## Projet 3 : Anticipez les besoins en consommation de bâtiments

02/07/2024

Soukaina GUAOUA ELJADDI

Parcours Data Scientist OpenClassrooms

#### Plan:

- Problématique et présentation du jeu de données
- Traitement, exploration des données et feature engineering
- Modélisation avec testing des hyperparamètres
- Évaluation des performances et choix du modèle final
- Analyse de la "feature importance" globale et locale
- Analyse de l'influence de l'EnergyStarScore
- Conclusion

# Problématique et présentation du jeu de données

#### **Problématique**





Contexte : La ville de Seattle vise la neutralité carbone en 2050.

Objectif: Réduire les émissions de CO2 et la consommation énergétique des bâtiments non résidentiels.

Missions: Prédire les émissions de CO2 et la consommation d'énergie des bâtiments non destinés à l'habitation en utilisant leurs données structurales.

Évaluer l'intérêt de l'ENERGY STAR Score dans ces prédictions.

#### Présentation du jeu de données

#### 2016\_Building\_Energy\_Benchmarking.csv:

- Données créés le 15 mars 2018 par Seattle sur des relevés de 2016
- 3376 observations et 46 variables décrivant les propriétés (géographiques, architecturales, usage, consommations, émissions)

| GÉOGRAPHIQUES                                                                                                                                | ARCHITECTURAUX                                                                                                                                      | USAGE                        | EMISSIONS/CONSO                     |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|
| <ul> <li>Longitude</li> <li>Latitude</li> <li>Code de District</li> <li>(District Code)</li> <li>Quartier</li> <li>(Neighborhood)</li> </ul> | <ul> <li>Nombre de<br/>bâtiments</li> <li>Nombre d'étages</li> <li>Année de<br/>construction • Surface<br/>totale<br/>(propertyGFATotal)</li> </ul> | Type de propriété principale | •TotalGHGEmmissions • SiteEnergyUse |

#### Présentation du jeu de données

#### 2 Variables Cibles:

- TotalGHGEmissions: total des émissions de gaz à effet de serre (GES)
- SiteEnergyUse(kBtu) : quantité totale d'énergie consommée annuellement par bâtiment.

| TotalGHGEmissions                                                                                                                                                        | SiteEnergyUse(kBtu)                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| <ul> <li>Dioxyde de carbone (CO2)</li> <li>Méthane (CH4)</li> <li>Protoxyde d'azote (N2O)</li> <li>en tonnes métriques d'équivalent dioxyde de carbone (CO2e)</li> </ul> | <ul> <li>toutes sources d'énergie</li> <li>en kilo-British Thermal Units<br/>(kBtu)</li> </ul> |

#### Présentation du jeu de données

#### Feature à considérer (ou non) : ENERGYSTARScore

- Mesure la performance énergétique globale d'un bâtiment,
- Calculée par l'Agence de Protection de l'Environnement (EPA) des États-Unis,
- Score : 1 à 100
- Calculé selon ces facteurs : Le climat L'usage du bâtiment Les opérations
- Fastidieux à calculer ⇒ l'Intégrer dans la modélisation et analyser sa pertinence pour la prédiction des émissions de CO2 et de la consommation énergétique



2016\_Building\_Energy\_Benchmarking.csv: 3376 Lignes, 46 Colonnes

Suppression de la colonne vide "Comments" ⇒ 3376 Lignes, 45 Colonnes

Suppression des colonnes possédant une valeur unique:

| Colonne  | Valeur unique |
|----------|---------------|
| DataYear | 2016          |
| City     | Seattle       |
| State    | WA            |

3376 Lignes, 45 Colonnes ⇒ 3376 Lignes, 42 Colonnes

Récupération des bâtiments **non destinés à l'habitation** : 'NonResidential', 'Nonresidential COS', 'SPS-District K-12', 'Campus', 'Nonresidential WA'

Suppression des bâtiments destinés à l'habitation : 'Multifamily MR (5-9)', 'Multifamily LR (1-4)', 'Multifamily HR (10+)'

3376 Lignes, 42 Colonnes ⇒ 1668 Lignes × 42 Colonnes

- Suppression des lignes ne possédant pas de valeurs pour la variable 'ENERGYSTARScore'
  - 1668 Lignes × 42 Colonnes ⇒ 1094 Lignes × 42 Colonnes
- Suppression des colonnes 'PropertyName', 'OSEBuildingID' et 'TaxParcelldentificationNumber'
  - 1094 Lignes × 42 Colonnes ⇒ 1094 lignes × 39 colonnes

- Suppression des types propriétés "PrimaryPropertyType" et "ListOfAllPropertyUseTypes" déjà remplacés par "LargestPropertyUseType", "SecondLargestPropertyUseType" et "ThirdLargestPropertyUseType"
  - 1094 lignes × 39 colonnes ⇒ 1094 lignes × 37 colonnes
- Suppression des variables métriques géométriques inutiles pour l'analyse "Address", "ZipCode" et "CouncilDistrictCode"
  - 1094 lignes × 37 colonnes ⇒ 1094 lignes × 34 colonnes

- Suppression des lignes avec des valeurs par défaut 'DefaultData'
  - 1094 lignes × 34 colonnes ⇒ 1006 lignes × 34 colonnes
- Suppression de la colonne unique 'DefaultData'
  - 1006 lignes × 34 colonnes ⇒ 1006 lignes × 33 colonnes

- Suppression de la colonne 'NaturalGas(therms)' redondante avec 'NaturalGas(kBtu)'

1006 lignes × 33 colonnes ⇒ 1006 lignes × 32 colonnes

 Suppression de la colonne 'Electricity(kWh)' redondante avec 'Electricity(kBtu)'

1006 lignes × 32 colonnes ⇒ 1006 lignes × 31 colonnes

- Suppression des colonnes 'SiteEUI(kBtu/sf',
   'SiteEUIWN(kBtu/sf)', 'SourceEUI(kBtu/sf)' et
   'SourceEUIWN(kBtu/sf)', car notre cible est 'SiteEnergyUse(kBtu)'
   1006 lignes × 31 colonnes ⇒ 1006 lignes × 27 colonnes
- Suppression de la colonne 'SiteEnergyUseWN(kBtu)' redondante avec 'SiteEnergyUse(kBtu)'
  - 1006 lignes × 27 colonnes ⇒ 1006 lignes × 26 colonnes

Suppression de la colonne 'GHGEmissionsIntensity' car notre cible est 'TotalGHGEmissions'

1006 lignes × 26 colonnes ⇒ 1006 lignes × 25 colonnes

Suppression de la colonne 'YearsENERGYSTARCertified'

1006 lignes × 25 colonnes ⇒ 1006 lignes × 24 colonnes

#### Identification et traitement des valeurs aberrantes :



#### Identification et traitement des valeurs aberrantes :

- Suppression des valeurs aberrantes basées sur la colonne "Outlier"
- Suppression des bâtiments non conformes si "ComplianceStatus" indique non-conformité
  - 1006 lignes × 24 colonnes ⇒ 997 lignes × 24 colonnes
- Suppression des colonnes 'ComplianceStatus' et 'Outlier' avec des valeurs uniques 'Compliant' et 'NaN'
  - 997 lignes × 24 colonnes ⇒ 997 lignes × 22 colonnes

#### Visualisation des distributions logarithmiques des variables cibles



feature engineering: Année de construction (YearBuilt) ⇒ Âge du bâtiment (BuildingAge)



Suppression des variables avec

degré de corrélation > 0.7 :

'LargestPropertyUseTypeGFA',

'SecondLargestPropertyUseType',

'SecondLargestPropertyUseTypeGFA',

'ThirdLargestPropertyUseType',

'ThirdLargestPropertyUseTypeGFA',

'PropertyGFAParking', 'PropertyGFABuilding(s)'

⇒ 997 lignes × 17 colonnes



Suppression des variables à forte corrélation avec les variables

cibles et qui peuvent causer

un problème de data-leakage:

SteamUse(kBtu),

Electricity(kBtu) et

NaturalGas(therms)

⇒ 997 lignes × 14 colonnes



- Suppression des variables non corrélés avec les variables cibles:
- → 'Latitude',
- → 'Longitude' et
- → 'BuildingAge'

- Suppression des lignes avec des valeurs manquantes pour 'LargestPropertyUseType'
- ⇒ 995 lignes × 11 colonnes



20

18

#### Analyse bivariée: corrélation entre les 2 variables cibles



Transformation des variables catégorielles en variables factices ou indicatrices:

'BuildingType',

'Neighborhood',

'LargestPropertyUseType'

⇒ 995 lignes × 48 colonnes

#### Développement et simulation d'un 1er modèle

Développement des modèles de **régression linéaire** pour les logarithmes des variables cibles :

- 1. Définition des caractéristiques (features) et des cibles (targets)
- 2. Création des modèles de régression linéaire
- Validation croisée

#### Explication des mesures de performance (R<sup>2</sup>)

Le coefficient de détermination R<sup>2</sup> indique la proportion de la variance des variables cibles qui est expliquée par les caractéristiques. Un R<sup>2</sup> de 1 signifie que le modèle explique parfaitement la variance des données, tandis qu'un R<sup>2</sup> de 0 indique que le modèle ne fait pas mieux qu'une prédiction moyenne.

#### Résultats des modèles de régression linéaire

- Pour la prédiction du logarithme des émissions de CO2 :
- $\Rightarrow$  R<sup>2</sup> scores : [0.16588005 0.09020311 0.2037925 0.20585722 0.36608608]
- $\Rightarrow$  R<sup>2</sup> moyen : 0.20636379376613162
  - Pour la prédiction du logarithme de la consommation d'énergie :
- $\Rightarrow$  R<sup>2</sup> scores : [0.38493455 0.27213622 0.30419405 0.29174352 0.56730451]
- $\Rightarrow$  R<sup>2</sup> moyen : 0.3640625688553746

#### Évaluation du modèle

- 1. Division des données en ensembles d'entraînement 75% et de test 25%
- 2. Ajustement des modèles sur les données d'entraînement
- 3. Prédictions sur les données de test
- 4. Calcul des métriques de performance
  - MAE (Mean Absolute Error) : Erreur absolue moyenne.
  - RMSE (Root Mean Squared Error): Erreur quadratique moyenne racine.
  - R<sup>2</sup> (Coefficient de détermination) : Mesure la proportion de la variance expliquée par le modèle.

#### Résultats d'Évaluation du modèle des émissions de CO2:

|                | émissions de CO2 |  |
|----------------|------------------|--|
| MAE            | 0.7737           |  |
| RMSE           | 0.9617           |  |
| R <sup>2</sup> | 0.5348           |  |

**MAE** à 0.7737 signifie qu'en moyenne, les prédictions de logarithme des émissions de CO2 s'écartent des valeurs réelles de 0.7737 unités.

**RMSE** à 0.9618, les erreurs de prédiction plus élevée que le MAE, suggère qu'il y a quelques grandes erreurs de prédiction qui augmentent la moyenne quadratique.

R<sup>2</sup> à 0.5349 indique que le modèle explique environ 53.5% de la variance des données de logarithme des émissions de CO2. Près de la moitié de la variance des émissions de CO2 n'est pas expliquée par le modèle.

#### Résultats d'Évaluation du modèle de la consommation d'énergie :

|                | consommation<br>d'énergie |  |
|----------------|---------------------------|--|
| MAE            | 0.5966                    |  |
| RMSE           | 0.7208                    |  |
| R <sup>2</sup> | 0.6880                    |  |

**MAE** à 0.5967 signifie que Les prédictions de logarithme de la consommation d'énergie sont, en moyenne, à 0.5967 unités des valeurs réelles.

**RMSE** à 0.7208 indique que les erreurs de prédiction sont de l'ordre de 0.7208 unités. la RMSE plus élevée que le MAE, il y a quelques grandes erreurs de prédiction.

R<sup>2</sup> à 0.6881 indique que le modèle explique environ 68.8% de la variance des données de logarithme de la consommation d'énergie. Cela montre une meilleure performance par rapport au modèle des émissions de CO2, mais il y a encore environ 31.2% de la variance non expliquée par le modèle.

#### **Amélioration du Feature Engineering**

- 1. Standardisation/Normalisation des caractéristiques
- Réduction de dimension avec PCA
- Entraînement et évaluation du modèle avec les nouvelles caractéristiques

#### **Amélioration du Feature Engineering**

#### Résultats de l'ACP:

Variance expliquée par chaque composante principale: [0.33222696 0.19148344 0.1580441 0.05219617 0.04286809 0.03420705 0.02539937 0.01719506 0.01553708 0.01373998 0.01329913 0.01214451 0.01069186 0.01022748 0.00869696 0.0074915 0.00635766]

#### Nombre de composantes principales: 17

- ⇒ Les trois premières composantes principales expliquent ensemble environ 68.5% de la variance totale des données.
- ⇒ 17 composantes principales ont été retenues pour expliquer 95% de la variance totale des données.

#### **Amélioration du Feature Engineering**

### Entraînement et évaluation du modèle avec les nouvelles caractéristiques

|                | émissions de CO2 |              | consommation d'énergie |              |
|----------------|------------------|--------------|------------------------|--------------|
|                | avant<br>ACP     | après<br>ACP | avant<br>ACP           | après<br>ACP |
| MAE            | 0.7737           | 0.8032       | 0.5966                 | 0.6363       |
| RMSE           | 0.9617           | 1.0140       | 0.7208                 | 0.8100       |
| R <sup>2</sup> | 0.5348           | 0.4829       | 0.6880                 | 0.6060       |

Après application de l'**ACP**, les erreurs MAE et RMSE ont augmentés et la capacité explicative R<sup>2</sup> a diminué, pour les émissions de CO2 et la consommation d'énergie.

⇒ L'application de l'ACP pour réduire la dimensionnalité n'a pas amélioré les performances des modèles de régression linéaire pour les deux cibles.

## Partie 3 : Évaluation des performances et choix du modèle final

Simulation d'autres modèles et choix d'un modèle final : Test des modèles :

#### Régression linéaire :

 Modèle qui prédit une variable cible en trouvant une relation linéaire entre cette variable et des variables prédictives.

#### Régression Ridge :

 Variante de la régression linéaire qui ajoute une pénalité pour la taille des coefficients pour éviter le surapprentissage.

## Simulation d'autres modèles et choix d'un modèle final : Test des modèles :

#### Régression Lasso:

 Variante de la régression linéaire qui ajoute une pénalité pour la taille des coefficients, pouvant supprimer certains d'entre eux pour la sélection de variables.

#### Random Forest Regressor:

 Modèle d'ensemble utilisant plusieurs arbres de décision pour améliorer la précision des prédictions.

Simulation d'autres modèles et choix d'un modèle final : Test des modèles :

#### **Gradient Boosting Regressor:**

 Modèle d'ensemble qui construit des arbres de décision séquentiellement pour corriger les erreurs des arbres précédents, améliorant ainsi la précision.

|                      | émissions de CO2 |                | consommation d'énergie |                |
|----------------------|------------------|----------------|------------------------|----------------|
|                      | RMSE             | R <sup>2</sup> | RMSE                   | R <sup>2</sup> |
| linéaire             | 1.1229           | 0.2064         | 0.8452                 | 0.3641         |
| Ridge                | 1.1044           | 0.2318         | 0.8346                 | 0.3785         |
| Lasso                | 1.5064           | -0.4505        | 1.3881                 | -0.7235        |
| Random<br>Forest     | 0.9509           | 0.4345         | 0.5438                 | 0.7431         |
| Gradient<br>Boosting | 0.9068           | 0.4850         | 0.5010                 | 0.7790         |

<sup>⇒</sup> Le Gradient Boosting est le meilleur modèle avec le RMSE le plus faible et le R² le plus élevé, pour les 2 cibles émissions de CO2 et consommation d'énergie.

## Optimisation des hyperparamètres avec du Gradient Boosting Regressor : RandomizedSearchCV.

|                                                    | n_estimators | min_samples_<br>split | min_samples_leaf | max_depth | learning_rate |
|----------------------------------------------------|--------------|-----------------------|------------------|-----------|---------------|
| émissions de<br>CO2 /<br>consommation<br>d'énergie | 200          | 5                     | 1                | 3         | 0.05          |

Les hyperparamètres optimaux identifiés indiquent une préférence pour un modèle de Gradient Boosting avec une complexité modérée (200 estimateurs, profondeur maximale de 3), un taux d'apprentissage prudent (0.05), et une régularisation suffisante (min samples split de 5 et min samples leaf de 1).

#### Évaluation des modèles optimisés : validation croisée

|                | émissions de CO2 | consommation d'énergie |
|----------------|------------------|------------------------|
| RMSE           | 0.9056           | 0.4943                 |
| R <sup>2</sup> | 0.4858           | 0.7843                 |

- ⇒ Le modèle de prédiction de la consommation d'énergie fonctionne bien et explique une grande partie de la variance des données,
- ⇒ Le modèle de prédiction des émissions de CO2 a une performance modérée

#### Importance des caractéristiques globale



Les caractéristiques qui ont le plus d'impact sur les prédictions du modèle des émissions de CO2 sont PropertyGFATotal suivi de ENERGYSTARScore puis de LargestPropertyUseType\_Supermarket/Grocery Store et de LargestPropertyUseType\_Non-Refrigerated Warehous

#### Importance des caractéristiques globale



Les caractéristiques qui ont le plus d'impact sur les prédictions du modèle des émissions de CO2 sont PropertyGFATotal suivi de ENERGYSTARScore puis de LargestPropertyUseType\_Non-Refrigerated et de WarehousLargestPropertyUseType\_Supermarket/Grocery Store

### Analyse d'importance locale et globale avec SHAP : émissions de CO2



## Analyse d'importance locale et globale avec SHAP : consommation d'énergie



## Représentation graphique de l'importance des caractéristiques avec SHAP Interaction Values : émissions de CO2



Représentation graphique de l'importance des caractéristiques avec SHAP Interaction Values : consommation d'énergie



# Partie 5 : Analyse de l'influence de l'EnergyStarScore

#### Partie 5 : Analyse de l'influence de l'EnergyStarScore

|                           | Avec ENERGYSTARScore |                | Sans ENERGYSTARScore |                |
|---------------------------|----------------------|----------------|----------------------|----------------|
|                           | RMSE                 | R <sup>2</sup> | RMSE                 | R <sup>2</sup> |
| émissions de<br>CO2       | 0.9071               | 0.4845         | 0.9844               | 0.3924         |
| consommation<br>d'énergie | 0.5007               | 0.7786         | 0.6240               | 0.6523         |

⇒ ENERGYSTARScore joue un rôle significatif dans le modèle, améliorant à la fois la précision des prédictions (RMSE réduit) et la capacité explicative (R² augmenté) pour les 2 cibles, émissions de CO2 et consommation d'énergie.

### Conclusion

#### Conclusion

#### **Cible 1**: TotalGHGEmissions

Modèle de Régression : Gradient Boosting et peut être amélioré avec XGBoost

#### Cible 2 : SiteEnergyUse(kBtu)

Modèle de Régression : Gradient Boosting

Intérêt de la feature ENERGYSTARScore?

Intérêt bénéfique