Green's function for higher order ordinary differential operator.

Consider the diff. equation

 $p_0(\alpha) \frac{d^n y}{d \alpha^n} + p_1(\alpha) \frac{d^n y}{d \alpha^{n-1}} + - - + p_n(\alpha) y = f(\alpha)$ The B.C.s are,

 $B_1Y=0$, $B_2Y=0$, ---, $B_nY=0$ \Longrightarrow (2) Ly=f(a); $a \le a \le b$.

where $L = p_0(2) \frac{d^n}{dx^n} + p_1(x) \cdot \frac{d^{n-1}}{dx^{n-1}} + \cdots + p_n(x)$

Solution of (1) in terms of g(x,t) is,

y (x) = for(x,t) t(t) dt

Where $Lg(x,t) = \delta(x-t)$, $a \leq x, t \leq l$

We actually solve Lq(x,t)=0. & get

y(a) = c, y, (a) + c2 t2 (a) + -- + cn y,(a).

Ci, cz,..., en some arbitrary constants.

41,42, --, In ove n l.i. solutions of (1).

Thus,

Thus, g(x,t) will be of the form, of will satisfy the boundary conditions Big=0, B2g=0, - -, Bng=0. Continuity of 9, 9', 9", ---, 9(n-2) at-x=t q(t+0,t) = q(t-0,t); q'(t+0,t) = q'(t-0,t), $q''(t+0,t) = q''(t-0,t); ---, q^{(n-2)}(t+0,t) = q(t+0,t)$ Also, of (x,t) salisfies, $\frac{\partial^{(n-1)} g(t+0,t)}{\partial \chi^{(n-1)}} = \frac{\partial^{(n-1)} g(t-0,t)}{\partial \chi^{(n-1)}} = \frac{1}{p_0(t)}$ Example Solve the following BVP wring green's function. $\frac{d^{4}y}{dx^{4}} = 1, \quad y(0) = y'(0) = 0, \quad y''(1) = y''(1) = 0.$

 $\frac{50!}{\sqrt{3!}}$ To solve $\frac{d^4g(x,t)}{\sqrt{3!}} = 0$ $g(x_1t) = \begin{cases} a_0 + a_1x + a_2x^2 + a_3x^3; & 0 \le x < t \\ b_0 + b_1x + b_2x^2 + b_3x^3; & t < x \le 1. \end{cases}$ a_i , b_i are determined from g(0,t) = 0 = g'(0,t); g''(1,t) = 0 = g'''(1,t).

Abso,
$$g(t+0,t) = g(t-0,t)$$
 $g'(t+0,t) = g'(t-0,t)$
 $g''(t+0,t) = g''(t-0,t)$

and, $\frac{\partial^2 q}{\partial n^2}(t+0,t) - \frac{\partial^2 q}{\partial n^2}(t-0,t) = \frac{1}{h_0(t)} = \frac{1}{1}$
 $g(0,t) = 0 \Rightarrow a_0 = 0$
 $g'(0,t) = 0 \Rightarrow a_1 = 0$

When $t < x \le 1$,
 $g'(x,t) = b_0 + b_1 x + b_2 x^2 + b_3 x^3$
 $g''(x,t) = b_1 + 2b_2 x + 3b_3 x^2$
 $g''(x,t) = 6b_3$
 $g''(x,t) = 6b_3$
 $g'''(x,t) = 6b_3$
 $g'''(x,t) = 2b_2 + 6b_3 = 0$; $g''''(t,t) = 6b_3 = 0$.
 $g'''(x,t) = \frac{1}{h_0(t)} = \frac{1}{h_0($

6-21

Reduction of BVP to an integral equation using Green's fr.

Consider the BVP

 $Ly = \lambda \pi(x) + f(x); \quad \alpha \in x \in b \longrightarrow (1)$ $B_{j}y = 0; \quad j = 1, 2, -1, n \longrightarrow (2)$

L > differential operator of the form

 $Ly = p_0 \frac{d^ny}{dan} + p_1 \frac{d^ny}{dan} + \cdots + p_n y$

I is some real parameter.

fa) is a continuous function of x in [a, b].

Then the BVP given in (1) & (2) can be reduced to the following integral equation

 $y(x) = x \int_{0}^{t} g(x,t) r(t) f(t) dt + \int_{0}^{t} g(x,t) f(t) dt$.

Example: Reduce the BVP

Y"+ x y = 1., y(0) = 0 = y(1)

to an IE using Green's function.

Soluti: The ODE is,

7"=-xy+1, 0<2 <1

compare with Ly = > 2 (2) 4 + f(2).

Then, $L = \frac{d^2}{d^2 x^2}$, $\lambda = -1$, $\pi(\alpha) = 1$.

The Green's funct of (x, t) will satisfy $Lg(x,t)=\delta(x-t).$ Solving Lg(a,t)=0 i.e $\frac{d^{2}g(a,t)}{daz}=0$, get $g(x,t) = \begin{cases} a_1 + a_2 x & 0 \leq x < t \\ b_1 + b_2 x & t < x \leq 1 \end{cases}$ (1)g satisfies, g(0,t)=0=g(1,t), g(t+0,t) = g(t-0,t) $\frac{\partial 9}{\partial x}(t+0,t) - \frac{\partial 9}{\partial x}(t-0,t) = -\frac{1}{p(t)}$ Writing $\frac{d^2}{dx^2}$ as, $-\frac{d}{dx}\left(\frac{f(x)}{dx}\right)$, we find $\frac{\partial q}{\partial x}(t+0,t) - \frac{\partial q}{\partial x}(t-0,t) = 1$ 9(0,t)=0=> a,=0. q(1,t)=0 => litl2=0. $f(x,t) = \begin{cases} a_2 x & 0 \leq x \leq t \\ b_1 - b_1 x & t \leq x \leq t \end{cases}$ (2)g(t+0,t)=g(t-0,t) =) $l_1 - l_1 t = \alpha_2 t \Rightarrow l_1 (1 - t) = \alpha_2 t$ (3) 9x(t+0,t) - 9x(t-0,t)=1 = $-l_1-\alpha 2=1$ \longrightarrow (4)From (3), l,= a2. 1-+.

Sombetituting (4) into (3) we get,

$$-\frac{a_2 t}{1-t} - a_2 = 1$$

$$o_2, -a_2(t+1-t) = 1-t$$

$$= 7 \quad a_2 = t-1$$

$$b_1 = \frac{a_2 t}{1-t} = \frac{(t-1)t}{1-t} = -t.$$

$$50, \text{ from (2),}$$

$$q(x,t) = \begin{cases} (t-1)^2; & 0 \le x < t \\ (x-1)t; & t < 2 \le 1. \end{cases}$$
The IE is of the form,
$$y(x) = x \int_0^t q(x,t) x(t) y(t) dt + \int_0^t f(t) y(t) dt.$$

$$= -\int_0^t q(x,t) x(t) dt + \int_0^t q(x,t) dt + \int_0^t f(x,t) dt.$$

$$= -\int_0^t t q(x,t) y(t) dt + \int_0^t f(x,t) y(t) dt.$$

$$= (x-1) \left[\frac{t^2}{2} \right]^x + x \left[\frac{(t-1)^2}{2} \right]^t - \int_0^t t q(x,t) y(t) dt.$$

$$y(x) = \frac{x^2(x-1)}{2} - \int_0^t t q(x,t) y(t) dt.$$

$$y(x) = \frac{x(x-1)}{2} - \int_0^t t q(x,t) y(t) dt.$$

$$624.$$