1	rn im Dokument: I.108) 1.110) 1.111) 1.122) 1.123) 5.71) 5.73) 7.10) d) 7.31) 7.34) 7.39) 7.52) 7.
	75) c) 7.78) 7.79) 7.92) b) 7.95) 7.96) 7.103) 7.104) 7.105) 7.106)
1.107)	$KS \coloneqq 1500$ $t \coloneqq 25$
a)	
/	$KE := KS \cdot 2$ $n := t$
	$i := KE = KS \cdot (1+i)^n \xrightarrow{solve, i, assume, i = real} 0.028113826656066509346$
	$\widehat{\emptyset} \coloneqq i + 1\%$ clear (n)
	$n := KE = KS \cdot (1+i)^n \xrightarrow{solve, n} 18.53065253700579194434$
b)	
	$KE := KS \cdot 2$ $n := t$ clear (i)
	$i := KE = KS \cdot (1+i)^n \xrightarrow{solve, i, assume, i = real} 0.028113826656066509346$
	$\hat{y} := i - 0.5\% \operatorname{\mathbf{clear}}(n)$
	$n := KE = KS \cdot (1+i)^n \xrightarrow{solve, n} 30.33367537768389340008$
1.108)	
	KS = 1
	$\overline{KE} := KS \cdot (1 + 6\%)^3 (1 + 3.125\%)^5 \cdot (1 + 4.5\%)^2$
	(1) (1) (1) (1) (1) (1) (1)
1.110)	
a)	
	$A1 := 250000$ $\emptyset := 4.125\%$ $\emptyset := 3$
	A2 = 283000
	$F1 := A1 \cdot (1+i)^t \to 282231.21923828125$
	$T1 - A1 \cdot (1 + t) \rightarrow 202231.21923020123$
	$F2 := A2 \rightarrow 283000$
	A: Das zweite Angebot bringt mehr Geld ein.
b)	
b)	$S := 3574.39$ $\hat{q} := 2.2\%$ $\hat{t} := 3$

	q2-1
3)	float
	$R \coloneqq 2500$ $\emptyset \coloneqq 4\%$ $q \coloneqq 1 + i \xrightarrow{float} 1.04$ $n \coloneqq 10$
	$B \coloneqq R \cdot \frac{q^n - 1}{q - 1} \cdot q \to 31215.878519692355174$
	$\mathbf{clear}\left(KS\right)$
	solve , KS
	$KS := B = KS \cdot (1+i)^n \xrightarrow{solve, KS} 21088.329026323074326$
1.123)	$\overline{\mathit{KS}}$:= 10000 $\hat{\mathit{g}}$:= 1.25% $\overline{\mathit{t1}}$:= 65 − 20 → 45
	$EX := 1200$ $Q := 1 + i$ $t2 := t1 - 10 \rightarrow 35$
1)	40
-,	$KE := KS \cdot (1+i)^{t_1} + EX \cdot \frac{q^{t_2}-1}{q-1} q \to 70428.067982299772933$ Vorschüssig
2)	Y I
	$JR \coloneqq KE = 2000 \cdot \frac{q^{JR} - 1}{q - 1} \cdot \frac{1}{q^{JR}} \xrightarrow{solve, JR, assume, JR > 0} 46.700009589609260501$
3)	$JR2 \coloneqq KE = 1000 \cdot \frac{q^{JR2} - 1}{q - 1} \cdot \frac{1}{q^{JR2}} \xrightarrow{solve, JR2, assume, JR2 > 0} 170.9147231885238$
5.71)	
-,	$f(x) := 0 \cdot x^3 + b \cdot x^2 + c \cdot x + d$ $W := \begin{bmatrix} 11 & yw \end{bmatrix}$ $P := \begin{bmatrix} 4 & 6 \end{bmatrix}$
	$f'(x) \rightarrow 3 \cdot a \cdot x^2 + 2 \cdot b \cdot x + c$
	$f''(x) \rightarrow 6 \cdot a \cdot x + 2 \cdot b$
	$ \begin{bmatrix} a & b & c & d \end{bmatrix} := \begin{bmatrix} f(0) = 0 \\ f(4) = 6 \\ f'(4) = 0 \\ f''(11) = 0 \end{bmatrix} \xrightarrow{solve, a, b, c, d} \left[\frac{3}{200} - \frac{99}{200} \frac{81}{25} \ 0 \right] = \begin{bmatrix} 0.02 & -0.5 & 3.24 \end{bmatrix} $
	$f(x) := a \cdot x^3 + b \cdot x^2 + c \cdot x + d \rightarrow 0.015 \cdot x^3 - 0.495 \cdot x^2 + 3.24 \cdot x$
5.73)	$\operatorname{clear}\left(a,b ight)$
	$f(x) := 0 \cdot x^4 + b \cdot x^2$

2)
$$[a \ b] := \begin{cases} f(0) = 0 \\ f'(0) = 0 \\ f'(-1) = 5 \\ f''(-1) = 0 \end{cases}$$
 $solve, a, b$ $[-1 \ 6]$
$$f(x) := a \cdot x^4 + b \cdot x^2 \rightarrow -x^4 + 6 \cdot x^2$$
 7.10)
$$d) \qquad [f(x) := x^3 - 2 \cdot x^2 - 3 \ x \qquad @ := -1 \qquad @ := 4$$

$$NS := f(x) = 0 \qquad \frac{solve, x}{3} \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}$$

$$NS1 := min \left(NS^{\frac{3}{2}} \right) \rightarrow 0$$

$$NS2 := min \left(NS^{\frac{3}{2}} \right) \rightarrow 3$$

$$A := \begin{bmatrix} \int_a^{NS1} f(x) \, dx \\ x \end{bmatrix} + \int_{NS1}^{S2} f(x) \, dx \end{bmatrix} + \int_{NS2}^b f(x) \, dx \end{bmatrix} \xrightarrow{float} 20.416666666666667$$
 7.31)
$$\text{clear } (a, b, f)$$

$$1) \qquad \text{clear } (a, b, f)$$

$$1) \qquad y1(x) := 0.1 \ x^3 - 0.7 \ x^2 + 1.3 \ x + @ \qquad ST := 0 \qquad h := 4$$

$$y2(x) := 0.15 \ x^3 - 1.55 \ x^2 + 5 \ x + @ \qquad EN := 6 \qquad w := 6$$

$$A1 := \int_a^5 y1(x) \, dx - \int_a^5 y2(x) \, dx \rightarrow -4.0 \cdot b + (5.0 \cdot a - 16.625)$$

$$A2 := 1 \cdot h - \int_a^5 y2(x) \, dx \rightarrow -1.0 \cdot b - 1.645833333333333333$$

$$A := A1 + A2$$
 2)
$$[a \ b] := \begin{bmatrix} y2(1) = 0 \\ y1(5) = 4 \end{bmatrix} \xrightarrow{solve, a, b} [2.5 \ -3.6]$$

$$y1(x) := 0.1 \ x^3 - 0.7 \ x^2 + 1.3 \ x + a \rightarrow 0.1 \cdot x^3 - 0.7 \cdot x^2 + 1.3 \cdot x + 2.5$$

	$y2(x) \coloneqq 0.15 \ x^3 - 1.55 \ x^2 + 5 \ x + b \to 0.15 \cdot x^3 - 1.55 \cdot x^2 + 5.0 \cdot x - 3.6$
3)	$BA1 \coloneqq \int\limits_{0}^{5} y1\left(x\right) \mathrm{d}x - \int\limits_{1}^{5} y2\left(x\right) \mathrm{d}x \to 10.275$
	$BA2 := 1 \cdot h - \int_{5}^{6} y_{2}(x) dx \rightarrow 1.9541666666666666666666666666666666666666$
	$BA := BA1 + BA2 \rightarrow 12.2291666666666666666666666666666666666$
	$GA := h \cdot w - BA \to 11.770833333333333333333333333333333333333$
7.34)	$f(x) \coloneqq \frac{-1}{16} x^2 + 2$
1)	$r \coloneqq 2$ $d \coloneqq 2 \ r \to 4$ $AZ \coloneqq \pi \cdot r^2 \xrightarrow{float} 12.566370614359172954$
	$NS := f(x) = 0 \xrightarrow{solve} \begin{bmatrix} -(4 \cdot \sqrt{2}) \\ 4 \cdot \sqrt{2} \end{bmatrix}$
	$NS1 = min(NS^{0}) = -5.66$
	$ \underbrace{\overline{NS2}} := min\left(NS^{\widehat{1}}\right) = 5.66 $
	$AG \coloneqq \int_{NS1}^{NS2} f(x) \mathrm{d}x \cdot 2 \to 30.169889330626027708$
	$P := \frac{AZ}{AG} \to 0.41652027545234683566$
2)	
2)	$P := (AG - AZ) \cdot 6.89 + 3440 \rightarrow 3561.2882439550786293$
3)	Es sollte sich nicht ändern, da es ja in alle Richtungen gestreckt wird
	$M \coloneqq 1.1 \cdot 1.1 \rightarrow 1.21$
	$AZ2\!\coloneqq\! M\!\cdot\! \pi\!\cdot\! r^2 \xrightarrow{float} 15.205308443374599274$

	$AG2 := M \cdot \int_{NS1}^{NS2} f(x) dx \cdot 2 \to 36.505566090057493526$
	$P:=\frac{AZ}{AG} \rightarrow 0.41652027545234683566$ Keine Änderung!
7.39)	$\mathbf{clear}\left(f,M,NS,NS1,NS2\right)$
	$f(x) := (x-2)^2 \qquad \int f(x) dx \xrightarrow{simplify} \frac{x^3}{3} + (4 \cdot x - 2 \cdot x^2)$
	$NS := f(x) = 0 \xrightarrow{solve} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $NS1 := min(NS^{\widehat{0}}) \to 2$
	$NS2 \coloneqq min\left(NS^{\widehat{1}}\right) ightarrow 2$
a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
a)	$A := \int_{0}^{NS1} f(x) dx \xrightarrow{float} 2.666666666666666666666666666666666666$
	$A := \int_{0}^{NS1} f(x) dx \xrightarrow{float} 2.666666666666666666666666666666666666$
b)	$\operatorname{clear}\left(M ight)$
	$f2(y) := f(x) = y \xrightarrow{solve, x} \begin{bmatrix} \sqrt{y} + 2 \\ -\sqrt{y} + 2 \end{bmatrix}$ $f21(y) := min\left(f2(y)^{0}\right) \to \sqrt{y} + 2$
	$f21(y) \coloneqq min\left(f2(y)^{\stackrel{\widehat{0}}{\bigcirc}}\right) o \sqrt{y} + 2$

7.53)	1 (f fo for for s h o d)	
a)	$\mathbf{clear}\left(f,f2,f21,f22,a,b,c,d\right)$	
	$f(x) := 2 x^2$ $c := 0$ $d := 8$	
	$f2(y) := f(x) = y \xrightarrow{solve, x} \begin{bmatrix} \frac{\sqrt{2 \cdot y}}{2} \\ -\sqrt{2 \cdot y} \\ 2 \end{bmatrix}$	
	$f21(y) := min\left(f2(y)^{\widehat{0}}\right) \rightarrow \frac{\sqrt{2} \cdot \sqrt{y}}{2} f22(y) := min\left(f2(y)^{\widehat{0}}\right)$	$2(y)^{\widehat{1}} \rightarrow \frac{-(\sqrt{2} \cdot \sqrt{y})}{2}$
	$f(0) \to 0$ $f(0) = 0 \to 1$ $f(0) = 0 \to 1$	
	$f(3) \to 18$ $f(21) = 3 \to 1$ $f(22) = 3 \to 0$	Only $\frac{\sqrt{2}\cdot\sqrt{y}}{2}$ properly represents
	$f(10) \rightarrow 200 f21(200) = 10 \rightarrow 1 f22(200) = 10 \rightarrow 0$	function we want
	$\overline{V} := \pi \cdot \int_{c}^{c} f21(y)^{2} dy \xrightarrow{float} 50.265482457436691815$	Actually both functions return the correct volume, but the second one
	$ \overline{V} := \pi \cdot \int_{c}^{d} f21(y)^{2} dy \xrightarrow{float} 50.265482457436691815 $ $ \overline{V} := \pi \cdot \int_{c}^{d} f22(y)^{2} dy \xrightarrow{float} 50.265482457436691815 $	should still rather not be used, as it doesn't map properly to the f(x) barfunction
b)		
-	$f(x) \coloneqq \ln(x)$ $G \coloneqq -1$ $d \coloneqq 1$	
	$f2(y) := f(x) = y \xrightarrow{solve, x} e^{y}$	
	$\widehat{V} := \pi \cdot \int_{c}^{d} f2(y)^{2} dy \xrightarrow{float} 11.394118012887875454$	
7.75)		
c)	$\operatorname{clear}\left(f,a,b ight)$	
	$f(x) \coloneqq x^3$ $a \coloneqq -1$ $b \coloneqq 3$	
	$s := \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx \xrightarrow{float} 29.20594758409683887$	

	$s1 := \int_{l_s}^{0} \sqrt{1 + (f'(x))^2} dx \xrightarrow{float} 1025.9988548707852297$
	$s2 := \int_{0}^{rs} \sqrt{1 + (f'(x))^2} dx \xrightarrow{float} 1025.9988548707852297$
	$\S := s1 + s2 \xrightarrow{float} 2051.9977097415704594$
7.92 b)	
	$ f(x) := \sin(x) \qquad \qquad 0 := 0 \qquad \qquad b := \pi $
	$m := \frac{\int_{a}^{b} f(x) \mathrm{d}x}{b - a} \to \frac{2}{\pi}$
2)	
	$Q := \sqrt{\frac{\int_{a}^{b} f(x)^{2} dx}{b-a}} \to \frac{\sqrt{2}}{2}$
7.95)	
	$\begin{aligned} &\operatorname{clear}\left(f,t,a,b,m\right) \\ &f(t)\!\coloneqq\!-0.1\!\cdot\! t^2 + 2\!\cdot\! t + 10 \end{aligned} \qquad \text{t in Sekunden, f(t) Temperatur in °C}$
1)	
	20 ⁴ 19 ¹ 18 ⁺
	$\begin{array}{c} \begin{smallmatrix} 17+\\ 16+\\ 15-\\ 14+\\ 13+ \end{smallmatrix} \\ f(t)$
	12 11 10 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 16.5 18
2)	t
2)	$a := 7$ $b := 24$ $\S := 7$
	$\int\limits_{-s}^{b-s}f(t)\mathrm{d}t$
	$m := \frac{a-s}{b-a} \to 17.3666666666666666666666666666666666666$

3)	Der Mittelwert steigt um 3 °C
	$f(t) := f(t) + 5 \rightarrow -0.1 \cdot t^2 + 2.0 \cdot t + 15.0$
	$ \underbrace{m} := \frac{\int_{a-s}^{b-s} f(t) dt}{b-a} \rightarrow 22.366666666666666666666666666666666666$
7.96)	$\operatorname{f clear}\left(s,w,m,d,e ight)$
2)	Das Auto fährt rückwerts.
	$w := \frac{1}{60} \cdot \frac{60}{2} + \frac{4}{60} \cdot 60 + \frac{1}{60} \cdot \frac{60}{2} + \left \frac{1}{60} \cdot \frac{-20}{2} \right + \left \frac{1}{60} \cdot -20 \right \xrightarrow{float} 5.5$
3)	$s := \frac{w}{\left(\frac{8}{60}\right)} \to 41.25 \qquad \left(\frac{1}{60} \cdot \frac{60}{2}\right) + \left(\frac{4}{60} \cdot 60\right) + \left(\frac{1}{60} \cdot \frac{60}{2}\right) \to 5$
	w ightarrow 5.5
	$e \coloneqq w + 2 \cdot \left(\frac{1}{60} \cdot \frac{-20}{2} + \frac{1}{60} \cdot -20\right) \xrightarrow{float} 4.5$
7.103)	
	clear (A,t) $A(t) \coloneqq \frac{2000 \cdot t}{t^2 + 25}$ t Zeit in Tage, A(t) Anzahl der Antikörper
1)	200

	Am Anfang werden sehr schnell Antikörper gebildet, bis dann
	am 5 Tag langsam die Zahl der Antikörper runtergeht.
2)	@:=0
	$A10 := \int_{a}^{b} A(t) dt \xrightarrow{float} 1609.4379124341003746$
	$ \hat{a} := 0 \qquad \hat{b} := 28 $ $ A28 := \int_{a}^{b} A(t) dt \xrightarrow{float} 3476.9230921902909402 $
7.104)	
	$\mathbf{clear}\left(a,f,t\right)$
	$a(t)\!\coloneqq\!-1.2\;t^2+2.4\;t$ t Zeit in Sekunden, a(t) Beschleunigung im Moment t
1)	
	1.3- 1.2- 1.1- 1- 0.9-
	0.8- 0.7- 0.6- 0.5- 0.4- 0.3- 0.2-
	0.1-0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
	Die Fläche beschreibt die Geschwindigkeit des Wagens (Muss jedoch mit den restlichen Berei um die komplette Geschwindigkeit zu erhalten, z.B. nach 2s muss im Bereich [0, 2] gerechne
2)	$\operatorname{clear}\left(t ight)$
	$a(t) = 0 \xrightarrow{solve, t, assume, t > 0} 2.0$

	$v(t) \coloneqq \int a(t) dt \rightarrow -0.4 \cdot t^2 \cdot (t-3.0)$
	$v(2) \rightarrow 1.6$
3)	$NS := v(t) = 0 \xrightarrow{solve, t, assume, t > 0} 3.0$
	$\widehat{\mathbb{S}} := \int_{0}^{NS} v(t) dt \xrightarrow{float} 2.7$
7.105)	
1)	$\mathbf{clear}\left(v,t,NS,NS1,NS2\right)$
-,	Der Zug fährt rückwerts.
2)	
	$v(t) = -0.0029 \ t^4 + 0.306 \ t^3 - 10.28 \ t^2 + 109.1 \ t$ t in Minuten, v(t) Geschwindigk
	$NS := v(t) = 0 \xrightarrow{solve, t, float} \begin{bmatrix} 0.0 \\ 47.965288422387083987 \\ 22.163468714189602563 \end{bmatrix}$
	35.388484242733658278
	$NS1 \coloneqq min\left(NS^{\widehat{0}}\right) ightarrow 0.0$
	$NS2 := min\left(NS^{\widehat{2}}\right) \to 22.163468714189602563$
	$NS3 := min\left(NS^{\widehat{3}}\right) \rightarrow 35.388484242733658278$
	$NS4 := min\left(NS^{\widehat{1}}\right) \to 47.965288422387083987$
	GS ist der Weg, der alle Fahrstrecken (auch negative) einberechnet und summiert
	$GS \coloneqq \left \int_{NS1}^{NS2} v(t) \mathrm{d}t \right + \left \int_{NS2}^{NS3} v(t) \mathrm{d}t \right + \left \int_{NS3}^{NS4} v(t) \mathrm{d}t \right \xrightarrow{float} 6243.9572620025502857$
	DS ist die Distanz, die vom Urpsprung her aus geht und negative Fahrstrecken abzieht
	$DS \coloneqq \left \int_{NS1}^{NS2} v(t) dt \right - \left \int_{NS2}^{NS3} v(t) dt \right + \left \int_{NS3}^{NS4} v(t) dt \right \xrightarrow{float} 5028.8298410908970911$
7.106	$\operatorname{clear}\left(v,t,d,e,f,P,M ight)$
	$v(t) \coloneqq 15 \cdot t \cdot e^{-1.8 t}$ t in Sekunden, $v(t)$ in Liter/Sekunde
1)	

	$\int\limits_{t1}^{\infty}v\left(t ight) \mathrm{d}t$	
	A: Würde das Gesamtvolumen (Liter) ausrechnen.	
2)	$P := v'(t) = 0 \xrightarrow{solve, t} 0.555555555555555555555555555555555555$	
	$v''(P) \rightarrow -9.93274491162894268292$ Da v''(P)<0 ist es unser Höhepunkt	
	$M\coloneqq \int\limits_0^P v\left(t\right)\mathrm{d}t \to 1.22333850767183035561 \qquad \text{Insgesamt sind bis dahin} \\ 1.22 \text{ Liter Wasser geflossen.}$	
3)	M:=3 clear (t,P)	
	$\overline{V}(t) \coloneqq \int v(t) \mathrm{d}t \to (-8.333333333333333333333333333333333333$	
	$P := M = \left \int_{0}^{P} v(t) dt \right \xrightarrow{solve, P} 1.2280965381637906441$	
	V(0) ightarrow -4.62962962962	2962
	V(1) o -2.14276336583	3538
	V(2) ightarrow -0.58189408915	5530
	V(3) ightarrow -0.13382462052	2185
	$V(4) \rightarrow -0.02834260939$)207
	0.5-	
	t	