 0 1 1 1 0 0 0 0	X_1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1	0	0	0	1
0	0	0	1	0 0 0 1 1 1 1 1 1 1 1	0	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	0	1	1	0	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	1	1	0
1	0	1	0	1	1	0
1	0	1	1	1	1	0
1	1	0	0	1	1	0
1	1	0	1	1	1	0
~1\	1 1 1	1	X ₀ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1	0 0 1 1 0 0 0 0 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0
1 4	1	1	1	1	1	0

使用X简化真值表

X_3	X_2	X_1	X_0	A_1	A_0	EO
0	0	0	0 1 X X	0	0	1
0	0	0	1	0	0	0
0	0	1	Χ	0	1	0
0	1	X	Χ	1	0	0
1	Χ	Χ	Χ	1	1	0

Encoder

X_3	X_2	X_1	X_0	A_1	A_0	EO
	0	0	0	0	0	1
0 0 0 0 0 0 0 1 1	0	0 1	0 1 0	0 0 0	0	0
0	0	1	0	0	1	0
0	0	1		0	1	0
0	1	0	0	1	0	0
0	1	0	1	1	0	0
0		1	1 0 1 0 1 0 1	1 1 1 1	0	0
0	1 1 0	1	1		0	0
1	0	0	0	1	1	0
1	0	0	1	1	1	0
1	0	10	0	1	1	0
1	0	1	1	1	1	0
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	
1	1	1	1	1	1	0

$$EO = \overline{X_0} \, \overline{X_1} \, \overline{X_2} \, \overline{X_3} = \overline{X_0 + X_1 + X_2 + X_3}$$

$$A_0 = X_1 \overline{X_2} + X_3$$

	$\mathbf{A_0}$					
X_3X_2	$\mathbf{X_0}$	01	11	10		
00	0	0	1	1		
01	0	0	0	0		
11	1	1	1	1		
10	1	1	1	1		

$$A_1 = X_2 + X_3$$

Encoder

$$\begin{cases}
EO = \overline{X_0 + X_1 + X_2 + X_3} \\
A_0 = X_1 \overline{X_2} + X_3 \\
A_1 = X_2 + X_3
\end{cases}$$

Combinational Building Blocks

- 1编码器
- 2 译码器
- 3 多路选择器
- 4 算术电路

译码器

- 译码是编码的逆过程,有n个输入,2ⁿ个输出
- 每一种输入的组合对应使能某个特定 的输出信号
- 输出是独热(one-hot, 互斥)的, 同一时刻只能输出一个有效信号

2线-4线译码器 (高电平为有效信号)

译码器电路的实现

Y₀, Y₁, Y₂, Y₃分别对应 m₀, m₁, m₂, m₃四个最小项

译码器的应用

译码器

译码器的应用(cont.)

使用译码器实现复杂逻辑

- 译码器每个输出都对应一个最小项
- 使用译码器+或门可以构造出更加复杂的表达式

$$Y = A_1 A_0 + \overline{A_1} \ \overline{A_0} = \overline{A_1 \oplus A_0} \quad (\Box \vec{\mathfrak{D}})$$

Combinational Building Blocks

- 1编码器
- 2 译码器
- 3 多路选择器
- 4 算术电路

多路选择器

- 根据选择信号的值从 N 个可能的输入中选择一个作为输出
- \blacksquare 需要使用 log_2N 位选择信号作为输入,控制输入信号的选择

S	D_1	D_0	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Multiplexers

多路选择器的实现

■ 使用门电路实现

$$Y = D_0 \bar{S} + D_1 S$$

- 使用三态门实现
 - N输入的选择器,使用N个三态门
 - 对选择信号进行译码以使能对应 的三态门进行输出

Multiplexers

更多输入的多路选择器

■可使用译码器实现

使用多路选择器实现复杂逻辑

■可以将多路选择器看做一个查找表

1 编码器

- 2 译码器
- 3 多路选择器
- 4 算术电路

1位加法器 — — 半加器 (half-adder)

■ 半加器(half-adder)有两个输入A和B,两个输出S和C_{out}。S是A和B之和,C_{out}为进位。

■如果用1位半加器设计多位加法器,则半加器存在一个问题,即它缺少一个进位输入C_{in}来接收前一个半加器的进位输出C_{out}。

1位加法器 — — 全加器 (full-adder)

■全加器(full-adder)在半加器的基础之上增加了一个进位输入C_{in}。

Α	В	C_{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	13	1	1	1

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = A \& B+(A \oplus B) \& C_{in}$

多位加法器 (CPAs)

■1个N位加法器将两个N位输入(A和B)与一个进位C_{in}相加,产生一个N位结果S和一个输出进位C_{out}。因为在N位加法器内部,1位进位将传播到下一位,所以这种加法器通常称为**进位传播加法器(Carry Propagate Adder, CPA)**。

- ▶ 行波进位加法器(慢速)
- ▶ 先行进位加法器 (快速)
- ▶前缀加法器 (更快速)

■对于高位宽的加法器,先行进位和前缀更具优势,但需要消耗更多的硬件资源(**请大家时刻谨** 记:任何工程设计都体现了折中的思想(Tradoff)!)。

CPAs — 一行波进位加法器

■最简单的CPA就是将N个全加器串联,称为行波进位加法器(ripple-carry adder),每级的C_{out}就是下一级的C_{in},则所有进位构成的通路称为**进位链**。

■ 这种加法器最大的缺点:由于进位是一级一级的从低位传输到高位,当N较大时,计算延迟也较大,运算速度较慢,即延迟t_{ripple}随位数增加而增加。

CPAs — 一行波进位加法器(cont.)

CPAs — 先行进位加法器

- 先行进位加法器(Carry-lookahead Adder, CLA)是一种快速的进位传播加法器。它把加法器分解成若干块,当每块一有进位时就快速确定此块的输出进位。因此,它不需要等待进位通过一块内的所有加法器,而是直接先行通过该块。
- 先考虑每一位(一列)的进位输出如何确定。使用产生(G)和传播(P)两个信号来描述。
 - ▶ 第 i 位产生一个进位,如果A_i和B_i均为"1",即G_i = A_iB_i;
 - ▶ 第 i 位传播一个进位,如果有进位输入,并且A_i或B_i为"1",即P_i = A_i ⊕ B_i;
 - ▶ 综上定义,加法器第i位产生进位输出的表达式为: C_i = A_iB_i + (A_i ⊕ B_i)C_{i-1} = G_i + P_iC_{i-1};

CPAs — 先行进位加法器(cont.)

■ N位加法器按每k位分为一块,可将产生和传播信号的定义扩展至该多位块。假设**每块4位**,G_{i, j}和P_{i, i}表示从第i位到第j位这一块的产生信号和传播信号。

$$G_{3:0} = G_3 + P_3(G_2 + P_2(G_1 + P_1G_0)) \longrightarrow G_{i:j} = G_i + P_i(G_{i-1} + P_{i-1}(G_{i-2} + P_{i-2}G_j)) \longrightarrow C_i = G_{i:j} + P_{i:j}C_j$$

$$P_{3:0} = P_3P_2P_1P_0$$

$$P_{i:j} = P_iP_{i-1}P_{i-2}P_j$$

■结论: **所有的G和P都可并行的计算得到**,只要某一块获得了上一级的进位就可以快速确定它的 输出进位,块间进位的生成速度大幅提升。块内进位如下所示,可见**块内部分和**也可并行计算。

$$C_0 = G_0 + P_0C_{in}$$

$$C_1 = G_1 + P_1C_0 = G_1 + P_1(G_0 + P_0C_{in}) = G_1 + P_1G_0 + P_1P_0C_{in}$$

$$C_2 = G_2 + P_2C_1 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_{in}$$

CPAs — — 先行进位加法器(cont.)

N位先行进位加法器,按k位分块,其延迟为:

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$$

t_{pg}:产生所有P_i和G_i的延迟(单个AND或OR门)

t_{pg_block}:产生所有P_{i:j}和G_{i:j}的延迟

t_{AND_OR}:连通(从C_{in}到C_{out})所有k位CLA最后与门/或门的延迟

算术电路

 $t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$

Arithmetic circuits

加法器的延迟比较

■对于32位行波进位加法器和4位块组成的32位先行进位加法器的延迟。假设每个两输入门电路的延迟为100ps,全加器的延迟是300ps。

32位行波进位加法器的传播延迟∶ tripple = NTFA = 32 × 300ps = 9.6ns

32位先行进位加法器的传播延迟:
$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$$

$$= (100 + 600 + 7 \times 200 + 4 \times 300) \text{ ps}$$

$$= 3.3 \text{ns}$$

减法器

■ 补码的减法可以表示为"[A - B]_补 = [A + (-B)]_补 = [A]_补 + [-B]_补 = [A]_补 + [B]_补 + 1",由此可见,减法器可以由加法器进行实现。

减法器(cont.)

■ 在计算机中所有的数据都用补码表示,因此实际计算机中是没有减法器的,加法和减法都通过加法器实现,如下所示

比较器

- ■比较器是判断两个N位二进制数A和B是否相等,或者一个比另一个大还是小。常见有两种类型:
 - ▶相等比较器,产生一个输出,表示A是否等于B(A == B)。
 - ▶数值比较器,产生一个或多个输出,表示A和B的关系(>,<等)。

算术逻辑单元

■ 算术逻辑单元(Arithmetic and Logical Unit, ALU)将多种算术和逻辑运算组合到一个单元模块中。典型的ALU可以执行加法、减法、量值比较、逻辑运算等。ALU是大多数计算机的核心。

SLT (小于则置位) 操作, 当 A<B时, Y = 1; 否则Y = 0.

F _{2:0}	功能
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

移位器和循环移位器

■逻辑移位器:将数据向左(LSL)或向右(LSR)移动指定位数,空出的位置补"0"。

11001 >> 2 = 00110

11001 << 2 = 00100

■算术移位器: 算术左移(ASL)和LSL相同,算术右移(ASR)时使用原数据的最高位填充空位。

11001 >> 2 = 11110

11001 << 2 = 00100

■循环移位器:循环移动数据,从一端移走位重新填充到另一端的空位上。

11001 ROR 2 = 01110

11001 ROL 2 = 00111

移位器和循环移位器(cont.)

■N位移位器可以用N个N:1多路选择器构成。

乘法器

■ **无符号二进制数**的乘法和十进制的乘法很相似,可通过移位和加法实现。

Decimal		Binary
230	multiplicand	0101
x 42	multiplier	x 0111
460	partial	0101
+ 920	products	0101
9660	p : 0 : 0 : 0 : 0	0101
		+ 0000
	result	0100011

 $230 \times 42 = 9660$

- ■两个N位二进制数相乘,产生一个2N位的结果,其部分积要么是被乘数,要么全部是"0"。1位
 - 二进制数乘法相当于AND运算,所以可以使用AND门电路产生部分积。

 $5 \times 7 = 35$

无符号二进制数乘法器

■ **无符号二进制数**的乘法和十进制的乘法很相似,可通过移位和加法实现。

