MODULE 6

RANDOM VECTOR AND ITS JOINT DISTRIBUTION

LECTURE 27

Topics

6.2 TYPES OF RANDOM VARIABLES

Theorem 2.1

Let $\underline{X} = (X_1, ..., X_p)$ be a p- dimensional $(p \ge 2)$ random vector with distribution function $F_{\underline{X}}(\cdot)$. For a fixed positive integer $k \in \{1, ..., p-1\}$, let $\underline{Y} = (X_1, ..., X_k)$ and $\underline{Z} = (X_{k+1}, ..., X_p)$ so that $\underline{X} = (\underline{Y}, \underline{Z})$.

(i) Suppose that \underline{X} is of discrete type with support $S_{\underline{X}}$ and p.m.f. $f_{\underline{X}}(\cdot)$. For $\underline{y} \in \mathbb{R}^k$, define $R_{\underline{y}} = \left\{ \underline{z} \in \mathbb{R}^{p-k} : \left(\underline{y}, \underline{z} \right) \in S_{\underline{X}} \right\}$ (note that, for each $\underline{y} \in \mathbb{R}^k$, $R_{\underline{y}}$ is a countable set. Then the random vector $\underline{Y} = (X_1, ..., X_k)$ is of discrete type with support $S_{\underline{Y}} = \left\{ \underline{y} \in \mathbb{R}^k : \left(\underline{y}, \underline{z} \right) \in S_{\underline{X}} \right\}$, for some $\underline{z} \in \mathbb{R}^{p-k}$ and joint p.m.f. (called the *marginal p.m.f.* of \underline{Y})

$$f_{\underline{Y}}\left(\underline{y}\right) = \begin{cases} \sum_{\underline{z} \in R_{\underline{y}}} f_{\underline{X}}\left(\underline{y}, \underline{z}\right), & \text{if } \underline{y} \in S_{\underline{Y}} \\ 0, & \text{otherwise} \end{cases}.$$

(ii) Suppose that \underline{X} is of absolutely continuous type with joint p.d.f. $f_{\underline{X}}(\cdot)$. Then the random vector $\underline{Y} = (X_1, ..., X_k)$ is of absolutely continuous type with p.d.f. (called the *marginal p.d.f.* of \underline{Y})

$$f_{\underline{Y}}(\underline{y}) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(\underline{y},\underline{z}) dz_{p-k} \cdots dz_1, \ \underline{y} \in \mathbb{R}^k,$$

where $\underline{z} = (z_1, \dots, z_{p-k})$.

Proof.

(i) Note that $\{\underline{X} \in S_{\underline{X}}\} = \{(\underline{Y}, \underline{Z}) \in S_{\underline{X}}\} \subseteq \{\underline{Y} \in S_{\underline{Y}}\}$. Therefore

$$P(\lbrace \underline{Y} \in S_Y \rbrace) \ge P(\lbrace \underline{X} \in S_X \rbrace) = 1,$$

$$P\big(\big\{\underline{Y}\in S_{\underline{Y}}\big\}\big)=1.$$

Also $S_{\underline{Y}}$ is countable and, for $\underline{y} \in S_{\underline{Y}}$,

$$P\left(\left\{\underline{Y} = \underline{y}\right\}\right) = P\left(\left\{\underline{Y} = \underline{y}\right\} \cap \left\{\underline{X} \in S_{\underline{X}}\right\}\right) \qquad \text{(since } P\left(\left\{\underline{X} \in S_{\underline{X}}\right\}\right) = 1)$$

$$= P\left(\left\{\underline{Y} = \underline{y}\right\} \cap \left\{\left(\underline{Y}, \underline{Z}\right) \in S_{\underline{X}}\right\}\right)$$

$$= P\left(\left\{\underline{Y} = \underline{y}\right\} \cap \left\{\underline{Z} \in R_{\underline{y}}\right\}\right)$$

$$= P\left(\left\{\underline{Y} = \underline{y}\right\} \cap \left\{\underline{Z} \in R_{\underline{y}}\right\}\right)$$

$$= P\left(\left\{\underline{Y} = \underline{y}\right\} \cap \left\{\underline{Z} \in R_{\underline{y}}\right\}\right)$$

$$= \sum_{\underline{Z} \in R_{\underline{y}}} P\left(\left\{\underline{Y}, \underline{Z}\right\} = \left(\underline{y}, \underline{z}\right)\right\}\right)$$

$$= \sum_{\underline{Z} \in R_{\underline{y}}} P\left(\left\{\underline{X} = \left(\underline{y}, \underline{z}\right)\right\}\right)$$

$$= \sum_{\underline{Z} \in R_{\underline{y}}} f_{\underline{X}}\left(\underline{y}, \underline{z}\right).$$

Note that, for $\underline{y} \in S_{\underline{Y}}$, $R_{\underline{y}} \neq \phi$, and for $\underline{z} \in R_{\underline{y}}$, $\left(\underline{y}, \underline{z}\right) \in S_{\underline{X}}$. Therefore we have $f_{\underline{X}}\left(\underline{y}, \underline{z}\right) > 0$, $\forall \underline{y} \in S_{\underline{Y}}$ and $\underline{z} \in R_{\underline{y}}$. If follows that $P\left(\left\{\underline{Y} \in S_{\underline{Y}}\right\}\right) = 1$, $P\left(\left\{\underline{Y} = \underline{y}\right\}\right) > 0$, $\forall \underline{y} \in S_{\underline{Y}}$. Hence the assertion follows.

(ii) Note that, for $y \in \mathbb{R}^k$,

$$F_{\underline{Y}}(\underline{y}) = \lim_{\substack{z_i \to \infty \\ i=1,\dots,p-k}} F_{\underline{X}}(\underline{y},\underline{z})$$

$$= \lim_{\substack{z_i \to \infty \\ i=1,\dots,p-k}} \int_{-\infty}^{y_1} \cdots \int_{-\infty}^{y_k} \cdots \int_{-\infty}^{z_1} \cdots \int_{-\infty}^{z_{p-k}} f_{\underline{X}}(\underline{s},\underline{t}) d\underline{t} d\underline{s}$$

$$= \int_{-\infty}^{y_1} \cdots \int_{-\infty}^{y_k} \cdots \left[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}} \left(\underline{s}, \underline{t} \right) d\underline{t} \right] d\underline{s},$$

$$= \int_{-\infty}^{y_1} \cdots \int_{-\infty}^{y_k} h(\underline{s}) d\underline{s}, \qquad (2.3)$$

where $\underline{s}=(s_1,\ldots,s_k),\ \underline{t}=(t_1,\ldots,t_{p-k}), d\underline{t}=dt_{p-k}\cdots dt_1, d\underline{s}=ds_k\cdots ds_1$ and

$$h(\underline{s}) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(\underline{s,\underline{t}}) d\underline{t}, \ \underline{s} \in \mathbb{R}^k.$$

Clearly $h(\underline{s}) \ge 0$, $\forall \underline{s} \in \mathbb{R}^k$ and

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h(\underline{s}) ds_k \cdots ds_1 = \int_{\mathbb{R}^p} f_{\underline{X}}(\underline{s},\underline{t}) d\underline{t} d\underline{s} = 1.$$

Now, using (2.3) and the above properties of $h(\cdot)$, it follows that \underline{Y} is of absolutely continuous type with p.d.f.

$$f_{\underline{Y}}\left(\underline{y}\right) = h\left(\underline{y}\right) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}\left(\underline{y},\underline{t}\right) d\underline{t}, \ \underline{y} \in \mathbb{R}^k.$$

Example 2.1

Let $\underline{Z} = (X, Y)$ be a bivariate random vector with p.m.f.

$$f_{\underline{Z}}(x,y) = P(\{X = x, Y = y\}) = \begin{cases} cy, & \text{if } (x,y) \in R \\ 0, & \text{otherwise} \end{cases}$$

where $R = \{(s, t) \in \mathbb{R}^2 : s, t \in \{1, ..., n\}, s \le t\}, n \ge 2$ is fixed positive integer and c is a fixed real constant.

- (i) Find the value of constant c;
- (ii) Find marginal p.m.f.s of X and Y;
- (iii) Find $P(\{X > Y\})$, $P(\{X = Y\})$ and $P(\{X < Y\})$.

Solution.

(i) Clearly we must have c > 0. Then the support of \underline{Z} is $S_{\underline{Z}} = R = \{(s,t) \in \mathbb{R}^2 : s,t \in \{1,...,n\}, s \leq t\}$ and therefore

$$\sum_{(x,y)\in S_{\underline{Z}}} f_{\underline{Z}}(x,y) = 1$$

$$\Rightarrow c \sum_{y=1}^{n} \sum_{x=1}^{y} y = 1$$

$$\Rightarrow c \sum_{y=1}^{n} y^{2} = 1$$

$$\Rightarrow c = \frac{6}{n(n+1)(2n+1)}.$$

(ii) By Theorem 2.1 (i) the support of X is $S_X = \{x \in \mathbb{R}: (x,y) \in S_{\underline{Z}} \text{ for some } y \in \mathbb{R} \} = \{1,2,...,n\}$, and the support of Y is $S_Y = \{y \in \mathbb{R}: (x,y) \in S_{\underline{Z}} \text{ for some } x \in \mathbb{R} \} = \{1,2,...,n\}$. For $x \in S_X$, define $R_x = \{y \in \mathbb{R}: (x,y) \in S_{\underline{Z}} \}$. Then, by Theorem 2.1, the marginal p.m.f. of X is

$$f_X(x) = \begin{cases} \sum_{y \in R_x} f_{\underline{Z}}(x, y), & \text{if } x \in S_X \\ 0, & \text{otherwise} \end{cases}.$$

For $x \in S_X$, we have $R_x = \{x, x+1, ..., n\}$

$$\sum_{y \in R_x} f_{\underline{Z}}(x, y) = c \sum_{y = x}^n y = c \left[\frac{n(n+1)}{2} - \frac{(x-1)x}{2} \right].$$

Therefore the marginal p.m.f. X is

$$f_X(x) = \begin{cases} \frac{3[n(n+1) - (x-1)x]}{n(n+1)(2n+1)}, & \text{if } x \in S_X \\ 0, & \text{otherwise} \end{cases}$$

where $S_X = \{1, ..., n\}$.

For $y \in S_Y$, define $R_y^* = \{x \in \mathbb{R}: (x, y) \in S_{\underline{Z}}\} = \{1, 2, ..., y\}$. Then, by Theorem 2.1, the marginal p.m.f. of Y is

$$f_Y(y) = \begin{cases} \sum_{x \in R_y^*} f_{\underline{Z}}(x, y), & \text{if } y \in S_Y \\ 0, & \text{otherwise} \end{cases}.$$

For $y \in S_Y$, we have

$$\sum_{x \in R_y^*} f_{\underline{Z}}(x, y) = c \sum_{x=1}^y y = c y^2.$$

Therefore the marginal p.m.f. of *Y* is

$$f_Y(y) = \begin{cases} \frac{6y^2}{n(n+1)(2n+1)}, & \text{if } y \in S_Y, \\ 0, & \text{otherwise} \end{cases}$$

where $S_Y = \{1, 2, ..., n\}$.

(iii) Let
$$A = \{(s,t): s > t\}$$
 and $B = \{(s,t): s = t\}$. Then by Remark 2.1 (ix)
$$P(\{X > Y\} = P\{\underline{Z} \in A\})$$

$$= \sum_{(x,y) \in S_{\underline{Z}} \cap A} f_{\underline{Z}}(x,y)$$

$$= 0 \qquad \qquad \text{(since } S_{\underline{Z}} \cap A = \phi\text{)}.$$

$$P(\{X = Y\} = P\{\underline{Z} \in B\})$$

$$= \sum_{(x,y) \in S_{\underline{Z}} \cap B} f_{\underline{Z}}(x,y)$$

$$= c \sum_{y=1}^{n} y$$

$$= \frac{3}{2n+1}.$$

Therefore

$$P({X < Y}) = 1 - P({X = Y}) - P({X > Y})$$

$$= 1 - \frac{3}{2n+1}$$

$$= \frac{2(n-1)}{2n+1}.$$

Example 2.2

Let $\underline{X} = (X_1, X_2, X_3)$ be a discrete type random vector with p.m.f.

$$f_{\underline{X}}(x_1, x_2, x_3) = \begin{cases} cx_1x_2x_3, & \text{if } (x_1, x_2, x_3) \in \{1, 2\} \times \{1, 2, 3\} \times \{1, 3\}, \\ 0, & \text{otherwise} \end{cases}$$

where *c* is a real constant.

- (i) Find the value of c;
- (ii) Find the marginal p.m.f.s. of X_1 ; of X_2 ; of X_3 ;
- (iii) Find the marginal p.m.f. of $\underline{Y} = (X_1, X_3)$;
- (iv) Find $P({X_1 = X_2 = X_3})$.

Solution.

(i) Clearly we must have c > 0. Then the support of \underline{X} is $S_{\underline{X}} = \{(x_1, x_2, x_3): x_1 \in \{1, 2\}, x_2 \in \{1, 2, 3\}, x_3 \in \{1, 3\}\}$. Therefore

$$\sum_{\underline{x} \in S_{\underline{X}}} f_{\underline{X}}(x_1, x_2, x_3) = 1$$

$$\Rightarrow c \sum_{x_1 \in \{1, 2\}} \sum_{x_2 \in \{1, 2, 3\}} \sum_{x_3 \in \{1, 2\}} x_1 x_2 x_3 = 1$$

$$\Rightarrow c = \frac{1}{72}.$$

(ii) The supports of X_1 , X_2 and X_3 are

$$S_{X_1} = \{x_1 \in \mathbb{R}^1 : (x_1, x_2, x_3) \in S_{\underline{X}} \text{ for some } (x_2, x_3) \in \mathbb{R}^2\} = \{1, 2\},\$$

$$S_{X_2} = \{x_2 \in \mathbb{R}^1 : (x_1, x_2, x_3) \in S_{\underline{X}} \text{ for some } (x_1, x_3) \in \mathbb{R}^2\} = \{1, 2, 3\}$$

and

$$S_{X_3} = \{x_3 \in \mathbb{R}^1 : (x_1, x_2, x_3) \in S_{\underline{X}} \text{ for some } (x_1, x_2) \in \mathbb{R}^2\} = \{1, 3\},\$$

respectively.

For $x_1 \in S_{X_1}$, $R_{x_1} = \{(x_2, x_3): (x_1, x_2, x_3) \in S_{\underline{Z}}\} = \{1, 2, 3\} \times \{1, 3\}$. Then, for $x_1 \in S_{X_1}$

$$f_{X_1}(x_1) = P(\{X_1 = x_1\})$$

$$= \sum_{(x_2, x_3) \in R_{x_1}} f_{\underline{X}}(x_1, x_2, x_3)$$

$$= \sum_{x_2 \in \{1, 2, 3\}} \sum_{x_3 \in \{1, 3\}} x_1 x_2 x_3$$

$$= \frac{x_1}{3}.$$

Therefore the marginal p.m.f. of X_1 is

$$f_{X_1}(x_1) = \begin{cases} \frac{x_1}{3}, & \text{if } x_1 \in \{1, 2\} \\ 0, & \text{otherwise} \end{cases}$$

Similarly the p.m.f.s of X_2 and X_3 are

$$f_{X_2}(x_2) = \begin{cases} \frac{x_2}{6}, & \text{if } x_2 \in \{1, 2, 3\} \\ 0, & \text{otherwise} \end{cases}$$

and

$$f_{X_3}(x_3) = \begin{cases} \frac{x_3}{4}, & \text{if } x_3 \in \{1, 3\}, \\ 0, & \text{otherwise} \end{cases}$$

respectively.

(iii) The support of
$$\underline{Y} = (X_1, X_3)$$
 is
$$S_{\underline{Y}} = \{(y_1, y_2) : (y_1, s, y_2) \in S_{\underline{Z}} \text{ for some } s \in \mathbb{R}\}$$
$$= \{1, 2\} \times \{1, 3\}$$
$$= \{(1, 1), (1, 3), (2, 1), (2, 3)\}.$$

For $\underline{y} = (y_1, y_2) \in S_{\underline{Y}}, R_{\underline{y}} = \{s \in \mathbb{R}: (y_1, s, y_3) \in S_Z\} = \{1, 2, 3\}$. Therefore, for $\underline{y} = (y_1, y_2) \in S_{\underline{Y}}$,

$$f_{\underline{Y}}(\underline{y}) = (\{\underline{Y} = \underline{y}\}) = \sum_{s \in \{1,2,3\}} cy_1 sy_2$$

$$=\frac{y_1y_2}{12},$$

and the marginal p.m.f. of $\underline{Y} = (Y_1, Y_2)$ is

$$f_{\underline{Y}}(y_1, y_2) = \begin{cases} \frac{y_1 y_2}{12}, & \text{if } (y_1, y_2) \in \{(1, 1), (1, 3), (2, 1), (2, 3)\}\\ 0, & \text{otherwise} \end{cases}$$

(iv) Let $A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = x_2 = x_3\}$. Then $S_{\underline{X}} \cap A = \{(1, 1, 1)\}$ and therefore

$$P(\lbrace X_1 = X_2 = X_3 \rbrace) = \sum_{\underline{x} \in S_{\underline{x}} \cap A} f_{\underline{x}}(\underline{x})$$
$$= c$$
$$= \frac{1}{72}. \blacksquare$$

Example 2.3

Let $\underline{X} = (X_1, X_2, X_3)$ be a random vector of absolutely continuous type with joint p.d.f.

$$f_{\underline{X}}(\underline{x}) = \begin{cases} \frac{c}{x_1 x_2}, & \text{if } 0 < x_3 < x_2 < x_1 < 1, \\ 0, & \text{otherwise} \end{cases}$$

where c is a real constant.

- (i) Find the value of constant *c*;
- (ii) Find the marginal p.d.f. of $\underline{Y} = (X_2, X_3)$;
- (iii) Find the marginal p.d.f. of X_2 ;
- (iv) Find $P({X_1 > 2X_2})$.

Solution.

(i) Clearly we have c > 0. Also

$$\int_{\mathbb{R}^3} f_{\underline{X}}(\underline{x}) d\underline{x} = 1$$

$$\Rightarrow \int_{0}^{1} \int_{0}^{x_1} \int_{0}^{x_2} \frac{c}{x_1 x_2} dx_3 dx_2 dx_1 = 1$$

$$\Rightarrow c = 1$$
.

(ii) The marginal p.d.f. of $\underline{Y} = (X_2, X_3)$ is

$$f_{\underline{Y}}(y_1, y_2) = \int_{-\infty}^{\infty} f_{\underline{X}}(x_1, y_1, y_2) dx_1$$

$$= \begin{cases} \int_{-\infty}^{1} \frac{1}{x_1 y_1} dx_1, & \text{if } 0 < y_2 < y_1 < 1\\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{-\ln y_1}{y_1}, & \text{if } 0 < y_2 < y_1 < 1\\ 0, & \text{otherwise} \end{cases}.$$

(iii) The marginal p.d.f. of X_2 is

$$f_{X_2}(x_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\underline{X}}(x_1, x_2, x_3) dx_1 dx_3$$

$$= \begin{cases} \int_{0}^{x_2} \int_{x_2}^{1} \frac{1}{x_1 x_2} dx_1 dx_3, & \text{if } 0 < x_2 < 1\\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} -\ln x_2, & \text{if } 0 < x_2 < 1\\ 0, & \text{otherwise} \end{cases}.$$

(iv) Let
$$A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 > 2x_2\}$$
. Then

$$P(\{X_1 > 2 | X_2\}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\underline{X}}(\underline{x}) I_A(\underline{x}) d\underline{x}$$

$$= \int_{0 < x_3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{x_1 x_2} I_A(\underline{x}) d\underline{x}$$

$$= \int_{0}^{1} \int_{0}^{\frac{x_1}{2}} \int_{0}^{x_2} \frac{1}{x_1 x_2} dx_3 dx_2 dx_1$$

$$= \frac{1}{2}.$$

We conclude this section with the following remark.

Remark 2.2

(i) There are random vectors that are neither of discrete type nor of continuous type (and hence also nor of absolutely continuous type). To see this let $\underline{X} = (X_1, X_2)$ have the joint distribution function

$$F_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{1}{2} + \frac{x_1x_2}{2} , & \text{if } 0 \le x_1 < 1, 0 \le x_2 < 1 \\ \frac{1}{2} + \frac{x_1}{2} , & \text{if } 0 \le x_1 < 1, x_2 \ge 1 \\ \frac{1}{2} + \frac{x_2}{2} , & \text{if } x_1 \ge 1, 0 \le x_2 < 1 \\ 1, & \text{if } x_1 \ge 1, x_2 \ge 1 \\ 0, & \text{otherwise} \end{cases}.$$

It is easy to verify that $F_{X_1,X_2}(\cdot)$ is a distribution function (i.e., it satisfies properties (i)-(iv) of Theorem 1.3). The marginal distribution functions of X_1 and X_2 are

$$F_{X_1}(x_1) = \lim_{x_2 \to \infty} F_{X_1, X_2}(x_1, x_2) = \begin{cases} 0, & \text{if } x_1 < 0 \\ \frac{1}{2} + \frac{x_1}{2}, & \text{if } 0 \le x_1 < 1 \\ 1, & \text{if } x_1 \ge 1 \end{cases}$$

and

$$F_{X_2}(x_2) = \lim_{x_1 \to \infty} F_{X_1, X_2}(x_1, x_2) = \begin{cases} 0, & \text{if } x_2 < 0 \\ \frac{1}{2} + \frac{x_2}{2}, & \text{if } 0 \le x_2 < 1. \\ 1, & \text{if } x_2 \ge 1 \end{cases}$$

Clearly the set of discontinuity points of F_{X_1} (= F_{X_2}) is $D = \{0\}$ and

$$\sum_{x \in D} \left[F_{X_1}(x) - F_{X_1}(x -) \right] = \sum_{x \in D} \left[F_{X_2}(x) - F_{X_2}(x -) \right] = \frac{1}{2} \neq 1.$$

It follows that X_1 and X_2 are not of discrete type and therefore using Theorem 2.1 (i) it follows that (X_1, X_2) is not of discrete type.

Note that

$$\begin{aligned} \left| F_{X_1, X_2}(x_1, x_2) - F_{X_1, X_2}(0, 0) \right| &= \left| F_{X_1, X_2}(x_1, x_2) - \frac{1}{2} \right| \\ &= \begin{cases} \frac{1}{2}, & \text{if } x_1 < 0 \text{ or } x_2 < 0 \\ \frac{x_1 x_2}{2}, & \text{if } 0 \le x_1 < 1, 0 \le x_2 < 1 \end{cases} \\ & \Rightarrow 0, \quad \text{as } (x_1, x_2) \to (0, 0), \end{aligned}$$

i.e., $F_{X_{1,X_{2}}}(\cdot)$ is not continuous at (0,0). Therefore (X_{1},X_{2}) is also not of continuous type.

(ii) There are random vectors which are of continuous type but not of absolutely continuous type. These random vectors are normally difficult to study.