Secure Electronic Transaction

(SET)

Credit Cards on the Internet

- Problem: communicate credit card and purchasing data securely to gain consumer trust
 - Authentication of buyer and merchant
 - Confidential transmissions
- Systems vary by
 - Type of public-key encryption
 - Type of symmetric encryption
 - Message digest algorithm
 - Number of parties having private keys
 - Number of parties having certificates

Credit Card Protocols

- SSL 1 or 2 parties have private keys
- TLS (Transport Layer Security)
 - IETF version of SSL
- *i* KP (IBM)
- SEPP (Secure Encryption Payment Protocol)
 - MasterCard, IBM, Netscape
- STT (Secure Transaction Technology)
 - VISA, Microsoft
- SET (Secure Electronic Transactions)
 - MasterCard, VISA all parties have certificates

OBSOLETE

VERY SLOW ACCEPTANCE

Secure Electronic Transaction (SET)

- SET is not a payment system.
- It is a security protocol and format that enables users to design a credit card payment infrastructure on an open network.
- · It is an open encryption and security specification.

Services Provided by SET

- Provides a secure communication channel among all parties involved in a transaction.
- · Confidentiality: all messages encrypted
- Trust: all parties must have digital certificates.
- Privacy: information made available only when and where necessary.

SET Business Requirements

- Provide confidentiality of payment and ordering information.
- Ensure the integrity of all transmitted data.
- Provide authentication that a cardholder is a legitimate user of a credit card account.
- Provide authentication that a merchant can accept credit card transactions through its relationship with a financial institution.

SET Business Requirements (cont'd)

• Ensure the use of the best security practices and system design techniques to protect all legitimate parties in an electronic commerce transaction.

 Create a protocol that neither depends on transport security mechanisms nor prevents their use.

 Facilitate and encourage interoperability among software and network providers.

Key Technologies of SET

- · Confidentiality of information: DES
- Integrity of data: RSA digital signatures with SHA-1 hash codes.
- Cardholder account authentication: X.509v3 digital certificates with RSA signatures.
- Merchant authentication: X.509v3 digital certificates with RSA signatures.
- Privacy: separation of order and payment information using dual signatures.

Participants of a SET System

SET Transactions

SET Transactions

- The customer opens an account with a card issuer.
 - MasterCard, Visa, etc.
- The customer receives a X.509 V3 certificate signed by a bank.
 - X.509 V3
- A merchant who accepts a certain brand of card must possess two X.509 V3 certificates.
 - One for signing & one for key exchange
- The customer places an order for a product or service with a merchant.
- The merchant sends a copy of its certificate for verification.

SET Transactions

- The customer sends order and payment information to the merchant.
- The merchant requests payment authorization from the payment gateway prior to shipment.
- The merchant confirms order to the customer.
- The merchant provides the goods or service to the customer.
- The merchant requests payment from the payment gateway.

Dual Signature for SET

- Concept: Link Two Messages Intended for Two Different Receivers:
 - Order Information (OI): Customer to Merchant
 - Payment Information (PI): Customer to Bank
- Goal: Limit Information to A "Need-to-Know" Basis:
 - Merchant does not need credit card number.
 - Bank does not need details of customer order.
 - Afford the customer extra protection in terms of privacy by keeping these items separate.
- This link is needed to prove that payment is intended for this order and not some other one.

Why Dual Signature?

- Suppose that customers send the merchant two messages:
 - The signed order information (OI).
 - The signed payment information (PI).
 - In addition, the merchant passes the payment information (PI) to the bank.
- If the merchant can capture another order information (OI) from this customer, the merchant could claim this order goes with the payment information (PI) rather than the original.

Dual Signature

• Links two messages securely but allows only one party to read each.

Dual Signature Operation

- The operation for dual signature is as follows:
 - Take the hash (SHA-1) of the payment and order information.
 - These two hash values are concatenated [H(PI) || H(OI)] and then the result is hashed.
 - Customer encrypts the final hash with his private key creating the dual signature.

$$DS = E_{KRc} [H(H(PI) || H(OI))]$$

DS Verification by Merchant

- The merchant has the public key of the customer obtained from the customer's certificate.
- Now, the merchant can compute two values: $H(PIMD \mid\mid H(OI))$ $D_{KUc}[DS]$
- Should be equal!

DS Verification by Bank

 The bank is in possession of DS, PI, the message digest for OI (OIMD), and the customer's public key, then the bank can compute the following:

H(H(PI) || OIMD)

D_{KUc} [DS]

What did we accomplish?

- The merchant has received OI and verified the signature.
- The bank has received PI and verified the signature.
- The customer has linked the OI and PI and can prove the linkage.

SET Supported Transactions

- •Card holder registration
- Merchant registration
- Purchase request
- Payment authorization
- Payment capture
- Certificate query
- Purchase inquiry

- Purchase notification
- Sale transaction
- Authorization reversal
- Capture reversal
- Credit reversal

Purchase Request

- · Browsing, Selecting, and Ordering is Done
- Purchasing Involves 4 Messages:
 - Initiate Request
 - Initiate Response
 - Purchase Request
 - Purchase Response

Purchase Request: Initiate Request

- Basic Requirements:
 - Cardholder Must Have a Copy of Certificates of Merchant and Payment Gateway.
- Customer Requests the Certificates in the Initiate Request Message, sent to the Merchant, which also includes
 - Brand of Credit Card.
 - ID Assigned to this Request/response pair by customer.
 - Nonce- to ensure timeliness.

Purchase Request: Initiate Response

- Merchant Generates a Response and Signs it with Private Signature Key that includes
 - Customer Nonce
 - Merchant Nonce (Returned in Next Message)
 - Transaction ID for Purchase Transaction
- In Addition ...
 - Merchant's Signature Certificate
 - Payment Gateway's Key Exchange Certificate

Purchase Request

- Cardholder verifies two certificates using their respective CA signatures and Creates the OI and PI.
- OI does not contain explicit order data such as the number and price of items.
- The transaction id generated by the merchant is placed in both the OI and PI.
- Purchase message Includes:
 - Purchase-related Information.
 - Order-related Information.
 - Cardholder Certificate.

Purchase Request

 The cardholder generates a one-time symmetric encryption key, Ks.

Merchant Verifies Purchase Request

- When the merchant receives the Purchase Request message, it performs the following actions:
 - Verify the cardholder certificates by means of its CA signatures.
 - Verifies the dual signature using the customer's public key signature.

Merchant Verification (cont'd)

- Processes the order and forwards the payment information to the payment gateway for authorization.
- Sends a purchase response to the cardholder.

Purchase Response Message

- Message that Acknowledges the Order and References the Corresponding Transaction Number.
- Block is
 - Signed by the Merchant using its Private Signature Key
 - Block and its Signature are Sent to Customer Along with Merchant's Signature Certificate.
- Upon Reception
 - Verifies Merchant Certificate
 - Verifies Signature on Response Block
 - Takes the Appropriate Action

Payment Process

- The payment process is broken down into two steps:
 - Payment authorization
 - Authorization Request
 - Authorization Response
 - Payment capture

Authorization Request

- The merchant sends an authorization request message to the payment gateway consisting of the following:
 - Purchase-related information: This information was obtained from customer and consists of
 - · PI
 - Dual signature calculated over the PI & OI and signed with customer's private key.
 - The OI message digest (OIMD)
 - The digital envelop

Payment Authorization (cont'd)

- Authorization-related information: This information is generated by the merchant and consists of
 - An authorization block that includes
 - the transaction ID, Signed with merchant's private key and encrypted one-time session key generated by merchant.
 - A digital envelop: contains one-time key encrypted with payment gateway's public key-exchange key.

· Certificates

- Cardholder's signature key certificate (to verify dual signature)
- Merchant's signature key certificate (to verify merchant signs)
- Merchant's key exchange certificate (needed in the payment gateway's response)

Payment: Payment Gateway

- Verifies All Certificates.
- Decrypts Digital Envelope of the Authorization Block to Obtain Symmetric Key and then Decrypts the Block.
- Verify Merchant's Signature on the Authorization Block.
- Decrypts Digital Envelope of the Payment Block to Obtain Symmetric Key and Decrypts the Payment Block.
- Verifies Dual Signature on the Payment Block.
- Verifies that the Transaction ID Received from Merchant Matches that in PI Received from Customer.
- Requests and Receives Issuer Authorization

Authorization Response

Authorization Response Message

- Authorization-related Information
- ✓ An authorization block, signed with the gateway's private signature key and encrypted with a one-time symmetric key generated by gateway.
- ✓ Digital envelop that contains one-time symmetric key encrypted with the merchant's public key exchange key.

- Capture Token Information

- ✓ This information will be used to effect payment later.
- ✓ A signed, encrypted capture token together with a digital envelop.
- ✓ It must be returned by merchant, as is, with a payment request.

Authorization Response

Certificate

✓ Gateway's signature key certificate.

With the authorization from the gateway, the merchant can provide the goods or service to the customer.

SET Overhead

Simple purchase transaction:

- Four messages between merchant and customer
- Two messages between merchant and payment gateway
- 6 digital signatures
- 9 RSA encryption/decryption cycles
- 4 DES encryption/decryption cycles
- 4 certificate verifications

Scaling:

- Multiple servers need copies of all certificates