

NARASARAOPETA ENGINEERING COLLEGE (AUTONOMOUS)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

2024-2025

Batch Number	AG-11
	D. Triveni(21471A0517)
Team Members	B. Supriya (21471A0514)
	P. Bhagya Lakshmi(21471A0547)
Guide	Chalicheema. Rajani Asst.Prof
Title	A Deep Learning-Based Approach for the Detection of Infested Soybean Leaves.
Domain/Technology	DEEP LEARNING
Base Paper Link	https://ieeexplore.ieee.org/document/10247040
Dataset Link	https://www.kaggle.com/datasets/maeloisamignoni/soybeanleafdataset
Software Requirements	Browser: Any latest browser like Chrome
	Operating System: Windows 7 Server or later
	Python (COLAB)
Hardware Requirements	SystemType: Intel Core i5 or above
	RAM: 8 GB
	Number of cores:5
	Number of Threads: 4
Abstract	After all, soybean crops are an essential constituent in world agriculture.
	These plants generally become easy prey to attacks by pests like Diabrotica
	speciosa and caterpillars. The early detection of these attacks is pretty
	significant in reducing the damage, from an economic point of view as well
	as an ecological one. This present study has been motivated by the above
	facts, proposing a newer deep learning-based solution using a transfer-
	learning approach with VGG19 CNN for efficient classification of soybean
	leaf images. In this work, we adopt the pre-trained VGG19 architecture for
	detecting pest infestation in soybean leaves and perform fine-tuning specific
	to the problem. In this work, employing transfer learning from VGG19
	means utilizing the deep features learned from large-scale image datasets for
	adaptation in the specialized context of agricultural pest detection. This
	approach not only improves the model's accuracy but also reduces the
	dependency on huge amounts of training data, which is usually a bottleneck
	in agricultural applications. We test the performance of our model on a very
	challenging dataset of soybean leaf images, which yields a balanced accuracy
	of 99.5% on previously unseen test data. The contribution of this work can be
	both theoretical and practical.