Modulo 07 Sistemas de Comunicação

8.1 Sistemas de Comunicação

Rádio

Televisão

Redes de computadores

 Controle remoto (portões, eletrodomésticos, etc.)

Modulação analógica

 Portadora (carrier): sinal de "alta" freqüência

$$c(t) = \cos(\omega_c t + \theta_c)$$

- Sinal modulante: x(t)
- Processo de modulação (amplitude, frequência ou fase)
- Sinal modulado: $y_{...}(t) = f[x(t)]$

Relação entre sinais modulados em fase e freaquência...

$$\omega_i(t) = \frac{d\theta(t)}{dt}$$

Modulação digital

- Portadora: trem de pulsos (não indicado na figura)
- PAM (pulse amplitude modulation): modulação por amplitude de pulso → levará ao PCM (pulse code modulation)
- PWM (pulse width modulation): modulação por largura de pulso
- PPM (pulse position modulation): modulação por posição de pulso
- Etc.

Modulação/demodulação

Ruído no canal de transmissão (ou no meio de armazenamento)

- Idealmente, $\widetilde{x}(t) = x(t)$
- Ruído causa distorção (erros) no sinal demodulado

8.1, 8.2 e 8.5 Modulação em amplitude (AM)

• Variar a <u>amplitude</u> de uma portadora senoidal c(t) de acordo com o sinal modulante x(t)

$$y_{AM}(t) = [A_c + x(t)] \cdot cos(\omega_c t) = A_c \cdot cos(\omega_c t) + x(t) \cdot cos(\omega_c t)$$

Exemplos (sinal modulante cossenoidal)

Modulação assíncrona (significado será explicado à frente)

Demodulação AM assíncrona

Detector de envoltória

AM: análise do espectro (portadora senoidal)

$$y_{AM}(t) = [A_c + x(t)] \cdot cos(\omega_c t)$$

$$= A_c \cos(\omega_c t) + x(t) \cdot cos(\omega_c t)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y_{AM}(j\omega) = C(j\omega) + \frac{1}{2\pi} X(j\omega) * C(j\omega)$$

 $X(j\omega)$ $\omega_{\rm C} >> \omega_{\rm M}$.. $C(j\omega)$ πA_c $Y_{AM}(j\omega)$ πA_{c} Banda Banda lateral lateral inferior superior

A redundância de informação nas bandas laterais é removida na técnica SSB (single side band – banda lateral única) – detalhes na

seção 8.4

AM com banda lateral dupla (DSB – Dual Side Band)

AM síncrono (portadora suprimida)

Reduz gasto com potência para transmitir portadora

$$y_{AM}(t) = x(t) \cos(\omega_c t + \theta_c) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} Y_{AM}(j\omega) = \frac{1}{2\pi} X(j\omega) * C(j\omega)$$

$$A_c = 1$$

$$X(j\omega)$$

Dificuldades na recepção (demodulação)...

AM (portadora suprimida): demodulação síncrona

Modulador (Tx) (multiplicar pela portadora)

Demodulação (Rx) (multiplicar pela portadora e filtrar)

- A portadora não existe no sinal modulado y(t) na saída do transmissor Tx
- Precisa ser sintetizada com mesma freqüência e fase no demodulador do receptor Rx
- Problemas na sincronização das portadoras...

Demodulação síncrona

- Em geral, a fase e/ou frequência de Tx e Rx podem ser diferentes
- Defasagem é mais crítica (varia com o percurso do sinal transmitido)

 Se houver diferenças de fase, sinal de saída será multiplicado por fator com módulo entre 0 e 1

$$\widetilde{x}(t) = x(t) \left[\cos(\theta_c - \phi_c) \right]$$

A sincronização pode mudar em função do local e ao longo do tempo. Requer ajustes manuais no receptor.

> Sony ICF-SW7600GR

Demodulação síncrona é usada em receptores especiais

8.3 Noção de sistemas telefônicos analógicos

Multiplexação por divisão de frequências (FDM)

Equipamentos comerciais usam SSB para melhor uso do espectro!

8.5 Modulação por amplitude de pulso (PAM)

- Sinal x(t) é amostrado por um trem de pulsos = portadora c(t)
- Uso de um retentor de ordem zero (ZOH) (Cap 7)

Na transmissão de dados, o intervalo entre as amostras pode ser preenchido com amostras de outro sinal →

Multiplexação por divisão de tempo (TDM)

Modulação por amplitude de pulso (PAM)

Distorções semelhantes às do segurador de ordem zero (ver cap. 7)

Multiplexação por divisão de tempo

Multiplexação por divisão de tempo

Modulação de pulsos codificados (PCM)

- Amplitudes do sinal amostrado são quantizadas
- Quantização: representação aproximada da amplitude com uma palavra binária (conjunto finito de bits)
- Erro de quantização diminui com o aumento do número de bits
- Escala vertical (código): linear ou logarítmica

Arquivos de áudio pcm (.wav, MS Windows): cabeçalho + dados ...

8.7 Modulação em frequência (FM) – um pouco de história

- Edwin Armstrong: patentes em circuitos para AM e FM
- Disputa com a empresa RCA em torno do FM (melhor qualidade sonora ameaçava o AM)
- Dono de emissoras em FM
- Mudanças "legais" (faixa de freqüência) → receptores inutilizados
- Perda dos direitos de patente
- Disputa judicial/falência/suicídio
- Reconhecimento póstumo

Edwin H. Armstrong (1890-1954)

FM – características gerais

Geração e recepção do sinal FM (simplificados!)

- Há uma parte de RF e uma de áudio
- Partes isoladas pela reatância de XRF
- Freqüência de OSC depende de L1, C2 e D1 (varicap)
- Capacitância de D1 (e portanto ω_c) variam com x(t)

Demodulação (conceitual)

x(t) varia $\rightarrow \omega_c$ varia

 $\omega_{\rm c}$ varia $\rightarrow x(t)$ varia

FM (banda larga) – características gerais

- "Grande" imunidade a ruído (aditivo)
- Relação com modulação em fase (ver livro-texto)
- Espectro do sinal modulado X(jω): cálculo elaborado

Exemplo:

"frequência

instantânea"

$$x(t) = A_m \cos(\omega_m t)$$

$$y(t) = A_c \cos[\omega_i t]$$

$$\omega_i = \omega_c + k \cdot x(t)$$

 $X(j\omega)$: largura variável: depende da amplitude e espectro de x(t)

$$y(t) = A_c \cos[\omega_c t + k \cdot A_m \cos(\omega_c t)]$$

Cálculo de X(jω) requer uso de Funções de Bessel

